Histiocytic cell neoplasms involving the bone marrow: summary of the workshop cases submitted to the 18th Meeting of the European Association for Haematopathology (EAHP) organized by the European Bone Marrow Working Group, Basel 2016

Alexandar Tzankov¹ · Markus Kremer² · Roos Leguit³ · Attilio Orazi⁴ · Jon van der Walt⁵ · Umberto Gianelli⁶ · Konnie M. Hebeda⁷

Received: 23 April 2018 / Accepted: 4 July 2018 / Published online: 6 August 2018
© The Author(s) 2018

Abstract
The bone marrow is a preferential site for both reactive and neoplastic histiocytic proliferations. The differential diagnosis ranges from reactive histiocyte hyperplasia in systemic infections, vaccinations, storage diseases, post myeloablative therapy, due to increased cell turnover, and in hemophagocytic lymphohistiocytosis, through extranodal Rosai-Dorfman disease to neoplasms derived from histiocytes, including histiocytic sarcomas (HS), Langerhans cell histiocytoses (LCH), Erdheim-Chester disease (ECD), and disseminated juvenile xanthogranuloma (JXG). One of the most important recent developments in understanding the biology of histiocytic neoplasms and in contributing to diagnosis was the detection of recurrent mutations of genes of the Ras/Raf/MEK/ERK signaling pathway, in particular the \textit{BRAFV600E} mutation, in LCH and ECD. Here, we summarize clinical and pathological findings of 17 histiocytic neoplasms that were presented during the bone marrow symposium and workshop of the 18th European Association for Haematopathology (EAHP) meeting held in Basel, Switzerland, in 2016. A substantial proportion of these histiocytic neoplasms was combined with clonally related lymphoid (\(n = 2\)) or myeloid diseases (\(n = 5\), all ECD). Based on the latter observation, we suggest excluding co-existent myeloid neoplasms at initial staging of elderly ECD patients. The recurrent nature of Ras/Raf/MEK/ERK signaling pathway mutations in histiocytic neoplasms was confirmed in 6 of the 17 workshop cases, illustrating their diagnostic significance and suggesting a potential target for tailored treatments.

Keywords Bone marrow biopsy · Erdheim-Chester disease · Histiocytic sarcoma · Mutation · Myeloid neoplasm · EAHP workshop

Introduction to histiocytic neoplasms involving the bone marrow

The bone marrow (BM) symposium of the 18th meeting of the European Association for Haematopathology (EAHP) in Basel in September 2016 (EAHP 2016) was dedicated to non-lymphoid/non-myeloid cell proliferations in the BM, including histiocytes, mast cells, and dendritic cells; the last were summarized elsewhere [1]. In the current paper, we summarize the cases of histiocytic neoplasms involving the BM which were submitted to the workshop.

The BM, as a source of histiocytic precursor cells and a major home to tissue histiocytes and macrophages, which constitute approximately 10% of its microenvironment, is commonly affected by reactive and neoplastic histiocytic
disorders [2], the latter occurring either primarily or as secondary spread. Histiocytes are usually dispersed throughout the BM (Fig. 1), located particularly in the erythropoietic islands as nurse-like cells. They are inconspicuous unless they are increased in number, enlarged, show a disturbed location (clustering, bone apposition), or because of altered cytoplasm due to phagocytosis [3]. Non-neoplastic diffuse histiocytic accumulations in the BM are associated with increased cellular turnover (sea-blue/pseudo-Gaucher cells, e.g., in myeloproliferative neoplasms, idiopathic thrombocytopenic purpura, thalassemia), systemic infections, bacillus Calmette-Guérin vaccination, myeloablative therapy (foamy cells), storage disorders, accompanying plasma cell neoplasms (crystal storing histiocytosis), and T cell proliferations in hemophagocytic lymphohistiocytosis (HLH). Several reactive examples were submitted to the EAHP workshop but are not addressed in this report, which focuses on BM involvement by neoplasms of histiocytic origin.

Histiocytoses, i.e., neoplasms derived from histiocytes, are rare disorders characterized by the accumulation of macrophages, dendritic cells, or monocyte-derived cells in various tissues and organs. Except for clear-cut malignant proliferations composed of atypical cells showing an infiltrative/destructing growth pattern, tumor necrosis, anisocytosis, anisokaryosis, increased nucleo-cytoplasmic ratio, chromatin abnormalities, hyperesinophilic nucleoli, and brisk or atypical mitotic activity, the distinction of histiocytoses from reactive histiocytic proliferations such as those listed above might be challenging, since some histiocytoses may display only minimal morphological deviation. The importance of the integration of clinical (e.g., a syndromic context) and radiologic features (e.g., osteolysis, “hairy kidney”; see later) in the diagnosis cannot be overemphasized. The diagnostic value of the aberrant expression of various mutant or phosphorylated proteins, such as V600E mutant BRAF [4], phosphorylated extracellular signal-regulated kinases (ERK1/2) [5], or, as recently suggested, the enzymatic subunit of the polycomb repressive complex 2 (EZH2) [6], still requires validation, but seems promising.

