Additions to the smut fungi of the Iberian Peninsula

Teodor T. DENCHEV1*, Maria P. MARTÍN2, Martin KEMLER3, Cvetomir M. DENCHEV4

1, 4Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria.
2IUCN SSC Rusts and Smuts Specialist Group.
3Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain.
4Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstr. 150, 44801 Bochum, Germany.

*Correspondence: ttdenchev@gmail.com

Abstract. After examination of specimens, mainly from the herbarium (MA) and the mycological collection (MA-Fungi) of the Royal Botanic Garden of Madrid, we report several novelties on smut fungi within Europe. Two species of smut fungi, Sporisorium egyptiacum and Tilletia viennotii, are reported for the first time from Europe. A finding of Sphacelotheca polygoni-serrulati represents a second record for Europe. Six species of smut fungi, Moreaua kochiana, Schizomella elynae, Sporisorium egyptiacum, Thecaphora thlaspeos, Tilletia viennotii, and Ustanciosporium majus, are recorded for the first time from the Iberian Peninsula. Five species of smut fungi, Moreaua kochiana, Schizomella elynae, Sporisorium egyptiacum, Thecaphora thlaspeos, and Ustanciosporium majus, are newly recorded from Spain. Three species, Moreaua kochiana, Sphacelotheca polygoni-serrulati, and Tilletia viennotii, are new for Portugal. A specimen of Moreaua kochiana represents a new record for France. Arabis serpillifolia is reported as a new host of Thecaphora thlaspeos. New distribution records from the Iberian Peninsula are given for Anthracoidea arenariae, Microbotryum minuartiae, M. silenes-saxifragae, and Tranzscheliella sparti. We also include a phylogenetic analysis of DNA sequences of Moreaua kochiana, generated in this study, to understand this species’ relationships within its genus.

Keywords. Iberian Peninsula, Moreaua kochiana, smut fungi, Sporisorium egyptiacum, Tilletia viennotii.

Resumen. Tras examinar especímenes principalmente del herbario (MA) y de la colección de hongos (MA-Fungi) del Real Jardín Botánico de Madrid reportamos varias novedades de carboneros dentro de Europa. Dos especies de carboneros, Sporisorium egyptiacum y Tilletia viennotii, se citan por primera vez para Europa. Reportamos también la segunda cita de Sphacelotheca polygoni-serrulati para Europa. Seis especies, Moreaua kochiana, Schizomella elynae, Sporisorium egyptiacum, Thecaphora thlaspeos, y Ustanciosporium majus, se citan por primera vez para la Península Ibérica; cinco especies, Moreaua kochiana, Schizomella elynae, Sporisorium egyptiacum, Thecaphora thlaspeos, y Ustanciosporium majus, son nuevas citas para España; tres especies, Moreaua kochiana, Sphacelotheca polygoni-serrulati, y Tilletia viennotii, son nuevas citas para Portugal. Una colección de Moreaua kochiana representa una nueva cita para Francia. Arabis serpillifolia se menciona por primera vez como un hospedante para Thecaphora thlaspeos. Se registran nuevas localidades en la Península Ibérica para Anthracoidea arenariae, Microbotryum minuartiae, M. silenes-saxifragae y Tranzscheliella sparti. Incluimos también un análisis filogenético de secuencias de ADN de dos especímenes de Moreaua kochiana, generadas en este estudio, para entender las relaciones filogenéticas de esta especie dentro su género.

Palabras clave. Península Ibérica, Moreaua kochiana, carboneros, Sporisorium egyptiacum, Tilletia viennotii.

How to cite this article: Denchev T.T., Martin M.P., Kemler M., Denchev C.M. 2021. Additions to the smut fungi of the Iberian Peninsula. Anales del Jardín Botánico de Madrid 78: e109. https://doi.org/10.3989/ajbm.2589

Title in Spanish: Adiciones a los carboneros de la Península Ibérica.

Associate Editor: Ricarda Riina. Received: 4 February 2021; accepted: 5 May 2021; published online: 21 June 2021.

INTRODUCTION

The Iberian Peninsula harbours an unusually high diversity of vascular plants, ranking among the highest in Europe and the Mediterranean area with 6276 species (Aedo & al. 2017). It is one of the most important centres of endemism with 1357 endemic species (22% of the total number of species) (Buira & al. 2020). This level of plant diversity is expected to correlate with a high species richness of plant parasitic fungi. Although the smut fungi of the Iberian Peninsula are a subject of long-term studies (e.g., González Fragoso 1914, 1917, 1919, 1923, 1924a, b, 1926; Unamuno 1928, 1930a, b, c, 1931, 1934a, b, 1942; Ciferri 1933; Maire 1933, 1943; Losa España 1942, 1944, 1949, 1954; Alcalde 1944; Cámara & Oliveira 1945; Cámara 1946; Guyot & al. 1955, 1958, 1960, 1969; Jerstad 1962; Durrieu 1966; Losa Quintana 1970; Llorens i Villagrasa 1985; Denchev 1995, 1997; Almaraz & Durrieu 1997; Al-
maraz 1998, 1999a, b, c, 2002; Almaraz & Medina 1998; Almaraz & Telleria 1998; Vánky 2011; Klemel & al. 2013, 2020; Denchev & Denchev 2017; Kruse & al. 2018), their inventory is incomplete and no regional monographic study has been published yet. Based on the modern taxonomic arrangement of the smut fungi, all known records from the Iberian Peninsula and Balearic Islands can be referred to 164 species.

In this article, we present new records of smut fungi from the Iberian Peninsula, as follows: two species for the first time from Europe, one species as a second record from Europe, six species for the first time from the Iberian Peninsula, five species as new for Spain, and three species as new for Portugal. We also generated DNA sequences (ITS and LSU rDNA regions) of Moreaua kochiana to provide a phylogenetic context for this species.

MATERIAL AND METHODS

The collections, on which the records are based, were obtained during a visit of two of the co-authors (T.T.D. & C.M.D.) to the herbarium (MA) and mycological collection (MA-Fungi) at the Royal Botanic Garden, Madrid in April 2017. Dried specimens from the herbarium and mycological collection of the Royal Botanic Garden, Madrid and herbarium of the Botanic Garden and Botanical Museum Berlin were examined with a light microscope (LM) and scanning electron microscope (SEM). For LM observations and measurements, spores, spore balls, and sterile cells were mounted in lactoglycerol solution (w : gl = 1 : 1 : 2) on glass slides, gently heated to boiling point for rehydration, and then cooled. The measurements of spores and sterile cells are given in the form: min–max (extreme values) (mean ± 1 standard deviation). For SEM, spores were attached to specimen holders by double-sided adhesive tape and coated with gold in an ion sputter. The surface structure of spores was observed and photographed at 10 kV accelerating voltage using a Hitachi S-3000N scanning electron microscope. The shapes of spores, spore balls, and sterile cells are arranged in descending order of frequency. The width and height of the appendages of Ustanciosporium majus were measured in accordance with Denchev & Denchev (2016). The descriptions given below are based entirely on the specimens examined.

