Reactive Nitrogen Intermediates Promote Low Density Lipoprotein Oxidation in Human Atherosclerotic Intima*

(Received for publication, September 13, 1996, and in revised form, November 12, 1996)

Christiaan Leeuwenburgh‡, Medora M. Hardy§, Stanley L. Hazen¶, Peter Wagner‡, Shuji Ohishi§, Urs P. Steinbrecher§, and Jay W. Heinecke‡**‡‡

From the Departments of ¶Medicine and of **Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, §Searle Research, Monsanto Company, St. Louis, Missouri 63167, and the ‡Department of Medicine, University of British Columbia, Vancouver, BC Canada V6Z 4E3

Oxidized low density lipoprotein (LDL) may be of central importance in triggering atherosclerosis. One potential pathway involves the production of nitric oxide (NO) by vascular wall endothelial cells and macrophages. NO reacts with superoxide to form peroxynitrite (ONOO−). A potent agent of LDL oxidation in vitro, ONOO− nitrates the aromatic ring of free tyrosine to produce 3-nitrotyrosine, a stable product. To explore the role of reactive nitrogen species such as ONOO− in the pathogenesis of vascular disease, we developed a highly sensitive and specific method involving gas chromatography and mass spectrometry to quantify 3-nitrotyrosine levels in proteins. In vitro studies demonstrated that 3-nitrotyrosine was a highly specific marker for LDL oxidized by ONOO−. LDL isolated from the plasma of healthy subjects had very low levels of 3-nitrotyrosine (9 ± 7 μmol/mol of tyrosine). In striking contrast, LDL isolated from aortic atherosclerotic intima had 90-fold higher levels (840 ± 140 μmol/mol of tyrosine). These observations strongly support the hypothesis that reactive nitrogen species such as ONOO− form in the human artery wall and provide direct evidence for a specific reaction pathway that promotes LDL oxidation in vivo. The detection of 3-nitrotyrosine in LDL isolated from vascular lesions raises the possibility that NO, by virtue of its ability to form reactive nitrogen intermediates, may promote atherogenesis, counteracting the well-established anti-atherogenic effects of NO.

An elevated level of low density lipoprotein (LDL) is a major risk factor for premature atherosclerotic vascular disease. However, a wealth of evidence suggests that LDL must be oxidatively modified to damage the artery wall (1, 2). Pathways that oxidize lipid and protein may thus be pivotal to the development of atherosclerosis. LDL oxidation has been widely studied in vitro, but the mechanisms that promote oxidation within the artery wall remain poorly understood (2).

We have described one potential pathway for LDL oxidation that involves oxidants generated by myeloperoxidase, an enzyme secreted by phagocytes (3). Another pathway involves nitrogen monoxide (nitric oxide; NO) generated by vascular wall cells (4). NO is a relatively stable free radical that fails to oxidize LDL at physiological pH (5). However, NO reacts rapidly with superoxide to form peroxynitrite (ONOO−; Ref. 6), a reactive nitrogen species that promotes peroxidation of the lipid moiety of LDL in vitro (7). Cultured endothelial cells, macrophages and smooth muscle cells, all components of the atherosclerotic lesion, generate superoxide anion (2), suggesting that ONOO− or other reactive nitrogen intermediates derived from NO could form in the artery wall.

In vitro studies demonstrate that ONOO− spontaneously reacts with tyrosine residues to yield the stable product 3-nitrotyrosine (Scheme 1; Ref. 8). Macrophages and endothelial cells may play a role because antibodies for 3-nitrotyrosine detect epitopes in human atherosclerotic lesions that are associated predominantly with these two cell types (9). However, these studies did not quantify levels of 3-nitrotyrosine or evaluate the extent of LDL nitration.

Scheme 1. Nitration of tyrosine by reactive nitrogen species (NOx).

To explore the role of reactive nitrogen species in oxidative damage in vivo, we developed a quantitative assay for measuring levels of 3-nitrotyrosine. The method combines gas chromatography with stable isotope dilution mass spectrometry (GC-MS). Using this assay, we first investigated the relative yields of protein-bound oxidation products in bovine serum albumin (BSA) and LDL that were oxidized with ONOO− in vitro. In both cases, the major product was 3-nitrotyrosine. Other widely studied oxidation systems failed to generate significant levels of 3-nitrotyrosine in LDL. These observations indicate that 3-nitrotyrosine is a specific marker for oxidative damage by reactive nitrogen intermediates. We then demonstrated that 3-nitrotyrosine levels are highly elevated in LDL isolated from human atherosclerotic tissue. These observations implicate reactive nitrogen species as one pathway for LDL oxidation in the artery wall.
EXPERIMENTAL PROCEDURES

