Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Perinatal Care Changes During COVID-19: A Population-Based Analysis by Race/Ethnicity

Erica L. Eliason, PhD,1 Maria W. Steenland, SD,2 Jamie R. Daw, PhD3

Introduction: The COVID-19 public health emergency created unprecedented disruptions in the use of healthcare services, which could have affected long-standing racial–ethnic disparities in maternal care use and outcomes. This study evaluates population-level changes in perinatal health services associated with the COVID-19 pandemic overall and by maternal race–ethnicity.

Methods: In this analysis of all U.S. live births from 2016 to 2020, interrupted time-series analysis was used to estimate the change in the mean number of prenatal care visits and rates of hospital birth, labor induction, and cesarean delivery associated with the start of the pandemic (March 2020) overall and by maternal race–ethnicity. Analyses were conducted in 2022.

Results: The start of the pandemic was associated with overall decreases in the mean number of prenatal care visits, decreases in hospital birth rates, and increases in labor induction rates. The mean number of prenatal care visits decreased similarly for all racial–ethnic groups, whereas reductions in hospital births were largest for non-Hispanic White individuals, and increases in labor induction were largest for non-Hispanic White and non-Hispanic Asian or Pacific Islander individuals.

Conclusions: Among all U.S. live births, the COVID-19 pandemic was associated with modest overall changes in perinatal care, with differential changes by maternal race–ethnicity. Differential changes in perinatal services may have implications for racial–ethnic maternal health disparities.

Am J Prev Med 2023;64(3):433–437. © 2022 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) public health emergency (PHE) created unprecedented disruptions in perinatal care.1 Early studies from single centers across the U.S. found that the PHE was associated with reductions in prenatal care (PNC) use and delivery length of stay and modified birth plans.1 Analyses of national data have shown increases in community births (out-of-hospital home and birth center births) but no change in cesarean deliveries.2,3

Black, indigenous, and Hispanic people were disproportionately impacted by the effects of the PHE.4–6 Differential barriers to care during the PHE may have exacerbated racial inequities in perinatal care access and outcomes in the U.S.7,8 Using national data, this study measures population-level changes in perinatal care associated with the COVID-19 PHE overall and by race–ethnicity.

METHODS

This study used natality data from the Centers for Disease Control and Prevention WONDER database for all U.S. live births from January 1, 2016 to December 31, 2020.9 Outcomes included the mean number of PNC visits and rates of hospital birth, labor induction, and cesarean delivery per 100 live births.

Interrupted time series (ITS) analysis was used to test the hypothesis that the PHE had an immediate impact on perinatal care. The ITS model included a linear monthly time trend, an
indicator for whether a month is during the PHE, an interaction between the monthly time trend and PHE indicator to test for monthly time trend changes during the PHE relative to those before PHE, and month fixed-effects to adjust for seasonality. This study focuses on the PHE indicator, which estimates the abrupt change in outcome means that occurred at the start of the PHE (March 2020) relative to expected means based on prepandemic trends (January 2016—February 2020).

Models were estimated overall and stratified by maternal race-ethnicity (non-Hispanic [NH] American Indian or Alaska Native, NH Asian or Pacific Islander, NH Black, Hispanic, or NH White). Because the pandemic may have resulted in changes in the demographic and clinical characteristics of birthing people, a sensitivity analysis was conducted excluding December 2020 births to limit the sample to pregnancies that began before the PHE. To adjust for seasonality, increase precision, and allow for stable pretrend estimation, the main models include 4 pre-PHE years (2016–2019). However, sensitivity analyses were conducted with only 2 (2018–2019) or 3 (2017–2019) pre-PHE years.

Multiple-group ITS analysis was used to compare the relative changes associated with the PHE for each racial-ethnic group relative to those for NH White individuals. The Cumby and Huzinga general test was used to test for autocorrelation, and models were adjusted for serial correlation present at specific lag orders where autocorrelation was identified. Newey-West SEs were used, which account for autocorrelation and heteroskedasticity. This study was considered not human subjects research by the Brown University IRB.

