Comparison of Architect I 2000 for Determination of Cyclosporine with AxSYM

Nafija Serdarevic¹, Lejla Zunic²
Institute for Clinical Chemistry and Biochemistry, Clinical center of University of Sarajevo, Faculty of health sciences, Sarajevo, Bosnia and Herzegovina¹
Cathedral for biochemistry, Faculty of health sciences, University of Zenica, Bosnia and Herzegovina²

Corresponding author: Nafija Serdarevic, PhD, Institute for Clinical Chemistry and Biochemistry, Clinical center of University of Sarajevo, Bolnica 25. Tel. +387 33 297 501, E-mail: serdarevic.nafija@yahoo.com

Original paper

ABSTRACT

Background: Cyclosporine has been shown effective drug in suppressing acute rejection in recipients of allograft organ transplants. Methods: The cyclosporine concentration of 96 blood samples was determined using CMI (chemiluminescent microparticle immunoassay) Architect I 2000 and FPIA (fluorescence polarization immunoassay) AxSYM Abbott diagnostic. All patients have transplantation of kidneys and were hospitalized at Department of Nephrology at the Clinical center of University of Sarajevo. The reference serum range of cyclosporine for kidney organ transplantation for maintenance lies between 50 and 150 ng/mL. The quality control, precision and accuracy of Architect I 2000 were assessed. Results: The quality control was done using quality control serums for low (= 91 ng/mL), medium (= 328 ng/mL) and high (= 829 ng/mL). We have used commercial BIORAD controls and got reproducibility CV 5.83 % to 13 % for Architect I 2000. It was established that the main difference between Architect I 2000 and AxSYM and it was statistically significant for P < 0.05 according to Student t-test. Correlation coefficient was r = 0.903. Conclusion: The CMI Architect assay has significant reduced cyclosporine metabolite interference relative to other immunoassay and is a convenient and sensitive automated method to measure cyclosporine in whole blood. Key words: architect I 2000, determination, Cyclosporine, AxSYM.

1. INTRODUCTION

Regular monitoring of cyclosporin A (CsA) in whole blood for dosage adjustment is considered mandatory. Immunosuppressive drugs in transplant patients represent life-long therapy and are the key to prevention of acute and chronic graft rejection. The specific pharmacokinetic profile of each immunosuppressive drug, low therapeutic index and potential interactions with numerous medications indicate the fact that monitoring of immunosuppressive therapy is the essential part of therapy protocol in transplant patients. Despite the possible role of CsA metabolites in immunosuppression and toxicity (1, 2), the consensus among clinicians and laboratory personal is that specific methods for measuring the parent drug only should be used (3, 4, 5). Following the widespread introduction of the micro emulsion formulation of CsA (Neoral²; Novartis Pharma), there has been a renewed interest in approaches to therapeutic drug monitoring TDM that are based on the original observations of Lindholm and Kahan (6). These authors demonstrated that total exposure to CsA, as reflected by the area under the concentration-time curve (AUC), was a better predictor of outcomes than predose (trough) CsA concentrations. Furthermore, several studies have shown that the AUC can be estimated with good reliability by means of a limited sampling strategy (7, 8). Recently, clinical studies utilizing CsA measurements made at single or multiple time points in the early period (0–6 h) after CsA ingestion have shown the potential of such measurements for improving clinical outcomes compared with the traditional, predose, approach. These studies have made recommendations for target CsA concentration ranges at either specific postdose time points (2 or 3 h) or for limited AUC measurements in the period 0–6 h post dose. The recommendations were based on particular immunoassay methods and were for either kidney or liver transplant patients (9, 10, 11, 12). The monoclonal antibody-based fluorescence polarization immunoassay (mFPIA) CsA assay has been adapted for the AxSYM (Abbott). The ARCHITECT CsA assay is a chemiluminescent microparticle immunoassay (CMA) for the quantitative determination of cyclosporine in blood. Using patient samples collected in our laboratory we analyzed Cyclosporine, Axsym.

2. MATERIAL AND METHODS

2.1. Patients

The patient samples of blood were collected in Na-EDTA Vacutainer test tubes (Becton Dickinson, Rutherford, NJ 07070 U.S.) in volume of 3.5 mL. We used test tubes with Na-EDTA. The investigation was done...
respecting ethical standards in the Helsinki Declaration. The investigation included patients (n=96) in period from February till September in 2012. The study included patients who were hospitalized at Department of Urology and Department for Kidney disease at the Clinical center of University of Sarajevo.

