Polycomb Repressor Complex 1 Member, BMI1 Contributes to Urothelial Tumorigenesis through p16-Independent Mechanisms

Lia E. De Faveri*, Carolyn D. Hurst*, Jo-An Roulson†, Henry Wood*, Marta Sanchez-Carbayo‡, Margaret A. Knowles* and Emma J. Chapman*

*Leeds Institute of Cancer and Pathology, St James’s University Hospital, Beckett Street, Leeds, LS9 7TF, UK; †Department of Pathology and Tumor Biology, St James’s University Hospital, Beckett Street, Leeds, LS9 7TF, UK; ‡Bladder Cancer Group, Lascaray Research Center, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain

Abstract

Urothelial carcinoma (UC) causes significant morbidity and remains the most expensive cancer to treat because of the need for repeated resections and lifelong monitoring for patients with non–muscle-invasive bladder cancer (NMIBC). Novel therapeutics and stratification approaches are needed to improve the outlook for both NMIBC and muscle-invasive bladder cancer. We investigated the expression and effects of B Lymphoma Mo-MLV Insertion Region 1 (BMI1) in UC. BMI1 was found to be overexpressed in most UC cell lines and primary tumors by quantitative real-time polymerase chain reaction and immunohistochemistry. In contrast to some previous reports, no association with tumor stage or grade was observed in two independent tumor panels. Furthermore, upregulation of BMI1 was detected in premalignant bladder lesions, suggesting a role early in tumorigenesis. BMI1 is not located within a common region of genomic amplification in UC. The CDKN2A locus (which encodes the p16 tumor suppressor gene) is a transcriptional target of BMI1 in some cellular contexts. In UC cell lines and primary tissues, no correlation between BMI1 and p16 expression was observed. Retroviral-mediated overexpression of BMI1 immortalized normal human urothelial cells (NHUC) in vitro and was associated with induction of telomerase activity, bypass of senescence, and repression of differentiation. The effects of BMI1 on gene expression were identified by expression microarray analysis of NHUC-BMI1. Metacore analysis of the gene expression profile implicated downstream effects of BMI1 on α4/β1 integrin-mediated adhesion, cytoskeleton remodeling, and CREB1-mediated transcription.

Translational Oncology (2015) 8, 387–399

Introduction

Worldwide, urothelial carcinoma (UC) is the ninth most common cancer, with approximately 430,000 new cases diagnosed annually [1]. UC comprises two major tumor groups with different clinical behavior and pathogenesis pathways. One group (20%-25% at diagnosis) is invasive (≥ stage T2). Prognosis for muscle-invasive bladder cancer (MIBC) is poor, with a continued need for the development of personalized treatment strategies and identification of novel therapeutic targets. The second group (>70% at diagnosis) is composed of non–muscle-invasive bladder cancers (NMIBCs) (stage Ta or T1), which recur frequently (>70%) but infrequently progress to muscle invasion [2]. Although survival is good, multifocality, frequent recurrence, and risk of progression make NMIBC difficult to manage. Overall, UC is the most expensive cancer to treat because of the need for lifelong disease monitoring and repeated resections [3].

Address all correspondence to: Dr Emma Chapman, BSc, PhD, Leeds Institute of Cancer and Pathology, St James’s University Hospital, Beckent Street, Leeds, LS9 7TF, UK. E-mail: e.j.chapman@leeds.ac.uk

1 This work was sponsored by Yorkshire Cancer Research project grant L355 (L.D.F., E.C.).

Received 19 May 2015; Revised 28 July 2015; Accepted 10 August 2015

© 2015 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.tranon.2015.08.002
The development of novel therapeutic and stratifying approaches will only be possible by achieving a better understanding of the molecular events involved in the development of UC. Expression of telomerase is thought to be one of the earliest steps in tumorigenesis because it can be detected in premalignant lesions [4,5]. During modeling of the early events in UC tumorigenesis in vitro, B Lymphoma Mo-MLV Insertion Region 1 (BMI1) was found to be overexpressed in genetically normal, telomerase-immortalized normal human urothelial cells (TERT-NHUC) compared with isogenic mortal NHUC [6]. BMI1 (10p11.23) encodes a key component of polycomb repressive complex 1 (PRC1). The protein contains a conserved RING finger domain and a central helix-turn-helix motif [7]. Although it is not enzymatically active itself, as part of PRC1, BMI1 is involved in the regulation of the transcription of many genes relevant to cancer and development [8]. In some but not all tissues, BMI1 is thought to promote tumorigenesis, in part, by silencing of the CDKN2A locus, which encodes the tumor suppressor gene p16 [9]. However, in the Ewing sarcoma family of tumors, BMI1 promotes the tumorigenicity of both p16 wild-type and p16-null cell lines, indicating that, in some cell types, the role of BMI1 in oncogenesis can be p16 independent [10]. BMI1 also contributes to tumorigenesis in an ink4a/arf-deficient mouse model of glioma [11], strongly implicating other BMI1-associated pathways in cancer. The relationship between BMI1 and the CDKN2A locus in urothelial cells is unknown. The effects of BMI1 on gene expression or phenotype are also not understood in this cell type, although since our study was initiated, effects on proliferation and migration of the T24 UC cell line have been reported by Liang et al. [12].

Here, we examined expression of BMI1 transcript in a large panel of UC cell lines and primary tumors and used immunohistochemical detection in two independent primary UC tumor panels and samples of potentially premalignant urothelium. Using stable retroviral-mediated transduction, we investigated the phenotypic effects of BMI1 overexpression in NHUC and UC cell lines in vitro. Gene expression analysis of BMI1-immortalized cells (NHUC-BMI1) identified consistent downstream changes in gene expression and novel associations with key signaling pathways. Therapeutic inhibition of BMI1 is showing promise in colorectal cancer [13]. Therefore, a better understanding of the contribution of BMI1 upregulation to bladder tumorigenesis will provide rationale and insight into targeting this key molecule and associated pathways in UC.

Materials and Methods

Cell Lines and Tissue Samples

UC cell lines and NHUC were cultured and cell line identity was verified as described previously [14]. NHUC are cultured on Primaria (Corning). Tissue was obtained with written patient consent and the approval of the Local Research Ethics Committee from patients at St. James’s University Hospital, Leeds, UK. In a panel of 71 tumors, there were 6 pTaG1, 26 pTa G2, 3 pTa G3, 6 pT1G2, 14 pT1 G3, 7 T2 G3, 3 pT3 G3, 4 pT2G2, and 2 pT3G3. For 14 cases, both initial and subsequent tumors were available for the same patient. A second tissue tumor microarray (TMA) panel was obtained from 93 UC patients at Hospital Guadalajara and Hospital Central de Asturias, Spain, as described previously [14]. Tumors were graded according to the 1973 WHO recommendations and staged according to tumor–node–metastasis classification. Clinicopathological data were collected from patient notes after completion of laboratory analyses a minimum of 3 years after collection of the initial sample. Samples of primary UC for quantitative real-time PCR (QRTPCR) have been described [15]. Tumor information is listed in Supplementary Data. Additional information towards meeting the recommendations of the REMARK guidelines (REporting recommendations for tumor MARKer prognostic studies) [16] is included in Supplementary Information.

