A property of discriminants

Vladimir Petrov Kostov
Université Côte d’Azur, CNRS, LJAD, France
e-mail: kostov@math.unice.fr

Abstract

For the family $P := x^n + a_1 x^{n-1} + \cdots + a_n$ of complex polynomials in the variable x we study its discriminant $R := \text{Res}(P, P', x)$, $R \in \mathbb{C}[a]$, $a = (a_1, \ldots, a_n)$. When R is regarded as a polynomial in a_k, one can consider its discriminant $\hat{D}_k := \text{Res}(R, \partial R/\partial a_k, a_k)$. We show that $\hat{D}_k = c_k(a_k) d(n,k) M_k^2 T_k^3$ where $c_k \in \mathbb{Q}^*$, $d(n,k) := \min(1, n-k) + \max(0, n-k-2)$, the polynomials $M_k, T_k \in \mathbb{C}[a_k]$ have integer coefficients, $a_k = (a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_n)$, the sets $\{M_k = 0\}$ and $\{T_k = 0\}$ are the projections in the space of the variables a_k of the closures of the strata of the variety $\{R = 0\}$ on which P has respectively two double roots or a triple root. Set $P_k := P - x P'/ (n-k)$ for $1 \leq k \leq n-1$ and $P_n := P'$. One has $T_k = \text{Res}(P_k, P'_k, x)$ for $k \neq n-1$ and $T_{n-1} = \text{Res}(P_{n-1}, P'_{n-1}, x)/a_n$.

AMS classification: 12E05; 12D05

Key words: polynomial in one variable; discriminant set; resultant; multiple root

1 Introduction

In the present paper we consider the general family of monic degree n complex polynomials in one variable $P := x^n + a_1 x^{n-1} + \cdots + a_n$. (For $a_1 = 0$ this is the versal deformation of the A_{n-1} singularity, see [2]). Its discriminant is the resultant $R := \text{Res}(P, P', x)$, i.e. the determinant of the Sylvester matrix $S(P, P', x)$. We remind that $S(P, P', x)$ is $(2n-1) \times (2n-1)$, its first (resp. nth) row equals

$$(1, a_1, \ldots, a_n, 0, \ldots, 0) \quad \text{(resp.} \quad (n, (n-1)a_1, \ldots, a_{n-1}, 0, \ldots, 0) \quad),$$

its second (resp. $(n+1)$st) row is obtained by shifting the first (resp. the nth) one to the right by one position while adding 0 to the left etc. Set $a := (a_1, \ldots, a_n)$, $a^k := (a_1, \ldots, a_{k-1}, a_{k+1}, \ldots, a_n)$ and $R_{ak} := \partial R/\partial a_k$. It is well-known that:

A) R is a quasi-homogeneous polynomial in the coefficients a_j, where the quasi-homogeneous weight of a_j equals j. It is a degree n polynomial in each of the variables a_j, $1 \leq j \leq n-1$, and a degree $n-1$ polynomial in a_n.

B) The set $\{R = 0\}$ is the set of values of the coefficients a_j for which P has a multiple root. It contains the subsets Σ and \tilde{M} (the Maxwell stratum) such that for $a \in \Sigma$ (resp. $a \in \tilde{M}$) the polynomial P has a root of multiplicity 3 (resp. has two different double roots). The semi-algebraic sets Σ and \tilde{M} are irreducible. Indeed, the closure of Σ is the image of the map $\mathbb{C}^{n-2} \to \mathbb{C}^{n-2}$, $(z_1, z_4, z_5, \ldots, z_n) \mapsto a$, where in the computation of $(-1)^j a_j$ as jth elementary symmetric function of z_1, \ldots, z_n one sets $z_2 = z_3 = z_1$; the closure of \tilde{M} is the image of the map $\mathbb{C}^{n-2} \to \mathbb{C}^{n-2}$, $(z_1, z_3, z_5, z_6 \ldots, z_n) \mapsto a$, where in the computation of a one sets $z_2 = z_1$ and
It is easy to see that the intersections of the sets Σ and \tilde{M} with each of the subspaces \(\{a_j = 0\} \) are proper subsets of Σ and \tilde{M}.

One can consider R as a polynomial in a_k, with coefficients in $\mathbb{C}[a^k]$. Thus one is led to consider the repeated resultants $\tilde{D}_k := \text{Res}(R, R_{a_k}, a_k)$. The following result is proved in [5] (see Proposition 7 there):

Lemma 1. Set $d(n, k) := \min(1, n - k) + \max(0, n - k - 2)$. The polynomial \tilde{D}_k equals $(a_n)^{d(n, k)} \tilde{D}_k^0$, where $\tilde{D}_k^0 \in \mathbb{C}[a]$ is not divisible by any of the variables a_i, $1 \leq i \leq n$.

