Abstract. Background/Aim: Results of Guided Bone Regeneration (GBR) primarily depend on the membrane used. The aim of this study was to compare biocompatibility of different absorbable and non-absorbable membranes by using unrestricted somatic stem cells (USSCs) as an indicator for biocompatibility. Materials and Methods: Five absorbable membranes (Bio-Gide®, RESODONT®, GENTA-FOIL resorb®, BioMend® and BioMend® Extend®) and one non-absorbable alternative (GORE-TEX®) were colonized with USSCs. After 24 h, 3 days and 7 days, cell proliferation, cell viability, and cytotoxicity were assessed. Moreover, cell morphology was evaluated by electron microscopy. Results: Significantly higher cell proliferation and cell viability rates were observed in Bio-Gide® and RESODONT® membranes. Cell toxicity was highest on GENTA-FOIL resorb® membranes. The electron microscopical assessment showed a better cell attachment on porous surfaced membranes. Conclusion: This study shows that USSCs can be used for assessments of biocompatibility, and that absorbable membranes with collagenous composition and porous structure tend to positively impact biocompatibility and enhance cell proliferation.

This article is freely accessible online.

Correspondence to: Prof. Dr. Dr. Jörg Handschel, Klinik und Praxisgemeinschaft am Kaiserteich, Reichstraße 59, 40217 Düsseldorf, Germany. Tel: +49 021122050220, Fax: +49 02112205022499, e-mail: handschel@klinikamkaiserteich.de

Key Words: Biocompatibility, unrestricted somatic stem cells (USSCs), guided bone regeneration (GBR), membranes.

Bony defects involving the head and face often result not only in limited functionality, but also present esthetic deficiencies reducing patients’ quality of life (1). Depending on defect size, different covering techniques are applied. In cases of greater bony defects, augmentative procedures become necessary (2). Current gold standards for bone augmentation are autologous bone grafts mainly retrieved from the scapula, the fibular bone, and the iliac crest (3). Disadvantages are donor site morbidity and limited availability (4). Alternatives to autologous bone grafts present various methods of tissue engineering and guided bone regeneration (GBR) (5, 6). GBR has been described in research over the last 20 years (7-10). In GBR, occlusive membranes are used to prevent soft tissue ingrowth into the bone, allowing osteogenic cells originating from the adjacent bone to immigrate the restoration site (5). Results of GBR primarily depend on the membrane used (11). Ideally the membrane material should be biocompatible, provide a way for revascularization of the defect area, and allow nutrition of target cells (12). Nowadays, mainly absorbable membranes are used (13), and their indications have been expanded to periodontal flap surgery (14) and third molar extraction (15), providing appealing results. Nevertheless, their clinical application is still restricted due to high costs, difficult clinical handling, infection, and collapse of membranes (16).

The aim of this study was to compare biocompatibility of different absorbable and non-absorbable membranes. As indicator for biocompatibility unrestricted somatic stem cells (USSCs) were used. USSCs retrieved from the umbilical cord can be cultivated without losing their potential of pluripotent differentiation (17). They seem to hold an epigenetic state in between a terminally differentiated cell type and that of embryonic stem cells (18). Under certain
Because of their buoyancy in the culture medium, pieces of the membrane were cut with an area of 0.785 cm² in order to fit the holes of a well plate. A total of 9 pieces were used per cell line per day of testing. A 1448 mm² GORE-TEX® membrane was tested (detailed membrane characteristics are shown in Table I).

This study was approved by the Ethics-Committee of the Heinrich-Heine University Dusseldorf, Germany (No.: 3376). All membranes used have already been tested in vivo and are approved medical products. For absorbable membranes Bio-Gide® (Geistlich Pharma AG, Wolhusen, Switzerland), RESODONT® (Resorba Wundversorgung GmbH & Co. KG, Nuernberg, Germany), GENTA-FOIL resorb® (Resorba Wundversorgung GmbH & Co. KG, Nuernberg, Germany), BioMend® and BioMend® Extend™ (Zimmer Dental GmbH, Freiburg, Germany) were used. As a non-absorbable alternative a (GORE-TEX® W.L. Gore & Associates, Inc. (Flagstaff, AZ, USA)) membrane was tested (detailed membrane characteristics are shown in Table I).