Quantitative Real-Time Polymerase Chain Reaction (QRTPCR)

QRTPCR was performed on 23 UC cell lines and 59 primary UC using Taqman assay on demand; BMI1 (Hs00180411_m1) (Life Technologies, Paisley, U.K). Expression was quantified relative to SDHA control (Hs00417200_m1) and normalized to pooled cDNA from NHUC. Reactions were performed in triplicate, and each plate contained a no template control.

Immunohistochemistry

For detection of BMI1, primary antibody was mouse anti-BMI1 (clone F6, Millipore). For antigen retrieval, slides were pressure cooked for 2 minutes at full pressure with 0.1 M citric acid buffer (pH 6). Positive controls were normal tonsil or placenta. Baseline expression was defined by normal urothelium in each batch of tumors or TMA. To prepare control cell pellets, cells were harvested with 0.1% EDTA/PBS and 0.05% Trypsin/EDTA, pelleted by centrifugation, fixed overnight in 4% formalin, and then transferred to 70% ethanol. Approximately 1-cm³ wells were formed using tinfoil spread over and slightly compressed into a laboratory rack. Pellets were transferred to these wells, agarose at 45°C was added to cover the pellet, agarose was allowed to set, and the agarose-enclosed cell pellet was refixed in formalin before embedding in paraffin wax. BMI1 expression in UC was homogeneous and nuclear. Expression was scored as follows: 0: absent or weak staining in <50% urothelial nuclei, 1: weak staining in >50% or moderate staining in <50% nuclei, 2: moderate staining in >50% nuclei, or 3: strong staining in >50% nuclei. A score of 0 or 1 was deemed low expression and comparable to normal expression. A score of 2 or 3 was deemed to be overexpression relative to normal bladder urothelium. Sections were scored independently by E.C., J.R., and M.K., and any discrepancies between low or overexpression were resolved. For detection of p16, 5-μm deparaffinized and rehydrated sections were treated with 3% hydrogen peroxide (Sigma Aldrich, Poole, UK), Avidin Biotin blocking kit (Vector Laboratories, Peterborough, UK), and catalyzed signal amplification system (DakoCytomation, Buckinghamshire, UK). Primary antibody was mouse anti-p16 (Ab-7; Labvision, Suffolk, UK). Slides were counterstained with hematoxylin, dehydrated, and mounted. Positive control for p16 expression was cervical carcinoma. p16 was scored as negative, heterogeneous, or strong expression in >50% of tumor cells as described [17].

Retroviral-Mediated Transduction

Retroviral transduction was performed as described previously [18]. For stable BMI1 knockdown, plasmids were kindly provided by Elizabeth Lawlor [10]. siBMI1-A and siBMI1-B DNA oligonucleotide sequences (siBMI1-A, 5’-CGGUUUAAAGUAUUAUG-3’; or siBMI1-B, 5’-GGGCAACCCAAUUCUUC-3’) were cloned into the pSuper-retro-puro short-hairpin vector backbone (shBMI1-A and shBMI1-B; Oligoengine). A nonsilencing sequence with no significant homology to any mammalian gene sequence
(5'-AGCGATGCTGCTTGCTTT-3') was cloned for use as a negative control [10]. pBabe-BMI1 for ectopic overexpression of BMI1 was a kind gift from Goberdhan Dimri and resulted in overexpression within the range of endogenous overexpression observed in primary UC.

Phenotypic Assays

Cells expressing senescence-associated β galactosidase were detected using the senescence cells histochemical staining kit (Sigma, Poole, UK). At 200× magnification, total and stained cells were counted within a 1-mm² area. Three unselected areas were counted in each of triplicate wells. For measurement of cumulative population doublings, cells were seeded at 3 × 10⁴ cells per 9.6-cm² well in triplicate and passaged before confluence. Growth kinetics were examined during the log phase of growth. Anoikis, anchorage-independent colony formation, and induction of differentiation were assessed as described previously [14,19]. For assessment of adhesive capacity, 3 × 10⁴ cells were seeded under standard conditions. After 30 minutes, adherent cells were trypsinized and counted. To assess migration, 7.5 × 10⁴ cells in unsupplemented medium were seeded onto triplicate 4.67-cm², 0.8-μm-pore Transwells with complete growth medium below the Transwell (BD Biosciences, Oxford, U.K). After 48 hours, Transwells were fixed in methanol:acetone. Cells that had transversed the membrane were stained with diamidino-2-phenylindole and visualized at ×4. Images were recorded from four unselected areas of each Transwell, and cell number was scored using ImageJ particle analysis (image.nih.gov).

Telomerase Activity

Telomerase activity was quantified using the TRAPEZE XL Telomerase detection kit (Millipore, Watford, UK). Sample cell pellets and the control pellet provided with the kit were prepared from 1 × 10⁶ cells and lysed with 200 μl of CHAPS. Protein content of lysates was determined using the Biorad protein assay (Biorad, Hemel Hempstead, UK), and samples were diluted to 1 μg of protein in 2 μl of CHAPS. Samples were assayed in triplicate, and an aliquot of the sample was heat inactivated at 70°C as a negative control. Cycling conditions were as follows: 30°C for 30 minutes, 95°C for 2 minutes, and Primary Tumors

Next-Generation Sequencing (NGS) for Copy Number Analysis

Libraries were prepared for sequencing using NEB NGS library preparation kits with custom tags in an updated version of methods found in Wood et al. (2010) [20]. Samples were pooled onto an Illumina HiSeq2500 for 2 × 101-bp sequencing. Sequence was trimmed to remove adapters using cutadapt [21] and then aligned to the human genome hg19 using Burrows-Wheeler alignment tool [22]. Copy number was calculated by splitting the genome into equal-sized windows with an average of 400 reads per window and comparing ratio of tumor and normal samples, and plots were produced using CNAnorm [23] with breakpoints called using DNacopy [24]. NHUC-BMI1 samples were compared with isogenic mock or vector transduced cells.

Expression Array Analysis

Gene expression analysis was performed using Affymetrix HG_U133 PLUS 2.0 arrays as described previously [6]. Data were analyzed using Partek Genomics Suite 6.5 (Partek Inc., Missouri, USA). Genes differentially expressed in BMI1-transduced NHUC (NHUC-BMI1) compared with isogenic NHUC were identified using a two-sample t test. Genes consistently altered by at least two-fold in cells from both donors were identified (P < .05 and Q false discovery rate < 0.1). This gene list was input into Metacore (www.thomsonreuters.com/metacore/) for further analysis.

