Grothendieck–Teichmüller and Batalin–Vilkovisky

SERGEI MERKULOV1,2 and THOMAS WILLWACHER3

1Department of Mathematics, Stockholm University, 10691 Stockholm, Sweden
2Present address: Mathematics Research Unit, University of Luxembourg, Walferdange, Grand Duchy of Luxembourg. e-mail: sergei.merkulov@uni.lu
3Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. e-mail: thomas.willwacher@math.uzh.ch

Received: 12 December 2013 / Revised: 18 March 2014 / Accepted: 18 March 2014
Published online: 9 April 2014 – © Springer Science+Business Media Dordrecht 2014

Abstract. It is proven that, for any affine supermanifold M equipped with a constant odd symplectic structure, there is a universal action (up to homotopy) of the Grothendieck–Teichmüller Lie algebra \mathfrak{grt}_1 on the set of quantum BV structures (i.e. solutions of the quantum master equation) on M.

Mathematics Subject Classification (1991). 81R99, 13D10.

Keywords. Grothendieck–Teichmüller group, Batalin–Vilkovisky algebras, master equation.

1. Introduction

Let M be a finite dimensional affine \mathbb{Z}-graded manifold M over a field \mathbb{K} equipped with a constant degree 1 symplectic structure ω. In particular, the ring of functions \mathcal{O}_M is a Batalin–Vilkovisky algebra, with Batalin–Vilkovisky operator Δ and bracket $\{\ ,\ \}$. A degree 2 function $S \in \mathcal{O}_M[[u]]$ is a solution of the quantum master equation on M if

$$u\Delta S + \frac{1}{2}\{S, S\} = 0,$$

where u is a formal variable of degree 2. In other words S is a Maurer–Cartan element in the differential graded (dg) Lie algebra $(\mathcal{O}_M[[u]][1], u\Delta, \{\ ,\ \})$.

The Grothendieck–Teichmüller group GRT_1 is a pro-unipotent group introduced by Drinfeld in [3]; we denote its Lie algebra by \mathfrak{grt}_1. In this paper we show the following result.

THEOREM 1.1 There is an L_∞ action of the Lie algebra \mathfrak{grt}_1 on the differential graded Lie algebra $(\mathcal{O}_M[[u]][1], u\Delta, \{\ ,\ \})$ by L_∞ derivations. In particular, it follows that there is an action of GRT_1 on the set of gauge equivalence classes of formal solutions of the quantum master equation, i.e. on gauge

1See [11] for an introduction into the geometry of the BV formalism.
equivalence classes of Maurer–Cartan elements in the differential graded Lie algebra \((h\mathcal{O}_M[[u]][[[h]]][1], u\Delta, \{ , , \})\), where \(h\) is a formal deformation parameter of degree 0.

Our main technical tool is a version of the Kontsevich graph complex, \((\text{GC}_2[[u]], d_u)\) which controls universal deformations of \((\mathcal{O}_M[[u]][1], u\Delta, \{ , , \})\) in the category of \(L_\infty\) algebras. Using the main result of [13] we show in Section 2 that

\[H^0(\text{GC}_2[[u]], d_u) \simeq \mathfrak{g}\mathfrak{t}_1 \]

and then use this isomorphism in Section 3 to prove the Main Theorem.

1.1. SOME NOTATION

In this paper \(K\) denotes a field of characteristic 0. If \(V = \bigoplus_{i \in \mathbb{Z}} V^i\) is a graded vector space over \(K\), then \(V[k]\) stands for the graded vector space with \(V[k]^i := V^{i+k}\). For \(v \in V^i\), we set \(|v| := i\). The phrase differential graded is abbreviated by dg. The \(n\)-fold symmetric product of a (dg) vector space \(V\) is denoted by \(\otimes^n V\), and the full symmetric product space by \(\otimes^\bullet V\). For a finite group \(G\) acting on a vector space \(V\), we denote via \(V^G\) the space of invariants with respect to the action of \(G\), and by \(V_G\) the space of coinvariants \(V_G = V/\{gv - v | v \in V, g \in G\}\). As we always work over a field \(K\) of characteristic zero, we have a canonical isomorphism \(V_G \cong V^G\).