First, the membranes were sterilized, then cut into pieces (n=27) containing an area of 0.785 cm² in order to fit the holes of a well plate. A total of 9 pieces were used per cell line per day of testing. Those 9 pieces were used for the measurement of cell proliferation (n=5), the measurement of cytotoxicity and cell activity (n=3), and for measurements with the raster electron microscope (n=1). Because of their buoyancy in the culture medium, pieces of the membrane were fixed on the well plate surface. As a control a standard cell culture was used. All wells (either containing membranes or the control group) were filled with 610 μl culture medium and the embedded well plates were renewed after 24 h and after 4 days. Cell viability was measured directly in the culture medium and the embedded well plates were renewed after 24 h and after 4 days. Cell viability was measured indirectly.

Materials and Methods

This study was approved by the Ethics-Committee of the Heinrich-Heine University Dusseldorf, Germany (No.: 3376).

All membranes used have already been tested in vivo and are approved medical products. For absorbable membranes Bio-Gide®, (Geistlich Pharma AG, Wolhusen, Switzerland), RESODONT®, (RESORBA Wundversorgung GmbH & Co. KG, Nuernberg, Germany), GENTA-FOIL, resorb®, (RESORBA Wundversorgung GmbH & Co. KG), BioMend® and BioMend® Extend™ (Zimmer Dental GmbH, Freiburg, Germany) were used. As a non-absorbable alternative a (GORE-TEX® W.L. Gore & Associates, Inc., Flagstaff, USA) membrane was tested (detailed membrane characteristics are shown in Table I).

First, the membranes were sterilized, then cut into pieces (n=27) containing an area of 0.785 cm² in order to fit the holes of a well plate. A total of 9 pieces were used per cell line per day of testing. Those 9 pieces were used for the measurement of cell proliferation (n=5), the measurement of cytotoxicity and cell activity (n=3), and for measurements with the raster electron microscope (n=1). Because of their buoyancy in the culture medium, pieces of the membrane were fixed on the well plate surface. As a control a standard cell culture was used. All wells (either containing membranes or the control group) were filled with 610 μl culture medium and the embedded well plates were renewed after 24 h and after 4 days. Cell viability was measured directly in the culture medium and the embedded well plates were renewed after 24 h and after 4 days. Cell viability was measured indirectly.

Table I. Characteristics of the different membranes (Bio-Gide®, RESODONT®, GENTA-FOIL resorb®, BioMend®, BioMend® Extend™ and GORE-TEX®).

