Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography

Jongwook Kim1*, Sébastien Michelín2, Michiel Hilbers3, Lucio Martinelli1, Elodie Chaudan1, Gabriel Amselen2, Etienne Fradet2, Jean-Pierre Boilot1, Albert M. Brouwer3, Charles N. Baroud2, Jacques Peretti1 and Thierry Gacoin1*

Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion’s chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles with a high degree of precision. Here, we show a methodology to obtain the photoluminescence polarization of Eu-doped LaPO₄ nanorods assembled in an electrically modulated liquid-crystalline phase. We measure Eu³⁺ emission spectra for the three main optical configurations (σ, π and α, depending on the direction of observation and the polarization axes) and use them as a reference for the nanorod orientation analysis. Based on the fact that flowing nanorods tend to orient along the shear strain profile, we use this orientation analysis to measure the local shear rate in a flowing liquid. The potential of this approach is then demonstrated through tomographic imaging of the shear rate distribution in a microfluidic system.

ARTICLES

| PUBLISHED ONLINE: 19 JUNE 2017 | DOI: 10.1038/NNANO.2017.111 |

Luminescent particles or molecules are widely used for labelling and tracking of small objects. Anisotropic emitters such as semiconductor nanowires, quantum rods or organic dyes exhibit polarized luminescence, providing an additional sensitivity to the orientation. The polarization is, in most cases, dominated by the size and shape anisotropy of the emitter particle, which is understood within the quantum size effect and the electric field confinement effect on both the excitation and emission processes. The photoluminescence of rare-earth phosphors, however, shows a distinct nature of emission polarization. The photoluminescence spectrum of lanthanide ions in a crystalline host matrix consists of many sharp peaks due to the multiple transition levels within the 4f configuration and their crystal-field splitting into degenerate sublevels. Each sublevel emission is polarized along a particular direction allowed by the crystallographic symmetry. Consequently, the emission spectrum from a single crystal manifests variation of its line shape when the crystal’s orientation changes with respect to the direction of polarization analysis. This phenomenon is independent of the particle size and morphology, and is decoupled from the polarization of the usually indirect excitation, which is a crucial advantage for the orientation analysis when compared to the other types of anisotropic emitter.

A prerequisite for precise orientation analysis is to acquire the reference photoluminescence polarization components, which requires either working with a single crystal or achieving a uniform orientation of small crystallites. Here, we use liquid-crystalline (LC) self-assembly of monocrystalline LaPO₄:Eu nanorods that exhibit polarized photoluminescence, as from a large single crystal. By electrically switching the orientation of the LC domain, in a manner similar to the approach by Galyametdinov et al. with organic lanthanidomesogens, polarized Eu³⁺ emission spectra could be selectively obtained for the three main configurations (σ and π, the radial polarizations propagated perpendicular and parallel to the rod axis, respectively, and α, the isotropic axial propagation). We show that the distinct σ-π-α line shapes allow us to determine the unknown three-dimensional rod orientation and also the collective degree of orientation of an ensemble of nanorods, thereby establishing a route to the in situ study of rod-orientation dynamics.

We apply this method to measure the local shear rate in a flowing liquid that imposes the orientation of colloidal dispersed nanorods. The orientation of anisotropic objects under flow is a ubiquitous effect. The local orientation director n and the order parameter f are directly correlated with the principal direction and intensity of the shear rate. Accordingly, scanning n and f should allow one to retrieve the time-dependent shear rate distribution, which is of particular interest when studying microfluidic and biofluidic systems. The current available particle imaging velocimetry (PIV) technique, which measures the flow velocity profile by tracking the displacements of fluorescent microspheres, requires heavy accumulation and post-treatment of image frames. This limits access to the local real-time observation of dynamic systems. Moreover, the signal-to-noise ratio and the spatial resolution of PIV deteriorate when the principal interest is in shear (gradient of velocity). Our approach aims to achieve direct measurement and fast scanning of the local shear rate by instantly detecting the collective orientation of nanorods in a small focal volume. As a proof of concept, we demonstrate tomographic mapping of the shear distribution in a microfluidic channel using scanning confocal microscopy.

