Experimental Investigation on Combustion and NO$_x$ Formation Characteristics of Low-Ash-Melting-Point Coal in Cyclone Furnace

Limin Wang, Chunli Tang,* Tao Zhu, Fan Fang, Xing Ning, and Defu Che

1. INTRODUCTION

Low-ash-melting-point coal accounts for one-third of coal reserves in China,1,2 which will continue to play an important role as a “ballast stone” to ensure future energy security of China. For example, as a kind of low-ash-melting-point coal, the typical Zhundong coal with a melting point between 1100 and 1200 °C has attracted the attention of many scholars.1,2 Unfortunately, the combustion of low-ash-melting-point coal is likely to cause serious fouling and slagging problems in pulverized coal boilers and circulating fluidized bed boilers. In contrast, the slag tapping cyclone furnace is quite suitable for the combustion of low-ash-melting-point coal.3 In the cyclone furnace, the molten ash formed by the combustion of low-ash-melting-point coal will deposit on the wall of the cyclone barrel under the action of a strong swirling effect and eventually be discharged in the form of liquid slag. The formed slag layer can insulate and protect the refractory material, which promotes the stable and safe operation of the cyclone furnace.4 Hence, the cyclone furnaces are ideal for burning low-ash-melting-point coals without worrying about fouling and slagging problems. However, the high combustion intensity of cyclone combustion can lead to a higher temperature, which may further result in higher NO$_x$ emissions in cyclone furnaces. Therefore, it is of great significance to propose solutions to reduce the NO$_x$ formation in the cyclone furnaces for the safe and clean utilization of the low-ash-melting-point coal.

In recent years, a large number of studies have indicated that high-temperature combustion does not necessarily trigger the formation of a large amount of NO$_x$, but ultralow NO$_x$ formation can be achieved for high-temperature combustion in a strong reducing atmosphere.7 The high temperature can promote the generation of substantial CO and C$_2$H$_4$ by the gasification of the char in reducing atmosphere. C$_2$H$_4$ would further enhance the homogeneous reduction of NO$_x$ by char.$^{12-15}$ The experiment conducted by Taniguchi et al.11,16 on the drop tube furnace showed that the NO$_x$ formation can be reduced effectively with the increase in the temperature of the fuel-rich zone under staged conditions. Bai et al.17 indicated that when the temperature was 1600 °C and the stoichiometric ratio (SR) in the fuel-rich zone was 0.7, the
NOₓ formations for combustion of bituminous coal and anthracite were lower than 150 mg·m⁻³ and 360 mg·m⁻³, respectively. Zhu et al.¹⁵ separately investigated the fuel NOₓ and thermal NOₓ formations and indicated that high-temperature combustion will not cause high thermal NOₓ at a low SR due to the insufficient oxygen concentration. They attributed the ultralow NOₓ formation to the fact that the release of N is mainly in the form of volatile N at high temperatures, which can be easily reduced by Char, CₓHᵧ and CO in a reducing atmosphere. Hence, the ultralow NOₓ formation can be obtained under high temperatures and strong reducing atmosphere. In fact, unlike the pulverized coal boilers and the circulating fluidized bed boilers for which it is difficult to simultaneously achieve both the strong reducing atmosphere and high-temperature conditions, the cyclone furnace can easily achieve both at the same time, which might be beneficial for achieving ultralow NOₓ formation.¹⁸⁻²⁰ However, most of the research related to NOₓ formation was carried out in drop tube electric heating furnaces, which cannot directly guide the situation of strongly swirling combustion in cyclone barrels.

Some work has been devoted to the flow field characteristics in cyclone barrels. Krasinsky et al.²¹⁻²² experimentally studied the aerodynamic field in a designed cyclone combustion...
furnace and characterized the swirling properties of the airflow, but they did not focus on the NO\textsubscript{x} formation in the cyclone combustion and further proposing strategies for reducing NO\textsubscript{x} by 52% when air-staged combustion was used.23 The research conducted by Babcock & Wilcox B&W company24–26 also showed that the NO\textsubscript{x} formation can be reduced efficiently to 108 ppm when the SR was reduced to 0.7. Zhu et al.27 also showed that staged combustion can effectively decrease the NO\textsubscript{x} formation in the cyclone barrel. However, the above work only obtained the final NO\textsubscript{x} formation values without analyzing the combustion characteristics and their effects on the NO\textsubscript{x} formation in the cyclone barrel. According to our previous numerical simulation studies,6,28,29 the flow and combustion characteristics in the cyclone furnace are quite special due to the strong swirling aerodynamic field, which might greatly influence the formation of NO\textsubscript{x}. Therefore, an in-depth experimental study of the combustion characteristics and their effects on the NO\textsubscript{x} formation in the cyclone barrel is urgently needed for revealing the mechanism of NO\textsubscript{x} formation in the cyclone combustion and further proposing strategies for reducing NO\textsubscript{x}.

