Construction of full diversity D_n-lattices for all n

Robson Ricardo de Araujo Grasiele C. Jorge

September 19, 2017

1 Introduction

Lattice coding have been used mainly for Gaussian channels ([1]). For these channels it is important that the lattices have good sphere packing, that is, have high density. Lattices have been used also to obtain codes for Rayleigh fading channel. In this case, it is desired to get lattices having maximum diversity and great minimum product distance. Thus, in view of possible applications to these two types of channels it is desirable to find lattices having maximum diversity and having, at the same time, high density and great minimum product distance ([2]).

For general lattices it is not a simple task to find lattices having maximum diversity and to estimate their minimum product distance. For lattices obtained via number fields through a twisted homomorphism (algebraic lattices), this task can be easier. Totally real number fields produce algebraic lattices having maximum diversity and there is a closed form for the minimum product distance when principal ideals inside the ring of integers of these number fields are considered.

In [3] rotated versions of the lattice Z^n are constructed via totally real number fields when n is a prime number or $n = (p - 1)/2$ for some prime number p and also for others mixed values of n. In that paper the authors discuss the minimum product distance of those lattices in several examples. More generally, it is possible to construct rotated Z^n-lattices for an odd number n ([4]). Full diversity constructions of Z^n are also known for n a power of 2 ([5], [6]). As it is well known, the center density of the lattice Z^n gets very low as n grows. Yet, the sublattices D_n have higher density. For $n = 3, 4, 5$ it is known that D_3, D_4 and D_5 have the higher possible packing density in these dimensions ([1]). In [7] it is presented the construction of rotated lattices D_n and their product distance for n equal to a power of 2 and for $n = (p - 1)/2$, where $p \geq 3$ is a prime number (see also [8]).

Following this direction, in this work we use the algebraic construction of Z^n of [4] (for $n = 2^m > 1$ and $n > 1$ an odd number) to obtain its sublattice D_n with maximum diversity. We then consider mixed constructions to obtain rotated versions of D_n for any $n \geq 2$ with maximum diversity (Theorem 5.3). To obtain a closed form for the product distance of the constructed rotated lattices we prove first that the Z-module used to construct Z^n, n odd, is an ideal and provide a sufficient condition to this ideal to be principal (Theorems 4.1 e 4.2). Assuming this condition, the minimum product distance of Z_n is obtained (Corollary 4.1) and a bound for this distance in D_n is derived (Corollary 4.2). Under the same above condition, we extend these results for the mixed constructions (Theorems 5.5 and 5.6). In particular, for example, we see that the rotated lattice D_6 obtained here has better minimum product distance than the obtained in [8] via other construction.

This work is organized as follows. In Section 2 some preliminary concepts and results of algebraic lattices are
introduced. In Section 3 a rotated version of D_n, for any odd number n, is presented. In Section 4 we prove that the \mathbb{Z}-module used to obtain \mathbb{Z}^n is an ideal and analyse the minimum product distance of \mathbb{Z}^n and D_n, n odd, given a condition. In Section 5 we obtain D_n from a known construction of \mathbb{Z}^n, for n a power of two, and present a mixed construction and study the minimum product distance of \mathbb{Z}^n and D_n, for n an even integer number. Finally, in Section 4 we discuss the advantage of using D_n instead of \mathbb{Z}^n looking some examples.

2 Preliminaries about lattices

A lattice of rank $k \leq n$ is a discrete additive subgroup of \mathbb{R}^n. Equivalently, a lattice of rank k is a set generated by k linearly independent elements of \mathbb{R}^n over \mathbb{Z}. If $k = n$ we say the lattice is complete. All lattices treated in this work are complete. Because of this, from now on this information will be omitted.

A set of generators of a lattice $\Lambda \subset \mathbb{R}^n$ is called basis. Considering $\{v_1, \ldots, v_n\}$ a basis of Λ, the matrix $n \times n$ whose each i-th line is formed by the entries of the vector v_i is called generator matrix of Λ. An element $x \in \mathbb{R}^n$ belongs to a lattice Λ having generator matrix M if and only if there exists $y \in \mathbb{Z}^n$ such that $x = yM$. The square matrix $G = MM^T$ is called Gram matrix of Λ, where M^T denotes the transpose matrix of M. Two different basis of Λ give different generator matrices, but they give the same Gram matrix. So, the determinant $\det(\Lambda)$ of a lattice Λ is defined to be the determinant of its Gram matrix. The volume of a lattice Λ is defined to be $\text{vol}(\Lambda) := \sqrt{|\det(\Lambda)|}$ and coincides with the volume of the fundamental region of Λ, that is defined by

$$P(B) = \{a_1v_1 + \ldots + a_nv_n : a_i \in [0,1), i = 1, \ldots, n\}$$

where $B = \{v_1, \ldots, v_n\}$ is a basis of Λ. The norm of the nonzero vector in Λ having the lowest norm among all elements in Λ is called minimum norm of Λ and is denoted by λ. Any additive subgroup Λ' of Λ is called sublattice of Λ.

This work talks about two important families of lattices: \mathbb{Z}^n and D_n. The lattice $\mathbb{Z}^n \subset \mathbb{R}^n$ is called cubic lattice and is generated by $e_i = (0, \ldots, 0, 1(i-th), 0, \ldots, 0)$, $1 \leq i \leq n$. \mathbb{Z}^n has determinant 1, volume 1 and minimum norm 1. In turn, D_n is a sublattice of \mathbb{Z}^n given by

$$D_n = \{(x_1, \ldots, x_n) \in \mathbb{Z}^n : \exists m \in \mathbb{Z} \text{ s.t. } x_1 + x_2 + \ldots + x_n = 2m\}$$

that has determinant 4, volume 2 and minimum norm $\sqrt{2}$.

The center density of a lattice $\Lambda \subset \mathbb{R}^n$ is defined to be $\delta = \rho^2/\text{vol}(\Lambda)$, where $\rho = \lambda/2$ is the packing radius of Λ. Find a lattice having high center density in a certain dimension is a task related to the problem of the sphere packing (see [1]). Specially, lattices having good center density are useful for gaussian channels in the Coding Theory.

We say a lattice $\Lambda \subset \mathbb{R}^n$ has maximum diversity if for all $x = (x_1, \ldots, x_n) \in \Lambda$ such that $x \neq 0$ then $x_i \neq 0$ for any $i = 1, \ldots, n$. If Λ has maximum diversity, we define the minimum product distance of Λ by

$$d_{p,\min}(\Lambda) = \inf\{|x_1 \ldots x_n| : 0 \neq x = (x_1, \ldots, x_n) \in \Lambda\}.$$

Lattices having maximum diversity and great minimum product distance are useful for Rayleigh fading channels.

If a lattice Λ_1 is obtained from an other Λ_2 by a rotation or by a scaling, we say that Λ_1 and Λ_2 are equivalent. Particularly, if a lattice Λ_1 is obtained from an other Λ_2 by a rotation we can say that Λ_1 is a rotated version of Λ_2.

2
Equivalent lattices have same center density, but one of them can have maximum diversity and the other not. Also, minimum product distances of equivalent lattices having maximum diversity can be different.

It is possible obtain lattices from the Number Theory. Consider K a totally real number field of degree n, O_K the ring of integers of K and $M \subset O_K$ a \mathbb{Z}-module of rank n. Suppose that $\sigma_1, \ldots, \sigma_n$ are the monomorphisms from K to \mathbb{R}. Let $\beta \in O_K$ be a number such that $\beta_i := \sigma_i(\beta) > 0$, for $i = 1, \ldots, n$. For this, we say that β is a totally positive number in K. We define the twisted homomorphism $\varphi : K \rightarrow \mathbb{R}^n$ by

$$\varphi_\beta(x) = \left(\sqrt{\beta_1}\sigma_1(x), \ldots, \sqrt{\beta_n}\sigma_n(x)\right)$$

for any $x \in K$. This definition can be generalized for any number field K (see \cite{7}). So, the set $\varphi_\beta(M)$ is a lattice of rank n in \mathbb{R}^n called algebraic lattice. It has volume equal to $\sqrt{|d_K N_K(\beta)| N(M)}$, where d_K denotes the discriminant of the field K, $N_K(\beta)$ denotes the algebraic norm of β in the extension K/\mathbb{Q} and $N(M)$ denotes the index $[O_K : M]$. Besides that, $\varphi_\beta(M)$ has maximum diversity and minimum distance product given by $d_{p, \text{min}}(\varphi_\beta(M)) = \sqrt{N_K(\beta) \min_{0 \neq x \in M} [N_K(x)]}$. When M is a principal ideal the lattice $\varphi_\beta(M)$ has minimum product distance given by $d_{p, \text{min}}(\varphi_\beta(M)) = \text{vol}(\varphi_\beta(M))/\sqrt{d_K}$. More about algebraic lattices can be seen in \cite{7}.

