ON VARIATIONAL MULTIVALUED ELLIPTIC EQUATIONS ON A BOUNDED DOMAIN IN THE PRESENCE OF CRITICAL GROWTH

J. V. Goncalves M. L. Carvalho

Abstract

We develop arguments on the critical point theory for locally Lipschitz functionals on Orlicz-Sobolev spaces, along with convexity and compactness techniques to investigate existence of solution of the multivalued equation

\[-\Delta_{\Phi} u \in \partial j(.,u) + \lambda h \text{ in } \Omega,\]

where \(\Omega \subset \mathbb{R}^N\) is a bounded smooth domain, \(\Phi : \mathbb{R} \rightarrow [0, \infty)\) is a suitable \(N\)-function, \(\Delta_{\Phi}\) is the corresponding \(\Phi\)-Laplacian, \(\lambda > 0\) is a parameter, \(h : \Omega \rightarrow \mathbb{R}\) is integrable and \(\partial j(.,u)\) is the subdifferential of a function \(j\) associated with critical growth.

Dedicated to Bernhard Ruf on the occasion of his 60\(^{th}\) birthday.

1. Introduction

We deal with the multivalued equation

\[-\Delta_{\Phi} u \in \partial j(.,u) + \lambda h \text{ in } \Omega,\]

where \(\Omega \subset \mathbb{R}^N\) is a bounded domain with smooth boundary \(\partial \Omega\), \(h : \Omega \rightarrow \mathbb{R}\) is measurable, \(\lambda > 0\) is a parameter, \(\Delta_{\Phi}\) is the \(\Phi\)-Laplacian operator, that is

\[\Delta_{\Phi} u = \text{div}(\phi(|\nabla u|)\nabla u),\]

where \(\phi : (0, +\infty) \rightarrow (0, +\infty)\) is continuous satisfying

\[(\phi_1) \quad \lim_{s \to 0} s\phi(s) = 0, \quad (\phi_2) \quad s \mapsto s\phi(s) \text{ is nondecreasing in } (0, \infty),\]

\[(\phi_3) \quad \text{there exist } \ell, m \in (1, N) \text{ such that } \ell \leq \frac{t^2\phi(t)}{\Phi(t)} \leq m, \quad t > 0\]

and \(s \mapsto s\phi(s)\) is extended to \(\mathbb{R}\) as an odd function. The functions \(\Phi, j\) are given respectively by

\[\Phi(t) = \int_0^t s\phi(s)ds \quad \text{for } t \in \mathbb{R},\]

\[j(x, t) = \sigma(x)[\Phi_s(t) - \Phi_s(a)] \chi_{\{t > a\}}\]

where \(\sigma \in L^\infty(\Omega), \sigma \geq 0, \sigma \neq 0, a > 0\) is a number and \(\Phi_s\) is the inverse of the function

\[t \in (0, \infty) \mapsto \int_0^t \frac{\Phi^{-1}(s)}{s^{N+1}}ds\]

which extends to \(\mathbb{R}\) by \(\Phi_s(t) = \Phi_s(-t)\) for \(t \leq 0\), while \(\partial j(x, t)\) stands for the subdifferential of \(j\),

\[\partial j(x, t) = \{\mu \in \mathbb{R} \mid j^\circ(x, t; r) \geq \mu r, \quad r \in \mathbb{R}\},\]

\(^1\)Supported in part by CNPq/CAPES/PROCAD/UFG/UnB-Brazil
Remark 1.1

Our main results are,

$$j_0(x, t; r) = \limsup_{y \to t, s \to 0^+} \frac{j(x, y + sr) - j(x, y)}{s}.$$

Due to the nature of the differential operator Δ_Φ, it is natural to work in the framework of Orlicz-Sobolev spaces. It is known, (cf. [14, 25]), that

$$\Phi_*(t) = \int_0^t \phi_*(s) ds,$$

where $\phi_* : [0, \infty) \to [0, \infty)$ satisfies

$$(\phi_*)_1 \quad \phi_*(0) = 0, \quad \phi_*(s) > 0 \quad \text{for } s > 0, \quad \lim_{s \to \infty} \phi_*(s) = \infty,$$

$$(\phi_*)_2 \quad \phi_* \text{ is continuous, nondecreasing,}$$

$$(\phi_*)_3 \quad \ell^* \leq \frac{t \phi_*(t)}{\Phi_*(t)} \leq m^* \text{ for } t > 0,$$

where $p^* := Np/(N - p)$ for $p \in (1, N)$. At this point we notice that

$$j(x, t) = \int_0^t \sigma(x) \chi_{\{r > a\}} \phi_*(r) dr, \quad t \in R.$$

The Orlicz space associated with Φ is

$$L_\Phi(\Omega) := \left\{ u : \Omega \to R \text{ measurable } \mid \int_\Omega \Phi \left(\frac{u(x)}{\lambda} \right) < +\infty \text{ for some } \lambda > 0 \right\}$$

The Orlicz-Sobolev space, (also denoted $W^{1, L}\Phi(\Omega)$), is

$$W^{1, \Phi}(\Omega) = \left\{ u \in L_\Phi(\Omega) \mid \frac{\partial u}{\partial x_i} \in L_\Phi(\Omega), \ i = 1, ..., N \right\}$$

and $W^{1, \Phi}_0(\Omega)$ is the closure of $C^{0, \infty}_0(\Omega)$ with respect to $W^{1, \Phi}(\Omega)$.

Definition 1.1 Let $h \in L_{\Phi_*}(\Omega)'$. A vector $u \in W^{1, \Phi}_0(\Omega)$ is a solution of (1) if there is an element $\rho := \rho_u \in L_{\Phi_*}(\Omega)'$ such that

$$\rho(x) \in \partial j(x, u(x)) \text{ a.e. } x \in \Omega,$$

$$\int_\Omega \phi(|\nabla u|) \nabla u \nabla v dx = \int_\Omega \rho v dx + \lambda \int_\Omega hv dx, \quad v \in W^{1, \Phi}_0(\Omega).$$

Our main results are,

Theorem 1.1 Let $a > 0$ and $\ell^* > m$. Assume that $\phi : (0, \infty) \to (0, \infty)$ is continuous, satisfies $(\phi_1) - (\phi_3)$. Let $h \in L_{\Phi_*}(\Omega)'$ be nonnegative with $h \not\equiv 0$. Then there is $\lambda_* > 0$ such that for each $\lambda \in (0, \lambda_*)$, equation (1) admits at least one nonnegative solution, say $u = u_\lambda \in W^{1, \Phi}_0(\Omega)$.

Moreover

$$-\Delta_\Phi u = \rho + \lambda h \text{ a.e. in } \Omega. \quad (3)$$

Remark 1.1 If $N \geq 3$, $\phi(t) = 2$ and $\sigma \equiv 1$, then by computing, one gets $\Phi_*(t) = t^{N/3}$ and $\phi_*(t) = t^{N/3}$, up to constants. The subdifferential of $j(x, t)$ is shown to be

$$\partial j(x, t) = \begin{cases} 0, & t < a \\ \left[0, a^{\frac{N+2}{2}} \right], & t = a \\ t^{\frac{N+2}{2}}, & t > a. \end{cases}$$
Equation (1) reads as

$$-\Delta u \in \partial j(\cdot, u) + \lambda h$$

in Ω. (4)

A nonnegative solution $u \in H^1_0(\Omega)$ of (4) with $\{|x \in \Omega \mid u(x) = a\}| = 0$ is shown to satisfy

$$-\Delta u = u^{N+2 \chi_{\{u>a\}} + \lambda h} \text{ a.e. in } \Omega.$$

Equations on bounded domains with jumping nonlinearities have been studied by many authors, see e.g. Badiale & Tarantello [6], Ambrosetti & Turner [5], Chang [9], Motreanu & Tanaka [23], Alves & Bertone [3] and their references.

