Sticky Normal/Superconductor Interface

Soo-Young Lee, 1 Arseni Goussev, 1,2 Orestis Georgiou, 1 Goran Gligorić, 3 and Achilleas Lazarides 1

1 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D01187 Dresden, Germany
2 Department of Mathematics and Information Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
3 Vinca Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia

(Dated: May 6, 2014)

We study the quantum Goos-Hänchen (GH) effect for wave-packet dynamics at a normal/superconductor (NS) interface. We find that the effect is amplified by a factor \((E_F/\Delta)\), with \(E_F\) the Fermi energy and \(\Delta\) the gap. Interestingly, the GH effect appears only as a time delay \(\delta t\) without any lateral shift, and the corresponding delay length is about \((E_F/\Delta)\lambda_F\) with \(\lambda_F\) the Fermi wavelength. This makes the NS interface “sticky” when \(\Delta \ll E_F\), since typically GH effects are of wavelength order. This “sticky” behavior can be further enhanced by a resonance mode in NSNS interface. Finally, for a large \(\Delta\), the resonance-mode effect makes a transition from Andreev to the specular electron reflection as the width of the sandwiched superconductor is reduced.

PACS numbers: 03.65.Vf, 74.45.+c, 73.40.-c

Interference is an important phenomenon in both quantum and wave mechanics, and is often responsible for intriguing effects not understandable from a classical mechanics and ray dynamics. The Goos-Hänchen (GH) effect [1], first predicted by Newton, is one example: When an optical beam is totally reflected at a dielectric interface, a lateral shift along the interface is induced. The GH shift has been studied in various quantum and wave systems, amongst which graphene [2, 3], optical beams [4], dielectric microcavities [5–7] and neutrons [8].

The GH shift in optics can be understood by the dependence of the phase loss occurring at total internal reflection [8] on the angle of incidence. An analogous shift is observed in the quantum mechanical step potential problem: In the one dimensional case, if the energy \(E\) of an incident particle is less than the potential height \(V\), the particle is totally reflected with reflection coefficient is \(R = e^{i\varphi}\) (with real \(\varphi\)). The phase \(\varphi\) increases monotonically from \(-\pi\) to zero as the energy \(E\) varies from zero to \(V\). If we consider an incident Gaussian wave packet with velocity \(v_0 = \hbar k_0/m\),

\[
\psi_I(x,t) = \int dk \, g(k) e^{ikx} e^{-iEt/\hbar},
\]

with the time delay given by

\[
\delta t = \frac{\hbar}{E} \frac{d\varphi}{dE}. \quad (3)
\]

As a result, the delay length \(l_D \equiv v_0\delta t\) is \(l_D \sim \lambda_0\) with \(\lambda_0 = 2\pi/k_0\) the central wavelength of the wave packet. For a wave packet propagating in two dimensions with \(y\)-direction velocity \(v_0y\), the time delay results in a lateral shift of \(l_{GH} = v_0y\delta t\), analogously to the optical GH shift. Note that the GH shift here is of the order of a wavelength. This \(\delta t\) is similar to the Wigner delay time in scattering problems [10]. The phase change \(\varphi\) is also related to the non-integer Maslov index for the quantization condition [11].

On the other hand, the behavior of an electron or a hole at normal/superconductor (NS) interface has been studied extensively. For a small superconducting pairing gap \(\Delta \sim 10^{-4}E_F\) an incident electron from the normal side is retro-reflected as a hole when the excitation energy is less than the pair gap \(\Delta\) of the superconductor; this is called Andreev reflection [12], and has been studied in systems as diverse as graphene [13] and bosonic condensates [14]. It has been directly experimentally observed [15]. In addition, the advance of laser cooling techniques for atoms allows experimental realization of a similar interface with a large \(\Delta\) comparable to the Fermi energy \(E_F\), where specular reflection of particles (in addition to Andreev reflection of holes) occurs with appreciable amplitude [16, 17]. In spite of much attention to the electronic properties at the NS interface, the phase change under reflection has not been explored so far. It is therefore desirable to understand the influence of the phase change on reflection off the NS interface and the associated GH effect.

