Reconstitution of *Escherichia coli* Thioredoxin Reductase with 1-DeazaFAD

EVIDENCE FOR 1-DeazaFAD C-4a ADDUCT FORMATION LINKED TO THE IONIZATION OF AN ACTIVE SITE BASE

(Received for publication, June 16, 1983)

Michael E. O'Donnell† and Charles H. Williams, Jr.

From the Veterans Administration Medical Center and Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48105

The flavin prosthetic group (FAD) of thioredoxin reductase has been replaced by 1-deazaFAD (carbon substituted for nitrogen at position 1). Reduction of 1-deazaFAD-thioredoxin reductase by four electrons proceeds in two stages having midpoint potentials that are separated by 0.063 V. Two-electron reduced 1-deazaFAD-thioredoxin reductase (EH₂) has spectral characteristics that are different from both the fully oxidized and fully reduced enzyme. The fluorescence of the 2-electron reduced enzyme shows a mixture of two EH₂ species. The spectrum of one EH₂ species has a single absorption peak (λmax, 414 nm; ε₄₁₄, 8750 M⁻¹ cm⁻¹) which is similar to the spectrum of 1-deazaFAD-C-4a adducts (referred to as the 414-nm absorbing species). In the other EH₂ species the electrons are in the dithiol, and it has an oxidized 1-deazaFAD spectrum (referred to as the 550-nm EH₂ species). The equilibrium between the two EH₂ species of 1-deazaFAD-thioredoxin reductase is pH dependent, forming more of the 414-nm absorbing species as the pH is lowered. The pH dependence suggests the presence of an active center base having a pK of 7.41 on the 414-nm EH₂ species and a thiol of pK 6.73 on the 550-nm EH₂ species. These pK values are similar to the pK values determined for native enzyme having a disulfide or a dithiol (7.59 and 6.98, respectively). Thus, the pH dependence of the equilibrium between the two EH₂ species of 1-deazaFAD-thioredoxin reductase is further evidence for an active site base with an ionization behavior that is linked to the chemical state of the active site disulfide moiety. The nature of the linked ionization is consistent with a thiol base ion pair formed upon disulfide reduction.

Thioredoxin reductase from *Escherichia coli* catalyzes the reversible transfer of electrons between NADPH and the disulfide of thioredoxin, a small protein (Moore et al., 1964; Zanetti and Williams, 1967). The active center of thioredoxin reductase contains an FAD and an oxidation-reduction active disulfide (Zanetti and Williams, 1967; Thelander, 1968; Moore et al., 1964; Ronchi and Williams, 1972). It is thought that the electrons flow from NADPH to the FAD, from the FAD to the disulfide, and from the dithiol to the disulfide of thioredoxin. Thioredoxin reductase is analogous to lipoamide dehydrogenase and glutathione reductase in having an FAD and active center disulfide and in transferring electrons between pyridine nucleotide and disulfide substrates (Williams, 1976; Holmgren, 1980). The active center disulfide sequences of glutathione reductase from yeast (Jones and Williams, 1975) and erythrocyte (Krohne-Ehrich et al., 1977) are highly homologous to the disulfide sequences of lipoamide dehydrogenase from *E. coli* (Burleigh and Williams, 1972) and pig heart (Matthews et al., 1974; Brown and Perham 1972, 1974). However, the active center disulfide sequence of *E. coli* thioredoxin reductase (Ronchi and Williams, 1972; Thelander, 1970) shows no homology to the disulfide sequences of lipoamide dehydrogenase and glutathione reductase. A further difference between lipoamide dehydrogenase and glutathione reductase and thioredoxin reductase is in the separation of the oxidation-reduction midpoint potentials (Eₜ) of the FAD and disulfide couples. The FAD couple of both lipoamide dehydrogenase and glutathione reductase has a much lower Eₜ value than the disulfide couple (ΔEₜ, approximately 0.066 V from pH 5.5 to 7.6 in pig heart lipoamide dehydrogenase, Matthews and Williams, 1976; Matthews et al., 1977) and in glutathione reductase (Arscott et al., 1981).

The Eₜ values of the FAD and disulfide couples of thioredoxin reductase are approximately equal (O'Donnell and Williams 1982, 1983). Thus, reduction of thioredoxin reductase appears to be a single stage process showing only a gradual bleaching of the FAD absorbance (isosbestic wavelength, 347 nm) throughout a 4-electron titration (Zanetti and Williams, 1967).
1-DeazaFAD-Thioredoxin Reductase

1967). No charge transfer band is detected during the reduction of thioredoxin reductase even though studies demonstrate a thiol anion at the active site (O'Donnell and Williams 1982, 1983).

The present paper is a study of a derivative of thioredoxin reductase in which the FAD is replaced by 1-deazaFAD, an analogue of FAD having a more negative E_m (Walsh et al., 1978). The flavin replacement effects a separation of E_m between the flavin and disulfide couples which is similar to the separation determined for lipoxime dehydrogenase.

MATERIALS AND METHODS

Thioredoxin reductase was purified by a modification of the method of Piguet and Cenley (1977) using 1.0 M NaCl in place of NADPH to elute the enzyme from the 2',5'-ADP affinity column since aerobic turnover of NADPH leads to peroxide-mediated protein modification. 5'NAD and NADH were purchased from Sigma, sodium dithio- nitrate was from Tridon Chemical Corp., and activated charcoal was from Atlas Chemical Industries. 1-DeazaFAD at the riboflavin level was a generous gift of the synthetic chemistry group (Ashton et al., 1977) of Merck, Sharpe and Dohme Research Laboratories to Dr. Christopher Walsh of Massachusetts Institute of Technology. The action of 1-deazaFAD was reduced from Dr. Vinay Menon (University of Michigan) and was prepared using the partially purified flavokinase and FAD synthetase from Brevibacterium ammoniagenes according to the general procedures of Spencer et al. (1976).

