Physicists have, hitherto, mostly adopted a frequentist conception of probability, according to which probability statements apply only to ensembles. It is argued that we should, instead, adopt an epistemic, or Bayesian conception, in which probabilities are conceived as logical constructs rather than physical realities, and in which probability statements do apply directly to individual events. The question is closely related to the disagreement between the orthodox school of statistical thought and the Bayesian school. It has important technical implications (it makes a difference, what statistical methodology one adopts). It may also have important implications for the interpretation of the quantum state.
1. Introduction

The thoughts which follow were originally stimulated by some conversations with Chris Fuchs [1, 2, 3] concerning probability, and the foundations of quantum mechanics. These conversations had a major impact on my thinking: for they caused me to see that the frequentist conception of probability, which I had hitherto accepted, is deeply confused. This paper has grown out of my attempts to arrive at a more satisfactory conception (also see Appleby [4]).

The first major applications of probability to problems of theoretical physics were made by Laplace, starting from the earlier work of Bayes. Laplace took what I will call an epistemic, or normative view of probability (for an historical and conceptual overview of probability theory see Gillies [5], Hald [6], Sklar [7] and von Plato [8]).

Laplace was an uncompromising determinist. He considered that for “an intelligence sufficiently vast . . . nothing would be uncertain and the future, as the past, would be present to its eyes” (Laplace [9], p.4). So for Laplace there could be no question of probabilities existing objectively, out there in the world, independently of ourselves. Instead, he regarded the theory of probability as what Jaynes [10] calls “extended logic”: a process of reasoning by which one extracts uncertain conclusions from limited information.

The Laplacian view, of probability as logic, is well described by Maxwell:

“The actual science of logic is conversant at present only with things either certain, impossible, or entirely doubtful, none of which (fortunately) we have to reason on. Therefore the true logic for this world is the calculus of Probabilities, which takes account of the magnitude of the probability which is, or ought to be, in a reasonable man’s mind” (James Clerk Maxwell, quoted by Jaynes [10])

On this view a probability statement is, not a statement about what is in fact the case, but a statement about what one can reasonably expect to be the case.

Suppose that Alice buys one ticket in a lottery having $10^6$ tickets, and suppose that the ticket wins. Then we can say:

(a) Alice did in fact win the lottery.
(b) Alice could not reasonably have expected to win the lottery.

The second statement has a completely different logical character from the first. The first statement is a purely factual statement concerning the lottery outcome. The second statement, by contrast, is a normative statement, concerning the reasonableness of Alice’s thoughts.

Laplace’s epistemic interpretation of probability statements was, for a time, widely accepted. However, in the latter part of the 19th century it began to go out of fashion, and it has remained out of fashion ever since (although it has continued to excite the interest of a small, though important minority [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]). Instead the vast majority of 20th century scientists, mathematicians and philosophers have favoured what, for want of a better term, I am going to call an objectivist interpretation: either a frequency interpretation [21, 22, 23, 24, 25], or (in more recent years) a propensity interpretation [5, 26, 27, 28].

This change in conceptual standpoint led to major changes in statistical methodology. Under the influence of objectivist ideas Fisher and others [6, 29] rejected the Bayesian methodology favoured by Laplace, and developed in its place what is now the orthodox methodology, described in every textbook.

Physicists are apt to ignore philosophical disputes on the grounds that they are scientifically inconsequential. This, however, is a case where a dispute regarding the conceptual fundamentals has important practical implications, for just about
every area of scientific activity. In particular, it has important implications for the problem of quantum state determination.

It is easy to see what motivated the turn from epistemic to objectivist. Objectivists attempt to represent probabilities as physically real quantities, similar to quantities like mass or length, existing out there in the world, wholly independent of us. The attractions of this programme to a physical scientist are obvious. Physical scientists are, by education, focused outwards, on the pursuit of mind-independent, empirical truth. They naturally rely on the internally derived suggestions of hunch and intuition. However, these suggestions are then subjected to rigorous empirical testing. To anyone with this mindset the epistemic point of view is likely to seem deeply unattractive: for it means that there is a component to probability which is fundamentally non-empirical.

Unfortunately, the objectivist programme, however laudable its motives, fails in its purpose. Objectivist interpretations do not really relieve us of the need to make normative judgments. They only disguise the fact that we are making normative judgments. Objectivists dislike the Laplacian approach because they think it subjective. But their own approach is no less subjective. It is just that they have found a way of making the fact less obvious.

The question at issue is closely related to the so-called problem of induction. Hume [30], more than 250 years ago, noted that our expectation that the sun will rise tomorrow cannot be based solely on empirical facts concerning the past behaviour of the solar system. Not only do those facts, taken by themselves, not make it certain that the Earth’s angular momentum will continue to be approximately conserved. They do not even make it likely. If, nevertheless, we confidently expect the angular momentum to be conserved it is because we are tacitly supplementing our past observations with an additional normative principle, which says (roughly speaking) that regularities observed on the past light cone may, subject to certain restrictions, justifiably be extrapolated to events at space-like and future time-like separations. Hume’s point was that this principle cannot itself be inferred from the observations.

NASA engineers are so confident of the Newtonian law of gravity that they are willing to stake the lives of their astronauts on its being correct (to a good approximation, within its domain of application). Yet the data set on which their confidence is based is strictly finite. Viewed sub specie aeternitatis it is completely negligible. Which raises the question: exactly how large does the data set have to be in order for that degree of confidence to be justified? This is not itself a question which can be settled experimentally.

Newton himself was concerned by this question, as appears from the following:

“although the arguing from Experiments and Observations by Induction be no Demonstration of general Conclusions; yet it is the best way of arguing which the Nature of Things admits of” (Newton [31], p.404)

In other words: we do not reason inductively because we like it, but because we do not have a choice.

Since then the question has attracted the attention of numerous philosophers. Popper [23], in particular, has argued that science does not, in fact, rely on inductive reasoning (for the opposite view see, for example, Jaynes [10], Stove [32] and Newton-Smith [33]). However, nothing that Popper or anyone else has written changes the fact that

(a) We mostly do believe that NASA’s reliance on the Newtonian law of gravity is reasonable, given the data.
(b) This normative belief is not itself based on empirical facts about the solar system.

