Near-Surface Stratification Due to Ice Melt Biases Arctic Air-Sea CO$_2$ Flux Estimates

Yuanxu Dong1,2, Mingxi Yang3, Dorothee C. E. Bakker1, Peter S. Liss1, Vassilis Kitidis3, Ian Brown2, Melissa Chierici1,4, Agneta Fransson4, and Thomas G. Bell2

1Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK; 2Plymouth Marine Laboratory, Plymouth, UK; 3Fram Centre, Institute of Marine Research, Tromsø, Norway; 4Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway, 5Fram Centre, Norwegian Polar Institute, Tromsø, Norway

Abstract Air-sea carbon dioxide (CO$_2$) flux is generally estimated by the bulk method using upper ocean CO$_2$ fugacity measurements. In the summertime Arctic, sea-ice melt results in stratification within the upper ocean (top \sim10 m), which can bias bulk CO$_2$ flux estimates when the seawater CO$_2$ fugacity is taken from a ship’s seawater inlet at \sim6 m depth ($f_{CO_2}^{w,bulk}$). Direct flux measurements by eddy covariance are unaffected by near-surface stratification. We use eddy covariance CO$_2$ flux measurements to infer sea surface CO$_2$ fugacity ($f_{CO_2}^{w,surface}$) in the Arctic Ocean. In sea-ice melt regions, $f_{CO_2}^{w,surface}$ values are consistently lower than $f_{CO_2}^{w,bulk}$ by an average of 39 μatm. Lower $f_{CO_2}^{w,surface}$ can be partially accounted for by fresher (≥27%) and colder (17%) melt waters. A back-of-the-envelope calculation shows that neglecting the summertime sea-ice melt could lead to a 6%–17% underestimate of the annual Arctic Ocean CO$_2$ uptake.

Plain Language Summary The Arctic Ocean is considered to be a strong sink for atmospheric CO$_2$. The air-sea CO$_2$ flux is almost always estimated indirectly using bulk seawater CO$_2$ fugacity measured from the ship’s seawater inlet at typically \sim6 m depth. However, sea-ice melt results in near-surface stratification and can cause a bias in air-sea CO$_2$ flux estimates if the bulk water CO$_2$ fugacity is used. The micrometeorological eddy covariance flux technique is not affected by stratification. Here for the first time, we employ eddy covariance measurements to assess the impact of sea-ice melt on Arctic Ocean CO$_2$ uptake estimates. The results show that the summertime near-surface stratification due to sea-ice melt could lead to an ~10% (with high uncertainty) underestimate of the annual Arctic Ocean CO$_2$ uptake.

1. Introduction

The Arctic Ocean is a strong sink of atmospheric CO$_2$ due to the active biological production and high CO$_2$ solubility in cold waters (Anderson et al., 1998; Takahashi et al., 2009). While only accounting for 4% of the world ocean by area and seasonally covered by sea ice, the Arctic Ocean contributes 5%–14% (66–199 Tg C yr$^{-1}$, Bates & Mathis, 2009; Yasunaka et al., 2018) of mean global atmospheric CO$_2$ removal every year (~1,400 Tg C yr$^{-1}$; Landschützer et al., 2014; Takahashi et al., 2009). However, this Arctic carbon sink is rapidly changing due to climate change. The Arctic warming rate has been more than twice as fast as the global average over the past 5 decades (Romanovsky et al., 2017). The sea-ice extent in the Arctic Ocean in September decreased at a rate of 13.1% decade$^{-1}$ during 1979–2020 relative to the 1981–2010 average (Perovich et al., 2020). Sea-ice loss reinforces upper-ocean warming due to reduced surface albedo and increased shortwave penetration, which in turn inhibits sea-ice formation in winter and allows for acceleration of summertime sea-ice loss (Perovich et al., 2007). The reduction in sea-ice coverage in polar regions is expected to increase CO$_2$ uptake due to larger sea-ice free area, longer sea-ice free period, more freshwater at the surface, and greater biological primary production (Arrigo & van Dijken, 2015; Bates & Mathis, 2009; McPhee et al., 2009; Perovich et al., 2020). However, sea-ice melt also causes near-surface stratification and suppresses water mixing between the surface and sub-surface, which likely generates upper-ocean gradients in temperature, salinity, dissolved inorganic carbon (DIC), total alkalinity (TA) and thus seawater CO$_2$.

