The Tamed Unadjusted Langevin Algorithm

Nicolas Brossea,*, Alain Durmusb, Éric Moulinesa, Sotirios Sabanisc

aCentre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France
bCMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
cUniversity of Edinburgh, Scotland, UK.

Abstract

In this article, we consider the problem of sampling from a probability measure π having a density on \mathbb{R}^d proportional to $x \mapsto e^{-U(x)}$. The Euler discretization of the Langevin stochastic differential equation (SDE) is known to be unstable, when the potential U is superlinear. Based on previous works on the taming of superlinear drift coefficients for SDEs, we introduce the Tamed Unadjusted Langevin Algorithm (TULA) and obtain non-asymptotic bounds in V-total variation norm and Wasserstein distance of order 2 between the iterates of TULA and π, as well as weak error bounds. Numerical experiments are presented which support our findings.

Keywords: Tamed Unadjusted Langevin Algorithm, Markov Chain Monte Carlo, Total variation distance, Wasserstein distance.

2010 MSC: 65C05, 60F05, 62L10

1. Introduction

The Unadjusted Langevin Algorithm (ULA) first introduced in the physics literature by \cite{1} and popularised in the computational statistics community by \cite{2} and \cite{3} is a technique to sample complex and high-dimensional probability distributions. This issue has far-reaching consequences in Bayesian statistics and
machine learning \[4\], \[5\], aggregation of estimators \[6\] and molecular dynamics \[7\]. More precisely, let \(\pi\) be a probability distribution on \(\mathbb{R}^d\) which has density (also denoted by \(\pi\)) with respect to the Lebesgue measure given for all \(x \in \mathbb{R}^d\) by,

\[
\pi(x) = e^{-U(x)} / \int_{\mathbb{R}^d} e^{-U(y)} dy , \quad \text{with} \quad \int_{\mathbb{R}^d} e^{-U(y)} dy < +\infty .
\]

Assuming that \(U : \mathbb{R}^d \to \mathbb{R}\) is continuously differentiable, the overdamped Langevin stochastic differential equation (SDE) associated with \(\pi\) is given by

\[
dY_t = -\nabla U(Y_t) dt + \sqrt{2} dB_t ,
\]

(1)

where \((B_t)_{t \geq 0}\) is a \(d\)-dimensional Brownian motion. The discrete time Markov chain associated with the ULA algorithm is obtained by the Euler-Maruyama discretization scheme of the Langevin SDE defined for \(k \in \mathbb{N}\) by,

\[
X_{k+1} = X_k - \gamma \nabla U(X_k) + \sqrt{2\gamma} Z_{k+1} , \quad X_0 = x_0 ,
\]

(2)

where \(x_0 \in \mathbb{R}^d\), \(\gamma > 0\) and \((Z_k)_{k \in \mathbb{N}}\) are i.i.d. standard \(d\)-dimensional Gaussian variables. Under adequate assumptions on a globally Lipschitz \(\nabla U\), non-asymptotic bounds in total variation and Wasserstein distances between the distribution of \((X_k)_{k \in \mathbb{N}}\) and \(\pi\) can be found in \[8\], \[9\], \[10\]. However, the ULA algorithm is unstable if \(\nabla U\) is superlinear \(i.e.\ \liminf_{\|x\| \to +\infty} \|\nabla U(x)\| / \|x\| = +\infty\), see \[11\], Theorem 3.2], \[12\] and \[13\]. This is illustrated with a particular example in \[12\], Lemma 6.3] where, the SDE \[1\] is considered in one dimension with \(U(x) = x^4/4\) along with the associated Euler discretization \[2\] and it is shown that for all \(\gamma > 0\), if \(E[X_0^2] \geq 2/\gamma\), one obtains \(\lim_{n \to +\infty} E[X_n^2] = +\infty\). Moreover, the sample path \((X_n)_{n \in \mathbb{N}}\) diverges to infinity with positive probability.

Until recently, either implicit numerical schemes, e.g. see \[12\] and \[14\], or adaptive stepsize schemes, e.g. see \[15\], were used to address this problem. However, in the last few years, a new generation of explicit numerical schemes, which are computationally efficient, has been introduced by “taming” appropriately the superlinearly growing drift, see \[16\] and \[17\] for more details.

Nonetheless, with the exception of \[12\], these works focus on the discretization of SDEs with superlinear coefficients in finite time. We aim at extending
these techniques to sample from π, the invariant measure of Π. To deal with the superlinear nature of ∇U, we introduce a family of drift functions $(G_\gamma)_{\gamma > 0}$ with $G_\gamma : \mathbb{R}^d \to \mathbb{R}^d$ indexed by the step size γ which are close approximations of ∇U in a sense made precise below. Consider then the following Markov chain $(X_k)_{k \in \mathbb{N}}$ defined for all $k \in \mathbb{N}$ by

$$X_{k+1} = X_k - \gamma G_\gamma (X_k) + \sqrt{2\gamma} Z_{k+1}, \quad X_0 = x_0.$$

(3)

We suggest two different explicit choices for the family $(G_\gamma)_{\gamma > 0}$ based on previous studies on the tamed Euler scheme [16], [17], [18]. Define for all $\gamma > 0$, $H_\gamma, H_{\gamma,c} : \mathbb{R}^d \to \mathbb{R}^d$ for all $x \in \mathbb{R}^d$ by

$$H_\gamma(x) = \frac{\nabla U(x)}{1 + \gamma \|\nabla U(x)\|} \quad \text{and} \quad H_{\gamma,c}(x) = \left(\frac{\partial_i U(x)}{1 + \gamma |\partial_i U(x)|} \right)_{i \in \{1, \ldots, d\}},$$

(4)

where $\partial_i U$ is the ith-coordinate of ∇U. The Euler scheme (3) with $G_\gamma = H_\gamma$, respectively $G_\gamma = H_{\gamma,c}$, is referred to as the Tamed Unadjusted Langevin Algorithm (TULA), respectively the coordinate-wise Tamed Unadjusted Langevin Algorithm (TULAc).

Another line of work has focused on the Metropolis Adjusted Langevin Algorithm (MALA) that consists in adding a Metropolis Hastings step to the ULA algorithm. [19] provides a detailed analysis of MALA in the case where the drift coefficient is superlinear. Note also that a normalization of the gradient was suggested in [11, Section 1.4.3] calling it MALTA (Metropolis Adjusted Langevin Truncated Algorithm) and analyzed in [20] and [21].

The article is organized as follows. In Section 2, the Markov chain $(X_k)_{k \in \mathbb{N}}$ defined by (3) is shown to be V-geometrically ergodic w.r.t. an invariant measure π_γ. Non-asymptotic bounds between the distribution of $(X_k)_{k \in \mathbb{N}}$ and π in total variation and Wasserstein distances are provided, as well as weak error bounds. In Section 3, the methodology is illustrated through numerical examples. Finally, proofs of the main results appear in Section 4.
Notations

Let $B(\mathbb{R}^d)$ denote the Borel σ-field of \mathbb{R}^d. Moreover, let $L^1(\mu)$ be the set of μ-integrable functions for μ a probability measure on $(\mathbb{R}^d, B(\mathbb{R}^d))$. Further, $\mu(f) = \int_{\mathbb{R}^d} f(x) d\mu(x)$ for an $f \in L^1(\mu)$. Given a Markov kernel R on \mathbb{R}^d, for all $x \in \mathbb{R}^d$ and f integrable under $R(x, \cdot)$, denote by $Rf(x) = \int_{\mathbb{R}^d} f(y) R(x, dy)$.

Let $V : \mathbb{R}^d \rightarrow [1, \infty)$ be a measurable function. The V-total variation distance between μ and ν is defined as $\|\mu - \nu\|_V = \sup_{|f| \leq V} |\mu(f) - \nu(f)|$. If $V = 1$, then $\| \cdot \|_V$ is the total variation denoted by $\| \cdot \|_{TV}$. Let μ and ν be two probability measures on a state space Ω with a given σ-algebra. If $\mu \ll \nu$, we denote by $d\mu/d\nu$ the Radon-Nikodym derivative of μ w.r.t. ν. In that case, the Kullback-Leibler divergence of μ w.r.t. to ν is defined as

$$\text{KL}(\mu | \nu) = \int_{\Omega} \frac{d\mu}{d\nu} \log \left(\frac{d\mu}{d\nu} \right) d\nu.$$

We say that ζ is a transference plan of μ and ν if it is a probability measure on $(\mathbb{R}^d \times \mathbb{R}^d, B(\mathbb{R}^d \times \mathbb{R}^d))$ such that for any Borel set A of \mathbb{R}^d, $\zeta(A \times \mathbb{R}^d) = \mu(A)$ and $\zeta(\mathbb{R}^d \times A) = \nu(A)$. We denote by $\Pi(\mu, \nu)$ the set of transference plans of μ and ν. Furthermore, we say that a couple of \mathbb{R}^d-random variables (X, Y) is a coupling of μ and ν if there exists $\zeta \in \Pi(\mu, \nu)$ such that (X, Y) are distributed according to ζ. For two probability measures μ and ν, we define the Wasserstein distance of order $p \geq 1$ as

$$W_p(\mu, \nu) = \left(\inf_{\zeta \in \Pi(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|x - y\|^p d\zeta(x, y) \right)^{1/p}.$$

By [22, Theorem 4.1], for all μ, ν probability measure on \mathbb{R}^d, there exists a transference plan $\zeta^* \in \Pi(\mu, \nu)$ such that for any coupling (X, Y) distributed according to ζ^*, $W_p(\mu, \nu) = \mathbb{E}[\|X - Y\|^p]^{1/p}$.

For $u, v \in \mathbb{R}^d$, define the scalar product $\langle u, v \rangle = \sum_{i=1}^d u_i v_i$ and the Euclidian norm $\|u\| = (u, u)^{1/2}$. Denote by $S^{d-1} = \{ u \in \mathbb{R}^d : \|u\| = 1 \}$. For $k \in \mathbb{N}$, $m, m' \in \mathbb{N}$ and Ω, Ω' two open sets of $\mathbb{R}^m, \mathbb{R}^{m'}$ respectively, denote by $C^k(\Omega, \Omega')$, the set of k-times continuously differentiable functions. For $f \in C^2(\mathbb{R}^d, \mathbb{R})$, denote by ∇f the gradient of f, $\partial_i f$ the ith-coordinate of ∇f, Δf the
Table 1: Summary of the upper bounds on the distances between the distribution of the \(n \)th iteration of the Markov chain defined by (3) and \(\pi \).

distance	order of the upper bound	assumptions
\(\|\delta_x R^n_\gamma - \pi\|_{W^{1/2}} \)	\(n\gamma \lambda^n \gamma V(x) + \sqrt{\gamma} \)	A1, A2, H1 and H2
\(W^2_2(\delta_x R^n_\gamma, \pi) \)	\(n\gamma \lambda^n \gamma V(x) + \gamma \)	A1, A2, H1, H2, and H3
\(W^2_2(\delta_x R^n_\gamma, \pi) \)	\(n\gamma^{1+\beta} \lambda^n \gamma V(x) + \gamma^{1+\beta} \)	A1, A2, H2, H3, and H4

Laplacian of \(f \) and \(\nabla^2 f \) the Hessian of \(f \). Define then for \(x \in \mathbb{R}^d \), \(\|\nabla^2 f(x)\| = \sup_{u \in \mathbb{S}^{d-1}} \|\nabla^2 f(x)u\| \). For \(k \in \mathbb{N} \) and \(f \in \mathcal{C}^k(\mathbb{R}^d, \mathbb{R}) \), denote by \(D^i f \) the \(i \)-th derivative of \(f \) for \(i \in \{0, \ldots, k\} \), i.e. \(D^i f \) is a symmetric \(i \)-linear map defined for all \(x \in \mathbb{R}^d \) and \(j_1, \ldots, j_i \in \{1, \ldots, d\} \) by \(D^i f(x)[e_{j_1}, \ldots, e_{j_i}] = \partial_{j_1 \ldots j_i} f(x) \). For \(x \in \mathbb{R}^d \) and \(i \in \{1, \ldots, k\} \), define \(\|D^0 f(x)\| = |f(x)| \), \(\|D^1 f(x)\| = \sup_{u_1, \ldots, u_i \in \mathbb{S}^{d-1}} D^1 f(x)[u_1, \ldots, u_i] \). Note that \(\|D^1 f(x)\| = \|\nabla f(x)\| \) and \(\|D^2 f(x)\| = \|\nabla^2 f(x)\| \). For \(m, m' \in \mathbb{N}^* \), define

\[
\text{C}_{\text{poly}}(\mathbb{R}^m, \mathbb{R}^{m'}) = \left\{ f \in \mathcal{C}(\mathbb{R}^m, \mathbb{R}^{m'}) \; | \; \exists C_q, q \geq 0, \forall x \in \mathbb{R}^m, \|f(x)\| \leq C_q (1 + \|x\|^q) \right\}.
\]

For all \(x \in \mathbb{R}^d \) and \(M > 0 \), we denote by \(B(x, M) \) (respectively \(\overline{B}(x, M) \)) the open (respectively close) ball centered at \(x \) of radius \(M \). In the sequel, we take the convention that for \(n, p \in \mathbb{N}, n < p \) then \(\sum_{n} = 0 \) and \(\prod_{n} = 1 \).

