We give a Shor-Preskill type security-proof to the quantum key distribution without public announcement of bases [W.Y. Hwang et al., Phys. Lett. A 244, 489 (1998)]. First, we modify the Lo-Chau protocol once more so that it finally reduces to the quantum key distribution without public announcement of bases. Then we show how we can estimate the error rate in the code bits based on that in the checked bits in the proposed protocol, that is the central point of the proof. We discuss the problem of imperfect sources and that of large deviation in the error rate distributions. We discuss when the bases sequence must be discarded.

I. INTRODUCTION

Information processing with quantum systems enables what seems to be impossible with its classical counterpart. In addition to the practical importance, this fact has many theoretical and even philosophical implications.

Quantum key distribution (QKD) is one of the most important and interesting quantum information processing. QKD will become the first practical quantum information processor. Although the security of the Bennett-Brassard 1984 (BB84) QKD scheme had been widely conjectured based on the no-cloning theorem, it is quite recently that its unconditional security was shown. In particular, Shor and Preskill showed the security of BB84 scheme, starting from a modified form of the Lo-Chau protocol, by elegantly using the connections among several basic ideas in quantum information processing, e.g. quantum error correcting codes (QECCs) and entanglement purification.

In the standard BB84 protocol, however, only half of the data obtained by using expensive quantum communication can be utilized at most. It is clear that it is not efficiency but security that is the most important in the cryptographic tasks. However, it is meaningful enough to improve the efficiency without loss of security. One method for the full efficiency QKD is to delay the measurements in the BB84 scheme using quantum memories.

Shor-Preskill type security-proof for the quantum key distribution without public announcement of bases

Won-Young Hwang, Xiang-Bin Wang, Keiji Matsumoto, Jaewan Kim, and Hai-Woong Lee

1 IMI Quantum Computation and Information Project, ERATO, Japan Science and Technology Corporation, Daini Hongo White Bldg. 201, 5-28-3, Hongo, Bunkyo, Tokyo 133-0033, Japan
2 School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-012, Korea
3 Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

We define another basis as follows.

\[
|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)
\]

The canonical basis of a qubit consists of $|0\rangle$ and $|1\rangle$. We define another basis as follows. $|0\rangle = (1/\sqrt{2})(|0\rangle + |1\rangle)$
and $|\bar{1}\rangle = (1/\sqrt{2})(|0\rangle - |1\rangle)$. The Hadamard transform H is a single qubit unitary transformation of the form $H = (1/\sqrt{2})(\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix})$ in the canonical basis. This transformation interchanges the bases $|0\rangle$, $|1\rangle$ and $|\bar{0}\rangle$, $|\bar{1}\rangle$.

$I = \sigma_0$ is the identity operator and $\sigma_x = (0 1 \\ 1 0)$, $\sigma_y = (0 -i \\ i 0)$, $\sigma_z = (1 0 \\ 0 -1)$ are the Pauli operators. The $\sigma_{a(i)}$ denotes the Pauli operator σ_a acting on the i-th qubit where $a = x, y, z$. For a binary vector s, we let $\sigma_s^0 = \sigma_{a(1)}\sigma_{a(2)}\cdots\sigma_{a(n)}$, where s_i is the i-th bit of s and $\sigma_s^0 = I$, $\sigma_s^1 = \sigma_a$.

The Bell basis states are the four maximally entangled ones, $|\Psi^\pm\rangle = (1/\sqrt{2})(|01\rangle \pm |10\rangle)$ and $|\Phi^\pm\rangle = (1/\sqrt{2})(|00\rangle \pm |11\rangle)$.

Let us consider two classical binary codes, C_1 and C_2, such that $\{0\} \subset C_2 \subset C_1 \subset F_2^n$ where F_2^n is the binary vector space of the n bits. A set of basis for the CSS code can be obtained from vectors $v \in C_1$ as follows, $v \rightarrow (1/|C_2|^1/2)\sum_{w \in C_2} |v+w\rangle$. Note that v_1 and v_2 give the same vector if $v_1 - v_2 \in C_2$. H_1 is the parity check matrix for the code C_1 and H_2 is that for C_2^\perp, the dual of C_2. Q_{xz} is a class of QECCs. For $v \in C_1$, the corresponding code word is $v \rightarrow (1/|C_2|^1/2)\sum_{w \in C_2} (-1)^z w|v|v+w\rangle$.

