Abstract: In this paper we show discrepancy bounds for index-transformed uniformly distributed sequences. From a general result we deduce very tight lower and upper bounds on the discrepancy of index-transformed van der Corput-, Halton-, and \((t, s)\) -sequences indexed by the sum-of-digits function. We also analyze the discrepancy of sequences indexed by other functions, such as, e.g., \(\lfloor n^\alpha \rfloor\) with \(0 < \alpha < 1\).

Keywords: discrepancy, uniform distribution, van der Corput-sequence, Halton-sequence, \((t, s)\) -sequence, sum-of-digits function.

1. Introduction

A sequence \((y_n)_{n \geq 0}\) in the unit-cube \([0, 1)^s\) is said to be uniformly distributed modulo one if for all intervals \([a, b) \subseteq [0, 1)^s\) it is true that

\[
\lim_{N \to \infty} \frac{\#\{n : 0 \leq n < N, y_n \in [a, b)\}}{N} = \text{vol}([a, b)).
\]

A quantitative version of (1) can be stated in terms of discrepancy. For an infinite sequence \((y_n)_{n \geq 0}\) in \([0, 1)^s\) its discrepancy is defined as

\[
D_N((y_n)_{n \geq 0}) := \sup_{[a, b) \subseteq [0, 1)^s} \left| \frac{\#\{n : 0 \leq n < N, y_n \in [a, b)\}}{N} - \text{vol}([a, b)) \right|,
\]

where the supremum is extended over all sub-intervals \([a, b)\) of \([0, 1)^s\). For a given finite sequence \(X = (x_1, \ldots, x_M)\) we write \(D_M(X)\) for the discrepancy of \(X\) with

The authors gratefully acknowledge the support of the Austrian Science Fund (FWF), Projects P23389-N18 and F5506-N26 (Kritzer), P21943 and F5507-N26 (Larcher), S9609 and F5509-N26 (Pillichshammer).

Project S9609 is part of the Austrian Research Network “Analytic Combinatorics and Probabilistic Number Theory”.

Projects F5506-N26, F5507-N26, F5509-N26 are parts of the special research program “Quasi-Monte Carlo Methods: Theory and Applications”.

2010 Mathematics Subject Classification: primary: 11K06; secondary: 11K31, 11K36, 11K38
the obvious adaptions in the above definition. An infinite sequence is uniformly distributed modulo one if and only if its discrepancy tends to zero as N goes to infinity. However, convergence of the discrepancy to zero cannot take place arbitrarily fast. It follows from a result of Roth [28] that for any infinite sequence $(y_n)_{n \geq 0}$ in $[0, 1)$ we have $ND_N((y_n)_{n \geq 0}) \geq c_s (\log N)^{s/2}$ for infinitely many values of $N \in \mathbb{N}$ (by \mathbb{N} we denote the set of positive integers, and we put $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$). An improvement of this bound can be obtained from [4].

For the special case $s = 1$, Schmidt [29] (see also [2]) showed that for any infinite sequence $(y_n)_{n \geq 0}$ in $[0, 1)$ we have $ND_N((y_n)_{n \geq 0}) \geq \frac{\log N}{\log 4}$ for infinitely many values of $N \in \mathbb{N}$. This result is best possible with respect to the order of magnitude in N. An excellent introduction to this topic can be found in the book of Kuipers and Niederreiter [20] (see also [6, 9, 21, 24]).

Well known examples of uniformly distributed sequences are $(n\alpha)$-sequences (also called Kronecker-sequences, see [9, 20]), van der Corput-sequences and their multivariate analogues called Halton-sequences (see [6, 19, 20, 24]), as well as (digital) (t, s)-sequences (see [6, 24]).

In recent years, also the distribution properties of index-transformed uniformly distributed sequences have been studied, especially for the examples mentioned above. In this paper, we mean by an index-transformed sequence of a sequence $(x_n)_{n \geq 0}$ a sequence $(x_{f(n)})_{n \geq 0}$, where $f : \mathbb{N}_0 \to \mathbb{N}_0$. Note that $(x_{f(n)})_{n \geq 0}$ is in general no subsequence of $(x_n)_{n \geq 0}$ since we do not require that f is strictly increasing.

For instance, the distribution properties of index-transformed Kronecker-sequences indexed by the sum-of-digits function were studied in [5, 8, 30, 31]. For this special case, very precise results can be found in [8]. In [7] the well-distribution of index-transformed Kronecker-sequences indexed by q-additive functions is considered. Furthermore, in [26] a discrepancy bound for van der Corput-sequences in bases of the form $b = 5^\ell$, $\ell \in \mathbb{N}$, indexed by Fibonacci numbers is shown. The papers [17, 18, 26] deal with index-transformed van der Corput-, Halton-, and (t, s)-sequences.

In this paper we are specifically interested in discrepancy bounds for sequences indexed by the q-ary sum-of-digits function and related functions and, furthermore, for sequences indexed by “moderately” monotonically increasing sequences, as for example $[n^\alpha]$ with $0 < \alpha < 1$. For an integer $q \geq 2$ and $n \in \mathbb{N}_0$ with base q expansion $n = r_0 + r_1 q + r_2 q^2 + \cdots$ the q-ary sum-of-digits function is defined by $s_q(n) := r_0 + r_1 + r_2 + \cdots$.

Previously, it has been shown in [18] that the sequence $(x_{s_q(n)})_{n \geq 0}$, indexed by the q-ary sum-of-digits function, where $(x_n)_{n \geq 0}$ denotes the Halton-sequence in co-prime bases b_1, \ldots, b_s is uniformly distributed modulo one. The proof of this result is due to the fact that the sequence generated by the q-ary sum-of-digits function is uniformly distributed in \mathbb{Z}, see, for example, [12, 27]. In this paper we provide very tight lower and upper bounds on the discrepancy of index-transformed van der Corput-, Halton-, and (t, s)-sequences indexed by the sum-of-digits function.
This paper is structured as follows. In Section 2, we provide basic definitions and notation used throughout the subsequent sections. In Section 3, we prove a general theorem (Theorem 1) which will be of great importance in discussing sequences indexed by the sum-of-digits function. In Section 4 we present a concrete application of Theorem 1 which leads to the aforementioned tight bounds on the discrepancy of Halton- and \((t,s)\)-sequences indexed by \(s_q(n)\). Furthermore, we discuss a refinement of these results for van der Corput-sequences. Finally, in Section 5, we deal with discrepancy bounds for sequences which are obtained by certain moderately increasing index sequences, such as, e.g., \(\lfloor n^\alpha \rfloor\) with \(0 < \alpha < 1\).

2. Notation and basic definitions

We first outline the definitions of the sequences studied in this paper, namely van der Corput-, Halton-, and \((t,s)\)-sequences.

Let \(b \geq 2\) be an integer. A van der Corput-sequence \((x_n)_{n \geq 0}\) in base \(b\) is defined by \(x_n = \varphi_b(n)\), where for \(n \in \mathbb{N}_0\), with base \(b\) expansion \(n = a_0 + a_1 b + a_2 b^2 + \cdots\), the so-called radical inverse function \(\varphi_b : \mathbb{N}_0 \to [0,1)\) is defined by

\[
\varphi_b(n) := \frac{a_0}{b} + \frac{a_1}{b^2} + \frac{a_2}{b^3} + \cdots.
\]

It is well known that for any base \(b \geq 2\) the corresponding van der Corput-sequence is uniformly distributed modulo one and that \(ND_N((x_n)_{n \geq 0}) = O(\log N)\), see, for example, [3, 6, 20].

If we choose co-prime integers \(b_1, \ldots, b_s \geq 2\), then \(s\) one-dimensional van der Corput-sequences can be combined to an \(s\)-dimensional uniformly distributed sequence with points \(x_n := (\varphi_{b_1}(n), \ldots, \varphi_{b_s}(n))\) for \(n \in \mathbb{N}_0\). This sequence is called a Halton-sequence and it is known that its discrepancy is of order \((\log N)^s / N\), see [1, 6, 10, 11, 13, 19, 22, 24]. Note that Halton-sequences are a direct generalization of van der Corput-sequences, so van der Corput-sequences can be viewed as one-dimensional Halton-sequences, and indeed Halton-sequences are sometimes also referred to as van der Corput-Halton-sequences (see, e.g., [20]). However, as there will be results in this paper which only hold for the one-dimensional case, it will be useful to explicitly distinguish van der Corput-sequences (which we use for the one-dimensional variant) from Halton-sequences (which we use for the multi-dimensional variant).

Another type of sequences we will be concerned with in this paper are \((t,s)\)-sequences, for the definition of which we need the definition of elementary intervals and \((t,m,s)\)-nets in base \(b\).

For an integer \(b \geq 2\), an elementary interval in base \(b\) is an interval of the form \(\prod_{i=1}^s [a_i b^{-d_i}, (a_i + 1) b^{-d_i}) \subseteq [0,1)^s\), where \(a_i, d_i\) are non-negative integers with \(0 \leq a_i < b^{d_i}\) for \(1 \leq i \leq s\).

