One random jump and one permutation: sufficient conditions to chaotic, statistically faultless, and large throughput PRNG for FPGA

Mohammed Bakiri, Jean-François Couchot, and Christophe Guyeux

June 27, 2017

Abstract

Sub-categories of mathematical topology, like the mathematical theory of chaos, offer interesting applications devoted to information security. In this research work, we have introduced a new chaos-based pseudorandom number generator implemented in FPGA, which is mainly based on the deletion of a Hamilton cycle within the \(n \)-cube (or on the vectorial negation), plus one single permutation. By doing so, we produce a kind of post-treatment on hardware pseudorandom generators, but the obtained generator has usually a better statistical profile than its input, while running at a similar speed. We tested 6 combinations of Boolean functions and strategies that all achieve to pass the most stringent TestU01 battery of tests. This generation can reach a throughput/latency ratio equal to 6.7 Gbps, being thus the second fastest FPGA generator that can pass TestU01.

1 INTRODUCTION

The theory of chaos, which refers here to a sub-category of the mathematical topology discipline, proposes attractive applications in computer science, as in the information security field. For instance, various authors propose to use chaos for pseudorandom numbers generation (PRNGs, which are not true random number TRNGs, the former being deterministic algorithms based on iterative processes like recurrent sequences, while the latter use a physical or mechanical phenomenon as sources of randomness), leading to the notion of chaotic pseudorandom number generators (CPRNGs). Rigorously speaking, CPRNGs are non-linear algorithms of the form \(x_0 \in \mathbb{R}: x_{t+1} = f(x_t) \), where \(f \) is a chaotic continuous map on a given topological space, and \(x_t \) is the \(t \)-th term of a sequence \(x \). In practice, and unfortunately, this acronym often improperly refers to any attempt to use an element of chaos (logistic map, etc.) within an algorithm, and for pseudorandom generation purpose.

Reasons explaining the use of chaos for randomness generation encompass their sensitivity to initial conditions, their unpredictability, and their ability of reciprocal synchronization [Pecora and Carroll, 1990]. However, due to finite precision and quantization of floating point numbers, a CPRNG may exhibit both deflated periods and non-uniformly distributed outputs when designing it on finite state machines. Additionally, from a security point of view, these chaotic PRNGs have most of the times major drawbacks that are frequently reported [Wiggins, 2003]. To face these drawbacks, an original work was firstly introduced in [Bahi et al., 2009] [Guyeux, 2010], in which the authors present a new way to generate pseudorandom...
numbers that rigorously satisfies the mathematical properties of chaos, as defined by Devaney [Devaney, 2003], Li-Yorke [Li and Yorke, 1975], and so on. The main idea is to only manipulate bounded integers, while iterating on an infinite countable set. By doing so, what is designed on computers is exactly what is studied theoretically, the whole algorithm is mathematically proven as chaotic, and they do not deal with floating point numbers.

Following this approach, this article investigates the hardware point of view, and targets to reach speed generation with good statistical profile, while being chaotic. Contributions can be summarized as follows. A new pseudorandom number generator, specifically designed for FPGA, is proposed. At each iteration, it receives a new input from another given generator, called the strategy. Thanks to an embedded Boolean function and a permutation, our generator, which can be considered as a post-treatment on the inputted one, has usually a better statistical profile than its input, while running at a similar speed. With more details, we tested 6 combinations of functions and strategies that all achieve to pass the whole TestU01, which is the most stringent battery of tests currently available. This generation can be achieved with a throughput/latency ratio equal to 6.7 Gbps, which is close to the fastest existing FPGA generator (that can pass TestU01 as XOR-CIPRNG). The proposal has been fully deployed on a FPGA, it runs completely in parallel while consuming as low resources as possible.

The remainder of this article is organized as follows. The next section recalls various proposals in the use of chaos for hardware pseudorandom number generation. Their FPGA implementation is presented, explaining how to compare them in terms of hardware resources and statistical behavior. Section 3 describes our proposed design for a new chaotic PRNG, targeting a FPGA implementation. Then, in Section 4 the hardware platform used to evaluate all evoked chaotic PRNGs is presented. Statistical comparisons are provided in the same section, using the well-known TestU01 battery of tests. Finally, this article ends by a conclusion section, in which the contribution is recalled and intended future work is outlined.

