Aluminum and Oxygen Isotopic Ratios in Meteorite Grains: a Puzzle Solved By Nuclear and Stellar Physics

Sara Palmerini
Dipartimento di Fisica e Geologia Universitá degli Studi di Perugia, Italy
I.N.F.N. sezione di Perugia, Italy
E-mail: sara.palmerini@pg.infn.it

Abstract. Low mass stars contribute to the chemical evolution of the Galaxy as well as more massive supernova progenitors. Indeed the limited amount of processed matter released into the interstellar medium by small objects is compensated by the large number of them. At the late stages of their evolution, stars with mass smaller than 3M⊙ undergo the Asymptotic Giant Branch phase, which has been found to be a unique site for synthesis of some nuclei heavier than Fe through slow neutron capture reactions. AGB nucleosynthesis is also characterized by H-burning coupled with mixing phenomena, which has been proved to account for anomalies in light element isotopic abundances from Li to Al observed in stellar spectra and meteorites. We present here the case of a large number of meteorite grains, whose isotopic composition offers a puzzles that only Nuclear and Stellar Physics coupled together might solve.

1. Introduction
In February 1969, a rare type of meteorite (a Type III carbonaceous chondrite) broke up in the atmosphere producing the falling of thousands of stones over a nearly 500-square-kilometer area around the village of Pueblito de Allende, in the Northern Mexico. The Allende meteorite turned out to contain some of the solids formed in the Early Solar System as well as dust formed in previous generation of stars. In particular the meteorite is notable for possessing abundant, large calcium-aluminium-rich inclusions (CAIs), which are among the oldest objects formed in our planetary system and report an isotopic composition distinct from the one of the Earth. Beside CAIs, other micrometer to submicrometer inclusions in Allende, called "presolar grains", bring precious pieces of information about stellar nucleosynthesis. Indeed their "isotopic anomalies" contain evidence for processes that occurred in stars older that the Sun, and are of particular importance in helping us to constrain their nucleosynthesis.

A consistent part of presolar grains (commonly called oxide grains) is made up of Al₂O₃ grains, which are classified in four groups according to the Oxygen isotopic mix they show [1]. Grains belonging to group 1 and 2 are characterized by values of ¹⁷O/¹⁶O and ¹⁸O/¹⁶O inconsistent with explosive nucleosynthesis scenarios and are then believed to form in evolved low mass stars, during the Red Giant Branch (RGB) phase or Asymptotic Giant Branch (AGB) one [2]. However, the high dilution in ¹⁸O and the large abundance of ²⁶Mg found in a large part of group 2 grains can not be accounted for by the nucleosynthesis of those stars, unless to invoke the
existence of non-convective transport mechanisms coupled with H-burning ([3] and references therein).

Firstly, [4] suggested that the oxygen isotopic abundances of Al2O3 grains could hint to their formation in low mass red giant stars (M≤3M☉) where a deep and not convective mixing mechanism was at play. These authors developed a streams "conveyor belt" model able to enrich the stellar surface with fresh products of the CNO cycle by transporting matter downward, from the inner border of the stellar envelope to the regions where H-burning occurs, and upward, in the opposite direction. The work by [4] and the subsequent update were partially successful in reproducing the 18O dilution shown by presolar grains, but part of group 1 and 2 oxide particles lays in regions of the 17O/16O versus 18O/16O diagram that were inaccessible to nucleosynthesis models (even considering deep mixing phenomena).

The 26Mg excess found in presolar grains hints to their formation in 26Al rich environments, for this reason [5] indicated as their stellar progenitors late AGB stars where the H-burning takes place at temperatures higher than those typical of the previous RGB stage and where a contribution to 26Al production comes also from slow neutron capture process. Nevertheless, the 26Al/27Al ratio shown by several grains is higher than the level predicted by the standard AGB models (not including deep mixing phenomena). Dealing with non convective mixing contribution to AGB nucleosynthesis, [6] clarified that because of the long life of 26Al (∼7.17·10^5 years) its abundance is strongly related with the depth of mixing penetration while it does not significantly depend on the mixing velocity nor on the mixing rate. Indeed the isotope is produced by the H-burning shell via the 25Mg(p,γ)26Al reaction, which efficiently burns just at relatively high temperature. However, reproducing values of 26Al/27Al ≥ 0.01 requires to push the mixing into layers of the H-burning shell so deep and hot that the process will affect the stellar energy balance with relevant luminosity feedback.

