Antimicrobial resistance gene prevalence in a population of patients with advanced dementia is related to specific pathobionts

Aislinn D. Rowan-Nash, Rafael Araos, Erika M.C. D’Agata, Peter Belenky

PII: S2589-0042(20)30089-4
DOI: https://doi.org/10.1016/j.isci.2020.100905
Reference: ISCI 100905

To appear in: ISCIENCE

Received Date: 15 November 2019
Revised Date: 10 January 2020
Accepted Date: 6 February 2020

Please cite this article as: Rowan-Nash, A.D., Araos, R., D’Agata, E.M.C., Belenky, P., Antimicrobial resistance gene prevalence in a population of patients with advanced dementia is related to specific pathobionts, ISCIENCE (2020), doi: https://doi.org/10.1016/j.isci.2020.100905.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 The Author(s).
Antimicrobial resistance gene prevalence in a population of patients with advanced dementia is related to specific pathobionts

Aislinn D. Rowan-Nash1, Rafael Araos2,3,4, Erika M.C. D’Agata5, & Peter Belenky1,6*

1 Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, 02912, USA
2 Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Chile
3 Millenium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Chile
4 Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile.
5 Infectious Diseases Division, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
6 Lead Contact

* indicates corresponding author

PB: peter_belenky@brown.edu
SUMMARY:

Long-term care facilities are significant reservoirs of antimicrobial-resistant organisms, and patients with advanced dementia are particularly vulnerable to multidrug-resistant organism (MDRO) acquisition and antimicrobial overuse. In this study, we longitudinally examined a group of advanced dementia patients using metagenomic sequencing. We found significant inter- and intra-subject heterogeneity in microbiota composition, suggesting temporal instability. We also observed a link between the antimicrobial resistance gene density in a sample and the relative abundances of several pathobionts, particularly *Escherichia coli*, *Proteus mirabilis*, and *Enterococcus faecalis*, and used this relationship to predict resistance gene density in samples from additional subjects. Furthermore, we used metagenomic assembly to demonstrate that these pathobionts had higher resistance gene content than many gut commensals. Given the frequency and abundances at which these pathobionts were found in this population and the underlying vulnerability to MDRO of advanced dementia patients, attention to microbial blooms of these species may be warranted.

Keywords: antimicrobial resistance, pathobiont, dementia, microbiome, metagenome assembly
INTRODUCTION:

It is well-recognized that there is a growing threat of antimicrobial-resistant (AMR) bacterial strains that threaten the health and lives of millions worldwide. In the United States alone, the Centers for Disease Control and Prevention estimates that at least 2 million people get an AMR infection each year, and at least 23,000 die as a result (Prevention, 2013). A number of factors have driven the rise in AMR bacteria worldwide, including overprescription of antibiotics in the healthcare setting, over-the-counter access to antibiotics in some countries, and widespread use of antibiotics in animal husbandry for non-veterinary purposes (Aslam et al., 2018, Michael et al., 2014, Ventola, 2015). Concerningly, hospitals and other medical institutions are frequent sites of AMR bacteria acquisition, where patients may already be ill or immunocompromised, antimicrobial use is common, and patient-to-patient transmission of AMR isolates can occur via inadequate hygiene or environmental contamination (Paterson, 2006b, Struelens, 1998, Mulvey and Simor, 2009, Cookson, 2005). For example, AMR bacteria are highly prevalent in nursing homes, with estimates that over 35% of nursing home residents are colonized with multidrug resistant organisms (MDROs) (Cassone and Mody, 2015, Aliyu et al., 2017, O'Fallon et al., 2009, O'Fallon et al., 2010, Pop-Vicas et al., 2008, Trick et al., 2001). This is particularly problematic in light of the fact that elderly patients in long-term care facilities may be frequently hospitalized, potentially serving as a mode of bidirectional transport of MDROs between healthcare facilities (van den Dool et al., 2016, Trick et al., 1999, Morrill et al., 2016). They are also prone to infections and are frequently treated with antimicrobials (Bonomo, 2000, Daneman et al., 2011, van Buul L.W., 2012), which has long been associated with acquisition of MDROs and may not always be indicated (O'Fallon et al., 2010, McGowan, 1983, Nicolle et al., 2000, Jones et
The problem of MDRO prevalence and inappropriate antimicrobial use is of particular relevance in elderly subjects with advanced dementia, a population which receives extensive antimicrobial treatment which becomes more frequent closer to death, calling its benefit and effectiveness into question (D’Agata and Mitchell, 2008, Mitchell et al., 2014). Accordingly, advanced dementia specifically has been shown to be a risk factor of MDRO colonization (Pope-Vicas et al., 2008, Snyder et al., 2011). To examine this issue, the Study of Pathogen Resistance and Exposure to Antimicrobials in Dementia (SPREAD) was undertaken from 2009-2012 in order to analyze MDRO acquisition and appropriateness of antimicrobial prescription in elderly adults with advanced dementia residing in nursing homes (Mitchell et al., 2013). Supporting the widespread nature of MDRO carriage in this population, analysis of SPREAD subjects revealed that there were significant baseline levels and new acquisitions of MDROs, and that there was notable spread of MDRO strains within and even between nursing home facilities (Mitchell et al., 2014, D’Agata et al., 2015).

In addition to potential facilitation of MDRO acquisition or spread, antimicrobial overuse may also have negative impacts on the diversity, composition, or function of the gut microbiota, which may already be vulnerable in elderly populations. Healthy younger adults tend to have a fecal microbiome characterized by relatively high diversity of species and populated primarily by members of the phyla Bacteroidetes and Firmicutes, largely obligate anaerobes which exist in homeostasis with the intestinal epithelium (Human Microbiome Project, 2012, Lloyd-Price et al., 2016, Qin et al., 2010, O’Toole P.W., 2010, Rowan-Nash et al., 2019). However, it has been found that during senescence, the gut tends to have higher levels of Bacteroidetes and
Proteobacteria and harbors higher levels of facultative aerobes and potential pathobionts, including Enterobacterales such as E. coli. These changes become more pronounced as aging progresses, and several studies have indicated that age-related alterations to the gut microbiota are relatively minor in septuagenarians, but become more pronounced over time and are clear in centenarians and supercentenarians (Odamaki et al., 2016, Biagi et al., 2016, Biagi et al., 2010, Rampelli et al., 2013, Santoro et al., 2018). This is likely due to a number of factors, including the decline of immune function, onset of age-related diseases (including metabolic disorders), changes to diet and mobility, and the increased likelihood of medication utilization and/or hospitalization (Claesson et al., 2012, Salazar et al., 2017). However, lifestyle of elderly adults has an important impact, as research suggests that community-resident elderly subjects have a distinct and more diverse microbiome compared with those of their hospitalized or institutionalized peers, which was suggested to be at least in part due to nutritional differences (Claesson et al., 2012, Ticinesi et al., 2017). Furthermore, reduced microbiome diversity has been associated with increased frailty of elderly subjects (Claesson et al., 2012, van Tongeren et al., 2005). Accordingly, given that the microbiomes of institutionalized elderly patients are perhaps already at risk, understanding the impacts of antimicrobial use and MDRO acquisition on this population is of importance.

We analyzed the gut microbiomes of eleven subjects from SPREAD to examine the impact of antimicrobial use on the gut microbiota composition, function, and antimicrobial resistance gene (ARG) profile of elderly dementia patients. These subjects were chosen as they were the largest group of subjects in SPREAD who had received a single antimicrobial (levofloxacin) during the collection period, and we anticipated that this intervention could have an impact on the already-vulnerable microbiota of this elderly, institutionalized cohort.
Levofloxacin is an antimicrobial of the fluoroquinolone class with high oral bioavailability (Fish and Chow, 1997, Chien et al., 1997, Anderson and Perry, 2008). It has been found to reduce levels of Gram-negative aerobic bacteria – including *Proteobacteria* and particularly *Enterobacterales* – in the fecal microbiota (Inagaki et al., 1992, Edlund and Nord, 1999, Edlund and Nord, 2000, Edlund et al., 1997, Bhalodi et al., 2019, Ziegler et al., 2019, Sullivan et al., 2001), although fluoroquinolone resistance among this taxon has been spreading (de Lastours et al., 2014, Lautenbach et al., 2004, Dalhoff, 2012, Spellberg and Doi, 2015, Acar and Goldstein, 1997, Nordmann and Poirel, 2005, Paterson, 2006a, Ruppe et al., 2015). A maximum of five rectal swab samples, collected every three months, were taken from each subject, and both 16S rRNA amplicon and shotgun metagenomics sequencing were performed. We analyzed alpha and beta diversity, taxonomic composition, functional potential, and antimicrobial resistance gene profiles before and after administration of levofloxacin, but were unable to detect a specific impact of levofloxacin on any of these measures. However, we did find an association between blooms of particular enteric species and ARG density. Additionally, pathobionts and high ARG density were frequently detected by metagenomics in samples that were MDRO-negative by culture-based methods. Together, these results suggest that certain pathobionts carrying high ARG burdens may frequently colonize this patient group and that metagenomics may allow detection of resistant bacteria not flagged by culture-based methods.

RESULTS

Overview of Subjects

Elderly patients in long-term care facilities, and particularly patients with advanced dementia, are frequently exposed to antimicrobials and are at high-risk of acquisition and
carriage of MDRO(Cassone and Mody, 2015, Aliyu et al., 2017, O'Fallon et al., 2009, O'Fallon et al., 2010, Snyder et al., 2011, Pop-Vicas et al., 2008, Bonomo, 2000, Daneman et al., 2011, van Buul L.W., 2012, D'Agata and Mitchell, 2008, D'Agata et al., 2015, D'Agata et al., 2013, Mitchell et al., 2014). From within the SPREAD cohort, we selected the largest group of subjects who had been administered a single antimicrobial during their participation in the study. This gave us a group of eleven subjects who had been given the fluoroquinolone levofloxacin, one of the most commonly prescribed antimicrobials. We analyzed up to five rectal swabs, taken every three months over the course of a year, from these eleven subjects in the SPREAD cohort(Mitchell et al., 2013), using both 16S rRNA and shotgun metagenomics sequencing (Figure 1A). During their participation in the study, these subjects had received only a single course of levofloxacin (average course of eight days), which has previously been shown to decrease the proportion of the *Enterobacterales* order of *Proteobacteria*(Sullivan et al., 2001, Inagaki et al., 1992, Edlund and Nord, 1999, Edlund and Nord, 2000, Edlund et al., 1997, Bhalodi et al., 2019, Ziegler et al., 2019). Of the eleven subjects, all but Subject I were female and all but Subject G were white. They ranged in age from 72 to 101, and six members of the cohort did not survive for the full year of the study (Supplemental Table 1). All but two subjects (C and G) resided in different nursing homes. Overall, there were 38 samples for metagenomics sequencing (Supplemental Table 1). Culture-based methods indicated that four of the eleven subjects acquired a MDRO during the study: Subject A acquired methicillin-resistant *S. aureus* (MRSA) at the 12-month timepoint, Subject B acquired multidrug-resistant *E. coli* at the 3-month timepoint, and Subjects C and D both acquired multidrug-resistant *P. mirabilis* at the 3-month timepoint (Supplemental Table 1). Further information on sample collection, sequencing,
and data processing can be found in the Transparent Methods section of the Supplemental Information and Supplemental Table 2.