Polarized photoluminescence from assembled nanorods

Figure 1a presents polarized photoluminescence spectra from a nematic LC suspension of LaPO₄:Eu nanorods modulated in an electro-optical cell. The most intense 5D₀→7F₁ (magnetic dipole) transition and the adjacent 5D₀→7F₂ (electric dipole) transition spectra, both consisting of multiple sublevel peaks, were collected under excitation of the 2F₅/₂→2L₅/₂ transition at 394 nm (the excitation spectrum is shown in Supplementary Fig. 3). An optical transmission microscopy image of the cell placed between crossed 1Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France. 2Laboratoire d’Hydrodynamique (LadHyX), Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France. 3van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands. *E-mail: jong-wook.kim@polytechnique.edu; thierry.gacoin@polytechnique.edu
polarizers (Fig. 1b) shows a bright region exhibiting in-plane birefringence induced by the transverse rod alignment, as schematized in Fig. 1c, left. A uniform LC domain orientation was directed by shear strain applied during the capillary invasion of the viscous suspension into the 20-μm-thick gap of the cell (for the cell geometry see Supplementary Fig. 1). The blue and red curves in Fig. 1a were obtained from this transverse region (dotted circle labelled ‘1’ in Fig. 1b) with an analyser perpendicular and parallel to the domain orientation, respectively. Considering the hexagonal symmetry of LaPO₄:Eu₃⁺, with the crystallographic c axis parallel to the long axis of the rod, these two spectra correspond to the mutually orthogonal polarization components referred to as σ and π configurations (Fig. 1d). The difference in their line shapes is due to the independent polarization of each sublevel emission originating from the crystal-field splitting. When the electric field was applied longitudinally in the cell gap (Fig. 1c, right), the nematic domain, initially in a transverse state, was switched to a homeotropic state where the birefringence vanished completely (dark square region in Fig. 1b) as a consequence of the rod alignment being along the field normal to the substrate plane. The α spectrum (green line in Fig. 1a) corresponding to the axial propagation (Fig. 1d) was obtained from this homeotropic region (dotted circle ‘2’ in Fig. 1b). In contrast to the σ and π spectra, the α spectrum was unchanged when rotating the analyser, because the
axial symmetry of the crystal produces isotropic polarization contributions in the c plane.

The σ and π spectra were also confirmed with two different types of sample, where the rod orientation was directly observable by scanning electron microscopy (SEM). First, a thin film with transverse rod alignment (Fig. 1e, inset) was prepared by directed assembly of a nematic gel suspension. The polarized photoluminescence spectra observed from this solid film (Fig. 1e) with analyser angle θ perpendicular ($\theta = 90^\circ$) and parallel ($\theta = 0^\circ$) to the rod orientation are identical to the σ and π spectra obtained from the LC sample (Fig. 1a). Moreover, the tendency of the line shape variation with θ suggests that the polarization of the Eu$^{3+}$ emission is subject to the uniaxial symmetry of the crystalline LaPO$_4$ matrix. A peak deconvolution study of the $^5D_{0} - ^7F_{2}$ transition shows that the sublevel peak intensity I_{σ} as a function of θ closely fits the trigonometric equation $I_{\sigma} = I_{\sigma}(\sin^2\theta + I_{\sigma}\cos^2\theta)$, where I_{σ} and I_{π} indicate the peak intensities in the σ and π spectra (Supplementary Figs 4–5). Furthermore, the polarized emission spectra taken from a single nanorod (Fig. 1f) show the same σ and π spectral line shapes, verifying that the observed polarization behaviour originates exclusively from the intrinsic crystal structure and not from the collective effect of the assembled structure.

Three-dimensional orientation analysis

Note that the α spectrum is identical to the π spectrum in the $^5D_{0} - ^7F_{2}$ (magnetic dipole) band and the σ spectrum in the $^5D_{0} - ^7F_{2}$ (electric dipole) band (Fig. 1a). This can be understood considering that the radiation electric field is parallel to the electric dipole and perpendicular to the magnetic dipole (Fig. 1d). This peculiar aspect of polarization offers the opportunity to measure the three-dimensional rod orientation precisely. Defining the rod orientation in the laboratory frame by the polar and azimuthal angles (θ, ϕ) (Fig. 1g), it is possible to express the two measured polarized photoluminescence intensities I_{σ} and I_{π} (the two indices refer to the axis of propagation and the axis parallel to the analyser, respectively) as functions of θ and ϕ. In the case of the magnetic dipole transition,

\[I_{\sigma} = I_{\sigma}(\cos^2\theta + I_{\sigma}\sin^2\theta) \]

\[I_{\pi} = I_{\pi}(\sin^2\theta \sin^2\phi + I_{\pi}(\cos^2\theta \sin^2\phi + \cos^2\phi)) \]

