Original Research Article

Effects of pantothenic acid on growth performance, slaughter performance, lipid metabolism, and antioxidant function of Wulong geese aged one to four weeks

Baowei Wang*, Xiao Zhang, Bin Yue, Wenhua Ge, Mingai Zhang, Chuanxing Ma, Min Kong

Institute of High Quality Waterfowl, Qingdao Agricultural University, Nutrition and Feed Laboratory of China Agriculture Research System, Qingdao 266109, China

A R T I C L E I N F O

Article history:
Received 18 May 2016
Received in revised form 20 July 2016
Accepted 26 July 2016
Available online 30 July 2016

Keywords:
Production performance
Lipid metabolism
Antioxidant function
Pantothenic acid
Wulong goose

A B S T R A C T

This experiment was conducted to study the effects of pantothenic acid on the growth performance, slaughter performance, lipid metabolism, and antioxidant function of one-to four-week-old Wulong geese and determine the appropriate supplemental level of pantothenic acid. A total of 360 one-day-old Wulong geese were randomly divided into 6 groups with 6 replicates per group and 10 geese (5 males and 5 females) per replicate. The geese in group I (control group) were fed a basal diet, and the geese in groups II to VI (experimental groups) were given the basal diet supplemented with 8, 15, 30, 60, and 120 mg/kg pantothenic acid, respectively. The experiment lasted for 4 weeks. Based on the results of unrelated comparative analysis, the body weight was the highest when the dietary pantothenic acid level was 27.57 mg/kg. When the dietary pantothenic acid level was 26.17 mg/kg, the average daily gain peaked. When the dietary pantothenic acid level was 15.50 mg/kg, the feed:gain ratio was the lowest. The percentage of abdominal fat in groups III and IV was significantly lower than that in group I ($P < 0.05$). The content of total cholesterol in serum in groups III to V was significantly lower than that in group I ($P < 0.05$). The triglyceride content in groups III and IV was significantly lower than that in group I ($P < 0.01$). The high-density lipoprotein–cholesterol content in group IV was significantly higher than that in group I ($P < 0.05$). The total antioxidant capacity of serum and liver in group IV was significantly higher than that in group I ($P < 0.05$). The malondialdehyde content in the liver in groups III and IV was significantly lower than that in group I ($P < 0.05$). Glutathione peroxidase activity in the serum in group IV was significantly higher than that in group I ($P < 0.05$). Glutathione peroxidase activity in the liver in groups IV and V was significantly higher than that in group I ($P < 0.01$). The addition of pantothenic acid in the diet of one-to four-week-old Wulong geese significantly affected the growth performance, slaughter performance, lipid metabolism, and antioxidant function of the geese. In terms of economic benefits, the optimal supplemental level of pantothenic acid in one-to four-week-old geese was 15.50 mg/kg.

© 2016, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Pantothenic acid is a type of vitamin B that is the prosthetic group of coenzyme A and a part of acyl carrier proteins (ACP) (Lanska Douglas, 2012). Pantothenic acid is involved in the metabolism of carbohydrates, fats, and proteins in the body, particularly in fat synthesis and metabolism. Coenzyme A transfers acyl during metabolism of carbohydrates, fats, and proteins in the body, particularly in fat synthesis and metabolism. Coenzyme A transfers acyl during metabolism (Zhang, 1994). Supplementing pantothenic acid in poultry diet can improve the health and performance of chickens. When chickens lack pantothenic acid, growth is affected and feather growth is poor. The chickens develop dermatitis, granular
nodule crust appears, the eyelids of the chicken stick together, a scab-like injury is observed around the mouth, and stubby tibia occurs. Severe de

2.1. Experimental animals and experimental design

A total of 360 one-day-old healthy Wulong geese with similar weights were randomly divided into 6 groups with 6 replicates per group and 10 geese (5 males and 5 females) per replicate. The geese in group I was fed a diet with an optimal supplemental level of pantothenic acid (9.08 mg/kg). Meanwhile, the geese in groups II to VI were fed the diet with 8, 15, 30, 60, and 120 mg/kg pantothenic acid, respectively. The experiment was conducted for 4 weeks. The experimental geese were provided by the Waterfowl Breeding Base Institute of Qingdao Agricultural University. Pantothenic acid used in the experiment was obtained from calcium pantothenate and purchased from Zhejiang Xin Wei Pu Limited Company (98% effective ingredient).