One of the most important developments contributing to the understanding of the biology of histiocytic neoplasms was the detection of recurrent mutations of genes of the Ras/Raf/MEK/ERK signaling pathway, in particular, the BRAFV600E mutation in Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD) [7, 8]. Mutually exclusive with BRAFV600E, additional genetic aberrations in the same pathway include mutations of MAP2K1 and ARAF in LCH [9, 10], and KRAS, NRAS, and PIK3CA and—very rarely—ARAF in ECD [11, 12]. Recently, recurrent oncogenic mutations of components of the MAPK pathway, including KRAS, SMAD4, and MAP2K1 (but not BRAF), have been reported in a few cases of, particularly extranodal, Rosai-Dorfman disease (RDD) [11, 13, 14], challenging its assumed non-neoplastic nature in extranodal presentation. Interestingly, individuals suffering from the autoimmune lymphoproliferative syndrome, lymphoproliferative disorders associated with germline FAS and RAS mutations, can also show RDD-like features [15, 16], and new concepts (see later) of RDD suggest that nodal and extranodal forms may represent different disorders, which may explain the discrepant evidence for both a non-clonal and clonal nature of RDD lesions.

A novel classification of histiocytoses has been recently proposed [12], defining five subgroups based on clinical and/or phenotypical criteria, namely (1) Langerhans-type histiocytoses; (2) cutaneous and mucocutaneous histiocytoses; (3) malignant histiocytoses; (4) the group of HLH/macrophage activation syndromes, which is defined by a combination of symptoms, morphological findings and laboratory tests [17]; and finally (5) RDD. This classification differs slightly from the current World Health Organization (WHO) classification of histiocytic and dendritic neoplasms, which is primarily based on morphological and phenotypical criteria [18] and recognizes (1) histiocytic sarcomas, (2) tumors derived from Langerhans cells (LC), (3) indeterminate dendritic cell tumors, (4) interdigitating and (5) follicular dendritic cell sarcomas, (6) fibroblastic reticular cell tumors, (7) disseminated juvenile xanthogranulomas (JXG), and (8) ECD, while RDD has not been included in this classification.

RDD is a heterogeneous entity, and classic cases (single or regional lymph node involvement with a self-limiting clinical course) and extranodal cases probably represent distinct disorders. For now, it is recommended to make a clear distinction between these two forms [12]. Accumulation of large histiocytic cells with hypochromic, roundish nuclei with often prominent nucleoli and pale cytoplasm with abundant emperipolesis is highly characteristic of RDD. RDD
histiocytes express S100, CD4, CD11c, CD14, CD68, and CD163, while CD1a and/or langerin is negative. Involved tissues usually contain abundant polyclonal plasma cells, particularly IgG4-positive types, B cells, and increased fibers. RSD can also be observed at several extranodal sites including the bones/BM [19, 20]. In our personal observations, RSD of the bone accounts for approximately 0.3% of all symptomatic bone lesions [Tzankov unpublished]. A RSD case with aggressive morphological features, involvement of multiple lymph nodes and diffuse skeletal spread was submitted to the workshop (Table 1, case 15).

JXG, especially the solitary dermal JXG, is probably the most common histiocytosis [12, 21] and represents a benign proliferative disorder of children. It is typically characterized by the presence of “Touton” giant cells and a distinct, but non-specific immunophenotype (FXIIIa+/CD1a+/CD14+/CD68+/S100+). Mutations of MAPK pathway genes in JXG are increasingly reported [22–24]. There is an association with neurofibromatosis type 1, especially for the disseminated form [25]. Disseminated JXG is much rarer than the solitary form. It can affect the BM, and an interesting case of an atypical histiocytic proliferation with JXG phenotype after remission [26]. Disseminated JXG is much rarer than the solitary form.

LCH is a proliferation of LC with characteristic morphology (oval cells with abundant slightly eosinophilic cytoplasm with central grooved/indented nuclei with fine chromatin), ultrastructure (Birbeck granules), and phenotypic characteristics, particularly the absence of the myeloid markers CD33 and myeloperoxidase and positivity for at least one histiocytic marker (i.e., either CD4, CD11c, CD14, CD68, CD163, or lysozyme), considered as a prerequisite for the diagnosis of HS, as shown in case 1. Druggable mutations of genes of the Ras/Raf/MEK/ERK signaling pathway are recurrent in HS in general [39, 40], as illustrated by several cases submitted to the 2016 EAHP workshop on histiocytic neoplasms involving the lymph nodes [35].

ECD is the most intriguing histiocytic disorder affecting the BM from the panel’s point of view. ECD is a histiocytic neoplasm involving the skeleton, particularly the long bones, with a distinctive radiological presentation of symmetrical diaphyseal and metaphyseal cortical bone sclerosis (Fig. 2a), the cardiovascular system, the lungs, the retroperitoneum with so-called coated aorta and hairy kidney, the CNS, and the skin. It is composed of foamy histiocytes (FXIIIa+/CD14+/CD68+/CD163+/langerin−) and Touton giant cells. In over 70% of cases, targetable MAPK pathway or PI3K-AKT pathway gene mutations can be detected [11, 12, 41]. As in LCH, the multisystem involvement by ECD and evidence from 4/7 cases submitted to this workshop, which showed concurrent or metachronous occurrence of myeloid neoplasms [AML or chronic myelomonocytic leukemia (CMMIL)], suggest that, like multisystemic LCH, ECD may also be a neoplastic hematopoietic disorder derived from aberrant progenitor cells which in this case have acquired MAPK pathway or PI3K-AKT pathway gene mutations.