Let \(t, m\), with \(0 \leq t \leq m\), be integers. Then a \((t,m,s)\)-net in base \(b\) is a point set \((y_n)_{n=0}^{b^m-1}\) in \([0,1)^s\) such that any elementary interval in base \(b\) of volume \(b^{t-m}\) contains exactly \(b^t\) of the \(y_n\).
Furthermore, we call an infinite sequence \((x_n)_{n \geq 0}\) a \((t, s)\)-sequence in base \(b\) if the subsequence \((x_n)_{n=kb^m}^{(k+1)b^n-1}\) is a \((t, m, s)\)-net in base \(b\) for all integers \(k \geq 0\) and \(m \geq t\). It is known (see, e.g., [6, 23, 24]) that a \((t, s)\)-sequence is particularly evenly distributed if the value of \(t\) is small. In particular, it can be shown that the discrepancy of a \((t, s)\)-sequence in base \(b\) is of order \(b^t(\log N)^s/N\), see, e.g., [6, 23, 24].

A very important sub-class of \((t, s)\)-sequences is that of digital \((t, s)\)-sequences, which are defined over algebraic structures like finite fields or rings. For the sake of simplicity, we restrict ourselves to digital sequences over finite fields \(\mathbb{F}_p\) of prime order \(p\). Again for the sake of simplicity we do not distinguish, here and later on, between elements in \(\mathbb{F}_p\) and the set of integers \(\{0, 1, \ldots, p-1\}\) (equipped with arithmetic operations modulo \(p\)).

For a vector \(c = (c_1, c_2, \ldots) \in \mathbb{F}_p^\infty\) and for \(m \in \mathbb{N}\) we denote the vector in \(\mathbb{F}_p^m\) consisting of the first \(m\) components of \(c\) by \(c(m)\), i.e., \(c(m) = (c_1, \ldots, c_m)\). Moreover, for an \(N \times N\) matrix \(C\) over \(\mathbb{F}_p\) and for \(m \in \mathbb{N}\) we denote by \(C(m)\) the left upper \(m \times m\) submatrix of \(C\).

For \(s \in \mathbb{N}\) and \(t \in \mathbb{N}_0\), choose \(N \times N\) matrices \(C_1, \ldots, C_s\) over \(\mathbb{F}_p\) with the following property. For every \(m \in \mathbb{N}\), \(m \geq t\), and all \(d_1, \ldots, d_s \in \mathbb{N}_0\) with \(d_1 + \cdots + d_s = m - t\), the vectors

\[
\begin{align*}
 \mathbf{c}_1^{(1)}(m), & \quad \mathbf{c}_{d_1}^{(1)}(m), & \quad \mathbf{c}_1^{(s)}(m), & \quad \mathbf{c}_{d_s}^{(s)}(m)
\end{align*}
\]

are linearly independent in \(\mathbb{F}_p^m\). Here \(\mathbf{c}_i^{(j)}\) is the \(i\)-th row vector of the matrix \(C_j\).

For \(n \in \mathbb{N}_0\) let \(n = n_0 + n_1p + n_2p^2 + \cdots\) be the base \(p\) representation of \(n\). For every index \(1 \leq j \leq s\) multiply the digit vector \(n = (n_0, n_1, \ldots)^\top\) by the matrix \(C_j\):

\[
 C_j \cdot n =: (x_{n,j}(1), x_{n,j}(2), \ldots)^\top
\]

(note that the matrix-vector multiplication is performed over \(\mathbb{F}_p\)), and set

\[
 x_n^{(j)} := \frac{x_{n,j}(1)}{p} + \frac{x_{n,j}(2)}{p^2} + \cdots.
\]

Finally set \(x_n := (x_n^{(1)}, \ldots, x_n^{(s)})\). A sequence \((x_n)_{n \geq 0}\) constructed in this way is called a digital \((t, s)\)-sequence over \(\mathbb{F}_p\). The matrices \(C_1, \ldots, C_s\) are called the generator matrices of the sequence.

To guarantee that the points \(x_n\) lie in \([0, 1)^s\) (and not just in \([0, 1]^s\)) we assume that for each \(1 \leq j \leq s\) and \(w \geq 0\) we have \(c_{i,w}^{(j)} = 0\) for all sufficiently large \(v\), where \(c_{i,w}^{(j)}\) are the entries of the matrix \(C_j\) (see [24, p.72, condition (S6)] for more information).

Throughout the paper we use the following notation. For functions \(f, g : \mathbb{N} \to \mathbb{R}\), where \(f \geq 0\), we write \(g(n) = O(f(n))\) or \(g(n) \ll f(n)\), if there exists a \(C > 0\) such that \(|g(n)| \leq Cf(n)\) for all sufficiently large \(n \in \mathbb{N}\). If we would like to stress that the quantity \(C\) may also depend on other variables than \(n\), say \(\alpha_1, \ldots, \alpha_w\), which will be indicated by writing \(\ll_{\alpha_1, \ldots, \alpha_w}\).
3. A general theorem

In this section we present a general result for the discrepancy of sequences of the form \((x_{g(n)})_{n \geq 0} \), for a particular class of functions \(g : \mathbb{N}_0 \to \mathbb{N}_0 \). Here and in the following, a sequence \((a_k)_{k \in \mathbb{N}_0} \) is called unimodal if the sequence \((a_{k+1} - a_k)_{k \in \mathbb{N}_0} \) has exactly one change of sign.

Furthermore, we need the concept of the so-called uniform discrepancy of a sequence. The uniform discrepancy of a sequence \((x_n)_{n \geq 0} \) in \([0,1]^s\) is defined as

\[
\bar{D}_N((x_n)_{n \geq 0}) := \sup_{k \in \mathbb{N}_0} D_N((x_{n+k})_{n \geq 0}).
\]

Theorem 1. Let \((x_n)_{n \geq 0} \) be an \(s \)-dimensional sequence with uniform discrepancy \(\bar{D}_N = \bar{D}_N((x_n)_{n \geq 0}) \), and let \(f : \mathbb{N}_0 \to \mathbb{R} \) be a non-decreasing function such that \(N \bar{D}_N \leq f(N) \) for \(N \in \mathbb{N}_0 \).

Let \(g : \mathbb{N}_0 \to \mathbb{N}_0 \). Furthermore, let \((N_j)_{j \geq 0} \) be a strictly increasing sequence in \(\mathbb{N} \) with \(1 = N_0 \), and assume that \((N_j)_{j \geq 0} \) is a divisibility chain, i.e., \(N_0 | N_1, N_1 | N_2, N_2 | N_3 \), etc. Define, for \(k \in \mathbb{N}_0 \),

\[
G_{A,j}(k) := \# \{ n : AN_j \leq n < (A+1)N_j, g(n) = k \}.
\]

Then the following two assertions hold.

1. For \(N \in \mathbb{N} \) with \(N_d \leq N < N_{d+1} \) we have

\[
N \bar{D}_N((x_{g(n)})_{n \geq 0}) \geq \max_{k \in \mathbb{N}_0} G_{0,d}(k).
\]

2. Assume that \(G_{A,j}(k) \) is unimodal in \(k \) for all \(j \in \mathbb{N}_0 \) and all \(A \in \mathbb{N}_0 \), and put

\[
G_j := \max_{k, A \in \mathbb{N}_0} G_{A,j}(k) \quad \text{for} \quad j \in \mathbb{N}_0.
\]

For \(j \in \mathbb{N}_0 \) and \(A \in \mathbb{N}_0 \) let

\[
v_{A,j} := \# \{ k \in \mathbb{N}_0 : g(n) = k \text{ for } AN_j \leq n < (A+1)N_j \}
\]

and put

\[
v_j := \max_{A \in \mathbb{N}_0} v_{A,j}.
\]

Then for \(N \in \mathbb{N} \) with \(N_d \leq N < N_{d+1} \) we have

\[
N \bar{D}_N((x_{g(n)})_{n \geq 0}) \leq \sum_{j=0}^{d} \frac{N_{j+1} - N_j}{N_j} G_j f(v_j).
\]

Proof.

1. To show the lower bound choose a non-negative integer \(\kappa \) such that \(\bar{G}_d = G_{0,d}(\kappa) = \max_{k \in \mathbb{N}_0} G_{0,d}(k) \). Then the number of \(n \in \{0, \ldots, N-1\} \) such that \(x_{g(n)} = x_\kappa \) is at least \(\bar{G}_d \) and hence, with an arbitrarily small interval containing \(x_\kappa \) we obtain

\[
D_N((x_{g(n)})_{n \geq 0}) \geq \frac{\bar{G}_d}{N}.
\]
2. To prove the upper bound let

\[N = a_d N_d + a_{d-1} N_{d-1} + \cdots + a_0 N_0, \]

with \(a_j \in \mathbb{N}_0 \) and

\[a_j \leq \frac{N_{j+1}}{N_j}; \quad \text{for} \quad j \in \{0, \ldots, d\}. \]

For \(j \in \{0, \ldots, d\} \) and \(\ell \in \{0, \ldots, a_j - 1\} \) we consider the sequence

\[X_{j,\ell} := (x_{g(AN_j+k)})_{k=0}^{N_j-1} \]

where \(AN_j := a_d N_d + \cdots + a_{j+1} N_{j+1} + \ell N_j \) (strictly speaking, \(A = A(j, \ell) \)). Since \(G_{A,j} \) is unimodal we may assume that for \(AN_j \leq n < (A+1)N_j \) the function \(g(n) \) attains the values

\[w, w+1, \ldots, w+v, \]

for some \(w \in \mathbb{N}_0 \) and some integer \(v = v_{A,j} \leq v(j) \).

Assume that the value \(w + u_1 \) with \(0 \leq u_1 \leq v \) is attained most often, the value \(w + u_2 \) with \(0 \leq u_2 \leq v \) is attained second most often, etc. \(\ldots \), and \(w + u_v \) with \(0 \leq u_v \leq v \) (indeed, \(u_v \in \{0, v\} \)) is attained least often. If \(w + u_r \) and \(w + u_{r+1} \) are both attained the same number of times, then the order of them is of no relevance.

