Supplementary Material

Changes in the Community Structure of Under-Ice and Open-Water Microbiomes in Urban Lakes Exposed to Road Salts

Isabelle B. Fournier, Connie Lovejoy, Warwick F. Vincent

Supplementary Figures and Tables

Supplementary Figure 1. Changes in the specific conductivity of Lake Saint-Augustin surface water from 1971 to present. Red line marks the Highway 40 construction in the lake watershed (1977, Pienitz et al. 2006). Black line is a degree 2 polynomial fit of span 0.75.

Sources: 1976-1978 Meunier and Alain 1979; 1993-2009 Galvez-Cloutier et al. 2012 and reference therein; 2015 OBV de la Capitale 2018; 2016-2017 present study; 13 September 2020, RBR-620-CTD, W.F. Vincent.
Supplementary Figure 2. Temperature, oxygen and conductivity profiles of Lake Clair, Lake Saint-Charles, Lake Clément and Lake Saint-Augustin in 2017.
Supplementary Figure 3. Taxonomic composition at the phylum level for (A) Bacteria and (B) microbial eukaryotes from the rRNA analysis for Lake Clair, Lake Saint-Charles, Lake Clément, and Lake Saint-Augustin during the ice-cover and the open-water periods.
Supplementary Figure 4. Taxonomic composition at the phylum level for phytoplankton from (A) photosynthetic pigments, (B) microscopy, (C) 18S rRNA and (D) 16S rRNA chloroplasts for Lake Clair, Lake Saint-Charles, Lake Clément, and Lake Saint-Augustin during the ice-cover and the open-water periods.
Supplementary Figure 5. Taxonomic composition at the phylum level for (A) Biovolumes and (B) counts derived from microscopy for Lake Clair, Lake Saint-Charles, Lake Clément, and Lake Saint-Augustin during the ice-cover and the open-water periods.
Supplementary Table 1. Sampling dates for Lake Clair, Lake Saint-Charles, Lake Clément, and Lake Saint-Augustin in 2017.

Season	Lake Clair	Lake Saint-Charles	Lake Clément	Lake Saint-Augustin
Winter	January 24	January 23	January 10	January 12
	February 21	February 23	February 9	February 7
	March 21	March 23	March 9	March 7
Spring	May 30	May 19	June 01	May 22
Summer	July 24	July 25	July 13	July 14
Autumn	September 18	August 24	September 26	September 13
Supplementary Table 2. Photosynthetic pigment mass ratios to chlorophyll a for different groups of photosynthetic plankton, used as input to the HPLC analysis. Carotene is the sum of β,α-carotene and β,β-carotene, and Chl c is the sum of chlorophyll $c1$ and chlorophyll $c2$.

Pigments	Chlorophytes	Chrysophytes	Cryptophytes	Cyanobacteria	Dinoflagellates	Euglenophytes	Haptophytes
Alloxanthin	0.016	0	0	0	0	0	0
Antheraxanthin	0	0	0	0	0	0	0
Aphanizophyll	0	0	0	0.0054	0	0	0
Astaxanthin	0.004	0	0	0	0	0	0
Canthaxanthin	0	0	0	0	0	0	0.014
Carotene	0.003	0.003	0.004	0.004	0.0025	0.004	0.03
Chl b	0.356	0	0	0	0	0	0.198
Chl c	0	0.032	0.091	0.091	0.1555	0	0
Diadinoxanthin	0	0.016	0	0	0.064	0.2465	0.327
Diatoxanthin	0	0.025	0	0	0.083	0.0795	0.235
Dinoxanthin	0	0	0	0	0	0.053	0
Echinonene	0	0	0	0.526	0	0	0.026
Fucoxanthin	0	0.283	0	0	0.458	0	0
Lutein	0.147	0	0	0	0	0	0.637
Neoxanthophyll	0	0	0	0	0.136	0	0
Neoxanthin	0.04	0	0	0	0	0	0.034
Peridinin	0	0	0	0	0	0.5075	0
Violaxanthin	0.026	0.063	0	0	0.003	0	0
Zeaxanthin	0.036	0.016	0	0.28	0.007	0	0
Supplementary Table 3. Conditions of the polymerase chain reaction (PCR) thermal cycling for the 515F/806R primers as modified by Aprill et al. (2015) and the 572F/1009R primers from Comeau et al. (2011).

