On the convergence of double Fourier series of functions of bounded partial generalized variation.

Ushangi Goginava and Artur Sahakian

ABSTRACT. The convergence of double Fourier series of functions of bounded partial \(\Lambda \)-variation is investigated. The sufficient and necessary conditions on the sequence \(\Lambda = \{\lambda_n\} \) are found for the convergence of Fourier series of functions of bounded partial \(\Lambda \)-variation.

U. Goginava, Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia z_goginava@hotmail.com

A. Sahakian, Erevan State University, Faculty of Mathematics and Mechanics, Alex Manoukian str. 1, Yerevan 0025, Armenia sart@ysu.am
On the convergence of double Fourier series
Artur Sahakian
sart@ysu.am
1. CLASSES OF FUNCTIONS OF BOUNDED GENERALIZED VARIATION

In 1881 Jordan [1] introduced a class of functions of bounded variation and applied it to the theory of Fourier series. Hereinafter this notion was generalized by many authors (quadratic variation, Φ-variation, Λ-variation etc., see [2]-[5]). In two dimensional case the class BV of functions of bounded variation was introduced by Hardy [6].

Let f be a real function of two variable of period 2π with respect to each variable. Given intervals $I = (a, b)$, $J = (c, d)$ and points x, y from $T := [0, 2\pi]$ we denote $f(I, y) := f(b, y) - f(a, y)$, $f(x, J) = f(x, d) - f(x, c)$ and $f(I, J) := f(a, c) - f(a, d) - f(b, c) + f(b, d)$.

Let $E = \{I_i\}$ be a collection of nonoverlapping intervals from T ordered in arbitrary way and let Ω be the set of all such collections E. Denote by Ω_n set of all collections of n nonoverlapping intervals $I_k \subset T$.

For the sequence of positive numbers $\Lambda = \{\lambda_n\}_{n=1}^\infty$ we denote

$$\Lambda V_1(f) = \sup_y \sup_{E \in \Omega} \sum_n \frac{|f(I_i, y)|}{\lambda_i} \quad (E = \{I_i\}),$$

$$\Lambda V_2(f) = \sup_x \sup_{F \in \Omega} \sum_m \frac{|f(x, J_j)|}{\lambda_j} \quad (F = \{J_j\}),$$

$$\Lambda V_{1,2}(f) = \sup_{F, E \in \Omega} \sum_i \sum_j \frac{|f(I_i, J_j)|}{\lambda_i \lambda_j}.$$

Definition 1. We say that the function f has Bounded Λ-variation on $T = [0, 2\pi]^2$ and write $f \in \Lambda BV$, if

$$\Lambda V(f) := \Lambda V_1(f) + \Lambda V_2(f) + \Lambda V_{1,2}(f) < \infty.$$

We say that the function f has Bounded Partial Λ-variation and write $f \in P\Lambda BV$ if

$$P\Lambda V(f) := \Lambda V_1(f) + \Lambda V_2(f) < \infty.$$

If $\lambda_n \equiv 1$ (or if $0 < c < \lambda_n < C < \infty$, $n = 1, 2, \ldots$) the classes ΛBV and $P\Lambda BV$ coincide with the Hardy class BV and PBV respectively. Hence it is reasonable to assume that $\lambda_n \to \infty$ and since the intervals in $E = \{I_i\}$ are ordered arbitrarily, we will suppose, without loss of generality, that the sequence $\{\lambda_n\}$ is increasing. Thus,

$$1 < \lambda_1 \leq \lambda_2 \leq \ldots, \quad \lim_{n \to \infty} \lambda_n = \infty.$$ \hspace{1cm} (1.1)

In the case when $\lambda_n = n$, $n = 1, 2\ldots$ we say Harmonic Variation instead of Λ-variation and write H instead of Λ (HBV, PHBV, HV(f), etc).

