Differing impacts of global and regional responses on SARS-CoV-2 transmission cluster dynamics

Brittany Rife Magalis,1,2∗ Andrea Ramirez-Mata,1,2 Anna Zhukova,3 Carla Mavian,1,2 Simone Marini,2,4 Frederic Lemoine,3 Mattia Prosperi,4 Olivier Gascuel,3 Marco Salemi1,2

1Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, 32610, USA
2Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32610, USA
3Department of Computational Biology, Institut Pasteur, Paris, 75015, France
4Department of Epidemiology, University of Florida, Gainesville, Florida, 32610, USA
∗To whom correspondence should be addressed; E-mail: salemi@pathology.ufl.edu or brittany.rife@epi.ufl.edu.

Although the global response to COVID-19 has not been entirely unified, the opportunity arises to assess the impact of regional public health interventions and to classify strategies according to their outcome. Analysis of genetic sequence data gathered over the course of the pandemic allows us to link the dynamics associated with networks of connected individuals with specific interventions. In this study, clusters of transmission were inferred from a phylogenetic tree representing the relationships of patient sequences sampled from December 30, 2019 to April 17, 2020. Metadata comprising sampling time and location were used to define the global behavior of transmission over this earlier sampling period, but also the involvement of individual regions in transmission cluster dynamics. Results demonstrate a positive impact of international travel restrictions and nationwide lockdowns on global cluster dynam-
ics. However, residual, localized clusters displayed a wide range of estimated initial secondary infection rates, for which uniform public health interventions are unlikely to have sustainable effects. Our findings highlight the presence of so-called "super-spreaders", with the propensity to infect a larger-than-average number of people, in countries, such as the USA, for which additional mitigation efforts targeting events surrounding this type of spread are urgently needed to curb further dissemination of SARS-CoV-2.

Since its emergence from Wuhan, Hubei Province, China, in 2019 and its established human-to-human transmission, government and local bodies have been working to control the spread of coronavirus disease (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for this disease, is a single-stranded RNA virus that likely emerged through recombination events within animal reservoirs infected by different strains (1, 2). Since December 2019, its rapid spread throughout the world has already resulted in more than ten million cases and hundreds of thousands deaths, with no vaccine or specialized medication currently available.

Prior to COVID-19, the most recent global pandemic that presented a serious public health emergency was caused by influenza A H1N1 strain in 2009. H1N1’s threat exposed vulnerable public health capacities at the global, national and local levels, which we are facing once again, such as limitations of scientific knowledge, dilemmas in decision making, and communication among experts, policymakers and the public (3). The failure of preventive measures can lead to outbreaks crossing borders and exceeding national capacities (4). The likelihood of worldwide spread for pathogens characterized by human-to-human transmission, such as H1N1 and SARS-CoV-2, is extremely high with today’s globalized economy and ease of international travel and requires additional, concerted efforts of governments and public health institutions to prevent or contain outbreaks. As individual nations have responded in various ways, and at varying times
throughout the pandemic, understanding the impact of these efforts on the global and regional transmission dynamics of the virus are imperative in defining a strategy to assess the current situation and prevent similar scenarios in the future.

Genomic data sampled from viral epidemics offer a unique opportunity to evaluate not only the evolution of the virus over time but also the changing viral population dynamics imprinted in the evolutionary history. These population dynamics, though often reflective of the neutral processes of evolution (5), can at times be traced to significant ecological and epidemiological events (6). Sample collection dates are critical in these connections, as when combined with the assumption of relatively stable mutation rates over time, allow for genetic differences to be re-scaled as differences in time. The timing of population changes, inferred from genetic changes, can then be compared with external, contextual data (e.g., (7)) to investigate potential links between public health interventions (or other relevant events) and viral population growth and spread. Global analyses of viral spread using genomic data can reveal important information regarding the emergence of a novel virus, such as the phylogenetic analysis of H1N1 (8), which informed the community of the adaptive process of H1N1 from its original host (swine) to humans and its subsequent challenges in escape from the human immune system. Since then, large projects aimed at facilitating and optimizing the sharing of data and results for real-time projections of viral spread have helped in tracking SARS-CoV-2 global dissemination (e.g., (9, 10)). Yet, given that viruses evolve at a relatively rapid rate, considering separate isolated geographic areas as separate epidemics may also be warranted when attempting to understand how regional efforts drive viral evolutionary and population dynamic patterns. A virus from country X that seeds infection in country Y (founder event) becomes, over time, genetically distinct from the strains circulating in the country of origin, even in the absence of selection, due to genetic drift. On the other hand, in the era of globalization, analyses on regional epidemics limited to regional data can miss out on critical travel-mediated variables, such as separate,
independent introductions of the virus (11).

Viral genetic data are not only useful in reconstructing the evolutionary and demographic history of a viral epidemic but also in identifying putative direct transmission events when \textit{a priori} knowledge, or estimates, of the maximum genetic distance that separates linked individuals exists (e.g., (12)). Transmission clusters are of interest to public health, as they represent groups of individuals related by a common denominator, or risk factor, such as locality, social network structure, or other behavior (e.g., (13)); the connectedness of these individuals is reflected in closely related genetic sequences. With advanced efforts in SARS-CoV-2 genomic sequencing, phylogenetic tools can help to identify and characterize clusters of transmission, as well as regions involved in those clusters. Using such transmission cluster data, we propose that patterns in cluster formation, growth, and connectedness among otherwise separate geographical regions offer insight not only into global components of the public health response, but can also help in identifying clusters and regions for which a more specific strategy to control local spread is required.

\section*{Results}

\textbf{Cluster size and composition} Using a large genomic dataset collected from the Global Initiative on Sharing All Influenza Data (GISAID) aggregation of SARS-CoV-2 data, we hypothesized the existence of a relationship between international travel restrictions and overall transmission cluster dynamics, as well as sufficient variability among clusters in both space and time that would reveal the impact of varied local public health interventions. Based on the CDC definition of molecular transmission clusters for HIV, well-supported clades of viral sequences (one sequence per patient) comprised of at least 5 individuals with similar genetic distances were considered in this study to qualify as putative transmission clusters (also used in (14) for SARS-CoV-2). The criterion for similar genetic distances within these clades was a median
patristic distance (branch length separating sequences within the tree) of <0.009% (see Supplementary Materials) in a maximum likelihood (ML) phylogenetic tree inferred from 11,069 SARS-CoV-2 genomic sequences. This distance, representing the median genetic difference between two sampled individuals is less than the median difference observed within a single individual (0.014%) in the study by Shen et al. (2020) (15) on patients admitted with COVID-19 pneumonia. By only considering individuals that share a genetic distance less than would be expected during the evolution of the virus within a single host, we have greater confidence in infections separated by a short amount of time and thus an epidemiological linkage or connection; increasing genetic distance leads to increased uncertainty as to the relationship of individuals within a cluster and a greater likelihood of the inclusion of multiple risk factors. The majority of clusters identified using this method included < 25 individuals, with one large outlier cluster of 185 individuals (184 from the USA and 1 from Denmark) (Figure 1A). In terms of country representation within transmission clusters, the majority of the identified clusters included viral sequences isolated from patients in 1 – 5 countries, with the majority country in clusters comprised of only two countries representing 50-99% of the sequences (Figure 1B). Clusters including 6-10 countries were more evenly distributed, while the majority country represented 70% of the sequences in the only cluster with strains from 11 countries. The results collectively indicate a significant role for travel in connecting several countries through putative direct transmission events, rather than isolated epidemics seeded by single introductions, consistent with previous studies (16, 17).

As with conventional epidemiological analyses, sampling bias can impact results and interpretation and has been inherent to SARS-CoV-2 sample collection throughout the pandemic (18). In our analysis, the number of clusters involving each of the countries with available sequence data as of April 24, 2020, were distributed similarly to the number of available genomes indicating, unsurprisingly, that the number of clusters detected for a particular country is limited
by the number of available samples from that locale (Figure 2A). Hence, no direct comparison could be made regarding the number of clusters involving different countries. This was not the case, however, for the average size (number of persons) of clusters associated with each country, since large clusters were not always detected in countries with more samples available, such as the United Kingdom (UK) and United States of America (USA) (Figure 2B). In other words, despite potential lack of information from countries with reduced datasets, a global perspective on transmission cluster patterns related to cluster size might nevertheless be investigated. It is important to keep in mind that low sequence presence is not necessarily an indicator of low infection rates, as the fraction of total infected individuals that were sampled may, in fact, be high for these countries, resulting in a different type of regional sampling bias. For example, although as of April 24, over 3,000 sequences were submitted for the UK, this comprised < 25% of total infections, whereas Hong Kong reportedly submitted at least one genome for every confirmed case (Figure 2C). Given that individuals linked through transmission in a small amount of time share a small genetic difference, on which phylogenetic cluster inference relies, missed sampling can prevent the inclusion of individuals within a cluster. Hence, we anticipated that sampled individuals from countries with sequencing more representative of the infected population (i.e., genome per confirmed case value closer to 1) would be more likely to cluster, resulting in a larger fraction of clustered individuals. However, there was no clear relationship (linear regression $R^2 < 0.0084$) between the percentage of individuals within a country that are included in clusters and the number of retrieved genomes per confirmed cases (Figure 2C). This finding indicates that country-specific contributions to clustering were not biased toward countries with larger fractions of sampled individuals from the infected population. Therefore, sub-sampling as an effort to mitigate the effects of sampling bias at the country level, though often performed for phylogenetic analyses of viral geographical spread (19), was not deemed necessary for our study. On the other hand, it is important to notice that due to the lack of information on sam-
pling strategies used to gather available sequence data, we could not rule out possible effects of selection bias (i.e., preferential sampling). For example, in certain countries for which representative sequencing was low but clustering rate was high, we cannot exclude that sampling efforts were focused on presumed contact networks in order to locate and quarantine infections.

Cluster origin and epidemiology In order to derive epidemiological information for each detected cluster, branch lengths within the tree were scaled in time by enforcing a molecular clock, which assumes the accumulation of substitutions has occurred at a constant rate over time. The time to the most recent common ancestor (TMRCA) of all sequence data was estimated to be December 6 [25 Nov - 10 Dec] 2019 (Figure S1, consistent with previous demographic model-based estimate by Andersen et al. (2020) (20). The result was a good indication that date estimates for remaining internal nodes within the tree were also reliable.

For the majority of the transmission clusters detected in the tree, TMRCAs (i.e., a cluster’s temporal origin) dated back prior to Feb 20, 2020, with a peak observed between the first week of February until the first week of March (Figure 3A). These results were robust to genetic distance thresholds of 0.006% and 0.013% (Figure S2), the latter value representing the 2.5th percentile of tree-wide distances and maximum diversity observed in Shen et al. (2020) (15), as described above. Following this time, a sharp decline in number of newly formed clusters was evident. Furthermore, despite differing patterns in the number and size of clusters across individual countries, the global peak in clusters size coincided with the peak in number of new clusters, around the end of February, as did the number of countries represented in each cluster (Figure 3A). The overlapping peaks in cluster number and size, as well as number of countries/cluster in time, suggest a common underlying factor responsible for the decrease in the rate of cluster formation, growth, and connectivity at the global level. Thus, it appeared reasonable to hypothesize that efforts to reduce international travel at the beginning of the epidemic
played a role.

Data on reported travel restrictions (Tables S1 and S2) were obtained from various sources (see Supplementary Materials), and the cumulative number of reports involving all international travel, as well as those specifically involving China, were plotted over time to provide context into travel-related events that would potentially result in the global cluster behavior described above. The early, elevated rate of accumulation of travel bans, largely comprised of restriction on immigration from China began to slow on February 15 (slowed accumulation for China-specific bans on the 6th) (Figure 3B). Accumulation in the number of restrictions remained low until the onset of nationwide lockdowns (first reported March 08), at which time the steep decline in overall cluster TMRCA, size, and geographical range began. These results strongly suggest that reduced international travel slowed the formation, growth, and connectivity of transmission clusters, whereas more local interventions were necessary, and more effective, in preventing local virus spread.

The median lifespan, or duration, of a transmission cluster was estimated to be approximately 2 weeks, with the largest cluster extending for over six weeks (Figure 4A). Such a short duration time (on the order of the longer end of the incubation period (21)), combined with average cluster sizes of up to 25 sampled individuals, is indicative of SARS-CoV-2 rapid transmission (22). The expected number of secondary cases directly generated by a primary case in the population, otherwise known as the basic reproductive number (R_0), was calculated as a function of early changes in the estimated viral effective population size (23) and a normally distributed infectious period of approximately 2–8 days). R_0 for the entire pandemic was estimated at 5.65 [95% credible interval (CI): 4.37–6.68], consistent with previously reported R_0s by Shen et al. (2020) (15) and Tang et al. (2020) (24), as well as other published (but not peer-reviewed) estimates reviewed in Liu et al. (2020) (22). However, in contrast to previous epidemiological studies, we utilized phylogenetic methods at an increased resolution to
estimate the transmission potential for individual clusters, which we have already shown can vary in size and composition over time. In the majority of clusters, R_0 ranged from < 1 to 2.32, though R_0 values of up to 12 were reported (Figure 4B), indicative of clusters formed through "super-spreading" events (SSEs), or cases of larger-than-average transmissibility (25). While it is important to note that accuracy of R_0 estimation is reduced for outbreaks characterized by true $R_0 \geq 5$ (23), clusters representing increased secondary infection rates as compared to the majority population are of importance in the control of infection. As $R_0 > 1$ is indicative of sustainable transmission and vice versa, we investigated the timing and duration of both low(< 1)- and high(> 1)- R_0 clusters. High-R_0 clusters were more frequently observed between February and early March (Figure 4C), consistent with the temporal peak in global cluster size. There was no relationship between R_0 and duration ($R^2 < 3.69E - 06$), suggesting clusters with $R_0 < 1$ were still sustained for various lengths of time. Although seemingly counter-intuitive, this finding can be explained by dynamic transmission patterns, such as a change in the contact network, or even a later introduction of unsampled super-spreaders. As the R_0 calculation is derived from early estimates of the viral effective population size, this value does not depict the full transmission potential of the group of individuals within the cluster.

Our results point to a drastic reduction in cluster formation, growth, and connectivity following the first week of March. Yet, clusters with $R_0 > 2$ (earlier estimates of SARS-CoV-2 R_0) were observed during this time (Figure 4C). We next sought to investigate which countries were involved in the few, albeit seemingly rapidly spreading, clusters that formed following the onset of lockdown measures (e.g., social distancing). R_0 values across clusters for each country were averaged after being scaled based on the percentage of sequences belonging to that country, resulting in a weighted mean R_0 (Figure 5A). Belgium, Luxembourg, and the UK and USA (alphabetical order only) were estimated to have a weighted mean $R_0 > 2$ in March, whereas Australia, Iceland, and the Netherlands were approximately 1 or less ($R_0 < 1.1, 1.2, \text{ and } 1$,
respectively) (Figure 5A). In line with global reduction in connectivity, clusters formed after March 08 consisted of 2 countries or less Figure 5B. The USA formed two clusters comprised of only US individuals, both with $R_0 > 2$, one of which was estimated as the highest R_0 value (> 10, CI: 7.57-11.94) of all clusters at this time. The three clusters following in ranking comprised either Belgium alone (2) or Belgium and neighboring Luxembourg (2), with $R_0 > 4$. All of these clusters exhibited evidence of sustained transmission, with a duration of greater than 2 weeks, though it is important to note that the addition of more up-to-date sequences may extend duration times for clusters initiated during this time period. The UK formed three separate clusters - one isolated, one with primarily UK individuals, and one with primarily Australian individuals. The two clusters comprised of majority UK sequences were both estimated to have $R_0 > 2$, whereas the cluster with primarily Australian sequences was characterized as $R_0 < 1$. Similarly, the second Australian cluster (Australian sequences only) was also characterized as having a relatively low R_0 of < 1.3 (CI:1.20-1.32). Results suggest that the virus was already spreading rapidly in the USA, Belgium and Luxembourg, and the UK at the time of implementation of regional mobility restriction efforts and that, despite efforts to restrict international travel, the UK and Australia maintained travel sufficient to sustain inter-regional transmission.

Recent evidence implicating a mutation in residue 614 of the spike protein of SARS-CoV-2 in increased infectivity (26) and higher mortality (27) offered a possible explanation for increased transmission potential of certain clusters identified in this study. However, despite the clear advantages at the cellular level of glycine in place of aspartic acid at this site, there was no relationship between prevalence of glycine (% of individual sequences) within individual transmission clusters and R_0 (linear regression $R^2 < 0.00011$) or cluster size ($R^2 < 0.0083$) (Figure S3), though generation time was not explored.

Discussion

Unlike conventional epidemiological surveillance data, viral genetic data can be used to link infected individuals involved in direct transmission events even when the contact structure is unknown. Identification of these putative transmission clusters, coupled with phylogenetic inference of cluster dynamics and relevant epidemiological parameters, has provided evidence of a global pattern in cluster formation, growth, connectivity, as well as transmission potential over time. The slow rise and subsequent rapid fall in the number and size of forming clusters over the period of December 30 to April 20, 2020, may have been the results of a change in global transmission patterns and/or a rate of sampling that did not adequately capture, as recently reported (28), the increased rate in the number of infected individuals. According to the latter scenario, missed sampling of individuals involved in a transmission cluster can prevent the detection of links via genetic data, or even conventional surveillance data. However, the similar temporal pattern observed for the number of countries connected by individual clusters also suggests a relationship between cluster formation, growth, and connectivity and that an outside force was responsible for changing global transmission patterns, rather than problematic sampling over time.

When placed in the context of the timing and accumulation of public health interventions, the data provide evidence supporting the benefits of both global and regional response efforts. Given an incubation period extending to up to 18 days within an individual (29), it is plausible that specific restriction on international travel involving China, peaking on February 06, could have resulted in the slowed rate of cluster activity beginning the first week of February. It is also possible that the rapid increase in overall international travel restrictions, peaking around February 15, was partially, if not equally, responsible. Whereas additional modeling using recorded travel data would be highly beneficial in teasing apart the effects of international and
China-specific travel restrictions on transmission characteristics, the drastic halt in cluster activity beginning the first week of March directly coincides with the date of onset of nationwide lockdowns. This particular finding speaks to the effectiveness of additional non-pharmaceutical measures taken at the regional level to curb the spread of infection, consistent with previous reports \((30, 31)\).

