Supplementary Information

Density functional study on the CO oxidation reaction mechanism on MnN$_2$-doped graphene

Mingming Luoa, Zhao Lianga, Chao Liua,*, Xiaopeng Qia, Mingwei Chena, Hui Yanga, Tongxiang Lianga,*

a Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China

* Corresponding Authors.

E-mail address: liuchao198967@126.com (Chao Liu) and liang_tx@126.com (Tongxiang Liang).
Fig. S1 The Fukui function of (a) MnN$_2$C$_2$-hex, (b) MnN$_2$C$_2$-opp and (c) MnN$_2$C$_2$-pen, the isosurface value is 3 e/Å3.

Table S1 The adsorption energy (eV) of gas on MnN$_2$C$_2$.

	MnN$_2$C$_2$-hex	MnN$_2$C$_2$-opp	MnN$_2$C$_2$-pen
CO$_2$	−0.292	−0.270	−0.260
CO	−1.448	−1.318	−1.424
O$_2$	−1.778	−1.975	−1.655
CO + O₂ − 2.490 − 2.283 − 2.327
2CO − 2.423 − 2.524 − 2.395

Table S2 The energy barriers and reaction energies of CO oxidation along the ER mechanism. ΔE_{bar} represents reaction barrier (eV) and ΔE_{rea} represents reaction energy (eV).

Model	Reaction	ΔE_{bar}(eV)	ΔE_{rea}(eV)
MnN₂C₂-hex	CO₃→O+CO₂	0.704	−0.193
	O₂+CO→O+CO₂	1.101	−3.620
MnN₂C₂-opp	CO₃→O+CO₂	0.961	−0.126

Fig. S2 Structure of O₂ decomposition reaction on (a) MnN₂C₂-hex and (b) MnN₂C₂-opp. ΔE_{bar} represents reaction barrier (eV) and ΔE_{rea} represents reaction energy (eV).
Fig. S3 Structure of the CO + *O₂ → *CO + *O₂ reaction on (a) MnN₂C₂-hex and (b) MnN₂C₂-pen. ΔE_{bar} represents reaction barrier (eV) and ΔE_{rea} represents reaction energy (eV).
Fig. S4 The second CO is adsorbed on the Mn atom to form structure of two CO co-adsorption on (a) MnN$_2$C$_2$-hex, (b) MnN$_2$C$_2$-opp and (c) MnN$_2$C$_2$-pen. ΔE$_{\text{bar}}$ represents reaction barrier (eV) and ΔE$_{\text{rea}}$ represents reaction energy (eV).
Fig. S5 Structure of the oxidation of CO on MnN$_2$C$_2$-pen along the LH and TER mechanisms.

Fig. S6 Structure of the oxidation of CO on MnN$_2$C$_2$-hex along the LH and TER mechanisms.
Fig. S7 Molecular dynamics trajectory of intermediate product OCOO spontaneously decomposes into O and CO₂ on MnN₂C₂-hex at 350 K with snapshots of intermediates at different times.