Video head impulse test (v-hit) em indivíduos com diabetes mellitus tipo 1

Video head impulse test (v-hit) in individuals with type 1 diabetes mellitus

Marlon Bruno Nunes Ribeiro1, Ligia Oliveira Gonçalves Morganti1, Patricia Cotta Mancini1

RESUMO

Objetivo: Verificar a função dos canais semicirculares do labirinto de indivíduos com diabetes tipo 1, submetidos ao Video Head Impulse Test (v-HIT), e compará-los com indivíduos sem diabetes. Métodos: Estudo transversal, observacional, analítico, realizado com uma amostra de conveniência, formada por 35 indivíduos diabéticos e 100 não diabéticos. Todos os participantes foram submetidos à avaliação vestibular por meio do v-HIT. Resultados: A casuística foi composta por 135 participantes, divididos em dois grupos. O grupo de estudo foi composto por indivíduos com diabetes tipo 1, totalizando 21 mulheres e 14 homens. A idade variou entre 18 e 71 anos, com média de 35,37 anos e desvio padrão de 10,98. O grupo sem diabetes foi composto por 77 mulheres e 23 homens. A idade variou entre 20 e 83 anos, com média de 46,44 e desvio padrão de 19,82. Os grupos foram pareados entre si, com relação à idade (p=0,098) e sexo (p=0,052). Os pacientes diabéticos apresentaram ganho diminuído nos canais semicirculares posteriores e anterior esquerdo. A velocidade apresentou diferença significativa nos canais lateral esquerdo, anterior direito e posterior esquerdo no grupo com diabetes mellitus tipo 1, porém não apresentou correlação com o ganho dos canais semicirculares.Conclusão: Os participantes com diabetes mellitus tipo 1 apresentaram um ganho diminuído nos canais semicirculares posteriores e no canal anterior esquerdo quando comparados com indivíduos não diabéticos.

Palavras-chave: Orelha interna; Canais semicirculares; Doenças do labirinto; Diabetes mellitus; Equilíbrio postural

ABSTRACT

Purpose: To verify the function of the labyrinth semicircular channels of type 1 diabetes individuals submitted to the Video Head Impulse Test (v-HIT) and to compare them with individuals without diabetes. Methods: Cross-sectional, observational, analytical study conducted with a convenience sample of 35 diabetic and 100 non-diabetic individuals. All participants were submitted to vestibular evaluation using v-HIT. Results: The sample consisted of 135 participants divided into two groups. The study group was composed of individuals with type 1 diabetes, totaling 21 women and 14 men. The age range was between 18 and 71 years, with a mean of 35.37 years and standard deviation of 10.98. The group without diabetes was composed of 77 women and 23 men. The age range was between 20 to 83 years, with a mean of 46.44 and standard deviation of 19.82. The groups were matched for age (p=0.098) and gender (p=0.052). Diabetic patients showed decreased gain in the posterior and left anterior semicircular canals. Velocity showed a significant difference in the left lateral, anterior right and posterior right canals in the group with DM1, however velocity did not show correlation with the gain of the semicircular canals. Conclusion: participants with type 1 diabetes mellitus showed a decreased gain in the posterior semicircular canals and in the left anterior canal when compared to non-diabetic individuals.

Keywords: Inner ear; Semicircular canals; Labyrinth diseases; Diabetes mellitus; Postural balance
INTRODUÇÃO

O Diabetes Mellitus tipo 1 (DM1) é uma doença autoimmune, caracterizada pela perda progressiva das células beta pancreáticas, o que acarreta a interrupção da produção de insulina e, consequentemente, um desequilíbrio metabólico grave. A International Diabetes Federation (IDF) revela que, a cada ano, mais de 70 mil pessoas desenvolvem DM1, no Brasil. Estima-se que mais de 30 mil brasileiros tenham DM1 e que o Brasil ocupe o terceiro lugar em prevalência de DM1 no mundo, segundo a IDF. Embora sua prevalência esteja aumentando, a DM1 corresponde a sòmente 5% a 10% de todos os casos de DM. A doença é frequentemente diagnosticada em crianças, adolescentes e, em alguns casos, em adultos jovens, afetando igualmente homens e mulheres.

É descrito que distúrbios relacionados ao metabolismo dos carboidratos podem afetar o funcionamento do aparelho vestibular. Dentre as vestibulopatias mais frequentes, encontra-se a vertigem posicional paroxística benigna, a hidropisia endolinfática e as de origem metabólica, sendo estas responsáveis por 17,1% das labirintopatias. Diversas alterações metabólicas dos carboidratos podem afetar o funcionamento dos sistemas vestibular e auditivo, a maioria delas decorrentes de distúrbios do metabolismo da glicose.

