Spin-structures and proper group actions

Peter Hochs∗ and Varghese Mathai†

November 5, 2014

Abstract

We generalise Atiyah and Hirzebruch’s vanishing theorem for actions by compact groups on compact Spin-manifolds to possibly non-compact groups acting properly and cocompactly on possibly non-compact Spin-manifolds. As corollaries, we obtain some vanishing results for ̂A-type genera.

Introduction

In 1970, Atiyah and Hirzebruch [2] proved the following remarkable result.

Theorem 1. Let N be a compact, connected even dimensional manifold and K be a compact connected Lie group acting smoothly and non-trivially on N. Suppose also that N has a K-invariant Spin structure. Then the equivariant index of the Dirac operator on N vanishes in the representation ring of K,

\[\text{index}_K(\partial N) = 0 \in R(K). \]

In particular, \(\int_N \hat{A}(N) = 0. \)

∗University of Adelaide, peter.hochs@adelaide.edu.au
†University of Adelaide, mathai.varghese@adelaide.edu.au
Their result then inspired many, especially Witten \cite{cite13} who studied two-dimensional quantum field theories and the index of the Dirac operator on free loop space $\mathcal{L}N$, relating it to the rigidity of certain Dirac-type operators on N and the elliptic genus, which was proved in \cite{cite4,cite11}.

Our goal in this note is to extend the theorem to the non-compact setting. More precisely, let M be a complete Riemannian manifold, on which a connected Lie group G acts properly and isometrically. Suppose M/G is compact. Suppose M has a G-equivariant Spin-structure. Let

$$\text{index}_G(\emptyset_M) \in K_\bullet(C^*_r G)$$

be the equivariant index of the associated Spin-Dirac operator. Here $K_\bullet(C^*_r G)$ is the K-theory of the reduced group C^*-algebra of G, and index_G denotes the analytic assembly map used in the Baum–Connes conjecture \cite{cite3,cite9}. If G is compact, then $K_\bullet(C^*_r G) = R(G)$, and the analytic assembly map is the usual equivariant index. Atiyah and Hirzebruch’s result generalises as follows.

Theorem 2. If there is a point in M whose stabiliser in G is not a maximal compact subgroup of G, then

$$\text{index}_G(\emptyset_M) = 0,$$

if G has a property\footnote{See the text leading up to Lemma 5 for the precise formulation of this property.} that one of its double covers always has.

From this theorem, we will deduce vanishing of characteristic classes related to the \hat{A} class in Corollary 7 as well as an application in Corollary 8. In Corollary 9, we give an equivalent statement of Theorem 2 that does not use $C^*_r G$ or the analytic assembly map.

There are many group actions that satisfy the hypotheses of Theorem 2. Indeed, let $K < G$ be a maximal compact subgroup, and suppose that G has the property mentioned in Theorem 2. Then if K acts on a compact Spin-manifold N as in Theorem 1, then Theorem 2 applies to the action by G on the fibred product $G \times_K N$, as we will see. If $K = S^1$, then it is proved in the theorem in Section 2.3 in \cite{cite2} that any compact oriented manifold X with $\int_X \hat{A}(X) = 0$ has the property that mX (for some $m \in \mathbb{N}$) is oriented cobordant to a compact Spin manifold N which has a non-trivial
S^1-action on each of its components. Then the action by K on N satisfies the hypotheses of Theorem 1 so that the to the action by G on $G \times_K N$ satisfies the conditions of Theorem 2.

Note that if N is a compact Spin-manifold with the trivial K-action, the action by G on $G/K \times N$ does not satisfy the hypotheses of Theorem 2: all stabilisers are conjugate to K and hence maximal compact subgroups.

Acknowledgements

The first author was supported by a Marie Curie fellowship from the European Union. The second author thanks the Australian Research Council for support via the ARC Discovery Project grant DP130103924.

1 Preliminaries

We begin by recalling the smooth version of Abels’ slice theorem for proper group actions. Let M be a smooth manifold, and let G be a connected Lie group acting properly on M. Let $K < G$ be maximal compact.

