PVT and Vapor Pressure Measurements on Ethane*

G. C. Straty and R. Tsumura**

Institute for Basic Standards, National Bureau of Standards, Boulder, Colorado 80302

(October 15, 1975)

New measurements of the vapor pressures and PVT properties of ethane are reported. PVT determinations have been made from near the triple point to 320 K at pressures to 33 MPa. The density range investigated extends to more than three times the critical density. The new measurements of the vapor pressures of ethane extend from 160 K to near the critical point.

Key words: Density; ethane; vapor pressure; PVT.

1. Introduction

Liquefied fuel gases, such as LNG, are expected to play an increasing role in satisfying future energy requirements. Accurate thermophysical properties data for these liquefied gas mixtures are necessary for the design of liquefaction plants, transport equipment, shipping and receiving terminals, and for custody transfer. The near infinite variations in mixture compositions encountered with these fuel gases rule out completely experimental or strictly computational approaches for determining these properties. Calculation methods, based on accurate, wide range pure component data and selected mixtures data are being developed in a number of laboratories, and appear to offer the only reliable and economical approach for the generation of the necessary thermophysical properties.

This paper reports new measurements of vapor pressures and PVT properties of pure ethane. The measurements have been made as part of a comprehensive program to provide the required experimental data and to develop suitable calculation techniques for mixture properties determinations. PVT measurements have been made from near the triple point (90.348 K) [1] to 320 K at pressures up to 33 MPa. The density range extends to more than three times the critical density. The new measurements of the vapor pressures extend from 160 K to near the critical temperature (305 K).

2. Experimental Detail

To measure single-phase densities, the gas expansion technique was used. A series of pressure-temperature observations are made on a nearly constant density sample of fluid confined in a cell of accurately calibrated volume. When either the maximum pressure or maximum temperature is reached, the fluid is expanded, to low pressure, into large calibrated volumes maintained at an accurately known temperature above room temperature. The density can then be determined from the cell volume and the compressibility factor \((PV/RT)\) of the ethane at the conditions of the expansion volumes.

The ethane used was commercially available research grade with specified minimum purity of 99.98 percent. This purity was verified by chromatographic analysis. Temperatures were measured on the IPTS (1968) with a platinum resistance thermometer calibrated by the National Bureau of Standards. Pressures above about 3 MPa were measured by referencing to oil pressures derived from an oil dead weight gauge accurate to within 0.015 percent. Lower pressures were measured with a precision fused quartz bourdon tube gauge which had been previously calibrated against an air dead weight gauge accurate to within 0.01 percent. The apparatus and procedures were similar to those used previously in this laboratory for measurements on several other cryogenic fluids [2–5] and have been described in detail [6–8]. Slight modification to existing apparatus was necessary because of the higher critical temperature of ethane. Those external parts of the system which contained fluid during a measurement were heated to well above the critical temperature (typically 330 K) in order to reduce the relative density of the fluid residing in these parts, permitting a more accurate adjusted density to be computed.

*This work was carried out at the National Bureau of Standards under the sponsorship of the American Gas Association, Inc.

**Consejo Nacional De Ciencia Y Tecnologia (CONACYT) Mexico City. Currently a guest worker with the Cryogenics Division, National Bureau of Standards, Institute for Basic Standards.

Figures in brackets indicate the literature references at the end of this paper.
3. Results

With the techniques used here, each experimental PVT "run" consists of a number of pressure-temperature observations lying along a near-isochoric path. About 50 such runs were made covering a density range of from about 1.5 to over 21.5 mol/l. Each run consisted of from 5 to 16 PVT points, depending on the density. Measurements were always made at fixed temperatures to permit direct analysis in terms of isotherms. A total of over 450 PVT data points was determined. These data are tabulated along isotherms in table 1.

