Data Article

Dataset on wood density of trees in ecotone forests in Northern Brazilian Amazonia

Hugo Leonardo Sousa Fariasa,*, Williamar Rodrigues Silvaa, Ricardo de Oliveira Perdizb, Arthur Camurça Citóc, Lidiany Camila da Silva Carvalhod, Reinaldo Imbrozio Barbosac

a UFRR/PRONAT, Boa Vista, Roraima, Brazil
b INPA/PPGBOT, Boa Vista, Roraima, Brazil
c INPA/NAPRR, Boa Vista, Roraima, Brazil
d University of Exeter, Exeter, UK

\section*{ARTICLE INFO}

\textbf{Article history:}
Received 26 December 2019
Revised 5 February 2020
Accepted 26 February 2020
Available online 7 March 2020

\textbf{Keywords:}
Specific gravity
Forest ecology
Tropical forest
Tree
Wood technology

\section*{ABSTRACT}

Wood density is expressed by the ratio between dry weight and fresh volume of a sample piece. The value of this measure is an important variable for assessing wood functional properties, successional stages and biomass/carbon stock estimates in different terrestrial ecosystems. Wood density data were collected for tree species from ecotone forests of the northern Brazilian Amazonia. We sampled 680 individuals with stem diameter ≥ 10 cm. For each sampled individual measurements were taken for three stem variables: bark thickness (mm), bark density (g cm$^{-3}$) and wood density (g cm$^{-3}$). This dataset is intended to improve biomass and carbon estimates of forests in the northern ecotone region of Brazilian Amazonia, an area poorly known in terms of ecosystem dynamics.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

* Corresponding author.
E-mail address: hugosousafarias@hotmail.com (H.L.S. Farias).

https://doi.org/10.1016/j.dib.2020.105378
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
Value of the Data

- A wood density database is essential to improve biomass and carbon stock estimates at local, regional and global scales.
- The generated data are key for understanding of climate change effects on ecotonal forest dynamics in northern Brazilian Amazonia.
- These data are an important reference source for research on tree species functional traits linked to diversity and spatial distribution.

1. **Data**

This research reports on a wood density data set for northern Brazilian Amazonia ecotonal forests. **Table 1** shows the density of stem wood (sapwood + heartwood), bark density and bark thickness from 110 tree species and morphospecies (mean ± SD) present in ecotone forests of eastern Maracá Island. **Fig. 1** shows the fieldwork to collect the stem samples and the subdivisions of the samples considered in this research for calculation of wood density.

2. **Experimental design, materials and methods**

2.1. **Sampling area description**

Data were collected from the Biodiversity Research Program (PPBio) research grid, located on the east of Maracá Island (or Ilha de Maracá), which lies within the Maracá Ecological Station (3.360 N a 3.405 N / −61.442 W a −61.486 W), State of Roraima, northern Brazilian Amazonia, as
Table 1
Tree species and morphospecies wood density from ecotone forests of northern Brazilian Amazonia (mean ± SD). Samples = number of individuals sampled, Bark T = bark thickness in millimeters, Bark D = bark density, Core WD = sapwood + heartwood density, Weighted average WD = weighted average between Bark D and Core WD.

