Magnetic properties of lithium-containing rare earth garnets
Li$_3$RE$_3$Te$_2$O$_{12}$ (RE = Y, Pr, Nd, Sm-Lu)

F Alex Cevallos1, Shu Guo and R J Cava
Department of Chemistry, Princeton University, Princeton NJ 08542, USA
1 Author to whom any correspondence should be addressed.
E-mail: fac2@princeton.edu

Keywords: magnetism, powder x-ray diffraction, magnetization

Abstract
The synthesis, structural description, temperature dependent magnetic susceptibilities and field dependent magnetizations of a series of rare earth garnets of the form Li$_3$RE$_3$Te$_2$O$_{12}$ (RE = Y, La, Pr, Nd, Sm-Lu) are reported. The structure of Li$_3$Dy$_3$Te$_2$O$_{12}$ is refined from powder x-ray diffraction data. The field dependent magnetizations saturate for some of the members by 9 Tesla at 2 K. Of particular interest for further study in this family is the behavior of the Pr, Tb, Dy and Yb garnets.

Introduction
Geometric magnetic frustration occurs when the crystal structure of a compound inhibits that system’s preferred long-range magnetic ordering arrangement [1]. The archetypical example is for antiferromagnetically coupled spins on an equilateral triangular lattice; two spins can easily arrange antiferromagnetically, but the third has no easy choice. This inhibits long-range magnetic ordering to low temperatures, where order does typically emerge, at temperatures lower than the ordering temperature expected based on the Curie-Weiss theta, a measure of the average magnetic coupling strength. As long-range magnetic ordering is one of the most common electronic ground states, frustrated systems where it is inhibited can exhibit a variety of other, unusual ground states such as spin glass, spin ice, and spin liquid [1–5].

One structure type that prominently features triangular lattices of magnetic ions is the garnet structure, shown in figure 1(a). Garnets typically take the form A$_3$B$_2$C$_3$O$_{12}$, where A, B, and C can each be one of a large number of different atoms; the A atoms have 8 oxygen neighbors, and are frequently rare earth elements, the B atoms are frequently (magnetic or nonmagnetic) elements in octahedral coordination with oxygen and the C atoms are typically smaller late main group elements in tetrahedral coordination with oxygen [6]. Depending on the arrangement of magnetic and non-magnetic atoms in the structure, garnets can display a variety of magnetic properties, including ferrimagnetism [7], geometric magnetic frustration and spin glass [8, 9].

A somewhat unusual family of garnets which contain lithium have recently begun to attract attention for their potential application in Li-ion batteries [10–15]. In these compounds, the lithium atoms occupy a variety of sites with an adjustable number per formula unit, to balance the charge [16]. It is important to note that, by convention, the formulas of Lithium-containing garnets are not written in the typical A-B-C order, but are written C-A-B, with the tetrahedrally-coordinated atom first, and the octahedrally coordinated atom last: e.g. Li$_3$Gd$_3$Te$_2$O$_{12}$, Li$_3$Pr$_3$Sb$_2$O$_{12}$ and Li$_3$La$_3$Zr$_2$O$_{12}$ are all materials with a garnet structure, with the number of Li-atoms adjusted to balance the charge of the octahedrally-coordinated ions, respectively Te$^{6+}$, Sb$^{5+}$ and Zr$^{4+}$ [13, 16, 17]. The locations of all the Li atoms in these structures is a matter of some debate, but it is generally agreed that in the case of 3 Li atoms per formula unit, they occupy the standard garnet tetrahedral C-site. As more Li atoms are added to the structure, they begin to occupy nearby non-standard interstitial sites, as shown in figure 1(c). While the fully-Li-occupied sites are ordered, intermediate Lithium contents result in random site occupancy and thus a degree of structural disorder on all Lithium sites [10, 16–18]. In the materials of interest here, the Li ions are ordered [11].
In this work we study the elementary magnetic properties of the Li₃RE₃Te₂O₁₂ family of lithium-containing garnets, which has been chosen for study because it displays the garnet phase for nearly the entire rare earth series (Y, Pr, Nd, Sm-Lu) in an ordered structure. To the best of our knowledge, two previous studies have been performed on this subject [19, 20], but both focus on a smaller subset of lanthanides within the lithium garnet family and no full magnetic examination of the entire series has been reported.

Experimental

All samples were synthesized by standard solid state reaction. Powders of Li₂CO₃ (Alfa Aesar, 99.0%), TeO₂ (Alfa Aesar, 99.99%) and the appropriate rare earth oxide (all Alfa Aesar and at least 99.99%) were mixed together in the proper stoichiometric ratio and ground with an agate mortar and pestle for at least 5 min, then placed in an alumina crucible. Li₂CO₃ was stored at 120°C for 24 h before use. All rare earth oxides (Y₂O₃, Pr₆O₁₁, Nd₂O₅, Sm₂O₃, Eu₂O₃, Gd₂O₃, Tb₂O₇, Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃ and Lu₂O₃) were heated at 800°C for at least 3 days before use. Samples were placed into a furnace at 800°C and heated in air for two days with intermediate grinding. After one day of heating the temperature of the furnace was slowly increased to 1000°C (with the exception of the Lu compound, which was only heated to 900°C). Samples were removed from the hot furnace and air quenched to room temperature. Samples frequently contained an impurity phase, Li₄TeO₅, which was reduced or eliminated with further heating in all cases. Attempts to synthesize the La, Ce and Sc members of this family under our conditions resulted in no detectable garnet phase.

