Experimental evidence of antimicrobial activity in Antarctic seaweeds: ecological role and antibiotic potential

Rafael P. Martín-Martín1,2,3 · Marta Carcedo-Forés1 · Pablo Camacho-Bolós1 · Cristina García-Aljaro5 · Carlos Angulo-Preckler2,4,6 · Conxita Avila2,4 · Jordi Rull Lluch1,2,3 · Amelia Gómez Garreta1,2,3

Received: 17 June 2021 / Revised: 15 March 2022 / Accepted: 16 March 2022 / Published online: 25 April 2022 © The Author(s) 2022

Abstract
Seaweeds contain a wide range of secondary metabolites which serve multiple functions, including chemical and ecological mediation with microorganisms. Moreover, owing to their diverse bioactivity, including their antibiotic properties, they show potential for human use. Nonetheless, the chemical ecology of seaweeds is not equally understood across different regions; for example, Antarctic seaweeds are among the lesser studied groups. With the aim of improving our current understanding of the chemical ecology and potential activity of Antarctic seaweeds, we performed a screening of antibiotic activity using crude extracts from 22 Antarctic macroalgae species. Extractions were performed separating lipophilic and hydrophilic fractions at natural concentrations. Antimicrobial activity assays were performed using the disk diffusion method against seven Antarctic bacteria and seven human pathogenic surrogates. Our results showed that red seaweeds (especially Delisea pulchra) inhibited a larger number of microorganisms compared with brown seaweeds, and that lipophilic fractions were more active than hydrophilic ones. Both types of bacteria tested (Gram negative and Gram positive) were inhibited, especially by butanolic fractions, suggesting a trend of non-specific chemical defence. However, Gram-negative bacteria and one pathogenic fungus showed greater resistance. Our study contributes to the evidence of antimicrobial chemical interactions between Antarctic seaweeds and sympatric microorganisms, as well as the potential of seaweed extracts for pharmacological applications.

Keywords Antibiotic activity · Rhodophyta · Phaeophyceae · Chemical ecology · Pathogenic microorganisms
Introduction

Seaweeds possess a wide range of secondary metabolites used in chemically mediated interactions with other organisms which allow them to thrive in their environment and adapt to potential changes (Amsler 2008). For example, several putative interactions between bacteria and seaweeds have been proposed for the genus Ulva (Kessler et al. 2018; Ghaderiaradakani et al. 2020). However, compared with other groups of organisms, there is a scarcity of studies on chemical activity and interactions of seaweeds, especially for species of high latitudes like the polar regions (Avila et al. 2008; Vankayala et al. 2017; Angulo-Preckler et al. 2018a; Solanki et al. 2018). In the case of the Antarctic marine flora, there is a high degree of endemism favoured by the prolonged isolation and polar conditions (Wiencke and Clayton 2002; Oliveira et al. 2020; Pellizzari et al. 2020). In their native environment, Antarctic seaweeds are exposed to a wide range of microorganisms present in the surrounding water, including bacteria, fungi and microalgae (Singh et al. 2016; Gaitan-Espitia and Schmid 2020). These Antarctic microorganisms are present in high concentrations in the marine water column (Zdanowski 1995; Jenkins et al. 1998; Bej et al. 2010), and they are known to interact with macroalgae in different ways (Amsler 2008; Alvarado et al. 2018; Gaitan-Espitia and Schmid 2020). They even have the potential to modulate functions such as seaweed’s growth, adaptation to altered environmental parameters (e.g. salinity) or even reproduction (Gaitan-Espitia and Schmid 2020). Even though seaweed chemodiversity itself is indeed very high (Young et al. 2015; Bernardi et al. 2016; von Salm et al. 2018; Benites Guardia 2019; Carroll et al. 2020), owing to the close relationship between seaweeds and their microbiome, it can be difficult to discern which part of the holobiont (the combination of seaweed and associated microorganisms) is responsible for producing a specific compound in an ecologically relevant chemical interaction between organisms and environment. Nevertheless, it is reasonable to think that many interactions will be dominated by compounds produced and mainly modulated by the seaweed itself. Elucidating the mechanism of chemical activity in seaweed extracts is crucial to understanding the dynamics of polar coastal ecosystems. Aside from the ecological implications, the diversity of these seaweed compounds also presents a high potential for the discovery of useful bioactive molecules, which could be vital for fields like medicine and the fight against antibiotic-resistant microorganisms (D’Costa et al. 2011). New sources of potentially useful compounds are needed as new resistant pathogenic strains are identified each year (Pang et al. 2019; Ragheb 2019; Andersson et al. 2020). In this context, the two main objectives of our study were: first, to elucidate the chemical activity of Antarctic seaweed extracts against sympatric microorganisms to add evidence for potential ecological relationships, and second, to evaluate the antibiotic potential of these macroalgae extracts against surrogates of common human pathogens, which would serve as a reference for future assays to discover new antibiotic compounds.

Materials and methods

Species for the antimicrobial assay were selected by considering the lack of previous information on their bioactivity and, when there was any previous report on specific taxa, their potentially interesting chemistry. The species selected for the bioassay were 22 Antarctic macroalgae (Table 1), of which were Rhodophyta and 8 Phaeophyceae (Ochrophyta). Seaweed sampling was performed during several Antarctic cruises (along the west Antarctic Peninsula and South Shetland Islands archipelago) in the framework of the ACTIQUIUM and DISTANTCOM projects, during the austral summers of 2012, 2013, 2016 and 2017 (Fig. 1, Table 1). The samples were collected by scuba diving for subtidal specimens and by hand for intertidal species. The samples (whole individuals) were immediately frozen (−20 °C) until the chemical study was performed. Once in the laboratory, and before chemical extractions, fragments of various sizes depending on the taxa of the frozen samples were used to perform taxonomic identification at the species level following Wiencke and Clayton (2002) along with specific taxonomic monographies for each species to avoid misidentification. For this, morphology and microscopic anatomy of the sampled species was studied with histologic preparations and optical microscopy of the fragments taken, always making sure enough material was left frozen for the chemical extractions, following Angulo-Preckler et al. (2015). The fragments used for identification were conserved as herbarium vouchers for consultation in the herbarium of the University of Barcelona (BCN-Phyc).

Chemical extractions were made following a modification of Angulo-Preckler et al. (2015), which was based on previous studies (Avila et al. 2000; Bhosale et al. 2002; Iken et al. 2002; Murugan and Ramasamy 2003). The algal material was first cleaned of epiphyte organisms, and then weighed to obtain the wet weight. Then, the samples were fragmented for homogenization before grinding with acetone. The resulting mixture was then filtered with filter paper and treated with ultrasonic waves (for 5 min) to increase the breakup of cells initiated by the acetone. This step was repeated three times per sample, obtaining a liquid solution with algal solid residue, which was left to dry and weighed. The acetone was then evaporated in vacuo in
a rotary evaporator. Then, the hydrophilic and lipophilic fractionations were separated using specific solvents for each type of extract. For lipophilic compounds, diethyl ether 100% (Et₂O) was used, and the process was repeated three times. The resulting ethereal solution was evaporated again in vacuo and transferred to pre-weighted vials. The content of the vials was again evaporated and weighed to obtain the ethereal extract weight. Then, they were stored frozen (−20 °C) until used for the antimicrobial assays. The hydrophilic compounds were separated using butanol 100% (BuOH), twice. After this, similarly to the lipophilic compounds, the butanolic solution containing hydrophilic fractions was transferred to the pre-weighted vials, adding trichloromethane for easier evaporation. Then, the fractions were lyophilized and weighed again before being stored frozen.

