Chemical signals act as the main reproductive barrier between sister and mimetic *Heliconius* butterflies

González-Rojas, M.F.\(^1\), Darragh, K.\(^2\), Robles, J.\(^3\), Linares, M.\(^1\), Schulz, S.\(^4\), McMillan, W.O.\(^5\), Jiggins, C.D.\(^2\), Pardo-Diaz, C.\(^1\), Salazar, C.\(^1\).

Table S1. Samples included in the quantification analysis of wing phenotype ... 3

Table S2. Female behavioural response towards males with normal (control) and altered (treatment) wing phenotype... 6

Table S3. Female behavioural responses in triads that tested female preference for males “perfumed” with a hexanic extract from five males either of *H. melpomene malleti* or *H. timareta florencia* .. 7

Table S4. Amount (ng) of compounds that remained in the wings of perfumed males before evaporation... 8

Table S5. Behavioural response of F\(_1\) and backcross females towards pure males of *H. melpomene malleti* and *H. timareta florencia* .. 11

Table S6. Compounds identified in wing androconia’s extracts of males of *H. melpomene malleti*, *H. timareta florencia*, F\(_1\) and backcross......................... 12

Table S7. Compounds identified in the abdominal glands’ extracts of males of *H. melpomene malleti*, *H. timareta florencia*, F\(_1\) and backcross......................... 15

Table S8. Probability of mating in no-choice experiments.................. 19

Figure S1. Map showing the geographic distribution and wing phenotype of *H. melpomene malleti* and *H. timareta florencia* .. 20

Figure S2. Location of landmarks (LM) coordinates on the forewings and hindwings of *H. melpomene malleti* and *H. timareta florencia* 21

Figure S3. Species wing size and shape .. 22

Figure S4. (A) Shape variation of forewings of *H. melpomene malleti* (light grey) and *H. timareta florencia* (dark grey) .. 23

Figure S5. Colour pattern comparison between the two species 24
Figure S6. Mate choice triads testing the importance of wing colour pattern in mate preference ...26

Figure S7. Amount (ng) of compounds that remained in the wings of perfumed males before evaporation ...27

Figure S8. Mate choice triads testing behavioural responses in F1 and backcross (BC) females ..28

Figure S9. Species differences in male androconia extracts ..29

Figure S10. Cluster analysis based on Euclidian distance of compound composition in the wing androconia of males of H. melpomene malleti, H. timareta florencia, F1 and backcrosses (BC) ..30

Figure S11. Chromatogram patterns obtained from androconial extracts of F1 and backcross males ...31

Figure S12. Chromatogram pattern of the abdominal gland bouquet of males ...32

Figure S13. Cluster analysis based on Euclidian distance of the compound composition of the wing androconia of males of H. melpomene malleti, H. timareta florencia, F1 and backcrosses (BC) ..33

Figure S14. Chromatogram patterns obtained from abdominal gland bouquet of F1 and backcross males ...34

REFERENCES ..35
Table S1. Samples included in the quantification analysis of wing phenotype. A total of 89 individuals were used. The wings were obtained from “Colección de Artrópodos de la Universidad del Rosario (CAUR229)”. Wild individuals of *H. timareta florencia* and *H. melpomene malleti* were collected in the localities Sucre and Doraditas in Colombia (01°48′12″ N - 75°39′19″ W, 1200 m and 01°42′39″ N - 75°42′32″ W, 1400 m). The last column specifies the analysis in which each specimen was used. D: dorsal; V: ventral; HW: hindwing; FW: forewing.

ID Collection	ID Wing Scan	Taxon	Locality	Analysis in which the sample was used
M54	LGE-WS-00351	*H. t. florencia*	Quebrada_Las_Doraditas	D-HW; D-FW
M63	LGE-WS-00349	*H. t. florencia*	Finca_Piñacue	D-HW; D-FW; V-HW; V-FW
M64	LGE-WS-00350	*H. t. florencia*	Finca_Piñacue	D-HW; D-FW; V-HW; V-FW
M244	LGE-WS-00373	*H. m. malleti*	Florencia	D-HW; D-FW; V-HW; V-FW
M253	LGE-WS-00375	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M255	LGE-WS-00326	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M257	LGE-WS-00346	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M259	LGE-WS-00325	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW
M415	LGE-WS-00397	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M418	LGE-WS-00305	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M426	LGE-WS-00361	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M433	LGE-WS-00390	*H. m. malleti*	Florencia_Sucre	V-HW; V-FW
M434	LGE-WS-00363	*H. m. malleti*	Florencia_Sucre	V-HW; V-FW
M451	LGE-WS-00304	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M462	LGE-WS-00337	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M468	LGE-WS-00383	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M471	LGE-WS-00307	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M472	LGE-WS-00311	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M474	LGE-WS-00359	*H. m. malleti*	Florencia_Sucre	V-HW; V-FW
M583	LGE-WS-00367	*H. m. malleti*	Florencia	D-HW; D-FW; V-HW; V-FW
M584	LGE-WS-00357	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M587	LGE-WS-00306	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M588	LGE-WS-00310	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M589	LGE-WS-00370	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M590	LGE-WS-00395	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M592	LGE-WS-00394	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M593	LGE-WS-00309	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M594	LGE-WS-00368	*H. m. malleti*	Quebrada_Las_Doraditas	D-HW; D-FW; V-HW; V-FW
M595	LGE-WS-00318	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M596	LGE-WS-00308	*H. t. florencia*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M598	LGE-WS-00377	*H. m. malleti*	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
Código	Identificador	Especie	Localidad	Habitat
----------	------------------------	--------------------	----------------------	-----------
M602	LGE-WS-00303	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M606	LGE-WS-00352	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M607	LGE-WS-00317	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M610	LGE-WS-00379	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M611	LGE-WS-00316	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M612	LGE-WS-00319	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M614	LGE-WS-00355	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M616	LGE-WS-00334	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M618	LGE-WS-00324	H. t. florencia	Florencia_Sucre	D-HW; D-FW
M620	LGE-WS-00302	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M622	LGE-WS-00332	H. t. florencia	Florencia_Sucre	D-HW; D-FW
M1009	LGE-WS-00333	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1010	LGE-WS-00313	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1016	LGE-WS-00378	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1074	LGE-WS-00315	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1075	LGE-WS-00314	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1079	LGE-WS-00348	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1084	LGE-WS-00328	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1085	LGE-WS-00329	H. t. florencia	Florencia_Sucre	D-HW; D-FW
M1094	LGE-WS-00330	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1098	LGE-WS-00396	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1196	LGE-WS-00354	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1283	LGE-WS-00353	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1288	LGE-WS-00364	H. m. malleti	Florencia_Paraiso	V-HW; V-FW
M1321	LGE-WS-00365	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1441	LGE-WS-00381	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1507	LGE-WS-00389	H. m. malleti	Florencia_Paraiso	V-HW; V-FW
M1511	LGE-WS-00387	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1512	LGE-WS-00386	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1514	LGE-WS-00384	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1522	LGE-WS-00385	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1754	LGE-WS-00331	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1757	LGE-WS-00376	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1758	LGE-WS-00345	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1767	LGE-WS-00391	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1769	LGE-WS-00343	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1770	LGE-WS-00388	H. m. malleti	Florencia_Sucre	V-HW; V-FW
M1771	LGE-WS-00344	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1772	LGE-WS-00321	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1773	LGE-WS-00369	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1774	LGE-WS-00360	H. m. malleti	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1805	LGE-WS-00320	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M1808	LGE-WS-00322	H. t. florencia	Florencia_Sucre	D-HW; D-FW
M1813	LGE-WS-00366	H. m. malleti	Quebrada_Las Doraditas	D-HW; D-FW; V-HW; V-FW
M1814	LGE-WS-00399	H. m. malleti	Florencia_Sucre	D-HW; D-FW
M1817	LGE-WS-00323	H. t. florencia	Florencia_Sucre	V-HW; V-FW
M1823	LGE-WS-00356	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M1845	LGE-WS-00362	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
---	---	---	---	---
M1846	LGE-WS-00336	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M2347	LGE-WS-00393	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M2360	LGE-WS-00374	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M2408	LGE-WS-00382	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M3544	LGE-WS-00358	H. m. malleti	Florencia_Paraiso	D-HW; D-FW; V-HW; V-FW
M3765	LGE-WS-00347	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M3767	LGE-WS-00339	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M3874	LGE-WS-00341	H. t. florencia	Florencia_Sucre	D-HW; D-FW; V-HW; V-FW
M3875	LGE-WS-00327	H. t. florencia	Florencia_Sucre	D-HW; D-FW
Table S2. Female behavioural response towards males with normal (control) and altered (treatment) wing phenotype. Behaviours are classified as Acceptance or Rejection. The asterisk (*) indicates statistical significance (α=0.01) according to the GLMM.