Room-temperature powder x-ray Diffraction (XRD) measurements were taken using a Bruker D8 Advance Eco diffractometer with Cu Kα radiation (λ = 1.5418 Å) and a LynxEye-XE detector. The Bruker EVA program was used for phase identification. Powder LeBail and Rietveld Refinements were performed using Fullprof Suite. Magnetic susceptibility measurements were taken using a Quantum Design Physical Property Measurement System (PPMS) Dynacool with a vibrating sample mount. Samples were placed in plastic sample holders, and measured as polycrystalline powders. Temperature-dependent DC magnetic susceptibility measurements were taken in an applied field of 1,000 Oe between 1.8 and 300 K. Field-dependent susceptibility measurements were taken at 2 K.
Results and discussion

Structure

All compounds in the family Li$_3$RE$_3$Te$_2$O$_{12}$ (RE = Y, Pr, Nd, Sm-Lu) were found to crystallize in the space group Ia-3d with the garnet structure, in agreement with previous results [11, 16, 19, 20]. The lattice parameters of all compounds as determined by LeBail fits to the room temperature powder diffraction data can be seen in table 1, and are in good agreement with previous results. Figure 2 shows the relationship between expected ionic radius and lattice parameter, indicating a fairly linear trend and a clear lanthanide contraction, as expected.

Some sample LeBail fits are shown in figure 3. All LeBail fits can be seen in the supplemental information, available online at stacks.iop.org/MRX/5/126106/mmedia. As all compounds studied have an identical garnet structure, Li$_3$Dy$_3$Te$_2$O$_{12}$ was chosen as a representative compound, and a full Rietveld refinement was performed in order to obtain more in-depth structural information. Previous studies have suggested that the Li atoms which sit on the tetrahedral interstitial sites can be observed through standard laboratory x-ray Diffraction [11]. This is somewhat surprising, as the light Li atoms would normally be assumed to be comparatively undetectable in the XRD pattern, and would require neutron diffraction to observe. To test this result, two refinement models were used: One in which all atomic positions were refined, and one in which only the Dysprosium, Oxygen and Tellurium atoms were refined. The resulting fit can be seen in figure 4, and atomic positions, thermal parameters, and goodness-of-fit factors can be seen in table 2. These results indicate that the

Table 1. Lattice parameters of Li$_3$RE$_3$Te$_2$O$_{12}$ compounds, as determined by LeBail fits to powder x-ray Diffraction data at ambient temperature, compared with the effective ionic radii of the rare earth elements. All compounds crystallize in the space group Ia-3d (no. 230).

Rare earth element	RE ionic radius (Å)	Lattice parameter a (Å)
Y	.900	12.269(1)
Pr	.990	12.609(1)
Nd	.983	12.551(1)
Sm	.958	12.462(1)
Eu	.947	12.426(1)
Gd	.935	12.385(1)
Tb	.923	12.342(1)
Dy	.912	12.309(1)
Ho	.901	12.269(1)
Er	.890	12.232(1)
Tm	.880	12.209(1)
Yb	.868	12.171(1)
Lu	.861	12.151(1)

Figure 2. The lattice parameter a as a function of rare earth ionic radius for Li$_3$RE$_3$Te$_2$O$_{12}$ [9].

Figure 3. Some sample LeBail fits to the powder x-ray Diffraction data. Figure 4. The Rietveld refinement of Li$_3$Dy$_3$Te$_2$O$_{12}$.
model containing Li atoms is a slightly better fit. Critically for the magnetic properties, the rare earth atoms are fully ordered in one set of crystallographic sites, and the geometry of the magnetic ions is shown in figure 1(b).

Magnetism

The temperature- and field-dependent magnetic susceptibilities were measured for all Li$_3$RE$_3$Te$_2$O$_{12}$ compounds, with the exceptions of the Y- and Lu-containing compounds, which are non-magnetic. The temperature-dependent susceptibilities were fit to the Curie-Weiss Law, \(\chi - \chi_0 = C/(T - \theta_W) \), where \(\chi \) is the magnetic susceptibility, \(\chi_0 \) is a temperature-independent term, \(C \) is the Curie constant, and \(\theta_W \) is the Weiss temperature. The effective magnetic moment per RE$^{3+}$ ion was then calculated by the equation \(\mu_{\text{eff}} = \sqrt{8C} \).

The resulting values are collected in table 3 along with (for the purpose of comparison) previously published values derived from low-temperature Curie-Weiss fits of related Gallium and Aluminum garnet phases, when available. As crystal electric field effects may affect the magnetic susceptibility measured at high temperatures, Curie-Weiss fits were performed in both low- and high-temperature regions. The field-dependent magnetic susceptibilities were measured at 2 K and normalized by the moles of RE$^{3+}$ ion present. The magnetic measurements and Curie-Weiss fits for each compound can be seen in figures 5–15. The magnetic characteristics of the materials studied will now be described on an individual basis.
Table 2. Lattice parameter, atomic positions, thermal parameters, and goodness-of-fit information for Rietveld refinement of Li$_3$Dy$_3$Te$_2$O$_{12}$ at ambient temperature, comparing two models: in Model 1, all four atomic positions are refined. In Model 2, only Dy, Te and O positions are refined, and Li is left out of the refinement entirely.

Atom	Model 1	Model 2						
	x	y	z	B$_{iso}$	x	y	z	B$_{iso}$
Dy	.125	0	.25	2.43(2)	.125	0	0	2.34(2)
Te	0	0	0	2.30(2)	0	0	0	2.17(2)
O	.026 23(27)	.051 01(30)	.645 65(28)	2.28(11)	.028 17(28)	.049 88(32)	.647 57(29)	2.75(12)
Li	.375	0	.25	4.19(53)	—	—	—	—

Rietveld R-factor

	Model 1	Model 2
R_f	8.29	7.73
R_p	16.7	17.8
R_{wp}	15.5	16.0
χ^2	3.25	3.46

Table 3. Values determined by Curie-Weiss fits for Li$_3$RE$_3$Te$_2$O$_{12}$ compounds in an applied field of 1,000 Oe at high temperature (150–300 K) and low temperature (10–40 K). Y, Eu, and Lu compounds excluded. Values of μ_{eff} and θ_W from low-temperature fits for RE-containing Gallium and Aluminum garnets are provided for comparison, where available.

