Nuclear factor κ B: a pivotal role in the systemic inflammatory response syndrome and new target for therapy

J.W. Christman
L.H. Lancaster
T.S. Blackwell

Received: 1 January 1998
Accepted: 18 August 1998

Introduction

Pathogenic stimuli that result in the systemic inflammatory response syndrome (SIRS) cause a broad range of host responses that include the production of protein and lipid mediators, expression of cell surface receptors and adhesion molecules, induction of enzymes and production of acute phase proteins, as well as activation of inflammatory cells. SIRS, which is referred to as sepsis when the inflammatory response is induced by infection, can lead to dire consequences, including multiple organ dysfunction syndrome (MODS), the acute respiratory distress syndrome (ARDS) and death. ARDS is a prototypic acute inflammatory lung disease and MODS associated with SIRS is characterized by diffuse organ damage with prominent neutrophilic inflammation. The paradox of SIRS is that host immune responses are critical for defense against infection, but excessive or dysregulated inflammation seems to result in neutrophil-mediated tissue injury and organ dysfunction. Understanding the molecular events that regulate neutrophilic inflammation could facilitate specific intervention to prevent host tissue injury in SIRS without substantially compromising the host defense.

In SIRS, neutrophilic inflammation appears to be the result of the local production of cytokines, chemokines, endothelial-leukocyte adhesion molecules and enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), whose production is regulated by the ubiquitous transcription factor complex NF-κB (Table 1). NF-κB is a DNA binding protein necessary for directing high level transcription of many pro-inflammatory genes in tissue culture; however, the extent to which NF-κB controls specific biological processes in vivo is still being investigated. In this review, we discuss briefly the relevant molecular biology of NF-κB, including the process of activation of NF-κB and the role of NF-κB in the production of cytokines and other pro-inflammatory molecules. Within this context, we summarize information about NF-κB in human disease and focus on clinically relevant treatment approaches that could attenuate activation of NF-κB and

| Table 1 Human pro-inflammatory molecules that are regulated by NF-κB |
|---------------------------------|-----------------|
| **Tumor necrosis factor** | **Chemokines** |
| TNFα | IL-8 |
| TNFβ | Gro α, β, γ |
| **Colony stimulating factors** | **RANTES** |
| G-CSF | **MCP-1/JE** |
| GM-CSF | **Adhesion molecules** |
| **Interleukins** | **ICAM-1** |
| IL-1β | **E-selectin** |
| IL-2 | **V-CAM** |
| IL-6 | **Enzymes** |
| IL-12 | **COX-2** |
| **Interferons** | **iNOS** |
| IFN-β | |
Table 2: Agents which activate NF-κB that are involved in the pathogenesis of SIRS, MODS, and ARDS

- Endotoxia
- IL-1β
- TNFα
- Ischemia/reperfusion
- Hyperoxia, reactive oxygen species
- Volutrauma, barotrauma

diminish the expression of pro-inflammatory genes, potentially limiting tissue injury and inflammation and improving the outcome of SIRS.

Molecular Biology of Rel/NF-κB

The Rel/NF-κB family of transcription factors represents a distinct paradigm of nuclear transactivating factors whose activity is inducible via control of its nuclear localization. These enhancer binding proteins are sequestered in the cytoplasm by inhibitory molecules, termed IκBs. IκB is destroyed upon cell stimulation, and the κB factors enter the nucleus and associate with their cognate DNA binding sites, initiating gene transcription.

The Rel/NF-κB family of transcriptional transactivators is a ubiquitous multiprotein complex specialized for rapid response of the cell to a wide variety of both normal and pathogenic agents [1] including those stimuli that are involved in the pathogenesis of SIRS, MODS, and ARDS (Table 2). NF-κB acts as a transcription factor by binding to a decameric DNA sequence motif found in the promoters and introns of several genes, including those of the immunoglobulin κ light chain, the human immunodeficiency virus long terminal repeats, numerous cytokines, chemokines, adhesion molecules, enzymes and growth factor receptors.