Steps	515F/806R	1389F/1510R				
	Temperature (°C)	Time (seconds)	Cycles	Temperature (°C)	Time (seconds)	Cycles
Initial denaturation	None	NA		98	30	1
Denaturation	94	45	36	98	10	1
Annealing	50	60	36	52	30	30
Extension	72	90		72	30	
Final extension	72	60	1	72	270	1
Supplementary Table 4.

Taxonomy	16S rRNA	18S rRNA	Lake Clair open water	Microscopy	Chloroplast 16S rRNA
	Reads%	%reads	Taxonomy	Biovolume%	CV%
	CV%				
Unclassified	28.5	10	Mesodinium sp	44.1	52
Unclassified	20.5	98	Chrysophyceae	7.7	75
Unclassified	11.0	99	Unclassified	4.4	146
Polynucleobacter sp	3.5	34	Litotomata	4.3	82
Rhodovarius sp	3.5	69	Strombidiida	3.8	97
CLS08-3	3.4	102	Chrysophyceae cladeD	3.5	69
Sediminibacterium sp	1.9	77	Chrysophyceae cladeC	2.4	63
Actinobacteria unclassified	1.8	38	Dinobryon sp	2.4	35
Flavobacterium sp	1.6	135	Unclassified ochrophyta	2.1	110
Unclassified	1.5	96	Pericrostida	2.0	171
Enticicia sp	1.5	118	Unclassified	1.7	86
GKS99	1.3	10	Cryptomonas pyroidifera	1.7	81
Actinobacteria hgcI clade	1.2	45	Unclassified	1.5	76
Dinghuibacter sp	1.2	102	Chrysophyceae sp	1.2	149
Condobacter sp	0.9	62	Dinobryon crenulatum	0.9	67
Ferruginibacter sp	0.9	75	Chrysophyceae cladeE	0.9	39
Arcicella sp	0.7	172	Asterinaeia	0.8	56
IMCC26134	0.7	167	Mamilliphycaceae	0.8	118
SMEA102	0.7	155	Centroheliozoa	0.8	157
Roseomonas sp	0.6	94	StrobilididaC	0.7	114
Legend 16S rRNA					
Alphaproteobacteria					
Gammaproteobacteria					
Betaproteobacteria					
Cyanobacteria					
Legend 18S rRNA					
Alphaproteobacteria					
Gammaproteobacteria					
Bacteroidetes					
Planctomycetes					
Bacteroidetes					
Planctomycetes					
Chloroflexi					
Other					
Legend Chloroplast 16S rRNA					
Alphaproteobacteria					
Gammaproteobacteria					
Betaproteobacteria					
Cyanobacteria					
Legend Microscopy					
Alphaproteobacteria					
Gammaproteobacteria					
Bacteroidetes					
Planctomycetes					
Bacteroidetes					
Planctomycetes					
Chloroflexi					
Other					
Legend Chloroplast 16S rRNA					
Alphaproteobacteria					
Gammaproteobacteria					
Bacteroidetes					
Planctomycetes					
Bacteroidetes					
Planctomycetes					
Chloroflexi					
Other					

Note: CV%: coefficient of variation, SD as % mean.
Supplementary Table 5. Most abundant taxa (OTUs were pooled at their lowest taxonomic ranks) in Lake Clair for 16S rRNA, 18S rRNA, microscopy, and chloroplast 16S rRNA during the ice-cover period (Jan-Feb-Mar); %reads: mean relative abundance in % of total reads, Biovolume%: mean relative abundance in % of total biovolume, CV%: coefficient of variation, SD as % mean.

