Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach

Citation for published version:
Martin, AC, Jeffers, ES, Petrokofsky, G, Myers-Smith, I & Macias-Fauria, M 2017, 'Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach', Environmental Research Letters, vol. 12, no. 8. https://doi.org/10.1088/1748-9326/aa7989

Digital Object Identifier (DOI):
10.1088/1748-9326/aa7989

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Environmental Research Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Shrub growth and expansion in the Arctic tundra: an
assessment of controlling factors using an evidence-based
approach

Andrew C. Martin¹, Elizabeth S. Jeffers¹, Gillian Petrokofsky¹, Isla Myers-Smith², and Marc
Macias-Fauria³

¹. Oxford Long-Term Ecology Laboratory, Department of Zoology, University of Oxford, OX1 3PS
². School of GeoSciences, University of Edinburgh, EH9 3FF
³. School of Geography and the Environment, University of Oxford, OX1 3QY

Abstract
Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic
tundra biome in the last decades, which has been linked to a biome-wide observed increase in
productivity. Experimental, observational, and socio-ecological research suggests that air temperature
– and to a lesser degree precipitation – trends have been the predominant drivers of this change.
However, a progressive decoupling of these drivers from Arctic vegetation productivity has been
reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a)
identify the suite of controls that may be operating on shrub growth and expansion, and (b)
characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence
for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence
base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow
dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only
one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the
use of space-for-time approaches was high, with 14% of the evidence derived via experimental
approaches. The findings suggest the current evidence base is not sufficiently robust or
comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future
directions that could strengthen the evidence, and lead to an understanding of the key mechanisms
driving changes in Arctic shrub environments.

1. Introduction
The Arctic tundra biome provides essential regulatory effects to global climate, in particular albedo
(Juszak et al 2014), storage of organic carbon in its living biomass (Nauta et al 2014), and permafrost
dynamics (Blok et al 2010). Over at least the last three decades, changes in vegetation composition
have occurred that have significant consequences for the regulatory capability of tundra
environments. Specifically, the ability of woody shrub species to produce biomass has increased,
leading to shrubs of greater maximum height (Epstein et al. 2012). Spatial expansion has also
occurred: latitudinal ‘shrublines’ have advanced (Myers-Smith and Hick 2017), and new recruitment
has enabled progressive filling of patchy landscapes (Tape et al. 2006; Myers-Smith et al. 2011; Frost,
& Epstein 2014), both at the expense of mosses and lichens (Elmendorf et al. 2012b). Such
‘shrubification’ has been a Pan-Arctic trend since the 1980s, supported by data from experimental
plots (Elmendorf et al. 2012a), remote sensing and repeat photography (Sturm et al. 2001; Walker et al
2006; Epstein et al. 2012; Frost, & Epstein 2014; Tape et al. 2012; Tremblay et al. 2012),
dendrochronologies (Macias-Fauria et al. 2012; Forbes et al. 2010), and indigenous knowledge
(Cuerrier et al. 2015; Henry et al. 2012; Forbes et al. 2009).

Air temperature and growing season lengths have increased in tundra ecosystems more than at lower
latitudes, due to positive feedbacks that snow and ice (both on land and at sea) have with climate
(Serreze, & Barry 2011). Shrubification can be attributed primarily to air temperature changes
(Myers-Smith et al. 2015), and to a lesser extent soil moisture (Myers-Smith et al. 2015; Ackerman et
al 2017), although shrub responses are heterogeneous. Data from the International Tundra Experiment
(ITEX) long-term plot network demonstrates regional differences in the responses of tundra
vegetation to summer air temperatures (Elmendorf et al. 2012a). Similarly, shrub ring chronologies
indicate heterogeneous long-term responses to mean summer temperature, with maximum sensitivity
in warmer and wetter tundra sites (Myers-Smith et al. 2015). The observed heterogeneity suggests that
other processes are important in controlling shrubification trends.

Shrubification has been linked to satellite-derived observations of widespread ‘greening’ (increases
in vegetation productivity, as measured by the Normalised Difference Vegetation Index – NDVI).
Recently, the NDVI index has shown widespread negative trends across the Arctic tundra for the first
time in decades (Epstein et al. 2015; Ju and Masek 2016). NDVI has been demonstrated as a
correlative proxy for shrubification (e.g. Forbes et al. 2010), but predictions based on NDVI assume
that (a) correlations between plot-scale productivity and NDVI holds across Arctic regions, despite
local-scale factors introducing uncertainty (Jorgenson et al. 2015), and (b) the relationship holds under
future conditions (e.g. increased landscape shrub biomass). Recognising these uncertainties, the recent
negative NDVI trends could be driven by complex environmental controls on shrubs beyond simple
temperature metrics, such climatic extremes, and/or discrete disturbance events (Phoenix and Bjerke
2016). A progressive decline in the relationship between air temperature and NDVI since 1982 (Piao
et al. 2014; Kremers et al. 2015) further supports the role of controls beyond air temperature.
Rapidly increasing air temperatures or increased growing season lengths appear responsible for shrubification trends, but with significant roles for other controls that contribute to heterogeneity in shrub-temperature responses. Without a robust assessment of these controls, one cannot ascertain their relative importance, the adequacy of current study designs, or the evidence required to reveal mechanisms driving shrubification processes. We conducted an evaluation of the current evidence base to answer the following questions:

1. What are the suite of controls that may act upon shrub growth and expansion in the Arctic tundra?
2. Do study designs take account of controls to shrubification and the mechanisms that may drive them, and are there spatial gaps in the evidence base that may limit our ability to detect their significance?
3. Do study designs take account of temporal characteristics sufficiently comprehensively to enable inferences to be drawn about likely mechanisms?

2. Methods

2.1. Protocol

To establish the controls that may be operating on Arctic shrub growth and expansion, the quantitative evidence base for each control, and gaps in current research directions, we systematically mapped recently published literature (full protocol in Appendix A). Briefly, we searched the online database Web of Science Core Collection for “topic= Arctic AND Shrub*”, limited to publication years January 2012-January 2017. The following inclusion criteria were then applied:

1. **Shrub Response.** The study carried out statistical analysis within which at least one direct measure of shrub growth or expansion was used as a response variable (see Appendix A).
2. **Control.** Within the statistical test(s), an environmental control external to the shrub was used as a predictor to test against shrub response(s) identified in 1.
3. **Location.** At least one site for which the statistical test was completed must occur within the Arctic tundra. We defined the Arctic tundra as any land north of the Arctic treeline (Walker et al 2002) and ‘Oro-Arctic’ areas (Virtanen et al 2016).