Materials—Cambridge Isotope Laboratories (Andover, MA) supplied 13C-labeled amino acids. 3-Nitro13C$_2$-tyrosine was synthesized using tetranitromethane (10), and its concentration was determined by reverse phase HPLC analysis by comparison with authentic material (11). All organic solvents were HPLC grade. Autopsy material was supplied by the Division of Surgical Pathology, Washington University School of Medicine. Vascular tissue resected within 10 h of death was immediately placed in ice-cold antioxidant buffer (100 μM diethylenetriamine pentaacetic acid (DTPA), 1 mM butylated hydroxytoluene, 1% (v/v) ethanol, 10 mM 3-aminotriazole, 50 mM NaHPO$_4$, pH 7.4), and then frozen at −80 °C until analysis.

Protein Oxidation in Vitro—Reactions were carried out at 37 °C in Buffer A (0.15 M NaCl, 10 mM sodium phosphate (pH 7.4), 0.3 mM EDTA, 50 μg/ml soybean trypsin inhibitor, 100 μM butylated hydroxytoluene, and 10 mM 3-aminotriazole). Fatty streaks and intermediate lesions from a single individual were resected from aortic tissue (−9 g wet weight per aorta), frozen in liquid N$_2$, and pulverized under liquid N$_2$ with a stainless steel mortar and pestle. All subsequent procedures were carried out at 4 °C. Tissue powder was collected into 50-ml sterile conical tubes, Buffer C was added (5 ml/g tissue), and the tubes were rocked gently overnight. Tissue was removed by centrifugation at 5000 × g for 15 min, the supernatant was subjected to centrifugation at 100,000 × g for 30 min, and the pellet and uppermost lipemic layer were discarded. LDL in the remaining supernatant was isolated from sequential density ultracentrifugation from plasma (1 mg/ml EDTA) prepared by the Division of Surgical Pathology, Washington University School of Medicine, using a Beckman L8-80M ultracentrifuge equipped with a 50.2 Ti rotor. LDL lipids were extensively dialyzed against Buffer A (50 mM phosphate, 0.1 mM DTPA, pH 7.4) supplemented with 1% (v/v) ethanol, 10 mM 3-aminotriazole, and then against 0.1 mM DTPA (pH 7.4) prior to analysis. Lesion LDL was isolated from thoracic aortae that were thawed in Buffer C (0.15 M NaCl, 10 mM sodium phosphate (pH 7.4), 0.3 mM EDTA, 50 μg/ml soybean trypsin inhibitor, 100 μM butylated hydroxytoluene, and 10 mM 3-aminotriazole). Fatty streaks and intermediate lesions from a single individual were resected from aortic tissue (−9 g wet weight per aorta), frozen in liquid N$_2$, and pulverized under liquid N$_2$ with a stainless steel mortar and pestle. All subsequent procedures were carried out at 4 °C. Tissue powder was collected into 50-ml sterile conical tubes, Buffer C was added (5 ml/g tissue), and the tubes were rocked gently overnight. Tissue was removed by centrifugation at 5000 × g for 15 min, the supernatant was subjected to centrifugation at 100,000 × g for 30 min, and the pellet and uppermost lipemic layer were discarded. LDL in the remaining supernatant was isolated from sequential density ultracentrifugation from plasma (1 mg/ml EDTA) prepared by the Division of Surgical Pathology, Washington University School of Medicine, using a Beckman L8-80M ultracentrifuge equipped with a 50.2 Ti rotor. LDL lipids were extensively dialyzed against Buffer A (50 mM phosphate, 0.1 mM DTPA, pH 7.4) supplemented with 1% (v/v) ethanol, 10 mM 3-aminotriazole, and then against 0.1 mM DTPA (pH 7.4) prior to analysis.

