Research Paper

Numerical investigation of the influence of mushy zone parameter A_{mush} on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems

Mohamed Fadl⁎, Philip C. Eames

Centre for Renewable Energy Systems Technologies (CREST), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire LE11 3TU, UK

HIGHLIGHTS

- Numerical simulations were conducted to examine the effect of A_{mush} on predicted heat transfer and melting of a PCM.
- The smallest values of A_{mush} resulted in unrealistic predictions of the melt front development.
- The higher values of A_{mush} corresponded to delayed melting of the PCM.
- The impact of A_{mush} is generally less prominent in regions which conductive heat transfer dominates.

ARTICLE INFO

Keywords:
Natural convection
PCM
Thermal energy storage
CFD
Enthalpy-porosity method

ABSTRACT

The effect of the value used for the mushy zone parameter (A_{mush}) on predicted heat transfer and melting characteristics of a phase change material (PCM) Lauric acid, in both vertical and horizontal enclosures was studied. There is a lack of clarity regarding which value of this parameter should be used for accurate simulations of phase change heat transfer, addressing this will aid in accurate simulation and design of systems for LHTES (Latent heat thermal energy storage). The numerical analysis undertaken used a commercial CFD code ANSYS FLUENT 18.2 and the enthalpy-porosity formulation. The range of mushy zone parameter used was from 10^5 to 10^7.

The predicted locations of the melt front were compared to published experimental data available in the literature. The simulations provided quantitative information about the amount of energy stored and the melt fraction and providing improved understanding of the heat transfer process. Comparison between predictions using different values of A_{mush} and experimental data showed that correct selection of the value of A_{mush} to be used in the momentum equations is an important parameter for accurate modelling of LHTES and has a significant influence on the solid-liquid interface shape and progression. The study reveals that increasing the value of A_{mush} leads to a decrease in fluid velocity, decreasing convection and the rate of heat transfer, therefore, proper selection of the mushy zone parameter is necessary to accurately simulate LHTES systems and provide a better understanding of the phase change behaviour and heat transfer characteristics.

1. Introduction

With the diminishing reserves of easily accessible fossil fuels, the increasing global energy demand, increasing levels of greenhouse gas emissions, more energy-efficient environmentally friendly devices are essential to reach the “3E” objectives (Economic, environmental and energy security), and deliver a clean environment, a sustainable energy policy, a solid economy, and social development [1]. Latent heat thermal energy storage systems (LHTES) using phase change materials (PCM) are potentially one of the key technologies for energy conservation, due to of their high thermal energy storage capacity and isothermal behaviour during charging (melting) and discharging (solidification) processes [2]. In LHTES, the PCM heat storage material undergoes a phase transition process while charging or discharging. The phase change process from solid to liquid or vice versa normally occurs at isothermal or near isothermal conditions. The stored heat or coolth comprises of the latent heat of the PCM during phase change, and the sensible heat in the PCM, heat exchanger, store, and heat transfer fluid.
[3].

To effectively design a latent heat storage system for a specific process, the time required for melting and solidification and thus rates of charge and discharge and heat transfer during the phase change process has to be known [4]. Any numerical models used to predict PCM system performance should realistically simulate the processes of melting and solidification and be computationally efficient allowing the accurate simulation of LHTES systems within affordable computational resources. Understanding the transient characteristics of the heat transfer processes and the limitations of different modelling approaches for the phase transition process is important for the effective design, evaluation and optimization of LHTES systems [5].

Numerical modelling of thermal energy storage (TES) systems has attracted considerable attention recently because of the increased attractiveness of TES for a wide range of different applications. Although appropriate numerical procedures can vary widely depending on the system, the impetus for their use can almost always be attributed to cost and time constraints [6]. For example, experimental investigations to assess performance of TES systems can be expensive and more difficult to undertake compared to numerical modelling, cases considering high temperature applications or using hazardous materials or operational conditions, may be simulated more easily than investigated experimentally.

