Kirchhoff’s Current Law Can Be Exact

available at https://arxiv.org/abs/1905.13574

Robert S. Eisenberg
Department of Applied Mathematics
Illinois Institute of Technology;
Department of Physiology and Biophysics
Rush University Medical Center
Chicago IL
USA

Bob.Eisenberg@gmail.com

December 5, 2022

File name: Kirchhoff’s Current Law Can Be Exact with Addendum December 5-2 2022.docx
Addendum with more Recent References

than found in the version arXiv:1905.13574v3, 18 Jul 2019

December 5, 2022

Bibliographical Note.

The December 5, 2022 version of this paper includes
the revision arXiv:1905.13574v3, 18 Jul 2019 without changes.

It also contains the addition “More Recent Work”.

Sans serif font [Calibri] is used for the Addendum
so it is unlikely to be confused with arXiv:1905.13574v3, 18 Jul 2019

References in the two parts of this paper are distinct and independent
and have different format.

References in the component arXiv:1905.13574v3, 18 Jul 2019 are not changed
from the original publication and have their original formatting.

They are shown in the original serif font, Times New Roman.

Page numbering is also distinct and independent in the two sections,
made clear by the placement of page numbers in the two sections,
as well as the different fonts,

I hope.
More recent work

A number of papers [1-13] have been written by my collaborators and me about Kirchhoff’s current law since the version arXiv:1905.13574v3, 18 Jul 2019 of this paper. These more recent papers report my journey, my odyssey to a safe intellectual home.

I worked to understand why Kirchhoff’s current law is so widely used on time scales far outside the times at which the law is derived in textbooks. Kirchhoff’s current law is used as the main design tool for circuits that operate in 10^{-10} sec although it is presented as a long time approximation (say $> 10^{-3}$ sec) in textbooks and Wikipedia and derived that way in the literature.

The derivations also do not deal with the obvious fact that \mathbf{J} (the movement of charge with mass) does not follow a conservation law at all, as is obvious from the Maxwell-Ampere law, eq. (1). In fact, \mathbf{J} obeys the continuity equation, $\nabla \cdot \mathbf{J} = -\nabla \cdot (\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t})$, not the zero value the divergence would have if \mathbf{J} were conserved. This difficulty seems not to have been discussed in textbooks or elsewhere (Compare with the worked example, reference [25] in the arXiv:1905.13574v3, 18 Jul 2019). The difficulty actually shows that Kirchhoff’s law as usually presented is not an approximation to the electrodynamic Maxwell equations, except at DC, and the equations are not dynamic at all, because $\frac{\partial \mathbf{E}}{\partial t} = 0$. Under other conditions, Kirchhoff’s law as discussed in textbooks is incompatible with the Maxwell equations, a fact that might be of interest to students of those textbooks.

A ‘final’ word. Reference [2] attempts to be a ‘final word’ about deriving Kirchhoff’s law, because it gives the necessary conditions for Kirchhoff’s law for current flow in circuits. Reference [2] tries to show what must be present in Kirchhoff’s law if it is consistent with the Maxwell equations.

Reference [2] does not try to give definitive sufficient conditions for Kirchhoff’s law in real circuits. No final word seems to be possible for sufficient conditions. Every real circuit is likely to be a special case.

Reference [2] attempts to state sufficient conditions for a different class of circuits, namely the simplified circuits of elementary electrical circuit theory. Those simplified circuits satisfy Kirchhoff’s law if current is generalized to include the displacement current $\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$, as described in arXiv:1905.13574v3, 18 Jul 2019. More specifically, a conjecture is made that the redefinition (eq. (3)) of current in Kirchhoff’s law as $\mathbf{J}_{\text{total}} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$ is both necessary and sufficient but only
in the simplified circuits of elementary over-simplified electrical circuit theory. See the worked example, reference [25] in the arXiv:1905.13574v3, 18 Jul 2019. These over-simplified circuits do not pretend to describe all the properties of real circuits. Rather over-simplified circuits are the foundation on which design is based, with more realistic treatments of the physics of components, layout, and coupling added as needed for the application of interest. Simplified circuits do not include realistic descriptions of wires or other circuit components, mutual inductance, and other complexities, even stray capacitances.

More recent papers from other research groups are not included here, because they have not been carefully studied. Other work distracted me [13,16-31] from a careful reading of the developing literature. Apologies are extended to those whose contributions have not been recognized, however inadvertently.

Displacement current \(\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \) is called the ‘ethereal current’ in many of my papers to emphasize how closely it is related to the properties of the aether (UK spelling; USA spelling is sometimes ‘ether’).

The ethereal current \(\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \) is produced by the ‘polarization of space’ as Maxwell called it (p. 416 of [14]). It exists everywhere, in the vacuum of outer space, as well as in the space between atoms, and inside the atoms themselves.

Some have called \(\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \) the ‘Maxwell current’ but I prefer to reserve that name as an alternative term for the entire source term for \(\text{curl} \ \mathbf{B} \), i.e., the entire right hand side of the Maxwell Ampere law eq. (1), \(\mathbf{J}_{\text{total}} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \).

What form of electricity flows in a vacuum? The word ‘flow’—in ordinary English/American—implies that something flows. So does the word ‘current’. (Think of the current in a river, as an example.) Flow and current are emergent phenomena, but the abstraction of flow emerges from something concrete, in the normal use of the word ‘flow’. Flow and current describe an underlying phenomenon in which something moves in ordinary language..

In particular, the ordinary use of language implies that if current \(\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \) exists in a vacuum, something flows to carry the current in that vacuum, even in a vacuum devoid of mass. Maxwell certainly shared this view of the meaning of \(\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \). He spent many years trying to build a mechanical model for \(\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \) and the (movement of the) aether that created the flow.

But physics requires more than the ordinary use of language. It requires a specific definition of what might flow in a vacuum. It requires a way to measure what might flow, at least in principle. It requires a mathematical description of what might flow in the vacuum. The mathematical description of the flow is known,
namely $\varepsilon_0 \frac{\partial E}{\partial t}$. If one wants to define an aether that flows to create $\varepsilon_0 \frac{\partial E}{\partial t}$, the properties of the aether itself must be defined precisely.

In the traditions of modern physics, the aether that might flow in a vacuum could follow rules much more general than the mechanical models considered by Maxwell. Quasi-particles like holes and electrons have been defined abstractly and have allowed the development of solid state devices of technology and all that depends on them. These quasi-particles follow the same Poisson Drift Diffusion equations that real ions follow as described in biophysics and chemistry by the PNP (Poisson Nernst Planck) equations.

It remains unclear what (if anything) supports current flow in a vacuum. **Could a quasi-particle be invented that carries the ethereal current $\varepsilon_0 \frac{\partial E}{\partial t}$, even in a vacuum?** It is not clear that such an ethereal quasi charge can be sensibly defined without violating the laws of physics or mathematics. It is clear that electrodynamics has done well without that definition.

Historical context. Reference [1] describes the historical context in which current in Kirchhoff’s law was defined. David Ferry found a paper by Kirchhoff that demonstrates Kirchhoff’s understanding of total current, and the need to include $\varepsilon_0 \frac{\partial E}{\partial t}$.

Reference [1] also describes the modern perspective. That paper discusses the quantum mechanical use of Kirchhoff’s law for total current in the actual design of modern high speed computing circuits, a subject that two of the authors (DF & XO) have worked on for many years. Modern high speed circuits switch in 10^{-10} seconds and are in fact designed using Kirchhoff’s law with hardly any mention of charge or Maxwell’s equations.

It is obvious that low frequency, long time derivations of Kirchhoff’s law are not able to deal with the modern use of electricity in the solid state devices of our digital technology. The derivations of Kirchhoff’s law and discussion in textbooks and Wikipedia are unable to explain the successful use of the law to design circuits switching in 10^{-10} where $\frac{\partial E}{\partial t}$ is not small, of the order of the power supply voltage per 100 psec, i.e., 5×10^{10} volts/sec.

This issue needs to be addressed, in my view, because the design of high speed circuits is the most used application of electrodynamics. It is embarrassing, to say the least, to use a derivation of the most widely used application of Maxwell’s equations of electrodynamics—Kirchhoff’s law—that is only true in the static case, when $\frac{\partial E}{\partial t} = 0$.
Other Applications. Flux coupling by Kirchhoff’s law is an important topic in the biophysics of ion channels and transporters. Flux coupling as described in the Appendix of arXiv:1905.13574v3, 18 Jul 2019 has been used in several recent biological applications, as well as classical work discussed below.

Flux coupling has been exploited in reference [15] in a model of one of the most important membrane systems in biology, the cytochrome c oxidase system that helps generate ATP that is the source of chemical energy in almost all the chemical reactions of living metabolism, whether plants, animals or bacteria.