2 CHAOTIC RANDOM NUMBER GENERATORS

This section first presents an exhaustive list of PRNGs that are linked to a chaotic behavior in one way or another. It next presents their FPGA implementation to compare them in terms of hardware resources and statistical behavior.

2.1 Chaotic PRNGs

Chaotic Mapping PRNG. Most of these generators are based on the Logistic Chaotic Map, also called the “LCG” map [May et al., 1976], defined as follows: \(x^{t+1} = r \times x^t(1 - x^t) \), where \(0 < x^t < 1 \) and \(r \) is the burtic potential (3.57 < \(r < 4.0 \)). The logistic map mainly depends on the parameter \(r \): its chaotic behavior is lost when \(r \) is out of the range provided above. The second most frequently used function is the Hénon chaotic map [Hénon, 1976], which takes a point \((x^t, y^t)\) within the plane square unit and maps it into a new point \((x^{t+1}, y^{t+1})\). This map is defined by these equations: \(x^{t+1} = (1 - a(x^t)^2) + y^t \) and \(y^{t+1} = bx^{t+1} \), where \(a \) and \(b \) are called canonical parameters.

In [Dabal and Pelka, 2011], the authors have used fixed point representation [Padgett and Anderson, 2009] to implement the logistic map using Matlab DSP System Toolbox software. They generate many designs with different lengths from 16 to 64 bits, where the resources are depending on the precision (24 to 53 bits). Authors of [Dabal and Pelka, 2012] compare this implementation with another chaotic PRNG based on the Hénon map.
Unlike the logistic map, the 64 bits multiplication in Hénon map cannot be implemented with a left shift operation, which leads to the use of DSPs blocks of the FPGA for all multiplications needed to implement $a(x^t)^2$. Two optimized versions of PRNGs based on chaotic logistic map are proposed in [Dabal and Pelka, 2014], which aim to reduce resources and increase frequency. The objective of these two PRNGs is to pipeline the multiplication operations and synchronize them while adding some delays into each stage, in order to ensure a parallel execution of sequences.

In [Pande and Zambreno, 2010], the authors vary the biotic potential r and observe the divergence of random for almost all initial values. Accordingly, they propose a range of the form $[\alpha, 1 - \alpha]$, where $\alpha < 0.5$. Another way to select the parameter r is presented in [Liu et al., 2008]. They propose a couple of two logistic map PRNGs, each having different seed and parameter $(x_0, r_1$ and y_0, r_2 respectively), where both generates pseudorandom numbers synchronously. The main idea is to recycle the pseudorandom number generated by the first chaotic map, namely x^{t+1}, as the biotic potential r_2 for the second one (y^{t+1}) when either $3.57 < x^{t+1} < 4$ is satisfied or the sequence output is divergent.

Finally, in [Giard et al., 2012] four different chaotic maps are implemented in FPGA, namely, the so-called Bernoulli, Chebyshev, Tent, and Cubic chaotic maps. The implementation is done with and without FPGA’s DSP blocks for the multiplication operations. The results show that the Bernoulli chaotic map gives a higher ratio of area/power compared to the other chaotic proposed generators.

Chaotic based Timing Reseeding (CTR). Authors of [Černák, 1996] address the short period problem due to the quantization error from a nonlinear chaotic map PRNG. Instead of initializing the chaotic PRNG with a new seed, the seed can be selected by masking the current state x^{t+1} at a specific time. More precisely, the reseeding unit compares the two register states to check whether a fixed point has been reached. This main concept of CTR was first implemented in FPGA [Li et al., 2006], in which the Carry Lookahead Adder has been used to optimise the critical path of the partial products of the multiplication operation. Authors of [Li et al., 2012] present more hardware details for reducing multiplication operation resources. They also mix the output from the PRNG with an auxiliary generator y^{t+1} to improve statistical tests. Finally, they suggest to choose a reseeding period that must be not only prime, but also not a multiple of the nonlinear chaotic map PRNG.

