Duplex reverse-hybridization assay for the simultaneous detection of \(\text{KRAS}/\text{BRAF}\) mutations in FFPE-extracted genomic DNA from colorectal cancer specimens

Veronika Buxhofer-Ausch\(^{a,b}\), Christoph Ausch\(^{b,c}\), Robert Zeillinger\(^{b}\), Christian Oberkanins\(^{d}\), Nadia Dandachi\(^{e}\), Angelika Reiner-Concin\(^{f}\) and Gernot Kriegshäuser\(^{b,d,*}\)

\(^{a}\)Second Department of Medicine, Donauspital, Vienna, Austria
\(^{b}\)Ludwig Boltzmann Research Society – Cluster Translational Oncology, Vienna, Austria
\(^{c}\)Department of Surgery, Donauspital, Vienna, Austria
\(^{d}\)ViennaLab Diagnostics GmbH, Vienna, Austria
\(^{e}\)Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
\(^{f}\)Department of Pathology, Donauspital, Vienna, Austria

**Abstract.** We report the performance evaluation of a non-quantitative reverse-hybridization assay (\(\text{KRAS} \cdot \text{BRAF}\) StripAssay) designed for the simultaneous detection of 10 mutations in codons 12 and 13 of the \(\text{KRAS}\) gene and \(\text{BRAF}\) mutation V600E. Dilution experiments using DNA from tumor cell lines or from formalin-fixed paraffin-embedded (FFPE) colorectal cancer (CRC) tissue were performed to assess assay sensitivity. Using 50 ng of total DNA (mutant and wild-type), the \(\text{KRAS} \cdot \text{BRAF}\) StripAssay demonstrated a detection limit of 1\% mutant sequence in a background of wild-type DNA. With respect to \(\text{BRAF}\) V600E, the \(\text{KRAS} \cdot \text{BRAF}\) StripAssay was evaluated using 60 FFPE CRC samples previously analyzed by high resolution melting (HRM). Test strip hybridization identified 2/60 (3\%) samples to carry the \(\text{BRAF}\) V600E mutation, and results were in agreement with those obtained by HRM analysis. This work demonstrates the \(\text{KRAS} \cdot \text{BRAF}\) StripAssay to be a robust and sensitive method for the detection of common \(\text{KRAS}/\text{BRAF}\) mutations in genomic DNA isolated from FFPE tissue samples.

**Keywords:** \(\text{KRAS}\), \(\text{BRAF}\), mutation detection, reverse-hybridization, high-resolution melting

1. Introduction

Testing for \(\text{KRAS}\) mutation is an accepted prerequisite to select patients with colorectal cancer (CRC) for epidermal growth factor receptor (EGFR)-targeted therapies; typically, only individuals with wild-type \(\text{KRAS}\) respond to anti-EGFR therapy [1]. However, \(\text{KRAS}\) mutations account for approximately 35–45\% of non-responders, only [2]. Relatively recently additional activating mutations in EGFR downstream effectors, such as the \(\text{BRAF}\) kinase, have been identified [3]. \(\text{BRAF}\) V600E (a thymidine to adenine transversion at nucleoside 1799 in exon 15) is the most prominent among more than 40 known \(\text{BRAF}\) mutations leading to a valine to glutamate transversion at residue 600 and constitutive kinase activity [3]. Overall, \(\text{BRAF}\) belongs to the commonest oncogenes mutated in 7–9\% of all solid malignant tumors [4], and is well known to be present already in benign lesions, such as ser-
rated colorectal adenoma, benign nevi, and indolent micro-papillary thyroid cancers (PTCs) [4–6]. Thus \(BRAF\) mutation might be a founder event in carcinogenesis, but by itself is not sufficient to induce cancer, as only mutations secondary to \(BRAF\) can accelerate the growth to clinically evident disease [4,7]. \(BRAF\) mutation occurs in 10–18% of CRC overall, but is more frequently encountered in microsatellite instable carcinomas (MSI) with preferentially MLH1 promoter hypermethylation and CpG island methylation phenotype (CIMP) [8,9]. Patients with \(BRAF\) V600E colorectal tumors show impaired responsiveness to the anti-EGFR therapeutic antibodies cetuximab and panitumumab [10]. Because \(KRAS\) and \(BRAF\) mutations are mutually exclusive in CRC [11], \(BRAF\) V600E testing may further empower the selection of patients eligible for anti-EGFR antibody treatment [2]. In conjunction with the very recently described \(PI3K\) activating mutations and the inactivation of PTEN phosphatase (a PI3K inhibitor), Bardelli et al. established the term “quadruple negative” tumors as having the highest probability of response to anti-EGFR therapies [2].