II. THE QKD WITHOUT PUBLIC ANNOUNCEMENT OF BASIS

It is notable that what we are considering in this section is not security but reductions of the schemes.

Protocol A: Modified Lo-Chau scheme II.

1. Alice creates $2n$ Einstein-Podolsky-Rosen (EPR) pairs in the state $|\Phi^+\rangle^{\otimes 2n}$. (2) Alice and Bob are assumed to be sharing a prior random $(2n/r)$-bit string, the basis sequence b. $(2n/r)$ is a positive integer.) Alice performs the Hadamard transform on second half of each EPR pair for which b is one. (3) Alice repeats the step $2r$ times with the same basis sequence b. (4) Alice sends the second half of each pair to Bob. (5) Bob receives the qubits and publically announces this fact. (6) Bob performs the Hadamard transform on second half of each EPR pair for which b is one. (7) Bob repeats the step $6r$ times with the same basis sequence b. (8) Alice randomly selects n of the $2n$ EPR pairs to serve as check bits to test for Eve’s interference. Then she announces it to Bob. (9) Alice and Bob each measure their halves of the n check EPR pairs in the $\{0, 1\}$ basis and share the results. If too many of these measurements disagree, they abort the scheme. (10) Alice and Bob make the measurements on their code qubits of σ_s^r for each row $r \in H_1$ and σ_s^r for each row $r \in H_2$. Alice and Bob share the results, compute the syndromes for bit and phase flips, and then transforms their state so as to obtain m (encoded) nearly EPR pairs. (11) Alice and Bob measure the EPR pairs in the (encoded) $\{0, 1\}$ basis to obtain m-bit final string with near-perfect security. □

The entanglement purification protocols with one-way classical communications are equivalent to the QECCs [21]. The modified Lo-Chau protocol reduces to the CSS codes protocol by this equivalence [17]. However, the only difference between the Protocol A and the modified Lo-Chau protocol is the following. In the former they use the basis sequence b to determine whether they apply the Hadamard operation or not, while in the latter they do it by their own different random sequences and they use only matched bases. We can see that the protocol A reduces to the protocol B by the same equivalence.

Protocol B: CSS codes scheme II.

1. Alice creates n random check bits and a random m-bit key k. They are assumed to share a prior random $(2n/r)$-bit string, the basis sequence b. (2) Alice chooses n-bit strings x and z at random. (3) Alice encodes her key $|k\rangle$ using the CSS code Q_{xz}. (4) Alice chooses n positions out of $2n$ and puts the check bits in these positions and the code bits in the remaining positions. (6) Alice performs the Hadamard transform on the qubits for which b is one. (7) Alice repeats the step $6r$ times with the same basis sequence b. (8) Alice sends the resulting state to Bob. Bob acknowledges the receipt of the qubits. (9) Alice announces the positions of check bits, the values of the check bits, x, and z. (10) Bob performs the Hadamard transform on the qubits for which the component of b is one. (11) Bob repeats the step $10r$ times with the same basis sequence b. (12) Bob checks whether too many of the check bits have been corrupted, and aborts the scheme if so. (13) Bob measures the qubits in the (encoded) $\{0, 1\}$ basis to obtain m-bit final key with near-perfect security. □

The only difference between the Protocol B and the CSS codes protocol [17] is the following. In the former they use the basis sequence b to determine whether they apply the Hadamard operation or not, while in the latter they do it by their own different random sequences and they use only matched bases. We can see that the protocol B reduces to the following protocol C in the same way as the modified CSS codes protocol reduces to the BB84 protocol.

Protocol C: QKD without public announcement of basis

1. Alice creates $2n$ random bits. Alice and Bob are sharing a prior random $(2n/r)$-bit string, the basis sequence b. (2) Alice encodes each random bit to qubits using the basis sequence b. That is, when the random bit is 0 (1) and the corresponding component of the basis sequence b is zero, she creates a qubit in the $|0\rangle$ ($|1\rangle$) state. When the random bit is 0 (1) and the corresponding component of the basis sequence b is one, she creates a qubit in the $|0\rangle$ ($|1\rangle$) state. (3) Alice repeats the step $2r$ times with the same basis sequence b. (4) Alice sends the resulting qubits to Bob. (5) Bob receives the $2n$ qubits and performs measurement S_z or S_y if the corresponding component of the sequence b is zero and one, respectively. Here
III. THE SECURITY OF THE QKD WITHOUT PAB

Since we have shown the reduction of protocols $A \to B \to C$, it is sufficient for us to show the security of the protocol A here. Arguments in the following are for entanglement purifications in the protocol A, thanks to which we can deal with the coherent attacks.

