Flow harmonics in heavy ion physics at CMS and ATLAS

Georgios K. Krintiras (on behalf of the CMS and ATLAS Collaborations)
The University of Kansas Department of Physics and Astronomy, 1251 Wescoe Hall Dr, Lawrence, US

How can we gain a detailed insight into the hydrodynamic response of the system created in heavy ion collisions to the fluctuating initial geometry and viscous effects? Do we create a strongly interacting medium in proton-nucleus and proton-proton collisions, or rather a system of partons undergoing few scatterings? To what extent can we discriminate between initial momentum correlations and flow generated as a response to the initial geometry via interactions in the final state? Do measurements of identified particle flow confirm the observations from inclusive charged hadrons? An experimental overview of anisotropic flow measurements, ranging from large down to the smallest collision systems, is given in these proceedings.

1 Introduction

One of the main purposes of the Large Hadron Collider (LHC) is to create a hot and dense, strongly interacting QCD medium, referred to as the quark-gluon plasma (QGP). The study of ultrarelativistic heavy ion collisions, including the decomposition of azimuthal particle distributions into Fourier series, revealed QGP properties consistent with a collectively expanding (“flowing”) medium. The associated flow vectors $V_n \equiv v_n e^{in\Psi_n}$, where v_n is the magnitude of the nth-order Fourier harmonic and Ψ_n its phase (also known as the nth-or order “symmetry plane angle”), reflect the hydrodynamic response of the medium to the transverse overlap region and its subnucleon fluctuations. Measurements of flow vectors, their event-by-event fluctuations and correlations between different orders of harmonics or symmetry planes provide input to QGP modeling, in particular, details about initial-state conditions and the dynamics of the subsequent deconfined phase.

In “small” collision systems, features similar to those observed in heavy ion collisions are revealed when the same observables are used in conjunction with high particle multiplicities. It thus remains imperative that LHC experiments, like ATLAS and CMS, pursue their quest for a medium of a similar origin as in measurements involving heavy ion collisions. It is not yet clear, however, to what extent is the V_n driven by the initial spatial anisotropy and/or whether competing mechanisms, e.g., gluon field momentum correlations at the initial state, contribute to the seen final-state anisotropy. In all cases, utmost caution must be exercised when interpreting flow-related signatures, especially in small systems, given the potential contamination from nonflow effects.

2 Flow in heavy ion collisions

Although v_n measurements had led to “the discovery of the perfect liquid” and contributed significantly to the understanding of the QGP, e.g., Refs., details of the initial-state conditions and the subsequent dynamics can be probed by more complex observables: event-by-event
flow fluctuations, decorrelations of flow vectors, higher order V_n, in particular their linear and nonlinear components, and correlations between different orders of v_n or Ψ_n.

Investigations of such fluctuations can be conducted by measuring the p_T and centrality dependence of multiparticle azimuthal cumulants. First measurements 7 of the four-particle cumulants $v_4\{4\}$ and $v_3\{4\}$ revealed that flow fluctuations are non-Gaussian, while $v_4\{4\}$ indicated that flow fluctuations are affected by the so-called volume or centrality fluctuations within a fixed centrality bin. Flow vector decorrelations can be studied by forming a factorization ratio $r_n(p_T, \eta)$ such that when v_n and/or Ψ_n decorrelate the r_n deviates from unity. These measurements can provide important constraints on the longitudinal structure, currently a challenge for three-dimensional hydrodynamic models. More specifically, comparison of r_n in PbPb and XeXe collisions 8 revealed that models tuned to describe the v_n in both systems failed to reproduce the r_n, as it can be seen in Fig. 1 (left). Higher order V_n can be expressed in terms of linear and nonlinear modes, each being proportional to the same or lower order “eccentricities” and/or a combination of them. Constraints to hydrodynamic models can be imposed by measurements of the corresponding nonlinear response coefficients $\chi_n(pk)$, where n represents the order of V_n and p, k with respect to lower-order symmetry plane angle or angles. Model calculations failed to simultaneously describe the measured χ_n 9, in particular, χ_{7223}, as it can be seen in Fig. 1 (right).

