Cardiometabolic Risk Factors and Endogenous Sex Hormones in Postmenopausal Women: A Cross-Sectional Study

Kristin Ottarsdottir, Åsa Tivesten, Ying Li, Ulf Lindblad, Margareta Hellgren, Claes Ohlsson and Bledar Daka

1General Practice—Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
2The Local Research and Development Council Södra Älvsborg, 503 38 Borås, Sweden
3Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
4Department of Endocrinology, Sahlgrenska University Hospital, Region Västra Götaland, 413 45 Gothenburg, Sweden
5Biostatistics, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
6Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
7Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, 413 45 Gothenburg, Sweden

Correspondence: Kristin Ottarsdottir, MD, Allmänmedicin, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box 454, 405 30 Gothenburg, Sweden. Email: kristin.ottarsdottir@gu.se

Abstract

Context: It is uncertain which cardiovascular risk factors are associated with sex hormone levels in postmenopausal women.

Objective: This work aimed to investigate the association between cardiometabolic risk factors and sex hormones in a cross-sectional, observational population study.

Methods: In this Swedish population study, participants were physically examined from 2002 to 2004, and endogenous sex hormones were analyzed by liquid chromatography–tandem mass spectrometry. Women aged 55 years or older with estradiol levels below 20 pg/mL and not using any hormonal therapy were eligible for inclusion in the study (N = 146). Variable selection and bootstrap stability analyses were performed and linear regression models presented, with each of the 8 hormones as outcome variables.

Results: Body mass index (BMI) was positively associated with estradiol (β = 0.054, P < .001), but negatively associated with 17α-hydroxyprogesterone (β = –0.023, P = .028). Waist-to-hip ratio (WHR) was negatively associated with dihydrotestosterone (β = –2.195, P = .002) and testosterone (β = –1.541, P = .004). The homeostatic model assessment of insulin resistance was positively associated with androstenedione (β = 0.071, P = .032), estradiol (β = 0.091, P = .009), estrone (β = 0.075, P = 0.009), and 17α-hydroxyprogesterone (β = 0.157, P = .001). Age was positively associated with testosterone (β = 0.017, P = .042). C-reactive protein showed an inverse association with progesterone (β = –0.028, P = .037). Lower low-density lipoprotein cholesterol was associated with higher estradiol levels (β = –0.093, P = .049), whereas lower triglycerides were associated with higher concentrations of dihydrotestosterone (β = –0.208, P = .016).

Conclusion: In postmenopausal women, WHR was strongly inversely associated with androgens, while BMI was positively associated with estrogens.

Key Words: sex steroid hormones, postmenopausal period, menopause, chromatography mass spectrometry gas liquid, body composition

Abbreviations: BMI, body mass index; DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone; HOMA-IR, homeostatic model assessment of insulin resistance; hsCRP, high-sensitivity C-reactive protein; LDL, low-density lipoprotein; RIA, radioimmunoassay; TGs, triglycerides; WHR, waist-to-hip ratio.

Received: 25 January 2022. Editorial Decision: 23 March 2022. Corrected and Typeset: 25 April 2022

© The Author(s) 2022. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
transition are associated with different levels of markers of atherosclerosis, such as the presence of carotid plaque [13]. Studies based on radioimmunoassay (RIA) measurements of sex hormone levels have shown a positive association between body mass index (BMI) and estrogen levels [14-17], whereas there are contradictory findings regarding androgens. One observational study showed that waist circumference was positively associated with levels of androgens [18], whereas other studies have found no association between waist-to-hip ratio (WHR) and testosterone [19]. Yet another study including both premenopausal and postmenopausal women (mean age, 47.5 years) found a negative association between visceral fat accumulation and dihydrotestosterone (DHT) [20]. A review investigating 13 prospective studies found that all sex hormone levels were higher in obese postmenopausal women compared to lean postmenopausal women [17].

RIA-based measurements are not suitable for the measurement of hormones in the lower range, that is, in postmenopausal women, children, or hypogonadal men, because of low precision and sensitivity [21]. Few population-based studies have used state-of-the art methods for sex steroid measurements in women, and there is a need for studies investigating how different variables are associated with endogenous sex hormones measured with more precise methods such as mass spectrometry [21, 22]. Thus, the aim of this study was to investigate the association between risk factors for cardiovascular disease and 8 different sex hormones—17-α-hydroxyprogesterone, estrone, DHT, estradiol, dehydroepiandrosterone (DHEA), androstenedione, testosterone, and progesterone—measured with mass spectrometry in postmenopausal women.