Alpha and Beta Diversity Metrics

Before focusing on antimicrobial resistance, we first wanted to assess the composition of the community throughout the longitudinal timeframe. We initially used the metagenomic sequencing data to compare the alpha diversity, or the diversity within each sample, of samples collected before and after levofloxacin administration. According to Shannon’s Diversity Index, which incorporates both richness and evenness of samples, there was no significant difference between the pre- and post-levofloxacin samples (Figure 1B). Furthermore, the alpha diversity was variable over time even within the same subject, and there was no clear trend of recovery in alpha diversity after antibiotic cessation. This suggests a degree of temporal instability, in which the richness and/or evenness of the samples varies over time.

We then examined beta diversity, or the diversity between samples. We utilized the Bray-Curtis Dissimilarity metric, which considers the identity and abundance of taxa shared between samples. Plotting this metric in a principal coordinate analysis (PCoA) revealed no apparent pattern of clustering based on either subject or sample collection point relative to levofloxacin, and in fact, samples from the same subject were often located quite distantly from one another (Figure 1C). We then compared the within-subjects dissimilarity of sequential samples within a subject when both were pre-levofloxacin, both were post-levofloxacin, or one sample was pre- and one was post-levofloxacin; there was no significant difference between any of the groups (Figure 1D), suggesting that levofloxacin may not be associated with community disruption. Furthermore, while within-subject dissimilarity was lower than between-subjects dissimilarity, the effect size was low (0.7013 vs. 0.7712, respectively; Figure 1E).
Taxonomic Composition

We utilized Kraken2 in conjunction with Bayesian Reestimation of Abundance with KrakEN2 (Bracken2) pipeline to assign taxonomy to our metagenomic sequencing samples (Wood and Salzberg, 2014, Lu, 2017). Corresponding to the high between-subjects beta-diversity, the taxonomic composition of the gut microbiome varied significantly between subjects. As is typical for the human gut microbiome, most bacteria belonged to the five major phyla of *Firmicutes*, *Bacteroidetes*, *Proteobacteria*, *Actinobacteria*, and *Verrucomicrobia*. However, consistent with the high within-subjects beta diversity, the dominant phyla varied greatly even between samples from the same subject (Supplemental Figure 1); for example, the most abundant phylum in Subject E was *Bacteroidetes* at two timepoints, *Proteobacteria* at two timepoints, and *Firmicutes* at one (Supplemental Figure 1F). Overall, the most abundant phylum was *Actinobacteria* in three samples, *Bacteroidetes* in seventeen samples, *Firmicutes* in seven samples, and *Proteobacteria* in eleven samples (Supplemental Figure 1A-L); averaging across all samples, *Bacteroidetes* was highest at 34.2%, followed by *Proteobacteria* (26.9%), *Firmicutes* (23.3%), and *Actinobacteria* (11.2%) (Supplemental Figure 1A). Qualitatively, many of the samples from this population represent highly divergent and dysbiotic microbiomes compared with what is typically seen with younger subjects, in which *Proteobacteria* in particular make up a much smaller proportion of the microbiome than in these elderly dementia subjects (Human Microbiome Project, 2012).

The genus- and species-level taxonomic composition was also variable. Blooms of potential pathogens (Weiner et al., 2016), including *Campylobacter ureolyticus* (O’Donovan et al., 2014), *Corynebacterium urealyticum* (Salem et al., 2015), *Enterococcus faecalis* (Agudelo Higuita and Huycke, 2014, Fiore et al., 2019), *Escherichia coli* (Conway and Cohen, 2015,
Woodward et al., 2019), Oligella urethralis (Baqi and Mazzulli, 1996, Graham et al., 1990, Pugliese et al., 1993, Wilmer, 2013), Proteus mirabilis (Schaffer and Pearson, 2015, Chen et al., 2012), Providencia stuartii (Wie, 2015, Kurmasheva et al., 2018), Pseudomonas aeruginosa (Bassetti et al., 2018, Mittal et al., 2009), Staphylococcus aureus (Gordon and Lowy, 2008, Lowy, 1998, Naimi et al., 2003), and Staphylococcus haemolyticus (Becker et al., 2014, Czekaj et al., 2015, Froggatt et al., 1989), were fairly common, both before and after levofloxacin administration (Figure 2A, Supplemental Figure 2). Across subjects, even baseline samples varied in composition, as expected from beta-diversity analysis. Averaging across all samples, the single most-abundant species was E. coli, further supporting the qualitatively dysbiotic nature of the gut microbiome of this cohort (Figure 2A). Despite the high proportion of members of Enterobacterales in this cohort, Linear Discriminant Analysis Effect Size (LEfSe) analysis (Segata et al., 2011) did not reveal biomarkers for pre- or post-levofloxacin samples at the phylum, genus, or species level. Full data on taxonomic composition at the phylum, genus, and species levels can be found in Supplemental Table 3.

As we had access to full 16S rRNA and shotgun metagenomics data for our samples, we compared their taxonomic identifications at the genus level. The two methods of analysis were generally consistent, and blooms of prominent genera (including Escherichia, Proteus, Enterococcus, Providencia, Staphylococcus, and Bacteroides) were generally detected by both analysis pipelines (Supplemental Figure 3A). Metagenomics analysis was unsurprisingly able to detect more distinct genera, and of the genera that were called by both pipelines, LEfSe analysis revealed biases in both methods (Supplemental Figure 3B). For example, metagenomics analysis by Kraken2 and Bracken2 detected higher levels of Bacteroides, while 16S rRNA analysis with Quantitative Insights Into Microbial Ecology 2 (QIIME2) (Caporaso et al., 2010) detected higher...
levels of *Ruminiclostridium* (Supplemental Figure 3B). Full data on taxonomic abundances at the
genus level for both sequencing types can be found in Supplemental Table 3.

Functional Potential

We used the Human Microbiome Project Unified Metabolic Analysis Network 2 (HUMAnN2) pipeline (Franzosa et al., 2018) to analyze the genetic content of the metagenomic samples. We utilized LEfSe to compare community function at the Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog, Gene Ontology (GO) term, and MetaCyc pathway levels. As in the taxonomic analysis, there were no significant biomarkers of either pre- or post-levofloxacin administration samples. However, while the taxonomic profile of the samples varied greatly, the functional capacity of the samples was fairly consistent across samples (Supplemental Figure 4). Full data on functional potential can be found in Supplemental Table 4.

Antimicrobial Resistance Gene Profile

We used the DeepARG machine-learning program (Arango-Argoty et al., 2018) to detect resistance genes in the metagenomic samples. Across all samples, the most abundant class of ARG was “multidrug”, followed by “macrolide-lincosamide-streptogramin” (MLS), and “tetracycline”. The most common specific gene detected was the multidrug resistance *rpoB2* variant of the RNA polymerase beta subunit, followed by the MLS resistance gene *macB* and a multidrug ABC transporter (Figure 2B). LEfSe analysis revealed no ARG biomarkers of either pre- or post-levofloxacin samples. Full data on ARG composition can be found in Supplemental Table 5.

However, we were able to detect changes in specific ARG classes and genes that corresponded with the detection of antimicrobial-resistant organisms in two subjects. Subject A acquired MRSA at the 12-month timepoint, and a bloom of this species to 25.0% could be
detected in the metagenomic taxonomic data (Figure 3A, Supplemental Figure 2B). While the overall level of ARGs did not notably increase at this timepoint, there was a clear expansion in beta-lactam resistance genes (Figures 3B, Supplemental Figure 5B), including the \textit{mecA/mecR1/mecI} operon, which regulates expression of the low-affinity penicillin-binding protein \textit{mecA} (PBP-2A)(Hiramatsu, 1995, Hiramatsu et al., 2001, Tsubakishita et al., 2010, Enright et al., 2002) (Figure 3C). This operon is characteristic of MRSA strains(Hiramatsu, 1995, Hiramatsu et al., 2001, Tsubakishita et al., 2010, Enright et al., 2002), supporting the culture-based classification of this \textit{S. aureus} isolate as MRSA.

Similarly, Subject B acquired multidrug-resistant \textit{E. coli} (resistant to the beta-lactams ampicillin/sulbactam, cefazolin, ceftazidime, and ceftriaxone and to the fluoroquinolone ciprofloxacin) at the three-month timepoint, and the proportion of this species expanded to 47.3% of the population in the corresponding sample (Figure 3D, Supplemental Figure 2C). Accordingly, this sample showed a notable increase in the relative abundance of ARGs, which was in large part driven by an increase in a number of multidrug resistance genes (Figure 3E); there was also a clear increase in several beta-lactam resistance genes, including the low-affinity penicillin-binding protein genes \textit{PBP-1A, PBP-1B,} and \textit{penA (PBP2)} as well as class C beta-lactamase genes(Smith and Klugman, 1998, Zapun et al., 2008, Brannigan et al., 1990, Dowson et al., 1989, Thulin et al., 2006, Beceiro, 2004), and several fluoroquinolone resistance genes, including the transporters \textit{patA} and \textit{mdtK} (Figure 3F-G).

Despite the acquisition of multidrug-resistant \textit{P. mirabilis} at the three-month timepoint in Subjects C and D, there was no corresponding increase in ARGs. ARG levels stayed approximately the same in Subject C (0.372% at baseline and 0.384% at three months) and decreased in Subject D from 0.482% at baseline to 0.364% at the three-month timepoint (Figures
2B, Supplemental Figure 5D-E). However, this corresponds to the taxonomic data; levels of *P. mirabilis* were low and stable in Subject C (0.55% at baseline and 0.61% three months later), and while *P. mirabilis* made up 13.8% of the population at baseline in Subject D, it underwent a reduction to 2.3% at the three-month timepoint (Figures 2A, Supplemental Figure 2D-E). Taken together, this data indicates that our metagenomics pipeline can detect blooms of AMR pathogens and that the corresponding change in ARG levels aligns with culture-based detection of MDROs. At the same time, metagenomic analysis of some samples found blooms of pathogens and ARGs that were not associated with culture-based MDRO detection.

