Future changes in precipitation extremes over Southeast Asia: insights from CMIP6 multi-model ensemble

Fei Ge1,2,3, Shoupeng Zhu1,3, Haolin Luo1, Xiefei Zhi1,3 and Hao Wang4

1 School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu, People’s Republic of China
2 Key Laboratory of Meteorological Disasters, Ministry of Education/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, People’s Republic of China
3 Weather Online Institute of Meteorological Applications, Wuxi, People’s Republic of China
4 College of Atmospheric Sounding, Chengdu University of Information Technology, Chengdu, People’s Republic of China

E-mail: spzhu@nuist.edu.cn

Keywords: Southeast Asia, CMIP6, precipitation extremes

Abstract
Past assessments of coupled climate models have indicated that precipitation extremes are expected to intensify over Southeast Asia (SEA) under the global warming. Here, we use outputs from 15 climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to evaluate projected changes in precipitation extremes for SEA at the end of the 21st century. The results suggest that CMIP6 multi-model ensemble medians show better performances in characterizing precipitation extremes than individual models. Projected changes in precipitation extremes linked to rising greenhouse gas (GHG) emissions (represented by the latest proposed Shared Socioeconomic Pathways) increase significantly over the Indochina Peninsula and the Maritime Continent. Substantial changes in the number of very heavy precipitation days (R20mm) and the intensity of daily precipitation (SDII) indicate that such locally heavy rainfall is likely to occur over a short time and that more precipitation extremes over SEA are probable in a warmer future. This is consistent with projections from the Coordinated Regional Downscaling Experiment and CMIP5 models. The present study reveals the high sensitivity of the precipitation extremes over SEA, and highlights the importance of constrained anthropogenic GHG emissions in an ambitious mitigation scenario.

1. Introduction
How fast is too fast? The global mean temperature in 2019 was around 1.1 ± 0.1 °C above pre-industrial levels, which may have been the second warmest year on record (WMO 2019). Latest reports confirm that the global mean temperature is warming at a rate of 0.1 °C–0.3 °C per decade. Restricting global warming to below 2 °C (or the preferred lower limit of 1.5 °C) is the committed target of the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement (UNFCCC 2015). To achieve this ambitious target under current anthropogenic greenhouse gas (GHG) emissions seems like a race against time. However, while the present fossil fuel investments and mitigation strategies do not support the strategy to keep global warming below 1.5 °C, the coronavirus disease 2019 (COVID-19) pandemic has dramatically led to a temporary reduction of both GHG emissions and air pollutants around the world since February 2020 (Smith et al 2019, Forster et al 2020, Le Queré et al 2020). Despite this, looking ahead, the global cooling response to the pandemic is likely to be sudden and small, and would not drastically alter future increases in climate extremes.

It has been well demonstrated that the current rapid global warming has tended to intensify precipitation extremes in tropical regions through changes in atmospheric water vapor content, circulation patterns, and moisture supply, which in turn significantly influence natural ecosystems, water management, and agriculture in less-developed countries (Allen and Ingram 2002, Zhou et al 2005, Held and Soden 2006, Vecchi et al 2006, Hulme 2016, Marotzke et al 2017, Sillmann et al 2017, Chen and Sun 2018, Nikulin et al 2018). Southeast Asia (SEA), an area characterized by a large coastal population in complex terrains, is generally considered to be one of the...
hot spots of global warming (IPCC 2013). SEA has already suffered from intensified climate extremes with increased occurrences of widespread flooding and drought during the past decades, events that are likely to continue in the future (IPCC 2014, Villafuerte and Matsumoto 2015, Tangang et al 2019, 2020, Supari et al 2020, Zhu et al 2020b). Interannual and interdecadal variations of climate in SEA have a significant relationship with the El Niño/Southern Oscillation (ENSO, Manton et al 2001, Wang et al 2001, Mcbride et al 2003; Takahashi and Yasunari 2008, Zhou et al 2011, Ge et al 2017) and the Asian–Australian monsoon regime (He et al 1997, Webster et al 1998, Lau et al 2000, Wang et al 2000, Zhu 2018). Simulating the past and present climate over SEA is therefore a scientific challenge. It is also crucial for providing information on future changes in precipitation extremes that can be used by local governments to implement adaptation and mitigation.

