Effect of PMMA sealing treatment on the corrosion behavior of plasma electrolytic oxidized titanium dental implants in fluoride-containing saliva solution

Nawres Bahaa Mohammed¹, Zina Ali Daily², Mohammed Hussein Alsharbaty³, Shahabe Saqib Abullais⁴, Suraj Arora⁵, Holya A Lafta⁶, Abduladheem Turki Jalil⁷, Abbas F Almulla⁸, Andrés Alexis Ramírez-Coronel⁹, Surendar Aravindhan⁶ and Masoud Soroush Bathaei¹,10

¹ College of Dentistry, University of Al-Ameed, Karbala, Iraq
² Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
³ Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
⁴ Al-Nisour University College, Baghdad, Iraq
⁵ Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
⁶ Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
⁷ Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Universidad Católica de Cuenca, Ecuador and Universidad CES, Medellín, Colombia, Cuenca, Ecuador
⁸ Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
⁹ Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
¹⁰ Currently at Department of Mining and Materials Engineering, McGill University, Montréal, Canada

* Author to whom any correspondence should be addressed.
E-mail: ms.bathaei@gmail.com

Keywords: titanium implants, plasma electrolytic oxidation, PMMA sealing, corrosion performance, saliva solution

Abstract
Titanium (Ti) and its alloys are widely used as dental implant materials because of their high mechanical properties, biocompatibility, and corrosion resistance. This research was undertaken to study the effect of polymethyl-methacrylate (PMMA) sealing layer on the corrosion performance of plasma electrolytic oxidation (PEO)-coated titanium-based dental implants in pure saliva and fluoride-containing saliva solutions. The phase structure, chemical composition, and microstructure of coatings were investigated via x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy, respectively. The corrosion behavior of the samples was evaluated by open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy tests. The deposition of the PMMA layer on the PEO-coated Ti dental implants was found to effectively seal the micropores and microcracks of the TiO₂ coatings and block corrosive ions’ penetration routes through the coating. Thereby, the results indicated that better corrosion performance was observed when the PMMA layer is applied on PEO-coated Ti dental implants than on the simple PEO coatings.

1. Introduction
The replacement of a lost tooth has been exasperated by biomaterials. A variety of metallic, ceramic and polymeric biomaterials have been used in the dental transplant [1–3]. Titanium (Ti) and its alloys are suitable materials for manufacturing orthopedic and dental implants, due to their high mechanical strength, corrosion resistance, and biocompatibility, which are the reasons for their popularity [4, 5]. A thin oxide layer of titanium dioxide (TiO₂) forms on Ti surfaces exposed to water or air, providing corrosion resistance [6]. Since body environmental conditions can affect the nature, composition, and thickness of the protective oxide layer on metallic surfaces, Ti and its alloys alloy are not considered entirely inert in the physiochemical media [7, 8].
Recent studies have shown that saliva, fluorides, acid attack, \(\text{H}_2\text{O}_2 \), microbial components, bacterial metabolites, and nicotine, adversely affect Ti’s electrochemical behavior [9–11].

The oral environment is often characterized by aggressive properties and corrosive substances [12, 13]. Saliva is complex solution and consists of both inorganic salts and organic compounds [14]. The pH of saliva around dental implants can vary depending on factors such as food, age, and diseases [15]. Drinking acidic beverages can lower buccal pH [16]. Saliva can also be acidified by infections, causing dental implants to corrode [17]. Moreover, fluoride containing toothpaste, prophylactic agents, dental rinses, and other prophylactic treatments are frequently used in dentistry to prevent plaque formation and caries [10]. There is a wide variety of fluoride ion concentrations in these products, ranging from 1 to about 22000 ppm, depending on which therapies and agents are used [18]. Therefore, the corrosion resistance of metallic dental devices must be high at high levels of fluoride ion [19, 20]. Historically, corrosion of titanium-based alloys in fluoride-containing media has been a problem [21, 22].

Up to now, Ti implant surfaces have been modified using topographical, chemical, and biological treatments to enhance their corrosion resistance and bioactivity in physiochemical media [23, 24]. Among the various treatments, plasma electrolytic oxidation (PEO) is one that can be applied to valuable and non-valuable metals [25–28]. The PEO process is a promising method for improving corrosion and bioactivity properties of Ti and its alloys, as a result of the formation of thick, dense and hard oxide coatings [29]. During this process, the Ti sample is anodized above its dielectric breakdown potential in order to break down the TiO_2 coating [30]. There are many benefits to using TiO_2 as surface coatings on dental implants, including its biocompatibility, corrosion resistance, antimicrobial properties, and nontoxicity [31]. It has been reported that TiO_2 formed on titanium becomes extremely reactive when exposed to fluoride ions [32]. However, in light of the literature, no study has been done on the corrosion behavior of TiO_2 coatings produced by PEO method on Ti in fluoride-containing saliva solution.