The purpose of this work is obtain D_n for any $n > 1$ via totally real number fields. In second analysis, we want to calculate a more explicit expression for the minimum product distance of D_n made by that construction when this is possible.

3 Algebraic lattices \mathbb{Z}^n and D_n, for any odd number $n > 1$

Consider n an odd number bigger than 1. Due to Dirichlet Theorem (\cite{9}, Chapter 3, Lemma 3), there exists a prime number p such that $p \equiv 1 \pmod{n}$. Denote the p-th primitive root of unity $e^{2\pi i/r}$ by ζ_p. The cyclotomic extension $\mathbb{Q} (\zeta_p)/\mathbb{Q}$ has cyclic Galois group generated by σ defined by $\sigma(\zeta_p) = \zeta_p^r$, in which r is a primitive element of the field $(\mathbb{Z}/p\mathbb{Z})^*$ (that is, r is an element such that its lower power $j > 0$ satisfying $r^j \equiv 1 \pmod{p}$ is $p - 1$).

The subgroup $H = \langle \sigma^n \rangle$ of $\text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ has a subfield of $\mathbb{Q}(\zeta_p)$ as fixed field, which we denote by K, that is,

$$K = \{y \in \mathbb{Q}(\zeta_p) : \sigma^n(y) = y\}. \quad (1)$$

The degree of K is n. Besides, K is contained in the maximal real subfield $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$. Then, K is a totally real number field.

Consider in $\mathbb{Q}(\zeta_p)$ the element

$$\alpha = \prod_{j=0}^{m-1} \left(1 - \zeta_p^j\right)$$

in which $m = (p - 1)/2$. Since p is prime and $r < p$ then $\text{mdc}(r - 1, p) = 1$ and, consequently, there exists an integer λ satisfying $\lambda(r - 1) \equiv 1 \pmod{p}$. Now, consider also in $\mathbb{Q}(\zeta_p)$ the element

$$z = \zeta_p^{\lambda}\alpha(1 - \zeta_p).$$

Note that z is an algebraic integer. Because of this, the element

$$x = \text{Tr}_{\mathbb{Q}(\zeta_p):\mathbb{Q}}(z) = \sum_{j=1}^{\nu-1} \sigma_j^k(z)$$

is an element belonging to O_K.

3
Lemma 3.1 ([3], lemmas 3 and 4). The following equalities are true:

a) \(\sigma(\alpha) = -\zeta_p^{-1}\alpha \)

b) \(\sigma(\zeta_p^\alpha \alpha) = -\zeta_p^\alpha \alpha \)

c) \((\zeta_p^\alpha \alpha)^2 = (-1)^mp \)

Lemma 3.2 ([3], appendix II). \(\text{Tr}_K(x^2) = p^2 \) and \(\text{Tr}_K(x\sigma^j(x)) = 0 \) if \(j \neq 0 \).

Theorem 3.1. It is orthogonal the matrix

\[
G = \frac{1}{p} \begin{pmatrix}
x & \sigma(x) & \ldots & \sigma^{n-2}(x) & \sigma^{n-1}(x) \\
\sigma(x) & \sigma^2(x) & \ldots & \sigma^{n-1}(x) & x \\
\sigma^2(x) & \sigma^3(x) & \ldots & x & \sigma(x) \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\sigma^{n-1}(x) & x & \ldots & \sigma^{n-3}(x) & \sigma^{n-2}(x)
\end{pmatrix}
\]

that is, \(GG^T = G^T G = I_n \)

Proof. This follows directly from the Lemma 3.2.

The above proposition allows us to construct the algebraic lattice \(\mathbb{Z}^n \) through the twisted homomorphism with \(\beta = 1/p^2 \) and with the \(\mathbb{Z} \)-module

\[
I = \langle x, \sigma(x), \ldots, \sigma^{n-1}(x) \rangle_{\mathbb{Z}}.
\]

(2)

In turn, the following theorem presents the construction of the algebraic lattice \(D_n \) through a \(\mathbb{Z} \)-module inside the field \(\mathbb{K} \).

Theorem 3.2. Consider \(\beta = 1/p^2 \) and \(M \) the \(\mathbb{Z} \)-module generated by

\[
\{x + \sigma(x), x - \sigma(x), \sigma(x) - \sigma^2(x), \ldots, \sigma^{n-2}(x) - \sigma^{n-1}(x)\}.
\]

Thus, the algebraic lattice \(\sigma_\beta(M) \) is a rotated version of the lattice \(D_n \).

Proof. A generator matrix of \(D_n \) is given by

\[
\begin{pmatrix}
-1 & -1 & 0 & \ldots & 0 & 0 \\
1 & -1 & 0 & \ldots & 0 & 0 \\
0 & 1 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & -1
\end{pmatrix}
\]

(3)

Multiplying the above matrix by the orthogonal matrix \(G \), we obtain

\[
\frac{1}{p} \begin{pmatrix}
x - \sigma(x) & -\sigma(x) - \sigma^2(x) & \ldots & -\sigma^{n-1}(x) - x \\
\sigma(x) - \sigma^2(x) & \sigma(x) - \sigma^3(x) & \ldots & \sigma^{n-1}(x) - x \\
\vdots & \vdots & \ddots & \vdots \\
\sigma^{n-2}(x) - \sigma^{n-1}(x) & \sigma^{n-1}(x) - x & \ldots & \sigma^{n-3}(x) - \sigma^{n-2}(x)
\end{pmatrix}
\]

that is a generator matrix of the lattice \(\varphi_\beta(M) \), a rotated version of \(D_n \).
The lattice obtained above is a D_n-rotated, that is, an equivalent version of the lattice D_n. Since equivalent lattices have the same center density, the lattice $\varphi(\mathcal{M})$ has the better known center density in the dimensions $n = 3, n = 5$ and $n = 37$, for example.

In the thesis [3] and in the paper [4], the authors produce D_n-rotated lattices for $n = \frac{p-1}{2}$, in which p is a prime number. In this work we get D_n for others values of n not considered in the cited references above, like $n = 7$, for example, since $2n + 1 = 15$ is not a prime number.

Example 3.1. Let’s construct a rotated version of \mathbb{Z}^7 and of its sublattice D_7 having maximum diversity as proposed in this section. Consider $p = 29$, that is congruent to 1 module 7. In this case, $r = 2$ and $\lambda = 1$. Thus,

$$\alpha = \zeta_{29}^{27} - \zeta_{29}^{26} - \zeta_{29}^{25} + \zeta_{29}^{24} + \zeta_{29}^{23} + \zeta_{29}^{22} + \zeta_{29}^{21} - \zeta_{29}^{20} + \zeta_{29}^{19} - \zeta_{29}^{18} - \zeta_{29}^{17} - \zeta_{29}^{16} + \cdots + \zeta_{29}^{15} - \zeta_{29}^{14} - \zeta_{29}^{13} - \zeta_{29}^{12} + \zeta_{29}^{11} - \zeta_{29}^{10} - \zeta_{29}^{9} - \zeta_{29}^{8} - \zeta_{29}^{7} + \zeta_{29}^{6} + \zeta_{29}^{5} + \zeta_{29}^{4} + \zeta_{29}^{3} - \zeta_{29}^{2} - \zeta_{29} + 1$$

$$z = -2\zeta_{29}^{27} - 4\zeta_{29}^{26} - 2\zeta_{29}^{25} - 2\zeta_{29}^{24} - 2\zeta_{29}^{23} - 4\zeta_{29}^{22} - 2\zeta_{29}^{21} - 2\zeta_{29}^{20} - 2\zeta_{29}^{19} - 4\zeta_{29}^{18} - 2\zeta_{29}^{17} - 2\zeta_{29}^{15} - 4\zeta_{29}^{14} - 2\zeta_{29}^{12} - 2\zeta_{29}^{11} - 4\zeta_{29}^{10} - 4\zeta_{29}^{9} - 2\zeta_{29}^{7} - 2\zeta_{29}^{6} - 2\zeta_{29}^{5} - 2\zeta_{29}^{3} - \zeta_{29}^{2} - \zeta_{29} - 3$$

and

$$x = -3\zeta_{29}^{27} - \zeta_{29}^{26} - \zeta_{29}^{25} - 3\zeta_{29}^{24} - 3\zeta_{29}^{23} - \zeta_{29}^{22} - \zeta_{29}^{21} - \zeta_{29}^{20} - \zeta_{29}^{19} + 3\zeta_{29}^{18} + 3\zeta_{29}^{16} - 3\zeta_{29}^{15} - 3\zeta_{29}^{14} + \cdots + 3\zeta_{29}^{13} + 3\zeta_{29}^{11} - \zeta_{29}^{10} - \zeta_{29}^{9} - \zeta_{29}^{7} - 3\zeta_{29}^{6} - 3\zeta_{29}^{5} - \zeta_{29}^{3} - \zeta_{29}^{2} - \zeta_{29} - 5.$$

