The Effect of Dietary Protein (Groundnut Cake and Coconut Cake) on the Live Weight Gain, Spermioigams, Gonadal sperm Reserves and Fertility of Boars

R. P. Obongekpe
Department of Animal Science, University of Uyo, Uyo, NIGERIA

Corresponding Author: obongekperichard2@gmail.com

ABSTRACT

The study investigated the effect of dietary protein (groundnut cake and coconut cake) on the live weight gain, spermiograms, gonadal sperm reserves and fertility of boars. The study was conducted at the Swine unit of the Teaching and Research Farm, University of Uyo, Uyo, Akwa Ibom State. The university of Uyo was used in this study. It is located in the heart of Uyo, the capital of Akwa Ibom state, Nigeria. A total of 18 grower pigs of large white consisting of 15 boars and 3 sows were used for the study. The boars were randomly selected into 3 groups (T1, T2 and T3) of five based on average initial weights (20-25kg) and were tagged appropriately while the sows were randomly placed in 3 group (S1, S2 and S3) of 1 in each group. Three diets were made for the three treatment conditions. The boars in T1 which is the control group were given normal maize fed, boars in T2 which is the first treatment condition were given groundnut cake diet while boars in T3 which is the second treatment condition were given coconut cake. These pigs were fed twice daily and water supplied ad libitum. Finally, the sow in S1 was artificially inseminated with the semen of the Boar in condition group 1 (T1), S2 was artificially inseminated with the semen of treatment condition 2 (T2) while S3 was artificially inseminated with the semen of treatment condition 3 (T3). During the feeding trial, weekly feed consumption and weight changes were recorded, while weight gain, feed conversion. Result showed a significant difference on the live weight gain of boars between groups (P < 0.05). Also, there was a significant difference on the spermiogenes and gonadal sperm reserves of boars between groups (P < 0.05). Finally, there was no significant difference on the fertility of sows between the treatment conditions (P > 0.05). It was concluded that dietary protein of groundnut cake and coconut cake could completely replace maize as they improve the live weight gain and sperms quality of boars. Implications and recommendations were made from the findings of the study.

Keywords: Boars, Live Weight Gain, Sperm Quality/Reserve and Fertility.

I. INTRODUCTION

Over the years, fertility has been seen as a complex interaction of traits involving two individuals of different genetic composition, that is, male and female, and it is their ability to mate and produce viable offspring (Foote, 2002 as cited by Muhammed, 2011). Fertility is a major factor in the success of any breeding programme, it depends on numerous factors. Success starts with a male animal that is healthy, disease-free, and produces ample quantity of high quality semen. However, equally important is the fertility potential of the female and also the environmental influences. Each of these components must be maintained at high standard as maximum reproductive efficiency will be dependent on the high standard of each of the components (Kirby et al., 1998 as cited by Muhammed, 2011).

Semen quality is an important component of male reproduction, and like other phenotypic expressions, it no doubt consists of a genetic component, an environmental component and a variety of interactions between the two (Foote, 1978 as cited by Muhammed, 2011). Nutrition has been shown to have a significant effect on semen quality traits (Sotirov et al., 2002). Optimum feeding is essential to maintain males in good reproductive state (Rekwot et al., 1994 as cited by Muhammed, 2011). Starvation on the other hand leads to a marked reduction in semen production, but this can be almost completely reversed in about 14 days after the resumption of normal feeding (Obidi, Onyeanusi, Rekwot, Ayo & Dzenda, 2008). Studies on specific nutrient requirements for semen production are rare, especially in indigenous poultry species (Obidi et al., 2008). Some studies on dietary calcium levels on semen characteristics of chicken showed that semen characteristics and fertility differed insignificantly. During the growth of males, dietary protein influences the onset of sexual maturity, 9% crude protein diet or less delays sexual maturity in chicken (Surai, 2002). Adult White Leghorn cocks fed 9% dietary protein produced normal quantities of semen, and the diet contained 1% calcium and had an energy value of 2853 Kcal/kg (Lake, 1971). Pana Stoica, Dregotoiu, Misclosanu and Stanescu (2000) showed that Cornish broiler cocks, whose daily feed consumption was limited to 130 g/cock/day produced ejaculates whose sperm concentration did not differ significantly from those of their full-fed counterpart. Ezekwe, Udousi and Osita (2003) found that the effects of underfeeding local cocks on the semen quality traits appear to be more severe on the physical rather than on the biochemical characteristics. This shows that the spermatogenic functions of the testes are more responsive to underfeeding than the secretory activity of
the reproductive tract. Underfeeding diminished the ability of the gonads to respond to gonadotropin stimulation (Davies, Mann & Rowson, 1957). Moderate underfeeding or reduction of feed intake by 30% to 50% adversely affects semen production and quality (Ezekwe et al., 2003).

It is necessary to evolve a feeding programme for breeding birds that will improve their reproductive efficiency, reduce the high cost of feeding and does not inflict damage to their reproductive functions. Protein level is a limiting factor in the diet of birds; its optimal level is a prerequisite not only for a rapid growth, but also for the normal condition of breeders by influencing the quantitative and qualitative parameters of semen (Sotirov et al., 2002). The studies by Meyer et al. (1980) on the volume of ejaculate and the concentration of spermatozoa showed that the feeding of exotic male turkeys (toms) with diets containing 12% and 17% protein, respectively resulted in significantly better results when the high dietary protein level was used. According to previous investigators (Cherms, Stoller, Macilwraith, Africa & Halloran, 1981; Brown, 1982; Cecil, 1984; Cecil, 1986; and Sexton 1986), the low dietary protein content (12.8%) decreases the quality of semen. The use of 17% dietary protein levels in turkey toms up to the age of 28 weeks and 8% protein thereafter resulted in a satisfactory sperm production up to the end of the breeding period (age of 47-52 weeks) (Cecil, 1986). However, this study is aimed at examining the effect of groundnut cake and coconut cake on the live weight gain, spermiogram and gonadal sperm reserves of male pigs.

II. MATERIALS AND METHODS

Location of the Study

The experiment was conducted at the Swine unit of the Teaching and Research Farm, University of Uyo, Uyo, Akwa Ibom State. The university of Uyo was used in this study. It is located in the heart of Uyo, the capital of Akwa Ibom state, Nigeria. The town became the state capital following the creation of the state on September 23, 1987 from the then erstwhile cross river state. Uyo serves a dual purpose of the state capital and local government headquarters and shares common boundaries with Itu, Uruan, Ibesikpo Asutan, Abak and Etinan local government areas. The core language of Uyo people is Ibibio. They are predominantly Christians with some fraction of traditional worshippers. The state is located in the south-south geopolitical zone of the country, lying between latitude 40321 and 50331 North and longitude 70251 and 80 East. The state is bounded on the east with Cross River state, west with Rivers state and Abia state and on the South with Atlantic Ocean. The state has 31 local government areas and a population of 5-million people living in the state. Experimental Animals

A total of 18 grower pigs of large white consisting of 15 boars and 3 sows were used for the study. The boars were randomly selected into 3 groups (T1, T2 and T3) of five based on average initial weights (20-25kg) and were tagged appropriately while the sows were randomly placed in 3 group (S1, S2 and S3) of 1 in each group.

