This is a repository copy of Why are some cases not on track? An item analysis of the assessment for signal cases (ASC) during inpatient psychotherapy.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/158094/

Version: Accepted Version

Article:
Probst, T., Kleinstäuber, M., Lambert, M.J. et al. (5 more authors) (2020) Why are some cases not on track? An item analysis of the assessment for signal cases (ASC) during inpatient psychotherapy. Clinical Psychology and Psychotherapy. ISSN 1063-3995

https://doi.org/10.1002/cpp.2441

This is the peer reviewed version of the following article: Probst, T, Kleinstäuber, M, Lambert, MJ, et al. Why are some cases not on track? An item analysis of the Assessment for Signal Cases (ASC) during inpatient psychotherapy. Clin Psychol Psychother. 2020, which has been published in final form at https://doi.org/10.1002/cpp.2441. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Why are some cases not on track?
An item analysis of the Assessment for Signal Cases (ASC) during inpatient psychotherapy

Thomas Probst¹, Maria Kleinstäuber², Michael J. Lambert³, Karin Tritt⁴, Christoph Pieh¹, Thomas H. Loew⁴, Reiner W. Dahlbender⁵, & Jaime Delgadillo⁶

¹Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, Austria
²Department of Psychological Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
³Department of Psychology, Brigham Young University, Provo, USA
⁴Department of Psychosomatic Medicine, University Hospital Regensburg, Germany
⁵Clinic for Psychosomatic Medicine and Psychotherapy, University Hospital Ulm, Germany
⁶Clinical Psychology Unit, Department of Psychology, University of Sheffield, United Kingdom

*Correspondence: Thomas.Probst@donau-uni.ac.at

Acknowledgements: The work was conducted at the University Hospital Regensburg (Psychosomatics Department of the Hospital in Donaustauf) and the Hospital “Am schönen Moos” Bad Saulgau, Germany

Conflict of interest: Michael J. Lambert is part owner of OQMeasures a company that owns and distributes the OQ-Analyst software discussed in this article.

Copyright notice: This is a peer reviewed manuscript accepted for publication. The final authoritative version of this work will be published in a forthcoming issue of Clinical Psychology & Psychotherapy. Please do copy or not share is manuscript without the author’s permission.

Citation: Why are some cases not on track? An item analysis of the Assessment for Signal Cases (ASC) during inpatient psychotherapy. (in press). Probst, T., Kleinstäuber, M., Lambert, M.J., Tritt, K., Pieh, C., Loew, T.H., Dahlbender, R.W., & Delgadillo, J. Clinical Psychology & Psychotherapy.
Abstract

Within the Routine Outcome Monitoring System “OQ-Analyst”, the questionnaire “Assessment for Signal Cases” (ASC) supports therapists in detecting potential reasons for not-on-track trajectories. Factor analysis and a machine learning algorithm (LASSO with 10-fold cross-validation) were applied and potential predictors of not-on-track classifications were tested using logistic multilevel modelling methods. The factor analysis revealed a shortened (30-item) version of the ASC with good internal consistency (α = 0.72 – 0.89) and excellent predictive value (AUC = 0.98; +PV = 0.95; -PV = 0.94). Item-level analyses showed that interpersonal problems captured by specific ASC items (not feeling able to speak about problems with family members; feeling rejected or betrayed) are the most important predictors of not-on-track trajectories. It should be considered that our results are based on analyses of ASC items only. Our findings need to be replicated in future studies including other potential predictors of not-on-track trajectories (e.g. changes in medication, specific therapeutic techniques, or treatment adherence) which were not measured in this study.

