Natural predators of polyps of Aurelia aurita s.l. (Cnidaria: Scyphozoa: Semaeostomeae) and their predation rates

MARIKO TAKAO1,* HIROKO OKAWACHI1,2 & SHIN-ICHI UYE1

1 Graduate School of Biosphere Science, Hiroshima University, 1–4–4 Kagamiyama, Higashi-Hiroshima 739–8528, Japan
2 Suma Aqualife Park Kobe, 1–3–5 Wakamiyacho, Suma, Kobe 654–0049, Japan

Received 4 July 2013; Accepted 17 February 2014

Abstract: The size of medusa populations in most scyphozoan species can be affected by the size of their benthic polyp populations, which reproduce asexually to give birth to planktonic ephyrae, but also are subject to predation by natural enemies. In this study, five gastropod species (Calliostoma unicum, Pleurobranchaea japonica, Hermissenda crassicornis, Sakuraeolis enomimensis and S. sakuracea) and three crustacean species (Rhynchocinetes uritai, Latreutes anoplonyx and Hyastenus diacanthus) were found to prey on polyps of the moon jellyfish, Aurelia aurita s.l., in Japanese coastal waters. In particular, C. unicum, P. japonica, H. crassicornis, R. uritai and H. diacanthus consumed more than 300 polyps per predator per day in the laboratory. These predators are common on natural rocky or pebbled seabeds, but are very scarce on various substrates in concrete-walled fishing ports, particularly on the undersurfaces of floating piers, where A. aurita polyps are attached in abundance. Transplanting natural predators to substrates with dense polyp colonies, just prior to their seasonal strobilation, is a possible countermeasure to prevent recurrent medusa blooms.

Key words: coastal waters, jellyfish bloom, natural enemy, predation, polyp

Introduction

The moon jellyfish, Aurelia aurita (Linnaeus) s.l. (see Dawson & Martin 2001, Dawson 2003, Ki et al. 2008 for cryptic species of this genus), is the most common scyphozoan jellyfish species in the world’s temperate coastal waters. It has frequently caused problematic blooms, particularly in waters with significant anthropogenic impacts such as fish stock depletion, eutrophication and marine constructions (e.g., Graham 2001, Purcell et al. 2007, Dong et al. 2012). For example, one polyp with excess food at 26°C can increase in only three weeks to as many as 57 individuals by budding (Uye, unpubl.), and one strobilating polyp can form as many as 21 discs (Ishii & Watanabe 2003), each of which transforms into a larval medusa (or an ephyra). These numbers suggest that a single polyp present in summer–fall could potentially give birth to more than 1,000 ephyrae in winter, the season of ephyra liberation. Therefore, the asexual reproduction of polyps strongly determines the abundance of medusae in the following season.

To understand the mechanisms underlying the recent increase in frequency and extent of medusa blooms, it is essential to investigate the effects of various factors on polyp population dynamics. Temperature, salinity, light, oxygen concentration, food availability and competition for space have all been demonstrated to be important factors (Coyne 1973, Watanabe & Ishii 2001, Miyake et al. 2002, Willcox et al. 2008, Toyokawa et al. 2011, Duarte et al. 2012). Losses due to predation can also be a factor affecting polyp population dynamics (Cargo & Schultz 1967, Oakes
Nudibranchs are the best-known polyp predators, and some pycnogonids (e.g. *Callipallene brevirostris* (Johnston)), amphipods (e.g. *Caprellia equilibra* Say), anomurans (e.g. *Pagurus longicarpus* Say) and brachyurans (*Lobophyllia dubia* H. Milne Edwards and *Neopanope texana sayi*, a synonym of *Dyspanopeus sayi* (Smith)) also eat jellyfish polyps (Oakes & Haven 1971, Hutton et al. 1986). However, there have been few determinations of actual predation rates by these predators. Hernroth & Gröndahl (1985b) found that the nudibranch *Flabellina verrucosa* (Sars) (recently moved from the genus *Coryphella*) consumed ca. 400 *A. aurita* polyps per day; and Hoover et al. (2012) reported that the nudibranch *Hermissenda crassicornis* (Eschscholtz) ate up to 102 polyps of *Aurelia labiata* Chamisso & Eysenhardt, per hour. These results imply that the interaction between jellyfish polyps and their natural enemies may be much more important than generally assumed, due to the lack of information about potential predators and their predation rates.

