Molecular docking and in vitro analysis of phytoextracts from B. serrata for antibacterial activities

Ramsi Vakayil¹, Murugesan Anbazhagan², Gnanendra Shanmugam³, Srinivasan Ramasamy⁴ & Maghimaa Mathanmohun*¹

¹Department of Microbiology, Muthyammal College of Arts and Science, Rasipuram, Namakkal, Tamilnadu, India; ²Department of Botany, Government Arts and Science College, Thiruvannamalai - 606603, Tamilnadu, India; ³Bioinformatics Division, Origene Biosolutions, Salem 16, Tamilnadu, India; ⁴Member secretary, Tamil Nadu State Council for Science & Technology, Chennai, Tamilnadu, India; *Maghimaa Mathanmohun; Corresponding Author: mmaghimaa@gmail.com & mbkna@muthyammal.in

Received April 30, 2021; Revised July 7, 2021; Accepted July 10, 2021, Published July 31, 2021

DOI: 10.6026/97320630017667

Declaration on official E-mail: The corresponding author declares that official e-mail is not available for all authors.

Declaration on Publication Ethics: The author’s state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Abstract:
The bioactives of Boswellia serrata have a role in ulcer healing therapies. Eleven bioactive compounds were obtained by GC-MS among which Cholan-24-oic acid, 3,12-bis (acetyl oxy) has a high molecular weight of 490.6719 with a retention time of 26.729. Twenty wound samples were collected aseptically from the labs and hospitals in and around the Namakkal districts of Tamilnadu, India. The antibacterial potential of E.coli showed a maximum inhibition of 27 mm against Tetracycline at 30µg. The ethanolic extract of the B. serrata shows a susceptibility of 19mm towards E. coli at 60µg concentration in MIC. Molecular docking results show the binding energy of Cholan-24-oic acid, 3,12-bis(acetylxy) -8.6 (kcal/mol) followed by Pyrene, hexadecachydro- 6.7 (kcal/mol), and 5(1H)-Azulenone, 2,4,6,7,8,8a-hexahydro-3,8-dimethyl-4-(1-methylethylidene),- (8S-cis)- 6.4 (kcal/mol) for further consideration.

Keywords: Plant extract; GCMS; bioactive compounds; Molecular docking

Background:
The diseased field is replaced by rejuvenating content due to the result of the immune system and for attaining new epithelialization [1]. Infection ranges from a simple wound to septicemia and the pathogenicity is treated with novel drugs from plants that fulfill the targets [2]. In spiritual formalities, the Boswellia groves and their lubricant are used as bouquets [3]. The resin of the Boswellia serrata acts like a lytic of tumors (ganglions healer) [4]. Leukopenic power helps in treating autoimmune and genetic disorders it is also known as obilaman. The ingredients in the Boswellia serrata supports and quickens not only the repairing process but also urge the formation of the strengthened scars [5]. MAE usage of solvents is very minimal, in-expensive, low consumption of time, high yield, best for extracting lipids and glycans from the various origin so it is entitled as ‘green technique’ [6]. Therefore, it is of interest to document the molecular docking and in vitro analysis of phytoextracts with B. serrata for antibacterial potentials

Materials and methods:
Collection of resins:
Fresh bronzed or bottle green resins brought from the local market of Rasipuram are then washed in Milli-Q water air-dried and grounded into powder using an electric mixer.

Extraction:
For extraction the weighed powdered resin was mixed with the solvents such as ethanol and aqueous at a different ratio in a 250 ml Erlenmeyer flask and placed over the circulating disk in the oven [7]. Parameters like temperature, time are maintained as per the protocol. Filtered aqueous phase air-dried as per the formula
the dry weight of each crude is examined and maintained the crude at -5 degree C for future process.

Gas Chromatography-Mass Spectrometry (GC-MS):
The system used is Agilent GC 7890A/ gas chromatograph MS detector MS975C, US and samples dissolved in dichloromethane. Gas chromatography linked to a mass spectrometer (GC-MS) equipped with fused silica capillary column and an Agilent DB5MS, (Column Length: 30m/0.25mm internal dia/0.25micron film thickness.

Isolation and identification:
In various selective media, the collected commensals are inoculated and incubated at room temperature. After 24 hrs, the natural edges, texture color, and odor of the colonies are visualized, for further phenotypic identification a few drops of primary stain sprinkled on the smear in the slide then washed using H2O after few seconds the slide was flooded with mordant (iodine) mean-while a quick water wash was done. A few minutes later, the slide is rinsed with the decolorizer (alcohol) and then the slide is shown under the tap water. At last gram +ve and gram-ve are identified by the counterstain safranin which is spread on the slide and excess stains are removed by showering the smear in water and droplets are isolated by wrapping in soft tissue paper [10]. Gaseous bubble formation, pink, violet, purple cherry red color appearance, and production of nonorganic acids are the positive signs in biochemical tests of some pathogens to identify their metabolic and enzymatic characteristics [11].

