Herb–drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb–drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day \times 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day \times 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb–drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions.

CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e107; doi:10.1038/psp.2013.69; published online 26 March 2014.
Table 1 Comparison of previously published and model-predicted pharmacokinetic outcomes

Outcome	Previously published	Model predicted	Accuracy (%)
(R)–Warfarin (5mg)			
t1/2 (hour)	42 (18)	29	69
tmax (hour) (median (range))	2.0 (0.5–12)	1.6	80
Cmax (µmol/l)	1.7 (22)	2.1	124
AUC0–inf (µmol/l·hour)	93 (21)	91	99
Cl/F (l/hour)	0.18 (21)	0.18	100
(S)–Warfarin (5mg)			
t1/2 (hour)	32 (26)	22	69
tmax (hour) (median (range))	2 (0.5–4)	1.5	75
Cmax (µmol/l)	2.0 (29)	2.1	105
AUC0–inf (µmol/l·hour)	65 (30)	70	108
Cl/F (l/hour)	0.25 (31)	0.23	92
Midazolam (5mg)			
t1/2 (hour)	2.9 (41)	3.5	121
tmax (hour) (median (range))	0.5 (0.25–1.5)	0.6	120
Cmax (µmol/l)	88 (44)	70	80
AUC0–inf (µmol/l·hour)	220 (33)	210	95
Cl/F (l/hour)	71 (33)	72	76
Midazolam (8mg)			
t1/2 (hour)	4.2 (29)	3.5	83
tmax (hour) (mean (SD))	0.47 (51)	0.6	128
Cmax (µmol/l)	110 (49)	110	100
AUC0–inf (µmol/l·hour)	300 (44)	340	113
Cl/F (l/hour)	95 (35)	72	76
Silybin A (92.8mg)			
t1/2 (hour)	1.6	1.4	
tmax (hour) (median (range))	1.5 (1–2)	1.3	
Cmax (µmol/l)	0.84 (89)	0.27	
AUC0–inf (µmol/l·hour)	1.3	1.1	
Cl/F (l/hour)	150	170	
Silybin B (128mg)			
t1/2 (hour)	1.1	1.4	
tmax (hour) (median (range))	1.5 (0.5–2)	1.1	
Cmax (µmol/l)	0.27 (120)	0.16	
AUC0–inf (µmol/l·hour)	0.28	0.63	
Cl/F (l/hour)	950	410	

AUC0–inf area under the concentration–time curve from time zero to infinity; AUC0–8, AUC from 0–8 hours; Cmax, maximal concentration; Cl/F, apparent oral clearance; t1/2, terminal half-life; tmax, time to maximal concentration.

*Geometric or arithmetic means and coefficients of variation (%) unless indicated otherwise. **Point estimates. ***Previously published outcomes from refs. 20, 21, 18, 26, respectively. ¶Model predictions were considered accurate if the primary outcomes ([S]–warfarin and midazolam AUC and Cmax) were within 30% of previously published outcomes. *Due to the sparse nature of the previously published data, a modified Bailer method (available in Phoenix WinNonlin) was used to recover t1/2, AUC0–inf, and Cl/F; accuracy was not calculated based on the sparse data and the 30% criterion being applicable only to the victim drugs.

Prediction of silybin–drug interaction magnitude. Simulations of a previously reported milk thistle-midazolam interaction, assuming reversible CYP3A inhibition solely due to silybin A and silybin B, demonstrated negligible changes in the midazolam concentration–time profile (Figure 1). The milk thistle product tested, silymarin, contained 100mg of silybin A and 180mg of silybin B and was administered daily for 14 days.18 Simulations assuming mechanism-based CYP3A inhibition predicted a 30% and 60% increase in midazolam Cmax and AUC, respectively; increases of 6% and 3% in midazolam Cmax and AUC, respectively, were reported18 (Figure 1).