Example 2. For $n = 3$ one has $P := x^3 + ax^2 + bx + c$, $P' = 3x^2 + 2ax + b$ and

$$R := \text{Res}(P, P', x) = 4a^3c - a^2b^2 - 18abc + 4b^3 + 27c^2.$$

Set $\tilde{D}_a := \text{Res}(R, \partial R/\partial a, a)$ and similarly for \tilde{D}_b and \tilde{D}_c. Hence

$$\tilde{D}_a = -64c(b^3 - 27c^2)^3, \quad \tilde{D}_b = -64c(a^3 - 27c)^3 \quad \text{and} \quad \tilde{D}_c = -432(-3b + a^2)^3.$$

Example 3. For $n = 4$ one has $P := x^4 + ax^3 + bx^2 + cx + d$, $P' = 4x^3 + 3ax^2 + 2bx + c$ and

$$R := \text{Res}(P, P', x) = -27a^4d^2 + 18a^3bcd - 4a^3c^3 + a^2b^2c^2 + 144a^2bd^2 - 4a^2b^3d$$

$$-6a^2c^2d - 80abc^2d + 18abc^3 - 192acd^2 + 16b^4d$$

$$-4b^3c^2 - 128b^2d^2 + 144bc^2d - 27c^4 + 256d^3.$$

One finds that

$$\tilde{D}_a = 6912d^2M_a^2T_a^3, \quad \tilde{D}_b = -4096dM_b^2T_b^3, \quad \tilde{D}_c = 6912dM_c^2T_c^3 \quad \text{and} \quad \tilde{D}_d = 4096M_d^2T_d^3,$$

where the factors $M_a, T_a, M_b, \ldots, T_d$ are irreducible:

$$M_a = 16b^2d^2 - 8bc^2d + c^4 - 64d^3, \quad T_a = 3b^4d - b^3c^2 + 72b^2d^2 - 108bc^2d + 27c^4 + 432d^3$$

$$M_b = a^2d - c^2, \quad T_b = 27a^4d^2 - a^3c^3 - 6a^2c^2d - 768acd^2 + 27c^4 + 4096d^3$$

$$M_c = a^4 - 8a^2b + 16b^2 - 64d, \quad T_c = 27a^4d^2 - a^2b^3 - 108a^2bd + 3b^4 + 72b^2d + 432d^2$$

$$M_d = a^3 - 4ab + 8c, \quad T_d = 27a^3c - 9a^2b^2 - 108abc + 32b^3 + 108c^2.$$

One can notice that the equation $M_b = 0$ defines the Whitney umbrella.

We prove the following theorem:

Theorem 4. For $n \geq 4$ the polynomial \tilde{D}_k is of the form $c_k(a_n)^{d(n, k)}M_k^2T_k^3$, where $c_k \in \mathbb{Q}^*$, the degree $d(n, k)$ is defined in Lemma 7 and the polynomials $M_k, T_k \in \mathbb{C}[a^k]$ are with integer coefficients and irreducible. The zero sets of these polynomials are the closures of the projections in the space of the variables a^k of the sets \tilde{M} and Σ.

The proofs of Theorem 4, Lemma 7 and Lemma 8 are to be found in Section 3.

Acknowledgement. The author is grateful to B.Z. Shapiro from the University of Stockholm for the formulation of the problem and its subsequent discussions.
2 Comments and lemmas

Theorem 4 is formulated for \(n \geq 4 \) because for \(n < 4 \) the set \(\tilde{M} \) does not exist. In Example 2 only the cubes of the factors \(T_k \) and the powers of \(a_n \) (i.e., of \(c \)) are present.

It is well-known that \(R = \prod_{1 \leq i < j \leq n} (z_i - z_j)^2 \). Denote by \(\Delta \) the union of hyperplanes \(\{ z_i = z_j \} \) in the space \(\mathbb{C}^n \) of the roots of the polynomial \(P \). In the last presentation of \(R \) as a product it is necessary to have the differences of roots \(z_i - z_j \) squared because when the roots change continuously along a loop avoiding the set \(\Delta \) so that in the end two of them are exchanged, then such an exchange should not change the value of \(R \).

