Low-dose 2-Deoxy Glucose Stabilises Tolerogenic Dendritic Cells and Generates Potent in vivo Immunosuppressive Effects

Christofi M1.#, Le Sommer S1.#, Mölzer C1. *, Klaska IP1, Kuffova L1.2, Forrester JV1.3.4. *

1Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD
2Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
3Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
4Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia

#These authors contributed equally to this manuscript

*Correspondence: Professor John V. Forrester (j.forrester@abdn.ac.uk), and Dr. Christine Mölzer (christine.moelzer@abdn.ac.uk), Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK

Supplementary Information
Supp. Fig. 1 Gating strategy for GM-CSF BMDC cultured cells. BMDC were depleted of Lin⁺ cells (CD4, CD8, CD45R/B220 and MHC II) and cultured in GM-CSF (10 ng/ml) for 6 days with medium exchange every two days. Loosely adherent cell clusters were harvested, depleted of Gr-1⁺ cells and resuspended in complete medium (cRPMI). A sample of 1x10⁶ cells was then prepared for flow cytometry (see Methods) and analysed on an LSR II cytometer (1x10⁵ events recorded). The gating strategy was as follows: (a) discrimination of leukocytes by forward scatter vs. side scatter; (b) single cells were then selected using a forward scatter height (FSC-H) vs. forward scatter area (FSC-A) pulse geometry gate to discriminate between clumps and single cells; (c) live/dead discrimination was achieved using eFluor 455UV fixable viability dye, which stains dead cells, hence the gated negative population corresponds to live cells; (d) population of interest (CD11b⁺CD11c⁺) was identified using CD11b vs. CD11c staining within the live-single cell-leukocyte gate; and (e) bar chart of the frequency of CD11b⁺CD11c⁺ (black bar) and CD11b⁻/negCD11c⁻neg (white bar) within the live population.
Supp. Fig. 2 Tolerogenic DC (tolDC) and 2-DG-treated DC (2-DGtolDC) express low levels of CD86; 2-DGtolDC fail to upregulate CD86 when stimulated with Mtb.

BMDC were prepared as previously described. Flow cytometry was performed to assess CD86 expression on CD11b^{hi}CD11c^{hi} cells (for gating strategy see Supp. Fig. 1): (a) percent CD86+ cells within the CD11b^{hi}CD11c^{hi} BMDC population; (b) upper panel: representative histograms showing CD86 expression in CD11b^{hi}CD11c^{hi} cells treated with or without 2.5 mM 2-DG, and/or stimulated with Mtb; and (c) BMtolDC were cultured as described and treated with 2-DG (2.5 mM) (top panels), and/or stimulated with 15 µg/ml heat inactivated mycobacterial extract, Mtb (bottom panels): representative flow cytometry dot plots of the percentage of CD86+ cells in the CD11b^{hi}CD11c^{hi} population; error bars denote Standard Error of the Mean (SEM), n=3, p value: *<0.05
Supp. Fig. 3 Expression of progenitor markers CX3CR1 and c-kit by GM-CSF-cultured bone marrow cells. BMDC were prepared as described in Methods and flow cytometry performed to differentiate CD11b^{hi}CD11c^{hi} cells from CD11b^{lo/neg}CD11c^{neg} cells (see legend to Supp. Fig 1): (a) CD11b^{hi}CD11c^{hi} (presumed DC) expressed moderate levels of CX3CR1 (~40 %) while CD11b^{lo/neg}CD11c^{neg} express high levels of CX3CR1 (~80 %). (b) CD11b^{hi}CD11c^{hi} and CD11b^{lo/neg}CD11c^{neg} CX3CR1 MFI. (c) 2-DG treatment slightly reduced the overall percentage of CD11b^{hi}CD11c^{hi} in the BMDC population while increasing the percentage of CX3CR1⁺ cells as shown in representative flow cytometry plots with heat map analysis of CX3CR1 and c-kit expression on non-2-DG-treated DC and 2-DGtolDC. There was minimal c-kit expression with or without 2-DG treatment. Warm colours denote higher relative expression, while cool colours denote lower expression levels.
BMDC cultured with 2.5 mM 2-DG in the presence of glucose do not undergo apoptosis. BMDC were prepared as described in Methods and on d6 were re-plated in glucose-rich (11 mM) cRPMI media with 2-DG at various concentrations (1, 2.5 or 10 mM 2-DG). Cells were harvested and assessed for apoptosis by flow cytometry using Annexin V staining (see Methods): (a) early apoptosis (Annexin V+ 7AAD- cells) in 2-DG-treated cells, either stimulated with Mtb extract (15 µg/ml) (white bars), or unstimulated (black bars). In glucose rich media there was no evidence of 2-DG-induced cell death up to a concentration of 2.5 mM. At 10 mM, apoptosis levels increased significantly (p < 0.05); Mtb stimulation had no additional effect; (b) early apoptosis in glucose-free medium; significant levels of cell death were observed particularly when challenged with Mtb antigen; (c) and (d) levels of late apoptosis in BMDC (Annexin V+ 7AAD+ cells) were unchanged in the presence of 2-DG both in glucose-rich (11 mM) and glucose-free media with and without Mtb stimulation. Error bars denote Standard Error of the Mean (SEM); n=3, p values: *<0.05, **<0.01, ***<0.001
Supp. Fig. 5 Summary of findings (refer to next page for caption).

