High-Density Sb$_2$Te$_3$ Nanopillars Arrays by Templated, Bottom-Up MOCVD Growth

Raimondo Cecchini,* Raja S. R. Gajjela, Christian Martella, Claudia Wiemer, Alessio Lamperti, Lucia Nasi, Laura Lazzarini, Luca G. Nobili, and Massimo Longo*

Sb$_2$Te$_3$ exhibits several technologically relevant properties, such as high thermoelectric efficiency, topological insulator character, and phase change memory behavior. Improved performances are observed and novel effects are predicted for this and other chalcogenide alloys when synthetized in the form of high-aspect-ratio nanostructures. The ability to grow chalcogenide nanowires and nanopillars (NPs) with high crystal quality in a controlled fashion, in terms of their size and position, can boost the realization of novel thermoelectric, spintronic, and memory devices. Here, it is shown that highly dense arrays of ultrascaled Sb$_2$Te$_3$ NPs can be grown by metal organic chemical vapor deposition (MOCVD) on patterned substrates. In particular, crystalline Sb$_2$Te$_3$ NPs with a diameter of 20 nm and a height of 200 nm are obtained in Au-functionalized, anodized aluminum oxide (AAO) templates with a pore density of $\approx 5 \times 10^{10}$ cm$^{-2}$. Also, MOCVD growth of Sb$_2$Te$_3$ can be followed either by mechanical polishing and chemical etching to produce Sb$_2$Te$_3$ NPs arrays with planar surfaces or by chemical dissolution of the AAO templates to obtain freestanding Sb$_2$Te$_3$ NPs forests. The illustrated growth method can be further scaled to smaller pore sizes and employed for other MOCVD-grown chalcogenide alloys and patterned substrates.

1. Introduction

Developments in the fabrication of low-dimensional chalcogenide nanostructures are a key factor for their integration into novel, high performing electrical devices. In particular, high-aspect-ratio chalcogenide nanostructures, such as nanowires (NWs) and nanopillars (NPs), are especially interesting for the realization of advanced thermoelectric, spintronic, and memory devices. Among chalcogenide alloys, Sb$_2$Te$_3$ exhibits several desirable properties, including phase change memory (PCM) behavior with high switching speed,[1,2] high Seebeck coefficient,[3–5] and topological insulator properties.[6,7] High-aspect-ratio nanostructures of Sb$_2$Te$_3$ and other chalcogenide alloys are expected to bring important advantages in all the above-mentioned applications. Indeed, the reduction of the programming power in NW-based, compared to thin film-based, PCM cells has been predicted[8] and widely demonstrated.[9–11] A higher figure of merit is expected for thermoelectric generators built on chalcogenide NWs, NPs and other nanostructures.[12–14] Further, it is anticipated that topological insulator NWs will allow innovative device concepts in spintronics.[15–17] Despite their high technological potential, the integration of low-dimensional chalcogenide nanostructures into architectures relevant for industrial applications remains challenging. In particular, a high degree of control over the position and size distribution of the NPs/NWs is required, as well as their embedment in a, e.g., electrically insulating matrix. In principle, this can be achieved by filling with the chalcogenide alloy the high-aspect-ratio trenches/pores preformed on nanopatterned substrates. However, line-of-sight deposition processes are inherently inadequate for such a task. In the fabrication of PCM devices, for example, conformal growth of chalcogenide thin films by chemical vapor deposition (CVD) and atomic layer deposition has been proposed to replace magnetron sputtering in, e.g., so-called “confined” PCM memory cells architectures.[18–20] Nevertheless, even these implementations do not take full advantage of the bottom-up growth potential available to CVD-based processes. Indeed, CVD and, in particular, metal organic chemical vapor deposition (MOCVD) processes allow the bottom-up growth of nanostructures and NWs of a wide range...
of chalcogenide alloys with often single-crystal quality, which is often out of the reach for other methods. On the other hand, these types of synthesis have in most cases been performed on planar, unpatterned substrates, therefore leading to a random distribution of the NWs.[21–25] The growth of ordered arrays of nanocrystals of different chalcogenide alloys, including Sb$_2$Te$_3$, by selective MOCVD growth has been demonstrated on low aspect-ratio lithographically patterned (≈100 nm size) templates and on substrates locally treated by oxygen plasma, as well as using Au nanodeposits as catalysts exploiting the vapor–liquid–solid mechanism.[26–31] For what concerns high-aspect-ratio chalcogenide nanostructures, the growth of Te-rich Sb$_2$Te$_3$ NWs exploiting the vapor–solid mechanism on substrates patterned with pores of diameter ≈50 nm and height ≈100 nm has been explored.[32] Clearly, further downscaling of the chalcogenide NPs/NWs size and higher arrays densities should be demonstrated in order for selective bottom-up (MO)CVD methods to replace the processes presently used in the fabrication of, e.g., state-of-the-art PCM cells, and enable the realization of the next generation of thermoelectric and spintronic devices.