The aim of the present study was to make an inventory of potential predators of *A. aurita* polyps in Japanese coastal waters and to determine their potential predation rates in laboratory experiments. The ecological significance and potential application of their predatory capacity in controlling the polyp populations are discussed.

Material and methods

Planulae of *Aurelia aurita* originating from mature medusae were collected in Kure, the Inland Sea of Japan (or Seto Inland Sea), in August, 2005, and settled on rectangular (9×16 cm or 9×9 cm) or round (15 cm diameter) plastic plates placed at the bottom of plastic containers (30 cm diameter). Later, the settled polyps were fed with *Artemia* sp. (Utah, USA) nauplii at 22–25 °C for 1–3 months until the density increased to at least 1 polyp cm$^{-2}$, and then they were subjected to the experiments below.

Firstly, a preliminary experiment was conducted to identify which animals eat *A. aurita* polyps. A total of 78 species (both invertebrates and vertebrates) were collected mainly by SCUBA dives in Etajima, Kure, Suo-Oshima and Takehara, in the Inland Sea of Japan, and Matsue and Okinoshima in the Sea of Japan (Fig. 1 and Table 1). The medusa shrimp *Latreutes anoplonyx* was isolated from the oral arms of the giant jellyfish *Nemopilema nomurai* Kishinouye collected in the Sea of Japan. The animals collected were transported in ambient seawater to the laboratory in Higashi-Hiroshima in plastic containers within a cooler. Species were identified using various illustrated texts of Japanese fauna (Okada et al. 1965, Nishimura 1992, 1995, Nakano 2004). In the laboratory, they were kept individually and starved for a day before introducing a polyp-bearing plate. Small polyps on the plates were removed with a dissecting needle, leaving monitored for 1–3 days. Temperatures during experiments were kept within 4°C of the ambient temperature at which the predator was captured.

Secondly, the predation rates were measured for 8 species identified as potential predators in the above experiment (see Results). To maintain these predators, they were fed with shrimp meat and/or *A. aurita* polyps. After measurement of body length and wet weight (electric balance, Ohaus Co.), they were kept individually and starved for a day before introducing a polyp-bearing plate. Small polyps on the plates were removed with a dissecting needle, leav-
Natural predators of jellyfish polyps

Table 1. List of animals tested for feeding on *Aurelia aurita* polyps. Eight species (filled circle) ate significant numbers of whole polyps and two species (open circles) ate just parts of a few polyps.