Reliable projections are of great importance in projecting future climate change. The Coupled Model Intercomparison Project Phase 6 (CMIP6) uses the new scenarios, named Shared Socioeconomic Pathways (SSP), which are combined with the Representative Concentration Pathways (RCP) of CMIP5 (Eyring et al 2016). These new combinations enable several ways to examine the future projected changes in precipitation extremes over SEA. Current state-of-art climate models are more robust than previous CMIP ensembles and have shown the effective improvements in reproducing large-scale patterns of climate variables (Akisanola et al 2020; Gausain et al 2020, Ha et al 2020, Jiang et al 2020, Wang et al 2020, Zhai et al 2020, Chen et al 2020). However, to the best of our knowledge, there is still a lack of information regarding the projections of SEA precipitation extremes under the new CMIP6 scenarios. In this study, we aim to provide a comprehensive picture of the changing magnitude of precipitation extremes over SEA, and also to address the following questions: (a) How do the CMIP6 multi-models perform in simulating precipitation extremes over SEA? (b) What are the dominant roles of the projected precipitation extremes under CMIP6 scenarios in the long-term future?

2. Data and methods

2.1. Simulation data from the CMIP6 archive

The daily precipitation data are obtained from 15 CMIP6 model ensembles (table 1) for the first realization that are available at the time of initializing this study (up to August 2020). The future changes in precipitation extremes are projected under four SSP scenarios. For CMIP6, the four SSPs are categorized as SSP1-2.6 (sustainability), SSP2-4.5 (middle-of-the-road), SSP3-7.0 (regional rivalry) and SSP5-8.5 (fossil-fueled development) (O’Neill et al 2016). The historical simulations for the reference period of 1985–2014 are used in this study, while a future period of 2071–2100 is selected for the analysis of climate projection. The model outputs are interpolated to a regular geographical grid of 1° × 1°, consistent with the observational precipitation dataset introduced in the following subsection.

2.2. Observational data and index representation of extremes

The daily gridded precipitation data from the Southeast Asian Climate Assessment and Dataset (SACA&D) covering the period of 1981–2017 are used in this study. This high-resolution dataset with a resolution of 1° × 1°, called SA-OBSv2.0, has undergone strict quality control procedures, including data homogenization and time consistency, to improve reliability. SA-OBSv2.0 dataset includes several meteorological variables, such as daily precipitation amount, daily mean temperature, daily maximum temperature and daily minimum temperature. The
daily precipitation series are collected from the meteorological agencies of Australia, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam. Additionally, precipitation series from the Global Historical Climate Network for American Samoa, Fiji, Kiribati, the Federated States of Micronesia, Papua New Guinea, Samoa, and the Solomon Islands are also involved (van den Besselaar et al 2017, Ge et al 2019a). As a result, 1393 rain gauge stations distributed over the whole SEA contribute to derive the SA-OBSv2.0 gridded dataset. We focus on the period of 1985–2014 to match the timescale of the CMIP6 historical runs. The SEA domain is located between 10° S to 23° N and 95° E to 140° E (figure 1) and comprises five subregions: the Indochina Peninsula (ICP; 6° N–23° N, 95° E–110° E), the Philippines (PH; 5° N–20° N, 118° E–130° E), Sumatra (SUM; 8° S–6° N, 95° E–108° E), Kalimantan (KAL; 4° S–6° N, 109° E–118° E) and Sulawesi (SUL; 6° S–3° N, 118° E–126° E).

Following the Expert Team on Climate Change Detection and Indices (ETCCDI, Zhang et al 2011, Sillmann et al 2013a, 2013b), six indices are selected to represent the precipitation extremes, as displayed in table 2. These are Rx1day (maximum consecutive 1 day precipitation), Rx5day (Maximum consecutive 5 day precipitation), SDII (Simple daily intensity), R20mm (very heavy precipitation days), CDD/CWD (Consecutive dry/wet days), PRCPTOT (Total precipitation of wet days) and R95pTOT (Precipitation of very wet days). More detailed information on the indices can be found on the ETCCDI website of http://etccdi.pacificclimate.org/indices.shtml.

2.3. Model performance metrics

The most common method to evaluate a climate model is the quantitative assessment of ‘model-fit’; that is, how well the model results match observation-based data and results of other models or model versions. Here, we use the relative root mean squared error (RMSE’) and signal to noise ratio (SNR) to quantify the empirical accuracy and the robustness of the ensemble results, which have been shown skillful in climate projections and multi-model assessment (Han et al 2018, Ge et al 2019b).