We use freely the language of operads. For a background on operads we refer to the textbook [10]. For an operad \(\mathcal{P}\) we denote by \(\mathcal{P}\{k\}\) the unique operad which has the following property: for any graded vector space \(V\) there is a one-to-one correspondence between representations of \(\mathcal{P}\{k\}\) in \(V\) and representations of \(\mathcal{P}\) in \(V[-k]\); in particular, \(\mathcal{E}nd_V\{k\} = \mathcal{E}nd_V[-k]\).

2. A Variant of the Kontsevich Graph Complex

2.1. FROM OPERADS TO LIE ALGEBRAS

Let \(\mathcal{P} = (\mathcal{P}(n))_{n \geq 1}\) be an operad in the category of dg vector spaces with the partial compositions \(\circ_i : \mathcal{P}(n) \otimes \mathcal{P}(m) \to \mathcal{P}(m+n-1), 1 \leq i \leq n\). Then the map

\[
[a, b] := \sum_{i=1}^n a \circ_i b - (-1)^{|a||b|} \sum_{i=1}^m b \circ_i a
\]

makes the vector space \(\mathcal{P} := \prod_{n \geq 1} \mathcal{P}(n)\) into a dg Lie algebra [4, 5]. Moreover, the Lie algebra structure descends to the subspace of coinvariants \(\mathcal{P}_S := \prod_{n \geq 1} \mathcal{P}(n)_S\). Via the identification of invariants and coinvariants \(\mathcal{P}_S \cong \mathcal{P}^S\), we furthermore obtain a Lie algebra structure on the space of invariants \(\mathcal{P}^S := \prod_{n \geq 1} \mathcal{P}(n)^S\) as well.
2.2. AN OPERAD OF GRAPHS AND THE KONTSEVICH GRAPH COMPLEX

For any integers \(n \geq 1 \) and \(\geq 0 \) we denote by \(G_{n,l} \) a set of graphs,\(^2\) \(\{ \Gamma \} \), with \(n \) vertices and \(l \) edges such that (i) the vertices of \(\Gamma \) are labelled by elements of \([n] := \{1, \ldots, n\} \), (ii) the set of edges, \(E(\Gamma) \), is totally ordered up to an even permutation. For example, 1→ 2 ∈ \(G_{2,1} \). The group \(\mathbb{Z}_2 \) acts freely on \(G_{n,l} \) for \(l \geq 2 \) by changes of the total ordering; its orbit is denoted by \(\{ \Gamma, \Gamma_{opp} \} \). Let \(\mathbb{K}\langle G_{n,l} \rangle \) be the vector space over a field \(\mathbb{K} \) spanned by isomorphism classes, \([\Gamma] \), of elements of \(G_{n,l} \) modulo the relation \(^3\) \(\Gamma_{opp} = -\Gamma \), and consider a \(\mathbb{Z} \)-graded \(S \)-module,

\[
\text{Gra}(n) := \bigoplus_{l=0}^{\infty} \mathbb{K}\langle G_{n,l} \rangle[l].
\]

Note that graphs with two or more edges between any fixed pair of vertices do not contribute to \(\text{Gra}(n) \), so that we could have assumed right from the beginning that the sets \(G_{n,l} \) do not contain graphs with multiple edges. The \(S \)-module, \(\text{Gra} := \{ \text{Gra}(n) \}_{n \geq 1} \), is naturally an operad with the operadic compositions given by

\[
o_1 : \text{Gra}(n) \otimes \text{Gra}(m) \longrightarrow \text{Gra}(m+n-1) \qquad \Gamma_1 \otimes \Gamma_2 \longrightarrow \sum_{\Gamma \in G_{1,0}^{i_1, i_2}} (-1)^{\sigma_2} \Gamma
\]

