A Note on Koldobsky’s Lattice Slicing Inequality

Oded Regev

Abstract

We show that if $K \subseteq \mathbb{R}^d$ is an origin-symmetric convex body, then there exists a vector $y \in \mathbb{Z}^d$ such that

$$|K \cap \mathbb{Z}^d \cap y^\perp|/|K \cap \mathbb{Z}^d| \geq \min(1, c \cdot d^{-1} \cdot \text{vol}(K)^{-1/(d-1)})$$

for some absolute constant $c > 0$, where y^\perp denotes the subspace orthogonal to y. This gives a partial answer to a question by Koldobsky.

1 Introduction

The following question was asked by Koldobsky during the 2013 AIM workshop on “Sections of convex bodies.”

Question 1.1. Is it the case that for all $d \geq 1$ there exists an $\alpha = \alpha(d) > 0$ satisfying the following: for all origin-symmetric convex bodies $K \subseteq \mathbb{R}^d$ such that $\text{span}(K \cap \mathbb{Z}^d) = \mathbb{R}^d$ there exists a nonzero $y \in \mathbb{R}^d$ such that

$$|K \cap \mathbb{Z}^d \cap y^\perp|/|K \cap \mathbb{Z}^d| \geq \alpha \cdot \text{vol}_d(K)^{-1/d}$$

In other words, the question asks to find a dimension $d - 1$ subspace that contains at least an $\alpha \cdot \text{vol}_d(K)^{-1/d}$ fraction of the lattice points in K. The requirement on the span is in order to avoid degenerate cases of bodies of very small volume that would force α to be small.

Alexander, Henk, and Zvavitch [AHZ15] gave a positive answer to this question by showing that one can take $\alpha = C^{-d}$ for some absolute constant C. They also showed that for the special case of unconditional bodies K one can take $\alpha = c/d$ for some absolute constant $c > 0$, and observed that this is tight (as follows by taking K to be the cross-polytope $\text{conv}(\pm e_1, \ldots, \pm e_d)$). It remains an open question whether one can take $\alpha = c/d$ for general bodies. In this note we show that this is the case for bodies whose volume is at most C^{d^2} for any constant $C > 0$ (see Theorem 3.1 for the full statement). We refer to [AHZ15] for further background on Koldobsky’s question and its connection to the slicing problem of Bourgain.

Acknowledgements

I am grateful to Assaf Naor for suggesting that I look at Koldobsky’s question.
2 Orthogonal lattice points

We use the convention that \(c \) is an arbitrary absolute positive constant which might differ from one occurrence to the next. A lattice \(L \subset \mathbb{R}^d \) is defined as the set of all integer linear combinations of \(d \) linearly independent vectors in \(\mathbb{R}^d \). The dual lattice of \(L \) is \(L^* = \{ y \in \mathbb{R}^d : \langle y, x \rangle \in \mathbb{Z}, \forall x \in L \} \). For any \(s > 0 \), we define the function \(\rho_s : \mathbb{R}^n \rightarrow \mathbb{R} \) as \(\rho_s(x) = \exp(-\pi \|x\|^2/s^2) \). For a discrete set \(A \subset \mathbb{R}^n \) we define \(\rho_s(A) = \sum_{x \in A} \rho_s(x) \) and denote by \(D_{A,s} \) the probability distribution assigning mass \(\rho_s(x)/\rho_s(A) \) to any \(x \in A \). Recalling that the Fourier transform of \(\rho_s(\cdot) \) is \(s^d \rho_{1/s}(\cdot) \), the following is an immediate application of the Poisson summation formula.

Lemma 2.1. For any lattice \(L \subset \mathbb{R}^d \) and \(s > 0 \),

\[
\rho_s(L) = (\det L)^{-1} s^d \cdot \rho_{1/s}(L^*) .
\]

In particular,

\[
\rho_s(L) \geq (\det L)^{-1} s^d ,
\]

or equivalently,

\[
\Pr_{y \sim D_{L,s}} [y = 0] \leq (\det L) \cdot s^{-d} .
\]

The following is another easy corollary of the Poisson summation formula (already used in \[Ban93\]), and holds because \(\rho_s \) is a positive definite function, i.e., a function with a non-negative Fourier transform.