The resulting algal solid residue was weighed to obtain the total dry weight (DWₜ), sum of the weights of algal solid residue and dry Et₂O crude extracts, dry weight of BuOH and dry weight of aqueous residue). This is necessary to calculate the extract natural concentration (that is, concentration of the phase extract in the original sample, Table 1), which will be further used in the microbial experiments to simulate the real concentration in nature.

Antimicrobial activity inhibition was performed by using the crude extracts with the agar disk diffusion method on isolated cultures of a variety of microorganisms (Fig. 2), as described in the literature (Acar 1980; Álvarez 1990; Salvador, et al. 2007; Figuerola et al. 2014, 2017; Angulo-Peckler et al. 2018b). The microorganisms were selected by their availability in the culture collections at the University of Barcelona from the pathogen surrogate’s storage collections.

Table 1 Seaweed sampling and extraction data

Seaweed species	Location	Station	Latitude	Longitude	Dry weight (g)	Natural concentration (mg per g of dry weight)
Rhodophyta						
Neuroglossum delesse-	Deception Island	Neptune’s Bellows	63° 00’ 00” S	60° 34’ 00” W	15.73	Ethereal 12.51, Butanolic 5.32
riae						
Iridaea cordata	Livingston Island	Half Moon Island	62° 35’ 44” S	59° 54’ 12” W	3.05	Ethereal 0.45, Butanolic 19.94
Palmaria decipiens	Antarctic Peninsula	Cierva Cove	64° 09’ 03” S	60° 57’ 04” W	1.06	Ethereal 22.57, Butanolic 46.79
Curdiea racovitae	Antarctic Peninsula	Cierva Cove	64° 09’ 03” S	60° 57’ 04” W	2.49	Ethereal 28.57, Butanolic 15.88
Phyllophora ahlfeli-	Deception Island	Fildes Point	62° 59’ 28.55” S	60° 33’ 39.6” W	0.47	Ethereal 28.17, Butanolic 12.16
tioides						
Pantoneura plocanioides	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	1.98	Ethereal 0.05, Butanolic 0.03
Hymenocladiopsis pro-	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	5.07	Ethereal 45.14, Butanolic 3.54
lifera						
Lenia lubrica	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	9.25	Ethereal 70.77, Butanolic 2.85
Delisea pulchra	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	0.35	Ethereal 47.89, Butanolic 3.10
Sarcothalia papillosa	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	9.92	Ethereal 10.75, Butanolic 3.51
Phycodrys austrogeo-	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	0.27	Ethereal 16.96, Butanolic 30.84
grafica						
Rhodymenia subantarctica	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	0.52	Ethereal 283.61, Butanolic 14.18
Sarcopeltis antarctica	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	14.14	Ethereal 11.04, Butanolic 0.24
Plocamium sp.	Antarctic Peninsula	Paradise Bay	64° 51’ 57” S	62° 51’ 55” W	0.46	Ethereal 11.11, Butanolic 1.75
Phaeophyceae						
Desmarestia menziesii	Antarctic Peninsula	Cierva Cove	64° 09’ 03” S	60° 57’ 04” W	0.29	Ethereal 47.99, Butanolic 55.06
Desmarestia antarctica	Deception Island	Fildes Point	62° 59’ 28.55” S	60° 33’ 39.6” W	0.49	Ethereal 205.15, Butanolic 80.48
Desmarestia aniceps	Deception Island	Fildes Point	62° 59’ 28.55” S	60° 33’ 39.6” W	0.77	Ethereal 66.15, Butanolic 44.10
Cystosphaera jacquinotii	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	10.59	Ethereal 28.95, Butanolic 1.12
Himantothallus grandio-	Deception Island	Fildes Point	62° 59’ 27” S	60° 33’ 19” W	13.54	Ethereal 92.68, Butanolic 2.59
folius						
Ascoseira mirabilis	Deception Island	Descubierta Point	62° 59’ 45” S	60° 43’ 31” W	3.70	Ethereal 59.55, Butanolic 14.03
Phaeurus antarcticus	Deception Island	Whaler’s Bay	62° 58’ 53.91” S	60° 33’ 44.46” W	9.15	Ethereal 40.73, Butanolic 3.05
Adenocystis utricularis	Deception Island	Telephone Bay	62° 55’ 12” S	60° 39’ 37” W	0.14	Ethereal 262.94, Butanolic 53.59

Seaweed species Location Station Latitude Longitude Dry weight (g) Natural concentration (mg per g of dry weight)

Rhodophyta
Neuroglossum delesse- riae
Iridaea cordata
Palmaria decipiens
Curdiea racovitae
Phyllophora ahlfeli- tioides
Pantoneura plocanioides
Hymenocladiopsis prolifera
Lenia lubrica
Delisea pulchra
Sarcothalia papillosa
Phycodrys austrogeogra- grafica
Rhodymenia subantarctica
Sarcopeltis antarctica
Plocamium sp.
Phaeophyceae
Desmarestia menziesii
Desmarestia antarctica
Desmarestia aniceps
Cystosphaera jacquinotii
Himantothallus grandio- folius
Ascoseira mirabilis
Phaeurus antarcticus
Adenocystis utricularis
and successive Antarctic campaigns isolated strains. The taxa used in the tests consisted of 13 different bacteria (seven Antarctic isolates and six strains of pathogen surrogates) and one pathogenic fungus (Table 2). Antarctic isolates included *Psychrobacter* sp., *Paracoccus* sp., *Oceanobacillus* sp., *Bacillus aquamaris*, *Micrococcus* sp. and two strains of *Arthrobacter* sp., previously isolated from different Antarctic organisms and substrata (Table 2). The other six bacteria strains used here were *Vibrio cholerae* CECT 657, *Escherichia coli* O157:H7, ATCC 43,888, *Pseudomonas aeruginosa* NCTC 10332 T, *Escherichia coli* CECT 515, *Bacillus cereus* CECT 4014, *Staphylococcus aureus* CECT 59 and the fungus *Candida albicans* CECT 1001. As described by Angulo-Preckler et al. (2015), the Antarctic bacteria were incubated for 48 h on marine agar medium at 20 °C as this temperature is well within their growth range (Straka and Strokes 1960; Morita 1975) and allows for faster testing, while the pathogenic representatives were incubated at 37 °C for 24 h in Mueller–Hinton medium. To achieve a turbidity of 0.5 McFarland, the microorganisms were transferred to a dilution medium with different NaCl concentrations (1.5% for the Antarctic strains and 0.85% for the pathogenic ones). Then, microorganisms were distributed homogeneously in separated testing plates with the corresponding agar medium.
to perform the agar disk diffusion tests. For each microbial strain and fraction, three replicates of the bioassay were performed.

