Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation

Jia-Qi Wang,1,2, * Yuan-Hao Yang,1,2, * Ming Li,1,2, † Hai-Qi Zhou,1,2 Xin-Biao Xu,1,2 Ji-Zhe Zhang,1,2 Chun-Hua Dong,1,2 Guang-Can Guo,1,2 and Chang-Ling Zou1,2, ‡

1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, P. R. China.
2CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
(Dated: April 5, 2022)

Nonlinear optics processes lie at the heart of photonics and quantum optics for their indispensable role in light sources and information processing. During the past decades, the three- and four-wave mixing (χ(2) and χ(3)) effects have been extensively studied, especially in the micro-/nano-structures by which the photon-photon interaction strength is greatly enhanced. So far, the high-order nonlinearity beyond the χ(3) has rarely been studied in dielectric materials due to their weak intrinsic nonlinear susceptibility, even in high-quality microcavities. Here, an effective five-wave mixing process (χ(4)) is synthesized for the first time, by incorporating χ(2) and χ(3) processes in a single microcavity. The coherence of the synthetic χ(4) is verified by generating time-energy entangled visible-telecom photon-pairs, which requires only one drive laser at the telecom waveband. The photon pair generation rate from the synthetic process shows an enhancement factor over 500 times upon intrinsic five-wave mixing. Our work demonstrates a universal approach of nonlinear synthesis via photonic structure engineering at the mesoscopic scale rather than material engineering, and thus opens a new avenue for realizing high-order optical nonlinearities and exploring novel functional photonic devices.

Introduction
Since the invention of lasers, a wide range of nonlinear optics processes have been experimentally observed in dielectric materials and have deepened our understanding of the physics of light-matter interactions [1–5]. Nonlinear optics effects not only provide a unique testbed for studying nonlinear physics with flexible parameters over many orders, but also allow various applications, including frequency conversion for optical detection and imaging [6], comb laser-based precision spectroscopy [7], material characterization and bio-chemical sensing [8]. For emerging quantum information science, optical nonlinearity is the key resource for nontrivial tasks enabled by quantum mechanics, ranging from communication, sensing to computation. Coherent multi-wave mixing allows the generation of entangled photon pairs [9] and also quantum frequency conversion [10] to connect distinct quantum systems. In particular, high-order nonlinearities are desired for the generation of exotic many-photon entangled states or the realization of controllable photon-photon quantum gates [11, 12], which are crucial for an extensible quantum system. Nonetheless, most studies are limited to the low-order nonlinearity of dielectric materials, i.e. the χ(2) and χ(3) processes, because the nonlinear susceptibility decays exponentially with the order. To date, the fundamental physics of high-order optical nonlinearity and the associated applications are rarely investigated in experiments using solid-state materials [13, 14].

Recently, nonlinear photonic devices on integrated photonic chips [15–17] have attracted tremendous research interest due to their advantages in compactness, stability, and low-power-consumption. Compared with conventional bulky nonlinear crystals and nonlinear fibers, integrated microcavities significantly enhance light-matter interaction due to the strongly confined mode volume Vm as well as the high-quality factor [18]. In a microcavity, the nonlinear coupling rate of an (n+1)-wave mixing process scales as gn ∝ χ(n) / Vm(n−1)/2, with χ(n) ∝ ω(10−10(n−1)(V/m)n−1) being the nonlinear susceptibility [1]. Currently, nonlinear enhancement has reduced the optical parametric oscillation threshold dramatically to micro-Watts based on χ(2) and χ(3) processes [19, 20]. However, the enhancement of gn provided by the scaling factor (Vm/n−1/2) is usually on the order of 105(n−1) for widely studied integrated microcavities, which cannot compensate the 10 order decrease of high order χ(n) against n. It is still challenging to directly realize the multi-wave mixing involving five or more photons based on the intrinsic nonlinear susceptibility of common materials, even in microcavities.

In this work, we demonstrate a novel approach to synthesize χ(4) process by intrinsic low-order nonlinear processes in
a microcavity. The synthetic $\chi^{(4)}$ nonlinearity is demonstrated by generating correlated photon pairs, which shows a rate over 500 times higher than that due to the intrinsic $\chi^{(4)}$ susceptibility of the material. Its coherent property is verified by measuring the two-photon quantum interference in the time domain, which manifests an entangled photon-pair source between the visible and telecom bands. Compared with schemes based on traditional low-order nonlinear processes that use ultraviolet or specially-designed laser wavelength, our synthetic five-wave mixing approach shows high flexibility in choosing the wavelengths of photons, thus reducing the difficulties in dispersion engineering. Our scheme points to a universal route to synthesize high-order nonlinear processes based on low-order nonlinear processes in a single microcavity and would stimulate future experimental investigations on even higher-order nonlinear processes and the preparation of exotic photonic quantum states.