The notion of Λ-variation was introduced by D. Waterman [4] in one dimensional case and A. Sahakian [10] in two dimensional case.
Definition 2. Let Φ be a strictly increasing continuous function on $[0, +\infty)$ with $\Phi(0) = 0$. We say that the function f has bounded partial Φ-variation on T^2 and write $f \in PBV_\Phi$, if

$$V^{(1)}_\Phi(f) := \sup_{y} \sup_{\{I_i\} \in \Omega_n} \sum_{i=1}^{n} \Phi (|f (I_i, y)|) < \infty, \quad n = 1, 2, ... ,$$

$$V^{(2)}_\Phi(f) := \sup_{x} \sup_{\{J_j\} \in \Omega_m} \sum_{j=1}^{m} \Phi (|f (x, J_j)|) < \infty, \quad m = 1, 2,$$

In the case when $\Phi(u) = u^p$, $p \geq 1$, the notion of bounded partial p-variation (class PBV_p) was introduced in [8].

Theorem 1. Let $\Lambda = \{\lambda_n = n \gamma_n\}$ and $\gamma_n \geq \gamma_{n+1} > 0$, $n = 1, 2, ...$.

1) If

$$\sum_{n=1}^{\infty} \frac{\gamma_n}{n} < \infty,$$

then $PABV \subset HBV$.

2) If, in addition, for some $\delta > 0$

$$\gamma_n = O(\gamma_n^{1+\delta}) \quad as \quad n \to \infty$$

and

$$\sum_{n=1}^{\infty} \frac{\gamma_n}{n} = \infty,$$

then $PABV \notin HBV$.

Proof. 1) Let $f \in PABV$ and

$$\sum_{i,j=1}^{\infty} \frac{|f (I_i, J_j)|}{i j} = \sum_{i \leq j} \frac{|f (I_i, J_j)|}{i j} + \sum_{i > j} \frac{|f (I_i, J_j)|}{i j} := I_1 + I_2.$$

Then according to (1.2),

$$I_1 = \sum_{i=1}^{\infty} \frac{1}{i} \sum_{j=i}^{\infty} \frac{|f (I_i, J_j)|}{j}$$

$$\leq 2 \sum_{i=1}^{\infty} \frac{1}{i} \sup_{x} \sum_{j=i}^{\infty} \frac{|f (x, J_j)| \lambda_j}{\lambda_j j}$$

$$\leq 2 \sum_{i=1}^{\infty} \frac{\lambda_i}{i^2} \sup_{x} \sum_{j=i}^{\infty} \frac{|f (x, J_j)|}{\lambda_j}$$

$$\leq 2 \Lambda V_2 (f) \sum_{i=1}^{\infty} \frac{\lambda_i}{i^2} \leq c \Lambda V_2 (f) < \infty.$$

Similarly, $I_2 \leq c \Lambda V_1 (f) < \infty$.

2) In the proof of the second statement of Theorem 1 we use the following well known lemma.

Lemma 1. Let \(u_i \) and \(v_i, i = 1, 2, \ldots, j \) be two increasing (decreasing) sequences of positive numbers. Then for any rearrangement \(\{\sigma(i)\} \) of the set \(\{1, 2, \ldots, j\} \)

\[
\sum_{i=1}^{j} u_i v_{i-1} \leq \sum_{i=1}^{j} u_i v_{\sigma(i)} \leq \sum_{i=1}^{j} u_i v_i.
\]

Let (1.3) and (1.4) be fulfilled and define

\[
f(x, y) := \begin{cases} t_j, & x = \frac{1}{i}, \ y = \frac{1}{j}, \ j < i \leq j + m_j, \ i, j = 1, 2, \ldots, \\ 0, & \text{otherwise}
\end{cases},
\]

where

\[
t_j := \left(\sum_{i=1}^{m_j} \frac{1}{\lambda_j} \right)^{-1}, \quad m_j = \left\lfloor j^{1+\delta} \right\rfloor, \quad j = 1, 2, \ldots
\]

Let \(x = 1/i \) and let \(j(i) \) be the smallest integer satisfying

\[
j(i) + m_{j(i)} \geq i.
\]

Since \(t_j \) is decreasing and \(\lambda_j \) is increasing, using Lemma 1 we can write

\[
\sup_{E \in \Omega} \sum_{j=1}^{\infty} \frac{|f(1/i, J_j)|}{\lambda_j} = \sum_{j=j(i)}^{i-1} t_j \frac{1}{\lambda_j} \leq t_j(i) \sum_{j=1}^{m_j} \frac{1}{\lambda_j} = 1.
\]

Hence

\[
\Lambda V_2(f) \leq 1.
\]

For \(y = 1/j \) we have

\[
\sup_{E \in \Omega} \sum_{i=1}^{\infty} \frac{|f(i, 1/j)|}{\lambda_i} = t_j \sum_{i=1}^{m_j} \frac{1}{\lambda_i} = 1.
\]

Consequently,

\[
\Lambda V_1(f) \leq 1.
\]

Combining (1.7) and (1.8) we conclude that \(f \in PABV \).