Product name	Producer	Origin	Collagen type	Cross-linking	Sterilization	Membrane sizes	Specialities
GORE-TEX®	W.L. Gore & Associates, Inc. (Flagstaff, AZ, USA)	Synthetic (ePTFE)	–	–	Ethylenoxide-Gas	Different sizes and shapes from 13×18 to 28×37 mm, 15×20, 20×30 and 30×40 mm	Titan supported membrane, non-absorbable, often used in hard and soft tissue regeneration, Small pore sizes (4 nm), keeps epithelial tissue out, integrates well to the surrounding tissues
BioMend®	Zimmer Dental GmbH (Freiburg, Germany)	Bovine	Type I	Glutaraldehyde	Ethylenoxide-Gas	15×20, 20×30 and 30×40 mm	Small pore sizes (4 nm), keeps epithelial tissue out, integrates well to the surrounding tissues
BioMend® Extend™	Zimmer Dental GmbH (Freiburg, Germany)	Bovine	Type I	Glutaraldehyde	Ethylenoxide-Gas	15×20, 20×30 and 30×40 mm	Small pore sizes (4 nm), keeps epithelial tissue out, integrates well to the surrounding tissues
GENTA-FOIL resorb®	Resorba Wundversorgung GmbH & Co. KG (Nuernberg, Germany)	Equine	Type I	None	Ethylenoxide-Gas	25×25 and 25×50 mm	Contains gentamycin, after being placed into NaCl or into the oral cavity dissolves and becomes easily shapeable, usable on both sides, keeps its shape even when wet, similar to human tissue
RESODONT®	Resorba Wundversorgung GmbH & Co. KG (Nuernberg, Germany)	Equine	Type I	None	Ethylenoxide-Gas	30×35 and 30×70 mm	Usable on both sides, keeps epithelial tissue out, integrates well to the surrounding tissues
Bio-Gide®	Geistlich Pharma AG (Wolhusen, Switzerland)	Porcine	Type I + Type III	None	γ-irradiation	25×25 and 30×40 mm	Great similarity to human tissue, osteoinductive, accelerates healing process
through the cell culture supernatant using CytoTox-ONE™ Homogeneous Membrane Integrity Assays (Promega GmbH). For cell count and membrane fixation (for REM-evaluation), membranes were washed with attenuated PBS solution and frozen (−80 ºC). Cell count was performed with the help of CyQuant® Cell Proliferation Assay Kit (Life Technologies GmbH, Darmstadt, Germany). For REM-evaluation the membranes were placed into 5% Glutardialdehydle, dried by an ascending acetone series (50%-70%-90-100%) and Critical Point Dryer CPD 030 (BAL-TEC GmbH, Schalksmuhle, Germany). For electrification, the membranes were sputtered using Sputter Coater 108 auto (Ted Pella, Inc., Redding, CA, USA). For evaluation a Scanning-Electron-Microscope S-3000N was used.

Statistical analysis. In total 27 pieces of each membrane were examined (n=189). Nine pieces were used for each cell line (n=9). Five of those were used for the measurement of cytotoxicity (n=5). Three were used for cell viability (n=3), and one piece was used for measurements with the raster electron microscope (n=1). A Shapiro-Wilk test was used for evaluation of normal distribution. In order to detect statistically significant differences a one-way ANOVA and the Bonferroni correction was performed as post-hoc test. Furthermore, t-tests were performed to find significant differences in comparison to the control group (specific membrane in comparison to the control group only). Calculations were made by the use of SPSS 21 for Mac (SPSS Inc., Chicago, IL, USA). Differences with p<0.05 were considered statistically significant. Data is presented as mean±standard deviation.

Results

The aim of this study was to evaluate biocompatibility of 6 different membrane types. Twenty-four hours after cell seeding, 7,617±1,040 USSC-18 cells, 5,824±425 USSC-8 cells, and 6,000±600 USSC-8/77 cells could be found on the control standard surface. In the control wells, significantly increased proliferation was observed in all cell lines, between days 1 and 3 (p>0.0005) and days 3 and 7 (p<0.05).

After 24 h, in cell line USSC-18, the RESODONT® membrane surface showed significantly more cell attachment (3,756±336; p>0.0005) followed by the Bio-Gide® membrane (2,715±361; p>0.0005), compared to the other membranes. Highest cell counts were found on day 7 on Bio-Gide® membranes (USSC-18: 9,015±1,491 cells, USSC-8: 4,358±542 cells, and USSC-8/77: 3,875±457 cells). In comparison to the numbers of cells on day 1, they showed significant differences (p>0.0005) in cell lines USSC-8 and USSC-8/77 on day 7. Relative differences (%) in cell count on the distinct membrane surfaces after 3 and 7 days in comparison to day 1 and day 3 are shown in Figure 1.

