Effect of Yokukansan and Yokukansankachimpihange on Aggressive Behavior, 5-HT Receptors and Arginine Vasopressin Expression in Social Isolation-Reared Mice

Hikari Iba, Takuya Watanabe,* a,b Kanae Matsuzawa, a Maki Saimiya, a Masako Tanaka, a Masaki Nagao, b Hiroshi Moriyama, a,g Kaori Kubota, a,b Shutaro Katsurabayashi, a and Katsunori Iwasaki a,b

INTRODUCTION

Yokukansan (YKS: Yi-gan san in Chinese) is a traditional herbal medicine comprising seven types of medicinal herbs. It has been approved by the Ministry of Health, Labour and Welfare of Japan as a remedy for neurosis, insomnia or night crying and irritability in children. Yokukansankachimpihange (YKSCH), which was developed in Japan, includes YKS combined with two medicinal herbs, Citrus unshiu peel (chimpi) and Pinellia tuber (hange). Although YKSCH is similar to YKS, it is more commonly prescribed for patients whose symptoms include digestive function deficiencies. However, the differences between the effects of YKS and YKSCH on brain function are unclear. The present study examined the effects of YKS and YKSCH on aggressive behavior in mice reared under a social isolation (SI) condition. Mice were housed individually for 6 weeks. YKS and YKSCH were administered orally for 2 weeks before aggression tests. SI increased aggressive behavior against naïve mice, and YKS, but not YKSCH, significantly attenuated this aggressive behavior. Because serotonin (5-HT)2A and 5-HT3A receptor antagonists are reported to have anti-aggressive effects, the mRNA levels of these receptors were examined. YKS attenuated the SI-induced increase in 5-HT2A and 5-HT3A receptor mRNA in the amygdala. On the other hand, YKSCH attenuated the SI-induced increase in 5-HT1A receptor mRNA. YKS and YKSCH did not affect 5-HT and its metabolite 5-hydroxyindoleacetic acid content in the amygdala. However, YKSCH increased the mRNA level of arginine vasopressin (AVP), which is a neuropeptide that has been implicated in aggression, in the amygdala.

Key words yokukansan; yokukansankachimpihange; aggressive behavior; arginine vasopressin; serotonin (5-HT)1A receptor

Received June 12, 2019; accepted September 2, 2019

© 2019 The Pharmaceutical Society of Japan
MATERIALS AND METHODS

Animals Male ddY mice (4 weeks old) were supplied by Japan SLC, Inc. (Shizuoka, Japan). After habituation for 1 week, mice were housed individually in cages (136 × 208 × 115 mm) for 6 weeks prior to testing. Group-reared controls were housed with 3–5 mice per cage (182 × 260 × 128 mm). Naïve male mice (5 weeks old) that were used for the aggression test were also supplied by Japan SLC, Inc. and were group-housed for one week prior to the test. All mice were housed at a temperature of 23 ± 2°C with a relative humidity of 60 ± 10% under a 12 h light–dark cycle (lights on 07:00–19:00). Food and water were available ad libitum. All procedures regarding animal care and use were carried out in keeping with the regulations dictated by the Experimental Animal Care and Use Committee of Fukuoka University (#1507852, #1704040).

Drugs Dry powdered extracts of YKS (Lot. No. 331039200) and YKSCH (Lot. No. 331036600) were provided by Tsumura & Co. (Tokyo, Japan). YKS comprises seven dried extracts as follows: Poria Sclerotium (4.0 g, sclerotium of Wolfiporia cocos Ryvarden et Gilbertson), Atractylodes Lancea Rhizome (4.0 g, rhizome of Atractylodes lancea De Candolle), Uncaria Hook (3.0 g, hook of Uncaria rhynchophylla Miquel), Cnidium Rhizome (3.0 g, rhizome of Cnidium officinale Makino), Japanese Angelica Root (3.0 g, root of Angelica acutiloba Kitagawa), Bupleurum Root (2.0 g, root of Bupleurum falcatum Linné) and Glycyrrhiza (1.5 g, root and stolon of Glycyrrhiza uralensis Fisher). YKSCH consists of YKS and two additional herbs, Pinellia tuber (5.0 g, tuber of Pinellia ternata Breitenbach, hange) and Glycyrrhiza (1.5 g, root and stolon of Glycyrrhiza uralensis Fisher). YKSCH is a blend of YKS and a relative of YKSCH with the most effective dose found to be 1000 mg/kg.