Table 1. PVT data for ethane

T (K)	P (MPa)	ρ (mol/l)	T (K)	P (MPa)	ρ (mol/l)	T (K)	P (MPa)	ρ (mol/l)	T (K)	P (MPa)	ρ (mol/l)
92.00	0.7928	21.629	112.00	1.1911	20.911	130.00	2.9285	20.287	156.00	5.5978	19.369
93.00	8.7870	21.682	114.00	3.8739	20.882	132.00	5.4980	20.254	160.00	0.4675	19.091
94.00	3.5870	21.599	116.00	1.9636	20.776	134.00	1.3689	20.030	168.00	1.7297	18.817
96.00	6.3091	21.555	118.00	8.0478	20.791	136.00	3.7831	20.008	172.00	1.2449	18.650
98.00	8.1853	21.503	120.00	1.2747	20.621	138.00	3.1243	20.144	176.00	3.1073	18.488
100.00	1.7991	21.348	122.00	3.8664	20.592	140.00	6.0574	19.972	180.00	5.8267	18.620
102.00	11.3755	21.468	124.00	6.2436	20.553	142.00	3.1909	20.400	184.00	0.5247	18.295
104.00	23.8694	21.613	126.00	11.6827	20.627	144.00	0.9387	19.722	188.00	4.9583	18.442
106.00	1.1828	21.198	128.00	18.0492	20.724	146.00	9.8460	19.890	192.00	8.2782	18.525
108.00	6.9584	21.269	130.00	27.7606	20.863	148.00	22.1094	20.107	196.00	13.3001	18.655
	19.9098	21.434	132.00	7.9236	20.505	150.00	5.4489	19.667	200.00	22.2633	18.876
	33.1959	21.594	134.00	21.9553	20.712	152.00	15.7717	19.856	204.00	36.7092	19.189
	28.5382	21.603	136.00	31.8410	20.855	154.00	28.9678	20.091	208.00	31.0365	19.201
	24.4329	21.422	138.00	29.0045	21.412	156.00	33.5810	20.847	212.00	33.5810	19.201
T (K)	P (MPa)	\(\rho\) (mol/I)	T (K)	P (MPa)	\(\rho\) (mol/I)	T (K)	P (MPa)	\(\rho\) (mol/I)	T (K)	P (MPa)	\(\rho\) (mol/I)
-------	--------	-----------------	-------	--------	-----------------	-------	--------	-----------------	-------	--------	-----------------
188.00	1.9817	18.021	216.00	2.0143	16.798	244.00	3.6366	15.487	268.00	3.0548	13.884
192.00	0.9865	17.815	220.00	1.4301	16.567	248.00	1.7380	15.078			
196.00	0.4943	17.619	224.00	5.9925	15.449	272.00	2.0844	1.243			
200.00	0.6801	17.445	228.00	5.9925	15.449	276.00	3.2684	13.256			
204.00	3.7760	17.111	232.00	3.7062	14.790						
208.00	0.5897	17.079	236.00	3.7062	14.790						
212.00	3.4269	17.048	240.00	2.4038	14.085						
216.00	9.6570	17.293	244.00	4.6766	14.389						
220.00	13.3583	17.434	248.00	7.6561	14.705						
224.00	18.6673	17.619	252.00	10.2212	14.275						
228.00	24.9088	17.819	256.00	12.2367	17.866						
232.00	32.8419	18.051	260.00	10.2212	14.275						
236.00	0.5897	17.079	264.00	10.2212	14.275						
240.00	3.4269	17.048	268.00	10.2212	14.275						

Table 1. PVT data for ethane—Continued
Although comparison with data from other sources is, in general, impossible without multiple interpolations, the agreement has been deduced by examining the density deviations of the various data sets [9, 10] from densities calculated from an equation of state for ethane due to Goodwin [11]. The agreement is found to be, in general, within the combined experimental error. Maximum difference occur in the critical region where the equation of state representation is expected to be less satisfactory and where the experimental densities are subject to increasing uncertainty. Estimated uncertainty in the experimental densities in this work is typically ±0.1 percent at the lowest temperatures, increasing to ±0.2 percent at higher temperatures and lower densities, becoming as much as ±1.0 percent in the critical region.

New vapor pressure measurements also have been made at 5 K intervals from 160 to 300 K and are given in Table 2. At each temperature, the pressure was measured at least twice with some ethane being removed from the cell between measurements. Identical pressure observations indicated that the two-phase condition existed in the cell.