If we consider the sequence \(X_{j,\ell} \) as a multi-set (i.e., multiplicity of the elements is relevant, but their order is not), then we can decompose \(X_{j,\ell} \) into

\[
\begin{align*}
G_{A,j}(w + u_1) - G_{A,j}(w + u_2) & \quad \text{times} \quad \{x_{w+u_1}\} \\
G_{A,j}(w + u_2) - G_{A,j}(w + u_3) & \quad \text{times} \quad \{x_{w+u_1}, x_{w+u_2}\} \\
G_{A,j}(w + u_3) - G_{A,j}(w + u_4) & \quad \text{times} \quad \{x_{w+u_1}, x_{w+u_2}, x_{w+u_3}\} \\
\vdots \\
G_{A,j}(w + u_{v-1}) - G_{A,j}(w + u_v) & \quad \text{times} \quad \{x_{w+u_1}, x_{w+u_2}, \ldots, x_{w+u_{v-1}}\} \\
G_{A,j}(w + u_v) - G_{A,j}(w + u_{v+1}) & \quad \text{times} \quad \{x_{w+u_1}, x_{w+u_2}, \ldots, x_{w+u_v}\},
\end{align*}
\]

where we formally set \(G_{A,j}(w + u_{v+1}) := 0 \). Note that because of the unimodality of \(G_{A,j}(k) \), for \(r \in \{1, \ldots, v\} \), the sequence \(x_{w+u_1}, x_{w+u_2}, \ldots, x_{w+u_r} \) is a sequence of the form \(x_B, \ldots, x_{B+r-1} \) for some \(B \).

Then, using the assumptions of the theorem and the triangle inequality for the discrepancy (see [20, p. 115, Theorem 2.6]), we obtain

\[
N_j D_{N_j}(X_{j,\ell}) \leq \sum_{r=1}^{v} (G_{A,j}(w + u_r) - G_{A,j}(w + u_{r+1})) r D_r(\{x_{w+u_1}, x_{w+u_2}, \ldots, x_{w+u_r}\}) \leq G_{A,j}(w + u_1) f(v_{A,j}) \leq G_j f(v_j).
\]

Using the triangle inequality for the discrepancy a second time, we finally obtain

\[
ND_N((x_{g(n)})_{n \geq 0}) \leq \sum_{j=0}^{d} a_j G_j f(v_j) \leq \sum_{j=0}^{d} \frac{N_j+1}{N_j} G_j f(v_j).
\]
4. Indexing by the q-ary sum-of-digits function

We would now like to show results regarding index-transformed uniformly distributed sequences indexed by the q-ary sum-of-digits function. We first discuss an application of the general result in Theorem 1 (Section 4.1) to Halton- and (t,s)-sequences, and then show a refined result that applies to the particular case of van der Corput-sequences (Section 4.2).

4.1. Results for Halton- and (t,s)-sequences

Let $q \geq 2$ be an integer and $g(n) = s_q(n)$ the q-ary sum-of-digits function. For $j \in \mathbb{N}_0$ choose $N_j = q^j$. Then we have

$$G_{0,j}(k) = \# \{ n : 0 \leq n < q^j, s_q(n) = k \}$$

and

$$(1 + x + x^2 + \cdots + x^{q-1})^j = \sum_{k \in \mathbb{N}_0} G_{0,j}(k)x^k,$$

by expanding the polynomial on the left hand side of the latter equation. Hence the sequence $(G_{0,j}(k))_{k \in \mathbb{N}_0}$ is the j-fold convolution of the sequence $(1, 1, \ldots, 1, 0, 0, \ldots)$, which implies by [25, Theorem 1] that $G_{0,j}(k)$ is unimodal for sufficiently large j. Since any $n \in \mathbb{N}_0$ with $Aq^j \leq n < (A+1)q^j$ can be written as $n = n' + Aq^j$, where $0 \leq n' < q^j$, it follows that $s_q(n) = s_q(n') + s_q(A)$ and hence $G_{A,j}(k) = G_{0,j}(k - s_q(A))$, where we set $G_{0,j}(k - s_q(A)) := 0$ if $k < s_q(A)$. Consequently, $G_{A,j}(k)$ is unimodal for any $A \in \mathbb{N}_0$ and for sufficiently large j.

We recall the following lemma from [8].

Lemma 1 (Drmota and Larcher, [8, Lemma 1]). For integers $q \geq 2$, $j \geq 1$, and $0 \leq k \leq j(q-1)$ we have

$$G_{0,j}(k) = \frac{q^j}{\sqrt{2\pi j} \sigma_q} \exp \left(-\frac{x^2_{j,k}}{2} \right) \left(1 + \frac{P_1(x_{j,k})}{\sqrt{j}} + \frac{P_2(x_{j,k})}{j} \right) + O \left(\frac{q^j}{j^2} \right),$$

where $P_1(x)$ and $P_2(x)$ are polynomials, $P_1(x)$ is odd, where $x_{j,k} := \frac{k - \frac{j(q-1)}{2} \sigma_q}{\sigma_q \sqrt{j}}$, and where $\sigma_q := \sqrt{\frac{q^2 - 1}{12}}$. The implied constant in the O-notation is uniform for all k and only depends on q.

Due to Lemma 1, there exists some $c_q > 0$ such that for sufficiently large j we have $G_{A,j}(k) \leq c_q q^j / \sqrt{j}$, uniformly in k and A. Thus we obtain

$$G_j \leq c_q \frac{q^j}{\sqrt{j}} \quad (2)$$
for sufficiently large j. On the other hand, for $\bar{k} = \lfloor j^{2^{-1}} \rfloor$ it follows that

$$\max_{k \in \N} G_{0,j}(k) \geq G_{0,j}(\bar{k}) \geq c'_q \frac{q^j}{\sqrt{j}}. \quad (3)$$

Furthermore it is clear that $v_0 = 1$ and $v_j \leq qj$ for all $j \in \N$. As an application of Theorem 1, we obtain the following result.

Theorem 2. Let $X := (x_n)_{n \geq 0}$ be an s-dimensional sequence such that $mD_m((x_n)_{n \geq 0}) \leq C (\log m)^s$ for all $m \in \N$, where C may depend on s or on the sequence X, but not on m. Let $q \geq 2$ be an integer. Then there exist $c_q^{(2)}, c_q^{(3)} > 0$, where $c_q^{(3)}$ may also depend on s and X, such that

$$\frac{c_q^{(2)}}{\sqrt{\log N}} \leq D_N((x_{sq(n)})_{n \geq 0}) \leq c_q^{(3)} \frac{(\log \log N)^s}{\sqrt{\log N}}.$$

Proof. Assume that $q^d \leq N < q^{d+1}$. Then we obtain from Theorem 1 and Equation (3) that

$$D_N((x_{sq(n)})_{n \geq 0}) \geq \frac{c'_q q^d}{N \sqrt{d}} \geq \frac{c_q^{(2)}}{\sqrt{\log N}}.$$

On the other hand, from Theorem 1 and Equation (2),

$$D_N((x_{sq(n)})_{n \geq 0}) \leq \frac{1}{N} \sum_{j=1}^{d} q c_q q^j j^{2^{-1}} C((\log(qj))^s \leq q (\log d)^s \left(\frac{1}{N} \sum_{1 \leq j < d/2} \frac{q^j}{\sqrt{j}} + \frac{1}{N} \sum_{d/2 \leq j \leq d} \frac{q^j}{\sqrt{j}} \right) \leq q (\log \log N)^s \frac{\sqrt{\log N}}{\sqrt{N}}$$

and the result follows.

The general lower bound in Theorem 2 is best possible with respect to the order of magnitude in N. This will follow from Theorem 3 below which deals with van der Corput-sequences.

There are several examples of sequences X which satisfy the conditions in Theorem 2 such as Halton- or (t,s)-sequences (for a proof of this fact, we refer to Section 6 of this paper). We thus obtain the following corollary.

Corollary 1. Let $q \geq 2$ be an integer.

1. Let $(x_n)_{n \geq 0}$ be an s-dimensional Halton-sequence in pairwise co-prime bases b_1, \ldots, b_s. Then there exist $c_q^{(2)}, c_{q,s,b_1,\ldots,b_s}^{(4)} > 0$ such that

$$\frac{c_q^{(2)}}{\sqrt{\log N}} \leq D_N((x_{sq(n)})_{n=0}^{N-1}) \leq c_{q,s,b_1,\ldots,b_s}^{(4)} \frac{(\log \log N)^s}{\sqrt{\log N}}.$$
2. Let \((x_n)_{n \geq 0}\) be a \((t, s)\)-sequence in base \(b\). Then there exist \(c_q^{(2)}, c_{q,b,s,t}^{(5)} > 0\) such that
\[
\frac{c_q^{(2)}}{\sqrt{\log N}} \leq D_N((x_{s q(n)})_{n \geq 0}) \leq c_{q,b,s,t}^{(5)} \left(\frac{\log \log N}{\sqrt{\log N}}\right)^s .
\]

The result of the first part of Corollary 1 can be improved for the special instance of van der Corput-sequences, as we will show next.

4.2. The van der Corput-sequence indexed by the sum-of-digits function

The following results are based on a general discrepancy estimate which was first presented by Hellekalek [14]. The following definitions stem from [14, 15, 17]. We refer to these references for further information.