Results

Up-Regulation of BMI1 Transcript in UC Cell Lines and Primary Tumors

An initial screen of BMI1 expression by QRT-PCR found overexpression in 9/23 (39%) UC cell lines (Figure 1A) and 55/57 (96%) of primary UC relative to NHUC (Figure 1B). There was no association between BMI1 transcript level and stage or grade in these primary tumors. Gene expression array analysis of UC cell lines (Hurst et al., manuscript in preparation) demonstrated that there was a slight positive correlation (P = .0146, r = 0.3617) between BMI1 and p16 transcript expression. This indicates concurrent expression of BMI1 and p16 rather than the negative correlation that would indicate BMI1-mediated repression of CDKN2A transcription (Figure 1C). BMI1 at 10p11.23 is not in a region commonly amplified in UC [25], and examination of copy number data for our UC cell line panel (unpublished data) confirmed that upregulation of BMI1 transcript expression was not due to genetic amplification or duplication in this region. Furthermore, analysis of cBioportal data confirmed a <2% rate of genetic amplification of BMI1 in bladder cancer and <5% in other tumor types analyzed (http://www.cbioportal.org).

BMI1 Protein Expression

Having observed common upregulation of BMI1 transcript in UC and UC cell lines, we investigated protein expression in primary UC. Normal tonsil showed nuclear positivity in germinal regions as described previously [26] (Supplementary Figure 1A). An additional positive control was human placenta (Supplementary Figure 1B). No primary antibody negative controls showed no staining (Supplementary Figure 1C), and in normal urothelium, BMI1 expression was absent, or nuclear and weak (Supplementary Figure 1, D and E). Additional controls were pellets of cultured cells with known BMI1 transcript expression; NHUC, low expression (Supplementary Figure 1F) or TERT-NHUC, high expression (Supplementary Figure 1G). Sections were scored for BMI1 expression on a 4-point scale as described in Materials and Methods (Supplementary Figure 1, H–K). As BMI1 is reported to inhibit expression from the CDKN2A locus, sections of the same tumor block or TMA were stained for both p16 and BMI1 expression to investigate the relationship between these two proteins. Individual tumors with high BMI1 expression and loss of p16 expression (Figure 2, A and B) or loss of BMI coupled to high p16 expression (Figure 2, C and D) were observed. Coexpression of high levels of both proteins was also seen (Figure 2, E–H). In the initial tumor panel (comprising 71 tumors from 54 patients), 63/71 (89%) tumors had overexpression of BMI1 relative to normal urothelium. No correlation with tumor grade or stage was seen. High BMI1 expression could be detected in noninvasive, stage pTa tumors (Figure 2G) or muscle-invasive, pT2 tumors (Figure 2E). Only eight tumors in this panel had low or no BMI1 expression. These were TaG1 (1 case), TaG2 (1 case), T1G2 (1 case), T1G3 (1 case), and...
T2G3 (2 cases). For 17 patients, there was an earlier and subsequent
tumor in the panel. In 13 of these, the initial and recurrent tumor
both had high expression of BMI1. In one case, BMI1 was low in the
earlier tumor but upregulated in the later recurrence, and in two cases,
it was high in the first presentation but low in the recurrence.
Twenty-nine of 71 (40%) tumors in this panel had loss of p16
expression, which is concordant with the rate of homozygous deletion
of the CDKN2A locus that we previously described in UC [17].
Twenty-eight of 71 (39%) cases showed coexpression of high levels of
BMI1 and p16.

Common overexpression of BMI1 in UC was confirmed in an
independent TMA panel comprising 28 pTaG1, 8 pTaG2, 4 pTaG3,
1 pTaGx, 5 pT1G2, 19 pT1G3, 19 pT2G3, 1 pT2Gx, 3 pT3G3, 1
pT3Gx, 4 pT4G3, and 1 pT4Gx. In this panel, 89/94 (95%) of
tumors had overexpression of BMI1, and again there was no
association between overexpression and tumor stage or grade
(chi-square test, \(P \geq 0.05 \)). Tumors of unknown grade or stage were
not included in this analysis. Loss of p16 expression was observed
in 43/94 (46%). Fifteen of 94 cases (16%) exhibited strong coexpression
of p16 and BMI1, again indicating no significant transcriptional
repression of the CDKN2A locus.

Expression of BMI1 in Premalignant Bladder Lesions and Carcinoma In Situ (CIS)

The observation that upregulation of BMI1 in UC was not
associated with stage or grade indicates that it may be an early event in
UC tumorigenesis. We hypothesized that, if this was the case,
upregulation of BMI1 expression would also be detected in
premalignant bladder lesions. We stained sections from the non–
tumor-associated regions of the bladder in cystectomy specimens \((n =
6)\) and noncancerous lesions that were detected at check cystoscopy in
patients previously diagnosed with UC \((n = 12)\). Upregulation of
BMI1 was detected in examples of CIS (Figure 2, I and J), chronic
inflammation (in the absence or presence of CIS), and urothelium
reported to show no evidence of malignancy (Supplementary
Information 1). Areas of urothelium distant from the tumor in
cystectomy specimens showed upregulation of BMI1 in CIS but not
normal urothelium. In one case, upregulated BMI1 expression was
seen in CIS but not in the adjacent normal urothelium, delineating
the margin of CIS (Figure 2A).

Immortalizing Effects of Ectopic Overexpression of BMI1

To investigate the role of BMI1 in urothelial tumorigenesis, retroviral
transduction was used to stably overexpress BMI1 in NHUC. The resulting
NHUC-BMI1 showed a bypass of replicative senescence, as determined by a
lack of elevation of senescence-associated \(\beta \) galactosidase expression
(Figure 3A). Ectopic expression of BMI1 appeared to immortalize NHUC
from two initial donors (A and N) in a single step. Cells proliferated
continuously for over 100 days (Figure 3B). Immortalization was then
confirmed using NHUC from a third donor (803). NHUC-BMI1 cell lines
did not exhibit anchorage-independent growth (data not shown).