2. Ergodicity and convergence analysis

In this Section, under appropriate assumptions on \(\nabla U \) and \(G_\gamma \), we show that the diffusion process \((Y_t)_{t \geq 0}\) defined by (3) and its discretization \((X_k)_{k \in \mathbb{N}}\) defined by (4) satisfy a Foster-Lyapunov drift condition and are \(V \)-geometrically ergodic, see Proposition 1 and Proposition 3. Second, for all \(k \in \mathbb{N}^* \), non-asymptotic bounds in \(V \)-norm between the distribution of \(X_k \) and \(\pi \) are established. Our next results give non-asymptotic bounds in Wasserstein distance of order 2, under the additional assumption that \(U \) is strongly convex. A summary of our main contributions is given in Table 1 where \(\lambda \in [0, 1) \). We conclude this
part by non-asymptotic bounds on the bias and the variance of the ergodic average \(n^{-1} \sum_{k=0}^{n-1} f(X_k), \) \(n \in \mathbb{N}^* \), used as an estimator of \(\pi(f) \), for \(f : \mathbb{R}^d \to \mathbb{R} \) sufficiently smooth.

Henceforth, it is assumed that \(U \) is continuously differentiable. Consider the following assumptions on \(U \).

H1. There exist \(\ell, L \in \mathbb{R}_+ \) such that for all \(x, y \in \mathbb{R}^d \),
\[
\| \nabla U(x) - \nabla U(y) \| \leq L \left(1 + \| x \|^{\ell} + \| y \|^{\ell} \right) \| x - y \| .
\]

H2.

i) \(\lim \inf_{\| x \| \to +\infty} \| \nabla U(x) \| = +\infty. \)

ii) \(\lim \inf_{\| x \| \to +\infty} \left(\frac{x}{\| x \|}, \frac{\nabla U(x)}{\| \nabla U(x) \|} \right) > 0. \)

Note that under **H2** \(\lim \inf_{\| x \| \to +\infty} U(x) = +\infty \), \(U \) has a minimum \(x^* \) and \(\nabla U(x^*) = 0. \) Without loss of generality, it is assumed that \(x^* = 0. \) It implies under **H1** that for all \(x \in \mathbb{R}^d \),
\[
\| \nabla U(x) \| \leq 2L \left(1 + \| x \|^{\ell+1} \right). \tag{5}
\]

Besides, under **H2** there exists \(C \in \mathbb{R} \) such that for all \(x \in \mathbb{R}^d \), \(\langle -\nabla U(x), x \rangle \leq C. \) By [23, Theorem 2.1], [24, Chapter IV, Theorems 2.3, 3.1] and [11, Theorem 2.1], \((Y_t)_{t \geq 0} \) has a unique strong solution denoted \((Y_t)_{t \geq 0} \). By [25, Section 5.4.C, Theorem 4.20], one constructs the associated strongly Markovian semigroup \((P_t)_{t \geq 0} \) given for all \(t \geq 0, \ x \in \mathbb{R}^d \) and \(A \in \mathcal{B}(\mathbb{R}^d) \) by \(P_t(x, A) = \mathbb{E} [1_A(Y_t) | Y_0 = x] \). Consider the infinitesimal generator \(\mathcal{A} \) associated with \(\mathbb{I} \) defined for all \(h \in C^2(\mathbb{R}^d) \) and \(x \in \mathbb{R}^d \) by
\[
\mathcal{A} h(x) = -\langle \nabla U(x), \nabla h(x) \rangle + \Delta h(x) , \tag{6}
\]

and for any \(a \in \mathbb{R}_+^\ast \), define the Lyapunov function \(V_a : \mathbb{R}^d \to [1, +\infty) \) for all \(x \in \mathbb{R}^d \) by
\[
V_a(x) = \exp \left(a(1 + \| x \|^2)^{1/2} \right) . \tag{7}
\]

Foster-Lyapunov conditions enable to control the moments of the diffusion process \((Y_t)_{t \geq 0} \), see e.g. [23, Section 6] or [11, Theorem 2.2].
Proposition 1. Assume H_1, H_2 and let $a \in \mathbb{R}_+$. There exists $b_a \in \mathbb{R}_+$ (given explicitly in the proof) such that for all $x \in \mathbb{R}^d$

$$\mathcal{A}V_a(x) \leq -aV_a(x) + ab_a$$

(8)

and

$$\sup_{t \geq 0} P_t V_a(x) \leq V_a(x) + b_a.$$

Moreover, there exist $C_a \in \mathbb{R}_+$ and $\rho_a \in [0, 1)$ such that for all $t \in \mathbb{R}_+$ and probability measures μ_0, ν_0 on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ satisfying $\mu_0(V_a) + \nu_0(V_a) < +\infty$,

$$\|\mu_0 P_t - \nu_0 P_t\|_{V_a} \leq C_a \rho_a \|\mu_0 - \nu_0\|_{V_a}, \quad \|\mu_0 P_t - \pi\|_{V_a} \leq C_a \rho_a \mu_0(V_a).$$

(9)

Proof. The proof is postponed to Section 4.1.

The Markov chain $(X_k)_{k \in \mathbb{N}}$ defined in (3) is a discrete-time approximation of the diffusion $(Y_t)_{t \geq 0}$. To control the total variation and Wasserstein distances of the marginal distributions of $(X_k)_{k \in \mathbb{N}}$ and $(Y_t)_{t \geq 0}$, it is necessary to assume that for $\gamma > 0$ small enough, G_γ and ∇U are close. This is formalized by A_1.

Under the additional assumption A_2, we obtain the stability and ergodicity of $(X_k)_{k \in \mathbb{N}}$.

A1. For all $\gamma > 0$, G_γ is continuous. There exist $\alpha \geq 0$, $C_\alpha < +\infty$ such that for all $\gamma > 0$ and $x \in \mathbb{R}^d$,

$$\|G_\gamma(x) - \nabla U(x)\| \leq \gamma C_\alpha (1 + \|x\|^\alpha).$$

Note that under H_1, A_1 and by (5), we have for all $x \in \mathbb{R}^d$

$$\|G_\gamma(x)\| \leq 2L \left(1 + \|x\|^{\ell+1}\right) + \gamma C_\alpha (1 + \|x\|^\alpha).$$

(10)

A2. For all $\gamma > 0$, $\liminf_{\|x\| \to +\infty} \left\langle \frac{x}{\|x\|}, G_\gamma(x) \right\rangle - \frac{\gamma}{2\|x\|} \|G_\gamma(x)\|^2 > 0.$

Lemma 2. Assume H_1 and H_2. Let $\gamma > 0$ and G_γ be equal to H_γ or $H_{\gamma,\epsilon}$ defined in (4). Then A_1 and A_2 are satisfied.

Proof. The proof is postponed to Section 4.2.
The Markov kernel \(R_\gamma \) associated with (3) is given for all \(\gamma > 0 , \ x \in \mathbb{R}^d \) and \(A \in \mathcal{B}(\mathbb{R}^d) \) by
\[
R_\gamma(x,A) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} 1_A \left(x - \gamma G_\gamma(x) + \sqrt{2\gamma} z \right) e^{-\|z\|^2/2} dz .
\] (11)
We then obtain the counterpart of Proposition 1 for the Markov chain \((X_k)_{k \in \mathbb{N}}\).

Proposition 3. Assume \(H_1, A_1, A_2 \) and let \(\gamma \in \mathbb{R}_+^\ast \). There exist \(M, \alpha, b \in \mathbb{R}_+^\ast \) (given explicitly in the proof) satisfying for all \(x \in \mathbb{R}^d \)
\[
R_\gamma V_\alpha(x) \leq e^{-\alpha^2 \gamma} V_\alpha(x) + \gamma b \mathbb{1}_{B(0,M)}(x) .
\] (12)
In addition, \(R_\gamma \) has a unique invariant measure \(\pi_\gamma \), \(R_\gamma \) is \(V_\alpha \)-geometrically ergodic w.r.t. \(\pi_\gamma \).

Proof. The proof is postponed to Section 4.3.

Note that a straightforward induction of (12) gives for all \(n \in \mathbb{N} \) and \(x \in \mathbb{R}^d \),
\[
R^n_\gamma V_\alpha(x) \leq e^{-\alpha^2 n \gamma} V_\alpha(x) + \{(b\gamma)(1 - e^{-\alpha^2 \gamma})\} / (1 - e^{-\alpha^2}) .
\] Using \(1 - e^{-\alpha^2} = \int_0^\gamma \alpha^2 e^{-\alpha^2 t} dt \geq \gamma \alpha^2 e^{-\alpha^2} \), we get for all \(n \in \mathbb{N} \)
\[
R^n_\gamma V_\alpha(x) \leq e^{-\alpha^2 n \gamma} V_\alpha(x) + (b\alpha^2) e^{\alpha^2 \gamma} .
\] (13)
In the following result, we compare the discrete and continuous time processes \((X_k)_{k \in \mathbb{N}}\) and \((Y_t)_{t \geq 0}\) using Girsanov’s theorem and Pinsker’s inequality, see [8] and [9, Theorem 10] for similar arguments.

Theorem 4. Assume \(H_1, H_2, A_1 \) and \(A_2 \). Let \(\gamma_0 > 0 \). There exist \(C > 0 \) and \(\lambda \in (0,1) \) such that for all \(\gamma \in (0, \gamma_0] , \ x \in \mathbb{R}^d \) and \(n \in \mathbb{N} \),
\[
\|\delta_x R^n_\gamma - \pi \|_{V_\alpha^{1/2}} \leq C (n \gamma \lambda^n V_\alpha(x) + \sqrt{\gamma}) ,
\] (14)
where \(\alpha \) is defined in Proposition 3 and for all \(\gamma \in (0, \gamma_0] \),
\[
\|\pi_\gamma - \pi \|_{V_\alpha^{1/2}} \leq C \sqrt{\gamma} .
\] (15)

Proof. The proof is postponed to Section 4.4.
By adding strong convexity for the potential, one obtains the corresponding bounds for the Wasserstein distance of order 2.

H3. U is strongly convex, i.e. there exists $m > 0$ such that for all $x, y \in \mathbb{R}^d$,

$$\langle \nabla U(x) - \nabla U(y), x - y \rangle \geq m \|x - y\|^2.$$

By coupling $(Y_t)_{t \geq 0}$ and the linear interpolation of $(X_k)_{k \in \mathbb{N}}$ with the same Brownian motion, the following result is obtained.

Theorem 5. Assume A_1, A_2, H_1, H_2 and H_3. Let $\gamma_0 > 0$. There exist $C > 0$ and $\lambda \in (0, 1)$ such that for all $x \in \mathbb{R}^d$, $\gamma \in (0, \gamma_0]$ and $n \in \mathbb{N}$,

$$W_2^2(\delta_x \mathbb{R}_n^\gamma, \pi) \leq C \left(n \gamma \lambda^n \mathbb{V}_x(x) + \gamma \right), \quad (16)$$

where \mathbb{V}_x is defined in Proposition 3 and for all $\gamma \in (0, \gamma_0]$,

$$W_2^2(\pi_{\gamma}, \pi) \leq C \gamma. \quad (17)$$

Proof. The proof is postponed to Section 4.5.

If $U \in C^2(\mathbb{R}^d, \mathbb{R})$ and under the following assumption on $\nabla^2 U$, the bound can be improved.

H4. U is twice continuously differentiable and there exist $\nu, L_H \in \mathbb{R}_+$ and $\beta \in [0, 1]$ such that for all $x, y \in \mathbb{R}^d$,

$$\|\nabla^2 U(x) - \nabla^2 U(y)\| \leq L_H \{1 + \|x\|^{\nu} + \|y\|^{\nu}\} \|x - y\|^{\beta}.$$

It is shown in Section 4.5 that H_4 implies H_1.

Theorem 6. Assume A_1, A_2, H_3, H_2 and H_4. Let $\gamma_0 > 0$. There exist $C > 0$ and $\lambda \in (0, 1)$ such that for all $x \in \mathbb{R}^d$, $\gamma \in (0, \gamma_0]$ and $n \in \mathbb{N}$,

$$W_2^2(\delta_x \mathbb{R}_n^\gamma, \pi) \leq C \left(n \gamma^{1+\beta} \lambda^n \mathbb{V}_x(x) + \gamma^{1+\beta} \right), \quad (18)$$

where \mathbb{V}_x is defined in Proposition 3 and for all $\gamma \in (0, \gamma_0]$,

$$W_2^2(\pi_{\gamma}, \pi) \leq C \gamma^{1+\beta}. \quad (19)$$
Proof. The proof is postponed to Section 4.5.

The exponent of γ in (16) is improved from 1 to $1 + \beta$. In particular, if $\nabla^2 U$ is Lipschitz, $\nu = 0$, $\beta = 1$, and [10] Theorem 8] is recovered.

