Transient time-domain resonances and the time scale for tunneling

Gastón García-Calderón\textsuperscript{1} and Jorge Villavicencio\textsuperscript{2}

\textsuperscript{1}Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20 364, 01000 México, Distrito Federal, México
\textsuperscript{2}Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 1880, 22800 Ensenada, Baja California, México

(Dated: April 1, 2022)

Transient time-domain resonances found recently in time-dependent solutions to Schrödinger’s equation are used to investigate the issue of the tunneling time in rectangular potential barriers. In general, a time frequency analysis shows that these transients have frequencies above the cutoff frequency associated with the barrier height, and hence correspond to non-tunneling processes. We find, however, a regime characterized by the barrier opacity, where the peak maximum \( t_{\text{max}} \) of the time-domain resonance corresponds to under-the-barrier tunneling. We argue that \( t_{\text{max}} \) represents the relevant tunneling time scale through the classically forbidden region.

PACS numbers: 03.65.Xp, 03.65.Ca., 73.40.Gk.

Tunneling refers to the possibility that a particle traverses through a classically forbidden region. In the energy domain the solution to Schrödinger’s equation at a fixed energy \( E \) is a subject discussed in every quantum mechanics textbook. In the time domain, however, there are still aspects open to scrutiny. A problem that has remained controversial over the years is the tunneling time problem, that may be stated by the question: How long does it take to a particle to traverse a classically forbidden region? Different authors have proposed and defended different views in answering the above question.\[1, 2, 3, 4\].

In recent work we have investigated the effect of the transient solutions to the time-dependent Schrödinger’s equation for cutoff wave initial conditions (quantum shutter) on the tunneling process.\[5, 6, 7\]. In particular we found that just across the tunneling barrier, the probability density as a function of time may exhibit a transient structure that we have named time-domain resonance. The peak value \( t_{\text{max}} \) of this structure represents the largest probability of finding the particle at the barrier width, \( L \). More recently, in collaboration with Delgado and Muga, we considered a time-frequency analysis to show the existence of under-the-barrier transients (forerunners) in very broad barriers. However, these occur along a finite region of the potential, and hence do not allow to characterize the time scale associated to the tunneling process through the full classically forbidden region. On the other hand, in collaboration with Yamada we have recently established the equivalence of our formulation with the notion of ‘passage time’ in the real Feynman histories approach. The ‘passage time’ yields the traversal time through a barrier region though it does not distinguish between processes from above or below the barrier height. The above considerations indicate that it is not clear under what conditions the time-domain resonances found at the barrier edge \( x = L \) correspond to genuine tunneling processes.

The aim of this work is to show the existence of a regime, characterized by the opacity of the system, where the time-domain resonance maximum, \( t_{\text{max}} \), corresponds to under-the-barrier tunneling. We argue that this time scale provides the tunneling time through the classically forbidden region.

Our approach to the tunneling time problem is based on a model that deals with an explicit solution to the time-dependent Schrödinger’s equation

\[
\left[ i\hbar \frac{\partial}{\partial t} + \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - V(x) \right] \Psi(x, t) = 0 \tag{1}
\]

for an arbitrary potential \( V(x) \), defined in the region \( 0 \leq x \leq L \), that vanishes outside that region. We consider the problem of the time evolution of a cutoff plane wave

\[
\Psi(x, t = 0) = \begin{cases} e^{ikx} - e^{-ikx}, & x \leq 0, \\ 0, & x > 0, \end{cases} \tag{2}
\]

following the instantaneous opening at \( t = 0 \) of a quantum shutter at \( x = 0 \). Along the tunneling region the solution reads,

\[
\Psi^c(x, k; t) = \phi_k(x)M(y_k) - \phi_{-k}(x)M(y_{-k}) - \sum_{n=-\infty}^{\infty} \phi_n(x)M(y_{kn}), \quad (0 \leq x \leq L) \tag{3}
\]

where the \( \phi_{\pm k}(x) \)'s refer to the stationary solutions of the problem and \( \phi_n(x) = 2iku_n(0)u_n(x)/(k^2 - k_n^2) \). Similarly, the solution \( \Psi^c(x, k; t) \) for the external or transmitted region \( x \geq L \), is given by