There is a broad literature on multivalued variational equations, see e.g. Halidias & Naniewicz [17], Fiacca, Matzakos & Papageorgiou [12], Alves, Goncalves & Santos [4], Filippakis & Papageorgiou [13], Kyritsi & Papageorgiou [19], Naniewicz [24] and references therein.

2 Notations and Preliminary Results

In this section we gather notations and results on subdifferential calculus and Orlicz-Sobolev spaces. To begin with, following Chang [9], Clarke [10], Motreanu & Panagiotopoulos [22] and Carl, Le & Motreanu [8], let X be a reflexive real Banach space and let $I : X \to \mathbb{R}$ be a locally Lipschitz continuous ($I \in \text{Lip}_{\text{loc}}(X, \mathbb{R})$ for short).

The generalized directional derivative of I at $u \in X$ in the direction of $v \in X$ is defined as

$$I^0(u;v) = \limsup_{h \to 0, \lambda \downarrow 0} \frac{I(u+h+\lambda v) - I(u+h)}{\lambda}.$$

It is known that $I^0(u;\cdot)$ is convex and continuous, its subdifferential at z is

$$\partial I^0(u;z) = \{\mu \in X' \mid \langle \mu, v - z \rangle \leq I^0(u;v) - I^0(u;z) \quad v \in X\}$$

and the generalized gradient of I at $u \in X$ is

$$\partial I(u) = \{\mu \in X' \mid I^0(u;v) \geq \langle \mu, v \rangle, \quad v \in X\}.$$

An element $u_0 \in X$ is a critical point of I if $0 \in \partial I(u_0)$.

A main abstract result to be used in this paper is a variant for Lip_{loc} functionals, of the Ambrosetti-Rabinowitz Mountain Pass Theorem, to our best knowledge, developed first via the Deformation Lemma, by Chang [9], see also [2] for a proof using the Ekeland Variational Principle and the Ky Fan Minimax Theorem, cf. [7].

If $I \in L_{\text{lip}}(X, \mathbb{R})$ and $u \in X$ then $\partial I(u) \subset X'$ is bounded, nonempty, convex and weak*-closed, in the sense that if $\xi_j \in \partial I(u_j)$, $u_j \to u$ and $\xi_j \rightharpoonup \xi$ then $\xi \in \partial I(u)$. We set

$$m(u) := \min_{w \in \partial I(u)} \|w\|_{X'}, \quad u \in X.$$

Theorem 2.1 Let X be a Banach space and let $I \in L_{\text{lip}}(X, \mathbb{R})$ with $I(0) = 0$. Suppose there are numbers $\eta, r_1 > 0$ and $e \in X$ such that

(i) $I(u) \geq \eta$ if $\|u\| = r_1$, (ii) $\|e\| > r_1$ and $I(e) \leq 0$.

Let

$$c = \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} I(\gamma(t))$$

3
where
\[\Gamma = \{ \gamma \in C([0, 1], X) \mid \gamma(0) = 0, \gamma(1) = e \} \]

Then \(c > 0 \) and there is a sequence \((u_n) \subseteq X \) (named a (PS)_c-sequence) satisfying
\[I(u_n) \to c \quad \text{and} \quad m(u_n) \to 0. \]

The reader is referred to [1, 18, 25, 16] regarding Orlicz-Sobolev spaces. The usual norm on \(L_\Phi(\Omega) \) is (Luxemburg norm),
\[\|u\|_\Phi = \inf \left\{ \lambda > 0 \mid \int_\Omega \Phi \left(\frac{u(x)}{\lambda} \right) dx \leq 1 \right\} \]
and the Orlicz-Sobolev norm of \(W^{1,\Phi}(\Omega) \) is
\[\|u\|_{1,\Phi} = \|u\|_\Phi + \sum_{i=1}^N \left\| \frac{\partial u}{\partial x_i} \right\|_\Phi. \]

Recall that
\[\bar{\Phi}(t) = \max_{s \geq 0} \{ ts - \Phi(s) \}, \quad t \geq 0. \]

It turns out that \(\Phi \) and \(\bar{\Phi} \) are N-functions satisfying the \(\Delta_2 \)-condition, (cf. [25, p 22]). In addition, \(L_\Phi(\Omega) \) and \(W^{1,\Phi}(\Omega) \) are separable, reflexive, Banach spaces. By the Poincaré Inequality, (see e.g. [16]),
\[\int_\Omega \Phi(u) dx \leq \int_\Omega \Phi(2d|\nabla u|) dx \]
where \(d = \text{diam}(\Omega) \), and it follows that
\[\|u\|_\Phi \leq 2d\|\nabla u\|_\Phi \text{ for } W^{1,\Phi}(\Omega). \]

As a consequence, \(\|u\| := \|\nabla u\|_\Phi \) defines a norm in \(W^{1,\Phi}_0(\Omega) \), equivalent to \(\|\cdot\|_{1,\Phi} \). The imbeddings below (cf. [1, 18, 11]) will be used in this paper:
\[W^{1,\Phi}_0(\Omega) \overset{\text{cpt}}{\hookrightarrow} L_\Phi(\Omega), \]
\[L_{\Phi^*}(\Omega) \overset{\text{cont}}{\hookrightarrow} L_{\Phi^*}(\Omega), \]
\[W^{1,\Phi}_0(\Omega) \overset{\text{cont}}{\hookrightarrow} L_{\Phi^*}(\Omega). \]

Regarding this last case, \(\Phi^* \) is the critical growth function associated to \(\Phi \), and the best constant, labeled \(S \), is positive and given by
\[S = \inf_{u \in W^{1,\Phi}_0, u \neq 0} \frac{\|u\|^\ell}{\|u\|_\Phi}. \]

Remark 2.1 We have \(\Delta_\Phi u \in L_{\Phi^*}(\Omega) \) for \(u \in W^{1,\Phi}_0 \). Indeed, set
\[\langle -\Delta_\Phi u, v \rangle := \int_\Omega \phi(|\nabla u|) \nabla u \nabla v dx \quad \text{for } u, v \in W^{1,\Phi}_0. \]

By [14, p. 263],
\[\int_\Omega \bar{\Phi}(\phi(|\nabla u|)|\nabla u|) dx \leq \int_\Omega \Phi(2|\nabla u|) dx < \infty, \]
which gives \(\phi(|\nabla u|)|\nabla u| \in L_{\Phi}^s(\Omega) \). By the Hölder inequality,

\[
\int_{\Omega} |\phi(|\nabla u|)|\nabla u|v|dx \leq 2\|\phi(|u|)|\nabla u|\|v\|.
\]

As a consequence of the inequality above and (6), \(\Delta \Phi u \in L_{\Phi}(\Omega) = L_{\Phi^s}(\Omega) \). The energy functional associated with (1) is

\[
I(u) = \int_{\Omega} \Phi(|\nabla u|)dx - \int_{\Omega} j(x,u)dx - \lambda \int_{\Omega} hudx, \; u \in W_0^{1,\Phi}.
\]

Set

\[
Q_{\lambda}(u) = \int_{\Omega} \Phi(|\nabla u|)dx - \lambda \int_{\Omega} hudx \quad \text{and} \quad J(u) := \int_{\Omega} j(x,u)dx.
\]

It is known that

\[
Q_{\lambda} \in C^1(W_0^{1,\Phi}, \mathbb{R}), \quad \langle Q'_{\lambda}(u), v \rangle = \int_{\Omega} \phi(|\nabla u|)|\nabla u|v|dx - \lambda \int_{\Omega} hvdx,
\]

and, (cf. lemma 4.1),

\[
J \in \text{Lip}_{\text{loc}}(W_0^{1,\Phi}, \mathbb{R}) \quad \text{and} \quad \partial J(u) \subseteq \{ \rho \in L_{\Phi^s}(\Omega) \mid \rho(x) \in \partial j(x,u(x)) \text{ a.e. } x \in \Omega \}.
\]

Thus,

\[
I \in \text{Lip}_{\text{loc}}(W_0^{1,\Phi}, \mathbb{R}) \quad \text{and} \quad \partial I(u) = Q'_{\lambda}(u) - \partial J(u).
\]

Moreover, \(u \) is a critical point of \(I \) if \(0 \in \partial I(u) \) that is, there is some \(\rho \in \partial I(u) \) such that

\[
\langle Q'_{\lambda}(u), v \rangle - \langle \rho, v \rangle = 0 \quad \text{for} \quad v \in W_0^{1,\Phi}.
\]

3 The Mountain Pass Geometry of \(I \)

The proof of theorem 1.1 uses theorem 2.1. Items (i)-(ii) in theorem 2.1 are known as the mountain pass geometry for \(I \). In this regard we will present a proof of the result below based on [3].