Now we prove that \(f \notin HBV \). From (1.3) and (1.5) follows that

\[
\sum_{i=1}^{m_j} \frac{1}{\lambda_i} = \sum_{i=1}^{m_j} \frac{1}{i \gamma_i} \leq C \log m_j \gamma_mj \leq C \frac{\log j}{\gamma_j}.
\]

Hence

\[
t_j \cdot \log j \geq c \gamma_j, \quad j = 2, 3, \ldots
\]
and from the definition of f, (1.5) and (1.4) we obtain

$$\sup_{E,F \in \Omega} \sum_{i,j} |f(I_i, J_j)|_{ij} \geq \sum_{j=1}^{\infty} \frac{t_j}{j} \sum_{i=j+1}^{j+m_j} \frac{1}{i} \geq c \sum_{j=1}^{\infty} \frac{t_j}{j} \log(j + m_j) \geq c \sum_{j=1}^{\infty} \frac{\gamma_j}{j} = \infty.$$

Theorem 1 is proved.

Taking $\lambda_n \equiv 1$ and $\lambda_n = n$ in Theorem 1, we get

Corollary 1. $PBV \subset HBV$ and $PHBV \not\subset HBV$.

Corollary 2. Let Φ and Ψ are conjugate functions in the sense of Yung ($ab \leq \Phi(a) + \Psi(b)$) and let for some $\{\lambda_n\}$ satisfying (1)

\begin{equation}
(1.10) \quad \sum_{n=1}^{\infty} \Psi \left(\frac{1}{\lambda_n} \right) < \infty.
\end{equation}

Then $PBV_{\Phi} \subset HBV$. In particular, $PBV_{\Phi} \subset HBV$ for any $p > 1$.

Indeed, from the inequality $\frac{a}{b} \leq \Phi(a) + \Psi\left(\frac{1}{b} \right)$ follows that $PBV_{\Phi} \subset PABV$ under assumption (1.10), and $PABV \subset HBV$ if (1.1) holds.

Definition 3 (see [9]). The partial modulus of variation of a function f are the functions $v_1(n, f)$ and $v_2(m, f)$ defined by

$$v_1(n, f) := \sup_y \sup_{\{I_i\} \in \Omega_n} \sum_{i=1}^{n} |f(I_i, y)|, \quad n = 1, 2, \ldots,$$

$$v_2(m, f) := \sup_x \sup_{\{J_k\} \in \Omega_m} \sum_{k=1}^{m} |f(x, J_k)|, \quad m = 1, 2, \ldots.$$

For functions of one variable the concept of the modulus variation was introduced by Chanturia [5].

Theorem 2. If $f \in B$ is bounded on T^2 and

$$\sum_{n=1}^{\infty} \frac{\sqrt[n]{v_j(n, f)}}{n^{3/2}} < \infty, \quad j = 1, 2,$$

then $f \in HBV$.
Proof. Using Abel transformation we can write

\[\sum_{k=1}^{m} \left| \frac{f(x, J_k)}{k} \right| = \sum_{k=1}^{m-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) \sum_{l=1}^{k} \left| f(x, J_l) \right| + \frac{1}{m} \sum_{k=1}^{m} \left| f(x, J_k) \right| \]

\[\leq \sum_{k=1}^{m-1} \frac{1}{k^2} \left(\sum_{l=1}^{k} \left| f(x, J_l) \right| \right)^{1/2} \left(\sum_{l=1}^{k} \left| f(x, J_l) \right| \right)^{1/2} + c \]

\[\leq c \sum_{k=1}^{\infty} \frac{\sqrt{k}}{k^2} \left(\sum_{l=1}^{k} \left| f(x, J_l) \right| \right)^{1/2} + c \]

\[\leq c \sum_{k=1}^{\infty} \frac{\sqrt{v_2(k, f)}}{k^{3/2}} + c \leq c < \infty. \]

Consequently,

(1.11) \quad HV_2(f) < \infty.

