INTRODUCTION

Urinary tract infections (UTIs) have become the most common hospital-acquired infection, accounting for as many as 35% of nosocomial infections, and it is the second most common cause of bacteremia in hospitalized patients [15,18,20,21]. These infections are found commonly in women than in men. The incidence in women within the age of 20–40 years ranges from 25% to 30% and up to 4–43% in elderly women above 60 years of age [3].

It is one of the most common bacterial diseases worldwide [5,8,16,28] that is characterized by a wide range of symptoms from mild irritative voiding to bacteremia, sepsis, or even death [16,26].

Bacteria are the major causative organisms and are responsible for more than 95% of UTI cases [16,25]. About 80–85% of UTIs are caused by Gram-negative bacteria [12,29]. UTIs have different names, depending on which part of the urinary tract is infected. UTIs are classified as uncomplicated or complicated. It has been observed that despite the widespread availability of antibiotics, UTI remains the most common bacterial infection in the human population [9,22].

It has been reported that UTI can occur in any part of the urinary tract and is caused by the retrograde ascent of bacteria from the fecal flora through the urethra to the bladder and kidney [22]. This is most, especially, in the females who have a shorter and wider urethra and is more transversed by microorganisms [13,17]. In most cases, bacteria travel to the urethra and multiply causing kidney infection if not treated [4].

However, there are some urinary tract diseases that are not associated with urinary infection but often treated with antibiotics, a practice that leads to antibacterial resistance due to improper diagnosis of UTIs. The most commonly reported are interstitial cystitis (IC) and overactive bladder (OAB). IC has been described [25] as the complaint of suprapubic pain related to bladder filling, accompanied by other symptoms such as increased day and night time frequency, in the absence of proven urinary infection or other obvious pathology. The prevalence of IC in the developed countries is 197 and 41 in every 100,000 women and men respectively. OAB has also been described [25] as the symptom complex of urinary urgency, usually accompanied by frequency and nocturia, with or without urgency urinary incontinence, in the absence of urinary tract infection or other obvious pathology. The prevalence of OAB in men and women is 10.8% and 12.8% in a population of 100,000 respectively.

A research by Goldman and Huskins [10] suggested that the improper and uncontrolled use of many antibiotics resulted in the occurrence of antimicrobial resistance, which became a major health problem worldwide. Another author, Manikandan et al. [19], also reported that the "widespread use and more often the misuse of antimicrobial drugs have led to a general rise in the emergence of resistant bacteria."

Therefore, the diagnosis of UTI is usually made based on the presence of signs and symptoms and confirmed by culture examination with significant bacteriuria supported by high-level pyuria [16,22].
Escherichia coli is the most common cause of UTI among virtually every patient group and accounts for 80–90% of cases of uncomplicated pyelonephritis and cystitis [27].

The current study aimed to determine and disseminate awareness on the prevalence of E. coli associated with UTI as well as their susceptibility pattern in Sokoto metropolis.

METHODS

Approval to carry out the study was obtained from the Ethical Committee of Specialist Hospital Sokoto (SHS), and informed consent was obtained from each participant (Appendix I).

Media preparation

The media used in this work include cystine lactose electrolyte deficient (CLED) agar, and nutrient agar (NA), and Mueller-Hinton Agar (MHA), all sourced from Hi Media, India. The media were prepared based on manufacturer’s instruction and sterilized by autoclaving for 15 min at 121°C.

Sample collection

Our study included patients (male and female) of all ages who attended the outpatient department with evidence or symptoms of UTI as determined by the physician. Early morning, mid-stream clean catch urine samples were collected by patients in sterile disposable containers with screw caps. Before urine collection, patients were counseled on how to collect the urine sample by observing all aseptic conditions to avoid contamination.

Isolation and culturing of urine samples

Sterile Petri dishes containing 20 mL prepared CLED agar were allowed to set and their surfaces dried in an incubator at 37°C for 5 min. Urine samples were inoculated on CLED agar using calibrated wire loop and allowed to stay for 50 min and incubated in aerobic condition for 18–24 h at 37°C. Plates without any colony at the end of 18–24 h incubation were discarded. Samples with counts up to and >10⁵ CFU/mL were counted microscopically and considered positive for further analysis.