By analogy, the fact that the power of the factor \(T_k \) in the formula for \(\tilde{D}_k \) in Theorem 4 is a multiple of 3 can be explained like this. At a point \(a = a^* \in \Sigma \) (we assume that \(a^* \notin \Sigma \setminus \Sigma \)) three roots \(z_1, z_2, z_3 \) of \(P \) coalesce. For fixed nearby values of \(a^k \) the polynomial \(R \) (when considered as a polynomial in \(a_k \)) has two roots \(\zeta_1 \) and \(\zeta_2 \) that coalesce for \(a^k = a^{*k} \) (the projection of \(a^* \) in the space of the variables \(a^k \)). These roots correspond to equalities and inequalities between the roots of \(P \) of the form \(z_1 = z_2 \neq z_3 \) and \(z_1 \neq z_2 = z_3 \) for \(a^k \neq a^{*k} \), and to \(z_1 = z_2 = z_3 \) for \(a^k = a^{*k} \). When the \((n-1)\)-tuple of coefficients \(a^k \) circumvents the projection \(\Sigma_k \) of \(\Sigma \) in the space of the variables \(a^k \) along a generic loop, the three roots \(z_i \) of \(P \) undergo a cyclic permutation of order 3 and now the roots \(\zeta_1 \) and \(\zeta_2 \) of \(R \) correspond to other equalities and inequalities between the roots \(z_i \), namely, to \(z_3 = z_1 \neq z_2 \) and \(z_3 \neq z_1 = z_2 \). In order \(\tilde{D}_k \) to be invariant w.r.t. such permutations the power of \(T_k \) dividing the resultant \(\tilde{D}_k \) must be a multiple of 3.

For the power of \(M_k \) being even a similar explanation exists. To this end we remind first some facts about \(R \) for \(n = 4 \). The formula for \(R \) was obtained in Example 3. On Fig. 1 we show for real values of \(c \) and \(d \) the sets \(\{ R = 0 \}|_{a=0,b=-1}, \{ R = 0 \}|_{a=b=0} \) and \(\{ R = 0 \}|_{a=0,b=1} \) (from left to right) which are symmetric w.r.t. the \(d \)-axis. This figure can be compared with the well-known double point of the swallowtail catastrophe, see 7. Fig. 1 gives a sufficient idea about the set \(\{ R = 0 \}|_{a=0} \) because the set \(\{ R = 0 \} \) is invariant under the quasi-homogeneous dilatations \(a \mapsto ta, b \mapsto t^2b, c \mapsto t^3c, d \mapsto t^4d, t \neq 0 \).

At the points \(U \) and \(V \) the polynomial \(P \) has a triple real and a simple real root \((U \) and \(V \) are ordinary 2/3-cusp points for the real curve \(\{ R = 0 \}|_{a=0,b=-1} \). One has

\[
\Sigma \cap \{ a = 0, b = -1 \} = \{ U, V \}, \quad \tilde{M} \cap \{ a = 0, b = -1 \} = \{ S \}.
\]

At the point \(S \) (with \(d \)-coordinate equal to 1/4) the curve \(\{ R = 0 \}|_{a=0,b=-1} \) has transversal self-intersection and the polynomial \(P \) has two double real roots. At the point \(T \) (which is an isolated double point of the real curve \(\{ R = 0 \}|_{a=0,b=1} \), with \(d \)-coordinate equal to 1/4) the polynomial \(P \) has a double complex conjugate pair. At the points \(I, J \) and \(K \) one has \(c = d = 0 \). The real curves \(\{ R = 0 \}|_{a=0,b=-1} \) and \(\{ R = 0 \}|_{a=0,b=1} \) are smooth at \(I \) and \(K \) respectively while \(\{ R = 0 \}|_{a=b=0} \) has a 4/3-type singularity at \(J \).

From now on we keep in mind that the set \(\{ R = 0 \} \) can be defined in both contexts – the ones of real or of complex variables \(x, a, b, c \) and \(d \). In this sense we make use of Fig. 1 as an illustration of the real case and as a hint for the complex one. Why for \(n = 4 \) the powers of the factors \(M_k \) should be even is suggested by the following lemma. For \(n > 4 \) the analogs of the loops \(\tilde{\gamma} \) and \(\Gamma \) of the lemma exist in a neighbourhood of any value of the parameters \(a_j \) for which the polynomial \(P \) has a quadruple root, but their explicit construction is harder to describe.