Furthermore, if we really did refuse to entertain such normative beliefs—if we really did think that scientific predictions are no more reasonable than astrological ones—then science would lose its point, at least so far as its practical applications are concerned. Science is intellectually demanding. It is laborious and time-consuming. If they did not think that the predictions which result are normatively preferable, practically-minded people would resort to some less demanding procedure, such as taking a blind guess.

Now it seems to me that induction is really just a special case of probabilistic reasoning, and that what goes for the one goes for the other too. There is a strong family resemblance between (a) the prediction that the Earth’s angular momentum will still be conserved tomorrow and (b) the prediction that a coin will probably still come up heads approximately 50% of the time tomorrow. If (a) does not follow just from the observations, without additional assumptions, then nor, one might suppose, does (b).

However, 20th century thought on the subject (both scientific and philosophical) has, on the whole, been strongly resistant to that suggestion. It is widely accepted that induction involves a normative assumption (and is therefore suspect, in the view of many). But there has been a marked reluctance to accept that the same is true of probability statements. It seems to me that there is an inconsistency here.

2. Frequentism (1): Infinite Ensembles

Frequentism is the position that a probability statement is equivalent to a frequency statement about some suitably chosen ensemble. For instance, according to von Mises, the statement “the probability of this coin coming up heads is 0.5” is equivalent to the statement “in an infinite sequence of tosses this coin will come up heads with limiting relative frequency 0.5”. Of course, infinite sequences are unobservable. Consequently Popper proposes the weaker position, that we regard the statement as “methodologically falsified” if, in a finite sequence of \( N \) tosses, the relative frequency of heads differs from 0.5 by more than \( \epsilon \) (where \( N \) is suitably large, and \( \epsilon \) is suitably small). Other variants of the basic frequentist idea are possible.

At first sight this idea may seem very plausible: for the notions of probability and frequency are obviously very closely related. If the reader does find it plausible s/he should reflect that the frequentist position is not simply that the notions of probability and frequency are intimately connected, but that they are actually identical.

From a mathematical point of view the cleanest way of trying to implement the frequentist idea is to identify probabilities with relative frequencies in infinite ensembles. However, there is an obvious problem with that: for it is not very plausible to suppose that a given coin ever will be tossed an infinite number of times—and if the universe has finite 4-volume it is definitely impossible. von Mises attempts to circumvent this difficulty by defining the probability in terms of the limiting relative frequency which would be obtained if the coin counter-factually were tossed an infinite number of times. In other words, von Mises defines the probability, not in terms of an actually existing ensemble out there in the world, but in terms of a completely fictitious entity which does not exist anywhere (not even in our imagination). As Jeffrey says, that is not consistent with the idea that a probability is an objectively real quantity, similar to a mass.

This is not the only problem. Suppose, for the sake of argument, that the universe contains an infinite space-like slice \( S \) on which there are infinitely many
$^{226}$Ra nuclei. Let $A$ be the spherical region centred on the Earth with (say) radius $10^{100}$ light years, and let $B$ be the part of $S$ outside $A$. Suppose that half the nuclei in $A$ decay within proper time 1,600 years, whereas half the nuclei in $B$ decay within proper time 1 second (the second statement is, of course, relative to the way one takes the limit for the infinite collection of nuclei in $B$). Then, on an infinite frequentist definition, we would have to say that the true half-life is 1 second, as defined by the infinite ensemble consisting of all the nuclei on $S$. However, the physically relevant half-life (relevant, that is, to a physicist on Earth) is 1,600 years, as defined by the finite ensemble consisting of all the nuclei in $A$. Probabilities in the sense of an infinite ensemble definition may conceivably exist. But there is no reason to assume any connection between them and the empirically important probabilities that interest us as Earth-bound, experimental scientists.

This example is not fanciful. There is nothing implausible in the suggestion that the standard model parameters, which determine the half-life, may vary significantly over distances $\sim 10^{100}$ light years.

The objection is quite general. Suppose, for the sake of argument, that a coin actually could be tossed an infinite number of times. Suppose that, in the first $10^{100}$ years of its existence, the coin comes up heads with relative frequency 0.5, but that in the rest of its infinite history it comes up heads with limiting relative frequency 0.25. Then the empirically important probability of heads (the probability that matters to us) is 0.5, not 0.25 as on an infinite frequentist definition.

An infinite frequentist must admit that it is logically possible that a coin could come up heads with relative frequency 0.5 in the first $10^{100}$ years of its existence, and then with limiting relative frequency 0.25 thereafter. But s/he probably has, at the back of his or her mind, some notion that it is not very likely. That, however, involves a tacit appeal to assumptions which, on frequentist principles, are inadmissible.

Suppose that, instead of considering a sequence of coin tosses, we considered the sequence which consists of $N$ tosses of a coin, followed by infinitely many tosses of a die, with the convention that 1 on the die counts as “heads”, while 2 or greater counts as “tails”. I do not think that anyone would be inclined to infer, from the fact that “heads” occurs with relative frequency 0.5 in the first $N$ tosses, that it is therefore likely to occur with limiting relative frequency 0.5 in the rest of the infinite sequence. If we are inclined to make that inference in the case of the sequence which consists of infinitely many tosses of a single coin, it is because in this case, but not in the other, it seems natural to assume that the probability of heads remains constant. However, a frequentist cannot consistently make that assumption.

If one assumes that the probabilities remain constant, that means one is tacitly relying on some kind of notion of a single-case probability (the probability cannot be the same on every toss if it is not defined on every toss). But on a frequentist interpretation it makes no sense to speak of a single-case probability. On a frequentist interpretation probabilities are properties of the whole ensemble, not of the individual events (the probability simply is the limiting relative frequency).

