ABSTRACT
The idea of applying machine learning (ML) to solve problems in security domains is almost 3 decades old. As information and communications grow more ubiquitous and more data become available, many security risks arise as well as appetite to manage and mitigate such risks. Consequently, research on applying and designing ML algorithms and systems for security has grown fast, ranging from intrusion detection systems (IDS) and malware classification to security policy management (SPM) and information leak checking.

In this paper, we systematically study the methods, algorithms, and system designs in academic publications from 2008-2015 that applied ML in security domains. 98% of the surveyed papers appeared in the 6 highest-ranked academic security conferences and 1 conference known for pioneering ML applications in security. We examine the generalized system designs, underlying assumptions, measurements, and use cases in active research. Our examinations lead to 1) a taxonomy on ML paradigms and security domains for future exploration and exploitation, and 2) an agenda detailing open and upcoming challenges. Based on our survey, we also suggest a point of view that treats security as a game theory problem instead of a batch-trained ML problem.

Keywords: Security, Machine Learning, Large-scale Applications, Game Theory, Security Policy Management

1. INTRODUCTION AND MOTIVATION
Since Dorothy Denning’s seminal 1987 paper on intrusion detection [1], ML and data mining (DM) have steadily gained attention in security applications. DARPA’s 1998 network intrusion detection evaluation [2], and KDD (Conference on Knowledge Discovery and Data Mining) Cup’s 1999 challenge [3] [4] have raised profile of ML in security contexts. Yet, constrained by hardware and system resources [5], large-scale ML applications did not receive much attention for many years.

Advances in hardware and data processing capacities enabled large-scale systems. With increasing amount of data from growing numbers of information channels and devices, the analytic tools and intelligent behaviors provided by ML becomes increasingly important in security. With DARPA’s Cyber Grand Challenge final contest looming [7], research interest in ML and security is becoming even more conspicuous. Now is the crucial time to examine research works done in ML applications and security. To do so, we studied the state-of-art of ML research in security between 2008 and early 2016, and systematize this research area in 3 ways:

1. We survey cutting-edge research on applied ML in security, and provide a high-level overview taxonomy of ML paradigms and security domains.
2. We point to research challenges that will improve, enhance, and expand our understanding, designs, and efficacy of applying ML in security.
3. We emphasize a position which treats security as a game theory problem.

2. OVERVIEW: STRUCTURE & SCOPE
While we realize there are different ways to classify existing security problems based on purpose, mechanism, targeted assets, and point of flow of the attack, our SoK’s section structure is based on the “Security and Privacy” category of 2012 ACM Computing Classification System [8], which is a...
Figure 1: Generalization of surveyed ML System Designs in Security; details in section 2.1

systematically went through all proceedings between 2008 and early 2016 of the top 6 network- and computer-security conferences to collect relevant papers. Because of KDD's early and consistent publication record on ML applications in Security, and its status as a top-level venue for ML and DM applications, we also include KDD's 2008-2015 proceedings. To demonstrate the wide-ranging research attention drawn to ML applications in security, we also added chosen selections from the workshop AISec, International Conference on Machine Learning(ICML), Neural Information Processing Systems(NIPS), and Internet Measurement Conference(IMC) papers between 2008-2015, mostly in the "Future Development" section.

2.1 ML System Designs in Security

Figure 1 shows the generalization of ML system designs when applied in security, that emerged from our survey of the papers (the legend is on the figure's bottom left). In different use cases, the system components may embody different names, but their functionalities and positions are captured in the figure. For example:

1. **Knowledge base** is baseline of known normality and/or abnormality, depending on use cases, they include but are not limited to blacklist(BL), whitelist(WL), watchlist; known malware signatures, system traces, and their families; initial set of malicious web pages; existing security policies or rules, etc..
2. **Data sources** are where relevant data is collected. They can be either off-line or live online data feed, e.g. malware traces collected after execution(off-line), URL stream(online).
3. **Training data** are labeled data which are fed to classifiers in training. They can be standard research datasets, new data(mostly from industry) labeled by human, synthetic datasets, or a mix.
4. **Pre-processor and feature extractor** construct features from data sources, for example: URL aggregators, graph representations, SMTP header extractions, n-gram model builders.

We focus our survey on security **applications** and security-related ML and AI problems on the defense side, hence our scope excludes theories related to such as differential privacy and privacy-preservation in ML algorithms[9, 10, 11], and excludes ML applications in side channel attacks such as [12] [13] [14]. Partly because there is already a 2013 SoK on evolution of Sybil defense [15] in online social networks(OSN), and partly because we would like to leave it as a small exercise to our readers, we excluded Sybil defense schemes in OSN as well [16] [17] [18] [19] [20]. Still with a broad base, we propose an alternative position to frame security issues, and we also recommend a taxonomy for ML applications in security use cases. Yet, we do not conclude with a terminological list of "right" or "correct" approaches or methods. We believe that the range of the applications is too wide to fit into one singular use case or analysis framework. Instead, we intend this paper as a systematic design and method overview of thinking about researching and developing ML algorithms and applications, that will guide researchers in their problem domains on an individual basis. We target our work to security researchers and practitioners, so we assume that our readers have general knowledge for key security domains and awareness of common ML algorithms, and we also define terms when needed.

We agree with assessment of top conferences in [21]. We

1All papers are listed in chronological order with the first author’s last name followed by venue acronyms and year.
2We use the same conference-ranking websites to first decide our list of top-level conferences:(1)Microsoft Academic Search - Top Conferences in Security & Privacy [http://academic.research.microsoft.com/RankList?entitytype=3&topDomainId=2&subDomainId=2](1)GuoFei Gu - Computer Security Conference Ranking and Statistics [http://faculty.cs.tamu.edu/guofei/sec_stat.htm](1)Jianying Zhou - Top Crypto and Security Conferences Ranking [http://icsd.i2r.a-star.edu.sg/staff/jianying/conference-ranking.html]. All 3 rankings have the same top 6, and because Crypto and Eurocrypt do not have papers within our focus, we decided on these 4: ACM CCS, IEEE S&P (hereafter "SP"), NDSS, and USENIX Security (hereafter “Sec” or “USENIX”).
Table 1: Overview matrix of sections covering ML paradigms and security domains; details in section 2.2

Attacker Type	Supervised	Semi-supervised	Unsupervised	HITL	Game Theory
Passive	3.1/4/5/6/1/6.2/7.1/7.2/7.3	5/6.1/7.2	3.1/3.2/5/6.1/6.2/7.1/7.2/7.3	5/6.1	6.2
Semi-aggressive	3.1/3.2/4/5/6.1/6.2/7.1/7.2/7.3	7.1/7.3	3.1/5	6.2	
Active	7.1	6.2/7.2			

Means of Attack

Purpose of Attack	Confidentiality	Availability	Integrity
Confidentiality	4/5/6.1/7.2	4/6.2/7.2	5/6.1/7.1/7.2/7.3
Availability	3.1/6.2/7.3	3.1	3.2/5/6.1/7.1/7.2/7.3
Integrity	3.2/5/6.1/6.2/7.1/7.2/7.3	5/6.1/7.1/7.2/7.3	5/6.1/7.1/7.2/7.3

Dynamic analyzer and static analyzer are used most often in malware-related ML tasks, and human feedback loop is added when the system’s design intends to be semi-supervised or human-in-the-loop (HITL).

2.2 ML Paradigms in Security Problems

Table 1 shows a matrix with rows indicating different ways of classifying the security problems, and the columns showing well-understood ML paradigms. Based on the threat models and modeling purposes presented in the papers, we qualitatively group the attacker into three groups. If there are multiple attacker types in one section, the section’s numbering appears multiple times accordingly.

1. Passive attackers make no attempt to evade detections; their behaviors fit into descriptions of the threat models.
2. Semi-aggressive attackers have knowledge of the detectors, and only attempt to evade detections.
3. Active attackers do not only have knowledge of the detectors and attempt to evade detections, but also actively try to poison, mislead, or thwart detection.
4. Knowledge of attackers, is the information in at least one of the five aspects: the learning algorithms themselves, the algorithms' feature spaces, the algorithm's parameters, training and evaluation data - regardless of being labeled or not - used by the algorithms, and decision feedback given by the algorithms [23, 24, 25].

Influenced by [23, 24], we extend their definitions, and qualitatively categorize attackers' primary purpose as to compromise confidentiality, availability or integrity of legitimate systems, services, and users.