Compound	Temperature range	Curie constant	θ_W (K)	μ_{eff}(μB/RE$^{3+}$)
Li$_3$Pr$_3$Te$_2$O$_{12}$	High	5.1	−80.3	3.7
	Low	2.8	−10.0	2.7
Pr$_3$Ga$_5$O$_{12}$	[21]	—	—	2.88
Li$_3$Nd$_3$Te$_2$O$_{12}$	High	5.3	−68.0	3.7
	Low	2.4	−1.3	2.5
Nd$_3$Ga$_5$O$_{12}$	[21]	—	—	2.71
Li$_3$Sm$_3$Te$_2$O$_{12}$	High	—	—	—
	Low	0.14	−2.2	0.61
Sm$_3$Ga$_5$O$_{12}$	[22]	—	—	—
Li$_3$Gd$_3$Te$_2$O$_{12}$	High	22.9	−2.0	7.8
	Low	25.2	−2.9	7.9
Gd$_3$Ga$_5$O$_{12}$	[20]	−1.4	—	7.814
Gd$_3$Al$_5$O$_{12}$	[23]	−3.0	—	7.91
Li$_3$ Tb$_3$Te$_2$O$_{12}$	High	36.5	−9.8	9.8
	Low	30.6	−0.30	9.0
Tb$_3$Ga$_5$O$_{12}$	[20]	−1.16	—	8.34
Li$_3$ Dy$_3$Te$_2$O$_{12}$	High	42.4	10.7	10.6
	Low	38.3	−3.6	10.1
Dy$_3$Ga$_5$O$_{12}$	[20]	—	—	—
Dy$_3$Al$_5$O$_{12}$	[24]	—	—	—
Li$_3$ Ho$_3$Te$_2$O$_{12}$	High	39.1	9.0	10.2
	Low	31.9	−1.6	9.2
Ho$_3$Ga$_5$O$_{12}$	[20]	−3.29	—	10.3
Li$_3$Er$_3$Te$_2$O$_{12}$	High	31.0	2.0	9.1
	Low	20.2	−0.42	7.3
Er$_3$Ga$_5$O$_{12}$	[25]	—	—	8.4
Li$_3$ Tm$_3$Te$_2$O$_{12}$	High	19.6	5.9	7.2
	Low	24.9	−38.3	8.1
Tm$_3$Ga$_5$O$_{12}$	[26]	—	—	7.5
Li$_3$Yb$_3$Te$_2$O$_{12}$	High	7.3	−56.4	4.4
	Low	3.7	−0.43	3.1
Yb$_3$Ga$_5$O$_{12}$	[27]	−0.048	—	2.99
Yb$_3$Al$_5$O$_{12}$	[27]	−0.139	—	2.98
The magnetic susceptibility plots and Curie-Weiss fits are shown in figure 5. A high-temperature Curie-Weiss fit resulted in values of $C = 5.1$ and $\mu_{\text{eff}} = 3.7 \, \mu_B$, in good agreement with the expected value of $3.58 \, \mu_B$ for Pr$^{3+}$.

Figure 5. Left: magnetic susceptibility and inverse susceptibility of Li$_3$Pr$_3$Te$_2$O$_{12}$ with respect to temperature in an applied field of 1,000 Oe. Curie-Weiss fits shown in black. Right: field-dependent magnetization of Li$_3$Pr$_3$Te$_2$O$_{12}$ measured at 2 K. Inset: low-temperature region of inverse magnetic susceptibility with respect to temperature.

Figure 6. Left: magnetic susceptibility and inverse susceptibility of Li$_3$Nd$_3$Te$_2$O$_{12}$ with respect to temperature in an applied field of 1000 Oe. Curie-Weiss fits shown in white. Right: field-dependent magnetization of Li$_3$Nd$_3$Te$_2$O$_{12}$ measured at 2 K. Inset: low-temperature region of inverse magnetic susceptibility with respect to temperature.

Figure 7. Left: magnetic susceptibility and inverse susceptibility of Li$_3$Sm$_3$Te$_2$O$_{12}$ with respect to temperature in an applied field of 1,000 Oe. Curie-Weiss fits shown in black. Right: field-dependent magnetization of Li$_3$Sm$_3$Te$_2$O$_{12}$ measured at 2 K. Inset: low-temperature region of inverse magnetic susceptibility with respect to temperature.

Li$_3$Pr$_3$Te$_2$O$_{12}$

The magnetic susceptibility plots and Curie-Weiss fits are shown in figure 5. A high-temperature Curie-Weiss fit resulted in values of $C = 5.1$ and $\mu_{\text{eff}} = 3.7 \, \mu_B$, in good agreement with the expected value of $3.58 \, \mu_B$ for Pr$^{3+}$.
The Weiss temperature was found to be -80.3 K, suggesting that Li$_3$Pr$_3$Te$_2$O$_{12}$ has significant antiferromagnetic interactions between spins. A low-temperature Curie-Weiss fit between 10 and 40 K resulted in values of $C = 2.8$, $\mu_{\text{eff}} = 2.7 \mu_B$ and $\theta_W = -10.0 \text{ K}$. No clear signs of ordering are observed down to 1.8 K, indicating
Figure 11. Left: magnetic susceptibility and inverse susceptibility of Li₃Dy₃Te₂O₁₂ with respect to temperature in an applied field of 1,000 Oe. Curie-Weiss fits shown in white. Right: field-dependent magnetization of Li₃Dy₃Te₂O₁₂ measured at 2 K. Inset: low-temperature region of magnetic susceptibility and inverse magnetic susceptibility with respect to temperature.

Figure 12. Left: magnetic susceptibility and inverse susceptibility of Li₃Ho₃Te₂O₁₂ with respect to temperature in an applied field of 1,000 Oe. Curie-Weiss fits shown in white. Right: field-dependent magnetization of Li₃Ho₃Te₂O₁₂ measured at 2 K. Inset: low-temperature region of inverse magnetic susceptibility with respect to temperature.

