Ursodeoxycholic Acid Inhibits Liver X Receptor α-mediated Hepatic Lipogenesis via Induction of the Nuclear Corepressor SMILE*§

Small heterodimer partner interacting leucine zipper protein (SMILE) has been identified as a nuclear corepressor of the nuclear receptor family. Here, we examined the role of SMILE in the regulation of nuclear receptor liver X receptor (LXRα)-mediated sterol regulatory element binding protein-1c (SREBP-1c) gene expression. We found that SMILE inhibited T0901317 (T7)-induced transcriptional activity of LXRα, which functions as a major regulator of lipid metabolism by inducing SREBP-1c, fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC) gene expression. Moreover, we demonstrated that SMILE physically interacts with LXRα and represses T7-induced LXRα transcriptional activity by competing with coactivator SRC-1. Adenoviral overexpression of SMILE (Ad-SMILE) attenuated fat accumulation and lipogenic gene induction in the liver of T7 administered or of high fat diet (HFD)-fed mice. Furthermore, we investigated the mechanism by which ursodeoxycholic acid (UDCA) inhibits LXRα-mediated lipogenic gene expression. Interestingly, UDCA treatment significantly increased SMILE promoter activity and gene expression in an adenovirus monophosphate-activated kinase-dependent manner. Furthermore, UDCA treatment repressed T7-induced SREBP-1c, FAS, and ACC protein levels, whereas knockdown of endogenous SMILE gene expression by adenovirus SMILE shRNA (Ad-shSMILE) significantly reversed UDCA-mediated repression of SREBP-1c, FAS, and ACC protein levels. Collectively, these results demonstrate that UDCA activates SMILE gene expression through adenosine monophosphate-activated kinase phosphorylation, which leads to repression of LXRα-mediated hepatic lipogenic enzyme gene expression.

Liver X receptor α (LXRα)§ is a member of the nuclear receptor superfamily and heterodimerizes with retinoid X receptor (RXR). LXRα normally binds to the DR-4 motif known as the LXR response element (LXRE) in their target genes and is activated by specific cholesterol metabolites such as oxysterols or synthetic nonsteroidal LXR ligands (T0901317) (1–3). Two isoforms of LXR exist with different expression patterns. LXRβ is expressed ubiquitously, whereas LXRα is mainly expressed in liver, adipose tissue, and macrophages known to play an important role in lipid metabolism (1, 4, 5). LXRα has emerged as an important regulator of gene expression involved in lipid and cholesterol metabolism (6, 7). LXRs play an important role in fatty acid synthesis by directly or indirectly controlling lipogenic gene expression. LXRα-mediated fatty acid synthesis is controlled by sterol regulatory element-binding protein-1c (SREBP-1c), which regulates gene expression involved in the lipogenic pathway, and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in hepatocytes (8). Consistently,
SMILE Regulates LXRα Transactivation

LXRα-deficient mice display markedly reduced hepatic fatty acid synthesis and triglycerides (9). LXRα activity is regulated by agonists, antagonists, SIRT1, NCoR, and SMRT (10, 11). We previously demonstrated that orphan nuclear receptor DAX-1 inhibits LXRα transcriptional activity and improves hepatic lipogenesis (12).

Small heterodimer partner interacting leucine zipper protein (SMILE) belongs to the basic leucine zipper family transcription factor. In contrast to other basic leucine zipper proteins, SMILE cannot bind to DNA as a homodimer, unlike other basic leucine zipper proteins (13). SMILE has also been proposed as a coactivator of activating transcription factor 4 (14). Moreover, we have revealed that SMILE functions as a nuclear co-repressor of the estrogen receptor (ER), glucocorticoid receptor (GR), constitutive androstane receptor (CAR), hepatocyte nuclear factor 4α, and estrogen receptor-related receptor γ (ERR γ) (15–17). Moreover, we reported that curcumin induces SMILE gene expression through a liver kinase B1/adenosine monophosphate-activated kinase (AMPK) pathway and represses endoplasmic reticulum (ER) stress-responsive gene transcription (18). A recent study demonstrated that SMILE activates tumor suppressor p53 and inhibits the function of BMP-6 by interacting with Smads (19, 20). However, the detailed mechanism by which SMILE regulates expression of genes involved in hepatic lipid metabolism remains unknown.

Bile acids affect triglyceride (TG) homeostasis and have recently emerged as a key metabolic regulator of glucose and lipid metabolism (21). Ursodeoxycholic acid (UDCA) is a bile acid and is used to treat several liver diseases such as primary biliary cirrhosis and hepatitis C (22, 23). UDCA induces hepatobiliary secretion and decreases retention of toxic hydrophobic bile acids, thereby rendering bile more hydrophilic and cytotoxic (23). Moreover, UDCA has beneficial effects on cholestatic disorders due to its anti-apoptotic, anti-fibrotic, and cytotoxic (23). Moreover, UDCA has beneficial effects on biliary bile acids, thereby rendering bile more hydrophilic and cytotoxic (23). Moreover, UDCA has beneficial effects on cholestatic disorders due to its anti-apoptotic, anti-fibrotic, and cytotoxic (23). Moreover, UDCA has beneficial effects on biliary bile acids, thereby rendering bile more hydrophilic and cytotoxic (23).

UDCA treatment increases glutathione synthesis by activating the PI3K/Akt/NrR2 pathway (25) and have beneficial effects on hepatic steatosis and insulin resistance (26, 27). Other bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) prevent hepatic TG accumulation (28). However, the molecular mechanism of UDCA in hepatic lipid metabolism remains largely unknown.