Quantitative (q)RT-PCR After the aggression test, mice were rapidly decapitated, and the amygdala was quickly dissected. The total RNA was extracted using the TRI Reagent® (Molecular Research Center, Inc., Cincinnati, OH, U.S.A.). First-strand cDNA was reverse-transcribed from total RNA using a ReverTra Ace qPCR RT Master Mix with gDNA Remover (TOYOBO Co., Ltd., Osaka, Japan). Real-time PCR was conducted on a LightCycler® 96 System (Roche, Basel, Switzerland) using THUNDERBIRD SYBR qPCR Mix (TOYOBO Co., Ltd.) and primers as per the manufacturer’s protocol. The following PCR conditions were employed: 95°C for 15 s, 59°C (for 5-HT receptor), 63°C (for 5-HT receptor) and 5-HT receptor, 5-HT receptor, and 5-HT receptor receptors), 65°C (for 5-HT receptor) or 66°C (for AVP) for 30 s and 72°C for 45 s. The sequences of the primers were as follows: 5'-GGATTTTCTCCCGTCTGTT-3' and 5'-CACAGGTCCTTTCAAGAC-3' for 5-HT receptor (NM_008380); 5'-TCATCTGCGATTGTTGAGAAT-3' and 5'-CAGTGTGTGGAAGCCTGTTT-3' for 5-HT receptor (NM_014082); 5'-AGACCCATCTCACCATACTG-3' and 5'-AACCAATCTGCTTCAAT-3' for 5-HT receptor (NM_013561); 5'-GCCAGGATGTCATAACACTACG-3' and 5'-TCTCAGTCATGCTGAGATG-3' for AVP (NM_009732.2); and 5'-GGCAGTATTCCCTCCTCG-3' and 5'-CCAGTGTGTGGAAGCCTGTTT-3' for 5-HT receptor (NC_008312.4); 5'-CAGGTTTCTGATGCTGAGATG-3' and 5'-CACACTCGCCCCTGATT-3' for 5-HT receptor (NM_013561).

5-HT and 5-HIAA Content The content of 5-HT and 5-HIAA were measured using an HPLC-electrochemical detector (ECD) system (Eicom Co., Ltd., Kyoto, Japan). Mice were sacrificed immediately after the aggression test. Brain regions were quickly dissected, weighed and homogenized in 150 µL of ice-cold 0.2 M perchloric acid containing 0.1 M ethylenediaminetetraacetic acid (EDTA) and 10 ng/mL iso- protoren (internal standard). Following centrifugation at 2000 g × 15 min, 50 µL of the supernatant was mixed with 20 µL of 1 M sodium acetate and filtered through a membrane filter (0.45 µm; Millex, Merck, Darmstadt, Germany). Then, 10 µL of the sample was injected into the HPLC-ECD system, which used an Eicompak SC-5ODS column (3.0 mm i.d. × 150 mm, Eicom Co., Ltd.) and was set at a potential of +750 mV against an Ag/AgCl reference electrode with a graphite carbon working electrode (WE-3G, Eicom Co., Ltd.). The mobile phase consisted of 0.1 M acetate-citrate buffer (pH 3.5), 200 mg/L sodium 1-octanesulfonate, 5 mg/L EDTA and 17% methanol. The flow rate was maintained at 0.5 µL/min. The monoamine levels were calculated on the basis of standard values using PowerChrom (version 2.2.4; Eicom Co., Ltd.).

Experimental Procedure Mice were isolated for 6 weeks, and daily YKS and YKSCH administration (1000 mg/kg/d, for 2 weeks, per os (p.o.)) was started at 4 weeks after the initiation of SI (Fig. 1). The aggression test was performed at 1 h after the final drug administration. Immediately after the...
aggression test, mice were sacrificed to analyze monoamine content and mRNA expression.

