Neural Snowball for Few-Shot Relation Learning

Tianyu Gao1,2,3, Xu Han1,2,3, Ruobing Xie4, Zhiyuan Liu1,2,3,*, Fen Lin4, Leyu Lin4, Maosong Sun1,2,3

1Department of Computer Science and Technology, Tsinghua University, Beijing, China \\
2Institute for Artificial Intelligence, Tsinghua University, Beijing, China \\
3State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China \\
4Search Product Center, WeChat Search Application Department, Tencent, China. \\
\{gty16,hanxu17\}@mails.tsinghua.edu.cn

Abstract

Knowledge graphs typically undergo open-ended growth of new relations. This cannot be well handled by relation extraction that focuses on pre-defined relations with sufficient training data. To address new relations with few-shot instances, we propose a novel bootstrapping approach, Neural Snowball, to learn new relations by transferring semantic knowledge about existing relations. More specifically, we design Relation Siamese Networks (RelSN) to learn the metric of relational similarities between instances based on existing relations and their labeled data. Afterwards, given a new relation and its few-shot instances, we use RelSN to accumulate reliable instances from unlabeled corpora; these instances are used to train a relation classifier, which can further identify new facts of the new relation. The process is conducted iteratively like a snowball. Experiments show that our model can gather high-quality instances for better few-shot relation learning and achieves significant improvement compared to baselines. Codes and datasets will be released soon.

1 Introduction

Knowledge graphs (KGs) such as WordNet (Miller, 1995), Freebase (Bollacker et al., 2008) and Wikidata (Vrandečić and Krötzsch, 2014) have multiple applications in information retrieval (Xiong et al., 2017), question answering (Hao et al., 2017) and recommender systems (Zhang et al., 2016). Such KGs consist of relation facts with triplet format \((e_h, r, e_t)\) representing a relation \(r\) between entities \(e_h\) and \(e_t\). Though existing KGs have acquired large amounts of facts, they still have huge growth space compared to real-world data. To enrich KGs, relation extraction (RE) is investigated to extract relation facts from plain text.

*Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)

One challenge of RE is that novel relations emerge rapidly in KGs, yet most RE models cannot handle those new relations well since they rely on RE datasets with only a limited number of pre-defined relations. One of the largest RE dataset, FewRel (Han et al., 2018), only has 100 relations, yet there were already 920 relations in Wikidata in 2014 (Vrandečić and Krötzsch, 2014), let alone it contains nearly 6,000 relations now.

To extract relation facts of novel relations, many existing approaches have studied bootstrapping RE, which extracts triplets for a new relation with few seed relation facts. Brin (1998) proposes to extract author-book facts with a small set of (author, book) pairs as input. It iteratively finds mentions of seed pairs from the web, and then extracts sentence patterns from those mentions and finds new pairs by pattern matching. Agichtein and Gravano (2000) further improve this method and name it as Snowball, for that relation facts and their mentions accumulate like a snowball.

However, most existing bootstrapping models confine themselves to only utilize seed relation facts and fail to take advantage of available large-scale labeled datasets, which have been proved to
be a valuable resource. Though data of existing relations might have a very different distribution with new relations, it still can be used to train a deep learning model that extracts abstract features at the higher levels of the representation, suiting both historical and unseen relations (Bengio, 2012). This technique, named as transfer learning, has been widely adopted in image few-shot tasks. Previous work has investigated transferring metrics (Koch et al., 2015) to measure similarities between objects and meta-information (Ravi and Larochelle, 2017) to fast adapt to new tasks.

Based on bootstrapping and transfer learning, we present **Neural Snowball** for learning to classify new relations with insufficient training data. Given seed instances with relation facts of a new relation, Neural Snowball finds reliable mentions of these facts. Then they are used to train a relation classifier, which aims at discovering reliable instances with new relation facts. These instances then serve as the inputs of the new iteration.

More specifically, we design **Relation Siamese Networks (RelSN)** to select high-confidence new instances. Siamese networks (Bromley et al., 1994) usually contain dual encoders and measure similarities between two objects by learning a metric. In this paper, RelSN is used to classify whether existing instances and new ones express the same relation.

Experiment results show that Neural Snowball achieves significant improvements on learning novel relations in few-shot scenarios. Further experiments demonstrate the efficiency of Relation Siamese Networks and the snowball process, proving that they have the ability to select high-quality instances and extract new relation facts.

