NIL CLEAN DIVISOR GRAPH

AJAY SHARMA AND DHIREN KUMAR BASNET*

Abstract. In this article, we introduce a new graph theoretic structure associated with a finite commutative ring, called nil clean divisor graph. For a ring \(R \), nil clean divisor graph is denoted by \(G_{NC}(R) \), where the vertex set is \(\{ x \in R : x \neq 0, \exists y(\neq 0, \neq x) \in R \text{ such that } xy \text{ is nil clean} \} \), two vertices \(x \) and \(y \) are adjacent if \(xy \) is a nil clean element. We prove some interesting results of nil clean divisor graph of a ring.

1. Introduction

In this article, rings are finite commutative rings with non zero identity. Diesl [4], introduced the concept of nil clean ring as a subclass of clean ring in 2013. He defined that an element \(x \) of a ring \(R \) to be a nil clean element if it can be written as a sum of an idempotent element and a nilpotent element of \(R \). \(R \) is called nil clean ring if every element of \(R \) is nil clean. Also in 2015, Kosan and Zhou [8], developed the concept of weakly nil clean ring as a generalization of nil clean ring. An element \(x \) of a ring \(R \) is weakly nil clean if \(x = n + e \) or \(x = n - e \), where \(n \) is a nilpotent element and \(e \) is an idempotent element of \(R \). The set of nilpotent elements, set of unit elements, nil clean elements and weakly nil clean elements of a ring \(R \) are denoted by \(\text{Nil}(R) \), \(U(R) \), \(NC(R) \) and \(WNC(R) \) respectively. By graph, we consider simple undirected graph. For a graph \(G \), the set of edges and the set of vertices are denoted by \(E(G) \) and \(V(G) \) respectively. The concept of zero-divisor graph of a commutative ring was introduced by Beck in [3] to discuss the coloring of rings. In 1999, Anderson and Livingston [1], introduced zero divisor graph \(\Gamma(R) \) of a commutative ring \(R \). They defined, the vertex set of \(\Gamma(R) \) to be the set of all non-zero zero divisors of \(R \) and two vertices \(x \) and \(y \) are adjacent if \(xy = 0 \). Li et al. [9], developed a kind of graph structure of a ring \(R \), called nilpotent divisor graph of \(R \), whose vertex set is \(\{ x \in R : x \neq 0, \exists y(\neq 0) \in R \text{ such that } xy \in \text{Nil}(R) \} \) and two vertices \(x \) and \(y \) are adjacent if \(xy \in \text{Nil}(R) \). In 2018, Kimball and LaGrange [7], generalized the concept of zero divisor graph to idempotent divisor graph. For any idempotent \(e \in R \), they defined the idempotent divisor graph \(\Gamma_e(R) \) associated with \(e \), where \(V(\Gamma_e(R)) = \{ a \in R : \text{there exists } b \in R \text{ with } ab = e \} \) and two vertices \(a \) and \(b \) are adjacent if \(ab = e \).

In this article, we introduce nil clean divisor graph \(G_{NC}(R) \) associated with a finite commutative ring \(R \). We define the nil clean divisor graph \(G_{NC}(R) \) of a ring \(R \) by taking \(V(G_{NC}(R)) = \{ x \in R : x \neq 0, \exists y(\neq 0, \neq x) \in R \text{ such that } xy \in NC(R) \} \) as

2010 Mathematics Subject Classification. 16N40, 16U99.

Key words and phrases. nil clean ring.

* Corresponding Author.
the vertex set and two vertices x and y are adjacent if and only if xy is a nil clean element of R. Clearly nil clean divisor graph is a generalization of both idempotent divisor graph and nilpotent divisor graph. The properties like girth, clique number, diameter and dominating number etc. of $G_N(R)$ have been studied.

