How do Supervising Clinicians of a University Hospital and Associated Teaching Hospitals Rate the Relevance of the Key Competencies within the CanMEDS Roles Framework in Respect to Teaching in Clinical Clerkships?

Jilg, Stefanie; Möltner, Andreas; Berberat, Pascal; Fischer, Martin R; Breckwoldt, Jan

Abstract: BACKGROUND AND AIM In German-speaking countries, the physicians’ roles framework of the "Canadian Medical Education Directives for Specialists" (CanMEDS) is increasingly used to conceptualize postgraduate medical education. It is however unclear, whether it may also be applied to the final year of undergraduate education within clinical clerkships, called "Practical Year" (PY). Therefore, the aim of this study was to explore how clinically active physicians at a university hospital and at associated teaching hospitals judge the relevance of the seven CanMEDS roles (and their (role-defining) key competencies) in respect to their clinical work and as learning content for PY training. Furthermore, these physicians were asked whether the key competencies were actually taught during PY training. METHODS 124 physicians from internal medicine and surgery rated the relevance of the 28 key competencies of the CanMEDS framework using a questionnaire. For each competency, following three aspects were rated: "relevance for your personal daily work", "importance for teaching during PY", and "implementation into actual PY teaching". RESULTS In respect to the main study objective, all questionnaires could be included into analysis. All seven CanMEDS roles were rated as relevant for personal daily work, and also as important for teaching during PY. Furthermore, all roles were stated to be taught during actual PY training. The roles "Communicator", "Medical Expert", and "Collaborator" were rated as significantly more important than the other roles, for all three sub-questions. No differences were found between the two disciplines internal medicine and surgery, nor between the university hospital and associated teaching hospitals. CONCLUSION Participating physicians rated all key competencies of the CanMEDS model to be relevant for their personal daily work, and for teaching during PY. These findings support the suitability of the CanMEDS framework as a conceptual element of PY training.

DOI: https://doi.org/10.3205/zma000975
How do Supervising Clinicians of a University Hospital and Associated Teaching Hospitals Rate the Relevance of the Key Competencies within the CanMEDS Roles Framework in Respect to Teaching in Clinical Clerkships?

Abstract

Background and aim: In German-speaking countries, the physicians’ roles framework of the “Canadian Medical Education Directives for Specialists” (CanMEDS) is increasingly used to conceptualize postgraduate medical education. It is however unclear, whether it may also be applied to the final year of undergraduate education within clinical clerkships, called “Practical Year” (PY).

Therefore, the aim of this study was to explore how clinically active physicians at a university hospital and at associated teaching hospitals judge the relevance of the seven CanMEDS roles (and their role-defining key competencies) in respect to their clinical work and as learning content for PY training. Furthermore, these physicians were asked whether the key competencies were actually taught during PY training.

Methods: 124 physicians from internal medicine and surgery rated the relevance of the 28 key competencies of the CanMEDS framework using a questionnaire. For each competency, following three aspects were rated: “relevance for your personal daily work”, “importance for teaching during PY”, and “implementation into actual PY teaching”.

Results: In respect to the main study objective, all questionnaires could be included into analysis. All seven CanMEDS roles were rated as relevant for personal daily work, and also as important for teaching during PY. Furthermore, all roles were stated to be taught during actual PY training.

The roles “Communicator”, “Medical Expert”, and “Collaborator” were rated as significantly more important than the other roles, for all three sub-questions. No differences were found between the two disciplines internal medicine and surgery, nor between the university hospital and associated teaching hospitals.

Conclusion: Participating physicians rated all key competencies of the CanMEDS model to be relevant for their personal daily work, and for teaching during PY. These findings support the suitability of the CanMEDS framework as a conceptual element of PY training.

Keywords: CanMEDS framework, competencies, clinical teaching, residency training, curriculum planning

1. Introduction

CanMEDS Roles

The framework of physicians’ roles by the “Canadian Medical Education Directives for Specialists” (CanMEDS) [3] originally evolved from the project “Educating Future Physicians for Ontario” (EEPO) [11], which aimed at re-forming physicians’ training in the sense of getting closer to conditions of real life. Data from diverse empirical sources were incorporated into this project with the result of the CanMEDS roles being anchored in all fields of the Canadian health care system [11]. The Royal College of Physicians and Surgeons of Canada transferred the framework to postgraduate medical education [5], from where it quickly spread out into many postgraduate...
training programmes worldwide. Examples from Germany are training programmes in surgery [7], or in general medicine [16]. A recent position paper by the “Committee for Postgraduate Training” of the German Society for Medical Education (GMA) (which introduces “entrustable professional activities”) also explicitly relates to the CanMEDS framework [2]. In some countries the model has already been applied to undergraduate education, may it be in specific teaching projects [1], [14], [18], or in national catalogues of learning objectives in Switzerland [http://www.smifk.ch, cited on March 29th 2015] and the Netherlands [10]. The German “National Competency-based Catalogue of Learning objectives in Medicine” (NKLM) also relates to the CanMEDS framework [4].

Background of the present study

In view of the continuum of undergraduate and postgraduate medical education the CanMEDS framework seems specifically attractive for the so-called “Practical Year” (PY) in Germany, which is located in the last year of undergraduate studies. The PY consists of three clinical clerkships of 16 weeks each and is carried out at university hospitals, or associated teaching hospitals, or other institutions with respective accreditation. Internal medicine and surgery are mandatory disciplines, whilst the third clerkship is an elective subject. With exception of the time frame PY training is highly heterogeneous. Supervision is provided by attending physicians on respective wards. The formal structure ranges from “pure attendance” to highly structured rotation plans based on logbooks, including mandatory workplace-based assessment [21]. A more homogeneous concept on a national level would therefore be desirable for PY training. Even if the CanMEDS framework was originally developed for postgraduate training and if key competencies were only to be reached at the end of this phase, it could nonetheless be suitable for the transition from undergraduate to postgraduate training. One important precondition for this would be, that the framework (and its key competencies) was familiar to supervising physicians. With this, the continuum of medical education could be strengthened (and also the acceptance of the NKLM).

An instrument which is related to the CanMEDS model has already been used by a German research group to describe competencies of graduates from undergraduate medical education (FKM: “Freiburger Fragebogen zur Erfassung von Kompetenzen in der Medizin”) [6]. For students in the first four undergraduate years, as for postgraduate year 1 and 2 trainees, this instrument revealed good reliability and construct validity. However, it was not investigated whether clinical supervisors viewed these competencies to be relevant, and there was no explicit reference to the CanMEDS framework. In our eyes, the combination of the role description with the corresponding key competencies sufficiently defined the roles. Further translation of key competencies was undertaken (by SJ) as a nearly literal interpretation of the CanMEDS roles (2 to 6 competencies per role (see table 1); abbreviations of role names are also used in figure 1). Descriptions of the seven roles and of the key competencies were translated to German. For role titles, we also indicated the original English expression, because we felt that translations of subject-heading-like role titles had in part missed the meaning. Official translations of the NKLM could not be used at the time of the study, since they had not been published then. At present, they are still only mentioned by an in-official report of the German “Board of Medical Faculties” (“Medizinischer Fakultätentag”) [http://www.mft-online.de/lehre/nationaler-kompetenz-basierterner-lernzielkatalog-medicin, cited on March 30th, 2015]. For this study we used the following translations: “Kommunikator” (for “Communicator”), “Teamplayer” (for “Collaborator”), “Führungskraft” (for “Manager”), “Fürsprecher der Gesundheit” (for “Health Advocat”), “Lernender Dozent” (for “Scholar”), “Professionell arbeitender Arzt” (for “Professional”) and “Sachkundiger Mediziner” (for “Medical Expert”). The roles were characterised by the specific key competencies (see table 1) [3].

1. Do practicing physicians in one German university hospital and its associated teaching hospitals rate the 28 key competencies as relevant for:
 a) their own personal daily work?
 b) teaching during PY?

2. Do these physicians believe, that respective competencies are already taught to PY students at present?

As secondary endpoints, potential influences by the following factors were analysed: medical discipline (internal medicine vs. surgery), type of teaching institution (university hospital vs. associated teaching hospital), teacher training undergone by supervisors, number of PY students supervised so far during work life, stage of clinical training, academic position, time devoted to scientific work (by supervisors), gender, and age.