To elucidate the relationship of one of the species, Moreaua kochiana with other species of the genus and the Anthraeoideaceae, the ITS and LSU rDNA regions of two specimens were analysed. Genomic DNA isolation was performed using DNeasyPlant Mini Qiagen (Qiagen, Valencia, California, US), following the manufacturer’s instructions, except in three steps: the incubation with the RNase was done overnight at 65°C, a second drying at 20 000×g was done for 2 min after cleaning with AW buffer, and elution buffer was preheated to 60°C. Polymerase chain reactions (PCR) were performed using Ready-To-Go PCR beads (GE Healthcare, Buckinghamshire, UK) to amplify DNA from two regions with the following primer combinations: ITS1F (Gardens & Bruns 1993)/ITS4 (White & al. 1990), to obtain DNA amplifications of the nuclear ribosomal internal transcribed spacer regions ITS1 and ITS2, including 5.8S, ITS nrDNA barcode (Schoch & al. 2012); and LR0R/LR5r (White & al. 1990), for nrLSU region. Amplicons obtained were purified using the kit QIAquick Gel Extraction (Qiagen) following the protocol defined by the manufacturer. The purified PCR products were sent to Macrogen (Madrid) for sequencing both directions using the same primers used in the amplifications. The consensus sequences were obtained with the software Sequencher (Gene Codes Corporation Inc, Ann. Arbor, Michigan, USA).

Alignment of the newly generated DNA sequences and of selected ones from NCBI was performed using MAFFT v7.450 under the –insi option (Katoh & al. 2002; Katoh & Standley 2013). Ambiguous sites, leading and trailing gaps were removed using GBlast (Castresana 2000) as implemented in Seaview (Gouy & al. 2010). Phylogenetic analyses were conducted using RAxML 7.3.5 (Stamatakis 2006) under the GTR+Gamma nucleotide substitution model and 1000 rapid bootstrap repetitions. The final ML tree was visualized using FigTree v1.4.3 (Rambaut 2016).

For the geographic distribution data provided to each taxon we follow the World Geographical Scheme for Recording Plant Distributions (Brummitt 2001).

RESULTS AND DISCUSSION

Taxonomic treatment

Anthraeoidea arenariae (Syd.) Nannf., Bot. Not. 130: 365 (Nannfeldt 1977); Cintractia arenariae Syd., Ann. Mycol. 22: 289 (Sydow 1924). Type: on Carex arenaria, Poland, near Darłówko (as ‘Pommern, Rügenwaldermünde’), Jul. 1893, P. Sydow s.n. (lectotype designated by Nannfeldt (1977: 365): S; isocryptotypes: in Sydow, Ustilag., no. 5, as ‘Ustilago carici’).

Specimen examined — On Carex arenaria L.: PORTUGAL. Braga: Espoende, Apúlia, 41°28’33.9″N, 8°46’23.7″W, 9 m, 6 Jun. 2010, A. Quintanar & al. AQ3864, “Iter Lusitanicus, VI-2010” (MA 824694).

Distribution. — On Cyperaceae: Carex accrescens Ohwi (C. pallida C.A.Mey), C. arenaria, C. brizoides L., C. col-
ovoid, composed of (2–)5–50 or more, firmly united spores, Spore balls irregular, subglobose, broadly ellipsoidal or ovoid, blackish brown, initially agglutinated, later powdery.

Microbotryum minuartiae M.Lutz, Piątek, Kemler & Chleb., Mycol. Res. 112: 1287 (Lutz & al. 2008). Type: on *Minuartia recurva* (All.) Schinz & Thell., Romania, Carpathian Mts, Bucegi Mts., Caraiman Peak, 2384 m, 26 Jul. 2004, A. Ronikier & M. Ronikier s.n. (holotype: KRAM-F 55483).

Specimen examined.—On *Minuartia villarii* (Balb.) Wilczyk & Cheneyvard: SPAIN. León: Peña Ubíña, 1200 m, 10 Jul. 1994, S. Castroviejo s.n. (MA 247957).

Distribution.—On Caryophyllaceae: *Minuartia* spp.; Europe, Asia (Vánky 2011).

Microbotryum silenes-saxifragae M.Lutz, Piątek & Kemler, IMA Fungus 4: 34 (Piątek & al. 2013). Type: on *Silene saxifraga*, Austria, Carinthia, Villach, Finkenstein, south-saxifraga, L.: SPAIN. Melide, 9 Aug. 1985, E. Lago 566EL, S. Castroviejo, and X.R. Garcia (MA 875148). Valencia: Teresa de Cofrentes, Las Quebradas, 600 m, 3 Nov. 2003, M. Martínez Azorín s.n. (MA 836657).

Specimens examined.—On *Schoenus nigricans* L.: PORTUGAL. Aveiro (as ‘Beira Litoral’): Barrinha de Esmoriz, 12 Jul. 1977, Malato-Beliz 13586 and J.A. Guerra (MA 274860). SPAIN. Pontevedra: Cabo de Home, Playa de Melide, 9 Aug. 1985, E. Lago 566EL, S. Castroviejo, and X.R. Garcia (MA 875148). Valencia: Teresa de Cofrentes, Las Quebradas, 600 m, 3 Nov. 2003, M. Martínez Azorín s.n. (MA 836657).

Distribution.—On Caryophyllaceae: *Minuartia* spp.; Europe, Asia (Vánky 2011).

Microbotryum minuartiae M.Lutz, Piątek, Kemler & Chleb., Mycol. Res. 112: 1287 (Lutz & al. 2008). Type: on *Minuartia recurva* (All.) Schinz & Thell., Romania, Carpathian Mts, Bucegi Mts., Caraiman Peak, 2384 m, 26 Jul. 2004, A. Ronikier & M. Ronikier s.n. (holotype: KRAM-F 55483).

Specimen examined.—On *Minuartia illirica* (J.Gay) & C. ligerica J.Gay), and *C. praeceps* Schreb.; Europe, Asia, and North America (Vánky 2011).

Comments.—We report a new distribution record from Portugal.

Microbotryum minuartiae M.Lutz, Piątek, Kemler & Chleb., Mycol. Res. 112: 1287 (Lutz & al. 2008). Type: on *Minuartia recurva* (All.) Schinz & Thell., Romania, Carpathian Mts, Bucegi Mts., Caraiman Peak, 2384 m, 26 Jul. 2004, A. Ronikier & M. Ronikier s.n. (holotype: KRAM-F 55483).

Specimen examined.—On *Minuartia villarii* (Balb.) Wilczyk & Cheneyvard: SPAIN. León: Peña Ubíña, 1200 m, 10 Jul. 1994, S. Castroviejo s.n. (MA 247957).

Distribution.—On Caryophyllaceae: *Minuartia* spp.; Europe, Asia (Vánky 2011).