But even if we were to allow this tacit appeal to single-case probabilities, it would not make the infinite ensemble definition any more acceptable. The behaviour of the propensity over infinitely great expanses of time and/or space has absolutely no bearing on the probabilities of immediate experimental interest. The propensity of a coin for coming up heads may remain constant over times greater than $10^{100}$ years (supposing that the coin, not to mention the universe, lasts that long). Or it may not (the coin may become bent). Either way, it does not matter. So far as the empirical applications are concerned, all that matters is that the propensity should
remain constant over the strictly finite patch of 4-space in which we happen to be empirically interested. It follows that, if the frequentist approach is to work at all, the definition had better be in terms of finite ensembles.

3. Frequentism (2): Finite Ensembles

The shift to finite ensembles necessitates a significant weakening of the definition. In a finite number of independent tosses, every sequence of heads and tails has probability \( p > 0 \) (unless the probability of heads = 0 or 1). It follows that probability statements cannot be strictly equivalent to statements about frequencies in finite ensembles.

The usual response to this difficulty is to argue that probabilities sufficiently close to 0 count as effective impossibilities, and probabilities sufficiently close to 1 count as effective certainties. Consequently, the proposition “the probability of heads is \( p \), though not strictly equivalent, is equivalent FAPP (“for all practical purposes”) to the proposition “the relative frequency of heads will be very close to \( p \) in a sufficiently long sequence of tosses”.

On first inspection this idea may seem very persuasive. It seems, on the face of it, to accurately describe the way we use probabilities in physics (we are, for example, accustomed to think of the second law of thermodynamics as FAPP deterministic in its application to macroscopic systems). Orthodox statisticians encourage us to think that the principle “highly improbable = FAPP impossible” also underpins the theory of statistical inference (Fisher [35] (pp. 40–9), for example, suggests that statistical arguments are based on the “resistance felt by the normal mind to accepting a story intrinsically too improbable”).

However, I think it becomes clear on closer examination that things do not work quite in that way. Finite ensembles are, of course, an essential part of the empirical interface: the procedures we use for testing probability assignments. So probabilities are intimately connected to frequencies in finite ensembles. However, the connection is not a FAPP equivalence. It is more subtle than that.

If a coin is tossed 100 times then, on the hypothesis that the coin is fair and the tosses independent, every possible sequence of heads and tails has probability \( 2^{-100} \). On this hypothesis the outcome is guaranteed to be highly improbable. So if we really were relying on the principle “highly improbable = FAPP impossible” we would not only take the hypothesis to be FAPP falsified by the sequence consisting of 100 heads. We would take it to be just as strongly falsified by (for example) a sequence consisting of 50 heads and 50 tails in some ostensibly random order. There would, in fact, be no need to toss the coin at all: we would know in advance that the hypothesis was going to be FAPP falsified, whatever the outcome.

Highly improbable events do not necessarily count as FAPP impossible [19]. The probability of the microstate of the air in the room where I am now writing is no greater than the probability of observing a macroscopic violation of the second law of thermodynamics. Yet the fact that this microstate occurred is not occasion for surprise.

Highly improbable events are happening all the time. It is, of course, true that the occurrence of some events, which we previously took to be highly improbable, forces a revision of our starting assumptions. But it is also true that the occurrence of many other events, which we previously regarded as no less improbable, leaves

---

[1] Popper [24] and Gillies [5] are more cautious: they only speak of probability statements being FAPP falsified (“methodologically falsified” in their terminology), never of them being FAPP confirmed.

[2] Perhaps I should say he seems to suggest. In his actual practice he departs from this principle—see below.
our starting assumptions intact. The question is: what distinguishes the small class of improbable events, which do force a revision, from the much larger class, which do not?

Consider

**Argument A:** Alice spins a roulette wheel once, and obtains the number 11. She concludes that the wheel is fair.

This argument seems clearly invalid. Merely from the fact that 11 occurred once, one cannot reasonably infer that the other numbers are even possible, much less that they all have probability $1/37$. It also seems a little strange to argue that, because 11 *did* occur, therefore 11 is rather unlikely to occur (an anti-inductive argument, as it might be called).

Now compare

**Argument B:** Bob tosses a coin 100 times, and obtains a sequence consisting of 50 heads and 50 tails in some ostensibly random order. He concludes that the coin is fair (more precisely: he is 95% confident that the probability of heads is in the interval $(0.4, 0.6)$).

It may appear that this argument is, by contrast, valid. Yet if Bob really is relying purely on the observed facts, and nothing else whatever, his argument is no better than Alice’s.

A sequence of 100 coin tosses is, from the point of view of abstract probability theory, equivalent to 1 spin of a big roulette wheel, divided into $2^{100}$ sectors. Let $s$ be the particular sequence which Bob obtains. Then, on the basis of one spin of the equivalent roulette wheel, Bob is arguing

(a) Because $s$ *did* occur, therefore each of the sequences which *did not* occur has probability $\sim 10^{-32}$.

(b) Because $s$ *did* occur, therefore $s$ is *very unlikely* to occur.

As it stands Bob’s argument has the same extraordinary features as Alice’s. So it is no more valid than hers.

Of course, if a coin did in fact come up heads on 50 out of 100 successive tosses, we mostly would conclude that the probability of heads is close to 0.5. I am not suggesting we would be wrong to make that inference. However, we would be basing ourselves, not merely on the observed facts, but also on certain prior probabilistic assumptions.

Actually, the conclusion to Alice’s argument would become valid if she was allowed to make some additional assumptions. Suppose, for example, Alice knows there are two types of roulette wheel on the market: a wheel made by a reputable manufacturer, which can safely be assumed to be fair, and a trick wheel which always stops at the number 10. Then the fact that Alice’s wheel stops at 11 shows that it is not a trick wheel. So she can validly infer that the wheel is fair, just on the basis of spinning it once.

In the original statement of the problem Alice wants to select one distribution out of the set of all possible distributions on the set of integers 0-36. When the choice is as wide as that, a single trial says very little. But when the choice is narrowed down, so that she only has to choose between the uniform distribution, and the distribution concentrated on the number 10, a single trial can settle the issue. Given her assumptions Alice knows with certainty that the distribution is uniform, merely from spinning the wheel once and getting the number 11.

