Figure S1. Transcriptional analysis of transposon insertion mutants. (A) Locus map and insertion sites of 18E8 and 26F2 with primer sets in colored boxes used to determine transcript expression. Primers were designed to amplify upstream and downstream of the insertion site in each gene. (B) Expression of target sites in WT GN050, 18E8 (RTX::Tn) or 26F2 (tolC::Tn) was normalized to expression of the housekeeping gene gyrB. Data bars are the mean of 2-3 biological replicates performed in technical triplicate and the error is ± 1 SD.
Figure S2. Determined domain architecture of ArtA in 33 *Ax* genomes with respect to the GN050 RTX adhesin. Using an anvi’o pipeline, 8 genomes were found to encode a complete ArtA while 25 other sequences in the gene cluster encode the highly conserved CT including vWA, RTX repeats and T1SS signal sequence. In genomes containing an ArtA CT but lacking further annotation, manual determination of the VCBS repeating units were determined and denoted as “determined.” R; retention module. VCBS; repeating units. vWA; von Willebrand type A. RTX; Ca^{2+} binding RTX repeats. T1S; T1SS signal sequence.
Figure S3. Alignment of CT aa from ArtA in 33 Ax genomes. Sequences obtained from the anvi’o analysis and aligned by Clustal Omega. CT domains are annotated.
Figure S4. Pangenomic analysis of 88 Ax genomes with respect to GN050 synteny. Genome layers are ordered by the maximum likelihood relationship of 77 single-copy core genes. Displayed is the presence or absence of gene clusters of homologous genes based on amino acid sequence identity. By this method, genomes that contained the artA gene cluster are shown in pink and genomes that lacked the artA gene cluster are shown in black. Minimum requirement for presence of artA in a genome included annotation of a vWA domain, RTX-repeats and a T1SS signal sequence (Figure S3).
Figure S5. CF serum antibodies that recognize ArtA also recognize a HMW product produced by other Ax CF isolates. (A) Precipitated supernatants from overnight cultures of GN050::26F2, WT GN050, or Ax CF isolates Ax3, Ax4, Ax12, GN008, Ax5, AX13, AX14. (B) Western blot using CF serum ID: 9429 that was previously found to have GN050 ArtA reactivity. Reactivity of the serum against HMW bands was found in CF isolates Ax3, Ax4, Ax12, and GN008. Detection of a HMW similar to ArtA is denoted by red arrows.
Table S1. Bacterial strains and plasmids used in this study with relevant descriptions.

Strain/Genotype	Description	Reference
A. xylosoxidans		
GN008	CF isolate	1
GN050	Ear infection isolate	1
18E8	GN050 artA::himar1	This study
26F2	GN050 tolC::himar1	This study
Ax3	CF isolate	1
Ax4	CF isolate	1
Ax5	CF isolate	1
Ax12	CF isolate	1
Ax13	CF isolate	1
Ax14	CF isolate	1

