Review

Ag₂O Nanoparticles as a Candidate for Antimicrobial Compounds of the New Generation

Sergey V. Gudkov ¹,*, Dmitriy A. Serov ¹, Maxim E. Astashev ¹, Anastasia A. Semenova ² and Andrey B. Lisitsyn ²

¹ Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
² V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
* Correspondence: s_makariy@rambler.ru

Abstract: Antibiotic resistance in microorganisms is an important problem of modern medicine which can be solved by searching for antimicrobial preparations of the new generation. Nanoparticles (NPs) of metals and their oxides are the most promising candidates for the role of such preparations. In the last few years, the number of studies devoted to the antimicrobial properties of silver oxide NPs has been actively growing. Although the total number of such studies is still not very high, it is quickly increasing. Advantages of silver oxide NPs are the relative easiness of production, low cost, high antibacterial and antifungal activities and low cytotoxicity to eukaryotic cells. This review intends to provide readers with the latest information about the antimicrobial properties of silver oxide NPs: sensitive organisms, mechanisms of action on microorganisms and further prospects for improving the antimicrobial properties.

Keywords: silver oxide; nanoparticles; bacteriostatic effect; bactericidal effect; fungistatic effect; fungicidal effect; mammalian cells cytotoxicity; green synthesis; new materials development

1. Introduction

Since the moment of their discovery, antibiotics have been the “golden standard” in the treatment of many bacterial infections [1,2]. Unfortunately, the uncontrolled use of over-the-counter (OTC) antibiotics available without prescription has led to the emergence of new antibiotic-resistant bacterial strains. Diseases caused by such bacteria are not amenable to treatment. This phenomenon is called antibiotic resistance [3–5]. The development of antibiotic resistance in bacteria led to a new wave of growth in the number of infectious diseases and the necessity to search for new antimicrobial agents [6]. One of the ways to overcome antibiotic resistance in bacteria is the use of metal and metal oxide nanoparticles (NPs) [7]. Fungal diseases are a multi-national problem. More than 150 million people in the world have severe fungal diseases. More than 1.5 million cases of fungal diseases have a lethal outcome [8]. The problem is exacerbated by the development of fungal resistance to antifungal drugs [9]. There are reports about the antifungal properties of metal oxide NPs [10,11]. Since the beginning of the COVID-19 pandemic, special attention has been given to the search for inexpensive and effective antiviral agents [12,13].

The antimicrobial properties of silver and its compounds have been known since ancient times. The first references to the use of silver are dated back to 3500–1000 B.C. In particular, silver was used for dishware production and water storage; later on, there were attempts to use silver powder to treat various diseases [14–16]. It has been shown many times in the literature that nanoparticles (NPs) of silver and its compounds have significant bactericidal, fungicidal and antiviral activities [17–19]. Ag₂O NPs have attracted particular attention of researchers in the field of nanomaterials because of their unique properties that ensure multiple functions and a wide field of application. The most significant applications
of Ag₂O NPs are the production of catalyzers, chemical sensors, optoelectronic devices and systems of targeted delivery of drugs in vivo [20–24]. Ag₂O NPs also have significant antimicrobial potential [25–27]. Silver oxide is used as an antimicrobial agent in the creation of biocompatible materials when developing bone implants [28]. Biomedical applications also include cancer therapy, wound treatment, tissue protection from oxidative stress, therapy of stomach ulcer, etc. [29–31]. An important application at the interface of biomedicine and ecology is the use of Ag₂O NPs for photocatalytic destruction of pharmaceutical micro-pollutants [32].

The aim of this review is to provide readers with methods for Ag₂O NP production, a range of sensitive microorganisms, mechanisms of the antimicrobial activity and some ways for improving their antimicrobial properties.

2. Sensitive Microorganisms

There are data in the literature about the antimicrobial activity of Ag₂O NPs against, at least, 53 microbial species (Table 1), including 21 species of Gram-negative bacteria, 15 species of Gram-positive bacteria and 17 fungal species (Figure 1a). Among the most often mentioned organisms are Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae; Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis; and fungi Aspergillus and Candida albicans. All mentioned microorganisms have epidemiological significance. Antibiotic-resistant strains are most often found among Escherichia coli and Staphylococcus aureus [27,33–36]. We expected that the antimicrobial activity of Ag₂O NPs against bacteria with different structures of cell wall (Gram-negative and Gram-positive) will greatly differ. An approximately equal amount (~20) of species of Gram-negative bacteria and Gram-positive bacteria sensitive to Ag₂O NP was observed. This fact suggests the universality of the mechanisms of the antibacterial activity of Ag₂O NPs. Ag₂O NPs not only effectively inhibited bacterial growth, but also killed them. Therefore, Ag₂O NPs are a perfect candidate for the role of a therapeutic agent against nosocomial bacterial infections [37].

Figure 1. Results of the data analysis regarding antimicrobial properties of Ag₂O NPs: (a) microorganisms, against which the inhibitory activity of NPs was shown most often; (b) dependence of MIC against E. coli on NP sizes. R—value of the correlation coefficient; (c) dependence of MIC on a method of NP generation. *—p < 0.05, a significant difference from the precipitation variant using the Mann–Whitney test. Each dot represents a mention in one publication. The data are presented as medians, percentiles (10, 25, 75 and 90%).
Table 1. Antimicrobial properties of Polymers/Ag₂O nanocomposites.

№	Composition	Particle Size, nm	Microorganism Strains	Effect	MIC/MBC (µg/mL)	Results	Reference
1	Ag₂O NPs coating on glass	~1500	Pseudomonas aeruginosa (DSM-9644), Staphylococcus aureus (ATCC no. 6538), Staphylococcus aureus (MAA300 methicillin-resistant), SARS-CoV-2 virus	Bacteriostatic	1.18	Coating of glass surfaces with Ag₂O NPs significantly reduced the titers of the SARS-CoV-2 virus on the treated surface after 1 and 24 h. Ag₂O NPs caused the death of all studied bacteria after 1 h. The activities against Gram-negative bacteria were more pronounced.	[13]
2	AgO NPs	~170	Staphylococcus aureus	Bactericidal	20	The bactericidal action of AgO NPs realized via disruption of the bacterial cell wall integrity detectable by K⁺ leakage from cells, increased Ag content in cell walls and TEM data.	[19]
3	Ag₂O NPs in Ag₂O NPs/Ag sensor for detection of 4-nitrotoluene	80–90	Escherichia coli, Staphylococcus aureus	Bacteriostatic	100	Ag₂O NPs showed bacteriostatic effect against both studied bacteria. The antimicrobial effect against Gram-positive bacteria is much higher.	[22]
4	Ag₂O NPs synthesized in Aspergillus terreus VIT 2013 culture	500–1000 (TEM images)	Staphylococcus aureus methicillin resistant	Bacteriostatic	~23.2	Ag₂O NPs inhibited growth of all studied antibiotic-resistant S. aureus strains.	[27]
5	Ag₂O NPs synthesized in Rhamnus virgate extracts	110–120	Aspergillus flava, Aspergillus niger, Bacillus subtilis, Candida albicans, Escherichia coli, Fusarium solani, Klebsiella pneumonia, Mucor racemosus, Pseudomonas aeruginosa, Staphylococcus aureus	Bacteriostatic Fungistatic	28.125–112.5	Antimicrobial activity significantly varied depending on the species of microorganism. Ag₂O NPs decreased viability of HepG2 cell line and HUH-7 cancer cells at concentrations above 9 µg/mL. Using of ethanol extract to Ag₂O NPs synthesis increased their antimicrobial activity.	[33]
6	Ag₂O NPs synthesized in Pinus longifolia extract	1–100	Bacillus subtilis, Escherichia coli, Staphylococcus aureus	Bacteriostatic	25	Ag₂O NPs/P. longifolia inhibited the growth of both Gram-positive and Gram-negative bacteria equally.	[34]
7	Ag₂O NPs synthesized in Paeonia emodi extract	38–86	Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus	Bacteriostatic	0.125	Bacteriostatic action against Gram-negative bacteria was more pronounced. The mechanism of bacteriostatic action is a photocatalysis.	[35]
8	Ag₂O NPs synthesized in Cyathea nilgiriensis extract	8–40	Bacillus subtilis, Escherichia coli, Klebsiella pneumonia, Micrococcus luteus, Salmonella paratyphi, Staphylococcus aureus, Aspergillus niger, Candida albicans	Bacteriostatic Fungistatic	~100	Ag₂O NPs/C. nilgiriensis showed bacteriostatic, antifungal and antitumor activity.	[36]
№	Composition	Particle Size, nm	Microorganism Strains	Effect	MIC/MBC	Results	Reference
----	--	-------------------	--	-----------------	-------------------------	---	----------
9	Natural hydrogel from *Abroma augusta*/Ag-Ag₂O NPs with varying polyphenol concentrations of 50, 100, 150 and 200 µg/mL	20–40	*Bacillus cereus* MTCC 430, *C. albicans* MTCC 227, *Escherichia coli* MTCC 443, *Klebsiella pneumoniae* MTCC 7162, *Pseudomonas aeruginosa* MTCC 741, *Staphylococcus aureus* MTCC 96	Bacteriostatic	12.5/25 µg/mL	Maximal antimicrobial effect of nanocomposite was observed at 200 µg/mL polyphenol concentrations.	[37]
10	Ag₂O NPs mixed with chitosan solution (1% w/v in 1% acetic acid) and dried	~5	*Escherichia coli*, *Staphylococcus aureus*	Bacteriostatic	2 µg/mL	Treating of cotton fibers by chitosan/Ag₂O NPs suspension reduced Gram-negative and Gram-positive bacterial growth up to 100%.	[39]
11	Chitosan/Ag₂O NPs suspension	10–20	*Escherichia coli*, *Staphylococcus aureus*	Bacteriostatic	2 µg/mL	Treating of cotton fibers by chitosan/Ag₂O NPs suspension reduced Gram-negative and Gram-positive bacterial growth up to 100%.	[40]
12	Chitosan/Ag₂O NPs suspension	100–200	*Escherichia coli*, *Staphylococcus aureus*	Bacteriostatic	2 µg/mL	Treating of cotton fibers by chitosan/Ag₂O NPs suspension reduced Gram-negative and Gram-positive bacterial growth up to 100%.	[41]
13	Polyethersulfone (PES)/cellulose acetate (CA)/Ag₂O NPs nanocomposite and Cu-PES/CA/Ag₂O NP membranes	20–100	*Escherichia coli*	Bacteriostatic	8 mg/mL	PES/CA/Ag₂O NPs and Cu-PES/CA/Ag₂O NPs composites inhibited bacterial growth up to 20–30 and 80–90%, respectively, during 12–24 h.	[42]
14	Aspirin conjugated Ag₂O NPs coated by polyvinyl alcohol (PVA) or starch	-	*Apergillus niger*, *Citrobacter freundii*, *Curvularia lunata*, *Enterobacter aerogenes*, *Escherichia coli*, *Proteus vulgaris*, *Staphylococcus aureus*, *Vibrio cholerae*, *Helmentiasporum maydis*, *Paecilomyces lilacinus*, *Rhizopus nigricans*	Bacteriostatic, Fungistatic	10 µg/mL	Aspirin conjugated Ag₂O NPs inhibited microbial growth above 40%. Coating of Aspirin/Ag₂O NP by PVA or starch increased percent inhibition to 60%.	[43]
15	Bayerite underpinned Ag₂O/Ag NPs incorporated PMMA films	-	*Acinetobacter baumannii* C78 and C80, *Pseudomonas aeruginosa* RRLP1 and RRLP2	Bacteriostatic	0.034 and 0.017 mg/mL	Bayerite Ag₂O/Ag nanohybrid demonstrated antibacterial and antibiofilm activities against tested standard strains and clinical isolates.	[44]
№	Composition	Particle Size, nm	Microorganism Strains	Effect	MIC/MBC	Results	Reference
----	-----------------------------	-------------------	---	--------------------	-------------	--	-----------
16	Graphene oxide (GO)/Ag₂O NPs composite	36.3–49.9	Escherichia coli, Staphylococcus aureus	Bacteriostatic	20 mg/mL	GO/Ag₂O NPs composite was more effective against Gram-negative bacteria. Increasing of GO wt% improved bacteriostatic activity of nanocomposite.	[45]
17	Polyethylene terephthalate (PET)/Ag₂O NPs composite	50–500	Escherichia coli	Bacteriostatic	-	PET/Ag₂O NPs inhibited bacterial growth. Bacteriostatic was same in PET/Ag₂O NPs samples obtained at different pH.	[46]
18	Ag₂O-TiO₂ NPs	50–150	Escherichia coli	Bacteriostatic	1.5 mg/mL	The nanocomposite increased photocatalytic degradation of aniline and inhibit E. coli growth.	[47]
19	Ag₂O-TiO₂ NPs immobilized on doped by cellulose	10 ± 5	-	Proposed bactericidal by photocatalysis	-	The nanocomposite increased photocatalytic degradation of methylene blue, Rhodamine B and norfloxacin under the irradiation of UV light.	[48]
20	Ag₂O NPs synthesized with culture Bacillus paramycoides	28–38	Enterobacter sp., Micrococcus sp., Salmonella sp., Vibrio paraaeromyticus	Bactericidal	20 μg/mL	Ag₂O NPs showed significant bactericidal and antibiofilm activity through bacterial binding. Ag₂O NPs had cytotoxic action versus A549 cancer cell line.	[49]
21	Precipitated Ag₂O NPs	30	Escherichia coli	Bacteriostatic	30 μg/mL	Ag₂O NPs almost completely inhibited the growth of E. coli and caused lysis of bacterial cells.	[50]
22	Green synthesized Ag₂O NPs with Lawsonia inermis extract	~39	Aspergillus sp., Candida albicans, Escherichia coli, Penicillium sp., Pseudomonas aeruginosa, Staphylococcus aureus	Bacteriostatic Fungistic	23.1 μg/mL * (MIC against Aspergillus sp was 0.1 M)	Ag₂O NPs showed comparable bacteriostatic activity against Gram-positive and Gram-negative bacteria	[51]
23	Borosiloxane Ag₂O NPs nanocomposite	65	Escherichia coli	Bactericidal	1 μg/mL	Ag₂O NPs doped into a borosiloxane matrix pronounced bacteriostatic and bactericidal properties via generation of ROS but did not have cytotoxicity against eukaryotic cells.	[52]
24	PLGA and Ag₂O NPs nanocomposite	35	Escherichia coli	Bacteriostatic	1 μg/mL	Ag₂O NPs increased generation of H₂O₂ and OH-radicals, which can lead to damage to bacterial DNA and proteins but does not have cytotoxicity against mammalian cells.	[53]
Table 1. Cont.