2.2. Experimental diet

The basic dietary nutritional levels were adopted from the NRC’s (1994) poultry nutritional requirement for geese diet formulation. The basic dietary composition and nutritional levels are shown in Table 1. The content of basic dietary pantothenic acid was 9.08 mg/kg based on high-performance liquid chromatography (Yang et al., 2012).

2.3. Feeding management

We disinfected the goose houses prior to experimentation and fed the geese in each house during the entire experimental period. We placed a thick padding on the ground and divided the space into many columns. Water was given ad libitum, whereas food was given in smaller amounts and in shorter intervals. We observed the growth performance of the geese.

2.4. Determination index and methods

2.4.1. Growth performance

At the end of 4 weeks, the fasted geese were weighed, and the average daily gain (ADG) was calculated from 1 week to 4 weeks. Dietary consumption was counted daily to compute the average daily feed intake (ADFI). The number of deaths and excluded individuals from each group were noted daily to determine the feed:gain (F:G) ratio.

2.4.2. Slaughter performance

At the end of 4 weeks, 2 geese were selected randomly per replicate for fasting. A total of 72 geese were selected from groups II to VI. Wing vein blood was collected, and the geese were slaughtered. Feeding was stopped 12 h before slaughtering. The dressed weight, half-eviscerated yield, eviscerated yield, abdominal fat, breast muscle, and leg muscle were measured according to the poultry production performance noun terms and metric statistics method (NY/T823-2004). The dressed percentage and percentages of half-eviscerated yield, eviscerated yield, abdominal fat, breast muscle, and leg muscle were calculated.

2.4.3. Fat metabolism indicators

At the end of 4 weeks, 10 ml of blood was collected from the wing vein and centrifuged at 2,700 × g for 10 min at room temperature to produce the serum samples. The triglyceride (TG), total cholesterol (TC), high-density lipoprotein—cholesterol (HDL-C), and low-density lipoprotein—cholesterol (LDL-C) contents were determined using the kits produced by the Nanjing Institute of Biological Engineering. UV-1100 ultraviolet visible light spectrophotometric determination was carried out.

2.4.4. Antioxidant index

At the end of 4 weeks, 10 ml of blood was collected from the wing vein and centrifuged at 2,700 × g for 10 min at room temperature to produce the serum samples. The total antioxidant capacity (TAC) and the activity of superoxide dismutase (SOD) were determined using the kits produced by the Nanjing Institute of Biological Engineering. UV-1100 ultraviolet visible light spectrophotometric determination was carried out.

Table 1

Composition and nutrient levels of basal diet (air-dry basis) (%).

Ingredients	Content	Nutrient levels1	Content
Corn	60.00	ME, MJ/kg	11.76
Soybean meal	28.40	CP	18.92
Fish meal	2.00	CF	3.27
Wheat middling	5.00	Ca	0.74
Corn straw	2.00	AP	0.33
CaHPO4	0.84	Lys	1.02
Limestone	0.96	Met	0.31
NaCl	0.30	Cys	0.31
Trace elements1	0.20	Pantothenic acid, mg/kg	9.08
Multivitamin2	0.30		
Total	100.00		

1. The multivitamin and trace elements (without pantothenic acid) provided the following (per kilogram of the diet): VA, 1,500 mg; VD₃, 200 IU; VE, 12.5 mg; VK₃, 1.5 mg; VB₆, 2.2 mg; VB₁₂, 5.0 mg; nicotinic acid, 65 mg; VB₆, 2 mg; biotin, 0.2 mg; folinic acid, 0.5 mg; choline, 1,000 mg; Fe, 90 mg; Cu, 6 mg; Mn, 85 mg; Zn, 85 mg; I, 0.42 mg; Se, 0.3 mg; and Co, 2.5 mg.