Microbotryum silenes-saxifragae M.Lutz, Piątek & Kemler, IMA Fungus 4: 34 (Piątek & al. 2013). Type: on *Silene saxifraga*, Austria, Carinthia, Villach, Finkenstein, southern part of the Kanzianberg, near the church, 630 m, 24 Jun. 2006, M. Lutz s.n. (holotype: KR-M-23890).

Specimen examined.—On *Silene saxifraga* L.: SPAIN. Huesca: Sobrarbe, Chisagüés, 1650 m, 20 Jun. 1996, M. Carrasco, C. Martin Blanco, and M. Velayos 8426 (MA 609550).

Distribution.—On Caryophyllaceae: *Silene saxifraga*; Europe (Piątek & al. 2013).

Comments.—A new distribution record from Spain.

Moreaua kochiana (Gäum.) Vánky, Mycotaxon 74: 352 (Vánky 2000); *Tolyposporium kochianum* Gäum., Ber. Schweiz. Bot. Ges. 41: 179 (Gäumann 1932); *Thecaphora kochiana* (Gäum.) Thirum. & Neerg., Friesia 11: 186 (Thirimalchar & Neergaard 1978). Type: on *Schoenus ×scheuchzeri* (as ‘S. ferrugineus × S. nigricans’), Switzerland, Kanton Zürich, at Greifensee Lake, Jun. 1932, W.Koch & L.Zobrist s.n. (holotype: ZT). Fig. 2a–d.

Infection systemic. Sori around filaments and gynoeicum of all flowers of infected plant, concealed by adjacent glumes and outwardly inconspicuous; the mass of spore balls blackish brown, initially agglutinated, later powdery. Spore balls irregular, subglobose, broadly ellipsoidal or ovoid, composed of (2–)5–50 or more, firmly united spores, occasionally single spores present, (17.5–)21–75(–85) × (14.5–)18–55(–68) μm, dark reddish brown to very dark reddish brown or medium reddish brown when composed of few spores, opaque when composed of tens of spores. Spores in surface view irregularly rounded, irregularly polygonal, subcuneate, subglobose, elliptical or broadly elliptical, measured from the free side (5.5–)6.5–15(–16) × (5–)6–11(–12) μm; radially (5–)6–15.5(–17) μm long; wall 1.2–3.2 μm thick at free surface, 0.5–1.0 μm thick at contact surfaces. In SEM, spore wall rugose to irregularly verrucose.

Specimens examined.—On *Schoenus nigricans* L.: PORTUGAL. Aveiro (as ‘Beira Litoral’): Barrinha de Esmoriz, 12 Jul. 1977, Malato-Beliz 13586 and J.A. Guerra (MA 274860). SPAIN. Pontevedra: Cabo de Home, Playa de Melide, 9 Aug. 1985, E. Lago 566EL, S. Castroviejo, and X.R. Garcia (MA 875148). Valencia: Teresa de Cofrentes, Las Quebradas, 600 m, 3 Nov. 2003, M. Martínez Azorín s.n. (MA 836657).

Distribution.—On Cyperaceae: *Schoenus carsei* Cheeseeman, S. nigricans, and *Schoenus ×scheuchzeri* Brügger (‘S. ferrugineus L. × S. nigricans L., Schoenus ×intermedium Brügger’); Europe (Austria, France, Germany, Italy, Netherlands, Portugal, Spain, Switzerland) and New Zealand.

Comments.—*Moreaua kochiana* is an infrequently collected smut fungus, considered by Vánky (1994: 273), in his monograph of the European smut fungi, as a rare species. Eighty-eight years after its description, it was known in Europe from only a few localities: on *Schoenus nigricans*, from the Netherlands (Ernst 2013) and Italy (Vánky, Ustilaginales Exsiccata, no. 861), and on *Schoenus ×scheuchzeri*, from Switzerland (Gäumann 1932; Vánky 2000; Vánky, Ustilaginales Exsiccata, no. 189) and Germany (Kruse & al. 2014). Recently, it was recorded from Austria, on both host plants (Denchev & al. 2020b). *Moreaua kochiana* is reported herein for the first time from France, Spain, and Portugal, thus extending its geographic range to the Mediterranean region of France and the Iberian Peninsula. The significant increase in the knowledge about the distribution of this smut fungus suggests that its ‘rarity’ is rather due to its cryptic nature and that probably, this species has a larger geographic range.

*M. re-
Table 1. List of sequences downloaded from GenBank and newly sequenced specimens used in the phylogenetic analyses with their respective GenBank accessions numbers for ITS and LSU.

Species	Host	Voucher	ITS	LSU
Anthracoidea aspera (Liro) Kukkonen	Carex chordorrhiza L.f.	65/HMH 2774	AJ586572	AY563607
Anthracoidea sempervirentis Vánky	Carex sempervirens Vill.	GLM-F105803/HMH 3950	KY424498	AY563586
Contractia amazonica Syd. & P.Syd.	Rhyncospora barbata (Vahl) Kunth	MP 2008	DQ875342	AJ236142
Contractia limitata G.P.Clinton	Cyperus sp.	AFTOL-ID 446	DQ645508	DQ645506
Dermatossorus cypri Vánky	Cyperus cellulosoreticulatus Boeckeler	H.U.V. 15991	DQ875343	AJ236157
Farysia itapuensis Landell & P.Valente ex Denchev & T.Denchev	n/a	CBS 10429	KY103405	KY107692
Farysia thuemenii (A.A.Fisch.Waldb.) Namff.	n/a	CBS 112.23	MH854741	MH866248
Leucocintractia leucodermoides M.Piepenbr. & Begerow	Rhyncospora holoschoenosides (Rich.) Herter	HAJB 10431	DQ875346	DQ875363
Leucocintractia scleriae (DC.) M.Piepenbr. et al.	Rhyncospora triflora Vahl	MP 2074	AY740025	AJ236154
Moreaua bulbostylidis M.Piepenbr.	Bulbostylis capillaris C.B.Clarke	M 56581	DQ875349	DQ875366
Moreaua fimbristylidis Vánky & R.G.Shivas	Fimbristylis dichotoma (L.) Vahl	M 56582	DQ875350	DQ875367
Moreaua kochiana (Gäum.) Vánky	Schoenus nigricans L.	MA 836657	MW258623	MW258619
Moreaua kochiana	Schoenus nigricans	MA 691763	MW258622	MW258618
Moreaua mauritiana (Syd.) Vánky	Fimbristylis ovata (Burm.f.) J.Kern	M 0040282	KY424491	–
Orphanomyces arcticus (Rostr.) Savile	Carex davalliana Sm.	GLM-F105778	KY424454	–
Portalia uljanishcheviana (Schwarzman)	Scirpoides holoschoenus (L.) Soják (as 'Holoschoenus vulgaris')	12 Jul. 1949, Schwarzman	–	EF118824
Schizonella caricis-atratae Prillinger et al. ex Denchev & T.Denchev	Carex atrata L.	CBS 123477	NR_158881	NG_064878
Schizonella melanogramma (DC.) J.Schröt.	Carex sp.	AFTOL-ID 1722	DQ832212	DQ832210
Stegocintractia luzulae (Sacc.) M.Piepenbr. et al.	Luzula pilosa (L.) Willd.	MP 2340	DQ875353	AJ236148
Testicularia cypcri Klotzsch	Rhyncospora sp.	MCA3645	KU147240	KU147242
Tolyposporium juncti (J.Schröt.) Woronin	Juncus bufonius L.	H.U.V. 17169	AY344994	AF009876
Tolyposporium neillii (G.Cunn.) Vánky & McKenzie	Isolepis nodosa (Rottb.) R.Br.	H.U.V. 18533	EU246951	EU246952
Trichocintractia atriculica (Henn.) M.Piepenbr.	Rhyncospora corymbosa (L.) Britton	H.U.V. 19316	KY424453	AF009877
Ustanciosporium gigantosporum (Liro) M.Piepenbr.	Rhyncospora alba (L.) Vahl	HRK023	JN367300	JN367325
Ustanciosporium standleyanum (Zundel) M.Piepenbr.	n/a	AFTOL-ID 1915	DQ846890	DQ846888
Additions to the smut fungi of the Iberian Peninsula