Differential Chaotic PRNG. This is a digitized implementation of a nonlinear chaotic oscillator system in Rössler format [Rossler, 1976]. It uses an approximated numerical solution to solve a generalization of the Lorenz hyperchaos equation. The resolution was the main study done in [Zidan et al., 2011a] with other differential systems as the Chen and Elwakil ones. The authors design various numerical methods for each system. They show that obtained results with the Euler numerical approach are the best regarding area and throughput perspectives.

More details regarding implementation and optimization of this Lorenz Equation are given in [Zidan et al., 2011b]. In this article, authors proposed to use again an Euler approximation with less area but same range of throughput. Authors of [Dabal and Pelka, 2012], for their part, have implemented the so-called Oscillator Frequency Dependent Negative Resistors (OFDNR) [Elwakil and Kennedy, 2000], and use the same Euler approximation.

Chaotic Iteration based PRNG (CIPRNG). Formally speaking, this is a random walk in the graph of iterations of a specific binary function. The direction to take and the path length are defined by the embedded generator(s). Practically, it can be seen as post processing treatment which adds chaos (as defined by Devaney) to the embedded PRNG [Guyeux and Bahi, 2010]. A first application of such an approach was presented in the PRNG framework, leading to the so-called chaotic
iterations based pseudorandom number generators (CIPRNG, [Fang et al., 2014, Bahi et al., 2013]). Since then, various improved versions have been proposed, one of them being designed specifically for FPGAs. This latter has been recently updated, in which two CIPRNG variants for FPGA have been designed, namely the XOR-CIPRNG and the CIPRNG-MultiCycle, see [Bakiri et al., 2016].

Meanwhile, in [Couchot et al., 2014], the authors have proposed to remove a Hamilton Cycle, satisfying some balance properties, from the Markov chain on the n-cube, while in [Contassot-Vivier et al., 2017], authors proposed new functions without a Hamilton Cycle, and studied the length of the walk in their cube, until having an associated Markov graph close enough to the uniform distribution. In these first studies, the minimum length of the chain between two uniform outputs is larger than 109, which id prohibitive.

2.2 FPGA Performance Analysis

In this section, Table 1 and Table 2 resume the implementation results of different chaotic PRNG presented in previous Section 2.1 and recall results of linear PRNGs (already presented in [Bakiri et al., 2016] which pass TestU01).

In order to compare the considered generators, we thus have computed throughput (rate), latency, and the ratio throughput/latency of both. Obtained results on FPGAs are provided in Tables 1 and 2. We can conclude that the three best chaotic generators for FPGA are, namely, the one from [Dabal and Pelka, 2014] that uses the logistic map with Matlab simulink macros, the chaotic iterations based PRNG [Bakiri et al., 2016], and the one based on the chaotic Bernoulli map [Giard et al., 2012].

If we consider the linear PRNGs who pass TestU01 (see section below), they have the worst throughput due to their use of multiplications and their various dependencies. However, to have a large throughput does not mean to produce an uniform distribution of numbers, which leads to the investigation of statistical results.

2.3 Statistical Tests

Statistical tests are fast methods to study in practice the randomness of generated numbers, by the mean of software batteries. They are based on various mathematical and physical approaches, and are thus used as generator benchmarks. To perform comparisons, in this study, we considered the reputed NIST SP800−22 [NIST, 2010] and TestU01 [L’Ecuyer and Simard, 2007] batteries of tests. On the one hand, the NIST battery, considers 15 tests to evaluate the randomness of a sequence of fixed length 10^6, where each test is passed if its p-value is larger than 0.0001. On the other hand, TestU01 [L’Ecuyer and Simard, 2007] is the most complete and stringent battery to pass, which embeds 7 big batteries that test more than 10^{32} pseudorandom values for each inputted generator. TestU01 consider passing tests if the p-value is $\in [0.001, 0.999]$.

From our first experiments, it can already be noticed that almost all chaotic PRNGs can pass the NIST batteries, but they fail on TestU01, with the exception of XOR-CIPRNG. Conversely, some linear PRNGs like PCG32, xorshift64*, or MRG32, chosen for comparison in this study, can also pass the TestU01. This is why the work in [Dabal and Pelka, 2014] and in [Giard et al., 2012], based on the logistic map and the Bernoulli one, will be used for throughput comparison, while linear PRNGs will be considered for statistical tests. We can however already conclude that only XOR-CIPRNG satisfies both low hardware resources and a success against the TestU01 battery, which has already been stated in [Bakiri et al., 2016].
3 THE PROPOSAL

The previous section ends with the idea that it is hard to have together the three properties of: chaos, hardware efficiency, and a random-like statistical profile.