So, the generator matrix of \mathbb{Z}^7 is given by

$$\frac{1}{29} \begin{pmatrix} -19.747... & 4.729... & -13.016... & 2.244... & 2.387... & 7.991... & -13.588... \\ 4.729... & -13.016... & 2.244... & 2.387... & 7.991... & -13.588... & -19.747... \\ -13.016... & 2.244... & 2.387... & 7.991... & -13.588... & -19.747... & 4.729... \\ 2.244... & 2.387... & 7.991... & -13.588... & -19.747... & 4.729... & -13.016... \\ 2.387... & 7.991... & -13.588... & -19.747... & 4.729... & -13.016... & 2.244... \\ 7.991... & -13.588... & -19.747... & 4.729... & -13.016... & 2.244... & 2.387... \\ -13.588... & -19.747... & 4.729... & -13.016... & 2.244... & 2.387... & 7.991... \end{pmatrix}$$

while the generator matrix of D_7 is given by

$$\frac{1}{29} \begin{pmatrix} 15.017... & 8.286... & 10.772... & -4.631... & -10.378... & 5.597... & 33.335... \\ -24.477... & 17.746... & -15.260... & -0.143... & -5.603... & 21.579... & 6.158... \\ 17.746... & -15.260... & -0.143... & -5.603... & 21.579... & 6.158... & -24.477... \\ -15.260... & -0.143... & -5.603... & 21.579... & 6.158... & -24.477... & 17.746... \\ -0.143... & -5.603... & 21.579... & 6.158... & -24.477... & 17.746... & -15.260... \\ -5.603... & 21.579... & 6.158... & -24.477... & 17.746... & -15.260... & -0.143... \\ 21.579... & 6.158... & -24.477... & 17.746... & -15.260... & -0.143... & -5.603... \end{pmatrix}$$

Other advantage of the above construction (Theorem [22]) is the fact that the lattice $\varphi(\mathcal{M}) \simeq D_n$ has maximum diversity, because it was obtained from a totally real number field \mathbb{K}. Since it has maximum diversity, we can calculate its minimum product distance in order to make this construction applicable to Rayleigh fading channels. The following section will be dedicated to the study of this value.
4 Minimum product distance of \mathbb{Z}^n and D_n, for any odd number $n > 1$

When N is a principal ideal, the minimum product distance of a lattice $\varphi_\beta(N)$ having maximum diversity depends only on the determinant of the lattice and on the discriminant of the field used to construct it. Therefore, next two results give conditions to calculate the minimum product distance of \mathbb{Z}^n constructed in the previous section, with n odd.

Theorem 4.1. The \mathbb{Z}-module I given in [4] is an ideal of O_K.

Proof. Consider the \mathbb{Z}-module $J = (z, \sigma(z), \ldots, \sigma^{p-2}(z)) \subset O_{\mathbb{Q}(\zeta_p)} = \mathbb{Z} \zeta_p$. We will see that J is an ideal. For this, let $j = \sum_{i=0}^{p-2} a_i \sigma^i(z)$ be any element of J, where $a_i \in \mathbb{Z}$, $0 \leq i \leq p - 2$. We will show that $j \zeta_p \in J$. Of course, because of the item (b) of the Lemma 3.1

$$j \zeta_p = \left(\sum_{i=0}^{p-2} a_i \sigma^i(z) \right) \zeta_p = \sum_{i=0}^{p-2} (-1)^i a_i \zeta_p \zeta(1 - \zeta_p^i) \zeta_p.$$

Since $(\zeta_p^i)_{i=0}^{p-2} = (\zeta_p^k)_{k=1}^{p-1}$, we can reenumerate the above sum calling $b_k := (-1)^i a_i$ such that $\zeta_p^i = \zeta_p^k$, for all $0 \leq i \leq p - 2$. Therefore,

$$j \zeta_p = \zeta_p \alpha \sum_{k=1}^{p-1} b_k (1 - \zeta_p^k) \zeta_p \quad (4)$$

Now, consider $c_1 = - \sum_{k=1}^{p-1} b_k \in c_i = b_{i-1}$, $2 \leq i \leq p - 1$. Then:

$$\sum_{i=1}^{p-1} c_i (1 - \zeta_p^i) = - \sum_{k=1}^{p-1} b_k (1 - \zeta_p^k) + \sum_{i=2}^{p-1} b_{i-1} (1 - \zeta_p^i) = -b_{p-1} (1 - \zeta_p^i) + \sum_{i=1}^{p-2} b_i (1 - \zeta_p^i) + (1 - \zeta_p^{i+1}) =$$

$$= b_{p-1} (\zeta_p - 1) + \sum_{i=1}^{p-2} b_i (\zeta_p - \zeta_p^i) + \sum_{i=1}^{p-2} b_i (1 - \zeta_p^i) \zeta_p = \sum_{i=1}^{p-1} b_i (1 - \zeta_p^i) \zeta_p.$$

So, coming back on the equation (4) we have

$$j \zeta_p = \zeta_p \alpha \sum_{i=1}^{p-1} c_i (1 - \zeta_p^i) = \sum_{i=1}^{p-1} c_i \zeta_p \alpha (1 - \zeta_p^i).$$

Now, enumerate again the above sum putting the name $(-1)^k d_k$ for each term c_i tal que $\zeta_p^i = \zeta_p^k$, $1 \leq i \leq p - 2$:

$$j \zeta_p = \sum_{k=0}^{p-2} (-1)^k d_k \zeta_p \alpha (1 - \zeta_p^k) = \sum_{k=0}^{p-2} d_k \sigma^k (z).$$

From this we conclude that $j \zeta_p \in J$ for all $j \in J$. By recurrence it follows that $j \zeta_p^k \in J$ for $0 \leq k \leq p - 2$. Since $(\zeta_p^k)_{k=0}^{p-2}$ is a \mathbb{Z}-basis for $O_{\mathbb{Q}(\zeta_p)}$ then we can conclude that $jO_{\mathbb{Q}(\zeta_p)} \subset J$, for all $j \in J$. Therefore, J is an ideal in $O_{\mathbb{Q}(\zeta_p)}$. In turn, observe that I coincides with the ideal $T_{\mathbb{Q}(\zeta_p)/\mathbb{K}}(J)$, because $x = T_{\mathbb{Q}(\zeta_p)/\mathbb{K}}(z)$ and because for each $\sigma^i(z)$ of the \mathbb{Z}-basis of J (since there exists q and r such that $i = qn + r$, $0 \leq r < n$, and since $\sigma^n(x) = x$),

$$T_{\mathbb{Q}(\zeta_p)/\mathbb{K}}(\sigma^i(z)) = \sigma^i(x) = \sigma^q(x) \sigma^r(x) = \sigma^r(x) \in I.$$

Therefore, I is an ideal in $O_{\mathbb{K}}$.

Of the fact that I is a principal ideal it follows that

$$xO_{\mathbb{K}} \subset I.$$

(5)
Theorem 4.2. If $\sigma(x)/x \in \mathbb{Z}[\zeta_p]$ then I is the principal ideal of \mathcal{O}_K generated by x.

Proof. Since $\sigma(x)/x \in \mathbb{Z}[\zeta_p] \cap \mathbb{K}$ then $u := \sigma(x)/x \in \mathcal{O}_K$. So $\sigma^i(u) \in \mathcal{O}_K$ and, from this,

\[
\{x, \sigma(x), \sigma^2(x), \ldots, \sigma^{n-1}(x)\} = \{x, ux, \sigma(u)x, \ldots, \sigma^{n-2}(u)x\} \subset x\mathcal{O}_K
\]

that is, $I \subset x\mathcal{O}_K$. From this and from Equation 5 follows that $x\mathcal{O}_K = I$.

\[\square\]

Corollary 4.1. If $\sigma(x)/x \in \mathbb{Z}[\zeta_p]$ then the minimum product distance of the lattice $\varphi_\beta(I)$ (equivalent to \mathbb{Z}^n) is equal to $p^{\frac{1+n}{2}}$. Besides that, $|N_\mathbb{K}(x)| = p^{\frac{n+1}{2}}$.