Attribution of ARG Density to Specific Species

While we did not observe that total ARG density within samples varied by levofloxacin administration, there was significant variability between samples. In fact, most samples had similar baseline levels of ARGs of 0.3% to 0.4% of the total reads, while only a few samples rose above this value to between 0.6% and 0.8%. Close inspection of the taxonomic composition of the samples revealed that samples with higher levels of ARGs tended to have blooms of one or more of the *Proteobacteria* species *E. coli* and *P. mirabilis* and the *Firmicutes* species *E. faecalis*, strains of which are common pathobionts (Chow et al., 2011, Dzutsev and Trinchieri, 2015, Butto et al., 2015, Mirsepasi-Lauridsen, 2019, Yang, 2019, Hamilton et al., 2018, Archambaud et al., 2019) (Figure 4A). Confirming this association, correlation analysis between ARG levels and the sum of the relative abundances of these three species showed a strong and significant positive correlation ($r = 0.791, R^2 = 0.6254, p < 0.0001$, Pearson’s correlation; Figure 4B). This suggests that in samples with higher-than-baseline ARG levels, ARG abundance is being driven by high relative abundance of these three species.
However, there were two notable exceptions: Samples E9 and H6 had high levels of ARGs without corresponding blooms of these three species. However, *P. stuartii* bloomed to 41.9% relative abundance in Sample E9 and *S. haemolyticus* bloomed to 36.9% in Sample H6 (Figure 2A, Supplemental Figures 2F&I, 3H). Both species have long been associated with AMR phenotypes (Overturf et al., 1974, McHale et al., 1981, Hawkey, 1984, Warren, 1986, Oikonomou et al., 2016, Czekaj et al., 2015, Froggatt et al., 1989, Barros et al., 2012, Maleki et al., 2019) and were not found at high levels in other samples, but could explain the higher ARG abundance in these samples (Figure 4A). Supporting this possibility, an examination of the ARGs in Sample H6 showed a distinct profile relative to other samples, with high levels of staphylococcal resistance genes including fluoroquinolone resistance gene *norB* and macrolide-streptogramin resistance gene *msrA* (Figures 2B, 3I-L). Accordingly, addition of *P. stuartii* and *S. haemolyticus* abundances to the analysis resulted in a stronger correlation (r = 0.933, R² = 0.8706, p < 0.0001, Pearson’s correlation; Figure 4C).

To more rigorously examine the relationship between the species of interest and ARG levels, we performed metagenomic assembly and binning to compare the levels of ARGs in these organisms to levels in other common and abundant species, including likely commensals and potential pathogens (Figure 4D). Specifically, we analyzed bins that passed various quality controls (see Transparent Methods) and corresponded to species identified by Kraken2/Bracken2 to make up greater than 0.1% of their source samples; a complete list of analyzed bins, including quality information and source, can be found in Supplemental Table 6.

As anticipated, we found that the levels of ARGs in bins from *E. coli* and *P. mirabilis* were consistently high compared to other species analyzed. In fact, *E. coli* had the highest average ARG density of any species analyzed, while *P. mirabilis* was the fifth-highest (Figure
4D). Notably, the ARG composition of the bins of these species from samples in which MDROs were detected (B3, C3, and D3) did not appear to be different from those of other samples (Figure 5A-B), although it is possible that some resistance genes were carried on plasmids that were not assembled into genomes. *P. stuartii* had the second-highest average ARG density (Figure 4D), reflecting the expansion of ARGs detected in sample E9, where this species bloomed to 41.9% of the population (Figure 2A, Supplemental Figure 2A,F). The third and fourth positions were taken by the single bins constructed for *Klebsiella oxytoca* and *Morganella morganii* (Figure 4D), other *Proteobacteria* with pathogenic potential (Singh et al., 2016, Moradigaravand et al., 2017, Liu et al., 2016). *P. aeruginosa* bins rounded out the top six, with similar levels to the other top species (Figure 4D). However, as *K. oxytoca* and *M. morganii* were never present at greater than 3% and *P. aeruginosa* bloomed in only two samples (Figure 2A), they did not significantly contribute to overall ARG density in the samples. Importantly, high ARG density was not a universal feature of *Proteobacteria*, or even of pathogenic *Proteobacteria*; bins constructed for the *Campylobacter* species *C. hominis* and *C. ureolyticus* had universally low ARG levels. Additionally, while we could not construct a high-quality bin for *O. urethralis*, the low ARG densities in the samples in which this species bloomed (C0 and C3) suggests that it also has low genomic ARG content. This suggests that high ARG density among the *Proteobacteria* analyzed was restricted to the Gammaproteobacteria class, primarily of the order Enterobacterales but also including Pseudomonadales.

We were only able to construct two good-quality bins for *E. faecalis*, which varied in their ARG levels, particularly on the basis of bacitracin resistance. On average, while the two bins did not have ARG levels as high as the *Proteobacteria* of interest, they did rank among the highest of the *Firmicutes* bins tested (Figure 4D). We were also able to create a single bin for *S.*
haemolyticus from Sample H6 in which it made up 36.9% of the population (Figure 2A, Supplemental Figure 2A, I). This bin had an ARG density higher than the average for any other non-Proteobacteria species (Figure 4D), supporting its role in the high ARG levels found in the corresponding sample. As expected from the analysis of the total ARG population of that sample (Figure 3K-L), the staphylococcal resistance genes *norB* and *msrA* were found in this bin (Supplemental Table 5). We were also able to create two bins for *S. aureus*, including from sample A12 where MRSA was detected. The A12 bin contained the characteristic MRSA gene *mecA* while the H6 bin did not, suggesting that the *S. aureus* strain found in H6 was not MRSA (Figure 5C, Supplemental Table 5). In general, bins from the phyla Actinobacteria (including *Bifidobacterium* and *Corynebacterium* species) and Bacteroidetes (including *Bacteroides* and *Parabacteroides* species) had low ARG levels. Full data on the ARGs and classes found in species-level bins can be found in Supplemental Table 5.

Prediction of ARG Density from Species Abundances

Our initial analysis only considered the eleven subjects for whom we had longitudinal metagenomics data due to their receiving levofloxacin. We also had access to a larger set of SPREAD samples which underwent shotgun metagenomic sequencing for a related study (Araos et al., 2019), and these sequences can be found in the NCBI Short Read Archive under BioProject PRJNA531921. In this case, the data was not longitudinal and encompassed an array of antibiotic treatment conditions across 63 subjects, providing a diverse set of taxonomic and ARG data on which to test whether the relationship between *E. coli*, *P. mirabilis*, and *E. faecalis* and ARG density held true. Taxonomic data, ARG data, and subject metadata for these samples can be found in Supplemental Tables 3, 5, and 7, respectively. As an initial test, we performed the same correlation analyses between species of interest and ARG levels as on the levofloxacin
dataset, finding that both the simple and complex models showed significant correlation ($r = 0.7367$, $r^2 = 0.5427$, $p < 0.0001$ and $r = 0.7811$, $r^2 = 0.6012$, $p < 0.0001$, respectively; Pearson’s correlation; Figure 6A-B). This provided initial support for the trend being present in the wider dataset.

We then created a multiple linear regression model to predict ARG density using the relative abundances (RA) of the three main species of interest in the initial levofloxacin dataset, with the following equation:

$$\text{ARG density} = 0.003482 + 0.006221 \times \text{RA}_{E. coli} + 0.006248 \times \text{RA}_{P. mirabilis} + 0.006920 \times \text{RA}_{E. faecalis}$$

(Figure 6C). We then used this equation to predict the ARG density in the larger metagenomics dataset and found that it was able to accurately predict the true ARG level of those samples, with predicted and actual values correlating significantly ($r = 0.7335$, $r^2 = 0.5381$, $p < 0.0001$; Pearson’s correlation; Figure 6D). As before, there were a few notable outliers with higher ARG levels than predicted by the model; those three samples contained high levels of \textit{P. stuartii}, \textit{P. aeruginosa}, or \textit{Klebsiella pneumoniae}.

This maps well to the fact that we observed high levels of ARGs in bins constructed from \textit{P. stuartii}, \textit{P. aeruginosa}, and the related species \textit{K. oxytoca} (Figure 4D). Importantly, while this model does capture the contribution of pathobionts to ARG density present in the samples, it is likely that other microbial or host-related factors also contribute to ARG levels. Therefore, this model is descriptive of the relationship between ARGs and pathobionts in this dataset rather than predictive in other populations.

We also created a multiple linear regression model that incorporated the relative abundances of \textit{P. stuartii} and \textit{S. haemolyticus}, blooms of which had caused outliers from the original species-ARG correlation:

$$\text{ARG density} = 0.003253 + 0.006715 \times \text{RA}_{E. coli} + 0.006748 \times \text{RA}_{P. mirabilis} + 0.003461 \times \text{RA}_{S. haemolyticus} + 0.01123 \times \text{RA}_{P. stuartii}$$

(Figure 6D).
0.007569(P. stuartii RA) (Figure 6E). As before, we tested this equation against the larger dataset, and found that it slightly increased the accuracy of the predictions; specifically, it eliminated the outlier which had high P. stuartii levels and slightly improved the correlation between predicted and actual ARG levels ($r = 0.7901$, $r^2 = 0.6242$, $p < 0.0001$; Pearson’s correlation; Figure 6F). However, the simpler model is more broadly applicable, as blooms of P. stuartii and S. haemolyticus are relatively uncommon. Similarly, while Klebsiella spp. and P. aeruginosa may also contribute to high ARG density in samples, they do not bloom as commonly in this cohort as the core predictive species of E. coli, P. mirabilis, and E. faecalis.

These results indicate that in this population, levels of only a few key species could predict the majority of ARG abundance beyond background levels. Both the core predictive species (E. coli, P. mirabilis, E. faecalis) and others that are associated with high ARG levels in samples (P. stuartii, S. haemolyticus, P. aeruginosa, Klebsiella spp.) are pathogens and/or pathobionts. Monitoring levels of these species may be helpful in elderly, institutionalized populations, as these patients may be vulnerable to developing or transmitting AMR infections from high-level carriage of these species.

DISCUSSION

Overall, we found that the microbial composition of the gut microbiome of elderly patients with advanced dementia was quite variable, both between subjects and over time within the same subject. Even in the absence of antimicrobial treatment, there was notable fluctuation in the abundance of a number of species, including pathobionts such as E. coli, P. mirabilis, and E. faecalis. When comparing the taxonomic composition, functional potential, and resistome of pre- and post-levofloxacin samples, we did not observe any significant differences. One potential
reason for this finding is that oral levofloxacin is well-absorbed by the host, with greater than 99% bioavailability (Noel, 2009, Fish and Chow, 1997, Bush et al., 2011, Chien et al., 1997, Croom and Goa, 2003), and therefore may not be directly available to the luminal microbiota of the lower gastrointestinal tract at high levels. Furthermore, other studies have suggested that levofloxacin has a relatively minor impact on the gut microbiome, primarily reducing levels of Enterobacterales (Inagaki et al., 1992, Bhalodi et al., 2019, Ziegler et al., 2019, Edlund and Nord, 1999, Edlund and Nord, 2000, Edlund et al., 1997, Sullivan et al., 2001), and it may be less-associated with Clostridiodes difficile-associated diarrhea outbreaks than other antimicrobials, including other fluoroquinolones (Deshpande et al., 2008).

Additionally, in this cohort, levofloxacin was typically administered at least two weeks prior to collected timepoints, potentially allowing sufficient time for the microbiome to recover from or shift away from its immediately post-antibiotic state. Furthermore, the impacts of levofloxacin on the gut microbiome may be dependent upon the initial state upon administration. If the microbiome is initially relatively diverse and healthy, antibiotic administration may be disruptive and allow blooms of atypical dominant species such as members of Proteobacteria; such an occurrence might be observed in Subject F, where a diverse Bacteroides-dominated microbiome was overtaken by several Enterobacterales after levofloxacin treatment (Supplemental Figure 2G). Alternatively, if the microbiome is initially dominated by one or more pathogens, antimicrobial administration may correct such blooms and allow for the restoration of a diverse community, as might have occurred in Subject E as a P. stuartii bloom was eliminated (Supplemental Figure 2F).

