The example of a self-similar continuum which is not an attractor of any zipper.

Purevdorj O., Tetenov A.V.

Let S be a system $\{S_1, \ldots, S_m\}$ of injective contraction maps of a complete metric space (X, d) to itself and let K be it’s invariant set, i.e. such a nonempty compact set K that satisfies $K = \bigcup_{i=1}^{m} S_i(K)$. The set K is also called the attractor of the system S. A natural construction allowing to obtain the systems S with a connected (and therefore arcwise connected) invariant set is called a self-similar zipper and it goes back to the works of Thurston [4] and Astala [2] and was analyzed in detail by Aseev, Kravtchenko and Tetenov in [5]. Namely,

Definition 0.1 A system $S = \{S_1, \ldots, S_m\}$ of injective contraction maps of complete metric space X to itself is called a zipper with vertices (z_0, \ldots, z_m) and signature $\vec{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_m) \in \{0, 1\}^m$ if for any $j = 1, \ldots, m$ the following equalities hold: 1. $S_j(z_0) = z_{j-1+\varepsilon_j}$; 2. $S_j(z_m) = z_{j-\varepsilon_j}$.

If the maps S_i are similarities (or affine maps) the zipper is called self-similar (correspondingly self-affine).

We shall call the points z_0 and z_m the initial and the final point of the zipper respectively.

The simplest example of a self-similar zipper may be obtained if we take a partition P, $0 = x_0 < x_1 < \ldots < x_m = 1$ of the segment $I = [0, 1]$ into m pieces and put $T_i = x_{i-1+\varepsilon_i}(1-t) + x_{i-\varepsilon_i}t$. This zipper $\{T_1, \ldots, T_m\}$ will be denoted by $S_{P, \vec{\varepsilon}}$.

Theorem 0.2 (see [5]). For any zipper $S = \{S_1, \ldots, S_m\}$ with vertices $\{z_0, \ldots, z_m\}$ and signature $\vec{\varepsilon}$ in a complete metric space (X, d) and for any partition $0 = x_0 < x_1 < \ldots < x_m = 1$ of the segment $I = [0, 1]$ into m pieces there exists unique map $\gamma : I \rightarrow K(S)$ such that for each $i = 1, \ldots, m$, $\gamma(x_i) = z_i$ and $S_i \cdot \gamma = \gamma \cdot T_i$ (where $T_i \in S_{P, \vec{\varepsilon}}$). Moreover, the map γ is Hölder continuous.
The mapping γ in the Theorem is called a linear parametrization of the zipper S. Thus, the attractor K of any zipper S is an arcwise connected set, whereas the linear parametrization γ may be viewed as a self-similar Peano curve, filling the continuum K.

Some Peano curves.

a) The attractor K of a self-similar zipper S with vertices $(0, 0), (1/4, \sqrt{3}/4), (3/4, \sqrt{3}/4), (1, 0)$ and signature $(1, 0, 1)$ is the Sierpinsky gasket.

![Figure 1: 1,2,4, and 8 iterations in the construction of the Peano curve for Sierpinsky gasket.](image)

b) A self-similar zipper with vertices $(0, 0), (0, 1/2), (1/2, 1/2), (1, 0)$ and signature $(1, 0, 0, 1)$ produces a self-similar Peano curve for the square $[0, 1] \times [0, 1]$

![Figure 2: Iterations for square-filling Peano curve.](image)

c) A self-similar zipper with vertices $(0, 0), (0, 1/3), (1/3, 1/3), (1/3, 2/3), (1/3, 1), (2/3, 1), (2/3, 2/3), (2/3, 1/3), (2/3, 0), (1, 0)$ and signature $(0, 1, 0, 0, 1, 0, 0, 1, 0)$ gives a Peano curve for Sierpinsky carpet.

d) The attractor of a zipper with vertices $(0, 0), (1, 0), (1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (2/3, 1), (2/3, 2/3), (2/3, 1/3), (2/3, 0), (1, 0)$ and signature $(0, 1, 0, 0, 1, 0, 0, 1, 0)$ gives a Peano curve for Sierpinsky carpet.
(2,1), (2,0), (3,0) and signature (0,0,1,1,1,0,0) is a dendrite.