Lemma 3.1 Let \(h \in L_{\Phi^s}(\Omega) \) be nonnegative, with \(h \neq 0 \), and assume that \(\ell^e > m \). Then there exist \(\lambda_0, \eta, r_1 > 0 \) and \(\epsilon \in W_0^{1,\Phi} \) such that for each \(\lambda \in (0, \lambda_0) \) and \(\alpha > 0 \),

(i) \(I(u) \geq \eta > 0 \) if \(\|u\| = r_1 \),

(ii) \(\|\epsilon\| > r_1 \) and \(I(\epsilon) \leq 0 \).

Proof At first we show (i). Indeed, using lemmas 7.1, (cf. Appendix), and the Hölder Inequality we have

\[
I(u) \geq \min\{\|u\|^{e_1}, \|u\|^{m_1}\} - \int_{\Omega} j(x,u)dx - 2\lambda\|h\|_{\Phi^s}\|u\|_{\Phi^s}.
\]

Using lemma 7.2 also in the Appendix, we get

\[
\int_{\Omega} j(x,u)dx + 2\lambda\|h\|_{\Phi^s}\|u\|_{\Phi^s} \leq |\sigma|_{\infty} \max\{\|u\|^{e_1}, \|u\|^{m_1}\} + 2\lambda\|h\|_{\Phi^s}\|u\|_{\Phi^s} \leq |\sigma|_{\infty} \max\left\{\frac{1}{s_{\lambda}}\|u\|^{e_1}, \frac{1}{s_{\lambda}}\|u\|^{m_1}\right\} + \frac{2\lambda}{s_{\lambda}}\|h\|_{\Phi^s}\|u\|.
\]

(11)
Joining estimates (10) and (11) we have
\[
I(u) \geq \min\{\|u\|^{\ell},\|u\|^{m}\} - |\sigma|_{\infty} \max\left\{\frac{1}{S^{\ell}}\|u\|^{\ell}, \frac{1}{S^{m}}\|u\|^{m}\right\} - \frac{2\lambda}{S^{m}}\|h\|_{\Phi^{*}}\|u\|.
\]
Taking \(\|u\| \leq 1\) it follows by the inequality just above that
\[
I(u) \geq \|u\|^{m}\left(1 - \beta\|u\|^{\ell - m} - \alpha\|u\|^{1-m}\right),
\]
where \(\alpha := 2/S^{\ell}\|h\|_{\Phi^{*}}, \beta := |\sigma|_{\infty}/S^{\ell}\). Set \(P(s) := 1 - \beta s^{\ell - m}, s > 0\). Since \(\ell^{*} > m\) one gets
\[
P(s_{0}) - \lambda\alpha s^{1-m} \geq \frac{1}{4} \text{ whenever } \lambda \leq \lambda_{0} := \frac{1}{4\alpha}s_{0}^{m-1}.
\]
Choosing \(r_{1} := \min\{1, s_{0}\}\) it follows that
\[
I(u) \geq \frac{r_{1}^{m}}{4} > 0 \text{ for } u \in W^{1,\Phi}_{0} \text{ with } \|u\| = r_{1}.
\]
This shows (i). In order to show (ii), pick \(\varphi \in C_{0}^{\infty}(\Omega)\) with \(\varphi \geq 0\) such that
\[
\text{meas}\{x \in \Omega \mid \varphi(x) \geq a\} > 0 \text{ and } \|\varphi\| \geq 1.
\]
Taking \(t > 1\) we get
\[
I(t\varphi) \leq t^{m}\|\varphi\|^{m} - t^{m}\int_{\varphi \geq a} |\sigma(x)\Phi^{*}(t\varphi) + |\sigma|_{\infty}\Phi^{*}(a)\Omega|
\leq t^{m}\|\varphi\|^{m} - t^{\ell^{*}}\int_{\varphi \geq a} |\sigma(x)\Phi^{*}(\varphi) + |\sigma|_{\infty}\Phi^{*}(a)\Omega|.
\]
As a consequence,
\[
I(t\varphi) \xrightarrow{t \to \infty} -\infty.
\]
Setting \(e := t_{1}\varphi\) with \(t_{1} > 1\) large enough we have \(I(e) < 0\), showing (ii).

\section{Boundedness of the Palais-Smale Sequence}

The result below is a special case of theorem 1.1 in Le, Motreanu and Motreanu [20] which in turn is a variant for Orlicz-Sobolev spaces, of the Aubin-Clarke Theorem (cf. [10, theorem 2.7.5]). The result itself as well as its proof will be used several times in this paper.

\textbf{Lemma 4.1} Let \(j\) be as in (2). Then
\[
\partial j(x,t) = \begin{cases}
0, & t < a, \\
[0,\sigma(x)\phi_{\ast}(a)], & t = a, \\
\sigma(x)\phi_{\ast}(t), & t > a,
\end{cases}
\]
and the functional
\[
J(u) := \int_{\Omega} j(x,u(x))dx, \ u \in L_{\phi_{\ast}}(\Omega)
\]
satisfies
\[
J \in Lip_{loc}(L_{\phi_{\ast}}(\Omega), \mathbb{R})
\]
and
\[
\partial J(u) \subseteq \{\rho \in L_{\phi_{\ast}}(\Omega) \mid \rho(x) \in \partial j(x,u(x)) \ a.e. \ x \in \Omega\}.
\]
By lemmas 3.1, 4.1 and theorem 2.1 there is a sequence \((u_n) \subseteq W_0^{1,\Phi}\) such that
\[
I(u_n) \xrightarrow{n} c \quad \text{and} \quad m(u_n) \equiv \min_{w \in \partial I(u_n)} \|w\|_{W^{-1,\Phi}} \xrightleftharpoons{n} 0.
\] (12)

Actually, there is \(w_n \in \partial I(u_n)\) such that
\[
\|w_n\|_{W^{-1,\Phi}} = \min_{w \in \partial I(u_n)} \|w\|_{W^{-1,\Phi}}
\]
and so there is \(\rho_n \in \partial J(u_n)\) such that \(w_n = Q'(\lambda u_n) - \rho_n\). Hence, \(\langle w_n, v \rangle \rightarrow 0, \; v \in W_0^{1,\Phi}(\Omega)\)
so that
\[
\int_{\Omega} \phi(|\nabla u_n|) \nabla u_n \nabla v dx = \lambda \int_{\Omega} hv dx + \int_{\Omega} \rho_n v dx + o_n(1).
\] (13)

The result below is inspired on lemma 1.20 of Willem [26].