Lemma 5. In the complex case there exists a loop \(\tilde{\gamma} \) belonging to the space of variables \((b, c)\) which can be lifted to a loop \(\Gamma \subset \{ R = 0 \}|_{a=0} \) circumventing the set \(\Sigma \cup \tilde{M} \) such that any fibre
of the projection $\Gamma \rightarrow \gamma$ consists of two points and the monodromy defined on the fibre after one turn along γ is nontrivial.

Proof. In what follows an additional index d denotes the projection of a given set in the space of variables (b, c, d) (a is presumed equal to 0) into the space of variables (b, c). Consider the point A on Fig. 1. We are going to construct a continuous path $\gamma \subset \{R = 0\}_{a=0}$ leading from A to G, one of the two points of $\{R = 0\}_{a=0}$ which share with A the same b- and c-coordinates as shown on Fig. 1. As b increases from -1 to 1, the point A becomes the point B for $b = 0$ and then C for $b = 1$. Then we decrease c by keeping the same value of b – this gives the arc CKD. Then we fix c and decrease b – this gives the arc DEF. Finally we add the arc FG. The thus constructed path is real. Three remarks will be needed for what follows:

1) The path γ, in its part between the points A and F, can be constructed as symmetric w.r.t. the plane $\{c = 0\}$.

2) The projection Σ_d of Σ is defined by $32b^3 + 108c^2 = 0$, i.e. $8b^3 + 27c^2 = 0$; the equation of this semi-cubic parabola is obtained from the equation $T_d = 0$ by setting $a = 0$, see Example 3. There exists a unique number $b_0 \in (-1, 0)$ such that for $b = b_0$ the projection γ_d of γ intersects Σ_d at two points $(b_0, \pm c_0)$.

3) In the real case the path γ has to pass through the point $S \in \tilde{M}$, but in the complex one γ can be modified so that it circumvent S. The points of the modified path γ which are close to S do not have all their coordinates real.

Now we construct (in the complex case) a path $\gamma^1 \subset \{R = 0\}_{a=0}$ leading from G to A and satisfying the condition $\gamma^1_a = \gamma_d$. At the same time we modify the path γ in order to have this condition. If the path γ_1 is defined such that $\gamma^1_d = \gamma_d$, then for $b = b_0$, γ_1 will intersect the set Σ. Therefore for b close to b_0 we modify γ_1 and γ so that γ^1 avoid the set Σ. (We make two such modifications, corresponding to points of γ_d and γ^1_d close to (b_0, c_0) and to $(b_0, -c_0)$. The modifications can be made symmetrically w.r.t. the plane $\{c = 0\}$.)

For the values of b close to b_0 the points of γ do not have all their coordinates real. As for γ^1, its points do not have all coordinates real not only for b close to b_0, but also for $b \in [b_0, 1]$ (recall the construction of the arcs ABC and DEF of γ) and for $b = 1, c \neq 0$ (recall the construction of its arc CKD). Indeed, as R is a degree 3 polynomial in d, then in the real case it has either three real roots (see for instance the vertical line on the left part of Fig. 1 which intersects the set $\{R = 0\}$ at three points two of which are A and G) or one real and two complex conjugate ones; this is, in particular, the case of any vertical line different from the d-axis for $b = 1$, see

![Figure 1: The sets $\{R = 0\}_{a=0,b=-1}$, $\{R = 0\}_{a=b=0}$ and $\{R = 0\}_{a=0,b=1}$ for $n = 4$.](image)
the right part of Fig. 1. (The d-axis on the right part of the figure corresponds to one simple root at 0 and a double one at $1/4$. One simple and one double real root is also the situation observed on the vertical lines passing through the points U and V.)

To obtain the proof of the lemma one sets $\gamma = \gamma_d = \gamma_1^1$ and one defines the loop Γ as the concatenation of γ and γ_1^1. For points of γ and γ_1^1 close to the point S one has $\gamma_d = \gamma_1^1$ and no self-intersection of Γ takes place. □

Remarks 6. (1) To prove Theorem 4 we need to recall some notation and results from [5]. Suppose that G_1 and G_2 are polynomials in several variables one of which is denoted by y. By $S(G_1, G_2, y)$ we denote the Sylvester matrix of G_1 and G_2 when considered as polynomials in y. We set $P_k := P - xP'/(n - k)$ for $1 \leq k \leq n - 1$ and $P_n := P'$.