5

Additions to the smut fungi of the Iberian Peninsula

Australia and New Zealand (Govaerts 2020) and that the smut fungi usually have narrow host specialisation.

The new sequences of Moreaua kochiana generated in this study represent the first molecular data for this species (Table 1). The ITS sequences are identical, whereas the LSU sequences show minor sequence differences. The two accessions of M. kochiana included in the phylogenetic analysis form a statistically well-supported clade (Fig. 1). The species is closely related to M. bulbostylidis M. Piepenbr. and all species of Moreaua form a highly supported clade (Fig. 1).

Schizonella elynae (A.Blytt) Liro, Ann. Acad. Sci. Fenn., Ser. A 42(1): 308 (Liro 1936); Schizonella melanogramma var. elynae A.Blytt, Forh. Vidensk.-Selsk. Christiania 1896 (6): 33 (Blytt 1896, as ‘β elynae’). Type: on Carex myro

suroides (as ‘Elyna spicata’), Norway, Oppland, Dovre, Hjerkinn, 8 Aug. 1889, A. Blytt s.n. (lectotype designated by Lindeberg (1959: 57): O). Fig. 2e–h.

Infection systemic. Sori in leaves as striae or irregular spots, initially covered by the silvery epidermis which later ruptures disclosing a semi-agglutinated, blackish brown mass of spores. Spores joined in pairs, sometimes in threes, often separating into single spores, depressed on the contact side, in plane view suborbicular, irregular, broadly elliptical or ovate in outline, in plane view (5–)5.5–9(–9.5) × (4.5–)5–7.5(–8.5) (7.1 ± 0.9 × 6.1 ± 0.6) μm (n = 100), in side view usually irregularly hemispherical; light yellowish brown to medium reddish brown; wall unevenly thickened, 0.6–1.3(–1.6) μm thick, thinner and lighter on the contact side, smooth. In SEM, spore wall densely, minutely verruculose,
warts often confluent, forming small groups; ornaments up to 0.15 μm in height; contact side with a concave area.

Specimen examined. — On Carex myosuroides Vill. (Kobresia myosuroides (Vill.) Fiori): SPAIN. Cantabria: Picos de Europa, Fuente Dé, upper station of the cable car to Horcados Rojos, 1900–2400 m, 14 Jul. 1985, M. Luceño and P. Vargas 419 (MA 342212).

Distribution. — On Cyperaceae: Carex myosuroides; Europe, Asia (East Siberia), and North America (Canada, Greenland).

Comments. — Both the smut fungus and its host plant are circumpolar-alpine species (Denchev & al. 2020a; Elven & al. 2020). In Europe, Schizonella elynae is known from North Europe (Iceland, Norway, and Sweden) and the Alps.

Fig. 2. Moreana kochiana (Gàum.) Vánky (MA 836657): a, habit; b, spore balls in LM; c, d, spore balls in SEM. Schizonella elynae (A.Blytt) Liro (MA 342212): e, habit; f, spores in LM; g, h, spores in SEM. Sphacelothea polygoni-serrulati Maire (B 10 0506861): k, habit; j, spores in LM; k, l, spores in SEM. Scale bars: a, e, i = 0.5 cm, b, f, j = 10 μm, c, d, g, h, k, l = 5 μm.
(Germany, Austria, and Italy) (Blytt 1896; Lindeberg 1959; Jorstad 1963; Helgi Hallgrímsson & Guðrún Gúðý Eyjólfsdóttir 2004; Kruse & al. 2019; Denchev & al. 2020a). The present record extends the geographic range of this species to the Iberian Peninsula. Schizonella elynae, on Carex pilifera L., was erroneously reported from Spain by Almaraz (1998: 123, 2002: 47), based on a wrongly revised specimen of González Fragoso, published by him (1924a: 121) as S. melanogramma (DC.) J.Schröt. on Carex Schreb.

Sphacelotheca polygoni-serrulati Maire, Bull. Soc. Hist. Nat. Afrique N. 8: 74 (Maire 1917). Type: on Persicaria decipiens (as ‘Polygonum sacciferum’), Algeria, Algiers, Réghaïa, 15 Oct. 1915, R. Maire s.n. (lectotype designated by Vanky & Oberwinkler (1994: 28): MPU; isolectotypes: in Maire, Mycotheca Boreali-Africana, no. 229). Fig. 2i–l.

Sori in some ovaries of an inflorescence, ovoid, 2.5–4 mm long, covered by a thick, brownish and brittle peridium which later ruptures irregularly from its apex, exposing a semi-agglutinated, powdery on the surface, date brown (based on Colour identification chart of Anonymous 1969) mass of spores, surrounding a single columella. Spores subglobose, broadly ellipsoid, slightly irregular, ovoid or globose, often slightly flattened, initially in chains, connected by disjoiners, later single, usually with two or sometimes three persistent appendages on the opposite sides of the spores (remnants of disjoiners), (9.5–)10–13(–14) × (8.5–)9.5–12(–13) (11.6 ± 0.8 × 10.4 ± 0.7) μm (n = 100), medium vinaceous; wall finely and irregularly reticulate, evenly thickened, 0.6–1.0 μm thick, spore profile not affected. In SEM, spore wall incompletely reticulate or labyrinthiform.

Specimen examined. — On Persicaria decipiens (R.Br.) K.L.Wilson (as ‘Polygonum salicifolium’ Brouss. ex Willd.); PORTUGAL. Setúbal: Santiago do Cacem, Ribeira da Lezíria, 24 Oct. 1979, L.A. Grandvaux Barbosa 13330 (B 10 0506861).