Figure 13. Left: magnetic susceptibility and inverse susceptibility of Li₃Er₃Te₂O₁₂ with respect to temperature in an applied field of 1,000 Oe. Curie-Weiss fits shown in black. Right: field-dependent magnetization of Li₃Er₃Te₂O₁₂ measured at 2 K. Inset: low-temperature region of inverse magnetic susceptibility with respect to temperature.
that Li$_3$Pr$_3$Te$_2$O$_{12}$ is slightly magnetically frustrated with a frustration index $f = -\theta_W / T_N$ of at least 5, although the flattening of the susceptibility curve at low temperatures hints at a possible transition at lower temperatures. The large difference between the high and low temperature fits is tentatively attributed to CEF effects at higher temperatures. While Applegate et al report magnetic susceptibility data, they do not report the results of a Curie-Weiss fit to the data [19]. Our field-dependent susceptibility curve measured at 2 K shows a nonlinear response to applied field but no signs of saturation up to 9 Tesla.

Li$_3$Nd$_3$Te$_2$O$_{12}$
Temperature- and field-dependent magnetic susceptibility curves for Li$_3$Nd$_3$Te$_2$O$_{12}$ can be seen in figure 6. A Curie-Weiss fit in the high-temperature regime yielded $C = 5.4$, $\mu_{\text{eff}} = 3.7 \mu_B$ (close to the expected free-ion magnetic moment for Nd$^{3+}$ of 3.62 μ_B) and $\theta_W = -68.0$ K, indicating of antiferromagnetic coupling between spins. The lower-temperature Curie-Weiss fit yielded values of $C = 2.4$, $\mu_{\text{eff}} = 2.5 \mu_B$ and $\theta_W = -1.3$ K. These values are consistent with other known Nd-containing frustrated compounds [28–30] and the difference between high and low temperatures is attributed to low-lying crystal field levels [31]. The low-temperature fit is in good agreement with the previous work by Applegate et al [19], although the θ_W determined here via low-temperature fit is somewhat larger than their value of -0.91 K. Our characterization of the magnetization with applied field at 2 K shows a nonlinear response with a degree of saturation of approximately 1.25 μ_B/Nd$^{3+}$, lower than the expected magnetization M of 3.27 μ_B but in line with previous observations for Nd$_3$Ga$_3$O$_{12}$ [32].
Li₃Sm₃Te₂O₁₂
A Curie-Weiss fit in the low-temperature region as shown in figure 7 yielded values of $C = 0.14$ and $\mu_{\text{eff}} = 0.61 \mu_B$. These values are in-line with the expected effective magnetic moment of the free ion Sm³⁺ value of 0.84 μ_B, although somewhat low. This has been observed in other Sm-containing oxides and is attributed to crystal field effects [31, 33, 34]. The fit also yielded a $\theta_W = -2.2$ K, indicating an antiferromagnetically interacting system, although there are no signs of any magnetic ordering above 1.8 K. A fit at higher temperatures yielded values of $C = 4.77, \mu_{\text{eff}} = 3.6 \mu_B$ and $\theta_W = -1,412.4$ K. Some caution is warranted, however: this implied magnetic moment is more than four times what would be expected for the Sm³⁺ ion, and the curie Weiss temperature is unrealistically large. This kind of behavior has been seen in other Sm-containing systems and is attributed to a non-linear inverse magnetic susceptibility response arising from low-level ionic excited states [36]. As a result, this value as well as the large negative Weiss Temperature obtained from the high-temperature fit are not meaningful. The high-temperature values are thus omitted from table 3. Our characterization of the magnetization with respect to applied field of Li₃Sm₃Te₂O₁₂ shows a small degree of curvature, but the magnetization does not saturate at fields up to 9 T.

Li₃Eu₃Te₂O₁₂
As the Eu³⁺ ion has angular momentum values of L = 3, S = 3 and J = 0, Eu³⁺ has an expected magnetic moment of 0 μ_B. However, the magnetic susceptibility appears to show some temperature dependence as seen in figure 8. This is due to a combination of factors; the region between approximately 10 and 150 K is dominated by temperature-independent Van Vleck paramagnetism arising from the non-magnetic ground state. Above this temperature range, crystal field states have a visible effect and there is a clear temperature dependence. This is typical in Eu³⁺ systems [31, 33] and while the resulting curve appears similar in shape to compounds with Curie-Weiss behavior, it is unrelated and a fit to the Curie-Weiss law will not result in any meaningful information. The increase in the magnetic susceptibility at very low temperatures is a common feature of Eu³⁺ systems and is typically attributed to a combination of subtle magnetic interactions and small amounts of otherwise undetectable magnetic impurity [31, 33, 37]. The magnetization with respect to temperature shows a very slight curvature at lower fields, but is almost entirely linear up to applied fields of 9 Tesla.

Li₃Gd₃Te₂O₁₂
The magnetic susceptibility measurements for Li₃Gd₃Te₂O₁₂ can be seen in figure 9. The inverse susceptibility with respect to temperature was fit to the Curie-Weiss Law. In the high-temperature regime, the effective magnetic moment was determined to be 7.8 μ_B and at low temperatures it was found to be 7.9 μ_B, both values in good agreement with the expected μ_{eff} for Gd³⁺ of 7.94 μ_B. The Curie constant C was found to be 22.9 in the high-temperature region, and 23.2 at low temperatures. The Weiss temperature θ_W was found to be -2.0 K in the high-temperature region and -2.9 K in the low-temperature region, both indicating antiferromagnetic interactions. These low-temperature fit values are in good agreement with both Applegate and Mukherjee [19, 20], although Mukherjee et al find a somewhat high effective moment of 8.233 μ_B. In addition, Applegate et al observe an ordering transition at $T = 0.25$ K. The magnetization versus applied field curve begins to saturate at fields of approximately 3 Tesla, with a final saturation value of approximately 6.5 μ_B/Gd³⁺. This is similar to what was observed by Mukherjee et al [20], and slightly lower than the expected saturation magnetization of 7 μ_B.