Whereas a global reduction in cluster activity in response to efforts to reduce mobility might be expected given the known role of travel in pathogen spread \((32)\), we anticipated cluster- and region-specific variation in transmission characteristics, consistent with known difficulties in controlling regional epidemics. Using viral sequence data and the phylogenetic relationships among sampled individuals, particularly for an exponentially growing epidemic of limited data availability \((23)\), we can model relevant epidemiological parameters of interest used in determining the transmission potential for clusters involving individual countries. It is important to keep in mind that the results of any phylogenetic study that are dependent on a single tree assume that that a tree best describes the underlying phylogenetic relationships. While it is often best to summarize results across a sample of similarly plausible trees using Bayesian methods \((33, 34)\), Bayesian tree reconstruction methods are highly parametric and have difficulty converging on a reliable distribution of trees and related evolutionary parameters for datasets as large as that of SARS-CoV-2. For this reason, we only focused this study on portions of the maximum likelihood tree that were considered to be well supported. Similarly, invaluable methods exist for the detection and epidemiological characterization of transmission clusters within the Bayesian framework, such as the multi-state birth death model (bdmm) \((35)\); however, even the bdmm is limited to less than 1000 sequences (unpublished work by Scire et al. \((36)\)). While sub-sampling strategies used to reduce dataset size and potential sampling biases are widely appreciated in the field of phylogenetic epidemiology \((e.g., (19)\)), they inherently result in loss of smaller clusters, which play an important role in assessing the effect of social distancing in-
terventions. As our study is based on hypotheses regarding not only cluster characteristics but also cluster size distribution, a skew towards detection of larger clusters as a result of this loss of information was undesirable. Post hoc transmission characterization of individual clusters using a Bayesian framework for population dynamics estimates that has demonstrated accuracy for low-signal sequence data (i.e., small clusters) (23) was thus ideal for an in-depth investigation of transmission cluster dynamics at the global and regional scales. Using this method, four countries (the USA, Belgium and neighboring Luxembourg, and the UK) were identified as harboring isolated clusters with elevated transmission potential following the global initiation of nationwide lockdowns, potentially fostered by super-spreaders. Federal policies regarding lockdowns were put into place for Belgium, Luxembourg, and the UK beginning mid-March, which were likely necessary in absolving highly active clusters such as those observed in this study; though federal guidelines were issued at a similar time in the USA (March 16th), mandatory US policy regarding lockdowns was not put into motion, allowing individual states to adopt their own policies at different times. Depending on the location of transmission clusters within the USA, delayed lockdowns could have resulted in continued rapid transmission of the virus.

It is also important to keep in mind that at the time of this study, a dramatic rebound was being observed in the number of detected daily cases in the USA, whereas the UK, Belgium and Luxembourg were demonstrating a consistent decline with occasional peaks (9). Moreover, the epidemic at the time was exponentially spreading in Brazil and India, as well as steadily in Russia - all countries that were not captured by our analysis based on sequence data up to the last week in April, 2020. In this context, our results emphasize the importance of additional country-specific transmission cluster analysis for data collected more recently than April 20.

It would be reasonable to suspect that the identification of the USA, Belgium, Luxembourg, and the UK as problematic countries was aided by the availability of sequence data from these locations (i.e., attributed to a sufficient number of individuals and genetic diversity to classify
and characterize corresponding clusters), which at first points to a potential problem with sampling bias. Although these countries were indeed at the high end of the spectrum in terms of available sequence data, our analyses relied on averaged values across clusters, which we show is unrelated to genome availability, unlike number of clusters per country. These countries exhibited a wide range of clustering frequency (20-60% of individuals) with no relation to sampling representation (fraction of the infected population sampled), which varied from 1-30%, indicating with a high degree of confidence, that they were not identified as a result of sampling bias. Moreover, countries (Iceland, Australia, and the Netherlands) identified as having low transmission potential after March 08 (R_0 less than or approximately 1) had a comparable number of available genomes within the distribution, lending support to the conclusion. This is not to say that selection bias, a form of sampling bias, may not be associated with the results. For example, Iceland’s low R_0 during this time may not be surprising, given that the country’s genetic powerhouse, deCODE, began screening high-risk (symptomatic) individuals and those returning, or in contact with an individual, from high-risk countries as early as January 31 (37). Therefore, while in our study, concerns for the sampling representation of the overall infected population is negligible, more sophisticated quantitative measures to assess the impact of sampling biases, specifically selection bias, will be necessary in future investigations.

In summary, we propose that phylogenetic identification and characterization of transmission clusters using the vast resources of viral genomic data currently available can provide both global and regional perspectives on viral spread. When collected early in the course of an epidemic, as was the case for the SARS-CoV-2, this approach may help to pinpoint locations for which increased efforts at the level of local government might be necessary to mitigate growth on a pandemic scale. At the time of the submission of these results, relaxation of these efforts was on the rise, particularly in the USA. The detection of isolated transmission clusters with elevated transmission potential in March, despite the rapid decline in global patterns of clus-
ter activity, points to an important role played by super-spreaders in the current pandemic that likely pose a threat to relaxation (38) unless measures are taken to quickly recognize and predict these events. A better understanding of the underlying risk factors associated with related super-spreading events, including host, environmental, and behavioral factors (39), is necessary for targeting efforts aimed in avoiding recurrent rebounds in epidemic waves. Given the increased efforts in testing and sampling in the USA, as well as other countries, transmission cluster dynamic inference can help to identify these events and underlying risk networks for more precise intervention strategies.

Acknowledgements

We would also like to acknowledge the health workers and researchers who generated the data, without whom this work would not have been possible. Funding for this work was provided by the National Science Foundation (DEB 2028221) and National Institutes of Health (R21AI138815).

Author contributions statement

M.S., M.P., and B.R.M. conceived of the analyses, S.M. and C.M. retrieved the data, A.Z. and F.L. used their expertise (with guidance from O.G.) in sequence data quality control and tree reconstruction to produce the trees, M.P. used his expertise in Phylopart to identify transmission clusters, B.R.M. analyzed the clusters and prepared the manuscript, A.R. monitored and gathered data regarding region-specific public health interventions, and all authors helped to craft the discussion and review the manuscript. The authors report no competing interests at the time of manuscript preparation and submission. All data is available in the manuscript or the supplementary materials.
References

1. Li, X. et al. Emergence of sars-cov-2 through recombination and strong purifying selection. Science Advances (2020). URL https://advances.sciencemag.org/content/early/2020/05/28/sciadv.abb9153. https://advances.sciencemag.org/content/early/2020/05/28/sciadv.abb9153.full.pdf.

2. Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature (2020).

3. Fineberg, H. V. Pandemic preparedness and response–lessons from the H1N1 influenza of 2009. N. Engl. J. Med. 370, 1335–1342 (2014).

4. Moon, S. et al. Will Ebola change the game? Ten essential reforms before the next pandemic. The report of the Harvard-LSHTM Independent Panel on the Global Response to Ebola. Lancet 386, 2204–2221 (2015).

5. Frost, S. D. W., Magalis, B. R. & Kosakovsky Pond, S. L. Neutral Theory and Rapidly Evolving Viral Pathogens. Mol. Biol. Evol. 35, 1348–1354 (2018).

6. Rife, B. D. et al. Phylodynamic applications in 21st century global infectious disease research. Glob Health Res Policy 2, 13 (2017).

7. Mavian, C. et al. Emergence of recombinant Mayaro virus strains from the Amazon basin. Sci Rep 7, 8718 (2017).

8. Su, Y. C. F. et al. Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection. Nat Commun 6, 7952 (2015).
9. Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. *Lancet Infect Dis* **20**, 533–534 (2020).

10. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza data - from vision to reality. *Euro Surveill.** **22** (2017).

11. Rhee, S.-Y. *et al.* National and International Dimensions of Human Immunodeficiency Virus-1 Sequence Clusters in a Northern California Clinical Cohort. *Open Forum Infectious Diseases* **6** (2019). URL https://doi.org/10.1093/ofid/ofz135. Ofz135, https://academic.oup.com/ofid/article-pdf/6/4/ofz135/28530447/ofz135.pdf.

12. Smith, D. M. *et al.* A public health model for the molecular surveillance of hiv transmission in san diego, california. *AIDS (London, England)* **23**, 225–232 (2009). URL https://pubmed.ncbi.nlm.nih.gov/19098493. 19098493[pmid].

13. Aldous, J. L. *et al.* Characterizing hiv transmission networks across the united states. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* **55**, 1135–1143 (2012). URL https://pubmed.ncbi.nlm.nih.gov/22784872. 22784872[pmid].

14. Furuse, T. *et al.* Clusters of coronavirus disease in communities, Japan, January–April 2020. *Emerg Infect Dis* (2020). URL https://doi.org/10.3201/eid2609.2002272.

15. Shen, Z. *et al.* Genomic diversity of sars-cov-2 in coronavirus disease 2019 patients. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* ciaa203 (2020). URL https://pubmed.ncbi.nlm.nih.gov/32129843. 32129843[pmid].
16. Deng, X. et al. Genomic surveillance reveals multiple introductions of sars-cov-2 into northern california. *Science* **369**, 582–587 (2020). URL https://science.sciencemag.org/content/369/6503/582. https://science.sciencemag.org/content/369/6503/582.full.pdf.

17. Gonzalez-Reiche, A. S. et al. Introductions and early spread of sars-cov-2 in the new york city area. *Science* **369**, 297–301 (2020). URL https://science.sciencemag.org/content/369/6501/297. https://science.sciencemag.org/content/369/6501/297.full.pdf.

18. Mavian, C., Marini, S., Prosperi, M. & Salemi, M. A Snapshot of SARS-CoV-2 Genome Availability up to April 2020 and its Implications: Data Analysis. *JMIR Public Health Surveill* **6**, e19170 (2020).

19. Hong, S. L. et al. In search of covariates of hiv-1 subtype b spread in the united states-a cautionary tale of large-scale bayesian phylogeography. *Viruses* **12** (2020).

20. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. *Nat. Med.* **26**, 450–452 (2020).

21. The incubation period of coronavirus disease 2019 (covid-19) from publicly reported confirmed cases: Estimation and application. *Annals of Internal Medicine* **172**, 577–582 (2020). URL https://doi.org/10.7326/M20-0504. PMID: 32150748, https://doi.org/10.7326/M20-0504.

22. Liu, Y., Gayle, A. A., Wilder-Smith, A. & Rockl?v, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. *J Travel Med* **27** (2020).
23. Volz, E. M. & Didelot, X. Modeling the Growth and Decline of Pathogen Effective Population Size Provides Insight into Epidemic Dynamics and Drivers of Antimicrobial Resistance. *Syst. Biol.* **67**, 719–728 (2018).

24. Tang, B. *et al.* Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. *J Clin Med* **9** (2020).

25. Cave, E. Covid-19 super-spreaders: Definitional quandaries and implications. *Asian bioethics review* 1–8 (2020). URL https://pubmed.ncbi.nlm.nih.gov/32427202. 32427202[pmid].

26. Zhang, L. *et al.* The d614g mutation in the sars-cov-2 spike protein reduces s1 shedding and increases infectivity. *bioRxiv* 2020.06.12.148726 (2020). URL http://biorxiv.org/content/early/2020/06/12/2020.06.12.148726.abstract.

27. Becerra-Flores, M. & Cardozo, T. Sars-cov-2 viral spike g614 mutation exhibits higher case fatality rate. *International Journal of Clinical Practice* n/a, e13525. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/ijcp.13525. https://onlinelibrary.wiley.com/doi/pdf/10.1111/ijcp.13525.

28. FU, X. Global analysis of daily new covid-19 cases reveals many static-phase countries including us and uk potentially with unstoppable epidemics. *medRxiv* 2020.05.08.20095356 (2020). URL http://medrxiv.org/content/early/2020/05/29/2020.05.08.20095356.abstract.

29. Verity, R. *et al.* Estimates of the severity of coronavirus disease 2019: a model-based analysis. *The Lancet Infectious Diseases* **20**, 669–677 (2020). URL https://doi.org/10.1016/S1473-3099(20)30243-7.
30. Alfano, V. & Ercolano, S. The efficacy of lockdown against covid-19: A cross-country panel analysis. *Applied health economics and health policy* 1–9 (2020). URL https://pubmed.ncbi.nlm.nih.gov/32495067. 32495067[pmid].

31. Prem, K. et al. The effect of control strategies to reduce social mixing on outcomes of the covid-19 epidemic in wuhan, china: a modelling study. *The Lancet Public Health* 5, e261–e270 (2020). URL https://doi.org/10.1016/S2468-2667(20)30073-6.

32. Findlater, A. & Bogoch, I. I. Human mobility and the global spread of infectious diseases: A focus on air travel. *Trends in Parasitology* 34, 772–783 (2018). URL https://doi.org/10.1016/j.pt.2018.07.004.

33. Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees . *Bioinformatics* 17, 754–755 (2001). URL https://doi.org/10.1093/bioinformatics/17.8.754. https://academic.oup.com/bioinformatics/article-pdf/17/8/754/8201380/170754.pdf.

34. Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. & Solomon, W. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. *Genetics* 161, 1307–20 (2002).

35. Barido-Sottani, J., Vaughan, T. G. & Tanja, S. Detection of hiv transmission clusters from phylogenetic trees using a multi-state birth–death model. *J. R. Soc. Interface* 15 (2018). URL http://doi.org/10.1098/rsif.2018.0512.

36. Scire, J., Barido-Sottani, J., Kühnert, D., Vaughan, T. G. & Stadler, T. Improved multi-type birth-death phylodynamic inference in beast 2. *bioRxiv* (2020). URL https://www.biorxiv.org/content/early/2020/01/06/2020.01.06.895532.
https://www.biorxiv.org/content/early/2020/01/06/2020.01.06.895532.full.pdf.

37. Gudbjartsson, D. F. et al. Spread of sars-cov-2 in the icelandic population. *New England Journal of Medicine* **382**, 2302–2315 (2020). URL https://doi.org/10.1056/NEJMoa2006100. https://doi.org/10.1056/NEJMo2006100.

38. Riou, J. & Althaus, C. L. Pattern of early human-to-human transmission of wuhan 2019 novel coronavirus (2019-ncov), december 2019 to january 2020. *Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin* **25**, 2000058 (2020). URL https://pubmed.ncbi.nlm.nih.gov/32019669. 32019669[pmid].

39. Frieden, T. & Lee, C. Identifying and interrupting superspreading events—implications for control of severe acute respiratory syndrome coronavirus 2. *Emerging Infectious Disease journal* **26**, 1059 (2020). URL https://doi.org/10.3201/eid2606.200495.

40. Lemoine, F., Blassel, L., Voznica, J. & Gascuel, O. Covid-align: Accurate online alignment of hcov-19 genomes using a profile hmm (2020). URL https://doi.org/10.1101/2020.05.25.114884.

41. Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* **35**, 4453–4455 (2019). URL https://doi.org/10.1093/bioinformatics/btz305. https://academic.oup.com/bioinformatics/article-pdf/35/21/4453/30330793/btz305.pdf.

42. Lefort, V., Desper, R. & Gascuel, O. Fastme 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. *Molecular biology and evolution*
32, 2798–2800 (2015). URL https://pubmed.ncbi.nlm.nih.gov/26130081. 26130081[pmid].

43. Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).

44. Minh, B. Q. et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 37, 1530–1534 (2020).

45. To, T. H., Jung, M., Lycett, S. & Gascuel, O. Fast Dating Using Least-Squares Criteria and Algorithms. Syst. Biol. 65, 82–97 (2016).

46. Prosperi, M. C. F. et al. A novel methodology for large-scale phylogeny partition. Nature communications 2, 321–321 (2011). URL https://pubmed.ncbi.nlm.nih.gov/21610724. 21610724[pmid].

47. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017). URL https://www.R-project.org/.

Figure 1: Transmission cluster distributions against cluster size (A) and number of countries represented in each cluster (B). Percentage of sequences comprising the majority represented country has also been plotted (box plots) in (B). Red, dashed lines indicate median values.
Figure 2: Transmission cluster characteristics for each country involved. Number of clusters (A), mean cluster size (B), and percentage of individuals that cluster (C) are plotted for each country, as well as the number of available genomes (A) and genomes per confirmed case reports (C) for comparison.
Figure 3: Timing of transmission cluster characteristics. (A) Number of clusters (light blue) sharing a similar temporal origin, as inferred from the time to the most recent common ancestor (TMRCA) of corresponding cluster sequences. Dots correspond to the size (number of individuals) within the corresponding clusters at individual time points. Dots are colored according to the number of countries represented in each cluster. (B) Number of cumulative reported international (red) and China (teal) travel restrictions over time superimposed onto (A), ending in the first reported case of local travel restrictions (grey) for visual clarity. Red, dashed lines indicated median values.
Figure 4: Estimated transmission cluster duration and R_0. (A) Duration was defined as the time from TMRCA to most recent sampling date for each cluster. (B) R_0 was derived from estimates of changes in effective population size, as described in (23). (C) Relationship of R_0 with time of cluster formation and cluster duration. Inset focuses on the distribution of $R_0 < 1$ clusters within the overall distribution of cluster duration.
Figure 5: Summarized transmission patterns for countries involved in clusters formed after March 08, 2020. (A) Mean R_0 for each country was calculated by weighting each cluster-specific R_0 according to the fraction of sequences belonging to the country. (B) Estimated mean R_0 and 95% confidence intervals for each cluster (dot). For clusters with more than one country, the fraction of sequences belonging to each country is depicted in the corresponding pie chart. Clusters are also colored according to duration. Dashed line depicts $R_0 = 2$.
Supplementary Materials

Materials and Methods

Sequence data, metadata, and phylogenetic reconstruction A total of 11,262 sequences and associated metadata (time and country of sampling) were downloaded from GISAID (GISAID) on April 25, 2020. Sequence IDs can be found in Table S3. The number of confirmed cases for each corresponding country was retrieved from European Centre for Disease Prevention and Control. Cruise ships Diamond Princess and Grand Princess were treated as separate geographical regions for all analyses. Data regarding travel restrictions were obtained from WorldAware, COVID-19 Travel Restrictions Database, and Trip.com on June 4th, 2020; data on border closures from The New York Times on June 1st, 2020; airline restrictions from Bloomberg and Business Insider on June 4th, 2020. Data specifically for the Diamond Princess was retrieved from Business Insider on June 5th, 2020. Data on nationwide lockdowns, health screening measures, closure of non-essential business, the use of masks and restrictions of mass gatherings were obtained from different online newspapers, including CNN, South China Morning Post, The New York Times, The Miami Herald, and Reuters on June 2nd.