Distribution. — On Polygonaceae: Persicaria barbata (L.) H.Hara (Polygonum barbatum L.), P. decipiens (Polygonum salicifolium Brouss. ex Willd., P. serrulatum Lag.), P. maculosa S.F.Gray, P. pulchra (Blume) Sojak, and P. setosum (A.Rich.) K.L.Wilson (Polygonum setosulum A.Rich.); Europe (Portugal, Spain), Africa, Australasia (Australia, New Zealand).

Comments. — Sphacelotheca polygoni-serrulati is recorded here for the first time from Portugal. In Europe, this smut fungus has been previously reported only once, for Spain: on Persicaria decipiens (as ‘Polygonum salicifolium’) in the Province of Barcelona, Gavà (Almaraz 2002). The present finding represents the first record for Europe.

In Africa, it is known from single localities in Algeria, Cameroon, the D.R. of the Congo, Madeira, Uganda, Rwanda, and Zambia (Maire 1917; Liro 1924; Zundel 1944; Denl & al. 1985; Vánky & al. 2011; Piatek & al. 2012).

Sporisorium egyptiacum (A.A.Fisch.Waldh.) Vánky (as ‘aegypticum’), Mycotaxon 33: 371 (Vánky 1988); Ustilago egyptiaca A.A.Fisch.Waldh. (as ‘aegypticum’), Hedwigia 18: 100 (Fischer von Waldheim 1879). Type: on Schismus barbatus (as ‘S. calycinus’), Egypt, near Cairo, 1820–1824, G. Ehrenberg s.n. (holotype: LE). Fig. 3a–d.

Infection systemic, in all spikelets of the inflorescence. Sori in the basal part of florets leaving intact the glumes and the distal part of the floret (in spikelets with mature sori, the basal part of the florets appears bullate, similar to sori of Ustilago bulbata Berk.), 1.5–2.5 × 0.7–1.2 mm, ovoid or ellipsoid, partially visible between the spreading glumes; initially covered by a thin, yellowish brown peridium that soon ruptures irregularly from its basal part, exposing a single, flattened, tapering columnella as long as the sorus, surrounded by a powdery, blackish brown mass of spores and sterile cells. The infected plants are stunted. Sterile cells single, in irregular groups or in short chains, irregular, subglobose, broadly ellipsoid or ellipsoidal, (6–7)–11.5(–12.5) × (5.5–)6.5–10(–11) (9.4 ± 1.6 × 8.0 ± 1.1) μm (n = 50), hyaline; wall 0.6–1.0 μm thick. Spores irregularly rounded, subglobose, broadly ellipsoid, ellipsoidal or ovoid, (10.5–)11.5–14.5(–15.5) × (8.5–)9.5–12.5(–13.5) (13.0 ± 8.0 ± 1.1 ± 0.9) μm (n = 100), medium reddish brown; wall 0.7–1.3 μm thick, minutely echinulate, ornaments up to 0.4(–0.5) μm high, spore profile slightly affected. In SEM, spore surface densely punctate between the spines.

Specimen examined. — On Schismus barbatus (L.) Thell. (as ‘S. calycinus Cosson & Durieu’); SPAIN. Almeria: Rioja near Gérgal, 11 Mar. 1970, J. Fernández Casas s.n. (MA 415522).

Distribution. — On Poaceae: Schismus arabicus Nees, S. barbatus (S. calycinus (Loefl.) K.Koch, S. minutus (Hoffm.) Roem. & Schult.); Europe (Spain), North Africa (Egypt, Libya), Asia, Australia.

Comments. — This finding of Sporisorium egyptiacum represents the first record for the Iberian Peninsula and Europe (cf. Vánky 1994, 2005).

Thecaphora thlaspeos (Beck) Vánky, Mycotaxon 89: 111 (Vánky 2004); Tilletia thlaspeos Beck, Verh. K. K. Zool.-Bot. Ges. Wien 35: 362 (Beck 1886); Ustilago thlaspeos (Beck) Lagerh., in Sydow, Ustilaginales Excisata: no. 118 (1897). Type: on Thlaspi alpestre, Austria, Burgenland, near Redlschlag, V. Borbás s.n. (HUV 14776 in BRIP). Fig. 3e–h.

Infection systemic. Sori in siliqueae, replacing the seeds. Spore mass powdery, yellowish brown, released when the siliqueae open. Spores single, variable in shape, irregular,
Subglobose, broadly ellipsoidal, ellipsoidal, elongated, globose, ovoid or reniform, (9.5–)10.5–18(–20) × (8–)9–12(–13.5) (13.4 ± 1.8 × 10.5 ± 1.0) μm (n = 100), light to medium yellowish brown; wall 0.5–1.1 μm thick, verrucose-echinate, ornaments up to 0.6 μm high, on a restricted area of the wall ornaments coarser and higher, up to 2.0(–2.4) μm high. In SEM, spore wall verrucose-echinate, smooth to sparsely punctate between the ornaments.

Specimen examined.—On *Arabis serpillifolia* Vill.: SPAIN. Huesca: Valle de Ordesa, Faja Pelay, 1400 m, 29 Aug. 1969, J. Fernández Casas s.n. (MA 331875).

Distribution.—On Brassicaceae: *Alyssum reiseri* Velen., *Arabidopsis petraea* (L.) V.I.Dorof. (*Cardaminopsis petraea* (L.) Hiitonen), *Arabis alpina* L., *A. ciliata* Clairv. (*A. corymbiflora* Vest), *A. hirsuta* (L.) Scop., *A. pubescens* (Desf.) Poir., *A. sagittata* (Bertol.) DC., *A. serrata*

Fig. 3. *Sporisorium egyptiacum* (A.A.Fisch.Waldh.) Vánky (MA 415522): a, habit; b, spores in LM; c, d, spores and sterile cells in SEM. *Thecaphora thlaspeos* (Beck) Vánky (MA 331875): e, habit; f, spores in LM; g, h, spores in SEM. *Tilletia viennotii* Syd. (Álvarez & al. 1344 IA, MA-Fungi s.n.): i, habit; j, spores and sterile cells in LM; k, l, spores and sterile cells in SEM. Scale bars: a, e, i = 0.5 cm, b, f, j = 10 μm, c, d, g, h, k, l = 5 μm.
Additions to the smut fungi of the Iberian Peninsula

or globose, (22.5–)23.5–28(–29) × (21.5–)22.5–26(–27) (25.9 ± 1.2 × 24.2 ± 1.0) μm (n = 100), medium yellowish brown to medium reddish brown, reticulate; spore wall (4.0–)4.3–5.5(–5.8) μm thick (including reticulum); meshes 6–8(–9) per spore diameter, polyhedral or irregular, (0.8–)1.2–5.0(–6.5) μm long; muri 22–31 on equatorial circumference, in optical median view subacute, acute or blunt, (2.3–)2.6–3.7(–4.2) μm high; often covered by thin, hyaline sheath. In SEM, interspaces smooth, sometimes with a very low, hemispherical protuberance.