Simulations of the silybin–warfarin interaction with a higher dose of silybin (1,650mg/day, or 720mg silybin A plus 930mg silybin B/day; see below), assuming reversible CYP2C9 inhibition only, predicted negligible changes (<5%) in all pharmacokinetic outcomes (Figure 2a; Table 2). Simulations of the high-dose silybin–midazolam interaction assuming reversible CYP3A inhibition predicted no change in midazolam t1/2 and ≤5% increase in both Cmax and AUC (Figure 2b; Table 2). Simulations assuming mechanism-based CYP3A inhibition predicted a 2-, 5-, and 1.5-fold increase in Cmax, AUC, and t1/2, respectively (Table 2).

Proof-of-concept clinical evaluation

Silibinin content in test product. A single lot (#304090) of Siliphos capsules, labeled to contain 60mg silibinin, was selected. The capsules were overfilled consistently, containing 69.1±4.28mg silibinin represented as 30.3±1.88mg silybin A and 38.9±2.39mg silybin B. The capsules also contained minor amounts of the regioisomers isosilybin A (1.55±0.09mg) and isosilybin B (0.94±0.06mg).

Study subjects. All enrolled subjects completed the study (Supplementary Table S2). The study drugs and silibinin generally were well tolerated. One subject experienced mild
The effects of high-dose silibinin pharmacokinetics. Effects of high-dose silibinin on warfarin and midazolam enantion and either the CYP2C9*2 allele. Two subjects carried one copy of the reference allele and either the CYP2C9*1 allele. Ten subjects were homozygous for the reference allele. During Clinical and Translational Research Center (CTRC) visits, four subjects (two in both phases) reported mild headaches attributed to caffeine withdrawal. No international normalized ratio elevations from baseline were observed following warfarin administration.

CYP2C9 genotyping. All enrolled subjects consented to genotyping. Ten subjects were homozygous for the reference CYP2C9*1 allele. Two subjects carried one copy of the reference allele and either the CYP2C9*2 or CYP2C9*3 allele.

Effects of high-dose silibinin on warfarin and midazolam pharmacokinetics. The effects of high-dose silibinin (1,650 mg/day) were compared to baseline oral pharmacokinetics of warfarin and midazolam. Due to the reported mechanism-based inhibition of CYP3A in vitro, silibinin was administered three times daily for 6 days prior to administration of the probe substrates. Silibinin constituents were not expected to accumulate during the administration period due to short reported half-lives (<4 hours). One subject demonstrated poor goodness-of-fit statistics for the time profile of both warfarin enantiomers in both phases ($R^2 < 0.85$). Accordingly, data from this subject were excluded from analysis of AUC$_{0-48}$ and $t_{1/2}$.

Warfarin enantiomers were absorbed rapidly during both study phases, with median t_{max} occurring at 1.25 and 1.5 hours for (R)- and (S)-warfarin, respectively (Figure 2a). Coadministration with silibinin did not alter median (S)-warfarin t_{max}, but delayed median (R)-warfarin t_{max} by 15 minutes. Relative to control (baseline), silibinin decreased (R)-warfarin geometric mean C_{max} by 17% (Figure 3a; Table 2) and AUC$_{0-48}$ by 15% (Figure 3b; Table 2). Silibinin decreased geometric mean (S)-warfarin C_{max} by 2% (Figure 3c; Table 2). Geometric mean AUC$_{0-48}$ of (S)-warfarin increased by 13% (Figure 3d; Table 2), with three subjects lying outside the predefined no effect range (0.75–1.33). The 90% confidence intervals for the (S)-warfarin primary endpoints (C_{max} and AUC) lay within the predefined no effect range (Table 2).

The rapid absorption of midazolam was unaltered by coadministration with silibinin, with median t_{max} occurring at 0.5 hours (Figure 2b). Relative to control, silibinin increased midazolam geometric mean C_{max} by 20% (Figure 3e; Table 2) and AUC$_{0-\text{inf}}$ by 9% (Figure 3f; Table 2). Except for one subject (2.3-fold increase), treatment/control ratios of AUC$_{0-\text{inf}}$ lay within the predefined no effect range (Figure 3f). The 90% confidence interval for midazolam treatment/control ratio of C_{max} extended above, whereas that of AUC$_{0-\text{inf}}$ lay within, the predefined no effect range (Table 2).

