A complete solution to neutrino mixing

G. Conforto, A. Marchionni, F. Martelli, F. Vetrano
Università degli Studi, 61029 Urbino, Italy
Istituto Nazionale di Fisica Nucleare, 50125 Firenze, Italy

M. Lanfranchi
Dipartimento di Fisica dell’Università and
Istituto Nazionale di Fisica Nucleare, 50125 Firenze, Italy

G. Torricelli-Ciamponi
Osservatorio Astrofisico di Arcetri, 50125 Firenze, Italy

(To be published in Astroparticle Physics)

Abstract

Deviations from expectations have been claimed for solar, atmospheric and high energy prompt neutrinos from charm decay. This information, supplemented only by the existing very good upper limits for oscillations of the ν_μ at accelerator energies, is used as input to a phenomenological three-flavour analysis of neutrino mixing. The solution found is unique and completely determines the mass eigenstates as well as the mixing matrix relating mass and flavour eigenstates. Assuming the mass eigenstates to follow the hierarchy $m_1 \ll m_2 \ll m_3$, their values are found to be $m_1 \ll 10^{-2}$ eV, $m_2 = (0.18 \pm 0.06)$ eV, $m_3 = (19.4 \pm 0.7)$ eV. These masses are in agreement with the leptonic quadratic hierarchy of the seesaw model and large enough to render energy-independent any oscillation-induced phenomenon in solar neutrino physics observable on Earth. This possibility is not excluded by the present knowledge of solar neutrino physics. The mixing angles are determined to be $\theta_{12} = 0.55 \pm 0.08$, $\theta_{13} = 0.38 \pm 0.06$, $\theta_{23} < 0.03$. Small values of θ_{23} are typical of any solution in which m_3 lies in the cosmological interesting region. The solution found is not in serious contradiction with any of the present limits to the existence of neutrino oscillations. The most relevant implications in particle physics, astrophysics and cosmology are discussed.

*e-mail addresses:
conforto@vxcern.cern.ch, marchion@vxcern.cern.ch, martelli@vxcern.cern.ch,
vetrano@fis.uniurb.it, lanfranchi@fi.infn.it,torriceli@arcetri.astro.it
1 Introduction

In recent years, several deviations from expectations have been reported in various fields of neutrino physics \[1\].

At high energy, the equality between the ν_e and ν_μ energy spectra prescribed by $e\mu$ universality for the semi-leptonic decays of charmed particles appears to be violated at the four sigma level.

In atmospheric neutrinos, the ratio between the ν_μ and ν_e fluxes is found to be substantially less than the predicted value of 2.

Even if quantitative conclusions depend on the somewhat different predictions of the various solar models, measurements of solar neutrino fluxes on Earth have been known for some time to fall short of the corresponding theoretical expectations.

These positive results have been taken as indications of the existence of non-zero neutrino masses and mixings. However, they have to be examined for consistency with each other and confronted with the many negative searches for oscillations and their corresponding upper limits.

No satisfactory purely phenomenological over-all interpretation has been obtained so far.

In this paper we describe a comprehensive three-flavour analysis which results in an unique, overconstrained and complete description of neutrino mixing. Negative results being usually available only at the 1.64 sigma level (90% CL), we have used as input data only the three positive results above and the two most stringent upper limits obtained in the searches for ν_e-ν_μ and ν_μ-ν_τ oscillations at high energy accelerators. We also discuss the compatibility of this solution with the other existing limits and its most relevant implications in particle physics and astrophysics.

Preliminary accounts of this work have been presented elsewhere \[2,3\].

CP-invariance is assumed throughout the paper. Also, unless otherwise stated, the term neutrino is used to indicate both neutrino and antineutrino.

2 Three-flavour formalism

In the complete three-flavour approach, the weak eigenstates $|\nu_\alpha\rangle = \nu_e, \nu_\mu, \nu_\tau$ and the mass eigenstates $|\nu_i\rangle = \nu_1, \nu_2, \nu_3$ are related by an unitary transformation matrix U, in terms of which the probability of an initial neutrino ν_α of energy E being equal to another neutrino ν_β at a distance L, can be written as

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j>i} U_{\alpha i} U_{\beta i} U_{\alpha j} U_{\beta j} \sin^2(\Delta_{ij}/2)$$ \hspace{1cm} (1)

with $\Delta_{ij} = \delta m_{ij}^2 L/2E$, where $\delta m_{ij}^2 = m_i^2 - m_j^2$, $m_i = m(\nu_i)$.
The U-matrix can be parametrized as

$$U = \begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} & s_{13} \\
 s_{12}c_{23} - c_{12}s_{23}s_{13} & c_{12}c_{23} - s_{12}s_{23}s_{13} & s_{23} \\
 s_{12}s_{23} - c_{12}c_{23}s_{13} & -s_{12}s_{23} - s_{12}c_{23}s_{13} & 2c_{12}s_{13}
\end{pmatrix}$$ \(2\)

with $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$, where θ_{12}, θ_{13} and θ_{23} are three independent real angles lying in the first quadrant.