Supporting Information: Supporting Information may be found in the online version of this article.
The air-sea CO₂ flux (\(F_{\text{CO}_2}\), mmol m\(^{-2}\) day\(^{-1}\)) is generally estimated indirectly by the bulk equation as the product of the gas transfer velocity and the air-sea gas concentration difference. Accounting for near-surface temperature gradients, Woolf et al. (2016) recommended:

\[
F_{\text{CO}_2} = K_{660} \left(\frac{S_F}{660} \right)^{-0.5} \left(\alpha_{\text{eff}} - \alpha_{\text{CO}_2} \right)
\]

where \(K_{660}\) (cm h\(^{-1}\)) is the gas transfer velocity at a Schmidt number (Sc) of 660 (Wanninkhof et al., 2009). \(K_{660}\) is usually parameterized as a function of wind speed (e.g., Nightingale et al., 2000). \(\alpha_{\text{eff}}\) and \(\alpha_{\text{CO}_2}\) are the CO₂ solubility (mol L\(^{-1}\) atm\(^{-1}\), Weiss, 1974) in the subskin and skin seawater, respectively (Woolf et al., 2016). \(f_{\text{CO}_2}\) and \(f_{\text{CO}_2w}\) are the CO₂ fugacity (μatm) near the sea surface and in the overlying atmosphere, respectively. Similarly, the air-sea sensible heat flux can be estimated by the bulk method using a parameterized sensible heat transfer velocity and the sea-air temperature difference (Text S1 in Supporting Information S1).

Air-sea exchange of sparingly soluble gases (e.g., CO₂) is limited mostly by transport within the waterside molecular diffusive layer (MDL, 20–200 μm depth; Jähne, 2009) just beneath the water surface (Liss & Slater, 1974). Thus, \(f_{\text{CO}_2w}\) represents the CO₂ fugacity at the base of MDL (\(f_{\text{CO}_2w_{\text{surface}}}\)). In practice, \(f_{\text{CO}_2w}\) measurements are generally made on bulk seawater from the ship’s underway inlet (~6 m depth, \(f_{\text{CO}_2w_{\text{bulk}}}\)). For convenience, the upper several meters of the ocean are assumed to be homogeneous in bulk flux calculations (i.e., \(f_{\text{CO}_2w} = f_{\text{CO}_2w_{\text{surface}}} = f_{\text{CO}_2w_{\text{bulk}}}\)).

However, incidences of near-surface stratification call into question the vertical homogeneity assumption. In the Arctic, three sea-ice-related mechanisms likely drive near-surface vertical gradients in CO₂; (a) Brine drainage. When sea ice forms, carbonate species, and salt are ejected into the water under the sea ice as part of brine drainage (e.g., Fransson et al., 2013), which depletes the CO₂ within the sea ice. The salty, dense water sinks and is eventually sequestered in the deep ocean (Rudels et al., 2005). (b) Surface photosynthesis. Phytoplankton are often found in the bottom ice or beneath the Arctic sea ice and their photosynthetic activity further reduces the CO₂ concentration within the sea ice (Assmy et al., 2017; Fransson et al., 2013, 2017). (c) Ikaite dissolution. Dissolution of sea-ice derived ikaite will consume CO₂ in Arctic surface waters (Chierici et al., 2019; Fransson et al., 2017). The latest measurements in the Arctic coastal waters show significant vertical \(f_{\text{CO}_2w}\) gradients in the upper ocean (Ahmed et al., 2020; Miller et al., 2019). Miller et al. (2019) show both positive and negative \(f_{\text{CO}_2w}\) gradients without separating the contributions of sea-ice melt and river runoff. Ahmed et al. (2020) show consistently negative gradients (i.e., \(f_{\text{CO}_2w_{\text{surface}}} < f_{\text{CO}_2w_{\text{bulk}}}\)) in the sea-ice melt regions. Vertical gradients, if left unaccounted for, will result in a bias in bulk air-sea CO₂ flux estimates.

The micrometeorological eddy covariance (EC) method derives CO₂ fluxes directly and represents an alternative approach for understanding Arctic air-sea CO₂ exchange. EC does not rely on seawater measurements (Text S2 in Supporting Information S1), and thus EC fluxes are not affected by near-surface vertical variation in seawater properties. However, polar oceans are a hostile environment and reliable direct CO₂ flux measurements by EC are scarce (Butterworth & Else, 2018; Butterworth & Miller, 2016; Prytherch & Yelland, 2021; Prytherch et al., 2017). This paper presents EC CO₂ and sensible heat flux data from two Changing Arctic Ocean Program cruises. Directly measured fluxes were used to compute the implied sea surface \(f_{\text{CO}_2w}\) and water temperature (\(f_{\text{CO}_2w_{\text{surface}}}\) and \(T_{\text{w_{surface}}}\)). Comparisons of implied surface values with bulk measurements enable us to assess the impact of vertical gradients on bulk air-sea CO₂ flux estimates. We further speculate on the influence of near-surface stratification on bulk air-sea CO₂ flux estimates for the entire Arctic Ocean.

