LÊ'S POLYHEDRON FOR LINE SINGULARITIES

AURÉLIO MENEGON NETO

ABSTRACT. We study the topology of a line singularity, which is a complex hypersurface with non-isolated singularity given by a complex line. We describe the degeneration of its Milnor fibre to the singular hypersurface by means of a pair of polyhedra, one in the Milnor fibre and other in the singular fibre, which are deformation retracts of the corresponding fibres; and a continuous map taking the Milnor fibre to the singular fibre and the first polyhedron to the second one, which restrict to a homeomorphism outside the polyhedra. In the same sense, we also study the topology of a complex isolated singularity hypersurface under a non-local viewpoint.

INTRODUCTION

The idea of studying the critical level of a complex function by looking at the non-critical level is classical, used by many authors like Milnor, Hirzebruch, Brieskorn, Pham and others. This lead to the classic Fibration Theorem of Milnor and to the study of the vanishing homology of a singularity.

In the case of an isolated singularity, Lê Dung Trang refined in [10] the idea of vanishing homology and proved that there exists a vanishing polyhedron in the Milnor fibre such that the Milnor fibre deformation retracts to it, and that there is a continuous map from the Milnor fibre to the singular one which restricts to a homeomorphism outside the polyhedron and takes the polyhedron to the singular point.

It is unlikely that there is a natural extension of these results to holomorphic functions with arbitrary singular locus. In [13] J. Seade and the author proved that there is a vanishing polyhedron in the boundary of the Milnor fibre of any complex hypersurface with one-dimensional singular set. This describes how the link of the singularity is obtained from this boundary, whose topology has been studied by many authors (see [19], [14], [17] and [5], for instance).

The main goal of this paper is to show that there is a vanishing polyhedron in the sense of [10] for an important class of singularities called line singularities, defined and first studied by D. Siersma in [18]. These are nothing but complex hypersurface singularity germs with singular locus a complex smooth curve. This is Theorem 3.2.

To prove this theorem, we need to consider the non-local situation of an isolated singularity, that is, the restriction of a holomorphic function $f : \mathbb{C}^n \rightarrow \mathbb{C}$, with an isolated critical point at $0 \in \mathbb{C}^n$, to a closed ball around 0 with radius ϵ, denoted by B_ϵ, where ϵ is not necessarily a Milnor radius such that the restriction of f to

Date: 15-10-2012.

2000 Mathematics Subject Classification. Primary: 14B05, 14J17, 32S05, 32S15, 32S20, 32S25.
Partial support from CONACYT and UNAM (Mexico), and FAPESP (Brazil).
the ball B_{ε} has only one critical point and such that $f^{-1}(0)$ intersects the sphere S_{ε} transversally, in the stratified sense.

Then in section 1 we generalize Lê's idea of vanishing polyhedron to such non-local situation of an isolated singularity. We show that there exists a pair of polyhedra, one in the smooth fibre $f^{-1}(t) \cap B_{\varepsilon}$, for $t \neq 0$ small, and other in the singular fibre $f^{-1}(0) \cap B_{\varepsilon}$, which are deformation retracts of the corresponding fibres; and a continuous map taking the smooth fibre to the singular one and the first polyhedron to the second one, which restricts to a homeomorphism outside the polyhedra. This is Theorem 1.3. In section 2 we prove this theorem.

The author is grateful to J. Seade, who introduced him to the subjects concerned in this work and made significant contributions to it. He also thanks D.T. Lê and M.A.S. Ruas for many helpful discussions.

1. Lê’s Polyhedron for isolated singularities

In this section, we study isolated singularity hypersurfaces. In the first subsection we recall the main theorem of [10], which describes the degeneration of the Milnor fibre of a holomorphic germ of function $f : (X, 0) \to (\mathbb{C}, 0)$ with an isolated singularity, defined on a germ of complex analytic set X (with arbitrary singularity). Then in the second subsection we extend that theorem to the non-local case, when X is a complex affine space.

1.1. The local case. Let $f : \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function and suppose that $f(0) = 0$, in order to simplify notation. It is well known (see [10] for instance) that there exists a positive real number $\varepsilon > 0$ sufficiently small such that for any ε' with $0 < \varepsilon' \leq \varepsilon$ one has that $f^{-1}(0)$ intersects transversally the sphere $S_{\varepsilon'}$ around $0 \in \mathbb{C}^n$ with radius ε'. This property gives the so-called (local) conical structure of a complex analytic variety. A real number $\varepsilon > 0$ as above is called a Milnor radius for f and the ball B_{ε} around 0 with radius ε is said to be a Milnor ball for f.

Milnor showed in [10] that for any Milnor radius $\varepsilon > 0$ there exists a positive real number η, with $0 < \eta << \varepsilon$, such that the restriction:

$$f| : f^{-1}(D^*_\eta) \cap B_{\varepsilon} \to D^*_\eta$$

is a locally trivial fibration, where D_η is the closed ball around 0 in \mathbb{C} with radius η and $D^*_\eta := D_\eta \setminus \{0\}$. This is the so-called Milnor fibration theorem.

If ε is a Milnor radius for f and η is sufficiently small as above, then for any $t \in D^*_\eta$ the set $F_t := f^{-1}(t) \cap B_{\varepsilon}$ is called the Milnor fibre of f and the set $F_0 := f^{-1}(0) \cap B_{\varepsilon}$ is called the special fibre of f (since the topological type of F_t does not depend on the Milnor radius ε).

In [9] Lê Dũng Tráng extended the Milnor fibration theorem for any complex analytic germ of function f defined on a reduced complex analytic space X with any singularity, with the only difference that the locally trivial fibration induced by the restriction of the function is a topological fibration (instead of a differentiable fibration). That is, given a Milnor radius $\varepsilon > 0$ there exists a real number η with $0 < \eta << \varepsilon$ such that the restriction:

$$f| : f^{-1}(D^*_\eta) \cap B_{\varepsilon} \cap X \to D^*_\eta$$
is a (topological) locally trivial fibration. For any \(t \in D^*_η \), we say that \(X_t := f^{-1}(t) \cap B_η \) is the Milnor fibre of \(f \), with boundary \(\partial X_t := X_t \cap S_η \).

Let \(S = (X_α)_{α \in A} \) be a Whitney stratification of a reduced equidimensional complex analytic space \(X \). We say that a complex analytic function \(f : X \to \mathbb{C} \) has an isolated singularity at \(x \in X \) if the restriction of \(f \) to each stratum \(X_α \) that does not contain \(x \) but whose closure contains \(x \) is a submersion and if the restriction of \(f \) to the stratum \(X_α(x) \) that contains \(x \) has an isolated singularity at \(x \).

If \(f : (X, 0) \to (\mathbb{C}, 0) \) has an isolated singularity at \(0 \in X \) and if \(ϵ \) and \(η \) are sufficiently small as above, the first author proved in [10] the following theorem:

Theorem 1.1. For each \(t \in D^*_η \) there exist:

(i) a polyhedron \(P_t \) in \(X_t \), compatible with the stratification \(S_t \), and a continuous simplicial map \(ξ_t : \partial X_t \to P_t \), compatible with \(S_t \), such that \(X_t \) is homeomorphic to the mapping cylinder of \(ξ_t \);

(ii) a continuous map \(Ψ_t : X_t \to X_0 \) that sends \(P_t \) to \(\{0\} \) and that restricts to a homeomorphism \(X_t \setminus P_t \to X_0 \setminus \{0\} \).