The sampling strategy was not optimized for recovery of silybin A and silybin B pharmacokinetic outcomes; as such, these outcomes were interpreted for qualitative rather than quantitative purposes. The median t_{max} of silybin A and silybin B following the initial administration of silibinin (3 and 3.5 hours, respectively) nearly coincided with the second administration of silibinin (Figure 2c). Geometric mean C_{max} for silybin A was more than double that for silybin B (Table 2). Geometric mean $t_{1/2}$ of both silybin A and silybin B was ~5 hours (Table 2).

DISCUSSION

Although herbal product usage continues to increase, current regulatory guidelines in several Western countries do not request premarket evaluation of herb–drug interaction liability. Investigations into such liabilities are fraught with inconsistent results due to the lack of a standard system for evaluation, high compositional variation between herbal products, and uncertainty about causative constituents. Unlike conventional drug products, the relative composition of herbal products may vary substantially depending on weather conditions, product collection and storage.
methods, and processing procedures. Accurate predictions of herb–drug interaction liability require not only identification and quantification of causative constituents, but also measures of exposure in organs with metabolic capability. Silybin was selected as an exemplar herbal product due to a well-characterized composition, availability of inhibitory kinetic parameters from individual constituents, and disparate impact of milk thistle products on victim drug pharmacokinetics in previous clinical studies. A PBPK modeling and simulation approach was used to address the challenges inherent to investigation of herb–drug interaction liability.

Warfarin is a widely used oral anticoagulant with a narrow therapeutic window. Warfarin is not sensitive to first-pass elimination and interaction potential to first-pass clearance of sensitive substrates. Silybin A and silybin B were the most potent. These observations led to the selection of silybin, which consists primarily of these two constituents, for clinical evaluation.

Relative to control, silybin unexpectedly decreased both the geometric mean C_{max} and AUC_{last} of (R)-warfarin. Clinical manifestation of the previously reported CYP1A2 induction by a milk thistle extract is consistent with this decrease in exposure. In contrast to the doubling of losartan exposure following administration of silymarin, high-dose silybin did not increase geometric mean (S)-warfarin exposure to a clinically relevant extent. However, increases above 33% were observed in three subjects, indicating that the CYP2C9 interaction potential of silybin cannot be disregarded completely. Consistent with the expected decrease in (S)-warfarin clearance, the subject carrying the reduced function CYP2C9*3 allele demonstrated prolonged warfarin exposure, which was not captured in the 48-hour sampling window. As such, the AUC and $t_{1/2}$ for this subject were excluded from analysis.

Modeling and simulation of the silybin–warfarin interaction demonstrated that the rapid clearance of the silybin constituents precluded marked inhibition of warfarin clearance. Sensitivity analysis of this interaction potential demonstrated that 10-fold increases in silybin A or silybin B inhibition potency (reversible K_i) would lead to roughly 15% increases in (S)-warfarin AUC. Extensive intestinal and hepatic conjugation of silybin A and silybin B followed by rapid elimination likely would limit the interaction potential to first-pass clearance of sensitive substrates. Warfarin is not sensitive to first-pass elimination and

Table 2 Comparison of proof-of-concept clinical study outcomes to physiologically based pharmacokinetic model predictions