Proof. Due to the Theorem 4.2, I is the principal ideal in \mathcal{O}_K generated by x. Because it is a principal ideal, the Theorem 1 of [3] implies that $d_{p,\min}(\varphi_\beta(I)) = \sqrt{D/d_\mathbb{K}}$ where D is the determinant of the lattice and $d_\mathbb{K}$ is the discriminant of \mathbb{K}. Since the lattice is \mathbb{Z}^n-rotated then $D = 1$. Now, note that the smallest cyclotomic field containing \mathbb{K} is $\mathbb{Q}(\zeta_p)$. In fact, if there was a integer number l such that $\mathbb{K} \subset \mathbb{Q}(\zeta_l)$ where $l < p$ then

\[
\mathbb{K} \subset \mathbb{Q}(\zeta_p) \cap \mathbb{Q}(\zeta_l) = \mathbb{Q}(\zeta_{\text{gcd}(p,l)}) = \mathbb{Q}(\zeta_l) = \mathbb{Q} \implies \mathbb{K} = \mathbb{Q}
\]

what is a contradiction because the degree of \mathbb{K} is $n > 1$. Because of this, we say that p is the conductor of \mathbb{K}. From this, due to [12] (Corollary 4.2), we conclude that $d_\mathbb{K} = p^{n-1}$. Therefore, $d_{p,\min}(\varphi_\beta(I)) = \sqrt{1/p^{n-1}} = p^{\frac{1}{2}}$. On the other hand, we know that the minimum product distance is equal to $\sqrt{N_\mathbb{K}(\beta)} \min_{\beta \neq y \in I} |N_\mathbb{K}(y)|$. If $\beta = 1/p^2$ then $\sqrt{N_\mathbb{K}(\beta)} = (1/p)^n$. Besides that, since I is principal generated by x, the value $\min_{\beta \neq y \in I} |N_\mathbb{K}(y)|$ is reached by x, that is,

\[
|N_\mathbb{K}(x)| = \min_{\beta \neq y \in I} |N_\mathbb{K}(y)| = \frac{d_{p,\min}(\varphi_\beta(I))}{\sqrt{N_\mathbb{K}(\beta)}} = p^{\frac{1-n}{2}}p^n = p^{\frac{n+1}{2}}.
\]

\[\square\]

Observe that the Theorem 4.2 and the Corollary 4.1 need the hypothesis that $\sigma(x)/x$ is an algebraic integer (belongs to $\mathbb{Z}[\zeta_p]$). The following Theorem guarantees that this is true when \mathbb{K} is the maximal real cyclotomic subfield $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$ in $\mathbb{Q}(\zeta_p)$. Note that this is a case treated in [7].

Theorem 4.3. If $(p-1)/n = 2$ then $\sigma(x)/x \in \mathbb{Z}[\zeta_p]$.

Proof. Due to the Lemma 3.1 and to the definition of x we have:

\[
\frac{\sigma(x)}{x} = \frac{-\zeta_p^\alpha (- (1 - \zeta_p^{an+1}) + (1 - \zeta_p^{2^{an+1}}))}{\zeta_p^\alpha (- (1 - \zeta_p^{an}) + (1 - \zeta_p^{2^{an}}))} = \frac{\zeta_p^r - \zeta_p^{an+1}}{\zeta_p^n - \zeta_p} = \frac{\zeta_p^r (1 - \zeta_p^{r^{an+1}})}{\zeta_p^n (1 - \zeta_p^{r^{an}})} = -\zeta_p^{-1} \frac{(1 - \zeta_p^{r^{2n-1}})}{(1 - \zeta_p^{r^{2n-2}})}.
\]

Follows from the Lemma 1.3 of [15] that the last term is an unit in \mathcal{O}_K. In particular, $\sigma(x)/x$ is an element of $\mathcal{O}_K \subset \mathbb{Z}[\zeta_p]$, as we wanted to show.

\[\square\]

Therefore, when $p = 2n + 1$ is a prime number, we can guarantee that there exists \mathbb{Z}^n having maximum diversity and having minimum product distance equal to $p^{\frac{1+n}{2}}$. This occurs, for example, for $n = 3, 5, 9, 11, 15, 19,...$. However, we also can calculate the minimum product distance in other cases only verifying if $\sigma(x)/x$ is an algebraic integer, as in the following example:
Example 4.1. Consider the rotated \mathbb{Z}^7 ($n = 7$) developed in the Example 4.4. In this case, the smallest prime number able to be used to make the construction is $p = 29$, which does not satisfy the equality $p = 2n + 1$. Therefore, to apply the Corollary 4.1 we need to calculate the quotient $\sigma(x)/x$ and verify if this number is an algebraic integer. In fact, $\sigma(x)/x = -\zeta_{29}^{17} - \zeta_{29}^{12}$ belongs to $\mathbb{Z}[\zeta_{29}]$, because it is an integer combination of powers of ζ_{29}. Therefore, the Corollary 4.1 guarantees that the minimum product distance of this lattice is $p^{\frac{n}{|\sigma|}} = 1/29^3$ and that $|N_{\mathbb{K}}(x)| = p^{\frac{17}{29}} = 29$.

Remark 4.1. The hypothesis $\sigma(x)/x \in \mathbb{Z}[\zeta_p]$ can not be discarded in the Theorem 4.2. For example, when $n = 13$ and $p = 131$ (or $p = 157$, or $p = 313$), the quotient $\sigma(x)/x$ is not an algebraic integer. However, if $p = 53$ or $p = 79$, this quotient belongs to $\mathbb{Z}[\zeta_p]$. Now we will study the minimum product distance of lattices D_n constructed on the Theorem 4.2 using the \mathbb{Z}-module $\{x + \sigma(x), x - \sigma(x), x - \sigma^2(x), \ldots, x^{n-2}(x) - x^{n-1}(x)\}$.

If M was a principal ideal, we could conclude that the minimum product distance of $\varphi_{1/p^2}(M)$ was $2p^{\frac{1-n}{2}}$ (see [8], Section 4.4). However, we will see several situations in which this value is equal to $p^{\frac{1-n}{2}}$. Therefore, M can not be a principal ideal in these cases.

Corollary 4.2. If $u = \sigma(x)/x \in \mathbb{Z}[\zeta_p]$ then the minimum product distance of $\varphi_{1/p^2}(M) \simeq D_n$ satisfies $d_{p,\min}(\varphi_{1/p^2}(M)) \geq p^{\frac{1-n}{2}}$.

Proof. This follows straight from the Corollary 4.1 because $\varphi_{1/p^2}(M)$ is a sublattice of $\varphi_{1/p^2}(I)$.

Corollary 4.3. If $u = \sigma(x)/x \in \mathbb{Z}[\zeta_p]$ and if $1 + u$ or $1 - u$ is an unit in \mathcal{O}_K then the minimum product distance of $\varphi_{1/p^2}(M) \simeq D_n$ is equal to $p^{\frac{1-n}{2}}$.

Proof. If $1 + u$ is an unit in \mathcal{O}_K then from the Corollary 4.1 follows that $x + \sigma(x) = (1+u)$ has absolute value of its norm given by $|N_{\mathbb{K}}(x + \sigma(x))| = |N_{\mathbb{K}}(x)| = p^{\frac{1-n}{2}}$. The same argument can be used for the case in which $1 - u$ is an unit. On the one hand, since $d_{p,\min}(\varphi_{1/p^2}(M)) \geq p^{\frac{1-n}{2}}$ (Corollary 4.1), we have $\min_{0 \neq y \in M} |N_{\mathbb{K}}(y)| \geq |N_{\mathbb{K}}(1/p^2)|^2 p^{\frac{1-n}{2}} = p^{\frac{n+1}{2}}$. Since one of the values $y = x \pm \sigma(x)$ achieve this minimum, then $d_{p,\min}(\varphi_{1/p^2}(M)) = p^{\frac{n+1}{2}} = p^{\frac{1-n}{2}}$.

Remark 4.2. Observe that the fact of $1 \pm u$ be an unit in \mathcal{O}_K on the hypothesis of the Corollary 4.3 is equivalent to the equality $|N_{\mathbb{K}}(x \pm \sigma(x))| = |N_{\mathbb{K}}(x)|$.

Remember of the Theorem 4.3 that $u \in \mathcal{O}_K$ when $(p-1)/n = 2$. Therefore, for that the minimum product distance in these cases be equal to $p^{\frac{1-n}{2}}$ we only need verify if $1 + u$ or if $1 - u$ is an unit. The following result presents a particular case where the hypothesis of the above theorem always occurs:

Corollary 4.4. If $n = 3$ and $u \in \mathbb{Z}[\zeta_p]$ then the minimum product distance of D_3 constructed via any $p \equiv 1 \pmod{3}$ is $1/p$.

Proof. Since $n = 3$ then $M = \langle x, \sigma(x), \sigma^2(x) \rangle_{\mathbb{Z}}$. The Lemma 3.2 implies that $x\sigma(x) + \sigma(x)\sigma^2(x) + \sigma^2(x)x = 0$. Using this identity we have

$$N_{\mathbb{K}}(x+\sigma(x)) = (x + \sigma(x))(\sigma(x) + \sigma^2(x))(\sigma^2(x) + x) =$$

$$= (x^2 + x\sigma(x) + \sigma(x)\sigma^2(x) + \sigma^2(x)x)(\sigma(x) + \sigma^2(x)) =$$

$$= x^2(\sigma(x) + \sigma^2(x)) = x(x\sigma(x) + x\sigma^2(x)) = -x(\sigma(x)\sigma^2(x)) = -N_{\mathbb{K}}(x).$$
Example 4.2. Consider the rotated $D_7 \ (n = 7)$ developed in the Example 3.1. The prime number used was $p = 29$. In the Example 3.1 was shown that $\sigma(x)/x$ is an algebraic integer. Besides that, $1 - u = 1 + \zeta_{29} + \zeta_{29}^{12} + \zeta_{29}^{17} + \zeta_{29}^{26}$ and

$$
\frac{1}{1 - u} = \zeta_{29}^{27} - 2\zeta_{29}^{26} + 2\zeta_{29}^{25} + \zeta_{29}^{24} - \zeta_{29}^{23} - 2\zeta_{29}^{22} - 2\zeta_{29}^{19} - \zeta_{29}^{18} - \zeta_{29}^{16} - \zeta_{29}^{15} - \zeta_{29}^{14} -
\\
- \zeta_{29}^{13} - \zeta_{29}^{11} - 2\zeta_{29}^{10} - 2\zeta_{29}^{7} - \zeta_{29}^{6} + \zeta_{29}^{5} - 2\zeta_{29}^{4} - 2\zeta_{29}^{3} + \zeta_{29}^{2} - 3.
$$

So $1 - u$ is an unit in $\mathbb{Z}[\zeta_p]$ and, so, it is an unit in \mathcal{O}_K. Follows from the Corollary 4.3 that the minimum product distance of $\varphi_{1/29^2}(M) \simeq D_7$ is equal to $1/29^3$.