Family	Species	Samples	Bark T (mm)	Bark D (g cm⁻³)	Core WD (g cm⁻³)	Weighted average WD (g cm⁻³)
Achariaceae	Lindackeria paludosa	3	3.74 ± 1.26	0.606 ± 0.139	0.694 ± 0.101	0.691 ± 0.094
Anacardiaceae	Astromium lecontei	3	6.00 ± 2.65	0.691 ± 0.076	0.778 ± 0.178	0.774 ± 0.170
	Spondias mombin	1	14.1	0.250	0.774	0.735
Annonaceae	Dugueta lepidota	14	8.14 ± 2.21	0.535 ± 0.102	0.796 ± 0.043	0.780 ± 0.042
	Dugueta lucida	3	10.33 ± 4.04	0.407 ± 0.129	0.732 ± 0.023	0.710 ± 0.020
	Guatteria citriodora	1	4.1	0.128	0.604	0.594
	Guatteria schomburgkiana	8	8.27 ± 4.11	0.488 ± 0.177	0.646 ± 0.116	0.638 ± 0.113
	Xylophia amazonica	2	9.00 ± 0.00	0.533 ± 0.131	0.669 ± 0.093	0.662 ± 0.081
Apocynaceae	Aspidosperma nitidum	1	2.7	0.418	0.828	0.820
	Aspidosperma spruceanum	3	8.94 ± 2.54	0.733 ± 0.099	0.750 ± 0.024	0.750 ± 0.024
	Himantanthus articulatus	35	9.33 ± 4.40	0.459 ± 0.153	0.567 ± 0.039	0.562 ± 0.040
Araliaceae	Schefflera morototoni	2	3.50 ± 0.57	0.479 ± 0.086	0.323 ± 0.017	0.327 ± 0.019
Bignoniaceae	Handroanthus obscurus	2	5.00 ± 1.41	0.259 ± 0.058	0.862 ± 0.059	0.838 ± 0.064
	Handroanthus uleanus	4	4.45 ± 0.53	0.508 ± 0.104	0.811 ± 0.089	0.802 ± 0.086
Bixaceae	Cochlospermum orinicense	3	12.37 ± 4.75	0.520 ± 0.318	0.424 ± 0.147	0.425 ± 0.150
Boraginaceae	Cordia tetrandra	5	6.94 ± 2.91	0.441 ± 0.186	0.476 ± 0.200	0.476 ± 0.197
Burseraceae	Protium neglectum	2	3.50 ± 2.12	0.488 ± 0.387	0.554 ± 0.023	0.556 ± 0.014
	Protium polybotryum	2	4.94 ± 2.17	0.801 ± 0.212	0.571 ± 0.016	0.584 ± 0.001
	Protium rhoifolium	4	4.39 ± 3.19	0.701 ± 0.088	0.585 ± 0.045	0.589 ± 0.045
	Protium stevensonii	22	4.62 ± 2.11	0.705 ± 0.155	0.709 ± 0.072	0.709 ± 0.071
	Protium unifoliolatum	8	4.20 ± 1.68	0.614 ± 0.154	0.692 ± 0.049	0.688 ± 0.046
	Trattinnickia glaziowii	5	4.06 ± 1.47	0.624 ± 0.191	0.422 ± 0.024	0.427 ± 0.019
	Trattinnickia rhoifolia	3	5.81 ± 1.28	0.537 ± 0.017	0.521 ± 0.099	0.523 ± 0.094
Caryocaraceae	Caryocar villosum	1	6.8	0.707	0.569	0.575
Celastraceae	Maytenus guanensis	5	3.08 ± 1.12	0.757 ± 0.128	0.722 ± 0.040	0.723 ± 0.040
Chrysobalanaceae	Exellodendron barbatum	8	3.71 ± 1.43	0.826 ± 0.116	0.841 ± 0.061	0.841 ± 0.061
	Hirtela racemosa	1	2.0	0.859	0.785	0.786
	Leptobalanus apetalus	5	3.30 ± 1.48	0.725 ± 0.123	0.747 ± 0.062	0.746 ± 0.063
Chrysobalanaceae	Licania kunthiana	3	3.96 ± 2.10	0.733 ± 0.055	0.803 ± 0.101	0.802 ± 0.097
	Licania discolor	17	5.09 ± 2.33	0.748 ± 0.176	0.825 ± 0.124	0.824 ± 0.121
	Moquilea minutiflora	3	6.50 ± 2.60	0.601 ± 0.067	0.624 ± 0.023	0.623 ± 0.019
Clusiaceae	Garcinia macrophylla	1	4.0	0.962	0.674	0.685
Elaeocarpaceae	Sloanea guianaensis	2	4.00 ± 0.00	0.573 ± 0.348	0.870 ± 0.058	0.866 ± 0.061
Erythroxylaceae	Erythroxylum mucronatum	1	8.0	0.582	0.819	0.806
Euphorbiaceae	Mabea speciosa	2	2.82 ± 1.67	0.515 ± 0.546	0.567 ± 0.021	0.567 ± 0.030