2. Pantothenic acid was measured, whereas the other nutrient levels were calculated.
temperature to obtain serum samples. After blood was collected and geese were slaughtered, liver portions were removed and the 10% liver tissue homogenate was prepared. The total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) contents were determined using the kits produced by the Nanjing Institute of Biological Engineering. UV-1100 ultraviolet visible light spectrophotometric determination was conducted.

2.5. Statistical analysis

All analyses were performed with the LSD method of one-way ANOVA from SPSS 17.0. The values were given as means ± standard deviation. The various index of linear or curve responses on the level of pantothenic acid added in diet were analyzed by Orthogonal and fit curve equations using curve fitting method. The significance level of 0.05 and high significance level of 0.01 were adopted.

3. Results and analysis

3.1. Effects of the supplemental level of dietary pantothenic acid on the growth performance of Wulong geese

Table 2 shows that the weight of one-to four-week-old geese in groups III and IV was significantly higher than those in group I (P < 0.01). The ADG in groups III and IV was significantly higher than that in group I (P < 0.01). The F:G ratio in groups III and IV was highly significantly lower than that in group I (P < 0.01). The body weight (BW), ADG, and F:G ratio between groups III and IV did not have significantly vary (P > 0.05).

The BW, ADG, and F:G ratio between groups II and I did not have significantly vary (P > 0.05). The level of pantothenic acid was greater than 30 mg/kg, and the BW, ADG, and F:G ratio did not significantly vary (P > 0.05).

The ADFI and mortality rate did not significantly differ among groups (P > 0.05). Therefore, conic fitting was conducted using the BW, ADG, and F:G ratio and the levels of dietary pantothenic acid in groups I to IV. The regression equations were as follows:

\[
Y_{(\text{BW})} = 1.047 + 0.018X - 3.265E^{-4}X^2 \quad (R^2 = 0.822, \quad P_Q = 0.000);
\]

\[
Y_{(\text{ADG})} = 34.741 + 0.628X - 0.012X^2 \quad (R^2 = 0.820, \quad P_Q = 0.000);
\]

Table 2 Effects of the supplemental level of dietary pantothenic acid on the growth performance of Wulong geese

Groups	BW, kg	ADG, g	ADFI, g	F:G ratio
I	1.06 ± 0.04ab	35.29 ± 1.47ab	85.81 ± 1.31	2.44 ± 0.14ab
II	1.12 ± 0.03abc	37.44 ± 1.09abc	87.34 ± 1.69	2.33 ± 0.11abc
III	1.28 ± 0.04cd	42.83 ± 1.27cd	88.28 ± 1.73	2.06 ± 0.04cd
IV	1.29 ± 0.04cd	43.04 ± 1.39cd	88.51 ± 2.24	2.05 ± 0.10cd
V	1.20 ± 0.05c	39.91 ± 1.67c	87.89 ± 1.49	2.22 ± 0.14c
VI	1.16 ± 0.04bc	38.63 ± 1.30bc	88.27 ± 0.69	2.29 ± 0.09bc
P-value	0.000	0.000	0.370	0.005

BW = body weight; ADG = average daily gain; ADFI = average daily feed intake; F:G ratio = the ratio of feed to gain.

3.2. Effects of the supplemental level of dietary pantothenic acid on the lipid metabolism of Wulong geese

Table 3 shows that the lipid content in groups III, IV, and V was significantly lower than that in group I from 1 week to 4 weeks (P < 0.05), but the TG content did not significantly vary among groups III, IV, and V (P > 0.05). The TG content in groups III and IV was significantly lower than that in group I (P < 0.01), whereas the HDL-C content in group IV was significantly lower than that in group I. The TG content in group IV was significantly lower than that in group I. The LDL-C and HDL-C contents in group IV showed no significant difference (P > 0.05).