where \(G_{i_1, i_2} \) is the subset of \(G_{n+m-1} \# E(\Gamma_1) + \# E(\Gamma_2) \) consisting of graphs, \(\Gamma \), satisfying the condition: the full subgraph of \(\Gamma \) spanned by the vertices labeled by the set \(\{i, i+1, \ldots, i+m-1\} \) is isomorphic to \(\Gamma_2 \), and the quotient graph, \(\Gamma/\Gamma_2 \), obtained by contracting that subgraph to a single vertex, is isomorphic to \(\Gamma_1 \). The sign \((-1)^{\sigma_2} \) is determined by the equality

\[
\bigwedge_{e \in E(\Gamma)} e = (-1)^{\sigma_2} \bigwedge_{e' \in E(\Gamma_1)} e' \wedge \bigwedge_{e'' \in E(\Gamma_2)} e''.
\]

The unique element in \(G_{1,0} \) serves as the unit element in the operad \(\text{Gra} \). The associated Lie algebra of \(S \)-invariants, \((\text{Gra}(-2))^S, [\xi, \eta] \) is denoted, following notations of [13], by \(fGC_2 \). Its elements can be understood as graphs from \(G_{n,l} \) but with labeling of vertices forgotten, e.g.

\[\bullet \bullet = \frac{1}{2} \left(\bullet \rightarrow 2 + \bullet \rightarrow 1 \right) \in fGC_2.\]

The cohomological degree of a graph with \(n \) vertices and \(l \) edges is \(2(n-1) - l \). It is easy to check that \(\bullet \rightarrow \bullet \) is a Maurer–Cartan element in the Lie algebra \(fGC_2 \). Hence, we obtain a dg Lie algebra

\[\langle fGC_2, [\xi, \eta], d := [\bullet \rightarrow \bullet, \eta] \rangle.\]

\(^2\)A graph \(\Gamma \) is, by definition, a 1-dimensional \(CW \)-complex whose 0-cells are called vertices and 1-dimensional cells are called edges. The set of vertices of \(\Gamma \) is denoted by \(V(\Gamma) \) and the set of edges by \(E(\Gamma) \).

\(^3\)Abusing notations we identify from now an equivalence class \([\Gamma] \) with any of its representative \(\Gamma \).
One may define a dg Lie subalgebra, \mathcal{G}_C^2, spanned by connected graphs with at least trivalent vertices and no edges beginning and ending at the same vertex. It is called the Kontsevich graph complex \cite{7}. We leave it to the reader to verify that the subspace \mathcal{G}_C^2 is indeed closed under both the differential and the Lie bracket. We refer to \cite{13} for a detailed explanation of why studying the dg Lie subalgebra \mathcal{G}_C^2 rather than full Lie algebra \mathfrak{g}_C^2 should be enough for most purposes. The cohomologies of \mathcal{G}_C^2 and \mathfrak{g}_C^2 were partially computed in \cite{13}.

THEOREM 2.1 (\cite{13}).

(i) $H^0(\mathcal{G}_C^2, d) \simeq \mathfrak{grt}_1$.

(ii) For any negative integer i, $H^i(\mathcal{G}_C^2, d) = 0$.

We shall introduce next a new graph complex which is responsible for the action of GRT_1 on the set of quantum master functions on an odd symplectic supermanifold.

2.3. A VARIATION OF THE KONTSEVICH GRAPH COMPLEX

The graph $\bullet \vDash \bullet \in \mathfrak{g}_C^2$ has degree -1 and satisfies

\[
\begin{bmatrix}
\bullet \vDash \bullet
\end{bmatrix} = \begin{bmatrix}
\bullet \vDash \bullet
\end{bmatrix} = 0.
\]

Let u be a formal variable of degree 2 and consider the graph complex $\mathfrak{g}_C^2[[u]]$ with the differential

\[d_u := d + u\Delta, \quad \text{where} \quad \Delta := \begin{bmatrix}
\bullet \vDash \bullet
\end{bmatrix} .\]

The subspace $\mathcal{G}_C^2[[u]] \subset \mathfrak{g}_C^2[[u]]$ is a subcomplex of $(\mathfrak{g}_C^2[[u]], d_u)$.