Taxonomy	16S rRNA Reads	16S rRNA CV%	18S rRNA Reads	18S rRNA CV%	Lake Clair ice-cover Microscopy Biovolume	Lake Clair ice-cover Chloroplast 16S rRNA Reads	Lake Clair ice-cover Chloroplast 16S rRNA CV%	
Unclassified	21.1	13	Unclassified	39.8	60	Unclassified	46.0	132
Unclassified	15.5	3	Synura mollispina	35.8	72	Unclassified	12.0	173
Unclassified	13.1	30	Unclassified cryptophyceae	5.2	90	Chlamydomonas sp.	11.2	84
Clathniobacter sp.	6.4	37	Cryptomonas pyrenoidifera	46.0	132	Chrysochromulina sp.	10.8	173
Sediminibacterium sp.	5.4	71	Synura curvata	2.9	81	Cryptomonas ovata	7.9	120
SH-11	3.9	60	Dinobryon bavaricum	1.2	28	Dinobryon bavaricum	5.1	145
Unclassified	3.2	46	Unclassified	1.1	68	Unidentified	2.8	173
BSV13	2.6	86	Stroma	0.9	139	Uronema sp.	1.7	93
Lateolabbelus sp.	2.5	152	Unclassified	0.8	131	Unclassified	0.8	173
Cephaloticoccus sp.	1.9	74	Cryptomonas marssonii	0.8	85	Unclassified flagellate 2	0.5	112
Flexibacterium sp.	1.8	21	Mesodinium sp.	0.7	87	Unidentified	0.4	173
Unclassified	1.8	65	Mallomonas sp.	0.6	78	Unidentified	0.4	173
Actinobacteria unclassified	1.6	44	Pseudodendromonadales	0.6	78	Peridinium sp.1	0.3	173
Polynucleobacter sp.	1.6	48	Group 2	0.6	94	Enteroxps	0.1	100
Actinobacteria hgcI clade	1.5	33	Unclassified	0.6	94	Unidentified	0.1	173
Caulobacter sp.	1.0	96	Cryptomonas tetraptymnodosa	0.6	110	Unidentified	0.1	173
Flexibacteraceae	0.9	87	Chrysochromulina cladeD	0.5	101	Unidentified	0.1	173
Rhodovibrio sp.	0.9	57	Unclassified	0.5	101	Unclassified	0.1	173
Marine group	0.8	119	Unclassified flagellates	0.4	121	Unidentified	0.1	173
Polaronomonas sp.	0.8	57	Chlorella	0.4	134	Unidentified	0.1	173

Legend 16S rRNA
- Alphaproteobacteria
- Betaproteobacteria
- Cyanobacteria
- Gammaproteobacteria
- Planctomycetes
- Verrucomicrobia
- Others

Legend 18S rRNA, microscopy and chloroplast 16S rRNA
- Chlorophyta
- Cryptophyta
- Dinoflagellata
- Haptophyta
- Katablepharidophyta
- Telonemia
- Ochrophyta
- Others
- Unknown
Supplementary Table 6

Most abundant taxa (OTUs were pooled at their lowest taxonomic ranks) in Lake Saint-Charles for 16S rRNA, 18S rRNA, microscopy, and chloroplast 16S rRNA during the open-water period; %reads: mean relative abundance in % of total reads, Biovolume%: mean relative abundance in % of total biovolume, CV%: coefficient of variation, SD as % mean.

Taxonomy	16S rRNA	Lake Saint-Charles open water	Taxonomy	18S rRNA	Lake Saint-Charles open water	Taxonomy	Microscopy	Lake Saint-Charles open water	Taxonomy	Chloroplast 16S rRNA	Lake Saint-Charles open water		
	Reads %	CV%		Reads %	CV%		Biovolume%	CV%		Reads %	CV%		
Unclassified	31.1	104	Litostomatea	28.6	103	Synagococcus	17.2	148			Floresiella parvula	18.6	122
Unclassified	11.2	40	Mesodinium sp.	6.2	124	Picocyanobacteria	12.1	72			Unclassified	15.7	65
Phylochaetae CL500-3	10.7	85	Dinobryon sociale	3.6	72	Chrysochromulina sp.	10.2	136			Cryptomonas curvata	11.1	32
Unclassified	8.9	63	Pseudoholophyta sp.	3.5	135	Ceratium hirundinella	9.3	200			Epiphippia P25K	8.3	60
Polymorphlscheracter sp.	3.8	132	Unclassified chrysophyceae	3.2	103	Asterionella formosa	7.7	130			Synagococcus	7.1	56
Sediminibacterium sp.	2.5	185	Dinobryon divergens	3.1	122	Dinobryon bavaricum	6.9	70			Dinobryon LO226KS	6.6	46
Actinobacteria unclassified	2.3	154	Chrysophyceae cladeD	2.8	84	StrombidiaidaA	6.6	71			Ochromonas CCMP1393	3.8	175
Unclassified	1.7	80	Litostomatea	2.7	106	Chlamydomonas sp.	4.1	132			Chrysophyceae cladeC	2.3	102
Microcystis sp.	1.7	170	Didiniidae	2.3	189	Peridinium sp. 1	3.1	62			Unclassified	2.0	133
Flavobacterium sp.	1.6	185	Sphaerocoea lepdesignica	2.3	190	Tabellaria fenestrata	3.0	155			Cryptomonas curvata	1.7	89
GKS98	1.4	172	Chrysophaearella sp.	2.0	133	Cryptomonas ovata	2.9	155			Rhodophyta unclassified	1.5	60
SH3-11	1.2	88	Unclassified chrysophyceae	1.7	74	Unclassified flagellate	2.3	118			Acanthoceras zaccharisi	1.3	75
Unclassified	1.1	112	Chrysophyceae cladeC	1.6	36	Cryptomonas sp.	2.0	89			Unclassified	1.0	108
Caulobacter sp.	0.9	128	Unclassified ochrophyta	1.6	36	Uronema sp.	1.4	99			Heterosigma akashiino	1.0	175
Bacteria unclassified	0.8	158	Uroplana americana	1.6	162	Unclassified	1.0	81			Synagococcus LO234KE	0.9	115
Phenylobacterium sp.	0.7	133	Unclassified	1.6	42	Unclassified ochrophyta	1.0	81			Hemieclnus sp.	0.9	152
Polaronas sp.	0.7	166	Dinobryon bavaricum	1.4	114	Cryptomonas marssonii	0.9	49			Mallomonas splendidus	0.6	133
IMCC26134	0.7	100	Dinobryon sp.	1.3	94	Cyanobacteria unclassified	0.9	144			Pseudopedinella elastica	0.4	58
Methylomonas sp.	0.7	196	Askenasia sp.	1.3	102	Pediasrium teras	0.9	200			Chromulina sp.	0.4	98
Aphaniotomina sp.	0.7	84	StrombidiaidaB	1.1	181	Ascosuctera cf. italic	0.5	200			Katablepharidophyta		