Materials and Methods

Study Population
To investigate the development of hypertension and type 2 diabetes in a longitudinal design, a cohort study was conducted using the Vara-Skövde cohort, a sex-balanced, random sample of 2816 individuals living in southwestern Sweden during 2002 to 2005. The study design has been described in more detail elsewhere [23]. Using the study population, we analyzed 8 different sex hormones (17-α-hydroxyprogesterone, estrone, DHT, estradiol, DHEA, androstenedione, testosterone, and progesterone) with a validated high-sensitivity liquid chromatography–tandem mass spectrometry assay [24] in 179 women aged 55 years and older at the first study visit and who also participated in the second visit. Eligible for the present cross-sectional study were women who did not use systemic hormone replacement therapy. Because no self-reported information regarding menopausal status was available, we selected participants that were aged 55 years or older. After excluding women with estradiol concentrations greater than or equal to 20 pg/mL [25], 146 women were included in the present study (Fig. 1). The Regional Ethical Review Board in Gothenburg, Sweden, approved the study (registration No. D-nr 199-01), and all participants gave their written consent to participate.

Physical Examination
Specially trained research nurses assessed study participants, measuring waist circumference and blood pressure in the supine and standing positions. Body weight was measured with participants in light clothing without shoes, and waist and hip circumferences were measured. BMI and WHR were calculated. Validated questionnaires were used to obtain information on leisure time physical activity [26, 27]. Furthermore, information about smoking habits, alcohol intake [28], medical history, and medications was obtained from the participants. Diabetes mellitus and hypertension were defined based on World Health Organization [29] and Joint National Committee [30] recommendations.

Laboratory Analyses
Fasting venous blood samples were drawn in the morning and 2 hours after a 75-g oral glucose load. All blood samples were immediately frozen at –82 °C. Serum concentrations of estradiol, estrone, DHEA, DHT, androstenedione, progesterone, testosterone, and 17-α-hydroxyprogesterone were assessed with a validated high-sensitivity liquid chromatography–tandem mass spectrometry assay in 2018 [24] in the described subgroup of 179 participants. Blood lipids, creatinine, high-sensitivity C-reactive protein (hsCRP), and concentrations of insulin and glucose (at fasting) were measured. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated using the equation (fasting insulin x fasting glucose)/22.5 in participants without insulin therapy [31].

Statistical Analyses
Descriptive statistics were used to describe the study population. Distribution of levels of sex hormones was analyzed separately for each hormone. Normality tests were performed with the Shapiro-Wilk method [32].

Levels of sex hormones were used as outcomes in linear regression models after being log-transformed to improve the model fit. The improvements were particularly notable for testosterone, DHT, progesterone, estradiol, and 17-α-hydroxyprogesterone. Backward variable selection with Akaike information criterion was used to choose the set of cardiometabolic variables that could best explain the hormone levels. The cardiometabolic variables included BMI, smoking, WHR, diabetes, hypertension, alcohol consumption, leisure time physical activity, age, low-density lipoprotein (LDL), hsCRP, HOMA-IR, creatinine, triglycerides.

Figure 1. Study flowchart showing the study design and inclusion process.
of daily physical activity. The Shapiro-Wilk normality tests showed a P value of less than .001 for all hormones (Table 2), meaning that all hormones had higher mean values than median values. All hormones were thus positively skewed, which is illustrated in Fig. 2.

Sex Hormones and Cardiovascular Risk Factors

Multivariable linear regression analyses were then performed to investigate the association between the concentration of sex hormones in postmenopausal women and risk factors for cardiovascular disease (Table 3). Two participants were excluded from all the regression analyses because of extreme hsCRP values. For the analysis of 17-α-hydroxyprogesterone, 3 participants were excluded, and for progesterone, 1 participant was excluded because of extreme values in the measurement. Further details on the bootstrap stability analysis are available in the supplementary material [34].