Steady-state aerobic and anaerobic glucose processing.

Substrate competition (Glu-1, hexokinase) lowers overall metabolic rate.

Predominantly anaerobic metabolism with low glucose availability.

Predominantly oxidative metabolism with high glucose availability (glycogen).
Supp. Fig. 5 Summary of findings.

Blue panel: Untreated CD11b⁺ CD11c⁺ Zbtb46⁺ MHCI⁻ tolerogenic DC (tolDC) undergo baseline aerobic and anaerobic glucose metabolism at a steady-state (“resting”) rate. In the presence of glucose Glut-1 allows for glucose uptake as is required to meet metabolic demand. SIRP-1α is constitutively activated, i.e. phosphorylated. Untreated tolerogenic DC are unable to halt spontaneous experimental autoimmune uveitis (EAU) in an induced animal model.

Red panel: 2-deoxy glucose (2-DG) and glucose compete for uptake through Glut-1 and for intracellular phosphorylation by hexokinase to allow for downstream aerobic/anaerobic substrate processing. This results in an overall reduced metabolic rate. 2-DG stabilises DC in a tolerogenic state, enabling them to prevent EAU progression in vivo.

Grey panel: Extracellular noxae such as mycobacterium toxin (Mtb) or lipopolysaccharide (LPS) in the presence of glucose induce a metabolic stress response, pushing glucose metabolism towards fermentation (i.e. lactate production along with high glucose flux resulting in low substrate availability). This leads to DC activation/maturation (mDC) with increased MHC II surface expression and loss of SIRP-1α phosphorylation. Signalling through NFκB p65 with downstream pro-inflammatory cytokine production aggravates the pro-inflammatory state.

Yellow panel: In the presence of both 2-DG and glucose, extracellular Mtb or LPS are unable to activate tolDC. 2-DG exerts a stabilising effect on tolDC, reflected by increased SIRP-1α phosphorylation and signalling through NFκB p100, resulting in an anti-inflammatory state with decreased IL-12 and increased IL-10 expression. These stable tolDC show a high metabolic rate (predominantly aerobic/OXPHOS) with high glucose availability and ample glycogen storage.

Abbreviations:
Glu, glucose
2-DG, 2-deoxy glucose
Glut-1, glucose transporter 1
G6P/2-DG6P, glucose-6-phosphate/2-deoxy glucose-6-phosphate
TCR, T cell receptor
LDH, lactate dehydrogenase
LPS, bacterial lipopolysaccharide
Mtb, heat inactivated mycobacterial toxin
OXPHOS, oxidative phosphorylation
TCA, tricarboxylic acid cycle (Krebs cycle)
tolDC/mDC, tolerogenic dendritic cells/mature dendritic cells
EAU, induced experimental autoimmune uveoretinitis