Current use of Antifungal Eye Drops and How to Improve Therapeutic Aspects in Keratomycosis

Anxo Fernández-Ferreiro1,2,5, Miguel González-Barcia1,5, Gil Martínez M1, Blanco Méndez J2, FJ Otero-Espinar2, F Ferreiro A1, Victoria Díaz Tome2 and MJ Lamas1,5

1Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, (SERGAS), Spain
2Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Spain
3Ophthalmology Department, Hospital de Conxo, Xerencia de Xestión Integrada de Santiago de Compostela, (SERGAS), Spain
4Clinical Analysis Department, Hospital Universitario Nuestra Señora de la Candelaria, Spain
5Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS-ISCIII), Spain

Keywords: Fungal keratitis; Eye antifungals; Voriconazole; Natamycin; Fluconazole; Therapeutic optimization; Pharmaceutical recommendations

Abstract

Background: Fungal keratitis is a disease that has a low prevalence and poor outcome because of its minimal therapeutic spectrum.

Objective: The purpose of the current study is to provide an overview of the use of antifungal topical eye drops in a tertiary level hospital and to highlight possible improvements that can optimize their therapeutic use.

Methods: Fungal keratitis cases treated in the Ophthalmology Department of a Tertiary hospital were reviewed in a four-year retrospective study.

Results: For four years, 24 patients received an antifungal eye drop treatment for fungal keratitis: 20% were treated with topical fluconazole and 80% were treated with topical voriconazole (79% in monotherapy and 21% in conjunction with topical natamycin). In most cases, fungal growth was detected and susceptibility was rarely reported, facilitating the realization of directed treatment towards the most frequently isolated fungi (Fusarium, Candida, Paecilomyces).

Conclusion: In a disease with low prevalence and complicated management, we have detected improvement in the three involved departments: ophthalmology, pharmacy and microbiology.

Introduction

Fungal keratitis (FK) is a corneal infection that can lead to pain, loss of vision, light sensitivity and tearing. Despite representing only 5% of all infective keratitis cases in developed countries, if left untreated, it can cause blindness [1].

Filamentous fungi, such as Fusarium spp. and Aspergillus spp. are the most common etiologic agents in hot, humid, tropical or semi-tropical climates and they are the most common infections in agricultural workers [2]. Although there are cases of infections unrelated to these fungi, such as infections resulting from Paecylomices spp. filamentous infections are usually preceded by an ocular injury with vegetables [3]. Furthermore, among yeasts, Candida albicans is the most common fungus, especially in the coldest climates. It usually affects patients with a pre-existing corneal disease or who have received long-term corticoid therapy [4].

All FK cases must be confirmed microbiologically to detect the causative agent and choose the best treatment [5]. Usually, FK appears as a white-greyish lesion with indistinct margins and finger-like projections in the adjacent stroma. The production of necrotizing areas with inflammatory infiltrate is typical of this pathology. Once microorganisms penetrate in the anterior chamber and reach the crystalline lens, they are extremely difficult to remove [6]. Usually, treatment for these microorganisms is very complex, requiring the use of antifungal drugs for a prolonged period of time and frequent debridations to facilitate the activity of the antifungal drug [7]. FK has a worse visual prognosis than bacterial keratitis, most likely because of the lack of effective treatments. Thus, it often requires a corneal graft because the cornea is damaged [8].

Currently, there is a significant lack of commercialized ophthalmic drugs because they are not profitable or have low stability. Thus, a significant number of patients are in distress, and ophthalmologists are forced to seek alternative options, such as antifungal eye drops, which are produced in pharmacy departments [9].

Polyene is the first choice for KF treatment because topical natamycin (Natacyn 5%) is the best option against filamentous fungi and amphotericin B (eye drops Amphotericin B 0.15%) is the best...
option against yeast [10]. The emergence of new azole antifungal

drugs, such as voriconazole (Vfend®), may replace the classical
treatment because they are less toxic than amphotericin [11] and have
better penetration [12].

Objective

The purpose of the current study is to provide an overview of the
use of antifungal topical eye drops in a third level hospital and to
highlight possible improvements that can optimize therapies.