Analogously, we can prove that

(1.12) \quad HV_1(f) < \infty.

Using Hardy transformation we obtain

\[\sum_{i=1}^{n} \sum_{j=1}^{m} \begin{vmatrix} \frac{f(I_i, J_j)}{ij} \\ \end{vmatrix} \]

\[= \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} \left(\frac{1}{i} - \frac{1}{i+1} \right) \left(\frac{1}{j} - \frac{1}{j+1} \right) \sum_{l=1}^{i} \sum_{s=1}^{j} \left| f(I_i, J_s) \right| \]

\[+ \frac{1}{n} \sum_{j=1}^{m-1} \left(\frac{1}{j} - \frac{1}{j+1} \right) \sum_{l=1}^{n} \sum_{s=1}^{j} \left| f(I_l, J_s) \right| \]

\[+ \frac{1}{m} \sum_{i=1}^{n-1} \left(\frac{1}{i} - \frac{1}{i+1} \right) \sum_{l=1}^{m} \sum_{s=1}^{i} \left| f(I_l, J_s) \right| \]

\[+ \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \left| f(I_i, J_j) \right| \]

\[= I + II + III + IV. \]

Since

\[\sum_{l=1}^{i} \sum_{s=1}^{j} \left| f(I_l, J_s) \right| \leq 2i \sup_{x} \sum_{s=1}^{j} \left| f(x, J_s) \right| \leq 2i v_2(j, f) \]

and

\[\sum_{l=1}^{i} \sum_{s=1}^{j} \left| f(I_l, J_s) \right| \leq 2j \sup_{y} \sum_{l=1}^{i} \left| f(I_l, y) \right| \leq 2j v_1(i, f) \]
we can write

\[
I \leq \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} \frac{1}{j^2} \left(\sum_{l=1}^{i} \sum_{s=1}^{j} |f(I_l, J_s)| \right)^{1/2} \left(\sum_{l=1}^{i} \sum_{s=1}^{j} |f(I_l, J_s)| \right)^{1/2}
\]

(1.14) \leq 2 \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} \frac{\sqrt{ij}v_2(j, f) v_1(i, f)}{j^2} \leq \infty,

\[
II \leq \frac{1}{n} \sum_{j=1}^{m-1} \frac{1}{j^2} \left(\sum_{l=1}^{n} \sum_{s=1}^{j} |f(I_l, J_s)| \right)^{1/2} \left(\sum_{l=1}^{n} \sum_{s=1}^{j} |f(I_l, J_s)| \right)^{1/2}
\]

(1.15) \leq \frac{1}{n} \sum_{j=1}^{m-1} \frac{\sqrt{n}v_2(j, f)}{j^2}

\leq \frac{\sqrt{v_1(n, f)}}{\sqrt{n}} \sum_{j=1}^{\infty} \frac{\sqrt{v_2(j, f)}}{j^{3/2}} \leq c < \infty, n = 1, 2, ...

Analogously, we can prove that

(1.16)

\[III \leq c < \infty,\]

(1.17)

\[IV \leq 2 \sqrt{\frac{v_1(n, f) v_2(m, f)}{n m}} \leq c < \infty, n, m = 1, 2,....\]

Combining (1.11)-(1.17), we conclude that \(f \in HBV. \) Theorem 2 is proved.