Cell viability was measured fluoroscopically (560Ex/590Em) and assessed after 1, 3 and 7 days. The control group showed significant rises in cell viability in every measurement, USSC-
performed significantly better than the other two cell lines ($p<0.0005$; Day 1: USSC-18: 9,324±442 RFU, USSC-8: 7,942±447 RFU, and USSC-8/77 5,795±660 RFU; Day 7: USSC-18 17,222±395 RFU, USSC-8 14,019±457 RFU, and USSC-8/77 13,926±910 RFU). After 24 h, a significantly higher overall viability (in every cell line) could be observed on the Bio-Gide® membrane, in comparison to the other membranes tested ($p<0.0005$). This viability declined on day 3, but recovered significantly on day 7. The membranes, on which least cell viability was observed, were the GENTA-FOIL resorb® and the GORE-TEX® (Figure 2). In terms of viability per cell after 24 h, the greatest viability could be observed on the Bio-Gide® membrane (USSC-18: 1.92±0.51 RFU/cell, USSC-8: 1.75±0.38 RFU/cell, USSC-8/77: 2.50±0.64 RFU/cell). On day 3 and 7, viability per cell was greatest on GORE-TEX® membranes (Day 3: USSC-18: +2.19±0.52 RFU/cell, USSC-8: +5.24±1.25 RFU/cell and USSC-8/77: +13.67±3.32 RFU/cell). On day 3, the lowest cytotoxicity was measured on GORE-TEX® membranes (USSC-18: 21,613±2,364 RFU, USSC-8: 33,242±2,181 RFU, USSC-8: 26,612±1,592 RFU, and USSC-8/77: 23,623±1,879 RFU, $p<0.0005$), while the highest cytotoxicity was measured in the control wells ($p<0.0005$). After 7 days, in cell lines USSC-18 (9,324±1,082 RFU) and USSC-8/77 (11,192±1,352 RFU) lowest cytotoxicity rates were measured ($p<0.005$) in the control group, whereas in cell line USSC-8 (12,959±633 RFU) highest cytotoxicity rates were measured in the control group ($p<0.005$). In USSC-8 they were significantly higher than those on RESODONT® (10,991±781 RFU), GENTA-FOIL resorb® (11,451±364 RFU) and GORE-TEX® (10,526±841 RFU) ($p<0.0005$). In the USSC-18 cell line highest cytotoxicity was found on RESODONT® membranes (21,230±2,622 RFU) and in USSC-8/77 on GORE-TEX® (17,210±1,470 RFU) (Figure 4).

Additionally, raster electron microscope images of the cultivated membranes were compared to each other and to non-colonized membranes (Figure 5). The Bio-Gide® membrane comes with a porous side facing the defect. After 24 h, the USSCs showed long cell extensions attaching to the collagenous fibers of the membrane. After 7 days, the cells aligned with the collagenous fibers. In comparison to the Bio-Gide®, the other membranes presented a smooth surface. After 24 h, the RESODONT® membrane surface changed and appeared spongey and porous. The USSCs showed long cell extensions attaching
to the RESODONT® membrane, similarly to Bio-Gide®, while a continuous cell layer had developed after 7 days. The GENTA-FOIL resorb® membrane changed into a less porous surface after 24 h. A few elongated USSCs with small extensions could be observed. Up to day 3, they enlarged and become radial. After 7 days, USSC appeared elongated and smaller again. BioMend® and BioMend® Extend™ showed almost no change in membrane surface and only weakly adhering USSCs with few, short cell extensions showed after 7 days. Finally, the GORE-TEX® membrane was the only one showing collagenous polytetrafluoroethylene fibers (PTFE-Fibers). After 7 days, there was only little cell attachment and a few cell extensions could be observed.
Discussion