We briefly remind the classicalization of statistics that is stressed by Lo and Chau [18,22]. Then we will see that remaining arguments are similar to what we used for the individual attacks [23].

First, let us review the classicalization of statistics in the Shor and Preskill proof [17]. What we consider is the interaction of qubits $|\psi\rangle$ of Alice and Bob and quantum probes $|e\rangle$ of Eve. In general, the state after any interaction by a unitary operator U can be decomposed [26,27] as

$$U|\psi\rangle|e\rangle = \sum_{\{k\}} C_{\{k\}}|\psi_{\{1\}}\rangle\sigma_{k_1}^{(1)}|\psi_{\{2\}}\rangle\sigma_{k_2}^{(2)}\cdots|\psi_{\{n\}}\rangle\sigma_{k_n}^{(n)}|e_{\{k\}}\rangle.$$

Here $\{k\}$ is the abbreviation for the $k_1, k_2, ..., k_n$ with $k_i = 0, 1, 2, 3$ ($i = 1, 2, ..., n$), and $\sigma_0 = I$, $\sigma_1 = \sigma_x$, $\sigma_2 = \sigma_y$, $\sigma_3 = \sigma_z$. The $C_{\{k\}}$’s are coefficients. The vectors $|e_{\{k\}}\rangle$ are normalized but not mutually orthogonal in general. Since Eq. (1) is just the general decomposition of a vector by complete bases, it is clear that the interaction described in Eq. (1) includes the case of the coherent attacks as well as individual attacks. It is notable that Eve can make her quantum probes interact with Alice and Bob’s qubits only when she has access to their qubits. In other words, Eve cannot modify the interaction after the qubits left her. This is in contrast with the fact that Eve can choose the measurement bases even after the qubits left. Therefore we need not worry about Eve’s later choice if our consideration is for the interaction term Eq. (1). What Eve can do is only to control the coefficients $C_{\{k\}}$’s as she likes.

Let us note that the each state $\sigma_{k_1}^{(1)}\sigma_{k_2}^{(2)}\cdots\sigma_{k_n}^{(n)}|\psi\rangle$ is an eigenstate of the measurements that are performed here. The qubits are initially prepared in the state $|\Phi^+\rangle$ that is one of the Bell states. The set of the Bell states are closed for Pauli operations on a qubit. Thus each qubit in the protocol that has undergone a certain Pauli operation is one of the Bell states. On the other hand, the measurements performed in the checking steps is equivalent to the Bell measurements [17]. Therefore, as long as the checking measurements are concerned, the state in a mixed state

$$\rho = \sum_{\{k\}} |C_{\{k\}}|^2 \sigma_{k_1}^{(1)}\sigma_{k_2}^{(2)}\cdots\sigma_{k_n}^{(n)}|\psi\rangle\langle\psi|\sigma_{k_1}^{(1)}\sigma_{k_2}^{(2)}\cdots\sigma_{k_n}^{(n)},$$

(2)
gives rise to the same results as the pure state in Eq. (1). This is the basis for the classicalization of statistics [18,22], as a result of which it is sufficient for us to consider classical distributions given by probabilities $P_{\{k\}} = |C_{\{k\}}|^2$.

Once the classicalization of statistics is obtained, it is not difficult to see that the modified Lo-Chau protocol II is secure. In the case of the BB84 protocol, they estimate the error rate, or the ratio of σ’s that are non-identity operator I among the $\sigma_{k_1}^{(1)}\sigma_{k_2}^{(2)}\cdots\sigma_{k_n}^{(n)}$’s, by doing the checking measurement on some randomly chosen subsets of the qubits. If Eve’s operation on a checked qubit is the identity I, the probability to give rise to error is zero. If Eve’s operation on a checked qubit is not the identity I, it will give rise to errors probabilistically. If the basis matches it will induce no error but if the bases do not match it will. (More precisely, the probabilities to give rise to errors is $1/2$, $1/2$, and 1, respectively, for σ_z, σ_x, σ_y operations.) What Eve wants to do is to minimize the number of errors in the check bits for a given number of non-identity operations. However, since the checked bits and the bases are randomly chosen by Alice and Bob, Eve knows nothing about them while she has access to the qubits of Alice and Bob. Thus we can assume that the error rate of the checked bits represents that of the code bits, that is a crucial point in the security proof.

