Two Similarity Reductions and New Solutions for the Generalized Variable-Coefficient KdV Equation by Using Symmetry Group Method

Rehab M. El-Shiekh1,2
1Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt.
2Department of Mathematics, College of Science and Humanities at Howtat Sudair, Majmaah University, Kingdom of Saudi Arabia

Abstract

In this paper, a generalized variable-coefficient KdV equation (vcKdV) arising in fluid mechanics, plasma physics and ocean dynamics is investigated by using symmetry group analysis. Two basic generators are determined, and for every generator in the optimal system the admissible forms of the coefficients and the corresponding reduced ordinary differential equation are obtained. The search for solutions to those reduced ordinary differential equations yields new exact solutions for the generalized vcKdV equation.

Key words: symmetry group method, generalized variable-coefficients KdV equation (vcKdV), Tanh-function method.

1 Introduction

In 1895, Korteweg and de Vries developed a nonlinear partial differential equation to model the propagation of shallow water waves \[1\]. This famous classical equation is known simply as the KdV equation. Recently, the KdV equation have been derived and modified in many different branches of science and engineering including the pulse-width modulation \[2\], mass transports in a chemical response theory \[3\], dust acoustic solitary structures in magnetized dusty plasmas \[4\] and nonlinear long dynamo waves observed in the Sun \[5\]. However, the high-order nonlinear terms must be taken into account in some complicated situations like at the critical density or in the vicinity of the critical velocity \[6–8\]. The modified KdV (mKdV)-typed equation, on the other hand, has recently been used, e.g., to model the dust-ion-acoustic waves in such cosmic environments as those in the supernova shells and Saturn’s F-ring \[9\].
In many real physical backgrounds, the variable-coefficient nonlinear evolution equations often can provide more powerful and realistic models than their constant-coefficient counterparts when the inhomogeneities of media and nonuniformities of boundaries are considered [10-22]. Thereby, some inhomogeneous KdV models with the time-dependent coefficients have been derived to describe a variety of interesting and significant phenomena in fluid mechanics, ocean dynamics and plasma physics, as follows:

In fluid mechanics, by considering the blood as incompressible fluid, the evolution equation is obtained as a variable-coefficient mKdV (vcmKdV) equation [14]
\[U_\tau + \mu_4 U^2 U_\zeta + \mu_2 U_{\zeta\zeta\zeta} + \mu_3 h_2(\tau) U_\zeta = 0, \]
where \(\mu_2, \mu_3 \) and \(\mu_4 \) are some constants describing the material properties of the tube and the variable \(U \) is the dynamical radial displacement of the elastic tube.

In ocean dynamics, the pycnocline lies midway between the sea bed and surface, the following vcmKdV model is obtained [8]
\[u_t + a(t) u u_x + k u^2 u_x + u_{xxx} = 0, \]
where \(a(t) \) depends on the pycnocline location and \(k \) describes the internal waves in a stratified ocean, as observed on the northwest shelf of Australia [23] and in the Gotland deep of the Baltic Sea [24]. Also, in an inhomogeneous two-layer shallow liquid, the governing equation modelling the long wave propagation is the extended KdV model with variable coefficients [25-26]
\[u_t - 6\alpha(t) u u_x - 6\gamma u^2 u_x + \theta(t) u_{xxx} = 0, \]
where \(u(x,t) \) is proportional to the elevation of the interface between two layers, \(\alpha(t) \) and \(\theta(t) \) imply that the ratio of the depths of two layers depend on the coordinate “t” [27].

In plasma physics, the investigation on the dynamics hidden in the plasma sheath transition layer and inner sheath layer gave a perturbed mKdV model [28],
\[\psi_x + 6\psi \psi_\eta + \sigma \psi^2 \psi_\eta - \psi_\eta\eta + h(\tau) \psi_\eta = 0, \]
where \(\sigma \) is a constant and \(h(\tau) \) is an analytic function.