The molecular and biochemical nature of the Rel/NF-κB complex has been well reviewed [1–4] and will only be discussed in this review in a condensed form. Authentic NF-κB is a heterodimer consisting of a 50 kD polypeptide (nF-κB1 = p50) [5] and a 65 kD polypeptide (RelA = p65) [6]. Other Rel family proteins include c-Rel and p52 (nF-κB2) which, along with p50 and RelA, can form various combinations of homodimers and heterodimers that regulate specific target gene transcription. The carboxy terminal domains of RelA(p65) and c-Rel contain strong transcriptional transactivation regions [7]. By contrast, p50 homodimers bind to DNA but are thought to block transcription since it lacks a transactivation domain [8].

IκB was first described as a cytoplasmic protein which inhibits the DNA binding activity of the heterodimeric NF-κB complex [9,10]. In the cytosol, IκB proteins form complexes with heterodimeric NF-κB and can be inactivated following stimulation of cells with a wide variety of distinct agents including lipopolysaccharide (LPS), TNFα, IL-1β, phorbol esters, growth factors, viral proteins and ultraviolet light. Some of these stimuli, endotoxia, cytokinemia, ischemia/reperfusion, hyperoxia and mechanical stress, are probably relevant to the pathophysiology of SIRS, MODS and ARDS. Like their binding partners (Rel/NF-κB proteins), the IκBs are encoded by a small multigene family [1,4], which includes IκB-α (MAD3, pp40, RL-IF1, ECI), IκB-β, IκB-γ and BCL-3.

Receptor-mediated activation of NF-κB by TNF-α and IL-1β

Recently, the signalling pathways from specific receptors to activation of NF-κB have been worked out for both TNF-α and IL-1β [11–14]. TNF-α activates NF-κB primarily through binding to the type 1 TNF receptor (TNFR1), which then induces a signal transduction cascade through several intermediate signalling proteins, resulting in activation of NF-κB-inducing kinase (NIK), a member of the mitogen-activating protein (MAP) kinase kinase kinase (MAP3 K) family [11]. When TNF-α binds to the TNFR1, there is an association between the cytoplasmic domain of TNFR1 and the TNFR1-associated death domain protein (TRADD), the receptor-interacting protein (RIP), and the TNF receptor-associated factor-2 (TRAF-2) that forms an active signalling complex that interacts with NIK. Activation of NIK results in phosphorylation of IκB kinases (IKK), which binds to and phosphorylates IκB-α at serines 32 and 36 [11,12]. Phosphorylated IκB-α is targeted for destruction by the ubiquitinization/proteasome (26 S) degradation pathway, allowing the translocation of NF-κB to the nucleus [1,15,16]. IL-1β binding to its receptor also results in NIK and IKK activation, followed by IκB-α degradation [17–20]. IL-1β binds to the type 1 IL-1 receptor (IL-1R1) and the IL-1 receptor accessory protein (IL-1RACeP) facilitates an interaction between IL1 receptor-associated kinase (IRAk) and TNF receptor-associated factor-6 (TRAF-6) that results in activation of NIK, IKK and NF-κB. In combination, these data seems to indicate that NIK is a common mediator in the NF-κB signalling cascade that results from receptor mediated TNF and IL-1 stimulation. Although it is likely that activation by endotoxin (LPS) follows a similar scheme, the specific link to NIK has not yet been established. A simplified version of the TNFα and IL-1β pathways is illustrated in Fig. 1.

The role of NF-κB in human disease

Substantial in vitro data suggest that activation of NF-κB is a critical proximal step in the inflammatory response.
Interventions to block activation of NF-κB

If NF-κB activation proves to be an important determinant of systemic inflammation, interventions designed to limit NF-κB activation could be beneficial in SIRS and other inflammatory diseases. Currently, no clinical studies have used inhibition of NF-κB activation as a goal of therapy; however, several currently available therapeutic approaches could be used to target NF-κB. Although blocking NF-κB activation is likely to inhibit neutrophilic inflammation and diminish organ injury secondary to exuberant cytokine production, it is uncertain how this treatment approach would affect host defense functions. In future, it may be important to design clinical trials in SIRS and ARDS with the goal of blocking NF-κB activation, either in tissue samples or in bronchoalveolar lavage or white blood cells. If NF-κB activation can be effectively inhibited, the results of NF-κB inhibition on clinical outcome can be assessed.