The alternative method to the MOCVD proposed here for the template-based filling with chalcogenide NPs or NWs arrays is electrodeposition. Few reports can be found on the obtaining of ordered and dense arrays of Sb$_2$Te$_3$ NWs through electrodeposition into nanoporous anodic aluminium oxide (AAO) templates. Sb–Te NWs with different compositions have been electrodeposited with an average diameter of 80 nm and length of 1.2 µm (aspect ratio = 15); however, they were amorphous.[33] To find similar sizes to those we considered in the present work, we need to refer to Bi$_2$Te$_3$ NWs: their electrodeposition with diameters down to around 25 nm was reported in ref. [34]. In this case, the NWs were polycrystalline and with an incomplete filling of the high aspect ratio pores. Deposition of ordered arrays of Sb–Te NWs with diameters down to 100 nm with a mixed amorphous structure, which was then transformed into a crystalline one upon annealing, was described in ref. [35]. To our knowledge, the minimum Sb$_2$Te$_3$ NPs or NWs diameter reported is of 50 nm, obtained in AAO templates with an aspect ratio ≈500 and a density that can be estimated around 1 × 1010 cm$^{-2}$.[36] Noteworthy, electrodeposition needs a conductive substrate and current has to be provided to the cathode, in order to obtain growth. This requirement could be difficult to be guaranteed in an industrial implementation and it would, in any case, require an ad hoc design of the system/process flow; on the contrary, MOCVD does not need such a condition. Furthermore, it has to be considered that, unlike electrodeposition, the growth of a wide range of chalcogenide alloys (including Ge–Te, Ge–Sb–Te, In–Sb–Te, In–Sb, and In–Te) in the form of NWs has been demonstrated by MOCVD, together with the assessment of their PCM behavior.[37]

In the present work, using Au-functionalized AAO templates, we show that the fabrication of arrays of crystalline Sb$_2$Te$_3$ NPs with diameters of ≈20 nm, aspect-ratio of ≈10, and surface density of ≈5 × 1010 cm$^{-2}$ can be attained by an MOCVD bottom-up growth process. The presently illustrated approach can equally be applied to standard lithographically patterned templates. On the other hand, thanks to their small pore sizes, low cost, and self-assembly fabrication over large areas, AAO templates might represent a competitive alternative for the integration of chalcogenide high-aspect-ratio nanostructures in functional devices.[38–41] Finally, we show two possible post-MOCVD growth processes: i) ”polishing-etching” (PE), consisting in the mechanical polishing and chemical etching of the top surface to remove the outgrowths, resulting in a planar surface of the NPs array and ii) liberation process (LP), where dissolution of the AAO template is performed, to obtain forests of Sb$_2$Te$_3$ NPs, freestanding on a Sb$_2$Te$_3$ film.

A schematic description of the different investigated processes is reported in Figure 1: Figure 1a illustrates the selective, bottom-up MOCVD growth of Sb$_2$Te$_3$ NPs in the pores of the Au-functionalized AAO templates; Figure 1b,c sketches the postgrowth processes (i) and (ii), respectively.

2. Results and Discussion

The formation of Sb$_2$Te$_3$ NPs in the pores of an AAO template with ≈20 nm average pore diameter and 200 nm height is shown in the scanning electron microscope (SEM) images reported in Figure 2. As it can be seen, the MOCVD growth led to the formation of the Sb$_2$Te$_3$ NPs, which first filled in the pores and then extended outside them into “outgrowths,” which either maintained an NP-like shape or formed 3D crystals (Figure 2a).