However, note that $1 + u$ is not an unit in \mathcal{O}_K because

$$
\frac{1}{1 + u} = \frac{5}{17}\zeta_{29}^{27} + \frac{6}{17}\zeta_{29}^{26} + \frac{2}{17}\zeta_{29}^{25} + \frac{5}{17}\zeta_{29}^{24} + \frac{7}{17}\zeta_{29}^{23} + \frac{6}{17}\zeta_{29}^{22} + \frac{2}{17}\zeta_{29}^{21} + \frac{2}{17}\zeta_{29}^{20} + \frac{2}{17}\zeta_{29}^{19} - \frac{1}{17}\zeta_{29}^{18} - \frac{1}{17}\zeta_{29}^{16} + \frac{7}{17}\zeta_{29}^{15} +
\\
+ \frac{7}{17}\zeta_{29}^{14} - \frac{1}{17}\zeta_{29}^{13} + \frac{1}{17}\zeta_{29}^{11} + \frac{2}{17}\zeta_{29}^{10} + \frac{2}{17}\zeta_{29}^{9} - \frac{8}{17}\zeta_{29}^{8} + \frac{17}{17}\zeta_{29}^{7} + \frac{7}{17}\zeta_{29}^{6} + \frac{5}{17}\zeta_{29}^{5} + \frac{2}{17}\zeta_{29}^{4} + \frac{6}{17}\zeta_{29}^{3} + \frac{5}{17}\zeta_{29}^{2} + \frac{7}{17}.$$

is not an algebraic integer.

Remark 4.3. The hypothesis that $1 + u$ or $1 - u$ is an unit can not be discarted in the Corollary 4.3. As in the Remark 4.1 if $n = 13$ and $p = 53$ or $p = 79$ then $\sigma(x)/x \in \mathbb{Z}[\zeta_p]$. However, in these two cases $1 + u$ and $1 - u$ are not inverible in \mathcal{O}_K. However, note that this is not a problem because the Corollary 4.3 can still be applied.

5 Algebraic lattices \mathbb{Z}^n and D_n, for any even number $n > 1$

In this section we construct algebraic lattices \mathbb{Z}^n and D_n for any even integer number $n > 1$ and study their minimum product distance. Firstly, we redeem the construction of \mathbb{Z}^k for $k = 2^m > 1$ of [1] and obtain D_k. After, combining these results with the construction and results made in Sections 3 and 4 for $\mathbb{Z}^l, \ l$ odd, we obtain \mathbb{Z}^n and D_n, for any $n > 1$.

Let $m \geq 3$ be an integer number. Consider $k = 2^{m-2}$ and $\omega = e^{\frac{2\pi i}{2^{m-1}}}$ a 2^m-th primitive root of unity. Denoting by θ the number $\omega + \omega^{-1}$ we see that $L = \mathbb{Q}(\theta)$ is the maximal real subfield of the cyclotomic field $\mathbb{Q}(\omega)$. So, since $[\mathbb{Q}(\omega) : L] = 2$, the degree of the field L is k. Besides that, $\mathcal{O}_L = \mathbb{Z}[\theta]$ (see [15], Proposition 2.16). Denote $\theta_j = \omega^j + \omega^{-j}$, for $j \geq 0$. The next theorem presents an algebraic \mathbb{Z}^k-rotated lattice:

Theorem 5.1 (4, Theorem 1). Consider $w_0 = 1, \ w_1 = 1 + \theta_1, \ldots, \ w_{k-1} = 1 + \theta_1 + \ldots + \theta_{k-1}$. The set $H = \{w_0, w_1, \ldots, w_{k-1}\}$ is a basis of \mathcal{O}_L. Besides that, if $\beta = 1/k - \theta/(2k)$ then the lattice $\varphi_{\beta}(\mathcal{O}_L)$ is a rotated version of \mathbb{Z}^k with this basis.

Denote by τ the generator of the cyclic Galois group of L over \mathbb{Q}. If r is the primitive element module 2^{m-1}, the monomorphism τ can be defined by $\tau(\omega) = \omega^r$. The generator matrix of $\varphi_{\beta}(\mathcal{O}_L)$ is, by definition,

$$
G = \begin{pmatrix}
\begin{array}{cccc}
\tau(w_0) & \ldots & \tau^{k-1}(w_0) \\
\tau(w_1) & \ldots & \tau^{k-1}(w_1) \\
\vdots & \ddots & \vdots \\
\tau(w_{k-1}) & \ldots & \tau^{k-1}(w_{k-1})
\end{array}
\end{pmatrix}
\begin{pmatrix}
\sqrt{\beta} & 0 & \ldots & 0 \\
0 & \sqrt{\tau(\beta)} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sqrt{\tau^{k-1}(\beta)}
\end{pmatrix}
$$
To calculate explicitly this matrix, note that \(\tau^j(w_0) = 1 \) and that \(\tau^j(w_i) = 1 + \theta_{r_1} + \theta_{2r_1} + \ldots + \theta_{pr_1} \), for \(0 \leq i, j \leq k - 1 \). Consequently it is possible construct the lattice \(D_k \) analogously to what was done in the Section 4.2 of [7]:

Theorem 5.2. Consider \(L \) the \(\mathbb{Z} \)-module generated by

\[
\{w_0 + w_1, w_0 - w_1, \ldots, w_{k-2} - w_{k-1}\} = \{2 + \theta_1, -\theta_1, -\theta_2, \ldots, -\theta_{k-1}\}.
\]

So, the algebraic lattice \(\sigma_3(L) \) is a rotated version of \(D_k \) (with \(k = 2^{m-2} \)).

Proof. To prove this theorem it is enough multiply the matrix in \(\mathbb{Z} \) by the above matrix \(G \), as in the proof of Theorem 5.2. Since \(G \) is a rotation matrix, this lattice is a rotated version of \(D_k \).

Note that other set of generators for the \(\mathbb{Z} \)-module \(L \) in the Theorem 5.2 is given by

\[
\{2\theta_0, \theta_1, \theta_2, \ldots, \theta_{k-1}\}. \tag{7}
\]

So, it is not difficult prove that the \(\mathbb{Z} \)-module \(L \) is the principal ideal \(\theta_1 \mathcal{O}_L \) (see [7], Proposition 4.7). To the following we need the next lemma:

Lemma 5.1 (\[13\], Theorem 3.2). The discriminant of \(L \) is given by \(2^{(m-1)k-1} \).

Since the lattices \(\mathbb{Z}^k \) and \(D_k \) (\(k = 2^{m-2}, m \geq 3 \)) are constructed via the twisted homomorphism using principal ideals in ring of integers of totally real number fields then both have maximum diversity. Besides that, due to the fact that ideals used in the construction are principal and due to the Lemma 5.1 the minimum product distance of \(\mathbb{Z}^k \) is

\[
d_{p,\text{min}}(\varphi_\beta(\mathcal{O}_L)) = \sqrt{\frac{\det(\varphi_\beta(\mathcal{O}_L))}{d_{\mathcal{O}_L}}} = \sqrt{\frac{1}{2^{(m-1)k-1}}} = 2^{1-\frac{(m-1)k}{2}}
\]

and the minimum product distance of \(D_k \) is

\[
d_{p,\text{min}}(\varphi_\beta(L)) = \sqrt{\frac{\det(\varphi_\beta(L))}{d_{\mathcal{L}}}} = \sqrt{\frac{4}{2^{(m-1)k-1}}} = 2^{\frac{3-(m-1)k}{2}}.
\]

Example 5.1. Consider \(m = 3 \) and \(k = 2 \). So \(\theta = \zeta + \zeta^{-1} = \sqrt{2} \), \(L = \mathbb{Q}(\sqrt{2}) \) and \(\beta = (2 - \sqrt{2})/4 \). Now, \(H = \{w_0 = 1, w_1 = 1 + \sqrt{2}\} \) is a basis of the lattice \(\varphi_\beta(\mathbb{Z}[\sqrt{2}]) \simeq \mathbb{Z}^2 \). In turn, \(L = \langle 2, \sqrt{2} \rangle \) is the \(\mathbb{Z} \)-module such that \(\varphi_\beta(L) \simeq D_2 \). Both lattices have maximum diversity. In this construction, the minimum product distance of \(\mathbb{Z}^2 \) is \(1/2\sqrt{2} \) and of \(D_2 \) is \(1/\sqrt{2} \).