![Figure 1](image)

Figure 1 – Left: Ratios of flow decorrelations and v_2 from PbPb and XeXe collisions at 5.02 and 5.44 TeV, respectively 8, compared to hydrodynamic models. Right: The nonlinear response coefficient χ_{7223} at 2.76 and 5.02 TeV, as a function of centrality 9, compared to hydrodynamic models with different initial-state conditions.

3 Flow in proton-nucleus and proton-proton collisions

A series of features from small systems are indicative of a collective behavior driven by the initial-state geometry and final-state effects: the near-side ridge in two-particle correlations, the p_T and event activity dependence of v_n, the mass ordering of v_n, multiparticle cumulants and their ratios. One of the main puzzles for the creation of a medium similar to that formed in nucleus-nucleus collisions is the absence of “jet quenching”, i.e., no strong suppression as manifested by R_{PbPb} measurements. Alternatively, measurements of v_n at high p_T study the path length dependence of parton energy loss. Indeed, in Fig. 2 (left) positive v_2 values are seen up to high p_T irrespective of the event content 10. Significant v_2 values are also observed in photonuclear events 11,12 (Fig. 2 (right)), with v_2 having a similar p_T and event activity dependence as the hadronic collision systems.

In proton-proton collisions, it is even less clear what mechanism gives rise to the observed finite azimuthal anisotropy. Until now, hints towards a final-state description were given, e.g., the indication of a mass ordering 13 with multi-particle angular correlations 13,14 or that of the long-range correlations being only slightly affected when particles associated with hard or semihard processes in the event are removed 15.
4 Identified particle flow in all systems

Results of inclusive charged hadrons support the final-state scenario with a fluid being created in heavy ion and at least in proton-nucleus collisions. Measurements of identified hadrons confirm these observations while paving the way for stringent tests of theory predictions on the grounds that heavy flavor particles are formed early and subsequently participate in the medium evolution. Flow of quarkonia study the interaction of charm and beauty with the QGP. While and, for the first time with a multiparticle long-range correlation technique, exhibit a significant flow, the v_2 of $(1S)$ and $(2S)$ is consistent with zero (Fig. 3 (left)). Measurements of open heavy flavor hadrons also confirm a positive v_2, with the possibility to disentangle contributions from bottom hadrons, which are indeed found to flow less than charm hadrons (Fig. 3 (right)).

5 Summary

Although significant progress has been made on the level of precision achieved at large collision systems, the amount of data collected at LHC allow the measurement of more complex flow-related observables. More specifically, such measurements pose constraints on initial conditions,
which in turn contribute to more precise modeling of the final-state dynamics. Most previous flow measurements focused on \(V_n \) (overall flow), i.e., \(v_n \) with respect to \(\Psi_n \), but recently event-by-event flow fluctuations, longitudinal flow decorrelations, and measurements of nonlinear response coefficients demonstrate that model calculations cannot simultaneously describe all the aforementioned observables.

Multiparticle long-range correlations of inclusive charged and identified hadrons are observed down to the smallest collision systems. The origin of positive \(v_n \) seen up to high \(p_T \) is however still not resolved. Whether this is a manifestation of a collective behavior of the system created in such collisions and/or a dilute system with parton scatterings requires experimental techniques for suppressing nonflow contamination. In parallel, finding ways to discriminate between the two different scenarios are desirable, e.g., new results provide information on the QCD dynamics of multiparticle production in high-energy photonuclear collisions.

Acknowledgments

Supported by the Nuclear Physics program DE-SC0019389 of the U.S. Department of Energy.