Methods

We present a retrospective study of all fungal keratitis treated by the
Department of Ophthalmology of Santiago de Compostela during a
period between January 2010 and December 2014. We used a
formulation database (Pharmabase®) and a pharmacotherapeutic
management program, SILICON®, to analyse the antifungal eye drops
produced in the pharmacy.

We collected the following parameters using the electronic national
history system (Applicative IANUS): age, sex, history of ocular
pathology, diagnostic confirmation of fungal keratitis, microbiological
examinations, type of eye drop used, duration of treatment with the
topical antifungal prescribed and resolution of medical-
pharmacological treatment. The work was conducted in compliance
with the Institutional Review Board Human Subjects Research
Committee requirements and was conducted in accordance with the
Helsinki Declaration.

Results

During the period of study, 24 cases of fungal keratitis required
treatment with topical antifungal drops. The average patient age was 62
years old (SD=15); 58.3% were women (n=14), and 45.83% of total
cases (n=11) presented with a history of ophthalmic disease (corneal
transplantation, herpetic keratitis repeat, bacterial infectious keratitis
with a prolonged treatment of antibiotics, dry eye and necrotizing
scleritis).

We analysed the microbiological results of all of the patients who
had fungi. These microbiological cultures resulted in corneal scraping
in 75% of cases and in a conjunctival exudate in 25% of cases. In
45.83% of cases, it was not possible to isolate and identify the causative
agent. However, we identified the microorganism agent in 54.17% of
cases: Candida spp. (25%), Fusarium spp. (12.5%), Paecilomyces spp.
(12.5%) and Aspergillus fumigatus (4.16%). Concomitant treatment
was similar in all patients. They received an oral antifungal drug,
topical moxifloxacin, and, in some cases, intracameral voriconazole.

Regarding the topical pharmacotherapy approach, voriconazole is
the most widespread treatment because it was used in up to 80%
(n=19) of cases. In 79% of cases, a monotherapy of voriconazole
(n=15) was used for an average of 55 days (SD=30). Among them, 21%
(n=4) were initially treated with voriconazole eye drops in
monotherapy; ten days later, natamycin eye drops were added, and
finally, the treatment ended with the use of only this molecule,
completing a full cure period of 40 days (SD=15). The second-most
preferred therapeutic eye drop was fluconazole, which was prescribed
for 20% (n=5) of the patients, with a treatment period of a mean of 40
days (SD=25).

In 80% of patients treated with topical fluconazole, the agent was
identified (guided by antibiotic susceptibility twice). However,
treatment with voriconazole was only started with an identified causal
agent in 47% of cases. Therefore, most of the cases were treated based
on an empirical treatment.

Table 1 describes the cases treated with previous therapies and their
microbiological results. In 90% of cases, the pharmacological treatment
failed, resulting in a loss of vision because of corneal opacity, which
was residually triggered by the infection and/or the treatment itself or
because of the occurrence of perforations that led to eye enucleation.

Fungus identified	Fluconazole	Voriconazole	Caspofungin	Amphotericin
Treatment with				
fluconazole				
eye drops (n=5)				
Candida albicans (n=1)	0.094	-	-	0.047
Candida tropicalis	0.19	0.016		
Paecilomyces sp. (n=1)	-	-	-	
Fusarium sp. (n=1)	-	-	-	
No identified (n=1)				
Treatment with				
voriconazole eye drops				
(n=15)				
Candida albicans (n=1)	“Sensible”	-	“Sensible”	-
Candida parapsilosis	“Sensible”	-	“Sensible”	-
Aspergillus fumigatus	-	-	-	
Paecilomyces spp. (n=1)	-	-	-	
Fusarium sp. (n=2)	-	-	-	
No identified (n=9)				
Treatment with				
voriconazole eye drops				
and natamycin (n=4)				
Candida albicans (n=2)	(1.1)** 0.008**	(0.094)** 0.064**	(0.008)** 0.008**	-
Paecilomyces sp. (n=1)	-	-	-	

Citation: Fernández-Ferreiro A, González-Barcia M, Gil-Martínez M, Blanco-Méndez J, Otero-Espinar FJ, et al. (2016) Current use of Antifungal
Eye Drops and How to Improve Therapeutic Aspects in Keratomycosis. Fungal Genom Biol 6: 130. doi:10.4172/2165-8056.1000130
unknown, and eye drops are developed with concentrations of drugs of these diseases are not economically profitable for drug development; thus, the Hospital Pharmacy Services produces them [14]. We should consider that although FK is a rare disease in our country, it is quite common in some underdeveloped countries, such as India [5]. We need to realize that research, development and innovation in these countries is very limited, and so it is quite difficult to formulate an efficient treatment for this purpose. Diseases that have a low prevalence, such as FK, suffer from a significant lack of clinical and scientific interest. There is no real research or public health policy on solutions related to this field [15]. Currently, there is no commercial ophthalmic topical antifungal treatment available, except those produced in pharmaco-technical laboratories in hospitals [16,17].