For the importance of the variable-coefficient KdV-type equations, we will use the symmetry group analysis to study a generalized variable-coefficient KdV equation (vcKdV) [29]
\[u_t + g_1 u_{xxx} + (g_2 u^3 + g_3 u^2 + g_4 u + g_5) u_x + g_6 u + g_7 = 0, \]
where \(g_i = g_i(t), \ i = 1, ..., 7, \) are arbitrary smooth functions of \(t \). Equation (5) includes considerably interesting equations like equations (1-4). When, \(g_2 = 0 \), equation (5) is reduced to that in Ref. [30] derived by considering the time-dependent basic flow and boundary conditions from the well-known Euler equation with an earth rotation term. Also, if \(g_2 = g_7(t) = 0 \), equation (5) becomes the generalized Gardner equation with variable coefficients which arising
in nonlinear lattice, plasma physics and ocean dynamics [31]. Although the KdV equation has been extensively studied for a long time via various methods, yet the vcKdV equation has not been well handled as far as we known. Recently, Qi Wang in [29] used the semi-inverse method to obtain the variational principle for it but no solutions obtained. Therefore, the most important target for this paper is obtaining new exact solutions for equation (5) under some constraints among the variable coefficients by using the symmetry group analysis.

2 Symmetry method

We briefly outlined Steinberg’s similarity method of finding explicit solutions for both linear and non-linear partial differential equations [32 – 37]. The method based on finding the symmetries of the differential equations is as follows:

Suppose that the differential operator L can be written in the form

$$L(u) = \frac{\partial^p u}{\partial t^p} - H(u),$$ \hspace{1cm} (6)

where $u = u(t,x)$ and H may depend on t,x,u and any derivative of u as long the derivative of u dose not contain more than $(p - 1)$, t derivatives. We will consider the symmetry operator (called infinitesimal symmetry), being quasi-linear partial differential operator of first-order, in the form of

$$S(u) = A(t,x,u)\frac{\partial u}{\partial t} + \sum_{i=1}^{n} B_i(t,x,u) \frac{\partial u}{\partial x_i} + C(t,x,u),$$ \hspace{1cm} (7)

and define the Fréchet derivative of $L(u)$ by

$$F(L,u,v) = \frac{d}{d\varepsilon}L(u + \varepsilon v)|_{\varepsilon=0}$$ \hspace{1cm} (8)

With these definitions, we will conduct the following steps:

(i) Compute $F(L,u,v)$;
(ii) Compute $F(L,u,S(u))$;
(iii) Substitute $H(u)$ for $(\frac{\partial^p u}{\partial t^p})$ in $F(L,u,S(u))$;
(iv) Set this expression to zero and perform a polynomial expansion;
(v) Solve the resulting partial differential equations. Once this system of partial differential equations is solved for the coefficients of $S(u)$, Eq. (6) can be used to obtain the functional form of the solutions.
3 Determination of the symmetries

The vcKdV equation can be expressed as

$$L(u) = u_t + g_1 u_{xxx} + (g_2 u^3 + g_3 u^2 + g_4 u + g_5) u_x + g_6 u + g_7 = 0. \quad (9)$$

In order to find the symmetries of Eq. (9), we set the following symmetry operator

$$S(u) = A(x, t, u) u_t + B(x, t, u) u_x + C(x, t, u). \quad (10)$$

Calculating the Fréchet derivative $F(L, u, v)$ of $L(u)$ in the direction of v, given by Eq. (8), and replacing v by $S(u)$ in F, we get

$$F(L, u, S(u)) = S_t + g_1 S_{xxx} + 3g_2 u^2 u_x S + g_2 u^3 S_x + g_3 u^2 S_x + g_4 u_x S + g_4 u S + g_5 + g_7. \quad (11)$$