Melanoma is the malignancy with the highest \(BRAF\) mutation frequency ranging from 40–70%: V600E accounts for 95% of all \(BRAF\) mutations, thereby playing an important role in tumor progression in cooperation with PI3K-induced signaling [12].

As PTC possesses a very favourable overall prognosis, itumumab [10]. Because \(KRAS\) is found in 29–87% of all cases. As PTC possesses a very favourable overall prognosis, the value of \(BRAF\) as a molecular prognostic marker is still under discussion [4].

We have recently evaluated a non-quantitative reverse-hybridization assay (\(KRAS\) StripAssay) for the simultaneous detection of 10 frequent mutations in codons 12 and 13 of the \(KRAS\) gene [13]. The \(KRAS\) StripAssay has an analytical sensitivity of 1% and has been shown to be fully compatible with \(KRAS\) mutation analysis in genomic DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue [13–15].

Here we present an extended version of the \(KRAS\) StripAssay that has been modified to contain also the \(BRAF\) V600E mutation (\(KRAS\)-\(BRAF\) StripAssay). We evaluated the novel \(KRAS\)-\(BRAF\) StripAssay by comparing it with a high resolution melting (HRM) protocol designed for the sensitive detection of \(BRAF\) V600E (\(BRAF\) HRM assay). Recent work used the \(BRAF\) HRM assay to screen for mutation V600E in 60 FFPE tissue samples obtained from CRC patients [16]. The same samples were then analyzed with the \(KRAS\)-\(BRAF\) StripAssay, and results were compared with respect to sensitivity, specificity and utility.

2. Patients and methods

2.1. Patient samples

FFPE-extracted DNA samples were available from 60 randomly selected patients aged 41 to 87 years (median 67) with histologically confirmed CRC. Staging was performed according to the International Union Against Cancer (UICC) guidelines including 17 stage I, 11 stage II, 20 stage III, and 12 stage IV tumors. An appropriate paraffin block containing tumor tissue was selected for analysis after reviewing the hematoxylin-eosin (HE) stained slides. An area of tumor on the HE stained slide was marked and microdissected on a corresponding unstained slide so that samples contained at least 50% tumor cells. All DNA samples had previously been screened for \(BRAF\) V600E mutation status by HRM and sequence analysis [16]. Patients gave their written informed consent and the study was approved by the local ethical committee.

2.2. Cell lines and DNA dilutions

Real-time PCR was used to quantitate DNA from tumor cell lines as well as patient DNA samples as described previously [13]. Genomic DNA isolated from tumor cell lines SW480 (\(KRAS\) Val12), LS174T (\(KRAS\) Asp12), A549 (\(KRAS\) Ser12), SW1116 (\(KRAS\) Ala12), MIA Paca2 (\(KRAS\) Cys12), H157 (\(KRAS\) Arg12), H1355 (\(KRAS\) Cys13), DLD1 (\(KRAS\) Asp13), HT29 (\(BRAF\) V600E) and Colo320 (wild-type) served as control templates. In the absence of suitable cell line DNA, controls for \(KRAS\) mutations Ile12 and Leu12 were generated by site-directed mutagenesis [17]. To monitor assay sensitivity and specificity, PCR was performed on 0.5 ng mutant genomic DNA mixed with 50 ng wild-type DNA and on 50 ng wild-type DNA alone. To evaluate assay sensitivity in FFPE-extracted DNA, clinical samples carrying the \(BRAF\) V600E mutation were mixed with wild-type DNA at 50%, 10%, 1%, and 0%.