PROPOSITION 2.1. $H^0(\mathcal{G}_C^2[[u]], d_u) \simeq \mathfrak{grt}_1$ and $H^i(\mathcal{G}_C^2[[u]], d_u) = 0$.

Proof. Consider a decreasing filtration of $\mathcal{G}_C^2[[u]]$ by the powers in u. The first term of the associated spectral sequence is

\[\mathcal{E}_1 = \bigoplus_{i \in \mathbb{Z}} \mathcal{E}_i, \quad \mathcal{E}_i^j = \prod_{p \geq 0} H^{i-2p}(\mathcal{G}_C^2, d) u^p\]

with the differential equal to $u\Delta$. As $H^0(\mathcal{G}_C^2, d) \simeq \mathfrak{grt}_1$ and $H^{\leq -1}(\mathcal{G}_C^2, d) = 0$, one gets the desired result. $H^0(\mathfrak{g}_C^2[[u]], d_u) \simeq \mathfrak{grt}_1$.

The projections $(\mathcal{G}_C^2[[u]], d_u) \to (\mathcal{G}_C^2, d)$ and $(\mathfrak{g}_C^2[[u]], d_u) \to (\mathfrak{g}_C^2, d)$ sending u to 0 are maps of Lie algebras and induce isomorphisms in degree 0 cohomology. Since the isomorphisms of Theorem 2.1 (i) are maps of Lie algebras as shown in \cite{13}, so are the maps in the above Proposition. \qed
Remark 2.2. Let σ be an element of \mathfrak{grt}_1 and let $\Gamma^{(0)}_\sigma$ be any cycle representing the cohomology class σ in the graph complex $(\mathbb{G}C_2, d)$. Then one can construct a cocycle,

$$\Gamma^u = \Gamma^{(0)}_\sigma + \Gamma^{(1)}_\sigma u + \Gamma^{(2)}_\sigma u^2 + \Gamma^{(3)}_\sigma u^3 + \ldots,$$

representing the cohomology class $\sigma \in \mathfrak{grt}_1$ in the complex $(\mathbb{G}C_2[[u]], d_u)$ by the following induction:

1st step: As $d\Gamma^{(0)}_\sigma = 0$, we have $d(\Delta_1/\Gamma^{(0)}_\sigma) = 0$. As $H^{-1}(\mathbb{G}C_2, d) = 0$, there exists $\Gamma^{(1)}_\sigma$ of degree -2 such that $\Delta_1/\Gamma^{(0)}_\sigma = -d\Gamma^{(1)}_\sigma$ and hence

$$(d + u\Delta)(\Gamma^{(0)}_\sigma + \Gamma^{(1)}_\sigma u) = 0 \mod O(u^2).$$

n-th step: Assume we have constructed a polynomial $\sum_{i=1}^n \Gamma^{(i)}_\sigma u^i$ such that

$$(d + u\Delta) \sum_{i=1}^n \Gamma^{(i)}_\sigma u^i = 0 \mod O(u^{n+1}).$$

Then $d(\Delta_1/\Gamma^{(n)}_\sigma) = 0$, and, as $H^{-2n-1}(\mathbb{G}C_2, d) = 0$, there exists a graph $\Gamma^{(n+1)}_\sigma$ in $\mathbb{G}C_2$ of degree $-2n - 2$ such that $\Delta_1/\Gamma^{(n)}_\sigma = -d\Gamma^{(n+1)}_\sigma$. Hence, $(d + u\Delta) \sum_{i=1}^{n+1} \Gamma^{(i)}_\sigma u^i = 0 \mod O(u^{n+2}).$

