Super-Ehlers in Any Dimension

Sergio Ferrara1,2,3, Alessio Marrani1, Mario Trigiante4

1Physics Department, Theory Unit, CERN, CH 1211, Geneva 23, Switzerland
sergio.ferrara@cern.ch
alessio.marrani@cern.ch

2INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati, Italy

3Department of Physics and Astronomy, University of California, Los Angeles, CA USA

4Laboratory of Theoretical Physics, Dipartimento di Scienze Applicate e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi, I-10129 Torino, Italy
mario.trigiante@polito.it

Abstract

We classify the enhanced helicity symmetry of the Ehlers group to extended supergravity theories in any dimension. The vanishing character of the pseudo-Riemannian cosets occurring in this analysis is explained in terms of Poincaré duality. The latter resides in the nature of regularly embedded quotient subgroups which are noncompact rank preserving.

Contents

1 Introduction

2 Clifford Algebras and “Pure” Theories
 2.1 $N = 16$ (*Maximal*)
 2.2 $N = 12$
 2.3 $N = 10$

3 $N = 8, 6$ Matter Coupled Theories
 3.1 $N = 8$
 3.2 $N = 6$

4 $N = 4$ Matter Coupled *Symmetric* Theories
 4.1 *Minimal Coupling* Infinite Sequence and “Pure” $D = 4$ Supergravity
 4.2 “Pure” $D = 5, 6$ Supergravity and T^3 and ST^2 Models in $D = 4$
 4.3 The Jordan Symmetric Infinite Sequence
 4.4 *Magical* Models
 4.4.1 $D = 4$
 4.4.2 $D = 5$
 4.4.3 $D = 6$

5 Cosets with $\chi = 0$ and *Poincaré Duality*
 5.1 The Cosets
 5.1.1 $N = 16$
 5.1.2 $N = 12$
 5.1.3 $N = 10$
 5.1.4 $N = 8$
 5.1.5 $N = 6$
 5.1.6 $N = 4$ *Symmetric*
 5.2 *Poincaré Duality*
 5.2.1 $N = 16$
 5.2.2 $N = 4$ *Magical* Models
 5.3 Hodge Involution and Coset Cohomology

6 Conclusion

A Embeddings
 A.1 The Embeddings $SL(D-2, \mathbb{R}) \times E_{11-D(11-D)} \subset E_{8(8)}$
 A.2 Other Embeddings
 A.3 General Features

B $\mathfrak{so}(8,8)$ Outer Automorphisms and Dual Subalgebras of $\mathfrak{e}_{8(8)}$

C Poincaré Duality and Level Decomposition
1 Introduction

Three decades ago it was shown \cite{1} that the \(D\)-dimensional E\(h\)lers group \(SL(D-2, \mathbb{R})\) is a symmetry of \(D\)-dimensional Einstein gravity, provided that the theory is formulated in the light-cone gauge. For any \(D \geq 4\)-dimensional Lorentzian space-time, this results enables to identify the graviton degrees of freedom with the Riemannian coset
\[
\mathcal{M}_{\text{grav}} = \frac{SL(D-2, \mathbb{R})}{SO(D-2)},
\]
even if the action of the theory is not simply the sigma model action on this coset (with the exception of a theory reduced to \(D = 3\)). In \(D = 4\), this statement reduces to the well known fact that the massless graviton described by the Einstein-Hilbert action with two degrees of freedom of \(\pm 2\) helicity has an enhanced symmetry \(SO(2) \rightarrow SL(2, \mathbb{R})\).

In \(\mathcal{N}\)-extended supergravity in \(D\) dimensions, \(U\)-duality\footnote{Here \(U\)-duality is referred to as the “continuous” symmetries of \(2\). Their discrete versions are the \(U\)-duality non-perturbative string theory symmetries introduced by Hull and Townsend \cite{3}.} symmetries play an important role to uncover, in terms of geometrical constructions, the non-linear structure of the theories, whose most symmetric one is the theory with maximal supersymmetry (\(2N = 32\) supersymmetries). Furthermore, \(U\)-duality symmetries get unified with the Ehlers space-time symmetry if one descends to \(D = 3\) \cite{4, 5}. In the maximal case, the \(D = 3\) \(U\)-duality group is \(E_{6(8)}\), with \textit{maximal compact subgroup} (\(mcs\) \(SO(16)\), which is also the underlying Clifford algebra for massless supermultiplets of maximal supersymmetry. As a consequence, the bosonic sector of the theory is described by the sigma model \(E_{8(8)}/SO(16)\) \cite{7, 8, 6}.

Following these preliminaries, it comes as no surprise that it was further discovered that in light-cone Hamiltonian formulation maximal supergravity exhibits \(E_{7(7)}\) symmetry in \(D = 4\) \cite{10} and \(E_{8(8)}\) symmetry in \(D = 3\) \cite{11} (for the \(D = 11\) theory, see \cite{9}). Indeed, in any space-time dimension \(D\) and for any number of supersymmetries \(\mathcal{N} = 2N\), it is known that the \(D = 3\) \(U\)-duality group \(G^3_N\) \cite{12} embeds (through a rank-preserving embedding; for some basic definitions, see the start of App. A) the Ehlers group \(SL(D-2, \mathbb{R})\) as a commutant of the \(U\)-duality group \(G^D_N\) \cite{15} \cite{10}:
\[
G^3_N \supset G^D_N \times SL(D-2, \mathbb{R}).
\]

It is then natural to conjecture that in a suitable light-cone formulation of any \(\mathcal{N}\)-extended supergravity theories \(G^D_N \times SL(D-2, \mathbb{R})\) (which we dub \textit{super-Ehlers group}) is a manifest symmetry of the theory. Even if the super-Ehlers group is a bosonic extension of the Ehlers group itself, the presence of the \(U\)-duality commutant \(G^D_N\) in \textcolor{red}{(1.2)} is closely related to supersymmetry. It is intriguing to notice that the super-Ehlers symmetries, which we classify below in any dimension, sometimes exhibit an “\textit{enhancement}” into some larger group\footnote{For enhancement to infinite symmetries, see \cite{17}.}; this occurs whenever the embedding \textcolor{red}{(1.2)} is \textit{non-maximal}, and in \(D = 10\) type IIB supergravity. Furthermore, it sometimes occurs that the embedding \textcolor{red}{(1.2)} is maximal but \textit{non-symmetric}, as in \(D = 11\) supergravity.

At any rate, we will show that the common features of the embedding \textcolor{red}{(1.2)} are \textit{at least} two (\textit{cfr.} the start of App. A):

\begin{itemize}
 \item It is regular and preserves the rank of the group. Indeed, it generally holds that
 \[
 \text{rank} (G^3_N) = \text{rank} (G^D_N) + \text{rank} (SL(D-2, \mathbb{R})) = \text{rank} (G^D_N) + D - 3.
 \]
 \end{itemize}

The same relation holds for the \textit{non-compact rank} of these groups, namely the rank of the corresponding symmetric Riemannian manifolds of which the groups encode the isometries:
\[
\text{rank} \left(\frac{G^3_N}{H^3_N} \right) = \text{rank} \left(\frac{G^D_N}{H^D_N} \right) + \text{rank} \left(\frac{SL(D-2, \mathbb{R})}{SO(D-2)} \right) = \text{rank} \left(\frac{G^D_N}{H^D_N} \right) + D - 3,
\]
where H^3_N and H^D_N are the maximal compact subgroups of G^3_N and G^D_N, respectively. As mentioned above, this does not imply the embeddings to be in general maximal nor symmetric.

- The pseudo-Riemannian coset resulting from (1.2) has always zero character \[13, 14\], namely it has the same number of compact and non-compact generators. We will show that this latter property is related to the Poincaré duality (alias electric-magnetic duality) of the spectrum of massless $p > 0$ forms of the theory, which can essentially be traced back to the existence of an Hodge involution in the cohomology of the scalar manifold, singling out only the physical forms and their duals in the cohomology of the $(D - 2)$-dimensional transverse space. This property also follows from the regularity of the embedding of $G^D_N \times SL(D - 2)$ inside G^3_N, the semisimplicity of the two groups and properties (1.3), (1.4), as it will be shown in Appendix A.3.

There is also another aspect of interest in the present analysis: the role played by exceptional Lie groups and their relation to Jordan algebras and Freudenthal triple systems [18, 19]. In particular, a mathematical construction, called Jordan pairs (see e.g. [20] for a recent treatment, and a list of Refs.) corresponds to the maximal non-symmetric embedding

$$E_{8(8)} \supset E_{6(6)} \times SL(3, \mathbb{R}),$$

(1.5)

which is nothing but (1.2) specified for maximal supersymmetry ($N = 16$) and $D = 5$. We point out that the Jordan pairs relevant for supergravity theories always pertain to suitable non-compact real forms of Lie algebras, differently e.g. from the treatment given in [20].

Moreover, it is worth observing that in $D = 11$ supergravity G_{16}^{11} is empty, and thus (1.2) is the following maximal non-symmetric embedding [4]:

$$E_{8(8)} \supset SL(9, \mathbb{R}),$$

(1.6)

which in fact was used long time ago [21] in order to construct the gravity multiplet of this theory [22]. For maximal supergravity ($N = N_{\text{max}} = 16$), (1.2) reads [5]

$$E_{8(8)} \supset E_{11-D(11-D)} \times SL(D - 2, \mathbb{R}),$$

(1.7)

where $G^D_{16} = E_{11-D(11-D)}$ denotes the so-called Cremmer-Julia sequence [7, 8]. The unique exception is provided by type IIB chiral $D = 10$ supergravity, in which (1.2) is given by a two-step chain of maximal embedding [4]:

$$E_{8(8)} \supset_s SL(2, \mathbb{R}) \times E_{7(7)} \supset_s SL(2, \mathbb{R}) \times SL(8, \mathbb{R}),$$

(1.8)

which preserves the group rank.

The plan of the paper is as follows.

In Sec. 2 we start by recalling some basic facts on $SO(N)$ Clifford algebras relevant for the classification of massless multiplets of \mathcal{N}-extended supersymmetry in any dimension. Here $\mathcal{N} = 2N$ denotes the number of supersymmetries, regardless of the dimension D. Thus, for instance maximal supergravity corresponds to $\mathcal{N} = 32$ (8 spinor supercharges in $D = 4$), whereas the minimal supergravity we consider has $\mathcal{N} = 8$ (2 spinor supercharges in $D = 4$). We then proceed to considering the embedding (1.7) pertaining to maximal supergravity in any dimension $D \geq 4$ (in $D = 10$ both IIA and IIB theories are considered). The embedding (1.2), which can be regarded as the “non-compact enhancement” of Nahm’s analysis [21], in all cases consistently provides the massless spectrum of the corresponding theory with the correct spin-statistics content; illustrative analysis is worked out for

3This embedding was considered, but not proved, in [15]. A proof is presented in App. A of the present paper.

4“s” and “ns” stand for “symmetric” and “non-symmetric” (embedding), respectively.
$D = 11$ and $D = 10$ maximal theories. Other theories which do not exhibit matter coupling are also considered, namely $N = 10, 12$ in $D = 4$ and $N = 12$ in $D = 5$.

In Sec. 3 we consider half-maximal supergravity theories ($N = 8$), which can be matter coupled and exist in all $D \leq 10$ dimensions; for $D = 6$ we consider both inequivalent theories, namely the chiral $(2, 0)$ (type IIB) and the non-chiral $(1, 1)$ (type IIA) ones. Theories with $N = 6$, living in $D = 4$, are also considered.

Then, in Sec. 4 we consider quarter-maximal theories ($N = 4$), which live in $D = 4, 5, 6$ and admit two different kinds of matter multiplets. We confine ourselves to theories with symmetric scalar manifolds, which (apart from the minimally coupled models in $D = 4$ and the non-Jordan symmetric sequence in $D = 5$) admit an interpretation in terms of Euclidean Jordan algebras.

Pseudo-Riemannian cosets associated to the maximal-rank embeddings (1.2) are then analyzed in Sec. 5. All such cosets enjoy the property of having the same number of compact and non-compact generators. This is also proven, using general group theoretical arguments, in Appendix A.3. In Subsec. 5.2 this property is related to the invariance of the spectrum of massless bosonic $p > 0$ forms under Poincaré-duality, or equivalently in Subsec. 5.3 in terms of an Hodge involution acting on the coset cohomology.

Final remarks and outlook are given in Sec. 6.

Three Appendices conclude the paper. In App. A some embeddings of non-compact, real forms relevant for our analysis are rigorously proved, while in App. B the issue of inequivalent “dual pairs” of subalgebras of the U-duality algebra is discussed (see also [23]). The related notions of T-dualities as $so(8, 8)$ outer-automorphisms are also dealt with. In App. C the issue of Poincaré duality is revisited with an explicit algebraic construction which makes use of appropriate level decompositions.

2 Clifford Algebras and “Pure” Theories

In the seminal paper by Nahm [21], it was shown how massless multiplets of supergravity are built in terms of irreps. of $SO(D-2)$, the little group (spin) of massless particles in D dimensions. The number of supersymmetries 2 is encoded in the Clifford algebra of $SO(N)$, and therefore the supermultiplets can be regarded as $SO(N)$ spinors decomposed into $SO(D - 2)$ irreps (for theories with particles with spin $s \leq 2$, which we consider throughout, $N_{\text{max}} = 16$). Bosons and fermions thus correspond to the two semi-spinors (or chiral spinors) of $SO(N)$.

In any dimension $D \geq 4$, $SO(N)$ exhibits a certain commuting factor with the massless little group $SO(D - 2)$. For “pure” supergravities, in which only the gravity multiplet is present, such a commuting factor is the so-called R-symmetry of the theory. Then the question arises as to which is the non-compact group commuting with the $SL(D - 2, \mathbb{R})$ Ehlers group (which thus extends the massless little group including the R-symmetry), and furthermore which is the non-compact group which extends the $SO(N)$ of the N-dimensional Clifford algebra pertaining to $2N$ local supersymmetries.

In describing massless multiplets of theories with $N = 2N$ local supersymmetries, one consider the rest-frame supersymmetry algebra without central extension. Since the momentum squares to zero ($P^a P_a = 0$), only half of the supersymmetry charges survive, and the creation operators of N charges describe an $SO(N)$ Clifford algebra. Moreover, due to the fact that in $D \geq 4$ spinors always have real dimension multiple of 4, N is always even : $N = 4, 6, 8, 10, 12, 16$ (we do not consider here $N = 2$ at $D = 4$, namely minimal 4-dimensional supergravity with 1 spinor supercharge). It thus comes as no surprise that U-duality groups G^4_N in $D = 3$ (in which there is only distinction between bosons and fermions, but no spin is present for massless states) contain in their mcs the Clifford algebra symmetry $SO(N)$.

Supersymmetry dictates that massless bosons and fermions are simply the two (chiral, semi-)
spinor irreps. of $SO(N)$, while their spin s content in D space-time dimensions is obtained by suitably branching such irreps. into $SO(D - 2)$, which is the little group (spin) for massless particles in D dimensions.

In the present Section we consider “pure” theories in which the matter coupling is not allowed; they include maximally supersymmetric ($N = 16$) theories in any dimension $D \leq 11$, as well as non-maximal theories with $N = 10, 12$ in $D = 4$ and $N = 12$ in $D = 5$. For such theories, the Clifford algebra $SO(N)$ is nothing but the mcs of the U-duality group G_N^3 in $D = 3$; for non-maximal theories ($N < 16$), this is true up to the presence of the so-called Clifford vacuum factor group, which expresses further degeneracy of the Clifford algebra symmetry. Moreover, the group $H^0_N = mcs(G^0_N)$ which commutes with $SO(D - 2)$ inside $SO(N)$ is the R-symmetry, providing the degeneracy of the spin s representations in the decomposition of the chiral spinors under the embedding\[21\]

$$SO(N) \supset H^0_N \times SO(D - 2) J$$

which is the (not necessarily maximal-rank, nor maximal nor symmetric) counterpart of \[12\] at the level of mcs. The subscript “J” denotes the spin group throughout.

2.1 $N = 16$ (Maximal)

For maximal ($N = 16$) supergravity theories with massless particles, the $D = 3$ U-duality group is $G^16_3 = E_8(8)$, with mcs $SO(16)$, which is the Clifford algebra for massless particles with $N = 32$ supersymmetries.\[1,7\] provides the rank-preserving embedding of D-dimensional Ehlers group $SL(D - 2, \mathbb{R})$ into $E_8(8)$. The group commuting with $SL(D - 2, \mathbb{R})$ inside $E_8(8)$ is nothing but the D-dimensional U-duality group $G^D_{16} = E_{11-D(11-D)}$, belonging to the so-called the Cremmer-Julia sequence. All cases in $4 \leq D \leq 11$ dimensions are reported in Table 1 (non-compact level \[12\]-\[7,1\]) and in Table 2 (mcs level \[21\]). In particular, in Table 2 also the decomposition of the vector irrep. 16 of the Clifford algebra $SO(16) = mcs(E_8(8))$ of maximal ($N = 16 \rightarrow N = 32$) supersymmetry is reported for the embedding \[21\] pertaining to this case, namely \[21\] (see also \[21\]):

$$SO(16) \supset R^16_D \times SO(D - 2) J,$$

where, as mentioned above, $R^16_D \equiv mcs(G^16_D) \equiv H^16_D$ is the R-symmetry of the maximal supergravity in D (Lorentzian) space-time dimensions. Note that the irrep. of $SO(D - 2)$ occurring in the branching of the 16 along \[22\] are all spinors, and the R-symmetry R^16_D is real, pseudo-real (quaternionic), complex, depending on whether such spinor irrep. is real, pseudo-real or complex, respectively.

Let us scan them briefly (as anticipated, for $D = 11$ and $D = 10$ the massless spectrum analysis is also worked out, as an example of the consistence of the embeddings with the massless spectrum of the corresponding theory). For convenience of the reader, we anticipate that the embeddings \[1,2\] and \[21\] are maximal in $D = 11, 7, 5$ (non-symmetric) and 4 (symmetric), while they are next-to-maximal in $D = 10, 9, 8, 6$; in these latter cases, an “enhancement” of $E_{11-D(11-D)} \times SL(D - 2, \mathbb{R})$ occurs (see analysis below).

1. $D = 11$ (M-theory). There is no continuous U-duality (and thus R-symmetry) group, and \[1,7\] specifies to \[1,0\], namely the maximal non-symmetric embedding of the Ehlers group $SL(9, \mathbb{R})$ only:

$$E_8(8) \supset ns SL(9, \mathbb{R});$$

$$248 = 80 + 84 + 84',$$

where 84 and $84'$ are the 3-fold antisymmetric of $SL(9, \mathbb{R})$ and its dual; they correspond to gauge fields coupling to $M2$ branes and $M5$ branes, respectively. The corresponding mcs level

\[\text{Further commuting factor group occurs in the l.h.s. of \[21\] in non-maximal ($N \leq 16$) theories; see analysis below.}\]
Table 1: Embedding $G^3_N \supset G^D_N \times SL(D-2, \mathbb{R})$ for maximal supergravity theories ($N = 16$) in $11 \geq D \geq 4$ Lorentzian space-time dimensions [15, 16]. G^D_N is the U–duality group in D dimensions for the theory with $\mathcal{N} = 2N$ supersymmetries. $SL(D-2, \mathbb{R})$ is the Ehlers group in D dimensions. For $N = 16$, $G^3_{16} = E_8(8)$, and $G^D_N = E_{11-D(11-D)}$ belongs to the Cremmer-Julia sequence; thus, (1.7) is obtained. The type (maximal), n(ext-to)maximal), s(ymmetric), n(on-)s(ymmetric)) of embedding is indicated. Explicit proofs are given in App. A.

D	$E_8(8) \supset E_{11-D(11-D)} \times SL(D-2, \mathbb{R})$	type
11	$E_8(8) \supset SL(9, \mathbb{R})$	max, ns
10, IIA	$E_8(8) \supset SO(1,1) \times SL(8, \mathbb{R})$	nm, ns
10, IIB	$E_8(8) \supset SL(2, \mathbb{R}) \times SL(8, \mathbb{R})$	nm, ns
9	$E_8(8) \supset GL(2, \mathbb{R}) \times SL(7, \mathbb{R})$	nm, ns
8	$E_8(8) \supset SL(2, \mathbb{R}) \times SL(3, \mathbb{R}) \times SL(6, \mathbb{R})$	nm, ns
7	$E_8(8) \supset SL(5, \mathbb{R}) \times SL(5, \mathbb{R})$	max, ns
6	$E_8(8) \supset SO(5,5) \times SL(4, \mathbb{R})$	nm, ns
5	$E_8(8) \supset E_6(6) \times SL(3, \mathbb{R})$	max, ns
4	$E_8(8) \supset E_7(7) \times SL(2, \mathbb{R})$	max, s

is given by the specification of (2.1) to the following non-symmetric embedding of the massless spin group $SO(9)$ only:

$$SO(16) \supset_{ns} SO(9).$$

(2.4)

For what concerns the massless spectrum, one considers the maximal symmetric embedding

$$E_8(8) \supset_{sym} SO(16): 248 = 120 + 128,$$

(2.5)

where 128 is one of the two chiral spinor irreps. of $SO(16)$. Under (2.4), such two chiral irreps.

5For further subtleties concerning exceptional Lie algebras, see [23] and App. B further below.
D	$SO(16) \supset H_{16}^D \times SO(D - 2)_J$	type
11	$SO(16) \supset SO(9)$	
$16 = 16$	max, ns	
10, IIA	$SO(16) \supset SO(8)$	
$16 = 8_s + 8_c$	nm, ns	
10, IIB	$SO(16) \supset SO(2) \times SO(8)$	
$16 = (2, 8_s)$	nm, ns	
9	$SO(16) \supset SO(2) \times SO(7)$	
$16 = (2, 8)$	nm, ns	
8	$SO(16) \supset U(1) \times SU(2) \times SU(4)$	
$16 = (2, 4) + (\overline{2, 4})$	nm, ns	
7	$SO(16) \supset USp(4) \times USp(4)$	
$16 = (4, 4)$	max, ns	
6	$SO(16) \supset USp(4)_L \times USp(4)_R \times SU(2)_L \times SU(2)_R$	
$16 = (4, 1, 2, 1) + (1, 4, 1, 2)$	nm, ns	
5	$SO(16) \supset USp(8) \times SU(2)$	
$16 = (8, 2)$	max, ns	
4	$SO(16) \supset SU(8) \times U(1)$	
$16 = 8_1 + \overline{8}_1$ | max, s |

Table 2: Embedding $H_{16}^3 \supset H_{16}^D \times SO(D - 2)$ \cite{21} for maximal supergravity theories ($N = 16$) in $11 \geq D \geq 4$ Lorentzian space-time dimensions. In this case, as for all “pure” theories, H_{16}^D is the \mathcal{R}-symmetry for the theory with $N = 2N$ supersymmetries. $SO(D - 2)$ is the little group (spin group) for massless particles. In this case, $H_{16}^3 = SO(16)$ is the Clifford algebra of maximal supersymmetry.

128 and 128′ further decompose as follows:

$$SO(16) \supset_{ns} SO(9) : \begin{cases} 128 = 84 + 44; \\ 128' = 128, \end{cases} \quad (2.6)$$

where, on the right-hand side, 44, 84 and 128 are the rank-2 symmetric traceless, the rank-3 antisymmetric and the gamma-traceless vector-spinor irreps. of the massless spin group $SO(9)$, respectively. Thus, (2.6) establishes the chiral spinor irrep. 128 of the Clifford algebra $SO(16)$ to be irrep. pertaining to the massless bosonic spectrum (it branches into the graviton 44 and the 3-form 84), whereas its conjugate semi-spinor irrep. 128′ pertains to the massless fermionic spectrum of M-theory (it corresponds to the $D = 11$ gravitino).

2. In $D = 10$ type IIA theory the U-duality is $G_{16}^{10, IIA} = SO(1, 1)$ (and thus no continuous \mathcal{R}-
symmetry); since this theory is obtained as the Kaluza-Klein S^1-reduction of M-theory, the relevant chain of maximal embeddings reads

$$E_{8(8)} \supset_{ns} SL(9, \mathbb{R}) \supset_s SO(1, 1) \times SL(8, \mathbb{R});$$

(2.7)

note the “enhancement” to $SL(9, \mathbb{R})$, consistent with the M-theoretical origin of IIA theory. The corresponding mcs level is

$$SO(16) \supset_{ns} SO(9) \supset_s SO(8),$$

(2.8)

where $SO(8)$ is the massless spin group. Throughout our analysis, we dub “next-to-maximal” (nm) those embeddings given by a chain of two maximal embeddings; note that all nm embeddings considered in the present investigation are of maximal rank, namely they preserve the rank of the original group. For what concerns the IIA massless spectrum, one considers the branchings of 128 (bosons) and $128'$ (fermions) of the Clifford algebra $SO(16)$ under the nm embedding (2.8):

$$128 = 84 + 44 = 56_v + 28 + 35_v + 8_v + 1;$$

(2.9)

$$128' = 128 = 56_s + 56_c + 8_s + 8_c,$$

(2.10)

where the subscripts “v”, “s” and “c” respectively stand for vector, spinor, conjugate spinor, and they pertain to the triality of $SO(8)$, the little group (spin group) of massless particles in $D = 10$. 56_v, 28, 35_v and $8_i (i = v, s, c)$ are the rank-3 antisymmetric, adjoint, rank-2 symmetric traceless and vector/spinor irreps. of $SO(8)$, respectively. Thus, the branching (2.9) consistently pertains to the IIA massless bosonic spectrum: 3-form $C^{(3)}_{\mu \nu \rho}$ (56_v), B-field $B_{\mu \nu}$ (28), graviton $g_{\mu \nu}$ (35_v), graviphoton $C^{(1)}_{\mu}$ (8_v) and dilaton scalar field ϕ_{10} (1). On the other hand, the branching (2.10) pertains to the IIA massless fermionic spectrum: gravitinos 56_s and $56_c (s = 3/2)$ Majorana-Weyl spinors of opposite chirality, and gauginos 8_s and $8_c (s = 1/2)$ Majorana-Weyl spinors of opposite chirality. This non-chiral spectrum can also be deduced by dimensional reduction of the maximal supersymmetric supermultiplet of $D = 11$ supergravity (M-theory).