In this study, a 100 kW cyclone combustion furnace experimental system was built. The temperature profiles, species concentration distributions, and slag tapping behavior of the cyclone barrel were examined in detail. The effects of the overall stoichiometric ratio (overall-SR) and cyclone stoichiometric ratio (cyclone-SR) on NO\textsubscript{x} formation were analyzed. The mechanisms of NO\textsubscript{x} formation and reduction in the cyclone combustion process were discussed. Potential strategies for NO\textsubscript{x} reduction were proposed and verified. This research will be beneficial to the safe and clean utilization of the low-ash-melting-point coal in cyclone furnaces.

EXPERIMENT AND METHOD

2.1. Experiment System

The cyclone combustion furnace experimental system is mainly composed of a furnace, fuel and air feeding system, flue gas treatment system, and sampling and analysis system, as shown in Figure 1. The 3D model diagram and pictures are shown in Figure 2. The details of the experiment system are as follows.

2.1.1. Furnace

The furnace is composed of a cyclone barrel, a transition flue, and a burnout chamber. For the cyclone combustion, the ash particles carried by strong swirl of air spun forward in the cyclone barrel. There is a slacking pool at bottom of the cyclone barrel, which is used to collect the slag discharged from the slag discharge port. The cyclone ash collector is arranged at the exit of the burnout chamber for collecting ash, as shown in Figure 1.

The cyclone furnace in this experiment was designed by scaling down the actual cyclone furnace to 1/7 according to the reference manual.20 The detailed structure parameters can be found in Table 1. Refractory material was ranged on the fireside of the furnace. The furnace wall was composed of refractory material, insulation material, and steel plates. Corundum with the characteristics of high-temperature resistance and wear resistance was selected as the refractory material of the cyclone barrel to protect the furnace wall from deposition and erosion of the high-temperature molten slag. The cyclone barrel was coated with thermal insulation material of mullite carbon fiber. Silicon carbide with moderate temperature resistance and wear resistance was selected as the refractory material for the transition flue and the burnout chamber, considering that only a small amount of ash particles would flow into the transition flue and the burnout chamber resulting in slight wear on the inner wall. Moreover, the temperatures of flue gas in the transition flue and the burnout chamber were much lower than that in the cyclone barrel. Aluminum carbonate fiber cotton was coated outside the transition flue and burnout chamber for thermal insulation.

2.1.2. Fuel and Air Feeding System

The ground and dried coal particles were fed into the cyclone barrel through the screw powder feeder, which was controlled by a motor, as shown in Figures 1 and 2. To ensure the stability and accuracy of the fuel feeding, the calibration of fuel feeding rate was performed, as shown in Figure 2. The fuel feeding rate of powder feeder is linearly correlated with motor frequency with tiny repeat error (±3%) in the range of fuel mass flow rate of 5–20 kg\cdot h-1, indicating that the powder feeder can meet the experimental requirements (Figure 3).

The air was provided by the high-pressure fan. The arrangement of the air inlets is shown in Figure 1. The primary air was sent into the cyclone barrel from the inlet of primary air, which was arranged on the top of the cyclone barrel. The secondary air was sent into the cyclone barrel tangentially, causing the strong swirl airflow. Four layers of tangentially arranged secondary air (SA) inlets were arranged along the height of the cyclone barrel, and there were two secondary air inlets on each layer. The over fired air (OFA) was sent into the burnout chamber for burnout. Four layers of OFA air inlets were arranged along the height of the burnout chamber, and there are two OFA air inlets oppositely arranged to each other on each layer. The mass flow rate data were measured by vortex flowmeters, and the air flow mass rate was varied by adjusting the valves according to the experimental conditions.

2.1.3. Fuel Gas Treatment System

To protect the exhaust fan from the damage of high-temperature flue gas, water-
cooled tubes were arranged on the top of the burnout chamber for cooling the high-temperature flue gas. The ash in the flue gas was collected efficiently by the cyclone ash collector. Then, the flue gas was discharged by the exhaust fan after pollutant removal.

2.1.4. Sampling and Analysis System. To obtain the temperature distribution in the cyclone barrel, four temperature measuring points with B-type thermocouples marked by T1, T2, T3, T4, and T5 were arranged along the side of the cyclone barrel, as shown in Figure 1. Besides, four sampling ports were evenly arranged along the height of the cyclone barrel and two sampling ports were arranged in the transition flue and the top of the burnout chamber, respectively. The flue gas can be extracted from the sampling ports and the flue gas constituent (NO, O\textsubscript{2} and CO) can be analyzed online by the flue gas analysis device (Gasmet and Testo).