Let $(X_k)_{k \in \mathbb{N}}$ be the Markov chain defined in (3). To study the empirical average $(1/n) \sum_{k=0}^{n-1} \{f(X_k) - \pi(f)\}$ for $n \in \mathbb{N}^*$, we follow a method introduced in [26] and based on the Poisson equation. For f a π-integrable function, the Poisson equation associated with the generator \mathcal{A} defined in (6) is given for all $x \in \mathbb{R}^d$ by

$$\mathcal{A} \phi(x) = -(f(x) - \pi(f)),$$

(20)

where ϕ, if it exists, is a solution of the Poisson equation. This equation has proved to be a useful tool to analyze additive functionals of diffusion processes, see e.g. [27] and references therein. The existence and regularity of a solution of the Poisson equation has been investigated in [28], [29], [30], [31]. In that purpose, the following additional assumption on U is necessary.

H5. $U \in C^4(\mathbb{R}^d, \mathbb{R})$ and $\|D^i U\| \in C_{\text{poly}}(\mathbb{R}^d, \mathbb{R}_+)$ for $i \in \{0, \ldots, 4\}$.

Theorem 7. Assume **H2**, **H5**, **A1** and **A2**. Let $f \in C^3(\mathbb{R}^d, \mathbb{R})$ be such that $\|D^i f\| \in C_{\text{poly}}(\mathbb{R}^d, \mathbb{R}_+)$ for $i \in \{0, \ldots, 3\}$. Let $\gamma_0 > 0$ and $(X_k)_{k \in \mathbb{N}}$ be the Markov chain defined by (3) and starting at $X_0 = 0$. There exists $C > 0$ such that for all $\gamma \in (0, \gamma_0]$ and $n \in \mathbb{N}^*$,

$$\left| \mathbb{E} \left[\frac{1}{n} \sum_{k=0}^{n-1} f(X_k) - \pi(f) \right] \right| \leq C \left(\gamma + \frac{1}{n \gamma} \right)$$

(21)

and

$$\mathbb{E} \left[\left(\frac{1}{n} \sum_{k=0}^{n-1} f(X_k) - \pi(f) \right)^2 \right] \leq C \left(\gamma^2 + \frac{1}{n \gamma} \right).$$

(22)

Proof. The proof is postponed to Section 4.6.

Note that the standard rates of convergence are recovered, see [26] Theorems 5.1, 5.2].
3. Numerical examples

We illustrate our theoretical results using three numerical examples.

Multivariate Gaussian variable in high dimension. We first consider a multivariate Gaussian variable in dimension \(d \in \{100, 1000\}\) of mean 0 and covariance matrix \(\Sigma = \text{diag}(1, \ldots, d)\). The potential \(U : \mathbb{R}^d \rightarrow \mathbb{R}\) defined for all \(x \in \mathbb{R}^d\) by \(U(x) = (1/2)x^T \Sigma^{-1} x\) is \(d^{-1}\)-strongly convex and 1-gradient Lipschitz. The assumptions \(H_1, H_2, H_3, H_4\) with \(\beta = 1\) and \(H_5\) are thus satisfied. Note that in this case, ULA is stable and the analysis of \([8, 9, 10]\) valid. Nevertheless, implementing TULA and TULAc on this example is still of interest. Indeed, some Bayesian posterior distributions have intricate expressions and identifying the superlinear part in the gradient \(\nabla U\) may be a difficult task. Within this context, we check the robustness of TULA and TULAc with respect to (globally) Lipschitz \(\nabla U\).

We also consider in the supplementary document \([32, 33, 34]\) a badly conditioned multivariate Gaussian variable in dimension \(d = 100\) of mean 0 and covariance matrix \(\Sigma = \text{diag}(10^{-5}, 1, \ldots, 1)\). In this example, ULA requires a step size of order \(10^{-5}\) to be stable which implies a large number of iterations to obtain relevant results. On the other side, TULA and TULAc are applicable with a step size of order \(10^{-2}\) and within a relatively small number of iterations, valid results for the axes 2 to 100 are obtained.

Double well. The potential is defined for all \(x \in \mathbb{R}^d\) by \(U(x) = (1/4) \|x\|^4 - (1/2) \|x\|^2\). We have \(\nabla U(x) = (\|x\|^2 - 1) x\) and \(\nabla^2 U(x) = (\|x\|^2 - 1) \text{Id} + 2xx^T\). We get \(\|\nabla^2 U(x)\| = 3 \|x\|^2 - 1, \langle x, \nabla U(x) \rangle = \|x\| \|\nabla U(x)\|\) for \(\|x\| \geq 1\) and

\[
\|\nabla^2 U(x) - \nabla^2 U(y)\| \leq 3 (\|x\| + \|y\|) \|x - y\|,
\]

so that \(H_1, H_2, H_4\) with \(\beta = 1\) and \(H_5\) are satisfied.

Ginzburg-Landau model. This model of phase transitions in physics \([33, \text{Section 6.2}]\) is defined on a three-dimensional \(d = p^3\) lattice for \(p \in \mathbb{N}^*\) and the potential
is given for $x = (x_{ijk})_{i,j,k \in \{1, \ldots, p\}} \in \mathbb{R}^d$ by

$$
U(x) = \sum_{i,j,k=1}^{p} \left\{ \frac{1 - \tau}{2} x_{ijk}^2 + \frac{\tau \alpha}{2} \| \nabla x_{ijk} \|^2 + \frac{\tau \lambda}{4} x_{ijk}^4 \right\},
$$

where $\alpha, \lambda, \tau > 0$ and $\nabla x_{ijk} = (x_{i+1,j,k} - x_{ijk}, x_{i,j+1,k} - x_{ijk}, x_{i,j,k+1} - x_{ijk})$ with $i_\pm = i \pm 1 \mod p$ and similarly for j_\pm, k_\pm. In the simulations, p is equal to 10.

We have

$$
\nabla U(x) = \left\{ \tau \alpha \left(6 x_{ijk} - x_{i,j+1,k} - x_{i,j,k+1} - x_{i,j,k} - x_{i-1,j,k} - x_{i,j-1,k} - x_{i-1,j-1,k} \right) + (1 - \tau) x_{ijk} + \tau \lambda x_{ijk}^3 \right\}_{i,j,k \in \{1, \ldots, p\}},
$$

and

$$
\nabla^2 U(x) = \text{diag} \left((1 - \tau + 6 \tau \alpha + 3 \tau \lambda x_{ijk}^2)_{i,j,k \in \{1, \ldots, p\}} \right) + M,
$$

where $M \in \mathbb{R}^{d \times d}$ is a constant matrix. $\mathbf{H}[1] \mathbf{H}[4]$ with $\beta = 1$ and $\mathbf{H}[5]$ are thus satisfied. Using that $x \mapsto \sum_{i,j,k=1}^{p} \| \nabla x_{ijk} \|^2$ is convex by composition of convex functions and its gradient evaluated in 0 is 0, we have for all $x \in \mathbb{R}^d$,

$$
\langle x, \nabla U(x) \rangle \geq \sum_{i,j,k=1}^{p} \left\{ (1 - \tau) x_{ijk}^2 + \tau \lambda x_{ijk}^4 \right\}.
$$

By Cauchy-Schwarz inequality, $\left\{ \sum_{i,j,k=1}^{p} x_{ijk}^2 \right\}^2 \leq d \sum_{i,j,k=1}^{p} x_{ijk}^4$, and for all $x \in \mathbb{R}^d$, $\|x\| \geq (2(1 - \tau)d)/(\tau \lambda)$, we get $\langle x, \nabla U(x) \rangle \geq \{(\tau \lambda)/2\} \sum_{i,j,k=1}^{p} x_{ijk}^4$. Besides, we have

$$
\| \nabla U(x) \| \leq (1 - \tau + 12 \tau \alpha) \|x\| + \tau \lambda \| (x_{ijk})_{i,j,k \in \{1, \ldots, p\}} \|.
$$

Let $a, b, c \in \{1, \ldots, p\}$ be such that $|x_{abc}| = \max |x_{ijk}|$. We get

$$
\|x\| \| (x_{ijk})_{i,j,k \in \{1, \ldots, p\}} \| \leq dx_{abc} \leq d \sum_{i,j,k=1}^{p} x_{ijk}^4.
$$

Finally, for $\|x\|^2 \geq \max \{1, (2 (1 - \tau)d)/(\tau \lambda)\}$, we obtain

$$
\|x\| \| \nabla U(x) \| \leq \left\{ \frac{2d(1 - \tau)}{\tau \lambda} + \frac{24ad}{\lambda} + 2d \right\} \langle x, \nabla U(x) \rangle,
$$

and $\mathbf{H}[2]$ is satisfied.
We benchmark TULA and TULAc against ULA given by (2), MALA and a Random Walk Metropolis-Hastings with a Gaussian proposal (RWM). TMALA (Tamed Metropolis Adjusted Langevin Algorithm) and TMALAc (coordinate-wise Tamed Metropolis Adjusted Langevin Algorithm), the Metropolized versions of TULA and TULAc, are also included in the numerical tests. Their theoretical analysis is similar to the one of MALTA [20, Proposition 2.1].

Since double well and Ginzburg-Landau models are coordinate-wise exchangeable, the results are provided only for their first coordinate. The Markov chains associated with these models are started at $x_0 = 0, (10, 0^{\otimes (d-1)})$, $(100, 0^{\otimes (d-1)})$, $(1000, 0^{\otimes (d-1)})$ and for the multivariate Gaussian at a random vector of norm $0, 10, 100, 1000$. For the Gaussian and double well examples, for each initial condition, algorithm, step size $\gamma \in \{10^{-3}, 10^{-2}, 10^{-1}\}$, we run 100 independent Markov chains started at x_0 of 10^6 samples (respectively 10^5) in dimension $d = 100$ (respectively $d = 1000$). For the Ginzburg-Landau model, we run 100 independent Markov chains started at x_0 of 10^5 samples. For each run, we estimate the 1st and 2nd moment for the first and last coordinate, i.e. $\int \pi(x)dx$ for $i \in \{1, d\}$, by the empirical average and we compute the boxplots of the errors. For ULA, if the norm of x_k for $k \in \mathbb{N}$ exceeds 10^5, the chain is stopped and for this step size γ the trajectory of ULA is not taken into account. For MALA, RWM, TMALA and TMALAc, if the acceptance ratio is below 0.05, we similarly do not take into account the corresponding trajectories.

For the three examples and for $i \in \{1, \ldots, d\}$, $\int \pi(x)dx = 0$. By symmetry, for the double well, we have for $i \in \{1, \ldots, d\}$ and $r \in \mathbb{R}_+$,

$$\mathbb{E}[X_i^2] = d^{-1} \int_{\mathbb{R}_+} r^2 \nu(r)dr \left/ \int_{\mathbb{R}_+} \nu(r)dr \right, \quad \nu(r) = r^{d-1} \exp \left\{ (r^2/2) - (r^4/4) \right\}.$$

A Random Walk Metropolis run of 10^7 samples gives $\int_{\mathbb{R}_+} x_i^2 \pi(x)dx \approx 0.104 \pm 0.001$ for $d = 100$ and $\int_{\mathbb{R}_+} x_i^2 \pi(x)dx \approx 0.032 \pm 0.001$ for $d = 1000$.

Because of lack of space, we only display some boxplots in Figures 1 to 4. The Python code and all the figures are available at https://github.com/nbrosse/TULA. We remark that TULA, TULAc and to a lesser extent, TMALA and TMALAc, have a stable behaviour even with large step sizes and starting...
far from the origin. This is particularly visible in Figures 2 and 4 where ULA diverges (i.e. \(\lim \inf_{k \to +\infty} E[\|X_k\|] = +\infty \)) and MALA does not move even for small step sizes \(\gamma = 10^{-3} \). Note however the existence of a bias for ULA, TULA and TULAc in Figure 3. Finally, comparison of the results shows that TULAc is preferable to TULA.

Note that other choices are possible for \(G_\gamma \), depending on the model under study. For example, in the case of the double well, we could "tame" only the superlinear part of \(\nabla U \), i.e. consider for all \(\gamma > 0 \) and \(x \in \mathbb{R}^d \),

\[
G_\gamma(x) = \frac{\|x\|^2 x}{1 + \gamma \|x\|^2} - x. \tag{23}
\]

\(A_1 \) is satisfied and we have

\[
\left\langle \frac{x}{\|x\|}, G_\gamma(x) \right\rangle - \frac{\gamma}{2 \|x\|^2} \|G_\gamma(x)\|^2 = \frac{\|x\|^3}{1 + \gamma \|x\|^2} \left\{ 1 + \gamma - \frac{\gamma}{2} \frac{\|x\|^2}{1 + \gamma \|x\|^2} \right\} - \|x\| \{ 1 + (\gamma/2) \} ,
\]

\(A_2 \) is satisfied if and only if \(\gamma \in (0, 1) \). It is striking to see that this theoretical threshold is clearly visible on the simulations. The algorithm (3) with \(G_\gamma \) defined by (23) obtains similar results as TULAc for \(\gamma < 1 \) but for \(\gamma = 1 \), the algorithm diverges.