3. On the other hand, in $D = 10$ type IIB theory the U-duality is $G_{16}^{10 \, IIB} = SL(2, \mathbb{R})$, and its mcs is the R-symmetry $U(1)$, and the relevant nm embedding is given by (1.3), which we report here:

$$E_{7(7)} \supset_s SL(2, \mathbb{R}) \times E_{7(7)} \supset_s SL(2, \mathbb{R}) \times SL(8, \mathbb{R});$$

(2.11)

$$SO(16) \supset_s U(1) \times SU(8) \supset_s U(1) \times SO(8);$$

(2.12)

note the “exceptional enhancement” to $E_{7(7)}$ in (2.11). For what concerns the IIB massless spectrum, one considers the branching of 128 (bosons) and $128'$ (fermions) of the Clifford algebra $SO(16)$ under the nm embedding (2.12). Under the decomposition

$$SU(8) \supset_s SO(8)$$

$$8 = 8_s,$$

(2.13)

one obtains (disregarding $U(1)$ charges)

$$128 = 70_v + 28 + \overline{28} + 1 + 1 = 35_v + 35_c + 28 + 28 + 1 + 1;$$

(2.14)

$$128' = 56 + \overline{56} + 8 + \overline{8} = 56_s + 56_c + 8_s + 8_c.$$

(2.15)

Note that, upon (2.13), the rank-4 antisymmetric self-real irrep. 70 of $SU(8)$ breaks into $35_v + 35_c$ of $SO(8)$. Thus, the branching (2.14) consistently pertains to the IIB massless bosonic
spectrum: graviton \(g_{\mu \nu} (35_s) \), 4-form \(C^{(4)} (35_s) \), \(B \)-field \(B_{\mu \nu} (28) \), 2-form \(C^{(2)}_{\mu \nu} (28) \), and two scalar fields, namely the dilaton \(\phi_{10} \) and the axion \(C^{(0)} (1 + 1) \). On the other hand, the branching \(2.15 \) pertains to the IIB massless fermionic spectrum: gravitinos \(56_s \) and \(56_s \) (\(s = 3/2 \) Majorana-Weyl spinors of same chirality) and gauginos \(8_s \) and \(8_s \) (\(s = 1/2 \) Majorana-Weyl spinors of same chirality). This spectrum is chiral and hence cannot be obtained by dimensional reduction of the \(D = 11 \) M-theory supermultiplet.

4. In \(D = 9 \) the \(U \)-duality is \(G^9_{16} = GL(2, \mathbb{R}) \equiv E_{2(2)} \), and its \(mcs \) is the \(R \)-symmetry \(U(1) \). There are two possible chains of maximal embeddings, which are equivalent up to redefinitions of \(SO(1, 1) \) weights. The first chain, pertinent to a dimensional reduction of \(M \)-theory, gives rise to a \(nm \) embedding:

\[
E_{8(8)} \supset ns \ SL(9, \mathbb{R}) \supset_s GL(2, \mathbb{R}) \times SL(7, \mathbb{R});
\]

\[
SO(16) \supset ns \ SO(9) \supset_s U(1) \times SO(7),
\]

whereas the second, pertaining to a Kaluza-Klein \(S^1 \)-reduction of \(D = 10 \) IIB theory, determines a "next-to-next-to-maximal" \((nnm) \) embedding, because it is 3-stepwise (it is given by a further branching of IIB chain \(2.11 \)):

\[
E_{8(8)} \supset_s SL(2, \mathbb{R}) \times E_{7(7)} \supset_s SL(2, \mathbb{R}) \times SL(8, \mathbb{R}) \supset_s GL(2, \mathbb{R}) \times SL(7, \mathbb{R});
\]

\[
SO(16) \supset_s U(1) \times SU(8) \supset_s U(1) \times SO(8) \supset_s U(1) \times SO(7).
\]

Besides being equivalent, \(2.10 \) and \(2.17 \) are consistent, because type IIA and IIB theories are equivalent in \(D \leq 9 \) dimensions (except for half-maximal supergravity in \(D = 6 \); see further below).

5. In \(D = 8 \) the \(U \)-duality is \(G^8_{16} = SL(2, \mathbb{R}) \times SL(3, \mathbb{R}) \equiv E_{3(3)} \), and its \(mcs \) is the \(R \)-symmetry \(U(1) \times SU(2) \sim U(2) \). The relevant \(nm \) embedding reads:

\[
E_{8(8)} \supset ns \ E_{6(6)} \times SL(3, \mathbb{R}) \supset_s SL(2, \mathbb{R}) \times SL(3, \mathbb{R}) \times SL(6, \mathbb{R});
\]

\[
SO(16) \supset ns \ USp(8) \times SU(2) \supset_s U(1) \times SU(2) \times SU(4);
\]

note the “exceptional enhancement” to \(E_{6(6)} \) in \(2.20 \).

6. In \(D = 7 \) the \(U \)-duality is \(G^7_{16} = SL(5, \mathbb{R}) \equiv E_{4(4)} \), and its \(mcs \) is the \(R \)-symmetry \(SO(5) \sim USp(4) \). The relevant embedding is maximal non-symmetric:

\[
E_{8(8)} \supset ns \ SL(5, \mathbb{R}) \times SL(5, \mathbb{R});
\]

\[
SO(16) \supset ns \ USp(4) \times USp(4).
\]

Note that in this case there is perfect symmetry between the \(R \)-symmetry and the massless spin sectors.

\(^* \) \(2.21 \) is the \(n = 4 \) case of the maximal non-symmetric embedding pattern

\[
SO(4n) \supset ns \ SU(2) \times USp(2n);
\]

\[
\text{Adj}_{SO(4n)} = \text{Adj}_{SU(2)} + \text{Adj}_{USp(2n)} + (3, A_{2,0}).
\]

where \(A_{2,0} \) is the rank-2 antisymmetric skew-traceless irrep. of \(USp(2n) \). For the first appearance of such an embedding in supersymmetry, see \(25 \).
7. In \(D = 6 \) (non-chiral \((2,2)\)) maximal theory, the \(U \)-duality is \(G_{16}^6 = SO(5,5) \equiv E_{5(5)} \), and its \textit{mcs} is the \(\mathcal{R} \)-symmetry\(^9\) \(SO(5) \times SO(5) \sim USp(4)_L \times USp(4)_R \). The relevant \(nm \) embedding reads \((SO(4) \sim SU(2) \times SU(2)) \)

\[
E_{8(8)} \subset SO(8,8) \subset SO(5,5) \times SO(3,3) \sim SO(5,5) \times SL(4, \mathbb{R}); \\
SO(16) \supset SO(8) \times SO(8) \supset SO(5)_L \times SO(3) \times SO(5)_R \times SO(3) \\
\sim USp(4)_L \times USp(4)_R \times SU(2)_L \times SU(2)_R;
\]

note the “enhancement” to \(SO(8,8) \) in \((2.21)\). Note that in this case both the \(\mathcal{R} \)-symmetry and massless spin groups factorize in the direct product of opposite chiralities identical factors. The corresponding Jordan algebra interpretation of \((2.24)\) is as follows:

\[
QConf \left(J_3^{Qs} \right) \supset \text{Str}_0 \left(J_2^{Qs} \right) \times SL(4, \mathbb{R}),
\]

where \(J_3^{Qs} \) and \(J_2^{Qs} \sim \mathbf{1}_{5,5} \) are the rank-2 and rank-3 Euclidean Jordan algebras over the split octonions \(\mathbb{O}_s \), and \(QConf \) and \(\text{Str}_0 \) respectively denote the \textit{quasi-conformal} and \textit{reduced structure} groups\(^10\) (see e.g. \[19\] and Refs. therein).

8. In \(D = 5 \) the \(U \)-duality undergoes an exceptional enhancement : \(G_{16}^5 = E_{6(6)} \), and its \textit{mcs} is the \(\mathcal{R} \)-symmetry \(USp(8) \). The relevant embedding is maximal non-symmetric, and it is given by \((1.5)\), which we report here (note that it is the first step of \(nm \) embedding \((2.20)-(2.21)\)):

\[
E_{8(8)} \supset_{ns} E_{6(6)} \times SL(3, \mathbb{R}); \\
SO(16) \supset_{ns} USp(8) \times SU(2).
\]

The corresponding Jordan algebra interpretation of \((2.27)\) is as follows:

\[
QConf \left(J_3^{Qs} \right) \supset \text{Str}_0 \left(J_2^{Qs} \right) \times SL(3, \mathbb{R}),
\]

and it is a particular non-compact, real version of the \textit{Jordan-pair} embeddings of exceptional Lie algebras recently considered in \[20\]. Note that the \(SU(2) \) in \((2.28)\) is the \textit{principal} \(SU(2) \) in \(SL(3, \mathbb{R}) \) in \((2.27)\).

9. In \(D = 4 \) the \(U \)-duality is \(G_{16}^4 = E_{7(7)} \), and its \textit{mcs} is the \(\mathcal{R} \)-symmetry \(SU(8) \). The relevant embedding is maximal symmetric (note that it is the first step of chains \((2.11)-(2.12)\) and \((2.18)-(2.19)\)):

\[
E_{8(8)} \supset E_{7(7)} \times SL(2, \mathbb{R}); \\
SO(16) \supset SU(8) \times U(1).
\]

The corresponding Jordan algebra interpretation of \((2.30)\) is as follows:

\[
QConf \left(J_3^{Qs} \right) \supset Conf \left(J_3^{Qs} \right) \times SL(2, \mathbb{R}),
\]

where \(Conf \) denotes the \textit{conformal} group of \(J_3^{Qs} \) (see e.g. \[19\] and Refs. therein). Similar Jordan-algebraic interpretations can be given for other supergravities in various dimensions.

\(^9\)Subscripts “\(L \)” and “\(R \)” denote left and right chirality, respectively.

\(^{10}\)In theories related to Euclidean Jordan algebras \(J_3 \) of rank 3, the \textit{quasi-conformal} \(QConf \) (\(J_3 \)), \textit{conformal} \(Conf \) (\(J_3 \)) and \textit{reduced structure} \(\text{Str}_0 \) (\(J_3 \)) groups are the \(U \)-duality groups in \(D = 3, 4 \) and 5 dimensions, respectively. In particular, \(Conf \) (\(J_3 \)) is nothing but the automorphism group \(Aut(\mathfrak{m}(J_3)) \) of the corresponding Freudenthal triple system \[18\] \[19\].
2.2 $N = 12$

In the “pure” theory with $N = 12$, the $D = 3$ U-duality group is $G_{12}^3 = E_7(-5)$, with mcs $SO(12) \times SU(2)_{CV}$, where $SO(12)$ is the Clifford algebra for massless particles with $\mathcal{N} = 24$ supersymmetries. The $SU(2)_{CV}$ factor pertains to the so-called Clifford vacuum (CV), which is generally present for non-maximal theories ($N < 16$), and it indicates further degeneracy of the Clifford algebra symmetry. In this case, $SU(2)_{CV}$ can be also explained by recalling that this theory shares the very same bosonic sector of a matter-coupled supergravity with $N = 4$ [18], in which it is the R-symmetry of the hypermultiplets’ sector.

This theory can consistently be uplifted only to $D = 4$ and $D = 5$.

1. In $D = 5$ the U-duality is $G_{12}^3 = SU^*(6)$, and its mcs is the R-symmetry $USp(6)$. The relevant embedding is maximal non-symmetric:

$$E_7(-5) \supset_{ns} SU^*(6) \times SL(3, \mathbb{R});$$

$$SO(12) \times SU(2)_{CV} \supset_{ns} USp(6) \times SU(2)_{J},$$

where we introduced the subscript “J” in order to discriminate between the Clifford vacuum $SU(2)_{CV}$ and the $SU(2)_{J}$ pertaining to the massless spin group in $D = 5$. Note that the embedding (2.33) is maximal non-symmetric, while the embedding (2.34) is non-maximal non-symmetric.

2. In $D = 4$ the U-duality is $G_{12}^4 = SO^*(12)$, and its mcs is the R-symmetry $U(6)$. The relevant embedding is maximal symmetric:

$$E_7(-5) \supset_{s} SO^*(12) \times SL(2, \mathbb{R});$$

$$SO(12) \times SU(2)_{CV} \supset_{s} SU(6) \times U(1) \times U(1)_{J},$$

and it pertains to the so-called c^*-map (see e.g. [27], and Refs. therein).

2.3 $N = 10$

In the “pure” theory with $N = 10$, the $D = 3$ U-duality group is $G_{10}^3 = E_6(-14)$, with mcs $SO(10) \times SO(2)_{CV}$, where $SO(10)$ is the Clifford algebra for massless particles with $\mathcal{N} = 20$ supersymmetries. In this case, $SO(2)_{CV}$ can be also explained as [add. . .]

This theory can be uplifted only to $D = 4$, in which the U-duality is $G_{10}^4 = SU(5, 1)$, and its mcs is the R-symmetry $U(5)$. The relevant embedding is maximal symmetric:

$$E_6(-14) \supset_{s} SU(5, 1) \times SL(2, \mathbb{R});$$

$$SO(10) \times SO(2)_{CV} \supset_{s} SU(5) \times U(1) \times U(1)_{J}.$$

3 $N = 8, 6$ Matter Coupled Theories

3.1 $N = 8$

Half-maximal theories with $N = 8$ exist in $3 \leq D \leq 10$; moreover, for $D = 6$ two inequivalent theories exist, i.e. the non-chiral IIA $(1, 1)$ and the chiral IIB $(2, 0)$.

The $D = 3$ U-duality group is $G_{8}^3 = SO(8, D - 2 + m)$, where m is the number of matter multiplets in $D = 3$ other than those coming from the reduction of the gravity multiplet in D dimensions. Furthermore, mcs(G_{8}^3) = $SO(8) \times SO(D - 2 + m)_{CV}$, where $SO(8)$ is the Clifford algebra for massless particles with $\mathcal{N} = 16$ supersymmetries, and $SO(D - 2 + m)_{CV}$ is the Clifford vacuum symmetry.
The relevant chain of maximal embeddings leading to the embedding of the D-dimensional Ehlers group $SL(D - 2, \mathbb{R})$ into $SO(8, D - 2 + m)$ depends on the dimension and on the type of theory. We anticipate that embeddings (1.2) and (2.1) are maximal in $D = 4$ (symmetric) and next-to-maximal in $5 \leq D \leq 10$.

- For $D \geq 5$ (and $D = 6$ type IIA $(1,1)$), it is given by the following chain of two maximal symmetric steps:

$$SO(8, D - 2 + m) \supset_s SO(D - 2, D - 2) \times SO(10 - D, m) \supset_s SL(D - 2, \mathbb{R}) \times SO(1, 1) \times SO(10 - D, m)$$ \hspace{1cm} (3.1)

The group commuting with $SL(D - 2, \mathbb{R})$ inside $SO(8, D - 2 + m)$ is nothing but the D-dimensional U-duality group $G^D_S = SO(1, 1) \times SO(10 - D, m)$. Note the “enhancement” to $SO(D - 2, D - 2) \times SO(10 - D, m)$. Furthermore, it is worth remarking that also for $m = 0$ the Clifford vacuum degeneracy is still present with an $SO(D - 2)_C$ factor; this is an extra spin quantum number carried by the $SO(8)$ Clifford algebra spinor. In fact, by considering the mcs level of the chain (3.1), one obtains

$$SO(8)_{\text{Clifford}} \times SO(D - 2 + m)_{CV} \supset_s SO(D - 2) \times SO(D - 2)_{CV} \times SO(10 - D) \times SO(m)_{CV} \supset_s SO(D - 2)_J \times SO(10 - D)_R \times SO(m)_{CV},$$ \hspace{1cm} (3.2)

where the D-dimensional massless spin group $SO(D - 2)_J = mcs(SL(D - 2, \mathbb{R}))$ is diagonally embedded into $SO(D - 2) \times SO(D - 2)_{CV}$, and the R-symmetry is $SO(10 - D)$. $SO(m)_{CV}$ is the part of Clifford vacuum symmetry due to matter coupling.

- For $D = 4$, the maximal symmetric embedding reads:

$$SO(8, 2 + m) \supset_s SO(2, 2) \times SO(6, m) \sim SL(2, \mathbb{R})_{\text{Ehlers}} \times SL(2, \mathbb{R}) \times SO(6, m),$$ \hspace{1cm} (3.3)

and it pertains to the so-called c^*-map (see e.g. [27], and Refs. therein). The group commuting with $SL(2, \mathbb{R})_{\text{Ehlers}}$ inside $SO(8, 2 + m)$ is the 4-dimensional U-duality group $G^4_S = SL(2, \mathbb{R}) \times SO(6, m)$. Also in this case for $m = 0$ the Clifford vacuum degeneracy is still present with an $SO(2)_{CV}$ factor. In fact, by considering the mcs level of (3.3), one obtains the following maximal symmetric embedding ($SO(6) \sim SU(4)$):

$$SO(8)_{\text{Clifford}} \times SO(2 + m)_{CV} \supset_s SO(2)_J \times SO(2)_{CV} \times SO(6) \times SO(m)_{CV} \sim U(1)_J \times U(4)_R \times SO(m)_{CV},$$ \hspace{1cm} (3.4)

where $SO(2)_J = mcs(SL(2, \mathbb{R})_{\text{Ehlers}})$, and the R-symmetry is $SO(2)_{CV} \times SO(6) \sim U(4)_R$. Moreover, $SO(m)_{CV}$ is the part of Clifford vacuum symmetry due to matter coupling.

- For $D = 6$ type IIB $(2,0)$, it suffices to start with $SO(8, 3 + m)$, and the maximal symmetric embedding reads as follows:

$$SO(8, 3 + m) \supset_s SO(3, 3) \times SO(5, m) \sim SL(4, \mathbb{R}) \times SO(5, m).$$ \hspace{1cm} (3.5)

The group commuting with $SL(4, \mathbb{R})$ inside $SO(8, 4 + m)$ is the 6-dimensional type IIB U-duality group $G^6_{\text{IIB}} = SO(5, m)$. The corresponding mcs level reads

$$SO(8)_{\text{Clifford}} \times SO(3 + m)_{CV} \supset_s (SO(3) \times SO(3))_J \times SO(5)_R \times SO(m)_{CV} \sim SO(4)_J \times USp(4)_R \times SO(m)_{CV},$$ \hspace{1cm} (3.6)

where $SO(4)_J = mcs(SL(4, \mathbb{R})_{\text{Ehlers}})$, and the R-symmetry is $SO(5) \sim USp(4)$. Furthermore, $SO(m)_{CV}$ is the part of Clifford vacuum symmetry due to matter coupling.

All cases in $4 \leq D \leq 10$ dimensions are reported in Tables 3 and 4.
D	$SO(8, D - 2 + m) \supset G^8_D (m) \times SL(D - 2, \mathbb{R})$	type
10	$SO(8, 8 + m) \supset SO(1, 1) \times SO(m) \times SL(8, \mathbb{R})$	nm, ns
9	$SO(8, 7 + m) \supset SO(1, 1) \times SO(1, m) \times SL(7, \mathbb{R})$	nm, ns
8	$SO(8, 6 + m) \supset SO(1, 1) \times SO(2, m) \times SL(6, \mathbb{R})$	nm, ns
7	$SO(8, 5 + m) \supset SO(1, 1) \times SO(3, m) \times SL(5, \mathbb{R})$	nm, ns
6, IIA	$SO(8, 4 + m) \supset SO(1, 1) \times SO(4, m) \times SL(4, \mathbb{R})$	nm, ns
6, IIB	$SO(8, 3 + m) \supset SO(5, m) \times SL(4, \mathbb{R})$	max, s
5	$SO(8, 3 + m) \supset SO(1, 1) \times SO(5, m) \times SL(3, \mathbb{R})$	nm, ns
4	$SO(8, 2 + m) \supset (SL(2, \mathbb{R}) \times SO(6, m)) \times SL(2, \mathbb{R})$	max, s

Table 3: Embedding $G^8_8 \supset G^D_8 \times SL(D - 2, \mathbb{R})$ \[1,2\] for half-maximal supergravity theories ($N = 8$) in $10 \geq D \geq 4$ Lorentzian space-time dimensions.

3.2 $N = 6$

Theories with $N = 6$ exist only in $D = 3, 4$.

The $D = 3$ U-duality group is $G^3_8 = SU(4, m + 1)$, where m is the number of matter multiplets in $D = 3$ other than those coming from the reduction of the gravity multiplet in 4 dimensions. Furthermore, $mcs(G^3_8) = SU(4) \times U(m + 1)_{CV}$, where $SU(4) \sim SO(6)$ is the Clifford algebra for massless particles with $N = 12$ supersymmetries, and $U(m + 1)_{CV}$ is the Clifford vacuum symmetry.

The embedding of the 4-dimensional Ehlers group $SL(2, \mathbb{R})$ into $SU(4, m + 1)$ is maximal and symmetric:

$$SU(4, m + 1) \supset_s SL(2, \mathbb{R}) \times U(3, m),$$

and at the mcs level:

$$SU(4) \times SU(m + 1) \times U(1) \supset_s U(1)_J \times U(3) \times U(m),$$

where $D = 4$ U-duality group is $G^4_6 = SU(3, m)$, and the \mathcal{R}-symmetry is $U(3)$. $U(m)$ is the $D = 4$ Clifford vacuum symmetry, which is related to the number of matter multiplets.
D	$SO(8) \times SO(D - 2 + m) \supset H^D_D(m) \times SO(D - 2)$	type
10	$SO(8) \times SO(8 + m) \supset SO(m) \times SO(8)$	nm, ns
9	$SO(8) \times SO(7 + m) \supset SO(m) \times SO(7)$	nm, ns
8	$SO(8) \times SO(6 + m) \supset SO(2) \times SO(m) \times SO(6)$	nm, ns
7	$SO(8) \times SO(5 + m) \supset SO(3) \times SO(m) \times SO(5)$	nm, ns
6, IIA	$SO(8) \times SO(4 + m) \supset SO(4) \times SO(m) \times SO(4)$	nm, ns
6, IIB	$SO(8) \times SO(3 + m) \supset SO(5) \times SO(m) \times SO(3)$	max, s
5	$SO(8) \times SO(3 + m) \supset SO(5) \times SO(m) \times SO(3)$	nm, ns
4	$SO(8) \times SO(2 + m) \supset (SO(2) \times SO(6) \times SO(m)) \times SO(2)$	max, s

Table 4: Embedding $H^3_8 \supset H^D_D(m) \times SO(D - 2)$ \[21\] \[21\] for half-maximal supergravity theories ($N = 8$) in $10 \geq D \geq 4$ Lorentzian space-time dimensions. Since matter coupling is allowed, H^3_8 and in general H^D_D entail both half-maximal R-symmetry and Clifford vacuum symmetry.

4 N = 4 Matter Coupled Symmetric Theories

Quarter-maximal theories with $N = 4$ exist in $3 \leq D \leq 6$; in particular, in $D = 6$ they are chiral $(1,0)$ theories. The new feature of $N = 4$ theories is the possible existence of two different types of matter multiplets, namely vector and hyper multiplets, transforming in different ways under the R-symmetry, which is $U(2)$ in $D = 4$ and $USp(2)$ in $D = 5, 6$.

In the following treatment, we will only consider theories based on symmetric Abelian-vector multiplets’ scalar manifolds, which is a restriction to $D = 4$ (Kähler) and $D = 5$ (real) special geometry; these theories will be denoted as\[11\] symmetric $N = 4$ theories.

In $D = 4, 5$, symmetric theories are classified by two infinite sequences, as well as by isolated cases given by the so-called “magical” models.

We will also not consider the (D-independent) hypermultiplets’ quaternionic scalar manifolds.

\[11\]We will not consider here the so-called non-Jordan symmetric sequence (see e.g. \[28\] and Refs. therein) in $D = 5$, based on vector multiplets’ real special symmetric scalar manifolds $SO(1, n)/SO(n)$, which gives rise to non-symmetric coset manifolds in $D = 4$ and in $D = 3$.

14
For $N = 4$, we recall that the Clifford algebra decomposes as

$$SO(4) \sim SU(2)_v \times SU(2)_h,$$

where $SU(2)_v$ pertains to the $D = 3$ reduction of $D = 4$ vector multiplets, while $SU(2)_h$ is related to the hypermultiplet sector, which is insensitive to the number of space-time dimensions in which the quarter-maximal theory is defined (namely, $3 \leq D \leq 6$). Since we disregard hypermultiplets, in the treatment below we only consider $SU(2)_v$ (and thus we remove the subscript “v”), which will be a commuting factor in the mcs of the $D = 3$ U-duality group G_4^3.

4.1 Minimal Coupling Infinite Sequence and “Pure” $D = 4$ Supergravity

We start by considering the infinite sequence of $D = 3$ quaternionic Kähler symmetric spaces

$$SU(2, 1 + n) \supset SU(1 + n) \times U(1),$$

which can be uplifted only to $D = 4$, giving rise to Maxwell-Einstein supergravity models minimally coupled to n vector multiplets [31]. The $D = 3$ U-duality group is $G_3^4 = SU(2, 1 + n)$.

The embedding of the 4-dimensional Ehlers group $SL(2, \mathbb{R})$ into $SU(2, n + 1)$ is maximal and symmetric:

$$SU(2, 1 + n) \supset SL(2, \mathbb{R}) \times U(1, n),$$

and at the mcs level:

$$SU(2) \times SU(1 + n) \supset U(1, n) \times U(1) \times U(1),$$

where $D = 4$ U-duality group is $G_4^4 = U(1, n)$. $U(1, n)$ in (4.4) is the part of $D = 4 \mathcal{R}$-symmetry $U(2)$ under which the $D = 4$ vector multiplets are charged, whereas the $U(n)$ factor correspond to $D = 4$ Clifford vacuum symmetry (completely due to matter coupling).

By merging (4.3) and (4.4), the following c-map is obtained [29]:

$$\mathbb{C}P^n \equiv \frac{SU(1, n)}{U(n)} \overset{c}{\longrightarrow} \frac{SU(2, 1 + n)}{SU(2) \times SU(1 + n) \times U(1)},$$

where $\mathbb{C}P^n$ denotes the complex projective (non-compact) spaces.

Note that for $n = 0$ the quaternionic manifold (4.2) is not only Kähler, but also special Kähler, and it is an example of Einstein space with self-dual Weyl curvature (see e.g. [32], and Refs. therein). It is usually called the universal hypermultiplet, and it corresponds to the c-map of “pure” $\mathcal{N} = 2$ supergravity in $D = 4$, obtained as “$n = 0$ limit” of the $\mathbb{C}P^n$ sequence; namely, by specifying $n = 0$ in (4.3) [29]:

$$\emptyset \overset{c}{\longrightarrow} \frac{SU(2, 1)}{SU(2) \times U(1)}.$$

Correspondingly, for $n = 0$ (4.3) and (4.4) respectively read

$$SU(2, 1) \supset SL(2, \mathbb{R}) \times U(1) \sim U(1, 1);$$

$$SU(2) \times U(1) \supset U(1) \times U(1),$$

and thus the 4 bosonic massless states of $\mathcal{N} = 2$, $D = 4$ “pure” supergravity are in the 2_C of $SU(2) \times U(1) \sim U(2) = mcs(SU(2, 1))$.