2.2. Experimental Procedure and Conditions. As shown in Figure 4, before the experiment, the propane was burned to preheat the furnace. The flue gas temperature rose suddenly from the initial temperature (440 °C) to 723 °C once propane was burned. Subsequently, the temperature continued to rise for about 240 min. Temperature growth slowed down when the temperature reached 1170 °C. At this time, the supply of propane was stopped and the pulverized coal was supplied. After pulverized coal burned, the flue gas temperature rose rapidly. The flue gas temperature continued to rise for 220 min and finally stabilized at 1420 °C.

In this study, the design value of the cross-sectional heat load of the cyclone barrel was 1.71 MW·m-2. The thermal power of the cyclone furnace was 100 kW, which was achieved by the coal feeding rate of 20 kg·h-1 and the total air mass flow rate of 123 m3·h-1, with an overall-SR of 1.1. The working condition of the cyclone barrel with the SR of 0.8 was selected as the reference condition. The negative pressure in the furnace was controlled in the range of −50 to −100 Pa by adjusting the opening of the blower and induced draft fan. The main parameters of the experimental conditions are shown in Table 2. Hongshaquan coal was selected as research coal, and its properties are shown in Table 3. Since Hongshaquan coal is a kind of low-ash-melting-point coal with an ash fusion temperature of 1096 °C, it is suitable for the design of the high-temperature furnace.

Table 2. Main Parameters of the Experiment

item	unit	value
coal		Hongshaquan coal
mass flow rate of coal	kg·h-1	20
overall-SR		1.05, 1.1 (reference condition), 1.2
cyclone-SR		0.7, 0.8 (reference condition), 0.9, 1.1
primary air ratio		0.2, 0.3 (reference condition), 0.4
total air flow rate	kg·h-1	123
mass flow rate of primary air	kg·h-1	36.9
mass flow rate of SA1	kg·h-1	26.3
mass flow rate of SA2 (or SA3)	kg·h-1	26.3
mass flow rate of SA4	kg·h-1	0
mass flow rate of OFA1	kg·h-1	16.8
mass flow rate of OFA2	kg·h-1	16.8
mass flow rate of OFA3/ OFA4	kg·h-1	0

Table 3. Properties of Hongshaquan Coal

proximate analysis (dry basis) (wt %)	ash composition (wt %)	
fixed carbon	SiO\textsubscript{2}	39.77
volatile matter	Al\textsubscript{2}O\textsubscript{3}	16.73
ash	Fe\textsubscript{2}O\textsubscript{3}	13.93
	CaO	8.89
ultimate analysis (dry basis) (wt %)	MgO	5.55
carbon	Na\textsubscript{2}O	5.34
hydrogen	K\textsubscript{2}O	0.61
oxygen	TiO\textsubscript{2}	0.95
nitrogen	SO\textsubscript{3}	7.47
sulfur		0.49
lower heating value (dry ash-free basis) (MJ·kg-1)	ash fusion temperatures (°C)	
	deformation temperature, DT	1096
	softening temperature, ST	1107
particle size distribution		1114
mean diameters (μm)	49.13	
D\textsubscript{90} (μm)	110.4	
temperature lower than 1200 °C, it is easy to achieve liquid slagging during combustion in the cyclone barrel.

2.3. Analysis Method. For the convenience of analysis, the measured NO concentration value (μL·L⁻¹) is converted into the corresponding NO₂ concentration value (mg·m⁻³), which is computed by

\[\text{NO}_2 (\text{mg} \cdot \text{m}^{-3}) = C_{\text{NO}} \times \frac{M_{\text{NO}_2}}{M} \]

(1)

where \(C_{\text{NO}} \) is the measured concentration of NO, μL·L⁻¹; \(M_{\text{NO}_2} \) is the molar mass of NO₂, g·mol⁻¹; and \(M \) is the molar volume of gas, L·mol⁻¹.

The dimensionless swirling intensity in the cyclone barrel is expressed as

\[\Omega^* = \frac{8\pi R_{sw}}{\pi D \bar{u}} \]

(2)

where \(\bar{w} \) and \(\bar{u} \) are, respectively, the mean tangential velocity and axial velocity, m·s⁻¹; \(R_{sw} \) is the radius of swirling flow, m; and \(D \) is the diameter of the cyclone barrel, m.

