Patient characteristics and safety outcomes in new users of ticagrelor and clopidogrel—An observational cohort study in Sweden

Marie Linder1 | Morten Andersen1,2,3

1Centre for Pharmacoepidemiology, Karolinska Institutet, Stockholm, Sweden
2Pharmacovigilance Research Center, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
3Research Unit of General Practice, University of Southern Denmark, Odense, Denmark

Correspondence
Marie Linder, Centre for Pharmacoepidemiology, Karolinska Institutet, T2, Karolinska Universitetssjukhuset, Solna 171 76, Stockholm, Sweden.
Email: marie.linder@ki.se

Funding information
AstraZeneca

Abstract

Purpose: We aimed to describe characteristics of new users of ticagrelor or clopidogrel following a recent coronary event, and to compare incidences of selected safety outcomes.

Methods: This observational cohort study used data from national Swedish registers. Patients first dispensed ticagrelor or clopidogrel (June 2011–December 2013) were identified from the Prescribed Drug Register and followed until censoring or 31 December 2014. Cohorts were restricted to patients with a recent coronary event-related hospital contact identified in the Patient Register.

Results: The study included 45 987 unique, naïve users of ticagrelor (73% men; mean age 66 years) or clopidogrel (69% men; mean age 69 years). Corresponding to indication, diagnoses before initiation were acute coronary syndrome (93%), myocardial infarction (76%), and percutaneous coronary intervention (69%). The most common medications used in the year before initiation of study therapy were antithrombotic agents (clopidogrel 62%, ticagrelor 43%), mainly low-dose acetylsalicylic acid. Ticagrelor users had a higher incidence (per 1000 person-years) of respiratory bleeding (24.6 [95% confidence interval (CI): 22.1–27.3]; vs clopidogrel users: 14.4 [13.1–15.8]) and dyspnea (25.9 [23.3–28.7]; vs clopidogrel users: 16.8 [15.4–18.4]). Epistaxis accounted for 83–93% of respiratory bleeds. Adjusted analyses found increased risks of gout and acute renal failure with ticagrelor.

Conclusions: Clopidogrel users were older with a higher prevalence of concomitant medications than ticagrelor users. Our study showed increased incidences of dyspnea and respiratory bleeding (mainly epistaxis) among current ticagrelor users compared with clopidogrel users, and increased risks of gout and acute renal failure after adjustment.

Keywords
clopidogrel, cohort study, patient characteristics, safety, ticagrelor

Prior posting: This paper reports findings from a commissioned study carried out by the Centre for Pharmacoepidemiology, Karolinska Institutet, Stockholm, Sweden, for AstraZeneca. A poster from this study was presented at the European Society of Cardiology (ESC) Congress, 27–31 August 2016, Rome, Italy.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons Ltd.
1 | INTRODUCTION

Antagonists of the platelet adenosine diphosphate P2Y_{12} receptor have become a standard treatment in the management of patients with acute coronary syndrome (ACS). Current practice guidelines recommend dual antiplatelet therapy with acetylsalicylic acid (ASA) and a P2Y_{12} receptor antagonist in patients with or without ST-segment elevation, regardless of revascularization strategy.\(^1\)–\(^4\) Wide inter- and intraindividual variability in the extent of platelet inhibition has been shown following treatment with the P2Y_{12} receptor antagonist clopidogrel,\(^5\)\(^,\)\(^6\) a limitation likely to have important clinical implications. Antiplatelet agents with the potential to overcome this clinical challenge have therefore been developed. Ticagrelor, a reversible and direct-acting antagonist of the P2Y_{12} receptor, has demonstrated improved platelet inhibition over that achieved with clopidogrel,\(^7\)\(^,\)\(^8\) and was shown to be superior to clopidogrel for the prevention of vascular events in a large randomized trial of patients with ACS, the Study of PLATelet Inhibition and Patient Outcomes (PLATO).\(^9\) Consistency between randomized trial results and real-world data was shown in a study based on a national Swedish quality register.\(^10\),\(^11\)

As the latest entrant in its class, ticagrelor might have initially been prescribed to patients deemed less likely to achieve adequate inhibition of platelet aggregation with other antiplatelet drugs, or to individuals with a particular cardiovascular comorbidity pattern. If this were the case, differences in patient characteristics due to channeling\(^12\) would hamper direct comparisons of ticagrelor with other antiplatelet agents in early studies of safety outcomes. Improved knowledge of the ticagrelor patient population in terms of comorbidities and concomitant medication use would thus be helpful when interpreting data from sources such as adverse event reporting systems, and would provide information on ticagrelor treatment patterns in clinical practice.

A post-authorization safety study (PASS)\(^13\) of ticagrelor was initiated in 2011 as part of the European Union Risk Management Plan of an approved medicinal product. The goal of the PASS was to assess patient characteristics, drug utilization patterns, and incidence of selected outcomes in new users of P2Y_{12} receptor antagonists. Predefined outcomes were selected based on the results of PLATO and other information available at the time of the PASS. Adverse event rates observed with ticagrelor in PLATO raised no major safety concerns.\(^9\) As would be expected for an antiplatelet drug, bleeding was the primary safety issue. Dyspnea was also commonly reported with ticagrelor, leading to discontinuation of the drug by 1% of patients. Serum creatinine and uric acid levels increased slightly more during treatment with ticagrelor than with clopidogrel; however, this was not associated with a rise in clinically meaningful adverse renal outcomes. Ticagrelor was shown to increase the frequency of Holter-detected ventricular pauses, but with no increase in clinically relevant events.\(^9\) A few cases of severe hepatotoxicity potentially related to clopidogrel treatment had been reported in the literature,\(^14\) leading to an evaluation of hepatotoxicity potential with ticagrelor as part of the PASS. At the time, there was also limited knowledge of treating patients with renal impairment with ticagrelor.