15
4.2 “Pure” $D = 5, 6$ Supergravity and T^3 and ST^2 Models in $D = 4$

4.2.1 $D = 5$

Within the framework under consideration, “pure” $D = 5$ supergravity can be obtained as $D = 5$ uplift of the so-called $\mathcal{N} = 2$, $D = 4$ T^3 model, whose vector multiplet’s scalar span the symmetric special Kähler manifold $SL(2, \mathbb{R})/U(1)$ (with Ricci scalar curvature $R = -2/3$ \[30\]), and whose $D = 3$ U-duality group is $G_{3,T^3}^S = G_{2(2)}$.

The embedding of the 5-dimensional Ehlers group $SL(3, \mathbb{R})$ into G_{3,T^3}^S is maximal and non-symmetric (see e.g. \[26\] and Refs. therein):

$$G_{2(2)} \supset_{ns} SL(3, \mathbb{R}),$$

(4.9)

and at the mcs level:

$$SU(2) \times SU(2) \supset_{s} SO(3) \sim SU(2)_J,$$

(4.10)

where the $D = 5$ massless spin group $SO(3)_J$ is diagonally embedded into $SU(2) \times SU(2) = \text{mcs} \left(G_{2(2)}\right)$.

The 8 bosonic massless states of $\mathcal{N} = 2$, $D = 5$ “pure” supergravity are in the $(4, 2)$ of $\text{mcs} \left(G_{2(2)}\right)$ itself.

By merging (4.9) and (4.10), the following c-map is obtained \[29\]:

$$\frac{SL(2, \mathbb{R})}{U(1)} |_{T^3} \xleftarrow{c} \frac{G_{2(2)}}{SU(2) \times SU(2)}.$$

(4.11)

The corresponding Jordan algebra interpretation of (4.9) reads

$$QConf (\mathbb{R}) \supset_{s} SL(3, \mathbb{R}),$$

(4.12)

because the T^3 model is related to the (non-generic) simple rank-3 Euclidean Jordan algebra given by the reals \mathbb{R} (see Tables 5-8).

4.2.2 $D = 6$

Analogously, “pure” $D = 6$ $(1, 0)$ chiral supergravity \[30\] can be obtained as $D = 6$ uplift of the so-called $\mathcal{N} = 2$, $D = 4$ ST^2 model, whose vector multiplets’ scalars span the symmetric special Kähler manifold $[SL(2, \mathbb{R})/U(1)]^2$, and whose $D = 3$ U-duality group is $G_{4,ST^2}^S = SO(4, 3)$.

The embedding of the 6-dimensional Ehlers group $SL(4, \mathbb{R})$ into G_{4,ST^2}^S is maximal and symmetric:

$$SO(4, 3) \supset_{s} SO(3, 3) \sim SL(4, \mathbb{R}),$$

(4.13)

and at the mcs level:

$$SO(4) \times SO(3) \supset_{s} SO(3) \times SO(3) \sim SO(4)_J,$$

(4.14)

where the $D = 6$ massless spin group is $SO(4)_J$. The 12 bosonic massless states of “pure” $D = 6$ $(1, 0)$ supergravity are in the $(4, 3)$ of $SO(4) \times SO(3) = \text{mcs} \left(SO(4, 3)\right)$.

By merging (4.13) and (4.14), the following c-map is obtained \[29\]:

$$\left[\frac{SL(2, \mathbb{R})}{U(1)}\right]^2 \xleftarrow{c} \frac{SO(4, 3)}{SO(4) \times SO(3)}.$$

(4.15)

\[12\] Attention should be paid to distinguish $\frac{SL(2, \mathbb{R})}{U(1)} \left(R = -2/3 \right)$ from the $n = 1$ element of the $\mathbb{C}P^n$ infinite sequence treated above, namely the $\mathbb{C}P^1$ space (axio-dilatonic $\mathcal{N} = 2$, $D = 4$ supergravity), which has $R = -2$. Note that $R = -2$ and $R = -2/3$ are the unique two values for which the Kähler manifold $\frac{SL(2, \mathbb{R})}{U(1)}$ is a special Kähler manifold \[30\].

\[13\] We here disregard the various conditions to be fulfilled for anomaly-free chiral supergravity theories in $D = 6$ (see e.g. \[30\]).
The corresponding Jordan algebra interpretation of (4.13) reads

\[QConf(\mathbb{R} \oplus \Gamma_{1,0}) \supset_{s} SL(4, \mathbb{R}), \]

(4.16)

because the \(ST^2\) model is related to the (non-generic) semi-simple rank-3 Euclidean Jordan algebra given by \(\mathbb{R} \oplus \Gamma_{1,0} \sim \mathbb{R} \oplus \mathbb{R}\).

4.3 The Jordan Symmetric Infinite Sequence

The aforementioned \(ST^2\) model is actually the first element of the so-called Jordan symmetric sequence of quarter-maximal theories.

The \(D = 3\) \(U\)-duality group is \(G_4^3 = SO(4, D - 2 + n)\), where \(n\) is the number of matter multiplets in \(D = 3\) other than those coming from the reduction of the gravity multiplet in \(D\) dimensions. Furthermore, \(mcs(G_4^3) = SO(4) \times SO(D - 2 + n)_{CV}\); as mentioned, \(SO(4) \sim SU(2)_v \times SU(2)_h\) is the Clifford algebra for massless particles with \(\mathcal{N} = 8\) supersymmetries, and \(SO(D - 2 + n)_{CV}\) is the Clifford vacuum symmetry.

Let us consider the relevant chain of maximal embeddings leading to the embedding of the \(D\)-dimensional Ehlers group \(14 \ SL(D - 2, \mathbb{R})\) into \(SO(4, D - 2 + n)\).

4.3.1 \(D = 6\)

In \(D = 6\), it suffices to start from \(G_4^3 = SO(4, 3 + n)\), and the corresponding maximal symmetric embedding reads

\[SO(4, 3 + n) \supset_{s} SO(3, 3) \times SO(1, n) \sim SL(4, \mathbb{R}) \times SO(1, n), \]

(4.17)

and at the \(mcs\) level:

\[SO(4) \times SO(3 + n) \supset_{s} SO(3) \times SO(3) \times SO(n) \sim SO(4) \times SO(n), \]

(4.18)

where \(n\) is the number of matter (tensor) multiplets in \(D = 6\). The group commuting with \(SL(4, \mathbb{R})\) inside \(SO(4, 3 + n)\) is nothing but the 6-dimensional \(U\)-duality group of tensor multiplets \(G_4^6 = SO(1, n)\).

4.3.2 \(D = 5\)

For \(D = 5\), one branches once more from (4.17), getting:

\[SO(4, 3 + n) \supset_{s} SL(4, \mathbb{R}) \times SO(1, n) \supset_{s} SL(3, \mathbb{R}) \times SO(1, 1) \times SO(1, n), \]

(4.19)

and at the \(mcs\) level:

\[SO(4) \times SO(3 + n) \supset_{s} SO(4) \times SO(n) \supset_{s} SO(3) \times SO(n), \]

(4.20)

where \(n + 1\) is the number of matter (vector) multiplets in \(D = 5\). The group commuting with \(SL(3, \mathbb{R})\) inside \(SO(4, 3 + n)\) is nothing but the 5-dimensional \(U\)-duality group \(G_4^5 = SO(1, 1) \times SO(1, n)\). Note the “enhancement” to \(SL(4, \mathbb{R}) \times SO(1, n)\) in (4.19).

\[14\]Note that, consistently, for \(n = 0\) (in \(D = 5\) and \(D = 6\)) and \(n = 1\) (in \(D = 4\)), one re-obtains the case of the \(ST^2\) model treated above.
4.3.3 \(D = 4 \)

For \(D = 4 \), the embedding is maximal and symmetric:

\[
SO(4, 2 + n) \supset_s SO(2, 2) \times SO(2, n) \sim SL(2, \mathbb{R})_{\text{Ehlers}} \times SL(2, \mathbb{R}) \times SO(2, n),
\]

and at the mcs level:

\[
SO(4) \times SO(2 + n) \supset_s SO(2)J \times SO(2) \times SO(2) \times SO(n),
\]

where \(n \) is the number of matter (vector) multiplets in \(D = 4 \). The group commuting with \(SL(2, \mathbb{R})_{\text{Ehlers}} \) inside \(SO(4, 2 + n) \) is nothing but the 4-dimensional \(U \)-duality group \(G^4_{\frac{1}{4}} = SL(2, \mathbb{R}) \times SO(2, n) \). By merging (4.21) and (4.22), one obtains the following \(c \)-map:

\[
\frac{SL(2, \mathbb{R})}{U(1)} \times \frac{SO(2, n)}{SO(2) \times SO(n)} \overset{c}{\longrightarrow} \frac{SO(4, n + 2)}{SO(4) \times SO(n + 2)}.
\]

4.4 Magical Models

Let us now consider the isolated cases of symmetric \(N = 8 \) quarter-maximal theories, the so-called magical models [18]. They are associated to rank-2 (in \(D = 6 \)) and rank-3 (in \(D = 5 \)) Euclidean Jordan algebras over the four normed division algebras \(\mathbb{O} \) (octonions), \(\mathbb{H} \) (quaternions), \(\mathbb{C} \) (complex numbers) and \(\mathbb{R} \) (real numbers), and to the Freudenthal triple systems over such algebras (in \(D = 4 \)). Consequently, they can be parametrized in terms of the real dimension of the relevant division algebra, namely \(q = 8, 4, 2, 1 \) for \(\mathbb{O}, \mathbb{H}, \mathbb{C} \) and \(\mathbb{R} \), respectively. In this respect, the \(T^3 \) model treated above corresponds to \(q = -2/3 \).

We will now analyze the relevant embeddings in \(D = 4, 5 \) and 6.

4.4.1 \(D = 4 \)

In \(D = 4 \), the magic models are related to the Freudenthal triple system \(\mathcal{M}(J_3^4) \) over the rank-3 simple Euclidean Jordan algebra \(J_3^4 \) (\(\mathbb{A} = \mathbb{O}, \mathbb{H}, \mathbb{C}, \mathbb{R} \)). The \(D = 3 \) and \(D = 4 \) \(U \)-duality groups are nothing but the quasi-conformal and conformal group of \(J_3^4 \), respectively, and they are related by the following maximal symmetric embedding:

\[
G^3_{\frac{1}{4}}(q) \supset_s SL(2, \mathbb{R})_{\text{Ehlers}} \times G^4_{\frac{1}{4}}(q),
\]

with mcs level involving the \(D = 4 \) massless spin group:

\[
mcs(G^3_{\frac{1}{4}}(q)) \supset_s SO(2)J \times mcs(G^4_{\frac{1}{4}}(q)).
\]

(4.24) - (4.25) correspond to the following \(c' \)-map symmetric embedding of the corresponding scalar manifolds in \(D = 3 \) (para-quaternionic pseudo-Riemannian) and \(D = 4 \) (special Kähler):

\[
\frac{G^4_{\frac{1}{4}}(q)}{mcs(G^3_{\frac{1}{4}}(q))} \overset{c'}{\longrightarrow} \frac{G^3_{\frac{1}{4}}(q)}{SL(2, \mathbb{R}) \times G^4_{\frac{1}{4}}(q)}.
\]

The various cases are listed in Tables 5 and 6.

4.4.2 \(D = 5 \)

In \(D = 5 \), the magic models are related to \(J_3^4 \)’s themselves. The \(D = 5 \) \(U \)-duality group is the reduced structure group of \(J_3^4 \), and the embedding of the \(D = 5 \) Ehlers group \(SL(3, \mathbb{R}) \) into the \(D = 3 \) \(U \)-duality group is maximal and non-symmetric:

\[
G^3_{\frac{1}{4}}(q) \supset_{ns} SL(3, \mathbb{R}) \times G^4_{\frac{1}{4}}(q),
\]

(4.27)
$M(J^A_3)$	$G^2_q(q) \supset G^4_q(q) \times SL(2,\mathbb{R})$	Type
$M(J^O_3)$ ($q = 8$)	$E_{8(-24)} \supset E_{7(-25)} \times SL(2,\mathbb{R})$	max, s
$M(J^R_3)$ ($q = 4$)	$E_{7(-5)} \supset SO^*(12) \times SL(2,\mathbb{R})$	max, s
$M(J^S_3)$ ($q = 2$)	$E_{6(2)} \supset SU(3,3) \times SL(2,\mathbb{R})$	max, s
$M(J^F_3)$ ($q = 1$)	$F_{4(4)} \supset Sp(6,\mathbb{R}) \times SL(2,\mathbb{R})$	max, s
$M(\mathbb{R})$ ($q = -2/3$)	$G_{2(2)} \supset SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$	max, s

Table 5: Embedding $G^2_q(q) \supset G^4_q(q) \times SL(2,\mathbb{R})_{\text{Ehlers}}$ for magical Maxwell-Einstein supergravity theories ($N = 8$) in $D = 4$ Lorentzian space-time dimensions. Also the case of T^3 model ($q = -2/3$) is reported.

$M(J^F_3)$	mcs($G^2_q(q)$) \supset mcs($G^4_q(q)$) $\times SO(2)_J$	Type
$M(J^O_3)$ ($q = 8$)	$E_{7(-133)} \times SU(2) \supset E_{6(-78)} \times U(1) \times SO(2)_J$	max, s
$M(J^R_3)$ ($q = 4$)	$SO(12) \times SU(2) \supset U(6) \times SO(2)_J$	max, s
$M(J^S_3)$ ($q = 2$)	$SU(6) \times SU(2) \supset (SU(3) \times U(3)) \times SO(2)_J$	max, s
$M(J^F_3)$ ($q = 1$)	$USp(6) \times SU(2) \supset U(3) \times SO(2)_J$	max, s
$M(\mathbb{R})$ ($q = -2/3$)	$SU(2) \times SU(2) \supset U(1) \times SO(2)_J$	max, s

Table 6: Embedding mcs($G^2_q(q)$) \supset mcs($G^4_q(q)$) $\times SO(2)_J$ for magical Maxwell-Einstein supergravity theories ($N = 8$) in $D = 4$ Lorentzian space-time dimensions. Also the case of T^3 model ($q = -2/3$) is reported.
Table 7: Embedding $G_4^3(q) \supset G_4^5(q) \times SL(3,\mathbb{R})$ Ehlers for magical Maxwell-Einstein supergravity theories ($N = 8$) in $D = 5$ Lorentzian space-time dimensions. The $D = 5$ uplift of T^5 model is “pure” minimal supergravity with \textit{mcs} level involving the $D = 5$ massless spin group:

$$mcs\left(G_4^3(q)\right) \supset SO(3) \times mcs\left(G_4^5(q)\right).$$ (4.28)

The various cases are listed in Tables 7 and 8.

\subsection*{4.4.3 $D = 6$}

In $D = 6$, the magic models are related to the rank-2 Jordan algebra $J_2^h \sim \Gamma_{1,q+1}$ (where “\sim” here denotes a vector space isomorphism). Namely, the $D = 6$ U-duality group is nothing but the \textit{reduced structure} group of J_2^h itself, with the exception of the cases corresponding to $q = 4$ and $q = 2$, which have a further factor $A_{q=2} = SO(3)$ resp. $A_{q=1} = SO(2)$ in the U-duality group. The embedding of the $D = 6$ Ehlers group $SL(4,\mathbb{R})$ into the $D = 3$ U-duality group is obtained by a two-steps chain of maximal and symmetric embeddings ($A_q = Id, SO(3), SO(2), Id$ respectively for $q = 8, 4, 2, 1$):

$$G_4^3(q) \supset SO(4,q+4) \times A_q \supset SL(4,\mathbb{R}) \times SO(1,q+1) \times A_q,$$ (4.29)

with \textit{mcs} level involving the $D = 6$ massless spin group:

$$mcs\left(G_4^3(q)\right) \supset SO(4,q+4) \times SO(q+1) \times mcs(A_q).$$ (4.30)

Note the “\textit{enhancement}” to $SO(4,q+4) \times A_q$ in (4.29). The various cases are listed in Tables 9 and 10.

\footnote{We note that the non-triviality of the factor group A_q in the $D = 6$ U-duality group is related to the reality properties of the spinors within the rank-2 Jordan algebras over the quaternions ($J_2^h \sim \Gamma_{1,5}$) and over the complex numbers ($J_2^c \sim \Gamma_{1,3}$), which are respectively pseudo-real (quaternionic) and complex (see \textit{e.g.} Table 2 of [34]).}
Table 8: Embedding $mcs(G^3_4(q)) \supset mcs(G^5_4(q)) \times SO(3)_J$ for magical Maxwell-Einstein supergravity theories ($N = 8$) in $D = 5$ Lorentzian space-time dimensions. $SU(2)_P$ denotes the principal $SU(2)$, whereas the subscript “D” stands for diagonal embedding

J^A_3	$mcs(G^3_4(q)) \supset mcs(G^5_4(q)) \times SO(3)_J$	type
J^D_3 ($q = 8$)	$E_7(-133) \times SU(2) \supset F_4(-52) \times SO(3)_J$	max, ns
J^H_3 ($q = 4$)	$SO(12) \times SU(2) \supset USp(6) \times SO(3)_J$	max, ns
J^C_3 ($q = 2$)	$SU(6) \times SU(2) \supset SU(3) \times SO(3)_J$	max, ns
J^R_3 ($q = 1$)	$USp(6) \times SU(2) \supset SU(2)_P \times SO(3)_J$	max, ns
\mathbb{R} ($q = -2/3$)	$SU(2) \times SU(2) \supset SO(3)_{J,D}$	max, ns

Table 9: Embedding $G^3_4(q) \supset ns G^5_4(q) \times SL(4,\mathbb{R})_{\text{Ehlers}}$ ($G^5_4(q) = SO(1, q + 1) \times \mathbb{A}_q$) for chiral magical Maxwell-Einstein supergravity theories ($N = 8$) in $D = 6$ Lorentzian space-time dimensions. Recall $SO(1, 5) \sim SU^*(4)$, $SO(1, 3) \sim SL(3, \mathbb{C})$, $SO(1, 2) \sim SL(2, \mathbb{R})$.

J^B_2	$G^3_4(q) \supset SO(1, q + 1) \times A_q \times SL(4,\mathbb{R})$	type
J^D_2 ($q = 8$)	$E_8(-24) \supset SO(1, 9) \times SL(4,\mathbb{R})$	nm, ns
J^H_2 ($q = 4$)	$E_7(-5) \supset SO(1, 5) \times SO(3) \times SL(4,\mathbb{R})$	nm, ns
J^C_2 ($q = 2$)	$E_6(2) \supset SO(1, 3) \times SO(2) \times SL(4,\mathbb{R})$	nm, ns
J^R_2 ($q = 1$)	$F_4(4) \supset SO(1, 2) \times SL(4,\mathbb{R})$	nm, ns
\[
\begin{array}{|c|c|c|}
\hline
J^4_2 & mcs(G^4_2(q)) \supset mcs(G^6_4(q)) \times SO(4)_J & \text{type} \\
\hline
J^5_2 (q = 8) & E_{7(-133)} \times SU(2) \supset SO(9) \times SO(4)_J & \text{nm, ns} \\
\hline
J^3_2 (q = 4) & SO(12) \times SU(2) \supset SO(5) \times SO(3) \times SO(4)_J & \text{nm, ns} \\
\hline
J^2_2 (q = 2) & SU(6) \times SU(2) \supset SO(3) \times SO(2) \times SO(4)_J & \text{nm, ns} \\
\hline
J^1_2 (q = 1) & USp(6) \times SU(2) \supset SO(2) \times SO(4)_J & \text{nm, ns} \\
\hline
\end{array}
\]

Table 10: Embedding \(mcs(G^4_2(q)) \supset mcs(G^6_4(q)) \times SO(4)_J\) for chiral magical Maxwell-Einstein supergravity theories (\(N = 8\)) in \(D = 6\) Lorentzian space-time dimensions.

5 Cosets with \(\chi = 0\) and Poincaré Duality

From the previous treatment, a class of non-compact, pseudo-Riemannian homogeneous spaces can be naturally constructed, with general structure:

\[
M^D_N \equiv \frac{G^4_N}{G^D_N \times SL(D - 2, \mathbb{R})},
\]

determined by the embedding of the direct product of the \(D\)-dimensional Ehlers group \(SL(D - 2, \mathbb{R})\) and of the \(D\)-dimensional \(U\)-duality group \(G^D_N\) of a supergravity with \(\mathcal{N} = 2\mathcal{N}\) supersymmetries into the \(U\)-duality group of the same theory reduced to \(D = 3\) (Lorentzian) space-time dimensions. From previous Secs., such an embedding can be maximal or non-maximal (namely, next-to-maximal), and symmetric or non-symmetric, but, as mentioned, it always preserves the rank of the group \([1, 3]\), as well as the non-compact rank of the \(D = 3\) coset \(G^3_N/H^3_N\) \([1, 3]\).

Interestingly, the cosets \(M^D_N\)'s \([5.1]\) all share the same feature: they have an equal number of compact and non-compact generators, thus implying the their coset character \(\chi\) \([1, 3]\) to be vanishing:

\[
\chi(M^D_N) \equiv nc(M^D_N) - c(M^D_N) = 0.
\]

This property can also be related to the “mcs counterpart” of the class of cosets \([5.1]\), given by the compact, Riemannian homogeneous spaces with general structure

\[
\widehat{M}^D_N \equiv \frac{mcs(G^3_N)}{mcs(G^D_N) \times SO(D - 2)_J},
\]

determined by the embedding of the direct product of the \(D\)-dimensional massless spin group \(SO(D - 2) = mcs(SL(D - 2, \mathbb{R}))\) and of \(H^D_N = mcs(G^D_N)\) into \(H^3_N = mcs(G^3_N)\). As the \(M^D_N\)'s \([5.1]\), also the \(\widehat{M}^D_N\)'s \([5.3]\) can be of various types, namely maximal or next-to-maximal, symmetric or non-symmetric.

However, \(\widehat{M}^D_N\)'s \([5.3]\) all share the same property: the number of compact or non-compact generators of \(M^D_N\)'s \([5.1]\) is always equal to the (real) dimension of the corresponding \(\widehat{M}^D_N\)'s themselves.

22
This is a consequence of (5.2) as well as the general formula on the signature of a pseudo-Riemannian coset \(G/H \) (see e.g. [14])

\[
c(G/H) = \dim_{\mathbb{R}} (mcs (G)) - \dim_{\mathbb{R}} (mcs (H)) ;
\]
\[
nc(G/H) = \dim_{\mathbb{R}} (G) - \dim_{\mathbb{R}} (H) - c(G/H) ,
\]

from which thus follows that the compact generators of \(M^D_N \) are the very generators of the corresponding \(\hat{M}^D_N \):

\[
nc(M^D_N) = c(M^D_N) = \dim_{\mathbb{R}} \left(\hat{M}^D_N \right) \tag{5.5}
\]

Along this line, further elaboration is possible. Indeed, it generally holds that

\[
\dim_{\mathbb{R}} \left[\frac{G^3_N}{G^D_N \times SL(D-2, \mathbb{R})} \right] = 2 \dim_{\mathbb{R}} \left[\frac{H^3_N}{H^D_N \times SO(D-2)} \right] \tag{5.6}
\]

A possible interpretation of these results is as follows. In a supergravity theory in \(D \) space-time (Lorentzian) dimensions, the number of bosonic massless degrees of freedom other than the scalar and graviton ones is given by the difference between the dimension of the Clifford algebra and the sum of the dimensions of the \(D \)-dimensional massless spin group and of the \(D \)-dimensional “Clifford symmetry” (i.e., \(R \)-symmetry + Clifford vacuum degeneracy due to matter coupling, if any).

Sec. 5.1 lists the cosets \(M^D_N \)’s (5.1) and their “mcs counterparts” \(\hat{M}^D_N \)’s (5.3) for all \(N \)’s and \(D \)’s treated in the present investigation. Then, in Secs. 5.2 and 5.3 an interpretation of the vanishing character (5.2) will be given in terms of Poincaré duality, or equivalently of Hodge involution acting on the cohomology of \(M^D_N \)’s.