3. RESULTS AND DISCUSSION

3.1. Temperature Profile in the Cyclone Barrel. The cyclone barrel is the main combustion site of the cyclone furnace, and the temperature distribution in the cyclone barrel has significant effects on the NOₓ formation and slag behavior. Figure 5 shows the temperature distribution in the cyclone barrel in the reference condition (namely, overall-SR of 1.1, cyclone-SR of 0.8, and PAR of 0.3). Along the height of the cyclone barrel, the temperature gradually increases from 1363 °C at T1 to a peak of 1373 °C at T2 and then gradually decreases to 1353 °C at T4, as shown in Figure 5a. The introduction of secondary air will induce the intense combustion of coal particles, resulting in the highest flue gas temperature at T2. Subsequently, as O₂ is gradually consumed, the lower part of the cyclone will be in an oxygen-lean atmosphere under the condition of cyclone-SR less than 1. Since the gasification reaction of pulverized coal is an endothermic reaction, the flue gas temperature decreases slightly. Furthermore, to investigate the radial temperature distribution in the cyclone barrel, the temperatures are measured at the points of 90, 70, 50, and 30 mm (marked as T21, T22, T23, and T24) radially from the wall at the height of sampling point T2. The temperature distribution in the radial direction is shown in Figure 5b. The flue gas temperature rises from 1365 °C at T24 to 1373 °C at T23 and then decreased to 1354 °C. The maximum radial temperature occurs at 50 mm away from the cyclone barrel wall. Most of the coal particles are driven to the area close to the barrel wall by the strong swirl and burned with relatively
sufficient O₂. As a result, the central region with relatively lower temperature and the near-wall region with relatively higher temperature are formed in the cyclone barrel, which is same as our previous numerical simulation work. The high temperature near the barrel wall is conducive to the formation of the slag layer, which is a key to the safe operation of the cyclone furnace.

Figure 6 shows the temperature of flue gas at the center and near the slagging port of the cyclone barrel under different cyclone-SR conditions. Reducing the cyclone-SR from 1.1 to 0.7 can greatly decrease the temperature by 82 and 87 °C at the center and near the slagging port, respectively, as coal combustion is restrained under the oxygen lack conditions. Even in the case cyclone-SR of 0.7, the flue gas temperature at the center and bottom of cyclone can reach 1338 and 1288 °C, which are higher than the slag flow temperature of the research coal and ensure the slag tapping smoothly. In addition, the CO concentrations in the flue gas at the outlet of the cyclone furnace were 130 and 2790 μL·L⁻¹, respectively. Therefore, considering the burnout characteristics and NOₓ generation comprehensively, in the case of cyclone-SR of 0.8, low NOₓ formation can be achieved at the premise of the acceptable incomplete combustion loss.

3.2. Slag Discharge Behavior. Under the action of a strong swirling effect in the cyclone barrel, most of the molten ash particles with a large particle size will deposit on the wall and further form the slag layer. The liquid slag will be discharged from the slag discharge port at the bottom of the cyclone barrel. The inside wall pictures of the cyclone barrel before and after the experiment are shown in Figure 7a,b, respectively. The inner wall of the cyclone barrel was smooth before the experiment, whereas there was slag deposited on the wall of the cyclone barrel after the experiment. As the morphology of the slag in the photos shows, the slag flows downward under the action of gravity in the cyclone barrel.

The slag has been collected from the slagging pool and barrel inside wall, as shown in Figure 7c, from which the
melting of the slag can be clearly seen. Besides, a small part of the small particles with good following ability will follow the flue gas into the burnout chamber and burn out into ash that are captured by the cyclone ash collector. So, the mass of the slag and the ash can be weighted, respectively, and the slag capture ratio can be calculated according to the following equation

\[R = \frac{m_{\text{slag}}}{m_{\text{coal}} \times C_{\text{ash}}} \]

where \(m_{\text{slag}} \) and \(m_{\text{coal}} \) are, respectively, the mass of the collected slag and the coal, kg, and \(C_{\text{ash}} \) is the mass fraction of ash in coal. The slag capture ratio was 0.70 calculated by eq 3. B&W company has also indicated that the slag capture ratio can reach 0.70–0.75 under ideal operating conditions. Therefore, a reasonable slag capture ratio can be achieved for the cyclone barrel even under air-staged conditions. Besides, the unburned carbon content of the collected fly ash is 2.8–5.4%, which indicates that the cyclone barrel has a good burnout performance under air-staged conditions.

3.3. Distributions of Species Concentrations in the Cyclone Barrel. A large volume of secondary air fed into the cyclone tangentially from the wall will result in more sufficient air in the annular near-wall region and strong swirling effects as well. The fuel in the cyclone barrel will be driven to the annular near-wall region under the action of centrifugal force. As a result, the combustion in the cyclone barrel is nonuniformly distributed, which further leads to inhomogeneous species concentrations. Identifying the distributions of species concentrations in the cyclone is the premise to clarify the \(\text{NO}_x \) reduction mechanism of the cyclone furnace and propose effective \(\text{NO}_x \) reduction strategies. The species concentrations are measured at different heights (S1, S2, S3, and S4 in Figure 1) of the cyclone barrel. The sampling probe takes samples at different positions away from the center axis of the cyclone barrel (0, S0, and 90 mm) to obtain a radial distribution. Figure 8 shows the concentration contours of \(\text{NO}_x \), \(\text{O}_2 \), and \(\text{CO} \) in the main area of the cyclone barrel under the reference condition (namely, overall-SR of 1.1, the cyclone-SR of 0.8, and the PAR of 0.3). Based on the axisymmetric characteristics of species concentration field in our previous numerical work, the measured data are expanded into a contour map in the longitudinal section of the cyclone barrel to better analyze the species distribution characteristics. Overall, \(\text{NO}_x \) and \(\text{O}_2 \) have a higher concentration in the annular near-wall area than in the center zone of the cyclone barrel (Figure 8a,b), while the \(\text{CO} \) in the central zone is of significantly higher concentration than that in the annular near-wall area (Figure 8c).

