Scattering of hydrogen molecules from a reactive surface: Strong off-specular and rotationally inelastic diffraction

Axel Gross and Matthias Scheffler
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany

Six-dimensional quantum dynamical calculations of the scattering of H$_2$ from a Pd (100) surface using a potential energy surface derived from density-functional theory calculations are presented. Due to the corrugation and anisotropy of the PES strong off-specular and rotationally inelastic diffraction is found. The dependence of the diffraction intensities on the incident kinetic energy is closely examined. In particular we focus on the quantum oscillations for normal and off-normal incidence.

Coherent elastic scattering of atoms or molecules from surfaces is a tool for probing surface structures and adsorbate–substrate interaction potentials. In particular helium atom scattering (HAS) has been used intensively to study surface crystallography and the shape of physisorption potentials (see, e.g., Ref. [1] and references therein). Hydrogen molecules have been utilized less frequently in order to study interaction potentials. The coherent elastic scattering of molecules is more complex than atom scattering because in addition to parallel momentum transfer the internal states of the molecule can be changed in scattering. This means in particular rotational transitions, because the energies typically employed in molecular scattering experiments are not sufficient to excite molecular vibrations.

Rotational transitions in elastic coherent scattering lead to the appearance of additional peaks in the diffraction pattern since the total kinetic energy of the molecule is changed. Most experimental studies of rotationally inelastic scattering of hydrogen have been performed at the surfaces of ionic solids [5,6]. (Here “inelastic” refers to energy exchange between the hydrogen degrees of freedom, not with respect to the substrate.) In the hitherto existing experiments of hydrogen scattering from metal surfaces the additional peaks could usually hardly be resolved [5-8] except in the case of HD scattering [6,8], where the displacement of the center of mass from the center of the charge distribution leads to a strong rotational anisotropy. Only recently Bertino et al. [9] clearly resolved rotationally inelastic peaks in the diffraction pattern of D$_2$/Ni(110) in addition to rotationally elastic peaks, which had been observed before by Robota et al. [5]. Furthermore, Cvetko et al. [10] reported diffractive and rotationally inelastic scattering of D$_2$/Rh(110).

In the case of hydrogen scattering from reactive surfaces, the repulsive interaction is not mediated by the tail of the metal electron density, but occurs rather close to the surface [11,21]. Due to the chemical nature of this interaction the potential is strongly corrugated and anisotropic with regard to the molecular orientation. This requires a realistic microscopic description of the scattering dynamics. Existing theoretical studies of hydrogen scattering at surfaces have either treated non-reactive systems [13,14,15,17] or they were restricted to low dimensions on model potentials [18,19,21].

We have performed six-dimensional quantum dynamical calculations of the scattering of H$_2$ from Pd/(100) on a PES that was derived from density-functional theory calculations [11,21]. The PES exhibits a coexistence of activated with non-activated paths to adsorption together with a broad distribution of barrier heights. All six degrees of freedom of the hydrogen molecule are treated quantum dynamically in a coupled-channel scheme [22,23] while the substrate atoms are kept fixed; for computational details we refer to Ref. [24].

Our results show strong off-specular and rotationally inelastic diffraction which are caused by the corrugation and anisotropy of the PES. The intensities of the diffraction peaks exhibit a pronounced oscillatory structure as a function of the incident energy. We have already predicted such an structure for the sticking probability of H$_2$/Pd (100) [21]. Very recently Rettner and Auerbach searched for these oscillations experimentally [25], but did not find any. We will carefully discuss the physical origin of the oscillations and point out why they might not have been detected. Hence this paper may also be regarded as an extended comment to Ref. [25].