Finally, since the pre-existing temporal instability of this community was high, levofloxacin-related changes may not be detectable through the noise of this cohort’s general
microbiome instability, especially in the context of the relatively low sample size. In contrast to our observations, studies in healthy adults have generally found that the within-subjects dissimilarity is much lower than between-subjects dissimilarity, in line with the fact that the gut microbiome tends to be relatively stable within the same subject over time – including in an elderly cohort (Mehta et al., 2018, Lloyd-Price et al., 2016, Human Microbiome Project, 2012, Liskiewicz et al., 2019, Claesson et al., 2011). This suggests that the gut microbiomes of the subjects in this study were potentially less stable than that of other cohorts; this may indicate that this institutionalized population with advanced functional impairment is more prone to infections or pathobiont blooms, possibly due to weaker immune systems less able to control them, than young healthy adults or even community-resident elderly adults. One consideration is that this study utilized rectal swabs rather than fecal samples. While swabs are often used as a proxy for the colonic microbiota, they may also be more sensitive to the timing of sample collection and harbor higher levels of skin commensal or aerotolerant organisms; these factors could contribute to the taxonomic instability and high levels of facultative anaerobes and organisms not specialized for gut residence found in this study (Jones et al., 2018, Araujo-Perez et al., 2012, Biehl et al., 2019, Budding et al., 2014, Fair et al., 2019, Bassis et al., 2017). This high noise level may be an important consideration for future studies of advanced dementia patients, as more subjects than expected may be required to detect relevant patterns if there are similar levels of noise. Interestingly, despite the taxonomic variability, the functional composition of the cohort was relatively similar across samples and subjects. This is in line with previous studies of the human gut microbiome, which suggest that variable taxa can fill the same functional niches, resulting in a more similar functional composition across individuals despite inter-individual
differences in the taxonomic composition (Human Microbiome Project, 2012, Qin et al., 2010, Turnbaugh et al., 2009).

As all of the subjects had been given an antibiotic, we were particularly interested in the antibiotic resistance profile of the subjects before and after levofloxacin administration. However, as observed in the taxonomic and functional data, there was no apparent association of any ARG genes or classes with either pre- or post-levofloxacin status. This may be due to the fact that levofloxacin did not have any specific impacts on the resistome of this cohort, or due to the factors that may have concealed any impacts of levofloxacin, as discussed above. However, we were particularly intrigued by the finding that ARG density in a particular sample could be linked to the abundance of a few key species. *E. coli*, *P. mirabilis*, and *E. faecalis* are all pathobionts that are often found at low levels in a healthy microbiome, but bloomed frequently at various timepoints across a majority of our subjects. All three species can cause severe illness, have been previously observed to colonize nursing home residents, and include well-known multidrug-resistant strains (Chow et al., 2011, Dzutsev and Trinchieri, 2015, Butto et al., 2015, Mirsepasi-Lauridsen, 2019, Yang, 2019, Hamilton et al., 2018, Archambaud et al., 2019, Agudelo Higuita and Huycke, 2014, Davies et al., 2016, Paterson, 2006a, D'Agata et al., 2015, Mitchell et al., 2014, O'Fallon et al., 2009, O'Fallon et al., 2010, Pop-Vicas et al., 2008, Snyder et al., 2011). In fact, three of the subjects (B, C, and D) are known to have acquired multidrug-resistant strains of *E. coli* and *P. mirabilis* during the study. However, we observed an association between these three species and ARG levels across the entire sample set (Figure 4B), and the ARG composition of the bins of *E. coli* and *P. mirabilis* from samples where MDROs were detected were not distinct from their other bins (Figure 5A-B). This suggests that metagenomic sequencing may allow the identification of antimicrobial-resistant organisms that
escape detection via culture-based techniques, although it is also possible that the multidrug-resistant isolates contained ARG-carrying plasmids that were not captured by our assembly and binning strategy.

A major implication of this finding is that metagenomic analysis could be a particularly useful tool to track antimicrobial resistance in institutions like nursing homes and hospitals, particularly with the capability to construct contigs and bins that allow examination of specific genomes. In this case, it has allowed us to connect the high levels of ARGs in certain samples with correspondingly high levels of specific pathobionts, which had high proportions of ARGs within their genomes even in samples where MDROs were not detected. In a vulnerable population already prone to infections and carriage of MDROs, metagenomics could be a useful surveillance tool to assess the prevalence or transmission of ARGs in long-term care facilities.

Importantly, all of the subjects in our study were institutionalized in nursing homes, and there exists significant potential for transfer of bacteria between patients. As all but two of our subjects (C and G) lived in different homes, we could not directly examine this possibility ourselves, but it is possible that the high abundance of pathobionts and/or ARGs in our cohort is related to the spread of isolates within nursing homes. In fact, transmission of isolates from other nursing home residents who were treated with antimicrobials could potentially contribute to the high levels of AMR bacteria observed in our samples, even in the absence of direct antimicrobial selection in our subjects. This also raises the possibility that we would not find a similar association between pathobionts and ARG levels in a healthy or community-based elderly cohort, who might be less likely to harbor or transmit such high levels of these bacteria. However, if an association between particular “sentinel” species and ARGs holds true in other
elderly institutionalized populations, qPCR detection of the loads of these such pathobionts may allow for prediction of resistant bacterial outbreaks before they occur.

In addition to the increased potential for spread of resistant strains through institutions, there are some other potential explanations for the association between ARGs and these particular species. In particular, all of the species that we found to be associated with ARG density are potential human pathogens, can be grown *in vitro*, and have been previously associated with AMR phenotypes. ARGs, as well as mobile genetic elements carrying them, from these species may be better-studied than those from organisms less likely to pose a threat to human health, including gut commensals. If ARGs from these organisms are well-represented in databases, it could potentially bias analyses based on these databases toward detecting pathogen-associated over commensal-associated ARGs. However, given the high frequency of AMR isolate carriage in the population under study, a potential bias towards clinically-relevant ARGs and pathobionts may not be as significant an issue in this context. Regardless, it should be noted that there has been significant work done on the resistome of the human commensal microbiome, including functional metagenomics to detect new ARGs. These have found that commensal anaerobes may serve as significant reservoirs of ARGs, and may in some cases contribute to the transfer of resistance to pathobionts (van Schaik, 2015, Francino, 2015, Penders et al., 2013, Hu et al., 2013, Jackson et al., 2011, Scott, 2002, Salyers et al., 2004, Kazimierczak and Scott, 2007). Commensal carriage of antimicrobial resistance genes may correspond to the baseline level of 0.3-0.4% ARGs observed in samples without pathobiont dominance.

In general, the gut microbiome was highly variable both between and within subjects, with frequent blooms and reductions of bacterial species both before and after levofloxacin treatment. We did not observe a consistent impact of levofloxacin on specific taxa or functions,
levels of antimicrobial resistance genes, or overall microbiome diversity in these subjects. However, while we could not link levofloxacin to antimicrobial resistance gene levels, there were a number of samples that had higher relative abundances of these genes. In our original metagenomics dataset, we were able to identify that levels of these genes could be linked to blooms of specific bacterial species, including *E. coli*, *P. mirabilis*, and *E. faecalis*. We were able to build a model to describe the relationship between total ARG levels and the relative abundances of these species in a sample, and confirm the validity of this model in a larger metagenomics dataset from the rest of the SPREAD study, including subjects taking a range of antibiotics. Furthermore, use of metagenomic assembly and binning allowed us to confirm that our species of interest carry greater ARG densities than other abundant members of the microbiome, even in subjects where MDROs were not detected by culturing.

This work demonstrates that there is a significant amount of information that can be obtained from metagenomic assembly and binning. With sufficient depth, powerful computational tools allow whole genomes to be assembled from short-read metagenomic sequencing, to interrogate the functional potential of specific species in complex microbial communities. In our case, we were able to confirm the association between pathobiont blooms and ARG levels in the gut, showing that the genomes of pathobionts contained a greater proportion of ARGs than gut commensals such as *Bacteroides* and *Bifidobacterium* species. This suggests that while the commensal microbiota are known to serve as reservoirs of antimicrobial resistance, in this cohort blooms of pathobionts may serve as the driver of ARG levels in the gut microbiome. Given how frequently these blooms occurred, special attention should be paid to these species in dementia patients in long-term care facilities, a vulnerable group which is often
immunocompromised, frequently administered medication including antimicrobials, and may carry MDRO at relatively high levels.

LIMITATIONS OF THE STUDY

Some limitations to the findings of this study must be acknowledged. First, as for all database-based methodologies, we are limited by accuracy and completeness of those databases. While the human gut microbiome is fairly well-characterized, there may be so-called microbial dark matter that is not well-represented in the taxonomic database used for species identification. We also used a database composed of bacterial and archaeal genomes, excluding consideration of bacteriophage and microbial eukaryotes from our analyses. As mentioned, database representation is particularly relevant for our ARG analysis, as the genes in this database may be skewed towards easily-cultur able and pathogenic source species, and our analysis may have missed ARGs found in commensal or unculturable gut species. Additionally, critics have noted that some genes found in ARG databases used have unclear links to resistance phenotypes, and may perform regulatory, efflux, or other functions not always related to antimicrobial resistance (van Schaik, 2015, Martinez et al., 2015).

Second, we were limited by the original SPREAD population, in which few subjects received only a single antimicrobial during the course of the study, thereby limiting the sample size of our investigation; this makes it difficult to say whether the temporal variability we observed was widespread in the cohort, although the fact that there were frequently high pathobiont levels observed in the larger, cross-sectional metagenomics dataset we used to test our regression suggests that this may be the case. Third, in this study we worked with rectal swabs, which are similar but not identical to fecal samples and may be susceptible to cross-
contamination from non-gut-resident bacteria including urinary pathogens or skin flora, particularly in advanced dementia patients who may suffer from incontinence; further, rectal swabs may be more sensitive to the timing of sample collection and may harbor more oxygen-tolerant taxa than fecal samples, potentially contributing to some of the observed blooms and instability (Budding et al., 2014, Bassis et al., 2017, Biehl et al., 2019, Fair et al., 2019, Jones et al., 2018, Araujo-Perez et al., 2012). Relatedly, as blank controls were not included at the time of DNA extraction and sequencing, potential contaminants cannot be ruled out. Fourth, metagenomic assembly has limitations. It cannot create bins of all species found in a given sample, genome reconstruction is based on the isolates present in the database used, and analysis of assembled genomes may exclude consideration of plasmids – which are often sources of ARGs. Finally, as we analyzed metagenomic data, we cannot comment on the actual antimicrobial resistance phenotypes of the communities or individual bacteria that we studied.