For optimized MOCVD parameters (see the Experimental Section), the growth of the Sb$_2$Te$_3$ NPs turned out to be extremely selective: it is promoted by the presence of the Au deposits at the pores bottom and, in the absence of Au deposit, no growth is observed. When the Au deposit is present in the pores, the filling ratio (the ratio of the number of filled pores over the number of pores present) is about 90%, as can be seen in Figure 2b, which shows a template where partial etching of the Al$_2$O$_3$ was performed by immersion of the sample in 5 M NaOH for 15 s to expose the NPs tips (see also Supporting Information, Evaluation of filling ratio).

As from the above-mentioned postgrowth process i) PE, we investigated mechanical polishing and selective chemical etching to obtain a flat top surface without outgrowths over large areas. In Figure 2c,d, the SEM images of an AAO template after mechanical polishing and chemical etching of the sample top surface described in the Experimental Section and in Figure 1b, are reported. This procedure resulted in a planar and clean top surface.

The growth of NPs inside AAO templates with pores with average diameters of ≈10 nm and heights of 150 nm was also explored (Figure 3). The ratio of filled pores, in this case, resulted to be much lower than for AAO templates with larger pore diameters (20 and 30 nm). Indeed, these AAO templates had a relatively broad distribution of pores diameters and irregularly shaped (e.g., branched) pores profiles. SEM analysis on templates cross-sections, before and after growth, seems to indicate that the main factor limiting the NPs formation was the presence of branched pores: on the one hand the irregular pores profile might hamper the progress of the NPs growth; on the other hand, it might prevent the formation of an Au deposit during electrodeposition on the pores bottom, which is necessary to catalyze the initial stages of the NPs formation. Nevertheless, SEM observations showed the presence of growth inside some pores as small as 10 nm. These results indicate the feasibility of downscaling the proposed MOCVD growth process to such pore sizes.
Figure 1. A schematic description of a) selective bottom-up MOCVD growth of Sb$_2$Te$_3$ NPs in the pores of Au-functionalized AAO templates. In (b) and (c) the description of two postgrowth processes: i) PE b) outgrowths are removed by a mechanical and chemical process to obtain a planar surface; or ii) LP c) a continuous Sb$_2$Te$_3$ film is formed on top of the NPs, the sample is then glued by carbon adhesive (black layer) to a copper plate (orange layer) and, finally, the AAO template is dissolved to obtain Sb$_2$Te$_3$ NPs forests standing on the Sb$_2$Te$_3$ film.

Figure 2. a) Tilted view SEM images of a cross-section of an AAO template with ≈20 nm average pore width and 200 nm pore height, after the MOCVD growth of Sb$_2$Te$_3$ ($P_R = 50$ mbar, $T_R = 300$ °C, $P_{Sb} = 9.1 \times 10^{-4}$ mbar, $P_{Te} = 1.32 \times 10^{-3}$ mbar, deposition time = 120 min). b) Plan-view SEM image of an AAO template after MOCVD growth of Sb$_2$Te$_3$ ($P_R = 25$ mbar, $T_R = 350$ °C, $P_{Sb} = 3.02 \times 10^{-3}$ mbar, $P_{Te} = 4.40 \times 10^{-3}$ mbar, deposition time = 30 min), followed by process i) PE.
The microstructure and composition of the NPs grown inside the AAO pores were investigated by transmission electron microscopy (TEM) and energy dispersive X-ray microanalysis (EDX). TEM and TEM-EDX analyses were performed on cross-section lamellae prepared by focused ion beam (FIB) from an AAO template with pores diameter of 20 nm and height of 180 nm, after MOCVD growth, mechanical polishing, and chemical etching of the top surface (Figures 4 and 5).