Legend 16S rRNA
- Alphaproteobacteria
- Betaproteobacteria
- Cyanobacteria
- Gammaproteobacteria
- Planctomycetes
- Verrucomicrobia
- Others

Legend 18S rRNA, microscopy and chloroplast 16S rRNA
- Coccozoa
- Chlorophyta
- Cryptophyta
- Dinoflagellata
- Haptophyta
- Katablepharidophyta
- Telonemia
- Ochrophyta
- Others
- Unknown
Supplementary Table 7. Most abundant taxa (OTUs were pooled at their lowest taxonomic ranks) in Lake Saint-Charles for 16S rRNA, 18S rRNA, microscopy, and chloroplast 16S rRNA during the ice-cover period (Jan-Feb-Mar); %reads: mean relative abundance in % of total reads, Biovolume%: mean relative abundance in % of total biovolume, CV%: coefficient of variation, SD as % mean.

Taxonomy	16S rRNA	Lake Saint-Charles ice-cover	Microscopy	Chloroplast 16S rRNA	
	Reads %	CV%	Reads %	Biovolume %	Reads %
Unclassified	26.3 67	Synura petersenii	21.3	126	34.9 118
Unclassified	7.0 72	Strombidium sp.	9.9	50	27.6 89
Unclassified	6.9 39	Cryptomonadales	6.9	118	14.9 92
Sediminibacterium sp.	4.6 66	Unclassified	4.6	61	5.6 173
Methyllobacter sp.	4.5 81	Prototaxa lineage	4.2	110	5.1 97
Nitrosospira sp.	4.4 163	Chrysophyceae cladeE	3.9	126	2.8 88
Polaronomas sp.	4.0 155	Chrysophyceae	3.0	94	2.4 118
Unclassified	3.9 65	Chrysophyceae cladeD	2.8	68	2.1 173
Unclassified	3.6 134	Vorticella sp.	2.8	81	2.1 173
Polymicrobacter sp.	3.3 63	Synura sp.	2.7	111	1.0 97
Unclassified	2.4 68	Cryptomonas curvata	2.3	26	0.7 173
Nitrospira sp.	2.4 156	Chrysophyceae cladeF	2.3	80	0.6 173
SH3-11	1.8 72	Chrysophyceae 1	2.1	67	0.2 173
CL300-3	1.7 124	Cryptomonas pyriformis	2.1	76	
Lutobacter sp.	1.5 173	Chrochromatina pura	1.3	79	
Acidobacteria subgroup 3	1.5 129	Choreotrichia	1.3	79	
Actinobacteria unclassified	1.4 64	Chryseomonadales	1.2	99	
Rhodovulum sp.	1.3 97	Chryseomonadales	1.2	99	
Margulisibacteria unclassified	1.3 84	Litostomata	1.0	164	
Flavobacterium sp.	1.0 50	Unclassified	1.0	49	
		Askinia sp.	0.9	68	