For each microbial strain and fraction, the bioassay consisted of three replicates. The extracts at natural concentration equivalents were inoculated on diffusion paper disks (6 mm, PRAT DUMMAS France) using Hamilton syringes, avoiding saturation of the disks. Methanol was used as solvent to infuse the two different types of extracts in the disks owing to its rapid evaporation. Furthermore, for each test, three controls were used for each replicate: one positive (impregnated with chloramphenicol) and two negatives, one consisting of a blank disk and another soaked only with the corresponding solvent used for the extractions (diethyl ether for the ethereal extracts and methanol for the butanolic ones). The prepared disks were then placed on the testing plates with the different microorganisms for the inhibition test. The inoculated plates with the disks were incubated for 48 h at 20 °C for Antarctic bacteria, and for 24 h at 37 °C for the pathogenic microorganisms. After incubation, the size in millimetres of the inhibition halii surrounding the paper disk was measured to assign antimicrobial activity for each extract. Antibacterial activity was established following Mahon et al. (2003) criteria to define inhibition categories: weak inhibition 0.1–1 mm (+), moderate inhibition 1.1–1.9 mm halii (++) and strong inhibition > 2.0 mm (+++). Additionally, as some of our extracts exceeded measures of 4 mm, we classified them as very strong inhibition (++++).

Once the intensity of inhibition was assessed, the percentages of inhibition of the two types of seaweed (rhodophytes and Phaeophyceae), the two types of extract (hydrophilic and lipophilic) and the types of microorganism (Antarctic strains, pathogenic surrogates and Gram staining) were compared for statistical significance or p value (p) using the “N – 1” chi-squared test, as described in the literature (Campbell 2007; Richardson 2011; Altman et al. 2013).

Results

Of the 22 macroalgae species studied here (14 Rhodophyta and 8 Phaeophyceae), a total of 44 extracts (22 hydrophilic and 22 lipophilic) were tested against 14 microbial strains (Tables 3 and 4). A total of 14 of the 22 macroalgae studied showed antimicrobial activity against at least one microbial strain (Fig. 3). The species with the largest number of

Table 2 List of tested microorganisms: strain code, species name, source, classification and cell wall type

Strain	Microorganism	Isolated from	Type	Gram staining
Antarctic A	*Psychrobacter* sp.	*Dendrilla antarctica* (sponge)	Bacteria	–
B	*Paracoccus* sp.	Stone	Bacteria	–
C	*Arthrobacter* sp.	*Axinella crinita* (sponge)	Bacteria	+
D	*Arthrobacter* sp.	*Axinella crinita* (sponge)	Bacteria	+
E	*Oceanobacillus* sp.	*Haliclona* sp. (sponge)	Bacteria	+
F	*Bacillus aquamaris* sp.	Sediment	Bacteria	+
G	*Micrococcus* sp.	Sediment	Bacteria	+
Pathogenic H	*Vibrio cholerae* CECT 657	Culture collection	Bacteria	–
I	*Escherichia coli* O157:H7, ATCC 43,888	Culture collection	Bacteria	–
J	*Pseudomonas aeruginosa* NCTC 10332	Culture collection	Bacteria	–
K	*Escherichia coli* CECT 515	Culture collection	Bacteria	–
L	*Bacillus cereus* CECT 4014	Culture collection	Bacteria	+
M	*Staphylococcus aureus* CECT 59	Culture collection	Bacteria	+
N	*Candida albicans*	Culture collection	Fungus	N/A
Table 3 Antibiotic activity of butanolic extracts of seaweed species against microorganism strains

Species	Antarctic strains*	Pathogenic strains*	Total active extracts	\(\sum \) Inhibited strains											
	A	B	C	D	E	F	G	H	I	J	K	L	M	N	
Rhodophyta															
Neuroglossum delesseriae	–	–	–	+	+	+	+	+	+	–	–	–	–	–	5
Iridaea cordata	–	–	+	–	–	–	–	–	+	+	–	–	–	–	1
Palmaria decipiens	–	–	+	+	–	–	–	–	–	–	+	–	–	–	0
Curdica recovitzae	–	–	+	–	+	+	+	+	+	+	+	+	+	+	11
Phyllophora ahnfeltioides	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Pantoneura plocamioides	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Hymenocladiopsis proliifera	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Lenia lubrica	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Delisea pulchra	+	+	+	+	+	+	+	+	+	+	+	+	+	+	11
Sarcothalia papillosa	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Phycodrys austrogeorgica	–	–	+	–	–	–	–	–	–	–	–	–	–	–	1
Rhodymenia subantarctica	–	–	+	+	–	–	–	–	–	–	–	–	–	–	1
Sarcopeltis antarctica	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Plocamium sp.	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Phaeophyceae															
Desmarestia menziesii	–	–	+	+	+	–	+	–	–	–	–	–	–	–	4
Desmarestia antarctica	–	–	+	+	+	+	+	+	+	+	+	+	+	+	7
Desmarestia anceps	–	–	–	+	+	+	+	+	+	+	+	+	+	+	11
Cystosphaera jaquinotii	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Himantothallus grandifolius	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Ascocera mirabilis	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Phaeurus antarcticus	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Adenocystis utricularis	–	–	–	–	–	–	–	–	–	–	–	–	–	–	0
Total active extracts	1	1	5	5	2	4	3	3	0	0	0	3	2	1	

Data expressed as in Mahon et al. (2003)
Table 4 Antibiotic activity of ethereal extracts of seaweed species against microorganism strains

Species	Antarctic strains*	Pathogenic strains*	∑ Inhibited strains
	A B C D E F G H I J K L M N	H I J K L M N	
Rhodophyta			
Neuroglossum delesseriae	– – – – – – – – – – – – – 0		
Iridaea cordata	– – – – – – – – – – – – – 0		
Palmaria decipiens	++ – – + – – – – – – – – – 2		
Curdziea recovitzae	+ – – – – – – – – – – – – – 1		
Phyllophora ahnfeltioides	+++ ++ – – – – – – – – – – – 2		
Pantoneura plocamioides	+ + ++ +++ – + +++ – – – – – – 5		
Hymenocladiopsis prolifera	– – – – – – – – – – – – – – 0		
Leniea lubrica	– – – – – – – – – – – – – – 0		
Delisea pulchra	++ ++++ ++++ ++++ ++++ ++++ ++++ – – – – – – – – 11		
Sarcothalia papillosa	– – – – – – – – – – – – – – 0		
Phycodrys austroleo Georgica	– – ++ – – – – – – – – – – 2		
Rhodymenia subantarctica	– – – – – – – – – – – – – – 0		
Sarcopeltis antiqua	– – – – – – – – – – – – – – 3		
Plocamium sp.	– – – – – – – – – – – – – – 0		
Phaeophyceae			
Desmarestia menziesi	+++ +++ ++ ++ ++ – + – – – – – – – 6		
Desmarestia antarctica	+++ – ++ +++ + + +++ – ++ – +++ ++ +++ – 10		
Desmarestia aniceps	++ – + – – – + + – – – – – – – 2		
Cystosphaera jacquinotii	– – – – – – – – – – – – – – 0		
Himantothallus grandifolius	– – – – – – – – – – – – – – 0		
Ascocera mirabilis	– – – – – – – – – – – – – – 0		
Phaeurus antarcticus	– – – – – – – – – – – – – – 0		
Adenocystis utricularis	– – – – – – – – – – – – – – 1		
Total active extracts	8 4 7 6 5 5 7 4 1 0 1 3 3	1	