To conclude, our main contributions can be summarized as follows:

- We propose Neural Snowball, a novel approach to better train neural relation classifiers with few instances for new relations, by iteratively accumulating new instances and facts from unlabeled data with prior knowledge of historical relations.
- For better selecting new instances for new relations, we investigate Relation Siamese Networks to measure relational similarities between candidate instances and existing ones.
- Experiment results and analysis show the efficiency and robustness of our models.

2 Related Work

Supervised RE

Early work for fully-supervised RE uses kernel methods (Zelenko et al., 2003; Zhou et al., 2005) and embedding methods (Gormley et al., 2015) to leverage syntactic information to predict relations. Recently, neural models like RNN and CNN have been proposed to extract better features from word sequences (Socher et al., 2012; Liu et al., 2013; Zeng et al., 2014; Nguyen and Grishman, 2015; dos Santos et al., 2015). Besides, dependency parsing trees have also been proved to be efficient in RE (Xu et al., 2015; Liu et al., 2015; Miwa and Bansal, 2016).

Distant Supervision

Supervised RE methods rely on hand-labeled corpora, which usually cover only a limited number of relations and instances. Bunescu and Mooney (2007); Mintz et al. (2009) propose distant supervision to automatically generate relation labels by aligning entities between corpora and KGs. However, distant supervision inevitably accompanies with the wrong labeling problem. To alleviate wrong labeling, Riedel et al. (2010); Hoffmann et al. (2011) model distant supervision as a multi-instance multi-label task. To further reduce data noise and highlight crucial instances, at-least-one (Zeng et al., 2015) and soft attention (Lin et al., 2016) have also been proposed.

RE for New Relations

Bootstrapping RE can fast adapt to new relations with a small set of seed facts or sentences. Brin (1998) first proposes to extract relation facts by iterative pattern expansion from web pages. Agichtein and Gravano (2000) propose Snowball to improve such iterative mechanism with better pattern extraction and evaluation methods. Based on that, Zhu et al. (2009) adopt statistical methods for better pattern selection. Batista et al. (2015) use word embeddings to further improve Snowball. Many similar bootstrapping ideas have been widely explored to tackle RE (Riloff et al., 1999; Etzioni et al., 2005; Pantel and Penneacchiotti, 2006; Rozenfeld and Feldman, 2008; Nakashole et al., 2011).

Compared to distant supervision, bootstrapping RE expands relation facts iteratively, which leads to higher precision. Moreover, distant supervision is still limited to predefined relations, yet bootstrapping is scalable for open-ended relation growth. Many other semi-supervised methods can also be adopted for RE (Blum and Mitchell, 1998; Rosenberg et al., 2005; French et al., 2017; Lin
et al., 2019), yet they still require sufficient labeled data and mainly aim at classifying predefined relations rather than discovering new relations. Thus, we do not further discuss these methods.

Inspired by the fact that people can grasp new knowledge with few samples, few-shot learning to solve data deficiency appeals to researchers. The key point of few-shot learning is to transfer task-agnostic information from existing data to new tasks (Bengio, 2012). Koch et al. (2015); Vinyals et al. (2016); Snell et al. (2017); Sung et al. (2018); Zhang et al. (2018) explore learning a distance distribution to classify new classes in a nearest-neighbour-style strategy. Ravi and Larochelle (2017); Munkhdalai and Yu (2017); Finn et al. (2017); Mishra et al. (2018) propose meta-learning to understand how to fast optimize models with few samples. Qiao et al. (2018) propose learning to predict parameters for classifiers of new tasks. Existing few-shot learning models mainly focus on vision tasks. For exploiting this perspective on text, Han et al. (2018) release FewRel, a large-scale few-shot RE dataset.

OpenRE Both bootstrapping and few-shot learning handle new tasks with minimal human participation. Open relation extraction (OpenRE), on the other hand, aims at extracting relations from text without predefined types. One kind of OpenRE systems focus on finding relation mentions (Banko et al., 2007). Other work exploits the way to form relation types automatically by clustering semantic patterns of given data (Lin and Pantel, 2001; Shinyama and Sekine, 2006; Yao et al., 2011; Marcheggiani and Titov, 2016; ElSahar et al., 2017). It is a different and challenging view on RE compared to conventional methods and remains to be explored.