Results

Synthetic five-wave mixing

The principle of synthetic optical nonlinearity is illustrated in Fig. 1. In an optical cavity filled with non-centrosymmetric materials [Fig. 1(a)], the low-order nonlinear optical processes, i.e. three-wave mixing (3WM) and four-wave mixing (4WM) due to the material’s intrinsic $\chi^{(2)}$ and $\chi^{(3)}$ nonlinearities, respectively, could both be enhanced by the resonances. The two separate processes are independent of each other except sharing a common optical mode. For instance, as shown by the scattering map in Fig. 1(b), a photon generated by the 4WM could be a seed for the 3WM, and eventually an effective five-wave mixing (5WM) is synthesized by incorporating 4WM and 3WM. Denoting the shared mode for 4WM and 3WM as b, the four-photon and three-photon interactions could be described by the Hamiltonian as $H = g_{4,\text{eff}} \left(d^\dagger c + a^\dagger c^\dagger d^3 \right)$, where $g_{4,\text{eff}} = g_2g_3/\Lambda_b$ is the effective five-photon interaction strength and Λ_b is the equivalent detuning of the intermediate mode b [see Supplementary Information for more details].

Note that $g_{4,\text{eff}}$ could be a complex number, which indicates a non-Hermitian 5WM process and more interesting physics about this is left for future studies. The synthetic 5WM can be used to construct the parametric interaction between telecom wavelength modes (d and a) and visible mode c: when driving d, a pair of photon could be generated in a and c, as depicted in Fig. 1(c). Compared with the material’s intrinsic $\chi^{(4)}$, the synthetic nonlinearity holds many advantages: First, the synthetic $g_{4,\text{eff}}$ could be much higher than that from intrinsic $\chi^{(4)}$, thus enabling stronger multi-photon interactions. Second, elementary (low-order) process could be engineered individually and then combined for synthetic nonlinearity, thus the complicated dispersion engineering for high-order modes with poor modal overlaps is avoided for practical applications. It also provides an universal approach for constructing higher-order processes. For the example above, if we choose d as the virtual photons instead, six-wave mixing $g_{5,\text{eff}} \left(ab^\dagger e^\dagger + h.c. \right)$ could be realized ($g_{5,\text{eff}} \approx g_3g_2^2$) by combining one $\chi^{(3)}$ and two $\chi^{(2)}$ processes (see Supplementary Information).

Experimental characterization

The 5WM process is experimentally synthesized in a chip-integrated aluminum nitride microring, which provides excellent $\chi^{(2)}$ and $\chi^{(3)}$ properties and has been extensively studied in comb generation and high-efficient second harmonic generation (SHG) [21, 22]. Here, the effective $\chi^{(4)}$ is constructed between the fundamental TM$_{00}$ modes at telecom wavelength (~ 1550 nm) and TM$_{20}$ modes at visible wavelength (~ 775 nm). For the telecom modes only in a relatively narrow frequency range ($\sim 1550 \pm 15$ nm), the dispersion is negligible and all modes could participate in the 4WM efficiently. The microring was subsequently designed with an appropriate width to realize the phase-matching of 3WM between the TM$_{00}$ telecom drive mode and TM$_{20}$ visible mode. Efficient sum-frequency generation (SFG) is realized by finely tuning the chip temperature near the SFG phase-matching point. As the experimental setup shows in Fig. 2(a), telecom drive laser and input signals are injected into the device from one side of the chip through a fiber lens. The output signals are collected by another fiber lens on the other side of the chip, and are sequentially separated into different paths by a wavelength division multiplexer (WDM). After that, we use single photon counting modules (SPCM) to detect visible output signal, with the potential background noise filtered by a series of band-pass filters, while the telecom output signal transmitted through cascaded dense wavelength division multiplexings (DWDM) is detected by a superconducting nanowire single photon detector (SNSPD).