1. Attacks on confidentiality compromise the confidential or secret information of systems, services, or users (e.g. password crackers).
2. Attacks on availability make systems and services unusable with unwanted information, requests, or many errors in defense schemes (e.g. DDoS, spam).
3. Attacks on integrity masquerade maliciously intentions as benign intentions in systems, services, and users (e.g. malware).

We also define ML paradigms shown in the matrix:

1. Supervised learning uses labeled data for training.
2. Semi-supervised learning uses both labeled and unlabeled data for training.
3. Unsupervised learning has no labeled data available for training.
4. Human-in-the-loop (HITL) learning incorporates active human feedback to algorithm’s decisions into the knowledge base and/or algorithms.
5. Game Theory (GT)-based learning considers learning as a series of strategic interactions between the model learner and actors with conflicting goals. The actors can be data generators, feature generators, chaotic human actors, or a combination [23, 24, 26, 27, 28].

For "Means of Attacks" in Table 1, server, network, and user are straightforward and intuitive, so here we only describe "client app" and "client machine". Client app is any browser-based means of attack on any client device, and client machine is any non-browser-based means of attack on any client device.

As shown in Table 1, the majority of surveyed papers in different security domains use supervised learning to deal with passive or semi-aggressive attackers. However, the core requirement of supervised learning - labeled data - is not always viable or easy to obtain, and authors have repeatedly written about the difficulty of obtaining labeled data for training. Based on this observation, we conclude that exploring semi-supervised and unsupervised learning approaches would expand the research foundation of ML applications in security domains, because semi-supervised and unsupervised learning can utilize unlabeled datasets which had not been used by supervised learning approaches before.

Moreover, during our survey, we realized that many ML applications in security assume that training and testing data come from the same distribution (in statistical terms, this is the assumption of stationarity). However, in the real world, it is highly unlikely that data are stationary, let alone that the data could very well be generated by an adversarial data generator producing training and/or testing data sets, as the case in [26], or simply be generated responding to specific
Table 2: Overview matrix of sections covering ML paradigms and security domains. Number in each box is the number of papers in our survey that belongs to the category, followed by a parenthesis with the percentage of the number among all counted papers.

Attacker Type	Supervised	Semi-supervised	Unsupervised	HTL	Game Theory
Passive	58(49%)	7(5.9%)	24(20%)	2(1.7%)	0(0%)
Semi-aggressive	18(13%)	4(3.4%)	3(2.5%)	0(0%)	1(0.85%)
Active	1(0.85%)	0(0%)	0(0%)	0(0%)	2(1.7%)

Means of Attack	Purpose of Attack
Server	Confidentiality
	4(3.4%)
	(1.085%)
	(1.085%)
	(1.085%)
	(0.0%)
	(0.0%)
	(0.0%)
Network	Availability
	17(14.4%)
	3(3.4%)
	11(9.3%)
	(0.0%)
	(1.085%)
	(2.17%)
	(0.0%)
Client app	Integrity
	4(3.4%)
	0(0%)
	1(0.85%)
	(2.17%)
	(0.0%)
User	31(26%)
	2(1.7%)
	9(7.6%)
	(0.0%)
	(2.17%)
Client machine	Confidentiality
	20(17%)
	4(3.4%)
	5(4.2%)
	(0.0%)
	(0.0%)

2.4 Related Work

Despite the surge of research interests and industry applications in the intersection of ML and security, few surveys or overviews were published after 2008, the watershed year of increasing interest in this particular domain. In 2013 [40] surveyed server-side web application security, [41] surveyed data mining applied to security in the cloud focusing on intrusion detection, [42] discussed an ML perspective in network anomaly detection. While they are helpful and informative, the former two are limited by their scope and perspective, and the latter serves as a textbook, hence absent the quintessential of survey - mapping the progresses and charting the state-of-art. A collection of papers in 2002 and 2012 [43] discussed applications of DM in computer security, but lacks a systematic survey on ML applications in resolving security issues. [44] briefly compared two network anomaly detection techniques, but limited in scope. [45] of 2009 conducted a comprehensive survey in anomaly detection techniques, some involving discussions of security domains. The Dagstuhl Manifesto in 2013 [36] articulated the status quo and looked to the future of ML in security, but the majority of the literature listed were published before 2008. [46] of 2010 highlighted use cases and challenges for ML in network intrusion detection, but did not incorporate a high-level review of ML in security in recent years.

3. NETWORK SECURITY

3.1 Botnets and Honeypots

Research works on botnets among our surveyed literature focuses mainly on designing systems to detect command-and-control(C&C) botnets, where many bot-infected machines are controlled and coordinated by few entities to carry out malicious activities [47] [48] [49]. Those systems need to learn decision boundaries between human and bot activities, therefore ML-based classifiers are at the core of those systems, and are often trained by labeled data in supervised learning environments. The most popular classifier is support vector machines(SVMs) with different kernels, while spatial-temporal time series analysis and probabilistic inferences are also notable techniques employed in ML-based classifiers. Topic clustering, mostly seen in natural language processing(NLP), is used to build a large-scale system to
identify bot queries[50]. In botnet detection literature, 3 core assumptions are widely shared:

1. Botnet protocols are mostly C&C[47,48,51].
2. Individual bots within same botnets behave similarly and can be correlated to each other[51,52].
3. Botnet behaviors are different and distinguishable from legitimate human user, e.g. human behaviors are more complex[53,54,55].

Other stronger assumptions include that bots and humans interact with different server groups[56], and content features from messages generated by bots and human are independent[53]. While classification techniques differ, WLS, BLs, hypothesis testing, and a classifier[47,49,53] are usual system components. Attempts have been made to abstract state machine models of network to simulate real-world network traffic and create honeypots[57]. Ground truths are often heuristic[52], labeled by human experts, or a combination - even at large scale, human labeled ground truths are used, for example in[53], game masters’ visual inspections serve as ground truth to detect bots in online games. In retrospect, the evolution of botnet detection is clear: from earlier and more straightforward uses of classification techniques such as clustering and NB, the research focus has expanded from the last step of classification, to the important preceding step of constructing suitable metrics; that measures and distinguishes bot-based and human-based activities[50,55].

3.2 Proxies and DNS
Classifying DNS domains that distribute or host malware, scans, and malicious content has drawn research interest especially in passive DNS analysis. There are two main approaches: reputation system[58,59,60] and classifier[61,62]. Reputation system scores benign and malicious domains and DNS hosts, and a ML-based classifier learns boundaries between the two. Nonetheless, both reputation system and classifier use various decision trees, random forest(RF), naive Bayes(NB), SVM, and clustering techniques for mostly supervised learning-based scoring and classification. Many features used are from protocols and network infrastructures, e.g. border gateway protocol(BGP) and updates, automated systems(AS), registration, zone, hosts, and public BLs. Similar to botnet detectors, variations of BL, WL, and honeypots[63] are used in similar functions as knowledge bases, while ground truths are often taken from public BLs, limited WLS, and anti-virus(AY) vendors such as McAfee and Norton[53,59,61]. But before any ML attempts take place, most studies would assume the following:

1. Malicious uses of DNS are distinct and distinguishable from legitimate DNS services.
2. The data collection process - regardless of different names such as data flow, traffic recorder, or packet assembler - follows a centralized model. In other words, all the traffic/data/packets flow through certain central node or nodes to be collected.

Stronger assumptions include that AS hijackers cannot manipulate AS path before it reaches them[60], and maliciousness will trigger an accurate IP address classifier to fail[63]. Besides analyzing the status quo, [61,65,66] showed efforts to preemptively protect network measurement integrity and predict potentially malicious activities from web domains and IP address spaces.

4. SECURITY SERVICES
Both offense and defense for access control, authentication, and authorization reside within the domain of Security Services. Defeating audio and visual CAPTCHAs(Completely Automated Public Turing test to tell Computers and Humans Apart)[67,68,69,70], cracking passwords[71,72,73], measuring password strengths[72,74,75], and uncovering anonymity[76,77,78,79] are 4 major use cases. On the offense, specialized ML domains such as computer vision, signal processing, and NLP automate attacks on user authentication services i.e. textual or visual passwords and CAPTCHAs, and uncover hidden identities and services. On the defense side, entropy-based and ML-based systems calculate password strengths. Other than traditional user authentication schemes, behavioral metrics of users are also introduced. Following the generalized ML pipeline shown in Figure 1, the “classifier” is replaced by “recognition engine” in the password cracking process, and “user differentiation engine” in authentic metric engineering[80,81]. Hence the process becomes: “Data source → Pre-process & feature extraction → Recognition or user differentiation engine → Decision” for ML-based security services. A noteworthy trend to observe, is that attacks on CAPTCHAs are getting more generalized - from utilizing SVM in 2008 to attack a specific type of text CAPTCHA[67], in 2015 a generic attach approach to attack text-based CAPTCHA was proposed.

