Utility of Integrated Farming Systems: A Perception Study from Kuttanad

Mamatha G. Nair, G. Jayalekshmi and N. Kishore kumar

ABSTRACT
This paper outlines the perception of farmer’s regarding the Integrated Farming Systems of Kuttanad, Kerala along with their socio-psychological and economic characteristics. The study was carried out in the region of Kuttanad that lies in the state of Kerala namely, Alappuzha, Kottayam and Pathanamthitta. Three panchayats namely, Kumarakom, Nedumudi and Niranam covering Kottayam, Alapuzha and Pathanamthitta were selected for the purpose of the study. Twenty marginal and small farmers were selected for the study. The study aims to understand the perception of farmers regarding the utility of IFS, along with their socio-psychological and economic characteristics. The study was conducted in various farming systems of Kuttanad, Kerala along with Palakkad. However, year round production of rice is not practiced in Kuttanad region due to the flooding nature of its rice fields along with their highly acidic and saline soils. Hence most of the farmers in this region are practicing integrated farming.

INTRODUCTION
Kuttanad is the deltaic formation of four river systems namely, Pamba, Meenachil, Manimala, and Achankovil. The region is 1-2.5m below MSL and it covers three districts Kottayam, Alapuzha and Pathanamthitta (Chattopadhyay and Sidharthan, 1985). Kuttanad is the major rice production centre in Kerala and is also identified as the rice bowl of Kerala along with Palakkad. However, year round production of rice is not practiced in Kuttanad region due to the flooding nature of its rice fields along with their highly acidic and saline soils. Hence most of the farmers in this region are practicing integrated farming.

MATERIALS AND METHODS
The study was conducted in various farming systems of Kuttanad region of Kerala. Three panchayats namely Kumarakom, Nedumudi and Niranam covering Kottayam, Alapuzha and Pathanamthitta districts were selected for the purpose of the study. Twenty marginal and small farmers were selected from the above three panchayats for the study thus making the sample size to be 120. Farmer’s perception regarding the utility of integrated farming system was operationalized as the farmer’s awareness about the benefits of various components of IFS. This variable was measured with the help of selected statements from the scale developed by Argade (2015). The total number of statements selected was ten in number out of which three were negative statements. Farmer’s responses were rated with the help of a three point continuum namely agree, neutral and disagree with respective scores of 3, 2 and 1. The scoring pattern was however reversed for negative statements. Here also the scoring range was between 10 and 30. Similar pattern was followed to study the other selected variables like age, family size, level of aspiration and product diversification. The data thus collected was statistically analysed using the following statistical tools.

Categorisation
Quartile deviation was calculated for the two selected dependent variables and eight out of the fifteen selected independent variables. According to this the respondents were categorised into low, medium and high and their frequency and percentage were calculated.

Key words: IFS, Marginal farmers, Perception, Product diversification, Small Farmers.
Utility of Integrated Farming Systems: A perception study from Kuttanad

Frequency and percentage analysis

Frequency and percentage analysis are simple statistical tools used to carry out comparisons. The frequency multiplied with 100 and divided by the total sample size gives the percentage.

Single factor ANOVA

Single factor analysis of variance was used to compare various profile characteristics of small and marginal farmers.

Simple Correlation Analysis

This analysis was carried out to establish the relationship between the selected independent and dependent variables. The significance of their relation was also checked at 5 per cent and 1 per cent. Collected data was analysed with the above tools to reach the obtained results.

RESULTS AND DISCUSSION

As mentioned above farmer’s perception regarding the utility of integrated farming system was operationalized as the farmer’s awareness about the benefits of various components of IFS. This was measured using the scale developed by Argade (2015) with slight modifications and the results are presented in Table 1.

Majority of both small and marginal farmers were having medium level perception regarding the utility of integrated farming systems. In the case of marginal farmers 66.67 per cent were having medium level perception while the remaining respondents show an equal distribution of 16.67 per cent in both low and high level. Majority of the small farmers (70%) were also having medium level perception. However unlike the marginal farmers 18.33 per cent of the small farmers were having high perception and 11.67 per cent were having low perception. There was no significant difference between the perception of marginal and small farmer’s regarding the utility of integrated farming systems.

Majority of the marginal (60%) and small (55%) farmers were belonging to the old age category. However 40 per cent of marginal and 45 per cent of small farmers were coming under the middle age category. An important fact of interest identified from this table is that none among both the small and marginal farmers were in the young age category. While in the case of family size majority of both marginal (55%) and small farmers (66.67%) were having a family size of 3-6. The total number of family members of these farmers were in between 3-6 and in the case of remaining respondents 33.33 per cent of marginal farmers were having family size less than three while only 21.67 per cent small farmers were under this category. However 11.67 per cent of both marginal and small farmers were having a family size greater than 6.

Nearly eighty three percentage (83.33%) of marginal farmers were having medium level of aspiration which were followed by low (13.33 %) and high (3.33%) level of aspiration, respectively. In the case of small farmers 78.33 per cent of them were observed to have medium level of aspiration. However this was followed by high (16.67%) and low (5%) level of aspiration respectively.

Product diversification of integrated farming system farmers were carried out by identifying and quantifying various processed and unprocessed products produced by the farmers with the help of their plant and animal components. It was observed that majority of the marginal farmers (41.7%) were producing a total of three product from their farms which was followed by the production of four products (35%). 16.67 per cent of the marginal farmers were producing only two products while 5 per cent and 1.67 per cent of them were producing five products and more than five products respectively.

Table 1: Distribution of farmers based on their perception regarding the utility of IFS.

