SUPPLEMENTARY ONLINE DATA

Activation of IP₃ receptors requires an endogenous 1-8-14 calmodulin-binding motif

Yi SUN¹², Ana M. ROSSI¹, Taufiq RAHMAN and Colin W. TAYLOR³

Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K.

Figure S1 A conserved 1-8-14 motif in all IP₃Rs and RyRs

Alignments (with first and last residues numbered) of the N-terminal region of rat IP₃R1–IP₃R3 (SwissProt accession numbers NP_001007236, NP_112308 and NP_037270 respectively), chicken IP₃R1–IP₃R3 (SwissProt accession numbers XP_414438, XP_001235613 and XP_418035 respectively), Xenopus IP₃R1–IP₃R3 (SwissProt accession numbers NP_001084015, ABP88141 and ABP88140 respectively), Drosophila IP₃R (SwissProt accession number NP_734042), Caenorhabditis elegans IP₃R (SwissProt accession number NP_001023170) and rabbit RyR1–RyR3 (SwissProt accession numbers P11716, P30957 and Q9TS33 respectively) highlighting the residues proposed to form a 1-8-14 CaM-binding motif. The consensus sequence for a 1-8-14 motif is shown in the first row, with its three critical (1, 8 and 14 hydrophobic residues) and net charge of +6. A similar 1-8-14 motif is conserved in all IP₃R, which closely resembles a type A (1-5-8-14) motif, where position 5 is also a large hydrophobic residue. The motif within IP₃Rs differs from a classic 1-8-14 consensus sequence by having a tyrosine residue at position 14. All subtypes of RyR also have a similar 1-8-14 motif within a similar position in the three-dimensional structure, although the sequence lacks the usual net positive charge of a consensus 1-8-14 motif.

¹ These authors contributed equally to this work.
² Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, U.K.
³ To whom correspondence should be addressed (email cwt1000@cam.ac.uk).

© 2013 The Author(s)
The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
Y. Sun and others

Figure S2 Mutation of a non-critical residue (K52E) within the 1-8-14 motif has no effect on IP₃ binding or IP₃-evoked Ca²⁺ release

(A) Structure of the SD of IP₃R1 (PDB code 1XZZ) highlighting the 1-8-14 motif (red), the critical 1-8-14 hydrophobic residues (blue) and Lys52 (yellow). (B) Equilibrium competition binding of IP₃ (with 0.75 nM [³H]IP₃) to native NT and NT^K52E. (C) IP₃-evoked Ca²⁺ release from DT40-IP₃R1 and DT40-IP₃R1^K52E cells. Results are means ± S.E.M. (n⩾3).
An essential 1-8-14 calmodulin-binding motif in IP₃ receptors

Table S1 Peptides used in the present study

All peptides were synthesised by Sigma or New England Peptide. The isoelectric point (pI) is shown for each peptide calculated from http://www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-property-calculator.asp. Ac, acetyl.

Peptide	Sequence	Source
MLCK	Ac-RRKWQKTHAVRAGRL-NH₂	Ca²⁺–CaM-binding site of smooth muscle MLCK
1-8-14	Ac-KKFRDALFKLAPMRV-NH₂	Fragment of IP₃R1 (residues 51–66) containing the 1-8-14 motif
1-8-14C	Ac-KKEFODALFKLAPMRE-NH₂	Inactive form of 1-8-14 peptide (mutations highlighted in bold and underlined)
1-8-14S	Ac-AMRFLKYLPKRFDKNA-NH₂	Scrambled form of 1-8-14 peptide
1-8-14L	Ac-LNNPPKKFRDALFKLAPMRVYSAQKFWKA-NH₂	Longer fragment of IP₃R1 (residues 46–75) containing the 1-8-14 motif

Table S2 Primers used in the present study

Primers used for introducing mutations in the N-terminal fragment or full-length IP₃R1. The mutated bases are highlighted.

Primer	Sequence (5′→3′)
F53E Forward	GGGGACCTTAACAATCCACCCAAGAGAGAGACTGCTCTT
F53E Reverse	AAGAGCGAGTCTCCTCTTCTGCTGATGTTAGGTCGCC
L60E Forward	GAAATTCAGAGACTGCCTTTAAGGAGTGTCCTATGAATCTCATGCA
L60E Reverse	TGCAGAATATCGATTCATAGGACACTCCTTTAAAGAGGCAGTCTCTGAATTTC
Y66E Forward	CTCTTTAAGCTATGTCTTCTATAAGAGAGACTGCTGACACAGAG
Y66E Reverse	CTGCTTCTGTGACACTGATTACATGGCATATGCTTTAAAGAG
K52E Forward	AAACATCACCCACCAAGAGAGAGACACTGCCTC
K52E Reverse	GAGGCGACTGCTGACACTGCTTGGTGATGTT

Received 26 June 2012/13 September 2012; accepted 26 September 2012
Published as BJ Immediate Publication 26 September 2012, doi:10.1042/BJ20121034

© 2013 The Author(s)
The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.