Reference [15] tries to present a complete model of cytochrome c oxidase both in its natural environment in a mitochondrion and in the artificial environment of a voltage clamped lipid bilayer. The properties of the two systems are quite different even though the protein cytochrome c oxidase is the same in both, just as the properties of ion channels are quite different in the natural setting and the voltage clamped apparatus. The model presented [15] does not need to keep track of the $\sim 10^{15}$ charges present in a mitochondrion because it uses Kirchhoff’s current law to construct the model. Most published models use Coulomb’s law (not even the Maxwell Gauss differential equation with its boundary conditions). It is not clear how these published models deal with the constraints imposed by the mitochondria on the current through cytochrome c oxidase. The total current (carried by all channels and transporters as well as the lipid membrane) sums to zero in such systems, because the potential in the interior of mitochondria is nearly uniform in space. In the jargon of biophysics, mitochondria are small compared to the length constant of biological cells.

The coupling of current in biological systems has also been used in models of water flow and current flow in the lens of the eye [13,16-26], and the optic nerve of the central nervous system of a salamander [13,27-31].

Of course, the coupling of current by Kirchhoff’s law has been an implicit necessity in all models of nerve function since the work of Hodgkin [32] if not earlier. Davis [33] and Jack, Noble, and Tsien [34] develop these ideas and use more modern methods, as do many textbooks of biophysics, physiology, and their mathematical cousins, if not siblings.

In fact, Hodgkin [35] used the Kirchhoff coupling of sodium and potassium current (flowing through disjoint channel proteins far separated in space) in an important way. He used it to compare the currents in a voltage clamped axon, and a space clamped action potential (Fig. 10 of [35]), and thereby test the validity of the voltage clamp technique.
Voltage clamp had been introduced by Cole [36] and Marmont (working along side Cole in Cole’s laboratory) and shown to Hodgkin by them [37-39]. This validation was in fact important historically in motivating the heroic computation of the action potential by Andrew Huxley that took many months of hand calculation, using a mechanical device that could add but not multiply. Electricity was not used to power the adding machines in Cambridge (UK) in those years. Computers were not available. Calculators were not available.

Hodgkin and his collaborators created modern electrophysiology and membrane biophysics (see Fig. 10 of [35]) and indeed transport biophysics, if one looks carefully into the study of active transport by Hodgkin and his associates in Physiology at Cambridge (UK). First they studied active transport in the squid nerve, and later in red blood cells.

The analysis of Hodgkin and coworkers, following [32], arose—I believe—from the circuit tradition developed by William Thomson1 to design the trans-Atlantic cable that connected North America and Europe. The circuit tradition was brought to maturity by Heaviside [40-44].

Before the under the ocean cable, information took weeks to transfer across the Atlantic. After the cable, information was telegraphed in seconds. The British Empire celebrated the Atlantic cable as a triumph of British science and Imperialism well into the 1930s. The Empire included Cambridge (UK) Physiology.

What if? It is a rather frightening exercise in counter factual history to consider what would have happened if the circuit tradition had not been used to analyze the nerve action potential, if the Kirchhoff coupling of currents had been ignored, as it has been and is ignored in so many models and simulations in the chemical tradition.

How would molecular and (protein) structural biology, chemistry and biochemistry, have dealt with a propagating action potential? How would the action potential be computed from the 10^{15} charges involved using just Coulomb’s law? How could the nerve signal be understood without Kirchhoff’s law and the cable equation it implies? It seems unlikely that the thermodynamics or rate theory would have been successful.

It seems unlikely that any electrical properties of a system even as small as a mitochondrion can be calculated by dealing with charges, ignoring the

1 Thomson has been more commonly known by his alias ‘Lord Kelvin’ after 1892 when he was renamed by the UK government as Baron Kelvin.
conservation of total current. Nonetheless, that approach is still the bedrock for analysis and simulation in much of chemistry, biochemistry, and molecular biology, if not biophysics.

This counter factual example suggests that Kirchhoff’s law should be given a prominent place in future models and simulations of proteins and nanodevices (1), a role comparable to its place in electrodynamics and circuit design. See Reference [123] of arXiv:1905.13574v3, 18 Jul 2019 for a chemical perspective.
References in Addendum
separate and independent from
References in the version arXiv:1905.13574, 18 Jul 2019,

December 4, 2022

[1] Eisenberg, R.; Oriols, X.; Ferry, D.K. Kirchhoff’s Current Law with Displacement Current. *arXiv: 2207.08277 2022*, doi:arxiv:2207.08277.

[2] Eisenberg, R. A Necessary Addition to Kirchhoff’s Current Law of Circuits, Version 2. *Engineering Archive EngArXiv 2022*, https://doi.org/10.31224/2234, doi:https://doi.org/10.31224/2234.

[3] Eisenberg, R.S. Core Maxwell Equations are Exact, Universal, and Scary, for that reason. Slide Show: DOI: 10.13140/RG.2.2.24122.31687. 2021, doi:10.13140/RG.2.2.24122.31687.

[4] Eisenberg, R.S. Maxwell Equations Without a Polarization Field, Using a Paradigm from Biophysics. *Entropy* 2021, 23 172, also available on arXiv at https://arxiv.org/ftp/arxiv/papers/2009/2009.07088.pdf and 0701.0339v2/e23020172 doi:10.20944/preprints202008.0555.v2.

[5] Eisenberg, B. Setting Boundaries for Statistical Mechanics. *arXiv preprint arXiv:2112.12550 2021*.

[6] Eisenberg, R.s. Maxwell Equations for Material Systems. *doi: 10.20944/preprints202011.0201.v1 2020*, doi:10.20944/preprints202011.0201.v1.

[7] Eisenberg, R.S. Thermostatics vs. Electrodynamics. 2020, 10.20944/preprints202009.0349.v1, doi:10.20944/preprints202009.0349.v1.

[8] Eisenberg, R.S. Electrodynamics Correlates Knock-on and Knock-off: Current is Spatially Uniform in Ion Channels. *Preprint on arXiv at https://arxiv.org/abs/2002.09012 2020*.

[9] Eisenberg, R.S. Energetic Controls are Essential: New and Notable note for Biophysical Journal. *Biophysical Journal* 2020, 118 doi:10.1016/j.bpj.2020.01.029

[10] Eisenberg, R.S. Updating Maxwell with Electrons, Charge, and More Realistic Polarization. *arXiv preprint available at https://arxiv.org/abs/1904.09695 2019*.

[11] Eisenberg, R. Structural Analysis of Fluid Flow in Complex Biological Systems. *Modeling and Artificial Intelligence in Ophthalmology. Preprints* 2022, 2022050365 (doi: 10.20944/preprints202205.0365.v1). 2022, doi:doi: 10.20944/preprints202205.0365.v1).

[12] Eisenberg, B. Setting Boundaries for Statistical Mechanics, Version 2: MDPI Molecules. *Molecules* 2022, 27, 8017, doi:https://doi.org/10.3390/molecules27228017.

[13] Zhu, Y.; Xu, S.; Eisenberg, R.S.; Huang, H. Membranes in Optic Nerve Models. *arXiv preprint arXiv:2105.14411 2021.*

[14] Darrigol, O. *Electrodynamics from ampere to Einstein;* Oxford University Press: 2003.

[15] Xu, S.; Eisenberg, R.; Song, Z.; Huang, H. Mathematical Model for Chemical Reactions in Electrolyte Applied to Cytochrome c Oxidase: an Electro-osmotic Approach. *0.48550/arxiv.2207.02215 2022,* doi:10.48550/arxiv.2207.02215.

[16] Mathias, R.T. Steady-state voltages, ion fluxes, and volume regulation in syncytial tissues. *1985, 48, 435-448.*

[17] Mathias, R.T. Epithelial water transport in a balanced gradient system. *Biophys J* 1985, 47, 823-836, doi:10.1016/S0006-3495(85)83986-2.

[18] McLaughlin, S.; Mathias, R.T. Electro-osmosis and the reabsorption of fluid in renal proximal tubules. *J Gen Physiol* 1985, 85, 699-728.

[19] Donaldson, P.J.; Musil, L.S.; Mathias, R.T. Point: A critical appraisal of the lens circulation model--an experimental paradigm for understanding the maintenance of lens transparency? *Invest Ophthal mol Vis Sci* 2010, 51, 2303-2306, doi:10.1167/iovs.10-5350.

[20] Gao, J.; Sun, X.; Moore, L.C.; White, T.W.; Brink, P.R.; Mathias, R.T. Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling. *J Gen Physiol* 2011, 137, 507-520, doi:10.1085/jgp.201010538.

[21] Donaldson, P.J.; Grey, A.C.; Maceo Heilman, B.; Lim, J.C.; Vaghefi, E. The physiological optics of the lens. *Prog Retin Eye Res* 2017, 56, e1-e24, doi:10.1016/j.preteyeres.2016.09.002.

[22] Zhu, Y. Mathematical Modeling of Coupled Ion and Water Transport in Biological Tissues. 2021.

[23] Eisenberg, R.S.; Rae, J.L. Current-voltage relationships in the crystalline lens. *J Physiol* 1976, 262, 285-300.
[24] Mathias, R.T.; Rae, J.L.; Eisenberg, R.S. Electrical properties of structural components of the crystalline lens. *Biophys J* 1979, 25, 181-201.

[25] Mathias, R.T.; Rae, J.L.; Eisenberg, R.S. The lens as a nonuniform spherical syncytium. *Biophys J* 1981, 34, 61-83.