Plasmid	Description	Reference			
pDBD1	Derivative of pCM62 (2)	This study			
pDBD2sfGFP	pDBD1 with GN050 30S ribosomal protein S21 promoter region and sfGFP	This study			
Modified himar1	30S ribosomal protein S21 promoter region driving CmΩ open reading frame added at Nhel site of himar1	3			
Mutant	%WT Toxicity	Location	Gene Locus Tag	Function	Source
----------	--------------	-------------	---	---	-------------------------------
59D12	44.9	445,064	HPS44_01820 / HPS44_01825	Intergenic	
156B3	2.9	476,296	HPS44_01970	tyrB; aromatic-amino-acid transaminase	KeggGhostKoala
150G10	4.3	477,901	HPS44_01975 / HPS44_01980	Intergenic	
149H1	9.9	480,415	HPS44_01980	lon; ATP-dependent Lon protease	KeggGhostKoala
85E3	69.7	480,814	HPS44_01985	clpX, CLPX; ATP-dependent Clp protease ATP-binding subunit ClpX	KeggGhostKoala
61F6	37.1	481,968	HPS44_01985 / HPS44_01990	Intergenic	
28D5	63.6	495,682	HPS44_02085	squalene synthase HpnC	NCBI_PGAP
169H10	67.8	547,106	HPS44_02295	putative transposase	KeggGhostKoala
162C10	43.7	583,825	HPS44_02455 / HPS44_02460	Intergenic	
180B7	38.5	635,186	HPS44_02670	hpaI, hpcH; 4-hydroxy-2-oxoheptanedioate aldolase	KeggGhostKoala
41A7	59.0	639,490	HPS44_02690	squalene synthase HpnC	NCBI_PGAP
116G8	66.4	702,028	HPS44_03015 / HPS44_03020	Intergenic	
24B11	58.2	1,031,493	HPS44_04410	tktA, tktB; transketolase	KeggGhostKoala
116E9	2.9	1,065,563	HPS44_04550	hypothetical protein	NCBI_PGAP
50C9	5.1	1,068,113	HPS44_04570	tadC; tight adherence protein	KeggGhostKoala
25B5	3.3	1,070,374	HPS44_04575 / HPS44_04575	cpAF, tadA; pilus assembly protein CpaF	KeggGhostKoala
46A7	5.7	1,079,434	HPS44_04620 / HPS44_04625	Intergenic	
125F10	2.8	1,105,359	HPS44_04720	elk-wzc; tyrosine-protein kinase Etk/Wzc	KeggGhostKoala
162D8	9.4	1,145,736	HPS44_04875	vcaM; ATP-binding cassette, subfamily B, multidrug efflux pump	KeggGhostKoala
113D2	44.3	1,159,820	HPS44_04955	short chain dehydrogenase	NCBI_PGAP
29H7	64.1	1,264,383	HPS44_05495 / HPS44_05500	Intergenic	
115E2	61.3	1,276,873	HPS44_05570	dapA; 4-hydroxy-tetrahydrodipicolinate synthase	KeggGhostKoala
12H7	24.0	1,417,632	HPS44_06255 / HPS44_06260	Intergenic	
13E2	25.0	1,417,632	HPS44_06255 / HPS44_06260	Intergenic	
154E8	7.8	1,504,306	HPS44_06660	aldolase	NCBI_PGAP
155E10	19.7	1,514,265	HPS44_06705	aarC, cat1; succinyl-CoA:acetate CoA-transferase	KeggGhostKoala
30A6	64.7	1,531,250	HPS44_06795	CBS domain-containing protein	NCBI_PGAP
57F6	11.9	1,546,665	HPS44_06875	hypothetical protein	KeggGhostKoala
30C12	5.0	1,557,551	HPS44_06935	pstS; phosphate transport system substrate-binding protein	KeggGhostKoala
196E1	4.6	1,655,395	HPS44_07355	purK; 5-(carboxyamino)imidazole ribonucleotide synthase	KeggGhostKoala
106F7	4.1	1,657,324	HPS44_07375	purC; phosphoribosylaminomidazole-succinocarboxamide synthase	KeggGhostKoala
Gene	Score	Start	End	Function	Database
-------	-------	-----------	-----------	--	--------------
101F2	49.2	1,717,670	ubiD; 4-hydroxy-3-polypropenylbenzoate decarboxylase	KeggGhostKoala	
162B10	10.5	1,735,318	/HPS44_07780	Intergenic	NCBI_PGAP
81G4	56.3	1,738,305	HPS44_07785	/HPS44_07790	NCBI_PGAP
29E9	2.4	1,738,366	type II toxin-antitoxin system RelE/ParE family toxin onypeptide	NCBI_PGAP	
150G8	33.6	1,875,291	hypothetical protein	NCBI_PGAP	
167E8	64.6	1,930,755	porin	KeggGhostKoala	
161D4	5.6	2,062,402	cheB; two-component system, chemotaxis family, protein-glutamate methyltransferase/glutaminase	KeggGhostKoala	
104H9	66.8	2,114,136	rsmD; 16S rRNA (guanine966-N2)-methyltransferase	KeggGhostKoala	
110C2	7.6	2,118,500	asmA; AsmA protein	KeggGhostKoala	
177E7	64.3	2,126,718	fhuE, fpvA, fptA; outer-membrane receptor for ferric coprogen and ferric-rhodotorulic acid	KeggGhostKoala	
8D2	44.2	2,128,870	ychF; ribosome-binding ATPase	KeggGhostKoala	
111C3	11.2	2,129,309	ychF; ribosome-binding ATPase	KeggGhostKoala	
158C4	36.4	2,135,718	HAMP domain-containing protein	NCBI_PGAP	
82H1	6.4	2,166,340	glycosyltransferase family 4 protein	NCBI_PGAP	
76H9	6.5	2,166,466	glycosyltransferase family 4 protein	NCBI_PGAP	
143G6	4.3	2,166,466	glycosyltransferase family 4 protein	NCBI_PGAP	
14B2	3.9	2,171,051	glycosyltransferase family 4 protein	NCBI_PGAP	
110C4	3.6	2,173,666	wbpP; UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine 4-epimerase	KeggGhostKoala	
47B12	20.9	2,173,750	wbpP; UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine 4-epimerase	KeggGhostKoala	
9E10	8.0	2,174,159	wbpP; UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine 4-epimerase	KeggGhostKoala	
17C7	10.2	2,174,525	wbpP; UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine 4-epimerase	KeggGhostKoala	
82G8	12.4	2,174,764	wbpP; UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine 4-epimerase	KeggGhostKoala	
15F4	16.9	2,175,262	wbpP; UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine 4-epimerase	KeggGhostKoala	
36A3	39.1	2,175,262	wbpP; UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine 4-epimerase	KeggGhostKoala	
70E8	33.9	2,175,998	glycosyltransferase family 4 protein	NCBI_PGAP	
3H9	22.0	2,176,097	glycosyltransferase family 4 protein	NCBI_PGAP	
161B6	3.5	2,176,097	glycosyltransferase family 4 protein	NCBI_PGAP	
85E8	7.4	2,176,277	glycosyltransferase family 4 protein	NCBI_PGAP	
137H4	8.3	2,176,277	glycosyltransferase family 4 protein	NCBI_PGAP	
70D2	65.4	2,201,817	glycosyltransferase family 4 protein	NCBI_PGAP	
160D8	20.8	2,216,823	dcd; dCTP deaminase	KeggGhostKoala	
158C9	39.8	2,328,780	heme acquisition protein HasAp	NCBI_PGAP	
60F2	26.7	2,392,034	helix-turn-helix transcriptional regulator	NCBI_PGAP	
159E5	4.6	2,509,162	hemK, prmC, HEMK; release factor glutamine methyltransferase	KeggGhostKoala	
Chromosome	Start	End	Description		
------------	-------	-------	---		
163A10	2	2.2	Preprotein translocase subunit SecD (SecD) (PDB:3AQP) COG20_FUNCTION		
165G7	3.2	2.546,686	Preprotein translocase subunit SecD (SecD) (PDB:3AQP) COG20_FUNCTION		
198D10	4.6	2.546,901	Preprotein translocase subunit SecD (SecD) (PDB:3AQP) COG20_FUNCTION		
28H4*	62.7	2,599,180	Intergenic		
28H9*	44.9	2,599,180	Intergenic		
81B9	54.5	2,680,581	hypothetical protein NCBI_PGAP		
5H7	6.2	2,700,177	circularly permuted type 2 ATP-grasp protein NCBI_PGAP		
163B6	16.7	2,700,443	circularly permuted type 2 ATP-grasp protein NCBI_PGAP		
27E11	8.2	2,706,718	ahcY; adenosylhomocysteinase KeggGhostKoala		
103E10	64.6	2,729,433	dapF; diaminopimelate epimerase KeggGhostKoala		
46E6	62.1	2,737,467	Intergenic		
141B2*	2.9	2,745,704	lipB; lipoyl(octanoyl) transference KeggGhostKoala		
141H3*	3.3	2,745,794	lipB; lipoyl(octanoyl) transference KeggGhostKoala		
9A2	6.8	2,758,668	wbPD, wbHB; UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase KeggGhostKoala		
6A2	5.1	2,759,073	wbPD, wbHB; UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase KeggGhostKoala		
28E2	2.9	2,759,073	wbPD, wbHB; UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase KeggGhostKoala		
65F2	21.0	2,759,640	wbPD, wbHB; UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase KeggGhostKoala		
118C6	2.6	2,759,073	wbPD, wbHB; UDP-2-acetamido-3-amino-2,3-dideoxy-glucuronate N-acetyltransferase KeggGhostKoala		
8A6	14.3	2,759,250	wbpE, wbHC; UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase wbpE, wbHC; UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase wbpE, wbHC; UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase KeggGhostKoala		
57A12	5.5	2,759,604	wbpE, wbHC; UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase KeggGhostKoala		
48H12	15.6	2,760,072	wbpE, wbHC; UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase KeggGhostKoala		
45D1	23.7	2,760,549	glycosyltransferase NCBI_PGAP		
144C11	3.3	2,760,549	glycosyltransferase NCBI_PGAP		
28D1	3.1	2,760,640	glycosyltransferase NCBI_PGAP		
31F2	3.0	2,760,694	glycosyltransferase NCBI_PGAP		
42F4	32.5	2,760,694	glycosyltransferase NCBI_PGAP		
190D11	5.3	2,760,790	glycosyltransferase NCBI_PGAP		
106A6	4.3	2,761,091	glycosyltransferase NCBI_PGAP		
87D12	3.7	2,761,207	glycosyltransferase NCBI_PGAP		
33F6	2.7	2,761,270	glycosyltransferase NCBI_PGAP		
101A5	3.7	2,761,270	glycosyltransferase NCBI_PGAP		
105F5	4.0	2,761,270	glycosyltransferase NCBI_PGAP		
161D7	3.9	2,761,596	DegT/DnrJ/EryC1/StrS family aminotransferase NCBI_PGAP		
Accession	Score	Start	End	Description	
-----------	-------	-------	-----	-------------	
162A5	1.9	2,761,847	2,761,847	DegT/DnrJ/EryC1/StrS family aminotransferase	
51G4	8.4	2,762,483	2,762,483	DegT/DnrJ/EryC1/StrS family aminotransferase	
187H3	4.9	2,762,483	2,762,483	DegT/DnrJ/EryC1/StrS family aminotransferase	
133D7	20.9	2,762,487	2,762,487	DegT/DnrJ/EryC1/StrS family aminotransferase	