Sequences were quality filtered and aligned, as described in (40), keeping one representative per identical sequence group and excluding sequences without precise dates (month and day), resulting in 11,316 sequences (29,726 nucleotides in length). We reconstructed a maximum likelihood tree with RAxML-NG (41) (GTR+I+G6 model, with all parameters optimized) starting from a distance tree (reconstructed using minimum evolution in FASTME (42)), rooted it at the most recent common ancestor of the likely first-generation strains from (1), and put back the identical sequences (as zero-branch polytomies with the corresponding representative sequence tip). We then collapsed the branches without phylogenetic signal (i.e., of length \(\leq 1/2 \) mutation per genome). Support for branching events within the tree were calculated using the the
Shimodaira-Hasegawa approximate likelihood ratio test (43), performed in IQ-TREE v2 (44) on the final, fixed RAxML-NG tree topology. Least squares dating in LSD2 (45) was used to date internal nodes of the tree (given sampling dates of taxa) and to identify, and remove, outlier sequences. Outlier sequences were defined as taxa whose mutation rate (estimated as the distance to the root divided by time since the first sequence) was larger than 3 standard deviations from the median. A strict molecular clock was assumed, resulting in an estimated mutation rate of 2.3×10^4 mutations per site per year.

Transmission cluster identification Clades comprised of ≥ 5 distinct sequences and a reliability of $\geq 90\%$ were recognized as potential transmission clusters when the median pairwise patristic distance (i.e., branch length separating sequences) within the clade was below a pre-specified percentile threshold of the whole-tree patristic distance distribution. A range of percentile thresholds spanning $0.0005\% - 25\%$ of the whole-tree distance distribution was used to choose an optimal threshold point and to verify robustness of cluster composition. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46). Clusters and corresponding information (including sequence IDs) can be found in Table S4.

Potential clusters with more than two time points were used for the calculation of the basic reproductive number (R_0) from the viral effective population size (N_e) estimated using the skygrowth (23) package in R (47). Viral effective population size (N_e) estimates were allowed to vary weekly, and the default smoothing parameter (τ) of 0.1 was used. As described in Volz Didelot (2018) (23), the mean effective reproductive number (R_e) was calculated as a function of the change in N_e and 2-8 day (mean=5.475, SE=1.825) infectious period (ψ). R_0
was defined as the first R_e value in time. Clusters with outlying R_0 values (> 3.4 standard deviations above or below the mean over all clusters) were discarded as unreliable.

Figure S1: Maximum likelihood tree for 11,069 SARS-CoV-2 sequences scaled in time using least squares dating (45). Purple bar represents the 95% credible interval for estimate of the time to the most recent common ancestor for all sequences. Outlier sequences have been pruned and were excluded from downstream analyses (see Materials and Methods).
Figure S2: Timing of transmission cluster characteristics for additional distance thresholds defining transmission clusters. (A) Clusters with median patristic distances within 0.5% of the whole-tree patristic distance distribution. (B) Clusters with median patristic distances within 2.5% of the whole-tree patristic distance distribution. Bars represent the number of clusters (light blue) sharing a similar temporal origin, as inferred from the time to the most recent common ancestor (TMRCA) of corresponding cluster sequences. Dots correspond to the size (number of individuals) within the corresponding clusters at individual time points. Dots are colored according to the number of countries represented in each cluster. Red, dashed lines indicated median values.

Figure S3: Relationship of R_0 (A) and (B) cluster size with fraction of individuals with D614G mutation for each cluster. Each dot represents an individual cluster. Clusters in (A) represent a subset of clusters in (B) (see Materials and Methods).
Table S1: Travel restriction data by country derived from various sources (see Materials and Methods)

Country	Lockdown	Travel ban entering from China	Travel ban entering from Europe	Travel ban entering from other countries	Non-citizens banned/Travel across borders	Health screening measures at airports	Education closed or moved online	Non essential business closed	Masks	Mass gatherings	
Australia	3/23/2020 nationwide	2/20	3/12/2020 from Italy	3/1/2020 Iran and South Korea	3/25/20	1/21/20	3/16/20	3/23/20		3/20/2020 over 100 people	
Belgium	3/17/2020 nationwide					3/20/20	1/30/20	3/16/20	3/13/20	5/4/20	
UK	3/23/2020 nationwide					3/17/20	1/30/20	3/18/20	3/21/20	3/17/20	
US	03/19/2020 in California	2/20				3/21/20	1/3/2020 in Florida	3/17/2020 in California	4/17/2020	3/11/2020 in Seattle over 250 people	
Brazil	3/17/2020 in Santa Catarina	3/20/20				3/25/20	3/30/20	3/25/20		4/22/20	
Canada						3/16/20	1/24/20	3/23/20	3/17/2020 in Ottawa	5/19/20	3/16/2020 over 50 people banned
Table S1: Travel restriction data by country derived from various sources (see Materials and Methods)

Country	Lockdown	Travel ban entering from China	Travel ban entering from Europe	Travel ban entering from other countries	Non-citizens banned/ Travel across borders	Health screening measures at airports	Education closed or moved online	Non essential business closed	Masks	Mass gatherings
China	01/23/2020 in Wuhan	1/22/2020 ban outbound travel from Wuhan			3/26/20	1/21/20	2/4/20	1/25/20	2/8/2020 in Shanghai	4/1/2020 sports events
Netherlands	3/14/20	3/14/2020 from Italy	3/14/2020 from Iran, South Korea		3/17/20	1/30/20	3/17/20	3/15/20	6/1/20	3/12/2020 over 100 people
Dem Rep Congo	4/6/2020 in Gombe, Kinshasa and Goma				3/24/20	1/23/20	3/19/20	3/19/20	4/20/2020 in Kinshasa	3/19/2020 over 20 people
Finland					3/19/20	1/30/20	3/18/20	5/4/20		3/12/2020 over 500 people
France	3/17/2020 nationwide				3/17/20	1/30/20	3/16/20	3/14/20	5/10/20	3/13/2020 over 100 people
Germany	3/23/2020 nationwide				3/16/20	1/30/20	3/18/20	3/22/20	4/22/20	3/22/20
Iceland					3/20/20	3/12/20	3/23/20			3/16/2020 over 100 people
Country	Lockdown	Travel ban entering from China	Travel ban entering from Europe	Non-citizens banned/Travel across borders	Health screening measures at airports	Education closed or moved online	Non essential business closed	Masks	Mass gatherings	
---------	----------	-------------------------------	--------------------------------	--	---------------------------------	---------------------------------	--------------------------------	-------	-----------------	
India	3/25/2020 nationwide	1/15/20	3/3/2020 travel from Italy	3/22/20	1/29/20	3/25/20	3/23/20	4/9/2020 in Odisha	3/15/20	
Table S1: Travel restriction data by country derived from various sources (see Materials and Methods).

Country	Lockdown	Travel ban entering from China	Travel ban entering from Europe	Travel ban entering from other countries	Non-citizens banned/Travel across borders	Health screening measures at airports	Education closed or moved online	Non essential business closed	Masks	Mass gatherings	
Italy	3/8/2020 nationwide	2/2/20			3/28/20	1/30/20	3/10/20	3/11/20	5/4/20	3/8/20	
Country	Lockdown	Travel ban entering from China	Travel ban entering from Europe	Non-citizens banned/ Travel across borders	Health screening measures at airports	Education closed or moved online	Non essential business closed	Masks	Mass gatherings		
---------------	------------	---------------------------------	---------------------------------	---	--------------------------------------	---------------------------------	---------------------------------	-------	-----------------		
		3/26/2020 from Iran, Andorra, Austria, Belgium, Denmark, Estonia, France, Germany, Liechtenstein, Luxembourg, Malta, Monaco, Netherlands, Norway, Poland, San Marino, Slovenia, Sweden, Vatican City State	4/2/2020 from Albania, Armenia, Australia, Bolivia, Bosnia and Herzegovina, Brazil, Canada, Chile, Côte d’Ivoire (Ivory Coast), Dominica,								
Country	Lockdown	Travel ban entering from China	Travel ban entering from Europe	Travel ban entering from other countries	Non-citizens banned/Travel across borders	Health screening measures at airports	Education closed or moved online	Non essential business closed	Masks	Mass gatherings	
-------------	------------------------	--------------------------------	--------------------------------	---	--	-------------------------------------	---------------------------------	-------------------------------	-------	----------------	
Luxembourg				3/16/2020 with Germany	1/24/20	3/16/20	3/16/20		4/20/20	3/13/20 over 100 people	
Mexico				3/11/2020 from Italy	3/18/2020 with USA	1/24/20	3/23/20	3/30/20		3/15/20 over 100 people	
Portugal	3/19/2020 nationwide		3/11/2020 from Italy			3/16/20	3/13/20	5/4/20		3/10/20 over 5000 people in Moscow	
Russia	3/28/2020 nationwide	1/28/20	3/13/2020 from Italy	3/4/2020 from Iran, South Korea	3/14/2020 with Poland and Norway	1/30/20	3/16/20	3/28/20	5/11/20		
Singapore	4/7/2020 nationwide	1/31/2020 from Hong Kong, Macau	3/15/2020 from France, Germany, and Spain	3/4/2020 from Italy, Iran, Korea (Rep)			4/7/20	4/14/20		3/24/20 over 10 people	
Spain	3/14/2020 nationwide	3/13/2020 from Italy					3/17/20	1/30/20	3/16/20	3/14/20	5/4/20 over 1000 people in Madrid
Sweden		3/19/20	1/30/20				3/18/2020 some locally			3/27/20 over 50 people	
Table S1: Travel restriction data by country derived from various sources (see Materials and Methods).

Country	Lockdown	Travel ban entering from China	Travel ban entering from Europe	Travel ban entering from other countries	Non-citizens banned/Travel across borders	Health screening measures at airports	Education closed or moved online	Non essential business closed	Masks	Mass gatherings	
Switzerland	2/28/20	3/17/2020 with Italy, Austria, France, Germany	3/26/20	3/16/20	3/16/20	Non-citizens banned/Travel across borders	Health screening measures at airports	Education closed or moved online	Non essential business closed	Masks	Mass gatherings
Taiwan	2/4/20	3/19/20	1/22/20	2/21/20	4/1/20	2/29/20 in Taipei					
Diamond Princess	2/1/2020 quarantined, docked in Okinawa	3/4/20	CDC orders some passengers self-quarantine								
Grand Princess	2/1/2020 quarantined, docked in Okinawa	3/4/20	CDC orders some passengers self-quarantine								
Table S2: Airline travel data obtained from various sources (see Materials and Methods).

Airline	Base	Date	Ban
Cabo Verde Airlines	Africa	3/18/20	Suspending all flights
SA express	Africa	3/18/20	Suspending all flights
Aerolineas Argentina	Argentina	3/18/20	Cut capacity to Rome, Madrid, Miami, New York and Orlando (various dates)
Qantas Airways	Australia	2/9/20	Flights to Beijing and Shanghai; cut capacity to Hong Kong, Sapporo, Auckland, Tokyo and Osaka
Tigerair Australia	Australia	3/31/20	Suspending all flights
Virgins Australia	Australia	2/11/20	Permanent cancellation of routes to Hong Kong from Melbourne (from Feb. 11) and Sydney
Austrian Airlines	Austria	1/29/20	Flights to Venice, Bologna, Milan, Beijing, Shanghai, Tel Aviv and Iran; cut capacity to European routes by 20%
Bahamas Air	Bahamas	3/23/20	Suspending all flights
Gulf Air	Bahrain	2/27/20	Flights to Dubai, Iraq and Lebanon; cut capacity to several other destinations
Air Antwerp	Belgium	3/22/20	Canceling flights until April 22
Brussels Airline	Belgium	3/12/20	All flights to and from Italy
LATAM Airlines Brasil	Brazil	3/2/20	Flights between Sao Paulo and Milan
Air Canada	Canada	1/30/20	All flights to and from mainland China and Italy; flights between Toronto and Hong Kong; maintaining flights between Vancouver and Hong Kong
Air Transat	Canada	3/13/20	Gradually suspending all flights
Harbour Air	Canada	3/27/20	Suspending all flights
Porter Airlines	Canada	3/21/20	Suspending all flights
Sunwing Airlines	Canada	3/17/20	Suspending all flights
Winair	Caribbean	3/19/20	Suspending all flights
Avianca	Colombia	3/25/20	Suspending all flights
CSA Czech Airlines	Czech	3/16/20	Suspending all flights
TAME	Ecuador	3/17/20	Suspending all flights
EgyptAir	Egypt	3/31/20	Suspending all flights
Ethiopian Airlines	Ethiopia	2/3/20	Reduced capacity and total number of flights to Beijing, Shanghai, Guangzhou and Hong Kong
Table S2: Airline travel data obtained from various sources (see Materials and Methods).

Airline	Base	Date	Ban
Finnair	Finland	3/6/20	All flights to mainland China; cut capacity to Guangzhou, Hong Kong, Osaka, Seoul, Milan; cut capacity across European network by 20%; new route to Busan postponed
Air France	France	1/30/20	All scheduled flights to mainland China, Hong Kong, Taipei, Italy, Tel Aviv; will gradually resume operations to Beijing, Shanghai, Hong Kong and Taipei after March 29; cut capacity to Seoul, Singapore, Japan, and across Europe
La Champagnie	France	3/18/20	Suspending all flights
Transavia	France	3/23/20	Suspending all flights
Lufthansa	Germany	1/30/20	Flights to Beijing, Shanghai, Nanjing, Shenyang, Qingdao, Tehran and Israel; cut capacity to Hong Kong, Seoul, Italy, various locations throughout Europe and domestically; cut flight capacity by up to 50%
Cathay Pacific	Hong Kong	1/30/20	Flights to Japan, Tel Aviv, Jeju, Busan, Kaohsiung, Taichung, Seoul, Washington, London Gatwick, Rome; cut capacity of flights to and from mainland China by 90%; cut global capacity by about 40%
Wizz Air	Hungary	3/11/20	All flights to Italy; flights between Luton and Tel Aviv; cut capacity to various destinations
Air India	India	1/31/20	Flights between Delhi and Shanghai, and between Delhi and Hong Kong
IndiGO	India	2/1/20	Flights between Bengaluru and Hong Kong, between Delhi and Chengdu, and between Kolkata and Guangzhou (various suspension dates)
Spice Jet	India	3/25/20	Suspending all flights
Vistara	India	3/25/20	Suspending all flights
Iran Air	Iran	3/8/20	Flights to Vienna, Stockholm and Gothenburg; temporarily suspended all flights to Europe
Aer Lingus	Ireland	3/11/20	All flights to and from Italy
Lauda	Ireland	3/16/20	Gradually suspending all flights
Ryanair	Ireland	3/17/20	All flights to and from Italy
El Al Israel	Israel	3/27/20	Suspending all flights
Neos	Italy	1/30/20	All flights to and from China
Airline	Base	Date	Ban
----------------------	------------	---------	--
All Nippon Airways	Japan	1/23/20	Flights to nine cities in China, including Beijing, Shanghai and Guangzhou, from Tokyo and Osaka; flights between Osaka and Hong Kong; cut capacity to four cities in China and various domestic routes. Flights from Haneda to Guangzhou, Narita to Hong Kong Kong and Honolulu, Tokyo to Beijing, Shanghai and Dalian; cut capacity to some South Korea, Taiwan and domestic routes.
Japan Airlines	Japan	2/6/20	Suspending all flights
Royal Jordanian Airlines	Jordan	3/17/20	Suspending all flights
Air Astana	Kazakhstan	4/15/20	Restrict flights in the country
Qazaq Airlines	Kazakhstan	4/15/20	Suspending all flights
Kenya Airlines	Kenya	1/31/20	Flights to and from Guangzhou
Kuwait	Kuwait	3/6/20	Suspending all flights
Air Baltic	Latvia	3/17/20	Suspending all flights Latvia, Lithuania, and Estonia
Middle East Airlines	Lebanon	3/19/20	Suspending all flights
Luxair	Luxembourg	3/24/20	Suspending all flights
Air Madagascar	Madagascar	3/20/20	Suspending all flights
Air Asia	Malaysia	1/24/20	All flights to Wuhan and selected flights to mainland China; all flights between the Philippines and mainland China, Hong Kong and Macau.
Air Malta	Malta	4/2/20	Suspending all flights
Air Moldova	Moldova	4/1/20	Suspending all flights
FlyOne	Moldova	3/17/20	Suspending all flights
Montenegro Airlines	Montenegro	3/16/20	Suspending all flights
Royal Air Maroc	Morocco	1/31/20	Direct flights between Casablanca and Beijing.
KLM	Netherlands	1/30/20	All flights to Italy; flights to Chengdu, Hangzhou and Xiamen and to Beijing and Shanghai; cut capacity to Hong Kong.
Air New Zealand	New Zealand	2/9/20	Flights between Auckland and Shanghai; cut capacity to Shanghai and Hong Kong.
Table S2: Airline travel data obtained from various sources (see Materials and Methods).

Airline	Base	Date	Ban
Norwegian Air Shuttles	Norway	3/15/20	All flights to U.S. from Rome, Paris, Barcelona, Madrid, Amsterdam, Athens, Oslo; all flights to Italy; majority of flights to U.S. from Amsterdam and Stockholm; large share of flights within Scandinavia; maintaining London to U.S. route
Copa Airlines	Panama	3/23/20	Suspending all flights
Cebu Airline	Philippines	2/2/20	Flights to mainland China and Taiwan, cut capacity to Hong Kong and Macau
Philippine Airlines	Philippines	3/26/20	Suspending all flights
LOT Polish Airway	Poland	2/1/20	Flights to Beijing and Italy
TAP Air Portugal	Portugal	3/5/20	Cut 2,500 flights, mostly to European destinations like Italy, Spain and France
Qatar Airways	Qatar	2/3/20	All flights to mainland China
Blue Air	Romania	3/21/20	Suspending all flights
Rwandair	Rwanda	1/31/20	Flights between Kigali and Guangzhou
Saudia	Saudi Arabia	2/2/20	All flights to China
SAS	Scandinavia	1/31/20	Flights to Beijing and Shanghai (from Jan. 31 to Apr. 30); flights to Bologna, Milan, Turin and Venice
Air Serbia	Serbia and Bosnia	3/19/20	Suspending all flights
Air Seychelles	Seychelles	3/9/20	Flights to Tel Aviv, Mumbai, Johannesburg and Mauritius
Jetstar Airways	Singapore	3/23/20	Suspending all flights
Scoot	Singapore	2/23/20	Flights to 19 cities to China including Wuhan, Guangzhou and Xi’an; ad-hoc cancellations of flights to Hong Kong and Macau
SilkAir	Singapore	2/4/20	Flights to Shenzhen, Xiamen, Chongqing and Hiroshima
Singapore Airlines	Singapore	2/3/20	Flights to Beijing, Shanghai and Guangzhou; cut capacity to Hong Kong, Los Angeles, London, Paris and dozens of other cities
Airlink	South Africa	3/28/20	Suspending all flights
Table S2: Airline travel data obtained from various sources (see Materials and Methods).