№	Composition	Particle Size, nm	Microorganism Strains	Effect	MIC/MBC	Results	Reference
25	Ag$_2$O NPs in Bacillus thuringiensis SSV1 culture supernatant	10–40	Bacillus cereus, Enterococcus faecalis, Escherichia coli, Proteus mirabilis, Pseudomonas sp., Staphylococcus aureus	Bacteriostatic	0.16 µg/mL	“Green synthesized” Ag$_2$O NPs show a weak bacteriostatic effect against both Gram-positive and Gram-negative bacteria. Ag$_2$O NPs, but not B. thuringiensis induced antimicrobial action.	[54]
26	ZrO$_2$-Ag$_2$O NPs	14–42	Bacillus subtilis, Streptococcus mutans, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Staphylococcus aureus	Bacteriostatic	0.1 µg/mL	ZrO$_2$ NPs enhanced the bacteriostatic effect of Ag$_2$O NPs. The bacteriostatic effect of both Ag$_2$O NPs and ZrO$_2$-Ag$_2$O depends more on the bacterial species than on belonging to Gram-positive and Gram-negative bacteria.	[55]
27	Ag$_2$O/Ag NPs with Fusarium oxysporum components	6–8	Aspergillus niger, Bacillus subtilis	Bacteriostatic Fungistatic	50 µg/mL	The antibacterial action was realized via increased ROS generation	[56]
28	Ag$_2$O NPs conjugated with starch in different proportions	30–110	Bacillus cereus, Escherichia coli, Listeria monocytogenes, Proteus vulgaris, Pseudomonas putida, Salmonella typhymurium, Staphylococcus aureus, Staphylococcus saprophyticus	Bacteriostatic	100 µg/mL	The bacteriostatic properties of starch-conjugated Ag$_2$O NPs enhanced with increasing size and starch/Ag$_2$O NPs ratio.	[57]
29	Ag$_2$O NPs synthesized by precipitation method	16	Aeromonas hydrophila ATCC 7966T	Bacteriostatic	60 µg/mL	Ag$_2$O NPs starting at 60 µg/mL inhibited bacterial growth. CFU of A. hydrophila was not found on agar at concentrations of Ag$_2$O NPs above 240 µg/mL.	[58]
30	Ag and Ag$_2$O NPs synthesized by reduction of [Ag(NH$_3$)$_2$]$^+$ and conjugated by different sugars	25	Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumonia ESBL-positive, Pseudomonas aeruginosa, Staphylococcus aureus vancomycin-resistant, Staphylococcus epidermidis methicillin-resistant, Staphylococcus epidermidis methicillin-resistant	Bacteriostatic Bactericidal	0.68 µg/mL	Ag and Ag$_2$O NPs showed more pronounced antimicrobial activity against Gram-negative bacteria. The addition of glucose and lactose to the NP synthesis medium significantly enhanced the antimicrobial effect of NPs.	[59]
Table 1. Cont.

№	Composition	Particle Size, nm	Microorganism Strains	Effect	MIC/MBC	Results	Reference
31	Ag₂O and Ag NPs synthesized using *Ficus benghalensis* extract	42.7	*Lactobacilli* sp., *Streptococcus mutans*	Bacteriostatic	100 µg/mL/150 µg/mL	Ag₂O NPs equally inhibited the growth of the studied oral pathogens, regardless of Gram staining. *Ficus benghalensis* extract reduced MIC/MBC by 25% compared to Ag₂O NPs without extract or silver salt solution	[60]
32	Ag₂O NPs synthesized using *Nitrobacter* sp. (strain NCIM 5067) extract	40	*Escherichia coli*, *Klebsiella pneumonia*, *Salmonella typhimurium*, *Staphylococcus aureus*	Bacteriostatic	100 µg/mL	Ag₂O NPs/*Nitrobacter* sp. extract inhibited the growth of both Gram-positive and Gram-negative bacteria equally. The degree of inhibition was comparable to the effects of streptomycin (100 µg/mL). Ag₂O NPs/*Nitrobacter* sp. extract showed antioxidant properties.	[61]
33	Ag₂O NPs conjugated with moxifloxacin	49.76	*Aspergillus Niger*, *Bacillus subtilis*, *Candida albicans*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*	Bacteriostatic Fungistatic	40–60 µg/mL* (initial 40–60 µl of suspension with 0.05 mg/mL)	The conjugation of Ag₂O NPs with moxifloxacin increased the area of the zone of inhibition for all studied microorganisms by 2–3 times compared to non-conjugated Ag₂O NPs. The photocatalytic action is proposed mechanism of antimicrobial action.	[62]
34	Ag₂O NPs conjugated with silk fibroin (Ag₂O-SF)	15	*Escherichia coli*, *Mycobacterium tuberculosis*, *Staphylococcus aureus*	Bacteriostatic	115.9 µg/mL* (0.5 mM Ag₂O)	The conjugation of Ag₂O NPs with silk fibroin enhances the bacteriostatic properties of Ag₂O NPs	[63]
35	Ag₂O NPs composite with *Lippia citriodora* plant powder	20	*Aspergillus aeruere*, *Staphylococcus aureus*	Bacteriostatic Fungistatic	0.1 mg/mL	Ag₂O NPs/*L. citriodora* showed antibacterial and antifungal properties. Antibacterial activity was more pronounced and comparable to the activity of tetracycline. Ag₂O NPs/*L. citriodora* significantly accelerated wound healing in rats compared to Ag₂O NPs or controls.	[64]
36	Ag/Ag₂O NPs with leaf extract of *Eupatorium odoratum*	8.2–20.5	*Bacillus subtilis*, *Candida albicans*, *Escherichia coli*, *Salmonella typhi*, *Staphylococcus aureus*	Bacteriostatic Fungistatic	25–75 µg/mL/100 µg/mL	Ag₂O NPs/*E. odoratum* inhibited the growth of Gram-negative bacteria to a greater extent compared with Gram-positive and fungi.	[65]
37	Ag₂O NPs with *Cleome gynandra* extract	66	*Escherichia coli*, *Staphylococcus aureus*	Bacteriostatic	~4.2 mg/mL* (20 µl suspension of 0.9 mM AgNO₃)	Ag₂O NPs/*C. gynandra* inhibited the growth of Gram-negative bacteria to a greater extent than Gram-positive ones	[66]
№	Composition	Particle Size, nm	Microorganism Strains	Effect	MIC/MBC	Results	Reference
----	-------------------------------------	-------------------	---	-----------------	--------------------------	---	-----------
38	Highly or poorly oxidized AgO/Ag/SnO₂	10–20	Collectotrichum siamense strains, BRSP08 and BRSP09, Phytophthora cactorum, Stenotrophomonas maltophilia,	Bacteriostatic	0.4 µg/mL * (10 µg/spot, spot is 40 µL)	Nanocomposites with highly oxidized AgO NPs had a more pronounced bacteriostatic effect, and composites of NPs with weakly oxidized AgO NPs had a more pronounced fungistatic effects.	[67]
39	Ag₂O NPs	17.45	Bacillus aerius, Bacillus circulans, Escherichia coli, Pseudomonas aeruginosa	Bacteriostatic	5 µg/mL	Ag₂O NPs had a more pronounced antibacterial effect against Gram-negative bacteria compared to Gram-positive ones. The mechanism of antibacterial action is inhibition of ATP synthesis.	[68]
40	Ag₂O/Ag NPs synthesized in extract Aloe vera	10–60	Candida albicans, Candida glabrata, Candida parapsilosis, Escherichia coli, Staphylococcus aureus	Bacteriostatic	10 µg/mL	Ag₂O NPs/Aloe vera inhibited the growth of Gram-negative bacteria to a greater extent than Gram-positive ones. Antimicrobial activity was comparable to 10 µg/mL carbenicillin or ampicillin. Anti fungal action depended on the species of fungus. The most effective antimicrobial effect was show against C. parapsilosi.	[69]
41	SrTiO₃ nanotubes (NTs) embedded with Ag₂O NTs	10×80	Staphylococcus aureus	Bactericidal	—	SrTiO₃ NTs/Ag₂O NPs inhibited the growth of S. aureus. The antimicrobial effect was realized due to Ag₂O NPs.	[70]
42	Ag₂O NPs/Ti NBs	3–10	Bacillus subtilis	Bactericidal	100 µg/mL	Ag₂O/Ti NPs reduced the number of B. subtilis CFU compared to the control. Light enhanced the antimicrobial properties of Ag₂O/Ti NBs.	[71]
43	Ag₂O NPs/Ti NBs	5–30	Escherichia coli, Staphylococcus aureus	Bactericidal	1.27 µg/mL	Ag₂O NPs/Ti NBs killed 100% during 14–21 days. The release of Ag⁺ is the mechanism of its antibacterial action.	[72]
44	Ag₂O/Ag NPs synthesized in Vaccinium arctostaphylos extract	7–10	Bacillus subtilis, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus	Bacteriostatic	<116 µg/mL * (amount of NPs synthesized from 1 mM of AgNO₃)	The antimicrobial effect against Gram-positive bacteria is more pronounced than against Gram-negative ones.	[73]
45	Ag₂O NPs with polyhedral shape	400–700	Escherichia coli	Bactericidal	10 µg/mL	The antimicrobial effect of cubic NPs is two times higher than that of octahedral NPs.	[74]
Table 1. Cont.

