Interacting dark energy after the latest Planck, DES, and H_0 measurements: an excellent solution to the H_0 and cosmic shear tensions

Eleonora Di Valentino,1 Alessandro Melchiorri,2,3 Olga Mena,4 and Sunny Vagnozzi5,6,7

1Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
2Department of Physics, Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 2, I-00185 Roma, Italy
3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy
4Instituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, E-46980, Valencia, Spain
5The Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, Roslagstullsbacken 21A, SE-106 91 Stockholm, Sweden
6The Nordic Institute for Theoretical Physics (NORDITA), Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
7Karli Institute for Cosmology (KICC) and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom

(Dated: August 13, 2019)

We examine the most well-studied model featuring non-gravitational interactions between dark matter and dark energy in light of the latest cosmological observations. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant H_0 from the Hubble Space Telescope. We find that the presence of interactions among the two dark sectors can bring the significance level of the long-standing H_0 tension below the 1σ level. The very same model also significantly reduces the $\Omega_m - \sigma_8$ tension between CMB and cosmic shear measurements. Interactions between the dark components of our Universe remain therefore as an extremely promising solution to these persisting cosmological tensions. The results presented in this paper are among the first constraints on exotic physics from the Planck 2018 legacy dataset. In a companion paper, we will further investigate these tensions when allowing for more freedom in the dark energy sector.

Introduction — The concordance ΛCDM cosmological model has been incredibly successful at describing cosmological observations at high and low redshift [1–5]. Yet, as uncertainties on cosmological parameters keep shrinking, a number of weaknesses have emerged: one of the most intriguing ones is the "H_0 tension", referring to the mismatch between the value of the Hubble constant H_0 inferred from Planck Cosmic Microwave Background (CMB) data and direct local distance ladder measurements [6,7]. In the past decade we have witnessed the tension between these two values grow in significance level from 2σ to 4.4σ: the latest determinations from the Planck 2018 results and from the observations of Large Magellanic Cloud Cepheids by the Hubble Space Telescope (HST; measurement denoted as R19 hereafter) give $h = (0.6737\pm0.0054)$ [8] and $h = (0.7403\pm0.0142)$ [9] respectively, with $h \equiv H_0/(100\,\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1})$ the reduced Hubble constant. A very appealing possibility is that the H_0 discrepancy might be a hint of physics beyond the canonical ΛCDM model. The most economic possibilities in this direction involve phantom dark energy or some form of dark radiation [10–12], but a number of more complex scenarios have been studied, e.g. [13–65].

On the other hand, tensions between cosmic shear surveys (such as [66–68]) and CMB measurements have also emerged [67,69,74]. For instance, the quantity $S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5}$ as measured by the KiDS weak lensing survey was shown to be in 2.6σ tension with the same quantity as measured by Planck [71,72] (see also Refs. [71,72] for previous analyses of CFHTLenS data). Focusing on the joint galaxy clustering and lensing likelihoods from the Dark Energy Survey (DES) [5,73,74], the Planck collaboration found modest tension with the DES results when galaxy clustering measurements are included, as the latter prefer an $\approx 2.5\sigma$ lower value of S_8 [8]. A number of exotic scenarios have been advocated in the past to alleviate the S_8 tension, see for instance [14,16,24,29,32,33,39,40,50,68].

Within the ΛCDM model, dark matter (DM) and dark energy (DE) behave as separate fluids not sharing interactions beyond gravitational ones. However, from a microphysical perspective it is hard to imagine how non-gravitational DM-DE interactions can be avoided, unless forbidden by a fundamental symmetry. This has motivated a large number of studies based on models where DM and DE share interactions other than gravitational, usually referred to as interacting dark energy (IDE) models (see e.g. [75,117], for a recent comprehensive review see [118]). Several studies in the literature have been devoted to exploring whether DM-DE interactions may help resolve the enduring H_0 tension, see e.g. [119,130].

In this Letter we (re)assess whether IDE cosmologies
still provide a viable solution to the H_0 tension in light of the latest Planck and HST measurements. We find that IDE provides an extremely compelling solution to the H_0 tension, which is brought below the 1σ level. Intriguingly, when combining the latest Planck and HST measurements we find very strong indications for an interaction between the two dark components. We find that IDE also provides a compelling solution to the S_8 tension between Planck and DES.

Interacting dark energy

We consider a non-gravitational DM-DE interaction with energy exchange proportional to the DM four-velocity, extensively studied in [79, 80, 84, 134]. We assume a pressureless cold DM component and a DE component with equation of state (EoS) w, and denote the DM and DE energy densities by ρ_c and ρ_x respectively. At the background level, the DM-DE coupling modifies the continuity equations for the two dark fluids as follows [80]:

$$\dot{\rho}_c + 3H\rho_c = Q, \quad (1)$$

$$\dot{\rho}_x + 3H(1+w)\rho_x = -Q, \quad (2)$$

where the dot denotes derivative with respect to conformal time τ, and $H \equiv \dot{a}/a$ is the conformal Hubble rate. In the notation of Eqs. (1-2), $Q > 0$ and $Q < 0$ indicate energy transfer from DE to DM and vice versa. We choose to focus on one of the most well-studied IDE models, wherein the coupling Q takes the following form [79, 80]:

$$Q = \xi\dot{H}\rho_x, \quad (3)$$

where ξ is a dimensionless coupling governing the strength of the DM-DE interaction.

