Tracing the oxygen isotope composition of the upper Earth’s atmosphere using cosmic spherules

Andreas Pack1, Andres Höweling1,2, Dominik C. Hezel3, Maren T. Stefanak1, Anne-Katrin Beck1, Stefan T.M. Peters1, Sukanya Sengupta1, Daniel Herwartz3 & Luigi Folco4

Molten I-type cosmic spherules formed by heating, oxidation and melting of extraterrestrial Fe,Ni metal alloys. The entire oxygen in these spherules sources from the atmosphere. Therefore, I-type cosmic spherules are suitable tracers for the isotopic composition of the upper atmosphere at altitudes between 80 and 115 km. Here we present data on I-type cosmic spherules collected in Antarctica. Their composition is compared with the composition of tropospheric O2. Our data suggest that the Earth’s atmospheric O2 is isotopically homogenous up to the thermosphere. This makes fossil I-type micrometeorites ideal proxies for ancient atmospheric CO2 levels.
F

ree molecular oxygen (O2) is released by photosynthesis into the atmosphere and is essential for all breathing animals. With exception of data for the last 800,000 years from air inclusions in polar ice, little direct information is available about concentration and isotope composition of ancient atmospheric O2. This is due to the limited interaction between air molecular oxygen and the lithosphere.

Among the rare rocky materials that contain atmospheric oxygen there are particular types of micrometeorites (microscopic extraterrestrial dust particles) called cosmic spherules. Roughly 10 tons of small extraterrestrial particles are deposited onto the Earth’s surface per day2. The particles collide with the Earth’s atmosphere at velocities of 11–70 km s−1 (ref. 6) and are visible as shooting stars when they are decelerated and at altitudes up to ~80–115 km7,8. A portion of these extraterrestrial particles totally melts during the atmospheric entry and is termed cosmic spherules. Cosmic spherules that are composed of Fe,Ni oxides are termed ‘I-type cosmic spherules’ (in the following, we use the short version ‘I-type spherules’9–11. These I-type spherules formed by oxidation of extraterrestrial Fe,Ni metal alloys, which are ubiquitous components of meteorites.

Because oxygen in I-type spherules originates entirely from the atmosphere, they are excellent probes for the isotopic composition of upper atmospheric oxygen. The isotopic composition of atmospheric oxygen, in turn, is a proxy for the global primary production (GPP) and atmospheric CO2 levels12–14. It is not clear, however, if the atmospheric oxygen is isotopically homogenous up to the meso- and thermosphere, where cosmic spherules interact with air.

The stable isotope composition of tropospheric O2 (99.8% 16O, 0.4% 17O, 0.2% 18O) is controlled by the steady state between photosynthesis and respiration (mass-dependent Dole effect15), evapotranspiration and mass-independent fractionation in the stratosphere14,16. For the composition of the modern troposphere values of 23.4±δ18O≤24.2‰ and −0.566≤δ17O≤−0.430‰ have been reported in the literature14,17–20 (for definitions, see Methods) with little variations up to 61 km (ref. 17). The high δ18O of tropospheric O2 is caused by the Dole effect, whereas the low δ17O value reflects mass-independent fractionation effects in the stratosphere. The higher the atmospheric CO2 levels, the lower the δ17O values12,14, a relation that was used as paleo-CO2 barometer12,13.

No experimental oxygen isotope data are available for the upper atmosphere at altitudes >61 km. To obtain information about the Δ17O heterogeneity of the atmosphere, we measured the oxygen (δ17O, δ18O) and iron (δ56Fe, δ54Fe; see Methods for definition) isotope composition of I-type spherules from the Transantarctic Mountains that have ages <2 Ma (ref. 21). For this time interval, atmospheric CO2 levels as well as Δ17O of O2 did not deviate much from the modern level22,23 and data can be used to test whether the atmosphere is isotopically homogenous. Because of the ~1,000 years residence time of atmospheric O2 (ref. 14), no effect on the man-made increase in CO2 is yet visible in decreasing Δ17O.

The oxygen isotope composition of I-type spherules is controlled by the composition of the oxidizing species (for example, atmospheric O2), the fractionation during oxidation of the Fe,Ni alloys, and the fractionation during atmospheric evaporation.