[26] Zhu, Y.; Xu, S.; Eisenberg, R.S.; Huang, H. A Bidomain Model for Lens Microcirculation *Biophysical Journal* 2019, 116, 1171-1184 Preprint available at https://arxiv.org/abs/1810.04162, doi:https://doi.org/10.1016/j.bpj.2019.02.007.

[27] Zhu, Y.; Xu, S.; Eisenberg, R.S.; Huang, H. A Tridomain Model for Potassium Clearance in Optic Nerve. arXiv:2012.03303 2020, doi:arxiv:2012.03303.

[28] Kuffler, S.W. Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. *Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character* 1967, 168, 1-21, doi:10.1098/rspb.1967.0047.

[29] Kuffler, S.W.; Nicholls, J.G.; Orkand, R.K. Physiological properties of glial cells in the central nervous system of amphibia. *Journal of neurophysiology* 1966, 29, 768-787.

[30] Kuffler, S.W.; Nicholls, J.G. The physiology of neuroglial cells. *Ergeb Physiol* 1966, 57, 1-90.

[31] Kuffler, S.W.; Nicholls, J.G. How do materials exchange between blood and nerve cells in the brain? *Perspectives in biology and medicine* 1965, 9, 69-76, doi:10.1353/pbm.1965.0017.

[32] Hodgkin, A.L.; Rushton, W.A.H. The electrical constants of a crustacean nerve fiber. *Proc. Roy. Soc. (London) Ser. B* 1946, 133, 444-479.

[33] Davis, L.D., Jr.; de No, R.L. Contribution to the Mathematical Theory of the electrotonus. *Studies from the Rockefeller Institute for Medical Research* 1947, 131, 442-496.

[34] Jack, J.J.B.; Noble, D.; Tsien, R.W. *Electric Current Flow in Excitable Cells*; Oxford, Clarendon Press.: New York, 1975.

[35] Hodgkin, A.L.; Huxley, A.F.; Katz, B. Measurement of current-voltage relations in the membrane of the giant axon of *Loligo. J. Physiol. (London)* 1952, 116, 424-448.

[36] Cole, K.S. Dynamic electrical characteristics of the squid axon membrane. *Arch. d. Sci. Physiologiques* 1949, 3, 253-258.
[37] Huxley, A.F. Kenneth Stewart Cole. *Biographical Memoirs of Fellows of the Royal Society* 1992, 38, 98-110, see http://books.nap.edu/html/biomems/kcole.pdf
doi:10.1098/rsbm.1992.0005.

[38] Huxley, A.F. Kenneth Stewart Cole 1900-1984. A biographical memoir by Sir Andrew Huxley; National Academies Press: Washington DC, 1996.

[39] Huxley, A.F. From overshoot to voltage clamp. *Trends in Neurosciences* 2002, 25 553-558.

[40] Kelvin, L. On the theory of the electric telegraph. *Proceedings of the Royal Society (London)* 1855, 7, 382-399.

[41] Kelvin, L. On the theory of the electric telegraph. *Philosophical Magazine* 1856, 11, 146-160.

[42] Standage, T. *The Victorian Internet: The Remarkable Story of the Telegraph and the Nineteenth Century's On-line Pioneers*; Bloomsbury Publishing: 2018.

[43] Donaghy-Spargo, C. On Heaviside's contributions to transmission line theory: waves, diffusion and energy flux. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 2018, 376, 20170457, doi:10.1098/rsta.2017.0457.

[44] Gossick, B.R. Heaviside and Kelvin: A study in contrasts. *Annals of Science* 1976, 33, 275-287, doi:10.1080/00033797600200561.

Bibliographical Note.

The November 30, 2022 version of this paper is identical to the last revision

arXiv:1905.13574v3, 18 Jul 2019

except for the preceding section, and its references.

A different font is used for the new material

References in the two parts of this paper are distinct and independent and have different format.

Page numbering is also distinct and independent

as is made clear by the different fonts and placement of page numbers,

I hope.
Version arXiv:1905.13574v3, 18 Jul 2019 is on the following pages.
Kirchhoff’s Current Law Can Be Exact

available at https://arxiv.org/abs/1905.13574

Robert S. Eisenberg
Department of Applied Mathematics
Illinois Institute of Technology;
Department of Physiology and Biophysics
Rush University Medical Center
Chicago IL
USA

Bob.Eisenberg@gmail.com

File name: Kirchhoff’s Current Law Can Be Exact with Addendum December 5-2 2022.docx
Abstract

Kirchhoff’s current law is thought to describe the translational movement of charged particles through resistors. But Kirchhoff’s law is widely used to describe movements of current through resistors in high speed devices. Current at high frequencies/short times involves much more than the translation of particles. Transients abound. Augmentation of the resistors with ad hoc ‘stray’ capacitances is often used to introduce transients into models like those in real resistors. But augmentation hides the underlying problem, rather than solves it: the location, value and dielectric properties of the stray capacitances are not well determined. Here, we suggest a more general approach, that is well determined.

If current is redefined as in Maxwell’s equations, independent of the properties of dielectrics, Kirchhoff’s law is exact and transients arise automatically without ambiguity. The transients in a particular real circuit—a high density integrated circuit for example—can then be described by measured constitutive equations together with Maxwell’s equations without the introduction of arbitrary circuit elements.
Kirchhoff’s current law says, in a crude representation, that the current that flows into a node, must flow out. In textbooks, Kirchhoff’s current law describes the translational movement of charges through resistors that might be called the flux of electrons. The resistors are ideal, described by single real numbers. The current is carried by charges that have mass, e.g., electrons, and the movements are slow, without transients, nearly at DC [1-13].²

Kirchhoff’s law is used today to describe currents through resistors on the nanosecond time scale. Indeed, it is the main design tool for the circuits of our high-speed technology. The currents in high speed circuits have transients not seen when movements are slow near DC. Current through resistors on the nanosecond time scale involves delays and overshoots: it is a complex phenomena [14-22], not just the movement of electrons in wires, in resistors or into capacitors. Kirchhoff’s current law is viewed as approximate for these reasons, as is clear from its derivations [13, 14, 23, 24].

Engineers have dealt with these difficulties by ad hoc augmentation of DC circuits [25]. They construct wideband circuit models made of

1. idealized resistors with current strictly equal \(V_R/R \), where \(R \) is the resistance and \(V_R \) is the voltage across the resistor in parallel with

2. ideal capacitors, often characterized as stray [14, 26], sometimes as ‘parasitic’ [27].

These ideal capacitors carry currents strictly equal to \(C \frac{\partial V}{\partial t} \), where \(C \) is the capacitance, \(V \) is the voltage across the capacitor and \(t \) is time.

The size and location of the stray capacitances are chosen empirically so the augmented circuits more or less fit measurements of high-speed transients.

The values and locations of the stray capacitances are neither exact nor unique. They are often crude approximations, because actual currents deviate significantly from \(C \frac{\partial V}{\partial t} \) or \(V_R/R \) on the time scales of our digital technology, in ways important in practice [18, 19, 21, 22, 28-34].

² Sommerfeld [14], p. 101 describes the origin of Kirchhoff’s laws, as Kirchhoff’s solution to a problem posed in a seminar led by Neumann.
Exact treatments have advantages. Empirical and imprecise modifications of a circuit seem a poor substitute for an exact treatment, derivable from electrodynamics, if that is possible.

An exact treatment is possible using a rederivation of the law of conservation of current (eq. 3 below and ref. [25, 35-39]). We show (eq. 4, below) that Kirchhoff’s law can be as exact as the Maxwell equations themselves\(^3\), once current is defined as in the Maxwell equations, independent of the dielectric properties of matter [35-37, 40].

The role of ‘current’ was evidently a key issue in Maxwell’s development of electrodynamics, according to the historical literature [41-44]. Maxwell defined current as we have, according to his successors at Trinity College Cambridge UK, Jeans and Whittaker, [45], p.511; [46], p. 280, respectively. Lorrain and Corson [1], p. 276 eq. 6-148, use that definition as well.

Current is usually defined as the flux of charge, although that is not the definition used here, see eq. (3)-(4) below. The flux of charge is not conserved. It accumulates in what are loosely called capacitors or stray capacitance. More precisely, the flux of charge accumulates according to the ‘continuity equation’ described in textbooks of electrodynamics for the oversimplified case in which single dielectric constant describes polarization [1, 2, 4, 5, 47].

Eq. 21-23 of ref [35] describes the effects of polarization on the accumulation of charge in general materials. Ref [35] derives the continuity equation for materials with complex polarization that cannot be described by a single dielectric constant.