Key words: psychotherapy; progress feedback; routine outcome monitoring, Assessment for Signal Cases
Research has repeatedly shown that not all mental health patients benefit from psychotherapy. Approximately in 5-10% of adult patients (Lambert, 2013a) and in 14-24% of child and adolescent patients (Warren, Nelson, Burlingame, & Mondragon, 2012) mental health deteriorates during the course of psychological treatment. A number of Routine Outcome Monitoring systems (ROM; Boswell, Kraus, Miller, & Lambert, 2015) have been developed to support patient-focused psychotherapy research (Howard, Moras, Brill, Martinovich, & Lutz, 1996). These systems aim to systematically monitor relevant indicators of patients’ mental health (e.g., psychological symptoms) and to provide feedback about patients’ progress to clinicians (and patients) throughout the course of therapy. ROM can help to identify patients with negative symptom trajectories early in the course of therapy and to counteract treatment failure. One of the most widely used ROM system is the OQ-Analyst (Lambert, 2012, 2015), which helps to track patients’ weekly progress using the Outcome Questionnaire-45 (OQ-45, Lambert et al., 2004; Haug, Puschner, Lambert, & Kordy, 2004; Lambert, Hannöver, Nisslmuller, Richard, & Kordy, 2002). The OQ-45 measures three domains including: symptoms (e.g., anxiety and depression), interpersonal problems, and social role functioning. The total score is a measure of patients’ general mental health functioning. The OQ-Analyst software plots expected recovery curves for patient groups with differing levels of intake OQ-45 scores. This allows the identification of cases with extreme deviations in the OQ-45 by comparison to an expected trajectory of improvement, starting with the second therapy session. These expected treatment response curves were based on a sample of over 11,000 patients who completed the OQ-45 during the course of treatment in a variety of routine care clinical settings (Finch, Lambert, & Schaaljje, 2001). According to Lambert (2013b) 40% of the outcome variance at the end of therapy is explained by the OQ-45 intake score and changes in OQ-45 scores between sessions 1 to 3. Further variables such as demographic or diagnostic information can explain incremental variance of only 1%. Accordingly, the OQ-Analyst predictions of expected treatment response are simply based on the initial OQ-45 score at the start of therapy.
Previous research has shown that patients whose OQ-45 score deviates negatively from their expected trajectory at least once during treatment (“not-on-track” signal) are at risk of treatment failure (Hannan et al., 2005; Lambert, Whipple et al., 2002; Spielmans, Masters, & Lambert, 2006). Lutz et al. (2006) reported that the probability of treatment failure increases as a function of the number of not-on-track signals in patients’ trajectory of change. Clinical Support Tools (CSTs) are implemented in the OQ-Analyst to support therapists in improving outcomes for patients with not-on-track signals during treatment (Harmon, Hawkins, Lambert, Slade, & Whipple 2005; Lambert et al., 2007). These CSTs comprise a questionnaire called the Assessment for Signal Cases (ASC; Lambert et al., 2007) with a linked clinical decision-tree, as well as intervention handouts to support clinicians in problem-solving. The ASC consists of 40 items (answered on a 5-point Likert scale) which aim to assess the following four domains: therapeutic alliance, social support, motivation, and negative life events. These domains were chosen with reference to psychotherapy process variables highlighted as important in previous studies (therapeutic alliance: e.g., Fluckiger, Del Re, Wampold, and Horvath (2018); social support: e.g., Roehrle und Strouse (2008); motivation: e.g. Norcross, Krebs, and Prochaska (2011); life events: e.g., Sexton (1996). In a review of psychotherapy research, Asay and Lambert (1999) estimated that factors which are external to the therapy process (e.g., social support and critical life events) may explain up to 40% of therapy outcome, therapeutic alliance up to 30%, patients’ therapy motivation and expectations up to 15%, and the remaining 15% may be explained by other psychotherapeutic models and interventions which are not captured by the ASC.

In clinical practice, the ASC is intended to be administered only when patients’ symptom trajectory is not-on-track to support clinicians in assessing if poor progress may be related to problems in one or more of the four ASC domains. In one controlled trial, the ASC was provided to all patients (not-on-track and on-track) on a weekly basis in order to monitor their ASC domains continuously throughout the course of therapy (Probst et al., 2013; Probst, Lambert, Dahlbender, Loew, & Tritt, 2014; Probst, Lambert, Loew, Dahlbender, & Tritt, 2015). This trial replicated the results of previous studies: progress feedback based on the OQ-45 combined with CSTs improves the outcome of not-
on-track cases (see also Harmon et al., 2007; Lambert, Whipple, & Kleinstäuber, 2018; Shimokawa, Lambert, & Smart, 2010; Slade, Lambert, Harmon, Smart, & Bailey 2008; Whipple et al., 2003). Probst et al. (2015) found that the social support and negative life events domains of the ASC were associated with extremely negative deviations from expected treatment response trajectories (not-on-track signals). The important role of social support in not-on-track cases, compared with other ASC domains, was also demonstrated by White et al. (2015). These findings suggest that the therapeutic alliance and motivation domains of the ASC are rather unrelated to not-on-track signals. An alternative explanation may be that the ASC domains might include single items that have weak correlations with other items, thus undermining the factorial validity of the measure and introducing “noise” in outcome prediction analyses. It is possible that highly specific aspects of the ASC domains (e.g., features captured by single items) could be related to not-on-track signals, but such correlations could be obscured by entering other “noise” items in analyses. Moreover, the four-factor structure of the ASC has been proposed by the authors of this measure but has not been tested with psychometric methods yet, which casts some doubt over the validity of findings of previous studies.

The present study aimed to extend our understanding of the aspects associated with poor progress in psychotherapy. The central research question of this study was: which items and domains of the ASC predict not-on-track signals in an inpatient clinical sample? To answer this question, we examined the predictive value of the ASC domains proposed by authors of the measure compared to ASC domains extracted with factor analysis. Furthermore we examined the predictive value of specific ASC items.