In the present study, we show that SMILE negatively regulates LXRα transcriptional activity by directly interacting with LXRα and competes with the LXRα coactivator SRC-1. Moreover, we observed that SMILE overexpression inhibited LXRα-mediated lipogenic gene expression, whereas SMILE knockdown released UDCA-mediated gene expression of Srebp-1c, Fas, and Acc. Overall, our results suggest that SMILE acts as a novel corepressor of LXRα and UDCA-induced SMILE gene expression, which leads to inhibition of LXRα-mediated hepatic lipogenic gene expression.

EXPERIMENTAL PROCEDURES

Animals and Treatment—C57BL/6 male mice were obtained from Korea Research Institute of Bioscience and Biotechnology (Daejeon, South Korea). Age matched mice (weight, 25–28 g) were maintained on a standard diet under a 12-h light/dark cycle at 22 ± 2°C for 2 weeks with free access to food and water in a pathogen-free facility. UDCA was administered daily orally at a dose of 2 mg, after which the mice had free access to food and water. All animal experiments were approved by the Institutional Animal Care and Use Committee of Chonnam National University.

Materials and Plasmids—The synthetic LXR agonist TO901317 (T7) was purchased from Cayman Chemicals (Ann Arbor, MI). Bile acids (UDCA and CDCA) were purchased from Sigma. The AMPK inhibitor, compound C, was purchased from Calbiochem (San Diego, CA). The reporter plasmids LXRβ-Luc, SREBP-1c-Luc, and SMILE-Luc were described previously (12, 17). pCMV-β-gal, pcDNA3-HA-LXRα, pcDNA3-HA-SRC-1, pcDNA3-ERRγ, pcDNA3-FLAG-SMILE, pgEX4T-1, pgEX4T-1-SMILE, pEBG-empty, pEBG-SMILE, pSUPER-si-empty, and pSUPER-si-SMILE, FLAG-SMILE LXXLL mutants (m1, m2, m3, m4, and m5) were described previously (12, 15, 17). pEBG-LXRα WT, pEBG-LXRα C, pEBG-LXRα DE, and pEBG-LXRα AB were subcloned into the BamHI/KpnI sites of the pEBG vector.

Cell Culture and Transient Transfection Assay—HepG2 and 293T cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum (Cambrex Bio Science, Walkersville, MD) and antibiotics (Invitrogen). The cells were split in 24-well plates at densities of 2–8 × 10^4 cells/well the day before transfection. Transient transfections were performed using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer’s instructions. Total DNA used in each transfection was adjusted to 1 µg/well by adding the appropriate amount of empty vector, and CMV-β-galactosidase plasmids were cotransfected as an internal control. Cells were harvested 40–48 h after the transfection for luciferase and β-galactosidase assays. Luciferase activity was normalized to β-galactosidase activity.

Preparation of Recombinant Adenovirus—The recombinant adenovirus encoding human SMILE has been described previously (15). The shSMILE (AAGGCGTCGCTGCTCTTAAA) constructs were constructed with a 21-mer double-stranded oligonucleotide containing +1053 to 1074 of the SMILE cDNA sequence into the pB/S/6 vector. The cDNA encoding shSMILE was cloned into the pAdTrack-CMV vector. pAdTrack-CMV-shSMILE was recombined with adenoviral gene carrier vector by transformation in pretransformed adEasy-Bj21-competent cells. The shAMPKα2 (ATCATCTTATCATTGACAACTCGGAGAA) were constructed using double-stranded oligonucleotides containing +1071 to 1094 of the AMPKα2 cDNA sequence into the pB/SU6 vector and then adenoviral vector systems were used as previously described (12).
sion assay and was consistently in excess of 85%. Hepatocytes were then seeded onto collagen type 1-coated 60-mm dishes as described previously (12).

Triglyceride and Cholesterol Measurements—Once the animals were sacrificed, blood was immediately collected, and serum levels of TG and cholesterol were measured using chemistry analyzer kits (Hitachi 7150; Tokyo, Japan).

Histomorphological Analysis—Liver tissues were processed in paraffin after fixation in 10% neutral-buffered formalin. Tissue sections (3–4 μm thick) were deparaffinized, rehydrated, and stained with hematoxylin and eosin (H&E) for histological examination. The histological evaluation was carried out using a BX51 light microscope (Olympus, Tokyo, Japan). Histological damage in H&E sections was examined under a microscope at ×200 magnification.

Oil Red-O Staining—Fresh liver tissues were embedded carefully in OCT in a plastic mold after freezing at −80 °C. Tissue sections (8–10 μm thick) were incubated for 30 min at room temperature on a slide. The tissues were fixed with 10% formalin for 1 h, and then washed 60% isopropyl alcohol. Then 0.6% Oil Red-O working solution (w/v, 60% isopropyl alcohol and 40% water) was added to each slide for 30 min at room temperature, the solution was removed, and deionized water was added to wash the tissue. Fat droplets in the liver were stained red.

RNA Interference—SMILE knockdown was performed using the pSuper vector system (15). HepG2 cells were transfected with siRNA constructs using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. The siRNA-transfected cells were subjected to the second transfection as indicated in the siRNA constructs using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction. The cells were cotransfected with Ad-SMILE and HepG2 cells. We found that adenoviral overexpression of SMILE, Srebp-1c, Fas, and Acc gene expression was analyzed by quantitative RT-PCR as described previously (17). The primers used for human/rat SMILE, SREBP-1c, FAS, ACC, and β-actin PCR were as follows: human/mouse SMILE, forward, 5'-AAAAGGAGCAGAAAGTCC-3' and reverse, 5'-CTCTGAAAGCGAGGTGTC-3'; SREBP-1c, forward, 5'-TGAGAAGCGTACCGGGCTGCTATGAATG-3' and reverse, 5'-AGAGCAGTGTCATCGTGGACT-3'; ACC, forward, 5'-CCGAGGAGAGTCTCAATTTCC-3' and reverse, 5'-GTACCCTACCATCTGGTTC-3'.