One strategy for blocking NF-κB activation in SIRS is to prevent the interaction of TNFα, IL-1β or endotoxin with responding cells. The proximal cytokines, as well as endotoxin, are fully capable of producing a sepsis-like syndrome when injected into animals or man and are known to stimulate NF-κB activation in a variety of cell types in vitro. Agents that block TNFα, IL-1 and endotoxin, such as anti-TNF antibodies, soluble TNF receptors, IL-1 receptor antagonist, anti-endotoxin antibodies and soluble CD14, could limit NF-κB activation and prevent inflammation and organ dysfunction in SIRS. Although these agents have been shown to be ef-
Table 3 Agents which block activation of NF-κB and might be effective treatments for SIRS, MODS, and ARDS

- Antioxidants
- Inhibition of NF-κB inducing kinase (NIK)
- Inhibition of the I-κB kinase (IKK) signalsome
- Proteasome inhibitors
- Corticosteroids
- Induction of endotoxin tolerance

Effective in limiting mortality and improving the pathophysiology of experimental SIRS, none has been shown to be efficacious in human studies. Blocking a single mediator, especially after the initiating insult, might be insufficient to inhibit NF-κB significantly because of the redundancy of proximal mediators with the potential to activate NF-κB. In vitro studies have shown that blocking the individual cytoplasmic components of the TNFα and IL-1β activation pathways, including TRADD, RIP, TRAF-2 and TRAF-6, is an effective way to block activation of NF-κB. Strategies that manipulate these intracellular signalling molecules have not been tried in animal models and are far from clinical trials in human diseases. Furthermore, none of these molecules appears to be both a critical and essential pathway for activation of NF-κB. Several recent reviews, including our own, have addressed many of these anti-cytokine strategies and their limitations [36–37]. Here, we discuss several potential treatment strategies that suppress NF-κB activation by a variety of stimuli and have the potential globally to down-regulate acute inflammation in SIRS (Table 3). While some of these approaches are already feasible (antioxidants, corticosteroids and induction of endotoxin tolerance), more specific treatments (inhibition of NIK and IKK, and the proteasome inhibitors) will be dependent on advances in technology and close cooperation between pharmaceutical companies and clinical scientists.

Antioxidants

In terms of NF-κB inhibition, antioxidants are the best studied class of agents. Antioxidants have been investigated as inhibitors of NF-κB activation because the generation of reactive oxygen species (ROS) is postulated to be a vital link in mediating NF-κB activation by a variety of stimuli. Four lines of evidence support the role of ROS in NF-κB activation. First, direct treatment with oxidants such as H₂O₂ activates NF-κB in some cells [38]. Second, agents that activate NF-κB in cells (including endotoxin, TNFα, IL-1β and ionizing radiation) produce oxidative stress [38]. Third, antioxidants have been shown to inhibit NF-κB activation in a variety of settings both in vitro [38] and in vivo [22]. Fourth, up-regulation of endogenous oxidant defenses has been demonstrated to suppress NF-κB activation [39]. In rats, we have shown that systemic endotoxin treatment induces oxidative stress and NF-κB activation in lung tissue and that the antioxidant N-acetylcysteine (NAC) can inhibit lung tissue NF-κB activation following systemic endotoxin treatment [22]. Activation of NF-κB in vitro is also inhibited by a variety of other antioxidant agents including vitamin E derivatives [40–41], pyrrolidine dithiocarbamate (PDTC) [42] selenoproteins [43–44], ascorbic acid [45], dimethyl sulfoxide (DMSO) [46] and S-allyl cysteine (SAC) [47].

Since ROS appear to be important intermediates in NF-κB activation, inhibiting this step might be beneficial in limiting inflammation in certain clinical settings. Several recent early clinical trials suggest that NAC and related compounds may be an effective treatment for ARDS, and it is possible that this benefit has been derived through blocking the activation of NF-κB [48–50]. Studies in animal models of ARDS have indicated that effects of NAC have a complex dose-response relationship where low doses improve, but high doses worsen, parameters of lung injury [51].