The next section summarizes the most important features of the submitted workshop cases and focuses on a few important practical lessons learned, based on these cases.
ID	Submitter	Sex/age (years)	Disease spread	Diagnosis / panel diagnosis	Clinical presentation	Positive markers	Negative markers	Genetics	Follow-up
1	Dr. Jiang	M/28	Liver, skin, lymph nodes, testes	Histiocytic sarcoma / AML with monocytic differentiation	B symptoms, back pain	CD4, CD31, CD33, CD56, CD68, CD163	CD30, CD34, CD117, CD123, MPOX, TCL1, TdT, tryptase	Not performed	Dead 8 mo after HD-CTx + allo-SCTx due to allo-SCTx-related complications
2	Dr. Lee	F/51	Liver, spleen	Histiocytic sarcoma	B symptoms, hemophagocytosis	CD31, CD68, CD163, fascin, lysozyme	CD1a, CD34, S100, MPOX	46,XX	n.a.
3	Dr. Geyer	M/77	Liver, spleen, lungs, gastro-intestinal tract, lymph nodes	Histiocytic sarcoma	Dyspnea, fatigue, eosinophilia, hemophagocytosis	CD68, CD163, HLA-DR	CD1a, CD21, langerin, lysozyme, S100, tryptase	46,XX	Autopsy case
4	Dr. Kuzmanov	M/32	Spleen, skin, bone marrow	Histiocytic sarcoma (HS) with concurrent mediastinal mixed germ cell tumor (MGCT)	B symptoms, hemophagocytosis, MGCT	CD4, CD68, S100	CD1a, CD56, i(12p) in both the HS and MGCT	n.a.	
5	Dr. Fernandez-Pol	F/77	Liver, bone marrow	Clonally related histiocytic sarcoma arising in a patient with low grade follicular lymphoma (FL)	FL in the BM	CD4, CD43, CD56, lysozyme	CD34, CD68, CD117, CD163, MPOX, TdT, BRAF^{V600E}, CD1a, S100, langerin, T-ALL: TCR clonal and del(9)(p13) JXG lesion: polyclonal, no del(9)(p13)	BCL2 rearrangement in FL and HS	n.a.
6	Dr. Alobeid	M/2	Bone marrow	Atypical histiocytic proliferation with juvenile xanthogranuloma (JXG) phenotype after remission of T-ALL	Worsening thrombocytopenia after complete remission of T-ALL, subsequent spread to the skin, liver, spleen and pancreas	CD14, CD68, CD163, FXIIa, fascin	BRAF^{V600E}, CD1a, S100, langerin, T-ALL: TCR clonal and del(9)(p13) JXG lesion: polyclonal, no del(9)(p13)	Dead 9 mo after T-ALL diagnosis and 62 mo after JXG-like lesion diagnosis due to allo-SCTx-related complications	
7	Dr. Lee	M/54	Multiple bones, orbital fat, retroperitoneum	Erdheim-Chester disease	Bilateral proptosis	α-1 antitrypsin, CD68, fascin	CD1a, S100, lysozyme	Not performed	Steroids, methotrexate, chemotherapy, INF-α > 10 years
8	Dr. Hamza	M/37	Multiple bones	Erdheim-Chester disease	Knee pain, generalized joint pain	CD68	CD1a, CD45, S100	No cytogentic	None
9	Dr. Reichard	F/63	Multiple bones	Erdheim-Chester disease	Hip pain, generalized bone pain	CD68	CD1a, S100	46,XX, BRAF^{V600E}	None

Histiocytic sarcomas and clonal histiocytic disorders accompanying/arising in other neoplasms

Erdheim-Chester (and related) diseases

Histology and genetics of BRAF^{V600E}-positive JXG lesions in children.

Histology of JXG lesions in children.

Histology and genetics of BRAF^{V600E}-positive JXG lesions in children.

Histology of JXG lesions in children.

Histology and genetics of BRAF^{V600E}-positive JXG lesions in children.

Histology of JXG lesions in children.

Histology and genetics of BRAF^{V600E}-positive JXG lesions in children.

Histology of JXG lesions in children.

Histology and genetics of BRAF^{V600E}-positive JXG lesions in children.

Histology of JXG lesions in children.