3. Quantum BV Structures on Odd Symplectic Manifolds

3.1. MAURER–CARTAN ELEMENTS AND GAUGE TRANSFORMATIONS

Let $(g = \bigoplus_{i \in \mathbb{Z}} g^i, [\ , \], d)$ be a dg Lie algebra and consider the dg Lie algebra $g_h := h g[[h]] =: \bigoplus_{i \in \mathbb{Z}} g^i_h$, where h is a formal deformation parameter. The group $G := \exp(g^0_h)$ (which is, as a set, g^0_h equipped with the standard Baker–Campbell–Hausdorff multiplication) acts on g^1_h,

$$\gamma \to \exp(h) \cdot \gamma := e^{ad_h} \gamma = e^{ad_h} - 1 \frac{ad_h}{ad_h} dh,$$

preserving its subset of Maurer–Cartan elements

$$\mathcal{MC}(g_h) = \left\{ \gamma \in g^1_h | d\gamma + \frac{1}{2} [\gamma, \gamma] = 0 \right\}.$$

We call the G-orbits in $\mathcal{MC}(g_h)$ the gauge equivalence classes of Maurer–Cartan elements.

The group of L_∞ automorphism of g acts on $\mathcal{MC}(g_h)$ by the formula

$$F \cdot \gamma := \sum_{n \geq 1} \frac{1}{n!} F_n(\gamma, \ldots, \gamma).$$
where F_n is the n-th component of the L_∞ morphism. In particular, let f be an L_∞ derivation of g without linear term. It exponentiates to an L_∞ automorphism $\exp(f)$ of g, which acts on $MC(g_{\hbar})$, and in particular on the set of gauge equivalence classes. By a small calculation one may check that if we change f by homotopy, i.e. by adding dh for some degree 0 element h of the Chevalley–Eilenberg complex of g, then the induced actions of $\exp(f)$ and $\exp(f + dh)$ on the set of gauge equivalence classes agree.

3.2. QUANTUM BV MANIFOLDS

Let M be a \mathbb{Z}-graded manifold equipped with an odd symplectic structure ω (of degree 1). There always exist so-called Darboux coordinates, $(x^a, \psi_a)_{1 \leq a \leq n}$, on M such that $|\psi_a| = -|x^a| + 1$ and $\omega = \sum_a dx^a \wedge d\psi_a$. The odd symplectic structure makes, in the obvious way, the structure sheaf into a Lie algebra with brackets, $\{ , \}$, of degree -1. A less obvious fact is that ω induces a degree -1 differential operator, Δ_{ω}, on the invertible sheaf of semidensities, $Ber(M)^\frac{1}{2}$ [6]. Any choice of a Darboux coordinate system on M defines an associated trivialization of the sheaf $Ber(M)^\frac{1}{2}$; if one denotes the associated basis section of $Ber(M)^\frac{1}{2}$ by $D_{x,\psi}$, then any semidensity D is of the form $f(x, \psi)D_{x,\psi}$ for some smooth function $f(x, \psi)$, and the operator Δ_{ω} is given by

$$\Delta_{\omega}(f(x, \psi)D_{x,\psi}) = \sum_{a=1}^{n} \frac{\partial^2 f}{\partial x^a \partial \psi_a} D_{x,\psi}.$$

