Characterization of completely k-magic regular graphs

A A Eniego1 and I J L Garces2

1 Science and Mathematics Department, National University, Manila, The Philippines
2 Department of Mathematics, Ateneo de Manila University, Quezon City, The Philippines

E-mail: aaeniego@national-u.edu.ph, ijlgarces@ateneo.edu

Abstract. Let $k \in \mathbb{N}$ and $c \in \mathbb{Z}_k$. A graph G is said to be c-sum k-magic if there is a labeling $\ell : E(G) \to \mathbb{Z}_k \setminus \{0\}$ such that $\sum_{uv \in E(G)} \ell(uv) \equiv c \pmod{k}$ for every vertex v of G, where $N(v)$ is the neighborhood of v in G. We say that G is completely k-magic whenever it is c-sum k-magic for every $c \in \mathbb{Z}_k$. In this paper, we characterize all completely k-magic regular graphs.

1. Introduction
Let $G = (V(G), E(G))$ be a finite, simple (unless otherwise stated) graph with vertex set $V(G)$ and edge set $E(G)$. A factor of G is a subgraph H with $V(H) = V(G)$. In particular, if a factor H of G is h-regular, then we say that H is an h-factor of G. An h-factorization of G is a partition of $E(G)$ into disjoint h-factors. If such factorization of G exists, then we say that G is h-factorable.

The following theorem is attributed to Petersen [7], which we state using the versions of Akiyama and Kano [2] and Wang and Hu [10].

Theorem 1.1 ([2, Theorem 3.1], [7], [10, Theorem 10]). Let G be a $2r$-regular connected general graph (not necessarily simple), where $r \geq 1$. Then G is 2-factorable, and it has a $2k$-factor for every k, $1 \leq k \leq r$. Moreover, if G is of even order, then it is r-factorable.

A graph G is λ-edge connected if it remains connected whenever fewer than λ edges are removed.

Theorem 1.2. [6] Let r and k be integers such that $1 \leq k < r$, and G be a λ-edge connected r-regular general graph, where $\lambda \geq 1$. If one of the following conditions holds:

1. r is even, k is odd, $|G|$ is even, and $\frac{r}{2} \leq k \leq r(1 - \frac{1}{k})$,
2. r is odd, k is even, and $2 \leq k \leq r(1 - \frac{1}{k})$, or
3. r and k are both odd and $\frac{r}{2} \leq k$,

then G has a k-regular factor.

Let k be a positive integer. A finite simple graph $G = (V(G), E(G))$ is said to be k-magic if there exists an edge labeling $\ell : E(G) \to \mathbb{Z}_k \setminus \{0\}$, where $\mathbb{Z}_1 = \mathbb{Z}$ the group of integers, and $\mathbb{Z}_k = \{0, 1, 2, \ldots, k - 1\}$ the group of integers modulo $k \geq 2$, such that the induced vertex labeling $\ell^+ : V(G) \to \mathbb{Z}_k$, defined by $\ell^+(v) = \sum_{uv \in E(G)} \ell(uv)$, is a constant map. If $c \in \mathbb{Z}_k$
and $\ell^+(v) = c$ for all $v \in V(G)$, then we call c a magic sum of G. In particular, if G is k-magic with magic sum c, then we say that G is c-sum k-magic. If G is c-sum k-magic for all $c \in \mathbb{Z}_k$, then it is said to be completely k-magic. The set of all magic sums $c \in \mathbb{Z}_k$ of G is the sum spectrum of G with respect to k and is denoted by $\Sigma_k(G)$. If $c = 0$, then we say that G is zero-sum k-magic. The null set of G, denoted by $N(G)$, is the set of all positive integers k such that G is a zero-sum k-magic graph.

Remark 1.3. If $c \in \mathbb{Z}_k$ and ℓ is a c-sum k-magic labeling of G, then the labeling ℓ', defined by $\ell'(e) = k - \ell(e)$, is a $(k-c)$-sum k-magic labeling of G.

Remark 1.4. Any 2-magic graph is not completely 2-magic.