ML-based attacks on textual and visual CAPTCHA typically follow the 4-step process:

1. Segmentation: e.g. signal to noise ratio(SNR) for audio; hue, color, value(HSV) for visual[67,69,70,82].
2. Signal or image representation: e.g. discrete Fourier transformation(audio)[82], letter binarization (visual)[70].
3. Feature extraction: e.g. spectro-temporal features, character strokes[67,82].
4. Recognition: K-nearest neighbor(KNN), SVM(RBF kernel), convolutional neural networks(CNN)[83,71].

On the side of password-related topics in security services, there are 2 password models: whole-string Markov models, and template-based models[72]. Concepts in statistical language modeling, such as natural language encoder and n-grams associated with Markov models presented as directed graphs with nodes labeled by n-grams, and context-free grammars are common probabilistic foundations to build password strength meters and password crackers[71,72,82].

5. SOFTWARE & APPLICATION SECURITY
ML research in software and applications security mostly concentrate on web application security in our survey, and have used supervised learning to train popular classifiers such as NB and SVM to detect web-based malware and JavaScript(JS) code[85,86], filter unwanted resources and requests such as malicious advertisements[85,86,87,88], predict unwanted resources and requests (e.g. future blacklisted websites)[89,90,91], and quantify web application vulnerabilities[92]. While[91] explored building web application anomaly detector with scarce training data, most use
cases follow the supervised paradigm assuming plentiful labeled data: Data source(web applications, static/dynamic analyzers) → feature extraction(often with specific pre-filter, metrics, and de-obfuscator if needed) → classifiers trained with labeled data. Apart from this supervised setting, if a human expert’s feedback is added after classifiers’ decisions, it forms a semi-supervised system. Regardless of system designs, the usual assumption holds: malicious activities or actors are different from normal and benign ones likely do not change much. The knowledge bases of normality and abnormality can vary, from historical regular expression lists to publicly available databases. Graph-based algorithms and image recognition are both used in resource filtering, but in detecting JS malware and evasions and quantifying leaks, having suitable measurements of similarities is a significant focal point. Indeed, from ML-based classifiers do well in finding similarities between mutated malicious code snippets, while the same code pieces could evade static or dynamic analyzer detections.

6. SYSTEM SECURITY

6.1 Vulnerability and Policy Management
As Landwehr noticed, ML can be applied in SPM. However, in automatic fingerprinting of operating systems(OS), C4.5 decision tree, SVM, RF, KNN - some most commonly used ML-based classifiers in security - failed to distinguish remote machine instances with coarse- and fine-grained differences, as the algorithms cannot exploit semantic knowledge of protocols or send multi-packet probes. Yet by taking advantage of semantic and syntactic features, plus semi-supervised system design, showed that SVM(optimized by sequential minimal optimization(SMO) algorithm), KNN, and NLP techniques do well in Android SPM. On the other hand, in vulnerability management, ML-based classifiers do well in finding similarities between mutated malicious code snippets, while the same code pieces could evade static or dynamic analyzer detections.

6.2 Information Flow and DDoS

Compared to other security domains, ML research in information flow and DDoS focus more on evasion tactics and limits of ML systems in adversarial environments. Hence we grouped together the two sub-domains, and marked studies in Table 7 with “(IF)” and “(DDoS)” accordingly. For DDoS, it is common for attackers to generate attributes that look as plausible as actual attributes in benign patterns, and caused failure in ML-based automated signature generation to distinguish benign and malicious byte sequences. Then, introduced GT to evaluate DDoS attack and defense in real-world. For information flow, assumptions can take various forms. In PDF classifiers based on document structural features, it is malicious PDF has different document structures than good PDFs. In Android privacy detector, it is the majority of Android application’s semantics similar peers has similar privacy disclosure scenario. But DT poses semi-aggressive and active attackers with some information about the data, feature sets, and/or algorithms, and then attackers successfully evade ML-based PDF classifiers. Another example is, PDF malware could be classified, and then a generic and automated evasion technique based on genetic programming is successfully experimented. Overall, while using SVM, RF, and decision trees trained with labeled data to detect and predict DDoS and malicious information and data flows, ML applications in information flow and DDoS challenge the usual assumption of stationary adversary behaviors. From collecting local information only, to proposing a general game theory-based framework to evaluate DDoS attacks and defense, and from using static method to detect malicious PDF file to generic automated evasion, the scope of ML applications in both DDoS and IF have expanded and generalized over the years.

7. MALWARE, SOCIAL ENGINEERING & IDS

7.1 Malware Detection and Mitigations

Program-centric or system-centric, there are 3 areas that draw most ML application research attention in malware: malware detection, classifying unknown malware into families, and auto-extract program or protocol specifications. Realizing the signature and heuristic-based malware detectors can be evaded by obfuscation and polymorphism, more behavior-based matching and clustering systems and algorithms have been researched. Figure 1 already shows a generalized ML system design for malware detection and classification, and a more detailed description is below:

1. Collect malware artifacts and samples, analyze them, execute them in a controlled virtual environment to collect traces, system calls, API calls, etc.

Or, directly use information from already completed static and/or dynamic analyses.

3We direct our readers for more details in [21], which evaluated rigor and prudence of academic research up to 2011 that rely on malware execution, and provided a guide rubric for safety for handling malware datasets.
2. Decide or devise similarity measurements between generalized binaries, system call graphs(SCG), function call graphs(FCG), etc., then extract features [120] [121] [124] [126].

3. Classify malware artifacts into families in-sample, or cluster them with known malware families. The classifiers and clustering engines are usually trained with labeled data [68] [113] [123]. Popular ones are SVM and RF for classification, and hidden Markov model(HMM) and KNN alongside different clustering techniques.

Even in the use case of auto-extract specifications, supervised learning with labeled data is needed when behavior profiles, state machine inferences, fuzzing, and message clustering are present. Evasion techniques of detectors and poisoning of ML algorithms are also discussed, and typical evasion techniques include obfuscation, polymorphism, mimicry, and reflecting set generation [24] [113]. Malware detection and matching based on structural information and behavior profiles [118] [120] [124] show a tendency to use graph-based clustering and detection algorithms, and similarity measurement used in these algorithms have ranged from Jaccard distance to new graph-based matching metrics. While clustering techniques have been mostly used in malware detection, a nearest neighbor technique is explored to evade malware detection.

7.2 Social Engineering: Phishing, Malicious Content and Behaviors

Spams, malicious webpages and URLs that redirect or misleading users to malware, scams, or adult content [68] is perhaps as old as civilian use of the Internet. Research literature mostly focus on 3 major areas: detecting phishing malicious URLs [120] [124] [126], phishing malicious URLs, spam or fraudulent content [26] [29] [134] [135] [136]. Malware detection and matching based on structural information and behavior profiles [118] [120] [124] show a tendency to use graph-based clustering and detection algorithms, and similarity measurement used in these algorithms have ranged from Jaccard distance to new graph-based matching metrics. While clustering techniques have been mostly used in malware detection, a nearest neighbor technique is explored to evade malware detection.