Blocking NIK and IKK

Enormous efforts have been made to characterize the intracellular signalling process that leads to the activation of NF-κB [52–60]. The critical common pathway that leads to activation of NF-κB, activation of IKK by NIK, is rapidly being reported in the literature at an unprecedented pace. Two specific IκB kinases (IKKα and IKKβ) have been identified [11–13], which phosphorylate IκBα on serine 32 and 36 that is required for processing via the ubiquitin-proteasome pathway. Overexpression of either an inactive IKKα or IKKβ mutant associates with both IκBα and NIK and blocks activation of NF-κB by TNFα and IL-1β [11, 13]. These data seem to indicate that the IκB kinase complex, termed the IκB kinase (IKK) signalsome, involves aggregation of two distinct kinases, IKKα and IKKβ, that are activated by an interaction with NIK [61–62]. An inactive NIK mutant has been shown to block activation of NF-κB TNFα and IL-1β, which suggests NIK is a critical step that leads to activation of the IKK signalsome [63]. Recently, it has been shown that NIK activates the IKK signalsome by phosphorylating IKKα, but not IKKβ, at serine 176 [14]. Currently there is a frenzied search for compounds that specifically block or antagonize NIK and/or the IKK signalsome since these agents could have broad clinical applications for the treatment of a wide variety of inflammatory diseases that include SIRS, MODS and ARDS. It is likely that a highly specific blockade of NIK and the IKK signalsome will be required because the use of less specific kinase blockers has yielded conflicting results [52–60].
Proteasome inhibitors

The 26 S proteasome degrades IκB-α after it is targeted by phosphorylation and ubiquitination. Several studies have shown that inhibitors of the proteasome complex block NF-κB activation and nuclear translocation in cell culture [64–68]. Recently, certain proteasome inhibitors have been given to rodents without significant toxicity. Administration of the proteasome inhibitor calpain inhibitor 1 by intraperitoneal injection in rats suppressed expression of two NF-κB-dependent genes, iNOS and COX-2 [69]. Chemical proteasome inhibition will probably affect other cellular processes in addition to NF-κB activation, such as antigen processing, cell cycle regulation and the processing of other transcription factors [70]. However, based on available in vitro data, proteasome inhibitors appear to be acceptable agents to suppress NF-κB activation and could be beneficial for short-term treatment to limit inflammation if toxicity could be overcome.

Corticosteroids

Corticosteroids are a group of compounds with a broad range of effects on the immune system, and have long been known to be potent anti-inflammatory agents and potent in vitro suppressors of cytokine production [71]. Some of the anti-inflammatory effects of corticosteroids are mediated through inhibition of NF-κB activation. Corticosteroids have been shown to block NF-κB activation in vitro in two ways. First, glucocorticoid receptors can interact directly with RelA, the transactivating component of NF-κB, to inhibit DNA binding [72]. More recently, two separate groups of investigators have shown that dexamethasone, a potent corticosteroid, increases the expression of IκB-α mRNA and synthesis of functional IκB-α protein [73, 74]. Although further research is necessary, inhibition of DNA binding of RelA and stabilization of cytoplasmic NF-κB by a relative excess of newly synthesized IκB may be an effective dual mechanism by which steroids block the synthesis of cytokines. Although corticosteroids have not proven to be beneficial in post-treatment studies of patients with SIRS and ARDS, sufficient inhibition of NF-κB may not have been achieved, and glucocorticoids may have other effects that are detrimental in this condition.

Induction of Endotoxin Tolerance

Endotoxin tolerance refers to a phenomenon where by an endotoxin-triggered response is at least partially abrogated by prior exposure to endotoxin. Many investigators have reported that tolerance can be induced in both animal models and human volunteers by treatment with repeated small doses of endotoxin. A consistent observation is that endotoxin-tolerant macrophages have blunted gene expression of cytokines, including TNFα, IL-1β, IL-6 and IL-8, in response to treatment with endotoxin. Endotoxin-tolerant cells are cross tolerant to both TNFα and IL-1β, suggesting that endotoxin tolerance is a fundamental process that occurs at the level of the cell.