Due to electrical discharge during the anodic oxidation process, PEO coatings have a porous structure. These pores can be served as pathways for the diffusion of aggressive agents such as \(\text{Cl}^- \) ions through coatings to the substrate, resulting in decreased corrosion resistance [33–35]. In response to this issue, the pores can be sealed by organic or inorganic particles [36]. These particles promote the bone growth on the implant surface by increasing the cell activity [37, 38]. Moreover, sealing pores was introduced as a practical strategy by epoxy deposition technology on PEO coatings [39]. A number of interesting benefits of sealing technology are not only its ability to penetrate deeply into PEO coating pores, but also its ease of manufacturing or its low environmental impact [40, 41]. Moreover, filling the pores of the PEO coating with polymer as a top coat will result in higher corrosion performance in aggressive media [39, 42]. There have been a number of studies using the polymeric sealing strategy for modifying the corrosion performance of PEO coated metallic materials [40, 43]. In such systems, the barrier properties of the epoxy sealing layers determine the system’s performance, preventing corrosive electrolytes and ions from accessing substrates [44]. Epoxy coatings containing inorganics are more prone to cracking since residual water evaporates rapidly during curing [45, 46]. Therefore, in recent years, much attention has been paid to organic layers for sealing PEO coatings. Poly(methyl-methacrylate) (PMMA) is one of the most commonly used organic compounds for total hip prosthesis fixation because it is biocompatible, processable, and inexpensive [47, 48]. With non-toxic solvents, PMMA can be synthesized into a durable, scratch-resistant, transparent thermoplastic that is FDA-approved, biocompatible, bioinert and durable [32]. In addition to providing a strong mechanical connection with the implants, this polymer can also distribute their load when applied as bone cement [49, 50]. Recently, Schott et al. grafted and spin coated PMMA on the alkali activated Ti [51]. They reported the corrosion resistance of the PMMA-grafted/Ti interface in biological medium is satisfactory and that the grafting of PMMA is even acting as a protective barrier for Ti substrate. To the best of our knowledge, this type of polymer has never been deposited on PEO-treated Ti implants to produce duplex PMMA/TiO_2 coatings, and its corrosion behavior has not been reported in an oral environment.

Taking into account the current research directions in the field of surface engineering of dental implants, and the requirements for modifying the corrosion performance of PEO coatings on Ti-based dental implants, the objectives of this work will be the (i) preparation of PMMA/TiO_2 duplex coatings on Ti dental implants, and (ii) measurement of electrochemical corrosion parameters of prepared coatings in fluoride-containing saliva.

2. Materials and methods

In this study, Ti-6Al-4V (Titanium grade 5) commercially dental implants were used as a substrate with a diameter of 3.5 mm and length of 13 mm from Tabriz Implant, Tabriz, Iran. Before the PEO process, implants were degreased in ethanol and ultrasonic bath for 5 min. PEO process was carried out on the dental implants using a pulsed direct current (DC) power supply KIKUSIU PWR800H (Japan). The PEO cell was composed of a stainless-steel tank with a cooling system as a cathode and the implants as an anode. The electrolyte consisted of...
an aqueous solution of 0.3 M of calcium acetate \((\text{Ca(C}_2\text{H}_3\text{O}_2\text{)}_2)\) (Merk) and 0.02 M of glycerophosphate disodium \((\text{C}_3\text{H}_7\text{Na}_2\text{O}_6\text{P})\) (Merk) in 500 ml of deionized (DI) water. The pH and conductivity of electrolyte were measured 5.21 and \((14.1 \text{ mS} \cdot \text{cm}^{-1})\), respectively. Metrohm 691 pH meter and Mettler Toledo Inlab 730 probe were used to determine electrolyte conductivity and pH values, respectively. A pulse voltage of 290 volts, a frequency of 250 Hz, a duty cycle of 60%, and an anodization time of 10 min were determined for PEO process [52]. Afterward, the implants were rinsed, air dried, and kept in the desiccator. Deposition of PMMA on PEO coated implants was performed using electropolymerization method that has been reported by E De Giglio et al for preparation of PMMA coatings on Ti-based substrates [53]. A schematic illustration of layers preparation by PEO and electrospray processes on Ti dental implant is shown in figure 1.

The initial surface examination of coated implants was observed by optical microscopy (Zeiss Axioskop2-MAT). The surface and cross-sectional morphology of coatings were analyzed using an FEI Nova Nanosem 440 scanning electron microscope (SEM, Leica Cambridge Ltd., Cambridge, England). The elemental distribution in coatings was analyzed using energy dispersive x-ray spectrometer (EDS, Oxford INCA energy) attached to the SEM. PHYNIX FN thickness meters were used to measure the average thickness of the coatings. At different regions, a roughness tester (PHYNIX TR-100) was used to measure the mean surface roughness \((R_a)\). The adhesion strength of coatings was measured in the outer part of the implants’ thread by an adhesion tester (PosiTest AT-A50) [55]. Phase crystalline structures of PEO coated dental implants were investigated by x-ray diffraction (XRD) using Cu Kα radiation \((\lambda = 1.54056 \text{ Å})\) in a 2θ scan ranging from 20 to 80°. Fourier transform infrared spectroscopy (FTIR) analysis of PMMA layers was conducted using a VERTEX 70, Bruker spectrometer, in the range of 4000–400 cm\(^{-1}\) with a resolution of 4 cm\(^{-1}\) and a scan time of 55 s. Electrochemical measurements were used to detect differences in corrosion resistance among coated samples. The corrosion resistance was examined with open circuit potential (OCP) measurements, potentiodynamic polarization test (PDP) and electrochemical impedance spectroscopy tests (EIS) in saliva and fluoride-containing saliva solutions at 36.5 °C. An oral electrolyte was mimicked using Fusayama-Meyer artificial saliva [56]. The composition of the saliva solution is listed in table 1. According to table 1, Merck’s reagents with their CAS number were added slowly to the 1 l DI water to be used as received without any further purification. To simulate fluoridated media, 0.24 mol.L\(^{-1}\) sodium fluoride (NaF, Sigma Aldrich, USA) was added to the saliva solution. The electrochemical measurements were conducted using a potentiostat (EG & G, PAR, 263A, USA) in the conventional three electrode cell with specimen as a working electrode (W.E.), a platinum plate as an auxiliary electrode and a saturated calomel electrode (SCE) as a reference electrode (R.E.). To remove oxide from the uncoated dental implants formed by air, a cathodic pre-treatment of 1.2 V\(_{\text{SCE}}\) was performed before each test.

