SPECIES DISTINCTNESS OF BITHYNIA CETTINENSIS CLESSIN, 1887 AND B. ZETA GŁÖER ET PEŠIĆ, 2007 (CAENOGASTROPODA: TRUNCATELLOIDEA)

VLADIMIR PEŠIĆ1, SEBASTIAN HOFMAN2, ALEKSANDRA RYSIEWSKA3, ARTUR OSIROWSKI4, ANDRZEJ FALNIOWSKI1*

1Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro
2Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland (e-mail: s.hofman@uj.edu.pl); https://orcid.org/0000-0001-6044-3055
3Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland (e-mails: a.rysiewska@uj.edu.pl; andrzej.falniowski@uj.edu.pl); AR https://orcid.org/0000-0002-9395-9696, AF https://orcid.org/0000-0002-3899-6857
4Department of Animal Anatomy, Institute of Veterinary Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Kraków, Poland (e-mail: a.osikowski@urk.edu.pl); https://orcid.org/0000-0001-6646-2687
*corresponding author

ABSTRACT: Shells of Bithynia: widely distributed B. tentaculata (Linnaeus), Balkan B. cettinensis Clessin from Cetina River in Croatia, and B. zeta Glöer et Pešić from Vitoja spring at Lake Skadar, Montenegro, as well as male genitalia of B. zeta and B. cettinensis were examined. The shells of all three taxa are similar, also the penes differ only slightly. The mean value of the length ratio of the tubular penial gland (measured along its curvature) to the penis right arm, measured along the curvature of its right margin, was 1.63 for B. zeta, and 1.33 for B. cettinensis. Those values differed slightly, especially compared to 5.0–5.9 for B. tentaculata. In the maximum likelihood (ML), as well as Bayesian (BI) trees, B. cettinensis and B. tentaculata were sister clades with p-distance of 0.007, and B. zeta was more distinct, with p-distance of 0.122 to B. cettinensis and 0.154 to B. tentaculata. The species distinctness of the three studied taxa was confirmed.

KEY WORDS: species distinctness, shell, penis, tubular penial gland, mtDNA, COI

INTRODUCTION

The Bithyniidae Gray, 1857 inhabit fresh and brackish waters of Europe, Asia Minor, northern Asia, India, Indochina, China, part of Australia, western Africa, Lake Tanganyika, and some introduced localities in North America (FALNIOWSKI 1989). Apart from the “normal” feeding on detritus, they are also filter-feeders (LILLY 1953, FRETTER & GRAHAM 1962). Bithynia tentaculata (Linnaeus, 1758) is one of the most widely distributed and most common freshwater species. Some other nominal species of Bithynia Leach, 1818, whose distinctness remains unclear, are known from southern Europe. CLESSIN (1887) described B. cettinensis Clessin, 1887, from Cetina River in Croatia. GLÖER & PEŠIĆ (2007) described three new species of Bithynia from Lake Skadar in Montenegro: B. zeta Glöer et Pešić, 2007, B. skadarskii Glöer et Pešić, 2007, and B. radomani Glöer et Pešić, 2007. The penis and penial gland morphology presented by GLÖER & BERAN (2009) for B. cettinensis was based on only one penis, most probably somewhat damaged, and molecular data for the European Bithynia are known only for B. tentaculata. The aim of the present paper was to describe the penial morphology of B. cettinensis and to check the species distinctness of B. tentaculata, B. cettinensis, and B. zeta, applying molecular data, namely cytochrome oxidase subunit I (COI) sequences.
MATERIAL AND METHODS

We collected specimens of the three Bithynia species: B. zeta from Vitoja spring (42°19'32"N, 19°21'46"E; Figs 1–2), Montenegro, B. cettinensis from Cetina River at Radmanove Mlinice (43°26'37"N, 16°45'02"E), Croatia, and B. tentaculata from pond in Śpytkowice near Kraków (50°00'14"N, 19°29'10"E), Poland. The morphology of B. tentaculata was studied in many localities throughout Poland (FALNIOWSKI 1989); shells from Lake Gardno (N. Poland) are shown in the present paper.

For molecular study, the snails were washed twice in 80% ethanol and left to stand in it for ca. 12 hours. Afterwards, the ethanol was changed twice in 24 hours and finally, after a few days, the 80% solution was exchanged for a 96% one, stored at −20 °C.

The shells were photographed with a CANON EOS 50D digital camera, under a NIKON SMZ18 microscope with dark field. Dissection was done under NIKON SMZ18 microscope, and photographed with dark field. The measurements of the penis and tubular penial gland were taken on the photographs, with SILVA Map Measurer Plus curvimeter. The morphological terminology follows HERSHLER & PONDER (1998).