Species (average body length: cm)	Results	Species (average body length: cm)	Results
Phylum MOLLUSCA		Madrella gloriosa (4.0)	
Class Polyplacophora		Superfamily Trionioidea	Tritonia festiva (6.4)
Ichneumochiton comptus (3.3)		Superfamily Flabellinoidea	Flabellina bicolor (3.5)
Class Gastropoda		Superfamily Fionoidea	Cuthona sp. (1.9)
Superfamily Fissurelliodea		Superfamily Aeolidioidea	
Scutus sinensis (1.8)		Hermisenda crassicornis (2.0)	
Superfamily Trochoidea		Pteraeolidia ianthina (3.0)	
Chlorostoma lischkeii (2.0)		Sakuraeolis enosimensis (1.5)	
Omphaloloxo pfeifferi carpenteri (3.1)		Sakuraeolis gerberina (1.7)	
Omphaloloxo rustic (2.0)		Sakuraeolis sakuracea (2.9)	
Monodonta labio f. confusa (1.8)		*Aeolidia* sp. (1.7)	
Monodonta nannotoides (1.0)			
Cantharida japonica (0.7)			
Calloistoma uniculum (1.9)			
Superfamily Turbinoida		Phylum ARTHROPODA	
Turbo (Batillus) cornutus (6.4)		Class Malacostraca	
Lunella coronatus corensis (1.3)		Caprella sp. (1.5)	
Astralum haemachatum (2.5)		Rhynchocinetes uritai (2.5)	
Superfamily Cypaeoida		Heptacarpus pandaloides (1.9)	
Primovula rhodia (1.5)		Heptacarpus sp. (5.7)	
Superfamily Bucinoida		Latreutes anoplonyx (3.0)	
Japeuthia ferrea (3.0)		Palaemon pacificus (1.9)	
Euplica scripta (1.6)		Cibarnarius sp. (0.5)	
Mitrella bicincta (1.0)		Pagurus geminus (0.5)	
Mokumea divisicata (0.3)		Pagurus lanuginosus (0.5)	●
Niotha livescens (1.8)		Pagurus sp. (0.5)	●
Superfamily Muricoidea		*Hapalognathus dentatus* (1.6)	●
Thais bronii (2.7)		Acheaeus japonicus (1.0)	●
Thais clavigera (2.1)		Pugettia quadridens quadridens (1.5)	
Superfamily Limapontioida		Pugettia minor (1.5)	●
Ercolania boudleae (0.5)		Hyastenus diaeanthus (1.7)	●
Superfamily Pleurobranchioidea		Gaetice depressus (2.2)	●
Pleurobranchia japonica (3.3)		Helice tridens (2.5)	●
Superfamily Doridoida		Phylum ECHINODERMATA	
Aldisa albatarossi (2.6)		Class Asteroida	
Aldisa cooperi (2.3)		*Asterias amurensis* (1.0)	●
Platydoris tabulata (5.5)		*Asterina pectinifera* (3.2)	●
Chromodoris orientalis (4.3)		*Asterina boyleri* (1.5)	●
Chromodoris tinctoria (1.6)		Astropecten latespinosus (-)	●
Hypselodoris festiva (3.5)		Coscinasters acutispina (4.6)	●
Superfamily Onchidoidoida		Henricia okishimai (2.3)	●
Diaphorodoris mitsu (1.0)		Class Echinoidea	
Goniocidella savignyi (0.4)		*Anthocidaris crasissipina* (5.0)	●
Hopkinsia hiroi (0.8)		*Mesoplia globulus* (2.4)	●
Okenia distincta (0.3)		Phylum VERTEBRATA	
Superfamily Polycoeloida		Class Osteichthyes	
Kaloplacanus ramosus (3.8)		*Favonigobius gymnauchen* (4.6)	●
Plocamopherus tilesii (5.0)		Mugil cephalus cephalus (9.0)	●
Tambja sp. (1.0)		Platycephalus sp.2 (7.0)	●
Gymnodoris citrina (3.1)		Plectorhinus cinctus (8.0)	●
Unassigned Superfamily		Rudarius ercodes (2.4)	●
Madrella ferrugina (3.5)		Takifugu poecilonotus (5.1)	●
ing only polyps of calyx diameter ≥ca. 0.5 mm. The initial density on each plate ranged from 1.2 to 7.5 polyps cm$^{-2}$, with a mean of 3.2 polyps cm$^{-2}$. The experiment ran for 1–4 days at ambient temperatures (13–26°C, within 4°C of the natural range for a given predator species). The plates were photographed at 24 h intervals, and the numbers of polyps eaten were counted to calculate the predation rate for each predator. Relationships between the predator wet weight (W, g) and predation rate (P, polyps predator$^{-1}$ day$^{-1}$) were examined using regression analyses (SPSS statistical software, Version 10.0). Best-fit equations were determined and those with the least variance were tested for significance ($p\leq0.05$).

SCUBA dives (2 people×20 dives×2 tanks (2 hours) per dive in 2006–2009) to search for cnidarian polyps and their natural predators were carried out at more than 10 localities along the coast of Eta Island in Hiroshima Bay (Fig. 1). This island is irregular in shape and is composed of three regions: Eta, Higashi-Nohmi and Nishi-Nohmi. About half of the dives were conducted at Iruka Point (Fig. 1), a natural rock- and pebble-bedded area. Dives were also performed at Korenaga Port (Fig. 1), a concrete-walled local fishing port, to monitor benthic fauna on riprap, vertical concrete walls, and on the underside of floating piers and buoys. The occurrence of $A. aurita$ polyps and their predators was recorded at these two contrasting sites.