2.3. \(KRAS\)-\(BRAF\) StripAssay

The \(KRAS\)-\(BRAF\) StripAssay (ViennaLab Diagnostics, Vienna, Austria) was performed as described earlier [13] except for the fact, that the amplification mix contained \(BRAF\)-specific primers 5’-GGTGATTTTGGCTAGCTACAG-3’ (forward) and 5’-AGTAACACTCAGCAGCATCAGG-3’ (reverse).

Briefly, PCR was done in a 25 \(\mu\)L reaction containing
15 µL amplification mix, 5 µL of a dilution containing Taq DNA polymerase (1U), and 5 µL DNA template (up to 50 ng genomic DNA). The amplification was performed on a PE 9700 thermocycler (Applied Biosystems, Foster City, CA) starting with an initial denaturation step at 94°C for 15 min, then running 35 cycles of 94°C for 1 min, 70°C for 50 sec, 56°C for 50 sec, 60°C for 50 sec, and a final extension at 60°C for 7 min. Biotinylated amplification products were then hybridized to test strips strictly controlling temperature (45 ± 0.5°C), and bound sequences were visualized using a streptavidin-alkaline phosphatase conjugate and color substrates. Reverse-hybridization was carried out manually using a shaking waterbath (GFL, Burgwedel, Germany) set to 45°C, and results were interpreted using the enclosed Collector sheet. The operator was blinded to the HRM results.

2.4. Direct PCR sequencing

DNA sequencing was performed as described previously [13]. Briefly, KRAS-positive PCR products were column purified using the GenElute PCR CleanUp Kit (Sigma-Aldrich, St. Louis, MO), and sequence analysis was performed on an ABI 310 automatic sequencer (Applied Biosystems) according to the manufacturer’s instructions (BigDye Terminator v1.1 Cycle Sequencing Kit; Applied Biosystems) using the KRAS sense primer.

3. Results

3.1. Analytical sensitivity

Recently, the KRAS StripAssay has been successfully applied to KRAS mutation analysis in FFPE-extracted DNA [13–15]. The KRAS-BRAF StripAssay under investigation here has been modified to contain 10 mutations in codons 12 and 13 of the KRAS gene and BRAF mutation V600E. It also combines mutant-enriched PCR based on peptide nucleic acid (PNA) clamping and reverse-hybridization of biotinylated PCR products to nitrocellulose test strips containing a parallel array of oligonucleotide probes. The StripAssay’s limit for detecting KRAS/BRAF mutations was exemplified using 0.5 ng of tumor cell line DNA mixed with 50 ng of wild-type DNA as PCR templates. Suppression of wild-type amplification by PNA clamping using 50 ng of wild-type DNA was found to be complete, whereas KRAS/BRAF mutations contained in cell line DNA were unambiguously identified, demonstrating an analytical sensitivity of 1% for the StripAssay (Fig. 1). Assay sensitivity was unaltered when DNA input ranged from 10 to 50 ng. For some KRAS-negative samples, however, nonspecific background signal could be observed when DNA input exceeded 50 ng (data not shown).

3.2. Detection of KRAS/BRAF mutations in clinical samples

All 60 FFPE CRC samples could be analysed with the KRAS-BRAF StripAssay, thus identifying 28 (47%) and 2 (3%) samples to harbour mutant KRAS and BRAF, respectively (Table 1). Of 28 KRAS mutant samples, 23 (82%) and 5 (18%) were positive for codon 12 and codon 13 mutations, respectively. Of note, 2 samples contained 2 codon 12 mutations. Ten (36%) of 28 KRAS mutant samples were Asp12, followed by 8 (29%) tumors containing the Val12 mutation. Less frequent KRAS mutations were Asp13 (4 samples), Ser12 (4 samples), Cys12 (3 samples), and Cys13 (1 sample).
Fig. 2. Detection of \textit{BRAF} V600E in dilutions of DNA extracted from 2 mutant FFPE samples (DNA samples 23 and 29). Test strips obtained after reverse-hybridization and enzymatic color development are shown. The \textit{KRAS-BRAF} StripAssay was performed on a total of 50 ng of sample 23 (strips 1–4) and sample 29 (strips 5–8) mixed with wild-type DNA at 50% (strips 1 and 5), 10% (strips 2 and 6), 1% (strips 3 and 7), 0% (strips 4 and 8), and 50 ng wild-type DNA alone (strip 9). PCR non-template control (strip 10).