The tissue was hydrated in TE buffer (3 × 10 min.); then total genomic DNA was extracted with the SHERLOCK extracting kit (A&A Biotechnology), and the final product was dissolved in 20 μl TE buffer. The extracted DNA was stored at −80 °C at the Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków (Poland). Details of PCR conditions, primers used and sequencing were given in SZAROWSKA et al. (2014). Cytochrome oxidase subunit I (COI) mtDNA

Figs 1–2. Vitoja Spring

Table 1. Taxa used for phylogenetic analyses with their GenBank accession numbers and references

Species	COI GB numbers	References
Bithynia tentaculata (Linnaeus, 1758)	MN013036-MN013037	present study
Bithynia zeta Glöer et Pešić, 2007	MN013038-MN013041	present study
Bithynia cettinensis Clessin, 1887	MN013042	present study
Bithynia sp. Leach, 1818 – Egridir Lake, Turkey	FJ160291	BENKE et al. 2009
Bithynia sp. Leach, 1818 – Poso Lake, Indonesia	KY574006	VAN BOCKLAER et al. 2017
Bithynia funiculata Walker, 1927	KY118598 – KY118601	KULSANTIWONG et al. 2013
Bithynia siamensis goniomphalos (Morelet, 1866)	KY118603 – KY118619	KULSANTIWONG et al. 2013
Bithynia siamensis siamensis (Lea, 1856)	KY118658	KULSANTIWONG et al. 2013
Bythinella austriaca (von Frauenfeld, 1857)	JQ639858	FALNIOWSKI et al. 2012
Bythinella micherdzinskii Falniowski, 1980	JQ639854	FALNIOWSKI et al. 2012
Gabbia pygmaea (Preston, 1908)	KY118682	KULSANTIWONG et al. 2013
Gabbia wykoffi (Brandt, 1968)	KY118724	KULSANTIWONG et al. 2013
Hydrobioides nassa (Theobald, 1865)	KY118756 – KY118765	KULSANTIWONG et al. 2013
Waterbledia baschi Brandt, 1968	KY118769	KULSANTIWONG et al. 2013
Waterbledia crosseana (Waterbled, 1884)	KY118793	KULSANTIWONG et al. 2013
Species distinctness of *Bithynia cettinensis* and *B. zeta*

Figs 3–15. Shells of the studied *Bithynia*: 3–6 – *B. tentaculata*, Lake Gardno, Poland; 7–11 – *B. cettinensis*, Radmanove Mlinice, Cetina River, Croatia; 12–15 – *B. zeta*, Vitoja Spring, Montenegro. Scale bar 2 mm
was amplified with the following primers: LCO1490 5'-GGTCAACAATCATAAAGATATTGG-3' (Folmer et al. 1994), and COR722b 5'-TAAACTTCAGGTTGACCAAAAAATYA-3' (Wilke & Davis 2000). PCR conditions for the COI were as follows: initial denaturation step of 4 min at 94 °C, followed by 35 cycles of 1 min at 94 °C, 1 min at 55 °C, 2 min at 72 °C, and a final extension of 4 min at 72 °C. Sequencing methods are described in Szarowska et al. (2014).

Sequences were initially aligned in the MUSCLE (Edgar 2004) programme in MEGA 6 (Tamura et al. 2013) and then checked in Bioedit 7.1.3.0 (Hall 1999). The saturation test (Xia 2000, Xia et al. 2003) was performed using DAMBE (Xia 2013). In the phylogenetic analysis additional sequences from GenBank were used (Table 1). The data were analysed using approaches based on Bayesian inference (BI) and maximum likelihood (ML). We applied the GTR model, whose parameters were estimated by the RaxML (Stamatakis 2014). The BI analyses were run using MrBayes v. 3.2.3 (Ronquist et al. 2012) with the default priors. The ML approach was applied with RAxML v. 8.0.24 (Stamatakis 2014). RAxML analyses were performed using the free computational resource CIPRES Science Gateway (Miller et al. 2010).

RESULTS

MORPHOLOGY

The shells of Bithynia tentaculata (Figs 3–6) and B. cettinensis (Figs 7–11) are slightly variable and similar: only smaller dimensions and somewhat lower spire distinguish B. cettinensis. The shells of B. zeta (Figs 12–18) are more variable, some of them with high spire (Fig. 15), some other resembling the ones of B. tentaculata (Figs 3–6).
Species distinctness of *Bithynia cettinensis* and *B. zeta*

Figs 23–29. *Bithynia cettinensis*: 23–24 – male head with penis; 25–29 – penis with tubular penial gland. Scale bar 1 mm for penes
The penis is bifid in *B. zeta* (Figs 19–22), *B. cettinensis* (Figs 23–29) and *B. tentaculata* (Fig. 30). Its right arm includes the terminal section of vas deferens. The left arm is known as flagellum, containing the outlet of tubular penial gland situated apically. The penial gland is long and coiled, proximally extending into the cephalic haemocoel. The mean length ratio of the tubular penial gland (measured along its curvature) to the penis right arm, measured along the curvature of its right margin, is measured (from point X to point Y in Fig. 30), is 1.63 for *B. zeta*, and 1.33 for *B. cettinensis* (Table 2).