References

1. K. Krížková Gajdošová, “Probing QGP with flow: An experimental overview”, *Nucl. Phys. A* **1005** (2021) 121802, doi:10.1016/j.nuclphysa.2020.121802, arXiv:2007.12529.
2. ATLAS Collaboration, “The ATLAS experiment at the CERN Large Hadron Collider”, *JINST* **3** (2008) S08003, doi:10.1088/1748-0221/3/08/S08003.
3. CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
4. J. Rafelski, “Discovery of quark-gluon plasma: Strangeness diaries”, *Eur. Phys. J. ST* **229** (2020) 1, doi:10.1140/epjst/e2019-900263-x, arXiv:1911.00831.
5. ATLAS Collaboration, “Measurement of the azimuthal anisotropy of charged particles produced in \(\sqrt{s_{NN}} = 5.02 \) TeV PbPb collisions with the ATLAS detector”, *Eur. Phys. J. C* **78** (2018) 997, doi:10.1140/epjc/s10052-018-6468-7, arXiv:1808.03951.
6. CMS Collaboration, “Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV/c in PbPb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV”, *Phys. Lett. B* **776** (2018) 195, doi:10.1016/j.physletb.2017.11.041, arXiv:1702.00630.
7. ATLAS Collaboration, “Fluctuations of anisotropic flow in PbPb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV with the ATLAS detector”, *JHEP* **01** (2020) 051, doi:10.1007/JHEP01(2020)051, arXiv:1904.04808.
8. ATLAS Collaboration, “Longitudinal flow decorrelations in XeXe collisions at \(\sqrt{s_{NN}} = 5.44 \) TeV with the ATLAS detector”, *Phys. Rev. Lett.* **126** (2021) 122301, doi:10.1103/PhysRevLett.126.122301, arXiv:2001.04201.
9. CMS Collaboration, “Mixed higher order anisotropic flow and nonlinear response coefficients of charged particles in PbPb collisions at \(\sqrt{s_{NN}} = 2.76 \) and 5.02 TeV”, *Eur. Phys. J. C* **80** (2020) 534, doi:10.1140/epjc/s10052-020-7834-9, arXiv:1910.08789.
10. ATLAS Collaboration, “Transverse momentum and process dependent azimuthal anisotropies in \(\sqrt{s_{NN}} = 8.16 \) TeV Pb collisions with the ATLAS detector”, *Eur. Phys. J. C* **80** (2020) 73, doi:10.1140/epjc/s10052-020-7624-4, arXiv:1910.13978.
11. ATLAS Collaboration, “Two-particle azimuthal correlations in photonuclear ultraperipheral PbPb collisions at 5.02 TeV with ATLAS”, (2021). arXiv:2101.10771.
12. CMS Collaboration, “Search for elliptic azimuthal anisotropies in interactions within
ultraperipheral Pb collisions at $\sqrt{s_{\text{NN}}} = 8.16$ TeV”, CMS Physics Analysis Summary CMS-PAS-HIN-18-008, 2020.

13. CMS Collaboration, “Evidence for collectivity in collisions at the LHC”, *Phys. Lett. B* **765** (2017) 193, doi:10.1016/j.physletb.2016.12.009, arXiv:arXiv:1606.06198.

14. ATLAS Collaboration, “Measurement of multiparticle azimuthal correlations in Pb and low-multiplicity PbPb collisions with the ATLAS detector”, *Eur. Phys. J. C* **77** (2017) 428, doi:10.1140/epjc/s10052-017-4988-1, arXiv:1705.04176.

15. ATLAS Collaboration, “Measurement of the sensitivity of two-particle correlations in collisions at $\sqrt{s} = 13$ TeV to the presence of jets with the ATLAS detector”, ATLAS Note ATLAS-CONF-2020-018, 2020.

16. CMS Collaboration, “Probing charm quark dynamics via multiparticle azimuthal correlations in 5.02 TeV PbPb collisions”, CMS Physics Analysis Summary CMS-PAS-HIN-20-001, 2021.

17. CMS Collaboration, “Measurement of the azimuthal anisotropy of (1S) and (2S) mesons in PbPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”, (2020). arXiv:2006.07707. Submitted to *Phys. Lett. B*.

18. ATLAS Collaboration, “Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in PbPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV with the ATLAS detector”, *Phys. Lett. B* **807** (2020) 135595, doi:10.1016/j.physletb.2020.135595, arXiv:2003.03565.

19. ATLAS Collaboration, “Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector”, *Phys. Rev. Lett.* **124** (2020) 082301, doi:10.1103/PhysRevLett.124.082301, arXiv:1909.01650.

20. CMS Collaboration, “Studies of charm and beauty hadron long-range correlations in and Pb collisions at LHC energies”, *Phys. Lett. B* **813** (2021) 136036, doi:10.1016/j.physletb.2020.136036, arXiv:2009.07065.