In this Letter, we study reflection off NS and NSNS interfaces and find that the GH effect is amplified by a factor \((E_F/\Delta)\) compared to that of other interfaces. This is because at the NS interface the incident electron can be reflected within the energy scale of \(\Delta\), while the wave-
length is determined by the whole energy scale of \(\sim E_F \). Moreover, the GH effect appears as a time delay without the lateral shift which has been the hallmark of the GH effect in other interfaces. The corresponding delay length is then given by \(\lambda_D \sim (E_F/\Delta)\lambda_F \), where \(\lambda_F \) is the Fermi wavelength, implying that the NS interface is very “sticky” in comparison to typical wavelength-order delay lengths in optical and condensed-matter interfaces. We also show that the time delay can be increased by a resonance mode in NSNS interface. Finally, for a large gap \(\Delta \); this situation is described using the Bogoliubov-de Gennes (BdG) equations for a two-component wave function \(\Psi \). [4-24]

\[
\begin{pmatrix}
 H & \Delta \\
 \Delta & -H
\end{pmatrix}
\Psi = \varepsilon \Psi, \tag{4}
\]

with

\[
H = -\frac{\hbar^2}{2m} \nabla^2 - \mu,
\Psi = \begin{pmatrix} u \\ v \end{pmatrix}
\]

where \(\varepsilon \) is the energy measured from the chemical potential \(\mu \) (\(\mu = E_F \) in our case) while \(u \) and \(v \) are the electron and hole wave functions, respectively. The pair gap \(\Delta \) is zero in a normal conductor, i.e., the electron and hole are independent of each other. We also assume that \(\Delta \) is a real number, that is, we consider an s-wave superconductor and a static situation.

We begin by focussing on the case of an incident electron with an energy \(\varepsilon \) (\(< \Delta \)) as schematically illustrated in Fig. 1. From the BdG equation, the two independent plane-wave solutions \[12, 21\] with the same \(y \) dependence \(e^{ik_y y} \) are

\[
\Psi_e = \left(\frac{1}{\varepsilon - \Omega} \right) e^{i(k_x x + k_y y)}, \quad \Psi_h = (\frac{\varepsilon - \Omega}{\Delta}) e^{i(k_x x + k_y y)}, \tag{6}
\]

where \(\Omega = \sqrt{\varepsilon^2 - \Delta^2} \) and

\[
k_e = \sqrt{k_{Fx}^2 + \frac{2m}{\hbar^2} \Omega}, \quad k_h = \sqrt{k_{Fx}^2 - \frac{2m}{\hbar^2} \Omega}, \tag{7}
\]

where \(k_{Fx} = \sqrt{\frac{2m}{\hbar^2} (E_F - k_y^2)} \) and it becomes Fermi wavenumber \(k_F \) when \(k_y = 0 \). Note that in the normal conductor with zero \(\Delta \), the solutions become independent electron \((u)\) and hole \((v)\) wavefunctions since \((\varepsilon - \Omega)/\Delta = 0 \) in Eq. \(7\), and their wavenumbers, \(k_F^N \) and \(k_h^N \), are given by Eq. \(6\) with \(\Omega = \varepsilon \).

We obtain the reflection coefficients for the reflected electron and hole plane waves by matching wavefunctions at the interface \((x = 0)\). The wavefunction in the normal part is

\[
\Psi_N = \left(e^{ik_N^N x} + B e^{-ik_N^N x} \right) A e^{ik_N^N y}, \tag{8}
\]

while the wave function in the superconductor is \(\Psi_S \) with decaying \(u \) and \(v \) for our case of \(\varepsilon \ll \Delta \). From \(\Psi_N(0) = \Psi_S(0) \) and \(\Psi_N'(0) = \Psi_S'(0) \), we can obtain the reflection coefficients \(A \) (hole) and \(B \) (electron).