Given the substantial uncertainties of projected changes in precipitation, the RMSE’ used to evaluate the climate simulation capability of each individual CMIP6 model is defined as follows (Gleckler et al 2008, Dong et al 2015). First, the RMSE is calculated for each model index with respect to the SA-OBS observations:

\[\text{RMSE} = \sqrt{(X - Y)^2}. \]

With X being the model climatology of an extreme precipitation index and Y the corresponding index of the observation. All RMSEs are then used to derive the RMSE’ of each model:

\[\text{RMSE}' = \frac{(\text{RMSE} - \text{RMSE}_{\text{Median}})}{\text{RMSE}_{\text{Median}}}. \]
Table 2. List of the used extreme precipitation indices (recommended by the ETCCDI).

Label	Description	Index definition	Units
Rx1day	Maximum consecutive 1 d precipitation	Annual maximum consecutive 1 d precipitation	mm
Rx5day	Maximum consecutive 5 d precipitation	Annual maximum consecutive 5 d precipitation	mm
SDII	Simple daily intensity	The ratio of annual total precipitation to the number of wet days (≥ 1 mm)	mm day$^{-1}$
R20mm	Very heavy precipitation days	Annual count of days when precipitation ≥ 20 mm	days
CWD	Consecutive wet days	Maximum number of consecutive days when precipitation ≥ 1 mm	days
CDD	Consecutive dry days	Maximum number of consecutive days when precipitation <1 mm	days
PRCPTOT	Total precipitation of wet days	Annual total precipitation from days ≥ 1 mm	mm
R95pTOT	Very wet days precipitation	Annual total precipitation from days >95th percentile	mm

where RMSE$_{\text{Median}}$ is the ensemble median of all model RMSEs. Generally, a negative (positive) RMSE’ indicates a better (worse) performance than half (50%) of the models.

To express the credibility of the projection ensemble results, the SNR is defined as follows (Zhu et al. 2020a):

$$\text{SNR} = |x_i| / \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - x_c)^2}$$

where x_i represents the variable or index simulated by an individual model, x_c denotes the corresponding ensemble result, and n is the ensemble size; the numerator and denominator refer to signal and noise, respectively. Therefore, SNR > 1 implies that signal is greater than noise, indicating relatively reliable projections.

3. Results

3.1. CMIP6 model validation

The RMSE’ of individual models in simulating precipitation extremes compared with the SA-OBS observations are summarized in figure 2. The results indicate that models vary considerably in their ability to simulate precipitation extremes. Three models, MPI-ESM1-2-HR, MPI-ESM1-2-LR and UKESM1-0-LL, perform fairly well with mainly negative RMSE’ values for different indices. The latest evaluation is consistent with our results, suggesting the MPI-ESM1-2-HR, MPI-ESM1-2-LR and UKESM1-0-LL could well capture the mean precipitation distributions over the SEA due to the reduced sea surface temperature biases (Pincus and Stevens 2013, Milinski et al. 2016, Müller et al. 2018, Sellar et al. 2019). While FGSOALS-g3 and IPSL-CM6A-LR show relatively weak performances because they overestimate the mean precipitation over the Maritime Continent (Boucher et al. 2020, Li et al. 2020). That is, the simulations are model-dependent and exhibit substantial uncertainty, which confirms the necessity of a model ensemble in investigating the climate simulations and projections.

The RMSE’ of the ensemble medians are shown in the last column of figure 2. The model ensemble median is chosen to represent the deterministic ensemble result rather than the mean value, to avoid results influenced by abnormally large model errors (outliers). It is demonstrated that the ensemble median results perform better than any individual models for all indices, which eliminates the structural model uncertainties to a great extent and so can be considered to reasonably represent the future projections in the study.