32D4	9.6	2,762,597	2,762,597	DegT/DnrJ/EryC1/StrS family aminotransferase	
35A7	59.7	2,764,918	2,764,918	DUF2837 family protein	
28E10	35.0	2,770,051	2,770,051	wbpl, wibD; UDP-GlcNAc3NAcA epimerase	
47D8	45.6	2,770,186	2,770,186	wbpl, wibD; UDP-GlcNAc3NAcA epimerase	
7D7	14.9	2,770,337	2,770,337	wbpl, wibD; UDP-GlcNAc3NAcA epimerase	
3C6	19.1	2,770,569	2,770,569	wbpl, wibD; UDP-GlcNAc3NAcA epimerase	
36D12	38.0	2,770,655	2,770,655	wbpl, wibD; UDP-GlcNAc3NAcA epimerase	
101F4*	5.4	2,770,853	2,770,853	wbpl, wibD; UDP-GlcNAc3NAcA epimerase	
101G6*	5.2	2,770,853	2,770,853	wbpl, wibD; UDP-GlcNAc3NAcA epimerase	
30D2	12.7	2,771,317	2,771,317	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
39H11	48.0	2,771,317	2,771,317	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
117A11	4.5	2,771,317	2,771,317	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
92A4	3.1	2,771,360	2,771,360	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
160C12	3.1	2,771,360	2,771,360	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
164B6	4.6	2,771,557	2,771,557	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
142F5	3.8	2,771,784	2,771,784	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
162H9	3.3	2,772,019	2,772,019	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
122F7	3.9	2,772,075	2,772,075	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
34D3	9.0	2,772,151	2,772,151	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
44F12	47.0	2,772,194	2,772,194	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
176E6	16.3	2,772,194	2,772,194	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
137E6	5.5	2,772,273	2,772,273	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
17D10	8.1	2,772,286	2,772,286	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
50H12	13.0	2,772,286	2,772,286	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
178G7*	20.8	2,772,443	2,772,443	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
178H7*	20.4	2,772,443	2,772,443	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	
Accession	Expression	Score	Description	Database	
-----------	------------	-------	---	----------------	
HPS44_12610	2.772,522	2.9	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12610	2.772,615	3.6	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12610	2.772,784	11.0	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12610	2.772,852	4.3	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12615	2.773,083	7.7	glycosyltransferase	NCBI_PGAP	
HPS44_12615	2.773,083	30.9	glycosyltransferase	NCBI_PGAP	
HPS44_12615	2.773,383	9.1	glycosyltransferase	NCBI_PGAP	
HPS44_12615	2.773,534	28.4	glycosyltransferase	NCBI_PGAP	
HPS44_12630	2.776,773	6.6	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12630	2.776,885	6.6	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12630	2.777,086	16.8	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12630	2.777,322	35.4	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12630	2.777,548	17.8	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12630	2.777,690	24.2	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12635	2.778,266	28.2	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12635	2.779,021	6.0	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12640	2.779,189	8.3	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12640	2.779,210	14.4	galE, GALE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12645	2.779,734	7.3	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12645	2.779,734	5.3	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12645	2.780,168	4.3	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12645	2.780,394	7.9	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12645	2.780,753	38.7	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12645	2.781,126	32.1	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12645	2.781,128	30.0	asnB, ASNS; asparagine synthase (glutamine-hydrolysing)	KeggGhostKoala	
HPS44_12650	2.782,909	7.3	hypothetical protein	NCBI_PGAP	
HPS44_12650	2.783,115	24.7	hypothetical protein	NCBI_PGAP	
HPS44_12650	2.783,692	8.4	hypothetical protein	NCBI_PGAP	
HPS44_12650	2.784,100	44.0	hypothetical protein	NCBI_PGAP	
HPS44_12655	2.784,941	27.6	wzm, rfbA; lipopolysaccharide transport system permease protein	KeggGhostKoala	
HPS44_12660	2.785,158	16.1	wzt, rfbB; lipopolysaccharide transport system ATP-binding protein	KeggGhostKoala	
HPS44_12660	2.785,289	2.8	wzt, rfbB; lipopolysaccharide transport system ATP-binding protein	KeggGhostKoala	
HPS44_12660	2.785,613	6.7	wzt, rfbB; lipopolysaccharide transport system ATP-binding protein	KeggGhostKoala	
HPS44_12660	2.785,709	5.3	wzt, rfbB; lipopolysaccharide transport system ATP-binding protein	KeggGhostKoala	
Gene	Coverage	Identity	Description	Database	
---------	----------	----------	---	----------------	
HPS44_12660	3.9	2,785,709	wzt, rbfB; lipopolysaccharide transport system ATP-binding protein	KeggGhostKoala	
HPS44_12660	7.3	2,786,151	wzt, rbfB; lipopolysaccharide transport system ATP-binding protein	KeggGhostKoala	
HPS44_12665	44.5	2,786,529	WbqC family protein	NCBI_PGAP	
HPS44_12665	12.6	2,786,640	WbqC family protein	NCBI_PGAP	
HPS44_12665	6.6	2,786,744	WbqC family protein	NCBI_PGAP	
HPS44_12665	31.4	2,786,884	WbqC family protein	NCBI_PGAP	
HPS44_12665	29.5	2,786,884	WbqC family protein	NCBI_PGAP	
HPS44_12665	14.8	2,786,911	WbqC family protein	NCBI_PGAP	
HPS44_12665	14.3	2,787,105	WbqC family protein	NCBI_PGAP	
HPS44_12665	30.2	2,787,124	WbqC family protein	NCBI_PGAP	
HPS44_12665	13.8	2,787,327	WbqC family protein	NCBI_PGAP	
HPS44_12670	10.2	2,788,422	fmt; methionyl-rrnA formyltransferase	KeggGhostKoala	
HPS44_12680	4.7	2,789,706	fmt; methionyl-rrnA formyltransferase	KeggGhostKoala	
HPS44_12700	11.7	2,792,949	methyltransferase domain-containing protein	NCBI_PGAP	
HPS44_12705	9.9	2,794,061	carB, CPA2; carbamoyl-phosphate synthase large subunit	KeggGhostKoala	
HPS44_12715	18.6	2,796,173	NAD-dependent epimerase/dehydratase family protein	NCBI_PGAP	
HPS44_12725	9.7	2,798,597	aminotransferase class I/II-pyridoxal phosphate-dependent enzyme	NCBI_PGAP	
HPS44_12725	1.7	2,798,993	aminotransferase class I/II-pyridoxal phosphate-dependent enzyme	NCBI_PGAP	
HPS44_12730	19.4	2,800,024	galE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12730	11.5	2,800,177	galE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12730	2.8	2,800,147	galE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12730	2.8	2,800,321	galE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12730	55.9	2,800,683	galE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12730	13.8	2,800,863	galE; UDP-glucose 4-epimerase	KeggGhostKoala	
HPS44_12730	36.1	2,804,097	rfbC, mIC; dTDP-4-dehydrohamnose 3,5-epimerase	KeggGhostKoala	
HPS44_12730	15.3	2,804,100	rfbC, mIC; dTDP-4-dehydrohamnose 3,5-epimerase	KeggGhostKoala	
HPS44_12780	56.8	2,810,883	DUF502 domain-containing protein	NCBI_PGAP	
HPS44_12925	6.7	2,842,256	mrcA; penicillin-binding protein 1A	KeggGhostKoala	
HPS44_12925	31.4	2,843,285	mrcA; penicillin-binding protein 1A	KeggGhostKoala	
HPS44_12975	3.9	2,854,132	dsbD, dipZ; thioredoxin:protein disulfide reductase	KeggGhostKoala	
HPS44_12975	18.7	2,854,216	dsbD, dipZ; thioredoxin:protein disulfide reductase	KeggGhostKoala	
HPS44_12975	9.2	2,854,981	dsbD, dipZ; thioredoxin:protein disulfide reductase	KeggGhostKoala	
HPS44_12975	15.1	2,854,981	dsbD, dipZ; thioredoxin:protein disulfide reductase	KeggGhostKoala	
HPS44_13035	22.2	2,861,605	rpmD; large subunit ribosomal protein L30	KeggGhostKoala	
HPS44_13195	10.4	2,884,109	tuf; elongation factor Tu	KeggGhostKoala	
HPS44_13220	6.1	2,889,219	response regulator transcription factor	NCBI_PGAP	
Gene ID	Predicted Function				
--------	-------------------				
HPS44_13250	rpoB; DNA-directed RNA polymerase subunit beta				
HPS44_13390	parA, soj; chromosome partitioning protein				
HPS44_13440	tctD; two-component system, OmpR family, response regulator TctD				
HPS44_13505	katE, CAT, catB, srpA; catalase				
HPS44_13975	sporadically distributed protein				
HPS44_13990	DUF3893 domain-containing protein				
HPS44_15235	DNA-binding beta-propeller fold protein				
HPS44_15800	TIGR04141 family				
HPS44_15975	rubredoxin				
HPS44_16505	SDR family oxidoreductase				
HPS44_16575	lytic transglycosylase domain-containing protein				
HPS44_16595	hypothetical protein				
HPS44_16755	hypothetical protein				
HPS44_16970	YbhB/YbcL family Raf kinase inhibitor-like protein				
HPS44_16505	SDR family oxidoreductase				
HPS44_16575	lytic transglycosylase domain-containing protein				
HPS44_16595	rubredoxin				
HPS44_17070	hypothetical protein				