2. Methods

Questionnaire

In order to reach a sufficient number of clinical supervisors, we decided to use a closed-question questionnaire instead of applying a more open, qualitative design. We limited the investigation to the two mandatory disciplines internal medicine and surgery, firstly to represent the main PY subjects, and secondly to be able to look at potential differences which might be present between divergent cultures between these disciplines. The questionnaire was specifically developed for the study and included the 28 key competencies, grouped according to the respective CanMEDS roles (2 to 6 competencies per role (see table 1); abbreviations of role names are also used in figure 1). Descriptions of the seven roles and of the key competencies were translated to German. For role titles, we also indicated the original English expression, because we felt that translations of subject-heading-like role titles had in part missed the meaning. Official translations of the NKLM could not be used at the time of the study, since they had not been published then. At present, they are still only mentioned by an in-official report of the German “Board of Medical Faculties” (“Medizinischer Fakultätentag”) [http://www.mft-online.de/lehre/nationaler-kompetenz-basierterner-lernzielkatalog-medicin, cited on March 30th, 2015]. For this study we used the following translations: “Kommunikator” (for “Communicator”), “Teamplayer” (for “Collaborator”), “Führungskraft” (for “Manager”), “Fürsprecher der Gesundheit” (for “Health Advocat”), “Lernender Dozent” (for “Scholar”), “Professionell arbeitender Arzt” (for “Professional”) and “Sachkundiger Mediziner” (for “Medical Expert”). The roles were characterised by the specific key competencies (see table 1) [3].
Table 1: CanMEDS roles and key competencies (German translation)

Role/Title (German)	English Translation
A) SACHFORDERNDER MEDIZINER (ROLE OF “MEDICAL EXPERT”):	
B) KOMMUNIKATOR (ROLE OF “COMMUNICATOR”):	
C) TEAMSPLAYER (ROLE OF “CO-LEADER”):	
D) FÜHRUNGSKRAFT (ROLE OF “MANAGER”):	
E) FÖRDERER DER GESUNDHEIT (ROLE OF “HEALTH ADVOCATE”):	
F) DER LEHRENDE DOZENT (ROLE OF “SCHOLAR”):	
G) PROFESSIONELL ARBEITENDER ARZT (ROLE OF “PROFESSIONAL”):	

Potential confounders (medical discipline, type of institution, teacher training of supervisors, number of PY students supervised, stage of clinical training and academic position of supervisors, time devoted to scientific work, gender, age) were assessed by selection answers. At the end of the questionnaire participants prioritized the six “peripheral” CanMEDS roles (excluding “Medical Expert”) in respect to their importance for PY training. In total, the questionnaire included 90 single variables [see Attachment: supplemental material online].

Procedure

The survey was conducted between August and October 2012. Participating physicians were employed at the university hospital of Munich Technical University (TU München, “Klinikum rechts der Isar”), or at five associated teaching hospitals (“Deutsches Herzzentrum München”, “Klinikum Bogenhausen”, “Klinikum Schwabing”, “Krankenhaus der Barmherzigen Brüder München”, “Rotkreuz-Klinikum München”).
Figure 1: Rating of key competencies in respect to (a) relevance for personal daily work, (b) importance for “Practical Year” (PY) training, and (c) whether competencies are actually taught during PY. Depicted are means (circles) and standard deviations (bars, one direction only). The rating scale for relevance ranged from 1 (“fully agree”) to 5 (“fully disagree”).

From each hospital all surgical and all internal departments were included. Since some years, all institutions used logbooks to structure PY training. Further teaching was delivered by clinical seminars, mostly by experienced senior clinicians. The majority of teaching however, was given by attending physicians of different levels of experience.

Study participation was voluntary, answering forms were anonymized. Answering sheets were filled out during the course of official staff rounds. Approximately 50% of physicians within a department attended the meetings, all attendees participated. Every department was visited only once. After a brief introduction to the study purpose and the design of the questionnaire, answering forms were filled out and subsequently collected. There was no time limit, in maximum 30 min were needed for completion. SJ was present throughout the procedure to be able to solve open questions.

Data management and data safety

Answers were marked on a machine readable form, and were transferred to an spreadsheet data file. For the overall rating of each CanMEDS role, we calculated the mean of the respective key competencies, results were given as means (M) with standard deviations (SD). In order to test for potential influences of confounders (medical discipline, type of institution, teacher training, number of PY students supervised, stage of clinical training and academic position of supervisors, time devoted to scientific work, gender, age) we performed analyses of co-variance with ratings of relevance as dependent variable,
and the nine potential cofounders as independent variables. To ensure the alpha-level at multiple testing, an Omnibus-F-test was used. Calculation was performed by SAS, Version 9.3.

No data which could have identified an individual person were retrieved. The ethical committee of TU Munich (IRB) approved the study protocol (project no 5517/12).

3. Results

Characteristics of participants

In respect to the primary study question, all 124 questionnaires could be analysed (100% response due to peer-group conduct). 60.5% of the physicians stated to have supervised between ten and 100 PY students until then, another 23.4% even more than 100. 31.5% of the physicians worked in surgery, 66.9% in internal medicine (two persons did not specify their discipline); 44.4% were female. 54.8% were employed at the university hospital, whilst 45.2% worked at one of the associated teaching hospitals. 16.1% held an academic degree similar to a PhD (called “Habilitation”), or were in the final process to obtain this degree. 6.5% had undergone relevant training in medical education (teacher training) with 120 hours, or more. Further characteristics of participants are shown in table 2. As an additional finding during the introduction session for participants it became clear, that the CanMEDS model was not explicitly familiar to most of the physicians.

Rating of key competencies

Single ratings of all key competencies are shown in figure 1, grouped according to:

1. “relevance for personal daily work”,
2. “importance for PY training” and
3. “teaching of the competence to PY students”.

“Relevance for personal daily work” was rated higher than “neutral” for all competencies, the mean from all key competencies was 1.71±0.38. The mean of the seven CanMEDS roles ranged from 1.37±0.56 (“Collaborator”) to 2.19±0.81 (“Manager”). If compared to all other roles by paired t-tests, the relevance of the roles “Collaborator”, “Communicator” (1.42±0.49) and “Medical Expert” (1.47±0.50) was rated significantly higher (details see figure 2).

For the question “Importance of the competency for PY training” similar results were found (see figure 1) as in respect to the relevance for personal daily work. The mean from all specific competencies was 1.67±0.41 (highest rating: 1.19±0.54, lowest: 2.65±1.31), and none of the single competencies was rated below “neutral”. For the mean values of single roles, the same roles were rated significantly more relevant as in the first question (relevance for daily work): “Medical Expert” (1.34±0.41), “Communicator” (1.39±0.47) and “Collaborator” (1.50±0.79). The role “Manager” however, was rated to be significantly less relevant (2.29±0.90).

For the third question: “Teaching of the competency during actual PY training” again, a similar distribution was found as for the first two questions (see figure 1). Here, we found a clear difference between the perceived importance for PY teaching and the definite transfer into actual teaching (see figure 3). The largest difference was noted for “Collaborator” (+0.57), and the lowest for “communicator” (+0.39). There were no significant differences between the seven CanMEDS roles.

Five single key competencies were rated to be significantly less relevant than all others (marked with an asterix in figure 1). These were “Seek appropriate consultation from other health professionals, recognizing the limits of their expertise” (role: “Medical Expert”), “Participate in activities that contribute to the effectiveness of their healthcare organizations and systems” as well as “Serve in administration and leadership roles, as appropriate” (both in „Manager”), “Promote the health of individual patients, communities, and populations” and “Respond to individual patient health needs and issues as part of patient care” (“Health Advocate”).

In the final ranking of roles in respect to their importance for PY training (excluding the "Medical Expert") the “Communicator” role was rated significantly more important than all other roles, whilst the “Manager” role was significantly less important than all other roles (compared by t-tests). We found no other statistical differences (see figure 4).

Potential influences

For none of the potential confounders (medical discipline, type of institution, teacher training, number of PY students supervised, stage of clinical training and academic position of supervisors, time devoted to scientific work, gender, age) we could show a statistically significant influence (analysis of co-variance; global test of the model: Omnibus-F-test).

4. Discussion

In this study 124 supervising physicians of PY students rated all seven CanMEDS roles and the respective key competencies to be relevant for their own personal daily work and for PY training. This is remarkable, as the framework was not explicitly familiar to most of the participants. Only five key competencies were rated to be significantly less relevant than all others, however all ratings were better than “neutral”. In principle, our results confirm studies from other European countries in the field of postgraduate training [15], [19]. However, these studies showed differences between hospital-based and community-based disciplines [15], and therefore it was called for additional discipline-related elements [19]. These differences could be due to higher culture dependent differentiation during postgraduate training if com-
pared to PY training, which may have a more generic character. When asking trainees during the first two years of postgraduate training in Germany, Giesler et al. (s. introduction [6]) found very similar results as in our present study. In contrast to Ringsted [15] and van der Lee [19], Giesler et al. explicitly referred to competencies at the end of undergraduate studies.

It seems noteworthy, that physicians supervising PY students rate the roles “Collaborator” und “Communicator” as equally relevant as the “Medical Expert”. In part, comparable findings have been made in Denmark, where the “Communicator” role was rated as most important at all stages of postgraduate training [15]. For the first two postgraduate years in Germany communicational competency, team-competency, medical competency, and learning competency were rated to be the most important [6]. This emphasises the importance of non-discipline-related competencies at the workplace and calls for more attention to be paid to this field in undergraduate education [9].

Also of note is the fact, that the “Scholar” role was rated only slightly less important; this phenomenon was also reported by Ringsted [15] and Giesler [6]. Apparently, physicians perceive continuous medical education and evidence based clinical decisions as central aspects of their daily work. In our study it may have also been of relevance, that more than half of the participants was engaged in scientific work.