Analytical models can be subject to extensive simplifying assumptions that render models incomplete but are necessary since the exclusion of such simplifying assumptions can make equations overly complicated and cumbersome to evaluate. This has resulted in an increasing requirement for numerical models to accurately describe TES system behaviour, allowing computational methods to help solve governing equations. As a result, much of the research regarding this subject reflects the advancement of appropriate numerical analysis.

To simulate the phase change process involves a moving boundary between phases and is generally known as a Stefan problem. Melting and solidification are the two processes generally involved in latent heat storage systems. When heat is transferred to a solid PCM and melting occurs latent heat is stored. When heat is transferred from the PCM and solidification occurs latent heat is released. The PCM phase transition proceeds from a solid to a mushy state and then to a liquid state during the melting process and vice versa during the solidification process. The heat transfer mechanisms associated with the melting and solidification processes can be either conduction or convection (natural convection in most situations) controlled or simultaneous conduction/convection controlled [7].

To maximize the performance of thermal storage systems using

Amush \(\text{kg/m}^3 \text{s} \)	Geometry	Process	PCM Material	Ref
\(10^5 \)	Rectangular enclosure	Melting and solidification	eutectic mixture (KNO3-NaNO3)	[13]
\(10^4 \)	A tube-in-tank heat exchanger	Melting and solidification	Paraffin (54.43-64.11 °C)	[14]
	Spherical container	Melting	RT27	[15]
	Spherical capsule	Melting	Paraffin wax n-octadecane	[16]
	Shell-and-tube LHS system	Melting and solidification	Potassium nitrate, sodium nitrate and sodium nitrite	[17]
\(10^5 \)	Triplex tube heat exchanger with internal and external fin	Solidification	RT82	[18]
	Triplex tube heat exchanger	Melting and solidification	RT31	[19]
	Vertical shell-and-tube heater	Melting	RT60	[20]
	Horizontal and vertical shell-and-tube heater	Melting	RT50	[21]
	Horizontal and vertical enclosure	Melting and solidification	RT60	[22]
	Triplex tube with internal-external fin	Melting	RT82	[23]
Shell-and-Tube Heat Exchanger	Melting and solidification	Erythritol	[24]	
\(5 \times 10^5 \)	Shell-and-Tube	Melting	sodium nitrate	[27]
	Vertical cylindrical shell and tube	Melting and solidification	Paraffin wax	[26]
\(10^5 \)	Shell and tube heat exchanger	Melting and solidification	Sodium nitrate	[27]
	Vertical cylinder	Melting	n-Octadecane 99% (CSH\(_{16}\)H\(_{32}\))	[28]
	Shell and tube heat exchangers	Melting	RT50	[29]
Rectangular enclosure	Melting	gallium	[30]	
Triplex-tube	Solidification	RT82	[31]	
tripod-tube	Melting	RT82	[32]	
\(1.6 \times 10^6 \)	Rectangular Cavity	Melting	Pure Gallium	[9]
\(10^6 \)	Isothermal rectangular cavity	Melting		[33]
Unknown	vertical triplex tube heat exchanger	Melting and solidification	Dynalene HC-50	[34]
Shell and tube heat exchanger	Melting and solidification	Sodium nitrate	[27]	
Horizontal cavity	Melting	NaNO\(_3\), KNO\(_3\), KNO\(_2\)/KCl (4.5%)	[35]	
PCMs, knowledge of the thermal behaviour of the PCM that is employed is required, several research studies have concentrated on the detailed thermal behaviour of PCMs during the phase change process [8].

