Research Article
An Antibacterial Strategy of Mg-Cu Bone Grafting in Infection-Mediated Periodontics

Xue Zhao,¹ Peng Wan,² Hongyan Wang,¹ Shuwei Zhang,¹ Jingbo Liu,¹ Chunrong Chang,¹ Ke Yang (✉)³ and Yaping Pan (✉)¹,⁴

¹Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
²School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
³Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
⁴Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China

Correspondence should be addressed to Ke Yang; kyang@imr.ac.cn and Yaping Pan; yppan@cmu.edu.cn

Received 11 June 2020; Accepted 3 August 2020; Published 28 August 2020

Guest Editor: Henriette Lerner

Copyright © 2020 Xue Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Periodontal diseases are mainly the results of infections and inflammation of the gum and bone that surround and support the teeth. In this study, the alveolar bone destruction in periodontitis is hypothesized to be treated with novel Mg-Cu alloy grafts due to their antimicrobial and osteopromotive properties. In order to study this new strategy using Mg-Cu alloy grafts as a periodontal bone substitute, the in vitro degradation and antibacterial performance were examined. The pH variation and Mg²⁺ and Cu²⁺ release of Mg-Cu alloy extracts were measured. Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), two common bacteria associated with periodontal disease, were cultured in Mg-Cu alloy extracts, and bacterial survival rate was evaluated. The changes of bacterial biofilm and its structure were revealed by scanning electron microscopy (SEM) and transmission electronic microscopy (TEM), respectively. The results showed that the Mg-Cu alloy could significantly decrease the survival rates of both P. gingivalis and A. actinomycetemcomitans. Furthermore, the bacterial biofilms were completely destroyed in Mg-Cu alloy extracts, and the bacterial cell membranes were damaged, finally leading to bacterial apoptosis. These results indicate that the Mg-Cu alloy can effectively eliminate periodontal pathogens, and the use of Mg-Cu in periodontal bone grafts has a great potential to prevent infections after periodontal surgery.

1. Introduction

Periodontal disease (PD) is one of the most common diseases in humans. Approximately 750,847 million people are suffering from PD worldwide according to the global burden of disease study in 2016 [1, 2]. It is characterized by progressive destruction of the tooth-supporting apparatus [3], especially loss of alveolar bone, which is naturally irreversible. Therefore, periodontal bone grafting, a medical device promoting periodontal bone regeneration, has been widely used in periodontal regeneration surgery [4].

Nowadays, numerous bone grafts are used in periodontal surgeries, showing good biocompatibility and osteogenesis. Autogenous bone graft, as the gold standard bone graft currently, often requires a second invasive surgical procedure on the donor site. However, the limited source and volume of the harvested bones and unpredictable resorption rate among patients are main shortcomings. Alternatives to autografts are allografts and xenografts, but they may cause disease transmission and bring risks of infection [5]. The limitations of the above two approaches can be overcome by the use of synthesized bone grafts. Recently, biodegradable magnesium (Mg) alloy implants have received tremendous attention, since they have demonstrated good biocompatibility and similar mechanical properties to natural bone [6, 7]. Compared with other traditional metallic bone implants,
the elastic modulus of Mg is much closer to the natural bone [8]. What is more, Mg has an ideal desorption rate and can be gradually consumed or excreted in the human body and then disappear after the healing of bone tissues [9–11].

Mg alloys have been reported to have an antibacterial ability due to the large amount of OH⁻ produced during degradation resulting in a strong alkaline environment [12–15]. However, high pH can be balanced in body –gradually consumed or excreted in the human body and then the elastic modulus of Mg is much closer to the natural bone [11].

2. Material and Experimental Methods

2.1. Material Preparation. Three Mg-Cu alloys with gradient contents of 0.1, 0.2, and 0.4 wt.% Cu were prepared by conventional melting technique, which were assigned as Mg-0.1Cu, Mg-0.2Cu, and Mg-0.4Cu, respectively. The Mg-Cu alloys were cut into disks with size of φ10 mm × 3 mm, grounded and polished with Sic papers, and finally ultrasonically cleaned with acetone and ethanol. Pure Mg and β-TCP (β-tricalcium phosphate) were used as control groups.