(2) It is shown in [5] that for $k \neq n - 1$ the polynomial $V_k := \text{Res}(P_k, P', x)$ is irreducible and that the polynomial $\text{Res}(P_{n-1}, P_n', x)$ is the product of a_n and an irreducible polynomial in a_n^{-1}. We set $V_{n-1} := \text{Res}(P_{n-1}, P_n', x)/a_n$. It follows from Theorem 12 of [5] that $V_k = T_k$, $k = 1, \ldots, n$. Theorem 4 allows to find the polynomials M_k and T_k; however the definition of T_k as $T_k = V_k$ is an easier way to find T_k.

(3) We denote by $\text{QHD}(U)$ the quasi-homogeneous degree of a quasi-homogeneous polynomial $U \in \mathbb{C}[a]$, where the quasi-homogeneous weight of a_k is k.

(4) Set $Q_k := (n - k)P_k = (n - k)P - xP'$, $k \leq n - 1$, $Q_n := P'$. When we compare polynomials P_k, Q_k, R or V_k for two consecutive values of n (i.e. for n and $n + 1$) we write P_n, P_{n+1}, Q_n, Q_{n+1}, R_n, R_{n+1} or V_n, V_{n+1}. Notice that as $Q_k = -kx^n + \sum_{j=1}^{n}(j - k)a_jx^{n-j}$, one has

$$Q_k^{n+1} = xQ_k^n + (n + 1 - k)a_{n+1} \quad \text{and} \quad (Q_k^{n+1})' = x(Q_k^n)' + Q_k^n. \quad (1)$$

In the following lemma and its proof Ω denotes unspecified nonzero rational numbers.

Lemma 7. (1) One has $V_* := V_k^{n+1}|_{a_{n+1} = 0} = \Omega(a_n)^2V_k^n$ for $1 \leq k \leq n - 2$, $V_* = \Omega(a_n)^3V_k^n$ for $k = n - 1$ and $V_* = \Omega(a_{n-1})^3V_k^n$ for $k = n$.

(2) One has $R_{n+1}|_{a_{n+1} = 0} = \pm a_n^2R_n$.

The following lemma announces the quasi-homogeneous degrees of certain polynomials that appear in this text:

Lemma 8. For $n \geq 4$ one has the following quasi-homogeneous degrees of polynomials:

(1) $\text{QHD}(R) = \text{QHD}(V_k) = n(n - 1)$, $1 \leq k \leq n - 2$.

(2) $\text{QHD}(V_{n-1}) = n(n - 2)$.

(3) $\text{QHD}(V_n) = (n - 1)(n - 2)$.

(4) $\text{QHD}(R_{a_n}) = n(n - 1) - k$, $1 \leq k \leq n - 2$, $\text{QHD}(R_{a_{n-1}}) = n^2 - 3n + 1$, $\text{QHD}(R_{a_n}) = n^2 - 4n + 2$.

(5) $\text{QHD}(\tilde{D}_k) = n(n - 1)^2 + n^2(n - k - 1)$, $1 \leq k \leq n - 1$, $\text{QHD}(\tilde{D}_n) = n(n - 1)(n - 2)$.

(6) $\text{QHD}(M_k) = n^3 - 3n^2 + 2n - (n^2 - n)(k + 1)/2$, $1 \leq k \leq n - 2$, $\text{QHD}(M_{n-1}) = n(n - 2)(n - 3)/2$.

(7) $\text{QHD}(M_n) = (n - 1)(n - 2)(n - 3)/2$.

3 Proofs

Proof of Lemma 7. The equality $A = [B]_{i, r}$ means that the matrix A is obtained from the matrix B by deleting its ith row and rth column. Prove part (1). In the proof of the lemma we use the polynomials Q_k instead of P_k. For $1 \leq k \leq n - 2$ set $Q_* := Q_k^{n+1}|_{a_{n+1} = 0} = xQ_k^n$. Consider the $(2n + 1, 2n + 1)$-Sylvester matrix $S_* := S(Q_*, Q'_*, x)$. The only nonzero entry in its last column
is Ωa_n in position $(2n + 1, 2n + 1)$. Hence when finding its determinant ΩV_n one can develop it w.r.t. the last column to obtain $V_n = \Omega a_n V_*$, where $V_* = \det S_{**}$, $S_{**} = [S_j]_{2n+1,2n+1}$.

Subtract for $j = 1, \ldots, n$ the jth row of S_{**} from its $(n + j)$th row. This doesn’t change V_*. Hence the terms Ωa_n disappear in the $(n + 1)$st, \ldots, $(2n)$th rows of S_{**}, see (1). The only nonzero entry of the new matrix (denoted by S_{***}) in its last column is Ωa_n in position $(n, 2n)$. It is easy to see that $[S_{***}]_{n,2n} = S(Q^{n+1}_k, (Q^{n+1}_k)', x)$ (this can be deduced from (1)). Hence $V_* = \det S_{**} = \Omega a_n V_k^*$ and $V_* = \Omega(a_n)^2 V_k^*$.