Li₃Tb₃Te₂O₁₂
A high-temperature Curie-Weiss fit was performed for Li₃Tb₃Te₂O₁₂ with no temperature independent term, resulting in values of $C = 36.5, \theta_W = -9.8$ K, and $\mu_{\text{eff}} = 9.8 \mu_B$. This value for effective magnetic moment is in good agreement with the expected value for the free Tb³⁺ ion of 9.75 μ_B. The negative Weiss Temperature is indicative of dominantly antiferromagnetic coupling between spins, but the lack of clear ordering above 1.8 K suggests that Li₃Tb₃Te₂O₁₂ may be slightly magnetically frustrated with a frustration index of over 5. A heat capacity measurement conducted by Mukherjee et al suggests magnetic ordering at 1.04 K [20], which would indicate a frustration factor of around 9. At low temperatures, a Curie-Weiss fit yields values of $C = 30.6, \mu_{\text{eff}} = 9.0 \mu_B$, and $\theta_W = -0.30$ K. The values obtained in the low-temperature fit correspond well to the results obtained by both Applegate and Mukherjee [19, 20], although θ_W is much larger in magnitude than the value from Applegate et al of -0.017 K. The magnetization vs applied field curve in figure 10 shows some saturation at high fields, at approximately 5.5 μ_B/Tb³⁺ ion, which is much lower than the expected saturation magnetization of 9 μ_B, although more in line with the values recorded for Tb₃Ga₃O₁₂ [38]. Two small anomalies can be seen in the curve- one at approximately 1 Tesla, and the other at approximately 3 Tesla. The M vs H curve shows a
small degree of hysteresis. These anomalies can be clearly seen in the data obtained by Mukherjee et al [20], but they do not report an M-H 'loop' measurement.

Li₃Dy₃Te₂O₁₂

The DC magnetic susceptibility curves of Li₃Dy₃Te₂O₁₂ can be seen in figure 11. In an applied field of 1,000 Oe, a high-temperature Curie-Weiss fit yields values of $C = 42.4$, $\mu_{\text{eff}} = 10.6 \mu_B$ (in good agreement with the expected free ion value of 10.63 μ_B) and $\theta_W = 10.7$ K. A low-temperature fit yields similar values of $C = 38.3$, $\mu_{\text{eff}} = 10.1 \mu_B$ and a negative θ_W of -3.6 K. The low-temperature results are in good agreement with those of Mukherjee et al [20] (although they obtain a smaller θ_W of -1.52 K), and somewhat greater in magnitude than those of Applegate et al ($C = 33.72$ per formula unit, $\theta_W = -0.78$ K) [19]. A clear antiferromagnetic ordering transition can be observed at ~ 2 K, shown in the inset of figure 11. This transition is suppressed by higher magnetic fields, and is not observed in an applied field of 10,000 Oe. Li₃Dy₃Te₂O₁₂ is the only compound described here with a visible magnetic ordering temperature above 1.8 K. No other compounds displayed a clear transition, even in applied fields as low as 20 Oe. Interestingly, this transition was not observed by Mukherjee in the magnetic susceptibility data, but is seen in the heat capacity data where there is a clear ordering transition at 1.97 K [20]. Applegate, on the other hand, clearly observes the transition in the magnetic susceptibility data [19]. The magnetization vs applied field curve of Li₃Dy₃Te₂O₁₂ is highly non-linear, with an onset of saturation at approximately 1 Tesla, and a magnetization of approximately 6 μ_B/Dy³⁺ (and still visibly increasing) in an applied field of 9 T, similar to what was observed by Mukherjee et al [20] although much lower than the expected value of 10 μ_B. A similar low value for saturation has been observed in the related system Dy₃Ga₅O₁₂ [39].

Li₃Ho₃Te₂O₁₂

The temperature- and field-dependent magnetic susceptibility curves for Li₃Ho₃Te₂O₁₂ are shown in figure 12. A Curie-Weiss fit in the high-temperature regime yields values of $C = 39.1$, $\mu_{\text{eff}} = 10.2 \mu_B$ and $\theta_W = 9.0$ K. The effective magnetic moment of 10.2 μ_B is in agreement with the expected value for a free Ho³⁺ ion of 10.60 μ_B. A low-temperature fit yields values of $C = 31.9$, $\mu_{\text{eff}} = 9.2 \mu_B$ and $\theta_W = -1.6$ K. The negative Weiss temperature suggests antiferromagnetic coupling at very low temperatures. These low-temperature values are somewhat greater in magnitude than those of both Applegate and Mukherjee [19, 20]. Mukherjee also observes a possible magnetic ordering transition in the heat capacity data at 1.4 K, which is consistent with our measured Weiss temperature and would not indicate any notable degree of magnetic frustration [20]. The magnetization versus applied field curve shows a strongly non-linear response, with saturation visible above fields of 1 Tesla (although still increasing up to 9 T), and a magnetization of about 5.5 μ_B/Ho³⁺ at 9 T, much lower than the expected value of 10 μ_B, but in line with the results of Mukherjee et al [20] Both results are lower than the (still lower than predicted) saturation value of 7.69 μ_B observed in Ho₃Ga₅O₁₂ [38].

Li₃Er₃Te₂O₁₂

The magnetic susceptibility data for Li₃Er₃Te₂O₁₂ is shown in figure 13. A high-temperature Curie-Weiss fit yielded values of $C = 31.0$, $\theta_W = 2.0$ K, and $\mu_{\text{eff}} = 9.1 \mu_B$, in good agreement with the expected value of 9.59 μ_B for the Er³⁺ ion. A Curie-Weiss fit at lower temperatures yielded values of $C = 20.2$, $\mu_{\text{eff}} = 7.3 \mu_B$ and $\theta_W = -0.42$ K. The low-temperature value for C is slightly larger than the corresponding formula unit value of C from Applegate et al (approximately 18.5), and θ_W is fairly close to their obtained value of -0.28 K [19]. The magnetization with respect to applied field is highly non-linear, with saturation visible at fields above 1.5 Tesla, and reaching a magnitude of approximately $4.5 \mu_B$ at applied fields of 9 Tesla, much lower than the expected saturation value of 9 μ_B, although it is noted that in the related compound Er₃Ga₅O₁₂, full magnetic saturation is not observed even in applied fields of over 30 T [40].