Cosmic spherules have higher δ18O values (up to 56‰; ref. 24) than any terrestrial material reported so far. The high δ17O led Clayton et al. to propose a heavy oxygen isotope reservoir in the upper atmosphere. Davis et al.25, however, showed that I-type spherules are also enriched in heavy iron isotopes with extreme δ56Fe values of up to 45‰. They concluded that high δ17O values are due to evaporation and do not reflect the isotope composition of the upper atmosphere; a conclusion that was supported by further measurements26–29. From the oxygen and iron isotope composition, Engrand et al.24 modeled evaporative mass losses for I-type spherules of 54–85%.

Because evaporative fractionation is strictly mass-dependent, I-type spherules still provide unique information about the mass-independent anomaly in Δ17O of their upper mesospheric oxygen source. The reconstruction of variations in atmospheric Δ17O from fossil cosmic spherules would be a new paleo-CO2 proxy. The only published Δ17O data on I-type spherules by Clayton et al.4 and Engrand et al.23, however, have intrinsic uncertainties that are too large (0.1 to >1‰) to provide reliable information on the composition of the upper atmosphere.

We present new high-precision oxygen isotope data of tropospheric O2 and compare these data with new high-precision oxygen and iron isotope data from Antarctic I-type spherules. These data are combined with results of oxidation and evaporation experiments to test if the Earth atmosphere is isotopically homogenous and if isotope ratios of fossil cosmic spherules are suitable paleo-CO2 proxies.

Results

Oxygen isotope composition of tropospheric air. The mean composition of air oxygen from our study (series B; Supplementary Table 1) is δ18O = 24.15 ± 0.05‰ with Δ17O = −0.469 ± 0.007‰. An earlier protocol (series A; Supplementary Table 1) gave identical Δ17O, but slightly lower δ18O. The datum from this study is within the range reported in the literature and agrees with Δ17O values of Thiemens et al.17 and Young et al.14. The measured data of Young et al.14 have been corrected relative to the San Carlos olive value reported by Pack et al.34. The corrected measured datum of Δ17O = −0.467 ± 0.005‰ for air oxygen is then identical to our measured datum of −0.469 ± 0.007‰ (Supplementary Table 1) and agrees with the model datum of −0.469‰ presented by Young et al.15. The non-application of VSMOW2-SLAP2 scaling34 to our air data shifts the Δ17O down to ~−0.50‰, which would be closer to the values of Barkan and Luz18 and Kaiser and Abe20. For this study, we adopt δ18O = 24.15‰ and Δ17O = −0.47‰ for the troposphere.

Oxygen and iron isotope composition of cosmic spherules. The isotope composition of the I-type spherules and the oxidation experiment run products are listed in Supplementary Table 2. The δ18O of the spherules ranges from 36 to 42‰. The corresponding Δ17O ranges from −0.72 to −0.62‰. The δ18O and the Δ17O is within the range reported by Clayton et al.4 and Engrand et al.24. The δ56Fe values are high for all spherules, ranging from 22 to 32‰ (Supplementary Table 2).

Discussion

The interaction between cosmic Fe,Ni metal and the Earth atmosphere during deceleration is considered to proceed in two consecutive steps. The first step is the atmospheric heating and oxidation of the infalling Fe,Ni metal alloy (fractionation in oxygen isotopes only). The second step is the melting and evaporation of the Fe,Ni oxides (fractionation in both, oxygen and iron isotopes).

Information about the oxygen isotope fractionation that is associated with the oxidation step is obtained from experiments (this study; see Methods) and from iron meteorite fusion crust data4,35,36. The products of the high-T metal oxidation experiments have δ18O values that are 4‰ lower than air oxygen (Supplementary Table 2). Clayton et al.4 reported δ18O
values of iron meteorite fusion crusts that were ~9% lower than air oxygen. They concluded that the atmospheric oxidation of Fe,Ni alloys is associated with kinetic fractionation and formation of isotopically light oxides with δ^{18}O$_{Fe,Ni}$oxide $< \delta^{18}$O$_{air}$, which we also suggest as the cause of the low δ^{18}O of the experimental Fe,Ni oxides. Kinetic fractionation should be associated with a low θ_O value (for definition, see Methods). The best-fit line through air, experimental run products and iron meteorite fusion crusts has a slope of $\theta_O = 0.506 \pm 0.003$ (Fig. 1). This low θ value clearly supports that kinetic fractionation is the cause for the difference in δ^{18}O$_{Fe,Ni}$oxide and δ^{18}O$_{air}$, δ^18O of O$_2$ would give a slope of $\theta_O = 0.508$. Iron meteorite fusion crust data suggests that iron isotopes do not fractionate during oxidation.

