Association between NMD3 and symptoms of Parkinson's disease in Chinese

Hui Wu
Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University

Hui Li
Ren Ji Hospital (South Campus), School of Medicine, Shanghai Jiaotong University

Zhiqiang Shi
Ren Ji Hospital (South Campus), School of Medicine, Shanghai Jiaotong University

Jiajia Tang
Ren Ji Hospital (South Campus), School of Medicine, Shanghai Jiaotong University

Shuya Mei
Ren Ji Hospital (South Campus), School of Medicine, Shanghai Jiaotong University

Tianyi Ai
Ren Ji Hospital (South Campus), School of Medicine, Shanghai Jiaotong University

Zhenzhou He (✉️ sandyhezz@126.com)
Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University

Research article

Keywords: Parkinson's disease, NMD3, Single nucleotide polymorphism, cognitive impairment

Posted Date: November 7th, 2019

DOI: https://doi.org/10.21203/rs.2.10047/v3

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on January 14th, 2020. See the published version at https://doi.org/10.1186/s12883-019-1574-1.
Abstract

Background: Parkinson's disease (PD) is a progressive neurodegenerative movement disorder which is characterized by motor symptoms such as tremor, rigidity, slowness of movement and problems with gait. Large-scale meta-analyses of genome-wide association studies (GWAS) have identified few susceptibility loci in sporadic PD. The aim of this study was to investigate the association between NMD3 single nucleotide polymorphism (SNP) and symptoms of PD patients in southern Chinese.

Methods: A total of 217 PD patients were recruited in this study and were genotyped by using SNaPshot technique and the polymer chain reaction. All subjects were evaluated by Mini-Mental State Examination (MMSE), Beijing version Montreal Cognitive Assessment (MoCA), Sniffin' Sticks 16 (SS-16), Hamilton anxiety rating scale, Hamilton depression rating scale, 39-item Parkinson's disease Questionnaire (PDQ-39) and MDS Unified PD Rating Scale (MDS-UPDRS).

Results: NMD3 rs34016896 (T) carriers have worse cognitive function (MMSE: p 0.042, NMD3 wildtype: 27.44 ± 2.89, NMD3 carriers: 26.31 ± 3.79; MoCA: p 0.005, NMD3 wildtype: 23.15 ± 4.20, NMD3 carriers: 20.75 ± 6.68).

Conclusions: The recessive and overdominant model of NMD3 rs34016896 was associated with cognitive impairment in PD patients.

Background

Parkinson's disease (PD) is one of the most common neurodegenerative diseases which affects approximately 1.7% of people over the age of 65, and the annual incidence ranged from 1.5 to 8.7/100,000 in the People's Republic of China[1]. The pathological features of PD are the abnormal aggregation of α-synuclein and the loss of dopaminergic neurons in substantia nigra[2]. Both acquired and inherited risk factors have been implicated in death of dopaminergic neurons[3]. Genetic factors play a crucial role in the pathogenesis of sporadic PD. Genome-wide association studies (GWAS) have identified several susceptibility loci for PD[4–6]. Genes like LRRK2, SNC A etc. were associated with the pathogenesis of PD[7,8]. Marie Y. Davis reported that GBA variants predicted a more rapid progression of cognitive dysfunction and motor symptoms in patients with PD[9].

Recently, variants at NMD3 were found related to substantia nigra neuronal loss and PD susceptibility[10,11]. The minor allele frequency of NMD3 rs34016896 was 0.41 in Chinese PD population, and 0.45 in Chinese healthy population[11]. NMD3 encodes ribosome-binding protein. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis[12]. The association of NMD3 rs34016896 with clinical pathological phenotypes has been discovered. JM Shulman and colleagues found that NMD3 rs34016896 was related to the severity of nigral neuronal loss and not with Lewy bodies[13]. However, the function of NMD3 to PD is unknown. Besides, it is obliged to investigate the association between NMD3 and clinical symptoms of PD, which could indicate the pathogenesis of PD.
In this study, we try to discover the clinical hallmarks of \textit{NMD3} rs34016896 (C>T) in southern Chinese PD patients.