Of the three δm^2_{ij}’s appearing in eq. \((1)\), only two are independent. The complete solution of the problem consists therefore in determining five unknowns: two δm^2_{ij}’s and the three θ_{ij}’s.

For $m_1 \ll m_2 \ll m_3$, only two δm^2_{ij}’s characterize the oscillatory behaviour of eq. \((1)\): δm^2_{12} and $\delta m^2_{13} \simeq \delta m^2_{23}$, corresponding, respectively, to a “slow” and a “fast” oscillation. Thus, for any given experimental situation, depending on the range of L/E under study, either only the fast or both the fast and slow oscillations may be occurring.

This allows to define the two ranges $1/\delta m^2_{13}(\text{eV}^{-2}) \ll L/E(\text{m}/\text{MeV}) \ll 1/\delta m^2_{12}(\text{eV}^{-2})$ ("short-baseline") and $L/E(\text{m}/\text{MeV}) \gg 1/\delta m^2_{12}(\text{eV}^{-2})$ ("long-baseline") in which the average transition probabilities $P_{\alpha\beta}^S$ and $P_{\alpha\beta}^L$ are calculated from eq. \((1)\) for $\sin^2(\Delta_{12}/2) = 0$, $\langle \sin^2(\Delta_{13}/2) \rangle = 0.5$ and $\langle \sin^2(\Delta_{12}/2) \rangle = 0.5$, $\langle \sin^2(\Delta_{13}/2) \rangle = 0.5$, respectively.

3 Input data

3.1 Accelerator neutrinos

In prompt neutrinos from charm decay, the equality between the ν_e and ν_μ spectra prescribed by e-μ universality appears to be violated as the neutrino flux asymmetry

$$A = (\nu_\mu \text{ flux} - \nu_e \text{ flux})/(\nu_\mu \text{ flux} + \nu_e \text{ flux})$$ \(3\)

is experimentally determined to be $A = 0.21 \pm 0.05 \ [2]$.

For values of L/E smaller than about $0.1 \text{ m}/\text{MeV}$, and consequently in the domain of the prompt neutrino data, $P_{e\mu}$ and $P_{\mu\tau}$ are experimentally known to obey the 90% CL upper limits \[[3]

$$P_{e\mu} < 1.5 \times 10^{-3} , \quad P_{\mu\tau} < 2 \times 10^{-3}.$$ \(4\)

Thus, ascribing the non-vanishing value of A to a depletion of the ν_e flux due to oscillations, the analysis of the L/E dependence of the data leads to the existence of ν_e-ν_τ oscillations with the parameters \[[4, 5]

$$\sin^2(2\alpha) = 0.48 \pm 0.10 \pm 0.05$$ \(5\)

$$\delta m^2 = (377 \pm 27 \pm 7) \text{ eV}^2.$$ \(6\)
Table 1: Atmospheric neutrino experimental results.

EXPERIMENT	\(r = (\mu/e)_{\text{obs}}/(\mu/e)_{\text{calc}} \)
Nusex	1.04 ± 0.32
Frejus (contained events)	0.87 ± 0.19
IMB-3	0.54 ± 0.13
Kamiokande	0.60 ± 0.08
Soudan 2	0.64 ± 0.19

In terms of three-flavour notations, eq. (6) ensures this to be the fast oscillation \((\sin^2(\Delta_{12}/2) = 0) \), and the limits of eq. (4) imply that \(\theta_{23} \) must be very small. It then follows that eqs. (5) and (6) can be rewritten as

\[
\sin^2(2\theta_{13}) = 0.48 \pm 0.12 \tag{7}
\]

\[
\delta m^2_{13} \simeq \delta m^2_{23} = (377 \pm 29) \text{ eV}^2. \tag{8}
\]

3.2 Atmospheric neutrinos

Neutrinos are also produced in the interactions of the primary component of cosmic rays in the Earth’s atmosphere and in the subsequent decays of the produced secondaries. As almost all these decays involve a muon, which in turn also decays, the ratio \(R \) between the \(\nu_\mu \) and \(\nu_e \) fluxes can be safely predicted to be approximately 2.