№	Composition	Particle Size, nm	Microorganism Strains	Effect	MIC/MBC	Results	Reference
46	$\text{H}_2\text{TiO}_3 \cdot \text{2H}_2\text{O}/\text{Ag}_2\text{O}$ NPs nanocomposites	10–40	Escherichia coli, Bacillus subtilis	Bacteriostatic	25 µg/mL, 50 µg/mL	The addition of Ag$_2$O NPs to H$_2$TiO$_3$-2H$_2$O increased the antimicrobial properties. The antibacterial action was equal against Gram-negative and Gram-positive bacteria.	[75]
47	Ag/AgO/Ag$_2$O NPs/Coleus aromatics extract/reduced graphene oxide	2–4	Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus	Bacteriostatic	50 mg/mL	Ag/AgO/Ag$_2$O NPs improved antimicrobial properties of resulting composite. The bacteriostatic effect against Gram-positive or Gram-negative bacteria was comparable.	[76]
48	Ceftriaxone/Ag$_2$O NPs	35.54	Escherichia coli	Bacteriostatic	10 µg/mL	The antimicrobial activities of ceftriaxone and Ag$_2$O NPs, assessed by zones of inhibition, were summarized.	[77]
49	Ag/Ag$_2$O NPs synthesized in *Pseudomonas aeruginosa* M6 extract without cells	~10.4	Escherichia coli, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, Candida albicans, Candida glabrata, Mycobacterium smegmatis	Bacteriostatic	<12 µg/mL * (100 µL suspension of P. aeruginosa M6 in 1 mM AgNO$_3$/ml)	Antibacterial and antifungal activity significantly depended on the species of microorganisms. Interspecies differences in antibacterial action are more pronounced than differences between Gram-positive and Gram-negative bacteria.	[78]
50	Ag/Ag$_2$O NPs synthesized in cell-free extract of *Kitasatospora albolonga* fungi	20	*Pseudomonas aeruginosa* multi drug resistant	Bacteriostatic	125 µg/mL	Ag/Ag$_2$O NPs had bacteriostatic effect and enhanced the antibacterial effect of 800 µg/mL carbenicillin.	[79]
51	Ag/Ag$_2$O NPs synthesized in dead yeast *Rhodotorula mucilaginosa* biomass	11	Cryptococcus neoformans, Escherichia coli multi-drug resistant, Staphylococcus aureus	Bacteriostatic	2 µg/mL, 5 µg/mL	Ag/Ag$_2$O NPs/R. mucilaginosa showed significant antibacterial and antifungal activity and moderate cytotoxicity against eukaryotic cell lines. Cytotoxic concentrations were 4–10 times higher than antimicrobial ones. NPs can be considered as a possible agent for the treatment of oncology.	[80]
52	Ag/Ag$_2$O NPs synthesized in silver films under oxygen plasma treatment	6–38	Staphylococcus aureus	Bacteriostatic	—	The most bacteriostatic effect was shown by Ag$_2$O NPs with smallest size. This NP were obtained at plasma power of 1250 W.	[81]
№	Composition	Particle Size, nm	Microorganism Strains	Effect	MIC/MBC Results	Reference	
----	--	-------------------	--	------------------	-----------------	-----------	
53	Ag₂O NPs and nano-rod complex (1), [Ag (3-hpdh)(NO₃)]₆	45–60	Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus	Bacteriostatic	6.25–25 µg/mL	[82]	
54	Ag₂O NPs mixed with Centella Asiatica or Tridax sp. leaf powder	11–12	Aspergillus aureus, Aspergillus fumigates, Staphylococcus aureus, Staphylococcus epidermidis	Bacteriostatic	100 µg/mL	[83]	
55	Ag₆/Ag₂O NPs synthesized in Hylocereus undatus extract	25–26	Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus	Bacteriostatic	500 µg/mL	[84]	
56	Ag₂O NPs synthesized in Telfairia occidentalis extract	8–10	Klebsiella pneumoniae	Bacteriostatic	10 µg/mL	[85]	
57	Ag₂O NPs with addition of 1–9% Sr	35.7–48.4	Enterobacter aerogens, Bordetella bronchiseptica, Salmonella typhimurium, Aspergillus fumigatus, Aspergillus niger, Fusarium solani	Bacteriostatic Fungistatic	~100 µg/mL (100 µg/disc)	[86]	
58	Ag₂O/Ag NPs synthesized by precipitation of AgNO₃ in N-propanol	19–60	Bacillus cereus, Candida albicans, Chlorella vulgaris, Enterococcus faecalis, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus	Bacteriostatic Fungistatic	5 µg/mL	[87]	

*—concentration is not directly indicated in article in µg/mL and is calculated based on description in Materials and Method sections. Original data are shown in brackets.
When assessing a ratio of reports about the bactericidal and bacteriostatic activity of Ag$_2$O NPs (Table 1), we found that bacteriostatic activity was described in about 75% of studies and bactericidal activity in 25% of studies. It is worth noting that the ratio of reports about the bactericidal and bacteriostatic activity of Ag$_2$O NPs (equal to 1:3) is comparable to other widely used metal oxide NPs with antimicrobial activities, for example, iron oxides or ZnO NPs [7,88]. Iron oxides or ZnO NPs demonstrated high cytotoxicity in contradistinction to Ag$_2$O NPs [89–91]. Having the same antimicrobial activity with other metal oxide NPs and low cytotoxicity makes Ag$_2$O NPs an interesting candidate for the role of new generation antiseptic. For antifungal activities, the ratio shifted towards a reduction of the fungicidal activity. Only 15% of studies indicate the presence of the fungicidal effect and 85% contain data about the fungistatic effect. Therefore, fungi have higher resistance to Ag$_2$O NPs compared to bacteria. This effect can be explained by the higher resistance of eukaryotic cells to the genotoxic effect of metal ions compared to prokaryotes, in particular, due to differences in the structure of the genetic apparatus and function of the reparation systems [92–94].

3. Synthesis Methods

Methods for the synthesis of Ag$_2$O nanoparticles can be divided into physical, chemical and biological, otherwise referred to as “green synthesis” [95].

Chemical methods include various types of precipitation. The simplest method is realized when mixing AgNO$_3$ with NaOH at high temperatures [13,58,75,96].

In this case, NP synthesis occurs in two stages described by the reaction equations:

$$\text{AgNO}_3 + \text{NaOH} \rightarrow \text{AgOH} + \text{Na}^+ + \text{NO}_3^- \quad (1)$$

$$2\text{AgOH} \rightarrow \text{Ag}_2\text{O} + \text{H}_2\text{O} \quad (\text{pK} = 2.875) \quad (2)$$

Modifications of the method are possible: the addition of strong oxidizers, for example, K$_2$S$_2$O$_4$, and KOH as a base [19,50]. Sometimes AgNO$_3$ is obtained directly at the moment of synthesis upon the oxidation of silver foil with nitric acid; then, precipitation with alkali described above is performed [77]. To prevent the premature aggregation of synthesized Ag$_2$O NPs, a surfactant—for example, citrate, polyethylene glycol, triethylene glycol, chitosan, urea and other compounds—can be added to the reaction mixture [40,82,96–99]. Another method for Ag$_2$O NP production is the reduction of AgNO$_3$ using organic acids citrate, acetate and oleic acid [45,53,56]. In the literature, this method is sometimes called the sol-gel method [100]. A method of Ag$_2$O production upon the reduction of complex compounds, for example, ammoniate [Ag(NH$_3$)$_2$]$_x$, is described [59,101]. To obtain NPs with a complex chemical composition, the drying of metal oxide NPs in the AgNO$_3$ solution is used, as in the case of TiO$_2$/Ag$_2$O NPs [47].

The electrochemical synthesis (anode oxidation of metal silver) [102], precipitation upon ultrasound treatment [63], boiling [67,78], treatment with microwave radiation [22,78], evaporation of metal silver under the action of plasma [81] and laser ablation in water [52,53] can be assigned to physical methods.

Chemical and physical methods used today for NP synthesis can be expensive, require high temperatures and pressure or lead to the generation of waste that is hazardous for the environment [103]. Therefore, biological methods for the synthesis of nanomaterials, the so-called “green synthesis”, are preferable [26,104]. Moreover, silver oxide NPs obtained using biological methods have several advantages: low cost of synthesis, high antimicrobial activity, low cytotoxicity to mammalian cells and the possibility to use in pharmacology and biomedicine, like for NPs obtained by classical methods [105]. Similar to Ag NPs, “green” synthesis using extracts of medicinal plants is one of the methods for improving the antimicrobial properties of Ag$_2$O NPs [106].