O metabolismo da glicose fornece a energia necessária para a manutenção, desde a diferença de potencial endolinfático e perlinfático, até a diferença de potencial transmembrana neuronal, que vai permitir que as informações periféricas cheguem ao sistema nervoso central e sejam adequadamente processadas.

Na avaliação vestibular de indivíduos com distúrbio do metabolismo da glicose, foram encontradas alterações eletronistagmográficas em 27,1% a 43,8% dos indivíduos. Um estudo identificou alterações na curva insulínemica em pacientes com vestibulopatias, quando comparados a voluntários saudáveis, com diferença estatisticamente significativa. Otros estudos evidenciaram alterações vestibulares em indivíduos diabéticos assintomáticos. Estes achados revelam a importância de se realizar uma avaliação vestibular periférica em indivíduos com diabetes.

Os canais semicirculares (CSC) detectam movimentos angulares de cabeça, por meio do reflexo vestibulo-ocular (RVO), enquanto o sáculo e utriculo detectam as acelerações lineares da cabeça, além da posição da cabeça em relação ao espaço. O RVO é responsável por manter uma imagem nítida na retina durante os movimentos da cabeça, desencadeando movimentos oculares compensatórios na direção oposta. Estudos anteriores utilizaram a prova calórica para avaliar a função vestibular de indivíduos com diabetes mellitus, mas, atualmente, essa análise pode ser realizada de forma objetiva e detalhada, por meio da avaliação do reflexo vestibulo-ocular com utilização do Video Head Impulse Test (v-HIT).

O v-HIT é um exame rápido e objetivo, que avalia o RVO em cada canal semicircular, individualmente, e em frequência fisiológica da aceleração angular da cabeça, mediante impulsos cefálicos rápidos e de curta amplitude. Em cada impulso, ele fornece o registro do movimento da cabeça e a resposta reflexa do olho. As provas impulsivas são rápidas para desencadear o RVO sem contaminação cortical ou de sistemas oculares lentes, avaliando a função vestibular em frequências mais altas que a prova calórica.

Diversos estudos destacaram a praticidade e objetividade do v-HIT, que converge localizar, com precisão, o canal semicircular afetado, conferindo a utilidade clínica deste exame no diagnóstico e acompanhamento da reabilitação de indivíduos com alterações otoneurológicas. Acrescenta-se, ainda, o fato de que o v-HIT pode ser um exame que não gera desconforto ao paciente e não precisa de nenhum preparo prévio para sua realização.

Ainda estão escassos na literatura os estudos que avaliam a função vestibular de indivíduos com DM1 por meio do v-HIT. Existem estudos nesta população utilizando apenas a vectoeletronistagmografia. Diante do exposto, o objetivo deste estudo foi avaliar a função vestibular de indivíduos com diabetes mellitus tipo 1, por meio do v-HIT, e comparar os resultados com aqueles obtidos em indivíduos sem diabetes.

MÉTODO

Os procedimentos desta pesquisa foram aprovados pelo Comitê de Ética da Universidade Federal de Minas Gerais (UFMG), sob CAAE nº 56877316.1.0000.5149. A pesquisa foi realizada no Observatório de Saúde Funcional em Fonoaudiologia do Departamento de Fonoaudiologia da Faculdade de Medicina da Universidade Federal de Minas Gerais – UFMG – Minas Gerais (MG), Brasil.

A amostra foi composta por 135 participantes, sem queixas de tontura autorrelatadas em questionário, divididos em dois grupos. O grupo de estudo foi composto por indivíduos com DM1, totalizando 21 mulheres e 14 homens. A idade variou entre 18 e 71 anos, com média de 35,37 anos e desvio padrão de 10,98. O grupo controle foi composto por 77 mulheres e 23 homens sem diabetes. A idade variou entre 20 e 83 anos, com média de 46,44 e desvio padrão de 19,82. Os grupos foram pareados entre si com relação à idade (p=0,098) e sexo (p=0,052).