Given the results of the numerical experiments, TULAc should be chosen over ULA to sample from general probability distributions. Indeed, TULAc has similar results as ULA when the step size is small and is more stable when using larger step sizes.
Figure 1: Boxplots of the error on the first moment for the multivariate Gaussian (first coordinate) in dimension 1000 starting at 0 for different step sizes.
Figure 2: Boxplots of the error on the first moment for the double well in dimension 100 starting at $(100, 0^{99})$ for different step sizes.
Figure 3: Boxplots of the error on the second moment for the double well in dimension 100 starting at 0 for different step sizes.
Figure 4: Boxplots of the error on the first moment for the Ginzburg-Landau model in dimension 1000 starting at \((100, 0^{999})\) for different step sizes.
4. Proofs

4.1. Proof of Proposition \[7\]

We have for all $x \in \mathbb{R}^d$,

$$\frac{s \mathcal{A} \mathcal{V}_a(x)}{a V_a(x)} = -\left\langle \nabla U(x), \frac{x}{(1 + \|x\|^2)^{1/2}} \right\rangle + \frac{a \|x\|^2}{1 + \|x\|^2} + \frac{d}{(1 + \|x\|^2)^{1/2}}$$

$$+ \frac{\|x\|^2}{(1 + \|x\|^2)^{3/2}}. \quad (24)$$

By H2(ii) and using $s \mapsto s/(1 + s^2)^{1/2}$ is non-decreasing for $s \geq 0$, there exist $M_1, \kappa > 0$ such that for all $x \in \mathbb{R}^d, \|x\| \geq M_1$, $\left\langle \nabla U(x), x(1 + \|x\|^2)^{-1/2} \right\rangle \geq \kappa \|\nabla U(x)\|$. By H2(ii), there exists $M_2 \geq M_1$ such that for all $x \in \mathbb{R}^d, \|x\| \geq M_2$, $\|\nabla U(x)\| \geq \kappa^{-1} \{1 + a + d(1 + M_2^2)^{-1/2}\}$. We then have for all $x \in \mathbb{R}^d, \|x\| \geq M_2$, $s \mathcal{A} \mathcal{V}_a(x) \leq -a V_a(x)$. Define

$$b_a = \exp(a(1 + M_2^2)^{1/2}) \{2L(1 + M_2^{d+1}) + a + d\}.$$

Combining [5] and (24) gives (8). By [23, Theorem 1.1], we get $P_t V_a(x) \leq e^{-at} V_a(x) + b_a(1 - e^{-at})$. The second statement is a consequence of [11, Theorem 2.2] and [23, Theorem 6.1].

4.2. Proof of Lemma \[3\]

Let $\gamma > 0$. We have for all $x \in \mathbb{R}^d, \|H_\gamma(x) - \nabla U(x)\| \leq \gamma \|\nabla U(x)\|^2$ and

$$\|H_{\gamma,c}(x) - \nabla U(x)\| \leq \gamma \left\{ \sum_{i=1}^d (\partial_i U(x))^4 \right\}^{1/2} \leq \gamma \|\nabla U(x)\|^2.$$

By [5], A1 is satisfied. Define for all $x \in \mathbb{R}^d, x \neq 0$,

$$A_\gamma(x) = \left\langle \frac{x}{\|x\|}, H_\gamma(x) \right\rangle - \frac{\gamma}{2 \|x\|} \|H_\gamma(x)\|^2.$$

By H2(ii) there exist $M_1, \kappa > 0$ such that for all $x \in \mathbb{R}^d, \|x\| \geq M_1, \langle x, \nabla U(x) \rangle \geq \kappa \|x\| \|\nabla U(x)\|$. We get then for all $x \in \mathbb{R}^d, \|x\| \geq M_1$,

$$A_\gamma(x) = \frac{1}{2 \|x\| \{1 + \gamma \|\nabla U(x)\|\}} \left\{ \frac{2 \langle x, \nabla U(x) \rangle - \|\nabla U(x)\|}{1 + \gamma \|\nabla U(x)\|} \right\} \geq \frac{\|\nabla U(x)\| - 2 \kappa \|x\| - 1}{1 + \gamma \|\nabla U(x)\|},$$

for $2 \|x\| \|\nabla U(x)\| < 1$.

19
By [15] there exist $M_2, C > 0$ such that for all $x \in \mathbb{R}^d$, $\|x\| \geq M_2, \|\nabla U(x)\| \geq C$. Using that $s \mapsto s(1+\gamma s)^{-1}$ is non-decreasing for $s \geq 0$, we get for all $x \in \mathbb{R}^d$, $\|x\| \geq \max(\kappa^{-1}, M_1, M_2), A_\gamma(x) \geq (\kappa C)/(2(1+\gamma C))$.

Define for all $x \in \mathbb{R}^d, x \neq 0$,

$$B_\gamma(x) = \left\langle \frac{x}{\|x\|}, H_{\gamma,c}(x) \right\rangle - \frac{\gamma}{2\|x\|} \|H_{\gamma,c}(x)\|^2.$$

We have for all $x \in \mathbb{R}^d$, $\gamma \|H_{\gamma,c}(x)\| \leq \sqrt{d}$ and for all $x \in \mathbb{R}^d, \|x\| \geq M_1$,

$$\left\langle x, \left(\frac{\partial_i U(x)}{1 + \gamma |\partial_i U(x)|} \right)_{i \in \{1,\ldots,d\}} \right\rangle \geq \frac{\kappa \|x\| \|\nabla U(x)\|}{1 + \gamma \max_{i \in \{1,\ldots,d\}} \|\partial_i U(x)\|}$$

and

$$\left\| \left(\frac{\partial_i U(x)}{1 + \gamma |\partial_i U(x)|} \right)_{i \in \{1,\ldots,d\}} \right\| \leq \frac{\|\nabla U(x)\|}{1 + \gamma \max_{i \in \{1,\ldots,d\}} \|\partial_i U(x)\|}.$$

Combining these inequalities, we get for all $x \in \mathbb{R}^d, \|x\| \geq \max(\kappa^{-1}/\sqrt{d}, M_1)$,

$$B_\gamma(x) \geq \frac{\|\nabla U(x)\|}{1 + \gamma \max_{i \in \{1,\ldots,d\}} \|\partial_i U(x)\|} \frac{1}{2 \|x\|} \left\{ 2\kappa \|x\| - \sqrt{d} \right\} \geq \frac{\|\nabla U(x)\|}{1 + \gamma \|\nabla U(x)\|/2} \frac{\kappa}{2},$$

and for all $x \in \mathbb{R}^d, \|x\| \geq \max(\kappa^{-1}/\sqrt{d}, M_1, M_2)$, we get $B_\gamma(x) \geq (\kappa C)/(2(1+\gamma C))$.

4.3. Proof of Proposition 3

Let $\gamma, a \in \mathbb{R}_+^*$. Note that the function $x \mapsto (1+\|x\|^2)^{1/2}$ is Lipschitz continuous with Lipschitz constant equal to 1. By the log-Sobolev inequality [33] Proposition 5.5.1], and the Cauchy-Schwarz inequality, we have for all $x \in \mathbb{R}^d$ and $a > 0$

$$R_{\gamma} V_a(x) \leq e^{a^2 \gamma} \exp \left\{ a \int_{\mathbb{R}^d} (1+\|y\|^2)^{1/2} R_\gamma(x,dy) \right\}$$

$$\leq e^{a^2 \gamma} \exp \left\{ a \left(1 + \|x - \gamma G_\gamma(x)\|^2 + 2\gamma d \right)^{1/2} \right\}. \quad (25)$$

We now bound the term inside the exponential in the right hand side. For all $x \in \mathbb{R}^d$,

$$\|x - \gamma G_\gamma(x)\|^2 = \|x\|^2 - 2\gamma \left(\langle G_\gamma(x), x \rangle - (\gamma/2) \|G_\gamma(x)\|^2 \right). \quad (26)$$
By $A2$, there exist $M_1, \kappa \in \mathbb{R}^+_+ \text{ such that for all } x \in \mathbb{R}^d, \|x\| \geq M_1, \langle x, G_\gamma(x) \rangle - \frac{(\gamma/2)\|G_\gamma(x)\|^2}{\kappa\|x\|} \geq \kappa\|x\|$. Denote by $M = \max(M_1, 2\kappa^{-1})$. For all $x \in \mathbb{R}^d$, $\|x\| \geq M$, we have

$$\|x - \gamma G_\gamma(x)\|^2 + 2\gamma d \leq \|x\|^2 - \gamma\kappa\|x\|.$$

Using for all $t \in [0, 1], (1 - t)^{1/2} \leq 1 - t/2$ and $s \mapsto s/(1 + s^2)^{1/2}$ is non-decreasing for $s \geq 0$, we have for all $x \in \mathbb{R}^d$, $\|x\| \geq M$,

$$\left(1 + \|x - \gamma G_\gamma(x)\|^2 + 2\gamma d\right)^{1/2} \leq \left(1 + \|x\|^2\right)^{1/2} \left(1 - \frac{\gamma\kappa\|x\|}{1 + \|x\|^2}\right)^{1/2} \leq \left(1 + \|x\|^2\right)^{1/2} - \frac{\gamma\kappa M}{2(1 + M^2)^{1/2}}.$$

Plugging this result in (25) shows that for all $x \in \mathbb{R}^d$, $\|x\| \geq M$,

$$R_\gamma V_\infty(x) \leq e^{-\pi^2\gamma} V_\infty(x) \quad \text{for } \pi = \frac{\kappa M}{4(1 + M^2)^{1/2}}. \quad (27)$$

By (10), we have

$$\max_{\|x\| \leq M} \|G_\gamma(x)\| \leq 2L \left\{1 + \|M\|^{|\ell+1}\right\} + \gamma C_\alpha \left(1 + \|M\|^\alpha\right).$$

Combining it with (25), (26), $s \mapsto s/(1 + s^2)^{1/2}$ is non-decreasing for $s \geq 0$ and $(1 + t_1 + t_2)^{1/2} \leq (1 + t_1)^{1/2} + t_2/2$ for $t_1 = \|x\|^2$, $t_2 = \gamma^2 \|G_\gamma(x)\|^2 + 2\gamma \|x\| \|G_\gamma(x)\| + 2\gamma d$, we have for all $x \in \mathbb{R}^d$, $\|x\| \leq M$,

$$R_\gamma V_\infty(x) \leq e^{\gamma c} V_\infty(x), \quad (28)$$

where

$$c = \alpha^2 + \varepsilon \left[M \left\{2L \left\{1 + \|M\|^{|\ell+1}\right\} + \gamma C_\alpha \left(1 + \|M\|^\alpha\right) \right\} \right. \left. + \frac{\gamma}{2} \left\{2L \left\{1 + \|M\|^{|\ell+1}\right\} + \gamma C_\alpha \left(1 + \|M\|^\alpha\right) \right\}^2 + d \right].$$

Then, using that for all $t \geq 0$, $1 - e^{-t} \leq t$, we get for all $x \in \mathbb{R}^d$, $\|x\| \leq M$,

$$R_\gamma V_\infty(x) - e^{-\pi^2\gamma} V_\infty(x) \leq e^{\gamma c}(1 - e^{-\gamma(\alpha^2 + c)})V_\infty(x) \leq \gamma e^{\gamma c}(\alpha^2 + c)V_\infty(x), \quad (29)$$

which combined with (27) gives (12) with $b = e^{\gamma c}(\alpha^2 + c)e^{\gamma M/4}$. Finally, using Jensen’s inequality and $(s + t)^s \leq s^s + t^s$ for $s \in (0, 1)$, $s, t \geq 0$ in (12), by [13, Section 3.1], for all $\gamma > 0$, R_γ has a unique invariant probability measure π_γ and R_γ is V_∞-geometrically ergodic w.r.t. π_γ.

21
4.4. Proof of Theorem 4

The proof is adapted from \[6, \text{Proposition 2}\] and \[9, \text{Theorem 10}\]. We first state a lemma.