“Green synthesis” of Ag$_2$O NPs consists of, as a rule, the reduction of water-soluble salt AgNO$_3$ in an extract of medicinal plants or cultural liquid of non-pathogenic/weakly pathogenic microorganisms [107–109].
However, cases of real biosynthesis of Ag$_2$O NPs are described, for example, synthesis by bacteria isolated from seeds of agricultural crops and cultivated in medium with the addition of AgNO$_3$ [110,111] and soil bacteria Nitrobacter sp. [61]. In addition, methods for synthesis of Ag/Ag$_2$O NPs by silver reduction in the medium of Fusarium oxysporum mycelium or dead biomass of yeasts [56,80] were described.

4. Methods for Studying Ag$_2$O NPs

Dozens of methods have been applied to describe the parameters of Ag$_2$O NPs. These methods are commonly used to study other Me/Me$_x$O$_y$ NPs [26]. To determine the size and shape of Ag$_2$O NPs, various microscopic methods are used: atomic force microscopy (AFM) [112], scanning tunneling microscopy (STM) [113], scanning electron microscopy (SEM) [114] and transmission electron microscopy (TEM). The indicated methods allow us to image dry NPs and assess their size, shape, distribution on the surface of composite materials. To assess the elementary composition, proportion of organic impurities and conjugates, the following methods are used: UV–vis spectroscopy [115], Fourier transform infrared spectroscopy (FT-IR) [116,117], energy dispersive spectroscopy (EDX) [118], X-ray photoelectron spectroscopy (XPS) [119] and thermal gravimetric analysis (TGA) [120].

To determine the crystalline structure of NPs, the X-ray diffraction (XRD) method is applied [121,122]. To assess the hydrodynamic radius of NPs and stability of NP colloids in solvents, the dynamic light scattering (DLS) method and measurement of zeta potential, respectively, are used [123]. Assessment of the NP surface area and rheological properties of obtained nanomaterials is carried out by differential scanning calorimetry (DSC) and the Brunauer–Emmett–Teller (BET) method, respectively [124,125]. In the case of NP embedding into a polymeric material, it is possible to assess NP spatial distribution inside a polymeric matrix using modulation interference microscopy (MIM) [126].

5. Mechanisms of the Antimicrobial Activity

Antimicrobial properties of NPs are conditioned, first of all, by the antimicrobial properties of elements being their constituents. Silver ions show high toxicity to microorganisms. For example, Ag$^+$ causes the death of Aspergillus niger spores at a concentration of 5.5×10^{-5} M (0.00006% w/w) and higher [127]. Ag NPs exert a significant antibacterial effect beginning from a concentration of 20 μg/mL [128,129]. It is shown that silver can be accumulated in microorganisms as Ag0, Ag$_2$O or Ag$^+$ [130]. Five mechanisms (as a minimum) of the antibacterial activity are described for these forms (Figure 2) [131].

![Figure 2. Schematic representation of mechanisms of the antibacterial activity of Ag$_2$O NPs (explanations are given in the text).](image)
The first mechanism is binding to the bacterial cell wall and disruption of the cell wall integrity, resulting in direct damage of the cell envelope and cytoplasmic components [96,97,100]. It is assumed that after Ag₂O NP penetration into a bacterial cell, the release of Ag⁰ and/or Ag⁺ having the bactericidal activity according to the mechanisms described below takes place [132,133].

The second mechanisms of toxicity is binding to SH-groups of proteins with the subsequent disorder of their function [134]. Silver-induced inactivation of bacterial enzymes, in particular, dehydrogenases of the respiratory chain, is described [110]. This, in turn, inhibits ATP synthesis, disturbs the energy balance in cells, enhances an intracellular ROS production and causes oxidative stress [110,135]. Moreover, Ag₂O NPs are able to release O₂, which can also exert antibacterial activity [96].

The third mechanism is the oxidative stress described above. ROS cause protein modifications and exert a genotoxic effect [136–138]. An increase in ROS generation leads to the destruction of the cell wall and biofilms of both Gram-positive and Gram-negative bacteria [123].

The fourth mechanism of the antibacterial activity of Ag₂O NPs is the genotoxic activity of Ag compounds, which after penetration inside a bacterial cell interact not only with proteins but also with phosphoric acid residues in DNA molecules [59,139]. It is assumed that silver compounds from Ag₂O NPs and Ag NPs are also capable of binding to the N7 atom of guanine in DNA, therefore disturbing the process of its replication, inhibiting cell division [139].

The fifth mechanism is photocatalytic activity. The addition of Ag₂O NPs can enhance the photocatalytic properties of other metal NPs. In particular, composites of Ag₂O/TiO₂ NPs and Ag₂O/ZnO NPs demonstrate enhanced photocatalytic activity compared to TiO₂ or ZnO NPs [140–142]. Furthermore, photocatalytic activity of Ag₂O NPs was demonstrated. It is interesting that the photocatalytic activity of Ag₂O NPs enhanced after the conjugation of Ag₂O NPs with certain pharmaceutical agents, for example, moxifloxacin [48,62].

It is notable that Ag₂O NPs possess high toxicity to pathogenic microorganisms and low toxicity to soil microorganisms. In particular, soil *Nitrobacter* sp., *Bacillus* sp. and *Pseudomonas* strains are able to synthesize Ag₂O NPs from AgNO₃ in amounts sufficient for the growth inhibition of pathogenic microorganisms of the human oral cavity [49,54,61,78,143]. Specific Ag₂O NP cytotoxicity to pathogenic microorganisms is an attractive feature for the creation of eco-friendly antimicrobial materials and preparations.

6. Methods for Improving Antimicrobial Properties

In meta-analysis, we found a dependence of the bacteriostatic activity (expressed in MIC) on NP size (Figure 1b). When a NP’s size decreases, an increase in its toxicity to microbes is observed. This dependence corresponds to the literature data about NPs of other metal oxides [7,144], and can be explained by a growth in the release of Ag⁺, Ag⁰ and Ag₂O from NPs into the surrounding solution due to an increase in the area to volume ratio.

Antimicrobial properties of Ag₂O NPs can be improved at the initial stage of NP synthesis: precipitation of Ag₂O NPs. For example, precipitation of Ag₂O NPs in medium with low (10 mM) or high (100 mM) concentration of AgNO₃ lead to obtaining cubic or octahedral Ag₂O NPs, respectively [74]. Cubic Ag₂O NPs showed more pronounced bacteriostatic effects compared to octahedral [74].

The most common other modifications of Ag₂O NP synthesis are NP coating with polymers, Ag₂O NP inclusion into other nanocomposites or fusion with NPs of oxides of other elements and NP synthesis in the medium of a substrate of the biological origin—most often an extract of plant leaves (Figure 1c) [34,47,118].

Coatings can be conditionally divided into two large groups. The first group includes organic polymers: chitosan, polyethersulfone, cellulose acetate, polyvinyl alcohol, polyethylene terephthalate and starch [41–43,57,96]. This modification commonly had bacteriostatic
and fungistatic activity [39,43]. Pharmaceutical preparations, in particular, aspirin and moxifloxacin, can be assigned to the second group [43,62]. For example, Ag$_2$O NP coating with aspirin increased their bacteriostatic and fungistatic activity by 50% compared to non-conjugated NPs. In the case of Ag$_2$O NP conjugation with moxifloxacin, a more pronounced increase in the bacteriostatic and fungistatic activity of Ag$_2$O NPs (by 2–3 times) was shown [62]. Ag$_2$O NP coating with chitosan allows practically 100% inhibition of the bacterial growth to be achieved irrespective of their Gram stain group [40]. An opportunity to use conjugates chitosan/Ag$_2$O NPs for the creation of fabrics and cloths with the bacteriostatic properties is shown [40,41].

Examples of nanocomposites with Ag$_2$O NPs are relatively rare. Among them, composites with ZrO$_2$, TiO$_2$ NPs, H$_2$Ti$_3$O$_7$·2H$_2$O, and graphene oxide can be highlighted [60,122,123]. The addition of graphene oxide resulted in a dose-dependent increase in the antibacterial properties of Ag$_2$O NPs. It is notable that in the case of graphene oxide, an enhancement of the bacteriostatic properties against Gram-negative bacteria was more pronounced [46].

The most common modification of Ag$_2$O NP synthesis is the so-called “green synthesis”. There are reports about the use of extracts of plants Abroma augusta, Lawsonia inermis, Ficus benghal, Lippia citriodora, Eupatorium odoratum, Cleome gynandra, Aloe vera, Vaccinium arctostaphylos, Coleus aromaticus, Rhamnus virgate, Cyathea nilgiriensis, Centella asiatica, Tridax sp., Hydrocercus undatus, Paena emodi, Pinus longifolia and Telfairia occidentalis Telfairia occidentalis [33–37,51,60,64–66,69,73,76,83–85; fungi Fusarium oxysporum, Kistatospora albo-] longa, Rhodotorula mucilaginosa and Aspergillus terreus VIT 2013 [27,78,79,135]; and culture media of bacteria Bacillus paramycodeis, Bacillus thuringiensis SSV1, Nitrobiacter sp. (strain NCIM 5067) and Pseudomonas aeruginosa M6 [63,77,113,114]. “Green synthesis” enables Ag/Ag$_2$O NPs to be obtained from wastes of silver mines, which may increase the production of silver mines and decrease environmental pollution [145]. “Green synthesized” Ag$_2$O NP had not only bacteriostatic activity, but also fungicidal activity [37,79,125].

It is worth noting that all modifications of Ag$_2$O NP synthesis enhance their antimicrobial properties compared to the chemical synthesis methods, in particular, precipitation (Figure 1c). Therefore, the selection of the conditions of Ag$_2$O NP synthesis can make it possible to obtain NPs with high antimicrobial activity against antibiotic resistance bacteria. There are data that show that a synergetic effect is possible due to the use of several methods to improve the bacteriostatic activity of Ag$_2$O NPs [75], for example, the synthesis of complex composites Cu·PES/CA/Ag$_2$O NPs. This composite had more pronounced bacteriostatic properties compared to PES/CA/Ag$_2$O NPs [42].

A growth in the studies devoted to the creation of various composites with the addition of Ag/Ag$_2$O NPs (Table 1) allows us to suggest that the development of new composite materials with Ag$_2$O NP introduction and, as a consequence, the extension of applicaiton fields for Ag$_2$O NP-based nanomaterials will be promising investigations in this field [60,118,122,123].