HPS44_17145	hypothetical protein				
HPS44_17215	hypothetical protein				
HPS44_17220	hypothetical protein				
HPS44_17235	hypothetical protein				
HPS44_17240 / HPS44_17245	Intergenic				
HPS44_17255	hypothetical protein				
GeneID	Percent	StartPosition	GeneID	Percent	StartPosition
--------	---------	---------------	--------	---------	---------------
55D7	3.8	3,786,085	RsbU/P	phosphoserine phosphatase RsbU/P	KeggGhostKoala
7D11	6.5	3,786,133	RsbU/P	phosphoserine phosphatase RsbU/P	KeggGhostKoala
90B9	3.2	3,786,748	RsbU/P	phosphoserine phosphatase RsbU/P	KeggGhostKoala
97D8	2.7	3,787,979	Intergenic		
1F11	5.8	3,787,983	Intergenic		
113F3	4.6	3,791,898	Intergenic		
187B10	13.7	3,792,455	STAS domain-containing protein	NCBI_PGAP	
140H4	1.7	3,792,609	STAS domain-containing protein	NCBI_PGAP	
178F7	25.6	3,792,834	Hypothetical protein	NCBI_PGAP	
39G5	6.1	3,793,106	Intergenic		
15E9	9.9	3,806,668	dnaQ: DNA polymerase III subunit epsilon	KeggGhostKoala	
113C8	17.6	3,806,668	dnaQ: DNA polymerase III subunit epsilon	KeggGhostKoala	
174H6	60.0	3,812,798	gtrB, csbB: polyisoprenyl-phosphate glycosyltransferase	KeggGhostKoala	
33E6	50.0	3,818,962	livM: branched-chain amino acid transport system permease protein	KeggGhostKoala	
20H8	14.2	3,843,779	tolQ: biopolymer transport protein TolQ	KeggGhostKoala	
177C11	58.2	3,843,892	ybgC: acyl-CoA thioster hydrolase	KeggGhostKoala	
187A10	34.2	3,844,032	ybgC: acyl-CoA thioster hydrolase	KeggGhostKoala	
155H9	6.2	3,856,544	Intergenic		
64B5	40.9	3,861,199	lgt, umpA: phosphatidylglycerol—prolipoprotein diacylglycerol transferase [EC:2.5.1.145]	KeggGhostKoala	
150D4	28.5	3,873,364	Hypothetical protein	NCBI_PGAP	
24E5	4.9	3,951,422	LysR family transcriptional regulator	NCBI_PGAP	
151D3	3.5	4,054,860	Maleylacetate reductase	KeggGhostKoala	
81A6	67.2	4,068,280	Hypothetical protein	NCBI_PGAP	
27H6	43.4	4,122,320	Helix-turn-helix domain-containing protein	NCBI_PGAP	
58B4	14.9	4,125,992	Etta: energy-dependent translational throttle protein Etta	KeggGhostKoala	
73E11	68.8	4,130,387	MinC: septum site-determining protein MinC	KeggGhostKoala	
123F4	5.1	4,190,681	DapB: 4-hydroxy-tetrahydrodipicolinate reductase	KeggGhostKoala	
191C6	5.5	4,190,681	DapB: 4-hydroxy-tetrahydrodipicolinate reductase	KeggGhostKoala	
54D11	17.7	4,191,375	DapB: 4-hydroxy-tetrahydrodipicolinate reductase	KeggGhostKoala	
141B7*	11.5	4,191,381	DapB: 4-hydroxy-tetrahydrodipicolinate reductase	KeggGhostKoala	
141G7*	27.2	4,191,381	DapB: 4-hydroxy-tetrahydrodipicolinate reductase	KeggGhostKoala	
161H4	3.1	4,194,332	PnpK, NADK; NAD+ kinase	KeggGhostKoala	
Accession	% Identity	Start	End	Description	Database
-----------	------------	-------	-----	-------------	----------
HPS44_19510	59.2	4,279,105	4,279,105	hypothetical protein	NCBI_PGAP
HPS44_19520	9.8	4,282,155	4,282,155	pnp, PNPT1; polyribonucleotide nucleotidyltransferase	KeggGhostKoala
HPS44_19580	7.0	4,293,653	4,293,653	secG; preprotein translocase subunit SecG	KeggGhostKoala
HPS44_19580	12.1	4,293,932	4,293,932	secG; preprotein translocase subunit SecG	KeggGhostKoala
HPS44_20275	13.9	4,466,735	4,466,735	Intergenic	
HPS44_20295	50.0	4,470,327	4,470,327	msrQ; methionine sulfoxide reductase heme-binding subunit	KeggGhostKoala
HPS44_20295	7.1	4,479,708	4,479,708	hypothetical protein	NCBI_PGAP
HPS44_20295	3.8	4,479,708	4,479,708	hypothetical protein	NCBI_PGAP
HPS44_20315	3.7	4,480,596	4,480,596	rseA; sigma-E factor negative regulatory protein RseA	KeggGhostKoala
HPS44_20315	3.3	4,480,596	4,480,596	rseA; sigma-E factor negative regulatory protein RseA	KeggGhostKoala
HPS44_20335	4.9	4,480,887	4,480,887	rseA; sigma-E factor negative regulatory protein RseA	KeggGhostKoala
HPS44_20335	3.4	4,481,174	4,481,174	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	3.6	4,481,174	4,481,174	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	4.2	4,481,174	4,481,174	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	2.6	4,481,174	4,481,174	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	6.6	4,481,192	4,481,192	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	3.2	4,481,192	4,481,192	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	3.0	4,481,192	4,481,192	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	4.0	4,481,192	4,481,192	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	2.0	4,481,420	4,481,420	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	4.5	4,481,420	4,481,420	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	2.9	4,481,849	4,481,849	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	2.2	4,481,912	4,481,912	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	8.4	4,481,999	4,481,999	rseB; sigma-E factor negative regulatory protein RseB	KeggGhostKoala
HPS44_20335	38.2	4,482,080	4,482,080	degP, htrA; serine protease Do	KeggGhostKoala
HPS44_20335	61.2	4,483,265	4,483,265	degP, htrA; serine protease Do	KeggGhostKoala
HPS44_20380	9.8	4,484,006	4,484,006	lepA; GTP-binding protein LepA	KeggGhostKoala
HPS44_20380	35.2	4,484,402	4,484,402	lepA; GTP-binding protein LepA	KeggGhostKoala
HPS44_20380	4.3	4,485,203	4,485,203	lepA; GTP-binding protein LepA	KeggGhostKoala
HPS44_20480	63.7	4,505,053	4,505,053	DUF2325 domain-containing protein	NCBI_PGAP
HPS44_20565	11.5	4,523,683	4,523,683	elA; ElaA protein	KeggGhostKoala
Gene ID	%G	Map Location	Description	Database	
--------	---	--------------	-------------	---------	
46B2	61.5	4,555,988	mdh; malate dehydrogenase	KeggGhostKoala	
97E12	22.0	4,577,672	Intergenic		
48H11	35.7	4,582,176	DLD, Lpd, pmdH; dihydrodipicolinate dehydrogenase	KeggGhostKoala	
114B7	66.0	4,604,190	phbB; acetoacetyl-CoA reductase	KeggGhostKoala	
119E12	62.3	4,739,421	instB, MTIF2; translation initiation factor IF-2	KeggGhostKoala	
66A10	5.0	4,740,145	Intergenic		
48H11	35.7	4,742,940	DLD, lpd, pdhD; dihydrolipoamide dehydrogenase	KeggGhostKoala	
115G12	16.6	4,824,207	hemY; HemY protein	KeggGhostKoala	
114C11	31.9	4,876,328	hypothetical protein	NCBI_PGAP	
159G12	10.5	4,915,830	exbB; biopolymer transport protein	KeggGhostKoala	
110F2	6.0	4,980,301	Intergenic		
66F8	28.6	4,915,630	exbB; biopolymer transport protein	KeggGhostKoala	
24A2	9.0	4,950,407	phoU; phosphate transport system protein	KeggGhostKoala	
26G2	6.5	4,950,407	phoU; phosphate transport system protein	KeggGhostKoala	
83F2	15.0	4,951,026	phoU; phosphate transport system protein	KeggGhostKoala	
10B11	11.5	4,969,335	glycosyltransferase family 2 protein	NCBI_PGAP	
186E12	68.6	5,029,107	parE; topoisomerase IV subunit B	KeggGhostKoala	
111D11	15.6	5,074,021	hflK; modulator of FtsH protease HflK	KeggGhostKoala	
35H3	7.0	5,082,422	Intergenic		
110G9	22.7	5,097,897	tadB; tight adherence protein B	KeggGhostKoala	
136F2	53.2	5,109,233	EAL domain-containing protein	NCBI_PGAP	
40H11	45.5	5,109,605	EAL domain-containing protein	NCBI_PGAP	
134E1	42.5	5,110,255	Intergenic		
73F9	54.8	5,110,278	Intergenic		
18E8	32.4	5,122,901	Ca2+ binding protein, RTX toxin-related (PDB: 1AF0)	COG20_FUNCTION	
26F2	14.0	5,132,467	lapE; outer membrane protein, adhesin transport system	KeggGhostKoala	
185E1	59.9	5,276,139	K00666; fatty-acyl-CoA synthase	KeggGhostKoala	
69F4	33.8	5,514,006	K00666; fatty-acyl-CoA synthase	KeggGhostKoala	
50B2	29.1	5,526,029	PAS domain S-box protein	NCBI_PGAP	
90E7	46.9	5,526,483	PAS domain S-box protein	NCBI_PGAP	
46D1	28.5	5,526,687	PAS domain S-box protein	NCBI_PGAP	
141G11	2.5	5,527,009	PAS domain S-box protein	NCBI_PGAP	
155D4	38.4	5,607,906	fliS; flagellar secretion chaperone FlIS	KeggGhostKoala	
156D10	7.5	5,607,906	fliS; flagellar secretion chaperone FlIS	KeggGhostKoala	
112C4	55.0	5,608,083	fliS; flagellar secretion chaperone FlIS	KeggGhostKoala	
69B3	7.6	5,617,962	purF, PPAT; amidophosphoribosyltransferase	KeggGhostKoala	
ID	Similarity	Position	Gene	Description	Database
--------	------------	--------------	--------------	--	----------------
150F6	27.8	5,625,515	HPS44_25640	hypothetical protein	
165E9	19.6	5,652,274	HPS44_25785	type II toxin-antitoxin system RatA family toxin	NCBI_PGAP
70D11	46.6	5,735,646	HPS44_26230	AAA family ATPase	NCBI_PGAP
67C2	15.9	5,750,917	HPS44_26300	ldcA; muramoyltetrapeptide carboxypeptidase	KeggGhostKoala
53E5	12.6	5,751,046	HPS44_26300	ldcA; muramoyltetrapeptide carboxypeptidase	KeggGhostKoala
14D1	11.3	5,751,241	HPS44_26300	ldcA; muramoyltetrapeptide carboxypeptidase	KeggGhostKoala
62A7	5.4	5,751,241	HPS44_26300	ldcA; muramoyltetrapeptide carboxypeptidase	KeggGhostKoala
156E9	33.3	5,971,841	HPS44_27310	parS; two-component system, OmpR family, sensor kinase ParS	KeggGhostKoala
33A11	67.1	6,211,977	HPS44_28430	hypothetical protein	NCBI_PGAP
10F2	60.7	6,390,695	HPS44_29175	transposase	NCBI_PGAP

