Fluvial carbon dioxide emission from the Lena River basin during spring flood

Sergey N. Vorobyev1, Jan Karlsson2, Yuri Y. Kolesnichenko1, Mikhail A. Korets3, and Oleg S. Pokrovsky4,5*

1BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
2Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden.
3V.N. Sukachev Institute of Forest of the Siberian Branch of Russian Academy of Sciences – separated department of the KSC SB RAS, Krasnoyarsk, 660036, Russia
4Geosciences and Environment Toulouse, UMR 5563 CNRS, 14 Avenue Edouard Belin 31400 Toulouse, France
5N. Laverov Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk, Russia

Key words: CO₂, C, emission, permafrost, river, export, landscape, Siberia

* email: oleg.pokrovsky@get.omp.eu

Abstract

Greenhouse gas (GHG) emission from inland waters of permafrost-affected regions is one of the key factors of circumpolar aquatic ecosystem response to climate warming and permafrost thaw. Riverine systems of central and eastern Siberia contribute a significant part of the water and carbon (C) export to the Arctic Ocean, yet their C exchange with the atmosphere remain poorly known due to lack of in-situ GHG concentration and emission estimates. Here we present the results of continuous in-situ pCO₂ measurements over a 2600-km transect of the Lena River main stem and lower reaches of 20 major tributaries (together representing watershed area of 1,661,000 km², 66% of the Lena’s basin), conducted at the peak of the spring flood. The pCO₂ in Lena (range 400-1400 µatm) and tributaries (range 400-1600 µatm) remained generally stable (within ca. 20 %) over the night/day period and across the river channels.
The pCO$_2$ in tributaries increased northward with mean annual temperature decrease and permafrost increase; this change was positively correlated with C stock in soil, the proportion of deciduous needle-leaf forest and the riparian vegetation. Based on gas transfer coefficients obtained from rivers of the Siberian permafrost zone ($k = 4.46$ m d$^{-1}$), we calculated CO$_2$ emission for the main stem and tributaries. Typical fluxes ranged from 1 to 2 g C m$^{-2}$ d$^{-1}$ (>99% CO$_2$, < 1 % CH$_4$) which is comparable with CO$_2$ emission measured in Kolyma, Yukon and Mackenzie and permafrost-affected rivers in western Siberia. The areal C emissions from lotic waters of the Lena watershed were quantified via taking into account the total area of permanent and seasonal water of the Lena basin (28,000 km2). Assuming 6 months of the year to be open water period with no emission under ice, the annual C emission from the whole Lena basin is estimated as 8.3 ± 2.5 Tg C y$^{-1}$ which is comparable to the DOC and DIC lateral export to the Arctic Ocean.

Introduction

Climate warming in high latitudes is anticipated to result in mobilization, decomposition and atmospheric release of significant amounts of carbon (C) stored in permafrost soils, providing a positive feedback (Schuur et al. 2015). Permafrost thawing is expected to also increase the lateral C export to rivers and lakes (Frey and Smith, 2005). The exported permafrost C is relatively labile and largely degraded to greenhouse gases (GHG) in recipient freshwaters (e.g. Vonk et al., 2015). As a result, assessment of GHG emission in rivers of permafrost affected regions is crucially important for understanding the high latitude C cycle under various climate change scenarios (Chadburn et al., 2017; Vonk et al., 2019). Among six great Arctic rivers, Lena is most emblematic one, situated chiefly within the continuous permafrost zone and exhibiting the highest seasonal variation in discharge. Over the past two decades, there has been an explosive interest to the Lena River hydrology (Yang et al., 2002; Berezovskaya et al., 2005; Smith and Pavelsky, 2008; Ye et al., 2009; Gelfan et al., 2017; Suzuki et al., 2018), organic C (OC) transport (Lara et al., 1998; Raymond et al., 2007; Semiletov et al., 2011; Goncalves-Araujo et al., 2015; Kutscher et al., 2017; Griffin et al., 2018) and general hydrochemistry.
including novel isotopic approaches for nutrients (Si, Sun et al., 2018) and trace metals such as Li (Murphy et al., 2019) and Fe (Hirst et al., 2020). This interest is naturally linked to the Lena River location within the forested continuous permafrost/taiga zone covered by organic-rich yedoma soil. Under on-going climate warming, the soils of the Lena River watershed are subjected to strong thawing and active (seasonally unfrozen) layer deepening (Zhang et al., 2005) accompanied by overall increase in river water discharge (McClelland et al., 2004; Ahmed et al., 2020), flood intensity and frequency (Gautier et al., 2018). The Lena River exhibits the highest DOC concentration among all great Arctic rivers (i.e., Holmes et al., 2013) which may reflect weak DOC degradation in the water column and massive mobilization of both contemporary and ancient OC to the river from the watershed (Feng et al., 2013; Wild et al., 2019). In contrast to rather limited works on CO$_2$ and CH$_4$ emissions from water surfaces of Eastern Siberia (Semiletov, 1999; Denfeld et al., 2013), extensive studies were performed on land, in the polygonal tundra of the Lena River Delta (Wille et al., 2008; Bussman, 2013; Sachs et al., 2008; Kutzbach et al., 2007) and the Indigirka Lowland (van der Molen et al., 2007). Finally, there have been several studies of sediment and particular matter transport by the Lena River to the Laptev Sea (Rachold et al., 1996; Dudarev et al., 2006) together with detailed research of the Lena River Delta (Zubrzycki et al., 2013; Siewert et al., 2016).

Surprisingly, despite such extensive research on C transport, storage, and emission in Eastern Siberian landscapes, C emissions of the Lena River main stem and tributaries remain virtually unknown, compared to a relatively good understanding of those in the Yukon (Striegl et al., 2012; Stackpoole et al., 2017), Mackenzie (Horan et al., 2019), Ob (Karlsson et al., 2021; Pipko et al., 2019) and Kolyma (Denfeld et al., 2013). The only available estimates of C emission from inland waters of the Lena basin are based on few indirect (calculated gas concentration and modelled fluxes) snapshot data with very low spatial and temporal resolution (Raymond et al., 2013). Similar to other regions, this introduces uncertainties and cannot adequately capture total regional C emissions (Abril et al., 2015; Denfeld et al., 2018; Park et al., 2018; Klaus et al., 2019; Klaus and Vachon, 2020; Karlsson et al., 2021). In particular,
no detailed studies at the peak of spring flood have been performed and the information on various contrasting tributaries of the Lena River remains very limited. As a result, reliable estimations of magnitude and controlling factors of C emission in the Lena River basin are poorly understood. The present work represents a first assessment of CO₂ and CH₄ concentration and fluxes of the main stem and tributaries during the peak of spring flow, via calculating C emission and relating these data to river hydrochemistry and GIS-based landscape parameters. This should allow identifying environmental factors controlling GHG concentration and emission in the Lena River watershed in order to use this knowledge to foresee future changes in C balance of the largest permafrost-affected Arctic river.

2. Study Site, Materials and Methods

2.1. Lena River and its tributaries

The sampled Lena River main stem and 20 tributaries are located along a 2600 km latitudinal transect SW to NE and include watersheds of distinct sizes, geomorphology, permafrost extent, lithology, climate and vegetation (Fig. 1, S1 A; Table S1). The total watershed area of the rivers sampled in this work is approximately 1.66 million km², representing 66% of the entire Lena River basin. Permafrost is mostly continuous except some patches of discontinuous and sporadic in the southern part of the Lena basin (Brown et al., 2002). The mean annual air temperatures (MAAT) along the transect ranges from -5 °C in the southern part of the Lena basin to -9 °C in the central part of the basin. The range of MAAT for 20 tributaries is from -4.7 to -15.9 °C. The mean annual precipitation ranges from 350-500 mm y⁻¹ in the southern and south-western part of the basin to 200-250 mm y⁻¹ in the central and northern parts (Chevychelov and Bosikov, 2010). The lithology of the Siberian platform which is drained by the Lena River is highly diverse and includes Archean and Proterozoic crystalline and metamorphic rocks, Upper Proterozoic, Cambrian and Ordovician dolostones and limestones, volcanic rocks of Permo-Triassic age and essentially terrigenous silicate sedimentary rocks of the Phanerozoic. Further description of the Lena River basin landscapes, vegetation and lithology can be found elsewhere (Rachold et al., 1996; Huh et al., 1999a, b; Pipko et al., 2010; Semiletov et al., 2011; Kutscher et al., 2017; Juhls et al., 2020).
The peak of annual discharge depends on the latitude (Fig. 1) and occurs in May in the south (Ust-Kut) and in June in the middle and low reaches of the Lena River (Yakutsk, Kysyr). From May 29 to June 17, 2016, we moved downstream the Lena River by boat with an average speed of 30 km h\(^{-1}\) (Gureyev, 2016). As such, we followed the progression of the spring and moved from the southwest to the northeast, thus collecting river water at approximately the same stage of maximal discharge. Note that transect sampling is a common way to assess river water chemistry in extreme environments (Huh and Edmond, 1999; Spence and Telmer, 2005), and generally, a single sampling during high flow season provides the best agreement with time-series estimates (Qin et al., 2006). Regular stops each 80-100 km along the Lena River allowed sampling for major hydrochemical parameters and CH\(_4\) along the main stem. We also moved 500-1500 m upstream of selected tributaries to record CO\(_2\) concentrations for at least 1 h and to sample for river hydrochemistry; see examples of spatial coverage in Fig. S1 B. From late afternoon/evening to the next morning, we stopped for sleep but continued to record pCO\(_2\) in the Lena River main stem (15 sites, evenly distributed over the full 2600 km transect) and two tributaries (Aldan and Tuolba).