Different modelling approaches for solid-liquid phase-change have been developed in recent decades. The enthalpy-porosity approach can adequately describe the natural convection effect in the melt region [9]. This approach is capable of accurately predicting both the transient position and shape of the melt front at different times with relatively modest computational requirements. This approach uses a fixed-grid for the analysis of solidifying and melting of materials. The enthalpy-porosity formulation currently serves as the solidification and melting model within ANSYS FLUENT and COMSOL Multiphysics solvers [10]. This technique assumes phase change to occur over a finite temperature range; thus, generating an artificial mushy region in which the melt fraction of a fluid element varies from zero (solid phase) to 1 (liquid phase). Naturally, the velocity of the fluid element within the mushy region should also vary from zero (solid phase) to the natural convection velocity (liquid phase). The enthalpy-porosity formulation deals with this velocity transition by modelling flow within the mushy region as flow through a porous medium. A sink term, in the form of the Carman-Koseny equation, is added to the Navier-Stokes equations to mimic the effect of damping within the mushy region.

The mushy zone is considered to be a semi-solid existing as an interface between the melted and un-melted region of a PCM undergoing melting or freezing. The mushy zone parameter \(A_{mush} \) measures the amplitude of the damping; the higher this value, the steeper the transition of the velocity of the material to zero as it solidifies. Very large values of \(A_{mush} \) may cause the predicted solution to oscillate [11]. This region significantly influences the heat transfer and flow characteristics during the melting and solidification process. Simulating fluid flow resulting from natural convection within the mushy zone has been the subject of numerous discussions in recent years. Although the Carman-Koseny equation is used in the majority of available models, the effect of the \(A_{mush} \) parameter is still the subject of frequent inquiry [12]. Values for \(A_{mush} \) ranging from \(10^3 \) to \(10^5 \) have been suggested in commercial software guidelines and by different researchers. The correct prediction of the heat transfer behaviour within the mushy zone has been the subject of numerous discussions in recent literature on phase change heat transfer. Table 1 summarises previous research examining the effect of varying the value of \(A_{mush} \) on the overall simulation results for melting and solidification of PCM in different geometries. The values to use are still the subject of discussion since recent studies reported in the literature observe a significant difference between experimentally determined behaviour and that predicted by modelling depending on geometry and/or PCM material used.

Table 2
Thermophysical properties of Lauric acid.

Property	Solid	Liquid
T (K)	316.65	321.35
\(\rho \) (kg/m\(^3\))	940	885
\(C_p \) (J/kg K)	2180	2390
\(k \) (W/m K)	0.16	0.14
\(\mu_i \) (kg/m s)	0.008	0.008
\(\gamma \) (K\(^{-1}\))	0.0008	0.0008
\(L \) (J/Kg)	187,210	187,210

The objective of the present study is to evaluate the effect different values of \(A_{mush} \) have on the overall simulation of PCM melting within vertically and horizontally oriented storage geometries and its effect on the melt fraction, vortex strength and amount of heat stored. The model predictions with different values of the \(A_{mush} \) parameter are compared with the experimental data published by [8].

2. CFD simulation

CFD simulation was carried out using the commercial software ANSYS FLUENT 18.2. The physical model and computational procedure are discussed below.

3. Physical model

A schematic diagram of the two-dimensional simulation geometry is shown in Fig. 1. The dimensions of the container containing Lauric acid used in the simulations are based on those in the experimental study carried out by Kamkari B et al [36]. In the experimental study PCM melting was quantified by visually tracking the shape of the melting interface and how it changed with time. The container had a rectangular cross section with inside dimensions of 0.05 m in width, 0.12 m in height and 0.12 m in depth, the wall of the enclosure indicated in Fig. 1 was held at constant temperature 70°C (343.15 K). The other three walls of the enclosure were made from 0.025 m thick plexiglass with a thermal conductivity \(k \) of 0.043 W/m K.

The PCM used in the experiments was Lauric acid of 99% purity. Table 2 presents its thermophysical properties. The entire system was initially at a constant temperature is 298.15 K.

4. Computational approach

The numerical approach adopted makes it possible to predict the natural convection in the liquid PCM during the melt process that

![Fig. 1. Schematic diagram of the simulation geometry with details of the imposed boundary conditions.](image)
occurs inside the container. In the approach used to simulate melting, the flow was considered to be unsteady, laminar, incompressible and two-dimensional. It was assumed that both solid and liquid phases are homogeneous and isotropic.