The present study does not allow for conclusions about the most frequent etiologic agents nor the effectiveness of treatment groups because the low number of patients is not valid for the interpretation of these data. Multicentre studies are required for this prospective study to encompass more cases. However, this study it highlights the problems encountered in the multidisciplinary management of this condition.

An important parameter needing improvement is the microbial aspect; only six antibiotics were performed in cases of fungal keratitis (those caused by Candida). Therefore, directed treatment against the causative agent was not possible. Moreover, the antifungal drugs that were tested, such as caspofungin, are not available in ophthalmic forms in most pharmacies departments [18]. In two cases, the antibiogram informed sensitivity to one agent without CMI results. This can be confusing because it is not possible to use the same breakpoints in ophthalmology, as defined by the committees, because the CMI should be interpreted by taking into account the pharmacokinetics and pharmacodynamics information [19]. For this, it is necessary, to first know where the antibiotic needs to penetrate (epithelium, stroma, anterior chamber or posterior chamber) and then to study the drug concentrations reached in each of these areas to overcome the CMI [20,21]. There are specific studies on corneal penetration and concentrations of different antifungal drugs [22], and there are also multiple microbiological studies on CMI in major ocular pathogens [23,24]. We believe that specific studies should be carried out to establish specific cut offs that consider these two factors together with a final assessment of the effectiveness of treatments [25,26].

Moreover, the pharmacy department also has several points of improvement. On the one hand, the optimization of ophthalmic master formulas is not as developed as it should be. The use of ophthalmic master formulas with little eye toxicological safety remains unknown, and eye drops are developed with concentrations of drugs that are only based on the clinical experience of ophthalmologists [27]. Although it has been observed that antifungal eye drops are well tolerated and have demonstrated relatively low eye irritation [28], they are toxic for stromal cells (keratocytes) because they are harmful for corneal healing [29]. Commercial drugs used for the parenteral route, usually those commonly used in these preparations, are for dissolution or dilution in physiological buffers that are compatible with ocular use [30]. However, these are not designed or adapted to ocular use because some of the excipients that are incorporated or the active ingredients themselves can produce undesirable effects in the eye and should therefore promote research in pharmacy services for the development of new alternatives and optimization of existing ones.

Furthermore, the pharmacist who formulates the compound must actively participate in making pharmaco-therapeutic decisions with the ophthalmologist, encouraging the use of drugs with better risk benefits for the patient and with the least economic impact on society [31]. Recent studies showed the superiority of natamycin compared to voriconazole in the treatment of filamentous fungi. Moreover, voriconazole is significantly more expensive than natamycin. As a consequence, the use of natamycin should be encouraged. Furthermore, the combination of natamycin and voriconazole has shown a synergy in in vitro studies [32,33], although these studies are inconclusive and more research is needed [34]. Comparative data between natamycin eye drops and econazole (Aurozole®; Supplied in India) show similar results in efficiency. Thus, it could be a valid alternative because it is economical and easier to formulate for pharmacies by solubilizing econazole with cyclodextrins [35,36].

It should be noted that sometimes the lack of drugs at a national level is a bureaucratic problem. This is the case for topical natamycin (Natacyn 5%) in Spain, for example, where it is not approved. However, it is also important to note that amphotericin b (Fungizone®), a specialty ingredient that is commonly used in the formulation of eye drops, is no longer available on the market in numerous countries. Currently, a liposomal presentation is available (Ambisome®) that has occasionally been used in eye drop formulations, but the experience is poor [37]. In both drugs (Natacyn® and Fungizone®), it is necessary to establish a simple and effective procedure so that they can be available at any time in case of ophthalmologic emergencies, such as fungal keratitis.