2.2. CO\(_2\) and CH\(_4\) concentrations

Surface water CO\(_2\) concentration was measured continuously, in-situ by deploying a portable infrared gas analyzer (IRGA, GMT222 CARBOCAP® probe, Vaisala®; accuracy ± 1.5%) of two ranges (2 000 and 10 000 ppm). This system was mounted on a small boat in a perforated steel pipe ~0.5 m below water surface. The tube had two necessary opening of different diameter, which allowed free water flow with a constant rate during the moving of the boat. The probe was enclosed within a waterproof and gas-permeable membrane. The key to aqueous deployment of the IRGA sensor is the use of a protective expanded polytetrafluoroethylene (PTFE) tube or sleeve that is highly permeable to CO\(_2\) but impermeable to water (Johnson et al., 2009). The material is available for purchase as a flexible tube that fits over the IRGA sensor (Product number 200-07; International Polymer Engineering, Tempe, Arizona, USA). We also used a copper mesh screen to minimize biofouling effects (i.e., Yoon et al., 2016). However these effects are expected to be low in cold waters of the virtually pristine Lena River and its
tributaries. During sampling, the sensor was left to equilibrate in the water for 10 minutes before measurements were recorded.

The probe was enclosed and placed into a tube which was submerged 0.5 m below the water surface. Within this tube, we designed a special chamber that allowed low-turbulent water flow around the probe without gas bubbles. Previous studies (Park et al., 2021; Crawford et al. 2015; Yoon et al., 2016) reported some effects of boat speed on sensor CO₂ measurements due to turbulences. Although the turbulences were minimized in the tube/chamber design used in the present study, on a selected river transect (~10 km) we have also tested the impact of the boat speed (5, 10, 20, 30 and 40 km h⁻¹) on the sensor performance and have not detected any sizable (> 10%, p < 0.05, n = 25) difference in the CO₂ concentrations recorded by our system.

A Campbell logger was connected to the system allowing continuous recording of the CO₂ concentration (ppm), water temperature (°C) and pressure (mbar) every minute during 5 minutes over 10 minute intervals yielding 4,285 individual pCO₂, water temperature and pressure measurements in total. These data were averaged for 3 consecutive slots of 5 min measurements, which represented the approximate 20-km interval of the main stem route. CO₂ concentrations in the Lena River tributaries were measured over the first 500-2000 m distance upstream of the tributary mouth, and comprised between 5 and 34 measurements for day-time visits and between 305 and 323 individual pCO₂ readings for each tributary for day-time and night-time monitoring.

Sensor preparation was conducted in the lab following the method described by Johnson et al. (2009). The measurement unit (MI70, Vaisala®; accuracy ± 0.2%) was connected to the sensor allowing instantaneous readings of pCO₂. The sensors were calibrated in the lab against standard gas mixtures (0, 800, 3 000, 8 000 ppm; linear regression with R² > 0.99) before and after the field campaign. The sensors’ drift was 0.03-0.06% per day and overall error was 4-8% (relative standard deviation, RSD). Following calibration, post-measurement correction of the sensor output induced by changes in water temperature and barometric pressure was done by applying empirically derived coefficients following Johnson et al. (2009). These corrections never exceeded 5% of the measured values. Furthermore, we tested two different sensors in several sites of the river transect: a main probe used for continuous measurements
and another probe used as a control and never employed for continuous measurements. We did not find any sizable (>10%) difference in measured CO$_2$ concentration between these two probes.

For CH$_4$ analyses, unfiltered water was sampled in 60-mL Serum bottles and closed without air bubbles using vinyl stoppers and aluminum caps and immediately poisoned by adding 0.2 mL of saturated HgCl$_2$ via a two-way needle system. In the laboratory, a headspace was created by displacing approx. 40% of water with N$_2$ (99.999%). Two 0.5-mL replicates of the equilibrated headspace were analyzed for their concentrations of CH$_4$, using a Bruker GC-456 gas chromatograph (GC) equipped with flame ionization and thermal conductivity detectors. After every 10 samples, a calibration of the detectors was performed using Air Liquid gas standards (i.e. 145 ppmv). Duplicate injection of the samples showed that results were reproducible within ±5%. The specific gas solubility for CH$_4$ (Yamamoto et al., 1976) was used in calculation of total CH$_4$ content in the vials and then recalculated to μmol L$^{-1}$ of the initial waters.

2.3. Chemical analyses of the river water

The dissolved oxygen (CellOx 325; accuracy of ±5%), specific conductivity (TetraCon 325; ±1.5%), and water temperature (±0.2 °C) were measured in-situ at 20 cm depth using a WTW 3320 Multimeter. The pH was measured using portable Hanna instrument via combined Schott glass electrode calibrated with NIST buffer solutions (4.01, 6.86 and 9.18 at 25°C), with an uncertainty of 0.01 pH units. The temperature of buffer solutions was within ± 5°C of that of the river water. The water was sampled in pre-cleaned polypropylene bottle from 20-30 cm depth in the middle of the river and immediately filtered through disposable single-use sterile Sartorius filter units (0.45 μm pore size). The first 50 mL of filtrate was discarded. The DOC and Dissolved Inorganic Carbon (DIC) were determined by a Shimadzu TOC-VSCN Analyzer (Kyoto, Japan) with an uncertainty of 3% and a detection limit of 0.1 mg/L. Blanks of MilliQ water passed through the filters demonstrated negligible release of DOC from the filter material.
2.4. Flux calculation

CO$_2$ flux (F_{CO_2}) was calculated following Cai and Wang (1998):

$$F_{CO_2} = K_h \ k_{CO_2} \ (C_{water} - C_{air}),$$

(1)

where K_h is the Henry’s constant corrected for temperature and pressure (mol L$^{-1}$ atm$^{-1}$), k_{CO_2} is the gas exchange velocity at a given temperature, C_{water} is the water CO$_2$ concentration, and C_{air} is the CO$_2$ concentration in the ambient air. In order to convert CO$_2$ concentration in water and air into CO$_2$ partial pressure, we followed Wanninkhof et al. (1992) and Lauerwald et al. (2015). We used the average CO$_2$ concentrations of 402 ppm in May-June 2016 (from 129 stations all over the world, https://community.wmo.int/wmo-greenhouse-gas-bulletins), which is consistent with the value recorded at the nearest Tiksi station in 2016 (404±0.9 ppm, Ivakhov et al., 2019). Temperature-specific solubility coefficients were used to calculate respective CO$_2$ concentrations in the water following Wanninkhof et al. (1992). To standardize k_{CO_2} to a Schmidt number of 600, we used the following equation (Alin et al., 2011; Vachon et al., 2010):

$$k_{600} = k_{CO_2} \left(\frac{600}{Sc_{CO_2}} \right)^{-n}$$

(2)

where Sc_{CO_2} is CO$_2$ Schmidt number for a given temperature (t, °C) in the freshwater (Wanninkhof, 1992):

$$Sc_{CO_2} = 19.11.1 - 118.11t + 3.4527t^2 - 0.041320t^3$$

(3)

The exponent n (Eqn. 2) is a coefficient that describes water surface (2/3 for a smooth water surface regime while 1/2 for a rippled and a turbulent one), and the Schmidt number for 20°C in freshwater is 600. We used $n = 2/3$ because all water surfaces of sampled rivers were considered flat and had a laminar flow (Alin et al., 2011; Jähne et al., 1987) with wind speed always below 3.7 m s$^{-1}$ (Guérin et al., 2007).

In this study, we used a k_{CO_2} (a median gas transfer coefficient) value of 4.464 m d$^{-1}$ measured in the 4 largest rivers of Western Siberia Lowland (WSL) in June 2015 (Ob’, Pur, Pyakupur and Taz rivers, Karlsson et al., 2021). These rivers are similar to Lena and its tributaries in size, but exhibit lower velocity than those of the Lena River. In fact, due to more mountainous relief, the Lena River main stem and tributaries present much higher turbulence than that of the Ob River and tributaries and as such the value
used in this study can be considered rather conservative. This value is consistent with the k_{CO_2} reported for the Kolyma River and its large tributaries (3.9 ± 2.5 m d$^{-1}$, Denfeld et al., 2013), tributaries and main stem of the Yukon river basin (4.9 - 7.6 m d$^{-1}$, Striegl et al. 2012), large rivers in the Amazon and Mekong basins (3.5 ± 2.1 m d$^{-1}$, Alin et al., 2011) and with modelling results of k for large rivers across the world (3 - 4 m d$^{-1}$, Raymond et al., 2013). Note that decreasing the k to most conservative value of 3 m d$^{-1}$ of Raymond et al. (2013) will decrease specific emissions by ca. 30%.