The enthalpy–porosity approach [9] was adopted for simulation of the PCM. The governing conservation equations used for the PCM system are:

Continuity
\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0
\]

Momentum
}\[
\frac{\partial \rho \mathbf{V}}{\partial t} + \nabla \cdot (\rho \mathbf{V} \mathbf{V}) = -\nabla p + \nabla \cdot \mathbf{F}
\]
\[\frac{\partial (\rho V)}{\partial t} + \nabla \cdot (\rho V) = -\nabla p + \mu \nabla^2 V + \rho g + S \]

Energy

\[\frac{\partial (\rho H)}{\partial t} + \nabla \cdot (\rho VH) = k \nabla^2 T \]

where \(\rho \) is the density, \(k \) is the thermal conductivity, \(\mu \) is the dynamic viscosity, \(S \) is the momentum source term, \(V \) is the fluid velocity, \(T \) is the temperature, \(P \) is the pressure, \(g \) is the gravitational acceleration and \(H \) is the specific enthalpy. The latter is defined as a sum of the sensible enthalpy \(h \) and the latent heat \(\Delta H \).

\[H = h + \Delta H \]

where:

\[h = h_{ref} + \int_{T_{ref}}^{T} C_p dT \]

where \(h_{ref} \) is the reference enthalpy at the reference temperature \(T_{ref} \), \(C_p \) is the specific heat. The content of the latent heat can vary between zero (for a solid) and \(L \) (for a liquid):

\[\Delta H = \beta L \]

where the liquid fraction \(\beta \) can be written by the following relations:

Fig. 6. Comparison between experimental and predicted solid/liquid interface locations with time for different values of the parameter \(\alpha_{mush} \). Vertical enclosure.

	Experimental	10^3	5x10^3	10^6	10^7
10 mins					
20 mins					
30 mins					
40 mins					
60 mins					
80 mins					
The source term S in the momentum equation, Eq. (2), is given by:

$$S = -A(\beta)V$$

where $A(\beta)$ is the "porosity function" defined by Brent et al. [9]. The source term was used to describe the flow in the porous medium in the momentum equation, and it has to be zero in the liquid phase to allow for free motion, but it has to be large in the solid phase to force the velocity values to near zero values [13], while different functions fulfil this requirement, most often the Carman-Kozeny equation, which is derived from the Darcy law for fluid flow in porous media, is used in a modified form:

$$A(\beta) = \frac{A_{\text{mush}}(1-\beta)^2}{\beta^3 + \varepsilon}$$

where ε is a small computational constant used to prevent zero in the denominator (in this work $\varepsilon = 0.001$), and A_{mush} is the mushy zone constant which measures how fast the fluid velocity approaches zero as it solidifies.

The intensity of natural convection during melting is quantified by the Rayleigh (Ra) number, defined based on the characteristic length H, which is calculated by:

$$Ra = \frac{g\beta(T_w - T_m)H^3}{\nu^2}$$

where T_w is the wall temperature, T_m is the PCM average melting temperature and H is the height of the domain. For the present simulations the calculated Rayleigh (Ra) number varies from 3.51×10^6 to 2.54×10^7.

5. Computational procedure

The simulations have been performed using the ANSYS FLUENT 18.2 software, run as two-dimensional double precision (2ddp) code. The pressure based coupled algorithm was used to solve the momentum and continuity equations. The gravity vector was set to -9.8 m/s^2 in the y-direction to allow prediction of the natural convection in the PCM during the simulation. A second order upwind scheme for the advection term, central differencing for the diffusion term and a second order implicit discretization scheme for the transient term were used. The PRESTO pressure interpolation scheme for the transient calculations, was implemented. The under-relaxation factors for density, momentum, pressure correction, thermal energy and melt fraction used were 1, 0.7, 0.3, 1 and 0.9, respectively. The mesh was generated using the mesh generator ICEM CFD.