The presence of the DM-DE coupling also modifies the evolution of perturbations. In synchronous gauge, the linear perturbation equations for the evolution of the DM and DE density perturbations δ and velocity divergences θ are given by [79, 80, 135]:

$$\dot{\delta} = -\theta - \frac{1}{2} H + \xi H \frac{\rho_x}{\rho_c} (\delta - \delta_s) + \xi \frac{\rho_x}{\rho_c} \left(\frac{k v_T}{3} + \frac{\dot{h}}{6} \right), \quad (4)$$

$$\dot{\theta} = -H\theta, \quad (5)$$

$$\delta_s = -(1+w) \left(\delta_s + \frac{\theta}{2} - \xi \left(\frac{k v_T}{3} + \frac{\dot{h}}{6} \right) - 3H(1-w) \left[\delta_s + \frac{H\theta}{k^2} (3(1+w) + \xi) \right] \right), \quad (6)$$

$$\dot{\delta}_s = 2H\delta_s + \frac{k^2}{1+w} \delta_s + 2H \frac{\xi}{1+w} \theta - \frac{\theta_c}{1+w}. \quad (7)$$

We appropriately modify the initial conditions for δ_s and θ_s following [87, 123, 135].

In the presence of DM-DE interactions, care must be given to the stability of the interacting system. For $w = 1$ (i.e. interacting vacuum), IDE models can suffer from gravitational instabilities [79, 136]. However, even when $w \neq 1$, one has to worry about early-time instabilities, leading to curvature perturbations blowing up on superhorizon scales. For IDE models in which $Q \propto \rho_x$, these instabilities are absent if the signs of ξ and $(1+w)$ are opposite [79, 85, 133, 137] (see also [138, 144] for alternative approaches to avoiding these instabilities).

Methodology and Cosmological Observations

We consider an IDE model characterized by the coupling given by Eq. (3). The model is described by the usual six cosmological parameters of ΛCDM ($\Omega_b h^2, \Omega_c h^2, \theta_s, A_s, n_s$, and τ), in addition to the DM-DE coupling ξ. To circumvent the instability problem, we fix the DE EoS to $w = -0.999$. The rationale behind this approach (already followed in [87, 123]) is that for w sufficiently close to -1 the effect of DE perturbations in Eqs. (5,7) is basically unnoticeable: consequently, these equations are essentially only capturing the effect of the DM-DE coupling ξ, while at the same time ensuring the absence of gravitational instabilities present when $w = -1$. Such a model provides therefore a rather accurate surrogate for a ΛCDM+ξ cosmology, and we shall refer to this model as ΛCDM. In order to avoid early-time instabilities, we need to impose $\xi < 0$, implying that we are considering a model where energy flows from DM to DE.

Data-wise, we first consider measurements of CMB temperature and polarization anisotropies, as well as their cross-correlations, from the Planck 2018 legacy data release [8, 145]. This dataset is referred to as Planck TT,TE,EE+lowE in [8], whereas we refer to it simply as Planck. In addition to CMB data, we also consider a Gaussian prior on the Hubble constant $H_0 = 74.03 \pm 1.42$ km s$^{-1}$ Mpc$^{-1}$, consistent with the latest measurement by HST in [9]. We refer to this prior as $R19$. Finally, we include galaxy clustering and cosmic shear measurements from the Dark Energy Survey combined-probe Year 1 results [5, 73, 74], and refer to this dataset as DES.

We modify the Boltzmann solver CAMB [146] to incorporate the effect of the DM-DE coupling as in Eqs. (4,7). We sample the posterior distribution of the cosmological parameters by making use of Markov Chain Monte Carlo (MCMC) methods, through a modified version of the publicly available MCMC sampler CosmoMC [147]. We monitor the convergence of the generated MCMC chains through the Gelman-Rubin parameter $R \rightarrow 1$ [148], requiring $R - 1 < 0.02$ for our MCMC chains to be considered as converged. We impose flat priors on all cosmological parameters unless otherwise stated. In particular, as required by stability considerations, we impose $\xi < 0$ at the prior level.

Finally, we use our MCMC chains to compute the Bayesian evidence for the IDE model (for different choices of datasets) using the MCEvidence code [149]. We then compute the (logarithm of the) Bayes factor with respect to ΛCDM. In B, with a value in $B > 0$ indicating that the IDE model is preferred. We qualify the strength of the obtained values of $\ln B$ using the modified version of the Jeffreys scale provided in [150].

Results

Our main results are shown in Tab. I and Fig. I. As shown in Tab. I from the Planck dataset alone,
FIG. 1. Left panel: 68% and 95% C.L. contours in the (ξ, H_0) plane for the Planck and Planck+R19 dataset combinations. Right panel: 68% and 95% C.L. contours in the (σ_8, Ω_m) plane for the DES, Planck and Planck+DES dataset combinations.