In order to study a dynamical situation, we now switch to an incident wave packet rather than a plane wave. The incident electron with an average wavevector \(\vec{k}_0 = (k_{0x}, k_{0y}) \) can be described as a Gaussian wave packet,

\[
u_I(x, t) = \int dk_x dk_y G(\vec{k}) e^{i(k_x x + k_y y - \varepsilon t)/\hbar} \tag{9}
\]

where \(G(\vec{k}) = e^{-|\vec{k} - \vec{k}_0|^2/\sigma^2} \) and \(\varepsilon = (\hbar^2 |\vec{k}|^2/2m) - E_F \). Note that at \(t = 0 \) the wave packet hits the interface located at \(x = 0 \). The reflected hole is then represented by

\[
u_R(x, t) = \int dk_x dk_y G(\vec{k}) A e^{i(k_N^N x + k_N^N y - \varepsilon t)/\hbar}, \tag{10}
\]
and the wave packet for the reflected electron can be obtained by the replacements $A \rightarrow B$ and $k^N_h \rightarrow -k_x$ in the above equation (see Fig. 1(a)). For the normal incidence case $k_0 = 0$, it is easy to get time delay from the stationary phase point: The peak position of the reflected hole is given by

$$x = \frac{v_0 x}{d k^N_h / d k_x} (t - \delta t^A_x), \quad \delta t^A_x = \hbar \frac{d \varphi_A}{d \varepsilon},$$

where φ_A is the phase of A. Similarly, for the reflected electron we find $\delta t^B_x = \hbar (d \varphi_B / d \varepsilon)$.

We now concentrate on the case of relevance to solid-state and liquid helium experiments [13], $\Delta \ll E_F$, specifically with $\Delta / E_F = 10^{-4}$ which is the typical value in solid-state superconductors. We set the Fermi energy as $E_F = 5.5 \text{ eV}$ throughout this Letter. This case corresponds to Andreev reflection [12], so that only the retro-reflected hole has appreciable amplitude ($|A| \approx 1$ and $|B| \approx 0$). The phase φ_A is drawn in Fig. 2(a) and it is well approximated by $\varphi_A = \arccos(\varepsilon / \Delta)$ when $B = 0$. This phase variation enables us to calculate the delay time and length, defined by $l_D \equiv v_F \delta t^B_x$, v_F is the Fermi velocity. We emphasize that the delay length is amplified by a factor (E_F / Δ), i.e.,

$$l_D \approx \left(\frac{E_F}{\Delta} \right) \lambda_F,$$

which is a distinctive feature of the NS interface, noting that typical shifts in other interfaces are wavelength-order. Thus the NS interface can be characterized as “sticky” due to the long-time stay at the interface.

Since the delay time is proportional to the slope of the phase change, $d \varphi_A(B)/d \varepsilon$, it can be extended by increasing the slope. This may be done with the help of a resonance mode introduced by changing the NS interface into a NSNS structure. We denote the widths of first superconductor barrier and next normal conductor as d and L, respectively. The phase $\varphi_A(\varepsilon)$ for plane waves in the NSNS case is shown in Fig. 2(b): the slope becomes steeper as d increases, eventually approaching an abrupt 2π phase jump at the resonance point.

Now consider a Gaussian wavepacket, beginning with the normally incident case, $k_0 = (k_{0x}, 0)$. For the window function $G(\vec{k})$ in Eq. (9), we take $k_{0x} = \frac{k_{EF} + k_{0x}}{2}$, where $k_{0x} = \sqrt{k_{EF}^2 + \frac{k_M^2}{4}}$, and $\sigma = \frac{k_{MF} - k_{0x}}{n}$, $n = 4$ and 5 for the NS and NSNS interface. The k_x dependence of the window function is given by $g(k_x) = G(k_x, 0)$, and it corresponds to $g(\varepsilon) = e^{-\frac{(\varepsilon - \varepsilon_0)^2}{\sigma^2}}$, $\varepsilon_0 = \Delta / 2$ and $\sigma = \Delta / n$, which are shown as blue line in the upper panels in [2].
times symmetrically before and after the time of impact on the interface. From the distance \(l_p \) between initial and final position of the wave packet it is clear that there is a time delay, but no GH shift at all. This can be understood by the dependence of the energy \(\varepsilon \) on \(k_y \), i.e.,\(\varepsilon = \frac{k_y^2}{2m}(k_x^2 + k_y^2) - E_F \). This gives rise to a time delay \(\delta t_{DB}^A \) in the \(y \)-direction too, and this time delay is the same as \(\delta t_{AB}^A \). Thus we see only time delay without GH shift in Fig. 2(d),(e). The deformed shape of the hole wave packet comes from the relation between \(k_x \) and \(k_y \). In other words, the symmetric Gaussian window \(G(k_x, k_y) \) becomes (approximately) an asymmetric Gaussian windows in \((k_h^N, k_y)\) plane, as depicted in Fig. 4(a).