For each included source, we identified every environmental control used as a predictor, at every independent site. The many-to-many relationship between sources, controls, and sites was multiplied out to form source-control-site data points, hereafter referred to as **evidence points.**
2.1.1 Delineation of Methodologies

Methodology was characterised for each evidence point as non-experimental or experimental, then into subclasses depending on temporal characteristics. Following best practice in evidence synthesis (Collaboration for Environmental Evidence 2013), we characterised the data used within statistical analyses and not the data collected. For non-experimental evidence, observational controls had measurements taken through time to form a time-series of two or more time points. Spatial gradients used multiple measurements across space to substitute for time, while chronosequences attributed such variation across space to specific previous times to form a retrospective time-sequence. For experimental design based on the temporal nature of the data used within statistical analysis:

(i) A time-series factorial was defined as an experiment in which measurements of both the environmental control and shrub response(s) were taken through time, and included in statistical analysis.

(ii) A response-only factorial only included time-series for the response variable, with no predictor time-series.

(iii) A non-temporal factorial contrasted the effect of a manipulation with a control plot, but no time series was present. For example, a nutrient addition experiment that tests for an effect on budding date after 18 years, with no ‘before’ point, and using differences between control and manipulation plots as a substitution for time, would fit this category.

(iv) An experimental chronosequence used multiple plots through space with varying treatment lengths to assess the role of treatment on shrub response(s).

2.2. Classification of Controls

We classified the environmental controls found in the evidence base into two major categories – ultimate and proximal – to provide scope and rigour to the systematic analysis via this underlying framework (Figure 1). Proximal controls are defined as environmental state parameters that directly impact the ability of a shrub individual to increase in biomass, reproduce or establish, without the need for any intermediate environmental properties (e.g. soil moisture, fire). Proximal controls provide the minimal degree of complexity from which to characterise the underlying mechanisms controlling shrub growth and expansion. Where a proxy measure was used that could be directly attributed to a proximal control (e.g. thaw degree days, for ice and frost), this was included as an evidence point for the proximal control (all proxy measures listed in Table A1). Proximal controls are driven ultimately by further environmental properties that influence their occurrence in space and time (ultimate controls), such as the role of sea ice on local air temperature, but without support for any direct mechanistic relationship to shrub performance. Shrub traits (e.g. leaf size and properties, reproductive strategy, wood and vessel structure, metabolic adaptations, growth form, species-related
symbiotic relations, etc.) are significant determinants of plant-environment interactions, and can vary between genera, species, populations, ecotypes, and functional type (Chapin et al 1996). As we did not consider effect sizes in this analysis, we do not formally characterise internal controls here, and leave this for discussion and as a future avenue for research.

Figure 1 Conceptual overview of the framework used for the analysis. Proximal controls are state parameters that directly influence the performance of shrub individuals, without any intermediary role of other environmental parameters. These controls may be resources that can become limiting (e.g. soil moisture, nutrients), or disturbance drivers that can cause damage (e.g. gall mites, storm damage). The effectiveness of proximal controls is mediated by shrub traits (leaf size and properties, reproductive strategy, wood and vessel structure, metabolic adaptations, growth form, species-related symbiotic relations). The occurrence of proximal controls depends on additional environmental parameters – ultimate controls (Env_a, Env_b … Env_x).

2.3. Analysis of Spatial Characteristics
To assess the degree to which the evidence points were spatially clustered or dispersed, we computed spatial autocorrelation using the Global Moran’s I statistic (using an inverse distance spatial relationship over Euclidean distance). This approach was additionally utilised to identify spatial clustering for control categories, controls, and experimental designs. To identify specific hotspots of evidence production, we calculated the Getis-Ord Gi* statistic (Getis and Ord 1992).

To identify research gaps in terms of broad environmental / ecological variability, we computed intersections between available Pan-Arctic layers and all evidence points, calculating Getis-Ord Gi* for each resultant landscape component:

a) for climatic gradients, we used bioclimate subzones, as defined in the Circumpolar Arctic Vegetation Map (CAVM)(Walker et al 2005);

b) for plant functional forms, we used the Arctic physiognomic classification from the CAVM (Walker et al 2005), which reflects variability in above-ground ecosystem structure; and
c) for biodiversity, we used Arctic floristic groups and sectors (Elvehakk et al. 1999; Yurtsev 1994), which represent broad patterns of plant species diversity (occurring due to regional differences in glacial and landscape history).

3. Results

135 of the 432 sources identified met the inclusions criteria and were included in the final analysis. We found 1,140 source-control-site evidence points reported during the period January 2012 – January 2017 (inclusive), derived from the 135 sources.

3.1 Suite of Controls

We identified 23 proximal controls (1,029 evidence points), presented in Table 1. Despite the range of potential proximal controls, there was predominant focus on just five: air temperature (including mean, maximum, minimum, above-freezing mean, growing degree days, and diurnal regional temperature proxies - 429 evidence points, or 41.69% of all proximal evidence points), soil moisture (including precipitation mean and sum, groundwater level, water track presence, and soil drainage proxies- 263, 25.56%), active layer depth (124, 12.05%), and to a lesser extent herbivory (66, 6.41%), and snow depth / cover (including snow-free date - 37, 3.56%). We also identified analysis of 24 ultimate controls within the evidence base, outlined in Table 2.

Table 1 Proximal controls to Arctic shrub growth / expansion assessed within the evidence base (Jan. 2012 – Jan. 2017 inclusive).

