Microbiome structure and response to watering in rhizosphere of *Nitrosalsola vermiculata* and surrounding bulk soil

Haneen W. ABUAUF¹, Rewaa S. JALAL², Ruba A. ASHY², Ashwag SHAMI³, Hanadi M. BAEISSA⁴, Lina BAZ⁵, Manal A. TASHKANDI⁴, Aala A. ABULFARAJ⁶*

¹Umm Al-Qura University, Department of Biology, Faculty of Applied Science, Makkah, Saudi Arabia; hwabuauf@uqu.edu.sa
²University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia; Rsjalal@uoj.edu.sa; raashy@uoj.edu.sa
³Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; Ayshami@pnu.edu.sa
⁴University of Jeddah, College of Science, Department of Biochemistry, Jeddah, Saudi Arabia; hmbaeissa@uoj.edu.sa; Matashkandi@uoj.edu.sa
⁵King AbdulAziz University, Department of Biochemistry, Faculty of Science, Jeddah, Kingdom of Saudi Arabia; lbaz@kau.edu.sa
⁶Department of Biological Sciences, College of Science and Art, King Abdulaziz University, Rabigh, Saudi Arabia; aaabulfaraj@kau.edu.sa (*corresponding author)

Abstract

The plant rhizosphere microbiomes were thought to help the plant stands adverse condition. The study aims at deciphering signatures of rhizosphere soil microbiomes of the medicinal plant *Nitrosalsola vermiculata* and those of the surrounding bulk soil as well as to detect influence of watering in restructuring soil microbes that can improve the plant’s ability to tolerate drought stress. Amplicon sequencing of partial 16S rRNA gene indicated that alpha diversity indices are higher in rhizosphere than in bulk soils, while no distinctive differences were observed due to the watering. Relative abundance of phylum Cyanobacteria and its descendent unidentified genus is the highest among phyla and genera of bulk soil. Relative abundance of phyla Euryarchaeota, Chloroflexi, Actinobacteria, Proteobacteria, Bacteroidetes, Firmicutes, Acidobacteria and Gemmatimonadetes as well as genera *Bacillus*, *Ammonophilus*, *Sphingomonas*, *Microvirga*, *Pontibacter*, *Adhaeribacter* and *Arthrobacter* was significantly higher in rhizosphere soil. The latter taxa were reported to act as plant growth-promoting bacteria (PGPB) through symbiotic associations. We speculate that relative abundance and mutual dominance of these taxa in rhizosphere of *N. vermiculata* were due to the intensity and type of plant root exudates. Other factors include soil pH where microbes favoring high soil pH can show better growth in rhizosphere soil. Also, co-existence of phyla that promote sustainability of cohabiting phyla in the rhizosphere and have high synergism prevalence in biofilm formation can be one extra factor. Quorum sensing (QS) also mediates bacterial population density in a given environment and elicit specific plant responses. The low abundance of Cyanobacteria in rhizosphere soil can be due to the inhibitory effect of highly abundant members of Firmicutes, especially those of genus *Bacillus*. The latter conclusion was confirmed by the occurrence of high expression rate of *comQ* gene triggering QS in genus *Bacillus*. Highly abundant microbes whose abundance was not changed due to watering are phyla Firmicutes, Proteobacteria, Chloroflexi and Cyanobacteria and their descendent genera *Bacillus*, *Ammonophilus*, *Sphingomonas*, *Microvirga* and unidentified genus of Cyanobacteria. We speculate that non-responsive taxa to watering were drought tolerant.
and can help plants stand adverse conditions of water scarce. In conclusion, insights on the factors involved in shaping microbiome signatures and those eliciting differential plant responses to drought stress are raised and warrant further investigations.

Keywords: Alpha and beta indices; drought; operational taxonomic unit (OTU); phylogenetic tree

Introduction

Nitrosaba *vermiculata* (Mediterranean saltwort), previously known as *Salsola vermiculata*, is a perennial wild plant species that belongs to the family Amaranthaceae, but the present scientific name was given in 2015 (Feodorova, 2015). This plant is a native to arid and semi-arid regions of the Middle East including western region of Saudi Arabia (Al-Eisawi and Al-Ruzayza, 2015), and is commonly used as a forage crop for livestock due to its high protein content (Al-Tabini et al., 2012). *N. vermiculata* can be regenerated from shoot apical meristem to be further propagated for animal grazing and eventual improvement of the Badia rangelands. Interestingly, germination of its seedlings in spring or autumn results in the production of drought tolerant plants that help establishing in the cultivated fields (Disi et al., 2004). This information is hard to accept unless the plant has symbiotic microflora in its rhizosphere that favors growth under adverse environmental conditions. The plant can adapt to prolonged drought by changing its leaf architecture pattern to allow them to be shed from the sun as a major mechanism to cope with heat stress (Nadal-Sala et al., 2021).

Soil microorganisms include bacteria, actinomycetes, fungi, algae, protozoa, and nematodes. The natural occurrence of microbial co-existence promotes sustainability of the other phyla and justifies their high abundance in root rhizosphere especially under conditions of water scarce (Wei et al., 2017). This phenomenon is similar to bacterial coagulation in microbial biofilms (Afonso et al., 2021) that is based on a very complex communication network called quorum sensing (QS) (Lazar et al., 2021). Some rhizosphere bacteria are recruited by plant through specific root exudate profile to be intertwined with root rhizosphere and endosphere on the basis of symbiotic association (Berg et al., 2014). The most important of which are plant growth promoting bacteria (PGPB) that harbor several beneficial direct and indirect mechanisms to plant growth. These mechanisms include facilitating resource acquisition through nitrogen fixation, phosphate solubilization and sequestering iron as well as modulating levels of phytohormones like cytokinins, gibberellins, indoleacetic acid and ethylene (Glick, 2012). Use of PGBP as biofertilizers is one of the most important approaches for sustainable agriculture worldwide (Lucy et al., 2004). Therefore, it is necessary to discover new PGP bacterial strains, especially in areas of severe drought stress.

Plant root rhizosphere is recently implicated in novel approaches in augmenting the plant’s ability to tolerate drought stress (Batool et al., 2020; Seleiman et al., 2021). Drought stress concurrently reshapes signatures of soil microbiomes and alters plant exudate profiles, which in turn, promotes alterations to soil geochemistry, e.g., magnitude and directionality of soil community shifts (Naylor et al., 2017). Shift magnitude is shown to be proportional to the strength and duration of drought, which will be diminished as soon as water becomes available (Xu et al., 2018). This indicates that patterns of bacterial growth are dynamic and fast-responding to adverse environmental conditions. Several reports indicate that root microbiome shifts under drought stress are in favor of phylum Actinobacteria and other Gram-positive taxa (Naylor et al., 2017; Timm et al., 2018; Xu et al., 2018). It is previously argued that Gram-positive (diderm) bacteria are more drought tolerant than Gram-negative (monoderm) bacteria because the first have thicker cell wall and harbor several strategies for drought avoidance (ex., spore formation) (Potts, 1994). We suspect that many other inter-microbial and plant-microbial relationships as well as type of soil might influence drought tolerance of plants in arid regions.

The aims of the present study were to detect microbiome structures in rhizosphere soil of *N. vermiculata* and surrounding bulk soil as well as to detect soil microbial shifts and restructuring due to water.
Materials and Methods

Watering experiment and soil collection

Watering experiment was conducted in the northern region of Mecca, Saudi Arabia, where *N. vermiculata* perennial plants grow naturally in the wild (Al-Eisawi and Al-Ruzayza, 2015). A spot that received no rainfall for at least three months prior experiment was selected for soil sample collection (~10-30 cm depth) as previously described (Dai et al., 2019; Geng et al., 2018). Assigned plots (1 m² each) for the experiment contain single-grown similar-sized plants in addition to plots of neighboring bulk soil. Three plots were watered once in the morning (25 L dH₂O/plot), then, rhizosphere and bulk soil samples were collected after 0, 24 and 48 h of watering in three replicates. Soil samples were daily collected immediately put in liquid N, transported on dry ice, and stored at -20°C as described (Hurt et al., 2001). Then, soil pH was determined in a 1:1 (wt/wt) soil-H₂O slurry as described (Mclean, 1983) and samples were split for further extraction of metagenomes and metatranscriptomes.