Lemma 8. Assume H_1^γ, H_2^γ, A_1^γ and A_2^γ. Let $\gamma_0 > 0$, $p \in \mathbb{N}^*$ and ν_0 be a probability measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$. There exists $C > 0$ such that for all $\gamma \in (0, \gamma_0]$

$$\text{KL}(\nu_0 R_\gamma^p | \nu_0 P_\gamma^p) \leq C \gamma^2 \int_{\mathbb{R}^d} \sum_{i=0}^{p-1} \int_{\mathbb{R}^d} V_\gamma(z) R_i^\gamma(y, d \gamma) \nu_0(dy).$$

Proof. Let $y \in \mathbb{R}^d$ and $\gamma > 0$. Denote by $(Y_t, \overline{Y}_t)_{t \geq 0}$ the unique strong solution of

$$\begin{cases}
 dY_t = -\nabla U(Y_t) dt + \sqrt{2} dB_t, & Y_0 = y, \\
 d\overline{Y}_t = -G_\gamma (\overline{Y}_{\lfloor t/\gamma \rfloor \gamma}) dt + \sqrt{2} dB_t, & \overline{Y}_0 = y,
\end{cases}$$

(30)

and by $(\mathcal{F}_t)_{t \geq 0}$ the filtration associated with $(B_t)_{t \geq 0}$. Denote by μ_γ^p and $\overline{\mu}_\gamma^p$ the marginal distributions on $C([0, p\gamma], \mathbb{R}^d)$ of $(Y_t, \overline{Y}_t)_{t \geq 0}$. By \[4, \text{Theorem 7.19}\], μ_γ^p and $\overline{\mu}_\gamma^p$ are equivalent and \mathbb{P}-almost surely,

$$\frac{d\mu_\gamma^p}{d\overline{\mu}_\gamma^p}((\overline{Y}_t)_{t \in [0, p\gamma]}) = \exp \left(\frac{1}{4} \int_0^{p\gamma} \langle \nabla U(\overline{Y}_s) + G_\gamma (\overline{Y}_{\lfloor s/\gamma \rfloor \gamma}), d \overline{Y}_s \rangle - \frac{1}{4} \int_0^{p\gamma} \left\{ \| \nabla U(\overline{Y}_s) \|^2 - \| G_\gamma (\overline{Y}_{\lfloor s/\gamma \rfloor \gamma}) \|^2 \right\} ds \right).$$

We get then

$$\text{KL}(\overline{\mu}_\gamma^p | \mu_\gamma^p) = \mathbb{E} \left[- \log \left(\frac{d\mu_\gamma^p}{d\overline{\mu}_\gamma^p}((\overline{Y}_t)_{t \in [0, p\gamma]}) \right) \right]$$

$$= \frac{1}{4} \int_0^{p\gamma} \mathbb{E} \left[\| \nabla U(\overline{Y}_s) - G_\gamma (\overline{Y}_{\lfloor s/\gamma \rfloor \gamma}) \|^2 \right] ds$$

$$= \frac{1}{4} \sum_{i=0}^{p-1} \int_{i\gamma}^{(i+1)\gamma} \mathbb{E} \left[\| \nabla U(\overline{Y}_s) - G_\gamma (\overline{Y}_{i\gamma}) \|^2 \right] ds.$$
For $i \in \{0, \ldots, p-1\}$ and $s \in [i\gamma, (i+1)\gamma)$, we have $\|\nabla U(\mathbf{Y}_s) - G_\gamma(\mathbf{Y}_{i\gamma})\|^2 \leq 2(A_1 + A_2)$ where
\[
A_1 = \|\nabla U(\mathbf{Y}_s) - \nabla U(\mathbf{Y}_{i\gamma})\|^2, \quad A_2 = \|\nabla U(\mathbf{Y}_{i\gamma}) - G_\gamma(\mathbf{Y}_{i\gamma})\|^2.
\]
By $A1.A2 \leq \gamma^2 C_\alpha^2 \left(1 + \|\mathbf{Y}_{i\gamma}\|\right)^2$ and by $H1$
\[
A_1 \leq L^2 \left(1 + \|\mathbf{Y}_s\| + \|\mathbf{Y}_{i\gamma}\|\right)^{2} \|\mathbf{Y}_s - \mathbf{Y}_{i\gamma}\|^2.
\]
On the other hand for $s \in [i\gamma, (i+1)\gamma)$,
\[
\|\mathbf{Y}_s - \mathbf{Y}_{i\gamma}\|^2 = (s - i\gamma)^2 \|G_\gamma(\mathbf{Y}_{i\gamma})\|^2 + 2 \|B_s - B_{i\gamma}\|^2
\]
\[\quad - 2^{3/2}(s - i\gamma) \langle B_s - B_{i\gamma}, G_\gamma(\mathbf{Y}_{i\gamma}) \rangle,
\]
\[
\|\mathbf{Y}_s\| \leq \|\mathbf{Y}_{i\gamma}\| + \gamma \|G_\gamma(\mathbf{Y}_{i\gamma})\| + \sqrt{2} \|B_s - B_{i\gamma}\|.
\]
Define $P_{\gamma,1}: \mathbb{R}^+ \to \mathbb{R}^+$ for all $t \in \mathbb{R}^+$ by
\[
P_{\gamma,1}(t) = (2\pi)^{-d/2} L^2 \int_{\mathbb{R}^d} \left[2 \|z\|^2 + \gamma \{2L(1 + t^{\ell+1}) + \gamma C_\alpha(1 + t^{\alpha})\}^2\right]
\times \left[1 + t^\ell + \left\{t + \gamma \{2L(1 + t^{\ell+1}) + \gamma C_\alpha(1 + t^{\alpha})\} + \sqrt{2\gamma \|z\|^2}\right\}^\ell\right]^2 e^{-\|z\|^2/2} dz.
\]
By (10), (31), (32), and (33), we have for $i \in \{0, \ldots, p-1\}$
\[
\int_{i\gamma}^{(i+1)\gamma} \mathbb{E}^{F_{i\gamma}} [A_1] \, ds \leq (\gamma^2/2) P_{\gamma,1}(\|\mathbf{Y}_{i\gamma}\|)
\]
and we get
\[
\int_{i\gamma}^{(i+1)\gamma} \mathbb{E}^{F_{i\gamma}} \left[\|\nabla U(\mathbf{Y}_s) - G_\gamma(\mathbf{Y}_{i\gamma})\|^2\right] \, ds \leq \gamma^2 \left\{P_{\gamma,1}(\|\mathbf{Y}_{i\gamma}\|) + 2\gamma P_2(\|\mathbf{Y}_{i\gamma}\|)\right\}
\]
where $P_2: \mathbb{R}^+ \to \mathbb{R}^+$ is defined for all $t \in \mathbb{R}^+$ by
\[
P_2(t) = C_\alpha^2 (1 + t^{\alpha})^2.
\]
By [36] Theorem 4.1, Chapter 2, we obtain
\[
\text{KL}(\delta_y \mu_y^\alpha | \delta_y P_y) \leq \text{KL}(\pi_y^\alpha | \mu_y^\alpha) \leq (\gamma^2/4) \sum_{i=0}^{p-1} \mathbb{E} \left[P_{\gamma,1}(\|\mathbf{Y}_{i\gamma}\|) + 2\gamma P_2(\|\mathbf{Y}_{i\gamma}\|)\right].
\]
By (34) and (35), there exists $C > 0$ such that for all $\gamma \in (0, \gamma_0]$ and $x \in \mathbb{R}^d$, $P_{\gamma,1}(\|x\|) + 2\gamma P_{\gamma,2}(\|x\|) \leq 4CV_\infty(x)$. Combining it with the chain rule for the Kullback-Leibler divergence concludes the proof.

Proof of Theorem [4] Let $\gamma \in (0, \gamma_0]$. By Proposition [1], we have for all $n \in \mathbb{N}$ and $x \in \mathbb{R}^d$,

$$\|\delta_x R^n_{\gamma} - \pi\|_{V^{1/2}_\infty} \leq C_{\pi/2}^n p_{\gamma,2}^{1/2} V_{\infty}^{1/2}(x) + \|\delta_x R^n_{\gamma} - \delta_x P_{n\gamma}\|_{V^{1/2}_\infty}.$$

Denote by $k_\gamma = \lceil \gamma^{-1} \rceil$ and by q_γ, r_γ the quotient and the remainder of the Euclidian division of n by k_γ. We have $\|\delta_x R^n_{\gamma} - \delta_x P_{n\gamma}\|_{V^{1/2}_\infty} \leq A + B$ where

$$A = \|\delta_x R^{(i-1)k_\gamma}_{\gamma} P_{k_\gamma,\gamma} - \delta_x R^{k_\gamma}_{\gamma}\|_{V^{1/2}_\infty},$$

$$B = \sum_{i=1}^{q_\gamma} \|\delta_x R^{(i-1)k_\gamma}_{\gamma} P_{(n-i)k_\gamma,\gamma} - \delta_x R^{k_\gamma}_{\gamma} P_{(n-i)k_\gamma,\gamma}\|_{V^{1/2}_\infty} \leq \sum_{i=1}^{q_\gamma} C_{\pi/2}^{1/2} p_{\gamma,2}^{1/2} \|\delta_x R^{(i-1)k_\gamma}_{\gamma} P_{k_\gamma,\gamma} - \delta_x R^{k_\gamma}_{\gamma}\|_{V^{1/2}_\infty}. \tag{36}$$

For $i \in \{1, \ldots, q_\gamma\}$ we have by [3], Lemma 24,

$$\left\|\delta_x R^{(i-1)k_\gamma}_{\gamma} P_{k_\gamma,\gamma} - \delta_x R^{k_\gamma}_{\gamma}\right\|_{V^{1/2}_\infty}^2 \leq 2 \left\{ \delta_x R^{(i-1)k_\gamma}_{\gamma} P_{k_\gamma,\gamma}(V_\infty) + \delta_x R^{k_\gamma}_{\gamma}(V_\infty) \right\} \times KL(\delta_x R^{k_\gamma}_{\gamma}, \delta_x R^{(i-1)k_\gamma}_{\gamma}, P_{k_\gamma,\gamma}) \tag{37}.$$

By Proposition [3], Lemma [8] and $k_\gamma \leq 1 + \gamma^{-1}$, we have for all $i \in \{1, \ldots, q_\gamma\}$

$$KL(\delta_x R^{k_\gamma}_{\gamma}, \delta_x R^{(i-1)k_\gamma}_{\gamma}, P_{k_\gamma,\gamma}) \leq C\gamma^2 \sum_{j=0}^{k_\gamma-1} \int_{\mathbb{R}^d} V_\infty(z) \delta_x R^{(i-1)k_\gamma+j}_{\gamma}(dz) \leq C\gamma^2 \left(1 + \gamma^{-1}\right) \left\{ e^{-\frac{a^2}{2}\gamma k_\gamma(i-1)} V_\infty(x) + \frac{b}{\alpha^2} e^{\alpha^2\gamma} \right\}, \tag{38}.$$

where C is the constant defined in Lemma [8]. By Proposition [1] we have for $x \in \mathbb{R}^d$, $P_{k_\gamma,\gamma} V_\infty(x) \leq V_\infty(x) + b_\infty$ and by Proposition [3] we get for all $i \in \{1, \ldots, q_\gamma\}$

$$\delta_x R^{(i-1)k_\gamma}_{\gamma} P_{k_\gamma,\gamma}(V_\infty) + \delta_x R^{k_\gamma}_{\gamma}(V_\infty) \leq 2 \left\{ e^{-\frac{a^2}{2}\gamma k_\gamma(i-1)} V_\infty(x) + \frac{b}{\alpha^2} e^{\alpha^2\gamma} + b_\infty \right\}. \tag{39}.$$

24
By \((36), (37), (38)\) and \((39)\), we obtain

\[
B \leq 2C_{\infty/2}C^{1/2}\gamma(1 + \gamma^{-1})^{1/2} \\
\times \sum_{i=1}^{q_{\gamma}} \rho_{\infty/2}^{(q_{\gamma} - i)\gamma k_{\gamma}} \left\{ e^{-(i-1)\gamma k_{\gamma}x^2} V_{x}(x) + \left(b_{x} + \frac{b}{a^2} e^{x^2\gamma} \right) \right\}
\]

and we get

\[
B \left\{ 2C_{\infty/2}C^{1/2}\gamma(1 + \gamma^{-1})^{1/2} \right\}^{-1} \leq \left(b_{x} + \frac{b}{a^2} e^{x^2\gamma} \right) \frac{1}{1 - \rho_{\infty/2}} \\
+ V_{x}(x) q_{\gamma} \max(\rho_{\infty/2}, e^{-x^2})(q_{\gamma} - 1)^{k_{\gamma}}.
\]

Bounding \(A\) along the same lines and using \(k_{\gamma} \geq 1\), we get \((14)\). By Proposition \([3]\) and taking the limit \(n \to +\infty\), we obtain \((15)\). \(\square\)

4.5. Proofs of Theorems 5 and 6

We first state preliminary technical lemmas on the diffusion \((Y_t)_{t \geq 0}\). The proofs are postponed to the supplementary document \([32]\). Define for all \(p \in \mathbb{N}^*\) and \(k \in \{0, \ldots, p\}\),

\[
a_{k,p} = m^{k-p} \prod_{i=k+1}^{p} \left\{ i(d + 2(i - 1))(i - k)^{-1} \right\}. \tag{40}
\]

Lemma 9. Assume \(H_3\). Let \(p \in \mathbb{N}^*, x \in \mathbb{R}^d\) and \((Y_t)_{t \geq 0}\) be the solution of \((1)\) started at \(x\). For all \(t \geq 0\),

\[
\mathbb{E} \left[\|Y_t\|^{2p} \right] \leq a_{0,p} \left(1 - e^{-2pmt} \right) + \sum_{k=1}^{p} a_{k,p} e^{-2km t} \|x\|^{2k},
\]

where for \(k \in \{0, \ldots, p\}\), \(a_{k,p}\) is given in \((40)\).

Proof. The proof is postponed to the supplementary document \([32]\). \(\square\)

Lemma 10. Assume \(H_3\) and let \(p \in \mathbb{N}^*\). We have \(\int_{\mathbb{R}^d} \|y\|^{2p} \pi(dy) \leq a_{0,p} \).