Methods

- **Study Population**

PD was collected from outpatients clinic of Ren Ji Hospital (South Campus) and diagnosed by movement disorder specialists based on diagnostic criteria brought up by movement disorders society (MDS)\cite{14}. As for PD patients, Hoehn-Yahr staging and their disease duration were recorded. Family history of PD was also recorded. Parkinsonism with secondary causes, such as inflammatory, drug-induced, vascular and toxin-induced parkinsonism, were excluded. Parkinsonism with other neurodegenerative diseases, such as Wilson's disease, progressive supranuclear palsy, cerebral-basal degeneration and multiple system atrophy was also excluded. This study was approved by the ethic committee of Ren Ji Hospital. All participants signed consent forms.

- **Evaluation**

Each PD patient included in this study received evaluation including the following rating scales: Unified PD Rating Scale provided by movement disorders society (MDS-UPDRS) was used to assess the status of PD\cite{15}. Mini-Mental State Examination (MMSE) and Beijing version Montreal Cognitive Assessment (MoCA) were adopted to assess cognitive function. SS−16 was used to assess olfactory function\cite{16}. Hamilton anxiety rating scale and Hamilton depression rating scale were used to assess anxiety and depression. Non-motor symptoms scale (NMSS) was used to assess non-motor symptoms. Scales for Outcomes in Parkinson's Disease-Autonomic questionnaire (SCOPA-AUT) was used to assess autonomic symptoms. The 39-item Parkinson's disease Questionnaire (PDQ−39) was taken as to assess life quality of PD. Researchers were received strict training of these scales before assessing PD patients. We also documented the presence (yes/no) of the following symptoms which assessed by two individual neurologists: hallucination, apathy, excessive daytime sleepiness, pain, frequent urination, constipation, postural hypotension, sialorrhea, restless legs syndrome (RLS), delusion, double vision, decreased attention, decreased recent memory, nycturia, sexual dysfunction, hypogeusia, change of weight, daytime sweatiness, nocturnal sweatiness, urgent urination or urinary incontinence, sensitive to light, sensitive to cold, sensitive to hot, anxiety, depression, probable rapid eye movement sleep behavior disorder (RBD). Probable RBD was diagnosed via RBD screening questionnaire\cite{17}. The method of detecting \textit{NMD3} rs34016896 was followed Li and colleagues\cite{18}.

- **Statistics**

R (version 3.5.1), stats package (version 3.5.1) and CATT (version 2.0) was used to perform statistical analysis. Student t test was performed to calculate the difference of numeric variables between \textit{NMD3}
carriers and wildtypes. As for comparing categorical variables, Chi square test was performed. Cochran-Armitage test was used to assess ordinary variables between NMD3 carriers and wildtypes, and additive model of NMD3. Logistic regression was used to assess the association between additive model/dominant model/recessive model/overdominant model of NMD3 and clinical phenotypes. Odds ratio (OR) and its 95% confidence intervals (CI) were also used. We also adjusted age, gender and Hoehn-Yahr staging results.

Results

There were 217 PD patients included in this study. SNPs of two PD patients failed to be detected. In all, there were 39 NMD3 wildtypes and 178 NMD3 carriers in our study. The minor allele frequency in our group was 0.41 which is similar to previous genetic association study in southern eastern China\cite{11}. There was no difference of age, gender, disease duration, family history, and Hoehn-Yahr staging in two groups. In NMD3 wildtype group, the age was 55.69 ± 10.24 years (mean ± SD) and there were 17 (43.59%) female were included in this study. In NMD3 carrier group, the average of age was 57.03 ± 10.16 years (mean ± SD) and there were 73 (41.01%) female were included. There was no difference of total scores of NMSS, SCOPA-AUT, PDQ–39 between two groups. Cognitive function assessed by MMSE and MoCA of NMD3 wildtypes was better than NMD3 carriers (MMSE: p 0.042, NMD3 wildtype: 27.44 ± 2.89, NMD3 carriers: 26.31 ± 3.79; MoCA: p 0.005, NMD3 wildtype: 23.15 ± 4.20, NMD3 carriers: 20.75 ± 6.68). (Table 1)