* Indicates possible strain duplication due to cross-contamination during processing of the same plate. We considered insertions that mapped to the same nucleotide but isolated from separate transformations as independent events.
Movie S1. Live imaging of J774a.1 cells infected with GN050 pDBD2sfGFP at an MOI:5 for 30 min followed by treatment with antibiotics to select for intracellular bacteria. After 30 min of treatment, the infection was replaced with antibiotic-free medium containing 0.36 µl/ml PI and imaged every 15 min for 20 h. Chloramphenicol (10 µg/ml) was supplemented into the infection to promote plasmid maintenance and sfGFP expression. Scale = 25 µm.

Movie S2. FITC and dsRED channels extracted from supplemental movie 1 to emphasize bacterial proliferation in relation to cytotoxicity. Scale = 25 µm.

Movie S3. Live imaging of J774a.1 cells infected with GN050 pDBD2sfGFP at an MOI:5 for 30 min followed by treatment with antibiotics to select for intracellular bacteria. After 30 min of treatment, the infection medium was replaced with medium containing 50 µg/ml gentamicin, 10 µg/ml polymyxin B, 0.36 µl/ml PI and imaged every 15 m for 20 h. Chloramphenicol (10 µg/ml) was supplemented into the infection to promote plasmid maintenance and sfGFP expression. Scale = 25 µm.

