Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
enabled through remote communication solutions can remove sonographer uncertainty in determining when enough images have been acquired to answer the clinical question, thereby increasing efficiency. Such technological solutions, along with other strategies to limit sonographer exposure, may be valuable tools for adhering to the American Society of Echocardiography’s recommendations for performing echocardiograms during the COVID-19 pandemic.1,3,4

ACKNOWLEDGMENTS

Philips Healthcare provided access to the Philips Collaboration Live Feature on EPIQ Ultrasound Machines.

Noreen P. Kelly, MD, MBA, FASE
Erica Scherer, BS
Kristie Johnson, RDCC, FASE
Allyson Boyle, RDCC, FASE
Geoffrey A. Rose, MD, FASE
Dermot M. Phelan, MD, PhD, FASE
Sanger Heart and Vascular Institute, Charlotte, North Carolina

REFERENCES

1. Hung J, Abraham TP, Cohen MS, Main ML, Mitchell C, Rigolin VH, et al. ASE statement on the reintroduction of echocardiographic services during the COVID-19 pandemic. J Am Soc Echocardiogr 2020;33:1034-9.
2. Pringle JC, Leikauskas J, Ransom-Kelley S, Webster B, Santos S, Fox H, et al. COVID-19 in a correctional facility employee following multiple brief exposures to persons with COVID-19–Vermont, July-August 2020. MMWR Morb Mortal Wkly Rep 2020;69:1569-70.
3. Jozsa C, Ussen B, Monteiro R, Bingcang R, Lloyd G, Bhattacharyya S. Impact of focused echocardiography on scan time and diagnostic quality in patients with covid-19. J Am Soc Echocardiogr 2020;33:1415-6.
4. McMahon SR, De Francis G, Schwartz S, Duvall WL, Arora B, Silverman DI. Tablet-based limited echocardiography to reduce sonographer scan and decontamination time during the covid-19 pandemic. J Am Soc Echocardiogr 2020;33:895-9.

https://doi.org/10.1016/j.echo.2021.10.014

Reduced Cardiac Function by Echocardiography in a Minority of COVID-19 Patients 3 Months after Hospitalization

Studies have shown cardiac abnormalities in a majority of hospitalized patients with ongoing COVID-19 disease.1 There are, however, conflicting results regarding ventricular function in patients recovered from COVID-19. One recent echocardiographic study showed abnormalities in ventricular function in nearly one-third of patients after 3 months.2 Cardiovascular magnetic resonance studies have revealed a high frequency of cardiac involvement in patients recovered from COVID-19.3

All 92 patients were recruited prospectively at the time of hospitalization as a part of the NOR-Solidarity study evaluating the effect of repurposed antiviral drugs on hospitalized adult (≥18 years) COVID-19 patients.4 Fourteen Norwegian hospitals did echocardiographic examinations of the patients 3 months after hospitalization. All measurements were performed at the core laboratory at Oslo University Hospital Rikshospitalet, according to current guidelines.5 Intra- and interobserver reproducibility for left ventricular (LV) global longitudinal strain (GLS) in 10 random patients showed intraclass correlation coefficients of 0.90 (P = .001) and 0.94 (P < .001). Thirty-five healthy individuals matched for age and gender were used as controls.

The COVID-19 patients were 59 ± 13 years old (69% male). Twenty-five percent had hypertension, 16% had diabetes, and 16% had chronic heart disease prior to COVID-19.

Three months after hospitalization, all patients had normal LV ejection fraction (LVEF ≥ 53%). In the COVID-19 patients as a whole, LV GLS was reduced compared with the control group (–18.6% ± 2.2% vs –20.1% ± 2.0%, P = .001), but only 14 patients experienced LV GLS < –17%. Of these, eight patients had LV hypertrophy, including four with known hypertension. In the six remaining patients, reduced LV GLS could not be attributed to hypertrophic or any other known premorbid cardiac diseases.

During hospitalization, 18 (20%) patients went through the intensive care unit, but only three needed mechanical ventilation. There was no difference in frequency of impaired LV GLS in intensive care unit patients compared with non-intensive care unit patients (3/18 vs 11/74, P = .344). We could not find any significant differences in LV GLS in the antiviral treatment groups (remdesivir –18.6% ± 2.3%, hydroxychloroquine –18.6% ± 2.3%) compared with controls (–18.5% ± 2.2%, P = 1.00).

Right ventricular (RV) function was normal in all COVID-19 patients and was similar to the control group when assessed by fractional area change and free wall longitudinal strain but was slightly lower when assessed by tricuspid annular plane systolic excursion. The results at 3 months are detailed in Table 1.