The role of the “Manager” was consistently rated least important. One reason for that could be, that a minority of participants held leading positions and most participants focussed themselves on the patient-physician

Table 2: Characteristics of participating physicians
n = 124
n
Gender
female
male
Age (in years)
< 30
30 - 40
> 40
no response
Academic position
Full professor
Assistant professor “Habilitation”
MD (dissertation)
Within MD process
no academic career
Medical discipline
Surgery
Internal Medicine
no response
Type of institution
University hospital
Associated teaching hospital
Stage of postgraduate training
Early postgraduate training (≤ year 3)
Late specialisation training (≥ year 4)
Board specialised
Number of PY students supervised until then
0
< 10
10 – 100
> 100
Teacher training:
none
1 – 10 h
10 – 119 h
> 120 h
Specific programmes (e.g. MME)
Additional involvement in scientific work
0 working hours per week
< 1 working hours per week
< 5 working hours per week
< 10 working hours per week
> 10 working hours per week
Figure 2: Ranking of CanMEDS roles: Relevance of roles for personal daily work, given as means from the key competencies. Depicted are mean values (boxes) and standard deviations (bars, one direction only). The rating scale for relevance ranged from 1 ("fully agree") to 5 ("fully disagree").

Figure 3: Differences (D) between (a) "importance for training during the "practical year" (PY)", and (b) "actual teaching during PY".

relationship. This lower relevance was also found by Giesler et al. [6], which throws a light on the poor representation of leadership training in German medical education [8]. In contrast, the Danish study found a higher importance of the "Manager" role. Differences in working culture could be one reason, however, the authors also modified the description of the "Manager" role in their survey by relating it more closely to the Danish health care system [15]. As already said, some of the key competencies were rated to be less important (related to the roles "Medical Expert", "Manager", and "Health Advocate"). These competencies
address the topics interprofessional communication, basic societal conditions, leadership skills, and preventive medicine. These fields are less central to the individual patient-physician-relationship and therefore might be perceived as less important in the eyes of clinically active physicians. As an interesting point the explicitly interprofessional key competencies (under “Collaborator”) were rated to be more relevant than the key competency “ME3” (Seek appropriate consultation from other health professionals, …) under “Medical Expert”. An explanation may be that the competency “ME3” was rated in comparison to the other key competencies of the “Medical Expert”, while competencies under the “Collaborator” role were clearly limited to collaboration.

For the lower rating of competencies related to prevention, the hospital-based background of participants could be a good explanation. This result is in line with the work of Ringsted et al [15].

Actual teaching of competencies in PY training was judged to be less than the importance assigned to these competencies before. This difference is similar for all CanMEDS roles. Possibly this reflects the natural difficulties to integrate teaching into the daily routine work while treating patients. In addition, some of the competencies are difficult to teach, as e.g. stated by program directors in respect to the role of the “Professional” [20]. In our study, the scales were not primarily designed to relate to each other, and also the questionnaire did not assess the teaching activities performed in reality. Therefore, no conclusion can be drawn for a possible discrepancy between “delusion” and “reality”. As an additional limitation the students’ perspective was not assessed. This would have given an insight in the competencies students had perceived to be taught.

Potential influences

Medical discipline: We did not find statistical differences of physicians’ ratings between surgery and internal medicine. Other studies demonstrated such differences if workplace contexts were clearly different, as between community-based and hospital-based disciplines [15]. However, if “technical” and “cognitive” disciplines were compared, respective differences could not be shown [15]. Another research group could not show significant differences for the appraisal of CanMEDS roles between general practitioners and specialists [17]. Therefore, it is not very likely to find discipline related differences for PY training in a hospital setting. Preconceptions in respect to differing values towards teaching between surgery and internal medicine do not hold for our sample.

For the type of hospital one could have expected, that the CanMEDS framework was less established in associated teaching hospitals, and that key competencies were judged to be less relevant (based on the assumption of greater proximity to undergraduate medical education in university hospitals). This hypothesis could not be confirmed by our data. However, it cannot be ruled out, that a common working (and teaching) culture between teaching hospitals and the “home” university might have decreased such an effect.

Teacher training of a volume of 120 h, or more (which may have transported the basic principles of the CanMEDS framework), did not lead to differences in the rating of single key competencies. In our view this supports the value of the concept in a sense, that it seems well anchored in daily clinical practice and does not need much additional instruction for use. At the same time,
this is a retroactive confirmation of the original CanMEDS framework.

Generalisability

Supervision of PY students in Germany is heterogeneous. As an example, the logbooks used in the studied hospitals are not national standard. Also, the proportion of university staff is relatively high in our study. From that perspective, our results may not be extended to a national level. On the other hand, our participating physicians represent a fairly typical cross-section in respect to clinical experience and the proportion of females (which is almost identical to recent figures in Germany: 44.4% vs. 45.0%) [13]. It is also realistic, that most physicians had not undergone teacher training. We can also exclude a selection bias due to financial motivation, since no reimbursement was given. A valuable extension of the study would have been to involve additional university hospitals and respective teaching hospitals or to community-based or rural settings. In these cases we would expect gradually different patterns with more emphasis on the “Health Advocate” role, however, a general rejection of the framework is unlikely [15]. Finally, a study of the elective discipline clerkship could extend the scope.

Limitations

The CanMEDS framework was not familiar to most of the participants prior to the study, so in consequence we obtained an unprejudiced, naïve picture. This is of advantage, if an intuitive understanding of the framework is tested. As a potential limitation one could argue, that a concept of “competencies” (and of competency-based education) was unknown to most participants. Even the German licensing regulations for physicians (“Ärztliche Approbationsordnung”) do not mention competencies [12]. On the other hand it is questionable, whether a deeper understanding of the concept would have led to substantially different results. At the end of the day, it would not be conducive to a wider application of the framework, if extensive training was necessary before use.

As final and important limitation it has to be stated, that this study does not provide insight into the perspective of PY students. It is likely, that supervisors believe to teach certain competencies, whereas involved students do not perceive this in the intended way.

5. Summary and conclusions

For a non-representative sample of 124 clinically active physicians we could show, that all CanMEDS roles and the respective key competencies were rated to be relevant for personal daily work, and for PY training. Results were independent from the type of teaching institution and from the background medical discipline (surgery or internal medicine).

These results confirm, that the CanMEDS framework was well founded in the cohort of participating physicians. In view of the continuum of undergraduate and postgraduate medical education the framework could therefore serve as a structure to facilitate transition. Effects of its use should be assessed systematically, especially after implementation of the German national catalogue of learning objectives (NKLM).

6. Acknowledgement

We would especially like to thank all participating physicians, who devoted their time to answer the questionnaire. We also thank Mareike McIntyre for her support when planning the study. This study was conducted as a master’s thesis within the German “Master of Medical Education” (MME-D) programme. Financial support was provided by the Dean of the Faculty of Medicine, Technical University Munich and by the Department of Hematology and Oncology (III. Medizinische Klinik) of the University Hospital “Klinikums rechts der Isar”, Munich.

7. Competing interests

The authors declare that they have no competing interests.

Attachments

Available from http://www.egms.de/en/journals/zma/2015-32/zma000975.shtml

1. Attachment.pdf (75 KB)

Supplemental material

References

1. Bennett D, McCarthy M, O’Flynn S, Kelly M. In the eye of the beholder: student perspectives on professional roles in practice. Med Educ. 2013 Apr;47(4):397-407. DOI: 10.1111/medu.12114

2. Berberat PO, Harendza S, Kadmon M; Gesellschaft für Medizinische Ausbildung, GMA-Ausschuss für Weiterbildung. Entrustable professional activities - visualization of competencies in postgraduate training. Position paper of the Committee on Postgraduate Medical Training of the German Society for Medical Education (GMA). GMS Z Med Ausbild. 2013;30(4):Doc47. DOI: 10.3205/zma000890

3. CanMEDS 2000. Extract from the CanMEDS 2000 Project Societal Needs Working Group Report. Med Teach. 2000;22(6):549-564. DOI: 10.1080/0142159050175505

4. Fischer MR. Undergraduate medical education as a foundation for health care and research. Dtsch Arztebl Int. 2012;109(18):325-326.

5. Frank JR, Danoff D. The CanMEDS initiative: implementing an outcomes-based framework of physician competencies. Med Teach. 2007;29(7):642-647. DOI: 10.1080/01421590701746983
6. Giesler M, Forster J, Biller S, Fabry G. Development of a questionnaire to assess medical competencies: Reliability and validity of the Questionnaire. GMS Z Med Ausbild. 2011;28(2):Doc31. DOI: 10.3205/zma000743

7. Kadmon M, Busemann A, Euteneier A, Gawad K, Grone J, Berberat P. Modular postgraduate training in surgery - a national concept with future. Zentralbl Chir. 2012;137(2):138-143.

8. Kiesewetter J, Schmidt-Huber M, Netzel J, Krohn AC, Angstwurm M, Fischer MR. Training of leadership skills in medical education. GMS Z Med Ausbild. 2013;30(4):Doc49. DOI: 10.3205/zma000892

9. Kiessling C, Dieterich A, Fabry G, Hölzer H, Langewitz W, Mühlinghaus I, Pruskil S, Scheffer S, Schubert S. Committee Communication and Social Competencies of the Association for Medical Education Gesellschaft für Medizinische Ausbildung; Basel Workshop Participants. Communication and social competencies in medical education in German-speaking countries: the Basel consensus statement. Results of a Delphi survey. Patient Educ Couns. 2010;81(2):259-66.

