Development and characterization of microsatellite markers in the small Indian mongoose (Urva auropunctata)

Takuma Sato1 · Takamichi Jogahara2

Received: 23 May 2021 / Accepted: 16 August 2021 / Published online: 24 August 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Background The small Indian mongoose (Urva auropunctata) is one of the world’s worst invasive alien species and eradication programs are ongoing worldwide. The development of individual and sex identification markers will improve their management.

Methods and results We searched for novel mongoose microsatellite markers using genome-wide screening and identified 115,265 tetra-nucleotide repeat loci. Of 96 loci tested, 17 were genotyped in 28 mongooses from the Okinawa population. The genetic diversity analysis showed that the average expected and observed heterozygosity and number of alleles were 0.55, 0.56, and 2.94, respectively. Of 17 loci, one deviated from Hardy–Weinberg equilibrium and six loci pairs were likely linked to each other. However, we succeed in identifying all individuals using all of the microsatellite loci. The novel sex identification markers worked successfully in a test using sex known samples.

Conclusion Our novel microsatellite and sex identification markers should be useful in studies of individual identification and population genetics of the mongoose.

Keywords Genome wide screening · Introduced species · Okinawa · Population genetics · Microsatellite

Introduction

The small Indian mongoose Urva auropunctata (Hodgson, 1836) is a generalist predator that naturally occurs from the Arabian Peninsula to Southeast Asia [1]. It was introduced to 64 islands in the Pacific and Indian Oceans and Caribbean and Adriatic Seas and to mainland Europe, South America, Australia, and North America for rat or snake control, causing enormous damage to the native biodiversity [2]. Ecological niche modelling of the mongoose suggests that it will spread globally by 2050 [3].

Mongoose eradication programs are underway using trapping and poisoning. On Amami Oshima Island, Japan, the program is close to success [4], and the populations and distributions of the endemic Amami rabbit Pentalagus furnessi (Stone, 1900) and Amami spiny rat Tokudaia osimensis (Abe, 1933) have expanded [5, 6]. To continue these eradication programs, methods to estimate the mongoose population are needed.

The application of genetic analysis is essential for wildlife management. Microsatellite markers are often used to reveal the genetic diversity and origin of invasive species through population genetic analysis [e.g., 7, 8]. Single nucleotide polymorphisms (SNPs) are also powerful markers in population genetics; however, SNP analysis requires many markers to be analysed than microsatellite analysis [9], and it is unsuitable for analysing additional samples. Therefore, microsatellite markers were chosen in the present study.

Previously, eight mongoose microsatellite markers were developed [10]; however, there is a problem with their use. Three of these loci could not be scored reliably [11], implying that the loci included unstable repeat characters. This problem leads to mis-genotyping and reduces the resolution power of markers.

This study developed novel microsatellite markers for the small Indian mongoose using genome-wide screening in a mongoose from the Okinawa, Japan, population. We selected tetra-nucleotide repeats with short amplification lengths as markers. We also developed sex identification markers. The
novel markers were verified with 28 mongooses from the Okinawa population.

Materials and methods

Sample collection

We obtained tissue samples from 28 mongooses in the Okinawa population (Fig. 1; Table 1). All samples were taken from euthanized animals through the mongoose eradication program.

Genome sequences and identification of microsatellite loci

Genomic DNA was extracted from a small Indian mongoose tissue sample (Nago1; Table 1) and the genome was sequenced by Macrogen Japan (Kyoto, Japan). Whole-genome shotgun sequencing was performed on an Illumina NovaSeq 6000 sequencer (150 paired ends). The raw sequence data was deposited in the DNA Data Bank of Japan (DDBJ) Sequence Read Archive (DRA; https://www.ddbj.nig.ac.jp/dra/) with the accession number DRR294934. The sequence quality was checked by the FastQC program, and noise and adapters were trimmed with fastp [12] under the default configurations. We then mapped the sequences onto the genome of a banded mongoose *Mungos mungo* (acc. no. GCA_004023785) using BWA-mem2 [13] with the default parameters. Among the species with genome information, *M. mungo* is most closely related to the small Indian mongoose [14]. To produce the consensus sequence, the output BAM file was sorted using SAMtools [15] and the variants were called with bcftools. In total, 52,502 sequences were obtained, with a total valid sequence length of 1,435,707,730 bp.