Proof. The proof is postponed to the supplementary document \([32]\). \(\square\)
Let $\gamma > 0$ and under H_1 set
\[
N = \lceil (\ell + 1)/2 \rceil .
\] (41)

Consider $P_{\gamma,3} : \mathbb{R}_+ \to \mathbb{R}_+$ defined for all $s \in \mathbb{R}_+$ by
\[
P_{\gamma,3}(s) = 2d + 8L^2(1 + s^{\ell+1}) \left\{ \frac{\gamma}{2} \left(2 + \sum_{k=1}^{N} a_{k,N}s^{2k} \right) + Nma_{\gamma,N} \frac{\gamma^2}{3} \right\} .
\] (42)

Lemma 11. Assume H_1 and H_3. Let $x \in \mathbb{R}^d$, $\gamma > 0$ and $(Y_t)_{t \geq 0}$ be the solution of (1) started at x. For all $t \in [0, \gamma]$, we have $E \left[\|Y_t - x\|^2 \right] \leq tP_{\gamma,3}(\|x\|)$, where $P_{\gamma,3}$ is defined in (42).

Proof. The proof is postponed to the supplementary document [32]. \qed

For $p \in \mathbb{N}$ and $\gamma > 0$, define $Q_{\gamma,p} : \mathbb{R}_+ \to \mathbb{R}_+$ for all $s \in \mathbb{R}_+$ by,
\[
Q_{\gamma,p}(s) = \left\{ \prod_{i=1}^{p} 2i(d + 3i - 2) \right\} \left\{ 2d \frac{\gamma^p}{(p+1)!} + 8L^2(1 + s^{\ell+1}) \right. \right.
\times \left. \left(2 + \sum_{k=1}^{N} a_{k,N}s^{2k} \right) \frac{\gamma^{p+1}}{(p+2)!} + 2Nma_{\gamma,N,N} \frac{\gamma^{p+2}}{(p+3)!} \right\}
\times \left. + 2 \sum_{k=1}^{p} \left\{ \prod_{i=k+1}^{p} 2i(d + 3i - 2) \right\} \left\{ d + 4 + \frac{L^2(1 + s^{\ell+1})^2}{m(k+1)} \right\}
\times \left. \left(\sum_{i=1}^{k} a_{i,k}s^{2i} \right) \frac{\gamma^{p-k}}{(p+1-k)!} + 2kma_{\gamma,k,k} \frac{\gamma^{p+1-k}}{(p+2-k)!} \right\} .
\] (43)

where N is defined in (41).

Lemma 12. Assume H_1 and H_3. Let $p \in \mathbb{N}$, $\gamma > 0$, $x \in \mathbb{R}^d$ and $(Y_t)_{t \geq 0}$ be the solution of (1) started at x. For all $t \in [0, \gamma]$, we have $E \left[\|Y_t\|^p \|Y_t - x\|^2 \right] \leq tQ_{\gamma,p}(\|x\|)$, where $Q_{\gamma,p}$ is defined in (43).

Proof. The proof is postponed to the supplementary document [32]. \qed

Lemma 13. Assume H_4

a) For all $x \in \mathbb{R}^d$, $\|\nabla^2 U(x)\| \leq C_H \{1 + \|x\|^{\nu + \beta} \}$ where $C_H = \max(2L_H, \|\nabla^2 U(0)\|)$.

26
b) For all \(x, y \in \mathbb{R}^d \),
\[
\| \nabla U(x) - \nabla U(y) - \nabla^2 U(y)(x-y) \| \leq \frac{2L_H}{1+\beta} \{1 + \|x\|^\nu + \|y\|^\nu\} \|x-y\|^{1+\beta}.
\]

Proof. a) By \(H^4 \), we get for all \(x \in \mathbb{R}^d \)
\[
\| \nabla^2 U(x) \| \leq \| \nabla^2 U(x) - \nabla^2 U(0) \| + \| \nabla^2 U(0) \|
\leq L_{H} \{1 + \|x\|\nu\} \|x\|\beta + \| \nabla^2 U(0) \|.
\]
The proof then follows from the upper bound for all \(x \in \mathbb{R}^d, \|x\|\beta \leq 1 + \|x\|\nu + \beta \).

b) Let \(x, y \in \mathbb{R}^d \). By \(H^4 \)
\[
\| \nabla U(x) - \nabla U(y) - \nabla^2 U(y)(x-y) \| \\
\leq \int_0^1 \| \nabla^2 U(tx + (1-t)y) - \nabla^2 U(y) \| \, dt \|x-y\|
\leq L_{H} \int_0^1 \{1 + \|y\|\nu + \|tx + (1-t)y\|\nu\} \|t(x-y)\|^{\beta} \, dt \|x-y\|
\]
and the proof follows from \(\|tx + (1-t)y\|\nu \leq \|x\|\nu + \|y\|\nu \).

For all \(n \in \mathbb{N} \), we now bound the Wasserstein distance \(W_2 \) between \(\pi \) and the distribution of the \(n \)th iterate of \(X_n \) defined by (3). The strategy consists given two initial conditions \((x, y) \), in coupling \(X_n \) and \(Y_{\gamma n} \) solution of (1) at time \(\gamma_n \), using the same Brownian motion. Similarly to (30), for \(\gamma > 0 \), consider the unique strong solution \((Y_t, \bar{Y}_t)_{t \geq 0}\) of
\[
\begin{align*}
\text{d}Y_t &= -\nabla U(Y_t) \, dt + \sqrt{2} \, dB_t , \quad Y_0 = y , \\
\text{d}\bar{Y}_t &= -G_\gamma (Y_{\lfloor t/\gamma \rfloor \gamma}) \, dt + \sqrt{2} \, dB_t , \quad \bar{Y}_0 = x ,
\end{align*}
\]
where \((B_t)_{t \geq 0}\) is a \(d \)-dimensional Brownian motion. Note that for \(n \in \mathbb{N}, \bar{Y}_{n\gamma} = \bar{X}_n \) and let \((F_t)_{t \geq 0}\) be the filtration associated with \((B_t)_{t \geq 0}\).

Lemma 14. Assume \(A \), \(A \), \(E \) and \(F \). Let \(\gamma_0 > 0 \). Define \((Y_t)_{t \geq 0}, (\bar{Y}_t)_{t \geq 0}\) by (44). Then there exists \(C > 0 \) such that for all \(n \in \mathbb{N} \) and \(\gamma \in (0, \gamma_0] \), almost surely,
\[
\mathbb{E}^{\mathcal{F}_{n\gamma}} \left[\|Y_{(n+1)\gamma} - \bar{Y}_{(n+1)\gamma}\|^2 \right] \leq e^{-m\gamma} \|Y_{n\gamma} - \bar{Y}_{n\gamma}\|^2 + C\gamma^2 V_\pi(Y_{n\gamma}) .
\]
Proof. Using the Markov property, we only need to show the result for \(n = 0 \).
Define for \(t \in [0, \gamma) \), \(\Theta_t = Y_t - \bar{Y}_t \). By Itô's formula, we have for all \(t \in [0, \gamma) \),

\[
\|\Theta_t\|^2 = \|y - x\|^2 - 2\int_0^t \langle \Theta_s, \nabla U(Y_s) - G_\gamma(x) \rangle \, ds .
\]

By (5) and Lemma 9, the family of random variables \(\left(\langle \Theta_s, \nabla U(Y_s) - G_\gamma(x) \rangle \right)_{s \in [0, \gamma)} \) is uniformly integrable. Pathwise continuity implies then for \(s \in [0, \gamma) \) the continuity of \(s \mapsto \mathbb{E} \left[\langle \Theta_s, \nabla U(Y_s) - G_\gamma(x) \rangle \right] \). Taking the expectation and deriving, we have for \(t \in [0, \gamma) \),

\[
\frac{d}{dt} \mathbb{E} \left[\|\Theta_t\|^2 \right] = -2\mathbb{E} \left[\langle \Theta_t, \nabla U(Y_t) - G_\gamma(x) \rangle \right]
= -2\mathbb{E} \left[\langle \Theta_t, \nabla U(Y_t) - \nabla U(\bar{Y}_t) \rangle \right] - 2A_1 - 2A_2
\leq -2m\mathbb{E} \left[\|\Theta_t\|^2 \right] - 2A_1 - 2A_2 ,
\]

where

\[
A_1 = \mathbb{E} \left[\langle \Theta_t, \nabla U(\bar{Y}_t) - \nabla U(x) \rangle \right] , \quad A_2 = \mathbb{E} \left[\langle \Theta_t, \nabla U(x) - G_\gamma(x) \rangle \right] .
\]

Using that \(\|a, b\| \leq (m/4) \|a\|^2 + m^{-1} \|b\|^2 \) for all \(a, b \in \mathbb{R}^d \),

\[
|A_1| \leq (m/4)\mathbb{E} \left[\|\Theta_t\|^2 \right] + m^{-1}\mathbb{E} \left[\|\nabla U(\bar{Y}_t) - \nabla U(x)\|^2 \right] .
\]

Similarly to the proof of Lemma 9, we have \(\mathbb{E} \left[\|\nabla U(\bar{Y}_t) - \nabla U(x)\|^2 \right] \leq tP_{\gamma,1}(\|x\|) \) where \(P_{\gamma,1} \) is defined in (34). For \(A_2 \), we have

\[
|A_2| \leq (m/4)\mathbb{E} \left[\|\Theta_t\|^2 \right] + m^{-1}\|\nabla U(x) - \nabla G_\gamma(x)\|^2
\]

and \(\|\nabla U(x) - G_\gamma(x)\|^2 \leq \gamma^2 P_2(\|x\|) \) where \(P_2 \) is defined in (35). We get for \(t \in [0, \gamma) \),

\[
\frac{d}{dt} \mathbb{E} \left[\|\Theta_t\|^2 \right] \leq -m\mathbb{E} \left[\|\Theta_t\|^2 \right] + 2m^{-1} \left\{ tP_{\gamma,1}(\|x\|) + \gamma^2 P_2(\|x\|) \right\} .
\]

Using Grönwall’s lemma and \(1 - e^{-s} \leq s \) for all \(s \geq 0 \), we obtain

\[
\mathbb{E} \left[\|Y_\gamma - \bar{Y}_\gamma\|^2 \right] \leq e^{-m\gamma} \|y - x\|^2 + m^{-1}\gamma^2 \left\{ tP_{\gamma,1}(\|x\|) + 2\gamma P_2(\|x\|) \right\} .
\]

Finally, by (34) and (35), there exists \(C > 0 \) such that for all \(x \in \mathbb{R}^d \), \(P_{\gamma,1}(\|x\|) + 2\gamma P_2(\|x\|) \leq CmV_\gamma(x) . \)

\(\square \)
Lemma 15. Assume A_1, A_2, H_3 and H_4. Let $\gamma_0 > 0$. Define $(Y_t)_{t \geq 0}, (\overline{Y}_t)_{t \geq 0}$ by (44). Then there exists $C > 0$ such that for all $n \in \mathbb{N}$ and $\gamma \in (0, \gamma_0]$, almost surely,

$$
\mathbb{E}^{\mathcal{F}_n \gamma} \left[\left\| Y_{(n+1)\gamma} - \overline{Y}_{(n+1)\gamma} \right\|^2 \right] \leq e^{-m\gamma} \left\| Y_{n\gamma} - \overline{Y}_{n\gamma} \right\|^2 + C\gamma^{2+\beta} V_\alpha(\overline{Y}_{n\gamma}) + C\gamma^3 V_\alpha(\overline{Y}_{n\gamma}).
$$

Remark 16. The calculations in the proof show that the dependence w.r.t. $Y_{n\gamma}$ and $\overline{Y}_{n\gamma}$ is in fact polynomial but their exact expressions are very involved. For the sake of simplicity, we bound these polynomials by V_α. The same remark applies equally to Lemma 14.