For the experiments and iron meteorite fusion crusts, atmospheric oxygen is the oxidant. Above the ozone layer, a considerable fraction of molecular oxygen is steadily dissociated into atomic oxygen (for example, 38%). Atomic oxygen is a hazard for low Earth orbit space flights due to its highly corrosive nature. Because I-type spherules are oxidized at high altitudes, atomic oxygen may have contributed to the oxidation. However, Clayton et al. and Genge stated that no discrimination between atomic and molecular oxygen is likely during oxidation upon atmospheric entry because the collision energy between infalling meteoroids and air particles is higher than the O$_2$ bond strength. This implies that I-type spherules sample the bulk upper atmosphere oxygen (O and O$_2$).

Our experiments and the fusion crust literature data show that $\kappa_{\text{oxidation}} < 1$ (for 18O/16O, see Equation 5), but also reveal considerable variation. For I-type spherules, we assume that $0.942 \leq \kappa_{\text{oxidation}} \leq 1$. The lower limit is given by pure Graham’s law39 fractionation with atomic oxygen being the moving species.

The second process affecting the isotopic composition of I-type spherules is evaporation25. Because iron isotopes are not affected by oxidation but only by evaporation, δ^{56}Fe can be used as monitor for the degree of evaporation f (refs 24,25,40; Equation 1). The δ^{56}Fe of the infalling metal is assumed to be $0 \pm 1\%$ relative to the IRMM-014 standard material41.

$$\delta^{56}\text{Fe} = 10^3 \left(1 - f\right)2^{56/54}\text{Fe}^{-1} - 1 \quad (1)$$

Wang et al.40 determined an $\delta_{\text{evaporation}} = 0.9820$ (56Fe/54Fe). This value in combination with δ^{56}Fe allows calculation of f for the I-type spherules (Equation 1). The δ^{56}Fe values of the spherules from this study (Supplementary Table 2) indicate evaporative mass loss of 70% (70–82%), which is well in the range of 54% (54 %) to 85% reported by Engrand et al.24.

The experimental relation between δ^{18}O and δ^{56}Fe during evaporation from Wang et al.40 (Fig. 2) now allows reconstructing the δ^{18}O of the I-type spherules before
The resultant composition of the I-type spherules is displayed (yellow circle). The oxygen isotope composition is controlled by oxidation (red arrow) and evaporation (including MonteCarlo error calculation (lower than the high-). Antarctic I-type spherules had /C0 for details) and support kinetic fractionation.

Figure 4 | Reconstruction of the Δ17O of upper atmospheric oxygen. Plot of Δ17O versus linearized δ18O showing the result of the model calculations (including MonteCarlo error calculation (N=500) grey dots) for I-type spherules 32–01 (a), 32–02 (b), 37–02 (c) and 7 m-01 (d). The measured composition of the I-type spherules is displayed (yellow circle). The oxygen isotope composition is controlled by oxidation (red arrow) and evaporation (blue arrow). The resultant Δ17O (at given δ18O = 24‰; this study) is displayed (yellow square) along with the composition of modern tropospheric O2 (filled upside-down triangle). Given are 1σ-error bars.