3.2. Projected changes in precipitation extremes

Figure 3 presents the projected changes of CMIP6 ensemble medians of precipitation-based indices over SEA during the long-term future at the end of the 21st century (2071–2100). Most of the extreme precipitation indices (i.e. Rx1day, Rx5day, SDII, R20mm and R95pTOT) increase significantly across the ICP and Maritime Continent for all scenarios. However, for the SSP1-2.6 scenario, decreases in CDD are combined with the increases in CWD and SDII over parts of ICP, indicating a generally wetter future in this region. The opposite patterns in CDD and CWD are projected over the Maritime Continent in this scenario, while the other four indices show prominent increases, especially over SUM and KAL. This non-uniform phenomenon suggests the intensification of both wet and dry conditions over SEA, which is consistent with the earlier projected changes in CMIP5 under the RCP 2.6 scenario (Sillmann et al. 2013b). The pronounced increase of total precipitation of wet days (PRCPTOT) is projected over most of SEA under all SSP scenarios. Over some regions of the southern SUM, the projected changes show decreases under
Figure 2. Portrait diagram of relative RMSEs (RMSE') of precipitation extreme indices simulated by CMIP6 models versus the observation data during the period of 1985–2014.

the SP3-7.0, and SSP5-8.5 scenarios, however, the decreasing signals are mostly not significant. This is in agreement with the projected changes for the end of 21st century in the CMIP5 GCMs ensemble, suggesting the decreasing tendency over the southern SUM in total precipitation under both RCP4.5 and RCP8.5 scenarios (Kang et al 2018, Giorgi et al 2019, Supari et al 2020). Reduced PRCPOTOT is consistent with the increased CDD over southern SUM, while indices of extremes frequency (R20mm) and extremes intensity (Rx5day and SDII) show a significant and robust increase over the entire SEA, implying a potential risk of intensified precipitation extremes in natural ecosystems under the accelerated emission scenarios.

Compared with the SSP1-2.6 scenario, more pronounced increases in Rx1day, Rx5day, SDII, R20mm and R95pTOT are projected over all of SEA under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios. In addition, it is noteworthy that spatial patterns of CDD and CWD have gradually extended northward to the ICP from lower- to higher-emission scenarios. Larger high-confidence areas of increasing CDD (decreasing CWD) can be particularly observed under the SSP3-7.0 and SSP5-8.5 scenarios. This spatial evolution implies more heavy and extreme precipitation events (Rx5day, R20mm and SDII) are expected to occur with increased emissions, and extended dry spells (CDD) and shortened wet spells (CWD) could be mainly attributed to enhanced locally heavy rainfall over a short time scale.

Generally, precipitation extremes are becoming more intense over SEA which is supported by future projections from CORDEX climate model ensembles (Ge et al 2019b). This suggests that increases in extreme precipitation are closely related to enhanced tropical convective precipitation, further concentrating rainfall in a very short period over SEA. This would have critical impacts on local water resources, food security, agricultural production etc, especially for those developing countries with large coastal population densities.

3.3. Dominant roles of precipitation extremes in different scenarios

To identify the regional response to the different scenarios, we highlight here the CMIP6 projected percentage changes in precipitation extremes (averaged over the land area within SEA) in figure 4. In general, the CMIP6 models exhibit a distinctly large spread in different scenarios. However, it is notable that the ensemble medians of the index changes are all greater than 0 except CWD, implying increasing trends of precipitation extremes compared with the reference period of 1985–2014.

The most significant increases in R20mm and R95pTOT are projected with magnitudes of 22% and 102% for the SSP5-8.5 scenario (figures 4(a) and (h)), while the ensemble median changes of Rx5day and SDII show consistent increases, with magnitudes of 16% and 11%, respectively (figures 4(b) and (c)). The increasing magnitudes of Rx1day range from 7% (SSP1-2.6) to 21% (SSP5-8.5) and PRCPOTOT shows a similar increase with the magnitude about 4% in SSP1-2.6, SSP2-4.5 and SSP3-7.0 scenarios, but
Figure 3. Projected CMIP6 ensemble median changes in precipitation extreme indices during 2071–2100 under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, relative to the climatology in 1985–2014. The black dots indicate where at least two-thirds of the models agree on the sign of change. All SNRs are greater than 1 over the area.
Figure 4. Projected changes (unit: %) in percentage of precipitation extreme indices (2071–2100 minus 1985–2014). The black line indicates the ensemble median of 15 models over SEA.