7. Cytotoxicity to Human Cells

Data on Ag$_2$O NP cytotoxicity are ambiguous and constantly being enriched. There are data about the toxicity of Ag$_2$O NPs/Aspergillus terreus to Dalton’s lymphoma ascites (DLA) cells, which enables the use of Ag$_2$O NPs in the therapy of onological diseases [36]. High cytotoxicity of Ag$_2$O/Ag NPs reported against breast cancer cell line MCF-7 and lung cancer cell line A549. Mechanisms of toxicity are genotoxic effects and ROS overproduction and membrane disruption [146]. Cytotoxicity of Ag NPs and consequently Ag$_2$O NPs against eukaryotic cells is actively studied. Induction of apoptosis and necrosis by Ag$_2$O/Ag NPs was shown on lung cells lines A549, MRC-5, bronchial cells BEAS-2B and NIH3T3, 3D-cultures of human primary small airway epithelial cell, etc. [147–151]. The ways to increase the cytotoxicity of Ag NPs against cancer and decrease against normal cells have been researched [152]. An interesting approach is using different coating agents; for example, Ag NP cytotoxicity increases in range “PVP > citrate > plant extracts > without coating”, but in the case of PVP and citrate, increased predominantly anticancer activity [153].
However, many studies report the low cytotoxicity of Ag₂O NPs to eukaryotic cells. For example, Ag₂O NPs did not affect the survival and migration of 3T3 fibroblast cells [63]. It was shown for Ag/Ag₂O NPs/R. mucilaginosae that the cytotoxic action against eukaryotic cells was realized at concentrations 4–10 times higher than the cytotoxic action against bacteria and fungi [80]. For nanocomposites based on borosiloxane and PLGA and Ag₂O NPs, the high bactericidal activity was found at Ag₂O NP concentrations from 1 µg/ml; with that, the survival and the proliferation rate of eukaryotic cells on the above mentioned composites was comparable to these parameters obtained on the culture plastic [52,53]. Low cytotoxicity allows Ag₂O NPs to be used for wound healing [37].

We assume that the cause of high biocompatibility with eukaryotic cells in the majority of studies is the use of Ag₂O NP conjugates and composites instead of “pure” Ag₂O NPs. We also proposed that Ag₂O is more biologically inert compared to pure Ag.

Metal oxide NPs were potential drug delivery systems. The moderate/low cytotoxicity of Ag₂O/Ag NPs makes them a perfect candidate for drug delivery systems [154–156]. Ag₂O/Ag NPs can be used in anticancer and antiviral therapy [157–159]. Ag₂O/Ag NPs can also be used as a photoactivated drug delivery unit, for example, in the localized induction of bone regeneration [160].

8. Conclusions

A search for antimicrobial agents of the new generation that allow us to overcome bacterial antibiotic resistance is an important task for world public health. Candidates for such agents are Ag₂O NPs. Over the last three years, the interest of researchers in Ag₂O NPs has increased manifold. The reason for this is the high toxicity to Gram-positive and Gram-negative bacteria, including antibiotic resistance, as well as fungi having epidemiological significance. Moreover, Ag₂O NPs are inexpensive and easy to produce, and the field of their possible application includes regenerative medicine, prosthetics, therapy of oncological diseases, as well as the development of a wide spectrum of materials with antimicrobial properties (textile and construction). Ag₂O NP cytotoxicity to eukaryotic cells and nonpathogenic microorganisms is significantly lower than against human pathogens, which makes Ag₂O NPs an attractive candidate for the role of an antimicrobial agent safe for humans and the environment. Extension of the list of composite materials with the addition of Ag₂O NPs and, as a consequence, an increase in the number of application fields for Ag₂O NP-based nanomaterials can be considered the expected outcomes of investigations in this field.

Author Contributions: Conceptualization, S.V.G. and D.A.S.; writing—original draft preparation, S.V.G. and D.A.S.; writing—review and editing S.V.G. and A.A.S.; visualization, D.A.S. and M.E.A.; funding acquisition, A.B.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Education of the Russian Federation (Grant Agreement 075-15-2020-775).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors are grateful to the Center for the collective use of the GPI RAS and to the heavy metal band Aria for what they are.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [CrossRef] [PubMed]
2. Cavalieri, F.; Tortora, M.; Stringaro, A.; Colone, M.; Baldassarri, L. Nanomedicines for antimicrobial interventions. J. Hosp. Infect. 2014, 88, 183–190. [CrossRef] [PubMed]
3. Devi, L.S.; Joshi, S.R. Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus Cryptosporiopsis ericae PS4. *J. Microbiol.* 2014, 52, 667–674. [CrossRef] [PubMed]

4. Almatar, M.; Makky, E.A.; Var, I.; Koksal, F. The role of nanoparticles in the inhibition of multidrug-resistant bacteria and biofilms. *Curr. Drug Deliv.* 2018, 15, 470–484. [CrossRef]

5. Selberg, C.O. Spread of Staphylococcus aureus in Hospitals: Causes and Prevention. *Scand. J. Infect. Dis.* 2000, 32, 587–595. [CrossRef]

6. Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with flucanazole. *Nanomed. Nanotechnol. Biol. Med.* 2009, 5, 382–386. [CrossRef]

7. Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A Mini Review of Antibacterial Properties of ZnO Nanoparticles. *Front. Phys. Sci.* 2021, 9, 641481. [CrossRef]

8. Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. *J. Fungi* 2017, 3, 57. [CrossRef]

9. Ben-Ami, R.; Kontoyiannis, D.P. Resistance to Antifungal Drugs. In *Infect. Dis. Clin. N. Am.* 2018, 32, 471–486. [CrossRef]

10. Du, W.; Gao, Y.; Liu, L.; Sai, S.; Ding, C. Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. *Int. J. Mol. Sci.* 2021, 22, 10104. [CrossRef]

11. Khalil, N.M.; Ab E1-Ghany, M.N.; Rodriguez-Couto, S. Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by *Fusarium chlamydosporum* and *Penicillium chrysogenum* at non-cytotoxic doses. *Chemosphere* 2019, 218, 477–486. [CrossRef]

12. Coutard, B.; Valle, C.; De Lamballerie, X.; Canard, B.; Decroly, E. The Spike Glycoprotein of The New Coronavirus 2019-nCoV Contains A Furin-Like Cleavage Site Absent in Cov Of The Same Clade. *Antivir. Res.* 2020, 176, 104742. [CrossRef]

13. Hosseini, M.; Chin, A.W.H.; Williams, M.D.; Behzadinasab, S.; Falkingham, J.O.; Poon, L.L.M.; Ducker, W.A. Transparent Anti-SARS-CoV-2 and Antibacterial Silver Oxide Coatings. *ACS Appl. Mater. Interfaces* 2022, 14, 8718–8727. [CrossRef]

14. Russell, F.R.; Pathm, W.B.; Hugo, A.D. Antimicrobial activity and action of silver. *Prog. Med. Chem.* 1994, 31, 351–371. [CrossRef]

15. Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. *Adv. Mater. Sci. Eng.* 2015, 2015, 376082. [CrossRef]

16. Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial effects of silver nanoparticles. *Nanomed. Nanotechnol. Biol. Med.* 2007, 3, 95–101. [CrossRef]

17. Chen, X.; Schlasener, H.J. Nanosilver: A nanoproduct in medical application. *Toxicol. Lett.* 2008, 176, 1–12. [CrossRef]

18. Shen, W.; Li, P.; Feng, H.; Ge, Y.; Liu, Z.; Feng, L. The bactericidal mechanism of action against *Staphylococcus aureus* for AgO nanoparticles. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2017, 75, 610–619. [CrossRef]

19. Jain, S.; Mehata, M.S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property. *Sci. Rep.* 2017, 7, 15867. [CrossRef]

20. Ravichandran, S.; Paluri, V.; Kumar, G.; Loganathan, K.; Kokati Venkata, B.R. Spherical silver oxide nanoparticles for fabrication of electrochemical sensor for efficient 4-Nitrotoluene detection and assessment of their antimicrobial activity. *Sci. Total Environ.* 2021, 777, 139803. [CrossRef]

21. Chakraborty, U.; Garg, P.; Bhanjana, G.; Kaur, G.; Kaushik, A.; Chaudhary, G.R. Spherical silver oxide nanoparticles for fabrication of electrochemical sensor for cancer diagnosis. *RSC Adv.* 2013, 3, 1732–1734. [CrossRef]

22. Konop, M.; Damps, T.; Misicka, A.; Rudnicka, L. Certain Aspects of Silver and Silver Nanoparticles in Wound Care: A Minireview. *J. Nanomater.* 2016, 2016, 7614753. [CrossRef]

23. Rahman, M.; Khan, S.; Jamal, A.; Faisal, M.; Asiri, A.M. Highly Sensitive Methanol Chemical Sensor Based on Undoped Silver Oxide Nanoparticles Prepared by a Solution Method. *Microchem. Acta* 2012, 178, 99–106. [CrossRef]

24. Zhou, X.; Lu, Y.; Zhai, L.-L.; Zhao, Y.; Liu, Q.; Sun, W.-Y. Propargylamines formed from three-component coupling reactions catalyzed by silver oxide nanoparticles. *RSC Adv.* 2013, 3, 1732–1734. [CrossRef]

25. Chakraborty, U.; Garg, P.; Bhanjana, G.; Kaur, G.; Kaushik, A.; Chaudhary, G.R. Spherical silver oxide nanoparticles for fabrication of electrochemical sensor for cancer diagnosis. *RSC Adv.* 2013, 3, 1732–1734. [CrossRef]

26. Ghotekar, S.; Dabhane, H.; Pansambal, S.; Oza, R.; Tambade, P.; Medhane, V. A Review on Biomimetic Synthesis of Ag2O Nanoparticles using Plant Extract, Characterization and its Recent Applications. *Adv. J. Chem. Sect. B* 2020, 176, 104742. [CrossRef]

27. Sangappa, M.; Thigaarajan, P. Combating drug resistant pathogenic bacteria isolated from clinical infections, with silver oxide nanoparticles. *Indian J. Pharm. Sci.* 2015, 77, 151–155. [CrossRef]

28. Ni, S.; Li, X.; Yang, P.; Ni, S.; Hong, F.; Webster, T.J. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials. *Mater. Sci. Eng. C Mater. Biol. Appl.* 2016, 58, 700–708. [CrossRef]

29. Borges Rosa De Moura, F.; Antonio Ferreira, B.; Helena Muniz, E.; Benatti Justino, A.; Gabriela Silva, A.; De Azambuja Ribeiro, R.I.M.; Oliveira Dantas, N.; Lisboa Ribeiro, D.; De Assis Araujo, F.; Salmen Espindola, F.; et al. Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites. *Int. J. Pharm.* 2022, 617, 121620. [CrossRef]

30. Iqbal, S.; Fakhar-E-Alam, M.; Akbar, F.; Shafig, M.; Atif, M.; Amin, I.; Ismail, M.; Hanif, A.; Farooq, W.A. Application of silver oxide nanoparticles for the treatment of cancer. *J. Mol. Struct.* 2019, 1189, 203–209. [CrossRef]
31. Salem, N.A.; Wahba, M.A.; Eisa, W.H.; El-Shamarka, M.; Khalil, W. Silver oxide nanoparticles alleviate indomethacin-induced gastric injury: A novel antiulcer agent. Inflammopharmacology 2018, 26, 1025–1035. [CrossRef] [PubMed]

32. Pu, S.; Yang, Z.; Tang, J.; Ma, H.; Xue, S.; Bai, Y. Plasmonic silver/silver oxide nanoparticles anchored bismuth vanadate as a novel visible-light ternary photocatalyst for degrading pharmaceutical micropollutants. J. Environ. Sci. 2020, 96, 21–32. [CrossRef] [PubMed]

33. Abbasi, B.A.; Iqbal, J.; Nasir, J.A.; Zahra, S.A.; Shahbaz, A.; Uddin, S.; Hameed, S.; Gul, F.; Kanwal, S.; Mahmood, T. Environmentally friendly green approach for the fabrication of silver oxide nanoparticles: Characterization and diverse biomedical applications. Microsc. Res. Tech. 2020, 83, 1308–1320. [CrossRef] [PubMed]

34. Khan, Z.; Lawrence, R.S.; Jalees, M.; Lawrence, K. Green synthesis and Anti-bacterial activity of Silver Oxide nanoparticles prepared from Pinus longifolia leaves extract. Int. J. Adv. Res. 2015, 3, 337–343.