Category	Control	Form / Duration Variants
Plant/Atmosphere Interface	Air Temperature	Winter Warming Event
	Atmospheric Carbon Dioxide Concentration	
	Fire	
	Humidity	
	Ice and Frost	
	Insolation	
	Snow Depth / Cover	
Biotic Interactions	Fungal Infection	
	Herbivory (includes trampling and other biomass removal processes)	Bird, Mammal, Gall Mites, Leaf Miners, Defoliators, Other Invertebrates
Soil	Surface Conditions	
	Cryoturbation	
	Erosion	
	Soil Stability	
Belowground Conditions	Active Layer Depth	
	Acidity	
	Soil Moisture	
	Soil Salinity	
Controls on Arctic shrub growth and expansion: an evidence-based approach

Category	Ultimate Control(s)
Climatic teleconnections	Sea ice extent/concentration.
Glacial and Periglacial	Time since glacial retreat; blockfields; ice-wedge polygons; pingos; palsas; patterned ground; physiographic unit; thermokarst; water tracks.
Topography	Altitude; aspect; elevation; exposure; physiographic unit; slope
Ecosystem Structure	Plant functional forms; total above-ground biomass; canopy height; competitive intensity; distance from current shrub range.
Human Activity	Proximity to human infrastructure; replacement by human infrastructure.

Table 2 Ultimate controls utilised during the period Jan. 2012 – Jan. 2017.

3.2. Spatial Characteristics of the Evidence Base

Spatial analysis revealed areas of research focus, and spatial gaps (full results in Appendix A.2.3). Analysis of the spatial structure of all evidence points revealed global clustering ($Moran's Index = 0.237, z = 2.13, p = 0.033$). Hotspot analysis indicated six significant ($p<0.05$) hotspots of evidence production, centred in Alaska (Toolik Lake, Barrow, and Atqasuk), Alexandra Fiord (Canada), Endalen (Svalbard), and Abisko (Sweden).

Patterns of spatial clustering were significantly different between study designs, and controls (Figure 2, Figure 3). Clustering was greater for proximal control evidence points alone ($z = 2.43, p = 0.015$), with ultimate control evidence points displaying no significant clustering or dispersal, being widespread around the circumpolar Arctic. Experimental research was focused around long-term ITEX experimental plots at Toolik Lake (23 points), Daring Lake (13 points), Svalbard (14 points), and in the Fennoscandian Oro-Arctic (55 points). Only two experimental evidence points occurred in non-Fennoscandian Eurasia above the altitudinal treeline. There were no significant global patterns for any individual proximal control, or proximal control category, aside from the air-plant interface (clustering, $z = 3.85, p = 0.00$), and air temperature ($z = 2.11, p = 0.03$).
Spatial analysis identified evidence gaps when intersecting by environmental / vegetation variability:

A. **Climatic Gradient.** Arctic climatic bands were not equally represented within the dataset. Evidence points were weighted to the low Arctic in bioclimatic subzone E (*Figure 2 and 3*), the warmest of the Arctic’s zonal bands. 64.84% of evidence points occurred in areas with > 9°C July temperatures: 37.46% of evidence points intersected subzone E, while 27.39% intersected Oro-Arctic regions (*Figure A4*). Only 121 evidence points (10.69%) occurred in Subzones A and B (the highest latitude and climatically harshest regions), where some prostrate shrubs (i.e. *Salix arctica*) occur.

B. **Plant Functional Form.** The evidence base was clustered significantly into the ‘tussock sedge, dwarf shrub, moss tundra’ physiognomic unit, in which Toolik Lake is located (full results in Table A4).

C. **Biodiversity.** For floristic diversity, significant clustering occurred within the ‘Alaskan Tundra’ sector of the Beringia group. This sector accounted for 33.5% of all evidence points, despite only being 3.96% of the total tundra area, and only one of 28 floristic regions. Outside these regions, we identified evidence gaps in areas for which there few of no evidence points. During this period, no results were published for six floristic sectors (10.5% tundra area): Anabar – Olenyek, East Chukotka, Kharaulakh, and Wrangell Island (Russia), Jan Mayen (Iceland), and North Beringian Islands (Alaska).
Figure 2 Pan-Arctic map showing evidence points generated for proximal controls on Arctic shrub growth and expansion (reported in peer-reviewed literature during the period 1 January 2012 – 31 January 2017). Each circle represents one location at which an evidence point was generated, or a regional cluster if more than one location occurred within 150km. Circle size represents the count of evidence points that occurred at the location. Pie segments represent a percentage of the evidence points at a location for each control type, represented by colour. Landmass colouring indicates bioclimatic subzone (Walker et al 2005), or Oro-Arctic (defined in Section 2a). Continental and Pan-Arctic evidence points are not represented in this figure. ALD = Active Layer Depth; SM = Soil Moisture.
Controls on Arctic shrub growth and expansion: an evidence-based approach

Figure 3 Pan-Arctic map showing evidence points generated for proximal controls on Arctic shrub growth and expansion (reported in peer-reviewed literature during the period 1 January 2012 – 31 January 2017), with air temperature and soil moisture sites removed from site pies to emphasise alternative controls. Each circle represents one location at which an evidence point was generated, or a regional cluster if more than one location occurred within 150km. Circle size represents the count of evidence points that occurred at the location. Pie segments represent a percentage of the evidence points at a location for each control type, represented by colour. Landmass colouring indicates bioclimatic subzone (Walker et al 2005), or Oro-Arctic (defined in Section 2a). Continental and Pan-Arctic evidence points are not represented in this figure. ALD = Active Layer Depth; SM = Soil Moisture.
3.3. Methodological and Temporal Characteristics of the Evidence Base

In total, 86% of evidence points were derived from observation, with 14% derived from experimental data. For proximal controls, we found the greatest use of spatial gradient approaches for air temperature (14%), herbivory (5%), and soil belowground conditions (soil moisture (40%), and active layer depth (28%)) predictors (Figure 4A). Spatial gradient evidence points constituted 40% of the total. Soil belowground resources were assessed for a median timespan of eight years, biotic interactions for ten years, air-plant interface controls for 29 years, soil belowground conditions for 50 years, and soil surface conditions for 240 years.

Figure 4A) Number of space-for-time evidence points per proximal control represented by circle size, excluding chronosequence approaches. B) Temporal extent of evidence points per proximal control (reported in peer-reviewed literature during the period 01 Jan 2012 – 31 Jan-2017). Temporal extent is defined as time series duration (observational and full factorial studies), time between newest and oldest phenomena (chronosequence), and length of prior manipulation before test (‘non-temporal’ factorial). Chronosequence is included here, despite being a space-for-time approach, as a concrete temporal extent is defined and used for analysis. Experimental design classifications are fully defined in Supplementary Material A.