Lemma 4.2 The \((PS)_c\) - sequence \((u_n) \subseteq W_0^{1,\Phi}\) is bounded. In particular, there is some \(u_1 \in W_0^{1,\Phi}\) such that
\[
u_n \rightharpoonup u \quad \text{in} \; W_0^{1,\Phi}.
\]

Proof of Lemma 4.1 By the very definition of \(j\), \(j(x,.)\) is differentiable at each \(t \neq a\) and
\[
\partial j(x,t) = j'(x,t) = \sigma(x)\phi_*(t)\chi_{\{t>a\}}.
\]

On the other hand, if \(t = a\), then (cf. [8]),
\[
\partial j(x,a) = \left[\lim_{t \to a^-} \chi_{\{t>a\}} \sigma(x)\phi_*(t), \lim_{t \to a^+} \chi_{\{t>a\}} \sigma(x)\phi_*(t) \right] = [0,\sigma(x)\phi_*(a)].
\]

In particular, for each \(\rho = \rho(x) \in \partial j(x,t)\) with \(t \geq 0\) we have,
\[
0 \leq t\rho \leq \sigma(x)t\phi_*(t) \leq m^*\sigma(x)\Phi_*(t) \quad \text{a.e.} \quad x \in \Omega.
\]

Actually, if \(t > a\), then
\[
\ell^*\sigma(x)\Phi_*(t) \leq t\rho \leq m^*\sigma(x)\Phi_*(t) \quad \text{a.e.} \quad x \in \Omega.
\] (14)

Notice that if \(\rho := \rho(x) \in \partial j(x,t)\) then
\[
0 \leq \rho \leq \sigma(x)\phi_*(t) \leq |\sigma|_\infty\phi_*(t).
\]

Moreover, using the fact that \(\Phi_*(\phi_*(t)) \leq \Phi_*(2t),\) (cf. [14, p. 263]), we infer that
\[
0 \leq \rho \leq |\sigma|_\infty\Phi_*^{-1} \circ \Phi_*(2t),
\]
which is condition (1.6) in theorem 1.1 of [8]. This proves lemma 5.1.

Proof of Lemma 4.2. By (12) we have
\[
|\langle w_n, u_n \rangle| \leq m(u_n)\|u_n\| \leq \ell^*\|u_n\| \quad \text{for} \quad n \quad \text{large enough.}
\]

Set
\[
S_I := \sup_n I(u_n) < \infty.
\]
Estimating using the inequality above, (14), the Hölder Inequality and lemma 7.1 we have

\[S_I + \|u_n\| \geq I(u_n) - \frac{1}{\ell^*}(w_n, u_n) \]

\[\geq \left(1 - \frac{m}{\ell^*}\right) \int_{\Omega} \Phi(|\nabla u_n|) dx - \lambda \left(1 - \frac{1}{\ell^*}\right) \int_{\Omega} h u_n dx + \frac{1}{\ell^*} \int_{\{u_n = a\}} \rho_n a dx \]

\[+ \int_{\{u_n > a\}} \left[\frac{1}{\ell^*} \rho_n u_n - j(x, u_n) \right] dx \]

\[\geq \left(1 - \frac{m}{\ell^*}\right) \int_{\Omega} \Phi(|\nabla u_n|) dx + \int_{\{u_n > a\}} [\sigma(x) \Phi_*(u_n) - j(x, u_n)] dx \]

\[- \lambda \left(1 - \frac{1}{\ell^*}\right) \int_{\Omega} h u_n dx \]

\[\geq \left(1 - \frac{m}{\ell^*}\right) \int_{\Omega} \Phi(|\nabla u_n|) dx - 2 \lambda \left(1 - \frac{1}{\ell^*}\right) \|h\|_{\infty} \|u_n\|_{\Phi^*} \]

\[\geq \left(1 - \frac{m}{\ell^*}\right) \min\{\|u_n\|^\ell, \|u_n\|^m\} - \frac{2\lambda}{S^*} \left(1 - \frac{1}{\ell^*}\right) \|h\|_{\Phi} \|u_n\|, \]

showing that \(\|u_n\|\) is bounded.

5 On the Convergence of the Palais-Smale Sequence

The result below is crucial, will be proved in detail in this paper, and actually, was motivated by lemma 4.4 by Fukagai, Ito & Narukawa [14].

Lemma 5.1 Let \((u_n) \subset W^{1,\Phi}_0(\Omega)\) be the sequence in (12). Extend each \(u_n\) to \(\mathbb{R}^N\) by setting \(u_n = 0\) on \(\mathbb{R}^N \setminus \Omega\). Then there are \(x_1, \ldots, x_r \in \mathbb{R}^N\) such that

\[u_n \xrightarrow{L_{\Phi_*(K)}} u \] \hspace{1cm} (15)

for each compact set \(K \subset \mathbb{R}^N \setminus \{x_1, \ldots, x_r\}\).

At first we gather some notations and remarks, (cf. Willem [26]). Given \(v \in C_0^{\infty}(\Omega)\) we extend it to \(\mathbb{R}^N\) by setting \(v(x) = 0\) if \(x \in \mathbb{R}^N \setminus \Omega\) and denote the extension by \(v\). Then \(v \in C_0^{\infty}(\mathbb{R}^N)\) and \(\text{supp}(v) \subseteq \Omega\). In addition,

\[\|v\|_{W^{1,\Phi}(\mathbb{R}^N)} = \|v\|_{W^{1,\Phi}(\Omega)} \]

and

\[W^{1,\Phi}_0(\Omega) = \{ v \in C_0^{\infty}(\mathbb{R}^N) \mid \text{supp}(v) \subseteq \Omega \}^{W^{1,\Phi}(\mathbb{R}^N)} \]

Thus, if \(v \in W^{1,\Phi}_0(\Omega)\) then \(v \in W^{1,\Phi}(\mathbb{R}^N)\). Similar notations for functions in \(L_{\Phi_*}(\Omega)\).

Consider the normed space

\[C_0 = \{ u \in C(\Omega) \mid \text{supp}(u) \subseteq \mathbb{R}^N \}^{\text{cpt}|_{\infty}} \]
where \(|u|_\infty = \sup_{x \in \mathbb{R}^N} |u(x)| \) and denote by \(\mathcal{M} \) the space of finite measures on \(\mathbb{R}^N \) with the norm

\[
\|\mu\|_{\mathcal{M}} = \sup \left\{ \int ud\mu \mid u \in C_0, \ |u|_\infty = 1 \right\}.
\]

Remark 5.1 We recall below some notations and results:

(i) \(\mathcal{M} = C_0^* \) and \(\langle \mu, u \rangle = \int ud\mu, \)

(ii) \(\mu_n \overset{\mathcal{M}}{\rightharpoonup} \mu \) means that \(\int ud\mu_n \overset{n \to \infty}{\longrightarrow} \int ud\mu, \ u \in C_0, \)

(iii) if \(\mu_n \subseteq \mathcal{M} \) is bounded then \(\mu_n \overset{\mathcal{M}}{\rightharpoonup} \mu, \) up to subsequence.

By lemma 4.2 the \((PS)_{c}\)-sequence \((u_n) \subseteq W^{1}_0(\Omega)\) is bounded. Consider \(\mu_n, \nu_n : C_0 \to \mathbb{R}, \)

\[
\langle \mu_n, v \rangle = \int_{\mathbb{R}^N} \Phi(|\nabla u_n|) vd\mu \quad \text{and} \quad \langle \nu_n, v \rangle = \int_{\mathbb{R}^N} \Phi_*(|u_n|) vd\mu, \ v \in C_0.
\]

Then there is a constant \(C > 0 \) such that

\[
|\langle \mu_n, v \rangle| \leq C|v|_\infty \quad \text{and} \quad |\langle \nu_n, v \rangle| \leq C|v|_\infty
\]

that is \((\mu_n), (\nu_n) \subseteq \mathcal{M} \) are bounded. It follows that

\[
\Phi(|\nabla u_n|) \rightharpoonup \mu, \quad \Phi_*(|u_n|) \rightharpoonup \nu \quad \text{in} \quad \mathcal{M}.
\]

(16)

We shall need the following variant for Orlicz-Sobolev spaces of the concentration-compactness principle cf. Lions [21], Fukagai, Ito & Narukawa [14].