Methods

Design, setting, and interventions

This study was based on the re-analysis of data from a randomized controlled trial on the efficacy of the OQ-Analyst in inpatient treatments for patients with severe psychosomatic problems (Probst et al., 2013, 2014). As typical for psychosomatic medicine in Germany (see Zipfel, Herzog, Kruse, &
Henningsen, 2016), multi-professional teams (mostly psychologists, physicians, and nurses) provided multi-modal and multi-method treatments based on the bio-psycho-social model comprising individual and group psychotherapy, relaxation/mindfulness training, physical activity therapy, art, dance, and music therapy and - if required - crisis intervention, visitations by nurses, medical consultations. Inpatient psychotherapy often is recommended when outpatient treatment is deemed insufficient. Compared to patients that are referred to outpatient psychotherapy, patients referred to inpatient psychotherapy for example have longer sick leaves, are less able to work, exhibit more often a somatoform or personality disorder, are more burdened by psychological symptoms, have a lower functional level, and the personality structure is less favorable (Huber, Brandl, Henrich, & Klug, 2002). The core competencies of German psychosomatic clinics lie in treating somatoform/functional disorders, eating disorders, somatopsychic disorders (including psycho-oncology, psychocardiology, neuropsychosomatics, and psychodiabetology), as well as psychotraumatology and an overlap with psychiatry exists in depressive, anxiety, and personality disorders (Zipfel et al., 2016, p. 262). The patients participating in the trial that was re-analyzed here were randomly assigned to either inpatient treatment-as-usual or inpatient treatment-as-usual combined with feedback-informed treatment. Both groups were monitored on a weekly basis using standardized questionnaires described below. For those randomized to the feedback group, the responsible individual therapist received weekly feedback reports of the OQ-Analyst (Lambert, 2012). Further details about the trial such as the flow-charts are described by Probst et al. (2013, 2014). The study was approved by the Ethics committee of the University Clinic of Regensburg, Germany.

Measures

The 45-item Outcome Questionnaire (OQ-45; Lambert et al., 2004) is a self-report measure of psychological distress covering three domains of symptoms, interpersonal problems, and social functioning. The German version of the OQ has been reported to have good internal consistency ($\alpha = 0.93$) and adequate retest-reliability ($r = 0.88$) (Lambert, Hannöver, et al., 2002). Each item is scored using a 5-point Likert scale, yielding a total severity score ranging between 0 – 180. The OQ-Analyst
software (Lambert, 2012) uses well-established statistical methods that provide an automated “not-on-track signal” (NOT) when a patient’s responses to the OQ-45 indicate atypically high levels of distress, by comparison to cases with similar intake severity scores (Finch, et al., 2001). This risk signal is intended to prompt the therapist to identify and to attempt to resolve problems that impede treatment progress.

The Assessment for Signal Cases (ASC; Lambert et al., 2007) is a 40-item self-report questionnaire covering four domains; therapeutic alliance (11 items, range of total score: 11 to 55), social support (11 items, range of total score: 11 to 55), motivation (9 items, range of total score: 9 to 45), and negative life events (9 items, range of total score: 9 to 45). These four areas have been proposed to influence patients’ progress in psychotherapy, and form the basis for clinical recommendations and techniques that may help to resolve obstacles impeding patients’ treatment progress (Lambert et al., 2007). The ASC used in this study was translated into German via a back-translation method, yielding adequate reliability indices for each subdomain ($\alpha = 0.71$ to 0.89) (Probst et al., 2013). Some ASC items are reverse-scored, so that low domain scores indicate problems in each domain.

Participants characteristics

Patient progress can only be classified as on-track or not-on-track for treatment weeks following intake (NOT signal: Yes or No). At least one ASC assessment in these weeks is required to study associations between the ASC and NOT signals. Relevant data was available for two hundred-eighty-three patients (receiving either treatment-as-usual or treatment-as-usual + feedback-informed treatment; data from both conditions were pooled to have a larger sample size). The majority of these patients were female (59.7%). On average, the participants were 48.27 (SD = 13.44) years old and their intake OQ-45 score amounted to 81.11 (SD = 25.67). The most frequent psychiatric diagnoses according to ICD-10 were depressive disorders (F32: 10.3%; F33: 19.6%), somatoform disorders (F45: 29.1%), anxiety-related disorders (F40: 2.8%; F41: 9.1%; F42: 1.6%; F43: 7.2%), and eating
disorders (F50: 2.3%; F51: 3.1%). The average amount of psychiatric diagnoses per patient was 2.25
(SD = 1.09).

Statistical analysis

We approached our overall aim of the study—to investigate the information of the ASC that is most important to predict NOT signals—using factor analysis and signal detection methods. The statistical analysis was organized in three stages guided by specific objectives: (1) to examine the factor structure and reliability of the ASC measure domains; (2) to identify specific ASC items that are associated with NOT signals; (3) to compare the predictive value of factor analysis versus signal detection approaches.