Figure 8. Species concentration distributions: (a) \(\text{NO}_x \), (b) \(\text{O}_2 \), and (c) \(\text{CO} \).
the main area for the NO\textsubscript{x} reduction occurs in the middle and lower parts of the cyclone barrel with high temperature and strong reducing atmosphere. Hence, enlarging the reduction zone is conducive to reducing NO\textsubscript{x}, which can be achieved by reducing the velocity of primary air and improving the velocity of the secondary air. Therefore, two strategies for reducing NO\textsubscript{x} in the cyclone furnace, namely, expanding the reduction zone and reducing the oxygen concentration in the annular near-wall region, will be analyzed in Section 3.5.

3.4. NO\textsubscript{x} Formation Characteristics
The overall-SR of the cyclone furnace determines the oxygen concentration level and directly affects the NO\textsubscript{x} generation in the cyclone combustion process. Meanwhile, the overall-SR of the cyclone furnace is closely related to the incomplete combustion loss. So, the cases with different Overall-SRs (1.05, 1.1 and 1.2) were studied to find an appropriate overall-SR of cyclone furnace on the premise of ensuring combustion efficiency. Figure 9 shows the effects of overall-SR of the cyclone furnace on the NO\textsubscript{x} formation.

![Figure 9](image)

Figure 9. Effects of overall-SR of the cyclone furnace on the NO\textsubscript{x} formation.

Figure 10 shows the species concentrations in the cyclone furnace at different cyclone-SR values.

![Figure 10](image)

Figure 10. Species concentrations in the cyclone furnace at different cyclone-SR values.

0.7 and 0.8, but with the introduction of OFA, NO\textsubscript{x} formation slightly increases. In the cases with cyclone-SR of 0.9 and 1.1, the NO\textsubscript{x} concentration decreases along S1 to S6. Besides, in Figure 10b, the O\textsubscript{2} concentration gradually decreases from S1 to S5 when the cyclone-SR are 0.7, 0.8, and 0.9 and then increases with the injection of OFA at S6. However, when the cyclone-SR is 1.1, the O\textsubscript{2} concentration decreases gradually from S1 to S6. In addition, as shown in Figure 10c, CO concentration slightly decreases from S1 to S5 when the cyclone-SR is 0.7, whereas CO concentration slightly increases from S1 to S5 when the cyclone-SR is 0.8, 0.9, and 1.1. With the introduction of OFA, CO concentration decreases significantly. In this study, the combustion with the cyclone-SR of 1.1 was called nonstaged combustion, and the combustions with the cyclone-SR of 0.8 and 0.7 were called deep-air-staged combustion, and the combustion with cyclone-SR of 0.9 was called shallow-air-staged combustion.