The presence of hallucination, postural hypotension, delusion were associated with the additive model (hallucination: p 0.025; postural hypotension: p 0.007, delusion: p 0.038). Besides, trends of the presence of apathy, decreased recent memory and change of weight were found under the additive model (apathy: p 0.092; decreased recent memory: p 0.064; change of weight: p 0.073). (Table 2)

Under the dominant model, the presence of postural hypotension were found (p 0.052, OR: 2.38, 1.05–6.16, before adjustment; p 0.050, OR: 2.43, 1.05–6.38, after adjustment). (Table 2)

Under the recessive model, the presence of hallucination, apathy, postural hypotension and delusion were found (Hallucination: p 0.012, OR: 2.96, 1.29–7.10, before adjustment; p 0.014, OR: 2.95, 1.26–7.21, after adjustment. Apathy: p 0.011, OR: 2.06, 1.18–3.61, before adjustment; p 0.012, OR: 2.07, 2.28–3.67, after adjustment. Postural hypotension: p 0.017, OR: 2.04, 1.14–3.68, before adjustment; p 0.016, OR: 2.08, 1.15–3.82, after adjustment. Delusion: p 0.014, OR: 3.94, 1.38–12.92, before adjustment; p 0.012, OR: 4.41, 1.46–15.47, after adjustment.). Trends of decreased attention, decreased recent memory, hypogeusia and change of weight were associated with the recessive model (decreased attention: p 0.068, OR: 1.76, 0.58–3.02, before adjustment; p 0.075, OR: 1.78, 0.94–3.38, after adjustment. Decreased recent memory: p 0.075, OR: 1.68, 0.96–3.00, before adjustment; p 0.069, OR: 1.71, 0.96–3.09, after adjustment. Hypogeusia: p 0.086, OR: 1.63, 0.93–2.85, before adjustment; p 0.080, OR: 1.65, 0.94–2.89,
after adjustment. Change of weight: $p = 0.097$, OR: 0.17, 0.01—0.94, before adjustment; $p = 0.089$, OR: 0.16, 0.01—0.90, after adjustment.(Table 3)

Under the overdominant model, the presence of apathy and delusion were found (Apathy: $p = 0.011$, OR: 2.05, 1.19—3.57, before adjustment; $p = 0.012$, OR: 2.06, 1.18—3.64, after adjustment.) Trend of association between hallucination and the overdominant model was found ($p = 0.071$, OR: 2.32, 0.97—6.17, before adjustment; $p = 0.086$, OR: 2.26, 0.93—6.13, after adjustment).(Table 4)

We performed Bonferroni correction for correction for adjusting p values. However, there was no statistically significant results remained.

Discussion

Our study found that *NMD3* carriers had worse cognitive function. The additive model of *NMD3* was associated with hallucination, postural hypotension and delusion. The dominant model of *NMD3* was associated with postural hypotension. The recessive model of *NMD3* was associated with hallucination, apathy, postural hypotension and delusion. The overdominant model of *NMD3* was associated with apathy and delusion. Trends of association between the additive model of *NMD3* and apathy, decreased recent memory and change of weight were found. Trends of association between the recessive model of *NMD3* and decreased attention, decreased recent memory, hypogeusia and change of weight were found. Trends of association between the overdominant model of *NMD3* and hallucination was found. To our knowledge, this is the first study to investigate the association between *NMD3* and its clinical symptoms in Chinese PD patients.

NMD3 encodes a cytoplasmic protein for stable 60S ribosomal subunits[19,20]. The function of ribosome in the pathogenesis of PD were still unknown. A study revealed that Parkin—PARIS (Parkin interacting substrate) played a deleterious role in rRNA transcription in PD, which indicated that ribosome might be involved in the pathogenesis of PD[21]. A possible hypothesis of the function of *NMD3* is that the dysfunction or dysregulation of ribosome to produce relevant proteins of PD. More relationships between eukaryotic ribosome and PD should be discovered.