Figure 2(b) shows the transmission spectrum of the telecom modes, where the modes belonging to the same mode family are marked by black frames. Along with the scanning of the laser, a strong peak in the visible mode is observed as the phase-matching condition between modes a_{-1} and b_{-1} is satisfied, which indicates the highly efficient SHG. Here, a_i, b_i denote the bosonic operators of the optical modes, with the subscript $i \in \mathbb{Z}$ denoting the relative angular momentum of the modes. Due to the small dispersion of telecom modes $\omega_{b,-2} + \omega_{a,0} \approx 2\omega_{a,-1}$, the SHG also implies an efficient non-degenerate 3WM process (i.e. SFG) $H_{\text{SFG}} = g_2(a_0a_{a,-2}b_{-2}^\dagger + h.c.)$. Combining the SFG with the special 4WM process $H_{\text{4WM}} = g_3(a_0a_0a_1a_2^\dagger b_{-2}^\dagger + h.c.)$, which shares the same telecom mode a_{-2}, the desired 5WM between a_0, a_{-2} and b_{-1} is constructed under fast dynamics of the virtual mode a_{-2}. This synthetic process consumes three pump photons (a_0 mode) to produce a telecom-visible photon pair at a_{+2} and b_{-2}, respectively.

Inside the AlN microcavity, all these nonlinear optical pro-
cesses can be greatly enhanced due to the strong mode confinement and high quality factor. To ensure an efficient 5WM process, the elementary nonlinear processes are verified by pumping the a_0 and probing the virtual mode a_{-2}. According to $H_{3\text{WM}}$ and $H_{4\text{WM}}$, for a given probe power, the powers of generated signals from mode b_{-2} and a_{+2} scale linearly and quadratically with the pump power for 3WM and 4WM, respectively. Figures 2(c)-(d) show the relation between the output power from the signal mode and the pump power. By fitting the input-output relationship with $P_{\text{out}} = A \times P_{\text{pump}}^N$ with a fixed probe power, we get $N = 1.135 \pm 0.014$ for mode b_{-2} and $N = 1.936 \pm 0.091$ for mode a_{+2}, which proves the efficient 3WM and 4WM associating with the virtual mode. Then, by turning off the probe laser of the virtual mode, the synthetic 5WM is tested using a coherent pump on the telecom mode a_0, which produces an effective parametric Hamiltonian $g_{\text{eff}} h_0^{3/2} \left(b_{-2} a_{+2} + b_{+2}^* a_{-2}^* \right)$ with an intracavity pump photon number n_p. Such vacuum-induced photon-pair generation process results in a single-photon count rate of tens kilohertz from the visible mode b_{-2} by the SPCM. The power-dependent counts are fitted with $N = 2.826 \pm 0.297$, agreeing well with the theoretical prediction of cubic power dependence ($\propto n_p^3$).
Visible-telecom entanglement

Although the cubic power dependence of the photon-pair rate demonstrates that five photons participate simultaneously in this 5WM process, it lacks direct evidence on the coherence of the synthetic nonlinear process, which is vital for potential quantum device applications in quantum information processing [23–25], including the quantum frequency conversion and entangled photon sources. Therefore, the inherent coherent property of the synthetic $\chi^{(4)}$ process is further investigated by measuring the temporal correlation function and time-energy quantum entanglement between modes at the telecom band and the visible band, under the pump on mode a_0 by a monochromatic laser.

Figures 3(a)-(c) show the normalized coincidence spectra for the visible-telecom correlation ($b_{-2} \otimes a_{+2}$) and ($b_{-2} \otimes a_{+1}$), as well as telecom-telecom correlation ($a_{-1} \otimes a_{+1}$). It is found that only the 4WM and target 5WM produce the correlation, while the un-phase-matched interaction is excluded. Furthermore, the peak coincidence to accidental rates (CARs) between the involved modes are summarized in Fig. 3(d). The coincidence map shows that there are correlations between the a_{-2} mode and a_{-2} mode, a_{-1} mode and a_{+1} mode, a_{+2} mode and b_{-2} mode. The former two correlations correspond to the 4WM process and the third correlation correspond to the synthetic 5WM process. These results unambiguously exclude other potential multi-photon processes and noises. Note that for a Hermitian $\chi^{(4)}$-process, the photon generation in a_{-2} should be suppressed and thus the coincidence between a_{-2} and a_{+2} vanishes, which can be achieved in principle by independently engineering the resonance of mode a_{-2} far-off the phase-matching. The power dependence of the on-chip pair flux and peak CAR is shown in Fig. 3(e), with the on-chip photon pair flux derived from the detected photon pair flux by taking account of the losses of both signal and idler photons. As the pump power increases, the pair flux increases but the CAR value is limited by multi-pair generation in our process. While at the low pump region the decrease of pair flux is accompanied by the suppression of multi-pair events, so that CAR value is mainly limited by detector dark counts and imperfect filtering which is caused by the leakage of pump light at telecom band and pump SHG signal at visible band.