Figure 3: A zipper whose attractor is a dendrite.

The main example.

The following example shows that there do exist self-similar continua which cannot be represented as an attractor of a self-similar zipper.

Let \(S \) be a system of contraction similarities \(g_k \) in \(\mathbb{R}^2 \) where \(S_2(\vec{x}) = \vec{x}/2 + (2,0) \), and \(S_k(\vec{x}) = \vec{x}/4 + \vec{a}_k \) where \(\vec{a}_k \) run through the set \{ (0,0), (3,0), (1,2h), (3/2,3h) \}, \(h = \sqrt{3}/2 \) for \(k = 1, 3, 4, 5 \). Let \(K \) be the attractor of the system \(S \) and \(T \) – the Hutchinson operator of the system \(S \) defined by \(T(A) = \bigcup_{j=1}^{5} S_j(A) \).

We shall use the following notation: By \(\Delta \) we denote the triangle with vertices \(A = (0,0) \), \(B = (2,2\sqrt{3}) \) and \(C = (4,0) \). The point \((2,0) \) is denoted by \(D \). For a multiindex \(i = i_1...i_k \) we denote \(S_i = S_{i_1}...S_{i_k} \), \(\Delta_i = S_i(\Delta) \), \(K_i = S_i(K) \), \(A_i = S_i(A) \), etc.

1. The set \(K \) is a dendrite. The way the system \(S \) is defined (see [3, Thm.1.6.2]) guarantees the arcwise connectedness of \(K \). Since for each \(n \) the set \(T^n(\Delta) \) is simply-connected, the set \(K \) contains no cycles and therefore \(K \) is a dendryte. Each point of \(K \) has the order 2 or 3. If a point \(x \) has the order 3, it is an image \(S_i(D) \) of the point \(D \) for some multiindex \(i \). Any path in \(K \) connecting a point \(\xi \in J \) with a point \(\eta \in \Delta_i, i = 4, 5, 24, 25, 224, 225, .., \).
passes through the point D.

2. Each non-degenerate line segment J contained in K, is parallel to x axis and is contained in some maximal segment in K which has the length 4^{1-n}.

Consider a non-degenerate linear segment $J \subset K$. There is such multiindex i, that J meets the boundary of $S_i(\Delta)$ in two different points which lie on different sides of $S_i(\Delta)$ and do not lie in the same subcopy of K_1. Then $J' = g_i^{-1}(J \cap K_i)$ is a segment in K with the endpoints lying on different sides of D which is not contained in neither of subcopies K_1, \ldots, K_5 of K. Then $J' = [0, 4]$. Since a part of J is a base of some triangle $S_i(\Delta)$, the length of the maximal segment in K containing J is 4^{1-n} where $n \leq |i|$.

3. Any injective affine mapping f of K to itself is one of the similarities $S_1 = S_{i_1} \cdot \ldots \cdot S_{i_k}$. Since f maps $[0, 4]$ to some $J \subset S_1([0, 4])$ for some i, it is of the form $f(x, y) = (ax + b_1y + c_1, b_2y + c_2)$, with positive b_2. Choosing appropriate composition $S_{i_1}^{-1} \cdot f \cdot S_{i_2}(K)$ we obtain a map of K to itself sending $[0, 4]$ to some subset of $[0, 4]$.

Therefore we may suppose that $f(x, y) = (ax + b_1y + c_1, b_2y)$, and that
the image $f(\Delta)$ is contained in Δ and is not contained in any $\Delta_i, i = 1, \ldots, 5$.

If $f(B) \in \Delta_i, i = 4, 5, 24, 25$, then, since every path from J to $f(B)$ passes through $D, f(D) = D$ and therefore $c_1 = 2 - a$.