Evidence was generally limited to no more than 25 years, aside from certain controls and study designs where long-term observational data could be obtained (Figure 4B). Decadal to centennial evidence was dominated by weather-station-derived proxy measures (coupled with dendroecological and repeat photography response variables): gridded, interpolated data products enabled numerous long-term studies of air temperature (proxy: regional air temperature), and soil moisture (proxy: regional precipitation). Space-for-time substitution was used widely, specifically for soil moisture, air temperature, and to a lesser extent herbivory, and snow dynamics. While observational evidence was
Controls on Arctic shrub growth and expansion: an evidence-based approach

268 used for all proximal controls aside from atmospheric CO$_2$ and insolation (including UV-β),
269 manipulations were limited to 13 out of the 23: air temperature, snow dynamics, herbivory, nutrient
270 availability, ice formation, insolation, CO$_2$, and soil abiotic conditions. Experimental design and the
271 resulting evidence was weighted towards the use of non-temporal analyses (Figure 4B). This was
272 especially pronounced for certain controls: for soil macronutrients, 10 of 11 experimental analyses
273 used this approach.

274 4. Discussion
275 4.1. Current Evidence Base
276 4.1.1 Suite of Controls
277 A predominant focus on air temperature, soil moisture, and herbivory controls suggests that other
278 proximal controls – that may explain recent shrubification trends – are being overlooked. A scoping
279 exercise (Appendix A) identified additional proximal controls that were not included in the compiled
280 evidence base: abrasion by snow and ice crystals (Sonesson and Callaghan 1991), wind damage,
281 microbial (Sedlacek et al 2014) and mycorrhizal (Deslippe and Simard 2011) associations, pollinators
282 (Rich et al 2013), allelopathy (Bråthen et al 2010), soil micronutrients, and soil texture (Frost et al
283 2014). These proximal controls, alongside those that made a low proportion of the evidence base
284 (atmospheric CO$_2$, insolation, cryoturbation, erosion (including aeolian and thermo-erosion), and
285 fungal infection), may have been overlooked.

286 4.1.2 Spatial Gaps
287 Strong spatial clustering of the evidence base towards Alaska and Fennoscandia (Figure 2), as well as
288 spatial gaps in the Eurasian Arctic (Figure 5), indicate that full spatial variability may not be captured
289 for each proximal control. 65% of the evidence was generated within the warmest parts of the Arctic
290 tundra biome, where summer (July) temperatures average above 9°C. Consequently, any controls and
291 their mechanisms occurring exclusively, or with greater strength, in colder regions may be missed.
292 Dominant processes driving shrubification vary between warmer tall shrub-dominated tundra (spatial
293 infilling), and northernmost shrublines (increasing height and northward expansion). As these
294 processes differ by biological mechanism, responses to controlling factors are likely different. The
295 elevation gradient at Brooks Range has been used as a proxy for bioclimatic subzone, with elevation
296 as a proxy for latitudinal space; however, the non-carbonate bedrock and acidic soils of the range do
297 not account for the variability of plant functional forms and environmental conditions within higher
298 latitude bioclimatic subzones.
299
300 Although shrubification trends appear to be driven by key species with Pan-Arctic distributions
301 (Betula nana, Salix sp.), there are indications of regional genotypic variation in these, and other, shrub
302 species (Abbott, & Brochmann 2003; Eidesen et al 2007; Eidesen et al 2013; Jørgensen et al 2012).
Similarly, there is evidence for significant phenotypic plasticity within shrub species in response to some proximal controls (Edwards et al. 2005; Berner et al. 2015), such as within-species spatial gradients from prostrate to erect growth forms. Significant focus of evidence in the ‘Alaskan Tundra’ floristic sector (Tkach et al. 2010), and the Fennoscandian Oro-Arctic, may limit coverage of unique Eurasian ecotypes, species, and thus adaptations, resilience and/or vulnerabilities (Figure 5). Spatial focus on long-term ITEX plots at Toolik Lake and Daring Lake (Alaska, USA) has provided comprehensive evidence for moist, low shrub tundra environments; however, this habitat does not account for the breadth of tundra physiognomies (aside from tussock sedge, dwarf shrub, moss tundra’), where other mechanisms may be significant.

Figure 5 Map demonstrating regions of the Arctic for which there were evidence gaps during the period January 2012 to January 2017. The regional delineation displayed is bioclimatic subzone further split by floristic group. An evidence gap was defined as a bioclimate x floristic group region where there were five or less evidence points (equivalent to one or less point per year on average). Differentiation is made between evidence points derived from experimental evidence versus observational evidence (defined in 2.1.1).

4.1.3 Temporal Limitations

We noted temporal limitations to soil controls, where the extent of temporal evidence (aside from chronosequence) was generally limited to below 25 years (Figure 4B), while hypothesised drivers (e.g. changes in carbon and nitrogen cycling) may occur over decadal to centennial timescales. The
mechanisms through which controls may operate vary by their timescales, from diurnal to centennial timescales. The lower temporal resolutions for soil-based controls (Appendix Figure A8) also limits inference of within-season and inter-annual control variability, such as how seasonal variability may impact different life-stages (budding, flowering).

Without time series, one can establish the directionality of response, but not the functional form (linear, non-linear) of the mechanism(s) at work. As 42% of experimental evidence utilised non-temporal approaches, these evidence points cannot be used independently to ascertain temporal dynamics, but may only be useful when combined in meta-analyses (e.g. Elmendorf et al 2012b), assuming methodologies can be compared. Similarly, climatic gradients, and the Finland-Norway herbivory gradient, provided a large fraction of evidence. Such space-for-time substitution approaches do mask the rate and order of temporal processes, and have been empirically proven to overestimate the effects of air temperature on tundra shrub growth compared to experimental and observational data (Elmendorf et al 2015).

4.2. Applications and Limitations of our Approach.

One or more mechanism(s) may be responsible for the aggregate effects of a proximal control on shrub growth and expansion through space and time. In the context of global change, these mechanisms need characterisation if we aim at predicting future changes in shrub performance, habitat, and distribution. Our methods of metadata collection can be used as a tool to assess the suitability of the evidence base to support or refute possible mechanistic hypotheses. This approach is demonstrated for soil nutrients in Box 1.