The present study was an extension of the original PASS. Its purpose was to describe the characteristics of patients in whom ticagrelor or clopidogrel treatment was initiated for the first time following a recent coronary event, to assess comorbidities and concomitant medication use and to compare incidences of selected safety outcomes. It was limited to patients with a likely indication of a coronary event and had a longer study period than the original PASS. It also included adjusted analyses.

2 | METHODS

2.1 | Data sources

Data were obtained from the national registers maintained by the Swedish National Board of Health and Welfare and Statistics. Individual patient data were linked between registers by a unique personal identification number. The Prescribed Drug Register (PDR)\(^15\) contains data for all purchases of prescribed drugs at pharmacies by patients outside hospitals, including personal identification number, date of purchase, anatomical therapeutic chemical (ATC) code, and amount dispensed in defined daily doses,\(^16\) and the department specialty of the prescribing physician. The National Patient Register (NPR)\(^17\) includes all diagnoses and surgical procedures recorded in Swedish hospitals, in both inpatient and hospital-based ambulatory care, using International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10) codes for diagnoses and Nordic...
Medico-Statistical Committee Classification of Surgical Procedures (NCSP) codes for procedures. Information on dates of emigration and deaths for all patients was retrieved from the Total Population Register.

2.2 | Study design and cohorts

A cohort study was performed using data for patients taking P2Y₁₂ receptor antagonists identified from the PDR.

All P2Y₁₂ receptor antagonist naïve incident clopidogrel and ticagrelor users aged 20–84 years were included at their first dispensing (index date) during the study period (1 June 2011–31 December 2013) (Figure 1). Incident users were defined as those who had not received the study drug during the year prior to the index date and naïve users as those without a previous prescription for any P2Y₁₂ receptor antagonist during this year. Prasugrel users were excluded because of low numbers. Furthermore, patients who had immigrated within 6 months of the index date were excluded to guarantee database coverage. In order to capture usual clinical practice no other exclusion criteria were applied.

Cohorts were subsequently restricted to patients for whom the likely indication was a coronary event, corresponding to the on-label indications for ticagrelor and clopidogrel at the time of the study (Figure 1). Diagnoses and procedures from the NPR used as proxies for the indication were myocardial infarction (MI; ICD-10 codes I21, I22, and I25.2), ACS (ICD-10 codes I20, I21, and I22), percutaneous coronary intervention (PCI; NCSP code FNG), and coronary artery bypass graft (CABG; NCSP codes FNA, FNB, FNC, FND, and FNE), occurring in the year before the index date (for details of ICD-10 and NCSP codes see Table S1). The use of patient register data for diagnoses has shown acceptable validity.17–20 All individuals were followed up from the index date until one of the following events occurred: a selected outcome, the patient’s 85th birthday, emigration, death, or 31 December 2014. For each outcome of interest a separate follow-up was performed. Patients with a history of the specific study outcome before the index date in each respective follow-up were excluded. Two cohorts were identified: ticagrelor initiators and clopidogrel initiators; patients could contribute data to both cohorts if separate treatment episodes occurred.

2.3 | Exposure

To analyze time-dependent exposure, allowing for investigation of decaying and/or persisting drug effects, study medication use was classified into three categories: (1) “current use”—patients contributed person-time to this category while they were being treated with the study medication, with an extended grace period of 30 days after the end of supply (based on defined daily doses); (2) “recent use”—patients contributed person-time to this category from 31 days after treatment with the last study drug dispensing would have ended (assuming full adherence) up to a maximum of 90 days; and (3) “past use”—patients contributed person-time to this category from the end of the recent use category until the end of follow-up, provided no refill of the study drug prescription occurred during this time (Figure 2). Each new dispensing ended the ongoing exposure and started a new current use of the dispensed drug.

The first continuous use period was defined as starting at the index date and ending at the first gap in drug supply (i.e., the start of the first recent use period) or the end of follow-up, whichever came first. Note that the first continuous use period included a grace period of 30 days as defined above, and was right censored at the end of the study.

2.4 | Covariates

Comorbidities related to the indication of clopidogrel and ticagrelor were included: coronary events (MI, ACS) and coronary interventions, atrial fibrillation and flutter, and stroke (Table S1). Further additions were comorbidities corresponding to the 13 selected safety outcomes (see below) and additional disease groups specified by Charlson et al.,21,22 with modified definitions for chronic obstructive pulmonary disease, moderate or severe liver disease, and acquired immune deficiency syndrome/human immunodeficiency virus infection (Table S2).
Use of the following concomitant medications was investigated: antidiabetic agents (ATC code A10), antithrombotic agents (B01), cardiac therapy (C01), antihypertensives (C02), diuretics (C03), beta blocking agents (C07), calcium channel blockers (C08), agents acting on the renin–angiotensin system (C09), lipid-modifying agents (C10), oral steroids (H02), and non-steroidal anti-inflammatory drugs (M01A) (Table 1).