One typical calculated angular distribution of H$_2$ molecules scattered at Pd(100) is shown in Fig. 1. The total initial kinetic energy is $E_i = 76$ meV. The incident parallel momentum corresponds to $2\pi a$ along the $\langle011\rangle$ direction, where $G = 2\pi a$, a is the nearest neighbor distance between two Pd atoms. This leads to an incident angle of $\theta_i = 32^\circ$. The molecules are initially in the rotational ground state $j_i = 0$. (m,n) denotes the parallel momentum transfer $\Delta G_{\parallel} = (mG,nG)$. The specular peak is the most pronounced one, but the first order diffraction peak (10) is only a factor of four smaller (note, that in a typical HAS experiment the off-specular peaks are about two orders of magnitude smaller than the specular peak). The results for the rotationally inelastic diffraction peaks $j = 0 \rightarrow 2$ have been summed over all final azimuthal quantum numbers m_j, as has been done for all results presented in the following. The excita-
The initial kinetic energy is $E_i = 76$ meV, the incident angle is $\theta_i = 32^\circ$ along the (011) direction. The molecules are initially in the rotational ground state $j_i = 0$. The rotationally inelastic diffraction peaks have been marked with $\Delta j = 2$.

The intensity of the rotationally inelastic diffraction atom scattering and has been discussed within the concept of so-called rainbow scattering [27].

A more detailed analysis of the diffraction intensities versus total incident kinetic energy is shown in Figs. 3-5. In Fig. 2 the intensities of four different diffraction peaks are plotted for normal incidence; Fig. 3(a) shows rotationally elastic, filled circles to rotationally inelastic diffraction. In the experiment the molecular beams are not monoenergetic but have a certain velocity spread. In order to make close contact to experiments we assumed for our results in Figs. 3-5 an initial speed spread $\Delta v_i/v_i = 0.05$, close to the velocity spread of recent experiments [28].

The theoretical data still exhibit a rather strong oscillatory structure which is a consequence of the quantum nature of hydrogen scattering. We first focus on the specular peak in Fig. 3(a). The oscillations at low kinetic energies reflect the opening up of new scattering channels [28]. The first pronounced dip at $E_i = 12$ meV coincides with the opening up of the (11) diffraction peak, the small dip at $E_i = 22$ meV with the opening up of the (20) diffraction channel. The huge dip at approximately 50 meV reflects the threshold for rotationally inelastic scattering. Interestingly, the rotational elastic (10) and (11) diffraction intensities show pronounced maxima at this energy. This indicates a strong coupling between parallel motion and rotational excitation.

At larger energies the scattering intensities still show an oscillatory structure. In addition to the opening up of new scattering channels this also reflects the existence of scattering resonances [19]: molecules can become tem-
These structures are known for a long time in He and H₂ scattering [29] and also in LEED [30,31]. For H₂/Pd(100), however, measuring these oscillations is a very demanding task. They are very sensitive to surface imperfections like adatoms or steps. Due to the high reactivity of this system either an adlayer of hydrogen atoms builds up very rapidly during the experiment or in order to avoid this one has to go to high surface temperatures [32]. Both suppresses the oscillations.

Figure 3(b) shows the intensities of rotationally inelastic diffraction peaks. The specular peak is still the largest one, however, some off-specular peaks become larger than the (00) peak at higher energies. This is due to the fact that the rotationally anisotropic component of the potential is more corrugated than the isotropic component [11]. Furthermore it is apparent that the oscillatory structure is somewhat smaller for rotationally inelastic than for rotationally elastic scattering.

The results shown in Fig. 4 correspond to a H₂ beam impinging on the Pd(100) surface under off-normal incidence. The initial parallel momentum is \(p_\parallel = 2\hbar G \) along the \(\langle 0\bar{1}1 \rangle \) direction with \(G = 2\pi/a \). The incident angle is given at the top axis. a) Rotationally elastic \(j = 0 \rightarrow 0 \) scattering, b) rotationally inelastic \(j = 0 \rightarrow 2 \) scattering. The intensities are summed over all final azimuthal quantum number \(m_j \).
increasing kinetic energy as also observed in the experiment [2], whereby the specular peak decreases more strongly than the off-specular peaks. In ref. [2] the energetic dependence of the scattering intensities is discussed within a Debye-Waller analysis in the impulsive and harmonic approximation [1]: the decrease in the peak height with increasing energy is solely attributed to the interaction with surface phonons. Our analysis, like others before [18,19,20], shows that there is already a substantial decrease in the intensities for hydrogen scattering at metal surfaces without taking any energy transfer to the phonons into account.