35. Shah, A.; Haq, S.; Rehman, W.; Waseem, M.; Shoukat, S.; Rehman, M.U. Photocatalytic and antibacterial activities of paonia emodi mediated silver oxide nanoparticles. Mater. Res. Express 2019, 6, 045045. [CrossRef]

36. Pradheesh, G.; Suresh, S.; Suresh, J.; Alexramani, V. Antimicrobial and anticancer activity studies on green synthesized silver oxide nanoparticles from the medicinal plant cyathea nilgiriensis holttum. Int. J. Pharmac. Investig. 2020, 10, 146–150. [CrossRef]

37. Roy, A.; Srivastava, S.K.; Shrivastava, S.L.; Mandal, A.K. Hierarchical Assembly of Nanodimensional Silver–Silver Oxide Physical Activity in Cotton Fabrics. MRS Online Proc. Libr. 2020, 5, 32617–32631. [CrossRef]

38. Jin, Y.; Dong, S. One-Pot Synthesis and Characterization of Novel Silver–Gold Bimetallic Nanostructures with Hollow Interiors and Bearing Nanospikes. J. Phys. Chem. B 2007, 107, 12902–12905. [CrossRef]

39. Tripathi, S.; Mehrotra, G.K.; Ditta, P.K. Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity. Bull. Mater. Sci. 2011, 34, 29–35. [CrossRef]

40. Chakraborty, S.; Saha, P.; Salunke, V.D.; Varma, A.; Dey, A.; Pal, S. Silver oxide nanoparticles: Synthesis, characterization and their antibacterial activity. Nanomaterials 2019, 9, 1887–1897. [CrossRef]

41. Aazem, I.; Rathinam, P.; Pillai, S.; Honey, G.; Venkellur, A.; Bhat, S.G.; Sailaja, G.S. Active bayerite underpinned Ag2O/Ag: An efficient antibacterial nanohybrid combating microbial contamination. Metallomics 2021, 13, mfab049. [CrossRef]

42. Rajabi, A.; Ghazali, M.J.; Mahmoudi, E.; Baghdadi, A.H.; Mohammad, A.W.; Mustafah, N.M.; Ohnmar, H.; Naicker, A.S. Silver Oxide Nanoparticles. Int. J. Pharm. Investig. 2020, 10, 52–66. [CrossRef]

43. Gul, S.; Rehan, Z.A.; Khan, S.A.; Akhtar, K.; Khan, M.A.; Khan, M.I.; Rashid, M.I.; Asiri, A.M.; Khan, S.B. Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol. J. Mol. Liq. 2017, 230, 616–624. [CrossRef]

44. Kakakhel, S.A.; Rashid, H.; Jalil, Q.; Munir, S.; Barkatullah, B.; Khan, S.; Ullah, R.; Shahat, A.; Mahmood, H.; A-Mishari, A.; et al. Polymers Encapsulated Aspirin Loaded Silver Oxide Nanoparticles: Synthesis, Characterization and its Bio-Applications. Sains Malays. 2019, 48, 1887–1897. [CrossRef]

45. Aziz, I.; Rathinam, P.; Pillai, S.; Honey, G.; Venkellur, A.; Bhat, S.G.; Sailaja, G.S. Active bayerite underpinned Ag2O/Ag: An efficient antibacterial nanohybrid combating microbial contamination. Metallomics 2021, 13, mfab049. [CrossRef]

46. Rajabi, A.; Ghazali, M.J.; Mahmoudi, E.; Baghdadi, A.H.; Mohammad, A.W.; Mustafah, N.M.; Ohnmar, H.; Naicker, A.S. Silver Oxide Nanoparticles. Int. J. Pharm. Investig. 2020, 10, 52–66. [CrossRef]

47. Sboui, M.; Lachheb, H.; Bouattour, S.; Gruttadauria, M.; La Parola, V.; Liotta, L.F.; Boufi, S. TiO2/AZO nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol. J. Mol. Liq. 2017, 230, 616–624. [CrossRef]

48. Lin, Z.; Lu, Y.; Huang, J. A hierarchical Ag2O-nanoparticle/TiO2-nanotube composite derived from natural cellulose substance with enhanced photocatalytic performance. Cellulose 2019, 26, 6663–6700. [CrossRef]

49. Dharmaraj, D.; Krishnamoorthy, M.; Rajendran, K.; Karuppiah, K.; Annamalai, J.; Durairaj, K.R.; Santhiyagu, P.; Ethiraj, K. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus parramycoides. J. Drug Deliv. Sci. Technol. 2021, 61, 102111. [CrossRef]

50. Li, D.; Chen, S.; Zhang, K.; Gao, N.; Zhang, M.; Albasher, G.; Shi, J.; Wang, C. The interaction of Ag2O nanoparticles with Escherichia coli: Inhibition–sterilization effect. Sci. Rep. 2021, 11, 1703. [CrossRef]

51. Fayyadh, A.A.; Jadhua Alzubaidy, M.H. Green-synthesis of Ag2O nanoparticles for antimicrobial assays**. J. Mech. Behav. Mater. 2021, 30, 228–236. [CrossRef]

52. Chausov, D.N.; Smirnova, V.V.; Burmistrov, D.E.; Sarimov, R.M.; Kurilov, A.D.; Astashev, M.E.; Uvarov, O.V.; Dubinin, M.V.; Kozlov, V.A.; Vedunova, M.V.; et al. Synthesis of a Novel, Biocompatible and Bacteriostatic Borosiloxane Composition with Silver Oxide Nanoparticles. Materials 2022, 15, 2. [CrossRef]

53. Smirnova, V.V.; Chausov, D.N.; Serov, D.A.; Kozlov, V.A.; Ivashkin, P.I.; Pishchalnikov, R.Y.; Uvarov, O.V.; Vedunova, M.V.; Semenova, A.A.; Lisitsyn, A.B.; et al. A Novel Biodegradable Composite Polymer Material Based on PLGA and Silver Oxide Nanoparticles with Unique Physicochemical Properties and Biocompatibility with Mammalian Cells. Materials 2021, 14, 22. [CrossRef]

54. Karunaganar, V.; Rajendran, K.; Sen, S. Antimicrobial Activity of Biosynthesized Silver Oxide Nanoparticles. J. Pure Appl. Microbiol. 2014, 4, 3263–3268.

55. Ayanwale, A.P.; Ruiz-Baltazar, A.D.J.; Espinoza-Cristóbal, L.; Reyes-López, S.Y. Bactericidal Activity Study of ZrO2-Ag2O Nanoparticles. Dose-Response 2020, 18, 1559325820941374. [CrossRef]
56. Islam, S.N.; Naqvi, S.M.A.; Parveen, S.; Ahmad, A. Application of mycogenic silver/silver oxide nanoparticles in electrochemical glucose sensing: alongside their catalytic and antimicrobial activity. *3 Biotech* **2021**, *11*, 342. [CrossRef]

57. Rokade, A.A.; Patil, M.P.; Yoo, S.I.; Lee, W.K.; Park, S.S. Pure green chemical approach for synthesis of Ag$_2$O nanoparticles. *Green Chem. Lett. Res.* **2016**, *9*, 216–222. [CrossRef]

58. Shaffiyy, S.R.; Shaffiyy, S. Synthesis and evaluation of bactericidal properties of Ag$_2$O nanoparticles against Aeromonashydrophila. *Int. J. Nano Dimens.* **2014**, *6*, 263–269. [CrossRef]

59. Panáček, A.; Krátký, L.; Prucek, R.; Kolář, M.; Večerová, R.; Pizůrová, N.; Sharma, V.K.; Nevečná, T.J.; Zbořil, R. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. *J. Phys. Chem. B* **2006**, *110*, 16248–16253. [CrossRef]

60. Manikandan, V.; Velmurugan, P.; Park, J.H.; Chang, W.S.; Park, Y.J.; Jayanthi, P.; Cho, M.; Oh, B.T. Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. *3 Biotech* **2017**, *7*, 72. [CrossRef]

61. Karunakaran, G.; Jagathambal, M.; Gusev, A.; Minh, N.V.; Kolesnikov, E.; Mandal, A.R.; Kuznetsov, D. Nitrobroter sp. extract mediated biosynthesis of Ag(2)O NPs with excellent antioxidant and antibacterial potential for biomedical application. *IET Nanobiotechnol.* **2016**, *10*, 425–430. [CrossRef] [PubMed]

62. Haq, S.; Rehman, W.; Waseem, M.; Meynen, V.; Awad, S.U.; Saeed, S.; Iqbal, N. Fabrication of pure and mefoxiloxacin functionalized silver oxide nanoparticles for photocatalytic and antimicrobial activity. *J. Photochem. Photobiol. B Biol.* **2018**, *186*, 116–124. [CrossRef] [PubMed]

63. Babu, P.J.; Doble, M.; Raichur, A.M. Silver oxide nanoparticles embedded silk fibroin spuns: Microwave mediated preparation, characterization and their synergistic wound healing and anti-bacterial activity. *J. Colloid Interface Sci.* **2018**, *513*, 62–71. [CrossRef] [PubMed]

64. Li, R.; Chen, Z.; Ren, N.; Wang, Y.; Wang, Y.; Yu, F. Biosynthesis of silver oxide nanoparticles and their photocatalytic and antimicrobial activity evaluation for wound healing applications in nursing care. *J. Photochem. Photobiol. B Biol.* **2019**, *199*, 111593. [CrossRef] [PubMed]

65. Elemike, E.E.; Onwudiwe, D.C.; Ekennia, A.C.; Sonde, C.U.; Ezirim, J.; Kajok, H.; Ezirim, T.O.; Ihekwe, R.; Ezirim, E.O.; Onyema, N.S.; Adubor, E.O.; Onwudiwe, O.; Ezirim, J. Green synthesis of Ag/Ag$_2$O nanoparticles using Aloe vera extract and evaluating its antibacterial activity. *Molecules* **2017**, *22*, 674. [CrossRef]

66. Negi, H.; Rathinavelu Saravanan, P.; Agarwal, T.; Ghulam Haider Zaidi, M.; Goel, R. In vitro assessment of Ag$_2$O nanoparticles toxicity against Gram-positive and Gram-negative bacteria. *J. Gen. Appl. Microbiol.* **2013**, *59*, 83–88. [CrossRef]