7.3 IDS

From feature sets to algorithms and systems, IDS has been extensively studied. However, as [147] cautioned, ML can be easily conflated with anomaly detection. While both are applied to build IDS, important difference is that ML aims to generalize expert-defined distinctions, but anomaly detection focuses on finding unusual patterns, while attacks are not necessarily anomalous. For example, [143] distinguished n-gram model’s different use cases: anomaly detection uses it to construct normality(hence more appropriate when no attack is available for learning), and ML classifiers learn to discriminate between benign and malicious n-grams(hence more appropriate when more labeled data is present). Since 2008, works at top venues have added to the rigor for ML applications in IDS. For example, a common assumption of IDS is: Anomalous or malicious behaviors or traffic flows are fundamentally different from normal ones, but [147] challenges the assumption by studying low-cardinality intrusions where attackers don’t send a large number of probes. To address adversarial learning environment and minimal labels in training data, semi-supervised paradigms, especially active learning, are also used [147] [139]. Heterogeneous designs of IDS in different use cases give rise to many ad-hoc evaluations in research works, and a reproducibility and comparison framework was proposed to address the issue [150]. Meanwhile, techniques such as graph-based community detection [151], time series-based methods [152] [153], and generalized support vector data description in cyber-physical system and adversarial environment for auto-feature selection [154], have also emerged. Although they carry different assumptions of normality and feature representations, the supervised ML system design remains largely the same. Besides the fact the more techniques and use cases have been proposed, the focus of research in IDS has evolved from discovering new techniques and use cases, to rigorously evaluating fundamental assumptions and workflows of IDS. For example, while feature selection has stayed as a major component, there are re-examination of assumptions and measurements on what constitutes normality and abnormality [151], alternative to more easily acquire phone blocks follow a beta distribution as conjugate prior for Bernoulli and binomial distribution. Another social engineering tactic is spoofing identities with fake or compromised user accounts, and detection of such malicious behaviors utilize features from user profiles, spatial-, temporal-, and spatial-temporal patterns, and user profiles are used in particular to construct normality. Graph representation and trust propagation models are also deployed to distinguish genuine and malicious accounts with different behavior and representations [144] [145] [146]. Tracing the chronology of applying ML to defend against social engineering, one trend is clear: while content-, lexical-, and syntactic-based features are still being widely used, constructing graph representations and exploring temporal patterns of redirect paths, events, accounts, and behaviors have been on the rise as feature spaces for ML applications in defend against social engineering efforts. Accordingly, the ML techniques have also changed from different classification schemes to graphic models. It is also noteworthy that in [29] [146], addressing adversarial environments’ challenges to ML systems is elaborated as primary research areas, instead of a short discussion point.
8. FUTURE DEVELOPMENT

One key goal of our SoK survey is to help researchers look into the future. ML applications in security domains are attracting academic research attention as well as industrial interest, and this presents a valuable opportunity for researchers to navigate the landscapes between ML theories and security applications. There are also opportunities to explore if there are some types of ML paradigms that are especially well suited to particular security problems. Apart from highlighting that 1) semi-supervised and unsupervised ML paradigms are more effective in utilizing unlabeled data, hence ease the difficulty of obtaining labeled data, and 2) GT-based ML paradigms and HITL ML system designs will become more influential in dealing with semi-aggressive and aggressive attackers, we also share the following seven speculations of future trends, based on our current SoK.

1. Metric Learning: Measurement has become more and more conspicuous for ML research in security, mostly in similarity measurement for clustering algorithms[53, 65, 70, 120]. Proper measurements and metrics are also used to construct ground truths to evaluate ML-based classifiers, and also have important roles in feature engineering[55, 110, 155, 156]. Given the ubiquitous presence of metrics and the complex nature of constructing them, ML applications in security will benefit much from metric learning.

2. NLP: Malicious content, spam, and malware analysis and detections have used tools from statistical language modeling(e.g. n-gram-based representation for strings in code and HTTP request) [62, 74, 116, 158, 141, 157]. As textual information explodes, NLP will become more widely used beyond source filtering and clustering e.g. [57] use n-gram models to infer state machines of protocols.

3. Upstream movement of ML in security defense designs. In malware detection and classifications, behavior- and signature-based malware classifiers have used inputs from static and dynamic binary analysis as features[110, 111, 123, 129], and [112] already shows RNN can be applied to automatically recognize functions in binary analysis. We also see ML algorithms applied in vulnerability, device, and security policy management, DDoS mitigation, information flow quantifications, and network infrastructure[103, 106, 116, 141]. Hence, it is reasonable to expect that more ML systems and algorithms will move upstream in more security domains.

4. Scalability: With increasing amount of data from growing numbers of information channels and devices, scale of ML-based security defenses will become a more important aspect in researching ML applications in security[142, 59, 110, 135]. As a result, large-scale systems will enable distributed graph algorithms in malware analysis, AS path hijacker tracing, cyber-physical system fault correlation, etc.[49, 56, 72, 96, 106, 118].

5. Specialized probabilistic models will be applied beyond the context of classifiers, e.g. access control[83].

6. High FP rates have always been a concern for system architects and algorithm researchers[86][150]. Reducing FP rates will grow from an ad-hoc component in various system designs, to independent formal frameworks, algorithms, and system designs.

7. Privacy enforcement was framed as a learning problem recently in[158], in the light of many publications on privacy-preservation in ML algorithms, and privacy enhancement by probabilistic models[11][159][160][161][162][163]. This new trend will become more prominent.

9. CONCLUSION

In this paper, we analyzed ML applications in security domains by surveying literature from top venues of our field between 2008 and early 2016. We attempted to bring clarity to a complex field with intersecting expertise by identifying common use cases, generalized system designs, common assumptions, metrics or features, and ML algorithms applied in different security domains. We constructed a matrix showing the intersections of ML paradigms and three different taxonomy structures to classify security domains, and show that while much research has been done, explorations in GT-based ML paradigms and HITL ML system designs are still much desired (and under-utilized) in the context of active attackers. We point out 7 promising areas of research based on our observations, and argue that while ML applications can be powerful in security domains, it is critical to match the ML system designs with the underlying constraints of the security applications appropriately.

10. ACKNOWLEDGMENT

We would like to thank Megan Yahya, Krishnaprasad Vikram, and Scott Algatt for their time and valuable feedback.

APPENDIX

References

[1] D. E. Denning, “An intrusion-detection model,” IEEE Trans. Softw. Eng., 1987.

[2] (1998) Darpa intrusion detection evaluation. [Online]. Available: http://www.lim.mit.edu/idealv/data/.

[3] (1999) Kdd cup 1999 data. [Online]. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[4] C. Elkan. (1999) Results of the kdd’99 classifier learning contest. [Online]. Available: http://csweb.ucsd.edu/~elkan/clresults.html.

[5] Black hat usa 2014. [Online]. Available: https://www.blackhat.com/us-14/training.

[6] Rsa 2016. [Online]. Available: https://www.rsaconference.com/events/us16/expo-sponsors/exhibitor-list.

[7] (2016) Darpa cyber grand challenge. [Online]. Available: http://www.cybergrandchallenge.com.

[8] ACM. (2012) Acm 2012 computing classification system. [Online]. Available: https://www.acm.org/publications/class-2012.

[9] (2016) Aisec 2016 topic classifications. [Online]. Available: http://teamcore.usc.edu/people/armesh/AiSec2016/call-for-papers.html.

[10] R. Chow, P. Golle, and J. Staddon, “Detecting privacy leaks using corpus-based association rules,” in KDD 2008.
Table 3: Botnet Detectors

Study	Goal	System Components	ML Techniques
Gu NDSS'08	Detect hosts of botnets and malicious patterns	WL, feature extractor, clustering engine	X-Means Clustering
Gianvecchio NDSS'08	Distinguish between human- and bot-generated chats	Entropy-based classifier, ML-based classifier	NB
Gu USENIX'08	Network-based anomaly detection for botnet C&C channels	WL, watch list, protocol matcher, activity and message response detector, spatial-temporal correlation engine	sequential probability ratio testing(SPRT), hierarchical clustering
Ru NDSS'09	Detect redirection botnets	BL, WL, resource filtering(content analysis, URL probing, network analysis, IP correlation), classifier	Linear SVM, SPRT
Nagaraja USENIX'10	Find peer-to-peer botnets by traffic patterns	Traffic monitor honeypot communications, background traffic collector, graph preprocess, inference system	Graph clustering
Chen KDD'11	Classify bots or human interactions	Flow parser, BL, graph feature extractor, online classifier	Least squares SVM
Jacob USENIX'11	Finding C&C connections from bot traffic	Host-based information, C&C behavioral graphs, graphs of known C&C connections	Graph clustering(metric: non-induced maximum common sub-graph)
Jacob USENIX'12	Detect and contain malicious web crawlers	BL, WL, classifier	Ensemble classifier; NB, SVM(Gaussian radial basis function “RBF” kernel), association rules
Krueger CCST'12	Infer a state machine and message format of a protocol from network traffic	Message embedder, cluster, inference engine, template engine	N-grams, tokens, binomial test(to reduce dimensionality), non-negative matrix factorization(NMF), Markov model
Zhang NDSS'13	Study bot searches on a search engine	Feature extraction, pattern tree generation, topic clustering, classifier	Spectral clustering(metric: Jaccard distance), single linkage hierarchical clustering(SLHC)
Lee NDSS'16	Detect game bots in massively multiplayer online role-playing games	Game logs, transformation, feature extraction, metric computing, classifier	Logistic regression(LR), cosine similarity, Hurst exponent, exponential weighted moving average