Data are expressed following Mahon et al. (2003)
microorganism strains inhibited was the red algae Delisea pulchra, which inhibited 11 of the 14 microorganism strains tested with both lipophilic and hydrophilic extracts. D. pulchra was also the only tested algae that showed inhibition against the fungus C. albicans and presented the greatest halii inhibition size against V. cholerae. For the brown seaweeds, the most active taxon was Desmarestia antarctica, which presented the strongest intensity in its lipophilic extracts against Psychrobacter sp. (Fig. 2). In contrast, several species showed no activity, including four brown algae (Cystosphaera jacquinotii, Himantothallus grandifolius, Ascoseira mirabilis and Phaeurus antarcticus) and four red algae (Hymenocladiopsis prolifera, Sarcothalia papillosa, Leniea lubrica and Plocamium sp.). As a rule, variability between the three replicates on each seaweed extract tested was very low (with overall mean differences between samples < 0.5 mm in the halii). Nonetheless, some individual replicates showed higher variation in the tests (Desmarestia menziesii and Phyllophora ahrnfeltoides against Psychrobacter sp. and Delisea pulchra against Vibrio cholerae) greater than 1 mm, compared with the other two replicates of the same tests. However, as the rest of the replicates for the other tests and species showed no major variability, these individual replicates were not included in the study.

When compared with the “N – 1” chi-squared test, the percentages of inhibition of the extracts according to the seaweed type (Rhodophyta or Phaeophyceae), showed no significant differences (p = 0.32). Nonetheless, as stated before, a large number of Rhodophyta were active compared with the Phaeophyceae tested. In percentages, 71% of rhodophytes (10 out of 14) showed activity of any type, whereas 50% (4 out of 8) of the Phaeophyceae displayed inhibition in their extracts. Similarly, we assessed whether red or brown algae inhibited Antarctic or pathogenic microorganisms to a significantly greater extent, finding that red seaweed extracts tended to inhibit both types of microorganism to a greater extent than did brown seaweed species. The percentages obtained were 64.28% of inhibition for Antarctic microorganisms and 21.42% for pathogenic surrogates in the case of rhodophyte extracts, and 37.50% for both types of microorganism for the Phaeophyceae extracts. Nonetheless, neither Antarctic nor pathogenic surrogate microbes were significantly more inhibited by red or brown algae (p = 0.23 for Antarctic microorganisms and p = 0.42 for the comparison of pathogenic surrogates). We cannot discard that the small sample size played a role in the lack of significance.

On the other hand, our results showed significant differences when comparing the percentages of inhibition on the type of extract: 50% (11 out of 22) ethereal (lipophilic) extracts were active, compared with 31.81% (7 out of 22) of active butanolic (hydrophilic) extracts (p = 0.02). It also worth mentioning that nearly 30% of the active lipophilic extracts exhibited strong inhibition (+ + +), compared with 13% of hydrophilic extracts. It is worth noting that the taxa with stronger activity in the lipophilic extracts also displayed higher levels of inhibition in the hydrophilic fractions (e.g. Delisea pulchra and Desmarestia antarctica). Our results also show that Antarctic microorganisms were more inhibited than pathogenic surrogates for both types of extract as Antarctic bacteria were always inhibited by at least one extract of each type, where pathogenic surrogates showed 57.14% (four out of seven) for butanolic extracts and 85.71% (six out of seven) for ethereal extracts. When comparing these percentages with the chi-squared test, only the comparison between ethereal extracts of both types of microorganism was significantly different (p = 0.03). Nonetheless, although for the butanolic extracts the comparison between the two types of microbe was not statistically significant, the very low p of 0.06 may indicate a tendency towards significance which is not fully achieved owing to the small sample size. Our results also show that the type of extract affected the tested bacteria differently depending on their
Gram-staining type. For both butanolic and ethereal extracts, Gram-positive bacteria were inhibited in larger numbers (in all cases, they were inhibited at least by one extract of each type). However, when comparing the percentages of inhibition, they were only significant in the case of the butanolic extracts ($p = 0.04$), whereas the ethereal extracts showed no significance ($p = 0.28$). We must note that the only strain that showed any inhibition by any of the macroalgal extracts tested was *P. aeruginosa*, which belongs to the Gram-negative bacteria. Similarly, in the tests with hydrophilic extracts, there were three strains that showed no inhibition, which were again *P. aeruginosa* and the two strains of *E. coli*. Apart from that, the fungus *C. albicans* was only inhibited by the two fractions of *D. pulchra*.

It is also worth noting that the natural concentration (mg/g of dry weight) of the different chemical extracts of our samples showed that lipophilic fractions (ethereal extracts) were found in higher concentrations than hydrophilic ones for both Rhodophyta and Phaeophyceae (see natural concentrations in Table 1). This was especially the case for Phaeophyceae, as ethereal extracts were more than three times more concentrated than butanolic ones.