JM Shulman and colleagues found that *NMD3* rs34016896 was associated to nigral neuronal loss and not with Lewy bodies[13]. This research indicated that *NMD3* rs34016896 was associated with nigral neurodegeneration rather than the formation of Lewy bodies. Neuronal loss, especially dopaminergic neuronal loss, is associated with the pathogenesis of PD. However, we have no clue on the detailed type of neurons for the neuronal loss. So far, there was no studies on clinical phenotype to detailed pathological phenotypes. It is hard to elucidate the impact to clinical phenotypes of neuronal loss. Further researches on NMD3-related neuronal loss could unveil the presence of those relevant symptoms.
The strengths of our study are that PD were assessed by structured scale which is widely accepted. The diagnosis was based on MDS criteria. We also covered a wide range assessment from the point of motor function, non-motor symptoms and life quality of PD.

This study has some weakness and limitations. First, we did not perform objective clinical methods such as electrophysiology to assess symptoms. Second, we did not perform stratifications due to small sample. Third, the sample of our study is small and our study was a single center study. More multicenter and larger studies are warranted. In conclusion, \(NMD3 \) carriers had worse cognitive function. The additive model of \(NMD3 \) was associated with hallucination, postural hypotension and delusion. The dominant model of \(NMD3 \) was associated with postural hypotension. The recessive model of \(NMD3 \) was associated with hallucination, apathy, postural hypotension and delusion. The overdominant model of \(NMD3 \) was associated with apathy and delusion. More larger and multicentral studies are warranted.

List Of Abbreviations

- \(CI \), confidence interval
- \(MDS \), movement disorders society
- \(MMSE \), Mini-Mental State Examination \(MoCA \), Montreal Cognitive Assessment \(NMSS \), non-motor symptoms scale
- \(OR \), odds ratio
- \(PARIS \), Parkin interacting substrate
- \(PD \), Parkinson's disease
- \(PDQ-39 \), 39-item Parkinson's disease Questionnaire \(RBD \), rapid eye movement sleep behavior disorder
- \(RLS \), restless legs syndrome
- \(SCOPA-AUT \), scales for Outcomes in Parkinson's disease - autonomic questionnaire
- \(SS-16 \), Sniffin’ Sticks 16
- \(UPDRS \), unified Parkinson's disease rating scale

Declarations

- Ethics approval and consent to participate

This study was approved by the Research Ethics Committee, Renji Hospital, Shanghai, China.
• Consent for publication

The authors declare that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed meet the qualifications for authorship and have reviewed and approved the final manuscript that is enclosed.

• Availability of data and materials

Not applicable

• Competing interests

The authors declare that there is no competing interests.

• Funding

This work was supported by grants from the National Natural Science Foundation of China [81801049] and the Minhang District Natural Science Research Project of Shanghai (Grant No. 2016MHZ55).

• Authors’ contributions

Hui Wu and Hui Li collected the PD and control data, performed the statistical analysis and drafted the manuscript. Zhiqiang Shi, Jiajia Tang, Shuya Mei and Tianyi Ai collected the PD data.

Zhenzhou He designed the study, supervised the study, doublechecked the statistical analysis and revised the manuscript.

• Acknowledgements

We thank all the patients who participated in this study.

References

1. Zou YM, Liu J, Tian ZY, Lu D, Zhou YY. Systematic review of the prevalence and incidence of Parkinson's disease in the People's Republic of China. Neuropsychiatr Dis Treat. 2015 Jun 15;11:1467–72.

2. Béné R, Antić S, Budisić M, Lisak M, Trkanjec Z, Demarin V, Podobnik-Sarkanji S. Parkinson's disease. Acta Clin Croat. 2009 Sep;48(3):377–80.

3. Steece-Collier K, Maries E, Kordower JH. Etiology of Parkinson's disease: Genetics and environment revisited. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):13972–4.

4. Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Züchner S, Konidari I, Wang G, Singer C, Nahab F, Scott B, Stajich JM, Pericak-Vance M, Haines J, Vance JM, Martin ER. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet. 2010 Mar;74(2):97–109.
5. Hamza TH, Zabetian CP, Tenesa A, Laederach A, Montimurro J, Yearout D, Kay DM, Doheny KF, Paschall J, Pugh E, Kusel VI, Collura R, Roberts J, Griffith A, Samii A, Scott WK, Nutt J, Factor SA, Payami H. Common genetic variation in the HLA region is associated with lateonset sporadic Parkinson's disease. Nat Genet. 2010 Sep;42(9):781–5.

6. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simón-Sánchez J, Schulte C, Lesage S, Sveinbjörnsdóttir S, Stefánsson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet. 2011 Feb 19;377(9766):641–9.