Metagenomic DNA extraction and amplicon sequencing

DNAs of the different samples were extracted using CTAB/SDS method and concentration and purity were checked by electrophoresis on 1% agarose gels. DNA concentration was adjusted to 1 ng/μL prior shipment to Novogene Co., Ltd., Singapore for deep sequencing of the partial 16S rRNA gene at region V3-V4 was done. Then, libraries were generated using NEBNext® Ultra™ DNA Library Prep kit for Illumina platform and deep sequencing resulted in the recovery of ~250 bp paired-end raw reads that were quantified via Qubit. Then, bioinformatics analysis was done as described below.

Diversity and taxonomy analyses

Raw read datasets were firstly generated for microbiome samples of surrounding bulk (So) and rhizosphere (Rh) soils of *N. vermiculata* were collected in three replicates at the three watering time points as following: 0 (So11-So13 or group A for bulk soil & Rh11-Rh13 or group D for rhizosphere soil), 24 (So21-So23 or group B for bulk soil & Rh21-Rh23 or group E for rhizosphere soil) and 48 h (So31-So33 or group C for bulk soil & Rh31-Rh33 or group F for rhizosphere soil). Further nomenclature includes grouping style ABCDEF representing interaction between soil type and time after watering, e.g., 0, 24 and 48 h. Raw datasets were also grouped based on soil type regardless of watering time points, e.g., bulk (group J) and rhizosphere (group K) soils comprising grouping style JK, and on time after watering, e.g., 0 (group G), 24 (group H) and 48 h (group I) regardless of soil type comprising grouping style GHI.

Then, raw datasets were merged using FLASH (V1.2.7) (Magoč and Salzberg, 2011) and high-quality clean tags (Bokulich et al., 2013) were subjected to quality filtering via QIIME software V1.7.0 (Caporaso et al., 2010). The recovered tags were compared with the reference database (SILVA database, http://www.arb-silva.de/) and chimeric sequences were removed via UCHIME algorithm (Edgar et al., 2011). Effective tags were analyzed using Uparse software V7.0.1090 (Edgar, 2013), where sequences with ≥97% similarity were considered as a single OTU. Then, QIIME software V1.7.0 in Mothur method (Altschul et al., 1990) was used in combination with SSU rRNA dataset of SILVA database for taxa annotation (threshold of 0.8-1) and for assigning taxa to different taxonomic levels, e.g., kingdom, phylum and genus (Quast et al., 2012). Ternary plots were generated to detect the 10 most dominant taxa at phylum and genus levels among group style ABC for bulk soil microbiomes, DEF for rhizosphere microbiomes and GHI for microbiomes at the three time points as described (Bulgarelli et al., 2015).

Alpha and beta diversity analyses

Alpha diversity indices of Shannon and Simpson were generated with QIIME software V1.7.0 and displayed via R software V2.15.3 (Li et al., 2013). Statistical analysis for boxplots of the two indices was formed between individual groups of grouping styles ABCDEF, GHI and JK using t-test. Rarefaction curves were
performed, sequencing data volume was detected for rationality, and species accumulation boxplot or curve (Specaccum) was generated as described (Lundberg et al., 2013).

Anosim test of beta diversity was primarily performed by R software (Vegan package: anosim function), then, other beta diversity indices were estimated to detect the differences between or among microbial communities using weighted and unweighted unifrac matrices of QIIME software V1.7.0. The data matrices were used in generating heatmaps of weighted and unweighted unifrac beta diversity, in measuring unweighted pair-group method with arithmetic means (UPGMA) and in measuring principal coordinate analysis (PCoA) to obtain ecological distances among samples. UPGMA method was used to construct phylogenetic trees with relative abundance by phylum (Lozupone and Knight, 2005; Lozupone et al., 2011; Lozupone et al., 2007) and PCoA was displayed by WGCNA package, stat packages and ggplot2 package in R software V2.15.3. Evolutionary phylogenetic trees for individual samples and their grouping styles at genus level (the top 100 genera in abundance) were constructed using MUSCLE V3.8.31 (Edgar, 2004). Then, phyla and genera at levels of grouping styles ABCDEF, GHI and JK were selected for further analysis based on statistical significance.

Extraction of soil total RNAs and real time PCR

Soils of the three replicates of individual groups of grouping style ABCDEF were gathered. Then, total RNAs were isolated using RNA PowerSoil® Total RNA isolation kit (Mo Bio, cat. no. 12866-25) following manufacturer manual. DNA contamination was removed using RQ1 RNase-free DNase (Promega, Madison, WI, USA). Absence of detectable carryover DNA in the processed samples was confirmed via agarose gel electrophoresis after performing regular PCR of *comQ* partial length gene of *Bacillus subtilis* without prior reverse transcription amplification. Primers to amplify *comQ* (NC_000964.3) gene fragment (FW: 5’ TTGCAATGGCCTCGTTTAGC 3’, & RV: 5’ CTCCCTTTGCTGAATCCAAATC 3’, 289 bp) of *B. subtilis* as well as its 16S rRNA (AB042061) house-keeping gene fragment (FW: 5’ TCGCGGGTTTGCTGCCCATTTT 3’, & RV: 5’ AAGTCGCGCAACGAGCGCAA 3’, 177 bp) were designed using Netprimer software (http://www.premierbiosoft.com/netprimer/index.html) following standard criteria. Expression level of the metatranscript *comQ* was detected by real time PCR using Agilent Mx3000P qPCR System (Agilent technology, USA). Maxima™ SYBR Green/ROX real time PCR was done as described (Bahieldin et al., 2015). Similar amounts of RNAs were used for the six group samples and calculations were made to detect the expression level of *comQ* gene in individual samples relative to that of the house-keeping gene.

Results

Deep sequencing of 16S rRNA partial-length gene was performed for microbiota of rhizosphere soil of the perennial plant *N. vermiculata* and surrounding bulk soil in order to detect differential growth dynamics in the two soil types and those due to watering. The amount of water used (25 L dH₂O/m² plot) kept the soil moist during sample collections across the three time points. We thought microflora will respond instantly to watering by changing its diversity and interactions with the intact plant.

Statistics of raw sequencing data

We used Illumina MiSeq for analyzing microbiomes of rhizosphere soil of *N. vermiculata* versus surrounding bulk soil after watering at three time points 0, 24 and 48 h. Raw sequencing data are shown in Table 1. Microbiome grouping styles refer to the interaction between soil type and watering time point (e.g., grouping style ABCDEF), to time points after watering regardless of soil type (e.g., grouping style GHI), and to soil types regardless of watering time points (e.g., grouping style JK). Sequence length per read ranges between 409-416 bp with average raw, clean and effective tag numbers of 188225, 184389 and 146150,
respectively. Mean percentages of Q20 and Q30 with sequencing error rates of < 1 and 0.1% are 97.56 and 92.69%, respectively, and mean percentage of effective tags is 70.67% (Table 1). The data in Figure 1 indicate the mean number of OTUs per sample is 2273, while numbers of total, taxon and unique tags are 146150, 138889 and 7258, respectively. Expectedly, average number of archaeal sequences across samples is as low as 672, while that of bacterial sequences is 138217 (Figure S1).

Table 1. Statistics of sequencing data of microbiomes collected from surrounding bulk (So) and rhizosphere (Rh) soils of *Nitroscoccus* vermiculata in three replicates after 0 (So11-So13 or group A & Rh11-Rh13 or group D, respectively), 24 (So21-Co23 or group B & Rh21-Rh23 or group E, respectively) and 48 h (So31-So33 or group C & Rh31-Rh33 or group F, respectively) of watering. Samples data were also grouped based on source of microbiome regardless of time after watering, e.g., bulk (group G) and rhizosphere (group K) soils and on time after watering regardless of source of microbiome, e.g., 0 (group G), 24 (group H) and 48 h (group I).