3.1 General idea

Let us first discuss on how we tackle this problem. The first key idea is to have a short internal state, possibly split into parallel blocs. This divide and conquer approach aims at ensuring hardware efficiency but is in conflict with statistical quality. Chaotic iterations [Bahi et al., 2013, Fang et al., 2014] can be used to achieve chaos objectives. However, the general formulation of the chaotic iterations [Bahi et al., 2013] should be preferred than the original one when efficiency is needed. Finally, permutation techniques [O’Neill, 2016] have presented a convenient way to ensure statistical faultless, in a fast manner. Our proposal is based on these three main ideas and is summarized in Figure 1.

At first, it can be seen that the seed x^0, the internal state x^t, and the output x^{t+1} are all expressed with the same number N of bits. Without loss of generality, we consider hereafter that $N = 32$. Let us show how to produce a new output x^{t+1} for a given input x^t. This one is first split into n blocs of equal length. We consider here that $n = 4$ and we thus have $x^t = (x^t_1, x^t_2, x^t_3, x^t_4)$ where x^t_i is of size 8 for $i \in \{A, B, C, D\}$. The next step consists in obtaining a N-bits number s^t from another embedded PRNG, which is called the strategy. Similarly to x^t, the vector s^t is split into n blocs. Here we thus obtain $s^t = (s^t_1, s^t_2, s^t_3, s^t_4)$. Each s^t_i, $i \in \{A, B, C, D\}$, can be interpreted as a set of elements in $\{1, 2, ..., 8\}$. Each bloc s^t_i is modified separately as the result of the general formulation of the Chaotic Iterations [Bahi et al., 2013] applied on s^t_i, x^t_i and a specific function $f : \mathbb{B}^8 \rightarrow \mathbb{B}^8$, as described hereafter. The i-th component of x^{t+1}_i is the i-th one of $f(x^t_i)$ if i is within the set s^t_i, else this component is the i-th one of x^{t}_i (i.e., only the components indicated by the set s^t_i are updated). This results x^{t+1}_i. All the x^{t+1}_i are concatenated hereafter, producing the new internal state x^{t+1}. Finally, a permutation over the N bits is applied on x^{t+1} to produce the new output.
The choice of the function f executed inside the ICG iteration, of the embedded PRNG, and of the chosen final permutation function has a great influence on the quality of the generator. It is discussed in the next sections.

3.2 Iterated Function

Let $s \in (\mathbb{B}^8)^N$ be a sequence of subests of $\{1, \ldots, N\}$, x^0 be a vector in \mathbb{B}^8, and f be a function from \mathbb{B}^8 to \mathbb{B}^8. The sequence $(x^t)_{t \in \mathbb{N}}$ of vectors in \mathbb{B}^8 defined according the general formulation of the Chaotic Iterations [Bahi et al., 2015] is

$$x^{t+1} = (x_1^{t+1}, \ldots, x_N^{t+1}) \text{ where } x_i^{t+1} = \begin{cases} f_i(x^t) & \text{if } i \in s^t, \\ x_i^t & \text{otherwise.} \end{cases}$$

Two functions from \mathbb{B}^8 to \mathbb{B}^8 are mainly studied in this article. The former is the negation function, further denoted as NEG. In this one, each f_i is defined with $f_i(x) = \overline{x_i}$. For instance, the image of $5 = 00000101$ is $250 = 11111010$. The
latter, denoted as F1, is a function whose graph of generalized iterations is strongly connected and which has been obtained by removing a balanced Hamiltonian cycle in a \(N\)-cube following the method suggested in [Contassot-Vivier et al., 2017]. These two functions are recalled in Table 3. The choice of these two functions is motivated by the objective to make the iterations chaotic.