Parameter	Planck	Planck+R19
$\Omega_b h^2$	0.02239 ± 0.00015	0.02239 ± 0.00015
$\Omega_c h^2$	< 0.105	< 0.0615
$1000\theta_s$	$1.0458^{+0.0033}_{-0.0021}$	1.0470 ± 0.0015
τ	0.0541 ± 0.0076	0.0534 ± 0.0080
ξ	$-0.54^{+0.12}_{-0.28}$	$-0.66^{+0.09}_{-0.13}$
H_0 [km s$^{-1}$ Mpc$^{-1}$]	$72.8^{+1.0}_{-1.5}$	$74.6^{+1.2}_{-1.0}$

TABLE I. Mean values with their 68% C.L. errors on selected cosmological parameters within the $\xi\Lambda$CDM model, considering either the Planck 2018 legacy dataset alone, or the same dataset in combination with the R19 Gaussian prior on H_0 based on the latest local distance measurement from HST. The quantity quoted in the case of $\Omega_c h^2$ is the 95% C.L. upper limit.

The value of the Hubble constant H_0 inferred within the $\xi\Lambda$CDM model is $H_0 = 72.8^{+3.0}_{-1.5}$ km s$^{-1}$ Mpc$^{-1}$. While the uncertainty is larger than that reported in Ref. [8] within the standard ΛCDM scenario, the central value has significantly shifted upwards. Indeed, this value is perfectly consistent with the HST measurement of H_0, showing an agreement well below the 1σ level. Therefore, within this IDE model, the H_0 tension is compellingly solved.

The reason for such a high value of H_0 from CMB measurements alone can be found in the strong degeneracy between H_0 and ξ, as depicted in the left panel of Fig. 1. The origin of this degeneracy resides in the fact that for the IDE model considered here, the background evolution of the DM energy density has an extra contribution proportional to the absolute value of ξ and growing with $(1+z)^3$. Due to the presence of this extra term, the amount of DM today, Ω_c, must be smaller. However, the acoustic peak structure of the CMB (and in particular the relative height of odd and even peaks, as well as the overall height of all peaks) accurately fixes the value of $\Omega_c h^2$: in order to accommodate a lower value of Ω_c, a
higher value of H_0 is required. An inverse correlation between ξ and H_0 is therefore expected, which is perfectly reflected in the contours in the left panel of Fig. 1.

Note that even if the Planck dataset alone shows a preference for a non-zero negative ξ at $>95\%$ C.L., this is likely due to a volume effect, i.e., more models with $\xi < 0$ are compatible with Planck than models with $\xi = 0$. This explanation is supported by the fact that the best-fit χ^2 for $\xi \neq 0$ is almost the same as the best-fit χ^2 for ΛCDM. Computing the Bayes factor for the IDE model with respect to ΛCDM for the Planck dataset we find $\ln B = 1.2$. According to the modified Jeffrey scale of $[150]$, this indicates a positive preference for the IDE model.

As the Planck and R19 datasets are now consistent, it is possible to combine them. When considering the Planck+R19 combination, we find an even stronger indication for non-zero ξ, inferring $\xi = -0.06^{+0.13}_{-0.09}$. Computing the Bayes factor, we find the extremely high value $\ln B = 10.0$, indicating a very strong preference for the IDE model.

The solution to the H_0 tension due to a lower intrinsic value for Ω_Λ at present within the $\xi\Lambda$CDM model implies a much larger degeneracy in the $\Omega_m - \sigma_8$ plane, reflected in the right panel of Fig. 1: the allowed contours from the Planck dataset follow a band, rather than reproducing the small region usually singled out. The reason is that once a coupling ξ is switched on, the required DM energy density Ω_m must be smaller as we have seen, implying that the clustering parameter σ_8 must be larger to have a proper normalization of the (lensing and clustering) power spectra. This effect can be perfectly understood from the scatter plot in the $\Omega_m - \sigma_8$ plane depicted in Fig. 2, as the absolute value of ξ is increased, the allowed region bends towards larger (smaller) values of σ_8 (Ω_m).

The DES contours follow the expected $S_8 \equiv \sigma_8(\Omega_m/0.3)^{0.5} = 0.79$ behavior. Notice that the DES and Planck contours overlap for a very large fraction of the parameter space in the $\Omega_m - \sigma_8$ plane, implying that the tension between Planck and DES is alleviated. Notice that this is not merely an effect due to the larger uncertainties in the Planck contours, but rather is due to the strong overlap between the two contours.

Conclusions — In this Letter, we have examined the persisting H_0 tension in light of the Planck 2018 legacy data release and the latest 1% determination of H_0 from HST. We find that within a well-studied interacting dark energy model, the value of H_0 inferred by Planck is consistent with the latest local distance measurement well within 1σ, representing an extremely compelling solution to the H_0 tension. Bayesian evidence considerations show that combining the Planck and HST measurements leads to a very strong preference for the interacting dark sector scenario explored here with respect to the baseline ΛCDM model. This finding reinforces the idea that the H_0 tension might be truly pointing towards new physics in the dark sector. The model at hand also appears extremely promising in terms of alleviating the tensions between CMB and cosmic shear measurements. In particular, we observe a considerable improved overlap between the Planck and DES contours in the $\Omega_m - \sigma_8$ plane.