Lemma 5.2 There exist a denumerable set \(J, \) a family \(\{x_j\}_{j \in J} \subseteq \mathbb{R}^N \) with \(x_i \neq x_j \) and families of nonnegative numbers \(\{\nu_j\}_{j \in J} \) and \(\{\mu_j\}_{j \in J} \) such that

\[
\nu = \Phi_*(u^1) + \sum_{j \in J} \nu_j \delta_{x_j} \quad \text{and} \quad \mu \geq \Phi(|\nabla u^1|) + \sum_{j \in J} \mu_j \delta_{x_j},
\]

where \(\delta_{x_j} \) is the Dirac measure with mass at \(x_j. \) In addition,

\[
\nu_j \leq \max \left\{ S^{-\frac{\ell - \eta}{\ell}} \frac{\nu_j^\ell}{\mu_j^\ell}, S^{-\frac{m - \eta}{m}} \frac{\nu_j^m}{\mu_j^m} \right\}, \quad j \in J.
\]

Lemma 5.3 The set \(\bar{J} = \{ j \in J \mid \nu_j > 0 \} \) is finite.

Proof We claim that \(\{x_j\}_{j \in \bar{J}} \subseteq \overline{\Omega}. \) Indeed, if on the contrary, \(x_j \in \overline{\Omega^c} \) for some \(j \in \bar{J}, \) there is \(\epsilon > 0 \) such that \(\overline{B_\epsilon(x_j)} \subseteq \overline{\Omega^c}. \) Choose \(\varphi_\epsilon \in C_0^\infty(\mathbb{R}^N) \) such that

\[
\text{supp}(\varphi_\epsilon) \subseteq B_\epsilon(x_j), \quad \varphi_\epsilon \overset{\epsilon \to 0}{\longrightarrow} \chi_{\{x_j\}} \quad \text{a.e.} \quad \mathbb{R}^N.
\]

Now, we extend \(u_n \) to \(\mathbb{R}^N \) by setting \(u_n(x) = 0 \) for \(x \in \mathbb{R}^N - \Omega. \) Take \(\epsilon > 0. \) Using (16), we have

\[
0 = \int_{\mathbb{R}^N} \Phi(|\nabla u_n|) \varphi_\epsilon dx \overset{n \to \infty}{\longrightarrow} \int_{\mathbb{R}^N} \varphi_\epsilon d\mu,
\]
and passing to the limit as $\epsilon \to 0$ we get,

$$0 = \int_{\mathbb{R}^N} \varphi_\epsilon d\mu = \int_{B_\epsilon(x_j)} \varphi_\epsilon d\mu \to \int_{\{x_j\}} d\mu = \mu_j.$$

Hence, $\mu_j = 0$ and by lemma 5.2 we infer that $\nu_j = 0$, impossible because $j \in \bar{J}$, showing the claim. We claim that

$$(\phi(|\nabla u_n|)|\nabla u_n|) \text{ is bounded in } L_\Phi^\infty(\Omega)$$

Indeed, take $\psi \in C_0^\infty$ such that $0 \leq \psi \leq 1$, $\psi(x) = 1$ if $|x| \leq 1$ and $\psi(x) = 0$ if $|x| \geq 2$. Pick x_j with $j \in \bar{J}$, $\epsilon > 0$ and set

$$\psi_\epsilon(x) := \psi\left(\frac{x - x_j}{\epsilon}\right), \quad x \in \mathbb{R}^N.$$

Notice that $(\psi_i u_n) \subseteq W_0^{1, \Phi}(\Omega)$ is bounded. At this point we recall that

$$w_n = Q_\lambda'(u_n) - \rho_n \text{ for some } \rho_n \in \partial J(u_n). \quad (17)$$

Since $m(u_n) \to 0$ we infer from (17) that

$$\int_{\Omega} \phi(|\nabla u_n|)\nabla u_n \nabla(\psi_\epsilon u_n) = \lambda \int_{\Omega} hu_n \psi_\epsilon dx + \int_{\Omega} \rho_n u_n \psi_\epsilon dx + o_n(1). \quad (18)$$

Moreover, by lemma 4.1, $\rho_n \in L_\Phi^\infty(\Omega)$ and $\rho_n(x) \in \partial j(x, u_n(x))$ for $x \in \Omega$. By (18) and lemma 4.1,

$$\int_{\Omega} \phi(|\nabla u_n|)\nabla u_n \nabla(\psi_\epsilon u_n) = \left(\int_{\{u_n < a\}} + \int_{\{u_n \geq a\}}\right) \rho_n u_n \psi_\epsilon dx + \lambda \int_{\Omega} hu_n \psi_\epsilon dx + o_n(1)$$

$$= \int_{\{u_n < a\}} \rho_n u_n \psi_\epsilon dx + \lambda \int_{\Omega} hu_n \psi_\epsilon dx + o_n(1)$$

$$\leq m^* \int_{\{u_n \geq a\}} \sigma(x)\Phi_\Phi(u_n) \psi_\epsilon dx + \lambda \int_{\Omega} hu_n \psi_\epsilon dx + o_n(1)$$

$$\leq m^* |\sigma|_\infty \int_{\Omega} \Phi_\Phi(u_n) \psi_\epsilon dx + \lambda \int_{\Omega} hu_n \psi_\epsilon dx + o_n(1) \quad (19)$$

On the other hand, using the fact that $t^2 \phi(t) \geq \Phi(t)$ we have,

$$\int_{\Omega} \phi(|\nabla u_n|)\nabla u_n \nabla(\psi_\epsilon u_n) = \int_{\Omega} u_n \phi(|\nabla u_n|)\nabla u_n \nabla \psi_\epsilon dx + \int_{\Omega} \psi_\epsilon \phi(|\nabla u_n|)|\nabla u_n|^2 dx$$

$$\geq \int_{\Omega} u_n \phi(|\nabla u_n|)\nabla u_n \nabla \psi_\epsilon dx + \int_{\Omega} \psi_\epsilon \Phi(|\nabla u_n|) dx \quad (20)$$

Using (19), (20) and the inequality $\tilde{\Phi}(t \phi(t)) \leq \Phi(2t)$ it follows that $(\phi(|\nabla u_n|)|\nabla u_n|)$ is bounded in $L_\Phi^\infty(\Omega)$, showing the claim.

As a consequence $(\phi(|\nabla u_n|)\partial u_n/\partial x_i)$ is also bounded in $L_\Phi^\infty(\Omega)$ and so