Our data from oxygen and iron isotope analyses of Antarctic I-type spherules are consistent with an oxygen source with a Δ17O similar to that of modern tropo- and stratospheric molecular oxygen within ± 0.02‰. No oxygen reservoir with a markedly different Δ17O participated in the oxidation of I-type spherules, suggesting that the Earth atmosphere is isotopically homogenous up to the mesosphere in ~70–80 km (Fig. 5). Our results imply that the oxygen isotope composition (Δ17O) of the bulk atmosphere can be reconstructed from combined oxygen and iron isotope data of I-type cosmic spherules. This has an important implication for the reconstruction of past atmospheric CO2 levels. Blunier et al. showed that the Δ17O of atmospheric molecular oxygen, indeed, varies with CO2 partial pressures. This is predicted from experiments and mass balance modeling. The oxygen and iron isotope composition of unaltered fossil I-type cosmic spherules will thus provide information on the Δ17O of the ancient atmosphere and past CO2 levels. The resolution of the calculated Δ17O2 is ~0.07‰ (single I-type cosmic spherule; see Fig. 4), which translates (at modern GPP) to an uncertainty in the CO2 mixing ratio of ~200 p.p.m. Lower than modern GPP levels would lead to an even higher resolution of calculated CO2 levels. The reconstruction of CO2 levels based on Δ17O in I-type spherules is therefore considerably more precise than CO2 reconstruction from 18O of sulfate and reaches far more back into Earth history than 17O from air inclusions in ice cores. However, to use Δ17O of air oxygen as paleo-CO2-barometer the GPP at that time needs to be known. This may limit the usability of the new proxy. The apparent disadvantage, however, can be turned into a fortune. If the atmospheric CO2 concentration is known from other, independent proxies, Δ17O of atmospheric molecular oxygen...
The density data confirm that the I-type spherules are composed of Fe,Ni oxides with little or no remaining Fe,Ni metal. The studied samples fall within the density range (5.0 ± 0.5 g cm\(^{-3}\)) observed by Feng et al.\(^{42}\). Wüstite ([Fe,Ni]O\(_{0.94}\)) has a density of 5.7 and magnetite ([Fe,Ni]FeO\(_2\)) of 5.2 g cm\(^{-3}\). In contrast, iron metal has a density of 7.9 g cm\(^{-3}\). The apparent lower density of the spherules compared to wüstite and magnetite is explained by ~20 vol.% pore space.

The samples are spherical due to melting during their atmospheric entry. The bulk elemental composition and the mineralogy of the studied spherules were not determined. Electron microprobe analysis of I-type spherules from the same collection yielded 91 ± 5 wt.% FeO, 2.8 ± 0.5 wt.% NiO, and MgO, Al\(_2\)O\(_3\), and <0.5 wt.% SiO\(_2\) (ref. 44). This composition is similar to results of Engrand et al.\(^{24}\) and Herzog et al.\(^{28}\) who report values of 92–93 wt.% FeO and 4–5 wt.% NiO.

For isotope analysis, spherules were wrapped in Al foil and gently crushed in a steel mortar. We obtained 21 aliquots (4–8 per spherule) with masses of 20–50 μg. As magnetite is the dominant phase in I-type spherules\(^{24,46}\), we used terrestrial magnetite along with NBS-28 quartz for tests. For NBS-28, we adopted \(\delta^{17}\)O\(_{\text{I}}\) of -0.65%\(_\text{VPDB}\) and \(\Delta^{17}\)O\(_{\text{I}}\) of -0.054\%\(_\text{VPDB}\). The I-type spherules form by oxidation of Fe,Ni alloys at high temperatures during their atmospheric entry. We conducted three metal oxidation experiments at the University of Göttingen to study the oxygen isotope fractionation associated with high temperature oxidation of metal in air. A powdered iron base alloy with 7.5 wt.% Ni and 0.6 wt.% Co was used as an analogue material for I-type spherules. Between 0.8 and 1.1 mg powder was placed on a ceramic plate in the hot zone of a Gero HTRV vertical gas-mixing furnace. The furnace was flushed with 300 ml min\(^{-1}\) air. Oxidation occurred between 1,510 and 1,590 °C for 30 min. Air samples were taken at the Göttingen University North Campus outside the Geosciences Building (51°32′23″ N 9°56′66″ E). The air was taken from the balcony on the 4th floor using a 5 ml syringe yielding ~1 ml standard temperature and pressure O\(_2\) gas.