Western Blot Analysis and Co-immunoprecipitation (Co-IP)—Western blots and co-IP analyses were performed as described previously (17). Briefly, HepG2 cells were transfected with the indicated expression vectors or small interfering RNA oligonucleotides and treated with T7. Cell lysates were prepared 48 h after transfection and separated on 10% SDS-PAGE gels. The proteins were transferred to a nitrocellulose membrane (Amer- sham Biosciences) according to the manufacturer's instruction. The antibodies and developed after incubation with a secondary antibody using an enhanced chemiluminescence kit (Amer- sham Biosciences) according to the manufacturer’s instruction.

Statistical Analysis—Data are expressed as mean ± S.E. The statistical analysis was performed using the two-tailed Student’s t test or one-way analysis of variance and results were considered to be statistically significant at p < 0.05 or p < 0.001.

RESULTS

SMILE Decreases LXRα-mediated Lipogenic Enzyme Gene Expression—To investigate the role of SMILE in T7-induced lipogenic gene expression, we infected adenovirus expressing SMILE (Ad-SMILE) in T7-treated mouse primary hepatocytes and HepG2 cells. We found that adenoviral overexpression of SMILE significantly decreased T7-induced protein levels of LXRα target genes Srebp-1c, Fas, and Acc (Fig. 1, A and B). In addition, adenoviral overexpression of SMILE significantly decreased mRNA levels of SREBP-1c, FAS, and ACC in both primary mouse hepatocytes and HepG2 cells (Fig. 1, C and D). Taken together, these results indicate that SMILE inhibits LXRα-mediated lipogenic enzyme gene expression.

SMILE Competes with SRC-1 to Decrease LXRA Transcriptional Activity—To confirm whether SMILE inhibits LXRα transcriptional activity, 293T and HepG2 cells were co-transfected with SMILE, the LXRα expression vector, and the LXRα-specific reporter in the presence or absence of the LXRα agonist T7. Overexpression of SMILE strongly inhibited the activity of
the LXRα-mediated reporter containing the LXR binding site (LXRE-luc) (Fig. 2, A and B). It has been reported that SRC-1 acts as a co-activator of LXRα to activate LXRα transcriptional activity (29). To define the functional mechanism of LXRα repression by SMILE, we employed competition experiments using transient transfection of HepG2 cells. We observed that SMILE-mediated repression of LXRE-luc and Srebp-1c promoter activity were significantly released by SRC-1 co-transfection (Fig. 2, C and D). These results suggest that SMILE competes with SRC-1 to decrease LXRα-mediated transcriptional activity. Next, we performed co-IP assays using LXRα, SRC-1, and FLAG-SMILE antibodies to confirm whether SMILE inhibits the protein interaction between LXRα and SRC-1. Overexpression of SMILE decreased the endogenous interaction of SRC-1 with LXRα. In contrast, overexpressed SMILE strongly interacted with LXRα (Fig. 2E). Moreover, we performed ChIP assay to examine whether SMILE also inhibited recruitment of LXRα on the Srebp-1c promoter. We found that SMILE abolished recruitment of LXRα on the Srebp-1c promoter (Fig. 2F). On the basis of inhibition of LXRα DNA binding by SMILE, we hypothesized that the effect of SMILE on LXRα DNA binding was mediated by alterations in the interaction between LXRα and RXR. To investigate this possibility, we performed co-IP assays to test if SMILE affects LXRα/RXRα dimerization. The effect of SMILE on heterodimerization of LXRα/RXRα was determined by co-immunoprecipitation in vitro. The interaction between LXRα and RXRα was suppressed by SMILE expression in a dose-dependent manner (supplemental Fig. S1). These results suggest that SMILE impairs the interaction between LXRα and RXRα, accounting for SMILE-mediated inhibition of LXRα DNA binding, at least in part. Taken together, these results indicate that SMILE physically competes with SRC-1 to repress
LXRα transcriptional activity and leads to the blocking of LXRα DNA binding on the target gene promoter.

SMILE Directly Interacts with LXRα—To determine whether the repression of LXRα transcriptional activity by SMILE is mediated through a direct physical interaction, we performed co-IP assays using LXRα- and SMILE-specific antibodies. Co-IP assays demonstrated that SMILE directly interacts with LXRα in HepG2 cells (Fig. 3A). Next, to confirm whether the interaction between the two proteins is direct or not, we performed *in vitro* GST pulldown assays. GST alone and GST-fused SMILE were bacterially expressed and incubated with *in vitro* translated 35S-labeled LXRα protein. We found that *in vitro* translated 35S-labeled LXRα protein directly interacted with bacterially expressed SMILE, but not with GST alone (Fig. 3B). To further confirm the interaction between SMILE and LXRα in *vivo*, we performed *in vivo* GST pulldown assays upon transfecting cells with GST-alone (pEBG) or GST-SMILE (pEBG-SMILE) with HA-LXRα. After GST purification, HA-LXRα was detected in the coprecipitates only when co-expressed with GST-SMILE but not with GST alone in the presence or absence of the LXRα agonist T7 (Fig. 3C). Previous reports demonstrated that DAX-1 directly interacts with the ligand binding domain of LXRα to compete with SRC-1 (12). To identify the LXRα interacting domain with SMILE, we performed *in vitro* GST pulldown experiments using a series of GST-tagged LXRα mutants (Fig. 3D). We found that SMILE interacted with the LXRα C-terminal, which contains the ligand binding domain and the activation function-2 domain (Fig. 3E). In addition, all LXRα and SMILE GST fusion proteins used in the assays were expressed at comparable levels (Fig. 3E, middle and lower panels). Because the LXXLL motif plays an important role in the regulation of nuclear receptor (30), transfection analyses were carried out using LXXLL mutant constructs to examine whether SMILE-dependent inhibition of LXRα activity is mediated by the LXXLL motif of SMILE. The transient transfection study showed that third (m3) or fourth (m4) single LXXLL motif mutants of SMILE failed to inhibit LXRα transactivation to the level comparable with wild type SMILE. Therefore, these results suggest that the LXXLL motifs are essential for SMILE to inhibit LXRα activity (Fig. 3F). Taken together, these results demonstrate that SMILE directly interacts with LXRα, and the LXXLL motif of SMILE is required to inhibit LXRα activity.