Specimen examined. — On *Briza maxima* L.: PORTUGAL. Beira Alta: Guarda, between Vale de Estrela and Guarda, 950 m, 19 Jul. 1997, I. Álvarez 1344 IA, M.A. García, and L. Medina (MA-Fungi s.n.).

Distribution. — On Poaceae: *Briza maxima*, *B. minor*. Europe (Portugal), Africa, and Australia.

Comments. — *Briza maxima* and *B. minor* are native to the Mediterranean and Macaronesian regions (*B. minor* also in SW Asia to Iran) but they have been introduced to many countries throughout the world, as ornamental species, and widely naturalised there (Isabel & al. 2018; Clayton & al. 2020). Within its native range, *B. maxima* is reported as infected by *Tilletia viennottii* only from Madeira (Sydow 1937) while outside this range, there are records from South Africa (Zundel 1938; Vánky 1998; Vánky & al. 2011) and Australia (Vánky & Shivas 2008). *Briza minor* is known as a host plant only from Australia (Vánky & Shivas 2008). Thus, the finding reported here is of high interest, as it represents the first record of this smut fungus not only from the Iberian Peninsula but also from Europe.

var. hallaisanensis (Nakai) Ohwi, *Cardamine bellidifolia* L., *Draba aizoides* L., *D. alpina* L., *D. incana* L., *Erysimum diffusum* Ehrh., *E. welcevii* Urum., *Noccaea alpestre* (Jacq.) Kerguélen (Thlaspi alpinum Crantz), *Noccaea brachypetala* (Jord.) F.K.Mey. (*Thlaspi brachypetalum* Jord.), and *N. caeruleus* (J.Presl & C.Presl) F.K.Mey. (*Thlaspi alpestre* L.); Europe, North Africa (Algeria), and Asia (South Korea).

Comments. — *Thecaphora thlaspeos* is a rather inconspicuous species, without obvious infection symptoms. This smut fungus can be seen once siliquae are opened and the spore mass becomes exposed (Denchev & Denchev 2019). *Thecaphora thlaspeos* is reported here for the first time from the Iberian Peninsula. *Arabis serpillifolia* is endemic to Europe, known from the Pyrenees, the Iberian System, Jura Mts, and the Alps (Jones & Akeroyd 1993; Talavera 1993). It is a new host plant record for *T. thlaspeos*.

Tilletia viennottii Syd., Ann. Mycol. 35: 258 (Sydow 1937). Type: on *Briza maxima*, Madeira Island, Curral Grande, Aug. 1936, G. Viennot-Bourgin s.n. (holotype: PC). Fig. 3i–l.

Infection systemic. Sori in ovaries of all spikelets of an infected plant, hidden by the glumes, 2.5–3.5 × 1.5–2.0 mm, covered by a thin, brown pericarp with parallel veins. Mass of spores and sterile cells powdery, umber (based on Rayner 1970) or snuff brown (based on Colour identification chart of Anonymous 1969), evident after rupturing of the pericarp. Sterile cells slightly irregular, subglobose or broadly ellipsoidal, (16.5–)17.5–23(–24) × 16–21(–22.5) (20.4 ± 1.5 × 18.7 ± 1.3) μm (n = 50), hyaline; cell wall two-layered, (1.3–)1.5–2.3(–2.6) μm thick. In SEM, smooth to punctate. Spores subglobose, broadly ellipsoidal or globose, (22.5–)23.5–28(–29) × (21.5–)22.5–26(–27) (25.9 ± 1.2 × 24.2 ± 1.0) μm (n = 100), medium yellowish brown to medium reddish brown, reticulate; spore wall (4.0–)4.3–5.5(–5.8) μm thick (including reticulum); meshes 6–8(–9) per spore diameter, polyhedral or irregular, (0.8–)1.2–5.0(–6.5) μm long; muri 22–31 on equatorial circumference, in optical median view subacute, acute or blunt, (2.3–)2.6–3.7(–4.2) μm high; often covered by thin, hyaline sheath. In SEM, interspaces smooth, sometimes with a very low, hemispherical protuberance.

Specimen examined. — On *Briza maxima* L.: PORTUGAL. Beira Alta: Guarda, between Vale de Estrela and Guarda, 950 m, 19 Jul. 1997, I. Álvarez 1344 IA, M.A. García, and L. Medina (MA-Fungi s.n.).

Distribution. — On Poaceae: *Briza maxima*, *B. minor*. Europe (Portugal), Africa, and Australia.

Comments. — *Briza maxima* and *B. minor* are native to the Mediterranean and Macaronesian regions (*B. minor* also in SW Asia to Iran) but they have been introduced to many countries throughout the world, as ornamental species, and widely naturalised there (Isabel & al. 2018; Clayton & al. 2020). Within its native range, *B. maxima* is reported as infected by *Tilletia viennottii* only from Madeira (Sydow 1937) while outside this range, there are records from South Africa (Zundel 1938; Vánky 1998; Vánky & al. 2011) and Australia (Vánky & Shivas 2008). *Briza minor* is known as a host plant only from Australia (Vánky & Shivas 2008). Thus, the finding reported here is of high interest, as it represents the first record of this smut fungus not only from the Iberian Peninsula but also from Europe.
Transcheliiella sparti (Massenot) Vánky, Mycotaxon 85: 4 (Vánky 2003); Ustilago sparti Massenot, in Guyot & al., Rev. Pathol. Vég. Entomol. Agric. France 34: 216 (Guyot & al. 1955). Type: on Lygeum spartum, Tunisia, near Hadjeb-el-Aioun, 1 Oct. 1953, L. Guyot s.n. (lectotype designated by Vánky (1994: 376): PC; syntype: near Kasserine, 1 Oct. 1953, Cámara M.S. 1946. Contributiones ad mycofloram Lusitaniae. Centuria Lusitania collectorum. Ustilaginales 1. A new distribution record from Spain.

Comments. — On Poaceae: Lygeum spartum; Europe, Asia, and North America.

Distribution. — On Cyperaceae: Lygeum spartum; South Europe and North Africa (Vánky 2011).

ACKNOWLEDGEMENTS

This research received support from the SYNTHESIS Project http://www.syntheses.info/, financed by European Community Research Infrastructure Action under the FP7 “Capacities” Program at the Real Jardín Botánico (CSIC) (Grant no. ES-TAF-6618) and the Botanic Garden and Botanical Museum Berlin (Grant no. DE-TAF-4056). The assistance of Dr Margarita Dueñas (MA-Fungi) is kindly acknowledged.

REFERENCES

Aedo C., Buira A., Medina L. & Fernández-Albert M. 2017. The Iberian vascular flora: richness, endemicity and distribution patterns. In Loidi J. (ed.), The vegetation of the Iberian Peninsula 1: 101–130. Springer, Berlin.