7. Blanca Ramírez M, Madero-Perez J, Rivero-Rios P, Martinez-Salvador M, Lara Ordonez AJ, Fernandez B, Fdez E, Hilfiker S. LRRK2 and Parkinson's Disease: From Lack of Structure to Gain of Function. Curr Protein Pept Sci. 2017;18(7):677–686.

8. Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Sci Rep. 2016 Apr 15;6:24475.

9. Davis MY, Johnson CO, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM, Quinn JF, Chung KA, Peterson-Hiller AL, Rosenthal LS, Dawson TM, Albert MS, Goldman JG, Stebbins GT, Bernard B, Wszolek ZK, Ross OA, Dickson DW, Eidelberg D, Mattis PJ, Niethammer M, Yearout D, Hu SC, Cholerton BA, Smith M, Mata IF, Montine TJ, Edwards KL, Zabetian CP. Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurol. 2016 Oct 1;73(10):1217–1224.

10. Liu ZH, Guo JF, Li K, Wang YQ, Kang JF, Wei Y, Sun QY, Xu Q, Wang DL, Xia K, Yan XX, Xu CS, Tang BS. Analysis of several loci from genome-wide association studies in Parkinson's disease in mainland China. Neurosci Lett. 2015 Feb 5; 587:68–71.

11. Chen Y, Cao B, Ou R, Wei Q, Chen X, Zhao B, Wu Y, Song W, Shang HF. Determining the Effect of the HNMT, STK39, and NMD3 Polymorphisms on the Incidence of Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Multiple System Atrophy in Chinese Populations. J Mol Neurosci. 2018 Apr;64(4):574–580.

12. Malyutin AG, Musalgaonkar S, Patchett S, Frank J, Johnson AW. Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis. EMBO J. 2017 Apr 3;36(7):854–868.

13. Shulman JM, Yu L, Buchman AS, Evans DA, Schneider JA, Bennett DA, De Jager PL. Association of Parkinson disease risk loci with mild parkinsonian signs in older persons. JAMA Neurol. 2014 Apr;71(4):429–35.

14. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015 Oct;30(12):1591–601.

15. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stern MB, Dodel R, Dubois B, Holloway R, Jankovic J, Kulisevsky J, Lang AE, Lees A, Leurgans S,
LeWitt PA,Nyenhuis D, Olanow CW, Rascol O, Schrag A, Teresi JA, van Hilten JJ, LaPelle N; Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDSUPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008 Nov 15;23(15):2129–70.

16. Chen W, Chen S, Kang WY, Li B, Xu ZM, Xiao Q, Liu J, Wang Y, Wang G, Chen SD. Application of odor identification test in Parkinson's disease in China: a matched case-control study. J Neurol Sci. 2012 May 15;316(1–2):47–50.

17. Shen SS, Shen Y, Xiong KP, Chen J, Mao CJ, Huang JY, Li J, Han F, Liu CF. Validation study of REM sleep behavior disorder questionnaire-Hong Kong (RBDQ-HK) in east China. Sleep Med. 2014 Aug;15(8):952–8.

18. Li G, Cui S, Du J, Liu J, Zhang P, Fu Y, He Y, Zhou H, Ma J, Chen S. Association of GALC, ZNF184, IL1R2 and ELOVL7 With Parkinson's Disease in Southern Chinese. Front Aging Neurosci. 2018 Dec 13;10:402.

19. Ho JH, Johnson AW. NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Mar;19(3):2389–99.

20. Oeffinger M. Joining the interface: a site for Nmd3 association on 60S ribosome subunits. J Cell Biol. 2010 Jun 28;189(7):1071–3.