Procedures

Complete randomized design was adopted for the study. The pigs were randomly placed in three groups (Group 1, Group 2 and Group 3) of five, and were tagged appropriately.

Three diets were made for the three treatment conditions. The boars in T1 which is the control group were given normal maize fed, boars in T2 which is the first treatment condition were given groundnut cake diet while boars in T3 which is the second treatment condition were given coconut cake. These pigs were fed twice daily and water supplied ad libitium. Finally, the sow in S1 was artificially inseminated with the semen of the Boar in condition group 1 (T1), S2 was artificially inseminated with the semen of treatment condition 2 (T2) while S3 was artificially inseminated with the semen of treatment condition 3 (T3). During the feeding trial, weekly feed consumption and weight changes were recorded, while weight gain, feed conversion ratio and protein efficiency ratio were estimated to assess performance of the grower pigs. They were acclimatized for a period of two weeks during which the males were trained for semen collection. The boars were trained to mount a collection dummy and their semen collected by the gloved-hand method as described by Sorensen (1979). Here two vinyl gloves were put on the hand thereafter, the boar’s prepuce was gently reached by messaging the penis through the prepuce to aid evacuate preputial fluids as well as stimulating pelvic thrusting. Then the boar will then start to thrust and extends his penis out of the prepuce, and then the corkscrew-shaped penile tip was grasped with the fingers with uniform pressure applied. After proper pressure was applied, the boar extends his penis and ceases thrusting and after a brief pause, the boar begins to ejaculate. The first few jets of an ejaculate during the thrusting were allowed to go on the ground because it’s usual function to flush out urethra. After the thrusting ceased, fluid and gel components were collected using a pre-warn (38°C/100°F) insulated thermos and later the fluid were filtered to remove the gel fraction using a mesh filter placed over the mouth of graduated thermos and the volume was recorded before evaluation of other semen characteristics like colour, motility (gross and individual), concentration, percentage live and dead cells and morphology. The same set of procedures was used for semen collection before and during treatment.

Testicular, epididymal and vas deferens sperm reserves were determined using the homogenization haemocytometric technique (Obidi et al., 2008) with modifications. Three toms from each group were
sacrificed for this procedure. The left and right testicles were carefully removed, trimmed of extra tissues and measured; the weight, length and circumference were recorded (Plate X, Plate XI and Plate XII). After careful removal of the tunica albuginea with a scalpel blade, each testicle was weighed again and homogenized in 20 mls of physiological saline with an antibiotic (Streptomycin 1:20 v/v), using a mortar and pestle. The epididymis and vasa deferentes, were carefully removed, trimmed of extra tissues and measured; the weights, lengths and diameters were recorded. They were first miniced with pair of scissors and each was homogenized in 10 mls of physiological saline containing the antibiotic. The homogenate volume was recorded and stored at 5 oC for 24 hours. They were mixed through shaking at intervals during the period of storage.

The homogenates were diluted 1:50 v/v using physiological saline. They were shaken for about a minute and filtered. Volumes of the filtrates were recorded and the sperm/spermatids reserves in the suspension were determined using Neubauer haemocytometer. Two counts were made for each suspension at a magnification of X 40. The number of spermatozoa counted was then multiplied by the dilution factor to obtain the number of sperm cells/ml of the homogenate; this was multiplied by the volume of the homogenate to obtain the total number of sperm cells in the homogenate.

Two (2) mls of blood was aseptically collected every week from the wing vein of each pig after the first semen collection of every week. The haemogram (complete blood count and packed cell volume) was determined in the haematology laboratory.

Statistical Analysis

Statistical package “Graph pad prism version 6.0” was used for the analysis. Data are expressed as mean ± SEM (standard error of mean). The differences in the mean values of the semen parameters, sperm penetration holes and gonadal and extragonadal sperm reserves between the three groups were compared using Repeated Measure Analysis of Variance (ANOVA). Correlation matrix analysis was used to determine the relationship between live weights of the toms and their semen parameters.

III. RESULT

Table 1: Mean (±S.E) proximate and amino acid composition (% DM) of extracted coconut meal

Nutrients	Percent
Moisture	9.54 ± 0.10
Dry matter	90.46 ±0.10
Crude protein	22.75 ±0.22
Ether extract	2.89 ± 0.03
Crude fibre	12.11 ±0.24
Total ash	7.41 ±0.11
Nitrogen free extract	54.84 ±0.32
Calcium	0.40 ±0.02
Total Phosphorus	0.63 ±0.01
AME (kcal/kg)	1552.33 ±11.82
TME (kcal/kg)	1810.23 ±5.31

Amino acids	Percent
Alanine	1.13 ±0.10
Arginine	1.99 ±0.09
Aspartic acid	1.01 ±0.01
Glutamic acid	2.70 ±0.03
Glycine	0.52 ±0.05
Histidine	0.44 ±0.27
Isoleucine	1.76 ±0.14
Leucine	0.59 ±0.15
Lysine	2.36 ±0.05
Methionine	0.34 ±0.11
Phenylalanine	0.81 ±0.25
Serine	0.71 ±0.02
Threonine	0.62 ±0.04
Tyrosine	0.27 ±0.14
Valine	0.44 ±0.12

Table 1 above shows the crude protein content and amino of extracted coconut meal (ECM).

Most of the nutrient composition of extracted coconut meal (ECM) estimated in this experiment was comparable to those listed in NRC (1994). The observed AME (1552 kcal/kg) was in close agreement with NRC.
value (1525 kcal/kg). The lysine and methionine content of ECM were 0.59 and 0.34 per cent, respectively. The critical amino acids, lysine (0.59 per cent) and methionine (0.34 per cent) were lower in ECM compared to values given in NRC (1994) for other vegetable protein sources, which are commonly used in poultry feed like soybean meal (2.69 and 0.62 per cent) sunflower meal (1.00 and 0.50 per cent) and groundnut meal (1.54 and 0.54 per cent). However, this was in agreement with the findings of Creswell and Brooks (1971) who observed extremely low level of lysine (0.48 per cent) and methionine (0.37 per cent) in coconut meal when compared to other protein sources used in poultry feed. The glutamic acid (2.70 per cent), leucine (2.36 per cent) and arginine (1.99 per cent) contents were very high in ECM and among this high arginine might interact with lysine as observed by Leeson and Summers, (2001).