2.2. Material Extract Preparation. Extracts of the Mg-Cu alloys were prepared according to ISO 10993-5. The ratio of surface area to extraction medium was 1.25 cm²/mL. Samples were immersed in brain heart infusion (BHI) broth in a humidified atmosphere with 5% CO₂ at 37 ± 0.5°C for 3 h, 6 h, 12 h, 24 h, 48 h, and 72 h. Then, the extracts were filtered and refrigerated at 4°C.

2.3. pH and Ion Release Measurements. The pH value of extracts was measured at intervals. Concentration of Mg²⁺ and Cu²⁺ in the extracts was measured using ICP-OES at each time point. The measurements were performed in triplicate.

2.4. In Vitro Antibacterial Effect Evaluation

2.4.1. Bacterial Strain Preparation. The bacterial strains used for the present study were Streptococcus gordonii Challis CH1 (S. gordonii), Fusobacterium nucleatum ATCC25586 (F. nucleatum), Porphyromonas gingivalis ATCC 33277 (P. gingivalis), and Aggregatibacter actinomycetemcomitans ATCC 43718 (A. actinomycetemcomitans), which represent the early, middle, and late colonizers of the bacterial accretion in the periodontal plaque biofilm. All the bacteria in the test were obtained from the Department of Oral Biology, School of Stomatology, China Medical University.

Bacterial strains of P. gingivalis, A. actinomycetemcomitans, and F. nucleatum were cultured in a freshly prepared brain heart infusion (BHI) agar plate (Difco Laboratories, MI) supplemented with 5% sterile defibrinated sheep blood, 1% hemin, and 0.1% menadione in a chamber under anaerobic conditions for 24 h. The BHI broth was served as the blank control antimicrobial activities in stainless steels [17, 18], titanium alloys [19], and cobalt-based alloys [20]. Our previous studies have demonstrated the biocompatibility and osteogenic promotion of the Mg-Cu alloy as a biodegradable bone implant [21, 22]. Many studies have proven that addition of Cu in implant material could both kill bacteria and stimulate biological responses to mesenchymal stem cells like proliferation and osteogenic differentiation [23]. These properties make the Mg-Cu alloy an attractive implant material for preventing infections.

Meanwhile, the oral environment is known for the coexistence of various bacteria, with more than 300 distinct bacterial species in the human gingival crevice. It has been proven that periodontal bacteria exist as biofilms composed of very complex mixtures of bacterial species, and their formation is highly ordered. Streptococci such as Streptococcus gordonii (S. gordonii) represent the primary colonizing bacteria which can adhere to saliva-coated teeth and gingiva surfaces and provide a base for subsequent colonization of other bacterial species [24]. Fusobacterium nucleatum (F. nucleatum) plays a role as a bridging organism connecting early and late colonizing bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) [25]. P. gingivalis is known as a keystone bacterium in periodontal diseases as a part of the red complex of periodontal pathogens [26–28]. A. actinomycetemcomitans is regarded as the main periodontopathogen in aggressive periodontitis and peri-implantitis [29–31]. Both P. gingivalis and A. actinomycetemcomitans are capable of invading the gingival epithelial cell and then produce virulence factors to disrupt host-microbial homeostasis, resulting in inflammation and bone loss.

At present, no clinically used natural or synthesized grafts display antibacterial ability. Periodontists thus rely heavily on the myriad antibiotic administration to prevent postoperative infections, leading to a worldwide antibiotic abuse problem [32]. For this reason, an antibacterial bone graft which is unlikely to cause the development of drug resistance is undeniably beneficial [33, 34].

Based on the primary studies, we supposed the biodegradable Mg-Cu alloy as a grafting material to fill the infrabony pocket of periodontal bone resorption. The objective of this study was to explore the antibacterial abilities of Mg-Cu against periodontal anaerobic bacteria in order to provide more evidence for clinical application of this novel material.
for 72 h before counting the bacteria colonies. All the tests were conducted three times.