Furthermore, it can be inferred from Eq. (1) that a coherent quantum process enables the simultaneous generation of a pair of photons in target modes b_{-2} and a_{+2}, instead of consequent realization of the 4WM and 3WM in a single microring. Comparing Fig. 3(a) and 3(b), the temporal correlation function shows a similar symmetric profile, thus confirming that the synthetic nonlinearity resembles the intrinsic $\chi^{(3)}$ that generate photons simultaneously. Due to the higher dissipation rate of visible mode, the correlation function for $b_{-2} \otimes a_{+2}$ shows a spread distribution of the generation time of the photon pairs, which can be characterized by coincidence measurements of different time offsets.
To verify the quantum coherence property of the synthetic $\chi^{(4)}$ and explore its potential applications, the time-energy entanglement between the emitted visible-telecom photon pairs is demonstrated. Through the two unbalanced Mach–Zehnder interferometers (MZIs), the photon pairs are divided into four paths namely, short–short, long–long, short–long and long–short for visible–telecom channels, corresponding to twin-photon amplitude of different times. The time-energy entanglement is characterized via the Franson interferometer [26]. As shown at the top of Fig. 4(a), both the short-short and long-long twin-photon states contribute to the center peak of the coincidence spectrum, thus interference is expected for coherent parametric interaction. The equal time twin-photon quantum state can be expressed as: $|Ψ⟩ = |ss⟩ + e^{i(φ_1 + φ_2)}|ll⟩$, where $|ss⟩$ and $|ll⟩$ stand for twin photons from the short–short and long–long arms of the unbalanced MZI. The amplitude of the coincidence interference peak depends on the phases $(φ_1, φ_2)$ of the two MZIs. In our experiment, we tune the phase $φ_1 + φ_2$ and track the coincidence spectrum. The remarkable change of the center peak in Figs. 4(b)-(c) demonstrates the existence of quantum interference. In particular, the visibility of the amplitude at the center peak achieves $72.7% ± 3.3\%$, which violates the Bell’s inequality and manifests a visible-telecom entangled photon-pair source.

Discussion

In summary, we have demonstrated synthetic five-wave mixing in an integrated aluminum nitride microcavity. The coherent and quantum nature of the synthetic nonlinear process is validated by the quantum entanglement between visible and telecom photons, which are generated by a single telecom pump laser. It could be applied as quantum interfaces for future hybrid quantum network based on the Rubidium-atom quantum memories [27]. Comparing with the intrinsic $\chi^{(2)}$ nonlinearity of the material, our approach shows an enhancement of photon-pair generation rate by more than 500 times (see Supplementary Information for derivation). In addition, coherent and fast tuning of the synthetic nonlinearity is enabled by controlling the intermediate mode, instead of the material property [28]. Remarkably, this synthetic five-wave mixing also promises efficient on-chip three-photon sources by pumping at visible and telecom wavelengths, as a reversal of the process demonstrated here, and provides the Greenberger-Horne-Zeilinger resource states for photonic fusion-based quantum computing [29]. It is anticipated that even higher-order synthetic nonlinearity could be achieved in the lithium niobate and gallium arsenide microcavities [30–32]. Moreover, our approach can be applied to all kinds of nonlinear platforms rather than limited in non-centrosymmetric materials with $\chi^{(2)}$ nonlinearity, and can be extended to hybrid systems, such as acoustic-optics involving photon-phonon interactions. Our demonstration opens the possibility of studying the fundamental physics in nonlinear multi-wave mixing and exploiting new functional quantum photonic devices.