A vapor pressure equation of the form

\[\ln(P/P_o) = A_s + B_x^2 + C_x^3 + D_x^4 + E_x(1 - x)^{3/2} \]

was fit to all available data for ethane [12]. Here, \(x = (1 - T/T_c)/(1 - T/T_c) \), and \(P \) and \(T \) are the pressure and temperature and \(t \) and \(c \) refer to the triple and critical points. Coefficients giving the best fit were found to be the following:

Table 1. PVT data for ethane—Continued

\(P \) (MPa)	\(\rho \) (mol/l)	\(P \) (MPa)	\(\rho \) (mol/l)	\(P \) (MPa)	\(\rho \) (mol/l)		
\(T = 288.00 \) K	\(T = 300.00 \) K	\(T = 308.00 \) K	\(T = 316.00 \) K				
2.2951	1.239	2.4492	1.237	2.5499	1.236	2.6491	1.235
3.8547	1.955	4.0309	2.875	4.3236	2.871	4.6083	2.866
3.9706	1.2194	4.6932	10.611	4.9341	4.321	5.4200	4.312
5.8026	12.745	5.3970	11.196	5.1434	6.530	5.9358	6.513
7.7971	13.160	5.9485	11.485	5.3872	9.086	6.6610	9.054
10.1657	13.540	7.6275	12.109	5.6969	9.775	7.7129	9.732
11.6682	13.735	9.8845	12.652	6.2111	10.280	7.8532	10.229
13.2063	13.920	12.4490	14.285	6.4452	10.574	8.1986	10.522
16.2439	14.237	12.4489	14.104	7.3779	11.142	9.3878	11.099
20.3477	14.607	15.3377	16.504	8.0852	13.424	10.1982	11.390
24.0580	14.863	17.0906	13.704	10.0940	12.066	12.6240	12.044
30.4179	15.273	18.8621	13.892	12.7418	12.628	18.8045	13.068
32.0446	15.353	22.3018	14.211	15.6258	13.083	22.3004	13.472
32.9673	15.265	27.0931	14.583	18.6310	13.487	24.3313	13.673
32.0446	15.353	28.9501	14.841	20.7132	13.688	26.3890	13.686
\(T = 292.00 \) K	\(T = 304.00 \) K	\(T = 306.00 \) K	\(T = 320.00 \) K				
2.3466	1.239	2.4997	1.237	2.5996	1.235	2.6983	1.234
3.8113	11.522	3.4158	1.950	3.5908	1.947	3.7629	1.945
5.2158	12.173	4.1784	2.873	4.4668	2.869	4.7483	2.864
7.1396	12.707	4.6828	3.325	5.1793	3.416	5.6574	3.407
9.3105	13.131	4.7721	3.997	5.5401	4.622	6.3009	4.503
11.8771	13.525	4.9674	3.978	6.0206	9.072	7.0964	9.032
13.4688	13.723	5.9390	10.298	6.4330	9.756	7.9172	9.710
15.0863	13.910	5.5668	10.596	7.0307	10.254	8.8685	10.211
18.2640	14.228	6.3948	11.173	7.3179	10.546	8.6687	10.211
22.7394	14.598	8.8474	12.062	8.3744	11.116	9.0937	10.506
26.3645	14.855	11.3086	12.638	9.1114	11.404	10.4137	11.087
32.9673	15.353	14.0362	13.092	11.3574	12.054	11.2486	11.380
32.9673	15.353	17.0942	13.495	14.1819	12.618	13.9007	12.036
15.2773	15.713	18.9013	13.696	17.2177	13.075	17.0665	12.602
16.9735	15.900	20.7454	13.884	20.5666	13.480	20.4014	13.060
20.2846	14.219	24.3137	14.204	22.5240	13.681	24.0318	13.466
24.8761	14.591	29.3629	14.576	24.5119	13.869	26.3304	13.667
26.6475	14.848	33.2599	14.833	28.2286	14.189	28.2588	13.855
35.4484	15.258	5.8014	10.290	33.5824	14.826	32.3174	14.176

\(t = 312.00 \) K
\[A = 10.67324 \]
\[B = 8.33782 \]
\[C = 3.08489 \]
\[D = -0.65857 \]
\[P_0 = 1.14 \times 10^{-5} \text{ bar} \]
\[T_0 = 90.348 \text{ K [Ref 1]} \]
\[T_c = 305.330 \text{ K [Ref 10]} \]