Behaviour	$H. \ m. \ malleti$	$H. \ t. \ florencia$
Flutter	Acceptance $\chi^2(1,326)=0.646$, $p>0.01$	$\chi^2(1,216)=4.734$, $p>0.01$
Fly towards	Acceptance $\chi^2(1,326)=0.877$, $p>0.01$	$\chi^2(1,216)=0.090$, $p>0.01$
Slow flat	Acceptance $\chi^2(1,326)=0.608$, $p>0.01$	$\chi^2(1,216)=1.223$, $p>0.01$
Wings open	Acceptance $\chi^2(1,326)=2.005$, $p>0.01$	$\chi^2(1,216)=6.905$, $p<0.01^*$
Abdomen exposed	Acceptance $\chi^2(1,326)=0.215$, $p>0.01$	$\chi^2(1,216)=0.067$, $p>0.01$
Fly away	Rejection $\chi^2(1,326)=2.353$, $p>0.01$	$\chi^2(1,216)=1.474$, $p>0.01$
Tucked up	Rejection $\chi^2(1,326)=1.213$, $p>0.01$	$\chi^2(1,216)=5.500$, $p>0.01$
Erratic flutter	Rejection $\chi^2(1,326)=1.723$, $p>0.01$	$\chi^2(1,216)=2.495$, $p>0.01$
Abdomen bent	Rejection $\chi^2(1,326)=0.075$, $p>0.01$	$\chi^2(1,216)=5.549$, $p>0.01$
Table S3. Female behavioural responses in triads that tested female preference for males “perfumed” with a hexanic extract from five males either of *H. melpomene malleti* or *H. timareta florencia*. The asterisk (*) indicates statistical significance (α=0.01) according to the GLMM.

Behaviour	*H. m. malleti*	*H. t. florencia*
Flutter	Acceptance $\chi^2_{(1,473)}=51.113$, p<0.01*	$\chi^2_{(1,354)}=25.476$, p<0.01*
Fly towards	Acceptance $\chi^2_{(1,473)}=75.612$, p<0.01*	$\chi^2_{(1,354)}=32.715$, p<0.01*
Slow flat	Acceptance $\chi^2_{(1,473)}=44.195$, p<0.01*	$\chi^2_{(1,354)}=48.501$, p<0.01*
Wings open	Acceptance $\chi^2_{(1,473)}=139.04$, p<0.01*	$\chi^2_{(1,354)}=93.902$, p<0.01*
Abdomen exposed	Acceptance $\chi^2_{(1,473)}=90.039$, p<0.01*	$\chi^2_{(1,354)}=60.483$, p<0.01*
Fly away	Rejection $\chi^2_{(1,473)}=44.263$, p<0.01*	$\chi^2_{(1,354)}=109.41$, p<0.01*
Tucked up	Rejection $\chi^2_{(1,473)}=13.629$, p<0.01*	$\chi^2_{(1,354)}=8.1586$, p<0.01*
Erratic flutter	Rejection $\chi^2_{(1,473)}=43.539$, p<0.01*	$\chi^2_{(1,354)}=75.385$, p<0.01*
Abdomen bent	Rejection $\chi^2_{(1,473)}=27.207$, p<0.01*	$\chi^2_{(1,354)}=47.357$, p<0.01*
Table S4. Amount (ng) of compounds that remained in the wings of perfumed males before evaporation. We quantified the presence of the perfume applied at the beginning of the experiment, at 1 minute, at 30 minutes and at 60 minutes after spreading the perfume. RI, retention index.

