Searching for gravitational wave echoes in GWTC-1 and O3 events

Yu-Tong Wang1,2,3,4 and Yun-Song Piao1,2,3,4*

1 School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
2 International Center for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China
3 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
4 Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China

Gravitational wave (GW) echoes, if they exist, would be a probe to the near-horizon physics of black hole. In this brief report, we performed the Monte Carlo Markov Chain analysis to search for echo signal in all GWTC-1 and O3 GW events. We focus on the Inspiral-Merger-Ringdown-Echo (IMRE) waveform, and apply the Bayesian model selection to compare the IMRE result with IMR’s (no echo). We find no statistically significant ($< 1\sigma$ combined) evidence for the GW echoes and only individual GW events with the echoes at $1 \sim 2\sigma$ significance.

PACS numbers:

\section{I. INTRODUCTION}

Over the past several years, the network of Advanced LIGO [1] and Virgo [2] observatories have demonstrated that the detection of gravitational wave (GW) has become a significant method to observe the universe. LIGO and Virgo collaboration have reported 15 GW events till now [3–8].

The corresponding GW events are compatible with the binary black holes (BHs) coalescences predicted by General Relativity (GR) [9–12]. However, it is still possible that the new physics might emerge near the horizon e.g.[13, 14]. The GW signal of binary BHs coalescences consists of the inspiral phase, the merger phase and the ringdown phase, see [15, 16] for a review. It has been showed in Refs.[17–19] that if certain physics (surface or barrier) near horizon reflects GW, the ringdown waveform of post-merger object will show itself a series of “echoes” at late-time. The GW echoes, regarded as the probes of new physics at the near-horizon regime, have motivated the searching for the corresponding signals in GW data [19, 20], see also [21–24].

The property of echo encodes the distinct physics of post-merger BH or compact object [25–41]. The echo interval might be not constant. It has been pointed out that if the post-merger object is a wormhole that is slowly pinching off and eventually collapsing into a BH, the ringdown waveform will exhibit a series of echoes with increasing intervals [27], see also primordial compact object [29]. In particular, if the near-horizon regime of BH is modelled as a multiple-barriers filter, the mixing of echoes, even the superpositions, will be also inevitably present [34]. These studies not only enriched the echo phenomenology, but also helped to the searching for the echo signals [21].

In this brief report, we will perform the MCMC analysis to search for GW echo signal in all GWTC-1 and O3 events. We focus on the full Inspiral-Merger-Ringdown-Echo (IMRE) waveform, and apply the Bayesian model selection to compare the IMRE result with IMR’s (no echo). In addition, we also consider the possibility of the unequal interval echo [21, 27].

\section{II. METHOD AND RESULTS}

Here, it is sufficient to consider a simple phenomenological waveform
\begin{equation}
\Psi_{IMRE}(t) = \Psi_{IMR}(t) + \Psi^{echo}(t),
\end{equation}
where
\begin{equation}
\Psi^{echo}(t) = \sum_{n=1}^\infty (-1)^n A_n e^{-\frac{t^2}{\beta^2}} \cos \left[2\pi f_n \left(t - t_{echo} - \left(n + \frac{n(n+1)}{2} \right) \Delta t_{echo} \right) \right],
\end{equation}
and $\Psi_{IMR}(t)$ corresponds to the IMR (each GW event have different IMR waveform).

We, for simplicity, set $A_n \sim A A/(3+n)$ with A being the ratio of the first echo amplitude to the ringdown peak A and the increment of echo intervals monotonical and proportional to Δt_{echo}: $\delta t = r \Delta t_{echo}$. As suggested in Refs.[27, 29], $r \neq 0$ will be a hint of wormhole or specific cosmological scenarios.

We performed the MCMC analysis with the MGWB (Modified GWBinning code package)[42] and emcee3.0.2 package [43] on the parameter set
\begin{equation}
\{(\text{IMR parameters}), A, \beta, r, t_{echo}, \Delta t_{echo} \}
\end{equation}
of (1) for all GWTC-1 and O3 events, see e.g.Fig.2 for the GW190425. However, the corresponding results should be assessed with the Bayesian model selection.

Regarding the IMR and IMRE as hypothesis \mathcal{H}_0 and \mathcal{H}_1, respectively, we have the logarithm of Bayes factor $\ln B_{01} = \ln \frac{p(d|\mathcal{H}_1, I)}{p(d|\mathcal{H}_0, I)}$, which reflects the preference of
TABLE I: Log Bayes factors and statistical significances of IMRE compared with IMR for the GWTC-1 events.

Event	$\ln B$	σ	Ψ_{IMR}
GW150914	-1.94	0.06	IMRPhenomD
GW151012	1.96	1.84	IMRPhenomD
GW151226	-0.57	0.46	IMRPhenomD
GW170104	0.09	0.82	IMRPhenomD
GW170608	-0.01	0.76	IMRPhenomD
GW170729	-2.16	0.04	SEOBNRv4
GW170809	0.05	0.80	IMRPhenomD
GW170814	-0.83	0.35	IMRPhenomD
GW170817	0.55	1.00	IMRPhenomD
GW170818	0.27	0.93	IMRPhenomD
GW170823	0.55	1.10	IMRPhenomD
Combined	-1.49	0.14	

TABLE II: Log Bayes factors and statistical significance of IMRE compared with IMR for the O3 GW events.

Event	$\ln B$	σ	Ψ_{IMR}
GW190814	-0.34	0.58	IMRPhenomD
GW190521	-1.29	0.19	NRSur7dq4
GW190425	-0.18	0.60	IMRPhenomDNRtidal
GW190412	0.72	1.21	IMRPhenomPV3HM
Combined	-1.08	0.26	

We apply the Bayesian model selection to, for the first time, compare the IMRE result with IMR’s (no echo). Though the echo waveform we consider is quite simplified, our method is actually independent of the waveform model used, and can be applicable for other echo waveforms motivated by BH physics.

Through the Bayesian model selection, we found that all GW events reported in GWTC-1 and O3 so far have no preference for the IMRE, which suggests no statistically significant (only $<1\sigma$ combined) evidence for the GW echoes. However, individual GW events seem have the slightly positive results, so it might be expected that with higher sensitivity of aLIGO O5 or ET, the GW echo signal would be detectable.

III. DISCUSSION

We reported the results of searching for GW echo in all GWTC-1 and O3 events, see Tabs. I and II, and Fig.1.

Through the Bayesian model selection, we found that all GW events reported in GWTC-1 and O3 so far have no preference for the IMRE, which suggests no statistically significant (only $<1\sigma$ combined) evidence for the GW echoes. However, individual GW events seem have the slightly positive results, so it might be expected that with higher sensitivity of aLIGO O5 or ET, the GW echo signal would be detectable.

IV. ACKNOWLEDGMENTS

YTW thanks Jun Zhang, Xiaokang Zhou for useful discussions and helps, and the talk invitation of summer school organized by Bin Wang and Jian-Pin Wu in Yangzhou University. YTW is supported by NSFC, No.11805207, the sixty-second batch of China Postdoctoral Fund. YSP is supported by NSFC, Nos.11690021, 12075246. Our all computations are performed on the TianHe-II supercomputer.
FIG. 2: Posterior distributions for GW190425, with contours corresponding to the 68% and 95% regions.
