Statistical Analysis of 30 Years Rainfall Data: A Case Study

G Arvind, P Ashok Kumar, S GirishKarthi and C R Suribabu*
School of Civil Engineering, SASTRA University, Thanjavur – 613 401, India.

*Email: suribabu@civil.sastra.edu

Abstract. Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.

1. Introduction

Water is vital for any life process and there can be no substitute for it. Water is also used for transportation, is a source of power and serves many other useful purposes for domestic consumption, agriculture and industry. The main important source of water in any area is rain and it has a dramatic effect on agriculture. Plants get their water supply from natural sources and through irrigation. The yield of crops particularly in rain-fed areas depends on the rainfall pattern, which makes it important to predict the probability of occurrence of rainfall from the past records of hydrological data using statistical analysis. Frequency or probability distribution helps to relate the magnitude of the extreme events like floods, droughts and severe storms with their number of occurrences such that their chance of occurrence with time can be predicted easily. By fitting a frequency distribution to the set of hydrological data, the probability of occurrences of random parameter can be calculated. To fit the distribution, the hydrological data is analyzed and the variability in the data is studied from the statistical parameters. Suchit Kumar Rai et al., studied the change, variability and rainfall probability for crop planning in few districts of Central India [1]. Nyatuame et al. [2] performed the statistical analysis and studied the variability in the distribution of rainfall. Rajendran et al. [3] carried out the frequency analysis of rainy days and studied the rainfall variation.

2. Study Area
The present study is carried out for Musiri (Tiruchirapalli district, Fig.1) town situated at a distance of 29 km from Tiruchirapalli city. The region has a latitude and longitude of 10.9549°N and 78.4439°E respectively. Agriculture is the main occupation in this town situated on the northern bank of Cavery river. The crops include paddy, sugarcane, banana and vegetables. Musiri receives rainfall from both the northeast and southwest on an average (30 years) of 245.49 mm and 352.62 mm respectively. The daily rainfall data is collected from the Indian Meteorological Department (IMD), Musiri station, for a period of 30 years (1984-2013). This data is used for the Yearly, Monthly and Seasonal Rainfall-Probability analysis. Figure 2 presents the historical annual rainfall for the station.
3. Methodology
The methodology adopted in this study is Rainfall Statistics (Table 1), Probability analysis using plotting position and probabilistic methods (Table 2). From the Preliminary study and analysis, variation in results among the plotting position methods is found to be insignificant.

Table 1. Formulae for Statistical Parameters

Description	Symbol	Formula	Explanation
Arithmetic Mean	X_{avg}	$\sum X_i / n$	X is the rainfall magnitude in mm, $i=1,2$ to n and n is the length of the sample.
Standard deviation	Σ	$\left[\sum (X_i - X_{avg})^2 / (n-1)\right]^{1/2}$	X is the rainfall magnitude in mm, $i=1,2$ to n and n is the length of the sample.
Co-efficient of Variation	C_v	$100 \times (\sigma / X_{avg})$	X_{avg} is the Mean σ is the Standard deviation
Co-efficient of Skewness	C_s	$(1 / \sigma^3) \times [(N / (N^2 - 3N + 2)) \times \sum (X_i - X_{avg})^3]$	σ is the Standard deviation $N = \text{Total no. of years}$ X_{avg} is the Mean X is the rainfall magnitude in mm, $i=1,2$ to n

3.1 Annual Rainfall Analysis
The annual rainfall data is analyzed and the variation in distribution over the area is studied with the statistical parameters. The best fit distribution method is found using various plotting position and probabilistic methods.
Table 2: Plotting position and Probabilistic methods

S. No.	Plotting position methods	Probabilistic methods
1	California = m/N	Normal Distribution
2	Hazen = (m-0.5)/N	Log-Normal Distribution
3	Weibull = m/(N+1)	Pearson Type-III Distribution
4	Beard = (m-0.31)/(N+0.38)	Log-Pearson Type-III Distribution
5	Chegodayev = (m-0.3)/(N+0.4)	Extreme Value Type-I Distribution
6	Blom = (m-3/8)(N+1/4)	
7	Tukey = (3m-1)/(3N+1)	
8	Gringorten = (m-0.44)/(N+0.12)	
9	Cunnane = (m-0.4)/(N+0.2)	
10	Adamowski = (m-1/4)/(N+1/2)	

where, m is rank of the data and N = length of the sample (no. of years).