Table 1. Amount of reagents for preparing 1 l of the saliva solution.

Order	Reagent	Amount (g.l\(^{-1}\))	CAS Number
1	NaCl	0.4	7647–14–5
2	\(\text{Na}_2\text{HPO}_4\cdot2\text{H}_2\text{O}\)	0.690	13472–35–0
3	KCl	0.4	7447–40–7
4	\(\text{CaCl}_2\cdot2\text{H}_2\text{O}\)	0.796	10043–52–4
5	\(\text{Na}_2\text{S}_2\text{O}_3\cdot\text{H}_2\text{O}\)	0.005	1313–84–4
6	Urea	1.0	57–13–6

Figure 1. Schematic illustration of preparation procedures of PEO and TiO\(_2\)/PMMA coatings on the Ti dental implant surfaces. Reprinted from [54], Copyright (2021), with permission from Elsevier.
for three minutes. To stabilize the OCP, the coated dental implants were immersed in saliva and fluoride-containing saliva solutions for 1 h before electrochemical measurements. The electrochemical impedances were measured by applying a 10 mV sinusoidal potential around E_{ocp} at a steady state in the 100 kHz–10 mHz frequency range. A suitable fitting procedure implemented in ZView software was used to interpret the experimental results assuming an equivalent circuit. PDP curves were obtained at ±20 mV versus OCP with a potential sweep rate of 1 mV.s$^{-1}$.

3. Results and discussion

Ti dental implants were purchased as shown in figure 2. According to OM observation of the purchased dental implant, it was manufactured according to the design, without foreign matter and chips on the surface and large machining defects.

PEO treated specimens with highly porous surfaces are shown in figure 3 under low magnification SEM images. PEO coatings exhibit pores and cracks throughout their entire morphology, as shown by top surface images. The pore structure formed by the PEO treatment of titanium alloys is characteristic of the oxide layer [57]. PEO coated sample had pores ranging in size from 0.5 μm to 1 μm in diameter. In regards to the formation of pores and cracks, they were caused by gas evolution/molten oxide eruption in the discharge channel, and the thermal stress caused by rapid solidification of the molten materials in contact with the cool electrolyte, respectively. In the PEO process, when the applied voltage exceeds the voltage at which sparks need to appear on the surface of the substrate, microdischarges will form [30]. Afterward, the substrate material and the initially passive layer formed in the first stage of anodization partially melt due to the generated high energy by the electrical microdischarge. These molten materials erupt to the cool electrolyte from discharge channels like volcanoes [58]. The evolution of the microdischarges in different time of the PEO process of Ti dental implant is shown in figure 4. It is found that the size of microdischarges increases and the number of them decreases during the PEO process. In this study, at 1 min after the initial microdischarge appeared on the anodic surface, the breakdown voltage was recorded (V_b), and after 10 min, the final voltage was recorded (V_f). We recorded V_b and V_f at a voltage of 690 V and 745 V, respectively. Moreover, some elements may be incorporated into the molten

![Image](image-url)
substrate/oxide that came from the PEO electrolyte. These elements, mostly come from anions migrated to the positively charged anode, and can participate in the reactions that occur in the micro-discharge channels [59]. It has been reported that the electrolyte composition has a considerable effect on the intensity of sparks and microdischarges and thereby the size of formed pores [59]. As a consequence of this, it is important to note that the electrolyte’s properties such as chemical composition and conductivity play an important role in determining PEO coatings’ final composition and microstructure.

A majority of pores and cracks cause the PEO coating to have a poor layer of protection because of ions that penetrate through the PEO layer causing the coating to have weak-protective properties. As can be seen in

Figure 3. SEM micrographs of PEO coatings on the Ti dental implant in different magnifications.

Figure 4. Microdischarges evolution on the Ti dental implant in the different oxidation time.
Figure 5, the PMMA layers are depositing successfully on the PEO-pretreated surface of the Ti dental implants and are sealing the existing pores and cracks that are present in the PEO coating. Specifically, there were no evident defects in the appearance of the samples, such as micro-pores or micro-cracks, as they were examined. The composite coating formed from the mixture of TiO$_2$/PMMA as a result of sealing with PMMA presented a much flatter and more compact morphology after sealing with PMMA. The corrosion resistance of TiO$_2$/PMMA composite coatings can be greatly enhanced by an effective seal.

Table 2 presents the results of EDS point analyses of coatings. Basically, the PEO coating was composed mainly of O, Ti, Ca, P, C, and Na. There is a very high O content in the coating, which can reach up to 40.61%, higher than the contents of Ca and P elements in the coating, indicating that the PEO coating mainly consists of oxides that contain Ca and P. Elemental analysis of PMMA layer on the PEO-coated Ti dental implants demonstrates that carbon and oxygen elements are mainly from PMMA.

The thickness of the PMMA/TiO$_2$ coating was measured 44 μm, which is significantly higher than the thickness of the PEO coating (18 μm), to prevent the transfer of aggressive ions after the implant has been placed in the body. The cross-sectional morphology of PEO coating coated with PMMA layer is shown as figure 6. There were typically two layers in the entire coating, corresponding to the PEO coating and the PMMA layer. The roughness of PEO and PMMA/TiO$_2$ coatings was obtained 2.32 and 0.75 μm, respectively. The decrease in surface roughness is attributed to the seal of pores and cracks of PEO coatings by PMMA.