[1] R. W. Boyd, *Nonlinear Optics* (Elsevier, 2003).
[2] G. P. Agrawal, *Nonlinear Fiber Optics* (Elsevier, 2019).
[3] R. Arun Kumar, “Borate Crystals for Nonlinear Optical and Laser Applications: A Review,” *J. Chem.*, 2013, 154862 (2013).
[4] M. M. Fejer, “Nonlinear Optical Frequency Conversion,” *Phys. Today* 47, 25 (1994).
[5] N. Bloembergen, “Nonlinear optics and spectroscopy,” *Rev. Mod. Phys.* 54, 685 (1982).
[6] X. Guo, C. R. Breum, J. Borregaard, S. Izumi, M. V. Larsen, T. Gehring, M. Christandl, J. S. Neergaard-Nielsen, and U. L. Andersen, “Distributed quantum sensing in a continuous-variable entangled network,” *Nat. Phys.* 16, 281 (2020).
[7] N. Picqué and T. W. Hänsch, “Frequency comb spectroscopy,” *Nat. Photon.* 13, 146 (2019).
[8] R. J. Tran, K. L. Sly, and J. C. Conboy, “Applications of Surface Second Harmonic Generation in Biological Sensing,” *Annu. Rev. Anal. Chem.* 10, 387 (2017).
[9] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” *Phys. Rev. Lett.* 75, 4337 (1995).
[10] P. Kumar, “Quantum frequency conversion,” *Opt. Lett.* 15, 1476 (1990).
[11] P. Kok and B. W. Lovett, *Introduction to Optical Quantum Information Processing* (Cambridge University Press, Cambridge, 2010) pp. 1–488.
[12] N. K. Langford, S. Ramelow, R. Prevedel, W. J. Munro, G. J. Milburn, and A. Zeilinger, “Efficient quantum computing using coherent photon conversion,” *Nature* 478, 360 (2011).
[13] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, and D. A. Reis, “Observation of high-order harmonic generation in a bulk crystal,” Nat. Phys. 7, 138 (2011).

[14] J. D. Cox, A. Marini, and F. J. G. de Abajo, “Plasmon-assisted high-harmonic generation in graphene,” Nat. Commun. 8, 14380 (2017).

[15] D. V. Strekalov, C. Marquardt, A. B. Matsko, H. G. L. Schwefel, and G. Leuchs, “Nonlinear and quantum optics with whispering gallery resonators,” J. Opt. 18, 123002 (2016).

[16] I. Breunig, “Three-wave mixing in whispering gallery resonators,” Laser Photon. Rev. 10, 569 (2016).

[17] A. W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, and V. Zwiller, “Hybrid integrated quantum photonic circuits,” Nat. Photon. 14, 285 (2020).

[18] Y. F. Xiao, C. L. Zou, Q. Gong, and L. Yang, Ultra-high-Q Optical Microcavities (World Scientific, 2020) pp. 1–403.

[19] J. Lu, A. Al Sayem, Z. Gong, C.-L. Zou, and H. X. Tang, “Ultralow-threshold thin-film lithium niobate optical parametric oscillator,” Optica 8, 539 (2021).

[20] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337 (1995).

[21] J.-Y. Shan, M. Ye, H. Chu, S. Lee, J.-G. Park, L. Balents, and D. Hsieh, “Giant modulation of optical nonlinearity by floquet engineering,” Nature 600, 235 (2021).

[22] D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani, D. Bacco, R. Santagati, Y.-J. Qian, Y. Li, Y.-F. Xiao, M. Huber, M. Malik, G. F. Sinclair, X. Zhou, K. Rottwitt, J. L. O'Brien, J. G. Rarity, Q. Gong, L. K. Oxenlowe, J. Wang, and M. G. Thompson, “Chip-to-chip quantum teleportation and multi-photon entanglement in silicon,” Nat. Phys. 16, 148 (2020).

[23] P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using quasi-phase-matching in a GaAs whispering-gallery-mode microcavity,” Nat. Commun. 5, 3109 (2014).

[24] J.-Y. Shan, M. Ye, H. Chu, S. Lee, J.-G. Park, L. Balents, and D. Hsieh, “Giant modulation of optical nonlinearity by floquet engineering,” Nature 600, 235 (2021).

[25] [32] J. Lu, M. Li, C.-L. Zou, A. Al Sayem, and H. X. Tang, “Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators,” Optica 7, 1654 (2020).
Methods

Experimental device and setup. The aluminum nitride photonic chip used in our experiment is optimized for high-efficiency second-harmonic generation (SHG). The microring is designed with an appropriate width to realize phase-matching between the TM\textsubscript{00} telecom drive mode and TM\textsubscript{20} visible mode, and the exact frequency matching between visible and telecom modes is then realized by finely tuning the chip temperature. The radius of our device is approximately 30\(\mu\)m. Our device uses a straight bus waveguide to couple telecom light into the microrings and uses a specially-designed wrap-around waveguide for coupling visible light out.