$$\phi(|\nabla u_n|)\frac{\partial u_n}{\partial x_i} \rightarrow w_i \text{ in } L_\Phi^\infty(\Omega), \quad i = 1, \ldots, N. \quad (21)$$
Setting \(w = (w_1, \ldots, w_N) \), we claim that
\[
\int_{\Omega} (u_n \phi(|\nabla u_n|) \nabla u_n \nabla \psi - u \, w \cdot \nabla \psi) \, dx = o_n(1) . \tag{22}
\]
Indeed, in a first step applying an easy estimate and in a second step using the the Hölder inequality and applying (21) with test function \(\partial \psi \), we have
\[
\int_{\Omega} \left| \phi(|\nabla u_n|) \frac{\partial u_n}{\partial x_i} \partial \psi \right| u_n \frac{\partial \psi}{\partial x_i} \, dx \leq
\int_{\Omega} \left| \phi(|\nabla u_n|) \frac{\partial u_n}{\partial x_i} (u_n - w_i \frac{\partial \psi}{\partial x_i}) \right| \, dx + \int_{\Omega} \left| \phi(|\nabla u_n|) \frac{\partial u_n}{\partial x_i} \frac{\partial \psi}{\partial x_i} \right| \, dx \leq
2 \left\| \phi(|\nabla u_n|) \frac{\partial u_n}{\partial x_i} \frac{\partial \psi}{\partial x_i} \right\|_{\phi} \| u_n - u \|_{\phi} + o_n(1)
\]
which leads to (22), showing the claim. Replacing (22) in (20) we get
\[
\int \partial \psi \Phi(|\nabla u_n|) \, dx + \int uw \nabla \psi \, dx \leq \int \phi(|\nabla u_n|) \nabla u_n \nabla (\psi \psi u_n) + o_n(1). \tag{23}
\]
It follows from (19) and (23) that
\[
\int \partial \psi \Phi(|\nabla u_n|) \, dx + \int uw \nabla \psi \, dx \leq m^* |\sigma|_{\infty} \int \Phi_\ast(u_n) \psi \, dx + \lambda \int h u_n \psi \, dx + o_n(1).
\]
Passing to the limit in the inequality just above in \(n \), recalling that
\[
\int \partial \psi \Phi(|\nabla u_n|) \, dx \xrightarrow{n \to \infty} \int \psi \, d\mu, \quad \int \Phi_\ast(u_n) \psi \, dx \xrightarrow{n \to \infty} \int \psi \, d\nu
\]
and
\[
\int uh \psi \, dx \xrightarrow{n \to \infty} \int uh \psi \, dx.
\]
we get to
\[
\int \partial \psi \, d\mu + \int uw \nabla \psi \, dx \leq m^* |\sigma|_{\infty} \int \psi \, d\nu + \lambda \int h u \psi \, dx. \tag{24}
\]
We claim that \((\rho_n) \) is bounded in \(L_{\Phi_\ast}^\infty(\Omega) \). Indeed, using lemma 4.1 we get
\[
\int \Phi_\ast(\rho_n) \, dx \leq \int \Phi_\ast(\sigma(x) \phi_\ast(u_n)) \, dx \leq \int \Phi_\ast(|\sigma|_{\infty} \phi_\ast(u_n)) \, dx
\]
\[
\leq C |\sigma|_{\infty} \int \Phi_\ast(\phi_\ast(u_n)) \, dx \leq C |\sigma|_{\infty} \int \Phi_\ast(2u_n) \, dx \leq C,
\]
showing the claim. Thus there is \(\rho \in L_{\Phi_\ast}^\infty(\Omega) \) such that
\[
\rho_n \to \rho \text{ in } L_{\Phi_\ast}^\infty(\Omega).
\]
Let \(v \in W_0^{1,\Phi}(\Omega) \). Passing to the limit in the expression
\[
\langle w_n, v \rangle = \int_{\Omega} (\phi(|\nabla u_n|)|\nabla u_n| \nabla v - \lambda h v - \rho_n v) \, dx,
\]
and using (21) we get to
\[
\int_{\Omega} (w \nabla v - \lambda h v - \rho v) \, dx = 0. \tag{25}
\]
Setting \(v = u\psi_\epsilon \) in (25) we have
\[
\int_{\Omega} uw \nabla \psi_\epsilon \, dx = \int_{\Omega} (\lambda h u + \rho u - w \nabla u) \psi_\epsilon \, dx.
\]
But
\[
| (\lambda h u + \rho u - w \nabla u) \psi_\epsilon | \leq |\lambda h u| + |\rho u| + |w \nabla u| \in L^1(\Omega)
\]
and
\[
(\lambda h u + \rho u - w \nabla u)\psi_\epsilon \xrightarrow{\epsilon \to 0} 0 \text{ a.e. in } \Omega
\]
By means of Lebesgue’s theorem,
\[
\int_{\Omega} uw \nabla \psi_\epsilon \, dx \xrightarrow{\epsilon \to 0} 0 \text{ and } \int_{\Omega} h u \psi_\epsilon \, dx \xrightarrow{\epsilon \to 0} 0.
\]
Noticing that
\[
\psi_\epsilon \xrightarrow{\epsilon \to 0} \chi_{\{x_j\}} \text{ a.e. in } \mathbb{R}^N \text{ and } \psi_\epsilon(x) \leq \chi_{B_\delta(x_j)}(x) \text{ for } x \in \mathbb{R}^N, \ \epsilon > 0 \text{ small}
\]
we get to
\[
\int_{\mathbb{R}^N} \psi_\epsilon \, d\mu \xrightarrow{\epsilon \to 0} \int_{\{x_j\}} d\mu = \mu(\{x_j\}) = \mu_j \text{ and } \int_{\mathbb{R}^N} \psi_\epsilon \, d\nu \xrightarrow{\epsilon \to 0} \int_{\{x_j\}} d\nu = \nu(\{x_j\}) = \nu_j.
\]
Passing to the limit in (24) we get to
\[
\mu_j \leq m^*|\sigma|_{\infty} \nu_j, \ j \in \tilde{J}. \tag{26}
\]
By lemma 5.2, \(\mu_j \leq c_1 \mu_j^\alpha \), where \(1 < \alpha \leq \min \{ \ell^*/\ell, m^*/\ell, \ell^*/m, m^*/m \} \).
Thus \(\mu_j \geq c_2 \) for some positive constant \(c_2 \). In addition by (26), \(\nu_j \geq c_3 \), for \(j \in \tilde{J} \) and for some positive constant \(c_3 \). At this point, we infer that if \#(\tilde{J}) = \infty, then
\[
\sum_{j \in \tilde{J}} \nu_j \geq \sum_{j \in \tilde{J}} c_3 = \infty,
\]
which is impossible because \(\nu \) is a finite measure and
\[
\nu = \Phi_\sigma(u) + \sum_{j \in \tilde{J}} \nu_j \delta_{x_j}.
\]
This ends the proof of lemma 5.3.

Proof of Lemma 5.1 Since \(\tilde{J} \) is finite pick \(\delta > 0 \) such that \(B_\delta(x_i) \cap B_\delta(x_j) = \emptyset \) for \(i \neq j \) with \(i, j \in \tilde{J} \). Next take a compact set \(K_\delta \subset \mathbb{R}^N \setminus \bigcup_{j \in \tilde{J}} B_\delta(x_j) \) and \(\chi \in C_0^\infty \) such that
\[
0 \leq \chi \leq 1, \ \chi = 1 \text{ on } K_\delta, \ \text{supp}(\chi) \cap \left(\bigcup_{j \in \tilde{J}} B_{\frac{\delta}{2}}(x_j) \right) = \emptyset.
\]
Notice that
\[\Phi_*(u_n - u) \rightharpoonup \nu \quad \text{and} \quad \nu = \Phi_*(0) + \sum_{j \in \tilde{J}} \nu_j \delta_{x_j} \quad \text{in} \quad \mathcal{M}. \]

On the other hand,
\[
0 \leq \int_{K_\delta} \Phi_*(u_n - u) \, dx \leq \int_{\mathbb{R}^N} \Phi_*(u_n - u) \chi \, dx,
\]
\[
\int_{\mathbb{R}^N} \Phi_*(u_n - u) \chi \, dx \rightarrow \int_{\mathbb{R}^N} \chi \, d\nu,
\]
\[
\int_{\mathbb{R}^N} \chi \, d\nu = \sum_{j \in \tilde{J}} \chi(x_j) = 0.
\]

Thus
\[
\int_{K_\delta} \Phi_*(u_n - u) \, dx \rightarrow 0.
\]

Since the argument above holds for each \(\delta > 0 \) we infer that (15) holds for each compact set \(K \subseteq \mathbb{R}^N - \{x_j\}_{j \in \tilde{J}} \).

6 Proofs of the Main Results

Lemma 6.1 \(\rho_n(x) \rightharpoonup \rho(x) \) and \(\rho(x) \in \partial j(x, u(x)) \) a.e. \(x \in \Omega \).

Proof We will show, at first that
\(\rho(x) \in \partial j(x, u(x)) \) a.e. \(x \in \Omega \).

Indeed, let \(K \subseteq \mathbb{R}^N \setminus \{x_j\}_{j \in \tilde{J}} \) be a compact set and take \(\varphi \in L_{\overline{\Phi}_*}(K) \).