According to the XRD pattern of the coating of the PEO on Ti dental implants (figure 7(a)), the characteristic peaks can be identified as being composed of a small amount of rutile-TiO$_2$ (Reference code: 01–078–1510) and anatase-TiO$_2$ (Reference code: 00–002–0387) phases, which are the main constituents of the coating [62]. During the plasma process, Ti dental implant substrates are oxidized to produce rutile and anatase phases. A relatively low temperature is required for anatase to form and it is possible for it to transform into rutile at higher temperatures, which are stable at temperatures above 800 °C [63]. As a result of the x-rays penetrated through the PEO coating, Ti diffraction peaks are activated from within the substrate, because the x-rays are able to penetrate through the PEO coating and penetrate the Ti substrate through cracks and pores [64]. A FTIR spectrum of the prepared TiO$_2$/PMMA coatings is shown in figure 7(b). The FTIR characterization was used to confirm the presence of PMMA on PEO coating after electropolymorization by analyzing the special chemical bonds. The peak at 475 cm$^{-1}$ is attributed to TiO$_2$ compounds produced by PEO [65].

Carbonyl groups are the
main constituents of the polymers, with a band at 1722 cm$^{-1}$. There is a peak observed at 1064 cm$^{-1}$, which corresponds to the vibrations of the –C–O–C– bond. Other peaks occur at about 1248 cm$^{-1}$, which are attributed to the C–O bond’s stretching vibrations. The peaks showed at 1599 cm$^{-1}$ and 1725 cm$^{-1}$ are related to stretching of C=C, and C=O groups, respectively. There are also bands associated with CH$_3$ and CH$_2$ vibrational modes in the 1495–1280 cm$^{-1}$ spectral range. Peaks around 2953 cm$^{-1}$ and 2987 cm$^{-1}$ are identified to stretch mode of C–H groups [66].

At the electrode/solution interface, the variation of the potential of the time-dependent electrode is the first indicator of which reactions happening at the metal/solution interface due to the changes in the electrode potential [67]. Corrosion potentials near steady-state elaborate the metals’ passivation potential in solution determined by electrode kinetics and thermodynamics. Figures 8(a), and (b) show the OCP variations versus immersion time for samples in pure saliva and fluoride-containing saliva solutions, respectively. It can be seen that, samples’ OCP increase gradually in both solutions (figure 8) during the initial stage of immersion. Moreover, the near-steady state was reached after extending the immersion period for all samples in both media. An ongoing passive film in solution is typically responsible for such features [68]. During the passivation process, their E_{ocp} values and pH values stabilized at around 320 mV$_{SCE}$ and 450 mV$_{SCE}$, respectively. A comparison of these variations once the uncoated implant was coated.
revealed that the simple and composite PEO coating shifted the potential in the direction of a positive value and increased the corrosion resistance of substrate. As it can be seen in figures 8(a) and (b), the OCP value of PMMA-PEO duplex coated implants are higher than that of simple PEO coatings in both media, indicating the better corrosion performance. In the time-dependent profiles in fluoride-containing saliva solution, potential fluctuations appear, likely caused by active metal dissolution. It has been reported that the pH and the existence of the fluoride ions in the electrolyte are the most significant determinants of the process of active dissolution and passivation of Ti in acidic solutions containing fluoride.

The corrosion protection properties of the coatings were evaluated using PDP tests. Figures 9(a), and (b) shows the PDP curves for Ti dental implants coated with PEO, PMMA, and uncoated implants in saliva and fluoride-containing saliva solutions at 36.5 °C, respectively. From the PDP curves, the corrosion potential (E_{corr}), corrosion current density (I_{corr}) and Tafel slopes were calculated directly by Tafel region extrapolation, while Stern-Geary equation was used to calculate polarization resistance values (R_p) \[69]\:

\[
R_p = \frac{\beta_a \beta_c}{2.3i_{corr}(\beta_a + \beta_c)}
\]

Table 3 lists all electrochemical parameters extracted from PDP curves. It is generally known that corrosion resistance can be determined by the combination of low I_{corr} and high E_{corr}. When compared with the uncoated dental implant sample, the E_{corr} of the coated samples increased, and the I_{corr} of the coated samples decreased as
well, because ceramic PEO coatings (TiO₂) are capable of blocking a significant amount of corrosive ions such as Cl⁻ and F⁻ in both media [70]. PEO coatings’ anticorrosion properties are determined by a combination of their thickness, roughness, porosity, and chemical composition [70]. It can be seen from table 3, the deposition of the PMMA layer gradually enhanced Ecorr and Icorr values as a consequence of increased coating thickness and reduced mean surface roughness, as we mentioned before. When a compacted PMMA layer is deposited on top of the PEO coating, the pores and cracks are sealed, preventing corrosive media from infiltrating the dental implant substrate through the pores and cracks [71]. Moreover, a decrease in Icorr and Rp was observed in fluoride-containing saliva compared to pure saliva. Therefore, the results indicate that samples exposed to fluoride-containing saliva medium have an increased corrosion rate.

AC impedance measurements were conducted on the samples to understand how PMMA layer contributes to electrochemical corrosion [67]. The following diagrams in figures 10(a), (b), (d), and (e) illustrate the Nyquist plots of uncoated and coated samples saliva and fluoride-containing saliva solutions at 36.5 °C, respectively. There are points on all plots representing the experimental data, and lines represent the result of the fitting for the experimental data. There can be a qualitative comparison between the corrosion resistance of the samples and the EIS spectra, indicating a higher corrosion resistance when the semicircles are larger and are associated with a lower frequency [71]. As shown by the larger radius of the capacitive loops of coated samples, compared with uncoated Ti dental implant alloy, coated samples provide higher protective efficiency. We analyzed the impedance data of coated and uncoated implant substrates using equivalent circuits shown in figure 10(c) and (f), respectively. An electrolyte resistance between a reference electrode (RE) and a working electrode (WE) is represented by Rs in the circuits proposed here. There are two kinds of resistance in the figure 10(f), the inner barrier layer (Ri) and the outer porous layer (Ro) resistances paralleled with their constant phase elements (CPE), e.g. CPEi and CPEo, respectively. A passive layer’s resistance and its phase element that intrinsically formed on the surface of uncoated Ti dental implant in both solutions are shown by Ro and CPEo in figure 10(c). CPEs were
Table 4. Calculated parameters of the EIS in the equivalent circuits.