Table 3: Boolean functions

Function	\(x\) ∈ \([0,1,2,3,4,5,...,2^n-1]\)
\text{NEG}	255, 254, 253, 252, 251,..., 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
\(F_1\)	223, 190, 249, 236, 243, 234, 241, 252, 183, 244, 229, 245, 179, 178, 225, 248, 237, 254, 173, 232, 171, 202, 201, 200, 247, 198, 216, 199, 197, 195, 194, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, 172, 171, 170, 169, 168, 167, 166, 165, 164, 163, 162, 161, 160, 159, 158, 157, 156, 155, 154, 153, 152, 151, 150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0

3.3 Permutation Function

First of all, our proposal is a parallel execution of 4 blocks, each one producing 8 bits. The internal state \(x\) is next produced as the concatenation of the results of the 4 blocks. This design is guided by the goal of reducing the required resources. However, such an approach suffers from decreasing the statistical complexity of the PRNG: without any post treatment it would be dramatic, because it is equivalent to deal with 8 bits only. A final step which scrambles the internal state is thus necessary to tackle this problem.

This can be practically implemented with a permutation function (which allows to obtain a uniform output) provided it does not break the chaos property (as proven in the next section). Among the large choice of permutation functions (such as rotation, dropping, xorring...), we inspirate from one detailed in [O’Neill, 2016]. This work indeed proposes a bench of permutation functions allowing to succeed statistical tests.

This permutation function is implemented as in Algorithms[1] It is not hard to see that it is mainly a composition of three subfunctions. Let \(In_{32}\) be the internal state. The first function scrambles between 17 and 28 rightmost bits (i.e. middle bits) with a xor function. The number of selected elements depends on the value of \(In_{32}\). Then, the second function applies a modular multiplication in the cyclic group of elements in \(\{1,...,2^{31} - 2\}\). The chosen multiplier \(b\) is a primitive root of the modulus \(2^{31} - 1\). However, in [O’Neill, 2016] they need more than 36 bits of internal state to pass TestU01, which is equivalent of a modulus of \(2^{37} - 25\). Therefore, \(b\) is set to \(2^{77803737}\), but any primitive root of \(2^{37} - 25\) is convenient for their work in [O’Neill, 2016]. The latter function is a simple right xorshift on the lowest bits to scramble them.

Algorithm 1: Random Xorshift Permutation Function

Input: \(In_{32}\) 32-bit word

Output: \(Out_{32}\) (a 32-bit word)

\[
\begin{align*}
\text{word1} &\leftarrow (In_{32} \gg ((In_{32} \gg 28u) + 4u)) \otimes In_{32} \\
\text{word2} &\leftarrow \text{word1} \times b \\
\text{word3} &\leftarrow (\text{word2} \gg 22u) \otimes \text{word2} \\
\text{return } Out_{32} &\leftarrow \text{word3}
\end{align*}
\]
3.4 Chaotic behavior of our generator

Let us recall or specify first some notations and definitions in use in this section. In what follows, \mathbb{B} is the Boolean set, while \mathbb{N} is the usual sets of integer numbers. For $a,b \in \mathbb{N}$, $[a,b]$ is the set of integers: \{a,a+1,\ldots,b\}, $\mathcal{X}^{[l]}$ is the set of sequences belonging in \mathcal{X} and x^k is the k-th term of a sequence $s = (s^k)_{k \in \mathbb{N}}$, which may be a vector (thus explaining the use of an exponent). Finally, f^n means the n-th composition of the function f (i.e., $f^n = f \circ f \circ \ldots \circ f$).

In the proposal, the internal function h_f is iterated on the current internal state, and with a new term taken from the outer strategy. Then, the output is a permutation p of the internal state, which is not internally modified. The topological framework proposed in [Bakiri et al., 2016] for the CIPRNG-XOR and in [Contassot-Vivier et al., 2017] can be applied, mutatis mutandis, to this generator. It is then possible to state that iterations of the internal function are chaotic on its iteration space, denoted as $\mathcal{X}^{32} = \mathbb{B}^{32} \times [0,31]^{32}$. And, using a topological semi-conjugacy, that the permutation does not alter such an unpredictable behavior. After having established that the 8-bits ICG function, denoted as g_f, is strongly transitive on its iteration space \mathcal{X}^{8}, we can first deduce that the discrete dynamical system $x^0 \in \mathcal{X}^{8}, x^{n+1} = g_f(x^n)$ is chaotic, and then that h_f is chaotic according to Devaney.