Several experiments have addressed this question \[7\]. They all consistently find values of \(R \) which are smaller than 2 by a factor of \(r \), approximately equal to 0.6. In fact, for average neutrino energies below 1 GeV, the weighted average of all available data \[8, 9, 10, 11, 12\] listed in Table 1 gives

\[
r = 0.63 \pm 0.06 \quad \text{with } \chi^2/\text{d.o.f.} = 0.96. \tag{9}
\]

Contrary to the low-energy behaviour, in the multi-GeV energy range \(r \) is observed to be a function of the zenith-angle \[13\]. This is very suggestive of an \(L/E \) dependence of \(r \) and thus of an oscillation-induced phenomenon. The \(\delta m^2 \) characterizing this oscillation lies in the 90\% CL interval

\[
5 \times 10^{-3} < \delta m^2_{12} < 8 \times 10^{-2} \text{ eV}^2. \tag{10}
\]

Eq. (10) ensures that in the sub-GeV energy range all detected observables have their average long-baseline values. Thus, in terms of the three-flavour formalism, eq. (4) becomes

\[
(P_{\mu\mu}^L + \rho P_{e\mu}^L)(\rho^{-1}P_{e\mu}^L + P_{ee}^L)^{-1} = 0.63 \pm 0.06 \tag{11}
\]

where \(\rho = 0.47 \pm 0.02 \) is the expected \(\nu_e/\nu_\mu \) flux ratio in the absence of oscillations \[14, 15\].
Table 2: Solar neutrino experimental results and theoretical predictions (1σ). Statistical and systematic errors have been added in quadrature. For the Ga71 entry, the quoted experimental value is the weighted average of the SAGE $(69 \pm 10^{+7}_{-5}$ SNU [18]) and Gallex $(77.1 \pm 8.5^{+4.4}_{-3.4}$ SNU [19]) results. The error on this value is almost certainly underestimated as systematic errors have been treated as uncorrelated.

DETECTOR	CI17	Kamiokande	Ga71
	(SNU)	$(10^6\text{ cm}^{-2}\text{s}^{-1})$	(SNU)
Experimental result	2.55\pm0.25	2.75\pm0.45	73.7\pm7.6
Princeton/Yale model	8\pm1	5.7\pm0.8	132\pm6
Saclay model	6.4\pm1.4	4.4\pm1.1	123\pm7

3.3 Solar neutrinos

Solar neutrinos have been known for some time to deviate from expectations. The experimental results [16, 17, 18, 19], coming from three different types of detectors, as well as the predictions of the Princeton-Yale [20] and Saclay [21] solar models are summarized in table 2. With the only exception of Ga71, experimental results are dominated by systematic errors. Furthermore, it can be seen that theoretical uncertainties almost always exceed experimental errors. Thus, in any comparison between models and experiments, theoretical errors must necessarily be taken into account. As they are highly correlated, we have limited our choice of theoretical models to those published and for which the complete error correlation matrix is available [22].

With neutrino mass differences as large as those of eqs. (8) and (10), all solar neutrino oscillation-induced phenomena observable on Earth are bound to be energy-independent. In particular, in all experiments the ν_e flux must be reduced by the same factor F, independently of the detection threshold.

Although marginally in some cases, the data are consistent with this expectation. Fig. 1 shows the two χ^2’s obtained by comparing the experimental data with the theoretical predictions of the Princeton-Yale (PY) and Saclay (S) solar models as a function of F. In the analytical formulation of these χ^2’s, theoretical and experimental errors have been added in quadrature and correlations among theoretical errors have been fully taken into account by means of the appropriate correlation matrices. The χ^2_{PY} and χ^2_{S} minima turn out to be $\chi^2_{\text{PY, min}} = 9.48$ (CL = 0.9%, equivalent to 2.6 sigma) and $\chi^2_{\text{S, min}} = 5.10$ (CL = 7.8%, equivalent to 1.8 sigma). The confidence level of the first fit is admittedly rather low, but not unacceptable. In view also of the goodness of the second fit and of the only approximate knowledge of both theoretical and experimental errors (particularly with regard to their Gaussian-like behaviour), no conclusion about a compelling energy-dependence of the F-factor can be drawn at this stage.
Figure 1: The functions $\chi^2 = \chi^2(F)$ obtained by comparing the experimental data with the predictions of the Princeton-Yale (dashed line) and Saclay (full line) solar models (see Table 2). F is the energy-independent factor by which all ν_e fluxes predicted by the same model are reduced. For each model the correlations among errors on the expected rates for the various detectors have been taken into account through the use of the appropriate error correlation matrix. All errors have been assumed to be Gaussian-distributed.
Following the procedure normally used by the Particle Data Group \cite{5}, the errors on the F-factors have been multiplied by the appropriate scale-factors. Then, the two F-factors turn out to be $F_{\text{PY}} = 0.46 \pm 0.13$ and $F_{S} = 0.57 \pm 0.13$, implying the existence of a solar neutrino deficit.