Group	Sample Name	Raw PE (no.)	Raw tags (no.)	Clean tags (no.)	Effective tags (no.)	Avg. len. (nt)	Q20 (%)	Q30 (%)	GC%	Efficiency (%)
A	So11	200,872	193,969	179,860	124,998	51,887,668	97.54	92.65	55.35	76.81
	So12	202,277	189,250	181,201	137,838	57,233,369	97.69	92.94	55.70	76.94
	So13	210,903	197,729	189,417	130,298	54,152,300	97.61	92.83	56.03	61.78
B	So21	207,674	188,688	184,255	127,353	55,035,800	97.45	92.41	55.5	61.75
	So22	214,998	197,112	193,523	137,892	57,356,272	97.58	92.64	56.16	64.19
	So23	208,378	191,173	187,076	126,695	52,639,052	97.55	92.63	56.11	64.84
C	So31	216,708	196,704	192,209	139,901	57,988,588	97.52	92.58	56.20	64.55
	So32	202,304	186,659	182,008	136,067	56,799,341	97.48	92.52	56.03	66.26
	So33	202,352	194,566	180,173	136,849	56,769,494	97.54	92.61	56.03	67.70
D	Bo11	180,891	160,238	157,349	139,110	56,884,001	97.55	92.63	55.35	78.61
	Bo12	215,660	194,163	190,929	137,974	52,133,493	97.49	92.51	55.17	82.95
	Bo13	215,966	193,111	189,494	136,971	68,807,688	97.59	92.74	55.65	77.66
E	Bo21	200,757	180,977	177,766	131,448	66,088,913	97.59	92.79	55.68	80.62
	Bo22	208,668	192,733	189,247	136,364	63,865,738	97.73	93.07	55.77	73.98
	Bo23	214,490	198,113	194,959	139,123	67,260,683	97.80	92.94	55.90	76.94
F	Bo31	210,940	190,792	187,175	139,329	67,826,508	97.48	92.48	55.55	78.47
	Bo32	209,484	187,559	183,711	148,692	61,402,213	97.61	92.80	55.68	72.36
	Bo33	205,235	182,315	178,324	135,011	62,048,625	97.59	92.68	55.51	79.07

Raw PE no. represents number of original paired-end (PE) reads after sequencing; Raw tags no. represents number of tags merged from PE reads; Clean tags no. represents number of tags after filtering; Effective tags no. represents number of tags after filtering chimera and can be finally used for subsequent analysis; Base nt no. is the number of bases of the Effective Tags; Avg. len. (nt) represents average length of Effective Tags; Q20 and Q30 are the percentages of bases whose quality value in Effective tags is greater than 20 (sequencing error rate is less than 1%) and 30 (sequencing error rate is less than 0.1%); GC (%) represents GC content in Effective Tags; Effectivity (%) represents the percentage of Effective Tags in Raw PE.

In terms of bacterial description across taxonomic ranks, Figure S2 shows that annotation ended at genus level is, expectedly, richer than those of either higher or lower ranks. Table S1 refers to tagged OTUs and their taxonomic description (kingdom, class, order, family, genus and species). The total number of OTUs across samples is 4180 of which number of archaeal OTUs is 36. Number of OTUs with average number of sequencings reads over 500 is 20 of which all except one taxon belong to phyla Cyanobacteria, Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria, while the highest abundant taxa of phyla Acidobacteria (OTU31), Chloroflexi (OTU74) and Gemmatimonadetes (OTU183) have as little as ~ 250, 236 and 95 sequencing reads, respectively (Table S1). The largest average number of reads is assigned to OUT1 (~32147) of unidentified genus of Cyanobacteria, followed by OUT2 (~7416) of an unidentified bacterial phylum, OTU5 (~5726) of genus *Microvirga*, and OTU7 (~4712) of genus *Bacillus* (Table S1). Interestingly, average number of reads for the unidentified bacterial phylum in bulk soil (14574) is far higher than that in the rhizosphere (258). This indicates that bulk soil has a wealth of microbes remains to be deciphered at the phylum level.
The top 10 most abundant phyla and genera in grouping styles ABCDEF and JK are shown in Figure 2, while grouping style GHI is shown in Figure 3. Aligning with our previous results, relative abundance of phylum Cyanobacteria was the highest among different phyla in grouping styles ABCDEF and JK, followed by the eight taxa of bacterial phyla Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, Gemmatimonadetes and the unidentified bacteria, as well as the archaeal phylum Euryarchaeota. Figure 3 indicates that unidentified genus of Cyanobacteria was the highest among different genera in grouping styles ABCDEF and JK, followed by the nine genera Bacillus, Microvirga, Adhearibacter, Arthrobacter, Pontibacter, Ammoniphilus, Sphingomonas, Bacteroidetes in addition to the highly abundant unidentified bacteria.

Alpha diversity analysis

Results of alpha diversity at the individual sample level indicate that species richness and evenness are higher in rhizosphere than in bulk soils (Figure S3). Similar trend of results is reached at the grouping style level, where Shannon and Simpson indices are higher in grouping style DEF (or group K) than in grouping style ABC (or group J) (Figure 4). In terms of microbiomes collected at different time points of watering across soil types (e.g., grouping style GHI), no distinctive differences in both Shannon and Simpson indices are observed. Rarefaction curves show that the maximum depth permitted to retain all samples in the dataset is ~120,000 sequence reads (Figure S4). While, species accumulation curve or Specaccum indicates continuous increase of the curve height as number of sequenced samples increases (up to 18) (Figure S5). Towards the end of the graph, the curve is flattened indicating that microbiomes of the two soil types are practically saturated.
Figure 2. Relative abundance of the top 10 taxa at the phylum and genus levels within grouping styles ABCDEF and GHI of microbiomes collected from surrounding bulk (grouping style ABC) and rhizosphere (grouping style DEF) soils of *Nitrosabola vermiculata* after 0 (grouping style AD or group G), 24 (grouping style BD or group H) and 48 h (grouping style CF or group I) of watering.
Beta diversity analysis

The results of anosim boxplots between groups G and H (R = 0.1 & P = 0.147), between H and I (R = 0.015 & P = 0.353) and between G and I (R = 0.374 & P = 0.179) indicate no significant inter or intra-group differences (Figure S6). On the other hand, anosim boxplot between groups J and K shows an R value of 1 (P = ~0.00) indicating that inter-group differences are significantly greater than intra-group differences. Anosim is a nonparametric test displayed as boxplots to justify grouping styles and to evaluate whether variation among groups is significantly higher or lower than variation within groups. Therefore, the results of grouping style JK are justified by anosim and indicate that grouping style JK referring to type of soil has high rationality for grouping (Figure S6), while grouping style GHI referring to the watering time points has low rationality.

Figure 5 refers to heat maps of weighted and unweighted unifrac beta diversity measures at the different grouping style levels. Weighted unifrac describes relative abundance of microbes, while unweighted unifrac refers to the unique species in the environmental samples (Lozupone and Knight, 2005; Lozupone et al., 2007; Lozupone et al., 2011). The results of heat maps of grouping styles ABCDEF and JK indicate high beta diversity distance between microbiomes of bulk and those of rhizosphere soils in terms of weighted unifrac, while moderate beta diversity distance in terms of unweighted unifrac (Figure 5). The heat map in grouping style GHI almost indicate no distance in weighted unifrac among groups G, H and I, while moderate distance in unweighted unifrac matrices. Then, we expect to get more enriched microbiomes in grouping styles ABCDEF and JK than in grouping style GHI. Figure S7 refers to dendrogram trees or hierarchical clustering by phylum of unweighted pair-group method with arithmetic mean (UPGMA).
Figure 4. Boxplots of Shannon and Simpson alpha diversity measures referring to taxa richness and evenness, respectively, of microbiomes collected from surrounding bulk (grouping style ABC) and rhizosphere (grouping style DEF) soils of *Nitrosalsola vermiculata* after 0 (grouping style AD), 24 (grouping style BE) and 48 h (grouping style CF) of watering. Samples data were also grouped based on time after watering regardless of soil type, e.g., 0 (G), 24 (group H) and 48 h (group I) and on soil type regardless of time after watering, e.g., bulk (group J) and rhizosphere (group K).
Figure 5. Heatmaps of weighted (top record) and unweighted unifrac beta diversity measures of microbiomes collected from surrounding bulk (grouping style ABC) and rhizosphere (grouping style DEF) soils of *Nitrosalsola vermiculata* after 0 (grouping style AD), 24 (grouping style BE) and 48 h (grouping style CF) of watering.