The concept of A-magic graphs is due to Sedlacek [9]. Over the years, many papers have been published in connection with magic graphs. Akbari, Rahmati, and Zare [1] investigated the zero-sum k-magic labelings and null sets of regular graphs. Dong and Wang [4] solved affirmatively a conjecture posed in [1] on the existence of a zero-sum 3-magic labeling of 5-regular graphs. Salehi [8] determined the integer-magic spectra of certain classes of cycle-related graphs. Using the term “index set,” Wang and Hu [10] initially studied the concept of completely k-magic graphs. They gave a partial list of completely 1-magic regular graphs. Eniego and Garces [5] completely added the remaining cases in this list. They also presented the sum spectra of some regular graphs that are not completely k-magic.

Theorem 1.5 ([1, Theorem 13]). Let G be an r-regular graph, where $r \geq 3$ and $r \neq 5$. If r is even, then $N(G) = \mathbb{N}$ (the set of positive integers); otherwise, $\mathbb{N} \setminus \{2, 4\} \subseteq N(G)$.

Theorem 1.6 ([4, Theorem 2.1]). Every 5-regular graph admits a zero-sum 3-magic labeling.

Theorem 1.7 ([5, Theorem 3.3]). Let $n \geq 3$ and $k \geq 3$ be integers, and C_n the cycle with n vertices.

1. If n is even, then C_n is completely k-magic for all k.
2. If n is odd, then C_n is not completely k-magic for any k. Moreover, we have

$$\Sigma_k(C_n) = \begin{cases} \mathbb{Z}_k \setminus \{0\} & \text{if } k \text{ is odd}, \\ \{0, 2, \ldots, k-2\} & \text{if } k \text{ is even}. \end{cases}$$

Theorem 1.8 ([5, Lemma 3.4]). Let $k \geq 4$ be an even integer. Then there exists no k-magic graph of odd order that is completely k-magic. In particular, if c is a magic sum of a k-magic graph of odd order, then c must be even.

Theorem 1.9 ([5, Theorem 3.6]). Let $k, r \geq 3$ be integers, and G an r-regular graph. If $\gcd(r, k) = 1$, then $\{1, 2, \ldots, k-1\} \subseteq \Sigma_k(G)$.

Theorem 1.10 ([5, Theorem 3.7]). Let G be a zero-sum k-magic r-regular graph, where $k \geq 3$ and $r \geq 3$. If G has a 1-factor, then G is completely k-magic.

Theorem 1.11 ([10, Theorem 13], [5, Theorem 2.1]). Let G be an r-regular graph of order n. Then

$$\Sigma_1(G) = \begin{cases} \mathbb{Z} \setminus \{0\} & \text{if } r = 1, \\ \mathbb{Z} & \text{if } r = 2 \text{ and } G \text{ contains even cycles only}, \\ 2\mathbb{Z} \setminus \{0\} & \text{if } r = 2 \text{ and } G \text{ contains an odd cycle}, \\ 2\mathbb{Z} & \text{if } r \geq 3, r \text{ even, and } n \text{ odd}, \\ \mathbb{Z} & \text{if } r \geq 3 \text{ and } n \text{ even}, \end{cases}$$

where $2\mathbb{Z}$ is the set of all even integers.
With Remark 1.4 and Theorem 1.11, it remains to characterize all completely k-magic regular graphs for $k \geq 3$. This characterization is the main theorem of this paper, which we state as follows.

Theorem 1.12 (Main Theorem). Let $r \geq 2$ and $k \geq 3$ be integers, and G an r-regular graph of order $n \geq 3$. Then G is completely k-magic if and only if one of the following properties holds:

1. $k \geq 3$, $r = 2$, and G contains even cycles only,
2. $k \geq 5$ and $r \geq 3$ odd,
3. $k \geq 5$, $r \geq 4$ even, and n even,
4. $k \geq 5$ odd, $r \geq 4$ even, and n odd,
5. $k = 4$, $r \geq 3$, n even, and G zero-sum 4-magic, or
6. $k = 3$ and any one of the following conditions holds:
 i. $r \equiv 0 \pmod{3}$,
 ii. $r \equiv 0 \pmod{6}$, or
 iii. $r \equiv 0 \pmod{3}$, r odd, and G has a factor H such that $d_H(v) \equiv 1 \pmod{3}$ for all $v \in V(H)$.