Name	RI	H. melpomene malleti	H. timareta florencia							
		Beginning 1 minute	30 minutes 60 minutes	Beginning 1 minute 30 minutes 60 minutes						
Unknown	958.50	0.14 0.26 0.00 0.00	- 0.29 0.20 0.00 0.00							
Limonene	1023.80	- - - -	1.44 1.37 0.00 0.03							
Phenylacetaldehyde	1036.10	- - - -	2.78 2.82 2.01 1.15							
Methyl salicylate	1187.20	- - - -	0.45 2.35 2.20 0.83							
Dodecane	1177.30	0.20 0.14 0.14 0.41	- - - - -							
Unknown	1174.80	0.14 0.00 0.00 0.00	- - - - -							
(Z)-3-Hexenyl isobutyrate	1233.30	19.22 17.46 0.00 0.00	- - - - -							
Hexyl 3-methylbutyrate	1239.50	53.33 0.00 0.00 0.00	- - - - -							
Unknown	1243.70	0.00 0.30 0.00 0.00	- - - - -							
Alkane	1265.40	- - - -	1.82 0.46 0.00 0.00							
Tridecane	1300.00	15.16 18.51 15.01 5.62	7.67 7.24 4.64 1.72							
Tetradecane	1302.40	0.58 0.30 0.00 0.00	- - - - -							
5-Decanolide	1369.50	0.00 - -	4.80 4.76 4.44 1.16							
alpha-Copaene	1371.50	1.31 0.00 0.00 0.00	- - - - -							
Dihydroactinidiolide	1391.70	0.00 0.73 0.41 0.00	- - - - -							
Unknown	1394.80	0.00 14.13 8.36 0.00	- - - - -							
Ethyl 4-ethoxybenzoate	1402.80	1.56 1.68 1.16 0.45	12.09 15.41 14.39 14.06							
Homovanillic alcohol	1412.10	1.00 1.03 1.00 0.00	- - - - -							
Methyl 4-hydroxybenzoate	1449.00	0.00 0.00 0.00 0.00	- - - - -							
Methyl 3,4-	1464.10	- - - -	- - - - -							
Dimethoxybenzoate	Unknown	1470.10	0.92	0.57	0.56	0.30	-	-	-	-
	Unknown	1488.30	-	-	-	0.11	0.00	0.00	0.00	
	Unknown	1495.20	0.10	0.16	0.12	0.06	-	-	-	-
	Syringa aldehyde	1519.00	291.80	293.20	280.37	251.10	277.15	263.46	207.00	174.30
	3,5-Dimethoxy 4-hydroxybenzyl alcohol	1565.00	-	-	-	7.17	0.00	0.00	0.00	
Propyl 4-hydroxybenzoate	1614.60	-	-	-	-	2.70	0.00	0.00	0.00	
	Methyl 1H-indol-3-carboxylate	1663.10	-	-	-	0.24	0.28	0.26	0.07	
	Unknown	1715.80	1.22	2.10	0.00	0.64	-	-	-	-
	Tricosene	1740.20	-	-	-	-	1.13	1.27	1.23	0.56
	Hexadecanoic acid	1818.00	-	-	-	-	1.75	1.46	0.61	0.31
	Octadecanol	1868.00	1094.90	826.74	202.60	130.10	-	-	-	-
	Isopropyl Palmitate	1877.50	-	-	-	-	1.93	2.62	2.04	1.60
	Unknown	1922.10	16.56	22.88	21.86	0.80	-	-	-	-
	Heneicosene	1946.10	-	-	-	-	12.30	3.45	0.00	0.00
	Heneicosane	1952.10	296.84	325.10	287.02	171.70	174.57	193.60	165.48	146.40
	1-Octadecanol	1929.60	27.83	34.65	34.44	21.10	26.23	15.28	9.59	0.00
	(Z)-11-Eicosenal	2031.20	231.99	63.82	59.68	32.72	3.86	2.48	0.00	0.00
	Docosane	2044.40	0.28	4.70	4.41	0.00	-	-	-	-
	Eicosanal	2058.90	26.43	35.88	31.85	0.00	-	-	-	-
	Unknown	2109.90	-	-	-	-	0.50	0.00	0.00	0.00
	Unknown	2135.80	1.54	1.99	1.77	0.64	0.20	0.25	0.23	0.11
	Tricosane	2137.20	27.27	0.00	0.00	0.00	3.36	0.00	0.00	0.00
	Isopropyl oleate	2187.70	-	-	-	-	0.00	0.03	0.00	0.00
	Ethyl stearate	2190.40	-	-	-	-	1.77	1.24	0.00	0.00
	(Z)-13-Docosenal	2217.80	23.67	0.00	0.00	0.00	-	-	-	-
	Eicosane	2228.10	2.65	1.34	2.17	5.26	2.56	3.27	2.36	1.83
Compound	MW	60.12	78.75	79.10	219.00	31.49	30.28	21.81	11.74	
--------------------------	-----	-------	-------	-------	--------	-------	-------	-------	-------	
Heptacosane	2489.80	-			-	-	-	-	-	
Octacosane	2569.30	-	-	-	-	0.40	0.00	0.00	0.00	
Hexacosanal	2594.80	-	-	-	-	0.66	0.00	0.00	0.00	
Nonacosane	2652.30	25.34	26.21	24.79	0.00	14.03	11.58	2.88	1.34	
13,17-Dimethylnonacosane	2688.10	-	-	-	-	1.83	0.89	0.00	0.00	
Ethyl benzoate	2686.30	-	-	-	-	0.31	0.32	0.30	0.00	
Octacosanate	2740.80	12.51	15.64	13.83	0.00	28.55	24.31	11.60	1.18	
Cholesterol	2807.00	286.19	229.63	128.30	0.00	236.60	92.43	87.18	38.70	
Hentriacontane	2807.80	58.10	53.88	47.26	0.00	115.60	65.82	18.58	15.55	
13,17-Dimethylhentriacontane	2835.80	12.95	10.76	1.64	0.00	3.83	2.65	1.74	0.00	
2-Eicosyl-5-nonyltetrahydrofuran	3121.50	-	-	-	-	3.89	0.00	0.00	0.00	
Table S5. Behavioural response of F₁ and backcross females towards pure males of *H. melpomene malleti* and *H. timareta florenzia*. The asterisk (*) indicates statistical significance (α=0.01) according to the GLMM.