To start with, we recall some preliminaries about graph theory. For a graph G, the degree of a vertex $v \in G$ is the number of edges incident to v, denoted by $\text{deg}(v)$. The neighbourhood of a vertex $v \in G$ is the set of all vertices incident to v, denoted by A_v. A graph G is said to be connected, if for any two distinct vertices of G, there is a path in G connecting them. Number of edges on the shortest path between vertices x and y is called the distance between x and y and is denoted by $d(x, y)$. If there is no path between x and y, then we say $d(x, y) = \infty$. The diameter of a graph G, denoted by $\text{diam}(G)$, is the maximum of distances of each pair of distinct vertices in G. If G is not connected, then we say $\text{diam}(G) = \infty$. Also girth of G is the length of the shortest cycle in G, denoted by $\text{gr}(G)$ and if there is no cycle in G, then we say $\text{gr}(G) = \infty$. A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by an edge. A clique is a subset a of set of vertices of a graph such that its induced subgraph is complete. A clique having n number of vertices is called an n-clique. The maximal clique of a graph is a clique such that there is no clique with more vertices. The clique number of a graph G is denoted by $\omega(G)$ and defined as the number of vertices in a maximal clique of G.

2. Nil clean divisor graph

We introduce nil clean divisor graph as follows:

Definition 2.1. For a ring R, nil clean divisor graph, denoted by $G_N(R)$ is defined as a graph with vertex set \(\{ x \in R : x \neq 0, \exists y(\neq 0, \neq x) \in R \text{ such that } xy \in NC(R) \} \) and two vertices x and y are adjacent if $xy \in NC(R)$.

From the above definition, we observe that nil clean divisor graph is a generalization of nilpotent divisor graph, which is again a generalization of zero divisor graph. For any idempotent $e \in R$, nil clean divisor graph of R is also a generalization of $\Gamma_e(R)$. As an example, the nil clean divisor graph $G_N(\mathbb{Z}_6)$ is shown below:

![Figure 1. Nil clean divisor graph of \mathbb{Z}_6.](image)

Theorem 2.2. The nil clean divisor graph $G_N(R)$ is complete if and only if R is a nil clean ring.
Proof. Let \(G_N(R) \) is a complete and \(x \in R \). If \(x = 0 \), then \(x \) is nil clean, if \(x \neq 0 \) then \(x.1 = x \) is nil clean as \(1 \in V(G_N(R)) \). Converse is clear from the definition of nil clean divisor graph.

If \(\mathbb{F} \) is a finite field of order \(n \), then clearly \(NC(\mathbb{F}) = \{0,1\} \). Hence for any \(x(\neq 0) \in \mathbb{F} \), \(x \) is adjacent to only \(x^{-1} \), provided \(x \neq x^{-1} \). Hence the nil-clean divisor graph of \(\mathbb{F} \) is as follows:

![Nil clean divisor graph of \(\mathbb{F} \).](image)

Note that \(x_i \neq x_i^{-1} \) and \(y_i \neq y_i^{-1} \), otherwise we may get some isolated point as well in the graph.

Corollary 2.3. For a field \(\mathbb{F} \) of order \(n \), where \(n > 2 \). If \(A = \{a \in \mathbb{F} : a = a^{-1}\} \) then the following hold.

1. Diameter of \(\mathbb{F} \) is infinite.
2. \(Gr(G_N(\mathbb{F})) = \infty \) and \(\omega(G_N(\mathbb{F})) = 2 \).
3. \(|V(G_N(\mathbb{F})))| = n - |A| - 1 \).

Theorem 2.4. If \(R \) has a non trivial idempotent or non trivial nilpotent element, then the girth of \(G_N(R) \) is 3.

Proof. If \(R \) has a non trivial idempotent \(e \), then \(\{0, 1, e, 1 - e\} \subset NC(R) \) and we get a cycle \(1 - e - (1 - e) - 1 \). Also if \(R \) has a non trivial nilpotent \(n \), then \(\{0, 1, n, n + 1\} \subset NC(R) \). In this case \(1 - n - (n + 1) - 1 \) is a cycle in \(G_N(R) \). \(\square \)

Theorem 2.5. If \(R \) has only trivial idempotents and trivial nilpotent, then girth of \(G_N(R) \) is infinite.

Proof. Since \(R \) has only trivial idempotents and trivial nilpotent so by Lemma 2.6 \[2\], \(R \) is a field. Hence the result. \(\square \)

Theorem 2.6. Let \(R \) be a ring. Then the following hold.

1. Either \(R \) is a field or \(G_N(R) \) is connected.
2. \(diam(R) = \infty \) or \(diam(R) \leq 3 \).
3. \(gr(G_N(R)) = \infty \) or \(gr(G_N(R)) = 3 \).