2. Methods

2.1. Description of Cruises

Cruise tracks of JR18006 and JR18007 (on RRS James Clark Ross, JCR) and FS2019 (on RV Kronprins Haakon) are shown in Figure S1 in Supporting Information S1. JR18006 visited the Barents Sea between...
2.2. Implied Surface Variables From Eddy Covariance Fluxes

We use Brunt-Väisälä frequency (N²) threshold to identify stratified waters. N² at ~6 m depth is calculated from the CTD (conductivity, temperature, depth) profiles (N² = -g (ρ₁₅m − ρ₃₅m) / (2 * ρ₁₅m) with gravitational acceleration g and seawater density ρ). Fischer et al. (2019) used N² ≥ 10⁻⁵ s⁻² in upwelling waters, but we expect the threshold for near-surface stratification to be more evident in regions with sea-ice melt, so use a more robust threshold of N² ≥ 10⁻³ s⁻². Measurements in waters without a CTD cast and salinity below 34.5 are marked as having an ‘unknown’ stratification status.

The derivations of EC air-sea CO₂ flux (FCOₑₑₑ) and sensible heat flux (Hₑₑₑ) are detailed in Text S2 in Supporting Information S1. The gas transfer velocity (hourly) is computed by replacing the bulk flux with the hourly EC flux in a rearrangement of Equation 1:

\[K_{660} = \frac{F_{\text{CO₂,EC}}}{(Sc / 660)^{0.5} (\alpha_{\text{ss}} f_{\text{CO₂,bulk}} - \alpha_{\text{ss}} f_{\text{CO₂,ss}})} \]

(2)

In regions with near-surface stratification, \(f_{\text{CO₂,bulk}} \) may not be representative of the surface (i.e., \(f_{\text{CO₂,surface}} \)). Therefore, to derive a wind speed (\(U_{10N} \)) dependent parametrization of \(K_{660} \) from this project \(K_{660,u} \), only data from non-stratified waters are considered. \(K_{660,u} \) and the EC CO₂ flux observations are then used to compute the implied \(f_{\text{CO₂,surface}} \) for all water types (non-stratified and stratified):

\[f_{\text{CO₂,surface}} = \frac{F_{\text{CO₂,EC}}}{K_{660,u}(Sc / 660)^{0.5} \alpha_{\text{ss}}} + \alpha_{\text{ss}} f_{\text{CO₂,ss}} \]

(3)

A similar approach is used to derive sensible heat transfer velocity (\(K_H \)) and compute the implied surface seawater temperature (\(T_{\text{surface}} \)):

\[K_H = \frac{H_{\text{S,EC}}}{\rho_a c_p u \left(T_{\text{bulk}} - dT - T_a\right)} \]

(4)

\[T_{\text{surface}} = \frac{H_{\text{S,EC}}}{\rho_a c_p K_H u} + T_a \]

(5)

where \(K_H \) (cm h⁻¹) is parametrized with \(U_{10N} \) \((K_{H,u}) \) using data from non-stratified waters (Figure S2 in Supporting Information S1). Here, \(\rho_a \) (kg m⁻³) is the mean density of dry air, \(c_p \) (J kg⁻¹ K⁻¹) is the heat capacity of air and \(T_a \) (K) is the air temperature. The temperature offset due to the cool skin effect, \(dT \) (K), is estimated using the COARE 3.5 model (Edson et al., 2013; Fairall et al., 1996).

3. Results and Discussion

3.1. CO₂ Flux Time Series

The time series of hourly averaged EC and bulk fluxes for CO₂ and heat are shown for cruise JR18007 (Figure 1). The bulk CO₂ flux is calculated from \(f_{\text{CO₂,bulk}} \) \(f_{\text{CO₂,ss}} \) and \(T_{\text{bulk}} \) measurements using the gas transfer velocity parametrization from Nightingale et al. (2000). The bulk sensible heat flux is computed using the COARE 3.5 model (Edson et al., 2013). The sea ice concentration (Figure 1d) is derived from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E, daily and 3.125 km resolution; Spreen et al., 2008).
Stratified areas were located at the edge of or within the sea ice (Figure S1 in Supporting Information S1), with relatively low near-surface salinity and temperature (Figure 1) suggesting that sea-ice melt is the principal reason for near-surface stratification. Terrestrial runoff as a source of freshwater is unlikely because the ship was far from land (>50 km) in the stratified stations (Figure S1 in Supporting Information S1). Furthermore, there were no significant precipitation events during the cruise, ruling out surface freshening due to precipitation.

The relatively good agreement between EC fluxes and bulk air-sea CO$_2$ fluxes in non-stratified regions (Figure 1a and Figure S3 in Supporting Information S1) suggests that the data (EC fluxes and underway fCO$_{2w,bulk}$) are reliable and that the Nightingale et al. (2000) gas transfer velocity parameterization is reasonable for this study region. In areas with near-surface stratification (stations 6 and 16), bulk CO$_2$ fluxes

Figure 1. Time series of hourly fluxes and environmental variables on JR18007. Negative (positive) fluxes represent ocean sinks (sources): (a) EC and bulk air-sea CO$_2$ fluxes, and salinity at 6 m depth. Light blue shading shows near-surface stratification (identified from conductivity, temperature, depth [CTD] profiles). Gray shading indicates ice-covered waters where the underway seawater system was shut off. Dashes on the top axis correspond to CTD stations. Stations with near-surface stratification are in red. Dash length represents the duration on station; (b) EC and bulk sensible heat flux, seawater temperature (T_w) at 6 m depth and air temperature (T_a); (c) 10-m neutral wind speed and air-sea CO$_2$ fugacity difference (ΔfCO$_2 = fCO_{2w,bulk} - fCO_{2a}$); (d) Sea ice concentration (Spreen et al., 2008) and Brunt–Väisälä frequency (N^2) at 6 m depth.
are consistently less negative (lower in magnitude) than EC CO₂ fluxes (Figure 1a). Meanwhile, bulk sensible heat fluxes are slightly higher than EC fluxes in stratified regions.