Characterization of NHUC-BMI1

Using NGS for copy number analysis, between 2.4 and 4.7 million
read pairs were produced per sample, equating to between 480 and 950
Mb of sequence or 0.16 to 0.32X coverage of the human genome. No
copy number alterations were detected in NHUC-BMI1 from donors
N and 803, but gains on chromosome 20 and 9q were found in
NHUC-BMI1 from donor A (Supplementary Figure 2). Interestingly,
an hTERT immortalized NHUC (TERT-NHUC) cell line previously
derived from the same donor contained an abnormal clone with an
unbalanced rearrangement of 20q (46,XY, add (20)(q12)) that resulted in
partial loss of 20q and gain of unidentified material [18], suggesting a
donor-specific effect rather than an event necessary for immortalization.
Telomerase activity was greater in NHUC-BMI1 relative to empty
vector transduced cells (Figure 3C). Previously, we have shown that
NHUC immortalized by hTERT exhibit a reduced differentiation
capacity [27]. Here, we found that induction of uroplakin 2, a marker of
urothelial differentiation, was also repressed in NHUC immortalized
by BMI1 compared with empty vector-transduced controls (Figure 3D).

Gene Expression Profile of NHUC-BMI1

Expression array analysis revealed at least two-fold changes in
expression of 2614 probes (1050 genes) in NHUC-BMI1 relative to
isogenic NHUC control cells from both donors investigated (Supplementary Data 1). Transcription of the CDKN2A gene was not downregulated in NHUC-BMI1 as confirmed by QRTPCR (Figure 3E). Metacore enrichment analysis was used to examine how enriched the data set (Supplementary Data 1) is in a particular map or network within the program, taking into account the number of objects in the gene list, the number of objects in the map/network, and the number of objects within the entire Metacore database. Gene ontology processes, process networks, and diseases most overrepresented in the data set are shown in Supplementary Data 1. The top 30 upregulated and downregulated probes are shown in Table 1, and the top 30 overconnected genes are shown in Table 2. Reassuringly, this analysis highlighted known functions of BMI1. The top process network was mRNA processing, and the top 7 disease-associated biomarkers identified were consistent with the known association of BMI1 upregulation in colorectal cancer.

Meng et al. previously performed genomewide mapping of targets of BMI1 in the epithelial HeLa tumor cell line using chromatin immunoprecipitation [28]. To identify true BMI1-mediated changes in gene expression, we overlaid the NHUC-BMI1 data set with the data set of Meng et al. There was an overlap of 88 genes (Table 4), which could be arranged into three networks (Supplementary Figure 3). The first and second networks both showed involvement of CREB transcriptional targets. Of note, there

Figure 2. Examples of immunohistochemistry on formalin-fixed, paraffin-embedded human tissues or cell pellets. Panels (A–H) are shown at 200× magnification; (I–K), 100×. (A) UC BMI1 score 3; (B) same UC, p16 negative; (C) UC, BMI1, score 0; (D) same UC, p16 strong; (E) UC, BMI1, score 3; (F) same UC, p16 strong; (G) UC, BMI1 score 3; (H) same UC, p16 strong; (I) CIS, BMI1, score 3; (J) CIS, BMI1, score 2; (K) CIS, BMI1, score 2. Arrow highlights border of normal urothelium and CIS.
Figure 3. (A) Overexpression of BMI1 led to a bypass of senescence in NHUC. Filled bars show senescence-associated β-galactosidase expression in empty vector-transduced NHUC; and unfilled bars, BMI1-transduced cells. (B) Ectopic expression of BMI1 led to exponential growth of the cell population and apparent immortalization in cells from three independent donors. Filled symbol shows vector-transduced cells; and unfilled symbols, NHUC-BMI1. (C) Detection of telomerase activity in NHUC-BMI1 using quantitative real-time PCR-based method. HI represents heat-inactivated sample, No Taq is a no polymerase negative control, and positive control is a lysate of the control pellet from the TRAPEZE XL kit. (D) Overexpression of BMI1 repressed induction of differentiation in NHUC. Induction of uroplakin 2 (UPK2), a marker of urothelial differentiation, was repressed in NHUC-BMI1 compared with vector control cells after treatment with troglitazone and EGFR inhibitor. Expression is normalized to NHUC-vector control treatment cells. (E) Quantitative real-time PCR confirmed that overexpression of BMI1 did not repress CDKN2A transcription in NHUC. Expression was quantified relative to pooled cultured NHUC.
was upregulated by p90RSK, an activator of CREB1, coupled to overexpression of CREB1 targets. The top process network identified was cytoskeleton-actin filaments, and the top pathway map further implicated overexpression of BMI1 in altered phosphorylation events and subsequent effects on cytoskeleton remodeling (Figure 4). For example, NHUC-BMI1 exhibited overexpression of ROCK2 kinase. This upregulation is expected to impact on downstream- and tubulin-mediated cytoskeleton remodeling and subsequent cellular migration.

Phenotypic Effects of BMI1 Expression

Analysis of the NHUC-BMI1 gene list by protein function (Table 3) identified the key pathway map enriched in NHUC-BMI1 expression profile as “cytoskeleton remodeling_Role of PKA in cytoskeleton reorganisation” (Figure 4A). NHUC-BMI1 had downregulation of PKA-cat, a protein responsible for the phosphorylation and deactivation of α/β integrin, a key molecule in cell adhesion. Downregulation of the deactivator of α/β integrin would be expected to result in an increase in cellular adhesion. Indeed, overexpression of BMI1 in NHUC promoted adhesion under standard culture conditions (Figure 4B). Analysis of the overlap with the Meng et al. data set indicated that effects of BMI1 overexpression would include ROCK-mediated modulation of the cytoskeleton. Accordingly, NHUC-BMI1 had increased cellular motility as measured by Transwell migration (Figure 4C). Retroviral-mediated transduction was then used to stably downregulate BMI1 expression in the UC cell line 97-7.
This cell line was derived from a T1 G2/3 UC and has a low level of p16 that is considered functionally inactivated as it is coupled to hyperphosphorylated Rb [29]. Transduction of 97-7 with shBMI1-A or shBMI1-B resulted in 37% or 88% decreases in BMI1 transcript level, respectively. 97-7 siRNA B therefore had BMI1 levels reduced to slightly less than the endogenous level detectable in pooled NHUC.

Discussion

Overexpression of BMI1 is reported in many cancer types [30–33], and in some, its expression correlates with clinicopathological parameters [34–37]. However, its role in urothelial tumorigenesis has not been clearly defined, and conflicting data have arisen from existing studies. Following careful validation of IHC staining, we found nuclear overexpression of BMI1 in the majority of UC. Unlike previous studies [30,38], these IHC results were confirmed in a second independent tumor panel. There was no correlation of BMI1 protein expression with the stage or grade of the tumor, supporting our observation of no association of BMI1 transcript level with tumor stage or grade. Since our study was initiated, Liang et al. used the same BMI1 antibody, a smaller UC panel of differing stage and grade distribution, and a different scoring system to investigate BMI1 expression in UC. In contrast to our results, an association of BMI1 expression with tumor stage and grade was reported [12]. To account for the effect of different scoring classification, we also performed statistical analysis using criteria equivalent to Liang et al. (grouping tumors as Ta, T1, and T2 + and staining of 0 or 1 vs 2 and 3). Still, we found no association of BMI1 expression with stage or grade, as was expected from the overall low frequency of BMI1-negative/low tumors in our panel.