5.1 The Cosets

5.1.1 \(N = 16 \)

The specification of (5.1) and (5.3) to maximal supergravity (\(N = 16 \)) give rise to the following spaces

\[
M^D_{16} \equiv \frac{G^3_{16}}{G^D_{16} \times SL(D-2, \mathbb{R})} = \frac{E_{8(8)}}{E_{7(7)} \times SL(2, \mathbb{R})} \tag{5.7}
\]
\[
\hat{M}^D_{16} \equiv \frac{H^3_{16}}{H^D_{16} \times SO(D-2)} = \frac{SO(16)}{SU(8) \times SO(2)} \tag{5.8}
\]

they are listed in Table 11, along with their number of compact and non-compact generators. Among \(M^D_{16} \)’s, the unique maximal and symmetric coset is the one pertaining to \(D = 4 \) (cfr. (2.30)):

\[
M^4_{16} \equiv \frac{G^3_{16}}{G^4_{16} \times SL(2, \mathbb{R})} = \frac{E_{8(8)}}{E_{7(7)} \times SL(2, \mathbb{R})} \tag{5.9}
\]

which is a rank-4 para-quaternionic space, as resulting from the classification of [35]. Also the corresponding

\[
\hat{M}^4_{16} = \frac{SO(16)}{SU(8) \times SO(2)} \tag{5.10}
\]

is a maximal and symmetric space among \(\hat{M}^D_{16} \)’s.
D	M^{D}_{16}	\hat{M}^{D}_{16}	$c(M^{D}_{16}) = nc(M^{D}_{16})$
11	$E_8(8)$/SL(9,R)	$SO(16)$/SO(9)	84
10, IIA	$E_8(8)$/SO(1,1)×SL(8,R)	$SO(16)$/SO(8)	92
10, IIB	$E_8(8)$/SL(2,R)×SL(8,R)	$SO(16)$/SO(2)×SO(8)	91
9	$E_8(8)$/GL(2,R)×SL(7,R)	$SO(16)$/SO(2)×SO(7)	98
8	$E_8(8)$/(SL(2,R)×SL(3,R))×SL(6,R)	$SO(16)$/(SO(2)×SO(3))×SO(6)	101
7	$E_8(8)$/SL(5,R)×SL(5,R)	$SO(16)$/SO(5)×SO(5)	100
6	$E_8(8)$/SO(5,5)×SL(4,R)	$SO(16)$/SO(5)×SO(5)×SO(4)	94
5	$E_8(8)$/E_6(6)×SL(3,R)	$SO(16)$/USp(8)×SO(3)	81
4	$E_8(8)$//E_7(7)×SL(2,R)	$SO(16)$/SU(8)×SO(2)	56

Table 11: Pseudo-Riemannian non-compact $E_8(8)$-cosets M^{D}_{16} (5.7) and Riemannian compact $SO(16)$-cosets \hat{M}^{D}_{16} (5.8) of maximal supergravity theories ($N = 16$) in $11 \geq D \geq 4$ Lorentzian space-time dimensions. The number of compact generators c (equal to the number nc of non-compact generators) of M^{D}_{16} is also listed. All cosets M^{D}_{16} have vanishing character.
5.1.2 \(N = 12 \)

The specification of (5.1) and (5.3) to supergravity with \(N = 12 \) in \(D = 5 \) and in \(D = 4 \) respectively reads

\[
M^5_{12} = \frac{G^3_{12}}{G^5_{12} \times SL(3,\mathbb{R})} = \frac{E_7(-5)}{SU^*(6) \times SL(3,\mathbb{R})}, \quad c = nc = 45; \tag{5.11}
\]

\[
\widehat{M}^5_{12} = \frac{H^3_{12}}{H^5_{12} \times SO(3)_J} = \frac{SO(12) \times SU(2)}{USp(6) \times SO(3)_J}; \tag{5.12}
\]

\[
M^4_{12} = \frac{G^3_{12}}{G^4_{12} \times SL(2,\mathbb{R})} = \frac{E_7(-5)}{SO^*(12) \times SL(2,\mathbb{R})}, \quad c = nc = 32; \tag{5.13}
\]

\[
\widehat{M}^4_{12} = \frac{H^3_{12}}{H^4_{12} \times SO(2)} = \frac{SO(12) \times SU(2)}{SO(12) \times U(1) \times SO(2)_J}. \tag{5.14}
\]

They all are maximal cosets, but \(M^5_{12} \) and \(\widehat{M}^5_{12} \) are non-symmetric, whereas \(M^4_{12} \) and \(\widehat{M}^4_{12} \) are symmetric.

The values of \(c = nc \) given in (5.11) and (5.13) match the ones of the magical quarter-maximal (\(N = 4 \)) theory for \(q = 4 \) (see (5.40) and (5.44), respectively); indeed, these theories share the same bosonic sector, and they are both related to \(J^H_3 \).

5.1.3 \(N = 10 \)

The specification of (5.1) and (5.3) to supergravity with \(N = 10 \) in \(D = 4 \) gives rise to the following symmetric spaces

\[
M^5_{10} = \frac{G^3_{10}}{G^5_{10} \times SL(2,\mathbb{R})} = \frac{E_6(-14)}{SU(5) \times SL(2,\mathbb{R})}, \quad c = nc = 20; \tag{5.15}
\]

\[
\widehat{M}^5_{10} = \frac{H^3_{10}}{H^5_{10} \times SO(2)} = \frac{SO(10) \times U(1)}{SO(10) \times U(1) \times U(1)_J}. \tag{5.16}
\]

\(M^5_{10} \) is a rank-4 para-quaternionic coset.

5.1.4 \(N = 8 \)

The specification of (5.1) and (5.3) to half-maximal supergravity (\(N = 8 \)) gives rise to the following spaces

\[
M^D_8 = \frac{G^3_8}{G^D_8 \times SL(D-2,\mathbb{R})} = \frac{SO(8, D - 2 + m)}{SO(D-2,\mathbb{R})}; \tag{5.17}
\]

\[
\widehat{M}^D_8 = \frac{H^3_8}{H^D_8 \times SO(D-2)} = \frac{SO(8) \times SO(D - 2 + m)}{SO^*(8) \times SO(D-2)}; \tag{5.18}
\]

they are listed in Table 12, along with their number of compact and non-compact generators.

Among \(M^D_8 \)'s, the unique maximal and symmetric cosets are the ones pertaining to \(D = 6 \) IIB and \(D = 4 \) (cfr. (5.3));

\[
M^6_{8, IIB} = \frac{G^3_8}{G^6_{8, IIB} \times SL(2,\mathbb{R})} = \frac{SO(8, 3 + m)}{SO(5, m) \times SL(4,\mathbb{R})}; \tag{5.19}
\]

\[
M^4_{8} = \frac{G^3_8}{G^4_{8} \times SL(2,\mathbb{R})} = \frac{SO(8, 2 + m)}{SL(2,\mathbb{R}) \times SO(6, m) \times SL(2,\mathbb{R})}. \tag{5.20}
\]
Table 12: Pseudo-Riemannian non-compact M_8^D (5.17) and Riemannian compact cosets \hat{M}_8^D (5.18) of half-maximal supergravity theories ($N = 8$) in $10 \geq D \geq 4$ Lorentzian space-time dimensions. The number of compact generators c (equal to the number nc of non-compact generators) of M_8^D is also listed. All cosets M_8^D have vanishing character.

5.1.5 $N = 6$

The specification of (5.1) and (5.3) to supergravity with $N = 6$ in $D = 4$ gives rise to the following symmetric spaces

$$M_6^4 \equiv \frac{G_6^4}{G_6^4 \times SL(2, \mathbb{R})} = SU(4, m + 1) \times SU(3, m) \times SL(2, \mathbb{R}), \quad c = nc = 2m + 7; \quad (5.21)$$

$$\hat{M}_6^4 \equiv \frac{H_6^4}{H_6^4 \times SO(2)} = SU(4) \times SU(m + 1) \times U(1) \times U(3) \times U(m) \times U(1), \quad (5.22)$$
5.1.6 $N = 4$ Symmetric

Minimal Coupling The specification of (5.1) and (5.3) to *minimally coupled* Maxwell-Einstein supergravity with $N = 4$ in $D = 4$ gives rise to the following symmetric spaces

$$M^4 = \frac{G_4^3}{G_4^3 \times SL(2,\mathbb{R})} = \frac{SU(2,1+n)}{U(1,n) \times SL(2,\mathbb{R})}, \quad c = nc = 2n + 2;$$ \hspace{1cm} (5.23)

$$\widehat{M}^4 = \frac{H_4^3}{H_4^3 \times SO(2)} = \frac{SU(2) \times SU(1+n) \times U(1)}{U(n) \times U(1) \times U(1)}. \quad \ quart
\[D = 5 : \]
\[
M_4^5 = \frac{G_4^3}{G_4^1 \times SL(3, \mathbb{R})} = \frac{SO(4, 3 + n)}{SO(1, 1) \times SO(1, n) \times SL(3, \mathbb{R})}, \quad c = nc = 3n + 6; \quad (5.33)
\]
\[
\tilde{M}_4^5 = \frac{H_4^3}{H_4^1 \times SO(3)} = \frac{SO(4) \times SO(3 + n)}{SO(n) \times SO(3)}; \quad (5.34)
\]

\[M_4^5 \text{ and } \tilde{M}_4^5 \text{ are non-maximal and non-symmetric spaces.} \]

\[D = 4 : \]
\[
M_4^4 = \frac{G_4^3}{G_4^1 \times SL(2, \mathbb{R})_{\text{Ehlers}}} = \frac{SO(4, 2 + n)}{SL(2, \mathbb{R}) \times SO(2, n) \times SL(2, \mathbb{R})_{\text{Ehlers}}}, \quad c = nc = 2n + \frac{5}{4}; \quad (5.35)
\]
\[
\tilde{M}_4^4 = \frac{mc \left(G_4^3 \right)}{H_4^3 \times SO(2)} = \frac{SO(4) \times SO(2 + n)}{U(1) \times U(1) \times SO(n) \times U(1)}. \quad (5.36)
\]

\[M_4^4 \text{ and } \tilde{M}_4^4 \text{ are maximal and symmetric spaces. } M_4^4 \text{ is para-quaternionic and it has rank } 2 \text{ in the case } n = 0 \text{ and rank } 3 \text{ for } n \geq 1; \text{ it is nothing but a suitable pseudo-Riemannian form of the manifold in the r.h.s. of (4.23), namely the } c^*\text{-map of the symmetric special Kähler maximal coset in } D = 4:\]
\[
\frac{SL(2, \mathbb{R})}{U(1)} \times \frac{SO(2, n)}{SO(2) \times SO(n)} \xrightarrow{c^*} \frac{SO(4, 2 + n)}{SL(2, \mathbb{R}) \times SO(2, n) \times SL(2, \mathbb{R})_{\text{Ehlers}}}. \quad (5.37)
\]

Magical Models

\[D = 4 : \] The specification of (5.1) and (5.3) to magical models in \(D = 4 \) gives rise to maximal symmetric spaces. Their general structure reads
\[
M_4^1 (q) = \frac{G_4^1 (q)}{G_4^1 (q) \times SL(2, \mathbb{R})_{\text{Ehlers}}}; \quad (5.38)
\]
\[
\tilde{M}_4^1 (q) = \frac{H_4^1 (q)}{H_4^1 (q) \times SO(2)}, \quad (5.39)
\]
listed in Table 13. The number of compact and non-compact generators of \(M_4^1 (q) \) can be \(q \)-parametrized as follows:
\[
c (M_4^1 (q)) = nc (M_4^1 (q)) = 6q + 8 = \dim_{\mathbb{R}} \left(\mathbf{R} \left(G_4^1 (q) \right) \right), \quad (5.40)
\]
where \(\mathbf{R} \) is the symplectic irrep. of the \(D = 4 \) \(U \)-duality group \(G_4^1 (q) \) in which the Abelian two-form field strengths sit; see Subsec. [5.2] for further analysis. Thus, the split of the generators of \(M_4^1 (q) \) into a signature \((nc, c = nc)\) is consistent with the Ehlers-doublet irrep. \((\mathbf{R}, 2) \) of \(G_4^1 (q) \times SL(2, \mathbb{R})_{\text{Ehlers}} \). Moreover, \(M_4^1 (q) \) is a rank-4 pseudo-quaternionic space, given by the \(c^*\)-map of the corresponding symmetric special Kähler maximal coset in \(D = 4:\)
\[
\frac{G_4^1 (q)}{mc \left(G_4^1 (q) \right)} \xrightarrow{c^*} \frac{G_4^3 (q)}{G_4^1 (q) \times SL(2, \mathbb{R})}. \quad (5.41)
\]

\[D = 5 : \] The specification of (5.1) and (5.3) to magical models in \(D = 5 \) gives rise to the maximal, non-symmetric spaces listed in Table 14. Their general structure reads
\[
M_5^5 (q) = \frac{G_5^3 (q)}{G_5^1 (q) \times SL(3, \mathbb{R})}; \quad (5.42)
\]
\[
\tilde{M}_5^5 (q) = \frac{H_5^3 (q)}{H_5^1 (q) \times SO(3)}. \quad (5.43)
\]
The number of compact and non-compact generators of \(M^{5}_{4} (q) \) can be \(q \)-parametrized as follows:

\[
c (M^{5}_{4} (q)) = nc (M^{5}_{4} (q)) = 9 (q + 1) = \dim_{\mathbb{R}} (\mathcal{R}, \mathcal{3}), \tag{5.44}
\]

where \((\mathcal{R}, \mathcal{3})\) is the irrep. of \(G^{3}_{4} (q) \times SL(3, \mathbb{R})_{Ehlers} \). Thus, the split of the generators of \(M^{5}_{4} (q) \) into a signature \((nc, c = nc)\) is consistent with a pair of \emph{Jordan-triplet} irreps. \((\mathcal{R}, \mathcal{3})\) (see Subsec. 5.2 for further analysis).

\(D = 6 \) : The specification of (5.1) and (5.3) to \emph{magical} \((\mathcal{R}, 3)\) theories are respectively related to \(\mathcal{R} \equiv 16 \) and \(G^{3}_{4} (q) \equiv 11 \) \((\mathcal{R}, 3)\) (see Subsec. 5.2 for further analysis). Their general structure reads

\[
M^{6}_{4} (q) \equiv \frac{G^{3}_{4} (q)}{G^{6}_{4} (q) \times SL(4, \mathbb{R})}; \tag{5.45}
\]

\[
\hat{M}^{6}_{4} (q) \equiv \frac{H^{3}_{4} (q)}{H^{6}_{4} (q) \times SO(4)}, \tag{5.46}
\]

where the \emph{U-duality group} \(G^{6}_{4} (q) \) in \(D = 6 \) reads \(SO(1, q + 1) \times A_{q} \). The number of compact and non-compact generators of \(M^{6}_{4} (q) \) can be \(q \)-parametrized as follows:

\[
c (M^{6}_{4} (q)) = nc (M^{6}_{4} (q)) = 11q + 6. \tag{5.47}
\]

The meaning of \(11q + 6 \) and the covariant split in terms of irreps. of \(SO(1, q + 1) \times mcs(A_{q}) \times SO(4) \) will be discussed in Subsec. 5.2.

5.2 Poincaré Duality

We are now going to analyze the signature split of the manifolds \(M^{D}_{N} \) \((5.1)\), focusing on the maximal \((N = 32)\) and magical quadrangular cases \((N = 8)\).

Nicely, the split signature of \(M^{D}_{N} \) covariantly decomposes under \(mcs(G^{D}_{N}) \times SO(D - 2) F \) into a pair of sets of irreps., which are related by \emph{Poincaré duality} \((\emph{alias} \mbox{electric}-\mbox{magnetic duality})\). In other words, the signature of the pseudo-Riemannian manifolds \(M^{D}_{N}\)’s naturally arrange the spectrum of \(p > 0 \) massless forms of the corresponding supergravity theory into a pair of sets of irreps. of \(mcs(G^{D}_{N}) \times SO(D - 2) F \), which are interchanged under \emph{Poincaré duality}.

As a consequence, the \(\chi = 0 \) feature of the manifolds \(M^{D}_{N} \) \((5.1)\) is actually \emph{Poincaré-duality-invariant} \((\mbox{or, equivalently, electric}-\mbox{magnetic duality-invariant})\).

5.2.1 \(N = 16 \)

1. **\(D = 11 \) (M-theory) :** the relevant manifold is maximal non-symmetric:

\[
M^{11}_{16} = \frac{E_{8(8)}}{SL(9, \mathbb{R})} : \begin{array}{r}
c 120 \\
nc 128 \\
SL(9, \mathbb{R}) 36 44 \\
M^{11}_{16} 84 84 \end{array}. \tag{5.48}
\]

Such a signature splitting is covariant with respect to \(SO(9) = mcs(SL(9, \mathbb{R})) \):

\[
\begin{align*}
E_{8(8)} & \supset_{ns} SL(9, \mathbb{R}); \\
\mathbf{248} & = \mathbf{80} + \mathbf{84} + \mathbf{84}' \\
SL(9, \mathbb{R}) & mcs SO(9); \\
\mathbf{84}^{(0)} & = \mathbf{84}. \tag{5.49}
\end{align*}
\]

\[\text{Note that the results on } c = nc \text{ for } q = 8 \text{ (magical exceptional supergravity) in } D = 4, 5, 6 \text{ match the results holding for maximal supergravity in the same dimensions. This is not surprising, because maximal } (N = 16) \text{ and exceptional } (N = 4) \text{ theories are respectively related to } J^{2}_{8} \text{ and } J^{2}_{5}, \text{ the unique difference given by the split vs. division form of the octonionic algebra } \mathbb{O}.\]
Table 13: Pseudo-Riemannian, non-compact, maximal, \(\text{para-quaternionic symmetric} \) cosets \(M^4_4(q) \) \((5.38)\) and Riemannian, compact, maximal cosets \(\tilde{M}^4_4(q) \) \((5.39)\) of \(\text{magic quarter-maximal} \) supergravity theories \((N = 4)\) in \(D = 4 \) Lorentzian space-time dimensions. Also the \(T^3 \) model \((q = -2/3) \) is reported. The number of compact generators \(c \) (equal to the number \(nc \) of non-compact generators) of \(M^4_4(q) \) is also listed. All cosets \(M^4_4(q) \) have \textit{vanishing character}.

Therefore, the split \((c, nc) = (84, 84)\) can be interpreted as the split into two Poincaré-dual \textbf{84}’s of \(SO(9) \): namely, the 3-form potential (coupled to \(M2 \)-brane) and its \textit{Poincaré dual} 6-form potential (coupled to \(M5 \)-brane):

\[
(c, nc) = (84, 84) = \textbf{84} + \textbf{84} \text{ of } SO(9). \tag{5.51}
\]

2. \(D = 10 \text{ IIA} \) : the relevant manifold is non-maximal and non-symmetric:

\[
M^{10}_{16 \text{ IIA}} = \frac{E_{8(8)}}{SO(1, 1) \times SL(8, \mathbb{R})} : \begin{bmatrix} c & \text{n}c \\ 120 & 128 \\ 28 & 36 \\ 92 & 92 \end{bmatrix}. \tag{5.52}
\]

Such a signature splitting is covariant with respect to \(SO(8) = \text{mcs } (SO(1, 1) \times SL(8, \mathbb{R})) \). Indeed, disregarding \(SO(1, 1) \) weights, it holds that:

\[
E_{8(8)} \supset_{\text{mcs}} SO(1, 1) \times SL(8, \mathbb{R}); \\
248 = \textbf{63} + 1 + 8 + 8' + 28 + 28' + 56 + 56'; \tag{5.53}
\]

\[
SL(8, \mathbb{R}) \supset_{\text{mcs}} SO(8); \\
8^{(v)}, 28^{(v)}, 56^{(v)} = 8_v, 28, 56_v. \tag{5.54}
\]

Therefore, the split \((c, nc) = (92, 92)\) can be interpreted as the split into two sets of Poincaré-dual irreps. of \(SO(8) \): namely, the graviphoton \(C^{(1)}_\mu \textbf{8}_v \), the 2-form \(B_{\mu\nu} \textbf{28} \), the 3-form \(C^{(3)}_{\mu\nu\rho} \)
Table 14: Pseudo-Riemannian, non-compact, maximal, non-symmetric $M_4^5 (q)$ and Riemannian, compact, maximal cosets $\hat{M}_4^5 (q)$ of magic quarter-maximal supergravity theories ($N = 4$) in $D = 5$ Lorentzian space-time dimensions. Also the $D = 5$ uplift of T^3 model ($q = -2/3$), namely minimal “pure” supergravity, is reported. The number of compact generators c (equal to the number nc of non-compact generators) of $M_4^5 (q)$ is also listed. All cosets $M_4^5 (q)$ have vanishing character.

56_v potentials, and their Poincaré duals, namely the 7-form $\tilde{C}_{\mu_1...\mu_7}$, 6-form $\tilde{B}_{\mu_1...\mu_6}$ and 5-form $\tilde{C}_{\mu_1...\mu_5}$ potentials:

$$(c, nc) = (92, 92) = \left(8_v \begin{pmatrix} A(1) \\ C(3) \end{pmatrix} + 28_v \begin{pmatrix} B(5) \\ C(3) \end{pmatrix} \right) + \left(8_v \begin{pmatrix} B(6) \\ C(5) \end{pmatrix} + 28_v \begin{pmatrix} B(6) \\ C(5) \end{pmatrix} \right) \text{ of } SO(8).$$

$$(5.55)$$

3. $D = 10$ IIB: the relevant manifold is non-maximal and non-symmetric:

$$M_{10}^{10} \text{ IIB} = \frac{E_{8(8)}}{SL(2, \mathbb{R}) \times SL(8, \mathbb{R})} : \begin{bmatrix} c \\ E_{8(8)} : \\ SL(2, \mathbb{R}) \times SL(8, \mathbb{R}) : \end{bmatrix} \begin{bmatrix} nc \\ 29 \\ 37 \end{bmatrix}. \quad (5.56)$$

Such a signature splitting is covariant with respect to $SO(8) \times SO(2) = mcs (SL(8, \mathbb{R}) \times SL(2, \mathbb{R}))$. Indeed, it holds that:

$$E_{8(8)} \supset nm SL(8, \mathbb{R}) \times SL(2, \mathbb{R});$$

$$248 = (63, 1) + (1, 3) + (70, 1) + (28, 2) + (28', 2);$$

$$SL(8, \mathbb{R}) \times SL(2, \mathbb{R}) \stackrel{mcs}{\supset} SO(8) \times SO(2);$$

$$(8, 1) = (8_v, 1)$$

$$(28', 2) = (28, 2);$$

$$(70, 1) = (35_v, 1) + (35_v, 1).$$

$$(5.57)$$

$$(5.58)$$
Table 15: Pseudo-Riemannian, non-compact, non-maximal, non-symmetric pergravity theories (N generators M⁴⁶_D), potentials, and their Poincaré duals (SO(1,5) × SO(4,8) ⊃ SO(1,9) × SL(4,8)). Indeed, disregarding dual irreps. of SO(1,9) × SL(4,8), Such a signature splitting is covariant with respect to SO(1,5) × SO(4,8) ⊃ SO(5) × SO(3) × SO(4), namely the 2-form (28, 2) and the 4-form c_{µ1...µ4} (35, 1) potentials:

\[
(c, nc) = (91, 91) = \left(\frac{28}{c(2)} + \frac{35}{c(4)} \right) + \left(\frac{28}{c(6)} + \frac{35}{c(4)} \right)
\]

of SO(8) × SO(2).

4. D = 9: the relevant manifold is non-maximal and non-symmetric:

\[
M^9_{16} = \frac{E_{8(8)}}{GL(2, \mathbb{R}) \times SL(7, \mathbb{R})} : \begin{bmatrix}
E_{8(8)} : \\
GL(2, \mathbb{R}) \times SL(7, \mathbb{R}) : \\
M^9_{16} :
\end{bmatrix} \begin{bmatrix}
c \\
120 \\
98 \\
n c \\
128 \\
30 \\
n c \\
98 \\
98
\end{bmatrix}.
\]

Such a signature splitting is covariant with respect to \(SO(7) \times SO(2) = mcs (SL(7, \mathbb{R}) \times GL(2, \mathbb{R}))\). Indeed, disregarding \(SO(1,1)\) weights, it holds that:

\[
E_{8(8)} \supset_{mcs} SL(7, \mathbb{R}) \times GL(2, \mathbb{R});
\]

\[
248 = (48, 1) + (1, 1) + (1, 3) + (7, 1) + (7', 1) + (7, 2) + (7', 2) + (21, 2) + (21', 2) + (35, 1) + (35', 1);
\]

\[
SL(7, \mathbb{R}) \supset_{mcs} SO(7);
\]

\[
(7^{(l)}, 21^{(l)}, 35) = (7, 21, 35).
\]

Therefore, the split \((c, nc) = (98, 98)\) can be interpreted as the split into two sets of Poincaré-dual irreps. of \(SO(7) \times SO(2)\); namely, the graviphotons \((7, 1)\) and \((7, 2)\), the 2-form \((21, 2)\)
and the 3-form \((35, 1)\) potentials, and their Poincaré duals, namely the 6-forms \((7, 1)\) and \((7, 2)\) duals of graviphotons, the 5-form \((21, 2)\) and the 4-form \((35, 1)\) potentials:

\[
(c, nc) = (98, 98) = \begin{cases}
(7, 1) + (7, 2) + (21, 2) + (35, 1) + SO(7) \times SO(2). \\
(7, 1) + (7, 2) + (21, 2) + (35, 1)
\end{cases}
\]

(5.63)

5. \(D = 8\) : the relevant manifold is non-maximal and non-symmetric:

\[
M^8_{16} = \frac{E_{8(8)}}{SL(3, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(6, \mathbb{R})} : \begin{bmatrix}
E_{8(8)} : \\
SL(3, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(6, \mathbb{R}) : \\
M^8_{16} :
\end{bmatrix} \begin{bmatrix}
c \\
120 \\
19 \\
101 \\
nc \\
128 \\
27 \\
101
\end{bmatrix}.
\]

(5.64)

Such a signature splitting is covariant with respect to

\[
SO(6) \times SO(2) \times SO(3) = mcs (SL(6, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(3, \mathbb{R})).
\]

(5.65)

Indeed, it holds that:

\[
E_{8(8)} \supset_{nm} SL(6, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(3, \mathbb{R});
\]

\[
248 = (35, 1, 1) + (1, 3, 1) + (1, 1, 8) + (20, 2, 1) + (6', 2, 3) + (6, 2, 3') + (15, 1, 3) + (15', 1, 3');
\]

\[
SL(6, \mathbb{R}) \times SL(2, \mathbb{R}) \times SL(3, \mathbb{R}) mcs SO(6) \times SO(2) \times SO(3);
\]

\[
(6^{(1)}, 2, 3^{(1)}) = (6, 2, 3);
\]

\[
(15^{(1)}, 1, 3^{(1)}) = (15, 1, 3);
\]

\[
(20, 2, 1) = (10, 2, 1) + (10', 2, 1).
\]

(5.66)

Therefore, the split \((c, nc) = (101, 101)\) can be interpreted as the split into two sets of Poincaré-dual irreps. of \(SO(6) \times SO(2) \times SO(3)\): namely, the 1-form \((6, 2, 3)\), the 2-form \((15, 1, 3)\), the 3-form \((10, 2, 1)\) potentials, and their Poincaré duals, namely the 5-form \((6, 2, 3)\), the 4-form \((15, 1, 3)\) and the 3-form \((10, 2, 1)\):

\[
(c, nc) = (101, 101) = \begin{cases}
(6, 2, 3) + (15, 1, 3) + (21, 2) + (10, 2, 1) + SO(6) \times SO(3) \times SO(2). \\
(6, 2, 3) + (15, 1, 3) + (21, 2) + (10, 2, 1)
\end{cases}
\]

(5.68)

6. \(D = 7\) : the relevant manifold is maximal and non-symmetric:

\[
M^7_{16} = \frac{E_{8(8)}}{SL(5, \mathbb{R}) \times SL(5, \mathbb{R})} : \begin{bmatrix}
E_{8(8)} : \\
SL(5, \mathbb{R}) \times SL(5, \mathbb{R}) : \\
M^7_{16} :
\end{bmatrix} \begin{bmatrix}
c \\
120 \\
20 \\
100 \\
nc \\
128 \\
28 \\
100
\end{bmatrix}.
\]

(5.69)

Such a signature splitting is covariant with respect to \(SO(5) \times SO(5) = mcs (SL(5, \mathbb{R}) \times SL(5, \mathbb{R}))\).