Oxygen isotope analyses

Variations in stable oxygen isotope ratios of a sample are expressed in form of the \(\delta\) notation relative to the ratios in VSMOW2 water (Equation 3) with \(i\) standing for masses 17 and 18:

\[
\delta^{17}O_{\text{sample}} = \frac{O_{\text{sample}}}{O_{\text{SMOW2}}} - 1
\]

Deviations from an otherwise close correlation between \(\delta^{17}O\) and \(\delta^{18}O\) are expressed in form of the \(\Delta^{17}\)O notation (Equation 4). We choose a reference line with slope 0.5305 and zero intercept. Deviations of \(\Delta^{17}\)O from zero can be caused by both, non-mass-dependent and mass-dependent processes.

\[
\Delta^{17}O_{\text{sample}} = \ln(\delta^{17}O_{\text{sample}} + 1) - 0.5305 \cdot \ln(\delta^{18}O_{\text{sample}} + 1)
\]

The fractionation between two reservoirs (A, B) is expressed in form of the fractionation factor \(\varepsilon\) (Equation 5). The reservoirs could be two phases in equilibrium or products (B) and euctuds (A) of a kinetic process.

\[
\varepsilon = \frac{\delta^{17}O_{B}}{\delta^{17}O_{A}} = \frac{\delta^{18}O_{B}}{\delta^{18}O_{A}} = \left(\frac{\delta^{17}O_{A}}{\delta^{17}O_{B}}\right)^{\frac{\Delta^{17}O}{\Delta^{18}O}}
\]

The \(\varepsilon\) in Equation 5 stands for isotopes with masses 17 and 18. For mass-dependent processes, the relation between \(\delta^{17}\) and \(\delta^{18}\) is linked through the triple oxygen isotope fractionation exponent \(\theta\) (Equation 6).

\[
\delta^{17}O_{A} - \delta^{18}O_{B} = (\delta^{17}O_{A} - \delta^{18}O_{B})/\theta
\]

For oxygen \(\theta\) varies between 0.5000 and 0.5305 (refs 37,48,49). Only for very small \(\varepsilon\) values, \(\delta\) values may fall outside the 0.5–0.5305 range\(^{50}\). Such effects are neglected here. As a rule, low \(\delta\) values are associated with kinetic effects, whereas higher \(\varepsilon\) values are associated with equilibrium fractionation processes.

The triple oxygen isotope ratios of I-type spherules and the high-T oxidation experiment run products were analysed at the University of Göttingen on O\(_2\) extracted by infrared laser fluorination\(^{51}\), following the protocol described in Pack et al.\(^{2}\). In brief, sample O\(_2\) was liberated by laser fluorination (F\(_2\)) and analysed in continuous flow mode in a Thermo MAT253 gas source mass spectrometer. NBS-28 quartz was used for normalisation relative to VSMOW2 scale \(\delta^{17}O = 5.04\%\(_{\text{VPDB}}\), \delta^{18}O = 9.65\%\(_{\text{VPDB}}\), \Delta^{17}O = -0.054\%\(_{\text{VPDB}}\) using the revised calibration of San Carlos olivine from\(^{34}\). The total masses of the spheres were 160–370 μg and thus suitable for measurement of multiple aliquots of a single spherule. For the oxygen experiments, ~0.6–1 mg aliquots were analysed.

Oxygen from air was extracted using the same line that was described by Pack et al.\(^{34}\) for their water (including VSMOW2 and SLAP2) and silicate analyses (San Carlos olivine) (Fig. 6).

For each extraction, 5 ml aliquots of air standard temperature and pressure (STP) were injected through a liquid nitrogen cooled glass U-trap (for removal of moisture and CO\(_2\) ‘trap 7’, Fig. 6). The dry, CO\(_2\) free mixture of Ar, N\(_2\) and O\(_2\) was transferred to ‘trap 2’ that was filled with 5 Å molecular sieve pellets. In an early protocol (S01–S05; Supplementary Table 1), Ar was separated from O\(_2\) at ~100 °C, which resulted in very long trapping times. In an improved protocol (BP1–BP2; Supplementary Table 1), separation of Ar was performed using the cryo unit of the Hewlett-Packard 5890 gas chromatograph at ~80 °C. After Ar had passed through the gas chromatograph (monitored using a Pfeiffer Prisma
Iron isotopes. Three iron isotopes have been analysed (^{54}Fe, ^{56}Fe, ^{57}Fe). Isotope ratios are expressed relative to the IRMM-014 standard in the form of the δ notation with:

$$
\delta^i \text{Fe} = \left(\frac{R_i}{R_{\text{IRMM-014}}} - 1 \right) \times 10^3
$$