is 7% in SSP5-8.5. On the other hand, the projected changes in CDD and CWD are nearly 0 under SSP1-2.6 scenario. However, CDD is projected to increase by 3%, 10% and 8% under the scenarios of SSP2-4.5, SSP3-7.0 and SSP5-8.5, respectively, whereas the CWD is suggested to experience a pronounced decrease by −3% in SSP2-4.5 and by −7% in SSP3-7.0 and SSP5-8.5. In addition, we noticed that the non-uniform spatial patterns in CDD and CWD are projected under the SSP1-2.6 and SSP2-4.5 scenarios. To examine the climate responses to the lower GHG emission scenarios in more regional details, percentage changes of these two indices averaged over each subregion are presented in figure 5. The ensemble median changes in CDD indicate an increase over the PH, SUM and KAL, with magnitudes of 3%, 10% and 8% under the SSP1-2.6 scenario, while CWD shows a slight decrease over the SUM, KAL and SUL by −2%, −1% and −4%, respectively. For projections under the SSP-4.5 or higher emission scenario, CDD indicates consistent increases over the subregions, while it shows the reversed case for CWD. It implies that almost the entire area would be characterized by a moderate change under the lower GHG emissions, suggesting the importance of keeping the sustainability pathway for climate stabilization. By contrast, with the enhanced GHG pathways, the significant increase of R20mm and SDII suggest that wet days become wetter and intensified precipitation events more likely to occur frequently at the end of the 21st century, emphasizing that daily precipitation intensity tends to increase more abruptly than mean precipitation over the land area in SEA under a warmer future.

4. Conclusions and discussion

In this study, we have investigated future changes in precipitation extremes over SEA under four scenarios using current CMIP6 models. The results provide latest information on the climate responses of SEA to different emission scenarios at the end of the 21st century. The major findings are summarized as follows:

(a) Precipitation indices of Rx1day, Rx5day, SDII, R20mm and R95pTOT show consistent increases across the ICP and Maritime Continent under the four CMIP6 scenarios. Changes in annual total precipitation (PRCPTOT) indicate a general increase over SEA, except over the southern SUM under the SSP3-7.0 and SSP5-8.5 scenarios. Projected changes in most of the indices are more significant under higher emissions than under the lower-emission scenarios. On the other hand, the spatial evolution of CDD and CWD reveals that extended dry spells concurrent with shortened wet spells will gradually appear over SEA with rapidly rising emissions.
It is evident that the global mean temperature warming will increase the occurrence of precipitation extremes in the future. The precipitation over SEA is projected to be enhanced, while persistent increases would mainly concentrate on the tropical islands, suggesting the high sensitivity of the precipitation extremes to the GHG emissions. Most of the CMIP6 ensemble models agree with the sign of change, with SNRs all greater than 1, although they exhibit a relatively large spread in precipitation extremes.

The averaged median changes of indices vary considerably under different scenarios over SEA. The most pronounced increases are projected in R20mm and R95pTOT, with magnitudes of 22% and 102% under the SSP5-8.5 scenario, while the changes in CWD are projected to decrease, with the magnitude of −7% in SSP3-7.0 and SSP5-8.5 scenarios. The indices’ evolutions indicate an intense increase in extreme precipitation events over this region in a warmer future.

The SEA climate is strongly affected by the tropical monsoon regime, and has been the subjected of increasing concern due to the high climate stresses of its exposure to global warming. Future projections in monsoon rainfall from CMIP3 to CMIP6 scenarios show its intensification over the Asian region, with a corresponding rise in precipitation extremes, which has many implications for ecological impacts and social risk throughout SEA (Scoccimarro et al 2013, Zhou et al 2014, Qi et al 2016, Zhang et al 2018, Chen et al 2020b, Grose et al 2020, Narsey et al 2020, Scoccimarro and Gualdi 2020). It is very disappointing that limiting warming to 1.5 °C seems to be barely feasible, although in fact the Paris Agreement target remains possible and could be attainable with ambitious and immediate action (Smith et al 2019). Based on our results from CMIP6, we again emphasize the necessity of restricting global warming for the mitigation of climate extremes in the countries in SEA. Further possible efforts should never be ignored and prompting actions would never be untimely.

In addition, any subsequent research should not only be conducted in terms of the frequency and intensity of climate extremes, but should also consider population exposure and local vulnerability (Chen and Sun 2019, Chen et al 2020a). More work remains necessarily to be conducted on comparisons between model ensembles with and without bias correction (Maraun et al 2017, Guo et al 2018, Sun et al 2019). High-resolution convection-permitting models and the new generation of CORDEX experiment design for the dynamical downscaling of CMIP6 are fundamental for quantifying and assessing changes of climatological means, variability and extremes. In conclusion, some evidence has been shown in our present study using the
currently released archive compared with the previous generation, which provides credible findings for regionally relevant climate change projections over SEA. However, we suggest that this result should be further examined as more models are added, since full CMIP6 models will be available in the near future and understanding the response to different global warming threshold is essential for eliminating the uncertainties in SEA climate projections.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://esgf-node.llnl.gov/projects/cmip6/.