Table 4: Proxies and DNS

Study	Goal	System Components	ML Techniques
Small USENIX'08	Auto-generate responses to malicious requests and harness pay-loads	Data collection, pre-process, classifier, language model generation	N-grams, Markov model, k-means iterative clustering, Needleman-Wunsch string alignment for contextual dependency, TF/IDF, k-medoids algorithm
Prakash KDD'09	Automated BGP updates analyzer to find anomalies	Data flow, temporal analysis, frequency analysis	Haar wavelet transform, a frequency analysis technique akin to NB
Ru USENIX'09	Locate prefix hijackers by AS path	Target monitor, classifier, rank engine	Hierarchical clustering(metric: similarity of AS level paths to the prefix), rank by likelihood of seeing hijacking events
Song NDSS'09	Detect anomalies in web traffic	Packet assembler, WL, feature extractor, classifier	N-grams feature extraction, Mixture-of-Markov-Chains model, K-means clustering
Antonakakis USENIX'10	Dynamic reputation system for DNS	Honeypot, knowledge base, BL, reputation system classifier	Decision tree, logit boost, X-means clustering
Bilge NDSS'11	Detect malicious DNS domains with passive DNS analysis	Traffic recorder, feature extractor, domain BL, learning module, classifier	C4.5 decision tree
Antonakakis USENIX'11	Detect malware domains at upper-level DNS hierarchy by passive DNS traffic analysis and global DNS query resolution	Knowledge base, learning module, training classifier, and feature extractor	RF
Fatemieh NDSS'11	Protect integrity of measurement in whitespace networks	Traffic collector, signal propagation, seed trusted set	SVM(quadric kernel)
Venkataaraman NDSS'13	Infer evolution of malicious activities in regions of Internet	Changes in prefixes and IP address distributions	Decision tree
Vissers NDSS 15	Classify parked domains	Browser-based client side classifier	RF
Table 5: Password Meters & Crackers, and CAPTCHA Breakers

Study	Goal	System Components	ML Techniques and Metrics(if specified)
Golle CCS'08[67]	Asirra CAPTCHA attack	Recognition or Classification Engine	SVM(RBF kernel)
Frank CCS'08[51]	Probabilistic model for role engineering in role-based control access(RBAC)	Disjoint Decomposition Model(a structural equivalent to infinite relational model), Gibbs sampling to infer DOM parameters, clustering	
Zander Sec'08[73]	Measurement and sampling techniques to reveal hidden services	Remote clock-skew estimation and synchronized sampling	Context-free grammar with information about probability distribution of user passwords
Weir SP'09[71]	Password cracker using probabilistic context-free grammar		
Bursztein SP'11[82]	Attack noise-based non-continuous audio CAPTCHA		Regularized Least Squares Classification(RLSC)
Zheng CCS'11[80]	Behavioral metric for user verification by mouse movement		
Brusztein CCS'11[68]	Text-based CAPTCHA strength and weakness. Recommended engines in different phases of attacks, and principles for secured CAPTCHAs	SVM(RBF kernel), KNN	
Castelluccia NDSS'12[74]	Password strength meter		Markov models built on n-gram database
Narayanan SP'12[78]	Identify anonymous authors by stylometry on internet scale		RLSC, linear SVM, NB
Dyer SP'12[79]	Traffic analysis attack against common countermeasures		NB, multinomial NB, variable n-gram, SVM
Kelley SP'12[79]	Measure password strength by simulating password-cracking algorithms		Brute force Markov models
Gao CCS'13[69]	Attack hollow textual CAPTCHAs		CNN
Afriz SP'14[77]	Detect multiple identities of anonymous authors		Principal component analysis(PCA), L1-regularized LR, linear SVM
Ma SP'14[73]	Study of probabilistic password models		Markov models and context-free grammar
Chatterjee SP'15[72]	Natural language encoder design for cracking-resistant password vaults	Natural language encoder(NLE)	
Freeman NDSS'16[25]	Probabilistic model for user authentication at login time		Probabilistic model
Gao NDSS'16[70]	Generic attack model on text-based CAPTCHAs		SVM(kernel unspecified), back-propagation neural network, template matching, CNN

Table 6: Softward and Applications Security

Study	Goal	System Components	ML Techniques and Metrics(if specified)
Zhang Sec'08[87]	Predict websites blacklisted by browsers	Security logs, pre-filter by knowledge base, relevance ranking, severity assessing, final BL	Link analysis and rank relevance correlation statistics on weighted undirected graph
Robertson NDSS’10[91]	ML-based web app anomaly detection with scarce training data	Knowledge base(local and global), offline and online trained classifier	HMM-encoded probabilistic grammar, agglomerative hierarchical clustering
Chapman CCS'11[92]	Quantify side channel leaks from web apps	Web app, web crawler, metrics and feature extraction, quantifier(classifier, entropy calculator, Fisher criterion calculator)	Nearest-centroid(metrics: Total-Source-Destination, edit distance, random distance)
Sculley KDD’11[85]	Detect adversarial advertisements	Model aggregation, labeled data, stratified sampling, classifier, human monitoring feedback	Linear SVM and its variations
Curtisinger Sec’11[83]	In-browser JS malware detection	URL BL, scan scripts, code de-obfuscator, feature extractor, classifier	NB(metric: matched strings)
Lu CCS'11[88]	Browser component to detect malicious search poisoning	Browser/network/search/user redirection chain information collector, feature extractor, classifier	C4.5 decision tree
Kapavelos USENIX'13[84]	Detect evasions in malicious JS	Web information, drive-by-download detector oracle, syntax tree parser, similarity measurement, pairing, evasion detector	KNN(metric: direct editing distance between nodes)
Bhagavatula AISec'14[86]	Auto-block ad resources	Independent classifier(trained with labeled datasets)	KNN, experimented with NB, SVM(polynomial and RBF kernel, LR)
Soska Sec T14[89]	Detect vulnerable websites before compromise	Websites’ statistics and contents, parser and filter, dynamic feature extractor, classifier	C4.5 decision tree ensembles
Borgolle Sec 15[90]	Detect website defacement	URL of website(no prior knowledge of content or structure of webpages needed)	Stacked encoder, deep neural network, image-based object recognition
Table 7: Vulnerability and Security Policy Management

Study	Goal	System Components	Similarity or Scoring Metrics	ML Techniques
Makauju	Mine clusters from event logs for fault management	3-step partitions, independent system	Token- and bijection-based heuristics	Iterative hierarchical clustering
Richardson	Limits of automated fingerprinting for OS	Probe generator, candidate probe set, trainer, learner, feedback loop	Not applicable(NA)	C4.5 decision tree, rule learner, SVM-SMO, instance-based clustering
Bozorgi	Predict possibility and timing of vulnerable exploits	Vulnerability disclosure reports, feature extractor, offline classifier, online predictor	Common Vulnerabilities Scoring System(CVSS) score, distance to maximum margin hyperplane	Linear SVM
Peng	Score and rank risks of Android apps	App meta-information corpus, trainer, classifier	Heuristics derived from models	NB(basic and with prior), a hierarchical Bayesian model built as an extension to latent Dirichlet allocation(LDA)
Pandita	Identify permission sentences in mobile apps	Semantic graph generator and engine, flow-of-logic engine, annotation engine, classifier(with user feedback loop to build a knowledge base)	NA	Part-of-speech(POS) tagging, phrase and clause parsing, named entity recognition(NER), semantic graph, typed dependency
Rashinol	Identify sources and sinks from code of any Android API	Input, semantic and syntactic feature matrices, classifier	NA	Linear SVM
Yamaguchi	Infer vulnerability search patterns in C code	Static analyzer, signature generator, inference engine	Jaro distance	Complete-linkage clustering
Wang	Semi-supervised learning for Android SPM	Knowledge base, classifier, co-occurrence learner, learning combiner, policy refinement generator feedback loop	Semantic pattern-to-rule distance	KNN(metric: semantic connectivity between known and unknown subjects)
Liu	Predict future data leak instances from network logs	Data collection, BL, feature extractor, aggregation, training, classifier	Correlations between misconfigurations and malicious activities	RF