In all covariate definitions, a time window of 1 year before the index date was used.

2.5 | Outcomes

The 13 selected safety outcomes were intracranial bleeding, gastrointestinal bleeding, respiratory bleeding, other bleeding, pacemaker insertion, bradyarrhythmias, cardiac arrest, heart failure, acute renal failure, acute liver injury, dyspnea, syncope, and gout. Diagnoses were identified from the NPR using ICD-10 codes (Table S3) from main diagnoses from inpatient and outpatient care.

2.6 | Statistical analysis

Numbers and proportions were used to describe categorical variables, and means with standard deviations and/or medians with interquartile ranges were used to describe continuous variables. Ticagrelor and clopidogrel cohorts were described in terms of age and sex distribution, and prevalence of concomitant treatments and recorded comorbidities.

Crude incidences (with 95% confidence intervals [CIs]) were estimated as the ratio of the number of cases with the outcome of interest divided by the number of person-years among users of the study drug grouped by exposure category (current, recent, or past use). An analysis comparing ticagrelor and clopidogrel was also carried out for the selected safety outcomes using Cox regression, adjusting for sex, age, income, education, use of concomitant medication (ASA, cardiac therapy, diuretics, beta blocking agents, agents acting on the renin–angiotensin system, and lipid-modifying agents), heart failure, PCI, ACS, stroke, atrial fibrillation, MI, and cerebrovascular disease. This analysis was not specified in the original PASS protocol.

3 | RESULTS

In total, 45,987 unique naïve users of ticagrelor or clopidogrel were included in this study, with 30,492 contributing to the clopidogrel cohort and 15,607 contributing to the ticagrelor cohort (i.e., 112 patients contributed to both cohorts) (Figure 1).

3.1 | Patient characteristics

The majority of the naïve ticagrelor or clopidogrel users were men (71%), and the mean age was 68 years (Table 1). Clopidogrel users were, on average, older than ticagrelor users. Corresponding to the inclusion criteria, nearly all patients (98–99%) had a previous MI or ACS diagnosis. Overall, the comorbidities and interventions related to the indication were ACS (93%), MI (76%), and PCI (69%); CABG was less common (3%). Patients taking clopidogrel had a lower prevalence of previous MI, ACS, and PCI than those taking ticagrelor, when analyzed separately (Table 1). In terms of comorbidities corresponding to outcomes and Charlson comorbidities in the previous year, clopidogrel users had a higher prevalence of heart failure and cerebrovascular disease than ticagrelor users.

Overall, 56% ($n = 25,627$) of patients had a history of antithrombotic agent use; most of them (91% [23,299/25,627]) took low-
TABLE 1 Baseline characteristics: sex, age, concomitant medications, and comorbidities during the 1 year before the index date

Variable	Clopidogrel (n = 30492)	Ticagrelor (n = 15607)	Total population (N = 46 987)
Sex			
Men	21 122 (69)	11 409 (73)	32 447 (71)
Age (years)			
20–35	46 (<1)	47 (<1)	93 (<1)
35–50	1440 (5)	1161 (7)	2595 (6)
50–65	8488 (28)	5570 (36)	14 020 (30)
65–75	10 940 (36)	5518 (35)	16 419 (36)
75–84	9578 (31)	3311 (21)	12 860 (28)
Mean (SD)	69 (10.0)	66 (10.3)	68 (10.2)
Median (IQR)	70 (62–77)	67 (59–74)	69 (61–76)
Comorbidities related to indication			
PCI	18 771 (62)	13 082 (84)	31 772 (69)
CABG	791 (3)	371 (2)	1161 (3)
ACS	27 646 (91)	15 367 (98)	42907 (93)
MI	21 263 (70)	13 616 (87)	34 879 (76)
NSTEMI	10 158 (33)	6416 (41)	16 526 (36)
STEMI	4200 (14)	5429 (35)	9616 (21)
Unspecified	6905 (23)	1771 (11)	8634 (19)
MI and/or ACS	29 793 (98)	15 465 (99)	45 147 (98)
Other cardiovascular comorbidities			
Stroke	1622 (5)	165 (1)	1784 (4)
Atrial fibrillation and flutter	3905 (13)	819 (5)	4714 (10)
Concomitant medications (ATC codes)			
Antidiabetic agents (A10)	6577 (22)	2706 (17)	9249 (20)
Antithrombotic agents (B01)	18 998 (62)	6722 (43)	25 627 (56)
Vitamin K antagonists (B01AA)	2464 (8)	294 (2)	2751 (6)
Low-dose ASA (B01AC06)	17 006 (56)	6382 (41)	23 399 (51)
Cardiac therapy (C01)	12 083 (40)	3959 (25)	15 984 (35)
Digitalis glycosides (C01AA)	696 (2)	94 (1)	785 (2)
Anti hypertensives (C02)	473 (2)	184 (1)	655 (1)
Diuretics (C03)	8531 (28)	3025 (19)	11 522 (25)
Beta blocking agents (C07)	16 564 (54)	6325 (41)	22 808 (50)
Calcium channel blockers (C08)	8534 (28)	3523 (23)	12 020 (26)
Agents acting on the renin–angiotensin system (C09)	15 535 (51)	6833 (44)	22 291 (48)
Lipid-modifying agents (C10)a	16 048 (53)	6108 (39)	22 071 (48)
Simvastatin (C10AA01, C10BA02)	11 992 (39)	4155 (27)	16 098 (35)
Oral steroids (H02)	3528 (12)	1491 (10)	5004 (11)
NSAIDs (M01A)	6315 (21)	3167 (20)	9467 (21)
CYP3A4 strong inducersb	370 (1)	115 (1)	484 (1)
CYP3A4 strong inhibitorsc	229 (1)	61 (<1)	290 (1)
Comorbidities corresponding to outcomes			
Intracranial bleeding	130 (<1)	36 (<1)	166 (<1)
Gastrointestinal bleeding	423 (1)	90 (1)	512 (1)
Respiratory bleeding	219 (1)	80 (1)	298 (1)
Other bleeding	591 (2)	245 (2)	830 (2)
Pacemaker insertion	1034 (3)	281 (2)	1308 (3)
Bradycardiac rhythm	643 (2)	278 (2)	917 (2)
Cardiac arrest	335 (1)	292 (2)	627 (1)
Heart failured	4519 (15)	1580 (10)	6084 (13)