The results showed that a dietary pantothenic acid level of 15 mg/kg could significantly decrease the percentage of abdominal fat of one-to four-week-old geese. When the amount of pantothenic acid was higher than 30 mg/kg, the percentage of abdominal fat began to increase.

3.3. Effects of the supplemental level of dietary pantothenic acid on the antioxidant function in the sera of Wulong geese

Table 4 shows that the activities of T-AOC and GSH-Px in the serum in group IV were significantly higher than those in group I from 1 week to 4 weeks (P < 0.05). The activity of T-SOD in the experimental groups was higher than that in the control group, but the difference was not statistically significant (P < 0.05). The MDA content in the experimental groups was lower than that in the control group, but the difference was not statistically significant (P > 0.05).

The above mentioned regression equations suggested that BW was the highest when the dietary pantothenic acid level was 27.57 mg/kg. The average daily gain was the highest when the dietary pantothenic acid level was 26.17 mg/kg. The F:G ratio was the lowest when the dietary pantothenic acid level was 15.50 mg/kg.

3.4. Effects of the supplemental level of dietary pantothenic acid on the antioxidant function in the sera of Wulong geese

Table 5 shows that the activities of T-AOC and GSH-Px in the serum in group IV were significantly higher than those in group I from 1 week to 4 weeks (P < 0.05). The activity of T-SOD in the experimental groups was higher than that in the control group, but the difference was not statistically significant (P > 0.05). The MDA content in the experimental groups was lower than that in the control group, but the difference was not statistically significant (P > 0.05).

Table 6 shows that the T-AOC activity of the liver in group IV was substantially higher than that in group I from 1 week to 4 weeks (P < 0.05). The MDA content in the serum in groups IV and V was
Table 3

Effects of the supplemental level of dietary pantothenic acid on the slaughter performance (%) of Wulong geese.

Groups	Dressed percentage	Percentage of half-eviscerated yield	Percentage of eviscerated yield	Percentage of breast muscle	Percentage of leg muscle	Percentage of abdominal fat
I	87.23 ± 0.17a	77.21 ± 1.34a	64.83 ± 1.63	1.53 ± 0.14	15.58 ± 0.41	1.14 ± 0.05
II	87.46 ± 0.80b	76.99 ± 0.85c	65.34 ± 0.83	1.68 ± 0.13	16.34 ± 0.89ab	1.01 ± 0.03abc
III	87.92 ± 0.57c	77.78 ± 0.52ab	64.89 ± 0.14	1.74 ± 0.13	16.69 ± 0.46	1.06 ± 0.02ab
IV	88.36 ± 0.40b	78.46 ± 0.67bc	66.93 ± 1.22	1.81 ± 0.14	17.14 ± 0.65	1.05 ± 0.02
V	87.65 ± 0.59bc	78.61 ± 0.94abc	64.92 ± 1.02	1.60 ± 0.18	16.59 ± 0.39ab	1.07 ± 0.06bc
VI	87.39 ± 0.14d	77.66 ± 0.82abc	65.27 ± 1.26	1.57 ± 0.21	16.33 ± 0.45ab	1.13 ± 0.03bc
P-value	0.146	0.094	0.254	0.303	0.062	0.045

a,b,c In the same column, values with the same small or no superscripts indicate no significant difference (P > 0.05), whereas values with adjacent small letter superscripts denote a significant difference (P < 0.05). Alternate small letter superscripts indicate a significant difference (P < 0.01).

Table 4

Effects of the supplemental level of dietary pantothenic acid on the lipid metabolism (mmol/L) of Wulong geese.