2.4.3. Live/Dead Staining. Tested bacteria were diluted by extracts into 1×10^5 CFU/mL, which were then cultured in anaerobic conditions for 24 h. The bacterial biofilms attached on the base of the plates were fixed by 1% paraformaldehyde for 1 h and then stained with 2.5 μL/mL propidium iodide (PI) for 30 min. The viability of the bacteria was examined with florescence microscope.

2.4.4. SEM Analysis. Tested bacteria were diluted by extracts into 1×10^5 CFU/mL, which were then cultured in anaerobic conditions for 24 h. The bacterial biofilms attached on the base of the plates were fixed with 2.5% glutaraldehyde in PBS (pH = 7.4) for 1 h at room temperature, then washed with PBS for three times and gradually dehydrated with ethanol. The processed samples were smeared onto a copper plate followed by gold sputtering, and images were acquired on a scanning electron microscope (SEM, Inspect F50, FEI Company, USA).

2.4.5. TEM Analysis. Tested bacteria were diluted by extracts into 1×10^5 CFU/mL, which were then cultured in anaerobic conditions for 24 h. The cocultured bacterial suspensions were centrifuged at 5000 rpm for 20 min, and the bacteria were fixed with 2.5% glutaraldehyde. After dehydration with ethanol, the bacteria were embedded with LR white medium (EMS, PA), which was then cut into sections. The sections were contrasted with uranyl acetate and were examined with transmission electron microscopy (TEM, H7650 Hitachi, Japan).

3. Results

3.1. pH Variation and Ion Release. Figure 1(a) shows the pH values of the medium immersed with Mg-Cu alloys compared with pure Mg. The results were in line with the immersion time. The pH value was increased with the increase of Cu content in the Mg-Cu alloy, indicating higher degradation rate. For all the Mg-Cu groups, the pH values increased quickly in the first 6 h and then remained stable above 10 afterwards.

The release of Mg$^{2+}$ and Cu$^{2+}$ after immersion is plotted in Figures 1(b) and 1(c). The higher the pH value was, the more the Mg$^{2+}$ and Cu$^{2+}$ released from Mg-Cu alloy extracts. For the Mg-0.1Cu alloy, the concentration of Mg$^{2+}$ showed no significant difference with pure Mg at 72 h. As the concentration of Cu$^{2+}$ was positively related to the Cu content in the alloy, the Mg-0.4Cu alloy released much more Cu$^{2+}$ than the other Mg-Cu alloys.

3.2. Bacterial Survival. One of the most attractive behaviors of the Mg-Cu alloy system is its remarkable antibacterial activity. In this study, P. gingivalis and A. actinomycetemcomitans, two common bacteria associated with PD, were used to evaluate the antibacterial activity of the Mg-Cu alloy for bone graft application. As shown in Figure 2, Mg-Cu alloys demonstrated significant inhibition of growths of both P. gingivalis (Figures 2(a)–2(c)) and A. actinomycetemcomitans (Figures 2(d)–2(f)) ($P < 0.05$). The β-TCP group did not show any antibacterial effect as expected. A series of extracts were prepared by incubating samples with bacterial culture medium for different time intervals. For pure Mg and Mg-Cu alloy groups, both the bacterial concentration (Figures 2(a) and 2(d)) and the live bacterial colony (Figures 2(b) and 2(e)) were decreased with increase of incubation time. It should also be noted that the bacterial concentration and colony number for Mg-Cu groups were always less than those of pure Mg, indicating that the release of Cu$^{2+}$ further enhanced the antibacterial ability of Mg. But the three Mg-Cu alloy groups did not show difference in both bacterial concentration and live bacterial colony. P. gingivalis and A. actinomycetemcomitans reacted differently to the extract of Mg-Cu alloys. For P. gingivalis, the inhibition started to become noticeable in the extract with 3 h incubation; however, for A. actinomycetemcomitans, the same effect started in the extract after 12 h incubation. The optical images of the P. gingivalis (Figure 2(c)) and A. actinomycetemcomitans (Figure 2(f)) in nutrition agar plates show the similar results, i.e., for pure Mg and Mg-Cu groups, the numbers of bacterial colonies were much smaller than those of the control group.

