C-Reactive protein role in assessing COVID-19 deceased geriatrics and survivors of severe and critical illness

Wassan Nori

Specialty type: Biochemical research methods

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification

Grade A (Excellent): A
Grade B (Very good): 0
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Ozden F, Turkey; Rama N, Portugal

Received: September 12, 2022
Peer-review started: September 12, 2022
First decision: September 26, 2022
Revised: September 26, 2022
Accepted: September 29, 2022
Article in press: September 29, 2022
Published online: October 26, 2022

Abstract

Numerous risk variables, including age, medical co-morbidities, and deranged inflammatory response, lead to higher mortality in a senior population with coronavirus disease 2019. C-reactive protein (CRP), an acute phase inflammatory protein secreted by the liver, was tested in the elderly, showing a diagnostic and prognostic role. However, recent research has shed light on new applications for CRP in geriatrics. It was used as a follow-up marker and as a therapeutic target. Early and accurate identification of patients’ risks may mitigate the devastation of the invading virus in older cases and permit the implementation of a quick treatment plan for those most likely to deteriorate.

Key Words: COVID-19; Geriatrics; Deceased; Severe infection; C-reactive protein; Age

Core Tip: Elderly patients suffer higher morbidity and mortality rates. The elderly are a high-risk group due to their deranged immune responses, associated medical illnesses, and poor responses to supportive treatment. C-Reactive protein (CRP) is an inflammatory marker used in the investigation panel of coronavirus disease 2019. CRP distinguished severe infections and predicted deleterious outcomes. Increased levels were reported in the deceased, critically ill, and elderly with respiratory failure underlying exaggerated inflammatory response and overactive cytokines production. Recent studies have discussed a therapeutic avenue for the elderly. CRP may help guide clinical decisions and patient follow-up, ultimately improving outcomes.
TO THE EDITOR

With interest, we read Wang et al’s study published in World J Clin Cases 2022, which discussed differences in lab biomarkers and patient risk factors linked to fatal outcomes in elderly patients following the acquisition of coronavirus disease 2019 (COVID-19)[1]. Advanced life expectancy and improved medical services have increased the number of geriatrics in the community, who represent a critical vulnerable group for COVID-19[2].

Geriatric vulnerability to severe COVID-19 can be attributed to aging, which renders immunity in more than one way. Aging increases inflammatory responses to pathogens and reduces the efficacy of suppressing infections. A positive correlation was confirmed between older ages and increased mortality rates (MR); sixty-year-old patients had mortality rates of 4.5% vs 1.4% for patients under sixty years[3,4]. Recinella et al[5] study declared a one-and-a-half-fold increase in MR for every five years of a patient’s age. In addition, many geriatrics suffer from chronic illnesses such as diabetes and hypertension, making them more likely to have severe COVID-19[6]. Finally, many COVID-19 treatment approaches have been less effective in older patients[7]. Understanding indicators for ominous COVID-19 in the elderly is vital for an optimum and quick treatment strategy.

C-reactive protein (CRP) is a hepatic protein produced in response to inflammation. It defends the body against injury or infection by activating the immune system. CRP serum levels were linked to respiratory functions and were used to predict respiratory failure. It was widely used in the COVID-19 investigation panels[8].

CRP showed a meaningful high level in COVID-19 cases; a more significant rise was reported in severe forms of the infection, which served as a marker of severe infection[9]. In cases with a rapidly progressive course, cases that suffered from significant lung damage; and cases that ended in patient death, a CRP > 100 mg/L was reported; thus, CRP was used as a prognostic marker to predict aggravating of current infection and worse prognosis[9].

The Wang et al[1] study demonstrated a strong significant correlation between CRP in the sera of geriatric patients (r = 0.67; P = 0.023) and the fatality rates among cases, which was consistent with previous studies[3,10].

Inflammatory cytokine overproduction contributes to higher levels of CRP among severe COVID-19 cases. Overactive cytokines can damage lung tissue, increasing CRP levels even more[9].

What is new about CRP in geriatrics is that its levels were used to follow recovered patients post-COVID-19. Interestingly, higher CRP values were associated with higher scores in High-Resolution Computed Tomography, which implies the benefit of CRP as a follow-up biomarker in tracking complete recovery in older patients[11].

Many agreed that serum CRP increased dramatically in the progressing COVID-19 infection, and its concentration is positively associated with poor outcomes[8,9]. Esposito et al[12] used selective CRP apheresis to quickly and effectively reduce CRP among cases with severe COVID-19 complicated with respiratory failure and 100 mg/L. The mean age of those cases was 62 years old, and all had medical co-morbidities. Those patients had multiple sessions of apheresis based on the severity of their CRP levels. The mortality rates were 14 percent, and the rest had a reduced CRP that exceeded 83 percent of the initial reading with a negligible side effect.

A comparable improvement was noticed in the radiological exam flowing apheresis, and the cases were discharged well. Esposito et al[12] recommended targeting CRP as a therapeutic approach in severe COVID-19 cases.

CRP is a rapid, low-cost, reproducible inflammatory biomarker that has been proven valuable in other vulnerable groups[8,9,13], including pregnant women and newborns, with good diagnostic potential in categorizing patients’ risk added to its prognostic value[14,15].

CONCLUSION

CRP assessed infection severity, predicted progressive course, and mortality rates in the geriatric group. Furthermore, it served as a follow-up biomarker in the recovery period and showed optimistic results for severe cases, which opened the door to more therapeutic avenues in practice.
ACKNOWLEDGEMENTS

To our beloved university, Mustansiriyah, for continuous support.