Antibacterial activity:
A sterile cork Borell of 6 mm is used to make a well on the MHA plate, along with a circular disk loaded with antibiotics are kept aseptically in the center of the plate and then incubated. Simultaneously, [10] another plate loaded with antibiotic disks without the inoculation of the pathogen was maintained as control kept for incubation and observed. After 24 hrs, MDR, PR, and sensitivity against a broad spectrum of antibiotics are measured.

Molecular docking:
Small preliminary work is done for selecting the protein molecule by downloading (www.rcsb.org) or PDB format. Editing is done in the format via pymol or word pad tool [14]. The protein chain in the document begins with the letter 'TER' and this shows the chain is terminated and the file is saved, ready for docking [15]. For the execution of docking install autodock suite-4.2.5.1-i86Windows.exe downloaded from the website (http://autodock.scripps.edu/) Mol soft and chimera is used to draw the ligand structures. The molecules, ligands, and amino acid interaction and their energies are predicted by the software tools [16] until they are present in the grid box. The active site, binding site, and other essential regions of the molecules are predicted.
after setting the grid box. All ‘PDF’ files of protein and ligands are moved into the ‘folder’ for further execution of docking.

Figure 5: AmPC E. coli- CID 54677577 Docking Pose & Interaction Plot (-8.0 kcal/mol)

Ligand preparation:
The GC-MS identified bioactive compounds of the plant extract B. serrata were chosen for the current study using i) Ethyl 2-chloro propionate ii) alpha-Asaron ii) 5-Dodecyn v) 5-Isopropenyl-2-methyl-7-oxacycloc v) o-Mentha-1(7),8-dien-3-ol vi) Carbonic acid, 2-chloroethyl 2,2,2-trichloroethy ester vii) Benzene, 1-(2-chloroethy)sulfonyl 2-nitro viii) 3-chloro-4-nitrophenol viii) Cholan-24-oxic acid, 3,12-bis(acetyloxy) ix) Pyrene, hexadecahydro-vi) 5(11)-Azulenone, 2,4,6,7,8,8a-hexahydro-3,8-dimethyl-4-(1-methylhexylinide)-, (85-cis)- the antibiotic reference drugs used for molecular docking were Gentamycin, Meropenem, Tetracycline, and Vancomycin. The three-dimensional (3D) structures of all the selected cyano compounds were retrieved from the pub chem compound database https://pubchem.ncbi.nlm.nih.gov/ in the SDF file which was then converted into PDB format for docking study [17, 18].

Result and Discussion:
The colony morphology of the pathogens wound isolates is cohesive, raised off-white, mucus and shiny texture like colonies are observed in the MSA, nutrient agar, blood agar, EMB agar and Mcconkey agar this indicates the isolates are E. coli, and S. aureus, whether they are gram +ve or gram –ve is identified along with the biochemical study they are briefly described in Table 1. Among the broad spectrum of antibiotics such as Tetracycline, Meropenem, Vancomycin, and Gentamycin, the gram –ve bacteria E. coli show resistance to tetracycline and vancomycin because the zone of inhibition is in the range of 6-14 mm. But in the case of S. aureus, it also shows resistance to vancomycin, because the ZOI is 16 mm. Then the antibiogram profile with other antibiotics is listed in Table 2. In MIC the ethanolic and aqueous extract of B. serrata resins show susceptibility towards gram-negative bacteria of E. coli with a zone of inhibition of 19mm at 60µg concentration but S. aureus showed a zone of inhibition in the range of 15 and 17mm. The other concentrations and their minimal inhibitory concentration level are shown in Table 3.

The crude of the resin obtained by ethanolic extraction shows high yield than compared with the aqueous extraction by maintaining different parameters like time (5, 10, 15, 20), temperature (200W, 300W, 500W, and 700W), pH (6, 7, 8, 9) concentration (100, 100, 100, 100). Therefore, the crude ethanolic resin obtained at 15minutes at the temperature of 700W provides a good yield and is shown in Figure 1. The yield is determined by implementing the dry weight formula shown below:

Dry wt% = Wt. of the dry extract x 100/ Wt of the resin PWD

The GC-MS analysis explored eleven bioactive compounds in the ethanolic extract. The molecular formula, molecular weight, retention time and area % of the compounds are presented in Table 4. Among the observed bioactive compounds the Cholan-24-oxic acid, 3,12-bis(acetyloxy) show a binding affinity of –8 (kcal/mol) and the reference antibiotic tetracycline also has the same binding affinity (-8 kcal/mol) with ligand Ampc E. coli. Arg220, Thr332, Asn359, Asn362, Leu135, Tyr237, Ala334 are the active site residues in the beta-lactamase protein molecule. The binding score and 3D graphical structure are all shown below with their CID 21140628, CID75524, CID 91735354, and CID 54677577 (Tables 5 to 6 and Figures 2 to 5).