Absorbance measurements were performed using a Cary 118C recording spectrophotometer interfaced to a PDP/8E computer (Williams et al., 1979) at 12 °C. Fluorescence measurements were performed in a Perkin-Elmer model 42B recording ratio spectrophotometer at 12 °C and were not corrected for monochrometer artifacts.

The FAD was resolved from thioredoxin reductase by adding 5.17 ml of 8.0 M guanidinium chloride, 0.1 M K$_2$HPO$_4$. 0.3 M EDTA, pH 7.6 to 3.1 ml of 42.1 ml thioredoxin reductase in Buffer A at 5 °C. The visible absorbance spectrum indicated resolution of the FAD from the enzyme within the time of mixing. The FAD was removed from solution by direct addition of defined activated charcoal in 0.1 ml of Buffer A. Additions of charcoal were repeated (four additions) until no detectable FAD absorbance remained. The supernatant was dialyzed against Buffer A to remove the guanidinium chloride. The concentration of apothioredoxin reductase was quantitated by amino acid analysis.

Apothioredoxin reductase was reconstituted with FAD by the addition of excess FAD to apothioredoxin reductase in Buffer A followed by extensive dialysis to remove unbound FAD. The concentration of reconstituted enzyme was quantitated by the absorbance at 435 nm using an extinction coefficient of 11,300 M$^{-1}$ cm$^{-1}$ (Williams et al., 1967). Apothioredoxin reductase was reconstituted with 1-deazaFAD by adding aliquots of 1-deazaFAD and monitoring the appearance of fluorescence (excitation, 552 nm; emission, 637 nm). When the fluorescence ceased to increase upon further additions of 1-deazaFAD, the reconstituted enzyme was dialyzed against Buffer A to remove unbound 1-deazaFAD. The extinction coefficient of 1-deazaFAD-thioredoxin reductase at the visible wavelength maximum (562 nm) is approximately 6800 M$^{-1}$ cm$^{-1}$ determined by dithionite titration. The native and reconstituted enzymes were assayed using the 5,5'-dithiobis-(2-nitrobenzoic acid) coupled assay (Moore et al., 1964).

Calculation of the Semiquinone Spectrum —The semiquinone spectrum was calculated from spectra obtained during an anaerobic sodium dithionite titration of 23 M 1-deazaFAD-thioredoxin reductase at pH 7.6 (spectra not shown but the following argument can be followed by reference to Fig. 1). The spectrum prior to the final addition of dithionite contained the EH$_3$ and EH$_4$ forms of enzyme as well as a substantial amount of the 1-deazaFAD semiquinone form as judged from the absorbance at 700 nm. This spectrum will be referred to as Spectrum A. The spectrum of semiquinone was calculated by correcting Spectrum A for the absorbance contributions of the EH$_3$ and EH$_4$ species. Spectrum A contained 54% EH$_4$ based on the absorbance upon the final addition of dithionite (excitation, 380 nm; emission, 490 nm). Spectrum A also contained 10.1% of the fluorescence of the oxidized 1-deazaFAD in EH$_4$ (excitation, 552 nm; emission, 690 nm). The final addition of dithionite resulted in a complete loss of the absorbance at 700 nm, a loss of the EH$_4$ fluorescence, an increase in the EH$_3$ fluorescence, and produced an absorption spectrum of fully reduced 1-deazaFAD-thioredoxin reductase, EH$_3$. Thus, two changes occur upon the 'last' addition of dithionite: 1) reduction of EH$_4$ to EH$_3$ and 2) reduction of semiquinone to EH$_3$.

Although EH$_3$ is an equilibrium mixture of at least two enzyme forms (i.e. oxidized 1-deazaFAD-dithiol and a C-4a-thiol-1-deazaFAD adduct) it is a spectrally distinct mixture at a given pH. The absorbance contribution of EH$_3$ to Spectrum A was calculated as follows: Two other spectra in the second phase of reduction (1.25 and 1.5 mol of dithionite/mol of 1-deazaFAD) had the same absorbance at 700 nm and presumably the same concentration of semiquinone. Thus, their difference spectrum, referred to as Spectrum B, yields the absorbance changes for EH$_3$ to EH$_4$. The fluorescence of EH$_3$ decreased to 46% of the value before this dithionite addition. Based on the loss of EH$_4$ fluorescence, the reduction of EH$_3$ to EH$_4$ in the final addition of dithionite (Spectrum A to EH$_4$) resulted in absorbance changes equivalent to 22% of Spectrum B. Thus, 22% of Spectrum B was subtracted from Spectrum A to give a difference spectrum referred to as Spectrum C. Spectrum C is the calculated spectrum for a mixture of EH$_3$ and semiquinone. The contribution of EH$_3$ to Spectrum C is the amount of reduction of Spectrum C to EH$_3$ introduced by the subtraction of 22% of Spectrum B from Spectrum A (0.22 × 0.46 = 0.1). Thus, 64% of the absorbance of reduced 1-deazaFAD-thioredoxin reductase was subtracted from Spectrum B, and the resultant spectrum was normalized for enzyme fluorescence to yield the spectrum of semiquinone (Fig. 2). Since the reduction state of the disulfide/dithiol couple in 1-deazaFAD-semiquinone cannot be determined it is assumed that the reduction state of the disulfide/dithiol couple does not significantly affect the semiquinone spectrum.

Calculation of the Spectrum of EH$_4$ —During the first phase of an anaerobic sodium dithionite titration at pH 7.6, the amount of absorbance at 700 nm is identical for two spectra that were separated by 0.57 eq of reduction. Thus, the concentration of semiquinone is identical at the two levels of reduction, and the difference spectrum gives the absorbance changes for 57% to 57% EH$_4$. The difference spectrum was extrapolated to 100% absorbance change for the first stage of reduction, EH$_4$ - E, and the spectrum of E (starting spectrum) was added to the extrapolated difference spectrum to yield the absorbance spectrum of EH$_3$ at pH 7.6 (Williams et al., 1979).