Of course, it is not usual for a statistical inference to decide the question with certainty. The following example is closer to the situations one commonly meets in practice. Suppose it is possible to buy a certain type of random number generator. The machine has a button on the front, and a display. Pressing the button causes
a randomly selected 20-digit integer to appear in the display. If the machine is working properly each integer $n$ in the range $0 \leq n < 10^{20}$ has probability $10^{-20}$. However, it is known that the manufacturer put out a faulty batch. In the faulty machines each $n$ in the range $0 \leq n < 10^{10}$ has probability $10^{-10}$, while every other value has probability 0. Suppose, now, that we buy one of these machines, press the button, and the number 00000000005678435211 appears in the display. Those ten leading zeros may cause us to suspect that the machine comes from the faulty batch.

The point to notice here is that we would clearly not be relying on the principle “highly improbable = FAPP impossible”. Let $H_1$ be the hypothesis “machine is functioning correctly”, let $H_2$ be the hypothesis “machine comes from the faulty batch” and let $E$ be the event “number observed is 5,678,435,211”. Then

$$P(E \mid H_1) = 10^{-20} \quad (1)$$

$$P(E \mid H_2) = 10^{-10} \quad (2)$$

$E$ is highly improbable on either hypothesis. The inference is not based on the principle, that one should reject any hypothesis which make the observation highly improbable, but rather on the principle, that one should prefer the hypothesis which makes it least improbable (at least, that is the principle on which Fisher’s likelihood method relies; Bayesian statisticians introduce an important modification—see below).

The absolute values of the conditional probabilities are completely irrelevant. The inference would go through just the same if the conditional probabilities were, instead, $P(E \mid H_1) = 10^{-10^{20}}$ and $P(E \mid H_1) = 10^{-10^{10}}$.

If we really were motivated by Fisher’s supposed “resistance felt by the normal mind to accepting a story intrinsically too improbable” then we would reject both of the stated options, and choose instead a third, more congenial hypothesis. There is, for instance, no empirical consideration which excludes the hypothesis that the number 5,678,435,211 was fully determined by the state of the machine before the button was pressed, so that $P(E \mid H) = 1$. Indeed, if the machine is really a pseudo-random number (as is likely) that would, in fact, be the case.

Now the above are both instances of an inference based on a single trial. It may be thought that the inference in argument $B$, being based on many repeated trials, would have a completely different logic. But that is not so. There is no fundamental difference between inferences based on singular events, and inferences based on large ensembles (although there are, of course, some important differences in point of detail).

In the examples just discussed the inference involved making a choice between two competing hypotheses. The inference in argument $B$ is based on the same principle, except that now the choice is between the non-denumerable infinity of hypotheses

$$H_p = \text{“the tosses are independent and the probability of heads is } p \text{ on every toss”}$$

where $p$ ranges over the closed interval $[0,1]$. Let $E$ be the observed outcome “50 heads and 50 tails in some ostensibly random order”. Then $P(E \mid H_p) = p^{50}(1-p)^{50}$. We prefer hypothesis $H_{0.5}$ to (say) $H_{0.2}$ because, although $P(E \mid H_{0.5}) = 8 \times 10^{-31}$ is very small, $P(E \mid H_{0.2}) = 2 \times 10^{-40}$ is 9 orders of magnitude smaller. The fact that $E$, in absolute terms, is highly improbable on either hypothesis has nothing whatever to do with it.

This restriction of the set of admissible hypotheses to the 1-parameter family $H_p$ is essential. Without that, or some other such restriction, no useful inference is possible, as we saw in our earlier discussion of argument $B$. 
The standard way of relating a probability to the frequency observed in a sequence of repeated trials is thus critically dependent on the assumptions that (a) the trials are independent and (b) the probability is constant. We are so accustomed to making these assumptions in theoretical calculations that they may appear trivial. But if one looks at them from the point of view of a working statistician it will be seen that they are very far from trivial.

The probability of a coin coming up heads depends as much on the tossing procedure as it does on properties of the coin. Suppose that, in an experiment to determine the probability, one used a number of visibly different tossing procedures, without keeping any record of which procedure was employed on which particular toss. We would mostly consider the results of this experiment to be meaningless, on the grounds that the probability of heads might be varying in an uncontrolled manner. It is clearly essential, in any serious experiment, to standardize the tossing procedure in such a way as to ensure that the probability of heads is constant. This raises the question: how can we be sure that we have standardized properly? And, more fundamentally: what does it mean to say that the probability is constant? Anyone who thinks these questions are easily answered should read chapter 10 of Jaynes [10] (also see Appleby [4], where I approach the question from a different angle).

This problem, and problems related to it, has to be faced in just about every statistical application. For instance, the concept of an opinion poll, viewed in abstract mathematical terms, is very simple. What makes opinion polling difficult in practice is (among other things) the fact that it is, in practice, very hard to select the sample in such a way that the trials are independent, and the probability of each individual respondent being a supporter of party $X$ is constant, equal to the proportion of $X$-supporters in the population as a whole.

Frequentists are impressed by the fact that we infer probabilities from frequencies observed in finite ensembles. What they overlook is the fact that we do not infer probabilities from just any ensemble, but only from certain very carefully selected ensembles in which the probabilities are, we suppose, constant (or, at any rate, varying in a specified manner). This means that statistical reasoning makes an essential appeal to the concept of a single-case probability: for you cannot say that the probability is the same on every trial if you do not accept that the probability is defined on every trial. The only question is whether the single-case probabilities are to be construed as objective realities (“propensities”), or whether they should be construed in an epistemic sense.

4. **Bayesian Analysis**

As is well known, gamblers are prone to think that, if a coin has come up heads on each of (say) the last 5 tosses, it is more likely than not to come up tails on the next toss. One of the first things students are taught is that this is a fallacy. If the tosses are truly independent, and if the coin is truly fair, then the probability of heads on the next toss is still 0.5, even if the coin has come up heads on each of the last $10^3$ tosses.