(Continues)
dose ASA in the year before the index date. Other common concomitant medications were beta-blocking agents, agents acting on the renin–angiotensin system, and lipid-modifying agents (Table 1). The clopidogrel cohort had a numerically higher proportion of use of these concomitant medications than the ticagrelor cohort (51%–62% vs. 39%–44%, respectively).

3.2 Crude incidences of safety outcomes

Figure 3 shows the observed incidences of safety outcomes according to current, recent, and past use. Event counts and person time are shown in Table 2 and Table S4. The observed incidences of bleeding among current users of either drug were numerically higher for gastrointestinal and respiratory bleeding than for intracranial and other bleeding. Ticagrelor was associated with a higher estimated incidence of respiratory bleeding (24.6 per 1000 person-years [95% CI: 22.1–27.4]) than clopidogrel (14.4 per 1000 person-years [95% CI: 13.1–15.8]). For both drugs, epistaxis was the main type of respiratory bleeding, accounting for 83%–93% of cases, depending on the drug and type of use (clopidogrel or ticagrelor, and current, recent, or past use).

The incidence of dyspnea per 1000 person-years was 25.9 (95% CI: 23.3–28.7) with current ticagrelor use, compared with 16.8 (95% CI: 24.0–22.4) with current clopidogrel use.

Table 1 (Continued)

Variable	Clopidogrel (n = 30,492)	Ticagrelor (n = 15,607)	Total population (N = 45,987)
	n (%)	n (%)	n (%)
Acute renal failure	188 (1)	50 (<1)	238 (1)
Acute liver injury	2 (<1)	0 (0)	2 (<1)
Dyspnea	682 (2)	196 (1)	878 (2)
Syncope	415 (1)	122 (1)	536 (1)
Gout	410 (1)	133 (1)	542 (1)
Charlson comorbidities			
Peripheral vascular disease	1939 (6)	558 (4)	2487 (5)
Cerebrovascular disease	3430 (11)	527 (3)	3948 (9)
Dementia	450 (1)	93 (1)	542 (1)
COPD	3036 (10)	1194 (8)	4215 (9)
Rheumatologic disease	1070 (4)	438 (3)	1506 (3)
Peptic ulcer disease	237 (1)	42 (<1)	279 (1)
Mild liver disease	222 (1)	99 (1)	321 (1)
Diabetes without complications	7037 (23)	3085 (20)	10,086 (22)
Diabetes with complications	1840 (6)	625 (4)	2448 (5)
Paraplegia	360 (1)	60 (<1)	418 (1)
Renal disease	1552 (5)	392 (3)	1939 (4)
Any malignancy	2078 (7)	781 (5)	2855 (6)
Moderate/severe liver disease	35 (<1)	4 (<1)	39 (<1)
Metastatic solid tumor	198 (1)	54 (<1)	251 (1)
HIV infection	17 (<1)	7 (<1)	24 (<1)

Note: Percentages are calculated using the following total numbers of patients: clopidogrel, 30,492; ticagrelor, 15,607; total, 45,987.

Abbreviations: ACS, acute coronary syndrome; ASA, acetylsalicylic acid; ATC, anatomical therapeutic chemical; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; CYP3A4, cytochrome P450 3A4; HIV, human immunodeficiency virus; IQR, interquartile range; MI, myocardial infarction; NSAID, non-steroidal anti-inflammatory drug; NSTEMI, non-ST-segment elevation MI; PCI, percutaneous coronary intervention; SD, standard deviation; STEMI, ST-segment elevation MI.