Table 1

| Sample | UICC stage | \textit{KRAS-BRAF} StripAssay | Reference |
|--------|------------|------------------------------|-----------|
| 1      | II         | \textit{KRAS} Asp12          | \textit{KRAS} Asp12\(^a\) |
| 2      | II         | \textit{KRAS} Cys12          | \textit{KRAS} Cys12\(^a\) |
| 3      | II         | \textit{KRAS} Asp12          | \textit{KRAS} Asp12\(^a\) |
| 4      | II         | \textit{KRAS} Asp13          | \textit{KRAS} Asp13\(^a\) |
| 5      | I          | \textit{KRAS} Asp13          | \textit{KRAS} Asp13\(^a\) |
| 6      | I          | \textit{KRAS} Asp12          | \textit{KRAS} Asp12\(^a\) |
| 7      | II         | \textit{KRAS} Asp12          | \textit{KRAS} Asp12\(^a\) |
| 8      | IV         | \textit{KRAS} Asp12          | \textit{KRAS} Asp12\(^a\) |
| 9      | III        | \textit{KRAS} Val12          | \textit{KRAS} Val12\(^a\) |
| 10     | III        | \textit{KRAS} Cys12          | \textit{KRAS} Cys12\(^a\) |
| 11     | I          | \textit{KRAS} Asp13          | \textit{KRAS} Asp13\(^a\) |
| 12     | III        | \textit{KRAS} Ser12          | \textit{KRAS} Ser12\(^a\) |
| 13     | III        | \textit{KRAS} Cys13          | \textit{KRAS} Cys13\(^a\) |
| 14     | IV         | \textit{KRAS} Asp13          | \textit{KRAS} Asp13\(^a\) |
| 15     | I          | \textit{KRAS} Asp12          | \textit{KRAS} Asp12\(^a\) |
| 16     | IV         | \textit{KRAS} Val12          | \textit{KRAS} Val12\(^a\) |
| 17     | IV         | \textit{KRAS} Val12          | \textit{KRAS} Val12\(^a\) |
| 18     | I          | \textit{KRAS} Val12          | \textit{KRAS} Val12\(^a\) |
| 19     | III        | \textit{KRAS} Val12          | \textit{KRAS} Val12\(^a\) |
| 20     | III        | \textit{KRAS} Val12          | \textit{KRAS} Val12\(^a\) |
| 21     | IV         | \textit{KRAS} Asp12/Ser12    | \textit{KRAS} Asp12/Ser12\(^a\) |
| 22     | II         | \textit{KRAS} Asp12/Ser12    | \textit{KRAS} Asp12/Ser12\(^a\) |
| 23     | II         | \textit{BRAF} V600E          | \textit{BRAF} V600E\(^b\) |
| 24     | IV         | \textit{KRAS} Ser12          | \textit{KRAS} Ser12\(^a\) |
| 25     | I          | \textit{KRAS} Asp12          | \textit{KRAS} Asp12\(^a\) |
| 26     | III        | \textit{KRAS} Cys12          | \textit{KRAS} Cys12\(^a\) |
| 27     | IV         | \textit{KRAS} Val12          | \textit{KRAS} Val12\(^a\) |
| 28     | I          | \textit{KRAS} Val12          | \textit{KRAS} Val12\(^a\) |
| 29     | III        | \textit{BRAF} V600E          | \textit{BRAF} V600E\(^b\) |
| 30     | I          | \textit{KRAS} Asp12          | \textit{KRAS} Asp12\(^a\) |

\(^a\)DNA sequencing; \(^b\)HRM.

All \textit{KRAS} mutations were verified by direct PCR sequencing (Table 1). Moreover, test strip hybridization identified 2/60 (3%) samples to carry the \textit{BRAF} V600E mutation. The same samples had previously been found to be mutated by HRM analysis (Table 1).