Outcome	Geometric mean (CV %)	Treatment/ control ratio (90% CI)	Predicted (reversible inhibition)	Geometric mean (CV %)	Treatment/ control ratio (90% CI)	Predicted (mechanism-based inhibition)	
(R)-Warfarin	C_{max} (µmol/l)	1.92 (30) 1.60 (29) 0.83 (0.77–0.90)	2.08 2.08 1.00	— — —			
	$\text{AUC}_{\text{0–48}}$ (µmol/l·hour)	55.0 (24) 47.0 (23) 0.85 (0.81–0.90)	61.6 61.5 1.00	— — —			
	$t_{1/2}$ (hour)	52.0 (28) 61.2 (27) 1.14 (0.96–1.36)	29.0 29.0 1.00	— — —			
(S)-Warfarin	C_{max} (µmol/l)	2.01 (32) 1.97 (27) 0.98 (0.91–1.05)	2.06 2.08 1.01	— — —			
	$\text{AUC}_{\text{0–48}}$ (µmol/l·hour)	37.4 (41) 42.3 (34) 1.13 (1.01–1.26)	53.8 56.0 1.04	— — —			
	$t_{1/2}$ (hour)	29.6 (25) 30.3 (20) 0.97 (0.84–1.12)	22.2 22.4 1.01	— — —			
Midazolam	C_{max} (nmol/l)	74.2 (43) 89.5 (39) 1.20 (0.96–1.51)	70 73 1.04	70 150 2.11			
	$\text{AUC}_{\text{0–inf}}$ (nmol/l·hour)	198 (42) 216 (36) 1.09 (0.93–1.25)	210 220 1.05	210 1,070 5.05			
	$t_{1/2}$ (hour)	5.17 (36) 4.90 (48) 0.95 (0.82–1.10)	3.55 3.54 1.00	3.55 5.30 1.49			
Silybin A	C_{max} (µmol/l)	— — 0.97 (91)	— — 0.76	— — —			
	$t_{1/2}$ (hour)	— — 5.1 (34)	— — 1.4	— — —			
Silybin B	C_{max} (µmol/l)	— — 0.40 (110)	— — 0.43	— — —			
	$t_{1/2}$ (hour)	— — 5.1 (56)	— — 1.4	— — —			

$AUC_{\text{0–48}}$, area under the concentration–time curve from 0 to 48 hours; $AUC_{\text{0–inf}}$, AUC from 0 to infinite time; C_{max}, maximal concentration; $t_{1/2}$, terminal elimination half-life.

*Evaluable for 11 subjects; all other outcomes were evaluable for 12 subjects. The predefined no effect range was 0.75–1.33 for the primary endpoints (S)-warfarin and midazolam treatment/control ratio for C_{max} and AUC.
is cleared only upon subsequent passages through the liver, at which time any reversible inhibition of CYP2C9 by silybin A and silybin B would be abated. In contrast, losartan has a low bioavailability (33%) that is attributed, in part, to first-pass elimination. This observation, coupled with the differences in study population and herbal product tested, could explain the difference between the reported interaction with losartan and the lack of interaction with warfarin in the present study. Collectively, these observations suggest examination of other CYP2C9 substrates sensitive to first-pass elimination, such as fluvastatin, to understand fully the milk thistle–CYP2C9 interaction potential.

Midazolam is a gold standard CYP3A probe substrate metabolized extensively by intestinal and hepatic enzymes. Inhibition of CYP3A at either site can increase systemic exposure to midazolam; inhibition of hepatic CYP3A also can increase t₁/₂. Milk thistle constituents, including silybin A and silybin B, have been shown to be reversible and mechanism-based inhibitors of CYP3A activity in both human liver microsomes and expressed enzyme systems. Previous clinical interaction studies with midazolam have demonstrated limited interaction liability with the milk thistle product silymarin, albeit the doses administered were not sufficient to determine the difference between reversible and mechanism-based inhibition of CYP3A (Figure 1). The “supratherapeutic” silybin dose in the current study was selected to provide a large range between the predicted interaction based on reversible and mechanism-based inhibition of CYP3A and to maximize the ability to observe a clinical interaction. The lack of an interaction observed in all but one subject indicated that the CYP3A interaction liability for silybin is low and is more consistent with reversible than mechanism-based inhibition (assuming inhibition indeed occurred). The current work represents another example of a potential mechanism-based inhibitor identified in vitro that does not manifest clinically.

Modeling and simulation of the silybin–midazolam interaction indicated that the low interaction potential is due, in part, to the lower inhibition potency of the silybin constituents toward CYP3A compared to CYP2C9 (Table 3). Ten-fold increases in inhibition potency of silybin A and silybin B toward CYP3A activity increased midazolam exposure by roughly 25% (Supplementary Figure S1 and Supplementary Materials and Methods). These observations indicated that at the predicted exposures, the constituents would need to be 10-fold more potent to demonstrate