Groups	TCH	TG	HDL-C	LDL-C
I	3.32 ± 0.23b	1.17 ± 0.18b	1.54 ± 0.06c	2.78 ± 0.14d
II	2.93 ± 0.43bc	0.84 ± 0.17bc	1.63 ± 0.10bc	2.67 ± 0.06bc
III	2.65 ± 0.35bc	0.65 ± 0.07bc	1.79 ± 0.12bc	2.61 ± 0.18bc
IV	2.49 ± 0.21bc	0.61 ± 0.17bc	1.82 ± 0.12bc	2.49 ± 0.26bc
V	2.73 ± 0.10bc	0.74 ± 0.23bc	1.76 ± 0.08bc	2.64 ± 0.03bc
VI	2.97 ± 0.20bc	1.03 ± 0.13bc	1.60 ± 0.16bc	2.75 ± 0.18bc
P-value	0.038	0.005	0.047	0.332

Table 5

Effects of the supplemental level of dietary pantothenic acid on the antioxidant function in the serum of Wulong geese.

Groups	T-AOC, U/mL	T-SOD, U/mL	MDA, nmol/mL	GSH-Px, U/mL
I	11.16 ± 1.12a	116.49 ± 6.66a	6.24 ± 0.40	898.27 ± 67.48a
II	12.99 ± 6.09abc	122.62 ± 4.27abc	5.88 ± 0.62	1013.26 ± 118.29abc
III	15.08 ± 1.17bc	124.45 ± 3.54bc	4.72 ± 1.08	1167.49 ± 182.50bc
IV	15.50 ± 2.81bc	124.48 ± 3.65bc	4.47 ± 0.87	1233.75 ± 128.13bc
V	14.34 ± 1.36abc	125.09 ± 3.99abc	4.63 ± 1.15	1185.77 ± 112.93abc
VI	12.75 ± 0.95abc	123.39 ± 2.95abc	5.45 ± 0.63	976.21 ± 74.23abc
P-value	0.037	0.228	0.108	0.028

T-AOC = total antioxidative capacity; T-SOD = total superoxide dismutase; MDA = methanal dicarboxylic aldehyde; GSH-Px = glutathione peroxidase.

Table 6

Effects of the supplemental level of dietary pantothenic acid on the antioxidant function in the liver of Wulong geese.

Groups	T-AOC, U/mg prot	T-SOD, U/mg prot	MDA, nmol/mg prot	GSH-Px, U/mg prot
I	1.52 ± 0.38ab	225.71 ± 20.63	2.62 ± 0.41	102.80 ± 22.71ab
II	1.71 ± 0.26abc	233.67 ± 13.40	2.18 ± 0.36abc	117.29 ± 27.40abc
III	1.96 ± 0.24abc	239.45 ± 2.49ab	2.05 ± 0.38abc	171.22 ± 0.93abc
IV	2.17 ± 0.10abc	245.96 ± 10.47	1.74 ± 0.32ab	197.56 ± 16.40abc
V	2.07 ± 0.22abc	254.36 ± 17.57	1.83 ± 0.31ab	186.68 ± 25.40abc
VI	1.68 ± 0.28abc	248.33 ± 13.91	2.54 ± 0.49abc	135.28 ± 43.99abc
P-value	0.044	0.424	0.049	0.007

T-AOC = total antioxidative capacity; T-SOD = total superoxide dismutase; MDA = methanal dicarboxylic aldehyde; GSH-Px = glutathione peroxidase.

