Validation of the OAKS prognostic model for acute kidney injury after gastrointestinal surgery

STARSurg Collaborative and EuroSurg Collaborative*

*Correspondence to: James Glasbey, Academic Department of Surgery, Room 29, 4th Floor, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Edgbaston, Birmingham B15 2TH, UK (e-mail: j.glasbey@bham.ac.uk; collaborate@starsurg.org, @STARSurgUK)

Members of the STARSurg Collaborative and EuroSurg Collaborative are co-authors of this study and are listed under the heading Collaborators.

Abstract

Background: Postoperative acute kidney injury (AKI) is a common complication of major gastrointestinal surgery with an impact on short- and long-term survival. No validated system for risk stratification exists for this patient group. This study aimed to validate externally a prognostic model for AKI after major gastrointestinal surgery in two multicentre cohort studies.

Methods: The Outcomes After Kidney injury in Surgery (OAKS) prognostic model was developed to predict risk of AKI in the 7 days after surgery using six routine datapoints (age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker). Validation was performed within two independent cohorts: a prospective multicentre, international study (‘IMAGINE’) of patients undergoing elective colorectal surgery (2018); and a retrospective regional cohort study (‘Tayside’) in major abdominal surgery (2011–2015). Multivariable logistic regression was used to predict risk of AKI, with multiple imputation used to account for data missing at random. Prognostic accuracy was assessed for patients at high risk (greater than 20 per cent) of postoperative AKI.

Results: In the validation cohorts, 12.9 per cent of patients (661 of 5106) in IMAGINE and 14.7 per cent (106 of 719 patients) in Tayside developed 7-day postoperative AKI. Using the OAKS model, 558 patients (9.6 per cent) were classified as high risk. Less than 10 per cent of patients classified as low-risk developed AKI in either cohort (negative predictive value greater than 0.9). Upon external validation, the OAKS model retained an area under the receiver operating characteristic (AUC) curve of range 0.655–0.681 (Tayside 95 per cent c.i. 0.596 to 0.714; IMAGINE 95 per cent c.i. 0.659 to 0.703), sensitivity values range 0.323–0.352 (IMAGINE 95 per cent c.i. 0.281 to 0.368; Tayside 95 per cent c.i. 0.253 to 0.461), and specificity range 0.881–0.890 (Tayside 95 per cent c.i. 0.853 to 0.905; IMAGINE 95 per cent c.i. 0.881 to 0.899).

Conclusion: The OAKS prognostic model can identify patients who are not at high risk of postoperative AKI after gastrointestinal surgery with high specificity.

Introduction

Postoperative acute kidney injury (AKI) is a common surgical complication, affecting one in seven patients after major gastrointestinal surgery1,2. It is an important contributor to perioperative morbidity and death3, as well as long-term poorer renal and cardiovascular outcomes4,4. AKI has high resource-usage implications, including critical care beds and kidney replacement therapy5–7. Reducing the burden of postoperative AKI is therefore a research priority to patients, anaesthetists, surgeons and health providers.

Given the lack of treatment options available for AKI8, targeted methods to prevent AKI and initiation of early supportive treatment are likely have the greatest patient benefit. UK national guidelines9 recommend all patients undergoing major surgery should have preoperative assessment of their postoperative AKI risk. Although 18 prognostic models have now been developed to predict risk of postoperative AKI1, none are widely used in routine practice for general surgery patients. Published tools are limited by the use of retrospective and single-centre data, high risk of bias and heterogeneity in the AKI definitions. Furthermore, no AKI prognostic scores have been externally validated for patients undergoing abdominal surgery.

In order to meet this research need, an Outcomes After Kidney injury in Surgery (OAKS) risk-prediction model has been derived in a large prospective series from the UK and Ireland1. This was the first prognostic model with direct relevance to major gastrointestinal surgery, and used six variables routinely available before surgery. Patients were stratified into three clinically relevant groups based on risk of AKI within 7 days of surgery, as defined by the Kidney Disease Improving Global Outcomes (KDIGO) criteria: low risk (less than 10 per cent), medium risk (10 to 20 per cent) and high risk (greater than 20 per cent)10. While this prognostic model demonstrated good discrimination in the development cohort, it has not yet undergone further external validation.
This study aimed to validate externally the OAKS risk-prediction model in two independent data sets (one international, and one regional cohort study), and explore the prognostic accuracy of the tool in stratifying patients undergoing major gastrointestinal surgery by their risk of postoperative AKI.

Methods
Study design
This study reports an external validation of the OAKS risk prediction model to stratify patients by their postoperative acute kidney injury (AKI) risk within 7-days of major gastrointestinal surgery11. This study was designed and reported according to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement12.

Data sources
External validation was conducted within two independent data sets. The first data set was a prospective multicentre, international, snapshot study on postoperative ileus after elective colorectal surgery (‘IMAGINE cohort’). This was conducted according to a prespecified protocol13, and included consecutive adult patients undergoing elective colorectal resection or stoma reversal in Europe, Australasia and South Africa between January and April 2018 (end of study follow-up May 2018). The primary results of this study have been published separately14. This study had narrower inclusion criteria (elective colorectal surgery) compared with the OAKS development data (elective and emergency gastrointestinal and liver surgery).