Proof. Suppose \(R \) is a reduced ring.
Case (I): If \(R \) has no non trivial idempotent, then \(R \) is a field.
Case (II): If R has a non trivial idempotent, say $e \in Idem(R)$, then for any $x, y \in V(G_N(R))$, there exist $x_1, y_1 \in V(G_N(R))$, such that $xx_1, yy_1 \in NC(R) = Idem(R)$. So, we have a path $x - x_1 e - y_1 (1 - e) - y$ from x to y.

If R is not a reduced ring, then there exists $n \in Nil(R)$, such that $x - n - y$ is a path from x to y, for any $x, y \in V(G_N(R))$. Hence (1) and (2) follow from the above observations and Figure 2.

(3) If R is reduced, then either R is a field or there exists a non trivial idempotent $e \in R$, such that $1 - e - (1 - e) - 1$ is a cycle. So, $gr(G_N(R)) = \infty$ or $gr(G_N(R)) = 3$. If R is a non reduced ring, then since nilpotent graph is a subgraph of nil clean divisor graph, so from Theorem 2.1 [9], $gr(G_N(R)) = 3$.

\[\square\]

Corollary 2.7. If R is not a reduced ring, then $diam(R) \leq 2$.

Corollary 2.8. A ring R is a field if and only if nil clean divisor graph of R is bipartite.

Proof. \Rightarrow Trivial.

\Leftarrow If nil clean divisor graph of R is bipartite then $gr(G_N(R)) \neq 3$. So from Theorem 2.7, $gr(G_N(R)) = \infty$ and hence R is a field. \[\square\]

Theorem 2.9. For a ring R, the following are equivalent.

1. $G_N(R)$ is a star graph.
2. $R \cong \mathbb{Z}_3$.

Proof. The result follows from the fact that $gr(G_N(R)) = \infty$ if and only if R is a field. \[\square\]

Theorem 2.10. For any ring R, $\omega(G_N(R)) \geq \max\{|\text{Nil}(R)|, |\text{Idem}(R)| - 1\}$.

Proof. From the definition of nil clean divisor graph, we observe that $\text{Nil}(R)$ and $\text{Idem}(R)$ respectively induces a complete subgraph of $G_N(R)$. \[\square\]

Next we study about nil clean divisor graph of weakly nil clean ring.

Theorem 2.11. Let R be a weakly nil clean ring which is not nil clean. Then $\omega(G_N(R)) \geq |\mathbb{R}| - 1$ and $diam(R) = 2$ if $|R| > 3$ is even, where $[x]$ is the greatest integer function.

Proof. As $x \in WNC(R)$ implies $-x \in NC(R)$, so if $|R|$ is even, then $|NC(R)| \geq \frac{|R|}{2}$ and if $|R|$ is odd, then $|NC(R)| \geq \frac{|R|+1}{2}$. Since R is commutative, so product of any two nil clean element is also a nil clean element. Hence $\omega(G_N(R)) \geq \frac{|R|}{2}$.

Since $|R| > 3$, so R is not a field and hence $G_N(R)$ is connected. As $|R \setminus \{0\}|$ is odd, so there exists an element $a \in R$ such that $x \in NC(R) \cap WNC(R)$. Hence for any $x, y \in R$, $x - a - y$ is a path in $G_N(R)$ and $diam(G_N(R)) = 2$ as R is not a nil clean ring. \[\square\]
3. NIL CLEAN DIVISOR GRAPH OF \mathbb{Z}_{2p} AND \mathbb{Z}_{3p}, FOR ANY ODD PRIME p

In this section we study the structures of $G_N(\mathbb{Z}_{2p})$ and $G_N(\mathbb{Z}_{3p})$, for any odd prime p.

Lemma 3.1. If $a \in V(G_N(\mathbb{Z}_{2p}))$, where p is an odd prime, then the following hold.

1. If $a = p$, then $\deg(a) = 2p - 2$.
2. If $a \in \{1, p - 1, p + 1, 2p - 1\}$, then $\deg(a) = 2$.
3. Otherwise $\deg(a) = 3$

Proof. Clearly $NC(\mathbb{Z}_{2p}) = \{0, 1, p, p + 1\}$.

