Pseudomonas aeruginosa is one of the most important nosocomial pathogens, while other Pseudomonas spp. are occasional causes of infections. Current isolates of P. aeruginosa are often multiresistant to many classes of potent antimicrobial agents, including β-lactams, aminoglycosides, and fluoroquinolones. Carba-penems are the most potent β-lactams, which are active even against extended-spectrum β-lactamase- and AmpC β-lactamase-producing gram-negative bacilli. Due to acquired metallo-β-lactamase (MBL) production, however, carbapenem resistance in P. aeruginosa and Pseudomonas spp., has increasingly been reported in some countries.1,2 Richet et al.3 initiated an international network and included carbapenemase-producing gram-negative bacilli in the early warning system list for emerging antimicrobial drug-resistant pathogens.

The Korean Nationwide Surveillance of Antimicrobial Resistance (KONSAR) program conducted in the years between 1998 and 2003 showed that P. aeruginosa ranked the 3rd by the number of isolates.4,5 The imipenem resistance rate of P. aeruginosa in 1999 was already relatively high (19%), but the rate rose further to reach 24% in 2004. Two previous studies with clinical isolates of P. aeruginosa, which were collected in 2000-2001 and in 2003 from hospitals participating in the program of KONSAR, showed that over 10% of all imipenem-resistant isolates were VIM-2 type MBL producers.6,7 Other studies also documented the presence of MBL-producing P. aeruginosa in Korean hospitals8,9 as well as the occasional

INTRODUCTION

Pseudomonas aeruginosa is one of the most important nosocomial pathogens, while other *Pseudomonas* spp. are occasional causes of infections. Current isolates of *P. aeruginosa* are often multiresistant to many classes of potent antimicrobial agents, including β-lactams, aminoglycosides, and fluoroquinolones. Carba-penems are the most potent β-lactams, which are active even against extended-spectrum β-lactamase- and AmpC β-lactamase-producing gram-negative bacilli. Due to acquired metallo-β-lactamase (MBL) production, however, carbapenem resistance in *P. aeruginosa* and *Pseudomonas* spp., has increasingly been reported in some countries.1,2 Richet et al.3 initiated an international network and included carbapenemase-producing gram-negative bacilli in the early warning system list for emerging antimicrobial drug-resistant pathogens.

The Korean Nationwide Surveillance of Antimicrobial Resistance (KONSAR) program conducted in the years between 1998 and 2003 showed that *P. aeruginosa* ranked the 3rd by the number of isolates.4,5 The imipenem resistance rate of *P. aeruginosa* in 1999 was already relatively high (19%), but the rate rose further to reach 24% in 2004. Two previous studies with clinical isolates of *P. aeruginosa*, which were collected in 2000-2001 and in 2003 from hospitals participating in the program of KONSAR, showed that over 10% of all imipenem-resistant isolates were VIM-2 type MBL producers.6,7 Other studies also documented the presence of MBL-producing *P. aeruginosa* in Korean hospitals8,9 as well as the occasional
presence of VIM-2-type MBL-producing isolates of Enterobacteriaceae. Moreover, the emergence of IMP-1-like-producing P. aeruginosa and finding of the fifth MBL, SIM-1-producing Acinetobacter baumannii isolates, were reported from a hospital in Seoul.

The aim of this study was to determine any change in the prevalence of VIM-2- and IMP-1-like-producing clinical isolates of Pseudomonas spp. and possible emergence of new MBL variants two years after the second nationwide study. The possible presence of MBL-producing Enterobacteriaceae and spreading of blaSIM-1, type MBL gene to Pseudomonas spp. were also investigated.

MATERIALS AND METHODS

Bacterial strains and susceptibility testing

Non-duplicate, imipenem-resistant strains of P. aeruginosa, Pseudomonas spp., and Enterobacteriaceae, isolated during January to August 2005, were collected from 23 hospitals and one commercial laboratory participating in the KONSAR program. The number of isolates collected from any one hospital was limited to 25 for an individual species. Identification of the species was reconfirmed at the coordinating hospital was limited to 25 for an individual species. Identification of the species was confirmed at the coordinating laboratory through the use of a conventional method or the ATB 32GN system (bioMerieux, Marcy l’Etoile, France). The MICs of antimicrobial agents for MBL-producing isolates were determined by the NCCLS agar dilution method.