Let u be a formal parameter of degree 2. A quantum master function on M is a u-dependent semidensity D which satisfies the equation

$$\Delta_{\omega} D = 0$$

and which admits, in some Darboux coordinate system, a form

$$D = e^{\frac{S}{2}} D_{x,\psi},$$

for some $S \in \mathcal{O}_M[[u]]$ of total degree 2, where \mathcal{O}_M is the algebra of functions on M. In the literature it is this formal power series in u which is often called a quantum master function. Let us denote the set of all quantum master functions on M by $QM(M)$. It is easy to check that the equation $\Delta_{\omega} D = 0$ is equivalent to the following one,

$$u\Delta S + \frac{1}{2}\{S, S\} = 0,$$ \hspace{1cm} (2)

where $\Delta := \sum_{a=1}^{n} \frac{\partial^2}{\partial x^a \partial \psi_a}$. This equation is often called the quantum master equation, while a triple $(M, \omega, S \in QM(M))$ a quantum BV manifold.
Let us assume from now on that \(M \) is affine or formal (i.e., we work with \(\infty \)-jets of functions at some point) and that a particular Darboux coordinate system is fixed on \(M \) up to affine transformations\(^4\) so that the algebra of function on \(M \) is \(\mathcal{O}_M \cong K[x^a, \psi_a] \) or \(\mathcal{O}_M \cong K[[x^a, \psi_a]] \).

For later reference we will also consider solutions of (2) that depend on a formal deformation parameter \(\hbar \) of degree 0, \(S \in \hbar \mathcal{O}_M[[u]][[\hbar]] \). We will call the set of such \(S \) the set of formal solutions of the quantum master equation and denote it by \(\mathcal{Q}\mathcal{M}_\hbar(M) \).

3.3. AN ACTION OF \(GRT_1 \) ON QUANTUM MASTER FUNCTIONS

The constant odd symplectic structure on \(M \) makes \(\mathcal{O}_M \) into a representation

\[
\rho : \text{Gra}(n) \longrightarrow \text{End}_V(n) = \text{Hom}_{\text{cont}}(\mathcal{O}_M^\otimes n, \mathcal{O}_M)
\]

\[
\Gamma \longrightarrow \Phi_\Gamma
\]

of the operad \(\text{Gra} \) as follows:

\[
\Phi_\Gamma(S_1, \ldots, S_n) := \pi(\prod_{e \in E(\Gamma)} \Delta_e(S_1(x_{(1)}, \psi_{(1)}, u) \otimes S_2(x_{(2)}, \psi_{(2)}, u) \otimes \ldots \otimes S_n(x_{(n)}, \psi_{(n)}, u)))
\]

where, for an edge \(e \) connecting vertices labeled by integers \(i \) and \(j \),

\[
\Delta_e = \sum_{a=1}^n \frac{\partial}{\partial x_{(i)}^a} \frac{\partial}{\partial \psi_{a(j)}} + \frac{\partial}{\partial \psi_{a(i)}} \frac{\partial}{\partial x_{(j)}^a}
\]

with the subscript \((i)\) or \((j)\) indicating that the derivative operator is to be applied to the \(i \)-th of \(j \)-th factor in the tensor product. The symbol \(\pi \) in (4) denotes the multiplication map,

\[
\pi : V^\otimes n \longrightarrow V
\]

\[
S_1 \otimes S_2 \otimes \ldots \otimes S_n \longrightarrow S_1 S_2 \cdots S_n.
\]

Let \(V := \mathcal{O}_M[[u]] \). Then by \(u \)-linear extension, we obtain a continuous representation (in the category of topological \(K[[u]] \)-modules)

\[
\text{Gra}[[u]] \longrightarrow \text{End}_V = \text{Hom}_{\text{cont}}(V^\otimes, V).
\]

The space \(V[1] \) is a topological dg Lie algebra with differential \(u \Delta \) and Lie bracket \(\{ , \} \). These data define a Maurer–Cartan element, \(\gamma_{QM} := u \Delta \oplus \{ , \} \) in the