Movie S4. FITC and dsRED channels extracted from supplemental movie 2 to emphasize bacterial proliferation in relation to cytotoxicity. Scale = 25 µm.
SUPPLEMENTAL METHODS

Construction of pDBD2sfGFP and Modification of himar1

Antibiotic resistance is problematic in Achromobacter species. Initial characterization of antibiograms suggested that chloramphenicol could be useful at high concentrations (100-200 µg/ml) for selection in several clinical isolates from the Medical College campus, including GN050. As IncP plasmids appear to replicate in Achromobacter (4,5), we constructed pDBD2 utilizing the broad host range vector pCM62 (2). The CmΩ (6) interposon was cloned into the EcoRI site of pCM62 and chloramphenicol resistant clones were selected. To reduce the size of the plasmid the genes encoding tetracycline resistance (tetA and tetR) and terminator sequences were removed using the Q5 mutagenesis kit (New England Biolabs). This plasmid is called pDBD1. Plasmid DBD2 was constructed from pDBD1 by cloning the 492 bp 30S ribosomal protein S21 promoter region into the KpnI/SacI sites of pDBD1. sfGFP was amplified from pBADsfGFP (gift from the Mekalanos laboratory) and cloned into the EcoRI site. All cloning steps utilized the Gibson assembly Master Mix (New England Biolabs) and primers purchased from Integrated DNA Technologies (IDT). himar1 was modified to express chloramphenicol resistance as a single copy gene after transposition to the genome of GN050. Briefly, the 30S ribosomal protein S21 promoter region and CmΩ open reading frame were constructed as a cassette in a potential allelic replacement vector, pDBD4. The cassette was amplified from pDBD4 and inserted into the NheI site of himar1. All clones and plasmids were verified by double strand DNA sequence analysis.