Different grid resolutions were tested by comparison of the predicted melt fraction with time to ensure independency of the solution from the adopted grid density. The mesh used comprised of mapped quadrilateral cells in the Insulation, Plexiglas and PCM domains. The effects of time step size and grid size on the solution were carefully examined in preliminary calculations. The mesh independence test was performed using mapped grids of 25×80, 50×120 and 75×180 cells within the PCM domain as shown in Fig. 2. From Fig. 3 it can be seen that the higher mesh density resulted in no significant change in the prediction of the average melt fraction development with time, mesh 2, 50×120 elements was deemed satisfactory for assessing the effect of varying A_{mush} on the overall melt front behaviour. The maximum number of iterations for each time step was fixed at 300 and was found to be sufficient to satisfy the convergence criteria of 10^{-6} for the velocity components and continuity, and 10^{-11} for the energy equations. The time required to achieve full melting is a good measure of time step dependence. By comparing the melt fraction obtained with simulations using time steps of 0.1, 0.2 and 0.4 s, the time step selected for integrating the time derivatives was set to 0.2 s. In the earlier stages of the simulation that were dominated by conduction, faster convergence occurred compared to latter stages with a significant melt fraction that were dominated by natural convection.

Simulations were conducted on the Loughborough University Research High Performance Computing (HPC) cluster which consists of 7 compute nodes, each having two six-core Intel Westmere Xeon X5650 CPUs and 24 GB of memory. A typical simulation to achieve complete melting required from 30 h to 50 h of computing.

Fig. 7. Comparison between experimental and predicted solid/liquid interface locations with time for different values of the parameter A_{mush}, Horizontal enclosure.
rate increases significantly with the di-
Amush = 10^7 the melting rate is very slow, for Amush = 10^5 the melting
most physically realistic results. In comparison, for the horizontal or-
from the model to those of the experimental benchmark data of [8].

6. Numerical analysis and comparison with experiments

The numerical model used in this study was an approximate re-
representation of the storage system presented by Kamkari and
Shokouhmand [2], [8] and [36]. From the 3D physical geometry, a two-
dimensional mid-plane was simulated. It was assumed that the
boundary effect at the end walls in the third dimension (z-direction),
have a negligible effect on the simulation domain in the mid-plane. In
this study, the mushy zone constant was varied from 10^5 to 10^7.

Fig. 4 shows the predicted melt fractions for vertical and horizontal
rectangular enclosures with the different values of Amush used. For Amush = 10^7 the melting rate is very slow, for Amush = 10^5 the melting
rate increases significantly, being greater than that observed exper-
mentally. For the vertical orientation, an Amush value of 5 × 10^5 was
found to give the best agreement with the experimental results and the
most physically realistic results. In comparison, for the horizontal or-
ientation for a value of Amush of 2 × 10^5 simulation results agreed well
with the experimental results. During melting, as previously stated, the
heat transfer is strongly influenced by convection. An increase in the
value of Amush leads to a decrease in the predicted level of convection
with a consequent reduction in the melting rate [37].

Additional validation was performed by comparing the predictions
from the model to those of the experimental benchmark data of [8] for

T_w = 55 and 60 °C using an Amush value of 5 × 10^5 and is shown in
Fig. 5.

Fig. 6 shows the experimentally measured solid liquid interface
boundaries during the melt process for the vertically oriented enclosure
at elapsed times of 10,20,30,40,60, and 80 min and those predicted for
four mushy zone values, 10^5, 5 × 10^5, 10^6 and 10^7. From this Figure, it can be seen that, the effect of Amush on the melting rate of the PCM is
now clearly more pronounced and noticeable especially in the later
stages of melting.