Instantaneous diffusive CH$_4$ fluxes were calculated using an equation similar to 1 with k from western Siberia rivers (Serikova et al., 2018), concentrations of dissolved CH$_4$ in the water and air–water equilibrium pCH$_4$ concentration of 1.8 ppm, and mean annual pCH$_4$ concentration in the air for 2016 (Mauna Loa Observatory ftp://aftp.cmdl.noaa.gov/products/trends/ch4/ch4_annmean_gl.txt) following standard procedures (Serikova et al., 2018, 2019).

2.5. Landscape parameters and water surface area of the Lena basin

The physio-geographical characteristics of the 20 Lena tributaries sampled in this study and the two points of the Lena main stem (upstream and downstream r. Aldan, Table S1) were determined by applying available digital elevation model (DEM GMTED2010), soil, vegetation, lithological, and geocryological maps. The landscape parameters were typified using TerraNorte Database of Land Cover of Russia (Bartalev et al., 2020, http://terranorte.iki.rssi.ru). This included various type of forest (evergreen, deciduous, needleleaf/broadleaf), grassland, tundra, wetlands, water bodies and other area. The climate and permafrost parameters of the watershed were obtained from CRU grids data (1950-2016) (Harris et al., 2014) and NCSCD data (doi:10.5879/ecds/00000001, Hugelius et al., 2013), respectively, whereas the biomass and soil OC content were obtained from BIOMASAR2 (Santoro et al., 2010) and NCSCD databases. The lithology layer was taken from GIS version of Geological map of the Russian Federation (scale 1 : 5 000 000, http://www.geolkarta.ru/). To test the effect of carbonate rocks on dissolved C parameters, we distinguished acidic crystalline, terrigenous silicate rocks and dolostones and limestones of upper Proterozoic, Cambrian and Ordovician age. We quantified river water surface area using the global SDG database with 30 m² resolution (Pekel et al., 2016) including both seasonal and
permanent water for the open water period of 2016 and for the multiannual average (reference period 2000-2004). We also used a more recent GRWL Mask Database which incorporates first order wetted streams (Allen and Pavelsky, 2018).

The Pearson rank order correlation coefficient (Rs, p < 0.05) was used to determine the relationship between CO₂ concentrations and climatic and landscape parameters of the Lena River tributaries. Further statistical treatment of CO₂, DIC and DOC concentration drivers in river waters included a Principal Component Analysis which allowed to test the effect of various hydrochemical and climatic parameters on dissolved C pattern. For the PCA treatment, all variables were normalized as necessary in the standard package of STATISTICA-7 (http://www.statsoft.com) because the units of measurement for various components were different. The factors were identified via the Raw Data method. To run the scree test, we plotted the eigen values in descending order of their magnitude against their factor numbers. There was significant decrease in the PCA values between F1 and F2 suggesting that a maximum of two factors were interpretable.

3. Results

3.1. CO₂, CH₄, DIC and DOC in the main stem and Lena tributaries and C emission fluxes

The main hydrological C parameters of the Lena River and its tributaries (pCO₂, CH₄, pH, DIC, and DOC) are listed in Tables 1 and 2. Continuous pCO₂ measurements in the main stem (4285 individual data points) averaged for each 20 km interval over the full distance of the boat route demonstrated a sizable increase (from ca. 380 to 1040 µatm) in pCO₂ northward (Fig. 2). There was a positive correlation between the pCO₂ and distance from the head waters of the Lena River (r = 0.625, p < 0.01, Fig. 3 A). The CH₄ concentration was low (0.054 ± 0.023 and 0.061 ± 0.028 µmol L⁻¹ in the Lena River and 20 tributaries, respectively) and did not change appreciably along the main stem and among the 20 tributaries (Fig. 3 B). The DOC concentration did not demonstrate any systematic variations over the main stem (10.5 ± 2.4 mg L⁻¹, Fig. 3 C), however it was higher and more variable in tributaries (15.8 ± 8.6 mg L⁻¹). The DIC concentration decreased about five-fold from the head waters to the middle course of the Lena River (Fig. 3 D), and pH decreased by 0.8 units downstream (Fig. 3 E).
Generally, the concentrations of DOC measured in the present study during the peak of the spring flood are at the highest range of previous assessments during summer baseflow (around 5 mg L\(^{-1}\); range of 2 to 12 mg L\(^{-1}\); Cauvet and Sidorov, 1996; Lara et al., 1998; Lobbes et al., 2000; Kuzmin et al., 2009; Kutscher et al., 2017). The DIC concentration in the main stem during spring flood was generally lower than that reported during summer baseflow (around 10 mg L\(^{-1}\); range of 5 to 50 mg L\(^{-1}\)) but consistent with values reported in Yakutsk during May and June period (7 to 20 mg L\(^{-1}\), Sun et al., 2018). A sizable decrease in DIC concentration between the headwaters (first 500 km of the river) and the Lena River middle course was also consistent with the alkalinity pattern reported in previous works during summer baseflow (Pipko et al., 2010; Semiletov et al., 2011). For the Lena river tributaries, the most comprehensive data set on major ions was acquired in July-August of 1991-1996 by Huh and Edmond’s group (Huh and Edmond, 1999; Huh et al., 1998a, b) and by Sun et al. (2018) in July 2012 and at the end of June 2013. For most tributaries, the concentration of DIC was a factor of 2 to 5 lower during spring flood compared to summer baseflow. This result can be explained by the strong dilution of carbonate-rich groundwaters feeding the river in spring high flow compared to summer low flow.

The measured pCO\(_2\) in the river water and published (Karlsson et al., 2021) gas transfer coefficient (4.46 m d\(^{-1}\)) allowed for calculation of the CO\(_2\) fluxes over the full length of the studied main stem (2600 km) and the sampled tributaries. Calculated CO\(_2\) fluxes of the main stem and tributaries ranged from zero and slightly negative (uptake) values in the most southern part of the Lena River and certain tributaries (N Katyma), to between 0.5-2.0 g C m\(^{-2}\) d\(^{-1}\) in the rest of the main stem and tributaries (Tables 1, 2; Fig. 2 B). The largest part of the Lena River main stem, 1429 km from Kirenga to Tuolba, exhibited quite stable flux of 1.1±0.2 g C m\(^{-2}\) d\(^{-1}\). In the last ~400 km part of the Lena River main stem studied in this work, from Tuolba to Aldan, the calculated fluxes increased to 1.7±0.08 g C m\(^{-2}\) d\(^{-1}\).

The river water concentrations of dissolved CH\(_4\) in the tributaries and the main channel (0.059±0.006; IQR range from 0.025 to 0.199 µmol L\(^{-1}\), Table 1, 2) did not exhibit any trend with distance from headwaters or landscape parameters of the catchments. These values are consistent with the range of CH\(_4\) concentration in the low reaches of the Lena River main channel (0.03-0.085 µmol L\(^{-1}\).
1; Bussman, 2013) and are 100-500 times lower than those of CO₂. Consequently, diffuse CH₄ emissions constituted less than 1 % of total C emissions and are not discussed in further detail.

3.2. Diurnal (night/day) pCO₂ variations and spatial variations across the river transect

The diel continuous CO₂ measurements of 3 tributaries (Kirenga, Tuoiba and Aldan) and 14 sites of the Lena River main channel showed generally modest variation with diurnal range within 10 % of the average pCO₂ (Fig. 4 and Fig. S2). The observed variations in pCO₂ between day and night were not linked to water temperature (p > 0.05), which did not vary more than 1-2 °C between the day and night period.

The spatial variations of hydrochemical parameters were tested in the upper reaches of the Lena main stem and its largest tributary - the Aldan River (Fig. S3). In the Lena River, over a lateral distance of 550 m across the river bed, the pCO₂ and CH₄ concentrations were equal to 569±4.6 µatm and 0.0406±0.0074 µmol L⁻¹, respectively, whereas the DIC and DOC concentrations varied < 15% (n = 5). In the Aldan River, over a 2700 m transect across the flow, the pCO₂ and CH₄ concentrations were equal to 1035±95 µatm and 0.078±0.00894 µmol L⁻¹, respectively, whereas DIC and DOC varied within < 20% (n = 4). Overall, these results supported our design of punctual (snap shot) sampling in the middle of the river.

