Study of nuclear reactions producing 36Cl by micro-AMS

H Luís3, A P Jesus1,2, M Fonseca1,2, J Cruz1, D Galaviz3, N Franco3, E Alves3

1Dep. Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
2Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal
3Campus Tecnológico e Nuclear (CTN), Instituto Superior Técnico, Estrada Nacional 10 2695-066 Bobadela, Portugal

E-mail: heliofluis@gmail.com

Abstract. 36Cl is one of several short to medium lived isotopes (as compared to the earth age) whose abundances at the earlier solar system may help to clarify its formation process. There are two generally accepted possible models for the production of this radionuclide: it originated from the ejecta of a nearby supernova (where 36Cl was most probably produced in the s-process by neutron irradiation of 35Cl) and/or it was produced by in-situ irradiation of nebular dust by energetic particles (mostly, p, a, 4He -X-wind irradiation model).

The objective of the present work is to measure the cross section of the 37Cl(p,d)36Cl and 35Cl(d,p)36Cl nuclear reactions, by measuring the 36Cl content of AgCl samples (previously bombarded with high energy protons and deuterons) with AMS, taking advantage of the very low detection limits of this technique for chlorine measurements.

For that, the micro-AMS system of the LFI/ITN laboratory had to be optimized for chlorine measurements, as to our knowledge this type of measurements had never been performed in such a system (AMS with micro-beam).

Here are presented the first results of these developments, namely the tests in terms of precision and reproducibility that were done by comparing AgCl blanks irradiated at the Portuguese National Reactor with standards produced by the dilution of the NIST SRM 4943 standard material.

1. Introduction

The motivation for measuring cross sections of nuclear reactions producing 36Cl lies in the field of astrophysics that studies the origin and formation of the solar system. 36Cl is one of the short-lived radionuclides (called SLR's for abbreviation), thus named because of their short half-lives (~1 Myrs), whose abundances in the early stages of the formation of the solar system is much higher than expected from the galactic background. These SLR's are 7Be (t$_{1/2}$ = 53 days), 10Be (t$_{1/2}$ = 1.4 Myrs), 26Al (t$_{1/2}$ = 0.74 Myrs), 35Cl (t$_{1/2}$ = 0.3 Myrs), 41Ca (t$_{1/2}$ = 0.1 Myrs), 53Mn (t$_{1/2}$ = 3.5 Myrs) and 60Fe (t$_{1/2}$ = 1.5 Myrs), and are known to have been present in the early stages of the solar system through the presence of their daughter isotopes in CAIS (calcium and aluminium rich inclusions) and chondrule present in chondrites, which are the most common form of meteorites found on earth [1]. These structures are thought to be amongst the oldest solid material present in the solar system, and they can provide important information about its formation.

The analysis of Cl-S systematics of sodalite in carbonaceous chondrites yielded a ratio of 36Cl/35Cl around 10^{-6}. Since sodalite is in principle a late-stage product of aqueous alteration, this ratio's initial value should have been higher, assuming that the 36Cl supernova injection happened in the prestellar core stage, as it is supposed to have happened with the other SLRs. Following this principle, the expected 36Cl/35Cl ratio at the time of the SLRs injection has been estimated to be around 10^{-4}. This value is already too high for the estimated supernova injection of 36Cl/35Cl=10$^{-6}$. However, recent analysis of wadalite in the allende carbonaceous chondrite seems to make the SN injection of 36Cl scenario even more implausible, yielding a ratio of 36Cl/35Cl \approx (1.72±0.25) x 10$^{-5}$, making the initial ratio even higher than 10^{-4} [2]. This seems to definitely invalidate the possibility of 36Cl injection by a
supernova. Therefore the irradiation of nebular dust by energetic particles (mostly, p, a, ³He -X-wind irradiation model) becomes a strong candidate to explain the abundance of the ³⁶Cl isotope.