Stage 1 applied factor analysis using all 40 ASC items from the intake assessment. Missing data for cases (N = 32; 11.3%) that did not respond to an ASC item were imputed by averaging the values from 25 estimated datasets using an expectation maximization method (Schafer & Olsen, 1998). We initially examined the adequacy of the dataset for factor analysis using the Kaiser-Meyer-Olkin (KMO) test and Bartlett’s test of sphericity. In order to empirically determine how many factors optimally explained the variability in the data, we applied parallel analysis using polychoric correlations, based on unweighted least squares, with promin rotation (Lorenzo-Seva, 1999; Timmerman & Lorenzo-Seva, 2011). Items that had factor loadings < .50 were excluded, in order to retain a parsimonious set of items that were strongly associated with each domain. Cronbach’s alpha was used to examine the internal consistency of each domain.

Taking a different approach in stage 2, we ignored the factor structure of the ASC, and instead applied a supervised machine learning analysis to select items that were most reliably associated with NOT signals. Multicollinearity between ASC items was expected, so LASSO regularization (Tibshirani, 1996) was performed as a method to exclude variables that did not significantly improve predictive value and which covaried strongly with reliable predictors. The logistic LASSO regression shrinks (penalizes) beta coefficients toward zero, aiming to yield conservative models that minimize overfitting. The magnitude of a penalized coefficient indicates the weight of its predictive signal, so
variables with coefficients that were shrunk to exactly zero were excluded. In order to determine the optimal variable selection and model with minimal *expected prediction error*, a 10-fold cross-validation approach was applied (Rodriguez, Perez, & Lozano, 2010). This analysis was run across the whole dataset (weekly assessments = 895; within 283 patients) in order to identify ASC items that predicted NOT signals consistently across different partitions (folds) of the dataset. This analysis only included data from treatment week 2 onwards, since the OQ-Analyst system only starts to classify sessions as on-track or not-on-track after the initial therapy session.

In stage 3, we examined the predictive value of alternative ASC models. Logistic multilevel modelling was applied, with weekly assessments (level 1) nested within patients (level 2), including random intercepts for patients. The dependent variable was the NOT signal (0 = on track; 1 = not-on-track). Preliminary model building steps indicated that a loglinear trend for the total number of therapy sessions fit the data better than linear or exponential (quadratic, cubic) trends. The predictors entered into “Model A” included each of the four ASC domain scores derived from the original 40-item version, controlling for total number of sessions and baseline OQ-45 scores. In “Model B” again the four ASC domain scores were entered, controlling for the total number of sessions and baseline OQ-45. However, the domain scores were derived from a shortened 30-item version of the ASC that was supported by the factor analysis (based on factor loadings > 0.50). “Model C” only included the items selected by the LASSO procedure, controlling for the number of sessions and baseline OQ-45. All continuous variables were grand-mean-centered to aid interpretability. In order to compare these three models, we examined their goodness-of-fit (-2 Log likelihood, AIC, BIC) and predictive accuracy indices (positive and negative predictive values, AUC).

Results

Factor analysis and reliability of the ASC

The suitability of this dataset for factor analysis was confirmed by Bartlett’s test of sphericity ($\chi^2 = 5050.8$, df = 780, $p < .001$) and a high index of sampling adequacy (KMO = 0.84). Table 1 presents the rotated factor loadings for each of the four ASC domains. This factor solution had an excellent
goodness-of-fit index (GFI = 0.98) and produced a shortened 30-item version with reliability indices (Cronbach’s $\alpha = 0.72$ to 0.89) that were highly consistent with those obtained for the 40-item version. Correlations between the full and shortened scales were strong ($r > .90, p < .001$, shown in Table 1) for all four factors.

LASSO variable selection

In total, 43 cases were classified as not-on-track at some point during therapy, and 9.9% (89/895) of all treatment weeks in the dataset showed NOT signals. The LASSO variable selection procedure produced a sparse and statistically significant model ($F [2, 892] = 16.48, p < .001$) that predicted the probability of showing NOT signals across treatment sessions. Of the 40 items entered as potential predictors, only two were selected: question 14 ("I could talk about problems with my family" – social support domain), penalized $B = -0.05$, $SE = 0.03$; question 33 ("I felt rejected or betrayed by someone" – life events domain), penalized $B = -0.04$, $SE = 0.03$.

Comparing alternative ASC models

Table 2 presents fixed effects for logistic multilevel models examining the results of three alternative ASC models (see methods “Model A”, “Model B”, “Model C”). After controlling for treatment duration, the therapeutic alliance was not significantly associated with NOT signals in models A and B. Motivation was significantly associated with NOT cases in Model B but not in Model A. All three models converged in finding that greater problems (lower than average scores) in social support and life events domains were significantly associated with NOT signals. The probability of sessions being classed as NOT was not significantly associated with treatment duration (“Sessions” variable). Cases with higher intake severity on the OQ-45 measure (“BL_OQ-45” variable) were less likely to have treatment sessions classed as NOT, although this association was not statistically significant in the best fitting model (Model C).