For convenience, we only consider graphs that are finite and simple (unless otherwise stated). We also write \mathbb{Z}_k^* to mean $\mathbb{Z}_k \setminus \{0\}$. For graph-theoretic terms that are not explicitly defined in this paper, see [3].

2. **Proof of the Main Theorem**

We divide the proof into several results.

It is not difficult to see that if G is 1-regular, then $\Sigma_k(G) = \mathbb{Z}_k^*$. For 2-regular graphs, the following remark is a consequence of Theorem 1.7.

Remark 2.1. Let $k \geq 3$ and G a 2-regular graph. If G has an odd cycle, then

$$\Sigma_k(G) = \begin{cases}
\mathbb{Z}_k^* & \text{if } k \text{ is odd} \\
\{0, 2, \ldots, k-2\} & \text{if } k \text{ is even}.
\end{cases}$$

Otherwise, we have $\Sigma_k(G) = \mathbb{Z}_k$.

Clearly, if G is 1-factorable, then G is completely k-magic. The following theorem considers regular graphs that has a factor that is completely k-magic.

Theorem 2.2. Let $r \geq 2$, $2 \leq h \leq r$, $k \neq 2$, and G an r-regular graph. If G has an h-factor that is completely k-magic, then G is completely k-magic.

Proof. The case when $h = r$ is trivial, so we assume $h < r$. Let H be an h-factor of G that is completely k-magic. Let $\alpha = c - (r-h) \pmod{k}$ and f_α be an α-sum k-magic labeling of H for each $c \in \mathbb{Z}_k$.

Define $\ell_c : E(G) \to \mathbb{Z}_k^*$ by

$$\ell_c(e) = \begin{cases}
f_\alpha(e) & \text{if } e \in E(H) \\
1 & \text{if } e \in E(G \setminus H).
\end{cases}$$

Observe that ℓ_c is a c-sum k-magic labeling of G for each $c \in \mathbb{Z}_k$. Hence, G is completely k-magic.
The following construction will be useful.

Remark 2.3. Let G be an r-regular graph with $E(G) = \{e_1, e_2, e_3, \ldots, e_m\}$, where $r \geq 1$. Then we can construct a graph G' (with parallel edges) such that $V(G') = V(G)$ and $E(G') = E(G) \cup \{e'_1, e'_2, e'_3, \ldots, e'_m\}$, where e'_i is a duplicate edge of e_i in G for each i (that is, edges e_i and e'_i have the same end vertices). By Theorem 1.1, G' has a $2h$-factor H' for each h, $1 \leq h \leq r$. Also, $G' \setminus H'$ is a $(2r-2h)$-factor of G' obtained by removing the edges of H' from G'.

Theorem 2.4. Let G be a r-regular graph. Then $\mathbb{N} \setminus \{2, 4\} \subseteq N(G)$.

Proof. We know from Theorem 1.11 and Theorem 1.6 that $1, 3 \in N(G)$. For $k \geq 5$, we consider two cases.

Case 1. Suppose $k \geq 5$ and $k \neq 8$. Using the construction described in Remark 2.3, let H' and $G' \setminus H'$ be a 2-factor and 8-factor of G', respectively.

Define a zero-sum k-magic labeling ℓ' on G' by

$$
\ell'(e) = \begin{cases}
 k - 4 & \text{if } e \in E(H') \\
 1 & \text{if } e \in E(G' \setminus H').
\end{cases}
$$

Note that the labeling ℓ on G defined by $\ell(e_i) = \ell'(e_i) + \ell'(e'_i)$ for $e_i \in E(G)$ is a zero-sum k-magic labeling on G.

Case 2. Suppose $k = 8$. Using again the construction in Remark 2.3, let H' and $G' \setminus H'$ be a 4-factor and 6-factor of G', respectively.

Define a zero-sum labeling ℓ' on G' by

$$
\ell'(e) = \begin{cases}
 2 & \text{if } e \in E(H') \\
 4 & \text{if } e \in E(G' \setminus H').
\end{cases}
$$

Observe that the labeling ℓ on G defined by $\ell(e_i) = \frac{1}{2}[\ell'(e_i) + \ell'(e'_i)]$ for $e_i \in E(G)$ is a zero-sum 8-magic labeling on G.