The parametric models of the quoted authors were essentially based on a fine tuning of two free parameters: the amount of material mixed into the stellar envelope and the maximum penetration of the mixing. The first one depends in its turn both on the velocities of the upward and downward streams of matters, and on the fraction of the area, at fixed radius, occupied by the "conveyor-belt". Understanding the physical causes of extra-mixing would be a big step forward in our knowledge of stellar physics and it would provide a model for deep mixing whose characteristics will be fixed by the physical conditions of the stellar environments and no longer set by the fine tuning of free parameters. In this paper we will present the case of a mixing mechanism induced by stellar magnetic fields.

2. Nuclear physics inputs and calculations

The puzzle of the oxygen isotopic mix of group 1 and 2 oxide grains was solved in the last years thanks to a series of nuclear physics measurements, which allowed (i) to state that these grains can not be formed in massive AGB stars [7] and (ii) to obtain a full match between the dust oxygen abundances and the predictions of deep mixing models for low mass red giants [8, 9] (and references therein). In particular, RGB stars with mass from 1 to 2M☉ and solar composition were proved to be progenitors of group 1 grains thanks to the 14N(p,γ)16O cross section measurements by [8] as well as AGB stars with mass smaller than 1.5M☉, experienced an efficient mixing, were shown to account for the Oxygen isotopic ratios of group 2 grains because of the determination of the low energy cross sections of proton-induced reactions on A = 17 and A = 18 oxygen isotopes via the Trojan Horse Method (THM, [10, 11]).

The THM overcomes enhancement effects due to electron screening and allows to measure reaction cross section between charged particles in the energy range typical of H-burning in low mass red giants (a few tens of keV). For this reason it was employed to extract the strength of the 65 keV resonance in the 17O(p,α)14N reaction [12], the strengths of the 20 keV one in the 18O(p,α)15N reaction and the contribution to its rate of the tail of the 656 keV broad resonance
[13]. Moreover, the strength of the 65 keV resonance in the 17O(p,α)14N reaction, measured by means of the THM, was used to renormalize the corresponding resonance strength in the 17O + p radiative capture channel. As results, more accurate reaction rates for the 18O(p,α)15N, 17O(p,α)14N, and 17O(p,γ)18F processes were deduced [9, 14] and later introduced into the models for proton-capture nucleosynthesis coupled with mixing episodes presented by [15].

By employing those 3 reaction rates in an updated version of the “conveyor-belt” mixing model by [4] and [6], [9] succeed in reproducing the whole range of oxygen isotopic mix values measured in group 2 grains, indeed nucleosynthesis model curves reach the “forbidden” area of the 17O/16O vs 18O/16O diagram.

This sensitivity of the resulting oxygen isotopic mix to reaction rates adopted in calculations, and in particular of those of the 17O + p process, is due to the fact that when an efficient deep mixing is at play the stellar envelope composition closely resemble the one of CNO equilibrium (at a temperature T, typical of the deepest layer reached by the streams of matter) which on its turn is determined by the equation

$$
\frac{dY(17O)}{dt} = Y(16O)Y(H)R_{16O(p,\gamma)} - Y(17O)Y(H)(R_{17O(p,\alpha)} + R_{17O(p,\gamma)})
$$

(1)

where $Y(i)$ means the abundance in number of the ith isotope and any reaction rate R is temperature and density dependent. From the previous equation, the equilibrium value of the 17O/16O ratio turns out to be

$$
\frac{Y(17O)}{Y(18O)} = \frac{R_{16O(p,\gamma)}}{R_{17O(p,\alpha)} + R_{17O(p,\gamma)}}
$$

(2)

One can notice that equilibrium values of the 17O/16O isotopic ratio do not depend on the initial isotopic abundances but are instead determined by the values of the reaction rates. As a consequence, in [9]’s calculations the 17O/16O ratio result larger because of THM cross sections of the 17O + p reactions are smaller (see Figure 3, 4 and 5 in [9]) than those reported in [8].

Despite the nice agreement between the theoretical predictions and the dust contents in 17O and 18O and the success of the parametric extra-mixing model by [15, 9] in explaining the isotopic ratios of CNO elements, as observed in stellar photospheres [16], a big challenge about the 26Mg excess found in presolar grains (hinting to their formation in a 26Al-rich environments) remains. Especially after that a possible solution coming from nuclear physics was excluded by the measurement of the 25Mg(p,γ)26Al cross section published in [17] and by the recent one of the 26Al(p,γ)27Mg by [18].