3.3. Confocal Fluorescence Microscope Analysis. The activities of P. gingivalis and A. actinomycetemcomitans single-species bacterial biofilms were assessed by live/dead staining (Figure 3). A confocal fluorescence microscope was used to image both P. gingivalis and A. actinomycetemcomitans after incubation with the Mg-Cu alloy extract for 24 h. For the blank and β-TCP (positive) groups, amounts of live bacteria were observed, showing a thick biofilm compared with the pure Mg group. Approximate fifty-fifty live and dead bacteria were found in the pure Mg group. However, for the Mg-0.1Cu group, only few live bacteria could be found.

3.4. Scanning Electron Microscope Analysis. To further explore the antibacterial mechanism of Mg-Cu alloys, the status of the bacterial biofilm was assessed by SEM (Figure 4). For single-species biofilms of P. gingivalis and A. actinomycetemcomitans (Figure 4(a)), continuous biofilms with smooth surface were formed on both the blank and β-TCP groups. In the pure Mg group, bacteria were able to connect but did not form a continuous biofilm. Comparatively, the Mg-0.1Cu group showed few of the individual bacteria without formation of a biofilm. Similar results were observed in the multispecies biofilm model (Figure 4(b)). A large scale of smooth biofilm was only seen in the blank and β-TCP groups. The pure Mg group showed less biofilm formation, while the bacteria in the Mg-0.1Cu group lost connection with each other and the biofilm collapsed completely due to apoptosis of bacteria.

3.5. Transmission Electron Microscope Analysis. TEM observation showed the change of cell membranes and structures of P. gingivalis and A. actinomycetemcomitans after coculturing in different groups for 24 h (Figure 5). In blank and β-TCP groups, the integrity of the bacterial cells was unchanged, and bacterial cytoplasm was clear. Comparatively, the cell
membrane showed folds and stratification in the pure Mg group, where the membrane was separated from the cytoplasm, while in the Mg-0.1Cu group, the dead bacteria showed almost intact cell membranes with little cytoplasm remaining.

4. Discussion

This study was designed to explore a potential treatment strategy for periodontal disease with novel Mg-Cu grafts which possessed the antibacterial ability against P. gingivalis and A. actinomycetemcomitans.

Periodontal bone grafting is a widely used surgery to promote periodontal regeneration, while inflammation control after surgery is an intricate problem in the clinic. Since bone substitutes have no antimicrobial properties, routine use of antibiotics was reported for guided bone regeneration by 97% of the survey respondents, with penicillin and doxycycline which are frequently used. The antibiotic uses before and after surgery with time length vary from 7 days to 10 days [35]. However, antibiotic abuse is currently a global challenge since the number of bacterial strains that are resistant to multiple types of antibiotics has dramatically increased each year worldwide [36]. In that case, it is urgent to find an alternate to reduce the use of antibiotics after periodontal surgery.

The Mg-Cu alloy which is considered to inhibit bacteria growth was proposed and investigated systematically in previous studies [22, 37]. It has been proven that Cu alloying in Mg exhibited long-lasting antibacterial effects against Staphylococcus aureus by the synergistic effects of Mg degradation and Cu ion release [21]. Furthermore, there was no cytotoxicity to both HUVECs and MC3T3-E1 cells during the degradation of the Mg-Cu alloy, and the proper release of Mg and Cu ions provided favorable promotion to osteogenesis.