Results

Inventory of polyp predators

Of 78 species belonging to the Mollusca (47 species), Arthropoda (17 species), Echinodermata (8 species) and Vertebrata (6 species), only 8 species ate substantial numbers of $A. aurita$ polyps (Table 1 & Fig. 2). Five were gastropod species: Calliostoma unicum (Dunker), Pleurobranchaea japonica Thiele, Hermisenda crassicornis, Sakuraeolis enosimensis (Baba) and Sakuraeolis sakuraecea Hirano. Three were crustacean species: Rhynchocinetes uritai Kubo, Latreutes anoplonyx Kemp and Hyastenus diacanthus (De Haan). It was noteworthy that they never consumed podocysts. A crab, Achaeus japonicus (De Haan), and a sea star, Henricia ohshima Hayashi, con-

Fig. 2. Photographs of predators of Aurelia aurita polyps. (A) Calliostoma unicum; (B) Pleurobranchaea japonica; (C) Hermisenda crassicornis; (D) Sakuraeolis enosimensis; (E) Sakuraeolis sakuraecea; (F) Rhynchocinetes uritai; (G) Latreutes anoplonyx; (H) Hyastenus diacanthus. Scale bars=1 cm
sumed only parts of a few polyps on just one occasion and so were not designated as polyp predators. When molluscs, excluding the five species listed above, approached polyps closely enough to touch them with their tentacles, they were usually stung and recoiled immediately. A nudibranch, *Goniodoridella savignyi* Pruvot-Fol, died ca. 6 hours after contact with polyps, perhaps as a result of nematocyst poison. Crustaceans, excluding the four species listed above, showed no specific response to polyps, and eventually walked right over them. Eight echinoderm species damaged polyps by crawling over them, but did not eat any, except for *H. ohshimai*. None of the fish species tested ate polyps.

Predation rates

Calliostoma unicum

When this trochid gastropod crawled close enough to touch a polyp, it pulled its head back instantly, perhaps due to nematocyst stings, but then proceeded to the polyp with its head up and pushed its mouth area over the polyp. The polyp and nearby attached microalgae were scraped completely with the chitinous radula, so that the surface of the plate was clean. The spatial feeding pattern shown by a representative snail of 0.82 g wet-weight is depicted in Fig. 3A: it ate 270 polyps (area: 48 cm²), 180 polyps (22 cm²), 269 polyps (51 cm²) and 116 polyps (23 cm²) daily from the first to the fourth day, each time clearing all of the polyps on the plate. It gradually crawled around the plate looking for polyps, and consuming all in its path. The feeding of this species was basically continuous throughout the day, except for occasional halts. Despite a wide range of body weights from 0.82 to 5.2 g, the mean daily predation rate among 7 specimens at temperatures of 21–25°C was relatively constant (277 polyps predator⁻¹ day⁻¹, Fig. 4A).

Pleurobranchaea japonica

This sea slug showed no hesitation from nematocyst stings and scraped polyps off the plate with its radula, in a fashion similar to that of *Calliostoma unicum*. The predation rate varied widely from 83 to 549 polyps predator⁻¹ day⁻¹ at 15–17°C for 5 animals weighing from 0.8 to 7.1 g, but with no significant relationship between the predation rate and animal size (Fig. 4B).

Hermissenda crassicornis

As with *Calliostoma unicum*, this nudibranch withdrew from the polyp’s nematocysts, but then moved toward the polyp to eat it. The predation rate increased from 43 polyps predator⁻¹ day⁻¹ by the smallest animal (0.23 g) to 535 polyps predator⁻¹ day⁻¹ by the largest one (2.3 g) at 13–17°C. A significant linear regression model for predation rate versus weight was expressed by $P=253 \cdot W+12.2$ (Fig. 4C).

Sakuraeolis enosimensis

Five small specimens weighing from 0.07 to 0.48 g were available. They ate fewer polyps than the other nudibranch predators, perhaps due to their smaller body size. Their predation rate varied from 8 to 45 polyps predator⁻¹ day⁻¹ at 16–18°C. A significant linear regression model was: $P=85 \cdot W+1.6$ (Fig. 4D).

Sakuraeolis sakuracea

Only two specimens weighing 0.39 and 1.42 g were available, and they consumed 26 and 131 polyps predator⁻¹ day⁻¹, respectively, at 15–17°C (Fig. 4E).