Although extremely frequent, overexpression of BMI1 was not a ubiquitous event in UC. It is known that BMI1-negative tumors are a distinct subpopulation in Ewing’s sarcoma, with a distinct gene expression profile [39]. Only eight UCs in our original tumor panel and only five in the second TMA panel were BMI1 negative. The small numbers of tumors studied here make interpretation impossible, but it is conceivable that BMI1-negative tumors follow a distinct PRC1-independent pathway to tumorigenesis, and this is a subject worthy of further investigation.

In hematological malignancy, BMI1 is targeted by chromosomal rearrangements [40], but in solid epithelial cancers, there is no evidence to support this. The 10p11.23 region is not a common site of amplification in UC [41], and accordingly, correlation between BMI1 copy number and overexpression in UC cell lines was not observed.

AIG1	Androgen-induced gene 1 protein	KLHL42	Kelch-like protein 42
ALOX3E	Hydroperoxide isomerase ALOX3E	KMT2E	Histone-lysine N-methyltransferase 2E
AP4E1	Adapter-Related Protein Complex 4, Epilon 1 Subunit	LMLN	Leishmanolysin-like peptidase
ARHGEF10	Rho guanine nucleotide exchange factor 10	LPPRC	Leucine-rich PPR motif-containing protein, mitochondrial
ASXL1	Putative Polycyto group protein ASXL1	MAPK4	Mitogen-activated protein kinase kinase kinase 4
BAZ2B	Bromodomain adjacent to zinc finger domain protein 2B	MOAB2	Lysocephospholipid acyltransferase 2
BIRC6	Baculoviral IAP repeat-containing protein 6	MIPOL1	Mirror-image polydactyl gene 1 protein
CAMTA1	Calmodulin-binding transcription activator 1	MLK1	Muskelin
CDK6	Cyclin-dependent kinase 6	MRPS10	28S ribosomal protein S10, mitochondrial
CFI	Complement factor I	MTDH	Myotubularin related protein 2
CLOCK	Circadian locomoter output cycles protein kaptur	NBN	Artemin (ARTN)
CUX1	Homeobox protein cut-like 1	NBP1	Neuroblastoma breakpoint family member 1
DIP2A	Disco-interacting protein 2 homolog A	NIN	Ninein
DST	Dystonin	NTSC2	Cytosolic purine 5’-nucleotidase
DYNC2HI1	Cytoplasmic dynein 2 heavy chain 1	PAPOLA	Poly(A) polymerase alpha
EHBPI	EH domain-binding protein 1	PGGT1B	Geranylgeranyltransferase type-I subunit beta
FAM120A	Constitutive coactivator of PPAR-gamma-like protein 1	PPIA	E3 SUMO-protein ligase PIAS1
FAM83F	Protein FAM83F	PMS1	Phosphatidylinositol 4-kinase I
FN11	Fibulin-1	PPDAC1A	Phosphatidylinositol 4,5-bisphosphate P4-5P2
FBRX9	F-box only protein 9	PPM1D	Protein phosphatase 1D
FGDC5	FYVE, RhoGEF and PH domain-containing protein 6	PPP2R2C	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B gamma isoform
FKB5P	Peptidyl-prolyl cis-trans isomerase FKB5P	PPSM14	26S proteasome non-ATPase regulatory subunit 14
FOXA1	Hepatocyte nuclear factor 3-alpha	PPSM1G	Proteasome assembly chaperone 1
FRMD4A	FERM-domain-containing protein 4A	QPCT	Glutaminyl-peptide cyclotransferase
GOLGA8B	Golgin subfamily A member 8B	RAB18	Ras-related protein Rab-18
GPDB2	Glycero-3-phosphate dehydrogenase, mitochondrial	RABGAP2	Ras-GTPase-activating protein non-catalytic subunit
GRB10	Growth factor receptor-bound protein 10	TRIM53	E3 ubiquitin-protein ligase TRIM53
H2AFY	Core histone macro-H2A.1	TRIP2	Triosephosphate isomerase
IFT80	Intraflagellar transport protein 80 homolog	UTRN	Urophin
KHL1L28	Kelch-like protein 28	VMP1	Vacular membrane protein 1
LRP	Listeria protein	VPS13B	Vacular protein sorting-associated protein 13B
MSI2	RNA-binding protein Musashi homolog 2	VMP1	Vacular protein sorting-associated protein
MTDH	Protein LYRIC	VTA1	Vacular protein T1a homolog
NCOA4	Nuclear receptor coactivator 4	WBP2	Williams-Beuren syndrome protein
PAPOLA	Poly(A) polymerase alpha	WBP2	Williams-Beuren syndrome protein
PSMD14	Proteasome assembly chaperone 1	WBP2	Williams-Beuren syndrome protein
PIAS1	E3 SUMO-protein ligase PIAS1	WBP2	Williams-Beuren syndrome protein
PSMD14	Proteasome assembly chaperone 1	WBP2	Williams-Beuren syndrome protein
Previously, we observed upregulation of BMI1 in telomerase-im-
mortalized normal human urothelial cells during experiments aimed
at modeling the early steps in bladder tumor development [6]. Our
results indicate that upregulation of BMI1 is an early event in UC
development. We consider that, in bladder cancer patients, the entire
urothelium is altered because of the spread of tumor and
premalignant cells. Initiation of MIBC arises from a CIS precursor
lesion which expands to colonize the urothelium [42]. BMI1
expression was examined in a pilot study of premalignant bladder
lesions including CIS. BMI1 was upregulated in a subset. Previous
studies also support the notion of upregulation of BMI1 in potentially
premalignant urothelium. Shafaroudi et al. describe 25% of tumor
margins exhibiting expression of BMI1 transcript [38], and Qin et al.
demonstrated upregulation of BMI1 transcript in adjacent “normal”
tissue in bladder cancer patients [30]. The concept of a role for BMI1
in early tumorigenesis is not unprecedented because upregulation is
reported in other epithelial premalignancies such as colorectal, lung,
oral tissue, and esophageal tissue [43–45]. As is expected for an early
event, in some of the associated tumor types, such as esophageal
carcinoma, no association is seen between BMI1 overexpression and
subsequent tumor stage or grade [46]. In parallel to our results, in oral
tissue, BMI1 is upregulated at a very early stage in oral tumorigenesis.