2.2. Methods

All immunoassays require the use of labeled material in order to measure the amount of antigen or antibody. A label is a molecule that will react as a part of the assay, so a change in signal can be measured in the blood after added reagent solution. CMA is noncompetitive sandwich assay technology to measure analytes. The amount of signal is directly proportional to the amount of analyte present in the sample.

2.3. Chemiluminescent microparticle immunoassay – CMA

Architect CsA assay is two-step immunoassay to determine the presence cyclosporine in human serum using CMA technology. In the first step, sample, assay diluent and anti-cyclosporine-l-antibody-coated paramagnetic particles are combined. CsA present in the sample binds to the anti-cyclosporine-l-coated microparticles. After incubation and wash, anti-cyclosporine-l-acridinium-labeled conjugate is added in the second step.

Following another incubation and wash, pre-trigger and trigger solutions are then added to the reaction mixture. The pre-trigger solution (hydrogen peroxide) creates an acidic environment to prevent early release of energy (light emission), helps to keep microparticles from clumping and splits acridinium dye off the conjugate bound to the microparticle complex (this action prepares the acridinium dye for the next step). The trigger solution (sodium hydroxide) dispenses to the reaction mixture. The acridinium undergoes an oxidative reaction when it is exposed to peroxide and an alkaline solution. This reaction causes the occurrence of chemiluminescent reaction. N-methylacridone forms and releases energy (light emission) as it returns to its ground state. The resulting chemiluminescent reaction is measured as relative light units (RLU). A direct relationship exists between the amount of SCC in the sample and RLU detected by Architect System optics.

2.4. Manual pretreatment procedure

The ARCHITECT CsA assay requires a manual pretreatment step for all whole blood patients specimens, calibrators and controls. Each sampler should be mixed by slow inversion of the container 5-10 times. We add a 200 µL of sample, 100 µL of ARCHITECT CsA whole solubilisation reagent and 400 µL ARCHITECT CsA whole blood precipitation in centrifuge tube. The added blood and all reagents vortex vigorously for 5-10 seconds and centrifuge for 4 minutes. The supernatant we take to transplant pretreatment tube.

2.5. Fluorescence polarization immunoassay - FPIA

FPIA is a type of homogeneous competitive fluorescence immunoassay. With competitive binding, antigen from the specimen and antigen-fluorescein (AgF) labeled antigen compete for binding sites on the antibody. As a homogeneous immunoassay, the reaction is carried out in a single reaction solution, and the bound Ab-AgF complex does not require a wash step to separate it from „free” labeled AgF. Typically antigen is labeled with fluorescent label and competes with unlabeled antigen from the specimen. The relatively slow rotation of large molecule as well as the ability of slow-moving particles to polarize light are utilized to obtain a measure of the number of large antibody-antigen-fluorescein particles in solution. In this competitive format, the concentration of the analyte present is indirectly proportional to the amount of the signal measured. Fluorescein absorbs light energy at 490 nm and releases this energy at a higher wave length 520 nm as fluorescent light.

2.6. Manual pretreatment procedure

The AxSYM CsA assay requires a manual pretreatment step for all whole blood patients specimens, calibrators and controls. Each sampler should be mixed by slow inversion of the container 5-10 times. We add a 150 µL of sample, 50 µL of AxSYM CsA whole solubilisation reagent and 300 µL AxSYM CsA whole blood precipitation in centrifuge tube. The added blood and all reagents vortex vigorously for 10 seconds and centrifuge for 5 minutes. The supernatant we take to sample cup.

2.7. Quality control

The low, medium and high CsA controls of commercially available BIORAD controls for ARCHITECT ABBOTT and AxSYM ABBOTT CsA controls were used. The precision (intra-day variation) was tested by measuring (n = 20) of three different controls of CsA. The reproducibility (inter-day variation) for same controls was tested all controls once a day over 10 consecutive days. The accuracy of measuring was tested in 96 whole blood EDTA samples of patient who were determined CsA. Measures were obtained by ARCHITECT CMA and AxSYM FPIA technology.