Moreover, the construction of the polyhedron \(P_t \), the map \(ξ_t \), and the map \(Ψ_t \), can be done simultaneously for all \(t \) in a simple path \(γ \subset D^*_η \) connecting an arbitrary \(t_0 \in D^*_η \) to \(0 \in D^*_η \). This gives a polyhedron \(P \subset f^{-1}(γ) \cap B_ϵ \) such that \(f^{-1}(γ) \cap B_ϵ \) deformation retracts to \(P \) and such that \(P \cap X_0 = P_0 \), for any \(t \in γ \).

In the theorem above and in the rest of this paper, a polyhedron is a triangulable topological space.

1.2. The non-local case. When a given real number \(ϵ \) is not a Milnor radius for \(f : \mathbb{C}^n \to \mathbb{C} \) but \(f^{-1}(0) \) intersects \(S_t \) transversally, the Milnor fibration theorem is still true in some sense. Precisely, there exists \(η > 0 \), with \(0 < η << ϵ \), such that the restriction \(f_t : f^{-1}(D^*_η) \cap B_ϵ \to D^*_η \) is a locally trivial fibration (this is a consequence of Ehresmann’s fibration theorem), but the topology of the sets \(F_t \) and \(F_0 \) do depend on the radius \(ϵ \). We want to obtain a result like Theorem 1.1 in this non-local situation.

Definition 1.2. Let \(f : \mathbb{C}^n \to \mathbb{C} \) be a holomorphic function and let \(ϵ \) be a positive real number such that the restriction \(f_t : f^{-1}(D^*_η) \cap B_ϵ \to D^*_η \) is a locally trivial fibration, for some \(η > 0 \) sufficiently small. We say that a pair of polyhedra \((P_t, P_0) \) is a Lé’s polyhedra pair for \(f \) relative to \(ϵ \) if:

(i) \(P_t \) is contained in \(F_t \), for some \(t \in D^*_η \), and \(F_t \) deformation retracts to \(P_t \);

(ii) \(P_0 \) is contained in \(F_0 \) and \(F_0 \) deformation retracts to \(P_0 \);

(iii) There exists a continuous map \(Ψ_t : F_t \to F_0 \) which sends \(P_t \) to \(P_0 \) and such that \(Ψ_t \) restricts to a homeomorphism from \(F_t \setminus P_t \) to \(F_0 \setminus P_0 \).

We say that \(f \) admits a Lé’s polyhedra pair relative to a positive real number \(ϵ \) if there exist \(η \) and \((P_t, P_0) \) as in Definition 1.2. In this case, the polyhedron \(P_t \) is called a Lé’s polyhedron for \(f \) relative to \(ϵ \) and the polyhedron \(P_0 \) is called a special polyhedron for \(f \) relative to \(ϵ \). The map \(Ψ_t \) is called a collapse map for \(f \) relative to \(ϵ \). A Lé’s polyhedra pair describes the degeneration of \(F_t \) to \(F_0 \) by means of the collapse map \(Ψ_t \).

Theorem 1.1 above says that any isolated singularity holomorphic function-germ \(f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) admits a Lé’s polyhedra pair \((P_t, P_0) \) relative to any Milnor
radius ϵ, with $\dim_k P_t = n - 1$ and $P_0 = \{0\}$ (in fact, that theorem is even more general since f can be defined in an arbitrary complex analytic set).

In this section we generalize Lê’s construction to the (isolated singularity) situation when ϵ is not necessarily a Milnor radius for f, but satisfying the following conditions:

(1) $f^{-1}(0)$ intersects S_ϵ transversally;
(2) B_ϵ contains exactly one critical point of f (at $0 \in B_\epsilon$).

Precisely, we will prove the following theorem:

Theorem 1.3. Let $f : \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function that takes $0 \in \mathbb{C}^n$ to $0 \in \mathbb{C}$. Then f admits a Lê’s polyhedra pair (P_1, P_0) relative to ϵ, for any $\epsilon > 0$ satisfying (1) and (2) above. Moreover:

(i) P_1 has real dimension $n - 1$;
(ii) If ϵ is not a Milnor radius for f, then P_0 has real dimension $n - 1$;
(iii) If ϵ is a Milnor radius for f, then $P_0 = \{0\}$.

2. Proof of Theorem 1.3

In this section we prove Theorem 1.3. For any linear form $l : \mathbb{C}^n \to \mathbb{C}$ taking $0 \in \mathbb{C}^n$ to $0 \in \mathbb{C}$, the restriction of both f and l to B_ϵ induces an analytic morphism

$$\phi_1 : B_\epsilon \to \mathbb{C}^2$$

defined by $\phi_l(z) = (l(z), f(z))$, for any $z \in B_\epsilon$. We have the following lemma (see theorem-definition 1.4.1 of [10]):

Lemma 2.1. There exists a non-empty Zariski open set Ω in the space of non-zero linear forms of \mathbb{C}^n to \mathbb{C} that take $0 \in \mathbb{C}^n$ to $0 \in \mathbb{C}$, such that for any $l \in \Omega$, the analytic morphism $\phi_l : B_\epsilon \to \mathbb{C}^2$ satisfies:

(i) If C is the critical locus of ϕ_l and $\Gamma_l \subset B_\epsilon$ is the union of the irreducible components of C which are not contained in $f^{-1}(0)$, then Γ_l is either empty or a complex curve;
(ii) If $\Gamma_l \cap f^{-1}(0) = \{p_1, \ldots, p_r\}$, then for each p_i there exists a small neighbourhood V_i of p_i in B_ϵ such that the restriction of ϕ_l to $\Gamma_l \cap V_i$ defines a biholomorphism from $\Gamma_l \cap V_i$ to its image $\Delta_i := \phi_l(\Gamma_l \cap V_i)$.

We say that $l \in \Omega$ is a good linear form relative to f. From now on, we shall fix a good linear form l, and in order to simplify notation, we shall denote $\Gamma := \Gamma_l$ and $\Delta := \Delta_l$.

Consider small enough positive reals ϵ, η_1, η_2 with $0 < \eta_2 << \eta_1 << \epsilon << 1$, such that ϕ induces a complex analytic map

$$\phi_1 : \phi_l^{-1}(D_{\eta_1} \times D_{\eta_2}) \cap B_\epsilon \to D_{\eta_1} \times D_{\eta_2}.$$

It restricts to a fibre bundle over $(D_{\eta_1} \times D_{\eta_2}) \setminus \Delta$, where $\Delta = \phi_l(C)$ (see Theorem 2.1 of [2] for instance).