For $k = n - 1$ the above reasoning differs only in the end – one defines V_{n-1}^n not as $\det([S_{***}]_{n,2n})$ (the latter is divisible by a_n), but as $\det([S_{***}]_{n,2n})/a_n$. Hence $V_* = \Omega(a_n)^2 V_{n-1}^n$.

For $k = n$ consider the $(2n + 1) \times (2n + 1)$-matrix $S^0 := S(Q^{n+1}_n, (Q^{n+1}_n)', x)$. Its last column contains a single nonzero entry (in position $(n, 2n + 1)$). By definition $S^0 = \Omega a_{n+1} V_{n+1}^n$. Hence $V_* = \Omega \det S^1$, where $S^1 = ([S^0]_{n,2n+1})|_{a_n=1}=0$.

The last column of S^1 contains a single nonzero entry (Ωa_{n-1} in position $(2n, 2n)$), so to find $\det S^1$ one can develop it w.r.t. the last column. This gives $V_* = \Omega a_{n-1} \det S^1$, where $S^1 = [S^1]_{2n,2n}$.

Subtract the jth row of S^1 from its $(n - 1 + j)$th one, $j = 1, \ldots, n - 1$; hence the terms Ωa_{n-1} disappear in the nth, \ldots, $(2n - 2)$nd rows (see (1)). This gives the matrix S^1 such that $\det S^1 = \det S^0$.

The only nonzero entry in the last column of S^1 is Ωa_{n-1} in position $(2n - 1, 2n - 1)$. Hence $\det S^1 = \Omega a_{n-1} \det S^1$, where $S^1 = [S^1]_{2n-1,2n-1}$. The only nonzero entry of S^1 in its last column is in position $(n - 1, 2n - 2)$ and equals Ωa_{n-1}. Thus $V_* = \Omega(a_{n-1})^2 \det S^1$, where $S^1 = [S^1]_{n-1,2n-2}$. The $(2n - 3) \times (2n - 3)$-matrix S^1 contains $S(Q_n^a/x, (Q_n^a/x)', x)$, i.e. $\Omega S((P^n)^a, (P^n)^a)'$.

To prove part (2) one notices that for $a_{n+1} = 0$ one has $P^{n+1}_a = x P^n_a$ and the Sylvester matrix $S^1 := S(x P^n_a, (x P^n_a)', x)$ contains a single nonzero entry in its last column, namely a_n in position $(2n + 1, 2n + 1)$. Set $S^2 := [S^1]_{2n+1,2n+1}$. Hence $R^{n+1}_1|_{a_{n+1}=0} = \det S^1 = a_n \det S^2$. For $j = 1, \ldots, n$ subtract the jth row of S^2 from its $(n + j)$th one. The newly obtained matrix (denoted by S^3) has a single nonzero entry in its last column. This is a_n in position $(n, 2n)$. Set $S^3 := [S^2]_{n,2n}$. Hence $\det S^2 = \pm a_n \det S^3$, i.e. $R^{n+1}_1|_{a_{n+1}=0} = \pm a_n^2 \det S^3$. On the other hand $S^3 = S(P^n, (P^n)', x)$ from which part (2) follows.

\[\square\]

Proof of Lemma 3 We denote by W any of the polynomials R, V_k, $k \leq n - 2$, or $a_n V_{n-1}$ and we remind that $T_k = V_k$, see Remarks 3. Any polynomial W contains a monomial βa_n^{n-1}, $\beta \neq 0$. Indeed, the only positions in which the matrix $S(W, W', x)$ contains the variable a_n are $(i, n + i)$, $i = 1, \ldots, n - 1$; in these positions the matrix has terms of the form ηa_n, $\eta \neq 0$. When $\det(S(W, W', x))$ is computed, these terms are multiplied by the constant nonzero terms in positions $(n - 1 + j, j)$, $j = 1, \ldots, n$ to give the only monomial of the form βa_n^{n-1} in $\det(S(W, W', x))$. Hence $QHD(R) = QHD(V_k) = QHD(a_n V_{n-1}) = n(a_n - 1)$ which proves parts (1) and (2). The proof of part (3) is analogous (one considers polynomials W of degree $n - 1$ instead of n and a_{n-1} plays the role of a_n).