Example 5.2. Consider \(m = 4 \), \(k = 4 \), \(\theta = \zeta + \zeta^{-1} = 2\cos(\pi/8) \), \(L = \mathbb{Q}(2\cos(\pi/8)) \) and \(\beta = (1 - \cos(\pi/8))/4 \). Now, \(H = \{w_0 = 1, w_1 = 1 + 2\cos(\pi/8), w_2 = 1 + 2\cos(\pi/8) + \sqrt{2}, 1 + 2\cos(\pi/8) + \sqrt{2} + 2\cos(3\pi/8)\} \) is a basis of the lattice \(\varphi_\beta(\mathbb{Z}[2\cos(\pi/8)]) \simeq \mathbb{Z}^4 \). In turn, \(L = \langle 2, 2\cos(\pi/8), \sqrt{2}, 2\cos(3\pi/8) \rangle \) is the \(\mathbb{Z} \)-module such that \(\varphi_\beta(L) \simeq D_4 \). Both lattices have maximum diversity. In this construction, the minimum product distance of \(\mathbb{Z}^4 \) is \(2^{-11/2} \) and of \(D_4 \) is \(2^{-9/2} \).

Now we will construct the lattices \(\mathbb{Z}^n \) and \(D_n \), for any even \(n > 1 \), using the compositum of the field considered above to construct lattices \(\mathbb{Z}^n \) and \(D_n \) for \(n \) a power of two with the field used in Section 3 to construct \(\mathbb{Z}^n \) and \(D_n \) for \(n \) an odd number, following the ideas and constructions made in [3] and [4]. For this, we use notations made above and in the Section 3. Consider \(l > 1 \) an odd number and \(k = 2^{m-2}, m \geq 3 \). Remember that \(\mathbb{K} \) was defined in [4] and has odd degree \(l \), while \(L = \mathbb{Q}(\omega) = \mathbb{Q}(\zeta_{2^{m}} + \zeta_{2^{m}}^{-1}) \) has degree \(k = 2^{m-2} \). We can see that \(\mathbb{K} \cap L = \mathbb{Q} \).

10
Lattices \mathbb{Z}^n and D_n for n an odd number and for n equal a power of 2 were treated previously. Only remains the case $n = kl$, where k and l are as above. For this, let $K\mathbb{L}$ be the compositum of the fields K and \mathbb{L} (this is, the smallest field containing K and \mathbb{L} simultaneously). In this way, the compositum $K\mathbb{L}$ has degree $n = kl$ and can be used to construct \mathbb{Z}^n and D_n (see Chapter 13, Item W, of [14]).

Next theorem is similar to the Proposition 6 of [3]. Its proof can be done following the steps of the Section 4 of [4]. Consider the ideal I of $[2]$, $J = \mathcal{O}_L$, p the prime number satisfying $p \equiv 1 \pmod{l}$ used previously and w_i defined above.

Theorem 5.3 ([4], Section 4). Let I be the product ideal $IJ \subset \mathcal{O}_{K\mathbb{L}}$ and $\beta = p^{-2}(1/k - \theta/2k)$. So

a) $I = (w_0 x, w_0 \sigma(x), \ldots, w_0 \sigma^{l-1}(x), w_1 x, \ldots, w_1 \sigma^{l-1}(x), \ldots, w_{k-1} x, \ldots, w_{k-1} \sigma^{l-1}(x))_{\mathbb{Z}}$.

b) $\varphi_\beta(I)$ is a rotated version of \mathbb{Z}^n.

c) The generator matrix of this lattice is the tensor product of the matrix G explicited in the Theorem 5.4 by the matrix G explicited in [6].

Analogously to what was done above, it is possible take out a rotated version of D_n from \mathbb{Z}^n:

Theorem 5.4. Consider the \mathbb{Z}-module M generated by

$$\{w_0(x + \sigma(x))\} \cup \{w_i \sigma^{i-1}(x) - w_{i+1} x, 0 \leq i \leq k - 2\} \cup \left(\bigcup_{0 \leq j \leq k - 1} \{w_j(\sigma^j(x) - \sigma^{j+1}(x)), 0 \leq i \leq n - 2\}\right)$$

and $\beta = p^{-2}(1/k - \theta/(2k))$. So, the algebraic lattice $\varphi_\beta(M)$ is a rotated version of D_n.

Proof. It is enough to multiply the matrix in (8) of dimension $n \times n$ by the matrix of the item (c) of the Theorem 5.3 as in the proof of the Theorem 5.2. Since the last matrix is a rotation matrix, then the lattice is a rotated version of D_n. \(\square\)

In the Theorems 5.3 and 5.4 were constructed rotated versions of \mathbb{Z}^n and D_n. They were constructed via \mathbb{Z}-modules of the compositum $K\mathbb{L}$. Since K and \mathbb{L} are totally real number fields then $K\mathbb{L}$ is too. Therefore, the lattices \mathbb{Z}^n and D_n have maximum diversity. So, we can calculate the minimum product distance of each one of these lattices restricted to some conditions using known results for the cases $k = 2^{m-2}$ ($m \geq 3$) and l odd. In the following, consider $\beta = p^{-2}(1/k - \theta/(2k))$.

Lemma 5.2 ([14], Chapter 14, Item W). The discriminant of the compositum $K\mathbb{L}$ is $d_Kd_L^2$.

Theorem 5.5. If $\sigma(x)/x \in \mathbb{Z}[^2p]$ then the ideal $I = IO_K$ is principal generated by x and the minimum product distance of the lattice $\varphi_\beta(I) \simeq \mathbb{Z}^n$ is given by $\beta = p^{-2}(\sqrt{n} - \sqrt{n} - 2 \sqrt{n}(n-m-1))$. Besides that,

$$|N_{K\mathbb{L}}(x)| = p^{\frac{n+k}{2}} \quad (8)$$

Proof. Due to the Theorem 5.2 $I = xO_K$. This implies that $xO_{K\mathbb{L}} = xO_KO_L = IO_L$, this is, $I = IO_L$ is a principal ideal generated by x. Now, of the Lemma 5.2 follows that

$$d_{p,\min}(\varphi_\beta(I)) = \sqrt{\frac{D}{d_{K\mathbb{L}}}} = \frac{1}{\sqrt{d_Kd_L^2}} = p^{\frac{2-\theta}{2}} 2^{-\frac{1-(n-m-1)}{2}}.$$

Finally, since $x \in K$ and $|N_{K}(x)| = p^{\frac{n+k}{2}}$ (Corollary 14), follows from the transitivity property of the norm that $|N_{K\mathbb{L}}(x)| = |N_{K}(N_{K\mathbb{L}/K}(x))| = |N_{K}(x)|^k = p^{\frac{(n+k)^k}{2}} = p^{\frac{n+k}{2}}. \quad \square$
Theorem 5.6. If $u = \sigma(x)/x \in \mathbb{Z}[\mathbb{Q}]$ then the minimum product distance of $\varphi_{\beta}(M) \simeq D_n$ satisfies

$$d_{p,\min}(\varphi_{\beta}(M)) \geq 2^{\frac{1-n(m-3)}{2}} p^{\frac{k-n}{2}}.$$

Proof. Since I is a principal ideal generated by x and using \exists

Now, $N_{KL}(\beta) = p^{-2n}(2k)^{-n}N_{KL}(2-\theta)$. Since $2-\theta = 2-\omega - \omega^{-1} = (1-\omega)(1-\omega^{-1})$ then

$$N_{Q(\omega)}(2-\theta) = N_{Q(\omega)}((1-\omega)(1-\omega^{-1})) = (N_{Q(\omega)}(1-\omega))^2 = 2^2$$

and, using the transitivity property of the norm, $2^2 = N_{Q(\omega)}(2-\theta) = N_{L} (N_{Q(\omega)/L}(2-\theta)) = N_{L}(2-\theta)^2$, which implies that $N_{L}(2-\theta) = 2$. So, again using the transitivity property of the norm,

$$N_{KL}(2-\theta) = N_{L} (N_{KL/L}(2-\theta)) = N_{L}(2-\theta)^l = 2^l.$$

Therefore,

$$d_{p,\min}(\varphi_{\beta}(M)) = \sqrt{N_{KL}(\beta)} \min_{0 \neq y \in M} |N_{KL}(y)| \geq p^{-n}(2k)^{-n/2}2^{l/2} p^{\frac{k-n}{2}} = 2^{\frac{1-n(m-3)}{2}} p^{\frac{k-n}{2}}.$$

Corollary 5.1. If $u = \sigma(x)/x \in \mathbb{Z}[\mathbb{Q}]$ and if $1 + u$ or $1 - u$ is an unit in O_K then the minimum product distance of $\varphi_{\beta}(M) \simeq D_n$ is equal to $2^{\frac{1-n(m-3)}{2}} p^{\frac{k-n}{2}}$.