Discussion

More than half of the Antarctic macroalgae tested here (14 out of 22 species) showed antimicrobial activity against at least one microbial strain, with stronger inhibition found in lipophilic extracts than in hydrophilic ones. These results are in agreement with previous studies using different algal species and also some of the taxa we used here, where the lipophilic compounds also presented stronger activities (Ankisetty et al. 2004; Salvador et al. 2007; Amsler et al. 2008, 2009; Young et al. 2015; Shannon and Abu-Ghanam 2016; Sacristán-Soriano et al. 2017). This could be partially attributed to the larger lipophilic concentrations found in the extracts (Table 1) compared with the hydrophilic ones, or to the fact that lipophilic compounds are present in seaweed cell walls in larger amounts compared with hydrophilic ones (Wiencke and Clayton 2002, 2014; Gómez and Huovinen 2020), hence explaining the higher natural concentration in the extracts. However, we cannot speculate which individual compounds may be responsible for the activity observed in each case. In the same manner, as we worked with the whole holobiont, we cannot discard that some of the compounds originate or are affected by the microbiome present on the algal surfaces (Sacristán-Soriano et al. 2017; Califano et al. 2020). Even so, previous studies have described molecules linked to inhibition activity (Young et al. 2007; Amsler et al. 2008, 2009; von Salm et al. 2018; Carroll et al. 2020), especially lipophilic molecules, that could be responsible for our results here. These molecules may include isoprenoids (e.g. terpenoids, diterpenoids, meroterpenoids, carotenoids and steroids), aromatic compounds (such as tannins), polyphenols (such as phlorotannins) and/or acetogenins. Moreover, previous studies reported inhibitory activity from secondary metabolites of lipophilic nature in other types of Antarctic organisms (Figueroa et al. 2014, 2017; Angulo-Precelker et al. 2015, 2018;b; Sacristán-Soriano et al. 2017), thus reinforcing the main role of these lipophilic compounds in chemical interactions. On the other hand, the lower inhibitory activity observed in hydrophilic compounds could be explained by (1) hydrophilic molecules, being polar compounds, diluting easily in seawater, leading to a lower concentration in the extracts compared with lipophilic compounds (Sotka et al. 2009), and/or (2) hydrophilic compounds being sensitive to temperature changes during the extraction process (Cox et al. 2012), which could reduce their activity. In addition, another plausible factor is related to the above-mentioned larger proportion of lipophilic compounds in cell surfaces and walls compared with hydrophilic compounds, suggesting that the latter are less available to participate in the activity. We must note here that the statistical significance of our tests is to be treated with caution, as the small sample size (number of seaweed species available) may be a limiting factor masking the tendencies that the overall numbers (absolute number of inhibition of extracts per seaweed type) seem to indicate. Also, the differences in natural concentration of the extracts could be affecting the significance observed between the extract types. We also cannot discard the potential effects of seasonality derived from environmental variation, which could affect the natural concentrations of different compounds in the studied species. Hence, as our sampling cannot exclude these potential effects, we must be cautious when interpreting our results. Concerning the microorganisms used, our results show that Antarctic bacteria were inhibited in more tests than the pathogenic strains (all the Antarctic strains were inhibited by at least one extract, compared with 86% of pathogenic microorganisms), and in general, Gram-negative bacteria seem to be more resistant to macroalgal extracts than Gram-positive ones. This could be due to Gram-negative microorganisms having a more complex cell membrane and wall structure, which grants them an increased resistance when exposed to potentially antibiotic compounds or combinations of compounds. In any case, our results agree with former works on bacteria and Atlantic macroalgae (Freile-Pelegrín and Morales 2004) as well as other Antarctic macro- and microorganisms (Amsler 2008; Amsler et al. 2009; Figuerola et al. 2014, 2017; Young et al. 2015; Solanki et al. 2018; von Salm et al. 2018). Since Antarctic seaweeds evolved alongside sympatric bacteria, it is not unreasonable to think that the sensitivity of Antarctic bacteria observed here could be related to specific compounds that seaweeds evolved to inhibit potentially detrimental microbes (Aguila-Ramirez...
et al. 2012; Pérez et al. 2016; Shannon and Abu-Ghannam 2016). Nevertheless, to understand these phenomena, future research must focus on the chemical isolation of specific compounds and further assays must be performed with the bacteria studied. However, we must acknowledge that, for further research, the current availability of Antarctic microorganism cultures or sequences may be a limiting factor, which increases the importance of these kind of studies.

Regarding the specific pathogenic surrogates strains tested, *Pseudomonas* sp. was not inhibited by any seaweed, in contrast to previous tests with *Pseudomonas* where activity was reported in non-Antarctic seaweeds, including Rhodophyta and Phaeophyceae (Pérez et al. 2016; Shannon and Abu-Ghannam 2016). Specificity in bacteria or seaweed species used in the studies may be behind these differences. In contrast, our *Psychrobacter* sp. was inhibited by a similar number of lipophilic extracts from three brown seaweeds (*Desmarestia*) and five Rhodophyta (Table 4). These findings are quite interesting when we compare them to those of previous studies, such as Salvador et al. (2007), where Gram-negative bacteria tested against macroalgae from the Iberian Peninsula were mainly inhibited by Rhodophyta instead of brown algae. In the same work, a larger number of Iberian ochrophytes having inhibitory activity against Gram-positive microorganisms was also observed. However, in our case, red and brown seaweeds seemed to affect mainly Gram-positive bacteria, which raises the need of further experimentation with Antarctic species to fully understand this. The pathogenic fungus *C. albicans* was inhibited by only one macroalgal species with the two different extracts (*D. pulchra*), similarly to findings reported previously (Pérez et al. 2016; Shannon and Abu-Ghannam 2016) for the fungus *Saccharomyces*, which was more difficult to inhibit than other fungi (e.g. *Cryptococcus neoformans*). These results seem to reinforce the idea that unicellular fungi (at least non-Antarctic ones) are more resistant than bacteria to seaweed chemical activity. Further tests with Antarctic marine unicellular fungi may shed light on the specific relationships that may occur between these two groups of organisms.

Desmarestia species showed a wide range of activity (similar to red seaweeds), in both types of extract. Our results agree with previous records of antimicrobial activity on *Desmarestia* species (Hornsey and Hide 1974), with some of the taxa we used, including *D. menziesii* (Ankisetty et al. 2004), and other species of the genus such as *Desmarestia aculeata* (Linnaeus) J.V. Lamouroux and *Desmarestia ligulata* (Stackhouse) J.V. Lamouroux, (Benites Guardia 2019) and *Desmarestia confervoides* (Bory) M.E. Ramírez & A.F. Peters (Hornsey and Hide 1974; Benites Guardia 2019). Nonetheless, in the latter study, antimicrobial activity was found on the desmarestial *H. grandifolius*, a species that showed no antimicrobial activity in our tests. This difference may be due to a combination of several factors, such as organism variability (e.g. the specific bacteria strains used). Our results also differ from the study of Iken et al. (2011), which found activity in both types of extract in *Desmarestia anceps*. Contrastingly, our results did not show any hydrophilic antimicrobial activity in this species. The main reason for this could be the higher dilution of the hydrophilic molecules compared with lipophilic ones (Sotka et al. 2009), although other factors may be involved. Also, unlike Iken et al. (2011), we found that *D. antarctica* was one the most active brown algae. *Adenoscytis utricularis* also showed antimicrobial activity, even if it acted only against *Vibrio cholerae* with strong inhibitory action. Antiviral activity in *A. utricularis* has been linked to fucoidans (Ponce et al. 2003), opening an interesting field of study on the chemistry of this particular species. Apart from the differences mentioned above, our findings on Phaeophyceae are in general well in line with what is known about brown seaweed chemistry (Golan et al. 2011). Again, even though our study focuses on the general activity of natural extracts and we cannot discard the effect of the microbiome of the seaweeds, as mentioned earlier, several specific compounds from brown macroalgae could be behind the activity observed. Examples may include phenolic molecules and phlorotannins (Boland et al. 1982; Rivera et al. 1990; Fairhead et al. 2005a; Amsler and Fairhead 2006; Pérez et al. 2016; Benites Guardia 2019). Additionally, Phaeophyceae are rich in polysaccharides such as alginates, laminarin and fucoidin that have been also linked to antimicrobial activity in the past (Baba et al. 1988; Kadam et al. 2015; Vieira et al. 2017; Hamrun et al. 2020).