3.3. Impact of catchment characteristics on pCO₂ in tributaries of the Lena River

The CO₂ concentration in the Lena River main stem and tributaries increased from southwest to northeast (Table 1, 2; Fig. 2), and this was reflected in a positive (R = 0.66) correlation between CO₂ concentration and continuous permafrost coverage and a negative (R = -0.76) correlation with MAAT (Table 3). Among different landscape factors, C stock in upper 0-30 and 0-100 cm of soil, the proportion of riparian vegetation and bare rocks, the coverage by deciduous needle-leaf forest, and coverage of river watershed by water bodies (mostly lakes) exhibited significant (p < 0.01, n = 19) positive correlations (0.54 ≤ R ≤ 0.86) with average pCO₂ of the Lena River tributaries (Fig. 5). The other potentially important landscape factors of the river watershed (proportion of peatland and bogs, tundra coverage, total
aboveground vegetation, type of permafrost, annual precipitation) did not significantly impact the CO$_2$ concentration in the Lena River tributaries (Table 3).

Further assessment of landscape factor control on C parameters of the river water was performed via a PCA. This analysis basically confirmed the results of linear regressions and revealed two factors capable explaining only 12.5 and 3.5% of variability (Fig. S4). The F1 strongly acted on the sample location at the Lena transect, the content of OC in soils, the watershed coverage by deciduous needle-leaf forest and shrubs, riparian vegetation (a proxy for the width of the riparian zone), but also proportion of tundra, bare rock and soils, water bodies, peatland and bogs (> 0.90 loading). The pCO$_2$ was significantly linked to F1 (0.72 loading).

3.4. Areal emission from the Lena River basin

The areal emission of CO$_2$ from the lotic waters of the Lena River watershed were assessed based on total river water coverage of the Lena basin in 2016 (28,197 km2, of which 5,022 km2 is seasonal water, according to the Global SDG database). This value is consistent with the total river surface area from the GRWL Mask database (22,479 km2). Given that the measurements were performed at the peak of spring flood in 2016, we used the maximal water coverage of the Lena River basin.

Based on past calculated pCO$_2$ of the Lena River (400 - 1000 µatm, Semiletov, 1999; Semiletov et al., 2011; Pipko et al., 2010) both the seasonality and spatial differences downstream are relatively small. Indeed, for the lower reaches of the Lena River, from Yakutsk to the Lena Delta, Semiletov (1999) and Semiletov et al. (2011) reported, for August-September 1995, the average pCO$_2$ of 538±96 µatm (range 380-727 µatm). This value is very similar to the one obtained in July 2003 for the low reaches of Lena (559 µatm, Pipko et al., 2010). Over the full length of the Lena River, from Ust-Kut to the Lena mouth, Pipko et al. (2010) reported an average pCO$_2$ of 450 ± 100 µatm in June-July 2003. At the same time, calculated pCO$_2$ from previous field campaigns are generally lower than the pCO$_2$ of the Lena River main stem directly measured in this study: 700-800 µatm for the Ust Kut – Nuya segment (1331 km); 845 – 1050 µatm for the Nuya – Aldan segment (1050 km).
Thus, despite the absolute values of calculated pCO₂ involving uncertainties (our calculated: measured pCO₂ in Lena River main channel and tributaries equaled 0.67±0.15 (n = 47)), this suggests spatial and temporal stability of the pCO₂ in the Lena River waters and allows for extrapolation of the measured pCO₂ in the Lena River from Yakutsk to Aldan to the lower reaches of the river. As for the Lena tributaries, to the best of our knowledge there is no published information on pCO₂ concentration and emission. Overall, the major uncertainty in estimation of the Lena River basin emission stems from a lack of direct pCO₂ measurements in the northern part of the main channel over ca. 1000 km downstream of the Aldan River including the large tributary Vily. Further, we noted that the largest northern tributary, the Aldan River providing 70% of the spring time discharge of the Lena River (Pipko et al., 2010), demonstrated sizably higher emissions compared to the Lena River main channel upstream of Aldan (3.2±0.5 and 1.69±0.08 g C m⁻² d⁻¹, respectively).

For areal emission calculations, we used the range of CO₂ emissions from 1 to 2 g C m⁻² d⁻¹ which covers full variability of both large and small tributaries and the Lena River main channel (Tables 1-2, Figure 2 B). This estimation assumes lack of pCO₂ dependence on the size of the watershed in the Lena basin as confirmed by our data (Fig. S5). For an alternative areal emission calculations, we explicitly took into account the water area of the main stem (43% relative to the total water area of the Lena catchment) and we introduced the partial weight of emission from the 3 largest tributaries (Aldan, Olekma and Vitim) according to their catchment surface areas (43, 12 and 14% of all sampled territory, respectively). We summed up contribution of the Lena river main stem and the tributaries and we postulated the average emission from the main stem upstream of Aldan (1.25±0.30 g C m⁻² d⁻¹) as representative of the whole Lena River. This resulted in an updated value of 1.65±0.5 g C m⁻² d⁻¹ which is within the range of 1 to 2 g C m⁻² d⁻¹ assessed previously. Note that this value is most likely underestimated because emissions from the main stem downstream of Aldan are at least 10 % higher (Table 1, Fig. 1 B).

For the two months of maximal water flow (middle of May - middle of July), the C emission from the whole Lena basin equates to 2.8 ± 0.85 Tg C which is 20 to 30% of the DOC and DIC lateral export to the Arctic Ocean. Assuming six months of open water period and no emission during winter, this
yields 8.3 \pm 2.5 Tg C y$^{-1}$ of annual emission for the whole Lena River basin (2,490, 000 km2) with a total
lotic water area of 28,100 km2. Considering the only 23,200 km2 water area in July-October (and maximal
water coverage in May-June), these numbers decrease by 12% which is below the uncertainties
associated with our evaluation.

4. DISCUSSION

4.1. Possible driving factors of CO$_2$ pattern in the Lena River basin

Generally, the SW to NE increase in CO$_2$ concentrations and fluxes of the tributaries was
consistent with CO$_2$ pattern in the main stem (Fig. 2; Tables 1, 2), and thus can be considered as a
specific feature of CO$_2$ exchange between lotic waters and atmosphere in the studied part of the Lena
Basin. At the same time, there were sizable local variations (peaks) in CO$_2$ concentration of the main
stem along the sampling route (Fig. 2 A). Peaks shown on the diagram of the main stem are not
necessarily linked to CO$_2$-rich tributaries, but likely reflect local processes in the main stem, including
lateral influx from the shores and shallow subsurface waters, which is typical for permafrost regions of
forested Siberian watersheds (i.e., Bagard et al., 2011). Given that the data were averaged over ~20-km
distance, we believe that these peaks are not artifacts but reflect local heterogeneity of the pCO$_2$ pattern
in the main stem (turbulences, suprapermafrost water discharge, sediment resuspension and respiration).
Note that such a heterogeneity was not observed in the tributaries, at least at the scale of our spatial
coverage (see Fig. S1 B, S3).

The PCA demonstrated extremely low ability to describe the data variability (12% by F1 and only
3.5% by F2). We believe that the most likely reason of weak PCA capacity is the rather homogeneous
distribution of CO$_2$ and CH$_4$ among the tributaries, primarily linked to the specific hydrological period,
studied in this work - the spring flood. During this high flow period, the local lithological and soil
heterogeneities among tributaries or the segments of the main stem virtually disappear and surface flow
(via vegetation leaching) becomes the most important driver of riverine chemistry, as is known from
adjacent permafrost territories in Central Siberia (i.e., Bagard et al., 2011). Nevertheless, some specific features of the data structure could be established. The first factor, significantly linked to pCO$_2$ (0.72 loading), strongly acted on the sample location at the Lena transect, the watershed coverage by deciduous needle-leaf forest and shrubs, riparian vegetation, and also the proportion of tundra, bare rock and soils, water bodies, peatland and bogs (> 0.90 loading). This is fully consistent with spatial variation of pCO$_2$ along the permafrost and climate gradient in the main channel and sampled tributaries. Positive loading of riparian vegetation, peatlands and bogs on F1 (0.927 and 0.989, respectively) could reflect a progressive increase in the feeding of the river basin by mire waters, an increase in the proportion of needle-leaf deciduous trees, and in the width of the riparian zone from the SW to the NE direction.