Proof. Note first that by Lemma 13-a), H_4 implies H_1 with $L = C_H$ and $\ell = \nu + \beta$. By the Markov property, we only need to show the result for $n = 0$. The proof is a refinement of Lemma 14 and we use the same notations. We have to improve the bound on A_1 defined in (46). We decompose $A_1 = A_{11} + A_{12}$ where

$$
A_{11} = \mathbb{E} \left[\langle \Theta_t, \nabla U(\overline{Y}_t) - \nabla U(x) - \nabla^2 U(x)(\overline{Y}_t - x) \rangle \right],
$$

$$
A_{12} = \mathbb{E} \left[\langle \Theta_t, \nabla^2 U(x)(\overline{Y}_t - x) \rangle \right].
$$

Using $|\langle a, b \rangle| \leq (m/6) \|a\|^2 + \{3/(2m)\} \|b\|^2$ for all $a, b \in \mathbb{R}^d$,

$$
|A_{11}| \leq \frac{m}{6} \mathbb{E} \left[\|\Theta_t\|^2 \right] + \frac{3}{2m} \mathbb{E} \left[\|\nabla U(\overline{Y}_t) - \nabla U(x) - \nabla^2 U(x)(\overline{Y}_t - x)\|^2 \right].
$$

By Lemma 13-b)

$$
\left\| \nabla U(\overline{Y}_t) - \nabla U(x) - \nabla^2 U(x)(\overline{Y}_t - x) \right\|^2 \leq \frac{4L_H^2}{(1+\beta)^2} \left(1 + \|x\|^{1+\beta} + \|\overline{Y}_t\|^{1+\beta} \right)^2 \|\overline{Y}_t - x\|^{2(1+\beta)}.
$$

Following the proof of Lemma 8 using (32) and (33), we have

$$
\mathbb{E} \left[\left\| \nabla U(\overline{Y}_t) - \nabla U(x) - \nabla^2 U(x)(\overline{Y}_t - x) \right\|^2 \right] \leq t^{1+\beta} \mathbb{P}_{\gamma_0}(\|x\|).
$$
where $P_{γ,4} : \mathbb{R}_+ \to \mathbb{R}_+$ is defined for all $s \in \mathbb{R}_+$ by,

$$
P_{γ,4}(s) = \frac{4L_H^2}{(1+β)^2} \int_{\mathbb{R}_+^d} \left[√2 \|z\| + √γ \left\{ 2L(1+s^{ℓ+1}) + γC(1+s^α) \right\} \right]^{2(1+β)} \times \left[1 + s^ν + \left\{ s + γ \left(2L(1+s^{ℓ+1}) + γC(1+s^α) \right) + √2γ ∥z∥ \right\}^{1/2} \right]^2 e^{-∥z∥^2/(2πd^2)} \, dz .
$$

We decompose A_{12} in $A_{12} = A_{121} + A_{122}$ where

$$
A_{121} = E \left[⟨Θ_t, −t∇^2U(x)G_γ(x)⟩ \right] , A_{122} = √2E \left[⟨Θ_t, ∇^2U(x)B_t⟩ \right] .
$$

Define $P_{γ,5} : \mathbb{R}_+ \to \mathbb{R}_+$ for $s \in \mathbb{R}_+$ by,

$$
P_{γ,5}(s) = C_H^2 (1+s^{ν+β})^2 \{ 2L(1+s^{ℓ+1}) + γC(1+s^α) \}^2 .
$$

By Lemma 13-a) and (10),

$$
|A_{121}| \leq (m/6)E \left[||Θ_t||^2 \right] + \left\{ 3/(2m) \right\} L^2P_{γ,5}(∥x∥) .
$$

By Cauchy-Schwarz inequality and Lemma 13-a),

$$
|A_{122}| = \sqrt{2}E \left[\left\{ \int_0^t \{ ∇U(Y_s) − ∇U(y) \} \, ds, ∇^2U(x)B_t \right\} \right] \leq √2dtC_H(1+∥x∥^{ν+β})E \left[\left\| \int_0^t \{ ∇U(Y_s) − ∇U(y) \} \, ds \right\|^2 \right]^{1/2} .
$$

By H_1 Cauchy-Schwarz inequality and using $(1+∥y∥^2+∥Y_s∥^2)^2 ≤ 3(2+∥y∥^{2ℓ}+∥Y_s∥^{2ℓ})$ for $s \in [0, γ)$, we have

$$
E \left[\left\| \int_0^t \{ ∇U(Y_s) − ∇U(y) \} \, ds \right\|^2 \right] \leq 3L^2(2+∥y∥^{2ℓ}) \int_0^t E \left[||Y_s - y||^2 \right] \, ds + 3L^2 \int_0^t E \left[||Y_s||^{2ℓ} ||Y_s - y||^2 \right] \, ds .
$$

By Lemmas 11 and 12 we get

$$
E \left[\left\| \int_0^t \{ ∇U(Y_s) − ∇U(y) \} \, ds \right\|^2 \right] \leq \frac{3L^2}{2} \left\{ (2+∥y∥^{2ℓ}) P_{γ,3}(∥y∥) + Q_{γ,ℓ}(∥y∥) \right\} ,
$$

30
where \(P_{\gamma,3}, Q_{\gamma,[\ell]} \in \mathbb{C}_{\text{poly}}(\mathbb{R}_+, \mathbb{R}_+) \) are defined in \([42]\) and \([43]\). Plugging this result in \([53]\), we obtain

\[
|A_{1:22}| \leq t^2 \sqrt{3dCH} L \left(1 + \|x\|^{\nu+\beta} \right) \left\{ \left(2 + \|y\|^{2\ell} \right) P_{\gamma,3}(\|y\|) + Q_{\gamma,[\ell]}(\|y\|) \right\}^{1/2}.
\]

Combining \([48], [49], [52] \) and \([54]\), we get

\[
|A_1| \leq (m/3) \mathbb{E} \left(\left\| \mathbf{\Theta}_t \right\|^2 \right) + \left\{ 3/(2m) \right\} \left\{ t^{1+\beta} P_{\gamma,4}(\|x\|) + t^{2} P_{\gamma,5}(\|x\|) \right\}
+ t^2 \sqrt{3dCH} L \left(1 + \|x\|^{\nu+\beta} \right) \left\{ \left(2 + \|y\|^{2\ell} \right) P_{\gamma,3}(\|y\|) + Q_{\gamma,[\ell]}(\|y\|) \right\}^{1/2},
\]

and by \([47]\), \(|A_2| \leq (m/6) \mathbb{E} \left(\left\| \mathbf{\Theta}_t \right\|^2 \right) + \left\{ 3/(2m) \right\} \gamma^2 P_2(\|x\|) \), where \(P_2 \in \mathbb{C}_{\text{poly}}(\mathbb{R}_+, \mathbb{R}_+) \) is defined in \([35]\). Combining these inequalities in \([45]\), we get

\[
\frac{d}{dt} \mathbb{E} \left(\left\| \mathbf{\Theta}_t \right\|^2 \right) \leq -m \mathbb{E} \left(\left\| \mathbf{\Theta}_t \right\|^2 \right) + 3m^{-1} \left\{ \gamma^2 P_2(\|x\|) + t^{1+\beta} P_{\gamma,4}(\|x\|) + t^{2} P_{\gamma,5}(\|x\|) \right\}
+ 2t^2 \sqrt{3dCH} L \left(1 + \|x\|^{\nu+\beta} \right) \left\{ \left(2 + \|y\|^{2\ell} \right) P_{\gamma,3}(\|y\|) + Q_{\gamma,[\ell]}(\|y\|) \right\}^{1/2}.
\]

Using Grönwall’s lemma and \(1 - e^{-s} \leq s \) for all \(s \geq 0 \), we obtain

\[
\mathbb{E} \left(\left\| Y_\gamma - \mathbb{E}_\gamma \right\|^2 \right) \leq e^{-m\gamma} \|y - x\|^2
+ 3m^{-1} \left\{ \gamma^3 P_2(\|x\|) + \frac{\gamma^2+\beta}{2+\beta} P_{\gamma,4}(\|x\|) + \frac{\gamma^3}{3} P_{\gamma,5}(\|x\|) \right\}
+ 2\gamma^3 \sqrt{d/3CH} L \left(1 + \|x\|^{\nu+\beta} \right) \left\{ \left(2 + \|y\|^{2\ell} \right) P_{\gamma,3}(\|y\|) + Q_{\gamma,[\ell]}(\|y\|) \right\}^{1/2}.
\]

Finally, by \([35], [42], [50], [51] \) and \([43]\), there exists \(C > 0 \) such that for all \(x \in \mathbb{R}^d \) and \(\gamma \in (0, \gamma_0) \),

\[
3m^{-1} \left\{ \gamma^3 P_2(\|x\|) + \frac{\gamma^2+\beta}{2+\beta} P_{\gamma,4}(\|x\|) + \frac{\gamma^3}{3} P_{\gamma,5}(\|x\|) \right\} \leq C \gamma^{2+\beta} V_\infty(x),
2\sqrt{d/3CH} L \left(1 + \|x\|^{\nu+\beta} \right) \leq C^{1/2} V_\infty(x)^{1/2},
\]

\[
\left(2 + \|x\|^{2\ell} \right) P_{\gamma,3}(\|x\|) + Q_{\gamma,[\ell]}(\|x\|) \leq C V_\infty(x).
\]

\(\square \)

Proof of Theorem 3 Let \(\gamma \in (0, \gamma_0) \). Define \((Y_t)_{t \geq 0}, (\mathbb{E} \gamma)_{t \geq 0} \) by \([44]\) and \(X_n = \)
\(\bar{Y}_{n\gamma} \) for \(n \in \mathbb{N} \). By Lemma 14 and Proposition 3, we have for all \(n \in \mathbb{N} \),

\[
\mathbb{E} \left[\|Y_{n\gamma} - X_n\|^2 \right] \leq e^{-nm\gamma} \|y - x\|^2 + C\gamma^2 \sum_{k=0}^{n-1} e^{-m\gamma(n-1-k)} \mathbb{E} [V_e(X_k)]
\]

\[
\leq e^{-nm\gamma} \|y - x\|^2 + C\gamma^2 \frac{b}{\alpha^2} e^{a^2\gamma} + C\gamma^2 V_e(x) \sum_{k=0}^{n-1} e^{-m\gamma(n-1-k)} e^{-a^2\gamma k}.
\]

(55)

Note that

\[
\sum_{k=0}^{n-1} e^{-m\gamma(n-1-k)} e^{-a^2\gamma k} \leq \frac{n}{1 - \max(e^{-m\gamma}, e^{-a^2\gamma})}
\]

and \(1 - s^\gamma \geq -\gamma \log(s) e^{\gamma \log(s)} \) for \(s \in (0, 1) \). In eq. (55), integrating \(y \) with respect to \(\pi \), for all \(n \in \mathbb{N} \), \((Y_{n\gamma}, X_n)\) is a coupling between \(\pi \) and \(\delta_x R^n_\gamma \). By Lemma 10, we get (16). By Proposition 3 and [22, Corollary 6.11], we have for all \(x \in \mathbb{R}^d \), \(\lim_{n \to +\infty} W_2(\delta_x R^n_\gamma, \pi) = W_2(\pi_\gamma, \pi) \) and we obtain (17).

Proof of Theorem 4 Let \(\gamma \in (0, \gamma_0) \). Define \((Y_t)_{t \geq 0}, (\bar{Y}_t)_{t \geq 0}\) by (44) and \(X_n = \bar{Y}_{n\gamma} \) for \(n \in \mathbb{N} \). By Lemma 15, we have for all \(n \in \mathbb{N} \),

\[
\mathbb{E} \left[\|Y_{n\gamma} - X_n\|^2 \right] \leq e^{-nm\gamma} \|y - x\|^2 + A_n + B_n,
\]

where

\[
A_n = C\gamma^{2+\beta} \sum_{k=0}^{n-1} e^{-m\gamma(n-1-k)} \mathbb{E} [V_e(X_k)],
\]

\[
B_n = C\gamma^3 \sum_{k=0}^{n-1} e^{-m\gamma(n-1-k)} \mathbb{E} [V_e(Y_{k\gamma})].
\]

Analysis similar to the proof of Theorem 5 using Proposition 3 instead of Proposition 3 for \(B_n \) shows then the result.

4.6. Proof of Theorem 7

We first state a lemma on the existence and regularity of a solution of the Poisson equation (20) which is adapted from [29, Theorem 1].

Lemma 17. Assume \(H^2_2 \) and \(H^5_5 \) Let \(f \in C^3(\mathbb{R}^d, \mathbb{R}) \) be such that \(\|D^i f\| \in C_{\text{poly}}(\mathbb{R}^d, \mathbb{R}_+) \) for \(i \in \{0, \ldots, 3\} \). Then, there exists a solution of the Poisson equation (20) \(\phi \in C^4(\mathbb{R}^d, \mathbb{R}) \), such that \(\|D^i \phi\| \in C_{\text{poly}}(\mathbb{R}^d, \mathbb{R}_+) \) for \(i \in \{0, \ldots, 4\} \).
Proof. The proof is postponed to the supplementary document [32]. □

Proof of Theorem 7 The proof is adapted from [26, Section 5.1] Let \(\gamma \in (0, \gamma_0] \).
In this Section, \(C \) is a positive constant which can change from line to line but
does not depend on \(\gamma \). For \(k \in \mathbb{N} \), denote by
\[
delta_{k+1} = X_{k+1} - X_k = -\gamma G_\gamma(X_k) + \sqrt{2\gamma}Z_{k+1}.
\]

By \(H_2 \) and Lemma [17], there exists a solution to the Poisson equation (20)
\(\phi \in C^4(\mathbb{R}^d, \mathbb{R}) \), such that for all \(x \in \mathbb{R}^d \) and \(i \in \{0, \ldots, 4\} \),
\[
\mathcal{A}\phi(x) = -(f(x) - \pi(f)) \quad \text{and} \quad \|D^i \phi\| \in C_{\text{poly}}(\mathbb{R}^d, \mathbb{R}_+). \tag{56}
\]

By Taylor’s formula, we have for \(k \in \mathbb{N} \),
\[
\begin{align*}
\phi(X_{k+1}) &= \phi(X_k) + D \phi(X_k)[\delta_{k+1}] + (1/2) D^2 \phi(X_k)[\delta_{k+1}, \delta_{k+1}]
+ (1/6) D^3 \phi(X_k)[\delta_{k+1}, \delta_{k+1}, \delta_{k+1}] + r_k,
\end{align*}
\]
\[
 r_k = (1/6) \int_0^1 (1-s)^3 D^4 \phi(X_k + s\delta_{k+1})[\delta_{k+1}, \delta_{k+1}, \delta_{k+1}, \delta_{k+1}]ds.
\]