Notice that for any $t \in D_{\eta_2}^*$ the fibre $f^{-1}(t) \cap B_\epsilon$ can be identified with $F_t := B_\epsilon \cap f^{-1}(D_{\eta_1} \times \{t\})$. Set

$$F_{\eta_2} := B_\epsilon \cap f^{-1}(D_{\eta_2}).$$
If we choose $\eta_2 > 0$ sufficiently small, we can suppose that $\Gamma' := \Gamma \cap F_{\eta_2}$ is contained in $\bigcup_{i=1}^{r} V_i$. For just a moment, we denote by f' the restriction of f to F_{η_2}, and consider ϕ' defined on F_{η_2} by setting $\phi'(z) := (\ell(z), f'(z))$. Without lost of generality, we can also suppose that $\ell(p_i) \neq \ell(p_j)$, for any $i, j \in \{1, \ldots, r\}$ with $i \neq j$, and then it follows from the previous Lemma that the restriction of ϕ' to Γ' is a biholomorphism $\Gamma' \to \Delta' := \phi(\Gamma')$. In fact, if η_2 is sufficiently small, then Γ' has exactly r-connected components $\Gamma'(p_i)$, that is, Γ' is the disjoint union

$$\Gamma' = \bigcup_{i=1}^{r} \Gamma'(p_i),$$

and Δ' is the disjoint union

$$\Delta' = \bigcup_{i=1}^{r} \phi(\Gamma'(p_i)) := \bigcup_{i=1}^{r} \Delta'(p_i).$$

In order to simplify notation, from now on we shall denote $f := f'$ (defined on $F_{r, \eta}$), $\Gamma := \Gamma'$ and so on. See figure 1.

![Figure 1](image)

As in [10], the proof of Theorem 1.3 is done by induction on the dimension n.

2.1. Case $n = 2$: constructing the polyhedra.

Now we consider $n = 2$. For any $t \in D_{\eta_2}^{*}$, set

$$D_t := D_{\eta_1} \times \{t\}.$$

Then $\phi_t : F_{\eta_2} \to D_{\eta_1} \times D_{\eta_2}$ induces a projection

$$\phi_t : F_t \to D_t,$$

which is a finite covering over $D_t \setminus (\Delta \cap D_t)$. Set

$$\Delta \cap D_t := \{y_1(t), \ldots, y_k(t)\}.$$

Note that each $y_j(t)$, for $j = 1, \ldots, k$, is contained in some $\Delta(p_i)$, for some $i = 1, \ldots, r$. Let λ_t be the barycenter of $\{y_1(t), \ldots, y_k(t)\}$ in $D_t \setminus \{y_1(t), \ldots, y_k(t)\}$ and
for each $j = 1, \ldots, k$, let $\delta(y_j(t))$ be a simple path (differentiable and with no double points) starting at λ_t and ending at $y_j(t)$, such that two of them intersect only at λ_t. See figure 2.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{Figure 2.}
\end{figure}

Set

$$Q_t := \bigcup_{j=1}^{k} \delta(y_j(t))$$

and

$$P_t := \varphi_t^{-1}(Q_t).$$

Let v_t be a vector field in D_t such that v_t is:

- C^∞;
- null over Q_t;
- transversal to ∂D_t and points inwards.

Then the associated flow $q_t: [0, \infty[\times (D_t \setminus Q_t) \to D_t$ defines a map

$$\xi_t : \partial D_t \to Q_t$$

such that ξ_t is continuous, surjective and differentiable.

Since φ_t is a covering over $D_t \setminus Q_t$, which is differentiable in this case of dimension $n = 2$, we can lift v_t to a vector field E_t in F_t such that E_t is:

- continuous over F_t;
- differentiable over $F_t \setminus P_t$;
- null over P_t;
- integrable;
- transversal to ∂F_t and points inwards.

Then the associated flow $\tilde{q}_t: [0, \infty[\times (F_t \setminus P_t) \to F_t$ defines a map

$$\tilde{\xi}_t : \partial F_t \to P_t$$

such that $\tilde{\xi}_t$ is continuous, surjective and differentiable. Then one can check that F_t is homeomorphic to the mapping cylinder of $\tilde{\xi}_t$.
2.2. Case \(n = 2 \): the collapse along a path.

Now, in order to construct the collapse map, we do the construction of the vector field \(E_t \) simultaneously for all \(t \) in a simple path \(\gamma \) in \(D_\eta \) joining 0 and some \(t_0 \in \partial D_\eta \), such that \(\gamma \) is transverse to \(\partial D_\eta \). To simplify, we may assume that \(\gamma \) is the closed segment of line in \(D_\eta \) joining 0 and \(t_0 \).

The natural projection \(\pi : D_{\eta_1} \times D_{\eta_2} \to D_{\eta_2} \) restricted to \(\Delta \) induces a ramified covering

\[
\pi_1 : \Delta \to D_{\eta_2}
\]

whose ramification locus is \(D_\eta \cap \Delta = \{ \phi(p_1), \ldots, \phi(p_r) \} \).

Hence the inverse image of \(\gamma \setminus \{ 0 \} \) by this covering defines \(k \) disjoint simple paths in \(\Delta \), and each one of them is diffeomorphic to \(\gamma \setminus \{ 0 \} \). Each of these paths have \(\phi(p_i) \) in its closure, for some \(i = 1, \ldots, r \), and it contains the points \(y_j(t) \), for some \(j = 1, \ldots, k \) and any \(t \in \gamma \setminus \{ 0 \} \). We shall denote by \(\varsigma_{i,j} \) the respective path that has \(\phi(p_i) \) in its closure and contains \(y_j(t) \). In particular, we have that \(r \leq k \). See figure 3.

![Figure 3.](image)

Moreover, the set \(\Lambda = \bigcup_{t \in \gamma} \lambda_t \) defines a simple path in \(D_{\eta_1} \times D_{\eta_2} \) such that either \(\Lambda \cap \Delta = \phi(p_1) \), if \(r = 1 \), or \(\Lambda \cap \Delta = \emptyset \), if \(r > 1 \).

We can choose the paths \(\delta(y_j(t)) \) in such a way that

\[
T_j := \bigcup_{t \in \gamma} \delta(y_j(t))
\]

forms either a triangle, if \(r = 1 \), or a square, if \(r > 1 \), differentiably immersed in

\[
\bigcup_{t \in \gamma} D_t = D_{\eta_1} \times \gamma
\]

outside \(\delta(y_j(0)) \). For any \(j, j' \in \{ 1, \ldots, k \} \) with \(j \neq j' \), note that either \(T_j \cap T_{j'} = \Lambda \), if both \(\varsigma_{i,j} \) and \(\varsigma_{i',j'} \) are defined for some \(i, i' \in \{ 1, \ldots, r \} \) with \(i \neq i' \); or \(T_j \cap T_{j'} = \Lambda \cup \gamma(y_j(0)) = \Lambda \cup \gamma(y_{j'}(0)) \), if both \(\varsigma_{i,j} \) and \(\varsigma_{i,j'} \) are defined for some \(i \in \{ 1, \ldots, r \} \).

See figure 4.

Set

\[
Q := \bigcup_{j=1}^{k} T_j
\]

and let \(V \) be a vector field in \(D_{\eta_1} \times \gamma \) such that \(V \) is:

- continuous;
- null over \(Q \);
• differentiable over \((D_{\eta_1} \times \gamma) \setminus Q\);
• transversal to \(\partial D_{\eta_1} \times \gamma\); and such that
• the projection of \(V\) on \(\gamma\) is null.