The microsatellite loci were identified from the consensus sequences using Krait [16] with the following configuration: perfect microsatellite search mode; minimum repeat number of tetra-nucleotide repeats = 7; and flanking sequence length = 200. We selected tetra-nucleotide repeats because the repeats are easy to determine and the genotype is less prone to slippage [17]. To search for primers, Primer3 [18] implemented in Krait was used with following
configuration: primer product size range = 80–270; primer GC content = 40–60; and Primer Max Ns accepted as 0. The other parameters were set to the default values. In total, 115,265 tetra-nucleotide repeat loci were found and 10,224 primer pairs were exposed. Of these, 96 primer pairs were selected for multiplex PCR amplification based on their product sizes, which were around 80, 120, 160, or 200 bp. To avoid linkage disequilibrium, a marker was selected from each scaffold.

Genotyping microsatellite loci

To verify the novel microsatellite markers, 28 tissue samples were used (Table 1). Total DNA was extracted with the DNeasy Blood & Tissue Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. All PCRs were conducted with QIAGEN Multiplex PCR kits in a total volume of 10 µL, with 5 µL Multiplex PCR Master Mix, 1 µL primer mix (0.2 µM each of the forward and reverse primers), 3 µL dH2O, and 1 µL genomic DNA. The PCR amplification comprised 95 °C for 15 min; 35 cycles at 94 °C for 30 s, 60 °C for 90 s, and 72 °C for 60 s; then 60 °C for 30 min on a MiniAmp Plus thermal cycler (Applied Biosystems [ABI], Foster City CA, USA). The amplicons were checked by electrophoresis on 3% agarose gels. Based on Schuelke [19], we ordered universal primers with four different fluorescent dyes at the 5’ ends (5’-CACGACGTTGTA AACGAC-3’ for 6-FAM, 5’-GTGTGAAATTGAGCGG-3’ for VIC, 5’-CGGAGAGCGAGGTG-3’ for NED, or 5’-CTATAAGGCACGGTGTT-3’ for PET), and new forward primers tagged with one of the four different universal primers at the 5’ end for the successfully amplified loci. The primer mixes were prepared according to Culley et al. [20]. Fragment analysis was conducted by the FASMAC DNA sequencing service (FASMAC, http://fasmac.co.jp/) on an ABI 3730xl DNA Analyzer with GeneScan 600 LIZ Size Standard (ABI). For genotyping, Peak Scanner 1.0 (ABI) was used. We repeated the PCR and genotyping twice for heterozygotes and three times for homozygotes to confirm repeatability.

Development of sex identification markers

Based on the sequences of zinc finger protein genes on the X (ZFX: AB848712) and Y (ZFY: AB848711) chromosomes from Murata et al. [21], new mongoose sex identification markers were designed (Table 2). The PCR product length was 174 bp for ZFX and 221 bp for ZFY. We used the same PCR volumes as for microsatellites and the following PCR conditions: 95 °C for 15 min; 35 cycles at 94 °C for 30 s, 58 °C for 90 s, and 72 °C for 30 s; then 72 °C for 10 min. For the PCR, 0.2 µM each of primers was used. This sex identification process was confirmed by PCR amplification with sex known six samples and a negative control via electrophoresis on a 3% agarose gel.

Molecular data analyses

For all microsatellite loci, the observed (Ho) and expected (He) heterozygosity, deviation from Hardy–Weinberg equilibrium (HW), inbreeding coefficient (Fis), and linkage disequilibrium were analysed using GENEPOP [22]. The presence of null and dropout alleles was tested with Microchecker [23]. The probabilities of identity (PID and PIDsib) were calculated by GIMLET [24].

Results and discussion

Of 96 loci tested, 18 produced single bands of the target size. All loci except one successfully scored the genotypes by fragment analysis, and two to five alleles were found in the Okinawa mongoose population (Table 2). The 17
Table 2 Characteristics of novel microsatellite and sex identification markers of the small Indian mongoose