Acknowledgments

Two anonymous reviewers are thanked for their constructive comments that greatly improved the quality of the manuscript. We are grateful to Dr Haile Xue and Dr Caiyun Feng for inspiring discussions on the CMIP6 model ensemble. We also acknowledge SACACD, ETCCDI, the German Climate Computing Center (DKRZ), and the climate modeling groups (listed in Table 1) for their data and resources.

Funding information

The National Natural Science Foundation of China (Grant Nos. 41805056 and U20A2097), the Application and Basic Research of Sichuan Department of Science and Technology (Grant No. 2019YJ0316), the Special Funds for the Central Government to Guide Local Technological Development (Grant No. 2020ZYD051).

ORCID iD

Shoupeng Zhu https://orcid.org/0000-0002-4741-1179

References

Akinsanola A A, Kooperman G J, Pendergrass A G, Pendergrass A G and Hannah W M 2020 Seasonal representation of extreme precipitation indices over the United States in CMIP6-present-day simulations Environ. Res. Lett. 15 094003
Allen M R and Ingram W J 2002 Constraints on future changes in the hydrological cycle Nature 419 224–4
Boucher O et al 2020 Presentation and evaluation of the IPSL-CM6A-LR climate model J. Adv. Model. Earth Syst. 12 e2019MS002010
Chen H P and Sun J Q 2018 Projected changes in climate extremes in China in a 1.5 °C warmer world Int. J. Climatol. 38 3607–17
Chen H P and Sun J Q 2019 Increased population exposure to extreme droughts in China due to 0.5 °C of additional warming Environ. Res. Lett. 14 064011
Chen H et al 2020a Increased population exposure to precipitation extremes under future warmer climates Environ. Res. Lett. 15 034048
Chen Z et al 2020b Global land monsoon precipitation changes in CMIP6 projections Geophys. Res. Lett. 47 e2019GL086902
Dong S, Xu Y, Zhou B and Shi Y 2015 Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China Adv. Atmos. Sci. 32 1077–91
Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J and Taylor K E 2016 Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization Geosci. Model Dev. 9 937–1958
Forster P M et al 2020 Current and future global climate impacts resulting from COVID-19 Nat. Clim. Change. 10 913–9
Ge F, Peng T, Fraedrich K, Sielmann F, Zhu X, Zhi X, Liu X, Tang W and Zhao P 2019a Assessment of trends and variability in surface air temperature on multiple high-resolution datasets over the Indochina Peninsula Theor. Appl. Climatol. 135 1609–27
Ge F, Zhi X, Babar Z A, Tang W and Chen P 2017 Interannual variability of summer monsoon precipitation over the Indochina Peninsula in association with ENSO Theor. Appl. Climatol. 128 523–31
Ge F, Zhu S, Peng T, Zhao Y, Sielmann F, Fraedrich K, Zhi X, Liu X, Tang W and Ji L 2019b Risks of precipitation extremes over Southeast Asia: does 1.5 °C or 2 °C global warming make a difference Environ. Res. Lett. 14 044015
Giorgeta C, Raffaele F and Coppola E 2019 The response of precipitation characteristics to global warming from climate projections Earth Syst. Dyn. 10 73–89
Gleckler P J, Taylor K E and Doutriaux C 2008 Performance metrics for climate models J. Geophys. Res. 113 D06104
Grose M R et al 2020 Insights from CMIP6 for Australia’s future climate Earth’s Future e2019EF001469
Guo L, Gao Q, Jiang Z and Li L 2018 Bias correction and projection of surface air temperature in LMDZ multiple simulation over central and eastern China Adv. Clim. Chang. Res. 9 81–92
Gusain A, Ghosh S and Karmakar S 2020 Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall Atmos. Res. 232 104680
Ha K J, Moon S, Timmermann A and Kim D 2020 Future changes of summer monsoon characteristics and evaporation demand over Asia in CMIP6 simulations Geophys. Res. Lett. 47 e2020GL087492
Han T, Chen H, Hao X and Wang H 2018 Projected changes in temperature and precipitation extremes over the silk road economic belt regions by the coupled model intercomparison project phase 5 multi-model ensembles Int. J. Climatol. 38 4077–91