Then the associated flow \(w : [0, \infty[\times ((D_{\eta_1} \times \gamma) \setminus Q) \rightarrow D_{\eta_1} \times \gamma\) defines a map
\[
\xi : \partial D_{\eta_1} \times \gamma \rightarrow Q \quad z \mapsto \lim_{\tau \to \infty} w(\tau, z)
\]
such that \(\xi\) is continuous, surjective and differentiable. For any real \(A > 0\), set
\[
V_A(Q) := (D_{\eta_1} \times \gamma) \setminus w([0, A[\times \partial D_{\eta_1} \times \gamma]),
\]
a closed neighbourhood of \(Q\) in \(D_{\eta_1} \times \gamma\). Note that \(\partial V_A(Q)\) is a differentiable manifold that fibres over \(\gamma\) with fibre a circle, by the restriction of the projection \(\pi\). Moreover, \(D_{\eta_1} \times \gamma\) is clearly the mapping cylinder of \(\xi\). Set
\[
F_\gamma := \phi^{-1}(D_{\eta_1} \times \gamma) \cap B_c.
\]
Since
\[
\phi_1 : F_\gamma \setminus \phi^{-1}(Q) \rightarrow (D_{\eta_1} \times \gamma) \setminus Q
\]
is a fibre bundle, it follows that \(\phi^{-1}(\partial V_A(Q))\) is a differentiable submanifold of \(F_\gamma\) which is a fibre bundle over \(\gamma\).

Now set
\[
P_\gamma := \phi^{-1}(Q),
\]
which we call the *collapse polyhedron of \(f\) along \(\gamma\). It is a polyhedron in \(F_\gamma\) of real dimension 2. Let \(\theta\) be a vector field in \(\gamma\) that goes from \(t_0\) to 0 in time \(a > 0\). Set
\[
Z := F_\gamma \setminus P_\gamma.
\]
Since
\[
Z = \phi^{-1}((D_{\eta_1} \times \gamma) \setminus Q) \xrightarrow{\phi} (D_{\eta_1} \times \gamma) \setminus Q \xrightarrow{\pi} \gamma
\]
and
\[
\phi^{-1}(\partial V_A(Q)) \xrightarrow{\phi} \partial V_A(Q) \xrightarrow{\pi} \gamma
\]
are (differentiable) fibre bundles, we can lift \(\theta\) to obtain a vector field \(E\) such that:
induces a topological fibre bundle

Case 2.4. we have that $F \in E \varphi$.

Since the dimension n starting at λ, we collapse polyhedron of $\mathcal{L} \ast \mathcal{P}$, and consider a vector field $P \ast \mathcal{L} \ast \mathcal{P}$, as defined before, and that $\phi(p_i)$, if $r = 1$, or empty, if $r > 1$. Fix $j \in \{1, \ldots, k\}$. The union of paths $\delta(y_j(t))$ for all $t \in \mathcal{L}$ gives a 3-dimensional polyhedron T_j in $\mathcal{L} \times \mathcal{P}$. Note that either $T_j \cap T_j' = \Lambda$ or $T_j \cap T_j' = \Lambda \cup \gamma(y_j(0)) = \Lambda \cup \gamma(y_j'(0))$.

Then we define

$$Q := \bigcup_{j=1}^{k} T_j$$

and consider a vector field V in $\mathcal{L} \times \mathcal{P}$ that retracts $\mathcal{L} \times \mathcal{P}$ onto Q. Now set

$$P := \phi^{-1}(Q),$$

which we call the collapse polyhedron of f along a disk. It is a polyhedron of real dimension $n + 1$ contained in F_{n_2}.

Also set

$$Z := F_{n_2} \setminus P.$$

Since ϕ is a submersion over $(\mathcal{L} \times \mathcal{P}) \setminus Q$, it follows that V lifts to a vector field E in Z with the desired properties, which gives the collapse map Ψ_t. In particular, we have that F_{n_2} deformation retracts to P.

2.3. Case $n = 2$: the collapse along a disk.

We can go further and describe the collapse simultaneously along all the disk $\mathcal{L} \ast \mathcal{P}$ in the following way:

Consider the intersection of Δ with $\mathcal{L} \ast \mathcal{P} \times \mathcal{P}$. Then we obtain k punctured disks T_j. The barycenter points of these punctured disks also give a punctured disk Λ such that the intersection of the closure of all this punctured disks is either $\phi(p_i)$, if $r = 1$, or empty, if $r > 1$. Fix $j \in \{1, \ldots, k\}$. The union of paths $\delta(y_j(t))$ for all $t \in \mathcal{L}$ gives a 3-dimensional polyhedron T_j in $\mathcal{L} \times \mathcal{P}$. Note that either $T_j \cap T_j' = \Lambda$ or $T_j \cap T_j' = \Lambda \cup \gamma(y_j(0)) = \Lambda \cup \gamma(y_j'(0))$.

Then we define

$$Q := \bigcup_{j=1}^{k} T_j$$

and consider a vector field V in $\mathcal{L} \times \mathcal{P}$ that retracts $\mathcal{L} \times \mathcal{P}$ onto Q. Now set

$$P := \phi^{-1}(Q),$$

which we call the collapse polyhedron of f along a disk. It is a polyhedron of real dimension $n + 1$ contained in F_{n_2}.

Also set

$$Z := F_{n_2} \setminus P.$$

Since ϕ is a submersion over $(\mathcal{L} \times \mathcal{P}) \setminus Q$, it follows that V lifts to a vector field E in Z with the desired properties, which gives the collapse map Ψ_t. In particular, we have that F_{n_2} deformation retracts to P.

2.4. Case $n \geq 3$: the construction of the polyhedra.

We know that for each $t \in \mathcal{L}$ the projection

$$\varphi_t : F_t \to D_t$$

induces a topological fibre bundle

$$\varphi| : F_t \setminus \varphi^{-1} \{\{y_1(t), \ldots, y_k(t)\}\} \to D_t \setminus \{y_1(t), \ldots, y_k(t)\},$$

where $\{y_1(t), \ldots, y_k(t)\} = \Delta \cap D_t$. Note that each $y_j(t)$, for $j \in \{1, \ldots, k\}$, is contained in some $\Delta(p_i)$, $i \in \{1, \ldots, r\}$, as defined before, and that $k \geq r$ if $t \neq 0$, and $k = r$ if $t = 0$.

As before, for each $t \in \mathcal{P}$ and $j = 1, \ldots, k$, let $\lambda_t := (u', t)$ be the barycenter point of $\{y_1(t), \ldots, y_k(t)\}$ in $D_t = \mathcal{L} \times \mathcal{P}$ and let $\delta(y_j(t))$ be a simple path starting at λ_t and ending at $y_j(t)$, such that two of them intersect only at λ_t.

If f' is the restriction of f to the hyperplane section $\{l = u'\}$, of dimension $n - 1$, we can apply the conclusion of the Theorem, by induction hypothesis, to obtain a Lé's polyhedron P'_t and a vector field E'_t as in the previous subsection.
Recall that ϕ defines a fibre bundle over $\delta(y_j(t)) \setminus \{y_j(t)\}$. Now, for each $j = 1, \ldots, k$, define the point

$$x_j(t) := \phi^{-1}(y_j(t)) \cap \Gamma,$$

which is the isolated singularity of $\phi^{-1}(y_j(t))$. If we look at the local situation at $x_j(t)$, we can use the result of [10], that is, we can consider B_j a small ball in \mathbb{C}^n centered at $x_j(t)$ and D_s a small disk in D_t centered at $y_j(t)$ such that the restriction

$$\varphi_{t_j} : B_j \cap \varphi_t^{-1}(D_s) \to D_s$$

satisfies the hypothesis (2.3.2) and (2.3.3) of [10]. See figure 5.