Lemma 2.2. For any lattice \(L \subset \mathbb{R}^d, s > 0, \) and \(x \in \mathbb{R}^d \),

\[
\rho_s(L + x) \leq \rho_s(L) .
\]

Corollary 2.3. For any lattice \(L \subset \mathbb{R}^d, s > 0, \) and \(x \in L \),

\[
\Pr_{y \sim D_{L,s}} [\langle x, y \rangle = 0] \geq \Pr_{y \sim D_{Z/\|x\|,s}} [y = 0] = \rho_s(\|x\|)(Z)^{-1} \geq c \cdot \min(1, (s\|x\|)^{-1}) .
\]

Proof. We start with the first inequality. Clearly, \(\langle x, y \rangle \) takes integer values. For any \(i \in \mathbb{Z} \), the set of points \(y \) in \(L^* \) with \(\langle x, y \rangle = i \) is either empty or a translation of \(L^* \cap x^\perp \) whose affine span is at distance \(i/\|x\| \) from the origin. The \(\rho_s \) mass of this set is obviously zero in the former case and at most \(\rho_s(i/\|x\|) \rho_s(L^* \cap x^\perp) \) in the latter by Lemma 2.2 and the product property of \(\rho_s \). The inequality follows. The last inequality is an easy calculation. \(\square \)

3 Application to Koldobsky’s question

Theorem 3.1. Let \(K \subset \mathbb{R}^d \) be an origin-symmetric convex body. Then there exists a vector \(y \in \mathbb{Z}^d \) such that

\[
|K \cap \mathbb{Z}^d \cap y^\perp|/|K \cap \mathbb{Z}^d| \geq \min(1, c \cdot d^{-1} \cdot \text{vol}(K)^{-1/(d-1)}) .
\]

We note that this bound improves on that of Alexander et al. \[AHZ15\] for any body whose volume is at most \(c^d \).
Proof. By John’s theorem (see, e.g., [Bal97]), there exists a linear transformation T of determinant 1 so that TK has circumradius at most $d \cdot \text{vol}(K)^{1/d}$. Therefore, by considering the body TK and the determinant 1 lattice $T\mathbb{Z}^d$, it suffices to prove the following: for any origin-symmetric convex body $K \subset \mathbb{R}^d$ with circumradius at most $d \cdot \text{vol}(K)^{1/d}$, and any lattice $L \subset \mathbb{R}^d$, there exists a nonzero vector $y \in L^*$ such that $$|K \cap L \cap y^\perp| / |K \cap L| \geq \min(1, c \cdot d^{-1} \cdot \text{vol}(K)^{-1/(d-1)}) .$$

Notice that if $\text{vol}(K) < d^{-d}$ then the circumradius of K is less than 1, in which case $L \cap K$ is not full dimensional (by Hadamard’s inequality and $\det L = 1$). As a result, we can choose a vector y so that $K \cap L \subseteq y^\perp$, making the quotient above 1. We therefore assume from now on that $\text{vol}(K) \geq d^{-d}$.

We will use a simple application of the probabilistic method. Namely, let us choose y from the distribution DL^*, where $s = C \cdot \text{vol}(K)^{1/(d(d-1))} \geq 1$ for a large enough absolute constant $C > 0$. Then, by Corollary 2.3, for any fixed $x \in K \cap L$, the probability that $\langle x, y \rangle = 0$ is at least $$c \cdot (sd \cdot \text{vol}(K)^{1/d})^{-1} = c \cdot d^{-1} \cdot \text{vol}(K)^{-1/(d-1)} .$$

Let p denote the latter quantity. It follows that the expected fraction of vectors x in $K \cap L$ satisfying $\langle x, y \rangle = 0$ is at least p. Moreover, by Markov’s inequality, with probability at least $p/2$ over the choice of y, the fraction of vectors x in $K \cap L$ satisfying $\langle x, y \rangle = 0$ is at least $p/2$. To complete the proof, notice by Lemma 2.1 that the probability that $y = 0$ is $s^{-d} < p/2$. Therefore, there is a positive probability over the choice of y that $y \neq 0$ and moreover, that the fraction of vectors x in $K \cap L$ satisfying $\langle x, y \rangle = 0$ is at least $p/2$. This completes the proof.

References

[AHZ15] Matthew Alexander, Martin Henk, and Artem Zvavitch. A discrete version of Koldobsky’s slicing inequality, 2015. Available at http://arxiv.org/abs/1511.02702.

[Bal97] Keith Ball. An elementary introduction to modern convex geometry. In Flavors of geometry, volume 31 of Math. Sci. Res. Inst. Publ., pages 1–58. Cambridge Univ. Press, Cambridge, 1997.

[Ban93] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(4):625–635, 1993.