As shown in Table 3, Model C had the best (smallest) goodness-of-fit indices, and Model B had better fit than Model A. Predictive accuracy indices were best for model B, with an excellent trade-off between sensitivity and specificity (AUC = 0.98). Despite the fact that the 2-item Model C
was much briefer than the others, a patient with a positive test result would have an 82% probability of being classed as NOT, and a negative test result would be associated with a 94% probability of a typical symptom trajectory (“on track” signal). Model B had the best combination of positive (92%) and negative (95%) predictive values.

Discussion

This study demonstrates that problems with social support and adverse life events are consistently associated with extremely negative deviations in psychological distress and functioning. The present study extends previous findings (Probst et al., 2015; White et al., 2015) by identifying that interpersonal problems captured by specific ASC items (*not feeling able to speak about problems with family members; feeling rejected or betrayed*) were found to be particularly important. It is interesting to note that these aspects are external to the therapy process; whereas the aspects that are internal to the therapy process were either not (alliance) or not consistently (motivation) related to NOT signals.

These findings suggest that attention to interpersonal difficulties and close relationships may be an important focus of therapy in cases that are at risk of poor response to treatment. One possible interpretation could be that inpatients in this treatment setting could have significant personality dysfunction and interpersonal problems, which could become exacerbated and associated with increased distress. It is known that the prevalence of personality disorders is twice as high in inpatient settings by comparison to outpatient care, and 10 times more common than in the general population (Lieb, Zanarini, Schmahl, Linehan, & Bohus, 2004). Hence, we cannot necessarily assume that the findings in this sample can be generalized to outpatient psychotherapy settings.

The four-factor structure of the ASC measure was confirmed using factor analysis. Furthermore, using a conventional item-reduction approach, the shorter 30-item version displayed equal or better internal consistency across domains, by comparison to the original 40-item version. This shortened version of the ASC had remarkable predictive values above 90%, which suggests that
the information contained can reliably help to identify cases that are NOT. Although the full motivation to change scale in the 40-item ASC was not related to NOT signals, the shortened motivation to change scale in the 30-item ASC was significantly associated with NOT signals after excluding items which had low factor loadings. This implies that there are items in the full motivation to change scale that introduce noise and undermine its predictive value. On this basis, we can confidently recommend using the shortened 30-item version which could be more feasible to implement in future studies and clinical practice. However, therapists should be instructed to carefully monitor two items (14, 33) related to interpersonal problems, which were identified as key predictors of NOT signals. This would help to make therapists more aware of specific interpersonal issues that influence treatment progress. It should, however, be kept in mind that therapists in clinical settings are rather reluctant to use ROM systems, even though using ROM has the potential to improve treatment outcomes for patients who are at risk of treatment failure (Lambert & Harmon, 2018). A recent review by Lewis et al. (2019) summarized key barriers and facilitators for the successful implementation of ROM and feedback systems.

The following limitations should be considered when interpreting the present results. Some cases (~11%) had missing data in some of the ASC items. We dealt with this problem using multiple imputation, although this may have led to some inaccuracies in these cases. Another limitation concerns the sole reliance on the ASC to identify potential aspects that are associated with poor treatment response, whereas other variables (e.g., changes in medication, specific therapeutic techniques, treatment adherence, etc.) could also be informative to assess the process of change. Furthermore, although we found that interpersonal aspects (captured in the social support and life events domains) were associated with not-on-track signals, we cannot draw any conclusions about cause-and-effect relations. Interpersonal problems may have led to increased distress in some cases, but it is also possible that increased distress (caused by other unmeasured factors) could have led to interpersonal difficulties.
We conclude that attending to social support and life events is of particular importance during the treatment of inpatients with common mental health problems, since these are found to be associated with poor treatment progress. Based on the results of our factor analysis we recommend applying the more economical 30-item version of the ASC for future clinical and research purposes. Special attention should be paid to two specific ASC items capturing interpersonal problems. Currently these two specific ASC features however cannot be considered as sufficient predictors of NOT cases. Their role in predicting patients’ negative deviations in psychological distress has to be studied further in other samples and clinical settings.

References

Asay, T. P., Lambert, M. J. (1999). The empirical case for the common factors in therapy: Quantitative findings. In M. A. Hubble, B. L. Duncan, S. D. Miller (Hrsg.). The heart and soul of change: What works in therapy (S. 23 - 55). Washington, DC: American Psychological Association.

Boswell, J. F., Kraus, D. R., Miller, S. D., & Lambert, M. J. (2015). Implementing routine outcome monitoring in clinical practice: Benefits, challenges, and solutions. Psychotherapy Research, 25, 6-19.