UDCA Induces SMILE Gene Expression—A previous report demonstrated that the bile acid CDCA inhibits T7-induced gene expression of ACCα and other lipogenic enzyme (31) and also reduces hypertriglyceridemia (28). Another natural bile acid, UDCA, also decreases TG level and improves cholestasis...
To test if UDCA improved hepatic lipid metabolism is caused by SMILE, we assessed levels of SMILE mRNA and protein following UDC treatment. UDCA treatment increased SMILE protein levels in a time-dependent manner both in mouse primary hepatocytes and HepG2 cells (Fig. 4, A and B). UDCA was administered to mice to further determine the effects of UDCA on SMILE gene expression in vivo. UDCA treatment (80 mg/kg/day) for 1 week significantly increased SMILE protein levels (Fig. 4C). In addition, we also observed that UDCA strongly increased the SMILE protein level in a dose-dependent manner (Fig. 4D).

(24, 32). To test if UDCA improved hepatic lipid metabolism is caused by SMILE, we assessed levels of SMILE mRNA and protein following UDC treatment. UDCA treatment increased SMILE protein levels in a time-dependent manner both in mouse primary hepatocytes and HepG2 cells (Fig. 4, A and B). UDCA was administered to mice to further determine the effects of UDCA on SMILE gene expression in vivo. UDCA treatment (80 mg/kg/day) for 1 week significantly increased SMILE protein levels (Fig. 4C). In addition, we also observed that UDCA strongly increased the SMILE protein level in a dose-dependent manner (Fig. 4D).

FIGURE 3. Interaction between SMILE and LXRα. A, endogenous interaction between LXRα and SMILE. Protein extracts from HepG2 cells were subject to co-immunoprecipitation (IP) with LXRα or SMILE and the interaction between LXRα and SMILE was determined by Western blotting using the SMILE antibody (left panel) or LXRα antibody (right panel). LXRα and SMILE expression (lower two panels) from the 10% lysate was analyzed by Western blotting (WB) with the indicated antibodies. B, in vitro GST pulldown assay. 35S radiolabeled LXRα protein was incubated with GST-only or GST-SMILE fusion proteins. The input lane represents 10% of total volume of in vitro translated proteins used for binding assay. Protein interactions were detected via autoradiography. C, HepG2 cells were co-transfected with expression vectors for HA-LXRα with pEBG-SMILE (GST-SMILE) or pEBG alone (GST-only) and then treated with dimethyl sulfoxide or T7. Complex formation (upper two panels, GST purification) and the amount of HA-LXRα (lower panel, lysate) used for the in vivo binding assay determined the interaction with the anti-HA antibody. The same blot was stripped and re-probed with an anti-GST antibody (middle panel) to confirm expression levels of the GST fusion protein (GST-SMILE) and the GST control (GST). D, schematic representation of the structures of the LXRα deletion mutants. AB, N-terminal domain; C, DNA binding domain; DE, hinge and ligand binding domain; AF2, activation function-2 domain; Δ, deletion region. E, HepG2 cells were co-transfected with expression vectors for HA-SMILE and indicated pEBG-LXRα (GST-LXRα). The interaction was determined via Western blot using anti-HA. The same blot was stripped and reprobed with anti-GST antibody to confirm expression levels of the GST fusion protein (GST-LXRα mutants) and the GST control (GST-only). F, effects of SMILE LXXLL mutants on LXRα-mediated transcriptional activity. HepG2 cells were cotransfected with reporter vector LXRE-luc, together with indicated expression vector for LXRα, wild-type (WT) FLAG-SMILE or FLAG-SMILE LXXLL mutants (m1, m2, m3, m4, and m5). Luciferase activity was measured 48 h after transfection.
pared the effects of different bile acids on SMILE expression in HepG2 cells. Treatment with UDCA time dependently increased the SMILE mRNA level but not SHP mRNA (Fig. 4E). In contrast, CDCA significantly increased the SHP mRNA level. However, no effect on SMILE gene expression was observed following CDCA treatment (Fig. 4F). Taken together, these results show that UDCA has a positive role in SMILE gene expression and suggest that UDCA-mediated inhibition of LXRα-mediated hepatic lipogenesis may be elicited through the induction of SMILE gene expression.