Characterization of isolates

Isolates were purified by single colony isolation unto NA plates and incubated at 37°C for 18–24 h. Isolates from pure culture were characterized by Gram-staining followed by different biochemical tests (indole production test, motility test, and triple sugar iron agar test) were performed to confirm the E. coli causing UTI.

Antibiotic susceptibility testing

The antibiotic susceptibility of the isolates was determined against 10 commonly prescribed antibiotics in SHS using the modified Kirby–Bauer disc agar diffusion [6,7]. The discs (Oxoid, UK) were meropenem (MER, 10 µg), amikacin (AMK, 30 µg), vancomycin (VA, 10 µg), amoxicillin/clavulanic acid (AMC, 30 µg), ciprofloxacin (CIP, 5 µg), norfloxacin (NOR, 10 µg), cotrimoxazole (SXT, 25 µg), nitrofurantoin (F, 300 µg), gentamicin (CN, 30 µg), and nalidixic acid (NA, 30 µg). A fresh subculture of isolates was prepared on MHA and incubated at 37°C for 18–24 h. With the aid of a wire loop, 4–5 well-isolated colonies of similar appearance were picked and transferred into the tube of sterile normal saline. The inoculum was emulsified inside the tube to avoid clumping of the cells. The inoculums were adjusted to 0.5 McFarland (McFarland 0.5 equals approximately 10⁴ CFU/mL).

Within 15 min of preparing the adjusted inoculums, a sterile cotton swab was dipped into the inoculums. The swab was rotated several times and pressed firmly on the inside of the tube above the fluid level to remove excess inoculums from the swab.

The swab was streaked over the entire surface of the MHA plate, rotating the plate approximately 60° 3 times to ensure confluent growth. Inoculation was completed by running the swab around the rim of the agar. Excess moisture on the agar surface was allowed to be absorbed before applying the antimicrobial discs.

The disc was placed 20 mm center to center on the surface of the agar using a sterile needle. The plates were allowed to stay for 20–30 min to allow for pre-diffusion. The plates were incubated at 37°C for 18–24 h. Following incubation, the diameter of the zones of growth inhibition was measured to the nearest millimeter using a ruler, including the diameter of the disc in the measurement. Results were interpreted using the CLSI Guidelines (2006).

RESULTS AND DISCUSSION

A total of 86 urine samples were analyzed over 2 months’ period and 34 were culture positive giving an isolation rate of 39.5%, while 48 were culture negative giving a rate of 55.8%, and 4 (4.7%) were neither decided, due to probably contamination as shown in Fig. 1. A total of 16 isolates were E. coli (47.1%), while 18 accounts for others (other Gram-negative, 11 and Gram-positive, 7) as shown in Fig. 2.

The percentage susceptibility of E. coli causing UTI is shown in Table 1. The antimicrobial susceptibility profile results were interpreted according to the CLSI, 2006 interpretative chart.

Different bacterial pathogens were reported to cause UTI with many reporters concluded that E. coli and Klebsiella spp. were found to be predominant in causing the UTI among patients. Hence, the present study was conducted and focused only on E. coli to determine its sensitivity and antibiotic resistance against ten commonly prescribed antibiotics.

![Fig 1: Percentage distribution for the presence or absence of uropathogens from urine culture](image1)

![Fig 2: Percentage distribution of uropathogens among culture positive](image2)
and commercially available antibiotics.

Muraleetharan and Viswanathan [20] reported that a total of 217 uropathogens were screened and found that E. coli (49.8%) was the most common organism. This report strongly supports the present study as E. coli (47.10%) was found to be the most prevalent Gram-negative bacteria among patients with evidence or symptoms of UTI as determined by the physician. This result is consistent with reports from other studies [21,11,14,17,19,20,23,24]. Al-Jebouri and Mdish [1] highlighted reasons as to why E. coli is the most common cause of UTI may be due to certain virulence factors such as hemolysin production and presence of fimbriae.