10. Laan RF, Leunissen RR, van Herwaarden CL. The 2009 framework for undergraduate medical education in the Netherlands. GMS Z Med Ausbild. 2010;27(2):Doc35. DOI: 10.3205/zma000672

11. Neufeld VR, Maudsley RF, Pickering RJ, Turnbull JM, Weston WW, Brown MG, Simpson JC. Educating future physicians for Ontario. Acad Med. 1998;73(11):1133-1148. DOI: 10.1097/00001888-199811000-00010

12. Öchsner W, Forster J. Approbierte Ärzte - kompetente Ärzte? Die neue Approbationsordnung für Ärzte als Grundlage für kompetenzbasierte Curricula. GMS Z Med Ausbild. 2005:22(1):Doc04. Zugänglich unter/available from http://www.egms.de/static/de/journals/zma/2005-22/zma000004.shtml

13. Osterloh F. Ärztestatistik: Mehr Ärztinnen, mehr Angestellte. Dtsch Arztebl. 2014;111:A-672.

14. Rademakers JJ, de Rooy N, Ten Cate OT. Senior medical students’ appraisal of CanMEDS competencies. Med Educ. 2007;41(10):990-994. DOI: 10.1111/j.1365-2923.2007.02842.x

15. Ringsted C, Hansen TL, Davis D, Scherpibier A. Are some of the challenging aspects of the CanMEDS roles valid outside Canada? Med Educ. 2006;40(8):807-815. DOI: 10.1111/j.1365-2929.2006.02525.x

16. Steinhauer J, Ledig T, Szecsenyi J, Eicher C, Engeser P, Roos M, Burgartz J, Joos S. Train the Trainer for general practice trainer - a report of the pilot within the programme Verbundweiterbildung plus. GMS Z Med Ausbild. 2012;29(3):Doc43. DOI: 10.3205/zma000813

17. Stutsky BJ, Singer M, Renaud R. Determining the weighting and relative importance of CanMEDS roles and competencies. BMC Res Notes. 2012;5:354. DOI: 10.1186/1756-0500-5-354

18. Turner SR, White JS, Poth C, Rogers WT. Learning the CanMEDS roles in a near-peer shadowing program: a mixed methods randomized control trial. Med Teach. 2012;34(11):888-892. DOI: 10.3109/0142159X.2012.716179

19. van der Lee N, Fokkema JP, Westerman M, Driessen EW, van der Vleuten CP, Scherbibier AJ, Scheele F. The CanMEDS framework: relevant but not quite the whole story. Med Teach. 2013;35(11):949-955. DOI: 10.3109/0142159X.2013.827329

20. Warren AE, Allen VM, Bergin F, Hazelton L, Alexiadis-Brown P, Lightfoot K, McSweeney J, Singleton JF, Sargeant J, Mann K. Understanding, teaching and assessing the elements of the CanMEDS Professional Role: canadian program directors' views. Med Teach. 2014;36(5):390-402. DOI: 10.3109/0142159X.2014.890281

21. Wolfgearten E, Mönnig SP, Fetzner UK, Schröder W, Bollschweiler E. Erfahrungen mit einem fächerübergreifenden Logbuch für Medizinstudenten im Chirurgischen Tertial des Praktischen Jahres am Uniklinikum Köln. Zentralbl Chir. 2012;137(2):180-186. DOI: 10.1055/s-0031-1283810

Corresponding author:
Dr. med. Jan Breckwoldt, MME
Universität Zürich, Medizinische Fakultät, Studiendekanat, Pestalozzistraße 3/3, CH-8091 Zürich, Schweiz, Tel.: +41-44-634 10 75, Fax: +41-44-634 10 88
jan.breckwoldt@dekmed.uzh.ch

Please cite as
Jilg S, Möltner A, Berberat P, Fischer MR, Breckwoldt J. How do Supervising Clinicians of a University Hospital and Associated Teaching Hospitals Rate the Relevance of the Key Competencies within the CanMEDS Roles Framework in Respect to Teaching in Clinical Clerkships? GMS Z Med Ausbild. 2015;32(3):Doc33. DOI: 10.3205/zma000975, URN: urn:nbn:de:0183-zma0009752

This article is freely available from
http://www.egms.de/en/journals/zma/2015-32/zma000975.shtml

Received: 2014-12-12
Revised: 2015-04-07
Accepted: 2015-05-04
Published: 2015-08-17

Copyright ©2015 Jilg et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Wie bewerten im Krankenhaus tätige Ärztinnen und Ärzte die Bedeutung der Rollen-definierenden Kompetenzen des CanMEDS-Modells und ihre Umsetzung für die Ausbildung im Praktischen Jahr?

Zusammenfassung

Zielsetzung: Das Rollenmodell der „Canadian Medical Education Directives for Specialists“ (CanMEDS) findet auch im deutschen Sprachraum verbreitete Anwendung in der ärztlichen Weiterbildung. Unklar ist allerdings, inwieweit es auch auf die Ausbildung im Praktischen Jahr (PJ) in Deutschland anwendbar ist. Die vorliegende Studie untersucht daher, in welchem Ausmaß klinisch tätige Ärzte an einem Universitätsklinikum und dessen akademischen Lehrkrankenhäusern die sieben CanMEDS-Rollen bzw. deren Rollen-definierende Kompetenzen als relevant einschätzen und diese an PJ-Studierende zu vermitteln meinen.

Methodik: 124 Ärztinnen und Ärzte aus den Fächern Innere Medizin und Chirurgie bewerteten in einem Fragebogen die Relevanz der 28 Rollen-definierenden Kompetenzen des CanMEDS-Modells („key competencies“) für folgende drei Leitfragen: „Relevanz für die persönliche tägliche Arbeit“, „Wichtigkeit für die PJ-Ausbildung“ und „Ausmaß der Umsetzung im konkreten Unterricht“.

Ergebnisse: Alle Fragebögen waren hinsichtlich der Hauptfragestellung vollständig auswertbar. Für die Befragten waren alle sieben CanMEDS-Rollen in der persönlichen täglichen Arbeit wichtig und wurden als relevant für die PJ-Ausbildung eingeschätzt. Für alle Rollen wurde eine Umsetzung im konkreten Unterricht angegeben. Die Rollen „Kommunikator“ (Communicator), „Sachkundiger Mediziner“ (Medical Expert) und „Teamplayer“ (Collaborator) wurden hierbei in Bezug auf alle drei Fragen statistisch signifikant als am relevantesten eingestuft. Es zeigten sich keine Unterschiede zwischen den Fächern Innere Medizin und Chirurgie, sowie zwischen Universitätsklinik und akademischen Lehrkrankenhäusern.

Schlussfolgerung: Die Befragten schätzten sämtliche Rollen-definierenden Kompetenzen des CanMEDS-Modells als relevant für ihre persönliche tägliche Arbeit ein. Ebenso bewerteten sie diese als relevant für die PJ-Ausbildung. Diese Befunde unterstreichen die Eignung des CanMEDS-Rollenmodells als Strukturierungselement für die Ausbildung im PJ.

Schlüsselwörter: CanMEDS Rahmenwerk, Kompetenz, klinischer Unterricht, Weiterbildung, Curriculumplanung

1. Einleitung

Das CanMEDS Rollenmodell

Das Rollenmodell der „Canadian Medical Education Directives for Specialists“ (CanMEDS) [3] entstand ursprünglich aus dem Projekt „Educating Future Physicians for Ontario“ (EEPO) [11], welches das Ziel einer reformierten, realitätsnahen Ausbildung von Medizinern verfolgte. Daten aus verschiedensten empirischen Quellen flossen in dieses Projekt ein, so dass die CanMEDS-Rollen umfassend in allen Feldern des kanadischen Gesundheitssystems verankert sind [11]. Das Royal College of Physicians and Surgeons of Canada übertrug das Modell dann auf...

Stefanie Jilg1
Andreas Möltner2
Pascal Berberat3
Martin R. Fischer4
Jan Breckwoldt5

1 Technische Universität München, Klinikum rechts der Isar, II. Medizinische Klinik für Hämatologie und Internistische Onkologie, München, Deutschland
2 Kompetenzzentrum für Prüfungen in der Medizin/Baden-Württemberg, Heidelberg, Deutschland
3 Technische Universität München, Fakultät für Medizin, MedizinDidaktisches Centrum für Ausbildungsforschung und Lehre (TUM MedICAL), München, Deutschland
4 Klinikum der Universität München, Institut für Didaktik und Ausbildungsforschung in der Medizin, München, Deutschland
5 Universität Zürich, Medizinische Fakultät, Studiendekanat, Zürich, Schweiz
die ärztliche Weiterbildung [5], und von dort ausgehend etablierte es sich rasch international in vielen Weiterbildungsprogrammen. Für Deutschland seien beispielhaft ein Postgraduierten-Training im Bereich Chirurgie [7] und ein Train-the-Trainer-Programm in der Allgemeinmedizin genannt [16]. Ein aktuelles Positionspapier des GMA-Ausschusses Weiterbildung, in dem „Anvertraute Professionelle Tätigkeiten“ als Strukturierungselemente der Weiterbildung vorgestellt werden, bezieht sich ebenfalls direkt auf das CanMEDS-Modell [2]. Das Modell wurde in einigen Ländern bereits auf die Phase des Studiums übertragen, sowohl in verschiedenen Unterrichtsprojekten [1], [14], [18], als auch in den nationalen Lernzielkatalogen der Schweiz [http://www.smifk.ch, zitiert am 29.03.2015] und der Niederlande [10]. Die Arbeit am „Nationalen Kompetenzorientierten Lernzielkatalog Medizin“ (NKLM) in Deutschland greift das Modell für das Medizinstudium auf [4].