(7)

and i corresponds to masses 56 and 57. All $\delta^{56}\text{Fe}$ and $\delta^{57}\text{Fe}$ data are reported in $\%$ variations. Variations in the three iron isotopes are coupled through the triple iron isotope exponent δ_{Fe} (Equation 8).

$$
\delta_{\text{Fe}} = \frac{\delta^{56}\text{Fe} + 2\delta^{57}\text{Fe}}{3}
$$

(8)

The symbols A and B in Equation 8 can either stand for two phases that are in equilibrium or for educts (B) and products (A) of a reaction with associated kinetic fractionation. The high-T approximation for equilibrium iron isotope fractionation is $\delta_{\text{Fe}} = -0.6784$ (ref. 37). As in case of oxygen, variations in δ_{Fe} provide insights into the fractionation process.

The iron isotope compositions were measured at the University of Bonn using a Thermo Scientific Neptune MC-ICP-MS instrument and glassware for sample introduction. Samples were measured 2–3 times, non-consecutively, during long analytical sessions of around 8 hours. Analytes were carried out in high-resolution mode with sufficient transmission to allow routine analyses of an 1 p.p.m. iron sample solutions. Each sample measurement was bracketed by two analyses of an IRMM-014 iron solution that was made up to closely match the iron concentration of the sample. The external reproducibility of the data was typically ±0.03%, whereas the internal reproducibility was generally about a factor of two better. A detailed description on sample preparation and mass spectrometry can be found in Hezel et al.33 and Hezel et al.35.

Monte Carlo simulation. The errors in $\delta^{18}\text{O}$ and $\Delta^{17}\text{O}$ of the upper atmospheric oxygen were estimated using a Monte Carlo approach. The composition was computed 500 times. Each input parameter was varied independently for each run (Supplementary Table 5). We used a normal distribution for the variation within the respective error interval. The computation was performed using the Mathematica software.

Data availability. The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information.

References

1. Bao, H., Lyons, J. & Zhou, C. Triple oxygen isotope evidence for elevated CO$_2$ levels after a Neoproterozoic glaciation. Nature 54, 349–392 (2008).

2. Pack, A., Gehler, A. & Süssenberg, A. Exploring the usability of isotopically anomalous oxygen in bones and teeth as paleo-CO$_2$-barometer. Geochim. Cosmochim. Acta 102, 306–317 (2013).

3. Blamey, N. J. F. et al. Paradigm shift in determining neoproterozoic atmospheric oxygen. Geology 44, 651–654 (2016).

4. Clayton, R. N., Mayeda, T. K. & Brownlee, D. E. Oxygen isotopes in deep-sea spherules. Earth Planet. Sci. Lett. 79, 235–240 (1986).

5. Plane, J. M. C. Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev. 41, 6507–6518 (2012).

6. Brownlee, D. E. Interplanetary dust. Rev. Geophys. Space Phys 17, 1735–1743 (1979).

7. Love, S. G. & Brownlee, D. E. Heating and thermal transformation of micrometeorites entering the Earth’s atmosphere. Icarus 89, 26–43 (1991).

8. Flynn, G. J. In Accretion of extraterrestrial matter throughout earth’s history. (eds Peucker-Ehrenbrink, B. & Schmitz, B.) 107–127 (Springer Science + Business Media, 2001).

9. Genge, M. J., Engrae, C., Gounelle, M. & Taylor, S. The classification of micrometeorites. Meteor. Planet. Sci 35, 807–816 (2008).

10. Genge, M. J. The origins of I-type spherules and the atmospheric entry of iron micrometeoroids. Meteor. Planet. Sci 51, 1063–1081 (2016).

11. Folco, L. & Cordier, C. in Planetary Mineralogy (eds Lee, M. R. & Leroux, H.) 253–297 (European Mineralogical Union, 2015).

12. Luz, B., Barkan, E., Bender, M. L., Thiemens, M. H. & Boering, K. A. Atmospheric oxygen and nitrogen. Geochim. Cosmochim. Acta 6, 65–78 (1954).