Abbreviations

A:A Aminoglycoside:Aminocoumarin
AG Aminoglycoside
AMR Antimicrobial Resistant
ARG Antimicrobial Resistance Gene
BC Bacitracin
BL Beta-Lactam
Bracken2 Bayesian Reestimation of Abundance with KrakEN2
DP Diaminopyrimidine
FFM Fosfomycin
	Abbreviation	Description
581	FMM	Fosmidomycin
582	FQ	Fluoroquinolone
583	GP	Glycopeptide
584	GO	Gene Ontology
585	HUMANn2	Human Microbiome Project Unified Metabolic Analysis Network 2
586	KEGG	Kyoto Encyclopedia of Genes and Genomes
587	LEfSe	Linear Discriminant Analysis Effect Size
588	MD	Multidrug
589	MDRO	Multidrug-Resistant Organism
590	MLS	Macrolide-Lincosamide-Streptogramin
591	MP	Mupirocin
592	MRSA	Methicillin-resistant *Staphylococcus aureus*
593	NM	Nitromidazole
594	OZ	Oxazolidinone
595	PATRIC	Pathosystems Resource Integration Center
596	PC	Phenicol
597	PMT	Pleuromutilin
598	PMX	Polymyxin
599	PT	Peptide
600	QIIME2	Quantitative Insights Into Microbial Ecology 2
601	TC	Tetracycline
602	SPREAD	Study of Pathogen Resistance and Exposure to Antimicrobials in Dementia
DATA AND CODE AVAILABILITY

Shotgun metagenomics and 16S rRNA sequencing reads for the longitudinal, levofloxacin-treated dataset can be found at the NCBI Short Read Archive under BioProject PRJNA573963. Shotgun metagenomics sequencing reads for the cross-sectional test dataset can be found at the NCBI Short Read Archive under BioProject PRJNA531921. All code implemented for analysis can be found in Data S1.

ACKNOWLEDGMENTS

The authors acknowledge the laboratory of Dr. Martin Blaser and the New York University Langone Medical Center Genome Technology Core, which prepared metagenomic libraries and performed all 16S rRNA and shotgun metagenomics sequencing for this study. This study was funded by: the National Institute of General Medical Sciences institutional development award P20GM121344 for the COBRE Center for Antimicrobial Resistance and Therapeutic Discovery at Brown University (PB), the Centers for Disease Control and Prevention award 200-2016-91939 (EMCD), the National Institutes of Allergy and Infectious Diseases award K24AI119158 (EMCD), the National Institute of Aging award R01AG032982 (EMCD), and the Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R) supported by the Millennium Scientific Initiative of the Ministry of Economy, Development and Tourism (Chile) (RA). These funding sources had no role in the design of the study, in the collection, analysis, or interpretation or data, or in writing the manuscript.

AUTHOR CONTRIBUTIONS
ADR conceptualized the project, performed analysis, generated figures, and wrote the manuscript. RA collected the data and contributed to manuscript preparation. EMCD collected the data and contributed to manuscript preparation. PB conceptualized the project and wrote the manuscript. All authors read and approved the final manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

Acar, J. F. & Goldstein, F. W. (1997.) Trends in bacterial resistance to fluoroquinolones. Clin Infect Dis, 24 Suppl 1, S67-73.

Agudelo Higuita, N. I. & Huycke, M. M. 2014. Enterococcal Disease, Epidemiology, and Implications for Treatment. In: Gilmoore, M. S., Clewell, D. B., Ike, Y. & Shankar, N. (eds.) Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Boston.

Aliyu, S., Smaldone, A. & Larson, E. (2017.) Prevalence of multidrug-resistant gram-negative bacteria among nursing home residents: A systematic review and meta-analysis. Am J Infect Control, 45, 512-518.

Anderson, V. R. & Perry, C. M. (2008.) Levofoxacin: a review of its use as a high-dose, short-course treatment for bacterial infection. Drugs, 68, 535-65.

Arango-Argoty, G., Garner, E., Pruden, A., Heath, L. S., Vikesland, P. & Zhang, L. (2018.) DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome, 6, 23.

Araos, R., Battaglia, T., Ugalde, J. A., Rojas-Herrera, M., Blaser, M. J. & D’agata, E. M. C. (2019.) Fecal Microbiome Characteristics and the Resistome Associated With Acquisition of Multidrug-Resistant Organisms Among Elderly Subjects. Front Microbiol, 10, 2260.

Araujo-Perez, F., McCoy, A. N., Okechukwu, C., Carroll, I. M., Smith, K. M., Jeremiah, K., Sandler, R. S., Asher, G. N. & Keku, T. O. (2012.) Differences in microbial signatures between rectal mucosal biopsies and rectal swabs. Gut Microbes, 3, 530-5.

Archambaud, C., Derre-Bobillot, A., Lapaque, N., Rigottier-Gois, L. & Serror, P. (2019.) Intestinal translocation of enterococci requires a threshold level of enterococcal overgrowth in the lumen. Sci Rep, 9, 8926.

Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzamml, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F. & Baloch, Z. (2018.) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist, 11, 1645-1658.

Baqi, M. & Mazzulli, T. (1996.) Oligella infections: Case report and review of the literature. Can J Infect Dis, 7, 377-9.

Barros, E. M., Ceotto, H., Bastos, M. C., Dos Santos, K. R. & Giambiagi-Demarval, M. (2012.) Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol, 50, 166-8.

Bassetti, M., Vena, A., Croxatto, A., Righi, E. & Guery, B. (2018.) How to manage Pseudomonas aeruginosa infections. Drugs Context, 7, 212527.

Bassis, C. M., Moore, N. M., Lolans, K., Seekatz, A. M., Weinstein, R. A., Young, V. B., Hayden, M. K. & Program, C. D. C. P. E. (2017.) Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiol, 17, 78.

Beceiro, A. B. (2004.) Class C Beta-Lactamases: An Increasing Problem Worldwide. Reviews in Medical Microbiology, 15, 141-152.

Bec Moo, N., Moore, N. M., Lolans, K., Seekatz, A. M., Weinstein, R. A., Young, V. B., Hayden, M. K. & Program, C. D. C. P. E. (2017.) Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiol, 17, 78.

Bhegi, A. B. (2004.) Class C Beta-Lactamases: An Increasing Problem Worldwide. Reviews in Medical Microbiology, 15, 141-152.

Becchi, K., Heilmann, C. & Peters, G. (2014.) Coagulase-negative staphylococci. Clin Microbiol Rev, 27, 870-926.

Bhalodi, A. A., Van Engelen, T. S. R., Virk, H. S. & Wiersinga, W. J. (2019.) Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother, 74, i6-i15.
Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Quercia, S., Scurti, M., Monti, D., Capri, M., Brigidi, P. & Candela, M. (2016.) Gut Microbiota and Extreme Longevity. *Curr Biol*, 26, 1480-5.

Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkila, J., Monti, D., Satokari, R., Franceschi, C., Brigidi, P. & De Vos, W. (2010.) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. *PLoS One*, 5, e10667.

Biehl, L. M., Garzetti, D., Farowski, F., Ring, D., Koeppel, M. B., Rohde, H., Schaafhausen, P., Stecher, B. & Vehreschild, M. (2019.) Usability of rectal swabs for microbiome sampling in a cohort study of hematological and oncological patients. *PLoS One*, 14, e0215428.

Bonomo, R. A. (2000.) Multiple antibiotic-resistant bacteria in long-term-care facilities: An emerging problem in the practice of infectious diseases. *Clin Infect Dis*, 31, 1414-22.

Brannigan, J. A., Tirodimos, I. A., Zhang, Q. Y., Dowson, C. G. & Spratt, B. G. (1990.) Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae. *Mol Microbiol*, 4, 913-9.

Butto, L. F., Schaubeck, M. & Haller, D. (2015.) Mechanisms of Microbe-Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. *Front Immunol*, 6, 555.

Butto, L. F., Schaubeck, M. & Haller, D. (2015.) Mechanisms of Microbe-Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. *Front Immunol*, 6, 555.

Chen, C. Y., Chen, Y. H., Lu, P. L., Lin, W. R., Chen, T. C. & Lin, C. Y. (2012.) Proteus mirabilis urinary tract infection and bacteremia: risk factors, clinical presentation, and outcomes. *J Microbiol Infect Dis*, 45, 228-36.

Chien, S. C., Rogge, M. C., Gisclon, L. G., Curtin, C., Wong, F., Natarajan, J., Williams, R. R., Fowler, C. L., Cheung, W. K. & Chow, A. T. (1997.) Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. *Antimicrob Agents Chemother*, 41, 2256-60.

Chow, J., Tang, H. & Mazmanian, S. K. (2011.) Pathobionts of the gastrointestinal microbiota and inflammatory disease. *Curr Opin Immunol*, 23, 473-80.

Claesson, M. J., Cusack, S., O'sullivan, O., Greene-Diniz, R., De Weerd, H., Flannery, E., Marchesi, J. R., Falush, D., Dinan, T., Fitzgerald, G., Stanton, C., Van Sinderen, D., O'connor, M., Harnedy, N., O'connor, K., Henry, C., O'mahony, D., Fitzgerald, A. P., Shanahan, F., Twomey, C., Hill, C., Ross, R. P. & O'toole, P. W. (2011.) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. *Proc Natl Acad Sci U S A*, 108 Suppl 1, 4586-91.
Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O'Connor, E. M., Cusack, S., Harris, H., M., Coakley, M., Lakshminarayan, B., O'Sullivan, O., Fitzgerald, G. F., Deane, J., O'Connor, M., Harney, N., O'Connor, K., O'mahony, D., Van Sinderen, D., Wallace, M., Brennan, L., Stanton, C., Marchesi, J. R., Fitzgerald, A. P., Shanahan, F., Hill, C., Ross, R. P. & O'toole, P. W. (2012.) Gut microbiota composition correlates with diet and health in the elderly. Nature, 488, 178-84.

Conway, T. & Cohen, P. S. (2015.) Commensal and Pathogenic Escherichia coli Metabolism in the Gut. Microbiol Spectr, 3.

Cookson, B. (2005.) Clinical significance of emergence of bacterial antimicrobial resistance in the hospital environment. J Appl Microbiol, 99, 989-96.

Croom, K. F. & Goa, K. L. (2003.) Levofloxacin: a review of its use in the treatment of bacterial infections in the United States. Drugs, 63, 2769-802.

Czekaj, T., Ciszewski, M. & Szewczyk, E. M. (2015.) Staphylococcus haemolyticus - an emerging threat in the twilight of the antibiotics age. Microbiology, 161, 2061-8.

D'agata, E., Loeb, M. B. & Mitchell, S. L. (2013.) Challenges in assessing nursing home residents with advanced dementia for suspected urinary tract infections. J Am Geriatr Soc, 61, 62-6.

D'agata, E. & Mitchell, S. L. (2008.) Patterns of antimicrobial use among nursing home residents with advanced dementia. Arch Intern Med, 168, 357-62.

D'agata, E. M., Habtemariam, D. & Mitchell, S. (2015.) Multidrug-Resistant Gram-Negative Bacteria: Inter- and Intradissemination Among Nursing Homes of Residents With Advanced Dementia. Infect Control Hosp Epidemiol, 36, 930-5.

Dalhoff, A. (2012.) Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip Perspect Infect Dis, 2012, 976273.

Daneman, N., Gruneir, A., Newman, A., Fischer, H. D., Bronskill, S. E., Rochon, P. A., Anderson, G. M. & Bell, C. M. (2011.) Antibiotic use in long-term care facilities. J Antimicrob Chemother, 66, 2856-63.

Davies, E. V., James, C. E., Williams, D., O'brien, S., Fothergill, J. L., Haldenby, S., Paterson, S., Winstanley, C. & Brockhurst, M. A. (2016.) Temperate phages both mediate and drive adaptive evolution in pathogen biofilms. Proc Natl Acad Sci U S A, 113, 8266-71.