The resulting shape of the solid PCM for Amush = 5 × 10^5 does
match the one obtained in the experiments well, especially towards the
end of the process. This Figure shows that melt interface positions best
 correlate with the experimental results at the early stages of the melt
process when the heat transfer is dominated by conduction (at an elapsed
time of about 20 min or less).

Predictions using an Amush value of 10^5 show accelerated melting in
the upper part of the enclosure and that the melt interface progresses
faster than that observed in the experimental results, while an Amush
value of 10^7 results in predictions in which the liquid/solid interface
lags behind the experimental results and leads to a sharper curvature
along the melt interface.

In conclusion, the present predictions show that higher Amush values
result in a sharper curvature along the melt interface, with an Amush
value of 5 × 10^5; the melt interface curvature more accurately re-
sembles that of the experimental results, this further supports the
statement that an Amush value of 5 × 10^5 is the optimal value out of the
five values tested for simulating this PCM system.

Fig. 7 shows the experimental and the predicted solid liquid inter-
face for the horizontally oriented enclosure for 4 different values of
Amush. Similar trends are observed, the effect of different values of Amush
are less obvious in the early stages of the simulation where heat transfer
is dominated by conduction. Larger values of Amush decrease the rate of
melting in all simulated cases. The locations of peaks and troughs along
the melt front vary in a random fashion (expect adjacent to the right
and left side walls where wall effects dominate); From Fig. 7, it can be
seen that the average height of the melt interface over time is affected
marginally by Amush, the most likely reason for this behaviour is the
reduced magnitude of the velocity at or near the liquid/solid interface
in the horizontally oriented enclosure. Lower magnitudes of velocity
reduce the damping forces within the momentum conservation equa-
tions (which, at a given melt fraction, is proportional to the fluid ve-
locity, with Amush the proportionality factor). At the early stage, 10 min,
of the simulated melting from the bottom surface in the horizontal
enclosure, it can be seen that the solid-liquid interface is nearly flat
and heat conduction is the dominant mode of heat transfer, after this time,
the interface shape becomes increasingly undulating indicating that
convection currents in the liquid PCM are now determining the inter-
face shape. The undulating shape of the interface is a result of the
formation of Bernard cell convection in the liquid PCM.

The predictions of an undulating interface between the solid and
liquid PCM provides excellent trend wise agreement with the exper-
imental results. The peaks and troughs along the melt interface do not
align perfectly when comparing experimental observations and nu-
merical simulations; however, the height of the interface is accurately
predicated for the first 40 min of the simulation.

The predicted temperature distributions in the vertically and hori-
izontally oriented enclosures for different value of Amush are presented
in Figs. 8 and 9 corresponding to the time periods presented in Figs. 6
and 7.

Fig. 8 presents temperature contour plots in the vertically oriented
container, it can be seen that in the first 10 min during early stages of
melting conduction plays a significant role, and the value of Amush does
not have any significant effect on predicted temperature contours
which are in all cases nearly parallel to the hot wall. After 10 min the
temperature and volume of the liquid PCM adjacent to the hot wall
increases sufficiently so that buoyancy forces overcome the viscous
	10^5	2×10^5	5×10^5	10^6	10^7
10 mins					
20 mins					
40 mins					
60 mins					
80 mins					

Fig. 9. Simulated temperature field for the horizontally oriented enclosure at 10, 20, 30, 40, 60 and 80 min.

Fig. 10. Velocity profile and velocity vector maps for the vertically oriented container at $t = 20$ min.

Fig. 11. Velocity profile and vectors maps for the horizontal container at $t = 20$ min.
forces and hot liquid PCM rises along the vertical hot wall. It is clear from this Figure that the effect of \(A_{mush} \) becomes more significant as convection becomes the dominant heat transfer mechanism. This appears to be caused by predicted PCM flow within the mushy zone that is greater than that occurring in the experiments, resulting in accelerated rates of heat transfer and melting being predicted.