Table 2: Mean (±S.E) proximate and amino acid composition (% DM) of extracted groundnut meal (EGM)

Nutrients	Percent
Moisture	10.54 ± 0.10
Dry matter	39.46 ± 0.10
Crude protein	24.75 ± 0.22
Ether extract	3.89 ± 0.03
Crude fibre	10.11 ± 0.24
Total ash	8.41 ± 0.11
Nitrogen free extract	44.84 ± 0.32
Calcium	0.80 ± 0.02
Total Phosphorus	0.73 ± 0.01
AME (kcal/kg)	1542.33 ± 11.82
TME (kcal/kg)	1814.23 ± 5.31

Amino acids	
Alanine	3.13 ± 0.10
Arginine	4.99 ± 0.09
Aspartic acid	6.01 ± 0.01
Glutamic acid	3.70 ± 0.03
Glycine	0.82 ± 0.05
Histidine	0.64 ± 0.27
Isoleucine	1.86 ± 0.14
Leucine	3.89 ± 0.15
Lysine	2.56 ± 0.05
Methionine	1.54 ± 0.11
Phenylalanine	1.91 ± 0.25
Serine	1.81 ± 0.02
Threonine	1.82 ± 0.04
Tyrosine	1.47 ± 0.14
Valine	1.54 ± 0.12

The observed AME (1542 kcal/kg) was in close agreement with NRC value (1525 kcal/kg). The lysine and methionine content of EGM were 1.56 and 1.54 per cent, respectively. The critical amino acids, lysine (1.56 per cent) and methionine (1.54 per cent) were almost the same in EGM compared to values given in NRC (1994) for other vegetable protein sources, which are commonly used in poultry feed like soybean meal (2.69 and 0.62 per cent) sunflower meal (1.00 and 0.50 per cent) and coconut meal (0.59 and 0.44 per cent). However, this was not in agreement with the findings of Creswell and Brooks (1971) who observed extremely low level of lysine (0.48 per cent) and methionine (0.37 per cent) in coconut meal when compared to other protein sources used in poultry feed. The glutamic acid (3.70 per cent), leucine (3.89 per cent) and arginine (4.99 per cent) contents were very high in EGM and among this high arginine might interact with lysine as observed by Leeson and Summers, (2001).

Table 3: Preliminary or initial results of live weight gain and semen parameters before treatment

Parameters	Group 1(Maize feed) n* = 5	Group 2(GC) n = 5	Group 3(20% CC) n = 5
Live weight (kg)	3.1000 ± 0.2363	4.425 ± 0.1828	4.315 ± 0.2317
Semen Volume (mLs)	0.118 ± 0.008	0.123 ± 0.009	0.118 ± 0.008
Values with different superscripts (across rows) differ significantly (P < 0.005).

Table 3.1: Mean (± SEM) semen parameters and live weights of boars fed different levels of protein diets

Parameters	Group 1 (Maize feed) n* = 5	Group 2 (GC) n = 5	Group 3 (20% CC) n = 5
Live weight (kg)	3.29 ± 0.25	4.39 ± 0.20	4.63 ± 0.22
Semen Volume (mLs)	0.17 ± 0.00	0.24 ± 0.02	0.27 ± 0.03
pH	7.86 ± 0.06	6.03 ± 0.06	7.85 ± 0.07
Mass motility (%)	72.01 ± 1.34	78.00 ± 1.36	81.00 ± 1.19
Individual motility (%)	81.18 ± 1.29	83.58 ± 1.26	84.39 ± 1.12
Concentration (x109)	4.33 ± 0.43	5.99 ± 0.56	6.77 ± 0.61
% Live sperm (%)	73.81 ± 1.36	79.14 ± 1.32	80.80 ± 1.12
Total Defects (%)	17.43 ± 1.07	16.31 ± 0.99	15.89 ± 0.80

GC = Groundnut cake, CC = Coconut cake. Values with different superscripts (across rows) differ significantly (P < 0.005).

Mean (± SEM) body weight changes of boars fed varying levels of protein diets were before treatment were 3.1000 ± 0.2363, 4.425 ± 0.1828 and 4.315 ± 0.2317 and after the treatment were given, their live weight were 4.29 ± 0.25 kg, 5.39 ± 0.20 kg and 5.63 ± 0.22 kg for Groups 1, 2 and 3 respectively. The differences recorded among the groups did not differ significantly (P < 0.05) as the scores gotten before the treatment were higher than scores gotten after treatments. Also, on the different level between the control group (Group 1) and the treatment groups (Group 2 & 3) a significant difference were observed (P < 0.05) as boars in treatment 2 and 3 showed higher body weight than those in treatment 1 with treatment conditions 3 having the highest live body weight.

Also, Mean (±SEM) semen volumes of the three groups of boars fed varying protein diets with group 1 being the control group were 0.17± ± 0.01 ml, 0.24± ± 0.02 ml and 0.27± ± 0.02 ml. A significant (P < 0.05) difference was observed between Groups 1 and 2, but there was also a significant difference between Groups 1 and 3 but no significant (P > 0.05) difference was observed between Groups 2 and 3. This could be because both groundnut cake and coconut cake are both proteinases diet and will increase the same or almost closely amount semen in the boars in which the cakes were given. These differences were also seen in their weekly trend.

The results (mean ± SEM) of semen concentrations of the three groups are 4.33± ± 0.428 X 109, 6.99± ± 0.56 x 109 and 6.77± ± 0.612 X 109. There was significant (P < 0.05) difference between groups 1 and 2. There was also a significant (P < 0.05) difference between groups 1 and 3 but the difference between group 2 and group 3 was not significant (P > 0.05).

Furthermore, the mean (± SEM) counts of live spermatozoa are 75.81± ± 1.36 %, 80.14± ± 1.32 % and 81.80± ± 1.12 % for groups 1, 2 and 3 respectively. Significant (P < 0.05) differences were observed between groups 1 and 2 and between groups 1 and 3, but there was no significant (P > 0.05) difference between groups 2 and 3. Finally, the results (mean ± SEM) of the total sperm defects, are 18.43 ± 1.07 %, 17.31 ± 1.00 % and 16.31 ± 0.99 %. The difference observed between the three groups was not significant.

Table 4: Gonadal and Extra gonadal sperm reserves of turkey boars fed varying levels of diets.

No of Animals	Group 1 (Maize feed) n* = 5	Group 2 (GC) n = 5	Group 3 (20% CC) n = 5
Testicles sperm reserve (x109/gm)	0.18± ± 0.00	0.20± ± 0.00	0.19± ± 0.00
Epididymis sperm reserve (x109)	0.08± ± 0.00	0.13± ± 0.01	0.17± ± 0.00
Vas deferens sperm reserve (x109)	2.01± ± 0.06	2.83± ± 0.22	3.65± ± 0.27

Values with different superscripts (across rows) differ significantly (P < 0.005)
The mean (± SEM) sperm reserves of testis, epididymis and vas deferens of the three groups of boars, fed varying levels of diets are presented in Table 4. The testicular sperm reserves per gram of testicle are 0.18± ± 0.00, 0.20± ± 0.00 and 0.19± ± 0.00 for Groups 1, 2 and 3, respectively. There were significant (P< 0.05) differences in testicular sperm reserves between groups 1 and 2, and groups 1 and 3 (P < 0.05) but no significant (P > 0.05) difference between groups 2 and 3. The mean (± SEM) epididymis sperm reserves of the groups 1, 2 and 3 were 0.08± ± 0.00, 0.13± ± 0.01 and 0.17± ± 0.00 respectively. There was significant (P< 0.05) difference between the testicular sperm reserves in groups 1 and 2, and between groups 1 and 3 (P < 0.05) but no significant (P > 0.05) difference was between groups 2 and 3. The mean (± SEM) vas deferens sperm reserves are 2.01± ± 0.06, 2.83± ± 0.22 and 3.65± ± 0.27. There was significant (P< 0.05) difference between the testicular sperm reserves in Groups 1 and 2, and Groups 1 and 3, but difference between groups 2 and 3 was not significant.