Parameter	(R)-Warfarin	(S)-Warfarin	Midazolam	Silybin A	Silybin B	
Physicochemical/binding						
Molecular weight	308.33	308.33	325.78	482.44	482.44	
Fraction absorbed	1.0^a	1.0^a	1.0^a	0.77^b	0.77^b	
α_{inactivation}	3.0^c	3.0^c	1.17^d	0.50^e	0.50^e	
Blood/plasma ratio	1.0^a	1.0^a	0.80^f	0.58^g	0.58^g	
Unbound fraction in plasma	0.006ⁱ	0.006ⁱ	0.02^j	0.04^k	0.04^k	
Metabolism						
Intestinal K_u(µmol/l)	—	—	3.7^k	22^d	8.5<sup<d</sup>	
Intestinal V_{max}(µmol/hour)	—	—	1,100ⁱ	2,700^k	2,600^k	
Hepatic K_i(µmol/l)	—	—	6.5^f	6.0^f	54ⁱ	57ⁱ
Hepatic V_{max}(µmol/hour)	—	—	260^f	18,000ⁱ	2,300^c	2,700^c
Hepatic Clint (l/hour)	30.4ⁱ	—	—	—	—	
Inhibition						
CYP2C9 K_i(µmol/l)	6.5ⁱ	—	—	10^k	4.8<sup<k</sup>	
CYP2C9 α_i	—	—	5^k	8<sup<k</sup>		
CYP3A4 K_i(µmol/l)	—	—	26.5^d	31.5<sup<d</sup>		
CYP3A4 V_{max}(minute⁻¹)	—	—	0.22<sup<k</sup>	0.15<sup<k</sup>		
CYP3A4 K_i(µmol/l)	—	—	100^k	89<sup<k</sup>		

See “Methods” for detailed information on model parameterization. a_i, intrinsic clearance; α_i, absorption rate constant; K_i, reversible inhibition constant; α_i, affinity change of the enzyme–substrate and enzyme–inhibitor complexes; K_i, concentration required to achieve half-maximal rate of enzyme inactivation (K_i).

^aAxumed. ^bPredicted based on physicochemical properties using ADMET Predictor (Simulations Plus). ^cObtained by fitting the model to clinical data (ref. 26). ^dRef. 35. ^eRef. 34. ^fRef. 30. ^gRef. 33. ^hRef. 40. ⁱExtrapolated from in vitro data. ^jRef. 34. ^kRef. 15. Obtained from recombinant data in ref. 24.
any clinically relevant interaction with CYP3A. The large predicted increase in midazolam exposure incorporating mechanism-based inhibition further supported the hypothesis that products with limited systemic exposure (first posited with fruit juices)\(^{25}\) need to be mechanism-based inhibitors of CYP enzymes to perpetrated clinically relevant interactions.

One limitation to the current work is that silybin A and silybin B clearance parameters were recovered by fitting the model to data obtained from hepatitis C patients administered a product (silymarin) that contained additional constituents not present in silibinin.\(^{26}\) In vitro determination of silibinin clearance parameters would provide a true bottom-up modeling approach and reduce complexities inherent to pharmacokinetic data from patients with hepatic disease. Alternatively, disease-related parameters could be used to develop a hepatitis C virtual population before fitting the PBPK model with the observed pharmacokinetic data, facilitating recovery of disease-independent silibinin clearance parameters.\(^{27-29}\)

In summary, prospective evaluation of herb–drug interactions, consistent with that for drug–drug interactions, largely has been ignored due to substantial compositional variability inherent to herbal products, multiple inhibitory constituents, varying inhibition mechanisms, and relative lack of regulatory oversight. The PBPK interaction model developed in the current work incorporated in vitro inhibition kinetic parameters and systemic exposure estimates of individual constituents for the exemplar herbal product, silibinin. Simulations of the silibinin–warfarin and silibinin–midazolam interactions accurately predicted minimal clinical interaction liability. This work demonstrated the utility and predictive power of PBPK modeling and simulation, which could be extended to investigate scenarios (e.g., wide dosing ranges, tissue exposure assessment, and herbal product composition variation) and patient populations (e.g., pediatric, geriatric, and pregnant women) not amenable to clinical investigation. Refinement of the PBPK model by recovering disease-independent silibinin clearance parameters and incorporating alternate victim drugs, including losartan, will enhance confidence in model predictions and generalizability. This framework represents an initial step to establishing a systematic approach that can be applied to other combinations of herbal products and conventional drugs under various clinical scenarios to identify potential clinically significant herb–drug interactions, predict the extent of those interactions, and ultimately help guide pharmacotherapeutic decisions.