![Figure 1](image-url)
Figure 2: The responses of *P. gingivalis* (*Pg*) to the Mg-Cu alloy and Mg and β-TCP extracts: (a) bacterial concentration; (b) live bacterial colonies; (c) optical images of the bacterial colonies in nutrition agar plates and the responses of *A. actinomyctemcomitans* (*Aa*) to the Mg-Cu alloy and Mg and β-TCP extracts; (d) bacterial concentration; (e) live bacterial colonies; (f) optical images of the bacterial colonies in nutrition agar plates. * refers to a significant difference between Mg-Cu alloy groups (Mg-0.1Cu, Mg-0.2Cu, and Mg-0.3Cu) and the BHI broth and β-TCP groups. # refers to a significant difference between Mg-Cu alloy groups and the Mg group ($P < 0.05, n = 3$).
and angiogenesis, indicating a great potential in bone grafting application. However, most PD-related bacteria are anaerobic, which have different growth characteristics from Staphylococcus aureus. In order to prove the efficacy of the Mg-Cu alloy on periodontal pathogens, anaerobic bacteria such as P. gingivalis and A. actinomycetemcomitans were selected in this study.

The pH value was positively correlated to the Cu content in the Mg-Cu alloy (Figure 1(a) due to severe galvanic corrosion. The pH value for the pure Mg extract was the lowest followed by Mg-0.1Cu, Mg-0.2Cu, and Mg-0.4Cu alloys in sequence. The survival of most PD-related bacteria depends on the pH homeostasis, since most proteins including enzymes only behave their functions in a neutral range of pH values. Exposure to a higher alkaline environment would pose stress on the bacterial cytoplasmic pH homeostasis [38]. Other studies also implied the antibacterial properties of Mg and its alloys [13, 14]. However, the present study raised two drawbacks of pH enhancement-induced antibacterial effect. First, when an Mg alloy device is implanted, change of the pH value will easily be balanced by body fluid. Therefore, the antibacterial ability of the Mg alloy in vivo is questionable. When the increase of pH is balanced, the antibacterial property would disappear as demonstrated in the previous study [18]. Second, high alkalinity circumstance may only switch the normal bacteria to a nonmetabolically active state. Many studies have proven that bacteria could survive in the extreme environment by switching to inactive status [39, 40]. In this study, the live/dead imaging (Figure 3) also indicated that high percentages of both P. gingivalis and A. actinomycetemcomitans were still alive in the pure Mg group.

Due to the drawbacks mentioned above, the introduction of antimicrobial metal elements such as Ag and Cu into the Mg alloy has gained more attention [37, 41]. Cu ion is known to cause multiple toxic effects such as generation of reactive oxygen species, lipid peroxidation, protein oxidation, and DNA degradation [42]. With higher content of Cu, more Cu ions are eluted from the implant material and bonded to the surface of bacteria, which eventually damage the cell membranes and kill the bacteria. Cu ions can hardly be balanced by human body fluid nor diluted by surrounding medium after releasing from the implant. Thus, the antibacterial activity will be maintained for the Mg-Cu alloy after implantation in vivo. In addition, the live/dead staining demonstrated that the release of Cu ions led to the necrosis of both P. gingivalis and A. actinomycetemcomitans (Figure 3) instead of switching them to the inactive state. The TEM observation showed that only the bacteria membrane changed in the pure Mg group, while the cytoplasm was lost completely in the Mg-Cu group with almost intact membranes. This indicates that the antibacterial mechanism of Cu should be different from that of the high pH value. It has previously been shown that Cu ions exert an antimicrobial activity, leading to increased influx of Cu$^{2+}$ into bacteria and generation of reactive oxygen species, which results in inhibition of respiration and degradation of DNA and loss of cytoplasm [43].

The biofilm is critical for the microbial to attach to the material surface for survival [44, 45]. Both P. gingivalis and A. actinomycetemcomitans were not able to form a continuous biofilm as single species or multispecies (Figure 4) and were only observed as individual cells when incubated in the Mg-Cu alloy extracts. Without the protection from the biofilm, the cell membrane was destroyed directly and all the intracellular structures leaked outside (Figure 5), leading to bacterial apoptosis eventually. Another study also showed that on the surface of a Cu-implanted alloy, the shapes of Escherichia coli and Staphylococcus aureus changed obviously and their membranes were damaged [46]. Thus, Cu played a very important antibacterial role in the Mg-Cu extracts.