We acknowledge limitations in our approach. First, the evidence gap between the Eurasian and North-American Arctic represents a publication bias; our search strategy does not cover Russian-language or other non-English scientific literature: spatial gaps in Eurasia may therefore have been accentuated. Second, we did not attempt to characterise the importance and strength of proximal controlling factors (resource limitations and discrete events) in space and time, but only the nature of the recent evidence base. Third, as our aim was to characterise the current trends in, and direction, of research, our analysis only represents the most recent five years of research, while older research may display different research quantities and priorities. We extended our search protocol to cover past research, finding that our study analysed 37.5% of all research captured by the search criteria (Appendix A.2.1).

Box 1. Soil Nitrogen and Shrubification
Soil macronutrients – including nitrogen (N), phosphorus (P), and potassium (K) – are essential resources for plant survival and fitness. Their availability is spatially heterogeneous at all scales (CAVM Team 2003; Walker et al 2005; DeMarco et al 2011), as a result of geology, glacial history, landscape processes, abiotic microhabitats, and plant community composition. Nitrogen is one of the most limiting macronutrients to growth in high latitudes (Bobbink et al 2010). There are multiple hypotheses for trajectories of tundra N availability, including: (1) increasing N availability as elevated soil temperatures increase the efficiency of N-mineralising microbes (Sturm et al 2005); (2) sequestration of N into long-lived woody biomass, reducing plant-available N in soils over decadal to centennial timescales (Progressive Nitrogen Limitation – PNL) (Luo et al 2004); and (3) increasing anthropogenic N deposition (Bobbink et al 2010).

Elevated N increases shrub aboveground biomass and shrub cover, with combined N-P limitation occurring in certain locations (Zamin, & Grogan 2012). Evidence was limited to 25 years, which is not long enough to support or refute some shrub-N interactions such as PNL: short-term mechanisms can distort long-term (decadal to centennial) processes (Johnson 2006). Exclusive use of non-temporal experimental approaches (Figure 4B) limits our understanding of rates of change, providing only single measures of ‘length and strength of manipulation’ to elevated response. The predictors do not quantify soil bioavailable N, essential to infer starting conditions and limiting levels of N, nor its forms, essential for understanding mechanisms of uptake and their variability between taxa and environments (i.e. organic versus inorganic forms). Manipulations often do not reflect the rates of change hypothesised for bioavailable N, fertilising at levels beyond expected quantities and rates of change (Bouskill et al 2014).

Past and future trajectories of N, thus N-shrub interactions, may be determined with alternative methodologies. Spatial variability in N or shrub traits (mycorrhizal associates, N-use efficiency) may explain the differences in observed N limitation across space, requiring measures of N and shrubification beyond ITEX plots. Temporal data could allow partitioning of short- and long-term responses that are difficult to differentiate using non-temporal approaches. Ideally, time-series measurements of bioavailable N on the same timescales as shrub responses would enable researchers to characterise rates of change within and between years whilst accounting for background N variability. Such time series could be interrogated using statistical modelling techniques, to infer the model and parameters of N-dependent growth.

4.3. Mechanisms Driving Recent and Future Shrubification Trends
To reduce uncertainty and increase predictive capability of future shrubification trends, we require mechanistic rather than correlative understandings of the underlying processes. We suggest three key knowledge gaps that must be reduced to gain such an understanding:

1. **Spatio-Temporal Trends of Shrubification.** Properties beyond biomass and cover that receive lesser attention, such as phenology (Prevéy et al 2017), and advancing shrublines (Myers-Smith et al 2017), could be measured for enhanced clarity over Pan-Arctic shrubification trends.

2. **Effectiveness of Proximal Controls.** Study designs may be sought that can assess the effectiveness per-unit variability within controlling factors on the identified mechanisms of shrubification, within the present range of environmental variability.

3. **Past and Future Variability of Control(s).** Each proximal control will vary through time due to a suite of underlying ultimate controls. Establishment of variability for the recent period, over which shrubification has occurred, and linking this to effect sizes, could enable establishment of (a) controls that are varying over the recent period, and (b) controls that may be responsible for observed changes.

We suggest four methodological directions through which tundra ecologists could enhance their study designs to address the above knowledge gaps:

1. **Incorporation of Time Series,** to establish the directionality and functional forms of shrub responses to environmental controls.

2. **Direct Measurement of Proximal Controls.** Many factorial studies did not measure the environmental control being studied, but rather measured the size and rate of perturbation. These methods assume that there is a direct link between perturbation and control (e.g. addition of 5g nitrogen fertiliser raises bioavailable nitrogen by a linear quantity). Inference of mechanisms could be enhanced by measuring the proximal control(s) directly, for example using automatic continuous loggers rather than gridded climate products. For time series, this will require creative solutions to overcome control-specific difficulties. Soil belowground resources, for example nutrients, require measurements by field researchers, but new technologies should be sought to increase automatic data collection capabilities.

3. **Use of Environmental Archives.** Palaeo-ecological and palaeo-environmental data from environmental archives can provide long-term indications of shrub response and environmental control. Fossil pollen accumulation rate data could be modelled as shrub biomass response (Seppä et al 2009) to a range of proximal controls. For the long-term, dendroecological or pollen data could be coupled to long-term proxies of nutrient availability.
Controls on Arctic shrub growth and expansion: an evidence-based approach

(McLauchlan et al. 2013), herbivory (Baker et al. 2016), and/or local climate (Jeffers et al. 2012), from sedimentary archives.

4. Mechanistic modelling. Modelling approaches can be used to test competing hypotheses regarding the mechanisms underpinning plant-environment and biotic interactions through time (Jeffers et al. 2012) and across space (Damgaard et al. 2016); however, these approaches were rarely used in the evidence base.

5. Conclusions

Whereas there is significant evidence for an important role of air temperature and precipitation as drivers of Arctic shrubification, our systematic approach identified 23 proximal controls (those operating directly on the individual shrub and potentially affecting its growth and/or expansion) reported between January 2012 and January 2017, spanning soil properties, biotic interactions, and the plant-atmosphere interface. The focus of shrubification research has prominently been on air temperature and precipitation, while evidence suggesting a progressively declining role of climate requires us to consider other potential controls. We found spatial gaps in the evidence for all proximal controls, with research concentrated in the warmest bioclimatic zones of the tundra, and spatial gaps in Western and Central Arctic Siberia. These regions of research concentration already have a high percentage of tall shrub cover, while regions in the intermediate-latitude tundra (bioclimatic subzones B-D) were sparsely covered.