13. Thiemens, M. H., Chakraborty, S. & Dominguez, G. The physical chemistry of micrometeoroids entering the Earth’s stratosphere. Geochim. Cosmochim. Acta 135, 102–125 (2014).

14. Dole, M., Lane, G. A., Rudd, D. P. & Zaukelies, H. A. Isotopic composition of atmospheric oxygen and nitrogen. Geochim. Cosmochim. Acta 235–240 (1986).

15. Thiemens, M. H., Chakraborty, S. & Dominguez, G. The physical chemistry of mass-independent isotope effects and their observation in nature. Annu. Rev. Phys. Chem. 63, 155–177 (2012).

16. Thiemens, M. H., Jackson, T., Zipf, E. C., Erdman, P. W. & van Egmond, C. Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere. Science 339, 780–785 (1995).

17. Barkan, E. & Luz, B. High precision measurements of 17O/16O and 34Cl/32Cl ratios in H.O. Rapid Commun. Mass Spectrom. 19, 3737–3742 (2005).

18. Barkan, E. & Luz, B. The relationships among the three stable isotopes of oxygen in air, seawater and marine photosynthesis. Rapid Commun. Mass Spectrom. 25, 2367–2369 (2011).
20. Kaiser, J. & Abe, O. Reply to Nicholson’s comment on ‘Consistent calculation of aquatic gross production from oxygen triple isotope measurements’ by Kaiser (2011). Biogeosci 9, 2921–2933 (2012).

21. Saven, C., Gataurova, J., Rochette, P. & Folco, L. Constraining the terrestrial age of micrometeorites using their record of the Earth’s magnetic field polarity. Geol 39, 123–126 (2011).

22. Higgins, J. A. et al. Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proc Natl Acad Sci USA 112, 6887–6891 (2015).

23. Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551–1554 (2009).

24. Engrand, C. et al. Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic spherules: toward a better comprehension of atmospheric entry heating effects. Geochim. Cosmochim. Acta 39, 569–584 (2005).

25. Davis, A. M., Clayton, R. N., Mayeda, T. K. & Brownlee, D. E. in Proceedings of the XXII Lunar and Planetary Science Conference, 18–22 (Lunar and Planetary Institute, Houston, TX, 1990).

26. Davis, A. M. & Brownlee, D. E. in Proceedings of the XXIV Lunar and Science Conference (Houston). 373–374 (1993).

27. Herzog, G. F., Hall, G. S. & Brownlee, D. E. Mass fractionation of nickel isotopes in metallic cosmic spheres. Geochim. Cosmochim. Acta 58, 5319–5323 (1994).

28. Herzog, G. F. et al. Isotopic and elemental composition of iron, nickel, and chromium in type I deep-sea spherules: Implications for origin and composition of the parent micrometeoroids. Geochim. Cosmochim. Acta 63, 1443–1457 (1999).

29. Yada, T. et al. Oxygen isotopic and chemical compositions of cosmic spherules collected from the Antarctic ice sheet: implications for their precursor material sources. Geochim. Cosmochim. Acta 69, 5789–5804 (2005).

30. Deutsch, A., Greshake, A., Pesonen, L. J. & Pihlaja, P. Unaltered cosmic spherules in a 1.4-Gyr-old sandstone from Finland. Nature 395, 146–148 (1998).

31. Onoue, T., Nakamura, T., Haranosono, T. & Yasuda, C. Composition and accretion rate of fossil micrometeorites recovered in Middle Triassic deep-sea deposits. Geology 39, 567–570 (2011).

32. Volkman, G. G., Genge, M. J., Albanesi, G. L., Barnes, C. R. & Ortega, G. Cosmic spherules from the Ordovician of Argentina. Geol. J. 48, 222–235 (2013).

33. Tomkins, A. G. et al. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. Nature 533, 235–238 (2016).

34. Pack, A. et al. The oxygen isotope composition of San Carlos olivine on VSMOW2-SLAP2 scale. Rapid Commun. Mass Spectrom. 30, 1495–1504 (2016).

35. Williams, H. M. et al. Fe isotopic fractionation in iron meteorites: new insights into metal-sulfide segregation and planetary accretion. Earth Planet. Sci. Lett. 250, 486–500 (2006).