(continued on next page)
Family	Species	Samples	Bark T (mm)	Bark D (g cm\(^{-3}\))	Core WD (g cm\(^{-3}\))	Weighted average WD (g cm\(^{-3}\))
Lamiaceae	Vitex schomburgkiana	3	5.47 ± 2.78	0.667 ± 0.074	0.606 ± 0.064	0.607 ± 0.063
Lauraceae	Aniba sp.	1	7.7	0.507	0.622	0.616
	Endlicheria dictifarínosa	1	10.0	0.565	0.478	0.483
	Licaria chrysophylla	1	2.0	0.988	0.677	0.682
	Mezilaurus crassiramea	3	4.66 ± 3.06	0.541 ± 0.213	0.697 ± 0.021	0.694 ± 0.024
	Ocotea sandwihii	7	4.31 ± 1.33	0.649 ± 0.245	0.664 ± 0.045	0.664 ± 0.041
Lecythidaceae	Couratari multiflora	1	4.1	0.203	0.468	0.459
	Eschweileria pedicellata	4	5.90 ± 3.48	0.767 ± 0.115	0.759 ± 0.035	0.758 ± 0.036
	Eschweileria sp.\(^1\)	9	5.74 ± 3.24	0.603 ± 0.208	0.698 ± 0.141	0.695 ± 0.139
	Gustavia augusta	2	6.25 ± 0.95	0.340 ± 0.158	0.698 ± 0.037	0.682 ± 0.042
Leguminosae	Lecythis corregata subsp. rosea	66	6.39 ± 3.14	0.628 ± 0.159	0.733 ± 0.074	0.730 ± 0.073
	Albizia glabrifolata	1	4.5	0.398	0.622	0.617
	Albizia pedicellaris	1	9.0	0.598	0.405	0.411
	Albizia sp.	1	8.0	0.258	0.518	0.503
	Andira surinamensis	2	4.00 ± 0.00	0.413 ± 0.275	0.688 ± 0.037	0.682 ± 0.041
	Caesalpinia sp.	2	5.01 ± 4.26	0.561 ± 0.095	0.665 ± 0.057	0.660 ± 0.050
	Centrolebium paraense	2	4.45 ± 0.64	0.843 ± 0.019	0.755 ± 0.004	0.756 ± 0.004
	Dialium guianense	1	0.5	0.746	0.784	0.784
	Enterolobium schomburgkii	2	4.00 ± 0.00	0.688 ± 0.080	0.573 ± 0.079	0.576 ± 0.074
	Hymenaea sp.	1	3.0	0.924	0.884	0.885
	Inga splendens	4	6.79 ± 1.20	0.570 ± 0.054	0.639 ± 0.070	0.636 ± 0.068
	Inga cinnamomea	1	4.5	0.656	0.525	0.530
	Inga sp.\(^2\)	2	3.81 ± 3.26	0.722 ± 0.172	0.727 ± 0.006	0.727 ± 0.010
	Ormosia coarctata	2	5.16 ± 1.19	0.612 ± 0.232	0.822 ± 0.236	0.816 ± 0.239
	Peltogyne gracilipes	36	3.74 ± 2.06	0.841 ± 0.165	0.903 ± 0.091	0.901 ± 0.088
	Peltogyne paniculata	4	2.02 ± 1.18	0.922 ± 0.202	0.921 ± 0.037	0.922 ± 0.037
	Swartzia grandifolia	2	10.00 ± 9.90	0.513 ± 0.204	0.602 ± 0.245	0.599 ± 0.245
	Swartzia latifolia	1	5.0	0.451	0.694	0.684
	Swartzia sp.	1	4.2	0.699	0.778	0.775
Malpighiaceae	Byrsonima schomburgkiana	5	8.46 ± 3.75	0.616 ± 0.172	0.626 ± 0.150	0.626 ± 0.146
Malvaceae	Apetia bitoroubou	6	10.83 ± 4.48	0.353 ± 0.070	0.345 ± 0.124	0.348 ± 0.115
	Luehea speciosa	7	7.84 ± 2.53	0.501 ± 0.130	0.639 ± 0.063	0.631 ± 0.066
	Pochota fenderi	2	11.50 ± 3.54	0.324 ± 0.055	0.367 ± 0.035	0.364 ± 0.028
Melastomataceae	Miconia stenosstachya	1	6.3	0.833	0.817	0.818
Meliaceae	Trichilia cipo	9	5.22 ± 2.24	0.723 ± 0.151	0.725 ± 0.054	0.725 ± 0.053
Moraceae	Brosimum guianense	5	5.41 ± 2.62	0.697 ± 0.201	0.768 ± 0.096	0.765 ± 0.097
	Clarisia racemosa	3	7.94 ± 8.87	0.806 ± 0.191	0.675 ± 0.045	0.676 ± 0.043
	Pseudomedia laevigata	17	4.06 ± 1.38	0.642 ± 0.160	0.673 ± 0.057	0.672 ± 0.057