To conclude, it is extremely intriguing that the interacting dark sector model we have considered provides not only one of the most compelling solutions to the H_0 tension to date, but at the same time can alleviate the tension between CMB and cosmic shear measurements. We shall further investigate several related issues, for instance the inclusion of low-redshift Baryon Acoustic Oscillation and Supernovae distance measurements. It is also worth exploring interacting scenarios with more freedom in the dark energy sector, for instance treating the dark energy equation of state as a free parameter (possibly time-dependent). We shall report on these and other issues in a companion paper to appear shortly.

ACKNOWLEDGMENTS

E.D.V. acknowledges support from the European Research Council in the form of a Consolidator Grant with number 681431. A.M. is supported by TASP, iniziativa specifica INFN. O.M. is supported by PROMETEO II/2014/050, by the Spanish Grant FPA2017-85985-P of the MINECO, by the MINECO Grant SEV-2014-0398 of the MINECO, by the MINECO Grant SEV-2014-0398, and by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements 690575 and 674896. S.V. acknowledges support by the Vetenskapsrådet (Swedish Research Council) through contract No. 638-2013-8993 and the Oskar Klein Centre for Cosmoparticle Physics, and from the Isaac Newton Trust and the Kavli Foundation through a Newton-Kavli fellowship. O.M. would like to thank the hospitality of the Fermilab Theory Department. This work is based on observations obtained with Planck (www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. We acknowledge the use of the Planck Legacy Archive.

[1] Supernova Search Team collaboration, A. G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. *Astron. J.* **116** (1998) 1009–1038. [astro-ph/9805201].

[2] Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 high redshift supernovae. *Astrophys. J.* **517** (1999) 565–586. [astro-ph/9812133].

[3] Planck collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. *Astron.*
L. Feng, J.-F. Zhang and X. Zhang, \textit{Cosmology at a Crossroads, Nat. Astron.} 1 (2017) 0121, 1706.02739.

E. Di Valentino, \textit{Crack in the cosmological paradigm, Nat. Astron.} 1 (2017) 569–570, 1709.04046.

Planck collaboration, N. Aghanim et al., \textit{Planck 2018 results. VI. Cosmological parameters}, 1807.06209.

A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, \textit{Large Magellanic Cloud Cepheid Standards: Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM}, 1903.07663.

E. Di Valentino, A. Melchiorri and J. Silk, \textit{Reconciling Planck with the local value of \(H_0\) in extended parameter space}, \textit{Phys. Lett.} B761 (2016) 242–246, 1606.00634.

J. L. Bernal, L. Verde and A. G. Riess, \textit{The trouble with \(H_0\)}, \textit{JCAP} 1610 (2016) 019, 1607.05617.

S. Vagnozzi, \textit{New physics in light of the \(H_0\) tension: an alternative view}, 1907.07569.

Q.-G. Huang and K. Wang, \textit{How the dark energy can reconcile Planck with local determination of the Hubble constant}, \textit{Eur. Phys. J.} C76 (2016) 506, 1606.05965.

P. Ko and Y. Tang, \textit{Light dark photon and fermionic dark radiation for the Hubble constant and the structure formation}, \textit{Phys. Lett.} B762 (2016) 462–466, 1608.01083.

T. Karwal and M. Kamionkowski, \textit{Dark energy at early times, the Hubble parameter, and the string axiverse}, \textit{Phys. Rev.} D94 (2016) 103523, 1608.01309.

Z. Chacko, Y. Cui, S. Hong, T. Okui and Y. Tsai, \textit{Partially Acoustic Dark Matter, Interacting Dark Radiation, and Large Scale Structure}, \textit{JHEP} 12 (2016) 108, 1609.03569.

G.-B. Zhao et al., \textit{Dynamical dark energy in light of the latest observations}, Nat. Astron. 1 (2017) 627–632, 1701.08165.

S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho et al., \textit{Unveiling \(\nu\) secrets with cosmological data: neutrino masses and mass hierarchy}, \textit{Phys. Rev.} D96 (2017) 123503, 1701.08172.

P. Agrawal, F.-Y. Cyr-Racine, L. Randall and J. Scholtz, \textit{Dark Catalysis}, \textit{JCAP} 1708 (2017) 021, 1702.05482.

M. Benetti, L. L. Graef and J. S. Alcaniz, \textit{Do joint CMB and HST data support a scale invariant spectrum?}, \textit{JCAP} 1704 (2017) 003, 1702.06509.

L. Feng, J.-F. Zhang and X. Zhang, \textit{A search for sterile neutrinos with the latest cosmological observations}, \textit{Eur. Phys. J.} C77 (2017) 418, 1703.04884.