36. Hezel, D. C. et al. Meteorite fusion crusts as analogues of chondrules: clues from Fe and O isotopes and bulk elemental composition. Meteor. Planet. Sci. 50, 229–242 (2015).

37. Young, E. D., Galy, A. & Nagahara, H. Kinetic and equilibrium mass-dependent oxygen isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66, 1095–1104 (2002).

38. Młynczak, M. G. et al. Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: algorithm theoretical basis and measurement uncertainty. J. Geophys. Res 118, 5724–5735 (2013).

39. Graham, T. On the molecular mobility of gases. Phil. Trans. Roy. Soc. 153, 385–405 (1863).

40. Wang, J., Davis, A. M., Clayton, R. N. & Mayeda, T. K. Kinetic Isotopic Fractionation During the Evaporation of the Iron Oxide from Liquid State. XXI Lunar and Planetary Science Conference (Houston) abstract #1459 (1994).

41. Dauphas, N. & Rouxel, O. Mass spectrometry and natural variations of iron isotopes. Mass Spectr. Rev. 25, 515–550 (2006).

42. Blunier, T., Barnet, B., Bender, M. L. & Hendricks, M. B. Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements. Global Biogeochem. Cy. 16, 1029 (2002).

43. Royer, D. L., Berner, R. & Beerling, D. J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci. Rev. 54, 349–392 (2001).

44. Rochette, P. et al. Micrometeorites from the transantarctic mountains. Proc. Natl Acad. Sci. 85, 1727–1731 (2008).

45. Feng, H. et al. Internal structure of type I deep-sea spherules by X-ray computed microtomography. Meteorit. Planet. Sci 40, 195–206 (2005).

46. Brownlee, D. E. Cosmic dust-Collection and Research. Annu. Rev. Earth Planet. Sci. 13, 147–173 (1985).

47. Pack, A. & Herwartz, D. The triple oxygen isotope composition of the Earth mantle and understanding Δ²⁰O variations in terrestrial rocks and minerals. Earth Planet. Sci. Lett. 390, 138–145 (2014).

48. Matsuoka, Y., Goldsmith, J. R. & Clayton, R. N. Mechanisms of hydrothermal crystallization of quartz at 250 °C and 15 kbar. Geochim. Cosmochim. Acta 42, 173–182 (1978).

49. Cao, X. & Liu, Y. Equilibrium mass-dependent fractionation relationships for triple oxygen isotopes. Geochim. Cosmochim. Acta 75, 7435–7445 (2011).

50. Bao, H., Cao, X. & Hayles, J. A. The confines of triple oxygen isotope exponents in elemental complex mass-dependent processes. Geochim. Cosmochim. Acta 170, 39–50 (2015).

51. Sharp, Z. D. A laser-based microanalytical technique for in situ determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 54, 1353–1357 (1990).

52. Valley, J. W. & Graham, C. M. Cryptic grain-scale heterogeneity of oxygen isotope ratios in metamorphic magnetite. Science 259, 1729–1733 (1993).

53. Hezel, D. C. et al. A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth Planet. Sci. Lett. 296, 423–433 (2010).

54. Pack, A., Toulouse, C. & Przybylla, R. Determination of oxygen triple isotope ratios of silicates without cryogenic separation of NF3 - technique with application to analyses of technical O2 gas and meteorite classification. Rapid Commun. Mass Spectrom. 21, 3721–3728 (2007).

Acknowledgements
The authors thank Reinhold Przybilla and Ingrid Reuber for assistance in the laboratory. The collection and characterisation of the micrometeorites studied in this work was supported by the Italian MIUR (grant PRIN2016_00029 and PRIN2015_2015SW4Z7). The project was financially supported by Deutsche Forschungsgemeinschaft (grant PA909/11-1).

Author contributions
A.P. conceived and supervised the project. A.H., D.C.H., M.T.S., A.K.B., S.T.M.P., S.S. and D.H. designed the experiments, prepared the samples and conducted the analyses. L.F. provided the samples, A.P. wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Pack, A. et al. Tracing the oxygen isotope composition of the upper Earth’s atmosphere using cosmic spherules. Nat. Commun. 8, 15702 doi: 10.1038/ncomms15702 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/