This analysis confirmed the filling of the pores during the Au-catalyzed MOCVD growth process and the resulting formation of NPs (Figure 4; in this figure and in Figure 5, the height of the NPs is about 110 nm, smaller than the as-grown one, due to the postgrowth process i) PE). The determination of the crystallographic properties of the NPs by high-resolution (HR)-TEM was particularly difficult, mainly due to the amorphization damage induced by the FIB preparation and the limited possibility of tilting the specimen. However, for several NPs it was possible to evidence their crystaline quality. In these cases, the NPs resulted to be single crystalline (sometimes slightly defected), as for the NP shown in Figure 4c, where the direct observation of lattice fringes along the NP length can be appreciated. The line pattern they form is due to the presence of the so-called van der Waals gaps that separate, perpendicularly to the c-axis, each of the three building blocks forming the unit cell of Sb_2Te_3. This layered structure, typical also of Bi_2Te_3, Bi_2Se_3, and other chalcogenide alloys, including transition metal dichalcogenides, is related to several of the properties.
that make these materials interesting for application. It is for instance linked to the anisotropic behavior of the electronic and thermal transport properties of this class of materials\(^\text{[45,46]}\) and thought to be related to the presence of their topological properties\(^\text{[47]}\) as well as in the nonvolatile memory switch mechanism.\(^\text{[48]}\) Hence the importance of developing technologically suitable processes to fabricate highly textured Sb\(_2\)Te\(_3\), alternative to molecular beam epitaxy (MBE) grown films. A possible approach aims at growing high-quality crystals of limited extension but on predetermined positions. (MO)CVD growth of single-crystals platelets with partially controlled dimensions and orientation in arrays was reported in refs. [26–31]. Here it is shown that the same level of crystal quality is reproduced on a pillar, rather than platelets geometry, and in a density that exceeds by orders of magnitude those reported in the above-mentioned references. Moreover, as shown above, in many NPs where the tilting around the NP axis is favorable, HR-TEM indicated a preferential orientation of the van der Waals gaps parallel to the NP length. This arrangement is perpendicular to the one obtained in films deposited by MBE, as well as to the one commonly observed in horizontally lying, MOCVD grown platelets, and could be important in the case of a vertical device geometry. Crystalline, and hence electrically conductive state, of the as-grown NPs was assessed also by conductive-atomic force microscopy (c-AFM). Despite the presence of the aluminum oxide barrier layer at the bottom of the pores, clear electrical contrast ascribed to the NPs was evidenced (see Supporting Information, C-AFM measurements).

The analysis of the diffraction patterns taken on many liberated NPs (see Supporting Information, Supplementary TEM analyses) indicated that the crystallographic structure of the NPs corresponds to the rhombohedral phase of Sb\(_2\)Te\(_3\).

The NPs exhibited also a uniform composition, as proved by the related TEM-EDX analysis (Figure 5). The fit of the EDX spectra taken in several regions of the lamella (see Supporting Information, Supplementary TEM analyses) gave a composition of Sb = 0.31 and Te = 0.69 (in at%), corresponding to an excess of Te with respect to the stoichiometric Sb\(_2\)Te\(_3\) composition. No Au was detected by EDX in the NPs.

The microstructure of the Sb\(_2\)Te\(_3\) NPs was also analyzed by X-ray diffraction (XRD) and Raman spectroscopy measurements, both on the as-grown and PE (i.e., after the postgrowth process) samples, in order to take into account the contribution given by the NPs and the outgrowths, which are removed by the PE process. Consistently with TEM diffraction, the XRD pattern of an as-grown sample, reported in Figure 6a, indicates the presence of the polycrystalline rhombohedral phase of Sb\(_2\)Te\(_3\)\(^\text{[49]}\) (peaks relative to the aluminum substrate are also present; see Supporting Information, Supplementary XRD analyses). As expected, the intensities of all the peaks relative to the Sb\(_2\)Te\(_3\) phase are very much reduced after the chemical and mechanical cleaning of the sample surface. Also, due to the overlapping of some of the Sb\(_2\)Te\(_3\) and Al diffraction peaks, it was difficult to derive an indication on the preferential orientation of the NPs.

The Raman spectra of an as-grown and of a mechanically chemically cleaned sample are reported in Figure 6b. On the as-grown sample, the Raman peaks are visible at \(\approx 120, \approx 140, \approx 167\) cm\(^{-1}\), while, after the removal of the outgrowths, peaks are present at \(\approx 113, \approx 125, \approx 140, \approx 167\) cm\(^{-1}\). The peaks at \(\approx 113\) and \(\approx 167\) cm\(^{-1}\) can be attributed to, respectively, the E\(_2g\) and A\(_{2g}\) modes of Sb\(_2\)Te\(_3\)\(^\text{[50–52]}\). The Raman peak at \(\approx 140\) cm\(^{-1}\), visible both before and after cleaning, can be attributed to the E\(_2\) modes of pure Te–Te bonds\(^\text{[53]}\). The peaks at \(\approx 125\) cm\(^{-1}\), visible after cleaning, has been related to pure Te bonds, namely to the A\(_1\) modes\(^\text{[53]}\). The presence of pure Te bonds could be related to Te precipitation, due to an excess of this element with respect to the stable Sb\(_2\)Te\(_3\) stoichiometric composition, as observed in thermally evaporated Sb\(_2\)Te\(_3\) films\(^\text{[54]}\) and in Sb\(_2\)Te\(_3\) NWs grown by a vapor–solid method in nanosized templates\(^\text{[12]}\).