M.-M. Zhao, D.-Z. He, J.-F. Zhang and X. Zhang, \textit{Search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of the Hubble constant}, \textit{Phys. Rev.} D96 (2017) 043520, 1703.08456.
E. Di Valentino, R. Z. Ferreira, A. Notari and J. L. Bernal, *Hot Axions and the H_0 tension*, JCAP 1811 (2018) 014, 1808.07430.

R.-Y. Guo, J.-F. Zhang and X. Zhang, *Can the H_0 tension be resolved in extensions to ΛCDM cosmology?*, JCAP 1902 (2019) 054, 1809.02340.

L. L. Graef, M. Benetti and J. S. Alcaniz, *Fermi Baryonic Dark Matter and the H_0 tension*, Phys. Rev. D99 (2019) 043519, 1809.04501.

W. Yang, S. Pan, E. Di Valentino, E. N. Saridakis and S. Chakraborty, *Observational constraints on one-parameter dynamical dark-energy parametrizations and the H_0 tension*, Phys. Rev. D99 (2019) 043543, 1810.05141.

A. Banijashemian, N. Khosravi and A. H. Shirazi, *Nambu-Goto Theory of Dark Energy: A Framework to Study Both Temporal and Spatial Cosmological Tensions Simultaneously*, Phys. Rev. D99 (2019) 083509, 1810.11007.

K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W. L. K. Wu, *Sounds Discordant: Classical Distance Ladder & ΛCDM-based Determinations of the Cosmological Sound Horizon*, Astrophys. J. 874 (2019) 4, 1811.00537.

V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, *Early Dark Energy Can Resolve The Hubble Tension*, Phys. Rev. Lett. 122 (2019) 221301, 1901.04083.

C. D. Kreisch, F.-Y. Cyr-Racine and O. Doré, *The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions*, 1902.00534.

K. L. Pandey, T. Karwal and S. Das, *Alleviating the H_0 and σ_8 anomalies with a decaying dark matter model*, 1902.10636.

K. Vattis, S. M. Koushiappas and A. Loeb, *Late universe decaying dark matter can relax the H_0 tension*, 1903.06220.

E. O. Colgain, *Recasting H_0 tension as Ω_m tension at low z, 1903.11743.

P. Agrawal, F.-Y. Cyr-Racine, D. Pinner and L. Randall, *Rock ‘n’ Roll Solutions to the Hubble Tension*, 1904.01016.

X.-L. Li, A. Shafieloo, V. Sahni and A. A. Starobinsky, *Revisiting Metastable Dark Energy and Tensions in the Estimation of Cosmological Parameters*, 1904.03790.

W. Yang, S. Pan, A. Paliathanasis, S. Ghosh and Y. Wu, *Observational constraints of a new unified dark fluid and the H_0 tension*, 1904.10436.

R. E. Keeley, S. Joudaki, M. Kaplinghat and D. Kirkby, *Implications of a transition in the dark energy equation of state for the H_0 and σ_8 tensions*, 1905.10195.

E. Di Valentino, R. Z. Ferreira, L. Visinelli and U. Danielsson, *Late time transitions in the quintessence field and the H_0 tension*, 1906.11255.

M. Archidiacono, D. C. Hooper, R. Murgia, S. Bohr, J. Lesgourgues and M. Viet, *Constraining Dark Matter – Dark Radiation interactions with CMB, BAO, and Lyman-,α*, 1907.01496.

S. Nesseris, D. Sapone and S. Sypsa, *Evaporating primordial black holes as varying dark energy*, 1907.05608.

W. Yang, S. Pan, S. Vagnozzi, E. Di Valentino, D. F. Mota and S. Capozziello, *Down the dark: unified dark sectors and the EDGES Cosmic Dawn 21-cm signal*, 1907.05344.

Y.-F. Cai, M. Khurshudyan and E. N. Saridakis, *Model-independent reconstruction of $f(T)$ gravity from Gaussian Processes and alleviation of the H_0 tension*, 1907.10813.

N. Schöneberg, J. Lesgourgues and D. C. Hooper, *The BAO + BBN take on the Hubble tension*, 1907.11594.

S. Pan, W. Yang, E. Di Valentino, A. Shafieloo and S. Chakraborty, *Reconciling H_0 tension in a six parameter space?*, 1907.12551.

L. Visinelli, S. Vagnozzi and U. Danielsson, *Revisiting a negative cosmological constant in light of low-redshift data*, 1907.07953.

S. Panpanich, P. Burikham, S. Ponglertsakul and L. Tannukij, *Resolving Hubble Tension with Quintom Dark Energy Model*, 1908.03324.

F. Köhlinger et al., *KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters*, Mon. Not. Roy. Astron. Soc. 471 (2017) 4412–4435, 1706.02892.

H. Hildebrandt et al., *KiDS-450: Cosmological parameter constraints from tomographic weak gravitational lensing*, Mon. Not. Roy. Astron. Soc. 465 (2017) 1454, 1606.05338.

S. Joudaki et al., *KiDS-450: Testing extensions to the standard cosmological model*, Mon. Not. Roy. Astron. Soc. 471 (2017) 1259–1279, 1610.04606.

S. Joudaki et al., *KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering*, Mon. Not. Roy. Astron. Soc. 474 (2018) 4894–4924, 1707.06627.