Siamese Networks Siamese networks measure similarities between two objects with dual encoders and trainable distance functions (Bromley et al., 1994; Chopra et al., 2005). They are exploited for one/few-shot learning (Koch et al., 2015; Yuan et al., 2017; Sung et al., 2018), object tracking (Bertinetto et al., 2016) and measuring text similarities (Neculoiu et al., 2016; Mueller and Thyagarajan, 2016). Here we design Relation Siamese Networks to learn a relational metric from existing relations, and select high-confidence instances by comparing candidates with existing instances to improve the bootstrapping process.

3 Methodology

In this section, we will introduce Neural Snowball, starting with notations and definitions.

3.1 Terminology and Problem Definition

Given an instance x containing a word sequence \(\{w_1, w_2, \ldots, w_l\} \) with tagged entities e_h and e_l, RE aims at predicting the relation label r between e_h and e_l. Relation mentions are instances expressing given relations. Entity pair mentions are instances with given entity pairs. Relation facts are triplets (e_h, r, e_l) indicating there is a relation r between e_h and e_l. x^r indicates x is a relation mention of the relation r.

Since we emphasize learning to extract a new relation in a real-world scenario, we adopt a different problem setting from existing supervised RE or few-shot RE. Given a large-scale labeled dataset for existing relations and a small set of instances for the new relation, our goal is to extract instances of the new relation from a query set containing instances of existing relations, the new relation and unseen relations.

Inputs of this task contain a large-scale labeled corpus $S_N = \{x^r_j| r \in \mathcal{R}_N\}$ where \mathcal{R}_N is a pre-defined relation set, an unlabeled corpus \mathcal{T} and a seed set \mathcal{S} with k instances for the new relation r. We firstly pre-train the neural modules on S_N. Then for the new relation r, we train a binary classifier g. To be more specific, given an instance x, $g(x)$ outputs the probability that x expresses the relation r. During the test phase, the classifier g performs classification on a query set Q containing instances expressing predefined relations in \mathcal{R}_N, instances with the new relation r and some instances of other unseen relations, which is a simulation of the real-world scenario.

3.2 Neural Snowball Process

Neural Snowball gathers reliable instances for a new relation r iteratively with a small seed set \mathcal{S}, as the input. In each iteration, \mathcal{S} will be extended with selected unlabeled instances, and the new \mathcal{S} becomes the input of the next iteration. Figure 2 illustrates the framework of Neural Snowball. When a new relation arrives with its initial instances, Neural Snowball shall process as follows,

Input The seed instance set \mathcal{S} for the relation r.

Phase 1 Structure the entity pair set,

\[
\mathcal{E} = \{(e_h, e_l) | \text{Ent}(x) = (e_h, e_l), x \in \mathcal{S}\},
\]

4 Conclusion

In this study, we introduce Neural Snowball and present a scalable framework for few-shot relation extraction. Neural Snowball has been illustrated to be competitive with the state of the art in few-shot relation extraction tasks. Future work includes exploring the impact of different neural models and modules in Neural Snowball for improving performance. Also, it will be interesting to generalize the proposed method to more complex tasks such as distant supervision or semi-supervised relation extraction.
where $\text{Ent}(x)$ means the entity pair of the instance x. Then, we get the candidate set C_1 from the unlabeled corpus T with

$$C_1 = \{x | \text{Ent}(x) \in E, x \in T\}. \quad (2)$$

Since those instances in C_1 share same entity pairs with those in S_r, we believe that they are likely to express the relation r. Yet to further alleviate false positive instances, for each x in C_1, we pair it with all instances $x' \in S_r$ that share the same entity pair with x, and use the Relation Siamese Network (RelSN) to get similarity scores. Averaging those scores we will get a confidence score of x, noted as $\text{score}_1(x)$.

Then, we sort instances in C_1 in decreasing order of confidence scores and pick the top-K_1 instances as new ones added to S_r. Since there exists the circumstance that less than K_1 instances really belong to the relation, we add an external condition that instances with confidence scores less than a threshold α will be excluded.

After all these steps we have now acquired new instances for the relation r with high confidence. With the expanded instance set S_r, we can fine-tune the relation classifier g as described in Section 3.3, for the classifier is needed in the next step.