Sample	EIS test’s solution	R_s (Ω.cm2)	(CPE-T)$_o$ (S°.Ω$^{-1}$.cm$^{-2}$)	n_o	R_o (kΩ.cm2)	(CPE-T)$_o$ (S°.Ω$^{-1}$.cm$^{-2}$)	n_i	R_i (kΩ.cm2)	W_o-R (kΩ.cm2)	W_o-T (s)	W_o-P
Ti	Pure saliva	24.43	1.18×10^{-3}	0.96	0.42	---	---	---	--	---	---
PEO		23.77	1.24×10^{-3}	0.83	8.16	1.64×10^{-5}	0.81	15.35	8.95	0.31	0.33
TiO$_2$/PMMA		24.10	5.12×10^{-6}	0.94	18.24	3.55×10^{-6}	0.84	24.22	12.59	4.1	0.12
Ti Fluoride-containing saliva		12.18	0.19×10^{-3}	0.97	0.12	---	---	---	--	---	---
PEO		11.52	1.09×10^{-3}	0.85	2.10	0.91×10^{-5}	0.88	6.36	3.73	0.11	1.12
TiO$_2$/PMMA		12.08	2.53×10^{-8}	0.93	9.39	9.15×10^{-5}	0.92	16.88	5.67	3.75	0.77
used instead of capacitances due to the non-ideal nature of the coatings’ system [72]:

\[
Z_{\text{CPE}} = \frac{1}{T(j\omega)^n}
\]

(2)

where \(n \) is the exponential coefficient varied between 0 and 1, \(T \) is an angular frequency independent constant, and \(j \) is a unit of imaginary. When \(n = 1 \), CPE is the pure capacitance and when \(n = 0 \), CPE is the pure resistance. In figure 10(c), it can be seen that the equivalent circuit for coated implants characterized by two-time constants combined with a Warburg element. A Warburg open terminus \((W_o)\) indicates that corrosive agents diffuse through coatings on a semi-infinite basis. Nyquist plots clearly demonstrate a straight line at low frequencies, which is caused by Warburg impedance. Corrosion products that accumulate locally in defects probably caused this feature. This feature in equivalent circuit is consistent with Schott’s study [51]. A combination of the \(W_o \) and the \(R_i \) offered the best fit to the data in the present study. The observation indicates that ions diffused mainly near the interface between coating and substrate and the inner barrier layer. Equation (3) expresses \(W_o \) element mathematically [73]:

\[
Z_{W_o} = \frac{W_o-\text{R} \times \cot(j \times W_o-\text{T} \times \omega)^{W_o-\text{T}}}{j \times W_o-\text{T} \times \omega)^{W_o-\text{T}}}
\]

(3)

The diffusion resistance and diffusion time are represented by \(W_o-\text{R} \) and \(W_o-\text{T} \), respectively. An exponential parameter, \(W_o-\text{R} \), ranges from 0 to 1. Based on equivalent circuits, table 4 presents the fitting parameters for the EIS spectra. It can be seen that corrosion resistance in both media is dependent on the inner barrier layer which can be observed by the lower values of \(R_o \) than \(R_i \) [74]. The results also showed that a decrease in the \(R_o \) and \(R_i \) values in the fluoride-containing saliva medium compared to the pure saliva. As a result of this observation, we can conclude that fluoride ions in acidic media can increase the corrosion rate. Comparatively to a simple PEO coating, the coating with a PMMA layer had increased resistance in its outer porous layer’s resistance. Because of the porous nature of the simple PEO coating, it is easily penetrated by corrosive media, making it susceptible to destruction by corrosion [71]. The PMMA layer is deposited over the PEO coating, causing the pores to decrease and electrolyte pathways to increase. Moreover, the decreases in porosity, as well as the increase in aggressive ions diffusion routes through the coating, are both responsible for an increase in \(W_o-\text{T} \) and \(W_o-\text{R} \) values by depositing the PMMA layer on the top surface of PEO coatings.

4. Conclusion

Ti-based dental implants treated with PEO process have a porous structure and contains a lot of microcracks. When PMMA layer was deposited on PEO-treated implant samples, pores and cracks were effectively sealed. Compared to pure saliva, the samples showed a higher corrosion rate in the fluoride-containing saliva medium. From greatest to least, the anticorrosive properties of the specimens in both media were as follows: TiO2/PMMA > PEO > dental implant substrate. In the acidic fluoride-containing media, the PMMA layer can provide a more effective barrier against the corrosive ions entering the PEO coating, resulting in significantly increased corrosion resistance of the Ti dental implants. These results may shed light on some potential clinical complications related to the corrosion behavior of dental implants in harsh service conditions.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Masoud Soroush Bathaei @ https://orcid.org/0000-0003-1807-5150