E. Di Valentino and S. Bridle, *Exploring the Tension between Current Cosmic Microwave Background and Cosmic Shear Data*, Symmetry 10 (2018) 585.

M. Kilbinger et al., *CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing*, Mon. Not. Roy. Astron. Soc. 430 (2013) 2200–2220, 1212.3338.

C. Heymans et al., *CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments*, Mon. Not. Roy. Astron. Soc. 432 (2013) 2433, 1303.1808.

DES collaboration, T. M. C. Abbott et al., *Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing*, Phys. Rev. D98 (2018) 043526, 1708.01530.

DES collaboration, E. Krause et al., *Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses, Submitted to: Phys. Rev. D (2017), 1706.09359.

G. R. Farrar and P. J. E. Peebles, *Interacting dark matter and dark energy*, Astrophys. J. 604 (2004) 1–11, astro-ph/0307318.

J. D. Barrow and T. Clifton, *Cosmologies with energy exchange*, Phys. Rev. D73 (2006) 103520.
[77] L. Amendola, G. Camargo Campos and R. Rosenfeld, Consequences of dark matter-dark energy interaction on cosmological parameters derived from SNIa data, Phys. Rev. D75 (2007) 083506, [astro-ph/0610806].

[78] J.-H. He and B. Wang, Effects of the interaction between dark energy and dark matter on cosmological parameters, JCAP 0806 (2008) 010, [0801.4233].

[79] J. Valiviita, E. Majerotto and R. Maartens, Instability in interacting dark energy and dark matter fluids, JCAP 0807 (2008) 020, [0804.0232].

[80] M. B. Gavela, D. Hernández, L. Lopez Honorez, O. Mena and S. Rigolin, Dark coupling, JCAP 0907 (2009) 034, [0901.1611].

[81] G. Caldera-Cabra, R. Maartens and B. M. Schaefer, The Growth of Structure in Interacting Dark Energy Models, JCAP 0907 (2009) 027, [0905.0492].

[82] E. Majerotto, J. Valiviita and R. Maartens, Adiabatic initial conditions for perturbations in interacting dark energy models, Mon. Not. Roy. Astron. Soc. 402 (2010) 2344–2354, [0907.4981].

[83] E. Abdalla, L. R. Abramo and J. C. C. de Souza, Signature of the interaction between dark energy and dark matter in observations, Phys. Rev. D82 (2010) 023508, [0910.5236].

[84] L. Lopez Honorez, B. A. Reid, O. Mena, L. Verde and R. Jimenez, Coupled dark-matter-dark-energy in light of near Universe observations, JCAP 1009 (2010) 029, [1006.0877].

[85] T. Clemson, K. Koyama, G.-B. Zhao, R. Maartens and J. Valiviita, Interacting Dark Energy – degeneracies and changes, Phys. Rev. D85 (2012) 043007, [1109.6234].

[86] S. Pan, S. Bhattacharya and S. Chakraborty, An analytic model for interacting dark energy and its observational constraints, Mon. Not. Roy. Astron. Soc. 452 (2015) 3038–3046, [1210.0396].

[87] V. Salvatelli, A. Marchini, L. Lopez-Honorez and O. Mena, New constraints on Coupled Dark Energy from the Planck satellite experiment, Phys. Rev. D88 (2013) 023531, [1304.7119].

[88] W. Yang and L. Xu, Testing coupled dark energy with large scale structure observation, JCAP 1408 (2014) 034, [1401.5177].

[89] W. Yang and L. Xu, Cosmological constraints on interacting dark energy with redshift-space distortion after Planck data, Phys. Rev. D89 (2014) 083517, [1401.1286].

[90] R. C. Nunes and E. M. Barboza, Dark matter-dark energy interaction for a time-dependent EoS parameter, Gen. Rel. Grav. 46 (2014) 1820, [1404.1620].

[91] V. Farroni, J. B. Dent and E. N. Saridakis, Covariantizing the interaction between dark energy and dark matter, Phys. Rev. D90 (2014) 063510, [1405.7288].

[92] S. Pan and S. Chakraborty, A cosmographic analysis of holographic dark energy models, Int. J. Mod. Phys. D23 (2014) 1400002, [1410.8281].

[93] E. G. M. Ferreira, J. Quintin, A. A. Costa, E. Abdalla and B. Wang, Evidence for interacting dark energy from BOSS, Phys. Rev. D95 (2017) 043520, [1412.2777].

[94] N. Tamanini, Phenomenological models of dark energy interacting with dark matter, Phys. Rev. D92 (2015) 043524, [1504.07397].

[95] Y.-H. Li, J.-F. Zhang and X. Zhang, Testing models of vacuum energy interacting with cold dark matter, Phys. Rev. D93 (2016) 023002, [1506.06349].

[96] R. Murgia, S. Gariazzo and N. Forbengo, Constraints on the Coupling between Dark Energy and Dark Matter from CMB data, JCAP 1604 (2016) 014, [1602.01765].

[97] R. C. Nunes, S. Pan and E. N. Saridakis, New constraints on interacting dark energy from cosmic chronometers, Phys. Rev. D94 (2016) 023508, [1605.01712].