Airline	Base	Date	Ban
Kulula	South Africa	3/26/20	Suspending all flights
Air Seoul	South Korea	1/28/20	Flights between Incheon and Zhangjiajie and Linyi in China; between Incheon and Hanoi
Asiana Airlines	South Korea	2/4/20	Flights to dozens of Asian cities including Beijing, Guangzhou and Hong Kong; between Daegu and Jeju; flights to Venice, Rome and Barcelona; cut capacity to 15 cities, including Shanghai and Shenzhen (various suspension dates)
Korean Air	South Korea	1/24/20	Flights between Incheon and Wuhan, Huangshan, Zhangjiajie, Changsha, Kunming, Tel Aviv, Daegu; to Hanoi, Danang, Phu Quoc, Bangkok, Siem Reap, Taipei, Chubu, Aomori and Ulaanbaatar; between Busan and Beijing/Nanjing; between Jeju and Daegu. Also reduced frequency to 15 more routes
T’way Air	South Korea	2/5/20	Flights between South Korea and Hanoi
Iberia	Spain	1/31/20	Flights between Madrid and Shanghai
Swiss International Airlines	Switzerland	1/29/20	Flights to Beijing and Shanghai
China Airlines	Taiwan	1/23/20	Flights to and from Wuhan
Starlux	Taiwan	3/21/20	Suspending all flights
Thai Lion Air	Thailand	3/25/20	Suspending all flights
Pegasus Airlines	Turkey	2/25/20	Flights between Istanbul and Tehran
Sunexpress	Turkey	3/27/20	Suspending all flights
Turkish Airlines	Turkey	1/31/20	Flights to mainland China and Iran, except Tehran, Nakhcevan, Azerbaijan; cut capacity to Israel, Seoul and Nigeria
Turkmenistan Airlines	Turkmenistan	2/1/20	Flights to Beijing
Emirates	UAE	3/25/20	Suspending all flights
Table S2: Airline travel data obtained from various sources (see Materials and Methods).

Airline	Base	Date	Ban
Etihad Airways	UAE	2/5/20	Flights to Rome, Milan, Shanghai and Chengdu; maintaining service to Beijing
Fly Dubai	UAE	3/25/20	Suspending all flights
British Airways	UK	1/29/20	All flights to Italy, Beijing and Shanghai; cut capacity to New York, Singapore, France, Austria, Belgium, Germany, Ireland, Switzerland and Albania
Cayman Airline	UK	3/22/20	Suspending all flights
Comair British Airlines	UK	3/26/20	Suspending all flights
easyJet	UK	3/24/20	Suspending all flights
Jet2Go.com	UK	3/17/20	Suspending all flights
Virgin Atlantic	UK	2/1/20	Flights to Shanghai; maintaining Hong Kong service; new Sao Paulo route postponed
Ukraines International Airlines	Ukraine	3/17/20	Suspending all flights
Air Arabia	United Arab Emirates	3/25/20	Banned passengers from entering
American Airlines	USA	1/31/20	All flights to China and Argentina; Hong Kong service to Dallas and Los Angeles; Seoul service to Dallas; Milan service to New York and Miami; Rome service to Philadelphia, Chicago and Charlotte; Santiago service to Dallas; cut capacity to Paris, Madrid, Montevideo, Barcelona, Venice; cut summer international capacity by half
Delta	USA	2/2/20	All flights to China and Italy; cut capacity to South Korea, Japan, EU countries and Latin America
United Airlines	USA	2/5/20	Flights to Beijing, Shanghai, Chengdu and Hong Kong; also flights from Los Angeles, Houston and Chicago to Tokyo Narita; reduced capacity and schedule for flights from Newark, Honolulu and San Francisco to Tokyo Narita, Osaka Kansai, Singapore, Seoul and Taipei
Uzbekistan Airways	Uzbekistan	3/17/20	Suspending all flights
Table S2: Airline travel data obtained from various sources (see Materials and Methods).

Airline	Base	Date	Ban
VietJet Air	Vietnam	2/1/20	All flights to mainland China and South Korea; maintaining services to Hong Kong and Taiwan
Vietnam Airlines	Vietnam	2/4/20	Flights between Vietnam and Beijing, Shanghai, Guangzhou, Shenzhen, Chengdu, Macau and South Korean destinations; between Hanoi and Hong Kong; cut capacity to London, Paris, Frankfurt, Hong Kong and Seoul
Yemenia	Yemen	3/18/20	Suspending all flights
FastJet Zimbabwe	Zimbabwe	3/27/20	Suspending all flights
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_417541
EPI_ISL_419448
EPI_ISL_424900
EPI_ISL_419301
EPI_ISL_428832
EPI_ISL_413850
EPI_ISL_419738
EPI_ISL_424528
EPI_ISL_415529
EPI_ISL_421922
EPI_ISL_421900
EPI_ISL_427334
EPI_ISL_414562
EPI_ISL_404227
EPI_ISL_422032
EPI_ISL_417234
EPI_ISL_426763
EPI_ISL_420731
EPI_ISL_417386
EPI_ISL_417267
EPI_ISL_422888
EPI_ISL_429882
EPI_ISL_419824
EPI_ISL_424227
EPI_ISL_426307
EPI_ISL_425762
EPI_ISL_417813
EPI_ISL_422602
EPI_ISL_427208
EPI_ISL_424092
EPI_ISL_421934
EPI_ISL_423205
EPI_ISL_422019
EPI_ISL_421746
EPI_ISL_420003
EPI_ISL_424215
EPI_ISL_421411
EPI_ISL_416718
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_417669
EPI_ISL_402129
EPI_ISL_425857
EPI_ISL_426978
EPI_ISL_423952
EPI_ISL_420773
EPI_ISL_423332
EPI_ISL_419436
EPI_ISL_420691
EPI_ISL_420516
EPI_ISL_426689
EPI_ISL_429483
EPI_ISL_420174
EPI_ISL_419674
EPI_ISL_429022
EPI_ISL_429089
EPI_ISL_420569
EPI_ISL_423642
EPI_ISL_426852
EPI_ISL_422042
EPI_ISL_423384
EPI_ISL_425872
EPI_ISL_426979
EPI_ISL_417466
EPI_ISL_422071
EPI_ISL_428319
EPI_ISL_423221
EPI_ISL_422421
EPI_ISL_419907
EPI_ISL_427381
EPI_ISL_424498
EPI_ISL_427764
EPI_ISL_418433
EPI_ISL_426642
EPI_ISL_417348
EPI_ISL_430097
EPI_ISL_419582
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_424482
EPI_ISL_428262
EPI_ISL_417092
EPI_ISL_429131
EPI_ISL_423161
EPI_ISL_419585
EPI_ISL_418885
EPI_ISL_421314
EPI_ISL_417332
EPI_ISL_418823
EPI_ISL_426941
EPI_ISL_416589
EPI_ISL_426085
EPI_ISL_423310
EPI_ISL_423375
EPI_ISL_418290
EPI_ISL_419935
EPI_ISL_417878
EPI_ISL_420478
EPI_ISL_421879
EPI_ISL_414526
EPI_ISL_419902
EPI_ISL_428272
EPI_ISL_422977
EPI_ISL_417181
EPI_ISL_425048
EPI_ISL_411952
EPI_ISL_427497
EPI_ISL_421427
EPI_ISL_427199
EPI_ISL_425596
EPI_ISL_415532
EPI_ISL_425238
EPI_ISL_420114
EPI_ISL_419532
EPI_ISL_425056
EPI_ISL_419712
EPI_ISL_420612
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_423000
EPI_ISL_416711
EPI_ISL_417514
EPI_ISL_416482
EPI_ISL_418641
EPI_ISL_421479
EPI_ISL_418033
EPI_ISL_422081
EPI_ISL_424032
EPI_ISL_421004
EPI_ISL_419265
EPI_ISL_425694
EPI_ISL_424476
EPI_ISL_429155
EPI_ISL_413853
EPI_ISL_417524
EPI_ISL_424050
EPI_ISL_429067
EPI_ISL_426729
EPI_ISL_425242
EPI_ISL_416365
EPI_ISL_417301
EPI_ISL_420847
EPI_ISL_422330
EPI_ISL_421260
EPI_ISL_421630
EPI_ISL_425206
EPI_ISL_421738
EPI_ISL_423474
EPI_ISL_426954
EPI_ISL_419559
EPI_ISL_426774
EPI_ISL_417663
EPI_ISL_420749
EPI_ISL_422889
EPI_ISL_427488
EPI_ISL_426811
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_424221
EPI_ISL_427263
EPI_ISL_406531
EPI_ISL_416699
EPI_ISL_421617
EPI_ISL_418896
EPI_ISL_425383
EPI_ISL_418967
EPI_ISL_423477
EPI_ISL_417690
EPI_ISL_429162
EPI_ISL_422927
EPI_ISL_416676
EPI_ISL_427160
EPI_ISL_419499
EPI_ISL_417937
EPI_ISL_418894
EPI_ISL_427088
EPI_ISL_417224
EPI_ISL_424317
EPI_ISL_417850
EPI_ISL_425535
EPI_ISL_427247
EPI_ISL_425688
EPI_ISL_420360
EPI_ISL_420549
EPI_ISL_417222
EPI_ISL_417007
EPI_ISL_426092
EPI_ISL_415538
EPI_ISL_418931
EPI_ISL_421388
EPI_ISL_423135
EPI_ISL_426965
EPI_ISL_428233
EPI_ISL_422397
EPI_ISL_424546
EPI_ISL_424642
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_429491
EPI_ISL_421691
EPI_ISL_429782
EPI_ISL_419561
EPI_ISL_425988
EPI_ISL_419936
EPI_ISL_422939
EPI_ISL_423638
EPI_ISL_429531
EPI_ISL_424301
EPI_ISL_427290
EPI_ISL_422913
EPI_ISL_425904
EPI_ISL_415595
EPI_ISL_421002
EPI_ISL_416444
EPI_ISL_422128
EPI_ISL_421560
EPI_ISL_422527
EPI_ISL_419749
EPI_ISL_417122
EPI_ISL_422567
EPI_ISL_419834
EPI_ISL_423435
EPI_ISL_417144
EPI_ISL_415743
EPI_ISL_429504
EPI_ISL_427549
EPI_ISL_429744
EPI_ISL_418965
EPI_ISL_422667
EPI_ISL_417163
EPI_ISL_417350
EPI_ISL_422839
EPI_ISL_427773
EPI_ISL_420236
EPI_ISL_429717
EPI_ISL_427744
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_423968
EPI_ISL_425362
EPI_ISL_422747
EPI_ISL_415650
EPI_ISL_422917
EPI_ISL_420346
EPI_ISL_417022
EPI_ISL_417364
EPI_ISL_416450
EPI_ISL_427474
EPI_ISL_427353
EPI_ISL_423096
EPI_ISL_423063
EPI_ISL_423125
EPI_ISL_422949
EPI_ISL_427110
EPI_ISL_420527
EPI_ISL_418388
EPI_ISL_416698
EPI_ISL_424609
EPI_ISL_418770
EPI_ISL_414486
EPI_ISL_428254
EPI_ISL_418192
EPI_ISL_422880
EPI_ISL_425055
EPI_ISL_418114
EPI_ISL_423854
EPI_ISL_427787
EPI_ISL_426502
EPI_ISL_429281
EPI_ISL_425820
EPI_ISL_419173
EPI_ISL_430021
EPI_ISL_425682
EPI_ISL_420585
EPI_ISL_413653
EPI_ISL_430070
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_424342
EPI_ISL_426306
EPI_ISL_425430
EPI_ISL_424574
EPI_ISL_421289
EPI_ISL_420611
EPI_ISL_414366
EPI_ISL_426617
EPI_ISL_421207
EPI_ISL_420532
EPI_ISL_418294
EPI_ISL_419832
EPI_ISL_421281
EPI_ISL_417361
EPI_ISL_423176
EPI_ISL_417641
EPI_ISL_424499
EPI_ISL_414621
EPI_ISL_423379
EPI_ISL_418971
EPI_ISL_426993
EPI_ISL_428757
EPI_ISL_419460
EPI_ISL_424272
EPI_ISL_414043
EPI_ISL_428468
EPI_ISL_428232
EPI_ISL_418260
EPI_ISL_419568
EPI_ISL_429564
EPI_ISL_421473
EPI_ISL_427365
EPI_ISL_423823
EPI_ISL_425951
EPI_ISL_424354
EPI_ISL_424103
EPI_ISL_424960
EPI_ISL_417584
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_422323
EPI_ISL_420058
EPI_ISL_420208
EPI_ISL_423124
EPI_ISL_427084
EPI_ISL_425673
EPI_ISL_417481
EPI_ISL_423074
EPI_ISL_417536
EPI_ISL_420248
EPI_ISL_420209
EPI_ISL_413607
EPI_ISL_420483
EPI_ISL_429359
EPI_ISL_423936
EPI_ISL_417193
EPI_ISL_417477
EPI_ISL_418834
EPI_ISL_423560
EPI_ISL_416488
EPI_ISL_424449
EPI_ISL_417246
EPI_ISL_425521
EPI_ISL_427555
EPI_ISL_424162
EPI_ISL_425135
EPI_ISL_412898
EPI_ISL_421855
EPI_ISL_422303
EPI_ISL_429464
EPI_ISL_426555
EPI_ISL_426964
EPI_ISL_418796
EPI_ISL_418240
EPI_ISL_420461
EPI_ISL_429969
EPI_ISL_416368
EPI_ISL_427205
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_426685
EPI_ISL_426014
EPI_ISL_418218
EPI_ISL_413858
EPI_ISL_427786
EPI_ISL_420798
EPI_ISL_424956
EPI_ISL_419984
EPI_ISL_419899
EPI_ISL_425984
EPI_ISL_429485
EPI_ISL_429282
EPI_ISL_421291
EPI_ISL_415710
EPI_ISL_429467
EPI_ISL_418346
EPI_ISL_425913
EPI_ISL_414633
EPI_ISL_420460
EPI_ISL_429097
EPI_ISL_415479
EPI_ISL_429142
EPI_ISL_417816
EPI_ISL_417836
EPI_ISL_414539
EPI_ISL_426288
EPI_ISL_416427
EPI_ISL_418652
EPI_ISL_425891
EPI_ISL_422651
EPI_ISL_420631
EPI_ISL_419564
EPI_ISL_421355
EPI_ISL_421450
EPI_ISL_426471
EPI_ISL_407976
EPI_ISL_418284
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_428373
EPI_ISL_427789
EPI_ISL_427650
EPI_ISL_420120
EPI_ISL_429511
EPI_ISL_419584
EPI_ISL_424880
EPI_ISL_419720
EPI_ISL_429305
EPI_ISL_414586
EPI_ISL_421417
EPI_ISL_422427
EPI_ISL_418646
EPI_ISL_418159
EPI_ISL_428359
EPI_ISL_423347
EPI_ISL_422871
EPI_ISL_419767
EPI_ISL_426527
EPI_ISL_426564
EPI_ISL_421755
EPI_ISL_418155
EPI_ISL_427034
EPI_ISL_426750
EPI_ISL_420145
EPI_ISL_418826
EPI_ISL_426820
EPI_ISL_428253
EPI_ISL_427017
EPI_ISL_417313
EPI_ISL_420930
EPI_ISL_414564
EPI_ISL_420137
EPI_ISL_419960
EPI_ISL_429065
EPI_ISL_417795
EPI_ISL_416491
EPI_ISL_426082