Mass Spectrometric Analysis—BSA and LDL were precipitated at 4 °C with 10% (w/v) trichloroacetic acid (10% v/v). LDL lipids were extracted with methanol/water-washed diethyl ether and water-washed diethyl ether. 2 Protein residue (∼0.5 mg) was dried under N$_2$, 13C-labeled internal standards were added, and the sample was then hydrolyzed at 110 °C for 24 h in 5 ml of 6 N HCl (Sequential grade, Pierce) supplemented with 1% benzoic acid and 1% phenol. Amino acids were isolated from the acid hydrolysate using a C18 column. 3 Authentic 3-nitrotyrosine was stable to acid hydrolysis under these conditions, and recovery of the amino acid from the C18 column was >90%. The N-propylheptafluorobutyryl derivatives of the amino acids were prepared, dried under N$_2$, and redisolved in 50 μl of ethyl acetate, and 1-μl aliquots were analyzed on a Hewlett Packard 5890 Gas Chromatograph equipped with a 12-m DB-1 capillary column (0.20 mm inside diameter, 0.33-μ m film thickness, J & W Scientific) interfaced with a Hewlett Packard 597A Mass Spectrometer equipped with a selected ion monitor. Both the injection and detector temperature of the gas chromatograph were set at 250 °C. Full scan mass spectra and selected ion monitoring were obtained in the negative ion chemical ionization mode with methane as the reagent gas. The limit of sensitivity for all of the amino acids was <1 nmol (signal to noise > 10).

Generation of Reactive Nitrogen Species in Vivo

FIG. 1. Product yield of 3-nitrotyrosine in BSA (A) and LDL (B) oxidized in vitro with ONOO$^−$. BSA or LDL was exposed for 5 min at 37 °C to the indicated final concentration of ONOO$^−$ in Buffer A. 3-Nitrotyrosine content was determined using stable isotope dilution GC-MS as described under “Experimental Procedures.” The level of 3-nitrotyrosine is normalized to the content of the precursor amino acid L-tyrosine determined using 13C-labeled internal standard.

RESULTS

ONOO$^−$ Generates 3-Nitrotyrosine When It Oxidizes BSA and LDL—After exposing BSA to ONOO$^−$, we used stable isotope dilution GC-MS analysis to quantify the level of protein-bound 3-nitrotyrosine. Native BSA contained very low levels of 3-nitrotyrosine, but there was a dramatic, concentration-dependent increase after ONOO$^−$ exposure (Fig. 1A). When BSA was added to the reaction mixture 2 min after ONOO$^−$, however, its 3-nitrotyrosine content barely increased. These results indicate that ONOO$^−$ or short-lived intermediates derived from ONOO$^−$ mediated nitration of protein tyrosyl residues.

ONOO$^−$ also behaves like a hydroxyl radical in that it oxidizes the amino acids phenylalanine and tyrosine to the unnatural compounds o-tyrosine and o,o‘-dityrosine (6, 17, 18). To determine whether these products were formed in proteins oxidized by ONOO$^−$, we quantified o-tyrosine and o,o‘-dityrosyl peptides levels in BSA incubated with 0.3 mM ONOO$^−$. The levels of o-tyrosine and o,o‘-dityrosine increased in oxidized BSA; however, the yield of the modified amino acids was <5% of the level of 3-nitrotyrosine. Nitration and hydroxylation rates of free amino acids are strongly influenced by H$^+$ (8, 17, 18). However, the pH of the reaction mixture increased immediately after addition of ONOO$^−$ was not significantly altered. These results indicate that 3-nitrotyrosine is the major product.
when ONOO$^-$ oxidizes BSA tyrosyl residues at physiological pH. To explore the possibility that a lipid environment affects the susceptibility of tyrosine to nitration, we isolated LDL from plasma and exposed it to the concentrations of ONOO$^-$ described above. Native LDL contained very low levels of 3-nitrotyrosine, but 3-nitrotyrosine increased dramatically when LDL was exposed to ONOO$^-$ (Fig. 1B). The product yield of o-tyrosine and o$_2$-dityrosine in LDL oxidized by ONOO$^-$ was <1% of the yield of 3-nitrotyrosine. These results confirm that 3-nitrotyrosine is a major product of protein oxidation by ONOO$^-$.

They also suggest that nitration of protein tyrosine residues is favored over hydroxylation and hydrogen atom abstraction by this reactive nitrogen intermediate.

The 3-nitrotyrosine content of LDL depended on ONOO$^-$ concentration (Fig. 1B), and adding LDL 2 min after ONOO$^-$ drastically reduced the extent of protein nitration. At equal concentrations of ONOO$^-$, the yield of 3-nitrotyrosine (expressed as millimoles of nitrotyrosine per mol of tyrosine) in LDL was only half that in BSA, perhaps because its lipids (or lipid-soluble antioxidants) compete with the apolipoprotein for the short-lived nitrating intermediate.