A large amount of NO\textsubscript{x} is formed in the upper part of the cyclone barrel. Especially for the nonstaged combustion (cyclone-SR = 1.1), the NO\textsubscript{x} concentration in the flue gas at S\textsubscript{1} is as high as 1025 mg·m-3 (Figure 10a). This is mainly because the rapid pyrolysis of the pulverized coal generates a large amount of nitrogen oxide precursors (NH\textsubscript{3} and HCN). Meanwhile, the introduction of primary and secondary air creates a high oxygen concentration zone, and NH\textsubscript{3} and HCN are rapidly oxidized to NO\textsubscript{x}. Hence, reducing the PAR can effectively decrease the initial NO\textsubscript{x} formation. Besides, for the shallow-air-staged combustion (cyclone-SR = 0.9) and nonstaged air combustion (cyclone-SR = 1.1), with the combustion of volatile matters, the O\textsubscript{2} in flue gas is gradually consumed, and an oxygen-lean atmosphere would be formed in the lower zone of the cyclone barrel. The formed NO\textsubscript{x} can not only be reduced to N\textsubscript{2} by the homogeneous reaction with reducing substances (NH\textsubscript{3}, HCN, etc.) but also be efficiently reduced by the heterogeneous reaction on the surface of char with a high concentration of CO (Figure 8c). Hence, the...
concentration of NO\textsubscript{x} shows a slight downward trend along the flue gas flow direction. In contrast, for the deep-air-staged combustion (cyclone-SR = 0.7 and 0.8), an obvious oxygen-lean atmosphere is formed as the O\textsubscript{2} is depleted (Figure 8b), which leads to a significant decrease in NO\textsubscript{x} from S1 to the lowest at S5. This is due to three reasons: First, the lean of oxygen environment inhibits the oxidation of NH\textsubscript{3} and HCN; second, the reduction reaction of NO\textsubscript{x} is the dominant reaction under oxygen-lean atmospheres; and third, the strong swirling in the cyclone barrel can improve the mass transfer and promote the reduction reaction between NO\textsubscript{x} and reducing substances. In addition, the reduction of the cyclone-SR greatly reduces the O\textsubscript{2} concentration in the cyclone barrel, thereby enhancing the reducing atmosphere. As the cyclone-SR decreases, the area where the NO\textsubscript{x} reduction reaction occurs in the cyclone barrel becomes larger. In the shallow-air-staged combustion (cyclone-SR = 0.9), the reducing rate of NO\textsubscript{x} slightly increases at S\textsubscript{5}, indicating that NO\textsubscript{x} reduction occurs in the lower zone of the cyclone barrel. However, in deep-air-staged combustion condition (cyclone-SR = 0.7 and 0.8), the NO\textsubscript{x} concentration starts to drop rapidly at S\textsubscript{2} and S\textsubscript{1} when the cyclone-SR is 0.8 and 0.7, respectively, indicating that with decreasing cyclone-SR, the NO\textsubscript{x} reduction zone in the cyclone barrel becomes larger.

As shown in Figure 11, the NO\textsubscript{x} formation at the outlet (at S\textsubscript{6}) of the cyclone furnace is as high as 699 mg·m-3 in nonstaged combustion (cyclone-SR = 1.1). The amount of NO\textsubscript{x} formed dramatically decreases with the decrease in the cyclone-SR. When the cyclone-SR is 0.7 and 0.8, the NO\textsubscript{x} formation drops by about 56 and 41%. When the cyclone-SR is 0.8, the NO\textsubscript{x} formation is as low as 409 mg·m-3. In addition, the NO\textsubscript{x} emission of the cyclone staged combustion is much lower compared with that of laminar drop-tube staged combustion in our previous study.15 In the deep-air-staged case (i.e., cyclone-SR of 0.8), the NO\textsubscript{x} emission of cyclone furnace (with the swirl intensity of 3.74 at cyclone-SR of 0.8) is about 200 mg·m-3 lower than that of laminar drop-tube staged combustion. And in the nonstaged case, the NO\textsubscript{x} emission of cyclone furnace (with the swirl intensity of 10.03 at cyclone-SR of 1.1) is also lower than that of the drop-tube furnace. Therefore, the strong swirling effect in the cyclone combustion is also a conducive factor for the NO\textsubscript{x} reduction, and the influence of swirl intensity also needs to be considered when adjusting cyclone-SR.

3.5. Low NO\textsubscript{x} Strategies. Enlarging the reduction zone is conducive to reducing NO\textsubscript{x} which can be achieved by reducing PAR in addition to reducing the cyclone-SR. To clarify the effect of PAR on the NO\textsubscript{x} formation, the concentrations of NO\textsubscript{x}, CO, and O\textsubscript{2} were measured at the measuring points S1 and S5 when the PAR was 0.2, 0.3, and 0.4, respectively. The PAR was changed by adjusting the ratio of primary and secondary air when the cyclone-SR is maintained at 0.8. As shown in Figure 12, the PAR determines the O\textsubscript{2} concentration and significantly affects the concentrations of CO and NO\textsubscript{x} at the top of the cyclone barrel (S1). When the PAR is reduced from 0.4 to 0.2, the swirling intensity is increased from 1.23 to 12.81. As a result, the O\textsubscript{2} at the S1 measuring point decreases from 1.06 to 0.38%, and the CO concentration increases from 5.07 to 9.89%, and the NO\textsubscript{x} concentration decreases from 879.45 to 512.5 mg·m-3. When the PAR is 0.4, the NO\textsubscript{x} at the outlet of the cyclone barrel is almost twice as much as that at the PAR of 0.2. Therefore, keeping cyclone-SR constant and reducing the PAR will greatly enhance the swirling intensity in the cyclone barrel, which not only decreases the area of high O\textsubscript{2} concentration but also expands the NO\textsubscript{x} reduction zone. It should be noted that reducing the PAR will remarkably decrease the flue gas temperature, as shown in Figure 13, but the temperature near the outlet of the cyclone barrel is higher than the slag flow temperature even at the PAR of 0.2.