The second data set was a retrospective cohort study performed across a single National Health Service (NHS) health board encompassing one tertiary care hospital and two secondary care hospitals (‘Tayside cohort’). NHS Tayside serves a population of 400,000 people with a wide range of deprivation and a mix of urban and rural environments. The population for Tayside is greater than 99 per cent white ethnicity. Data were collated on all consecutive adults who met the OAKS inclusion criteria during a period from 5 January 2011 to 22 December 2015.

There were no additional exclusion criteria applied in this external validation study. Both studies were registered locally according to the appropriate approval pathways (audit approval, ethical or institutional review board) prior to study commencement, with the analysis described encompassed within the respective approvals.

Outcome definitions
The IMAGINE and Tayside validation studies both used the same creatinine-based definition of postoperative AKI within 7 days after surgery as the development cohort. This matched the definition used in the development study1, based on Kidney Disease: Improving Global Outcomes (KDIGO) criteria16 (serum creatinine concentration increase of 26.5 μmol/l within 48 h or greater than or equal to 1.5-fold from baseline within 7 days, or if undergoing unplanned kidney replacement therapy). The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was used to calculate the baseline estimated glomerular filtration rate (eGFR)17. This was calculated using the lowest preoperative serum creatinine recorded (preadmission or over the course of admission). Given the imprecision of measurement of eGFR above 120 ml/min/1.73 m², eGFR values were bounded at this level. As diagnosis of AKI was assessed objectively using biochemical data, no blinding of the outcome assessment was deemed to be required.

Predictors
Predictor variables collected in both validation studies included the six prognostic factors required for the OAKS prediction model1. These were derived from a list of clinically plausible variables in the derivation cohort, with bootstrap stability used to guide selection1. The same definitions as the original study were used, including: age (continuous, whole years at time of surgery), sex (binary, male/female), ASA grade (ordinal, I/II/III/IV–V), preoperative estimated glomerular filtration rate (eGFR) (continuous, ml/min/1.73 m²), planned operative approach (binary, open/minimally invasive), and preoperative use of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin receptor blockers (ARB) (binary, yes/no). Data on ethnicity was not collected, and so no corresponding correction was applied within the CKD-EPI equation1. Data-collection teams were unaware of the predictors that would be included in this independent validation, therefore no blinding to outcomes or other predictors was deemed necessary.

Statistical analysis
Differences in patient characteristics and outcomes were compared between cohorts. Continuous data were plotted to assess for normality, with data formally tested for normality using a Shapiro-Wilk test as required. Normally distributed data were summarized using the mean and range, and analysed using the appropriate parametric tests. Non-normally distributed data were summarized using median and interquartile range, and analysed using equivalent non-parametric tests. Categorical data were cross-tabulated, and differences in proportions were tested using chi-squared test with Fisher’s exact modification where required.

Missing data in the validation data sets were handled using multiple imputation with chained equations, under the missing at random (MAR) assumption. Five imputed datasets, each with 10 iterations, were imputed using the specified predictor variables and combined using Rubin’s rules18. A further sensitivity analysis based on complete cases was performed. No formal sample size calculation was calculated a priori for the purpose of prognostic model validation. All available data from both data sets were used for the purpose of validation.

The original OAKS prognostic model was applied to both validation datasets in turn (including coefficients and intercepts)19 (Table S1). This allowed prediction of individual risk within these data sets based on the prespecified prognostic variables of postoperative AKI within 7 days as defined by KDIGO criteria (above). Three risk groups were predefined: low risk (less than 10 per cent), medium risk (10–20 per cent) or high risk (greater than 20 per cent) of postoperative AKI. The proportion of patients within each risk group were presented using descriptive statistics.

Model performance in prediction of risk across both data sets was assessed by comparing the area under the receiver operating characteristic (AUC) curve. In accordance with the development study calibration procedures1, prognostic accuracy was estimated based upon the ability of the model to predict patients who were at high risk (greater than 20 per cent) of postoperative AKI; this was deemed to be the most clinically important group for whom the most benefit could be realized from targeted quality-improvement interventions in the future. Prognostic accuracy was presented using sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV). Calibration was assessed through visual inspection, and the calibration intercept (calibration-in-the-large) and slope \(^1\) (an intercept of 0 and slope of 1 indicates ‘perfect’ calibration). No model updating or recalibration was planned or performed. All statistical analyses performed in R, version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Validation study overview

The international, prospective validation cohort (IMAGINE) included data for 5758 patients across 338 centres in 26 countries (Fig. 1), with 652 patients excluded from this analysis due to insufficient serum creatinines recorded to determine the occurrence of postoperative AKI. Of the 5106 patients with an AKI status, data on predictor variables were complete for 4064 (79.6 per cent). The largest proportion of missing data was for preoperative baseline serum creatinine measurement (655 patients, 12.8 per cent) and preoperative use of ACEi/ARB (464 patients, 9.1 per cent); approval was not provided to collect data on drug administration in one contributing country accounting for 99.1 per cent (460 of 464 patients) of this missing data. In comparison, the retrospective, single-country cohort (Tayside) included data for 719 patients (Fig. 1). Data on predictors and outcomes were complete for all patients in this data set.

Comparison with model development data

Both external validation data sets represented distinct cohorts from the development cohort, with a resultant difference in the distribution of predictors (Table 1). These had more minimally invasive operations planned, and the Tayside cohort had a higher baseline eGFR and higher ASA grade in comparison with the other cohorts. However, there was a similar postoperative AKI rate observed (Table 2) across the development (14.2 per cent, 646 of 4544 patients) and validation cohorts (IMAGINE. 12.9 per cent (661 of 5106); Tayside: 14.7 per cent (106 of 719 patients)).