There is a basic mechanistic understanding of many of the controls on tundra shrubification, mostly derived from experiments conducted in acidic, low shrub, low latitude tundra, where shrubs are already a major component of the vegetation. In comparison, there is little focus on the mechanisms of range expansion and northward dispersal, operating at the northernmost range limit. In the studies included here, we found limitations in the temporal extent and resolution of evidence used, although this varied considerably depending on the proximal control considered. Study designs were in general found to be insufficient for investigating the mechanistic relationship between controls and shrubification, due to frequent use of non-temporal approaches. Reliance on space-for-time and non-temporal approaches risks not accurately reflecting the true rate and order of processes operating within the system.

We identify three knowledge gaps and four recommendations that tundra ecologists can consider to enhance the value of their data and future research. If progress is to be made toward predicting future spatial-temporal shrubification trends, more emphasis must be placed on the mechanisms underpinning shrubification.

The map is available as an online visualisation at: https://oxlel.github.io/evidencemaps/arcticshrub.
Abbott, R.J. & Brochmann, C., 2003, History and evolution of the arctic flora: in the footsteps of Eric Hulten, Molecular Ecology, 12(2), pp. 299-313.

Ackerman, D., Griffin, D., Hobbs, S.E. & Finlay, J.C., 2017, Arctic shrub growth trajectories differ across soil moisture levels, Global Change Biology.

Baker, A.G., Cornelissen, P., Bhagwat, S.A., Vera, F.W.M. & Willis, K.J., 2015, Quantification of population sizes of large herbivores and their long-term functional role in ecosystems using dung fungal spores, Methods in Ecology and Evolution, 7(11), pp. 1273-81.

Barrio, J.C., Hik, D.S., Jónsdóttir, I.S., Bueno, C.G., Mörsdorf, M.A. & Ravolainen, V.T., 2016, Herbivory Network: An international, collaborative effort to study herbivory in Arctic and alpine ecosystems, Polar Science, 10(3), pp. 297-302.

Berner, L.T., Alexander, H.D., Loranty, M.M., Ganzlin, P., Mack, M.C., Davydov, S.P. & Goetz, S.J., 2015, Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska, Forest Ecology and Management, 337, pp. 110-8.

Blok, D., Heijmans, M.M.P.D., Schaepman-Strub, G., Kononov, A.V., Maximov, T.C. & Berendse, F., 2010, Shrub expansion may reduce summer permafrost thaw in Siberian tundra, Global Change Biology, 16(4), pp. 1296-305.

Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erismann, J.W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L. & De Vries, W., 2010, Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis, Ecol Appl, 20(1), pp. 30-59.

Bouskill, N.J., Riley, W.J. & Tang, J.Y., 2014, Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models, Biogeosciences, 11(23), pp. 6969-83.

Bråthen, K.A., Fodstad, C.H. & Gallet, C., 2010, Ecological disturbance reduces the allelopathic effects of Empetrum hermaphroditum humus on tundra plants, Journal of Vegetation Science, 21(4), pp. 786-95.

Cuerrier, A., Brunet, N.D., Gérin-Lajoie, J., Downing, A. & Lévesque, E., 2015, The Study of Inuit Knowledge of Climate Change in Nunavik, Quebec: A Mixed Methods Approach, Human Ecology, 43(3), pp. 379-94.

Chapin, F.S., Bret-Harte, M.S., Hobbie, S.E. & Zhong, H., 1996, Plant functional types as predictors of transient responses of arctic vegetation to global change, Journal of Vegetation Science, 7(3), pp. 347-58.

Collaboration for Environmental Evidence. (2013). Guidelines for systematic reviews in environmental management. Retrieved from http://environmentalevidence.org/wp-content/uploads/2014/06/Review-guidelines-final-print.pdf.

Damgaard, C., Raundrup, K., Aastrup, P., Langen, P.L., Feilberg, J. & Nabe-Nielsen, J., 2016, Arctic resilience: no evidence of vegetation change in response to grazing and climate changes in South Greenland, Arctic, Antarctic, and Alpine Research, 48(3), pp. 531-49.

Deslippe, J.R. & Simard, S.W., 2011, Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra, New Phytologist, 192(3), pp. 689-98.

DeMarco, J., Mack, M.C. & Bret-Harte, M.S., 2011, The effects of snow, soil microenvironment, and soil organic matter quality on N availability in three Alaskan arctic plant communities, Ecosystems, 14(5), pp. 804-17.

Edwards, M.E., Brubaker, L.B., Lozkin, A.V. & Anderson, P.M., 2005, Structurally novel biomes: A response to past warming in Beringia, Ecology, 86(7), pp. 1696-703.

Eidesen, P.B., Carlsen, T., Molau, U. & Brochmann, C., 2007, Repeatedly out of Beringia: Cassiope tetragona embraces the Arctic, Journal of Biogeography, 34(9), pp. 1559-74.

Eidesen, P.B., Ehrich, D., Bakkestuen, V., Alsos, I.G., Gilg, O., Taberlet, P. & Brochmann, C., 2013, Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity, New Phytologist, 200(3), pp. 898-910.
Controls on Arctic shrub growth and expansion: an evidence-based approach

Elmendorf, S.C., Henry, G.H., Hollister, R.D., Fosaa, A.M., Gould, W.A., Hermanutz, L., Hofgaard, A., Jónsdóttir, I.S., Jorgenson, J.C. & Lévesque, E., 2015, Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns, Proceedings of the National Academy of Sciences, 112(2), pp. 448-52.

Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Björk, R.G., Bjorkman, A.D., Callaghan, T.V., Collier, L.S., Cooper, E.J., Cornelissen, J.H.C., Day, T.A., Fosaa, A.M., Gould, W.A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D.S., Hofgaard, A., Jarrad, F., Jónsdóttir, I.S., Keuper, F., Klanderud, K., Klein, J.A., Koh, S., Kudo, G., Lang, S.I., Loewen, V., May, J.L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I.H., Oberbauer, S.F., Pieper, S., Post, E., Rixen, C., Robinson, C.H., Schmidt, N.M., Shaver, G.R., Stenström, A., Tolvanen, A., Totland, O., Troxler, T., Wahren, C.-H., Webber, P.J., Welker, J.M. & Wookey, P.A., 2012a, Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time, Ecol Lett, 15(2), pp. 164-75.

Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Björk, R.G., Boulanger-Lapointe, N., Cooper, E.J., Cornelissen, J.H.C., Day, T.A., Dorrepaal, E., Elumeeva, T.G., Gill, M., Gould, W.A., Harte, J., Hofgaard, A., Johnson, D.R., Johnstone, J.F., Jónsdóttir, I.S., Jorgenson, J.C., Klanderud, K., Klein, J.A., Koh, S., Kudo, G., Lara, M., Lévesque, E., Magnússon, B., May, J.L., Mercado-Díaz, J.A., Michelsen, A., Molau, U., Myers-Smith, I.H., Oberbauer, S.F., Onipchenko, V.G., Rixen, C., Schmidt, N.M., Shaver, G.R., Spasojevic, M.J., Pórhallsdóttir, E., Tolvanen, A., Troxler, T., Tweedie, C.E., Villarea, S., Wahren, C.-H., Walker, X., Webber, P.J., Welker, J.M. & Wipf, S., 2012b, Plot-scale evidence of tundra vegetation change and links to recent summer warming, Nature Climate Change, 2(6), p. 453.

Elvebakk, A., Elven, R. & Razzhivin, V.Y., 1999, Delimitation, zonal and sectorial subdivision of the Arctic for the Panarctic Flora Project, The species concept in the High North-A Panarctic Flora Initiative, pp. 375-86.

Epstein, H.E., Raynolds, M.K., Walker, D.A., Bhatt, U.S., Tucker, C.J. & Pinzon, J.E., 2012, Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades, Environmental Research Letters, 7(1), p. 015506.

Epstein, H. E., Bhatt, U. S., Raynolds, M. K., Walker, D. A., Bieniek, P. A., Tucker, C. J., et al. (2015). Tundra greenness. Arctic Report Card 2015.

Forbes, B.C., Fauria, M.M. & Zetterberg, P., 2010, Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows, Global Change Biology, 16(5), pp. 1542-54.

Forbes, B.C., Stammerl, F., Kumpula, T., Meschtyb, N., Pajunen, A. & Kaarlejärvi, E., 2009, High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia, Proceedings of the National Academy of Sciences, 106(52), pp. 22041-8.

Frost, G.V. & Epstein, H.E., 2014, Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s, Global Change Biology, 20(4), pp. 1264-77.

Frost, G.V., Epstein, H.E. & Walker, D.A., 2014, Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra, Environmental Research Letters, 9(2), p. 025004.

Getis, A. & Ord, J.K., 1992, The Analysis of Spatial Association by Use of Distance Statistics, Geographical Analysis, 24(3), pp. 189-206.

Henry, G.H.R., Harper, K.A., Chen, W., Deslippe, J.R., Grant, R.F., Lafleur, P.M., Lévesque, E., Siciliano, S.D. & Simard, S.W., 2012, Effects of observed and experimental climate change on terrestrial ecosystems in northern Canada: results from the Canadian IPY program, Climatic Change, 115(1), pp. 207-34.

Jeffers, E.S., Bonsall, M.B., Watson, J.E. & Willis, K.J., 2012, Climate change impacts on ecosystem functioning: evidence from an Empetrum heathland, New Phytologist, 193(1), pp. 150-64.

Johnson, D.W., 2006, Progressive N limitation in forests: review and implications for long-term responses to elevated CO2, Ecology, 87(1), pp. 64-75.

Jorgenson, J.C., Raynolds, M.K., Raynolds, J.H. & Benson, A.-M., 2015, Twenty-five year record of changes in plant cover on tundra of northeastern Alaska, Arctic, Antarctic, and Alpine Research, 47(4), pp. 785-806.

Juszak, I., Erb, A.M., Maximov, T.C. & Schaepman-Strub, G., 2014, Arctic shrub effects on NDVI, summer albedo and soil shading, Remote Sensing of Environment, 153, pp. 79-89.

Jørgensen, T., Kjær, K.H., Haile, J., Rasmussen, M., Boessenkool, S., Andersen, K., Coissac, E., Taberlet, P., Brochmann, C., Orlando, L., Gilbert, M.T.P. & Willerslev, E., 2012, Islands in the ice: detecting past vegetation
on Greenlandic nunataks using historical records and sedimentary ancient DNA Meta-barcoding, Molecular Ecology, 21(8), pp. 1980-8.

Ju, J. & Masek, J. G. (2016). The vegetation greenness trend in canada and US alaska from 1984–2012 landsat data. Remote Sensing of Environment, 176, 1-16.

Kremers, K.S., Hollister, R.D. & Oberbauer, S.F., 2015, Diminished response of arctic plants to warming over time, PLoS One, 10(3), p. e0116586.

Luo, Y., Su, B.O., Currie, W.S., Dukes, J.S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie, R.E., Oren, R.A.M. & Parto, J., 2013, Arctic arthropod ass...

time, PLoS One, 10(3), p. e0116586.

Kremers, R.M., Hollister, R.D. & Oberbauer, S.F., 2015, Diminished response of arctic plant...

Schmidt, N.M., Schuur, E.A.G., Semenchuk, P.R., T...

Lévesque, E., Mauritz, M., Molau, U., Natali, S.M., Oberbauer, S.F., Panchen, Z.A., Post, E., Rumpf, S.B.,

Maximov, T.C., van Huissteden, J. & Berendse, F., 2014, Permafrost collapse after shrub removal shifts ecosystem to a methane source, Nature Climate Change, 5(1), pp. 67-70.

Orshon 1989, Shrub as a Growth Form, in The Biology and Utilization of Shrubs, pp. 249-65.

Oulehle, F., Rowe, E.C., Myllyska, O., Chuman, T. & Evans, C.D., 2016, Plant functional type affects nitrogen use efficiency in high-Arctic tundra, Soil Biology and Biochemistry, 94, pp. 19-28.

Phoenix, G.K. & Bjørke, J.W., 2016, Arctic browning: extreme events and trends reversing arctic greening, Global Change Biology.

Piao, S., Friedlingstein, P., Ciais, P., Zhou, L. & Chen, A., 2006, Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades, Geophysical Research Letters, 33(23).