Let us now consider the Protocol A. The Protocol A to the first round is obviously stronger than the modified Lo-Chau protocol. Thus it is clear that to the first round the Protocol A is as secure as the modified Lo-Chau protocol. Let us consider the second round. Here one may worry about that Eve can extract some information about the basis sequence b after the first round. It is obvious that if Eve knows the basis sequence b she can successfully cheat. It is because in this case she can control the probabilities $P_{\{k\}}$’s so that more bases are matched or the probability to be detected decreases. However, no matter how many rounds are performed Eve can extract no information on the basis sequence b by any quantum operations in the ideal case [23]: The ensemble of qubits with different bases give rise to the same density operators. (We will discuss the non-ideal case in the next section. Also note that all public discussions between Alice and Bob are performed after all qubits have arrived at Bob in the proposed protocol.) So we don’t
have to worry about this point. Now what Eve knows is that the same basis sequence b is used repeatedly. That is, she knows which and which qubits are in the same basis although she does not know the identity of the basis. Now the problem is that whether Eve can induce statistically smaller number of errors in the checked bits for a given number of non-identity operators in the second round than in the first round. However, we can see that she cannot do so because she does not know which basis it is anyway and thus the probability that the basis are not matched is still 1/2. For example, let us consider the first two qubits in the first and second round. If Eve’s basis and the basis of checked bit is matched (not matched) then the probability that it is to be detected is zero (non-zero). Even if Eve knows that the two qubits are in the same basis, that information is not helpful in decreasing the expected error rate since the probability that the basis are not matched is still 1/2. Eve’s best strategy here is to choose the same operations for the two qubits. Then although the average error rate is not changed, the deviation of the probabilistic distribution will be increased. (We will discuss about the problem of the large deviation in the next section.) We can easily see that the same argument applies to remaining qubits and all qubits in the later j-th rounds ($j = 3, 4, 5, ..., r$). Therefore we can safely estimate the error rate in the code bits based on that in the checked bits, as we did in the modified Lo-Chau protocol [7].

IV. DISCUSSION AND CONCLUSION

Let us consider the problem of the imperfect sources. As noted in the previous section, the following fact is crucial for the QKD without PAB. The two ensemble of states, that is, the equal mixture of the $|0\rangle$ and $|1\rangle$ and that of the $|0\rangle$ and $|\bar{1}\rangle$ are equivalent to each other and thus cannot be distinguished in any case. This is valid when the sources are ideal. However, there must be a certain amount of imperfection in the source. In this case some amount of information on the basis sequence b can be leaked to Eve, making the scheme insecure [22]. However, we give a practical method to overcome this problem. It is not difficult to generate pairs of qubits in one of the (imperfect) Bell state, for example, the $|\Phi^+\rangle$ state, with current technologies [22]. Alice can generate the qubits to be sent to Bob in the following way. First she prepares pairs of qubits in the (imperfect) $|\Phi^+\rangle$ state and she performs either the measurement S_z or S_x on one qubit of each pair. Here S_z (S_x) is the orthogonal measurements whose eigenvectors are $|0\rangle$ and $|1\rangle$ ($|0\rangle$ and $|\bar{1}\rangle$). She sends the other unmeasured qubits to Bob. Bob’s ensemble of qubits generated by S_z (S_x) is a mixture of imperfect $|0\rangle$ or $|1\rangle$ (either $|0\rangle$ or $|\bar{1}\rangle$). However, these two ensembles cannot be distinguished in principle. It is because Alice’s different choice of measurement cannot change the density operator of Bob’s ensemble. Thus at least the problem of leakage of the information about the basis sequence b can be overcome. However, this does not mean that the QKD without PAB with imperfect source is secure. This problem is beyond the scope of this paper. The Shor-Preskill paper [17] shows the security with perfect sources only. The security with imperfect source has been dealt with recently [29].