Screening MBL-producing isolates

Carbapenemase production was screened by the imipenem-disk Hodge (cloverleaf) test, using MacConkey agar instead of previously used Mueller-Hinton agar. MBL production was screened by the double-disk synergy test using an imipenem disk and an EDTA (750 µg) plus sodium mercaptoacetic acid (SMA, 2 mg) disk on Mueller-Hinton agar with 10 mm distance from the edge to the edge of the disk. Commercial imipenem disks and media (Becton-Dickinson, Sparks, MD, USA) were used for these tests, while the EDTA-SMA disks were prepared from commercially available chemicals (Sigma Chemical, St. Louis, MO, USA).

MBL gene detection by PCR

To detect alleles of blaIMP-1, blaVIM-2, and blaSIM-1, DDS-positive isolates were tested by PCR as described previously. Briefly, primers used were: IMP1-F 5′-CAT GTG TTG GTG GTT CTT GT-3′ and IMP1-R 5′-ATA ATT TGG CGG ACT TTG GC-3′; VIM2-F 5′-ATG TTC AAA CTT TTG AGT AAG-3′ and VIM2-R 5′-CTA CTC AAC GAC TGA GGC-3′; SIM1-F 5′-TAC AAG GGA TTC GGC ATC G-3′ and SIM1-R 5′-TAA CCT GTT GTT CCC ATG TG-3′. PCR was performed with 1 µL of heat-extracted DNA template, 20 pmol of each primer, and PreMix (Bioneer, Cheongwon, Korea) containing 1 U of Taq DNA polymerase in a total volume of 20 µL. A Mastercycler instrument (Eppendorf, Hamburg, Germany) was used with the following reaction conditions: 94°C for 5 min, 25 cycles of 94°C for 30 s, 56°C for 30 s, and 72°C for 45 s, and finally, 72°C for 7 min. Amplicons were visualized by electrophoresis and ethidium bromide staining.

Pulsed field gel electrophoresis and MBL gene sequencing

For PFGE, χhal-digested genomic DNA was prepared according to the instruction of Bio-Rad (Hercules, Calif., USA), and fragments were separated using a CHEF-DR II system (Bio-Rad). We selected 17 isolates which represented PFGE types and performed the sequencing of PCR amplicons using IMP1-F or VIM2-F and Int2 (5′-AAG CAG ACT TGA CCT GA-3′), and IMP1-R or VIM2-R and Int1 (5′-GGC ATC CAA GCA GCA AG-3′).

RESULTS

Among the 443 imipenem-resistant isolates collected, the majority were P. aeruginosa (93.7%), whereas 16 isolates were species of Enterobacteriaceae (9 K. pneumoniae, 2 each of E. aerogenes, E. coli, and P. mirabilis, and 1 C. freundii). Of these isolates, 127 were positive for the imipenem-disk Hodge test and 53 were positive for the DDS test (Table 1). Alleles of blavIM-2, or blalimp-1, were detected in all 53 DDS-positive isolates. Among all the isolates tested, the MBL-positive isolates comprised 10.8% of P. aeruginosa and 66.7% (8 of 12) of P. putida. MBL was not detected in

Table 1. Metallo-β-Lactamase Genes Detected in Imipenem-Resistant Isolates of Pseudomonas spp. and Enterobacteriaceae by PCR

Organism	No. of isolates tested	No. of isolates Hodge test positive	No. (%) of isolates DDS positive	Total				
			blavIM-2	blavIM-2-like	blalimp-1	blalimp-1-like	blalimp-6	
P. aeruginosa (415)	117	45	7	25	0	10	3	45 (10.8)
P. putida (12)	10	8	7	0	1	0	0	8 (66.7)
Total (427)	127	53	14	25	1	10	3	53 (12.0)

PCR, polymerase chain reaction; DDS, double disk synergy.
any of the 16 isolates of Enterobacteriaceae.