4. Discussions

4.1. Effects of the supplemental level of dietary pantothenic acid on the growth performance of Wulong geese

Pantothenic acid, which is a type of water-soluble vitamin B, can strengthen digestion and absorption and promote animal growth. An experiment in the United States confirmed that fodder fortified with B vitamins can significantly improve daily gain and feed reward (Sun and Mike Coelho, 2002). Beer et al. (1963) showed that chicken fodder with 6–8 mg/kg pantothenic acid can improve the...
growth rate and survival rate of chicken. By contrast, foods with low levels of pantothenic acid can inhibit the growth of chicks. This effect can be counteracted by increasing the amount of pantothenic acid in chick fodder. Qi et al. (1998) noted that 10 mg/kg pantothenic acid in fodder can improve the daily gain of broilers. Zhao et al. (2015) determined that an appropriate amount of pantothenic acid (a minimum level of 40.00 mg/kg) in fodder helps reduce the growth of rabbit–feed conversion ratio. In the present study, adding 27.57 mg/kg pantothenic acid in fodder significantly increased the weight of geese, whereas adding 26.17 mg/kg pantothenic acid significantly increased the ADG of the birds. The results of this study are consistent with the literature. Pantothenic acid did not significantly affect the feed intake of goose, but adding 15.50 mg/kg pantothenic acid in fodder significantly decreased the F:G ratio. This result indicated that the growth-promoting effect of pantothenic acid in geese was not caused by increased intake. However, increased intake improved feed efficiency.

4.2. Effects of the supplemental level of dietary pantothenic acid on the slaughter performance of Wulong geese

Slaughter performance indicators are a set of metrics that reflect the different amounts of nutrients in various tissues and different parts of the same tissue. Many factors influence the deposition rate. Pantothenic acid is a cofactor of coenzyme A. Coenzyme A is crucial in fat metabolism. A previous study found that ACP plays an important role in the carbon chain synthesis of fatty acid synthesis (Ball, 1998). Shibata et al. (2013) found that adding pantothenic acid can reduce body fat deposition. In the present study, adding 15 mg/kg pantothenic acid in diets could significantly reduce the abdominal fat of goose. This result demonstrated the regulatory role of pantothenic acid on the fat metabolism of goose. The slaughter rate and eviscerated rate are the main indexes that depict the performance of broilers (Wei, 2001). The tests showed that the slaughter rate, half net carcass rate, eviscerated rate, rate of breast muscle, and leg muscle rate of pantothenic acid improved in the experimental groups, unlike in the control group. Thus, pantothenic acid affected the slaughter performance of geese. The influence of pantothenic acid on the slaughter performance of goose has not yet been reported, and the effect of pantothenic acid on the slaughter performance mechanism must be studied further.

4.3. Effects of the supplemental level of dietary pantothenic acid on the lipid metabolism of Wulong geese

Pantothenic acid is a part of the coenzyme A, and coenzyme A is an auxiliary factor of 70 kinds of enzymes in organisms (approximately 4% of the total amount of enzymes); coenzyme A is important in carbohydrate, fat, and amino acid metabolism in many reversible acetylation reactions (Shiu and Hsu, 1999). Acid reflux also synthesizes fatty acid synthesize cofactor (4-phosphopantetheine mercaptoethyamine), and panthenol mercaptoethyamine can reduce the concentrations of cholesterol and TG (Yang and Xiao, 2008). The total cholesterol and TG are two important indicators of the body's lipid levels. The high-density lipoprotein cholesterol is a serum protein that is rich in phospholipids; this serum protein can eliminate free cholesterol in liver tissue cells and remove intra- cellular cholesterol organizations (Wang et al., 2002). The main function of LDL-C is to transport cholesterol to the cells throughout the body and facilitate liver bile acid; thus, LDL-C plays an important role in cholesterol metabolism. Hsu et al. (1986) determined that dietary pan-acyl amine can reduce TG in the liver and serum cholesterol levels of hens. Wittwer et al. (1990) observed that the serum TG and free fatty acid concentrations in rats significantly increased after the rats were administered pantothenic acid-deficient feed. Avogaro et al. (1983) determined that the two-pantothenic acid metabolite of pantothenic acid amine sulfur can reduce diabetes-related lipid metabolism disorders, cholesterol, serum total cholesterol of hyperlipoproteinemia patients, LDL cholesterol, and TG fat content. This metabolite can also improve the HDL-C levels. The tests in the present study showed that dietary pantothenic acid of 15 mg/kg could significantly reduce the TCH and TG contents in geese. Meanwhile, adding 30 mg/kg pantothenic acid could significantly increase the HDL-C content, which agrees with the abovementioned findings. These results indicated that pantothenic acid regulated lipid metabolism in geese.