where I_{σ} and I_{π} indicate the relative intensities of the σ and π configurations. By solving these equations simultaneously with their equivalents for the electric dipole transition (Supplementary equations (4) and (5)), one can determine the set of (θ, ϕ) without consideration of the absolute intensities. Errors that may occur with the overall signal fluctuation from any extrinsic parameter can be avoided in this ratiometric line shape analysis. When regarding an ensemble of nanorods that acquires a partial orientation toward a preferential direction (Fig. 1h), the order parameter, defined by $f = (3\cos^2\theta - 1)/2$, can be deduced from the following equations (written here also for the magnetic dipole transition):

\[I_{\pi} = I_{\pi}(\cos^2\theta) + I_{\pi}(1 - \langle \cos^2\theta \rangle) \]

\[2I_{\pi} = I_{\pi}(1 - \langle \cos^2\theta \rangle) + I_{\pi}(1 + \langle \cos^2\theta \rangle) \]

where I_{π} and I_{π} indicate the two polarized photoluminescence intensities perpendicular and parallel to n. A complete description for obtaining n (similar to the way of obtaining θ and ϕ for a single nanorod) and then I_{π} and I_{π} from a system with unknown n is provided in Supplementary Section II.

Flow shear measurement

This capability to analyse the collective rod orientation was used to probe the local arrangement of nanorods induced by the shear flow. The stress-optical law describes the direct correlation between the shear rate ($\dot{\gamma}$) and f, which is proportional to the induced flow birefringence (Δn). Measuring Δn allows us to deduce the value of $\dot{\gamma}$ and the related rheological parameters of fluids. The rheological properties of bulk fluids have often been studied in this way. However, so far, the stress-optical method has not been applicable to local measurements because birefringence is an integrated signal throughout the whole light pathway across the medium. Polarized photoluminescence, in contrast, enables a microscopic focal volume in the middle of the medium to be addressed. Local stress-optical analysis and three-dimensional mapping can therefore be attempted when taking advantage of the high sensitivity and resolution provided by confocal microscopy.

We first studied the flow of a dilute colloidal nanorod suspension in a capillary tube. Figure 2a graphically shows the characteristic general aspect of the rod orientation in a Poiseuille flow. Rods are highly oriented near the wall where a large shear stress ($\tau = \mu \cdot \dot{\gamma}$, where μ is dynamic viscosity) is applied, and are disordered at the centre where τ approaches zero. The photoluminescence spectrum observed from the whole capillary volume should be partially polarized in correlation with the average shear rate ($\dot{\gamma}$), which is proportional to the flow rate. Figure 2b shows the intensity variation of a polarized photoluminescence emission peak $I_{\pi}(\lambda = 587 \text{ nm})$, observed with an analyser perpendicular to the capillary) while increasing the flow rate in steps. The initially disordered nanorods start to orient when the suspension flows. The increment of I_{π} is directly proportional to f, according to equation (3). Even a very small change in the flow rate of 5 μm min$^{-1}$ (~0.1 mm s$^{-1}$ in average velocity) produces an appreciable change in I_{π}, ensuring the high sensitivity of the method.

To examine the validity of this polarized photoluminescence-based stress-optical measurement, it is necessary to compare it with the traditional method based on birefringence measurement. An experiment was implemented using a microfluidic channel with a rectangular cross-section, from which the photoluminescence and birefringence could be simultaneously observed. Figure 2c displays the gradual increase of flow birefringence while increasing the flow rate, which can be converted into $\dot{\gamma}$. The corresponding polarized photoluminescence line shape, collected from a section of the channel volume with an analyser perpendicular to the flow direction, also changes towards the shape of the α spectrum, implying higher f with higher $\dot{\gamma}$ (Fig. 2d). The optical retardation ($\delta = \Delta n \cdot d$, where d is the channel thickness) profiles across the channel width for different $\dot{\gamma}$ are shown in Fig. 2c. These profiles represent the integrated birefringence through the channel depth. The δ value at the channel centre is non-zero due to the contribution of shear at the top and bottom surfaces of the channel. This illustrates why local stress-optical analysis cannot be achieved by birefringence measurements alone. In Fig. 2f, the δ values averaged over the image plane are plotted (green circles) along with the f values deduced from the line shape analysis of the polarized photoluminescence spectra (red triangles) collected over the same image plane. These two independently measured quantities display an identical evolution as a function of $\dot{\gamma}$ (top abscissa axis). An excellent agreement is also found with a theoretical calibration curve for f (blue line) as a function of $\dot{\gamma}/\Omega$ (top abscissa axis)$^{\nu}$ when Ω, the rotational diffusion coefficient, was set to be 0.5 s$^{-1}$ for the best fitting. Theoretically, Ω is given as