Substituting the values of different derivatives of $S(u)$ in F with the aid of Maple program, we get a polynomial expansion in $u_x, u_t, u_y, u_x u_t, \ldots$ etc. On making use of Eq. (9) in the polynomial expression for F, rearranging terms of various powers of derivatives of u and equating them to zero, we obtain

$$A_x = A_u = B_u = C_u = C_{uu} = 0,$$

$$3g_1 B_x - (Ag_1)_t = 0,$$

$$C_t - (Ag_7)_t - (Ag_6)_t u + g_1 C_{xxx} + g_2 C_x u^3 + g_3 C_x u^2 + g_4 C_x u + g_5 C_x - g_6 C_u u - g_7 C_u + g_6 C = 0,$$

$$g_2 B_x u^3 + g_3 B_x - (Ag_5)_t - (Ag_4)_t u^3 - (Ag_3)_t u^2 + 2g_3 u C + B_t + g_4 C + 3g_2 u^2 C - (Ag_2)_t u + g_4 B_x u + g_3 B_x u^2 = 0. \quad (12)$$

On solving system (12), the infinitesimal A, B and C in the above equations are:

$$A = \frac{1}{\Gamma(t)}[3c_1 \Gamma(t) + c_2], \quad \frac{d\Gamma(t)}{dt} = g_1(t),$$

$$B = c_1 x + c_3,$$

$$C = c_4 u + c_5, \quad (13)$$

where $c_i, i = 1, 2, \ldots, 5$, are arbitrary constants. The functions $g_i = g_i(t), i = 1, 2, \ldots, 7$, are governed by the following equations:

$$(Ag_2)_t - (c_1 + 3c_4) g_2 = 0,$$

$$(Ag_3)_t - (c_1 + 2c_4) g_3 - 3c_5 g_2 = 0,$$

$$(Ag_4)_t - (c_1 + c_4) g_4 - 2c_5 g_3 = 0,$$

$$(Ag_5)_t - c_1 g_5 + c_5 g_4 = 0,$$

$$(Ag_6)_t = 0,$$

$$(Ag_7)_t + c_4 g_7 + c_5 g_6 = 0. \quad (14)$$
The symmetry Lie algebra L^5 of Eq. (5) is generated by the operators

\begin{align*}
V_1 &= \frac{3\Gamma(t)}{\Gamma'(t)} \frac{\partial}{\partial t} + x \frac{\partial}{\partial x}, \\
V_2 &= \frac{1}{\Gamma'(t)} \frac{\partial}{\partial t}, \\
V_3 &= \frac{\partial}{\partial x}, \\
V_4 &= u \frac{\partial}{\partial u}, \\
V_5 &= \frac{\partial}{\partial u}.
\end{align*}

(15)

where L^5 is the direct sum of $V_1, ..., V_5$ and the commutator table of it is given by

	V_1	V_2	V_3	V_4	V_5
V_1	0	$-3V_2$	$-V_3$	0	0
V_2	$3V_2$	0	0	0	0
V_3	V_3	0	0	0	0
V_4	0	0	0	0	$-V_5$
V_5	0	0	0	V_5	0

4 One-dimensional optimal system of L^5

We need to search a one-dimensional optimal system of L^5 by considering a general element of L^5, $V = \sum_{i=1}^5 a_i V_i$, and checking whether V can be mapped to a new element V' under the general adjoint transformation $Ad(\exp(\varepsilon V_i)) V_j = V_j - \varepsilon [V_i, V_j] + \frac{\varepsilon^2}{2} [V_i, [V_i, V_j]]$, so as to simplify it as much as possible.

The adjoint table of L^5

	V_1	V_2	V_3	V_4	V_5
V_1	V_1	$\exp(3\varepsilon) V_2$	$\exp(\varepsilon) V_3$	V_4	V_5
V_2	$V_1 - 3\varepsilon V_2$	V_2	V_3	V_4	V_5
V_3	$V_1 - \varepsilon V_3$	V_2	V_3	V_4	V_5
V_4	V_1	V_2	V_3	V_4	$\exp(\varepsilon) V_5$
V_5	V_1	V_2	V_3	$V_4 - \varepsilon V_5$	V_5

Following [38], we can deduce the following basic fields which form an optimal system for the coupled KdV system,

(i) $V_1 + k_1 V_4$,
(ii) $V_2 + k_2 V_3 + k_3 V_4$,
(iii) $V_3 + k_4 V_5$,

5
(iv) V_4,
(v) V_5,
where $k_i, i = 1, ..., 4$ are arbitrary constants. Because cases (iii), (iv), and (v) give trivial reductions therefore, we will discuss the first and the second cases only.