For an integer \(b \geq 2\) let \(Z_b = \{z = \sum_{r=0}^{\infty} z_r b^r : z_r \in \{0, \ldots, b-1\}\}\) be the set of \(b\)-adic numbers. \(Z_b\) forms an abelian group under addition. The set \(N_0\) is a subset of \(Z_b\). The Monna map \(\phi_b : Z_b \to [0, 1)\) is defined by
\[
\phi_b(z) := \sum_{r=0}^{\infty} \frac{z_r}{b^r+1}.
\]

Note that the radical inverse function \(\varphi_b\) is nothing but \(\phi_b\) restricted to \(N_0\). We also define the inverse \(\phi_b^+ : [0, 1) \to Z_b\) by
\[
\phi_b^+ \left(\sum_{r=0}^{\infty} \frac{x_r}{b^r+1}\right) := \sum_{r=0}^{\infty} x_r b^r,
\]
where we always use the finite \(b\)-adic representation for \(b\)-adic rationals in \([0, 1)\).

For \(k \in N_0\) we can define characters \(\chi_k : Z_b \to \{c \in \mathbb{C} : |c| = 1\}\) of \(Z_b\) by
\[
\chi_k(z) = \exp(2\pi i \phi_b(k)z) .
\]

Finally, let \(\gamma_k : [0, 1) \to \{c \in \mathbb{C} : |c| = 1\}\) where \(\gamma_k(x) = \chi_k(\phi_b^+(x))\).

For \(b \geq 2\) we put \(\rho_b(0) = 1\) and \(\rho_b(k) = \frac{2}{b^{r+1}\sin(\pi \kappa_r/b)}\) for \(k \in \mathbb{N}\) with base \(b\) expansion \(k = \kappa_0 + \kappa_1 b + \cdots + \kappa_r b^r, \kappa_r \neq 0\).

We have the following general discrepancy bound which is based on the functions \(\gamma_k\).

Lemma 2. Let \(g \in \mathbb{N}\). For any sequence \((y_n)_{n \geq 0}\) in \([0, 1)\) we have
\[
D_N((y_n)_{n \geq 0}) \leq \frac{1}{b^g} + \sum_{k=1}^{b^g-1} \rho_b(k) \left| \frac{1}{N} \sum_{n=0}^{N-1} \gamma_k(y_n) \right| .
\]
Proof. For the special case of a prime b, this result was shown by Hellekalek [14, Theorem 3.6]. Using [17, Lemma 2.10 and 2.11] it is easy to see that Hellekalek's result can be generalized to the one given in the lemma (cf. [16]).

We show a discrepancy bound for the van der Corput-sequence indexed by the q-ary sum-of-digits function for small values of q. This result improves on the first part of Corollary 1 for van der Corput-sequences. Moreover, it shows that the general lower bound from Theorem 2 is best possible in the order of magnitude in N.

Theorem 3. Let $b, q \geq 2$ be integers with $q < 14$, let $(x_n)_{n \geq 0}$ be the van der Corput-sequence in base b and let $(s_q(n))_{n \geq 0}$ be the sequence of the q-adic sum-of-digits function. Then we have

$$D_N((x_{s_q(n)})_{n \geq 0}) \ll_{b,q} \frac{1}{\sqrt{\log N}}.$$

Remark 1. In view of Theorem 2, the upper bound in Theorem 3 is best possible with respect to the order of magnitude in N.

Before we give the proof of Theorem 3, we need some preparations and auxiliary results. Writing $e(x) := \exp(2\pi ix)$ for short, we have

$$\frac{1}{N} \sum_{n=0}^{N-1} \gamma_k(x_{s_q(n)}) = \frac{1}{N} \sum_{n=0}^{N-1} e(s_q(n)\phi_b(k)) =: T_k(N).$$

Lemma 3. Let $b, q \geq 2$ be integers, let $k \in \mathbb{N}$ and let $(x_n)_{n \geq 0}$ be the van der Corput-sequence in base b. Then for any $m \in \mathbb{N}_0$ it is true that

$$|T_k(q^m)| \leq \left(1 - \frac{16(q-1)}{q^2\|\phi_b(k)\|^2}\right)^{m/2},$$

where $\|x\|$ is the distance of a real x to the nearest integer.

Proof. First observe that

$$T_k(q^m) = \frac{1}{q^m} \sum_{n_0, \ldots, n_{m-1}=0}^{q-1} e((n_0 + \ldots + n_{m-1})\phi_b(k)) = (T_k(q))^m.$$
We now proceed as in [27]. We use the identities \(\exp(ix) + \exp(-ix) = 2\cos x \) and \(\cos(2x) = 1 - 2\sin^2 x \) to obtain

\[
|T_k(q)|^2 = \frac{1}{q^2} \sum_{n,n'=0}^{q-1} e((n-n')\phi_b(k)) \\
= \frac{1}{q^2} \left(q + \sum_{n,n'=0}^{q-1} (e((n-n')\phi_b(k)) + e(-(n-n')\phi_b(k))) \right) \\
= \frac{1}{q^2} \left(q + 2 \sum_{n,n'=0}^{q-1} \cos (2\pi(n-n')\phi_b(k)) \right) \\
= \frac{1}{q^2} \left(q + 2 \sum_{n,n'=0}^{q-1} (1 - 2\sin^2 (\pi(n-n')\phi_b(k))) \right) \\
= 1 - \frac{4}{q^2} \sum_{n,n'=0}^{q-1} \sin^2 (\pi(n-n')\phi_b(k)) \leq 1 - \frac{4(q-1)}{q^2} \sin^2 (\pi\phi_b(k)) \\
\leq 1 - \frac{16(q-1)}{q^2} \|\phi_b(k)\|^2,
\]

Therefore,

\[
|T_k(q^m)| \leq \left(1 - \frac{16(q-1)}{q^2} \|\phi_b(k)\|^2 \right)^{m/2}.
\]

We also need the following lemma.

Lemma 4. For \(k \in \mathbb{N} \) and any \(N \in \mathbb{N} \) with \(q \)-adic expansion \(N = \sum_{r=0}^{R} a_r q^r \) we have

\[
|T_k(N)| \leq \frac{1}{N} \sum_{r=0}^{R} a_r q^r |T_k(q^r)|.
\]

Proof. For \(N = \sum_{r=0}^{R} a_r q^r \),

\[
\{0, \ldots, N-1\} = \bigcup_{r=0}^{R} \{a_R q^R + \cdots + a_{r+1} q^{r+1}, \ldots, a_R q^R + \cdots + a_r q^r - 1\},
\]
and hence

\[N|T_k(N)| = \left| \sum_{n=0}^{N-1} e^{s_q(n)\phi_b(k)} \right| \]

\[= \left| \sum_{r=0}^{R} e^{(a_r r + \cdots + a_r r+1)\phi_b(k)} \sum_{n=0}^{a_r r+1} e^{s_q(n)\phi_b(k)} \right| \]

\[\leq \left| \sum_{r=0}^{R} a_r \sum_{n=0}^{q_r - 1} e^{s_q(n)\phi_b(k)} \right| = \sum_{r=0}^{R} a_r q_r |T_k(q^r)|. \]

We are now ready to give the proof of Theorem 3.

Proof. For \(k \in \{b^r, \ldots, b^{r+1} - 1\} \) we have \(\varphi_b(k) = \frac{A_k}{b^{r+1}} \) with \(A_k \in \{1, \ldots, b^{r+1} - 1\} \), where \(A_{k_1} \neq A_{k_2} \) for \(k_1 \neq k_2 \). Hence we obtain from Lemma 3

\[\sum_{k=1}^{b^r - 1} \rho_b(k)|T_k(q^m)| \leq \sum_{r=0}^{g-1} \frac{2}{b^{r+1}\sin(\pi/b)} \sum_{k=b^r}^{b^{r+1}-1} \left(1 - \frac{16(q-1)}{q^2} \left\| \frac{A_k}{b^{r+1}} \right\|^{2m/2} \right) \]

\[\leq \sum_{r=0}^{g-1} \frac{2}{b^{r+1}\sin(\pi/b)} \sum_{a=1}^{b^{r+1}-1} \left(1 - \frac{16(q-1)}{q^2} \left\| \frac{a}{b^{r+1}} \right\|^{2m/2} \right). \]