Statistical Analysis Data were evaluated for statistical significance using one-way ANOVA followed by Tukey’s multiple comparisons test. An outlier was removed from each PCR data set (5-HT_2A, 5-HT_3A and AVP mRNA) using the ROUT method (Prism 6.04 software, GraphPad, La Jolla, CA, U.S.A.). The criterion for statistical significance was \(p < 0.05 \). Data are shown as the mean ± standard error of the mean (S.E.M.).

RESULTS

Effect of YKS and YKSCH on Aggressive Behavior in SI-Reared Mice SI-reared mice showed an increased number of attacks compared with group-reared mice \(F(3,52) = 4.206, p < 0.05 \) by Tukey’s multiple comparisons test, Fig. 2. YKS administration to SI-reared mice significantly attenuated this increase in the number of attacks \(F(3,53) = 3.201, p < 0.05 \) by one-way ANOVA, \(p < 0.05 \) by Tukey’s multiple comparisons test, Fig. 2, while YKSCH administration did not produce a significant attenuation. However, YKSCH administration also did not increase the number of attacks compared with group-reared mice. These results suggest that the anti-aggressive effect of YKS is weaker than that of YKS.

Effect of YKS and YKSCH on 5-HT Receptor Expression in the Amygdala of SI-Reared Mice 5-HT_1A receptor agonists, 5-HT_2A receptor antagonists and serotonin reuptake inhibitors reduce aggressive behavior in SI-reared mice,\(^4,8,9\) which suggests that aggressive behavior is mediated by 5-HT receptors. Chronic administration of YKS decreases 5-HT_2A receptor levels in the mouse frontal cortex.\(^8\) Therefore, the effect of YKS and YKSCH on 5-HT receptor expression was examined. The mRNA levels of several 5-HT receptors (5-HT_1A, 5-HT_2A and 5-HT_3A) were measured in SI-reared mice compared with group-reared mice \(F(3,53) = 3.322, p < 0.05 \) by one-way ANOVA, \(p < 0.05 \) by Tukey’s multiple comparisons test; 5-HT_2A receptor, \(F(3,53) = 5.354, p < 0.01 \) by one-way ANOVA, \(p < 0.05 \) by Tukey’s multiple comparisons test; 5-HT_3A receptor, \(F(3,52) = 4.206, p < 0.01 \) by one-way ANOVA, \(p < 0.05 \) by Tukey’s multiple comparisons test; however, the 5-HT_3C receptor mRNA level was not increased (Fig. 3). YKSCH administration significantly decreased the enhanced 5-HT_1A mRNA level \(F(3,53) = 4.060, p < 0.05 \) by one-way ANOVA, \(p < 0.05 \) by Tukey’s multiple comparisons test, whereas, YKS administration did not (Fig. 3A). Neither YKS administration nor YKSCH administration decreased the enhanced 5-HT_1B mRNA level (Fig. 3B). On the other hand, YKS administration significantly decreased the enhanced 5-HT_2A and 5-HT_3A receptor mRNA levels \(F(3,52) = 5.354, p < 0.01 \) by one-way ANOVA, \(p < 0.05 \) by Tukey’s multiple comparisons test; 5-HT_3A receptor, \(F(3,52) = 4.206, p < 0.01 \) by one-way ANOVA, \(p < 0.05 \) by Tukey’s multiple comparisons test, whereas, YKSCH administration did not (Figs. 3C, E). These results suggest that a decrease in 5-HT_2A and 5-HT_3A receptor levels contributes to the anti-aggressive effect of YKS.

Effect of YKS and YKSCH on the Content of 5-HT and Its Metabolite 5-HIAA in the Amygdala of SI-Reared Mice Since the mRNA levels of 5-HT receptors were altered in the amygdala of SI-reared mice treated with YKS, the content of 5-HT and its metabolite 5-HIAA were then examined. The contents of 5-HT and 5-HIAA were unchanged in SI-reared mice compared with group-reared mice. Likewise, YKS and YKSCH did not affect the 5-HT and 5-HIAA content (Figs. 4A, B). These data suggest that YKS and YKSCH are not responsible for the underlying mechanisms of 5-HT metabolism.