Phase 2 In the last phase, we expand S_r, yet the entity pair set remains the same. So in this phase, our goal is to discover instances with new entity pairs for the relation r. We construct the candidate set for this phase by using the relation classifier g,

$$C_2 = \{x | g(x) > \theta, x \in T\}, \quad (3)$$

where θ is a confidence threshold. Then for each candidate instance x, it is paired with each x' in S_r as input of RelSN, and the confidence score $\text{score}_2(x)$ is the mean of all the similarity scores of those pairs. Instances having top-K_2 confidence scores and with score_2 larger than threshold β are added to S_r.

After one iteration of the process, we go back to phase 1, and another round starts. As the system runs, the instance set S_r grows bigger and the performance of the classifier increases until it reaches the peak. Best choices of the number of iterations and parameters mentioned above are discussed in the experiment section.

3.3 Neural Modules

Neural Snowball contains two key components: (1) the **Relation Siamese Network (RelSN)**, which aims at selecting high-quality instances from unlabeled data by measuring similarities between candidate instances and existing ones, and (2) the **Relation Classifier**, which classifies whether an instance belongs to the new relation.

Relation Siamese Network (RelSN) $s(x, y)$ It takes two instances as input and outputs a value between 0 and 1 indicating the probability that those two instances share the same relation type. Figure 3 shows the structure of our proposed Relation Siamese Network, which consists of two encoders f_s sharing parameters and a distant function. With instances as input, those encoders output the representation vectors for them. Then we compute the similarity score between the two instances with the following formula,

$$s(x, y) = \sigma(w_s^T(f_s(x) - f_s(y))^2 + b_s), \quad (4)$$
where the square notation refers to squaring each dimension of the vector instead of the dot product of the vector, and $\sigma(\cdot)$ refers to sigmoid function. This distance function can be considered as a weighted L2 distance with trainable weights w_s and bias b_s. A higher score indicates a higher possibility that the two sentences express the same relation (w_s will be negative to make this possible).

Relation Classifier $g(x)$ The classifier is composed of a neural encoder f, which transfers the raw instance x into a real-valued vector, and a linear layer with parameters w and b to get the probability that the input instance belongs to a relation r. It can be described by the following expression,

$$g(x) = \sigma(w^T f(x) + b),$$

(5)

where $g(x)$ is the output probability and $\sigma(\cdot)$ is sigmoid function to constrain the output between 0 and 1. Note that it is a binary classifier so $g(x)$ is just one real value, instead of a vector in the N-way classification scenario.

The reason to set it as a binary classifier instead of training an N-way classifier and utilizing softmax to constrain the outputs is that real-world relation extraction systems need to deal with negative samples, which express unknown relations and occupy a large proportion in corpora. These negative representations are not clusterable and considering them as “one class” is inappropriate. Another reason is that by using binary classifiers, we can handle the emergence of new relations by adding a binary classifier for the new relation, while the N-way classifier has to be retrained and data unbalance may lead to worse results for both new and existing relations.

With N binary classifiers, we can do N-way classification by comparing the output of each classifier, and the one with the highest probability wins. When no output exceeds a certain threshold, the sentence will be regarded as “negative”.

Pre-training and Fine-tuning To measure instance similarities on a new relation and to fast adapt the classifier to a new task, we need to pretrain the two neural modules. With the existing labeled dataset S_N, we can perform a supervised N-way classification to pre-train the hidden representations of the classifier. As for RelSN, we randomly sample instance pairs with the same or different relations from S_N and train the model with a cross entropy loss.

When given a new relation r with its S_r, the parameters for the whole RelSN and the encoder of the relation classifier are fixed, since they have already learned to extract generic features during pre-training. Further fine-tuning those parts with a small number of data might bring noise and bias to the distribution of the parameters.

Then we optimize the linear layer parameters w and b in the classifier by sampling minibatches from S_r as positive samples and from S_N as negative samples. Denoting the positive batch as S_b and the negative batch as T_b, the loss is as follows,

$$L_{S_b,T_b}(g_w,b) = \sum_{x \in S_b} \log g_w(x) + \mu \sum_{x \in T_b} \log (1 - g_w(x))$$

(6)

where μ is a coefficient of the negative sampling loss. Though for each batch we can sample positive and negative set with the same size, the actual numbers of positive instances and negative instances for the new relation differ a lot (a few versus thousands). So it is necessary to give the negative part of loss a smaller weight.

With the sampling strategy and loss function, we can do gradient-based optimization on parameters w and b. Here we choose Adam (Kingma and Ba, 2015) as our optimizer. The hyperparameters include the number of training epochs e, batch size bs, learning rate λ and coefficient of negative sampling loss μ. Algorithm 1 describes the process.