De Lastours, V., Chau, F., Roy, C., Larroque, B. & Fantin, B. (2014.) Emergence of quinolone resistance in the microbiota of hospitalized patients treated or not with a fluoroquinolone. J Antimicrob Chemother, 69, 3393-400.

Deshpande, A., Pant, C., Jain, A., Fraser, T. G. & Rolston, D. D. (2008.) Do fluoroquinolones predispose patients to Clostridium difficile associated disease? A review of the evidence. Curr Med Res Opin, 24, 329-33.

Dowson, C. G., Jephcott, A. E., Gough, K. R. & Spratt, B. G. (1989.) Penicillin-binding protein 2 genes of non-beta-lactamase-producing, penicillin-resistant strains of Neisseria gonorrhoeae. Mol Microbiol, 3, 35-41.

Dyar, O. J., Pagani, L. & Pulcini, C. (2015.) Strategies and challenges of antimicrobial stewardship in long-term care facilities. Clin Microbiol Infect, 21, 10-9.

Dzutsev, A. & Trinchieri, G. (2015.) Proteus mirabilis: The Enemy Within. Immunity, 42, 602-4.

Edlund, C. & Nord, C. E. (1999.) Effect of quinolones on intestinal ecology. Drugs, 58 Suppl 2, 65-70.

Edlund, C. & Nord, C. E. (2000.) Effect on the human normal microflora of oral antibiotics for treatment of urinary tract infections. J Antimicrob Chemother, 46 Suppl A, 41-48.
Edlund, C., Sjostedt, S. & Nord, C. E. (1997.) Comparative effects of levofloxacin and ofloxacin on the normal oral and intestinal microflora. *Scand J Infect Dis*, 29, 383-6.

Enright, M. C., Robinson, D. A., Randle, G., Feil, E. J., Grundmann, H. & Spratt, B. G. (2002.) The evolutionary history of methicillin-resistant *Staphylococcus aureus* (MRSA). *Proc Natl Acad Sci U S A*, 99, 7687-92.

Fair, K., Dunlap, D. G., Fitch, A., Bogdanovich, T., Methé, B., Morris, A., Mcvery, B. J. & Kitsios, G. D. (2019.) Rectal Swabs from Critically Ill Patients Provide Discordant Representations of the Gut Microbiome Compared to Stool Samples. *mSphere*, 4.

Fiore, E., Van Tyne, D. & Gilmore, M. S. (2019.) Pathogenicity of Enterococci. *Microbiol Spectr*, 7.

Fish, D. N. & Chow, A. T. (1997.) The clinical pharmacokinetics of levofloxacin. *Clin Pharmacokinet*, 32, 101-19.

Francino, M. P. (2015.) Antibiotics and the Human Gut Microbiome: Dysbioses and Accumulation of Resistances. *Front Microbiol*, 6, 1543.

Franzosa, E. A., Mciver, L. J., Rahnavard, G., Thompson, L. R., Schirmer, M., Weingart, G., Lipson, K. S., Knight, R., Caporaso, J. G., Segata, N. & Huttenhower, C. (2018.) Species-level functional profiling of metagenomes and metatranscriptomes. *Nat Methods*, 15, 962-968.

Froggatt, J. W., Johnston, J. L., Galetto, D. W. & Archer, G. L. (1989.) Antimicrobial resistance in nosocomial isolates of *Staphylococcus haemolyticus*. *Antimicrob Agents Chemother*, 33, 460-6.

Gordon, R. J. & Lowy, F. D. (2008.) Pathogenesis of methicillin-resistant *Staphylococcus aureus* infection. *Clin Infect Dis*, 46 Suppl 5, S350-9.

Graham, D. R., Band, J. D., Thornsberry, C., Hollis, D. G. & Weaver, R. E. (1990.) Infections caused by *Moraxella*, *Moraxella urethralis*, *Moraxella*-like groups M-5 and M-6, and *Kingella kingae* in the United States, 1953-1980. *Rev Infect Dis*, 12, 423-31.

Hamilton, A. L., Kamm, M. A., Ng, S. C. & Morrison, M. (2018.) Proteus spp. as Putative Gastrointestinal Pathogens. *Clin Microbiol Rev*, 31.

Hawkey, P. M. (1984.) Providencia stuartii: a review of a multiply antibiotic-resistant bacterium. *J Antimicrob Chemother*, 13, 209-26.

Hiramatsu, K. (1995.) Molecular evolution of MRSA. *Microbiol Immunol*, 39, 531-43.

Hiramatsu, K., Cui, L., Kuroda, M. & Ito, T. (2001.) The emergence and evolution of methicillin-resistant *Staphylococcus aureus*. *Trends Microbiol*, 9, 486-93.

Hu, Y., Yang, X., Qin, J., Lu, N., Cheng, G., Wu, N., Pan, Y., Li, J., Zhu, L., Wang, X., Meng, Z., Zhao, F., Liu, D., Ma, J., Qin, N., Xiang, C., Xiao, Y., Li, L., Yang, H., Wang, J., Yang, R., Gao, G. F., Wang, J. & Zhu, B. (2013.) Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. *Nat Commun*, 4, 2151.

Human Microbiome Project, C. (2012.) Structure, function and diversity of the healthy human microbiome. *Nature*, 486, 207-14.

Inagaki, Y., Nakaya, R., Chida, T. & Hashimoto, S. (1992.) The effect of levofloxacin, an optically-active isomer of ofloxacin, on fecal microflora in human volunteers. *Jpn J Antibiott*, 45, 241-52.

Jackson, R. W., Vinatzer, B., Arnold, D. L., Dorus, S. & Murillo, J. (2011.) The influence of the accessory genome on bacterial pathogen evolution. *Mob Genet Elements*, 1, 55-65.
Jones, R. B., Zhu, X., Moan, E., Murff, H. J., Ness, R. M., Seidner, D. L., Sun, S., Yu, C., Dai, Q., Fodor, A. A., Azcarate-Peril, M. A. & Shrubsole, M. J. (2018.) Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. *Sci Rep*, 8, 4139.

Jones, S. R., Parker, D. F., Liebow, E. S., Kimbrough, R. C., 3rd & Frear, R. S. (1987.) Appropriateness of antibiotic therapy in long-term care facilities. *Am J Med*, 83, 499-502.

Kazimierczak, K. A. & Scott, K. P. (2007.) Antibiotics and resistance genes: influencing the microbial ecosystem in the gut. *Adv Appl Microbiol*, 62, 269-92.

Kurmasheva, N., Vorobiev, V., Sharipova, M., Efremova, T. & Mardanova, A. (2018.) The Potential Virulence Factors of Providencia stuartii: Motility, Adherence, and Invasion. *Biomed Res Int*, 2018, 3589135.

Lautenbach, E., Strom, B. L., Nachamkin, I., Bilker, W. B., Marr, A. M., Larosa, L. A. & Fishman, N. O. (2004.) Longitudinal trends in fluoroquinolone resistance among Enterobacteriaceae isolates from inpatients and outpatients, 1989-2000: differences in the emergence and epidemiology of resistance across organisms. *Clin Infect Dis*, 38, 655-62.

Liskiewicz, P., Pelka-Wysiecka, J., Kaczmarczyk, M., Loniewski, I., Wronski, M., Baba-Kubis, A., Skonieczna-Zydecka, K., Marlicz, W., Misiak, B. & Samochowiec, J. (2019.) Fecal Microbiota Analysis in Patients Going through a Depressive Episode during Treatment in a Psychiatric Hospital Setting. *J Clin Med*, 8.

Liu, H., Zhu, J., Hu, Q. & Rao, X. (2016.) Morganella morganii, a non-negligent opportunistic pathogen. *Int J Infect Dis*, 50, 10-7.

Lloyd-Price, J., Abu-Ali, G. & Huttenhower, C. (2016.) The healthy human microbiome. *Genome Med*, 8, 51.

Loeb, M. (2000.) Antibiotic use in long-term-care facilities: many unanswered questions. *Infect Control Hosp Epidemiol*, 21, 680-3.

Lowy, F. D. (1998.) Staphylococcus aureus infections. *N Engl J Med*, 339, 520-32.

Lu, J. B., F.P.; Thielen P.; Salzberg, S.L. (2017.) Bracken: estimating species abundance in metagenomics data. *PeerJ Computer Science*, 3:e104.

Maleki, A., Ghafourian, S., Taherikalani, M. & Soroush, S. (2019.) Alarming and Threatening Signals from Health Centers About Multi Drug Resistance Staphylococcus haemolyticus. *Infect Disord Drug Targets*, 19, 118-127.

Martinez, J. L., Coque, T. M. & Baquero, F. (2015.) What is a resistance gene? Ranking risk in resistomes. *Nat Rev Microbiol*, 13, 116-23.

Mcgowan, J. E., Jr. (1983.) Antimicrobial resistance in hospital organisms and its relation to antibiotic use. *Rev Infect Dis*, 5, 1033-48.

Mchale, P. J., Keane, C. T. & Dougan, G. (1981.) Antibiotic resistance in Providencia stuartii isolated in hospitalized. *J Clin Microbiol*, 13, 1099-104.

Mehta, R. S., Abu-Ali, G. S., Drew, D. A., Lloyd-Price, J., Subramanian, A., Lochhead, P., Joshi, A. D., Ivey, K. L., Khalili, H., Brown, G. T., Dulong, C., Song, M., Nguyen, L. H., Mallick, H., Rimm, E. B., Izard, J., Huttenhower, C. & Chan, A. T. (2018.) Stability of the human faecal microbiome in a cohort of adult men. *Nat Microbiol*, 3, 347-355.

Michael, C. A., Dominey-Howes, D. & Labbate, M. (2014.) The antimicrobial resistance crisis: causes, consequences, and management. *Front Public Health*, 2, 145.

Mirsepasi-Lauridsen, H. C. V.; Kroghfelt, K.A.; Petersen, A.M. (2019.) Escherichia coli pathobionts associated with inflammatory bowel disease. *Clinical Microbiology Reviews*, 32:e00060-18.
Mitchell, S. L., Shaffer, M. L., Kiely, D. K., Givens, J. L. & D'agata, E. (2013.) The study of pathogen resistance and antimicrobial use in dementia: study design and methodology. *Arch Gerontol Geriatr*, 56, 16-22.

Mitchell, S. L., Shaffer, M. L., Loeb, M. B., Givens, J. L., Habtemariam, D., Kiely, D. K. & D'agata, E. (2014.) Infection management and multidrug-resistant organisms in nursing home residents with advanced dementia. *JAMA Intern Med*, 174, 1660-7.

Mittal, R., Aggarwal, S., Sharma, S., Chhibber, S. & Harjai, K. (2009.) Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. *J Infect Public Health*, 2, 101-11.

Moradigaravand, D., Martin, V., Peacock, S. J. & Parkhill, J. (2017.) Population structure of multidrug resistant Klebsiella oxytoca within hospitals across the UK and Ireland identifies sharing of virulence and resistance genes with K. pneumoniae. *Genome Biol Evol*.

Morrill, H. J., Caffrey, A. R., Jump, R. L., Dosa, D. & Laplante, K. L. (2016.) Antimicrobial Stewardship in Long-Term Care Facilities: A Call to Action. *J Am Med Dir Assoc*, 17, 183 e1-16.