Para o grupo sem diabetes, foram incluídos indivíduos maiores de 18 anos que concordaram, voluntariamente, em participar da pesquisa, que apresentaram otoscopia normal, sem história de cirurgia ou trauma otológico, sem doenças vestibulares progressiva, sem dificuldades na movimentação cervical e que assinaram o Termo de Consentimento Livre e Esclarecido. Além dos itens citados acima, para os participantes com DM1 realizou-se avaliação auditiva (imitanciometria e audiometria). Os indivíduos do grupo sem diabetes eram oriundos da comunidade acadêmica (alunos, professores e funcionários da universidade) e os indivíduos com diabetes eram provenientes do Ambulatório de Endocrinologia da UFMG, onde a pesquisa foi realizada. Os participantes com DM1 estavam em acompanhamento para controle glicêmico e o tempo de doença variou de sete meses a 46 anos, com média de 21,9 anos e desvio padrão de 10,2.

Os indivíduos foram esclarecidos quanto aos objetivos da pesquisa, seus riscos e benefícios, e aqueles que concordaram voluntariamente em participar foram, então, agendados em dia e horário de sua disponibilidade. Inicialmente, cada participante respondeu a um questionário referente a informações demográficas (idade e sexo) e dados relativos à história otológica e vestibular. Os pacientes com DM1 responderam a um questionário específico, que continha, além das questões demográficas (idade e sexo), outras questões relacionadas à história otológica e vestibular.
além de informações sobre a DM1. Todos os exames foram realizados por um mesmo pesquisador.

As variáveis demográficas analisadas neste estudo foram idade e sexo. Os resultados do v-HIT foram avaliados com relação ao ganho e presença de sacadas corretivas. As velocidades dos impulsos aplicados foram medidas como forma de garantir a adequada execução dos movimentos. Não se realizou nenhum outro exame otoneurológico e todos os participantes negaram vontura/vertigem por meio do questionário.

Para a avaliação auditiva dos participantes com DM1, realizou-se a meatoscopia e exames audiológicos em sala acusticamente tratada. Para a timpanometria, utilizou-se o equipamento Ototip 100 Otometrics® e o paciente foi orientado a permanecer sentado, em silêncio, sendo, então, introduzida a sonda para captar a resposta no meato acústico externo de cada orelha. A audiometria foi realizada com o equipamento ITC II Otometrics®, com o paciente sentado de costas para o aparelho e o avaliador, em silêncio, com o fone de ouvido Sennheiser HDA-200, devidamente posicionado. A avaliação auditiva foi realizada como forma de descartar perdasauditivas que poderiam estar relacionadas a doenças prévias da orelha interna (12).

Para realização do v-HIT, foi utilizado o equipamento ICS-impulse® da marca Otometrics®. Os participantes permaneceram sentados em uma cadeira a 120 cm do alvo, posicionado à altura dos olhos, com a máscara do equipamento bem ajustada à cabeça, de forma a minimizar possíveis deslizamentos. Após a calibração do sinal de posição do olho, o indivíduo foi instruído a fixar os olhos em um alvo localizado na parede, enquanto o examinador realizava os impulsos cefálicos nos planos específicos de estimulação dos seis CSC. Foram obtidos, pelo menos, 20 impulsos em cada plano de movimentação cefálica, com, no máximo, 10 impulsos rejeitados como inadequados pelo software do equipamento. O v-HIT foi repetido quando houve hipofunção de qualquer canal semicircular, com a finalidade de comprovar o resultado encontrado.

Para avaliar os canais laterais, foram realizados movimentos curtos e rápidos com a cabeça do participante para a direita e esquerda, de forma aleatória. Na avaliação dos canais verticais, a cabeça do participante foi deslocada a 45° para a direita do plano mediano da cabeça, colocando no plano de estimulação os canais anterior esquerdo e posterior direito (LARP, do inglês left anterior and right posterior). Nesta posição, um movimento de cabeça para a frente ativa o canal anterior esquerdo e um movimento de cabeça para trás ativa o canal posterior direito. Em seguida, a cabeça do participante foi posicionada neste mesmo ângulo para a esquerda, avaliando o par sinérgico de CSC anterior direito e posterior esquerdo (RALP, do inglês right anterior and left posterior). Nesta posição, o movimento da cabeça para frente estimula o canal anterior direito e, para trás, o canal posterior esquerdo. Foram realizados impulsos cefálicos de frequência e direção imprevisíveis, de baixa amplitude (10-20°), alta aceleração (1.000-2.500°/s²) e velocidade (100-250°/s), de acordo com os parâmetros sugeridos pelo manual do equipamento. Demais estudos também utilizaram esses parâmetros dos impulsos cefálicos, como forma de garantir um exame confiável (17-20). O tempo de duração total do exame foi de, aproximadamente, 15 minutos.