The fine-tuning process is used as one of our baselines. We also adopt this algorithm in each step of Neural Snowball after gathering new instances in S_r. Though it is a simple way to acquire
hidden features of the first token as the sentence and tail entities are different. Then, we take the marks at the beginning, around the head entities and before and after the entities. Note that we add special marks at the beginning of the sentence and after several attention layers outputs. To fit the RE task, as input and after several attention layers outputs RNN models. BERT takes tokens of the sentence as input and after several attention layers outputs.

3.4 Neural Encoders

As mentioned above, encoders are parts of our RelSN and classifiers and aim at extracting abstract and generic features from raw sentences and tagged entities. In this paper, we adopt two encoders: CNN (Nguyen and Grishman, 2015) and BERT (Devlin et al., 2018).

CNN We follow the model structure in Nguyen and Grishman (2015) for our CNN encoder. The model takes word embeddings and position embeddings (Zeng et al., 2014) as input. The embedding sequence is then fed into a one-dimensional convolutional neural network to extract features. Then those features are max-pooled to get one real-valued vector as the instance representation.

BERT Devlin et al. (2018) propose a novel language model named BERT, which stands for Bidirectional Encoder Representations from Transformers, and has obtained new state-of-the-arts on several NLP tasks, far beyond existing CNN or RNN models. BERT takes tokens of the sentence as input and after several attention layers outputs hidden features for each token. To fit the RE task, we add special marks at the beginning of the sequence and before and after the entities. Note that marks at the beginning, around the head entities and tail entities are different. Then, we take the hidden features of the first token as the sentence representation.

Algorithm 1: Fine-tuning the Classifier

Input: New relation instance set S_r, historical relation dataset S_N

Result: Optimized w and b

1. Randomly initialize w and b

2. for $i \leftarrow 1$ to e

3. // Get a sequence of minibatches from S_r

4. $S_{\text{batch}, seq} \leftarrow \text{batch}_\text{seq}(S_r, bs)$

5. for $S_b \in S_{\text{batch}, seq}$ do

6. // Sample the negative batch

7. $T_b \leftarrow \text{sample}(S_N, bs)$

8. Update w and b w.r.t. $L_{S_b, T_b}(g_w, b)$ with learning rate λ

9. end

end

4 Experiments

In this section, we will show that the relation classifiers trained with our Neural Snowball mechanism achieve significant improvements compared to baselines in our few-shot relation learning settings. We also carry out two quantitative evaluations to further prove the effectiveness of Relation Siamese Networks and the snowball process.

4.1 Datasets and Evaluation Settings

Our experiment setting requires a dataset with precise human annotations, large amount of data and also it needs to be easy to perform distant supervision on. For now the only qualified dataset is FewRel (Han et al., 2018). It contains 100 relations and 70,000 instances from Wikipedia. The dataset is divided into three subsets: training set (64 relations), validation set (16 relations) and test set (20 relations). We also dump an unlabeled corpus from Wikipedia with tagged entities, including 899,996 instances and 464,218 entity pairs, which is used for the snowball process.

Our main experiment follows the setting in Section 3.1. First we further split the training set into training set A and B. We use the training set A as S_N, and for each step of evaluation, we sample one relation as the new relation r and k instances of it as S_r from val/test set, and sample a query set Q from both training set B and val/test set. Then the models classify all the query instances in a binary manner, judging whether each instance mentions the new relation r. Note that the sampled query set includes N relations with sufficient training data, one relation r with few instances and many other unseen relations. It is a very challenging setting and closer to the real-world applications compared to N-way K-shot few-shot (sampling N classes and classifying inside the N classes), since corpora in the real world are not limited to certain relation numbers or types.

4.2 Parameter Settings

We tune our hyperparameters on the validation set. For parameters of the encoders, we follow (Han et al., 2018) for CNN and (Devlin et al., 2018) for BERT. For the fine-tuning, after grid searching, we adopt training epochs $e = 50$, batch size $bs = 10$, learning rate $\lambda = 0.05$ and negative loss coefficient $\mu = 0.2$. BERT fine-tuning shares the same parameters except for $\lambda = 0.01$ and $\mu = 0.5$.
Table 1: Experiment results on our few-shot relation learning settings with different size of seed sets. Here P refers to precision, R refers to recall and F1 refers to F1-measure score.