In order to obtain the invariant transformation in each of the above cases, we write the characteristic equation in the form
\[
\frac{dt}{A(x,t,u)} = \frac{dx}{B(x,t,u)} = \frac{-du}{C(x,t,u)}. \tag{16}
\]

5 Reductions and exact solutions

In this section, the primary focus is on the reductions associated with the two vector fields (i) and (ii), and the admissible forms of the coefficients by solving Eq. (16) and the system of integrability conditions (14)

Generator (I)

The generator (i) in the optimal system defines the similarity variable and the similarity solution as follows:
\[
\begin{align*}
\zeta &= (x + k_1) \Gamma(t) \frac{1}{\Gamma'(t)} \\
u(x,t) &= F(\zeta) \Gamma(t)^{-\frac{k_1}{3}}, \tag{17}
\end{align*}
\]
and the coefficients are given as:
\[
\begin{align*}
g_2(t) &= \frac{n_1}{3} \Gamma'(t) \Gamma(t)^{\frac{2}{3} + k_1}, \ \\
g_3(t) &= \frac{n_2}{3} \Gamma'(t) \Gamma(t)^{\frac{1}{3}(k_1 - 1)}, \ \\
g_4(t) &= \frac{n_3}{3} \Gamma'(t) \Gamma(t)^{\frac{1}{3}(k_1 - 2)}, \ \\
g_5(t) &= \frac{n_4}{3} \Gamma'(t) \Gamma(t)^{-\frac{2}{3}}, \ \\
g_6(t) &= \frac{n_5}{3} \Gamma'(t) \Gamma(t)^{-1}, \ \\
g_7(t) &= \frac{n_6}{3} \Gamma'(t) \Gamma(t)^{-\left(1 + \frac{2}{3}\right)}, \tag{18}
\end{align*}
\]
where $n_1, ..., n_6$ are arbitrary constants. Using the similarity variable, the forms of the similarity solution and the coefficient functions, the vcKdV is reduced to the following ordinary differential equation.
\[
3F''' + n_1 F^3 F' + n_2 F^2 F' + n_3 F F' + (n_4 - \zeta) F' + (n_5 - k_1) F + n_6 = 0. \tag{19}
\]

To solve Eq. (19), we seek a special solution in the form of
\[
F = A_0 + A_1 \zeta^{-\frac{2}{3}}, \tag{20}
\]
where \(A_0 \) and \(A_1 \) are arbitrary constants to be determined. Substituting Eq. (20) into Eq. (19) and equating the coefficients of different powers of \(\zeta \) to zero, we get a system of algebraic equations, solutions of which give rise to the relations on the constants as

\[
A_0 = \frac{3n_6}{2}, \quad A_1 = \left(\frac{60n_6}{n_2} \right)^{\frac{1}{3}}, \quad n_1 = -\frac{2n_2}{9n_6}, \quad n_3 = -\frac{3}{2}n_2n_6, \quad n_4 = \frac{3}{4}n_2n_6^2, \quad k_1 = \frac{2}{3} + n_5.
\]

Finally, we get the following exact solution for the vcKdV

\[
u_1(x, t) = \Gamma(t) \left(\frac{2}{3} + n_5 \right) \left(\frac{3n_6}{2} + \left(\frac{60n_6}{n_2} \right)^{\frac{1}{3}} \left(x + \frac{2}{3} + n_5 \right) \Gamma(t) \right)^{\frac{1}{3}}.
\]

Generator (II)

Corresponding to this generator, the associated similarity variable and similarity solution are given by

\[
\begin{align*}
\zeta &= k_2 \Gamma (t) - x, \\
u (x, t) &= F(\zeta) e^{-k_3 \Gamma(t)},
\end{align*}
\]