Prognostic model performance

Overall, 9.2 per cent of patients (470 of 5106) in the IMAGINE cohort and 12.2 per cent of patients (88 of 719) in the Tayside cohort were identified as being at high risk of AKI (Table 2). The AUC of the prognostic model was 0.655 (95 per cent c.i. 0.596 to 0.714) in the Tayside cohort, and the pooled AUC from the multiple imputed IMAGINE cohort was 0.681 (95 per cent c.i. 0.659 to 0.703).

On visual assessment, the OAKS model appeared to remain well calibrated across a wide spectrum of risk (Fig. 2). However, in both external validation cohorts there was a consistent underestimation of the likelihood of postoperative AKI in patients at the highest predicted risk (positive intercept and slope greater than 1 in each model).

Consistent with the development data, almost a third of ‘high-risk’ patients developed a postoperative AKI in the validation cohorts, which was over four-fold higher than that observed in patients classified as low risk. Furthermore, the three prespecified risk subgroups remained clinically meaningful within the validation cohorts (Fig. 3).

Prognostic accuracy summary statistics

The prognostic accuracy statistics of the OAKS model when calibrated to identify high-risk patients was similar in the internal validation and development cohorts (Table 3), with no statistically significant differences in the sensitivity and specificity observed. The model continues to have low sensitivity in identification of high-risk patients, with one-third of patients who were classed as high risk developing postoperative AKI. However, the specificity remained high with over 88 per cent of patients who did not develop postoperative AKI being stratified as lower risk. Notably, the negative predictive value (NPV) demonstrates that less than 10 per cent of patients who were stratified as lower risk experienced a postoperative AKI.

A complete-case analysis of the IMAGINE data set was also performed. This demonstrated calibration (Fig. S1) and prognostic accuracy (Table S2) which were consistent when compared with the results based on the multiple imputation data.

Fig. 1 Flow chart of patient inclusion in the external validation data sets

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.
Discussion

This study presents an external validation of a prognostic model for AKI after surgery across two large data sets: one international prospective study and one retrospective single-region study. The study is designed and reported in accordance with best practice guidelines for predictive model validation. Whilst the model discrimination in validation data was affected by the ability to predict accurately who would develop AKI (low sensitivity), it continued to identify with high specificity groups of patients that were unlikely to be at high risk of AKI after surgery. This has direct relevance to clinical practice. The results of this validation study can be used to target perioperative interventions to prevent AKI towards patients at highest risk, including enhanced postoperative monitoring and specialist review.

Previous postoperative AKI risk-prediction models have largely focused on cardiac surgery, owing to the high risk of AKI attributed to ischaemic injury following bypass procedures. However, few models have been described in non-cardiac surgery, in particular the general surgical population where postoperative AKI continues to remain common. This study represents the first external validation of a prognostic model for postoperative AKI in non-cardiac surgery.

Table 1 Demographics of development and external validation cohorts

Country	Development cohort (OAKS)	Validation cohort (IMAGINE)	Validation cohort (Tayside)
UK/Republic of Ireland	5640 (100.0)	1972 (38.6)	719 (100.0)
Other	0 (0.0)	3134 (61.4)	0 (0.0)
Subspecialty			
Colorectal	4025 (71.4)	5106 (100.0)	—
Upper gastrointestinal	1121 (19.9)	0 (0.0)	—
Hepatopancreatiobiliary	493 (8.7)	0 (0.0)	—
Setting of surgery			
Elective	4394 (77.9)	5106 (100.0)	283 (39.3)
Emergency	1246 (22.1)	0 (0.0)	436 (60.6)
Age (years)			
<55	1586 (28.1)	1197 (23.4)	168 (23.4)
55–64	1128 (20.0)	1115 (21.8)	166 (23.1)
65–74	1588 (28.2)	1624 (31.8)	205 (28.5)
≥75	1337 (23.7)	1167 (22.9)	180 (25.0)
Missing	—	3 (0.1)	0 (0.0)
Sex			
Female	2536 (45.0)	2209 (43.3)	327 (45.5)
Male	3104 (55.0)	2897 (56.7)	392 (54.5)
eGFR (ml/min/1·73 m²)			
≥90	2417 (42.9)	1910 (37.4)	383 (53.3)
60–90	2367 (42.0)	1996 (39.1)	278 (38.7)
30–59	740 (13.1)	493 (9.7)	54 (7.5)
<30	75 (1.3)	52 (1.0)	4 (0.6)
Missing	—	655 (12.8)	0 (0.0)
Planned operative approach			
Minimally invasive	2749 (48.7)	2949 (57.8)	436 (60.6)
Open	2878 (51.0)	2156 (42.2)	283 (39.4)
Missing	13 (0.2)	1 (0.0)	0 (0.0)
ASA grade			
I	646 (11.5)	547 (10.7)	37 (5.1)
II	2802 (49.7)	2916 (57.3)	242 (33.7)
III	1476 (26.2)	1515 (29.7)	330 (45.9)
IV–V	289 (5.1)	121 (2.4)	110 (15.3)
Missing	—	7 (0.1)	0 (0.0)
Preoperative ACEi/ARB			
No	4415 (78.3)	3468 (67.9)	559 (77.7)
Yes	1219 (21.6)	1174 (23.0)	160 (22.3)
Missing	—	464 (9.1)	0 (0.0)

Values in parentheses are percentages. eGFR, estimated glomerular filtration rate; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.