In order to quantify this deficit for our further analysis, we have calculated a new F-factor taking the arithmetic average of F_{PY} and F_{S}. We have taken the error on this average (± 0.08) to be a good estimator of a systematic error reflecting the fact that the two models of the same Sun yield different predictions. We have added this error in quadrature to the typical statistical error (± 0.13), arriving at the result

$$F = 0.51 \pm 0.15.$$ \hspace{1cm} (12)

Using the formalism of the three-flavour analysis, eq. (12) trivially translates into

$$P_{ee}^L = 0.51 \pm 0.15.$$ \hspace{1cm} (13)

4 Mass eigenstates and mixing matrix

Taking $m_1 \ll m_2$, eqs. (8) and (14) yield

$$m_1 = 10^{-2} \text{eV} \ , \quad m_2 = (0.18 \pm 0.06) \text{eV} \ , \quad m_3 = (19.4 \pm 0.7) \text{eV}$$ \hspace{1cm} (14)

These values are consistent with the predictions of the see-saw model \cite{23}. Using a leptonic quadratic hierarchy and the above value of m_3 one has $m_1 = 1.6 \times 10^{-6} \text{eV}$ and $m_2 = 6.8 \times 10^{-2} \text{eV}$.

From the three eqs. (7), (11) and (13), within the constraints (4), the three angles θ_{ij} are uniquely determined to be

$$\theta_{12} = 0.55 \pm 0.08 \ , \quad \theta_{13} = 0.38 \pm 0.06 \ , \quad \theta_{23} < 0.03.$$ \hspace{1cm} (15)

with $\chi^2_{\text{min}} = 0.093$.

As in any solution with m_3 larger than a few eV, the smallness of θ_{23} is dictated by the upper limits (4) and this implies an over-determination of the angles θ_{12} and θ_{13}. The good consistency of the input data is illustrated in fig. 2, which shows the three relations between θ_{12} and θ_{13} obtained from eqs. (7), (11) and (13) for $\theta_{23} = 0$. It can be seen, for instance, that the value of θ_{13} is determined not just by the result of eq. (7) but also by the system formed by the other two.

The U-matrix is then

$$U = \begin{pmatrix}
0.79 \pm 0.05 & 0.49 \pm 0.06 & 0.37 \pm 0.05 \\
-0.52 \pm 0.06 & 0.85 \pm 0.05 & < 0.03 \\
-0.31 \pm 0.04 & -0.20 \pm 0.05 & 0.93 \pm 0.03
\end{pmatrix}$$ \hspace{1cm} (16)

The knowledge of the angles θ_{ij} allows also to calculate the following short- and long-baseline average transition probabilities $P_{\alpha \beta}^S$ and $P_{\alpha \beta}^L$.

$$P_{ee}^S = 0.77 \pm 0.06 \quad P_{e\mu}^S < 3 \times 10^{-4} \quad P_{e\tau}^S = 0.23 \pm 0.06$$

$$P_{\mu\mu}^S > 0.998 \quad P_{\mu\tau}^S < 1.5 \times 10^{-3} \quad P_{\tau\tau}^S = 0.77 \pm 0.06$$
Figure 2: The three relations ($\pm 1\sigma$) between θ_{12} and θ_{13} obtained from eqs. (7) (full lines), (11) (dashed lines) and (13) (dotted lines) for $\theta_{23} = 0$.
\begin{align*}
P^{L}_{ee} &= 0.47 \pm 0.06 & P^{L}_{e\mu} &= 0.35 \pm 0.05 & P^{L}_{e\tau} &= 0.19 \pm 0.05 \\
P^{L}_{\mu\mu} &= 0.60 \pm 0.06 & P^{L}_{\mu\tau} &= 0.05 \pm 0.03 & P^{L}_{\tau\tau} &= 0.76 \pm 0.06
\end{align*}

All upper limits are at the 90\% CL.

5 Discussion

The results for the mixing angles (eq. (14)) are that θ_{12} is fairly sizeable, θ_{23} is small and θ_{13} lies somewhere in between the two. Small values of θ_{23} are typical of any solution in which the mass of the heaviest eigenstate (eq. (14)) is of cosmological relevance [24].

The main implications of this scenario are discussed below.

5.1 Accelerators

Short-baseline experiments like Chorus and Nomad [25] are expected to see a ν_τ signal. If not from $\nu_\mu-\nu_\tau$ ($P^{S}_{e\tau}$ is consistent with zero), at least from $\nu_e-\nu_\tau$ transitions (owing to the about 1\% ν_e component in the beam and the sizeable $P^{S}_{e\tau}$).

Long-baseline experiments [7, 26] have a better chance to detect $\nu_\mu-\nu_\tau$ oscillations, but the largest effect is anticipated in the $\nu_e-\nu_\mu$ channel.