It is in this context that the research group is currently working on measuring the ³⁷Cl(p,d)³⁶Cl and ³⁵Cl(d,p)³⁶Cl nuclear reactions, using the Micro-AMS system at LFI/ITN to measure the amount of ³⁶Cl produced in the AgCl irradiated samples, starting by the optimization of this system for ³⁶Cl measurements.

2. The Micro-AMS system at LFI/ITN
The Micro-AMS system present at LFI/ITN is the former AUSTRALIS system developed by Sie et al. [3] at CSIRO. It is based on a 3 MV tandem accelerator. Its main feature is the ion source, a HICONEX cesium sputter source that was adapted in order to produce a Cs⁺ micro-beam that can be focused to very small diameter (30 um), and a low-energy and high-energy bouncing system that allows quasi-simultaneous measurement of different isotopes.

It was developed with the goal of using the capabilities of a SIMS system (spatial and in-depth analysis of bulk samples) connected to an AMS system that provides the possibility of resolving isobaric and molecular interferences, that in many cases spoil the detection limits of SIMS analysis.

3. Adaptation of the system to the measurement of ³⁶Cl
Measurement of AgCl samples is very common in conventional AMS but has never been tried with Micro-AMS, since its lower intensity primary beam implies much lower detection limits for ³⁶Cl, while in principle not bringing any important advantage. However, since it is possible to produce ³⁶Cl (through the astrophysically relevant ³⁷Cl(p,d)³⁶Cl and ³⁵Cl(d,p)³⁶Cl nuclear reactions) in enough quantity to bring the isotopic ratios present in the sample to the ³⁶Cl/³⁵Cl>10⁻¹⁰ range, the micro-beam AMS technique becomes a valid technique to measure cross-sections while eventually providing some advantages as, for instance, direct measurement of the irradiated samples without further chemical manipulation, since with the micro-beam it is possible to measure on the exact beam spot of the irradiation in the sample.

The original AUSTRALIS system was not prepared for very low isotopic ratio measurements (below 10⁻⁵), and so adaptations had to be made in order for it to be possible to measure the high intensity beams (³⁵Cl and ³⁷Cl) and very low intensity beams (³⁶Cl) quasi-simultaneously, which was done by installing off-axis faraday cups after the Low-energy and high-energy magnets. Another important step was to minimize sulfur contamination in the target chamber.

Sulfur contamination is a problem in conventional Chlorine AMS measurements, since the ³⁶S isotope is an isobaric interference of ³⁶Cl. Up until recently an effective isobar separation of ³⁶S and ³⁶Cl was impossible using 3 MV tandems. However, work developed in ETHZ Zurich and VERA in Vienna [4,5] in the last years has successfully achieved separation for ³⁶Cl and ³⁶S using a 3 MV tandem.

However, these separation procedures for 3 MV tandems were not tried in the case of this work because the current state of the ITN tandem does not permit it to operate much above 2.5 MV. But since the Micro-AMS uses a primary cesium micro-beam, which is on average three orders of magnitude less intense than the conventional AMS primary beam, this means that its detection limits fall by that amount or more when compared to AMS. Our current detection limit, measured by analyzing a blank AgCl sample (produced with sulfur removal chemical treatment [6]) and monitoring the detector background, yielded a background level below ³⁶S/³⁵Cl=10⁻¹⁰.

It is in principle possible to keep the ³⁶S reaching the detector on the level of ³⁶S/³⁵Cl=10⁻¹², by keeping the sample chamber very clean and by taking special steps in the design of the sample holder, besides using the well-known chemical sample preparation methods for the standards and for the blank AgCl material to be used as blank material and irradiation material.

The contamination of ³⁶S present in the sample holder is a well-known problem in conventional AMS. The micro-beam used in Micro-AMS is an advantage in this case, because it is easier to assure
that the whole bombarded area is locate strictly within the target limits, as opposed to conventional AMS where the large diameter beam, maximized for intensity, will easily impact the sample holder as well during operation. However, since there is no possibility to separate 36S from 36Cl in our system, it is important to assure that no sulfur contamination may be present anywhere close to the sample. This means that the chamber has to be as clean as possible, and the sample holder must be designed so as to minimize any contamination as well.