Overall, the proportion of blaVIM-2 allele-positive isolates was greater (73.6%) than blaIMP-1 allele-positive isolates (Table 1). blaSIM-1 allele-positive isolate was not detected. All MBL-producing isolates of Pseudomonas spp. other than P. aeruginosa were identified as P. fluorescens/P. putida by the ATB 32 GN system. However, they were confirmed to have biochemical characteristics of P. putida by conventional tests. Nucleotide sequencing revealed that all the blaVIM-2-like and blaIMP-1-like in P. aeruginosa were VIM-2 and IMP-6. MBLs in P. putida were identified as VIM-2 and IMP-1. We found 13 different PFGE patterns in 23 blaVIM-2-like Pseudomonas spp. and 4 patterns in 7 blaIMP-1-like Pseudomonas spp., indicating that multiple MBL-producing Pseudomonas clones exist in Korea. The MIC50s of various β-lactams for MBL-producing P. aeruginosa were equal to over 64 µg/mL except that of aztreonam (Table 2). The % resistances for aztreonam, piperacillin, amikacin, ciprofloxacin and other β-lactams were 67%, 83%, 87%, 96%, and 100%, respectively.

MBL-producing isolates were detected in 18 of 24 (75%) hospitals/laboratory, as well as in all four regions (Table 3). MBL-producing isolates were mostly derived from specimens of urine, sputum, and wounds (Table 4). All 8 MBL-producing P. putida isolates came either from urine or sputum. The MBL-producers were isolated mainly from inpatients (80: 63% isolates from general ward and 17% isolates from intensive-care unit); while 20% of isolates were from outpatient department.

Table 2. Antimicrobial Activities Against MBL-Producing P. aeruginosa and P. putida Strains

Antimicrobial agent	P. aeruginosa (n = 27)	P. putida (n = 7)			
	50% of strains (µg/mL)	90% of strains (µg/mL)	%R	MIC (µg/mL)	%R
Piperacillin	> 128	> 128	83	128 - > 128	100
Ceftazidine	128	> 128	100	32 - > 128	100
Cefotaxime	> 128	> 128	100	> > 128	100
Aztreonam	32	64	67	16 - 64	100
Imipenem	64	> 128	100	32 - > 128	100
Meropenem	> 128	> 128	100	64 - > 128	100
Gentamicin	> 128	> 128	100	128 - > 128	100
Amikacin	> 128	> 128	87	2 - > 128	83
Tobramycin	> 128	> 128	100	16 - 128	100
Ciprofloxacin	32	64	96	8 - > 128	100

MBL, metallo-β-lactamase.

Table 3. Metallo-β-Lactamase Genes Detected in Isolates of Pseudomonas spp. by the Location of Hospitals

No. of isolates tested / No. of hospitals participated*	No. of isolates/No. of hospitals positive for:	Total (% of hospitals)'	
	blavim-2-like / blaismp-1-like	Total / (% of hospitals)	
North (244 / 14)	27 / 10	4 / 3	31 / 10 (71.4)
Southeast (83 / 5)	4 / 3	8 / 3	12 / 4 (80.0)
Southwest (68 / 3)	5 / 1	1 / 1	6 / 2 (66.7)
Southwestern island (11 / 1)	1 / 1	0 / 0	1 / 1 (100)
Commercial Lab. (21 / 1)	2 / 1	1 / 1	3 / 1 (100)
Total (427 / 24)	39 / 16	14 / 8	53 / 18 (75.0)

*City or province: North, Seoul, Gyunggi and Gangwon; Southeast, Busan, Daegu, Wulsan and Gyungsang; Southwest, Jeolla; Southwestern island, Jeju; Commercial Laboratory collected specimens from clinics located all over the country.

' Some hospitals had isolates with blavim-2 and with blaismp-1.

Table 4. Source of Isolation of Metallo-β-Lactamase Gene-Positive Pseudomonas spp.

MBL gene	No. (%) of isolates from:	Urine	Sputum	Wound	Blood	Peritoneal fluid	Others	Total
blavim-2-like		27	3	6	1	1	1	39
blaismp-1-like		6	2	0	0	0	6	14
Total		33 (62.3)	5 (9.4)	6 (11.3)	1 (1.9)	1 (1.9)	7 (13.2)	53 (100)
Antimicrobial resistance surveillance has become increasingly important with the recent increase in the resistant organisms. Analysis of the data generated by the participating hospitals in 1998 and 2004 showed an alarming rise in the imipenem resistance rates of *P. aeruginosa*; from 19% to 24%. Decrease of carbapenem susceptible *P. aeruginosa* was also reported in Japan; from 80.7% to 62.0% over the period of 1998-2002.