Figure 4. (A) BMI1-associated changes in gene expression could affect pathways relevant to cellular adhesion. Blue thermometers
indicate a downregulation of gene expression in NHUC-BMI1 (relative to NHUC); and red thermometers, overexpression. (B) A trend of
increased adhesion was seen in NHUC ectopically overexpressing BMI1 from three donors compared with NHUC. (C) Overexpression of
BMI1 increased Transwell migration of NHUC from three of three donors investigated. Data are representative of three or two
independent experiments. Errors bars show plus and minus standard deviation of triplicates repeats within each experiment. *P < .05,
unpaired t test. (D) Knockdown of BMI1 repressed adhesion in 97-7, UC cell line.
and is thought to act through p16-independent mechanisms [45]. As suggested by Kang et al., the detection of BMI1 has potential for use in the identification of potentially premalignant lesions. Of note, in our study, the patient from whom the check cystoscopy biopsy that was classified as “no evidence of malignancy” by standard histological analysis and showed strong nuclear BMI1 upregulation was derived from one with a history of bladder cancer. Whether upregulation of BMI1 in potentially premalignant lesions is predictive of outcome is currently unknown, but further investigation of the significance of detection of BMI1 is planned.

BMI1 is commonly cited as being a transcriptional repressor of the CDKN2A locus. The promoter of p16 contains a BMI1 responding unit, and BMI1 and p16 expression correlate in some tumor types [28]. We have previously shown that, in UC, downregulation of p16 expression is most often associated with homozygous deletion or loss of heterozygosity of the 9p21 region, and it is this rather than transcriptional repression which may be key in determining the p16 level [17]. Indeed, in the whole tumor section panel, 28 UCs exhibited strong expression of both BMI1 and p16, and coexpression was confirmed in the second TMA panel.

Having established upregulation of BMI1 as a frequent and potentially early event in bladder cancer, we set out to investigate the phenotypic significance of its overexpression in NHUC. In vitro, overexpression of BMI1 induced telomerase activity (as is reported for mammary epithelial cells [49]) and immortalized NHUC without the need for silencing of p16. Similarly, in Ewing’s sarcoma, the actions of BMI1 are independent of repression of p16 expression [10]. Overexpression of BMI1 alone also immortalizes nasopharyngeal epithelial cells [47], whereas in other human cell types, expression of hTERT [48] or prior silencing of p16 is also required [49]. The fact that BMI1 and hTERT are required for immortalization of some cell types such as gingival keratinocytes [50] indicates that the role of BMI1 in tumorigenesis is greater than merely induction of telomerase activity and its subsequent downstream effects. In UC, it appears that the functions of BMI1 in tumorigenesis also extend beyond suppression of the CDKN2A locus.

Gene expression analysis of NHUC-BMI1 was performed to investigate the potential transcriptional effects of BMI1 in urothelial tumorigenesis. A profile of genes consistently altered in BMI1-transduced cells was obtained. The NHUC-BMI1 gene list was subjected to Metacore analyses. The most significant process network affected was transcription and mRNA processing, supporting the wealth of existing literature describing BMI1 as a key molecule in control of downstream gene expression. Chromatin remodeling genes have been shown to be frequent targets of mutation in UC [51]. Notably, downregulation of transcripts for chromodomain-helicase DNA binding protein 1 (CHD1), CHD11, CHD2, CHD7, and CHD9 was observed. CHD2 is proposed as a tumor suppressor gene that regulates DNA damage response [52]. Interestingly, TCGA data show that 9% of bladder carcinomas exhibit mutation in this gene (www.cbioportal.org).

The key pathway map enriched in NHUC-BMI1 expression profile was “cytoskeleton remodeling_Role of PKA in cytoskeleton reorganisation”. Epithelial–mesenchymal transition is a multistep process by which epithelial cells acquire migratory and invasive properties, and in some cell types, activation of BMI1 is required for epithelial–mesenchymal transition [53]. The ability of mesenchymal-like migration, as observed in cancer cells, relies on an intrinsic balance between adhesion assembly and disassembly. Overexpression of BMI1 led to downregulation of PKA-catalytic activity and its subsequent downstream effects. In UC, it appears that the functions of BMI1 in tumorigenesis also extend beyond suppression of the CDKN2A locus.

Table 4. Analysis of NHUC-BMI1 Gene List by Protein Function

#	Pathway Maps	Total	Min FDR	P Value	FDR	In Data	Network Objects from NHUC-BMI1 Data	
1	Cytoskeleton remodeling_Role of PKA in cytoskeleton reorganization	40	9.613E-06	3.711E-03	9.613E-06	3.711E-03	8	ROCK, MLCK, PKA-cat (cAMP-dependent), G-protein alpha-s, Calmodulin, BETA-PIX, MLCP (reg), MLCP (cat)
2	Apoptosis and survival_BAD phosphorylation	42	1.408E-05	3.711E-03	1.408E-05	3.711E-03	8	PKA-catalytic, JNK1(MAPK8), PI3K cat class IA, G-protein alpha-s, p90Rsk, PKC, IRS-1, Cytochrome c
3	Development_Q2A receptor signaling	43	1.689E-05	3.711E-03	1.689E-05	3.711E-03	8	CREB1, PDZ-GEF1, PKA-catalytic, JNK1(MAPK8-10), PI3K cat class IA, G-protein alpha-s, p90Rsk, BETA-PIX
4	Transcription_CREB pathway	49	4.563E-05	3.797E-03	4.563E-05	3.797E-03	8	CREB1, PKA-catalytic, PI3K cat class IA, G-protein alpha-s, Calmodulin, p90Rsk, IRS-1, PPI-cat
5	Signal transduction_CAMP signaling	38	6.170E-05	3.797E-03	6.170E-05	3.797E-03	7	GSK3 alpha/beta, RAP-2A, CREB1, PKA-catalytic, G-protein alpha-s, PKC, Calmodulin, eIF4A, eIF1, eIF3S8, eIF5, eIF1A, eIF5B (IF2)
6	Translation_Regulation of translation initiation	27	5.946E-05	3.797E-03	5.946E-05	3.797E-03	6	GSK3 beta, MLCK, PKC lambda/iota, Calmodulin, PKC-mu, NF-AT2(NFATC1), MLCP (reg), MLCP (cat)
7	Signal transduction_Activation of PKC via G-Protein coupled receptor	52	7.098E-05	3.797E-03	7.098E-05	3.797E-03	8	GSK3 beta, PKA-catalytic, JNK1(MAPK8), PI3K cat class IA, Casein kinase I, DYRK2, IRS-1, PKR, PPI-cat
8	Translation_Regulation of EIF2 activity	39	7.348E-05	3.797E-03	7.348E-05	3.797E-03	7	GSK3 beta, PKA-catalytic, PI3K cat class IA, Calmodulin, eIF4A, eIF1, eIF3S8, eIF5, eIF1A, eIF5B (IF2)
9	Cell cycle_Influence of Ras and Rho proteins on G1/S Transition	53	8.166E-05	3.797E-03	8.166E-05	3.797E-03	8	GSK3 beta, ROCK2, MLCK, JNK1(MAPK8), PI3K cat class IA, CDK6, MLCP (reg), MLCP (cat)
10	Cytoskeleton remodeling_Cytoskeleton remodeling	102	9.588E-05	3.797E-03	9.588E-05	3.797E-03	11	eIF4A, GSK3 beta, ROCK, ROCK2, MYLK1, MLCK, PI3K cat class IA, TGF-betas, PKA-catalytic, eIF4A, eIF3S8, eIF5, eIF1A, eIF5B (IF2)

...
up to 25% of human genes [54]. CREB-mediated transcription is activated through cAMP-induced phosphorylation, and NHUC-BMI1 had upregulation of p90RSK kinase, a known CREB1 activator.