Association Between Sex Hormones and Body Composition Variables/Glycemic Traits

After the variable selection analyses, BMI showed a significantly positive association with estradiol ($\beta = 0.054, P < .001$) and estrone ($\beta = 0.015, P = .057$), whereas BMI was negatively associated with androstenedione ($\beta = -0.016, P = .075$) and 17-α-hydroxyprogesterone ($\beta = -0.023, P = .028$). WHR showed a negative association with DHT ($\beta = -2.195, P = .002$) and testosterone ($\beta = -1.541, P = .004$). High HOMA-IR was associated with high levels of androstenedione ($\beta = 0.071, P = .032$), estradiol ($\beta = 0.091, P = .009$), estrone ($\beta = 0.075, P = .009$), and 17-α-hydroxyprogesterone ($\beta = 0.157, P = .001$). Type 2 diabetes was found to have a negative association with 17-α-hydroxyprogesterone, although not statistically significant in the regression analysis ($\beta = -0.321, P = .099$).

Association Between Sex Hormones and Age, High-sensitivity C-reactive Protein, and Blood Lipids

Age was significantly positively associated with testosterone ($\beta = 0.017, P = .042$), whereas an inverse nonsignificant relationship was seen with DHEA ($\beta = -0.020, P = .059$). hsCRP was significantly negatively associated with progesterone ($\beta = -0.028, P = .037$). Lower LDL was associated with higher levels of estradiol ($\beta = -0.093, P = .049$), whereas lower TGs showed significant association with higher concentrations of DHT ($\beta = -0.208, P = .016$).

Discussion

In this observational study, we found a strong association between risk factors for cardiovascular disease and sex hormones in postmenopausal women measured with mass spectrometry. More specifically, body composition variables (ie, BMI and WHR) were shown to best explain the variance in the levels of specific sex hormones. Here, we found a strong, significantly positive association between BMI and 17-α-hydroxyprogesterone and between BMI and estradiol, whereas WHR was significantly negatively associated with DHT and testosterone.

Body Composition and Sex Hormones

In the present study, testosterone as well as DHT were negatively associated with WHR. Although similar results have been reported both in premenopausal and postmenopausal...
women [35, 36], another study demonstrated contradictory findings concerning this association [20]. As most of these studies used RIAs, which are less precise when measuring sex hormones, their findings might be partially explained by type 1 errors. Two studies using mass spectrometry [19, 20] found no significant association between testosterone and WHR. However, the low number of participants included in these studies combined with the fact that not all participants in the studies were postmenopausal can suggest type 2 error in these studies. Similarly, Côté et al [20] showed a negative association between BMI and DHT, which is a potent androgen derived from testosterone, and variables of visceral adiposity measured with computed tomography, which is in line with our findings. Although the evidence is not entirely consistent, and there is uncertainty in the direction of causality, there are studies indicating that androgens can stimulate lipolysis in adipose tissues both in men and women [37, 38], another study demonstrated contradictory findings concerning this association. Crandall et al [42] investigated 623 postmenopausal women with regard to sex hormones (measured with RIA technique) and cardiovascular risk factors, but found no significant associations between CRP and progesterone when adjustments were made for confounding factors. An observational study in premenopausal women found a positive association between CRP and progesterone levels [43]; however, owing to the several metabolic changes that occur during the menopausal transition, this may not be the case in postmenopausal women. In a randomized controlled trial, 133 early postmenopausal women were treated either with synthetic progesterone or placebo. No significant change in hsCRP between the groups was observed [44]. Yet another recent cross-sectional study observed a positive association between progesterone and hsCRP in postmenopausal women living in China, and stated further that hsCRP mediates the association between progesterone and obesity [45].

hsCRP has been used as a proxy for inflammation in many studies [46], of which the Women’s Health Study was among the first, revealing a strong positive association between hsCRP levels and risk of death from myocardial infarction, stroke, or coronary heart disease in more than 28 000 postmenopausal healthy women [47]. Even so, hsCRP is not specific to inflammatory states only, and other inflammatory markers (eg, interleukin-6) might have shown different results in our study. There is evidence that progesterone may have an anti-inflammatory effect on different cells of the immune system, such as an inhibitory effect on natural killer cells and T cells [48, 49], and that synthetic progesterone inhibits the activation of inflammatory pathways in mucosal sites [50], but the research is not entirely clear on this point [51]. However, the fact that the progesterone receptor is found in several tissues, including many cells of the immune system, suggests that progesterone may have a role in the immune response, as described in a recent review by Azeez et al [49]. Even though progesterone may have anti-inflammatory properties, the direction of causality may also be the opposite, given that inflammatory states, which can also be part of a systemic disease, have inhibitory effects on the hypothalamic-pituitary-adrenal axis, resulting in a downregulation of androgen production.