Transposon mutagenesis screen

To identify GN050 himar1 insertion mutants that were unable to induce cytotoxicity in J774a.1 macrophages, a crystal violet-based screen was optimized using a 96-well plate format. J774a.1 macrophages were seeded at a density of 2.9x10⁴ cells per well. GN050 himar1 insertion mutants that were recovered from LB plates supplemented with 200 µg/ml chloramphenicol were picked into
individual wells of a 96-well plate containing 200 µl of DMEM. After suspension of the colony, 5 µl of bacterial culture was added to an individual well of seeded J774a.1 macrophages (MOI of 50-200) and subject to a light centrifugation of 600 x g for 5 min to synchronize the infection. Each well of the bacterial suspensions were replica plated using a 96-prong tamper onto LB agar containing 100 µg/ml chloramphenicol. These would be used for isolating downstream mutants of interest. After 4 h, wells were washed with HBSS (Gibco) and stained with 3% crystal violet in 5% methanol 5% ethanol 5% isopropanol for 5 min at room temperature (RT). Each well was then washed with deionized water to remove excess crystal violet followed by an image capture to document the staining pattern of each well.

Wells that retained a majority of crystal violet staining were thought to be infected with a GN050 mutant that was non-toxic to J774a.1 cells. These selected wells were paired with mirrored replica plate mutants that grew on medium containing 100 µg/ml chloramphenicol, confirming the presence of the selectable marker. Each selected GN050 mutant was struck on LB for further analysis. Mutants that grew in a comparable manner to WT GN050 on LB were processed in a secondary screen with a standardized MOI. Here, J774a.1 cells seeded at 1.75 x 10^5 cells per well in 24-well plates were infected with WT GN050 and mutant derivatives at an MOI of 10:1 for 6-8 h after a centrifugation of 600 x g for 5 min. To quantify cytotoxicity, adenylate kinase (AK) release assays were carried out as previously described (1). Genome location of himar1 insertions were determined for GN050 mutants that were at 70% or below of WT toxicity in the secondary screen.

Sequencing and functional annotation of himar1 insertion mutants

Clones, possessing similar growth properties to GN050 but defective for cytotoxicity in primary and secondary screens, were processed for genomic DNA isolation using the DNeasy ultraclean microbial kit according to manufacturers’ instructions (Qiagen). One microgram of genomic DNA was digested with NotI in a 20 µl reaction. Restriction endonuclease reactions were heated to 65°C for 20 min to inactivate NotI and 50 ng of DNA was ligated to rescue plasmid containing the R6Kori from
himar1. Ligations were transformed into DH5α λpir and selected on medium with 30 µg/ml chloramphenicol. The resulting colonies were screened for kanamycin resistance. Plasmid DNA was isolated from colonies expressing both chloramphenicol and kanamycin resistance and subjected to DNA sequence analysis utilizing primers that bind to each end of himar1.

Quantitative reverse transcription-PCR (RT-qPCR)

GN050 and derived strains were grown in LB to an OD_{600} of 0.8-1.0 and 3 mls of culture were harvested by centrifugation at 16,100 x g for 5 min at RT. The supernatant was removed and the resulting pellet was suspended in 500 μl of TRIzol reagent (Ambion). For every 500 μl of TRIzol sample, 100 μl was mixed in a phasemaker tube (Invitrogen) and subject to centrifugation at 16,100 x g for 30 min at 4ºC. Total RNA was extracted using the RNeasy plus universal minikit (Qiagen) and quantified using a Qubit fluorometer. Using 1 μg of total RNA, DNase and reverse transcriptase reactions were performed using SuperScript IV Vilo (Thermo Scientific) per the manufacturers’ instructions. To detect any contaminating DNA, reactions excluding reverse transcriptase were performed for each group. Approximately 75 ng of cDNA was used in each qPCR experiment performed in technical triplicates using primers (0.5 µM) generated by the IDT PrimerQuest tool. Primers and template were mixed with nuclease-free water and 10 µl of 2X SsoAdvanced Universal SYBR green Supermix (Bio-Rad). qPCR was performed on a CFX Connect real-time system (Bio-Rad) and analyzed using CFX Maestro software (v4.1).

Functional annotation of insertion mutants

Transposon insertions that mapped to an ORF were assigned functional annotation identifiers. Ax GN050 genome containing ORF identifiers (FASTAS) were exported from the NCBI genome database (CP053617) and converted into an anvi’o (v7, “Hope”)‐useable contig database file (.db). Functional annotations were identified against COG and PFAM databases. Protein sequences
were exported from anvi’o and imported into GhostKOALA (Kanehisa Laboratories) for KEGG annotation.

Pangenomic and phylogenomic analyses

Pangenomic analysis of Ax strains were performed using the anvi’o suite (v7, “Hope”). Ax genomes for 88 isolates were obtained from NCBI RefSeq databases (FASTAS) and were used to generate the anvi’o-readable contigs database file (.db; ‘anvi-generate-contigs-database’). A single storage database was generated for the 88 genomes by using ‘anvi-gen-genomes-storage’ with the command ‘—gene-caller NCBI_PGAP’. The pangenome analysis was performed using ‘anvi-pan-genome’ under default settings (Use DIAMOND [7], ‘—minbit = 0.5’ and ‘—mcl-inflation = 2’) and resulting protein clusters were visualized using ‘anvi-display-pan’. The figure was exported (.svg) and manipulated for aesthetics using inkscape (v1.0).