Table 2

\(T \) (K)	\(P \) (kPa)	\(T \) (K)	\(P \) (kPa)
160.00	21.502	230.00	700.48
165.00	30.670	235.00	825.96
170.00	42.870	240.00	966.60
175.00	58.636	245.00	1124.4
180.00	78.734	250.00	1124.8
185.00	78.706	250.00	1300.0
190.00	103.84	250.00	1301.9
195.00	134.63	250.00	1302.1
200.00	134.72	250.00	1301.8
205.00	172.21	255.00	1405.0
210.00	172.26	260.00	1670.3
215.00	217.26	265.00	1947.9
220.00	217.32	270.00	2208.0
225.00	270.93	275.00	2493.1
230.00	271.00	275.00	2493.2
235.00	334.13	280.00	2904.6
240.00	334.17	280.00	2906.2
245.00	333.98	285.00	3144.3
250.00	333.99	290.00	3513.5
255.00	407.34	298.15	4190.9
260.00	492.16	298.15	4188.9
265.00	589.73	300.00	4353.5

Deviations of the experimental vapor pressures from those calculated from this equation for the various data sets [9, 10, 13] are shown in figure 1.

![Figure 1. Deviations of vapor pressures from eq. 1.](image)

\[* \] This work; \(\odot \) Ziegler et al. (Ref. [13]); \(\triangle \) Pal (Ref. [9]); \(\square \) Pope (Ref. [9]); \(\diamond \) Dousslin and Harrison (Ref. [10]).

4. Summary

We have made new wide-range measurements of the vapor pressures and \(\text{PVT} \) properties of ethane. These are the only data currently available which cover the entire temperature range from the triple point to 320 K. In addition, these data are the only accurate \(\text{PVT} \) data available for the compressed liquid below about 190 K. The data are being used along with other available data to refine the calculation of thermodynamic functions for ethane and as input to, and as a check upon, new calculation methods for predicting liquefied natural (fuel) gas properties being studied in this and other laboratories.

5. References and Notes

[1] Straty, G. C., and Tsumura, R., J. Chem. Phys., 64, 859 (1976).
[2] Weber, L. A., J. Res. Nat. Bur. Stand. (U.S.), 74A (Phys. and Chem.), No. 1, 93–129 (Jan.–Feb. 1970).
[3] Prydz R., and Straty, G. C. Nat. Bur. Stand. (U.S.), Tech. Note 392, 197 pages (Revised 1973).
[4] Goodwin, R. D., Nat. Bur. Stand. (U.S.) Tech. Note 653, 280 pages (April 1974).
[5] Weber, L. A., NASA SP–3088/NBSIR 74–374 (1975).
[6] Goodwin, R. D., J. Res. Nat. Bur. Stand. (U.S.), 65C, (Eng. and Instr.), No. 4, 231–243, (Oct.–Dec. 1961).
[7] Straty, G. C., and Prydz, R., Rev. Sci. Inst. 41, 1223 (1970).
[8] Goodwin and Prydz, R., J. Res. Nat. Bur. Stand. (U.S.), 76A (Phys. and Chem.), No. 2, 81–101 (Mar.–Apr. 1972).
[9] Pope G. A., (also reports vapor pressure and \(\text{PVT} \) data of A. K. Pal), Ph.D. Thesis, Dept. of Chemical Engineering, Rice University, Houston, Texas (July 1971).
[10] Dousslin, D. R., and Harrison, R. H., J. Chem. Thermo 5, 491 (1973).
[11] Goodwin, R. D., NBSIR 74–398 (1974). Goodwin has used a nonanalytic equation of state to correlate previously available data on ethane and to calculate provisional thermodynamic functions. Experimental data from this work are being used to fill in gaps in previously published data and to refine the equation of state to permit more accurate calculations of thermodynamic properties to be made. We defer extensive comparisons between data sets and a more elaborate analysis for inclusion in a final report in preparation.
[12] Further refinements in the correlation are expected which will probably alter slightly the final values of the constants. The deviation plot, however, is representative of the agreement among data sets. Coefficients for this equation will be included in the final report. See also reference [8].
[13] Ziegler, W. T., Kirk, B. S., Mullins, J. C., and Berquest, A. R., Tech. Rept. No. 2, Project A–764, Eng. Expt. Sta. Georgia Inst. Tech.; Atlanta, Georgia, December 1964.