Excitation of the Spectrum of the 414-nm EH$_4$ EH$_3$ Species —The spectrum of the 414-nm EH$_4$ EH$_3$ species was estimated as follows. The absorbance changes for the conversion of the 550-nm EH$_3$ species to the 414-nm EH$_4$ species were determined by difference between Spectrum 9 and Spectrum 2 in the experiment of Fig. 7 after correcting each for an 11% contribution of semiquinone. The extent of the shift of the 550-nm EH$_3$ to the 414-nm EH$_4$ was calculated to be 28% assuming an extinction coefficient of 600 M$^{-1}$ cm$^{-1}$ for the 414-nm EH$_4$ species at 550 nm was assumed on the basis of the slight absorbance at 550 nm for the C-4a 1-deazaFAD adduct of the reaction between α-hydroxybutanoate and lactate oxidase (Entsch et al., 1980). This is consistent with the studies presented here which show that the 414-nm EH$_4$ species has little or no absorbance at 550 nm (see Fig. 5 and text). Using these extinction coefficients, the spectrum of EH$_4$ at pH 7.6 (see above) is calculated to consist of 80.7% of the 550-nm EH$_3$ species and 19.3% of the 414-nm EH$_4$ species. Thus, the spectrum of 100% 414-nm EH$_4$ species was obtained by adding the appropriate amount of the difference spectrum (Spectrum 2 – Spectrum 9, Fig. 7) to the spectrum of EH$_3$ at pH 7.6. The spectrum of the 414-nm EH$_4$ species calculated by this method is shown as the dotted spectrum in Fig. 7. The use of different extinction coefficients at 550 nm for the two EH$_4$ species changes the extinction coefficient
at 414 nm, but does not alter its general form.

Measurements of Oxidation-Reduction Midpoint Potentials—The E_m values for the two phases of reduction of 1-deazaFAD-thioredoxin reductase were calculated as described in the Miniprint of O’Donnell and Williams (1983). Briefly, the E_m of the first phase, E_1, was calculated from absorbance measurements during an anaerobic NADH titration at pH 7.6, 12°C. The equilibrium concentrations of E_1 and E_{H2} were calculated from the absorbance at 552 nm using extinction coefficients of 6800 M$^{-1}$ cm$^{-1}$ and 5500 M$^{-1}$ cm$^{-1}$ (from the calculated E_{H4} spectrum), respectively. The equilibrium concentration of NADH was calculated from the residual absorbance at 340 nm after subtracting the absorbance contributions at 340 nm of E_1 and E_{H2} using their extinction coefficients of 3100 and 3400 M$^{-1}$ cm$^{-1}$, respectively. The equilibrium concentration of NADH was calculated using the Nernst relationship: $E_{H4} = [\text{NADH}]^{1/2} + [\text{NAD}]^{1/2} \times 0.0283 \log([\text{NAD}]/[\text{NADH}]/[\text{E}])$, where the value of $K_{diss} = 0.315$ at 25°C and pH 7.6, as given in Clark and Williams (1983) and also -0.315 at 12°C and pH 7.6 as the corrections cancel (O’Donnell and Williams, 1983).

The reduction appears to occur in two stages producing an absorbance change at 414 nm, an increase at 414 nm, and an isosbestic wavelength of 457 nm (Fig. 1A). The second stage of reduction shows a further decrease in absorbance at 552 nm including a decrease above 400 nm, a region which shows increasing absorbance during the first stage. The first three spectra of the second stage are isosbestic at 397 nm. A plot of the absorbance changes at 440 nm, a wavelength between the isosbestic wavelengths of the individual stages shows about 1 eq of reduction in each phase (inset to Fig. 1B).

The reduction of 1-deazaFAD-thioredoxin reductase is accompanied by a long wavelength-absorbing species. A long wavelength-absorbing species was observed by Spencer et al. (1977a) in reactions of reduced 1-deazariboflavin with oxygen and was attributed to the neutral form of the 1-electron reduced species of 1-deazriboflavin. The spectrum of the long wavelength species was calculated from spectra during a sodium dithionite titration at pH 7.6 (see under “Materials and Methods”) and is shown in Fig. 2. The spectrum of the long wavelength species closely resembles the spectrum of the neutral radical of 1-deazaFAD-flavodoxin (Entsch et al., 1980). Thus, we assign the 700-nm species as being the neutral semiquinone of 1-deazaFAD-thioredoxin reductase. This assignment is consistent with the substantial quantity of neutral semiquinone that is formed during dithionite reduction of native thioredoxin reductase, especially at pH 6.0 (O’Donnell and Williams, 1983).

The lack of exact isosbestic points in reduction is probably due to the variable levels of semiquinone that are formed throughout the titration. This is suggested by Spectra 3–5 of the first stage of reduction, which have similar absorbance at 700 nm and are isosbestic (Fig. 1A) and by Spectra 10 and 11 of Fig. 1B which show the largest change in absorbance at 700 nm and corresponding large changes in the isosbestic wavelength. Spectra of a dithionite titration of 1-deazaFAD-thioredoxin reductase at pH 7.6 (similar in profile and 700-nm absorbance to those at pH 6.0) were corrected for the semiquinone by subtraction of the calculated semiquinone spectrum at pH 7.6 (see under “Materials and Methods”) and are shown in Fig. 3. The corrected spectra are isosbestic (first stage, 475 nm; second stage, 426 nm), further evidence for the reduction occurring in two discrete stages and for variable levels of semiquinone produced throughout the titration.