4.4. Effects of the supplemental level of dietary pantothenic acid on the antioxidant function in the serum of Wulong geese

Pantothenic acid can protect biofilm systeme by different mechanisms to against lipid peroxidation, which ensures the integrity of the body's cell structure to maintain the normal physiological functions of the body. The total antioxidative capacity is a comprehensive health indicator that measures the body's antioxidative system features. In general, the amount of T-AOC can reflect the condition of the antioxidant defense system in terms of external stimuli compensatory capacity and free radical metabolism in the body (Zheng, 2007). The total superoxide dismutase is an important enzyme in the body that removes free radicals. Thus, T-SOD indirectly indicates the body's ability to eliminate free radicals. The methane dicarboxylic aldehyde is the final product of the lipid peroxidation chain reaction in vivo; its content can reflect the extent of lipid and membrane peroxidation in the body (Zhao et al., 2000). The glutathione peroxidase is present in various animals. It can specifically catalyze GSH to reduce an important enzyme. The glutathione peroxidase can eliminate free active oxygen and lipid peroxides induced by OH, thereby reducing free radicals. It can prevent oxidative substances from attacking the cell membrane, protect the integrity of the structure and function of cell membranes, and improve the body's antioxidant capacity. Pantothenic acid can facilitate glutathione biosynthesis, as well as slow down apoptosis and injury. Experimental results showed that pantothenic acid exhibits good protective effects against lipid peroxidation damage in rats (Wittwer et al., 1990). Ding described the two possible mechanisms of pantothenic acid lipid peroxidation protection: 1) pantothenic acid takes the form of CoA-scavenging free radicals and protects the cell membrane from damage; and 2) CoA phospholipid repair cells by promoting synthesis (Wittwer et al., 1990). Zhao et al. (2015) determined that appropriate dietary levels of pantothenic acid can reduce lipid peroxidation and increase growth. In the present study, diets supplemented with 30 mg/kg pantothenic acid could significantly increase T-AOC and GSH-Px activity in serum. Diets supplemented with 30 mg/kg pantothenic acid could significantly increase T-AOC and GSH-Px activity and substantially reduce MDA content in the liver. These findings were similar to the abovementioned studies. Therefore, pantothenic acid was effective against lipid peroxidation. Under a high immune status, the actual pantothenic acid requirement was higher than the maximum recommended requirement to optimize the performance of geese. However, the underlying mechanism has yet to be resolved.

5. Conclusions

1) Pantothenic acid significantly affected the BW, ADG, and F:G ratio of Wulong geese. The BW was the highest when the dietary pantothenic acid level was 27.57 mg/kg. The ADG peaked when the dietary pantothenic acid level was 26.17 mg/kg. The lowest
feed conversion rate was observed when the dietary pantothenic acid level was 15.50 mg/kg.

2) A dietary pantothenic acid level of 15 mg/kg could significantly decrease the abdominal fat of Wu-long geese, as well as substantially decrease the TCH and TG contents. A dietary pantothenic acid of 30 mg/kg could significantly increase the HDL-C content.

3) A dietary pantothenic acid level of 30 mg/kg could significantly increase the activity of T-AOC and GSH-Px, as well as considerably decrease the MDA content, in the sera of geese.

4) At a high immune state, pantothenic acid requirement must be increased to optimize the performance of geese. In terms of economic benefits, the optimal supplemental level of pantothenic acid was 15.50 mg/kg in the diets of Wu-long geese from 1 to 4 weeks.

References

Avogaro P, Bon GB, Fusello M. Effect of pantetheine on lipids, lipoproteins and apolipoproteins in man. Curr Ther Res-Clin Exp 1983;33(3):488–93.

Beer AE, Scott ML, Nesheim MC. The effects of graded levels of pantothenic acid on the breeding performance of white Leghorn pullets. Brit. Poult Sci 1963;4:243–53.