To determine the phylogenetic relationship of the 88 Ax isolates, an anvi’o (v7, “Hope”) workflow for phylogenomics was used. A new bin collection in ‘anvi-display-pan’ was generated to identify core single-copy genes (SCG’s) across Ax genomes. Because the strains were highly similar, custom homogeneity indices (Min number of genomes gene cluster occurs = 88, Max number of genes from each genome = 1, Max functional homogeneity index = 0.95, Min geometric homogeneity index = 0.9) were applied to identify 77 SCG’s. Alignments from the pangenomic analysis described above and using the bin collection with 77 SCG’s were exported (.fa) using ‘anvi-get-sequences-for-gene-clusters’ with the command ‘—concatenate-gene-clusters’ and ‘—max-num-genes-from-each-genome = 1’. A phylogenetic tree (maximum-likelihood method) was generated using ‘anvi-gen-phylogenomic-tree’ and visualized in ‘anvi-interactive’. The tree was exported into a Newick file (.nwk) then rooted by midpoint and visualized in FigTree (v1.4.4). The figure was exported (.svg) and manipulated for aesthetics using inkscape (v1.0).
Microscopy and image processing

Microscopy images were generated using a Nikon Eclipse Ti inverted microscope system equipped with a CoolSNAP ES2 charge-coupled-device (CCD) camera (Photometrics) with NIS-Elements AR imaging software (v5.2). For binding assays, images were captured using a Nikon 10X (Plan Apo 0.3 NA) or 100X (Plan Apo 1.4 NA oil) lens. For live imaging, images were captured in intervals using a Nikon 10X (Plan Fluor 0.3 NA) or 60X (Plan Apo 1.4 NA oil) lens. Infections were carried out on a motorized stage inside a Tokei Hit environmental chamber temperature-controlled at 37°C and 5% Clinical Blood Gas (Airgas). In both cases image intensity of propidium iodide (cytotoxicity assays), GFP signal (bacterial proliferation assays), or Alexa Fluor-488 signal (binding assays) was quantified using CellProfiler (v3.1.5) using the ‘Measure-Image-Intensity’ module.

Transmission electron microscopy (TEM)

Cells in culture dishes were fixed in mixture of 2.5% glutaraldehyde + 2% paraformaldehyde in 100mM sodium cacodylate buffer pH 7.4 (8) for 1 h at RT. Following fixation the cells were washed 3x5 min in cacodylate buffer then post fixed in reduced 1% osmium tetroxide (9) for 2 h on ice. Cells were scraped and the suspension was centrifuged at 8,000 x g for 10 min. The cell pellet was kept intact during washing (3 x 5 min) with distilled water then dehydrated through a graded methanol series followed by 2 x 10 min washes in acetonitrile before infiltrating with EMBed 812 epoxy resin and polymerization overnight at 70°C. Ultrathin sections (70 nm) were cut, stained with uranyl acetate and lead citrate, and examined in a JEOL 1400 transmission electron microscope. Images were recorded using an AMT “nanosprint 12” digital camera.

Western blotting analyses

To prepare bacterial supernatants, GN050 and derived strains were grown in Tryptic Soy Broth (TSB) dialysate medium overnight at 37°C shaking at 250 rotations per minute (rpm). Cultures were subject to centrifugation at 3,823 x g for 10 min at RT. Supernatants were harvested and filter
sterilized through a 0.2 µm filter. Approximately 9.6 ml of supernatant was mixed with 12 ml of saturated ammonium sulfate solution (Thermo Scientific) and placed on ice for 3 h. Precipitated material was collected by centrifugation at 31,209 x g for 30 min at 4ºC followed by another brief centrifugation (31,209 x g for 5 min at 4ºC) to remove as much supernatant as possible. Pellets were suspended in 240 µl 1x SDS loading buffer (0.1 M dithiothreitol) and boiled for 5 min before loading on 8% acrylamide, SDS gels.

For artA expression analyses, *E. coli* BL21 (DE3) pLysS pET15bartA was grown in 25 ml Terrific Broth (TB) shaking at 250 rpm to an OD$_{600}$ of 0.5-0.7. Induction of gene expression was initiated by addition of isopropyl β - d-1 thiogalactopyranoside (IPTG; 0.5 mM final concentration) or mock buffer (uninduced) and incubated for an additional 3 h. Aliquots of 40 µl from growing cultures were mixed with 10 µl of 5x SDS loading buffer (0.1 M dithiothreitol).

Antigen preparations described above were analyzed by SDS-PAGE (8% acrylamide gel) and probed with CF patient serum (1:500, overnight, 4ºC [Cystic Fibrosis Foundation]), anti-His antibody (1:10,000, overnight, 4ºC [GenScript]), and either horse radish peroxidase (HRP)-conjugated anti-human IgG (1:20,000, 2 h, RT [Thermo Scientific]) or HRP-conjugated anti-mouse IgG (1:10,000, 2 h, RT [Invitrogen]). Coomassie stained gels and western blots were imaged using a ChemiDoc Touch Gel imaging System (Bio-Rad).

Figures and statistical analyses

Figures were generated and statistical analyses were performed using python (v3.8.5) in a JupyterLab notebook environment and figures were modified using Inkscape software (v1.1). When applicable, one-way or two-way ANOVA statistical tests were performed in combination with Tukey’s post hoc analysis. Generally, cutoff for significance was at least p<.001 unless otherwise specified. For each method, the statistical analysis used is indicated in the figure legend.
SUPPLEMENTAL REFERENCES

1. Pickrum AM, DeLeon O, Dirck A, Tessmer MH, Riegert MO, Biller JA, Ledeboer NA, Kirby JR, Frank DW. 2020. *Achromobacter xylosoxidans* cellular pathology is correlated with activation of a type III secretion system. Infect Immun 88:e00136-20.

2. Marx CJ, Lidstrom ME. 2001. Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiol 147:2065-2075.

3. Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ. 1999. *In vivo* transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96:645-50.

4. Jencova V, Strnad H, Chodora Z, Ulbrich P, Vlcek C, Hickey WJ, Paces V. 2008. Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from *Achromobacter xylosoxidans* A8. Res Microbiol 159:118-127.

5. Ciok A, Dziewit L, Grzesiak, Budzik JK, Gorniak D, Zdanowski MK, Bartosik D. 2016. Identification of miniature plasmids in psychrophilic Artic bacteria of the genus *Variovorax*. FEMS Microbiol Ecol 92:1-9.

6. Fellay R, Frey J, Krisch H. 1987. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of Gram-negative bacteria. Gene 52:147-154.

7. Buchfink B, Zie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59-60.

8. Karnovsky MJ. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy. J Cell Biol 27:137-138A.

9. McDonald K. 1984. Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. J Ultrastruct Res 86:107-118.