For the inner sum we have

\[\sum_{a=1}^{b^{r+1}-1} \left(1 - \frac{16(q-1)}{q^2} \left\| \frac{a}{b^{r+1}} \right\|^{2} \right)^{m/2} \]

\[= \sum_{1 \leq a < b^{r+1}/2} \left(1 - \frac{16(q-1)}{q^2} \frac{a^2}{b^{2r+2}} \right)^{m/2} \]

\[+ \sum_{b^{r+1}/2 \leq a < b^{r+1}} \left(1 - \frac{16(q-1)}{q^2} \left(1 - \frac{a}{b^{r+1}} \right)^2 \right)^{m/2} \]

\[= \frac{1}{b^{m(r+1)}} \sum_{1 \leq a < b^{r+1}/2} \left(b^{2r+2} - \frac{16(q-1)}{q^2} a^2 \right)^{m/2} \]

\[+ \frac{1}{b^{m(r+1)}} \sum_{b^{r+1}/2 \leq a < b^{r+1}} \left(b^{2r+2} - \frac{16(q-1)}{q^2} (b^{r+1} - a)^2 \right)^{m/2} \]

\[= \frac{2}{b^{m(r+1)}} \sum_{1 \leq a < b^{r+1}/2} \left(b^{2r+2} - \frac{16(q-1)}{q^2} a^2 \right)^{m/2} + \delta(b) \left(1 - \frac{4(q-1)}{q^2} \right)^{m/2} , \]

where \(\delta(b) = 0 \) when \(b \) is odd and \(\delta(b) = 1 \) when \(b \) is even.
The assumption $q < 14$ yields $\frac{16(q-1)}{q^2} \geq 1$, and hence
\[
\sum_{a=1}^{b^{r+1}-1} \left(1 - \frac{16(q-1)}{q^2} \left\| \frac{a}{b^{r+1}} \right\|^2 \right)^{m/2} \leq \frac{2}{b^m(r+1)} \sum_{1 \leq a < b^{r+1}/2} (b^{2r+2} - a^2)^{m/2} + \left(\frac{3}{4} \right)^{m/2}
\]
\[
\leq \frac{2}{b^m(r+1)} \sum_{u=1}^{b^{2r+2}-1} u^{m/2} + \left(\frac{3}{4} \right)^{m/2}
\]
\[
\leq \frac{2}{b^m(r+1)} \int_1^{b^{2r+2}} u^{m/2} \, du + \left(\frac{3}{4} \right)^{m/2}
\]
\[
\leq b_r \frac{b^{2r+2}}{m+1} + \left(\frac{3}{4} \right)^{m/2}
\]
with an implied constant depending only on b and q. Therefore
\[
\sum_{k=1}^{b^g-1} \rho_b(k)|T_k(q^m)| \ll_{b,q} \sum_{r=0}^{q-1} \frac{1}{b^{r+1}} \left(b^{2(r+1)} \left(\frac{3}{4} \right)^{m/2} \right) \ll_{b,q} b^g \frac{b^g}{m+1}, \quad (4)
\]
again with implied constants depending only on b and q.

Assume that $N = \sum_{r=0}^{R} a_r q^r$. Then, using Lemma 4 and (4), we obtain
\[
\sum_{k=1}^{b^g-1} \rho_b(k)|T_k(N)| \ll_{b,q} \frac{1}{N} \sum_{m=0}^{R} a_m q^m \sum_{k=1}^{b^g-1} \rho_b(k)|T_k(q^m)| \ll_{b,q} b^g \frac{b^g}{m+1}.
\]
Since
\[
\frac{1}{N} \sum_{m=0}^{R} a_m \frac{q^m}{m+1} \leq \frac{1}{N} \sum_{m=0}^{[R/2]} a_m q^m + \frac{1}{N} \sum_{m=[R/2]+1}^{R} a_m \frac{q^m}{m+1}
\]
\[
\leq q^{R/2} \frac{1}{N} + \frac{1}{R} \ll q \frac{1}{\log N}
\]
we obtain
\[
\sum_{k=1}^{b^g-1} \rho_b(k)|T_k(N)| \ll_{b,q} b^g \frac{b^g}{\log N}.
\]
From Lemma 2 it follows that
\[
D_N((x_{s_q(n)})_{n \geq 0}) \ll_{b,q} \frac{1}{b^g} + \frac{b^g}{\log N}.
\]
Choosing $g = \lfloor \log_b \sqrt{\log N} \rfloor$ yields

$$D_N((x_{s_q(n)})_{n \geq 0}) \ll_b q \frac{1}{\sqrt{\log N}}.$$

Remark 2. We remark that, in principle, the method of proof based on Lemma 2 cannot only be used for van der Corput-sequences, but also for Halton-sequences in higher dimensions. However, this leads to a discrepancy bound of order $\left(\log N \right)^{-\frac{1}{s+1}}$, which is considerably weaker than the one presented in Theorem 2.

5. Other index-transformations

In this section, we would now like to discuss index-transformed Halton- and digital (t, s)-sequences indexed by a different kind of sequence than the sum-of-digits function, as, e.g., $(\lfloor n^\alpha \rfloor)_{n \geq 0}$ with $0 < \alpha < 1$. The following theorem provides another general result, namely lower and upper bounds on the discrepancy of sequences indexed by functions which in some sense are “moderately” monotonically increasing.

Theorem 4. Let $A \in \mathbb{N}_0$ and write $\mathbb{N}_A := \{A, A+1, A+2, \ldots\}$. Let $f : \mathbb{N}_0 \to \mathbb{N}_A$ be surjective and monotonically increasing. Moreover, define, for $k \in \mathbb{N}_A$,

$$F(k) := \#\{n : n \in \mathbb{N}_0, f(n) = k\}.$$

Under the assumption that $F(k)$ is monotonically increasing in k for sufficiently large k, the following three assertions hold.

1. For an arbitrary sequence $(x_n)_{n \geq 0}$ in $[0, 1)^s$ it is true that

$$\frac{F(f(N) - 1)}{N} \leq D_N((x_{f(n)})_{n \geq 0}).$$

2. For a Halton-sequence $(x_n)_{n \geq 0}$ in co-prime bases b_1, \ldots, b_s,

$$D_N((x_{f(n)})_{n \geq 0}) \leq C \frac{2F(f(N - 1) + 1)(\log N)^s}{N},$$

where C is a constant independent of N.

3. For a digital (t, s)-sequence $(x_n)_{n \geq 0}$ over \mathbb{F}_p for prime p,

$$D_N((x_{f(n)})_{n \geq 0}) \leq \tilde{C}p^t \frac{2F(f(N - 1) + 1)(\log N)^s}{N},$$

where \tilde{C} is a constant independent of N.
Proof.

1. Let \((x_n)_{n \geq 0}\) be an arbitrary sequence in \([0,1)^s\), and let \(f\) and \(F\) be as in the theorem. If \(f(N) = A\), then, due to the properties of \(f\), we obtain \(F(f(N) - 1) = 0\), so the lower bound on the discrepancy is trivially fulfilled. If, on the other hand, \(f(N) > A\), then it follows by the surjectivity of \(f\) that there exist \(n \in \mathbb{N}_0\) such that \(f(n) = f(N) - 1\). Furthermore, whenever \(n\) is such that \(f(n) = f(N) - 1 < f(N)\), it follows by the monotonicity of \(f\) that \(n < N\). Hence, the value \(f(N) - 1\) occurs \(F(f(N) - 1)\) times among \(f(0), \ldots, f(N - 1)\), and the point \(x_{f(N) - 1}\) is attained \(F(f(N) - 1)\) times in the sequence \(x_{f(0)}, \ldots, x_{f(N - 1)}\). The lower bound follows by considering an arbitrarily small interval containing \(x_{f(N) - 1}\).

2. Without loss of generality, assume \(f(0) = 0\), i.e., \(A = 0\). Furthermore, it is no loss of generality to assume that \(f(1) = 1\) and that \(F(k)\) is monotonically increasing in \(k\) for \(k \geq 0\). Indeed, if this is not the case, we can disregard a suitable number of initial elements \(x_{f(0)}, \ldots, x_{f(N_0)}\), without changing the discrepancy of the first \(N\) points of the sequence \((x_{f(n)})_{n \geq 0}\) by more than \(\frac{N_0}{N}\).

Let \(b_1, \ldots, b_s \geq 2\) be co-prime integers and let \((x_n)_{n \geq 0}\) be the corresponding Halton-sequence. For estimating the discrepancy, we consider an arbitrary interval

\[
I := \prod_{i=1}^s [0, \alpha(i)^{(1)}] \subseteq [0,1)^s,
\]

for some \(\alpha^{(1)}, \ldots, \alpha^{(s)} \in (0,1)\). For each \(i \in \{1, \ldots, s\}\), choose \(m_i\) as the minimal integer such that \(N \leq b_i^{m_i}\). Since \(f(N - 1) \leq N - 1\), the \(i\)-th component \(x_{f(n)}^{(i)}\) of a point \(x_{f(n)}\), \(1 \leq i \leq s\), \(0 \leq n \leq N - 1\), has at most \(m_i\) non-zero digits in its base \(b_i\) representation. From this, it is easily derived that we can restrict ourselves to considering only \(\alpha^{(i)}\) with at most \(m_i\) non-zero digits in their base \(b_i\) expansion, \(1 \leq i \leq s\), as this assumption changes \(D_N((x_{f(n)})_{n \geq 0})\) by a term of order of at most \(N^{-1}\). We can therefore write \(I\) as the disjoint union of intervals

\[
I(j_1, \ldots, j_s) := \prod_{i=1}^s \left[\sum_{r=1}^{j_i - 1} \frac{\alpha^{(i)}_r}{b_i^r} + \frac{j_i}{b_i^{j_i}}, \sum_{r=1}^{j_i - 1} \frac{\alpha^{(i)}_r}{b_i^r} + \frac{j_i}{b_i^{j_i}} \right],
\]

where \(1 \leq j_i \leq m_i\) for \(1 \leq i \leq s\) and the \(\alpha^{(i)}_r\) represent the base \(b_i\) digits of \(\alpha^{(i)}\). Each of the \(I(j_1, \ldots, j_s)\) can in turn be written as the disjoint union of intervals

\[
\sum_{i=1}^s J(j_i, k_i) := \prod_{i=1}^s \left[\sum_{r=1}^{j_i - 1} \frac{\alpha^{(i)}_r}{b_i^r} + \frac{k_i}{b_i^{j_i}}, \sum_{r=1}^{j_i - 1} \frac{\alpha^{(i)}_r}{b_i^r} + \frac{k_i + 1}{b_i^{j_i}} \right],
\]