55
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_420200
EPI_ISL_429561
EPI_ISL_423358
EPI_ISL_423212
EPI_ISL_419218
EPI_ISL_425170
EPI_ISL_419524
EPI_ISL_421683
EPI_ISL_427073
EPI_ISL_415977
EPI_ISL_417638
EPI_ISL_429622
EPI_ISL_423592
EPI_ISL_429607
EPI_ISL_419971
EPI_ISL_424065
EPI_ISL_422938
EPI_ISL_418188
EPI_ISL_418045
EPI_ISL_427324
EPI_ISL_425187
EPI_ISL_426567
EPI_ISL_418712
EPI_ISL_421573
EPI_ISL_426091
EPI_ISL_414438
EPI_ISL_419254
EPI_ISL_430019
EPI_ISL_425609
EPI_ISL_422076
EPI_ISL_419482
EPI_ISL_417854
EPI_ISL_419848
EPI_ISL_429015
EPI_ISL_421729
EPI_ISL_424262
EPI_ISL_416524
EPI_ISL_424008
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_428325
EPI_ISL_421243
EPI_ISL_418720
EPI_ISL_413997
EPI_ISL_417560
EPI_ISL_423044
EPI_ISL_425287
EPI_ISL_427674
EPI_ISL_423122
EPI_ISL_417194
EPI_ISL_422057
EPI_ISL_416721
EPI_ISL_416744
EPI_ISL_429346
EPI_ISL_428347
EPI_ISL_429465
EPI_ISL_428900
EPI_ISL_426074
EPI_ISL_416334
EPI_ISL_423692
EPI_ISL_428800
EPI_ISL_418665
EPI_ISL_425470
EPI_ISL_422746
EPI_ISL_417004
EPI_ISL_419517
EPI_ISL_427531
EPI_ISL_424938
EPI_ISL_423027
EPI_ISL_425784
EPI_ISL_426768
EPI_ISL_424937
EPI_ISL_425511
EPI_ISL_414692
EPI_ISL_428267
EPI_ISL_417426
EPI_ISL_420040
EPI_ISL_418220
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_422164
EPI_ISL_411950
EPI_ISL_420078
EPI_ISL_421743
EPI_ISL_429884
EPI_ISL_422694
EPI_ISL_420326
EPI_ISL_425720
EPI_ISL_419260
EPI_ISL_422557
EPI_ISL_421432
EPI_ISL_422944
EPI_ISL_417675
EPI_ISL_424059
EPI_ISL_418869
EPI_ISL_418882
EPI_ISL_422222
EPI_ISL_424974
EPI_ISL_427545
EPI_ISL_423216
EPI_ISL_418739
EPI_ISL_423856
EPI_ISL_429634
EPI_ISL_421320
EPI_ISL_427455
EPI_ISL_427071
EPI_ISL_429565
EPI_ISL_424857
EPI_ISL_427164
EPI_ISL_422174
EPI_ISL_422115
EPI_ISL_423941
EPI_ISL_422855
EPI_ISL_426059
EPI_ISL_424846
EPI_ISL_418016
EPI_ISL_427106
EPI_ISL_424209
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_417296
EPI_ISL_420570
EPI_ISL_424186
EPI_ISL_426460
EPI_ISL_426653
EPI_ISL_428878
EPI_ISL_420842
EPI_ISL_425455
EPI_ISL_423320
EPI_ISL_420305
EPI_ISL_418768
EPI_ISL_418935
EPI_ISL_426164
EPI_ISL_427692
EPI_ISL_418717
EPI_ISL_425923
EPI_ISL_422317
EPI_ISL_420505
EPI_ISL_416737
EPI_ISL_429583
EPI_ISL_416694
EPI_ISL_425053
EPI_ISL_421430
EPI_ISL_429008
EPI_ISL_423817
EPI_ISL_406970
EPI_ISL_421612
EPI_ISL_415602
EPI_ISL_427127
EPI_ISL_414550
EPI_ISL_417270
EPI_ISL_429558
EPI_ISL_424606
EPI_ISL_429569
EPI_ISL_424521
EPI_ISL_413652
EPI_ISL_423596
EPI_ISL_423663
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_419417
EPI_ISL_419589
EPI_ISL_420117
EPI_ISL_422767
EPI_ISL_426695
EPI_ISL_420010
EPI_ISL_415507
EPI_ISL_421847
EPI_ISL_426683
EPI_ISL_422849
EPI_ISL_426928
EPI_ISL_429631
EPI_ISL_420511
EPI_ISL_429643
EPI_ISL_423639
EPI_ISL_420670
EPI_ISL_421909
EPI_ISL_421453
EPI_ISL_427663
EPI_ISL_420224
EPI_ISL_421311
EPI_ISL_413518
EPI_ISL_421705
EPI_ISL_424041
EPI_ISL_419506
EPI_ISL_414471
EPI_ISL_423693
EPI_ISL_417655
EPI_ISL_422520
EPI_ISL_423195
EPI_ISL_416326
EPI_ISL_425786
EPI_ISL_416584
EPI_ISL_423871
EPI_ISL_414534
EPI_ISL_427063
EPI_ISL_423109
EPI_ISL_420129
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_423484
EPI_ISL_420775
EPI_ISL_429121
EPI_ISL_418337
EPI_ISL_424406
EPI_ISL_419823
EPI_ISL_426624
EPI_ISL_416693
EPI_ISL_420267
EPI_ISL_423507
EPI_ISL_415148
EPI_ISL_414456
EPI_ISL_423406
EPI_ISL_421924
EPI_ISL_422940
EPI_ISL_429119
EPI_ISL_420020
EPI_ISL_419533
EPI_ISL_423584
EPI_ISL_421198
EPI_ISL_420622
EPI_ISL_429397
EPI_ISL_426982
EPI_ISL_419835
EPI_ISL_421984
EPI_ISL_426116
EPI_ISL_428478
EPI_ISL_420393
EPI_ISL_419751
EPI_ISL_424579
EPI_ISL_420053
EPI_ISL_423314
EPI_ISL_421828
EPI_ISL_422504
EPI_ISL_422893
EPI_ISL_416690
EPI_ISL_424963
EPI_ISL_426113
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_421946
EPI_ISL_427484
EPI_ISL_416315
EPI_ISL_422118
EPI_ISL_423030
EPI_ISL_426066
EPI_ISL_421970
EPI_ISL_426918
EPI_ISL_423415
EPI_ISL_421622
EPI_ISL_427448
EPI_ISL_429866
EPI_ISL_426558
EPI_ISL_421368
EPI_ISL_418027
EPI_ISL_416448
EPI_ISL_417260
EPI_ISL_427308
EPI_ISL_421393
EPI_ISL_420009
EPI_ISL_423885
EPI_ISL_420276
EPI_ISL_428927
EPI_ISL_425529
EPI_ISL_420553
EPI_ISL_418925
EPI_ISL_423746
EPI_ISL_422730
EPI_ISL_426985
EPI_ISL_425361
EPI_ISL_427366
EPI_ISL_418232
EPI_ISL_425471
EPI_ISL_421421
EPI_ISL_428288
EPI_ISL_421309
EPI_ISL_416432
EPI_ISL_416758
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_423904
EPI_ISL_426694
EPI_ISL_425241
EPI_ISL_427068
EPI_ISL_424308
EPI_ISL_426506
EPI_ISL_426068
EPI_ISL_423764
EPI_ISL_428352
EPI_ISL_423360
EPI_ISL_421303
EPI_ISL_421390
EPI_ISL_429629
EPI_ISL_426929
EPI_ISL_420214
EPI_ISL_416585
EPI_ISL_419233
EPI_ISL_418981
EPI_ISL_422157
EPI_ISL_425138
EPI_ISL_425301
EPI_ISL_415515
EPI_ISL_421350
EPI_ISL_420630
EPI_ISL_418212
EPI_ISL_429800
EPI_ISL_429290
EPI_ISL_415613
EPI_ISL_415658
EPI_ISL_423497
EPI_ISL_408977
EPI_ISL_417630
EPI_ISL_429624
EPI_ISL_424143
EPI_ISL_420485
EPI_ISL_413020
EPI_ISL_423165
EPI_ISL_425708
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_420496
EPI_ISL_427317
EPI_ISL_423412
EPI_ISL_423075
EPI_ISL_424038
EPI_ISL_416437
EPI_ISL_417133
EPI_ISL_429219
EPI_ISL_429530
EPI_ISL_429737
EPI_ISL_426807
EPI_ISL_425630
EPI_ISL_423211
EPI_ISL_422320
EPI_ISL_424550
EPI_ISL_426955
EPI_ISL_413615
EPI_ISL_423503
EPI_ISL_417973
EPI_ISL_419976
EPI_ISL_421994
EPI_ISL_425982
EPI_ISL_429458
EPI_ISL_425068
EPI_ISL_424864
EPI_ISL_418508
EPI_ISL_417855
EPI_ISL_423126
EPI_ISL_420656
EPI_ISL_423868
EPI_ISL_425600
EPI_ISL_429099
EPI_ISL_418072
EPI_ISL_429038
EPI_ISL_417470
EPI_ISL_423923
EPI_ISL_425133
EPI_ISL_426560
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_429517
EPI_ISL_423879
EPI_ISL_417099
EPI_ISL_420685
EPI_ISL_429599
EPI_ISL_423397
EPI_ISL_417876
EPI_ISL_423667
EPI_ISL_419892
EPI_ISL_429080
EPI_ISL_429079
EPI_ISL_418956
EPI_ISL_420086
EPI_ISL_417472
EPI_ISL_427351
EPI_ISL_419593
EPI_ISL_420935
EPI_ISL_428836
EPI_ISL_417544
EPI_ISL_416594
EPI_ISL_417405
EPI_ISL_425862
EPI_ISL_421829
EPI_ISL_425712
EPI_ISL_427103
EPI_ISL_423716
EPI_ISL_414007
EPI_ISL_419558
EPI_ISL_428960
EPI_ISL_416517
EPI_ISL_423429
EPI_ISL_422697
EPI_ISL_420969
EPI_ISL_426734
EPI_ISL_430093
EPI_ISL_426035
EPI_ISL_420512
EPI_ISL_419587
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_427204
EPI_ISL_417359
EPI_ISL_416581
EPI_ISL_417796
EPI_ISL_415142
EPI_ISL_419684
EPI_ISL_419741
EPI_ISL_416596
EPI_ISL_425401
EPI_ISL_427699
EPI_ISL_422167
EPI_ISL_429299
EPI_ISL_415707
EPI_ISL_423336
EPI_ISL_428670
EPI_ISL_427500
EPI_ISL_425177
EPI_ISL_422603
EPI_ISL_424509
EPI_ISL_419993
EPI_ISL_428709
EPI_ISL_428284
EPI_ISL_421902
EPI_ISL_419943
EPI_ISL_421244
EPI_ISL_419927
EPI_ISL_421720
EPI_ISL_419223
EPI_ISL_418963
EPI_ISL_426289
EPI_ISL_426724
EPI_ISL_424146
EPI_ISL_421776
EPI_ISL_425182
EPI_ISL_414517
EPI_ISL_416443
EPI_ISL_414541
EPI_ISL_422689
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_417742
EPI_ISL_418015
EPI_ISL_421996
EPI_ISL_414643
EPI_ISL_428317
EPI_ISL_422345
EPI_ISL_420521
EPI_ISL_420318
EPI_ISL_424431
EPI_ISL_422265
EPI_ISL_418293
EPI_ISL_422432
EPI_ISL_424197
EPI_ISL_425178
EPI_ISL_420940
EPI_ISL_417432
EPI_ISL_425692
EPI_ISL_417444
EPI_ISL_429821
EPI_ISL_420226
EPI_ISL_414542
EPI_ISL_418025
EPI_ISL_429010
EPI_ISL_425122
EPI_ISL_421301
EPI_ISL_423957
EPI_ISL_423949
EPI_ISL_428870
EPI_ISL_420154
EPI_ISL_422941
EPI_ISL_423246
EPI_ISL_421876
EPI_ISL_430100
EPI_ISL_426075
EPI_ISL_417215
EPI_ISL_419228
EPI_ISL_418777
EPI_ISL_418953
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_418920
EPI_ISL_430020
EPI_ISL_424865
EPI_ISL_423054
EPI_ISL_423175
EPI_ISL_427123
EPI_ISL_425953
EPI_ISL_416499
EPI_ISL_429209
EPI_ISL_427081
EPI_ISL_430001
EPI_ISL_423307
EPI_ISL_417204
EPI_ISL_427629
EPI_ISL_420250
EPI_ISL_423010
EPI_ISL_429603
EPI_ISL_424643
EPI_ISL_408479
EPI_ISL_425941
EPI_ISL_423189
EPI_ISL_425449
EPI_ISL_424874
EPI_ISL_416753
EPI_ISL_418994
EPI_ISL_425944
EPI_ISL_423586
EPI_ISL_413589
EPI_ISL_417575
EPI_ISL_430028
EPI_ISL_423803
EPI_ISL_427129
EPI_ISL_418753
EPI_ISL_429853
EPI_ISL_428395
EPI_ISL_417564
EPI_ISL_420985
EPI_ISL_420382
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_425691
EPI_ISL_427700
EPI_ISL_427065
EPI_ISL_427304
EPI_ISL_416607
EPI_ISL_420321
EPI_ISL_426064
EPI_ISL_421395
EPI_ISL_422253
EPI_ISL_427452
EPI_ISL_423494
EPI_ISL_422422
EPI_ISL_417569
EPI_ISL_418044
EPI_ISL_424128
EPI_ISL_421382
EPI_ISL_422542
EPI_ISL_424176
EPI_ISL_426499
EPI_ISL_424466
EPI_ISL_425358
EPI_ISL_420195
EPI_ISL_424895
EPI_ISL_424414
EPI_ISL_413569
EPI_ISL_424506
EPI_ISL_427566
EPI_ISL_422529
EPI_ISL_403935
EPI_ISL_423637
EPI_ISL_420007
EPI_ISL_412981
EPI_ISL_424397
EPI_ISL_426550
EPI_ISL_417024
EPI_ISL_427385
EPI_ISL_422054
EPI_ISL_415461
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_426937
EPI_ISL_426519
EPI_ISL_427252
EPI_ISL_428334
EPI_ISL_418695
EPI_ISL_428794
EPI_ISL_429183
EPI_ISL_424384
EPI_ISL_427069
EPI_ISL_425167
EPI_ISL_419724
EPI_ISL_416331
EPI_ISL_423961
EPI_ISL_427187
EPI_ISL_424529
EPI_ISL_424440
EPI_ISL_419800
EPI_ISL_425775
EPI_ISL_425992
EPI_ISL_420016
EPI_ISL_416691
EPI_ISL_427175
EPI_ISL_426651
EPI_ISL_428725
EPI_ISL_418351
EPI_ISL_423006
EPI_ISL_423294
EPI_ISL_421507
EPI_ISL_424451
EPI_ISL_429567
EPI_ISL_426956
EPI_ISL_428919
EPI_ISL_419400
EPI_ISL_420993
EPI_ISL_421398
EPI_ISL_429269
EPI_ISL_419663
EPI_ISL_417368
Table S3: GISAID sequence IDs collected on April 25, 2020.