Therefore, $\mathbb{N} \setminus \{2, 4\} \subseteq N(G)$.

Note that an odd-regular graph may not be zero-sum 4-magic. It was remarked in [1, Remark 10] that an odd-regular graph G is not zero-sum 4-magic if G has a vertex such that every edge incident to it is a cut-edge.

Theorem 2.5. Let G be an r-regular graph, where $r \geq 3$ is odd and $k \geq 5$. Then G is completely k-magic.

Proof. We know from Theorems 1.5 and 2.4 that $0 \in \Sigma_k(G)$. Let $E(G) = \{e_1, e_2, e_3, \ldots, e_m\}$. As constructed in Remark 2.3, let H' and $G' \setminus H'$ be a 2-factor and $(2r-2)$-factor of G', respectively. We consider two cases.

Case 1. Suppose $r \equiv 1 \pmod{k}$. Then $\gcd(r, k) = 1$. By Theorem 1.9, G is completely k-magic.

Case 2. Suppose $r \not\equiv 1 \pmod{k}$. Assume $\gcd(r, k) = d$ so that $r = ad$ and $k = bd$ for some positive integers a and b. Note that, since r is odd, d is also odd. We consider two sub-cases.

Sub-Case 2.1. Suppose $k \geq 5$ is odd. Then b is odd.

For each $c \in \mathbb{Z}_k^* \setminus \{k - b, k - 2b\}$, define $\ell'_c : E(G') \to \mathbb{Z}_k^*$ by

$$
\ell'_c(e) = \begin{cases}
 x & \text{if } e \in E(H') \\
 \frac{1}{2}(k + b) & \text{if } e \in E(G' \setminus H').
\end{cases}
$$

where $x \in \mathbb{Z}_k$ is chosen such that $\ell'_c(e) \equiv x \pmod{k}$. Then ℓ'_c is a zero-sum k-magic labeling on G'.

By Remark 2.3, we have $\ell'_c(e_i) = \ell'(e_i) + \ell'(e'_i)$ for $e_i \in E(G)$. Hence, G is completely k-magic.
where \(x = \frac{1}{2}(b + c) \) if \(c \) is odd, and \(x = \frac{1}{2}(b + c + k) \) if \(c \) is even. Observe that \(\ell'_c \) is a c-sum \(k \)-magic labeling of \(G' \) for each \(c \neq 0 \).

For each \(c \notin \{0, k - h, k - 2b\} \), define \(\ell_c : E(G) \to \mathbb{Z}_k^* \) by \(\ell_c(e_i) = \ell'_c(e_i) + \ell'_c(e'_i) \) for \(1 \leq i \leq m \). Since \(\ell'_c \) is a c-sum \(k \)-magic labeling of \(G' \), \(\ell_c \) is a c-sum \(k \)-magic labeling of \(G \) for each \(c \in \mathbb{Z}_k^* \setminus \{k-b, k-2b\} \).

If \(k \neq 3b \), then, by Remark 1.3, \(k - b, k - 2b \notin \Sigma_k(G) \). If \(k = 3b \), it is enough to show that \(k - 2b \notin \Sigma_k(G) \). To do that, we provide a different labeling using a different set of factors of \(G' \). Let \(J' \) and \(G' \setminus J' \) be a 4-factor and \((2r - 4)\)-factor of \(G' \) respectively. In addition, we let \(J' = J'_1 \cup J'_2 \), where \(J'_1 \) and \(J'_2 \) are 2-factors of \(J' \).

Define \(\ell' : E(G') \to \mathbb{Z}_k^* \) by

\[
\ell'(e) = \begin{cases}
\frac{1}{2}(b + 1) & \text{if } e \in E(J'_1) \\
\frac{1}{2}(b - 1) & \text{if } e \in E(J'_2) \\
b & \text{if } e \in E(G' \setminus J').
\end{cases}
\]

Since \(k = 3b \), \(d = 3 \) and \(r = 3a \). Thus, the magic sum in \(G' \) is given by \(2\left[\frac{1}{2}(b + 1)\right] + 2\left[\frac{1}{2}(b - 1)\right] + b(2r - 4) \equiv 0 \) (mod \(k \)). Define \(\ell : E(G) \to \mathbb{Z}_k^* \) by \(\ell(e_i) = \ell'(e_i) + \ell'(e'_i) \) for \(1 \leq i \leq m \). Note that \(\ell \) is also a \((k - 2b)\)-sum \(k \)-magic labeling of \(G \).