Effect of YKS and YKSCH on AVP Expression in the Amygdala AVP plays a key role in aggressive behavior.\(^11\) Therefore, AVP mRNA levels were examined. Although SI-reared mice did not show increased AVP mRNA levels, YKSCH administration significantly increased the AVP mRNA level compared with group-reared mice and YKS-administered mice \(F(3,52) = 4.972, p < 0.01 \) by one-way ANOVA, \(p < 0.01 \) by Tukey’s multiple comparisons test (Fig. 5).
Fig. 3. Effect of YKS and YKSCH on 5-HT Receptor Expression in the Amygdala of Social Isolation-Reared Mice

5-HT₁A (A), 5-HT₁B (B), 5-HT₂A (C), 5-HT₂C (D) and 5-HT₃A (E) mRNA levels in the amygdala were examined after the aggression test. Data are expressed as a percentage of control values (group-reared mice). Values indicate the means ± S.E.M. (n = 12–15/group). *p < 0.05 and **p < 0.01, significantly different.

Fig. 4. Effect of YKS and YKSCH on the Content of 5-HT and Its Metabolite 5-HIAA in the Amygdala of Social Isolation-Reared Mice

5-HT (A) and 5-HIAA (B) levels in the amygdala were examined using HPLC after the aggression test. Values indicate the means ± S.E.M. (n = 16–19/group).
suprachiasmatic nucleus [SCN]) and the extended amygdala (bed nucleus of the stria terminals [BNST] and medial amygdala). AVP projections from the amygdala are suggested to facilitate aggressive behavior. However, SI did not significantly increase AVP mRNA in the amygdala (Fig. 5). Another study also demonstrated no alteration of plasma AVP levels in prairie voles subjected to chronic SI-rearing. However, SI increased the density of AVP immunoreactive cells in the hypothalamus of prairie voles. We also observed increased AVP mRNA levels in the hypothalamus of SI-reared mice (data not shown). SI may induce aggressive behavior via hypothalamic AVP expression. Previous studies have reported that AVP mRNA expression in the amygdala is decreased by adrenalectomy, abolished by a combination of adrenalectomy and gonadectomy, and restored by androgen replacement. In addition, adrenalectomy and gonadectomy have been found to cause a reduction in aggressiveness of SI-reared mice. These reports imply that AVP expression in the amygdala is mediated by androgen and enhances aggressiveness. Given that citrus peel extract has been found to increase serum androgen levels in mice, chimps might enhance aggressiveness via androgen. YKSCH administration increased AVP mRNA levels in the amygdala compared with YKS administration (Fig. 5), implying that chimps disrupts the anti-aggressive effects of YKS via AVP expression. Taken together, SI and YKSCH may induce aggressive behavior via AVP expression in the hypothalamus and amygdala, respectively. However, the mechanism by which YKSCH increases AVP mRNA is unknown.

The 5-HT and 5-HIAA content in amygdala were unchanged by SI although SI affected the 5-HT receptors expression (Figs. 3, 4). Other study also demonstrates the unchanged 5-HT and 5-HIAA content in hippocampus of SI-reared mice. Thus, SI may not affect the synthesis and metabolism of 5-HT. The present study also showed YKS and YKSCH do not alter the 5-HT and 5-HIAA content (Fig. 4). YKS attenuates SI-induced aggressive behavior in zinc-deficient mice while YKS does not affect the 5-HT content in brain tissue. These results suggest that the 5-HT and 5-HIAA content are not implicated in anti-aggressive effect of YKS.