Fig. 9 presents predicted temperature contours in the horizontally oriented enclosure. It can be seen that, at 10 min the predicted temperature profiles are similar for all values of \(A_{mush} \); the undulating temperature isotherms at the solid/liquid interface result due to the vertical convective flow structure in the liquid PCM, this is responsible for efficient heat transfer from the hot wall to the solid–liquid interface and effectively mixes the liquid PCM. In the later stage of melting after 60 min, for different values of \(A_{mush} \), the predictions are different and there is a greater dependence on the value of \(A_{mush} \) over the entire range of values used.

Because convective flow in the liquid PCM affects the shape of the melt front, velocity contours and velocity vector maps during melting in the liquid PCM are presented in Figs. 9 and 10 for both vertical and horizontal arrangements at a simulated time of 20 min.

In the vertically oriented container, higher velocities are located next to the wall, the liquid PCM has a higher temperature and lower density than the adjacent material which causes the hot liquid to move upwards. The already melted Lauric acid in contact with the still solid PCM is cooler than the surrounding liquid PCM, which has a greater density, causing this liquid to move downward. Thus, the differences in density lead to rising flow near the heated vertical boundaries, as expected, for the vertical container the liquid PCM velocity along the solid/liquid interface increases as the \(A_{mush} \) value decreases due to enhanced buoyancy-driven convection as shown in Fig. 10.

The predicted flow for the horizontal container at 20 min is presented in Fig. 11, cellular flow is predicted at different positions along the entire length of the PCM domain. Most of the flow cells are in pairs and rotate in the opposite directions, this is because the heated liquid, which is less dense rises transferring heat to the solid PCM by free convection.

The extent of the fluid flow is restricted by the solid PCM above it, the liquid produced by melting the solid PCM at the solid liquid interface cannot rise any higher because of the solid PCM and sinks towards the lower heated surface.

The predictions of stored energy with time for the vertical and horizontal enclosures using different \(A_{mush} \) values during the charging process are shown in Figs. 12 and 13. It can be seen that, differences in the predicted amount of the energy stored with time are significant for different values of \(A_{mush} \).

During the melting process, energy transfer to the PCM in the horizontal container is faster than to that in the vertical container. The figures also show that the \(A_{mush} \) values have a significant impact on the rate of heat transfer and the energy stored at different times. This is due to the effect of \(A_{mush} \) on the predicted natural convection process, at a charging time of 150 min, for the vertical enclosure, it can be seen that the difference between the predicted amounts of energy stored for \(A_{mush} = 10^5 \) and \(10^7 \) is up to 37.5% as shown in Fig. 12. For the horizontal enclosure, at a charging time of 100 min, the difference between the predicted amounts of energy stored for \(A_{mush} = 10^5 \) and \(10^7 \) is up to 28.5% as shown in Fig. 13.

The overall effect of \(A_{mush} \) on the melting rate was as expected, the Carman-Koseny equation acts as a damping term in the momentum equations, large values of \(A_{mush} \) increase the volume within the mushy region where the fluid PCM is static; this reduces natural convection and effectively decreases the overall heat transfer within the mushy region. The CFD predictions indicate that proper selection of the mushy zone constant is essential for accurate modelling of phase change heat transfer.

7. Concluding remarks

In the present work, numerical simulations were conducted to examine the effect of \(A_{mush} \) (mushy zone parameter) on predicted heat transfer (conduction and natural convection) and melting of a PCM in vertically and horizontally oriented thermal storage enclosures heated from one side. The simulations were performed using ANSYS FLUENT 18.2, for different values of the mushy zone parameter ranging from \(10^5 \) to \(10^7 \). The numerical predictions were compared with experimental work carried out by Shokouhmand and Kankari [2].