UDCA-induced SMILE Gene Expression Depends on AMPK Signaling—We have reported that AMPK increases SMILE gene expression (18), which prompted us to evaluate the effect of UDCA on AMPK signaling. First, we analyzed AMPK phosphorylation and subsequent changes in SMILE gene expression in primary mouse primary hepatocytes following UDCA treatment. Consistent with our hypothesis, UDCA time dependently increased AMPK phosphorylation and SMILE gene expression in mouse primary hepatocytes (Fig. 5A). Next, to investigate whether AMPK signaling is involved in UDCA-induced SMILE gene expression, we employed compound C, AMPK inhibitor, and adenovirus expressing short hairpin RNA for AMPKα2 (Ad-shAMPKα2). UDCA-induced SMILE gene expression was significantly attenuated by compound C treatment, which is consistent with abolished phosphorylation of AMPK (Fig. 5B). Consistent with the effect of compound C, knockdown of AMPKα2, a liver-enriched isoform of AMPKα, significantly decreased induction of SMILE protein and mRNA level by UDCA treatment (Fig. 5, C and D). Moreover, we found that UDCA also activated SMILE promoter activity, whereas compound C treatment dose dependently inhibited UDCA-induced SMILE promoter activity (Fig. 5E). Consistent with the compound C effect, dominant-negative AMPK (dn-AMPK) overexpression strongly inhibited UDCA-induced SMILE promoter activity (Fig. 5F). To further investigate the role of AMPK, we tested if AMPK has any direct role on the stability of SMILE proteins. We overexpressed FLAG-tagged SMILE and infected AMPK-CA (constitutively active form) or AMPK-DN (dominant-negative form) virus to confirm that AMPK affects SMILE protein stabilization. However, overexpressed SMILE protein level was not significantly changed by adenoviral overexpression of AMPK, indicating that AMPK plays a role on SMILE expression at transcriptional level (supplemental Fig. S3). These results suggest that the AMPK pathway is mainly involved in the UDCA-induced expression of SMILE at the transcriptional level.

UDCA Decreases LXRα-mediated Lipogenic Gene Expression by Inducing SMILE—To test if UDCA also inhibits lipogenic gene expression and whether the ability of UDCA to inhibit lipogenic gene expression is associated with SMILE, we performed an adenovirus-mediated knockdown experiment with adenovirus expressing short hairpin RNA for SMILE (Ad-
SMILE Regulates LXRα Transactivation

shSMILE). UDCA strongly inhibited the T7-mediated increase in SREBP-1c, FAS, and ACC protein levels, which were significantly reversed by knockdown of endogenous SMILE expression in mouse primary hepatocytes and HepG2 cells (Fig. 6, A and B). However, knockdown of basal SMILE expression did not display significant changes in lipogenic gene expression. Therefore, uninduced levels of SMILE may not be involved in the regulation of the basal hepatic lipogenic gene expression (supplemental Fig. S4). Taken together, these results indicate that SMILE is involved in UDCA-mediated repression of lipogenic gene expression. Next, we performed knockdown of endogenous SMILE using a SMILE small interfering RNA expressing plasmid to investigate whether UDCA inhibits LXRα target gene promoter activity by inducing SMILE. As expected, knockdown of endogenous SMILE significantly abolished UDCA-mediated inhibition of T7-induced Srebp-1c promoter activity (Fig. 6C). Furthermore, we performed ChIP assay experiments to define the molecular mechanism of UDCA-induced SMILE on the regulation of LXRα. UDCA treatment significantly decreased recruitment of LXRα to the Srebp-1c promoter. However, SMILE knockdown significantly released UDCA-mediated suppression of LXRα recruitment at the

FIGURE 5. UDCA-induced AMPK signaling elicits SMILE gene expression. A, mouse primary hepatocytes were cultured for 12 h under serum starvation. The cells were treated with 200 μM UDCA for various time periods. Whole cell extracts were isolated and analyzed using Western blot analysis with the indicated antibodies. Protein levels were normalized to those of α-tubulin. B, mouse primary hepatocytes were co-treated for 12 h with UDCA (200 μM), compound C (AMPK inhibitor), or dimethyl sulfoxide, and then the cells were harvested for Western blot analysis. C and D, mouse primary hepatocytes cells were infected with adenovirus US (Ad-US) or adenovirus sh-AMPKα2 (Ad-shAMPKα2), and the cells treated with vehicle (dimethyl sulfoxide) and UDCA (200 μM). After 12 h, the cells were harvested for Western blot analysis and quantitative RT-PCR. Data represent mean ± S.D. of three individual experiments. E, HepG2 cells were transfected with 200 ng of SMILE-luc reporter vector. After 24 h, they were treated with 200 μM UDCA for 12 h with the indicated amounts of compound C (com.C). F, HepG2 cells were co-transfected with 200 ng of the SMILE-luc reporter vector and the dominant-negative AMPK expression vector. After 24 h, the cells were treated with vehicle (DMSO) or 200 μM UDCA. The cells were harvested and lysates were utilized for luciferase and β-galactosidase assays. Data in A and B are represented as mean ± S.E.
Overall, these results suggest that UDCA inhibits LXRα-mediated lipogenic gene expression by inducing SMILE gene expression, which decreases LXRα recruitment on the target gene promoter.

SMILE Regulates LXRα Transactivation

Srebp-1c promoter (Fig. 6D). Overall, these results suggest that UDCA inhibits LXRα-mediated lipogenic gene expression by inducing SMILE gene expression, which decreases LXRα recruitment on the target gene promoter.

SMILE Improves T7-induced Hepatic TG Level and Lipid Accumulation in Mice—To assess the functional effects of SMILE on T7-induced hepatic lipogenesis, we analyzed hepatic fat accumulation and lipogenic gene expression in normal and T7-treated mice. A 1-week T7 treatment caused severe fat accumulation in the liver of mice, as indicated by increases in the intensity of Oil Red-O staining and hepatic TG levels. As expected, adenovirus injection of SMILE significantly improved hepatic lipid accumulation (Fig. 7A) and TG levels (Fig. 7B) compared with those in adenovirus GFP-injected mice. However, hepatic cholesterol accumulation and hepatic cholesterol levels remained unchanged (Fig. 7, C and D). In parallel with the improved hepatic fat accumulation and TG levels by SMILE, the increased Srebp-1c, Fas, and Acc gene expression were significantly decreased by SMILE (Fig. 7E). Next, we assessed the inhibitory effect of SMILE on high fat diet (HFD)-induced hepatic lipogenic gene expression in mice. Consistent with changes in T7-induced lipogenic gene expression by SMILE, adenoviral over-expression of SMILE significantly improved HFD-induced hepatic lipogenic gene expression (Fig. 7F). Taken together, these results...
indicate that activating SMILE considerably improved T7- or diet-induced hepatic fat accumulation by regulating of lipogenic enzyme gene expression.