Behaviour	F₁ Females	Backcross Females	
Flutter	Acceptance	$\chi^2_{(1,561)}=2.103$, p>0.01	$\chi^2_{(1,466)}=0.1015$, p>0.01
Fly towards	Acceptance	$\chi^2_{(1,561)}=3.184$, p>0.01	$\chi^2_{(1,466)}=37.345$, p<0.01*
Slow flat	Acceptance	$\chi^2_{(1,561)}=50.916$, p<0.01*	$\chi^2_{(1,466)}=259.21$, p<0.01*
Wings open	Acceptance	$\chi^2_{(1,561)}=62.043$, p<0.01*	$\chi^2_{(1,466)}=57.215$, p<0.01*
Abdomen exposed	Acceptance	$\chi^2_{(1,561)}=10.650$, p<0.01*	$\chi^2_{(1,466)}=309.72$, p<0.01*
Fly away	Rejection	$\chi^2_{(1,561)}=0.600$, p>0.01	$\chi^2_{(1,466)}=97.105$, p<0.01*
Tucked up	Rejection	$\chi^2_{(1,561)}=35.489$, p<0.01*	$\chi^2_{(1,466)}=106.42$, p<0.01*
Erratic flutter	Rejection	$\chi^2_{(1,561)}=44.106$, p<0.01*	$\chi^2_{(1,466)}=72.130$, p<0.01*
Abdomen bent	Rejection	$\chi^2_{(1,561)}=24.640$, p<0.01*	$\chi^2_{(1,466)}=4.630$, p>0.01
Table S6. Compounds identified in wing androconia’s extracts of males of *H. melpomene malleti*, *H. timareta florencia*, F1 and backcross. RI, retention index. Mean ± SD amounts in ng.

Name	RI	*H. melpomene malleti*	*H. timareta florencia*	F1 Mean ± SD	Backcrosses Mean ± SD			
		Mean ± SD	Mean ± SD					
Unknown	902.60	-	-	3.80 ± 4.91	0.78 ± 1.60			
Dimethyl sulfone	916.00	-	-	0.76 ± 1.33	0.50 ± 1.99			
Unknown	958.50	0.13 ± 0.76	0.43 ± 1.69	7.15 ± 4.04	11.25 ± 5.68			
Limonene	1023.60	0.28 ± 0.52	-	-	-			
Phenylacetaldehyde	1036.10	-	0.16 ± 0.77	-	-			
Unknown	1037.60	-	1.50 ± 2.40	1.16 ± 1.85	-			
Nonanal	1100.70	0.58 ± 1.51	1.47 ± 2.94	3.67 ± 4.97	-			
Dodecane	1117.30	-	2.91 ± 5.72	-	-			
Unknown	1174.80	-	0.06 ± 3.09	-	-			
Methyl salicylate	1187.20	2.44 ± 2.51	1.39 ± 1.99	-	-			
Decanal	1200.90	-	3.20 ± 8.32	-	-			
(2)-3-Hexenyl isobutyrate	1233.30	19.21 ± 14.04	-	-	-			
Hexyl 3-methylbutyrate	1239.50	53.33 ± 144.25	-	-	-			
Alkane	1265.40	-	1.76 ± 9.72	-	-			
Tetracane	1300.00	15.16 ± 12.07	8.15 ± 9.15	-	-			
Tetradeacne	1302.90	-	0.92 ± 2.54	-	-			
5-Decanolide	1399.90	-	4.65 ± 4.40	1.06 ± 1.88	0.12 ± 0.64			
alpha-Copaene	1371.50	1.31 ± 1.88	-	-	-			
Dihydroactinidiolide	1392.90	17.67 ± 11.54	13.96 ± 15.69	1.71 ± 1.84	0.93 ± 2.02			
Ethyl 4-ethoxybenzoate	1403.40	8.28 ± 6.87	12.12 ± 16.23	8.28 ± 5.88	5.65 ± 6.65			
Homovanillin alcohol	1413.10	1.55 ± 2.93	0.249 ± 0.78	0.27 ± 0.53	0.12 ± 0.47			
6,10-Dimethyl 5,9-undecadien-2-one	1447.60	2.64 ± 3.10	-	-	-			
Compound	Mass (Da)	Retention Time (min)	Area Ratio (Ratios)	Area (nA)	Peak Area Ratio (Ratios)	Area (nA)	Peak Area Ratio (Ratios)	Area (nA)
---	-----------	----------------------	---------------------	-----------	--------------------------	-----------	--------------------------	-----------
Methy 4-hydroxybenzoate	1449.00	2.51 ± 4.83	-	-	-	-	-	-
Methyl 3,4-dimethoxybenzoate	1465.90	8.97 ± 18.25	-	-	-	-	-	-
Unknown	1470.10	0.19 ± 0.50	-	-	0.33 ± 0.65	-	-	-
Unknown	1488.30	-	0.09 ± 0.46	-	-	-	-	-
Unknown	1495.20	-	-	0.06 ± 0.22	-	-	-	-