We now turn to a discussion of the more general case where \(\Delta/E_F \) is not small. As \(\Delta/E_F \) increases the nature of the reflected object changes from purely Andreev- to mixed Andreev- and specularly-reflected \(\phi_{AB}^A \). Figure 3 shows how the coefficients \(A, B \) and the delay time \(\delta t \) change as \(\Delta \) increases. \(|A|^2\) and \(|B|^2\) and the phases \(\phi_{A,B}^A \) are shown, as a function of \(\varepsilon \), in Fig. 3(a),(b), where the dashed lines are for \(\Delta = 0.2E_F \) case and the solid lines are for \(\Delta = 0.8E_F \) case. When \(\Delta = 0.2E_F \), the coefficients indicate almost pure Andreev reflection (\(|A| = 1\) and \(|B| = 0\)). At \(\Delta = 0.8E_F \), \(|B|^2\) becomes appreciable so specular reflection becomes important. Fig. 3(b) indicates that \(\delta \phi_{AB}^A = \pi/2 \), that is, \(\phi_{A,B}^A \) is roughly \(\pi/2 \) at least in the range \(\Delta = 0 \) to \(\Delta = 0.8E_F \). This rather peculiar behavior can be understood as an effect of the resonance mode. Figures 4(d-g) show variation of \(|A|^2\) and \(|B|^2\) around the resonant point for the above three different cases. For thin barrier case, \(\Delta = 3\lambda \) the nature of the coefficients indicates that \(|A|^2 \) is quite large and \(|B|^2 \) is quite small so that the two peaks are no longer visible in Fig. 4(a,c). For \(\Delta = 1.8\lambda \), the two peaks are not visible any more and they overlap as shown in Fig. 4(f). If the barrier width is getting thicker, the single peak structure starts to split into a double-peak structure, showing \(|A|^2 = 0\) and \(|B|^2 = 1\) at each peak position, and the width of peaks is getting narrower as shown in Fig.

![Fig. 4: (color online) Various resonant reflections when \(\Delta = 0.2E_F \).](image-url)

(a),(b). The wave-packet movements are shown in the lower panels. The red line and blue line describe the incident-electron and reflected-hole wave packets, respectively. For the NS interface in Fig. 4(a), we can see some distance between wave packets of electron at \(t = -8 \) and hole at \(t = 8 \), correspondingly the delay length, \(ld = v_F \delta t \) (note \(|v_e| = |v_h| = v_F \) in this case, \(v_e \) and \(v_h \) are electron and hole group velocities). For the resonant reflection in Fig. 4(b), a longer time delay is expected from the steeper slope of \(\varphi_A(\varepsilon) \), and the extended delay length is clearly shown in the lower panel of Fig. 4(b).

Now consider a finite incidence angle, i.e., \(k_{0y} \neq 0 \); here one might expect a GH shift for the reflected hole like the \(l_b \) in Fig. 1(b), based on the separability of \(x \) and \(y \) coordinates like for a diagonal step potential. However, this is not the case. The wave-packet dynamics are illustrated in Fig. 2(c)-2(e). Figure 2(c) shows the incident wave packet with 45 degree incident angle. The retro-reflected hole packets are shown in Fig. 2 for the NS interface (d) and for the NSNS interface (e), for two
This double-peak structure of a resonance mode is a characteristic feature of two-component resonance where each component has its own wavelength \[22\].