(23)

and the coefficient functions are given by

\[
\begin{align*}
g_2 (t) &= m_1 \Gamma' (t) e^{3k_3 \Gamma(t)}, \\
g_3 (t) &= m_2 \Gamma' (t) e^{3k_3 \Gamma(t)}, \\
g_4 (t) &= m_3 \Gamma' (t) e^{k_3 \Gamma(t)}, \\
g_5 (t) &= m_4 \Gamma' (t), \\
g_6 (t) &= m_5 \Gamma' (t), \\
g_7 (t) &= m_6 \Gamma' (t) e^{-k_3 \Gamma(t)},
\end{align*}
\]

(24)

where \(m_1, \ldots, m_6 \) are arbitrary constants.

The reduced ordinary differential equation is

\[
F''' + m_1 F^3 F' + m_2 F^2 F' + m_3 F F' + (m_4 - k_3) F' + (k_4 - m_5) F + m_6 = 0.
\]

(25)

Herein, we apply the modified extended tanh function method [39–40] to obtain exact solitary wave solutions to Eq. (25). Let us assume that Eq. (25) has a solution in the form

\[
F(\zeta) = A_0 + \sum_{i=1}^{N} A_i \phi^i + B \phi^{-i},
\]

(26)

where \(\phi (\zeta) \) is a solution of the following Riccati equation

\[
\phi' = r + \phi^2,
\]

(27)
which has the following solutions

\[
\begin{align*}
\phi(\zeta) &= -\sqrt{-r} \tanh(\sqrt{-r}\zeta), & r < 0, \\
\phi(\zeta) &= -\sqrt{-r} \coth(\sqrt{-r}\zeta), & r < 0, \\
\phi(\zeta) &= \sqrt{r} \tan(\sqrt{r}\zeta), & r > 0, \\
\phi(\zeta) &= -\sqrt{r} \cot(\sqrt{r}\zeta), & r > 0, \\
\phi(\zeta) &= -\frac{1}{\zeta}, & r = 0.
\end{align*}
\]

(28)

Substitute (26) into Eq. (25) and by balancing the linear term with the greatest nonlinear term we get

\[
N = \frac{2}{3}
\]

(29)

Therefore

\[
F(\zeta) = A_0 + A_1 \phi^\frac{2}{3} + B_1 \phi^{-\frac{2}{3}}.
\]

(30)

Substituting (30) into Eq. (25) and equating the powers of \(\phi^j \), \(j = 0, -\frac{11}{3}, -3, -\frac{7}{3}, ... \)
to zero, we obtain a system of algebraic equations. By solving that system with Maple program yields the following solution

\[
A_1 = -2 \left(\frac{5}{9m_1} \right)^\frac{1}{3} B_1 = \left(\frac{15}{m_1} \right)^\frac{1}{3} \left(\frac{3m_3 m_1 - m_2^2}{63m_1} \right), & r = \pm \frac{1}{42} \sqrt{\frac{5}{14m_1} \left(\frac{m_2^2 - 3m_1 m_3}{m_1} \right)^\frac{2}{3}},
\]

\[
A_0 = -\frac{m_2}{3m_1}, m_6 = 0, k_3 = m_5, k_2 = m_4 + \frac{1}{1323m_1} \left(98m_2^3 - 414m_1m_2m_3 \pm 2\sqrt{70} \left(m_2^2 - 3m_1 m_3 \right)^\frac{2}{3} \right).
\]

(31)

Substituting Eq. (31) into Eq. (30), we get

\[
F(\zeta) = -\frac{m_2}{3m_1} - 2 \left(\frac{5}{9m_1} \right)^\frac{1}{3} \phi^\frac{2}{3} + \left(\frac{15}{m_1} \right)^\frac{1}{3} \left(\frac{3m_3 m_1 - m_2^2}{63m_1} \right) \phi^{-\frac{2}{3}},
\]