ID
EPI_ISL_428697
EPI_ISL_427191
EPI_ISL_423376
EPI_ISL_428384
EPI_ISL_425789
EPI_ISL_417988
EPI_ISL_422570
EPI_ISL_427022
EPI_ISL_422820
EPI_ISL_414689
EPI_ISL_416033
EPI_ISL_417734
EPI_ISL_425523
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
923	1.0	EPI_ISL_426132	6.893599999999978E-4	6.5399999999999758E-6	4
923	1.0	EPI_ISL_429638	6.871999999999978E-4	6.5399999999999758E-6	4
923	1.0	EPI_ISL_429626	6.893599999999978E-4	6.5399999999999758E-6	4
923	1.0	EPI_ISL_429616	6.893599999999978E-4	6.5399999999999758E-6	4
1132	1.0	EPI_ISL_418361	6.261999999999999E-4	4.3599999999999999E-6	2
1132	1.0	EPI_ISL_425257	6.261999999999999E-4	4.3599999999999999E-6	2
1139	1.0	EPI_ISL_424496	6.649999999999999E-4	3.8779999999999998E-5	2
1139	1.0	EPI_ISL_422650	6.304999999999999E-4	3.8779999999999998E-5	2
1148	1.0	EPI_ISL_419720	6.195899999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_426804	6.283099999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_419989	6.283099999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_427032	6.535999999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_419911	6.283099999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_419983	6.283099999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_419997	6.239499999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_419822	6.283099999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_426807	6.152999999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_419999	6.977599999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_427156	6.566499999999999E-4	1.7439999999999964E-5	12
1148	1.0	EPI_ISL_419852	6.283099999999999E-4	1.7439999999999964E-5	12
1202	1.0	EPI_ISL_414635	6.648999999999999E-4	7.814999999999992E-5	3
1202	1.0	EPI_ISL_418239	7.386999999999999E-4	7.814999999999992E-5	3
1202	1.0	EPI_ISL_414636	7.386999999999999E-4	7.814999999999992E-5	3
1241	1.0	EPI_ISL_426467	6.785999999999998E-4	3.877000000000004E-5	3
1241	1.0	EPI_ISL_426466	6.785999999999998E-4	3.877000000000004E-5	3
1241	1.0	EPI_ISL_426457	7.130099999999987E-4	3.877000000000004E-5	3
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
1246	1.0	EPI_ISL_422047	6.785999999999987E-4	4.359999999999911E-6	2
1246	1.0	EPI_ISL_422304	6.785999999999987E-4	4.359999999999911E-6	2
1271	1.0	EPI_ISL_420021	6.501099999999987E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_420019	7.089799999999988E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_420630	6.501099999999987E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_420022	6.845199999999987E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_420629	6.501099999999987E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_420020	6.501099999999987E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_419258	6.479299999999987E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_429981	6.738899999999988E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_419257	6.804799999999988E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_429982	7.487899999999987E-4	4.775999999999977E-5	11
1271	1.0	EPI_ISL_426455	6.501099999999987E-4	4.775999999999977E-5	11
1294	1.0	EPI_ISL_429554	7.036999999999989E-4	7.322999999999987E-5	2
1294	1.0	EPI_ISL_429528	7.03079999999999E-4	7.322999999999987E-5	2
1331	1.0	EPI_ISL_422212	6.261299999999987E-4	4.53199999999995E-5	5
1331	1.0	EPI_ISL_422224	6.67089999999999E-4	4.53199999999995E-5	5
1331	1.0	EPI_ISL_428912	6.62719999999999E-4	4.53199999999995E-5	5
1331	1.0	EPI_ISL_422024	6.670899999999988E-4	4.53199999999995E-5	5
1331	1.0	EPI_ISL_422216	6.64909999999999E-4	4.53199999999995E-5	5
1367	1.0	EPI_ISL_421979	7.60199999999999E-4	6.539999999999975E-6	3
1367	1.0	EPI_ISL_420529	7.62379999999999E-4	6.539999999999975E-6	3
1367	1.0	EPI_ISL_420702	7.62379999999999E-4	6.539999999999975E-6	3
1373	1.0	EPI_ISL_428379	6.451899999999988E-4	3.921999999999975E-5	2
1373	1.0	EPI_ISL_419516	6.80099999999999E-4	3.921999999999975E-5	2
1380	1.0	EPI_ISL_428202	6.69019999999999E-4	7.450999999999985E-5	2
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
1380	1.0	EPI_ISL_428205	6.69589999999999E-4	7.450999999999985E-5	2
1436	1.0	EPI_ISL_421391	6.329599999999989E-4	4.098999999999986E-5	4
1436	1.0	EPI_ISL_428385	6.329599999999989E-4	4.098999999999986E-5	4
1436	1.0	EPI_ISL_421623	6.65229999999999E-4	4.098999999999986E-5	4
1436	1.0	EPI_ISL_428394	6.28599999999999E-4	4.098999999999986E-5	4
1443	1.0	EPI_ISL_429588	6.62729999999999E-4	7.318999999999984E-5	2
1443	1.0	EPI_ISL_414625	6.62719999999999E-4	7.318999999999984E-5	2
1483	1.0	EPI_ISL_427742	6.75809999999999E-4	3.877000000000004E-5	2
1483	1.0	EPI_ISL_421636	7.10219999999999E-4	3.877000000000004E-5	2
1507	1.0	EPI_ISL_426837	7.28279999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_419943	7.36999999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_426860	7.71459999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_426729	7.32639999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_427764	7.39179999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_426862	7.71459999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_426725	7.30459999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_427775	7.76599999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_427683	7.76599999999999E-4	4.317999999999987E-5	10
1507	1.0	EPI_ISL_427095	6.97609999999999E-4	3.877000000000004E-5	4
1531	1.0	EPI_ISL_419956	6.97609999999999E-4	3.877000000000004E-5	4
1531	1.0	EPI_ISL_427094	7.30199999999999E-4	3.877000000000004E-5	4
1531	1.0	EPI_ISL_427092	7.32019999999999E-4	3.877000000000004E-5	4
1601	1.0	EPI_ISL_424170	6.89029999999999E-4	4.359999999999991E-6	2
1601	1.0	EPI_ISL_423020	6.89029999999999E-4	4.359999999999991E-6	2
1605	1.0	EPI_ISL_418204	6.51819999999999E-4	4.133000000000001E-5	6
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
1605	1.0	EPI_ISL_429023	7.548399999999995E-4	4.133000000000001E-5	6
1605	1.0	EPI_ISL_417665	6.518199999999994E-4	4.133000000000001E-5	6
1605	1.0	EPI_ISL_426951	6.862499999999994E-4	4.133000000000001E-5	6
1605	1.0	EPI_ISL_430031	6.844299999999994E-4	4.133000000000001E-5	6
1605	1.0	EPI_ISL_418192	6.518199999999994E-4	4.133000000000001E-5	6
1623	1.0	EPI_ISL_430053	6.627499999999991E-4	1.525999999999796E-5	8
1623	1.0	EPI_ISL_430062	7.368799999999991E-4	1.525999999999796E-5	8
1623	1.0	EPI_ISL_430056	6.562099999999992E-4	1.525999999999796E-5	8
1623	1.0	EPI_ISL_420812	6.649299999999999E-4	1.525999999999796E-5	8
1623	1.0	EPI_ISL_430061	6.649299999999999E-4	1.525999999999796E-5	8
1623	1.0	EPI_ISL_417977	6.950999999999992E-4	1.525999999999796E-5	8
1623	1.0	EPI_ISL_430054	6.627499999999991E-4	1.525999999999796E-5	8
1623	1.0	EPI_ISL_430055	6.605699999999991E-4	1.525999999999796E-5	8
1640	0.988	EPI_ISL_426748	6.172499999999992E-4	6.53999999999758E-6	4
1640	0.988	EPI_ISL_419952	6.194299999999992E-4	6.53999999999758E-6	4
1640	0.988	EPI_ISL_419954	6.194299999999992E-4	6.53999999999758E-6	4
1640	0.988	EPI_ISL_419880	6.194299999999992E-4	6.53999999999758E-6	4
1666	1.0	EPI_ISL_420759	6.633899999999991E-4	8.68699999999974E-5	49
1666	1.0	EPI_ISL_424161	6.4574999999999986E-4	8.68699999999974E-5	49
1666	1.0	EPI_ISL_418076	6.217699999999991E-4	8.68699999999974E-5	49
1666	1.0	EPI_ISL_429128	6.824799999999994E-4	8.68699999999974E-5	49
1666	1.0	EPI_ISL_426746	6.629499999999991E-4	8.68699999999974E-5	49
1666	1.0	EPI_ISL_420704	7.529299999999988E-4	8.68699999999974E-5	49
1666	1.0	EPI_ISL_418690	6.217699999999991E-4	8.68699999999974E-5	49
1666	1.0	EPI_ISL_42035	6.627299999999991E-4	8.68699999999974E-5	49
1666	1.0	EPI_ISL_425525	6.217699999999991E-4	8.68699999999974E-5	49
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
1666	1.0	EPI_ISL_420695	6.348499999999989E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_429161	6.217699999999991E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423608	6.435699999999987E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_425519	6.217699999999991E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423596	6.778099999999998E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_422696	6.217699999999991E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_429127	6.561799999999992E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423609	6.332299999999996E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_421005	7.452199999999998E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_424593	6.174099999999999E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_425388	7.600699999999998E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423655	6.587699999999992E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_424598	6.217699999999999E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_419428	6.217699999999999E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423086	6.393999999999996E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_422124	7.752799999999997E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_422777	6.670799999999998E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423768	6.670799999999998E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423386	6.261299999999999E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_422211	7.430399999999998E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_422656	7.444199999999998E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_422164	7.269899999999992E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_429126	6.217699999999999E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_429162	6.217699999999999E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_424402	6.217699999999999E-4	8.686999999999974E-5	49
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
1666	1.0	EPI_ISL_422655	7.444199999999989E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_422959	6.130499999999993E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_421853	6.195899999999992E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_428148	7.126899999999994E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_420752	6.802299999999995E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423220	6.261299999999992E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423563	6.370399999999991E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_429558	6.736199999999991E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_420933	6.842399999999992E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_420042	7.452199999999994E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_425085	6.217699999999995E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_420211	7.185999999999994E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423932	7.151999999999994E-4	8.686999999999974E-5	49
1666	1.0	EPI_ISL_423317	6.217699999999995E-4	8.686999999999974E-5	49
1771	1.0	EPI_ISL_418184	7.875099999999995E-4	3.877999999999998E-5	3
1771	1.0	EPI_ISL_427446	7.530899999999994E-4	3.877999999999998E-5	3
1771	1.0	EPI_ISL_427462	7.530899999999994E-4	3.877999999999998E-5	3
1782	1.0	EPI_ISL_426799	6.759199999999995E-4	4.312999999999995E-5	5
1782	1.0	EPI_ISL_426809	7.125699999999996E-4	4.312999999999995E-5	5
1782	1.0	EPI_ISL_427006	7.083899999999996E-4	4.312999999999995E-5	5
1782	1.0	EPI_ISL_427160	6.802799999999995E-4	4.312999999999995E-5	5
1782	1.0	EPI_ISL_426940	7.146899999999995E-4	4.312999999999995E-5	5
1794	1.0	EPI_ISL_417516	7.125199999999996E-4	7.597000000000007E-5	2
1794	1.0	EPI_ISL_423971	6.409099999999995E-4	7.597000000000007E-5	2
1816	1.0	EPI_ISL_417752	7.471099999999998E-4	6.928999999999994E-5	48
1816	1.0	EPI_ISL_417806	6.602399999999991E-4	6.928999999999994E-5	48
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
1816	1.0	EPI_ISL_422914	7.492999999999988E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_425409	6.99009999999999E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_421501	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_427721	7.531499999999988E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_429729	7.399699999999999E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423443	7.099099999999988E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423797	7.120899999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_418206	6.711399999999989E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422568	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422954	7.041399999999989E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422858	7.041399999999989E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422856	7.01099999999999E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423445	7.319499999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423163	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422620	7.874499999999988E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423643	6.859999999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_420791	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_424042	7.05549999999999E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_425322	6.90099999999999E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_418207	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422658	6.624199999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423603	7.03369999999999E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_421560	6.711399999999989E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_420048	7.492999999999989E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_420058	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_427136	6.946599999999992E-4	6.928999999999941E-5	48
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clusternum	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
1816	1.0	EPI_ISL_422903	7.041399999999989E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_418209	6.924699999999992E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422570	7.351199999999992E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_420062	7.313399999999992E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423861	7.077299999999989E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423332	7.03699999999999E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_425694	6.711399999999989E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_429737	7.055599999999992E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423411	7.120899999999988E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423564	7.74479999999999E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_420792	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_424877	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422575	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_418208	6.580599999999992E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_418420	6.926199999999992E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423796	6.120899999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_423862	6.946499999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422788	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_416729	6.602399999999991E-4	6.928999999999941E-5	48
1816	1.0	EPI_ISL_422566	6.602399999999991E-4	6.928999999999941E-5	48
1942	1.0	EPI_ISL_427151	6.065099999999994E-4	6.359999999999991E-6	2
1942	1.0	EPI_ISL_427802	6.065099999999994E-4	6.359999999999991E-6	2
1942	1.0	EPI_ISL_427152	6.065099999999994E-4	6.359999999999991E-6	2
1942	1.0	EPI_ISL_427153	6.065099999999994E-4	6.359999999999991E-6	2
1974	1.0	EPI_ISL_426562	7.167099999999987E-4	0.0	6
1974	1.0	EPI_ISL_426563	7.167099999999987E-4	0.0	6
1974	1.0	EPI_ISL_426565	7.167099999999987E-4	0.0	6
1974	1.0	EPI_ISL_426567	7.167099999999987E-4	0.0	6
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 \((46)\).

clusternum	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
1974	1.0	EPI_ISL_426561	7.167099999999987E-4	0.0	6
1974	1.0	EPI_ISL_426566	8.619099999999987E-4	0.0	6
1997	1.0	EPI_ISL_422461	7.519099999999987E-4	7.811999999999988E-5	5
1997	1.0	EPI_ISL_426161	9.322499999999987E-4	7.811999999999988E-5	5
1997	1.0	EPI_ISL_429847	8.248599999999987E-4	7.811999999999988E-5	5
1997	1.0	EPI_ISL_429846	8.248599999999987E-4	7.811999999999988E-5	5
1997	1.0	EPI_ISL_429848	8.248599999999987E-4	7.811999999999988E-5	5
2026	1.0	EPI_ISL_419778	6.627999999999991E-4	4.359999999999991E-6	2
2026	1.0	EPI_ISL_419742	6.627999999999991E-4	4.359999999999991E-6	2
2059	1.0	EPI_ISL_416478	6.539999999999993E-4	7.317999999999995E-5	2
2059	1.0	EPI_ISL_424591	6.539999999999993E-4	7.317999999999995E-5	2
2071	1.0	EPI_ISL_421394	6.130599999999991E-4	4.359999999999991E-6	2
2071	1.0	EPI_ISL_421412	6.130599999999991E-4	4.359999999999991E-6	2
2098	1.0	EPI_ISL_422086	7.704899999999998E-4	3.877999999999998E-5	2
2098	1.0	EPI_ISL_420745	7.360699999999998E-4	3.877999999999998E-5	2
2103	1.0	EPI_ISL_419188	6.261299999999992E-4	7.597000000000007E-5	2
2103	1.0	EPI_ISL_422932	6.977399999999991E-4	7.597000000000007E-5	2
2112	1.0	EPI_ISL_428951	6.976899999999992E-4	8.023999999999998E-5	2
2112	1.0	EPI_ISL_419708	6.210999999999991E-4	8.023999999999998E-5	2
2125	1.0	EPI_ISL_417579	6.672799999999999E-4	4.178999999999998E-5	3
2125	1.0	EPI_ISL_424388	6.672799999999999E-4	4.178999999999998E-5	3
2125	1.0	EPI_ISL_424501	7.003499999999991E-4	4.178999999999998E-5	3
2132	1.0	EPI_ISL_426744	6.217599999999992E-4	3.897999999999998E-5	2
2132	1.0	EPI_ISL_422532	6.563799999999993E-4	3.897999999999998E-5	2
2151	1.0	EPI_ISL_423168	6.671299999999991E-4	4.359999999999991E-6	2
2151	1.0	EPI_ISL_422008	6.671299999999991E-4	4.359999999999991E-6	2
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2159	1.0	EPI_ISL_426994	6.65149999999999E-4	5.697999999999988E-5	5
2159	1.0	EPI_ISL_426972	6.627299999999991E-4	5.697999999999988E-5	5
2159	1.0	EPI_ISL_426866	6.26149999999999E-4	5.697999999999988E-5	5
2159	1.0	EPI_ISL_426987	6.806099999999999E-4	5.697999999999988E-5	5
2159	1.0	EPI_ISL_426872	6.305099999999999E-4	5.697999999999988E-5	5
2174	1.0	EPI_ISL_429572	6.949599999999998E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429530	7.404099999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429312	7.1846999999999986E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429478	7.228199999999998E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429468	6.9495999999999984E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429332	6.7533999999999988E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429565	7.0755999999999989E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429529	6.949599999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429695	6.666199999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429532	7.831099999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429327	6.949599999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429311	7.0755999999999989E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429589	7.119199999999998E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429570	7.2717999999999985E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429465	6.949599999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429514	7.838699999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429302	6.949599999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429461	7.621999999999998E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429578	6.949599999999999E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429535	7.2281999999999986E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429508	7.404099999999999E-4	8.017999999999979E-5	25
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2174	1.0	EPI_ISL_429566	7.140999999999988E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429310	7.959099999999985E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429294	7.167599999999987E-4	8.017999999999979E-5	25
2174	1.0	EPI_ISL_429300	6.949599999999984E-4	8.017999999999979E-5	25
2229	1.0	EPI_ISL_421382	6.326699999999989E-4	4.0949999999999884E-5	4
2229	1.0	EPI_ISL_429492	6.648999999999999E-4	4.0949999999999884E-5	4
2229	1.0	EPI_ISL_421419	6.348499999999989E-4	4.0949999999999884E-5	4
2229	1.0	EPI_ISL_422538	6.348499999999989E-4	4.0949999999999884E-5	4
2260	1.0	EPI_ISL_418652	7.579799999999987E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_418638	7.901899999999988E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_418798	7.254499999999986E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_418644	7.610599999999986E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_420442	7.598599999999986E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_427347	7.892799999999988E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_421184	7.920899999999987E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_417006	7.210899999999987E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_424639	7.210899999999987E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_427390	7.920899999999987E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_427369	8.711599999999986E-4	8.407999999999962E-5	12
2260	1.0	EPI_ISL_424628	7.232699999999986E-4	8.407999999999962E-5	12
2287	1.0	EPI_ISL_429748	7.927999999999987E-4	7.358999999999999E-5	2
2287	1.0	EPI_ISL_429791	7.930299999999987E-4	7.358999999999999E-5	2
2291	1.0	EPI_ISL_429790	7.167299999999988E-4	3.892000000000001E-5	3
2291	1.0	EPI_ISL_429756	7.534699999999987E-4	3.892000000000001E-5	3
2291	1.0	EPI_ISL_429767	7.180999999999987E-4	3.892000000000001E-5	3
2337	0.987	EPI_ISL_430036	6.063499999999995E-4	4.0939999999999943E-5	7
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2337	0.987	EPI_ISL_430023	6.019899999999996E-4	4.093999999999943E-5	7
2337	0.987	EPI_ISL_430029	6.041699999999996E-4	4.093999999999943E-5	7
2337	0.987	EPI_ISL_430027	6.085299999999995E-4	4.093999999999943E-5	7
2337	0.987	EPI_ISL_430034	6.334399999999998E-4	4.093999999999943E-5	7
2337	0.987	EPI_ISL_429121	6.342099999999997E-4	4.093999999999943E-5	7
2337	0.987	EPI_ISL_430020	6.085299999999995E-4	4.093999999999943E-5	7
2369	1.0	EPI_ISL_420575	6.731199999999997E-4	7.969999999999982E-5	13
2369	1.0	EPI_ISL_427162	7.081399999999997E-4	7.969999999999982E-5	13
2369	1.0	EPI_ISL_426053	7.190399999999995E-4	7.969999999999982E-5	13
2369	1.0	EPI_ISL_426839	7.485999999999997E-4	7.969999999999982E-5	13
2369	1.0	EPI_ISL_421578	6.517999999999994E-4	7.969999999999982E-5	13
2369	1.0	EPI_ISL_419703	6.774799999999996E-4	7.969999999999982E-5	13
2369	1.0	EPI_ISL_424304	6.796599999999996E-4	7.969999999999982E-5	13
2369	1.0	EPI_ISL_421363	6.840199999999995E-4	7.969999999999982E-5	13
2369	1.0	EPI_ISL_427562	6.539799999999993E-4	7.969999999999982E-5	13
2413	0.987	EPI_ISL_426159	6.708799999999997E-4	3.875999999999988E-5	3
2413	0.987	EPI_ISL_422463	6.364799999999996E-4	3.875999999999988E-5	3
2413	0.987	EPI_ISL_419651	6.364799999999996E-4	3.875999999999988E-5	3
2422	1.0	EPI_ISL_416509	6.321799999999998E-4	4.093999999999943E-5	3
2422	1.0	EPI_ISL_416512	5.999599999999996E-4	4.093999999999943E-5	3
2422	1.0	EPI_ISL_416513	6.343599999999997E-4	4.093999999999943E-5	3
2434	1.0	EPI_ISL_429639	6.847999999999994E-4	8.03599999999998E-5	22
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylop v2 (46).