3. Novelties from stellar physic

In the last years [19] demonstrated that the full MHD equations can be solved analytically in an exact way when applied to the radiative layers of low mass evolved stars. This fact allows to build a mixing model where the mass transport is driven by the buoyancy of magnetized structures. Such an idea derives from an application to a later evolutionary phase of the dynamo model developed by Parker for the Sun [20]. Recently, [21] have verified that the physical conditions of the H-shell of RGB and AGB stars, with mass smaller than 2.5M_\odot, allow for the solution of MHD equations and have presented a non-parametric model for a mass circulation mechanism by applying the analytical solutions found by [19] to the stellar region of interest. In this framework, the mixing velocity is the radial component of the one by which magnetized structures (or flux tubes) expand and has the form:

$$
v_r = v_0(\frac{r}{r_0})^{-(k+1)}
$$

(3)

1 magnetohydrodynamic
where \(r \) is the position along the stellar radius, while \(k \) is a number smaller than \(-1\) dealing with the form of the plasma density distribution, which has to have the simple form \(\rho \propto r^k \). In this approach the mixing depth is determined by \(k \). Indeed the rising of magnetize structures starts from the deepest stellar layers whose physical conditions admit an analytical solution of MHD equations. [21] have shown that in low mass AGB stars those layers have the values of \(k \) ranging from \(-3.5\) to \(-3.1\) (the smaller is \(k \) the deeper is the mixing).

Moreover, in agreement with [21, 22] the mixing rate forced by magnetic buoyancy is given by

\[
\dot{M} = 4\pi \rho_e r_e^2 v_e f_1 f_2
\]

where \(r_e \) is the stellar radius at the interphase between the radiative region and the convective envelope and \(v_e \) is the speed by which \(r_e \) is reached by raising materials. \(f_1 \) is the fractional area the flux tubes occupy when the stellar radius is \(r_e \) and \(f_2 \) is their filling factor. Extrapolating solar conditions to an evolved star, a field of a few \(10^5 \) Gauss may be involved in magnetized structure occupying a fraction of \(1 - 2\% \) of the whole area at the base of convective envelope ([19], and references therein), while \(f_2 \) is of about \(1/100 \) of the section of the magnetized structures (which are actually almost empty, with electrically-charged materials concentrated in thin current sheets, see e.g. [23]). Since \(v_e \) has to be smaller than the convective velocity in the bottom envelope layers (\(v_{\text{conv}} \)) to allow the macroturbulence to destroy magnetized structure and release the trapped mass into the surface, we adopted a value of \(v_e \leq v_{\text{conv}} \), which for AGB stars with \(1.2 - 1.5M_\odot \), is of the order of \(100 \text{ m/s} \). In the light of the above estimate \(f_1, f_2 \) and \(v_e \), the \(\dot{M} \) values obtained range between a 0.3 and \(1.3 \cdot 10^{-6}M_\odot/\text{yr} \), which are in the range found previously by [15] (with their parametric model of mixing) to account for the oxygen isotopic composition of group 2 oxide grains and the \(^{12}\text{C}/^{13}\text{C} \) isotopic ratio observed in the spectra of MS and S stars [24].

4. Results

We applied a model of mass circulation induced by stellar magnetic fields [19] to study the isotopic composition of oxide presolar grains. In particular we aimed to reproduce the smaller values of \(^{18}\text{O} \) as long with the higher one of \(^{26}\text{Mg} \) (from the decay of \(^{26}\text{Al} \) measured in dust of RGB and AGB origin.

We performed our calculations employing the THM estimates of the \(^{17}\text{O}(p,\alpha)^{14}\text{N}, \quad ^{17}\text{O}(p,\gamma)^{18}\text{F} \) and \(^{18}\text{O}(p,\alpha)^{15}\text{N} \) low-energy reaction rates and assuming flux tubes rising from layers where \(k = -3.5, -3.4, -3.3, -3.2 \) and \(-3.1\), as suggested by [21]. Computation results are shown in figure 1 for a 1.2M\(_\odot\) evolved star with solar composition. In panel A the grey squares along the dashed line report the oxygen isotopic abundances in the envelope of stars approaching the RGB phase with different mass (from 1 to 1.7M\(_\odot\) as indicated by the labels). Such values, which result to be sensitive to \(^{14}\text{N}(p,\gamma)^{15}\text{O} \) but not affected by the \(^{17}\text{O} + p \) reaction rates employed in stellar model calculation, remain almost unchanged for the rest of stellar evolution if no mixing phenomenon occurs. Since a dilution of the \(^{18}\text{O}/^{16}\text{O} \) abundance in the stellar envelope is needed to reproduce the values measured in group 2 grains (solid points in figure 1A), our MHD mixing model has been introduce in nucleosynthesis calculations for both the RGB and AGB phase and the effects on the temporal evolution of chemical abundances are shown by the downward red curves (the dark is the color, the smaller is the value of \(k \), the deeper is the mixing).