(32)

where \(\phi \) is given by Eq. (28). Substitution of Eq. (32) into Eq. (23) results in

\[
u_2(x,t) = e^{-k_2 \Gamma(t)} \left[\frac{-m_2}{3m_1} + 2 \left(\frac{5}{9m_1} \right)^\frac{1}{3} r^\frac{1}{3} \tanh^\frac{2}{3}(\sqrt{-r}(k_2 \Gamma(t) - x)) - \left(\frac{15}{m_1} \right)^\frac{1}{3} \left(\frac{3m_3 m_1 - m_2^2}{63m_1} \right) \right],
\]

(33)

\[
u_3(x,t) = e^{-k_2 \Gamma(t)} \left[\frac{-m_2}{3m_1} + 2 \left(\frac{5}{9m_1} \right)^\frac{1}{3} r^\frac{1}{3} \coth^\frac{2}{3}(\sqrt{-r}(k_2 \Gamma(t) - x)) + \left(\frac{15}{m_1} \right)^\frac{1}{3} \left(\frac{3m_3 m_1 - m_2^2}{63m_1} \right) \right],
\]

(34)

where

\[
r = \frac{1}{42} \sqrt{\frac{5}{14m_1} \left(\frac{m_2^2 - 3m_1 m_3}{m_1} \right)^\frac{2}{3}} \quad \text{and} \quad k_2 = m_4 + \frac{1}{1323m_1^2} \left(98m_2^3 - 414m_1m_2m_3 - 2\sqrt{70} \left(m_2^2 - 3m_1 m_3 \right)^\frac{2}{3} \right),
\]

(35)
\[u_4 (x, t) = -e^{-k_3 \Gamma (t)} \left[\frac{m_2}{3 m_1} + 2 \left(\frac{5}{9 m_1} \right) ^ \frac{1}{2} r ^ \frac{1}{2} \tan \left(\sqrt{r} (k_2 \Gamma (t) - x) \right) - \frac{\left(\frac{15}{m_1} \right) ^ \frac{1}{2} \left(\frac{3m_3 m_1 - m_3 ^ 2}{63m_1} \right)}{r ^ \frac{1}{2} \tan \left(\sqrt{r} (k_2 \Gamma (t) - x) \right)} \right] , \]

\[u_5 (x, t) = -e^{-k_3 \Gamma (t)} \left[\frac{m_2}{3 m_1} + 2 \left(\frac{5}{9 m_1} \right) ^ \frac{1}{2} r ^ \frac{1}{2} \cot \left(\sqrt{r} (k_2 \Gamma (t) - x) \right) - \frac{\left(\frac{15}{m_1} \right) ^ \frac{1}{2} \left(\frac{3m_3 m_1 - m_3 ^ 2}{63m_1} \right)}{r ^ \frac{1}{2} \cot \left(\sqrt{r} (k_2 \Gamma (t) - x) \right)} \right] , \]

where

\[r = \frac{1}{42} \sqrt{\frac{5}{14m_1}} \left(\frac{m_2 ^ 2 - 3m_1 m_3}{m_1} \right) ^ \frac{1}{2} \text{ and } k_2 = m_4 + \frac{1}{1323m_1 ^ 2} \left(98m_2 ^ 2 - 441m_1 m_2 m_4 + 2\sqrt{70} \left(m_2 ^ 2 - 3m_1 m_3 \right) ^ \frac{1}{2} \right) . \]

\[u_6 (x, t) = -e^{-k_3 \Gamma (t)} \left[\frac{m_2}{3 m_1} + 2 \left(\frac{5}{9 m_1} \right) ^ \frac{1}{2} (k_2 \Gamma (t) - x) ^ \frac{1}{2} \right] , \]

where

\[r = 0, k_2 = \frac{-m_3 ^ 2}{27m_1 ^ 2} + m_4 \text{ and } m_3 = \frac{m_3}{3m_1} . \]

6 Conclusion

In this paper, we have applied the symmetry group analysis to the vcKdV. This application leads to two nonequivalant generatores, for every generator in the optimal system the admissible forms of the coefficients and the corresponding reduced ordinary differential equation are obtained. The search for solutions to those reduced ordinary differential equations using tanh function method has yielded many exact new solutions.

