Avalanche-driven fractal flux distributions in NbN superconducting films

I. A. Rudnev1, D. V. Shantsev2,3, T. H. Johansen2,4,*, A. E. Primenko5
1 Moscow Engineering Physics Institute, 115409 Moscow, Russia
2 Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo, Norway
3 A. F. Ioffe Physico-Technical Institute, Polytechnicheskaya 26, St.Petersburg 194021, Russia
4 Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, TX 77204 USA
5 Department of Low Temperature Physics and Superconductivity, Moscow State University, 117234 Russia

(Dated: November 19, 2018)

Flux distributions in thin superconducting NbN films placed in a perpendicular magnetic field have been studied using magneto-optical imaging. Below 5.5 K the flux penetrates in the form of abrupt avalanches resulting in dendritic structures. Magnetization curves in this regime exhibit extremely noisy behavior. Stability is restored both above a threshold temperature \(T^* \) and applied field \(H^* \), where \(H^* \) is smaller for increasing field than during descent. The dendrite size and morphology are strongly \(T \) dependent, and fractal analysis of the first dendrites entering into a virgin film shows that dendrites formed at higher \(T \) have larger fractal dimension.

Flux jumps are known to destroy the critical state of type-II superconductors and suppress the apparent critical current density. In thin films the flux jumps manifest themselves in a so-called dendritic instability, i.e. avalanche-like penetration of magnetic flux along narrow branching channels. Using magneto-optical (MO) imaging the dendritic instability has been observed in superconducting films of Nb, YBa2Cu3O7−\(\delta \) (triggered by a laser pulse), MgB29,10,11 and YNi2B2C. Recently, flux dendrites were found also in films of Nb3Sn, a superconductor with A15 structure widely used in applications.

In the present paper we report experiments made on niobium nitride NbN films, another binary alloy shown here to have dendritic flux penetration in the superconducting state. By combining MO imaging and magnetometry we find threshold values for temperature and applied field, and a striking critical behavior in the size and morphology of the dendrites near the threshold.

Thin films of NbN were fabricated by magnetron sputtering on sapphire substrates. Two samples with thickness 0.16 and 0.29 \(\mu m \) were selected for the present studies. Table 1 shows their critical temperatures \(T_c \), the width of the superconducting transition \(\Delta T_c \), the critical current density \(j_c \) at 4.2 K, and the resistivity \(\rho_N \) in the normal state. All these parameters were obtained from transport measurements using a four-probe method.

The magnetic moment was measured using a vibrating sample magnetometer PARC with a He flow cryostat. Shown in Fig. 1 are magnetization curves \(m(H) \) for the NbN films obtained at 4.2 K. The instability manifests itself here in numerous and random jumps of \(m \). The typical jump amplitude is \(\Delta m \sim 0.1 m \), which is much larger than the sensitivity of the magnetometer, \(3 \cdot 10^{-5} \) emu.

![FIG. 1: Magnetic moment as a function of applied field at 4.2 K for two NbN films: 0.29 \(\mu m \) thick (upper) and 0.16 \(\mu m \) thick (lower).](image)

Table I: Parameters of NbN films

\(d (\mu m) \)	\(T_c (K) \)	\(\Delta T_c (K) \)	\(j_c (MA/cm^2) \)	\(\rho_N (\mu \Omega m) \)
0.16	14.2	0.5	1.0	1.6
0.29	15.0	0.5	1.4	1.1
than at low fields. On the descending field branch, the jumps reappear when m is fully reversed, and their amplitude decreases rapidly.

The nature of these jumps in the magnetic moment was clarified using MO imaging to visualize the dynamics of the full flux distribution. The sample, with a Faraday active indicator film placed directly on top, was glued onto the cold finger of an optical cryostat, where it was cooled to 3.5–8 K in zero magnetic field (ZFC). Subsequently, a perpendicular field was applied very slowly.

For low fields most part of the superconductor is in the Meissner state and appear dark on the MO images. As the field increases, the flux penetrates gradually, starting preferentially from the weak places along the edges. At some field $H_f \approx 10$ Oe an abrupt invasion of a relatively large flux structure occurred, see Fig. 2. Further field increase resulted in formation of even larger and highly dendritic structures entering one by one. Eventually, when reaching $H \approx 28$ Oe, the flux dendrites filled most of the film area. Upon further field increase, new dendrites continued to form, but now entering on top of already existing ones, as seen in the MO image taken at 100 Oe. Note that the tilted lines of flux penetration near the edge is of a different origin, most likely due to polishing streaks in the substrate.

Most features of the observed dendritic instability in the NbN films resemble those found previously in other materials. The dendrites propagate into the film faster than 1 ms, which is the time resolution of the CCD camera recording our MO images. In fact, we expect that the propagation is even much faster, as was found using ultrafast MO imaging of dendrites in YBa$_2$Cu$_3$O$_{7-\delta}$ and MgB$_2$ films. Another characteristic feature is that once a dendritic structure is formed, it remains “frozen” and does not grow any further during subsequent increase of the applied field. Moreover, when the experiment is repeated under identical conditions, the exact field when the dendrites form and their exact pattern are never repeated. In the present films the dendritic instability was observed only below $T^* = 5.5$ K, whereas a similar threshold temperature in MgB$_2$ is 10 K. Above these threshold temperatures the flux penetration is always spatially smooth and gradual in time.