Li₃Tm₃Te₂O₁₂

Figure 14 shows the magnetization data for Li₃Tm₃Te₂O₁₂. In the high-temperature regime, a Curie-Weiss yields values of $C = 19.6$, $\mu_{\text{eff}} = 7.2 \mu_B$ and $\theta_W = 5.9$ K. The measured effective magnetic moment is fairly close to the expected value of 7.57 μ_B for the free Tm³⁺ ion. A Curie-Weiss fit in the low-temperature regime (60–100 K) yields values of $C = 24.9$, $\mu_{\text{eff}} = 8.1 \mu_B$ and $\theta_W = -38.3$ K. The negative Weiss temperature suggests antiferromagnetic ordering, and as there is no clear magnetic ordering transition above 1.8 K, this suggests magnetic frustration with a frustration index of 21 or greater, although at these temperatures this may still result from CEF effects. A plateau-like feature is visible in the temperature-dependent susceptibility data below 30 K. This type of feature is not unusual in Tm-containing compounds [33], and can be interpreted as Van Vleck contribution to the magnetic susceptibility arising from a crystal field splitting-induced singlet ground state of the Tm³⁺ ion [41]. The field-dependent magnetization data is highly linear with no visible saturation.
Li$_3$Yb$_3$Te$_2$O$_{12}$

Susceptibility versus temperature and magnetization versus applied field curves for Li$_3$Yb$_3$Te$_2$O$_{12}$ can be seen in figure 15. A Curie-Weiss fit in the high-temperature regime yielded $C = 7.3, \mu_{\text{eff}} = 4.4 \mu_B$ (close to the expected free ion value of 4.54 μ_B) and $\theta_W = -56.4$ K. This negative Weiss temperature is indicative of antiferromagnetic coupling. At low temperatures, the Curie-Weiss fit yields lower values of $C = 3.7, \mu_{\text{eff}} = 3.1 \mu_B$, and a θ_W of only -0.43 K. The difference between the high and low-temperature fits is again tentatively attributed to CEF effects at high temperatures. These low-temperature fit values are in line with those obtained by Applegate et al\cite{19}, although the value of θ_W is much higher than their value of -0.062 K. This is consistent with previous observations of the Yb$^{3+}$ ion low-temperature Kramers doublet ground state\cite{42,43}. This ground state is indicative of magnetic anisotropy, which has long been known to occur in other Yb-containing garnets such as Yb$_3$Fe$_5$O$_{12}$\cite{44}. The magnetization with respect to applied field is highly non-linear and shows clear saturation in fields above 2 Tesla, with a saturation moment of approximately 1.75 μ_B. This is much lower than the expected saturation value of 4 μ_B, but corresponds well to previous measurements on Yb$_3$Ga$_5$O$_{12}$\cite{45}.

Discussion

The measured effective magnetic moments of the Li$_3$RE$_3$Te$_2$O$_{12}$ family, both high- and low-temperature values, are plotted in figure 16, along with the ideal values for free ion magnetic moments. In the garnet structure, the A-site (occupied by the RE elements in this case) is 8-fold coordinated; in an effort to observe any effects of
coordination geometry and crystal electric field on the resulting magnetic moment, this data is plotted alongside the available values of magnetic moments for an 8-fold coordinated RE compound (RE2Ti2O7 pyrochlore) and a 6-fold, octahedrally-coordinated RE compound (KBaRE(BO3)3 in the low-temperature case, Ba2RE2/3TeO6 in the high-temperature case). The plotted values can be seen in table 4. It is observed that at high temperatures, the magnetic moments of all compounds are approximately equivalent, and close in value to the ideal free ion magnetic moment.

The story is quite different in the low-temperature data; immediately apparent is the fact that the measured moments at low temperatures are consistently lower than the ideal free ion values, often by significant margins. The singular and quite notable exception to this trend is Tm, where the measured values for both the 8-fold garnet and 6-fold coordinated compounds are higher than the ideal value (data is unavailable for the 8-fold coordinated pyrochlore Tm2Ti2O7). In addition to this anomaly, the values for the three structure families vary much more than in the high-temperature case, with sometimes large separations between values for the same element. No unambiguously clear trends are immediately apparent, although it is noted that the effective moments in the 6-fold coordinated borates tend to be relatively close to the ideal values, while the 8-fold coordinated garnets show a large degree of element-dependent variability. Finally, it is noted that the Er-containing compounds seem to show the most variation with change in structure, with the 8-fold coordinated pyrochlore having almost the ideal magnetic moment, while the 8-fold coordinated garnet is over 20% lower than the ideal value.

The magnetization at 9 T in cases where saturation or near saturation was observed in the M-H curves are plotted in figure 17, along with the ‘ideal’ values of saturation magnetization, $M = g_J \mu_B$. The lower panel shows the same data normalized to the ‘ideal value’. It can be seen that the Gd case is closest to the expected saturation value but that many of the materials display magnetizations that are considerably less than what is expected. As in other materials in which similar behavior has been observed [52], in the current materials it may be due to the presence of magnetic anisotropy and thus a powder averaging over crystallites with different orientations with respect to the applied field. This is consistent with the observation that the 4f7 Gd-based material, expected to have the most isotropic spin system, shows saturation closest to the ideal full value.