E. coli from our study was generally resistant to nalidixic acid (81.2%), ciprofloxacin (78.2%), and norfloxacin (76.2%). The rate of resistance to nalidixic acid, ciprofloxacin, and norfloxacin is consistent with reports that these agents are the most commonly prescribed, cheaper, and easily available in the hospital and community pharmacies [18,22,29]. The results of the antimicrobial susceptibility profile to 10 commonly prescribed antibiotics showed that E. coli displayed a high susceptibility to vancomycin (91.6%), followed by amikacin (89.2%) and then meropenem (88.0%).

This study was carried out to investigate and diffuse awareness on the prevalence of E. coli as a causative agent of UTI in Sokoto metropolis as well as to determine the susceptibility. This is to raise awareness of the risk of giving antibiotics and their direct impact on the outcome analysis of UTIs.

CONCLUSION

It is alarming that E. coli is the most common organism causing UTI among patients in SHS and found resistant to 30% of the commonly prescribed antibiotics. Therefore, treatment should be given only among patients in SHS and found resistant to 30% of the commonly prescribed antibiotics. This result is also consistent with reports from other studies [21,11,14,17,19,20,23,24]. Al-Jebouri and Mdish [1] highlighted reasons as to why E. coli is the most common cause of UTI may be due to certain virulence factors such as hemolysin production and presence of fimbriae.