Sub-Case 2.2. Suppose \(k \geq 6 \) is even. Then \(b \) is even.

By labeling all the edges of \(G \) with \(\frac{1}{2}k \), we see that \(\frac{1}{2}k \in \Sigma_k(G) \).

Suppose \(r - 1 \equiv \frac{1}{2}k \) (mod \(k \)). For each \(c \in \mathbb{Z}_k^* \setminus \{k - 1, \frac{1}{2}k\} \), define \(\ell'_c : E(G') \to \mathbb{Z}_k^* \) by

\[
\ell'_c(e) = \begin{cases}
c & \text{if } e \in E(H') \\
1 & \text{if } e \in E(G' \setminus H').
\end{cases}
\]

Observe that the sum of the labels of the edges incident to each vertex in \(G' \) is \(2(r - 1) + 2c \equiv 2c \) (mod \(k \)). Using a similar argument as in Sub-Case 2.1, it can be shown that \(G \) is also c-sum \(k \)-magic for all even \(c \neq 0 \). Thus, we are left to show that \(G \) is c-sum \(k \)-magic as well for all odd \(c \).

For each odd \(c \neq k - 1 \), define \(\ell_c : E(G) \to \mathbb{Z}_k^* \) by \(\ell_c(e_i) = \frac{1}{2}[\ell'_c(e_i) + \ell'_c(e'_i)] \) for each \(i, 1 \leq i \leq m \). Note that, since \(\ell'_c \) is a \(2c \)-sum \(k \)-magic labeling of \(G' \), \(\ell_c \) is a c-sum \(k \)-magic labeling of \(G \) for each odd \(c \neq k - 1 \). Again, by Remark 1.3, we see that \(k - 1 \notin \Sigma_k(G) \).

Suppose \(r - 1 \equiv r_0 \) (mod \(k \)), where \(r_0 \neq \frac{1}{2}k \). For each \(c \in \mathbb{Z}_k^* \setminus \{r_0, r_0 + \frac{1}{2}k, r_0 - 1\} \), define \(\ell'_c : E(G') \to \mathbb{Z}_k^* \) by

\[
\ell'_c(e) = \begin{cases}
c - r_0 & \text{if } e \in E(H') \\
1 & \text{if } e \in E(G' \setminus H').
\end{cases}
\]

Observe that the sum of the labels of the edges incident to each vertex in \(G' \) is \(2r_0 + 2c - 2r_0 \equiv 2c \) (mod \(k \)). As in Sub-Case 2.1, it can be shown that \(G \) is also even-sum \(k \)-magic. So again, we are left to show that \(G \) is odd-sum \(k \)-magic.

As what we did earlier, for each odd \(c \neq r_0 - 1 \) (and, possibly, \(r_0 + \frac{1}{2}k \)), define \(\ell_c : E(G) \to \mathbb{Z}_k^* \) by \(\ell_c(e_i) = \frac{1}{2}[\ell'_c(e_i) + \ell'_c(e'_i)] \) for all \(i, 1 \leq i \leq m \). Since \(\ell'_c \) is a \(2c \)-sum \(k \)-magic labeling of \(G' \), \(\ell_c \) is a c-sum \(k \)-magic labeling of \(G \) for each odd \(c \neq r_0 - 1 \) (and, possibly, \(r_0 + \frac{1}{2}k \)). If \(r_0 - 1 \) and \(r_0 + \frac{1}{2}k \) are not inverses, then, by Remark 1.3, \(\mathbb{Z}_k^* \subset \Sigma_k(G) \).