Since
\(\rho_n \in \partial J(u_n), \quad \rho_n \rightharpoonup \rho \quad \text{in} \quad L_{\overline{\Phi}_*}(\Omega) \quad \text{and} \quad \rho_n(x) = 0 \quad \text{for} \quad x \in \mathbb{R}^N \setminus \Omega \)

then
\[\rho_n \rightharpoonup \rho \quad \text{in} \quad L_{\overline{\Phi}_*}(K) \]

and so
\[\rho_n \overset{\ast}{\rightharpoonup} \rho, \quad \text{em} \quad L_{\overline{\Phi}_*}(K). \]

On the other hand, by lemma 5.1,
\[u_n \overset{L_{\Phi_*(K)}}{\rightharpoonup} u \]

and by [10, Proposition 2.1.5], \(\rho \in \partial J(u) \). By the Aubin-Clarke theorem (cf. lemma 4.1 above),
\[\rho \in L_{\overline{\Phi}_*}(K) \quad \text{and} \quad \rho(x) \in \partial j(x, u(x)) \quad \text{a.e.} \quad x \in K. \]

Since
\[\mathbb{R}^N - \{x_j\}_{j \in \tilde{J}} = \bigcup_{\nu=1}^{\infty} K_{\nu}, \tag{27} \]

where \(\{K_{\nu}\}_{\nu=1}^{\infty} \) is a sequence of compact sets, it follows that \(\rho(x) \in \partial j(x, u(x)) \) a.e. \(x \in \Omega \).

Next we will show that
\[\rho_n(x) \rightharpoonup \rho(x) \quad \text{a.e.} \quad x \in \Omega. \]
Indeed, take \(\varphi_\nu \in C_0^\infty(\mathbb{R}^N) \) such that \(\text{supp}(\varphi_\nu) = K_\nu \). Then
\[
\int_\Omega (\rho_n - \rho) \varphi_\nu \, dx = \int_{K_\nu} (\rho_n - \rho) \varphi_\nu \, dx \xrightarrow{n \to \infty} 0,
\]
As a consequence,
\[
(\rho_n - \rho) \varphi_\nu \xrightarrow{n \to \infty} 0 \text{ a.e. in } K_\nu,
\]
so that
\[
\rho_n - \rho \xrightarrow{n \to \infty} 0 \text{ a.e. in } K_\nu.
\]
Therefore
\[
\rho_n - \rho \xrightarrow{n \to \infty} 0 \text{ a.e. in } \mathbb{R}^N.
\]
Since \(\rho_n = 0 \) on \(\mathbb{R}^N - \Omega \), it follows that
\[
\rho_n - \rho \xrightarrow{n \to \infty} 0 \text{ a.e. in } \Omega.
\]
This ends the proof of lemma 6.1.

The proof of the next lemma is based on lemma 4.5 in [14].

Lemma 6.2 \(\nabla u_n(x) \xrightarrow{n \to \infty} \nabla u(x) \) a.e. \(x \in \Omega \).

Proof Let \(\{K_\nu\}_{\nu=1}^\infty \) be a family of compact sets such that (27) holds. Pick an integer \(\nu \geq 1 \) and a function \(\chi \in C_0^\infty(\mathbb{R}^N) \) such that \(0 \leq \chi \leq 1, \chi = 1 \text{ on } K_\nu \) and \(\text{supp}(\chi) \cap \{x_j\}_{j \in \tilde{J}} \neq \emptyset \).

Set \(v_n = \chi(u_n - u) \). It follows that \(v_n \) is bounded in \(W_0^1,\Phi(\mathbb{R}^N) \) and since \(\langle m(u_n), v_n \rangle \to 0 \) we infer that
\[
\int_{\mathbb{R}^N} \phi(|\nabla u_n|) \nabla u_n \nabla v_n \, dx - \lambda \int_{\mathbb{R}^N} h v_n \, dx - \int_{\mathbb{R}^N} \rho_n v_n \, dx = o_n(1). \tag{28}
\]

Setting \(S_\chi = \text{supp}(\chi) \) we get
\[
\int_{S_\chi} \phi(|\nabla u_n|) \nabla u_n (\nabla u_n - \nabla u) \, dx + \int_{S_\chi} \phi(|\nabla u_n|) \nabla u_n \nabla \chi(u_n - u) \, dx
\]
\[= \int_{S_\chi} h v_n \, dx + \int_{S_\chi} \rho_n v_n \, dx + o_n(1). \tag{29}\]

Notice that
\[
\int_{S_\chi} |\phi(|\nabla u_n|) \nabla u_n \nabla \chi(u_n - u)| \, dx \leq \|\phi(|\nabla u_n|) \nabla u_n \|_{L_\Phi(S_\chi)} |\nabla \chi|_\infty \|u_n - u\|_{L_\Phi(S_\chi)} = o_n(1),
\]
\[
\int_{S_\chi} h v_n \, dx = o_n(1),
\]
and since \((\rho_n) \) is bounded in \(L_{\tilde{\Phi}_\ast}(\Omega) \),
\[
\int_{\mathbb{R}^N} |\rho_n v_n| \, dx \leq \|\rho_n\|_{\tilde{\Phi}_\ast} |\chi|_\infty \|u_n - u\|_{L_{\tilde{\Phi}_\ast}(S_\chi)} = o_n(1),
\]
which shows via (29) that
\[
\int_{K_\nu} \phi(|\nabla u_n|) \nabla u_n (\nabla u_n - \nabla u) \, dx \xrightarrow{n \to \infty} 0.
\]
Using the well known fact that $-\Delta \Phi$ is a map of type (S_+),
\[
||\nabla u_n - \nabla u||_{L^p(K_\nu)}^n \to 0.
\]
It follows that
\[
\nabla u_n \nabla u \text{ a.e. on } K_\nu
\]
and as a consequence,
\[
\nabla u_n \to \nabla u \text{ a.e. on } \mathbb{R}^N.
\]
Recalling that $u_n(x) = 0$ for $x \in \mathbb{R}^N \setminus \Omega$, we get to
\[
\nabla u_n \to \nabla u \text{ a.e. in } \Omega,
\]
ending the proof of lemma 6.2.

\begin{lemma}
\textbf{Lemma 6.3} \quad \phi(||\nabla u_n||) \nabla u_n \rightharpoonup \phi(||\nabla u||) \nabla u \text{ in } \prod L_{\tilde{\Phi}}(\Omega).
\end{lemma}

\begin{proof}
By lemma 6.2,
\[
\nabla u_n \to \nabla u \text{ a.e. in } \Omega.
\]
Since ϕ is continuous,
\[
\phi(||\nabla u_n||) \nabla u_n \rightharpoonup \phi(||\nabla u||) \nabla u \text{ a.e. in } \Omega.
\]
Applying lemma 2 in Gossez [16, p 88], ends the proof of lemma 6.3.
\end{proof}

\begin{proof}[Proof of Theorem 1.1]
By lemma 6.3,
\[
\int_{\Omega} \phi(||\nabla u_n||) \nabla u_n \nabla v dx \to \int_{\Omega} \phi(||\nabla u||) \nabla u \nabla v dx, \quad v \in W^{1,\Phi}_0.
\]
On the other hand,
\[
\int_{\Omega} \rho_n v dx \to \int_{\Omega} \rho v dx, \quad v \in W^{1,\Phi}_0,
\]
where
\[
\rho \in L_{\tilde{\Phi}_*}(\Omega) \quad \text{and} \quad \rho_n(x) \in \partial j(x,u_n(x)) \text{ a.e. } x \in \Omega.
\]
Passing to the limit in (13) we get to
\[
\int_{\Omega} \phi(||\nabla u||) \nabla u \nabla v dx - \lambda \int_{\Omega} h v dx - \int_{\Omega} \rho v dx = 0, \quad v \in W^{1,\Phi}_0.
\]
Thus $u \in W^{1,\Phi}_0$ is a solution of (1), in the sense of Definition 1.1 and since $h \neq 0$, we get $u \neq 0$.

\begin{claim}
$u \geq 0$. Indeed, note that
\[
u_n = v_n^+ - u_n^-, \quad \nabla u_n = \nabla u_n^+ - \nabla u_n^- \quad \text{and} \quad |\nabla u_n|^2 = |\nabla u_n^+|^2 + |\nabla u_n^-|^2.
\]
Thus
\[
\int_{\Omega} \phi(||\nabla u_n^-||) v dx \leq \int_{\Omega} \phi(||\nabla u_n^-||^2 + ||\nabla u_n^+||^2) dx
\]
\[= \int_{\Omega} \phi(||\nabla u_n||) dx
\]
\end{claim}
so that \((u_n^-)\) is bounded in \(W_0^{1,\Phi}\). Noting that \(\langle w_n, -u_n^- \rangle = o_n(1)\) we have
\[
o_n(1) = -\int_{\Omega} \phi(|\nabla u_n|) \nabla u_n \nabla u_n^- \, dx + \lambda \int_{\Omega} h u_n^- \, dx + \int_{\Omega} \rho_n u_n^- \, dx \\
= \int_{\Omega} \phi(|\nabla u_n^-|) |\nabla u_n^-|^2 \, dx + \lambda \int_{\Omega} h u_n^- \, dx + \int_{\Omega} \rho_n u_n^- \, dx \\
\geq \ell \int_{\Omega} \Phi(|\nabla u_n^-|) \, dx.
\]
Thus
\[
\int_{\Omega} \Phi(|\nabla u_n^-|) \, dx \to 0,
\]
and hence \(u_n^- \to 0\) in \(W_0^{1,\Phi}\), showing that \(u \geq 0\).