In our experiment, the pump light is provided by amplifying the output of a telecom laser source (Agilent 8164A) with an erbium-doped optical fiber amplifier (EDFA, CONQUER, KG-EDFA-P). The amplified light is transmitted through a dense wavelength division multiplexing (DWDM) to filter the background noise caused by EDFA. The probe light is New Focus diode laser (TLB-6700) with a tunable laser controller. Our device is placed in an external heater (Covesion, PPLN Ovens-PV10) with a precise temperature controller (Covesion, OC2). For the filter system, we adopt multiple narrow band-pass filters (Semerock, LL01-780) for visible light, which can help us to filter the pump SHG signal and block background noise. In the telecom band, we use commercial 1550 nm band fiber DWDMs, with 100 GHz channel bandwidth.

Single photon detection. Two kinds of single photon detectors were used to detect the generated visible and telecom single-photon-level signals separately. A superconducting nanowire single-photon detector (SNSPD, PHOTEC-1550) is used for telecom outputs with a high detection efficiency over 90@1550nm, a low dark count rate less than 100Hz and a small jitter less than 20ps. The single photon counting modules (SPCM, Excelitas SPCM-NIR), with a photon detection efficiency of 70@780nm and less than 200Hz dark count rate, is used for output in the visible band. For coincidence measurement between the modes, we use a high resolution time-to-digital converter (quTAG, standard 4 channels). The peak CAR values in Fig. 4 are calculated by CAR = \((C - A)/A\), where C and A are the overall and accidental coincidence counts obtained from the peak and background of the coincidence counting spectra. The one standard deviation uncertainty in Fig. 3(d) is given by multiple measurements.

Franson interference. For the Franson interferometer, we use two unbalanced Mach–Zehnder interferometers (MZIs) for visible and telecom band signals, separately. The visible band unbalanced MZI is made up of spatial optical setup and uses a piezoelectric transducer (PZT) to compensate for the phase drift due to the thermal effect and instability of the MZI via a proportion integration differentiation (PID) controller (SRS-SIM960). A fiber phase shifter and a PID controller are adopted to stabilize and adjust the phase at telecom band.

The interference visibility is calculated by the ratios extracted from the peak of coincidence spectra in Fig. 4(b)-(c) by Visibility = \(\frac{CAR_{\text{max}} - CAR_{\text{min}}}{CAR_{\text{max}} + CAR_{\text{min}}}\), where CAR\text{max} and CAR\text{min} are the center peak CAR values of the spectra. The one standard deviation uncertainty is given by \(\frac{\sigma_{\text{CAR}}}{\text{CAR}} \approx \frac{1}{\sqrt{N}}\). N is the total coincidence counts at the peak, and the uncertainty of visibility is derived via the error propagation formula.

The interference visibility is limited by the signal-to-noise ratio of the single-photon outputs, which is mainly attributed to: (i) The low fiber-to-chip coupling efficiency for visible light, which limits the counts of the single photons at the visible wavelengths; (ii) The background noise due to the residue of the pump field and its second-harmonics. It can be improved with high-performance filters or by choosing the signal mode far from the pump in future experiments. (iii) Other parasitical nonlinear effects, such as Raman scattering.

Acknowledgment

This work was funded by the National Key Research and Development Program (Grant No. 2017YFA0304504) and the National Natural Science Foundation of China (Grant Nos. 11874342, 11904316, 11922411, and 12104441) and Natural Science Foundation of Anhui Province (Grant No. 2008085QA34 and 2108085MA22). ML and CLZ was also supported by the Fundamental Research Funds for the Central Universities, and the State Key Laboratory of Advanced Optical Communication Systems and Networks. This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author contributions

C.-L.Z. and M.L. conceived the experiments. J.-Q.W. and Y.-H.Y. built the experimental setup, carried out the measurements, and analyzed the data, with assistance from H.-Q.Z., X.-B.X., J.-Z.Z., and C.-H.D. M.L. provided theoretical supports. J.-Q.W., Y.-H.Y., M.L., and C.-L.Z. wrote the manuscript, with input from all other authors. M.L., C.-L.Z., and G.-C.G. supervised the project.