Current in the Maxwell equations. Current appears in the equations of Maxwell in his generalization of Ampere’s law.

\[
\begin{align*}
\frac{1}{\mu_0} \text{curl} B &= J + \varepsilon_0 \frac{\partial E}{\partial t} \quad (1) \\
J &= (\varepsilon_r - 1)\varepsilon_0 \frac{\partial E}{\partial t} + J_{\text{everything else}} \quad (2)
\end{align*}
\]

\(^3\) Ref [19-23, 37, 41-43] apply the Maxwell equations within atoms using Bohm’s version of quantum mechanics.
See texts [1, 2, 4, 5, 47] for the standard formulation of Maxwell’s equations. See ref. [35] for an update to Maxwell’s equation that includes a more realistic (and general) description of polarization and permanent charge (not present in Maxwell’s original formulation). $\varepsilon_0 \partial \mathbf{E}/\partial t$ is written separately in eq. (1) because it is a property of space, not matter, as discussed below. The variable $\varepsilon_r - 1$ and $\mathbf{J}_{\text{everything else}}$ are properties of matter, not space, see below on p. 6.

\mathbf{B} describes the magnetic field with magnetic constant (permeability of vacuum) μ_0. \mathbf{E} describes the electric field, with electric constant ε_0 (permittivity of vacuum). ε_r is the relative dielectric coefficient of perfect dielectrics, a single real positive constant ≥ 1. \mathbf{J} is the current produced by all translation of mass—including all movements of mass with charge, however small or transient the movement. \mathbf{J} includes the polarization currents of dielectrics, ideal and real. The polarization of idealized dielectrics $(\varepsilon_r - 1)\varepsilon_0 \partial \mathbf{E}/\partial t$ is isolated from other currents in eq. (2) only for convenience in relating our results to the literature [2, 5, 47-55]. Most of the literature of electrodynamics is written as if all dielectrics are ideal; Robinson [56] is a welcome exception that most resembles the treatment here.

Eq. (1)-(2) require a complete description of \mathbf{J}. A set of experimental results can serve this purpose. Theories or simulations of \mathbf{J} can also serve this purpose if they fit the experimental data.4

\mathbf{J} includes charge carried by the flux of particles, as in most textbooks. $\mathbf{J}_{\text{everything else}}$ includes the flux of particles and the nonideal polarization of real materials. It also includes other movements of charge, described below, and quantum effects [18-22, 36, 57-59] although those are not our focus.

Current. The current described as ‘Everything else’ in eq. (2) includes current produced by

1. transport (flux) of electrons or charged particles, as in classical Kirchhoff’s law of DC (or low frequency) circuit analysis.

‘Everything else’ also includes

2. the nonideal properties of dielectrics;

4 Those theories and simulations are most useful if they are transferable from one set of experimental conditions to another, using just one set of parameters. Not all theories and simulations have that property (see the note [61] and its documentation in [62]). In chemical kinetics, parameters are customarily adjusted as conditions change so a favored equation—the law of mass action—always fits data.
(3) polarization of matter in general, time dependent, nonlinear or whatever;
(4) currents driven by other fields, like diffusion, heat, and convection;
(5) any other movement (of any type) of charge with mass, including quantum effects [18-22, 36, 57-59].

‘Everything else’ does not include

(6) the properties of dielectrics idealized by \((\varepsilon_r - 1) \varepsilon_0 \partial E / \partial t\). That is treated separately as is the custom in the classical literature and textbooks.

(7) the polarization of the vacuum \(\varepsilon_0 \partial E / \partial t\). That ethereal current is written separately from \(J\) and \(J_{\text{everything else}}\) in eq. (2).

Polarization of the vacuum. The term \(\varepsilon_0 \partial E / \partial t\) is treated separately because it has such a different origin. \(\varepsilon_0 \partial E / \partial t\) describes the ‘polarization of the vacuum’ [35] that allows—or should one say ‘supports’? —the ethereal propagation of electromagnetic waves through a vacuum devoid of mass. The polarization of the vacuum is a consequence of general physical laws [2, 47, 49, 50, 60-62], not a property of matter, and should really be called ‘the polarization of space’. The polarization \(\varepsilon_0 \partial E / \partial t\) makes charge relativistically invariant, independent of velocity, even at velocities approaching the speed of light. References include p. 553 of [2]; p. 228, eq. 5-110, of [1] and [47, 50, 60, 63, 64].

Charge is different from mass, length, and time, and most fundamental quantities. They vary with velocity according to the Lorentz transformation. Charge does not [2, 47, 49, 50, 60-62].

Polarization of real materials. Polarization of real materials is too complex to approximate usefully with a constant \(\varepsilon_r\) [40]. Polarization is nonlinear in significant applications, particularly optical [56, 65-70]. Even when the polarization is linear, it involves complicated delays and varies too much with conditions and frequency/time to allow description with a constant \(\varepsilon_r\).

An abundant and classical literature—prominent since at least 1928 [71, 72]—reports the actual properties of polarization of real dielectrics. Most of the classical literature concerns polarization that is proportional to the local electric field, i.e. that is linear [36, 71-100]. Polarization has been studied in great detail because it is a major determinant of the forces between molecules [101, 102].

Parsegian [101] discusses at length (and with admirable clarity) the connection between polarization and the spectra observed when light interacts with molecules. Spectra are used to identify molecules—more or less as successfully as fingerprints identify people—because spectra (and polarization) are sensitive to details of chemical structure and thus are remarkably diverse, almost as diverse as the
molecules themselves [101, 103-107]. The diverse polarization and spectra of real materials obviously cannot be described by a single number or dielectric constant.

Despite this literature, ε_r has been treated as a single real positive constant ≥ 1 in textbooks of electrodynamics [1-5, 47, 49, 50, 61, 62] for many years apparently following [108, 109]. Robinson [56] is a welcome exception.

The properties of charge movement in matter are so complex that Feynman concluded that nothing much could be said in general (on p. 10-7 of [5]). It is necessary “… to exhibit in every case all the charges, whatever their origin, [so] the equations [of electrodynamics] are always correct.” In fact, something important can be said about electrodynamics in general, independent of the properties of matter. Current, as defined by Maxwell, is universally conserved [35-39].

Conservation of current can be derived without reference to matter: Conservation of current J_{total} is in fact a general and exact property of the Maxwell equations, as general as the Maxwell equations themselves, independent of any properties of matter [35-39]. The dielectric constant ε_r is not involved in the derivation of conservation of current at all. The derivation involves no statement or approximation to dielectric properties or polarization, nonlinear or linear, or any other properties of matter whatsoever.

Conservation of current. A general statement of conservation of current—eq. (3) below—can be derived [35-39] because the divergence of the curl in eq. (1) is identically zero, independent of any properties of matter, whenever Maxwell’s equations can be used. The crucial term that produces universal conservation of current is the polarization of space $\varepsilon_0 \frac{\partial E}{\partial t}$. The polarization of space has nothing to do with matter because ε_0 has nothing to do with matter. ε_0 is a property of space, not matter.

Physically, the polarization of the vacuum creates the ethereal current $\varepsilon_0 \frac{\partial E}{\partial t}$. The ethereal current is an output of the Maxwell equations that varies so the total current $J_{total} = J + \varepsilon_0 \frac{\partial E}{\partial t}$ is conserved [35]. The ethereal current allows current to be conserved no matter what physics is involved in the translation of matter and charge—see eq. 4 of [39] and Fig. 2 of [37]—even quantum physics (see eq. 45 of [36]).

\[
\text{Conservation of Current} \quad \text{div} \left(\frac{J_{total} = \text{Current}}{J + \varepsilon_0 \frac{\partial E}{\partial t}} \right) = 0 \tag{3}
\]
Novel derivation, apparently. This general statement of conservation of current is not easily found in textbooks or the literature of electrodynamics.

The usual derivations of conservation of current (and the continuity equation derived in [35]) involve the dielectric constant ε_r and treat it as a single real constant number in contradiction to experimental measurements of dielectric properties [36, 71-100], spectra [103-107, 110], and nonlinear polarization [56, 65-70], as mentioned before.

Derivations of conservation of current do not usually deal with the sum labelled ‘Current’ in eq. (3). They do not usually deal with $\mathbf{J}_{\text{total}} = \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$. The usual derivations deal with \mathbf{J}. Examination of eq. (3) shows that \mathbf{J} is not universally conserved (because it neglects the ethereal current $\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$). \mathbf{J} accumulates in systems, capacitors and stray capacitances as specified precisely by the continuity equation. $\mathbf{J}_{\text{total}}$ does not accumulate.

It is no wonder then that readers of the usual derivations, and most scientists, conclude (incorrectly) that conservation of current is a poor approximation that does not fit experimental data.

Conservation of total current is not an approximation when total current is defined as $\mathbf{J}_{\text{total}}$ because $\mathbf{J}_{\text{total}}$ includes the ethereal current ε_0, as shown in [35-39]. $\mathbf{J}_{\text{total}}$ is conserved. \mathbf{J} is not.

Kirchhoff’s current law is the general conservation law eq. (3) rewritten for branched one dimensional networks.\(^5\) One dimensional networks have the special property that $\mathbf{curl} \mathbf{B} = 0$, as is apparent if one writes out the curl operator explicitly in one dimension [111, 112]. Kirchhoff’s law then does not involve current flows or coupling induced by the magnetic field. Those phenomena occur in three dimensional problems and could be quite significant in rapidly changing signals, like those of modern integrated circuits if the circuits involved three dimensional flows of current. If the flows of current are one dimensional, phenomena mediated only by the magnetic field are not significant because $\mathbf{curl} \mathbf{B} = 0$ in one dimensional circuits.