Table 2 Proportion of patients in each of the three risk groups for postoperative acute kidney injury in external validation cohort

	Development cohort (OAKS)	Validation cohort (IMAGINE)	Validation cohort (Tayside)
Overall cohort			
High risk (≥20%)	All (n = 662)	14.6 (n = 662)	12 (n = 5106)
Medium risk (10–20%)	54.9 (n = 2494)	14.4 (n = 359)	57.0 (n = 2908)
Low risk (<10%)	30.6 (n = 1388)	7 (n = 99)	33.8 (n = 1728)

Values are percentages. AKI, acute kidney injury.
this context. As a result, this is also the first to validate externally in large prospective cohorts and on an international basis, confirming the OAKS prognostic model remains robust across a range of different types of health systems and patient groups. Furthermore, the international validation has demonstrated that the six risk variables included are readily available in non-UK health settings, so risk calculation would be deliverable in practice. However, these predominantly represented high- and upper-middle-income countries. Further work is required to explore whether the OAKS model would be feasible, applicable or valid for use in low-resources settings.

AKI is a multifactorial and complex process dependent on baseline risk factors, perioperative care practices, physiological insults during the perioperative period (for example, invasive major surgery) and postoperative complications. This may reduce the ability of prediction models to predict renal injury based on readily available variables. There were some differences in the demographics of patients included in the development and validation studies. However, the validation cohorts represented a subgroup of patients included within the development cohort, ensuring that application of the model was still valid. The OAKS model demonstrated good calibration in both validation data sets across a broad spectrum of risk, however there was evidence of underestimation of patients at the highest risk of postoperative AKI. Nevertheless, it should be noted that there would be no change to the stratification of these patients to the high-risk group (greater than 20 per cent) which had been defined a priori. These risk groups provide a useful way to improve relevance to

Data set	Predicted risk classification of postoperative acute kidney injury
Tayside	Low, Medium, High
IMAGINE	Low, Medium, High
OAKS	Low, Medium, High

Fig. 2 Calibration Loess curve of observed 7-day postoperative acute kidney injury events versus predicted probability of these events

a IMAGINE cohort (imputed); intercept 0.007, slope 1.40. b Tayside cohort; intercept 0.111, slope 1.20. AKI, acute kidney injury.

Fig. 3 Predictive performance of the three prespecified risk subgroups in the external validation cohorts

Table 3 Diagnostic accuracy of the OAKS prognostic model in identification of patients at high risk of acute kidney injury in the development and external validation cohorts

	Derivation cohort (OAKS)	Validation cohort (IMAGINE)	Validation cohort (Tayside)
Sensitivity	0.293 (0.258, 0.329)	0.323 (0.281, 0.368)	0.352 (0.253, 0.461)
Specificity	0.879 (0.868, 0.889)	0.890 (0.881, 0.899)	0.881 (0.853, 0.905)
Positive predictive value	0.285 (0.251, 0.322)	0.230 (0.198, 0.264)	0.292 (0.208, 0.389)
Negative predictive value	0.882 (0.872, 0.892)	0.928 (0.920, 0.936)	0.907 (0.881, 0.929)

Values in parentheses are 95 per cent confidence intervals.
clinical practice, and this analysis has confirmed these remain meaningful cut-offs to delineate distinct subgroups. While the overall discriminative performance was affected by the ability to predict accurately who would develop AKI (low sensitivity), the OAKS prediction model was able to identify groups of patients that were unlikely to be at high risk of AKI after surgery with high specificity. This allows anaesthetists and surgeons to prioritize monitoring and resource-intensive perioperative optimization for a subset of patients who may be subject to increased risk. While there may be avenues to improve diagnostic accuracy further (whether through machine learning and/or incorporation of novel prognostic factors), these should be balanced with ensuring these remain feasible to implement within routine clinical practice.

This study had several limitations. First, no blinding to outcomes or predictors was performed to study investigators, however the outcome assessment was performed using biochemical data at low risk of measurement or observer bias. Second, as external validation was performed on observational cohorts, data completeness was limited by what was routinely recorded in clinical practice. In particular in the IMAGINE cohort, probably due to the lower risk nature of elective surgery and potential heterogeneity in international care protocols, an important minority of patients did not have preoperative baseline creatinine measurement. Nevertheless, missing data were robustly handled via multiple imputation to minimize patient exclusion, with no evidence of significant bias on complete-case analysis. Third, each validation data set used here represents a subgroup of who were included in the original OAKS study (the Tayside study is limited to a specific region, and the IMAGINE study is limited to elective colorectal surgery). Therefore, this does not represent validation in a ‘like-for-like’ cohort, although consistency of the results on validation (in spite of these differences from the derivation cohort) would raise confidence in the robustness of the model. Finally, it must be recognized that the OAKS model has been derived and validated within predominantly high-income countries and as such may not have equal representation of all ethnicity groups, however it is likely to have diversity that represents the normal surgical population in included countries and regions. Furthermore, there was no racial adjustment made to the CKD-EPI equation in this study, and the ongoing inclusion of this component in calculating eGFR is under intense scrutiny. As such, future external validation may be appropriate before these results can be applied confidently to other populations.