Locus	Forward Primer sequence (5′-3′)	Reverse Primer sequence (5′-3′)	Label	Motif	Size range (bp)	k	He	Ho	HWE	Fis
Uau1	TGGGAGCTATCAGAGTCCGG	GCCACATTATCAACCCACTGC	6-FAM	GAAA	93–117	4	0.61	0.68	0.525	−0.103
Uau2	GCTTCCTATTCACGAGGCC	GTAGGAGCACTCATGATGACG	VIC	CAAA	97–105	2	0.49	0.43	0.696	0.143
Uau3	ACAGGATCTCTCTGTGGGCC	TGTCCTCTCTCCTCTCTTCC	PET	TGGT	95–99	2	0.50	0.50	1.000	0.018
Uau4	ACAGGATGATGATGATGATGATGCC	CTGTCATGTGTCCACTCCGG	6-FAM	ATGA	114–122	3	0.51	0.43	0.243	0.179
Uau5	TCCCTGGTCCTACCTGTGGACC	TGGACTCCTCCCTTCCATTCA	NED	TGAA	117–137	3	0.56	0.61	0.149	−0.065
Uau6	GCAATAAGAAGACTCAACTCAACAGC	GCCATACGATGTCCTCTTGG	VIC	ATAC	138–150	3	0.60	0.54	0.155	0.122
Uau7	AAGGGAGAAGAGTGTGGGCG	TGAGAGAAGAGTGGCTAAATCTGG	NED	GATG	193–205	2	0.50	0.50	1.000	0.013
Uau8	TCTTAAAGTATTGAGGCAGGG	TGTATCGCAATTTACCTTCC	PET	TAA	176–184	3	0.63	0.54	0.427	0.168
Uau9	TCTATCATATCATCTCTTCCAGC	AAGGTGCCAGAGGAGGAGG	6-FAM	CTA	175–179	2	0.48	0.46	1.000	0.059
Uau10	CCATGCTACACCTACCTCCAGC	TCCTACATAGAAGAGAGACTGAGC	VIC	TCA	181–185	2	0.50	0.64	0.251	−0.276
Uau11	TGAGAGAAAGAAAGGCATGGG	GTCAATACTCCCTTCCACTG	NED	CATT	180–192	4	0.65	0.64	0.733	0.036
Uau12	TGAACATCCCTCTGCCGAGCC	ACTGATTTAAAGCTCTTGGAC	PET	TATC	171–187	3	0.57	0.61	0.217	−0.055
Uau13	TTGTCTTACCCTGTGTCCGC	TCAGCTTTAATAGGGAATGCTGG	6-FAM	TCA	217–233	4	0.33	0.39	1.000	−0.165
Uau14	CTGTGCACTTATCCTCAGTGCC	CTGACTGAGAGGAGGAGGG	VIC	ATCT	220–228	3	0.63	0.61	0.422	0.052
Uau15	GTGATGCTATGAGAGGGGG	GGCAACACCAAGTAGGAAGG	NED	ATGA	203–219	3	0.57	0.57	0.533	0.010
Uau16	TGAGATCAGCGCCCTGCATGG	CCCAGGAGGAAACAGCATGG	6-FAM	ATAG	211–251	5	0.67	0.82	<0.003	−0.205
Uau17	TGCCCTCATATCTCTTGGGCC	AGGAAAAACAGGGCACTATGCG	VIC	AAGA	215–227	2	0.49	0.61	0.439	−0.211
ZFX	GAACCTGATGTAACTGAAAGGA	ACTGATTTAATAGGGAAGG	174							
ZFY	GAACCTAGATGTAACTGAAAGGA	CTGACTGAGAGGAGGAGGG	221							

k number of alleles, _He_ expected heterozygosity, _Ho_ observed heterozygosity, _HWE_ Hardy Weinberg equilibrium _P_ value, _Fis_ inbreeding coefficient

A bold means statistically significant (_P_ < 0.05)
microsatellite sequences were reported in Supplementary file 1. *He*, *Ho*, and *Fis* were 0.33–0.67, 0.39–0.82, and −0.2756 to 0.1787, respectively (Table 2). Microchecker suggested that no loci showed evidence of null alleles, while one locus (Uau16) deviated from HWE expectations (*P* < 0.003). Based on linkage disequilibrium tests, six loci pairs were likely linked (*P* < 0.05): Uau1 and 17, Uau1 and 7, Uau1 and 8, Uau3 and 7, Uau6 and 13, and Uau7 and 10. Generally, the genetic diversity of invasive species is lower than in the native population owing to the small number of founders or bottlenecks. There were at most 17 founders of the Okinawa mongoose population [25]. This history suggests that the Okinawa population might not follow HWE expectations. Using all 17 loci, 28 individuals were identified genetically; the *PID* was 1.92 × 10^{-10} and the *PIDsib* 3.68 × 10^{-5}. At minimum, four loci were required to reach *PID* < 0.001 and seven loci were required to reach *PIDsib* < 0.01. This suggests that our novel microsatellite markers are useful for individual identification.

We also confirmed that the novel sex identification markers worked successfully in a test using known sex samples (Figure S1).

As a result, we successfully developed 17 microsatellite markers and sex identification markers. These markers should be powerful tools for managing mongooses in combination with DNA collected from non-invasive samples, though it needs to verify and optimize the protocols.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11033-021-06655-9.

Acknowledgements We are grateful to Mr. Katsushi Nakata, Dr. Ryoji Fukuhara, Yambaru Mongoose Busters and Yambaru Wildlife Center of the Ministry of Environment, Japan for providing samples, and Dr. Gohta Kinoshita, Ms. Yu Endo and Mr. Shinta Gima for their technical advices and supports. Computations were partially performed on the NIG supercomputer at ROIS National Institute of Genetics.

Author contributions TS and TJ contributed to the research idea and manuscript writing. TS contributed to experimental design and data analysis.