Finally, the whole generator with the permutation p must be integrated inside the iterations, to see if the output has a chaotic behavior when modifying the input (internal state or strategy). To write the generator as a discrete dynamical system, we need to introduce the reverse permutation p^{-1}. To do so, let us define

$$p : \mathcal{X}^{32} \rightarrow \mathcal{X}^{32}
\quad (e,s) \mapsto (p(e),s),$$

its inverse being

$$p^{-1} : \mathcal{X}^{32} \rightarrow \mathcal{X}^{32}
\quad (e,s) \mapsto (p^{-1}(e),s).$$

We can now introduce the following diagram:

$$\begin{array}{ccc}
\mathcal{X}^{32} & \xrightarrow{h_f} & \mathcal{X}^{32} \\
\uparrow p^{-1} & \quad & \downarrow p \\
\mathcal{X}^{32} & \xrightarrow{g_f} & \mathcal{X}^{32}
\end{array}$$

p^{-1} and p are obviously continuous on $(\mathcal{X}^{32}, d_{32})$, which can be directly deduced by the sequential characterization of the continuity. So the commutative diagram depicted above is a topological conjugacy, and the generator

$$G_f = p^{-1} \circ h_f \circ p$$

thus inherits the chaotic behavior of h_f on $(\mathcal{X}^{32}, d_{32})$.

4 PLATFORM AND HARDWARE IMPLEMENTATION ON FPGA

In this section, the hardware implementation of the PRNG described in this article is executed the test platform presented in [Bakiri et al., 2016]. It uses a Xilinx Zynq-7000 (EPP) [Rajagopalan et al., 2011] and an AXI core selector deployed as a wrapper for PRNGs. The main methodology of comparison between PRNGs is
based on Xilinx Vivado tool 16.4 and Zybo Board 125MHz. For area comparison, we only considered LUT and FF as follows:

\[(LUT + FF) \times 8,\]

Rate, for its part, is the number of bits that are treated or transferred in each delay unit (Bps).

Table 4 presents the results of six different implementations of our proposal on FPGA with their TestU01 statistical test evaluations. During these implementations, we considered two distinct Boolean functions, namely the negation and F1 as mentioned in Section 3. Three PRNGs are used as strategies (inputted generators), which are LFSR113, Taus88, and xorshift128. Obtained results are described hereafter.

Negation Function. Three implementations have been realized and evaluated, see Table 4. Notice that in these 3 evaluations the value of the minimum modular multiplication operand \(b\) used in the permutation (see Section 5) function is not the same. To pass TestU01, it must be equal to 95 for all strategies as LFSR113, Taus88, and xorshift128 (as a comparison, we found 277803737 for PCG32). We have obtained that the negation function outperforms F1 in terms of throughput and area. Additionally, it is obviously more efficient than its best competitors recalled in this paper, as its throughput is between 1.0 and 4 times larger than the other chaotic PRNGs (that cannot pass TestU01), while it is 8 times faster than the linear PRNGs... with the exception of [Dabal and Pelka, 2014] using the logistic map: it is true that the latter has a throughput of 7.5 Gbps for 32bits, but with 2 times less area (we discarded [Dabal and Pelka, 2014], as this latter is fully dependent on Matlab Simulink macros, which is not relevant for ASIC implementation). Similarly, our three implementations using the negation function exhibit less robust results compared to XOR-CIPRNG [Bakiri et al., 2016] for throughput compared to the area. Finally, compared to the linear PRNGs that can pass TestU01 too, our three proposals with the negation function use less area and are faster. To conclude this part, and when considering the negation, our proposal using xorshift128 as strategy is our best candidate for FPGA, and with a throughput/latency equal to 6.7Gbps.