In the previous study [21], it has been demonstrated that the Mg-Cu alloy with the lowest Cu content could also enhance the cell viability, alkaline phosphatase activity, and osteogenesis-related gene and protein expressions. Thus, the biodegradable Mg-Cu alloy with osteogenesis, angiogenesis, and favorable antibacterial ability to PD-related bacteria is considered as a promising bone graft in periodontal regeneration. It is supposed that the Mg-Cu bone grafts in the form of particles can be filled into the alveolar bone pocket to treat the periodontal disease and enhance the possible regeneration of alveolar bone as well. The antibacterial and osteopromotive properties of Mg-Cu grafts will be further verified in vivo on a clinical relevant PD infection animal model.
5. Conclusions

The results in this study showed that with increase of the Cu content in the Mg-Cu alloy, the survival rates of both *P. gingivalis* and *A. actinomycetemcomitans* in the Mg-Cu alloy extracts were decreased significantly, and the bacteria cells and bacterial biofilms were destroyed obviously. The results are in agreement with other studies on Cu-bearing metals, indicating that the Mg-Cu alloy as potential bone grafts can effectively prevent infections in periodontal surgery.
Data Availability

I have published all the data in the paper on Figshare (https://doi.org/10.6084/m9.figshare.12587297.v1).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors gratefully acknowledge the financial support from the Talents Plant for Liaoning Development (No. XLYC1802129), Natural Science Foundation of China (No. 51631009) and Research Start-Up Funds of DGUT (No. GC300501-082).

References

[1] J. M. Albandar, “Epidemiology and risk factors of periodontal diseases,” Dental Clinics of North America, vol. 49, no. 3, pp. 517–532, 2005.

[2] B. Zhu, C. C. Macleod, E. Newsome, J. Liu, and P. Xu, “Aggregatibacter actinomycetemcomitans mediates protection of Porphyromonas gingivalis from Streptococcus sanguinis hydrogen peroxide production in multi-species biofilms,” Scientific Reports, vol. 9, no. 1, p. 4944, 2019.

[3] F. M. Chen and Y. Jin, "Periodontal tissue engineering and regeneration: current approaches and expanding opportunities," Tissue Engineering, Part B, Reviews, vol. 16, no. 2, pp. 219–255, 2010.

[4] M. A. Reynolds, M. E. Aichelmann-Reidy, G. L. Branch-Mays, and J. C. Gunsolley, "The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review," Annals of Periodontology, vol. 8, no. 1, pp. 227–265, 2003.

[5] R. Yunus Basha, S. K. TS, and M. Doble, "Design of biocomposite materials for bone tissue regeneration," Materials Science & Engineering: C, Materials for Biological Applications, vol. 57, pp. 452–463, 2015.

[6] D. Hong, P. Saha, D. T. Chou et al., "In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material," Acta Biomaterialia, vol. 10, no. 10, pp. 8534–8547, 2013.

[7] D. T. Chou, D. Hong, P. Saha et al., "In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials," Acta Biomaterialia, vol. 9, no. 10, pp. 8518–8533, 2013.

[8] Z. Z. Yin, W. C. Qi, R. C. Zeng et al., "Advances in coatings on biodegradable magnesium alloys," Journal of Magnesium and Alloys, vol. 8, no. 1, pp. 42–65, 2020.

[9] A. F. Cipriano, T. Zhao, J. Johnson, R. G. Guan, S. Garcia, and H. Liu, "In vitro degradation of four magnesium-zinc-strontium alloys and their cytocompatibility with human embryonic stem cells," Journal of Materials Science Materials in Medicine, vol. 24, no. 4, pp. 989–1003, 2013.

[10] F. Witte, J. Fischer, J. Nellesen et al., "In vitro and in vivo corrosion measurements of magnesium alloys," Biomaterials, vol. 27, no. 7, pp. 1013–1018, 2006.