Then if D^+_s denotes a semi-disk in D_t containing $D_s \cap \delta(y_j(t))$, we apply the main theorem of [10] to obtain a collapse cone P_j (which is the collapse polyhedron in the isolated singularity case) and a vector field E_j in $\varphi_t^{-1}(D^+_s) \cap B_j$ that gives the degeneration of the map φ_{t_j}.

Set

$$a_j := \partial D_s \cap \delta(y_j(t)).$$

Then

$$P_j(a_j) := \varphi_t^{-1}(a_j) \cap P_j$$

is a Lé's polyhedron for the germ $\varphi_t : (F_t, x_j(t)) \to (D_t, y_j(t))$.

Next we construct some useful vector fields on $A_j := \varphi_t^{-1}(\delta(y_j(t)) \setminus \{y_j(t)\})$:

- **Vector Field Ξ:** let ξ be a C^∞ vector field non-zero on $\delta(y_j(t)) \setminus \{y_j(t)\}$ that goes from $y_j(t)$ to $\lambda_t = (u', t)$. Since φ_t is a fibre bundle over $\delta(y_j(t)) \setminus \{y_j(t)\}$, we can lift ξ to a vector field Ξ on A_j which is integrable (see [21] and (2.3.2.2) of [10]) and tangent to A_j and ∂A_j;

- **Vector Field \mathcal{V}:** Then we can transport the vector field E^*_t of $\varphi_t^{-1}(\lambda_t)$ to all the fibres $\varphi_t^{-1}(u_t)$, for any $u_t \in \delta(y_j(t)) \setminus \{y_j(t)\}$. Then we obtain a vector field \mathcal{V} on A_j whose restriction to $\varphi_t^{-1}(\lambda_t)$ is E^*_t and the restrictions to $\varphi_t^{-1}(u_t)$ are the vector fields of $\varphi_t^{-1}(u_t)$.
• **Vector Field** V_1: Let θ be a differentiable function on $\delta(y_j(t))$ such that $\theta(\lambda_t) = 0$ and such that θ is non-zero and positive on $\delta(y_j(t)) \setminus \{\lambda_t, y_j(t)\}$.

It induces a function $\tilde{\theta}$ defined on A_j. Define

$$V_1 := V + \tilde{\theta} \Xi,$$

which is integrable, tangent on the interior of A_j, transversal and pointing inwards on the boundary ∂A_j.

Since V and Ξ are transversal, the vector field V_1 is zero only on the Lê’s polyhedron P_t' of $\varphi_t^{-1}(\lambda_t)$. Then if z is a point in $A_j \setminus \varphi_t^{-1}(\lambda_t)$, the orbit of V_1 that passes through z has its limit point z_1' in P_t'.

Moreover, since the orbit of V that passes through z has its limit point z' in the transportation of P_t' to $\varphi_t^{-1}(\varphi_t(z))$ by Ξ, it follows that z_1' is the point corresponding to z' by Ξ. This comes from the fact that V and Ξ commute by construction.

Now, since $P_j(a_j)$ is obviously contained in A_j, it follows that V_1 takes $P_j(a_j)$ to P_t'. In fact, it takes all the fibre $\varphi_t^{-1}(a_i) \cap B_r$ to P_t'. Now, since the action of the flow given by V is simplicial, we can assume that the action of the flow given by V_1 is simplicial. Then the image of $P_j(a_j)$ by the action of V_1 is a sub-polyhedron P_j' of P_t'. Moreover, the orbits of the points in $P_j(a_j)$ give a polyhedron R_j.

Set

$$\tilde{P}_j := P_j \cap \varphi_t^{-1}(\delta(y_j(t)))$$

and

$$S_j := \tilde{P}_j \cup R_j \cup P_j'.$$

See figure 6.

![Figure 6](image_url)

Lemma 2.2. For each $t \in D_{\eta_2}$, the polyhedron P_t is the union of a $(n - 1)$-dimensional polyhedron P_t' and k-copies of a n-dimensional cone S, all glued together along their bases, which are a sub-polyhedron of P_t'.

Proof. Let $r > 0$ be small enough such that the ball $B_r(x_j(t))$ of radius r centered at $x_j(t)$ is contained in B_j, for any $j = 1, \ldots, k$, and then set $B_j(t) := B_r(x_j(t))$.

Then, for any $j_1, j_2 = 1, \ldots, k$, we have:
(i) $P'_{j_1} = P'_{j_2}$;

(ii) $P'_{j_1}(a_{j_1}) \text{diff} = P_{j_2}(a_{j_2})$;

(iii) $S_{j_1} \text{diff} = S_{j_2}$.

In fact, the natural extension of Ξ to $\delta(y_{j_1}(t))\{y_{j_1}(t)\} \cup \delta(y_{j_2}(t))\{y_{j_2}(t)\}$ gives (i) and (ii). Clearly, $R_j \text{diff} = P'_j \times I$, for any $j = 1, \ldots, k$; where I denotes a real interval, and then (iii) follows. Then we set $S = S_1$ and the lemma is proved for $t \neq 0$.

Now, since $\phi : F_{T_0} \phi^{-1}(\Delta) \rightarrow (D_{T_1} \times D_{T_0}) \Delta$ is a fibre bundle, it follows that, for any $t \in D_{T_1}$ fixed, one has that $\varphi^{-1}(u_t) \text{diff} = \varphi^{-1}(u_0)$, for any $u_t \in D_t \Delta$ and $u_0 \in D_0 \Delta$. In particular, we have that

$$P'_t \text{diff} = P'_0.$$

Moreover, we have that $\varphi^{-1}(a_{j_1}) \cap B_j(t)$ is homeomorphic to $\varphi^{-1}(a_{j_1}) \cap B_j(0)$, and this implies that the Lé's polyhedron $P_j(a_{j_1})$ of φ_{t_1} is homeomorphic to the Lé's polyhedron $P_j(a_{j_1})$ of φ_{0}. This means that the cone S is the same for the t-level and the 0-level and this completes the proof.

Hence the polyhedron in F_t that we are looking for is given by

$$P_t := P'_t \bigcup_{j=1}^k S_j$$

and the special polyhedron in M_0 is given by

$$P_0 := P'_0 \bigcup_{j=1}^r S_j.$$

Figure 7 bellow illustrates the homotopy type of both P_t and P_0, as well as the degeneration of the first to the second one, which we will construct next.

Once the polyhedra P_t and P_0 are defined, one can construct a vector field E_t that retracts F_t to P_t following the same arguments of sections (4.2.1), (5.1) and (5.2) of [10].
2.5. Case \(n \geq 3 \): constructing the collapse polyhedron along a disk.

In order to describe the collapse of \(f \) along the disk \(D_{\eta_0} \), we first construct the collapse polyhedron (along the disk) \(P \), and latter we will construct the collapse map. Fix \(u' \in D_{\eta_1} \) as before and consider the disk
\[
\Lambda := \{u'\} \times D_{\eta_2}.
\]
Then we define the 3-dimensional polyhedra \(T_j \) in \(D_{\eta_1} \times D_{\eta_2} \), for \(j = 1, \ldots, k \), as before. That is,
\[
T_j := \bigcup_{t \in D_{\eta_2}} \delta(y_j(t)).
\]
For each \(x_j(t) \) over \(y_j(t) \), with \(t \in D_{\eta_2}^* \), choose a small radius \(r(t) \) such that
\[
B_j := \bigcup_{t \in D_{\eta_2}^*} B_{r(t)}(x_j(t))
\]
is a keen neighbourhood of \(\cup_{t \in D_{\eta_2}^*} \{x_j(t)\} \), where \(r(t) \) is a real analytic function of \(t \in D_{\eta_2} \), with \(r(0) = 0 \).
To each \(B_j \) one can associate a neighbourhood
\[
A_j := \bigcup_{t \in D_{\eta_2}^*} D_{s(t)}(y_j(t)),
\]
where \(s(t) \) is an analytic function of \(t \in D_{\eta_2}^* \) with \(0 < s(t) << r(t) \).