Ball GFM. Pantothenic acid. In: Ball GFM, editor. Bioavailability and analysis of vitamins in foods; 1998. p. 409–22. England: Spring Us.

Bootwalla SM, Harms RH. Reassessment of pantothenic acid requirement for single comb White Leghorn pullets from 0 to 6 weeks of age and its subsequent effect on sexual maturity. Poult Sci 1991;70(1):80–4.

Deyhim F, Belay T, Teeter RG. An evaluation of dietary pantothenic acid needs of broilers through eight weeks posthatching. Nutr Res 1992;12(12):1549–54.

Hsu JC, Tanaka K, Ohtani S, Collado CM. Effects of pantechine supplementation to diets on hepatic lipogenesis in laying hens exposed to a high environmental temperature. Jpn J Zootec Sci 1988;59(12):1059–72.

Lanska Douglas J. The discovery of niacin, biotin and pantothenic acid. Ann Nutr Metab 2012;61(3):246–53.

NRC. Nutrient requirements of poultry. 9th ed. Washington, D.C.: National Academy Press; 1994.

Qi PH, Chen Y, Xu CS. Effects of pantothenic acid to nutrient metabolic rate of broiler chickens. Heilongjiang J Anim Husb veterinary 1998;29(1):48–53.

Robel EJ. Evaluation of egg injection method of pantothenic acid in turkeys eggs and effect of supplemental pantothenic acid on hatchability. Poult Sci 1993;72(9):1740–5.

Sun XY, Mike Coelho B. Vitamins feeding amount in increased muscle growth. Anim Husb Abroad Pigs Poult 2002;2:31–3.

Shibata K, Fukumotani T, Higashiya S. Pantothenic acid refeeding diminishes the liver, perinephrical fat, and plasma fats accumulated by pantothenic acid deficiency and ethanol consumption. Nutrition 2013;29(5):796–801.

Shiau SY, Hau CH. Dietary pantothenic acid requirement of juvenile grass shrimp (penaeus monodon). Nutr 1999;129:718–21.

Wei JH. Measured the quality of slaughter and muscles. In: The vol of the tenth national poultry academic seminar; 2001. p. 178–9.

Wang S, Li JZ, Li HX. Classification of desirable and atherosclerotic risk level of triglyceride and high density lipoprotein cholesterol. Chin J Arterioscler 2002;10(6):513–6.

Wittwer CT, Buck S, Peterson M, Davidson R, Wilson DE, Hansen RG. Mild pantothenate deficiency in rats elevates serum triglyceride and free fatty acid levels. J Nutr 1990;120(7):719–25.

Yi P. The influence of hatch chicken lack of pantothenic acid result. Heilongjiang J Anim Reprod 2003;3:27.

Yang FS, Liu YM, Chen Z. Reversed phase high performance liquid chromatography method for determination of D - in premixed feed pantothenic acid. Feed Res 2012;8:73–5.

Yang YH, Xiao CL. The function and synthetic biology of pantothentic acid. Chem Life 2008;28(4):448–52.

Zhang HY. Biochemistry tutorial. Chengdu: Sichuan University Press; 1994. p. 240–1.

Zhong SY. Chinese feed. Peking: Chinese Agriculture Press; 2000. p. 253.

Zou XT. Effects of pantothenic acid to breeding hens. J Northeast Agric Univ 1998;29(1):48–53.

Zhao N, Liu CY, Liu L, Zhu YL, Li FC. Effects of odder pantothenic acid added level for the antioxidant function and performance of 3 ~ 5 months rabbits. Chin J Anim Nutr. 2015;27(8):1–8.

Zheng RL. Free radical biology. 3 edition. Peking: Higher Education Press; 2007.

Zhao KR, Yang YJ, Cao DJ. Oxygen free radicals and clinical. Peking: China Medical Science Press; 2000. p. 529–38.