Table 1 Echocardiographic data in 92 patients 3 months after recovery from COVID-19 compared with healthy individuals

Study patients (n = 92)	Healthy individuals (n = 35)	P value	
LVEF, %	63 ± 6	61 ± 6	.241
LV GLS, %	–18.6 ± 2.2	–20.0 ± 2.2	.001
LVEDd, cm/m²	2.4 ± 0.3	2.5 ± 0.3	.247
LVEDV, mL	120 ± 29	130 ± 25	.144
LVESV, mL	47 ± 15	50 ± 12	.496
LAVi, mL/m²	27.9 ± 7.8	22.3 ± 6.4	.245
RV FAC, %	48 ± 7	47 ± 6	.519
RV FwLS, %	–28.4 ± 4.6	–28.3 ± 3.9	.974
TAPSE, cm	2.3 ± 0.3	2.4 ± 0.2	.022
E/e	8.4 ± 2.4	7.4 ± 2.2	.082
Estimated SPAP, mm Hg	29.0 ± 7.5	22.8 ± 5.5	.002

Data are presented as mean ± SD.

| FAC: Fractional area change; FwLS, free wall longitudinal strain; LAVi, left atrial volume index; LVEDd, LV end-diastolic diameter (normalized by body surface area [cm/m²]); LVEDV, LV end-diastolic volume; LVESV, LV end-systolic volume; SPAP, systolic pulmonary artery pressure; TAPSE, tricuspid annular plane systolic excursion.

This study received support from the National Clinical Therapy Research in the Specialist Health Services, Norway.

Conflicts of Interest: None.

Reprint requests: Professor Thor Edvardsen, MD, PhD, Department of Cardiolog, Oslo University Hospital Rikshospitalet, Sognsvannveien 20, 0372 Oslo, Norway. (E-mail: thor.edvardsen@medisin.uio.no).
After 3 months, 12 patients (13%) had elevated high-sensitivity cardiac troponin (>99% percentile), but only one of these had decreased LV GLS.

In summary, our prospective study showed normal LV function by LVEF in all patients 3 months after hospitalization for COVID-19. However, LV GLS was reduced in 15% of the patients. Furthermore, we could not find any relationships between reduced GLS and disease severity (treatment at intensive care unit) or elevated high-sensitivity cardiac troponin after 3 months. The majority of the patients with reduced GLS had arterial hypertension prior to COVID-19 infection; this might explain the impaired LV function, but we cannot exclude that this was caused by COVID-19. Cardiac function might potentially be influenced by the antiviral medications, but we could not find such effect. Our study was, however, not originally designed for this purpose.

The number of patients is small and increases the risk of both type I and type II statistical errors. Another limitation is lack of comparison with echocardiographic examination during hospitalization. Our study underscores the need for more studies on long-term cardiovascular consequences after COVID-19.

Jorun Tangen, MD
ProCardio Center for Innovation
Department of Cardiology
Rikshospitalet
Oslo University Hospital
Oslo, Norway
Institute for Clinical Medicine
University of Oslo
Oslo, Norway

Pal Aukrust, MD, PhD
Institute for Clinical Medicine
University of Oslo
Oslo, Norway
Section of Clinical Immunology and Infectious Diseases
Oslo University Hospital
Oslo, Norway
Research Institute of Internal Medicine
University of Oslo
Oslo, Norway

Andreas Barratt-Due, MD, PhD
Institute for Clinical Medicine
University of Oslo
Oslo, Norway
Division of Critical Care and Emergencies
Oslo University Hospital
Oslo, Norway

Thor Edvardsen, MD, PhD
ProCardio Center for Innovation
Department of Cardiology
Rikshospitalet
Oslo University Hospital
Oslo, Norway
Institute for Clinical Medicine
University of Oslo
Oslo, Norway

REFERENCES

1. Jain SS, Liu Q, Raikhelkar J, Fried J, Elias P, Poterucha TJ, et al. Indications for and findings on transthoracic echocardiography in COVID-19. J Am Soc Echocardiogr 2020;33:1278-84.
2. Moody WE, Liu B, Mahmoud-Elsayed HM, Senior J, Lalla SS, Khan-Kheil AM, et al. Persisting adverse ventricular remodeling in COVID-19 survivors: a longitudinal echocardiographic study. J Am Soc Echocardiogr 2021;34:562-6.
3. Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020;5:1265-73.
4. Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, Abdool Karim Q, et al. Repurposed antiviral drugs for Covid-19—interim WHO Solidarity Trial results. N Engl J Med 2021;384:497-511.
5. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong E, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2015;16:233-70.

https://doi.org/10.1016/j.echo.2021.10.014