Table 5: Mean values of blood parameters of turkey toms fed varying Levels of diets.

Blood parameters	Group 1(Maize feed) n* = 5	Group 2(GC) n = 5	Group 3(20% CC) n = 5
Packed Cell Volume (%)	30.20 ± 2.85^a	32.8 ± 1.39^b	31.6 ± 1.54^b
White Blood Cell (X103/μl)	3.30 ± 0.68^a	6.09 ± 2.37^b	3.70 ± 0.51^a
Heterophils (%)	8.40 ± 1.03	7.60 ± 2.25	8.80 ± 1.74
Lymphocytes (%)	89.40 ± 1.17	90.60 ± 2.50	89.80 ± 0.97
Monocytes (%)	1	2	3
Eosinophils (%)	0	1	3
Basophils (%)	0	0	0
Band Cells (%)	0	0	0
Total Protein	4.64 ± 0.44	4.25 ± 0.50	4.34 ± 0.27
Haemoglobin (g/dL)	7.90 ± 1.90^a	11.24 ± 0.47^b	10.84 ± 0.51^b

Values with different superscripts (across rows) differ significantly (P < 0.005)

Mean (± SEM) values of blood parameters are presented in table 5. The mean Packed Cell Volume (PCV) and Haemoglobin Concentration (Hb) values revealed significant differences (P< 0.05) between groups 1 and 2 and groups 1 and 3, but there was no significant difference (P > 0.05) between groups 2 and 3. The mean WBC counts show significant differences between all the groups while no significant differences were found between all the groups in the mean values of total protein, heterophils, lymphocytes, monocytes eosinophils, basophils and band cells.

Table 6: Semen Parameters from Live Breedings and Pregnancy Results

Male pigs	Female pig	Estimated activity	Estimated concentration Low Medium High	Sperm Live (%)	Morphologically Normal (%)	Pregnancy
T1	S1	50	2	75	72	YES
T2	S2	80	3	85	80	YES
T3	S3	85	3	90	82	YES
Av./Range for pregnancies	71.67 (0 – 85)	2.67 (1 -3)	83.33 (0 – 90)	78.00 (0 – 82)	3	Pregnancies

This work is licensed under Creative Commons Attribution 4.0 International License.
pregnancies, they are comparable to each other, thus suggesting once again that semen parameters in boars vary widely from male to male and collection to collection. This also suggests that even with such variation in semen parameters and diets, pregnancy can still be achieved. It makes sense that the sperm activity percentages and live sperm percentages would be greater in breedings that resulted in pregnancies because the more live and active sperm in an ejaculate the higher the chance of one sperm being able to reach, penetrate, and fertilize an oocyte. However, the differences seen from the breedings in this trial were significant enough to determine what exact values for percent active sperm and live sperm are necessary to achieve a pregnancy. For the breeding of male T1 to female S1, the estimated activity percentage was observed to be 85%. When the percentage of morphologically normal sperm was analyzed for this portion of the study the results were similar. For breeding that achieved pregnancies the percent of morphologically normal sperm was 78.00%. This could mean that energy diets like maize meal could also causes fertility in sows as dietary protein meals such as coconut cake and groundnut cake could do also. Therefore, one could say that meal type do not significantly differ in fertility, (P>0.05). However, more research is needed to validate this conclusion.

IV. DISCUSSION

Live weights of the boars taken throughout the period of the study showed significant differences (P < 0.05) between the mean (± SEM) live weights of the three groups. The results of the different values of semen parameters of boars fed with maize meal, groundnut meal and coconut cake showed that semen volume was higher in group 3, followed by group 2 with Group 1 having the least volume. There was no significant (P < 0.05) difference between Group 2 CP and group 3. The significant differences between group 1 and group 2, and between group 1 and Group 3, were probably due to the different protein levels fed. This is contrary to the reports of Perry (1960) and Etches (1996) in cockerels and Jibril et al. (2011) in rams, who reported higher reproductive performance in lower CP level than in higher CP levels. The results are in agreement with those reported by Rekwot et al. (1987), and Rekwot et al. (1988) in bulls, Louis et al. (1994) in boars, Ladokun et al. (2006) in pubertal rabbit bucks, Ghonim et al. (2010) in drakes, who reported better performance in animals fed higher CP levels than those fed lower CP levels. It also agrees with the work of Sotirov et al. (2002) who reported higher ejaculate volume in turkeys fed 17% CP than in their counterparts fed 14% CP.

Although the ejaculate volumes obtained in Group 1 (12% CP) were similar to those reported by Zahraddeen et al. (2005) in indigenous turkey toms, they were not within the ranges reported by Burke (1984), Bakst (1990) and Christensen (2005) in exotic breeds. The volumes obtained in group 2 (16% CP) and group 3 (20% CP) were within the range given for the exotic breeds and was higher than the 0.17 ± 0.02 ml reported by Zahraddeen et al. (2005) in local breeds, but similar to the report by Yahaya et al. (2013). The differences observed between the values in this work and the values reported by Zahraddeen et al. (2005) in the same breed might be due to the difference in feeding. Zahraddeen et al. (2005) fed 10% CP which was lower than the 12%, 16% and 20% used in the present study.