\[\Omega = \frac{3k_{\beta}T}{16\pi\eta_{0}a^{3}} \left(-1 + 2 \ln \frac{2a}{\nu} \right) \]
Approaches zero. When the channel wall, where the channel centre, the two spectra are almost identical, because the local director of the principal shear direction is constantly normal to the scanning plane. This yapp profile is similar to the inverted pyramidal shape theoretically predicted for a Poiseuille flow in a rectangular channel. This result implies the near-Newtonian rheology of the dilute LaPO₄:Eu nanorod suspension, which thus seems to be suited for performing the stress-optical analysis. Meanwhile, the yapp map constructed over the horizontal scanning section with the semicircular constriction (Fig. 3e), the region of maximum yapp (that is, maximum f) is deviated towards the upstream (left side) and away from the constriction wall. Similar asymmetric birefringence profiles have also been reported in the study of viscoelastic polymer suspensions.

Computational analysis

Examining the asymmetry of the yapp map (Fig. 3e) is imperative for establishing a reliable stress-optical analysis. Therefore, we conducted a computational analysis of the rod-orientation dynamics. The details of the method and results are provided in Supplementary Section III and Supplementary Fig. 7. This study reveals that the discrepancy between yapp and the real shear rate y originates in the advection and non-instantaneous reorientation of the particle. The Omega value calculated with the measured viscosity and average nanorod size is 10 s⁻¹, which is an order of magnitude greater than 0.5 s⁻¹ from the calibration curve fitting. We estimate that the collective behaviour of nanorods with surface charge-mediated long-range repulsive interactions or size polydispersity are responsible for such a difference.

The above results guarantee a reliable stress-optical measurement by analysing the polarized photoluminescence of colloidal LaPO₄:Eu nanorods. On this basis, local detection of y was tested for a geometrically complex flow generated in a microfluidic channel with a constriction (Fig. 3a). Confocal microscopy with laser excitation at 394 nm (F₁₀⁻⁺₁₁₁ transition) was performed for the local photoluminescence measurement. The polarized photoluminescence spectra emitted from focal spots positioned at the channel wall and centre (indicated by red arrows in Fig. 3a) are plotted in Fig. 3b. At the wall, where y reaches its maximum, the two spectra obtained with analyser angles of 0° and 90° exhibit contrasting line shapes that are close to the π and σ spectra, respectively. However, at the channel centre, the two spectra are almost identical, because y approaches zero. When the flow rate was abruptly changed, the resulting spectral fluctuation at a fixed focal position could be recorded with the time resolution available with the spectrometer.

The scanning operation of the confocal microscope allowed the construction of tomographic maps of such a local shear measurement over any scanning section. Figure 3c presents polarized photoluminescence intensity maps for a peak wavelength of 587 nm over vertical and horizontal scanning sections (Fig. 3a). From each set of these intensity maps, a corresponding map of the apparent shear rate yapp can be constructed by simple image processing using equations (3) and (4) and the f versus y calibration curve in Fig. 3f. Note that, because the f versus y curve is not linear, the accuracy of the determination of yapp should depend on its value. However, the relative uncertainty, Δy/y, estimated from the derivative of the f versus y curve, varies weakly as soon as y/Ω > 1 (Supplementary Fig. 6). This is advantageous for an accurate determination of yapp in a wide range extending over 100 s⁻¹. The Δy/y value in our experiment is smaller than 30%. Figure 3d shows a surface plot of the yapp profile over the vertical scanning section. In this case, the local director of y, that is, the principal shear direction, is constantly normal to the scanning plane. This yapp profile is similar to the inverted pyramidal shape theoretically predicted for a Poiseuille flow in a rectangular channel. This result implies the near-Newtonian rheology of the dilute LaPO₄:Eu nanorod suspension, which thus seems to be suited for performing the stress-optical analysis. Meanwhile, the yapp map constructed over the horizontal scanning section with the semicircular constriction (Fig. 3e), the region of maximum yapp (that is, maximum f) is deviated towards the upstream (left side) and away from the constriction wall. Similar asymmetric birefringence profiles have also been reported in the study of viscoelastic polymer suspensions.