Among the β-lactamases, the genetically mobile MBL are among the most feared, because of their ability to hydrolyze virtually all β-lactams, except monobactams, and to spread horizontally. As a result of their geographic spread, these enzymes are among the greatest concerns to the medical communities. The rates of occurrence and number of enzyme types of MBL have escalated since 2000 in Asia, Europe, and Latin America. In the present study, 10.8% of imipenem-resistant-isolates of *P. aeruginosa* were MBL producers. These proportions were similar to those in the previous study in 2000-2001 and in 2003. The rate was also similar to that in a Japanese study in 1998-2002.

In this study, only 12 imipenem-resistant isolates of *Pseudomonas* spp. other than *P. aeruginosa* were collected. It is of an interest to note that all 8 MBL-producing isolates were identified as *P. putida*. *P. putida* is a species difficult to differentiate from *P. fluorescens* by commonly used biochemical tests. Although *P. putida* is an only organism occasionally isolated from clinical specimens, the detection of MBL gene in 8 of 12 imipenem-resistant isolates suggests that this organism may play a significant role as an important reservoir of MBL genes.

Only 16 imipenem-resistant *Enterobacteriaceae* isolates could be collected in this study, and MBL was not detected in any of these isolates. This indicates rarity of *Enterobacteriaceae* isolates not only producing MBL, but also resistant to imipenem. MBL has been detected only in a few isolates of *Enterobacteriaceae* in Korea.

It is interesting that the first acquired MBL discovered in the early 1990s was IMP-1 in nearby Japan, whereas in Korea, VIM-2 was the first MBL type detected and IMP-1 was detected in *Acinetobacter* spp. in the early 2000s. In a study at a hospital in Seoul, IMP-1-like-producing *P. aeruginosa* was detected in strains isolated in 2003-2004, but the number was only two of 76 isolates of *Pseudomonas* spp. In the present study, 14 of 53 MBL-producing isolates of *P. aeruginosa* and *P. putida* had *bla*_{MBL}-1, indicating spread of this MBL gene to these species (Table 1). However, *bla*_{IMP-1} which was discovered in *A. baumannii* isolates in Seoul has not yet spread to *Pseudomonas* spp.

Detection of MBL-producing *Pseudomonas* spp. in isolates collected from 18 of 24 (75.0%) hospitals/laboratory in the present study (Table 3) is a great concern. As in previous studies, MBL-producing isolates were isolated mostly from urine and sputum specimens (Table 4), indicating that these specimens can serve as the important reservoirs for dissemination of the resistant organisms.