clusternum	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2434	1.0	EPI_ISL_426118	6.30479999999999E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_429644	7.117299999999996E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_429605	6.388299999999996E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_427198	6.6269999999999991E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_427248	6.2829999999999991E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_427235	6.1739999999999993E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_427211	6.2829999999999991E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_424172	6.9339999999999992E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_424293	6.2829999999999991E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_424237	6.2829999999999991E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_427268	6.7155999999999996E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_424299	7.1887999999999994E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_429633	6.336299999999997E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_426105	6.0867999999999995E-4	8.035999999999998E-5	22
2434	1.0	EPI_ISL_424234	6.649199999999997E-4	4.3599999999999911E-6	4
2448	1.0	EPI_ISL_424239	6.6491999999999997E-4	4.3599999999999911E-6	4
2495	1.0	EPI_ISL_429494	6.498899999999994E-4	8.2489999999999973E-5	50
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2495	1.0	EPI_ISL_429531	6.526499999999994E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429540	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429493	6.408999999999996E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429563	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429130	6.430799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429321	7.140599999999997E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429527	6.868099999999994E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429463	6.796599999999996E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429467	6.938299999999993E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429322	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_417682	6.780899999999996E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429336	6.496199999999994E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429307	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429519	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429307	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429307	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429285	6.517999999999994E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429488	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429304	6.824499999999995E-4	8.248999999999973E-5	50
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clusternname	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2495	1.0	EPI_ISL_429574	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429331	6.452599999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429546	6.539799999999993E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429305	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429286	6.173999999999993E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429557	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429472	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429318	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429489	6.299999999999998E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429479	6.343999999999997E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429483	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_415648	6.496199999999994E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_424532	6.780899999999996E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429556	6.539799999999993E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429562	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429496	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429289	6.477299999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429485	6.086799999999995E-4	8.248999999999973E-5	50
2495	1.0	EPI_ISL_429481	6.086799999999995E-4	8.248999999999973E-5	50
2597	1.0	EPI_ISL_429131	6.086799999999995E-4	8.248999999999973E-5	50
2597	1.0	EPI_ISL_417690	7.613899999999994E-4	8.248999999999973E-5	50
2597	1.0	EPI_ISL_424400	6.780899999999996E-4	8.248999999999973E-5	50
2597	1.0	EPI_ISL_429131	6.086799999999995E-4	8.248999999999973E-5	50
2597	1.0	EPI_ISL_425263	6.387299999999996E-4	3.874999999999994E-5	3
2597	1.0	EPI_ISL_423384	6.043399999999995E-4	3.874999999999994E-5	3
2597	1.0	EPI_ISL_423383	6.021599999999996E-4	3.874999999999994E-5	3
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2602	1.0	EPI_ISL_429656	6.021299999999995E-4	3.874999999999994E-5	2
2602	1.0	EPI_ISL_422609	6.365199999999996E-4	3.874999999999994E-5	2
2607	1.0	EPI_ISL_428892	6.343399999999996E-4	3.874999999999994E-5	3
2607	1.0	EPI_ISL_428902	6.343399999999996E-4	3.874999999999994E-5	3
2607	1.0	EPI_ISL_420579	5.999499999999996E-4	3.874999999999994E-5	3
2616	1.0	EPI_ISL_424311	6.759399999999995E-4	7.598999999999996E-5	2
2616	1.0	EPI_ISL_425912	6.043099999999997E-4	7.598999999999996E-5	2
2645	1.0	EPI_ISL_429569	6.024999999999997E-4	3.874999999999994E-5	2
2645	1.0	EPI_ISL_429464	6.346399999999997E-4	3.874999999999994E-5	2
2690	1.0	EPI_ISL_421503	6.799199999999995E-4	4.359999999999991E-6	2
2690	1.0	EPI_ISL_420054	6.799199999999995E-4	4.359999999999991E-6	2
2693	1.0	EPI_ISL_421300	6.771299999999995E-4	3.874999999999994E-5	2
2693	1.0	EPI_ISL_416523	6.273999999999995E-4	3.874999999999994E-5	2
2696	1.0	EPI_ISL_426884	6.771399999999996E-4	4.602999999999985E-5	7
2696	1.0	EPI_ISL_422636	6.735099999999997E-4	4.602999999999985E-5	7
2696	1.0	EPI_ISL_426887	7.121699999999996E-4	4.602999999999985E-5	7
2696	1.0	EPI_ISL_425760	6.449199999999995E-4	4.602999999999985E-5	7
2696	1.0	EPI_ISL_425692	6.449199999999995E-4	4.602999999999985E-5	7
2696	1.0	EPI_ISL_417830	6.449199999999995E-4	4.602999999999985E-5	7
2696	1.0	EPI_ISL_428923	6.930999999999995E-4	4.602999999999985E-5	7
2709	1.0	EPI_ISL_426668	6.738999999999996E-4	3.841999999999995E-5	2
2709	1.0	EPI_ISL_426654	7.074499999999997E-4	3.841999999999995E-5	2
2714	1.0	EPI_ISL_419915	7.482599999999996E-4	4.359999999999991E-6	2
2714	1.0	EPI_ISL_426768	7.482599999999996E-4	4.359999999999991E-6	2
2722	1.0	EPI_ISL_425992	6.408999999999995E-4	0.0	5
2722	1.0	EPI_ISL_425906	6.408999999999995E-4	0.0	5
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2722	1.0	EPI_ISL_425907	6.408899999999995E-4	0.0	5
2722	1.0	EPI_ISL_425866	6.752999999999996E-4	0.0	5
2722	1.0	EPI_ISL_426003	6.408899999999995E-4	0.0	5
2733	1.0	EPI_ISL_414630	6.818199999999994E-4	7.59499999999998E-5	3
2733	1.0	EPI_ISL_428360	6.796399999999995E-4	7.59499999999998E-5	3
2733	1.0	EPI_ISL_418237	7.534099999999995E-4	7.59499999999998E-5	3
2747	1.0	EPI_ISL_428355	6.812999999999995E-4	0.0	5
2747	1.0	EPI_ISL_428351	6.474299999999994E-4	0.0	5
2747	1.0	EPI_ISL_428356	6.474299999999994E-4	0.0	5
2747	1.0	EPI_ISL_416498	6.474299999999994E-4	0.0	5
2747	1.0	EPI_ISL_428357	6.474299999999994E-4	0.0	5
2772	1.0	EPI_ISL_421332	5.999499999999996E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_423011	6.321699999999997E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_425150	6.321699999999997E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_425149	5.999499999999996E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_421302	6.321699999999997E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_421287	5.999499999999996E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_427529	5.999499999999996E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_424945	6.259299999999998E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_425159	7.037699999999997E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_426092	6.278999999999998E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_416642	5.999499999999996E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_416491	5.999499999999996E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_416492	5.999499999999996E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_421311	6.321699999999997E-4	4.093999999999943E-5	15
2772	1.0	EPI_ISL_422994	5.999499999999996E-4	4.093999999999943E-5	15
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2819	1.0	EPI_ISL_420573	6.321799999999998E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_427592	5.955999999999997E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_429129	7.015899999999999E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_419702	6.321799999999998E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_421728	6.665799999999999E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_428772	6.256399999999999E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_421675	6.321799999999998E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_418041	5.955999999999997E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_427607	6.299999999999998E-4	7.969999999999998E-5	10
2819	1.0	EPI_ISL_426128	6.607399999999999E-4	7.969999999999998E-5	10
2846	1.0	EPI_ISL_427491	5.868699999999999E-4	3.874999999999994E-5	2
2846	1.0	EPI_ISL_429641	6.212599999999999E-4	3.874999999999994E-5	2
2861	1.0	EPI_ISL_419864	6.628199999999998E-4	3.874999999999994E-5	3
2861	1.0	EPI_ISL_426683	6.993899999999999E-4	3.874999999999994E-5	3
2861	1.0	EPI_ISL_419844	6.649999999999998E-4	3.874999999999994E-5	3
2878	1.0	EPI_ISL_424215	6.621999999999998E-4	7.531999999999998E-5	6
2878	1.0	EPI_ISL_426100	6.321699999999997E-4	7.531999999999998E-5	6
2878	1.0	EPI_ISL_424294	7.015899999999998E-4	7.531999999999998E-5	6
2878	1.0	EPI_ISL_424166	6.709199999999998E-4	7.531999999999998E-5	6
2878	1.0	EPI_ISL_427212	7.031299999999997E-4	7.531999999999998E-5	6
2878	1.0	EPI_ISL_424263	6.321699999999997E-4	7.531999999999998E-5	6
2901	1.0	EPI_ISL_420056	6.190099999999997E-4	7.531999999999998E-5	2
2901	1.0	EPI_ISL_421509	6.905799999999998E-4	7.531999999999998E-5	2
2960	1.0	EPI_ISL_425643	6.598699999999999E-4	4.359999999999991E-6	2
2960	1.0	EPI_ISL_423865	6.598699999999999E-4	4.359999999999991E-6	2
2980	1.0	EPI_ISL_422419	6.661099999999997E-4	3.874999999999994E-5	2
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
2980	1.0	EPI_ISL_426632	6.317199999999997E-4	3.874999999999994E-5	2
3010	1.0	EPI_ISL_420150	6.299599999999997E-4	4.359999999999911E-6	4
3010	1.0	EPI_ISL_429262	6.299599999999997E-4	4.359999999999911E-6	4
3010	1.0	EPI_ISL_429551	6.299599999999997E-4	4.359999999999911E-6	4
3010	1.0	EPI_ISL_425758	6.299599999999997E-4	4.359999999999911E-6	4
3018	1.0	EPI_ISL_415477	6.670099999999997E-4	7.361E-5	2
3018	1.0	EPI_ISL_415525	6.665399999999996E-4	7.361E-5	2
3042	1.0	EPI_ISL_421378	6.430599999999994E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_421635	6.430599999999994E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_422546	7.483299999999994E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_426317	6.430599999999994E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_420588	6.430599999999994E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_421630	7.074999999999997E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_427547	6.430599999999994E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_424931	7.102699999999996E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_422519	6.752799999999996E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_422534	6.752799999999996E-4	8.028999999999979E-5	11
3042	1.0	EPI_ISL_424930	7.102699999999996E-4	8.028999999999979E-5	11
3076	1.0	EPI_ISL_418964	7.395399999999997E-4	4.359999999999911E-6	2
3076	1.0	EPI_ISL_418963	7.395399999999997E-4	4.359999999999911E-6	2
3079	1.0	EPI_ISL_427799	5.934099999999997E-4	3.874999999999994E-5	3
3079	1.0	EPI_ISL_420238	6.277999999999998E-4	3.874999999999994E-5	3
3079	1.0	EPI_ISL_427795	5.934099999999997E-4	3.874999999999994E-5	3
3089	1.0	EPI_ISL_420301	6.212599999999999E-4	3.874999999999994E-5	2
3089	1.0	EPI_ISL_421721	5.868699999999999E-4	3.874999999999994E-5	2
3093	1.0	EPI_ISL_424306	5.846899999999999E-4	4.359999999999911E-6	2
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
3093	1.0	EPI_ISL_424339	5.846899999999999E-4	4.359999999999911E-6	2
3103	1.0	EPI_ISL_415649	6.299699999999999E-4	4.121999999999985E-5	3
3103	1.0	EPI_ISL_413572	5.955899999999998E-4	4.121999999999985E-5	3
3103	1.0	EPI_ISL_420322	6.280899999999999E-4	4.121999999999985E-5	3
3111	1.0	EPI_ISL_426028	6.672299999999999E-4	7.600000000000011E-5	2
3111	1.0	EPI_ISL_417707	5.955899999999997E-4	7.600000000000011E-5	2
3114	1.0	EPI_ISL_429482	6.302799999999998E-4	7.53200000000003E-5	3
3114	1.0	EPI_ISL_429480	6.324499999999999E-4	7.53200000000003E-5	3
3114	1.0	EPI_ISL_429581	6.324399999999997E-4	7.53200000000003E-5	3
3123	1.0	EPI_ISL_427476	5.890499999999998E-4	3.874999999999994E-5	3
3123	1.0	EPI_ISL_418974	6.234399999999999E-4	3.874999999999994E-5	3
3123	1.0	EPI_ISL_418200	5.868699999999999E-4	3.874999999999994E-5	3
3136	1.0	EPI_ISL_426124	5.890499999999998E-4	3.876999999999998E-5	2
3136	1.0	EPI_ISL_427554	6.234599999999999E-4	3.876999999999998E-5	2
3140	1.0	EPI_ISL_426979	7.355999999999999E-4	4.359999999999911E-6	2
3140	1.0	EPI_ISL_429013	7.355999999999999E-4	4.359999999999911E-6	2
3145	1.0	EPI_ISL_426086	6.266799999999998E-4	3.951999999999992E-5	3
3145	1.0	EPI_ISL_415481	5.915199999999998E-4	3.951999999999992E-5	3
3145	1.0	EPI_ISL_424330	5.915199999999998E-4	3.951999999999992E-5	3
3198	1.0	EPI_ISL_421316	6.913899999999992E-4	7.592999999999988E-5	2
3198	1.0	EPI_ISL_421312	7.629599999999993E-4	7.592999999999988E-5	2
3201	1.0	EPI_ISL_426526	6.520399999999992E-4	3.874999999999994E-5	2
3201	1.0	EPI_ISL_418893	6.755299999999995E-4	8.029999999999995E-5	7
3208	1.0	EPI_ISL_417376	6.520399999999992E-4	8.029999999999995E-5	7
3208	1.0	EPI_ISL_423028	6.777099999999994E-4	8.029999999999995E-5	7
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
3208	1.0	EPI_ISL_426627	7.550899999999994E-4	8.029999999999995E-5	7
3208	1.0	EPI_ISL_418036	6.498599999999993E-4	8.029999999999995E-5	7
3208	1.0	EPI_ISL_428335	6.520399999999992E-4	8.029999999999995E-5	7
3208	1.0	EPI_ISL_424868	7.170799999999994E-4	8.029999999999995E-5	7
3222	1.0	EPI_ISL_420814	6.476799999999993E-4	4.310999999999985E-5	6
3222	1.0	EPI_ISL_430048	6.411399999999995E-4	4.319999999999996E-5	6
3222	1.0	EPI_ISL_420815	6.801999999999994E-4	4.319999999999996E-5	6
3222	1.0	EPI_ISL_420824	6.801999999999994E-4	4.319999999999996E-5	6
3222	1.0	EPI_ISL_421563	6.801999999999994E-4	4.319999999999996E-5	6
3222	1.0	EPI_ISL_417971	6.476799999999993E-4	4.319999999999996E-5	6
3236	1.0	EPI_ISL_418051	6.498599999999993E-4	4.310999999999985E-5	4
3236	1.0	EPI_ISL_427284	6.842499999999993E-4	4.310999999999985E-5	4
3236	1.0	EPI_ISL_427283	6.842499999999993E-4	4.310999999999985E-5	4
3236	1.0	EPI_ISL_418049	6.498599999999993E-4	4.310999999999985E-5	4
3259	1.0	EPI_ISL_420810	8.021599999999991E-4	4.359999999999991E-6	2
3259	1.0	EPI_ISL_420811	8.021599999999991E-4	4.359999999999991E-6	2
3272	1.0	EPI_ISL_426485	6.454999999999994E-4	4.359999999999991E-6	2
3272	1.0	EPI_ISL_426541	6.454999999999994E-4	4.359999999999991E-6	2
3277	1.0	EPI_ISL_426523	6.368099999999996E-4	7.602E-5	3
3277	1.0	EPI_ISL_426500	6.368099999999996E-4	7.602E-5	3
3277	1.0	EPI_ISL_426521	7.084699999999997E-4	7.602E-5	3
3282	1.0	EPI_ISL_427622	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_416661	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_418037	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_427169	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_424315	8.113699999999991E-4	7.361999999999928E-5	52
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
3282	1.0	EPI_ISL_424321	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_427221	6.558799999999994E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_420825	6.520299999999993E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_426074	7.397999999999998E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_426060	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_426058	6.798899999999994E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_429601	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_424319	6.563899999999992E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_429027	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_424354	6.781899999999998E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_424318	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_429009	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_426067	6.411299999999995E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_424225	6.842299999999999E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_429648	7.131999999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_426077	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_424989	7.046899999999995E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_427170	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_425146	7.388499999999999E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_417345	6.433099999999995E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_424327	6.367699999999996E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_426061	6.798699999999995E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_422972	6.454899999999994E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_426063	8.548599999999999E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_426072	7.016699999999991E-4	7.361999999999928E-5	52
3282	1.0	EPI_ISL_429003	6.367699999999996E-4	7.361999999999928E-5	52
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylop v2 (46).

