Ultrasound velocity measurements in orbital-degenerate frustrated spinel MgV$_2$O$_4$

T Ishikawa1, T Watanabe4, S Hara2, A T M N Islam3, E M Wheeler2, and B Lake3

1 Department of Physics, College of Science and Technology (CST), Nihon University, Chiyoda, Tokyo 101-8308, Japan
2 Department of Physics, Chuo University, Bunkyo, Tokyo 101-8324, Japan
3 Helmholtz Zentrum Berlin, GmbH, D-14109 Berlin, Germany

E-mail : tadataka@phys.cst.nihon-u.ac.jp
csta13003@g.nihon-u.ac.jp

Abstract. Ultrasound velocity measurements of the orbital-degenerate frustrated spinel MgV$_2$O$_4$ are performed in the disorder-free high-purity single crystal which exhibits successive structural and antiferromagnetic phase transitions, and in the disorder-introduced single crystal which exhibits spin-glass-like behavior. The measurements reveal coexisting two types of anomalous temperature dependence of the elastic moduli in the cubic paramagnetic phase: Curie-type softening with decreasing temperature, and softening with a characteristic minimum with decreasing temperature. These elastic anomalies should respectively originate from the coexisting orbital fluctuations and spin-cluster excitations.

1. Introduction
Vanadate spinel AV$_2$O$_4$ (A = Zn [1], Mg [2] and Cd [3]) is a geometrically frustrated magnet which undergoes a cubic-to-tetragonal structural transition at a temperature T_s and an antiferromagnetic (AF) transition at a low temperature T_N. For AV$_2$O$_4$, it is considered that the lowering of the lattice symmetry by the structural transition at T_s leads to the release of the frustration by the AF transition at T_N lower than T_s. Thus the interplay of spin, orbital, and lattice degrees of freedom should play a crucial role for the release of frustration in AV$_2$O$_4$. We are interested in the frustrated phase (the cubic paramagnetic (PM) phase) of AV$_2$O$_4$. And we performed ultrasound velocity measurements in the magnesium vanadate spinel MgV$_2$O$_4$. This compound exhibits successive phase transitions of a cubic-to-tetragonal structural transition at $T_s = 65$ K and an AF transition at $T_N = 42$ K [2]. For MgV$_2$O$_4$, it is known that a small amount of disorder suppresses the structural and magnetic phase transitions, and induces spin-glass-like behaviour at low temperatures [4]. In the present study, we performed the measurements in the disorder-free high-purity single crystal with the successive phase transitions at $T_s = 65$ K and $T_N = 42$ K, and in the disorder-introduced single crystal which exhibits the spin-glass-like behaviour below $T_f = 12.5$ K.

2. Experimental
The ultrasound velocity measurements were performed in two different types of MgV$_2$O$_4$ single crystals grown by the floating-zone method: the disorder-free high-purity single crystal with the successive structural and AF transitions at $T_s = 65$ K and $T_N = 42$ K, named here as “ordered MgV$_2$O$_4”,

and the disorder-introduced single crystal with the spin-glass-like behavior below \(T_s = 12.5 \) K in which ~3% of V atoms in the octahedral sites are substituted by Mg atoms, named here as “disordered MgV\(_2\)O\(_4\)” [4]. Temperature (\(T \)) dependence of the ultrasound velocity was measured at \(T \) from 10 K to 150 K with magnetic field \(H/\| [110] \) up to 7 T in all the symmetrically independent elastic moduli in the cubic crystal: compression modulus \(C_{11}, \) tetragonal shear modulus \((C_{11}-C_{12})/2, \) and trigonal shear modulus \(C_{44}. \) The configuration of propagation \(k \) and polarization \(u \) of the sound wave for each elastic mode is summarized in Table 1.

Table 1. Elastic modulus of cubic crystal and the corresponding configuration of sound wave with propagation \(k \) and polarization \(u \)

Elastic modulus	Sound wave	Propagation \(k \)	Polarization \(u \)
Compression modulus \(C_{11} \)	Longitudinal wave	[001]	[001]
Tetragonal shear modulus \((C_{11}-C_{12})/2 \)	Transverse wave	[110]	[110]
Trigonal shear modulus \(C_{44} \)	Transverse wave	[001]	[110]

3. Results and discussion

Figures 1(a), (b) and (c) respectively show \(T \) dependence of the compression modulus \(C_{11}, \) the tetragonal shear modulus \((C_{11}-C_{12})/2, \) and the trigonal shear modulus \(C_{44} \) in the ordered MgV\(_2\)O\(_4\) with \(H = 0. \) All the elastic modes exhibit a jump at \(T_s \) and a discontinuous change at \(T_N, \) as marked by arrows in Figs. 1(a), (b), and (c). In the cubic PM phase \((T > T_N), C_{11} \) and \((C_{11}-C_{12})/2 \) exhibit huge Curie-type (\(~ -1/T \)) softening with decreasing \(T, \) which should be a precursor to the cubic-to-tetragonal lattice distortion at \(T_s. \) As shown in the insets to Figs. 1(a) and (b), this Curie-type softening is independent of \(H \| [110], \) and thus should be driven by the coupling of lattice to orbital fluctuations which is hardly affected by the spin sector [5, 6, 7, 8]. On the other hand, \(C_{44} \) in the cubic PM phase \((T > T_s) \) exhibits non-monotonic softening with decreasing \(T: \) softening with convex curvature in \(~80 K < T < ~150 \) K and Curie-type softening in \(T_s < T < ~80 \) K. As shown in the inset to Fig. 1(c), the softening in \(C_{44} \) is sensitive to \(H \| [110]; \) the non-monotonic softening with concave curvature in the \(H \)
exhibit a small increase in slope. In the cubic PM phase (\(T_f\) in Figs. 1(a), (b), and (c). At disordered MgV$_2$O$_4$ should be driven by the coupling of lattice to the spin-cluster excitations. Taking into account that inelastic neutrons scattering experiments in anomaly is usually observed as a result of the coupling of lattice to magnetic excitations [9, 10, 11].