Theorem 3 (p. 2 of [1]). There is a smooth, K-invariant submanifold $N \subset M$, such that the map $[g, n] \mapsto gn$ is a G-equivariant diffeomorphism

\[G \times_K N \cong M \] (1.1)

Here the left hand side is the quotient of $G \times N$ by the action by K given by

\[k \cdot (g, n) = (gk^{-1}, kn), \]

for $k \in K$, $g \in G$ and $n \in N$.

We call (1.1) an associated Abels fibration of M, as it is a fibre bundle over G/K with fibre N. From now on, fix N as in Theorem 3.

The fixed point set N^K of the action by K on N is related to the action by G on M in the following way.

Lemma 4. One has

\[M_{(K)} = G \cdot N^K \cong G/K \times N^K, \]

where $M_{(K)}$ is the set of points in M with stabilisers conjugate to K.
Proof. Let \(m \in M_{(K)} \) and write \(m = [g, n] \) for \(g \in G \) and \(n \in N \), under the correspondence (1.1). Then \(G_m = gK_n g^{-1} \). So \(G_m \) is conjugate to \(K \) if and only if \(K_n \) is. Since \(K_n < K \), it is conjugate to \(K \) precisely if it equals \(K \). \(\square \)

Now fix a \(K \)-invariant inner product on the Lie algebra \(g \) of \(G \), and let \(p \subset g \) be the orthogonal complement to the Lie algebra \(t \) of \(K \). Suppose \(\text{Ad} : K \to \text{SO}(p) \) lifts to

\[
\tilde{\text{Ad}} : K \to \text{Spin}(p).
\]

This is always possible if one replaces \(G \) by a double cover. Indeed, consider the diagram

\[
\begin{array}{ccc}
\tilde{K} & \xrightarrow{\tilde{\text{Ad}}} & \text{Spin}(p) \\
\pi_K & & \pi \\
\downarrow & & \downarrow 2:1 \\
K & \xrightarrow{\text{Ad}} & \text{SO}(p),
\end{array}
\]

where

\[
\tilde{K} := \{ (k, a) \in K \times \text{Spin}(p); \text{Ad}(k) = \pi(a) \};
\]

\[
\pi_K(k, a) := k;
\]

\[
\tilde{\text{Ad}}(k, a) := a,
\]

for \(k \in K \) and \(a \in \text{Spin}(p) \). Then for all \(k \in K \),

\[
\pi_K^{-1}(k) \cong \pi^{-1}(\text{Ad}(k)) \cong \mathbb{Z}_2,
\]

so \(\pi_K \) is a double covering map. Since \(G/K \) is contractible, \(\tilde{K} \) is the maximal compact subgroup of a double cover of \(G \).

Suppose \(M \) has a \(G \)-equivariant Spin-structure \(P_M \to M \). In Section 3.2 of [6] and Section 3.2 of [8], an induction procedure of equivariant Spin\(^c\)-structures from \(N \) to \(M \) is described, which we will denote by \(\text{Ind}_N^M \) here. We will use the fact that any \(G \)-equivariant Spin-structure on \(M \) can be obtained via this induction procedure. (See also Proposition 3.10 in [8].)

Lemma 5. There is a \(K \)-equivariant Spin-structure \(P_N \to N \) such that

\[
P_M = \text{Ind}_N^M (P_N).
\]
Proof. Let $\mathfrak{p}_N \to N$ be the trivial vector bundle $N \times p \to N$, with the diagonal K-action. It has the K-equivariant Spin-structure

$$N \times \text{Spin}(p) \to N$$

on \mathfrak{p}_N, where K acts diagonally on $N \times \text{Spin}(p)$ via the lift (1.2) of the adjoint action by K on p. Since

$$TM = G \times_K (TN \oplus \mathfrak{p}_N)$$

(see Proposition 2.1 and Lemma 2.2 in [6]), the restriction $P_{M|N}$ is a K-equivariant Spin-structure on

$$TM|_N = TN \times \mathfrak{p}_N.$$

In the proof of the two out of three lemma in Section 3.1 of [10], a Spinc-structure P_N on TN is constructed given the above data. In this case, this is a K-equivariant Spin structure on TN. In Lemma 3.9 of [8], it is shown that

$$P_M = \text{Ind}^M_N(P_N).$$

\[\square \]

2 Proof of Theorem 2

Suppose M/G is compact.