To investigate whether the \textit{KRAS-BRAF} StripAssay is capable of detecting mutations with the same sensitivity in clinical specimens (ie, an analytical sensitivity of 1% was determined using cell line dilutions), we prepared serial dilutions of FFPE-extracted genomic DNA obtained from those 2 samples that had been identified to contain \textit{BRAF} V600E. Figure 2 shows that test strip hybridization again was able to detect mutant DNA present at a 1% level.

4. Discussion

Enormous progress occurred in our understanding of the role of the RAS-RAF-MEK-ERK pathway of both inherited genetic variations and somatic genetic changes arising during cancer development [18,19]. This has prepared the way to an individualized therapeutic approach in the medical treatment of a variety of human cancers, such as CRC, ovarian cancer, lung cancer, melanoma and PTC [20–26]. The selection of appropriate candidates for these therapies is of great clinical importance, especially to spare patients from inappropriate treatment. Considering the fact that \textit{KRAS} mutations only account for approximately 35–45%, and \textit{BRAF} V600E adds another 10–18% of non-responders to targeted therapy in CRC, combined testing for \textit{KRAS-BRAF} mutations is useful to select appropriate patients for anti-EGFR therapies [20].

In this study, we evaluated a non-quantitative reverse-hybridization assay (\textit{KRAS-BRAF} StripAssay) designed for the simultaneous detection of 10 mutations in codons 12 and 13 of the \textit{KRAS} gene and \textit{BRAF} mutation V600E. First, dilution experiments us-
PCR-restriction fragment length polymorphism (PCR-analysis [30]. Using direct an mutant-enriched sequencing for cancer patients treated with tyrosine kinase inhibitors directed therapies. This was shown by studying 83 lung contents detect subclonal mutations in samples with tumor cell ing that high sensitivity and colorectal tissue [13–15]. It seems worth mention-

mutations in FFPE DNA samples derived from ovarian bridization suitable for the sensitive detection of results corroborates other studies that found test strip hy-

sensitivity fell to 20% when the assay was performed on FFPE samples at a DNA template concentration of 2 ng/µL [16]. In contrast, KRAS-BRAF StripAssay sensitivity remained unaltered using the same FFPE sample at the same DNA template concentration. This result corroborates other studies that found test strip hybridization suitable for the sensitive detection of KRAS mutations in FFPE DNA samples derived from ovarian and colorectal tissue [13–15]. It seems worth mentioning that high sensitivity KRAS/BRAF analysis might detect subclonal mutations in samples with tumor cell contents > 30%, and little is known about the clinical significance of such mutations. However, recent re-

search demonstrated, that KRAS mutations present in minor clones may have an important impact on EGFR-directed therapies. This was shown by studying 83 lung cancer patients treated with tyrosine kinase inhibitors using direct an mutant-enriched sequencing for KRAS analysis [30].

Various PCR-based methodologies, such as enriched PCR-restriction fragment length polymorphism (PCR-

V. Buschoer-Ausch et al. / Simultaneous detection of KRAS/BRAF mutations by reverse-hybridization 175

ing different amounts of tumor cell line DNA were performed to determine the StripAssay’s limit for detect-

ing KRAS/BRAF mutations. Subsequently, the KRAS-

BRAF StripAssay was used to screen 60 FFPE primary tumor samples previously analyzed for the presence of BRAFT V600E by HRM.

Test strip hybridization was able to detect KRAS/ BRAF mutations present in 0.5 ng mutant cell line DNA diluted with 50 ng wild-type DNA, thus demonstrat-
ing an analytical sensitivity of 1% for the KRAS-BRAF StripAssay. Assay sensitivity was maintained for total DNA input amounts between 10 and 50 ng. Too much input DNA (i.e. > 50 ng), however, was associated with a higher chance of background signal in KRAS-negative samples most probably caused by aberrant coamplifi-
cation of wild-type sequence and non-specific binding of resulting PCR products to mutant-specific capture probes.

Of 60 FFPE CRC samples, test strip hybridization identified 28 (47%) and 2 (3%) samples to be positive for KRAS and BRAF mutations, respectively. BRAFT V600E results concurred with those obtained by HRM analysis and DNA sequencing. Additionally, KRAS and BRAF mutations were found to be mutually exclu-

d. These findings are consistent with published stud-
ides that detected mutant KRAS and BRAF in 20% to 45% [27,28], and 2% to 10% of CRC cases [29], re-
spectively.