Histology and genetics of BRAF^{V600E}-positive JXG lesions in children.
ID	Submitter	Sex/age (years)	Disease spread	Diagnosis / panel diagnosis	Clinical presentation	Positive markers	Negative markers	Genetics	Follow-up
10	Dr. Wong	M/70	Lungs, mesenterium, retroperitoneum	Erdheim-Chester disease with concurrent clonally related myeloid neoplasm / Hemophagocytic lymphohistiocytosis (HLH) associated with undefined myeloid neoplasm	B symptoms	BRAF^{V600E}, S100	CD7a, langerin	No cytogenetics PB and lesions: ASXL1, BRAF^{V600E}, TET2, U2AF1	Dead within 3 d
11	Dr. Zhou	M/67	Multiple bones, pericardium, pleura, retroperitoneum, mesenterium	Erdheim-Chester disease with concurrent clonally related CMML	Pleural and pericardial effusion Neutrophilia and monocytosis	CD68, CD163, FXIIIa	S100	46,XY PB and lesions: BRAF^{V600E}, SRSF2, TET2	Stable disease on prednisone
12	Drs. Hoehn and Ozkaya	M/66	Multiple bones, soft tissues, kidney, CNS	Erdheim-Chester evolving to clonally related CMML	Generalized bone pain B symptoms	CD68, CD163		46,XY	Steroids, INF-α
13	Dr. Aqil	M/80	Lungs, retroperitoneum	Erdheim-Chester disease evolving to clonally related AML	Dyspnea on exertion 2 years later leukocytosis and thrombopenia	ECD: BRAF^{V600E}, CD68, FXIIIa, CD4, CD33, CD68, CD163, lysozyme, MPOX	ECD: CD1a AML: CD1a, CD34, CD61, CD117, FXIIIa, S100	No cytogenetics	Steroids 2 years later chemotherapy for AML
14	Dr. Roth	M/44	Unknown	Erdheim-Chester disease (no histology provided) with subsequent AML	Pancytopenia Documented history of ECD	ECD: S100 AML: CD14, CD36, FXIIIa, fascin AML: CD13, CD33, CD34, CD117, HLA-DR, MPOX, TdT	ECD: CD1a AML: CD14, CD36, CD66, CD64 AML: 46,XY No BRAF^{V600E}, FLT3-ITD, FLT3^{D835}, NPM1	IFNα for 3 years until development of AML	

Other malignant histiocytic disorders involving the bone marrow

ID	Submitter	Sex/age (years)	Disease spread	Diagnosis / panel diagnosis	Clinical presentation	Positive markers	Negative markers	Genetics	Follow-up
15	Dr. King	F/49	Multiple lymph nodes, diffuse skeletal involvement	Rosai-Dorman disease with aggressive features	Generalized bone pain B symptoms Visual disturbance	CD163, S100	CD1a	46,XX	Prednisone -> cladribine with stable disease for 1 year
16	Dr. Grogg	M/74	Innumerable bone lesions	Mixed Langerhans cell (LHC)/non-LHC sarcoma / LHC component: BRAF^{V600E}, CD7a, langerin, S100	Back pain Anemia with leukoerythroblastosis			46,XY BRAF^{V600E}	Dead of disease after 3 mo
Cases and discussion

Among a total of 68 workshop cases of histiocytic proliferations in the BM, 17 were considered to be histiocytic neoplasms. Table 1 summarizes these cases.

Two of the 9 workshop submissions with ECD proved to be the same patient (case 12) that had been treated in different hospitals. All eight patients with ECD presented with multiple bone lesions and varying involvement of soft tissues, mainly retroperitoneum and mesentry, lungs, and/or orbital fat (case 7). Clinical symptoms consisted of localized or generalized bone pain, dyspnea, proptosis, or B symptoms. The BM showed accumulations of bland histiocytes, including cells with foamy cytoplasm, in an often-fibrotic background (Fig. 2b, case 12). The histiocytes expressed CD14, CD68, CD163, FXIIIa and fascin (Fig. 2c). Protein expression of BRAF V600E was shown in 2 mutant cases (cases 9 and 13). Two cases were focally S100 positive (Fig. 2d, e; cases 10 and 13), and one of the S100-positive cases displayed some degree of hemophagocytosis (case 10); CD1a was always negative. When performed, cytogenetics was unremarkable, while the BRAF V600E mutation was found in 4 of 7 tested cases (57%), and 1 case (case 12) displayed the pathogenic NRAS Q61R mutation [42].

Remarkably, 4/7 ECD patients suffered from synchronous or metachronous myeloid neoplasms, CMML (n = 2, cases 11 and 12) and AML with at least phenotypic monocytic differentiation (n = 2, cases 13 and 14), and one patient suffered from an undefined myeloid neoplasm with accompanying HLH, which was considered by the submitter to represent an ECD (n = 1, case 10). These patients were all male and more than a decade older (mean age 65.4 years), than those suffering from ECD alone with a male:female ratio of 2:1 and a mean age of 51.3 years. All four cases had a BRAF V600E or NRAS Q61R mutation and showed the same mutation in the ECD lesions and in the myeloid neoplasm. These were twice combined with additional mutations, including TET2 and SRSF2 mutations in a CMML case, and ASXL1, TET2, and U2AF1 mutations in the disseminated case of an undefined myeloid neoplasm accompanied by HLH (Fig. 3a, b; case 10). The exact classification of the latter was difficult because of the rapid death of the patient due to disseminated intravascular coagulation and HLH. In addition, the histiocytes of this case were S100 positive and displayed hemophagocytic activity, so that, despite suggesting ECD in many aspects, the case was considered by the panel to be better classified as HLH associated with undefined myeloid neoplasm.

Treatment of the ECD cases included mainly steroids, interferon-α, methotrexate, and chemotherapy. The treatment and the prognosis in composite cases were mainly determined by the accompanying myeloid neoplasm. Noticeably, the case bearing the highest number of mutations, particularly of mutations known to be associated with poor prognosis in myeloid

Table 1 (continued)
ID
17
17

Abbreviations: AML, acute myeloid leukemia; allo-SCT, allogeneic stem cell transplantation; CMML, chronic myelomonocytic leukemia; d, days; F, female; HD-CTx, high-dose chemotherapy; INF-α, interferon-α; mo, months; M, male; n.a., not available; P-ALL, pre-B acute lymphoblastic leukemia; TCR, T cell receptor; T-ALL, T cell acute lymphoblastic leukemia; TET2, TET2; U2AF1, U2AF1.
disorders (e.g., ASXL1 and U2AF1) [43], had a very aggressive clinical behavior.