with \(1 \leq j_i \leq m_i\) and \(0 \leq k_i \leq \alpha^{(i)}_{j_i} - 1\). If \(\alpha^{(i)}_{j_i} = 0\), then \(J(j_i, k_i)\) is of zero volume containing no points. Hence we can restrict ourselves to considering only those \(J(j_i, k_i)\) with \(\alpha^{(i)}_{j_i} \geq 1\).
Let now \(i \in \{1, \ldots, s\} \) and \(v \geq 0 \) be fixed. By the construction principle of the points of the Halton-sequence, we see that \(x_v^{(i)} \) is contained in \(J(j_i, k_i) \) if and only if

\[
\begin{pmatrix}
v_0^{(i)} \\
\vdots \\
v_{j_i-2}^{(i)} \\
v_{j_i-1}^{(i)}
\end{pmatrix}
= \begin{pmatrix}
\alpha_i^{(1)} \\
\vdots \\
\alpha_i^{(j_i-1)} \\
k_i
\end{pmatrix},
\]

where the \(v_r^{(i)}, 0 \leq r \leq j_i - 1 \) are the digits of \(v \) in base \(b_i \). Note that (5) has exactly one solution \((v_0^{(i)}, \ldots, v_{j_i-1}^{(i)}) \mod b_i \). Hence we can identify exactly one remainder \(R^{(i)} \mod b_i \), such that \(x_v^{(i)} \in J(j_i, k_i) \) if and only if \(v \equiv R^{(i)} \mod b_i \). By the Chinese Remainder Theorem, there exists exactly one remainder \(R \mod Q := \prod_{i=1}^s b_i \) such that

\[
x_v \in \prod_{i=1}^s J(j_i, k_i) \quad \text{if and only if} \quad v \equiv R \mod Q.
\]

We now deduce an estimate for the number of points among \(x_{f(0)}, \ldots, x_{f(N-1)} \) that are contained in an interval of the type \(\prod_{i=1}^s J(j_i, k_i) \). For short, we denote this number by \(A(\prod_{i=1}^s J(j_i, k_i)) \).

Note that there exists a number \(\theta = \theta(R, Q, f(N-1)) \in \{0, 1\} \) such that \(0 = f(0) \leq R + wQ \leq f(N-1) \) if and only if \(w \in \{0, \ldots, \lfloor \frac{f(N-1)}{Q} \rfloor - 1 + \theta \} \), so

\[
A \left(\prod_{i=1}^s J(j_i, k_i) \right) \geq \sum_{w=0}^{\lfloor \frac{f(N-1)}{Q} \rfloor - 1 + \theta} F(R + wQ) \geq \sum_{w=0}^{\lfloor \frac{f(N-1)}{Q} \rfloor - 2 + \theta} F(wQ), \tag{6}
\]

where we used the monotonicity of \(F \). On the other hand, with the same argument,

\[
A \left(\prod_{i=1}^s J(j_i, k_i) \right) \leq \sum_{w=0}^{\lfloor \frac{f(N-1)}{Q} \rfloor - 1 + \theta} F(R + wQ) \leq \sum_{w=1}^{\lfloor \frac{f(N-1)}{Q} \rfloor + \theta} F(wQ). \tag{7}
\]

For the following, let \(K = \lfloor \frac{f(N-1)}{Q} \rfloor + \theta \). Let

\[
\Sigma_A := \sum_{r=0}^{(K-1)Q-1} F(r),
\]

and note that we can write

\[
\Sigma_A = \sum_{w=0}^{K-2} \sum_{r=0}^{Q-1} F(wQ + r) \geq Q \sum_{w=0}^{K-2} F(wQ) = Q \sum_{w=0}^{\lfloor \frac{f(N-1)}{Q} \rfloor - 2 + \theta} F(wQ).
\]
On the other hand, by the definition of θ,

$$\Sigma_A = \sum_{r=0}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor - 1 + \theta} F(r) \leq \sum_{r=0}^{f(N-1)-1} F(r) \leq N - 1,$$

from which we conclude that

$$\sum_{w=0}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor - 2 + \theta} F(wQ) \leq \frac{N - 1}{Q}.$$ \hspace{1cm} (8)

Moreover, let

$$\Sigma_B := \sum_{r=1}^{KQ} F(r),$$

for which we can derive, in the same way as the corresponding estimate for Σ_A,

$$\Sigma_B \leq Q \sum_{w=1}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor + \theta} F(wQ).$$

Again by the definition of θ,

$$\Sigma_B = \sum_{r=1}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor + \theta} F(r) \geq \sum_{r=1}^{f(N-1)} F(r)
\leq \# \{ n \in \mathbb{N}_0 : 0 < f(n) \leq f(N-1) \} = N - 1,$$

where we used that $f(1) = 1$ and that f is monotonically increasing. Consequently,

$$\sum_{w=1}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor + \theta} F(wQ) \geq \frac{N - 1}{Q}.$$ \hspace{1cm} (9)

Note, furthermore, that

$$0 \leq \sum_{w=1}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor + \theta} F(wQ) - \sum_{w=0}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor - 2 + \theta} F(wQ)
\leq F \left(\left(\left\lfloor \frac{f(N-1)}{Q} \right\rfloor - 1 + \theta \right) Q \right)
+ F \left(\left(\left\lfloor \frac{f(N-1)}{Q} \right\rfloor + \theta \right) Q \right)
\leq 2F(f(N-1) + 1).$$ \hspace{1cm} (10)
Combining Equations (6), (9), and (10), and noting that \(\lambda(\prod_{i=1}^{s} J(j_i, k_i)) = \frac{1}{Q} \), gives

\[
\frac{1}{N} A \left(\prod_{i=1}^{s} J(j_i, k_i) \right) - \frac{1}{Q} \geq \frac{1}{N} \sum_{w=0}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor + \theta} F(wQ) - \frac{1}{Q} \\
\geq \sum_{w=0}^{\left\lfloor \frac{f(N-1)}{Q} \right\rfloor + \theta} F(wQ) - \frac{2F(f(N-1) + 1)}{N} - \frac{1}{Q} \\
\geq -\frac{2F(f(N-1) + 1)}{N} + \frac{N - 1}{QN} - \frac{1}{Q} \\
\geq -\frac{2F(f(N-1) + 1)}{N} - \frac{1}{NQ}.
\]

In exactly the same way, using (7), (8), and (10), we get

\[
\frac{1}{N} A \left(\prod_{i=1}^{s} J(j_i, k_i) \right) - \frac{1}{Q} \leq \frac{2F(f(N-1) + 1)}{N} + \frac{1}{NQ},
\]

from which we derive

\[
\left| \frac{1}{N} A \left(\prod_{i=1}^{s} J(j_i, k_i) \right) - \frac{1}{Q} \right| \leq \frac{2F(f(N-1) + 1)}{N} + \frac{1}{NQ}.
\]

Finally, note that, by writing \(A(I) \) for the number of points of \((x_{f(n)})_{n=0}^{N-1} \) in \(I \),

\[
\left| \frac{A(I)}{N} - \lambda(I) \right| \leq \sum_{j_1=1}^{m_1} \cdots \sum_{j_s=1}^{m_s} \sum_{k_1=0}^{\alpha^{(1)}(j_1) - 1} \cdots \sum_{k_s=0}^{\alpha^{(s)}(j_s) - 1} \left| \frac{1}{N} A \left(\prod_{i=1}^{s} J(j_i, k_i) \right) - \lambda \left(\prod_{i=1}^{s} J(j_i, k_i) \right) \right| \\
\leq C \frac{(\log N)^s F(f(N-1) + 1)}{N},
\]

for a suitably chosen constant \(C \), and the result follows.

3. As in Item 2, assume without loss of generality that \(f(0) = 0, f(1) = 1 \), and that \(F(k) \) is monotonically increasing in \(k \) for \(k \geq 1 \). Let \(p \) be a prime and let \((x_n)_{n \geq 0} \) be a digital \((t,s) \)-sequence over \(\mathbb{F}_p \). For estimating the discrepancy, we consider an arbitrary interval

\[
I := \prod_{i=1}^{s} [0, \alpha^{(i)}(j_i)) \subseteq [0, 1)^s,
\]

for some \(\alpha^{(1)}, \ldots, \alpha^{(s)} \in (0,1] \). Choose \(m \) as the minimal integer such that \(N \leq p^m \). By a similar argument as for the case of Halton sequences, we
can restrict ourselves to considering only $\alpha^{(i)}$ with at most m non-zero digits $\alpha^{(i)}_1, \ldots, \alpha^{(i)}_m$ in their base p expansion. Moreover, with the same reasoning as in the Halton case, we see that we essentially only need to deal with intervals of the form

$$\prod_{i=1}^{s} J(j_i, k_i) := \prod_{i=1}^{s} \left(\sum_{r=1}^{j_i-1} \frac{\alpha^{(i)}_r}{p^r} + \frac{k_i}{p^{j_i}} \right),$$

with $1 \leq j_i \leq m$ and $0 \leq k_i \leq \alpha^{(i)}_{j_i} - 1$. Again, if $\alpha^{(i)}_{j_i} = 0$, then $J(j_i, k_i)$ is of zero volume containing no points, so we can restrict ourselves to considering only those $J(j_i, k_i)$ with $\alpha^{(i)}_{j_i} \geq 1$.

As for the case of Halton sequences, we would like to derive an upper and a lower bound on the number $A \left(\prod_{i=1}^{s} J(j_i, k_i) \right)$ of points contained in $\prod_{i=1}^{s} J(j_i, k_i)$. To this end, denote the r-th row of a generator matrix $C_j, 1 \leq j \leq s$ of $(x_n)_{n \geq 0}$ by $c^{(j)}_r$.