67. Flores-Lopez, N.S.; Tamilselvi, R.; Geethalakshmi, R.; Kirupha, S.D.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mandhakini, M. Multi-functional oil-produced reduced graphene oxide - Silver oxide composites with photocatalytic, antioxidant, and antibacterial activities. *IET Nanobiotechnol.* **2021**, *15*, 2021, 111627. [CrossRef] [PubMed]

68. Ahmad, S.H.A.; Holze, R.; et al. Fabrication of highly and poorly oxidized silver oxide/silver/tin(IV) oxide nanocomposites and their comparative anti-pathogenic properties towards hazardous food pathogens. *J. Hazard. Mater.* **2021**, *425*, 124896. [CrossRef]

69. Negi, H.; Rathinavelu Saravanan, P.; Agarwal, T.; Ghulam Haider Zaidi, M.; Goel, R. In vitro assessment of Ag$_2$O nanoparticles toxicity against Gram-positive and Gram-negative bacteria. *J. Gen. Appl. Microbiol.* **2013**, *59*, 83–88. [CrossRef]

70. Chen, Y.; Gao, A.; Bai, L.; Wang, Y.; Wang, Y.; Zhang, X.; Huang, X.; Hang, R.; Tang, B.; Chu, P.K. Antibacterial, osteogenic, and angiogenic activities of SrTiO(3) nanotubes embedded with Ag(2)O nanoparticles. *Mater. Sci. Eng. C Mater. Biol. Appl.* **2017**, *75*, 1049–1058. [CrossRef]

71. Jin, Y.; Dai, Z.; Liu, F.; Kim, H.; Tong, M.; Hou, Y. Bactericidal mechanisms of Ag$_2$O/TNBs under both dark and light conditions. *Water Res.* **2013**, *47*, 1837–1847. [CrossRef]

72. Gao, A.; Hang, R.; Huang, X.; Zhao, L.; Zhang, X.; Wang, L.; Tang, B.; Ma, S.; Chu, P.K. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. *Biomaterials* **2014**, *35*, 4223–4235. [CrossRef]

73. Khodadadi, S.; Mahdinezhad, N.; Fazeli-Nasab, B.; Heidari, M.J.; Fakheri, B.; Mirm, A. Investigating the Possibility of Green Synthesis of Silver Nanoparticles Using Vaccinium arctostaphylos Extract and Evaluating Its Antibacterial Properties. *BioMed Res. Int.* **2021**, *2021*, 5572252. [CrossRef]

74. Wang, X.; Wu, H.F.; Kuang, Q.; Huang, R.B.; Xie, Z.X.; Zheng, L.S. Shape-dependent antibacterial activities of Ag$_2$O polyhedral particles. *Langmuir ACS J. Surf. Colloids* **2010**, *26*, 2774–2778. [CrossRef]

75. Kundu, S.; Sain, S.; Choudhury, P.; Sarkar, S.; Das, P.K.; Pradhan, S.K. Microstructure characterization of biocompatible heterojunction hydrogen titanate-Ag(2)O nanocomposites for superior visible light photocatalysis and antibacterial activity. *Mater. Sci. Eng. C Mater. Biol. Appl.* **2019**, *99*, 374–386. [CrossRef]

76. Lekshmi, G.S.; Tamilselvi, R.; Geethalakshmi, R.; Kirupha, S.D.; Bazaka, O.; Levchenko, I.; Bazaka, K.; Mandhakini, M. Multi-functional oil-produced reduced graphene oxide - Silver oxide composites with photocatalytic, antioxidant, and antibacterial activities. *J. Colloid Interface Sci.* **2022**, *608*, 294–305. [CrossRef]

77. Sajjad, S.; Uzair, B.; Shaukat, A.; Jamsheed, M.; Leghari, S.A.K.; Ismail, M.; Mansoor, Q. Synergistic evaluation of AgO(2) nanoparticles with ceftriaxone against CTXM and blaSHV genes positive ESBL producing clinical strains of Uro-pathogenic *E. coli*. *IET Nanobiotechnol.* **2019**, *13*, 435–440. [CrossRef]
78. Boopathi, S.; Gopinath, S.; Boopathi, T.; Balamurugan, V.; Rajeshkumar, R.; Sundararaman, M. Characterization and Antimicrobial Properties of Silver and Silver Oxide Nanoparticles Synthesized by Cell-Free Extraction of a Mangrove-Associated Pseudomonas aeruginosa M6 Using Two Different Thermal Treatments. *Ind. Eng. Chem. Res.*, 2012, 51, 5976–5985. [CrossRef]

79. D’lima, L.; Phadke, M.; Ashok, V.D. Biogenic silver and silver oxide hybrid nanoparticles: A potential antibacterial against multi-drug-resistant *Pseudomonas aeruginosa*. *New. J. Chem.*, 2020, 44, 4935–4941. [CrossRef]

80. Salvadori, M.; Monezi, T.; Mohrent, D.; Corrêa, B. Antimicrobial Activity of Ag/Ag2O Nanoparticles Synthesized by Dead Biomass of Yeast and their Biocompatibility with Mammalian Cell Lines. *Int. J. Res. Stud. Microbiol. Biotechnol.*, 2019, 5, 2454–9428. [CrossRef]

81. Kayed, K.; Mansour, G. The Antimicrobial Activity of Silver Nanoparticles in Ag/Ag2O Composites Synthesized by Oxygen Plasma Treatment of Silver Thin Films. *Curr. Appl. Sci. Technol.*, 2022, 22, 9. [CrossRef]

82. Akbari, Z.; Rashidi Ranjbar, Z.; Khaleghi, M. Synthesis, characterization, and antibacterial activities of Ag2O nanoparticle and silver (l) nano-rod complex. *Nanochemistry Res.*, 2020, 5, 233–240.

83. Rashmi, B.N.; Harlapur, S.F.; Arinash, B.; Ravikumar, C.R.; Nagaswarupa, H.P.; Anil Kumar, M.R.; Gurushantha, K.; Santosh, M.S. Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies. *Inorg. Chem. Commun.*, 2020, 111, 107580. [CrossRef]

84. Phongtongpasuk, S.; Poadang, S.; Yongvanich, N. Environmental-friendly Method for Synthesis of Silver Nanoparticles from Dragon Fruit Peel Extract and their Antibacterial Activities. *Energy Procedia*, 2016, 89, 239–247. [CrossRef]

85. Aisida, S.; Ugwu, K.; Nwanya, A.; Bashir, A.K.H.; Nwankwo, U.; Ahmed, I.; Ezema, F. Biosynthesis of silver oxide nanoparticles using leave extract of Telfairia Occidentals and its antibacterial activity. *Mater. Today Proc.*, 2021, 36, 208–213. [CrossRef]

86. Kiani, F.A.; Shamraiz, U.; Badshah, A.; Tabassum, S.; Ambreen, M.; Patujo, J.A. Optimization of Ag2O nanostructures with stromilus for biological and therapeutic potential. *Artif. Cells Nanomed. Biotechnol.*, 2018, 46 (Suppl. S5), S1083–S1091. [CrossRef]

87. Ellamy, S.; Eltarahony, M.; Abu-Serie, M.; Nabil, M.M.; Kashyout, A.E.-H.B. One-pot fabrication of Ag @Ag2O core–shell nanostructures for biosafe antimicrobial and antibiofilm applications. *Sci. Rep.*, 2021, 11, 22543. [CrossRef]

88. Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties? *Antibiotics*, 2021, 10, 884. [CrossRef] [PubMed]

89. Arias, L.S.; Pessan, J.P.; Vieira, A.P.M.; Lima, T.M.T.D.; Delbem, A.C.B.; Monteiro, D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. *Antibiotics*, 2018, 7, 46. [CrossRef] [PubMed]

90. Apopa, P.L.; Qian, Y.; Shao, R.; Guo, N.L.; Schwegers-Berry, D.; Pacurariu, M.; Porter, D.; Shi, X.; Valliyathan, V.; Castranova, V. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. *Part. Fibre Toxicol.*, 2009, 6, 1. [CrossRef] [PubMed]

91. Gong, Y.; Ji, Y.; Liu, F.; Li, J.; Cao, Y. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: Interaction with palmitate or lipopolysaccharide. *J. Appl. Toxicol.*, 2017, 37, 895–901. [CrossRef]

92. Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. *Enz. Mol Mutagen*, 2017, 58, 235–263. [CrossRef]

93. Doolittle, W.F. A paradigm gets shifty. *Nature*, 1998, 392, 15–16. [CrossRef]

94. Wigley, D.B. Bacterial DNA repair: Recent insights into the mechanism of RecBCD, AddAB and AdnAB. *Nat. Rev. Microbiol.*, 1998, 392, 15–16. [CrossRef]

95. Tajit, S.; Krishnan, D.; Barman, G.; Ghosh, S.K.; Laha, J.K. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. *J. Anal. Sci. Technol.*, 2014, 5, 40. [CrossRef]
106. Antony, E.; Sathiavelu, M.; Arunachalam, S. Synthesis of silver nanoparticles from the medicinal plant baunia acuminata and biophytum sensitivum—a comparative study of its biological activities—with plant extract. Int. J. Appl. Pharm. 2016, 9, 22. [CrossRef]

107. Mohamed, H.E.A.; Afridi, S.; Khalil, A.T.; Zia, D.; Ibqal, J.; Ullah, I.; Shinwari, Z.K.; Maaza, M. Biosynthesis of silver nanoparticles from Hyphaene thebaica fruits and their in vitro pharmacognostic potential. Mater. Res. Express 2019, 6, 10509. [CrossRef]

108. Kahsay, M.H.; Ramadevi, D.; Kumar, Y.P.; Mohan, B.S.; Tadesse, A.; Battu, G.; Basavahia, K. Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-Nitrophenol, antimicrobial and anticancer activities. OpenNano 2018, 3, 28–37. [CrossRef]

109. Laouini, S.E.; Bouafia, A.; Soldatov, A.V.; Algarni, H.; Tedjani, M.L.; Ali, G.A.M.; Barhoum, A. Green Synthesized of Ag/Ag2O Nanoparticles Using Aqueous Leaves Extracts of Phoenix dactylifera L. and Their Azo Dye Photodegradation. Membranes 2021, 11, 468. [CrossRef]

110. Gomaa, E.Z. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol. 2017, 63, 36–43. [CrossRef]

111. Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.K.; Muniyandi, J.; Hariharan, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328–335. [CrossRef] [PubMed]

112. Rao, K.; Imran, M.; Jabri, T.; Ali, I.; Perveen, S.; Shafiuullah; Ahmed, S.; Shah, M.R. Gum tragacanth stabilized green gold nanoparticles as cargos for Naringin loading: A morphological investigation through AFM. Carbohydr. Polym. 2017, 174, 243–252. [CrossRef] [PubMed]

