Supplementary Data

23-O-Substituted-2,3-dehydrosilybins selectively suppress androgen receptor-positive LNCaP prostate cancer cell proliferation

Ziran Jianga, Arman Sekhona, Yogeshwari Okaa, Guanglin Chena, Nagat Alrubatia, Jasleen Kaura, Alexia Orozcoa, Qiang Zhangb, Guangdi Wangb, and Qiao-Hong Chena,*

aDepartment of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA

bDepartment of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA

qchen@csufresno.edu

List of contents:

1H NMR spectrum of compound 7 .. S3

13C NMR spectrum of compound 7 .. S4

1H NMR spectrum of compound 10 .. S5

13C NMR spectrum of compound 10 .. S6

1H NMR spectrum of compound 11 .. S7

13C NMR spectrum of compound 11 .. S8

1H NMR spectrum of compound 12 .. S9

13C NMR spectrum of compound 12 .. S10

1H NMR spectrum of compound 13 .. S11

13C NMR spectrum of compound 13 .. S12
1H NMR spectrum of compound 14. ... S13
13C NMR spectrum of compound 14. ... S14
1H NMR spectrum of compound 15. ... S15
13C NMR spectrum of compound 15. ... S16
1H NMR spectrum of compound 16. ... S17
13C NMR spectrum of compound 16. ... S18
1H NMR spectrum of compound 17. ... S19
13C NMR spectrum of compound 17. ... S20
1H NMR spectrum for Compound 7
CDCl$_3$, 300 MHz
13C NMR spectrum for Compound 7
CDCl$_3$, 75 MHz
1H NMR spectrum for Compound 10
CDCl$_3$, 300 MHz
13C NMR spectrum for Compound 10
CDCl$_3$, 75 MHz
1H NMR spectrum for Compound 11
CDCl$_3$, 300 MHz
13C NMR spectrum for Compound 11
CDCl$_3$, 75 MHz
{1}H NMR spectrum for Compound 12
CDCl\textsubscript{3}, 300 MHz
13C NMR spectrum for Compound 12
CDCl$_3$, 75 MHz
1H NMR spectrum for Compound 13
CDCl$_3$, 300 MHz
13C NMR spectrum for Compound 13
CDCl$_3$, 75 MHz
1H NMR spectrum for Compound 14
CDCl$_3$, 300 MHz
13C NMR spectrum for Compound 14
CDCl$_3$, 75 MHz
1H NMR spectrum for Compound 15
CDCl$_3$, 300 MHz
13C NMR spectrum for Compound 15
CDCl$_3$, 75 MHz
1H NMR spectrum for Compound 16
CDCl$_3$, 300 MHz
\(^{13}\text{C} \text{ NMR spectrum for Compound 16}\
\text{CDCl}_3, 75 \text{ MHz}\)
13C NMR spectrum for Compound 17
CD$_3$COCD$_3$, 75 MHz