Having identified a “profile” of BMI1-associated changes in gene expression in NHUC, we compared this with other BMI1-associated signatures in other cell types and contexts. An 11-gene BMI1 pathway gene signature has been identified in metastatic prostate cancer and neural stem cells and is predictive of poor outcome in multiple tumor types including bladder [55]. We found that only one of these signature genes, encoding the ankyrin protein (ANK3), was also altered in NHUC-BMI1. The NHUC-BMI1 gene expression profile did show downregulation of 3 of the 11 previously identified telomerase “signature genes” [6] in NHUC (TSPYL5, NME5, CEACAM6) and the putative tumor suppressor gene NDN [14], suggesting cell type– and cell context–specific effects. In particular, loss of CEACAM6 (CD66c) expression has been associated with the so-called “highly tumorigenic basal cell compartment” of UC, which is believed to exhibit stem cell–like properties [56]. CEACAM6 was downregulated in both TERT-NHUC [6] and NHUC-BMI1, suggesting that, to some extent, these immortal cell lines resemble “stem cell–like” cells. BMI1 is overexpressed in human bladder cancer stem cell–like populations. In these cells, knockdown of BMI1 inhibited proliferation, migration, and tumor sphere formation; increased cisplatin sensitivity; and is essential for their tumorigenicity in mouse models [57].

BMI1 is a target for the development of novel small molecule inhibitors [58] and also a transcriptional target of histone deacetylase inhibitor drugs [59]. BMI1-null mice gradually succumb because of a progressive neurological and hematopoietic dysfunction [60] presumably due to stem cell dysfunction. As with many conventional cancer treatments, it would be expected that a BMI1 inhibitor would be toxic to normal human adult stem cells in addition to targeting tumor cells. However, an increased knowledge of the downstream effects of BMI1 on gene expression may aid the development of alternative strategies with a lower toxicity or indicate ways to ameliorate the side effects of BMI1 inhibition. If overexpression of BMI1 is a key feature of CIS, identification of BMI1-associated changes in gene expression could point toward pathways that could be targeted in this highly clinically relevant subpopulation.

Conclusion

BMI1 has many p16-independent actions that may contribute to neoplasia. As a key modulator of gene expression, cellular phenotype, and keystone signaling pathways, BMI1 is worthy of future investigation as a therapeutic target in UC. Future studies are required to confirm the role of BMI1 in α4β1 integrin-mediated adhesion, kinase-mediated changes in cytoskeleton, and CREB-1 transcriptional regulation in cancer. Further analysis of BMI1 expression in premalignant bladder lesions and its correlation with outcome and expression in subsequent tumors is merited.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.tranon.2015.08.002.

Acknowledgements

We gratefully acknowledge the patients who donated tissue and data for research as without them this study would not have been possible. We thank Filomena Esteves for performing immunohistochemistry. NGS library preparation was performed by Phil Egan and NGS by the University of Leeds, Next-Generation Sequencing Facility.

pBabe-BMI1 puro plasmid was a kind gift from Gobedhnan Dimri, The George Washington University Medical Center, Washington, USA. BMI1 shRNA plus nonsilencing control plasmids was a kind gift from Elizabeth Lawlor, University of Michigan, USA. Telomerase quantification was performed using a modified protocol for the TRAPEZE XL Telomerase quantification kit, as recommended by Samantha Brownhill of the Children’s Cancer Research Group, Leeds. This work was sponsored by Yorkshire Cancer Research project grant L355 (L.D.F., E.C.).

References

[1] Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, and Bray F (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. [cited 2013]. Available from: http://globo canc.iarc.fr.

[2] Knowles MA and Hurst CD (2014). Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 15(1), 25–41 [PubMed PMID: 2553674].

[3] Sangar VK, Ragavan N, Maranatha SS, Watson MW, and Blades RA (2005). The economic consequences of prostate and bladder cancer in the UK. BJU Int 95(1), 59–63 [PubMed PMID: 15638895].

[4] Engelhardt M, Druillinsky P, Guillerm J, and Moore MA (1997). Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res 3(11), 1931–1941 [PubMed PMID: 9815582].

[5] Kolquist KA, Ellisen LW, Counter CM, Meyerson M, Tan LK, Weinberg RA, Haber DA, and Gerald WL (1998). Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat Genet 19(2), 182–186 [PubMed PMID: 9620778].

[6] Chapman EF, Kelly G, and Knowles MA (2008). Genes involved in differentiation, stem cell renewal, and tumorigenesis are modulated in telomerase-immortalized human urothelial cells. Mol Cancer Res 6(7), 1154–1168 [PubMed PMID: 18644980].

[7] Li Z, Cao R, Wang M, Myers MP, Zhang Y, and Xu RM (2006). Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex. J Biol Chem 281(29), 20643–20649 [PubMed PMID: 16714294].

[8] Cao R, Tsuchida Y, and Zhang Y (2005). Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20(6), 845–854 [PubMed PMID: 16359901].

[9] Fan C, He L, Kapoor A, Gillis A, Rybak AP, Cuz IC, and Tang D (2008). Bmi1 promotes prostate tumorigenesis via inhibiting p16(InKNa4) and p14(RF4) expression. Biochim Biophys Acta 1782(11), 642–648 [PubMed PMID: 18817867].

[10] Douglas D, Hsu JH, Hung L, Cooper A, Abdoula D, van Doorninck J, Peng G, Shimada H, Triche TJ, and Lawlor ER (2008). BMI1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res 68(16), 6507–6515 [PubMed PMID: 18701473].

[11] Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, van Tellingen O, and van Lohuizen M (2007). Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12(4), 328–341 [PubMed PMID: 17593558].