Hintergrund der vorliegenden Untersuchung

Unter der Perspektive eines Kontinuums von Aus- und Weiterbildung erscheint das CanMEDS-Modell insbesondere für die Ausbildung im Praktischen Jahr (PJ) attraktiv. Dieser letzte Abschnitt des Medizinstudiums dient in Deutschland zur praktischen Ausbildung im klinischen Alltag und wird in Universitätskliniken, akademischen Lehrkrankenhäusern oder anderen anerkannten Einrichtungen absolviert. Er wird in drei Abschnitte à vier Monate unterteilt (Tertiale), wobei innere Medizin und Chirurgie Pflichtfächer darstellen und das dritte Tertial in einem Wahnfach abgeleitet wird. Bis auf diese Rahmenbedingungen ist die Ausbildung im PJ sehr heterogen. Sie erfolgt v.a. durch die auf Station anwesenden Ärztinnen und Ärzte und ist mehr oder weniger strukturiert. Die Strukturierung reicht von einfacher Anwesenheit bis zum Erfüllen von differenzierten Logbüchern mit Rotationsplänen und obligaten arbeitsplatzbasierten Prüfungen [21]. Ein national einheitlicheres Ausbildungskonzept wäre für das PJ wünschenswert. Auch wenn das CanMEDS-Modell ursprünglich für die Weiterbildung entwickelt wurde und die enthaltenen Kompetenzen erst am Ende der Weiterbildung erreicht sein sollen, könnte es sich an der Schwelle von Aus- und Weiterbildung als Strukturierungs element eignen. Eine wichtige Voraussetzung dafür wäre, dass zumindest die dem Modell zugrundeliegenden Kompetenzen den PJ-ausbildenden Ärztinnen und Ärzten vertraut sind. Damit könnte auch das Kontinuum von Aus- und Weiterbildung deutlicher und die Akzeptanz für eine konkrete Umsetzung des NKLM gestärkt werden. Ein dem CanMEDS-Modell nahestehendes Modell zur Beschreibung von Absolvierendenkompetenzen wurde für Deutschland schon vorgestellt (FKM: „Freiburger Fragebogen zur Erfassung von Kompetenzen in der Medizin“) [6]. Dies zeigte bei der Befragung von Studierenden im 1.-4. Studienjahr sowie Assistenzärzten im 1. und 2. Weiterbildungsjahr eine gute Reliabilität und Konstruktvalidität. Allerdings wurde für den FKM nicht untersucht, ob die konkret im PJ ausbildenden Ärztinnen und Ärzte die zugrundeliegenden Kompetenzen als relevant einschätzen, und auf die CanMEDS-Rollen konnte kein expliziter Bezug genommen werden.

Forschungsfrage

Die vorliegende Studie sollte daher folgende Fragen beantwortet:

1. Schätzen praktisch tätige Ärztinnen und Ärzte an einem deutschen Universitätsklinikum und angeschlossenen Lehrkrankenhäusern die 28 Rollendefinierenden Kompetenzen des CanMEDS-Rollenmodells als relevant ein für a) ihre persönliche tägliche Arbeit? b) die PJ-Ausbildung?

2. Sind die befragten Ärztinnen und Ärzte der Meinung, dass sie die entsprechenden Kompetenzen bereits an ihre PJ-Studierenden vermitteln?

Als sekundäre Endpunkte wurden mögliche Einflüsse durch folgende Faktoren untersucht: Fachgebiet (Innere Medizin vs. Chirurgie), Art der Einrichtung (Universitätsklinikum vs. Akademisches Lehrkrankenhaus), medizindiagnostische Vorbildung, Anzahl der bisher betreuten PJ-Studierenden, Weiterbildungsstand, akademische Position, zeitlicher Umfang eigener wissenschaftlicher Tätigkeit, Geschlecht und Alter.

2. Methodik

Fragebogen

Um eine ausreichend große Zahl an Probanden zu erreichen, wurde einem geschlossenen Fragebogenformat gegenüber einem offeneren qualitativen Studiendesign der Vorzug gegeben. Wir beschränkten die Untersuchung auf die beiden PJ-Pflichtfächer Innere Medizin und Chirurgie, um einerseits den Hauptanteil der PJ-Fächer abzubilden und gleichzeitig mögliche Unterschiede von diversen Fachkulturen zu erfassen. Der speziell für diese Studie entwickelte Fragebogen bestand in den Aus den 28 Rollendefinierenden Kompetenzen, gruppiert nach den zugehörigen CanMEDS-Rollen, pro Rolle zwei bis sechs Kompetenzen (siehe Tabelle 1; die Abkürzungen der sieben ärztlichen Rollen, sowie ihre Rollendefinierenden Kompetenzen werden auch in Abbildung 1 weiterverwendet). Die Beschreibung der sieben ärztlichen Rollen, sowie ihre Rollendefinierenden Kompetenzen wurden in Deutschland und Belgien überetzt. Für die Rollenbezeichnungen wurde zusätzlich jeweils die originale englische Formulierung angegeben, um die semantische Unschärfe einer Übersetzung in Schlagwort-Form zu verringern. Da zum Zeitpunkt der Untersuchung der NKL noch nicht öffentlich zugänglich war, konnten die dort diskutierten Begriffe nicht im Fragebogen verwendet werden. Aktuell werden die Rollenbezeichnungen des NKL lediglich in einem Zwischenbericht der Medizinischen Fakultäten (MFT) genannt [http://www.mft-online.de/lehre/nationaler-kompetenz-
Tabelle 1: CanMEDS-Rollen und Rollen-definierende Kompetenzen (deutsche Übersetzung)

Rolle	Kompetenzen	
Kommunikator ("Communicator")	1. Effektiver Einsatz sprachlicher und nichtsprachlicher Kommunikation	2. Effektives Umgang mit Medizin und ärztlicher Kompetenz
Teamplayer ("Collaborator")	1. Konzertiertes Handeln in einer interdisziplinären Arbeitsgruppe	2. Fähigkeit, Entscheidungen zu treffen und Verantwortung zu übernehmen
Führungskraft ("Manager")	1. Leiten einer Einheit	2. Fähigkeit, eine Gruppe zu leiten und zu koordinieren
Fürsprecher der Gesundheit ("Health Advocate")	1. Verständnis für das Gesundheitswesen	2. Fähigkeit, Gesundheitsprobleme zu identifizieren und Lösungen zu finden
Lernender Dozent ("Scholar")	1. Fähigkeit, lernen und unterrichten	2. Fähigkeit, die Curriculum zu gestalten und zu überwachen
Professioneller Arzt ("Professional")	1. Fähigkeit, ärztliche Praxis zu führen	2. Fähigkeit, ärztliche Entscheidungen zu treffen
Sachkundiger Mediziner ("Medical Expert")	1. Fähigkeit, spezifische medizinische Probleme zu diagnostizieren	2. Fähigkeit, ärztliche Maßnahmen sicherzustellen

Der Autor ging davon aus, dass die Rollen-definierenden Kompetenzen alle notwendigen Voraussetzungen, um die Verwendung von medizinischen Wissen und klinischen Fertigkeiten für Patienten-zentrierte Versorgung zu gewährleisten. Die Rollen wurden durch die spezifischen Rollen-definierenden Kompetenzen näher charakterisiert und in Tabelle 1 aufgeführt. Die Bewertung erfolgte anhand einer 5-stufigen Likert-Skala (1: "uneingeschränkte Zustimmung" bis 5: "uneingeschränkte Ablehnung"). Die Bewertung wurde für folgende drei Leitfragen abgegeben:
1. "Ist diese Kompetenz in Ihrer persönlichen täglichen Arbeit von Relevanz?"
2. "Halten Sie es für erforderlich, die dargestellte Kompetenz an Studierende im PJ zu vermitteln?"
3. "Vermitteln Sie die dargestellte Kompetenz an Studierende im PJ?"

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.

Die Relevanz der Rollen-definierenden Kompetenzen beurteilten die Befragten anhand 5-stufiger Likert-Skalen. Mittels Rückübersetzung ins Englische durch einen nicht an der Primärübersetzung beteiligten Autor (JB) wurden Unklarheiten identifiziert und nach gemeinsamer Diskussion Einvernehmen hergestellt.
Abbildung 1: Einschätzung der Rollen-definierenden Kompetenzen in Bezug auf (a) die Relevanz für die persönliche tägliche Arbeit, (b) die Wichtigkeit für die PJ-Ausbildung und (c) ob die Kompetenz wirklich vermittelt wird. Aufgetragen sind Mittelwerte (Kreise) und Standardabweichungen (Balken, in eine Richtung). Die Bewertungsskala für die Relevanz reichte von 1 (”unbedingte Zustimmung”) bis 5 (”unbedingte Ablehnung”).