Finch, A. E., Lambert, M. J. & Schaalje, B. G. (2001). Psychotherapy quality control: The statistical generation of expected recovery curves for integration into an early warning system. Clinical Psychology & Psychotherapy, 8, 231-242.

Flückiger, C., Del Re, A. C., Wampold, B. E., & Horvath, A. O. (2018). The alliance in adult psychotherapy: A meta-analytic synthesis. Psychotherapy, 55(4), 316.

Harmon, S. C., Hawkins, E. J., Lambert, M. J., Slade, K., & Whipple, J. S. (2005). Improving outcomes for poorly responding clients: The use of clinical support tools and feedback to clients. Journal of Clinical Psychology, 61, 175-185.

Harmon S. C., Lambert, M. J., Smart, D. M., Hawkins, E., Nielsen, S. L., Slade, K., & Lutz, W. (2007). Enhancing outcome for potential treatment failures: Therapist-client feedback and clinical support tools. Psychotherapy Research, 17, 379-392.

Haug, S., Puschner, B., Lambert, M. J. & Kordy, H. (2004). Veränderungsmessung in der Psychotherapie mit dem Ergebnisfragebogen (EB-45). Zeitschrift für Differentielle und Diagnostische Psychologie, 25, 141-151.

Howard, K. I., Moras, K., Brill, P. L., Martinovich, Z., & Lutz, W. (1996). Evaluation of psychotherapy. Efficacy, effectiveness, and patient progress. American Psychologist, 51, 1059-1064.
Huber, D., Brandl, T., Henrich, G., & Klug, G. (2002). Ambulant oder stationär? Eine Feldstudie zur Praxis der Indikationsstellung. *Psychotherapeut, 47*, 16-23.

Lambert, M. J. (2012). Helping clinicians to use and learn from research-based systems: The OQ-Analyst. *Psychotherapy, 49*, 109-114.

Lambert, M. J. (2013a). The efficacy and effectiveness of psychotherapy. In M. J. Lambert (Hrsg.), *Bergin & Garfield’s handbook of psychotherapy and behavior change* (6. Ed., S. 169-218). New York: Wiley.

Lambert, M. J. (2013b). Outcome in psychotherapy: The past and important advances. *Psychotherapy, 50*, 42-51.

Lambert, M. J. (2015). Progress feedback and the OQ-System: The past and the future. *Psychotherapy, 52*, 381-390.

Lambert, M. J., Bailey, R., Kimball, K., Shimokawa, K., Harmon, S. C., & Slade, K. (2007). *Clinical support tools Manual-Brief Version-40*. Salt Lake City: OQ Measures.

Lambert, M. J. (2016). Outcome in psychotherapy: The past and important advances. *Psychotherapy, 50*, 42-51.

Lambert, M. J. & Harmon, K. L. (2018). The merits of implementing routine outcome monitoring in clinical practice. *Clinical Psychology: Science and Practice, 25*, e12268.

Lambert, M. J., Morton, J. J., Hatfield, D., Harmon, S. C., Hamilton, S., Reid, R. C., & Burlingame, G. M. (2004). *Administration and scoring manual for the Outcome Questionnaire-45*. Orem, UT: American Professional Credentialing Services.

Lambert, M. J., Whipple, J. L., Bishop, M. J., Vermeersch, D. A., Gray, G. V., & Finch, A. E. (2002). Comparison of empirically derived and rationally derived methods for identifying clients at risk for treatment failure. *Clinical Psychology & Psychotherapy, 9*, 149-164.

Lambert, M.J., Whipple, J.L., Klein stauber, M. (2018). Collecting and delivering progress feedback: a meta-analysis of routine outcome monitoring. *Psychotherapy, 55*, 520-537.

Lewis, C.C., Boyd, M., Puspitasari, A., Navarro, E., Howard, J., Kassab, H., Hoffman, M., Scott, K., Lyon, A., Douglas, S., Simon, G., & Kroenke, K. (2019). Implementing measurement-based care in behavioral health: A review. *JAMA Psychiatry, 76*, 324.335.

Lieb, K., Zanarini, M. C., Schmahl, C., Linehan, M. M., & Bohus, M. (2004). Borderline personality disorder. *The Lancet, 364*, 453-461.

Lorenzo-Seva, U. (1999). Promin: a method for oblique factor rotation. *Multivariate Behavioral Research, 34*, 347-356.
Lutz, W., Lambert, M. J., Harmon, S. C., Tschitsaz, A., Schürch, E., & Stulz, N. (2006). The probability of treatment success, failure and duration—what can be learned from empirical data to support decision making in clinical practice? *Clinical Psychology & Psychotherapy, 13*, 223-232.

Norcross, J. C., Krebs, P. M., & Prochaska, J. O. (2011). Stages of change. *Journal of Clinical Psychology, 67*, 143-154.