Another intriguing feature is that EC sensible heat fluxes were close to zero during sea ice stations 8 and 9, but EC CO₂ fluxes were still significant. The sea ice concentration data (Figure 1d) show that the sea surface was not fully ice-covered in this region. One possible reason for near-zero sensible heat flux but detectable CO₂ flux is that the surface (seawater or sea ice) temperature was close to the air temperature, while an fCO₂ gradient existed across the sea surface. Also, air-sea CO₂ exchange is mainly controlled by waterside processes (Liss & Slater, 1974), whereas the air-sea heat exchange is controlled by airsides processes (Yang et al., 2016). The impact of sea ice on waterside controlled gases (e.g., CO₂) may be different from the impact on airsides controlled gases and heat.

3.2. Gas Transfer Velocity

Dong et al. (2021) show that the hourly EC air-sea CO₂ flux relative uncertainty is ~20% on average during JR18007. The ΔfCO₂ (= fCO₂,2w,bulk − fCO₂,2w,air) ranges from −181 to −71 μatm (−130 μatm on average, Figure 1c) during JR18007. The relatively low flux uncertainty and large ΔfCO₂ values enable us to estimate the gas transfer velocity (K₆₆₀) with high accuracy. Figure 2 shows K₆₆₀ derived from quality-controlled EC CO₂ fluxes and ΔfCO₂ observations, plotted against 10-m neutral wind speed (U₁₀N); the latter is determined from measurements of wind speed adjusted to U₁₀N using the COARE 3.5 model (Edson et al., 2013). There are 298 hourly averaged K₆₆₀ values. 239 hourly K₆₆₀ values from non-stratified waters are binned in wind speed intervals of 1 m s⁻¹ and the bin averages (red squares) are used to derive a least square quadratic fit. The fit (K₆₆₀,u = 0.220 U₁₀N² + 2.213; R² = 0.801). The K₆₆₀ parameterizations of Nightingale et al. (2000) (black dashed) and Butterworth and Miller (2016) (green dot dashed) are also shown.

The K₆₆₀ data in stratified waters (21 hourly K₆₆₀) are consistently higher than the parameterized K₆₆₀,u curve. Including data from stratified waters and waters with unknown stratification status (38 hourly K₆₆₀) decreases the strength of the quadratic fit between hourly K₆₆₀ and U₁₀N from R² = 0.801 to R² = 0.777 (Table S1 in Supporting Information S1). This is most likely due to a vertical gradient in fCO₂,2w where fCO₂,2w,bulk systematically exceeds fCO₂,2w,surface (see Section 3.3)

3.3. Implied Sea Surface CO₂ Fugacity and Temperature

The K₆₆₀ parameterization in Figure 2 and the K₈₇₅ parameterizations (Figure S2 in Supporting Information S1) are used for estimating fCO₂,2w,surface (Equation 3) and T₂w,surface (Equation 5). Data at low wind speeds (U₁₀N < 4 m s⁻¹) are excluded from these calculations because of the low signal-to-noise ratios of EC fluxes and larger relative uncertainties in transfer velocities during calm conditions (Dong et al., 2021).

Figure 3 shows the comparison between hourly averages of the bulk seawater measurements (fCO₂,2w,bulk) and, in the case of temperature, adjusted for the cool skin: Tₛ = dT) and the implied surface values (fCO₂,2w,surface and T₂w,surface). In non-stratified waters (gray dots in Figure 3a), the means of the two fCO₂ values compare reasonably well, even though the fCO₂,2w,surface values have a larger range than fCO₂,2w,bulk due to variability in the EC CO₂ flux observations and the uncertainty in the K₆₆₀ parameterization. In stratified waters (blue dots in Figure 3a), the implied fCO₂,2w,surface values are consistently lower than fCO₂,2w,bulk, indicating that bulk measurements are not representative of the surface. Similarly, EC implied T₂w,surface values are consistently lower than the bulk water temperature in low salinity areas (≤32, Figure 3b). These data corroborate the
CTD profiles from JR18007 (Figure S4 in Supporting Information S1) and suggest that the surface water is colder and fresher than bulk water in regions with sea-ice melt.