Legend 16S rRNA
Alphaproteobacteria
Betaproteobacteria
Cyanobacteria
Gammaproteobacteria
Planctomycetes
Verrucomicrobia
Others

Legend 18S rRNA, microscopy and chloroplast 16S rRNA
Cercozoa
Chlороphyta
Cryptophyta
Dinoflagellata
Haptophyta
Katablepharidophyta
Telonemia
Ochrophyta
Others
Unknown
Supplementary Table 8. Most abundant taxa (OTUs were pooled at their lowest taxonomic ranks) in Lake Clément for 16S rRNA, 18S rRNA, microscopy, and chloroplast 16S rRNA during the open-water period; %reads: mean relative abundance in % of total reads, Biovolume%: mean relative abundance in % of total biovolume, CV%: coefficient of variation, SD as % mean.

Taxonomy	16S rRNA	18S rRNA	Lake Clément open water	Chloroplast 16S rRNA
	Reads %	CV%	Reads %	Biovolume %
Unclassified	28.62	41	Litostomatea	5.35
			10.79	
Unclassified	21.12	26	Dinobryon divergens	15.97
			10.61	
Polynucleobacter sp.	5.21	72	Chrysochromulina cladeC	6.89
			8.05	
CL500-3	5.05	94	Dinobryon hexasporum	6.64
			6.29	
Unclassified	3.69	38	StrobilididaA	4.61
			5.94	
Unclassified	2.99	140	Dinobryon LO226KS	1.66
			21.93	
Unclassified	2.34	73	Cryptomonadales	1.48
			4.90	
SH3-11	2.27	56	Mallomonas caudata	1.51
			4.72	
Actinobacteria unclassified	2.21	85	Chrysophyceae	0.54
			4.71	
Pinnotheriomadia unclassified	1.99	111	Chrysochromulina cladeA	0.37
			3.41	
Sediminibacterium sp.	1.68	74	Cryptomonadales	0.33
			2.79	
Actinobacteria hgC clade	1.53	44	Cryptophyceae 1	0.19
			2.49	
Deltaproteobacteria unclassified	1.42	150	Chlorophyceae	0.19
			2.36	
Deltaproteobacteria OM27 clade	1.38	141	Cryptomonadales	0.19
			2.10	
MWH-UniP1	1.35	171	Hypotrichia	0.19
			2.01	
Flavobacterium sp.	1.10	137	Katatelpharidales	0.19
			1.97	
Polaronomonas sp.	1.05	66	Novel clade 2	0.19
			1.65	
Unclassified	0.89	20	Chrysochromulina parva	0.19
			1.62	
Hirschia sp.	0.75	39	Phagellimusi	0.19
			1.86	
Flavisciola sp.	0.71	44	Mallomonas	0.19
			1.52	

Legend 16S rRNA
- Purple: Alphaproteobacteria
- Blue: Gammaproteobacteria
- Green: Bacteroidetes
- Dark green: Cyanobacteria
- Orange: Bacteroidetes
- Yellow: Betaproteobacteria
- Gray: Others

Legend 18S rRNA, microscopy and chloroplast 16S rRNA
- Red: Chrysophyceae
- Green: Cryptophyceae
- Yellow: Dinoflagellata
- Blue: Haptophyta
- Gray: Others
- Orange: Unknown
Supplementary Table 9. Most abundant taxa (OTUs were pooled at their lowest taxonomic ranks) in Lake Clément for 16S rRNA, 18S rRNA, microscopy, and chloroplast 16S rRNA during the ice-cover period (Jan-Feb-Mar); %reads: mean relative abundance in % of total reads, Biovolume%: mean relative abundance in % of total biovolume, CV%: coefficient of variation, SD as % mean.