In Fig. 3 we have plotted the total reflection probability for rotationally elastic and rotationally inelastic $j = 0 \rightarrow 2$ scattering, i.e. the sum over all corresponding diffraction peaks. After an initial increase, which corresponds to the decrease of the sticking probability at low energies [2,3], the reflection probabilities generally decrease with increasing energy. For kinetic energies above 0.1 eV the probability of rotationally inelastic $j = 0 \rightarrow 2$ scattering becomes larger than the probability of rotationally elastic scattering. In addition, the rotational excitation is larger for off-normal incidence than for normal incidence. The oscillatory structure of the total scattering intensities is less pronounced (note the different intensity scale) than for the single diffraction peaks, but is still clearly visible, especially the threshold for rotational excitation at normal incidence.

Note that the minimum in the specular peak at $E_i \approx 12$ meV has now turned into a local maximum in the total scattering intensity. That is due to the fact that at this energy not only one scattering channels opens up, but actually four due to symmetry, namely the (10), $(\bar{1}0)$, (01) and $(0\bar{1})$ peaks. The additional scattering intensity in these diffraction peaks over-compensates for the loss of the specular peak in the total scattering intensities.

Although the scattering intensities of the single peak for off-normal incidence also showed a strong oscillatory structure, their sum is rather smooth (see Fig. 3). This can also be understood by symmetry arguments. For an incident angle along the $(01\bar{1})$ direction the (10), $(\bar{1}0)$, (01) and $(0\bar{1})$ peaks, e.g., open up at three different energies, for a general incident azimuth even at four different energies. Therefore the effect of the opening up of new scattering channels is significantly reduced for the total scattering intensity compared to normal incidence. As far as quantum oscillations are concerned, it is therefore not reasonable to compare experiments for an angle of incidence of $\theta_i = 15^\circ$ [23] with calculations for normal incidence.

In order to observe quantum oscillations we suggest not to determine the whole scattering flux for off-normal incidence as done in ref. [25], but rather monitor the intensity of a single diffraction peak as a function of the kinetic energy. Thus one also avoids to include incoherently scattered molecules due to impurity or multi-phonon scattering in the measurements. In our calculations the substrate is held fixed. Substrate motion certainly makes the detection of quantum oscillations more difficult. Since these oscillations have been observed for H$_2$ scattering at other surfaces [29], they should, however, also be detectable for H$_2$/Pd(100) scattering.

The general decrease of the total scattering intensities at higher energies reflects the fact that the sticking probability rises in this energy range so that less molecules are reflected. However, the decrease of the total intensities is much slower than the decrease of the single peaks in Figs. 3 and 4 (note again the different intensity scale). This implies that the decrease in the intensities of the single peaks is partly compensated by the opening up of new scattering channels with increasing kinetic energy. The number of energetically accessible parallel momentum states increases roughly linearly with energy, as does the number of rotational states, so that the number of accessible scatterings states increases quadratically with increasing energy (again neglecting vibrational excitation). Hence the increase of the available phase space for scattering with increasing kinetic energy is responsible for the stronger decrease of the single diffraction peaks compared to the total reflection probability.

In conclusion, we have performed a six-dimensional quantum dynamical study of the scattering of H$_2$ from a Pd(100) surface using a potential energy surface (PES) derived from first-principles calculation. The corrugation and anisotropy of the PES lead to strong off-specular and rotationally inelastic diffraction intensities. Strong quantum oscillations in the diffraction intensities as a function of the kinetic energy are obtained. Especially at low ki-
netic energies they reflect the opening up of new scatter-
ing channels with increasing kinetic energy.