Based on this study, it was observed that \(A_{mush} \) is an important parameter for accurately modelling phase change phenomena. The smallest values of \(A_{mush} \) (\(< 10^6\)) used resulted in unrealistic predictions of the melt front development, higher values of \(A_{mush} \) (\(10^6\)) resulted in
delayed prediction of melting in the PCM. From this work, it is clear that the impact of μ_{mach} is generally less prominent in regions where conductive heat transfer dominates. The effect of μ_{mach} was more pronounced farther away from the heated surface when more PCM had melted and heat transfer was dominated by natural convection. This was because with increasing μ_{mach} predicted convective strength was observed to decrease, which decreases the heat transfer rate. Proper selection of the mushy zone constant is essential for the accurate prediction of heat transfer characteristics within a PCM. A further similar study is required for different PCMs and experimental work to determine the extent to which correct selection of μ_{mach} can be correlated to material and store properties.

Acknowledgements

The authors are grateful to the Engineering and Physical Sciences Research Council (EPSRC) for funding this work through Grant Reference EP/N021304/1.

References

[1] B. Sorensen, Solar Energy Storage (2015), https://doi.org/10.1016/S0376-0333(15)30074-9.
[2] A. Erek, Z. Ilken, M.A. Acar, Experimental and numerical investigation of thermal energy storage with a finned tube, Int. J. Energy Res. 29 (2005) 283–301, https://doi.org/10.1002/er.1057.
[3] N.J. Ibrahim, F.A. Al-Sulaiman, S. Rahman, B.S. Yilbas, A.Z. Sahin, Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review, Renew. Sustain. Energy Rev. 74 (2017) 26–50, https://doi.org/10.1016/j.rser.2017.01.149.
[4] I. Dincer, M. Rosen, Thermal Energy Storage Systems and Applications, 2011.
[5] E.M. Sparrow, E.D. Larson, J.W. Ramsey, Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer, Int. J. Heat Mass Transf. 24 (1981) 273–284, https://doi.org/10.1016/0017-9310(81)90035-1.
[6] H. Shokouhmand, B. Kamkari, Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit, Exp. Therm. Fluid Sci. 50 (2013) 201–222, https://doi.org/10.1016/j.expthermflusci.2013.06.016.
[7] A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy-porosity technique for modeling convection–diffusion phase change: application to the melting of a pure metal, Numer. Heat Transf. 13 (1988) 297–318, https://doi.org/10.1080/10407788808913615.
[8] A.C. Heirabadi, D. Groulx, The effect of the mushy-zone constant on simulated phase change heat transfer, Proceeding Proc CHT-15 6th Int Symp Adv Comput HEAT Transfer, May 25-29, 2015, Rutgers Univ New Brunswick, NJ, USA, 2015, https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.209.
[9] I. Anys, ANSYS FLUENT Theory Guide, ANSYS, Inc, Canonsburg, PA, 2010, https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.010.
[10] M. Kabbara, A.C. Kheirabadi, D. Groulx, HT2016-7068 Numerical Modelling of Natural Convection Driven Melting for an Inclined/Finned Rectangular Enclosure, 2017, 1–10.
[11] J. Vogel, J. Felbinger, M. Johnson, Natural convection in high temperature flat plate latent heat thermal energy storage systems, Appl. Energy 184 (2016) 184–196, https://doi.org/10.1016/j.apenergy.2016.10.061.
[12] Z.N. Meng, P. Zhang, Experimental and numerical investigation of a tube-in-tube latent thermal energy storage unit using composite PCM, Appl. Energy 190 (2017) 524–539, https://doi.org/10.1016/j.apenergy.2016.12.163.
[13] A.R. Archibold, M.M. Rahman, D.Y. Goswami, E.K. Stefanakos, Analysis of heat transfer and fluid flow during melting inside a spherical container for thermal energy storage, Appl. Therm. Eng. 64 (2014) 396–407, https://doi.org/10.1016/j.applthermaleng.2013.12.016.
[14] F.L. Tan, S.F. Hosseinizad, J.M. Khodadadi, L. Fan, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule, Int. J. Heat Mass Transf. 52 (2009) 3464–3472, https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.043.