Kirchhoff’s law is widely viewed as an approximation, needing derivation; see p. 8-10 of [14] and [13, 23, 24] for some derivations, along with less precise

\(^5\) The precise definition of a network involves many issues beyond the scope of this paper [(6-12, 15-18, 114, 115)].
discussions in most textbooks describing circuits. But Kirchhoff’s law need not be approximate if current is defined⁶ to include the ethereal term $\varepsilon_0 \partial E / \partial t$ [35-39].

\[
\text{Proposed Definition: } \quad \textbf{Current} \triangleq J_{\text{total}} = J + \varepsilon_0 \frac{\partial E}{\partial t} \tag{4}
\]

With this definition of J_{total}, all the current that flows into a node, flows out, exactly, at any time, no matter how brief, under all conditions in which the Maxwell equations apply. It is exactly conserved. It cannot accumulate at all. It cannot be stored. In the language of fluid dynamics, the electric current J_{total} is the flow of an (exactly and perfectly) incompressible fluid.

The incompressible fluids of hydrodynamics are, on the other hand, an approximation, and not a very precise one if one thinks of the dynamic range of electrical approximations (which are at least $10^7 : 1$ in real circuits and immeasurably large in systems with little matter, as in the space between stars). The incompressible flow J_{total} is not approximate.

J_{total} is as incompressible as Maxwell’s equations are exact. It is perfectly incompressible under all conditions in which the ethereal current $\varepsilon_0 \partial E / \partial t$ is a perfect description of the physics of space, i.e. whenever Maxwell’s equations are exact.

The question of what flow is described by J_{total} has received a great deal of attention from Maxwell and other workers, particularly in the special case of flow in a vacuum $J_{\text{total}}(\text{vacuum}) = \varepsilon_0 \partial E / \partial t$ as described in Whittaker’s “A History of the Theories of Aether & Electricity” [46]. The properties of the “luminiferous (a)ether” need not concern us as long as the equations describing the flow $J_{\text{total}}(\text{vacuum})$ are correct, in the sense that they describe the properties of electromagnetic radiation in empty space, and mathematically consistent.

The question of what flows in the vacuum is too vacuous and too ethereal to grasp, in my opinion, because the crucial $\varepsilon_0 \partial E / \partial t$ term is a property of space, not matter. No one knows (as far as I can tell) how space can flow. From the point of view of mathematics, the meaning of the flow $J_{\text{total}}(\text{vacuum})$ is determined by the properties of space and time, described by special and general relativity, as charge

⁶ Lorrain and Corson [1], p. 276 eq. 6-148, use this definition of current. As far as I can tell, they do not discuss the approximate nature of ε_r. If the approximate nature of ε_r is not discussed, the reader will then naturally think (incorrectly) that conservation of current is as unrealistic as the idealization of a single dielectric constant. The development of Robinson [57] does not depend on the approximate nature of ε_r, but as far as I can tell, it does not use the definition of current of eq. (4).
moves and the electric field evolves according to the Lorentz transformation [2, 47, 49, 50, 60-62].

Ordinary Definition of Current. Current is defined in many textbooks as the charge carried by the translation of charged particles [2, 5-8, 11, 12, 14, 15, 17, 47-55, 113, 114]. This ordinary translational current is just part of the current I_{total} defined here in eq. (4). Another part of the current is classical, namely the current through an ideal dielectric $(\varepsilon_r - 1) \varepsilon_0 \partial \mathbf{E}/\partial t$ found in eq. (2).

The current ordinarily defined in textbooks is not conserved. The continuity equation found in most textbooks of electrodynamics shows explicitly how charge accumulates so current (as ordinarily defined) is not conserved. In crude language, current can accumulate in capacitors and so is not conserved. Those capacitors include the ‘capacitance of empty space’ arising from ε_0. In more precise language, current accumulates in polarization according to the continuity equation written in various forms in eq. 21-23 of ref [35], appropriate for the complicated properties of polarization in real materials. The continuity equation for the flow of mass is of course also involved and must be included in a description of a coupled system.

We use Maxwell’s definition of current I_{total} of eq. (4) precisely to avoid these difficulties. I_{total} does not accumulate, ever, anywhere. It is perfectly conserved. All the I_{total} that flows into a node flows out, always, everywhere.

The ordinary definition of current as only the flux of charged particles causes practical difficulty in Kirchhoff’s law when applied to high speed circuits made only of idealized resistors (described by constant real numbers) [13, 14, 23-25]. Such idealized circuits do not have the transients, delays, or overshoots found in real circuits made of resistors [18, 23, 24, 28-34]. Idealized circuits cannot deal with the actual behavior of circuits observed on the nanosecond time scale if they use the ordinary statement of Kirchhoff’s law and the ordinary definition of current as \mathbf{J}. Of course, the idealized circuits can be made more realistic by adding fictitious circuit elements.

Stray Capacitances. Engineers routinely add such fictitious capacitances to circuit models that include idealized resistors [25], so the transients of the idealized, augmented circuit approximate those observed in real circuits [26, 27]. The fictitious capacitances are not actual distinct circuit components. The location and values of the fictitious stray capacitances are chosen by the engineer to fit data and are rarely derived from electrodynamics.

The redefinition of current by equation (4) produces transients that are determined precisely without fictitious capacitances. Reference [25], eq. 14, shows how to choose capacitances arising from $\varepsilon_0 \partial \mathbf{E}/\partial t$, once current is defined by eq. 4.
Transients in real circuits are more complicated than those predicted in reference [25]. Reference [41] shows how to include any types of current flow—polarization, inductive, or anything else—in the analysis, so the theory can cope with the properties of real circuit boards.

Polarization of real circuit boards involves more than $\varepsilon_r \varepsilon_0 \partial \mathbf{E} / \partial t$ on the time scales of practical importance in our digital technology. Inductive effects of wires [20-24]; capacitances arising from materials like circuit boards [28-33]; and the complex geometry of the real circuit contribute additional terms beyond those arising from $\varepsilon_0 \partial \mathbf{E} / \partial t$ or $(\varepsilon_r - 1) \varepsilon_0 \partial \mathbf{E} / \partial t$. The polarization in models of real circuits needs to be determined from measurements of real circuit boards because polarization is likely to depend on details of composition and construction of the real circuits, and perhaps on the signals themselves. Reference [41] shows how to include any polarization in the analysis, so it can describe real circuit boards.

Role of the B field. The lack of magnetic field \mathbf{B} in branched one dimensional circuits is discussed at length in [35] where the speculation is made that the absence of \mathbf{B} fields makes circuit design (at high speeds) much easier. \mathbf{B} fields produce ‘leaks of current’ and cross talk that are difficult to deal with in circuit design, particularly because they are so variable and dependent on properties of the signals themselves, as well as details of layout, etc.

It seems to me that ground planes in high speed circuits might function better—i.e., more ideally, obeying the DC version of Kirchoff’s law more accurately—if they too were built as branched one dimensional circuits, with minimal \mathbf{B} fields, cross talk, and current leakage in the grounds.

Conclusion. Stray capacitances, of unknown value, location, and unrealistic properties seem a poor substitute for currents defined exactly by the Maxwell equations. Transients arise naturally if current in Kirchhoff’s law is defined as in Maxwell’s equation, see eq. (1)-(4). Realistic transients, arising from nonideal properties of circuits, can be easily incorporated into our treatment [35].
Appendix

Networks of Chemical Reactions

Our discussion has focused on Kirchhoff’s law in electrical networks. Networks and analogs of Kirchhoff’s law are also used widely to describe interacting chemical reactions in chemistry, biochemistry and biology [115-122]. The hundreds of enzyme reactions in the intermediary metabolism that form ‘the chemical factory of life’ are a notable example. These networks of chemical reactions are used by thousands of scientists every day to explain medical and biological phenomena and appear in every textbook of physiology, biochemistry, molecular and cell biology, and medicine.

Chemical networks. Equations of chemical [115-120] and enzyme kinetics [121, 122] use analogs of Kirchhoff’s law to connect chemical reactions. The analogs describe the flux of particles, not the flow of electric current. The analog equations use conservation of mass but rarely mention or use conservation of current. They do not include an $\varepsilon_r \varepsilon_0 \partial \mathbf{E} / \partial t$ term and so cannot conserve I_{total}. They also do not conserve I_{total} in the steady-state, as is clear by using the law of mass action of chemical reactions to compute and compare steady state currents for reactions in series [35, 37, 123, 124].

Auxiliary conditions may be possible that make equal the current I_{total} in a series of chemical reactions but auxiliary conditions are not found in the standard references [115-122] or textbooks, simple or advanced, as far as I know. The implication is that the treatment of chemical reactions in a wide range of the chemical and biological literature is incompatible with the Maxwell equations. One consequence may be the well known need to adjust parameters of chemical reactions as reactions are transferred from one set of conditions to another. Descriptions of chemical reactions are expected to be transferable only if they describe the real world properties of the reactants [35, 37, 123, 124], including its electrodynamics.