The quantisation commutes with induction techniques of [6, 7], suitably adapted to the Spin-setting, allow us to deduce our main result from Atiyah and Hirzebruch’s Theorem 1. This involves the Dirac induction map

$$\text{D-Ind}_K^G : R(K) \to K_*(C^*_rG),$$

which is an isomorphism for almost connected Lie groups, cf. [5]. We will use the fact that it relates the equivariant indices of the Spin-Dirac operators \mathfrak{g}_N on N and \mathfrak{g}_M on M, associated to the Spin-structures P_N and P_M, respectively, to each other. (See also Theorem 5.7 in [8].)

Proposition 6. One has

$$\text{D-Ind}_K^G(\text{index}_K(\mathfrak{g}_N)) = \text{index}_G(\mathfrak{g}_M) \in K_*(C^*_rG).$$
Proof. Let $K^*_K(N)$ and $K^*_G(M)$ be the equivariant K-homology groups \[3\] of N and M, respectively. In Theorem 4.6 in \[6\] and Theorem 4.5 in \[7\], a map

$$K\text{-Ind}^G_K : K^*_K(N) \rightarrow K^*_G(M)$$

is constructed, such that the following diagram commutes:

$$
\begin{array}{c}
K^*_G(M) \xrightarrow{\text{index}_G} K^*_*(C^*_r G) \\
\downarrow \text{K-Ind}^G_K \\
K^*_K(N) \xrightarrow{\text{index}_K} D\text{-Ind}^G_K
\end{array}
$$

In Section 6 of \[6\], it is shown that the K-homology class of a Spinc-Dirac operator on N, associated to a connection ∇^N on the determinant line bundle of a Spinc-structure, is mapped to the class of a Spinc-Dirac operator on M associated to a connection ∇^M induced by ∇^N on the determinant line bundle of the induced Spinc-structure, by the map $K\text{-Ind}^G_K$. In the Spin-setting, both connections ∇^N and ∇^M are trivial connections on trivial line bundles. Hence one gets

$$K\text{-Ind}^G_K(\partial / N) = [\partial / M],$$

and the result follows. \[\square \]

This allows us to deduce Theorem 2 from Theorem 1.

Proof of Theorem 2. In the setting of Theorem 2, let $N \subset M$ be as in Theorem 3. Consider a K-equivariant Spin-structure on N as in Lemma 5. By Proposition 6, we have

$$\text{index}_G(\partial_M) = D\text{-Ind}^G_K(\text{index}_K(\partial_N)).$$

The stabiliser of a point $m \in M$ is a maximal compact subgroup of G if and only if $m \in M_{(K)}$. Hence, by Lemma 4, the condition on the stabilisers of the action by G on M is equivalent to the action by K on N being nontrivial. So Theorem 1 implies that

$$\text{index}_K(\partial_N) = 0,$$

and the result follows. \[\square \]
3 Consequences

Let $c \in C^\infty_c(M)$ be a cutoff function, that is a non-negative function satisfying
\[\int_M c(g^{-1}m) \, dg = 1 \]
for all $m \in M$. Let $\tau : C^*_r G \to \mathbb{C}$ be the von Neumann trace determined by
\[\tau(R(f)^*R(f)) = \int_G |f(g)|^2 \, dg, \]
for $f \in L^1(G) \cap L^2(G)$, where R denotes the right regular representation. This induces a morphism $\tau_* : K_*(C^*_r G) \to \mathbb{R}$. The following fact follows immediately from Theorem 2 and Theorem 6.12 in [12].