Model	5 Seed Instances		10 Seed Instances		15 Seed Instances	
	P R F1	P R F1	P R F1	P R F1	P R F1	P R F1
BREDs	33.71 11.89 17.58	28.29 17.02 21.25	25.24 17.96 20.99			
Fine-tuning (CNN)	46.90 9.08 15.22	47.58 38.36 42.48	74.70 48.03 58.46			
Relation Siamese Network (CNN)	45.00 31.37 36.96	30.68 36.94 44.32	30.46 37.66 48.60			
Distant Supervision (CNN)	44.99 31.06 36.75	42.48 48.64 45.35	43.70 54.76 48.60			
Neural Snowball (CNN)	48.07 36.21 41.30	47.28 51.49 49.30	68.25 58.90 63.23			
Fine-tuning (BERT)	50.85 16.66 25.10	59.87 55.19 57.43	81.60 58.92 68.43			
Relation Siamese Network (BERT)	39.07 51.39 44.47	42.42 54.93 47.87	44.10 52.73 48.03			
Distant Supervision (BERT)	38.06 51.18 43.66	38.45 76.12 51.09	35.48 80.33 49.22			
Neural Snowball (BERT)	56.87 40.43 47.26	60.50 62.20 61.34	78.13 66.87 72.06			

4.3 Few-Shot Relation Learning

Table 1 shows the experiment results on our few-shot relation learning tasks. We evaluate five model architectures: BREDs (Batista et al., 2015) is an advanced version of the original snowball (Agichtein and Gravano, 2000), which uses word embeddings for pattern selection; Fine-tuning stands for directly using Algorithm 1 with few-shot instances to train the new classifier; Relation Siamese Network (RelSN) refers to computing similarity scores between the query instance and each instance in \(S_r \), and averaging them as the probability of the query one expressing the new relation; Distant Supervision refers to taking all instances sharing entity pairs with given seeds into the training set and using Algorithm 1; Neural Snowball is our proposed method. We do not evaluate other semi-supervised and few-shot RE models for the reason that they do not suit our few-shot new relation learning settings.

From Table 1 we can identify that (1) our Neural Snowball achieves the best results in both settings and with both encoders. (2) While fine-tuning, distant supervision and Neural Snowball improve with the increase of seed numbers, BREDs and RelSN have little promotion.

By further comparison between Neural Snowball and other baselines, we notice that our model largely promotes the recall values while maintaining the high precision values. It indicates that Neural Snowball not only gathers new training instances with high quality, but also successfully extracts new relation facts and patterns to widen the coverage of instances for the new relation.

4.4 Analysis on Relation Siamese Network

Table 2: Precisions at top-N instances scored by RelSN (CNN) in the 5-seed setting. “Train” and “Test” represent results on relations in the training and test sets.

Relation Set	P@5	P@10	P@20	P@50
Train	83.60	80.66	76.03	61.98
Test	82.15	78.64	72.57	55.10

To examine the quality of instances selected by RelSN, we randomly sample one relation and 5 instances of it and use the rest data as query instances. We use the method in Section 3.2 to calculate a score for each query instance, then we calculate precisions at top-N instances (P@N).

We can see that RelSN achieves a precision of 82.15% at top-5 instances on the test set. It is relative high considering RelSN is only given a small number of instances and it even have not seen the relation before. Also note that though RelSN is only trained with relations of the training set, the performance on relations in the test set has only a narrow gap to the training set, further proving the effectiveness of RelSN.
Figure 4: Evaluation results on each iteration of Neural Snowball. Blue bars are numbers of instances added. Solid lines represent performance on the NS setting, and dotted lines represent the random setting.

4.5 Analysis on Neural Snowball Process

To further analyze the iterative process of Neural Snowball (NS), we present a quantitative evaluation on the numbers of newly-gathered instances as well as the classifier performance on relation *chairperson* with the 5-seed-instance setting. Note that it is a randomly-picked relation and other relations have shown similar trends.

Figure 4 demonstrates the development of evaluation results as the iteration grows. Here we adopt two settings: **NS setting** refers to fine-tuning the classifier with instances selected by Neural Snowball, and **random setting** refers to fine-tuning on randomly-picked instances of relation *chairperson* with the same amount of NS, under the premise of knowing all the instances of the relation. Note that random setting is an ideal case since it reflects the real distribution of data for the new relation and the overall performance of the random setting serves as an upper bound.