2. CONVERGENCE OF TWO-DIMENSIONAL TRIGONOMETRIC FOURIER SERIES

Let \(f \in L^1(T^2), \ T^2 := [0, 2\pi]^2. \) The Fourier series of \(f \) with respect to the trigonometric system is the series

\[
S[f] := \sum_{m,n=-\infty}^{+\infty} \hat{f}(m,n) e^{imx}e^{iny},
\]

where

\[
\hat{f}(m,n) = \frac{1}{4\pi^2} \int_{0}^{2\pi} \int_{0}^{2\pi} f(x,y) e^{-imx}e^{-iny} dx dy
\]

are the Fourier coefficients of the function \(f. \) The rectangular partial sums are defined as follows:

\[
S_{M,N}[f(x,y)] := \sum_{m=-M}^{M} \sum_{n=-N}^{N} \hat{f}(m,n) e^{imx}e^{iny},
\]
In this paper we consider convergence of only rectangular partial sums (convergence in the sense of Pringsheim) of double Fourier series.

We denote by $C(T^2)$ the space of continuous functions which are 2π-periodic with respect to each variable with the norm
\[
\|f\|_C := \sup_{x,y \in T^2} |f(x,y)|.
\]

For the function f defined on T^2 we denote by $f(x \pm 0, y \pm 0)$ the open co-ordinate quadrant limits (if exist) at the point (x, y) and let $\frac{1}{4}\sum f(x \pm 0, y \pm 0)$ be the arithmetic mean
\[
(2.1) \quad \frac{1}{4}\{f(x + 0, y + 0) + f(x + 0, y - 0) + f(x - 0, y + 0) + f(x - 0, y - 0)\}.
\]

The well known Dirichlet-Jordan theorem (see [7]) states that the Fourier series of a function $f(x)$, $x \in T$ of bounded variation converges at every point x to the value \(\frac{f(x + 0) + f(x - 0)}{2} \). If f is in addition continuous on T the Fourier series converges uniformly on T.

Hardy [6] generalized the Dirichlet-Jordan theorem to the double Fourier series. He proved that if function $f(x, y)$ has bounded variation in the sense of Hardy ($f \in BV$), then $S[f]$ converges at any point (x, y) to the value $\frac{1}{4}\sum f(x \pm 0, y \pm 0)$. If f is in addition continuous on T^2 then $S[f]$ converges uniformly on T^2.

Theorem S (Sahakian [10]). The Fourier series of a function $f(x, y) \in HBV$ converges to $\frac{1}{4}\sum f(x \pm 0, y \pm 0)$ at any point (x, y), where the quadrant limits (2.1) exist. The convergence is uniformly on any compact K, where the function f is continuous.

Theorem S was proved in [10] under assumption that the function is continuous on some open set containing K while Sargsyan noticed in [11], that the continuity of f on the compact K is sufficient.

Analogs of Theorem S for higher dimensions can be found in [12] and [13]. Convergence of spherical and other partial sums of double Fourier series of functions of bounded Λ-variation was investigated in details by Dyachenko (see [14], [15] and references therein).

The first author [9] has proved that if f is continuous function and has bounded partial p-variation ($f \in PBV_p$) for some $p \in [1, +\infty)$ then $S[f]$ converges uniformly on T^2. Moreover, the following is true

Theorem G (Goginava [9]). Let $f \in C(T^2)$ and
\[
\sum_{n=1}^{\infty} \frac{\sqrt{v_j(n, f)}}{n^{3/2}} < \infty, \ j = 1, 2.
\]

Then $S[f]$ converges uniformly on T^2.

Theorems 1, 2, Corollary 2 and Theorem S imply
Theorem 3. Let \(f \in PAV \) with
\[
\sum_{j=1}^{\infty} \frac{\lambda_j}{j^2} < \infty, \quad \frac{\lambda_j}{j} \downarrow 0.
\]
Then \(S[f] \) converges to \(\sum f(x, y) \) in any point \((x, y)\), where the quadrant limits \((2.1)\) exist. The convergence is uniformly on any compact \(K \), where the function \(f \) is continuous.

Theorem 4. Let \(f \in B \) and
\[
\sum_{n=1}^{\infty} \sqrt{v_j(n, f)} \frac{1}{n^{3/2}} < \infty, \quad j = 1, 2.
\]
Then \(S[f] \) converges to \(\frac{1}{4} \sum f(x \pm 0, y \pm 0) \) in any point \((x, y)\), where the quadrant limits \((2.1)\) exist. The convergence is uniformly on any compact \(K \), where the function \(f \) is continuous.