The two-stage reduction of 1-deazaFAD-thioredoxin reductase is analogous to the reduction of lipsoamide dehydrogenase and glutathione dehydrogenase except that the charge transfer band at 530 nm, maximal in the first stage of reduction in lipsoamide dehydrogenase and glutathione dehydrogenase, is replaced by an absorbance band at 414 nm which is maximal after the first stage of 1-deazaFAD-thioredoxin reductase reduction. Thus, a spectrally distinct intermediate species of 2-electron reduced 1-deazaFAD-thioredoxin reductase is formed during reduction and will be referred to as E_{H4} by analogy to the intermediate charge transfer species of lipsoamide dehydrogenase and glutathione dehydrogenase.

The spectrum of 1-deazaFAD in fully reduced thioredoxin reductase (Spectrum 11, Fig. 1B; Spectrum 8, Fig. 3) has an absorbance maximum at 375 nm ($\epsilon_{375} = 5800$ M$^{-1}$ cm$^{-1}$). The spectrum of the neutral dihydro-1-deazaFAD in free solution has an absorbance maximum at 480 nm ($\epsilon_{480} = 2000$ M$^{-1}$ cm$^{-1}$), and the anion has no distinct peak above 330 nm (Spencer et al., 1977a). Thus, thioredoxin reductase must stabilize a different structural form of reduced 1-deazaFADH$_2$. The several relevant tautomers and resonance forms of dihydro-1-deaza-flavins are discussed in Spencer et al. (1977a). The pH dependence of the reduced spectrum (pH 7.6 to pH 6.0; Figs. 1B

R...
FIG. 1. Spectra observed during an anaerobic dithionite titration of 1-deazaFAD-thioredoxin reductase at pH 6.0. A shows the absorption spectra recorded in the first stage of an anaerobic dithionite titration of 23.6 μM 1-deazaFAD-thioredoxin reductase in 1.2 ml of 0.1 M NaH₂PO₄-K₂HPO₄, 0.3 mM EDTA, pH 6.0, 12 °C. 1, oxidized enzyme; 2, 0.6 eq; 3, 0.8 eq; 4, 1.0 eq; 5, 1.2 eq; 6, 1.4 eq of dithionite/1-deazaFAD. B shows the absorbance changes observed in the second phase of the same dithionite titration. 7, 1.6 eq; 8, 1.8 eq; 9, 2.0 eq; 10, 2.2 eq; 11, 2.4 eq of dithionite/1-deazaFAD. Inset, relationship of the extinction coefficient at 440 nm to equivalents of dithionite added. Residual oxygen accounts for 0.5 mol of dithionite/mol of 1-deazaFAD.

and 3, respectively) suggests a neutral dihydro-1-deazaFAD species in thioredoxin reductase. These results are consistent with those of native thioredoxin reductase which show the formation of neutral dihydro-FAD upon reduction over the pH range 5.5-8.5 (O'Donnell and Williams, 1983).

Oxidation-Reduction Midpoint Potentials—The Eₘ of the FAD and disulfide couples of native thioredoxin reductase were determined previously by measuring the equilibrium concentrations of oxidized and reduced species of pyridine nucleotide and enzyme during an NADH titration (O'Donnell and Williams, 1983). The Eₘ of the E/EH₂ and EH₂/EH₄ couples of 1-deazaFAD-thioredoxin reductase were determined from equilibrium measurements during titrations with NADH by the method used with native enzyme (see under "Materials and Methods"). The Eₘ value of the E/EH₂ couple (E₁) was −0.299 V at pH 7.6, 12 °C. NADH does not reduce 1-deazaFAD-thioredoxin reductase past the EH₂ level at pH 7.6. This is consistent with the low potential of 1-deazaFAD in free solution. Thus, the Eₘ value of the EH₂/EH₄ couple (E₂) of 1-deazaFAD-thioredoxin reductase was estimated by first reducing the enzyme to EH₄ with dithionite and back titration with NAD⁺. The value of E₁ was −0.362 V. The difference between E₁ and E₂ of 0.063 V predicts an equilibrium constant of 170 for comproportionation. In lipoamide dehydrogenase, the values of E₁ and E₂ were −0.316 and −0.382 V, respectively (pH 7.6, 25 °C), giving a difference of 0.066 V (Matthews and Williams, 1976). Thus, the Eₘ values for the couples of native lipoamide dehydrogenase are about 0.020 V more negative than those of 1-deazaFAD-thioredoxin reductase, but the difference, E₂ − E₁, is very similar for the two enzymes.

The Eₘ value of 1-deazaFAD at pH 7.0, 25 °C, in free solution is 0.061 V more negative than the Eₘ of free FAD (Walsh et al., 1978). Eₘ, the midpoint potential of 1-deazaFAD bound to thioredoxin reductase, is approximately 0.063 V more negative than the Eₘ of the FAD in the dithiol form of thioredoxin reductase (O'Donnell and Williams, 1983). Thus,
the E_{∞} values of both FAD and 1-deazaFAD are lowered to approximately the same extent upon binding to apothioredoxin reductase indicating that any interactions between the protein and the N-1 position of the FAD do not significantly affect the E_{∞} of the flavin.

Nature of the E_{H2} Fluorescence; Evidence for Two Species

In contrast to the lack of fluorescence of 1-deazaFAD in free solution and bound to enzymes (Spencer et al., 1977b), both the oxidized and fully reduced forms of 1-deazaFAD-thioredoxin reductase are fluorescent. The oxidized 1-deazaFAD-thioredoxin reductase has 0.05% the fluorescence of FMN (pH 6.0; excitation maximum, 552 nm; emission maximum, 635 nm). The reduced form of 1-deazaFAD-thioredoxin reductase has 3.3% the fluorescence of FMN (excitation maximum, 392 nm; emission maximum, 575 nm), 66 times the fluorescence of oxidized 1-deazaFAD-thioredoxin reductase.