Surface precipitation of Te has also been observed by Raman spectroscopy in Sb\(_2\)Te\(_3\) deposited by physical vapor transport\(^\text{[54]}\). Finally, in mechanically alloyed Sb\(_2\)Te\(_3\), the presence of Te–Te...
bonds has been detected by Raman spectroscopy and attributed to Te particles, while the concomitant absence of Te peaks in the XRD pattern has been explained with a limited amount of Te phase.\[55\] As noted before, an excess of Te with respect to the Sb$_{2}$Te$_{3}$ stoichiometry in the presently studied NPs was evidenced by TEM-EDX. Interestingly, the relative intensity of the Sb$_{2}$Te$_{3}$ related peaks (~113 and ~167 cm$^{-1}$) increased with respect to the Te–Te peak (~140 cm$^{-1}$) after cleaning. Further, the peak present at ~120 cm$^{-1}$ before cleaning shows a shoulder at lower shift values, indicating the contribution of an additional mode. The peak at ~120 cm$^{-1}$ could, in fact, be due to the superposition of the ~113 cm$^{-1}$ E$_{g}$ mode of Sb$_{2}$Te$_{3}$ and the ~125 cm$^{-1}$ A$_{1}$ mode of Te, which, after the cleaning, appears in place of the peak at ~120 cm$^{-1}$. This change could indicate that the presence of the pure Te phase is higher in the outgrowths, with respect to the NPs: the removal of most of the pure Te phase, together with the outgrowths during cleaning, decreases the contribution of the A$_{1}$ mode of Te, so that both peaks, the E$_{g}$ of Sb$_{2}$Te$_{3}$ and A$_{1}$ of Te, are resolved in the Raman spectra of cleaned samples. The sharpness of the Sb$_{2}$Te$_{3}$ peaks measured on the cleaned samples is comparable to that observed in refs. [50] and [52] for crystalline Sb$_{2}$Te$_{3}$ (in particular the full widths at half maximum of the Sb$_{2}$Te$_{3}$ Raman peaks at ~113 and ~167 cm$^{-1}$, equal to ~10 and ~12 cm$^{-1}$, respectively, are very close to the value reported in refs. [51] and [54]).

The morphological and microstructural analyses illustrated so far allow to draw some general considerations on the growth mechanism of the NPs. As seen by SEM and TEM investigations, the growth of the Sb$_{2}$Te$_{3}$ NPs is clearly bottom-up and highly selective on the Au-functionalized pores. TEM-EDX investigated areas show that Au is still present at the pores bottom after the growth (Figure 5d). This finding points to a growth mechanism different from the vapor–liquid–solid or vapor–solid–solid mechanisms, which are often encountered in the MOCVD growth of metal nanoparticles-catalyzed NWs.\[56–60\] In these types of growth, the NWs/NPs form below the catalyst metal particle, which is lifted by the growing NW/NPs and should be therefore present only on their tip. On the other hand, the surface selective CVD growth of different metals and chalcogenides films and NWs by vapor–solid processes is well documented.\[61–63\] For instance, the fabrication of arrays of Sb$_{2}$Te$_{3}$, Bi$_{2}$Te$_{3}$, and SnSe$_{2}$ crystals grown on TiN exposed in a SiO$_{2}$ matrix has been demonstrated.\[26–28,30\] Similarly, the role of Au in our case could consist in catalyzing the initial steps of the NPs growth, e.g., by favoring the Sb and Te precursors dissociation and the nucleation of the Sb$_{2}$Te$_{3}$ phase, with subsequent preferential growth occurring on the already formed Sb$_{2}$Te$_{3}$ deposit.