Semen concentration was significantly higher in group 3 than in Group 1, the result in group 2 was also significantly higher than that in group 1. This was apparently due to the effect of the difference in the levels of protein in their diets. This disagrees with the works by Jibril et al. (2011) who reported higher semen concentration in a group of rams fed 15% CP than that of their counterparts fed 18% CP. This might be attributed to the optimum utilization of dietary protein at about 15% CP in that specie and breed. The result, however, is similar to that reported by Rekwot et al. (1987) and Rekwot et al. (1988) in bulls; Louis et al. (1994) in boars; Ladokun et al. (2006) in pubertal rabbit bucks; Ghonim et al. (2010) in drakes, who reported better performance in animals fed higher CP levels than those fed lower CP levels. It also agrees with the report of Sotirov et al. (2002), who observed higher semen concentration in turkeys fed 17% CP than in those fed 14% CP. There was however no significant difference between group 2 and Group 3. This might be attributed to the optimum utilization of dietary protein at about 16-20% CP in this breed of turkeys, considering the results obtained in the present study. Semen concentration in the present study is higher than the 2.8 ± 74.3 x10⁹ /ml and 4.66 ± 70.73 x10⁹ /ml reported by Zahraddeen et al. (2005) in local and exotic breeds, respectively. The values obtained in Groups 2 and 3 are, however, similar to the report by Yahaya et al. (2013) (6.22 ± 0.305 x10⁹ /ml) and that by Cecil and Bakst (1988) (7.90 ± 1.19 x10⁹ /ml). They also fell within the range of 6-12 billions per ml reported by Christensen (2005) for exotic breeds. The significant differences observed between groups 1 and 2 and also between groups 1 and 3 may be attributed to the difference in the level of crude protein in their diets. This agreed with the work by Sotirov et al. (2002), who observed increase in both mass and individual motilities of sperm in turkeys fed 17% CP than in those fed 14% CP. It also agreed with the report by Ghonim et al. (2010), who reported higher sperm motility though without significant difference in drakes fed higher crude protein than in those fed lower crude protein. There was no significant difference (P < 0.05) between groups 2 and 3 in terms of live sperm count. There was, however, significant difference between the two groups and group 1, this is perhaps so because optimum protein level increased the viability of the sperm cells in groups 2 and 3 as against group 1, where 12% CP which was fed may be considered suboptimal in this breed. The result...
disagreed with that by Jibril et al. (2011), who observed no difference in sperm viability of Yankasa rams placed on different protein diets. However it agreed with that by Sotirov et al., (2002) and Ghonim et al. (2010) who observed significant differences in the percentage live sperm of turkeys and drakes respectively fed varying levels of crude protein. The difference observed in the values of sperm morphology count between all the groups was not significant (P < 0.05). This agreed with the result of Sotirov et al. (2002) and Jibril et al. (2011), who reported no significant difference in the percentage of abnormal sperm in turkeys and rams, respectively, fed varying levels of protein diet. The result disagreed with that by Ghonim et al. (2010), who found differences in drakes, based on differences in the level of protein consumed.

Significant difference (P < 0.05) was observed in all the parameters of testicular, epididymal and vas deferens reserves between the Groups. This might be attributed to the variation in the crude protein contents of their various diets. This result agrees with the work of Ladokun et al. (2006), who observed significant difference in gonadal and extragonadal sperm reserves in rabbit bucks fed varying protein diets. The reserves are similar to the result of Cecil et al. (1988), who reported 122–127 x 106 sperm cells/g, 58 x106 (ejaculated) and 204 x 106 sperm cells (rested), 3160 x 106 sperm cells (ejaculated) and 10320 x 106 sperm cells (rested), and 3248 x 106 sperm cells (ejaculated) and 10524 x 106 sperm cells (rested) for gonadal sperm reserve, epididymal, vas deferens and total extragonadal reserves, respectively.

There is positive correlation (P < 0.05) between live weights of the toms and their semen parameter such as semen volume, semen concentration, live sperm and percentage normal cells. Although the difference in the correlation coefficient between the three groups is not significant, it can be seen that the live weight is poorly correlated to volume in Group 1, while it is positively correlated in Group 2 and 3. This result agreed with the finding of Barth and Chaudhari (2002) in cocks, Butswat and Zaharadden (1998) in bucks. The reason for the observed correlation may be because the optimum protein utilization in turkeys is between 16% CP and 22% CP. The observed difference between groups 2 and 3 and group 1 may be as a result of the difference in protein content of their diet, while 12% CP is perhaps more far away from the optimum, 16% CP and 20% CP are closer to it; and, hence, the similar values in the correlation matrix.

V. CONCLUSION

The experiment was conducted at the Swine unit of the Teaching and Research Farm, University of Uyo, Uyo, Akwa Ibom State. The University of Uyo was used in this study. It is located in the heart of Uyo, the capital of Akwa Ibom state, Nigeria. A total of 18 grower pigs of large white consisting of 15 boars and 3 sows were used for the study. The boars were randomly selected into 3 groups (T1, T2 and T3) of five based on average initial weights (20-25kg) and were tagged appropriately while the sows were randomly placed in 3 group (S1, S2 and S3) of 1 in each group. Three diets were made for the three treatment conditions. The boars in T1 which is the control group were given normal maize fed, boars in T2 which is the first treatment condition were given groundnut cake diet while boars in T3 which is the second treatment condition were given coconut cake. These pigs were fed twice daily and water supplied ad libitum. Finally, the sow in S1 was artificially inseminated with the semen of the Boar in condition group 1 (T1), S2 was artificially inseminated with the semen of treatment condition 2 (T2) while S3 was artificially inseminated with the semen of treatment condition 3 (T3). During the feeding trial, weekly feed consumption and weight changes were recorded, while weight gain, feed conversion.

Result showed a significant difference on the live weight gain of boars between groups (P < 0.05). Also, there was a significant difference on the spermiogenes and gonadal sperm reserves of boars between groups (P < 0.05). Finally, there was no significant difference on the fertility of sows between the treatment conditions (P> 0.05). It is therefore recommended that:
1. Protein diet especially groundnut meal and coconut cake Should be encouraged in the feeding of pigs to reduce over dependence of maize feeds by our farmers which have led to high cost of raising birds thereby discouraging farmers from investing in the poultry business.
2. Protein diet especially groundnut meal and coconut cake Should be encouraged in the feeding of boars as it aids in the live weight of boars, sperm quality in terms of volume, concentration and effectiveness.
3. Public extension/ advisory staff should be mobilized to convey these results to practicing farmers.

REFERENCES

[1] Adedapo, A. A., Abatan, M. O., Akinloye, A. K., Idowo, S. O. and olorunsogo, O. O. (2003). Morphometric and histopathological studies on the effects of some chromatographic fractions of Phyllanthus amarus and Euphorbia hirta on the male reproductive organs of rats. Journal of Veterinary Science, 4, 181-185.
[2] Aire, T. A. and Ozegbe, P. C. (2007). The testicular capsule and peritubular tissue of birds: morphometry, histology, ultrastructure and immunohistochemistry. Journal of Anatomy, 210, 731-740.
[3] Al-Batshan, H. A., Scheideler, S. E., Black, B. L., Garlich, J. D. and Anderson, K. E. (1994). Duodenal Calcium Uptake, Femur Ash, and Eggshell Quality Decline with Age and Increase Following Molt. Poultry Science, 73, 1590-1596.
[32] Devendra, C. and Fuller, M.F. (1979). Pig production in the Tropics. Oxford University Press. 20-45 Pp

[33] Deviche, P., Hurley, L. L. and Fokidis H. B. (2011). Avian Testicular Structure, Function, and Regulation. In: Hormones and Reproduction of Vertebrates, Volume 4 (Birds) 27 Copyright 2011 Elsevier Inc. All rights reserved

[34] Drucker A. G, and Anderson, S (2004). Economic analysis of animal genetic resources and the use of rural appraisal methods: lessons from south east Mexico. International Journal of Agricultural Sustainability 2, 77–97

[35] Eckert, J. V. (2008). Digestibility and nutrient retention of perennial peanut and Bermuda grass hays for mature horses. Master's Thesis, Dept. of Animal Sciences, University of Florida, Gainesville, USA.