The ingredients which are having most effective tumor lysing ache solving WBC production minimizing, fungal resisting inflammation controlling bursal complication resolving types available in saturated forms these are all obtained as per the international protocol experimentally and inhibitory effect explored after treatment with GCMS and docking almost all systems of the physiology CVS, rheumatic, RS, COPD, GI, IBS, CNS, PN along with these especially in the RS very many ailments like genetical, congenital, geriatrics pediatrics, youths (infertility) are all under its control. Genetical hypogonadism, geriatrics, sexual disorders, pediatrics turner's syndrome [19]. In cosmetology, the bioactive compounds of B. serrata are helpful in the management of hair loss and diseases of the nails [20, 21].

Table 1: Microscopic and Biochemical characterization of the isolates

Gram +ve Coci in clusters	Carbohydrate	Fermentation	Oxidase	Urease
Staining	Motility	Fermentation	Oxidase	Urease
G +ve	P	P	P	N
E. coli	P	P	P	N
G –ve	P	P	P	N
S. aureus	P	P	P	N
Glucose	L	S	I	MR
Lactose	P	P	N	VP
Sucrose	P	P	P	N
Motile	P	P	P	N
G +ve	P	P	P	N
G –ve	P	P	P	N
Glucose	L	S	I	MR
Lactose	P	P	N	VP
Sucrose	P	P	P	N
Motile	P	P	P	N

Table 2: Antibiotic sensitivity against the nosocomial pathogens (ZOI in mm)

Isolates	Tetracycline 30µg	Meropenem 30µg	Vancomycin 5µg	Gentamycin 10µg
Staphylococcus aureus	28±1	23±1	16±1	21±1
E. coli	14±1	27±1	6±1	19±1
ZOI – Zone of Inhibition, Inf – Inference, S – Sensitive, R – Resistant, 1 – Intermediate				

Table 3: Antibacterial activity of B. serrata extract against the pathogens

S. No	Pathogen	Zone of Inhibition	
	Ethanol extract	Aqueous extract	
	20µg	40µg	
1	Staphylococcus aureus	7 mm	17 mm
2	E. coli	14 mm	17 mm

G: Glucose, L: Lactose, S: Sucrose, I: Indole, MR: Methyl red, VP: Voges Proskauer, Cit: Citrate utilization, CAT: Catalase

https://pubchem.ncbi.nlm.nih.gov/
Table 4: Plant Tetracyclin Compounds Identified Through GCMS Analysis

S. No	Compound	Retention time	Molecular Formula	Molecular weight	Area %
1	Ethyl 2-chloropropionate	10.875	C6H12ClO2	136.58 g/mol	2.75
2	Propanoic acid, 2-chloro	14.397	C6H10ClO2	208.25 g/mol	2.23
3	Alpha-Aminoadene	20.041	C6H12ClO2	166.3 g/mol	10.51
4	5-Dodecylacetate	21.085	C6H12ClO2	186.23 g/mol	3.07
5	5-Methyl-2-(2-chloroethyl)	21.302	C6H14O2	152.23 g/mol	2.67
6	2,2-Dimethoxyethyl	22.063	C6H14ClO3	211.5 g/mol	1.26
7	Benzene, 4-chloro-1-[(2-chloroethyl) sulfonyl]-2-nitro-	22.13	C8H7Cl2NO4S	284.12 g/mol	1.07
8	3-Chloro-4-nitrophenol	26.318	C6H4ClNO3	173.55 g/mol	1.62
9	Cholan-24-oic acid, 3,12-bis(acetyloxy), methyl ester, (3b,5b,12b)	26.729	C20H28O4	490.6719	8.88
10	Pyrene, hexadecahydro-tetracyclic[6.6.0.4.16].0[11,15]jluaxadecane	28.64	C18H20	218.38 g/mol	12.13