The fluorescence excitation spectra of 1-deazaFAD-thioredoxin reductase, shown in Fig. 4, were recorded during the dithionite titration shown in Fig. 1. The quantum yields of the oxidized and reduced forms of 1-deazaFAD-thioredoxin reductase are approximately equal at an emission wavelength of 660 nm. Therefore, the excitation spectra obtained monitoring at this wavelength will be related to the absorbance spectra both in shape and in magnitude. Two features of the fluorescence results are important to note. At 414 nm, where E_{H2} has more absorbance than E, the fluorescence excitation spectra show decreasing intensity throughout the first stage of the titration. This shows that the absorbance at 414 nm is caused by a nonfluorescent 2-electron reduced form of 1-deazaFAD-thioredoxin reductase. After reduction by 1 eq of dithionite, the 2-electron reduced enzyme is still quite fluorescent having an excitation spectrum very similar to that of E except for a blue shift of approximately 4 nm. Thus, the fluorophores at the E and E_{H2} levels are similar. These observations indicate that there are at least two spectrally distinct species at the E_{H2} level, a fluorescent species having a maximum at approximately 550 nm, which will be referred to as the 550-nm E_{H2} species, and a nonfluorescent species having an absorption maximum at 414 nm which will be referred to as the 414-nm E_{H2} species. The relationship between the 552-nm fluorescence and the absorbance at 552 nm is shown in Fig. 5 for the experiment of Figs. 1 and 4. The plot is a straight line that extrapolates near to the origin showing that neither the 414-nm E_{H2} species nor the E_{H1} species have appreciable absorbance at 552 nm.

Effect of Phenylmercuric Acetate on E_{H2}; the E_{H2} Species Are in Rapid Equilibrium

The organic mercurial, phenylmercuric acetate, binds tightly to the active center dithiol of reduced thioredoxin reductase (O'Donnell and Williams, 1983). The addition of phenylmercuric acetate to 1-deazaFAD-thioredoxin reductase in the first stage of reduction caused a rapid loss of the 414-nm absorbance and a concomitant rise in the 552-nm absorbance in the time of mixing, about 15 s (Fig. 6). This shows that the 414-nm species is an E_{H2} species and that the 550-nm E_{H2} species and the 414-nm E_{H2} species are in rapid equilibrium. The 700-nm absorbance is essentially unchanged by phenylmercuric acetate addition, consistent with semiquinone as the 700-nm absorbing species.

Native thioredoxin reductase also has two 2-electron reduced enzyme species (O'Donnell and Williams, 1983). These species are enzyme forms in which the electrons reside on either the disulfide or the FAD and will be designated here as FADH$_2$/disulfide and FAD/dithiol species. The FAD/dithiol
1-DeazaFAD-Thioredoxin Reductase

The equilibrium between the two EH2 species is pH-dependent—lipoyl dehydrogenase from both pig heart and E. coli have a fluorescent EH2 species and a nonfluorescent charge transfer EH2 species (Wilkinson and Williams, 1979). The electrons in these two spectrally distinct species of EH2 in lipoyl dehydrogenase reside on the dihydrolipoamide thiol. The difference in the EH2 species lies in their state of protonation. The nonfluorescent charge transfer EH2 species has a thiol anion that forms a charge transfer complex with the FAD resulting in a new absorbance band at 530 nm (Kosower, 1966; Massey and Ghisla, 1974; Matthews and Williams, 1976; Wilkinson and Williams, 1979). The fluorescent EH2 species contains a protonated thiol and is similar to oxidized enzyme in its absorbance and fluorescence properties. A 530-nm EH2 species is also observed in glutathione reductase (Arscott et al., 1981). The extinction coefficient at 530 nm of the charge transfer EH2 species of lipoyl dehydrogenase and glutathione reductase is decreased as the pH is lowered, due to protonation of the thiol anion donor of the charge transfer complex (Matthews and Williams, 1976; Arscott et al., 1981). If the 414-nm EH2 species of 1-deazaFAD-thioredoxin reductase is a charge transfer species analogous to lipoamide dehydrogenase and glutathione reductase, the 414-nm absorbance of partially reduced 1-deazaFAD-thioredoxin reductase should decrease as the pH is lowered.

The pH dependence of the 414-nm absorbance of partially reduced 1-deazaFAD-thioredoxin reductase was measured by reducing the enzyme with slightly greater than 1 eq of dithionite in 0.010 M K2HPO4-NaH2PO4, 0.3 mM EDTA, pH 8.22, and the pH was lowered by 2-μl additions of 0.5 M acetic acid. The pH of the anaerobic enzyme solution was determined in an aerobic control experiment by measuring the pH of the same volume of buffer titrated with 0.5 M acetic acid. The results are shown in Fig. 7. As the pH was lowered, the 414-nm absorbance increased, and the 550-nm absorbance decreased. The observed spectral changes are opposite to those expected for a charge transfer EH2 species. Thus, the pH dependence of the 414-nm absorbance shows that the 414-nm EH2 species is not a thiolate-to-1-deazaFAD charge transfer species.

The pH dependence of the equilibrium between the 550-nm EH2 species and 414-nm EH2 species of 1-deazaFAD-thioredoxin reductase allows the spectrum of the 414-nm EH2 species to be calculated (see under “Materials and Methods”) and is shown as the dashed spectrum in Fig. 7. The characteristic twin maxima of oxidized 1-deazaFAD is replaced by a single peak in the 414-nm EH2 species (λmax, 414 nm; ε414, 8750 M⁻¹ cm⁻¹).

Model studies suggest that the transfer of electrons between flavin and disulfide proceeds via the covalent addition of a thiol at the C-4a position of the flavin. Thus, it was of interest to compare the calculated spectrum of the 414-nm EH2 species with a known C-4a adduct of 1-deazaFAD. The reduced enzyme-substrate complex of 1-deazaFAD-p-hydroxybenzoate dehydrogenase and glutathione reductase, the 414-nm absorbance of partially reduced 1-deazaFAD-thioredoxin reductase should decrease as the pH is lowered.