The real world is different from the world of textbooks, or chemical reaction theory because the real world follows Maxwell’s equations universally, at all locations and times, and under all conditions in which chemical reactions are studied. In the real world, the atomic scale electric field in one reaction is influenced by distant reactions—and by even more distant macroscopic boundary conditions—to create ‘flux coupling’ that would not be present without this long range influence of the electric field. Rate ‘constants’ of a series of reactions are coupled even for chemical reactions that are distinct and disjoint in space, far apart on an atomic length scale, occurring in different structures.

The auxiliary equations needed to conserve current I_{total} interact with the equations of chemical kinetics that conserve mass. One set of conservation laws is
not enough. Both must be solved together. One way to do this is to write separate networks for electric current and for mass flow.

The networks for conservation of mass and conservation of current J_{total} together can be solved with the methods of the theory of complex fluids which are designed to deal with multiple simultaneous force and flow fields. In particular, the variational method of complex fluids [125-136] may allow one to create a new synthetic composite functional with units of energy. In this way, flux coupling can be dealt with consistently on all scales, i.e., with all variables satisfying all boundary conditions with one set of unchanging parameters.

Flux coupling plays a central role in many transport systems and chemical reactions in biology. Flux coupling allows the ‘unnatural’ uphill transport of ions (and solutes) to be driven by the natural downhill movement of other ions (and solutes). Active transport of this sort occurs throughout biological cells and organelles and is one of the fundamental mechanisms of life.

Flux coupling is a central mechanism in oxidative phosphorylation and photosynthesis, which are the ultimate source of the energy for life, whether the energy is used in chemical, electrical, or diffusional processes. In oxidative phosphorylation and photosynthesis, electron flow is coupled to the movement of ions and ‘protons’ across membranes of mitochondria.\(^7\) Flux coupling in oxidative phosphorylation, and in photosynthesis, are particular examples of a general phenomenon. Flux coupling comes from a combination of macroscopic and atomic scale phenomena involving their mutually generated electric field, as well as (perhaps) chemical interactions.

Flux coupling depends on the experimental conditions. Flux coupling depends on anything that can change the macroscopic electric field. In particular, flux coupling depends on the boundary conditions.

Boundary conditions are different in different setups used to measure flux and flux coupling. Some setups leave the system in its natural state, with transporters/channels in native structures, like mitochondria. Other setups insert the transporter/channel into a lipid bilayer.

Flux coupling will be different in the two setups because they impose different boundary conditions. In mitochondria, the sum of currents across a membrane is zero (as it is in cells or organelles shorter than a length constant or so [137]). The biological situation imposes the condition that the sum of all currents across the membrane is zero, because structures, like mitochondria, are so small.

\(^7\) ‘Proton’ is a nickname for the positively charged form of water, sometimes written as H_3O^+.
Transporters are often studied, however, in non-native bilayer setups where currents are only constrained by the applied electrical and chemical potential (i.e., concentrations). Quite different results for flux coupling can occur in that case, quite different from the flux coupling that is found in the mitochondria, because the constraints on the fluxes (the boundary conditions produced by conservation of current) are so different.

Flux Coupling and Channel Opening. Manuel Landstorfer and I recently realized [36] that a different kind of coupling can occur between the voltage sensor of a voltage sensitive channel [138-143] and its conduction pore. Part of the current injected by the voltage sensor might flow through the conduction pore and trigger its opening.

Similarly, flux coupling can occur when a transmitter binds to a receptor on a channel protein, like acetylcholine binding to the acetylcholine channel. Binding of a charged agonist to a charged receptor produces current and some of that current can be injected into the conduction pore, triggering its opening, even though the pore is far away from the receptor.

Historical Note. The reason \(J_{\text{total}} \) is not conserved in chemical kinetics [115-122] is historical, I suspect. Chemists were understandably focused on mass and its transformations, not electric current and its flow. Conservation of mass is used in the derivation of the equations of enzyme kinetics, but conservation of current is not mentioned, to the best of my knowledge.

Mass can accumulate according to the continuity equation of fluid dynamics. Chemical kinetics allows accumulation of mass this way but is silent about conservation of charge or current, whether steady-state or transient. Charge can accumulate according to the continuity equation for \(J \) shown in various forms in eq. 21-23 of [35]. In contrast, the Maxwell equations do not allow accumulation of the current \(J_{\text{total}} \), whether steady-state or transient, not at all, not under any conditions or at any time. All the \(J_{\text{total}} \) that flows into a node flows out.

Conclusion. It seems wise to use network models in both chemistry and electronics that conserve \(J_{\text{total}} \) with as few \textit{ad hoc} extensions to Maxwell’s equations as possible: the artifacts in electrical potential and fluxes can be very large if current is not conserved. The artifact in the electric potential is large, because of the strength of the electric field (see the first page of Feynman [5] and Appendix of [37]). Fluxes often flow over large barriers, where flux is an exponential function of potential. Flux artifacts can then be exponentially large and are best avoided. Models with large artifacts are unlikely to be transferrable from one of conditions to another.
References

1. Lorrain, P., and D. Corson. 1970. *Electromagnetic fields and waves, Second Edition*. Freeman.

2. Jackson, J. D. 1999. *Classical Electrodynamics, Third Edition*. Wiley, New York.

3. Griffiths, D. J. 1981. *Introduction to Electrodynamics*. Prentice Hall, Englewood Cliffs, NJ.

4. Purcell, E. M., and D. J. Morin. 2013. *Electricity and magnetism*. Cambridge University Press.

5. Feynman, R. P., R. B. Leighton, and M. Sands. 1963. *The Feynman: Lectures on Physics, Mainly Electromagnetism and Matter*. Addison-Wesley Publishing Co., also at http://www.feynmanlectures.caltech.edu/II_toc.html, New York.

6. Guillemin, E. A. 2013. *Theory of Linear Physical Systems: Theory of physical systems from the viewpoint of classical dynamics, including Fourier methods*. Dover Publications.

7. Guillemin, E. A. 1958. *Introductory Circuit Theory*. Wiley.

8. Bode, H. W. 1945. Network analysis and feedback amplifier design.

9. Desoer, C. A., and E. S. Kuh. 1969. *Basic Circuit Theory*. McGraw Hill, New York.

10. Bamberg, P., and S. Sternberg. 1991. *A course in mathematics for students of physics*. Cambridge University Press, Cambridge.

11. LePage, W. R., and S. Seely. 1952. *General Network Analysis*. McGraw-Hill.

12. Weinberg, L. 1975. *Network analysis and synthesis*. Krieger Pub. Co.

13. Bhat, H. S., and B. Osting. 2011. Kirchhoff's Laws as a Finite Volume Method for the Planar Maxwell Equations. Antennas and Propagation, IEEE Transactions on 59:3772-3779.

14. Balanis, C. A. 2012. *Advanced engineering electromagnetics*. John Wiley & Sons.

15. Hall, S. H., and H. L. Heck. 2011. *Advanced signal integrity for high-speed digital designs*. John Wiley & Sons.
16. Johnson, H. W., and M. Graham. 2003. *High-speed signal propagation: advanced black magic*. Prentice Hall Professional.

17. Paul, C. R. 2006. *Introduction to electromagnetic compatibility*. John Wiley & Sons.

18. Datta, S. 2012. *Lessons from Nanoelectronics: A New Perspective on Transport*. World Scientific Publishing Company.

19. Datta, S. 2005. *Quantum Transport: Atom to Transistor*. Cambridge University Press.

20. Ferry, D. K. 2015. *Transport in Semiconductor Mesoscopic Devices*. Institute of Physics Publishing.

21. Ferry, D. K. 2012. Ohm's Law in a Quantum World. Science 335:45-46.

22. Ferry, D. K., M. J. Gilbert, and R. Akis. 2008. Some considerations on nanowires in nanoelectronics. IEEE Transactions on Electron Devices 55:2820-2826.

23. Wang, Y., D. Gope, V. Jandhyala, and C.-J. Shi. 2004. Generalized Kirchoff's current and voltage law formulation for coupled circuit-electromagnetic simulation with surface integral equations. IEEE transactions on microwave theory and techniques 52:1673-1682.

24. Mei, K. K. 2000. *From Kirchoff to Lorentz modifying-circuit theory for microwave and mm-wave structures*. In Infrared and Millimeter Waves, 2000. Conference Digest. 2000 25th International Conference on. IEEE. 371-374.

25. Eisenberg, B., N. Gold, Z. Song, and H. Huang. 2018. What Current Flows Through a Resistor? arXiv preprint arXiv:1805.04814.

26. Horowitz, P., and W. Hill. 2015. *The Art of Electronics*. Cambridge University Press.

27. Howe, R. T., and C. G. Sodini. 1997. *Microelectronics: an integrated approach*. Prentice Hall, Upper Saddle River, NJ USA.

28. Fukunaga, K., and S. Kurahashi. 2007. *Dielectric properties of printed circuit board insulations at microwaves and millimetre waves*. In Electromagnetics in Advanced Applications, 2007. ICEAA 2007. International Conference on. IEEE. 332-335.
29. Heinola, J.-M., P. Silventoinen, K. Latti, M. Kettunen, and J.-P. Strom. 2004. Determination of dielectric constant and dissipation factor of a printed circuit board material using a microstrip ring resonator structure. In Microwaves, Radar and Wireless Communications, 2004. MIKON-2004. 15th International Conference on. IEEE. 202-205.