For an integer $v \geq 0$, the point x_v is contained in $\prod_{i=1}^{s} J(j_i, k_i)$ if and only if

$$C \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{j_1+\cdots+j_s} \end{pmatrix} = A^\top,$$

where v_0, v_1, v_2, \ldots are the base p digits of v, where

$$A := (\alpha^{(1)}_1, \ldots, \alpha^{(1)}_{j_1-1}, k_1, \alpha^{(2)}_1, \ldots, \alpha^{(2)}_{j_2-1}, k_2, \ldots, \alpha^{(s)}_1, \ldots, \alpha^{(s)}_{j_s-1}, k_s) \in \mathbb{F}_p^{j_1+\cdots+j_s},$$

and

$$C := (c^{(1)}_1, \ldots, c^{(1)}_{j_1}, c^{(2)}_1, \ldots, c^{(2)}_{j_2}, \ldots, c^{(s)}_1, \ldots, c^{(s)}_{j_s})^\top \in \mathbb{F}_p^{(j_1+\cdots+j_s) \times \mathbb{N}}.$$

Let now $Q := p^{j_1+\cdots+j_s+t}$, let $w \in \mathbb{N}_0$ and consider those $v \geq 0$ with $wQ \leq v \leq (w+1)Q - 1$. For these v, the first $j_1+j_2+\cdots+j_s+t$ digits in their base p expansion vary, while all the other digits are fixed. Hence we can write (11) as

$$D_1 \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{j_1+\cdots+j_s+t} \end{pmatrix} + D_2 \cdot \begin{pmatrix} v_{j_1+\cdots+j_s+t+1} \\ v_{j_1+\cdots+j_s+t+2} \\ \vdots \end{pmatrix} = A^\top,$$

where $C = (D_1|D_2)$ and where D_1 is an $(j_1+\cdots+j_s) \times (j_1+\cdots+j_s+t)$-matrix and D_2 is an $(j_1+\cdots+j_s) \times \mathbb{N}$-matrix over \mathbb{F}_p.
Due to the fact that \((x_n)_{n \geq 0}\) is a digital \((t,s)\)-sequence, it follows that \(D_1\) has full rank, and hence there are exactly \(p^t\) values \(v\) in \(\{wQ, wQ + 1, \ldots, (w + 1)Q - 1\}\) such that \(x_v\) is contained in \(\prod_{i=1}^s J(j_i, k_i)\).

Now note again that there exists a number \(\theta = \theta(Q, f(N - 1)) \in (0, 1)\) such that \(0 = f(0) \leq wQ \leq f(N - 1)\) if and only if \(w \in \{0, \ldots, \lfloor \frac{f(N - 1)}{Q} \rfloor - 1 + \theta\}\). By our observations above, for each of these \(w \in \{0, \ldots, \lfloor \frac{f(N - 1)}{Q} \rfloor - 1 + \theta\}\) there exist \(p^t\) integers \(R_{w,1}, \ldots, R_{w,p^t} \in \{0, \ldots, Q - 1\}\) such that exactly the points \(x_{R_{w,1} + wQ}, \ldots, x_{R_{w,p^t} + wQ}\) among \(x_{wQ}, x_{wQ + 1}, \ldots, x_{(w+1)Q-1}\) are contained in \(\prod_{i=1}^s J(j_i, k_i)\). Therefore, we can estimate

\[
A \left(\prod_{i=1}^s J(j_i, k_i) \right) \geq \sum_{w=0}^{\lfloor \frac{f(N - 1)}{Q} \rfloor - 2 + \theta} \sum_{z=1}^{p^t} F(R_{w,z} + wQ) \geq p^t \sum_{w=0}^{\lfloor \frac{f(N - 1)}{Q} \rfloor - 2 + \theta} F(wQ),
\]

and

\[
A \left(\prod_{i=1}^s J(j_i, k_i) \right) \leq \sum_{w=0}^{\lfloor \frac{f(N - 1)}{Q} \rfloor - 1 + \theta} \sum_{z=1}^{p^t} F(R_{w,z} + wQ) \leq p^t \sum_{w=1}^{\lfloor \frac{f(N - 1)}{Q} \rfloor + \theta} F(wQ).
\]

In exactly the same way as for a Halton sequence, we obtain, by noting that

\[
\lambda(\prod_{i=1}^s J(j_i, k_i)) = \frac{1}{p^{t_1 + \ldots + t_s}} = \frac{p^t}{Q},
\]

\[
\left| \frac{1}{N} A \left(\prod_{i=1}^s J(j_i, k_i) \right) - \frac{1}{Q} \right| \leq \frac{p^t 2 F(f(N - 1) + 1)}{N} + \frac{p^t}{NQ},
\]

and the result follows.

Examples of functions \(f\) and \(F\) satisfying the assumptions of Theorem 4 are obtained as follows. Let \(g : \mathbb{R}_0^+ \rightarrow \mathbb{R}_0^+\) be a function that is twice differentiable on \((0, \infty)\), with \(g'(x) > 0\) and \(g''(x) < 0\) for \(x \in (0, \infty)\). Moreover, define \(f(n) := [g(n)]\) for \(n \in \mathbb{N}\). It then easily follows that \(f\) and \(F\) indeed fulfill the assumptions of the theorem and we obtain

\[
F(k + 1) = \left\lfloor g^{-1}(k + 1) \right\rfloor - \left\lfloor g^{-1}(k) \right\rfloor.
\]

We thus obtain the following exemplary corollary to Theorem 4.

Corollary 2. Let \(\alpha \in (0, 1)\). Then the following assertions hold.

1. For a Halton-sequence \((x_n)_{n \geq 0}\) in co-prime bases \(b_1, \ldots, b_s\),

\[
\overline{C}_1 \frac{1}{N^{\alpha}} \leq D_N((x_{[n^\alpha]}))_{n \geq 0} \leq \overline{C}_2 \frac{\log N^s}{N^{\alpha}},
\]

where \(\overline{C}_1, \overline{C}_2\) are constants that depend on the sequence and on \(\alpha\), but are independent of \(N\).
2. For a digital \((t,s)\)-sequence \((x_n)_{n\geq 0}\) over \(\mathbb{Z}_p\) for prime \(p\),

\[
\overline{C}_1 \frac{1}{N^\alpha} \leq D_N((x_{[n^\alpha]})_{n\geq 0}) \leq \overline{C}_2 \frac{(\log N)^s}{N^\alpha},
\]

where \(\overline{C}_1, \overline{C}_2\) are constants that depend on the sequence and on \(\alpha\), but are independent of \(N\).

Proof. The result follows by combining Theorem 2 with the observation that

\[
c'_\alpha k_{\frac{1}{p^\alpha} - 1} \leq F(k) \leq c_\alpha k_{\frac{1}{p^\alpha} - 1},
\]

with constants \(c'_\alpha, c_\alpha > 0\) that depend on \(\alpha\), but not on \(k\). ■

6. Appendix: Uniform discrepancy

In Corollary 1 we implicitly used the fact that \((t,s)\)-sequences in base \(b\) as well as Halton-sequences in pairwise co-prime bases \(b_1, \ldots, b_s\) have uniform discrepancy of order \((\log N)^s/N\). Since we are not aware of a proof of these facts in the existing literature, we provide one here.

6.1. Uniform discrepancy of \((t,s)\)-sequences in base \(b\)

Assume that \(\Delta_b(t, m, s)\) is a number for which

\[
b^m D_{b^{m\cdot \mathcal{P}}} \leq \Delta_b(t, m, s)
\]

holds for the discrepancy of any \((t, m, s)\)-net \(\mathcal{P}\) in base \(b\).

Theorem 5. Let \((x_n)_{n\geq 0}\) be a \((t, s)\)-sequence in base \(b\). Then we have

\[
N \tilde{D}_N((x_n)_{n\geq 0}) \leq (2b - 1) \left(tb^t + \sum_{m=t}^{\lfloor \log_b N \rfloor} \Delta_b(t, m, s) \right).
\]

Proof. Let \(k \in \mathbb{N}_0\). We show that

\[
N D_N((x_{n+k})_{n\geq 0}) \leq (2b - 1) \left(tb^t + \sum_{m=t}^{\lfloor \log_b N \rfloor} \Delta_b(t, m, s) \right)
\]

uniformly in \(k \in \mathbb{N}_0\).

For \(N < b^t\), the assertion follows trivially by \(N D_N((x_{n+k})_{n\geq 0}) \leq N\).

Let now \(N \in \mathbb{N}, N \geq b^t\) with \(b\)-adic expansion \(N = a_r b^r + a_{r-1} b^{r-1} + \cdots + a_1 b + a_0\) where \(a_j \in \{0, \ldots, b-1\}\) for \(0 \leq j \leq r\) and \(a_r \neq 0\) (note that \(r \geq t\)). For given \(k \in \mathbb{N}_0\), choose \(\ell \in \mathbb{N}\) such that \((\ell - 1)b^r \leq k < \ell b^r\). Then we can write

\[
k = \ell b^r - (a_{r-1} b^{r-1} + \cdots + a_1 b + a_0) - 1
\]
with some \(d_j \in \{0, \ldots, b - 1\} \) for \(0 \leq j \leq r - 1 \), and
\[
k = (\ell - 1)b^r + \kappa_{r-1}b^{r-1} + \cdots + \kappa_1 b + \kappa_0
\]
with some \(\kappa_j \in \{0, \ldots, b - 1\} \) for \(0 \leq j \leq r - 1 \). Note that therefore \(d_j + \kappa_j = (b-1) \) for \(0 \leq j < r \).