\(^4\)This is not a serious loss of generality as any quantum master equation can be represented in the form (2). Our action of \(GRT_1 \) on \(\mathcal{Q}\mathcal{M}_\hbar(M) \) depends on the choice of an affine structure on \(M \) in exactly the same way as the classical Kontsevich's formula for a universal formality map [8] depends on such a choice. A choice of an appropriate affine connection on \(M \) and methods of the paper [2] can make our formulae for the \(GRT_1 \) action invariant under the group of symplectomorphisms of \((M, \omega)\); we do not address this \textit{globalization} issue in the present note.
Lie algebra \((\text{End}_V(-2))^S \subset CE^*(V, V)\), where \(CE^*(V, V)\) is the Lie algebra of coderivations

\[
CE^*(V, V) = (\text{Coder}(\odot^{* \geq 1}(V[2])), [\ , \] \text{ with } CE^*(V, V)_{(m)} := \text{Hom}(\odot^{* \geq m+1}(V[2]), V[2]),
\]
of the standard graded co-commutative coalgebra, \(\odot^{* \geq 1}(V[2])\), co-generated by a vector space \(V\). The set \(MC(CE^*(V, V))\) can be identified with the set of \(L_\infty\) structures on the space \(V[1]\).

The map sending an operad \(P\) to the Lie algebra of invariants \(\prod_n P\{-2\}(n)^{S_n}\) is functorial. Hence, from the representation (4) we obtain a map of graded Lie algebras

\[
fGC_2[\{u\}] \cong (\text{Gra}\{-2\}[[u]])^S \rightarrow (\text{End}_V(-2))^S \subset CE^*(V, V)
\]

One checks that the Maurer–Cartan element \(\gamma_{Q, M} \in CE^*(V, V)\). Hence, we obtain a morphism of dg Lie algebras

\[
(fGC_2[\{u\}], [\ , \], dh) \rightarrow (CE^*(V, V), [\ , \], \delta := [\gamma_{Q, M}, \]),
\]
and by restriction a morphism

\[
\Phi: (GC_2[\{u\}], [\ , \], dh) \rightarrow (CE^*(V, V), [\ , \], \delta := [\gamma_{Q, M}, \]),
\]
Hence, we also obtain a morphism of their cohomology groups,

\[
\text{grt}_1 \simeq H^0(GC_2[\{u\}], d_u) \rightarrow H^0(CE^*(V, V), \delta).
\]

Let \(\sigma\) be an arbitrary element in \(\text{grt}_1\) and let \(\Gamma^{u}_\sigma\) be a cocycle representing \(\sigma\) in the graph complex \((GC_2[\{u\}], d_u)\). We may assume that \(\Gamma^{u}_\sigma\) consists of graphs with at least 4 vertices; see [13]. Then the element \(\Phi(\Gamma^{u}_\sigma)\) describes an \(L_\infty\) derivation of the Lie algebra \(V[1]\) without the linear term. By exponentiation we obtain an \(L_\infty\) automorphism,

\[
F^\sigma = \{F^\sigma_n : \odot^n V \rightarrow V[2-2n]\}_{n \geq 1},
\]
of the dg Lie algebra \((V[1], u\Delta, \{ \ , \ \})\) with \(F^\sigma_1 = \text{Id}\). Hence, for any formal quantum master function \(S \in QM_h(M)\) the series

\[
S^\sigma := S + \sum_{n \geq 2} \frac{1}{n!} F^\sigma_n (S, \ldots, S)
\]
gives again a formal quantum master function. The induced action on gauge equivalence classes of such functions is well defined, i.e. it does not depend on the representative Γ^μ_σ chosen. This is the acclaimed homotopy action of GRT_1 on $QM_h(M)$ for any affine odd symplectic manifold M.

Remark 3.1. As pointed out by one of the referees, there is also a stronger notion of “homotopy action” that holds in our setting. We will only consider the infinitesimal version. Then, we do not only have a Lie algebra morphism $grt_1 \rightarrow H^0(CE^\bullet(V, V))$, but an L_∞ morphism $grt_1 \rightarrow CE^\bullet(V, V)$ as follows. First, consider the truncated version $(GC_2[[u]])^{tr}$ of the dg Lie algebra $GC_2[[u]]$, which is by definition the same as $GC_2[[u]]$ in negative degrees, zero in positive degrees, and consists of the degree zero cocycles in degree zero. By Proposition 2.1 the canonical projection $(GC_2[[u]])^{tr} \rightarrow grt_1$ is a quasi-isomorphism. Hence we can obtain the desired L_∞ morphism $grt_1 \rightarrow CE^\bullet(V, V)$ by lifting the zig-zag

$$grt_1 \xrightarrow{\sim} (GC_2[[u]])^{tr} \xrightarrow{\approx} CE^\bullet(V, V).$$

This proves the first claim of the main Theorem.