Next, let us compare the efficient QKD [22] with the QKD without PAB. In the former, they obtain the efficiency $\epsilon^2 + (1 - \epsilon)^2$ for a given $0 < \epsilon \leq 1/2$. The number of check bits in the other basis is proportional to ϵ^2. Thus, when ϵ is small, namely when the efficiency is nearly full, the former would have the problem of small number of samples for data analysis. In order to obtain enough security, therefore, they have to distribute a large number of qubits at once. In the latter we have a similar problem in a different way, as we noted in the previous section. That is, if Eve had chosen the same operation for the qubits with the same bases, the deviation in the probabilistic distribution of the error rate of the checked bits would be larger than that of the BB84 protocol, for a given number of total data, n. However, the random sampling process to estimate the error rate in the first round with n/r bits will be at least as good as that of the BB84 protocol with the same n/r bits. That is, the error rate deviation of the QKD without PAB with r rounds of n/r bits will be at least as small as that of the BB84 protocol with n/r bits. (We can see that the former is strictly smaller than the latter.) Therefore, provided that the length n/r of the basis sequence is long enough we can say that the proposed protocol is secure.

If the error rate in the checked bits is too high because of noise on the communication line or because of Eve, the protocol is aborted. One may worry about that some information about the basis sequence has leaked to Eve in this case. If Alice use again the random bits to be encoded (in step (1) of the Protocol C) with the same basis sequence b, it amounts to that the qubits in the same state are repeatedly used. Then it is simple for Eve to get information about the basis sequence. However, if the random bits are newly generated everytime, the two ensembles of qubits corresponding to different bases have the same density operator I and thus they cannot be distinguished, as we have discussed. Therefore, as long as Alice uses the random bits to be encoded only once, they don’t have to discard the basis sequence b even after the protocol had been aborted because of high error rate.

However, it should also be underlined [23] that the basis sequence has to be discarded after the final key is used for encrypting a message, because a ciphertext gives partial information about the key by which it is encrypted. The information about the key can then used to extract information about the basis sequence b.

In conclusion, we have given a Shor-Preskill type security-proof to the quantum key distribution scheme without public announcement of basis [22]. We have given the modified Lo-Chau protocol II. This scheme reduces to the CSS codes scheme II that reduces to the
QKD without PAB. We have reviewed how the classicality is obtained in the Shor-Preskill type proof. Using the classicality we argued how we can estimate the error rate in the code bits based on that in the checked bits in the modified Lo-Chau protocol II. Since remaining arguments are the same, this completes the proof.

We discussed the problem of imperfect source and that of necessity of generation of a large number of data. We discussed when the bases sequence must be discarded.

ACKNOWLEDGMENTS

We are very grateful to Dr. Yuki Tokunaga in NTT for helpful comments. W.-Y. H., X.-B. W., and K. M. are very grateful to Japan Science Technology Corporation for financial supports. H.-W. L. appreciate the financial support from the Brain Korea 21 Project of Korean Ministry of Education. J.K. was supported by Korea Research Foundation Grant 070-C00029.

REFERENCES

1. S. Wiesner, Sigact News 15(1), 78 (1983).
2. P. Shor,Proc. 35th Ann. Symp. on Found. of Computer Science. (IEEE Comp. Soc. Press, Los Alomitos, CA, 1994) 124-134.
3. J.P. Dowling, Phys. Rev. A 57, 4736 (1998).
4. A. Delgado, W.P. Schleich, and G. Süssmann, New Journal of Physics 4, 37.1 (2002).
5. S. Lloyd, Complexity 3(1), 32 (1997). quant-ph/9912088 (available at http://xxx.lanl.gov).
6. D. Deutsch, A. Ekert, and R. Lüpačchini, math-HO/991150.
7. C.H. Bennett and G. Brassard, in: Proc. IEEE Int. Conf. on Computers, systems, and signal processing, Bangalore (IEEE, New York, 1984) p.175.
8. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
9. C.H. Bennett, G. Brassard, and N.D. Mermin, Phys. Rev. Lett. 68, 557 (1992).
10. C.H. Bennett, Phys. Rev. Lett. 68, 3121 (1992); A.K. Ekert, Nature 358, 14 (1992).
11. D. Brüll, Phys. Rev. Lett. 81, 3018 (1998).
12. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002), references therein.
13. W.K. Wootters and W.H. Zurek, Nature 299, 802 (1982).
14. D. Dieks, Phys. Lett. A 92, 271 (1982).
15. D. Mayers, J. Assoc. Comput. Mach. 48, 351 (2001).
16. E. Biham, M. Boyer, P.O. Boykin, T. Mor, and V. Roychowdhury, in Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing (ACM Press, New York, 2000), pp.715-724, quant-ph/9912053.
17. P.W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).