Experiments at low energy accelerators like KARMEN [27] and LSND [28] ought to be able to detect $\nu_e-\nu_\mu$ transitions as, owing to the onset of the slow oscillation, $P_{e\mu}$ in their accepted range of L/E is typically a fraction of a percent. Both experiments should be in the position of investigating the conservation of the ν_e flux, a study which so far has resulted in the KARMEN not yet statistically significant P_{ee} lower limit [27].

5.2 Beta decay and reactors

For Majorana neutrinos, under very reasonable assumptions, the neutrino-less double beta decay amplitude is proportional to [29]

\[m_{\beta\beta} = \sum_i U_{ei}^2 m_i \] \hspace{1cm} (17)

The value of $m_{\beta\beta}$ calculated from eqs. (14) and (13) is 2.6 eV, while its present upper limit is only about several eV [8], so that experiments will soon be in the position of providing definite conclusions on this very important issue.

In about 13\% of all β-decays a heavy neutrino of mass m_3 (eq. (14)) is expected to be produced. Two-state analyses of the spectra end-points [30] might be able to investigate this question. However, at the present time, the presence of ununderstood phenomena in the high energy region precludes any firm conclusions [31].
All β-sources are expected to yield lower-than-canonically-calculated ν_e fluxes (both P_{ee}^S and P_{ee}^L are smaller than 1 and the wave-length of the fast oscillation is about 5 mm/MeV) but the only result available so far \cite{32} is not accurate enough to really test this possibility.

This effect should also be present in experiments at nuclear reactors. After some initial tantalizing results indicating a large depletion of the ν_e flux at the two sigma level \cite{33, 34}, the more recent experiments have failed to substantiate any deviation from expectations. In fact, their claims represent the most stringent limit to oscillations of the ν_e and the most serious challenge to the result of eq. (5).

For mass differences as large as that of eq. (6), owing to the very short wave-length of the oscillation, these experiments consist in comparing the antineutrino flux expected from the reactor with that experimentally measured at some (short-baseline) distance away. In spite of the many such experiments carried out in the last decade \cite{35, 36, 37, 38, 39}, no significant progress has been made in the accuracy of the results. The comparison of ref. \cite{35} with ref. \cite{39} (the two best documented and, respectively, the oldest and newest papers) shows that in both cases the determination of the ratio between results and expectations is limited by a systematic error of about 6%. This error is largely dominated by a common uncertainty on the knowledge of the reactor antineutrino energy spectrum. This is due to the fact that the bulk of the data on thermal neutron fission induced β-spectra \cite{40, 41, 42} all reactor antineutrino energy spectra calculations are based on were obtained only once, more than a decade ago. It has been argued repeatedly that such important measurements ought to be checked, that the procedure used in deriving neutrino spectra from β-spectra ought to be better understood, that the quoted systematic uncertainty is probably underestimated and that the over-all normalization error in the reactor antineutrino energy spectrum is more likely to be around 10\% \cite{13, 14, 15}. In any case, even taking the quoted 6\% at face value and assuming it to be Gaussian-distributed, the reactor result differs from the value of P_{ee}^S, resulting from eq. (15) by 2.7 sigma, indicating some discrepancy but not a really serious incompatibility.

Reactor experiments are potentially sensitive also to the existence of the mass difference of eq. (10). In this case the wavelength of the oscillation is certainly long enough to allow a comparison between two measurements of the antineutrino flux in two detectors at different distances from the reactor, thus reducing the systematic effects discussed above. Because of the low event rate, experiments so far have been barely able to investigate the L/E region of interest. However, the claimed limits \cite{33, 36, 37, 38, 39} exclude in part or almost completely the region of eq. (10). On the other hand, even if in a different context, the re-analysis of the reactor data of ref. \cite{46} has shown that a mass $m = (0.085 \pm 0.010)$ eV is quite consistent with all existing evidence. Reactor experiments with an even slightly larger L than it has been possible so far are clearly needed to clarify this important point. Long-base experiments will also have the benefit of a projected larger depletion of the ν_e flux ($P_{ee}^L < P_{ee}^S$).
In conclusion, although reactor experiments do indicate the existence of some potential problems at the very edges of the explored region in the $\sin^2(2\alpha), \delta m^2$ plane, the large uncertainties involved preclude any firm conclusion at the present time.

5.3 Astrophysics and cosmology

Neutrinos with masses of the order of ten eV can be the dark matter particles needed to explain the high rotation velocities in the outer parts of spiral galaxies [47, 48] and the observed X-ray emission from hot diffused gas in elliptical galaxies [49].

Heavy neutrinos lead also to some important cosmological consequences. With masses as large as those of eq. (14), neutrinos contribute far more than baryons to the total matter density of the universe $\Omega_0 = \rho_0/\rho_c$ where ρ_c is the critical density (the subscript 0 indicates present-day values).