Indeed, it holds that:

\[
E_{8(8)} \supset_{nm} SL(5, \mathbb{R}) \times SL(5, \mathbb{R});
\]

\[
248 = (24, 1) + (1, 24) + (10, 5) + (10', 5') + (5, 10') + (5', 10);
\]

\[
SL(5, \mathbb{R}) \times SL(5, \mathbb{R}) mcs SO(5) \times SO(5);
\]

\[
(10^{(1)}, 5^{(1)}) = (10, 5).
\]

(5.70)

(5.71)
Therefore, the split \((c, nc) = (100, 100)\) can be interpreted as the split into two sets of Poincaré-dual irreps. of \(SO(5) \times SO(5) \sim USp(4) \times USp(4)\); namely, the 1-form \((10, 5)\) and the 2-form \((5, 10)\) potentials, and their Poincaré duals, namely the 4-form \((10, 5)\) and the 3-form \((5, 10)\) potentials:

\[
(c, nc) = (100, 100) = ((10, 5) + (5, 10)) + ((10, 5) + (5, 10)) \text{ of } SO(5) \times SO(5). \tag{5.72}
\]

7. \(D = 6\) (non chiral \((2, 2)\)): the relevant manifold is non-maximal and non-symmetric:

\[
M^6_{16} = \frac{E_{8(8)}}{SO(5, 5) \times SL(4, \mathbb{R})} : \begin{bmatrix}
E_{8(8)}
\begin{array}{c}
SO(5, 5) \times SL(4, \mathbb{R})
\end{array}
\begin{array}{c}
M^6_{16}
\end{array}
\end{bmatrix}.
\]

\[
E_{8(8)} \supset_{ns} SO(5, 5) \times SL(4, \mathbb{R}); \quad 248 = (45, 1) + (1, 15) + (10, 6) + (16, 4) + (16', 4');
\]

\[
SO(5, 5) \times SL(4, \mathbb{R}) \overset{mcs}{\supset} USp(4)_L \times USp(4)_R \times SU(2) \times SU(2);
\]

\[
(10, 6) = (1, 5, 1, 3) + (1, 5, 3, 1) + (5, 1, 1, 3) + (5, 1, 3, 1);
\]

\[
(16', 4') = (4, 4, 2, 2).
\]

Therefore, the split \((c, nc) = (94, 94)\) can be interpreted as the split into two sets of Poincaré-dual irreps. of \(USp(4)_L \times USp(4)_R \times SU(2) \times SU(2)\); namely, the 5 self-dual 2-forms \(B^\pm_{\mu \nu|L} (1, 5, 1, 3)\), the 5 anti-self-dual 2-forms \(B^-_{\mu \nu|L} (5, 1, 3, 1)\) and the 16 1-forms \(A_{\mu \alpha}^{\mu \alpha} (4, 4, 2, 2)\) potentials, and their Poincaré duals, namely the 5 anti-self-dual 2-forms \(B^-_{\mu \nu|R} (1, 5, 3, 1)\), the 5 self-dual 2-form \(B^+_{\mu \nu|L} (5, 1, 1, 3)\) and the 16 3-forms \(\tilde{A}_{\mu_1 ... \mu_4}^{\alpha \alpha} (4, 4, 2, 2)\) potentials:

\[
(c, nc) = (94, 94) = \begin{cases} (1, 5, 1, 3) + (5, 1, 3, 1) + (4, 4, 2, 2) \\
(1, 5, 3, 1) + (5, 1, 1, 3) + (4, 4, 2, 2) \end{cases}
\text{ of } USp(4)_L \times USp(4)_R \times SU(2) \times SU(2). \tag{5.77}
\]

8. \(D = 5\) : the relevant manifold is maximal and non-symmetric:

\[
M^5_{16} = \frac{E_{8(8)}}{E_{6(6)} \times SL(3, \mathbb{R})} : \begin{bmatrix}
E_{8(8)}
\begin{array}{c}
E_{6(6)} \times SL(3, \mathbb{R})
\end{array}
\begin{array}{c}
M^5_{16}
\end{array}
\end{bmatrix}.
\]

\[
E_{8(8)} \supset_{ns} SL(3, \mathbb{R}) \times E_{6(6)}; \quad 248 = (8, 1) + (1, 78) + (3, 27) + (3', 27');
\]

\[
SL(3, \mathbb{R}) \times E_{6(6)} \overset{mcs}{\supset} SO(3) \times USp(8);
\]

\[
(3^{(l)}, 27^{(l)}) = (3, 27).
\]

Indeed, it holds that:

\[
E_{8(8)} \supset_{ns} SL(3, \mathbb{R}) \times E_{6(6)};
\]

\[
248 = (8, 1) + (1, 78) + (3, 27) + (3', 27');
\]

\[
SL(3, \mathbb{R}) \times E_{6(6)} \overset{mcs}{\supset} SO(3) \times USp(8);
\]

\[
(3^{(l)}, 27^{(l)}) = (3, 27). \tag{5.79}
\]
Therefore, the split \((c, nc) = (81, 81)\), which is related to the so-called Jordan pairs (see e.g. [20]), can be interpreted as the split into two sets of Poincaré-dual irreps. of \(SO(3) \times USp(8)\); namely, the 27 graviphotons \(A_{\mu} (3, 27)\), and their Poincaré duals, namely the 27 2-forms \(\tilde{A}_{\mu \nu} (3, 27)\):

\[(c, nc) = (81, 81) = (3, 27) + (3, 27)\) of \(SO(3) \times USp(8)\). \hspace{1cm} (5.81)

Note that the 3 of the massless spin group \(SO(3) \equiv SO(3)_J\) corresponds to the three physical polarizations of the graviphotons in \(D = 5\).

9. \(D = 4\): the relevant manifold is para-quaternionic, maximal and symmetric:

\[
M^4_{16} = \frac{E_{8(8)}^4}{E_{7(7)} \times SL(2, \mathbb{R})} : \begin{pmatrix}
E_{8(8)} : & c & nc \\
E_{7(7)} \times SL(2, \mathbb{R}) : & 120 & 128 \\
M^4_{16} : & 64 & 72 \\
& 56 & 56
\end{pmatrix}. \hspace{1cm} (5.82)
\]

Such a signature splitting is covariant with respect to \(SU(8) \times SO(2)_J = mcs (E_{7(7)} \times SL(2, \mathbb{R}))\). Indeed, it holds that:

\[
E_{8(8)} \supset_{ns} SL(2, \mathbb{R}) \times E_{7(7)};
\]

\[
248 = (3, 1) + (1, 133) + (2, 56):
\]

\[
SL(2, \mathbb{R}) \times E_{7(7)} \overset{mcs}{\supset} SO(2)_J \times SU(8);
\]

\[
(2, 56) = (2, 28) + (2, 28).
\hspace{1cm} (5.84)
\]

Therefore, the split \((c, nc) = (56, 56)\), which corresponds to a pair of Freudenthal systems \(\mathfrak{m} (J^D_3)\), can be interpreted as the split into two sets of Poincaré-dual irreps. of \(SO(2)_J \times SU(8)\); namely, the 28 graviphotons \(A_{\mu} (2, 28)\), and their Poincaré-Hodge duals, namely the 28 graviphotons \(\tilde{A}_{\mu} (2, 28)\):

\[(c, nc) = (56, 56) = (2, 28) + (2, 28)\) of \(SO(2)_J \times SU(8)\). \hspace{1cm} (5.85)

Note that the 2 of the massless spin group \(SO(2)_J\) corresponds to the two physical polarizations of the graviphotons in \(D = 4\).

5.2.2
N = 4 Magical Models

\(D = 4\): the relevant manifold is para-quaternionic, maximal and symmetric (recall \([5.38]\) and \([5.40]\)):

\[
M^4_4 (q) \equiv \frac{G^4_3 (q)}{G^4_4 (q) \times SL(2, \mathbb{R})_{\text{Ehlers}}} : (c, nc) = (6q + 8, 6q + 8).
\hspace{1cm} (5.86)
\]

Such a signature splitting is covariant with respect to \(mcs (G^4_3 (q)) \times SO(2)_J\). Indeed, it holds that:

\[
G^4_3 (q) \supset_{s} SL(2, \mathbb{R}) \times G^4_4 (q);
\]

\[
\text{Adj}_{G^4_3} = (3, 1) + (1, \text{Adj}_{G^4_4}) + (2, \mathbb{R});
\hspace{1cm} (5.87)
\]

\[
SL(2, \mathbb{R}) \times G^4_4 \overset{mcs}{\supset} SO(2)_J \times mcs (G^4_3);
\]

\[
(2, \mathbb{R}) = (2, 1) + (2, \mathbb{R}) + (2, 1) + (2, \mathbb{R}),
\hspace{1cm} (5.88)
\]

where the bar here denotes the conjugate irrep. \(\mathbb{R} (\text{dim}= 6q + 8)\) denotes the relevant symplectic irrep. of \(G^4_4\) into which the vectors sit, and \(\mathcal{R} (\overline{\mathbb{R}})\) is its electric (magnetic) \(D = 5\) counterpart,
of dimension $3q + 3$. The irrep. \mathcal{R} is given by17:

\[
\begin{array}{c|cccc}
q & 8 & 4 & 2 & 1 \\
G_4^5 : & E_{7(-25)} & SO^*(12) & SU(3, 3) & Sp(6, \mathbb{R}) & SL(2, \mathbb{R}) \\
\mathcal{R} : & 56 & 32' & 20 & 14' & 4
\end{array}
\] (5.89)

On the other hand, the irrep. \mathcal{R} is given by:

\[
\begin{array}{c|cccc}
q & 8 & 4 & 2 & 1 \\
G_4^5 : & E_{6(-26)} & SU^*(6) & SL(3, \mathbb{C}) & SL(3, \mathbb{R}) & SL(2, \mathbb{R}) \\
\mathcal{R} : & 27 & 15 & 9 & 3 & 1
\end{array}
\] (5.90)

Therefore, the split of signature of $M_4^5 (q)$, which corresponds to a pair of Freudenthal systems $\mathfrak{M} (J_3^5)$, can be interpreted as the split into two sets of Poincaré-dual irreps. of $SO(2)_J \times mcs (G_4^5)$; namely, the $D = 4$ graviphoton $A_\mu (2, 1)$ and the $3q + 3$ matter vectors $(2, \mathcal{R})$, and their Poincaré duals, namely the graviphoton $A_\mu (2, 1)$ and the $3q + 3$ matter vectors $(2, \overline{\mathcal{R}})$:

\[
(c, nc) = (6q + 8, 6q + 8) = ((2, 1) + (2, \mathcal{R})) + ((2, 1) + (2, \overline{\mathcal{R}})) \text{ of } SO(2)_J \times mcs (G_4^5). \quad (5.91)
\]

Note that the 2 of the massless spin group $SO(2)_J$ corresponds to the two physical polarizations of the graviphotons.

$D = 5$: the relevant manifold is para-quaternionic, maximal and non-symmetric (recall (5.42) and (5.44)):

\[
M_4^5 (q) \equiv \frac{G_4^5 (q)}{G_4^5 (q) \times SL(3, \mathbb{R})} : (c, nc) = (9 (q + 1), 9 (q + 1)). \quad (5.92)
\]

Such a signature splitting is covariant with respect to $mcs (G_4^5) \times SO(3)$. Indeed, it holds that:

\[
\begin{align*}
G_4^5 (q) & \supset SL(3, \mathbb{R}) \times G_4^5 (q) ; \\
\text{Adj}_{G_4^5} & = (8, 1) + (1, \text{Adj}_{G_4^5}) + (3, \mathcal{R}) + (3', \mathcal{R}'); \\
SL(3, \mathbb{R}) \times G_4^5 (q) & \supset mcs (SO(3) \times mcs (G_4^5) ; \\
(3^0, \mathcal{R}^0) & = (3, 1) + (3, \mathcal{R}),
\end{align*}
\] (5.93) (5.94)

where the prime here denotes the non-compact analogue of conjugation. \mathcal{R} (dim $= 3q + 2$) denotes the relevant irrep. of $mcs (G_4^5)$ into which the $D = 5$ matter vectors sit. Therefore, the split of signature of $M_4^5 (q)$, which corresponds to a Jordan pair (see e.g. \cite{20}), can be interpreted as the split into two sets of Poincaré-dual irreps. of $SO(3)_J \times mcs (G_4^5)$; namely, the $D = 5$ graviphoton $A_\mu (3, 1)$ and the $3q + 2$ matter vectors $(3, \mathcal{R})$, and their Poincaré duals, namely the graviphoton $A_\mu (3, 1)$ and the $3q + 2$ matter vectors $(2, \mathcal{R})$:

\[
(c, nc) = (9 (q + 1), 9 (q + 1)) = ((3, 1) + (3, \mathcal{R})) + ((3, 1) + (3, \mathcal{R})) \text{ of } SO(3) \times mcs (G_4^5). \quad (5.95)
\]

Note that the 3 of the massless spin group $SO(3) \equiv SO(3)_J$ corresponds to the three physical polarizations of the vectors in $D = 5$.

$D = 6$: the relevant manifold is maximal and non-symmetric (recall (5.45) and (5.47)):

\[
M_4^6 (q) \equiv \frac{G_4^3 (q)}{SO (1, q + 1) \times \mathcal{A}_q \times SL(4, \mathbb{R})} : (c, nc) = (11q + 6, 11q + 6). \quad (5.96)
\]

17 Actually, in the case $q = 4$, $32'$ is the conjugate of the irreps. 32 in which the vectors sit; see App. \cite{11} for further detail.
Such a signature splitting is covariant with respect to $SO(q + 1) \times mcs(A_q) \times SO(4)$. Indeed, it holds that:

$$
G^+_d(q) \supset SL(4, \mathbb{R}) \times SO(1, q + 1) \times A_q;
$$

$$
\text{Adj}_{G^+_d} = (15, 1, 1) + \left(1, \text{Adj}_{SO(1,q+1)}, 1\right) + \left(1, 1, \text{Adj}_{A_q}\right) (5.97)
$$

$$
+ (4, \text{Spin}, 2) + (4', \text{Spin}', 2) + (6, q + 2, 1);
$$

$$
SL(4, \mathbb{R}) \times SO(1, q + 1) \times A_q \supset SL(2) \times SU(2) \times SO(q + 1) \times mcs(A_q);
$$

$$(4' \otimes \text{Spin}(0), 2) = (2, 2, \text{Spin}, 2), (5.98)
$$

$$(6, q + 2, 1) = (3, 1, q + 1, 1) + (1, 3, q + 1, 1) + (3, 1, 1, 1) + (1, 3, 1, 1).
$$

In (5.97), Spin, Spin' and $q + 2$ respectively denote the two conjugate chiral (semi)spinors and the vector irreps. of $SO(1, q + 1) \sim SL(2, \mathbb{A})$ (with $\mathbb{A} = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ for $q = 1, 2, 4, 8$, respectively), whereas in the right-hand side of (5.98) Spin and $q + 1$ respectively denote the spinor and vector irreps. of $SO(q + 1)$. The irrep. Spin of $SO(q + 1)$ is given by:

$$
egin{array}{cccc}
q : & 8 & 4 & 2 & 1 \\
SO(q + 1) : & SO(9) & SO(5) & SO(3) & SO(2) \\
\text{Spin} : & 16 & 4 & 2 & 2
\end{array}
$$

(5.99)

Thus, through these branchings, the resulting pair of Poincaré-dual irreps. of $SU(2) \times SU(2) \times SO(q + 1) \times mcs(A_q)$ irreps. is composed by: i) the physical polarizations $(2, 2, \text{Spin}, 2)$ of massless 1-forms and the physical polarizations of 2-forms, which (under the assumption of gravity sector to be anti-self-dual) split into $(1, 3, 1, 1)$ (anti-self-dual gravity sector) and $(3, 1, q + 1, 1)$ (self-dual matter sector); ii) the physical polarizations $(2, 2, \text{Spin}, 2)$ of massless 3-forms and the physical polarizations of Poincaré 2-forms, which split into $(3, 1, 1, 1)$ (self-dual Poincaré-dual gravity sector) and $(1, 3, q + 1, 1)$ (anti-self-dual Poincaré-dual matter sector). The real dimension of each set of such irreps. can be computed as (here square brackets denote the integer part)

$$
2^{q/2} + 2 + (1 - 6_{q,s}) + 3(q + 2) = 11q + 6,
$$

(5.100)

and thus corresponds to the signature split of $M^D_d(q)$ in terms of irreps. of $SU(2) \times SU(2) \times SO(q + 1) \times mcs(A_q)$:

$$(c, nc) = (11q + 6, 11q + 6) = \left\{
\begin{array}{c}
(2, 2, \text{Spin}, 2) + (1, 3, 1, 1) + (3, 1, q + 1, 1) \\
(2, 2, \text{Spin}, 2) + (3, 1, 1, 1) + (1, 3, q + 1, 1)
\end{array}\right..
$$

(5.101)

5.3 Hodge Involution and Coset Cohomology

A general property of the cosets M^D_d’s [5.11] resides in the fact that the **Hodge involution**

$$
*: \Lambda^d \mapsto * \Lambda^d = \Lambda^{D-2-d}
$$

(5.102)

acts as a symmetry of the coset cohomology, where the differential forms of order d are associated to d-fold antisymmetric irreps. Λ^d of $SO(D - 2) = mcs(SL(D - 2, \mathbb{R}))$.

Note that, out of the possible forms belonging to the cohomology of $SO(D - 2) = mcs(SL(D - 2, \mathbb{R}))$, the coset M^D_d [5.11] precisely singles out the physical massless $p > 0$ forms of the corresponding supergravity theory with $N = 2N$ supersymmetries in D (Lorentzian) space-time dimensions. Indeed, by

18The involutive or anti-involutive property $*^2 \Lambda^d = \pm \Lambda^d$ generally depends on the signature and the dimension of the group manifold whose cohomology is under consideration. In this case, the relevant group is $SO(D - 2) = mcs(SL(D - 2, \mathbb{R}))$, and thus $*^2 \Lambda^d = \Lambda^d$ for $D - 2 = 4n$, while $*^2 \Lambda^d = -\Lambda^d$ for $D - 2 = 4n + 2 \ (n \in \mathbb{N})$.

37
casting the Cartan decomposition of the cosets M_N^D's (5.1) in manifestly $SO(D-2)$-covariant way, the Lie algebra of M_N^D itself branches as

$$g_N^D \oplus (g_N^D \oplus \mathfrak{sl}(D-2, \mathbb{R})) \sim \sum_d n_d \Lambda^d + \sum_d n_d \Lambda^d,$$

(5.103)

where g_N^D respectively are the Lie algebras of G_N^D and G_N^D, and n_d is the (real) dimension of the relevant irreps. of the U-duality group G_N^D in D dimensions. Note that the r.h.s. of (5.103) is manifestly invariant under the Hodge involution \ast (5.102). Thus, the vanishing character (5.2) of cosets M_N^D's (5.1) trivially follows from

$$c(M_N^D) = \sum_d n_d \binom{D-2}{d} = \sum_d n_d \binom{D-2}{D-2-d} = nc(M_N^D).$$

(5.104)

By recalling formula (5.5), $c(M_N^D) = nc(M_N^D)$ can also be computed as the real dimension of the "mcs counterparts" of cosets M_N^D's (5.1), namely of the cosets \hat{M}_N^D (5.3).

In maximal theories ($N = 16$), by recalling the embedding (2.2) and Table 2, one can trace back the fact that only d-fold antisymmetric irreps. Λ^d's occur in (5.103) to the embedding $SO(16) \supset \mathcal{R}_D^{15} \times SO(D - 2)_J$

$$\text{Adj}_{SO(16)} = 16 \times 16 = \text{Adj}_{SO(D-2)} + \sum_d n_d \Lambda^d.$$

(5.105)

Namely, in $SO(D - 2)_J$ the antisymmetric rank-2 tensor product of spinor irreps. only contain antisymmetric d-fold irreps. (see e.g. [24]). We will consider here three examples, namely $D = 11$ and $D = 10$ (type IIA and IIB).

(I) In maximal supergravity ($N = 16$) in $D = 11$, $d = 3$ and $n_d = 1$, thus (5.103) and (5.104) specifies as follows:

$$\begin{align*}
\text{c}(E_8(8) \oplus \mathfrak{sl}(9, \mathbb{R})) &\sim \Lambda^3 + \ast \Lambda^3 = \Lambda^3 + \Lambda^6 = 84 + 84; \\
c \left(\frac{E_8(8)}{SL(9, \mathbb{R})} \right) &= \binom{9}{3} = \binom{9}{6} = nc \left(\frac{E_8(8)}{SL(9, \mathbb{R})} \right) = 84 = \dim_{\mathbb{R}} \left(\frac{SO(16)}{SO(9)} \right).
\end{align*}$$

(5.106)

(5.107)

In terms of the Cartan decomposition of the maximal non-symmetric Riemannian compact coset $\hat{M}_{16}^{11} = SO(16)/SO(9)$, the result (5.107) can be obtained as a consequence of the maximal non-symmetric embedding (5.108) (cfr. (2.2) and Table 2)

$$\text{so}(16) \supset_{ns} \text{so}(9)$$

(5.108)

$$\begin{align*}
\text{Adj}_{SO(16)} &\equiv (16 \times 16)_{a} = \text{Adj}_{SO(9)} + \Lambda^3 + 84, \\
16 &= 16.
\end{align*}$$

(5.109)

\footnote{The embedding (5.109) actually follow from a Theorem due to Dynkin [36, 37], applied to the self-conjugate spinor irrep. 16 of $SO(9)$: $SO(9) : 16 \times 16 = \Lambda^0 + \Lambda^1 + \Lambda^4 = 1 + 9 + 126$.}
(II) In maximal $D = 10$ IIA supergravity, the relevant values are $d = 1, 2, 3$ with $n_1 = n_2 = n_3 = 1$, and thus (5.103) and (5.104) specifies as follows:

$$c_{8(8)} \ominus (\mathfrak{sl}(8, \mathbb{R}) \oplus \mathfrak{so}(1, 1)) \sim \Lambda^1 + \Lambda^2 + \Lambda^3 + \varpi \Lambda^4 + * \Lambda^1 + * \Lambda^2 + * \Lambda^3 = \Lambda^1 + \Lambda^2 + \Lambda^3 + \Lambda^7 + \Lambda^6 + \Lambda^5$$

manifestly $SO(8)$-cov.

$$= (8v + 28 + 56_v) + (8_v + 28 + 56_v); \quad (5.109)$$

$$c \left(\frac{E_{8(8)}}{SO(1, 1) \times SL(8, \mathbb{R})} \right) = 8 + \left(\begin{array}{c} 8 \\ 2 \end{array} \right) + \left(\begin{array}{c} 8 \\ 3 \end{array} \right) = \left(\begin{array}{c} 8 \\ 7 \end{array} \right) + \left(\begin{array}{c} 8 \\ 6 \end{array} \right) + \left(\begin{array}{c} 8 \\ 5 \end{array} \right) = nc \left(\frac{E_{8(8)}}{SO(1, 1) \times SL(8, \mathbb{R})} \right) = 92 = \dim_{\mathbb{R}} \left(\frac{SO(16)}{SO(8)} \right). \quad (5.110)$$

In terms of the Cartan decomposition of the non-maximal non-symmetric Riemannian compact coset $\tilde{M}_{10}^{IIA} = SO(16)/SO(8)$, the result (5.110) can be obtained as a consequence of the next-to-maximal non-symmetric embedding $(\text{Adj} = \Lambda^2)$; (cfr. (2.2) and Table 2)

$$\mathfrak{so}(16) \supset_{ns} \mathfrak{so}(8)$$

$$16 = 8_v + 8_c \quad (5.111)$$

$$\text{Adj}_{SO(16)} \equiv (16 \times 16)_a = (8_v + 8_c) \times_a (8_v + 8_c)$$

$$= 8_s \times_a 8_v + 8_c \times_a 8_v + 8_v \times_a 8_c = \text{Adj}_{SO(8)} \oplus \text{Adj}_{SO(8)} \oplus \Lambda^1 + \Lambda^2 + \Lambda^3_8. \quad (5.112)$$

(III) In maximal $D = 10$ IIB supergravity, the relevant values are $d = 2, 4$ with $n_2 = 2n_4 = 2$, and thus (5.103) and (5.104) specifies as follows:

$$c_{8(8)} \ominus (\mathfrak{sl}(8, \mathbb{R}) \ominus \mathfrak{sl}(2, \mathbb{R})) \sim 2 \Lambda^2 + \Lambda^4 + 2 * \Lambda^1 + * \Lambda^4 = 2 \Lambda^2 + \Lambda^4 + 2 \Lambda^6 + \Lambda^4$$

manifestly $SO(8)$-cov.

$$= ((28, 2) + (35_s, 1)) + ((28, 2) + (35_c, 1)); \quad (5.113)$$

$$c \left(\frac{E_{8(8)}}{SO(1, 1) \times SL(8, \mathbb{R})} \right) = 2 \left(\begin{array}{c} 8 \\ 2 \end{array} \right) + \left(\begin{array}{c} 8 \\ 4 \end{array} \right) = 2 \left(\begin{array}{c} 8 \\ 6 \end{array} \right) + \left(\begin{array}{c} 8 \\ 4 \end{array} \right) = nc \left(\frac{E_{8(8)}}{SO(1, 1) \times SL(8, \mathbb{R})} \right) = 91 = \dim_{\mathbb{R}} \left(\frac{SO(16)}{SO(8) \times SO(2)} \right). \quad (5.114)$$

In terms of the Cartan decomposition of the non-maximal non-symmetric Riemannian compact coset $\tilde{M}_{10}^{IIB} = SO(16)/(SO(8) \times SO(2))$, the result (5.113) can be obtained as a consequence of the next-to-maximal non-symmetric embedding (cfr. (2.2) and Table 2):

$$\mathfrak{so}(16) \supset_{ns} \mathfrak{so}(8) \oplus \mathfrak{so}(2)$$

$$16 = (8_v, 2) \quad (5.115)$$

$$\text{Adj}_{SO(16)} \equiv (16 \times 16)_a = (8_v, 2) \times_a (8_v, 2) = (8_s \times_a 8_v, 2 \times_a 2) + (8_s \times_a 8_s, 2 \times_a 2)$$

$$= (28, 3) + (1_1, 1) + (35_s, 1) = \text{Adj}_{SO(8), 0} + \text{Adj}_{SO(2), 0} + \Lambda^2_2 + \Lambda^2_2 + \Lambda^4_0, \quad (5.116)$$

where in the last step the subscripts denote the charges of the $D = 10$ IIB \mathcal{R}-symmetry $\mathfrak{so}(2)$. 39
Finally, we present below the same analysis for other two “pure” supergravities:

(IV) In $N = 12$ supergravity (which shares the same bosonic sector of the quaternionic magical theory with $N = 4$) in $D = 5$, $d = 1$ and $n_d = 15$, thus (5.103) and (5.104) specifies as follows:

$$e_7(-5) \oplus (\mathfrak{su}^* (6) \oplus \mathfrak{sl} (3, \mathbb{R})) \sim (14 + 1) \Lambda^1 + (14 + 1) \Lambda^1 = (14 + 1) \Lambda^1 + (14 + 1) \Lambda^1$$

manifestly $SO(3)$-cov.

$$= (14 + 1) 3 + (14 + 1) 3$$

(5.115)

$$c \left(\frac{E_7(-5)}{SU^*(6) \times SL(3, \mathbb{R})} \right) = (14 + 1) 3 = (14 + 1) \left(\frac{3}{2} \right) = nc \left(\frac{E_7(-5)}{SU^*(6) \times SL(3, \mathbb{R})} \right)$$

$$= 45 = \dim_{\mathbb{R}} \left(\frac{SO(12)}{USp(6)} \right).$$

(5.116)

In terms of the Cartan decomposition of the maximal non-symmetric Riemannian compact coset $\hat{M}_5 = SO(12)/USp(6)$, the result (5.116) can be obtained as a consequence of the maximal non-symmetric embedding

$$\mathfrak{so}(12) \supset \mathfrak{usp}(6) \oplus \mathfrak{su}(2)$$

$$12 = (6, 2)$$

$$\text{Adj}_{SO(12)} = (12 \times 12)_a = (6, 2) \times_a (6, 2) = (6 \times_a 6, 2 \times 2) + (6 \times_s 6, 2 \times 2)$$

$$= (14, 3) + (1, 3) + (21, 1),$$

(5.117)

where the $D = 5$ massless spin algebra $\mathfrak{su}(2)$ is not modded out in order to determine \hat{M}_5, and it corresponds to the “extra” $USp(6)$ (R-symmetry-)singlet, a peculiar feature of this extended supergravity theory (which makes it amenable to an $N = 4$ interpretation).