A recent review by Carballé-Serrano et al. (21) stated that biocompatibility is the crucial factor taken into account when choosing a membrane for guided bone regeneration. In this study the attachment, proliferation, and cell activity of osteoblast-differentiated USSCs growing on five resorbable membranes and one non-resorbable membrane were evaluated, as well as the cytotoxic effects on these cells. For cell attachment a membrane has to be biocompatible (22). In vivo cell attachment depends not only on the membrane material, but also on the location and timing of placement, together with condition and age of a patient (11). A rough membrane surface supports attachment and proliferation of osteoblasts, whereas fibroblasts tend to attach to smooth surfaces more easily (23, 24). The rough surfaces of the RESODONT® and Bio-Gide® membranes might be a reason for their high rates of cell attachment. Furthermore, cell proliferation was highest after 24 h on Bio-Gide® membranes, after 3 days on RESODONT®, and after 7 days on Bio-Gide® membranes again. Proliferation and cell numbers were significantly higher than on the other membranes. This could also be due to their composition. Bio-Gide® membranes consist of a mixture of collagen type I and III, whereas the others only contain collagen type III. Therefore, collagen type I or the mixture of collagens might have a positive impact on cell proliferation. In a similar study by Rothamel et al. (25) using osteoblasts, it was demonstrated that Bio-Gide® membranes had the highest proliferation rates. In accordance with the findings of this
study, sparsely cell proliferation rates have been reported for BioMend® membranes (25, 26). This might be due to the glutaraldehyde used for cross-linking in these membranes (27, 28). Cross-linking treatments involving glutaraldehyde or formaldehyde are included to overcome rapid membrane degradation (12, 29). Glutaraldehyde may also be a reason for reduced cell viability, as cell metabolic activity was significantly highest on Bio-Gide® membranes at all sample points. UV-irradiation for cross-linking might present a more compatible solution (30). On RESODONT®, cell viability was significantly higher than on the other membranes. Gentamycin is added to GENTA-FOIL resorb® membranes, which might reduce cell viability in those membranes. GENTA-FOIL resorb® also showed significantly high cytotoxicity rates. In contrast, high cytotoxicity rates were found on Bio-Gide®, RESODONT® and GORE-TEX® membranes as well. Osteoblasts are very sensitive to surface structures (31, 32). Altered surface structures might, therefore, not only result in enhanced cell proliferation and attachment, but also in higher cytotoxicity rates. Furthermore, in collagenous membranes high costs and weak tensile strength in wet conditions show limitations for wide clinical application, resulting in testing of other materials such as silk (16). Lately, coated membranes including magnesium and chitosan or gelatin-chitosan nano-composed membranes have proven biocompatibility, osteogenic-conductive potential, and low biodegradation rates (30, 33). These new membranes might present excellent alternatives for GBR.

In conclusion, our findings suggested that USSCs can be used for biocompatibility assessment, and moreover, membranes with collagenous composition and porous structure tend to positively impact biocompatibility and enhance cell proliferation. Clinicians should be aware of membrane characteristics and choose a patient-specific membrane when performing GBR.

Conflicts of Interest

The Authors have no conflicts of interest to declare.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ Contributions

Jörg Handschel made substantial contributions to conception and study design; Felix Paulssen von Beck performed the laboratory work. Henrik Holtmann, Julian Lommen and Lara Schorn and analyzed and interpreted the data; Lara Schorn wrote the manuscript. Rita Depprich and Norbert Kübler were involved in revising the manuscript critically. All authors read and approved the final manuscript.