Lack of sizable variation in pCO$_2$ between the day and night period or across the river bed suggests quite low site-specific and diurnal variability. It may be indicative of a negligible role of primary productivity in the water column given the low water temperatures, shallow photic layer of organic-rich and turbid waters and lack of periphyton activity during high flow of the spring flood. The pCO$_2$ increased by a factor of 2 to 4 along the permafrost/temperature gradient from the southwest to the northeast, for both the main channel and sampled tributaries. This may reflect progressive increase in the feeding of the river basin by mire waters, increase in the proportion of needle-leaf deciduous forest, and an increase in the width of the riparian zone. Another strong correlation is observed between the stock of OC in soils (both 0-30 and 0-100 cm depth) and the pCO$_2$ of Lena tributaries. Organic-rich soils are widely distributed in the central and northern part of the basin. The most southern part of the Lena basin is dominated by carbonate rocks and crystalline silicates in generally mountainous terrain, where only thin mineral soils are developed. The northern (downstream of the Olekma River) part of the basin consists of soils developed on sedimentary silicate rocks as well as vast areas of easily eroded yedoma soils. It is likely that both organic matter mineralization in OC-rich permafrost soils and lateral export of CO$_2$ from these soils, together with particulate and dissolved OC export and mineralization in the water column, are the main sources of CO$_2$ in the river water. Although some studies have demonstrated high lability of DOM in arctic waters (Cory et al., 2014; Ward et al., 2017; Cory and Kling, 2018), others suggest that DOM photo- and bio-degradation is low and does not support the major part of CO$_2$
supersaturation in water (Shirokova et al., 2019; Payandi-Rolland et al., 2020; Laurion et al., 2021). Note that we have not observed any significant relationship between the DOC and pCO$_2$ in the Lena River and tributaries (Fig. S6 A). Lack of such a correlation and absence of diurnal pCO$_2$ variations imply that in-stream processing of dissolved terrestrial OC is not the main driver of CO$_2$ supersaturation in the river waters of the Lena River basin. Furthermore, a lack of lateral (across the river bed) variations in pCO$_2$ does not support a sizable input of soil waters from the shore, although we admit that much higher spatial coverage along the river shore is needed to confirm this hypothesis.

The role of underground water discharge in regulating pCO$_2$ pattern of the tributaries is expected to be most pronounced in the SW part of the basin (Lena headwaters), where carbonate rocks of the basement would provide sizable amounts of CO$_2$ discharge in the river bed. However, there was no relationship between the proportion of carbonate rocks on the watershed and the pCO$_2$ in the tributaries (Fig. S6 B). Furthermore, for the Lena River main stem, the lowest CO$_2$ concentrations were recorded in the upper reaches (first 0-800 km) where carbonate rocks dominate. Altogether, this makes the impact of CO$_2$ from underground carbonate reservoirs on river water CO$_2$ concentrations unlikely. This is further illustrated by a lack of correlation between pCO$_2$ and DIC or pH (Fig. S7 A of the Supplement). The pH did not control the CO$_2$ concentration in the main stem and only weakly impacted the CO$_2$ in the tributaries (Fig. S7 B). The latter could reflect an increase in pCO$_2$ in the northern tributaries which exhibited generally lower pH compared to the SW tributaries hosted within the carbonate rocks. Overall, such low correlations of CO$_2$ with DIC and pH reflected a generally low predictive capacity to calculate pCO$_2$ from measured pH, temperature and alkalinity (see section 3.4).

Therefore, other sources of riverine CO$_2$ may include particulate organic carbon processing in the water column (Attermeyer et al., 2018), river sediments (Humborg et al., 2010) and within the riparian zone (Leith et al., 2014, 2015) which require further investigation. In addition, although there was no sizable variation in pCO$_2$ between the day and night period or across the river bed, the flux could show different spatial and temporal patterns if k shows larger variability (cf., Beaulieu et al., 2012). This calls for a need of direct flux measurements in representative rivers and streams of the Lena River basin. Overall, the present study demonstrates highly dynamic and non-equilibrium behavior of CO$_2$ in the river.
waters, with possible hot spots from various local sources. For these reasons, in-situ, high spatial resolution measurements of CO$_2$ concentration in rivers—such as those reported for the Lena Basin in this study—are crucially important for quantifying the C emission balance in lotic waters of high latitudes.

4.2. Areal emission from the Lena River basin vs lateral export to the Arctic Ocean

The estimated CO$_2$ emissions from the Lena River main channel over 2600 km distance (0.8 – 1.7 g C m$^{-2}$ d$^{-1}$) are comparable to values directly measured in rivers and streams of the continuous permafrost zone of western Siberia (0.98 g C m$^{-2}$ d$^{-1}$, Serikova et al., 2018), the Kolyma River (0.35 g C m$^{-2}$ d$^{-1}$ in the main stem; 2.1 g C m$^{-2}$ d$^{-1}$ for lotic waters of the basin), and the Ob River main channel (1.32±0.14 g C m$^{-2}$ d$^{-1}$ in the permafrost-free zone, Karlsson et al., 2021). At the same time, the Lena River flux (FCO$_2$) values are lower than typical emissions from running waters in the contiguous United States (3.1 g C m$^{-2}$ d$^{-1}$, Hotchkiss et al., 2015), small mountain streams in Northern Europe (3.3 g C m$^{-2}$ d$^{-1}$, Rocher-Ros et al., 2019), and small streams of the northern Kolyma River (6 to 7 g C m$^{-2}$ d$^{-1}$, Denfeld et al., 2013) and Ob River in the permafrost-affected zone (3.8 to 5.4 g C m$^{-2}$ d$^{-1}$, Karlsson et al., 2021).

In contrast to the main stem, the range of FCO$_2$ in the tributaries is larger (0.2 to 3.2 g C m$^{-2}$ d$^{-1}$) and presumably reflects a strong variability in environmental conditions across a sizable landscape and climate transect.

Total C emissions from other major Eastern Eurasian permafrost-draining rivers (i.e. sum of Kolyma, Lena and Yenisei rivers) based on indirect estimates (40 Tg C y$^{-1}$, Raymond et al., 2013) are generally supportive of the estimations of the Lena River in this study (5 to 10 Tg C y$^{-1}$). At the same time, the C emission from the Lena river basin (28,100 km2 water area) are lower than those of the lotic waters of western Siberia (30 Tg C y$^{-1}$ for 33,389 km2 water area, Karlsson et al., 2021). The latter drain through thick, partially frozen peatlands within the discontinuous, sporadic and permafrost-free zones, which can cause high OC input and processing and, thus, enhanced C emissions (Serikova et al., 2018).

Despite the high uncertainty on our regional estimations [due to lack of directly measured gas transfer values and low seasonal resolution] we believe that these estimations are conservative and can
be considered as first order values pending further improvements. In order to justify extrapolation of our data to all seasons and the entire area of the Lena basin, we analyzed data for spatial and temporal variations in pCO$_2$ of the Lena River main stem from available literature. From the literature there were three important findings. First, based on published data, the seasonal and spatial variabilities of pCO$_2$ across the majority of the Lena River main stem are not high during open water period, although the low reaches of the Lena River may exhibit higher emissions compared to the middle and upper course (see section 3.4). Second, although small mountainous headwater streams of the tributaries may exhibit high k due to turbulence, this could be counteracted by lower CO$_2$ supply from low OC in mineral soil, lack of riparian zone and scarce vegetation. Third, although these small streams (watershed area < 100 km2) may represent > 60% of total watershed surfaces of the Lena basin (Ermolaev et al., 2018), their contribution to the total water surface is < 20% (19% from combined analysis of DEM GMTED2010 and 16% from the GRWL or Global SDG database as estimated in this study). Therefore, given that (i) within the stream-river continuum, the CO$_2$ efflux increases only two-fold demonstrating a discharge decrease by a factor of 10,000 (from 100 to 0.01 m3 s$^{-1}$, Hotchkiss et al., 2015), and (ii) the watershed area had no impact on pCO$_2$ in the river water (Fig. S5), this uncertainty is likely less important. As such, instead of integrating indirect literature data, we used the pCO$_2$ values measured in the present study to calculate the overall CO$_2$ emission from all lotic waters of the Lena basin.

The C evasion from the Lena basin assessed in the present work is comparable to the total (DOC+DIC) lateral export by the Lena River to the Arctic Ocean (10 Tg C y$^{-1}$ by Semiletov et al. (2011), or 11 Tg C y$^{-1}$ (5.35 Tg DIC y$^{-1}$ + 5.71 Tg DOC y$^{-1}$ by Cooper et al. (2008)). Moreover, the C evasion strongly exceeds sedimentary C input to the Laptev Sea by all Siberian rivers (1.35 Tg C y$^{-1}$, Rachold et al. (1996) and Dudarev et al. (2006)), the Lena River annual discharge of particulate organic carbon (0.38 Tg y$^{-1}$, Semiletov et al., 2011), and OC burial on the Kara Sea Shelf (0.37 Tg C y$^{-1}$, Gebhardt et al., 2005).

Typical concentrations of CH$_4$ in the Lena tributaries and the main channel are 100 to 500 times lower than those of CO$_2$. Given that the global warming potential (GWP) of methane on a 100-year scale is only 25 times higher than that of CO$_2$, the long-term role of diffuse methane emission from the Lena River basin is still 4 to 20 times lower than that of CO$_2$. However, on a short-term scale (20 years), the
GWP of methane can be as high as 96 (Alvarez et al., 2018) and its role in climate regulation becomes comparable to that of the CO$_2$. This has to be taken into account for climate modeling of the region.