Using the expression of \(\delta_{k+1} \) and (6), we get
\[
\begin{align*}
\phi(X_{k+1}) &= \phi(X_k) + \gamma \mathcal{A}\phi(X_k) + \sqrt{2\gamma} D \phi(X_k)[Z_{k+1}]
+ \gamma \{D^2 \phi(X_k)[Z_{k+1}, Z_{k+1}] - \Delta \phi(X_k)\} + \gamma D \phi(X_k)[\nabla U(X_k) - G_\gamma(X_k)]
+ (\gamma^2/2) D^2 \phi(X_k)[G_\gamma(X_k), G_\gamma(X_k)] - \sqrt{2\gamma}^{3/2} D^2 \phi(X_k)[G_\gamma(X_k), Z_{k+1}]
+ (1/6) D^3 \phi(X_k)[\delta_{k+1}, \delta_{k+1}, \delta_{k+1}] + r_k.
\end{align*}
\]

Summing from \(k = 0 \) to \(n - 1 \) for \(n \in \mathbb{N}^* \), dividing by \(n\gamma \), we get
\[
\frac{1}{n} \sum_{k=0}^{n-1} (f(X_k) - \pi(f)) = \frac{\phi(X_0) - \phi(X_n)}{n\gamma} + \frac{1}{n\gamma} \left(\sum_{i=0}^{3} M_{i,n} + \sum_{i=0}^{3} S_{i,n} \right),
\]
where

\[
M_{0,n} = \left(\sqrt{2} \gamma^{3/2}/6\right) \sum_{k=0}^{n-1} \left\{ 2 D^3 \phi(X_k)[Z_{k+1}, Z_{k+1}, Z_{k+1}] + 3 \gamma D^3 \phi(X_k)[G_{\gamma}(X_k), G_{\gamma}(X_k), Z_{k+1}] \right\},
\]

\[
M_{1,n} = \gamma \sum_{k=0}^{n-1} (D^2 \phi(X_k)[Z_{k+1}, Z_{k+1}] - \Delta \phi(X_k)),
\]

\[
M_{2,n} = \sqrt{2} \gamma \sum_{k=0}^{n-1} D \phi(X_k)[Z_{k+1}],
\]

\[
M_{3,n} = -\sqrt{2} \gamma^{3/2} \sum_{k=0}^{n-1} D^2 \phi(X_k)[G_{\gamma}(X_k), Z_{k+1}],
\]

and

\[
S_{0,n} = -\left(\gamma^2/6\right) \sum_{k=0}^{n-1} \left\{ 6 D^3 \phi(X_k)[G_{\gamma}(X_k), Z_{k+1}, Z_{k+1}] + \gamma D^3 \phi(X_k)[G_{\gamma}(X_k), G_{\gamma}(X_k), G_{\gamma}(X_k)] \right\},
\]

\[
S_{1,n} = \gamma \sum_{k=0}^{n-1} D \phi(X_k)[\nabla U(X_k) - G_{\gamma}(X_k)],
\]

\[
S_{2,n} = \left(\gamma^2/2\right) \sum_{k=0}^{n-1} D^2 \phi(X_k)[G_{\gamma}(X_k), G_{\gamma}(X_k)],
\]

\[
S_{3,n} = \sum_{k=0}^{n-1} r_k.
\]

By \(A_1\), we calculate for \(n \in \mathbb{N}^*\), \(|S_{1,n}| \leq \gamma^2 C \sum_{k=0}^{n-1} \|D \phi(X_k)\| (1 + \|X_k\|^n)\).

By \(H_5\) (10) and (56), there exist \(p, q \geq 1\) and \(C_q > 0\) such that the summands of \((M_{i,n})_{n \in \mathbb{N}}\) and \((S_{i,n})_{n \in \mathbb{N}}\) for \(i \in \{0, \ldots, 3\}\) are dominated by \(C_q (1 + \|X_k\|^q)(1 + \|Z_{k+1}\|^p)\) for \(k \in \{0, \ldots, n-1\}\). Therefore, by Proposition [7] for \(i \in \{0, \ldots, 3\}\), \((M_{i,n})_{n \in \mathbb{N}}\) are martingales and for \(n \in \mathbb{N}^*\), \(E[S_{i,n}^2] \leq C n^2 \gamma^4\),

\[
E[M_{0,n}^2] \leq C n \gamma^3, \quad E[M_{1,n}^2] \leq C n \gamma^2, \quad E[M_{2,n}^2] \leq C n \gamma, \quad E[M_{3,n}^2] \leq C n \gamma^3,
\]

which yield the result. \(\square\)
Acknowledgements

This work was supported by the École Polytechnique Data Science Initiative and the Alan Turing Institute under the EPSRC grant EP/N510129/1.

References

[1] G. Parisi, Correlation functions and computer simulations, Nuclear Physics B 180 (1981) 378–384.

[2] U. Grenander, Tutorial in pattern theory, division of Applied Mathematics, Brown University, Providence (1983).

[3] U. Grenander, M. I. Miller, Representations of knowledge in complex systems, J. Roy. Statist. Soc. Ser. B 56 (4) (1994) 549–603, with discussion and a reply by the authors.

URL http://links.jstor.org/sici?sici=0035-9246(1994)56:4<549:ROKICS>2.0.CO;2-2&origin=MSN

[4] C. Andrieu, N. De Freitas, A. Doucet, M. I. Jordan, An introduction to MCMC for machine learning, Machine learning 50 (1-2) (2003) 5–43.

[5] S. L. Cotter, G. O. Roberts, A. M. Stuart, D. White, MCMC methods for functions: modifying old algorithms to make them faster, Statist. Sci. 28 (3) (2013) 424–446. doi:10.1214/13-STS421

URL http://dx.doi.org/10.1214/13-STS421

[6] A. S. Dalalyan, A. B. Tsybakov, Sparse regression learning by aggregation and Langevin Monte-Carlo, J. Comput. System Sci. 78 (5) (2012) 1423–1443. doi:10.1016/j.jcss.2011.12.023

URL http://hal.archives-ouvertes.fr/docs/00/45/68/06/PDF/HAL_EWA_LMC.pdf

[7] T. Lelièvre, G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numerica 25 (2016) 681–880. doi:10.1017/S0962492916000039

35
[8] A. S. Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79 (3) (2017) 651–676. doi:10.1111/rssb.12183
URL http://dx.doi.org/10.1111/rssb.12183

[9] A. Durmus, E. Moulines, Nonasymptotic convergence analysis for the unadjusted langevin algorithm, Ann. Appl. Probab. 27 (3) (2017) 1551–1587. doi:10.1214/16-AAP1238
URL http://dx.doi.org/10.1214/16-AAP1238

[10] A. Durmus, E. Moulines, High-dimensional Bayesian inference via the Unadjusted Langevin Algorithm, ArXiv e-prints arXiv:1605.01559

[11] G. O. Roberts, R. L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli 2 (4) (1996) 341–363. doi:10.2307/3318418
URL http://dx.doi.org/10.2307/3318418

[12] J. C. Mattingly, A. M. Stuart, D. J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl. 101 (2) (2002) 185–232. doi:10.1016/S0304-4149(02)00150-3
URL http://dx.doi.org/10.1016/S0304-4149(02)00150-3

[13] M. Hutzenthaler, A. Jentzen, P. E. Kloeden, Strong and weak divergence in finite time of euler’s method for stochastic differential equations with non-globally lipschitz continuous coefficients, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 467 (2130) (2011) 1563–1576. arXiv:http://rspa.royalsocietypublishing.org/content/467/2130/1563.full.pdf doi:10.1098/rspa.2010.0348
URL http://rspa.royalsocietypublishing.org/content/467/2130/1563
[14] D. J. Higham, X. Mao, A. M. Stuart, Strong convergence of euler-type methods for nonlinear stochastic differential equations. SIAM Journal on Numerical Analysis 40 (3) (2002) 1041–1063. arXiv:https://doi.org/10.1137/S0036142901389530, doi:10.1137/S0036142901389530. URL https://doi.org/10.1137/S0036142901389530

[15] H. Lamba, J. C. Mattingly, A. M. Stuart, An adaptive euler–maruyama scheme for sdes: convergence and stability. IMA Journal of Numerical Analysis 27 (3) (2007) 479–506. arXiv:/oup/backfile/content_public/journal/imajna/27/3/10.1093/imanum/drl032/2/drl032.pdf, doi:10.1093/imanum/drl032. URL http://dx.doi.org/10.1093/imanum/drl032

[16] M. Hutzenthaler, A. Jentzen, P. E. Kloeden, Strong convergence of an explicit numerical method for sdes with nonglobally lipschitz continuous coefficients. Ann. Appl. Probab. 22 (4) (2012) 1611–1641. doi:10.1214/11-AAP803. URL http://dx.doi.org/10.1214/11-AAP803

[17] S. Sabanis, A note on tamed euler approximations. Electron. Commun. Probab. 18 (2013) 10 pp. doi:10.1214/ECP.v18-2824. URL http://dx.doi.org/10.1214/ECP.v18-2824

[18] M. Hutzenthaler, A. Jentzen, Numerical approximations of stochastic differential equations with non-globally Lipschitz continuous coefficients, Vol. 236, American Mathematical Society, 2015.

[19] N. Bou-Rabee, M. Hairer, Nonasymptotic mixing of the mala algorithm. IMA Journal of Numerical Analysis 33 (1) (2013) 80–110. arXiv:/oup/backfile/content_public/journal/imajna/33/1/10.1093/imanum/drs003/2/drs003.pdf, doi:10.1093/imanum/drs003. URL http://dx.doi.org/10.1093/imanum/drs003

[20] Y. F. Atchadé, An adaptive version for the Metropolis adjusted langevin algorithm with a truncated drift. Methodology and Computing in Applied
[21] N. Bou-Rabee, E. Vanden-Eijnden, Pathwise accuracy and ergodicity of metropolized integrators for sdes, Communications on Pure and Applied Mathematics 63 (5) (2010) 655–696. doi:10.1002/cpa.20306
URL http://dx.doi.org/10.1002/cpa.20306

[22] C. Villani, Optimal transport : old and new, Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 2009.
URL http://opac.inria.fr/record=b1129524

[23] S. P. Meyn, R. L. Tweedie, Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time processes, Adv. in Appl. Probab. 25 (3) (1993) 518–548. doi:10.2307/1427522
URL http://dx.doi.org/10.2307/1427522

[24] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, Elsevier Science, 1989.

[25] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics, Springer New York, 1991.

[26] J. C. Mattingly, A. M. Stuart, M. V. Tretyakov, Convergence of numerical time-averaging and stationary measures via Poisson equations, SIAM Journal on Numerical Analysis 48 (2) (2010) 552–577. arXiv:http://dx.doi.org/10.1137/090770527, doi:10.1137/090770527
URL http://dx.doi.org/10.1137/090770527

[27] P. Cattiaux, D. Chafaï, A. Guillin, Central limit theorems for additive functionals of ergodic markov diffusions processes, ALEA 9 (2) (2012) 337–382.

[28] P. W. Glynn, S. P. Meyn, A Liapounov bound for solutions of the Poisson equation, Ann. Probab. 24 (2) (1996) 916–931. doi:10.1214/aop/
[29] E. Pardoux, Y. Veretennikov, On the Poisson Equation and Diffusion Ap-
proximation. I, Ann. Probab. 29 (3) (2001) 1061–1085. doi:10.1214/aop/1015345596
URL https://doi.org/10.1214/aop/1015345596

[30] M. Kopec, Weak backward error analysis for overdamped Langevin
processes IMA Journal of Numerical Analysis 35 (2) (2015) 583–614. arXiv:/oup/backfile/content_public/journal/imajna/35/2/
doi:10.1093/imanum/dru016 pdf doi:10.1093/imanum/dru016
URL +http://dx.doi.org/10.1093/imanum/dru016

[31] J. Gorham, A. B. Duncan, S. J. Vollmer, L. Mackey, Measuring Sample
Quality with Diffusions, ArXiv e-prints arXiv:1611.06972

[32] N. Brosse, A. Durmus, E. Moulines, S. Sabanis, Supplement to ”The Tamed
Unadjusted Langevin Algorithm”, working paper or preprint (2017).

[33] S. Livingstone, M. F. Faulkner, G. O. Roberts, Kinetic energy choice in
Hamiltonian/hybrid Monte Carlo, ArXiv e-prints arXiv:1706.02649

[34] D. Bakry, I. Gentil, M. Ledoux, Analysis and geometry of Markov diffusion
operators, Vol. 348 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014.
doi:10.1007/978-3-319-00227-9
URL http://dx.doi.org/10.1007/978-3-319-00227-9

[35] R. Liptser, A. N. Shiryaev, Statistics of random Processes: I. general The-
ory, Vol. 5, Springer Science & Business Media, 2013.

[36] S. Kullback, Information theory and statistics, Dover Publications, Inc.,
Mineola, NY, 1997, reprint of the second (1968) edition.