[98] W. Yang, H. Li, Y. Wu and J. Lu, Cosmological constraints on coupled dark energy, JCAP 1610 (2016) 007, [1608.07039].

[99] S. Pan and G. S. Sharov, A model with interaction of dark components and recent observational data, Mon. Not. Roy. Astron. Soc. 472 (2017) 4736–4749, [1609.02287].

[100] G. S. Sharov, S. Bhattacharya, S. Pan, R. C. Nunes and S. Chakraborty, A new interacting two fluid model and its consequences, Mon. Not. Roy. Astron. Soc. 466 (2017) 3497–3506, [1701.00780].

[101] R. An, C. Feng and B. Wang, Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography, JCAP 1710 (2017) 040, [1706.02845].

[102] L. Santos, W. Zhao, E. G. M. Ferreira and J. Quintin, Constraining interacting dark energy with CMB and BAO future surveys, Phys. Rev. D96 (2017) 103529, [1707.06827].

[103] J. Mifsud and C. Van De Bruck, Probing the imprints of generalized interacting dark energy on the growth of perturbations, JCAP 1711 (2017) 001, [1707.07667].

[104] S. Kumar and R. C. Nunes, Observational constraints on dark matter–dark energy scattering cross section, Eur. Phys. J. C77 (2017) 734, [1709.02384].

[105] J.-J. Guo, J.-F. Zhang, Y.-H. Li, D.-Z. He and X. Zhang, Probing the sign-changeable interaction between dark energy and dark matter with current observations, Sci. China Phys. Mech. Astron. 61 (2018) 030111, [1710.03068].

[106] S. Pan, A. Mukherjee and N. Banerjee, Astronomical bounds on a cosmological model allowing a general interaction in the dark sector, Mon. Not. Roy. Astron. Soc. 477 (2018) 1189–1205, [1710.03725].

[107] R. An, C. Feng and B. Wang, Relieving the Tension between Weak Lensing and Cosmic Microwave Background with Interacting Dark Matter and Dark Energy Models, JCAP 1802 (2018) 038, [1711.06799].

[108] A. A. Costa, R. C. G. Landim, B. Wang and E. Abdalla, Interacting Dark Energy: Possible Explanation for 21-cm Absorption at Cosmic Dawn, Eur. Phys. J. C78 (2018) 746, [1803.06944].

[109] Y. Wang and G.-B. Zhao, Constraining the dark matter-vacuum energy interaction using the EDGE2 21-cm absorption signal, Astrophys. J. 869 (2018) 26, [1805.11210].

[110] R. von Marttens, L. Casarini, D. F. Mota and W. Zimdahl, Cosmological constraints on parametrized interacting dark energy, Phys. Dark Univ. 23 (2019) 100248, [1807.11350].

[111] W. Yang, N. Banerjee, A. Paliathanasis and S. Pan,
Reconstructing the dark matter and dark energy interaction scenarios from observations.\[1812.06854\]

A. A. Costa et al., J-PAS: forecasts on interacting dark energy from baryon acoustic oscillations and redshift-space distortions, *Mon. Not. Roy. Astron. Soc.* **488** (2019) 78–88, \[1901.02540\]

M. Martinelli, N. B. Hogg, S. Peirone, M. Bruni and D. Wands, Constraints on the interacting vacuum - geodesic CDM scenario, \[1902.10694\]

C. Li, X. Ren, M. Khurshudyan and Y.-F. Cai, Implications of the possible 21-cm line excess at cosmic dawn on dynamics of interacting dark energy, \[1904.02458\]

W. Yang, S. Vagnozzi, E. Di Valentino, R. C. Nunes, S. Pan and D. F. Mota, Listening to the sound of dark sector interactions with gravitational wave standard sirens, *JCAP* **1907** (2019) 037, \[1905.08286\]

R. R. A. Bachega, E. Abdalla and K. S. F. Fornazier, Forecasting the Interaction in Dark Matter-Dark Energy Models with Standard Sirens From the Einstein Telescope, \[1906.08909\]

H.-L. Li, D.-Z. He, J.-F. Zhang and X. Zhang, Quantifying the impacts of future gravitational-wave data on constraining interacting dark energy, \[1908.03999\]

B. Wang, E. Abdalla, F. Attrio-Barandela and D. Pavon, Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures, *Rept. Prog. Phys.* **79** (2016) 096901, \[1603.08299\]

V. Salvatelli, N. Said, M. Bruni, A. Melchiorri and D. Wands, Indications of a late-time interaction in the dark sector, *Phys. Rev. Lett.* **113** (2014) 181301, \[1406.7297\]

S. Kumar and R. C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos, *Phys. Rev.* **D94** (2016) 123511, \[1608.02454\]

D.-M. Xia and S. Wang, Constraining interacting dark energy models with latest cosmological observations, *Mon. Not. Roy. Astron. Soc.* **463** (2016) 952–956, \[1608.04545\]