The follow up studies of this large heterogenous and important system should include CO$_2$ measurements in 1) the low reaches of the Lena River, downstream of Aldan, notably large organic-rich tributaries such as Vilyi (454,000 km2) and where the huge floodzone (20-30 km wide) with large number of lakes and wetlands is developed, and 2) highly turbulent eastern tributaries of the Lena River downstream of Aldan, which drain the Verkhoyansk Ridge and are likely to exhibit elevated gas transfer coefficients.

5. Conclusions

Continuous pCO$_2$ measurements over 2600 km of the upper and middle part of the Lena River main channel and 20 tributaries during the peak of spring flood allowed to quantify, for the first time, in-situ pCO$_2$ variations which ranged from 500 to 1700 µatm and exhibited a 2 to 4-fold increase in CO$_2$ concentration northward. There was no major variation in pCO$_2$ between the day and night period or across the river bed which supports the chosen sampling strategy. The northward increase in pCO$_2$ was correlated with an increased proportion of needle-leaf deciduous trees, the width of the riparian zone and the stock of organic C in soils. Among the potential drivers of riverine pCO$_2$, changes in the vegetation pattern (northward migration of larch tree line in Siberia; Kruse et al., 2019) and soil OC stock are likely to be most pronounced during ongoing climate warming and thus the established link deserves further investigation. The total C emission from the lotic waters of the Lena River basin ranges from 5 to 10 Tg C y$^{-1}$ which is comparable to the annual lateral export (50% DOC, 50 % DIC) by the Lena River to the Arctic Ocean. However, these preliminary estimations of C emission should be improved by direct flux measurements across seasons in different types of riverine systems of the basin, notably in the low reaches of the Lena River.
Acknowledgements.

We acknowledge support from an RSF grant 18-17-00237_P, the Belmont Forum Project VULCAR-FATE, and the Swedish Research Council (no. 2016-05275). We thank the Editor Ji-Hyung Park and 3 anonymous reviewers for their very constructive comments. Chris Benker is thanked for English editing.

Authors contribution.

SV and OP designed the study and wrote the paper; SV, YK and OP performed sampling, analysis and their interpretation; MK performed landscape characterization of the Lena River basin and calculated water surface area; JK provided analyses of literature data, transfer coefficients for FCO2 calculations and global estimations of areal emission vs export.

Competing interests.

The authors declare that they have no conflict of interest.

References

Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., and Borges, A. V.: Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences, 12, 67–78, https://doi.org/10.5194/bg-12-67-2015, 2015.

Ahmed, R., Prowse, T., Dibike, Y., Bonsal, B., and O’Neil H.: Recent trends in freshwater influx to the Arctic Ocean from four major Arctic-draining rivers, Water, 12, 1189; doi:10.3390/w12041189, 2020.

Alin, S. R., Rasera, M. F. F. L., Salimon, C. I., Richey, J. E., Holtgrieve, G. W., Krusche, A. V., et al.: Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J. Geophys. Res. Biogeosci. 116, G01009. doi: 10.1029/2010jg001398, 2011.

Allen, G. H. and Pavelsky, T. M.: Global extent of rivers and streams, Science 361, 585-58, doi:10.1126/science.aat0636, 2018.

Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S.C., Hamburg, S. P.: Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188, doi:10.1126/science.aar7204, 2018.

Attermeyer, K., Catalan, N., Einarsdottir, K., Freixa, A., Groeneveld, M., Hawkes, J.A., et al.: Organic carbon processing during transport through boreal inland waters: particles as important sites, J. Geophys. Res. - Biogeosci. 123, 2412–2428, doi:10.1002/2018JG004500, 2018.

Bagard, M. L., Chabaux, F., Pokrovsky, O. S., Viers, J., Prokushkin, A. S., Stille, P., Rihs, S., Schmitt, A. D., Dupre, B.: Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochim. Cosmochim. Acta 75, 3335-3357, 2011.

Bartalev, S. A., Egorov, V. A., Ershov, D. V., Isaev, A. S., Lupyant, E. A., Plotnikov, D. E., and Uvarov, I. A.: Remote mapping of vegetation land cover of Russia based on data of MODIS spectroradimeter, Modern Problems of Earth Remote Sensing from Space, 8 (No 4), 285-302. http://d33.infospace.ru/d33_conf/2011v8n4/285-302.pdf, 2011.
or the Kara Sea shelf (Siberia),

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823
Leith, F. I., Dinsmore, K. J., Wallin, M. B., Billett, M. F., Heal, K. V., Laudon, H., Öquist, M. G., and Bishop, K.: Carbon dioxide transport across the hillslope–riparian–stream continuum in a boreal headwater catchment, Biogeosciences, 12, 1–12, doi:10.5194/bg-12-1-2015, 2015.

Lobbes, J. M., Friznar, H. P., and Kattner, G.: Biogeochemical characteristics of the dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean, Geochim. Cosmochim. Acta, 64(17), 2973–2983, 2000.

McClelland, J. W., Holmes, R. M., Peterson, B. J., and Striegl, M.: Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change, J. Geophys. Res. Atmospheres, 109 (D18), Art No D18102, doi:10.1029/2004JD004583, 2004.

McClelland, J. W., Déry, S. J., Peterson, B. J., Holmes, R. M., and Wood, E. F.: A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century, Geophys. Res. Lett., 33, L06715, https://doi.org/10.1029/2006GL025753, 2006.

Murphy, M., Porcelli, D., Pogge von Strandmann, P., Hirst, K., Kutscher, L., Katchi, M.-M., Maximov, T., and Andresson, P.: Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes, Geochim. Cosmochim. Acta, 245, 154-171, doi:10.1016/j.gca.2018.10.024, 2018.

Park, J. H., Jin, H., Yoon, T. K., Begum, M. S., Eliyan, C., Lee, E.-J., Lee, S.-C., and Oh, N.-H.: Wastewater-boosted biodegradation amplifying seasonal variations of pCO2 in the Mekong–Tonle Sap river system, Biogeochemistry, 155, 219-235, https://doi.org/10.1007/s10533-021-00823-6, 2021.

Park, J.-H., Nayna, O.K., Begum, M.S., Chea, E., Hartmann, J., Keil, R.G., Kumar, S., Lu, X., Ran, L., Richey, J.E., Sarma, V.V.S.S, Tareq, S.M., Xuan, D. T., and Yu, R.: Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems—concepts, emerging trends, and research challenges, Biogeosciences 15, 3049–3069. https://doi.org/10.5194/bg-15-3049-2018, 2018.

Payandi-Rolland, D., Shirokova, L. S., Nakhle, P., Tesfa, M., Abdou, A., Caußerand, C., Lartiges, B., Rols, J.L., Guérin, F., Bénézeth, P., and Pokrovsky, O.S.: Aerobic release and biodegradation of dissolved organic matter from frozen peat: Effects of temperature and heterotrophic bacteria, Chem. Geol. 536, Art No 119448, https://doi.org/10.1016/j.chemgeo.2019.119448, 2020.

Pekel, J. F., Cottam, A., Gorelick, N. et al.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016.

Pipko, I. I., Pugach, S. P., Savichev, O. G., Repina, I. A., Shakhova, N. E., Moiseeva, Yu. A., Barskov, K. V., Sergienko, V. I., and Semiletov, I. P.: Dynamics of dissolved inorganic carbon and CO2 fluxes between the water and the atmosphere in the main channel of the Ob River, Doklady Chemistry 484(2), 52-57, doi:10.1134/S0012500819020101, 2019.

Pipko; I. I., Pugach, S. P., Dudarev, O. V., Charkin, A. N., and Semiletov, I. P.: Carbonate parameters of the Lena River: Characteristics and distribution, Geochem. Internat., 48(11), 1131-1137, https://doi.org/10.1134/S0016702911011078, 2010.

Qin, J., Huh, Y., Edmond, J. M., Du, G., and Ran, J.: Chemical and physical weathering in the Min Jiang, a headwater tributary of the Yangtze River, Chem. Geol., 227, 53–69, doi:10.1016/j.chemgeo.2005.09.011, 2006.

Rachold, V., Alabany, A., Hubberten, H.-W., Korotaev, V. N., and Zaitsev, A. A.: Sediment transport to the Laptev Sea - hydrology and geochemistry of the Lena River, Polar Research, 15(2), 183-196, doi: https://doi.org/10.3402/polar.v15i2.6646, 1996.

Raymond, P. A., McClelland, J. W., Holmes, R. M., Zhulidov, A. V., Mull, K. et al.: Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers, Global Biogeochemical Cycles, 121, Art No GB4011, https://doi.org/10.1029/2007GB002934, 2007.

Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, doi:10.1038/nature12760, 2013.
Rocher-Ros, G., Sponseller, R. A., Lidberg, W., Mörth, C.-M., and Giesler, R.: Landscape process
domains drive patterns of CO2 evasion from river networks, Limnol. Oceanogr. Lett., 4, 87-95,
https://doi.org/10.1002/loi2.10108, 2019.