In terms of the Hubble parameter H_0 ($H_0 = 100 h_0 \text{ km s}^{-1} \text{ Mpc}^{-1}$) the baryon density Ω_b is known to be [3]

$$\Omega_b h_0^2 = (0.015 \pm 0.005)$$

while the neutrino density Ω_ν obtained from eq. (14) is

$$\Omega_\nu h_0^2 = 1.075 \times 10^{-2} \times \sum_i m_i = (0.211 \pm 0.008).$$

Thus, for a universe whose only massive stable components are baryons and neutrinos, the total density is given by

$$\Omega_0 h_0^2 = (\Omega_b + \Omega_\nu) h_0^2 = (0.226 \pm 0.009)$$

The relation resulting from eq. (20) is shown in the Ω_0, H_0 plane of Fig. 3 by the full-line curves. They define the allowed region (1σ) for a universe composed only of baryons (visible matter) and neutrinos (hot dark matter, HDM). The allowed region for a possible third massive component (cold dark matter, CDM) lies on the right-hand side of these curves. The same figure shows also the relations between Ω_0 and H_0 obtained from the Einstein’s equations for the two limiting values of the age of the universe $T = 13, 16 \text{ Gyr}$ and for two different values of the cosmological constant Λ ($\Lambda = 3H_0^2 \lambda_0 c^2$) $\lambda_0 = 0, 1$.

To date, the value of H_0 is not precisely known, the various experimental determinations ranging between the values $h_0 \simeq 0.5$ and $h_0 \simeq 0.8$ [50].

Depending on the value of H_0, different situations can occur.

1. For $h_0 \simeq 0.5$ the choice $\lambda_0 = 0$ is consistent with the accepted bounds on the age of the universe. In this case eq. (20) requires $\Omega_0 \gtrsim 0.85$ and for $\Omega_0 = 1$ neutrinos turn out to be the most massive component of the
Figure 3: Relations between the total matter density of the universe Ω_0 (in units of critical density) and the normalized Hubble parameter h_0 ($H_0 = 100 h_0$ km s$^{-1}$Mpc$^{-1}$). The full lines are for a sum of the neutrino masses of (19.6 ± 0.7) eV. The other curves represent the function $h_0 = h_0(\Omega_0)$ for the two limiting values of the age of the universe $T = 13$ Gyr and $T = 16$ Gyr and for values of the scaled cosmological constant λ_0 ($\lambda_0 = \Lambda c^2 / 3H_0^2$) $\lambda_0 = 0$ (dashed lines) and $\lambda_0 = 1$ (dotted-dashed lines).
universe. For only baryons and neutrinos contributing to the total density of a critical universe, the result of eq. (20) implies

\[H_0 = (47.4 \pm 0.9) \text{ km s}^{-1} \text{ Mpc}^{-1} \]

(21)

\[T = (13.8 \pm 0.3) \text{ Gyr}. \]

2. For \(h_0 \simeq 0.65 \), eq. (20) requires \(\lambda_0 > 0 \). For \(\lambda_0 = 1 \), \(\Omega_0 \gtrsim 0.5 \) and the presence of cold dark matter could be accommodated with a ratio \(\Omega_{\text{CDM}}/\Omega_{\text{HDM}} \) which, depending on the value of \(\Omega_0 \), could be as large as \(\approx 0.5 \).

3. For \(h_0 \simeq 0.8 \) and \(\lambda_0 = 1 \), \(\Omega_0 \simeq 0.4 \) and the mass of the universe is again due solely to baryons and neutrinos. Non-vanishing values of \(\Omega_{\text{CDM}}/\Omega_{\text{HDM}} \) are possible only for \(\lambda_0 > 1 \).

Thus, for any reasonable values of \(H_0 \) and \(\lambda_0 \), neutrinos with masses as large as those of eq. (14) are the dominant component of the mass of the universe. As a consequence, their existence contradicts all cold-dark-matter-dominated (CHDM) cosmological models \[51\]. To have the same success that these models have in explaining the present data on the power spectrum of density fluctuations, hot-dark-matter-dominated models will have to rely on some new hypotheses, such as, for instance, seeds of non-Gaussian origin \[52, 53\].

6 Conclusions

This analysis shows that, at least taking results at face value, the evidence for the existence of neutrino oscillations is really substantial. Although none of the existing positive signals is admittedly beyond some criticism, their ensemble is quite compelling.

The signature of neutrino oscillations lies in the \(\sin^2 \) factor of eq. (1) and any convincing proof of their existence must rely on some experimental observation of an \(L/E \) dependence. This evidence, first obtained from the analysis of the \(L/E \) modulation of the \(\nu_\mu-\nu_e \) asymmetry in prompt neutrinos \[4, \] 1, has been further strengthened recently by the observation of the dependence on the zenith-angle (effectively also \(L/E \)) of the ratio between the \(\nu_\mu \) and \(\nu_e \) fluxes in atmospheric neutrinos of multi-GeV energy \[13\].