Syringaldyde	1519.00	291.8 ± 234.84	-	268.75 ± 285.36	56.11 ± 62.01	34.18 ± 50.06	-	-
3,5-Dimethoxy 4-hydroxybenzyl alcohol	1565.00	-	6.95 ± 36.05	-	-	-	-	-
Propyl 4-hydroxybenzoate	1614.60	-	3.02 ± 5.43	-	-	-	-	-
Methyl 1H-indol-3-acetate	1663.10	-	0.23 ± 0.75	-	-	-	-	-
Unknown	1715.80	0.89 ± 1.51	-	-	2.60 ± 3.14	1.57 ± 1.77	-	-
Ethyl benzoate	1765.30	-	0.30 ± 0.89	-	0.19 ± 0.53	-	-	-
16-Hexadecanolide	1769.10	-	-	-	0.92 ± 4.01	-	-	-
Unknown	1795.00	-	3.72 ± 20.66	0.16 ± 0.40	-	-	-	-
Hexadecanoic acid	1826.50	-	2.76 ± 8.24	-	-	-	-	-
Octadecanol	1869.80	1094.91 ± 519.64	1.40 ± 5.84	19.25 ± 35.04	1.86 ± 5.38	-	-	-
Unknown	1873.80	-	-	0.14 ± 0.48	1.64 ± 4.85	-	-	-
Isopropyl palmitate	1878.30	-	1.86 ± 6.02	-	3.00 ± 8.28	-	-	-
Unknown	1923.40	16.56 ± 14.99	-	-	-	-	-	-
Unknown	1928.30	0.57 ± 2.42	-	-	1.02 ± 1.39	-	-	-
1-Octadecanol	1929.60	27.83 ± 33.07	29.85 ± 138.42	2.82 ± 0.48	-	-	-	-
Heneicosene	1946.10	0.47 ± 1.90	26.80 ± 104.03	5.97 ± 18.76	4.22 ± 11.20	-	-	-
Heneicosane	1953.70	298.83 ± 335.05	174.57 ± 225.37	132.51 ± 102.24	125.07 ± 122.00	-	-	-
(Z)-11-Eicosenal	2032.70	231.98 ± 255.99	4.39 ± 11.48	22.25 ± 20.38	3.75 ± 9.35	-	-	-
Docosane	2045.50	0.27 ± 0.99	6.25 ± 22.60	-	-	-	-	-
Eicosanal	2058.90	43.43 ± 53.98	-	-	1.46 ± 3.12	-	-	-
Unknown	2088.50	-	1.93 ± 11.14	-	-	-	-	-
Tricosene	2106.80	-	2.84 ± 16.35	0.20 ± 0.68	-	-	-	-
Unknown	2109.90	0.91 ± 4.15	-	0.28 ± 0.72	0.37 ± 0.86	-	-	-
Unknown	2135.80	1.53 ± 4.23	-	-	-	-	-	-
Tricosane	2137.20	27.27 ± 151.83	8.46 ± 31.72	-	-	-	-	-
Compound	Retention Time	Relative Intensity	1.71 ± 3.18	0.05 ± 0.19				
--------------------------------	----------------	-------------------	--------------	-------------				
Ethyl stearate	2190.40	-	-	-				
(Z)-13-Docosenal	2217.80	23.66 ± 68.98	-	0.62 ± 2.08				
Docosane	2227.90	-	0.19 ± 0.92	1.75 ± 3.75				
Eicosane	2228.10	2.63 ± 5.25	3.43 ± 7.06	0.10 ± 0.35				
Unknown	2321.80	0.10 ± 0.57	-	0.98 ± 2.78				
Heptacosane	2411.00	56.11 ± 73.64	12.16 ± 39.18	23.78 ± 17.25	36.12 ± 30.35			
Octacosane	2569.30	-	2.63 ± 15.11	-				
Hexacosanal	2594.80	-	5.20 ± 26.32	-				
Methylheptacosane	2596.10	15.88 ± 26.13	12.42 ± 39.54	4.24 ± 6.31				
Nonacosane	2652.30	25.34 ± 41.2	13.60 ± 25.45	31.43 ± 23.85	31.24 ± 38.05			
Unknown	2687.70	-	0.39 ± 2.25	0.43 ± 1.44				
13,17-Dimethylnonacosane	2688.10	-	1.77 ± 4.84	7.26 ± 7.19				
Octacosanal	2740.80	12.50 ± 21.93	28.82 ± 52.43	28.71 ± 28.59	23.6 ± 24.67			
Unknown	2794.20	1.21 ± 3.23	-	0.15 ± 0.52				
Cholesterol	2807.00	286.19 ± 445.59	250.36 ± 219.16	218.74 ± 95.74	204.56 ± 135.52			
Hentriacontane	2807.80	58.09 ± 100.82	118.43 ± 206.82	88.60 ± 39.46	52.32 ± 32.19			
13,17-Dimethylhentriacontane	2835.80	12.95 ± 28.21	3.81 ± 17.50	16.13 ± 17.65	4.16 ± 8.97			
2-Eicosyl-5-heptyltetrahydrofuran	2923.70	97.19 ± 257.04	-	-				
2-Eicosyl-5-nonyltetrahydrofuran	3121.50	10.11 ± 56.30	4.69 ± 13.95	-				

