INTERPRETATION OF SURFACE ASPECTS OF CELL SECTIONS

G. M. VASSART, J. E. DUMONT, and F. R. L. CANTRAINE. From the Laboratory of Nuclear Medicine, School of Medicine, Free University of Brussels, and the Biology Department, Euratom, B-1000 Brussels, Belgium

INTRODUCTION

In many types of cells, portions of the cellular surface are specialized. The morphology of such areas often reflects this specialization: the cell membrane may form ciliae, villi, etc.; or cytoplasmic processes such as pseudopods may protrude. It would be of great interest to know the probability for one random thin section of a cell to demonstrate the existence of such a specialized area. More generally, given a population of structures presenting on a portion of their surface a particular character, we would like to define the probability for one random section in such a structure to show this character.

METHOD

We assume that: (a) the structure is a sphere of radius R; (b) the morphological particularity is located on a cap of the sphere, defined by the solid angle ϕ of a sphere. It gives the probability for one thin section of a cell to show a morphological particularity located on a portion of the cellular surface corresponding to the extent of such a cap. The angles are measured in radians.

To each secant plane of the sphere, we associate the perpendicular vector \mathbf{v} (the modulus of which is smaller than R) arising from the center O of the sphere. If \mathbf{v} scans the whole sphere in any direction, the extremities of the vectors corresponding to secant planes which intersect the cap generate a volume V_1. This volume divided by the volume of the sphere...
For convenience, \(\phi \) is here measured in degrees.

\[V_1 = \pi R^4 \left(\frac{1}{2} - \cos \alpha \right) \left[\frac{1}{2} - \cos \alpha - \cos^2 \alpha \right] + \frac{1}{2} \sin \alpha \left(\pi - \alpha + \sin \alpha - \cos \alpha \cos \alpha \right), \]

\[\text{Probability} = \frac{V_1}{4/3 \pi R^3} = \frac{1}{2} + \frac{3}{16} (\pi - \alpha) \sin \alpha - \frac{9}{16} \cos \alpha + \frac{1}{16} \cos^2 \alpha, \]

where \(\alpha = \phi/2 \).

RESULTS AND APPLICATION

Fig. 2 shows a plot of probability vs. \(\phi \). Some key values for probability are given in Table I. This formula can be applied to sections of any subcellular, cellular, or pluricellular spherical structures (e.g., renal glomeruli). We have applied this method to the following example. In electron microscope study of isolated sheep thyroid cells, Nève et al. (1) (later supported by Tixier-Vidal et al. [2]) observed cells widely separated from each other; no brush border was observed on 155 of these cells although it is well known that thyroid cells in situ possess such a structure on their apical border. If we assume that a thyroid cell is cubical in situ and becomes spherical when isolated (as suggested by Nève et al. [1] and Tixier-Vidal [2]), the \(\phi \) corresponding to one face of the cube transported on the sphere equals (\(\pi / 2 \)) radians (90°). Since the thickness of the sections is small (about 0.05 \(\mu \)) as compared with the maximum observed diameter of the cells (8\(\mu \)) we are allowed to apply the formula. So probability = 0.43 (Fig. 2).

If the cells exposed to microtome section have no preferential orientation, these authors should have observed approximately 66 cells (155 \(\times \) 0.43) showing a brush border. The probability of not observing any cells with a brush border in the population would have been in the range of 10^{-6}. This calculation thus supports the conclusion that these isolated cells had lost their brush border.

From a general point of view, it is worthwhile to note: (a) that the same method with only slight modifications in the calculus would allow computing such probabilities in any structure presenting a cylindrical symmetry; (b) that, if the frequency of demonstration of a surface character on sections is known (e.g. from micrographs), it is possible to compute the extent of the surface presenting the character.

SUMMARY

Given a population of isolated structures presenting on a portion of their surface some morphological particularities, a mathematical model is developed which allows computation of the probability for one thin section in such a structure to show this particularity. An example of application of the method is given in the case of isolated thyroid cells.

This work was accomplished under contract of the Ministère de la Politique Scientifique as part of the Association Contract Euratom, University of Brussels, University of Pisa No. 026-63-4 BIAC.

Contribution 589 of the Euratom Biology Department.

Dr. Vassart is an aspirant au Fonds National de la Recherche Scientifique.

Received for publication 18 May 1970, and in revised form 3 November 1970.

REFERENCES

1. Nève, P., F. R. Rodeschi, and J. E. Dumont.
1968. Electron microscopy of isolated sheep thyroid cells. *Exp. Cell Res.* 51:68.

2. Tixier-Vidal, A., R. Picart, L. Rappaport, and J. Nunez. 1969. Ultrastructure et auto-radiographie des cellules thyroïdiennes, incubées en présence de 125I. *J. Ultrastruct. Res.* 28:78.