DISCUSSION

We demonstrated previously that SMILE acts as a corepressor of nuclear receptors (16). In this study, we found that SMILE decreased LXRα-mediated lipogenic target gene expression such as SREBP-1c, FAS, and ACC in hepatocytes. Moreover, we demonstrated that SMILE improved hepatic lipid accumulation, TG levels, and inhibited hepatic lipogenic gene expression using an in vivo model of T7-treated and HFD-fed mice. SMILE-mediated LXRα target gene transcription was regulated by competition with SRC-1 and the LXRα DNA binding block. Moreover, we showed...
that inhibiting lipogenic gene expression through UDCA-induced AMPK signaling depended on inducing SMILE gene expression.

LXRα is crucial for hepatic lipogenic gene expression and fatty acids synthesis in hepatocytes (9). In this study, we determined that SMILE is a corepressor of LXRα. In the transient transfection assay, SMILE overexpression significantly repressed LXRα transcriptional activity. Therefore, the repression of LXRα transcriptional activity by SMILE suggests that SMILE could improve LXRα-mediated fatty liver disease by regulating LXRα transcriptional activity. This hypothesis is corroborated by the observation that SMILE improved T7-induced hepatic lipid accumulation and TG levels. Moreover, SMILE inhibited hepatic lipogenic gene expression in HFD-fed mice. Overall, these findings strongly suggest that SMILE is a potent modulator of hepatic lipogenesis by regulating LXRα.

Moreover, a previous report demonstrated that SMILE represses GR, CAR, and hepatocyte nuclear factor 4α (16). GR, CAR, and hepatocyte nuclear factor 4α are important for hepatic regulation and processing of glucose, lipids, drugs, and bile acids (33–35). Based on previous reports, we suggest that SMILE may be involved in diverse liver metabolic activities. SMILE knock-out and a transgenic animal model would be useful to better understand the role of SMILE in liver metabolism. Similar to SMILE-mediated repression of LXR, DAX-1 and SHP also decrease LXRα transcriptional activity (12, 36, 37).

Consistent with previous reports, we found that SMILE physically interacted with LXRα and significantly inhibited recruitment of LXRα on the Srebp-1c promoter. Moreover, a domain mapping analysis using an in vivo GST pulldown assay showed that the LBD/AF2 domain of LXRα was essential for interaction with SMILE (Fig. 3E). In addition, it has been demonstrated that SRC-1 activates LXRα transcriptional activity (29). Here, we demonstrated that SMILE competes with the coactivator SRC-1. Moreover, we also found that SMILE inhibits LXRα binding on the Srebp-1c promoter in part by blocking the interaction between LXRα and RXRα (supplemental Fig. S1). These data suggest that SMILE regulates LXRα activity via multiple inhibitory mechanisms.

UDCA has been used as a therapeutic agent for fatty liver disease (27, 38) and cholestatic disorder diseases (24, 39). UDCA also has beneficial effects on liver regeneration in rats with non-alcoholic fatty liver disease (38). However, the effect of UDCA on lipid metabolism has remained largely unknown. Here, we showed that UDCA significantly activated SMILE gene expression depending on AMPK activation. In contrast, UDCA strongly decreased SREBP-1c, FAS, and ACC gene expression by inducing the SMILE gene (Fig. 6, A and B). These results demonstrate that SMILE is a critical transcriptional regulator of genes involved in UDCA-mediated regulation of lipid metabolism. Moreover, UDCA improves hepatic ER stress and insulin sensitivity. Notably, UDCA, a side chain-shortened homologue of UDCA, improves fatty liver and atherosclerosis (21). Consistent with the efficacy of UDCA in ER stress, our previous study showed that SMILE plays critical roles in regulating ER stress (18). Similar to the UDCA effect on lipogenic gene expression, a previous report demonstrated that cholic acid decreases hepatic expression of SREBP-1c, FAS, and ACC by inducing SHP gene expression (28). In addition, CDCA also suppresses T7-induced lipogenic gene expression (31). In the present study, we observed that UDCA particularly activated SMILE expression, whereas CDCA had no effect on SMILE gene expression (Fig. 4, E and F). UDCA is also reported to be a FXR ligand that activates SHP gene expression. However, UDCA-mediated FXR activation is much less than frequent CDCD (41). Consistent with these observations, SHP gene expression was unchanged following UDCA treatment in our study. Therefore, UDCA may improve hepatic lipid metabolism through a SHP-independent mechanism. Moreover, the use of CDCA and cholic acid is limited in humans because they can cause hepatotoxicity and increase low density lipoprotein cholesterol (42). UDCA decreases hepatocyte sensitivity to hydrophobic bile acid-induced oxidative stress in the fatty liver (43). Therefore, these observations suggest that UDCA-induced SMILE expression has a beneficial effect on the regulation of hepatic lipogenic gene expression without side effects as with CDAC and CA.

Previous reports have demonstrated that UDCA activates p38 MAPK, extracellular signal-regulated protein kinase (ERK), and PI3K pathways (25, 40). In addition, CDCA also activates the p38 MAPK, c-Jun N-terminal kinase, and ERK pathways but not the PI3K pathway (31). However, the molecular signaling to repress lipogenic gene expression by UDCA has remained unclear. In this study, UDCA strongly increased AMPK phosphorylation, and UDCA-mediated SMILE gene expression was blocked by repression of AMPK signaling. However, the downstream effectors of AMPK signaling to induce SMILE gene expression remain unknown. We investigated the underlying mechanism of UDCA, particularly focusing on gene expression involved in lipid metabolism in hepatocytes. However, whether the AMPK pathway plays a major role in UDCA-induced gene expression of SMILE and UDCA-mediated improvement of fatty liver needs to be examined in an animal study. Future studies will reveal the extent to which UDCA-induced SMILE mediates various liver metabolism disorders.