(continued on next page)
Family	Species	Samples	Bark T (mm)	Bark D (g cm\(^{-3}\))	Core WD (g cm\(^{-3}\))	Weighted average WD (g cm\(^{-3}\))
Myristicaceae	Virola calophylla.	2	8.05 ± 1.48	0.582 ± 0.155	0.591 ± 0.009	0.591 ± 0.013
Myrtaceae	Calyptranthes fasciculata	1	5.0	0.660	0.797	0.791
	Eugenia essequiboensis	1	2.5	0.556	0.686	0.683
	Eugenia omissa	5	3.00 ± 1.58	0.640 ± 0.337	0.758 ± 0.064	0.757 ± 0.057
	Psidium guineense	1	2.0	0.861	0.829	0.830
Nyctaginaceae	Neea oppositifolia	1	13.7	0.507	0.543	0.541
Ochnaceae	Quina rhytidopus	11	3.42 ± 1.55	0.663 ± 0.260	0.823 ± 0.063	0.819 ± 0.063
Olacaceae	Chaunochiton kappleri	2	10.00 ± 5.66	0.403 ± 0.073	0.616 ± 0.197	0.603 ± 0.186
Peraceae	Pera bicolor	1	2.8	0.787	0.803	0.803
Putranjivaceae	Drypetes variabilis	1	4.2	0.941	0.698	0.705
Rubiaceae	Alseis latifolia	33	3.55 ± 2.56	0.533 ± 0.219	0.645 ± 0.050	0.642 ± 0.048
	A Mannia corymbosa	4	4.41 ± 3.02	0.659 ± 0.293	0.726 ± 0.051	0.729 ± 0.053
	Chomelia tenuiflora	1	3.6	0.697	0.684	0.684
	Duroia eriopila	14	3.74 ± 2.32	0.577 ± 0.145	0.683 ± 0.074	0.681 ± 0.074
	Guettarda macrantha	3	4.70 ± 1.41	0.538 ± 0.191	0.541 ± 0.058	0.540 ± 0.059
	Palicourea crocea	1	6.5	0.557	0.624	0.621
	Posaqueria latifolia	1	1.0	0.736	0.552	0.554
	Rudgea crassuloba	5	2.58 ± 1.01	0.764 ± 0.278	0.647 ± 0.038	0.650 ± 0.035
	Rudgea sp.	2	3.68 ± 0.97	0.301 ± 0.130	0.575 ± 0.035	0.568 ± 0.029
Salicaceae	Casearia spinencens	1	1.0	0.645	0.588	0.589
	Casearia sylvestris	8	3.58 ± 0.55	0.482 ± 0.150	0.708 ± 0.066	0.701 ± 0.064
	Xylolus benthamii	1	5.0	0.317	0.697	0.685
Sapindaceae	Cupania rubiginosa	2	7.93 ± 1.51	0.653 ± 0.041	0.764 ± 0.011	0.758 ± 0.009
Sapotaceae	Chrysophyllum sparsiflorum	3	4.52 ± 0.50	0.855 ± 0.175	0.855 ± 0.034	0.856 ± 0.037
	Eccilnus guianensis	70	6.46 ± 3.08	0.642 ± 0.166	0.661 ± 0.043	0.660 ± 0.043
	Pouteria cuspidata	3	4.24 ± 1.65	0.429 ± 0.063	0.717 ± 0.050	0.707 ± 0.053
	Pouteria hispida	16	3.52 ± 2.28	0.654 ± 0.183	0.818 ± 0.085	0.816 ± 0.083
	Pouteria reticulata	6	3.41 ± 1.39	0.649 ± 0.230	0.735 ± 0.042	0.733 ± 0.039
	Pouteria sp.	1	4.7	0.744	0.739	0.739
	Pouteria surmuensis	26	4.74 ± 1.47	0.540 ± 0.162	0.909 ± 0.081	0.898 ± 0.079
	Pouteria venosa	11	4.19 ± 1.95	0.596 ± 0.248	0.782 ± 0.084	0.777 ± 0.085
	Pradosia surinamensis	24	6.67 ± 3.08	0.477 ± 0.146	0.681 ± 0.046	0.673 ± 0.043
Simaroubaceae	Simarouba amara	10	7.93 ± 4.15	0.615 ± 0.199	0.422 ± 0.036	0.427 ± 0.034
Violaceae	Leonia glycycarpa	1	4.8	0.688	0.680	0.681
	Rinorea pubiflora	3	5.36 ± 3.00	0.503 ± 0.255	0.685 ± 0.052	0.680 ± 0.059