O equipamento apresenta sensores que detectam e registram os movimentos da cabeça e dos olhos. Para cada movimento realizado pelo examinador (impulso), é gerada uma sinusoide representada em um gráfico, resultante do movimento da cabeça e dos olhos. Em indivíduos normais, espera-se que as sinusoïdes sejam iguais, o que resulta no chamado ganho igual a 1. Quando o movimento dos olhos é menor que o movimento realizado pela cabeça, tem-se um ganho abaixo de 1 e o movimento compensatório dos olhos – sacada corretiva – é realizado para levar os olhos de volta ao alvo. O exame foi validado e apresenta valores de especificidade de 93% e sensibilidade de 74%. Considera-se normal um ganho maior ou igual 0,8 para os canais laterais e 0,75 para os canais verticais (23-24).

Os dados coletados foram lançados em tabela do programa Excel e submetidos à análise estatística, por meio do programa Statistical Package for the Social Sciences (SPSS), versão 22.0. Inicialmente, foi realizada a análise da frequência das variáveis idade e sexo, as medidas de tendência central (média e mediana), de dispersão (desvio padrão) e de posição (máximo e mínimo) das variáveis ganho dos CSC e velocidade dos impulsos cefálicos. A normalidade das variáveis idade, ganho e velocidade do impulso cefálico foi observada utilizando-se o teste de Kolmogorov-Smirnov. A comparação das variáveis idade e sexo entre os grupos foi realizada por meio dos testes Mann-Whitney e Qui-quadrado, respectivamente. A comparação dos grupos com e sem diabetes foi realizada por meio do teste Mann-Whitney, sendo adotado o nível de significância de 5% (p<0,05) em todas as análises.

RESULTADOS

Os valores de ganho dos seis CSC podem ser observados na Tabela 1. O grupo com diabetes apresentou um ganho menor nos canais posteriores, bem como no canal anterior esquerdo. Como ilustração, as Figuras 1 e 2 apresentam imagens de exames v-HIT de dois participantes, sendo o primeiro de um indivíduo sem diabetes, com ganho dentro dos padrões de normalidade (Figura 1) e o segundo, de um participante com DM1, que apresentou diminuição do ganho dos CSC posteriores e anterior direito (Figura 2). Não foram observadas sacadas corretivas em nenhum dos grupos.

Os valores das velocidades aplicadas nos testes são descritos na Tabela 2. No grupo com diabetes, foram aplicadas velocidades menores nos CSC lateral esquerdo, anterior direito e posterior esquerdo, em comparação com o grupo sem diabetes. Realizou-se análise da correlação entre a velocidade dos impulsos cefálicos e o ganho dos CSC e observou-se que, apenas nos canais posteriores direito (R-0,357; p-0,001) e esquerdo (R-0,26; p-0,010), ambos do grupo sem diabetes, quanto maior a velocidade dos impulsos cefálicos, menor o ganho dos CSC. No grupo com diabetes, não foi observada correlação significativa entre as velocidades dos impulsos cefálicos e o ganho dos CSC. Analisou-se também, a associação entre o sexo e o ganho dos CSC em ambos os grupos, sendo encontrada significância estatística apenas nos CSC anterior direito (p 0,04), com o maior ganho no sexo masculino e posterior direito (p 0,02), com maior ganho no sexo feminino, ambos do grupo controle.

No presente estudo, foram descritos os resultados obtidos em cada canal semicircular avaliado, comparando-se esses resultados entre os grupos controle e com DM1. Optou-se por não estudar a variável simetria entre lados.
Tabela 1. Análise do ganho dos canais semicirculares entre os dois grupos, com e sem diabetes

	Ausente	Diabetes	valor de p
Ganho			
Lateral Esquerdo			
Média	0,96	0,97	0,136
Mediana	0,93	0,95	
Mínimo	0,64	0,72	
Máximo	1,42	1,20	
Desvio Padrão	0,13	0,99	
Lateral Direito			
Média	1,04	1,05	
Mediana	1,0	1,0	0,307
Mínimo	0,76	0,57	
Máximo	1,52	1,43	
Desvio Padrão	0,12	0,14	
Anterior Esquerdo			
Média	0,95	0,85	<0,001*
Mediana	0,93	0,85	
Mínimo	0,71	0,51	
Máximo	1,59	1,18	
Desvio Padrão	0,14	0,14	
Anterior Direito			
Média	0,89	0,81	0,054
Mediana	0,89	0,83	
Mínimo	0,59	0,43	
Máximo	1,34	1,16	
Desvio Padrão	0,15	0,20	
Posterior Direito			
Média	0,86	0,73	
Mediana	0,87	0,73	<0,001*
Mínimo	0,41	0,42	
Máximo	1,46	1,09	
Desvio Padrão	0,13	0,12	
Posterior Esquerdo			
Média	0,85	0,71	
Mediana	0,87	0,76	<0,001*
Mínimo	0,34	0,12	
Máximo	1,31	1,04	
Desvio Padrão	0,16	0,21	