METHODS

PBPK model development. The base model structure was adapted from the literature (Figure 4), incorporating physiologic parameters obtained from the International Commission on Radiological Protection.\(^{31}\) Warfarin partition coefficients (\(K_p\))\(^{32}\) and binding parameters\(^{33}\) were obtained from the literature (Table 3): absorption rate constants (\(k_a\)) and clearance parameters were obtained by fitting the PBPK model to previously reported plasma concentration–time profiles.\(^{30}\) The reversible inhibition constant (\(K_i\)) of (R)-warfarin toward CYP2C9 activity was obtained from the literature.\(^{34}\) Midazolam \(K_s\) and \(K_i\) were obtained from the literature\(^{30,35}\); intestinal and hepatic clearance parameters were extrapolated from in vitro data as described\(^{36,37}\) (Table 3). Silybin A and silybin B \(K_s\) were predicted from physicochemical properties\(^{38}\) using GastroPlus (version 8.0; Simulations Plus, Lancaster, CA). Silibinin binding parameters were obtained from the literature\(^{39}\); clearance parameters were generated by fitting the PBPK model to plasma concentration–time data from hepatitis C patients receiving silymarin\(^{26}\) (Table 3). Silybin A and silybin B mechanism-based (\(K_i, K_{n_{max}}\)) and reversible inhibition kinetic parameters were obtained from the literature\(^{15,16}\). Mechanism-based inhibition of CYP2C9 was not considered based on a previous publication showing no IC\(_{50}\) shift using (S)-warfarin as the probe substrate.\(^{15}\)

PBPK interaction model simulations. PBPK models were developed for midazolam, (R)-warfarin, (S)-warfarin, silybin A, and silybin B using Berkeley Madonna (version 8.3; University of California at Berkeley, Berkeley, CA) with code compiled in MGen\(^{40}\) (version 0.5; UK Health & Safety Laboratory, Buxton, UK) (Supplementary Materials and Methods). The PBPK model for perpetrator (silybin A and silybin B) and victim (warfarin or midazolam) compounds were linked through the reversible or mechanism-based
inhibition of victim probe substrate. Initial simulations used doses of probe substrates and milk thistle products reported in previous studies. Simulations were considered accurate if the predicted primary pharmacokinetic outcomes (AUC and C_{max} for (S)-warfarin and midazolam) were within 30% of observed outcomes. Following initial model evaluation, simulations were conducted with a higher dose of silibinin (1,650 mg/day) to determine whether a clinically important interaction is possible. Pharmacokinetic outcomes from the simulated profiles were recovered via noncompartmental analysis using Phoenix WinNonlin (version 6.3; Pharsight, Cary, NC).

Analysis of silibinin product. Siliphos capsules (n = 28) (Thorne Research, Dover, ID) were analyzed using a modification of previously described methods\(^{31,42}\) to ensure purity and content. Briefly, the contents of each capsule were weighed and extracted twice with 2 ml acetone. The extract was vortex mixed and centrifuged (13,000g for 2 minutes); the supernatant was transferred to a clean vial. Milk thistle constituents were quantified using an Acquity UPLC system with an HSS-T3 1.8 µm (2.1 x 100 mm) Acquity column and Empower 3 software (Waters, Milford, MA). Standards and Siliphos capsules extract were analyzed using a gradient from 30:70 to 55:45 methanol:water (0.1% formic acid) over 5.0 minutes at a flow rate of 0.6ml/minute at 50 °C; peaks were detected at 288 nm.