Of course, if a coin did, in practice, come up heads $10^3$ times in succession hardly anyone would stick to the belief that the probability of heads is 0.5. But it is important to realize that there is nothing in the data itself which forces us to that conclusion. A sequence of $10^3$ heads is in itself no more inconsistent with the hypothesis that the coin is fair than a sequence of 500 heads and 500 tails in some ostensibly random order (if it were, it would mean that generations of students have been wrongly taught). Our decision to embrace the alternative hypothesis, that the coin is biased, is a function, not of the data alone, but of the data in combination
with our subjective willingness to embrace the alternative hypothesis. And that is something which can vary. The person who is absolutely certain that the coin is fair, and who holds to that belief even though the coin has come up heads on each of the last $10^3$ tosses, is not guilty of any inconsistency (not even an inconsistency FAPP, as elementary textbooks correctly emphasize).

This raises the question: just how willing should one be? Alice is very open-minded: 10 heads in succession is enough to convince her that the coin is probably biased. Bob is harder to persuade: it takes 50 heads in succession to convince him. Which of them is right?

Let us go back to the random number generator we considered in the last section. I suggested that if one presses the button once and the number 5, 678, 435, 211 appears in the display, then there is reason to suspect that the machine is faulty. There is a problem with that, however. Suppose, for instance, that the manufacturer constructed $10^{20}$ of these machines, and only one of them was faulty (this is not, of course, a very plausible assumption, but let us make it anyway). In that case the improbability of getting the number 5, 678, 435, 211 on the hypothesis that the machine is working properly is outweighed by the much greater improbability, that we should have chanced to buy that single faulty one. So the inference would not be justified. If, on the other hand, $10^6$ of these machines had been produced, of which $10^3$ were known to be faulty, then the inference would be justified.

A formal argument helps to clarify the situation. Let $H_1, H_2, E$ be as defined in the last section. Then the conditional probabilities of the machine being not faulty or faulty, given the observation $E$, can be calculated using Bayes’ formula:

$$P(H_r | E) = \frac{P(E | H_r) P(H_r)}{P(E | H_1) P(H_1) + P(E | H_2) P(H_2)}$$

(3)

On the first assumption $P(H_2) = 1 - P(H_1) = 10^{-20}$, implying $P(H_2 | E) \approx 0$: meaning that the machine is most unlikely to be faulty. On the second assumption $P(H_2) = 1 - P(H_1) = 10^{-3}$, implying $P(H_2 | E) \approx 1$: meaning that the machine is almost certain to be faulty.

Now this problem is unusual in that one might well know the proportion of faulty machines. In a situation like that Fisher [35] (pp. 8–39) has no objection to the Bayesian methodology (he hardly could object: Eq. 3 is an elementary consequence of the basic principles of probability theory).

Suppose, however, one does not know the proportion of faulty machines. In that case, there are really only two alternatives: either give up, and refuse to make any prediction, or (not to put too fine a point on it) take a guess.

It does not have to be a blind guess. We are told that $P(E | H_2) / P(E | H_1) = 10^{10}$. This means that the tipping point—the place where $P(H_2 | E)$ switches from virtually certain to highly improbable—occurs at $P(H_2) \sim 10^{-10}$. Our background knowledge informs us that the total number of machines is unlikely to exceed the total population of the Earth. We also know that there was a whole batch of faulty machines—implying that the number of faulty machines is $\gg 1$. It follows that $P(H_2)$ is likely to be $\gg 10^{-10}$: implying it is a fairly safe bet that the machine is faulty.

Still, guessing clearly is involved, and that was Fisher’s [35] (pp. 8–39) reason for rejecting the Bayesian approach (except in special cases). Fisher, like most 20th century statisticians, thought that guessing has no place in science. He and others therefore tried to develop an alternative approach, in which conclusions would be based purely on the actual data, without any dependence on the statistician’s preconceived and (to a degree) arbitrary notions. They tried, in other words, to make statistics purely objective.
We may sympathize with the intention. No one sensible would choose to rely on
guesswork, when something better is possible. The trouble is that something better
is not possible. The orthodox methodology, which Fisher and others developed, is
not really any more objective than Bayesian statistics. It only appears to be more
objective.

Consider, for instance, the example discussed on pp. 68–78 of Fisher [35], where a
coin has come up heads on 3 out of 14 tosses, and one wants to infer the probability
of heads. Let \( E \) be the be the particular sequence which is observed, and let \( H_p \)
be the hypothesis “tosses independent and probability of heads is \( p \) on every toss”.
On the assumption that one of these hypotheses must be true Bayes’ formula gives

\[
P(H_p|E) = Kp^3(1-p)^{11}P(H_p)
\]

where \( K = \left( \int_0^1 p^3(1-p)^{11}P(H_p)dp \right)^{-1} \) is a normalization constant, and \( P(H_p) \),
\( P(H_p|E) \) are probability densities. Fisher does not want to use this formula as
it stands because the fact that we have to guess the function \( P(H_p) \) means that
the conclusion will be contaminated with subjective assumptions. He discusses two
ways of trying to get round that difficulty.

His preferred solution is the method which I described in the last section. In
Eq. \( \text{(4)} \) he deletes the subjective element represented by \( P(H_p) \), retaining only the
so-called likelihood

\[
P(E|H_p) = p^3(1-p)^{11}
\]

His grounds are that the likelihood “represents that part of Bayes’ calculation pro-
vided by the data themselves” (Fisher [35], p. 72). He then argues that the smaller
the likelihood, the less “plausible” the corresponding value of \( p \). More specifically
he maintains that values of \( p \) for which \( P(E|H_p) \leq (1/15) \times P(E|H_{3/14}) \) —i.e.
values of \( p \) outside the interval (0.04, 0.52)—are “obviously open to grave suspicion”
(though he neglects to say why we should be suspicious; in particular, he fails to
explain what is so special about the number 15).