21. Kang H, Shin JH. Repression of rRNA transcription by PARIS contributes to Parkinson's disease. Neurobiol Dis. 2015 Jan;73:220–8

Tables

Table 1. Demographic data and symptoms in PD patients involved in this study.
	NMD3 carriers (n = 178)	NMD3 wildtypes (n = 39)	p value
Age, mean (SD)	57.03 (10.16)	55.69 (10.24)	0.461
Gender, female, N(%)	73 (41.01)	17 (43.59)	0.907
Disease duration, mean (SD)	4.79 (4.28)	5.56 (3.89)	0.275
Family history, N(%)	17 (9.55)	5 (12.82)	0.550
Hoehn – Yahr staging, N(%)			0.869
1.0	41 (23.03)	10 (25.64)	
1.5	29 (16.29)	4 (10.26)	
2.0	60 (33.71)	14 (35.90)	
2.5	32 (17.98)	7 (17.95)	
3.0	12 (6.74)	4 (10.26)	
4.0	4 (2.24)	0 (0.00)	
5.0	0 (0.00)	0 (0.00)	
MDS-UPDRS, mean (SD)	48.34 (27.10)	43.05 (20.51)	0.175
Part I	8.66 (6.16)	7.51 (5.43)	0.249
Part II	11.60 (7.71)	10.08 (5.81)	0.168
Part III	28.08 (17.45)	25.46 (14.10)	0.318
NMSS, mean (SD)	36.23 (35.57)	31.03 (27.42)	0.315
SCOPA-AUT, mean (SD)	10.92 (9.06)	9.08 (8.56)	0.233
PDQ-39, mean (SD)	19.31 (17.84)	16.23 (13.93)	0.241
MMSE, mean (SD)	26.31 (3.79)	27.44 (2.89)	0.042
MoCA, mean (SD)	20.75 (6.68)	23.15 (4.20)	0.005

MDS, movement disorders society; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; NMSS, non-motor symptoms scale; SCOPA-AUT, scales for Outcomes in Parkinson's disease - autonomic questionnaire; SD, standard deviation; PD, Parkinson's disease; PDQ-39, 39-item Parkinson's disease Questionnaire; UPDRS, unified Parkinson's disease rating scale
Table 2. The association between symptoms and genetic models (additive and dominant models) of *NMD3* rs34016896.
Condition	Additive model	Dominant model	Dominant model	Dominant model			
		p value	OR	95% CI	p value	OR	95% CI
Hallucination	0.025	0.368	1.78	(0.58, 7.79)	0.341	1.86	(0.59, 8.26)
Apathy	0.092	0.941	0.97	(0.49, 1.97)	0.955	0.98	(0.48, 2.01)
Excessive daytime sleepiness	0.444	0.908	0.95	(0.38, 2.15)	0.896	0.94	(0.38, 2.15)
Pain	0.696	0.474	0.77	(0.37, 1.56)	0.513	0.78	(0.37, 1.60)
Frequent urination	0.639	0.491	1.28	(0.64, 2.58)	0.526	1.27	(0.60, 2.72)
Constipation	0.930	0.656	0.85	(0.42, 1.71)	0.528	0.78	(0.36, 1.66)
Postural hypotension	0.007	0.052	2.38	(1.05, 6.16)	0.050	2.43	(1.05, 6.38)
Sialorrhea	0.487	0.600	1.20	(0.60, 2.42)	0.617	1.22	(0.56, 2.62)
RLS	0.905	0.266	0.66	(0.32, 1.40)	0.259	0.65	(0.31, 1.40)
Delusion	0.038	0.557	1.58	(0.42, 10.33)	0.605	1.51	(0.38, 10.10)
Double vision	0.197	0.144	3.02	(0.85, 19.31)	0.133	3.22	(0.86, 21.14)
Decreased attention	0.124	0.570	1.27	(0.58, 3.00)	0.554	1.29	(0.57, 3.14)
Decreased recent memory	0.064	0.227	1.54	(0.76, 3.09)	0.232	1.54	(0.76, 3.13)
Nocturia	0.870	0.845	1.08	(0.47, 2.34)	0.932	1.04	(0.43, 2.36)
Sexual dysfunction	0.188	0.272	1.64	(0.71, 4.27)	0.254	1.69	(0.72, 4.48)
Hypoguesia	0.202	0.827	1.08	(0.54, 2.22)	0.859	1.07	(0.53, 2.19)
Change of weight	0.073	0.323	0.49	(0.13, 2.38)	0.298	0.47	(0.12, 2.29)
Daytime sweatiness	0.449	0.964	1.02	(0.49, 2.17)	0.918	1.04	(0.49, 2.29)
Nocturnal sweatiness	0.405	0.847	0.93	(0.46, 1.96)	0.874	0.94	(0.45, 2.04)
Urgent urination or urinary incontinence	0.724	0.891	1.05	(0.52, 2.10)	0.946	1.03	(0.48, 2.18)
Sensitive to light	0.142	0.387	2.50	(0.47, 46.44)	0.381	2.55	(0.46, 47.88)
Sensitive to cold	0.484	0.589	1.30	(0.53, 3.66)	0.588	1.30	(0.53, 3.68)
Sensitive to hot	0.481	0.311	0.63	(0.27, 1.62)	0.283	0.60	(0.25, 1.59)
Anxiety	0.155	0.404	1.49	(0.62, 4.19)	0.335	1.64	(0.63, 4.86)
Depression	0.935	0.644	1.35	(0.43, 6.64)	0.664	1.34	(0.41, 6.64)
RBD & 0.957 & 0.542 & 0.80 & (0.39, 1.67) & 0.498 & 0.77 & (0.37, 1.65) \\
Olfactory dysfunction & 0.784 & 0.845 & 1.08 & (0.47, 2.34) & 0.934 & 1.03 & (0.44, 2.26) \\