S. Kumar and R. C. Nunes, Echo of interactions in the dark sector, *Phys. Rev.* **D96** (2017) 103511, \[1702.02143\]

E. Di Valentino, A. Melchiorri and O. Mena, Can interacting dark energy solve the H₀ tension?, *Phys. Rev.* **D96** (2017) 043503, \[1704.03842\]

W. Yang, S. Pan and D. F. Mota, Novel approach toward the large-scale stable interacting dark-energy models and their astronomical bounds, *Phys. Rev.* **D96** (2017) 123508, \[1709.00006\]

L. Feng, J.-F. Zhang and X. Zhang, Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter, *Phys. Dark Univ.* **1** (2017) \[1712.03148\]

W. Yang, S. Pan, L. Xu and D. F. Mota, Effects of anisotropic stress in interacting dark matter – dark energy scenarios, *Mon. Not. Roy. Astron. Soc.* **482** (2019) 1858–1871, \[1804.08455\]

W. Yang, S. Pan, R. Herrera and S. Chakraborty, Large-scale (in) stability analysis of an exactly solved coupled dark-energy model, *Phys. Rev.* **D98** (2018) 043517, \[1808.01669\]

W. Yang, A. Mukherjee, E. Di Valentino and S. Pan, Interacting dark energy with time varying equation of state and the H₀ tension, *Phys. Rev.* **D98** (2018) 123527, \[1809.06883\]

H.-L. Li, L. Feng, J.-F. Zhang and X. Zhang, Models of vacuum energy interacting with cold dark matter: Constraints and comparison, \[1812.00319\]

S. Kumar, R. C. Nunes and S. K. Yadav, Dark sector interaction: a remedy of the tensions between CMB and LSS data, \[1903.04865\]

S. Pan, W. Yang, C. Singhia and E. N. Saridakis, Observational constraints on sign-changeable interaction models and alleviation of the H₀ tension, \[1903.10699\]

W. Yang, O. Mena, S. Pan and E. Di Valentino, Dark sectors with dynamical coupling, \[1906.11697\]

S. Pan, W. Yang, E. Di Valentino, E. N. Saridakis and S. Chakraborty, Interacting scenarios with dynamical dark energy: observational constraints and alleviation of the H₀ tension, \[1907.07540\]

S. del Campo, R. Herrera and D. Pavon, Interacting models may be key to solve the cosmic coincidence problem, *JCAP* **0901** (2009) 020, \[0812.2210\]

M. B. Gavela, L. Lopez Honorez, O. Mena and S. Rigolin, Dark Coupling and Gauge Invariance, *JCAP* **1011** (2010) 044, \[1005.0226\]

J.-H. He, B. Wang and E. Abdalla, Stability of the curvature perturbation in dark sectors’ mutual interacting models, *Phys. Lett.* **B671** (2009) 139–145, \[0807.3471\]

B. M. Jackson, A. Taylor and A. Berera, On the large-scale instability in interacting dark energy and dark matter fluids, *Phys. Rev.* **D79** (2009) 043526, \[0901.3272\]

Y.-H. Li, J.-F. Zhang and X. Zhang, Parametrized Post-Friedmann Framework for Interacting Dark Energy, *Phys. Rev.* **D90** (2014) 063005, \[1404.5220\]

Y.-H. Li, J.-F. Zhang and X. Zhang, Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach, *Phys. Rev.* **D90** (2014) 123007, \[1409.7205\]

R.-Y. Guo, Y.-H. Li, J.-F. Zhang and X. Zhang, Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach, *JCAP* **1705** (2017) 040, \[1702.04189\]

X. Zhang, Probing the interaction between dark energy and dark matter with the parametrized post-Friedmann approach, *Sci. China Phys. Mech. Astron.* **60** (2017) 050431, \[1702.04564\]

R.-Y. Guo, J.-F. Zhang and X. Zhang, Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matter, *Chin. Phys.* **C42** (2018) 095103, \[1803.06910\]

W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi and D. F. Mota, Tale of stable interacting dark energy, observational signatures, and the H₀ tension, *JCAP* **1809** (2018) 019, \[1805.08252\]

J.-P. Dai and J. Xia, Revisiting the Instability Problem of Interacting Dark Energy Model in the Parametrized Post-Friedmann Framework, *Astrophys. J.* **876** (2019) 125, \[1904.01419\]
[145] Planck collaboration, N. Aghanim et al., Planck 2018 results. VIII. Gravitational lensing, [1807.06210].

[146] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, *Astrophys. J.* **538** (2000) 473–476, [astro-ph/9911177].

[147] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, *Phys. Rev. D* **66** (2002) 103511, [astro-ph/0205436].

[148] A. Gelman and D. B. Rubin, Inference from Iterative Simulation Using Multiple Sequences, *Statist. Sci.* **7** (1992) 457–472.

[149] A. Heavens, Y. Fantaye, A. Mootoovaloo, H. Eggers, Z. Hosenie, S. Kroon et al., Marginal Likelihoods from Monte Carlo Markov Chains, [1704.03472].

[150] R. E. Kass and A. E. Raftery, Bayes Factors, *J. Am. Statist. Assoc.* **90** (1995) 773–795.