References

1. Mehl C, Kern M, Freitag-Wolf S, Wolfart M, Brunzel S and Wolfart S: Does the oral health impact profile questionnaire measure dental appearance? Int J Prosthodont 22(1): 87-93, 2009. PMID: 19260435.
2. Meyer U, Meyer T, Handschel J and Wiesmann HP: Fundamentals of tissue engineering and regenerative medicine. Meyer U, Meyer T, Handschel J and Wiesmann HP (eds.). Springer-Verlag: Heidelberg, Germany, 2009.
3. Papadopulos NA, Schaff J, Sader R, Kovacs L, Deppe H, Kolk A and Biemer E: Mandibular reconstruction with free osteofasciocutaneous fibula flap: A 10 years experience. Injury 39(Suppl 3): S75-82, 2008. PMID: 18703182. DOI: 10.1016/j.injury.2008.05.017.
4. Fahmy RA, Mahmoud N, Soliman S, Nouh SR, Cunningham L and El-Ghannam A: Acceleration of alveolar ridge augmentation using a low dose of recombinant human bone morphogenetic protein-2 loaded on a resorbable bioactive ceramic. J Oral Maxillofac Surg 73(12): 2257-2272, 2015. PMID: 26215489. DOI: 10.1016/j.joms.2015.07.004.
5. Lang NP, Hammerle CH, Bragger U, Lehmann B and Nyman SR: Guided tissue regeneration in jawbone defects prior to implant placement. Clin Oral Implants Res 5(2): 92-97, 1994. PMID: 7918914.
6. Schorn L, Sproll C, Ommerborn M, Naujoks C, Kubler NR and Depprich R: Vertical bone regeneration using rhbmp-2 and vegf. Head Face Med 13(1): 11, 2017. PMID: 28592312. DOI: 10.1186/s13005-017-0146-0.
7. Buser D, Dula K, Belser U, Hirt HP and Berthold H: Localized ridge augmentation using guided bone regeneration. 1. Surgical procedure in the maxilla. Int J Periodontics Restorative Dent 13(1): 29-45, 1993. PMID: 8330945.
8. Schenck RK, Buser D, Hardwick WR and Dahlén C: Healing pattern of bone regeneration in membrane-protected defects: A histologic study in the canine mandible. Int J Oral Maxillofac Implants 9(1): 13-29, 1994. PMID: 8150509.
9. Gottlow J, Nyman S, Lindhe J, Karring T and Wennstrom J: New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol 13(1): 403-409, 2006. PMID: 16907771. DOI: 10.1111/j.1600-0501.2005.01225.x.
10. Rothamel D, Schwarz F, Rothamel D, Herten M, Sager M and Becker J: Angiogenesis pattern of native and cross-linked collagen membranes: An immunohistochemical study in the rat. Clin Oral Implants Res 17(4): 403-409, 2006. PMID: 16907771. DOI: 10.1111/j.1600-0501.2005.01225.x.
11. Rothamel D, Schwarz F, Sager M, Herten M, Sculean A and Becker J: Biodegradation of differently cross-linked collagen membranes: An experimental study in the rat. Clin Oral Implants Res 16(3): 369-378, 2005. PMID: 15877758. DOI: 10.1111/ j.1600-0501.2005.01108.x.
12. Kodama T, Minabe M, Hori T and Watanabe Y: The effect of various concentrations of collagen barrier on periodontal wound healing. J Periodontol 60(4): 205-210, 1989. PMID: 2724034. DOI: 10.1902/jop.1989.60.4.205.
13. Cortellini P and Tonetti MS: Clinical performance of a regenerative strategy for intrabony defects: Scientific evidence and clinical experience. J Periodontol 76(3): 341-350, 2005. PMID: 15857066. DOI: 10.1902/jop.2005.76.3.341.
15 Cortellini P and Tonetti MS: Clinical and radiographic outcomes of the modified minimally invasive surgical technique with and without regenerative materials: A randomized-controlled trial in intra-bony defects. J Clin Periodontol 38(4): 365-373, 2011. PMID: 21303402. DOI: 10.1111/j.1600-051X.2011.01705.x

16 Lee SW and Kim SG: Membranes for the guided bone regeneration. Maxillofac Plast Reconstr Surg 36(6): 239-246, 2014. PMID: 27489841. DOI: 10.14402/jkamprs.2014.36.6.239

17 Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan Al, Colletti EJ, Almeida-Porada G, Muller HW, Zanjani E and Wernert P: A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2): 123-135, 2004. PMID: 15263023. DOI: 10.1084/jem.20040440

18 Santourlidis S, Wernet P, Ghanjati F, Graffmann N, Springer J, Kriegs C, Zhao X, Brands J, Arauzo-Bravo MJ, Neves R, Koegler G and Uhrberg M: Unrestricted somatic stem cells (ussc) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Stem Cell Res 3(6): 60-69, 2011. PMID: 20933485. DOI: 10.1016/j.scr.2010.08.003

19 Lammers L, Naujoks C, Berr K, Deprich R, Kabler N, Meyer U, Langenbach F, Luttenberg B, Kogler G, Wiesmann HP and Handschel J: Impact of dag stimulation on mineral synthesis, mineral structure and osteogenic differentiation of human cord blood stem cells. Stem Cell Res 8(2): 193-205, 2012. PMID: 22265739. DOI: 10.1016/j.scr.2011.09.004