Sachs, T., Wille, C., Boike, J., and Kutzbach, L.: Environmental controls on ecosystem-scale CH4 emission
from polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Research Biogeosciences, 113,
Art No G00A03, https://doi.org/10.1029/2007JG000505, 2008.

Santoro, M., Beer, C., Cartus, O., Schmullius, C., Shvidenko, A., McCallum, I., Wegmueller, U., and
Wiesmann, A.: The BIOMASAR algorithm: An approach for retrieval of forest growing stock volume
using stacks of multi-temporal SAR data, In: Proceedings of ESA Living Planet Symposium, 28 June-
2 July 2010 (https://www.researchgate.net/publication/230662433,
http://pure.iiasa.ac.at/id/eprint/9430/), 2010.

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven,
C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, C., Romanovsky, V. E., Schaefer, K.,
Turetsky, M. R., Treat, C. C., and Vonk. J. E.: Climate change and the permafrost carbon feedback,
Nature 520, 171–179, http://dx.doi.org/10.1038/nature14338, 2015.

Semiletov, I. P.: Aquatic sources and sinks of CO2 and CH4 in the polar regions, J. Atmospheric Sci., 56,
286-306, https://doi.org/10.1175/1520-0469(1999)056<0286:ASASOC>2.0.CO;2, 1999.

Semiletov, I. P., Pipko, I. I., Shakhova, N. E., Dudarev, O. V., Pugach, S. P., Charkin, A. N., McRoy, C. P.,
Kosmach, D., Gustafsson Ö.: Carbon transport by the Lena River from its headwaters to the Arctic
Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by
coastal erosion, Biogeosciences, 8, 2407–2426, https://doi.org/10.5194/bg-8-2407-2011, 2011.

Serikova, S., Pokrovsky, O. S., Ala-aho, P., Kazantsiev, V., Kirpotin, S. N. Kopysov, S. G., Krickov, I. V.,
Laudon, H., Manasypov, R. M., Shirokova, L. S., Sousby, C., Tetzlaff, D., and Karlsson, J.: High
riverine CO2 emissions at the permafrost boundary of Western Siberia, Nat. Geosci., 11, 825–829,
https://doi.org/10.1038/s41561-018-0218-1, 2018.

Serikova, S., Pokrovsky O. S., Laudon, H., Krickov, I. V., Lim, A. G., Manasypov, R. M., and Karlsson, J.:
C emissions from lakes across permafrost gradient of Western Siberia, Nat. Commun., 10, 1552,
https://doi.org/10.1038/s41467-019-09592-1, 2019.

Siewert, M. B., Hugelius, G., Heim, B., and Faucherre, S.: Landscape controls and vertical variability of soil
organic carbon storage in permafrost-affected soils of the Lena River Delta, Catena, 147, 725-741,
doi:10.1016/j.catena.2016.07.048, 2016.

Smith, L. C., Pavelsksky, T. M.: Estimation of river discharge, propagation speed,a nd hydraulic
geometry from space: Lena River, Siberia, Water Resources Res., 44(3), W03427,
https://doi.org/10.1029/2007WR006133, 2008.

Spence, J. and Telmer, K.: The role of sulfur in chemical weathering and atmospheric CO2 fluxes:
evidence from major ions, δ13CDIC, and δ34S SSM in rivers of the Canadian Cordillera, Geochim.
Cosmochim. Acta, 69, 5441–5458, doi:10.1016/j.gca.2005.07.011, 2005.

Stackpoole, S. M., Butman, D. E., Clow, D. W., Verdin, K. L., Gaglioti, B. V., Genet, H., and Striegl,
R. G.: Inland waters and their role in the carbon cycle of Alaska, Ecological Applications 27(5),
1403-1420, doi:10.1002/1554-1527/full, 2017.

Striegl, R. G., Dornblaser, M. M., McDonald, C. P., Rover, J. R., and Stets E. G.: Carbon dioxide and
methane emissions from the Yukon River system, Global Biogeochem. Cycles, 26, GB0E05,
doi:10.1029/2012GB004306, 2012.

Sun X., Mörth C.-M., Porcelli D., Kutscher L., Hirst C., Murphy M. J., Maximov T., Petrov R. E.,
Humborg C., Schmitt M. and Andersson P. S.: Stable silicon isotopic compositions of the Lena
River and its tributaries: Implications for silicon delivery to the Arctic Ocean, Geochim.
Cosmochim. Acta 241, 120–133, doi: 10.1016/j.gca.2018.08.044, 2018.

Suzuki, K., Matsuo, K., Yamazaki, D., Ichii, K., Iijima, Y., Papa, F., Yanagi, Y., and Hiyama, T.:
Hydrological variability and changes in the Arctic circumpolar tundra and the three largest Pan-
Arctic river basins from 2002 to 2016, Remote Sensing 10, Art No 402, doi:10.3390/rs10030402,
2018.

Vachon, D., Prairie, Y. T., and Cole, J. J.: The relationship between near-surface turbulence and gas
transfer velocity in freshwater systems and its implications for floating chamber measurements of
gas exchange, Limnology and Oceanography, 55(4), 1723–173, doi:10.4319/lo.2010.55.4.1723, 2010.

Van der Molen, M. K., van Huissteden J., Parmentier F. J. W., Petrescu, A. M. R., Dolman, A. J.,
Maximov, T. C. et al.: The growing season greenhouse gas balance of a continental tundra site in
the Indigirk lowlands, NE Siberia, Biogeosciences 4(6), 985-1003, https://doi.org/10.5194/bg-4-
985-2007, 2007.

Vonk, J. E., Tank, S. E., Mann, P. J., Spencer, R. G. M., Treat, C. C., Striegl, R. G., Abbott, B. W., and
Wickland, K. P.: Biodegradability of dissolved organic carbon in permafrost soils and aquatic
systems: a meta-analysis, Biogeosciences, 12, 6915–6930, https://doi.org/10.5194/bg-12-6915-
2015, 2015.

Vonk, J. E., Tank, S. E., and Walvoord, M. A.: Integrating hydrology and biogeochemistry across frozen
landscapes, Nat. Commun. 10, 1–4. https://doi.org/10.1038/s41467-019-13361-5, 2019.

Wanninghko, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res.
97, 7373–7382, https://doi.org/10.1029/91JD01586.x, 1992.

Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W., and Cory, R. M.: Photochemical alteration of
organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates
respiration, Nat. Commun., 8, 772, https://doi.org/10.1038/s41467-017-07579-2, 2017.

Wild, B., Andersson, A., Bröder, L., Vonk, J., Hugelius, G., McClelland, J. W., Song, W., Raymond P.
A., and Gustafsson, Ö.: Rivers across the Siberian Arctic unearth the patterns of carbon release
from the thawing permafrost, PNAS 116(21), 10280-10285, https://doi.org/10.1073/pnas.1811797116, 2019.

Wille, C., Kutzbach, L., Sachs, T., Wagner, D., and Pfeiffer, E.M.: Methane emission from Siberian
arctic polygonal tundra: eddy covariance measurements and modeling, Global Change Biology
14(6), 1395-1408, https://doi.org/10.1111/j.1365-2486.2008.01586.x, 2008.

Wu, L. and Huh, Y.: Dissolved reactive phosphorus in large rivers of East Asia, Biogeochemistry 85,
263-288, doi:10.1007/s10533-007-9133-z, 2007.

Yang, D. Q., Kane, D. L., Hinzman, L. D., Zhang, X. B., Zhing, T. J., and Ye, H. C.: Siberian Lena River
hydrological regime and recent change, J. Geophys. Res. Atmospheres 107, D23, Art No 4694,
https://doi.org/10.1029/2002JD002542, 2002.

Yamamoto, S., Alcauskas, J. B., and Crozier, T.E.: Solubility of methane in distilled water and seawater,
J. Chem. Eng. Data, 21(1), 78–80, doi:10.1021/je60068a029, 1976.

Ye, B., Yang, D., Zhang, Z., and Kane, D. L.: Variation of hydrological regime with permafrost coverage
over Lena basin in Siberia, J. Geophys. Res., 114, D07102, doi:10.1029/2008JD010537, 2009.

Yoon, T. K., Jin, H., Oh, N.-H., and Park, J.-H.: Technical note: Assessing gas equilibration systems for
continuous pCO2 measurements in inland waters, Biogeosciences, 13, 3915–3930,
https://doi.org/10.5194/bg-13-3915-2016, 2016.

Zhang, T., Frauenfeld, O. W., Serreze, M. C., Etringer, A., Oelke, C. et al.: Spatial and temporal
variability in active layer thickness over the Russian Arctic drainage basin, J. Geophys. Res., 110,
D16101, doi: 10.1029/2004JD005642, 2005.

Zubrzycki, S., Kutzbach, L., Grosse, G., Desyatkin, A., and Pfeiffer, E. M.: Organic carbon and total
nitrogen stocks in soils of the Lena River Delta, Biogeosciences 10, 3507-3524, doi:10.5194/bg-
10-3507-2013, 2013.
Table 1. Measured water temperature, pCO$_2$, calculated CO$_2$ flux, CH$_4$, DOC, and DIC concentrations and pH in the Lena River main stem (average ± s.d.; (n) is number of measurements).