aSimvastatin (C10AA01), lovastatin (C10AA02), pravastatin (C10AA03), fluvastatin (C10AA04), atorvastatin (C10AA05), rosuvastatin (C10AA07), pitavastatin (C10AA08), bezafibrate (C10AB02), gemfibrozil (C10AB04), fenofibrate (C10AB05), colesevelam (C10AC04), nicotinic acid (C10AD02), acipimox (C10AD06), nicotinic acid, combinations (C10AD52), omega-3 triglycerides including other esters and acids (C10AX06), ezetimibe (C10AX09), lomitapide (C10AX12), evolocumab (C10AX13), alirocumab (C10AX14), simvastatin and ezetimibe (C10BA02), atorvastatin and ezetimibe (C10BA05).

bRifampicin (J04AB02), phenytoin (N03AB02), carbamazepine (N03AF01).

cAprepitant (A04AD12), verapamil (C08DA01), selective calcium channel blockers with direct cardiac effects (C08DB), trandolapril and verapamil (C09BB10), erythromycin (J01FA01), ciprofloxacin (J01MA02), triazole derivatives (J02AC), protease inhibitors (J05AE), imatinib (L01XE01), ciprofloxacin (S02A1A5).

dModified Charlson comorbidities excluding MI and congestive heart failure (part of indication).
FIGURE 3 Safety outcomes: crude incidences with 95% confidence intervals
Outcome	Cohort	Current	Recent	Past						
	n	Person-years	HR (95% CI)	n	Person-years	HR (95% CI)	n	Person-years	HR (95% CI)	
Intracranial bleeding	Clopidogrel	142	30 285	1.08 (0.79–1.48)	27	6803	0.80 (0.34–1.85)	101	33 509	0.71 (0.43–1.18)
	Ticagrelor	66	14 229		8	3709		21	10 095	
GI bleeding	Clopidogrel	484	29 905	1.03 (0.87–1.21)	52	6771	1.91 (1.22–3.00)	215	33 296	0.87 (0.63–1.20)
	Ticagrelor	237	14 103		40	3695		52	10 038	
Respiratory bleeding	Clopidogrel	431	29 666	1.58 (1.36–1.84)	45	6775	1.76 (1.07–2.88)	182	33 281	0.82 (0.57–1.16)
	Ticagrelor	345	14 012		31	3695		43	10 041	
Other bleeding	Clopidogrel	306	29 960	1.02 (0.83–1.25)	47	6757	0.82 (0.45–1.47)	193	33 176	1.10 (0.80–1.50)
	Ticagrelor	161	14 101		17	3692		58	10 017	
Pacemaker insertion	Clopidogrel	196	29 938	1.04 (0.81–1.34)	51	6722	1.38 (0.81–2.34)	165	33 060	0.91 (0.63–1.31)
	Ticagrelor	106	14 134		34	3691		42	10 039	
Brady-arrhythmias	Clopidogrel	138	30 159	1.11 (0.80–1.53)	24	6783	1.48 (0.68–3.22)	118	33 393	0.67 (0.40–1.12)
	Ticagrelor	62	14 183		11	3700		19	10 065	
Cardiac arrest	Clopidogrel	91	30 315	0.83 (0.52–1.31)	15	6805	0.74 (0.23–2.35)	55	33 560	0.67 (0.32–1.41)
	Ticagrelor	27	14 220		4	3706		9	10 098	
Heart failure	Clopidogrel	721	28 204	1.01 (0.89–1.16)	99	6364	0.97 (0.66–1.41)	350	31 373	0.82 (0.64–1.06)
	Ticagrelor	373	13 583		44	3575		82	9656	
Acute renal failure	Clopidogrel	83	30 299	1.57 (1.04–2.38)	16	6805	1.87 (1.05–3.43)	75	33 533	0.80 (0.44–1.43)
	Ticagrelor	40	14 224		8	3709		15	10 102	
Acute liver injury	Clopidogrel	3	30 348	1.34 (0.19–9.25)	1	6810	1.17 (0.03–44.50)	0	33 596	NA^c
	Ticagrelor	2	14 248		1	3712		0	10 110	
Dyspnea	Clopidogrel	501	29 761	1.66 (1.44–1.93)	100	6742	1.17 (0.81–1.68)	355	33 066	0.95 (0.74–1.21)
	Ticagrelor	362	13 992		51	3684		90	9996	
Syncope	Clopidogrel	333	29 797	1.10 (0.90–1.35)	56	6873	1.22 (0.75–1.98)	256	33 234	1.02 (0.77–1.37)
	Ticagrelor	162	14 107		29	3696		67	10 042	
Gout	Clopidogrel	85	30 222	1.64 (1.11–2.44)	19	6789	1.62 (0.76–3.45)	95	33 422	1.14 (0.73–1.79)
	Ticagrelor	46	14 204		13	3705		29	10 074	

Abbreviations: CI, confidence interval; GI, gastrointestinal; HR, hazard ratio; NA, not applicable.

^aThe model was adjusted for sex, age, income, education, acetylsalicylic acid use, cardiac therapy, diuretic use, beta blocking agent use, use of agents acting on the renin–angiotensin system, use of lipid-modifying agents, heart failure, percutaneous coronary intervention, acute coronary syndrome, stroke, atrial fibrillation, myocardial infarction, and cerebrovascular disease.

^bStatistically significant, p < 0.05.