Piao, S., Nan, H., Huntingford, C., Ciais, P., Friedlingstein, P., Sitch, S., Peng, S., Ahlström, A., Canadell, J.G., Cong, N., Levis, S., Levy, P.E., Liu, L., Lomas, M.R., Mao, J., Myineni, R.B., Peylin, P., Poulter, B., Shi, X., Yin, G., Viovy, N., Wang, T., Wang, X., Zaehle, S., Zeng, N., Zeng, Z. & Chen, A., 2014, Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity, Nat Commun, 5, p. 5018.

Prevéy, J., Vellend, M., Rüger, N., Hollister, R.D., Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C., Clark, K., Cooper, E.J., Elberling, B., Fosaa, A.M., Henry, G.H.R., Høye, T.T., Jónsdóttir, I.S., Klanderud, K., Lévesque, E., Mauritz, M., Molau, U., Natali, S.M., Oberbauer, S.F., Panchen, Z.A., Post, E., Rumpf, S.B., Schmidt, N.M., Schuur, E.A.G., Semenchuk, P.R., Troxler, T., Welker, J.M. & Rixen, C., 2017, Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes, Global Change Biology.

Rich, M.E., Gough, L. & Boelman, N.T., 2013, Arctic arthropod assemblages in habitats of differing shrub dominance, Ecography, 36(9), pp. 994-1003
Controls on Arctic shrub growth and expansion: an evidence-based approach

Schirrmeister, L., Grosse, G., Wetterich, S., Overduin, P.P., Strauss, J., Schuur, E.A.G. & Hubberten, H.-W., 2011, Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic, Journal of Geophysical Research: Biogeosciences, 116(G2), pp. G00M02.

Sedlacek, J.F., Bossdorf, O., Cortés, A.J., Wheeler, J.A. & van Kleunen, M., 2014, What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea? Basic and Applied Ecology, 15(4), pp. 305-15

Seppä, H., Alenius, T., Muukkonen, P., Giesecke, T., Miller, P.A. & Ojala, A.E., 2009, Calibrated accumulation rates as a basis for quantitative tree biomass reconstructions, The Holocene, 19(2), pp. 209-20.

Serreze, M.C. & Barry, R.G., 2011, Processes and impacts of Arctic amplification: A research synthesis, Global and Planetary Change, 77(1-2), pp. 85-96.

Sonesson, M. & Callaghan, T.V., 1991, Strategies of survival in plants of the Fennoscandian tundra, Arctic, pp. 95-105.

Sturm, M., Racine, C. & Tape, K., 2001, Climate change: increasing shrub abundance in the Arctic, Nature, 411(6837), pp. 546-7.

Sturm, M., Schimel, J., Michaelson, G., Welker, J.M., Oberbauer, S.F., Liston, G.E., Fahnestock, J. & Romanovsky, V.E., 2005, Winter Biological Processes Could Help Convert Arctic Tundra to Shrubland, BioScience, 55(1), pp. 17-26.

Tape, K.D., Hallinger, M., Welker, J.M. & Ruess, R.W., 2012, Landscape Heterogeneity of Shrub Expansion in Arctic Alaska, Ecosystems, 15(5), pp. 711-24.

Tape, K., Sturm, M. & Racine, C., 2006, The evidence for shrub expansion in Northern Alaska and the Pan-Arctic, Global Change Biology, 12(4), pp. 686-702.

Tkach, N.V., Hoffmann, M.H., Röser, M. & Hagen, K.B.V., 2010, Temporal patterns of evolution in the Arctic explored in Artemisia L. (Asteraceae) lineages of different age, Plant Ecology & Diversity, 1(2), pp. 161-9.

Tremblay, B., Lévesque, E. & Boudreau, S., 2012, Recent expansion of erect shrubs in the Low Arctic: evidence from Eastern Nunavik, Environmental Research Letters, 7(3), p. 035501.

Virtanen, R., Oksanen, L., Oksanen, T., Cohen, J., Forbes, B.C., Johansen, B., Käyhkö, J., Olofsson, J., Pulliainen, J. & Tommervik, H., 2016, Where do the treeless tundra areas of northern highlands fit in the global biome system: toward an ecologically natural subdivision of the tundra biome, Ecology and Evolution, 6(1), pp. 143-58.

Walker, D.A., Daniëls, F.J.A., Alsos, I., Bhatt, U.S., Breen, A.L., Buchhorn, M., Bültmann, H., Druckenmiller, L.A., Edwards, M.E., Ehrich, D., Epstein, H.E., Gould, W.A., Imo, R.A., Meltofte, H., Raynolds, M.K., Sibik, J., Talbot, S.S. & Webber, P.J., 2016, Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data, Environmental Research Letters, 11(5), p. 055005.

Walker, D.A., Gould, W.A., Maier, H.A. & Raynolds, M.K., 2002, The Circumpolar Arctic Vegetation Map: AVHRR-derived base maps, environmental controls, and integrated mapping procedures, International Journal of Remote Sensing, 23(21), pp. 4551-70.

Walker, D.A., Raynolds, M.K., Daniëls, F.J., Einarssson, E., Elvebakk, A., Gould, W.A., Katenin, A.E., Kholod, S.S., Markon, C.J., Melnikov, E.S., Moskalenko, N.G., Talbot, S.S., Yurtsev, B.A. & The other members of the CAVM Team, 2005, The Circumpolar Arctic vegetation map, Journal of Vegetation Science, 16(3), pp. 267-82.

Walker, M.D., Wahren, C.H., Hollister, R.D., Henry, G.H.R., Ahlquist, L.E., Alatalo, J.M., Bret-Harte, M.S., Calef, M.P., Callaghan, T.V., Carroll, A.B., Epstein, H.E., Jónsdóttir, I.S., Klein, J.A., Magnússon, B., Molau, U., Oberbauer, S.F., Rewa, S.P., Robinson, C.H., Shaver, G.R., Suding, K.N., Thompson, C.C., Tolvanen, A., Totland, Turner, P.L., Tweedie, C.E., Webber, P.J. & Wookey, P.A., 2006, Plant community responses to experimental warming across the tundra biome, Proceedings of the National Academy of Sciences, 103(5), pp. 1342-6.

Yurtsev, B.A., 1994, Floristic division of the Arctic, Journal of Vegetation Science, 5(6), pp. 765-76.

Zamin, T.J. & Grogan, P., 2012, Birch shrub growth in the low Arctic: therelative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion, Environmental Research Letters, 7(3), p. 034027.