DISCUSSION

YKS and YKSCH are prescribed for neurosis, insomnia or night crying and irritability in children. Prescription of these medicines is dependent on the digestive condition. However, the differences between the effects of YKS and YKSCH on brain function are unclear. Therefore, the present study examined the difference between the effects of YKS and YKSCH on aggressive behavior in SI-reared mice. YKS, but not YKSCH, significantly ameliorated SI-increased aggressive behavior. The RT-PCR results suggested that the anti-aggressive effect of YKS may be mediated by a decrease in the expression levels of 5-HT2A and 5-HT3A receptors. In addition, the YKSCH-induced increase in the AVP level may disrupt the anti-aggressive effect because AVP is implicated in aggression.

The 5-HT and 5-HIAA content in amygdala were identical to that of YKS (1000 mg/kg) and 719 mg/kg in YKSCH. However, the decreased effect of YKSCH on 5-HT and 5-HIAA content was not observed in this study.
aggression and 5-HT receptor levels may be, in part, due to the decreased YKS content in YKSCH. However, YKSCH produced a significant increase in AVP mRNA compared with YKS, while the vehicle did not induce a significant increase. These results suggest that increased AVP expression is not due to the decreased YKS content in YKSCH.

In conclusion, the present study indicates that YKS ameliorates SI-induced aggressive behavior, likely by inhibiting the increase in 5-HT2A and 5-HT3A receptors. In addition, the YKSCH-induced increase in the AVP level may contribute to the weaker anti-aggressive effect of YKSCH. YKS may be more effective for the treatment of irritability than YKSCH if digestive function deficiencies are not considered.

Acknowledgments The authors thank the Department of Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University for providing the LightCycler® 96 System and Tsumura & Co. for providing YKS and YKSCH. The authors also thank Shuhei Fujita and Sho Yoshida, Chika Aramaki for technical assistance. We thank Lisa Kreiner, Ph.D., for editing a draft of this manuscript.

Conflict of Interest Katsunori Iwasaki received a research grant from Tsumura & Co. The other authors declare no conflict of interest.

REFERENCES

1) The Japan Society for Oriental Medicine. Introduction to Kampo, Japanese Traditional Medicine. Elsevier Japan K. K., Tokyo, p. 13, 49, 140 (2005).

2) Shimozuru M, Kikusui T, Takeuchi Y, Mori Y. Effects of isolation-rearing on the development of social behaviors in male Mongolian gerbils (Meriones unguiculatus). Physiol. Behav., 94, 491–500 (2008).

3) Pinner G, Dong E, Matsumoto K, Costa E, Guidotti A. In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc. Natl Acad. Sci. U.S.A., 100, 2035–2040 (2003).

4) Koike H, Ibi D, Mizoguchi H, Nagai T, Nitta A, Takuma K, Nabeshima T, Yoneda Y, Yamada K. Behavior allosterey and pharmacologic response in social isolation-reared mice. Behav. Brain Res., 202, 114–121 (2009).

5) Takeda A, Iwaki H, Ide K, Tamano H, Oku N. Therapeutic effect of Yokukansan on social isolation-induced aggressive behavior of zinc-deficient and pair-fed mice. Brain Res. Bull., 87, 551–555 (2012).

6) Furukawa K, Tomita N, Uematsu D, et al. Randomized double-blind placebo-controlled multicenter trial of Yokukansan for neuropsychiatric symptoms in Alzheimer’s disease. Geriatr. Gerontol. Int., 17, 211–218 (2017).

7) Nishi A, Yamaguchi T, Sekiguchi K, Imamura S, Tabuchi M, Kanno H, Nakai Y, Hashimoto K, Ikarashi Y, Kase Y. Gi6ssochizine methyl ether, an alkaloid from Uncaria hook, is a potent serotonin (5-HT)1A receptor agonist and candidate for amelioration of aggressiveness and sociality by yokukansan. Neuroscience, 207, 124–136 (2012).

8) White SM, Kucharik RF, Moyer JA. Effects of serotonergic agents on isolation-induced aggression. Pharmacol. Biochem. Behav., 39, 729–736 (1991).

9) Sakurai M, Ago Y, Sowa C, Sakamoto Y, Nishihara B, Xoyama Y, Baba A, Matsuda T. Modulation by 5-HT2A receptors of aggressive behavior in isolated mice. Jpn. J. Pharmacol., 89, 89–92 (2002).