14
Table S7. Compounds identified in the abdominal glands’ extracts of males of *H. melpomene malleti*, *H. timareta florencia*, F$_1$ and backcross. RI, retention index. Mean ± SD amounts in ng.

Name	RI	H. melpomene malleti Mean ± SD	H. timareta florencia Mean ± SD	F1 Mean ± SD	Backcrosses Mean ± SD	
Unknown	903.90	-	1.58 ± 3.99	7.08 ± 5.85	13.70 ± 12.24	
Dimethyl sulfone	919.00	-	0.34 ± 1.22	-	-	
(Z)-beta-Ocimene	1037.50	11899.84 ± 7633.07	-	142.08 ± 270.49	76.92 ± 243.28	
Phenylacetonitril_Benzylicyanid	1039.80	-	62.59 ± 95.31	-	-	
(E)-beta-Ocimene	1048.20	12096 ± 7193.57	-	-	2247.58 ± 3047.13	34.18 ± 75.04
2-sec-Butyl-3-methoxy pyrazine	1170.10	-	74.80 ± 91.67	12.45 ± 16.86	55.28 ± 34.86	
2-isobutyl-3-methoxy pyrazine	1177.70	0.02 ± 0.11	-	1.26 ± 1.51	2.43 ± 3.94	
Methyl salicylate	1188.50	-	0.12 ± 0.54	1.74 ± 1.28	1.27 ± 1.68	
5-Decanolide	1203.00	0.42 ± 2.24	0.18 ± 1.03	-	-	
Dihydroedulan II	1284.80	43.92 ± 40.09	5.52 ± 14.98	1.82 ± 2.26	-	
Tridecane	1300.00	1.33 ± 1.91	0.44 ± 0.87	-	-	
Nonadecane	1302.70	554.93 ± 1403.34	721.14 ± 3082.59	-	-	
alpha-Copaene	1374.10	0.02 ± 0.14	2.53 ± 6.81	-	-	
GC-EAD active compound	1395.20	264.14 ± 333.29	622.68 ± 661.95	122.10 ± 124.78	47.67 ± 66.71	
Dihydroactinidiolide	1517.30	0.09 ± 0.48	21.34 ± 120.35	-	-	
Ethyl 4-ethoxybenzoate	1520.20	8.81 ± 7.73	18.26 ± 40.40	9.51 ± 6.44	6.02 ± 7.69	
Homovanillyl alcohol	1534.00	1.43 ± 2.86	1.40 ± 4.25	0.18 ± 0.48	1.38 ± 2.72	
Unknown	1542.90	0.18 ± 1.00	0.49 ± 2.54	3.83 ± 5.72	0.55 ± 1.05	
Heptadecane	1700.40	155.78 ± 602.03	0.13 ± 0.76	0.24 ± 0.82	-	
Benzy1_saliclylate	1708.20	0.34 ± 0.84	-	-	-	
Unknown	1712.00	-	23.37 ± 69.08	0.76 ± 1.33	-	
14-Tetradecanolide	1721.50	5.86 ± 14.98	30.18 ± 62.64	40.03 ± 48.57	9.77 ± 15.12	
Name	Value	Standard Deviation	Value			
-------------------------------	---------	--------------------	---------			
Hexadecatrienolide	1726.10	-	3.14 ± 0.25			
9,11-Hexadecadien-11-olide	1734.70	-	13.31 ± 25.54			
Ethyl benzoate	1764.60	6.86 ± 14.56	11.54 ± 20.45			
Unknown	1771.70	-	1.06 ± 3.42			
Macrolide	1773.70	0.5423 ± 2.86	0.81 ± 2.44			
(Z2,Z4)-C16-15-olide	1806.60	-	1.75 ± 6.20			
Hexadecadien-11-olide	1819.30	-	12.32 ± 16.05			
Octadecatrienolide	1823.40	32.10 ± 32.03	26.36 ± 36.51			
Hexadecenolide	1857.00	11.18 ± 24.31	126.3 ± 214.21			
Macrolide	1923.60	6.98 ± 36.87	2.85 ± 10.88			
Heptadecanal	1923.70	-	8.64 ± 12.30			
16-Hexadecanolate	1924.80	-	124.38 ± 160.04			
Brassicalactone	1960.90	-	278.62 ± 496.97			
Octadecen-11-olide	2002.70	2.28 ± 9.61	242.74 ± 436.73			
Eicosane	2005.10	1.04 ± 3.16	1354.90 ± 1833.53			
Isopropyl palmitate	2029.80	2.17 ± 9.03	75.63 ± 183.90			
(Z)-9-C18-11-olide	2032.80	4.33 ± 10.11	841.29 ± 1138.35			
(Z)-9-C18-13-olide	2038.70	221.76 ± 278.84	1933.83 ± 2671.28			
12-Octadecanolate	2051.80	-	3.13 ± 7.20			
Macrolide	2056.70	0.8512 ± 2.40	0.19 ± 1.12			
(E)-Octadec-9-en-12-olide	2057.20	-	64.11 ± 70.56			
Macrolide	2058.90	5.31 ± 10.70	11.75 ± 22.80			
IsopropylOctadecanolate	2063.40	5.57 ± 16.67	277.67 ± 399.68			
(Z9,E11)-C18-13-olide	2069.60	0.06 ± 0.35	1417.08 ± 3035.70			
Octadeca-9-11-dien-13-olide and 11-Octadecanolate	2070.20	-	29.81 ± 101.85			
IsopropylLinoleate	2073.40	2.53 ± 7.92	929.63 ± 1218.84			
Heneicosene	2074.20	28.17 ± 40.01	20.59 ± 25.93			
1-Octadecanol	2081.50	116.92 ± 160.41	67.52 ± 138.34			
Heneicosane	2101.60	2122.79 ± 1879.48	1176.11 ± 2609.26			
Octadecen-18-olide	2123.30	0.27 ± 1.47	15.88 ± 45.96			

16
Compound	M_Sum	σ_M_Sum	M_1H_Sum	σ_M_1H_Sum
17-Octadecanole	2136.30		25.34 ± 143.36	108.12 ± 263.67
Isopropyl_octadecadienolate	2130.20	1.67 ± 6.25	99.43 ± 369.98	
9-Octadecen-18-olide	2138.10	44.04 ± 122.04	159.13 ± 217.98	152.97 ± 190.59
Octadecanole	2158.50		6.56 ± 2.35	
Ethyl oleate	2156.90	377.55 ± 474.37	608.93 ± 733.31	101.26 ± 172.42
Octadecadienolide	2171.70	29.60 ± 71.78	700.86 ± 919.28	598.20 ± 448.49
Butyl hexadecanoate	2186.90	9.05 ± 13.25	122.77 ± 197.54	28.75 ± 61.82
Isopentyl octadecadienolate	2189.30		402.26 ± 1692.33	32.41 ± 48.63
Isopropyl oleate	2196.10	969.26 ± 826.53	7715.08 ± 6651.53	2070.673 ± 1733.78
Docosane	2200.90	3.00 ± 7.09	39.28 ± 124.92	6.32 ± 13.64
Butyl_octadecanoate	2209.00	17.85 ± 27.85	115.71 ± 162.59	
Eicosanole	2222.30	0.42 ± 2.24	1.05 ± 5.98	0.48 ± 1.60
Unknown	2248.70	8.56 ± 20.40	19.21 ± 26.10	0.39 ± 1.29
13-Eicosanole	2252.30		6.53 ± 18.44	33.26 ± 62.74
Tricosene	2274.90	23.00 ± 33.65	45.26 ± 73.63	19.37 ± 23.37
Isobutyl oleate	2297.70	243.89 ± 916.10	883.52 ± 1294.80	146.69 ± 205.08
Tricosane	2303.20	168.89 ± 166.76	191.35 ± 273.22	61.88 ± 84.02
2-Heneicosanol	2310.60		196.39 ± 488.74	7.84 ± 26.02
11-Icosenol	2317.40	11.18 ± 19.08	1260.80 ± 4099.99	2.66 ± 6.30
Butyl oleate	2359.30	539.28 ± 615.35	2633.57 ± 3949.56	1805.67 ± 1680.41
Hexeryl hexadecanoate	2379.10		12.53 ± 29.20	4.44 ± 10.55
Tetracosane	2405.50	15.69 ± 68.45	104.19 ± 513.61	1.60 ± 5.31
1,3-Docosanediol	2409.10	0.08 ± 0.32	17.25 ± 42.61	
Macroleide	2417.30	2.324 ± 8.02	2.17 ± 11.45	0.76 ± 1.33
Macroleide	2418.70	2.318 ± 3.72	11.22 ± 16.59	19.73 ± 37.04
Isoprenyl octadec-11-enoate	2433.60		92.19 ± 313.63	
Unknown	2434.60	5.90 ± 17.08	17.35 ± 51.73	0.39 ± 1.29
(E)-13-Docosen-1-ol	2461.40	87.02 ± 176.14	297.51 ± 425.23	39.84 ± 63.69
Eicosanolide	2475.20		26.80 ± 44.29	56.17 ± 102.54
1-Docosanol	2488.10	37.55 ± 57.04	140.38 ± 331.25	108.25 ± 126.81