^cNo events observed.
Cl: 15.4–18.4) with current clopidogrel use. The incidence of heart failure per 1000 person-years was similar for the two groups (current use—ticagrelor 27.5 [95% CI: 24.7–30.4], clopidogrel 25.6 [95% CI: 23.7–27.5]; past use—ticagrelor 8.5 [95% CI: 6.8–10.5], clopidogrel 11.2 [95% CI: 10.0–12.4]).

For clopidogrel, incidences of all outcomes except pacemaker insertion, acute liver injury, and gout showed a declining pattern when moving from current to recent to past use (Figure 3). For ticagrelor, all outcomes except other bleeding, pacemaker insertion, acute liver injury, and gout showed a declining incidence pattern moving from current to recent to past use.

3.3 Survival analysis of safety outcomes

Comparison of the current use of ticagrelor and clopidogrel showed a statistically significantly increased risk of respiratory bleeding, dyspnea, acute liver failure, and gout with ticagrelor (Table 2). When considering recent use, there were significantly increased risks of gastrointestinal and respiratory bleeding with ticagrelor compared with clopidogrel. No significant differences in risks between the two agents were observed with past use.

4 DISCUSSION

This observational cohort study used data from national Swedish registers to assess comorbidities, concomitant medication use, and incidences of selected safety outcomes in patients in whom ticagrelor or clopidogrel treatment was initiated for the first time following a recent coronary event. The study is an extension of the ticagrelor PASS initiated in 2011. The study population and predefined outcomes were based on approved drug indications and data available at the time. Prescribing patterns of ticagrelor and clopidogrel are likely to have changed in the years since the study. European guidelines published during the study period recommend ticagrelor over clopidogrel for patients with ACS, as do current European and US guidelines. European and US guidelines recommend extension of dual antiplatelet therapy (DAPT) with ticagrelor 60 mg in high-risk patients with a history of MI who have tolerated 12 months of DAPT and who are not at heightened bleeding risk.

As could be expected in a population with cardiovascular disease, the age distribution of ticagrelor and clopidogrel users was skewed towards older age, with a higher proportion of men than women. Not all patients had a recorded MI and/or ACS diagnosis, and some were thus included because of the coronary intervention procedure (PCI or CABG) only. The absence of a diagnosis code of coronary disease may be explained by the use of data from the NPR, which does not cover primary care, although the ACS definition used in this study includes angina pectoris diagnoses in inpatient and outpatient specialized care. At the time the study was conducted clopidogrel had a broader indication than ticagrelor, including stroke, peripheral artery disease, and prevention of thromboembolic events in atrial fibrillation. During the study both drugs were recommended for use in combination with low-dose ASA, but this differed by indication for clopidogrel. Concomitant medications used in this study were dominated by anti-thrombotic agents, low-dose ASA, beta blocking agents, agents acting on the renin–angiotensin system, and lipid-modifying agents for both study drugs. For clopidogrel, these concomitant medications were purchased by about 50%–60% of users within 1 year before the index date; for ticagrelor, these proportions were around 40%–45%.

When considering safety outcomes, we found a declining pattern in the crude incidence of heart failure over current, recent, and past use for both clopidogrel and ticagrelor, and incidences were similar for the two drugs. The crude incidence of dyspnea was higher during current use of ticagrelor than with current use of clopidogrel, and adjusted analyses showed an increased risk of dyspnea with ticagrelor compared with clopidogrel for current use. Dyspnea is a well-known adverse event that was commonly reported in patients receiving ticagrelor in PLATO. Ticagrelor-related dyspnea in PLATO was mostly transient, mild, or moderate in intensity. No differences in pulmonary function parameters were observed between the ticagrelor and clopidogrel groups in the PLATO pulmonary function sub-study.

Our study found no clear difference in the crude incidence of intracranial bleeding, gastrointestinal bleeding, and other bleeding between clopidogrel and ticagrelor groups. The crude incidence of respiratory bleeding was higher with ticagrelor than with clopidogrel. Respiratory bleeding was dominated by epistaxis (between 83–93%) for both drugs and for all periods of use. Adjusted analyses found an increased risk of respiratory bleeding (mostly epistaxis) with ticagrelor compared with clopidogrel for current and recent use.

Our results demonstrated that crude incidences of pacemaker insertion, bradycardias, cardiac arrest, acute renal failure, acute liver injury, syncope, and gout in current users of ticagrelor were comparable to those in current users of clopidogrel. When comparing current use of ticagrelor with clopidogrel, adjusted analysis found an increased risk of acute renal failure and gout. Gout, dyspnea and respiratory bleedings are clinical events that are obvious. On the other hand, hyperuricemia or renal function need to be monitored if there is a suspicion of an elevated risk of gout or renal failure. Potential mechanisms for an increased risk of renal failure and dyspnea might be a drug interaction between angiotensin receptor blockers and ticagrelor. Moreover, ticagrelor is metabolized through the kidneys, which may influence renal function and the uptake/secretion of uric acid leading to gout. For the treating physician, the observed safety signals may be considered before deciding between ticagrelor and clopidogrel in patients with elevated risk for these outcomes. Randomized trials imply no need for update of clinical guidelines, for example, in PLATO, the slight increase in serum levels of creatinine and uric acid for ticagrelor as compared with clopidogrel resolved after the end of treatment. Reports of gout did not differ between treatment groups in PLATO. In two other large randomized trials, gout occurred more commonly with ticagrelor than with placebo, but
there was no noticeable difference between ticagrelor and placebo in rates of renal adverse events or renal impairment.33,34 Future observational research on antiplatelet agents should include longer follow-up and more patients and focus on a wide range of adverse events. The research should be planned to be able to confirm or refute the findings of the current study.