In summary, we found that SMILE acts as a novel corepressor of LXRα by competing with coactivator SRC-1 to inhibit hepatic lipogenic gene expression. Moreover, UDCA also inhibited lipogenic gene expression depending on SMILE gene expression. Based on these findings, we suggest that the UDCA-mediated AMPK signaling pathway induces SMILE gene expression. Moreover, SMILE decreased LXRα activity via competition with
SMILE Regulates LXRα Transactivation

SRC-1 and subsequently decreased LXRα-mediated lipogenic enzyme gene expression in the liver (Fig. 8E). Thus, activating SMILE gene expression represents a potential therapeutic approach to improve hepatic lipid metabolism.

Acknowledgment—We are grateful to S. Y. Choi for critical reading of the manuscript.

REFERENCES

1. Willy, P. J., Umesono, K., Ong, E. S., Evans, R. M., Heyman, R. A., and Mangelsdorf, D. J. (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. *Genes Dev.* 9, 1033–1045

2. Janowski, B. A., Grogan, M. I., Jones, S. A., Wisely, G. B., Kliwer, S. A., Corey, E. J., and Mangelsdorf, D. J. (1999) Structural requirements of ligands for the oxysterol x receptors LXRα and LXRβ. *Proc. Natl. Acad. Sci. U.S.A.* 96, 266–271

3. Schultz, J. R., Tu, H., Luk, A., Repa, J. J., Medina, J. C., Li, L., Schwendner, S., Wang, S., Thoolen, M., Mangelsdorf, D. J., Lustig, K. D., and Shan, B. (2000) Role of LXRα in control of lipogenesis. *Genes Dev.* 14, 2831–2838

4. Teboul, M., Enmark, E., Li, Q., Wikström, A. C., Pelto-Huikko, M., and Gustafsson, I. A. (1995) OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. *Proc. Natl. Acad. Sci. U.S.A.* 92, 2096–2100

5. Auboeuf, D., Rieuxset, J., Fajas, L., Vallier, P., Ferering, V., Riou, J. P., Staelens, K., S., Wang, S., Thoolen, M., Mangelsdorf, D. J., Lustig, K. D., and Shan, B. (2000) Role of LXRα in control of lipogenesis. *Genes Dev.* 14, 2831–2838

6. Gbaguidi, G. F., and Agellon, L. B. (2004) The inhibition of the human cholesterol 7α-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver X receptor α and peroxisome proliferator-activated receptor α heterodimer. *Nucleic Acids Res.* 32, 1113–1121

7. Eberle, D., Hegarty, B., Bossard, P., Ferec, P., and Foufelle, F. (2004) SREBP transcription factors. Master regulators of lipid homeostasis. *Biochimie* 86, 839–848

8. Repa, J. J., Liang, G., and Ou, J. (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP1) by oxysterol receptors, LXRα and LXRβ. *Genes Dev.* 14, 2819–2830

9. Li, Y., Bolten, C., and Bhat, B. G. (2002) Induction of human liver X receptor α gene expression via an autoregulatory loop mechanism. *Mol. Endocrinol.* 16, 506–514

10. Li, X., Zhang, S., Blander, G., Tse, J. G., Krieger, M., and Guarente, L. (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. *Mol. Cell.* 28, 91–106

11. Nedumaran, B., Kim, G. S., Hong, S., Yoon, Y. S., Kim, Y. H., Lee, C. H., Lee, Y. C., Koo, S. H., and Choi, H. S. (2010) Orphan nuclear receptor DAX-1 acts as a novel corepressor of liver X receptor α and inhibits hepatic lipogenesis. *J. Biol. Chem.* 285, 9221–9232

12. Lu, R., and Misra, V. (2000) Zhangfei. A second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to RIP140 and CREBH (cAMP responsive element-binding protein H). *J. Biol. Chem.* 286, 41972–41984

13. Lu, R., and Misra, V. (2000) Zhangfei. A second cellular protein interacts with herpes simplex virus accessory factor HCF in a manner similar to RIP140 and CREBH (cAMP responsive element-binding protein H). *J. Biol. Chem.* 286, 41972–41984

14. Hogan, M. R., Cockram, G. P., and Lu, R. (2006) Cooperative interaction of SRC-1 and subsequently decreased LXRα transactivation. *J. Biol. Chem.* 281, 28762–28774

15. Misra, J., Chanda, D., Kim, D. K., Li, T., Koo, S. H., Back, S. H., Chiang, J. Y., and Choi, H. S. (2011) Curcumin differentially regulates endoplasmic reticulum stress through transcriptional corepressor SMILE (small heterodimer partner-interacting leucine zipper protein)-mediated inhibition of CREBH (cAMP responsive element-binding protein H). *J. Biol. Chem.* 286, 41972–41984

16. López-Mateo, I., Villaronga, M. Á., Llanos, S., and Belandia, B. (2012) The transcription factor CREBFZ is a novel positive regulator of p53. *Cell Cycle* 11, 3887–3895

17. Lee, J. H., Lee, G. T., Kwon, S. J., Jeong, H., and Shim, W. J., Kim, Y. I. (2012) CREBFZ, a novel Smad8-binding protein. *Mol. Cell. Biochem.* 368, 147–153

18. Trauner, M., Claudel, T., Fickert, P., Moustafa, T., and Wagner, M. (2010) Bile acids as regulators of hepatic lipid and glucose metabolism. *Dig. Dis.* 28, 220–224