30. Djordjevic, A. R., R. M. Biljić, V. D. Likar-Smiljanic, and T. K. Sarkar. 2001. Wideband frequency-domain characterization of FR-4 and time-domain causality. IEEE Transactions on Electromagnetic Compatibility 43:662-667.

31. Shaw, T., Z. Suo, M. Huang, E. Liniger, R. Laibowitz, and J. Baniecki. 1999. The effect of stress on the dielectric properties of barium strontium titanate thin films. Applied Physics Letters 75:2129-2131.

32. Napoli, L., and J. Hughes. 1971. A simple technique for the accurate determination of the microwave dielectric constant for microwave integrated circuit substrates (Correspondence). IEEE Transactions on Microwave Theory and Techniques 19:664-665.

33. Gharpurey, R., and R. G. Meyer. 1996. Modeling and analysis of substrate coupling in integrated circuits. IEEE journal of Solid-State circuits 31:344-353.

34. Datta, S. 1997. Electronic Transport in Mesoscopic Systems. Cambridge University Press.

35. Eisenberg, R. S. 2019. Updating Maxwell with Electrons, Charge, and More Realistic Polarization. Available on arXiv and internet as https://arxiv.org/abs/1904.09695.

36. Eisenberg, B., X. Oriols, and D. Ferry. 2017. Dynamics of Current, Charge, and Mass. Molecular Based Mathematical Biology 5:78-115 and arXiv preprint https://arxiv.org/abs/1708.07400.

37. Eisenberg, R. S. 2016. Mass Action and Conservation of Current. Hungarian Journal of Industry and Chemistry Posted on arXiv.org with paper ID arXiv:1502.07251 44:1-28.

38. Eisenberg, B. 2016. Conservation of Current and Conservation of Charge. Available on arXiv as https://arxiv.org/abs/1609.09175.

39. Eisenberg, B. 2016. Maxwell Matters. Available on arXiv as https://arxiv.org/pdf/1607.06691.
40. Eisenberg, R. S. 2019. Dielectric Dilemma. preprint available at https://arxiv.org/abs/1901.10805.

41. Buchwald, J. Z. 1985. *From Maxwell to Microphysics. Aspects of Electromagnetic Theory in the Last Quarter of the Nineteenth Century*. University of Chicago, Chicago IL USA.

42. Simpson, T. K. 1998. *Maxwell on the Electromagnetic Field: A Guided Study*. Rutgers University Press.

43. Arthur, J. W. 2008. The fundamentals of electromagnetic theory revisited. IEEE Antennas and Propagation Magazine 50:19-65.

44. Arthur, J. W. 2013. The Evolution of Maxwell's Equations from 1862 to the Present Day. IEEE Antennas and Propagation Magazine 55:61-81.

45. Jeans, J. H. 1908. *The mathematical theory of electricity and magnetism*. University Press.

46. Whittaker, E. 1951. *A History of the Theories of Aether & Electricity*. Harper, New York.

47. Griffiths, D. J. 2017. *Introduction to Electrodynamics*. Cambridge University Press.

48. Panofsky, W. K. H., and M. Phillips. 2012. *Classical Electricity and Magnetism: Second Edition*. Dover Publications.

49. Kovetz, A. 2000. *Electromagnetic Theory*. Clarendon Press.

50. Hehl, F. W., and Y. N. Obukhov. 2012. *Foundations of Classical Electrodynamics: Charge, Flux, and Metric*. Birkhäuser Boston.

51. Lorrain, P., D. R. Corson, and F. Lorrain. 1988. *Electromagnetic Fields and Waves: Including Electric Circuits*. Freeman.

52. Saslow, W. M. 2002. *Electricity, Magnetism, and Light*. Academic Press, New York.

53. Joffe, E. B., and K.-S. Lock. 2010. *Grounds for Grounding*. Wiley-IEEE Press, NY.

54. Zangwill, A. 2013. *Modern Electrodynamics*. Cambridge University Press, New York.

55. Purcell, E. M. 1985. *Electricity and Magnetism*. McGraw Hill, New York.

56. Robinson, F. N. H. 1973. *Macroscopic electromagnetism*. Pergamon.
57. Albareda, G., F. L. Traversa, A. Benali, and X. Oriols. 2012. Computation of Quantum Electrical Currents through the Ramo-Shockley-Pellegrini Theorem with Trajectories. Fluctuation & Noise Letters 11:1-11.

58. Albareda, G., D. Marian, A. Benali, A. Alarcón, S. Moises, and X. Oriols. 2016. Electron Devices Simulation with Bohmian Trajectories. Simulation of Transport in Nanodevices:261-318.

59. Marian, D., N. Zanghi, and X. Oriols. 2016. Weak Values from Displacement Currents in Multiterminal Electron Devices. Phys Rev Lett 116:110404.

60. Pauli, W. 2013. Theory of Relativity. Dover Publications.

61. Hehl, F. W., and Y. N. Obukhov. 2000. A gentle introduction to the foundations of classical electrodynamics: The meaning of the excitations (D, H) and the field strengths (E, B). arXiv preprint physics/0005084.

62. Obukhov, Y. N., and F. W. Hehl. 2003. Electromagnetic energy–momentum and forces in matter. Physics Letters A 311:277-284.

63. Kosyakov, B. 2014. The pedagogical value of the four-dimensional picture: II. Another way of looking at the electromagnetic field. European Journal of Physics 35:025013.

64. Kosyakov, B. 2007. Introduction to the classical theory of particles and fields. Springer Science & Business Media.

65. Wegener, M. 2005. Extreme nonlinear optics: an introduction. Springer Science & Business Media.

66. Sutherland, R. L. 2003. Handbook of nonlinear optics. CRC press.

67. Boyd, R. W. 2008. Nonlinear Optics, Third Edition. Academic Press.

68. Hill, W. T., and C. H. Lee. 2008. Light-matter interaction. John Wiley & Sons.

69. Lodahl, P., S. Mahmoudian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller. 2017. Chiral quantum optics. Nature 541:473-480.

70. Zheng, B., H. A. Madni, R. Hao, X. Zhang, X. Liu, E. Li, and H. Chen. 2016. Concealing arbitrary objects remotely with multi-folded transformation optics. Light Sci Appl. 5:e16177.

71. Debye, P. J. W. 1929. Polar molecules. Chemical Catalog Company, Incorporated.
72. Debye, P., and H. Falkenhagen. 1928. *Dispersion of the Conductivity and Dielectric Constants of Strong Electrolytes*, Phys. Z.

73. Barsoukov, E., and J. R. Macdonald. 2018. *Impedance spectroscopy: theory, experiment, and applications*. John Wiley & Sons.

74. Kremer, F., and A. Schönhals. 2003. *Broadband Dielectric Spectroscopy*. Springer

75. Buchner, R., and J. Barthel. 2001. Dielectric Relaxation in Solutions Annual Reports on the Progress of Chemistry, Section C: Physical Chemistry 97: 349-382.

76. Barthel, J., R. Buchner, and M. Münsterer. 1995. *Electrolyte Data Collection Vol. 12, Part 2: Dielectric Properties of Water and Aqueous Electrolyte Solutions*. DECHEMA, Frankfurt am Main.

77. Kraus, C. A., and R. M. Fuoss. 1933. Properties of Electrolytic Solutions. I. Conductance as Influenced by the Dielectric Constant of the Solvent Medium. Journal of the American Chemical Society 55:21-36.

78. Oncley, J. 1942. The Investigation of Proteins by Dielectric Measurements. Chemical Reviews 30:433-450.

79. Fuoss, R. M. 1949. Theory of dielectrics. Journal of Chemical Education 26:683.

80. Von Hippel, A. R. 1954. *Dielectric materials and applications*. Artech House on Demand.

81. Fröhlich, H. 1958. *Theory of dielectrics: dielectric constant and dielectric loss*. Clarendon Press.

82. Nee, T.-w., and R. Zwanzig. 1970. Theory of Dielectric Relaxation in Polar Liquids. Journal of Chemical Physics 52:6353-6363.

83. Scaife, B. K. P. 1989. *Principles of dielectrics*. New York, NY (USA); Oxford University Press; None.

84. Ritschel, U., L. Wilets, J. J. Rehr, and M. Grabiak. 1992. Non-local dielectric functions in classical electrostatics and QCD models. Journal of Physics G: Nuclear and Particle Physics 18:1889.

85. Kurnikova, M. G., D. H. Waldeck, and R. D. Coalson. 1996. A molecular dynamics study of the dielectric friction. Journal of Chemical Physics 105:628-638.
86. Heinz, T. N., W. F. van Gunsteren, and P. H. Hunenberger. 2001. Comparison of four methods to compute the dielectric permittivity of liquids from molecular dynamics simulations. The Journal of chemical physics 115:1125-1136.

87. Pitera, J. W., M. Falta, and W. F. van Gunsteren. 2001. Dielectric properties of proteins from simulation: the effects of solvent, ligands, pH, and temperature. Biophys J 80:2546-2555.