\[
\Psi^c(x, k; t) = T_{k}M(y_k) - T_{-k}M(y_{-k}) - i \sum_{n=\infty}^{\infty} T_nM(y_{kn}), \quad (x \geq L) \tag{4}
\]

where the \( T_{\pm k} \)'s refer to the transmission amplitudes, and the factor \( T_n = 2iku_n(0)u_n(L)\exp(-ik_nL)/(k^2 - ...
In Eqs. (3) and (4) the coefficients $\chi_n$ and $T_n$ are given in terms of the resonant eigenfunctions $\{u_n(x)\}$ with complex energy eigenvalues $E_n = \hbar^2 k_n^2/2m$, with $k_n = a_n - ib_n$ ($a_n, b_n > 0$). The resonant sums in Eqs. (3) and (4) run over the full set of complex poles $\{k_n\}$. The $M$s are defined as

$$M(y_q) = \frac{1}{2} e^{imx^2/2\hbar t} w(iy_q)$$

where $w$ is the complex error function defined as $w(z) = \exp(-z^2) \text{erfc}(-iz)$, with arguments $y_n(x, t) = e^{-i\pi/4(t/2\hbar)^{1/2}[x - hq t/m]}$, where $q = \pm k_n$.

We shall begin exploring the issue of the tunneling time scale by first considering specific examples of rectangular potential barriers (of height $V$ and thickness $L$) to go then to results of a more general character. Let us recall the main features of a time-domain resonance [6].

It follows from the initial condition, given by Eq. (2), that initially there is no particle along the tunneling region. Hence evaluating the probability density at the barrier width $x = L$ as time evolves from zero, yields a distribution of characteristic times associated to the tunneling process. In Fig. 1 we plot the probability density $|\Psi|^2$ (solid line), normalized to the transmission coefficient $|T_k|^2$, as a function of time $t$, corresponding to a potential barrier system with typical parameters [13]: $V = 0.3$ eV, incidence energy $E = \hbar^2 k^2/2m = 0.001$ eV, and effective mass for the electron $m = 0.067 m_e$, for a fixed value of position, $x = L = 4.0$ nm. We can clearly appreciate a structure peaked at the value $t_{\text{max}} = 5.17$ fs. This is the so called time-domain resonance.

In Fig. 2 we plot $t_{\text{max}}$ (full dot) for the same parameters as in the previous figure except for the barrier width $L$, that we vary. Here we can clearly observe the existence of a basin along a range of values for the barrier width. We can also appreciate that if $L$ is further increased, $t_{\text{max}}$ starts to grow linearly with $L$. Such a linear regime occurs at large barrier widths. We have discussed elsewhere, that this last situation refers to non-tunneling processes [6]. We have also pointed out in Ref. [6] that for small values of the barrier width $L$, the basin exhibited by $t_{\text{max}}$, is the result of a subtle interplay between tunneling and (non-tunneling) top-barrier resonant processes.

In what follows we shall investigate under what conditions the time scales associated to the basin, are in fact related to a genuine tunneling process.

We use the fact that the initial cutoff wave possesses a distribution of momentum components in k-space, and hence also of frequency components. As time evolves and the wave interacts with the potential, these frequency components manifest themselves in the time evolution of the probability density. The frequency content of the time-domain resonance can be investigated by performing a time-frequency analysis. We do this by computing the local average frequency $\omega_{\text{av}}$ [9,10],

$$\omega_{\text{av}} = -\text{Im} \left[ \frac{1}{\Psi^s} \frac{d}{dt} \Psi^s \right],$$