Teste Mann-Whitney *p<0,05

Figura 1. Exame de participante sem diabetes

Legenda: LARP = left anterior and right posterior; LA = left anterior; RP = right posterior; RALP = right anterior and left posterior; RA = right anterior; LP = left posterior
v-HIT em indivíduos com diabetes mellitus tipo 1

Figura 2. Exame de participante com diabetes mellitus tipo 1
Legenda: LARP = left anterior and right posterior; LA = left anterior; RP = right posterior; RALP = right anterior and left posterior; RA = right anterior; LP = left posterior

Tabela 2. Velocidade do exame nos dois grupos, com e sem diabetes

	Ausente	Presente	valor de p	
Velocidade (100-250º/s)				
Lateral Esquerdo	Mediana	180	160	<0,001*
	Média	178	161	
	Mínimo	120	130	
	Máximo	240	200	
	Desvio Padrão	23,7	15,5	
Lateral Direito	Mediana	168	160	0,054
	Média	160	158	
	Mínimo	120	130	
	Máximo	240	200	
	Desvio Padrão	23,4	13,9	
Anterior Esquerdo	Mediana	122	120	0,416
	Média	120	118	
	Mínimo	100	110	
	Máximo	180	140	
	Desvio Padrão	10,6	9,7	
Anterior Direito	Mediana	124	120	<0,001*
	Média	120	118	
	Mínimo	110	110	
	Máximo	160	140	
	Desvio Padrão	10,1	9,0	
Posterior Direito	Mediana	127	120	0,715
	Média	120	127	
	Mínimo	110	130	
	Máximo	180	110	
	Desvio Padrão	12,9	150	
Posterior Esquerdo	Mediana	129	120	<0,001*
	Média	130	120	
	Mínimo	110	110	
	Máximo	160	160	
	Desvio Padrão	12,7	12,6	

Teste Mann-Whitney *p<0,05

Vale ressaltar que a velocidade do exame e a faixa de referencia variam dependendo do local do exame, da idade e do gênero do indivíduo.
DISCUSSÃO

Os dois grupos estudados apresentaram-se estatisticamente pareados com relação à idade e ao sexo, estando o feminino presente em maior proporção, nos dois grupos. O sexo feminino, mesmo sendo prevalente nos dois grupos, apresentou apenas associação com o canal posterior direito no grupo sem diabetes. O grupo sem diabetes apresentou valores dentro dos padrões de normalidade de ganho em todos os CSC, conforme esperado para indivíduos sem doença vestibular[17-22].

Os indivíduos com DM1 apresentaram, em sua maioria, audição dentro dos padrões de normalidade. Observou-se um aumento da ocorrência de alteração dos límiase auditivos nesses indivíduos, ao se considerar somente os lixias das frequências altas. Dos 35 indivíduos diabéticos, apenas três (8%) apresentaram perda de audição do tipo neurosensorial de graus leve e moderado. Seis (16%) participantes apresentaram alteração dos lixias auditivos nas frequências de 6 e 8 KHz, ou seja, apenas em frequências altas. Todos os participantes com DM1 apresentaram timpanometria tipo A[25].

O grupo composto por indivíduos com DM1 também apresentou valores dentro dos padrões de normalidade de ganho para quase todos os CSC, exceto para o canal posterior direito, cuja média de ganho foi menor que o valor de referência (0,73). Entretanto, apresentou ganhos estatisticamente menores, quando comparado ao grupo sem diabetes, também nos canais posteriores direito e esquerdo, bem como no canal anterior esquerdo. Os participantes com DM1 não relataram queixas de tontura nos questionários aplicados. Outro estudo também encontrou alterações otonerológicas em indivíduos com DM1 assimotiomáticos, por meio da prova calórica[16].