Table 8: Information Flow and DDoS

Study	Goal	System Components	ML Techniques	
Berra	Detect and predict abnormal traffic patterns in distributed systems	Local model of information collector, classifier, learner	NB	
Venkataraman	Limits of pattern-extraction algorithms in adversarial setting	Adversary challenges the signature algorithm	Generic proof of bounded FPs and reflecting set of plausible aprioris	
Yan	Framework to evaluate DDoS attacks and defense	Network state, attacker and defender's move spaces, reasoning, decisions	Game theory(semi network-form game), Bayesian network	
Vardic	Static method to detect malicious PDF files	Hierarchical document structural feature extractor, classifier	C5.0 decision tree, SVM-RBF	
Rudic	Evasion of learning-based PDF classifier	Attacker's knowledge of feature sets, training data, classification algorithms(one or more areas)	SVM(linear and RBF), RF as test classifiers	
Lu	Detect privacy leak in data flow	App information collector, data- and system-dependence graph, privacy disclosure analysis, peer voting engine	Ranking based on TF/IDF and cosine similarity representing semantic similarity	
Xu	Generic automated evasions of malicious PDF classifiers	Population initialization, mutation, variant selection, feedback to population	SVM-RBF, RF	
Study	Goal	System Components	ML Techniques	
------------------	---	---	---	
Ahmed CCS’00[119]	Detect malware by Windows API call traces	Kernel mode hook, knowledge base, API call trace, feature extractor, training, classifier	C4.5 decision tree, instance-based KNN, NB, inductive rule learner, SVM-SMO	
Bayer NDSS’09[124]	Group similar malwares from taint source and control flow	Knowledge base, dynamic analysis, network analysis, behavior profile generator, clustering	Locality sensitive hashing(LSH), single linkage clustering, Metric: Jaccard distance, normalized compression distance	
Comparetti SP’09[120]	Automated reverse engineering of app layer protocol specifications	Dynamic analysis, session analysis, message clustering, state machine inference, labeling, fuzzing	Partitioning around medoids(PAM), metric: Jaccard index	
Kolbitsch Sec’09[118]	Detect malware at end hosts	Knowledge base, program slicing, behavioral profile generation, matching	Directed acyclic graph(DAG) matching algorithms	
Lanz CCS’10[116]	Diversity of system calls study(System-centric malware analysis)	Training dataset, system call sequence miner	N-gram models	
Ye KDD’10[123]	Auto-group malware samples into families with a cluster ensemble	Feature extractor, n-gram slicer, cluster ensemble, signature generator, human feedback loop	PCA, Ensemble: hierarchical & partitioning clustering, with weighted subspace K-medoids	
Fredrikson SP’10[125]	Auto-extraction on specifications of class of programs	Training datasets, behavior miner, extracted specifications	Simulated annealing in graph algorithm	
Jang CCS’11[122]	Reduce feature dimensionality for large-scale malware clustering	Static and dynamic analysis, fingerprinting, scheduler, clustering engine	Feature hashing(metric: Jaccard similarity), agglomerative hierarchical clustering	
Ye KDD’11[117]	Detect malware by file relations	File relation and content collector, feature extractor, classifier	Customized parametric model on content and non-parametric one on relations	
Antonakakis Sec’12[114]	Detect domain generation algorithm(DGA)-based malwares	Knowledge base, discovery engine, trainer, classifier within networks	X-means clustering, spectral clustering, decision tree, hidden Markov model(HMM)	
Rahman Sec’12[115]	Detect malwares propagated by social network	User authorization, post crawler, feature extractor, WL, BL, train(automatically labeled data) classifier, user feedback	SVM(kernel unspecified)	
Kong KDD’13[120]	Malware classification on structural information	Labeled set, function call graph(FCG) extractor, maximum margin distance learner, ensemble classifier	SVM-Gaussian kernel, KNN (metric: maximum margin-guided similarity between FCGs)	
Borgolte CCS’13[121]	Signature-based malware clustering	Website parser, DOM tree difference, computation engine, feature extractor, signature generator	Density-based clustering with ordering points(metrics: Shannon entropy, Kolmogorov complexity)	
Biggio AISec’14[31]	Perfect-knowledge attacker poisoning malware clustering	Malware instruction set representation, message embedder, clustering, classifier	Single linkage clustering	
Tamersoy KDD’14[108]	Detect malware by file relation graphs	File collector, LSH, graph builder, belief propagator	MinHash, LSH, pairwise Markov random field, unweighted bipartite graph	
Vernizzni NDSS’14[109]	Detect malware downloads in networks	Network traffic collector, feature extractor, distributed classifier	Decision tree(ground truth)	
Arp NDSS’14[110]	Explainable Android malware detection	Broad static analysis, feature embedder, detector, explanation	Linear SVM	
Graziano Sec’15[111]	Detect and forecast malware samples and trends from public dynamic analysis sandbox	Dynamic analysis, binary similarity, fine-grained static analysis, classifier	Logistic model tree	
Shin Sec’15[112]	Recognize functions in malware binaries	Binary, fixed-length subsequent extractor, learner	Recurrent neural network(RNN) with 1 hidden layer(optimized with stochastic gradient descent “SGD”)	
Kiriat CCS’15[127]	Auto-extract malware evasions behavior signature	Execution event extractor, call sequence alignment, event comparison, clustering	Local sequence alignment, IDF, hierarchical clustering(metric: Jaccard similarity)	
Smutz NDSS 16[113]	Detect malware mimicry evasions with ensemble classifiers	Two malware classifiers as an ensemble, using mutual agreement analysis	K-NN, NBC: Linear SVM, RF	
Study	Goal	Features	System Components	ML Techniques
------------	--	---	---	--
Chatterjee	Automated reputation system robust against Sybil attacks	Content evolution, contribution history	Editing history, local and global reputation growth and correlation, scoring	Customized reputation scoring functions
AISec’08	Detect malicious websites by URLs in active learning	Lexical- and host-based features, no content features	Live URL feed, labeling engine, feature extractor, classifier with feedback loop	Perceptron, LR(with SGD), passive-aggressive and confidence-weighted algorithm
ICML’09	Detect malicious websites from URLs	Lexical- and host-based features of URLs	Complementary to BLs	NB, SVM-RBF, linear SVM, L1-regularized LR
Hao Sec’09	Automated reputation engine for spam filter	Network-level and SMTP header features, temporal patterns	Emails, BL, WL, feature extractor, classifier, policy pool	A rule-based linear learning ensemble
AISec’10	Detect existing and emerging phishing domains	Lexical- and content-based features	Rule-based BL, online learning classifier	Deep MD5 matching(metric: Kulczynski 2 coefficient)
NDSS’10	Detect phishing web pages	Hosting properties, content-based and URL-structure features	Search engine BL, URL aggregator, feature extractor, classifier	LR - online gradient descent
Thomas	Real-time URL spam filter	URL lexical, content, hosting property, browser, DNS resolver, IP analysis features	Web service with URL stream, URL aggregator, feature collector and extractor, classifier, feedback loop(BL annotation training)	L1-regularized LR, LR-SGD
KDD’11	Stackelberg game model in spam filtering	A data generator reacts to the learner’s moves	Learner, data generator, loss function	Stackelberg-based prediction game with different loss functions
Lee	Detect malicious URLs in streams	Properties of redirect chains of URLs	URL stream data collection, feature extraction, training	L2-regularized LR
Afroz	Detect frauds in online writing styles	Lexical-, syntactic-, content-specific features	Feature extractor, classifier	SVM-SMO, experimented with NB, SVM-RBF, C4.5, LR
NDSS’12	Detect compromised accounts by behavior change	Temporal behavior and content patterns	Data collection, labeling, training	N-Gram model, SVM-SMO
Großhans	Bayesian game model in adversarial spam filtering	Game between a learner of a model and a data generator	Learner, data generator(conflicting but not necessarily adversarial), cost functions	Bayesian regression model. Baseline: Nash regression, robust ridge regression, regular ridge regression
ICML’13	Use search engines to find other malicious webpages	Content- and link-based features	Crawler, profiler, search engine’s BL, initial set of malicious pages	N-grams, term extraction
Zhao	Online active learning for malicious URL detection	Lexical- and host-based features	Live data feed, feature collector, cost-sensitive update, active learning module, classifier	Customized online active cost-sensitive algorithm
Jiang	Detect spam cell numbers	Call detail records	Records collector, feature extractor, classifier	Customized Bayesian model
NDSS’14	Detect auto-generated web spam content	Content features	Content filter, inverted index engine, clustering	Shingling, POS tagging(metric: Jaccard index)
Viswanath	Unsupervised anomalous user behavior detection	Spatial, temporal, spatial-temporal	Normality construction, PCA, detection	PCA, KNN
AISec’14	Distributed content anomaly detection (CAD)	N-gram of payloads	Distributed models over application servers	Aggregated RF, LR, Bloom filter
Boshma	Predict benign users who befriended fake accounts	User profiles, communications, activities history	Graph representation, feature extraction, trust propagation, rank users	Louvain method for community detection, modified random walk
NDSS’15	Detect malicious online accounts accessed by a common set of machines	User-agent correlation, account usage, event time series	IP mapping, graph representation, feature extraction, detection	Louvain method
Stringhini	Detect adversarial crowdsourcing	User profile, behaviors, temporal patterns	Normality construction, input, feature extraction, classification	Customized Bayesian model, SVM(RBF and polynomial), RF
Study	Goal	Key Assumption(s)	ML Techniques	
-------------	--	--	---	
Kløft AISTe'09 [151]	Auto-select features for anomaly detection with one-class SVM	Different feature sets might be various characterizations of normality	Generalized support vector data description(SVDD)	
Gornitz AISTe'09 [149]	Query low-confidence observations and expand data basis with minimal labeling	Anomaly detection is an active learning task	SVDD	
Symons AISTe'12 [147]	Non-parametric semi-supervised network IDS.	Attackers’ behaviors are not necessarily different from legitimate human users, e.g. they do not sent large numbers of probes	Laplacian regularized least squares(RLS)/Bayesian kernel model on graphs representing network flow traffic	
Ding KDD'12 [151]	Augment signature-based system at network edges for multi-layer IDS	Attackers do not respect community boundaries and exhibit “anti-social behaviors”	Graph-based community detection	
Xie KDD’12 [152]	Detect spam review by temporal patterns in adversarial environment	Normal reviewers' arrival patterns are Poisson and uncorrelated to rating patterns temporarily	Multidimensional time series(matching blocks by longest common substring algorithm)	
Wressnegger CCS’13 [148]	Use of n-grams in intrusion detection	Anomaly detection and ML are two different schemes for IDS	Reviewed n-gram models in both ML and anomaly detection schemes	
Montazpour KDD’15 [153]	Detect correlated invariants in cyber-physical systems	Local invariants after filtering can still be correlated	Latent factor auto regression with exogenous input to correlate time series	
Juba NDSS’15 [150]	Reproducibility and comparison framework for IDS	Uniform distribution approximates the entire web by Common Crawl URL index	Probabilistic model	