Collaborators

W. U. R. Ahmed (University of Oxford, Oxford, UK), S. Bhatia (University of Cardiff, Cardiff, UK), K. A. McLean (University of Edinburgh, Edinburgh, UK), R. Khaw (University of Newcastle, Newcastle, UK), D. Baker (University of Sheffield, Sheffield, UK), S. K. Kamarajah (University of Birmingham, Birmingham, UK), S. Bell (University of Dundee, Dundee, UK), D. Nepogodiev (University of Birmingham, Birmingham, UK), E. M. Harrison (University of Edinburgh, Edinburgh, UK), J. C. Glasbev (University of Birmingham, Birmingham, UK), A. Borakati (Royal Free Hospital, London, UK), J. Burke (University of Leeds, Leeds, UK), T. M. Drake (University of Edinburgh, Edinburgh, UK), M. F. Bath (Whips Cross University Hospital, London, UK), H. A. Claireaux (University of Oxford, Oxford, UK), B. Gundogan (University College London Hospital, London, UK), M. Mohan (University of Cambridge, Cambridge, UK), P. Deekonda (University of Exeter, Exeter, UK), C. Kong (University of Glasgow, Glasgow, UK), H. Joyce (King’s College London, London, UK), L. McNamee (Royal College of Surgeons in Ireland, Dublin, Ireland), E. Woin (University College London, London, UK), C. Khatri (University of Warwick, Warwick, UK), J. E. Fitzgerald (University College London, London, UK), A. Bhangu (University of Birmingham, Birmingham, UK), N. Arulkumaran (University College London, London, UK), S. Bell (University of Dundee, Dundee, UK), F. Duthie (University of Edinburgh, Edinburgh, UK), J. Hughes (University of Edinburgh, Edinburgh, UK), T. D. Pinkney (University of Birmingham, Birmingham, UK), J. Prowle (Queen Mary University of London, London, UK), T. Richards (University of Western Australia, Perth, Australia), M. Thomas (Heart of England NHS Foundation Trust, Birmingham, UK), R. Blanco-Colino (Vall d’Hebron, Barcelona, Spain), S. J. Chapman (University of Leeds, Leeds, UK), J. C. Glasbev (University of Birmingham, Birmingham, UK), F. Pata (Azienda Sanitaria Provinciale Cosenza, Giannettasio Hospital, Cosenza, Italy), G. Pellino (Università degli Studi della Campania Luigi Vanvitelli, Caserta, Italy), A. Gsrö (University of Edinburgh, Edinburgh, UK), A. Soares (University College London, London, UK), T. van Elst (Amsterdam UMC, Amsterdam, Netherlands), S. Van Straten (Amsterdam UMC, Amsterdam, Netherlands), C. H. Knowles (University College London, London, UK), D. Nepogodiev (University of Birmingham, Birmingham, UK), K. Dynes (University of Aberdeen, Aberdeen, UK), M. Patel, P. Patel (Queen Mary University, London, UK), C. Wigley, R. Suresh (University of Birmingham, Birmingham, UK), A. Shaw (University of Bristol, Bristol, UK), S. Klimach (Brighton and Sussex Medical School, Brighton, UK), P. Jull (University of Cambridge, Cambridge, UK), D. Evans, R. Preece (Cardiff University, Cardiff, UK), I. Ibrahim (University of Dundee, Dundee, UK), V. Manikasagar (Durham University, Durham, UK), R. Smith (University of East Anglia, UK), F. S. Brown (University of Edinburgh, Edinburgh, UK), P. Deekonda (Peninsula, Exeter and Plymouth, UK), R. Teo, D. P. Y. Sim (University of Glasgow, Glasgow, UK), A. Borakati (Hull and York Medical School, Hull and York, UK), A. E. Logan, I. Barai (Imperial College, London, UK), H. Amin (Keele University, Keele, UK), S. Suresh, R. Sethi (King’s College, London, UK), W. Gul (University of Lancaster, UK), W. Bolton (University of Leeds, Leeds, UK), O. Corbridge (Leicester Medical School, Leicester, UK), L. Horne, M. Attalla (University of Liverpool, Liverpool, UK), R. Morley, C. Robinson (University of Manchester, Manchester, UK), T. Hoskins (Newcastle University Medical School, Newcastle upon Tyne, UK), R. McAllister (University of Nottingham, Nottingham, UK), S. Lee (National University of Ireland, Galway, UK), Y. Dennis (University of Oxford, Oxford, UK), G. Nixon (Queen’s University Belfast, Belfast, UK), E. Heywood (University of Sheffield, Sheffield, UK), H. Wilson (Southampton Medical School, Southampton, UK), L. Ng, S. Samarawerwa (St. George’s University of London, London, UK), A. Mills (Swansea University, Swansea, UK), C. Doherty (Trinity College, Dublin, UK), E. Woin (University College London, London, UK), J. Belchos (University College Dublin, Dublin, UK), V. Phan (University of Warwick, Coventry, UK), M. Lim, F. A. Miller, T. Chouari, T. Gardner, N. Goergen, J. D. B. Hayes, C. S. MacLeod, R. Cormack, A. McKinley, S. McKinstry, W. Milligan, L. Ooi, N. M. Rafiq, T. Sammut, E. Sinclair, M. Smith, J. Wong, A. D. Ablett, T. Tie-Gill, G. Ramsay, L. De Paola, S. McGuckin, A. Alshakhs, A. Ahmedat, J. Wong, N. Goergen , A. A. Francis (Aberdeen Royal Infirmary, UK), C. Baker, A. P. R. Boulton, J. Collins, H. C. Copley, N. Fearnhead, H. Fox, T. Mah, J. McKenna, V. Naruka, N. Nigam, B. Nourallah, S. Perera, A.