Rhynchocinetes uritai

This shrimp species removed polyps from the plate by
grasping the bases of polyp stalks with a chela of the first or second pereopod and carrying them to the mouth. The shrimp tended to eat the polyps in one area and then move to an adjacent area, although some polyps were left uneaten temporarily until all of them were consumed (Fig. 3B). Of five specimens studied, the predation rate was lowest (118 polyps predator\(^{-1}\) day\(^{-1}\)) for the smallest (0.13 g) and highest (409 polyps predator\(^{-1}\) day\(^{-1}\)) for the largest (0.96 g) at 15–19°C. A significant linear regression model was expressed by \(P=365 W + 55.2\) (Fig. 4F).

Latreutes anoplonyx

Two specimens of *Latreutes anoplonyx* were available (0.26 and 0.39 g), and they consumed 53 and 67 polyps predator\(^{-1}\) day\(^{-1}\), respectively, at 15–17°C (Fig. 4G). The feeding behavior was basically the same as for *Rhynchoci-
Hastenus diacanthus

This crab grabbed at the bases of polyp stalks with a pair of chelipeds, removing them one by one to eat. It walked almost randomly on the plate, eating the polyps it encountered (Fig. 3C). Its predation rate varied from 47 to 672 polyps predator⁻¹ day⁻¹ at 22–26°C. An exponential equation was a better fit than a linear function to describe the relationship between predation rates and predator body weight: \(P = 136 W^{0.82} \) (Fig. 4H).

SCUBA observations

No Aurelia aurita polyps were found on the natural rock- and pebble-bedded areas at Iruka Point (Fig. 1), where Calliostoma unicum was often found on the brown alga Ecklonia sp. attached to a rocky substrate. At Iruka Point, nudibranchs such as Sakuraeolis enosimensis and S. sakuracea were usually encountered on rock surfaces, and Pleurobranchaea japonica was found on both boulders and on pebbled sea bottoms, particularly on the underside of pebbles. The shrimp Rhynchocinetes uritai was common on rocky shores at Iruka Point, often aggregating in rock crevices. In contrast, we found numerous A. aurita polyps inside Korenaga Port, specifically on the underside of floating piers where none of the above-mentioned polyp predators were found, except for S. enosimensis.

Discussion

A total of 78 species available were tested but only eight of them were found to be potential predators of Aurelia aurita polyps. These eight species may possess some protective or adaptive mechanisms against nematocysts, so that they can ingest them. For example, Calliostoma is typically a herbivore, scraping up algae and detritus using its characteristic rhipidoglossate radula. However, it is equally adept at grazing on hydroids and soft corals, perhaps because of a thick buccal cuticle that may protect it from nematocysts during ingestion (Perron & Turner 1978). Sea slugs of the genus Pleurobranchaea are euryphagic predators and scavengers, eating both live and dead prey, including anthozoans, hydrozoans, with some cannibalism (Cattaneo-Vietti et al. 1993). The absence of poisoning by Pleurobranchaea janonica in response to nematocysts fired from polyps suggests that their tentacles and oral region are protected by their cuticular epithelium.

The three species of nudibranchs that ate A. aurita polyps, (Hermisenda crassicorni, Sakuraeolis enosimensis and S. sakuracea) belong to the superfamily Aeolidioidea, many species of which are known to feed on hydroids (Swennen 1961, Salvini-Plawan 1972, Avila & Kuzirian 1995, Hirano 1999). Aeolidids retain nematocysts, which they acquire from their cnidarian prey, within their cnidocyte sacs for defense against predators (Thompson & Bennett 1969, Greenwood & Mariscal 1984). Hence, these aeolid species have a number of protective mechanisms, such as cuticular gut linings, protective epithelia and mucous secretions (Greenwood 2009). However, three other aeolidstested, Pteraeolidia ianthina (Angas), Sakuraeolis germana Hirano and Aeolidina sp., did not feed on A. aurita polyps at all (Table 1).

Although many crustaceans are protected from nematocysts by their chitinous exoskeletons, only two shrimps (Rhynchocinetes uritai and Latreutes anoplonyx) and one crab (Hastenus diacanthus) preyed on A. aurita polyps. The claws on their pereopods enabled them to grasp polyps, pick them up and move them to their mouths.