1. If $a = p$, then for any $y \in V(G_N(\mathbb{Z}_{2p}))$, either $yp = p$ or $yp = 0$. Hence every element of $V(G_N(\mathbb{Z}_{2p}))$ is adjacent to p.
2. It is easy to observe that, $A_1 = \{p, p + 1\}$, $A_{p-1} = \{p, 2p - 1\}$, $A_{p+1} = \{1, p\}$ and $A_{2p-1} = \{p - 1, p\}$.
3. Let $a \in \mathbb{Z}_{2p} \setminus \{0, 1, p - 1, p, p + 1, 2p - 1\}$.

Case (I): Let a be an even number. If $ax = 0$ in \mathbb{Z}_{2p}, then it has two solutions 0 and p. If $ax = 1$ in \mathbb{Z}_{2p}, then it has no solution, since $\gcd(2p, a) = 2 \nmid 1$. If $ax = p$ in \mathbb{Z}_{2p}, then also it has no solution, since $\gcd(2p, a) = 2 \nmid p$. If $ax = p + 1$ in \mathbb{Z}_{2p}, then it has two distinct solutions x_1 and x_2 in \mathbb{Z}_{2p}, since $\gcd(2p, a) = 2 \mid p + 1$. Hence we conclude that $A_a = \{p, x_1, x_2\}$.

Case (II): Let a be an odd number. If $ax = 0$ in \mathbb{Z}_{2p}, then it has a unique solution $x = 0$. If $ax = 1$ in \mathbb{Z}_{2p}, then it has unique odd solution $x = y_1$ in \mathbb{Z}_{2p}, since $\gcd(2p, a) = 1 \mid 1$. If $ax = p$ in \mathbb{Z}_{2p}, then it has unique solution $x = p$, since $\gcd(2p, a) = 1 \mid p$. If $ax = p + 1$ in \mathbb{Z}_{2p}, then it has unique even solution $x = y_2$ in \mathbb{Z}_{2p}, since $\gcd(2p, a) = 1 \mid p + 1$. Hence $A_a = \{p, y_1, y_2\}$

From the above cases it follows $\deg(a) = 3$.

\[\square\]

Remark 3.2. In the proof of Lemma 3.1 (3), Case(I), since $ax_1 = ax_2$ in \mathbb{Z}_{2p}, so $x_1 - x_2 = 0$ or p, but $x_1 - x_2 \neq 0$ as x_1 and x_2 are distinct. Hence if x_1 is odd, then x_2 is even and if x_1 is even, then x_2 is odd.

From Lemma 3.1 and Remark 3.2 for any prime $p > 2$, the nil clean divisor graph of \mathbb{Z}_{2p} is the following:

![Figure 3. Nil clean divisor graph of \mathbb{Z}_{2p}.](image-url)
In Figure 2, \(a_i\) and \(b_i\) are even numbers from \(\mathbb{Z}_{2p} \setminus \{0, 1, p-1, p, p+1, 2p-1\}\) such that \(a_i b_i = p + 1\), for \(1 \leq i \leq \frac{p-3}{2}\). Also \(c_i = a_i + p\) and \(d_i = b_i + p\), for \(1 \leq i \leq \frac{p-3}{2}\). From the above observations we conclude the following:

Theorem 3.3. The following hold for nil clean divisor graph \(G_N(\mathbb{Z}_{2p})\), for any odd prime \(p\).

1. Clique number of \(G_N(\mathbb{Z}_{2p})\) is 3.
2. Diameter of \(G_N(\mathbb{Z}_{2p})\) is 2.
3. Girth of \(G_N(\mathbb{Z}_{2p})\) is 3.
4. \(\{p\}\) is the unique smallest dominating set for \(G_N(\mathbb{Z}_{2p})\), that is, dominating number of the graph is 1.

Next we study about nil clean divisor graph of \(\mathbb{Z}_{3p}\). Here we study the graph theoretic properties of \(G_N(\mathbb{Z}_{3p})\).

Lemma 3.4. In \(G_N(\mathbb{Z}_{3p})\); where \(p \equiv 2(\text{mod}3)\), the following hold.

1. \(\deg(3k) = 5\) if \(3k \not\equiv \{p + 1, 2p - 1\}\), for \(1 \leq k \leq p - 1\).
2. \(\deg(p + 1) = \deg(2p - 1) = 4\).