The sequence of curves cover the whole area where group 2 oxide grains lie. By using the same set for the nuclear physics input, we get therefore a confirmation of what was found by [9]: the dust in exam can be explained by most efficient mixing cases applied to 1-1.5M\(_\odot\) stars; but these conclusions are now based on a deep-mixing mechanism rooted in a more physical approach, and based on necessary processes of plasma physics.
Figure 1. Panel A. Oxygen isotopic mix in the envelope of solar-metallicity stars approaching (dashed grey line). Full squares indicate the composition of stars with mass from 1 to 1.7M_{\odot}, as indicated by the labels. Data points refer to measurements in presolar grains from [25]. We plot those of group 1 (open circles) and those of group 2 (filled circles). We do not report error bars in the figures, because they would confuse the plot, due to the large number of grains. In any case uncertainties are typically lower than 5-6% for all the grains of groups 1 and 2. The descending continuous lines refer to model results for deep mixing driven by magnetic buoyancy in a 1.2M_{\odot} star for different values of k, during the RGB and the AGB phase. The smaller the value of k, the darker the curve ($k = -3.5, -3.4, -3.3, -3.2, -3.1$). Panel B and C. The evolution of the oxygen isotopic ratios $^{17}O/^{16}O$ and $^{18}O/^{16}O$, respectively, as functions of $^{26}Al/^{27}Al$ for the same models and grains reported in panel A,
In panels B and C, the evolution of the oxygen isotopic ratios is shown as a function of the 26Al/27Al ratio for the same models and grains discussed so far. The curves deal with the same magnetic mixing cases shown in panel A. We notice that the success of magnetically-induced mixing lays in accounting for the range of values of 26Al/27Al up to 0.1, even adopting the already-quoted rate by [17] for 26Al production and the one by [18] for its destruction. We recall that previous parametric models could not, instead, explain the whole range of 26Al, as measured in presolar grains, see e.g. [15] and in particular their Figure 11.

The success of the MHD induce mixing in reproducing the whole isotopic composition of group 2 grains is due to the fact that in this model hot magnetized materials are pushed up into the envelope from below (driven by magnetic buoyancy) and the down-flow occurs as a consequence of mass conservations at the envelope border. In the parametric mixing described by [4], and later by [6], upflowing streams of materials are triggered (because of the mass conservation law) by the penetration of matters from the bottom of the stellar envelope.

In conclusion, the whole areas that group 2 oxide presolar grain occupy in the 17O/16O vs 18O/16O diagram, in the 17O/16O vs 26Al/27Al one and in the 18O/16O vs 26Al/27Al one are covered by curves of a physically-based model, for mixing in low mass evolved stars, employing a set of nuclear physics input measured ad-hoc by the THM in the energy range typical of AGB star nucleosynthesis.