10) Thompson RR, George K, Walton JC, Orr SP, Benson J. Sex-specific influences of vasopressin on human social communication. Proc. Natl Acad. Sci. U.S.A., 103, 7889–7894 (2006).

11) Terranova JL, Song Z, Larkin TE 2nd, Hardcastle N, Norvelle A, Riaz A, Albers HE. Serotonin and arginine-vasopressin mediate sex differences in the regulation of dominance and aggression by the social brain. Proc. Natl Acad. Sci. U.S.A., 113, 13233–13238 (2016).

12) Ferris CF, Lu SF, Messenger T, Guillou CD, Heindel N, Miller M, Koppel G, Robert Bros F, Simon NG. Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol. Biochem. Behav., 83, 169–174 (2006).

13) Vaernet K, Madsen A. Stereotactic amygdalotomy and basofrontal tractotomy in psychotics with aggressive behaviour. J. Neurol. Neurosurg. Psychiatry, 33, 858–863 (1970).

14) Repple J, Habel U, Wagels L, Pawlizeck CM, Schneider F, Kohn N. Sex differences in the neural correlates of aggression. Brain Struct. Funct., 223, 4115–4124 (2018).

15) Wang Y, He Z, Zhao C, Li L. Medial amygdala lesions modify aggressive behavior and immediate early gene expression in oxytocin and vasopressin neurons during intermale exposure. Behav. Brain Res., 245, 42–49 (2013).

16) Kawakami Z, Omiya Y, Mizoguchi K. Comparison of the Effects of Yokukansan and Yokukansainchimihage on glutamate uptake by cultured astrocytes and glutamate-induced excitotoxicity in cultured PC12 cells. Evid. Based Complement. Alternat. Med., 2019, 9139536 (2019).

17) Bifans T, Jardin DL, Aneas I, Chiavegatto S. Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes Brain Behav., 6, 529–539 (2007).

18) Egashira N, Iwasaki K, Ishibashi A, Hayakawa K, Okuno R, Abe M, Uchida N, Mishima K, Takasaki K, Nishimura R, Oishi R, Fujiwara M. Repeated administration of Yokukansan inhibits DOI-induced head-twitch response and decreases expression of 5-hydroxytryptamine (5-HT1) receptors in the prefrontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry, 32, 1516–1520 (2008).

19) Juarez P, Valdivinos MG, May ME, Lloyd BP, Couppis MH, Kennedy CH. Serotonin1A receptors mediate the aggressive phenotype of TLX gene knockout mice. Behav. Brain Res., 256, 354–361 (2013).

20) Kanno H, Sekiguchi K, Yamaguchi T, Terawaki K, Yuzurihara M, Kase Y, Ikarashi Y. Effect of yokukansan, a traditional Japanese medicine, on social and aggressive behaviour of para-chloroamphetamine-injected rats. J. Pharm. Pharmacol., 61, 1249–1256 (2009).

21) Rudissar R, Pruss K, Skrebuhova T, Allikmets L, Matto V. Modulatory role of 5-HT1 receptors in mediation of apomorphine-induced aggressive behaviour in male rats. Behav. Brain Res., 106, 91–96 (1999).

22) Raza LF, Koychevski I, Mellon RH Jr. Serotonin type 3 receptors stimulate offensive aggression in Syrian hamsters. Behav. Brain Res., 156, 19–29 (2005).

23) McKenzie-Quirk SD, Girasa KA, Allan AM, Miczek KA. 5-HT3 receptors, alcohol and aggressive behavior in mice. Behav. Pharmacol., 16, 163–169 (2005).

24) Ohno R, Miyagishi H, Tsuji M, Saito A, Miyagawa K, Kurokawa K, Takeda H. Yokukansan, a traditional Japanese herbal medicine, enhances the anxiolytic effect of fluvoxamine and reduces cortical 5-HT1A receptor expression in mice. J. Ethnopharmacol., 216, 89–96 (2018).

25) Rood BD, De Vries GJ. Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J. Comp. Neurol., 519, 2434–2474 (2011).