Figure 2 | Stress-optical measurements of a flowing nanorod suspension. a. Schematic illustration of the orientation of colloidal nanorods under Poiseuille flow with typical velocity (v) and shear stress (σ) profiles. b. Flow rate-dependent photoluminescence (PL) intensity at λ = 587 nm from a colloidal LaPO₄:Eu nanorod suspension (0.9 vol%) in ethylene glycol) flowing in a capillary tube (diameter = 1 mm). Flow rate was increased in steps of 5 μl min⁻¹ each 100 s. c. Optical transmission microscopy image of the same suspension flowing through a rectangular microfluidic channel (100 μm width, 50 μm height) for three different average shear rates (Ω). The channel was placed between crossed polarizers (indicated by arrows). d. Polarized photoluminescence spectra of the ⁵D₆⁻→⁷F₁ transition (black line) and the fit (red line) by the weighted sum of I₁ (cyan line) and I₂ (pink line). Values of A = cos²θ and B = 1 - cos²θ, the weight coefficients of I₁ and I₂ obtained from the fit, are indicated. e. Optical retardation (δ) profiles across the channel width at different y. f. Variations of average δ (pink triangles) and average order parameter obtained by analysis of the polarized photoluminescence spectra (green circles) as functions of y. The blue line is a theoretical calibration curve as a function of y/Ω with the stress-optical law.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
the nanorods in a non-homogeneous flow. When the streamlines are not parallel around the constriction, the nanorods advected by the flow experience time-dependent local shear that varies over a typical timescale $\tau_d = H/U$ (where H is the channel width and U the flow velocity) taken to flow over the constriction. However, the response of the probability distribution for the nanorods’ orientation occurs on the rotational diffusion timescale $\tau_d = \Omega^{-1}$. The Peclet number is the ratio of these two timescales, $\text{Pe} = U/H\Omega$, and measures the relative rates of advection and diffusion. For small Pe, the response is instantaneous, and the stress-optical law holds everywhere, whereas for intermediate to large Pe, the orientation of individual particles depends on the local shear but also on the shear to which the particles have been exposed previously, leading to history effects. Indeed, the computationally obtained γ_{app} map for Pe = 0.5 (Supplementary Fig. 8b) is almost identical to the theoretical γ map, which is symmetric (Supplementary Fig. 8a). However, the Pe given for our experiment is 5 when applying the $\Omega = 0.5 \text{ s}^{-1}$ obtained from the calibration curve (Fig. 2f). History effects are thus non-negligible and explain the discrepancy between the apparent and real shear rates: the computationally obtained γ_{app} map for Pe = 5 (Fig. 3f) matches well the experimental γ_{app} map (Fig. 3e), both qualitatively (highly ordered upstream and rapid loss of orientation coherence downstream) and quantitatively.

These computational results suggest that, to produce reliable γ_{app} maps, the Pe number need to be small enough to suppress the history effects. This can be realized by reducing the particle size, which would rapidly increase Ω (equation (5)). We estimate that if the LaPO$_4$:Eu nanorod size is reduced by a factor of three (Pe = 0.2), the stress-optical analysis and the tomographic γ mapping would be satisfactory for most microfluidic systems of interest.

Conclusions

We have presented a simple method to measure the polarized photoluminescence spectra (in σ, π, and α configurations) of LaPO$_4$:Eu nanorods from their electrically modulated liquid-crystal-phase. The three-dimensional orientation of an individual nanorod or the director (\mathbf{n}) and order parameter (f) of a rod assembly can be precisely determined by analysing their polarized photoluminescence line shape. This approach allowed us to investigate the rod-orientation dynamics of the colloidal nanorods flowing in a microfluidic channel. The local shear rate ($\dot{\gamma}$) profiles over sections of the fluid volume were deduced based on the stress-optical law. A reliable estimation of the $\dot{\gamma}$ profile was obtained over a region where the stream lines are parallel. However, a discrepancy between theory and experiment was found for non-parallel flows involving rod advection and reorientation. A computational study verified that this discrepancy is due to the non-instantaneous reorientation of nanorods and that it could be effectively suppressed by decreasing the nanorod size. With further optimization of the nanorod size, this technique is promising in that it yields a straightforward stress-optical method for tomographic mapping and real-time monitoring of local $\dot{\gamma}$ with the high spatial resolution necessary for applications in microfluidics and biofluidics. Furthermore, the
presented orientation analysis might be exploited for the study of the complex dynamics of other microscopic systems (such as cells, genes and enzymes) by using rare-earth luminophores as orientation markers.