Within the stratified areas during JR18007, \(f_{\text{CO}_2} \text{surface} \) (mean = 208 μatm) is on average 39 ± 39 μatm lower than \(f_{\text{CO}_2} \text{bulk} \) (mean = 247 μatm), while \(T_{\text{w, surface}} \) is on average 0.7 ± 0.8 °C below \(T_{\text{w, bulk}} - dT \). A temperature change of 0.7 °C should reduce \(f_{\text{CO}_2} \) by 7 μatm according to the Takahashi et al. (1993) empirical temperature relationship (Equation S5 in Supporting Information S1), suggesting that the temperature effect accounts for 18% of the vertical \(f_{\text{CO}_2} \) gradient within the stratified area.

Although the top 4 m depth CTD data have been removed due to ship interferences and rough sea state, CTD profiles still indicate that seawater at 4 m depth is fresher than the 5–10 m water at the stratified stations (Figure S4 in Supporting Information S1). The shapes of near-surface salinity profiles generally mirror those of temperature profiles (i.e., the vertical salinity gradient is nearly the same as the temperature gradient in magnitude; Figure S4 in Supporting Information S1). Here we crudely assume that the salinity difference between the sea surface and 6 m depth is 0.7 (i.e., corresponding to the temperature difference of 0.7°C). Variations in near-surface salinity alter carbonate chemistry and influence \(f_{\text{CO}_2} \). We use bulk water (≈6 m depth) DIC and TA measurements (Table S2 in Supporting Information S1) collected a month later from nine stations in the nearby Fram Strait (Figure S1 in Supporting Information S1), the sea ice concentration had decreased from ∼50% to ∼0% during a previous week of the cruise) to estimate the influence of salinity change on the vertical \(f_{\text{CO}_2} \) gradient. The average DIC, TA, and salinity were 1,974 ± 19 μmol kg⁻¹, 2,100 ± 22 μmol kg⁻¹, and 30.6 ± 0.6, respectively.

Bulk water DIC and TA are corrected to a sea surface salinity by dividing by bulk salinity and multiplying by surface salinity (= bulk salinity − 0.7). The calculated surface and measured bulk water DIC and TA are used to estimate the sensitivity in \(f_{\text{CO}_2} \) to salinity change (Lewis & Wallace, 1998; Van Heuven et al., 2011). We estimate that the vertical salinity gradient can explain a \(f_{\text{CO}_2} \) gradient of on average 10.6 ± 1.1 μatm. This salinity-related decrease in \(f_{\text{CO}_2} \) accounts for 27% of the near-surface vertical \(f_{\text{CO}_2} \) gradient. Considering that the surface seawater is expected to be rapidly warmed by solar radiation, whereas salinity is less affected by surface warming, the temperature effect will be more transitory than the salinity effect. Thus, the estimated salinity effect is likely conservative, that is, greater than 27%.

Sea-ice-related plankton metabolism might be another reason for lower \(f_{\text{CO}_2} \) in the surface stratified layer. The CTD oxygen profiles show that the oxygen concentration increases close to the surface in the stratified stations (Figure S4 in Supporting Information S1). Chierici et al. (2019) observed meltwater-induced...
phytoplankton production in the marginal ice zone near Fram Strait in May 2019, which continued until the end of August. Photosynthesis in the upper few meters of the water column could reduce $f_{CO_{2w}}$.

Air-sea gas exchange cannot be the cause of the lower surface $f_{CO_{2w}}$ observed in stratified waters because the influx of CO_2 would have not helped to explain the observations, increasing $f_{CO_{2w}}$ at the surface. The results presented here demonstrate that near-surface stratification due to sea-ice melt generates a strong near-surface $f_{CO_{2w}}$ gradient ($f_{CO_{2w, surface}} < f_{CO_{2w, bulk}}$), which causes a bias in bulk air-sea CO_2 flux estimates when $f_{CO_{2w, bulk}}$ from -6 m depth is used. In the next section, we estimate the impact such a bias would have on CO_2 uptake by the entire Arctic Ocean.

3.4. Potential Impact on Arctic Ocean CO_2 Uptake Estimates

Here we speculate on the potential impact of near-surface stratification due to summertime sea-ice melt on estimates of CO_2 uptake for the entire Arctic Ocean.

We make the following crude assumptions: (a) bulk $f_{CO_{2w}}$ measurements overestimate the surface $f_{CO_{2w}}$ in all regions with sea-ice melt; (b) the $f_{CO_{2w}}$ overestimation ($-f_{CO_{2w}}$ offset, μatm) decreases with wind speed for $U_{10N} > 3$ m s$^{-1}$ ($f_{CO_{2w}}$ offset = $-408 U_{10N} + 27$, Figure S5 in Supporting Information S1) (Ahmed et al., 2020; Fischer et al., 2019; Miller et al., 2019) and is assumed to be constant (109 μatm) at $U_{10N} \leq 3$ m s$^{-1}$; (c) surface seawater temperature and salinity are 2°C and 31 within the stratified areas, respectively (average of the EC implied $T_{w,surface}$ and surface salinity in the stratified waters during JR18007).