References

[1] Koopaie M, Bordbar-Khiabani A, Kolahdooz S, Darbandsari A K and Mozafari M 2020 Advanced surface treatment techniques counteract biofilm-associated infections on dental implants Mater. Res. Express 7 015417
[2] Issa M A 2022 Rapid enzymatically reduction of zincum gluconicum for the biomannufacturing of zinc oxide nanoparticles by mycoextracellular filtrate of penicillium digitatum (Pdig-B3) as a soft green technique Arch. Razi Inst. 77 101
[3] Salimkhani H et al 2019 In situ synthesis of leucite-based feldspathic dental porcelain with minor kalsilite and Fe2O3 impurities Int. J. Appl. Ceram. Technol. 16 552–61
[4] Guo T, Gulati K, Arora H, Han P, Fournier B and Ivanovski S 2021 Orchestrating soft tissue integration at the transmucosal region of titanium implants Acta Biomater. 124 33–49
[5] Nicholson JW 2020 Titanium alloys for dental implants A review, Prosthesis 2 100–16
[6] Szweczenko J, Marcinková J, Kajzer W and Kajzer A 2016 Evaluation of corrosion resistance of titanium alloys used for medical implants Arch. Metall. Mater. 61 695–700
[7] Lu J, Zhang Y, Huo W, Zhang W, Zhao Y and Zhang Y 2018 Electrochemical corrosion characteristics and biocompatibility of nanostructured titanium for implants Appl. Surf. Sci. 434 63–72
[8] Pusnet M, Vilarasa I, Nat J, Manero JM, Bosch B, Padrós R, Perez RA and Gil J 2021 Citric acid passivation of titanium dental implants for minimizing bacterial colonization impact Coatings 11 214
[9] Bodurmi N O, Chown I H, van der Merwe J W, Alamene K K, Ogabule C, Klenam D E and Mphasha N P 2020 Corrosion behavior of titanium alloys in acidic and saline media: role of alloy design, passivation integrity, and electrolyte modification Corros. Res. 38 25–47
[10] Souza J, Aparna–Beyoda K, Benfatti C A, Silva F S and Henriques B 2020 A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects Metals 10 1272
[11] Chen W, Zhang S and Qiu J 2020 Surface analysis and corrosion behavior of pure titanium under fluoride exposure. The Journal of Prosthetic Dentistry 124 239–41
[12] Messous R, Henriques B, Bousbaha H, Silva F S, Teughels W and Souza J 2021 Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: an investigative review Clin. Oral Investigations 25 1627–40
[13] Shetty S S, Sharma M, Kabekodku S P, Kumar N A, Satyamoorthy K and Radhakrishnan R 2021 Understanding the molecular mechanism associated with reversal of oral submucous fibrosis targeting hydroxylysine aldehyde-derived collagen cross-links Journal of Carcinogenesis 20
[14] Trolie J M, Seraďevic M L, Todoruk Z, Budimir A, Spalj S and Curkovic H O 2019 Corrosion of orthodontic archwires in artificial saliva in the presence of the Lactobacillus reuteri Surf. Coat. Technol. 370 46–52
[15] Sanghvi U, Chhabra T and Sethuraman R 2018 Effect of probiotics on the amount and pH of saliva in edentulous patients: a Prospective study Journal of the Indian Prosthodontic Society 18 277
[16] Kumar V, Nanda A, Bhat K, Ashrit P, Babu A and Shakir M 2021 Urinary activity in children with plaque and gingivitis against dental caries in institutionalized blind children, Journal of Natural Science Biology and Medicine 12 109–109
[17] Pedersen A M 1 and Belstrom D 2019 The role of natural salivary defences in maintaining a healthy oral microbiota Journal of dentistry 80 S3–12
[18] Levine R S 2019 What concentration of fluoride toothpaste should dental teams be recommending? Evidence-Based Dentistry 20 74–5
[19] Abboodi H H and Al-Dhabab D I N 2018 Analysis of two different types of orthodontic mini-implants immersed in fluoridated mouthwashes using scanning electron microscopy (SEM) International Journal of Medical Research & Health Sciences 7 23–31
[20] Gopalakrishnan U, Felicita A S, Qureshi T, Muruganandan J, Hassan A H A A, El-Shamy F M, Osman H A, Medabesh A A and Patil S 2022 Effect of fluoridated mouthwashes on corrosion property of orthodontic appliances: a narrative review The Journal of Contemporary Dental Practice 23 460–6
[21] Chen X, Shah K, Dong S, Peterson L, La Plante E C and Sant G 2020 Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant Dent. Mater. 36 431–41
[22] Cui W F, Dong Y Y, Bao Y C and Qin G W 2021 Improved corrosion resistance of dental Ti50Zr alloy with (TiZr) N coating in fluoridated artificial saliva Rare Met. 40 2927–36
[23] Gao A, Hang R, Bai L, Tang B and Chu P K 2018 Electrochemical surface engineering of titanium-based alloys for biomedical application Electrochim. Acta 271 699–718
[24] Lee S, Chang Y Y, Lee J, Perikamana S K M, Kim E M, Jung Y H, Yun J H and Shin H 2020 Surface engineering of titanium alloy using metal–polyphenol network coating with magnesium ions for improved osseointegration, Biomaterials Science 8 3404–17
[25] Molaei M, Nourzi M, Babaei K and Fattah–Alhosseini A 2021 Improving surface features of PEO coatings on titanium and titanium alloys with zirconia particles: A review Surfaces and Interfaces 22 100888
[26] Rokosz K, Hrynewicz T and Dudek L 2020 Phosphorous porphates coatings enriched with selected elements via PEO treatment on titanium and its alloys: A review Materials 13 12468
[27] Ebrahimi S, Bordbar–Khiaabani A and Yarmand B 2019 Enhanced optoelectronic performance of plasma electrolytic oxidized monocrystalline silicon using rGO incorporation Mater. Lett. 239 151–4
[28] Ebrahimi S, Bordbar–Khiaabani A and Yarmand B 2019 Improving optoelectrical properties of photoactive anatase TiO2 coatings using rGO incorporation during plasma electrolytic oxidation Ceram. Int. 45 1746–54
[29] Parfenov E, Parfenova L, Mukaeva V, Farkhakov R, Stotskiy A, Raab A, Danilko K, Rameshbabu N and Valiev R 2020 Biofunctionality of inorganic–organic coatings for bone–contact applications: an integrative review Materials 8 110
[30] Pavaroni M et al 2021 Nardo, Influence of frequency and duty cycle on the properties of antibacterial borate–based PEO coatings on titanium for bone–contact applications Appl. Surf. Sci. 567 150811
[31] Li X, Wang L, Fan L, Zhong M, Cheng L and Cui Z 2021 Understanding the effect of fluoride on corrosion behavior of pure titanium in different acids Corros. Sci. 192 109812
[32] Nikoonezarian E, Fattah–Alhosseini A, Alamoti M R P and Keshavarz M K 2020 Effect of ZrO2 nanoparticles addition to PEO coatings on Ti–6Al–4V substrate: microstructural analysis, corrosion behavior and antibacterial effect of coatings in Hank's physiological solution Ceram. Int. 46 13114–24
[33] Poursamad M, Asghar Rezaei H, Saeidnia M, Alkokab H and Soroush Baraee M 2022 Effect of G-family incorporation on corrosion behavior of titanium–treated dental implants: a review Surface Innovations 1–10 Ahead of Print
[34] Santos-Coquillat A, Mohedano M, Martinez–Campos E, Arrabal R, Pardo A and Matykina E 2019 Bioactive multi- elemental–PEO coatings on titanium for dental implant applications Mater. Sci. Eng. C 97 738–52
[35] Lokesh Kumar E, Saikiran A, Ravisanaka B, Parfenova L V, Parfenov E V, Valiev R Z and Rameshbabu N 2022 Superior properties and behaviour of coatings produced on nanostructured titanium by PEO coupled with the EPD process Surface Topography: Metrology and Properties 10 015020
[36] Bordbar–Khiaabani A, Bahrampour S, Moazami M and Gasić M 2022 Surface functionalization of anodized tantalum with Mn3O4 nanoparticles for effective corrosion protection in simulated inflammatory condition Corros. Int. 48 3148–56
[37] Wani S D 2021 A review: emerging trends in bionanocomposites International Journal of Pharmacy Research & Technology 11 1–1
[38] Nemat E 2022 Cell membrane coated nanoparticles for biomedical applications Advances in Applied NanoBio–Technologies 3 49–59
[39] Yang J, Blwerta C, Lamaka S V, Snhurova D, Li X, Di S and Zhulekhdevich ML 2018 Corrosion protection properties of inhibitor containing hybrid PEO–epoxy coating on magnesium Corros. Sci. 140 99–110
[40] Toorani M, Aliofkhazraei M, Mahdavian M and Naderi R 2020 Effective PEO/Silane pretreatment of epoxy coating applied on AZ31B Mg alloy for corrosion protection Corros. Sci. 169 108688
[41] Bordbar–Khiaabani A, Yarmand B and Moazami M 2018 Functional PEO layers on magnesium alloys: innovative polymer–free drug–releasing stents, Surface Innovations 6 237–43
[42] Popoola L T, Aderinbign T A and Lala M A 2022 Mild Steel Corrosion Inhibition in Hydrochloric Acid Using Cocoa Pod Husk-Ficus exasperata: Extract Preparation Optimization and Characterization Iran Journal of Chemistry and Chemical Engineering (IJCCE) 41 482–92