Regarding Rhodophyta, their higher level of activity compared with brown seaweeds here is similar to that found in previous studies (Caccamese et al. 1980, 1981; Bouhlal et al. 2013; Sacristán-Soriano et al. 2017). For example, species of the order Bonnemaisoniales, such as *Bonnemaisonia asparagoides* (Woodward) C. Agardh, *Bonnemaisonia hamifera* Hariot and *Asparagopsis armata* Harvey, which live in warmer latitudes, have shown antimicrobial activity in the past (Paul et al. 2006; Salvador et al. 2007). Previous studies are available for only two of the red seaweeds tested here, *D. pulchra* and *Plocamium* sp. For the former (which also belongs to Bonnemaisoniales), antifouling and antibiotic properties have been reported (Maximilien et al. 1998; Ren et al. 2002, 2004; Hentzer and Givskov 2003; Ankisetty et al. 2004). These results are consistent with the great inhibitory activity found in our samples, reinforcing the idea that *D. pulchra* has a rich diversity of chemical interactions with Antarctic microorganisms. However, it is worth mentioning that, contrary to previous data reported on this species (Hentzer and Givskov 2003), our samples produced inhibition on the pathogenic surrogate of *Pseudomonas aeruginosa*. This dissimilarity could be attributed to factors such as
chemical variability of certain secondary metabolites on the species, as reported in previous works (Fairhead et al. 2005b; Longford et al. 2007).

For Plocamium sp., it is worth noting that, though in the past Plocamium from Antarctica had been classified as Plocamium cartilagineum, in recent times, evidence has grown that the populations of this species in Antarctica are a separate taxon, and thus the current general trend is to use the term “Plocamium sp.” (Wiencke and Clayton 2002; Hommersand et al. 2009; Dubrasquet et al. 2018; Guillemin et al. 2018). From this genus, several compounds with antimicrobial activity were found previously (Rovirosa et al. 1990; Cueto et al. 1991; Anikisety et al. 2004; Harden et al. 2009). However, in our study, Plocamium sp. extracts showed no antimicrobial activity. One reason for this dissimilarity could be attributed to differences in the protocols used. Nonetheless, some of these studies used species of Plocamium from warmer environments. Therefore, chemical differences between species of the genus from different habitats could also explain the contrast in the results. As mentioned earlier, although we cannot discard an effect of the algal microbiome, previous works reported several active secondary metabolites that could be good candidates for the antimicrobial activity observed in our red algae samples. These compounds would include halogenated isoprenoids such as monoterpenes and carotenoids from several Rhodophyta families with Antarctic representatives (Amsler 2008; Amsler et al. 2009; Young et al. 2013, 2015; Carroll et al. 2020). Also, red seaweed polysaccharide compounds (such as carrageenans, sulphated galactans and galactofucans) with established antimicrobial activity could be good candidates for the type of results we observed here (Harden et al. 2009).

Conclusions

Our observations indicate that extracts from Antarctic macroalgae are as bioactive as seaweeds from other parts of the world, even though studies on their chemical activity are scarcer than in other geographical areas. Several factors could modulate the concentration or activity of the potential compounds present in the extracts. For this reason, further analyses of very active species, such as D. pulchra and the genus Desmarestia, will prove vital to comprehending their chemical ecology and the role of the microbiome in Antarctic algae to a full extent. Our results also provide new insights into the role of macroalgae as a source of bioactive compounds potentially useful in research on antibiotic-resistant bacteria. Further studies may elucidate new applications derived of the isolation of compounds present in Antarctic seaweed extracts.

Acknowledgements

Thanks are due to all the members of the ACTIQUIM, DISTANTCOM and BLUEBIO expeditions for their help and advice on the fieldwork and laboratory tasks. Thanks are also due to the crews of the Spanish Antarctic Bases, as well as to the crews of BIO Hesperides and B/O Sarmiento de Gamboa for their logistic support during sampling. We also thank the philologist Huizhong Cheng Wu for her help revising the manuscript. Finally, we want to thank the reviewer Charles D. Amsler for his crucial corrections and comments to our manuscript that helped to improve it in a considerable manner. This is an AntIcon (SCAR) contribution.

Author Contributions

CGA, CAP, CA, JRL and AGG conceived and designed the research. RPMM, MCF and PCB conducted experiments and analysed the data. RPMM wrote the manuscript. CA obtained the funding. All authors read and approved the manuscript.

Funding

Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was developed within the frames of the ACTIQUIM, DISTANTCOM and BLUEBIO research projects (CTM2010-17415, CTM2013-42667/ANT, CTM2016-78901) and with support from 2017SGR1116 and 2017SGR1120 grants of the Catalan Government. CAP was supported by the Ramon Areces Foundation.

Availability of data and material

All herbarium vouchers from the samples studied are available for consulting in the seaweed collection of the Centre de Documentació de Biodiversitat Vegetal (CedocBiV; https://crai.ub.edu/en/about-crai/CeDocBiV) from the Centre de Recursos per a l’Aprenentatge i la Investigació (CRAI) of the University of Barcelona. Chemical data and measurements are available from the corresponding author. Code availability Not applicable.

Declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Acar JF (1980) The disc susceptibility test. In: Lorian V (ed) Antibiot-
ics in laboratory medicine. Williams and Wilkins, Baltimore, pp
17–52

Águila-Ramírez RN, Arenas-González A, Hernández-Guerrero CJ
et al (2012) Antimicrobial and antifoulant activities achieved by
extracts of seaweeds from Gulf of California, Mexico. Hidrobi-
ologica 22:8–15

Altman D, Machin D, Bryant T, Gardner M (2013) Statistics with
confidence: confidence intervals and statistical guidelines. Wiley,
Hoboken

Alvarado P, Huang Y, Wang J et al (2018) Phylogeny and bioactivity of
epiphytic Gram-positive bacteria isolated from three co-occurring
Antarctic macroalgae. Antonie van Leeuwenhoek 111:1543–
1555. https://doi.org/10.1007/s10482-018-1044-6

Alvarez BMV (1990) Manual de técnicas en Microbiología clínica.
Asociación Española de Farmacéuticos analistas, San Sebastián

Amsler CD, Fairhead VA (2006) Defensive and sensory chemical
ecology of brown algae. Adv Bot Res 43:1–91. https://doi.org/
10.1016/S0065-2296(05)43001-3

Amsler CD, Iken K, McClintock JB, Baker BJ (2009) Defences of
polyaralgalae against herbivores and biofoulers. Bot Mar
52:535–545. https://doi.org/10.1515/BOT.2009.070

Amsler CD (2008) Algal chemical ecology. Springer, Berlin

Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna
U, Kishony R, Molin S, Tønjum T (2020) Antibiotic resistance:
turning evolutionary principles into clinical reality. FEMS Micro-
biol Rev 44(2):171–188

Angulo-Preckler C, Figuerola B, Núñez-Pons L et al (2018a) Mac-
robenthic patterns at the shallow marine waters in the caldera of
the active volcano of Deception Island, Antarctica. Cont Shelf Res
157:20–31. https://doi.org/10.1016/j.csr.2018.02.005