Three cases considered to represent “true” HS were submitted to the workshop (cases 1, 2, and 3). Shared clinical features of these cases included involvement of the liver and/or the spleen and systemic symptoms such as fever, fatigue, weight loss, and/or hemophagocytosis. The BM and other involved tissues showed aggregates of large bizarre histiocytes with abundant pale cytoplasm and pleomorphic nuclei with occasionally pronounced nucleoli and numerous mitoses (Fig. 4a, b). The tumor cells expressed CD68 and CD163 (Fig. 4c, d), and lysozyme and fascin, when tested. One of these cases (case 1) illustrated the sometimes challenging differentiation between HS and other myeloid malignancies with monocytic/histiocytic differentiation. The tumor cells in this case were rather small (< 20 μm) and monotonous and expressed CD33, thereby not fulfilling the morphologic and phenotypic requirements for HS [12, 18, 44–46]. The case was therefore reclassified by the panel as AML with monocytic differentiation. One of the other HS cases had clinical records and showed an aggressive clinical course, dying before diagnosis (case 3). No genetic aberrations were found in the HS cases by karyotyping (2/3 cases) or sequencing (21 gene myeloid panel in 1 case). Yet, based on a few studies with mutational data on HS published to date, the Ras/Raf/MEK/ERK signaling pathway in HS seems also to be recurrently targeted by mutations: the \(\text{BRAF}^{V600E} \) mutation was detected in 5 of 8 HS [47]; a case of \(\text{BRAF}^{F595L} \) mutation along with mutant \(\text{HRAS} \) [48] has been documented; \(\text{BRAF}^{G466R/G464V/N581S} \) mutations and \(\text{KRAS}, \text{PTPN11}, \text{TP53}, \text{PTEN}, \) and \(\text{PIK3CA} \) were recently published [49]. Interestingly, these types of \(\text{BRAF} \) mutations have been
reported in carcinoma and melanoma, but not in other histiocytic tumors [11]. Very recently, the report of the 2016 EAHP workshop on histiocytic neoplasms involving the lymph nodes documented 7 HS, of which 2 had \textit{BRAF}^{V600E}, one a \textit{TP53} and one a \textit{MAP2K1} mutation (along with \textit{BCL2}, \textit{BCL10}, \textit{CDKN1B}, \textit{CKIT}) [35]. Since the prognosis of HS is dismal with current treatment strategies and several of the above-mentioned mutations are actionable, their detection and specific targeting yield treatment potential, as already suggested by single-case observations [35, 39, 40].

Three histiocytic neoplasms occurred in the context of other neoplastic diseases. Case 4 represented the rare, yet historically well-documented combination of a HS and a mediastinal germ cell tumor. The patient presented with pain under the left rib arch, bicytopenia, splenomegaly, and a mediastinal tumor, consisting of a mixed germ cell tumor (teratoma and yolk sack tumor). The spleen and the BM of the patient were involved by concomitant HS with prominent hemophagocytic activity (Fig. 5a). Interphase FISH, applying a dual-color break-apart probe for the \textit{ETV6} locus at 12p13.2, showed signals suggestive of i(12p) in both neoplastic components, thus proving their clonal relationship (Fig. 5a insert). Case 5 illustrated the well-known transformation of FL to HS [33, 34]. Differently from previous cases, the patient presented with multiple liver lesions due to the HS, and the FL component was only found in the staging BM biopsy along with the HS (Fig. 5b). FISH analysis demonstrated \textit{BCL2} rearrangements in both components, proving their relationship. The last case in this series (case 6) was an atypical histiocytic proliferation with JXG phenotype involving the BM with subsequent spread to the skin, liver, spleen, and pancreas, after remission of T-ALL (Fig. 5c). The BM showed massive involvement by JXG-like lesions, displacing the hematopoiesis (Fig. 5d). Attempts to study the molecular relationship of the JXG-like component with the previous T-ALL that was clonal for the T cell receptor genes and had a recurrent del(9)(p13) failed since the histiocytic lesion showed no clonal rearrangement and did not display del(9)(p13). A possible role of the initial myelotoxic therapy in the development of the JXG-like lesions, similar to documented LC proliferations [50–52], has to be also taken into consideration in this particular case.

Together with 14 analogous cases submitted to the EAHP workshop on histiocytic neoplasms involving the lymph nodes [35], the above cases add further strong evidence in support of the frequent clonal relationship between mature B cell lymphomas and T-ALL/lymphoblastic lymphomas on the one hand and histiocytic neoplasms on the other [33, 34, 53–60]. While transdifferentiation of a neoplastic lymphoid cell after loss of the lineage transcription program has initially been proposed as an explanation [33, 45, 54], evidence now points towards divergent differentiation of a common progenitor cell into multiple lineages as an alternative pathogenic mechanism [34, 58, 60].