Proof. This proof will be made considering that $1 + u$ is an unit. The case in which $1 - u$ is an unit can be done analogously. If $1 + u$ is an unit in $O_{K,L}$ (because it is an unit in O_K) then $|N_{KL}(x + \sigma(x))| = |N_{KL}(x(1 + u))| = |N_{KL}(x)|$. Note that the first element of the set of generators of M enunciated in the Theorem 5.4 is $w_0(x + \sigma(x)) = x + \sigma(x)$ (because $w_0 = 1$). So, by \square we have

$$\min_{0 \neq y \in M} |N_{KL}(y)| \leq |N_{KL}(w_0(x + \sigma(x)))| = |N_{KL}(x)|.$$

This proves that $d_{p,\min}(\varphi_{\beta}(M)) \leq 2^{\frac{1-n(m-3)}{2}} p^{\frac{k-n}{2}}$ as in the proof of the Theorem 5.6. Finally, the Theorem 5.6 also concludes this proof. \square

Example 5.3. To construct \mathbb{Z}^{14} ($n = 2.7$, $k = 2$, $l = 7$) we will use the field K constructed implicitly in the Example 3.1 and the field $L = \mathbb{Q}(\sqrt{2})$. The ideal that produces a rotated version of \mathbb{Z}^{14} is $I = \langle x, \sigma(x), \ldots, \sigma^6(x), (1+\sqrt{2})x, (1+\sqrt{2})\sigma(x), \ldots, (1+\sqrt{2})\sigma^6(x) \rangle$, with $\beta = 29^{-2}(2-\sqrt{2})/4$. It has maximum diversity and its minimum product distance is $2^{-21/2}29^{-6}$. In turn, $M = \langle x + \sigma(x), x - \sigma(x), \ldots, \sigma^5(x) - \sigma^6(x), \sigma^6(x) - (1+\sqrt{2})x, (1+\sqrt{2})(x - \sigma(x)), \ldots, (1 + \sqrt{2})(\sigma^5(x) - \sigma^6(x)) \rangle$ generates D_{14} having maximum diversity and minimum product distance given by $27/29^{-6}$, because the hypothesis of the Corollary 5.1 is true in this example. \square

6 Comparisons and conclusions

In this paper we worked in parallel with rotated versions of \mathbb{Z}^n and D_n. Comparing these lattices with respect to packing density, it is a known fact that D_n has better performance than \mathbb{Z}^n when $n > 2$, because the center density
of D_n is $2^{-(n+2)/2}$, while the center density of \mathbb{Z}^n is equal to 2^{-n}. With respect to minimum product distance of the lattices constructed here, to make a fair comparison, it is necessary that \mathbb{Z}^n and its sublattice D_n have same minimum norm or same volume. Since this not occurs, we need define comparative forms of the minimum product distance:

Definition 6.1. (1) The relative minimum product distance $d_{p,\text{rel}}$ of a complete lattice $\Lambda \subset \mathbb{R}^n$ is defined by $d_{p,\text{min}}/\lambda^n$, where λ is the minimum norm of Λ. (2) The normalized minimum product distance $d_{p,\text{nor}}$ of a complete lattice $\Lambda \subset \mathbb{R}^n$ is defined by $d_{p,\text{min}}/\text{vol}(\Lambda)$.

It is usual to consider lattices having same volume (or same determinant), but since in our case the comparison is between two lattices having different volumes, we need use some of these two definitions. The relative minimum product distance is used in [7] also to compare \mathbb{Z}^n and D_n. However, in other contexts it seems better use the normalized minimum product distance, like when someone needs a lattice having a greater number of points inside a same convex polytope. Intuitively, suppose that in a lattice we put tiny cubes centered in the lattice points. Refining this lattice, the sum of the volume of cubes inside the fundamental region of the lattice approximates of its volume, although volume of the refined lattices became smaller. This procedure remember the basic principle of the Riemann integral. Therefore, higher volume, lower number of points inside a fixed convex polytope region.

Example 6.1. Consider in \mathbb{R}^2 the lattice Λ_1 generated by $\{(\sqrt{3}/2,-1/2),(1/2,\sqrt{3}/2)\}$ and its sublattice Λ_2 generated by $\{(\sqrt{3}/2,-1/2),(1,\sqrt{3})\}$. Note that Λ_1 has more points than Λ_2 in the fundamental region of Λ_2. So, if the parameter for choosing the lattice is the largest number of points in a same region, is better choose Λ_1. To force Λ_2 to be better than Λ_1 in this analysis we consider the scaled version $(1/\text{vol}(\Lambda_2))\Lambda_2 = (1/2)\Lambda_2$, that has more points than Λ_1 in the fundamental region of Λ_2. As $\text{vol}(\Lambda_2) = 2 \neq 1 = \text{vol}(\Lambda_1)$ then $d_{p,\text{nor}}(\Lambda_2) \neq d_{p,\text{nor}}(\Lambda_1)$ if we rescale Λ_1 and Λ_2 to have same minimum product distance. However, note that Λ_1 and Λ_2 have the same minimum norm λ, implying that $d_{p,\text{rel}}(\Lambda_1) = d_{p,\text{rel}}(\Lambda_2)$ if we force them to have same minimum product distance. Therefore, $d_{p,\text{nor}}$ is more effective to compare Λ_1 and Λ_2 than $d_{p,\text{rel}}$ in this case.

Firstly, we will use the relative minimum product distance to compare the constructed lattices \mathbb{Z}^n and D_n. In this case we can make a parallel with the results in [7]. After, in the end of this section, we compare these two lattices using normalized minimum product distance and present a table comparing them for $3 \leq n \leq 10$.

The minimum distance of \mathbb{Z}^n is 1. However, $d_{p,\text{rel}}$ of \mathbb{Z}^n coincides with $d_{p,\text{min}}$ in each construction that we got calculate the minimum product distance. In turn, the minimum distance of D_n is $\sqrt{2}$, which implies that $d_{p,\text{rel}} = 2^{-n/2}d_{p,\text{min}}$ in each construction that we got calculate the minimum product distance. So, in these cases, if $n > 1$ is a odd number,

\[
\frac{\sqrt{d_{p,\text{rel}}(\mathbb{Z}^n)}}{\sqrt{d_{p,\text{rel}}(D_n)}} = \sqrt{2}
\]

if $n > 1$ is a power of two,

\[
\frac{\sqrt{d_{p,\text{rel}}(\mathbb{Z}^n)}}{\sqrt{d_{p,\text{rel}}(D_n)}} = 2^{\frac{1}{2} - \frac{n}{2}}
\]

and if n is a product of a odd number (> 1) by a power of two (> 1) then

\[
\frac{\sqrt{d_{p,\text{rel}}(\mathbb{Z}^n)}}{\sqrt{d_{p,\text{rel}}(D_n)}} = \frac{\sqrt{2}}{2}
\]

while

\[
\lim_{\eta \to \infty} \frac{\sqrt{d(\mathbb{Z}^n)}}{\sqrt{d(D_n)}} = 0.
\]
Table 1: Comparison between relative minimum product distance of \mathbb{Z}^n and D_n and between their center density in some odd dimensions n

l	p	r	$u \in \mathbb{Z}[^{+\frac{1}{p}}]$?	Unit $\sqrt[3]{d_{p,rel}(\mathbb{Z})}$	$\sqrt[3]{d_{p,rel}(D_l)}$	$\delta(\mathbb{Z}^l)$	$\delta(D_l)$	
3	7	3	Yes (Theorem 4.3)	1 ± u	0.5227...	0.3696...	0.125	0.176776...
5	11	2	Yes (Theorem 4.3)	1 ± u	0.3832...	0.2709...	0.031250...	0.088388...
7	29	2	Yes	1 − u	0.2361...	0.1670...	0.007812...	0.044194...
9	19	2	Yes (Theorem 4.3)	1 ± u	0.2701...	0.1910...	0.0701...	0.01910...
11	23	5	Yes (Theorem 4.3)	1 ± u	0.2404...	0.1700...	0.000488...	0.011048...
15	31	3	Yes (Theorem 4.3)	1 ± u	0.2013...	0.1424...	0.000030...	0.002762...

Therefore, it is better use D_n than \mathbb{Z}^n when someone needs a lattice having good performance simultaneously for Rayleigh fading channel and for gaussian channel in high dimensions. Notably, observe that if n is a product of a odd number (> 1) by a power of two (> 1) then $d_{p,rel}$ and δ of D_n are better than those of \mathbb{Z}^n.