Let \(U \) be a keen neighbourhood of \(\Lambda \setminus \{0\} \) that meets all the \(A_j \)'s, but not containing any \(y_j(t) \), and set
\[
V := \phi^{-1}(U) \cap F_{\eta_2}.
\]
For some \(t_0 \in D_{\eta_2} \), consider the polyhedron \(P_{t_0} \) constructed as before. It is given by the union
\[
P_{t_0} = P_{t_0}' \bigcup_{j=1}^{k} S_j,
\]
glued together along a sub-polyhedron \((P_j)'_{t_0}\) of \(P_{t_0}' \), where \(P_{t_0}' \) is the Lé’s polyhedron of the restriction \(f' \) of \(f \) to \(F_{\eta_2} \cap \{l = u'\} \), which is given by the induction hypothesis. It also provides us a collapse polyhedron \(P' \) in \(F_{\eta_2} \cap \{l = u'\} \) and a continuous vector field \(G' \) (integrable outside \(P' \)) over \(F_{\eta_2} \cap \{l = u'\} \) that gives the degeneration of \(f' \).

Recall that \(P' \cap F_t = P'_t \), for any \(t \in D_{\eta_2} \). Also, if \((P_j)'_{t_0}\) is a sub-polyhedron of \(P_{t_0}' \), the vector field \(G' \) gives a sub-polyhedron \((P_j)'_t\) of \(P' \) such that \((P_j)'_t \cap F_t = (P_j)'_t, \) for any \(t \in D_{\eta_2} \).

From this initial polyhedron \(P_{t_0} \), we are going to construct \(P \) (which latter, in the next sections, will be shown to be a collapse polyhedron for \(f \)) as follows:

Let \(G_U \) be the continuous vector field over \(V \) given by the trivialization of \(G' \) over \(V \). Note that if \(P_U \) is the polyhedron on \(V \) given by the “parallel” transportation of \(P_{t_0}' \), then \(G_U \) sends \(P_U \) to \(P_{t_0} \).

One can also construct an integrable vector field \(G_j \) over \(B_j \) that trivializes it over \(D_{\eta_2} \). Then, using a partition of unity, we glue all the vector fields \(G_j \)'s and \(G_U \) to obtain a trivializing vector field over \(V \cup \bigcup_{j=1}^{k} B_j \) which projects on a radial vector field over \(D_{\eta_2} \) convergent to 0. This allows us to construct the vanishing cone \(P \) from a Lé’s polyhedron \(P_{t_0} \) previously constructed. See figure 8.
2.6. **Case** $n \geq 3$: the collapse.

Following the same arguments of \[10\], one can construct a continuous vector field E in F_{η_2} which is integrable and non-null outside P and such that, for any $t \in D_{\eta_2}$, the restriction of E to F_t is a vector field E_t that gives the retraction of F_t to P_t. Since this construction is quite technical and analogous to Lé’s construction, we do not do it here.

We have a polyhedron P_t and a vector field E_t simultaneously for any $t \in D_{\eta_2}$, which gives us a vector field E over F_{η_2} and a collapse polyhedron $P = \bigcup_{t \in D_{\eta_2}} P_t$.

Let $\tilde{q} : \big[0, \infty\big) \times (F_{\eta_2} \setminus P) \to F_{\eta_2}$ be the flow associated to E, which induces a continuous, surjective and differentiable map

$$\xi : \partial F_{\eta_2} \to P \quad z \mapsto \lim_{\tau \to \infty} \tilde{q}(\tau, z).$$

For any positive real $A > 0$, set

$$\tilde{V}_A(P) := F_{\eta_2} \setminus \tilde{q}\big(\big[0, A]\times \partial F_{\eta_2}\big),$$

which is a closed neighbourhood of P in F_{η_2}. Notice that $\partial \tilde{V}_A(P)$ is a differentiable manifold that fibres over γ^* with fibre ∂F_t. Moreover, F_{η_2} is clearly the mapping cylinder of ξ.

Since

$$(\pi \circ \phi)| : F_{\eta_2} \setminus P \to D_{\eta_2}$$

is a submersion, where $\pi : D_{\eta_1} \times D_{\eta_2} \to D_{\eta_2}$ is the natural projection, it follows that

$$(\pi \circ \phi)| : F_{\eta_2} \setminus \text{int}(\tilde{V}_A(P)) \to D_{\eta_2}$$

and

$$(\pi \circ \phi)| : \partial \tilde{V}_A(P) \to D_{\eta_2}$$

are submersions. Hence it follows from Ehresmann’s fibration lemma that $(\pi \circ \phi)| : F_{\eta_2} \setminus \text{int}(\tilde{V}_A(P)) \to D_{\eta_2}$ is a locally trivial fibration, for any $A > 0$.
Then we can lift a C^∞ vector field θ over D_{n_2} that converges to 0 on time $a > 0$ to a C^∞ vector field over $F_{n_2} \setminus \text{int}(\tilde{V}_A(P))$ which is tangent to $\partial \tilde{V}_A(P)$, for any $A > 0$. Hence we can actually lift θ to a differentiable vector field over $F_{n_2} \setminus P$.

Then the associated flow $g : [0, a] \times F_{n_2} \setminus P \rightarrow F_{n_2} \setminus P$ defines a C^∞-diffeomorphism Ψ_t from $F_t \setminus P_t$ to $M_0 \setminus P_0$ that extends to a continuous map from F_t to M_0 and that sends P_t to P_0, for any $t \in D_{n_2}^*$. This finishes the proof of Theorem 1.3.

2.7. Remark: a more general situation.

We can actually drop the hypothesis that $f : \mathbb{C}^n \rightarrow \mathbb{C}$ has only one critical point in the (not necessarily Milnor) ball B_ϵ. Instead of that hypothesis, we ask the critical locus of f to be zero-dimensional, and hence it intersects the compact ball B_ϵ on a finite set of points $\{u_1, \ldots, u_m\}$.

If these points lie in the same special fibre $f^{-1}(0)$, the construction of a Lé’s polyhedra pair is exactly the same. Otherwise, we could take $\eta > 0$ sufficiently small such that $0 \in D_\eta$ is the only critical value of f. But we can allow D_η to have finitely many critical values $\{t_1, \ldots, t_m\}$, and then we ask as hypothesis that each fibre $f^{-1}(t)$ intersects the sphere S_ϵ transversally (this will be the situation in the next section).

In this case, the construction of a Lé’s polyhedra pair is still the same, but one should note that the collapse along a path γ connecting a regular value t_0 to the critical value 0 and passing through one critical value $t_i \neq 0$ actually describes three degenerations:

- the collapse of F_{t_0} to F_{t_i} though the sub-path $\gamma_1 \subset \gamma$ connecting t_0 to t_i;
- later, the inverse of the collapse of $F_{t'}$ to F_{t_i}, for some regular value $t' \in \gamma \setminus t_0$, though the sub-path $\gamma_2 \subset \gamma$ connecting t_i to t';
- finally, the collapse of $F_{t'}$ to F_0 though the sub-path $\gamma_3 \subset \gamma$ connecting t' to 0.