The 6-hr Cross-Calibrated Multi-Platform (CCMP) Wind Vector Analysis (Atlas et al., 2011) at a height of 10 m above mean sea level is used to calculate K_{660} and to estimate the $f_{CO_{2w}}$ offset. The flux offset is calculated with Equation 1 (replacing Δf_{CO_2} with $f_{CO_{2w, offset}}$), and the result from each grid cell is linearly scaled using the sea ice concentration. The AMSR-E (Spreen et al., 2008) daily sea ice concentration (SIC) data (3.125 km grid resolution) are used to determine the extent of stratified areas. There are two scenarios when a grid cell is deemed to contain near-surface stratified water: (a) the ice-free proportion of the grid cell is considered to be stratified when SIC is between 0% and 100%; (b) SIC of a grid cell has declined to 0% during the last 10 days (assuming that near-surface stratification lasts for 10 days, within the indicated duration time indicated by Ahmed et al., 2020), the whole cell is considered to be stratified.

We focus on the summertime (June to August inclusive) the Arctic Ocean in 2019. The result shows that the largest area with near-surface stratification and the greatest underestimation of CO_2 uptake occur in July (Figure S6 in Supporting Information S1). K_{660} increases with the wind speed, while the magnitude of $f_{CO_{2w, offset}}$ decreases with wind speed, so the wind speed effect on the variability of the flux offset is almost canceled out and the estimated bulk flux variability is mainly related to the size of the stratified area. The integrated summertime underestimation of Arctic Ocean CO_2 uptake due to sea-ice melt is estimated to be 11 Tg C, which is comparable with the back-of-the-envelope calculation (9.3 Tg C yr$^{-1}$) of Ahmed et al. (2020).

The above estimate is based on assumptions that the $f_{CO_{2w}}$ offset is wind speed dependent and the shallow stratification lasts for 10 days. High wind speed enhances the near-surface seawater mixing and weakens the shallow stratification. We do not have a robust relationship between $f_{CO_{2w}}$ offset and wind speed because our measurements in stratified waters only span a small range of wind speeds (6 ± 1 m s$^{-1}$) and the data are quite scattered (Figure S5 in Supporting Information S1). If we do not consider the influence of wind speed on the f_{CO_2} gradient and assume a constant $f_{CO_{2w, offset}}$ of -39 μatm in the sea ice melt region, then the underestimation of Arctic Ocean CO_2 uptake is reduced to 6 Tg C. Another major uncertainty is inherent in our assumption that near-surface stratification lasts for 10 days. If we assume that the near-surface stratification lasts 7 days or 14 days, the underestimation of Arctic Ocean CO_2 uptake is 10 Tg C and 13 Tg C, respectively (using the wind speed dependent $f_{CO_{2w}}$ offset).

The underestimation of 11 Tg C in 2019 corresponds to 6%–17% of annual Arctic Ocean carbon uptake (66–199 Tg C yr$^{-1}$, Bates & Mathis, 2009). Note that the CO_2 sink estimate by Bates and Mathis (2009) was a decade ago, so the percentage of this underestimate may have slightly changed.
4. Conclusions

This study reports direct and indirect estimates of air-sea CO₂ and sensible heat fluxes from shipboard campaigns in the summertime Arctic Ocean. Direct fluxes by eddy covariance are used to compute the implied sea surface fCO₂w and T_s. Comparisons of implied surface values with bulk water measurements at 6 m depth help to identify possible vertical fCO₂w gradients in the upper ocean. Implied surface fCO₂w is on average 39 μatm lower than bulk fCO₂w in regions with near-surface stratification due to sea ice melt. EC-derived gas transfer velocities (K₃₆₀) using bulk seawater measurements in non-stratified regions agree well with previous parameterizations. However, in stratified regions, EC-derived K₃₆₀ is higher at a given wind speed because of the near-surface fCO₂w gradient.

Cooling and freshening due to sea-ice melt in the Arctic summer account for 18% and at least 27% of the near-surface fCO₂w gradient during cruise JR18007, respectively. Enhanced photosynthesis in the stratified layer may also have contributed to the near-surface fCO₂w gradient.

The Arctic Ocean is an important CO₂ sink, but this ocean carbon uptake may have been underestimated previously due to near-surface fCO₂w gradients induced by sea-ice melt. A simple calculation for the summertime Arctic Ocean suggests that near-surface stratification due to sea-ice melt could lead to an ∼10 Tg C underestimation of CO₂ uptake but there is considerable uncertainty in the validity of such an extrapolation. The continuing loss of Arctic sea ice is expected to increase CO₂ uptake in summer, and may further increase the uncertainty in Arctic air-sea CO₂ flux estimates if near-surface stratification is not considered.

This is the first time to our knowledge that direct measurements by EC have been used to quantify the potential bias in bulk flux estimates due to near-surface stratification in the Arctic Ocean. A similar underestimation in CO₂ flux related to sea-ice melt may also occur in the Southern Ocean. Detailed studies of upper ocean (0–10 m) gradients in fCO₂w temperature, salinity, DIC, TA, and biological rates along with EC flux measurements, are required to improve understanding of sea-ice melt impacts and near-surface stratification on air-sea exchange.