(V) In $N = 10$ supergravity in $D = 4$, $d = 1$ and $n_d = 10$, thus (5.103) and (5.104) specifies as follows:

$$e_6(-14) \oplus (\mathfrak{su} (5, 1) \oplus \mathfrak{sl} (2, \mathbb{R})) \sim 10\Lambda^1 + 10 \times \Lambda^1 = 10\Lambda^1 + 10\Lambda^1 = (10) 2 + (10) 2$$

manifestly $SO(2)$-cov.

$$c \left(\frac{E_6(-14)}{SU(5, 1) \times SL(2, \mathbb{R})} \right) = 10 \cdot 2 = nc \left(\frac{E_6(-14)}{SU(5, 1) \times SL(2, \mathbb{R})} \right)$$

$$= 40 = \dim_{\mathbb{R}} \left(\frac{SO(10)}{U(5)} \right).$$

(5.118)

In terms of the Cartan decomposition of the maximal non-symmetric Riemannian compact coset $\hat{M}_4 = SO(10)/U(5)$, the result (5.118) can be obtained as a consequence of the maximal symmetric embedding

$$\mathfrak{so}(10) \supset_s \mathfrak{su}(5) \oplus \mathfrak{u}(1)$$

$$10 = 5_1 + 5_{-1}$$

(5.119)

$$\text{Adj}_{SO(10)} \equiv (10 \times 10)_a = (5_1 + 5_{-1}) \times_a (5_1 + 5_{-1})$$

$$= 5_1 \times_a 5_1 + 5_{-1} \times_a 5_{-1} + 5_1 \times 5_{-1} = 10_2 + 10_{-2} + 24_0 + 1_0,$$

where the subscripts denote the charges with respect to the $D = 4$ massless spin algebra $\mathfrak{u}(1)$. 40
6 Conclusion

In this paper we have analyzed some consequences of the super-Ehlers structure of \(N \)-extended supergravity theories in \(D \geq 4 \) space-time dimensions. As the Ehlers \(SL(D-2, \mathbb{R}) \) is an off-shell symmetry of the Lagrangian \([9, 10, 11]\), so there should exist an Hamiltonian formulation of light-cone supergravity in which \(U \)-duality \(G_N^D \) is an off-shell symmetry. Moreover, at least for any amount of supersymmetry \(N \geq 4 \), the Ehlers group can be regarded as the commutant of \(G_N^D \) itself inside the \(U \)-duality group \(G_3^D \) in \(D = 3 \).

The pseudo-Riemannian manifolds pertaining to the embedding of the super-Ehlers group \(G_N^D \times SL(D-2, \mathbb{R}) \) into \(G_N^3 \), namely the cosets \(M_N^D \)'s \([5,1]\), have been found to exhibit an interesting invariance under the Hodge involution \((5.102)\), acting on the cohomology of \(M_N^D \), which in turn singles out only the physical massless \(p > 0 \) forms of the corresponding supergravity theory, regarded as \(p \)-fold antisymmetric irreps. \(\Lambda^p \) of the massless spin group \(SO(D-2)_J = mcs(SL(D-2, \mathbb{R})_{\text{Ehlers}}) \) in \(D \) (Lorentzian) space-time dimensions.

The symmetry under the Hodge involution \((5.102)\) implies all the cosets \(M_N^D \)'s \([5,1]\) to have a vanishing character, namely to have the same number of compact and non-compact generators : \(c\left(M_N^D \right) = nc\left(M_N^D \right) \). Such a number, along with its manifestly \(SO(D-2)_J \)-covariant decomposition in terms of physical massless \(p > 0 \) forms, can be computed by considering the Cartan decomposition of the cosets \(M_N^D \)'s \([5,3]\), which can be regarded as the “\(mcs \) counterpart” of \(M_N^D \)'s \([5,1]\). Indeed, the embedding of \(SO(D-2)_J \) inside \(H_N^3 \equiv mcs(G_N^3) \) is such that the generators of \(M_N^D \) split only into antisymmetric tensor irreps. of \(SO(D-2)_J \) itself, with multiplicities given by irreps. of \(H_N^D \equiv mcs(G_N^D) \).

The approach of this paper may be relevant for the analysis of the issue of ultraviolet divergences in supergravity theories with maximal or non-maximal supersymmetry, by exploiting the light-cone formulation, along the lines \(e.g. \) of \([1, 9, 10, 11]\).

Acknowledgements

We would like to thank V. S. Varadarajan for an enlightening discussion on the Hodge involution.

A.M. would like to thank the Department of Physics and Astronomy, University of California at Los Angeles, where this project was completed, for kind hospitality and stimulating environment.

This work was supported in part by DOE Grant DE-FG03-91ER40662.

The work of S.F. has been supported by the ERC Advanced Grant no. 226455, Supersymmetry, Quantum Gravity and Gauge Fields (SUPERFIELDS).

A Embeddings

Let us start by recalling some useful definitions.

Given two semisimple Lie groups \(G' \) and \(G \), generated by the Lie algebras \(\mathfrak{g}' \), \(\mathfrak{g} \), respectively, if \(G' \subset G \) (proper inclusion), we say that \(G' \) is maximal in \(G \) iff there is no proper subalgebra \(\mathfrak{g}'' \) of \(\mathfrak{g} \) containing \(\mathfrak{g}' \). If \(G' \) and \(G \) are complex semisimple Lie groups such that \(G' \subset G \), the embedding of \(G' \) into \(G \) is regular iff one can find a basis of \(\mathfrak{g}' \) consisting of elements of a Cartan subalgebra \(\mathfrak{h} \) of \(\mathfrak{g} \) and shift-generators \(E_\alpha \) corresponding to roots \(\alpha \) of \(\mathfrak{g} \) relative to \(\mathfrak{h} \) \([30]\). Regular subalgebras \(\mathfrak{g}' \) of a semisimple Lie algebra \(\mathfrak{g} \) can be constructed using the simple procedure defined by Dynkin in \([30]\); the Dynkin diagram of \(\mathfrak{g}' \) can be obtained as a truncation of the extended diagram of \(\mathfrak{g} \). When considering real forms \(G' \), \(G \) of complex semisimple Lie groups \(G'_C \), \(G_C \), we say that \(G' \subset G \) is regularly embedded in \(G \) iff the complexification \(\mathfrak{g}'_C \) of \(\mathfrak{g}' \) is regularly embedded in the complexification \(\mathfrak{g}_C \) of \(\mathfrak{g} \). The embedding of \(G' \) into \(G \) is symmetric iff we can write \(\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{p} \), such that \([\mathfrak{g}', \mathfrak{p}] \subset \mathfrak{p} \) and \([\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{g}' \). Finally the embedding is rank-preserving iff \(\text{rank}(\mathfrak{g}') = \text{rank}(\mathfrak{g}) \).
A.1 The Embeddings $\text{SL}(D - 2, \mathbb{R}) \times E_{11-D(11-D)} \subset E_{8(8)}$

The $D = 5$ case $\text{SL}(3, \mathbb{R}) \times E_{6(6)} \subset E_{8(8)}$ The embedding of $\mathfrak{so}(3, \mathbb{R}) \oplus \mathfrak{e}_{6(6)} \subset \mathfrak{e}_{8(8)}$ is regular and can be described using Dynkin’s construction [36]. Let us number the simple roots of $\mathfrak{e}_{8(8)}$ so that the D_7 sub-Dynkin diagram consists of the roots $\alpha_2, \ldots, \alpha_8$, with α_2 and α_3 on the two symmetric legs, and α_1 is the D_7-spinor weight attached to α_3, see Fig. 1. The $\mathfrak{e}_{8(8)}$ Cartan matrix reads:

\[
\begin{pmatrix}
2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{pmatrix}
\]

(A.1)

In an orthonormal basis the simple roots α_i read:

\[
\begin{align*}
\alpha_1 &= \frac{1}{2} (\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4 + \epsilon_5 + \epsilon_6 - \epsilon_7 - \epsilon_8) , \\
\alpha_2 &= \epsilon_6 + \epsilon_7 ; \quad \alpha_3 = \epsilon_6 - \epsilon_7 ; \quad \alpha_4 = \epsilon_5 - \epsilon_6 ; \quad \alpha_5 = \epsilon_4 - \epsilon_5 ; \quad \alpha_6 = \epsilon_3 - \epsilon_4 ; \quad \alpha_7 = \epsilon_2 - \epsilon_3 ; \\
\alpha_8 &= \epsilon_1 - \epsilon_2
\end{align*}
\]

(A.2)

Let us denote by $\Delta_+ [\mathfrak{e}_{8(8)}] = \{ \alpha = \sum_{i=1}^8 n_i \alpha_i \}$ the set of positive roots of $\mathfrak{e}_{8(8)}$. The $\mathfrak{e}_{6(6)}$ subalgebra is defined by the sub-Dynkin diagram consisting of the simple roots α_a, $a = 1, \ldots, 6$. The 36 positive $\mathfrak{e}_{6(6)}$-roots be denoted by γ_A, so that:

\[
\Delta_+ [\mathfrak{e}_{6(6)}] = \{ \gamma_A = \sum_{a=1}^6 n_A^a \alpha_a \} .
\]

(A.3)

Furthermore let us consider the following positive roots β_x, $x = 1, 2, 3$:

\[
\begin{align*}
\beta_1 &= \alpha_8 = \epsilon_1 - \epsilon_2 ; \\
\beta_2 &= 2 \alpha_1 + 3 \alpha_2 + 4 \alpha_3 + 6 \alpha_4 + 5 \alpha_5 + 4 \alpha_6 + 3 \alpha_7 + \alpha_8 = \epsilon_2 + \epsilon_8 ; \\
\beta_3 &= 2 \alpha_1 + 3 \alpha_2 + 4 \alpha_3 + 6 \alpha_4 + 5 \alpha_5 + 4 \alpha_6 + 3 \alpha_7 + 2 \alpha_8 = \epsilon_1 + \epsilon_8 .
\end{align*}
\]

(A.4)

One can easily verify that β_x generate an $\mathfrak{so}(3, \mathbb{R})$-root space which is orthogonal to $\Delta_+ [\mathfrak{e}_{6(6)}]$: $\beta_x \cdot \gamma_A = 0$. We have then constructed an $\mathfrak{so}(3, \mathbb{R}) \oplus \mathfrak{e}_{6(6)}$ subalgebra of $\mathfrak{e}_{8(8)}$:

\[
\begin{align*}
\mathfrak{so}(3, \mathbb{R}) &= \text{Span}(H_{\beta_1}, H_{\beta_2}, E_{\pm \beta_1}, E_{\pm \beta_2}, E_{\pm \beta_3}) , \\
\mathfrak{e}_{6(6)} &= \text{Span}(H_{\alpha_a}, E_{\pm \gamma_A} ; a = 1, \ldots, 6, \gamma_A = 1, \ldots, 36)
\end{align*}
\]

(A.5)
Within \(\mathfrak{sl}(3,\mathbb{R}) \oplus \mathfrak{e}_{6(6)} \) we can identify its maximal compact subalgebra \(\mathfrak{so}(3) \oplus \mathfrak{usp}(8) \), which is a maximal subalgebra of \(\mathfrak{so}(16) \):

\[
\begin{align*}
\mathfrak{so}(16) &= \text{Span}(E_\alpha - E_{-\alpha})_{\alpha \in \Delta_+[\mathfrak{e}_{8(8)}]}, \\
\mathfrak{so}(3) &= \text{Span}(E_{\beta_x} - E_{-\beta_x})_{x=1,2,3}, \\
\mathfrak{usp}(8) &= \text{Span}(E_{\gamma_A} - E_{-\gamma_A})_{A=1,\ldots,36}.
\end{align*}
\tag{A.6}
\]

With respect to this \(\text{SO}(3) \times \text{USp}(8) \) subgroup of \(\text{SO}(16) \) the coset space

\[
\mathcal{R} = \mathfrak{e}_{8(8)} \oplus \mathfrak{so}(16) = \text{Span}(H_{\alpha_i}, E_\alpha + E_{-\alpha})_{\alpha \in \Delta_+[\mathfrak{e}_{8(8)}]; \ i=1,\ldots,8},
\tag{A.7}
\]

should decompose as follows:

\[
\begin{align*}
\mathcal{R} &= \mathcal{R}[\mathfrak{sl}(3,\mathbb{R})] \oplus \mathcal{R}[\mathfrak{e}_{6(6)}] \oplus (3,27), \\
\mathcal{R}[\mathfrak{sl}(3,\mathbb{R})] &= \mathfrak{sl}(3,\mathbb{R}) \oplus \mathfrak{so}(3) = \text{Span}(H_{\beta_1}, H_{\beta_2}, E_{\beta_x} + E_{-\beta_x})_{x=1,2,3} = (5,1), \\
\mathcal{R}[\mathfrak{e}_{6(6)}] &= \mathfrak{e}_{6(6)} \oplus \mathfrak{usp}(8) = \text{Span}(H_{\alpha_a}, E_{\gamma_A} + E_{-\gamma_A})_{a=1,\ldots,6} = (1,42).
\end{align*}
\tag{A.8}
\]

Generalizing to \(\text{SL}(D-2,\mathbb{R}) \times \text{E}_{11-D}(11-D) \subset \mathfrak{e}_{8(8)} \) The above construction is extended to define the embedding of \(\mathfrak{sl}(D-2,\mathbb{R}) \oplus \mathfrak{e}_{11-D}(11-D) \subset \mathfrak{e}_{8(8)}, \ D \geq 4 \), following the same recipe by Dynkin. The embedding of \(\mathfrak{e}_{11-D}(11-D) \) is defined by deleting in the \(\mathfrak{e}_{8(8)} \) Dynkin diagram the last \(D-3 \) simple roots to the right, namely \(\alpha_{12-D}, \ldots, \alpha_8 \), see Fig. 2. The set of positive roots of \(\mathfrak{e}_{11-D}(11-D) \)

\[
\begin{align*}
\Delta_+[\mathfrak{e}_{11-D}(11-D)] &= \{\gamma_A\} = \{\epsilon_a \pm \epsilon_b, \frac{\epsilon_8}{2} - \sum_{\alpha=1}^{D-3} \frac{\epsilon_\alpha}{2} + \left(\sum_{a=D-2}^{7} \pm \frac{\epsilon_a}{2} \right)_{\text{odd} +} \},
\end{align*}
\tag{A.9}
\]

Figure 2: The filled circles define the \(\mathfrak{e}_{11-D}(11-D) \) sub-Dynkin diagram, while the thick circle represents the exceptional root \(-\psi, \psi = \epsilon_4 + \epsilon_8 \) being the highest root of \(\mathfrak{e}_8 \), which, together with the other roots in the rectangles, defines the Dynkin diagram of \(\mathfrak{sl}(D-2,\mathbb{R}) \).
where those in square brackets are the weights of a chiral spinorial representation of the \(\mathfrak{so}(10-D, 10-D) \) subalgebra of \(\mathfrak{e}_{11-D(11-D)} \). The set of positive roots of \(\mathfrak{so}(D-2, \mathbb{R}) \) reads:

\[
\Delta_+[\mathfrak{so}(D-2, \mathbb{R})] = \{ \beta_x \} = \{ \epsilon_\alpha - \epsilon_\beta, \epsilon_\alpha + \epsilon_\beta \},
\]

where \(\alpha, \beta = 1, \ldots, D-3, \beta > \alpha \) and \(x = 1, \ldots, (D-3)(D-2)/2 \). One can easily verify that the two root systems are orthogonal, namely: \(\beta_x \cdot \gamma_A = 0 \).

This defines the \(\mathfrak{so}(D-2, \mathbb{R}) \oplus \mathfrak{e}_{11-D(11-D)} \) subalgebra of \(\mathfrak{e}_{8(8)} \):

\[
\mathfrak{so}(D-2, \mathbb{R}) = \text{Span}(H_{a_{13-D}}, \ldots, H_{a_8}, H_{\epsilon_1+\epsilon_8}, E_{\pm \beta_x})_{\beta_x \in \Delta_+[\mathfrak{so}(D-2, \mathbb{R})]},
\]

\[
\mathfrak{e}_{11-D(11-D)} = \text{Span}(H_{a_8}, E_{\pm \gamma_A})_{\gamma_A \in \Delta_+[\mathfrak{e}_{11-D(11-D)}]}, D = 4, \ldots, 8,
\]

\[
\mathfrak{e}_2(2) = \text{Span}(H_{a_1}, H_\lambda, E_{\pm \alpha_1}), D = 9,
\]

where the generators \(H_{a_{13-D}}, \ldots, H_{a_8} \), in the first line, are not counted for \(D = 4 \), for which the only Cartan generator of \(\mathfrak{so}(2, \mathbb{R}) \) is \(H_{\epsilon_1+\epsilon_8} \). In the \(D = 9 \) case, the vector \(\lambda \) in the last line is: \(\lambda = \epsilon_7 - \alpha_1/4 \) and is orthogonal to the \(\beta_x \) and to \(\alpha_1 \).

As far as the corresponding maximal compact subalgebra \(\mathfrak{so}(D-2) \oplus \mathfrak{h}_D \) is concerned, its can be constructed as follows:

\[
\mathfrak{so}(D-2) = \text{Span}(E_{\beta_x} - E_{-\beta_x})_{\beta_x \in \Delta_+[\mathfrak{so}(D-2, \mathbb{R})]},
\]

\[
\mathfrak{h}_D = \text{Span}(E_{\gamma_A} - E_{-\gamma_A})_{\gamma_A \in \Delta_+[\mathfrak{e}_{11-D(11-D)}]},
\]

where \(\mathfrak{h}_D \) is the maximal compact subalgebra of \(\mathfrak{e}_{11-D(11-D)} \).

In the \(D = 10 \) case we need to consider the type IIA and type IIB descriptions in which the relevant subgroups of \(E_{8(8)} \) are \(\text{SL}(8, \mathbb{R}) \times \text{SO}(1, 1) \) and \(\text{SL}(8, \mathbb{R})' \times \text{SL}(2, \mathbb{R}) \), respectively. Their embeddings are illustrated in Figure 3. In the former case the \(U \)-duality group is \(\text{SO}(1, 1) \) and is generated by the Cartan generator \(\sum_{i=1}^8 H_{e_i} - 2H_{e_8} \).

A.2 Other Embeddings

Embeddings considered here were also dealt with in [16]. Here we provide a detailed and explicit construction of a number of embeddings in terms of the generators of the corresponding Lie algebras, using the notation of [13]. Let us start discussing in detail the embeddings of \(E_6(-26) \times \text{SL}(3, \mathbb{R}) \) and \(\text{SO}(1, 9) \times \text{SL}(4, \mathbb{R}) \) inside \(E_{8(-24)} \). At the level of the corresponding Lie algebras, these embeddings are illustrated in Figure 3 where the Satake diagrams of \(\mathfrak{e}_6(-26) \oplus \mathfrak{so}(3, \mathbb{R}) \) and \(\mathfrak{so}(1, 9) \oplus \mathfrak{so}(4, \mathbb{R}) \) are obtained from the \(\mathfrak{e}_8(-24) \) one once again using Dynkin’s procedure of extending the latter and canceling a suitable simple root. Let us briefly review the definition of Satake diagrams for non-split (i.e. non-maximally-non-compact) Lie algebras and the construction of the \(\mathfrak{e}_6(-26) \oplus \mathfrak{so}(3, \mathbb{R}) \) and \(\mathfrak{so}(1, 9) \oplus \mathfrak{so}(4, \mathbb{R}) \) generators in terms of a canonical basis of the complex \(\mathfrak{e}_8 \). The latter consists of a basis \(\{ H_{e_i} \}, i = 1 \ldots, 8 \), of Cartan generators, with respect to which the \(\mathfrak{e}_8 \) roots are defined, and shift operators \(E_\alpha, E_{-\alpha}, \alpha \) being the 120 positive roots. The real form \(\mathfrak{e}_8(-24) \) is characterized by a Cartan subalgebra \(\mathfrak{h} \) which splits into the direct sum of a subspace \(\mathfrak{h}^{nc} \) of non-compact generators (i.e. generators which are odd with respect to the Cartan involution \(\tau \)) and a subspace \(\mathfrak{h}^c \) of compact generators, defined in terms of the \(\{ H_{e_i} \} \) as follows:

\[
\mathfrak{h} = \mathfrak{h}^{nc} \oplus \mathfrak{h}^c ; \quad \mathfrak{h}^c = \text{Span}(i H_{a_2}, i H_{a_3}, i H_{a_4}, i H_{a_5}) ; \quad \mathfrak{h}^{nc} = \text{Span}(H_{e_1}, H_{e_2}, H_{e_3}, H_{e_8}),
\]

\[\text{We shall omit the prime in the following.}\]

\[\text{We can always find a suitable basis for the matrix representation of the generators so that } \tau(M) = -M^t. \text{ This means that we shall regard compactness and non-compactness of a generator to be synonyms, in any matrix representation, of being anti-hermitian and hermitian, respectively. Moreover, in our conventions, } E_{-\alpha} = -\tau(E_\alpha) = E_\alpha^t.\]
Note that \(\mathfrak{h}^c \) is the Cartan subalgebra of an \(\mathfrak{so}(8) \) subalgebra of \(\mathfrak{e}_8(-24) \) whose Dynkin diagram is defined by the black roots in Fig. 3. The \(\mathfrak{e}_8 \) positive roots split into a 12-dimensional sub-space \(\Delta^0_\mathfrak{e}_8 \) of roots having null restriction to \(\mathfrak{h}^\text{nc} \) and a 108-dimensional space \(\bar{\Delta}^+_\mathfrak{e}_8 \) of roots with a non-trivial restriction to \(\mathfrak{h}^\text{nc} \):

\[
\Delta^+_\mathfrak{e}_8 = \Delta^0_\mathfrak{e}_8 \oplus \bar{\Delta}^+_\mathfrak{e}_8.
\]

(A.14)

The conjugation \(\sigma \) with respect to \(\mathfrak{e}_8(-24) \) is the conjugation on the complex \(\mathfrak{e}_8 \) which leaves the elements of the subalgebra \(\mathfrak{e}_8(-24) \) invariant. It defines a correspondence between \(\mathfrak{e}_8 \)-roots \(\alpha \leftrightarrow \alpha \sigma \) such that \(\sigma(E_\alpha) \propto E_{\alpha \sigma} \). The couple of roots \(\alpha, \alpha \sigma \) satisfies the property:

\[
\alpha|_{\mathfrak{h}^\text{nc}} = \alpha \sigma|_{\mathfrak{h}^\text{nc}}; \quad \alpha|_{\mathfrak{h}^c} = -\alpha \sigma|_{\mathfrak{h}^c}.
\]

(A.15)

Clearly if \(\alpha \in \Delta^0_+\mathfrak{e}_8 \), \(\alpha \sigma = -\alpha \), while if \(\alpha \in \bar{\Delta}^+_\mathfrak{e}_8 \) and \(\alpha|_{\mathfrak{h}^c} = 0 \), we have \(\alpha \sigma = \alpha \). Thus if \(\alpha \in \bar{\Delta}^+_\mathfrak{e}_8 \), to each couple of nilpotent generators \(E_\alpha \) and \(\sigma(E_\alpha) \) in \(\mathfrak{e}_8 \), there corresponds a couple of nilpotent generators in \(\mathfrak{e}_8(-24) \) given by the \(\sigma \)-invariant combinations \(i(E_\alpha - \sigma(E_\alpha)), E_\alpha + \sigma(E_\alpha) \), which can be both brought to an upper-triangular form, for all \(\alpha \). If, on the other hand, \(\alpha \in \Delta^0_+\mathfrak{e}_8 \), the same combinations define compact \(\mathfrak{so}(8) \) generators \(i(E_\alpha + E_{-\alpha}), E_\alpha - E_{-\alpha} \).