Conclusion

A series of rare-earth containing lithium garnets of the form Li$_3$Ln$_3$Te$_2$O$_{12}$ ($Ln = Y, Pr, Nd, Sm$-Lu) has been synthesized. The lattice parameter a has been determined for each compound via LeBail fit on room-temperature Powder x-ray data, and the results, where they overlap, are in good agreement with previously published values and demonstrate a clear lanthanide contraction. Magnetic susceptibility measurements have been taken, and Curie-Weiss fits performed. Several of the compounds observed exhibit some degree of magnetic frustration, and only Li$_3$Dy$_3$Te$_2$O$_{12}$ shows a clear magnetic ordering transition above 2 K. Many of our results are in reasonable agreement with previous studies [19, 20], but several significant disparities have been noted. As lithium-containing garnets continue to show promise as Li-ion conductors, it is important to
understand their properties more fully. Further magnetic characterization of these compounds, particularly in the form of single crystals, may provide valuable insights into their behavior and could potentially point to additional applications beyond battery materials.

Acknowledgments

This research was performed under the auspices of the Institute for Quantum Matter and supported by the US Department of Energy, Division of Basic Energy Sciences, Grant No. DE-FG02–08ER46544.

ORCID iDs

F Alex Cevallos https://orcid.org/0000-0002-3459-0091

References

[1] Lacroix C, Mendels P and Mila F 2011 *Introduction to Frustrated Magnetism* (Berlin Heidelberg: Springer)
[2] Balents L 2010 Spin liquids in frustrated magnets *Nature* **464** 199–208
[3] Moesnser R and Ramirez A P 2006 Geometrical frustration Phys. Today 59 24–9
[4] Gardner J A, Gingras M J P and Greedan J E 2010 Magnetic pyrochlore oxides Review of Modern Physics 82 53–107
[5] Ramirez A P, Hayashi A, Cava R J, Siddharthan R and Shraiman B S 1999 Zero-point entropy in ‘Spin Ice.’ Nature 399 533–5
[6] Geller S 1967 ‘Crystal chemistry of the garnets.’ Zeitschrift für Kristallographie 125 1–47
[7] Geller S and Gilloé M A 1957 The crystal structure and ferrimagnetism of yttrium-iron garnet, $Y_3Fe_5(O_4)_8$, Journal of Physics and Chemistry of Solids 20 6–8
[8] Schiffer P, Ramirez A P, Huse D A, Gammel PL, Yaron U, Bishop D J and Valeneto A J 1995 Frustration-induced spin freezing in a site-ordered magnet: gadolinium gallium garnet Phys. Rev. Lett. 74 4237–9
[9] Tolksdorf W, Welz F, Brunni F J, Randles M H, Demianieti L N and Sugimoto M 1978 Crystals for Magnetic Applications (Berlin Heidelberg New York: Springer)
[10] Cussen. E J 2010 ‘Structure and Ionic Conductivity in Lithium Garnets.’ J. Mater. Chem. 20 5167–73
[11] O’Callaghan M P, Lynham D R, Cussen E J and Chen G Z 2006 ‘Structure and ionic conductivity of lithium-containing garnets Li$_x$La$_{3-n}$Te$_n$O$_{12}$, (Ln = Y, Nd, Sm-Lu).’ Chem. Mater. 18 6961–9
[12] Ohta S, Kobayashi T and Asaoka T 2011 High lithium ionic Conductivity in the garnet-type oxide Li$_2$-δLa$_{0.5}(Zr$_{2-x}$, Nb$_x$)O$_{12}$ (X = 0–2) J. Power Sources 196 3342–5
[13] Zhang R, Thangadurai V and Wepner W 2007 ‘Fast lithium ion conduction in garnet-type Li$_2$La$_{2}Zr$_{2}O$_{12}$,’ Angewandte Chemie 46 2728–81
[14] Thangadurai V and Wepner W 2005 Li$_x$La$_{2}$Nb$_{2}$O$_{12}$ (A = Ca, Sr, Ba): a new class of fast lithium ion conductors with garnet-like structure J. Am. Ceram. Soc. 88 411–8
[15] Cussen E J, Yip T W S, O’Neill G and O’Callaghan M P 2011 A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li$_x$La$_{2}$Te$_{2}$O$_{12}$, J. Solid State Chem. 184 470–5
[16] Kasper H M 1969 Series of rare earth garnets Li$_x$M$_{2}$O$_{12}$ (M = Te, W). Inorg. Chem. 8 1000–2
[17] Issi J, Veiga M L, Suez-Puche R, Jerez A and Pico C 1991 Synthesis, structure determination and magnetic susceptibilities of the oxides La$_{	ext{11/3}}Ta_{	ext{2/3}}Al_2O_{12}$ (Ln = Pr, Nd, Sm, Tm). J. Alloys Compd. 177 251–7
[18] Logat G, Kohler T, Eisele U, Stazeyns B, Harzer A, Tovar M, Senshuy A, Ehsenberg H and Kozinsky B 2012 From order to disorder: the structure of lithium-conducting garnets Li$_2$-δLa$_{0.5}Ta$_{2-x}Zr_xO_{12}$ (x = 0–2) Solid State Ion. 206 33–8
[19] Applegate R P, Zong Y and Corruccini L R 2007 Magnetic properties of some rare earth tellurite garnets Journal of Physics and Chemistry of Solids 68 1756–61
[20] Mukherjee P, Sackville Hamilton A C, Glass H F J and Dutton S E 2017 Sensitivity of magnetic properties to chemical pressure in Lanthanide garnets Ln$_2$A$_2$O$_{12}$, Ln = Gd, Tb, Dy, Ho, A = Ga, Sc, In, Te, X = Ga, Al, Li. J Phys. Condens. Matter 29 405808
[21] Cohen J and Ducloh J 1959 Mesures des Susceptibilités Magnétiques des Gallates de Terres Rares Journal de Physique et Le Radium 20 402–3