UK); S. Burnage, S. S. N. Chan, A. R. J. Craig, J. DuffIELD, A. Dutta, M. Eastwood, F. Iqbal, F. Mahmood, W. Mahmood, C. Patel, A. Qadeer, A. Robinson, A. Rotundo, A. Schade, R. D. Slade, B. Walters, B. Kulendrarajah, N. Tran, S. Shrestha, S. Parmar, C. Gallagher (Royal Stoke University Hospital, UK); M. De Freitas, H. Kinnersley, E. McDowell, S. Moens-Lecumberri, J. Ramsden, T. Rockall, L. Wiffen, S. Wright (Royal Surrey Hospital, UK); F. Auld, A. Bleakley, S. Johnston, C. Jones, J. Khaw, S. Milne, J. Lewsey, A. Morris (St. Helier Hospital, UK); H. Ahmed, G. Aishwarya, R. Al-Huneidi, S. Ali, R. Aziz, D. Burke, B. Clarke, A. Kausar, D. Maskill, L. Mecia, L. Myers, A. C. D. Smith, G. Walker, N. Wroe (St. James Hospital, UK); C. Donohoe, D. Gibbons, P. Jordan, C. Keogh, A. Kiely, P. Lalor, M. McCrohan, C. Powell, M. Power Foley, J. Reynolds, E. Silke, O. Thorpe, J. Tseun Han Kong, C. White (St. James University Hospital, UK); Q. Ali, J. Dalrymple, Y. Ge, H. Khan, R. S. Luo, H. Paine, B. Paraskews, L. Parker, K. Pillai, J. Saliccioli, S. Selvadurai, V. Sonagara, L. T. Turner, L. Tan, S. Vishnu K, A. Papanikolaou, A. Mitra, A. Nur, F. Ali (St. Mary’s Hospital, London, UK); S. Appleton, N. Leadholm, Y. Zhang (Stoke Mandeville Hospital, UK); D. Ahern, M. Cotter, S. Cremen, T. Durrigan, V. Flack, N. Hrvacic, H. Jones, B. Jong, K. Keane, P. R. O’Connell, J. O’sullivan, G. Pek, S. Shirazi (St. Vincent’s University Hospital, UK); C. Barker, A. Brown, W. Carr, Y. Chen, C. Guillote, J. Harte, A. Kokayi, K. Lau, S. McFarlane, S. Morissa, E. Irwin, L. Matthews, W. S. Ngu, T. Hosfield (Sunderland Royal Hospital, UK); J. Broad, N. Kenebrick, D. Makanjai, V. Printz, R. Saito, O. Thomas, J. Brayley, A. Palmer, M. Charalambos, C. S. Jones (Torbay Hospital, UK); H. Breen, S. Kirk, C. H. Kong, A. O’Kane, S. Toner, R. Cowden, L. Lee, P. Nicol (Ulster University Hospital, UK); M. Eddama, A. Engledow, S. K. Freeman, A. Frost, C. Goh, G. Lee, R. Poonawala, A. Suri, P. Taribagi, O. holman, M. Imitiaz, V. Albert, S. P. Leung, M. Erotocritou, J. Wong (University College Hospital, UK); H. Brown, S. Christie, S. Dean, R. Gravel, E. Haywood, F. Holt, E. Pilsworth, R. Ribiu, H. W. Roscoe, S. Shergill, A. Sriman, A. Sureshkumar, L. C. Tan, A. Tanna, A. Vakharia, D. Mason, R. Stroud, D. Mason, R. Wilkin, W. Thomson, L. Mackee, A. Couldrey (University Hospital Coventry and Warwickshire, UK); S. Bhullar, S. Brannick, E. Dunne, M. Frere, M. Kerin, K. Muthu Kumar, T. Pratumsuwon, R. Quek, M. Salman, N. Van Den Berg, C. Wong (University Hospital Galway, UK); J. Ahiuwalia, R. Bagga, C. M. Borg, C. Calabria, A. Draper, M. Farwana, H. Joyce, A. Khan, M. Mazza, G. Pankin, M. S. Sait, N. Sandhu, N. Virani, J. Wong, K. Woodhams, S. Sait , N. G. Y. Bei, S. Sait, S. McKenna Favier, A. Ibrahim (University Hospital Lewisham, UK); N. Croghan, S. Ghag, G. Hogg, O. Ismail, N. John, K. Nadeem, M. Naqi, S. M. Noe, A. Sharma, S. Tan, M. Kowal, A. Kier, L. Reynolds, S. M. Mohamed, Y. Majeed, B. Fakim, A. Jones, M. Kowal, C. Donnelly (University Hospital South Manchester, UK); F. Begum, R. Best, A. Colishaw, J. Glascby, D. Golding, B. Gwyliw, P. Harrison, T. Jackman, N. Lewis, Y. L. Luk, T. Porter, S. Potluri, S. Stechman, S. Tate, D. Thomas, B. Walford (University Hospital of Wales, UK); F. Auld, A. Bleakley, S. Johnston, C. Jones, J. Khaw, S. Milne, S. O’Neill, K. R. R. Singh, R. Smith, A. Swan, N. Thorley, S. Yalamarthi, Z. D. Yin (Victoria Hospital, Kirkcaldy, UK); A. Ali, V. Ballan, R. Bana, K. Clark, C. Livesey, G. McLachlan, M. Mohammad, N. Pranesh, C. Richards, F. Ross, M. Sajid, G. Liverseedge, Z. Carrington, J. Windebank, A. Izzarina, U. Akbani, J. Craven, A. Aldarragi, S. Harding, A. Millward (Warrington Hospital, UK); M. Brooke, J. Francombe, J. Gresly, S. Hutchinson, K. Kerrigan, E. Matthews, S. Nur, L. Parsons, A. Sandhu, M. Vyas, F. White, A. Zulki, L. Zuzarte, T. C. Shortland, T. C. Shortland, M. Bedford, R. Stroud, R. Obukofe, E. Mackenzie (Warwick Hospital, UK); A. Al-Mousawi, J. Arya, S. Azam, A. Azei Yahaya, K. Gill, R. Hallan, C. Hathaway, I. Leptidis, L. McDonagh, S. Sinhasinov, N. Mushtaq, N. Pang, G. B. Peiris, S. Rinkoff, V. Gopalan, A. Midgen, P. Khadka, O. Cheng, S. Taneja, N. Manobharath (Waford General Hospital, UK); L. Chan, E. Christopher, M. M. M. Farhan-Alanie, A. Gonzalez-Ciscar, C. J.
