In this work we study an extension of the commonly used 5F scheme, where \(b\) quarks are treated as massless partons, in which full mass effects are retained in both the initial and in the final state. We name this scheme 5F massive scheme (5FMS). We implement this scheme in the SHERPA Monte Carlo event generator at MEPS@NLO accuracy, and we compare it for two relevant cases for the LHC: \(\bar{b}b \rightarrow H\) and \(pp \rightarrow Zb\).

PACS numbers: PACS numbers come here

1. Introduction

Processes with heavy quarks in the initial state, in particular associated production processes, have seen in recent years a renewed interest [1, 2, 4, 5, 6, 7, 12, 13, 14]. From the theoretical point of view, they are interesting applications of multiscale processes with largely different scales. Ratio of these large scales, can give rise to large logarithms which might spoil the convergence of the perturbative series. To avoid this, one can consider the \(b\) as a massless parton, and construct a \(b\)-PDF which resums this potentially large collinear logarithms, at the price of neglecting mass effects. An alternative point of view can be that of treating the \(b\)-quark as a massive, decoupled particle, which is only produced in the final state, or treating the \(b\)-quark as a massless parton on the same footing as the other, thus contributing to the QCD evolution. In this way one is able to retain full mass effects at the price of keeping the aforementioned possibly large collinear logs.

The former of these two approaches is called five-flavour (5F) scheme and would schematically corresponds to the right hand side plot of Fig.1 while the latter is refered to as four-flavour (4F) scheme and is represented

* Presented at the HiggsTools Final Meeting, Durham
Fig. 1. 4F (left plot) vs 5F (right plot) scheme diagrams for VH production

Fig. 2. In the plot is shown the error that is made when taking and α_s and a gluon PDF in the 4FS with respect to the 5FS baseline. As it can be seen the two effects partially mitigate each other, although this is true only for processes that start at a low enough power of α_s, and have a large gluon contribution.

in the left plot of Fig. 1. These two approaches have generally been used in a complementary, with the old way of saying being:

"use the 4FS for exclusive observables, and the 5FS for inclusive observables"

Many studies have however now shown that the 5FS scheme performs generally better both when compared to data, \cite{1}, or when comparing it with a matched calculation \cite{5, 13}, although this too is only true up to a certain extent. There are, in fact regions of phase space where one might still want to include exact mass effects, which would in principle require the use of the 4FS.

In this work we investigate the possibility of using a scheme, built upon the 5FS, with exact mass dependence. We name this scheme five-flavour-massive-scheme (5FMS). We implement the necessary ingredients to perform calculations in this scheme in the SHERPA Monte Carlo event genera-
tor [15], at MC@NLO accuracy [20, 21]. A detailed description of this scheme and its implementation can be found in [3].

2. Including mass effects

2.1. Fixed order

In order to study the effects introduced by this new scheme, we take an explicit example: $b\bar{b} \to H$. Reference diagrams that contribute to the next-to-leading order are shown in Fig.3. At the level of partonic matrix elements, the only difference between the 5FS and the 5FMS is that in the latter full mass dependence is retained, including in the initial state. As the infrared divergent structure is modified by the presence of the b mass, that acts as a collinear regulator, a modification of the standard Catani-Seymour subtraction is required [3]. With this in place, we can generate fixed-order events, Fig.4. As an example observable, we focus on the p_T of the produced H boson.

$$R + V = \left| \begin{array}{c} b \\ \overline{b} \\ s \end{array} \right| \begin{array}{c} H \\ \overline{b} \\ s \end{array} = \left| \begin{array}{c} b \\ \overline{b} \\ s \end{array} \right| \begin{array}{c} H \\ \overline{b} \\ s \end{array} \times \left(1 + 2 \text{Re}(\delta) \right)$$

$$R = \left| \begin{array}{c} b \\ \overline{b} \\ s \\ H \end{array} \right| - \left| \begin{array}{c} b \\ \overline{b} \\ s \\ H \end{array} \right| \quad + \quad \left| \begin{array}{c} b \\ \overline{b} \\ s \\ H \end{array} \right|$$

Fig. 3. Virtual and Real contributions to $b\bar{b} \to H$

We know that mass effects contribute only a few percent to the total cross section for this process. In addition, we know that they are power suppressed and we expect them to scale like m_b^2/p_T^2. This is, indeed, roughly the behaviour shown in Fig.4

2.2. MC@NLO

We now want to study what happens when this scheme is matched to the parton shower. Since we don’t have a theoretical reference here, we use $pp \to Zb$ data [8] from ATLAS. In particular we replicate the set-up used in [11], and we compare with the 5FS MEPS@NLO line referenced therein, see Fig.5. The difference with respect to that set-up is that we
have MC@NLO accuracy only for the core $pp \rightarrow Z$ processes, while extra jet contributions that are merged on top of that only come at leading order accuracy. Strictly speaking thus, we should compare the 5FMS MEPS@NLO here with the 5F MEPS@LO prediction of [1], however we expect some mass effects to make up for some of the differences in accuracy.

As our aim is to investigate mass effects, in b-initiated processes, we look at events in which at least one jet containing a b is tagged, and we plot distributions for the leading b-jet and the Z boson p_T and y against data. These plots are reported in Fig.5. As it can be seen, this new scheme performs rather well, and, indeed, it shows the same type of compatibility with data of the 5FS MEPS@NLO prediction, which is reassuring.