Angulo-Preckler C, Miguel OS, García-Arjao C, Avila C (2018b)
Antibacterial defences and palatability of shallow-water Antarc-
tic sponges. Hydrobiologia 806:123–138. https://doi.org/10.1007/
S10750-017-3346-5

Angulo-Preckler C, Spurkland T, Avila C, Iken K (2015) Antimicro-
bial activity of selected benthic Arctic invertebrates. Polar Biol
38:1941–1948. https://doi.org/10.1007/s00300-015-1754-4

Ankisetty S, Nandiraju S, Win H et al (2004) Chemical investigation
of predator-deterrred macroalgae from the Antarctic Peninsula.
J Nat Prod 67:1295–1302. https://doi.org/10.1021/np049965C
SUPPL_FILE/NP049965CS1204012.103844.PDF

Avila C, Iken K, Fontana A, Cimino G (2000) Chemical ecology of
the Antarctic nudibranch Bathylais gudsoni Eliot, 1907: defen-
sive role and origin of its natural products. J Exp Mar Biol Ecol
252:27–44. https://doi.org/10.1016/S0022-0981(00)00227-6

Avila C, Taboada S, Núñez-Pons L (2008) Antarctic marine chemi-
ical ecology: what is next? Mar Ecol 29:1–71. https://doi.org/10.
1111/j.1439-0485.2007.00215.x

Baba M, Snoeck R, Pauwels R, de Clercq E (1988) Sulfated poly-
saccharides are potent and selective inhibitors of various envelop-
ed viruses, including herpes simplex virus, cytomegalovirus,
es piscicidal activity and pathogenesis. J Virol 62:1071–1076.
https://doi.org/10.1128/jvi.62.3.1071-1076.1988

Bhosale SH, Nagle VL, Jagtap TG (2004) Antifouling potential of
Bacillus and Pseudomonas. Mar Biotechnol 4:111–118. https://doi.org/
10.1007/s10126-001-0087-1

Boland W, Jakoby K, Jaenicke L (1982) Synthesis of (±)-desmarest-
tene and (±)-viridene, the two sperm releasing and attracting
pheromones from the brown alga Desmarestia aculeata and Des-
maestria viridis. Helv Chim Acta 65:2355–2362. https://doi.org/
10.1002/hlc.19820650742

Bouhlal R, Riadi H, Bourgounon N (2013) Antibacterial activity of
the extracts of Rhodophyceae from the Atlantic and the Medi-
terranean coasts of Morocco. J Microbiol Biotechnol Food Sci
2:2431–2439. https://doi.org/10.5897/JMBFS12.048

Caccamese S, Azzolina R, Furnari G et al (1980) Antimicrobial and
antiviral activities of extracts from Mediterranean algae. Bot Mar
23:285–288

Caccamese S, Azzolina R, Furnari G et al (1981) Antimicrobial and
antiviral activities of some marine algae from eastern Sicily. Bot
Mar 24:365–367. https://doi.org/10.1515/botm.1981.24.7.365

Califano G, Kwantes M, Abreu MH et al (2020) Cultivating the mac-
roalgal holobiont: effects of integrated multi-trophic aquaculture
on the microbiome of Ulva rigida (Chlorophyta). Front Microbiol
7:52. https://doi.org/10.3389/FMARS.2020.00052

Campbell I (2007) Chi-squared and Fisher–Irwin tests of two-by-two
tables with small sample recommendations. Stat Med 26:3661–
3675. https://doi.org/10.1002/sim.2832

Carroll AR, Copp BR, Davis RA et al (2020) Marine natural products.
Nat Prod Rep 37:175–223, https://doi.org/10.1039/C9NP00694K

Cox S, Abu-Ghanam N, Gupta S (2012) Effect of processing condi-
tions on phytochemical constituents of edible Irish seaweed Him-
anthalia elongata. J Food Process Preserv 36:348–363. https://
doi.org/10.1111/j.1745-4499.2011.00563.x

Cueto M, Darias J, San-Martín A, et al (1991) Metabolitos secundarios
de organismos marinos antárticos. In: IV Symposium Español de
Estudios Antárticos. Madrid

D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is
ancient. Nature 477:457–461. https://doi.org/10.1038/nature10388

Dubrasquet H, Reyes J, Pinochet R et al (2018) Molecular-assisted
revision of red macroalgal diversity and distribution along the
Western Antarctic Peninsula and South Shetland Islands. Cryp-
togam Algol 39:409–429. https://doi.org/10.7872/cryalg.19.iss4.
2018.409

Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005a) Variation
in phlorotannin content within two species of brown macroalgae
(Desmarestia aniceps and D. menziesii) from the Western Antarc-
tic Peninsula. Polar Biol 28:680–686. https://doi.org/10.1007/
s00300-005-0735-4

Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005b) Within-
thallus variation in chemical and physical defences in two species
of ecologically dominant brown macroalgae from the Antarctic

Amsler CD, McClintock JB, Baker BJ (2008) Macroalgal chemical
defenses in polar marine communities. In: Amsler CD (ed) Algal
chemical ecology. Springer, Berlin, pp 91–103
Potential chemical defenses of Antarctic benthic organisms

Gaitan-Espitia JD, Schmid M (2020) Diversity and functioning of Antarctic seaweed microbiomes. In: Gómez I, Huovinen P (eds) Antarctic Seaweeds. Springer, pp 279–291

Ghaderiardakani F, Quartino ML, Wichard T (2020) Microbiome-dependent adaptation of seaweeds under environmental stresses: a perspective. Front Mar Sci 7:575228. https://doi.org/10.3389/fmars.2020.575228

Golan DE, Falshaw R, Carnachan SM et al (2009) Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res 83:282–289. https://doi.org/10.1016/j.antiviral.2009.06.007

Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300–1307. https://doi.org/10.1172/JCI20074

Hommersand M, Moe RL, Amster CD, Fredericq S (2009) Notes on the systematics and biogeographical relationships of Antarctic and Sub-Antarctic Rhodophyta with descriptions of four new genera and five new species. Bot Mar 52:509–534. https://doi.org/10.1515/BOT.2009.081

Hornsey IS, Hide D (1974) The production of antimicrobial compounds by British marine algae I. Antibiotic-producing marine algae. Br Phycol J 9:353–361. https://doi.org/10.1080/00071617400650421

Iken K, Amster CD, Amster MO et al (2011) Field studies on deterrent properties of phlorotannins in Antarctic brown algae. In: Wientcke C (ed) Biology of polar benthic algae. Walter de Gruyter, Bremmerhaven, pp 121–140

Iken K, Avila C, Fontana A, Gavagnin M (2002) Chemical ecology, vol 2. Chapman and Hall, Boston, pp 1–38

Kadam SU, O’Donnell CP, Rai DK et al (2015) Laminarin from Irish brown seaweeds Asparagopsis nodosum and Laminaria hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar Drugs 13:4270–4280. https://doi.org/10.3390/md13074270