Two additional cases deserve special attention because of specific diagnostic dilemmas. The first one (case 15) was RDD in a patient with an uncommon generalized presentation involving multiple lymph nodes and the skeleton (Fig. 6a), pointing towards the importance of distinguishing classical RDD cases, with single or regional lymph node involvement and a self-limiting clinical course, from extranodal cases [12]. The second one (case 16) was thought by the submitter to represent a mixed LC/non-LC sarcoma since a subset of the infiltrate expressed LC markers, while other cells expressed CD163. Yet, both components showed a \textit{BRAF}^{V600E} mutation
and were intermingled (Fig. 6b). Therefore, the panel felt that the diagnosis was LC sarcoma with aberrant expression of CD163, fitting with the current view of the histogenesis of composite histiocytoses from a histiocytic cell pool bearing the \(\text{BRAF}^{\text{V600E}} \) or equivalent mutations and retaining some plasticity [28, 61, 62].

Finally, a rather prototypic case (case 17) of disseminated JXG (Fig. 6c, d) with cytogenetic evidence of clonality [63] that was accompanied by HLH and resolved after HLH protocol treatment rounded up the workshop. The authors of this case had comprehensively investigated the important differential diagnoses of juvenile myelo-monocytic leukemia,

Fig. 5 a Case 4. CD68-positive cells of a HS involving the bone marrow in a patient suffering from a mediastinal germ cell tumor, displaying three \(\text{ETV6} \) signals on an interphase FISH suggestive of \(i(12p) \) (insert), confirming clonal relationship to the germ cell tumor, \(\times 200 \). b Case 5. HS in the bone marrow of a patient with flow cytometrically proven follicular lymphoma [corresponding to the crushed, small, CD20-positive (not shown), lymphoid cells seen in the upper right part of the microphotograph near the insert], displaying rearranged \(\text{BCL2} \) signals on an interphase FISH (insert), indicative for a common clonal origin of both neoplasms, \(\times 200 \). c Case 6. Bone marrow involvement by acute T lymphoblastic leukemia (T-ALL), \(\times 400 \). d Atypical histiocytic proliferation with juvenile xanthogranuloma phenotype (insert: FXIIIa) that developed 8 months after remission of the T-ALL, \(\times 360 \).

Fig. 6 a Case 15. Rosai-Dorman disease with aggressive features diffusely spreading to the bone marrow (insert: S100 staining), \(\times 360 \). b Case 16. Langerhans cell sarcoma in the bone marrow expressing langerin (upper insert) and with aberrant expression of CD163 (lower insert), \(\times 360 \). c Case 17. Disseminated juvenile xanthogranuloma, skin lesion (\(\times 200 \)), associated with d bone marrow changes with reactive erythroid hyperplasia and hemophagocytosis (note “strawberry-like cells” with engulfed erythrocytes), \(\times 360 \).
Lessons learned

The most remarkable observation of this workshop on neoplastic histiocytic disorders involving the BM, and the first lesson learned, was the high concurrence of ECD and myeloid neoplasms, mainly CML or AML with monocytic/histiocytic phenotype. Five of the 8 workshop cases of ECD and analogous lesions involving the BM (56%) showed evidence of mostly clonally related myeloid neoplasms (4 cases). This new observation was confirmed in an ASH abstract by Durham et al. [64]. Their series of 190 adult histiocytosis patients showed co-existing myeloid malignancies in 9.5%, usually patients with ECD and/or LCH, combined with myelodysplastic-myeloproliferative neoplasms, classical myeloproliferative neoplasms, or myelodysplastic syndromes. Only general data were provided on co-existing histiocytosis-associated mutations (BRAF, MAP2K1, NRAS, or KRAS) and myeloid-associated mutations (ASXL1, CALR, IDH1/2, JAK2, and TET2) in the same patients, without information on the tested material or exact combinations of mutations. In our workshop cases, molecular characterization of both components of these cases provided evidence of the clonal relationship between ECD and the concurrent or evolving myeloid neoplasms, ranging from a single (BRAFV600E or NRASQ61R) to multiple shared mutations (ASXL1, BRAFV600E, TET2, and U2AF1 or BRAFV600E, SRSF2, and TET2, respectively) in 2 cases each. Since at least some of these mutations are actionable and patients qualify for tailored therapies [28], patients have to be tested with gene panels whenever possible when treatment is planned, remembering that mutation pattern can change during such targeted therapies [41].

An immediate practical aspect and the second lesson learned, yet admittedly based on this limited workshop session: ECD patients with associated myeloid neoplasms were exclusively male and more than a decade older than those affected by ECD alone, while the latter showed the age and sex distribution reported by the WHO [18]. Based on this observation, we suggest excluding co-existent myeloid neoplasms at the initial staging of elderly male patients suffering from ECD. As expected in composite cases, the treatment and the prognosis were mainly determined by the accompanying myeloid neoplasm.

Observations on the few submitted HS cases reconfirmed an old lesson learned for this entity: its status as a highly aggressive neoplasm often accompanied by organomegaly and hemophagocytosis [12]. Meticulous phenotypic studies are required to exclude other diseases such as anaplastic lymphomas, sarcomas, melanomas, and AML with monocytic/histiocytic differentiation, which can all mimic HS histopathologically. Among the markers required to be negative, CD33 deserves special attention as a marker precluding the diagnosis of HS [41, 58, 59], despite not being listed by the WHO in the current classification [18].