Data Availability Statement

The raw EC data and hourly flux data can be accessed at: https://doi.org/10.5285/03C78C45-08B5-4D82-B09D-09C0BA8A32C4D. The CTD profile data are stored at the British Oceanographic Data Center (BODC): https://www.bodc.ac.uk/data/bodc_database/nod/cruise/17335/. AMSR-E data: https://seaice.uni-bremen.de/data/amsr2/asi_daygrid_swath/n3125/. CCMP data: http://data.remss.com/ccmp/v02.1.NRT/.

References

Ahmed, M. M. M., Else, B. G. T., Capelle, D., Miller, L. A., & Papakyriakou, T. (2020). Underestimation of surface pCO₂ and air-sea CO₂ fluxes due to freshwater stratification in an Arctic shelf sea, Hudson Bay. *Elementa: Science of the Anthropocene*, 8(1), 084. https://doi.org/10.1525/elementa.084

Anderson, L. G., Olsson, K., & Chierici, M. (1998). A carbon budget for the Arctic Ocean. *Global Biogeochemical Cycles*, 12(3), 455–465. https://doi.org/10.1029/98GB01372

Arrigo, K. R., & van Dijken, G. L. (2015). Continued increases in Arctic Ocean primary production. *Progress in Oceanography*, 136, 60–70. https://doi.org/10.1016/j.pocean.2015.05.002

Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J., et al. (2017). Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. *Scientific Reports*, 7(40850), 1–9. https://doi.org/10.1038/srep40850

Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., & Gombos, D. (2011). A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. *Bulletin of the American Meteorological Society*, 92(2), 157–174. https://doi.org/10.1175/2010BAMS2946.1

Bates, N., & Mathis, J. T. (2009). The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO₂ exchanges, ocean acidification impacts and potential feedbacks. *Biogeosciences*, 6(11). https://doi.org/10.5194/bg-6-2433-2009

Butterworth, B. J., & Else, B. G. T. (2018). Dried, closed-path eddy covariance method for measuring carbon dioxide flux over sea ice. *Atmospheric Measurement Techniques*, 11(11), 6075–6080. https://doi.org/10.5194/amt-11-6075-2018

Butterworth, B. J., & Miller, S. D. (2016). Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone. *Geophysical Research Letters*, 43(13), 7223–7230. https://doi.org/10.1002/2016GL069591

Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., et al. (2010). Decrease in the CO₂ uptake capacity in an ice-free Arctic Ocean basin. *Science*, 329(5991), 556–559. https://doi.org/10.1126/science.1189338

Calleja, M. L., Duarte, C. M., Alvarez, M., Vaquer-Sunyer, R., Agustí, S., & Herndl, G. J. (2013). Prevalence of strong vertical CO₂ and O₂ variability in the top meters of the ocean. *Global Biogeochemical Cycles*, 27(3), 941–949. https://doi.org/10.1002/gbc.20081

Chierici, M., Vernet, M., Fransson, A., & Borsheim, K. Y. (2019). Net community production and carbon exchange from winter to summer in the Atlantic water inflow to the Arctic Ocean. *Frontiers in Marine Science*, 6, 1–24. https://doi.org/10.3389/fmars.2019.00528
Dong, Y., Yang, M., Bakker, D. C. E., Kitidis, V., & Bell, T. G. (2021). Uncertainties in eddy covariance air-sea CO₂ flux measurements and implications for gas transfer velocity parameterisations. *Atmospheric Chemistry and Physics, 21*(10), 8089–8110. https://doi.org/10.5194/acp-21-8089-2021

Edson, J. B., Jampanj, V., Weller, R. A., Bigorre, S. P., Flueddemann, A. J., Fairall, C. W., et al. (2013). On the exchange of momentum over the open ocean. *Journal of Physical Oceanography, 43*(8), 1589–1610.

Else, B. G. T., Galley, R. J., Lansard, B., Barber, D. G., Brown, K., Miller, L. A., et al. (2013). Further observations of a decreasing atmospheric CO₂ uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss. *Geophysical Research Letters, 40*(6), 1132–1137. https://doi.org/10.1002/2013GL05268

Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., & Young, G. S. (1996). Cool-skin and warm-layer effects on sea surface temperature. *Journal of Geophysical Research: Oceans, 101*(C1), 1295–1308. https://doi.org/10.1029/95JC03190

Fischer, T., Kock, A., Arévalo-Martínez, D. L., Dengler, M., Brandt, P., & Bange, H. W. (2019). Gas exchange estimates in the Peruvian upwelling regime biased by multi-day surface stratification. *Biogeosciences, 16*(11), 2307–2328. https://doi.org/10.5194/bg-16-2307-2019