The eight identified potential predators, except for the jellyfish-associated shrimp L. anoplonyx, are common in the lower-littoral to sub-littoral zones in the Inland Sea of Japan and southern Sea of Japan, especially on rocky and pebble seabeds. These provide habitats for various sessile animals, including hydrozoans and anthozoans, which may be exposed to predation by sympatric predators, as has been observed elsewhere (Dumont et al. 2011). Nevertheless, during the present study A. aurita polyps were never found on exposed natural rocks and pebbles or on macroalgae.

It has become a common observation that overhanging areas of artificial structures harbor dense A. aurita polyp colonies (Miyake et al. 2002, Matsumura et al. 2005, Di Camillo et al. 2010, Toyokawa et al. 2011, Duarte et al. 2012). Dive observations during the present study showed that the natural enemies of A. aurita polyps are common on rocky and pebbled shores outside fishing ports, but are very scarce under suspended structures in port enclosures. This may be due to limited access to those suspended structures by benthic predators (Dumont et al. 2011). Polyps located under floating platforms are almost free from predation pressure and are thus able to increase their numbers greatly.

The feeding experiments showed that the eight polyp predators studied could not consume podocysts, as was also observed with aeolid nudibranchs by Cargo & Schultz (1967) and Gröndahl (1988). In most cases, they ate the whole polyp body, leaving no basal part from which a new polyp could regenerate (Gilchrist 1937, Lesh-Laurie & Corriel 1973). The predation rates by the species in the present study were significant, as demonstrated by three gastropods (C. unicum, P. japonica and H. crassicornis) and two crustaceans (R. uritai and H. diacanthus). All of them consumed the maximum number of >300 polyps each per day. It is here proposed that this high predation capacity of natural enemies could be used to regulate A. aurita polyp populations aggregated on artificial structures. Among the five species with high polyp predation rates, C. unicum may be the best candidate for transplantation to artificial structures, because it is the most numerous in the field and it can adhere to overhanging structures. An experimental transplantation of one C. unicum (wet weight: 2.6 g) to the underside of a floating pier (length:
48 m, width: 6 m, average polyp density: 3 polyps cm⁻²) was conducted in Kuba fishing port in Hiroshima Bay in November 2011. A 3-hour monitoring by SCUBA diving revealed that it consumed ca. 40 polyps (calyx diameter: ≥ca. 0.5 mm) per hour, a much higher rate than that in the laboratory experiment. Assuming a moderate predation rate (e.g. 300 polyps predator⁻¹ day⁻¹, Fig. 4A) by C. unicum and no asexual reproduction of polyps, all the polyps on the pier (estimated to be ca. 9 million; unpublished observations) could be eliminated within a month or so if three C. unicum per m² were to be transplanted there. The best timing for killing polyps by transplanted predators would be in the autumn, just before the initiation of strobilation, which regularly starts in December in the Inland Sea of Japan (unpublished). Assessment of any negative ecological impact, if any, created by transplanted predators, is needed before this proposed biological control of A. aurita can be put into practice.

Acknowledgments

We would like to thank Daisuke Uyeno, Kohzoh Ohtsu and staff of Oceanic Planning Corporation for assistance with SCUBA dives and collection of animals, and Ryosuke Makabe for help with the transplanting experiment in Kuba fishing port. This study was partially supported by a research grant from the Agriculture, Forestry and Fisheries Research Council (POMAL-STOPJELLY Project).

References

Arai MN (1997) A functional Biology of Scyphozoa. Chapman and Hall, London.

Avila C, Kuzirian AM (1995) Natural diets for Hermissona crassicornis. Mariculture. Biol Bull 189: 237–238.

Cargo DG, Schultz LP (1967) Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Sci 8: 209–220.

Cattaneo-Vietti R, Burlando B, Senes L (1993) Life history and diet of Pleurobranchaea mecklii (Opisthobranchia: Notaspidea). J Moll Stud 59: 309–313.

Chapman DM (1968) Structure, histochemistry and formation of the podocyst and cuticle of Aurelia aurita. J Mar Biol Assoc UK 48: 187–208.