References

[1] Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M., "Method for solving the Korteweg–de Vries equation", Phys. Rev. Lett., 19, 1095–1097, 1967.

[2] D. V. Chudnovsky and G. V. Chudnovsky, "Solution of the pulse width modulation problem using orthogonal polynomials and Korteweg–de Vries equations", Proc. Natl. Acad. Sci. USA, 96, 12263, 1999.

[3] Z. Horii, "Formulation of the Korteweg–de Vries and the Burgers equations expressing mass transports from the generalized Kawasaki–Ohta equation", Phys. Lett. A, 306, 45-51, 2002.
[4] L.P. Zhang, J.K. Xue, "Effects of the dust charge variation and non-thermal ions on multi-dimensional dust acoustic solitary structures in magnetized dusty plasmas", Chaos Solitons Fractals, 23, 543-555, 2005.

[5] J. Mason, E. Knobloch,"Long dynamo waves", Phys. D, 205, 100-124, 2005.

[6] A.H. Khater, A.A. Abdallah, O.H. El-Kalaawy, D.K. Callebaut, ”Bäcklund transformations, a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions”, Phys. Plasmas, 6, 4542, 1999.

[7] Y. Nejoh,"Double layers, spiky solitary waves, and explosive modes of relativistic ion-acoustic waves propagating in a plasma", Phys. Fluids B, 4, 2830, 1992.

[8] R. Grimshaw, E. Pelinovsky, T. Talipova, "Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity”, Phys. D, 132, 40, 1999.

[9] Xing Lü, Fuhong Lin and Fenghua Qi, "Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions”, Applied Mathematical Modelling 39, 3221-3226, 2015.

[10] M. H. M. Moussa and R. M. El Shiekh,"Auto-Bäcklund transformation and similarity reductions to the variable coefficients variant Boussinesq system”, Phys. Lett. A, 372, 1429, 2008.

[11] M. H. M. Moussa and R. M. El Shiekh," Two Applications of the Homogeneous Balance Method for Solving the Generalized Hirota-Satsuma Coupled KdV System with Variable Coefficients”, Int. J. of Nonlinear. Sci.,7, 29, 2009.

[12] R. M. El-Shiekh,"New Application for G'/G-expansion Method on the Variable Coefficient Variant Boussinesq System",Int. J. of Nonlinear Sci., 10, 212-216, 2010.

[13] M. H. M. Moussa and R. M. El Shiekh,"Direct Reduction and Exact Solutions for Generalized Variable Coefficients 2D KdV Equation under Some Integrability Conditions", Commun. Theor. Phys., 55, 551–554, 2011.

[14] R. M. EL-Shiekh, Math. Meth. Appl. Sci. ”New exact solutions for the variable coefficient modified KdV equation using direct reduction method”, 36, 1, 2012.

[15] R. M. El-Shiekh and A-Gh. Al-Nowehy, "Integral Methods to Solve the Variable Coefficient Nonlinear Schrödinger Equation", Z. Naturforsch. A, 68, 255, 2013.
[16] R.M. El-Shiekh, "Direct Similarity Reduction and New Exact Solutions for the Variable-Coefficient Kadomtsev–Petviashvili Equation", Z. Naturforsch a, 70, 445-450, 2015

[17] Xing Lü, Wenxiu Ma, Jun Yu, Fuhong Lin and Chaudry Masood Khalique, Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model, Nonlinear Dynamics 82, 1211-1220, 2015.

[18] Xing Lü, Wenxiu Ma and Chaudry Masood Khalique, A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model, Applied Mathematics Letters 50, 37-42, 2015.

[19] Xing Lü, Wenxiu Ma, Jun Yu, Fuhong Lin and Chaudry Masood Khalique, Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model, Nonlinear Dynamics 82, 1211-1220, 2015.