Samples data were also grouped based on time after watering regardless of soil type, e.g., 0 (group I), 24 (group H) and 48 h (group I) and soil type regardless of time after watering, e.g., bulk (group J) and rhizosphere (group K) soils.

Figure 5 indicates discrete separation among samples of bulk and rhizosphere soils in terms of weighted unifrac measure, while separation in terms of unweighted unifrac measure is low. This demonstrates that microbial relative abundance at different grouping style levels, especially JK, is feasible. UniFrac refers to the phylogenetic information of environmental samples, but when coupled with standard multivariate statistical techniques, it refers to principal coordinates analysis (PCoA). The latter maps the distances among microbial communities. The results in Figure 6 indicate complete separation among microbiomes of bulk and rhizosphere soils in grouping style JK, as the first was located in the negative position of PCoA 1 (or PC1), while the second was located in the positive position of PC1. The results for grouping style ABCDEF show complete separation of the microbiomes of rhizosphere soil in terms of the three watering time points (groups D, E and F). Bulk soil microbiome of group A referring to 0 h time point of watering shows complete separation in the negative positions of PC1 and PC2, while those of groups B and C referring to 24 and 48 time points of watering merge in the negative and positive directions of PC1 and PC2, respectively (Figure 6).

Ternary plots describing the differences in dominant phyla in subgrouping styles ABC of bulk soil and DEF of rhizosphere soil indicate that phylum Cyanobacteria, followed by Proteobacteria, is the most dominant in bulk soil microbiomes, while Proteobacteria, followed by Actinobacteria, in rhizosphere soil (Figure S8). At the genus level, unidentified genus of Cyanobacteria is the most dominant in bulk soil microbiomes, while genus *Bacillus* followed by *Microverga*, in rhizosphere soil (Figure S9). In terms of ternary plots in grouping style GHI across soil types, phylum Cyanobacteria again, followed by Proteobacteria, while unidentified genus of Cyanobacteria, followed by genus *Bacillus*, are the most dominant taxa (Figure S10).
Figure 6. Principle coordinate analysis (PCoA) based on OTU abundance of microbiomes collected from surrounding bulk (subgrouping style ABC) and rhizosphere (subgrouping style DEF) soils of *Nitrosalsola vermiculata* after 0 (subgrouping style AD), 24 (subgrouping style BE) and 48 h (subgrouping style CF) of watering.

Samples data were also grouped based on time after watering regardless of soil type, e.g., 0 (group G), 24 (group H) and 48 h (group I) and on soil type regardless of time after watering, e.g., bulk (group J) and rhizosphere (group K) soils. A colored dot represents a given sample in one group, and similar colored dots refer to samples of the same group. X-axis is the first principal coordinate and Y-axis is the second. Number in brackets represents contributions of PCoAs to differences among samples.

The results of ternary plots in grouping styles ABCDEF and GHI at the phylum and genus levels support our previous findings in Figures 2 and 3. Evolutionary phylogenetic trees of representative sequences by genus (the top 100 genera in abundance) are constructed for samples (Figure S11) and their grouping styles ABCDEF (Figure S12), GHI (Figure S13) and JK (Figure S14). The results of phylogenetic trees for samples and different grouping styles at genus level also support our previous results of relative abundance in Figures 2 and 3 as well as those of ternary plots in Figures S8-S10. Taxa that showed significant differential abundance are further analyzed in heat maps of the top 35 most abundant phyla and genera at the sample (Figures S15 and S16, respectively) and grouping style (Figures 7 and 8, respectively) levels.

Significant results from t-test between pairs of subgrouping style ABC of bulk soil (or group J), of subgrouping style DEF of rhizosphere soil (or group K) or across soil type (or grouping style GHI) are shown in Figures S17-S22 and referred to by arrows in Figures 7 and 8, respectively. The results in Figure 7 indicate significant differences in 11 phyla for grouping styles ABCDEF and JK. Of which, three phyla (e.g., Euryarchaeota, Verrucomicrobia and Nitrospira) show significant differences in grouping style ABCDEF, five phyla (e.g., Cyanobacteria, Firmicutes, Chloroflexi, Actinobacteria and Proteobacteria) in grouping style JK,
and three phyla (e.g., Bacteroidetes, Acidobacteria and Gemmatimonadetes) in grouping style GHI. Among them, two phyla (e.g., Verrucomicrobia and Nitrospirae) have low relative abundance levels, thus, removed from further analysis. In terms of grouping style GHI, five phyla (e.g., Verrucomicrobia, Gemmatimonadetes, the archaeal phylum Thaumarchaeota, Acidobacteria and Euryarchaeota) show significant differences, of which, phyla Verrucomicrobia and Thaumarchaeota show low relative abundance levels, thus, removed from further analysis (Figure 7).

Figure 7. Relative abundance for the top 35 taxa at the phylum level within grouping styles ABCDEF and GHI of microbiomes collected from surrounding bulk (grouping style ABC or group J) and rhizosphere (grouping style DEF or group K) soils of Nitrosalsola vermiculata after 0 (grouping style AD), 24 (grouping style BE) and 48 h (grouping style CF) of watering. Samples data were also grouped based on time after watering regardless of soil type, e.g., 0 (group G), 24 (group H) and 48 h (group I). Arrows refer to phylum with significant differences within grouping styles. Arrows refer to the phyla that showed significant differences in terms of relative abundance by t-test. Black arrows refer to significant phyla at grouping style ABCDEF or at grouping style GHI, blue arrows refer to significant phyla at grouping style JK, while red arrows refer to significant phyla at the two grouping styles. Dotted arrows refer to phyla among the 10 most abundant ones (see Figure 2). Statistical analysis in terms of t-test bar plots is shown Figures S17-S22.

The results in Figure 8 indicate significant differences in 20 genera for grouping styles ABCDEF and JK. Of which, 12 genera (e.g., Massilia, Blastococcus, Rubellimicrobium, Planomicrobium, Flavisolibacter, Nocardioides, Ramlbacter, Devisia, Lysinibacillus, Domibacillus, Bryobacter and Streptomyces) show significant differences in grouping style ABCDEF, five genera (e.g., Bacillus, Ammoniphilus, Sphingomonas, Microvirga & unidentified genus of Cyanobacteria) in grouping style JK, and three genera (e.g., Pontibacter, Adhaeribacter and Arthrobacter) in grouping style GHI. Among them, all genera of grouping style ABCDEF show low relative abundance, thus, removed from further analysis. In terms of grouping style GHI, six genera (e.g., Streptomyces, Cellulomonas, Ramlbacter, Devisia, Flavisolibacter and Stenotrophophobacter) show
significant differences. All these genera show low relative abundance, thus, removed from further analysis (Figure 8). Therefore, a total of nine phyla (e.g., Cyanobacteria, Euryarchaeota, Chloroflexi, Actinobacteria, Proteobacteria, Bacteroidetes, Firmicutes, Acidobacteria and Gemmatimonadetes) and eight genera (e.g., *Bacillus*, *Ammoniphilus*, *Sphingomonas*, *Microvirga*, *Pontibacter*, *Adhaeribacter*, *Arthrobacter* and unidentified genus of Cyanobacteria) were analyzed further against the three grouping styles ABCDEF, GHI and JK.