Probst, T., Lambert, M. J., Dahlbender, R. W., Loew, T., & Tritt, K. (2014). Providing patient progress feedback and clinical support tools to therapists: Is the therapeutic process of patients on-track to recovery enhanced in psychosomatic in-patient therapy under the conditions of routine practice? *Journal of Psychosomatic Research, 76*, 477-484.

Probst, T., Lambert, M. J., Loew, T., Dahlbender, R. W., Göllner, R., & Tritt, K. (2013). Feedback on patient progress and clinical support tools for therapists: Improved outcome for patients at risk of treatment failure in psychosomatic in-patient therapy under the conditions of routine practice. *Journal of Psychosomatic Research, 75*, 255-261.

Probst, T., Lambert, M. J., Loew, T., Dahlbender, R. W., & Tritt, K. (2015). Extreme deviations from expected recovery curves and their associations with therapeutic alliance, social support, motivation, and life events in psychosomatic in-patient therapy. *Psychotherapy Research, 25*, 714-723.

Rodriguez, J. D., Perez, A., & Lozano, J. A. (2010). Sensitivity analysis of k-fold cross validation in prediction error estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence, 32*, 569-575.

Roehrle, B., & Strouse, J. (2008). Influence of social support on success of therapeutic interventions: A meta-analytic review. *Psychotherapy, 45*, 464-476.

Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. *Multivariate Behavioral Research, 33*, 545-571.

Sexton, H. (1996). Process, life events, and symptomatic change in brief eclectic psychotherapy. *Journal of Consulting & Clinical Psychology, 64*, 1358-1365.

Shimokawa, K., Lambert, M. J., & Smart, D. W. (2010). Enhancing treatment outcome of patients at risk of treatment failure: Meta-analytic and mega-analytic review of a psychotherapy quality assurance system. *Journal of Consulting & Clinical Psychology, 78*, 298-311.

Slade, K., Lambert, M. J., Harmon, S. C., Smart, D. W., & Bailey, R. (2008). Improving psychotherapy outcome: the use of immediate electronic feedback and revised clinical support tools. *Clinical Psychology & Psychotherapy, 15*, 287-303.
Spielmans, G. I., Masters, K. S., Lambert, M. J. (2006). A comparison of rational versus empirical methods in prediction of negative psychotherapy outcome. Clinical Psychology & Psychotherapy, 13, 202-214.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Methodological, 58, 267–288.

Warren, J. S., Nelson, P. L., Burlingame, G. M. & Mondragon, S. A. (2012). Predicting patient deterioration in youth mental health services: community mental health vs. managed care settings. Journal of Clinical Psychology, 68, 24-40.

Whipple, J. L., Lambert, M. J., Vermeersch, D. A. Smart, D. W., Nielsen, S. L., Hawkins, E. J., Eric J. (2003). Improving the effects of psychotherapy: The use of early identification of treatment and problem-solving strategies in routine practice. Journal of Counseling Psychology, 50, 59-68.

White, M. M., Lambert, M. J., Ogles, B. M., McLaughlin, S. B., Bailey, R. J., & Tingey, K. M. (2015). Using the Assessment for Signal Clients as a feedback tool for reducing treatment failure. Psychotherapy Research, 25, 724-734.

Zipfel, S., Herzog, W., Kruse, J., & Henningsen, P. (2016). Psychosomatic medicine in Germany: More timely than ever. Psychotherapy and Psychosomatics, 85, 262-269.
Table 1. Factor structure of the Assessment for Signal Cases (ASC)