Table 2. Concentrations of sex hormones in postmenopausal women in the Vara-Skövde cohort (N = 146)

Sex hormone	Mean	SD	Median	Shapiro-Wilk Statistic	P
17-α-Hydroxyprogesterone, pg/mL	380.35	383.85	304.84	0.487	<.001
Androstenedione, pg/mL	619.58	284.19	554.59	0.909	<.001
DHEA, pg/mL	2843.18	1739.60	2406.19	0.890	<.001
DHT, pg/mL	47.47	32.12	39.19	0.854	<.001
Estradiol, pg/mL	5.04	3.07	4.25	0.875	<.001
Estrone, pg/mL	24.15	9.94	21.72	0.932	<.001
Progesterone, pg/mL	49.50	32.21	40.89	0.743	<.001
Testosterone, pg/mL	257.81	150.14	220.76	0.761	<.001

Abbreviations: DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone.

Inflammation

We observed a significant inverse association between hsCRP and progesterone levels. Previous observational studies have come to different results regarding this association. Crandall et al [42] investigated 623 postmenopausal women with regard to sex hormones (measured with RIA technique) and cardiovascular risk factors, but found no significant associations between CRP and progesterone when adjustments were made for confounding factors. An observational study in premenopausal women found a positive association between CRP and progesterone levels [43]; however, owing to the several metabolic changes that occur during the menopausal transition, this may not be the case in postmenopausal women. In a randomized controlled trial, 133 early postmenopausal women were treated either with synthetic progesterone or placebo. No significant change in hsCRP between the groups was observed [44]. Yet another recent cross-sectional study observed a positive association between progesterone and hsCRP in postmenopausal women living in China, and stated further that hsCRP mediates the association between progesterone and obesity [45].

hsCRP has been used as a proxy for inflammation in many studies [46], of which the Women’s Health Study was among the first, revealing a strong positive association between hsCRP levels and risk of death from myocardial infarction, stroke, or coronary heart disease in more than 28 000 postmenopausal healthy women [47]. Even so, hsCRP is not specific to inflammatory states only, and other inflammatory markers (eg, interleukin-6) might have shown different results in our study. There is evidence that progesterone may have an anti-inflammatory effect on different cells of the immune system, such as an inhibitory effect on natural killer cells and T cells [48, 49], and that synthetic progesterone inhibits the activation of inflammatory pathways in mucosal sites [50], but the research is not entirely clear on this point [51]. However, the fact that the progesterone receptor is found in several tissues, including many cells of the immune system, suggests that progesterone may have a role in the immune response, as described in a recent review by Azeez et al [49]. Even though progesterone may have anti-inflammatory properties, the direction of causality may also be the opposite, given that inflammatory states, which can also be part of a systemic disease, have inhibitory effects on the hypothalamic-pituitary-adrenal axis, resulting in a downregulation of androgen production.
This may also be the case for progesterone deriving from the adrenal cortex. Estrogen, however, has been positively associated with hsCRP in postmenopausal women in previous studies [19, 53] when using both RIA and mass-spectrometry assays. However, studies using the RIA method should be interpreted with caution, since analyses of estrogen and perhaps also other sex hormones with RIA methods seem to be possibly interfered with by CRP [54]. This may result in a type 1 error in associations between sex hormones measured with RIA and CRP that are not seen when using mass-spectrometry assays.