3.2 Monthly Rainfall Analysis

From the Preliminary study and analysis, variation in results among the plotting position methods is found to be insignificant and hence, only Weibull method is adopted for the analysis among them. From the Probabilistic methods, Gumbel and Normal distribution methods are used. The rainfall data are arranged into a number of intervals with definite ranges. Mean and standard deviation were found out for the grouped data. Chi-square values are calculated for the above methods, with the obtained probabilities. The method that gives the least Chi-square value is found to best fit the distribution.

Weibull Distribution is a continuous probability distribution type where in rainfall amounts are assigned with a rank and the corresponding probabilities are found out using probability density function:

\[
\frac{1}{\Gamma(\frac{1}{\gamma})} \frac{1}{\gamma} x^{\gamma - 1} e^{-\frac{x}{\gamma}}
\]

where, \(m \) and \(n \) represents the rank and total number of data used in the analysis.

Gumbel Distribution is used to model the distribution of the extremeties of a number of samples of various distributions.

\[
P(X) = \exp((- (a + x)/c) - e^{-((a + x) / c)}))
\]

\[
a = 0.450055 \sigma - X_{avg} \& c = 0.7797 \sigma
\]

Where,

- \(P(X) \) is the probability density function for Gumbel method and \(X_{avg} \) represents the average rainfall in mm.

Normal Distribution is a very common continuous probability distribution. Normal distributions represent real-valued random variables whose distributions are not known.

\[
B = 0.5[1 + 0.196854 |Z| + 0.115194 |Z|^2 + 0.000344 |Z|^3 + 0.015927 |Z|^4]
\]

\[
Z = (X - X_{avg}) / \sigma, \quad F (Xi) = B_{for} Z < 0 \& F (Xi) = 1 - B_{for} Z > 0
\]

The Probability Density function for the Normal Distribution method is as follows:

\[
(X) = F (Xi + 1) - (X)
\]

Where,

- \(Xi \) is the rainfall at any instant \(i = 1,2,3 \) to \(n \).
Goodness of Fit is a test used to find out the best fit probability distribution. The best fit distribution varies for different time period. Chi-squared test is used in the determination of best fit distribution for weekly and seasonal rainfall in this study. Chi-Squared Test is used for continuously sampled data only and is used to determine if a sample comes from a population with a specific distribution.

\[X^2_{c} = \sum \frac{(O-E)^2}{E} \]

(5)

Where,

- \(\sum \) from i = 1 to k, O = Observed frequency,
- E = Expected frequency,
- i = Number of observations and k = the total number of data used

Chi-Square Formula adopted in the study is as follows:

\[X^2_{c} = \frac{\left(\sum \left(f_s(X_i) - P(X_i) \right)^2 / P(X_i) \right) x \sum N_i}{\sum f_s(X_i) \cdot \sum N_i} \]

(6)

Where,

- \(X^2_{c} \) is the Chi – squared value,
- \(P(X) \) is the probability density function

3.3 Seasonal Rainfall Analysis

In this analysis, the variation of distribution of rainfall is studied with the statistical parameters using formulae mentioned in Table 1.

3.4 Effective Rainfall

Water requirement for various crops is found and they are related with the effective rainfall, which is calculated from the rainfall data. Effective rainfall is the amount of rainfall effectively used by the crops. The effective rainfall in the study area is calculated using the formula:

\[R_e = 0.8*P-25, \text{ if } P \geq 75 \text{mm} \]

(7)

\[R_e = 0.6*P-10, \text{ if } P < 75 \text{mm} \]

(8)

where,

- \(R_e \) is the Effective Rainfall (mm),
- P is the Total Monthly Rainfall (mm)

4. Results and Discussions

4.1 Annual Rainfall Analysis

The rainfall data are ranked in descending order and various plotting position and probabilistic methods are applied to determine the return period. Rainfall magnitudes were calculated for different return periods using the rainfall-return period equation obtained from the graphs for all plotting position methods (Table 3).
Table 3. Maximum Annual Rainfall based on Plotting Position methods