2.8. Statistics

The results were statistically analyzed using NCSS and statistical software SPSS version 12.0 software. Determined by the average value (,), standard deviation (SD), Pearson correlation coefficient (r), equations of linear regression and Student t test with statistical significance level of P <0.05.

3. RESULTS

3.1. Quality control testing

three controls low, medium and high Abbott technology (n = 20) were measured for quality control testing. Measurements were done during 10 days period. The average value (,), standard deviation (SD) and coefficient of variation (CV) are shown in Table 1. The coefficients of variation (CVs) for the three controls using ARCHITECT CsA BIORAD controls assay were 5.17-3.9%. Reproducibility was determined by running controls in the morning over
Comparison of Architect I 2000 for Determination of Cyclosporine with Assym

The concentration range of measured blood samples of CsA using AxSYM FPIA technology was 38.7-375 ng/mL and for ARCHITECT CMIA technology was 32.7-385 ng/mL. The average concentration of CsA using ARCHITECT was 120.49+/-68.62 ng/mL and AxSYM was 131.20+/-64.13 ng/mL. Therefore, serum concentrations of CsA measured using ARCHITECT CMIA were significantly lower than those measured using AxSYM FPIA technology. The average concentration of CsA using ARCHITECT was lower for -11.89 ng/mL to -15.28 ng/mL in compare with AxSYM FPIA technology in the suggested maintenance therapeutic ranges. In the suggested initiation therapeutic ranges the average concentration of CsA was same in both technologies. The results of mean CsA concentration are shown in Table 2.

4. DISCUSSION

The specificity of monoclonal immunoassays for CsA has been addressed in the past mostly by direct comparison with HPLC or by measurement of purified metabolites. Few data correlating the presence of metabolites in clinical samples and to the irregular biases observed with monoclonal immunoassays are available. This is because HPLC procedures for measuring metabolite concentrations are labor-intensive and time-consuming. Ratios between nonspecific immunoassays and specific methods have been widely used to estimate overall metabolite concentrations in patient samples and to identify differences between certain populations. Large inter-individual differences have also been observed (16, 17, 18, 19, 20). Our results have shown precision CV for ARCHITECT Cyclosporine BIORAD controls assay were 5.1-7.3 %. The CVs for the three controls using AxSYM Cyclosporine assay technology were 4.3-7.2 %. The total precision %CV of the ARCHITECT and AxSYM Cyclosporine assay was determined to be less than 12%. The other investigation groups have got a results for total precision less or equal to 15 % (21, 22). In Architect CMIA and AxSYM FPIA technology using Levey – Jennings report for measurement of CsA was under range of two S.D. The accuracy testing shows that we found very good correlation between CMIA and FPIA with correlation coefficient r = 0.902, the other groups have correlation coefficient r ≥ 0.89. The average concentration of CsA using ARCHITECT was lower for 11.2 ng/mL then using AxSYM FPIA. However the cross-reactivity of the seven metabolites using the Abbott monoclonal assay matched closely with their pharmacological potency as measured in the MLC assay (21). FPIA whole blood CsA levels exhibit higher results than CMIA. The Wallemacq P.
and all have show that the measured average concentration of CsA using FPIA was higher for 4 to 53 ng/mL, then CMIA. The 95 % confidence interval of the ng/ml difference between methods bias is -17.17 ng/mL to – 34.34 ng/mL. The ARCHITECT CsA assay has significantly reduced CsA metabolite interference relative to other immunoassays and is a convenient and sensitive semi automated method to measure CsA in whole blood (22). The ARCHITECT is a fast, and sensitive analyser with a possibility for measurement of lower concentration CsA in whole blood.

5. CONCLUSION

The ARCHITECT assay cyclosporine metabolites are less active, the CMIA results are a better estimate for clinical use then FPIA. Method has low functional sensitivity and lower elimination of interferences: hemotocrit, high values of cholesterol, triglycerides, bilirubine, total protein and uric acid, what means that this method is more specific in comparison to other routine methods. It is a sensitive automated method to measure cyclosporine in whole blood.

Conflict of interest: none declared.