The pH dependence of the 414-nm absorbance of partially reduced 1-deazaFAD-thioredoxin reductase was measured by reducing the enzyme with slightly greater than 1 eq of dithionite in 0.010 M K2HPO4-NaH2PO4, 0.3 mM EDTA, pH 8.22, and the pH was lowered by 2-μl additions of 0.5 M acetic acid. The pH of the anaerobic enzyme solution was determined in an aerobic control experiment by measuring the pH of the same volume of buffer titrated with 0.5 M acetic acid. The results are shown in Fig. 7. As the pH was lowered, the 414-nm absorbance increased, and the 550-nm absorbance decreased. The observed spectral changes are opposite to those expected for a charge transfer EH2 species. Thus, the pH dependence of the 414-nm absorbance shows that the 414-nm EH2 species is not a thiolate-to-1-deazaFAD charge transfer species.

The pH dependence of the equilibrium between the 550-nm EH2 species and 414-nm EH2 species of 1-deazaFAD-thioredoxin reductase allows the spectrum of the 414-nm EH2 species to be calculated (see under “Materials and Methods”) and is shown as the dashed spectrum in Fig. 7. The characteristic twin maxima of oxidized 1-deazaFAD is replaced by a single peak in the 414-nm EH2 species (λmax, 414 nm; ε414, 8750 M⁻¹ cm⁻¹).

Model studies suggest that the transfer of electrons between flavin and disulfide proceeds via the covalent addition of a thiol at the C-4a position of the flavin. Thus, it was of interest to compare the calculated spectrum of the 414-nm EH2 species with a known C-4a adduct of 1-deazaFAD. The reduced enzyme-substrate complex of 1-deazaFAD-p-hydroxybenzoate dehydrogenase and glutathione reductase, the 414-nm absorbance of partially reduced 1-deazaFAD-thioredoxin reductase should decrease as the pH is lowered.

The pH dependence of the 414-nm absorbance of partially reduced 1-deazaFAD-thioredoxin reductase was measured by reducing the enzyme with slightly greater than 1 eq of dithionite in 0.010 M K2HPO4-NaH2PO4, 0.3 mM EDTA, pH 8.22, and the pH was lowered by 2-μl additions of 0.5 M acetic acid. The pH of the anaerobic enzyme solution was determined in an aerobic control experiment by measuring the pH of the same volume of buffer titrated with 0.5 M acetic acid. The results are shown in Fig. 7. As the pH was lowered, the 414-nm absorbance increased, and the 550-nm absorbance decreased. The observed spectral changes are opposite to those expected for a charge transfer EH2 species. Thus, the pH dependence of the 414-nm absorbance shows that the 414-nm EH2 species is not a thiolate-to-1-deazaFAD charge transfer species.

The pH dependence of the equilibrium between the 550-nm EH2 species and 414-nm EH2 species of 1-deazaFAD-thioredoxin reductase allows the spectrum of the 414-nm EH2 species to be calculated (see under “Materials and Methods”) and is shown as the dashed spectrum in Fig. 7. The characteristic twin maxima of oxidized 1-deazaFAD is replaced by a single peak in the 414-nm EH2 species (λmax, 414 nm; ε414, 8750 M⁻¹ cm⁻¹).

Model studies suggest that the transfer of electrons between flavin and disulfide proceeds via the covalent addition of a thiol at the C-4a position of the flavin. Thus, it was of interest to compare the calculated spectrum of the 414-nm EH2 species with a known C-4a adduct of 1-deazaFAD. The reduced enzyme-substrate complex of 1-deazaFAD-p-hydroxybenzoate dehydrogenase and glutathione reductase, the 414-nm absorbance of partially reduced 1-deazaFAD-thioredoxin reductase should decrease as the pH is lowered.
1-DeazaFAD-Thioredoxin Reductase

zoate hydroxylase reacts rapidly with oxygen to form a structure proposed to be a C-4a-1-deazaFAD hydroperoxide (Entsch et al., 1980) and also has a spectrum (λ_{max}, 395 nm; ε_{max}, 9500 M⁻¹ cm⁻¹) similar to that of the 414-nm EH2 species. Furthermore, the product of the reaction between 1-deazaFAD-lactate oxidase and 1-hydroxy-3-butynoate is proposed to be a C-4a/N-5 bridged adduct (Entsch et al., 1980) which is similar to that of the 414-nm EH2 species.

The spectrum of the 414-nm EH2 species is compatible with formation of a thiol C-4a adduct of 1-deazaFAD exhibiting spectral characteristics similar to analogous adducts involving substitution of carbon or oxygen moieties at that position. All such adducts lead to a tetrahedral carbon atom at the C-4a position. The flavin-binding pocket in thioredoxin reductase is quite apolar as judged by the vibronic resolution of the absorbance spectrum of both FAD and 1-deazaFAD bound to the enzyme. Thus, the 19- to 32-nm red shifted position of the absorbance spectrum of both FAD and 1-deazaFAD bound to the enzyme is the same as those of Fig. 7 indicating no significant induction of the internal equilibrium between the 414-nm EH2 species and the 550-nm EH2 species, respectively. The equilibrium constant, 550-nm EH2/414-nm EH2, and the equilibrium constant in the opposite direction are plotted as a function of pH in Fig. 8. The derivation and interpretation of the plot of Fig. 8 is described in O'Donnell and Williams (1983). The theoretical fits to the data yield pK values of 7.41 and 6.73 which are the values for ionizations on the 414-nm EH2 species and 550-nm EH2 species, respectively. The values for the internal equilibrium between the 414-nm EH2 species and the 550-nm EH2 species at the basic and acidic limbs of the theoretical fits to the data are 0.167 and 0.80, respectively. Thus, the 414-nm EH2 species has an ionization with a higher pK than that of a group on the 550-nm EH2 species leading to a shift in equilibrium toward the 414-nm EH2 species as the pH is lowered.