Method/Return period	10	30	50	100	300	500
WEIBULL	1019.914	1275.352	1394.124	1555.288	1810.726	1929.499
CALIFORNIA	1027.544	1282.982	1401.754	1562.918	1818.356	1937.129
HAZEN	973.8311	1199.124	1303.879	1446.022	1671.315	1776.07
CHEGODAYEV	994.2638	1233.036	1344.059	1494.708	1733.48	1844.503
BLOM	987.0367	1221.063	1329.879	1477.533	1711.56	1820.376
GRINGORTEN	980.3763	1210.008	1316.781	1461.663	1691.295	1798.067
BEARD	993.3244	1231.482	1342.218	1492.479	1730.636	1841.373
TUKEY	991.092	1227.788	1337.845	1487.184	1723.88	1833.937
CUNNANE	984.5198	1216.887	1324.932	1471.54	1703.907	1811.952
ADAMOWSKI	998.8729	1240.656	1353.078	1505.626	1747.408	1859.831
AVERAGE MAX RAINFALL	995.078	1233.838	1344.855	1495.496	1734.256	1845.274

For Musiri, California method gives the maximum value for rainfall for different return periods and Hazen method is found to give the least value and is hence not acceptable for the analysis. It is seen that Chegodayev method gives a maximum rainfall which is approximately 99.9% to that of the average maximum rainfall unlike other methods of distribution and is hence the best fit distribution for annual rainfall data. It is also seen that whenever there is an increase in return period, the rainfall amount also increases and vice-versa. Hence, Rainfall and return period are proportional to each other.

Table 4. Maximum Annual Rainfall based on Probabilistic methods

Distribution/Return Period	50 years (x) in mm	100 years (x) in mm
NORMAL	1119.037	1173.951
GUMBEL	**1315.274**	**1441.859**
PEARSON TYPE-III	1222.606	1322.139
LOG-NORMAL	1193.561	1286.205
LOG-PEARSON TYPE-III	1225.471	1334.455

Considering the results of Plotting positions to be actual, Gumbel distribution (Extreme value type-I) gives a value that is closer to the actual value and is hence the best method of fit for the annual rainfall data (Table 4).

Table 5. Statistical Parameters for Annual Rainfall Analysis

S. No.	Description	Normal series	Log-transferred series
1	Mean Rainfall (mm)	704.35	2.83168
2	Standard deviation (mm)	201.88	0.119355
3	Co-efficient of Variation	0.2866	0.042150
4	Co-efficient of skewness	1.0582	0.181678
4.1.1 **Statistical parameters.** The above Table 5 shows that the Standard deviation value is considerable large which indicate there is larger variation in rainfall pattern. Skewness represents the distribution of data about the mean. It is equal to zero in the case of normal distribution. When the peak of the sample is towards the right of a plotted graph, it is said to be negatively skewed and when the peak of the sample is towards the left of a plotted graph, it is said to be positively skewed. From the above table, it is clear that Normal series and Log-transferred series data are positively skewed.

4.2 **Monthly Rainfall Analysis**
The rainfall data are arranged into a number of intervals with a range of 25 mm and the frequency of occurrence is found out initially, to convert the normal data into a grouped data. Mean and Standard Deviation were found out for the same to check the variation in rainfall. Chi-square values obtained are compared for all the methods and the Least Chi-square value in all the cases is given by Gumbel distribution.

Table 6. Chi-square values for Monthly rainfall analysis
Distribution
WEIBULL
GUMBEL
NORMAL

Thus, from the above Table 6, it is inferred that the chi-square value is least for Gumbel distribution, showing that it best fits the monthly rainfall data.

Table 7. Statistical Parameters for Monthly Rainfall Analysis
Months

January
February
March
April
May
June
July
August
September
October
November
December

4.2.1 **Statistical parameters.** From the above Table 7, it is observed that maximum average rainfall is received in the months of August, September, October and November during the monsoons, having the standard deviation values less than their corresponding mean values. Whereas, the standard
deviation values for the remaining months are higher than their corresponding mean values showing larger variation in the distribution of rainfall over the months. From the above table it is clear that, Normal series data are positively skewed.