REFERENCES

1. Yatscoff RW, Rosano TG, Bowers LD. The clinical significance of cyclosporin metabolites. Clin Biochem. 1991; 24: 23-35.
2. Christians U, Sewing KF. Cyclosporin metabolism in transplant patients. Pharmacol Ther. 1993; 57: 291-345.
3. Kahan BD, Shaw LM, Holt D, Grevel J, Johnston A. Consensus Document: Hawks Cay meeting on therapeutic drug monitoring of cyclosporine. Clin Chem. 1990; 36: 1510-1516.
4. Shaw LM, Yatscoff RW, Bowers LD, Freeman DJ, Jeffery JR, Krown PA, et al. Canadian consensus meeting on cyclosporine monitoring: report of the consensus panel. Clin Chem. 1990; 36: 1841-1846.
5. Morris RG, Tett SE, Ray JE. Cyclosporin A monitoring in Australia: consensus recommendations. Ther Drug Monit. 1994; 16: 570-576.
6. Lindholm A, Kahan BD. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther. 1993; 54: 205-218.
7. Johnston A, Sketris I, Marsden JT, Galustian CG, Fashola T, Taube D, et al. A limited sampling strategy for the measurement of cyclosporine AUC. Transplant Proc. 1990; 22: 1345-1346.
8. Grevel J, Kahan BD. Abbreviated kinetic profiles in area-under-the-curve monitoring of cyclosporine therapy. Clin Chem. 1991; 37: 1905-1908.
9. Amante AJ, Kahan BD. Abbreviated area-under-the-curve strategy for monitoring cyclosporine microemulsion therapy in immediate posttransplant period. Clin Chem. 1996: 42: 1294-1296.
10. Grant D, Kneteman N, Tchervenkov J, Roy A, Murphy G, Tan A, et al. Peak cyclosporine levels (Cmax) correlate with freedom from liver graft rejection: results of a prospective, randomized comparison of Neoral and Sandimmune for liver transplantation (NOF-8). Transplantation. 1999; 67: 1133-1137.
11. Mahalati K, Belitsky P, Sketris I, West K, Panek R. Neoral monitoring by simplified sparse sampling area under the concentration-time curve: its relationship to acute rejection and cyclosporine nephrotoxicity early after kidney transplantation. Transplantation. 1999; 68: 53-62.
12. Mahalati K, Lawen J, Kiberd B, Belitsky P. Is 3-hour cyclosporine blood level superior to trough level in early post-renal transplantation period? J Urol. 2000; 163: 37-41.
13. Learning Guide: Immunoassay: Introduction to Immunoassays. Learning Objectives. After completion of this chapter, you will be able to: • define immunoassay, Abbott (Accessed October 29, 2011)
14. Operator vs Manuel Cyclosporine ARCHITECT SYSTEM Abbott Diagnostics, REF IL75 301-513 10/10 2004.
15. Operator vs Manuel Cyclosporine AxSYM SYSTEM Abbott Diagnostics, REF 8K/18 49-3305/R4 2004.
16. Holt DW, Johnston A, Marsden JT, Vernillet L, Krown PA, Rosano TG, et al. Monoclonal antibodies for radioimmunoassay of cyclosporine: a multicenter comparison of their performance with the Sandoz polyclonal radioimmunoassay kit. Clin Chem. 1988; 34: 1091-1096.
17. Wang CP, Burckart GJ, Ptachinski RJ, Venkataramanan R, Schwinghammer T, Hakala T, et al. Cyclosporine metabolite concentrations in the blood of liver, heart, kidney, and bone marrow transplant patients. Transplant Proc. 1988; 20(Suppl 2): 591-596.
18. Lindholm A, Henricsson S. Simultaneous monitoring of cyclosporin in blood and plasma with four analytical methods: a clinical evaluation. Transplant Proc. 1989; 21: 1472-1474.
19. Holt DW, Marsden JT, Fashola TO, Johnston A. Performance of the Sandoz radioimmunoassays for cyclosporine. Transplant Proc. 1990; 22: 1135-1139.
20. Bowers LD. Therapeutic monitoring for cyclosporine: difficulties in establishing a therapeutic window. Clin Biochem. 1991; 24: 81-87.
21. Murthy JN, Yatscoff RW, Soldin SJ. Cyclosporine metabolite cross-reactivity in different cyclosporine assay. Clin Biochem. 1998 Apr; 31(3): 159-63,2002, Jul; 48(7): 1059-65.
22. Wallemacq P., Maine GT., Berg K., Rosiere T. at all. Multisite analytical evaluation of the Abbott ARCHITECT cyclosporine assay. Ther Drug Monit. 2010 Apr;32(2): 145-151.