Now it seems to me that, however Fisher may choose to verbally express it, he is
effectively working on the same assumption as Laplace. If we follow Laplace,
and set \( P(H_p) = 1 \), then Eq. \( \text{(4)} \) becomes \( P(H_p|E) = KP(E|H_p) \). So Fisher’s
likelihood is proportional to Laplace’s probability density. This means Fisher would
say that \( p_1 \) is “less plausible” than \( p_2 \) in exactly those cases where Laplace would
say that \( p_1 \) is “less probable” than \( p_2 \), and not in any other case. It therefore seems
to me that Fisher’s “less plausible” is operationally equivalent to Laplace’s “less
probable”. Again, Fisher says that values outside the interval (0.04, 0.52) are “open
to grave suspicion”. More generally, he thinks that if \( P(E|H_p) \ll P(E|H_{3/14}) \)
then \( p \) is much less plausible than 3/14. I find it difficult to see any operational
difference between this and Laplace’s belief, that \( p \) is much less probable than 3/14.

At any rate, it is hard to see very much operational difference. It is, however,
noticeable that, whereas Laplace assigns an exact, numerical value to the proba-
bility that \( p \in (0.04, 0.52) \) (to be specific, he thinks the probability = 0.98, . . ., to
infinitely many decimals), Fisher does not commit himself to more than the vague
qualitative statement, that values of \( p \notin (0.04, 0.52) \) are “open to grave suspicion”.
Although Fisher orders his plausibilities, he generally tries to avoid giving them any
exact numerical significance (apart from that mysterious factor 1/15). So perhaps
the real motive for Fisher’s reworking of the Bayesian argument is just the feeling
that, in a case like the present, exact quantification is inappropriate.

Given Fisher’s assumptions that would be a very reasonable position. As Laplace
sees it probabilities have a purely epistemic significance. For him, the assignment
\( P(H_p) = 1 \) expresses the normative principle that, in a case where prior information
is lacking, the logically correct attitude is one of perfect indifference between
the competing alternatives. Fisher, however, thinks of $P(H_p)$ as an actually existent
quantity. If one looks at it from that point of view Laplace’s statement, that
$P(H_p) = 1$ precisely, would be inappropriate even if one had very detailed prior
information. In a case like the present the most that would be appropriate is an
order of magnitude estimate.

If words are used in the ordinary sense (and Fisher says nothing to indicate
that they are being used in any other sense) it is just not logically possible to
believe that something is not improbable whilst simultaneously viewing it with
grave suspicion. So if what Fisher says is intelligible at all, his claim must be that
$p \in (0.04, 0.52)$ with high probability. The only\footnote{It is sometimes said (though not by Fisher) that one cannot meaningfully talk of the prob-
ability that $p \in (0.04, 0.52)$ because $p$ is a “parameter”, not a “random variable”. This position is only
open to someone who is prepared to accept that one cannot meaningfully talk of the probability
that a randomly selected radioactive nucleus has half-life $> t$, or the probability that a randomly
selected person has core body temperature $> \theta$.} reason he does not want to use
the word “probability” is, I suggest, that this word has connotations of numerical
exactitude which words such as “likely”, “plausible”, “suspicious” or “confident”
lack.

Fisher would convey his meaning more clearly if, instead of scouring the dictio-

nary for synonyms (“likelihood”, “plausibility”, etc.), he were simply to say that, on
the assumption that $P(H_p)$ is roughly constant, the probability that $p \notin (0.04, 0.52)$
is of order $10^{-2}$. Of course, it would then be apparent that he is relying on an as-
sumption which he did not derive from the data: that he is, in other words, relying
on guesswork (not necessarily a blind guess, but a guess nonetheless).

Fisher also discusses the confidence interval method. This would, for many, be
the method of choice. Fisher, however, considers it inferior to the likelihood method
just described (correctly, as it seems to me).

In the case supposed $(0.03, 0.56)$ is a 98% confidence interval for $p$ (the interval
being constructed on the principle that the probability of 3 or fewer heads is $\leq 0.01$
if $p \geq 0.56$, and the probability of 3 or more heads is $\leq 0.01$ if $p \leq 0.03$). The usual
justification for this is that one would, in the long run, expect a 98% confidence
interval to cover the true value of $p$ more than 98% of the time (not exactly 98% of
the time due to the fact that the random variable is discrete).

The problem with this argument is that it relies on the principle “highly im-
probable = FAPP impossible” which I criticized in the last section. Let $I$ be the
interval actually obtained. The argument is that we should reject values of $p \notin I$
because $P(I|H_p)$ is then $\leq 0.02$, and 0.02 is a small number. This is wrong twice
over. It is wrong in the first place because it attaches significance to the absolute
value of $P(I|H_p)$ when, as we saw in the last section, it is only the relative values
that are relevant (Fisher’s likelihood argument is in that respect preferable). It is
wrong in the second place because even a relatively larger value of $P(I|H_p)$ only
translates into a greater probability for $H_p$ if we assume $P(H_p) = 1$ (because it is
only then that $P(H_p|I) \propto P(I|H_p)$).

The idea that one should trust the confidence interval approach because the
expected failure rate is small has a strong hold on the orthodox imagination. So let
us look at it from another angle. Suppose we have a balance which is guaranteed to
be 99.9999% reliable. Under most circumstances we will trust its readings. Suppose,
however, we put a mosquito on the pan and the instrument reads 1 kg. Then we
will conclude that the instrument is misreading—even though the probability of
that happening is $10^{-6}$. Our strong prior conviction that a tiny little insect cannot
possibly have mass 1 kg will outweigh our conviction, that the instrument is most
unlikely to deceive us.
Similarly here: if we had a sufficiently strong prior conviction that a coin is most unlikely to be biased, then not even a 99.9999% confidence interval would be enough to persuade us otherwise. If in practice a 99% confidence interval would usually induce a change of mind, that is because we would not usually have a strong initial prejudice in favour of the coin being fair: because, in other words, we would usually work on the tacit assumption that \( P(H_p) \) is more or less uniform.

Let us return to the question I posed at the beginning of this section: how many heads in succession should it take to convince us that a coin is biased? The answer is: it depends on our starting assumptions, as represented by the function \( P(H_p) \). If you start out on the assumption that the odds are \( 10^{10^6} : 1 \) against the coin being biased then you will retain your belief, that the coin is almost certainly fair, even though it has come up heads on each of the last million tosses. And you will be right to do so—given your assumptions.