São escassos os estudos na literatura estudos da função vestibular de indivíduos com DM1 utilizando-se o v-HIT. Encontrou-se apenas um estudo realizado com população pediátrica e não houve diferença estatística[26]. Nos demais estudos, a avaliação vestibular foi realizada por meio de testes ocuolomotores e prova calórica nesta população. Um estudo que avaliou 29 indivíduos demonstrou alteração na prova calórica em 36,8% (n=7) da amostra, sendo 21,1% (n=4) com predomínio labiríntico alterado, dois para a direita e dois para a esquerda, e 15,8% (n=3) com preponderância direcional do nistagmo alterado, um para a direita e dois para a esquerda[10]. No grupo de pacientes com DM1, 14,3% (n=1) não tinham queixa, 14,3% (n=1) apresentaram queixa de tontura por outras causas e 71,4% (n=5) apresentaram queixa de tontura em episódios específicos de hipoglicemia. Os resultados evidenciaram que cinco destes indivíduos com DM1 (26,3%) apresentaram alteração à vectoceleronistagmografia, sendo três indivíduos (15,8%) com síndrome vestibular periférica deficitária e os outros dois (10,5%) com síndrome vestibular periférica irritativa[10].

Estudo realizado com uma amostra de 46 pacientes com DM1 encontrou alteração à prova calórica na eletronistagmografia em 26,0% (n=12) dos pacientes, sendo 4,3% (n=2) com predomínio labiríntico direito e 21,6% (n=10) com preponderância direcional alterada, seis para a direita e quatro para a esquerda[27]. Sherer & Lobo (2002) encontraram, numa amostra de 12 indivíduos com DM1, que 50,0% (n=6) apresentaram preponderância direcional do nistagmo alterado e os outros 16,7% (n=2), predominant labiríntico alterado, não especificando o lado[28].

Esses achados podem ser explicados pelo fato de o metabolismo da glicose ter grande influência sobre a orelha interna, tanto na hipoglicemia, quanto na hiperiglicemia, podendo provocar sintomas auditivos, vestibulares ou mistos. Sabem-se que as estruturas labirínticas, principalmente a estria vascular, possuem atividade metabólica intensa e dependem da oferta constante de oxigênio, glicose e trifosfato de adenosina (ATP)[29]. A glicose é uma substância fundamental para a produção do ATP dentro das células e fornecimento de energia para o funcionamento da bomba de sódio e potássio da endolinfa[28,29]. Desta forma, distúrbios no metabolismo da glicose alteram os ions na endolinfa e perilitina, provocando mudança nos potenciais elétricos labirínticos, podendo causar o aparecimento de tontura[10,13,29,30]. O metabolismo da glicose fornece a energia necessária para a manutenção, desde a diferença de potencial endolinfático e perilitífico, até a diferença de potencial transmembra neuronal, que vai permitir que as informações periféricas cheguem ao sistema nervoso central e sejam adequadamente processadas[10,13,29,30].

Embora no grupo com DM1 tenham sido aplicadas velocidades menores para estimulação dos CSC lateral esquerdo, anterior direito e posterior esquerdo, em comparação com o grupo controle, para todos os CSC, em ambos os grupos, foram aplicadas velocidades adequadas, conforme preconizado na literatura e manual do equipamento para um exame confiável - acima de 120°/s para os canais laterais e 100°/s para os canais verticais[21-24]. Além disso, para esses CSC, não se observou correlação estatística entre a velocidade e o valor do ganho do RVO.

O canal posterior direito foi o único que apresentou ganho abaixo do padrão de normalidade, no grupo com diabetes. Entretanto, não foram observadas sacadas corretivas, esperadas quando existe redução do ganho do reflexo vestibulo-ocular[25-23].

Os exames que apresentaram hipofunção vestibular foram refeitos, para confirmar os achados. A ausência de sacadas corretivas, na presença de um ganho alterado, considerando técnica de execução adequada do exame, pode corresponder a acometimento neurológico central[30]. Estudos adicionais são necessários para avaliar a possível correlação deste achado em pacientes com DM1.

Diante dos resultados encontrados na presente pesquisa, sugere-se maior atenção ao sistema vestibular de indivíduos com DM1, por meio da investigação otonerológica, uma vez que indivíduos com DM1, sem queixa de tontura, podem apresentar hipofunção nos CSC. O sintoma de tontura poderá aparecer posteriormente, trazendo prejuízos à qualidade de vida. Assim, destacamos a importância de detectar a hipofunção vestibular precoce nessa população e realizar o monitoramento, a fim de evitar o agravamento da patologia.

Este estudo teve como limitação o tamanho da amostra de indivíduos com DM1, indicando a importância da realização de estudos com número maior de indivíduos, para que os dados sejam reafirmados ou confrontados.