![Diagram](image)

Figure 8. Relative abundance for the top 35 taxa at the genus level within grouping styles ABCDEF and GHI of microbiomes collected from surrounding bulk (grouping style ABC or group J) and rhizosphere (grouping style DEF or group K) soils of *Nitrosalsola vermiculata* after 0 (grouping style AD), 24 (grouping style BE) and 48 h (grouping style CF) of watering. Samples data were also grouped based on time after watering regardless of soil type, e.g., 0 (group G), 24 (group H) and 48 h (group I). Arrows refer to phylum with significant differences within grouping styles. Arrows refer to the genera that showed significant differences in terms of relative abundance by t-test. Black arrows refer to significant genera at grouping style ABCDEF or at grouping style GHI, blue arrows refer to significant genera at grouping style JK, while red arrows refer to significant genera at the two grouping styles. Dotted arrows refer to phyla among the 10 most abundant ones (see Figure 2). Statistical analysis in terms of t-test bar plots is shown Figures S17-S22.

The results in grouping style ABCDEF indicate significant increase in relative abundance of phyla Acidobacteria and Gemmatimonadetes in rhizosphere soil at 24 and 48 h time points, while at 24 h only for phylum Bacteroidetes and 48 h only for the archaeal phylum Euryarchaeota (Figure S17). At genus level, the results indicate significant increase in relative abundance of genera *Pontibacter*, *Adhaeribacter* and *Arthrobacter* in rhizosphere soil at 24 h time point, while genus *Pontibacter* also shows significant decrease at 48 h time point (Figure S18). Relative abundance of phyla Acidobacteria, Gemmatimonadetes and archaeal Euryarchaeota in grouping style GHI shows significant increase at 24 h time point across soil types, while phylum Gemmatimonadetes also shows significant increase at 48 h time point (Figure S19). However, none of the genera with high relative abundance show significant results in grouping style GHI (Figure S20). In terms of grouping style JK, relative abundance of phylum Cyanobacteria in bulk soil is significantly higher than that in rhizosphere soil (Figure S21). Opposite results are reached for the Gram-positive, e.g., Firmicutes and Actinobacteria, and Gram-negative, e.g., Proteobacteria Bacteroidetes, Acidobacteria, Chloroflexi and
Gemmatimonadetes, phyla. Results in grouping style JK indicate significant higher relative abundance of unidentified genus of Cyanobacteria in bulk soil, while rhizosphere soil for genera Adhaeribacter and Pontibacter of phylum Bacteroidetes, Bacillus and Ammoniphilus of Firmicutes, Arthrobacter of Actinobacteria, Microvirga and Sphingomonas of Proteobacteria (Figure S22).

Discussion

Differential abundance due to soil type

In the present study, bulk soil refers to a native spot near the selected plants where the closest growing flora is at least 10 m² away. It is likely that high abundant bacteria in the plant rhizosphere interact mainly via symbiotic association, a phenomenon similar to legume-rhizobium symbiosis (Nilsson et al., 2005). Through this association, symbiotic bacteria receive main carbon source from the plant host, while, in return, bacteria provide nitrogen in several forms, ex., citrulline and glutamate (Lindblad et al., 1991; Bergman et al., 2007; Cuddy et al., 2012). Microbes can also promote plant growth by supplying substances such as IAA, amino acids, vitamins, solubilized phosphates and oxygen to root rhizosphere of the plant host (Liesack et al., 2000; Sinha and Hader, 2008; Prasanna et al., 2009; Liberton et al., 2013; Ranjan et al., 2016). Phylum Acidobacteria, for example, was reported to have strong symbiotic association with plant host (Kalam et al., 2020), where its enzymes metabolize, not only carbon, but also sulfur (Tank and Bryant, 2015; Eichorst et al., 2018).

Relative abundance of phylum Cyanobacteria or its descendent unidentified genus is significantly higher in bulk soil compared with that in rhizosphere soil (Figures 7 and 8). This indicates that this microbe might favors living independently in bulk soil although several reports indicated symbiotic associations with a wide range of plants (Liesack et al., 2000; Sinha and Hader, 2008; Liberton et al., 2013; Ranjan et al., 2016). In the present study, 22 OTUs of unidentified Cyanobacteria exist. Of which, OTU1 comprises the most abundant taxon across bulk and rhizosphere soils (Table S1). Interestingly, these OTUs are unidentified down the phylum level indicating that they represent new taxa of this microbe that live mainly in the bulk soil. Previous results indicated that microbial abundance in rhizosphere soil can be as high as 10-1000 times that in bulk soil (Miransari, 2011; Zuo et al., 2021). The latter results meet those of the present study for rhizosphere soil of N. vermiculata, except for Cyanobacteria, where 19, out of the 22, OTUs are far higher in their relative abundance in bulk soil compared with that in rhizosphere soil (Tables 1 and S1).

In the present study, phyla Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and Gemmatimonadetes show significantly higher microbial abundance in rhizosphere soil compared with that in bulk soil (Figures 2 and 7). Members of these phyla were reported to act as plant growth-promoting bacteria (Chukwuneme et al., 2020; Barnard et al., 2013; Yadav et al., 2018). Descendent genera of phyla Bacteroidetes (e.g., Adhaeribacter and Pontibacter), Firmicutes (e.g., Bacillus and Ammoniphilus), Actinobacteria (e.g., Arthrobacter), and Proteobacteria (e.g., Microvirga and Sphingomonas) in the present study also show significantly higher microbial abundance in rhizosphere soil compared with that in bulk soil (Figures 2 and 8). Genus Adhaeribacter (Bacteroidetes) was proposed to predominantly exist in rhizosphere of Broomcorn Millet (Na et al., 2019), while genus Pontibacter (Bacteroidetes) was reported to contribute to the horneretic responses of soil alkaline phosphatase (Fan et al., 2018). Bacillus (Firmicutes) is a highly tolerant genus that is potentially used in generating biofertilizers to diverse environmental stresses due to its ability to form spores resistant to desiccation (Barnard et al., 2013). Arthrobacter (Actinobacteria) was proven to be an important genus in the microflora that promotes plant growth especially under drought stress. Members of genus Arthrobacter are resistant to desiccation and can survive for a long time under starvation conditions (Chukwuneme et al., 2020). Abundance of genera Ammoniphilus (Firmicutes) and Microvirga (Proteobacteria) was high in Calotropis procera rhizosphere (Ramadan et al., 2021). Genus Microvirga also acts as plant growth promoting bacteria (PGPB) (Wang et al., 2017). Genus Sphingomonas (Proteobacteria) is more abundant in the present study in rhizosphere soil and is known to promote growth of Arabidopsis.
thaliana, however, it can survive in bulk soil by taking energy from degrading organic pollutants (Luo et al., 2019).

Explanation for the high abundance and mutual dominance of the above-mentioned taxa in rhizosphere of N. vermiculata and other plant species is partially due to the intensity of specific root exudates the bacteria receive from the plant host (Lundberg et al., 2012; Dai et al., 2019; Zhang et al., 2019). Among other factors that might influence high abundance of microbes in rhizosphere soil of N. vermiculata, Lopes et al. indicated that range of soil pH implies shaping of soil microbiomes (Lopes et al., 2021). Chodak et al. demonstrated that microbes favoring high soil pH will grow better in rhizosphere soil, while those favoring low pH (≤ 5) grow better in bulk soil (Chodak et al., 2015). As soil pH in the western region of Saudi Arabia is estimated to be 6.1, this might partially explain the high abundance of members of these phyla in rhizosphere soil.

We also speculate that natural co-existence of the highly abundant pairs of Gram-negative phyla, e.g., Acidobacteria and Proteobacteria, on one hand, and pairs of Firmicutes (Gram-positive) and Bacteroidetes (Gram-negative), on the other hand, might contribute to the high abundance of other microbes in rhizosphere of N. vermiculata. Wei and colleagues indicated that co-existing phyla Acidobacteria and Proteobacteria promote sustainability of other cohabiting phyla, like Actinobacteria, Chloroflexi and Gemmatimonadetes in the present study (Wei et al., 2017). Co-existence is a form of cell-cell communication, also known as bacterial coaggregation. The term coaggregation refers to specific recognition and adherence of different microbial species towards possible formation of biofilm. Soil surfaces are previously suggested to be a good setting for invisible multispecies biofilm formation to distribute antibiotic resistance genes among cohabiting microbes (Wang et al., 2015). Stevens et al. also indicated that bacterial coaggregation can promote the dynamic transmission of microorganisms among different environmental niches (Stevens et al., 2015), while high prevalence of synergism in multispecies biofilm formation of soil microbes was proven in another study (Ren et al., 2015). Highly abundant phyla also co-exist in the soil in a way to imply minimal competition for resources (Wei et al., 2017), where Firmicutes, for example, favors lipid nutrients in biogas reaction, whereas Bacteroidetes favors starch nutrients (Kampmann et al., 2012).