Mögliche Einflussfaktoren (Fachgebiet, Art der Einrichtung, medizindidaktische Vorbildung, Anzahl der bisher betreuten PJ-Studenten, Weiterbildungsstand, akademi sche Position, eigene wissenschaftlicher Tätigkeit, Geschlecht und Alter) wurden über Auswahl-Antworten erfasst. Am Ende des Fragebogens führten die Befragten eine Priorisierung der sechs „peripheren“ Rollen (unter Ausschluss des „Sachkundigen Mediziners“) hinsichtlich ihrer Bedeutung für die PJ-Ausbildung durch. Insgesamt bestand der Bogen aus 90 Einzel-Variablen [siehe Anhang: Originalfragebogen als Zusatzmaterial online].

Durchführung

Zwischen August und Oktober 2012 wurden PJ-ausbildende Ärztinnen und Ärzte am Universitätsklinikum der TU München und an fünf seiner Münchner Lehrkrankenhäuser befragt („Klinikum rechts der Isar“, „Deutsches Herzcentrum München“, „Klinikum Bogenhausen“, „Klinikum Schwabing“, „Krankenhaus der Barmherzigen Brüder München“, „Rotkreuz-Klinikum München“). Es wurden jeweils alle chirurgischen und internistischen Abteilungen eines Hauses einbezogen. Alle eingeschlossenen Einrichtungen setzten zur Strukturierung der klinischen Ausbildung seit einigen Jahren PJ-Logbücher ein. Daneben wurden weitere Lerninhalte in PJ-Seminaren vermittelt, in der Regel von lehrerfahrenen Oberärzten. Der Großteil
der Betreuung auf den Stationen wurde durch Assisten-
zärzte unterschiedlicher Ausbildungsniveaus geleistet. Die Befragung erfolgte freiwillig, auf anonymen Erfassungs-
bögen, im Rahmen von abteilungsinternen Dienstbespre-
chungen mit anschließender Fortbildung. Schätzungswei-
se 50% der jeweiligen Ärzteschaft waren zu diesen Anläs-
sen anwesend. Jede Abteilung wurde einmalig besucht, alle anwesenden Ärztinnen und Ärzte nahmen jeweils teil.
Nach einer kurzen Einführung in den Hintergrund der Untersuchung und den Aufbau des Fragebogens wurden die Fragebögen an Ort und Stelle ausgefüllt und im An-
schluss wieder eingesammelt. Die Bearbeitungszeit war
nicht limitiert, maximal wurden 30 min benötigt. Für
Rückfragen stand die Erstautorin zur Verfügung.

Auswertung und Datensicherheit

Die Befragten trugen ihre Antworten in einen maschinen-
lesbaren Bogen ein, danach wurden die Daten in einer Excel-Datei erfasst. Für die Gesamtbewertung jeder einzel-
en CanMEDS-Rolle wurde der Mittelwert aus den zuge-
hörigen Rollen-definierenden Kompetenzen gebildet, die Ergebnisse wurden als Mittelwerte (MW) mit Standard-
abweichung (SD) dargestellt. Um zu prüfen, ob die Bewer-
tungen von den Variablen Fachgebiet, Art der Einrichtung,
medizinididaktische Vorbildung, Anzahl der bisher betreu-
ten PJ-Studenten, Weiterbildungsstand, akademische Position, wissenschaftliche Tätigkeit, Geschlecht und Alter abhängig waren, wurden Kovarianzanalysen mit den Be-
wertungen als abhängige und den 9 Sekundärvariablen (Geschlecht etc.) als unabhängige Variablen durchgeführt.
Zur Sicherung des alpha-Niveaus bei multipler Testung
wurde der Omnibus-F-Test der COVANOVA verwendet. Die Auswertung erfolgte mit SAS, Version 9.3.
Daten, die eine individuelle Person hätten identifizieren lassen können, wurden nicht erhoben. Die Ethikkommissi-
sion der Fakultät für Medizin der TU München erhob keine Einwände gegen das Forschungsprojekt (Projektnr.
5517/12).

3. Ergebnisse

Charakteristika der Befragten

Insgesamt konnten alle 124 Fragebögen bezüglich der Hauptfragestellung vollständig ausgewertet werden
(100% Rücklauf, aufgrund hoher sozialer Verbindlichkeit).
60,5% der Befragten gaben an, bereits zwischen zehn
und 100 PJ-Studierende betreut zu haben, weitere 23,4%
sogar mehr als 100. 31,5% arbeiteten in einer chirurgi-
schen Abteilung, 66,9% in der Inneren Medizin (keine
Angaben in zwei Fällen): 44,4% der Befragten waren
weiblich, 55,6% männlich. Am Universitätsklinikum waren
54,8% angestellt, 45,2% an einem akademischen Lehr-
krankenhaus (ALK). 16,1% der Befragten waren habilitiert
sowie befanden sich im Habilitationsverfahren und 6,5%
war eine relevante medizinididaktische Vorbildung auf
(≥120h). Weitere Charakteristika der Befragten finden
sich in Tabelle 2. Als Nebenbefund stellte sich während
des Einführungsvortrags heraus, dass das explizite Can-
MEDS-Rollenmodell den meisten Befragten nicht geläufig
war.

Bewertung der Rollen-definierenden
Kompetenzen

Die Einzelbewertungen der Rollen-definierenden Kompe-
tenzen finden sich in Abbildung 1. Sie sind aufgeteilt in:
1. „Relevanz für die persönliche tägliche Arbeit“,
2. „Wichtigkeit für die PJ-Ausbildung“ und
3. „Vermittlung der Kompetenz an Studierende im PJ“.

Die „Relevanz für die persönliche tägliche Arbeit“ wurde
für sämtliche Kompetenzen wichtiger als „neutral“ einge-
schätzt, der Mittelwert aus allen Kompetenzen lag bei
1.71±0,38. Die Mittelwerte für die sieben Rollen lagen
zwischen 1.37±0,56 („Teamplayer“) und 2.19±0,81
(„Führungskraft“). Im gepaarten t-Test lag die Relevanz
der drei Rollen „Teamplayer“, „Kommunikator“
(1.42±0,49) und „Sachkundiger Mediziner“ (1.47±0,50)
im Vergleich zu den anderen Kompetenzen signifikant
höher (Details siehe Abbildung 2).

Unter der Leitfrage „Wichtigkeit für die PJ-Ausbildung“
zog sich ein sehr ähnliches Bild (siehe Abbildung 1) wie bei der Einschätzung bzgl. der Relevanz für die eigene
Arbeit. Der Mittelwert aus allen Einzel-Kompetenzen lag
bei 1.67±0,41 (bester Wert: 1.19±0,54, schlechtester
Wert: 2.65±1,31), keine der Einzel-Kompetenzen wurde
schlechter als neutral bewertet. Für den Mittelwert inner-
halb der Rollen wurden die gleichen drei Rollen als sig-
nifikant relevanter eingestuft wie in der vorigen Leitfrage
(„Sachkundiger Mediziner“ (1,34±0,41), „Kommunikator“
(1,39±0,47) und „Teamplayer“ (MW 1,50±0,79)). Die Rolle
„Führungskraft“ hingegen wurde als signifikant
wesentliches Verteilungsmuster (siehe Abbildung
1). Dabei bestand ein deutlicher Unterschied zwischen
eingeschätzten Bedeutung und realer Umsetzung (siehe
Abbildung 3). Die größte Differenz ergab sich für den
„Teamplayer“ (+0,57), die geringste für den „Kommuni-
kator“ (+0,39). Signifikante Unterschiede zwischen den
Differenzwerten der sieben Rollen bestanden nicht.
Fünf Einzel-Kompetenzen wurden für alle drei Leitfragen
als statistisch signifikant weniger relevant eingestuft (in
Abbildung 1 jeweils mit einem Stern markiert). Im Einzel-
nen waren es die Kompetenzen „Konsultation von nicht-
ärztlichem medizinischem Fachpersonal in einem ange-
messenen Rahmen ...“ (unter der Rolle „Sachkundiger
Mediziner“), „Teilnahme an Aktivitäten zur effektiven
Gestaltung des Gesundheitssystems und des eigenen
medizinischen Umfeldes“ sowie „Ausfüllen von Führungs-
positionen und kompetentes Ausführen administrativer
Tätigkeiten“ (jeweils in der Rolle „Führungskraft“); „För-
derung der Gesundheit des einzelnen Patienten, der
verschiedenen Patientengruppen und der unterschiedli-

GMS Zeitschrift für Medizinische Ausbildung 2015, Vol. 32(3), ISSN 1860-3572
Tabelle 2: Charakteristika der befragten Ärztinnen und Ärzte

	n = 124	
Geschlecht		
weiblich	69	55,6%
männlich	55	44,4%
Alter		
< 30	24	19,4%
30 - 40	83	66,9%
> 40	16	12,9%
keine Angabe	1	0,8%
akademische Position		
Prof	5	4,0%
PD / Habil	15	12,1%
Dr. med	80	64,5%
Doktorand	13	10,5%
Hochschulabsolvent	11	8,9%
Fachrichtung		
Chirurgie	39	31,5%
Innere	83	66,9%
keine Angabe	2	1,6%
Arbeitsstätte		
Universität	68	54,8%
Akadem. Lehr-Krankenhaus	56	45,2%
Weiterbildungsstand		
frühe FA-Weiterbildung	29	23,4%
späte FA-Weiterbildung	46	37,1%
Fachärztin / -arzt	49	39,5%
Anzahl betreute PJ-Stud.		
0	4	3,2%
< 10	16	12,9%
10 – 100	75	60,5%
> 100	29	23,4%
medizinidaktische Vorbildung:		
keine	94	76,8%
0 – 10 h	8	6,5%
10 – 119 h	14	11,3%
> 120 h	5 + 3	6,5%
Spezif. Ausbildung (z.B. MME)		
wissenschaftliche Arbeit		
0 Arbeitsstunden pro Woche	26	21,0%
< 1 Arbeitsstunden pro Woche	27	21,8%
< 5 Arbeitsstunden pro Woche	34	27,4%
< 10 Arbeitsstunden pro Woche	14	11,3%
> 10 Arbeitsstunden pro Woche	23	18,5%

Jilg et al.: Wie bewerten im Krankenhaus tätige Ärztinnen und Ärzte...