[36] Edens, F. W. (2002): Practical applications for selenomethionine: Broiler breeder reproduction. In: Nutritional Biotechnology in the Feed and Food industries. Proceedings of 18th Alltech’s Annual Symposium, Ed. T. P. Lyons, and K. A. Jacques, Nottingham University Press, Nottingham, UK, pp. 29-42.

[37] Edmond, M.S., Arentson, B.E. and Mente, G.A. (1998). Effect of protein levels and space allocations on performance of growing-finishing pigs. Journal of Animal, 12(4), 123 - 134.

[38] English, P.R., Fowler, V.R., Baxter, S. and Smith, B. (1998). The growing and finishing pig: Improving efficiency. Farming Press, Ipswich, England .162-220 Pp

[39] Epstein, H. (1971). The origin of the domestic animals of Africa (2 volumes). New York: Africana Publishing.

[40] Etches, R. J. (1996). Reproduction in piggery. Wallingford, Oxon, UK: CAB International. Pp 318 - 328.

[41] Ezekwe, A. G., Udozor, I. J., and Osita, C. O. (2003). Effects of quantitative feed restriction on the semen quality of Nigerian local cocks. Nigerian Journal of Animal Production, 30, 127-131.

[42] Fanimo, O. A., Oduguwu, O. O., Alade, A. A., Ogunnaiake, T. O. and Adesehinwa, A. K. (2003). Growth performance, nutrient digestibility and carcass characteristics of growing rabbits fed cashew apple waste.

[43] Feitasma, R. Artificial insemination in pigs, research and developments in The Netherlands, a review. (2009). Acta Scientiae Veterinariae, Vol. 37, No. 1, pp. 61-71, ISSN 1678-0345.

[44] Foote, R. H. (1978). Factors influencing the quantity and quality of semen harvested from bulls, rams, boars and stallions. Journal of Animal Science, 47, 1-11.

[45] Foote, R. H. (1998). Artificial insemination to cloning. Tracing 50 Years of Research. Ithaca, NY, Pp 231.

[46] Foote, R. H. (2001). The history of artificial insemination: Selected notes and notables. American Society of Animal Science, 1-10.

[47] Foote, R. H. (2002). The history of artificial insemination: Selected notes and notables. Journal of Animal Science, 80, 1-10.

[48] Foster, J. L. (2008). Improving the productivity of livestock with warm-season legumes. Ph. D. Dissertation, University of Florida, Gainesville, USA.

[49] Funston, R. (2005). Nutrition and reproduction interactions. Proceedings, Applied Reproductive Strategies in Beef Cattle, October 27 and 28, Reno, Nevada pp 147-162.

[50] Gerrits, R.J.; Lunney, J.K.; Johnson, L.A.; Pursel, V.G.; Kraeling, R.R.; Rohrer, G.A.; Dobrinsky, J.R. (2005). Perspectives for artificial insemination and genomics to improve global swine populations. Theriogenology. V.63, p.283 – 299.

[51] Ghonim, A.I.A., Awad A. L., Elklob K., .Moustafa, M. E. I. (2010). Effect of Feeding Different Levels of Energy and Crude Protein on Semen Quality and Fertility of Domyat Ducks. Egypt Poultry Science, 30, (2) 583-600.

[52] Gonyou, H.W. and Lou, Z. (1999). Effects of eating space and availability of water in feeders on productivity and eating behavior of grower-finisher pigs. Journal of Animal Science, 63(Suppl. 1), 163-164.

[53] Gonzalez-Vega, J. C., Kim, B. G., Htoo, J. K., Lemme, A., Stein, H. H. (2011). Amino acid digestibility in heated soybean meal fed to growing pigs. Journal of Animal Science, 89, 3617–3625.

[54] Gordon, I. (2005). Reproductive technologies in farm animals. CAB International Publishing, UK.

[55] Graham, H. and Aman, P. (1987). The pig as a model in dietary fibre digestion studies. Scandish Journal Gastroenterol., 22 (suppl. 129), 55 – 61

[56] Griev, G. C., Osbourn, D.F., Gonzales, F. O. (2016) Coconut oil meal in growing and finishing rations for swine. Tropical Agriculture Trinidad, 43, 257–261.

[57] Griev, G. C., Osbourn, D.F., Gonzales, F. O. (2016) Coconut oil meal in growing and finishing rations for swine. Tropical Agriculture Trinidad, 43, 257–261.

[58] Grooves, C. (1981). Ancestors for the pigs: taxonomy and phylogeny of the genus sus domesticus. Technical Bulletin No.3. RSPh, Canberra: Department of prehistory.

[59] Gunawardana, V.K. (1977) Stages of spermatid in the domestic fowl: a light microscope study using Araldite sections. Journal of Anatomy, 123, 351-360.

[60] Gundogan, M. (2006). Some reproductive parameters and seminal plasma constituents in relation to season in Akkaraman and Awassi rams. Turkish Journal of Veterinary and Animal Science, 30, 95–100.

[61] Gunn, M. R., Champion, Z., Casey, M. E., Teal, P., and Casey, P. J. (2008). Testicular and spermatozoan parameters in the pukeko (Porphyrio porphyrio melanotus). Animal Reproduction Science, 109, 330-342.

[62] Hafez, B. and Hafez, E.S.E. (2000). Reproduction in Farm Animals, 7th ed. New York. Lippincott Williams & Wilkins, USA.

[63] Hancock, J.D. (1999). The benefits of pelleted feed
on pig performance. Feed Technology. (ABRAVES), Goiânia/GO, setembro, 2003.

[64] Head, S. W., Swetman, T. A., Nagler, M. J. (2009) Studies on deterioration and aflatoxin contamination in copra during storage. Oleagineux Corps Gras Lipides. 6, 349–359.

[65] Henry, Y., (1992). Influence of diet composition on feed efficiency and utilization in growing-finishing pigs. World Reference Animal Production 27, 76 - 92.

[66] Hess, R. A. and Franca L. R. (2005). History of Sertoli cell discovery. In: Grinswold M., Skimmer M., eds. Sertoli Cell Biology. New York; Academic Press.

[67] Hocking, P. M. (1992). Bilateral testicular asymmetry and supernumerary testes in the domestic fowl (Gallus domesticus). British Poultry Science, 33, 455-460.

[68] Holness, D. H. (1999). Pigs: The Tropical Agriculturalist. G P Maisonneuve Larose, 15 rue Victor-Cousin, 75005 Paris, France.

[69] Hyun, Y., Ellis, M., McKeith, F.K. and Wilson, E.R. (1997). Feed intake pattern of group-housed growing-finishing pigs monitored using a computerized feed intake recording system. Journal Animal Science. 75, 1443-1451.

[70] Jaworski, N. W., Shoulders, J., González-Vega, J. C. and Stein, H. H. (2014). Effects of using copra meal, palm kernel expellers, or palm kernel meal in diets for weanling pigs. Journal Animal Science, 30, 243–251.