Corollary 7. Under the hypotheses of Theorem 2, one has
\[0 = \tau_* (\text{index}_G(\emptyset_M)) = \int_M c \cdot \hat{A}(M). \]

We note that the right hand side of (3.1) is independent of the choice of cutoff function c, cf. [12].

As an application of Corollary 7, one has the following generalisation of the second theorem in Section 2.2 of [2].

Corollary 8. Let M be a complete, connected, oriented Riemannian manifold with $w_2(M) = 0$ and suppose that $\int_M c \cdot \hat{A}(M) \neq 0$. Then any closed subgroup G (in the compact–open topology) of the group of all orientation preserving isometries of M is a discrete group, if there is a point in M whose stabiliser in G is not a maximal compact subgroup of G.

Proof. In this setting, the Myer–Steenrod theorem implies that G is a Lie group. The action on M by the identity component G_0 of G satisfies the conditions of Theorem 2. So if G_0 is nontrivial, then $\int_M c \cdot \hat{A}(M) = 0$ by Corollary 7. \qed

Let G be a connected Lie group acting properly on a manifold M. Then by Abels’ Theorem 3, there is a proper equivariant projection map.
$p: M \to G/K$, where K is a maximal compact subgroup of G. The map p_* induced on K-homology relates the equivariant indices on M and G/K by the diagram

$$
\begin{array}{c}
K^G_*(M) \\
\downarrow p_* \\
K^G_*(G/K)
\end{array}
\xrightarrow{\text{index}_G} \xleftarrow{\text{index}_G} K_*(C^*_r G).
$$

It was shown in [5], Theorem 1.1, that the equivariant index on G/K defines an isomorphism $K^G_*(G/K) \cong K_*(C^*_r G)$. Using this, we deduce an equivalent statement of Theorem 2 that does not use $C^*_r G$ or the equivariant index.

Corollary 9. Under the hypotheses of Theorem 2, one has

$$p_*[\varnothing_M] = 0 \in K^G_*(G/K).$$

References

[1] H. Abels, *Parallelizability of proper actions, global K-slices and maximal compact subgroups*, Math. Ann. 212 (1974), 1–19.

[2] M. Atiyah, F. Hirzebruch, *Spin-manifolds and group actions*, 1970 Essays on Topology and Related Topics (Mémoires dédiés Georges de Rham) Springer, New York, 18–28.

[3] P. Baum, A. Connes, N. Higson, *Classifying space for proper actions and K-theory of group C^*-algebras*, C^*-algebras: 1943-1993 (San Antonio, TX, 1993), Contemp. Math., 167, Amer. Math. Soc., Providence, RI (1994), 240–291.

[4] R. Bott and C. Taubes, *On the rigidity theorem of Witten*, J. Amer. Math. Soc., 2 (1989), 137-186.

[5] J. Chabert, S. Echterhoff and R. Nest, *The Connes–Kasparov conjecture for almost connected groups and for linear p-adic groups*, Publ. Math. Inst. Hautes Études Sci. 97 (2003), 239–278.

[6] P. Hochs, *Quantisation commutes with reduction at discrete series representations of semisimple groups*, Adv. Math. 222 (2009), no. 3, 862–919.
[7] P. Hochs, it Quantisation of presymplectic manifolds, K-theory and group representations, Proc. Amer. Math. Soc. (to appear), 17 pages, arXiv:1211.0107.

[8] P. Hochs and V. Mathai, Quantising proper actions on Spinc-manifolds, 62 pages, arXiv:1408.0085.

[9] G. Kasparov, Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91 (1988), no. 1, 147-201.

[10] R.J. Plymen, Strong Morita equivalence, spinors and symplectic spinors, J. Operator Theory 16 (1986), no. 2, 305-324.

[11] C. Taubes, S1 actions and elliptic genera, Comm. Math. Phys, 122 (1989), 455-526.

[12] H. Wang, L2-index formula for proper cocompact group actions. J. of Noncommut. Geom 8 (2014), no.2, 393–432.

[13] E. Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987), no. 4, 525–536.