3-Nitrotyrosine Is a Specific Marker for LDL Oxidized by Reactive Nitrogen Species—To evaluate the specificity of 3-nitrotyrosine as a marker for protein damage by reactive nitrogen species, we examined a variety of in vitro oxidation systems for their ability to generate 3-nitrotyrosine in apolipoprotein B100, the major protein of LDL.

Significant levels of the nitrated amino acid were present in LDL exposed to ONOO$^-$ (Fig. 2). In contrast, there was little change in the 3-nitrotyrosine content of LDL oxidized by copper, iron, a hydroxyl radical generating system (H$_2$O$_2$ plus copper), myeloperoxidase, lactoperoxidase, horseradish peroxidase, glucose, or lipoxygenase (Fig. 2). All of the systems oxidized LDL as monitored by the appearance of lipid oxidation products (thiobarbituric reacting substances assay and lipid hydroperoxides; Refs. 13 and 20). Collectively, these results demonstrate that 3-nitrotyrosine is a highly specific marker for LDL oxidation by reactive nitrogen species.

3-Nitrotyrosine Is Present at Greatly Elevated Levels in LDL Isolated from Human Atherosclerotic Lesions—To assess the possible role of reactive nitrogen intermediates such as ONOO$^-$ in oxidizing lipoproteins in vivo, we isolated LDL (d = 1.02–1.07 g/ml) from human atherosclerotic tissue recovered at autopsy and then determined its 3-nitrotyrosine content. 3-Aminotriazole, an inhibitor of NO synthase (14) and myeloperoxidase (11), was included during tissue processing and lipoprotein isolation. Lesion LDL subjected to SDS-polyacrylamide gel electrophoresis and immunoblotting analysis with a rabbit polyclonal antibody monospecific for human apolipoprotein B100 (21) demonstrated a protein with the predicted molecular mass of apolipoprotein B100. Forms of immunoreactive apolipoprotein B100 with lower molecular mass were also present, as previously reported by other investigators (1, 2).

LDL isolated from human atherosclerotic lesions was delipidated, hydrolyzed, and derivatized, and the derivatized amino acids were subjected to GC-MS analysis in the negative ion chemical ionization mode. We detected a compound in the amino acid hydrolysate that exhibited major ions and retention times identical to those of authentic 3-nitrotyrosine. Selected
ion monitoring showed that the ions derived from the amino acid co-eluted with those derived from 3-nitro[13C6]tyrosine (Fig. 3). The identity of 3-nitrotyrosine was confirmed further by comparison with an authentic standard using both heptafluorobutyryl and pentafluoropropanoyl derivatives. These results indicate that 3-nitrotyrosine is present in LDL isolated from human atherosclerotic lesions.

To determine whether protein nitration may contribute to the oxidation of artery wall lipoproteins, we isolated LDL from plasma and from human atherosclerotic aortic tissue. We then delipidated and hydrolyzed the proteins and subjected the delipidated and hydrolyzed the proteins and subjected the delipidated and hydrolyzed the proteins and subjected the deplamed amino acid hydrolysates to stable isotope dilution GC-MS analysis as described under "Experimental Procedures."

DISCUSSION

In this study, we examined the potential role of reactive nitrogen species in LDL oxidation. *In vitro* studies demonstrated that 3-nitrotyrosine was a highly specific marker for LDL oxidized by ONOO\(^-\), a reactive nitrogen species. Analysis of LDL isolated from human atherosclerotic lesions revealed a remarkable 90-fold elevation in the level of 3-nitrotyrosine in lesion LDL (840 ± 140 \(\mu\)mol/mol of tyrosine; \(n = 10\)) compared with circulating LDL (9 ± 7 \(\mu\)mol/mol of tyrosine; \(n = 6\)).

A key question is whether NO generation by cells of the artery wall promotes or inhibits the development of atherosclerotic plaque. Cultured endothelial cells, macrophages, and smooth muscle cells generate superoxide (2), which may rapidly react with NO to form ONOO\(^-\) (6). Moreover, ONOO\(^-\) peroxidizes the lipid moiety of LDL in vitro, converting the lipoprotein to a form that is recognized by the macrophage scavenger receptor (7). Unregulated uptake of such modified lipoprotein may play a role in cholesterol accumulation by macrophages, a critical early step in atherogenesis (1, 2).

Keeping with this hypothesis, our detection of elevated levels of 3-nitrotyrosine in LDL isolated from atherosclerotic lesions suggests that reactive nitrogen intermediates derived from NO may indeed promote atherosclerotic vascular disease.