Coyne JA (1973) An investigation of the dynamics of population growth and control in scyphistomae of the scyphozoan Aurelia aurita. Chesapeake Sci 14: 55–58.

Dawson MN (2003) Macro-morphological variation among cryptic species of the moon jellyfish, Aurelia (Cnidaria: Scyphozoa). Mar Biol 143: 369–379.

Dawson MN, Martin LE (2001) Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451: 259–273.

Di Camillo CG, Betti F, Bo M, Martinelli M, Puce S, Bavestrello G (2010) Contribution to the understanding of seasonal cycle of Aurelia aurita (Cnidaria: Scyphozoa) scyphopolyps in the northern Adriatic Sea. J Mar Biol Assoc UK 90: 1105–1110.

Dong Z, Liu D, Keesing JK (2010) Jellyfish blooms in China: dominant species, causes and consequences. Mar Poll Bull 60: 954–963.

Duarte CM, Pitt K, Lucas C, Purcell JE, Uye S, Robinson K, Brotz L, Decker MB, Sutherland KR, Malej A, Madin L, Mi- anzan H, Gill JM, Fuentes V, Atienza D, Pagés F, Breitburg D, Malek J, Graham WM, Condon R (2012) Is global ocean sprawl a cause of jellyfish blooms? Front Ecol Environ 11: 91–97.

Dumont CP, Gaymer CF, Thiel M (2011) Predation contributes to invasion resistance of benthic communities against the non-indigenous tunicate Ciona intestinalis. Biol Invasions 13: 2023–2034.

Gilchrist FG (1937) Budding and locomotion in the scyphistoma of Aurelia. Biol Bull Woods Hole 72: 99–124.

Graham WM (2001) Numerical increases and distributional shifts of Chrysaora quinquecirrha (Desor) and Aurelia aurita (Linne) (Cnidaria: Scyphozoa) in the northern Gulf of Mexico. Hydrobiologia 451: 97–111.

Greenwood PG, Mariscal RN (1984) The utilization of cnidarian nematocysts by aeolid nudibranchs: nematocyst maintenance and release in Spurilla. Tissue Cell 16: 719–730.

Greenwood PG (2009) Acquisition and use of nematocysts by cnidarian predators. Toxicon 54: 1065–1070.

Gröndahl F (1988) A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Mar Biol 97: 541–550.

Gröndahl F, Hernroth L (1987) Release and growth of Cyanea capillata (L.) ephyrae in the Gullmar Fjord, western Sweden. J Exp Mar Biol Ecol 106: 91–101.

Han CH, Uye S (2010) Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton Ben- thos Res 5: 98–105.

Hernroth L, Gröndahl F (1985a) On the biology of Aurelia aurita (L.). 2. Major factors regulating the occurrence of ephyrae and young medusae in the Gullmar Fjord, western Sweden. Bull Mar Sci 37: 567–576.

Hernroth L, Gröndahl F (1985b) On the biology of Aurelia aurita (L.). 3. Predation by Coryphella verrucosa (Gastropods, Opis- thobranchia), a major factor regulating the development of Aurelia populations in the Gullmar Fjord, western Sweden. Ophel 24: 37–45.

Hirano Y (1999) Two new species of Sakarauelis (Aeolidacea, Facelinidae) from Japan. Venus 58: 191–199.

Hoover RA, Armour R, Dow J, Purcell JE (2012) Nudibranch predation and dietary preference for the polyps of Aurelia labi- ata (Cnidaria: Scyphozoa). Hydrobiologia 690: 199–213.

Hutton CH, DeLisle PF, Roberts MH, Hepworth DA (1986) Chrysaora quinquecirrha: a predator on mysids (Mysidopsis bahia) in culture. Prog. Fish-Cult 48: 154–155.

Ishii H, Katsukoshi K (2010) Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. J Oceanogr 66: 329–336.

Ishii H, Watanabe T (2003) Experimental study of growth and asexual reproduction in Aurelia aurita polyps. Sessile Org 20:
Ishii H, Ohba T, Kobayashi T (2008) Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of *Aurelia aurita*. Plankton Benthos Res 3: 107–113.