Glycemic Traits and Blood Lipids

Here, we showed a strongly significant association between high levels of HOMA-IR and 17-α-hydroxyprogesterone, which is in agreement with a recent study in which women with high levels of 17-α-hydroxyprogesterone at baseline had an increased risk of glycemic deterioration after approximately 6 years of follow-up [55]. Similarly, high levels of 17-α-hydroxyprogesterone have been shown to predict type 2 diabetes in mouse models and humans [56]. Furthermore, high levels of HOMA-IR were associated with high levels of
androstenedione. Few studies have investigated this association using RIA methods to assess the concentration of sex hormones, which could have led to a type 2 error [57].

Some independent associations between lipids and sex hormones were also found. In particular, high levels of TGs were significantly associated with low levels of DHT. To our knowledge, this is a novel finding that has not previously been described. However, a negative association between DHT and LDL has been previously shown [19].

These findings might both be related to the strong association between fat mass and DHT, but further studies are needed.

Strengths and Limitations

The strength of this study is its design, with a high participation rate around 70% and thorough physical examinations performed by trained nurses during the study visit. By examining a number of biometric variables with validated methods, we were able to perform variable selection to identify variables that best explained the variation in hormonal levels. Another strength is the use of mass-spectrometry technique, which is the gold standard especially when measuring steroid hormones in the lower range, as in postmenopausal women. According to Mayo Clinic Laboratories [25], the sex hormone concentrations shown in the present study were within the reference values for postmenopausal women, showing high external validity of the method used in this study. Furthermore, we included bootstrap validation to perform stability investigations, which adds further strength to the methodology. A formal power analysis was not conducted; however, the ratio between the sample size (n = 146) and the number of independent variables (ie, n = 14) in each regression analysis was above 10, which is above the commonly used rule of thumb described in the literature, that is, the ratio should at least be greater than 10 to achieve an acceptable power [33, 58].

Owing to the lack of information about menopausal status, a limitation of this study was the use of age 55 years and older as a proxy for menopause. Although this could lead to a misclassification of menopause, we excluded participants with estradiol values that were not compatible with postmenopausal concentrations. Another limitation is that the cohort consisted mainly of women of Swedish origin and may not be fully generalizable to all postmenopausal women. However, the results of our study are very much in line with previous research including participants of different geographic or ethnic origins and could therefore be seen as representative of a large portion of postmenopausal women. The observational design of this study did not permit the investigation of the direction of the associations found, and due to the cross-sectional nature of the study, it is not possible to draw conclusions about causality.

Table 3. Multivariable linear regression analyses investigating the association between risk factors for cardiovascular disease and concentration of sex hormones in postmenopausal women

	β	95% CI	P	Standardized estimate
17-α-Hydroxyprogesterone				
HOMA-IR	0.157W	0.062 to 0.252	.001	0.224
Type 2 diabetes	−0.321	−0.704 to 0.062	.099	−0.108
BMI	−0.023	−0.044 to −0.002	.028	−0.120
Androstenedione				
HOMA-IR	0.071	0.006 to 0.136	.032	0.101
BMI	−0.016	−0.034 to 0.002	.075	−0.084
DHEA				
Age, y	−0.020	−0.040 to 0.001	.059	−0.101
DHT				
WHR	−2.195	−3.586 to −0.804	.002	−0.175
Triglycerides	−0.208	−0.377 to −0.040	.016	−0.137
Estradiol				
BMI	0.054	0.035 to 0.072	<.001	0.279
HOMA-IR	0.091	0.023 to 0.160	.009	0.130
LDL	−0.093	−0.185 to 0.000	.049	−0.083
Estrone				
BMI	0.015	0.000 to 0.030	.057	0.077
HOMA-IR	0.075	0.019 to 0.131	.009	0.107
Progesterone				
hsCRP	−0.028	−0.055 to −0.002	.037	−0.093
Testosterone				
Age, y	0.017	0.001 to 0.033	.042	0.086
WHR	−1.541	−2.579 to −0.504	.004	−0.123

The table presents the explanatory variables selected in the variable selection and showing greater than 50% inclusion in the bootstrap stability investigation. Dependent variable: sex hormone.

Abbreviations: BMI, body mass index; DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone; HOMA-IR, homeostatic model assessment of insulin resistance; hsCRP, high-sensitivity C-reactive protein; LDL, low-density lipoprotein; WHR, waist-to-hip ratio.
It is obvious that the menopausal transition is a vulnerable period in women’s lives with regard to the increase in cardiometabolic risk factors. This study about endogenous sex hormones and their associations with certain risk factors adds knowledge to previous results from studies using the RIA method. This knowledge may become important for cardiovascular risk stratification of women.