Remark 3.2. It is a well-known result due to Tamarkin [12] that the Grothendieck Teichmüller group GRT_1 acts on the operad of chains of the little disks operad. In fact, one can show that this GRT_1 action extends to an action on the operad of chains of the framed little disks operad, which is quasi-isomorphic to the Batalin–Vilkovisky operad. Hence, one obtains in particular an action of GRT_1 on the set of Batalin–Vilkovisky algebra structures on any vector space, and on their deformations, up to homotopy. In our setting the algebra \mathcal{O}_M is an algebra over the framed little disks operad. Any solution $S = S_0 + uS_1 + u^2S_2 + \cdots$ of the master equation (2) yields a deformation of the Batalin–Vilkovisky structure on \mathcal{O}_M, up to homotopy. Concretely, to S one may associate a BV_{∞}^{com}-structure (see [9] or [1, section 5.3]), whose n-th order “BV” operator is defined as $\Delta_n := [S_n, \cdot]$ (notation as in [1, section 5.3]). The GRT_1 action on solutions of the master equation described above can hence be seen as a shadow of this more general action of GRT_1 on the framed little disks operad. However, we leave the details to elsewhere.

Acknowledgements

We are grateful to K. Costello and to the anonymous referees for useful critical comments.

5The series trivially converges since we work in the formal setting, i.e. $S = h(\cdots)$. Ideally, of course, one hopes to have a nonzero convergence radius in h, but we cannot guarantee this.
References

1. Campos, R., Merkulov, S., Willwacher, T.: The Frobenius properad is Koszul (preprint arXiv:1402.4048)
2. Dolgushev, V.: Covariant and equivariant formality theorems. Adv. Math. 191(1), 147–177 (2005)
3. Drinfeld, V.: On quasitriangular quasi-Hopf algebras and a group closely connected with $Gal(\bar{Q}/Q)$. Leningrad Math. J. 2(4), 829–860 (1991)
4. Gerstenhaber, M., Voronov, A.A.: Homotopy G-algebras and moduli space operad. IMRN 3, 141–153 (1995)
5. Kapranov, M., Manin, Yu.I.: Modules and Morita theorem for operads. Am. J. Math. 123(5), 811–838 (2001)
6. Khudaverdian, H.: Semidensities on odd symplectic supermanifolds. Commun. Math. Phys. 247, 353–390 (2004)
7. Kontsevich, M.: Formality conjecture. In: Sternheimer, D., et al. (eds.) Deformation Theory and Symplectic Geometry, pp. 139–156. Kluwer, Dordrecht (1997)
8. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)
9. Kravchenko, O.: Deformations of Batalin–Vilkovisky algebras. In: Poisson Geometry (Warsaw, 1998), Banach Center Publ., vol. 51, pp. 131–139. Polish Acad. Sci., Warsaw (2000)
10. Loday, J.-L., Vallette, B.: Algebraic Operads. Number 346 in Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2012)
11. Schwarz, A.: Geometry of Batalin–Vilkovisky quantization. Commun. Math. Phys. 155, 249–260 (1993)
12. Tamarkin, D.: Action of the Grothendieck–Teichmüller group on the operad of Gerstenhaber algebras (preprint arXiv:math/0202039)
13. Willwacher, T.: M. Kontsevich’s graph complex and the Grothendieck–Teichmüller Lie algebra (preprint arXiv:1009.1654)