Alhalabi, S. Sliwinski, E. Gablenz, T. Seiboldt, L. Beck, L. J. Pohl, K. Zamzow, F. Bette, A. Poncelet, M. Truant, H. Hauschild, N. Neugebauer, C. Dorr-Harim (Universitätsklinikum Heidelberg, Germany); L. Schmitzer, A. Kopp (LMU Munich, Germany); J. Steinle (Münster, Germany); J. Gsenger, L. J. Pohl (Universitätsklinikum Mannheim, Germany); M. Riccardi (St. Josephs Clinic, Potsdam, Germany); I. M. Christodoulou, A. Zoikas, A. Zoikas, I. M. Christodoulou (Sismanoglio General Hospital of Athens, Greece); N. Machairas, A. Paspala, N. Machairas, D. Papacostantinou, E. Spartalis, N. Arkadopoulos, A. Prodromidou, Z. Garoufalia (Attikon University Hospital, Greece); D. Balalis, D. Balalis (Saint Savvas Anticancer Hospital, Greece); D. K. Manatakis, V. Kalles, I. Spyrou, C. Barkolias (Athenas Naval and Veterans Hospital, Greece); M. L. Aguilera, D. Mendez, J. Rosales, M. Flores, M. Garcia, A. Garcia, M. Garcia, Z. Nortiga, D. Torrellas, M. L. Aguilera, J. Rodriguez (Hospital General Juan de Juan de Dios, Guatemala); A. Sgrò, A. Sgrò, F. Argenti, M. S. Milani, S. Malabarba, G. Giambartolomei, I. Vella, F. Gronchi, A. Ruggieri (Policlinico San Matteo, Pavia, Italy); L. Marano (Ospedale 'San Matteo degli Infermi' - AUSL Umbria 2 - Spoleto, Italy); F. Fieres (Department of Human Pathology of the Adult and Evolutive Age "Gaetano Barresi", Section of General Surgery, University of Assisi, Messina, Italy); F. Lovisotto, A. Barberis, D. Serra (Ospedale Castelli, SOCI Chirurgia Generale e Vascolari, Italy); D. Sasia, P. Serretto, L. Pellegrino, B. Borghi, D. Sasia, A. Marano, C. Corino, G. Cannata, M. C. Giuffrida, F. Landra, G. Giraudo (Ospedale S. Croce e Carle, Cuneo, Italy); E. Segalini, E. Segalini, M. Monti, M. Magnoli (Ospedale Maggiore di Crema, Italy); G. Pata (ASST Spedali Civili di Brescia - Chirurgia Generale 2, Italy); A. Luccchi, A. Luccchi, M. Grassia, M. E. Cufari (Ospedale Ceccarini, Italy); A. Sagnotta, A. Di Cintio, A. Gemini, S. Trastulli, M. De Luca, A. Sagnotta, J. Desiderio, F. Gubbiotti (Azienda Ospedaliera Santa Maria - Terni, Italy); T. Campagnaro, C. Pedrazzini, T. Campagnaro, G. Turri, E. Lazzarini, C. Conti, A. Ruzzeneente (Azienda Ospedaliera Universitaria Integro Viterbo, Italy); F. Petrelli, I. Marziali, S. Mazzocato, F. Petrelli, R. Vergari, F. Piazzai, I. Kubolli, A. Aggiusti, A. Paolucci, M. Ortenzi (Azienda Ospedaliero Universitaria 'Ospedale Riuniti - Umberto I - Lancisi - Salesi', Italy); G. Gallo, G. Gallo, G. Clerico, G. De Santis, M. F. Bitonti, M. Trompetto, A. Realis Luc (Dipartimento di Chirurgia Coloretale - Clinica S. Rita - Vercelli, Italy); M. Papandrea, C. Cerra, M. Pirillo, S. Cravano, I. Libri, N. Laquatra, A. Isabetto, E. De Luca (U.O. di Chirurgia Generale, Policlinico Universitario di Catanzaro, Italy); V. Testa, M. Morino, M. Mistrangelo, V. Testa ('Città della Salute e della Scienza' di Torino, Italy); G. Sinibaldi, G. P. Angelucci, R. Scarumuzzo, A. Larcine, C. Fioriti, E. Piconi, M. Nardi (Ospedale San Giovanni Calibita Fatebenefratelli, Isola Tiberina, Roma, Italy); F. Di Candido, A. Spinelli, M. Marco, F. Di Candido, M. Bevilacqua, A. Maroli (Istituto Clinico Humanitas, Italy); F. Colombo, M. Cigognini, G. Zaffaroni, A. Magistris, S. Colombo, A. Bondurri, G. Sampietro, D. Foschi, F. Colombo (Azienda Ospedaliero Universitaria Sacco, Milano, Italy); G. Perrone, G. Perrone, E. Bonati (Ospedale Maggiore di Parma, Italy); S. Aresu, S. Aresu, A. Saba (Ospedale Nostra Signora della Mercede, Italy); A. Biondini, A. Biondini, M. Angelini, E. Andolfi, E. Miranda, M. Scricciolo, G. Provenza, G. Cavallina, B. Frezza, L. Fontani, R. Malatesti, G. A. Feliciano, G. Cuccarelli (Ospedale San Donato, Italy); G. Canonico, E. Felsetti (San Giuseppe, Italy); M. Pagnanelli, M. Pagnanelli, P. De Nardi, R. Rosati, G. Marocchi, A. Vignali, R. Quattroncami (Ospedale San Raffaele, Milan, Italy); G. Curletti, G. Curletti, R. Galleleo, A. Badran, M. Malerba, A. R.
Acknowledgements