Mulvey, M. R. & Simor, A. E. (2009.) Antimicrobial resistance in hospitals: how concerned should we be? *CMAJ*, 180, 408-15.

Naimi, T. S., Ledell, K. H., Como-Sabetti, K., Borchardt, S. M., Boxrud, D. J., Etienne, J., Johnson, S. K., Vandenesch, F., Fridkin, S., O'boyle, C., Danila, R. N. & Lynfield, R. (2003.) Comparison of community- and health care-associated meticillin-resistant Staphylococcus aureus infection. *JAMA*, 290, 2976-84.

Nicolle, L. E., Bentley, D. W., Garibaldi, R., Neuhaus, E. G. & Smith, P. W. (2000.) Antimicrobial use in long-term-care facilities. SHEA Long-Term-Care Committee. *Infect Control Hosp Epidemiol*, 21, 537-45.

Noel, G. J. (2009.) A Review of Levofloxacin for the Treatment of Bacterial Infections. *Clinical Medicine Insights: Therapeutics*, 1.

O'Donovan, D., Corcoran, G. D., Lucey, B. & Sleator, R. D. (2014.) Campylobacter ureolyticus: a portrait of the pathogen. *Virology*, 5, 498-506.

O'Fallon, E., Gautam, S. & D'agata, E. M. (2009.) Colonization with multidrug-resistant gram-negative bacteria: prolonged duration and frequent cocolonization. *Clin Infect Dis*, 48, 1375-81.

O'Fallon, E., Kandel, R., Schreiber, R. & D'agata, E. M. (2010.) Acquisition of multidrug-resistant gram-negative bacteria: incidence and risk factors within a long-term care population. *Infect Control Hosp Epidemiol*, 31, 1148-53.

O'Toole P.W., C. M. J. (2010.) Gut microbiota: Changes throughout the lifespan from infancy to elderly. *International Dairy Journal*, 20, 281-291.

Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J. Z., Abe, F. & Osawa, R. (2016.) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. *BMC Microbiol*, 16, 90.

Oikonomou, O., Liakopoulos, A., Phee, L. M., Betts, J., Mevius, D. & Wareham, D. W. (2016.) Providencia stuartii Isolates from Greece: Co-Carriage of Cephalexin (blaSHV-5, blaVGB-1), Carbapenem (blaVIM-1), and Aminoglycoside (rmtB) Resistance Determinants by a Multidrug-Resistant Outbreak Clone. *Microb Drug Resist*, 22, 379-86.
Overturf, G. D., Wilkins, J. & Ressler, R. (1974.) Emergence of resistance of Providencia stuartii to multiple antibiotics: speciation and biochemical characterization of Providencia. *J Infect Dis*, 129, 353-7.

Paterson, D. L. (2006a.) Resistance in gram-negative bacteria: enterobacteriaceae. *Am J Med*, 119, S20-8; discussion S62-70.

Paterson, D. L. (2006b.) The role of antimicrobial management programs in optimizing antibiotic prescribing within hospitals. *Clin Infect Dis*, 42 Suppl 2, S90-5.

Penders, J., Stoibbering, E. E., Savelkoul, P. H. & Wolfs, P. F. (2013.) The human microbiome as a reservoir of antimicrobial resistance. *Front Microbiol*, 4, 87.

Peron, E. P., Hirsch, A. A., Jury, L. A., Jump, R. L. & Donskey, C. J. (2013.) Another setting for stewardship: high rate of unnecessary antimicrobial use in a veterans affairs long-term care facility. *J Am Geriatr Soc*, 61, 289-90.

Pop-Vicas, A., Mitchell, S., Kandel, R., Schreiber, R. & D’agata, E. M. (2008.) Multidrug-resistant gram-negative bacteria in a long-term care facility: prevalence and risk factors. *J Am Geriatr Soc*, 56, 1276-80.

Centers for Disease Control and Prevention. 2013. Antibiotic Resistance Threats in the United States, 2013. In: U.S. Department of Health and Human Services. (ed.). Atlanta, GA, U.S.A.

Pugliese, A., Pacris, B., Schoch, P. E. & Cunha, B. A. (1993.) Oligella urethralis urosepsis. *Clin Infect Dis*, 17, 1069-70.

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Pinche, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Dore, J., Guernier, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Meta, H. I. T. C., Bork, P., Ehrlich, S. D. & Wang, J. (2010.) A human gut microbial gene catalogue established by metagenomic sequencing. *Nature*, 464, 59-65.

Rampelli, S., Candela, M., Turroni, S., Biagi, E., Collino, S., Franceschi, C., O’toole, P. W. & Brigidi, P. (2013.) Functional metagenomic profiling of intestinal microbiome in extreme ageing. *Aging (Albany NY)*, 5, 902-12.

Rowan-Nash, A. D., Korry, B. J., Mylonakis, E. & Belenky, P. (2019.) Cross-Domain and Viral Interactions in the Microbiome. *Microbiol Mol Biol Rev.*, 83.

Ruppe, E., Wöther, P. L. & Barbier, F. (2015.) Mechanisms of antimicrobial resistance in Gram-negative bacilli. *Ann Intensive Care*, 5, 61.

Salazar, N., Valdes-Varela, L., Gonzalez, S., Gueimonde, M. & De Los Reyes-Gavilan, C. G. (2017.) Nutrition and the gut microbiome in the elderly. *Gut Microbes*, 8, 82-97.

Salem, N., Salem, L., Saber, S., Ismail, G. & Bluth, M. H. (2015.) Corynebacterium urealyticum: a comprehensive review of an understated organism. *Infect Drug Resist.*, 8, 129-45.

Salyers, A. A., Gupta, A. & Wang, Y. (2004.) Human intestinal bacteria as reservoirs for antibiotic resistance genes. *Trends Microbiol.*, 12, 412-6.

Santoro, A., Ostan, R., Candela, M., Biagi, E., Brigidi, P., Capri, M. & Franceschi, C. (2018.) Gut microbiota changes in the extreme decades of human life: a focus on centenarians. *Cell Mol Life Sci.*, 75, 129-148.
Schaffer, J. N. & Pearson, M. M. (2015.) Proteus mirabilis and Urinary Tract Infections. Microbiol Spectr, 3.

Scott, K. P. (2002.) The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell Mol Life Sci, 59, 2071-82.

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S. & Huttenhower, C. (2011.) Metagenomic biomarker discovery and explanation. Genome Biol, 12, R60.

Singh, L., Cariappa, M. P. & Kaur, M. (2016.) Klebsiella oxytoca: An emerging pathogen? Med J Armed Forces India, 72, S59-S61.

Smith, A. M. & Klugman, K. P. (1998.) Alterations in PBP 1A essential-for high-level penicillin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother, 42, 1329-33.

Snyder, G. M., O'fallon, E. & D'agata, E. M. (2011.) Co-colonization with multiple different species of multidrug-resistant gram-negative bacteria. Am J Infect Control, 39, 506-10.

Spellberg, B. & Doi, Y. (2015.) The Rise of Fluoroquinolone-Resistant Escherichia coli in the Community: Scarier Than We Thought. J Infect Dis, 212, 1853-5.

Struelens, M. J. (1998.) The epidemiology of antimicrobial resistance in hospital acquired infections: problems and possible solutions. BMJ, 317, 652-4.

Sullivan, A., Edlund, C. & Nord, C. E. (2001.) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis, 1, 101-14.

Thulin, S., Olcen, P., Fredlund, H. & Unemo, M. (2006.) Total variation in the penA gene of Neisseria meningitidis: correlation between susceptibility to beta-lactam antibiotics and penA gene heterogeneity. Antimicrob Agents Chemother, 50, 3317-24.

Ticinesi, A., Milani, C., Lauretani, F., Nouvenne, A., Mancabelli, L., Lugli, G. A., Turrioni, F., Duranti, S., Mangifesta, M., Viappiani, A., Ferrario, C., Maggio, M., Ventura, M. & Meschi, T. (2017.) Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Sci Rep, 7, 11102.

Trick, W. E., Kuehnert, M. J., Quirk, S. B., Arudino, M. J., Aguero, S. M., Carson, L. A., Hill, B. C., Banerjee, S. N. & Jarvis, W. R. (1999.) Regional dissemination of vancomycin-resistant enterococci resulting from interfacility transfer of colonized patients. J Infect Dis, 180, 391-6.

Trick, W. E., Weinstein, R. A., Demarais, P. L., Kuehnert, M. J., Tomaska, W., Nathan, C., Rice, T. W., Mcallister, S. K., Carson, L. A. & Jarvis, W. R. (2001.) Colonization of skilled-care facility residents with antimicrobial-resistant pathogens. J Am Geriatr Soc, 49, 270-6.

Tsubakishita, S., Kuwahara-Arai, K., Sasaki, T. & Hiramatsu, K. (2010.) Origin and molecular evolution of the determinant of methicillin resistance in staphylococi. Antimicrob Agents Chemother, 54, 4352-9.

Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., Sogin, M. L., Jones, W. J., Roe, B. A., Affourtit, J. P., Egholm, M., Henrissat, B., Heath, A. C., Knight, R. & Gordon, J. I. (2009.) A core gut microbiome in obese and lean twins. Nature, 457, 480-4.

Van Buul L.W., V. D. S. J. T., Veenhuizen R.B., Achterberg W.P., Schellevis F.G., Essink R.T.G.M., Van Benthem B.H.B., Natsch S., Hertogh C.M.P.M. (2012.) Antibiotic Use and Resistance in Long Term Care Facilities. Journal of the American Medical Directors Association, 12, 568.e1-568.e13.
Van Den Dool, C., Haenen, A., Leenstra, T. & Wallinga, J. (2016.) The Role of Nursing Homes in the Spread of Antimicrobial Resistance Over the Healthcare Network. *Infect Control Hosp Epidemiol*, 37, 761-7.

Van Schaik, W. (2015.) The human gut resistome. *Philos Trans R Soc Lond B Biol Sci*, 370, 20140087.

Van Tongeren, S. P., Slaets, J. P., Harmsen, H. J. & Welling, G. W. (2005.) Fecal microbiota composition and frailty. *Appl Environ Microbiol*, 71, 6438-42.

Ventola, C. L. (2015.) The antibiotic resistance crisis: part 1: causes and threats. *P T*, 40, 277-83.

Warren, J. W. (1986.) Providencia stuartii: a common cause of antibiotic-resistant bacteriuria in patients with long-term indwelling catheters. *Rev Infect Dis*, 8, 61-7.

Weiner, L. M., Webb, A. K., Limbago, B., Dudeck, M. A., Patel, J., Kallen, A. J., Edwards, J. R. & Sievert, D. M. (2016.) Antimicrobial-Resistant Pathogens Associated With Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. *Infect Control Hosp Epidemiol*, 37, 1288-1301.

Wie, S. H. (2015.) Clinical significance of Providencia bacteremia or bacteriuria. *Korean J Intern Med*, 30, 167-9.

Wilmer, A. W., P.; Press, N.; Leung, V.; Romney, M.; Champagne, S. (2013.) Oligella urethralis as a Cause of Urosepsis. *Clinical Microbiology Newsletter*, 35, 84-85.