[22] Sharma A Z, Silverstein H J, Hallas A M, Luke G M and Wiebe C R 2015 Sub-kelvin Magnetic order in Sm$_3$Ga$_5$O$_{12}$ single crystal J. Magn. Magn. Mater. 384 235–40
[23] Wolf W P, Ball M, Hutchings M T, Leask M J M and Wyatt F A G 1962 J. Phys. Soc. Japan 17 443
[24] Wolf W P, Schneider B, Landau D P and Keen B E 1972 Magnetic and thermal properties of dysprosium aluminum garnet. II. characteristic parameters of an ising antiferromagnet Phys. Rev. B 5 4472–96
[25] Ayant Y, Thomas J, Cohen J and Ducloh J 1961 Journal de Physique et Le Radium 22 63
[26] Schmidt V H and Jones E D 1970 Nuclear-Magnetic-resonance study of thulium aluminum garnet Phys. Rev. B 1 1978–86
[27] Ball M, Garson G, Leask M J and Wolf W P 1960 Proc. of the Seventh Int. Conf. on Low Temperature Physics p128University of Toronto Press(Toronto, Canada)
[28] Hatnean M C, Lees M R, Petrenko O A, Keeble D S and Balakrishnan G 2015 Structural and magnetic investigations of single-crystalline neodymium zirconate pyrochlore Nd$_3$Zr$_2$O$_{12}$ Phys. Rev. B 91 174416
[29] Hallas A M, Arevalo-Lopez A M, Sharma A Z, Muntes T, Attfield P J, Wiebe C R and Luke G M 2015 Magnetic frustration in lead pyrochlores Physical Review B 91 104417
[30] Schei A, Sanders M, Krizan J, Qiu Y, Cava R J and Broholm C 2016 Effective spin-1/2 scalar chiral order on kagome lattices in Nd$_2$Mg$_3$O$_{14}$, Phys. Rev. B 93 180407(R)
[31] Sanders M, Krizan J W and Cava R J 2016 RE$_2$Sr$_3$Zn$_2$O$_{14}$ (RE = La, Pr, Nd, Sm, Eu, Gd): a new family of pyrochlore derivatives with rare-earth ions on a 2d kagome lattice J. Mater. Chem. C 4 541
[32] Guillot M, Wei X, Hall D, Xu Y, Yang J H and Zhang F 2003 Magnetic and magneto-optical properties of neodymium gallium garnet under ‘extreme’ conditions J. Appl. Phys. 93 8005
[33] Sanders M B, Cevallos F A and Cava R 2017 Magnetism in the KBaRE(BO$_4$)$_3$ (RE = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) series: materials with a triangular rare earth lattice Mater. Res. Express 4 036102
[34] Singh S, Saha S, Dhar S K, Suryanarayanan R, Sood A K and Revcolevschi A 2008 Manifestation of geometric frustration on magnetic and thermodynamic properties of the pyrochlores Sm$_2$X$_2$O$_{12}$ (X = Ti, Zr) Phys. Rev. B 77 074408
[35] Marudhar C, Nagarajan R, Gupta I C, Vijayaraghavan R, Godart C and Padialia B D 1994 Magnetic properties of two new compounds: Gd$_2$Ni$_3$S$_5$ and Sm$_2$Ni$_3$S$_5$ J. Appl. Phys. 75 7155
[36] Malik S K and Vijayaraghavan R 1974 Crystal field effect on the saturation magnetic moment of Sm$^{3+}$ ion in ferromagnetic samarium compounds Pramana 3 112–22
[37] Strobel P, Zouari S, Ballou R, Cheikh-Rouhou A, Jumas J C and Oulivier-Fourcade J 2010 Structural and magnetic properties of new rare-earth antimony pyrochlore-type oxides Ln$_2$BSbO$_7$ (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho). Spin Ice. J. Phys. Condens. Matter 22 193701
[38] Cao H B, Gukasov A, Minebeu I and Bonville P 2009 Anisotropic exchange in frustrated pyrochlore Yb$_2$Ti$_2$O$_7$, J. Phys. Condens. Matter 21 492202
[39] Hodges J A, Bonville P, Forget A, Rams M, Kolas K and Dhalenne G 2001 The crystal field and exchange interactions in Yb$_2$Ti$_2$O$_7$, J. Phys. Condens. Matter 13 9301–10
[44] Wickersheim K A and White R L 1962 Anisotropy of exchange in ytterbium iron garnet Phys. Rev. Lett. 8 12
[45] Filippi J, Lasjaunias J C, Hebral B, Rossat-Mignod J and Tcheou F 1980 Magnetic properties of ytterbium gallium garnet between 44 mK and 4K. J. Phys. C: Solid State Phys. 13 1277–83
[46] Luo G, Hess S T and Corruccini I R 2001 Low temperature magnetic properties of the geometrically frustrated pyrochlores Tb₂Ti₂O₇, Gd₂Ti₂O₇, and Gd₂Sn₂O₇ Physics Letters A 291 306–10
[47] Jana Y M, Sengupta A and Ghosh D 2002 Estimation of single ion anisotropy in pyrochlore Dy₂Ti₂O₇, a geometrically frustrated system, using crystal field theory J. Magn. Magn. Mater. 248 7–18
[48] Jana Y M and Ghosh D 2000 Crystal-field studies of magnetic susceptibility, hyperfine, and specific heat properties of a Ho₂Ti₂O₇ single crystal Phys. Rev. B 61 9657–64
[49] Dasgupta P, Jana Y and Ghosh D 2006 Crystal field and geometric frustration in Er₂Ti₂O₇—a XY antiferromagnetic pyrochlore Solid State Commun. 139 424–9
[50] Kong T and Cava R J 2017 Crystal structure and magnetic properties of Ba₂R₂/₃TeO₆ (R = Y, La, Pr, Nd, Sm–Lu) double perovskites Mater. Res. Express 4 106101
[51] Bramwell S T, Field M N, Harris M J and Parkin I P 2000 Bulk magnetization of the heavy rare earth titanate pyrochlores—a series of model frustrated magnets J. Phys. Condens. Matter 12 483–95
[52] Harrison F W, Thompson J F A and Lang G K 1965 Single-Crystal magnetization data for anisotropic rare-earth iron garnets at low temperatures J. Appl. Phys. 36 1014–5