We split up the point set \(\mathcal{P}_{k,N} := \{x_n : k \leq n \leq k + N - 1\} \) in the following way:
\[
\mathcal{P}_{k,N} = \bigcup_{1 \leq d \leq d_0 + 1} \mathcal{P}_{0,d}^1 \bigcup_{1 \leq m \leq \ell - 1} \bigcup_{1 \leq d \leq d_m} \mathcal{P}_{m,d}^1 \bigcup_{1 \leq d \leq d_m} \bigcup_{t \leq m \leq \ell - 1} \bigcup_{0 \leq s \leq \kappa_m + \kappa_m} \mathcal{P}_{m,s}^m \bigcup_{t \leq m \leq \ell - 1} \bigcup_{0 \leq s \leq \kappa_m + \kappa_m} \mathcal{P}_{m,s}^m
\]
where
\[
\mathcal{P}_{0,d}^1 := \{x_{(b^r-d_{r-1}b^{r-1} \cdots -d_{m+1}b^{m+1}-db^m+j) : 0 \leq j < b^m}\},
\mathcal{P}_a^m := \{x_{(b^r-ab^{r-1} \cdots -d_{m+1}b^{m+1}-db^m+j) : 0 \leq j < b^m}\},
\mathcal{P}_{m,s}^m := \{x_{(\ell+a_{r-1})b^r+(\kappa_{r-1}+a_{r-1})b^{r-1}+\cdots+(\kappa_{m+1}+a_{m+1})b^{m+1}+xb^m+j) : 0 \leq j < b^m}\}.
\]
For \(m \leq t - 1 \), we can bound the discrepancy of \(\mathcal{P}_{m,d}^1 \) and \(\mathcal{P}_{m,s}^m \), respectively, by the trivial bound 1. For \(m \geq t \), the point sets \(\mathcal{P}_{m,d}^1 \) and \(\mathcal{P}_{m,s}^m \) are \((t,m,s)\)-nets in base \(b \), and the \(\mathcal{P}_a^m \) are \((t,r,s)\)-nets in base \(b \). From the triangle inequality for the discrepancy we obtain
\[
ND_N(\mathcal{P}_{k,N}) \leq (d_0 + a_0 + \kappa_0 + 1)b^0 + \sum_{m=1}^{t-1} (d_m + a_m + \kappa_m)b^m
\]
\[
+ \sum_{m=t}^{r-1} (d_m + a_m + \kappa_m)\Delta_b(t,m,s) + \max(b_r - 2, 0)\Delta_b(t,r,s)
\]
\[
\leq (2b - 1) + (2b - 2) (t - 1)b^t + \sum_{m=t}^{r-1} \Delta_b(t,m,s) + \max(b - 3, 0)\Delta_b(t,r,s)
\]
\[
\leq (2b - 1) \left(tb^t + \sum_{m=t}^{r} \Delta_b(t,m,s) \right)
\]
and the result follows, since \(r = \lfloor \log_b N \rfloor \).

Corollary 3. Let \((x_n)_{n \geq 0} \) be a \((t,s)\)-sequence in base \(b \). Then we have
\[
N\tilde{D}_N((x_n)_{n \geq 0}) \ll_{s,b} b^t(\log N)^s.
\]

Proof. The result follows from Theorem 5 together with the fact that
\[
\Delta_b(t,m,s) \ll_{s,b} b^t m^{s-1}
\]
for \(m \geq t \) (see, for example, [6, 24]).
6.2. Uniform discrepancy of Halton-sequences

Theorem 6. Let \((x)_n\geq 0\) be a Halton-sequence in pairwise co-prime bases \(b_1, \ldots, b_s\). Then we have

\[
N \widetilde{D}_N((x)_n\geq 0) = \frac{1}{s!} \prod_{j=1}^{s} \left(\frac{\lfloor b_j/2 \rfloor \log N}{\log b_j} + s \right) + O((\log N)^{s-1}),
\]

where the implied constant depends on \(b_1, \ldots, b_s\) and \(s\).

Proof. The result follows from an adaption of the proof of [6, Theorem 3.36]. Note that [6, Lemma 3.37] also holds true for \(A(J,k,N,S) := \#\{n \in \mathbb{N} : k \leq n < k + N \text{ and } x_n \in J\}\) instead of \(A(J,N,S) := A(J,0,N,S)\). The rest of the proof of [6, Theorem 3.36] remains unchanged.

Acknowledgements. The authors would like to thank M. Drmota for valuable suggestions and remarks.

References

[1] E.I. Atanassov, On the discrepancy of the Halton sequences, Math. Balkanica (N.S.) 18 (2004), 15–32.
[2] R. Béjian, Minoration de la discrépance d’une suite quelconque sur \(T\), Acta Arith. 41 (1982), 185–202.
[3] R. Béjian and H. Faure, Discrépance de la suite de van der Corput, C. R. Acad. Sci., Paris, Sér. A 285 (1977), 313–316.
[4] D. Bilyk, M.T. Lacey and A. Vagharshakyan, On the small ball inequality in all dimensions, J. Funct. Anal. 254 (2008), 2470–2502.
[5] C. Coquet, Sur certaines suites uniformément équiréparties modulo 1, Acta Arith. 36 (1980), 157–162.
[6] J. Dick and F. Pillichshammer, Digital Nets and Sequences—Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.
[7] M. Drmota, \(q\)-additive functions and well distribution modulo 1, Demonstratio Math. 30 (1998), 883–896.
[8] M. Drmota and G. Larcher, The sum-of-digits-function and uniform distribution modulo 1, J. Number Theory 89 (2001), 65–96.
[9] M. Drmota and R.F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics 1651, Springer-Verlag, Berlin, 1997.
[10] H. Faure, Suites à faible discrépance dans \(T^s\), Publ. Dép. Math., Université de Limoges, Limoges, France, 1980.
[11] H. Faure and C. Lemieux, Improved Halton sequences and discrepancy bounds, Monte Carlo Models and Applications 16 (2010), 231–250.
[12] A.O. Gel’fond, Sur les nombres qui ont des propriétés additives et multiplicative données, Acta Arith. 13 (1968), 259–265.
[13] J.H. Halton, *On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals*, Numer. Math. 2 (1960), 84–90. Erratum, ibid. 2: p. 196, 1960.

[14] P. Hellekalek, *A general discrepancy estimate based on p-adic arithmetics*, Acta Arith. 139 (2009), 117–129.

[15] P. Hellekalek, *A notion of diaphony based on p-adic arithmetic*, Acta Arith. 145 (2010), 273–284.

[16] P. Hellekalek, *Assessing randomness: tools from b-adic analysis*, talk at the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Sydney, Feb. 14 2012.

[17] P. Hellekalek and H. Niederreiter, *Constructions of uniformly distributed sequences using the b-adic method*, Unif. Distrib. Theory 6 (2011), 185–200.

[18] R. Hofer, P. Kritzer, G. Larcher and F. Pillichshammer, *Distribution properties of generalized van der Corput-Halton sequences and their subsequences*, Int. J. Number Theory 5 (2009), 719–746.

[19] L.K. Hua and Y. Wang, *Applications of number theory to numerical analysis*, Springer-Verlag, Berlin-New York, 1981.

[20] L. Kuipers and H. Niederreiter, *Uniform Distribution of Sequences*, John Wiley, New York, 1974; reprint, Dover Publications, Mineola, NY, 2006.

[21] J. Matoušek, *Geometric discrepancy. An illustrated guide*, Algorithms and Combinatorics 18, Springer-Verlag, Berlin, 1999.

[22] H.G. Meijer, *The discrepancy of a g-adic sequence*, Indag. Math. 30 (1968), 54–66.

[23] H. Niederreiter, *Point sets and sequences with small discrepancy*, Monatsh. Math. 104 (1987), 273–337.

[24] H. Niederreiter, *Random Number Generation and Quasi-Monte Carlo Methods*, SIAM, Philadelphia, 1992.

[25] A.M. Odlyzko and L.B. Richmond, *On the unimodality of high convolutions of discrete distributions*, Ann. Probab. 13 (1985), 299–306.

[26] F. Pillichshammer, *On the discrepancy of the van der Corput sequence indexed by Fibonacci numbers*, Fibonacci Quart. 50 (2012), 235–238.

[27] J.Ch. Puchta and J. Spilker, *Altes und Neues zur Quersumme*, Math. Semesterber. 49 (2002), 209–226.

[28] K.F. Roth, *On irregularities of distribution*, Mathematika 1 (1954), 73–79.

[29] W.M. Schmidt, *Irregularities of distribution VII*, Acta Arith. 21 (1972), 45–50.

[30] R.F. Tichy and G. Turnwald, *Gleichmässige Diskrepanzabschätzung für Ziffernsummen*, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 123 (1987), 17–21.

[31] R.F. Tichy and G. Turnwald, *On the discrepancy of some special sequences*, J. Number Theory 26 (1987), 351–366.

Address: Peter Kritzer, Gerhard Larcher and Friedrich Pillichshammer: Institut für Finanzmathematik, Johannes Kepler Universität Linz, Altenbergerstr. 69, 4040 Linz, Austria.

E-mail: peter.kritzer@jku.at, gerhard.larcher@jku.at, friedrich.pillichshammer@jku.at

Received: 8 April 2013