Suppose you take it to be a given fact that the coin is fair (as in elementary textbook problems). Suppose, in other words, that you start on the assumption that \( P(H_p) = \delta(p - 0.5) \). Then nothing at all will shake your belief. Nor should it, as elementary textbooks all correctly say (the gambler’s fallacy really is a fallacy).

Of course, if someone did in fact persist in believing that a lottery is fair, even though the same person had won it every week for the last 10 years, we would mostly consider their belief perverse, not to say irrational. Yet their confidence would be entirely justified, if their assumptions were valid. Any irrationality there may be is in those starting assumptions. Not in a subsequent misapplication of the rules of probability.

The question is: what are the right starting assumptions? How does one decide? We would mostly consider the assumption \( P(H_p) \sim 1 \) appropriate in the case of a coin. At any rate, it is the assumption which all orthodox statisticians and most Bayesians do in fact make. On the other hand the assumption \( P(H_p) = \delta(p - 0.5) \) would strike most of us as quite unreasonable (when applied to the real world; not, of course, when applied to an imaginary textbook world). What is the basis for that belief?

This is, in essence, the problem of induction. Consider the question I posed in Section 1: how many observations does it take to justify NASA’s belief, that gravity falls off as \( 1/r^2 \)? Clearly, a single measurement would not be sufficient. Nor, I think, ten (I think this is a case where a 99% confidence interval would fail to convince). But as the data keeps coming in, and the hypothesis is each time confirmed, there eventually comes a tipping point: a place where, rightly or wrongly (and it may be wrongly), our attitude changes from reserve to qualified assent. The significance of the function \( P(H_p) \) is that it sets the tipping point for the coin tossing example. The question is, in both cases: exactly where do we set the tipping point?

This problem, in one form or another (usually in a much more complicated, subtle and interesting form), occurs in every situation where one needs to reach conclusions on the basis of limited information. When, exactly, does the evidence in support of a proposition become so strong that one would be willing to stake one’s life on it? (as the Apollo astronauts staked theirs on the approximate truth of the Newtonian law of gravity). The answer we give to this question is partly definitive of scientific rationality. So it cannot be shirked. At least, it cannot be shirked if we want to have a standard of scientific rationality.

Nevertheless, people often try to shirk it. There are two reasons for this. In the first place, the question cannot be settled experimentally. It concerns the standard of empirical evidence, and for that very reason it is itself beyond the reach of empirical evidence. So we have to fall back on our intuitive judgment. The trouble with that is that what strikes us as intuitively reasonable is likely to depend on
the way our brains are wired (not to mention possible educational and cultural influences). An alien being might intuit differently.

The other difficulty is that the choice of tipping point is, to an extent, arbitrary. Faced with the question “Just how many observations are needed before it is reasonable to stake one’s life on the approximate truth of a scientific hypothesis?” different individuals will make different decisions. There does not seem to be any basis for singling out one of these as the unequivocally correct decision. Similarly with the coin-tossing example. On intuitive grounds we would mostly reject the assumption $P(H_p) = \delta(p - 0.318)$ without hesitation. But, within certain limits, one choice of $P(H_p)$ seems as good as another.

These features of probability in general, and induction in particular, worried Newton, as they worried Hume, and as they have worried numerous others since. They worry me. However, the problem seems insurmountable. Probabilistic reasoning, and therefore science, does partly depend on intuition and guesswork. It is a fact of life.

5. Single-Case Probabilities

Until now I have been looking at what may be called retrodictive probabilistic reasoning: the case where one argues back, from observations already performed, to the underlying probability distribution. I now want to look at the predictive case, where one argues in the opposite direction, from a given probability distribution to observations not yet made.

So let us ask: what is the predictive content of the statement “event X has probability $p$”? The usual, frequentist answer to this question is that the statement has no predictive implications for the outcome of any single trial, but that it does have predictive implications for the outcome of a long sequence of trials. Suppose, for instance, that a fair coin is tossed $10^4$ times. Then, on the assumption that the tosses are independent, the probability that the relative frequency of heads will be outside the interval $(0.48, 0.52)$ is $\sim 10^{-6}$. So, although we cannot say anything useful about a single coin toss, we can be nearly certain that in $10^4$ tosses the relative frequency of heads will be close to 0.5.

At first sight this account of the matter may seem convincing. But if one looks a little more closely it will be seen that the argument is, in fact, making a tacit appeal to the concept of a single-case probability. Let $Y$ be the event “relative frequency of heads $\not\in (0.48, 0.52)$”. The argument is relying on the idea that, because the probability of $Y$ is $\sim 10^{-6}$, therefore it is a safe bet that $Y$ will not occur in a single run of $10^4$ tosses. This is not really any different from arguing, in respect of a single lottery draw, that because the probability of Alice winning is only $10^{-6}$, therefore we can be nearly certain that Alice is not going to win. The conclusion seems reasonable enough, if one judges by the standards of commonsense. But it represents a clear departure from the frequentist principle, that it is not possible to make any valid probabilistic prediction regarding the outcome of a single trial.

Every probability is a single-case probability at the point of empirical application. Suppose, for example, it is known that a certain operation has probability $p$ of causing serious, irreversible brain damage. The question the patient has to decide is: having in view all the circumstances, is s/he willing to take that risk? Whichever way the patient decides, the decision will be based on $p$ regarded as a single-case probability.

The decision is, in fact, a kind of bet. The unpleasant truth, which frequentists would prefer not to see, is that probability has essentially to do with gambling. It need not be frivolous, or irrational gambling, as occurs in a casino. It may be
gambling in deadly earnest (as in the above example). But it is gambling nonetheless. At the point of empirical application every piece of predictive probabilistic reasoning presents us with a dilemma of the following general form “Given that the probability of $X$ is $p$ are we, or are we not prepared to bet that $X$ will in fact happen, in a single trial?”