A lesson to be learned from the histiocytic proliferations combined with FL, germ cell tumors, or T-ALL is to look systematically for underlying lymphomas in any cases of HS. B or T cell gene rearrangement studies and FISH can prove clonal relationship in such instances.

In summary, a spectrum of neoplastic histiocytic disorders can affect the BM, mainly as multisystem disorders. A substantial proportion is combined with—mostly—clonally related lymphoid or myeloid diseases (particularly ECD). Applying the WHO criteria and integrating clinical, laboratory, and radiologic findings, classification of the respective entities is usually possible. Yet in HS—lacking disease-defining clinical, laboratory, radiologic, and molecular features—broad phenotypic panels must be applied. Deregulation of the Ras/Raf/MEK/ERK signaling pathway and, to a lesser extent, of the PI3K pathway by recurrent mutations is of pathogenic and diagnostic importance in histiocytic neoplasms, as illustrated by many cases presented at the workshop. Therefore, extensive mutational screening with properly designed gene panels is highly recommended, not only for diagnostic but also for therapeutic purposes.

Acknowledgements The workshop panelists wish to express their gratitude to the hosts for organizing the 18th EAHP meeting in Basel, Switzerland.

The panel acknowledges the case submitters Dr. Liuyan Jiang from Jacksonville, USA (case 1); Dr. Thomas Lee from Los Angeles, USA (cases 2 and 7); Dr. Julia Geyer from New York, USA (case 3); Dr. Biljana Grcar Kuzmanov from Ljubljana, Slovenia (case 4); Dr. Sebastian Fernandez-Pol from Stanford, USA (case 5); Dr. Bachir Alobeid from New York, USA (case 6); Dr. Mohamed Hamza from Cairo, Egypt (case 8); Dr. Kaaren Reichard from Rochester, USA (case 9); Dr. Waihay Wong from Boston, USA (case 10); Dr. Yi Zhou from Seattle, USA (case 11); Dr. Daniela Hoehn from New York, USA (case 12); Dr. Neval Ozkaya from New York, USA (case 13); Dr. Christine Roth from Pittsburgh, USA (case 14); Dr. Rebecca King from Rochester, USA (case 15); Dr. Karen Grogg from Rochester, USA (case 16); and Dr. Sharon Wu from Stanford, USA (case 17).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
References

1. Tzankov A, Hebeda K, Kremer M et al (2017) Plasmacytoid dendritic cell proliferations and neoplasms involving the bone marrow: summary of the workshop cases submitted to the 18th Meeting of the European Association for Haematopathology (EAHAP) organized by the European Bone Marrow Working Group, Basel 2016. Ann Hematol 96:765–777

2. Chang KL, Gaal KK, Huang Q, Weiss LM (2003) Histiocytic lesions involving the bone marrow. Semin Diagn Pathol 20:226–236

3. Weitzman SR, Egele M (2010) Histiocytic disorders of children and adults. University Press, Cambridge

4. Fedorir Y, Kim YS, Vergilio J-A et al (2014) BRAF V600E mutation-specific immunohistochemistry is a rare finding and dendritic cell- and histiocytic-derived tumors. Leuk Lymph 56:1132–1133

5. Garces S, Medeiros LJ, Patel KP et al (2017) Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai-Dorfman disease. Mod Pathol 30(10):1367–1377

6. Tian X, Jie X, Fletcher C et al (2018) Expression of enhancer of zeste homolog 2 (EZH2) protein in histiocytic and dendritic cell neoplasms with evidence for p-ERK1/2-related, but not MYC- or p-STAT3-related cell signaling. Mod Pathol 31:553–561

7. Badalian-Very G, Vergilio JA, Degar BA et al (2010) Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116(11): 1919–1923

8. Haroche J, Charlotte F, Arnaud L et al (2012) High prevalence of BRAF V600E mutations in Erdheim–Chester disease but not in other non-Langerhans cell histiocytoses. Blood 120:2700–2703

9. Brown NA, Furtado LV, Betz BL et al (2014) High prevalence of somatic MAP2K1 mutations in BRAF V600E–negative Langerhans cell histiocytosis. Blood 124:1655–1658

10. Nelson DS, Quispel W, Badalian-Very G et al (2014) Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood 123:3152–3155

11. Diamond EL, Durham BH, Haroche J et al (2016) Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov 6:154–165

12. Emile JF, Abla O, Fraitag S et al (2016) Revised classification of histiocytoses and dendritic cell neoplasms. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon, pp 466–482

13. Haroche J, Abia O (2015) Uncommon histiocytic disorders: Rosai-Dorfman, juvenile xanthogranuloma, and Erdheim-Chester disease. Hematol Am Soc Hematol Educ Program 2015:571–578

14. Chrakraborty R, Hampton OA, Abhyankar H et al (2017) Activating MAPK1 (ERK2) mutation in an aggressive case of disseminated juvenile xanthogranuloma. Oncotarget 8:46065–46070

15. Meyer P, Graeff E, Kohler C et al (2017) Juvenile xanthogranuloma involving concurrent iris and skin: Clinical, pathological and molecular pathological evaluations. Am J Ophthalmol Case Rep 9:10–13