FOOTNOTES

Author contributions: Nori W designed research and reviewed data; wrote and revised the letter; the author has read and agreed on the final version of the manuscript.

Conflict-of-interest statement: All the author declares; that we have no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Iraq

ORCID number: Wassan Nori 0000-0002-8749-2444.

S-Editor: Liu JH
L-Editor: A
P-Editor: Liu JH

REFERENCES

1. Wang L, Gao Y, Zhang ZJ, Pan CK, Wang Y, Zhu YC, Qi YP, Xie FJ, Du X, Li NN, Chen PF, Yue CS, Wu JH, Wang XT, Tang YJ, Lai QQ, Kang K. Comparison of demographic features and laboratory parameters between COVID-19 deceased patients and surviving severe and critically ill cases. World J Clin Cases 2022; 10(23): 8161-8169. [PMID: 36159523] DOI: 10.12998/wjcc.v10.i23.8161

2. Amatriain-Fernández S, Gronwald T, Murilo-Rodriguez E, Imperatori C, Solano AF, Latini A, Budde H. Physical Exercise Potentials Against Viral Diseases Like COVID-19 in the Elderly. Front Med (Lausanne) 2020; 7: 379 [PMID: 32714938] DOI: 10.3389/fmed.2020.00379

3. Mehraeen E, Karimi A, Barzegary A, Vahefi F, Afsahi AM, Dadras O, Moradmand-Badie B, Seyed Alinaghi SA, Jahansari S. Predictors of mortality in patients with COVID-19-a systematic review. Eur J Integr Med 2020; 40: 101226 [PMID: 33101547] DOI: 10.1016/j.eujim.2020.10.022

4. Dadras O, Seyed Alinaghi S, Karimi A, Shamshadabi A, Qaderi K, Ramezani M, Mirghaderi SP, Mahdiabadi S, Vahefi F, Saedti S, Shahvajei A, Mehrzad M, Azar SA, Mehraeen E, Voltarelli FA. COVID-19 mortality and its predictors in the elderly: A systematic review. Health Sci Rep 2022; 5: 6577 [PMID: 36820541] DOI: 10.1007/s40520-020-01727-5

5. Recinella G, Marasco G, Serafini G, Maestri L, Bianchi L, Bianchi G, Forti F, Zoli M. Prognostic role of nutritional status in elderly patients hospitalized for COVID-19: a monocentric study. Aging Clin Exp Res 2020; 32: 2695-2701 [PMID: 33034016] DOI: 10.1007/s40520-020-01727-5

6. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, Thompson H, Walker PGT, Fu H, Dighe A, Griffin JT, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunubá Z, FitzJohn R, Gaythorpe K, Green W, Hamlet A, Hawkins L, Laydon D, Nedjati-Gilani G, Riley S, van Elsland S, Volz E, Wang H, Wang Y, Xi X, Donnelly CA, Ghani AC, Ferguson NM. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020; 20: 669-677 [PMID: 32240634] DOI: 10.1016/S1473-3099(20)30243-7

7. Seyed Alinaghi S, Mirzapour P, Dadras O, Pashaeei Z, Karimi A, MohsseniPour M, Soleymanzadeh M, Barzegary A, Afsahi AM, Vahefi F, Shamshadabi A, Behnezhad F, Saedti S, Mehrzein E, Shayesteh Jahanfar. Characterization of SARS-CoV-2 different variants and related morbidity and mortality: a systematic review. Eur J Med Res 2021; 26: 51 [PMID: 34103090] DOI: 10.1186/s40001-021-00524-8

8. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol 2018; 9: 754 [PMID: 29706967] DOI: 10.3389/fimmu.2018.00754

9. Ali N. Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J Med Virol 2020; 92: 2409-2411 [PMID: 32516845] DOI: 10.1002/jmv.26097

10. Hwang J, Ryu HS, Kim HA, Hyun M, Lee JY, Yi HA. Prognostic Factors of COVID-19 Infection in Elderly Patients: A Multicenter Study. J Clin Case 2020 [PMID: 32291617] DOI: 10.3390/jcc.92123932

11. Das S, Verma S. Study of C reactive protein (HS-CRP) in post-COVID-19 geriatric patients. Respirology 2021; 26: 192-192 [DOI: 10.1111/resp.1450_295]

12. Esposito F, Matthes H, Schad F. Seven COVID-19 Patients Treated with C-Reactive Protein (CRP) Apheresis. J Clin Med 2022; 11 [PMID: 35407564] DOI: 10.3390/jcm1107855

13. Al-Ani RM. Ear, nose, and throat manifestations of COVID-19 and its vaccines. World J Clin Cases 2022; 10: 8808-8815 [PMID: 36157654] DOI: 10.12998/wjcc.v10.i25.8808
14 **Farhan FS**, Nori W, Al Kadir ITA, Hameed BH. Can Fetal Heart Lie? *J Obstet Gynaecol India* 2022; 1-6 [PMID: 35634476 DOI: 10.1007/s13224-022-01663-6]

15 **Akram NN**, Nori W, Al Qaissi KW, Abdulrahman Hadi BA. Multi-systemic inflammatory syndrome in childhood (MIS-C): A review article. *J Pak Med Assoc* 2021; 71(Suppl 9): S70-S73 [PMID: 35130265]
