INTRODUCTION

Sensory nerve injuries at the level of the wrist are commonly missed at the time of trauma or surgery and can lead to debilitating neuromas affecting 2%-60% of patients with nerve injuries. The various treatment modalities of painful neuromas remain controversial. At this time, there is no consensus on the optimal treatment. However, it has been shown that surgical interventions can achieve meaningful clinical improvement of pain. The superficial nerves around the wrist, including the dorsal ulnar sensory nerve (USN), the distal lateral antebrachial cutaneous nerve, the distal branches of the superficial branch of the radial nerve (SRN), and the palmar cutaneous branch of the median nerve (PCB), are sources of peripheral nerve neuromas.

The surgical treatment of neuromas has been shown to significantly improve self-reported pain, depression, and quality-of-life scores. Targeted muscle reinnervation (TMR) is one of the newest members of our reconstructive armamentarium and has been shown to be efficacious in treating upper-extremity neuromas in postamputation patients. With this information at hand, we present a cadaveric study and a clinical case evaluating the novel use of the anterior interosseous nerve (AIN) to the pronator quadratus (PQ) muscle as a recipient for TMR around the wrist.

METHODS

An anatomic study of the AIN, SRN, USN, and PCB in 2 cadaveric specimens was performed. Terminal AIN branches to flexor pollicis longus (FPL) and flexor digitorum profundus were identified. The terminal AIN to PQ was divided just distal to the final branch of flexor pollicis longus to preserve adequate length for TMR. The sensory nerves at the wrist were fully dissected to identify a viable location for coaptation to the AIN. After the cadaveric concept was demonstrated, the technique was successfully used in a clinical case. In summary, the distal AIN is a versatile recipient for TMR as a treatment of painful sensory neuromas at the level of the wrist, with minimal donor-site morbidity.

RESULTS

In one cadaveric upper extremity, 2 AIN branches to FPL were identified, with the most distal branch occurring 6 cm proximal to PQ and 14 cm from the wrist crease. The other cadaveric specimen demonstrated only 1 branch to FPL, which occurred 8.5 cm proximal to PQ and 18 cm distal to the final branch of flexor pollicis longus.

Disclosure: The authors have no financial interest to declare in relation to the content of this article.
from the wrist crease. When divided just distal to the final FPL branch, there was adequate length for coaptation to each of the sensory nerves (SRN, USN, and PCB) at the wrist crease in both specimens.

The technique was then used clinically. A middle-aged man presented with a painful neuroma of the PCB of the left hand 2 years after carpal tunnel release and was offered exploration. A neuroma of the PCB was identified at the exact location of the painful Tinel sign. The terminal AIN was dissected proximally and divided distal to its branches to the FPL, and the PCB was transected just proximal to the neuroma. All terminal branches of the AIN were identified and preserved, including those to the FPL, except the terminal branch to PQ. Coaptation was achieved deep in the forearm just superficial to the interosseous membrane (Fig. 2). The patient continues to do well 9 months postoperatively, with complete resolution of symptoms, no clinically or functionally significant weakness or limitation in range of motion, and no recurrence of pain or hypersensitivity.

CONCLUSIONS

The versatility of the AIN as a target for TMR has not been explored previously. The anatomy of the AIN is well described in the literature and predictable in nature. Sacrifice of PQ function is well tolerated in patients with a functioning pronator teres. These characteristics make it an ideal target for TMR because all of the sensory nerves at the wrist can be coapted without tension to the terminal AIN. We will continue to investigate anatomically and clinically how the terminal AIN can be safely, reliably, and quickly mobilized as a TMR target without compromising function. This nerve transfer is an excellent option for TMR for neuromas around the wrist.

Luke J. Grome, MD
1977 Butler Blvd ste e6.100
Houston, TX 77030
E-mail: grome@bcm.edu

REFERENCES

1. Aasvang E, Kehlet H. Chronic postoperative pain: the case of inguinal herniorrhaphy. Br J Anaesth. 2005;95:69–76.
2. Fisher GT, Boswick JA Jr. Neuroma formation following digital amputations. J Trauma. 1983;23:136–142.
3. Gotoda Y, Kambara N, Sakai T, et al. The morbidity, time course and predictive factors for persistent post-thoracotomy pain. Eur J Pain. 2001;5:89–96.
4. Cetas JS, Saedi T, Burchiel KJ. Destructive procedures for the treatment of nonmalignant pain: a structured literature review. J Neurosurg. 2008;109:389–404.
5. Devor M, Tal M. Nerve resection for the treatment of chronic neuropathic pain. Pain. 2014;155:1053–1054.
6. Flor H, Nikolajsen L, Staeelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci. 2006;7:873–881.
7. Poppler LH, Parikh RP, Bichanian MJ, et al. Surgical interventions for the treatment of painful neuroma: a comparative meta-analysis. Pain. 2018;159:214–223.
8. Domeshk LF, Krauss EM, Snyder-Warwick AK, et al. Surgical treatment of neuromas improves patient-reported pain, depression, and quality of life. Plast Reconstr Surg. 2017;139:407–418.
9. Pierrie SN, Gaston RG, Loeﬄer BJ. Targeted muscle reinnervation for prosthesis optimization and neuroma management in the setting of transradial amputation. J Hand Surg Am. 2019;44:525.e1–525.e8.
10. Caetano EB, Vieira LA, Sabongi Neto JJ, et al. Anterior interosseous nerve: anatomical study and clinical implications. Rev Bras Ortop. 2018;53:575–581.
11. Barbour J, Yee A, Kahn LC, et al. Supercharged end-to-side anterior interosseous to ulnar motor nerve transfer for intrinsic musculature reinnervation. J Hand Surg Am. 2012;37:2150–2159.