1 Mean of values for *Eschweilera* sp. 1 and *Eschweilera* sp. 2 morphospecies.
2 Mean of values for *Inga* sp.2, *Inga* sp.3 morphospecies.
Fieldwork: (a) collection of stem samples using an increment borer; (b) detail of the sample taken from the stem and (c) subdivisions of the samples that were considered in this research for calculation of wood density.

showed in the Fig. 2. Maracá Island has an area of \(\sim 101,000 \) ha, being 60 km long and some 15–25 km wide [1,2]. This region occupies the climatic transition between Köppen classification subtypes (Aw) and (Am), with annual average temperature of 26 °C and annual average precipitation of 2086 ± 428 mm. The wettest months (>300 mm month\(^{-1}\)) are from May to August, and the driest from December to March (<100 mm month\(^{-1}\)) [1–4].

The vegetation of Maracá Island includes a variety of forest and non-forest types as the main feature of the savanna-forest transition zone of north central Roraima [2,5,6]. The different dominant forest types of the contact region are characterized by a mosaic of ombrophilous and seasonal forests (semideciduous and deciduous) whose composition and location are determined by distinct hydro-edaphic constraints, with the presence/absence of individuals of Peltogyne gracilipes Ducke (Leguminosae) operating as a robust environmental indicator [4,7,8]. Other technical details and environmental information on PPBio grid installed in Maracá Island can be accessed in the official PPBio website (https://ppbio.inpa.gov.br/sitios/maraca).

2.2. Sample processing and analysis

Field collection and construction of the current Dataset were derived from an existing forest inventory [8] carried out in the 25 km\(^2\) grid of PPBio (Biodiversity Research Program) installed on the eastern part of Maracá Island as described above. All samples to estimate the wood density of the different tree species occurring in the ecotone forests on eastern of Maracá Island
were obtained from a systematic sampling of 129 plots (50 m x 10 m/6.45 ha in total) dispersed throughout the PPBio grid. These plots were intentionally established with small dimensions and with short between-plot distances to obtain high spatial resolution, and so better capture the microvariations in structural and species composition present across the island’s altitudinal gradient; which defines the distinct hydro-edaphic conditions under which the different forest types of Maracá Island occur. The minimum distance between the plots was 150 m, based on the distance-markers located every 50 m along the PPBio grid trails; all sampling plots are geo-referenced in UTM and with topographically defined altitudes. All data and metadata related to trail topography is available on the official PPBio website [9,10]. Plots in aquatic environments (swamps) and open areas enclaves (savannas) were discarded because they do not contain forest environments. The fieldwork was carried out in two stages: January / 2018 (269 samples) and January / 2019 (411 samples). Both fieldworks were carried out purposely at the peak of the regional dry period in order to avoid the variation of wood moisture due to climatic seasonality, and a possible bias in the biomass/carbon stock estimates.