REFERENCES

1. Al-Jebouri MM, Mdish SA. Antibiotic resistance pattern of bacteria isolated from patients with urinary tract infections in Iraq. Open J Urol 2013;3:124-31.
2. Amin M, Mehmidejad M, Pourdangchi Z. Study of bacteria isolated from urinary tract infection and determination of their susceptibility to antibiotics. Jundishapur J Microbiol 2011;2:118-23.
3. Basavaraj M, Jyothi P. Antimicrobial resistance of Pseudomonas aeruginosa Strains from patients with urinary tract infections in smbhpcn hospital Bijapur, India. Int J Pharm Sci 2014;6:479-81.
4. Bean DC, Daniel K, David WW. Antimicrobial resistance in community and nosocomial Escherichia coli urinary tract isolates, London 2005-2006. Ann Clin Microbiol Antimicrob 2008;24:7-13.
5. Chander A, Shrestha CD. Prevalence of extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae urinary isolates in a tertiary care hospital in Kathmandu, Nepal. BMC Res Notes 2013;6:487. Available from: http://www.biomedcentral.com/1756-0500/6/487.
6. Clinical Laboratory Standard Institute (CLSI). Performance Standards of Antimicrobial. Wayne, PA: Clinical and Laboratory Standards Institute; 2006.
7. Clinical and Laboratory Standards. Disc and dilution susceptibility tests for bacteria isolated from animal, approved standard. 3rd ed., Vol. 28. Wayne, PA: Clinical and Laboratory Standards;
8. Cox CE. Nosocomial urinary tract infections. J Urol 1988;32:210-5.
9. Durgesh DW, Tumane PM. Prevalence and antibiotic susceptibility pattern of Urinary tract infection causing human pathogenic bacteria. Asian J Biomed Pharm Sci 2012;2:1-3.
10. Goldman DA, Huiskins WC. Control of nosocomial antimicrobial-resistant bacteria: A strategy priority for hospitals worldwide. J Clin Infect Dis 1997;24:139-45.
11. Goswami R, Bal CS, Tejaswi S, Punjabi GV, Kochupillai N. Prevalence of urinary tract infection and renal scars in patients with diabetes meliitus. J Diabetes Res Clin Pract 2001;53:181-6.
12. Hussain N. Prevalence and susceptibility pattern of urinary pathogens. Jundishapur J Med Sci 2012;18:75-80.
13. Inabo HI, Obanibi HB. Antimicrobial susceptibility of some urinary tract clinical isolates to commonly used antibiotics. Afr J Biotechnol 2006;5:5487-9.
14. Kelhinde AO, Adeapko KS, Ainaiku CO, Odukogbe AA, Olayemi O, Salako B. Significant bacteriuria among asymptomatic antenatal clinic attendees in Ibadan, Nigeria. J Trop Med Health 2011;39:73-6.
15. Khalifa AA, Alaa OH, Abdulhamed MA. Urinary tract infection in sorbata, algmels cities in libya 2013. J Clin Microbiol 2014;3:205-211.
16. Khoshbakt R, Salimi A, Shirzad AH, Keshavarz H. Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Karaj, Iran. Jundishapur J Microbiol 2013;6:86-90.
17. Kolawole AS, Kolawole OM, Kandaki-Olikemi YT, Babatunde SK, Durrowade KA, Kolawole CF. Prevalence of urinary tract infections (UTI) among patients attending Dalhatu Araf Specialist Hospital, Lafia, Nasarawa State, Nigeria. Int J Med Sci 2009;1:163-7.
18. Lamido TZ, Ibrahim AR, Halmoa SM. Isolation and antibiotic sensitivity of Escherichia coli from pregnant and non-pregnant women attending the University of Maiduguri Teaching Hospital (UMTH), Maiduguri, Nigeria. Int J Biomed Health Sci 2010;6:315-22.
19. Manikandan S, Ganesapandian S, Manoj S, Kumaraguruk AK. Antimicrobial susceptibility pattern of urinary tract infection causing human pathogenic bacteria. Asian J Med Sci 2011;3:56-60.
20. Muraleetharan M, Viswanathan T. Epidemiological studies on varying extended-spectrum β-lactamases producing uropathogenic bacteria. Int J Pharm Pharm Sci 2014;6:57-60.
21. Morgan MG, McKenzie H. Controversies in the laboratory diagnosis of community-acquired urinary tract infection. Eur J Clin Microbiol Infect Dis 1993;12:491-504.
22. Nuhu T. Retrospective studies on the prevalence of Uropathogens in Sokoto metropolis. Afr J Microbiol Res 2015;9:1366-70.
23. Okonko IO, Ijandje LA, Ilusanya AO, Donbraye-Emmanuel OB, Ejenbi J, Udaze AO, et al. Detection of urinary tract infection (UTI) among pregnant women in Oluoyaro Catholic Hospital, Ibadan, South-Western Nigeria. Malays J Microbiol 2010;6:16-24.
24. Oladeinde BH, Omorogie R, Olley M, Anunbe JA. Urinary tract infection in a rural community of Nigeria. North Am J Med Sci 2011;3:75-7.
25. Ramesh N, Sumath CS, Kannan VR. Urinary tract infection and antimicrobial susceptibility pattern of extended-spectrum beta-lactamase producing clinical isolates. J Adv Biol Res 2008;2:78-82.
26. Ranjar R, Hagh-Ashtiani M, Jafari NJ, Abedini M. The prevalence and antimicrobial susceptibility of bacterial uropathogens isolated from pediatric patients. Iran J Public Health 2009;38:435-41.
27. Safar F, Mohammed YA, Reza G, Behrooz N, Ailar N. Causative agents from urinary tract infections in the University of Maiduguri Teaching Hospital (UMTH), Maiduguri, Nigeria. Int J Biomed Health Sci 2010;6:315-22.
28. Ullah F, Malik SA, Ahmed J. Antibiotic susceptibility pattern and ESBL prevalence in nosocomial Escherichia coli from urinary tract infections in Pakistan. Afr J Biotechnol 2009;8:3921-6.
29. Venkatadri B, Arunagirinathan N, Rameshkumar MR, Sharmal KM, Agastian P. Multidrug resistant Escherichia coli and Klebsiella pneumoniae from the urinary tract infections with special reference to extended spectrum -lactamase (ESBL) production. Int J Biol Pharm Res 2014;5:66-70.1