Fransson, A., Chierici, M., Miller, L. A., Carnat, G., Shadwick, E., Thomas, H., et al. (2013). Impact of sea-ice processes on the carbonate system and ocean acidification at the ice-water interface of the Amundsen Gulf, Arctic Ocean. *Journal of Geophysical Research: Oceans, 118*(12), 7001–7023. https://doi.org/10.1002/jgrc.2009164

Fransson, A., Chierici, M., & Nofjör, Y. (2009). New insights into the spatial variability of the surface water carbon dioxide in varying sea ice conditions in the Arctic Ocean. *Continental Shelf Research, 29*(10), 1317–1328. https://doi.org/10.1016/j.csr.2009.03.008

Fransson, A., Chierici, M., Skjelvan, I., Olsen, A., Assmy, P., Petersen, A. K., et al. (2017). Effects of sea-ice and biogeochemical processes and storms on under-ice water CO₂ during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO₂ fluxes. *Journal of Geophysical Research: Oceans, 122*(7), 5566–5587. https://doi.org/10.1002/2016JC012478

Jähne, B. (2009). Air-sea gas exchange. In J. H. Steele, K. T. Turekian, & S. A. Thorpe (Eds.), *Encyclopedia ocean Sciences*. Elsevier. Landschützer, P., Gruber, N., Bakker, D. C. E., & Schuster, U. (2014). Recent variability of the global ocean carbon sink. *Global Biogeochemical Cycles, 28*(9), 927–949. https://doi.org/10.1002/2014GB004853

Lewitus, E. R., & Wallace, D. W. R. (1988). Program developed for CO₂ system calculations. *Environmental System Science Data Infrastructure for a Virtual Ecosystem*. https://doi.org/10.15485/1464255

Li, W. K. W., McLaughlin, F. A., Lovejoy, C., & Carmack, E. C. (2009). Smallest algae thrive as the Arctic Ocean freshens. *Science, 326*(5952), 539. https://doi.org/10.1126/science.1179798

Liss, P. S., & Slater, P. G. (1974). Flux of gases across the air-sea interface. *Nature, 247*(5438), 181–184. https://doi.org/10.1038/247181a0

McPhee, M. G., Froshultinsky, A., Morison, J. H., Steele, M., & Alkire, M. B. (2009). Rapid change in freshwater content of the Arctic Ocean. *Geophysical Research Letters, 36*(). https://doi.org/10.1029/2009GL037525

Miller, I. A., Burgers, T. M., Burt, W. J., Granvogk, M. A., & Papakyriakou, T. N. (2019). Air-sea CO₂ flux estimates in stratified arctic coastal waters: How wrong can we be? *Geophysical Research Letters, 46*(1), 235–243. https://doi.org/10.1029/2018GL080099

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., et al. (2000). In situ evaluation of air-sea gas exchange parameterisations using novel conservative and volatile tracers. *Global Biogeochemical Cycles, 14*(1), 373–387. https://doi.org/10.1029/1999GB000901

Perovich, D., Meier, W., Tschudi, M., Hendricks, S., Petty, A. A., Divine, D., et al. (2020). Arctic report card 2020: Sea ice. U. S. N. O. and A. R. P. M. E. L. (U.S.), T. S. of Engineering, N. S. and I. D. C. (U.S.), U. of C. (Boulder campus), H. C. for P. and M. R. Alfred-Wegener-Institut für Polar- und Meeresforschung/Alfred Wegener Institute, G. F. S. F. Center. https://doi.org/10.25923/n170-9b57

Perovich, D. K., Light, B., Eicken, H., Jones, K. F., Runciman, K., & Nghiem, S. V. (2007). Increasing solar heating of the Arctic Ocean and its impacts. In *Annual Review of Marine Science*. https://doi.org/10.1146/annurev.marine.010908.163742

Prytherch, J., Brooks, I. M., Crill, P. M., Thornton, B. F., Salisbury, D. J., Tjernström, M., et al. (2017). Direct determination of the air-sea CO₂ flux measurements. *Global Biogeochemical Cycles, 31*(2), 952–957. https://doi.org/10.1002/2016GB005633

Rysgaard, S., McLaughlin, F. A., Carmack, E. C., Nishino, S., & Shimada, K. (2009). Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt. *Science, 326*(5956), 1098–1100. https://doi.org/10.1126/science.1174190
Yang, M., Bell, T. G., Blomquist, B. W., Fairall, C. W., Brooks, I. M., & Nightingale, P. D. (2016). Air-sea transfer of gas phase controlled compounds. In IOP Conference Series: Earth and Environmental Science. IOP Publishing. https://doi.org/10.1088/1755-1315/35/1/012011
Yasunaka, S., Siswanto, E., Olsen, A., Hoppema, M., Watanabe, E., Fransson, A., et al. (2018). Arctic Ocean CO$_2$ uptake: An improved multiyear estimate of the air–sea CO$_2$ flux incorporating chlorophyll a concentrations. Biogeosciences, 15(6), 1643–1661. https://doi.org/10.5194/bg-15-1643-2018