Proof. Here \(NC(\mathbb{Z}_{3p}) = \{0, 1, p + 1, 2p\}\). Observe that \(3k.x \equiv 1(\text{mod}3p)\) and \(3k.x \equiv 2p(\text{mod}3p)\) has no solution, as \(gcd(3k, 3p) = 3\) does not divide 1 and 2p. The congruence \(3k.x \equiv 0(\text{mod}3p)\) has three incongruent solutions \(\{0, p, 2p\}\) in \(\mathbb{Z}_{3p}\). Also \(3k.x \equiv p + 1(\text{mod}3p)\) has three distinct incongruent solutions in \(\mathbb{Z}_{3p}\), as \(gcd(3k, 3p) = 3\) divides \(p + 1\).

1. As \(x^2 \equiv p + 1(\text{mod}3p)\), has two solutions \(p + 1\) and \(2p - 1\), hence if \(3k \not\equiv \{p + 1, 2p - 1\}\), then \(\deg(3k) = 6 - 1 = 5\), as \(0 \not\in V(G_N(\mathbb{Z}_{3p}))\).
2. If \(3k \in \{p + 1, 2p - 1\}\), then \(\deg(3k) = 6 - 2\), as \(0 \not\in V(G_N(\mathbb{Z}_{3p}))\) and we do not consider any loop.

Lemma 3.5. In \(G_N(\mathbb{Z}_{3p})\), where \(p \equiv 2(\text{mod}3)\) the following hold.

1. \(\deg(p) = \deg(2p) = 2p - 2\).
2. For \(x \in \{1, p - 1, 3p - 1, 2p + 1\}\), \(\deg(x) = 2\).
3. For \(x \in \mathbb{Z}_{3p} \setminus L\), \(\deg(x) = 3\), where \(L = \{3k : 1 \leq k \leq p - 1\} \cup \{1, p - 1, 2p + 1, 3p - 1, p, 2p\}\).

Proof. Here \(NC(\mathbb{Z}_{3p}) = \{0, 1, p + 1, 2p\}\).

1. Clearly \(p.x \equiv 1(\text{mod}3p)\) and \(p.x \equiv p + 1(\text{mod}3p)\) have no solution as \(gcd(3p, p)\) does not divide 1 and \(p + 1\). Also \(p.x \equiv 0(\text{mod}3p)\) has \(p\) incongruent solutions \(\{3k : 0 \leq k \leq p - 1\}\) and \(p.x \equiv 2p(\text{mod}3p)\) has \(p\) incongruent solutions \(\{3k + 2 : 0 \leq k \leq p - 1\}\). Since \(0 \not\in V(G_N(\mathbb{Z}_{3p}))\) and \(p\) is of the form \(3i + 2\), for some \(0 \leq i \leq p - 1\), hence \(\deg(p) = 2p - 2\). Now \(2p.x \equiv 0(\text{mod}3p)\) has \(p\) incongruent solutions \(\{3k : 0 \leq k \leq p - 1\}\) and \(2p.x \equiv 2p(\text{mod}3p)\) has \(p\) incongruent solutions \(\{3k + 1 : 0 \leq k \leq p - 1\}\). But \(2p.x \equiv 1(\text{mod}3p)\) and \(2p.x \equiv p + 1(\text{mod}3p)\) have no solutions. Hence \(\deg(2p) = 2p - 2\), since \(2p\) is of the form \(3i + 1\), for some \(1 \leq i \leq p - 1\).
(2) Since \(x \equiv a(\text{mod } 3p) \), has only one solution \(a \), hence \(\deg(1) = 2 \). Also \((3p - 1)x \equiv c(\text{mod } 3p)\) has only one solution \((3p - 1)a\), hence \(\deg(3p - 1) = 2 \), as \(0 \notin V(G_N(\mathbb{Z}_{3p})) \) and \(3p - 1 \in U(\mathbb{Z}_{3p}) \). Equation \((p - 1)x \equiv 1(\text{mod } 3p)\) and \((2p + 1)x \equiv c(\text{mod } 3p)\) have a unique solutions, where \(c \in \{0, 1, 2p, p + 1\} \). Since \(p - 1, 2p + 1 \in U(\mathbb{Z}_{3p}) \), so \(\deg(p - 1) = \deg(2p + 1) = 2 \).