We have recently investigated the effect of induction of endotoxin tolerance on NF-κB-dependent responses by utilizing a rat model of neutrophilic lung inflammation. Rats were rendered endotoxin-tolerant by four daily injections of low dose endotoxin. When endotoxin-tolerant rats were treated with high dose intraperitoneal endotoxin injection, they had decreased NF-κB activation and chemokine gene expression in lung tissue, as well as attenuated neutrophilic lung inflammation compared to endotoxin-sensitive rats [75–76]. Studies in a rat alveolar macrophage cell line indicate that the mechanism of the tolerance effect is related to depletion of RelA [77]. Other investigators have shown a second mechanism of in vitro endotoxin tolerance: increased gene expression of p105 that results in excess production and homodimerization of p50 [78]. This has the overall effect of preventing gene activation, since p50 homodimers do not bind to IκB and can bind to the decameric NF-κB DNA sequence, but lack a transactivating domain. Exploiting the natural phenomenon of endotoxin tolerance may be an effective way to suppress NF-κB-dependent inflammation. Several studies in animal models and clinical trials have suggested that the induction of tolerance might be effective in selected patients with SIRS [79–81]. These data lead us to believe that induction of endotoxin could be used to prevent or relieve at least some sequelae of gram-negative sepsis through inhibition of NF-κB-dependent inflammatory gene expression.

Summary

NF-κB is an important transcription factor complex that appears to play a fundamental role in regulating acute inflammation through activation of the cytokine cascade and production of other pro-inflammatory mediators. There is increasing evidence that NF-κB is important in the pathobiology of disease states such as SIRS, MODS and ARDS; therefore, therapeutic interventions aimed at limiting NF-κB activation and down-regulating production of inflammatory mediators could prove to be beneficial in decreasing host-derived tissue injury and organ dysfunction. Specific interventions that hold promise for suppressing NF-κB activation include the use of antioxidants, inhibition of NIK and the IKK signalosome, treatment with proteasome inhibitors, induction of endotoxin tolerance and, possibly the use of corticosteroids in selected patients.
References