River transect	$T_{\text{water}}, ^\circ\text{C}$	pCO$_2$, µatm	FCO_2, g C m$^{-2}$ d$^{-1}$
Lena upstream of Kirenga (0-578 km)	12.65±0.22 (99)	714±22 (99)	0.849±0.061 (99)
Lena Kirenga – Vitim (579-1132 km)	9.17±0.15 (87)	806±8.8 (87)	1.19±0.024 (87)
Lena Vitim -Nuya (1132-1331 km)	8.10±0.115 (27)	797±22 (27)	1.22±0.072 (27)
Lena Nuya – Tuolba (1331-2008 km)	9.61±0.09 (95)	846±12 (95)	1.29±0.034 (95)
Lena Tuolba – Aldan (2008-2381 km)	10.6±0.21 (52)	1003±28 (52)	1.69±0.081 (5)

	CH$_4$, µmol L$^{-1}$	DOC, mg L$^{-1}$	DIC, mg L$^{-1}$	pH
Lena upstream of Kirenga (0-578 km)	0.068±0.003 (6)	13.9±1.4 (6)	20.0±1.2 (6)	8.12±0.203 (7)
Lena Kirenga – Vitim (579-1132 km)	0.040±0.002 (12)	7.55±0.246 (14)	6.30±0.485 (14)	7.77±0.040 (14)
Lena Vitim -Nuya (1132-1331 km)	0.038±0.003 (5)	9.02±0.29 (3)	4.55±0.70 (3)	7.69±0.063 (3)
Lena Nuya – Tuolba (1331-2008 km)	0.037±0.002 (6)	10.4±0.78 (2)	5.09±1.157 (2)	7.62±0.052 (2)
Lena Tuolba – Aldan (2008-2381 km)	0.088±0.034 (5)	11.6±0.27 (5)	5.24±0.102 (5)	7.49±0.044 (5)
Table 2. Measured water temperature, pCO₂, calculated CO₂ flux, CH₄, DOC, DIC concentration and pH in the tributaries (average ± s.d.; (n) is number of measurements).

Tributary	T_{water}, °C	pCO₂, µatm	FCO₂, g C m⁻² d⁻¹
№4 Orlinga (208 km)	8.0±0.0 (13)	515±2.9 (13)	0.347±0.01 (13)
№5 Nijnaya Kitima (228 km)	6.8±0.0 (11)	462±9.4 (11)	0.193±0.03 (11)
№8 Taiur (416 km)	8.5±0.0 (10)	575±31 (10)	0.523±0.095 (10)
№10 Bol. Tira (529 km)	11.9±0.0 (15)	788±12 (15)	1.04±0.03 (15)
№12 Kirenga (579 km)	10.2±0.0 (323)	448±4 (323)	0.131±0.01 (323)
№25 Thcayka (1025 km)	8.6±0.01 (8)	856±13 (8)	1.37±0.04 (8)
№28 Tchuya (1110 km)	5.9±0.0 (5)	751±5.7 (5)	1.16±0.019 (5)
№29 Vitim (1132 km)	6.8±0.0 (10)	654±10 (10)	0.812±0.03 (10)
№32 Ykte (1265 km)	4.9±0.0 (11)	676±4.8 (11)	0.943±0.02 (11)
№34 Kenek (1312 km)	7.60±0.0 (11)	710±2.6 (11)	0.964±0.01 (11)
№36 Nuya (1331 km)	11.8±0.0 (10)	752±6.0 (10)	0.947±0.02 (10)
№38 Bol. Patom (1670 km)	6.9±0.0 (5)	730±12 (5)	1.05±0.04 (5)
№39 Biriuk (1712 km)	14.2±0.0 (5)	929±19 (5)	1.32±0.05 (5)
№40 Olekma (1750 km)	6.4±0.0 (11)	802±14 (11)	1.30±0.05 (11)
№43 Markha (1948 km)	17.5±0.0 (15)	844±15 (15)	0.998±0.03 (15)
№44 Tuolba (2008 km)	12.3±0.0 (305)	1181±6 (305)	2.08±0.02 (305)
№46 Siniaya (2118 km)	18.5±0.0 (24)	894±19 (24)	1.08±0.04 (24)
№48 Buotama (2170 km)	18.5±0.0 (24)	1160±25 (24)	1.66±0.06 (24)
№52-54 Aldan (2381 km)	14.8±0.02 (316)	1715±12 (316)	3.23±0.03 (316)
Table 2, continued.

№	Location	CH$_4$, µmol L$^{-1}$	DOC, mg L$^{-1}$	DIC, mg L$^{-1}$	pH
4	Orlinga (208 km)	0.064	13.4	27.9	8.64
5	Nijnaya Kitima (228 km)	0.033	16.7	13.1	8.48
8	Taiur (416 km)	0.079	10.0	11.2	8.36
10	Bol. Tira (529 km)	0.084	22.7	14.9	8.13
12	Kirenga (579 km)	0.036	5.13	6.86	7.97
25	Thcayka (1025 km)	0.066	16.7	22.5	8.30
28	Tchuya (1110 km)	0.037	7.08	3.44	7.57
29	Vitim (1132 km)	0.057	10.1	2.18	7.70
32	Ykte (1265 km)	0.037	5.49	15.3	7.86
34	Kenek (1312 km)	0.053	21.1	16.0	8.12
36	Nuya (1331 km)	0.048	26.6	11.7	7.80
38	Bol. Patom (1670 km)	0.026	6.99	4.56	7.76
39	Biriuk (1712 km)	0.047	29.2	11.3	7.87
40	Olekma (1750 km)	0.046	13.3	3.3	7.53
43	Markha (1948 km)	0.088	27.4	10.9	8.00
44	Tuolba (2008 km)	0.035	14.5	14.7	7.98
46	Siniaya (2118 km)	0.113	33.2	7.73	7.97
48	Buotama (2170 km)	0.124	12.2	31.6	8.45
52-54	Aldan (2381 km)	0.088 (4)	9.07±0.75 (4)	6.67±0.13 (4)	7.59±0.02 (4)

Footnote: in all tributaries except Aldan, there was only one measurement of CH$_4$, DOC, DIC and pH.
Table 3. Pearson correlation coefficients (R) between pCO$_2$ and landscape parameters of the Lena tributaries. Significant correlations ($p < 0.05$) are marked by asterisk. Methane concentration did not exhibit any significant correlation with all tested parameters.

% coverage of the watershed and climate	R_{948}
Broadleaf Forest	0.04
Humid Grassland	-0.52*
Shrub Tundra	-0.05
Riparian Vegetation	0.87*
Croplands	-0.31
Bare Soil and Rock	0.54*
Evergreen Needle-leaf Forest	-0.59*
Deciduous Broadleaf Forest	-0.14
Mixed Forest	-0.34
Deciduous Needle-leaf Forest	0.56*
Bogs and marches	0.44
Palsa bogs	0.29
Recent burns	-0.25
Water bodies	0.63*
Aboveground biomass	-0.55*
Soil C stock, 0-30 cm	0.54*
Soil C stock, 0-100 cm	0.65*
Carbonate rocks	0.20
Continuous permafrost	0.66*
Discontinuous permafrost	-0.27
Sporadic permafrost	-0.43
Isolated permafrost	-0.19
Mean annual air temperature	-0.76*
Mean annual precipitation, mm	0.10
Fig. 1. Map of the studied Lena River watershed with continuous pCO$_2$ measurements in the main stem. Bottom: mean multi-annual monthly discharge (Q) at Ust-Kut, Krestovskoe and Tabaga station (labelled in red on the map).
Figure 2. A 20-km averaged pCO$_2$ profile (A) and calculated CO$_2$ fluxes (B) of the Lena River main stem of over 2600 km distance, from Zhigalovo to the Tumara River. The average pCO$_2$ (µatm) and fluxes (g C m$^{-2}$ d$^{-1}$) of the main sampled tributaries are provided as numbers below X axes. Note that peaks of CO$_2$ concentration at the main stem are not linked to conflux with tributaries.
Figure 3. Averaged (over 20-km distance) CO₂ (A), CH₄ (B), DOC (C), DIC (D) and pH (E) concentration over the distance of the boat route at the Lena River, from the south-west to north-east.
Figure 4. Continuous pCO$_2$ concentration in the Lena River and two tributaries from late afternoon to morning next day. Red part of the line represents night time. Variations of water temperature did not exceed 2 °C.
Figure 5. Significant (p < 0.05) positive control of landscape parameters – OC stock in 0-100 cm of soil (A), and proportion of deciduous needle-leaf forest (B), riparian vegetation (C) and bare soil and rock (D) in the watershed on pCO$_2$ in the Lena River tributaries.