Kessler RW, Weiss A, Kuegler S et al (2018) Macroagal–bacterial interactions: role of dimethylsulfinopropionate in microbial gardening by Ulva (Chlorophyta). Mol Ecol 27:1808–1819. https://doi.org/10.1111/MEC.14472

Longford SR, Tujula NA, Crocetti GR et al (2007) Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat Microb Ecol 48:217–229. https://doi.org/10.3354/ame048217

Mahon AR, Amster CD, McClintock JB et al (2003) Tissue-specific palatability and chemical defenses against macropredators and pathogens in the common articulate brachiopod Liothyrella ava from the Antarctic Peninsula. J Exp Mar Biol Ecol 290:197–210. https://doi.org/10.1016/S0022-0981(03)00075-3

Maximilien R, de Nys R, Holmström C et al (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246. https://doi.org/10.3354/ame015233

Murugan A, Ramasamy M (2003) Biofouling deterrent activity of the natural product from ascidian, Distaplanathensis (Chordata). Indian J Mar Sci 32:162–164

Morita Y (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

Olivera MC, Pellizzari F, Medeiros AS, Yokoya NS (2020) Diversity of Antarctic seaweeds. In: Gómez I, Huovinen P (eds) Antarctic seaweeds. Springer, pp 3–20

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z (2019) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37(1):177–192

Paul NA, de Nys R, Steinberg PD (2006) Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar Ecol Prog Ser 306:87–101. https://doi.org/10.3354/meps306087

Pellizzari F, Rosa LH, Yokoya NS (2020) Biogeography of Antarctic seaweeds facing climate changes. In: Gómez I (ed) Antarctic seaweeds. Springer International Publishing, Berlin, pp 83–102

Pérez MJ, Falqué E, Doménguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:52. https://doi.org/10.3390/md14030052

Ponce NMA, Pujol CA, Damonte EB et al (2003) Fucoidans from the brown seaweed Delisea pulchra: extraction methods, antiviral activity and structural studies. Carbohydr Res 338:155–165. https://doi.org/10.1016/S0008-6215(02)00403-2

Ragheb M (2019) Study of antimicrobial activity of Bacillus megaterium isolated from honey on human and plant Pathogens. Doctoral dissertation, Tabriz University of Medical Sciences, Faculty of Pharmacy

Ren D, Bedzyk LA, Ye RW et al (2004) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88:630–642. https://doi.org/10.1002/bit.20259

Ren D, Sims J, Wood T (2002) Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett App Microb 33:293–299. https://doi.org/10.1046/j.1472-765x.2002.01087.x

Richardson JTE (2011) The analysis of 2 × 2 contingency tables – yet again. Stat Med 30:890–892. https://doi.org/10.1002/SIM.4116

Rivera P, Podestá F, Norte M et al (1990) New plastoquinones from the brown alga Desmarestia menziesii. Can J Chem 68:1399–1400. https://doi.org/10.1139/v90-214

Rovira J, Sánchez I, Palacios Y et al (1990) Antimicrobial activity of a new monoterpene from Plocamium cartilagineum from Antarctic Peninsula. Bol Soc Chil Quím 35:131–135

Sacristán-Soriano O, Angulo-Preckler C, Vázquez J, Avila C (2017) Potential chemical defenses of Antarctic benthic organisms
against marine bacteria. Polar Res 36:1390385. https://doi.org/10.1080/17518369.2017.1390385
Salvador N, Gómez A, Lavelli L, Ribera MA (2007) Antimicrobial activity of Iberian macroalgae. Sci Mar 71:101-103. doi:https://doi.org/10.3989/scimar.2007.71n1101
Shannon E, Abu-Ghannam N (2016) Antibacterial derivates of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs 14:81. https://doi.org/10.3390/md14040081
Singh HKA, Bitz CM, Frierson DMW (2016) The global climate response to lowering surface orography of Antarctica and the importance of atmosphere–ocean coupling. J Clim 29:4137–4153. https://doi.org/10.1175/JCLI-D-15-0442.1
Solanki H, Angulo-Preckler C, Calabro K et al (2018) Suberitane sesterterpenoids from the Antarctic sponge Phorbas areolatus (Thiele, 1905). Tetrahedron Lett 59:3353–3356. https://doi.org/10.1016/j.tetlet.2018.07.055
Sotka E, Forbey J, Horn M et al (2009) The emerging role of pharmacology in understanding consumer–prey interactions in marine and freshwater systems. Integr Comp Biol 49:291–313. https://doi.org/10.1093/icb/icp049
Straka R, Strokes J (1960) Psychrophilic bacteria from Antarctica. J Bacteriol 80:622–625
Vankayala SL, Kearns FL, Baker BJ et al (2017) Elucidating a chemical defense mechanism of Antarctic sponges: a computational study. J Mol Graph Model 71:104–115. https://doi.org/10.1016/j.jmgm.2016.11.004
Vieira C, Gaubert J, De Clerck O et al (2017) Biological activities associated to the chemodiversity of the brown algae belonging to genus Lobophora (Dictyotales, Phaeophyceae). Phytochem Rev 16:1–17. https://doi.org/10.1007/s11101-015-9445-x
von Salm JL, Schoenrock KM, McClintock JB et al (2018) The status of marine chemical ecology in Antarctica: form and function of unique high-latitude chemistry. In: Puglisi MP, Becerro MA (eds) Chemical ecology, 1st edn. Press, C. R. C, pp 27–69
Wiencke C, Amsler CD, Clayton MN (2014) Macroalgae. In: de Broyer C, Koubbi P, Raymond B (eds) Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp 66–73
Wiencke C, Clayton NM (2002) Antarctic seaweeds. In: Wägele JW (ed) Synopses of the Antarctic benthos, vol 9. Koeltz Botanical Books, Lichtenstein, p 239
Young EB, Dring MJ, Savidge G et al (2007) Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Plant Cell Environ 30:764–774. https://doi.org/10.1111/j.1365-3040.2007.01666.x
Young RM, Schoenrock KM, von Salm JL et al (2015) Structure and function of macroalgal natural products. In: Stengel D, Connan S (eds) Natural products from marine algae. Springer, New York, pp 39–73
Young RM, Von Salm JL, Amsler MO et al (2013) Site-specific variability in the chemical diversity of the Antarctic red alga Plocamium cartilagineum. Mar Drugs 11:2126–2139. https://doi.org/10.3390/md111062126
Zdanowski MK (1995) Characteristics of bacteria in selected Antarctic marine habitats. In: Rakusa-Suszczewski D (ed) Microbiology of Antarctic marine environments and krill intestine, its decomposition and digestive enzymes. Polish Academy of Sciences. Institute of Ecology. Department of Antarctic Biology, Warsaw

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”). Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.

These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may not:

1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access control;
2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is otherwise unlawful;
3. falsely or misleadingly imply or suggest endorsement, approval, sponsorship, or association unless explicitly agreed to by Springer Nature in writing;
4. use bots or other automated methods to access the content or redirect messages
5. override any security feature or exclusionary protocol; or
6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue, royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law, including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com