Using a cell line dilution model, the BRAF HRM as-
say demonstrated an analytical sensitivity of 1% mutant sequence in a background of wild-type DNA, however, sensitivity fell to 20% when the assay was performed on FFPE samples at a DNA template concentration of 2 ng/µL [16]. In contrast, KRAS-BRAF StripAssay sensitivity remained unaltered using the same FFPE sample at the same DNA template concentration. This result corroborates other studies that found test strip hybridization suitable for the sensitive detection of KRAS mutations in FFPE DNA samples derived from ovarian and colorectal tissue [13–15]. It seems worth mentioning that high sensitivity KRAS/BRAF analysis might detect subclonal mutations in samples with tumor cell contents > 30%, and little is known about the clinical significance of such mutations. However, recent research demonstrated, that KRAS mutations present in minor clones may have an important impact on EGFR-directed therapies. This was shown by studying 83 lung cancer patients treated with tyrosine kinase inhibitors using direct an mutant-enriched sequencing for KRAS analysis [30].

Various PCR-based methodologies, such as enriched PCR-restriction fragment length polymorphism (PCR-

RFLP) [31,32], denaturing high performance liquid chromatography (DHPLC) [33], amplification refrac-
tory mutation system (ARMS) [34], particle flow cy-

ometry [35], DNA sequencing [36], HRM [16,37–39], and test strip hybridization [13–15] have been success-

fully applied to KRAS/BRAF mutational screening in a variety of cancerous tissues.

HRM is a rapid, closed-tube, post-PCR method that allows high-throughput analysis of mutations, polymorphisms and methylation patterns. By studying the thermal denaturation of double-stranded DNA in the presence of a saturating dye, the most important HRM application is gene scanning, however, genotyping pro-
tocols using unlabeled probes have also been report-
ed recently [39]. Although HRM analysis does not re-
quire post-PCR sample handling, subsequent DNA se-
quecing is neccessary to identify specific mutations when genotyping is performed with saturation dye only. Unlabeled probe genotyping supersedes the need for DNA sequencing, however, individual reactions are necessary for each mutation to be analysed thereby increasing cost as well as DNA input. The KRAS-BRAF StripAssay allows simultaneous detection of 10 common KRAS mutations and BRAF mutation V600E with an analytical sensitivity of 1%, whereas the limit of HRM for detecting KRAS/BRAF mutations ranges from 1% to 6% mutant sequence in a background of normal DNA [16,37]. In its current version, however, the KRAS-BRAF StripAssay will miss other V600 BRAF mutations (e.g. V600D, V600K) that may be present in cancerous tissue. Test strip hybridization requires standard laboratory equipment only, and up to 20 samples may be processed manually in less than 6 hours excluding DNA isolation. For higher sample throughput, test strip processing may be automated to a larger extend by using commercially available equipment [13].

The knowledge of specific genotypes for the assessment of prognosis and therapeutic decisions is rapid-
ly increasing and changing. In this context, the KRAS-

BRAF StripAssay offers a robust tool for the sensitive detection of KRAS/BRAF mutations in FFPE-extracted DNA.

Acknowledgments

The authors wish to thank Bettina Rauscher (ViennaLab) for excellent technical assistance.
References

[1] C.J. Allegra, J.M. Jessup, M.R. Somerfield et al., American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27 (2009), 2091-2096.

[2] A. Bardelli and S. Siena, Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. Clin Oncol 28 (2010), 1254-1261.

[3] H. Davies, G.R. Bignell, C. Cox et al., Mutations of the BRAF gene in human cancer. Nature 417 (2002), 949-954.

[4] D. Handikiewicz-Junak, A. Czarniecka and B. Jarząb, Molecular prognostic markers in papillary and follicular thyroid cancer: Current status and future directions. Mol Cell Endocrinol 322 (2010), 8-28.

[5] S. Velho, C. Moutinho, L. Cirnes et al., BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: primary or secondary genetic events in colorectal carcinogenesis? BMC Cancer 8 (2008), 255.