and the instantaneous bandwidth $\sigma$ [10],

$$\sigma = \text{Re} \left[ \frac{1}{\Psi^s} \frac{d}{dt} \Psi^s \right],$$

where $s = i, e$ refers, respectively, to the internal and external solutions. To exemplify this, we choose the case $L = 4.0$ nm depicted in Fig. 2, which is located around the minimum of the basin. In Fig. 3 we plot the relative average local frequency (relative frequency for short)
\( \omega_{av}/\omega_{V} \), where \( \omega_{V} = V/h \) is the cutoff frequency, along the relevant time interval, discussed in Fig. 4. We can appreciate that in the vicinity of the maximum of the \textit{time-domain resonance}, \( t_{\text{max}} \), the probability density is composed entirely by under-the-barrier frequency components \( i.e., \omega_{av}/\omega_{V} < 1 \). This also occurs at the exact value \( t_{\text{max}} \), also indicated in the figure by a solid square. In the inset of Fig. 3 we plot the instantaneous bandwidth \( \sigma \) of the spectrogram. Notice the absence of a frequency dispersion around the maximum \( t_{\text{max}} \), \( i.e., \sigma(t_{\text{max}}) = 0 \). The above result indicates that in this case the peak of the \textit{time-domain resonance}, and the values close to it, refer to a tunneling event. We have found, however, that this is not a general situation. For instance, for values of \( L \) outside the \textit{basin}, \( i.e., \) along the linear regime in Fig. 2, the average frequency related to the corresponding \( t_{\text{max}} \) is above the cutoff frequency and hence refers to non-tunneling processes. As we shall present below this is more appropriately discussed by using the notion of the opacity of the system, defined as

\[
\alpha = [2mV]^{1/2} / h L,
\]

and by the dimensionless parameter \( u \), the ratio between the potential barrier height and the incidence energy,

\[
u = V / E.
\]

To characterize this tunneling regime, we use the fact that all systems sharing the same parameters \( \alpha \) and \( u \) yield the same relative frequency, \( \omega_{av}/\omega_{V} \). This regularity arises from a simple rescaling property of the time-dependent Schrödinger’s equation and the corresponding initial condition. By feeding the dimensionless variables \( X = x/L \), and \( T = \omega_{V}t \) in Eqs. 1 and 2, we obtain,

\[
\left[ \frac{\partial}{\partial T} + \frac{1}{\alpha^2} \frac{\partial^2}{\partial X^2} - 1 \right] \chi(X, T) = 0,
\]

FIG. 3: Relative average local frequency \( \omega_{av}/\omega_{V} \) (solid line) for the case depicted in Fig. 1. The cutoff-frequency \( \omega_{av}/\omega_{V} = 1 \) (dashed line) is included for comparison. In the inset we plot the instantaneous bandwidth \( \sigma \) of the spectrogram depicted in the main graph. Notice that the frequency deviations at \( t_{\text{max}} \) are exactly zero, \( i.e., \sigma(t_{\text{max}}) = 0 \). In all cases a full square indicates the position of \( t_{\text{max}} \).
with the initial condition
\[ \chi(X, T = 0) = \begin{cases} e^{i\alpha X/\sqrt{\pi}} - e^{-i\alpha X/\sqrt{\pi}}, & X \leq 0, \\ 0, & X > 0, \end{cases} \tag{11} \]
where \( \chi(X, T) \) is the rescaled time dependent-solution. From Eqs. Eqs. (10) and (11), it is clear that the time-dependent solution must depend only on the parameters \( \alpha \) and \( u \). That is, for a fixed value of \( \alpha \), all the systems with the same parameter \( u \), yield the same \( \chi(X, T) \). As a consequence of the above considerations we can write the relative frequency as,
\[ \frac{\omega_{av}}{\omega_V} = -\text{Im} \left[ \frac{1}{\chi} \frac{d}{dT} \chi \right]. \tag{12} \]
and use it to characterize the regime associated with under-the-barrier frequency components. In particular, we are interested in defining the range of values of \( \alpha \) where the relative frequencies associated to the time-domain resonance are below the cutoff-frequency \( \omega_V \). In Ref. \[6\] it is found that for opacities less than a critical value no time domain resonances occur. We denote it by \( \alpha_{min} \) and it has the value \( \alpha_{min} = 2.065 \). In Fig. 5 we plot the relative frequency \( \omega_{av}/\omega_V \) as function of the opacity \( \alpha \), for three different values of the parameter \( u \), \( u = 5 \) (solid dot), \( u = 10 \) (solid triangle), and \( u = 300 \) (solid square). In this case we have chosen a value of \( V = 0.3 \) eV in the calculation. Although in Fig. 6 we have considered values of the parameter \( u \) such that \( 5 \leq u \leq 300 \), the cases corresponding to very large values of \( u \) \(( u \to \infty) \) (not shown here), almost overlap with the case \( u = 300 \). Thus, for very large values of \( u \) we find a maximum value for the opacity \( \alpha_{max} \sim 3.3 \). Consequently one may define an opacity “window”, in the range of values \( 2.065 \leq \alpha \leq 3.3 \), where the relative frequencies are always below the cutoff-frequency \( \omega_{av}/\omega_V = 1 \), irrespective of the value of the parameter \( u \), namely of the value of the incidence energy. Note that the above numerical values refer to the effective mass \( m = 0.067m_e \) and clearly will be modified for other values of the effective mass.