[11] L. Xu, G. Yu, E. Zhang, F. Pan, and K. Yang, "In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application," Journal of biomedical materials research Part A, vol. 83, no. 3, pp. 703–711, 2007.

[12] H. Qin, Y. Zhao, Z. An et al., "Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy," Biomaterials, vol. 53, pp. 211–220, 2015.

[13] J. Y. Lock, E. Wyatt, S. Upadhyayula et al., "Degrading and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications," Journal of biomedical materials research Part A, vol. 102, no. 3, pp. 781–792, 2014.

[14] D. A. Robinson, R. W. Griffith, D. Shechtman, R. B. Evans, and M. G. Conzemius, "In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus," Acta Biomaterialia, vol. 6, no. 5, pp. 1869–1877, 2010.

[15] S. Mukherjee, S. Barman, N. C. Mandal, and S. Bhattacharya, "Anti-bacterial activity of Achatina CRP and its mechanism of action," Indian Journal of Experimental Biology, vol. 52, no. 7, pp. 692–704, 2014.

[16] P. Szymanski, T. Fraczek, M. Markowicz, and E. Mikić-Olasik, "Development of copper based drugs, radiopharmaceuticals and medical materials," Biometals, vol. 25, no. 6, pp. 1089–1112, 2012.

[17] L. Ren, K. Yang, L. Guo, and H. W. Chai, "Preliminary study of anti-infective function of a copper-bearing stainless steel," Materials Science and Engineering: C, vol. 32, no. 5, pp. 1204–1209, 2012.

[18] H. Chai, L. Guo, X. Wang et al., "Antibacterial effect of 316L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo," Journal of Materials Science Materials in Medicine, vol. 22, no. 11, pp. 2525–2535, 2011.

[19] S. Wang, Z. Ma, Z. Liao, J. Song, K. Yang, and W. Liu, "Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy," Materials Science & Engineering: C, Materials for Biological Applications, vol. 57, pp. 123–132, 2015.

[20] Z. K. Ghouri, N. A. M. Barakat, and H. Y. Kim, "Influence of copper content on the electrocatalytic activity toward methanol oxidation of CoCu alloy nanoparticles-decorated CNFs," Scientific Reports, vol. 5, no. 1, 2015.

[21] C. Liu, X. Fu, H. Pan et al., "Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects," Scientific Reports, vol. 6, no. 1, 2016.

[22] Y. Li, L. Liu, P. Wan et al., "Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: in vitro and in vivo evaluations," Biomaterials, vol. 106, pp. 250–263, 2016.

[23] I. Burghardt, F. Luthen, C. Prinz et al., "A dual function of copper in designing regenerative implants," Biomaterials, vol. 44, pp. 36–44, 2015.

[24] M. Y. Mahmoud, S. Sapare, K. C. Curry, D. R. Demuth, and J. M. Steinbach-Rankins, "Rapid release polymeric fibers for inhibition of Porphyromonas gingivalis adherence to Streptococcus gordonii," Frontiers in Chemistry, vol. 7, 2020.

[25] F. Wang, W. Qiao, B. Bao et al., "Effect of IgY on periodontitis and halitosis induced by Fusobacterium nucleatum," Journal of Microbiology and Biotechnology, vol. 29, no. 2, pp. 311–320, 2019.

[26] O. Chigasaki, Y. Takeuchi, A. Aoki et al., "A cross-sectional study on the periodontal status and prevalence of red complex
periodontal pathogens in a Japanese population,” *Journal of Oral Science*, vol. 60, no. 2, pp. 293–303, 2018.

[27] G. Hajishengallis, “Periodontitis: from microbial immune subversion to systemic inflammation,” *Nature Reviews Immunology*, vol. 15, no. 1, pp. 30–44, 2015.

[28] B. Malinowski, A. Wesierska, K. Zalewska et al., “The role of Tannerella forsythia and Porphyromonas gingivalis in pathogenesis of esophageal cancer,” *Infectious Agents and Cancer*, vol. 14, no. 1, 2019.