Alcalde M.B. 1944. Acerca de “Ustilago cardui sobre Cirsium”. Anales del Jardín Botánico de Madrid 4: 141–143.

Almaraz T. & Durrieu G. 1997. Ustilagineales from the Spanish Pyrenees and Andorra. Mycotaxon 65: 223–236.

Almaraz T. & Medina L. 1998. Fragmenta chorologica occidentalia, Fungi, 6322. Anales del Jardín Botánico de Madrid 56: 124.

Almaraz T. & Telleria M.T. 1998. On Ustilago sparti (Ustilagineales, Basidiomycotina). Mycotaxon 67: 495–504.

Almaraz T. 1998. Fragmenta chorologica occidentalia, Fungi, 6308–6321. Anales del Jardín Botánico de Madrid 56: 123–124.

Almaraz T. 1999a. Fragmenta chorologica occidentalia, Fungi, 6918–6935. Anales del Jardín Botánico de Madrid 57: 141–143.

Almaraz T. 1999b. Quelques Ustilagineales de l’Andalousie (Espagne). Cryptogamie, Mycologie 20: 5–10.

Almaraz T. 1999c. Nuevas aportaciones corológicas de Ustilagineales. Boletín de la Sociedad Micológica de Madrid 24: 95–102.

Almaraz T. 2002. Base corológica de Flora Micológica Ibérica. Números 1766–1932. In Pando F. & Hernández J.C. (eds.), Cuadernos de Trabajo de Flora Micológica Ibérica vol. 17. Editorial CSIC, Real Jardín Botánico, Madrid.

Anonymous. 1969. Flora of British Fungi. Colour Identification Chart. Her Majesty’s Stationery Office, Edinburgh.

Beck G. 1886. Zur Pilzflora Niederösterreichs. 3. Verhandlungen der Kaiserl.-Königl. Zoologisch-Botanischen Gesellschaft in Wien 35: 361–376.

Blytt A. 1896. Bidrag til kundskaben om Norges soporter. IV. Peronosporaceae, Chytridiaceae, Protomycetaceae, Ustilagineae, Uredineae. Forhandlinger i Videnskaps-Selskabet i Kristiania 1896(6): 1–75.

Brummitt R.K. 2001. World Geographical Scheme for Recording Plant Distributions. Ed. 2. Plant Taxonomic Database Standards No. 2 International Working Group on Taxonomic Databases for Plant Sciences (TDWG). Hunt Institute for Botanical Documentation, Carnegie Mellon University, Pittsburgh. Website: http://grassworld.myspecies.info/sites/grassworld.myspecies.info/files/tdwg_geo2.pdf [accessed 12 Nov. 2020].

Buira A., Cabezás F. & Aedo C. 2020. Disentangling ecological traits related to plant endemism, rarity and conservation status in the Iberian Peninsula. Biodiversity and Conservation 29: 1937–1958.

Cámara M.S. & Oliveira A.L.B. 1945. Contributo fungorum minima in Lusitania collectorum. Ustilagineales 1. Agronomia Lusitana 7: 101–108.

Cámara M.S. 1946. Contribuciones ad mycoflorum Lusitaniae. Centuria XII. Agronomia Lusitana 8: 19–71.

Anales del Jardín Botánico de Madrid 78 (1): e109. https://doi.org/10.3989/ajbm.2589
González Fraguoso R. 1924a. Ustilaginales de la flora española existentes en el Herbario del Museo Nacional de Ciencias Naturales de Madrid. Boletín de la Real Sociedad Española de Historia Natural 24: 116–127.

González Fraguoso R. 1924b. Datos para el conocimiento de la Microflora Ibérica. Boletín de la Real Sociedad Española de Historia Natural 24: 440–452.

González Fraguoso R. 1926. Hongos de España (3ª Serie). Brotiéria. Série Botânica 22: 97–106.

Gouy M., Guindon S. & Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221–224.

Govaerts R. 2020. World checklist of Cyperaceae. Facilitated by the Royal Botanic Gardens, Kew. Website: https://wcsp.science.kew.org/qsearch.do [accessed 7 Nov. 2020].

Guyot L., Malençon G. & Massenot M. 1955. Contribution à l’étude des Ustilaginales parasites du Bassin méditerranéen occidental. (Afrique du Nord et Péninsule ibérique). Revue de Pathologie Végétale et d’Entomologie Agricole de France 34(4): 181–216.

Guyot L., Malençon G. & Massenot M. 1958. Deuxième contribution à l’étude des Ustilaginales parasites du Bassin méditerranéen occidental. (Afrique du Nord et Péninsule ibérique). Revue de Pathologie Végétale et d’Entomologie Agricole de France 37(2): 187–196.

Guyot L., Malençon G. & Massenot M. 1960. Troisième contribution à l’étude des Ustilaginales parasites du Bassin Méditerranéen Occidental (Afrique du Nord et Péninsule ibérique). Revue de Pathologie Végétale et d’Entomologie Agricole de France 39: 165–172.

Guyot L., Malençon G. & Massenot M. 1969. Quatrième contribution à l’étude des Ustilaginales parasites du Bassin Méditerranéen Occidental (Afrique du Nord, Espagne, Italie). Revue de Mycologie, Paris 34: 192–219.

Helgi Hallgrímsson & Guðrún Guðný Eyjósfísðóttir. 2004. Checklist of Icelandic fungi I. Microfungi. Fjölrétt Náttúrufræðistofnanum 45: 1–189. (In Icelandic)

Isabel M., Quintana A. & Medina L. 2018. Revisión taxonómica del género Briza (Poaceae) en la Península Ibérica e Islas Baleares. Collectanea Botanica 37: e004.

Jones B.M.G. & Akeryo J.K. 1993. Arabis L. In Tutin T.G. & al. (eds.). Flora Europaea, ed. 2: 352–356. Cambridge University Press, Cambridge.

Jorstad I. 1962. Investigations on the Uredinales and other parasitic fungi in Mallorca and Menorca. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo, Matematisk-Naturvidenskapelig Klasse 2: 1–73.

Jorstad I. 1963. Ustilaginales of Norway (exclusive of Cintractia on Carex). Nyt Magasin for Botanikk 10: 85–130.

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

Katoh K., Misawa K., Kuma K. & Miyata,T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.

Kemler M., Denchev T.T., Begerow D., Piatek M. & Lutz M. 2020. Host preference and sorus location correlate with parasite phylogeny in the smut fungal genus Microbotryum (Basidiomycota, Microbotryales). Mycological Progress 19: 481–493.

Kemler M., Martin M.P., Telloria T., Schäfer A.M., Yurkov A. & Begerow D. 2013. Contrasting phylogenetic patterns of anther smuts (Pucciniomycotina: Microbotryum) reflect phylogenetic patterns of their caryophyllaceous hosts. Organisms, Diversity and Evolution 13: 111–126.
Kruse J., Kummer V. & Thiel H. 2014. Noteworthy records of phyto-pathogenic micromycetes (2). Further smut fungi (Ustilaginomycotina). Zeitschrift für Mykologie 80: 227–255.