In conclusion, we have studied wave-packet dynamics at NS interface, and found that the GH effect is amplified by the factor \(E_F/\Delta\). Interestingly, the effect appears only as a large time delay, hence “sticky”, without any lateral shift. We also demonstrated that in NSNS interface the GH effect is even further enhanced by a resonance mode and for a large \(\Delta\) the transition from Andreev to specular electron reflection occurs when the decay rate of the resonance increases. Although we have focused on the incident electron case, all intriguing features discussed in this Letter can also be found in the incident hole case. We believe that the time-delay effect can be confirmed by an experimental observation, since direct observation of Andreev-reflected electrons in clean systems (where the motion is practically ballistic) is possible \[12\].

Acknowledgements G.G. acknowledges support from the Ministry of Education and Science of Serbia (Project III45010); A. L. thanks O. Tieleman for stimulating discussions.

[1] F. Goos and H. Hänchen, Ann. Phys. (Leipzig) \textbf{436}, 333 (1947).
[2] C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydlo, Phys. Rev. Lett. \textbf{102}, 146804 (2009).
[3] Manish Sharma and Sankalpa Ghosh, J. Phys.: Condens. Matter \textbf{23}, 055501 (2011).
[4] W. Löfler, A. Aiello, and J. P. Woerdman, Phys. Rev. Lett. \textbf{109}, 213901 (2012).
[5] S.-Y. Lee, J.-W. Ryu, T.-Y. Kwoon, S. Rim, and C.-M. Kim, Phys. Rev. A \textbf{72}, 061801(R) (2005).
[6] H. Schomerus and M. Hentschel, Phys. Rev. Lett. \textbf{96}, 243903 (2006).
[7] J. Unterhinninghofen, J. Wiersig, and M. Hentschel, Phys. Rev. E \textbf{78}, 016201 (2008).
[8] V.-O. de Haan, J. Plomp, T. M. Rekveldt, W. H. Kraan, and A. A. van Well, Phys. Rev. Lett. \textbf{104}, 010401 (2010).
[9] J. Hawkes and I. Latimer, \textit{Laser: Theory and Practice} (Prentice-Hall, Englewood Cliffs, NJ, 1995).
[10] E. P. Wigner, Phys. Rev. \textbf{98} 145 (1955).
[11] H. Friedrich and J. Trost, Phys. Rev. Lett. \textbf{76}, 4869 (1996); Phys. Rev. A \textbf{54} 1136 (1996).
[12] A. F. Andreev, Sov. Phys. JETP \textbf{19}, 1228 (1964).
[13] C. W. J. Beenakker, Phys. Rev. Lett. \textbf{97}, 067007 (2006).
[14] E. Zapata, F. Sols, Phys. Rev. Lett \textbf{102}, 180405 (2009).
[15] P. A. M. Benistant, H. van Kempen and P. Wyder, Phys. Rev. Lett. \textbf{51} 817 (1983); M. P. Enrico, S. N. Fisher, A. M. Guenault, G. R. Pickett, and K. Torizuka, Phys. Rev. Lett. \textbf{70} 1846 (1993)
[16] B. V. Schaeypooreck and A. Lazarides, Phys. Rev. Lett. \textbf{98}, 170402 (2007); Phys. Rev. A \textbf{79}, 053612 (2009).
[17] M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, Nature (London) \textbf{442}, 54 (2006); Science \textbf{311}, 492 (2006).
[18] G. B. Partridge, W. Li, R. I. Kamar, Y. A. Liao, and R. G. Hulet, Science \textbf{311}, 503 (2006); G.B. Partridge, W. Li, Y.A. Liao, R.G. Hulet, M. Haque, and H.T.C. Stoof, Phys. Rev. Lett. \textbf{97}, 190407 (2006).
[19] P. G. de Gennes, \textit{Superconductivity of Metals and Alloys}, (Westview Press, Advanced Book Program, 1999).
[20] G. E. Blonder, M. Tinkham, T. M. Klapwijk, Phys. Rev. B \textbf{25} 4516 (1982).
[21] W. L. McMillan, Phys. Rev. \textbf{175}, 559 (1968).
[22] S.-Y. Lee et al. (unpublished)