Corollary 3. Let \(f \in B \) and \(v_1(k, f) = O(k^\alpha), v_2(k, f) = O(k^\beta), 0 < \alpha, \beta < 1 \). Then \(S[f] \) converges to \(\frac{1}{4} \sum f(x \pm 0, y \pm 0) \) in any point \((x, y)\), where the quadrant limits \((2.1)\) exist. The convergence is uniformly on any compact \(K \), where the function \(f \) is continuous.

Theorem 5. Let \(f \in PBV_p, p \geq 1 \). Then \(S[f] \) converges to \(\frac{1}{4} \sum f(x \pm 0, y \pm 0) \) in any point \((x, y)\), where the quadrant limits in \((2.1)\) exist. The convergence is uniformly on any compact \(K \), where the function \(f \) is continuous.

From Theorem 3 follows that for any \(\delta > 0 \) the Fourier series of the function \(f \in P\{n \log n\} BV \) converges to \(\frac{1}{4} \sum f(x \pm 0, y \pm 0) \) in any point \((x, y)\), where the quadrant limits \((2.1)\) exist. Moreover, one can not take here \(\delta = 0 \) (see Theorem 6). It is interesting to compare this result with that obtained by M. Dyachenko and D. Waterman in [16].

Dyachenko and Waterman [16] introduced another class of functions of generalized bounded variation. Denoting by \(\Gamma \) the set of finite collections of nonoverlapping rectangles \(A_k := [\alpha_k, \beta_k] \times [\gamma_k, \delta_k] \subset T^2 \) we define
\[
\Lambda^*V(f) := \sup_{\{A_k\} \in \Gamma} \sum_k \frac{|f(A_k)|}{\lambda_k}.
\]

Definition 4 (Dyachenko, Waterman). Let \(f \) be a real function on \(T^2 := [0, 2\pi] \times [0, 2\pi] \). We say that \(f \in \Lambda^*BV \) if
\[
\Lambda V(f) := \Lambda V_1(f) + \Lambda V_2(f) + \Lambda^*V(f) < \infty.
\]

Theorem DW ([16]). If \(f \in \left\{ \frac{n}{\log n} \right\}^* BV \), then in any point \((x, y)\) the quadrant limits \((2.1)\) exist and the double Fourier series of \(f \) converges to \(\frac{1}{4} \sum f(x \pm 0, y \pm 0) \).

Moreover, the sequence \(\left\{ \frac{n}{\log n} \right\} \) can not be replaced with any sequence \(\left\{ \frac{\alpha_n}{\log n} \right\} \), where \(\alpha_n \to \infty \).
It is easy to show (see [16]), that \(\left\{ \frac{n}{\log n} \right\}^* BV \subset HBV \), hence the convergence part of Theorem DW follows from Theorem S. It is essential that the condition \(f \in \left\{ \frac{n}{\log n} \right\}^* BV \) guarantees the existence of quadrant limits.

The next theorem in particular shows that in Theorem S the condition \(HV_{1,2}(f) < \infty \) is necessary, i.e the boundedness of partial harmonic variation is not sufficient for the convergence of Fourier series of continuous function.

Theorem 6. Let \(\Lambda = \{ \lambda_n = n\gamma_n \} \) where \(\gamma_n \) is a decreasing sequence satisfying (1.3) and (1.4). Then there exists a continuous function \(f \in \text{P} \Lambda BV \) with Fourier series that diverges at \((0,0)\).

We need the following simple lemma that easily follows from Lemma 1.

Lemma 2. Let the function \(g(t) \) be defined on \(T \) and

\[0 = t_1 < t_2 < \ldots < t_{2m} = 2\pi. \]

Suppose \(g \) is increasing on \([t_i, t_{i+1}]\) if \(i \) is odd and is decreasing, if \(i \) is even.

If

\[|g(t_{i+1}) - g(t_i)| > |g(t_{i+2}) - g(t_{i+1})|, \quad i = 1, 2, \ldots, 2m - 2, \]

then

\[\lambda BV(g) = \sum_{i=1}^{2m-1} \frac{|g(t_{i+1}) - g(t_i)|}{\lambda_i}, \]

for any sequence \(\Lambda = \{ \lambda_n \} \) satisfying (1.7).