3. Line singularities

When one wishes to generalize a property of isolated singularities for non-isolated singularities, the most natural class to be studied is that of line singularities, which were first defined by Siersma in [18] as the class of holomorphic germs of function $f : (\mathbb{C}^{n+1}, 0) \rightarrow (\mathbb{C}, 0)$ with critical locus a smooth germ of curve $(\Sigma, 0)$. The main goal of this paper is to prove that line singularities can be given a Lé’s polyhedra pair (relative to any Milnor radius ϵ). But first we need the following definition:

Definition 3.1. Let f be a line singularity as above and let H_s be a family of hyperplane sections of \mathbb{C}^{n+1} transversal to Σ at each $s \in \Sigma$. We say that a real number $\epsilon > 0$ is a good Milnor radius for f (and that B_ϵ is a good Milnor ball for f) if ϵ is a Milnor radius for f and, for any $s \in \Sigma_\epsilon := \Sigma \cap B_\epsilon$, the intersection $B_\epsilon \cap H_s$ is a Milnor ball for the restriction of f to H_s. We say that f admits a good Milnor radius if there exists $\epsilon > 0$ which is a good Milnor radius for f.

Now we can state the main theorem of this paper:

Theorem 3.2. Any line singularity $f : (\mathbb{C}^{n+1}, 0) \rightarrow (\mathbb{C}, 0)$ admits a Lé’s polyhedra pair (relative to any Milnor radius ϵ). Moreover:
(i) \(P_t \) has real dimension \(n + 1 \);
(ii) \(P_0 \) has real dimension either \(n+1 \) or 2 (and clearly \(P_0 \) must be contractible);
(iii) If \(f \) admits a good Milnor radius, then \(P_0 = \Sigma \cap B_e \).

In the rest of this section, we prove Theorem 3.2 using two lemmas that we will prove in the next section.

Let \(f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0) \) be a line singularity with critical locus \(\Sigma \). Without lost of generality, we can suppose that \(\Sigma \) is the \(z_{n+1} \)-axis, that is:
\[
\Sigma = \{ z_1 = \cdots = z_n = 0 \},
\]

Consider a generic family of parallel hyperplane sections \(H_s \subset \mathbb{C}^{n+1} \) transversal to \(\Sigma \) at each \(s \in \Sigma \) such that the each \(H_s \) is transversal to the smooth part of the hypersurface defined by \(f \). Then considering the restrictions
\[
f_s := f|_{H_s} : H_s \to \mathbb{C}
\]
we obtain a family, in the parameter \(s \in \Sigma \), of holomorphic functions with isolated singularity.

Let \(\epsilon > 0 \) be small enough such that \(B_e \subset \mathbb{C}^{n+1} \) is a Milnor ball for \(f \) and such that \(B_e \cap H_0 \) is a Milnor ball for \(f_0 \). Also let \(\eta \), with \(0 < \eta << \epsilon \), be small enough such that the restriction
\[
f_{| : f^{-1}(D^*_\eta) \cap B_e \to D^*_\eta
\]
is a locally trivial fibration.

For any \(t \in D^*_\eta \), our goal is to describe the degeneration of the Milnor fibre \(F_t := f^{-1}(t) \cap B_e \) of \(f \) to the special fibre \(F_0 := f^{-1}(0) \cap B_e \) of \(f \). To simplify notation, from now on we shall denote by \(f_s \) the restriction of \(f \) to \(B_e \cap H_s \), for each \(s \) in \(\Sigma_e := \Sigma \cap B_e \).

Now, for any \(t \in D^*_\eta \) fixed, let
\[
\pi_t : F_t \to \Sigma_e
\]
be the holomorphic function given by the projection of \(\mathbb{C}^{n+1} \) on \(\Sigma \) induced by the hyperplane sections \(H_s \), restricted to \(F_t \). Set:
\[
F_{t,s} := \pi^{-1}_t(s) = f_s^{-1}(t).
\]
If \(t \neq 0 \), note that \(F_{t,s} \) is a Milnor fibre for \(f_s \) if and only if \(B_e \cap H_s \) is a Milnor ball for \(f_s \), which is not always the case.

We have to understand how \(F_{t,s} \) degenerates to \(F_{t,0} \) as \(s \in \Sigma_e \setminus \{0\} \) goes to \(0 \in \Sigma_e \), for each \(t \in D^*_\eta \) fixed. We have the following lemmas, which give a Lê’s polyhedra pair for the projection \(\pi_t \), for any \(t \in D^*_\eta \) fixed.

Lemma 3.3. For any \(s \in \Sigma_e \), let \((P_{t,s}, P_{0,s})\) be a Lê’s polyhedra pair for \(f_s \) (in the non-local sense of subsection 1.2, considering Remark 2.7). Then the pair of polyhedra \((P_{t,s}, P_{t,0})\) is a Lê’s polyhedra pair for the projection \(\pi_t \). In particular, there exists a continuous map \(\Psi_{t,s} : F_{t,s} \to F_{t,0} \) such that \(\Psi_{t,s} \) restricts to a homeomorphism \(F_{t,s} \setminus P_{t,s} \to F_{t,0} \setminus P_{t,0} \) and takes \(P_{t,s} \) to \(P_{t,0} \).

Lemma 3.4. For any \(t \in D^*_\eta \) fixed, the construction of the polyhedron \(P_{t,s} \) and of the collapse \(\Psi_{t,s} : F_{t,s} \to F_{t,0} \) can be done simultaneously for any \(s \in \Sigma_e \). Then we obtain a polyhedron \(P_t \) in \(F_t \) such that \(F_t \) deformation retracts to \(P_t \) and such that, for any \(s \in \Sigma_e \), the fibre \(F_{t,s} \) deformation retracts to the intersection \(P_t \cap F_{t,s} \).
Moreover, \(P_t \) has real dimension \(n + 1 \) if \(t \neq 0 \) and \(P_0 \) has real dimension either 0 or \(n + 1 \).
In the next sections we will prove Lemmas 3.3 and 3.4. We remark that the family \((f_s)\) of isolated singularity hypersurface germs is \(\mu\)-constant if, and only if, the “polar curve of \((f_s)\) with respect to \(\{s = 0\}\) does not split”, that is:

\[
\{(z_1, \ldots, z_n, s) \in \mathbb{C}^n \times \mathbb{C} : \frac{\partial f_s}{\partial z_i} = 0, \ i = 1, \ldots, n\} = \{0\} \times \mathbb{C}
\]

near \((0, 0)\) (see [7] for instance). That is why we need to consider Remark 2.7 in Lemma 3.3.

Now, assuming that the Lemmas above are true, we will show that the pair of polyhedra \((P_t, P_0)\) given by them is a Lê’s polyhedra pair for \(f\). Define the collapse map

\[
\Psi_t : F_t \to F_0
\]

for \(f\) setting

\[
\Psi_t(z) := \Psi_{t, \pi_t(z)}(z),
\]

where \(\Psi_{t,s} : F_{t,s} \to F_{0,s}\) is a collapse map for \(f_s\) (in the non-local sense), which restricts to a homeomorphism from \(F_{t,s}\) to \(F_{0,s}\) and sends \(F_{t,s}\) to \(F_{0,s}\).