He H, Megnims J W, Song Z and Yanai M 1987 Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau Mon. Weather Rev. 115 1966–94
Held I M and Soden B J 2006 Robust responses of the hydrological cycle to global warming J. Clim. 19 5686–99
Hulme M 2016 1.5 °C and climate research after the Paris agreement Nat. Clim. Change 6 222–4
IPCC 2013 Summary for policymakers Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)
IPCC 2014 Climate change 2014: impacts, adaptation, and vulnerability Part B: regional aspects Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)
Jiang J, Zhou T J, Chen X L and Zhang L 2020 Future changes in precipitation over Central Asia based on CMIP6 projections Environ. Res. Lett. 15 034009
Kang S, Im E-S and Eltahir E A 2018 Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent Clim. Dyn. 52 747–64
Lau K M, Kim K M and Yang S 2000 Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon J. Clim. 13 2461–82
Le Quéré C et al 2020 Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement Nat. Clim. Change 10 647–53
Li L et al 2020 The flexible global ocean-atmosphere-land system model grid-point version 3 (goals-g3): description and evaluation J. Adv. Model. Earth Syst. 12 e2019MS002012
Manton M J et al 2001 Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific. 1961-1998 Int. J. Climatol. 21 269–84
Marau D et al 2017 Towards process-informed bias correction of climate change simulations Nat. Clim. Change 7 764–73
Marotzke J et al 2017 Climate research must sharpen its view Nat. Clim. Change 7 89–91
Matsumoto J 1992 The seasonal changes in Asian and Australian monsoon regions J. Meteorol. Soc. Japan 70 13–32
Mcbride J L, Haylock M R and Nicholls N 2003 Relationships between the Maritime Continent heat source and the El Niño–Southern Oscillation phenomena J. Clim. 16 2903–10
Milinski S, Bader J, Haak H, Siongco A C and Jungclaus J H 2016 Atmospheric circulation due to anthropogenic forcing J. Clim. 28 1905–19
Müller W et al 2018 A higher-resolution version of the Max Planck institute earth system model (MPI-ESM1. 2-HR) J. Adv. Model. Earth Syst. 10 1383–413
Narsey S Y, Brown J R and Colman R A 2020 Climate change projections for the Australian monsoon from CMIP6 models Geophys. Res. Lett. 47 e2019GL088816
Nikalaj G et al 2018 The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble Environ. Res. Lett. 13 065003
O’Neill B C et al 2016 The scenario model intercomparison project (ScenarioMIP) for CMIP6 Geosci. Model. Dev. 9 3461–82
Pincus R and Stevens B 2013 Path to accuracy for radiation parameterizations in atmospheric models J. Adv. Model. Earth Syst. 5 225–33
Qi W, Zhang C, Fu G, Sweetapple C and Zhou H 2016 Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations Hydrol. Earth Syst. Sci. 20 903–20
Scoccimarro E and Gualdi S 2020 Heavy daily precipitation events in the CMIP6 worst-case scenario: projected twenty-first-century changes J. Clim. 33 7631–42
Scoccimarro E, Gualdi S, Bellucci A, Zampieri M and Navarra A 2013 Heavy precipitation events in a warmer climate: results from CMIP5 models J. Clim. 26 7902–11
Sellar A et al 2019 UKESM1: description and evaluation of the U.K. Earth system model J. Adv. Model. Earth Syst. 11 4513–58
Sillmann J et al 2017 Slow and fast responses of mean and extreme precipitation to different forcing in CMIP5 simulations Geophys. Res. Lett. 44 6383–90
Sillmann J, Kharin V V, Zhang X, Zwiers F W and Bronaugh D 2013a Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate J. Geophys. Res. 118 1716–33
Sillmann J, Kharin V V, Zwiers F W, Zhang X and Bronaugh D 2013b Climate extremes indices in the CMIP5 multimodel ensemble part 2. Future climate projections J. Geophys. Res. 118 2473–93
Smith C, Forster P M, Allen M R, Fuglestvedt J, Millar R J, Rogelj J and Zickfeld K 2019 Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming Nat. Commun. 10 101