(3) Let \(a \in \mathbb{Z}_{3p} \setminus L \). As \(\gcd(a, 3p) = 1 \), so \(a.x \equiv 0(\text{mod } 3p) \) has a unique solution \(x = 0 \). Also \(a.x \equiv c(\text{mod } 3p) \), where \(c \in \{1, 2p, p + 1\} \) has a unique solution. Hence \(\deg(a) = 3 \).

\[\square\]

From Lemma \[3.3\] and Lemma \[3.5\] for any prime \(p > 3 \) with \(p \equiv 2(\text{mod } 3) \), the nil clean divisor graph of \(\mathbb{Z}_{3p} \) is the following:

![Figure 4: Nil clean divisor graph of \(\mathbb{Z}_{3p} \), where \(p \equiv 2(\text{mod } 3) \).](image)

In Figure \[4\] \(\{l_i, k_i\} \subseteq \{3k : 1 \leq k \leq p - 1\} \), \(a_i c_i \equiv 1(\text{mod } 3p) \), \(b_i d_i \equiv 1(\text{mod } 3p) \) and \(a_i k_i \equiv c_k l_i \equiv b_l k_i \equiv d_l i \equiv p + 1(\text{mod } 3p) \), for \(1 \leq i \leq \frac{p - 3}{2} \). Also \(a_i \equiv c_i \equiv 1(\text{mod } 3) \) and \(b_i \equiv d_i \equiv 2(\text{mod } 3) \), for \(1 \leq i \leq \frac{p - 3}{2} \).

Theorem 3.6. For any prime \(p \), where \(p \equiv 2(\text{mod } 3) \), the following hold for \(G_N(\mathbb{Z}_{3p}) \).

1. Girth of \(G_N(\mathbb{Z}_{3p}) \) is 3.
2. Clique number of \(G_N(\mathbb{Z}_{3p}) \) is 3.
3. Diameter of \(G_N(\mathbb{Z}_{3p}) \) is 3.
4. \(\{p, 2p\} \) is the unique smallest dominating set for \(G_N(\mathbb{Z}_{3p}) \), that is, dominating number of the graph is 2.

Proof. Clearly \(NC(\mathbb{Z}_{3p}) = \{0, 1, p + 1, 2p\} \).

1. Since \(p - (p + 1) - (2p + 1) - p \) is a cycle of \(G_N(\mathbb{Z}_{3p}) \), so girth of \(G_N(\mathbb{Z}_{3p}) \) is 3.
2. If possible, let \(\omega((G_N(\mathbb{Z}_{3p}))) = 4 \). Then there exists \(A = \{a_i : 1 \leq i \leq 4\} \subseteq V(G_N(\mathbb{Z}_{3p})) \) such that \(A \) forms a complete subgraph of \(G_N(\mathbb{Z}_{3p}) \). If \(x \in \mathbb{Z}_{3p} \setminus \{p, 2p, 3k : 1 \leq k \leq p - 1\} \), then \(\deg(x) \leq 3 \). Also \(x \) is adjacent to either \(p \) or \(2p \), \(x^{-1} \) and \(3i \), for some \(1 \leq i \leq p - 1 \) (provided \(x \notin \{1, p - 1, 2p + 1, 3p - 1\} \)). But \(x^{-1} \) is also adjacent to \(3j \), for some \(1 \leq j \leq p - 1 \) such that \(i \neq j \). So \(A \subseteq \{p, 2p, 3k : 1 \leq k \leq p - 1\} \). Suppose \(a_1 = 3k \), for some \(1 \leq k \leq p - 1 \). From Figure \[4\] \(A_{a_1} = \{p, 2p, 3i + 1, 3j + 2, 3s\} \), where \(1 \leq i, j, s \leq p - 1 \), also \(3s \notin A_{3i + 1}, 3s \notin A_{3j + 2}, 3i + 1 \notin A_{3j + 2}, p \notin A_{2p}, 2p \notin A_{3j + 2} \) and
Lemma 3.7. In $G_N(\mathbb{Z}_{3p})$; where $p \equiv 1 \pmod{3}$, the following hold.