Further details and studies on this new scheme can be found in [3]

Acknowledgements

We want to thank our colleagues from the SHERPA collaboration for fruitful discussions and technical support. We acknowledge financial support from the EU research networks funded by the Research Executive Agency (REA) of the European Union under Grant Agreements PITN-GA2012-316704 (“HiggsTools”) and PITN-GA-2012-315877 (“MCnetITN”), by the ERC Advanced Grant MC@NNLO (340983), and from BMBF under contracts 05H12MG5 and 05H15MGCAA,
Fig. 5. We show prediction obtained in the 5FS, massless, at MEPS@NLO accuracy, with up to 2 jets at NLO plus up to three jets at leading order. The 5FMS prediction on the other hand includes only the 0 jet contribution at NLO, while the 1,2 and 3 jets contributions are merged with LO accuracy.

REFERENCES

[1] F. Krauss, D. Napoletano and S. Schumann, Phys. Rev. D 95 (2017) no.3, 036012 doi:10.1103/PhysRevD.95.036012 [arXiv:1612.04640 [hep-ph]].
[2] D. Napoletano, F. Krauss, arXiv:1706.10072 [hep-ph].
[3] F. Krauss and D. Napoletano, arXiv:1712.06832 [hep-ph].
[4] S. Forte, D. Napoletano and M. Ubiali, *Higgs production in bottom-quark fusion in a matched scheme*, Phys. Lett. B751 (2015), 331–337, [arXiv:1508.01529 [hep-ph]].
[5] S. Forte, D. Napoletano and M. Ubiali, *Higgs production in bottom-quark fusion: matching beyond leading order*, Phys. Lett. B763 (2016), 190–196, [arXiv:1607.00389 [hep-ph]].
[6] F. Maltoni, G. Ridolfi and M. Ubiali, JHEP 1207 (2012) 022 Erratum: [JHEP 1304 (2013) 095] doi:10.1007/JHEP04(2013)095, 10.1007/JHEP07(2012)022 [arXiv:1203.6393 [hep-ph]].
[7] M. Lim, F. Maltoni, G. Ridolfi and M. Ubiali, *Anatomy of double heavy-quark initiated processes*, JHEP 09 (2016), [arXiv:1605.09411][hep-ph]

[8] M. Aaboud et al. [ATLAS Collaboration], arXiv:1708.03299 [hep-ex].

[9] R. V. Harlander and W. B. Kilgore, *Higgs boson production in bottom quark fusion at next-to-next-to leading order*, Phys. Rev. D68 (2003), [arXiv:hep-ph/0304035][hep-ph]

[10] M. Cacciari, M. Greco and P. Nason, *The P(T) spectrum in heavy flavor hadroproduction*, JHEP 9805 (1998), [arXiv:hep-ph/9803400][hep-ph]

[11] S. Forte, E. Laenen, P. Nason and J. Rojo, *Heavy quarks in deep-inelastic scattering*, Nucl.Phys. B834 (2010), [arXiv:1001.2312][hep-ph]

[12] M. Bonvini, A. S. Papanastasiou and F. J. Tackmann, *Resummation and matching of b-quark mass effects in $b\bar{b}H$ production*, JHEP 11 (2015), [arXiv:1508.03288][hep-ph]

[13] M. Bonvini, A. S. Papanastasiou and F. J. Tackmann, *Matched predictions for the $b\bar{b}H$ cross section at the 13 TeV LHC*, JHEP 10 (2016), [arXiv:1605.01733][hep-ph]

[14] V. Bertone, A. Glazov, A. Mitov, A. Papanastasiou and M. Ubiali, arXiv:1711.03355 [hep-ph].

[15] T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert and J. Winter, *Event generation with SHERPA 1.1*, JHEP 02 (2009), [arXiv:0811.4622][hep-ph]

[16] S. Catani and M. H. Seymour, *A general algorithm for calculating jet cross sections in NLO QCD*, Nucl. Phys. B485 (1997), 291–419 [hep-ph/9605323]

[17] Stefano Frixione and Bryan R. Webber. *Matching NLO QCD computations and parton shower simulations*. JHEP, 06:029, 2002.

[18] S. Höche, F. Krauss, M. Schönherr and F. Siegert, *A critical appraisal of NLO+PS matching methods*, JHEP 09 (2012), [arXiv:1111.1220][hep-ph]

[19] S. Höche, F. Krauss, S. Schumann and F. Siegert, *QCD matrix elements and truncated showers*, JHEP 05 (2009), [arXiv:0903.1219][hep-ph]

[20] T. Gehrmann, S. Höche, F. Krauss, M. Schönherr and F. Siegert, *NLO QCD matrix elements + parton showers in $e^+e^- \to$ hadrons*, [arXiv:1207.5031][hep-ph]

[21] S. Höche, F. Krauss, M. Schönherr and F. Siegert, *QCD matrix elements + parton showers: The NLO case*, JHEP 1304 (2013), [arXiv:1207.5030][hep-ph]

[22] G. Aad et al., The ATLAS Collaboration collaboration, *Measurement of differential production cross-sections for a Z boson in association with b-jets in 7 TeV proton-proton collisions with the ATLAS detector*, JHEP 1410 (2014), [arXiv:1407.3643][hep-ex]

[23] S. Chatrchyan et al., The CMS Collaboration collaboration, *Measurement of the cross section and angular correlations for associated production of a Z boson with b hadrons in pp collisions at $\sqrt{s} = 7$ TeV*, JHEP 1312 (2013), [arXiv:1310.1349][hep-ex]