Finally, we show that the AAO templates can also be used to fabricate dense forests of Sb$_{2}$Te$_{3}$ NPs, following the postgrowth process ii) LP, illustrated in Figure 1c. As noted before, when reaching the pores top, the growing NPs tend to form larger crystals. Prolonging the MOCVD for long times resulted in the coalescence of these outgrowths and eventually in the formation of a relatively uniform Sb$_{2}$Te$_{3}$ film on top of the AAO. The morphology (see Supporting Information, Sb$_{2}$Te$_{3}$ NPs forests) of this film is similar to that reported for MOCVD grown polycrystalline Sb$_{2}$Te$_{3}$ films.\[64\] As from the sketch of Figure 1c, the Sb$_{2}$Te$_{3}$ film was glued to a copper substrate and the template was dissolved by immersion in the 3.75 m NaOH solution. SEM images of a sample at the end of this process sequence are reported in Figure 7. An AAO template with 30 nm average pore width and 150 nm pore height was used in this case. The resulting structure consisted of highly dense Sb$_{2}$Te$_{3}$ NPs forests (Figure 7a) standing on the Sb$_{2}$Te$_{3}$ film (Figure 7b). The Sb$_{2}$Te$_{3}$ NPs had the expected morphology, i.e., they replicated the pores of the used AAO template (Figure 7b; see also Supporting Information, Sb$_{2}$Te$_{3}$ NPs forests, for additional SEM images of NPs forests on Sb$_{2}$Te$_{3}$ films).

3. Conclusions

We demonstrated the use of MOCVD for the fabrication of Sb$_{2}$Te$_{3}$ nanopillars, inside high-aspect-ratio, highly scaled and dense templates. In particular, we filled by a crystalline Te-rich Sb$_{2}$Te$_{3}$ alloy the pores of AAO templates with pore diameters down to 20 nm, height up to 200 nm and density ~5 × 10^{10} cm$^{-2}$, obtaining filling ratios ~90%. The feasibility of growth inside pores of ~10 nm width was also proved. These results show the potentiality of bottom-up MOCVD-based processes for the integration of ultrascaled, high-aspect-ratio chalcogenide
nanostructures in high-density arrays for advanced phase change memory, thermoelectric generators, and topological insulator-based devices. Finally, the described combination of self-assembled AAO templates and MOCVD can be effectively used to fabricate innovative structures over large areas and at a relatively low cost. Also, this approach could be replicated on other substrates, including Si, onto which the fabrication of AAO templates has already been proved.[68,69]

4. Experimental Section

\textit{Au-Functionalized AAO Templates:} The templates were AAO membranes,[36,37] with electrodeposited Au at the pores bottom commercially available at InRedox (USA). AAO templates with pore diameters of, respectively, 10, 20, and 30 nm and height in the range of (120–200) nm were used, while the volume of the Au deposit was in the range of (5–50) \times 10^{-3} \text{ nm}^{3} (see Supporting Information, Fabrication of AAO templates).

\textit{MOCVD Growth:} The growth of Sb\textsubscript{2}Te\textsubscript{3} was performed in an Aixtron AIX 200/4 MOCVD reactor. The precursors were electronic grade antimony trichloride (SbCl\textsubscript{3}) and bis(trimethylsilyl)telluride (Te(SiMe\textsubscript{3})\textsubscript{2}), provided by Air Liquide, and transported to the MOCVD reactor by ultrapurified N\textsubscript{2} gas.[70] The partial pressures in the vapor phase of SbCl\textsubscript{3} (P\textsubscript{Sb}) and Te(SiMe\textsubscript{3})\textsubscript{2} (P\textsubscript{Te}) were varied in the range of (4.5 \times 10^{-4}– 1.1 \times 10^{-2}) and (6.6 \times 10^{-4}–1.6 \times 10^{-3}) mbar, respectively, with a fixed ratio P\textsubscript{Sb} / P\textsubscript{Te} = 1: 1.46. The reactor temperature (T\textsubscript{R}) and reactor pressure (P\textsubscript{R}) were varied in the range of (80–400) °C and (15–300) mbar, respectively. The deposition times ranged from 15 to 240 min.