Wood, D. E. & Salzberg, S. L. (2014.) Kraken: ultrafast metagenomic sequence classification using exact alignments. *Genome Biol*, 15, R46.

Woodward, S. E., Krekhno, Z. & Finlay, B. B. (2019.) Here, there, and everywhere: How pathogenic E. coli sense and respond to gastrointestinal biogeography. *Cell Microbiol*, 1015, e13107.

Yang, H. M.-L., H.C.; Struve, C.; Allaire, J.M.; Bosman, E.; Sivignon, A.; Vogl, W.; Ma, C.; Reid, G.; Li, X.; Petersen, A.M.; Jacobson, K.; Gouin, S.; Barnich, N.; Yu, H.; Krogfelt, K.A.; Vallance, B.A. (2019.) Ulcerative Colitis-associated E. coli Pathobionts Potentiate Colitis in Susceptible Hosts. *The Journal of Immunology*, 202, 192.3.

Zapun, A., Contreras-Martel, C. & Vernet, T. (2008.) Penicillin-binding proteins and beta-lactam resistance. *FEMS Microbiol Rev*, 32, 361-85.

Ziegler, M., Han, J. H., Landsburg, D., Pegues, D., Reesey, E., Gilmar, C., Gorman, T., Bink, K., Moore, A., Kelly, B. J. & Program, C. D. C. P. E. (2019.) Impact of Levofloxacin for the Prophylaxis of Bloodstream Infection on the Gut Microbiome in Patients With Hematologic Malignancy. *Open Forum Infect Dis*, 6, ofz252.
Figure 1: Subject Overview and Diversity Metrics

(A) Metagenomic sequencing was performed on longitudinal samples from eleven subjects from SPREAD who had received a single course of levofloxacin during their participation in the study. Points represent collection of samples, at intervals of approximately 3 months, relative to administration of levofloxacin. See Supplemental Tables 2-4 for metagenomic sequencing results. (B) Shannon diversity over time of all subjects based on metagenomic sequencing data. The dashed line indicates administration of levofloxacin. \(p = 0.175 \) for immediately pre-levofloxacin vs. immediately post-levofloxacin samples and \(p = 0.1006 \) for all pre-levofloxacin vs. all post-levofloxacin samples; Mann-Whitney test. (C) PCoA analysis of Bray-Curtis Dissimilarity based on metagenomic sequencing data. Solid arrows connect immediately pre-with immediately post-levofloxacin samples, dashed arrows connect other sequential samples, and dotted arrows connect samples where an intermediate sample is missing. (D) Within-subjects Bray-Curtis Dissimilarity of sequential samples based on metagenomic sequencing data. \(p = 0.6248 \) between pre-levofloxacin samples, post-levofloxacin samples, or pre-post levofloxacin samples; ANOVA). (E) Overall within-subjects, T0 between-subjects, and overall between-subjects Bray-Curtis Dissimilarity based on metagenomic sequencing data. \(p = 0.0262 \) for overall within-subjects vs. T0 between-subjects and \(p = 0.0175 \) for overall within-subjects vs. overall between-subjects; t-test with Welch’s correction.

Figure 2: Relative Abundances of Species and Antimicrobial Resistance Genes

(A) Relative abundance of the most-abundant species across all samples, with all other species grouped in the “other” category. Species are grouped by genus and phylum, and are ranked within those levels by average relative abundance across all samples. Broad color categories
distinguish phylum (Proteobacteria are red, Bacteroidetes are blue, Firmicutes are green, and
Actinobacteria are purple), while different species of the same genus are given the same specific
background color. Red lines indicate levofloxacin administration; dashed lines indicate usage
between consecutive timepoints, while dotted lines indicate usage where the immediately post-
levofoxacin sample is missing. See Supplemental Table 3 for underlying taxonomic abundances.

(B) Relative abundance of the most-abundant antimicrobial resistance genes (ARGs) across all
samples. Specific ARGs are grouped by the class of antimicrobials they provide resistance to.
Broad color categories distinguish class (Multidrug RGs are blue, MLS RGs are red, etc.), while
related gene categories (ex: the mec operon or mex efflux proteins) are given the same specific
background color. All ARGs were normalized to the total number of reads. See Supplemental
Table 5 for underlying ARG abundances.

Figure 3: Antimicrobial Resistance Gene Profiles Reflect Taxonomic Observations

(A) Relative abundance of species in Subject A, showing a bloom in *S. aureus* at T12. (B) Relative abundance of ARG classes in Subject A, showing an expansion in beta-lactam resistance genes at T12. (C) Relative abundance of beta-lactam resistance genes in Subject A, showing increases in the *mecA/mecI/mecRI* operon at T12. (D) Relative abundance of species in Subject B, showing a bloom in *E. coli* at T3. (E) Relative abundance of ARG classes in Subject B, showing an expansion in multidrug, beta-lactam, and fluoroquinolone resistance genes at T3. (F) Relative abundance of multidrug resistance genes in Subject B, showing increases in various ARGs at T3. (G) Relative abundance of fluoroquinolone resistance genes in Subject B, showing increases in genes including *patA* and *mdtK* at T3. (H) Relative abundance of beta-lactam resistance genes in Subject B, showing increases in genes including penicillin-binding proteins and class C beta-lactamase at T3. (I) Relative abundance of species in Subject H, showing a
bloom in *S. haemolyticus* at T6. (J) Relative abundance of ARG classes in Subject H, showing increases in MLS and fluoroquinolone resistance genes. (K) Relative abundance of MLS resistance genes in Subject H, showing an increase in staphylococcal resistance gene *msrA* and others at T6. (L) Relative abundance of fluoroquinolone resistance genes in Subject H, showing an increase in staphylococcal resistance gene *norB* and others at T6. See Supplemental Tables 3 and 5 for underlying taxonomic and ARG abundances.

Figure 4: Relationship of ARG Levels to the Relative Abundance of Specific Pathobionts

(A) Correspondence between the relative abundances of key species of interest (*E. coli*, *P. mirabilis*, *E. faecalis*, *P. stuartii*, and *S. haemolyticus*) and total ARG density in each sample. (B) Correlation between the sum of the relative abundances of *E. coli*, *P. mirabilis*, and *E. faecalis* and the total ARG density in each sample ($r = 0.791$, $R^2 = 0.6254$, $p < 0.0001$; Pearson’s correlation). Outliers are labeled by sample and with the species that may be driving high ARG levels; PS = *P. stuartii*, SH = *S. haemolyticus*. (C) Correlation between the sum of the relative abundances of *E. coli*, *P. mirabilis*, *E. faecalis*, *P. stuartii*, and *S. haemolyticus* and the total ARG density in each sample ($r = 0.933$, $R^2 = 0.8706$, $p < 0.0001$; Pearson’s correlation). (D) Average ARG density in bins of species across all samples in which we were able to construct a bin for that species. Specific genes are grouped and colored by their ARG class, and bins are grouped by phylum and ranked by their total average ARG density within that phylum. See Supplemental Tables 3 and 5 for underlying taxonomic and ARG abundances.

Figure 5: Comparison of MDRO and non-MDRO Bins of the Same Species, Related to Figure 4
(A) ARG density in all *E. coli* bins across samples. (B) ARG density in all *P. mirabilis* bins across samples. (C) Beta-lactam ARG density in all *S. aureus* bins across samples. See Supplemental Table 5 for underlying ARG abundances.

Figure 6: Prediction of ARG Density From Relative Abundance of Specific Pathobionts

(A) Correlation between the sum of the relative abundances of *E. coli*, *P. mirabilis*, and *E. faecalis* and the total ARG density in each sample in the test dataset (r = 0.7139, r² = 0.5096, p<0.0001; Pearson’s correlation). (B) Correlation between the sum of the relative abundances of *E. coli*, *P. mirabilis*, *E. faecalis*, *P. stuartii*, and *S. haemolyticus* and the total ARG density in each sample in the test dataset (r = 0.7753, r² = 0.6012, p<0.0001; Pearson’s correlation). (C) Multiple linear regression of relative abundances of *E. coli*, *P. mirabilis*, and *E. faecalis* to ARG density in samples in the levofloxacin dataset. (D) Correlation between the predicted ARG density and actual ARG density in the test dataset based on the relative abundances of *E. coli*, *P. mirabilis*, and *E. faecalis*. (E) Multiple linear regression of relative abundances of *E. coli*, *P. mirabilis*, *E. faecalis*, *P. stuartii*, and *S. haemolyticus* to ARG density in samples in the levofloxacin dataset. (F) Correlation between the predicted ARG density and actual ARG density in the test dataset based on the relative abundances of *E. coli*, *P. mirabilis*, *E. faecalis*, *P. stuartii*, and *S. haemolyticus*. See Supplemental Tables 3 and 5 for underlying taxonomic and ARG abundances. Outliers are labeled by sample and with the species that may be driving high ARG levels; KP = *K. pneumoniae*, PA = *P. aeruginosa*, PS = *P. stuartii*, SH = *S. haemolyticus.*
EXCEL-FORMAT SUPPLEMENTAL TABLES

Supplemental Table 2: Sequencing and Data Processing Information, Related to Figure 1

This file lists the initial read counts, the number of total, forward, and reverse reads remaining after processing with kneaddata, and the percentage of paired reads assigned taxonomy using Kraken2.

Supplemental Table 3: Taxonomic Classifications from Shotgun Metagenomics (Kraken2/Bracken2) and 16S rRNA Sequencing (QIIME2), Related to Figures 1-4,6

This file includes the relative abundances of the taxonomic classifications from metagenomics sequencing at the phylum, genus, and species level for both the initial levofloxacin-treated dataset (tabs 1, 2, and 3) and the second, larger test dataset (tabs 4, 5, and 6). This file also includes the relative abundances of the taxonomic classifications from 16S rRNA sequencing at the phylum (tab 7) and genus (tab 8) level for the initial levofloxacin-treated dataset.

Supplemental Table 4: Metagenomic Classifications from HUMAnN2, Related to Figure 1

This file includes the relative abundances of the MetaCyc pathway (tab 1), KEGG ortholog (tab 2), and GO term (tab 3) outputs for the initial levofloxacin-treated dataset.

Supplemental Table 5: Antimicrobial Resistance Gene profiles from DeepARG, Related to Figure 2-6

This file includes the relative abundances of antimicrobial class and specific resistance genes at the phylum, genus, and species level for the initial levofloxacin-treated dataset (tabs 1 and 2), the second, larger test dataset (tabs 3 and 4), and the bins generated by PATRIC (tabs 5 and 6).
Supplemental Table 6: Bins selected for DeepARG analysis, Related to Figure 4-5

This file lists all of the bins generated by PATRIC that were selected to be analyzed using DeepARG. It includes all quality scores used to assess bin quality, as well as the PATRIC reference genome used to annotate the bin and the source of the bin.
Antimicrobial resistance gene prevalence in a population of patients with advanced dementia is related to specific pathobionts
Aislinn D. Rowan-Nash, Rafael Araos², Erika M.C. D’Agata, & Peter Belenky

- Longitudinal analysis of the rectal microbiota of advanced dementia patients
- The microbiota was temporally unstable and characterized by pathobiont blooms
- Antimicrobial resistance gene burden correlated with abundances of pathobionts
- Genome assembly revealed that these species carried high levels of resistance genes