Proof of (3) Since \(u\) is a solution of (1), there is \(\rho := \rho_u \in L_{\Phi^*}(\Omega)\) such that
\[
\int_{\Omega} \phi(|\nabla u|) \nabla u \nabla v \, dx = \int_{\Omega} \rho v \, dx + \lambda \int_{\Omega} h v \, dx, \quad v \in C_0^\infty(\Omega).
\]
By Remark 2.1, \(\Delta \Phi u \in L_{\Phi^*}(\Omega)\). Since also \(h \in L_{\Phi^*}(\Omega)\) it follows that
\[
\int_{\Omega} [-\Delta \Phi u - \rho - \lambda h] v \, dx = 0, \quad v \in C_0^\infty(\Omega).
\]
Hence
\[
-\Delta \Phi u = \rho + \lambda h \quad \text{a.e. in } \Omega.
\]

7 Appendix

The results below are elementary and can be found in [14, 15].

Lemma 7.1 Assume \((\phi_1) - (\phi_3)\). Let
\[
\zeta_0(t) = \min\{t^\ell, t^m\} \quad \text{and} \quad \zeta_1(t) = \max\{t^\ell, t^m\}, \quad t \geq 0.
\]
Then
\[
\zeta_0(\rho) \Phi(t) \leq \Phi(\rho t) \leq \zeta_1(\rho) \Phi(t), \quad \rho, t > 0,
\]
\[
\zeta_0(\|u\|_{\Phi}) \leq \int_{\Omega} \Phi(u) \, dx \leq \zeta_1(\|u\|_{\Phi}), \quad u \in L_{\Phi}(\Omega).
\]

Lemma 7.2 Assume \((\phi_1) - (\phi_3)\). Let
\[
\zeta_2(t) = \min\{t^{\ell'}, t^{m'}\} \quad \text{and} \quad \zeta_2(t) = \max\{t^{\ell'}, t^{m'}\}, \quad t \geq 0.
\]
Then
\[
\zeta_2(\rho) \Phi_*(t) \leq \Phi_*(\rho t) \leq \zeta_3(\rho) \Phi_*(t), \quad \rho, t > 0,
\]
\[
\zeta_2(\|u\|_{\Phi_*}) \leq \int_{\Omega} \Phi_*(u) \, dx \leq \zeta_3(\|u\|_{\Phi_*}), \quad u \in L_{\Phi_*}(\Omega).
\]
References

[1] Adams, R., *Sobolev Spaces*, Academic Press, New York, (1975).

[2] Alves, C. O., Bertone, A. M. & Gonçalves, J. V. A., *A variational approach to discontinuous problems with critical Sobolev exponents*, J. Math. Anal. App. 265 (2002) 103-127

[3] Alves, Claudianor Oliveira & Bertone, Ana Maria, *A discontinuous problem involving the p-Laplacian operator and critical exponent in RN*, Electron. J. Differential Equations (2003).

[4] Alves, C. O., Goncalves, J. V. & Santos, J. A., *On multiple solutions for multivalued elliptic equations under Navier boundary conditions*, J. Convex Analysis 18 (2011) 627-644.

[5] Ambrosetti, A. & Turner, R. E. L., *Some discontinuous variational problems*, Diff. Int. Equns., 3 (1988) 341-349.

[6] Badiale, M. & Tarantello, G., *Existence and Multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities*, Nonlinear Anal. 29 (1997) 639-677.

[7] Brézis, H, Nirenberg, L. & Stampacchia, G., *Remarks on Ky Fan's Min-max Theorem*, Boll. U. M. I. 6 (1972) 293-300.

[8] Carl, S., Le, Vy Khoi & Montreanu, D., *Nonsmooth Variational Problems and Their Inequalities - Comparison Principles and Applications*, Springer, New York, (2007)

[9] Chang, K. C., *Variational methods for nondifferentiable functionals and their applications to partial differential equations*, J. Math. Anal. Appl. 80 (1981) 102-129.

[10] Clarke, F.H., *Optimization and Nonsmooth Analysis*, SIAM, Philadelphia, (1990).

[11] Donaldson, T. K. & Trudinger, N. S., *Orlicz-Sobolev spaces and imbedding theorems*, J. Functional Analysis 8 (1971) 52-75.

[12] Fiacca, A., Matzakos, N., Papageorgiou, N. S. & Servadei, R., *Nonlinear elliptic differential equations with multivalued nonlinearities*, Czechoslovak Math. J. 53 (2003) 135-159.

[13] Filippakis, M. & Papageorgiou, N., *Multiple solutions for nonlinear elliptic problems with a discontinuous nonlinearity*, Anal. Appl. (2006) 1-18.

[14] Fukagai, N., Ito, M. & Narukawa, K., *Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on RN*, Funkcialaj Ekvacioj, 49 (2006) 235-267.

[15] Fukagai, N. & Narukawa, K., *On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems*, Annali di Matematica, 186 (2007) 539-564.

[16] Gossez, Jean-Pierre, *Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems. Nonlinear analysis, function spaces and applications*, (Proc. Spring School, Horni Bradlo, 1978), Teubner, Leipzig, (1979) 59-94.

[17] Halidias, N. & Naniewicz, Z., *On a class of hemivariational inequalities at resonance*, J. Math. Anal. Appl. 289 (2004) 584-607.

[18] Kufner, A., John, O. & Fučík, S., *Function spaces*, Noordhoff, Leyden, (1977).
[19] Kyritsi, S. Th. & Papageorgiou, N., *Multiple solutions for strongly resonant nonlinear elliptic problems with discontinuities*, Proc. Amer. Math. Soc. 133 (2005) 2369-2376.

[20] Le, Vy Khoi, Motreanu, D. & Motreanu, V., *On a non-smooth eigenvalue problem in Orlicz-Sobolev spaces*, Appl. Anal. 89 (2010) 229-242.

[21] Lions, P. L. *The concentration-compactness principle in the calculus of variations. The limit case. I* Rev. Mat. Iberoamericana 1 (1985) 145-201.

[22] Motreanu, D. & Panagiotopoulos, P. D., *Minimax Theorems and Qualitative Properties of Solutions of Hemivariational Inequalities*, Kluwer Academic Publishers (1999).

[23] Motreanu, D. & Tanaka, M., *Existence of solutions for quasilinear elliptic equations with jumping nonlinearities under Neumann boundary conditions*, Calc. Var. 43 (2012) 231-264.

[24] Naniewicz, Z., *On economics equilibrium type problems with applications*, Set Valued Analysis 19 (2011) 417-456.

[25] Rao, M. N. & Ren Z. D., *Theory of Orlicz Spaces*, Marcel Dekker, New York, (1985).

[26] Willem, M., *Minimax Theorems*, Birkhauser, (1996).

J. V. Gonçalves
Universidade Federal de Goiás
Instituto de Matemática e Estatística
74001-970 Goiânia, GO - Brasil

M. L. Carvalho
Universidade Federal de Goiás
Departamento de Matemática
75804-020 Jataí, GO - Brasil