To summarize, the \(\mathfrak{e}_8(-24) \) generators can be expressed in terms of the \(\mathfrak{e}_8 \) canonical basis as follows:

\[
\mathfrak{e}_8(-24) = \mathfrak{h} \oplus \mathfrak{l}_+ \oplus \mathfrak{l}_- \oplus \mathfrak{m}_0,
\]

\[
\mathfrak{l}_+ = \text{Span} \{ i(E_{\alpha} - \sigma(E_\alpha)), E_\alpha + \sigma(E_\alpha) \}_{\alpha, \alpha \sigma \in \Delta^+_\mathfrak{e}_8};
\]

\[
\mathfrak{l}_- = \text{Span} \{ i(E_{-\alpha} - \sigma(E_{-\alpha})), E_{-\alpha} + \sigma(E_{-\alpha}) \}_{\alpha, \alpha \sigma \in \bar{\Delta}^+_\mathfrak{e}_8};
\]

\[
\mathfrak{m}_0 = \text{Span} \{ i(E_\alpha + E_{-\alpha}), E_\alpha - E_{-\alpha} \}_{\alpha \in \Delta^0_+\mathfrak{e}_8}.
\]

(A.16)

The 112-dimensional solvable Lie algebra \(\mathfrak{s}_0 = \mathfrak{h}^\text{nc} \oplus \mathfrak{l}_+ \) is the one defined by the Iwasawa decomposition of \(\mathfrak{e}_8(-24) \) with respect to \(\mathfrak{e}_7(-133) \oplus \mathfrak{su}(2) \), and its generators, in a suitable basis, can all be represented...
by upper-triangular matrices. The centralizer of \mathfrak{h}^{nc} is the $\mathfrak{so}(8)$ subalgebra given by $\mathfrak{h}^c \oplus \mathfrak{m}_0$ and is also contained inside the subalgebras $\mathfrak{e}_6(-26)$ and $\mathfrak{so}(1,9)$, as it is apparent from Fig. 3.

The $\mathfrak{e}_6(-26)$ generators in terms of the above $\mathfrak{e}_8(-24)$ ones are easily written:

$$\mathfrak{e}_6(-26) = \mathfrak{h}' \oplus \mathfrak{t}_+^l \oplus \mathfrak{t}_-^l \oplus \mathfrak{m}_0,$$

$$\mathfrak{t}_+^l = \text{Span} [i(E_{\alpha} - \sigma(E_{\alpha})), E_{\alpha} + \sigma(E_{\alpha}) |_{(\alpha, \alpha^c) \in \Delta_+[\mathfrak{e}_8]}],$$

$$\mathfrak{t}_-^l = \text{Span} [i(E_{-\alpha} - \sigma(E_{-\alpha})), E_{-\alpha} + \sigma(E_{-\alpha}) |_{(\alpha, \alpha^c) \in \Delta_+[\mathfrak{e}_8]}],$$

$$\mathfrak{m}_0 = \text{Span} [i(E_{\alpha} + E_{-\alpha}), E_{\alpha} - E_{-\alpha}]_{\alpha \in \Delta_+[\mathfrak{e}_8]},$$

(A.17)

where $\Delta_+[\mathfrak{e}_8]$ are the \mathfrak{e}_6-positive roots in the \mathfrak{e}_8-root system, while

$$\mathfrak{h}' = \mathfrak{h}^{nc} \oplus \mathfrak{h}^c; \quad \mathfrak{h}^{nc} = \text{Span}(H_{1+e_2-e_8}, H_{e_3}).$$

(A.18)

The $\mathfrak{sl}(3,\mathbb{R})$ subalgebra commuting with $\mathfrak{e}_6(-26)$ has the following form:

$$\mathfrak{sl}(3,\mathbb{R}) = \text{Span} [H_{e_1-e_2}, H_{-e_1-e_3}, E_{\pm \beta_x}], \{\beta_x\} = \{\epsilon_1 - \epsilon_2, \epsilon_8 + \epsilon_1, \epsilon_8 + \epsilon_2\},$$

note that $\beta^a_x = \beta_x$.

Finally the $\mathfrak{so}(1,9) \subset \mathfrak{e}_6(-26)$ generators read:

$$\mathfrak{so}(1,9) = \mathfrak{h}'' \oplus \mathfrak{t}_+^p \oplus \mathfrak{t}_-^p \oplus \mathfrak{m}_0,$$

$$\mathfrak{t}_+^p = \text{Span} [i(E_{\alpha} - \sigma(E_{\alpha})), E_{\alpha} + \sigma(E_{\alpha}) |_{(\alpha, \alpha^c) \in \Delta_+[\mathfrak{so}(10)]}],$$

$$\mathfrak{t}_-^p = \text{Span} [i(E_{-\alpha} - \sigma(E_{-\alpha})), E_{-\alpha} + \sigma(E_{-\alpha}) |_{(\alpha, \alpha^c) \in \Delta_+[\mathfrak{so}(10)]}],$$

$$\mathfrak{m}_0 = \text{Span} [i(E_{\alpha} + E_{-\alpha}), E_{\alpha} - E_{-\alpha}]_{\alpha \in \Delta_+[\mathfrak{so}(10)]},$$

(A.19)

where $\Delta_+[\mathfrak{so}(10)]$ are the roots of the complex $\mathfrak{so}(10)$ algebra within \mathfrak{e}_8-root system, and

$$\mathfrak{h}'' = \mathfrak{h}''^{nc} \oplus \mathfrak{h}^c; \quad \mathfrak{h}''^{nc} = \text{Span}(H_{1+e_2+e_3-e_8}).$$

(A.20)

The $\mathfrak{sl}(4,\mathbb{R})$ subalgebra commuting with $\mathfrak{so}(1,9)$ is described by the following generators:

$$\mathfrak{sl}(4,\mathbb{R}) = \text{Span} [H_{e_1-e_2}, H_{e_2-e_3}, H_{-e_1-e_3}, E_{\pm \beta_x}], \{\beta_x\} = \{\epsilon_\alpha - \epsilon_\beta, \epsilon_8 + \epsilon_\alpha\}_{\alpha < \beta},$$

By the same token we can prove other embeddings, like $\text{SL}(3,\mathbb{R}) \times \text{SU}^*(6) \subset E_7(-5)$ and $\text{SL}(3,\mathbb{C}) \times \text{SL}(3,\mathbb{R}) \subset E_6(2)$, see Fig. 4. In the latter case there is a subtlety which is not apparent from the truncation of the extended Satake diagram: The bottom-right diagram in Fig. 4 would naively suggest that the roots $\alpha_1, \alpha_3, \alpha_5$ define two commuting $\mathfrak{sl}(3,\mathbb{R})$ subalgebras. This is however not the case since, as represented by the lower arrows, the conjugation σ corresponding to the real form $\mathfrak{e}_6(2)$ inside the complex \mathfrak{e}_6, maps α_1 and α_3 into $\alpha_1^c = \alpha_3$ and $\alpha_5^c = \alpha_5$, respectively. As a consequence of this the \mathfrak{e}_6 shift generators corresponding to the two orthogonal $\mathfrak{sl}(3,\mathbb{R})$ root spaces are mixed together in σ-invariant combinations inside $\mathfrak{e}_6(2)$, which make the shift generators of a $\mathfrak{sl}(3,\mathbb{C})$ subalgebra. This subalgebra also contains the two non-compact combinations $H_{\alpha_1} + H_{\alpha_6}, H_{\alpha_2} + H_{\alpha_5}$ and the two compact combinations $i(H_{\alpha_1} - H_{\alpha_6}), i(H_{\alpha_2} - H_{\alpha_5})$ of the \mathfrak{e}_6 Cartan generators.

In Fig. 5 the embeddings $\text{SL}(4,\mathbb{R}) \times \text{SO}(3) \times \text{SO}(1,5) \subset E_7(-5)$ and $\text{SL}(2,\mathbb{C}) \times \text{SL}(4,\mathbb{R}) \times \text{SO}(2) \subset E_6(2)$ are illustrated.

A.3 General Features

One can generalize the above discussion and show that, as a general feature of the embeddings considered in this work, the \mathfrak{g}_N^3 algebra, and its super-Ehlers subalgebra $\mathfrak{g}_N^D \oplus \mathfrak{sl}(D-2)$ can be written in the forms:

$$\mathfrak{g}_N^3 = \mathfrak{h} \oplus \mathfrak{l}_+ \oplus \mathfrak{l}_- \oplus \mathfrak{m}_0; \quad \mathfrak{g}_N^D \oplus \mathfrak{sl}(D-2) = \mathfrak{h} \oplus \mathfrak{l}_+ \oplus \mathfrak{l}_- \oplus \mathfrak{m}_0.$$

(A.21)
Figure 4: Embeddings $\text{SL}(3, \mathbb{R}) \times \text{SU}^*(6) \subset E_7(-5)$ and $\text{SL}(3, \mathbb{C}) \times \text{SL}(3, \mathbb{R}) \subset E_6(2)$. The thick circle is, as usual, the opposite of the highest root of the corresponding algebra.

Note that, as a consequence of the regularity of the embedding and properties (1.3), (1.4), their Cartan subalgebras

$$h = h^{nc} \oplus h^c,$$

(A.22)

can be chosen to coincide, where $\dim(h^{nc})$ is the non-compact rank of the two groups. This is implicit in Dynkin’s construction of the $\mathfrak{g}_N^D \oplus \mathfrak{sl}(D - 2)$ algebra by truncating the extended diagram of \mathfrak{g}_N^3.

Moreover the centralizer of h^{nc}, which is the compact algebra $h^c \oplus m_0$, is common to the two algebras:

$$h^c \oplus m_0 \subset \mathfrak{g}_N^3 \bigcap \left[\mathfrak{g}_N^D \oplus \mathfrak{sl}(D - 2) \right].$$

(A.23)

For a split (maximally non-compact) \mathfrak{g}_N^3, $h^c = m_0 = \emptyset$ and $\alpha^\sigma = \alpha$.

The nilpotent spaces l_\pm, \hat{l}_\pm have the form:

$$l_\pm = \text{Span} \left[i \left(E_{\pm \alpha} - \sigma(E_{\pm \alpha}) \right), E_{\pm \alpha} + \sigma(E_{\pm \alpha}) \right]_{(\alpha, \alpha^\sigma) \in \Delta_+[\mathfrak{g}_N^3]},$$

$$\hat{l}_\pm = \text{Span} \left[i \left(E_{\pm \alpha} - \sigma(E_{\pm \alpha}) \right), E_{\pm \alpha} + \sigma(E_{\pm \alpha}) \right]_{(\alpha, \alpha^\sigma) \in \Delta_+[\mathfrak{g}_N^3] \cap \Delta_+[\mathfrak{g}_N^D \oplus \mathfrak{sl}(D - 2)]},$$

(A.24)

where, as usual, $\Delta_+[\mathfrak{g}_N^3]$ denotes the set of positive roots of the (complexification of) \mathfrak{g}_N^3 with non-trivial restriction to h^{nc}, and $\Delta_+[\mathfrak{g}_N^D \oplus \mathfrak{sl}(D - 2)]$ the set of positive roots of the (complexification of) $\mathfrak{g}_N^D \oplus \mathfrak{sl}(D - 2)$, which is a subset of $\Delta_+[\mathfrak{g}_N^3]$. Thus in general we have:

$$\hat{l}_\pm \subset l_\pm.$$

(A.25)

We can then write the coset space as follows:

$$\mathfrak{g}_N^3 \bigcap \left[\mathfrak{g}_N^D \oplus \mathfrak{sl}(D - 2) \right] = \mathfrak{M}^+ \oplus \mathfrak{M}^-,$$

(A.26)
where \(\mathfrak{h}^\pm = I_+ \oplus I_\pm \). Semisimplicity of \(\mathfrak{g}^3_N \) and \(\mathfrak{g}^D_N \) implies that \(\dim(I_+) = \dim(I_-) = \dim(I_\pm) \), so that \(\dim(\mathfrak{h}^+) = \dim(\mathfrak{h}^-) \). More precisely, in a suitable basis, for each strictly-upper-triangular matrix \(M_+ \) representing an element in \(\mathfrak{h}^+ \), its (strictly-lower-triangular) hermitian-conjugate \(M_- = M^\dagger_+ = \tau(M_+) \) represents an element in \(\mathfrak{h}^- \): The former is given by a generator either of the form \(i(E_\alpha - \sigma(E_\alpha)) \) or \(E_\alpha + \sigma(E_\alpha) \), for some \(\alpha \in \tilde{\Delta}_+ [\mathfrak{g}^3_N] \oplus \tilde{\Delta}_- [\mathfrak{g}^D_N \oplus \mathfrak{sl}(D - 2)] \), the latter will either be \(-i(E_{-\alpha} - \sigma(E_{-\alpha})) \) or \(E_{-\alpha} + \sigma(E_{-\alpha}) \), corresponding to the same \(\alpha \). Thus if \(\{L^\ell_+\}, \ell = 1, \ldots, \dim(\mathfrak{h}^\pm) \), is a basis of \(\mathfrak{h}^\pm \), \(\{L^\ell_-\} = \{-\tau(L^\ell_+)\} \) is a basis of \(\mathfrak{h}^- \) and we can also write the coset space in the form:

\[
\mathfrak{g}^3_N \oplus [\mathfrak{g}^D_N \oplus \mathfrak{sl}(D - 2)] = \mathfrak{h}^c \oplus \mathfrak{h}^{nc},
\]

where

\[
\mathfrak{h}^{nc} = \text{Span}(L^\ell_+ + L^-_\ell) \quad \text{and} \quad \mathfrak{h}^c = \text{Span}(L^\ell_+ - L^-_\ell),
\]

which are the eigenspaces of \(\tau \) on \(\mathfrak{h}^+ \oplus \mathfrak{h}^- \) corresponding to the eigenvalues \(-1\) and \(+1\), respectively. These subspaces define representations with respect to the compact group \(\text{SO}(D - 2) \times \text{mcs}(G^D_N) \). With respect to the \(G^3_N \)-invariant scalar product on \(\mathfrak{g}^3_N \), \(\mathfrak{h}^c \) and \(\mathfrak{h}^{nc} \) have negative and positive signatures, respectively. Since

\[
\dim(\mathfrak{h}^c) = \dim(\mathfrak{h}^{nc}),
\]

the manifold \(M^D_N \) in (5.1) has vanishing character, being

\[
c(M^D_N) = \dim(\mathfrak{h}^c) = \dim(\mathfrak{h}^{nc}) = nc(M^D_N),
\]

as also proven in Sect 5.3. We shall come back on this issue in Appendix C.
B $\mathfrak{so}(8, 8)$ Outer Automorphisms and Dual Subalgebras of $\mathfrak{e}_{8(8)}$

Consider in the maximal $D = 3$ theory the effect of an $O(8, 8)$ “reflection” of the form:

$$O_k = \begin{pmatrix} 1_8 - D_k & D_k \\ D_k & 1_8 - D_k \end{pmatrix},$$

(B.1)

where each block is an 8×8 matrix and D_k is the zero-matrix except for only an odd number k of 1s along the diagonal. Such transformation, which belongs to the $O(8)$ subgroup of $O(8, 8)$, is an outer automorphism of the D_8 algebra whose effect, modulo Weyl transformations of the same algebra, is to interchange α_2 with α_3 in Fig. 1. While it is a symmetry of the D_8 Dynkin diagram, it is not a symmetry of the $\mathfrak{e}_{8(8)}$ one, as it changes the $SO(8, 8)$-chirality of the α_1 root, which is a D_8-spinorial weight [23]. In particular this outer automorphism may map inequivalent subalgebras \mathfrak{g}, \mathfrak{g}' of $\mathfrak{so}(8, 8)$ into one another. This is the case of subalgebras \mathfrak{g} (and thus \mathfrak{g}') which are the direct sum of commuting A_k-algebras with odd rank k. In mathematical language such dual subalgebras are said to be linearly equivalent, i.e. in any matrix representation they are equivalent through conjugation by means of a matrix, which is however not necessarily a representation of an $SO(8, 8)$ element, as it is the case for the outer automorphisms. Equivalence therefore implies linear equivalence though the reverse implication is not true. With respect to \mathfrak{g} and \mathfrak{g}', a same spinorial representation of $\mathfrak{so}(8, 8)$, and thus the adjoint representation of the whole $\mathfrak{e}_{8(8)}$, will branch differently. They are clearly inequivalent $\mathfrak{e}_{8(8)}$-subalgebras. Examples are given in [35]: $\mathfrak{g} = \mathfrak{sl}(8), \mathfrak{sl}(6) \oplus \mathfrak{sl}(2), \mathfrak{sl}(4) \oplus \mathfrak{sl}(4)$, etc., see Fig 6.

![Diagram](image)

Figure 6: Outer automorphism of the D_8 subalgebra of \mathfrak{e}_{8} and two inequivalent $\mathfrak{sl}(8, \mathbb{R})$ subalgebras of $\mathfrak{e}_{8(8)}$.

What has been said for $\mathfrak{so}(8, 8)$ also holds for $\mathfrak{so}^\ast(16)$ and $\mathfrak{so}(16)$ subalgebras of $\mathfrak{e}_{8(8)}$. For instance there are two inequivalent $\mathfrak{u}(8), \mathfrak{u}'(8)$ in either $\mathfrak{so}^\ast(16)$ or $\mathfrak{so}(16)$. One contains the R-symmetry algebras $\mathfrak{su}(8), \mathfrak{usp}(8)$, etc. of the higher dimensional parent maximal supergravities, the other dual subalgebras $\mathfrak{su}'(8), \mathfrak{usp}'(8)$, etc. which are not contained in the chain of exceptional duality algebras $\mathfrak{e}_{7(7)}, \mathfrak{e}_{6(6)}$ etc.
Let us briefly recall the relation between outer automorphisms of \(\mathfrak{so}(8,8) \) and dualities. Consider the toroidal reduction of the \(D = 11 \) theory down to \(D = 3 \) (in the Einstein frame). The Kaluza-Klein ansatz for the metric reads:

\[
G_{\hat{\mu}\hat{\nu}}^{(11)} = \left(e^{2\xi} s_{\hat{\mu}\hat{\nu}}^{(3)} + G_{\rho\sigma} G^{\rho}_{\quad \mu} G_{\nu}^{\sigma} \right) ; \quad \xi = -\frac{1}{2} \log \left(\det(G_{mn}) \right),
\]

where \(\hat{\mu}, \hat{\nu} = 0, \ldots, 10 \), \(\mu, \nu = 0, 1, 2 \), \(m, n = 3, \ldots, 10 \) and the internal metric of \(T^8 \) is conveniently written as follows:

\[
G = (G_{mp}) = E E^T = \tilde{E} \tilde{D}^2 \tilde{E}^T,
\]

where \(E = (E_a^m) \) is the vielbein of the coset \(\text{GL}(8,\mathbb{R})/\text{SO}(8) \), \(a = 3, \ldots, 10 \), written as the product of a matrix \(\tilde{E} \) which only depends on the axionic moduli associated with the off-diagonal components of the metric times the diagonal matrix \(\tilde{D} = (D_m^a) = (e^a \delta_m^a) \). The exponents \(e^a \) can be viewed as the internal radii \(R_a \). The bosonic sector of the \(D = 3 \) Lagrangian reads\[^2^2\]:

\[
e^{-1} \mathcal{L}_3 = \frac{R}{2} \left(-\frac{1}{2} \partial_{\mu} \tilde{h} \cdot \partial^{\mu} \tilde{h} - \frac{1}{2} \sum_{a < b} e^{2(\sigma_a - \sigma_b)} P_{\mu a} F_{\mu b} - \frac{1}{2} \sum_a e^{-2(\sigma_a - \xi)} F_{\mu a} F^\mu a - \frac{1}{4} \sum_{a,b} e^{2(\sigma_a + \sigma_b + \xi)} F_{\mu a} F_{\mu b} - \frac{1}{12} \sum_{a,b,c} e^{-2(\sigma_a + \sigma_b + \sigma_c)} F_{\mu a b} F_{\mu a b} \right),
\]

where \(P_{\mu a} b \equiv (\tilde{E}^{-1} \partial_{\mu} \tilde{E}) a b \) and the dilatonic vector \(\tilde{h} \) has the following form in the \((\epsilon_i) \) orthonormal basis:

\[
\tilde{h} = \sum_{a=3}^9 \left(\sigma_a + \frac{\sigma_{10}}{2} \right) \epsilon_a - 2 + \left(\frac{\sigma_{10}}{2} + \sum_{a=3}^9 \sigma_a \right) \epsilon_8.
\]

The field strengths \(F_{\mu a} \) and \(F_{\mu a b} \) are associated with the scalars \(\chi_a \) and \(\chi^{mn} \) dual in \(D = 3 \) to the vectors \(G_{\mu}^m \) and \(A_{\mu m n} \) respectively, while \(F_{\mu a b} \) is the one pertaining to the scalars \(A_{m n p} \). In these conventions, the lower (or upper) internal \(\text{SO}(8) \)-indices \(a, b, c \) of these field strengths are related to the \(\text{SL}(8,\mathbb{R}) \) indices \(m, n, p \) by means of \(\tilde{E} \) (or \(\tilde{E}^{-1} \)). For instance:

\[
F_{\mu a b c} = \tilde{E}_a^m \tilde{E}_b^n \tilde{E}_c^p F_{m n p} ; \quad F_{\mu m n p} = \partial_{\mu} A_{m n p}.
\]

The above Lagrangian can also be written in the more compact form:

\[
e^{-1} \mathcal{L}_3 = \frac{R}{2} \left(-\frac{1}{2} \partial_{\mu} \tilde{h} \cdot \partial^{\mu} \tilde{h} - \frac{1}{2} \sum_{a \in \Delta_1[\epsilon_0]} e^{-2a_0 - \xi} (\Phi_\mu^a(a)) \Phi^\mu(a) \right),
\]

where the one-forms \(\Phi_\mu^a(a) \) are associated with each of the \(\epsilon_0(8) \)-positive roots \(\alpha \).\[^2^3\] It is useful to express the various radial moduli \(\sigma_a \) in terms of the corresponding fields \(\tilde{\sigma}_a \) in the \(D = 10 \) string frame:

\[
\sigma_a = \tilde{\sigma}_a - \frac{\phi}{3} ; \quad a = 3, \ldots, 9 ; \quad \sigma_{10} = \frac{2}{3} \phi,
\]

we find:

\[
\tilde{h} = \sum_{i=1}^8 \tilde{h}_i \epsilon_i = \sum_{a=3}^9 \tilde{\sigma}_a \epsilon_a - 2 + \left(-2 \phi + \sum_{a=3}^9 \tilde{\sigma}_a \right) \epsilon_8.
\]

\[^2^2\] We adopt the mostly plus signature for the metric.

\[^2^3\] The representation \([13, 14, 15, 16]\) of the \(D = 3 \) Lagrangian applies to all \(D = 3 \) supergravities. In the general (non necessarily maximal) case, \(\tilde{h} \) is a suitable dilaton-dependent vector in the \(h^{nc} \) subspace of the Cartan subalgebra of \(\mathfrak{g}^\ast_N \), while \(\alpha \) are the restrictions to \(h^{nc} \) of the \(\mathfrak{g}^\ast_N \) positive roots (\(\text{restricted roots} \), see \([13]\)).
The outer automorphism O_k in (B.1) has the effect of changing the sign to an odd number of ϵ_a, or, equivalently, to their coefficients in \hat{h}:

$$\epsilon_{i_\ell} \rightarrow -\epsilon_{i_\ell} \ ; \ \ell = 1, \ldots, k. \quad (B.10)$$

To see this let us consider the effect of O_k on the dilatonic part of the coset representative of $O(8,8)/[O(8) \times O(8)]$, which has the following form:

$$D(\hat{h}) = \left(\begin{array}{cc} (e^{h_i \delta_{ij}}) & 0 \\ 0 & (e^{-h_i \delta_{ij}}) \end{array} \right). \quad (B.11)$$

We see that:

$$O_k^{-1}D(\hat{h})O_k = D(\hat{h}'), \quad (B.12)$$

where $h'_\ell = -h_{i_\ell}$, $h'_{i_\ell \neq i_\ell} = h_{i_\ell \neq i_\ell}$, $\ell = 1, \ldots, k$. If i_ℓ run between 1 and 7, this transformation amounts to a T-duality along the internal directions $y^{\ell+2}$ [39] [23]:

$$R'_\ell y^{\ell+2} = e^\sigma y^{\ell+2} = e^{-\sigma} y^{\ell+2} = \frac{1}{R_{\ell+2}}; \ \phi' = \phi - \sum_{\ell=1}^k \sigma_{i_\ell+2}. \quad (B.13)$$

These transformations map type IIA into type IIB theory. If $k = 1$ and $i_\ell = 8$ then there is an S-duality involved: $\sigma'_1 = \sigma_1$ and $\sigma' = -\phi + \sum_{a=3}^9 \sigma_a$.

Instead of considering inequivalent T-dual subalgebras \mathfrak{g}, $\mathfrak{g}' \subset \mathfrak{so}(8,8)$ within a same $\mathfrak{e}_{8(8)}$ algebra, we may adopt an equivalent point of view and consider a same subalgebra $\mathfrak{g} \subset \mathfrak{so}(8,8)$ within two $\mathfrak{e}_{8(8)}$ algebras, called in [23] $\mathfrak{e}_{8(8)}^+$ and $\mathfrak{e}_{8(8)}^-$ [24] defined respectively by completing the $\mathfrak{so}(8,8)$ Dynkin diagram with spinorial weights of different chiralities, namely attaching the weight α_1 to α_3, as in Fig. [11] or a weight α_1' to α_2, defined as follows:

$$\alpha_1 = -\frac{1}{2} \left(\sum_{i=1}^8 \epsilon_i \right) + \epsilon_7 + \epsilon_8 \quad \text{T-duality along } y^9 \Rightarrow \alpha_1' = -\frac{1}{2} \left(\sum_{i=1}^8 \epsilon_i \right) + \epsilon_8. \quad (B.14)$$

This is useful if, for instance, we fix the $\mathfrak{g} = \mathfrak{gl}(8,\mathbb{R}) \subset \mathfrak{so}(8,8)$ group to be the same in the type IIA and type IIB settings. Then the different $\mathfrak{gl}(8,\mathbb{R})$-weights defining the dimensionally reduced type IIA and type IIB forms are obtained by branching the adjoint representations of $\mathfrak{e}_{8(8)}^+$ and $\mathfrak{e}_{8(8)}^-$, respectively, with respect to the common $\mathfrak{gl}(8,\mathbb{R})$, [23].

The doubling of the equivalence classes inside a D_n algebra into dual pairs, discussed above, does not occur if the subalgebra is the sum of commuting algebras in the case in which either all of them are of type A_k with even rank k, or at least one of them is of type D [36]. This is consistent with the fact observed in Subsect. [2.1] that the SL$(7,\mathbb{R})$ $D = 9$ Ehlers subgroups of SO$(8,8)$ which pertain to the type IIA and IIB descriptions are equivalent. The same rule guarantees that, in $D = 6$, the SO$(5,5) \times$ SL$(4,\mathbb{R})$ subgroups of SO$(8,8)$ in the type IIA and IIB settings, are equivalent.