From the results of random setting, we see that the binary classifier obtains higher recall and performs a little lower in precision when trained on larger randomly-distributed data. This can be explained that more data brings more patterns in representations, improving the completeness of extracting while sacrificing a little in quality.

Then by comparing the results between the two settings, we get two observations: (1) As the number of iterations and amount of instances grow, the classifier fine-tuned on NS setting maintains higher precision than the one fine-tuned on random setting, which proves that RelSN succeeds in extracting high-confidence instances and brings in high-quality patterns. (2) The recall rate of NS grows less than expected, indicating that RelSN might overfit existing patterns. To maintain high precision of the model, Neural Snowball stuck in the “comfort zone” of existing high-quality patterns and fails to jump out of the zone to discover patterns with more diversity. It is a point we plan to further investigate in future.

5 Conclusion and Future Work

In this paper, we propose Neural Snowball, a novel approach that learns to classify a new relation with only a small number of instances. We design Relation Siamese Networks (RelSN), which are pre-trained on historical relations to iteratively select reliable instances for the new relation from unlabeled corpora. Evaluations on a large-scale relation extraction dataset demonstrate that Neural Snowball brings significant improvement in performance of extracting new relations with few instances. Further analysis proves the effectiveness of RelSN and the snowball process.

In the future, we will further explore the following directions:

(1) The deficiency of our current model is that it mainly extracts patterns semantically close to the given instances, which limits the increase in recall. In the future, we will explore how to jump out of the “comfort zone” and discover instances with more diversity.

(2) For now, RelSN is fixed during new relation learning and shares the same parameters across all relations. This can be ameliorated by an adaptive RelSN that can be further optimized given new relations and new instances. We will investigate into this topic and further improve the efficiency of RelSN.
References

Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting relations from large plain-text collections. In Proceedings of JCDL, pages 85–94.

Michele Banko, Michael J Cafarella, Stephen Soderland, Matthew Broadhead, and Oren Etzioni. 2007. Open information extraction from the web. In Proceedings of IJCAI, pages 2670–2676.

David S Batista, Bruno Martins, and Mário J Silva. 2015. Semi-supervised bootstrapping of relationship extractors with distributional semantics. In Proceedings of EMNLP, pages 499–504.

Yoshua Bengio. 2012. Deep learning of representations for unsupervised and transfer learning. In Proceedings of the Workshop on Unsupervised and Transfer Learning of ICML, pages 17–36.

Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. 2016. Fully-convolutional siamese networks for object tracking. In Proceedings of ECCV, pages 850–865.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked, Stephen Soderland, Daniel S Weld, and Alexander Yates. 2005. Unsupervised named-entity extraction from the web: An experimental study. AI, (1):91–134.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of ICML, pages 1126–1135.

Geoffrey French, Michal Mackiewicz, and Mark Fisher. 2017. Self-ensembling for visual domain adaptation. arXiv preprint arXiv:1706.05208.

Matthew R Gormley, Mo Yu, and Mark Dredze. 2015. Improved relation extraction with feature-rich compositional embedding models. In Proceedings of EMNLP, pages 1774–1784.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation. In Proceedings of EMNLP, pages 4803–4809.

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu, and Jun Zhao. 2017. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In Proceedings of ACL, pages 221–231.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of ICLR.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural networks for one-shot image recognition. In Proceedings of the Workshop of ICML.

Dekang Lin and Patrick Pantel. 2001. Dirt@ sbt@ discovery of inference rules from text. In Proceedings of SIGKDD, pages 323–328.

ChunYang Liu, WenBo Sun, WenHan Chao, and Wanxiang Che. 2013. Convolution neural network for relation extraction. In Proceedings of ADMA, pages 231–242.
Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, and WANG Houfeng. 2015. A dependency-based neural network for relation classification. In Proceedings of ACL-IJCNLP, pages 285–290.

Diego Marcheggiani and Ivan Titov. 2016. Discrete-state variational autoencoders for joint discovery and factorization of relations. TACL, 4:231–244.

George A Miller. 1995. Wordnet: a lexical database for English. Communications of the ACM, 38(11):39–41.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision for relation extraction without labeled data. In Proceedings of ACL-IJCNLP, pages 1003–1011.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. 2018. A simple neural attentive meta-learner. In Proceedings of ICLR.

Makoto Miwa and Mohit Bansal. 2016. End-to-end relation extraction using lstms on sequences and tree structures. In Proceedings of ACL, pages 1105–1116.