16. Fedoriw Y, Kim YS, Vergilio J-A et al (2014) BRAF V600E-mutated primary CNS histiocytic sarcoma to vemurafenib. Neurology 83:1478–1480
40. Durham BH, Diamond EL, Abdel-Wahab O (2016) Histiocytic neoplasms in the era of personalized genomic medicine. Curr Opin Hematol 23:416–425
41. Nordmann TM, Juengling FD, Recher M et al (2017) Trametinib after disease reactivation under dabrafenib in Erdheim-Chester disease with both BRAF and KRAS mutations. Blood 129:879–882
42. The mutation data was obtained from the Sanger Institute Catalogue Of Somatic Mutations In Cancer http://cancer.sanger.ac.uk/cosmic/mutation/overview?id=584
43. Greenberg PL, Stone RM, Al-Kali A et al (2017) Myelodysplastic syndromes, version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 15:60–87
44. Pileri SA, Grogan TM, Harris NL et al (2002) Tumours of histiocytic and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 41:1–29
45. Takahashi E, Nakamura S (2013) Histiocytic sarcoma: an updated literature review based on the 2008 WHO classification. J Clin Exp Hematop 53:1–8
46. Dalia S, Shao H, Sagatys E, Cualing H, Sokol L (2014) Dendritic cell and histiocytic neoplasms: biology, diagnosis, and treatment. Cancer Control 21:290–305
47. Go H, Jeon YK, Huh J et al (2014) Frequent detection of BRAF(V600E) mutations in histiocytic and dendritic cell neoplasms. Histopathology 65:261–272
48. Kordes M, Röring M, Heining C et al (2016) Cooperation of BRAF(F595L) and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia Apr 30(4):937–946
49. Liu Q, Tomaszewicz K, Hutchinson L et al (2016) Frequent detection of BRAF(V600E) mutations in histiocytic and dendritic cell neoplasms. Histopathology 65:261–272
50. Naumann R, Beuthien-Baumann B, Fischer R et al (2002) Simultaneous occurrence of Hodgkin’s lymphoma and eosinophilic granuloma: a potential pitfall in positron emission tomography imaging. Clin Lymphoma Myeloma Leuk 3:121–124
51. Christie LJ, Evans AT, Bray SE et al (2006) Lesions resembling Langerhans cell histiocytosis in association with other lymphoproliferative disorders: a reactive or neoplastic phenomenon? Hum Pathol 37:32–39
52. Pina-Oviedo S, Medeiros LJ, Li S et al (2017) Langerhans cell histiocytosis associated with lymphoma: an incidental finding that is not associated with BRAF or MAP2K1 mutations. Mod Pathol 30:734–744
53. Trebo MM, Attarbaschi A, Mann G et al (2005) Histiocytosis following T-acute lymphoblastic leukemia: a BFM study. Leuk Lymphoma 46:1735–1741
54. Castro EC, Blazquez C, Boyd J et al (2010) Clinicopathologic features of histiocytic lesions following ALL, with a review of the literature. Pediatr Dev Pathol 13:225–237
55. Wang E, Hutchinson CB, Huang Q et al (2010) Histiocytic sarcoma arising in indolent small B-cell lymphoma: report of two cases with molecular/genetic evidence suggestive of a “transdifferentiation” during the clonal evolution. Leuk Lymphoma 51:802–812
56. Shao H, Xi L, Raffeld M, Feldman AL et al (2011) Clinically related histiocytic/dendritic cell sarcoma and chronic lymphocytic leukemia/small lymphocytic lymphoma: a study of seven cases. Mod Pathol 24:1421–1432
57. Zeng W, Meck J, Cheson BD et al (2011) Histiocytic sarcoma transdifferentiated from follicular lymphoma presenting as a cutaneous tumor. J Cutan Pathol 38:99–103
58. Buser L, Bihl M, Ruffe A et al (2014) Unique composite hematolymphoid tumor consisting of a pro-T lymphoblastic lymphoma and an indeterminate dendritic cell tumor: evidence for divergent common progenitor cell differentiation. Pathobiology 81:199-205
59. Fernandez-Pol S, Bangs CD, Cherry A et al (2016) Two cases of histiocytic sarcoma with BCL2 translocations and occult or subsequent follicular lymphoma. Hum Pathol 55:39–43
60. Waanders E, Hebeda KM, Kamping EJ et al (2016) Independent development of lymphoid and histiocytic malignancies from a shared early precursor. Leukemia 30(4):955–958
61. Bains A, Parham DM (2011) Langerhans cell histiocytosis preceding the development of juvenile xanthogranuloma: a case and review of recent developments. Pediatr Dev Pathol 14(6):480–484
62. Li Z, Li Y, Liu W et al (2018) Mixed histiocytosis: a case report and published work review. J Dermatol 45(4):491–495
63. Janssen D, Fölster-Holst R, Harms D, Klapper W (2007) Clonality in juvenile xanthogranuloma. Am J Surg Pathol 31:812–813
64. Durham BH, Yoshimi A, Papo M et al (2016) Frequent clinical overlap of histiocytic neoplasms and WHO-classified myeloid malignancies leads to functional insights into the cell-of-origin of histiocytoses. Blood 128:951