[12] Liang W, Zhu D, Cui X, Su J, Liu H, Han J, Zhao F, and Xie W (2013). Knockdown BMI1 expression inhibits proliferation and invasion in human bladder cancer T24 cells. Mol Cell Biochem 382(1-2), 283–291 [PubMed PMID: 23820733].

[13] Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, Cao L, Baxaiziv R, Du W, and Sydorenko N, et al (2014). Self-renewal as a therapeutic target in human colorectal cancer. Nat Med 20(1), 29–36 [PubMed PMID: 24292392].

[14] De Faveri LE, Hurst CD, Platt FM, Taylor CF, Roulson JA, Sanchez-Carbayo M, Knowles MA, and Chapman EF (2013). Putative tumour suppressor gene necdin is hypermethylated and mutated in human cancer. Br J Cancer 108(6), 1368–1377 [PubMed PMID: 23549060].

[15] Forster JA, Paul AB, Harned P, and Knowles MA (2011). Expression of NRG1 and its receptors in human bladder cancer. Br J Cancer 104(1), 1135–1143 [PubMed PMID: 21364580].
McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, and Clark GM (2005). Statistics Subcommittee of the NCIEWGoCD. REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat Clin Pract Oncol 2(8), 416–422 [PubMed PMID: 1615038].

Chapman EJ, Harnden P, Chambers P, Johnston C, and Knowles MA (2005). Comprehensive analysis of CDRNA2A status in microdissected urothelial cell carcinoma reveals potential molecular subtypes and associations with clinical phenotype. Clin Cancer Res 11(16), 5740–5747 [PubMed PMID: 16159151. Epub 2005/08/24. eng].

Chapman EJ, Hurst CD, Pitt E, Chambers P, Aveyard JS, and Knowles MA (2006). Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway. Oncogene 25(36), 5037–5045 [PubMed PMID: 16619045. Epub 2006/04/19. eng].

Varley CL, Stablachmidt J, Lee WC, Holder J, Diggle C, Selby PJ, Tjedjosiewicki LK, and Southgate J (2004). Role of PPARgamma and EGFR signalling in the urothelial terminal differentiation programme. J Cell Sci 117(Pt 10), 2029–2036 [PubMed PMID: 15054105. Epub 2004/04/01. eng].

Wood HM, Belvedere O, Conway C, Daly C, Chalkley R, and Aveyard JS (2005). Using next-generation sequencing for high resolution multiple analysis of copy number variation from high throughput sequencing data. Bioinformatics 21(1), 10–12.

Li H and Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14), 1754–1760 [PubMed PMID: 19451168. Pubmed Central PMCID: 2705234].

Gusnanto A, Wood HM, Pawitan Y, Rabbitts P, and Berri S (2012). Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics 28(1), 40–47 [PubMed PMID: 22039209].

Venkatraman ES and Olshen AB (2007). A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23(6), 657–663 [PubMed PMID: 17234663].

Hurst CD, Plan FM, Taylor CF, and Knowles MA (2012). Novel tumor subgroups of urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin Cancer Res 18(21), 5865–5877 [PubMed PMID: 22932667].

Raaphorst FM, van Kemenade FJ, Fieret E, Hamer KM, Satijn DP, Otte AP, and Meijer CJ (2000). Cutting edge: polycomb gene expression patterns reflect subgroups of urothelial carcinoma of the bladder defined by integrated genomic analysis. Clin Cancer Res 6(11), 416 [PubMed PMID: 11722244].

Clinical Cancer Res 17(10), 3132–3139 [PubMed PMID: 20351323. Pubmed Central PMCID: 2963559].

Sun J, and Zhou Z (2012). Clinicopathologic characteristics of high expression of Bmi-1 in squamous cell carcinoma. Lung Cancer 48(3), 299–306 [PubMed PMID: 15892997].

Tateishi K, Ohra M, Kanai F, Guleng B, Tanaka Y, Asao Y, Tada M, Seto M, Jazag A, and Lianjie L, et al (2006). Dysregulated expression of stem cell factor (c-kit) and Bmi-1 in telomerase immortalized human gingival epithelial cell line. J Periodontal Res 41(6), 570–579 [PubMed PMID: 16947330].

Bmi1 overexpression in UC. Review. De Favere et al. in Translational Oncology. Vol. 8, No. 5, 2015.

Bmi1 overexpression in UC. Review. De Favere et al. in Translational Oncology. Vol. 8, No. 5, 2015.
[51] Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, Wu R, Chen C, Li X, and Zhou L, et al (2011). Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. *Nat Genet* 43(9), 875–878 [PubMed PMID: 21822268].

[52] Nagarajan P, Onami TM, Rajagopalan S, Kania S, Donnell R, and Venkatachalam S (2009). Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis. *Oncogene* 28(8), 1053–1062 [PubMed PMID: 19137022. Pubmed Central PMCID: 2648865].

[53] Qiao B, Chen Z, Hu F, Tao Q, and Lam AK (2013). BMI-1 activation is crucial in hTERT-induced epithelial-mesenchymal transition of oral epithelial cells. *Exp Mol Pathol* 95(1), 57–61 [PubMed PMID: 23712029].

[54] Altarejos JY and Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. *Nat Rev Mol Cell Biol* 12(3), 141–151 [PubMed PMID: 21346730].

[55] Glinsky GV, Berezovska O, and Glinskii AB (2005). Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. *J Clin Invest* 115(6), 1503–1521 [PubMed PMID: 15931389. Epub 2005/06/03. eng].

[56] He X, Marchionni L, Hansel DE, Yu W, Sood A, Yang J, Parmigiani G, Matsui W, and Berman DM (2009). Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. *Stem Cells* 27(7), 1487–1495 [PubMed PMID: 19544456. Pubmed Central PMCID: 3060766].

[57] Zhu D, Wan X, Huang H, Chen X, Liang W, Zhao F, Lin T, Han J, and Xie W (2014). Knockdown of Bmi1 inhibits the stemness properties and tumorigenicity of human bladder cancer stem cell-like side population cells. *Oncol Rep* 31(2), 727–736 [PubMed PMID: 24337040].

[58] Cao L, Bombard J, Cintron K, Sheedy J, Weetall ML, and Davis TW (2011). BMI1 as a novel target for drug discovery in cancer. *J Cell Biochem* 112(10), 2729–2741 [PubMed PMID: 21678481].

[59] Bommi PV, Dimri M, Sahasrabuddhe AA, Khandekar J, and Dimri GP (2010). The polycomb group protein BMI1 is a transcriptional target of HDAC inhibitors. *Cell Cycle* 9(13), 2663–2673 [PubMed PMID: 20543557. Pubmed Central PMCID: 3010287].

[60] van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, van der Valk M, Dechamps J, Sofroniew M, and van Lohuizen M, et al (1994). Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. *Genes Dev* 8(7), 757–769 [PubMed PMID: 7926765].