CI, confidence interval; OR, odds ratio; RBD, rapid eye movement sleep behavior disorder; RLS, restless legs syndrome

*adjusted by age, gender and Hoehn-Yahr staging

Table 3. The association between symptoms and genetic models (recessive models) of *NMD3* rs34016896.
Condition	Recessive model	Recessive model (adjusted)*				
	p value	OR	95% CI	p value	OR	95% CI
Hallucination	0.012	2.96	(1.29, 7.10)	0.014	2.95	(1.26, 7.21)
Apathy	0.011	2.06	(1.18, 3.61)	0.012	2.07	(2.28, 3.67)
Excessive daytime sleepiness	0.221	1.55	(0.78, 3.19)	0.213	1.56	(0.79, 3.23)
Pain	0.252	1.39	(0.79, 2.46)	0.286	1.36	(0.77, 2.42)
Frequent urination	0.879	1.04	(0.60, 1.81)	0.916	1.03	(0.57, 1.86)
Constipation	0.629	1.15	(0.66, 2.00)	0.649	1.15	(0.64, 2.07)
Postural hypotension	0.017	2.04	(1.14, 3.68)	0.016	2.08	(1.15, 3.82)
Sialorrhea	0.536	1.19	(0.68, 2.09)	0.552	1.20	(0.65, 2.23)
RLS	0.480	1.24	(0.68, 2.26)	0.520	1.22	(0.66, 2.26)
Delusion	0.014	3.94	(1.38, 12.92)	0.012	4.41	(1.46, 15.47)
Double vision	0.480	1.34	(0.58, 3.02)	0.420	1.43	(0.59, 3.40)
Decreased attention	0.068	1.76	(0.96, 3.26)	0.075	1.78	(0.94, 3.38)
Decreased recent memory	0.075	1.68	(0.96, 3.00)	0.069	1.71	(0.96, 3.09)
Nocturia	0.930	1.03	(0.55, 1.97)	0.940	1.02	(0.52, 2.03)
Sexual dysfunction	0.281	1.41	(0.75, 2.63)	0.317	1.39	(0.73, 2.63)
Hypoguesia	0.086	1.63	(0.93, 2.85)	0.080	1.65	(0.94, 2.89)
Change of weight	0.097	0.17	(0.01, 0.94)	0.089	0.16	(0.01, 0.90)
Daytime sweatiness	0.247	0.71	(0.39, 1.27)	0.176	0.65	(0.35, 1.20)
Nocturnal sweatiness	0.280	0.72	(0.40, 1.29)	0.199	0.67	(0.36, 1.23)
Urgent urination or urinary incontinence	0.677	1.12	(0.65, 1.96)	0.718	1.12	(0.62, 2.03)
Sensitive to light	0.151	2.38	(0.73, 8.28)	0.163	2.37	(0.71, 8.50)
Sensitive to cold	0.541	1.24	(0.61, 2.49)	0.561	1.23	(0.60, 2.47)
Sensitive to hot	0.809	0.91	(0.41, 1.94)	0.768	0.88	(0.39, 1.96)
Anxiety	0.149	1.63	(0.83, 3.20)	0.143	1.72	(0.83, 3.58)
Depression	0.626	0.79	(0.29, 1.99)	0.581	0.76	(0.27, 1.99)
RBD	0.573	1.18	(0.66, 2.10)	0.591	1.18	(0.65, 2.14)
Olfactory dysfunction	0.574	0.83	(0.45, 1.58)	0.593	0.84	(0.44, 1.61)