The O\textsubscript{2} concentration in the annular near-wall region can be reduced by adjusting the centralized air supply (SA1 + SA2) to decentralized air supply (SA1 + SA3). To identify the species distribution characteristics influenced by the secondary air arrangement in the cyclone barrel, the concentrations of O\textsubscript{2}, CO, and NO\textsubscript{x} were measured at measuring points S1, S2, S3, S4, and S5.
S4, and S5 in the cases of centralized secondary air supply and decentralized secondary air supply. As shown in Figure 14, compared with the case with centralized air supply, O2 concentration in the annular near-wall region (S1–S4) is significantly reduced in the case of decentralized secondary air supply, resulting a decreased NOx formation. This is because the decentralized air supply can effectively avoid the excess of O2, reducing the NOx formation. At the cyclone outlet (S5), although O2 concentrations remain almost constant between decentralized air supply and centralized air supply, the NOx concentration of decentralized air supply is 236 mg·m−3, which is about 23% lower. Therefore, decentralized secondary air supply is an effective approach to reduce the O2 concentration in the annular near-wall region and further to reduce NOx formation. Figure 15 shows the effect of secondary air arrangement on the temperature at the upper part and outlet of the cyclone barrel.

Figure 13. Effect of PAR on the temperature at the upper part and outlet of the cyclone barrel.

Figure 14. Species concentrations in the near-wall region affected by secondary air arrangement.

Figure 15. Effect of secondary air arrangement on the temperature at the upper part and outlet of the cyclone barrel.

barrel can be increased by the decentralized secondary air supply, which is more conducive to the slag tapping.

4. CONCLUSIONS

In this study, a 100 kW cyclone furnace experimental system was built to study the combustion characteristics and their effects on NOx formation in the cyclone barrel. The main conclusions can be drawn as follows:

(1) In the annular near-wall region of the cyclone barrel, the coincidence of high O2 concentration and high temperature can lead to a large amount of NOx formation. Besides, NOx reduction area with high temperatures and high CO concentrations would significantly promote the reduction of NOx in the central and lower parts of the cyclone barrel. To expand the reduction zone and to reduce O2 concentration in the annular near-wall region are two effective strategies for reducing NOx in the cyclone furnace.

(2) A reasonable slag capture ratio of 0.70 can be achieved for the cyclone barrel even under air-staged conditions. The unburned carbon content of the collected fly ash is 2.8–5.4%. The cyclone furnace shows good slag capture and burnout performance even in air-staged cases.

(3) The overall-SR cannot be too small to impact the burnout performance of cyclone furnace, so it has limited effects on the reduction of NOx emission. In contrast, NOx formation can be significantly dropped by 56% when the cyclone-SR decreases from 1.1 to 0.7.

(4) Keeping cyclone-SR constant and reducing the primary air rate will greatly enhance the swirling intensity in the cyclone barrel, which not only decreases the area of high O2 concentration but also expands the NOx reduction zone. The oxygen concentration can be reduced in the annular near-wall region by decentralizing the secondary air supply, thereby inhibiting the NOx formation by 23%.

(5) The NOx emission of cyclone staged combustion is lower than that of laminar drop-tube staged combustion in either air-staged or nonstaged cases, which can be attributed to the swirling effect.