17
Compound	Retention Time (min)	Area (ng) ± SE Area (ng)	Peak Area (ng) ± SE Peak Area (ng)	Peak Height (ng) ± SE Peak Height (ng)	
Pentacosane	2500.80	136.3 ± 141.58	206.84 ± 803.27	33.49 ± 39.19	
(Z)-9-Tricosene	2514.30	-	17.94 ± 38.29	-	
11-methylpentacosane	2532.50	48.70 ± 52.49	7.45 ± 22.8	-	
Docosen-22-olide	2537.50	-	92.32 ± 117.00	38.40 ± 69.37	
Hexyl octadecadienoate	2538.70	-	11.25 ± 35.99	7.01 ± 23.26	
Hexyl octadecanoate and Hexenyl octadecatrienoate	2553.20	114.56 ± 243.75	679.70 ± 974.09	586.15 ± 580.31	1173.90 ± 1111.75
Hexenyl octadecatrienoate and Hexenyl octadecanoate	2555.40	-	16.35 ± 41.97	41.83 ± 96.64	157.85 ± 196.27
Benzyl hexadecanoate	2571.20	-	12.51 ± 26.71	1.20 ± 4.00	
Hexyl octadecanoate	2580.30	6.08 ± 16.75	4.99 ± 9.47	1.53 ± 2.67	
Hexyl octadecanoate	2594.70	0.743 ± 3.93	81.33 ± 95.56	25.69 ± 38.86	
Hexacosane	2601.10	5.54 ± 11.89	179.42 ± 1012.18	6.31 ± 15.96	
Tetracosanol	2666.20	205.96 ± 239.41	220.54 ± 319.25	439.32 ± 530.86	
1-Tetracosanol	2691.80	9.04 ± 21.35	47.67 ± 116.63	138.60 ± 309.57	
Heptacosane	2700.90	19.83 ± 47.97	225.04 ± 1162.37	98.30 ± 85.46	
Tetracosanolide	2735.80	2.96 ± 7.36	42.87 ± 56.81	33.63 ± 55.08	
1,3-Tetracosanediol	2811.90	-	58.20 ± 120.24	8.24 ± 19.93	
Unknown	2869.20	8.19 ± 19.09	0.29 ± 1.51	3.56 ± 9.01	
Hexacosanal	2871.80	8.43 ± 28.03	28.60 ± 49.18	-	
Nonacosane	2901.50	1.57 ± 6.43	167.65 ± 924.25	15.15 ± 19.06	
13,17-Dimethylnonacosane	2969.20	-	32.82 ± 147.47	43.77 ± 115.55	
Cholesterol	3099.40	192.05 ± 273.18	153.25 ± 263.26	617.34 ± 599.42	
Unknown	3147.40	0.08 ± 0.33	0.68 ± 3.85	6.26 ± 16.19	
13,17-Dimethylhentriacontane	3158.20	153.09 ± 173.73	395.95 ± 485.06	438.67 ± 328.29	
2-Nonyl-5-octadecyloctahydrofuran	3177.50	0.08 ± 0.33	0.20 ± 0.82	22.65 ± 57.78	-
Campestosterone or Ergostenol	3207.30	1.42 ± 5.61	7.37 ± 17.36	16.35 ± 21.95	
13,17-Dimethyltripentacontane	3348.00	24.37 ± 39.54	42.23 ± 105.73	93.10 ± 75.05	
2-Eicosyl-5-nonyl tetrahydrofuran	3370.90	14.77 ± 35.28	20.68 ± 48.38	63.61 ± 50.82	39.84 ± 72.41
Table S8. Probability of mating in no-choice experiments. Hmm: *H. m. malleti*; Htf: *H. t. florencia*; F1: Htf x Hmm; BC: backcrosses [Htf x Hmm] x Htf. Cross type is specified as female x male. [Confidence interval at 95%]. No-choice mating data was collected as in previous studies of *Heliconius* (1,2). This information allowed us to gain a better understanding of the premating barriers operating in this species pair (3). Mating probability for interspecific and hybrid trials was obtained by maximizing the loge of the likelihood function (for details see 4,5).