Highly selective growth in the pores was observed for T\textsubscript{R} between 250 and 350 °C. At lower temperatures, the selectivity was reduced and at T\textsubscript{R} = 80 °C a continuous Sb\textsubscript{2}Te\textsubscript{3} film formed on top of the AAO surface. For T\textsubscript{R} above 350 °C, the amount of grown material decreased and almost no growth was observed for T\textsubscript{R} = 400 °C. Within the (250–350) °C temperature range, no significant effect of P\textsubscript{R} was observed. The increase of the reactants partial pressures, with a fixed ratio of P\textsubscript{Sb} / P\textsubscript{Te} = 1: 1.46, did not affect the growth, except for what concerns the growth rate, which was higher for higher reactant partial pressures.

\textit{Postgrowth Processes i) PE:} The Sb\textsubscript{2}Te\textsubscript{3} outgrowths were removed and a planar surface was obtained by performing mechanical polishing and chemical etching of the substrate top surface after the MOCVD growth. In this process, the sample surface was grinded with a commercial Struers OP-U 0.04 \textmu m colloidal silica suspension, followed by selective removal of the Sb\textsubscript{2}Te\textsubscript{3} debris and residues by immersion in a 4.4 \textmu m HNO\textsubscript{3} solution for 5 s (selective etch of Sb\textsubscript{2}Te\textsubscript{3}) and then by immersion in a 1.25 \textmu m NaOH solution for 1 s (selective etch of the AAO template).

\textit{Postgrowth Processes ii) LP:} A
\textsubscript{500} \textmu m thick Sb\textsubscript{2}Te\textsubscript{3} film was formed on top of the NPs by prolonged MOCVD growth (240 min total growth time). A double-sided adhesive carbon strip was then glued to the Sb\textsubscript{2}Te\textsubscript{3} film to fix the sample onto a copper plate. Finally, the Sb\textsubscript{2}Te\textsubscript{3} NPs and film were liberated from the template by immersion in a 3.75 \textmu m NaOH solution for 10 min.

\textit{Characterization:} The morphology of the NPs grown in the AAO templates was characterized by a Zeiss Supra 40 field emission SEM. An ItalStructures HR3000 XRD instrument was used to evaluate the crystalline structure of the grown structures. The local microstructure and composition of the NPs were studied by a JEOL 2200FS TEM, with point resolution of 0.18 nm, equipped with an in-column Ω energy filter, 2 high-angle annular dark-field detectors, and EDX, on cross-section lamellae prepared by a Zeiss Auriga FIB out of the AAO templates after MOCVD growth. Raman characterization was performed in a z-backscattering geometry by using a Renishaw In-via Spectrometer, equipped with a 2.4 eV/514 nm continuous wave diode-pumped laser (RL 514C class 3B). The laser beam with an excitation wavelength of 514 nm was focused onto the sample by a 50 × Leica objective and 0.75 numerical aperture. The beam power at the sample was maintained in the range of (1–10) mW, in order to avoid laser-induced heating on the surface and sample damage. c-AFM was performed with a Bruker atomic force microscope (Dimension Edge) equipped with a tunneling AFM electrometer (1 pA to 1 \muA current range). The conductive measurements were carried out in contact mode using highly doped diamond-coated tips (conductive diamond coated tip-contact mode and reflex coating, Nanosensors) with a typical radius of curvature of the tip in the 100–200 nm range. A bias voltage (in the 2–3 V range) was applied to the substrate, while the tip was electrically grounded.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 824957 (“BeforeHand: Boosting Performance of Phase Change Devices by Hetero- and Nanostructure Material Design). The authors
also thank Dr. Alberto Fabrizi of the Department of Management and Engineering, University of Padova (Italy) for his help with the mechanical polishing process and Dr. Giovanna Trevisi of CNR-Institute of Materials for Electronics and Magnetism Parma for the FIB preparation of cross-section lamellae.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