Conclusion
Various cardiometabolic factors, in particular body composition variables, were found to be associated with sex hormone levels in postmenopausal women. Our results suggest that traditionally male hormones such as testosterone and DHT decrease with increasing WHR, while estradiol and estrone increase with increasing BMI. Notably, we also found a negative association between progesterone and hsCRP. Further investigations with longitudinal observations might shed light on the importance of hormonal levels for female cardiovascular health.

Acknowledgments
The authors would like to thank the participants from Vara and Skövde who made this study possible.

Financial Support
This work was supported by the R&D Center Södra Älvsborg agreement concerning research and education of doctors, the health care committee in Region Västra Götaland, and University of Gothenburg.

Disclosures
The authors have nothing to disclose.

Data Availability
Data can be obtained on request, and requests should be directed to the corresponding author. Owing to privacy regulations, all data may not be available for public distribution.

References
1. Muka T, Oliver-Williams C, Kunutsor S, et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiol. 2016;1(7):767-776.
2. El Khoudary SR, Thurston RC. Cardiovascular implications of the menopause transition: endogenous sex hormones and vasomotor symptoms. Obstet Gynecol Clin North Am. 2018;45(4):641-661.
3. Matthews KA, Crawford SL, Chae CU, et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J Am Coll Cardiol. 2009;54(25):2366-2373.
4. Boardman HMP, Hartley L, Eisinga A, et al. Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane Database Syst Rev. 2015;3:CD002229.
5. Zhao D, Guallar E, Ouyang P, et al. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. J Am Coll Cardiol. 2018;71(22):2355-2366.
6. Samargandy S, Matthews KA, Brooks MM, et al. Arterial stiffness accelerates within 1 year of the final menstrual period: the SWAN Heart Study. Arterioscler Thromb Vasc Biol. 2020;40(4):1001-1008.
7. Kalish GM, Barrett-Connor E, Laughlin GA, Gulanski Bl; Postmenopausal Estrogen/Progesterin Intervention Trial. Association of endogenous sex hormones and insulin resistance among postmenopausal women: results from the Postmenopausal Estrogen/Progesterin Intervention Trial. J Clin Endocrinol Metab. 2003;88(4):1646-1652.
8. Key TJ, Appleby PN, Reeves GK, et al. Endogenous Hormones Breast Cancer Collaborative Group. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst. 2003;95(16):1218-1226.
9. Lukanova A, Lundin E, Micheli A, et al. Circulating levels of sex steroid hormones and risk of endometrial cancer in postmenopausal women. Int J Cancer. 2004;108(3):425-432.
10. Lee JS, Yaffe K, Lui LY, et al. Study of Osteoporotic Fractures Group. Prospective study of endogenous circulating estradiol and risk of stroke in older women. Arch Neurol. 2010;67(2):195-201.
11. Thurston RC, Bhasin S, Chang Y, et al. Reproductive hormones and subclinical cardiovascular disease in midlife women. J Clin Endocrinol Metab. 2018;103(8):3070-3077.
12. Wildman RP, Colvin AB, Powell LH, et al. Associations of endogenous sex hormones with the vasculature in postmenopausal women: the Study of Women's Health Across the Nation (SWAN). Menopause. 2008;15(3):414-421.
13. El Khoudary SR, Santoro N, Chen HY, et al. Trajectories of estradiol and follicle-stimulating hormone over the menopause transition and early markers of atherosclerosis after menopause. Eur J Prev Cardiol. 2016;23(7):694-703.
14. Tin Tin S, Reeves GK, Key TJ. Body size and composition, physical activity and sedentary time in relation to endogenous hormones in premenopausal and postmenopausal women: findings from the UK Biobank. Int J Cancer. 2020;147(8):2101-2115.
15. Jones ME, Schoemaker M, Rae M, et al. Changes in estradiol and testosterone levels in postmenopausal women after changes in body mass index. J Clin Endocrinol Metab. 2013;98(7):2967-2974.
16. McTiernan A, Wu L, Chen C, et al. Women's Health Initiative Investigators. Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity (Silver Spring). 2006;14(9):1662-1677.
17. Endogenous Hormones and Breast Cancer Collaborative Group; Key TJ, Appleby PN, Reeves GK, et al. Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer. 2011;105(3):709-722.
18. Baglietto L, English DR, Hopper JL, et al. Circulating steroid hormone concentrations in postmenopausal women in relation to body size and composition. Breast Cancer Res Treat. 2009;115(1):171-179.
19. Marchand GB, Carreau AM, Weisnagel SJ, et al. Increased body fat mass explains the positive association between circulating estradiol and insulin resistance in postmenopausal women. Am J Physiol Endocrinol Metab. 2018;314(5):E448-E456.
20. Côté JA, Lessard J, Mailloux J, et al. Hormone therapy for preventing cardiovascular disease in post-menopausal women: a Cochrane Database Syst Rev. 2015;3:CD002229.
21. Stanczyk FZ, Clarke NJ. Advantages and challenges of mass spectrometry assays for steroid hormones. J Steroid Biochem Mol Biol. 2010;121(3-5):491-495.
22. Rosner W, Hankinson SE, Sluss PM, Vesper HW, Wierman ME. Challenges to the measurement of estradiol: an endocrine society position statement. J Clin Endocrinol Metab. 2013;98(4):1376-1387.
25. Mayo Clinic Laboratories. Accessed February 1, 2022. https://www.mayocliniclabs.com/test-catalog/index.html