Kruse J., Piątek M., Lutz M. & Thines M. 2018. Broad host range species in specialised pathogen groups should be treated with suspicion – a case study on Entyloma infecting Ranunculus. Persoonia 41: 175–201.

Kruse J., Thiel H., Klenke F. & Kummer V. 2019. Bemerkenswerte Funde phytoparasitischer Kleinpilze (12). Zeitschrift für Mykologie 85: 315–342.

Lehtola V.B. 1942. Zur Kenntnis der Brandpilze auf Rhynchospora alba (L.) Vahl. Annales Botanici Societatis Zoologicae-Botanicae Fennicae “Vanamo” 17(3): 1–34.

Lindeberg B. 1959. Ustilaginales of Sweden (exclusive of the Cintractias on Caricoideae). Symboles Botanicae Upsalienses 16(2):1–175.

Liro J.I. 1924. Die Ustilagineen Finnlands 1. Annales Academiae Scientiarum Fennicae, Ser. A 17(1): 1–636.

Liro J.I. 1936. Über Schizonella melanogramma und Verwandte. In Liro J.I. (1935–1938). Die Ustilagineen Finnlands 2. Annales Academiae Scientiarum Fennicae, Ser. A 42(1): 300–309.

Liro J.I. 1938. Die Ustilagineen Finnlands 2. Annales Academiae Scientiarum Fennicae, Ser. A 42(1): 1–720.

Llorens i Villarasa I. 1985. Aportacion al conocimiento de los Uredinales, Ustilaginales y Fragmentosasimionietos de Filipendula ulmaria. I. Anales de Biología, Facultad de Biología, Universidad de Murcia 1: 35–45.

Losa España T.M. 1949. Aportación al estudio de la Micología catalana. Anales del Jardín Botánico de Madrid 2: 87–142.

Losa España T.M. 1954. Aportaciones al estudio de la flora micológica de Filipendula ulmaria. Anales del Jardín Botánico de Madrid 4: 195–240.

Losa España T.M. 1970. Contribución al estudio de los micromycetes españoles. Anales del Instituto Botánico de Madrid 2: 5–14.

Lutz M., Piątek M., Klemel M., Chlebicki A. & Oberwinkler F. 2013. Microbotryum silenes-saxifragae sp. nov. sporulating in the anthers of Silene saxifraga in southern European mountains. IMA Fungus 4: 29–40.

Piątek M., Piątek J. & Mossebo D.C. 2012. Recently discovered collections extend the geographical range of the smut fungus Sphacelotheca polygoni-serrulati to Cameroon and Zambia. Polish Botanical Journal 57: 285–293.

Piepenbring M. 2000. The species of Cintractia s. l. (Ustilaginales, Basidiomycota). Nova Hedwigia 70: 289–372.

Rambaut A. 2016. FigTree v1.4.3. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Website: http://tree.bio.ed.ac.uk/software/figtree/ [accessed: 7 Dec. 2020].

Rayner RW. 1970. A Mycological Colour Chart. CMI, Surrey & British Mycological Society, Kew.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

Sydow H. 1924. Notizen über Ustilagineen. Annales Mycologici 22: 277–291.

Sydow H. 1937. Novae fongorum species. 25. Annales Mycologici 35: 244–286.

Talavera S. 1993. Aravib L. In Castroviejo S. & al. (eds.), Flora iberica 4: 135–163. Editorial CSIC, Real Jardín Botánico, Madrid.

Thirumalachar M.J & Neergaard P. 1978. Studies on the genus Tolyposporium. Tolyposporium gen. nov. Friesia 11(1977): 177–192.

Unamuno L.M. 1928. Datos para el estudio de la flora micológica de los alrededores de Santa María de la Vid (Burgos). Boletín de la Real Sociedad Española de Historia Natural 28: 195–202.

Unamuno L.M. 1930. Nueva aportación a la micología española. Boletín de la Real Sociedad Española de Historia Natural 30: 287–301.

Unamuno L.M. 1930b. Hongos microscópicos de los alrededores de Caudete (Albacete). Boletín de la Real Sociedad Española de Historia Natural 30: 379–390.

Unamuno L.M. 1930c. Datos para el conocimiento de la micoflora española. Boletín de la Real Sociedad Española de Historia Natural 30: 419–434.

Unamuno L.M. 1931. Algunas especies de micromicetes de la región meridional de España. Boletín de la Real Sociedad Española de Historia Natural 31: 331–340.

Unamuno L.M. 1934a. Notas micológicas, 7. Algunos datos interesantes para la flora micológica española. Boletín de la Real Sociedad Española de Historia Natural 34: 133–146.

Unamuno L.M. 1934b. Notas micológicas, 8. Boletín de la Real Sociedad Española de Historia Natural 34: 249–259.

Unamuno L.M. 1942. Contribución al estudio de los hongos microscópicos de la provincia de Cuenca. Anales del Jardín Botánico de Madrid 2: 7–86.

Vaidya G., Lohman D.J. & Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180.

Vánky K. & Oberwinkler F. 1994. Ustilaginales en Polygonaceae – a taxonomic revision. Nova Hedwigia Beiheft 107: 1–96.

Vánky K. & Shivis R.G. 2008. Fungi of Australia: the smut fungi. In Fungi of Australia Series, Australian Biological Resources Study, Canberra & CSIRO Publishing, Melbourne.

Vánky K. 1988. Taxonomical studies on Ustilaginiales. 3. Mycotaaxon 33: 365–374.

Vánky K. 1994. European Smut Fungi. Gustav Fischer Verlag, Stuttgart, Jena, New York.
Additions to the smut fungi of the Iberian Peninsula

Vánky K. 1998. Ustilaginales exsiccata. Fasc. 41–42 (no. 1001–1050). Publications from the Herbarium Ustilaginales Vánky 12: 1–17.

Vánky K. 2000. New taxa of Ustilaginomycetes. Mycotaxon 74: 343–356.

Vánky K. 2003. Taxonomical studies on Ustilaginales. 23. Mycotaxon 85: 1–65.

Vánky K. 2004. Taxonomic studies on Ustilaginomycetes – 24. Mycotaxon 89: 55–118.

Vánky K. 2005. European smut fungi (Ustilaginomycetes p.p. and Microbotryales) according to recent nomenclature. Mycologia Balcanica 2: 169–177.

Vánky K. 2011[‘2012’]. Smut fungi of the world. APS Press, St. Paul, Minnesota, USA.

Vánky K., Vánky C. & Denchev C.M. 2011. Smut fungi in Africa – a checklist. Mycologia Balcanica 8: 1–77.

Zundel G.L. 1938. The Ustilaginales of South Africa. Bothalia 3: 283–330.

Zundel G.L. 1944. Notes on the Ustilaginales of the world. 4. Mycologia 36: 400–412.