20 Handschel J, Naujoks C, Langenbach F, Berr K, Deprich RA, Ommerborn MA, Kabler NR, Brinkmann M, Kogler G and Meyer U: Comparison of ectopic bone formation of embryonic stem cells and cord blood stem cells in vivo. Tissue Eng Part A 16(8): 2475-2483, 2010. PMID: 20214449. DOI: 10.1089/ten.TEA.2009.0546

21 Caballe-Serrano J, Munar-Frau A, Ortiz-Puigpelat O, Soto-Penalvo D, Penarrocha M and Hernandez-Alfaro F: On the search of the ideal barrier membrane for guided bone regeneration. J Clin Exp Dent 10(5): e477-e483, 2018. PMID: 29849973. DOI: 10.4317/jced.54767

22 Langenbach F, Berr K, Naujoks C, Hassel A, Hentschel M, Deprich R, Kabler NR, Meyer U, Wiesmann HP, Kogler G and Handschel J: Generation and differentiation of microtissues from multipotent precursor cells for use in tissue engineering. Nat Protoc 6(11): 1726-1735, 2011. PMID: 22011655. DOI: 10.1038/nprot.2011.394

23 Bowers KT, Keller JC, Randolph BA, Wick DG and Michaels CM: Optimization of surface micromorphology for enhanced osteoblast responses in vivo. Int J Oral Maxillofac Implants 7(3): 302-310, 1992. PMID: 1289255.

24 Wang HL, Miyauchi M and Takata T: Initial attachment of osteoblasts to various guided bone regeneration membranes: An in vitro study. J Periodontal Res 37(5): 340-344, 2002. PMID: 12366856.

25 Rothamel D, Schwarz F, Sculean A, Herten M, Scherbaum W and Becker J: Biocompatibility of various collagen membranes in cultures of human pdl fibroblasts and human osteoblast-like cells. Clin Oral Implants Res 15(4): 443-449, 2004. PMID: 15248879. DOI: 10.1111/j.1600-0501.2004.01039.x

26 Takata T, Wang HL and Miyauchi M: Attachment, proliferation and differentiation of periodontal ligament cells on various guided tissue regeneration membranes. J Periodontal Res 36(5): 322-327, 2001. PMID: 11585120.

27 Speer DP, Chvapil M, Eskelson CD and Ulreich J: Biological effects of residual glutaraldehyde in glutaraldehyde-tanned collagen biomaterials. J Biomed Mater Res 14(6): 753-764, 1980. PMID: 6820019. DOI: 10.1002/jbm.820140607

28 Wiebe D, Megerman J, L’Italien GJ and Abbott WM: Glutaraldehyde release from vascular prostheses of biologic origin. Surgery 104(1): 26-33, 1988. PMID: 3133800.

29 Minguell JJ, Erices A and Conget P: Mesenchymal stem cells. Exp Biol Med (Maywood) 226(6): 507-520, 2001. PMID: 11395921.

30 Acevedo CA, Olguin Y, Briceno M, Forero JC, Osses N, Diaz-Calderon P, Jaques A and Ortiz R: Design of a biodegradable uv-irradiated gelatin-chitosan/nanocomposed membrane with osteogenic ability for application in bone regeneration. Mater Sci Eng C Mater Biol Appl 99: 875-886, 2019. PMID: 30889762. DOI: 10.1016/j.msec.2019.01.135

31 den Braber ET, de Ruiter JE, Smits HT, Ginsel LA, von Recum AF and Jansen JA: Effect of parallel surface microgrooves and surface energy on cell growth. J Biomed Mater Res 29(4): 511-518, 1995. PMID: 7622536. DOI: 10.1002/jbm.820290411.

32 Chehrouri B, McDonnell D and Brunette DM: The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing. J Biomed Mater Res 34(3): 279-290, 1997. PMID: 9086397.

33 Guo Y, Yu Y, Han L, Ma S, Zhao J, Chen H, Yang Z, Zhang F, Xia Y and Zhou Y: Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy. Mater Sci Eng C Mater Biol Appl 100: 226-235, 2019. PMID: 30948056. DOI: 10.1016/j.msec.2019.03.006

Received June 11, 2019
Revised July 10, 2019
Accepted July 19, 2019