F1 function. We performed similar experiments than for the negation function. But, in these cases, the minimum modular multiplication operand \(b\) is always set to 811 for all strategies. We obtained a lower performance in terms of throughput when compared with the negation function, which is due to the multiplication operation in the permutation, and because in the negation we iterate a very simple logical operation (see Algorithm 1 to compare). However, despite its use of a bigger constant, which leads to a longer data path, the proposal with F1 does not consume any DSP block of FPGA: logic operators are sufficient. Additionally, results show that the three implementations with F1 function perform better than all the other chaotic PRNGs that can pass the TestU01, if we except both our proposal with the negation and the XOR-CIPRNG [Bakiri et al., 2016] their performances are close to what has been obtained with the negation function, or to [Bakiri et al., 2016] with Taus88 as strategy, while F1 makes harder to reverse the process without knowing the internal transition function.

To conclude this experiment section, all what we proposed can pass all statistical tests of TestU01, from SmallCrush to BigCrush. Let us recall that the permutation function [O’Neill, 2016] does not pass Crush and BigCrush when the space is lower than 36 bits, while in our case it does with only 32 bits and a lower modular multiplicative constant. These results can be improved with 64 or 128 bit outputted for a better throughput. Finally, compared to the other CPRNG evoked in this article, we presented the only ones who can pass the stringent TestU01 battery.
Table 4: FPGA Implementation Results

Function	Negation	F1
LUT	306	368
FF	306	368
DSP	0	0
RAM	0	0
Frequency (Mhz)	210.7	165
Area	4240	6392
Design Latency	3	3
Output Latency	1	1
Throughput/Latency (Gbps)	6.7	3.4

5 CONCLUSION

In this research work, we have introduced a new chaotic PRNG implemented in FPGA, which is based on the combination of parallel executions of generalized chaotic iterations and of an efficient permutation scheme. Two Boolean functions have been iterated: the vectorial negation and one issued from removing a Hamilton cycle in the N-cube. Three interesting strategy builders have been evaluated for each of them. These six variations lead to an hardware generator with one of the best throughput of the literature, and that can pass the most stringent statistical batteries of tests. If we consider the two conditions of throughput and statistics, we thus have obtained one of the best existing hardware generator.

This work is partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).

References

Bahi, J., Guyeux, C., and Wang, Q. (2009). A novel pseudo-random generator based on discrete chaotic iterations. In INTERNET'09, 1-st Int. Conf. on Evolving Internet, pages 71–76, Cannes, France.

Bahi, J. M., Couturier, R., Guyeux, C., and Heam, P.-C. (2015). Efficient and cryptographically secure generation of chaotic pseudorandom numbers on gpa. The journal of Supercomputing, 71(10):3877–3903.

Bahi, J. M., Fang, X., Guyeux, C., and Larger, L. (2013). Fpga design for pseudorandom number generator based on chaotic iteration used in information hiding application. Appl. Math, 7(6):2175–2188.

Bakiri, M., Couchot, J.-F., and Guyeux, C. (2016). Fpga implementation of t2-linear pseudorandom number generators based on zynq mpsoc: A chaotic iterations post processing case study. In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications - Volume 4: SECRYPT., pages 302–309.

Černák, J. (1996). Digital generators of chaos. Physics letters A, 214(3):151–160.

Contassot-Vivier, S., Couchot, J.-F., Guyeux, C., and Heam, P.-C. (2017). Random walk in a n-cube without hamiltonian cycle to chaotic pseudorandom number generation: Theoretical and practical considerations. International Journal of Bifurcation and Chaos, 27(01):1750014.

Couchot, J.-F., Heam, P.-C., Guyeux, C., Wang, Q., and Bahi, J. M. (2014). Pseudorandom number generators with balanced gray codes. In Security and Cryptography (SECRYPT), 2014 11th International Conference on, pages 1–7. IEE.
Dabal, P. and Pelka, R. (2011). A chaos-based pseudo-random bit generator implemented in fpga device. In Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2011 IEEE 14th International Symposium on, pages 151–154. IEEE.

Dabal, P. and Pelka, R. (2012). Fpga implementation of chaotic pseudo-random bit generators. In Mixed Design of Integrated Circuits and Systems (MIXDES), 2012 Proceedings of the 19th International Conference, pages 260–264. IEEE.

Dabal, P. and Pelka, R. (2014). A study on fast pipelined pseudo-random number generator based on chaotic logistic map. In Design and Diagnostics of Electronic Circuits Systems, 17th International Symposium on, pages 195–200.