clusternname	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
3282	1.0	EPI_ISL_426073	7.257699999999993E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_424176	7.040999999999999E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_418072	6.7600999999999988E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_426069	6.973099999999992E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_424320	6.875499999999994E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_426127	6.755099999999996E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_424307	6.367699999999996E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_430028	6.932799999999992E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_426831	7.1257999999999988E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_426064	7.3234999999999991E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_428992	7.148699999999995E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_426066	6.367699999999996E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_429599	7.087599999999995E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_426065	6.367699999999996E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_429042	7.4477999999999989E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_426071	6.411299999999996E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_417932	6.367699999999996E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_429610	6.475699999999994E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_428845	6.7164999999999989E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_424322	6.367699999999996E-4	7.3619999999999928E-5	52
3282	1.0	EPI_ISL_429037	7.192299999999994E-4	7.3619999999999928E-5	52
3387	1.0	EPI_ISL_426535	7.036899999999998E-4	4.0929999999999786E-5	5
3387	1.0	EPI_ISL_426505	7.036899999999998E-4	4.0929999999999786E-5	5
3387	1.0	EPI_ISL_426520	7.058699999999997E-4	4.0929999999999786E-5	5
3387	1.0	EPI_ISL_426501	6.714799999999997E-4	4.0929999999999786E-5	5
3387	1.0	EPI_ISL_426522	7.058699999999997E-4	4.0929999999999786E-5	5
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
3399	1.0	EPI_ISL_429026	6.671399999999998E-4	7.354999999999992E-5	2
3399	1.0	EPI_ISL_428396	6.675699999999997E-4	7.354999999999992E-5	2
3404	1.0	EPI_ISL_427073	6.695199999999996E-4	4.856999999999973E-5	6
3404	1.0	EPI_ISL_426928	6.704499999999996E-4	4.856999999999973E-5	6
3404	1.0	EPI_ISL_426756	6.393199999999995E-4	4.856999999999973E-5	6
3404	1.0	EPI_ISL_426805	7.445399999999996E-4	4.856999999999973E-5	6
3404	1.0	EPI_ISL_419951	6.393199999999995E-4	4.856999999999973E-5	6
3404	1.0	EPI_ISL_426991	6.349599999999996E-4	4.856999999999973E-5	6
3426	1.0	EPI_ISL_420312	6.343199999999996E-4	4.359999999999911E-6	3
3426	1.0	EPI_ISL_429277	6.343199999999996E-4	4.359999999999911E-6	3
3426	1.0	EPI_ISL_429391	6.343199999999996E-4	4.359999999999911E-6	3
3439	1.0	EPI_ISL_429460	5.890399999999999E-4	6.539999999999975E-6	4
3439	1.0	EPI_ISL_429271	5.890399999999999E-4	6.539999999999975E-6	4
3439	1.0	EPI_ISL_418396	5.868599999999999E-4	6.539999999999975E-6	4
3439	1.0	EPI_ISL_427673	5.890399999999999E-4	6.539999999999975E-6	4
3470	1.0	EPI_ISL_421551	5.955899999999997E-4	4.359999999999911E-6	2
3470	1.0	EPI_ISL_422740	5.955899999999997E-4	4.359999999999911E-6	2
3473	1.0	EPI_ISL_430035	6.324799999999997E-4	7.811999999999988E-5	3
3473	1.0	EPI_ISL_417976	6.671699999999997E-4	7.811999999999988E-5	3
3473	1.0	EPI_ISL_419806	5.977699999999996E-4	7.811999999999988E-5	3
3478	1.0	EPI_ISL_421600	5.912299999999998E-4	3.874999999999994E-5	2
3478	1.0	EPI_ISL_419704	6.256199999999998E-4	3.874999999999994E-5	2
3507	1.0	EPI_ISL_426499	7.023699999999998E-4	7.612999999999999E-5	2
3507	1.0	EPI_ISL_426507	6.305999999999997E-4	7.612999999999999E-5	2
3511	0.988	EPI_ISL_417701	5.911799999999997E-4	4.359999999999911E-6	3
3511	0.988	EPI_ISL_427613	5.911799999999997E-4	4.359999999999911E-6	3
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
3511	0.988	EPI_ISL_427603	5.911799999999997E-4	4.359999999999911E-6	3
3522	1.0	EPI_ISL_418646	6.364399999999996E-4	8.719999999999822E-6	9
3522	1.0	EPI_ISL_418666	6.342599999999997E-4	8.719999999999822E-6	9
3522	1.0	EPI_ISL_427344	6.298999999999998E-4	8.719999999999822E-6	9
3522	1.0	EPI_ISL_420085	6.364399999999996E-4	8.719999999999822E-6	9
3522	1.0	EPI_ISL_417020	6.364399999999996E-4	8.719999999999822E-6	9
3522	1.0	EPI_ISL_418636	6.320799999999997E-4	8.719999999999822E-6	9
3522	1.0	EPI_ISL_424637	6.364399999999996E-4	8.719999999999822E-6	9
3522	1.0	EPI_ISL_421194	6.708299999999996E-4	8.719999999999822E-6	9
3522	1.0	EPI_ISL_421182	6.364399999999996E-4	8.719999999999822E-6	9
3544	1.0	EPI_ISL_427519	6.240399999999996E-4	4.359999999999911E-6	2
3544	1.0	EPI_ISL_421593	6.240399999999996E-4	4.359999999999911E-6	2
3687	1.0	EPI_ISL_427498	7.53199999999999E-4	4.359999999999911E-6	2
3687	1.0	EPI_ISL_421632	7.53199999999999E-4	4.359999999999911E-6	2
3691	1.0	EPI_ISL_420590	7.832199999999996E-4	3.874E-5	2
3691	1.0	EPI_ISL_420577	7.488399999999998E-4	3.874E-5	2
3726	1.0	EPI_ISL_424943	8.094999999999999E-4	7.5340000000000013E-5	6
3726	1.0	EPI_ISL_422503	7.767199999999991E-4	7.5340000000000013E-5	6
3726	1.0	EPI_ISL_427585	7.444799999999999E-4	7.5340000000000013E-5	6
3726	1.0	EPI_ISL_427631	7.788599999999999E-4	7.5340000000000013E-5	6
3726	1.0	EPI_ISL_422510	7.746599999999999E-4	7.5340000000000013E-5	6
3726	1.0	EPI_ISL_427588	7.444799999999999E-4	7.5340000000000013E-5	6
3726	1.0	EPI_ISL_424935	7.313999999999999E-4	4.359999999999911E-6	2
3726	1.0	EPI_ISL_418190	7.313999999999999E-4	4.359999999999911E-6	2
3742	1.0	EPI_ISL_427629	8.007999999999993E-4	4.09299999999786E-5	6
3742	1.0	EPI_ISL_427553	7.707699999999992E-4	4.09299999999786E-5	6
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
3742	1.0	EPI_ISL_421422	7.707699999999992E-4	4.0929999999999786E-5	6
3742	1.0	EPI_ISL_421388	7.707699999999992E-4	4.0929999999999786E-5	6
3742	1.0	EPI_ISL_427514	8.029799999999993E-4	4.0929999999999786E-5	6
3742	1.0	EPI_ISL_421389	7.707699999999992E-4	4.0929999999999786E-5	6
3791	1.0	EPI_ISL_420574	7.578999999999995E-4	3.956999999999984E-5	2
3791	1.0	EPI_ISL_421581	7.226799999999994E-4	3.956999999999984E-5	2
3801	1.0	EPI_ISL_418973	7.636099999999993E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_421583	7.313999999999992E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_420581	7.313999999999992E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_426618	7.614299999999994E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_420297	7.313999999999992E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_428800	7.964099999999996E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_422512	7.248599999999994E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_421421	7.313999999999992E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_424953	7.570699999999994E-4	4.310999999999985E-5	10
3801	1.0	EPI_ISL_421597	7.313999999999992E-4	4.310999999999985E-5	10
3894	1.0	EPI_ISL_427064	7.843599999999997E-4	3.910000000000003E-5	2
3894	1.0	EPI_ISL_427065	7.496199999999997E-4	3.910000000000003E-5	2
3915	1.0	EPI_ISL_422906	7.519599999999995E-4	3.962999999999992E-5	2
3915	1.0	EPI_ISL_422906	7.519599999999995E-4	3.962999999999992E-5	2
3930	0.944	EPI_ISL_415485	7.559599999999995E-4	3.874E-5	3
3930	0.944	EPI_ISL_415474	7.215799999999994E-4	3.874E-5	3
3936	1.0	EPI_ISL_427501	6.307299999999997E-4	7.390000000000001E-5	2
3936	1.0	EPI_ISL_424941	6.299499999999998E-4	7.390000000000001E-5	2
3939	1.0	EPI_ISL_426939	7.040999999999997E-4	3.987999999999995E-5	2
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clusternam e	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
3939	1.0	EPI_ISL_426657	6.685799999999997E-4	3.9879999999999995E-5	2
3956	1.0	EPI_ISL_421346	5.977499999999996E-4	4.359999999999911E-6	6
3956	1.0	EPI_ISL_421545	5.977499999999996E-4	4.359999999999911E-6	6
3956	1.0	EPI_ISL_421544	5.977499999999996E-4	4.359999999999911E-6	6
3956	1.0	EPI_ISL_421347	6.308899999999997E-4	4.359999999999911E-6	6
3956	1.0	EPI_ISL_421543	5.977499999999996E-4	4.359999999999911E-6	6
3956	1.0	EPI_ISL_421553	5.977499999999996E-4	4.359999999999911E-6	6
3967	1.0	EPI_ISL_429517	6.605999999999999E-4	7.312000000000009E-5	2
3967	1.0	EPI_ISL_429585	6.605999999999999E-4	7.312000000000009E-5	2
3988	1.0	EPI_ISL_420761	6.608199999999999E-4	3.895999999999999E-5	2
3988	1.0	EPI_ISL_422408	6.261999999999999E-4	3.895999999999999E-5	2
3995	1.0	EPI_ISL_429067	5.912199999999999E-4	4.359999999999911E-6	2
3995	1.0	EPI_ISL_429989	5.912199999999999E-4	4.359999999999911E-6	2
4003	1.0	EPI_ISL_420079	0.00103186	5.297999999999978E-5	2
4003	1.0	EPI_ISL_420071	9.8324E-4	5.297999999999978E-5	2
4056	1.0	EPI_ISL_429403	6.366399999999999E-4	6.5399999999999758E-6	3
4056	1.0	EPI_ISL_429267	6.388199999999999E-4	6.5399999999999758E-6	3
4056	1.0	EPI_ISL_429265	6.388199999999999E-4	6.5399999999999758E-6	3
4061	1.0	EPI_ISL_429361	5.999399999999997E-4	4.359999999999911E-6	2
4061	1.0	EPI_ISL_429416	5.999399999999997E-4	4.359999999999911E-6	2
4064	1.0	EPI_ISL_427639	6.321399999999998E-4	3.874E-5	2
4064	1.0	EPI_ISL_429441	5.977599999999997E-4	3.874E-5	2
4108	1.0	EPI_ISL_424335	5.955799999999997E-4	4.0919999999999845E-5	3
4108	1.0	EPI_ISL_429794	6.321399999999998E-4	4.0919999999999845E-5	3
4108	1.0	EPI_ISL_429722	6.321399999999998E-4	4.0919999999999845E-5	3
4115	1.0	EPI_ISL_427250	6.299599999999997E-4	4.0919999999999845E-5	6
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clusternum	bootstrap	leafnamenumber	branchPath	medianOfDistances	sequencesperCluster
4115	1.0	EPI_ISL_429290	6.455199999999998E-4	4.0919999999999845E-5	6
4115	1.0	EPI_ISL_426687	5.977599999999997E-4	4.0919999999999845E-5	6
4115	1.0	EPI_ISL_429275	5.977599999999997E-4	4.0919999999999845E-5	6
4115	1.0	EPI_ISL_429382	5.977599999999997E-4	4.0919999999999845E-5	6
4115	1.0	EPI_ISL_429274	5.977599999999997E-4	4.0919999999999845E-5	6
4129	1.0	EPI_ISL_422508	6.693399999999997E-4	3.875999999999888E-5	2
4129	1.0	EPI_ISL_421590	6.349399999999996E-4	3.875999999999888E-5	2
4136	1.0	EPI_ISL_424491	6.349399999999996E-4	4.35999999999911E-6	2
4136	1.0	EPI_ISL_424409	6.349399999999996E-4	4.35999999999911E-6	2
4142	1.0	EPI_ISL_424314	6.517599999999994E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_427196	6.282799999999991E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_418879	7.438999999999997E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_426093	6.604799999999992E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_426079	6.324799999999991E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_418876	6.439299999999998E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_424193	6.413599999999998E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_427256	6.517599999999994E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_424277	8.507399999999998E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_422967	6.413599999999998E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_422998	6.217399999999992E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_427181	6.861399999999995E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_418904	6.604799999999992E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_426080	6.34819999999989E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_429615	6.36839999999996E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_418900	6.43539999999988E-4	8.4309999999868E-5	185
4142	1.0	EPI_ISL_424331	6.47399999999995E-4	8.4309999999868E-5	185
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clusternum	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4142	1.0	EPI_ISL_423024	6.282799999999991E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_429653	6.30459999999999E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_429359	7.207199999999996E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_427254	6.517599999999994E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_424242	7.342199999999992E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_427200	6.582999999999993E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_426091	6.413599999999988E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_424205	6.609799999999984E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_427202	6.539399999999993E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_426087	6.738299999999989E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_417454	6.71379999999999E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_429631	6.413599999999988E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_417451	6.32639999999999E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_427209	6.839699999999995E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_424200	6.32639999999999E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_416647	6.369999999999998E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_429608	6.299599999999998E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_427215	6.604799999999992E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_418929	6.32639999999999E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_427230	6.861799999999995E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_418924	6.413599999999988E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_427255	6.517599999999994E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_426081	6.713799999999994E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_422978	6.299599999999998E-4	8.43099999999986E-5	185
4142	1.0	EPI_ISL_418923	6.369999999999998E-4	8.43099999999986E-5	185
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4142	1.0	EPI_ISL_424333	6.343299999999997E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_416708	6.282799999999991E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_418932	6.670199999999991E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424202	6.413599999999998E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_416691	6.626599999999999E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_416719	6.413599999999998E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424204	6.604799999999992E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424309	6.713799999999999E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_429607	9.494899999999994E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_426104	6.260999999999991E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424310	6.173799999999993E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424227	6.495799999999994E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_427189	6.604799999999992E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_427191	6.413599999999998E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_427210	7.363999999999991E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_422983	7.335299999999992E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424221	6.500799999999998E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_429600	6.678699999999999E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_418931	6.042999999999996E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424203	6.604799999999992E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_417342	6.413599999999998E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424178	6.745299999999998E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424302	6.413599999999998E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_427239	7.599099999999995E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_424238	6.724799999999998E-4	8.4309999999999868E-5	185
4142	1.0	EPI_ISL_422985	6.326399999999999E-4	8.4309999999999868E-5	185
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4142	1.0	EPI_ISL_427236	6.883999999999995E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416707	6.348199999999989E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424305	6.631599999999984E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418878	7.788199999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424208	6.364999999999997E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424312	6.413599999999988E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_427225	7.579399999999995E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416693	6.648399999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416653	6.631599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426116	6.326399999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_423001	6.691999999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426115	7.705699999999992E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_429622	6.668399999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424245	6.348199999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_429617	6.713799999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_427194	6.495799999999994E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424324	6.696599999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_427247	6.604799999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424259	6.413599999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426134	6.430499999999995E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424246	6.435399999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_429654	6.517599999999994E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_423018	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424229	6.635499999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424212	6.386799999999997E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_429651	6.413599999999998E-4	8.430999999999868E-5	185
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4142	1.0	EPI_ISL_422970	6.30459999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_429652	6.38079999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_424256	6.82409999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_424340	6.41359999999998E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_424214	6.92639999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_422976	6.41359999999998E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_429614	6.71399999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_416438	6.41359999999998E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_427260	6.41359999999998E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_427207	6.45719999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_418054	6.60479999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_424235	7.02419999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_427180	6.30459999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_429637	6.77929999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_417382	6.32639999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_427216	6.41359999999998E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_417455	6.21739999999999E-4	8.43099999999868E-5	185
4142	1.0	EPI_ISL_427228	9.07599999999999E-4	8.43099999999868E-5	185
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4142	1.0	EPI_ISL_418032	6.544399999999985E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_422981	6.41359999999988E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424337	6.71379999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_427197	6.41359999999988E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424189	6.56619999999985E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424197	7.04259999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_422969	6.239199999999992E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416704	6.611999999999992E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426125	7.76689999999989E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418068	8.666199999999987E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424184	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418067	6.30459999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416434	6.670199999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418053	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_429602	6.30459999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426103	6.604899999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424251	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426125	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426103	6.304699999999997E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418933	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424251	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426103	6.304699999999997E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426112	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418081	6.604899999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418880	6.478999999999987E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424190	6.36999999999989E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416716	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426515	6.670199999999991E-4	8.430999999999868E-5	185
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4142	1.0	EPI_ISL_417341	6.260999999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_415625	6.587999999999984E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_427246	6.670199999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424211	6.304599999999992E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_429635	6.495799999999994E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426113	6.583099999999992E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418875	6.326399999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424316	6.517599999999994E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416699	6.130199999999994E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_414616	6.391799999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426135	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418894	6.108399999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_427205	6.413599999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_427253	6.861499999999995E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_422977	6.517599999999994E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_429613	6.326399999999998E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_427242	6.861699999999994E-4	8.430999999999868E-5	185
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4142	1.0	EPI_ISL_429609	6.413599999999988E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424334	6.539399999999993E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_424274	7.53089999999996E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_422996	6.151999999999934E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418073	6.413599999999986E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426109	6.47729999999995E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_426085	6.457199999999987E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416729	6.282799999999991E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418953	6.713799999999999E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416648	6.413599999999988E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_416725	6.435399999999988E-4	8.430999999999868E-5	185
4142	1.0	EPI_ISL_418033	6.522599999999986E-4	8.430999999999868E-5	185
4511	1.0	EPI_ISL_421420	5.737800000000002E-4	7.600999999999984E-5	3
4511	1.0	EPI_ISL_429642	6.103400000000002E-4	7.600999999999984E-5	3
4511	1.0	EPI_ISL_427165	6.819900000000003E-4	7.600999999999984E-5	3
4518	1.0	EPI_ISL_423030	5.759500000000001E-4	4.35999999999991E-6	2
4518	1.0	EPI_ISL_427217	5.759500000000001E-4	4.35999999999991E-6	2
4522	1.0	EPI_ISL_424186	7.203600000000001E-4	8.02099999999983E-5	7
4522	1.0	EPI_ISL_429603	6.5184E-4	8.02099999999983E-5	7
4522	1.0	EPI_ISL_427267	6.840300000000001E-4	8.02099999999983E-5	7
4522	1.0	EPI_ISL_427192	6.5184E-4	8.02099999999983E-5	7
4522	1.0	EPI_ISL_424341	6.846E-4	8.02099999999983E-5	7
4522	1.0	EPI_ISL_418954	6.1311E-4	8.02099999999983E-5	7
4522	1.0	EPI_ISL_427620	6.474800000000001E-4	8.02099999999983E-5	7
4566	1.0	EPI_ISL_420608	5.307000000000002E-4	4.35999999999991E-6	3
4566	1.0	EPI_ISL_418430	5.307000000000002E-4	4.35999999999991E-6	3
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clusternum	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4566	1.0	EPI_ISL_419173	5.307000000000002E-4	4.359999999999991E-6	3
4594	1.0	EPI_ISL_418413	5.503199999999999E-4	3.872999999999984E-5	2
4594	1.0	EPI_ISL_420615	5.846899999999999E-4	3.872999999999984E-5	2
4612	1.0	EPI_ISL_420617	5.372400000000001E-4	3.881999999999996E-5	2
4612	1.0	EPI_ISL_416758	5.717000000000002E-4	3.881999999999996E-5	2
4625	1.0	EPI_ISL_429669	5.759600000000000E-4	3.871999999999991E-6	2
4628	1.0	EPI_ISL_424929	5.416E-4	3.871999999999991E-6	2
4640	1.0	EPI_ISL_424150	6.325899999999997E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423400	6.952999999999992E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423261	6.822199999999994E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421791	6.96969999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423498	7.057099999999997E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_424022	6.260499999999998E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421778	6.75679999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423262	6.885799999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423965	6.282299999999998E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421778	6.75679999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423105	6.522099999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423966	6.391299999999996E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423988	6.238699999999994E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423733	7.018399999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_419811	7.193799999999995E-4	8.617999999999972E-5	63
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4640	1.0	EPI_ISL_420724	6.691399999999997E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423732	6.778599999999995E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421863	6.347699999999997E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_424136	7.485099999999996E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423892	6.434899999999995E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_420479	6.413099999999995E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423147	7.318499999999992E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421772	6.522099999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_420709	6.913499999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421788	6.700599999999997E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_416517	6.543899999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421894	6.909399999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421862	6.522099999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423692	6.604199999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423634	6.778599999999995E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421799	6.478499999999994E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421912	6.434899999999995E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_420635	6.734999999999996E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_425273	7.263099999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_420478	6.500299999999994E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_424012	7.018399999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_420727	7.034999999999998E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421774	7.013299999999998E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423260	6.691399999999997E-4	8.617999999999972E-5	63
Table S4: Clusters identified using a genetic distance threshold within 1% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4640	1.0	EPI_ISL_421895	6.843999999999994E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421775	6.947899999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421779	7.018399999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423296	6.711999999999997E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423987	6.745599999999997E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423446	6.369499999999996E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423265	6.800399999999995E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_419998	7.215799999999994E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_425336	7.162699999999995E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423693	6.999799999999999E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423264	6.931199999999992E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_418756	6.522099999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421798	6.778599999999995E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423453	6.865899999999994E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421796	7.013299999999998E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423256	6.865799999999994E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_428930	6.522099999999993E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_421819	6.369499999999996E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423741	6.996599999999991E-4	8.617999999999972E-5	63
4640	1.0	EPI_ISL_423691	6.625999999999998E-4	8.617999999999972E-5	63
4768	1.0	EPI_ISL_423394	6.990699999999999E-4	8.617999999999972E-5	3
4768	1.0	EPI_ISL_423399	6.990699999999999E-4	8.617999999999972E-5	3
4783	1.0	EPI_ISL_430066	7.034199999999997E-4	8.617999999999972E-5	4
4783	1.0	EPI_ISL_427081	7.034199999999997E-4	8.617999999999972E-5	4
4783	1.0	EPI_ISL_420876	7.034199999999997E-4	8.617999999999972E-5	4
Table S4: Clusters identified using a genetic distance threshold within 1\% of the distribution of patristic distances within the entire tree. The minimum percentile threshold that maximized the number of clusters was chosen as the optimal threshold by performing multiple clustering runs on randomly sampled patristic distance distributions (1 million for each run) in Phylopart v2 (46).

clustername	bootstrap	leafname	branchPath	medianOfDistances	sequencesperCluster
4783	1.0	EPI_ISL_427088	7.012399999999998E-4	6.539999999999975E-6	4
4791	1.0	EPI_ISL_420045	6.8818E-4	7.312000000000009E-5	2
4791	1.0	EPI_ISL_428358	6.8818E-4	7.312000000000009E-5	2
4794	1.0	EPI_ISL_420034	5.7861E-4	6.539999999999975E-6	3
4794	1.0	EPI_ISL_420839	5.8079E-4	6.539999999999975E-6	3
4794	1.0	EPI_ISL_417440	5.8079E-4	6.539999999999975E-6	3
4803	1.0	EPI_ISL_419929	6.282299999999998E-4	4.58299999999996E-5	15
4803	1.0	EPI_ISL_419177	6.330399999999998E-4	4.58299999999996E-5	15
4803	1.0	EPI_ISL_428712	6.309699999999998E-4	4.58299999999996E-5	15
4803	1.0	EPI_ISL_423345	5.851399999999998E-4	4.58299999999996E-5	15
4803	1.0	EPI_ISL_428962	6.264399999999998E-4	4.58299999999996E-5	15
4803	1.0	EPI_ISL_420606	6.025799999999996E-4	4.58299999999996E-5	15