The original sample holder was covered with a sheet of tantalum. In each of the positions where the samples were to be mounted, a round disk of two centimeters in diameter of compressed AgBr was installed. The AgCl samples (also a compressed powder) were then mounted at the center of these disks. Using AgBr to cover the sample holder in the sample area was shown in the literature [7] to be the most efficient material in minimizing sulfur contamination in the chlorine beam.

Since cross-contamination of samples can happen easily, the maximum number of samples per run was set at 4. This way it was possible to keep the samples at a reasonable distance (> 3 cm) from each other, and still be able to have a blank sample, a standard, and two unknown samples in each run.

4. Measurements

The AgCl samples were irradiated in the RPI nuclear reactor at ITN using the neutron capture nuclear reaction 35Cl(n,γ)36Cl. Neutron flux and irradiation times were set to produce 36Cl/35Cl isotopic ratios in the 10^{-6} to 10^{-9} range. The thermal neutron fluxes were controlled with gold monitor samples, by measuring the 411.8 keV gamma emission, emitted by the decay of the 198Au (t$_{1/2}$=2,695 d) produced by the neutron capture reaction 197Au(n,γ)198Au with a HPGe detector, after each neutron irradiation.

Most of the measurements were performed on irradiated samples with isotopic ratios in the 10^{-6} and 10^{-7} range. The high content of 36Cl in these samples made it easier to tune the system. The standards were prepared to have an isotopic ratio of 36Cl/35Cl= 1×10^{-6}, by diluting the NIST SRM 4943 standard. Due to the lower intensity of cesium primary beam, the memory effect was not important and it was monitored with a blank sample after each measurement of sample or standard.

5. Results

Figure 1 shows a measurement performed on an irradiated sample. Figure 2 shows three different normalized measurements on the same sample (each of the measurements was succeeded by a standard measurement which was used for normalization); the first two in the same day but with somewhat different beam tunings and the last, two days after the first two. The highest error bar is in the 4% precision range.

![Figure 1: 36Cl/35Cl isotopic ratio measured in an irradiated sample vs. cycle number. Each of the cycles represents a 100 ms measurement time for each of the three chlorine isotopes.](image-url)
6. Conclusions

The results so far show on the one hand a good agreement in terms of the 36Cl content of the samples between the irradiated samples and the diluted standards and a good reproducibility of the measurements. This validates both the neutron irradiations as a valuable process for the production of standards and the chemical procedures used for the production of standards and blank material. However, the precision of the measurements is still not as good as expected. This is a problem as the objective of the work is to measure samples with less 36Cl than the ones measured so far, which means an even lower precision, as less 36Cl means less counts per second in the particle detector.

In order to achieve a better precision, steps are being taken to increase the primary beam intensity as well as decreasing the measurement cycle time, especially for the 35Cl and 37Cl beams, by connecting the Faraday cups to a faster current integrator.

References

[1] M. Gounelle, A. Meibom, The Astrophysical Journal, 680 (2008) 781–792
[2] M. Chaussidon, M. Gounelle, C. R. Geoscience 339 (2007) 872–884
[3] S. H. Sie et al., Rev. Sci. Inst. 69, 3 (1998)
[4] Peter Steier et al., Nucl. Instr. and Meth. B B 268 (2010) 744–747
[5] M. Martischini et al., Nucl. Instr. and Meth. B B 269 (2011) 3188–3191
[6] Y. Nagashima, R. Seki, T. Takahashi, D. Arai, Nucl. Instr. and Meth. B 172 (2000) 129.
[7] Finkel, R. et al., Nucl. Instr. and Meth. B 294 (2013) 121-125.