Cross type	N trials	Mating probability	Confidence interval	Source
Control (conspecific)				
Htf x Htf	45	0.911	[0.82 - 0.971]	Merot et al. 2017
Hmm x Hmm	35	0.857	[0.737 - 0.946]	Merot et al., 2017
Interspecific				
Hmm x Htf	13	0.152	[0.04 - 0.363]	This study
Htf x Hmm	16	0.188	[0.157 - 0.377]	This study
Hybrid crosses				
F1 x Hmm	18	0.249	[0.119 - 0.4]	Merot et al., 2017
F1 x Htf	24	0.249	[0.119 - 0.4]	Merot et al., 2017
Hmm x F1	8	0.2	[0.04 - 0.45]	Merot et al., 2017
Htf x F1	10	0.2	[0.04 - 0.45]	Merot et al., 2017
F1 x F1	4	0.2	[0.024 - 0.045]	This study
BC x Htf	24	0.374	[0.225 - 0.56]	This study
BC x Hmm	24	0.374	[0.225 - 0.56]	This study
Figure S1. Map showing the geographic distribution and wing phenotype of *H. melpomene malleti* and *H. timareta florentia*.
Figure S2. Location of landmarks (LM) coordinates on the forewings and hindwings of *H. melpomene malleti* and *H. timareta florencia*. (A) LM used in the colour pattern analysis, (B) LM used in the shape and size analyses. Shape deformation (C) and (D) represents the shape at minimum values for PC1 and PC2, respectively. Shape deformation (E) and (F) represent maximum values for PC1 and PC2, respectively. LM3, LM4 and LM15 are those that vary the most.
Figure S3. Species wing size and shape. Forewing (A) and hindwing (B) size variation. Density plots showing the variation in the shape of the forewing (C) and the hindwing (D). A total of 43 *H. melpomene malleti* and 45 *H. timareta florencia* were analysed.
Figure S4. (A) Shape variation of forewings of *H. melpomene malleti* (light grey) and *H. timareta florencia* (dark grey). (B) and (C) show the PC1 and PC2 loadings, respectively.
Figure S5. Colour pattern comparison between the two species. (A) Yellow patch on the dorsal forewing ($F_{(1,80)}=0.0647$, $p>0.01$); (B) Dennis on the dorsal forewing ($F_{(1,79)}=0.0603$, $p>0.01$); (C) Ray on the dorsal hindwing ($F_{(1,79)}=0.5929$, $p>0.01$); (D) Yellow patch on the ventral forewing ($F_{(1,74)}=0.6191$, $p>0.01$); (E). Dennis on the ventral forewing ($F_{(1,74)}=1.2597$, $p>0.01$) and (F) ray on the ventral hindwing ($F_{(1,74)}=0.6584$, $p>0.01$). Only individuals with wings in good condition were used ($n=88$; Table S1). Yellow circles = *H. t. florencia*. Red triangles = *H. m. malleti*. The Δ colour scale indicates how present the colour pattern is, where positive values (red) represent higher presence and negative values (blue) represent lower presence or even absence. PC1 explains the variation in size and PC2 explains the variation in the shape of said colour pattern element.
Figure S6. Mate choice triads testing the importance of wing colour pattern in mate preference. The number of matings obtained is indicated above each bar. Control males are represented in light grey and treatment males are represented in dark grey. (exact binomial test $p=0.55$ in both cases).

![Bar chart showing number of matings for H. timareta florencia and H. melpomene malleti.](image)
Figure S7. Amount (ng) of compounds that remained in the wings of perfumed males before evaporation. We quantified the presence of the perfume applied at the beginning of the experiment, at 1 minute, at 30 minutes and at 60 minutes after spreading perfume. (A) Octadecanal; (B) Heneicosane; (C) Syringaldehyde; (D) Z-11-eicosanal.
Figure S8. Mate choice triads testing behavioural responses in F1 and backcross (BC) females. (A). The number of matings obtained is indicated above each bar. (B) Proportion of courtships that resulted in behavioural responses in F1 and backcross (BC) females. Behaviours recorded were acceptance (A) or rejection (R) towards males of *H. m. malleti* (red, left) and *H. t. florencia* (blue, right). Means are marked with a black square and boxplots mark the inter-quartile ranges. Size of datapoint is proportional to the number of courtships by that male. The asterisk (*) next to the female (F1/BC) is indicative of statistical significance (α=0.01) according to GLMM.
Figure S9. **Species differences in male androconia extracts.** Chromatogram of extract of androconial region from (A) *H. timareta florencia* and (B) *H. melpomene malleti*. IS, internal standard (2-tetradecylacetate); 1, dihydroactinidiolide; 2, unknown; 3, syringaldehyde; 4, henicosane; 5, octadecanal.
Figure S10. Cluster analysis based on Euclidian distance of compound composition in the wing androconia of males of *H. melpomene malleti, H. timareta florencia, F₁* and backcrosses (BC). Compounds highlighted in red are the most abundant.
Figure S11. Chromatogram patterns obtained from androconial extracts of F_1 and backcross males. (A) F_1 individuals and (B) backcross individuals. IS, internal standard (2-tetradecylacetate); 1, dihydroactinidiolide; 2, unknown; 3, syringaldehyde; 4, henicosane; 5, octadecanal.
Figure S12. Chromatogram pattern of the abdominal gland bouquet of males. (A) *H. timareta florencia*. (B) *H. melpomene malleti*. IS, internal standard (2-tetradecylacetate); 1, eicosane; 2, Z-9-C18,11olide; 3, heneicosane; 4, ethyl oleate; 5, isopropyl oleate; 6, isopropyl octadecanoate; 7, butyl oleate; 8, β-ocimene; 9, heneicosene.
Figure S13. Cluster analysis based on Euclidian distance of the compound composition of the wing androconia of males of *H. melpomene malleti*, *H. timareta florencia*, F₁ and backcrosses (BC). Compounds highlighted in red are the most abundant.
Figure S14. Chromatogram patterns obtained from abdominal gland bouquet of F$_1$ and backcross males. (A) F$_1$ individuals and (B) backcrosses individuals. IS, internal standard (2-tetradecylacetate); 1, eicosane; 2, Z-9-C18,11olide; 3, heneicosane; 4, ethyl oleate; 5, isopropyl oleate; 6, isopropyl octadecanoate; 7, butyl oleate; 8, β-ocimene; 9, henicose.
REFERENCES

1. Naisbit RE, Jiggins CD, Linares M, Salazar C, Mallet J. Hybrid Sterility, Haldane’s Rule and Speciation in Heliconius cydno and H. melpomene. Genet Soc Am. 2002;161:1517–26.

2. Muñoz AG, Salazar C, Castaño J, Jiggins CD, Linares M. Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. J Evol Biol. 2010;23(6):1312–20.

3. Mérot C, Salazar C, Merrill RM, Jiggins C, Joron M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. Proc R Soc B Biol Sci. 2017;284:20170335.

4. Mérot C, Frêrot B, Leppik E, Joron M. Beyond magic traits: Multimodal mating cues in Heliconius butterflies. Evolution (N Y). 2015;69(11):2891–904.

5. Sanchez AP, Pardo-Diaz C, Enciso-Romero J, Munoz A, Jiggins CD, Salazar C, et al. An introgressed wing pattern acts as a mating cues. Evolution (N Y). 2015;69(6):1619–29.