[43] Singh S and Ghatak H R 2021 Optimal synthesis of aromatic carbonyl compounds by electrooxidation of soda lignins on stainless steel and TiMMS anodes Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 40 1814–39

[44] Zehra T and Kaseem M 2022 Recent advances in surface modification of plasma electrolytic oxidation coatings treated by non-biodegradable polymers J. Mol. Liq. 365 120091

[45] Al-Saffar A K, Abbas M and Salman D 2021 Synthesis of New Glycine Cephalixin Condensed Polymer as Peptide Biopolymer for Controlled Release of Cephalixin Journal of Chemical Health Risks 11 339–44

[46] Hassan S S, Kamel A H, Hashem H M and Bary E A 2020 Drug delivery systems between metal, liposome, and polymer-based nanomedicine: a review European Chemical Bulletin 991–102

[47] Zafar M S 2020 Prosthodontic applications of polymethyl methacrylate (PMMA): an update Polymers 12 2299

[48] Thoppaladala Y P and Pujar V 2022 Green synthesis of bioactive molecules: a review International Journal of Pharmacy Research & Technology 12 1–1

[49] Bistolfi A, Faccinari R, Albanese C, Verne É and Miola M 2019 PMMA–based bone cements and the problem of joint arthroplasty infections: status and new perspectives Materials 12 6092

[50] Tavakoli M, Soleymani Eil Bakhtiari S and Karbasi S 2020 Incorporation of chitosan/graphene oxide nanocomposite in to the PMMA bone cement: Physical, mechanical and biological evaluation Int. J. Biol. Macromol. 149 783–93

[51] Schott T et al 2019 Stability of PMMA-grafted/Ti hybrid biomaterial interface in corrosive media Pure Appl. Chem. 91 1617–29