C Poincaré Duality and Level Decomposition

Consider now the branching of the adjoint representation of G_N^3 with respect to SL$(D-2) \times G_N^D$:

$$\text{Adj}_{G_N^3} \rightarrow (\text{Adj}_{SL(D-2)} \oplus 1, \text{Adj}_{G_N^D}) \bigoplus_d \mathfrak{g}_d, \quad (C.1)$$

$$\mathfrak{g}_d = \left[(\Lambda^d, R_d) \oplus (+\Lambda^d, R^d) \right], \quad (C.1)$$

24Actually in [23] only the $D = 4$ theory was considered, the T-duality group being O$(6,6)$ in this case, and the algebras $\mathfrak{e}_{7(7)}$ defined.
where it is understood that if \((\Lambda^d, \mathcal{R}_d) = (*\Lambda^d, \mathcal{R}_d^\prime)\), they are counted just once in \(\mathcal{M}_d\). In light of our discussion in Appendix \(A.3\), we can write the coset space as the carrier of a representation \(\bigoplus_d \mathcal{M}_d\), namely rewrite eq. \((A.20)\) as follows:

\[
\mathfrak{g}_N^D \oplus (\mathfrak{g}_N^D \oplus \mathfrak{sl}(D-2)) = \mathcal{M}^+ \oplus \mathcal{M}^- = \bigoplus_d \mathcal{M}_d. \tag{C.2}
\]

In fact each subspace \(\mathcal{M}_d\) splits into conjugate nilpotent subalgebras as follows:

\[
\mathcal{M}_d = \mathcal{M}_d^+ \oplus \mathcal{M}_d^- , \quad \mathcal{M}_d^+ = \mathcal{M}_d \cap \mathcal{M}^+ , \quad \mathcal{M}_d^- = \mathcal{M}_d \cap \mathcal{M}^- = \tau(\mathcal{M}_d^+) , \tag{C.3}
\]

this being a consequence of the property: \(\tau(\mathcal{M}_d) = \mathcal{M}_d\). Each nilpotent subalgebra \(\mathcal{M}_d^+\) or \(\mathcal{M}_d^-\) separately defines a representation with respect to the compact group \(SO(D-2)\) and the subgroup \(GL(D-3) \subset \text{SL}(D-2)\), though not with respect to \(\text{SL}(D-2)\) itself. We can decompose each space \(\mathcal{M}_d\) into eigenspaces of the Cartan involution \(\tau\), consisting of compact and non-compact generators:

\[
\mathcal{M}_d = \mathcal{M}_d^c \oplus \mathcal{M}_d^{nc} , \quad \mathcal{M}_d^c = \mathcal{M}^c \cap \mathcal{M}_d , \quad \mathcal{M}_d^{nc} = \mathcal{M}^{nc} \cap \mathcal{M}_d. \tag{C.4}
\]

These subspaces define representations with respect to the compact group \(SO(D-2) \times mcs(\mathfrak{g}_N^D)\) and, moreover

\[
\dim(\mathcal{M}_d^c) = \dim(\mathcal{M}_d^{nc}) . \tag{C.5}
\]

For the sake of simplicity, let us consider a split (maximally non-compact) \(\mathfrak{g}_N^D\). Then each \(\mathcal{M}_d\) will be generated by shift operators corresponding to a certain set of positive roots \(\alpha^{(d)}\) and their negatives:

\[
\mathcal{M}_d = \text{Span}(E_{\alpha^{(d)}}, E_{-\alpha^{(d)}})_{\alpha^{(d)} \in \Delta_+[\mathfrak{g}_N^D]} , \tag{C.6}
\]

and the conjugate nilpotent subalgebras are \(\mathcal{M}_d^+ = \text{Span}(E_{\alpha^{(d)}})\) and \(\mathcal{M}_d^- = \text{Span}(E_{-\alpha^{(d)}})\). The eigenspaces \(\mathcal{M}_d^c\), \(\mathcal{M}_d^{nc}\) of the Cartan involution, consisting of compact and non-compact generators read:

\[
\mathcal{M}_d^c = \text{Span}(E_{\alpha^{(d)}} - E_{-\alpha^{(d)}})_{\alpha^{(d)} \in \Delta_+[\mathfrak{g}_N^D]} ; \quad \mathcal{M}_d^{nc} = \text{Span}(E_{\alpha^{(d)}} + E_{-\alpha^{(d)}})_{\alpha^{(d)} \in \Delta_+[\mathfrak{g}_N^D]} . \tag{C.7}
\]

Each positive root \(\alpha^{(d)}\) corresponds to a \(D = 3\) scalar field in the Lagrangian \((1.7)\). For a given \(d\) the roots \(\alpha^{(d)}\) are defined by the level decomposition of the \(\mathfrak{g}_N^D\)-roots with respect to the root which is truncated out of its extended diagram in order to define the \(\mathfrak{g}_N^D \oplus \mathfrak{sl}(D-2)\)-subdiagram.

Let us illustrate this procedure in the maximal theory. As shown in Appendix \(A\), the \(\mathfrak{e}_{11-D(11-D)} \times \mathfrak{sl}(D-2)\) diagram is obtained by deleting from the \(\mathfrak{e}_{8(8)}\)-extended Dynkin diagram the root \(\alpha_{12-D}\). The \(\mathfrak{sl}(D-2)\) subalgebra is defined by the simple roots \(\alpha_{13-D}, \ldots, \alpha_8, -\psi, \psi = \epsilon_1 + \epsilon_8\) being the \(\mathfrak{e}_{8(8)}\) highest root, while its \(\mathfrak{gl}(D-3)\) subalgebra only by the roots \(\alpha_{13-D}, \ldots, \alpha_8\). Writing a generic \(\mathfrak{e}_{8(8)}\) positive root in the simple root basis:

\[
\alpha = \sum_{i=1}^{8} n_i \alpha_i , \tag{C.8}
\]

the positive integer \(n_i\) defines the level of \(\alpha\) with respect to \(\alpha_i\). Let us consider the level-decomposition with respect to the root \(\alpha_{12-D}\) for dimensions \(D < 9\), namely the values of \(n_{12-D}\) defining the roots \(\alpha^{(d)}\). \(\text{In the non-split case, one should consider the level decomposition of the restricted roots. Level decompositions are a common procedure in the \(E_{10}\) and \(E_{11}\) approaches to maximal supergravity \[13, 44].}\)

\(\text{More precisely, the level \(n'\) is the grading of the generator \(E_n\) with respect to the SO(1,1) generator \(H_\lambda\) (i.e. \([H_\lambda, E_n] = n' E_n\), \(\lambda\) being the \(\mathfrak{g}_N^D\) simple weights. The level decomposition is defined by the Cartan generator which is orthogonal to the Cartan subalgebra of \(\mathfrak{g}_N^D \oplus \mathfrak{gl}(D-3)\) (and therefore commutes with \(\mathfrak{g}_N^D \oplus \mathfrak{gl}(D-3)\)). In the maximal theory, for \(D < 9\), the relevant Cartan generator is \(H_{12-D}\) and thus the level to consider is \(n_{12-D}\). For \(D = 9\) the generator is \(H_{13} + H_{13}\) and so we shall consider the decomposition with respect to the integer \(n = n_2 + n_3\). In the type II A \(D = 10\) description, the generator is \(H_{13} + 2H_{13}\) and the decomposition will be effected with respect to \(n = n_1 + 2n_2\).}
D = 4. In the case of D = 4 we have 63 roots with n_8 = 0, corresponding to the e_{7(7)}-positive roots. The level n_8 = 1 roots are 56 and are the α^{(1)}-roots whose shift generators E_{+α^{(1)}} define the carrier space of the N_{d=1} = (1, 56) representation. The level n_8 = 2 root defines, with its negative, the shift generators in the quotient sl(D − 2) ⊕ gl(D − 3) = sl(2) ⊕ gl(1), which are the two shift generators of the Ehlers group.

D = 5. Consider now the D = 5 case. There are 37 level-n_7 = 0 roots corresponding to the positive roots of e_{6(6)} ⊕ gl(2). The level-n_7 = 1 roots are 54 and define in N_{d=1} a subspace in the (2, 27)-representation of SL(D − 3) × E_{6(6)} = SL(2) × E_{6(6)}, while the 27 level-n_7 = 2 roots define a subspace in the (1, 27') with respect to the same group. The space N_{d=1} will be the carrier of the conjugate representations. Together, the level n_7 = 1, 2 roots and their negatives define the space N_{d=1} = N_{d=1}^+ ⊕ N_{d=1}^- = (3, 27) ⊕ (3', 27'), and are collectively denoted by α^{(1)}. Finally the 2 level-n_7 = 3 roots, with their negative, define the generators of the coset sl(D − 2) ⊕ gl(D − 3) = sl(3) ⊕ gl(2).

D = 6. As far as the D = 6 case is concerned, the 23 level-n_6 = 0 roots are positive roots of gl(3) ⊕ so(5, 5), while the 48 level-n_6 = 1 and the 16 level-n_6 = 3 roots define generators in N_{d=1} transforming in the (3, 16) and (1, 16') of SL(D − 3) × SL(5) = SL(3) × SO(5, 5), respectively. These are the α^{(4)} roots, which, together with their negatives, define the N_{d=1} = (4, 16) ⊕ (4', 16') space. The roots α^{(2)} (d = 2) are 30 and have n_6 = 2. The corresponding space N_{d=2} = N_{d=2}^+ ⊕ N_{d=2}^- is the carrier of a (3, 10) representation of SL(3) × SO(5, 5), while E_{±α^{(2)}} generate the N_{d=2} = (6, 10). Finally the 4 level-n_6 = 4 roots, with their negative, define the generators of the coset sl(D − 2) ⊕ gl(D − 3) = sl(4) ⊕ gl(3).

A similar pattern occurs in the higher-D cases.

D = 7. For D = 7, we have 16 roots with n_5 = 0 which are the roots of sl(4) ⊕ sl(5). The 40 n_5 = 1 and 30 n_5 = 2 roots define subspaces of N_{d=1} in the (4, 10') and (10, 1) of SL(D − 3) × SL(7) = SL(4) × SL(5), respectively. These are the α^{(1)}-roots, and the space N_{d=1} = N_{d=1}^+ ⊕ N_{d=1}^- is the carrier of the representation (5, 10') ⊕ (5', 10) of SL(5) × SL(5). The α^{(2)}-roots consist in the 30 level-n_5 = 2 and the 20 level-n_5 = 3 roots defining the representations (6, 5) and (4', 5') of SL(4) × SL(5) in N_{d=2}, respectively. The space N_{d=2} = N_{d=2}^+ ⊕ N_{d=2}^- then defines the representation (10, 5) ⊕ (10', 5') of SL(5) × SL(5). Finally the 4 level-n_5 = 5 roots, with their negative, define the generators of the coset sl(D − 2) ⊕ gl(D − 3) = sl(5) ⊕ gl(4).

D = 8. In the D = 8 case the 14 n_4 = 0 roots are the positive roots of sl(5) ⊕ sl(2) ⊕ sl(3). The α^{(1)}-roots consist of the 30 n_4 = 1 and the 6 n_4 = 5 roots defining the SL(5) × SL(2) × SL(3) representations (5, 2, 3') ⊕ (1, 2, 3) in N_{d=1} which, together with the conjugate representations in N_{d=1}^-, complete the N_{d=1} = (6, 2, 3') ⊕ (6', 2, 3) of SL(5) × SL(2) × SL(3). The α^{(2)}-roots are defined by the 30 n_4 = 2 and 15 n_4 = 4 roots, corresponding to the representation (10, 1, 3) ⊕ (5, 1, 3') in N_{d=2}, so that N_{d=2} = N_{d=2}^+ ⊕ N_{d=2}^- = (15, 1, 3) ⊕ (15', 1, 3') of SL(5) × SL(2) × SL(3). The α^{(3)}-roots are the 20 ones with n_4 = 3. They define the N_{d=3}^+ space in the (10, 2, 1) of SL(5) × SL(2) × SL(3) which, together with N_{d=3}^-, complete the N_{d=3} = (20, 2, 1) of SL(5) × SL(2) × SL(3). The remaining 5 roots with n_4 = 6, with their negative, define the generators of the coset sl(D − 2) ⊕ gl(D − 3) = sl(6) ⊕ gl(5).

D = 9. The same analysis applies to D = 9, although in this case we shall consider the sum n = n_2 + n_3. There are 16 roots with n = 0, which are the positive roots of the algebra sl(6) ⊕ gl(2). The α^{(1)}-roots consist of the 18 with n = 1 and the 3 with n = 6, defining the SL(6) × GL(2) representations (6, 2, 3 + 1, 4) ⊕ (1, 2, 3 + 1, 4) in N_{d=1}^+ which, together with the conjugate representations in N_{d=1}^-, complete the N_{d=1} = (7, 2, 3 + 1, 4) ⊕ (7', 2, 3 + 1, 4) of SL(7) × GL(2). The α^{(2)}-roots are the 30 roots with n = 2 and the 12 with n = 5 defining the SL(6) × GL(2) representations (15, 2, 1) ⊕ (6', 2, 1) in N_{d=2}^+ so that N_{d=2} = N_{d=2}^+ ⊕ N_{d=2}^- = (21, 2, 1) ⊕ (21', 2, 1). Next we have to consider the 20
$n = 3$ and the $15 \, n = 4$ roots which make the $\alpha^{(3)}$ and define the $\text{SL}(6) \times \text{GL}(2)$-representations $(20, 1_{+2}) \oplus (15', 1_{-2})$ in $\mathfrak{d}_{d=3}$, so that $\mathfrak{d}_{d=3} = \mathfrak{d}^+_{d=3} \oplus \mathfrak{d}^-_{d=3} = (35, 1_{+2}) \oplus (35', 1_{-2})$. Finally the 6 $n = 7$ roots, with their negative, define the generators of the coset $\mathfrak{sl}(D - 2) \oplus \mathfrak{gl}(D - 3) = \mathfrak{sl}(7) \oplus \mathfrak{gl}(6)$.

$D = 10$, IIB. In the $D = 10$ case we have to distinguish between the type IIA and IIB theories. In the type IIB setting we need consider the level n_3 with respect to α_3. The 22 roots with $n_3 = 0$ are the positive roots of $\mathfrak{gl}(7) \oplus \mathfrak{sl}(2)$, $\mathfrak{sl}(2)$ being the U-duality group. In this case we only have $d = 2, 4$. The $\alpha^{(2)}$s consist of the 42 $n_3 = 1$ and the 14 $n_3 = 3$ defining the $\text{SL}(7) \times \text{SL}(2)$-representations $(21, 2) \oplus (7', 2)$ in $\mathfrak{d}^+_{d=2}$, so that $\mathfrak{d}^+_{d=2} = \mathfrak{d}^+_{d=2} \oplus \mathfrak{d}^-_{d=2} = (28, 2) \oplus (28', 2)$ of $\text{SL}(8) \times \text{SL}(2)$. Next we have the 35 roots with $n_3 = 2$, which are the $\alpha^{(4)}$s and define the $(35, 1)$ of $\text{SL}(7) \times \text{SL}(2)$ in $\mathfrak{d}^+_{d=4}$, so that $\mathfrak{d}^+_{d=4} = \mathfrak{d}^+_{d=4} \oplus \mathfrak{d}^-_{d=4} = (70, 1)$. There are 7 $n_3 = 4$ roots which, with their negative, define the generators of the coset $\mathfrak{sl}(D - 2) \oplus \mathfrak{gl}(D - 3) = \mathfrak{sl}(8) \oplus \mathfrak{gl}(7)$.

$D = 10$, IIA. As far as the type IIA description is concerned, the level to consider for the decomposition is the sum $n = n_1 + 2 n_2$. In this case we only have $d = 1, 2, 3$. There are 21 $n = 0$ roots which are the positive roots of $\mathfrak{gl}(7) \oplus \mathfrak{so}(1, 1)$, $\mathfrak{so}(1, 1)$ being the U-duality algebra. The $\alpha^{(1)}$ roots consist of the 7 roots with $n = 1$ and the single $n = 7$ root defining the $\text{SL}(7) \times \text{SO}(1, 1)$-representation $7_{+3} \oplus 1_{-3}$ in $\mathfrak{d}_{d=1}$, which, together with the conjugate representations in $\mathfrak{d}_{d=1}$, complete the $\mathfrak{d}_{d=1} = 8_{+3} \oplus 8_{-3}$ of $\text{SL}(8) \times \text{SO}(1, 1)$. Next we consider the 21 roots with $n = 2$ and the 7 with $n = 6$, whose shift operators generating $\mathfrak{d}^+_{d=2}$ transform in the $21_{-2} \oplus 7'_{+2}$ with respect to $\text{SL}(7) \times \text{SO}(1, 1)$. These roots define then the $\alpha^{(2)}$ and $\mathfrak{d}_{d=2} = \mathfrak{d}^+_{d=2} \oplus \mathfrak{d}^-_{d=2} = 28_{-2} \oplus 28'_{+2}$ of $\text{SL}(8) \times \text{SO}(1, 1)$. The $\alpha^{(3)}$s consist of the 35 $n = 3$ and the 21 $n = 6$ roots defining the $\text{SL}(7) \times \text{SO}(1, 1)$-representation $35_{+1} \oplus 21_{-1}$ in $\mathfrak{d}_{d=3}$ which, together with the conjugate representations in $\mathfrak{d}_{d=3}$, complete the $\mathfrak{d}_{d=3} = 56_{+1} \oplus 56'_{-1}$. There are no roots with $n = 5$ while those with $n = 8$ are 7 and, with their negative, define the generators of the coset $\mathfrak{sl}(D - 2) \oplus \mathfrak{gl}(D - 3) = \mathfrak{sl}(8) \oplus \mathfrak{gl}(7)$.

$D = 11$. We end this analysis with the $D = 11$ case discussed in the previous Section. The relevant level decomposition is with respect to the root α_2. With $n_2 = 0$ we have the positive roots of $\mathfrak{gl}(8)$. In this case we only have $d = 3$ and the $\alpha^{(3)}$-roots consist of the 56 $n_2 = 1$ and the 28 $n_2 = 2$ ones defining the $\text{SL}(8) \times \text{SO}(1, 1)$-representation $56_{+1} \oplus 28'_{+2}$ and $\mathfrak{d}_{d=3}$, which, together with the conjugate representations in $\mathfrak{d}_{d=3}$, complete the $\mathfrak{d}_{d=3} = 84 \oplus 84'$. Finally the 8 $n_2 = 3$ roots, with their negative, define the generators of the coset $\mathfrak{sl}(D - 2) \oplus \mathfrak{gl}(D - 3) = \mathfrak{sl}(9) \oplus \mathfrak{gl}(8)$.

References

[1] M. Goroff and J. H. Schwarz, D-dimensional Gravity In The Light Cone Gauge, Phys. Lett. B127, 61 (1983).
[2] E. Witten, The N = 8 Supergravity Theory. 1. The Lagrangian, Phys. Lett. B80, 48 (1978). E. Witten and B. Julia, The SO(8) Supergravity, Nucl. Phys. B159, 141 (1979).
[3] C. Hull and P. K. Townsend, Unity of Superstring Dualities, Nucl. Phys. B438, 109 (1995), hep-th/9410167.
[4] E. Witten, B. Julia, H. Lu and C.N. Pope, Higher dimensional origin of D = 3 coset symmetries, hep-th/9909099.
[5] H. Lu and C.N. Pope, P-brane solitons in maximal supergravities, Nucl.Phys. B465 (1996) 127, hep-th/9512012.
[6] N. Marcus and J. H. Schwarz, Three-Dimensional Supergravity Theories, Nucl. Phys. B228, 145 (1983).
[7] E. Cremmer, *Supergravities in 5 Dimensions*, in: “Superspace and Supergravity”, Eds. S.W. Hawking and M. Rocek (Cambridge Univ. Press, 1981).

[8] B. Julia, *Group Disintegrations*, in: “Superspace and Supergravity”, Eds. S.W. Hawking and M. Rocek (Cambridge Univ. Press, 1981).

[9] S. Ananth, L. Brink and P. Ramond, *Eleven-dimensional supergravity in light-cone superspace*, JHEP 0505 (2005) 003, hep-th/0501079.

[10] L. Brink, S.-S. Kim and P. Ramond, *E7(7) on the Light Cone*, JHEP 0806, 034 (2008), arXiv:0804.4300 [hep-th].

[11] L. Brink, S.-S. Kim and P. Ramond, *E8(8) on the Light Cone Superspace*, JHEP 0807, 113 (2008), arXiv:0801.2993 [hep-th].

[12] B. de Wit, A.K. Tollsten and H. Nicolai, *Locally supersymmetric D = 3 nonlinear sigma models*, Nucl. Phys. B392, 3 (1993), hep-th/9208074.

[13] S. Helgason, *Differential Geometry, Lie Groups and Symmetric Spaces* (Academic Press, New York, 1978).

[14] R. Gilmore, *Lie Groups, Lie Algebras, and Some of Their Applications* (Dover Publications, 2006).

[15] A. Keurentjes, *The Group theory of oxidation*, Nucl. Phys. B658, 303 (2003), hep-th/0210178.

[16] A. Keurentjes, *The Group theory of oxidation 2: Cosets of nonsplit groups*, Nucl. Phys. B658, 348 (2003), hep-th/0212024.

[17] N. Marcus, A. Sagnotti and J. H. Schwarz, *Infinite Symmetry Algebras Of Extended Supergravity Theories*, Nucl.Phys. B243 (1984) 335.

[18] M. Günyaydin, G. Sierra and P. K. Townsend, *Exceptional Supergravity Theories and the Magic Square*, Phys. Lett. B133, 72 (1983). M. Günyaydin, G. Sierra and P. K. Townsend, *The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Algebras*, Nucl. Phys. B242, 244 (1984).

[19] M. Günyaydin, *Lectures on Spectrum Generating Symmetries and U-duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace*, arXiv:0908.0374 [hep-th].

[20] P. Truini, *Exceptional Lie Algebras, SU(3) and Jordan Pairs*, arXiv:1112.1258 [math-ph].

[21] W. Nahm, *Supersymmetries and their Representations*, Nucl. Phys. B135, 149 (1978).

[22] E. Cremmer, B. Julia and J. Scherk, *Supergravity Theory in Eleven-Dimensions*, Phys. Lett. B76, 409 (1978).

[23] M. Bertolini and M. Trigiante, *Regular RR and NS NS BPS black holes*, Int. J. Mod. Phys. A15, 5017 (2000) 5017, hep-th/9910237.

[24] R. D’Auria, S. Ferrara, M. A. Lledó and V.S. Varadarajan, *Spinor Algebras*, J. Geom. Phys. 40, 101 (2001), hep-th/00010124.

[25] S. Ferrara, C. A. Savoy and B. Zumino, *General Massive Multiplets In Extended Supersymmetry*, Phys. Lett. B100, 393 (1981).

[26] G. Compere, S. de Buyl, E. Jamsin and A. Virmani, *G2 Dualities in D = 5 Supergravity and Black Strings*, Class. Quant. Grav. 26, 125016 (2009), arXiv:0903.1645 [hep-th].
[27] E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating Geodesic Flows and Supergravity Solutions, Nucl. Phys. B812, 343 (2009), arXiv:0806.2310 [hep-th].

[28] L. Borsten, M. J. Duff, S. Ferrara, A. Marrani and W. Rubens, Small Orbits, Phys. Rev. D85, 086002 (2012), arXiv:1108.0424 [hep-th].

[29] S. Cecotti, S. Ferrara and L. Girardello, Geometry of Type II Superstrings and the Moduli of Supers conformal Field Theories, Int. J. Mod. Phys. A4, 2475 (1989).

[30] E. Cremmer and A. Van Proeyen, Classification Of Kahler Manifolds In $N=2$ Vector Multiplet Supergravity Couplings, Class. Quant. Grav. 2, 445 (1985).

[31] J.F. Luciani, Coupling of $O(2)$ Supergravity with Several Vector Multiplets, Nucl. Phys. B132, 325 (1978).

[32] J. Bagger and E. Witten, Matter Couplings in $N=2$ Supergravity, Nucl. Phys. B222, 1 (1983).

[33] A. Salam and E. Sezgin, Anomaly freedom in chiral supergravities, Phys. Scripta 32, 283 (1985). S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B151, 351 (1985). S. Ferrara, F. Riccioni and A. Sagnotti, Tensor and vector multiplets in six dimensional supergravity, Nucl. Phys. B519, 115 (1998), hep-th/9711059. F. Riccioni and A. Sagnotti, Consistent and covariant anomalies in six-dimensional supergravity, Phys. Lett. B436, 298 (1998), hep-th/9806129. H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nucl. Phys. B505, 497 (1997), hep-th/9703075.

[34] M. Güngördü, H. Samtleben and E. Sezgin, On the Magical Supergravities in Six Dimensions, Nucl. Phys. B848, 62 (2011), arXiv:1012.1818 [hep-th].

[35] D.V. Alekseevskii, Math. USSR Izvestija 9, 297 (1975).

[36] E. B. Dynkin, Semisimple Subalgebras of Semisimple Lie Algebras, American Mathematical Society Translations Series 2, vol. 6 (1957), 111 – 244.

[37] E. B. Dynkin, The Maximal Subgroups of the Classical Groups, American Mathematical Society Translations Series 2, vol. 6 (1957), 245 – 378.

[38] A. Minchenko, The Semisimple Subalgebras of Exceptional Lie Algebras, Trans. Moscow Math. Soc. 67, 2006, 225–259

[39] H. Lu, C. N. Pope and K. S. Stelle, Weyl group invariance and p-brane multiplets, Nucl. Phys. B 476 (1996) 89 [hep-th/9602140].

[40] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fre and M. Trigiante, RR scalars, U duality and solvable Lie algebras, Nucl. Phys. B 496 (1997) 617 [hep-th/9611014].

[41] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fre, R. Minasian and M. Trigiante, Solvable Lie algebras in type IIA, type IIB and M theories, Nucl. Phys. B 493 (1997) 249 [hep-th/9612202].

[42] E. Cremmer, B. Julia, H. Lu and C. N. Pope, Dualization of dualities. 1., Nucl. Phys. B 523 (1998) 73 [hep-th/9710119].

[43] A. Kleinschmidt and H. Nicolai, E(10) and SO(9,9) invariant supergravity, JHEP 0407 (2004) 041 [hep-th/0407101].

[44] E. A. Bergshoeff, M. de Roo, S. F. Kerstan, T. Ortin and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 0607 (2006) 018 [hep-th/0602280].