Sun C, Jiang Z, Li W, Hou Q and Li L 2019 Changes in extreme temperature over China when global warming stabilized at 1.5 °C and 2.0 °C Sci. Rep. 9 14982
Suparti T F et al 2020 Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations Environ. Res. 184 109350
Takahashi H G and Yasunari T 2008 Decreasing trend in rainfall over Indochina during the late summer monsoon: impact of tropical cyclones J. Meteorol. Soc. Japan 86 429–38
Tangang F et al 2019 Projected future changes in mean precipitation over Thailand based on multi-model regional climate simulations of CORDEX Southeast Asia Int. J. Climatol. 39 5413–51
Tangang F et al 2020 Projected future changes in rainfall in Southeast Asia based on CORDEX-SEA multi-model simulations Clim. Dyn. 55 1247–67
UNFCCC 2015 Adoption of the Paris Agreement I: Proposal by the President (Draft Decision) (Geneva: United Nations Office) vol 532
van den Besselaar E J M, van der Schrier G, Cornes R C, Iqbal A S and Klein Tank A M G 2017 SA-OBs: a daily gridded surface temperature and precipitation dataset for Southeast Asia J. Clim. 30 5151–65
Vecchi G A, Soden B J, Wittenberg A T, Held I M, Leetmaa A and Harrison M J 2006 Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing Nature 441 73–76
Villarini G and Matsumoto J 2015 Significant influences of global mean temperature and ENSO on extreme rainfall in Southeast Asia J. Clim. 28 1905–19
Wang B, Jin C H and Liu J 2020 Understanding future change of global monsoons projected by CMIP6 models J. Clim. 15 6471–89
Wang B, Wu R and Fu X 2000 Pacific-Paciﬁc-East Asian teleconnection: how does ENSO affect East Asian climate? J. Clim. 14 1517–36
Wang B, Wu R and Lau K M 2001 Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Paciﬁc-East Asian monsoons J. Clim. 14 4073–90
Webster P J et al 1998 Monsoons: processes, predictability, and the prospects for prediction J. Geophys. Res. 103 14451–510
WMO 2019 WMO statement on the state of the global climate in 2019 WMO-No. 1248 6–11
Zhai J Q et al 2020 Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia Atmos. Res. 246 10511
Zhai P M, Zhang X B and Pan X H 2005 Trends in total precipitation and frequency of daily precipitation extremes over China J. Clim. 18 1096–108
Zhang W X, Zhou T J, Zou I W, Zhang L and Chen X 2018 Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions Nat. Commun. 9 3153
Zhang X B et al 2011 Indices for monitoring changes in extremes based on daily temperature and precipitation data Wiley Interdiscip. Rev. Clim. Change 2 851–70
Zhou B T, Wen Q H, Xu Y, Song L and Zhang X 2014 Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles J. Clim. 27 6591–611
Zhou T J, Hsu H H and Matsumoto J 2011 Summer monsoons in East Asia, Indochina, and the western North Paciﬁc The Global Monsoon System: Research and Forecast 2nd ed C-P Chang et al (Singapore: World Scientiﬁc) pp 43–72
Zhu S P, Ge F, Fan Y, Zhang L, Sielmann F, Fraedrich K and Zhi X 2020a Reducing exposure to extreme precipitation from 0.5 °C warming in global land monsoon regions Nat. Commun. 5 3153
Zhang X et al 2020b The flexible global ocean-atmosphere-land system model grid-point version 3 (goals-g3): description and evaluation J. Adv. Model. Earth Syst. 12 e2019MS002012
Zhou T J, Hsu H H and Matsumoto J 2011 Summer monsoons in East Asia, Indochina, and the western North Pacific The Global Monsoon System: Research and Forecast 2nd ed C-P Chang et al (Singapore: World Scientiﬁc) pp 43–72
Zhu S P, Ge F, Sielmann F, Pan M, Fraedrich K, Remedio A R C, Sein D V, Jacob D, Wang H and Zhi X 2020b Seasonal temperature response over the Indochina Peninsula to a worst-case high emission forcing: a study with the regionally coupled model ROM Theor. Appl. Climatol. 142 613–22
Zhu Z 2018 Breakdown of the relationship between Australian summer rainfall and ENSO caused by tropical Indian Ocean SST warming J. Clim. 31 2321–36