The instability disappears not only when $T > T^*$, but also when the field becomes sufficiently high, $H > H^*$, see Fig. 1(lower panel). Our results clearly show that the threshold value depends on the field sweep direction. We propose that this dependence originates from vortex annihilation, which takes place only for the decreasing field case. Indeed, when H is increasing, the screening currents generate near the film edge a strong demagnetization field of the same sign as H. However, for decreasing H, the direction of screening currents and demagnetization field changes to the opposite. As a result, the film edge experiences a negative external field that also partly penetrates inside. In this state, there is a line near the edge where vortices and antivortices meet. Their annihilation releases additional energy that can facilitate the triggering of the instability. Consequently, one may expect that the dendritic instability occurs in a wider range of applied fields H along the descending field branch as compared to the ascending branch.

The existence of a threshold field H^* was reported earlier in the magnetization studies of MgB$_2$ films. Our observed asymmetry for the increasing and decreasing field
sweeps is also in agreement with results of Ref. 12 where dendritic jumps were found only for decreasing \(H \). Interestingly, during the dendrite growth the annihilation zone may propagate very deep into the film. This is confirmed by observation of “negative” flux in the dendrite core that propagated into a film containing positive flux for a decreasing \(H \).

Figure 3 shows MO images of the very first dendrite formed in the 0.29 \(\mu m \) thick ZFC film during 4 experiments at slightly different temperatures. These dendrites were formed also at different (first jump) fields \(H_j \), and there is a clear tendency that \(H_j \) increases with temperature. Dendrites formed at higher \(T \) and \(H_j \) are also larger in size and more branching, a tendency can be traced all the way up to \(T \approx 5.5 \) K. Note also that the \(m(H) \) curve in Fig. 11(lower panel) exhibits increasingly larger jumps as the threshold field \(H^* \) is approached. Therefore, it is a general trend that the dendritic structures have maximal size when the system is close to the stability limit, i.e. for \(H \approx H^* \) or \(T \approx T^* \).

To quantify these changes in morphology of the branching flux structures we made a fractal analysis of their shape. The MO images were discretized to obtain a cluster of pixels constituting a dendrite structure. Then we calculated the number of pixels \(N(R) \) that fall inside a circle of radius \(R \) with the center at the dendrite root. If the structure gives a power-law, \(N \propto R^D \), the exponent gives the fractal dimension \(D \) of the cluster.

The results of this analysis is presented in Fig. 14 where the actual dendrite area represents \(N \). We find a reasonably good power-law behavior, and the fractal dimension increases with temperature, see Fig. 15 for a summary. The dimension changes from approximately unity at the lowest \(T \) to \(D = 1.75 \) for the most branching structure at 4.8 K. Note that in general, the dendritic fingers do not exceed the middle of the strip, where the Meissner currents (and hence Lorentz force) change to the opposite direction. This limits the size of all dendritic structures. As a result, more branching dendrites with larger \(D \) always have a larger area.

A similar temperature dependence of dendrite morphology has been reported earlier for Nb52,53 and for MgB\textsubscript{2} samples. Various degrees of branching have also been obtained by simulations taking into account the heat produced by flux motion which suggests a thermal origin of the instability. Our present results (i) give a quantitative measure of the branching, \(D \), and (ii) show that simultaneous increase of \(D \) and dendrite area is a more general effect since it takes place when approaching the instability threshold \(H^*(T) \) either by changing \(T \) or \(H \).

This work is supported by FUNMAT@UiO, and The Research Council of Norway.

1. R. G. Mints and A. L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981).
2. A. Vl. Gurevich, R. G. Mints and A. L. Rakhmanov, The Physics of Composite Superconductors, Begell House Inc., NY (1997).
3. M. R. Wertheimer, J de G. Gilchrist, J. Phys. Chem Solids 28, 2509 (1967).
4. C. A. Duran, P. L. Gammel, R. E. Miller, D. J. Bishop, Phys. Rev. B 52, 75 (1995).
5. M.S. Welling, R.J. Westerwaal, W. Lohstroh, R.J. Wijngaarden, Physica C 411, 11 (2004).
6. P. Leiderer, J. Boneberg, P. Brüll, V. Bujok, S. Herminghaus, Phys. Rev. Lett. 71, 2646 (1993).
7. U. Bolz, B. Biehler, D. Schmidt, B.-U. Runge and P. Leiderer, Europhysics Lett. 64, 517 (2003).
8. T.H. Johansen et al., Europhys. Lett. 59, 599 (2002). cond-mat/0104113
9. T.H. Johansen et al., Supercond. Sci. Technol. 14, 726 (2001). cond-mat/0108092
10. A.V. Bobyl et al., Appl. Phys. Lett. 80, 4588 (2002), cond-mat/0201260
11. F. L. Barkov et al., Phys. Rev. B 67, 064513 (2003). cond-mat/0205361
12. S. C. Wimbush, B. Holzapfel, Ch. Jooss et al., J. Appl. Phys. 96, 3589 (2004).
13. I.A. Rudnev et al., Cryogenics 43, 663 (2003). cond-mat/0211349
14. Ch. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt and H. Kronmueller, Rep. Prog. Phys. 65, 651 (2002).
15. For more publications on dendritic instability see http://www.fys.uio.no/super/dend/
16. P. Leiderer, private communications.
17. E. H. Brandt, and M. Indenbom, Phys. Rev. B 48, 12893 (1993).
18. E. Zeldov, J. R. Clem, M. McElfresh, and M. Darwin, Phys. Rev. B 49, 9802 (1994).
19. M. R. Beasley, W. A. Fietz, R. W. Rollins, J. Silcox, and W. W. Webb, Phys. Rev. 137, A1205 (1965).
20. Z. W. Zhao et al., Phys. Rev. B 65, 064512 (2002).
21. J. Feder, Fractals (Plenum, New York, 1988).
22. I. S. Aranson et al., cond-mat/0407490