Devaney, R. L. (2003). An Introduction to Chaotic Dynamical Systems, 2nd Edition. Westview Pr.

Elwakil, A. and Kennedy, M. (2000). Chaotic oscillator configuration using a frequency dependent negative resistor. International journal of circuit theory and applications, 28(1):69–76.

Fang, X., Wang, Q., Guyeux, C., and Bahi, J. M. (2014). Fpga acceleration of a pseudorandom number generator based on chaotic iterations. Journal of Information Security and Applications, 19(1):78–87.

Giard, P., Kaddoum, G., Gagnon, F., and Thibeault, C. (2012). Fpga implementation and evaluation of discrete-time chaotic generators circuits. In IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, pages 3221–3224. IEEE.

Guyeux, C. (2010). Le désordre des itérations chaotiques et leur utilité en sécurité informatique. Theses, Université de Franche-Comté.

Guyeux, C. and Bahi, J. (2010). An improved watermarking algorithm for internet applications. In INTERNET’2010. The 2nd Int. Conf. on Evolving Internet, pages 119 – 124, Valencia, Spain.

Hénon, M. (1976). A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics, 50(1):69–77.

L’Ecuyer, P. and Simard, R. (2007). Testu01: Ac library for empirical testing of random number generators. ACM Transactions on Mathematical Software (TOMS), 33(4):22.

Li, C.-Y., Chen, J.-S., and Chang, T.-Y. (2006). A chaos-based pseudo random number generator using timing-based reseeding method. In Circuits and Systems, 2006.ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, pages 4–pp. IEEE.

Li, C.-Y., Chen, Y.-H., Chang, T.-Y., Deng, L.-Y., and To, K. (2012). Period extension and randomness enhancement using high-throughput reseeding-mixing prng. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 20(2):385–389.

Li, T. Y. and Yorke, J. A. (1975). Period three implies chaos. Amer. Math. Monthly, 82(10):985–992.

Liu, S., Sun, J., Xu, Z., and Cai, Z. (2008). An improved chaos-based stream cipher algorithm and its vlsi implementation. In Networked Computing and Advanced Information Management, 2008. NCM’08. Fourth International Conference on, volume 2, pages 191–197. IEEE.

May, R. M. et al. (1976). Simple mathematical models with very complicated dynamics. Nature, 261(5560):459–467.
NIST (2010). National institute of standards and technology (nist): A statistical test suite for random and pseudorandom number generators for cryptographic applications @ONLINE.

O’Neill, M. E. (2016). PCG: A family of simple fast space-efficient statistically good algorithms for random number generation. submitted to ACM Transactions on Mathematical Software (47 pages).

Padgett, W. and Anderson, D. (2009). Fixed-Point Signal Processing. Synthesis lectures on signal processing. Morgan & Claypool.

Pande, A. and Zambreno, J. (2010). Design and hardware implementation of a chaotic encryption scheme for real-time embedded systems. In Signal Processing and Communications (SPCOM), 2010 International Conference on, pages 1–5. IEEE.

Pecora, L. M. and Carroll, T. L. (1990). Synchronization in chaotic systems. Physical review letters, 64(8):821.

Rajagopalan, V., Boppana, V., Dutta, S., Taylor, B., and Wittig, R. (2011). Xilinx zynq-7000 epp–an extensible processing platform family. In 23rd Hot Chips Symposium, pages 1352–1357.

Rossler, O. (1976). An equation for continuous chaos. Physics Letters A, 57(5):397–398.

Wiggins, S. (2003). Introduction to applied nonlinear dynamical systems and chaos, volume 2. Springer Science & Business Media.

Zidan, M. A., Radwan, A. G., and Salama, K. N. (2011a). The effect of numerical techniques on differential equation based chaotic generators. In Microelectronics (ICM), 2011 International Conference on, pages 1–4. IEEE.

Zidan, M. A., Radwan, A. G., and Salama, K. N. (2011b). Random number generation based on digital differential chaos. In Circuits and Systems (MWSCAS), 2011 IEEE 54th International Midwest Symposium on, pages 1–4. IEEE.