Part (4) follows from parts (1), (2) and (3) – when R is differentiated w.r.t. a_k, its quasi-homogeneous degree decreases by k.

Prove part (5). For $a_i = 0$, $k \neq i \neq n$, $k < n$, one has $R = \Omega a_k a_n^{n-k-1} + \Omega_2 a_n^{n-1}$, $\Omega_1 \neq 0 \neq \Omega_2$, see Statement 8 in [3]. Therefore the Sylvester matrix $S(R, R_{a_k}, a_k)$ has only the following nonzero entries, in the following positions:

\[\square\]
Suppose that for some $P_k \leq \{ m \}$ intersection of P_n double roots and x not smooth (see Theorem 4 in [5]). It is not smooth also at points for which $a_i = 0$ (i.e. points of ∂R^a, ∂R^b, ∂R^c, ∂R^d). Further we prove the theorem by induction on n. Hence a priori the polynomial $\tilde{\Omega}'(2) = \tilde{\Omega}'(2)$ has only the following nonzero entries, in the following positions:

$$
\begin{align*}
\Omega_3 \text{ at } (i, i) , \\
\Omega_4 a_{n-1} \text{ at } (i, n-1 + i) , \\
\text{and } n \Omega_1 a_{n-k-1} \text{ at } (n-1 + j, j) , \\
\end{align*}
$$

Hence its determinant equals $\tilde{\Omega}' a_{n-1}^{(n-2)}$, $\tilde{\Omega}' \neq 0$. Part (5) is proved.

Part (6) follows from the previous parts, from Lemma [1] and from Theorem [4]. Indeed, for $k \leq n-2$ one has

$$
\begin{align*}
\text{QHD}(M_k) &= (\text{QHD}(\tilde{D}_k) - 3\text{QHD}(V_k - n(n-k-1)))/2 \\
&= (n(n-1)^2 + n^2(n-k-1) - 3n(n-1) - n(n-k-1))/2 \\
&= n^3 - 3n^2 + 2n - (n^2 - n)(k+1)/2 \\
\end{align*}
$$

For $k = n-1$ one obtains

$$
\begin{align*}
\text{QHD}(M_{n-1}) &= (\text{QHD}(\tilde{D}_{n-1}) - 3\text{QHD}(V_{n-1}) - n)/2 \\
&= (n(n-1)^2 - 3n(n-2) - n)/2 = n(n-2)(n-3)/2 \\
\end{align*}
$$

Finally for $k = n$ one gets

$$
\begin{align*}
\text{QHD}(M_n) &= (\text{QHD}(\tilde{D}_n) - 3\text{QHD}(V_n))/2 = (n-1)(n-2)(n-3)/2 \\
\end{align*}
$$

Proof of Theorem [4]. At a point of the set $\{ R = 0 \}$, where P has one double nonzero root and $n-2$ simple roots, this set is locally the graph of a function analytic in the variables a^k, for any $1 \leq k \leq n$; if the double root is at 0, then this property holds for $k = n$ and fails for $1 \leq k \leq n-1$; at a point of this set for which P has a root of multiplicity ≥ 3 the set is not smooth (see Theorem 4 in [5]). It is not smooth also at points for which P has $m \geq 2$ double roots and $n-2m$ simple ones; at such points the set $\{ R = 0 \}$ is locally the transversal intersection of m smooth hypersurfaces (see part (1) of Remarks 6 in [5]).

Hence a priori the polynomial \tilde{D}_k is of the form $(a_n)^s M^a_k T^b_k$, where $s_k \in \mathbb{N} \cup 0$, $\alpha_k, \beta_k \in \mathbb{N}$, $\{M_k = 0\}$ (resp. $\{T_k = 0\}$) is the projection of the set \bar{M} (resp. of \bar{T}) in the space of the variables a^k. The equality $s_k = d(n, k)$ follows from Lemma [1].

Further we prove the theorem by induction on n. For $n = 4$ its proof follows from Example [3].