(6) The detailed data including temperature profiles, species concentration distributions, and slag tapping behavior of the cyclone furnace can be used as the reference for the verification of the future numerical study.
Coal in the Primary Combustion Zone of a Drop-Tube Furnace. Energy Fuels 2010, 24, 3471−3478.
(9) Srirismomboon, K.; Chareonporn, P. Effects of air staging on emission characteristics in a conical fluidized-bed combustor firing with sunflower shells. J. Energy Inst. 2017, 90, 316−323.
(10) Fei, J.; Sun, R.; Yu, L.; Liao, J.; Sun, S.; Kelebopile, L.; Qin, Y. NO Emission Characteristics of Low-Rank Pulverized Bituminous Coal in the Primary Combustion Zone of a Drop-Tube Furnace. Energy Fuels 2010, 24, 3471−3478.
(11) Taniguchi, M.; Kamikawa, Y.; Okazaki, T.; Yamamoto, K.; Orita, H. A role of hydrocarbon reaction for NOx formation and reduction in fuel-rich pulverized coal combustion. Combust. Flame 2010, 157, 1456−1466.
(12) Zhang, W.; Li, Y.; Ma, X.; Qian, Y.; Wang, Z. Simultaneous NO/CO2 removal performance of biochar/limestone in calcium looping process. Fuel 2020, 262, No. 116428.
(13) Zhao, Y.; Feng, D.; Li, B.; Wang, P.; Tan, H.; Sun, S. Effects of flue gases (CO/CO2/SO2/H2O/O2) on NO-Char interaction at high temperatures. Energy 2019, 174, 519−525.
(14) Zha, Q.; Bu, Y.; Wang, C. A.; Che, D. Evaluation of anthracite combustion and NOx emissions under oxygen-staging, high-temperature conditions. Applied Thermal Engineering 2016, 109, 751−760.
(15) Zhu, T.; Hu, Y.; Tang, C.; Wang, L.; Liu, X.; Deng, L.; Che, D. Experimental study on NOx formation and burnout characteristics of pulverized coal in oxygen enriched and deep-staging combustion. Fuel 2020, 272, No. 117639.
(16) Taniguchi, M.; Kamikawa, Y.; Tatsumi, T.; Yamamoto, K. Staged combustion properties for pulverized coals at high temperature. Combust. Flame 2011, 158, 2261−2271.
(17) Bai, W.; Li, H.; Deng, L.; Liu, H.; Che, D. Air-Staged Combustion Characteristics of Pulverized Coal under High Temperature and Strong Reducing Atmosphere Conditions. Energy Fuels 2014, 28, 1820−1828.
(18) Jones, J. M.; Pourkashanian, M.; Waldron, D. J.; Williams, A. Prediction of NOx and unburned carbon in ash in highly staged pulverised coal furnace using overfire air. J. Energy Inst. 2010, 83, 144−150.
(19) Zhu, S.; Lyu, Q.; Zhu, J. Experimental investigation of NOx emissions during pulverized char combustion in oxygen-enriched air preheated with a circulating fluidized bed. Journal of the Energy Institute 2019, 92, 1388−1398.
(20) Song, G.; Yang, X.; Yang, Z.; Xiao, Y. Experimental study on ultra-low initial NOx emission characteristics of Shennu coal and char in a high temperature CFB with post-combustion. Journal of the Energy Institute 2021, 94, 310−318.
(21) Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Y.; Anikin, Y. A. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 1: Flow aerodynamics in a vortex furnace. Thermal Engineering 2015, 62, 117−122.
(22) Krasinsky, D. V.; Salomatov, V. V.; Anufriev, I. S.; Sharypov, O. V.; Shadrin, E. Y.; Anikin, Y. A. Modeling of pulverized coal combustion processes in a vortex furnace of improved design. Part 2: Combustion of brown coal from the Kansk-Achinsk Basin in a vortex furnace. Thermal Engineering 2015, 62, 208−214.
(23) Lani, B. W.; Feeley, T. J.; Miller, C. E.; Carney, B. A.; Murphy, J. T. DOE/NETL’s NOx emissions control R&D program - bringing advanced technology to the marketplace, 2008.
(24) Savr, H.; Sayre, A. N.; Maringo, G. J. In Selective Use of Oxygen and In-Furnace Combustion Techniques for NOx Reduction in Coal Burning Coke Furnaces, 33rd International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, 2008; p 1809.
(25) Farzan, H.; Maringo, G. J.; Johnson, D. W.; Wong, D. K.; Beard, C. T.; Brewster, S. E. & B&W Advances on Cyclone NOx Control via Fuel and Air Staging Technologies, EPRI-DOE-EPA Combined Utility Air Pollution Control, Atlanta, Georgia, 1999; p 1683.
(26) Savr, H.; Chen, Z.; Sayre, A.; Maringo, G.; Levesque, S. Oxygen-Enriched Combustion of a Powder River Basin Black Thunder Coal for
NOx Reduction in a Cyclone Furnace, The 34th International Technical Conference on Clean Coal and Fuel Systems, Florida, USA, 2009.

(27) Zhu, T.; Tang, C.; Ning, X.; Wang, L.; Deng, L.; Che, D. Experimental study on NOx emission characteristics of Zhundong coal in cyclone furnace. *Fuel* **2022**, *311*, No. 122536.

(28) Tang, C.; Zhu, T.; Hu, Y.; Wang, L.; Che, D.; Liu, Y. Numerical Investigation of the Effects of Swirl-Vane Angle and Particle Size on Combustion and Flow Characteristics in a Vertical Cyclone Barrel. *J. Energy Eng.* **2020**, *146*, No. 04020029.

(29) Tang, C.; Zhu, T.; Wang, L.; Deng, L.; Che, D.; Liu, Y. Effects of ash parameters and fluxing agent on slag layer behavior in cyclone barrel. *Fuel* **2019**, *253*, 1140-1148.

(30) Kitto, J. B.; Stultz, S. C. *Steam - Its Generation and Use*; Babcock & Wilcox Company, 2005.

(31) Wang, C. A.; Du, Y.; Che, D. Investigation on the NO Reduction with Coal Char and High Concentration CO during Oxy-fuel Combustion. *Energy Fuels* **2012**, *26*, 7367-7377.