DISCUSSION

The reduction of 1-deazaFAD-thioredoxin reductase occurs in two stages that are separated in E_a by 0.063 V. Two electrons react with the enzyme in each stage. The two-stage nature of the reaction is predicted from the low potential of 1-deazaFAD relative to FAD in solution (ΔE_a 0.063 V). Thus, in native enzyme, the FAD and disulfide couples have approximately equal E_a values and are reduced together whereas in 1-deazaFAD-thioredoxin reductase the disulfide is reduced (constituting the first stage, E₁ = -0.299 V, pH 7.6, 12 °C) and then the 1-deazaFAD is reduced (second stage, E₂ = -0.362 V, pH 7.6, 12 °C).

Lipoamide dehydrogenase and glutathione reductase show a two-stage reduction and a 2-electron reduced species having increased absorbance at 530 nm relative to both the oxidized and fully reduced enzymes. The 530-nm absorbance band is interpreted to be a thiolate-to-FAD charge transfer species. Two-electron reduced 1-deazaFAD-thioredoxin reductase, EH2, has increased absorbance at 414 nm relative to both the oxidized and fully reduced enzyme. The 414-nm absorbance of the EH2 species of 1-deazaFAD-thioredoxin reductase is not caused by a thiolate-to-1-deazaFAD charge transfer interaction since protonation of 1-deazaFAD-thioredoxin reductase EH2 leads to increased amounts of the 414-nm absorbance.

The fluorescence excitation spectra of 1-deazaFAD-thioredoxin reductase in the course of a dithionite titration show that EH2 is a mixture of at least two spectrally distinct species, a fluorescent EH2 species that absorb maximally at 550 nm and a nonfluorescent EH2 species that absorb maximally at 414 nm. The 414-nm EH2 species has a spectrum with a single absorbance peak (λ_{max}, 414 nm; ε_{max}, 8750 M⁻¹ cm⁻¹) suggestive of a 1-deazaFAD C-4a adduct. Since the putative C-4a adduct is formed upon reduction of the disulfide, the presumed C-4a substituent is one of the active site thiols. Since FAD and 1-deazaFAD have similar chemical properties (Spencer et al., 1977a), these results suggest an intermediate C-4a species in the transfer of electrons from FADH2 to the disulfide in native enzyme as shown in Scheme 1. The C-4a of reduced flavin

Fig. 8. Relationship of the equilibrium between the 414-nm EH2 species and the 550-nm EH2 species and the pH. The equilibrium constants for the equilibrium between the EH2 species at different pH values were calculated from the absorbance measurements at 552 nm in the experiment of Fig. 7 (see text). •, [414-nm EH2]/[550-nm EH2]; ■, [550-nm EH2]/[414-nm EH2]. The solid lines are theoretical fits to the data (see under "Materials and Methods").

Scheme 1

Reduced Flavin C-4a Adduct Oxidized Flavin

![Scheme 1](http://www.jbc.org/)

Downloaded from http://www.jbc.org/ by guest on July 9, 2020
adds to the disulfide to form a thiol-to-flavin C-4a adduct and a free thiol. The electron transfer is completed concurrent with the deprotonation of the flavin N-5 to form oxidized flavin and a dithiol.

An intermediate C-4a adduct species in the transfer of electrons between the FAD and thiols is consistent with model studies (Hemmerich, 1968; Hamilton, 1971; Gascoigne and Radda, 1967; Loechler and Hollocher, 1975; Yokoe and Bruice, 1975). A thiol-to-flavin C-4a adduct has also been observed in a derivative of lipoamide dehydrogenase wherein one of the active site thiols is alkylated by iodoacetamide (Thorpe and Williams, 1976a). This enzyme derivative is induced to form a C-4a adduct upon binding NAD+ (Thorpe and Williams, 1976b; Thorpe and Williams, 1961).

Measurements of the proton stoichiometry of reduction of the disulfide in native thioredoxin reductase indicate a base at the active center with an ionization behavior that is linked to the oxidation-reduction state of the disulfide (O’Donnell and Williams, 1983). The proton stoichiometry results were best fit by a model wherein enzyme with an oxidized disulfide had a group with a pK of approximately 7.59 and enzyme with a pK of approximately 5.79 and enzyme containing a dithiol had a group with a pK of approximately 6.98. The pH dependence of the equilibrium between the two EH2 species in 1-deazaFAD-thioredoxin reductase shows that the 414-nm EH2 species (which does not have a dithiol) has an ionization with a pK of approximately 7.41, and an ionization of a group on the 550-nm EH2 species (having a dithiol) has a pK of about 6.73. Thus, the pH dependence of the equilibrium between the EH2 species is further evidence for the ionization of an active site base linked to the chemical state of the disulfide moiety.

Studies on lipoamide dehydrogenase suggest that a base on oxidized enzyme has a pK value below 5.5 and is shifted up to 7.8 upon reduction of the disulfide. The shift in the pK of the base is explained by the formation of a thiol-base ion pair upon disulfide reduction. The linkage of the pK of a base to the chemical state of the disulfide is alkylated by iodoacetamide (Thorpe and Williams, 1976a). This enzyme derivative is induced to form a C-4a adduct upon binding NAD+ (Thorpe and Williams, 1976b; Thorpe and Williams, 1961).

In lipoamide dehydrogenase, the ion pair thiol has a pK of about 4.8, and studies suggest that the base has a pK of less than 5.5 on oxidized enzyme (Matthews et al., 1977). This may indicate a thiol anion in thioredoxin reductase that has a greater intrinsic nucleophilicity than the thiol in lipoamide dehydrogenase. Thioredoxin reductase differs from lipoamide dehydrogenase and glutathione reductase in that the putative thiolate in thioredoxin reductase does not charge transfer to the FAD. This may be due to an incorrect juxtaposition of the thiolate relative to the FAD or a suboptimal ionization potential of the thiolate.