Jonas Mueller and Aditya Thiyagarajan. 2016. Siamese recurrent architectures for learning sentence similarity. In Proceedings of AAAI.

Tsendsuren Munkhdalai and Hong Yu. 2017. Meta-networks. In Proceedings of ICML, pages 2554–2563.

Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. 2011. Scalable knowledge harvesting with high precision and high recall. In Proceedings of WSDM, pages 227–236.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 2016. Learning text similarity with siamese recurrent networks. In Proceedings of the Workshop on Representation Learning for NLP, pages 148–157.

Thien Huu Nguyen and Ralph Grishman. 2015. Relation extraction: Perspective from convolutional neural networks. In Proceedings of the Workshop on Vector Space Modeling for NLP, pages 39–48.

Patrick Pantel and Marco Pennacchiotti. 2006. Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In Proceedings of COLING/ACL, pages 113–120.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. 2018. Few-shot image recognition by predicting parameters from activations. In Proceedings of CVPR, pages 7229–7238.

Sachin Ravi and Hugo Larochelle. 2017. Optimization as a model for few-shot learning. In Proceedings of ICLR.

Sebastian Riedel, Limin Yao, and Andrew McCallum. 2010. Modeling relations and their mentions without labeled text. In Proceedings of ECML-PKDD, pages 148–163.

Ellen Riloff, Rosie Jones, et al. 1999. Learning dictionaries for information extraction by multi-level bootstrapping. In Proceedings of AAAI/IAAI, pages 474–479.

Chuck Rosenberg, Martial Hebert, and Henry Schneiderman. 2005. Semi-supervised self-training of object detection models. In Proceedings of WACV, pages 29–36.

Benjamin Rozenfeld and Ronen Feldman. 2008. Self-supervised relation extraction from the web. KAIS, (1):17–33.

Cicero dos Santos, Bing Xiang, and Bowen Zhou. 2015. Classifying relations by ranking with convolutional neural networks. In Proceedings of ACL-IJCNLP, pages 626–634.

Yusuke Shinyama and Satoshi Sekine. 2006. Preemptive information extraction using unrestricted relation discovery. In Proceedings of NAACL-HLT, pages 304–311.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for few-shot learning. In Proceedings of NIPS, pages 4077–4087.

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. 2012. Semantic compositionality through recursive matrix-vector spaces. In Proceedings of EMNLP-CoNLL, pages 1201–1211.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales. 2018. Learning to compare: Relation network for few-shot learning. In Proceedings of CVPR.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. 2016. Matching networks for one shot learning. In Proceedings of NIPS, pages 3630–3638.

Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative knowledgebase. Communications of the ACM, 57(10):78–85.

Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking for academic search via knowledge graph embedding. In Proceedings of WWW, pages 1271–1279.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin. 2015. Classifying relations via long short term memory networks along shortest dependency paths. In Proceedings of EMNLP, pages 1785–1794.

Limin Yao, Aria Haghighi, Sebastian Riedel, and Andrew McCallum. 2011. Structured relation discovery using generative models. In Proceedings of EMNLP, pages 1456–1466.

Jianbo Yuan, Han Guo, Zhiwei Jin, Hongxia Jin, Xianchao Zhang, and Jiebo Luo. 2017. One-shot learning for fine-grained relation extraction via convolutional siamese neural network. In Proceedings of BigData, pages 2194–2199.
Dmitry Zelenko, Chinatsu Aone, and Anthony Richardella. 2003. Kernel methods for relation extraction. *JMLR*, (Feb):1083–1106.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. 2015. Distant supervision for relation extraction via piecewise convolutional neural networks. In *Proceedings of EMNLP*, pages 1753–1762.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via convolutional deep neural network. In *Proceedings of COLING*, pages 2335–2344.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. 2016. Collaborative knowledge base embedding for recommender systems. In *Proceedings of SIGKDD*, pages 353–362.

Xueting Zhang, Flood Sung, Yuting Qiang, Yongxin Yang, and Timothy M Hospedales. 2018. Deep comparison: Relation columns for few-shot learning. *arXiv preprint arXiv:1811.07100*.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. 2005. Exploring various knowledge in relation extraction. In *Proceedings of ACL*, pages 427–434.

Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and Ji-Rong Wen. 2009. Statsnowball: a statistical approach to extracting entity relationships. In *Proceedings of WWW*, pages 101–110.