If we are concerned with the outcome of a coin-tossing experiment, and if $X$ is the event “relative frequency of heads $\in (0.48, 0.52)$” then, by choosing a long enough sequence, we can make the probability of $X$ as close to 1 as we wish. But we cannot make it strictly $= 1$. So, if we want to come to empirical conclusions, our only option is to make a bet. The bet may, we think, be very very safe. But it is still a bet.

Making the best decision in the face of uncertainty—calculating the best bet—is what probability is for. However distasteful it may be to objectivist-minded philosophers, gambling is in fact the point. Remove the gambling element—remove the concept of a single-case probability—and you remove with it all the empirical applications. What remains is not really probability at all, but abstract measure theory.

To understand the content of probability statements one needs to look at the point where probability collides with reality. One needs, in other words, to consider single-case probabilities. When one does that it becomes clear that a probability statement is, broadly speaking, a statement about what we can reasonably expect. Consider, once again, the case where Alice buys one ticket in a lottery having $10^6$ tickets, and her ticket wins. Even after it is known that Alice did win the lottery, we would still say that Alice was very unlikely to win. And we would be right to say it: because the statement, that Alice is unlikely to win, is not, primarily, a statement about the actual outcome. Rather, it is a statement about what Alice, and us, could reasonably expect regarding the outcome. The fact, that Alice did win, does not alter the fact, that she could not reasonably have expected to win.

Probability, in short, is epistemic.

Acknowledgements. I am grateful to C.A. Fuchs, who first made me see the importance of these questions, and also to H. Brown, P. Busch, J. Butterfield, M. Donald, L. Hardy, T. Konrad, P. Morgan, R. Schack, C. Timpson and J. Uffink for extremely stimulating discussions.

References

[1] C.A. Fuchs, e-prints quant-ph/0105039; quant-ph/0205039.
[2] C.M. Caves, C.A. Fuchs, and R. Schack, Phys. Rev. A 65, 022305 (2002); 66, 062111 (2002); J. Math. Phys. 43, 4537 (2002).
[3] C.A. Fuchs and R. Schack, e-print quant-ph/0404156 to appear in Quantum Estimation Theory, edited by M.G.A. Paris and J. Ohzek (Springer-Verlag, Berlin, 2004).
[4] D.M. Appleby, e-print quant-ph/0402015.
[5] D. Gillies, Philosophical Theories of Probability (Routledge, London, 2000).
[6] A. Hald, A History of Mathematical Statistics from 1750 to 1930 (Wiley, New York, 1998)
[7] L. Sklar, Physics and Chance (Cambridge University Press, Cambridge, 1993).
[8] J. von Plato, Creating Modern Probability (Cambridge University Press, Cambridge, 1994).
[9] P.S. de Laplace (trans. F.W. Truscott and F.L. Emory), A Philosophical Essay on Probabilities (Dover, New York, 1951). French original published 1820.
[10] E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003).
[11] E.T. Jaynes (ed. R.D. Rosenkrantz), Papers on Probability, Statistics and Statistical Physics (Reidel, Dordrecht, 1983).
[12] H. Jeffreys, Theory of Probability, 3rd edition (Clarendon Press, Oxford, 1961).
[13] H. Jeffreys, Scientific Inference, 3rd edition (Cambridge University Press, Cambridge, 1973).
[14] F.P. Ramsey, “Truth and Probability”, reprinted in L. Sklar (ed.), Probability and Confirmation (Garland Publishing, New York, 2000); First published 1931.
B. de Finetti, “Probabilism”, English Translation, *Erkenntnis* 31, 169 (1989). Italian original published 1931.

B. de Finetti (trans. A. Machá and A. Smith), *Theory of Probability* (Wiley, New York, 1975). Italian original published 1971.

L.J. Savage, *The Foundations of Statistics*, 2nd edition (Dover, New York, 1972).

J.M. Bernardo and A.F.M. Smith, *Bayesian Theory* (John Wiley and Sons, Chichester, 1994).

C. Howson and P. Urbach, *Scientific Reasoning: the Bayesian Approach* (Open Court, La Salle, 1989).

J. Earman, *Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory* (MIT Press, Cambridge Mass, 1992).

R. von Mises, *Probability, Statistics and Truth* (Dover, New York, 1981). Reprint of 2nd revised English edition, published 1957.

R. von Mises (ed. H. Geiringer), *Mathematical Theory of Probability and Statistics* (Academic Press, New York, 1964).

H. Reichenbach, *The Theory of Probability* (University of California Press, Berkeley, 1971).

K.R. Popper, *The Logic of Scientific Discovery* (Hutchinson, London, 1959).

B.C. van Fraassen, *The Scientific Image* (Clarendon Press, Oxford, 1980).

D.A. Gillies, *An Objective Theory of Probability* (Methuen, London, 1973).

K.R. Popper, “The Propensity Interpretation of Probability”, *Brit. J. Phil. Sci.* 10, 25–42 (1959).

K.R. Popper, *Realism and the Aim of Science* (Hutchinson, London, 1983).

R.A. Fisher (ed. J.H. Bennett), *Statistical Methods, Experimental Design, and Scientific Inference* (Oxford University Press, Oxford, 1990).

D. Hume (ed. L.A. Selby-Bigge, revised P.H. Nidditch), *A Treatise of Human Nature*, 2nd edition (Clarendon Press, Oxford, 1978). Originally published 1739-40.

I. Newton, *Opticks*, based on the 4th edition, 1730 (Dover, New York, 1952).

D.C. Stove, *Popper and After: Four Modern Irrationalists* (Pergamon Press, Oxford, 1982).

W.H. Newton-Smith in K. Popper: *Philosophy and Problems*, edited by A. O’Hear (Cambridge University Press, Cambridge, 1995).

R.C. Jeffrey, in R.E. Butts and J. Hintikka (eds), *Basic Problems in Methodology and Linguistics: 5th International Congress of Logic, Methodology, and Philosophy of Science pt. 3* (Reidel, Dordrecht, 1977).

R.A. Fisher, *Statistical Methods and Scientific Inference*, 3rd edition. Page references to version reprinted in Fisher [29].