Methods

Methods and any associated references are available in the online version of the paper.

Received 4 August 2015; accepted 5 May 2017; published online 19 June 2017; corrected after print 26 September 2017

References

1. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).
2. Hu, J. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).
3. Forkey, J. N., Quinlan, M. E., Shaw, M. A., Corrie, J. E. T. & Goldman, Y. E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).
4. Ohmachi, M. et al. Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V. Proc. Natl Acad. Sci. USA 109, 5294–5298 (2012).
5. Wang, Y. & Herron, N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532 (1991).
6. McIntyre, C. R. & Sham, L. J. Theory of luminescence polarization anisotropy in quantum wires. Phys. Rev. B 45, 9443–9446 (1992).
7. Califano, M. & Zunger, A. Anisotropy of interband transitions in InAs quantum wires: an atomic theory. Phys. Rev. B 70, 165317 (2004).
8. Chen, H.-Y., Yang, Y.-C., Lin, H.-W., Chang, S.-C. & Gwo, S. Polarized photoluminescence from single GaN nanorods: effects of optical confinement. Opt. Express 16, 13465–13475 (2008).
9. Binnemans, K. & Göller-Walrand, C. C. A. Application of the Eu3+ ion for site symmetry determination. J. Rare Earth. 14, 173–180 (1996).
10. Hänninen, P. H., Ala-Kleme, T. & Härmä, H. Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects (Springer, 2011).
11. Sayre, E. V. & Freed, S. Spectra and quantum states of the europionic ion in crystals. II. Fluorescence and absorption spectra of single crystals of europic ethylsulfate nonahydrate. J. Chem. Phys. 24, 1213–1219 (1956).
12. Brecher, C., Samelson, H., Lepmicki, A., Riley, R. & Peters, T. Polarized spectra and crystal-field parameters of Eu3+ in YVO3. Phys. Rev. 155, 178–187 (1967).
13. DeShazer, L. G. & Dieke, G. H. Spectra and energy levels of Eu3+ in LaCl3. J. Chem. Phys. 38, 2190–2199 (1963).
14. Brecher, C. Europium in the ultraphosphate lattice: polarized spectra and structure of EuP5O14. J. Chem. Phys. 61, 2297–2315 (1974).
15. Kim, J. et al. LaPO4 mineral liquid crystalline suspensions with outstanding colloidal stability for electro-optical applications. Adv. Funct. Mater. 22, 4949–4956 (2012).
16. Ongsager, L. The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).
17. Kim, J. et al. Optimized combination of intrinsic and form birefringence in oriented LaPO4 nanorod assemblies. Appl. Phys. Lett. 105, 061102 (2014).
18. Galymetdinov, Y. G. et al. Polarized luminescence from aligned samples of nematogenic lanthanide complexes. Adv. Mater. 20, 252–257 (2008).
19. Bretherton, F. P. The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284–304 (1962).
20. Cerf, R. & Scheraga, H. A. Flow birefringence in solutions of macromolecules. Chem. Rev. 51, 185–261 (1952).
21. Fisher, A. B., Chien, S., Barakat, A. I. & Nerem, R. M. Endothelial cellular response to altered shear stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L529–L533 (2001).
22. Baroud, C. N., Gaillea, F. & Danla, R. Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010).
23. Oddy, M. H., Santiago, J. G. & Mikkelsen, J. C. Electrokinetic instability micromixing. Anal. Chem. 73, 5882–5882 (2001).
24. El-Ali, J., Sperger, P. K. & Jensen, K. F. Cells on chips. Nature 442, 403–411 (2006).
25. Lindkne, R., Rossi, M., Groffe, S. & Westerweel, J. Micro-particle image velocimetry (μPIV): recent developments, applications, and guidelines. Lab Chip 9, 2551–2567 (2009).
26. Lee, S. J. & Kim, S. Advanced particle-based velocimetry techniques for microscale flows. Microfluid. Nanofluid. 6, 577–588 (2009).
27. Fang, Y.-P. et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc. 125, 15847–15858 (2003).
28. Kim, J., Peretti, J., Lahlil, K., Boilot, J.-P. & Gacoin, T. Optical anisotropy thin films by shear-oriented assembly of colloidal nanorods. Adv. Mater. 25, 3295–3300 (2013).
29. Lodge, A. S. Variation of flow birefringence with stress. Nature 176, 838–839 (1955).
30. Philippoff, W. Flow-birefringence and stress. Nature 176, 811–812 (1956).
31. Philippoff, W. Stress-optical analysis of fluids. Rheol. Acta 1, 371–375 (1961).
32. Suter, S. P. & Wayland, H. Quantitative analysis of two-dimensional flow by means of streaming birefringence. J. Appl. Phys. 32, 721–730 (1961).
33. Fuller, G. G. Optical rheometry. Adv. Rev. Fluid Mech. 22, 387–417 (1990).
34. Cressely, R., Hochuart, R., Wydro, T. & Decruppe, J. P. Numerical evaluation of extinction angle and birefringence in various directions as a function of velocity gradient. Rheol. Acta 24, 419–426 (1985).
35. Leal, L. G. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes (Cambridge Univ. Press, 2006).
36. Ober, T., Haward, S., Pipe, C., Soulages, J. & McKinley, G. Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol. Acta 52, 529–546 (2013).