[52] Polo T O B et al 2020 Plasma electrolytic oxidation as a feasible surface treatment for biomedical applications: an in vivo study Sci. Rep. 10 1–11

[53] De Giglio E, Cometa S, Sabbatini L, Zambonin P G and Spoto G 2005 Electrosynthesis and analytical characterization of PMMA coatings on titanium substrates as barriers against ion release Anal. Bioanal. Chem. 381 626–33

[54] Ghafarzadeh M, Khazarian M and Atapour M 2021 Bilayer micro–arc oxidation–poly (glycerol sebacate) coating on AZ91 for improved corrosion resistance and biological activity Prog. Org. Coat. 161 106495

[55] Banjai H B, Guragain R P and Subedi D P 2021 Cold atmospheric plasma technology for modifying polymers to enhance adhesion: A critical review Reviews of Adhesion and Adhesives 9 269–307

[56] Meyer J M and Nally J N 1975 Influence of artificial salivas on the release of dental alloys Journal of Dental Research. Duke ST, Alexandria, VA 22314: Amer Assoc. Dental Research 54 1619

[57] Kostelac L, Pezzato L, Settimi A G, Franceschi M, Gennari C, Brunelli K, Rampazzo C and Dabalá M 2022 Investigation of hydroxyapatite (HAP) containing coating on grade 2 titanium alloy prepared by plasma electrolytic oxidation (PEO) at low voltage Surfaces and Interfaces 30 104188

[58] Mortazavi G, Jiang J and Meletis E I 2019 Investigation of the plasma electrolytic oxidation mechanism of titanium Appl. Surf. Sci. 488 370–82

[59] Yigiti O, Dicti B, Ozdemir N and Arslan E 2021 Plasma electrolytic oxidation of Ti-6Al-4V alloys in nHA/GNS containing electrolytes for biomedical applications: the combined effect of the deposition frequency and GNS weight percentage Surf. Coat. Technol. 415 127139

[60] Rakhe S, Nimje S V and Panigrahi S K 2021 Optimization of adhesively bonded spar–wingskin joints of laminated FRP composites subjected to pull–off load: A Critical Review Reviews of Adhesion and Adhesives 8 29–40

[61] Mussig J and Graupner N 2021 Test methods for fibrefracture matrix adhesion in cellulose–reinforced thermoplastic composite materials: A Critical Review Reviews of Adhesion and Adhesives 8 68–129

[62] Casanova L, Arosio M, Hashemi M T, Pedeperferi M, Botton G A and Ormellesse M 2022 Influence of stoichiometry on the corrosion response of titanium oxide coatings produced by plasma electrolytic oxidation Corros. Sci. 203 110361

[63] Santos P B, Baldin E K, D'Avila D M, de Cunha V T, Gouveia J C, Fonseca J C, Rodrigues M, Lopes M A and de Fraga C 2021 Malfatti, Wear performance and osteogenic differentiation behavior of plasma electrolytic oxidation coatings on Ti-6Al-4V alloys: potential application for bone tissue repairs Surf. Coat. Technol. 417 127179

[64] Becerikli M et al 2021 A novel titanium implant surface modification by plasma electrolytic oxidation (PEO) preventing tendon adhesion Mater. Sci. Eng. C 123 112030

[65] Shah A H and Rather M A 2021 Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol–mediated method Mater. Today Proc. 44 482–8

[66] Al-Bataineh Q M, Ahmad A A, Alsaad A M and Telfah A D 2021 Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model Heliyon 7 e05952

[67] Mashitlare D V, Nadaara K V, Imshinetsky I M, Belov E A, Filonina V S, Suchkov S N, Sinebrukhov S L and Gnedenkov S V 2021 Composite coatings formed on Ti by PEO and fluoropolymer treatment Appl. Surf. Sci. 536 147976

[68] Wu T et al 2022 Role of phosphate, silicate and aluminate in the electrolytes on PEO coating formation and properties of coated Ti-6Al-4V alloy Appl. Surf. Sci. 595 153523

[69] García-Cabeza A, Rodríguez-Méndez M L, Cabeza M B, Ayón C, Salva-Combo G, García-Hernandez C and Martín-Pedrosa F 2021 Improvements in tribological and anticcorsion performance of porous Ti-6Al-4V via PEO coating Friction 9 1303–18

[70] Lu N, Zhang J, Dan Y, Sun M, Gong T, Li X and Zhu X 2021 Growth of porous anodic TiO2 in silver nitrate solution without fluoride: Evidence against the field-assisted dissolution reactions of fluoride ions Electrochem. Commun. 126 107022

[71] Casanova L, Belotti N, Pediferri M and Ormellesse M 2021 Sealing of porous titanium oxides produced by plasma electrolytic oxidation Mater. Corros. 72 1894–8

[72] Adefeke S A, Bushra A, Kusumawan Herliansyah M, Sopyan I, Jeffrey Basirun W and Ladan M 2018 Preparation, scratch resistance and anti- corrosion performance of TiO2–MgO–B2O3 coating on Ti6Al4V implant by plasma electrolytic oxidation technique J. Adhes. Sci. Technol. 32 91–102

[73] Casanova L, La Padula M, Pediferri M, Diamanti M V and Ormellesse M 2021 An insight into the evolution of corrosion resistant coatings on titanium during bipolar plasma electrolytic oxidation in sulfuric acid Electrochim. Acta 379 138190

[74] Jamali R, Bordbar-Khiahani A, Yarmand B, Mozafari M and Kolahi A 2022 Effects of co-incorporated ternary elements on biocorrosion stability, antibacterial efficacy, and cytotoxicity of plasma electrolytic oxidized titanium for implant dentistry Mater. Chem. Phys. 276 125436