In contrast, other studies have shown that NO inhibits LDL oxidation by cultured macrophages (2, 5) and that NO may act as a chain-breaking antioxidant during lipid peroxidation (19). NO also may exert other anti-atherogenic effects *in vivo*, including inhibition of platelet aggregation and suppression of smooth muscle cell proliferation (4). Studies in hypercholesterolemic rabbits suggest that NO inhibits fatty streak formation, the cellular hallmark of the early atherosclerotic lesion (22). These results suggest that NO is anti-atherogenic in this animal model.

These apparently conflicting findings could be explained if the relatively stable free radical NO exerts potent anti-atherogenic effects while reactive intermediates derived from NO damage artery wall targets. The availability of superoxide may be critical in controlling this balance. Superoxide would both remove anti-atherogenic NO and produce pro-atherogenic ONOO\(^-\). Thus, an imbalance in the pro- and anti-atherogenic effects of NO may be one important factor in the pathogenesis of atherosclerotic vascular disease.

Acknowledgments—Gas chromatography-mass spectrometry experiments were performed at the Washington University School of Medicine Mass Spectrometry Resource. We thank Dr. L. Sage for careful reading of the manuscript.

REFERENCES

1. Witzum, J. L., and Steinberg, D. (1991) *J. Clin. Invest.* 88, 1785–1792.
2. Berliner, J. A., and Heinecke J. W. (1996) *Free Radical Biol. & Med.* 20, 107–127.
3. Daugherty, A., Dunn, J. L., Rateri, D. L., and Heinecke, J. W. (1994) *J. Clin. Invest.* 94, 437–444.
4. Moncada, S., and Higgs A. (1993) *N. Engl. J. Med.* 329, 2002–2012.
5. Jessup, W., Mohr, D., Giesig, S. P., Dean, R. T., and Stocker, R. (1992) *Biochim. Biophys. Acta* 1180, 73–82.
6. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A. (1999) *Proc. Natl. Acad. Sci. U. S. A.* 96, 1620–1624.
7. Graham, A., Hogg, N., Kalyanaraman, B., O’Leary, V., Darley-Usmar, V., and Moncada, S. (1993) *FEBS Lett.* 330, 181–185.
8. Beckman, J. S., Chen, J., Ischiropoulos, H., and Crow, J. P. (1994) *Methods Enzymol.* 233, 229–240.
9. Beckman, S. J., Ye, Y. Z., Anderson, P. C., Chen, J., Accavitti, M-A., Tarpey, M. M., and White, R. (1994) *Biochem. Hoppe-Seyler’s 375, 81–88.
10. Sokolovsky, M., Riordan, J. P., and Vallee, B. L. (1966) *Biochemistry* 5, 3582–3589.
11. Haren, S. L., Hsu, F. F., and Heinecke, J. W. (1996) *J. Biol. Chem.* 271, 1861–1867.
12. Leis, J. R., Pena, M. E., and Rios, A. (1993) *J. Chem. Soc. Chem. Commun.* 16, 1298–1299.
13. Heinecke, J. W., Suzuki, L., Rosen, H., and Chait, A. (1987) *J. Biol. Chem.* 262, 10098–10103.
14. Buchmuller-Rouiller, Y., Schneider, P., Betz-Corradin, S., Smith, J., and Muhl, J. (1992) *Biochem. Biophys. Res. Commun.* 183, 150–155.
15. Rankin, S. M., Parthasarathy, S., and Steinberg, D. (1991) *J. Lipid Res.* 32, 449–456.
16. Markwell, M. A. R., Haas, S. M., Breber, L. L., and Tolbert, N. E. (1978) *Anal. Biochem.* 87, 206–210.
17. Van der Vliet, A., O’Neil, C. A., Halliwell, B., Cross, C. E., and Kaur, H. (1994) *FEBS Lett.* 339, 89–92.
18. Ischiropoulos, H., and Al-Mehdi, A. B. (1995) *FEBS Lett.* 363, 279–282.
19. Rubbo, H., Parthasarathy, S., Barnes, S., Kirk, M., Kalyanaraman, B., and Freeman, B. A. (1995) *Arch. Biochem. Biophys.* 324, 15–25.
20. Savchenkova, M. I., Mueller, D. M., and Heinecke, J. W. (1994) *J. Biol. Chem.* 269, 20394–20400.
21. Krull, E. S., Tang, J., Keller, T. S., Clouse, R. E., and Schonfeld, G. (1992) *Biochem. Biophys. Res. Commun.* 189, 1069–1076.
22. Cooke, J. P., and Tsao, P. S. (1994) *Arterioscler. Thromb.* 14, 653–655.