4.1 | Strengths and limitations

The major strength of this study is the use of Swedish national registers, covering the total population and allowing inclusion of all patients taking ticagrelor and clopidogrel in Sweden, mirroring actual clinical use of the drugs. No exclusion criteria other than at least 0.5 years of database coverage prior to initiation of study drug treatment were applied.

A limitation is that the diagnoses covered only hospital care: although both inpatient and outpatient data were included, diagnoses from primary care were absent from this study. In addition, we could only assess the use of P2Y\textsubscript{12} receptor antagonists and concomitant medications in the outpatient setting because the PDR holds only community pharmacy dispensing data; patients administered P2Y\textsubscript{12} receptor antagonists or concomitant medications in hospital alone were not captured. The indication for therapy is not captured in the data employed, so a medical history of MI, ACS, PCI, or CABG was used as a proxy for indication. Also, when comparing a new drug, ticagrelor, to an established drug, clopidogrel, differences between the two study cohorts may affect the results. To illustrate any differences, we estimated hazard ratios for all bleeding events also in subgroups by age, renal function, diabetes and multiple comorbidities (see Table S5). Furthermore, the exact date of treatment discontinuation was not known, and the duration of therapy was estimated based on the amount of drug dispensed due to non-available information on prescribed dose. The defined daily dose was in this study chosen for calculation of treatment duration since on average it is correct, with few patients deviating from the once/twice daily recommendation. Also, adherence was unknown, but we believe that it does not differ between the two study drugs. Moreover, treatment episodes continuing beyond the end of follow-up were cut short. Finally, residual confounding may occur in the adjusted analyses presented.

5 | CONCLUSIONS

Patients taking clopidogrel were older and had a higher prevalence of concomitant medication use than those taking ticagrelor. Our study showed an elevated risk of dyspnea for current ticagrelor users compared with clopidogrel users. We also found an elevated risk of respiratory bleeding (mainly epistaxis) with current and recent use of ticagrelor. Furthermore, the results of adjusted analyses suggest a higher risk of gout and acute renal failure among current ticagrelor users compared with clopidogrel users.

ACKNOWLEDGMENTS

This study was funded by AstraZeneca. The authors acknowledge the input of Saga Johansson (a former employee of AstraZeneca Gothenburg, Mölndal, Sweden), and Jie Mei, Marianne Jahreskog, and Karolina Andersson Sundell (all AstraZeneca). Editorial support was provided by Anja Becher, PhD, and Nesta Hughes, PhD, of Oxford PharmaGenesis, Oxford, UK, funded by AstraZeneca.

CONFLICT OF INTEREST

M.L. is an employee of the Centre for Pharmacoepidemiology, Karolinska Institutet, which receives grants from several entities (pharmaceutical companies, regulatory authorities, and contract research organizations), including AstraZeneca, for performance of drug safety and drug utilization studies. M.A. was an employee at the Centre for Pharmacoepidemiology, Karolinska Institutet at the time the study was conducted. Morten Andersen reports grants from AstraZeneca, Novartis, Pfizer, Janssen, H. Lundbeck & Mertz, and the Novo Nordisk Foundation (NNF15SA0018404) outside the submitted work, and personal fees from Atrium and the Danish Pharmaceutical Industry Association for leading and teaching pharmacoepidemiology courses.

ETHICS STATEMENT

The study was approved by the Ethical Review Board at Karolinska Institutet, Stockholm (reference number 2013/1:11).

AUTHOR CONTRIBUTIONS

Marie Linder made substantial contributions to the conception and design of the study, the acquisition of data, and the interpretation of data, as well as carrying out the statistical analysis and drafting the paper. Morten Andersen contributed to the design of the study, the interpretation of the results, and writing and revision of the paper. Both authors have given final approval for the article to be published and agree to be accountable for all aspects of the work.

ORCID

Marie Linder https://orcid.org/0000-0003-2619-2189

REFERENCES

1. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64(24):e139-e228.

2. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119-177.

3. Roffi M, Patrono C, Collet JP, et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267-315.
4. Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). *Eur Heart J.* 2014;35(37):2541-2619.

5. Järemo P, Lindahl TL, Fransson SG, Richter A. Individual variations of platelet inhibition after loading doses of clopidogrel. *J Intern Med.* 2002;252(3):233-238.

6. Storey RF, Angiolillo DJ, Patil SB, et al. Inhibitory effects of ticagrelor compared with clopidogrel on platelet function in patients with acute coronary syndromes: the PLATO (PLATElet inhibition and patient outcomes) PLATELET substudy. *J Am Coll Cardiol.* 2010;56(18):1456-1462.

7. Husted S, Emanuellson H, Heptinstall S, Sandset PM, Wikens M, Peters G. Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. *Eur Heart J.* 2006;27(9):1038-1047.

8. Storey RF, Husted S, Harrington RA, et al. Inhibition of platelet aggregation by AZD6140, a reversible oral P2Y12 receptor antagonist, compared with clopidogrel in patients with acute coronary syndromes. *J Am Coll Cardiol.* 2007;50(19):1852-1856.

9. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. *N Engl J Med.* 2009;361(11):1045-1057.

10. Sahlen A, Varenhorst C, Lagerqvist B, et al. Contemporary use of ticagrelor or clopidogrel in Sweden: experiences from SWEDHEART registry. *Eur Heart J Cardiov. Pharmacother.* 2016;2(1):5-12.

11. Sahlen A, Varenhorst C, Lagerqvist B, et al. Outcomes in patients treated with ticagrelor or clopidogrel after acute myocardial infarction: experiences from SWEDHEART registry. *Eur Heart J.* 2016;37(44):3335-3342.

12. Petri H, Urquhart J. Channeling bias in the interpretation of drug effects. *Stat Med.* 1991;10(4):577-591.

13. European Medicines Agency (EMA). The European Union electronic Register of Post- authorisation Studies (EU PAS Register). European Medicines Agency; 2020. Accessed November 2, 2020. http://www.encepp.eu/encepp/studiesDatabase.jsp.

14. Goyal RK, Srivastava D, Lessnau KD. Clopidogrel-induced hepatocellular injury and cholestatic jaundice in an elderly patient: case report and review of the literature. *Pharmacotherapy.* 2009;29(5):608-612.

15. Wettermark B, Hammar N, Fored CM, et al. The New Swedish prescribed drug register—opportunities for pharmacoepidemiological research and experience from the first six months. *Pharmacoepidemiol Drug Saf.* 2007;16(7):726-735.

16. WHO Collaborating Centre for Drug Statistics Methodology and Norwegian Institute of Public Health. ATC/DDD index. WHO; 2020. Accessed November 2, 2020. https://www.whocc.no/atc_ddd_index/.

17. Ludvigsson JF, Andersson E, Ekborn A, et al. External review and validation of the Swedish national inpatient register. *BMC Public Health.* 2011;11:450.

18. Hammar N, Alfredsson L, Rosen M, Spetz CL, Kahan T, Ysberg AS. A national record linkage to study acute myocardial infarction incidence and case fatality in Sweden. *Int J Epidemiol.* 2001;30(Suppl 1):S30-S34.

19. Lindblad U, Rastam L, Ranstam J, Peterson M. Validity of register data on acute myocardial infarction and acute stroke: the Skaraborg hypertension project. *Scand J Soc Med.* 1993;21(1):3-9.

20. Linnessjo A, Hammar N, Gustavsson A, Reuterwall C. Recent time trends in acute myocardial infarction in Stockholm, Sweden. *Int J Cardiol.* 2000;76(1):17-21.

21. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis.* 1987;40(5):373-383.

22. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. *Med Care.* 2005;43(11):1130-1139.

23. Hamm CW, Bassand JP, Agewall S, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). *Eur Heart J.* 2011;32(23):2999-3054.

24. Steg PG, James SK, Atar D, et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. *Eur Heart J.* 2012;33(20):2569-2619.

25. Levine GN, Bates ER, Bittl JA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on periprocedural cardiovascular evaluation and management of patients undergoing noncardiac surgery. *Circulation.* 2016;134(10):e123-e155.

26. Valgimigli M, Bueno H, Byrne RA, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the task force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). *Eur Heart J.* 2018;39(3):210-260.

27. Knutsi J, Wijns W, Saraste A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. *Eur Heart J.* 2020;41(3):407-477.

28. Swedish Summary of Product Characteristics. Accessed at the Online List of Pharmaceuticals in Sweden. Lif Service AB (Lif); 2020. Accessed November 2, 2020. www.fass.se.

29. Storey RF, Becker RC, Harrington RA, et al. Characterization of dyspnea in PLATO study patients treated with ticagrelor or clopidogrel and its association with clinical outcomes. *Eur Heart J.* 2011;32(23):2945-2953.

30. Storey RF, Becker RC, Harrington RA, et al. Pulmonary function in patients with acute coronary syndrome treated with ticagrelor or clopidogrel (from the Platelet Inhibition and Patient Outcomes [PLATO] pulmonary function substudy). Am J Cardiol. 2011;108(11):1542-1546.

31. DiNicotantonio JJ, Serebruany VL. Angiotensin receptor blockers worsen renal function and dyspnea on ticagrelor: a potential ticagrelor-angiotensin receptor blocker interaction? *Clin Cardiol.* 2012;35(11):647-648.

32. Zhang N, Zhang Z, Yang Y, Xu Y, Li G, Liu T. Ticagrelor-related gout: an underestimated side effect. *Int J Cardiol.* 2015;192:11-13.

33. Bonaca MP, Bhatt DL, Cohen M, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. *N Engl J Med.* 2015;372(19):1791-1800.
34. Steg PG, Bhatt DL, Simon T, et al. Ticagrelor in patients with stable coronary disease and diabetes. *N Engl J Med*. 2019;381(14):1309-1320.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher's website.

How to cite this article: Linder M, Andersen M. Patient characteristics and safety outcomes in new users of ticagrelor and clopidogrel—An observational cohort study in Sweden. *Pharmacoepidemiol Drug Saf*. 2022;31(2):235-246. doi:10.1002/pds.5387