[29] I. Olsen and O. Yilmaz, “Modulation of inflammasome activity by Porphyromonas gingivalis in periodontitis and associated systemic diseases,” *Journal of Oral Microbiology*, vol. 8, no. 1, 2016.

[30] P. J. Ezzo and C. W. Cutler, “Microorganisms as risk indicators for periodontal disease,” *Periodontology 2000*, vol. 32, no. 1, pp. 24–35, 2003.

[31] B. A. Herbert, C. M. Novince, and K. L. Kirkwood, “Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis,” *Molecular Oral Microbiology*, vol. 31, no. 3, pp. 207–227, 2016.

[32] R. E. Hancock and A. Patrzykat, “Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics,” *Current Drug Targets. Infectious Disorders*, vol. 2, no. 1, pp. 79–83, 2002.

[33] U. Theuretzbacher, “Future antibiotics scenarios: is the tide starting to turn?,” *International Journal of Antimicrobial Agents*, vol. 34, no. 1, pp. 15–20, 2009.

[34] Y. Shao, R. C. Zeng, S. Q. Li et al., “Advance in antibacterial magnesium alloys and surface coatings on magnesium alloys: a review,” *Acta Metallurgica Sinica (English Letters)*, vol. 33, no. 5, pp. 615–629, 2020.

[35] S. J. Froum and M. A. Weinberg, “An evaluation of antibiotic use in periodontal and implant practices,” *The International Journal of Periodontics & Restorative Dentistry*, vol. 35, no. 4, pp. 481–487, 2015.

[36] C. Gonzalez-Bello, “Antibiotic adjuvants - a strategy to unlock bacterial resistance to antibiotics,” *Bioorganic & Medicinal Chemistry Letters*, vol. 27, no. 18, pp. 4221–4228, 2017.

[37] X. Yan, P. Wan, L. Tan, M. Zhao, L. Qin, and K. Yang, “Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing,” *Materials Science & Engineering. C, Materials for Biological Applications*, vol. 93, pp. 565–581, 2018.

[38] T. A. Krulwich, G. Sachs, and E. Padan, “Molecular aspects of bacterial pH sensing and homeostasis,” *Nature Reviews. Microbiology*, vol. 9, no. 5, pp. 330–343, 2011.

[39] G. Wegryn and A. Wegryn, “Stress responses and replication of plasmids in bacterial cells,” *Microbial Cell Factories*, vol. 1, no. 1, p. 2, 2002.

[40] R. Trastoy, T. Manso, L. Fernández-García et al., “Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments,” *Clinical Microbiology Reviews*, vol. 31, no. 4, 2018.

[41] D. Tie, F. Feyerabend, W. D. Muller et al., “Antibacterial biodegradable Mg-Ag alloys,” *European Cells & Materials*, vol. 25, pp. 284–298, 2013, discussion 98.

[42] A. K. Chatterjee, R. Chakraborty, and T. Basu, “Mechanism of antibacterial activity of copper nanoparticles,” *Nanotechnology*, vol. 25, no. 13, p. 135101, 2014.

[43] S. L. Warnes, V. Caves, and C. W. Keevil, “Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria,” *Environmental Microbiology*, vol. 14, no. 7, pp. 1730–1743, 2012.

[44] R. Roy, M. Tiwari, G. Donelli, and V. Tiwari, “Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action,” *Virulence*, vol. 9, no. 1, pp. 522–554, 2018.

[45] V. S. Bhinu, “Insight into biofilm-associated microbial life,” *Journal of Molecular Microbiology and Biotechnology*, vol. 10, no. 1, pp. 15–21, 2006.

[46] Z. Ding, Y. Wang, Q. Zhou et al., “Microstructure, wettability, corrosion resistance and antibacterial property of Cu-MTa2O5 multilayer composite coatings with different Cu incorporation contents,” *Biomolecules*, vol. 10, no. 1, p. 68, 2020.