It is of relevance to point out that along the basin region the time scale given by the peak maximum \( t_{max} \) differs in a essential way from both the semi-classical Böttiker-Landauer and Böttiker traversal times, which in addition to exhibit always a linear dependence with \( L \), refer to over-the-barrier processes \[7\]. Also \( t_{max} \) represents a completely different notion than the phase-time, which corresponds to a long-time asymptotic notion representing a global effect of the potential on the Schrödinger’s solution, as discussed in Refs. \[6\] \[8\].

To conclude we remark that the analytical solution to the time-dependent Schrödinger’s equation with quantum shutter initial conditions applies in general to arbitrary potentials, provided they vanish beyond a distance, and can also be extended to deal with finite cutoff pulses as discussed in Ref. \[8\]. The quantum shutter setup provides a consistent procedure to obtain the tunneling time: initially there is no particle along the tunneling region and as time evolves the transient peaked structure exhibited by the probability density at the barrier width provides the relevant time scale for tunneling. This occurs within a range of values of the opacity of the system and is independent of the incidence energy. It is worth noticing that the values of \( \alpha \) within the opacity “window” may be obtained using typical parameters of semiconductor heterostructures \[12\]. Also one should stress that at the peak maximum, the time-domain resonance is governed by a single frequency. That is, the system acts as a frequency filter. To test our results experimentally would require to consider the detection of tunneling particles in time domain at distances close to the interaction region.

The authors thank J. G. Muga for useful discussions and a critical reading of the manuscript, and acknowledge financial support of DGAPA-UNAM under grant No. IN101301.

* Electronic address: gaston@fisica.unam.mx
† Electronic address: villavics@uabc.mx

[1] E. H. Hauge and J. A. Støvneng, Rev. Mod. Phys. 61, 917 (1989).
[2] R. Landauer and Th. Martin, Rev. Mod. Phys. 66, 217 (1994).
[3] P. Ghose, Testing Quantum Mechanics on New Ground (Cambridge University Press, Cambridge, 1999), Chapter 10.
[4] Time in Quantum Mechanics, J. G. Muga, R. Sala, I. L. Egusquiza (eds.) (Springer-Verlag, Berlin, 2002).
[5] G. García-Calderón, A. Rubio, Phys. Rev. A 55, 3361 (1997).
[6] G. García-Calderón and J. Villavicencio, Phys. Rev. A 64, 012107 (2001).
[7] G. García-Calderón and J. Villavicencio, Phys. Rev. A 66, 032104 (2002).
[8] G. García-Calderón, J. Villavicencio, F. Delgado, and J. G. Muga, Phys. Rev. A. 66, 042119 (2002).
[9] J. G. Muga and M. Büttiker, Phys. Rev. A 62, 023808 (2000).
[10] L. Cohen, Time-Frequency analysis (Prentice Hall, New Jersey, 1995).
[11] G. García-Calderón, Jorge Villavicencio and N. Yamada, Phys. Rev. A, 67 052106 (2003).
[12] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965), p. 297.
[13] E. E. Mendez, in Physics and Applications of Quantum Wells and Superlattices, edited by E. E. Mendez and K. Von Klitzing (Plenum, New York, 1987) p. 159; D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge University Press, United Kingdom, 1997 (pp. 91-201).