[71] Jin, L., Reynolds,L. P. Redmer, D. A., Caton, J. S., and Crenshaw, J. D. (1994). Effects of dietary fiber on intestinal growth, cell proliferation, and morphology in growing pigs. Journal Animal Science, 72, 2270-2278.

[72] Johnson, R.W. (1997). Inhibitions of growth in the immunologically challenged. Journal of Animal Science, 63(Suppl. 1):163-164.

[73] Kass, M. L., Van Soest, P. J., Pond, W. G., Lewis, B. and McDowell. R. E. (1980) Utilization of dietary fiber from alfalfa by growing swine. I. Apparent digestibility of diet components in specific segments of the gastrointestinal tract. Journal of Animal Science, 50, 175-191.

[74] Kempenaers, B., Peer, K., Vermeirssen, E. L. M., and Robertson, R. J. (2002). Testis size and asymmetry in the tree swallow Tachycineta bicolor: a test of the compensation hypothesis. Avian Science, 2, 115-122.

[75] King”ori, A. M. (2011). Review of the factors that influence egg fertility and hatchability in poultry. International Journal of Poultry Science, 10(6), 483-492.

[76] Kirby, J. D., Tressler, C. J. and Kirby, Y. K. (1998). Evaluation of the duration of sperm fertilizing ability in five lines of commercial broiler breeder and Delaware cross males. Poultry Science, 77, 1688-1694.

[77] Lake, P. E. (1971). The male in reproduction. In: Physiology and Biochemistry of the Domestic Fowl. D.J. Bell and B.M. Freeman (eds.), (3) Pp 1411-1447.

[78] Langendijk, P.; Soede, N.M.; Kemp, B. (2005). Uterine activity, sperm transport, and the role of boar stimuli around insemination in sows. Theriogenology.
Meleagris gallopavo

Factors affecting efficient artificial insemination in farm animals/artificial insemination-current-and-future-trends

Muffly, K. E., Nazian, S. J. and Cameron, D. F. (1994). Biology of Reproduction, 51, 158–166.

Muirhead, M.R. (1989). Factors affecting efficient growth rate in the feeding pig. Journal of Animal Science, 29, 103-109.

Myer, B., Lori W., Juliet E., Dennis H., Ann B., and Clay O. (2010). Perennial peanut: forage nutritional composition and feeding value. UF-IFAS, EDIS Publ. No. AN234. FL Coop. Ext. Ser., University of Florida, Gainesville.

Nakagawa, T., Nabeshima, Y. and Yoshida, S. (2007). Functional identification of the actual and potential stem cell compartments in mouse. Developmental Cell, 12(2), 195-206.

Nissen, H. P. and Kreyssel, H. W. (1983). Polyunsaturated fatty acids in relation to sperm motility. Andrologia, 15, 264-269.

Noblet, J. and Le Goff, G. (2001). Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed Science Technology, 90, 35-52.

Noirault J., Brillard J. P. and Baks, M. R. (2006). Spermatogenesis in the turkey (Meleagris gallopavo): Quantitative approach in mature and adult males subjected to various photoperiods. Theriogenology, 65, 845 – 859.

NRC (2012). Nutrient requirements of swine. 11th edition. Washington, DC: National Academic Press.

O’Donnell, L., McLachlan, R. I., Wreford, N. G. and Robertson, D. M. (1994). Endocrinology, 135, 2608 - 2614.

Oatley M. and Brinster R. L. (2006). Spermatogonial Stem Cells. Methods of Enzymology, 419, 259-282.

Obidi, J. A., Onyenisi, B. I., Rekwot, P. I., Ayo, J. O. and Dzenda, T. (2008). Seasonal variations in seminal characteristics of shikabrown breeder cocks. International Journal of Poultry Science, 7(12), 1219-1223.

Obidi, J. A., Onyenisi, B. I., Rekwot, P. I., Ayo, J. O. and Dzenda, T. (2008). Seasonal variations in seminal characteristics of shikabrown breeder cocks. International Journal of Poultry Science, 7(12), 1219-1223.

Ogawa T., Ohnura M. and Onbo K. (2005). The Niche for Spermatogonial Stem Cells in the Mammalian Testis. International Journal of Hematology, 82, (5) 381-385.

Ohai, D. B. (1998). Alternative Feed Resources for Pigs in Ghana. De Graft Graphics and publications Kumasi, Ghana.

Okai, D.B., and Bonsi, M.L.K. (1989). Pig production. In: Poultry and Pig Production Handbook for Ghanaian Farmers. CITA Press, Kumasi. 52-55 Pp.

Ortavant, R. (1954). Etude des generations spermatogoniales chez le belier. Comptes Rendus des Séances et Memoires de la Biologie, 148, 1958-1961.

Osei, J. (2013). Epidemiology of Enterobacteriaceae resistance and prevailing conditions in pig farms in Ashanti region, Ghana (Doctoral dissertation, Kwame Nkrumah University of Science and Technology Kumasi).

Otchere, E. O., Karbo, N., Bruce, J., Addo-Kwafo, A., Osei-Samoah, A., Miller, D. Clottey, V. A. and Alenyorege, B. (1999). Livestock Systems DiagnosticSurvey Lawra District Upper West Region, Ghana. Technical report AnimalResearch Institute (CSIR) 19 Pp

Pana, C., Stoica, I., Drego, D., Micslosanu, E. P. and Stanescu, M. (2000). Influence of quantitative and qualitative feed restriction on sperm quality and fecundity of broiler breeder males. Book of Abstracts of the 14th International Congress, Animal Reproduction Stockholm Sweden, 1, 89-95.

Papazyan, T. T., Lyons, M. P., Mezes, M. and Surai, P. F. (2006). Selenium in Poultry Nutrition -Effects on Fertility and Hatchability. Praxis Veterinaria. 54 (1-2), 85-102.

Perry, E. J. (1960). The Artificial Insemination of Farm Animals. Rutgers University Press, New Jersey.

Pond, W.G. and Maner, J. H. (1974). Swine Production in Temperate and Tropical Production Handbook for Ghanaian Farmers. CITA Press, Kumasi. 52-55 Pp

Rahjian, S. K. (2001). Animal Nutrition in the tropics. 5th Edition. Published by Vikas Publishing House, PVT Ltd 576, Masjid Road Jang Pura, New Delhi-110014, 204-455, Pp

Reddy, P.S. (1988). Groundnut. Publication and information division Indian council of Agricultural Research, Krishi Anushandan Bhavan, Pusa, New Delhi.

Reddy, R. P. (1995). Artificial insemination of broilers: economic and management implications. In: Bakst MR, Wishart GJ (eds.), Proceedings of the First International Symposium on the Artificial Insemination of Poultry. Champaign, IL: Poultry Science Association, 73-89.

Rekwot, P. I. (2002). Artificial Insemination in poultry. Poultry production in Nigeria. A training manual on National Training Workshop on Poultry Production in Nigeria held 1-6 September 2002, Shika, Zaria, Nigeria. Published by the National Animal Production Research Institute, Ahmadu Bello University, Shika, Zaria, Nigeria.