1. Verma IM, Stevenson JK, Schwarz EM, Van Antwerp D, Miyamoto S (1995) Rel/NF-xB/IkB family: intimate tales of association and dissociation. Genes Dev 9: 2723–2735
2. Gilmore T (1991) Malignant transformation by mutant Rel proteins. Trends Genet 7: 318–322
3. Kerr LD, Verma IM (1992) Signal transduction: the nuclear target. Curr Opin Cell Biol 4: 496–501
4. Nolan GP, Baltimore D (1992) The inhibitory ankyrin and activator rel proteins. Curr. Opin. Genet.Dev. 2: 211–220
5. Ghosh S, Gifford AM, Riviere LR, Tempst P, Nolan GP, Baltimore D (1990) Cloning of the p50 DNA binding subunit of NF-xB: homology to rel and dorsal Cell 62: 1019–1029
6. Nolan GP, Ghosh S, Liou H-C, Tempst P, Baltimore D (1991) DNA binding and IxB inhibition of the cloned p65 subunit of NF-xB, a rel-related polypeptide. Cell 64: 961–969
7. Bull P, Morley KL, Hoekstra MF, Hunter T, Verma IM (1990) The mouse c-rel protein has an N-terminal regulatory domain and a C-terminal transcriptional transactivation domain. Mol Cell Biol 10: 5473–5485
8. Kieran M, Blank V, Logeat F, Vandekerchove I, Lottspeekoch E, Le Bail O, Urban MB, Kourilsy P, Baueule PA, Isreal A (1990) The DNA binding subunit of NF-xB is identical to factor KB-1 and homologous to the rel oncogene product. Cell 62, 1007–1018
9. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequence. Cell 46, 705–716
10. Sen R, Baltimore D (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-xB by posttranslational mechanism. Cell 47:921–929
11. Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M (1997) Identification and characterization of an IxB kinase. Cell 90: 373–383
12. DiDonato JA, Hayakawa M, Rthowarf DM, Zandi E, Karin M (1997) A cytokine-responsive IxB kinase that activates the transcription factor NF-xB. Nature 388: 548–554
13. Woronicz JD, Goa X, Cao Z, Rothe M, Goeddel DV (1997) IxB kinase-β: NF-xB activation and complex formation with IxB kinase-α and NIK. Science 278: 866–869
14. Ling L, Cao Z, Goeddel (1998) NF-xB inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc Natl Acad Sci USA 95: 3792–3797
15. Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY, Ballard DW (1995) Coupling of a signal response domain in IxBα to multiple pathways for NF-xB activation. Mol Cell Biol 15: 2809–2818
16. Treanckner E B-M, Pahl HL, Henkel T, Schmidt KN, Wilk S, Baeuerle PA (1995) Phosphorylation of human IxB-α on serines 32 and 36 controls IxB-α proteolysis and NF-xB activation in response to diverse stimuli. EMBO J 14: 2876–2883
17. Huang J, Gao X, Li S, Cao Z (1997) Recruitment of IRAK to the interleukin 1 receptor complex requires interleukin 1 receptor accessory protein. Proc Natl Acad Sci USA 94: 12829–12832
18. Wescbe H, Korherr C, Kracht M, Falk W, Resch K, Martin MU (1997) The interleukin-1 receptor accessory protein (IL-RAcP) is essential for IL-induced activation of interleukin-receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J Biol Chem 272: 7727–7731
19. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996) TRAF6 is a signal transducer for interleukin-1. Nature 8: 443–446
20. Croston GE, Cao Z, Goeddel DV (1995) NF-kappa B activation by interleukin-(IL-) requires an IL-receptor-associated protein kinase activity. J Biol Chem 270: 16514–1651
21. Blackwell TS, Holden EP, Blackwell TR, DeLarco JE, Christian JW (1994) Cytokine-induced neutrophil chemoattractant mediates neutrophilic alveolitis in rats: association with nuclear factor xB. Am J Respir Cell Mol Biol 11(4):464–472
22. Blackwell TS, Holden EP, Blackwell TR, Christian BW, Christian JW (1996) Activation of NF-xB in rat lungs by treatment with endotoxin: modulation by treatment with N-acetylcysteine. J Immunol 157: 1630–1637
23. Blackwell TS, Blackwell TR, Christian JW (1997) Impaired activation of NF-xB in endotoxin-tolerant rats is associated with down-regulation of chemokine gene expression and inhibition of neutrophilic lung inflammation. J Immunol 158: 5934–5940
24. Haddad EB, Salmon M, Koto H, Barnes PJ, Adcock I, Chung KE (1996) Ozone induction of cytokine-induced neutrophil chemoattractant (CINC) and nuclear factor-κB in rat lung: induction by corticosteroids. FEBS Lett 379(3):265–268
25. Shenkar R, Schwartz MD, Terada LS, Repine JE, Mccord J, Abraham E (1996) Hemorrhage activates NF-κB in murine lung mononuclear cells in vivo. Am J Physiol: Lung Cell Mol Physiol 14:L729–L735
26. Sakurai H, Hisada Y, Ueno M, Sugimura M, Kawashima K, Sugita T (1996) Activation of transcription factor NF-κB in experimental glomerulonephritis in rats. Biochim Biophys Acta 1316: 132–138
27. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W (1996) Local administration of anti-sense phosphorothioate oligonucleotides to the p65 subunit of NF-κB abrogates established experimental colitis in mice. Nature Medicine 2: 998–1004
28. Bohrer H, Qiu F, Zimmermann T, Zhang Y, Ilmer T, Mannel D, Bottiger BW, Stern DM, Walderr R, Saefer H-D, Zeiger R, Bierhaus A, Martin E, Nawroth PP (1997) Role of NF-xB in the mortality of sepsis. J Clin Invest 100: 972–985
29. Schwartz MD, Moore EE, Moore FA, Shenkar R, Moine P, Haenel JB, Abrahm E (1996) Nuclear factor-xB is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med 24: 1285–1292
30. Miller EJ, Cohen AB, Nagao S, Griffith D, Mauder RJ, Martin TR, Weiner-Kronish JP, Tichering M, Christophers E, Mathay MA (1992) Elevated levels of NAP/-interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. Am Rev Respir Dis 146: 427–432