AAO templates, arrays, MOCVD, nanopillars, Sb$_2$Te$_3$

1. B. Liu, Z. Song, S. Feng, B. Chen, *Microelectron. Eng.* **2005**, *82*, 168.
2. G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garett, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R. S. Sheno, *Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.* **2010**, *28*, 223.
3. S. Twaha, J. Zhu, Y. Yan, B. Li, *Renewable Sustainable Energy Rev.* **2016**, *65*, 698.
4. S. Morikawa, T. Inamoto, M. Takashiri, *Nano Lett.* **2005**, *5*, 3037.
5. D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Oberwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan, *Phys. Rev. Lett.* **2009**, *103*, 146401.
6. Y. Takagaki, A. Giussani, J. Tominaga, U. Jahn, R. Calarco, *J. Phys.: Condens. Matter* **2013**, *25*, 345801.
7. M. Bonardi, A. Redaelli, C. Cupeta, F. Pellizzer, L. Crespi, *Chem. Mater.* **2005**, *17*, 223115.
8. S. Selmo, R. Cecchi, S. Cecchi, A. T. Jennings, R. Agarwal, *Phys. E* **2008**, *40*, 2474.
9. R. Huang, Y. S. Hor, T. L. Anderson, H. B. Krause, *Phys. Rev. Lett.* **2016**, *117*, 1901743.
10. Z. Liu, X. Peng, C. Tang, L. Sun, K. Zhang, J. Zhong, *Chem. Mater.* **2015**, *27*, 6269.
11. Z. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, *Phys. Rev. B* **2014**, *89*, 235303.
12. Z. Liu, J. Xie, F. Yang, J. Duan, T.-H. Shen, H. Wang, *J. Mater. Sci.: Technol.* **2015**, *31*, 364.
13. E. Rotunno, L. Lazzarini, M. Longo, *Micro Nano Eng. 2019*, **2**, 117.
[50] G. Hao, X. Qi, Y. Fan, L. Xue, X. Peng, X. Wei, J. Zhong, Appl. Phys. Lett. 2013, 102, 013105.
[51] K. A. Kokh, V. V. Atuchin, T. A. Gavrilova, N. V. Kuratieve, N. V. Pervukhina, N. V. Surovtsev, Solid State Commun. 2014, 177, 16.
[52] K. M. F. Shahil, M. Z. Hossain, V. Goyal, A. A. Balandin, J. Appl. Phys. 2012, 111, 054305.
[53] W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Chem. Soc. Rev. 2018, 47, 7203.
[54] L. M. Goncalves, P. Alpuim, A. G. Rolo, J. H. Correia, Thin Solid Films 2011, 519, 4152.
[55] S. M. Souza, D. M. Trichês, J. C. de Lima, T. A. Grandi, R. S. de Biasi, Phys. B 2010, 405, 2807.
[56] S. A. Fortuna, X. Li, Semicond. Sci. Technol. 2010, 25, 024005.
[57] E. Rotunno, M. Longo, C. Wiemer, R. Fallica, D. Campi, M. Bernasconi, A. R. Lupini, S. J. Pennycook, L. Lazzarini, Chem. Mater. 2015, 27, 4368.
[58] C. Y. Kuo, C. Gau, Thin Solid Films 2011, 519, 3603.
[59] T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gösele, Adv. Mater. 2007, 19, 917.
[60] H. S. Shin, B. Hamdou, H. Reith, H. Osterhage, J. Gooth, C. Damm, B. Rellinghaus, E. Pippel, K. Nielsch, Nanoscale 2016, 8, 13552.
[61] M. J. Hampden-Smith, T. T. Kodas, Chem. Vap. Deposition 1995, 1, 39.
[62] B. J. Choi, S. Choi, Y. C. Shin, K. M. Kim, C. S. Hwang, Y. J. Kim, Y. J. Son, S. K. Hong, Chem. Mater. 2007, 19, 4387.
[63] K. W. Kolasinski, Curr. Opin. Solid State Mater. Sci. 2006, 10, 182.
[64] A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, A. Boyer, B. Aboulfarah, A. Mzerd, J. Mater. Sci. Lett. 1999, 18, 541.
[65] J. Kolar, J. M. Macak, K. Terabe, T. Wagner, J. Mater. Chem. C 2014, 2, 349.
[66] S. Shingubara, Y. Murakami, K. Morimoto, T. Takahagi, Surf. Sci. 2003, 532–535, 317.
[67] Y. Lei, W. Cai, G. Wilde, Prog. Mater. Sci. 2007, 52, 465.
[68] G. D. Sulka, in Nanostructured Materials in Electrochemistry (Ed: A. Eftekhar), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany 2008, Ch. 1.
[69] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, J. Phys. Chem. 1996, 100, 14037.
[70] H. Harndtegen, M. Hollfelder, R. Meyer, R. Carius, H. Münder, S. Frohnhoff, D. Szytna, H. Lüth, J. Cryst. Growth 1992, 124, 420.