Acknowledgments—We wish to thank Dr. Vincent Massey for the suggestion of replacing the FAD of thioredoxin reductase with 1-deazaFAD and Dr. Colia Thorpe for helpful suggestions on the preparation of apothioredoxin reductase.

REFERENCES

Ascott, L. D., Thorpe, C., and Williams, C. H., Jr. (1981) Biochemistry 20, 1513–1520
Ashton, W. , Graham, D., Brown, R., and Rogers, E. (1977) Tetrabrom Lett. 2551–2554
Brown, J. P., and Perham, R. N. (1972) FEBS Lett. 26, 221–224
Brown, J. P., and Perham, R. N. (1974) Biochem. J. 138, 505–512
Burleigh, B. D., Jr., and Williams, C. H., Jr. (1972) J. Biol. Chem. 247, 2977–2982
Clark, W. M. (1960) Oxidation-Reduction Potentials of Organic Systems, The Williams and Wilkins Co., Baltimore
Entsch, B., Hussain, M., Balbou, D. F., Massey, V., and Walsh, C. (1980) J. Biol. Chem. 255, 1420–1429
Gascoigne, I. M., and Radda, G. K. (1967) Biochim. Biophys. Acta 131, 498–507
Hemmerich, P. (1969) Prog. Bioorg. Chem. 1, 83–157
Hemmerich, P. (1968) Proc. R. Soc. Lond. Ser. A 302, 331–344
Holmgren, A. (1980) Experimentia (Basel) 36, (suppl.) 149–180
Jones, E. T., and Williams, C. H., Jr. (1975) J. Biol. Chem. 250, 3779–3784
Kosower, E. M. (1966) in Flavins and Flavoproteins (Slater, E. C., ed) pp. 1–14, Elsevier, Amsterdam
Krohn-Ehrlich, G., Schirmer, R. H., and Untacht-Grau, R. (1977) Eur. J. Biochem. 80, 65–71
Loechler, E. L., and Hollocher, T. C. (1975) J. Am. Chem. Soc. 97, 3235–3237
Massey, V., and Ghisla, S. (1974) Annu. N. Y. Acad. Sci. 227, 446-465
Matthews, R. G., Arscott, L. D., and Williams, C. H., Jr. (1974) Biochim. Biophys. Acta 370, 26-38
Matthews, R. G., and Williams, C. H., Jr. (1976) J. Biol. Chem. 251, 3956-3964
Matthews, R. G., Ballou, D. P., Thorpe, C., and Williams, C. H., Jr. (1977) J. Biol. Chem. 252, 3199-3207
Moore, E. C., Reichard, P., and Thelander, L. (1964) J. Biol. Chem. 239, 3445-3452
O'Donnell, M. E., and Williams, C. H., Jr. (1974) in Flavins and Flavoproteins (Massey, V., and Williams, C. H., Jr., eds) pp. 153-162, Elsevier/North-Holland, New York
O'Donnell, M. E., and Williams, C. H., Jr. (1983) J. Biol. Chem. 258, 13795-13805
Pigiet, V. P., and Conley, R. R. (1977) J. Biol. Chem. 252, 6367-6372
Ronchi, S., and Williams, C. H., Jr. (1972) J. Biol. Chem. 247, 2083-2086
Sears, R. L., and Sanadi, D. R. (1961) J. Biol. Chem. 236, 2317-2321
Spencer, R., Fisher, J., and Walsh, C. (1976) Biochemistry 15, 1043-1053
Spencer, R., Fisher, J., and Walsh, C. (1977a) Biochemistry 16, 3586-3593
Spencer, R., Fisher, J., and Walsh, C. (1977b) Biochemistry 16, 3594-3602
Thelander, L. (1968) Eur. J. Biochem. 4, 407-422
Thelander, L. (1970) J. Biol. Chem. 245, 6026-6029
Thorpe, C., and Williams, C. H., Jr. (1976a) J. Biol. Chem. 251, 3553-3557
Thorpe, C., and Williams, C. H., Jr. (1976b) J. Biol. Chem. 251, 7726-7728
Thorpe, C., and Williams, C. H., Jr. (1981) Biochemistry 20, 1507-1513
Walsh, C., Fisher, J., Spencer, R., Graham, D. W., Ashton, W. T., Brown, J. E., Brown, R. D., and Rogers, E. F. (1978) Biochemistry 17, 1942-1951
Wilkinson, K. D., and Williams, C. H., Jr. (1979) J. Biol. Chem. 254, 852-862
Williams, C. H., Jr., Zanetti, G., Arscott, D. L., and McAllister, J. K. (1967) J. Biol. Chem. 242, 5226-5231
Williams, C. H., Jr. (1976) in The Enzymes (Boyer, P. D., ed) Vol. XIII, pp. 89-173, Academic Press, New York
Williams, C. H., Jr., Arscott, L. D., Matthews, R. G., Thorpe, C., and Wilkinson, K. D. (1979) Methods in Enzymology. Vitamins and Coenzymes 62D, 183-198
Yokoe, I., and Bruice, T. C. (1975) J. Am. Chem. Soc. 97, 450-451
Zanetti, G., and Williams, C. H., Jr. (1967) J. Biol. Chem. 242, 5232-5236
Reconstitution of Escherichia coli thioredoxin reductase with 1-deazaFAD. Evidence for 1-deazaFAD C-4a adduct formation linked to the ionization of an active site base.

M E O'Donnell and C H Williams, Jr

J. Biol. Chem. 1984, 259:2243-2251.

Access the most updated version of this article at http://www.jbc.org/content/259/4/2243

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/259/4/2243.full.html#ref-list-1