O v-HIT é um exame rápido, útil, não invasivo, não exige preparo ou jejum anterior à realização e permite uma avaliação detalhada dos CSC, mostrando-se um exame desejável para a avaliação da função vestibular de indivíduos com DM1. Sua utilidade na prática clínica é cada vez mais consolidada por estudos, em razão da sua praticidade e objetividade em diagnosticar alterações vestibulares[22,24,26].

Em alguns indivíduos, principalmente idosos com ptose palpebral, houve dificuldade em captar a pupila de forma nitida, pela câmera do equipamento. Desta forma, para se elevar a pálpebra superior, foi colada fita adesiva no sentido transversal à sobrancelha do participante. A captura adequada da pupila e a
realização de movimentos cefálicos precisos são fundamentais para estimular os CSC de forma adequada.\(^{17,19,22,26}\)

Importante ressaltar que, apesar de o v-HIT ser um teste prático e objetivo para avaliar cada canal semicircular em frequências fisiológicas, os exames são ferramentas complementares da avaliação vestibular e nenhum teste isolado é capaz de avaliar integralmente todas as estruturas do sistema vestibular.

CONCLUSÃO

O grupo com DM1 apresentou menor ganho do reflexo vestibulo-ocular nos canais posteriores e no canal anterior esquerdo, quando comparado aos indivíduos do grupo sem diabetes. Não foram observadas sacadas corretivas em nenhum dos grupos.

AGRADECIMENTOS

Ao Ambulatório de Endocrinologia da UFMG, na pessoa da Professora Milena Guimarães, pelo apoio na realização desta pesquisa, e a todos os participantes que contribuíram para que este estudo acontecesse.