If \(r_0 - 1 \) and \(r_0 + \frac{1}{2}k \) are inverses, then it is enough to show that \(r_0 - 1 \in \Sigma_k(G) \). Define \(\ell' \) on \(G' \) by

\[
\ell'(e) = \begin{cases}
k - 1 & \text{if } e \in E(H') \\
1 & \text{if } e \in E(G' \setminus H').
\end{cases}
\]
Note that the magic sum using \(\ell' \) is \(2r_0 - 2 \). Define \(\ell \) on \(G \) by \(\ell(e_i) = \frac{1}{3}[\ell'(e_i) + \ell'(e'_i)] \) for \(e_i \in E(G) \). Clearly, \(\ell \) is an \((r_0 - 1)\)-sum \(k \)-magic labeling on \(G \). Thus, by Remark 1.3, \(r_0 + \frac{1}{2}k \in \Sigma_k(G) \), and so \(\mathbb{Z}_k^* \subseteq \Sigma_k(G) \).

In any case, \(G \) is completely \(k \)-magic. \(\square \)

Theorem 2.6. Let \(k \geq 5 \) and \(G \) a \(2r \)-regular graph of order \(n \geq 3 \), where \(r \geq 2 \).

1. If \(n \) is even, then \(G \) is completely \(k \)-magic.
2. If \(n \) is odd, then
 - \(G \) is completely \(k \)-magic if \(k \) is odd, and
 - \(\Sigma_k(G) = \{0, 2, 4, \ldots, k - 2\} \) if \(k \) is even.

Proof. Let \(E(G) = \{e_1, e_2, e_3, \ldots, e_m\} \). By Theorem 1.5, \(G \) is zero-sum \(k \)-magic.

1. Suppose \(r = 2 \). To prove the theorem, we only show that \(\mathbb{Z}_k^* \subseteq \Sigma_k(G) \). We consider two cases.

 Case 1. Suppose \(k \) is odd. Then \(\gcd(4, k) = 1 \). By Theorem 1.9, \(\mathbb{Z}_k^* \subseteq \Sigma_k(G) \).

 Case 2. Suppose \(k \) is even. It is not difficult to see that, being 4-regular, \(G \) is 2-edge connected. By Remark 2.3, we can construct \(G' \) so that \(G' \) is a 4-connected 8-regular graph. By Theorem 1.2, \(G' \) has a 3-factor, say \(H' \). Let \(G' \setminus H' \) be the 5-factor of \(G' \) obtained by removing the edges of \(H' \) from \(G' \).

 Sub-Case 2.1. Let \(k = 2d, d \) even. For each \(c \in \mathbb{Z}_k^* \setminus \left\{\frac{1}{2}k, \frac{1}{3}k\right\} \), define \(f_c : E(G') \to \mathbb{Z}_k^* \) by

 \[
 f_c(e) = \begin{cases}
 2c & \text{if } e \in E(H') \\
 k - c & \text{if } e \in E(G' \setminus H').
 \end{cases}
 \]

 Observe that the sum of the labels of the edges incident to each of the vertices in \(G' \) is equal to \(5(k - c) + 3(2c) \equiv c \mod k \). This shows that \(f_c \) is a \(c \)-sum \(k \)-magic labeling of \(G' \) for all \(c \neq 0, \frac{1}{2}k, \frac{1}{3}k \). By Remark 1.3, \(\frac{1}{2}k \in \Sigma_k(G') \).

 For each \(c \in \mathbb{Z}_k^* \setminus \left\{\frac{1}{2}k, \frac{1}{3}k\right\} \), define \(\ell_c : E(G) \to \mathbb{Z}_k^* \) by \(\ell_c(e_i) = f_c(e_i) + f_c(e'_i) \) for all \(i, 1 \leq i \leq m \). Clearly, \(\ell_c \) is a \(c \)-sum \(k \)-magic labeling of \(G \) for each \(c \in \mathbb{Z}_k^* \setminus \left\{\frac{1}{2}k, \frac{1}{3}k\right\} \). By Remark 1.3, we see that \(\mathbb{Z}_k^* \setminus \left\{\frac{1}{2}k\right\} \subseteq \Sigma_k(G) \).

 By Theorem 1.1, \(G \) is 2-factorable. Let \(G_1 \) and \(G_2 \) be the two 2-factors of \(G \). Label the edges in \(G_1 \) with \(d \) and the edges in \(G_2 \) with \(\frac{1}{2}(k - d) \). This shows that \(d = \frac{1}{2}k \in \Sigma_k(G) \).