Mögliche Einflussfaktoren auf das Antwortverhalten

Der Einfluss von Fachgebiet, Art der Einrichtung, medizinidaktischer Vorbildung, Anzahl der bisher betreuten PJ-Studierenden, Weiterbildungsstand, akademischer Position, wissenschaftlicher Tätigkeit, Geschlecht und Alter wurde mit einer Kovarianz-Analyse geprüft. Mit dem globalen Test des Gesamtmodells (Omnibus-F-Test) konnte für keines der erhobenen Personenmerkmale ein Einfluss nachgewiesen werden.
Abbildung 2: Bewertung der Relevanz der CanMEDS-Rollen für die persönliche tägliche Arbeit als Mittelwerte aus den Rollen-definierenden Kompetenzen. Aufgetragen sind Mittelwerte (Kästen) und Standardabweichungen (Balken, in eine Richtung). Die Bewertungsskala für die Relevanz reichte von 1 („unbedingte Zustimmung“) bis 5 („unbedingte Ablehnung“).

Abbildung 3: Differenz (D) zwischen „Wichtigkeit für die PJ-Ausbildung“ („Soll“: S) und „reale Umsetzung im Unterricht“ („Ist“: I)

4. Diskussion

In der vorliegenden Untersuchung schätzten 124 PJ-ausbildende Ärztinnen und Ärzte alle sieben CanMEDS-Rollen sowie deren Rollen-definierende Kompetenzen als relevant für die persönliche tägliche Arbeit und für die PJ-Ausbildung ein, und das obwohl den meisten Befragten das Modell nicht zuvor bekannt war. Nur fünf Kompetenzen wurden als signifikant weniger relevant eingeschätzt, wobei auch hier alle Bewertungen besser als neutral ausfielen. Im Grundsatz entspricht dieses Ergebnis anderen europäischen Studien, die sich allerdings auf die postgraduale Weiterbildung bezogen [15], [19]. Diese Studien zeigten darüber hinaus Unterschiede zwischen theoretischen, krankenhausbasierten und hausärztlichen Fächern [15], bzw. es wurden zusätzliche disziplinspezifische Elemente gefordert [19]. Diese Unterschiede könnten der größeren Differenzierung innerhalb der Weiterbil-
Abbildung 4: Hierarchisierung der Rollen außerhalb des „medical expert“. Aufgetragen sind Mittelwerte (Kästen) und Standardabweichungen (Balken, in eine Richtung).

Es erscheint bemerkenswert, dass die PJ-ausbildenden Ärztinnen und Ärzte die Rollen „Teamplayer“ und „Kommunikator“ als ebenso relevant eingeschätzt wie den „Sachkundigen Mediziner“. Diese hohe Bewertung für die Rolle „Kommunikator“ fand sich auch in einer Befragung von dänischen Ärzten aller Weiterbildungsstufen [15]. Und auch bei Giesler et al. wurden kommunikative Kompetenz, Team-Kompetenz, Fachkompetenz und Lernkompetenz als wichtigste Kompetenzen angegeben [6]. Dies unterstreicht die große Bedeutung der nichtfachbezogenen Kompetenzen für den Berufsalltag und legt auch aus dieser Perspektive nahe, dass entsprechende Inhalte im Medizinstudium adäquat repräsentiert sein sollten [9].

Bemerkenswert ist auch, dass der „Lernende Dozent/Scholar“ als kaum weniger wichtig bewertet wurde; auch dieser Befund deckt sich mit den Ergebnissen von Ringsted [15] und Giesler [6]. Offenbar werden kontinuierliche Weiterbildung und die Evidenz-Basierung von klinischen Entscheidungen bei den Befragten als zentrale Punkte ihrer Arbeit wahrgenommen. Für unsere Studie könnte zusätzlich eine Rolle gespielt haben, dass mehr als die Hälfte der Befragten angab, relevante Zeit mit wissenschaftlicher Tätigkeit zu verbringen.

Die Rolle „Führungskraft/Manager“ wurde durchgängig die geringste Relevanz zugesprochen. Grund dafür könnte sein, dass nur wenige Befragte Leitungsfunktionen innehielten, und sich dementsprechend das Gesamtkollektiv eher auf die konkrete Patienten-Arzt-Beziehung fokussiert hat. Die niedrigere Relevanz-Einschätzung fand sich ebenfalls bei Giesler [6], was auch auf eine schlechtere Verankerung von Führungskompetenzen in der deutschen Aus- und Weiterbildung hinweist [8]. Im Kontrast dazu gaben die Befragten in der oben zitierten dänischen Studie eine höhere Wichtigkeit der Rolle „Manager“ an. Unterschiede in der dänischen Arbeitskultur könnten dafür verantwortlich sein (nota bene: in ihrer Studie verwendeten die Autoren nicht die originalen „key competencies“ sondern modifizierte Formulierungen, wie z.B. im Bereich „Manager“ den Zusatz „Danish health care system“) [15].

Wie schon angesprochen, fallen einzelne Rollen-definierende Kompetenzen innerhalb ihrer Rolle als signifikant weniger wichtig auf (in den Rollen „Sachkundiger Mediziner“, „Führungskraft“ und „Fürsprecher der Gesundheit“). Diese Kompetenzen betreffen die Themenfelder Interprofessionalität, gesellschaftspolitische Rahmenbedingungen, Führungskompetenz und Prävention. Diese Aufgabenbereiche liegen von der primären Patienten-Arzt-Beziehung etwas weiter entfernt und dürften in der Wahrnehmung von klinisch tätigen Medizinern nicht im Vordergrund stehen. Auffällig ist allerdings, dass die explizit interprofessionellen Einzelkompetenzen (unter „Teamplayer“) von den Befragten als relevanter eingeschätzt wurden als die Kompetenz „ME3“ (Konsultation von nichtärztlichem Personal... siehe Tabelle1) unter „Sachkundigem Mediziner“. Als Erklärung dafür könnte die Kompetenz „ME3“ unter der Überschrift „Sachkundiger Medizin...
In unserer Untersuchung hatte auch eine medizin-didaktische Ausbildung von 120 h und mehr (die wahrscheinlich zumindest die Grundprinzipien des CanMEDS-Modells vermittelt) keinen Einfluss auf die Bewertung der einzelnen Rollen-definierenden Kompetenzen. Das stärkt aus unserer Sicht die Bedeutung des Konstruks dahingehend, dass es im klinischen Alltag gut verankert scheint und es zum ersten Verständnis keiner umfangreichen Zusatzausbildung bedarf. Diese Befunde sind gleichzeitig eine Rückbestätigung für die ursprünglich im kanadischen Gesundheitssystem gewonnene empirische Basis und stärken damit das CanMEDS-Modell in seiner grundsätzlichen Bedeutung.

Übertragbarkeit

Die Betreuung von PJ-Studierenden in Deutschland ist sehr heterogen. So ist z.B. die in den untersuchten Krankenhäusern etablierte Verwendung von Logbüchern derzeit kein Standard und der Anteil universitärer Mitarbeiter ist in der vorliegenden Studie relativ groß. Von daher können die Ergebnisse nicht auf eine nationale Ebene übertragen werden. Auf der anderen Seite bietet die untersuchte Kohorte einen typischen Querschnitt in Bezug auf die klinischen Erfahrungsstand und der Anteil an Ärztinnen ist praktisch identisch mit den aktuellen Verteilungsdaten in Deutschland (44,4% vs. 45,0%) [13]. Ebenso scheint der hohe Anteil an didaktisch nicht ausgebildeten Ärzten realistisch. Ein Selektionsbias aufgrund finanzieller Anreize bei den Befragten kann ausgeschlossen werden. Eine sinnvolle Ergänzung der Erhebung wäre die Ausweitung auf andere Universitätskliniken und ihre Lehrkrankenhäuser sowie auf PJ-ausbildende Ärzte in Niederlassung oder in ländlichen Gebieten. Hier wäre eine andere Gewichtung der Rollen zu erwarten, allerdings keine grundsätzliche Ablehnung des Modells [15]. Auch die Untersuchung außerhalb der PJ-Pflichtfächer könnte das Bild erweitern.