Proof-of-concept clinical study. Healthy volunteers (six men and six nonpregnant women) were enrolled in an open-label, fixed sequence crossover study conducted at the UNC CTRC. The study protocol was approved by the UNC Office of Human Research Ethics Biomedical Institutional Review Board and the CTRC Advisory Committee. Eligibility informed consent was obtained from each subject prior to enrollment. The first (control) phase consisted of administration of 10 mg warfarin (Coumadin; Bristol Meyers Squibb, Princeton, NJ), 10 mg vitamin K (Mephyton; Aton Pharma, Lawrenceville, NJ), and 5 mg midazolam syrup (Ranbaxy; Lawrenceville, NJ), and 5 mg vitamin K (Mephyton; Aton Pharma, Lawrenceville, NJ) or 1'-hydroxymidazolam-d\(_4\) (Cerilliant, Round Rock, TX), and centrifuged (3,000g). The supernatant was injected into the HPLC-MS/MS system. Warfarin enantiomers were separated on a Supelco Astec Chirobiotic V 15 cm x 2.1 mm 5 micron column (Sigma Aldrich; St Louis, MO) and eluted with an isocratic mixture consisting of 75% 5 mmol/l ammonium acetate containing 0.01% (v/v) formic acid and 25% acetonitrile (flow rate, 0.4 ml/minute). Midazolam was eluted with a binary gradient mixture consisting of 10 mmol/l ammonium formate containing 1% (v/v) isopropyl alcohol and 0.1% (v/v) formic acid and methanol on a Varian Polaris C18-A 20 cm x 2.0 mm 5 micron column (Agilent, Santa Clara, CA) (flow rate, 0.65 ml/minute). Silybin A and silybin B were eluted with an isocratic mixture consisting of 44% water, 56% methanol, and 0.1% (v/v) formic acid on an Agilent Zorbax XDB C18 15 cm x 3.0 mm 3.5 micron column (Agilent) (flow rate, 0.7 ml/minute). Analyte concentrations were determined by interpolation from a standard curve with an assay dynamic range of 0.5–10,000 nmol/l (warfarin enantiomers) or 0.5–5,000 nmol/l (midazolam, silybin A, silybin B). Analytical methods were validated according to US Food and Drug Administration guidelines.\(^{44}\) Inter- and intraday variability for all analytes was less than 10%.

Pharmacokinetic analysis. Pharmacokinetic outcomes were recovered by noncompartmental analysis using Phoenix WinNonlin. Concentrations below the limit of quantification were excluded. The terminal elimination rate constant (λ\(_z\)) was estimated by linear regression of the terminal portion of the log-transformed concentration–time profile using at least three data points. The terminal half-life (t\(_{1/2}\)) was calculated as ln2/λ\(_z\). The maximum observed concentration (C_{max}) at λ\(_z\), and last measured concentration (C_{last}) were obtained directly from the concentration–time profile. AUC from time zero to C_{last} (AUC_{0–last}) was determined using the
trapezoidal method with linear up/log down interpolation. The AUC from time zero to infinity (AUC_{0–\infty}) was calculated as the sum of AUC_{0–last} and the ratio of C_{\text{last}} to λ_{z}^{*}.

Genotyping for common CYP2C9 variants. CYP2C9*2 and *3 polymorphisms were determined using a previously published polymerase chain reaction restriction fragment length polymorphism assay.45

Statistical analysis. All statistical analyses were conducted using SAS (version 9.2; SAS Institute, Cary, NC). The sample size for the proof-of-concept study (n = 12 evaluable subjects) was calculated based on 80% power to detect a 25% change in the primary endpoints with a type I error of 0.05; the primary endpoints were the treatment/control ratios of log-transformed AUC_{S,48} ((S)-warfarin) or AUC_{O,inf} (midazolam) and C_{\text{max}} ((S)-warfarin and midazolam), and the predefined no effect range was 0.75–1.33.5,6 Intraindividual variability in midazolam and warfarin AUC and C_{\text{max}} were assumed to be ~20%.36,46 Secondary outcomes, f_{\text{uq}} and f_{\text{max}}, were evaluated using a paired two-tailed Student’s t-test on log-transformed data or Wilcoxon signed-rank test as appropriate, with 90% confidence intervals and ranges reported for f_{\text{uq}} and f_{\text{max}}, respectively. A P value <0.05 was considered statistically significant.