1. $\deg(3k) = 5$ if $3k \notin \{p - 1, 2p + 1\}$, for $1 \leq k \leq p - 1$.
2. $\deg(p - 1) = \deg(2p + 1) = 4$.

Proof. Proof is similar to the proof of Lemma 3.4.

Lemma 3.8. In \mathbb{Z}_{3p}, where $p \equiv 1 \pmod{3}$, the following hold.

1. $\deg(p) = \deg(2p) = 2p - 2$.
2. For $x \in \{1, p + 1, 3p - 1, 2p - 1\}$, $\deg(x) = 2$.
3. For $x \in \mathbb{Z}_{3p} \setminus L$, $\deg(x) = 3$, where $L = \{3k : 1 \leq k \leq p - 1\} \cup \{1, p, 2p, p + 1, 2p - 1, 3p + 1\}$.

Proof. Proof is similar to the proof Lemma 3.5.

From Lemma 3.7 and Lemma 3.8, the nil clean divisor graph of \mathbb{Z}_{3p}, where $p \equiv 1 \pmod{3}$ is the following:

![Diagram of nil clean divisor graph of \mathbb{Z}_{3p}](image)

Figure 5. Nil clean divisor graph of \mathbb{Z}_{3p}, where $p \equiv 1 \pmod{3}$.

In Figure 5, $\{l_i, k_i\} \subseteq \{3k : 1 \leq k \leq p - 1\}$, $a_i c_i \equiv 1 \pmod{3p}$, $b_i d_i \equiv 1 \pmod{3p}$ and $a_i k_i \equiv c_i l_i \equiv b_i k_i \equiv d_i l_i \equiv 2p + 1 \pmod{3p}$, for $1 \leq i \leq \frac{p - 3}{2}$. Also $a_i \equiv c_i \equiv 2 \pmod{3}$ and $b_i \equiv d_i \equiv 1 \pmod{3}$, for $1 \leq i \leq \frac{p - 3}{2}$. Hence we get the following theorem:

Theorem 3.9. The following hold for $G_N(\mathbb{Z}_{3p})$, for any prime p, where $p \equiv 1 \pmod{3}$.

1. Girth of $G_N(\mathbb{Z}_{3p})$ is 3.
2. Clique number of $G_N(\mathbb{Z}_{3p})$ is 3.
3. Diameter of $G_N(\mathbb{Z}_{3p})$ is 3.
4. $\{p, 2p\}$ is the unique smallest dominating set for $G_N(\mathbb{Z}_{3p})$, that is, dominating number of the graph is 2.
Proof. Since Figure 4 and Figure 5 are similar, hence the proof is similar to the proof of Theorem 3.6.

4. Acknowledgement

The first Author was supported by Government of India under DST(Department of Science and Technology), DST-INSPIRE registration no IF160671.

References

[1] Anderson, D.F. and Livingston, P.S., The zero-divisor graph of a commutative ring. J. Algebra, 217(2) : 434 – 447, 1999.
[2] Basnet D. K. and Bhattacharyya J., Nil clean graphs of rings, Algebra Colloq., 24(3) : 481 – 492, 2017.
[3] Beck, I., Coloring of commutative rings. J. Algebra 116(1) : 208 – 226, 1988.
[4] Diesl, A. J., Nil clean rings. J. Algebra 383 : 197 – 211, 2013.
[5] Diestel R., Graph Theory, Springer-Verlag, New York 1997, electronic edition 2000.
[6] Grimaldi R. P., Graphs from rings, Proceedings of the 20th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Volume 71, pages 95103, Florida, USA, 1990. Atlantic University.
[7] Kimball, C. F. and LaGrange J. D., The idempotent-divisor graphs of a commutative ring. Comm. Algebra, 46(9) : 3899 – 3912, 2018.
[8] Kosan, M. Tamer, and Zhou, Y., On weakly nil-clean rings. Frontiers of Mathematics in China 11.4 : 949 – 955, 2016.
[9] Li, A. and Li, Q., A kind of graph structure on von-Neumann regular rings. International J. Algebra 4 : 291 – 302, 2010.

A. Sharma, D. K. Basnet
Department of Mathematical Sciences,
Tezpur University,
Napaam-784028, Sonitpur,
Assam, India.
Phone No: +916900740324
E-mail address: ajay123@tezu.ernet.in and dbasnet@tezu.ernet.in