Category	Marginal farmers (N=60)	Small farmers (N=60)		
	No.	Percentage	No.	Percentage
Low (<Q1)	10	16.67	7	11.67
Medium (Q1≤Q3)	40	66.67	42	70
High (>Q3)	10	16.67	11	18.33

Q1 = 22 Q3 = 25

Table 2: Comparison of variables between small and marginal farmers.

Variables	Marginal farmers	Small farmers		
	Total sum of squares	F critical	F value	
Level of aspiration	377	396	3.921	4.897
Product diversification	177	196	3.921	14.909

Table 3: Correlation between perception regarding the utility of IFS of the farmers to the independent variables.

Independent variables	r values	
	Marginal farmers	Small farmers
Age	0.1229	-0.099
Family size	0.262**	0.205
Level of aspiration	0.53**	0.282*
Product diversification	0.035	0.05
Significant difference was observed in the variables like product diversification and level of aspiration which is represented in the below Table 2.

It was observed that the F value obtained in the case of both variables are greater than the F critical value hence we can conclude that there is significant difference between the marginal and small farmers regarding the product diversification and level of aspiration. Their difference in land holding can be concluded as a major reason for this significant difference.

Correlation between these selected four variables was studied with perception and the result is depicted in Table 3.

It is clear that in the case of marginal farmer’s family size and level of aspiration shows a significantly positive correlation with perception of farmer’s regarding utility, while in the case of small farmers, level of aspiration was the only variable that exhibited significantly positive correlation.

CONCLUSION

The study revealed a medium level perception for both small (70%) and marginal (66.67%) farmers. Sixty percentage of marginal farmers were above fifty five years which was 55% in the case of small farmers. Family size of majority of the marginal (55%) and small farmers (66.67%) were between 3-6 members. Medium level of level of aspiration was seen among both the farmers, and it also showed significant difference on comparison. Majority of small (41.67%) and marginal (35%) farmers are marketing three products and this also showed significant difference between the two categories.

Integrated Farming Systems makes the farmer competitive by achieving improvement in productivity, input use efficiency, reduction in cost of production and creation of gainful employment for rural mass along with the tackling of soil and other input related problems.

But the various components that constitute the Integrated farming system differ according to location which in the sense refers to geographical factors like land and soil type, other farm input availability, farmer’s economic condition and perception regarding its utility. So integrated farming system models for different locations should be standardized and popularised among farmers as it will definitely double farmer’s income.

ACKNOWLEDGEMENT

I take this opportunity to express my deep sense of gratitude to my Major Advisor, Dr. Jayalekshmi, G, Programme Co-Ordinator KVK, Kottayam for her meticulous planning, sustaining encouragement, worthy suggestions, whole hearted support, incessant bareance and above all her humanitarian affection and parental care that touched me the most and memories of which I will treasure throughout my life. I will always be extremely thankful to her for the trust and confidence she has shown in me and my capabilities.

I thank, late Dr. N. Kishore Kumar, Professor, Department of Agriculture extension and my advisory committee member for his in exhaustible counsel, noble inspiration, willing help and judicious guidance not only in shaping of this thesis but also for the cooperation and care bestowed on me throughout my presence in the department.

I sincerely thank all the teaching and non-teaching staffs of KVK Kottayam, RARS Kumarakom and Department of Agri. Extension, College of Agriculture Vellayani, for all the help they have showered on me throughout the completion of my thesis.

REFERENCES

Anitha, B. (2004). A study on entrepreneurial behaviour and market participation of farmwomen in Bangalore rural district of Karnataka. M. Sc. (Agri.) Thesis, University of Agricultural Sciences, Bangalore. 170p.

Argade, S. (2015). Farmer’s perception regarding integrated farming systems in Maharashtra. Int. J. Agric. Extn. (1). P25.30.

Babu, M. N. (1995). Evaluative perception of homestead farmers in relation to appropriateness of farming systems and cropping patterns. M.Sc. (Ag.) Thesis (unpubl.), College of Horticulture, Kerala Agricultural University, Vellanikkara. 120p.

Bahire, V.V., Kadam, R. P. and Sidam, V. N. (2010). Sustainable Integrated Farming is the need of the Indian farmer. In: 22nd National Seminar on “Role of Extension in Integrated Farming Systems for sustainable rural livelihood, 9th-10th Dec, Maharashtra. pp. 65.

Behra, U. K., Jha, K. P. and Mahapatra, I. C. (2004). Integrated management of available resources of the small and marginal farmers for generation of income and employment in eastern India. Crop Res. 27(1):83-89.

Chattopadhyay, S. and Sidharthan, S. (1985). Regional Analysis of Greater Kuttanad, Kerala, Technical Report-43, Thiruvananthapuram: Centre for Earth Science Studies.

FAO [Food and Agriculture Organization of United Nations]. (1997). “Food and Agricultural Organization integrating crops and livestock in West Africa.” Animal Production Health Paper No.43. Rome Italy. Pp. 71-72.

IIIFSR [Indian Institute of Farming System Research]. (2015). Annual Report. Indian Institute of Farming System Research, Modipuram, Meerut.136p.

Jacob, D. and Mathew, T. (2014). Factors motivating marginal and small coconut farmers of southern Kerala to select various farm enterprises. International Symposium on Plantation crops. Dec 10-11.

Jacob, D. and Mathew, T. (2014). Role of women in the decision making process in marginal and small farm holdings of southern Kerala under integrated farming system. National Symposium on Agricultural Diversification for sustainable livelihood. Nov 18-20.