Acknowledgements

The authors thank C. Frot and N. Taccoen for the fabrication of microfluidic channels, C. Henry de Villeneuve for atomic force microscopy and A. Agrawal for graphics. This research was partially supported by LASERLAB-EUROPE (grant agreement no. 284464 from the European Community’s Seventh Framework Programme). G.A., E.F. and C.N.B. acknowledge funding by the ERC under grant agreement 278248 (Multicell).

Author contributions

J.K., J.-P.B., J.P. and T.G. developed the concept. J.K. performed synthesis, fabrication and characterizations. S.M. performed computational analysis. J.K. and M.H. performed polarized photoluminescence measurements. I.K., E.F., M.H., E.C. and G.A. performed microfluidic experiments. I.M. and M.H. prepared optical set-ups. J.K., L.M. and J.P. performed polarization analysis. C.N.B. and A.M.B. provided advice regarding the research. T.G. and J.P. supervised the research. All authors contributed to writing the manuscript.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to J.K. and T.G.

Competing financial interests

The authors declare no competing financial interests.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Methods

Synthesis of LaPO$_4$:Eu nanorods. Aqueous solutions of La(NO$_3$)$_3$ (0.04 M), Eu(NO$_3$)$_3$ (0.01 M) and (NH$_4$)$_2$HPO$_4$ (0.05 M) were mixed at 0 °C and then vigorously stirred for 1–2 min, resulting in an instant precipitation of LaPO$_4$:Eu seed rods with a milky aspect. The mixture was transferred into a lab-made glass tube reactor and sealed to endure high pressure. The reactor was rapidly heated to 170 °C and left for 3 h without stirring. The product was centrifuged at 11,000 r.p.m. for 1 h and the pellet was re-dispersed in a 0.01 M nitric acid solution. Further purification was conducted by dialysis in a 0.01 M aqueous nitric acid solution for more than two days using a dialysis membrane (Spectra/Por, MWCO = 12,000–14,000). The aqueous LaPO$_4$:Eu nanorods obtained in this way were then transferred into ethylene glycol by distillation using a rotary evaporator. The nematic liquid-crystalline phase was obtained by controlling the final rod-volume fraction and the ionic concentration as described in the ref. 15.

Fabrication of rods oriented films. A lab-made blade coating machine was used for the directed assembly of LaPO$_4$:Eu nanorods. A 20 µl volume of nematic gel phase suspension was deposited on a glass substrate. The substrate was dragged under a fixed coating blade with a constant speed (∼500 µm s$^{-1}$) and a gap thickness of 50 µm. The coated part was continuously heated on the heating plate at 140 °C to evaporate solvent. More detail is provided in ref. 28.