26) DiBenedictis BT, Nussbaum ER, Cheung HK, Chenguk HE, Veenema AH. Quantitative mapping reveals age and sex differences in vasopressin, but not oxytocin, immunoreactivity in the rat social behavior neural network. J. Comp. Neurol., 525, 2549–2570 (2017).
27) Caldwell HK, Lee HJ, Macbeth AH, Young WS 3rd. Vasopressin: behavioral roles of an “original” neuropeptide. *Prog. Neurobiol.*, 84, 1–24 (2008).

28) Pournajafi-Nazarloo H, Kenkel W, Mohsenpour SR, Sanzenbacher L, Saadat H, Partoo L, Yee J, Azizi F, Carter CS. Exposure to chronic isolation modulates receptors mRNAs for oxytocin and vasopressin in the hypothalamus and heart. *Peptides*, 43, 20–26 (2013).

29) Ruscio MG, Sweeny T, Hazleton J, Supparkul P, Sue Carter C. Social environment regulates corticotropin releasing factor, corticosterone and vasopressin in juvenile prairie voles. *Horm. Behav.*, 51, 54–61 (2007).

30) Viau V, Soriano L, Dallman MF. Androgens alter corticotropin releasing hormone and arginine vasopressin mRNA within forebrain sites known to regulate activity in the hypothalamic–pituitary–adrenal axis. *J. Neuroendocrinol.*, 13, 442–452 (2001).

31) Harding CF, Leshner AI. The effects of adrenalectomy on the aggressiveness of differently housed mice. *Physiol. Behav.*, 8, 437–440 (1972).

32) Heilman RD, Brugmans M, Strainer SM. Delayed development of aggressive behavior in castrate isolated male mice. *Horm. Behav.*, 9, 107–111 (1977).

33) Mohamed NAE, Tohamy AA, Elgamal B, Abdel Moneim AE. Ameliorative effect of citrus peel extract on castration-induced oxidative stress in liver and kidney of rats. *J. App. Pharm. Sci.*, 4, 64–68 (2014).

34) Bianchi M, Fone KC, Shah AJ, Atkins AR, Dawson LA, Heidbreder CA, Hagan JJ, Marsden CA. Chronic fluoxetine differentially modulates the hippocampal microtubular and serotonergic system in grouped and isolation reared rats. *Eur. Neuropsychopharmacol.*, 19, 778–790 (2009).

35) Tamano H, Kan F, Oku N, Takeda A. Ameliorative effect of Yokusansan on social isolation-induced aggressive behavior of zinc-deficient young mice. *Brain Res. Bull.*, 83, 351–355 (2010).

36) Bell R, Hobson H. 5-HT₁₆ receptor influences on rodent social and agonistic behavior: a review and empirical study. *Neurosci. Biobehav. Rev.*, 18, 325–338 (1994).

37) Rilke O, Will K, Jahkel M, Oehler J. Behavioral and neurochemical effects of anpirtoline and citalopram in isolated and group housed mice. *Prog. Neuropsychopharmacol. Biol. Psychiatry*, 25, 1125–1144 (2001).

38) Schiller L, Jahkel M, Oehler J. The influence of sex and social isolation housing on pre- and postsynaptic 5-HT₁₆ receptors. *Brain Res.*, 1103, 76–87 (2006).

39) Günther L, Liescher S, Jahkel M, Oehler J. Effects of chronic citalopram treatment on 5-HT₁₆ and 5-HT₁₃ receptors in group- and isolation-housed mice. *Eur. J. Pharmacol.*, 593, 49–61 (2008).

40) Del-Bel EA, Joca SR, Padovan CM, Guimarães FS. Effects of isolation-rearing on serotonin-1A and M1-muscarinic receptor messenger RNA expression in the hippocampal formation of rats. *Neurosci. Lett.*, 332, 123–126 (2002).

41) Wright IK, Ismail H, Upton N, Marsden CA. Effect of isolation rearing on 5-HT agonist-induced responses in the rat. *Psychopharmacology*, 105, 259–263 (1991).