Table 8. Statistical Parameters for Seasonal Rainfall Analysis
S. No.

1
2
3
4

4.3 Seasonal Rainfall Analysis
From the above Table 8, it is shown that Musiri receives the rainfall seasonally on an average of 245.49 mm and 352.62 mm during south-west (SW) and north-east (NE) monsoons respectively and it also shows that to how much extent the distribution of rainfall is varied over the study area during the respective monsoons. The monthly rainfall series data of both the monsoons are positively skewed.

4.4 Crop Planning
Average effective rainfall for 30 years were found and tabulated. From table 8, it is observed that the average effective rainfall is higher in the months of August, September, October and November. Whereas, the average effective rainfall in the months of January, February and March is zero. Based on the effective rainfall the crop planning is done which is shown in Table 9.

Table 9. Average effective rainfall for 30 years
Months

January
February
March
April
May
June
July
August
September
October
November
December

Musiri taluk has net cultivable area of 27,344 hectares which constitutes 13.4% of total agricultural area in Trichy district. The soil type in Trichy district is found to be Red sandy soil and black soil. Crops like Paddy, Sugarcane, Maize, Pulses (Black-gram and Soybean), Groundnut, Sesame(Gingelly) and Sunflower are very much suitable to be grown in Red Sandy soil and Black soil is suitable for growing Cotton. Cultivation of crop varies according to the climate and water requirement. From the collected data, it has been found that Paddy constitutes about 39% the total cultivable area and stands top in net production followed by Groundnut which is cultivated for about 2338 ha, Maize for about 1315 ha, Sugarcane for about 1002 ha, Cotton for 442 ha, Gingelly for merely 57 ha and other cash crops like Cholam, Cumbu etc for the remaining area. Based on the
effective rainfall data, crop water requirement for various crops were identified and segregated into rain-fed and irrigated. The Table 8 above shows the best sowing and harvesting time for cultivation of various crops and water requirement through rain and irrigation.

Table 10. Crop planning for the Musiri Region

S. No.	Crops	TWR*	best suited month	Rain-Fed (mm)	Irrigated (mm)
1	Maize	500mm for 100 days	Early August	299	201
2	Pulses:				
2.1	Blackgram	280mm for 65 days	Mid August	197	83
2.2	Soybean	320mm for 85 days	September	266	54
3	Groundnut	510mm for 105 days	September	290	220
4	Sesame	150mm for 85 days	July	119	31
4.1	(Gingelly)				
5	Cotton	600mm for 165 days	Mid July	335	265
6	Sunflower	450mm for 110 days	August	299	151

*TWR=Total Water Requirement

5. Conclusion
From the Rainfall Probability analysis on the Annual and Monthly rainfall for Musiri Region, it is evident that Gumbel Distribution (Extreme Value Type – I) is ascertained as the best fit distribution type considering its Least Chi-Square Value among all other methods of analysis. Chegodayev Distribution from Plotting Position methods is found to best fit the Annual rainfall data. The present statistical analysis provides clear picture on rainfall data and it is found that rainfall available in the region is insufficient to carry out wet crop. Conjunctive use of surface water, available rainfall and ground water is essential for better agricultural and irrigation management for this area, Thus, the analysis helps in understanding the rainfall pattern of Musiri region and also in efficient crop planning and water availability of the region.

Acknowledgements
The authors acknowledge the Vice Chancellor, SASTRA University, Thanjavur, India for providing the facilities to carry out the work and the encouragement in completing this work.

References
[1] Suchit Kumar Rai, Sunil Kumar, Arvind Kumar Rai, Satyapriya and Dana Ram Palsaniya 2014 Climate Change Variability and Rainfall Probability for Crop Planning in Few Districts of Central India. *Atmos. Climate Sci.* 4 394-403.
[2] Nyatuame M, Owusu-Gyimah V and Ampiaw F 2014 Statistical Analysis of Rainfall Trend for Volta Region in Ghana. *Int. J. Atmos. Sci.* 67(2) 1-11.
[3] Rajendran V, Venkatasubramani R and Vijayakumar G 2016 Rainfall variation and frequency analysis study in Dharmapuri district (India). *Indian J. Geo. Mar. Sci.* 45(11) 1560-5.