RESULTS

The sample included 18,954,274 live births. Relative to expected means based on prepandemic trends, the mean number of PNC visits decreased by 0.27 visits at the start of the PHE (95% CI= −0.45, −0.08), hospital birth rates decreased by 0.28 per 100 births (95% CI= −0.36, −0.20), and labor induction rates increased by 0.55 per 100 births (95% CI=0.07, 1.03) (Figure 1). These findings translate to a 2.4% decrease in mean PNC visits, a 0.3% decrease in the hospital

![Figure 1. Trends in perinatal health services before and after the COVID-19 PHE.](https://www.ajpmonline.org)

Note: Prenatal care was measured as the mean number of visits for live births. Hospital birth, labor induction, and cesarean delivery were measured as rates for 100 live births. The Vertical dashed line indicates March 2020, the start of the COVID-19 PHE. PHE, public health emergency.
birth rate, and a 2.3% increase in the labor induction rate. There was no significant change in the cesarean delivery rate overall.

Figure 2 shows the prepandemic baseline rate/mean of each outcome and the change associated with the start of the PHE by race–ethnicity. There were similar declines in the number of PNC visits among all groups, with no significant differences by race–ethnicity.

The hospital birth rate decreased among all racial–ethnic groups except among NH American Indian or Alaska Native individuals, with the largest decline of 0.39 per 100 births (95% CI= −0.51, −0.28) among NH White individuals, representing a 0.4% decline from the prepandemic level. Declines in hospital birth rates were significantly smaller among NH Black, Hispanic, and NH Asian or Pacific Islander individuals than among NH White individuals.

The labor induction rate increased only among NH Asian or Pacific Islander and NH White individuals by 4.7% and 2.5%, with no significant differences by race–ethnicity. The cesarean delivery rate increased only among NH Asian or Pacific Islander individuals by 0.59 per 100 births (95% CI=0.11, 1.07), a 1.8% change from the prepandemic level.

Findings were robust overall and by race–ethnicity when excluding births in December 2020 (Appendix Table 1, available online). Findings were consistent with those of main models for PNC and hospital births using fewer pre-PHE years; however, estimates varied for labor inductions and cesarean deliveries (Appendix Tables 2 and 3, available online).

DISCUSSION

This analysis of all U.S. live births in 2016–2020 found modest but notable changes in perinatal care associated with the PHE. Findings overall are consistent with those of national studies that found increased community births and no change in national cesarean delivery during the PHE.2,3 However, stratified analyses reveal differential perinatal care changes by race–ethnicity. Although PNC visits decreased similarly for all racial–ethnic groups, reductions in hospital births were largest for NH White individuals, and increases in induction were largest for NH White and NH Asian or Pacific Islander individuals. Despite no overall change in
cesarean deliveries, there was a significant increase among NH Asian or Pacific Islander individuals.

For PNC, the clinical significance of the 0.27 visit reduction is unclear. Evidence from the U.S. and other high-income countries has found no significant change in adverse outcomes when low-risk pregnant people follow reduced visit schedules. Although PNC reductions did not differ by race–ethnicity, differential impacts of these reductions cannot be ruled out. Indigenous and Black pregnant people are more likely to have risk factors such as chronic disease that could benefit from management through PNC. These groups had lower average numbers of pre-pandemic prenatal visits, which could alter the effects of small reductions in care.

Limitations

For delivery care, the findings suggest that racial-ethnic groups who have historically been more advantaged, namely NH White individuals, had larger changes than other groups. This suggests that there were racial–ethnic differences in preferences and/or the ability to shift birth plans during the PHE. Increases in inductions and cesarean deliveries (which can be scheduled) and community births may have occurred to minimize the impact of the PHE, for example, to avoid hospitals or allow for premission testing and attendance by a partner or birth advocate. However, it is unclear how shifts may have impacted perinatal outcomes, and induction and cesarean delivery results were not robust to varying pre-PHE time periods. Another national study found increases in high-risk community births during the PHE and increases in low Apgar scores and preterm birth. These groups had lower average numbers of pre-pandemic prenatal visits, which could alter the effects of small reductions in care.

CONCLUSIONS

This study adds to the evidence base on how the PHE affected prenatal and delivery care overall and by race–ethnicity. Future research should explore whether and how differential perinatal care changes relate to changes in birth outcomes and worsening maternal health disparities during the COVID-19 pandemic.

ACKNOWLEDGMENTS

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

ELE reports research support from the Agency for Healthcare Research and Quality under Grant Award T32 HS000011. MWS was supported by the National Institute of Child Health and Human Development (P2C HD041020) and by the Agency for Healthcare Research and Quality (K01 HS027464).

No financial disclosures were reported by the authors of this paper.

CREDIT AUTHOR STATEMENT

Erica L. Eliason: Formal analysis, Software, Writing—original draft, Writing—review and editing. Maria W. Steenland: Methodology, Supervision, Writing—original draft, Writing—review and editing. Jamie R. Daw: Conceptualization, Supervision, Writing—original draft, writing—review and editing.