113. Song, Z.; Hrbek, J.; Osgood, R. Formation of TiO2 nanoparticles by reactive-layer-assisted deposition and characterization by XPS and STEM. Nano Lett. 2005, 5, 1327–1332. [CrossRef] [PubMed]

114. Nagajyothi, P.C.; Sreekanth, T.V.; Tettey, C.O.; Jun, Y.I.; Mook, S.H. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorganic Med. Chem. Lett. 2014, 24, 4298–4303. [CrossRef]

115. Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. J. Mater. Sci. Technol. 2004, 20, 567–578. [CrossRef]

116. Wang, T.; Lin, J.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J. Clean. Prod. 2014, 83, 413–419. [CrossRef]

117. Rauwel, P.; Künzel, S.; Fer dov, S.; Rauwel, E. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Adv. Mater. Sci. Eng. 2015, 2015, 682749. [CrossRef]

118. Singh, V.; Shrivastava, A.; Wahi, N. Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. Afr. J. Biotechnol. 2015, 14, 2554–2567. [CrossRef]

119. Naraginti, S.; Li, Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actindia deliciosa. J. Photochem. Photobiol. B Biol. 2017, 170, 225–234. [CrossRef]

120. Sana, S.S.; Dogiparthi, L.K. Green synthesis of silver nanoparticles using Givota moluccana leaf extract and evaluation of their antimicrobial activity. Mater. Lett. 2018, 226, 47–51. [CrossRef]

121. Monshi, A.; Foroughi, M.; Monshi, M. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [CrossRef]

122. Zad, Z.R.; Davarani, S.S.H.; Taheri, A.; Bide, Y. A yolk shell Fe3O4@ PA-Ni@ Pd/Chitosan nanocomposite-modified carbon ionic liquid electrode as a new sensor for the sensitive determination of fluconazole in pharmaceutical preparations and biological fluids. J. Mol. Liq. 2018, 253, 233–240. [CrossRef]

123. Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 2017, 10, 862–876. [CrossRef]

124. Surma, N.; Ijou, G.; Ogoh-Orch, B. Fuel Gases from Waste High Density Polyethylene (Hdpe) Via Low Temperature Catalytic Pyrolysis. Prog. Chem. Biochem. Res. 2020, 3, 20–30. [CrossRef]

125. Venkateswarlu, S.; Natesh Kumar, B.; Prasad, C.H.; Venkateswarlu, P.; Jyothi, N.V.V. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Phys. B Condens. Matter 2014, 449, 67–71. [CrossRef]

126. Astashev, M.E.; Sarimov, R.M.; Serov, D.A.; Matveeva, T.A.; Simakina, A.V.; Ignatenko, D.N.; Burmistrov, D.E.; Smirnova, V.V.; Kurilov, A.D.; Mashchenko, V.I.; et al. Antibacterial behavior of organosilicon composite with nano aluminum oxide without influencing animal cells. React. Funct. Polym. 2022, 170, 105143. [CrossRef]

127. Von Naegelli, V. Silver nitrate: A very effective antimicrobial agent. Dev. Schr. Schweiz Nat. Ges 1893, 33, 174–182.

128. Raffi, M.; Hussain, F.; Bhatti, T.; Akhter, J.; Hameed, A.; Hasan, M. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 2008, 24, 192–196. [CrossRef]

129. Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as an antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [CrossRef]

130. Belly, R.T.; Kydd, G.C. Silver resistance in microorganisms. Dev. Ind. Microbiol. 1982, 23, 567–578.

131. Grigor’eva, A.; Saranina, I.; Tikunova, N.; Safonov, A.; Timoshenko, N.; Rebrov, A.; Ryabchikova, E. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhiuniform and Staphylococcus aureus. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2013, 26, 479–488. [CrossRef]
132. Song, H.; Ko, K.; Oh, L.; Lee, B. Fabrication of silver nanoparticles and their antimicrobial mechanisms. *Eur. Cells Mater.* 2006, 11 (Suppl. S1), 58.

133. Sambhy, V.; Macbride, M.M.; Peterson, B.R.; Sen, A. Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials. *J. Am. Chem. Soc.* 2006, 128, 9798–9808. [CrossRef]

134. Russell, A.D.; Hugo, W.B. 7 Antimicrobial Activity and Action of Silver Periodical 7 Antimicrobial Activity and Action of Silver [Online], 1984, pp. 351–370. Available online: https://www.sciencedirect.com/science/article/pii/S0079646808700249 (accessed on 25 April 2022). [CrossRef]

135. Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J.I.; Wiesner, M.R.; Nel, A.E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. *Nano Lett.* 2006, 6, 1794–1807. [CrossRef]

136. Bruskov, V.I.; Karp, O.E.; Garmash, S.A.; Shhtarkman, L.N.; Chernikov, A.V.; Gudkov, S.V. Prolongation of oxidative stress by long-lived reactive protein species by X-ray radiation and their genotoxic action. *Free Radic. Res.* 2012, 46, 1280–1290. [CrossRef]

137. Bruskov, V.I.; Malakhova, L.V.; Masalimov, Z.K.; Chernikov, A.V. Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. *Nucleic Acids Res.* 2002, 30, 1354–1363. [CrossRef]

138. Burmistrov, D.E.; Simakin, A.V.; Smirnova, V.V.; Uvarov, O.V.; Ivashkin, P.I.; Kucherov, R.N.; Ivanov, V.E.; Bruskov, V.I.; Sevostyanov, M.A.; Baikin, A.S.; et al. Bacteriostatic and Cytotoxic Properties of Composite Material Based on ZnO Nanoparticles in PLGA Obtained by Low Temperature Method. *Polymers* 2022, 14, 49. [CrossRef]

139. Osoy, I.; Paret, M.L.; Osoy, M.A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against Xanthomonas perforans. *ACS Nano* 2013, 7, 8972–8980. [CrossRef]

140. Allahverdiyev, A.M.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. *Future Microbiol.* 2011, 6, 933–940. [CrossRef]

141. Hua, H.; Xi, Y.; Zhao, Z.; Xie, X.; Hu, C.; Liu, H. Gram-scale wet chemical synthesis of Ag2O/TiO2 aggregated sphere heterostructure with high photocatalytic activity. *Mater. Lett.* 2013, 91, 81–83. [CrossRef]

142. Wu, C.; Shen, L.; Cai Zhang, Y.; Huang, Q. Solvothermal synthesis of Ag/ZnO nanocomposite with enhanced photocatalytic activity. *Mater. Lett.* 2013, 106, 104–106. [CrossRef]

143. Fernandez, C.; Thomas, A.; M. S. Green synthesis of silver oxide nanoparticle and its antimicrobial activity against organisms causing Dental plaques. *Int. J. Pharma. Bio. Sci.* 2016, 7, 14–19. [CrossRef]

144. Bai, X.; Li, L.; Liu, H.; Tan, L.; Liu, T.; Meng, X. Solvothermal Synthesis of ZnO Nanoparticles and Anti-Infection Application in Vivo. *ACS Appl. Mater. Interfaces* 2015, 7, 1308–1317. [CrossRef] [PubMed]

145. Salvadori, M.R.; Ando, R.A.; Nascimento, C.A.O.; Corrêa, B. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. *J. Environ. Sci. Health Part A* 2017, 52, 1112–1120. [CrossRef]

146. Vinay, S.P.; Udayabhanu; Nagaraju, G.; Chandrasekhar, N. Rauvolfia tetraphylla (Devil Pepper)-Mediated Green Synthesis of Ag Nanoparticles: Applications to Anticancer, Antioxidant and Antimitotic. *J. Clust. Sci.* 2019, 30, 1545–1564. [CrossRef]

147. Fard, N.N.; Noorabzargan, H.; Mirzaie, A.; Hedayatichi, Ch, M; Moghimiyan, Z.; Rahimi, A. Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer. *Artif. Cells Nanomed. Biotechnol.* 2018, 46 (Suppl. S3), S1047–S1058. [CrossRef]

148. Schlinkert, P.; Casals, E.; Boyles, M.; Tischler, U.; Hornig, E.; Tran, N.; Zhao, J.; Himly, M.; Riediker, M.; Oostingh, G.J.; et al. The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. *J. Nanobiotechnol.* 2015, 13, 1. [CrossRef]

149. Guo, C.; Buckley, A.; Marczylo, T.; Seiffert, J.; Römer, I.; Warren, J.; Hodgson, A.; Chung, K.F.; Gant, T.W.; Smith, R.; et al. The small airway epithelium as a target for the adverse pulmonary effects of silver nanoparticle inhalation. *Nanotoxicology* 2018, 12, 539–553. [CrossRef]

150. Yeasmin, S.; Datta, H.K.; Chaudhuri, S.; Malik, D.; Bandyopadhyay, A. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. *J. Mol. Liq.* 2017, 242, 757–766. [CrossRef]

151. Miyayama, T.; Fujiki, K.; Matsuoka, M. Silver nanoparticles induce lysosomal-autophagic defects and decreased expression of transcription factor EB in A549 human lung adenocarcinoma cells. *Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA* 2018, 46, 148–154. [CrossRef]

152. Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. *J. Adv. Res.* 2018, 9, 1–16. [CrossRef]

153. González-Vega, J.G.; García-Ramos, J.C.; Chavez-Santoscoy, R.A.; Castillo-Quijones, J.E.; Arellano-García, M.E.; Toledano-Magaña, Y. Lung Models to Evaluate Silver Nanoparticles’ Toxicity and Their Impact on Human Health. *Nanomaterials* 2022, 12, 2316. [CrossRef]

154. García, M.C.; Torres, J.; Dan Córdoba, A.V.; Longhi, M.; Uberman, PM. Drug delivery using metal oxide nanoparticles Periodical Drug delivery using metal oxide nanoparticles Online. 2022, pp. 35–83. Available online: https://www.sciencedirect.com/science/article/pii/B9780128230336000296 (accessed on 8 May 2022). [CrossRef]
155. Qureshi, A.T. Silver Nanoparticles as Drug Delivery Systems. LSU Dr. Diss. 2013, 1069. [CrossRef]
156. Ghiuţă, I.; Cristea, D. Silver nanoparticles for delivery purposes. In Nanoengineered Biomaterials for Advanced Drug Delivery; Mozafari, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 347–371. [CrossRef]
157. Zhang, X.F.; Gurunathan, S. Combination of salinomycin and silver nanoparticles enhances apoptosis and autophagy in human ovarian cancer cells: An effective anticancer therapy. Int. J. Nanomed. 2016, 11, 3655–3675. [CrossRef]
158. Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: Combination therapy for effective cancer treatment. Int. J. Nanomed. 2017, 12, 6487–6502. [CrossRef]
159. Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjugate Chem. 2009, 20, 1497–1502. [CrossRef]
160. Ivanova, N.; Gugleva, V.; Dobreva, M.; Pehlivanoğlu, I.; Stefanov, S.; Andonova, V. Silver Nanoparticles as Multi-Functional Drug Delivery Systems; IntechOpen: London, UK, 2019; pp. 71–91. [CrossRef]