[6] J. Dong, R.G. Phelps, R. Qiao et al., BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 63 (2003), 3883-3885.

[7] N. Dhomen and R. Marais, New insight into BRAF mutations in cancer. Curr Opin Genet Dev 17 (2007), 31-39.

[8] E. Domingo, E. Espín, M. Armengol et al., Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation. Genes Chromosomes Cancer 39 (2004), 138-142.

[9] D.J. Weisenberger, K.D. Siegmund, M. Campan et al., CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38 (2006), 787-793.

[10] F. Di Nicolantonio, M. Martini, F. Molinari et al., Activated B-Raf in colorectal cancer: A new molecular target for therapeutic intervention. Cancer Biol Ther 10 (2010), 1254-1261.

[11] H. Rajagopalan, A. Bardelli, C. Lengauer et al., Tumorigenic mutations in BRAF and RAS genes are associated with poor prognosis in colorectal cancer patients. J Clin Oncol 22 (2004), 250-256.

[12] C. Ausch, V. Buxhofer-Ausch, C. Oberkanins et al., Sen- sitive detection of KRAS mutations in archival formalin-fixed paraffin-embedded tissue using multi-parametric imaging. J Mol Diagn 11 (2009), 508-512.

[13] H. Rajagopalan, A. Bardelli, C. Lengauer et al., Tumorigenic mutations in KRAS genes are associated with poor prognosis in colorectal cancer patients. J Clin Oncol 22 (2004), 250-256.

[14] J.R. Jass, Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50 (2007), 113-130.

[15] A. Marchetti, M. Milella, L. Felicioni et al., Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in exon 2 of K-RAS. Ann Oncol 16 (2005), 144-149.

[16] J.E. Hardingham, D. Kotasek, B. Farmer et al., Immunobead-PCR: a technique for the detection of circulating tumor cells using immunomagnetic beads and the polymerase chain reaction. Cancer Res 53 (1993), 3455-3458.

[17] M. Behn, C. Thiede, A. Neuberger et al., Facilitated detection of oncogene mutations from exfoliated tissue material by a PNA-mediated ‘enriched PCR’ protocol. J Pathol 11 (2009), 1084-1092.

[18] J.R. Jass, Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50 (2007), 113-130.

[19] A. Marchetti, M. Milella, L. Felicioni et al., Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in exon 2 of K-RAS. Ann Oncol 16 (2005), 144-149.

[20] J.E. Hardingham, D. Kotasek, B. Farmer et al., Immunobead-PCR: a technique for the detection of circulating tumor cells using immunomagnetic beads and the polymerase chain reaction. Cancer Res 53 (1993), 3455-3458.

[21] M. Behn, C. Thiede, A. Neuberger et al., Facilitated detection of oncogene mutations from exfoliated tissue material by a PNA-mediated ‘enriched PCR’ protocol. J Pathol 11 (2009), 1084-1092.

[22] J.R. Jass, Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50 (2007), 113-130.

[23] A. Marchetti, M. Milella, L. Felicioni et al., Clinical implications of KRAS mutations in lung cancer patients treated with tyrosine kinase inhibitors: an important role for mutations in exon 2 of K-RAS. Ann Oncol 16 (2005), 144-149.

[24] J.E. Hardingham, D. Kotasek, B. Farmer et al., Immunobead-PCR: a technique for the detection of circulating tumor cells using immunomagnetic beads and the polymerase chain reaction. Cancer Res 53 (1993), 3455-3458.

[25] M. Behn, C. Thiede, A. Neuberger et al., Facilitated detection of oncogene mutations from exfoliated tissue material by a PNA-mediated ‘enriched PCR’ protocol. J Pathol 11 (2009), 1084-1092.
tations in non-small cell lung cancer. *BMC Cancer* **6** (2006), 295.

[38] E.S. Ma, C.L. Wong, F.B. Law et al., Detection of KRAS mutations in colorectal cancer by high-resolution melting analysis. *J Clin Pathol* **62** (2009), 886-891.

[39] G.H. Reed, J.O. Kent and C.T. Wittwer, High-resolution DNA melting analysis for simple and efficient molecular diagnostics. *Pharmacogenomics* **8** (2007), 597-608.