Funding This research was performed by the Environment Research and Technology Development Fund (JPMEERF20204006) of the Environmental Restoration and Conservation Agency of Japan.

Declarations

Conflict of interest All authors declare no conflicts of interest.

Consent to participate All the authors listed have approved the manuscript that is enclosed.

Consent for publication The manuscript is approved by all authors for publication.

References

1. Gilchrist JS, Jennings AP, Veron G, Cavallini P (2009) Family Herpestidae (Mongeuses). In: Wilson DE, Mittermeier RA (eds) Handbook of the mammals of the World Carnivores, vol 1. Lynx Editions, Barcelona, pp 222–329.
2. Barun A, Hanson C (2011) A review of small Indian mongoose management and eradications on islands. In: Veitch CR, Clout MN, Towns DR (eds) Island invasives; Eradication and management. Gland, Aukland, pp 17–25.
3. Louppe V, Leroy B, Herrel A, Veron G (2020) The globally invasive small Indian mongoose Urva auropunctata is likely to spread with climate change. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-64502-6.
4. Watari Y (2019) Roadmap and checklist of invasive species management: Learning from the mongoose eradication project on Amami-Oshima. Japanese J Ornithol 68:263–272. https://doi.org/10.3838/jo.68.263.
5. Watari Y, Nishijima K, Fukasawa M et al (2013) Evaluating the “recovery level” of endangered species without prior information before alien invasion. Ecol Evol 3:4711–4721. https://doi.org/10.1002/ece3.3863.
6. Fukasawa K, Miyashita T, Hashimoto T et al (2013) Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2013.2075.
7. Kawamura K, Kaieda S, Kato M, Kobayashi S (2018) Inversion genetics of nutria (Myocastor coypus) in Okayama, Japan, inferred from mitochondrial and microsatellite markers. Eur J Wildl Res. https://doi.org/10.1007/s10344-018-1185-y.
8. Wostenberg DJ, Hopken MW, Shielis AB, Piaggio AJ (2019) Using DNA to Identify the Source of Invasive Mongooses, *Herpestes auropunctatus* (Carnivora: Herpestidae) Captured on Kaua‘i. Hawaiian Islands Pacific Sci 73:215. https://doi.org/10.2984/73.2.3.
9. Von Thaden A, Cocchiaraaro B, Jarauach A et al (2017) Assessing SNP genotyping of noninvasively collected wildlife samples using microfluidic arrays. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-10647-w.
10. Thulin C-G, Gyllenstrand N, Mccracken G, Simberloff D (2002) Highly variable microsatellite loci for studies of introduced populations of the small Indian mongoose (*Herpestes javanicus*). Mol Ecol Notes 2:453–455. https://doi.org/10.1046/j.1471-8278.2002.00275.x.
11. Barun A, Niemiller ML, Fitzpatrick BM et al (2013) Can genetic data confirm or refute historical records? The island invasion of the small Indian mongoose (*Herpestes auropunctatus*). Biol Invasions 15:2243–2251. https://doi.org/10.1007/s10530-013-0447-6.
12. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessing. Bioinformatics 34:884–890.
13. Vasimuddin M, Misra S, Li H, Aluru S (2019) Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, pp 314–324. https://doi.org/10.1109/IPDPS.2019.00041.
14. Patou ML, Mclenachan PA, Morley CG et al (2009) Molecular phylogeny of the Herpestidae (Mammalia, Carnivora) with a special emphasis on the Asian Herpestes. Mol Phylogenet Evol 53:69–80. https://doi.org/10.1016/j.ympev.2009.05.038.
15. Li H, Handsaker B, Wysokier A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352.
16. Du L, Zhang C, Liu Q et al (2018) KRAI: An ultrafast tool for genome-wide survey of microsatellites and primer design.
Bioinformatics 34:681–683. https://doi.org/10.1093/bioinformatics/btx665
17. Guichoux E, Lagache L, Wagner S et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. https://doi.org/10.1111/j.1755-0998.2011.03014.x
18. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596
19. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. https://doi.org/10.1038/72708
20. Culley TM, Stamper TI, Stokes RL et al (2013) An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl Plant Sci 1:1300027. https://doi.org/10.3732/apps.1300027
21. Murata C, Sawaya H, Nakata K et al (2016) The cryptic Y-autosome translocation in the small Indian mongoose, Herpestes auropunctatus, revealed by molecular cytogenetic approaches. Chromosoma 125:807–815. https://doi.org/10.1007/s00412-015-0572-3
22. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86:248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
23. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
24. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. https://doi.org/10.1046/j.1471-8286.2002.00228.x-t2
25. Kosei I (1966) Distribution and eating habits of mongoose in Okinawa. Okinawa Agric 5:39–44

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.