Item	Domain	Factor 1	Factor 2	Factor 3	Factor 4
	Explained variance = 6.269	Explained variance = 3.767	Explained variance = 5.451	Explained variance = 3.890	
	Full 11-item α = .89	Full 11-item α = .77	Full 9-item α = .78	Full 9-item α = .72	
	Short 10-item α = .89	Short 6-item α = .82	Short 7-item α = .81	Short 7-item α = .72	
	Full*Short r = .99	Full*Short r = .94	Full*Short r = .95	Full*Short r = .96	
1	Alliance	0.614*	0.032	0.217	-0.028
2	Alliance	0.800*	-0.028	0.144	-0.066
3	Alliance	0.694*	0.022	0.110	-0.062
4	Alliance	0.882*	-0.023	0.021	-0.026
5	Alliance	0.686*	0.019	0.137	-0.064
6	Alliance	0.629*	-0.067	0.208	0.138
7	Alliance	0.696*	-0.082	0.112	0.222
8	Alliance	0.588*	-0.106	0.136	0.252
9	Alliance	0.471	0.240	0.116	-0.170
10	Alliance	0.868*	0.052	-0.044	-0.096
11	Alliance	0.716*	0.080	0.013	-0.129
12	Social support	-0.127	0.770*	0.145	-0.138
13	Social support	-0.218	0.832*	0.177	-0.154
14	Social support	0.127	0.529*	-0.283	0.293
15	Social support	0.100	0.591*	-0.210	0.200
16	Social support	0.074	0.703*	-0.005	0.112
17	Social support	-0.016	0.759*	-0.039	0.080
18	Social support	-0.027	0.478	0.019	-0.082
19	Social support	0.143	0.215	-0.182	-0.271
20	Social support	0.124	0.459	0.235	-0.066
21	Social support	0.338	0.169	-0.238	-0.058
22	Social support	-0.067	0.247	0.102	0.259
23	Motivation	0.230	-0.090	0.713*	-0.031
24	Motivation	0.014	-0.076	0.906*	-0.080
25	Motivation	0.203	-0.028	0.591*	-0.119
26	Motivation	-0.021	0.012	0.840*	0.003
27	Motivation	-0.099	-0.006	0.875*	-0.005
28	Motivation	0.053	0.095	0.647*	0.226
29	Motivation	-0.190	0.111	0.464	0.186
30	Motivation	-0.019	0.208	0.446	-0.139
31	Motivation	-0.042	-0.070	0.642*	0.203
32	Life events	-0.010	-0.046	-0.058	0.684*
33	Life events	0.027	0.016	-0.066	0.718*
34	Life events	0.115	-0.007	-0.030	0.694*
35	Life events	-0.054	-0.046	0.103	0.696*
36	Life events	0.032	-0.073	0.196	0.569*
37	Life events	0.002	0.081	-0.091	0.651*
38	Life events	-0.027	0.022	0.019	0.185
39	Life events	0.012	0.076	0.089	0.429
40	Life events	-0.086	-0.002	-0.001	0.575*

Notes: Rotated factor loadings of parallel analysis using polychoric correlations, based on unweighted least squares, with promax rotation. *Factor loadings > 0.50. Full*Short r = correlation between full and shortened scale. Total variance explained by the factor solution was 53.1%.
Table 2. Multilevel models fitting alternative versions of the ASC questionnaire to predict not-on-track signals

Variables	Model A: 40-item ASC	Fixed effects	95% CI
Intercept	-4.53 (0.79)	< .001	-6.08, -2.97
Sessions (Log)	0.89 (0.49)	.070	-0.07, 1.85
BL_OQ-45 (mc)	-0.03 (0.01)	.002	-0.05, -0.01
Alliance (mc)	-0.23 (0.29)	.437	-0.80, 0.35
Social support (mc)	-1.06 (0.24)	< .001	-1.54, -0.58
Motivation (mc)	-0.59 (0.32)	.065	-1.21, 0.04
Life events (mc)	-1.30 (0.26)	< .001	-1.81, -0.79

Variables	Model B: 30-item ASC	Fixed effects	95% CI
Intercept	5.85 (1.66)	< .001	2.58, 9.11
Sessions (Log)	0.94 (0.50)	.060	-0.04, 1.91
BL_OQ-45 (mc)	-0.02 (0.01)	.023	-0.04, -0.01
Alliance (mc)	-0.33 (0.28)	.230	-0.87, 0.21
Social support (mc)	-0.61 (0.17)	< .001	-0.94, -0.28
Motivation (mc)	-0.64 (0.29)	.028	-1.22, -0.07
Life events (mc)	-0.96 (0.21)	< .001	-1.38, -0.54

Variables	Model C: 2-item ASC	Fixed effects	95% CI
Intercept	-3.42 (0.71)	< .001	-4.80, -2.03
Sessions (Log)	0.36 (0.46)	.427	-0.54, 1.27
BL_OQ-45 (mc)	-0.01 (0.01)	.407	-0.02, 0.01
Item 14 (mc)	-0.38 (0.13)	.003	-0.62, -0.13
Item 33 (mc)	-0.39 (0.11)	< .001	-0.61, -0.18

Notes: Fixed effects from logistic multilevel models predicting risk signal classification (0 = on track, 1 = not on track); across N = 895 treatment sessions within N = 283 patients; entering random intercepts for patients; Log = loglinear trend; mc = grand mean centred; BL_OQ-45 = baseline severity in OQ-45 measure; B = regression coefficient; SE = standard error; CI = confidence intervals
Table 3. Goodness-of-fit and predictive accuracy of alternative ASC models

	Goodness-of-fit indices	Predictive accuracy indices				
	-2 LL	AIC	BIC	+PV	-PV	AUC
Model A	5210.59	5212.59	5217.38	0.91	0.94	.973
Model B	5091.40	5093.40	5098.18	0.92	0.95	.975
Model C	4862.52	4864.52	4869.31	0.82	0.94	.976

Notes: -2LL = -2 Log likelihood; AIC = Akaike’s information criterion; BIC = Bayesian information criterion; +PV = positive predictive value; -PV = negative predictive value; AUC = area under the curve