All the available experimental information from accelerator, atmospheric and solar neutrinos is accounted for in the framework of a three-flavour neutrino oscillation analysis. The solution found is unique and not significantly contradicted by any existing result, all conflicting evidence being below the three sigma level.

Neutrino physics is presently at a crossroads. If \(m_3 \) is indeed large enough to be of cosmological relevance, the limits of eq. (4) imply that \(\theta_{23} \) is very small. The relations between \(\theta_{12} \) and \(\theta_{13} \) are then those of fig. 2 and all indications are that \(\theta_{13} \) is sizeable. Under this condition, high energy accelerator experiments
such as Chorus and Nomad should not fail to see a ν_e signal. If they do, this implies that at least some of the input data to our analysis are wrong and that either θ_{13} or m_3 or both are smaller than the results we have arrived at. In the first case, the atmospheric neutrino result (see fig. 2) implies the relative large value for the F-factor $F = 0.70 \pm 0.07$, thus disfavouring solar models such as that of Princeton-Yale [20], which (see fig. 1) require $F \lesssim 0.5$. In the other two cases m_3 must be smaller than a few eV, thus excluding neutrinos as the main constituents of the dark matter of the universe and leaving them out of a primary role in astrophysics.

References

[1] For a recent review see, for instance, J. Schneps, Nuclear Physics B (Proc. Suppl.) 31 (1993) 307.

[2] F. Martelli, in: Proceedings of the International Topical Workshop on Solar-Neutrino Problem: Astrophysics or Oscillations? Laboratori Nazionali del Gran Sasso, L’Aquila, Italy, 28th February – 1st March 1994, edited by V. Berezinsky and E. Fiorini, vol. II, p. 247.

[3] G. Conforto, Nuclear Physics B (Proc. Suppl.) 38 (1995) 308.

[4] G. Conforto, Nuovo Cimento A103 (1990) 751.

[5] Particle Data Group, L. Montanet et al., Phys. Rev. D50 (1994) 1173 and references therein.

[6] G. Conforto, Nuclear Physics B (Proc. Suppl.) 28A (1992) 156.

[7] For a recent review see, for instance, B. Barish, Nuclear Physics B (Proc. Suppl.) 38 (1995) 343.

[8] Nusex Collaboration, M. Aglietta et al., Europhys. Lett. 8 (1989) 611.

[9] Frejus Collaboration, Ch. Berger et al., Phys. Lett. B245, (1990) 305. For an analysis of contained events, see O. Perderau, Proceedings of the 26th Rencontre de Moriond on Massive Neutrinos - Tests of Fundamental Symmetries, Les Arcs, France, Jan. 26 – Feb. 2 1991, edited by O. Fackler, G. Fontaine and J. Trân Than Vân, Editions Frontières, Gif-sur-Yvette 1991, p. 117.

[10] IMB Collaboration, R. Becker-Szendy et al., Phys. Rev. D46 (1992) 3720. See also W. Frati et al., Phys. Rev. D48 (1993) 1140.

[11] Kamiokande Collaboration, K.S. Hirata et al., Phys. Lett. B280 (1992) 146.

[12] Soudan Collaboration, M.C. Goodman, Nuclear Physics B (Proc. Suppl.) 38 (1995) 337.
[13] Y. Fukuda et al., Phys. Lett. B335 (1994) 237.
[14] M. Honda et al., Phys. Lett. B248 (1990) 193.
[15] S. Barr, T. Gaisser and T. Stanev, Phys. Rev. D39 (1989) 3532.
[16] Clorine experiment, B.T. Cleveland et al., Nuclear Physics B (Proc. Suppl.) 38 (1995) 47.
[17] Kamiokande collaboration, Y. Suzuki, Nuclear Physics B (Proc. Suppl.) 38 (1995) 54.
[18] SAGE collaboration, J.N. Abdurashitov et al., Nuclear Physics B (Proc. Suppl.) 38 (1995) 60.
[19] GALLEX collaboration, D. Vignaud, Proceedings of the 1995 International Europhysics Conference on High Energy Physics, 27 July – 2 August 1995, Brussels, Belgium, to be published.
[20] J.N. Bahcall and M.H. Pinsonneault, Rev. Mod. Phys. 64 (1992) 885.
[21] S. Turck-Chièze and I. Lopes, Astrophys. J. 408 (1993) 347.
[22] G.L. Fogli and E. Lisi, Astropart. Phys. 3 (1995) 185.
[23] M. Gell-Mann, P. Ramond and R. Slansky, in: Supergravity, edited by P. Van Nieuwenhuizen and D.Z. Freedman, North Holland, Amsterdam 1979, p. 315.
[24] A. De Rujula, M. Lusignoli, L. Maiani, S.T. Petcov and R. Petronzio, Nucl. Phys. B168 (1980) 54.
[25] See, for instance, K. Winter, Nuclear Physics B (Proc. Suppl.) 38 (1995) 211.
[26] See, for instance, J. Schneps, Nuclear Physics B (Proc. Suppl.) 38 (1995) 220.
[27] KARMEN collaboration, B. Seligmann, Proceedings of the 1995 International Europhysics Conference on High Energy Physics, 27 July – 2 August 1995, Brussels, Belgium, to be published.
[28] LSND experiment, D.O. Caldwell, Proceedings of the 1995 International Europhysics Conference on High Energy Physics, 27 July – 2 August 1995, Brussels, Belgium, to be published.
[29] See, for instance, M.K. Moe, Nuclear Physics B (Proc. Suppl.) 38 (1995) 36.
[30] A.I. Belesev et al., Phys. Lett. B350 (1995) 263.
[31] D. Wark, Proceedings of the 1995 International Europhysics Conference on High Energy Physics, 27 July – 2 August 1995, Brussels, Belgium, to be published.