We like to thank M.F. Bertino and J.P. Toennies for
sending us their manuscript prior to publication. In addi-
tion, useful discussions with M.F. Bertino are gratefully
acknowledged.

[1] E. Hulpke, Ed., Helium Atom Scattering from Surfaces
(Springer, Berlin, 1992).
[2] R.G. Rowe and G. Ehrlich, J. Chem. Phys. 63, 4648 (1975).
[3] G. Brusdeylins and J.P. Toennies, Surf. Sci. 126, 647
(1983).
[4] J. Lapujoulade, Y. Le Cruer, M. Lefort, Y. Lejay, and E.
Maurel, Surf. Sci. 103, L85 (1981)
[5] H.J. Robota, W. Vielhaber, M.C. Lin, J. Segner, and G.
Ertl, Surf. Sci. 155, 101 (1985).
[6] K.B. Whaley, C. Yu, C.S. Hogg, J.C. Light, and S.J
Sibener, J. Chem. Phys. 83, 4325 (1985).
[7] J.P. Cowin, C. Yu, S.J Sibener, and L. Wharton, J. Chem.
Phys. 79, 3537 (1983).
[8] R. Berndt, J.P. Toennies, and Ch. Wöll, J. Chem. Phys.
92, 1468 (1990).
[9] M.F. Bertino, F. Hofmann, and J.P. Toennies, J. Chem.
Phys., in press.
[10] D. Cvetko, A. Morgante, A. Santaniello and F. Tommasini,
J. Chem. Phys. 104, 7778 (1996).
[11] S. Wilke and M. Scheffler, Surf. Sci. 329, L605 (1995),
Phys. Rev. B 53, 4926 (1996).
[12] M. Kay, G.R. Darling, S. Holloway, J.A. White, and D.M.
Bird, Chem. Phys. Lett. 245, 311 (1995).
[13] G. Wolken, J. Chem. Phys. 62, 2730 (1975).
[14] U. Garibaldi, A.C. Levi, R. Spadacini, and G.E. Tommei,
Surf. Sci. 55, 40 (1976).
[15] A.C. Levi and V. Tarditi, Surf. Sci. 219, 235 (1989).
[16] G.J. Kroes and R.C. Mowrey, Chem. Phys. Lett. 232, 258
(1995).
[17] G.J. Kroes and R.C. Mowrey, J. Chem. Phys. 103, 2186
(1995).
[18] D. Halstead and S. Holloway, J. Chem. Phys 88, 7197
(1988).
[19] G.R. Darling and S. Holloway, J. Chem. Phys 93, 9145
(1990).
[20] G.R. Darling and S. Holloway, J. Chem. Phys 97, 5182
(1992).
[21] A. Gross, S. Wilke, and M. Scheffler, Phys. Rev. Lett. 75,
2718 (1995).
[22] W. Brenig, T. Brunner, A. Gross, and R. Russ, Z. Phys. B
93, 91 (1993).
[23] W. Brenig and R. Russ, Surf. Sci. 315, 195 (1994).
[24] A. Gross and M. Scheffler, in preparation.
[25] C.T. Rettner and D.J. Auerbach, Chem. Phys. Lett. 253,
236 (1996).
[26] D. Wetzig, R. Dopheide, M. Rutkowski, R. David, and H.
Zacharias, Phys. Rev. Lett. 76, 463 (1996).
[27] U. Garibaldi, A.C. Levi, R. Spadacini, and G.E. Tommei,
Surf. Sci. 48, 649 (1975).
[28] A. Gross, J. Chem. Phys. 102, 5045 (1995).
[29] R. Frisch and O. Stern, Z. Phys. 84, 430 (1933).
[30] E. G. McRae, Rev. Mod. Phys. 51, 541 (1979).
[31] J.B. Pendry, Low energy electron diffraction, Academic
Press, London (1974), p.112.
[32] A. Gross and M. Scheffler, Phys. Rev. Lett. 77, 405 (1996).
[33] K. D. Rendulic, G. Anger, and A. Winkler, Surf. Sci. 208,
404 (1989).