Figures 2(a), (b) and (c) respectively show \(T_f\) dependence of elastic moduli in the disordered MgV$_2$O$_4$ with \(H||[110]\). (a) compression modulus \(C_{11}\), (b) tetragonal shear modulus \((C_{11}-C_{12})/2\), and (c) trigonal shear modulus \(C_{44}\).

\(= 0\) data becomes closer to the Curie-type softening in the 7 T data. Thus, taking into account the \(H\) insensitivity of the Curie-type softening in \(C_{11}\) and \((C_{11}-C_{12})/2\), the non-monotonic softening in \(C_{44}\) should observe a superposition of \(H\)-sensitive concave \(T\) dependence and \(H\)-insensitive Curie-type softening. Furthermore, subtracting the component of the Curie-type softening from the observed non-monotonic softening in \(C_{44}\), another component observed as the concave \(T\) dependence should be characterized as a softening with minimum with decreasing \(T\). Such a softening-with-minimum anomaly is usually observed as a result of the coupling of lattice to magnetic excitations [9, 10, 11].

We here note that the disordered MgV$_2$O$_4$ exhibits the absence of the Curie-type softening, namely the absence of a precursor to structural transition, which is compatible with the absence of structural transition in the disordered MgV$_2$O$_4$. Taking into account the presence of the Curie-type softening in the ordered MgV$_2$O$_4$ as shown in Fig. 1, the present study reveals that not only the structural transition but also its precursor (the Curie-type softening) in MgV$_2$O$_4$ is sensitively suppressed by disorder. On the other hand, the softening with minimum is observed in both the ordered and the disordered MgV$_2$O$_4$ indicating that the spin-cluster excitations are robust against disorder. Therefore the results in the present study strongly suggest the coexistence of the disorder-sensitive orbital fluctuations and the disorder-robust spin-cluster excitations in MgV$_2$O$_4$.

We note here that the component of the softening with minimum in \(C_{44}\) of the ordered MgV$_2$O$_4$ seen in the inset to Fig. 1(c) is sensitive to \(H\), whereas that in \(C_{11}\), \((C_{11}-C_{12})/2\), and \(C_{44}\) of the
disordered MgV$_2$O$_4$ respectively seen in Figs. 2(a), (b), and (c) is insensitive to H. This difference in the H-sensitivity should also arise due to disorder, where the response of the spin-cluster-lattice coupling to H is quenched by the introduction of disorder. The detailed mechanism for this disorder effect remains to be elucidated. For instance, the excitation in MgV$_2$O$_4$ might correctly be the orbital-spin-cluster excitation, and its change to the orbital-cluster excitation might occur by the introduction of disorder.

4. Summary
We performed ultrasound velocity measurements of MgV$_2$O$_4$ in the disorder-free high-purity single crystal which exhibits successive structural and AF phase transitions, and in the disorder-introduced single crystal which exhibits spin-glass-like behaviour. The measurements reveal coexisting two types of anomalous T dependence of the elastic moduli in the cubic PM phase: Curie-type softening with decreasing T, and softening with a characteristic minimum with decreasing T. These elastic anomalies should respectively originate from the coexisting disorder-sensitive orbital fluctuations and disorder-robust spin-cluster excitations.

5. Acknowledgement
This work was partly supported by Grant-in-Aid for Scientific Research (C) (25400348) from MEXT of Japan, and by Nihon University College of Science and Technology Grants-in-Aid for Fundamental Science Research.

References
[1] Lee S H, Louca D, Ueda H, Park S, Sato T J, Isobe M, Ueda Y, Rosenkranz S, Zschack P, Iniguez J, Qiu Y, and Osborn R 2004 Phys. Rev. Lett. 93, 156407.
[2] Mamiya H, Onoda M, Furubayashi T, Tang J, and Nakatani I 1997 J. Appl. Phys. 81, 5289.
[3] Giovannetti G, Stroppa A, Picozzi S, Baldomir D, Pardo V, Blanco-Canosa S, Rivadulla F, Jodlauk S, Niermann D, Rohrkamp J, Lorenz T, Streltsov S, Khomskii D I, and Hemberger J 2011 Phys. Rev. B 83, 060402(R).
[4] Islam A T M N, Wheeler E M, Reehuis M, Siemensmeyer K, Tovar M, Klemke B, Kiefer K, Hill A H, and Lake B 2012 Phys. Rev. B 85, 024203.
[5] Kino Y, Luthi B, and Mullen M E 1972 J. Phys. Soc. Jpn. 33, 687.
[6] Kino Y, Luthi B, and Mullen M E 1973 Solid State Commun. 12, 275.
[7] Kataoka M and Kanamori J 1972 J. Phys. Soc. Jpn. 32, 113.
[8] Hazama H, Goto T, Nenmo Y, TOMIOKA Y, Asamitsu A, and Tokura Y 2000 Phys. Rev. B 62, 15012.
[9] Zherlitsyn S, Schmidt S, Wolf B, Schwenk H, Luthi B, Kageyama H, Onizuka K, Ueda Y, and Ueda K 2000 Phys. Rev. B 62, R6097.