Then \(\Psi_t\) clearly restricts to a homeomorphism \(F_t \setminus \partial F_t \to F_0 \setminus \partial F_0\) and \(\Psi_t(P_t) = P_0\), and then we have proved \((ii)\) of Theorem 3.2.

Now suppose that \(f\) admits a good Milnor radius. Then \(B_t \cap H_s\) is a Milnor ball for \(f_s\), for any \(s \in \Sigma_e\), and then \(P_{0,s} = \{s\}\), as in the local situation of [10]. Hence \(P_0 = \Sigma_e\) and we have proved \((iii)\) of Theorem 3.2.

4. Proof of Lemmas 3.3 and 3.4

Since \(F_t\) and \(F_{t,s} = \pi_t^{-1}(s)\) are smooth manifolds for any \(t \in D^*_n\) and \(s \in \Sigma_e\), we can do the same constructions of [10] and of section 1 for the projection \(\pi_t : F_t \to \mathbb{C}\) defined in the previous section. The same happens for the projection \(\pi_0 : F_0 \to \mathbb{C}\), since the critical locus of \(\pi_0\) coincides with the singular set of \(F_0\).

Then we have the following proposition:

Proposition 4.1. For each \(t \in D_n\) and \(s \in \Sigma_e\), there exist:

\(i)\) a polyhedron \(P_{t,s}\) in the fibre \(F_{t,s} = \pi_t^{-1}(s) = f^{-1}(t) \cap H_s \cap B_s\), compatible with the Whitney stratification \(S\) of \(F_t\), and a continuous simplicial map \(\hat{\xi}_{t,s} : \partial F_{t,s} \to P_{t,s}\), compatible with \(S\), such that \(F_{t,s}\) is homeomorphic to the mapping cylinder of \(\hat{\xi}_{t,s}\);

\(ii)\) a continuous map \(\Psi_{t,s} : F_{t,s} \to F_{t,0}\) that sends \(P_{t,s}\) to \(P_{t,0}\) and that restricts to a homeomorphism \(F_{t,s} \setminus \partial F_{t,s} \to F_{t,0} \setminus \partial F_{t,0}\).

Moreover, the construction of the polyhedron \(P_{t,s}\), the map \(\hat{\xi}_{t,s}\) and the map \(\Psi_{t,s}\) can be done simultaneously for all \(s\) in the disk \(\Sigma_e\). This gives a polyhedron \(P_t \subset F_t\) such that \(F_t\) deformation retracts to \(P_t\) and such that \(P_t \cap F_{t,s} = P_{t,s}\) for any \(s \in \Sigma_e\).

Idea of the proof: For a general linear form \(l : \mathbb{C}^{n+1} \to \mathbb{C}\) taking \(0 \in \mathbb{C}^{n+1}\) to \(0 \in \mathbb{C}\) such that the set \(\mathcal{D} := l(F_t)\) is diffeomorphic to a disk in \(\mathbb{C}\), we define the analytic morphism

\[
\phi : F_t \to \mathbb{C}^2
\]
given by $\phi_t(z) = (l(z), \pi_t(z))$, for any $z \in F_t$. Then we consider the polar curve Γ and the polar image of π_t relative to l. For any $t \in D_\eta$, set

$$D_s := D \times \{s\}.$$

Then $\phi : F_t \to D \times D_\eta$ induces a projection

$$\varphi_t : F_{t,s} \to D_s,$$

which is a fibre bundle over $D_s \setminus (\Delta \cap D_s)$. Then the rest of the proof follows combining the techniques of [10] and of the proof of Theorem 1.3.

Then Lemmas 3.3 and 3.4 follow immediately from the proposition above, noting that since the construction of the polyhedra depends only on the linear form l restricted to the Milnor fibre of the respective map; then when one constructs a Lê’s polyhedron for π_t, one just have to consider the linear form l to be the same of that used in the construction of the Lê’s polyhedron $P_{t,s}$ for f_s.

References

[1] K. Bekka, Regular quasi-homogeneous stratifications, “Stratification, singularities and differential equations II” Stratifications and Topology of Singular Space”, Travaux en cours 55, Hermann, 1-14, 1997.

[2] K. Bekka, (c)-regularité et trivialité topologique, Singularity theory and its applications, Warwick, 1989, Part I, D. Mond and J. Montaldi, Eds., SLNM 1462, Springer, (1991), pp.42-62.

[3] K. Bekka and S. Koike, The Kuo condition, an inequality of Thom’s type and (c)-regularity, Topology, vol. 37, 1, pp.4562, 1998.

[4] J.F. de Bobadilla, Answers to some equisingularity questions, Invent. Math. 161 (2005), 657-675.

[5] J. F. de Bobadilla and A. Menegon, The boundary of the Milnor fibre of complex and real analytic non-isolated singularities, Preprint arXiv: 1106.4956, 2011.

[6] A.H. Durfee, Neighbourhoods of algebraic sets Trans. Am. Math. Soc., 276 (1983), 517-530.

[7] G.M. Greuel, Constant Milnor number implies constant multiplicity for quasihomogeneous singularities, Manuscripta Math. 56 (1986), 159-166.

[8] A. Horváth and A. Némethi, On the Milnor fiber of non-isolated singularities, Studia Sci. Math. Hungar. 43 (2006), no. 1, 131136.

[9] D.T. Lê, Remarks on relative monodromy, in “Real and complex singularities”, ed. by P. Holm, Sijthoff and Nordhoff 1977.

[10] D.T. Lê, Polyèdres évanescents et effondrements, A fête of topology, 293-329, Academic Press, Boston, MA, 1988.

[11] D.T. Lê, Calcul du nombre de cycles évanouissants d’une hypersurface complexe, Ann. Inst. Fourier 23 (1973), 261-270, Grenoble, France.

[12] D.T. Lê and C.P. Ramanujam, The invariance of Milnor’s number implies the invariance of the topological type, Ann. J. Math. 98, 67-78 (1976).

[13] A. Menegon and J. Seade The degeneration of the boundary of the Milnor fibre to the link of complex and real non-isolated singularities, Preprint arXiv: 1209.1066, 2012.

[14] F. Michel and A. Pichon, On the boundary of the Milnor fibre of non-isolated singularities (Erratum), Int. Math. Res. Not. 6 (2004), 309-310.

[15] F. Michel and A. Pichon, Carrousels in family and non-isolated hypersurface singularities in \mathbb{C}^3, Preprint arXiv: 1011.6503, 2010.

[16] J.W. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies 61, Princeton, 1968.

[17] A. Nemethi, A. Szilard. Milnor fiber boundary of a non-isolated surface singularity, Lecture Notes in Mathematics 2037. Springer Verlag 2012.

[18] D. Siersma, Isolated line singularities, Singularities, Part 2 (Arcata, Calif., 1981), 485-496, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.
[19] D. Siersma, *Variation mappings on singularities with a 1-dimensional critical locus*, Topology 30 (1991), 445-469.

[20] E. Spanier, *Algebraic topology*, McGraw-Hill, 1966.

[21] J. L. Verdier, *Stratifications de Whitney et théorème de Bertini-Sard*, Inv. Math. 36 (1976), 295-312.

Instituto de Ciências Matemáticas e de Computação de São Carlos, Universidade de São Paulo

E-mail address: aurelio@icmc.usp.br