The protocol for the IMAGINE project was prepublished, however neither study was preregistered at an institutional registry.

Funding

This study was funded through support from the BJS Society (BJS). BJS had no role in study design, data collection, analysis or interpretation, or writing of this report.

Disclosure. The authors declare no conflict of interest.

Data accessibility

Data-sharing requests will be considered by the respective management groups upon written request to the corresponding author. If agreed, deidentified participant data will be available, subject to a data-sharing agreement.

Supplementary material

Supplementary material is available at BJS Open online.

References

1. Student Audit and Research in Surgery (STARSurg) Collaborative. Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study. Br J Surg Open 2018; 2:400–410
2. O’Connor ME, Kirwan CJ, Pearse RM, Prowle JR. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med 2016;42:521–530
3. O’Connor M, Hewson RW, Kirwan CJ, Ackland GL, Pearse RM, Prowle JR. Acute kidney injury and mortality 1 year after major non-cardiac surgery. Br J Surg 2017;104:868–876
4. Student Audit and Research in Surgery (STARSurg) Collaborative. Impact of postoperative acute kidney injury in patients undergoing major gastrointestinal surgery on 1-year survival and renal outcomes: a national multicentre cohort study. BJS Open 2021;5:zar134
5. Gameiro J, Neves JB, Rodrigues N, Bekerman C, Melo MJ, Pereira M et al. Acute kidney injury. long-term renal function and mortality in patients undergoing major abdominal surgery: a cohort analysis. Clin Kidney J 2016;9:192–200
6. Murugan R, Kellum JA. Acute kidney injury: what’s the prognosis? Nat Rev Nephrol 2011;7:209–217
7. Kork F, Balzer F, Spies CD, Wennecke KD, Ginde AA, Jankowski J et al. Minor postoperative increases of creatinine are associated with higher mortality and longer hospital length of stay in surgical patients. Anesthesiology 2015;123:1301–1311
8. Bell S, Ross VC, Zealley KA, Millar F, Isles C. Management of post-operative acute kidney injury. QJM 2017;110:695–700
9. National Institute for Health and Care Excellence (NICE). NICE Guideline [NG148]: Acute Kidney Injury: Prevention, Detection and Management 2019. https://www.nice.org.uk/guidance/ng148/ (accessed 9 August 2021)
10. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 2012;120:c179–c184
11. Student Audit and Research in Surgery (STARSurg) Collaborative. Outcomes After Kidney injury in Surgery (OAKS): protocol for a multicentre, observational cohort study of acute kidney injury following major gastrointestinal and liver surgery. BMJ Open 2016;6:e009812
12. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. BMC Med 2015;13:1
13. EuroSurg Collaborative. Ileus Management International (IMAGINE): protocol for a multicentre, observational study of ileus after colorectal surgery. Colorectal Dis 2018;20:O17–O25
14. EuroSurg Collaborative. Safety and efficacy of non-steroidal anti-inflammatory drugs to reduce ileus after colorectal surgery. Br J Surg 2020;107:e161–e169
15. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–612
16. Marshall A, Altman DG, Holder RL, Royston P. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. BMC Med Res Methodol 2009;9:57
17. Ramspeck CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: what, why, how, when and where? Clin Kidney J 2021;14:49–58
18. Van Calster B, McLernon DJ, van Smeden M, Wynants L, Steyerberg EW, Bossuyt P et al. Calibration: the Achilles heel of predictive analytics. BMC Med 2019;17:230
19. Goren O, Matot I. Perioperative acute kidney injury. Br J Anaesth 2015;115:i3–ii14
20. Delgado C, Baweja M, Burrows NR, Crews DC, Eneanya ND, Gadegbeku CA et al. Reassessing the inclusion of race in diagnosing kidney diseases: an interim report from the NKF-ASN task force. J Am Soc Nephrol 2021;78:103–115