Taxonomy	Lake Clément ice-cover	Microscopy	Chloroplast 16S rRNA	
	16S rRNA	18S rRNA		
Unclassified	19.8	16.1	13.1	8.0
Unclassified	11.3	9.6	8.4	6.4
Unclassified	6.4	7.6	5.6	4.1
Cryptomonas sp.	28.1	16.1	9.3	7.7
Cryptomonas curvata	0.7	0.9	0.9	0.7
Cryptomonadales	4.4	2.7	3.7	2.7
Cryptophyceae 1	4.8	2.7	2.7	2.7
Chrysochromulina sp.	1.1	0.9	0.9	0.9
Chytridiomycetes	1.2	0.9	1.0	0.9
Amphiprora	1.0	0.9	1.0	1.0
Strombidia	1.1	0.9	1.0	1.0
StrombidiidaA	1.1	0.9	1.0	1.0
Chromulina	1.0	0.9	1.0	1.0
Ophiocytum	0.5	0.9	0.9	0.9
Synedra	0.1	0.9	0.9	0.9
Cymbella	0.1	0.9	0.9	0.9
Chlamydomonas	0.2	0.9	0.9	0.9
Chlorophyta	1.0	0.9	1.0	1.0
Chlamydomonadales	0.6	0.9	0.9	0.9
Porphyridium	0.5	0.9	0.9	0.9
Rhodomonas	0.5	0.9	0.9	0.9

Legend 16S rRNA
- **Alphaproteobacteria**
- **Bacteria**
- **Betaproteobacteria**
- **Cyanobacteria**
- **Gammaproteobacteria**

Legend 18S rRNA, microscopy and chloroplast 16S rRNA
- **Corophia**
- **Chlorophyta**
- **Cryptophyta**
- **Dinoflagellata**
- **Haptophyta**
- **Katablepharidophyta**
- **Telenemia**
- **Ochromyta**
- **Others**
- **Unknown**
Supplementary Table 10.

Most abundant taxa (OTUs were pooled at their lowest taxonomic ranks) in Lake Saint-Augustin for 16S rRNA, 18S rRNA, microscopy, and chloroplast 16S rRNA during the open-water period; %reads: mean relative abundance in % of total reads, Biovolume%: mean relative abundance in % of total biovolume, CV%: coefficient of variation, SD as % mean.

Taxonomy	16S rRNA	18S rRNA	Microscopy	Chloroplast 16S rRNA		
	Reads	CV%	Reads	Biovolume%	CV%	
Lake Saint-Augustin open water						
CL500-3	15.2	50	17.8	40	31.5	173
Unclassified	14.0	13	7.4	85	18.0	66
Unclassified	12.9	61	6.8	122	16.3	85
Unclassified	8.0	73	6.3	116	6.2	68
Cuspidithrix sp.	4.7	91	5.8	173	5.4	169
Unclassified	4.2	75	5.5	110	5.0	173
Polynucleobacter sp.	3.0	20	4.7	70	4.9	129
Unclassified	2.7	106	4.1	130	4.0	173
SH3-11	2.6	109	3.4	132	4.0	58
Flavobacterium sp.	2.2	155	3.3	173	2.5	173
Cyanobium sp.	2.0	167	3.2	145	2.3	173
Sediminibacterium sp.	1.6	162	2.7	167	1.7	126
Deltaproteobacteria	1.6	82	2.6	161	1.7	108
Unclassified	1.6	87	1.9	112	1.6	132
Unclassified	1.2	64	1.9	173	1.5	173
Dolichospermum sp.	1.1	85	1.5	83	0.8	94
MWH-UniP1	1.1	125	1.4	127	0.7	173
Reyvanella sp.	1.0	158	1.3	101	0.6	131
Filovicola sp.	0.7	73	1.2	116	0.5	173
Dinghuiibacter sp.	0.6	59	1.1	14	0.2	173

Legend 16S rRNA
- Alphaproteobacteria
- Bacteroidetes
- Betaproteobacteria
- Cyanobacteria
- Gammaproteobacteria
- Planctomycetes
- Verrucomicrobia
- Others

Legend 18S rRNA, microscopy and chloroplast 16S rRNA
- Cerezoa
- Chlorophyta
- Ciliophora
- Cryptophyta
- Dinoflagellata
- Haptophyta
- Katablepharidophyta
- Telonemia
- Ochrophyta
- Others
- Unknown
Supplementary Table 11. Most abundant taxa (OTUs were pooled at their lowest taxonomic ranks) in Lake Saint-Augustin for 16S rRNA, 18S rRNA, microscopy, and chloroplast 16S rRNA during the ice-cover period (Jan-Feb-Mar); %reads: mean relative abundance in % of total reads, Biovolume%: mean relative abundance in % of total biovolume, CV%: coefficient of variation, SD as % mean.