The lack of experience resulting from the low numbers of cases requires an interdisciplinary collaboration between microbiology, pharmacy and ophthalmology services to optimize fungal keratitis therapy.

Acknowledgement

This work was supported by the Fundación Española de Farmacia Hospitalaria and the Fundación Mutua Madrileña.

References

1. Mellado F, Rojas T, Cumsille C (2013) [Fungal keratitis: review of diagnosis and treatment]. Arq Bras Oftalmol 76: 52-56.
2. Dóczi I, Gyetvai T, Kredics L, Nagy E (2004) Involvement of Fusarium spp. in fungal keratitis. Clin Microbiol Infect 10: 773-776.
3. Hirst LW, Sebba A, Whitby RM, Nimmo GR, Stallard K (1992) Non-traumatic mycotic keratitis. Eye (Lond) 6 : 391-395.
4. Pérez-Santonja JJ, Hervás-Hernándis JM (2006) Queratitis infecciosas: fundamentos, técnicas diagnósticas y tratamiento, Ergon.
5. Rautaraya B, Sharma S, Kar S, Das S, Sahu SK (2011) Diagnosis and treatment outcome of mycotic keratitis at a tertiary eye care centre in eastern India. BMC Ophthalmol 11: 39.
6. Thomas PA, Leck AK, Myatt M (2005) Characteristic clinical features as an aid to the diagnosis of suppurative keratitis caused by filamentous fungi. Br J Ophthalmol 89: 1554-1558.
7. Kalavathy CM, Parmar P, Kalaamurthy J, Philip VR, Ramalingam MD, et al. (2005) Comparison of topical itraconazole 1% with topical natamycin 5% for the treatment of filamentous fungal keratitis. Cornea 24: 449-452.
8. Miller D (2013) Pharmacological treatment for infectious corneal ulcers. Expert Opin Pharmacother 14: 543-560.
9. Menéndez de Lucas JA, Morcillo Laiz R (2006) [Medical and legal issues related to the drugs currently used in the treatment of Age-Related Macular Degeneration (ARMD)]. Arch Soc Esp Oftalmol 81: 359-362.
10. Stone D, Tan JF (2014) Fungal Keratitis: Update for 2014. Curr Ophthalmol Rep 2: 129-136.
11. Hariprasad SM, Mieler WE, Lin TK, Sponsel WE, Graybill JR (2008) Voriconazole in the treatment of fungal eye infections: a review of current literature. Br J Ophthalmol 92: 871-878.
12. Lau D, Fedinands M, Leung L, Fullinfaw R, Kong D, et al. (2008) Penetration of voriconazole, 1%, eyedrops into human aqueous humor: A prospective open-label study. Arch Ophthalmol 126: 343-346.
13. Iskrov G, Houyez F (2014) European Network of Rare Disease Help Lines (ENRDHLs) – caller profile analysis. Orphanet J Rare Dis 9: O13.
14. Anxo FF, Barcia MG, Martinez MG, Dominguez JA, Espinar FJO (2014) Use of fortified eye drops on eye infections. Eur J Clin Pharm 16.
15. Pammolli F, Magazzini L, Riccaboni M (2011) Penetration of voriconazole, 1%, eyedrops into human aqueous humor: A prospective open-label study. Arch Ophthalmol 126: 343-346.
16. Herreros JMA (2003) Preparación de medicamentos y formulación magistral para oftalmología. Ediciones Díaz de Santos.
17. Edward H, Emilia I. (2014) Moorfields Eye Hospital. Ophthalmic Formulary.
18. Neoh CF, Daniell M, Chen SC, Stewart K, Kong DC (2014) Clinical utility of caspofungin eye drops in fungal keratitis. Int J Antimicrob Agents 44: 96-104.
19. Guideline on the evaluation of medicinal products indicated for treatment of bacterial infections (2011) Committee for Medicinal Products for Human Use (CHMP).
20. Keay LJ, Gower EW, Iovieno A, Oechsler RA, Alfonso EC, et al. (2011) Clinical and microbiological characteristics of fungal keratitis in the United States, 2001-2007: a multicenter study. Ophthalmology 118: 920-926.
21. Quimioterapia SE de (2006) Antimicrobianos en medicina. Sociedad Española de Quimioterapia.