[32] See ref. [19]. See also J.N. Bahcall et al., Phys. Lett. B348 (1995) 121.

[33] Savannah River experiment, F. Reines, Nucl. Phys. A396 (1983) 469.

[34] ILL-Grenoble experiment, H. Kwon et al., Phys. Rev. D24 (1981) 1097. Revised result in F. Pierre, Proceedings of the Workshop on Tau Lepton Physics, Orsay, France, Sept. 24-27 1990, edited by M. Davier and B. Jean-Marie, Editions Frontières, Gif-sur-Yvette 1991, p. 499.

[35] Gösgen experiment, G. Zacek et al., Phys. Rev. D34 (1986) 2621.

[36] Rovno experiment, A.A. Kuvshinnikov et al., JETP Lett. 54 (1991) 259.

[37] Krasnoyarsk experiment, G.S. Vidyakin et al., JETP Lett. 59 (1994) 364.

[38] Bugey-Kurchatov experiment, Y. Declais et al., Phys. Lett. B338 (1994) 383.

[39] Bugey experiment, B. Achkar et al., Nucl. Phys. B434 (1995) 503.

[40] 239Pu - F. von Feilitzsch et al., Phys. Lett. B118 (1982) 162.

[41] 235U - K. Schreckenbach et al., Phys. Lett. B160 (1985) 325.

[42] 241Pu - A.A. Hahn et al., Phys. Lett. B218 (1989) 365.

[43] J. Bouchez, Proceedings of the Sixth Moriond Workshop on Massive Neutrinos in Astrophysics and in Particle Physics, Tignes, France, Jan. 25 – Feb. 1st 1986, edited by O. Fackler and J. Trần Than Vân, Editions Frontières, Gif-sur-Yvette 1986, p. 331.

[44] S.N. Ketov et al., JETP Lett. 47 (1988) 177.

[45] A.I. Afonin et al., JETP 94 (1988) 1.

[46] P.F. Harrison, D.H. Perkins and W.G. Scott, Phys. Lett. B349 (1995) 137.

[47] C. Ingrosso, M. Merafina, R. Ruffini and F. Strafella, Astron. Astrophys. 258 (1992) 223.

[48] B. Moore, Nature 370 (1994) 629.

[49] F. De Paolis, G. Ingrosso and F. Strafella, Astron. Astrophys. J. 438 (1995) 83.
[50] Recent references include:
 T. Herbig et al., Astrophys. J. Lett. 449 (1995) L5.
 J. Mould et al., Astrophys. J. 449 (1995) 413.
 A.G. Riess et al., Astrophys. J. Lett. 438 (1995) L17.
 A. Saha et al., Astrophys. J. 438 (1995) 8.
 A. Sandage and G.A. Tammann, Astrophys. J. 446 (1995) 1.
 B.E. Schaefer, Astrophys. J. Lett. 449 (1995) L9.
 G.A. Tammann and A. Sandage, Astrophys. J. 452 (1995) 16.
 N.R. Tanvir et al., Nature 377 (1995) 27.
 For a review see: G.H. Jacoby, Nature 371 (1994) 741.

[51] For a review see: J.R. Primack, preprint astro-ph/9503020 (1995).

[52] A. Albrecht and A. Stebbins, Phys. Rev. Lett. 69 (1992) 2615.

[53] M. Turner, Proceedings of the 17th International Symposium on Lepton-
 Photon Interactions (LP95), Beijing, China, August 10 – 15, 1995, to be
 published and private communication.