CI, confidence interval; OR, odds ratio; RBD, rapid eye movement sleep behavior disorder; RLS, restless legs syndrome

*adjusted by age, gender and Hoehn-Yahr staging
Table 4. The association between symptoms and genetic models (overdominant models) of NMD3 rs34016896.
Condition	Overdominant model	Overdominant model (adjusted)*				
	p value	OR	95% CI	p value	OR	95% CI
Hallucination	0.071	2.32	(0.97, 6.17)	0.086	2.26	(0.93, 6.13)
Apathy	0.011	2.05	(1.19, 3.57)	0.012	2.06	(1.18, 3.64)
Excessive daytime sleepiness	0.198	1.54	(0.80, 2.97)	0.186	1.56	(0.81, 3.03)
Pain	0.094	1.60	(0.92, 2.76)	0.121	1.55	(0.89, 2.70)
Frequent urination	0.700	0.90	(0.53, 1.54)	0.698	0.89	(0.50, 1.59)
Constipation	0.413	1.25	(0.73, 2.15)	0.349	1.32	(0.74, 2.36)
Postural hypotension	0.414	1.27	(0.71, 2.30)	0.407	1.29	(0.71, 2.36)
Sialorrhea	0.841	1.06	(0.61, 1.82)	0.845	1.06	(0.55, 1.93)
RLS	0.121	1.62	(0.89, 3.01)	0.131	1.62	(0.87, 3.06)
Delusion	0.048	3.66	(1.14, 16.31)	0.035	4.35	(1.25, 20.99)
Double vision	0.625	0.82	(0.36, 1.85)	0.669	0.83	(0.35, 1.98)
Decreased attention	0.176	1.53	(0.83, 2.88)	0.195	1.53	(0.81, 2.97)
Decreased recent memory	0.416	1.25	(0.73, 2.17)	0.391	1.28	(0.73, 2.23)
Nocturia	0.949	0.98	(0.52, 1.83)	0.998	1.00	(0.51, 1.94)
Sexual dysfunction	0.839	1.07	(0.57, 2.00)	0.928	1.03	(0.54, 1.97)
Hypogeusia	0.131	1.53	(0.88, 2.66)	0.114	1.56	(0.90, 2.73)
Change of weight	0.304	0.51	(0.13, 1.83)	0.295	0.50	(0.12, 1.82)
Daytime sweatiness	0.243	0.71	(0.40, 1.26)	0.157	0.65	(0.36, 1.18)
Nocturnal sweatiness	0.363	0.77	(0.44, 1.35)	0.254	0.71	(0.39, 1.28)
Urgent urination or urinary incontinence	0.763	1.09	(0.63, 1.86)	0.762	1.09	(0.61, 1.97)
Sensitive to light	0.456	1.60	(0.49, 6.14)	0.481	1.58	(0.46, 6.28)
Sensitive to cold	0.857	1.07	(0.53, 2.16)	0.880	1.06	(0.53, 2.15)
Sensitive to hot	0.582	1.24	(0.59, 2.69)	0.579	1.25	(0.57, 2.84)
Anxiety	0.442	1.30	(0.67, 2.60)	0.489	1.30	(0.63, 2.75)
Depression	0.405	0.68	(0.27, 1.69)	0.376	0.65	(0.25, 1.69)
RBD	0.306	1.35	(0.76, 2.40)	0.292	1.38	(0.76, 2.51)
Olfactory dysfunction	0.483	0.80	(0.42, 1.49)	0.555	0.82	(0.43, 1.56)

CI, confidence interval; OR, odds ratio; RBD, rapid eye movement sleep behavior disorder; RLS, restless legs syndrome

*adjusted by age, gender and Hoehn-Yahr staging