[20] Xing Lü and Mingshu Peng, Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model, Chaos 23, 013122:1-7, 2013.

[21] Xing Lü, Wenxiu Ma, Jun Yu and Chaudry Masood Khalique, Solitary waves with the Madelung fluid description: A generalized derivative nonlinear Schrödinger equation, Communications in Nonlinear Science and Numerical Simulation 31, 40-46, 2016.

[22] Xing Lü and Fuhong Lin, Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order, Communications in Nonlinear Science and Numerical Simulation 32, 241-261, 2016.

[23] P.E. Holloway, E. Pelinovsky, T. Talipova, B. Barnes," A Nonlinear Model of Internal Tide Transformation on the Australian North West Shelf" J. Phys. Oceanogr., 27, 871, 1997.

[24] T. Talipova, E. Pelinovsky, T. Kouts,"Kinematic characteristics of an internal wave field in the Gotland Deep in the Baltic Sea", Oceanology., 38, 33, 1998.

[25] J.A. Gear, R. Grimshaw,"A second-order theory for solitary waves in shallow fluids", Phys. Fluids, 26, 14, 1983.

[26] B.A. Malomed, V.I. Shrira,"Soliton caustics", Phys. D, 53, 1, 1991.

[27] W.P. Hong, M.S. Yoon,"Analytic solitary-wave solutions for modified Korteweg - De Vries equation with t-dependent coefficients", Z. Naturforsch. A, 56, 366, 2001.

[28] H.L. Liu, M. Slemrod, "Study on integrated development layout and mode of coal resources in China", Appl. Math. Lett., 17, 401, 2004.
[29] Qi Wang, "Variational principle for variable coefficients KdV equation", Phys. Lett. A, 358, 91-93, 2006.

[30] X.Y. Tang, F. Huang, S.Y. Lou, "Variable coefficient KdV equation and the analytical diagnoses of a dipole blocking life cycle", Chinese Physics Letter, 23, 887-890, 2006.

[31] Juan Li, Tao Xu, Xiang-Hua Meng, Ya-Xing Zhang, Hai-Qiang Zhang, Bo Tian, "Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation", J. Math. anal. appl., 336, 1443-1455, 2007.

[32] S. Steinberg, "Symmetry Methods in Differential Equation", Technical Report, No. 367, University of New Mexico, 1979.

[33] M. H. M. Moussa, "Similarity solutions to non-linear partial differential equation of physical phenomena represented by the Zakharov-Kuznetsov equation", Int. J. of Eng. Sci., 39, 1565-1575, 2001.

[34] M. H. M. Moussa, and Rehab M. El Shiekh, "Similarity reduction and similarity solutions of Zabolotskay–Khoklov equation with a dissipative term via symmetry method", Physica A, 371, 325-335, 2006.

[35] M. H. M. Moussa, and Rehab M. El-Shiekh, "Similarity Solutions for Generalized Variable Coefficients Zakharov–Kuznetsov Equation under Some Integrability Conditions", Comm. in Theo. Phys., 54, 603-606, 2010.

[36] M. H. M. Moussa, and Rehab M. El-Shiekh, "Nonequivalent Similarity Reductions and Exact Solutions for Coupled Burgers-Type Equations", Comm. in Theo. Phys., 57, 1-4, 2012.

[37] G.M. Moatimid, Rehab M. El-Shiekh, Abdul-Ghani A.A.H. Al-Nowehy, "Exact solutions for Calogero–Bogoyavlenskii–Schiff equation using symmetry method", Appl. Math. and comp. 220, 455–462, 2013.

[38] P.J. Olver. Applications of Lie Group to Differential Equations. Springer Verlag: New York, USA, 1986.

[39] Malvitte, Willy, "The tanh method: a tool for solving certain classes of non-linear PDEs", Math. methods in appl. sci., 28, 2031-2035, 2005.

[40] El-Wakil S.A., and M.A. Abdou, "New exact travelling wave solutions using modified extended tanh-function method", Chaos Solitons Fractals, 31, 840-852, 2007.