Suppose that for some $a \in \mathbb{C}^{n+1}$ the polynomial P^{n+1} has a simple root $h \in \mathbb{C}$. Set $x \mapsto x + h$. The new polynomial P^{n+1} has a simple root at 0 hence $a_{n+1} = 0$. The discriminant R^{n+1} depends only on the differences between the roots of P^{n+1} hence it remains invariant under shifts of the variable x. For $a_{n+1} = 0$ one can apply Lemma [7]. The lemma implies that for $k \leq n-1$ the discriminant $\text{Res}(R^{n+1}, \partial R^{n+1}/\partial a_k, a_k)$ is of the form $a^k_n M^2_k T^3_k$, $t_k \in \mathbb{N}$, i.e. one
has $\alpha_k = 2$ and $\beta_k = 3$ for $k \leq n - 1$, $a_n \neq 0$ and $a_{n-1} \neq 0$. The sets \tilde{M} and Σ are irreducible and their intersections with each of the subspaces \(\{ a_j = 0 \} \) are their proper subsets. Therefore the restriction $a_n \neq 0$ and $a_{n-1} \neq 0$ can be lifted and one concludes that $\alpha_k = 2$ and $\beta_k = 3$ for $k \leq n - 1$. The number $h \in \mathbb{C}$ is arbitrary and for $n > 4$ the set of polynomials P^n without simple roots is a variety in the space of variables a of codimension ≥ 3. Hence the above reasoning is the proof that for $n + 1$ the claim of the theorem is true if $k \leq n - 1$.

To perform the induction also for $k = n$ and $k = n + 1$ we consider the discriminant of the family of polynomials $P^{n+1}_r := a_0 x^{n+1} + a_1 x^n + \cdots + a_n$. For its discriminant (denoted also by R^{n+1}) one has $R^{n+1} = (a_0)^{2n} \prod_{1 \leq i < j \leq n+1} (z_i - z_j)^2$ (z_i being the roots of P^{n+1}_r, see [S]). Consider the polynomial $P_r^{n+1} := x^{n+1} P^{n+1}_r(1/x)$ (the index r stands for “reverted”). Its roots equal $1/z_i$. Hence its discriminant R^{n+1}_r equals

$$(a_{n+1})^{2n} \prod_{1 \leq i < j \leq n+1} (1/z_i - 1/z_j)^2 = (a_0)^{2n} \prod_{1 \leq i < j \leq n+1} (z_i - z_j)^2 = R^{n+1}.$$

For P^{n+1} the coefficient a_0 plays the same role as a_{n+1} plays for P^{n+1}_r. Denote by $\tilde{\alpha}_k$, $\tilde{\beta}_k$ the quantities α_k, β_k when defined for the polynomial P^{n+1}_r instead of P^{n+1}. Hence one can make a shift $x \mapsto x + \tilde{h}$, where \tilde{h} is a simple root of P^{n+1}_r, and in the same way as above conclude that $\tilde{\alpha}_k = 2$ and $\tilde{\beta}_k = 3$ for $k \leq n - 1$. This is tantamount to $\alpha_k = 2$ and $\beta_k = 3$ for $k \geq 2$. As $n \geq 4$, this means in particular that $\alpha_n = \alpha_{n+1} = 2$ and $\beta_n = \beta_{n+1} = 3$.

The polynomials \tilde{D}_k and V_k are determinants of Sylvester matrices defined after polynomials with integer coefficients. Hence \tilde{D}_k and V_k have also integer coefficients. Hence the polynomials M_k can also be chosen with integer coefficients which implies $c_k \in \mathbb{Q}^*$.

\[\square \]

References

[1] A. Albouy and Y. Fu, Some Remarks About Descartes Rule of Signs, Elemente der Mathematik 69 (2014), 186-194.

[2] V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko, Singularities of differentiable maps. Volume 1. Classification of critical points, caustics and wave fronts. Translated from the Russian by Ian Porteous based on a previous translation by Mark Reynolds. Reprint of the 1985 edition. Modern Birkhuser Classics. Birkhuser/Springer, New York, 2012. xii+382 pp.

[3] J. Forsgård, V.P. Kostov and B.Z. Shapiro, Could René Descartes have known this?, Experimental Mathematics vol. 24, issue 4 (2015) 438-448.

[4] V.P. Kostov, Topics on hyperbolic polynomials in one variable. Panoramas et Synthèses 33 (2011), vi + 141 p. SMF.

[5] V.P. Kostov, Some facts about discriminants, Comptes Rendus Acad. Bulg. Sci. (to appear).

[6] I. Méguerditchian, Géométrie du Discriminant Réel et des Polynômes Hyperboliques, Thèse de Doctorat (soutenue le 24 janvier 1991 à Rennes).

[7] T. Poston and I. Stewart, Catastrophe theory and its applications. With an appendix by D. R. Olsen, S. R. Carter and A. Rockwood. Reprint of the 1978 original. Dover Publications, Inc., Mineola, NY, 1996. xviii+491 pp.

[8] Wikipedia. Discriminant.