Ki JS, Hwang DS, Shin K, Yoon WD, Lim D, Kang YS, Lee Y, Lee JS (2008) Recent moon jelly (*Aurelia* sp.) blooms. I. Korean coastal waters suggest global expansion: examples inferred from mitochondrial COI and nuclear ITS-5.85 rDNA sequences. ICES J Mar Sci 65: 443–452.

Lesh-Laurie GE, Corriel R (1973) Scyphistoma regeneration from isolated tentacles in *Aurelia aurita*. J Mar Biol Ass UK 53: 885–894.

Matsumura K, Kamiya K, Yamashita K, Hayashi F, Watanabe I, Murao Y, Miyasaka H, Kamimura N, Nogami M (2005) Genetic polymorphism of the adult medusae invading an electric power station and wild polyps of *Aurelia aurita* in Wakasa Bay, Japan. J Mar Biol Ass UK 85: 563–568.

Miller MEC, Graham WM (2012) Environmental evidence that seasonal hypoxia enhances survival and success of jellyfish polyps in the northern Gulf of Mexico. J Exp Mar Biol Ecol 432: 113–120.

Miyake H, Terazaki M, Kakinuma Y (2002) On the polyps of the common jellyfish *Aurelia aurita* in Kagoshima Bay. J Oceanogr 58: 451–459.

Nakano R (2004) Opisthobranchs of Japan Islands. Rutles Inc, Tokyo, 304 pp. (in Japanese)

Nishimura S (1992) Guide to Seashore Animals of Japan with Color Pictures and Keys, I. Hoikusha, Osaka, 425 pp. (in Japanese)

Nishimura S (1995) Guide to Seashore Animals of Japan with Color Pictures and Keys, II. Hoikusha, Osaka, 663 pp. (in Japanese)

Oakes MJ, Haven DS (1971) Some predators of polyps of *Chrysaora quinquecirrha* (Scyphozoa, Semaeostomeae) in the Chesapeake Bay, Virginia. J Sci 22: 45–46.

Okada K, Uchida S, Uchida T (1965) New illustrated Encyclopaedia of the Fauna of Japan, II. Hokuryukan, Tokyo, 803 pp. (in Japanese)

Perron FE, Turner RD (1978) The feeding behaviour and diet of *Calliostoma occidentale*, a coelenterate-associated prosobranch gastropod. J Moll Stud 44: 100–103.

Purcell JE (2007) Environmental effects on asexual reproduction rates of the scyphozoan *Aurelia labiata*. Mar Ecol Prog Ser 348: 183–196.

Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annu Rev Mar Sci 4: 209–235.

Purcell JE, Uye S, Lo W (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350: 153–174.

Salvini-Plawen LV (1972) Cnidaria as food sources for marine invertebrates. Cah Biol Mar 13: 385–400.

Swennen C (1961) Data on distribution, reproduction and ecology of the nudibranchiate molluscs occurring in the Netherlands. Neth J Sea Res 1: 191–240.

Thein H, Ikeda H, Uye S (2012) The potential role of podocysts in perpetuation of the common jellyfish *Aurelia aurita* s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters. Hydrobiologia 690: 157–167.

Thompson TE, Bennett I (1969) Physalia nematocysts; utilized by mollusks for defense. Science 166: 1532–1533.

Toyokawa M, Aoki K, Yamada S, Yasuda A, Murata Y, Kikuchi T (2011) Distribution of ephyrae and polyps of jellyfish *Aurelia aurita* (Linnaeus 1758) *sensu lato* in Mikawa Bay, Japan. J Oceanogr 67: 209–218.

Uye S (2011) Human forcing of the copepod–fish–jellyfish triangular trophic relationship. Hydrobiologia 666: 71–83.

Watanabe T, Ishii H (2001) In situ estimation of ephyrae liberated form polyps of *Aurelia aurita* using settling plates in Tokyo Bay, Japan. Hydrobiologia 451: 247–258.

Willcox S, Moltschaniwskyj NA, Crawford C (2007) Asexual reproduction in scyphistomae of *Aurelia* sp.: Effects of temperature and salinity in an experimental study. J Exp Mar Biol Ecol 333: 107–114.

Willcox S, Moltschaniwskyj NA, Crawford CM (2008) Population dynamics of natural colonies of *Aurelia* sp. scyphistomae in Tasmania, Australia. Mar Biol 154: 661–670.