Rekwot, P. I., Oyedipe, E. O. and Ebochis, O. W. (1994). The effects of feed restriction and realimentation on the growth and reproductive function of Bokoloji Bulls. Theriogenology, 42, 287-295.

Revell, D.K. and Williams, I.H. (1993). A review: physiological control and right 2008, VSN International.
[122] RIM (1992). Nigerian National Livestock Resource Survey (6 volumes) Report by Resource Management Limited (RIM) to FDL& PCS, Abuja, Nigeria. Road, Jangpura, New Delhi-110014. 755-850 Pp
[123] Saittagaroon S, Kawakishi S, Namiki M. (2013). Characterisation of polysaccharides of copra meal. Journal of Science Food Agriculture, 34, 855–860.
[124] Samson A. S. (2011) Heat treatment of coconut meats and coconut meal. Journal of Science Food Agriculture, 22, 312–316.
[125] Schell, T.C., Lindemann, M. D., Kornegay, E. T., Blodgett, D.J. (2016). Effects of feeding aflatoxin-contaminated diets with and without clay to weanling and growing pigs on performance, liver function, and mineral metabolism. Journal of Animal Science, 71. 1209–1218.
[126] Seng, P. L. (2003). Pathways to pregnancy and Parturition. (99164-6332) 2nd Ed. Pullman.
[127] Serres, H. (1992). Manuel of pig production in the Tropics. Published by C.A.B International, Walling, U.K. 16-17
[128] Setchell, B. P. (1982) Spermatogenesis and spermatozoa. In Reproduction in Mammals; Germ Cells and Fertilisation, pp. 63-101. Eds C. R. Austin and R. V. Short. Cambridge University Press, Cambridge.
[129] Sexton, T. J. (1974). Oxidative and glycolytic activity of chicken and turkey spermatozoa. Comparative Biochemistry and Physiology 48, 39–65.
[130] Sexton, T. J. (1979). Possible commercial method of freezing chicken semen. Journal of Reproduction and Fertility, 55, 1-7.
[131] Sexton, T. J. (1981). Development of a commercial method for freezing turkey semen: 1. Effect of pre-freeze techniques on the fertility of frozen and frozen-thawed semen. Poultry Science, 60, 1567–1572.
[132] Sexton, T. J. (1986). Effect of dietary protein and season on fertility of turkey semen stored 18 hours at 50°C. Poultry Science, 65, 604-604.
[133] Son, A.R., Shin, S. Y., Kim, B.G. (2013). Standardized total tract digestibility of phosphorus in copra expellers, palm kernel expellers, and cassava root fed to growing pigs. Asian-Australas Journal of Animal Science, 26, 1609–1613.
[134] Sotirov, L., Dimitrov, S. and Jeliazkov, E. (2002). Semen lysozyme levels and semen quality in Turkeys (Meleagris gallopavo) fed with various dietary protein levels. Revue de Médecine Vétérinaire, 153(12), 815-818.
[135] Soyatech . Soya and oilseed bluebook. Southwest Harbor: Soyatech LLC, 2012.
[136] Speake, B. K., Murray, A. M. B. and Noble, R. C. (1998). Transport and transformation of yolk lipids during development of the avian embryo. Progress in Lipid Research, 37, 1-32.
[137] Straw, B.E., Tuovinen, V.K., Bigras-Poulin, M., (1989). Estimation of the cost of pneumonia in swine herds. Journal of American Veterinary Medical Association, 195, 1702 - 1706.
[138] Sulabo R. C., Ju, W. S. and Stein, H. H. (2013). Amino acid digestibility and concentration of digestible and metabolizable energy in copra meal, palm kernel expellers, and palm kernel meal fed to growing pigs. Journal of Animal Science, 91, 1391–1399.
[139] Surai, P. F. (2002). Selenium in poultry nutrition, reproduction, egg and meat quality and practical applications. World’s Poultry Science Journal, 58, 431-450.
[140] Thorne, P. J., Wiseman, J., Cole, D.A. and Machin, D. H. (2018) Use of diets containing high levels of copra meal for growing/finishing pigs and their supplementation to improve animal performance. Tropical Agriculture, 65, 197–201.
[141] Tuncer, P. B., Kinet, H., Ozdogan, N. and Demiral, O. (2006). Evaluation of some spermatological characteristics in Denizli cocks. Journal of Faculty Veterinary Medicine University of Kafkas 3, 37-42.
[142] Vazquez, J.M.; Roca, J.; Gil, M.A.; Cuello, C.; Parrilla, I.; Vazquez, J.L.; Martínez, E.A. (2008). New developments in low-dose insemination technology. Theriogenology. Vol. 70, No. 8, (November 2008), pp. 1216-1224, DOI: 10.1016.
[143] Vazquez, J.M.; Roca, J.; Gil, M.A.; Cuello, C.; Parrilla, I.; Vazquez, J.L.; Martínez, E.A. (2008). New developments in low-dose insemination technology. Theriogenology. Vol. 70, No. 8, (November 2008), pp. 1216-1224.
[144] Ventela S., Ohta H. and Parvinen M. (2002). Development of the stages of the cycle in mouse seminiferous epithelium after transplantation of green protein labeled spermatogonial stem cells. Biology of Reproduction, 66(5), 1422-1429.
[145] Viring, S.; Einarsson, S. (1981) Sperm distribution within the genital tract of naturally inseminated gilts. Nordisch Veterinarian Medicine, v.33, p.145-149.
[146] Weber, D.; Bennemann, P.E.; Wentz, l.; Bortolozzo, F.P. (2003). Avaliação do Custo de Doses Inseminantes Produzidas em Centrais de Inseminação (ABRAVES), Goiânia - GO, outubro, 2003.
[147] Whitemore, C. T. (1987).Introduction to Animal Husbandry in the Tropics. Third Edition, Longman Group Ltd. Essex, England. 559 Pp
[148] Williams, W. W. (1920). Diseases of the bull interfering with reproduction. Journal of American Veterinary Medical Association, 58, 29-41.
[149] Wood roof (1983). LG. Peanuts, processing, products. (ed.) Third edition. AVI Publishing, Connecticut.
[150] Yamamoto, S., Tamate, H. and Itikawa, B. R. (1967) Morphological studies on the sexual maturation in the male Japanese quail (Coturnix coturnix japonica) 2. The germ cell types and cellular associations during spermatogenesis. Tohoku Journal of agricultural Research, 18, 27-37.
[151] Zahraddeem, D., Butswat, I. S. R., Kalla, D. J. U., Sir, S. M. and Bukar, M. T. (2005). Effect of frequency of
ejaculation on semen characteristics in two breeds of turkeys (Meleagris gallopavo) raised in a tropical environment. *International Journal of Poultry Science, 4*(4) 217-221.
[152] Zanga J., Chimonyo M., Kanengoni A., Dzama, K. and Mukaratirwa, S. (2003). A Comparison of the Susceptibility of Growing Mukota and LargeWhite Pigs to Infection with Ascarissuum. *Veterinary Research Communications 27*(8), 653-660