Limitierungen

Das CanMEDS-Modell war den meisten Befragten vor dieser Studie nicht geläufig, so dass sich bei unseren Ergebnissen ein unbefangenes, „naives“, Bild bietet. Das ist von Vorteil, wenn die intuitive Schlüsslichkeit des Modells überprüft werden soll. Eine mögliche Einschränkung könnte dagegen darin liegen, dass der Begriff „Kompetenz“ und das damit verbundene Ausbildungsprinzip der Kompetenzorientierung wenig bekannt waren, zumal auch die Ärztliche Approbationsordnung diesen Begriff nicht erwähnt [12]. Auf der anderen Seite ist es fraglich, ob ein tieferes Verständnis des Konzepts zu anderen Bewertungen der ausformulierten Fragen geführt hätte. Schließlich wäre es für die breite Umsetzung des Modells förderlich, wenn keine umfangreiche didaktische Ausbildung notwendig ist. Als weitere wichtige Einschränkung bleibt festzuhalten, dass diese Untersuchung keinerlei Aufschluss über die Sicht der PJ-Studierenden gibt. Es ist gut möglich, dass die Dozierenden glauben, etwas zu
vermitteln, was bei den Studierenden nicht in der gewünschten Weise wahrgenommen wird.

5. Zusammenfassung und Schlussfolgerung

Für eine nicht-repräsentative Stichprobe von 124 klinisch tätigen Ärztinnen und Ärzten konnte gezeigt werden, dass alle CanMEDS-Rollen einschließlich aller Rollen-definierenden Kompetenzen als relevant für die persönliche tägliche Arbeit und ebenso für die PJ-Ausbildung angesehen wurden. Die Ergebnisse waren unabhängig von der Ausbildungsstätte und der Spezialisierung in zwei großen Fächern. Die vorliegenden Ergebnisse belegen, dass das Rollenmodell im befragten Kollektiv gut verankert ist. Mit Blick auf das Kontinuum von Aus- und Weiterbildung könnte das Modell somit eine Struktur an der Schwelle von der Aus- zur Weiterbildung bieten, um diesen Übergang zu erleichtern. Einflüsse der Anwendung sollten systematisch untersucht werden, insbesondere nach Veröffentlichung und Implementierung des NKLM.

6. Danksagung

Ein ganz besonderer Dank gilt den Ärztinnen und Ärzten, die sich die Zeit nahmen an der vorgestellten Umfrage teilzunehmen. Ebenso zu danken ist Frau Mareike McIntyre für ihre Hilfe bei der Studienplanung. Die vorliegende Arbeit wurde im Rahmen der Masterarbeit von SJ im Master of Medical Education erstellt (MME-D). Die Finanzierung erfolgte über das Dekanat der Fakultät für Humanmedizin der Technischen Universität München und der III. Medizinischen Klinik für Hämatologie und Onkologie des „Klinikums rechts der Isar“.

7. Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Anhänge

Verfügbar unter http://www.egms.de/en/journals/zma/2015-32/zma000975.shtml

1. Anhang 1.pdf (77 KB)
 Originalfragebogen

Literatur

1. Bennett D, McCarthy M, O’Flynn S, Kelly M. In the eye of the beholder: student perspectives on professional roles in practice. Med Educ. 2013 Apr;47(4):397-407. DOI: 10.1111/medu.12114
2. Berberat PO, Harendza S, Kadmon M: Gesellschaft für Medizinische Ausbildung, GMA-Ausschuss für Weiterbildung. Entrustable professional activities - visualisation of competencies in postgraduate training. Position paper of the Committee on Postgraduate Medical Training of the German Society for Medical Education (GMA). GMS Z Med Ausbild. 2013;30(4):Doc47. DOI: 10.3205/zma000890
3. CanMEDS 2000. Extract from the CanMEDS 2000 Project Societal Needs Working Group Report. Med Teach. 2000;22(6):549-564. DOI: 10.1080/01421590050175505
4. Fischer MR. Undergraduate medical education as a foundation for healthcare and research. Dtsch Arztebl Int. 2012;109(18):325-326.
5. Frank JR, Danoff D. The CanMEDS initiative: implementing an outcomes-based framework of physician competencies. Med Teach. 2007;29(7):642-647. DOI: 10.1080/01421590701746983
6. Giesler M, Forster J, Biller S, Fabry G. Development of a questionnaire to assess medical competencies: Reliability and validity of the Questionnaire. GMS Z Med Ausbild. 2011;28(2):Doc31. DOI: 10.3205/zma000743
7. Kadmon M, Busemann A, Euteneier A, Gawad K, Grone J, Berberat P. Modular postgraduate training in surgery - a national concept with future. Zentralbl Chir. 2012;137(2):138-143.
8. Kiesewetter J, Schmidt-Huber M, Netzal J, Krohn AC, Angstwurm M, Fischer MR. Training of leadership skills in medical education. GMS Z Med Ausbild. 2013;30(4):Doc49. DOI: 10.3205/zma000892
9. Kiessling C, Dieterich A, Fabry G, Hölzer H, Langewitz W, Mühlinghaus I, Priskul S, Scheffer S, Schubert S. Committee Communication and Social Competencies of the Association for Medical Education Gesellschaft für Medizinische Ausbildung; Basel Workshop Participants. Communication and social competencies in medical education in German-speaking countries: the Basel consensus statement. Results of a Delphi survey. Patient Educ Couns. 2010;81(2):259-66.
10. Laan RF, Leunissen RR, van Herwaarden CL. The 2009 framework for undergraduate medical education in the Netherlands. GMS Z Med Ausbild. 2010;27(2):Doc35. DOI: 10.3205/zma000672
11. Neufeld VR, Maudsley RF, Pickering RJ, Turnbull JM, Weston WW, Brown MG, Simpson JC. Educating future physicians for Ontario. Acad Med. 1998;73(11):1133-1148. DOI: 10.1097/00001888-199811000-00010
12. Öchsner W, Forster J. Approbierte Ärzte - kompetente Ärzte? Die neue Approbationsordnung für Ärzte als Grundlage für kompetenzbasierte Curricula. GMS Z Med Ausbild. 2005;22(1):Doc04. Zugänglich unter/available from http://www.egms.de/static/de/journals/zma/2005-22/zma000004.shtml
13. Osterloh F. Ärztetätigkeit: Mehr Ärztinnen, mehr Angestellte. Dtsch Arztebl Int. 2014;111:A-672.
14. Rademakers JJ, de Rooy N, Ten Cate OT. Senior medical students’ appraisal of CanMEDS competencies. Med Educ. 2007;41(10):990-994. DOI: 10.1111/j.1365-2923.2007.02842.x
15. Ringsted C, Hansen TL, Davis D, Scherpber A. Are some of the challenging aspects of the CanMEDS roles valid outside Canada? Med Educ. 2006;40(8):807-815. DOI: 10.1111/j.1365-2923.2006.02525.x
16. Steinhausser J, Ledig T, Szecsenyi J, Eicher C, Engeser P, Roos M, Burgart J, Joos S. Train the Trainer for general practice trainer - a report of the pilot within the programme Verbundweiterbildung plus. GMS Z Med Ausbild. 2012;29(3):Doc43. DOI: 10.3205/zma000813
17. Stutsky BJ, Singer M, Renaud R. Determining the weighting and relative importance of CanMEDS roles and competencies. BMC Res Notes. 2012;5:354. DOI: 10.1186/1756-0500-5-354

18. Turner SR, White JS, Poth C, Rogers WT. Learning the CanMEDS roles in a near-peer shadowing program: a mixed methods randomized control trial. Med Teach. 2012;34(11):888-892. DOI: 10.3109/0142159X.2012.716179

19. van der Lee N, Fokkema JP, Westerman M, Driessen EW, van der Vleuten CP, Scheele F. The CanMEDS framework: relevant but not quite the whole story. Med Teach. 2013;35(11):949-955. DOI: 10.3109/0142159X.2013.827329

20. Warren AE, Allen VM, Bergin F, Hazelton L, Alexiadis-Brown P, Lightfoot K, McSweeney J, Singleton JF, Sargeant J, Mann K. Understanding, teaching and assessing the elements of the CanMEDS Professional Role: canadian program directors' views. Med Teach. 2014;36(5):390-402. DOI: 10.3109/0142159X.2014.890281

21. Wolfgarten E, Möning SP, Fetzner UK, Schröder W, Bollschweiler E. Erfahrungen mit einem fächerübergreifenden Logbuch für Medizinstudenten im Chirurgischen Tertial des Praktischen Jahres am Uniklinikum Köln. Zentralbl Chir. 2012;137(2):180-186. DOI: 10.1055/s-0031-1283810

 Korrespondenzadresse:
Dr. med. Jan Breckwoldt, MME
Universität Zürich, Medizinische Fakultät, Studiendekanat, Pestalozzistraße 3/5, CH-8091 Zürich, Schweiz, Tel.: +41-44-634 10 75, Fax: +41-44-634 10 88
jan.breckwoldt@dekmmed.uzh.ch

Bitte zitieren als
Jilg S, Mölter A, Berberat P, Fischer MR, Breckwoldt J. How do Supervising Clinicians of a University Hospital and Associated Teaching Hospitals Rate the Relevance of the Key Competencies within the CanMEDS Roles Framework in Respect to Teaching in Clinical Clerkships? GMS Z Med Ausbild. 2015;32(3):Doc33.
DOI: 10.3205/zma000975, URN: urn:nbn:de:0183-zma0009752

Artikel online frei zugänglich unter
http://www.e-gms.de/en/journals/zma/2015-32/zma000975.shtml

Eingereicht: 12.12.2014
Überarbeitet: 07.04.2015
Angenommen: 04.05.2015
Veröffentlicht: 17.08.2015

Copyright
©2015 Jilg et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.