19. Omata, M., Yoshida, H., Toyota, J., Tomita, E., Nishiguchi, S., Hayashi, N., Iino, S., Makino, I., Okita, K., Toda, G., Tankawka, K., Kumada, H., and Japanese C-Viral Hepatitis Network. (2007) A large-scale, multicentre, double-blind trial of ursodeoxycholic acid in patients with chronic hepatitis C. *Gut* 56, 1747–1753

20. Copaci, I., Micu, L., Ilescu, L., and Voiculescu, M. (2005) New therapeutic indications of ursodeoxycholic acid. *Rom. J. Gastroenterol.* 14, 259–266

21. Beuers, U., Boyer, J. L., and Paumgartner, G. (1998) Ursodeoxycholic acid in cholestasis. Potential mechanisms of action and therapeutic applications. *Hepatology* 28, 1449–1453

22. Arisawa, S., Ishida, K., Kameyama, N., Ueyama, J., Hattori, A., Tatsumi, Y., Hayashi, H., Yano, M., Hayashi, K., Kato, Y., Goto, H., Takagi, K., and Wakisaka, S. (2009) Ursodeoxycholic acid induces glutathione synthesis through activation of PI3K/Akt pathway in HepG2 cells. *Biochem. Pharmacol.* 77, 858–866

23. Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R. O., Göögün, C. Z., and Hotamisligil, G. S. (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. *Science* 313, 1137–1140

24. Ratziu, V., de Ledinghen, V., Oberti, F., Mathurin, P., Wartelle-Bladou, C., Renou, C., Sogni, P., Maynard, M., Larrey, D., Serfaty, L., Bonnefont-Rousselot, D., Bastard, J. P., Rivière, M., Spénard, J., and FRESGUN (2011) A randomized controlled trial of high-dose ursodesoxycholic acid for non-alcoholic steatohepatitis. *J. Hepatol.* 54, 1011–1019

25. Watanabe, M., Houten, S. M., Wang, L., Moschetta, A., Mangelsdorf, D. J., Heyman, R. A., Moore, D. D., and Auwex, J. (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP1. *J. Clin. Invest.* 113, 1408–1418

26. Huuskonen, J., Fielding, P. E., and Fielding, C. J. (2004) Role of p160 co-activator complex in the activation of liver X receptor. *Arterioscler. Thromb. Vasc. Biol.* 24, 703–708

27. Heery, D. M., Hoare, S., Hussain, S., Parker, M. G., and Sheppard, H. (2001) Core LXXLL motif sequences in CREB-binding protein, SRC1, and RIP140 define affinity and selectivity for steroid and retinoid receptors. *J. Biol. Chem.* 276, 6695–6702

28. Talukdar, S., Bhatnagar, S., and Hillgartner, F. B. (2007) Cheno-deoxycholic acid suppresses the activation of acetyl-coenzyme A carboxylase-a gene transcription by the liver X receptor agonist T0–901317. *J. Lipid. Res.* 48, 2667–2663

29. Lepage, G., Paradis, K., Lacaille, F., Sénéchal, L., Ronco, N., Champagne, J., Lenaerts, C., Roy, C. C., and Rasquin-Weber, A. (1997) Ursodeoxycholic acid in cystic fibrosis. *J. Pediatr.* 130, 528–533

30. Tsimis, Y. E., and Negishi, M. (2007) CAR and PXR. The xenobiotic-sensing receptors. *Steroids* 72, 231–246

31. Watt, A. J., Harrison, W. D., and Duncan, S. A. (2003) HNF4. A central regulator of hepatocyte differentiation and function. *Hepatology* 37, 1249–1253
35. Heitzer, M. D., Wolf, I. M., Sanchez, E. R., Witchel, S. F., and DeFranco, D. B. (2007) Glucocorticoid receptor physiology. Rev. Endocr. Metab. Disord. 8, 321–330
36. Kay, H. Y., Kim, W. D., Hwang, S. J., Choi, H. S., Gilroy, R. K., Wan, Y. I., and Kim, S. G. (2011) Nrf2 inhibits LXRα-dependent hepatic lipogenesis by competing with FXR for acetylase binding. Antioxid. Redox Signal. 15, 2135–2146
37. Brendel, C., Schoonjans, K., Botrugno, O. A., Treuter, E., and Auwerx, J. (2002) The small heterodimer partner interacts with the liver X receptor α and represses its transcriptional activity. Mol. Endocrinol. 16, 2065–2076
38. Uzun, M. A., Koksal, N., Aktas, S., Gunerhan, Y., Kadioglu, H., Dursun, N., and Sehirli, A. O. (2009) The effect of ursodeoxycholic acid on liver regeneration after partial hepatectomy in rats with non-alcoholic fatty liver disease. Hepatol. Res. 39, 814–821
39. Poupon, R., and Poupon, R. E. (1995) Ursodeoxycholic acid therapy of chronic cholestatic conditions in adults and children. Pharmacol. Ther. 66, 1–15
40. Schoemaker, M. H., Conde de la Rosa, L., Buist-Homan, M., Vrenken, T. E., Havinga, R., Poelstra, K., Haisma, H. J., Jansen, P. L., and Moshage, H. (2004) Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology 39, 1563–1573
41. Makishima, M., Okamoto, A. Y., Repa, J. J., Tu, H., Learned, R. M., Luk, A., Hull, M. V., Lustig, K. D., Mangelsdorf, D. J., and Shan, B. (1999) Identification of a nuclear receptor for bile acids. Science 284, 1362–1365
42. Schoenfield, L. J., and Lachin, J. M. (1981) Chenodiol (chenodeoxycholic acid) for dissolution of gallstones, the National Cooperative Gallstone Study. A controlled trial of efficacy and safety. Ann. Intern. Med. 95, 257–282
43. Angulo, P. (2002) Use of ursodeoxycholic acid in patients with liver disease. Curr. Gastroenterol. Rep. 4, 37–44