REFERÊNCIAS

1. Mattosinho MMS, Silva DMGV. Itinerário terapêutico do adolescente com diabetes mellitus tipo 1 e seus familiares. Rev Latino-am Enfermagem. 2007 Nov-Dez;15(6):1113-9.
2. Silink M. Childhood diabetes: a global perspective. Horm Res. 2002;57(Suppl 1):1-5. PMid:11979014.
3. Fernandes AP, Pace AE, Zanetti ML, Foss MC, Donadi EA. Fatores imunogenéticos associados ao diabetes mellitus do tipo 1. Rev Lat Am Enfermagem. 2005;13(5):743-9. http://dx.doi.org/10.1590/S0104-11692005000500020. PMid:16308633.
4. Knip M, Veijola R, Virtanen SM, Hyöty H, Vaarala O, Åkerblom HK. Environmental triggers and determinants of type 1 diabetes. Diabetes. 2005;54(Suppl 2):S125-36. http://dx.doi.org/10.2337/diabetes.54.suppl_2.S125. PMid:16306330.
5. Negrato CA, Dias JP, Teixeira MF, Dias A, Salgado MH, Lauris JR, et al. Temporal trends in incidence of type 1 diabetes between 1986 and 2006 in Brazil. J Endocrinol Invest. 2010 Jun;33(6):373-7. http://dx.doi.org/10.1007/BF03346606. PMid:19620822.
6. WHO: World Health Organization. Global report on diabetes [Internet]. Geneva: WHO; 2016 [citado em 2017 Jun 27]. Disponível em: http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf
7. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66(2):241-55. http://dx.doi.org/10.2337/db16-0806. PMid:27980006.
8. Chiang JL, Kirkman MS, Lael LM, Peters AL. Standards of medical care in diabetes. Diabetes Care. 2017;40(Suppl 1):1-131.
9. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015 Out;38(10):1964-74. http://dx.doi.org/10.2337/dc15-1419. PMid:26404926.
10. Rigon R, Rossi AG, Côser PL. Achados otoneurogênicos em indivíduos portadores de diabetes mellitus tipo 1. Rev Bras Otorrinolaringol. 2007;73(1):106-11. http://dx.doi.org/10.1590/S0004-72992007000100017.
11. Silva MLG, Munhoz MSL, Ganança MM, Caovilla HH, Ganança CF. In: Silva MLG, Munhoz MSL, Ganança MM, Caovilla HH, editores. Quadros clínicos otoneurológicos mais comuns. 1. ed. São Paulo: Atheneu; 2000. p. 37-45.
12. Kurtaran H, Acar B, Ocak E, Mirici E. The relationship between senile hearing loss and vestibular activity. Rev Bras Otorrinolaringol. 2016;82(6):650-3. http://dx.doi.org/10.1016/j.bjorl.2015.11.016. PMid:26997575.
13. Murbach VF, Caovilla HH, Munhoz MSL, Ganança MM, Guerrero AL. Distortion product otoacoustic emissions amplitude variations during glucose tolerance test and insulin titration. Acta ORL. 2003;22(4):32-42.
14. Kazmiersczak H, Doroszewska G. Metabolic disorders in vertigo, tinnitus, and hearing loss. Int Tinnitus J. 2007;17(1):54-8. PMid:14964957.
15. Charles DA, Barber HO, Hope-Gill HF. Blood glucose and Insulin Levels, thyroid function, and serology in Menière’s disease, recurrent vestibulopathy, and psychogenic vertigo. J Otolaryngol. 1979;8(4):347-53. PMid:316014.
16. Kirtane MV, Medikeri SB, Rao P. Blood levels glucose and insulin in Menière’s disease. Acta Otolaryngol Suppl. 1984;406:42-5. PMid:6382920.
17. Jankyl KL, Patterson J, Shepard N, Thomas M, Barin K, Creutz T, et al. Video Head Impulse Test (vHIT): the role of corrective saccades in identifying patients with vestibular loss. Otol Neurotol. 2018;39(4):467-73. http://dx.doi.org/10.1097/MAO.0000000000001751. PMid:29533335.
18. Sabour S. Diagnostic value of video head impulse test in vestibular neuritis: methodological issues. Otolaryngol Head Neck Surg. 2018;159(2):400-400. http://dx.doi.org/10.1177/0194599818779792. PMid:30066617.
19. Hougard DD, Abrahamsen ER. Functional testing of all six semicircular canals with video head impulse test systems. J Vis Exp. 2019;146. http://dx.doi.org/10.3791/59012. PMid:31058885.
20. Chen L, Halmagyi GM. Central lesions with selective semicircular canal involvement mimicking bilateral vestibulopathy. Front Neurol. 2018;9:264. http://dx.doi.org/10.3389/fneur.2018.00264. PMid:29740388.
21. Alhabib SF, Saliba I. Video head impulse test: a review of the literature. Eur Arch Otorhinolaryngol. 2017;274(3):1215-22. http://dx.doi.org/10.1007/s00405-016-4157-4. PMid:27328962.
22. Ribeiro MBN, Morganti LOG, Mancini PC. Avaliação do efeito da idade sobre a função vestibular por meio do Teste de Impulso Cefálico (v-HIT). Audiol Commun Res. 2019;24:e2209. http://dx.doi.org/10.1590/2317-6431-2019-2029.
23. MacDougall HG, Weber KP, Mcgarvie LA, Halmagyi GM, Curthoys IS. The video head impulse test: diagnostic accuracy in peripheral vestibulopathy. Neurology. 2009;73(14):1134-41. http://dx.doi.org/10.1212/WNL.0b013e3181b8ac55. PMid:19805730.
24. Tae Hwan K, Min-BeomHwa K. Effect of aging and direction of the side from one function to another in impulse vestibular test. Laryngoscope. 2018;128:228-33.
25. Jerger J. Clinical experience with impedance audiometry. Arch Otolaryngol. 1970;92(4):311-24. http://dx.doi.org/10.1001/archotol.1970.00410040005002. PMid:5455571.
26. Mohammad JM, Robabe S, Shahin K, Saeed T, Maryam A. Auditory function and motor proficiency in type 1 diabetic children: a case-
control study. Int J Pediatr Otorhinolaryngol. 2018;109:7-12. http://dx.doi.org/10.1016/j.ijporl.2018.03.017. PMid:29728188.

27. Biurrun O, Ferrer JP, Lorente J, De Espana R, Gomis R, Traserra J. Asymptomatic electronystagmographic abnormalities in patients with type I diabetes mellitus. ORL J Otorhinolaryngol Relat Spec. 1991;53(6):335-8. http://dx.doi.org/10.1159/000276242. PMid:1784472.

28. Scherer LP, Lobo MB. Pesquisa do nistagmo/vertigem de posição e avaliação eletronistagmográfica em um grupo de indivíduos portadores de diabetes mellitus tipo I. Rev Bras Otorrinolaringol. 2002;68(3):355-60. http://dx.doi.org/10.1590/S0034-72992002000300010.

29. Serra AP, Lopes KC, Dorigueito RS, Ganança FF. Avaliação da curva glicoinsulinêmica nos pacientes com vestibulopatia periférica. Rev Bras Otorrinolaringol. 2009;75(5):701-5.

30. Mangabeira Albernaz PL, Fukuda Y. Glucose, insulin and inner ear pathology. Acta Otolaryngol. 1984;97(5-6):496-501. http://dx.doi.org/10.3109/00016488409132927. PMid:6380207.