88. Schutz, C. N., and A. Warshel. 2001. What are the dielectric "constants" of proteins and how to validate electrostatic models? Proteins 44:400-417.

89. Fiedziuszko, S. J., I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino. 2002. Dielectric materials, devices, and circuits. IEEE Transactions on Microwave Theory and Techniques 50:706-720.

90. Doerr, T. P., and Y.-K. Yu. 2004. Electrostatics in the presence of dielectrics: The benefits of treating the induced surface charge density directly. American Journal of Physics 72:190-196.

91. Rotenberg, B., A. Cadene, J. F. Dufreche, S. Durand-Vidal, J. C. Badot, and P. Turq. 2005. An analytical model for probing ion dynamics in clays with broadband dielectric spectroscopy. The journal of physical chemistry. B 109:15548-15557.

92. Kuehn, S., J. A. Marohn, and R. F. Loring. 2006. Noncontact dielectric friction. The journal of physical chemistry. B 110:14525-14528.

93. Dyer, K. M., J. S. Perkyns, G. Stell, and B. M. Pettitt. 2008. A molecular site-site integral equation that yields the dielectric constant. The Journal of chemical physics 129:104512.

94. Fulton, R. L. 2009. The nonlinear dielectric behavior of water: Comparisons of various approaches to the nonlinear dielectric increment. The Journal of chemical physics 130:204503-204510.

95. Angulo-Sherman, A., and H. Mercado-Uribe. 2011. Dielectric spectroscopy of water at low frequencies: The existence of an isopermitive point. Chemical Physics Letters 503:327-330.

96. Ben-Yaakov, D., D. Andelman, and R. Podgornik. 2011. Dielectric decrement as a source of ion-specific effects. The Journal of chemical physics 134:074705.

97. Riniker, S., A.-P. E. Kunz, and W. F. van Gunsteren. 2011. On the Calculation of the Dielectric Permittivity and Relaxation of Molecular Models in the Liquid Phase. Journal of Chemical Theory and Computation 7:1469-1475.
98. Zarubin, G., and M. Bier. 2015. Static dielectric properties of dense ionic fluids. The Journal of chemical physics 142:184502.

99. Eisenberg, B., and W. Liu. 2017. Relative dielectric constants and selectivity ratios in open ionic channels. Molecular Based Mathematical Biology 5:125-137.

100. Böttcher, C. J. F., O. C. van Belle, P. Bordewijk, and A. Rip. 1978. Theory of electric polarization. Elsevier Science Ltd.

101. Parsegian, V. A. 2006. Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists Cambridge University Press, New York.

102. Israelachvili, J. 1992. Intermolecular and Surface Forces. Academic Press, New York.

103. Banwell, C. N., and E. M. McCash. 1994. Fundamentals of molecular spectroscopy. McGraw-Hill New York.

104. Demchenko, A. P. 2013. Ultraviolet spectroscopy of proteins. Springer Science & Business Media.

105. Rao, K. N. 2012. Molecular spectroscopy: modern research. Elsevier.

106. Sindhu, P. 2006. Fundamentals of Molecular Spectroscopy. New Age International.

107. Stuart, B. 2005. Infrared spectroscopy. Wiley Online Library.

108. Abraham, M., and R. Becker. 1932. The Classical Theory of Electricity and Magnetism. Blackie and subsequent Dover reprints, Glasgow, UK.

109. Abraham, M., and A. Föppl. 1905. Theorie der Elektrizität: Bd. Elektromagnetische Theorie der Strahlung. BG Teubner.

110. Parsegian, V. A. 1969. Nature (London) 221:844.

111. Schey, H. M., and H. M. Schey. 2005. Div, grad, curl, and all that: an informal text on vector calculus. WW Norton.

112. Arfken, G. B., and H. J. Weber. 1999. Mathematical methods for physicists. AAPT.

113. LePage, W. R. 2012. Complex Variables and the Laplace Transform for Engineers. Dover Publications.

114. Taur, Y., and T. H. Ning. 2013. Fundamentals of Modern VLSI Devices. Cambridge University Press.
115. Moore, J. W., and R. G. Pearson. 1981. *Kinetics and Mechanism*. John Wiley, New York.

116. Gillespie, D. T. 2007. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35-55.

117. Gillespie, D. T. 1992. A rigorous derivation of the chemical master equation. Physica A: Statistical Mechanics and its Applications 188:404-425.

118. Warshel, A. 1991. Computer modelling of chemical reactions in enzymes and solutions.

119. Gillespie, D. T. 1977. Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry 81:2340-2361.

120. Érdi, P., and J. Tóth. 1989. *Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models*. Manchester University Press.

121. Segel, I. H. 1993. *Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems*. Wiley: Interscience, New York.

122. Dixon, M., and E. C. Webb. 1979. *Enzymes*. Academic Press, New York.

123. Eisenberg, B. 2014. Shouldn’t we make biochemistry an exact science? ASBMB Today 13:36-38.

124. Eisenberg, B. 2014. Can we make biochemistry an exact science? Available on arXiv as https://arxiv.org/abs/1409.0243.

125. Eisenberg, B., Y. Hyon, and C. Liu. 2010. Energy Variational Analysis EnVarA of Ions in Water and Channels: Field Theory for Primitive Models of Complex Ionic Fluids. Journal of Chemical Physics 133:104104.

126. Hyon, Y., B. Eisenberg, and C. Liu. 2011. A Mathematical Model for the Hard Sphere Repulsion in Ionic Solutions. Communications in Mathematical Sciences 9:459–475 also available as preprint# 2318 (IMA, University of Minnesota, Minneapolis) http://www.ima.umn.edu/preprints/jun2010/jun2010.html, 2010.

127. Hyon, Y., J. E. Fonseca, B. Eisenberg, and C. Liu. 2012. Energy variational approach to study charge inversion (layering) near charged walls. Discrete and Continuous Dynamical Systems Series B (DCDS-B) 17:2725 - 2743.
128. Yue, P., J. J. Feng, C. Liu, and J. Shen. 2004. A Diffuse-Interface Method for Simulating Two-Phase Flows of Complex Fluids. Journal of Fluid Mechanics 515:293--317.

129. Ryham, R., C. Liu, and L. Zikatanov. 2007. Mathematical models for the deformation of electrolyte droplets. Discrete Contin. Dyn. Syst.-Ser. B 8:649-661.

130. Liu, C. 2009. An Introduction of Elastic Complex Fluids: An Energetic Variational Approach. In Multi-scale Phenomena in Complex Fluids: Modeling, Analysis and Numerical Simulations. T. Y. Hou, Liu, C., Liu, J.-g, editor. World Scientific Publishing Company, Singapore.

131. Hyon, Y., D. Y. Kwak, and C. Liu. 2010. Energetic Variational Approach in Complex Fluids: Maximum Dissipation Principle. available at URL: http://www.ima.umn.edu as IMA Preprint Series # 2228 26:1291 - 1304.

132. Doi, M. 2011. Onsager's variational principle in soft matter. Journal of Physics of Condensed Matter 23:284118.

133. Wei, G., Q. Zheng, Z. Chen, and K. Xia. 2012. Variational Multiscale Models for Charge Transport. SIAM Review 54:699-754.

134. Forster, J. 2013. Mathematical Modeling of Complex Fluids. In Department of Mathematics. University of Wurzburg, Wurzburg, Germany. 67.

135. Xu, S., P. Sheng, and C. Liu. 2014. An energetic variational approach to ion transport. Communications in Mathematical Sciences 12:779–789 Available on arXiv as http://arxiv.org/abs/1408.4114.

136. Giga, M.-H., A. Kirshtein, and C. Liu. 2017. Variational Modeling and Complex Fluids. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Y. Giga, and A. Novotny, editors. Springer International Publishing, Cham. 1-41.

137. Barcilon, V., J. Cole, and R. S. Eisenberg. 1971. A singular perturbation analysis of induced electric fields in nerve cells. SIAM J. Appl. Math. 21:339-354.

138. Horng, T.-L., R. S. Eisenberg, C. Liu, and F. Bezanilla. 2019. Continuum Gating Current Models Computed with Consistent Interactions. Biophysical Journal 116:270-282.
139. Lacroix, J. J., H. C. Hyde, F. V. Campos, and F. Bezanilla. 2014. Moving gating charges through the gating pore in a K\textsubscript{v} channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America 111:E1950-1959.

140. Bezanilla, F., and E. Perozo. 2003. The voltage sensor and the gate in ion channels. Advances in protein chemistry 63:211-241.

141. Bezanilla, F. 2000. The voltage sensor in voltage-dependent ion channels. Physiological reviews 80:555-592.

142. Catacuzzeno, L., and F. Franciolini. 2018. Simulation of gating currents of the Shaker K channel using a Brownian model of the voltage sensor. arXiv preprint arXiv:1809.05464.

143. Gonzalez, C., G. Contreras, A. Peyser, P. Larsson, A. Neely, and R. Latorre. 2012. Voltage sensor of ion channels and enzymes. Biophysical Reviews 4:1-15.