 Sub-Case 2.2. Let \(k = 2d, d \geq 3 \) odd. Observe that, for \(c \neq 0, \frac{1}{2}k \), the labeling \(\ell_c \) in Sub-Case 2.1 is a \(c \)-sum \(k \)-magic labeling of \(G \). We are left to show that \(\frac{1}{2}k \in \Sigma_k(G) \).

 Let \(d \neq 3 \) and 9. We give a labeling for the factors of \(G' \) defined above (namely, \(H' \) and \(G' \setminus H' \)) and the 2-factors of \(G \) (namely, \(G_1 \) and \(G_2 \)) to show that \(G \) is \(d \)-sum \(k \)-magic.

 Let \(f : E(G) \to \mathbb{Z}_k^* \) be defined by

 \[
 f(e) = \begin{cases}
 d + 1 & \text{if } e \in E(G_1) \\
 \frac{1}{2}(k - d - 1) & \text{if } e \in E(G_2).
 \end{cases}
 \]

 Clearly, \(f \) is \((d + 1)\)-sum \(k \)-magic labeling of \(G \).

 Let \(g' : E(G') \to \mathbb{Z}_k^* \) be defined by

 \[
 g'(e) = \begin{cases}
 k - 2 & \text{if } e \in E(H') \\
 1 & \text{if } e \in E(G' \setminus H').
 \end{cases}
 \]

 Define also \(g : E(G) \to \mathbb{Z}_k^* \) by \(g(e_i) = g'(e_i) + g'(e'_i) \) for all \(i, 1 \leq i \leq m \). Note that \(g' \) is a \((k - 1)\)-sum \(k \)-magic labeling of \(G' \), so \(g \) is a \((k - 1)\)-sum \(k \)-magic labeling of \(G \).
Finally, define \(\ell : E(G) \to \mathbb{Z}_k^* \) by \(\ell(e) = f(e) + g(e) \) for all \(e \in E(G) \). Since \(f \) and \(g \) are \((d + 1)\)-sum and \((k - 1)\)-sum \(k \)-magic labeling of \(G \), respectively, \(\ell \) is a \(d \)-sum \(k \)-magic labeling of \(G \).

Suppose \(d = 3 \) or \(9 \). Define \(g' : E(G') \to \mathbb{Z}_k^* \) be defined by

\[
g'(e) = \begin{cases} 2x & \text{if } e \in E(H') \\ 1 & \text{if } e \in E(G' \setminus H') \end{cases},
\]

where \(x = 1 \) if \(d = 3 \), and \(x = 3 \) if \(d = 9 \). Note that \(g' \) is a \(5 \)-sum \(k \)-magic labeling of \(G' \). Define a labeling \(g \) on \(G \) by \(g(e_i) = g'(e_i) + g'(e_i') + 1 \) for all \(i, 1 \leq i \leq m \). Note that \(g \) is a \(d \)-sum \(k \)-magic labeling on \(G \). Thus, \(d = \frac{1}{2} k \in \Sigma_k(G) \), and so \(G \) is completely \(k \)-magic.

Suppose \(r \geq 3 \) is odd. By Theorem 1.1, \(G \) is \(r \)-factorable. By Theorem 2.5, the \(r \)-factors of \(G \) are completely \(k \)-magic for all \(k \geq 5 \). Thus, by Theorem 2.2, \(G \) is also completely \(k \)-magic.

If \(r \geq 4 \) is even, then, by Theorem 1.1, \(G \) has a \(6 \)-factor, say \(H \). Using the case for \(r \) is odd, \(H \) is completely \(k \)-magic. Thus, by Theorem 2.2, \(G \) is also completely \(k \)-magic.

(2(i)) By Theorem 1.1, \(G \) is 2-factorable. Let \(G_1, G_2, \ldots, G_r \) be the 2-factors of \(G \). If \(k \) is odd, then, by Remark 2.1, \(\mathbb{Z}_k^* \subseteq \Sigma_k(G_i) \) for all \(i, 1 \leq i \leq r \). For each \(i \) and \(c \in \mathbb{Z}_k^* \), let \(\ell_c \) be a \(c \)-sum \(k \)-magic labeling of \(G_i \). We consider two cases.