Proof of Theorem 6. It is not hard to see, that for any sequence \(\Lambda = \{ \lambda_n \} \) satisfying (1.1) the class \(C(T^2) \cap \text{P} \Lambda BV \) is a Banach space with the norm \(\|f\|_{\text{P} \Lambda BV} := \|f\|_C + \lambda BV(f) \).

Let \(\Lambda = \{ \lambda_n \} \) be as in Theorem 6 and denote

\[A_{i,j} = \left[\frac{\pi i}{N + 1/2}, \frac{\pi (i+1)}{N + 1/2} \right) \times \left[\frac{\pi j}{N + 1/2}, \frac{\pi (j+1)}{N + 1/2} \right). \]

Define \(t_j \) and \(m_j \) as in (1.5) and consider the function

\[f_N(x,y) = \sum_{(i,j) \in W} t_j \chi_{A_{i,j}}(x,y) \sin \left(N + \frac{1}{2} \right) x \cdot \sin \left(N + \frac{1}{2} \right) y, \]

where \(\chi_A(x,y) \) is the characteristic function of the set \(A \subset T^2 \) and

\[W := \{(i,j) : j < i < j + m_j, \quad 1 \leq j < N_\delta \}, \quad N_\delta = \left(\frac{N}{2} \right)^{1+\delta}. \]

Each summand in the sum (2.2) is continuous on the rectangle \(A_{i,j} \) and vanishes on its boundary, hence \(f_N \in C(T^2) \).

Next, in view of Lemma 2, using the same arguments as in the proof of (1.7) and (1.8), we get

\[AV_1(f_N) \leq 1, \quad AV_2(f_N) \leq 1. \]
Hence $f_N \in \text{PABV}$ and

\begin{equation}
\|f_N\|_{\text{PABV}} \leq 3, \quad N = 1, 2, \ldots
\end{equation}

Observe that $N_\delta < N$ and $j + m_j < N$, if $j < N_\delta$, hence $A_{i,j} \subset T^2$, if $(i,j) \in W$. Taking into account (1.5) and (1.9), for the square partial sum of the Fourier series of f_N at $(0,0)$ we get

\begin{align}
\pi \cdot S_{N,N}[f_N,(0,0)] &= \int_{T^2} f_N(x,y)D_N(x)D_N(y)dxdy \\
&= \sum_{(i,j) \in W} t_j \int_{A_{i,j}} \sin^2 \left(N + \frac{1}{2} \right) x \cdot \sin^2 \left(N + \frac{1}{2} \right) y \frac{dx \cdot dy}{4\sin^2 \frac{x}{2} \sin^2 \frac{y}{2}} \\
&\geq c \sum_{j=1}^{N_\delta} t_j \sum_{j=m_j+1}^{N_\delta} \frac{1}{j} \geq c \sum_{j=1}^{N_\delta} t_j \log(j + m_j) \geq c \sum_{j=1}^{N_\delta} \frac{\gamma_j}{j} \to \infty.
\end{align}

as $N \to \infty$, where c is an absolute constant.

Applying the Banach-Steinhaus Theorem, from (2.3) and (2.4) we obtain that there exists a continuous function $f \in \text{PABV}$ such that

$$\sup_N |S_{N,N}[f,(0,0)]| = \infty.$$
[13] Bakhvalov, A. N. Continuity in Λ-variation of functions of several variables and the convergence of multiple Fourier series (Russian). *Mat. Sb.* 193, 12(2002), 3–20; English transl. in *Sb. Math.* 193, 11-12(2002), no. 11-12, 1731–1748.

[14] Dyachenko M. I, Waterman classes and spherical partial sums of double Fourier series, *Anal. Math.* 21(1995), 3-21

[15] Dyachenko M. I, Two-dimensional Waterman classes and u-convergence of Fourier series (Russian). *Mat. Sb.* 190, 7(1999), 23–40; English transl. in *Sb. Math.* 190, 7-8(1999), 955–972.

[16] Dyachenko M. I.; Waterman D., Convergence of double Fourier series and W-classes, *Trans. Amer. Math. Soc.* 357 (2005), 397-407.