31. Hyers TM, Tricomi SM, Dettenmeier PA, Fowler AA (1991) Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144: 268–271
32. Asahara H, Asanuma M, Ogawa N, Nishibayashi S, Inoue H (1995) High DNA-binding activity of transcription factor NF-xB in synovial membranes of patients with rheumatoid arthritis. Biochem Mol Biol Int 37: 827–832
33. Ellis RD, Limb GA, Thompson RPH, Punchard NA (1997) NF-xB in Crohn's disease. Biochem Soc Trans 178S:25
34. Lugué I, Gelinas C (1997) Rel/NF-kappa B and I kappa B factors in oncogenesis. Sem Cancer Biol 8: 103–111
35. Kitamura Y, Shimohama S, Ota T, Matsuoka Y, Nomura Y, Taniguchi T (1997) Alteration of transcription factors NF-kappa B and STAT1 in Alzheimer's disease brains. Neurosci Lett 237: 17–20
36. Weikert LF, Bernard GR (1996) Pharmacotherapy of sepsis. Clin Chest Med 17(2):289–305
37. Christman JW, Holden EP, Blackwell TS (1995) Strategies for blocking the systemic effects of cytokines in the sepsis syndrome. Crit Care Med 23: 955–963
38. Schreck RK, Alberman K, Baueerle PA (1992) Nuclear factor xB: an oxidative stress-response transcription factor of eukaryotic cells. Free Radic Res Commun 17: 221–237
39. Mirochnitchenko O, Inouye M (1996) Effect of overexpression of human Cu,Zn superoxide dismutase in transgenic mice on macrophage phases. J Immunol 156: 1578–1586
40. Suzuki YJ, Packer L (1997) Inhibition of NF-kappa B activation by dimethyl sulfoxide correlates with suppression of TNF-alpha formation, reduced ICAM-gene transcription, and protection against endotoxin-induced liver injury. Shock 7: 90–96
41. Geng Z, Rong Y, Lau BH (1997) S-allyl cysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic Biol Med 23: 345–350
42. Suter PM, Domenighetti G, Schaller MD, Laverriere MC, Ritz R, Perret C (1994) N-acetylcysteine enhances recovery from acute lung injury in man. A randomized, double-blind, placebo-controlled clinical study. Chest 105: 190–194
43. Jepsen S, Herlevsen P, Knudsen P, Bud MI, Klausen NO (1992) Antioxidant treatment with N-acetylcysteine during adult respiratory distress syndrome: a prospective, randomized, placebo-controlled study. Crit Care Med 20: 918–923
44. Bernard GR, Wheeler AP, Arons MM, Morris PE, Piz HL, Russell JA, Wright PE (1997) A trial of antioxidants N-acetylcysteine and procysteine in ARDS. The Antioxidant in ARDS Study Group. Chest 112: 164–172
45. Sprong RC, Winkelhuyzen-Janssen AM, Aarsman CJ, Van Oirschot JF, van der Bruggen T, van Asbeck BS (1998) Low-dose N-acetylcysteine protects rats against endotoxin-mediated oxidative stress, but high-dose increases mortality. Am J Respir Crit Care Med 57: 1283–1293
46. Flohe L, Brigelius-Flohe R, Saliou C, Traber MG, Packer L (1997) Redox regulation of NF-kappa B activation. Free Radic Biol Med 22: 1115–1126
47. Scherer DC, Brockman JA, Chen Z, Maniatis T, Ballard DW (1995) Signal-induced degradation of I kappa B alpha requires specific ubiquitination. Proc Natl Acad Sci USA 92: 11259–11263
48. Whiteside ST, Ernst MK, LeBail O, Laurent-Winder C, Rice N, Israel N (1995) N- and C-terminal sequences control degradation of MAD3/I kappa B alpha in response to inducers of NF-kappa B activity. Mol Cell Biol 15: 5339–5345
49. Naumann M, Scheidereit C (1994) Activation of NF-kappa B in vivo is regulated by multiple phosphorylations. EMBO J 13: 4597–4607
50. Sun SC, Maggirwar SB, Harhaj E (1995) Activation of NF-kappa B by phosphatase inhibitors involves the phosphorylation of I kappa B alpha at phosphatase 2A-sensitive sites. J Biol Chem 270: 18347–18351
51. Lee FS, Hagler J, Chen ZJ, Maniatis T (1997) Activation of the IxBalpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88: 213–222
52. Merchant F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J, Young DB, Barbosa M, Mann M, Manning A, Rao A (1997) IKK and IKK-beta, cytokine-activated IkappaBalpha kinases essential for NF-kappaB alpha activation. Science 278: 860–866
53. Zandi E, Rothwarf DM, Delhase M, Hayakawa M, Karin M (1997) The I kappa B kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKBeta, necessary for IkappaBalpha phosphorylation and NF-kappaB activation. Cell 91: 243–252
54. Natoli G, Costanzo A, Moretti F, Fulco M, Balsano C, Leverero M (1997) Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation of protein 1 and NFkappaB but not of c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem 272: 26079–26082
55. Lin Y, Brown K, and Siebenlist U (1995) Activation of NF-xB requires proteolysis of the inhibitor IxB-alpha: signal-induced phosphorylation of IxB-alpha alone does not release active NF-xB. Proc Natl Acad Sci USA 92: 552–556
56. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T (1995) Signal-induced site-specific phosphorylation targets IxBalpha to the ubiquitin-proteasome pathway. Genes Dev 9: 1586–1597
57. Milligan SA, Owens MW, Grisham MB (1996) Inhibition of IxBalpha and IxB-beta proteolysis by calpain inhibitors I blocks nitric oxide synthesis. Arch Biochem Biophys 335: 388–395
67. Griscavage JM, Wilk S, Ignarro LJ (1996) Inhibitors of the proteasome pathway interfere with induction of nitric oxide synthase in macrophages by blocking activation of transcription factor NF-xB. Proc Natl Acad Sci USA 93: 3308–3312