Acknowledgments

Financial support for the research was provided by CNPq (Grant no. 403591/2016-3; project “Tree growth and mortality in Roraima ecotone forests: effects of environmental conditions and climate variability”) and the Instituto Nacional de Ciência e Tecnologia dos Serviços Am-
bientais da Amazônia (INCT-ServAmb). The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided PhD funding for H.L.S. Farias and W.R. Silva (PELD Roraima; CNPq/CAPES/FAPs/BC-Fundo Newton; Proc. n. 441575/2016-1). The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), provided a fellowship for R.I. Barbosa (CNPq 304204/2015-3). The Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) provided authorization for the work (SISBIO n. 52017).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at http://dx.doi.org/10.17632/n4kzj3d2g7.5 (Mendeley Data).

References

[1] M.T. Nascimento, L.C.S. Carvalho, R.I. Barbosa, D.M. Villela, Variation in floristic composition, demography and above-ground biomass over a 20-year period in an Amazonian monodominant forest, Plant Ecol. Divers. 7 (2014) 293–303, doi: 10.1080/17550874.2013.772673.

[2] R.I. Barbosa, P.N. Ramírez-Narváez, P.M. Fearnside, C.D.A. Villacorta, L.C.S. Carvalho, Allometric models to estimate tree height in northern amazonian ecotone forests, Acta Amaz. 49 (2019) 81–90, doi: 10.1590/1809-4392201801642.

[3] C.A. Alves, J.L. Stapec, P.C. Sentelhas, J.L.M. Gonçalves, G. Sparovek, Köppen’s climate classification map for Brazil, Meteorol Zeitschrift 22 (2013) 711–728, doi: 10.1127/0941-2948/2013/0507.

[4] L.C.S. Carvalho, P.M. Fearnside, M.T. Nascimento, R.I. Barbosa, Amazon soil charcoal: Pyrogenic carbon stock depends of ignition sound distance and forest type in Roraima, Brazil, Global Change Biology 24 (2018) 4122–4130, doi: 10.1111/gcb.14277.

[5] F.R. Couto-Santos, F.J. Luizão, A. Carneiro-Filho, The influence of the conservation status and changes in the rainfall regime on forest-savanna mosaic dynamics in Northern Brazilian Amazonia, Acta Amaz. 44 (2014) 197–206, doi: 10.1590/s0044-59672014000200005.

[6] M.T. Nascimento, R.I. Barbosa, K.G. Dexter, C.V. Castilho, L.C.S. Carvalho, D.M. Villela, Is the Peltogyne gracilipes monodominant forest characterised by distinct soils? Acta Oecologica 85 (2017) 104–107, doi: 10.1016/j.actao.2017.10.001.

[7] D.M. Robison, S. Nortcliff, Os solos da reserva ecológica de Maracá, Roraima: segunda aproximação, Acta Amaz 21 (1991) 409–424, doi: 10.1590/1809-43921991211424.

[8] W.R. Silva, C.D.A. Villacorta, R.O. Perdiz, H.L.S. Farias, A.S. Oliveira, A.C. Citéó, L.C.S. Carvalho, R.I. Barbosa, Floristic composition in ecotone forests in northern Brazilian Amazonia: preliminary data, Biodiversity Data J. 7 (2019) e47025, doi: 10.3897/BDJ.7.e47025.

[9] J.D. Vale, R.L. Romero, Coordenadas geográficas das 30 parcelas permanentes na Estação Ecológica de Maracá, 1 (n.d.). https://ppbiodata.inpa.gov.br/metacat/metacat/menger.192.1/default.

[10] J.D. Vale, R.N.O. Araujo, C.V. Castilho, Cotas de altitude de 30 parcelas permanentes na Estação Ecológica de Maracá, 1 (n.d.) 1–4. https://ppbiodata.inpa.gov.br/metacat/metacat/menger.187.1/default.