Influence of microbes on abundance of cohabiting ones can also be explained through the mechanism of quorum sensing (QS). The latter is a type of intercellular communication mechanism that is influenced by extracellular signaling molecules called autoinducers (AIs) (Rutherford and Bassler, 2012). These molecules mediate bacterial population density in the environment. These signaling molecules are encoded by a variety of bacterial genes that allow bacteria to act in synchrony. AIs also mediate bacterial sporulation, antibiotic production and biofilm formation. Gram-negative bacteria usually use acylated homoserine lactones as autoinducers, while Gram-positive bacteria use processed oligo-peptides to communicate (Ng and Bassler, 2009; Williams and Camara, 2009). It was suggested that bacterial AIs elicit specific responses from host plant (Miller and Bassler, 2001). When reached to a certain threshold, QS promotes signals within bacterial kingdom, on one hand, and between bacteria and the host plant, on the other hand. In return, plant responds to the signals by releasing exudates that promote growth performance of the cohabiting microbes. Nonetheless, triggering QS in Cyanobacteria by specific lactones also occurs and results in the formation of cyanobacterial blooms and production of the toxin microcystin LR (Herrera and Echeverri, 2021). This action can take place during symbiotic association with plant rhizosphere. However, higher abundance of this microbe in the bulk soil still, in the present study, requires an explanation. One answer refers to the mutual abundance of the two most abundant genera in the present study, e.g., unidentified Cyanobacteria in the bulk soil versus genus Bacillus (Firmicutes) in the rhizosphere (Figure 9) and that of the phyla Cyanobacteria in bulk soil versus Firmicutes in rhizosphere soil (Figure S23). We claim a possible role of genus Bacillus of Firmicutes in quenching QS of Cyanobacteria in the rhizospheres soil. Aligning with our claim, genus Bacillus was recently reported to act in blocking Cyanobacteria blooming, thus, inhibiting the release of the harmful toxin to the plant root (Wu et al., 2021). The latter authors indicated that Bacillus sp. strain S51107 exhibits a strong algicidal activity against the Cyanobacterium Microcystis aeruginosa. This activity is regulated by the signaling
peptide NprX or pre-ComX encoded by \textit{comQ} gene that triggers QS in \textit{Bacillus} (Stanley and Lazazzera, 2005; Wu \textit{et al.}, 2021).

To prove the possible action of pre-ComX in inducing QS in phylum Firmicutes, e.g., genus \textit{Bacillus}, we have tested the differential expression of the gene encoding pre-ComX, e.g., competence pheromone precursor or \textit{comQ} gene, in metatranscriptomes collected from the two types of soil using real time PCR (Figure S24). Sequence of this gene was retrieved from the NCBI for \textit{Bacillus subtilis} subsp. \textit{subtilis} str. 168 (NC_000964.3:3256008-3256907). The results of real time PCR aligned with those of differential abundance of genus \textit{Bacillus} or phylum Firmicutes, where relative expression level of the gene increases in rhizosphere soil compared with that in bulk soil.

Differential abundance due to watering

Watering of drought-stressed plants rapidly deviates natural progression of microbiome development, which can be eventually restored after soil is dried up. Xu \textit{et al.} speculated that one week following watering is a maximum time to restore microbiome pattern in rhizosphere of drought-treated plant roots (Xu \textit{et al.}, 2018). In the present study, two days after watering are enough to recover the natural growth pattern of some microbes at phylum and genus levels and to restore their previous or natural pattern under drought condition (Figures 7 and 8).

While, it seems that this short period is not enough for the majority of microflora to do both actions. This supports our claim that growth dynamics and genetic background of microbiota affect differential response to stress and, in some cases, can affect plant root architecture.

Generally speaking, Gram-positive (diderm) bacteria are known to be more drought tolerant than Gram-negative (monoderm) bacteria as the first has stronger cell wall and drought avoidance strategies (ex., spore formation) (Potts, 1994). Drought and rewetting stress were proven to significantly alter structure of soil metagenomes (Chodak \textit{et al.}, 2015). The latter authors indicated that abundance of Gram-positive bacterial phyla increases after the stress, whereas Gram-negative bacteria decreases. Nonetheless, the latter statement cannot be generalized as it seems that plant growth stage also affects relative abundance of rhizosphere microbes under drought stress where abundance of phylum Actinobacteria (Gram-positive) significantly increased at early stages in peanut, while that of phylum Cyanobacteria (Gram-negative) increased at flowering stage (Dai...
Phyla Acidobacteria and Gemmatimonadetes of grouping style ABCDEF of the present study show higher relative abundance in rhizosphere soil at 24 and 48 h watering time points, while at 24 h only for phylum Bacteroidetes and 48 h only for archaeal phylum Euryarchaeota (Figure S17). In addition, the bacterial phylum Acidobacteria and the archaeal phylum Euryarchaeota of grouping style GHI show higher relative abundance at 24 h watering time point regardless of soil type, whereas at 24 and 48 h for phylum Gemmatimonadetes (Figure S19). At genus level, genera Pontibacter (Bacteroidetes), Adhaeribacter (Bacteroidetes) and Arthrobacter (Actinobacteria) in rhizosphere soil also show higher relative abundance at 24 h time point in rhizosphere soil, while genus Pontibacter only show further significant decrease at 48 h time point (Figure S18). Phyla Acidobacteria, Gemmatimonadetes and Bacteroidetes are Gram-negative bacteria, while archaeal phylum Euryarchaeota can be either Gram-positive or Gram-negative based on the presence of pseudomurein in the cell wall (Iverson et al., 2012).

Highly abundant microbes whose abundance was not changed due to watering are the Gram-positive phylum Firmicutes and Gram-negative phyla Proteobacteria, Chloroflexi and Cyanobacteria and their descendent genera Bacillus, Ammoniphilus, Sphingomonas, Microvirga and unidentified genus of Cyanobacteria. We speculate taxa that do not respond to the sudden presence of water and keep their growth rate regardless of the change in water supply are drought tolerant. Firmicutes and Proteobacteria are considered in several reports to have potential significance in assisting plants to withstand drought stress (Jang et al., 2020; Ma et al., 2020). Jang et al. indicated that relative abundance of phylum Proteobacteria in bulk soil was lower under drought condition than that under watered conditions and vice versa in the rhizosphere soil of rice (Jang et al., 2020). Bacterial responses to drought and rewetting stress were shown to be based on genetic makeup of the bacteria, host-microbe interaction as well as nutrient supply in the surrounding environment, e.g., contents of soil N and organic C, heavy metal, etc. (Chodak et al., 2015). Relative abundance of Actinobacteria under drought stress was shown in one study to be higher in the rhizosphere than that in the surrounding bulk soil (Naylor et al., 2017) as this phylum was proven to survive under unfavorable environmental conditions (Passari et al., 2015). The phylum is also known to produce bioactive secondary metabolites acting as plant growth promoting (PGP) and nitrogenous compounds in non-legumes and to make P solubilization via production of various organic acids including citric, gluconic, lactic, malic, oxalic, propionic and succinic acids (Sathya et al., 2017; Yadav et al., 2018). Nonetheless, Breitkreuz and colleagues indicated that relative abundance of Proteobacteria decreased under drought stress in wheat rhizosphere, while increased for Chloroflexi and Firmicutes (Breitkreuz et al., 2021). Two other studies on rice and cotton rhizosphere microbiomes revealed that phylum Chloroflexi dominates under drought conditions (Santos-Medellín et al., 2017; Ullah et al., 2019). Thus, the four phyla Firmicutes, Proteobacteria, Actinobacteria and Chloroflexi are considered, in several reports, to have potential significance in assisting plants to withstand drought stress (Ma et al., 2020). These results are consistent with those of many other reports on many other plants (Chodak et al., 2015; Bu et al., 2018; Gumiere et al., 2019).