Case 1. Suppose \(r \equiv 1 \pmod{3} \). For each \(c \in \mathbb{Z}_k^* \), define \(\ell_c : E(G) \to \mathbb{Z}_k^* \) by

\[
\ell_c(e) = \begin{cases} \ell_c(e) & \text{if } e \in E(G_1) \\ \ell_c(e) & \text{if } e \in E(G_i) \text{ for some } i = 2, 3, \ldots, r. \end{cases}
\]

Note that \(\ell_c \) is a \(c \)-sum \(k \)-magic labeling of \(G \) for all \(c \neq 0 \).

Case 2. Suppose \(r \not\equiv 1 \pmod{3} \). For each \(c \in \mathbb{Z}_k^* \setminus \{r - 1 \pmod{3}\} \), define \(\ell_c : E(G) \to \mathbb{Z}_k^* \) by

\[
\ell_c(e) = \begin{cases} \ell_{c-x}(e) & \text{if } e \in E(G_1) \\ \ell_c(e) & \text{if } e \in E(G_i) \text{ for some } i = 2, 3, \ldots, r, \end{cases}
\]

where \(x \equiv r - 1 \pmod{3} \). The sum of the labels of the edges incident to each vertex is \(c \pmod{3} \). Thus, \(G \) is \(c \)-sum \(k \)-magic for each \(c \neq x \). By Remark 1.3, \(G \) is \(x \)-sum \(k \)-magic since \(G \) is \((k - x)\)-sum \(k \)-magic. In this case, \(G \) is completely \(k \)-magic.

(2(ii)) This follows from Remark 2.1, Lemma 1.8, and Theorem 2.2.

The proof of the following theorems are similar to Theorem 2.5 and Theorem 2.6.

Theorem 2.7. Let \(r \geq 3 \), and \(G \) a zero-sum 4-magic \(r \)-regular graph. Then

1. If the order of \(G \) is even, then \(G \) is completely 4-magic.
2. If the order of \(G \) is odd, then \(\Sigma_4(G) = \{0, 2\} \).

Theorem 2.8. Let \(G \) be an \(r \)-regular graph, where \(r \geq 3 \).

1. If \(r \equiv 0 \pmod{3} \) or \(r \equiv 0 \pmod{6} \), then \(G \) is completely 3-magic.
2. If \(r \equiv 0 \pmod{3} \) and \(r \) odd, then \(G \) is completely 3-magic if and only if \(G \) has a factor \(H \) such that \(d_H(v) \equiv 1 \pmod{3} \) for all \(v \in V(H) \).
References

[1] Akbari S, Rahmati F, and Zare S 2014 Zero-sum magic labelings and null sets of regular graphs *Electron. J. Combin.* **21**(2) #P2.17

[2] Akiyama J and Kano M 2011 *Factors and Factorizations of Graphs* (Springer-Verlag)

[3] Bondy J A and Murty U S R 2008 *Graph Theory* (Springer)

[4] Dong G and Wang N 2014 A conjecture on zero-sum 3-magic labeling of 5-regular graphs *arXiv* 1406.6870v1

[5] Eniego A A and Garces I J L 2015 Completely k-magic regular graphs *Appl. Math. Sci. (Ruse)* **103** pp 5139–5148

[6] Gallai T 1950 On factorisation of graphs *Acta Math. Hungar.* **1**(1) pp 133–53

[7] Petersen J 1891 Die theorie der regulären graphs *Acta Math.* **15** pp 193–220

[8] Salehi E 2006 Integer-magic spectra of cycle-related graphs *Iran. J. Math. Sci. Inform.* **2** pp 53–63

[9] Sedlacek J 1976 On magic graphs *Math. Slovaca* **26** pp 329–35

[10] Wang T M and Hu S W 2011 Constant sum flows in regular graphs *Frontiers in Algorithmics and Algorithmic Aspects in Information and Management*, ed M Attalah, X Y Li and B Zhu (Berlin Heidelberg: Springer) pp 168–175