Optical microscopy measurements. A conventional optical microscope (Olympus BX51WI) equipped with a charge-coupled device (CCD) camera (DTA 1600A) was used for the polarized fluorescence and birefringence measurements presented in Fig. 2. Birefringence was measured using a Berek compensator and also from the transmission images of the samples captured between crossed polarizers. Photoluminescence of LaPO$_4$:Eu was excited by a light-emitting diode illuminator (Roithner Laser Technik InGaN-SMB1W-395 nm/100 mW), producing an emission peak of 14 nm full width at half maximum of 395 nm, which covers the 5D$_0$–7F$_{0}$ transition ($λ = 394$ nm) of Eu$^{3+}$ ions doped in a LaPO$_4$ crystal matrix. The photoluminescence emission from samples was filtered by a polarizer and analysed with a monochromator (SpectraPro ARC 300i) equipped with a liquid-nitrogen-cooled CCD detector. The photoluminescence tomography measurements (for the local stress-optical analysis) presented in Fig. 3 were performed using a customized laser-scanning confocal microscopy (SCM) system. The set-up had three parts: (1) an excitation laser source comprising a Ti:sapphire laser (Chameleon ULTRA-2, Coherent) combined with a second harmonic generator (APE); (2) an optical microscope (Olympus IX71, UPlanSapo objective, ×100, 1.4 NA) equipped with a piezo-scanning stage (Physik Instrument GmbH); and (3) detectors, comprising single-photon avalanche diodes (PerkinElmer) and a cooled electron-multiplying (EM) CCD camera (PhotonMax 512B, Roper Scientific) connected to the spectrometer (ARC SpectraPro 150). A monochromatic (394 nm) laser with an intensity of a few mW was guided to the sample fluidic channels through the objective. The photoluminescence signals in different polarization states and at different wavelength ranges were obtained with an analyser and bandpass filters (Semrock, FF01-578/16-25 and FF01-660/14-25) placed between the pinhole and the detectors. The resolution limit of the confocal system with 394 nm excitation was ∼200 nm in x-y plane and 1 µm in the z direction (observation axis).

Electro-optical measurement. A commercial homeotropic electro-optical cell from Instec (Supplementary Fig. 1) was used to measure the polarized photoluminescence from the nematic LaPO$_4$:Eu nanorod suspension in both transverse and homoeotropic orientations. A 10 µl volume of the sample suspension was injected into a 20-µm-thick cell gap through the cell opening. A function generator connected with a voltage amplifier (FLC-A400D) was used to apply a high-frequency alternating electric field (1 V µm$^{-1}$, 100 kHz) with zero offset to avoid the short-circuit problem.

Single-particle spectroscopy. Polarized photoluminescence from a single nanorod was measured in three steps: (1) mapping the positions and orientations of nanorods, sparsely deposited on a substrate with gold microgrills, by atomic force microscopy (AFM); (2) detecting the polarized emission spectra on the known positions by SCM; and (3) checking the precise orientation angle of each nanorod by SEM. Supplementary Fig. 3 presents corresponding SCM, AFM, and SEM pictures in different scales, used for tracking of a single nanorod.

Microfluidic experiments. A 100-µl-volume glass syringe (Hamilton) and a syringe pump (KD Scientific) were used to create a flow of the LaPO$_4$:Eu nanorod suspension. A 1-mm-diameter quartz capillary tube was used as a flow channel for the experiment corresponding to Fig. 2b. Lab-made microfluidic channels with cross-section dimensions of 100 × 50 µm2 and 50 × 50 µm2 with a constriction were used for the experiments corresponding, respectively, to Figs 2c–f and 3. Lab-made channels were attached on 200-µm-thick glass coverslips as bottom substrates to facilitate the local photoluminescence measurement by SCM.

Computational analysis. The flow velocity and its gradient were obtained numerically using boundary integral methods37. The dynamics of individual rods in response to local shear and flow rotation were obtained by generalizing the classical Jeffery’s orbits of elongated particles38. The probability distribution of the particle’s orientation was then computed numerically to obtain the distribution of γ_{app} using the stress-optical law.

Data availability. The data sets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

37. Elschner, J. & Pozrikidis, C. Boundary integral and singularity methods for linearized viscous flow. J. Appl. Math. Mech. 74, 104–104 (1994).
38. Jeffery, G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161–179 (1922).
Corrigendum: Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography

Jongwook Kim, Sébastien Michelin, Michiel Hilbers, Lucio Martinelli, Elodie Chaudan, Gabriel Amselem, Etienne Fradet, Jean-Pierre Boilot, Albert M. Brouwer, Charles N. Baroud, Jacques Peretti and Thierry Gacoin

Nature Nanotechnology **12**, 914–919 (2017); published online 19 June 2017; corrected after print 26 September 2017

In the version of this Article originally published, the label in Fig. 1d that said ‘σ = π’ was incorrect, and should have said ‘α = π’. This has been corrected in the online version and the correct panel is shown here. This change does not affect the results of the paper.