If $f(B) \in \Delta_i, i = 4, 5$, then $1/2 \leq b_2 \leq 1$. In this case y–coordinates of the points $f(B_1), f(B_3)$ are greater than $\sqrt{3}/4$, so they are contained in Δ_1 and Δ_3, therefore the map f either keeps the points D_1, D_3 invariant, or transposes them. In each case $|a| = 1$ and $f(\{A, C\}) = \{A, C\}$. If in this case $f(B) \neq B$, then $f(A)$ cannot be contained in $T(\Delta)$. The same argument shows that if $f(B) = B$, then $f(A) \neq C$. Therefore $f = \text{Id}$.

Suppose $f(B) \in \Delta_i, i = 24, 25$ and $a > 1/2$. Then the points $f(B_1), f(B_3)$ are contained in Δ_1 and Δ_3, therefore the map f either keeps the points D_1, D_3 invariant, or transposes them, so $|a| = 1$ and $f(\{A, C\}) = \{A, C\}$. Considering the intersections of the line segments $[A, f(B)]$ and $[f(B), C]$ with the boundary of $T(\Delta)$ and $T^2(\Delta)$ we see that either $f(A)$ or $f(C)$ is not contained in $T^2(\Delta)$, which is impossible.

Therefore, either $a \leq 1/2$ or $f = \text{Id}$. The first means that $f(\Delta) \subset \Delta_2$, which contradicts the original assumption, so $f = \text{Id}$.

4. The set K cannot be an attractor of a zipper. Let $\Sigma = \{\varphi_1, \ldots, \varphi_m\}$ be a zipper whose invariant set is K. Let x_0, x_1 be the initial and final points of the zipper Σ. Let γ be a path in K connecting x_0 and x_1. Since for every $i = 1, \ldots, m$ the map φ_i is equal to some S_i, the sets $\varphi_i(K)$ are the subcopies of K, therefore for each i at least one the images $\varphi_i(x_0), \varphi_i(x_1)$ is contained in the intersection of $\varphi_i(K)$ with adjacent copies of K. Consider the path $\tilde{\gamma} = T_{\Sigma}(\gamma) = \bigcup_{i=1}^{m} \varphi_i(\gamma)$. It starts from the point x_0, ends at x_1 and passes through all copies K'_j of K. Each of the points $C_1 = A_2, C_2 = A_3, B_2 = C_4$ and $B_4 = A_5$ splits K to two components, therefore is contained in $\tilde{\gamma}$ and is a common point for the copies $\varphi_i(\gamma), \varphi_{i+1}(\gamma)$ for some i. Therefore one of the points x_0, x_1 must be A, one of the points x_0, x_1 must be B, and one of the points x_0, x_1 must be C, which is impossible.

References

[1] Aseev V. V.: On the regularity of self-similar zippers-Materials of the 6-th Russian-Korean Int. Symp. on Science and Technology, KORUS-2002 (June 24-30, 2002. Novosibirsk State Techn. Univ., Russia”, Part 3, (Abstracts), p. 167.
[2] Astala K.: Self-similar zippers. – Holomorph.funct. and Moduli: Proc.Workshop, March 13-19,1986, Vol.1— New York, 1988, pp. 61-73.

[3] Kigami J.: Analysis on fractals, Cambridge University Press, 2001.

[4] Thurston W.P.: Zippers and univalent functions, in: The Bieberbach Conjecture, Math. Surveys, No. 21, Am. Math. Soc., Providence, R.I. (1986), pp. 185197.

[5] Aseev V.V., Kravtchenko A.S., Tetenov A.V.: On self-similar curves in the plane// Siberian math J., 2003, V.44, No3, pp.481-492.

[6] Hutchinson J.: Fractals and self-similarity. – Indiana Univ. Math. J., 30, No 5, 1981, pp.713-747.