In conclusion, clinical isolates of *P. aeruginosa* in Korea are increasingly resistant to imipenem, and a significant proportion of the resistance is due to MBL production. *bla*_{IMP-1} remains the dominant type, however, IMP-1 variant, IMP-6-producing *P. aeruginosa* emerged. Extensive amount of effort is required to control further spread of MBL-producing *Pseudomonas* spp. in hospitals.
communication networks: international network for the study and prevention of emerging antimicrobial resistance. Emerg Infect Dis 2001;7:319-22.
4. Lee K, Kim YA, Park YJ, Lee HS, Kim MY, Kim EC, et al. Increasing prevalence of vancomycin-resistant enterococci, and cefoxitin-, imipenem- and fluoroquinolone-resistant gram-negative bacilli: a KONSAR study in 2002. Yonsei Med J 2004;45:598-608.
5. Lee K, Lim CH, Cho JH, Lee WG, Uh Y, Kim HJ, et al. High prevalence of ceftazidime-resistant Klebsiella pneumoniae and increase of imipenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. in Korea: a KONSAR program in 2004. Yonsei Med J 2006;47:634-45.
6. Lee K, Lee WG, Uh Y, Ha GY, Cho J, Chong Y: Korean Nationwide Surveillance of Antimicrobial Resistance Group. VIM- and IMP-type metallo-beta-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg Infect Dis 2003;9: 868-71.
7. Lee K, Ha GY, Shin BM, Kim JJ, Kang JO, Jang SJ, et al. Metallo-beta-lactamase-producing Gram-negative bacilli in Korean Nationwide Surveillance of Antimicrobial Resistance group hospitals in 2003: continued prevalence of VIM-producing Pseudomonas spp. and increase of IMP-producing Acinetobacter spp. Diagn Microbiol Infect Dis 2004;50:51-8.
8. Oh EJ, Lee S, Park YJ, Park J, Kim SI, et al. Prevalence of metallo-beta-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii in a Korean university hospital and comparison of screening methods for detecting metallo-beta-lactamase. J Microbiol Methods 2003;54:411-8.
9. Kim IS, Lee NY, Ki CS, Oh WS, Peck KR, Song JH. Increasing prevalence of imipenem-resistant Pseudomonas aeruginosa and metallo-typing of metallo-beta-lactamase producers in a Korean hospital. Microb Drug Resist 2005;11:355-9.
10. Jeong SH, Lee K, Chong Y, Yum JH, Lee SH, Choi HJ, et al. Characterization of a new integron containing VIM-2, a metallo-beta-lactamase gene cassette, in a clinical isolate of Enterobacter cloacae. J Antimicrob Chemother 2003;51:397-400.
11. Lee HK, Park YJ, Kim YJ, Chang E, Cho SG, Chae HS, et al. Prevalence of decreased susceptibility to carbapenems among Serratia marcescens, Enterobacter cloaceae, and Citrobacter freundii and investigation of carbapenemases. Diagn Microbiol Infect Dis 2005;52:331-6.
12. Lee K, Yum JH, Yong D, Lee HM, Kim HD, Docquier JD, et al. Novel acquired metallo-beta-lactamase gene, blaOXA-18, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2005;49:4485-91.
13. Kiska DL, Gilligan PH. Pseudomonas. In: Murray PR, Baron EJ, Jorgensen JH, Pfaffer MA, Yolken RH, editors. Manual of Clinical Microbiology. 8th ed. Washington DC: American Society of Microbiology; 2003. p.719-28.
14. Farmer JJ III. Enterobacteriaceae: introduction and identification. In: Murray PR, Baron EJ, Jorgensen JH, Pfaffer MA, Yolken RH, editors. Manual of Clinical Microbiology. 8th ed. Washington DC: American Society of Microbiology; 2003. p.636-53.
15. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing; Fourteenth informational supplement. M100-S14. Wayne, PA: NCCLS; 2004.
16. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disc synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003;41:4623-9.
17. Comaglia G, Hryniewicz W, Jarlier V, Kahlmeter G, Mittermayer H, Stratchounski L, et al. European recommendations for antimicrobial resistance surveillance. Clin Microbiol Infect 2004;10:349-83.
18. Jones RN, Deshpande LM, Bell JM, Turnidge JD, Kohno S, Hiramata Y, et al. Evaluation of the contemporary occurrence rates of metallo-beta-lactamases in multidrug-resistant Gram-negative bacilli in Japan: report from the SENTRY Antimicrobial Surveillance Program (1998-2002). Diagn Microbiol Infect Dis 2004;49:289-94.
19. Bush K. Metallo-beta-lactamas: a class apart. Clin Infect Dis 1998;27:548-53.
20. Livermore DM, Woodford N. Carbapenemases: a problem in waiting? Curr Opin Microbiol 2000;3:489-95.
21. Jones RN, Biedenbach DJ, Sader HS, Fritsche TR, Toleman MA, Walsh TR. Emerging epidemic of metallo-beta-lactamase-mediated resistances. Diagn Microbiol Infect Dis 2005;51:77-84.
22. Roh KH, Uh Y, Kim JY, Kim HS, Shin DH, Song W. First outbreak of multidrug-resistant Klebsiella pneumoniae producing both SHV-12-type extended-spectrum beta-lactamase and DHA-1-type AmpC beta-lactamase at a Korean hospital. Yonsei Med J 2008;49:53-7.
23. Osano E, Arakawa Y, Wacharotayankun R, Ohto M, Horii T, Ito H, et al. Molecular characterization of an enterobacterial metallo-beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 1994;38:71-8.