A bacterial strain of Bacillus sp. was proven to produce and secrete spermidine (SPD) in Arabidopsis thaliana (Zhou et al., 2016). SPD is a type of polyamine (PA) that plays a role in plant growth under drought stress. The authors indicated that inoculation with the bacteria increases plant biomass, improved root system architecture and plants have displayed stronger ability to tolerate drought stress than non-inoculated plants. This ability is due to the higher levels of abscisic acid (ABA) under drought stress. In addition, stress tolerant Bacillus was reported to induce physiological response in the plant root vicinity in order to help the plant alleviating adverse effects of drought stress (Bokhari et al., 2019). Genus Sphingomonas is known for its ability to tolerate drought stress and promote tolerance to the neighboring plant roots (Luo et al., 2020). Earlier report of the latter research group indicated that a species of genus Sphingomonas was able to promote the growth of A. thaliana by driving roots plasticity during development, on one hand, and inducing changes in bacterial community in the plant root rhizosphere, on the other hand. The same study indicated high abundance of genus Sphingomonas under drought stress, suggesting the important role of the microbe in conferring drought tolerance.
stress tolerance to the plant. Up to our knowledge, there are no previous reports in the literature referring to the role of genera *Ammoniphilus* and *Microvirga* under drought stress.

Conclusions

In the present study, differential microbiota signatures were detected in the rhizosphere of the wild plant *A. vemiculata* and surrounding bulk soil. We justified differential abundance of microbes in the two soil types by the involvement of inter-microbial as well as plant-microbe interactions, on one hand, and microbial co-existence as well as quorum sensing that refers to the dynamics of microbial intensity in different environmental niches, on the other hand. Upon watering, some soil microbes respond positively, and the 48 h was enough for some of these microbes to restore their natural growth pattern under drought stress. Nonetheless, non-responsive microbiota was considered as drought tolerant. In conclusion, the present study warrants further research to dissect factors involved in shaping microbiome signature in different soil types and factors influencing differential stress responses of microbiota. The study also recommends harnessing the rhizosphere microorganisms to increase the resilience of crop production to drought stress conditions in the future.

Authors’ Contributions

Conceptualization: All authors; Data curation: HA, RA, HB and MT; Formal analysis RJ, AS, LB and AA; Investigation HA, RJ, HB & LB; Methodology RA, AS, MT & AA; Validation HA, RA, HB and MT; Visualization RJ, AS, LB and AA; Writing - original draft: All authors; Writing - review and editing: AA. All authors read and approved the final manuscript.

Ethical approval (for researches involving animals or humans)

Not applicable.

Acknowledgements

This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R31), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.

References

Afonso AC, Gomes IB, Saavedra MJ, Giaouris E, Simoes LC, Simoes M (2021). Bacterial coaggregation in aquatic systems. Water Research 196:117037. https://doi.org/10.1016/j.watres.2021.117037

Al-Eisawi DM, Al-Ruzayza S (2015). The flora of holy Mecca district, Saudi Arabia. International Journal of Biodiversity and Conservation 7:173-189. https://doi.org/10.5897/IJBC2014.0773
Al-Tabini R, Al-Khalidi K, Al-Shudiefat M (2012). Livestock, medicinal plants and rangeland viability in Jordan’s Badia: Through the lens of traditional and local knowledge. Pastoralism: Research, Policy and Practice 2:1-16. https://doi.org/10.1186/2041-7136-2-4

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic local alignment search tool. Journal of Molecular Biology 215:403-410. https://doi.org/10.1016/0022-2836(90)90570-K

Bakhtin RB, Al-Khalidi K, Al-Shudiefat M (2012). Livestock, medicinal plants and rangeland viability in Jordan’s Badia: Through the lens of traditional and local knowledge. Pastoralism: Research, Policy and Practice 2:1-16. https://doi.org/10.1186/2041-7136-2-4

Bokhari A, Essack M, Lafi FF, Andres-Barrao C, Jalal R, Alamoudi S, Razali R, … Siddique S (2019). Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Scientific Reports 9:1-13. https://doi.org/10.1038/s41598-019-45878-6

Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JL, Knight R, Mills DA, Caporaso JG (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10:57-59. https://doi.org/10.1038/nmeth2276

Breitkreuz C, Herzig L, Buscot F, Reitz T, Tarakka M (2021). Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environmental Microbiology 23:5866-5882. https://doi.org/10.1111/1462-2920.15607

Bu X, Gu X, Zhou X, Zhang M, Guo Z, Zhang J, … Wang X (2018). Extreme drought slightly decreased soil labile organic C and N contents and altered microbial community structure in a subtropical evergreen forest. Forest Ecology and Management 429:18-27. https://doi.org/10.1016/j.foreco.2018.06.036

Bulgarelli D, Garrido-Oter R, Munch PC, Weiman A, Droge J, Pan Y, … Schulze-Lefert P (2015). Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392-403. https://doi.org/10.1016/j.chom.2015.01.011

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, … Gordon JI (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335-336. https://doi.org/10.1038/nmeth.f.303

Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2015). Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Annals of Microbiology 65:1627-1637. https://doi.org/10.1007/s13213-014-1002-0

Chukwunemu CF, Babalola OO, Kutu FR, Ojuederie OB (2020). Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. Journal of Plant Interactions 15:93-105. https://doi.org/10.1080/17429145.2020.1752833

Cuddy WS, Neilan BA, Gehring MM (2012). Comparative analysis of cyanobacteria in the rhizosphere and as endosymbionts of cycads in drought-affected soils. FEMS Microbiology Ecology 80:204-215. https://doi.org/10.1111/j.1574-6941.2011.01288.x

Dai L, Zhang G, Yu Z, Ding H, Xu Y, Zhang Z (2019). Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil. International Journal of Molecular Sciences 20:2265. https://doi.org/10.3390/ijms20092265

Disi AM, Damhoureyeh SA, Al-Khader IA, Al-Jbour S (2004). The Badia of Jordan: Biodiversity, threats and conservation. Annals of Arid Zone 43:293.
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194-2200. https://doi.org/10.1093/bioinformatics/btr381

Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D (2018). Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environmental Microbiology 20:1041-1063. https://doi.org/10.1111/1462-2920.14043

Fan D, Han J, Chen Y, Zhu Y, Li P (2018). Hormetic effects of Cd on alkaline phosphatase in soils across particle-size fractions in a typical coastal wetland. Science of the Total Environment 613:792-797. http://dx.doi.org/10.1016/j.scitotenv.2017.09.089

Feodorova T (2015). New nomenclatural combinations in Nitrosalsola (Chenopodiaceae). Ukrainian Botanical Journal 72:442-445. https://doi.org/10.15407/ukrbotj72.05.442

Geng L-L, Shao G-X, Raymond B, Wang M-L, Sun X-X, Shu C-L, Zhang J (2018). Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiological Research 211:13-20. https://doi.org/10.1016/j.micres.2018.02.008

Glick BR (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:963401. https://doi.org/10.6064/2012/963401

Gumiere T, Gumiere SJ, Matteau J-P, Constant P, Létourneau G, Rousseau AN (2019). Soil bacterial community associated with high potato production and minimal water use. Frontiers in Environmental Science 6:161. https://doi.org/10.3389/fenvs.2018.00161

Herrera N, Echeverri F (2021). Evidence of quorum sensing in cyanobacteria by homoserine lactones: The Origin of Blooms Water 13:1831. https://doi.org/10.1016/j.aem.2020.01.037

Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001). Simultaneous recovery of RNA and DNA from soils and sediments. Applied and Environmental Microbiology 67:4495-4503. https://doi.org/10.1128/AEM.67.10.4495-4503.2001

Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV (2012). Untangling genomes from metagenomes: revealing an uncultured class of marine Eurarchaeota. Science 335:587-590. https://doi.org/10.1126/science.1212665

Jang SW, Youu MH, Hong WJ, Kim YJ, Lee EJ, Jung KH (2020). Re-analysis of 16S amplicon sequencing data reveals soil microbial population shifts in rice fields under drought condition. Rice (N Y) 13:44. https://doi.org/10.1186/s12284-020-00403-6

Kalam S, Basu A, Ahmad I, Sayyed R, El Enshasy HA, Dailin DJ, Suriani N (2020). Recent understanding of soil Acidobacteria and their ecological significance: A critical review. Frontiers in Microbiology 11:2712. https://doi.org/10.3389/fmicb.2020.580024

Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S (2012). Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Applied and Environmental Microbiology 78:2106-2119. https://doi.org/10.1128/AEM.06394-11

Lazar V, Holban AM, Curutiu C, Chifiriuc MC (2021). Modulation of quorum sensing and biofilms in less investigated gram-negative ESKAPE pathogens. Frontiers in Microbiology 12:676510. https://doi.org/10.3389/fmicb.2021.676510

Li B, Zhang X, Guo F, Wu W, Zhang T (2013). Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Research 47:4207-4216. https://doi.org/10.1016/j.watres.2013.04.021

Liberton M, Page LE, O'Dell WB, O'Neil H, Mamontov E, Urban VS, Pakrasi HB (2013). Organization and flexibility of cyanobacterial thylakoid membranes examined by neutron scattering. Journal of Biological Chemistry 288:3632-3640. https://doi.org/10.1074/jbc.M112.416933

Liesack W, Schnell S, Revsbech NP (2000). Microbiology of flooded rice paddies. FEMS Microbiology Reviews 24:625-645. https://doi.org/10.1016/S0168-6445(00)00056-3

Lindblad P, Atkins CA, Pate JS (1991). N2-Fixation by freshly isolated Nostoc from coralloid roots of the cycad Macrozamia ridleyi (Fisch. ex Gaud.) Gardn. Plant Physiology 95:753-759. https://doi.org/10.1104/pp.95.3.753

Lopes LD, Hao J, Schachtman DP (2021). Alkaline soil pH affects bulk soil, rhizosphere and root endosphere microbiomes of plants growing in a Sandhills ecosystem. FEMS Microbiology Ecology 97:028. https://doi.org/10.1093/femsec/fiab028
Lozupone C, Knight R (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71:8228-8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011). UniFrac: an effective distance metric for microbial community comparison. The ISME Journal 5:169-172. https://doi.org/10.1038/ismej.2010.133

Lozupone CA, Hamady M, Kelley ST, Knight R (2007). Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology 73:1576-1585. https://doi.org/10.1128/AEM.01996-06

Lucy M, Reed E, Glick BR (2004). Applications of free-living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86:1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, ... Del Rio TG (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488:86-90. https://doi.org/10.1038/nature11237

Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL (2013). Practical innovations for high-throughput amplicon sequencing. Nature Methods 10:999-1002. https://doi.org/10.1038/nmeth.2634

Luo Y, Wang F, Huang Y, Zhou M, Gao J, Yan T, ... An L (2019). Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Frontiers in Microbiology 10:1221. https://doi.org/10.3389/fmicb.2019.01221

Luo Y, Zhou M, Zhao Q, Wang F, Gao J, Sheng H, An L (2020). Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria. Genomics 112:3648-3657. https://doi.org/10.1016/j.ygeno.2020.04.013

Ma H-k, Pineda A, Hannula SE, Kielak AM, Setyarini SN, Beumer TM (2020). Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Applied Soil Ecology 150:103468. https://doi.org/10.1016/j.apsod.2019.10.3468

Magoč T, Salzberg SL (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957-2963. https://doi.org/10.1093/bioinformatics/btr507

McLean E (1983). Soil pH and lime requirement. Methods of soil analysis: Part 2. Chemical and Microbiological Properties 9:199-224. https://doi.org/10.2134/agronmonogr9.2.edc12

Miller MB, Bassler BL (2001). Quorum sensing in bacteria. Annual Review of Microbiology 55:165-199. https://doi.org/10.1146/annurev.micro.55.1.165

Miransari M (2011). Soil microbes and plant fertilization. Applied Microbiology and Biotechnology 92:875-885. https://doi.org/10.1007/s00253-011-3521-y

Na X, Cao X, Ma C, Ma S, Xu P, Liu S, ... Qiao Z (2019). Plant stage, not drought stress, determines the effect of cultivars on bacterial community diversity in the rhizosphere of broomcorn millet (Panicum miliaceum L.). Frontiers in Microbiology 10:828. https://doi.org/10.3389/fmicb.2019.00828

Nadal-Sala D, Grote R, Birami B, Knuver T, Rehshchuh R, Schwarz S, Ruehr NK (2021). Leaf shedding and non-stomatal limitations of photosynthesis mitigate hydraulic conductance losses in scots pine saplings during severe drought stress. Frontiers in Plant Science 12:715127. https://doi.org/10.3389/fpls.2021.715127

Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017). Drought and host selection influence bacterial community dynamics in the grass root microbiome. The ISME Journal 11:2691-2704. https://doi.org/10.1038/ismej.2017.118

Ng WL, Bassler BL (2009). Bacterial quorum-sensing network architectures. Annual Review of Genetics 43:197-222. https://doi.org/10.1146/annurev-genet-102108-134304

Nilsson M, Rasmussen U, Bergman B (2005). Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiology Letters 245:139-144. https://doi.org/10.1016/j.femsle.2005.03.010

Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015). Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Frontiers in Microbiology 6:273. https://doi.org/10.3389/fmicb.2015.00273

Potts M (1994). Desiccation tolerance of prokaryotes. Microbiological Reviews 58:755-805. https://doi.org/10.1128/mr.58.4.755-805.1994

Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009). Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian Journal of Microbiology 49:89-97. https://doi.org/10.1007/s12088-009-0009-x
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41:D590-D596. https://doi.org/10.1093/nar/gks1219

Ramadan AM, Nazaar MA, Gadallah NO (2021). Metagenomic analysis of rhizosphere bacteria in desert plant Calotropis procera. Geomicrobiology Journal 38:375-383. https://doi.org/10.1080/01490451.2020.1860166

Ren D, Madsen JS, Sørensen SJ, Burmølle M (2015). High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. The ISME Journal 9:81-89. https://doi.org/10.1038/ismej.2014.96

Rutherford ST, Bassler BL (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2, a012427. https://doi.org/10.1101/cshperspect.a012427

Sinha RP, Häder D-P (2008). UV-protectants in cyanobacteria. Plant Science 174:278-289. https://doi.org/10.1016/j.plantsci.2007.12.004

Wang F-H, Qiao M, Chen Z, Su J-Q, Zhu Y-G (2015). Antibiotic resistance genes in manure-amended soil and vegetables at harvest. Journal of Hazardous Materials 299:215-221. https://doi.org/10.1016/j.jhazmat.2015.05.028
Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, ... Wang Y (2018). Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences 115:E4284-E4293. https://doi.org/10.1073/pnas.1717308115

Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Sugitha TCK, ... Dhaliwal HS (2018). Actinobacteria from rhizosphere: molecular diversity, distributions, and potential biotechnological applications. In: Gupta V (Ed). New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp 13-41.

Zhang R, Chen L, Niu Z, Song S, Zhao Y (2019). Water stress affects the frequency of Firmicutes, Clostridiales and Lysobacter in rhizosphere soils of greenhouse grape. Agricultural Water Management 226:105776. https://doi.org/10.1016/j.agwat.2019.105776

Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J (2016). Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. International Journal of Molecular Sciences 17:976. https://doi.org/10.3390/ijms17060976

Zuo J, Zu M, Liu L, Song X, Yuan Y (2021). Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biology 21:1-13. https://doi.org/10.1186/s12870-021-02893-y

The journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.

License - Articles published in Notulae Botanicae Horti Agrobotanici Cluj-Napoca are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) License. © Articles by the authors; UASVM, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.