Table 5: Docking Interaction Table for AmPC. E.coli ligand complexes

S. No	Complex Name	Bonded Interactions	Non Bonded Interactions	Docking Score
1	CID 136928	Asp280, Met281, Ser289	Met281, Ile307	4.9
2	CID 11909338	Ser298	Met281, Ile307	5.6
3	CID 10807	Ser80, Ala334	-	4.1
4	CID 638622	Arg312, His330	Met281, Ile299, Ile299	5.4
5	CID 140583	Ala334, Val227, Tyr237	Met281, Ile307	4.5
6	CID 10465500	Ser280, Ser298	Ser303, His330, Gly302, Met281	6.3
7	CID 14489	Ser80, Ala334	Tyr166, Leu135, Leu309	4.6
8	CID 563280	Ser80, Asn305, Ala334	Leu135	5.3
9	CID 564522	Ser80, Ala334	Leu135, Tyr300	5.7
10	CID 87646995	Ser80, Asn168	Asn168	4.4
11	CID 80935	Asn168, Lys331, Thr332, Asn362	Tyr237, Asn334	6.3
12	CID 10283	His330	Met281, Ala308	5.4
13	CID 21140628	Arg220, Thr332, Asn359, Asn362	Leu135, Tyr237, Asn334	8.5
14	CID 75524	Pro34, Leu35, Ala364, Ala368	Leu135, Tyr237, Asn334	6.7
15	CID 9173534	-	Leu135, Tyr237, Asn334	6.4
16	CID 5959	Gln36, Asn305, Thr332, Asn362, Asn168	Tyr237, Asn334	6.6
17	CID 5529	Asn168, Ala334	Tyr237, Tyr166, Leu309, Ser80, Ser90	7.1
18	CID 5578	Ala221, Pro138	Tyr237, Tyr166, Leu309, Ser80, Ser90	6.1
19	CID 37569	Val317, Leu335, Asn168, Ser80, Asn305, Ala334, Lys83	Tyr237, Asn334	7.3
20	CID 441130	Ser80, Asn168, Asn305	Asn362	7.5
21	CID 54679776	Val317, Tyr237, Ala334	Asn168	8
22	CID 341469	His226, Glu312, Val327, Ala224, Asp139	Val225, Trp217, Ala224, Trp217	6.9

Table 6: Docking Score of Phytochemicals And Antibiotic Reference Drug Against AmPC

Compounds	Binding affinities (kcal/mol) with AmPC from E.coli
Ethyl 2-chloropropionate	-4.1
Alpha-Aminoadene	-5.4
5-Dodecylacetate	-4.5
5-Isopropenyl-2-methyl-7-oxacyclo-o-Menth-1(7),8-dien-3-ol	-5.3
Carbonic acid, 2,2-dimethoxyethyl ester	-4.4
Benzene, 1-[(2-chloroethyl) sulfonyl]-4-nitro-3-chloro-4-nitrophenol	-6.3
Cholan-24-oic acid, 3,12-bis(acetyloxy)	-5.4
Pyrene, hexadecahydro-5(1H)-Azulene, 2,4,6,7,8,10-hexahydro-3,8-dimethyl-4-(1-methylethylidene)	-4.6
Gentamycin	-7.3
Menopenem	-7.5
Tetracyclin	-8
Vancomycin	-6.9

Conclusion: We show the good binding features of the bioactive compound as Cholan-24-oic acid, 3,12 bis(acetyloxy) from B. serrata with AmPC for further consideration in the context of antibacterial potential and wound healing.

Acknowledgment: The authors are thankful for the DST-FIST Centralized laboratory, Muthayammal College of Arts & Science (A unit of VANETRA group), Raspuram, Namakkal Dt. Tamilnadu, India for executing this work.

Conflict of interests: The authors declare no conflicts of interest.

References:

[1] Okur NÜ et al. *Saudi Pharmaceutical Journal* 2019 27: 738 [PMID: 33363624].
[2] Nayakil Bilgic M et al. *Materials Technology* 2019 34: 386.
[12] Maghimaa M & Alharbi SA, *Journal of Photochemistry and Photobiology B: Biology* 2020 204: 111806 [PMID: 32044619].

[13] Farahpour MR, *Medicinal Plants in Wound Healing, Wound Healing-Current Perspectives*, IntechOpen, 2019.

[14] Burley S et al., *Nucleic Acids Res* 2019 47: D464-D474. [PMID: 30357411].

[15] Grither WR & Longmore GD, *Proceedings of the National Academy of Sciences* 2018 115: E7786-E7794 [PMID: 30061414].

[16] Simha P *Alexandria Engineering Journal* (2016) 55: 141-150.

[17] Singh S et al. *Network Modeling Analysis in Health Informatics and Bioinformatics* 2020 9: 1-14.

[18] https://doi.org/10.1016/j.matpr.2021.05.017.

[19] Li X et al. *Hydrometallurgy* 154 (2015) 40-46.

[20] Beringer A & Miossec P. *Nature Reviews Rheumatology* 15 (2019) 491-501. [PMID: 31227819].

[21] Karimifar M et al. *Clinical rheumatology* 2017 36 1849-1853. [PMID: 28349271].

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License.

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.