SUPPLEMENTAL MATERIAL

Supplemental materials associated with this article can be found in the online version at https://doi.org/10.1016/j.amepre.2022.09.027.

REFERENCES

1. Townsend R, Chmielewska B, Barratt I, et al. Global changes in maternity care provision during the COVID-19 pandemic: a systematic review and meta-analysis. Eclinicalmedicine. 2021;37:100947. https://doi.org/10.1016/j.eclinm.2021.100947.

2. Grünebaum A, Bornstein E, Katz A, Chervenak FA. Worsening risk profiles of out-of-hospital births during the COVID-19 pandemic. Am J Obstet Gynecol. 2022;226(1):137–138. https://doi.org/10.1016/j.ajog.2021.11.1346.

3. Gemmill A, Casey JA, Catalano R, Karasek D, Margerison CE, Bruckner T. Changes in preterm birth and caesarean deliveries in the United States during the SARS-CoV-2 pandemic. Paediatr Perinat Epidemiol. 2022;36(4):485–489. https://doi.org/10.1111/ppe.12811.

4. Ahmed A, Song Y, Wadhera RK. Racial/ethnic disparities in delaying or not receiving medical care during the COVID-19 pandemic. J Gen Intern Med. 2022;37(5):1341–1343. https://doi.org/10.1007/s11606-022-07406-7.

5. Tai DBG, Shah A, Doubeni CA, Sir IG, Wieland ML. The disproportion of impact of COVID-19 on racial and ethnic minorities in the United States. Clin Infect Dis. 2021;72(4):703–706. https://doi.org/10.1093/cid/ciaa815.

6. Tiriraputhi R, Muradova V, Shekhari S, Salim SA, Al-Tawfiq JA, Pala-bindala V. COVID-19 disparity among racial and ethnic minorities in the U.S.: a cross sectional analysis. Travel Med Infect Dis. 2020;38:101904. https://doi.org/10.1016/j.tmaid.2020.101904.

7. Bryant AS, Worjoloh A, Cauhegy AB, Washington AE. Racial/ethnic disparities in obstetric outcomes and care: prevalence and determinants. Am J Obstet Gynecol. 2010;202(4):335–343. https://doi.org/10.1016/j.ajog.2009.10.864.

8. Howell EA, Egorova NN, Balbierz A, Zeitlin J, Hebert PL. Site of delivery contribution to black-white severe maternal morbidity disparity. Am J Obstet Gynecol. 2016;215(2):143–152. https://doi.org/10.1016/j.ajog.2016.05.007.

9. About natality, 2016–2020 expanded. Centers for Disease Control and Prevention. https://wonder.cdc.gov/natality-expanded-current.html. Updated November 24, 2021. Accessed December 13, 2021.

10. Baum CF, Schaffer ME. ACTEST: Stata Module to Perform Cumby-Huizenga General Test for Autocorrelation in Time Series. Boston, MA: Boston College Department of Economics. https://econpapers.repec.org/software/bocode/s457668.htm. Published July 23, 2013. Accessed April 25, 2022.
11. Linden A. Conducting interrupted time-series analysis for single- and multiple-group comparisons. *The Stata J.* 2015;15(2):480–500. https://doi.org/10.1177/1536867X1501500208.

12. Dowswell T, Carroli G, Duley L, et al. Alternative versus standard packages of antenatal care for low-risk pregnancy. *Cochrane Database Syst Rev.* 2015(7):CD000934. https://doi.org/10.1002/14651858.CD000934.pub3.

13. McDuffie RS, Beck A, Bischoff K, Cross J, Orleans M. Effect of frequency of prenatal care visits on perinatal outcome among low-risk women. A randomized controlled trial. *JAMA.* 1996;275(11):847–851. https://doi.org/10.1001/jama.1996.03530350029030.

14. Admon LK, Winkelman TNA, Zivin K, Terplan M, Mhyre JM, Dalton VK. Racial and ethnic disparities in the incidence of severe maternal morbidity in the United States, 2012–2015. *Obstet Gynecol.* 2018;132(5):1158–1166. https://doi.org/10.1097/AOG.0000000000002937.

15. Hoyert DL. Maternal mortality rates in the United States, 2020. Atlanta, GA: National Center for Health Statistics, Centers for Disease Control and Prevention. https://doi.org/10.15620/cdc:113967. Published 2022.