Acknowledgments. The authors thank Dr. Vanessa González-Pérez and the CTRC staff for their assistance in the conduct of the clinical study; Garrett Ainslie for his assistance with the physiologically based pharmacokinetic modeling; Dr. Craig Lee and Kimberly Vendrov for their assistance with the CYP2C9 genotyping; and Drs. Dan Jonas, Karen Weck, and Kay Chao for providing the CYP2C9 positive controls. This work was supported by the National Institutes of Health through award number R01GM077482 from the National Institute of General Medical Sciences and award number UL1TR000083 from the National Center for Advancing Translational Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. R.D. and D.J.F. were supported by a Clinical Pharmacokinetics/Pharmacodynamics fellowship sponsored by Quintiles and GlaxoSmithKline, respectively. Phoenix WinNonlin software was generously provided to the Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, by Certara as a member of the Pharsight Academic Center of Excellence Program. M.F.P. dedicates this article to Dr. David P Paine.

Author contributions. S.J.B., B.T.G., N.H.O., and M.F.P. wrote the manuscript. S.J.B., R.D., D.J.F., Y.Y.S., and M.F.P. designed the research. S.J.B., B.T.G., R.D., D.J.F., T.N.G., and Y.Y.S. performed the research. S.J.B., B.T.G., D.J.F., K.S.F., M.B.F., N.H.O., and M.F.P. analyzed the data. T.N.G., K.S.F., M.B.F., and N.H.O. contributed new reagents/analytical tools.

Conflict of interest. The authors declared no conflict of interest.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

✓ Despite increasing recognition of herb–drug interactions in clinical practice, robust information about the causative ingredients and mechanisms underlying these interactions remains limited. Consequently, evidence-based recommendations about adding herbal products to existing pharmacotherapeutic regimens virtually are nonexistent.

WHAT QUESTION DID THIS STUDY ADDRESS?

✓ This study addressed the utility of a PBPK modeling approach to predict the drug interaction liability of an herbal product. This approach was tested using the exemplar herbal product silibinin and the widely used cytochrome P450 probe substrates warfarin and midazolam.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

✓ A PBPK modeling approach accurately predicted the minimal interaction potential of chronic exposure to high-“dose” silibinin and two FDA-recommended probe substrates. Sensitivity analysis demonstrated that silibinin constituents are cleared too rapidly to influence the systemic metabolism of warfarin and that the inhibitory potency toward CYP3A is not sufficient for clinical interactions with midazolam.

HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEUTICS

✓ A PBPK modeling and simulation approach could facilitate prospective evaluation of herb–drug interactions, as well as evidence-based recommendations about adding herbal products to conventional drug regimens.

1. Gurley, B.J. Pharmacokinetic herb-drug interactions (part 1): origins, mechanisms, and the impact of botanical dietary supplements. Planta Med 78, 1478–1489 (2012).
2. Hermann, R. & von Richter, O. Clinical evidence of herbal drugs as perpetrators of pharmacokinetic drug interactions. Planta Med 78, 1458–1477 (2012).
3. de Lima Toccatondo Vieira, M. & Huang, S.M. Botanical-drug interactions: a scientific perspective. Planta Med 78, 1400–1415 (2012).
4. Paine, M.F. & Oberlies, N.H. Clinical relevance of the small intestine as an organ of drug elimination: drug-fruit juice interactions. Expert Opin. Drug Metab. Toxicol 3, 67–80 (2007).
5. European Medicines Agency. Guideline on the Investigation of Drug Interactions (2012). http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf Accessed 2 August 2012.
6. Food and Drug Administration. Draft Guidance: Drug Interaction Studies—Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations (2012). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf Accessed 2 August 2012.
7. Fahmi, O.A. et al. Comparison of different algorithms for predicting clinical drug-drug interactions, based on the use of CYP3A4 in vitro data: predictions of compounds as precipitants of interaction. Drug Metab. Dispos. 37, 1658–1666 (2009).
8. Huang, S.M. & Rowland, M. The role of physiologically based pharmacokinetic modeling in regulatory review. Clin Pharmacol Ther 91, 542–549 (2012).