[11] A. Johnson and V. Shmatikov, “Privacy-preserving data exploration in genome-wide association studies,” in KDD 2013.
[12] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle, and T. Engel, “Website fingerprinting at internet scale,” in NDSS 2016.
[13] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson, “Spot me if you can: Uncovering spoken phrases in encrypted voip conversations,” in SP 2008.
[14] D. Balzarotti, M. Cova, and G. Vigna, “Clearshot: Eavesdropping on keyboard input from video,” in SP 2008.
[15] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi, “Sok: The evolution of sybil defense via social networks,” in SP 2013.
[16] G. Danegiz and P. Mittal, “Sybilinfer: Detecting sybil nodes using social networks,” in NDSS 2009.
[17] G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng, and B. Y. Zhao, “You are how you click: Clickstream analysis for sybil detection,” in USENIX Security 2013.
[18] H. Yu, C. Shi, M. Kaminsky, P. B. Gibbons, and F. Xiao, “Dysbil: Optimal sybil-resistance for recommendation systems,” in SP 2009.
[19] X. Xing, Y.-J. Liang, S. Huang, H. Cheng, R. Han, Q. Lv, X. Liu, S. Mishra, and Y. Zhu, “Scalable misbehavior detection in online video chat services,” in KDD 2012.
[20] M. Ciglan, M. Laclavík, and K. Norvág, “On community detection in real-world networks and the importance of degree assortativity,” in KDD 2013.
[21] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann, H. Bos, and M. Van Steen, “Prudent practices for designing malware experiments: Status quo and outlook,” in SP 2012.
A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, K. Borgolte, C. Kruegel, and G. Vigna, “Meerkat: Defending against click fraud attacks,” in USENIX Security 2013.

C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-strength meters from markov models,” in NDSS 2012.

P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin, L. F. Cranor, and J. Lopez, “Guess again (and again and again): Measuring password strength by simulating password-cracking algorithms,” in SP 2012.

S. Zander and S. J. Murdoch, “An improved clock-skew measurement technique for revealing hidden services,” in USENIX Security 2008.

S. Afroz, A. C. Islam, A. Stolerman, R. Greenstadt, S. Zander and S. J. Murdoch, “An improved clock-skew measurement technique for revealing hidden services,” in USENIX Security 2008.

J. L. Berral, N. Poggi, J. Alonso, R. Gavalda, J. Torres, and M. Parashar, “Adaptive distributed mechanism against flooding network attacks based on machine learning,” in AISec 2008.

R. Chatterjee, J. Bonneau, A. Juels, and T. Ristenpart, “Cracking-resistant password vaults using natural language encoders,” in SP 2015.

J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password models,” in SP 2014.

C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-strength meters from markov models,” in NDSS 2012.

P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin, L. F. Cranor, and J. Lopez, “Guess again (and again and again): Measuring password strength by simulating password-cracking algorithms,” in SP 2012.

S. Zander and S. J. Murdoch, “An improved clock-skew measurement technique for revealing hidden services,” in USENIX Security 2008.

S. Afroz, A. C. Islam, A. Stolerman, R. Greenstadt, S. Zander and S. J. Murdoch, “An improved clock-skew measurement technique for revealing hidden services,” in USENIX Security 2008.

J. Hainsworth, and Y. Zhou, “Detecting adversarial malware,” in USENIX Security 2013.

J. Zhang, P. A. Porras, and J. Ullrich, “Highly predictive blacklisting,” in USENIX Security 2008.

L. Lu, R. Perdisci, and W. Lee, “Surf: detecting and measuring search poisoning,” in CCS 2011.

K. Soska and N. Christin, “Automatically detecting vulnerable websites before they turn malicious,” in USENIX Security 2014.

K. Borgolte, C. Kruegel, and G. Vigna, “Meerkat: Detecting website defacements through image-based object recognition,” in USENIX Security 2015.

W. K. Robertson, F. Maggi, C. Kruegel, and G. Vigna, “Effective anomaly detection with scarce training data,” in NDSS 2010.

P. Chapman and D. Evans, “Automated black-box detection of side-channel vulnerabilities,” in CCS 2011.

C. Landwehr, “Cyber security and artificial intelligence: From fixing the plumbing to smart water,” in AISec 2008.

D. W. Richardson, S. D. Gribble, and T. Kohno, “The limits of automatic os fingerprint generation,” in AISec 2010.

S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for classifying and categorizing android sources and sinks,” in NDSS 2014.

R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards automating risk assessment of mobile applications,” in USENIX Security 2013.

R. Wang, W. Enck, D. Reeves, X. Zhang, P. Ning, D. Xu, W. Zhou, and A. M. Azab, “Easeandroid: Automatic policy analysis and refinement for security enhanced android via large-scale semi-supervised learning,” in USENIX Security 2015.

A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering event logs using iterative partitioning,” in KDD 2009.

M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond heuristics: learning to classify vulnerabilities and predict exploits,” in KDD 2010.

H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Pothisara, C. Nita-Rotaru, and I. Molloy, “Using probabilistic generative models for ranking risks of android apps,” in CCS 2012.

F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck, “Automatic inference of search patterns for taint-style vulnerabilities,” in SP 2015.

Y. Liu, A. Sarabi, J. Zhang, P. Naghizadeh, M. Karir, M. Bailey, and M. Liu, “Cloudy with a chance of breach: Forecasting cyber security incidents,” in USENIX Security 2015.

J. L. Berral, N. Poggi, J. Alonso, R. Gavalda, J. Torres, and M. Parashar, “Adaptive distributed mechanism against flooding network attacks based on machine learning,” in AISec 2008.

S. Venkataraman, A. Blum, and D. Song, “Limits of learning-based signature generation with adversaries,” in NDSS 2008.

N. Šrndic and P. Laskov, “Detection of malicious pdf files based on hierarchical document structure,” in NDSS 2013.

K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee, and G. Jiang, “Checking more and alerting less: Detecting privacy leakages via enhanced data-flow analysis and peer voting,” in NDSS 2015.