4.1. Acknowledgments
S.P. acknowledges the support of Fondazione Cassa di Risparmio di Perugia.

5. References
[1] Nittler L R 2009 Publications of the Astron. Soc. of Australia 26 271–277 (Preprint 0904.1388)
[2] Zinner E 2005 Meteorites, Comets and Planets: Treatise on Geochemistry, Volume 1. Edited by A. M. Davis. Executive Editors: H. D. Holland and K. K. Turekian. ISBN 0-80-44720-1. Published by Elsevier B. V., Amsterdam, The Netherlands, 2005, p.17 ed Davis A M, Holland H D and Turekian K K (Elsevier B) p 17
[3] Busso M, Palmerini S, Maiorca E, Cristallo S, Straniero O, Abia C, Gallino R and La Cognata M 2010 The Astrophysical Journal Letters 717 L47–L51 (Preprint 1005.3549)
[4] Wasserburg G J, Boothroyd A I and Sackmann I J 1994 The Astrophysical Journal Letters 447 L37
[5] Boothroyd A I, Sackmann I J and Wasserburg G J 1994 The Astrophysical Journal Letters 430 L77–L80
[6] Nollett K M, Busso M and Wasserburg G J 2003 The Astrophysical Journal 582 1036–1058 (Preprint astro-ph/0211271)
[7] Iliadis C, Angulo C, Descouvemont P, Lugaro M and Mohr P 2008 Physics Review C 77 045802 (Preprint 0803.2757)
[8] Adelberger E G, García A, Robertson R G H, Snover K A, Balantekin A B, Heeger K, Ramsey-Musolf M J, Bennemer D, Junghans A, Bertulani C A, Chen J W, Costantini H, Prati P, Couder M, Uberseeder E, Wiescher M, Cyburt R, Davids B, Freedman S J, Gai M, Gazit D, Gialanella L, Imbriani G, Greife U, Hass M, Haxton W C, Itahashi T, Kuboda K, Langanke K, Leitner D, Leitner M, Vetter P, Winslow L, Marcucci L E, Motobayashi T, Mukhamedzhanov A, Tribble R E, Nollett K M, Nunes F M, Park T S, Parker P D, Schiavilla R, Simpson E C, Spitaleri C, Strieder F, Trautvetter H P, Suemmerer K and Typel S 2011 Reviews of Modern Physics 83 195–246 (Preprint 1004.2318)
[9] Palmerini S, Sergi M L, La Cognata M, Lamia L, Pizzone R G and Spitaleri C 2013 The Astrophysical Journal 764 128
[10] Spitaleri C, Cherubini S, del Zoppo A, di Pietro A, Figuerab P, Galinno R, Lattuada M, Miljanic D, Musumarra A, Pellegrini M G, Pizzone R G, Rolfs C, Romano S, Tdusco S and Tumino A 2003 Nuclear Physics A 719 C99–C106
[11] Spitaleri C, Cherubini S, La Cognata M, Lamia L, Mukhamedzhanov A, Pizzone R G, Romano S, Sergi M L and Tumino A 2010 Nuclear Physics A 834 639–642c
[12] Sergi M L, Spitaleri C, La Cognata M, Coa A, Mukhamedzhanov A, Burjan S V, Cherubini S, Crucilla V, Galinno R, Hambache F, Hans Z, Irgaziev B, Kiss G G, Kroha V, Lamia L, Pizzone R G, Puglia S M R, Rapisarda G G, Romano S, de Sévéville N, Somorjai E, Tdusco S and Tumino A 2010 Physics Review C 82 032801
[13] La Cognata M, Spitaleri C and Mukhamedzhanov A M 2010 The Astrophysical Journal 723 1512–1522
[14] Sergi M L, Spitaleri C, La Cognata M, Lamia L, Pizzare G, Rapisarda G G, Tang X D, Bucher B, Couder M, Davies P, deBoer R, Fang X, Lamm L, Ma C, Notani M, O'Brien S, Roberson D, Tan W, Wiescher M, Irgaziev B, Mukhamedzhanov A, Mrzek J and Kroha V 2015 Physics Review C 91 065803

[15] Palmerini S, La Cognata M, Cristallo S and Busso M 2011 The Astrophysical Journal 729 3 (Preprint 1011.3948)

[16] Hedrosa R P, Abia C, Busso M, Cristallo S, Domínguez I, Palmerini S, Plez B and Straniero O 2013 The Astrophysical Journal Letters 768 L11 (Preprint 1303.6418)

[17] Straniero O, Imbriani G, Strieder F, Bemmerer D, Broggini C, Caciolli A, Corvisiero P, Costantini H, Cristallo S, DiLeva A, Formicola A, Elekes Z, Fülöp Z, Gervino G, Guglielmetti A, Gustavino C, Gyürky G, Junker M, Lemut A, Limata B, Marta M, Mazzocchi C, Menegazzo R, Piersanti L, Prati P, Roca V, Rolfs C, Rossi Alvarez C, Sonorjai E, Terrasi F and Trautvetter H P 2013 The Astrophysical Journal 763 100 (Preprint 1211.6661)

[18] Pain S D, Bardayan D W, Blackmon J C, Brown S M, Chae K Y, Chippes K A, Cizewski J A, Jones K L, Kozub R L, Liang J F, Matei C, Matos M, Moazen B H, Nesaraja C D, Okolowicz J, O’Malley P D, Peters W A, Pittman S T, Ploszajczak M, Schmitt K T, Shriner J F, Shapira D, Smith M S, Stracener D W and Wilson G L 2015 Physical Review Letters 114 212501

[19] Nucci M C and Busso M 2014 The Astrophysical Journal 787 141 (Preprint 1404.2503)

[20] Parker E N 1960 The Astrophysical Journal 132 821

[21] Palmerini S, Trippella O and Busso M 2017 Monthly Notices of the Royal Astronomical Society (Preprint 1701.04445)

[22] Trippella O, Busso M, Palmerini S, Maiorca E and Nucci M C 2016 The Astrophysical Journal 818 125 (Preprint 1512.06777)

[23] Hirayama T 1992 Solar Physics 137 33–50

[24] Wallerstein G, Balick B, Alcolea J, Bujarrabal V and Vanture A D 2011 Astronomy and Astrophysics 535 A101

[25] Hynes K M and Gyngard F 2009 Lunar and Planetary Science Conference (Lunar and Planetary Science Conference vol 40) p 1198