Taxonomy	16S rRNA	18S rRNA	Lake Saint-Augustin ice-cover	Chloroplast 16S rRNA
	Reads %	CV%	Biovolume %	CV%
CL500-3	21.5	52	Chlamydomonadales	15.7
Unclassified	18.5	12	Chrysophyceae cladeF	11.0
Unclassified	9.3	75	Cryptomonadales	8.8
Flavobacterium sp.	7.6	130	Cryptophyceae	6.7
Undibacterium sp.	7.4	139	Cryptomonas curvata	5.9
Polaronomas sp.	4.0	117	Chrysophyceae cladeD	4.9
Unclassified	3.7	78	Plagioselmis sp.	4.3
Unclassified	3.6	83	Cryptothecaceae 1	3.6
Aquirestis sp.	1.6	130	Katablepharidales	2.6
Unclassified	1.6	4	Stephanodiscus sp.	2.3
Dinghuiibacter sp.	1.5	83	Procentrum sp.	2.1
Unclassified	1.0	78	Chlamydomonadales	2.1
Terrimicrobium sp.	1.0	155	Unclassified	2.0
Polynucleobacter sp.	0.9	54	Spumella vulgaris	1.8
Actinobacteria lgc1 clade	0.9	78	Protaurolineage	1.5
Rhodovibrio sp.	0.8	92	Parmales	1.4
Methylotenera sp.	0.7	166	Philasterida	0.7
Actinobacteria unclassified	0.7	65	Rickettsiobium sp.	0.7
Nitrosocaproy sp.	0.7	111	Askemania sp.	0.6

Legend 16S rRNA
- Alphaproteobacteria
- Bacteroidetes
- Betaproteobacteria
- Cyanobacteria
- Gammaproteobacteria
- Planctomycetes
- Verrucomicrobia
- Others

Legend 18S rRNA, microscopy and chloroplast 16S rRNA
- Cercozoa
- Chlorphyta
- Chlorophora
- Cryptophyta
- Dinoflagellata
- Haptophyta

Legend 18S rRNA
- Catalapharidophyta
- Teknomeia
- Ochrophyta
- Others
- Unknown
Supplementary Table 12. Taxa identified by the DESeq analysis to discriminate between the lakes with the lower conductivity/urbanization (Lake Clair and Lake Saint-Charles) and the lakes with the higher conductivity/urbanization (Lake Clément and Lake Saint-Augustin) for 16S rRNA, 18S rRNA, microscopy and chloroplast 16S rRNA. For the data resulting from the rRNA analysis, the OTUs were pooled at their lowest taxonomic ranks. The DESeq analysis was conducted on the two periods (ice-cover and open-water) combined. L2FC: Average log² fold change between the two groups of lakes. CV%: coefficient of variation, SD as % mean. Low: mean relative (%) abundance (in reads for 16S, 18S and chloroplasts 16S) or biovolume (microscopy) in the lakes with the lower conductivity/urbanization. Taxa with a higher relative abundance (in reads) or biovolume in this group of lakes are in **bold**. High: mean relative (%) abundance (in reads for 16S, 18S and chloroplasts 16S) or biovolume (microscopy) in the lakes with the higher conductivity/urbanization.

Taxonomy	16S rRNA L2FC	Low	High	18S rRNA L2FC	Low	High	Microscopy L2FC	Low	High	Chloroplast 16S rRNA L2FC	Low	High
Cyanobacteria	7.2	0.9	0.7	8.4	7.6	<0.1	15.0	10.5	<0.1	5.6	6.9	<0.1
Betaproteobacteria	5.9	0.4	<0.1	6.8	2.6	<0.1	7.4	0.0	<0.1	3.2	14.8	14.8
Unclas.	5.8	0.2	0.1	5.4	3.8	0.1	6.0	4.1	<0.1	2.8	0.5	<0.1
Alphaproteobacteria	5.5	1.0	0.8	4.7	0.6	<0.1	5.4	0.1	<0.1	2.3	4.6	1.7
Unclas.	5.5	1.0	<0.1	4.5	2.0	0.4	4.8	0.1	<0.1	2.3	2.6	0.2
Dinghaibacter sp.	5.3	0.4	<0.1	4.4	1.3	<0.1	4.5	0.1	<0.1	2.2	0.5	<0.1
Unclas.	5.1	0.3	<0.1	4.4	1.0	<0.1	4.5	0.1	<0.1	2.1	0.5	<0.1
Unclas.	5.0	0.2	0.1	4.5	2.4	<0.1	3.5	0.0	<0.1	5.0	0.1	0.9
CL500-3	-6.6	<0.1	1.2	-5.2	<0.1	1.4	2.5	0.1	<0.1	-6.8	<0.1	3.2
Mesorrhagias hongiella	-6.6	<0.1	0.3	-5.1	<0.1	1.9	2.3	<0.1	<0.1	-5.4	<0.1	0.1
CL500-3	-6.3	<0.1	0.6	-4.9	<0.1	7.5	-11.8	<0.1	0.4	-5.2	0.1	16.4
CL500-3	-6.1	<0.1	0.7	-4.6	<0.1	0.9	-8.8	0.1	1.0	-5.0	0.1	0.9
Unclas.	-5.9	<0.1	0.5	-4.3	<0.1	0.6	-6.9	0.4	0.5	-5.0	1.8	5.7
MWH-UniP	-5.8	<0.1	0.3	-4.0	<0.1	0.6	-5.7	0.8	0.6	-4.8	<0.1	0.6
Unclas.	-5.8	<0.1	0.3	-4.0	<0.1	0.8	-5.5	5.9	13.2	-4.8	0.5	2.8
Craspedothrix LMECA-163	-5.7	<0.1	0.8	-4.0	<0.1	0.7	-4.0	<0.1	0.5	-4.7	0.1	0.6
Craspedothrix LMECA-163	-5.7	<0.1	0.6	-3.8	<0.1	0.5	-3.3	<0.1	0.2	-4.2	<0.1	0.1