Table 2. Tubular penial gland: penis length ratio in *Bithynia cettinensis* and *Bithynia zeta*

	B. cettinensis	*B. zeta*
AV	1.33	1.63
SD	0.191	0.244
MAX	1.58	1.95
MIN	1.08	1.36
n	5	5

Fig. 30. Male reproductive organs of *Bithynia tentaculata* (FL – flagellum, left arm of penis harbouring outlet of tubular penial gland, HP – hepatopancreas, digestive gland; P – penis, right arm harbouring vas deferens; PR – prostate; TE – testis; TPG – tubular penial gland; VD – vas deferens; X, Y – points between which the length of right arm, along its right margin, is measured)

![Figure 30](image_url)

![Figure 31](image_url)

Fig. 31. Maximum likelihood tree based on cytochrome oxidase subunit I (COI); bootstrap supports and Bayesian probabilities given
MOLECULAR ANALYSIS

In total we analysed seven new sequences of cytochrome oxidase subunit I (COI) (552 bp, GenBank Accession Numbers see Table 1). The tests of Xia et al. (2003) revealed no saturation. The topology of the trees obtained from BI and ML analyses was identical. The Bithynia sequences formed a distinct lineage with four clades (Fig. 31). B. cettinensis and B. tentaculata were sister clades with p-distance of 0.007. B. zeta was more distinct, with p-distance of 0.122 to B. cettinensis and 0.154 to B. tentaculata. The distances between the three studied species were not smaller than those between the other bithyniid species.

DISCUSSION

The anatomy of the reproductive organs of Bithynia was described by Lilly (1953), Fretter & Graham (1962), Falniowski (1989, 1990), and Szarowska (2006). The female reproductive organs are characteristic of the Bithyniidae, but can hardly be used in species distinction (Falniowski 1990). However, in some publications (e.g. Falniowski 1989, 1990, Glöer & Pesić 2007, Glöer & Beran 2009) the term flagellum is used not for the left arm of the penis, but for the tubular penial gland.

Falniowski (1989, 1990) found that in the Polish Bithynia the length ratio of the tubular penial gland (measured along its curvature) to the penis right arm, measured along the curvature of its right margin (from point X to point Y in Fig. 30), was the only anatomical character to allow for species discrimination. The value was 5.0–5.9 for B. tentaculata (Linnaeus, 1758), 2.5–3.25 for B. leachi (Sheppard, 1823), and ca. 4.3 for B. troscheli (Paasch, 1842). Later, this length ratio was considered in species delimitation in Bithynia (e.g. Glöer & Yildirim 2006, Glöer & Pesić 2007, Glöer & Rolan 2007, Glöer et al. 2009). For the Bithynia from Lake Skadar, the ratio was: 1.5 for B. zeta, 2 for B. skadarskii, and 4 for B. radomanti. Considering the photographs in the present paper, as well as the drawings of Falniowski (1989, 1990), compared with the ones of Glöer & Yildirim (2006), Glöer & Pesić (2007), and Glöer & Rolan (2007), it is clearly visible that the shape and proportions of the penis are more variable, and interspecific differences less marked. The same concerns the tubular gland/penis proportion, less constant in our measurements, but still confirming the determination of our Vitoja spring material as B. zeta.

Molecularly Bithynia zeta is markedly distinct from the other studied species, and – especially compared with the other sequences of the Bithyniidae from the GenBank – the molecular data confirm its distinctness as a species. On the other hand, the differences between B. cettinensis and B. tentaculata are not necessarily large enough to confirm the distinctness of those two species. Only somewhat smaller distances can be seen within B. siamensis (Lea, 1856), but also between the two nominal species of Gabbia Tryon, 1856.

ACKNOWLEDGMENTS

The study was supported by a grant from the National Science Centre 2017/25/B/NZ8/01372 to Andrzej Falniowski.

REFERENCES

Benke M., Brandle M., Albrecht C., Wilke T. 2009. Pleistocene phylogeography and phylogenetic concordance in cold-adapted spring snails (Bythinella spp.). Molecular Ecology 18: 890–903. https://doi.org/10.1111/j.1365-294X.2008.04073.x

Clesiss S. 1887. Beitrage zur Fauna der Binnen-Mollusken Dalmatiens. Malakologische Blatter N. F . pl. ix, p. 62: 43–65.

Edgar R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh430

Falniowski A. 1989. Przodoskrzelne (Prosobranchia) Polski. I. Neritidae, Viviparidae, Valvatidae, Bithyniidae, Rissoidae, Aculidae. Zeszyty Naukowe Uniwersytetu Jagiellońskiego, Prace Zoologiczne 35: 1–148.

Falniowski A. 1990. Anatomical characters and SEM structure of radula and shell in the species-level taxonomy of freshwater prosobranchs (Mollusca: Gastropoda: Prosobranchia): a comparative usefulness study. Folia Malacologica 4: 53–142 + 78 tab. fot. https://doi.org/10.2478/v10125-012-0006-2

Falniowski A., Szarowska M., Glöer P., Pesić V., Georgiev D., Horsák M., Sríbu I. 2012. Radiation in Bythinella (Mollusca: Gastropoda: Rissooidea) in the Balkans. Folia Malacologica 20: 1–10. https://doi.org/10.2478/v10125-012-0006-2

Folmer O., Black M., Hoeh W., Lutz R. A., Vrijenhoek R. C. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