68. Schow SR, Joly A (1997) N-acetyl-leucinyl-leucinyl-norleucinal inhibits lipopolysaccharide-induced NF-xB activation and prevents TNF and IL-6 synthesis in vivo. Cell Immunol 175: 199–202

69. Reutten H, and Thiemermann C (1997) Effect of calpain inhibitor I, an inhibitor of the proteolysis of IxB, on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat. Br J Pharmacol 121: 695–704

70. Ciechanover A (1994) The ubiquitin-proteasome pathway. Cell 79: 13–21

71. Haddad EB, Salmon M, Koto H, Barnes PJ, Adcock I, Chung KF (1996) Ozone induction of cytokine-induced neutrophil chemoattractant (CINC) and nuclear factor-kappa B in rat lung: inhibition by corticosteroids. FEBS Lett 379: 265–268

72. Ray A, KE Prefontaine (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-xB and the glucocorticoid receptor. Proc Natl Acad Sci USA 91: 752–756

73. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS Jr (1995) Role of transcriptional activation of IkBa in mediation of immunosuppression by glucocorticoids. Science 270: 283–286

74. Auphan N, DiDonato JA, Rosette C, Helmbert A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-xB activity through induction of IkB synthesis. Science 270: 286–290

75. Zuckerman SH, Evans GF (1992) Endotoxin tolerance: in vivo regulation of tumor necrosis factor and interleukin-1 synthesis is at the transcriptional level. Cell Immunol 140: 513–519

76. Blackwell TS, Blackwell TR, Christian JW (1997) Impaired activation of NF-xB in endotoxin tolerant rats is associated with down-regulation of chemokine gene expression and inhibition of neutrophilic lung inflammation. J Immunol 158: 5934–5940

77. Blackwell TS, Blackwell TR, Christian JW (1997) Endotoxin tolerance is associated with depletion of RelA and increased formation of p50 homodimers in rat alveolar macrophages. J Leukoc Biol 62: 885–891

78. Ziegler-Heitbrock HWL, Wedel A, Schrutz W, Strobel M, Wedelgass P, Sterndorf T, Bauerle P, Haas JG, Riehmiller G (1994) Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J Biol Chem 269: 17001–17004

79. Carpati CM, Astiz ME, Rackow EC, Kim JW, Kim YB, Weil MH (1992) Monophosphoryl Lipid A attenuates the effect of endotoxin shock in pigs. J Lab Clin Med 119: 346–353

80. Astiz ME, Saha DC, Brooks K, Carpati CM Rackow EC (1993) Comparison of the induction of endotoxin tolerance in endotoxemia and peritonitis by monophosphoryl Lipid A and lipopolysaccharide. Circ Shock 39: 194–198

81. Astiz ME, Rackow EC, Still JG, Howell ST, Cato A, Von Eschen KB, Ulrich JT, Rudbach JA, McMahon G, Vargas R (1995) Pretreatment of normal humans with monophosphoryl lipid A induces tolerance to endotoxin: a prospective, double-blind, randomized, controlled trial. Crit Care Med 23: 9–17