Legend:
- **16S rRNA:** Alphaproteobacteria, Betaproteobacteria, Cyanobacteria, Deltaproteobacteria, Firmicutes, Proteobacteria
- **18S rRNA:** Chlorophyta, Cyanobacteria, Cryptophyta, Chrysophyta, Dinoflagellata, Eustigmatophyta, Haptophyta, Ochrophyta, Ochrophyta, Haptophyta
- **Chloroplast 16S rRNA:** Katablepharidophyta, Chlamydomonadales, Chrysophyta, Chrysophyta, Cryptophyta, Dinoflagellata, Unknown.
Supplementary Table 13. Taxa identified by the DESeq analysis to discriminate between the ice-cover (Jan-Feb-Mar) and the open-water (rest of the year) periods for 16S rRNA, 18S rRNA, microscopy and chloroplasts 16S rRNA. For the data resulting from the rRNA analysis, the OTUs were pooled at their lowest taxonomic ranks. The DESeq analysis was conducted on the four lakes combined. L2FC: Average log² fold change between the two periods. CV%: coefficient of variation, SD as % mean. IC: mean relative (%) abundance (in reads for 16S, 18S and chloroplast 16S) or biovolume (microscopy) during the ice-cover period. Taxa with a higher relative abundance (in reads) or biovolume in this group of lakes are in **bold**. OW: mean relative (%) abundance (in reads for 16S, 18S and chloroplast 16S) or biovolume (microscopy) during the open-water period.

Taxonomy	16S rRNA L2FC	18S rRNA L2FC	Microscopy L2FC	Chloroplast 16S rRNA L2FC
	IC	OW	IC	OW
Nitrosospira sp.	7.8	1.0	<0.1	
Unclas.	7.1	1.3	<0.1	
Flavobacterium sp.	7.0	1.0	<0.1	
Methylobacter sp.	6.2	2.5	<0.1	
Unclas.	6.1	0.7	<0.1	
Nitrotoga sp.	6.0	0.4	<0.1	
CL500-3	5.0	0.8	<0.1	
Unclas.	4.9	0.1	<0.1	
Subgroup 6	4.7	0.1	<0.1	
Unclas.	-7.0	<0.1	0.7	
Unclas.	-6.1	<0.1	0.4	
CL500-3	-5.8	<0.1	0.8	
Unclas.	-5.7	<0.1	0.3	
Unclas.	-5.5	<0.1	0.3	
Unclas.	-5.3	<0.1	0.2	
Unclas.	-5.2	<0.1	0.2	
Dinobryon bavaricum	-5.7	<0.1	0.3	
Dinobryon divergens	-6.3	<0.1	2.0	
Dinobryon sp.	-6.4	<0.1	0.3	
Dinobryon stoloniferum	-6.4	<0.1	0.5	
Dinobryon petiolatum	-6.4	<0.1	0.5	
Diatom sp.	-5.2	<0.1	0.3	
Dinobryon sp.	-4.9	<0.1	0.5	
Dinobryon sp.	-4.8	<0.1	0.1	
Dinobryon sp.	-4.8	<0.1	0.1	
Dinobryon sp.	-4.8	<0.1	0.1	