Throughout this work we were able to calculate the minimum product distance of the lattices \mathbb{Z}^l and D_l, with odd l, only when certain conditions were valid (see Corollary 4.1 and Corollary 3.2). In \mathbb{Z}^l we needed $u = \sigma(x)/x$ to be an algebraic integer, while in D_l we needed $1 + u$ or $1 − u$ to be unit. The table compares the results of the l-th root of the relative minimum product distance of \mathbb{Z}^l with that of D_l for l between 3 and 15 using the least prime number p such that $p \equiv 1 \pmod{l}$, except for $l = 13$ (due to remarks 4.1 and 4.3). In the same table we can compare the center density of the lattices in each dimension. The column "Unit" presents which of $1 + u$ or $1 − u$ is unit.

The cases $l = 5$, $l = 9$ and $l = 11$ were studied in [7] too. Note that \mathbb{Z}^l and D_l obtained here and in [7] have the same relative minimum product distance if $1 + u$ or $1 − u$ is as unit in \mathcal{O}_K (see table 3 of [7]). However, in [7] only lattices satisfying the condition $2l = p − 1$ were constructed. For example, in [7] it was not possible to construct \mathbb{Z}_7 and D_7 neither calculate their minimum product distance. Here this is possible.

In relation to general constructions of \mathbb{Z}^n and D_n for any integer number $n > 1$, again we can calculate the minimum product distance if some hypothesis are valid (see theorems 5.3 and 5.4). In the table we compare the relative minimum product distance between \mathbb{Z}^n and D_n in each even dimension n between 4 and 14. In particular, we can highlight the observed value of the n-th root of the relative minimum product distance of D_6. In [7] it was constructed a lattice D_6 having $\sqrt[9]{d_{p,rel}(D_6)} \approx 0.24285$, while using the construction made here this value gets to ≈ 0.4395.

Finally, let’s compare \mathbb{Z}^n and D_n using the normalized minimum product distance. Since the volume of the constructed \mathbb{Z}^n is 1 and the volume of its sublattice D_n is 2 then $d_{p,nor}(\mathbb{Z}^n) = d_{p,min}(D_n)$ and $d_{p,nor}(D_n) = d_{p,min}(D_n)/2$. So, for the constructions that we can calculate the minimum product distance of \mathbb{Z}^n and D_n in this work, if $n > 1$ is an odd number,

$$\sqrt[9]{d_{p,nor}(\mathbb{Z}^n)} \leq \sqrt[9]{d_{p,nor}(D_n)} = \sqrt[9]{2} \rightarrow \infty, 1$$

if $n > 1$ is a power of two,

$$\sqrt[9]{d_{p,nor}(\mathbb{Z}^n)} = \sqrt[9]{d_{p,nor}(D_n)} = 1$$
Table 2: Comparison between relative minimum product distance of Z^n and D_n and between their center density in some even dimensions n

n	$l (p)$	m	$k = 2^{m-2}$	$\sqrt[3]{d_{p,rel}(Z^n)}$	$\sqrt[3]{d_{p,rel}(D_n)}$	$\delta(Z^n)$	$\delta(D_n)$
4	1	4	$k = 2^2$	0.3855...	0.3242...	0.0625...	0.125
6	3 ($p = 7$)	3	$k = 2^1$	0.3108...	0.4395...	0.015625	0.0625
8	1	5	$k = 2^3$	0.2610...	0.2013...	0.003906...	0.03125
10	5 ($p = 11$)	5	$k = 2^1$	0.2278...	0.3272...	0.000976...	0.015625
12	3 ($p = 7$)	4	$k = 2^2$	0.2015...	0.2850...	0.000244...	0.0076125
14	2 ($p = 29$)	3	$k = 2^1$	0.1404...	0.1986...	0.000061...	0.00390625

Table 3: Comparison between normalized minimum product distance of Z^n and D_n and between their center density in some even dimensions n

n	$l (p)$	m	$k = 2^{m-2}$	$\sqrt[3]{d_{p,nor}(Z^n)}$	$\sqrt[3]{d_{p,nor}(D_n)}$	$\delta(Z^n)$	$\delta(D_n)$
3	3 ($p = 7$)	2	$k = 1$	0.1428...	0.1133...	0.0625...	0.125
4	1	4	$k = 2^2$	0.3855...	0.3855...	0.0625...	0.125
5	3 ($p = 11$)	2	$k = 1$	0.0082...	0.0071...	0.0625...	0.125
6	3 ($p = 7$)	3	$k = 2^1$	0.3108...	0.5538...	0.015625	0.0625
7	7 ($p = 29$)	2	$k = 1$	0.00004...	0.00003...	0.0625...	0.125
8	1	5	$k = 2^3$	0.2610...	0.2610...	0.003906...	0.03125
9	9 ($p = 19$)	2	$k = 1$	0.000007...	0.000007...	0.0625...	0.125
10	5 ($p = 11$)	3	$k = 2^1$	0.2278...	0.4252...	0.000976...	0.015625

and if n is a product of an odd number (> 1) by a power of two (> 1) then

$$\frac{\sqrt[3]{d_{p,nor}(Z^n)}}{\sqrt[3]{d_{p,nor}(D_n)}} = 2^{n-1} \xrightarrow{n \to \infty} 1/2.$$

Since the quotient in (2) is valid here too, we can conclude that is better use D_n than Z_n for both Rayleigh fading channel and gaussian channel for any $n > 1$. In fact, even in the case in which $n > 1$ is a odd number, Z^n loses its vantage as n grows.

In the table (3) we can observe that the values of $\sqrt[3]{d_{p,nor}}$ of Z^n and D_n are not good when n is a odd number, but it is good when n is the product of a odd number (> 1) by a power of two (> 1).

Therefore, we can conclude that D_n has interesting advantages for practical use when compared with Z^n both for Rayleigh fading channel and for gaussian channel.

7 Acknowledgment

The authors would like to thank Dr. Trajano P. N. Neto and Dr. Grasiele C. Jorge for suggestions and discussions about this work. The authors also thank Dr. Frederique Oggier for the readiness to answer some of our doubts via e-mail.
References

[1] Conway, J.H. Sloane, N.J.A. Sphere packings, lattices and group. Springer-Verlag, Nova Iorque, 3rd. Ed., 1998.

[2] Boutros, J., Viterbo, E., Rastello, C., Belfiore, J. Good Lattice Constellations for both Rayleigh Fading and Gaussian Channel. IEEE Transactions on Information Theory, v.42, n.2, p.502-517, 1996.

[3] Bayer-Fluckiger E., Oggier, F., Viterbo, E. New Algebraic Constructions of Rotated Zn-Lattice Constellations for the Rayleigh Fading Channel. IEEE Trans. Inform. Theory 50(4), 702?714, 2004.

[4] Sethuraman, B.A., Oggier, F. Constructions of Orthonormal Lattices and Quaternion Division Algebra for Totally Real Number Fields. AAECC 2007, LNCS 4851, p. 138-147, 2007.

[5] Bayer-Fluckiger, E., Nebe, G. On the Euclidian minimum of some real number fields. Journal de theorie des nombres de Bordeaux, v.17, n.2, p. 437-454, 2005.

[6] Andrade, A.A., Alves, C., Carlos, T.B. Rotated lattices via the cyclotomic field $\mathbb{Q}(\zeta_{2^r})$. International Journal of Applied Mathematics, v.19, n.3, p.1-13, 2010.

[7] Jorge, G.C., Ferrari, A.J., Costa, S.I.R. Rotated D_n-lattices. Journal of Number Theory 132, 2012.

[8] Jorge, G. C. Reticulados q-ários e algébricos. Thesis. Imecc, Unicamp. Campinas, 2012.

[9] Serre, J. A course in Arithmetic. Springer-Verlag New York, vol. 7, 1973.

[10] Elia, P., Sethuraman, B.A., Kumar, P.V. Perfect Space-Time Codes with Minimum and Non-Minimum Delay for Any Number of Antennas. IEEE Transactions on Information Theory, 2005.

[11] Erez, B. The Galois structure of the Trace Form in Extensions of Odd Prime Degree. Journal of Algebra 118, 438?446, 1988.

[12] Lopes, J.O.D., Neto, T.P.N., Interlando, J.C. Os computing discriminant of subfields of $\mathbb{Q}(\zeta_{p^r})$, Journal of Number Theory, v.96, n.2, p.319-325, 2002.

[13] Lopes, J.O.D. Discriminants of subfields of $\mathbb{Q}(\zeta_{2^r})$. Journal of Algebra And Its Applications, v.2, p.463-469, 2003.

[14] Ribemboin, P. Classical Theory of Algebraic Numbers. 1 ed. Springer-Verlag New York, 2001.

[15] Washington, L. Introduction to Cyclotomic Fields. 2 ed. Springer-Verlag New York, 1995.

[16] Nebe, G. Index to Catalogue of Lattices. Available in <http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES>. Accessed in 2016.

[17] Samuel, P. Algebraic Theory of Numbers. Paris. Hermann, 1970.