W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in NDSS 2016.

A. Tamersoy, K. Roundy, and D. H. Chau, “Guilt by association: large scale malware detection by mining file-relation graphs,” in KDD 2014.
[109] L. Invernizzi, S. Miskovic, R. Torres, C. Kruegel, S. Saha, G. Vigna, S.-J. Lee, and M. Mellia, “Nazca: Detecting malware distribution in large-scale networks,” in NDSS 2014.

[110] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, “Drebin: Effective and explainable detection of android malware in your pocket.” in NDSS 2014.

[111] M. Graziano, D. Canali, L. Bilge, A. Lanzi, and D. Balzarotti, “Needles in a haystack: Mining information from public dynamic analysis sandboxes for malware intelligence,” in USENIX Security 2015.

[112] E. C. R. Shin, D. Song, and R. Moazzzezi, “Recognizing functions in binaries with neural networks,” in USENIX Security 2015.

[113] C. Smutz and A. Stavrou, “When a tree falls: Using diversity in ensemble classifiers to identify evasion in malware detectors.”

[114] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and D. Dagon, “From throw-away traffic to bots: Detecting the rise of dga-based malware,” in USENIX Security’12.

[115] M. S. Rahman, T.-K. Huang, H. V. Madhyastha, and M. Faloutsos, “Efficient and scalable socialware detection in online social networks,” in USENIX Security 13.

[116] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda, “Accessminer: Using system-centric models for malware protection,” in CCS 2010.

[117] Y. Ye, T. Li, S. Zhu, W. Zhuang, E. Tas, U. Gupta, and M. Abdulhayoglu, “Combining file content and file relations for cloud based malware detection,” in KDD 2011.

[118] C. Kolbitsch, P. M. Comparet, C. Kruegel, E. Kirda, X. Zhou, and X. Wang, “Effective and efficient malware detection at the end host,” in USENIX Security 2012.

[119] F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq, “ Using spatio-temporal information in api calls with machine learning algorithms for malware detection,” in AISec 2009.

[120] D. Kong and G. Yan, “Discriminant malware distance learning on structural information for automated malware classification,” in KDD 2013.

[121] K. Borgolte, C. Kruegel, and G. Vigna, “Delta: automatic identification of unknown web-based infection campaigns,” in CCS 2013.

[122] J. Jiang, D. Brunley, and S. Venkataranan, “Bitshred: Feature hashing malware for scalable triage and semantic analysis,” in CCS 2011.

[123] Y. Ye, T. Li, Y. Chen, and Q. Jiang, “Automatic malware categorization using cluster ensemble,” in KDD 2010.

[124] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scalable, behavior-based malware clustering,” in NDSS 2009.

[125] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan, in SP ’10.

[126] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “ProspeX: Protocol specification extraction,” in SP 2009.

[127] D. Kirat and G. Vigna, “Malgene: Automatic extraction of malware analysis evasion signature,” in CCS 2015.

[128] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspicious urls: an application of large-scale online learning,” in ICML 2009.

[129] ——, “Beyond blacklists: learning to detect malicious web sites from suspicious urls,” in KDD 2009.

[130] A. Blum, B. Wardman, T. Solorio, and G. Warner, “Lexical feature based phishing url detection using online learning,” in AISec 2010.

[131] C. Whittaker, B. Ryner, and M. Nazif, “Large-scale automatic classification of phishing pages,” in NDSS 2016.

[132] S. Lee and J. Kim, “Warningbird: Detecting suspicious urls in twitter stream,” in NDSS 2012.

[133] P. Zhao and S. C. Hoi, “Cost-sensitive online active learning with application to malicious url detection,” in KDD 2013.

[134] K. Chatterjee, L. de Alfaro, and I. Pye, “Robust content-driven reputation,” in AISec 2008.

[135] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser, “Detecting spammers with snare: Spatio-temporal network-level automatic reputation engine.” in USENIX Security 2009.

[136] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and evaluation of a real-time url spam filtering service,” in SP 2011.

[137] S. Afroz, M. Brennan, and R. Greenstadt, “Detecting hoaxes, frauds, and deception in writing style online,” in SP 2012.

[138] L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel, M. Cova, and G. Vigna, “Evilseed: A guided approach to finding malicious web pages,” in SP 2012.

[139] N. Jiang, Y. Jin, A. Skudlark, and Z.-L. Zhang, “Greystar: Fast and accurate detection of sms spam numbers in large cellular networks using gray phone space,” in USENIX Security’13.

[140] Q. Zhang, D. Y. Wang, and G. M. Voelker, “Dspin: Detecting automatically spun content on the web,” in NDSS 2014.

[141] S. Whalen, N. Boggs, and S. J. Stolfo, “Model aggregation for distributed content anomaly detection,” in AISec 2014.

[142] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna, “Compa: Detecting compromised accounts on social networks,” in NDSS 2013.

[143] B. Viswanath, M. A. Bashir, M. Crovella, S. Guha, K. P. Gummadi, B. Krishnamurthy, and A. Mislove, “Towards detecting anomalous user behavior in online social networks,” in USENIX Security 2014.

[144] Y. Boshmaf, D. Logothetis, G. Siganos, J. Leria, J. Lorenzo, M. Ripeanu, and K. Beznosov, “Integro: Leveraging victim prediction for robust fake account detection in ons,” in NDSS 2015.

[145] G. Stringhini, P. Mournanne, G. Jacob, M. Egele, C. Kruegel, and G. Vigna, “Evilcohort: Detecting communities of malicious accounts on online services,” in USENIX Security 2015.
[146] G. Wang, T. Wang, H. Zheng, and B. Y. Zhao, “Man vs. machine: Practical adversarial detection of malicious crowdsourcing workers,” in *USENIX Security 2014*.

[147] C. T. Symons and J. M. Beaver, “Nonparametric semi-supervised learning for network intrusion detection: combining performance improvements with realistic in-situ training,” in *AISec 2012*.

[148] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, “A close look on n-grams in intrusion detection: anomaly detection vs. classification,” in *AISec 2013*.

[149] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, “Active learning for network intrusion detection,” in *AISec 2009*.

[150] B. Juba, C. Musco, F. Long, S. Sidiroglou-Douskos, and M. C. Rinard, “Principled sampling for anomaly detection,” in *NDSS 2015*.

[151] Q. Ding, N. Katenka, P. Barford, E. Kolaczyk, and M. Crovella, “Intrusion as (anti) social communication: characterization and detection,” in *KDD 2012*.

[152] S. Xie, G. Wang, S. Lin, and P. S. Yu, “Review spam detection via temporal pattern discovery,” in *KDD 2012*.

[153] M. Momtazpour, J. Zhang, S. Rahman, R. Sharma, and N. Ramakrishnan, “Analyzing invariants in cyber-physical systems using latent factor regression,” in *KDD 2015*.

[154] M. Kloft, U. Brefeld, P. Düessel, C. Gehl, and P. Laskov, “Automatic feature selection for anomaly detection,” in *AISec 2008*.

[155] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and detecting fast-flux service networks,” in *NDSS 2008*.

[156] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao, N. Taft, and J. Tygar, “Antidote: understanding and defending against poisoning of anomaly detectors,” in *IMC 2009*.

[157] R. Moskovitch, N. Nissim, and Y. Elovici, “Acquisition of malicious code using active learning,” in *PinKDD’08*.

[158] O. Tripp and J. Rubin, “A bayesian approach to privacy enforcement in smartphones,” in *USENIX Security 2014*.

[159] Q. Wang, Z. Lin, N. Borisov, and N. Hopper, “rbridge: User reputation based tor bridge distribution with privacy preservation,” in *NDSS 2013*.

[160] Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” in *SP 2015*.

[161] Z. Huang, E. Ayday, J. Fellay, J.-P. Hubaux, and A. Juels, “Genoguard: Protecting genomic data against brute-force attacks,” in *SP 2015*.

[162] R. Kumar, “Mining web logs: applications and challenges,” in *KDD 2009*.

[163] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux, “Quantifying location privacy,” in *SP 2011*.

[164] B. A. Prakash, N. Valler, D. Andersen, M. Faloutsos, and C. Faloutsos, “Bgp-lens: Patterns and anomalies in internet routing updates,” in *KDD 2009*.