26. Lachen ML, Rasmussen K. The Tromso study: physical fitness, self reported physical activity, and their relationship to other coronary risk factors. *J Epidemiol Community Health*. 1992;46(2):103-107.

27. Saltin B, Grimby G. Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. *Circulation*. 1968;38(6):1104-1115.

28. Goransson M, Hanson BS. How much can data on days with heavy drinking decrease the underestimation of true alcohol consumption? *J Stud Alcohol*. 1994;55(6):695-700.

29. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications. part 1: diagnosis and classification of diabetes mellitus. *Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications Part 1: Diagnosis and Classification of Diabetes Mellitus*. World Health Organization; 1999.

30. Chobanian AV, Bakris GL, Black HR, et al; Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. *Hypertension*. 2003;42(6):1206-1232.

31. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia*. 1985;28(7):412-419.

32. Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. *Int J Endocrinol Metab*. 2012;10(2):486-489.

33. Heine G, Wallisch C, Dunkler D. Variable selection—a review and recommendations for the practicing statistician. *Biom J*. 2018;60(3):431-449.

34. Ottarsdottir K, Tivesten Å, Li Y, et al. Supplementary data for “Cardiometabolic risk factors and endogenous sex hormones in postmenopausal women: a cross-sectional study.” Deposited January 11, 2022. doi:10.5281/zenodo.5838058

35. Turcato E, Zamboni M, De Pergola G, et al. Interrelationships between weight loss, body fat distribution and sex hormones in pre- and postmenopausal obese women. *J Intern Med*. 1997;241(5):363-372.

36. Casson PR, Toth MJ, Johnson JV, Stanczyk FZ, Casey CL, Dixon ME. Correlation of serum androgens with anthropometric and metabolic indices in healthy, nonobese postmenopausal women. *J Clin Endocrinol Metab*. 2010;95(9):4276-4282.

37. Blouin K, Nadeau M, Perreault M, et al. Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women. *Clin Endocrinol (Oxf)*. 2010;72(2):176-188.

38. Tchernev A, Brochu D, Maltais-Payette I, et al. Androgens and the regulation of adiposity and body fat distribution in humans. *Compr Physiol*. 2018;8(4):1253-1290.

39. Mongraw-Chaffin ML, Anderson CAM, Allison MA, et al. Association between sex hormones and adiposity: qualitative differences in women and men in the Multi-Ethnic Study of Atherosclerosis. *J Clin Endocrinol Metab*. 2015;100(4):E596-E600.

40. Kim C, Dabelea D, Kalyani RR, et al. Changes in visceral adiposity, subcutaneous adiposity, and sex hormones in the Diabetes Prevention Program. *J Clin Endocrinol Metab*. 2017;102(9):3381-3389.