Emissions of greenhouse gases from energy use in agriculture, forestry and fisheries: 1970-2019

Alessandro Flammini¹, Xueyao Pan², Francesco N. Tubiello³*, Sally Yue Qiu³, Leonardo Rocha Souza⁴, Roberta Quadrelli⁵, Stefania Bracco⁶, Philippe Benoit⁷ and Ralph Sims⁷

¹United Nations Industrial Development Organization, Department of Environment, Vienna, Austria
²Food and Agriculture Organization, Statistics Division, Rome, Italy
³Columbia University, Centre on Global Energy Policy, New York, USA
⁴United Nations Statistics Division, New York, USA
⁵International Energy Agency, Paris, France
⁶University of Gastronomic Sciences, Bra, Italy
⁷Massey University, Palmerston North, New Zealand

*Corresponding author: Francesco N. Tubiello, francesco.tubiello@fao.org

Abstract. Fossil-fuel based energy use in agriculture leads to CO₂ and non-CO₂ emissions. We focus on emissions generated within the farm gate and from fisheries, providing information relative to the period 1970-2019 for both energy use as input activity data and the associated greenhouse gas (GHG) emissions. Country-level information is generated from UNSD and IEA data on energy in agriculture, (including forestry and fisheries), relative to use of: gas/diesel oil, motor gasoline, liquefied petroleum gas (LPG), natural gas, fuel oil and coal. Electricity used within the farm gate is also quantified, while recognizing that the associated emissions are generated elsewhere.

We find that in 2019, annual emissions from energy use in agriculture were about 523 million tonnes (Mt CO₂eq yr⁻¹), while including electricity they were 1.029 Mt CO₂eq yr⁻¹, having increased 7% from 1990. The largest emission increases from on-farm fuel combustion were from LPG (32%), whereas significant decreases were observed for coal (-55%), natural gas (-50%), motor gasoline (-42%) and fuel oil (-37%). Conversely, use of electricity and the associated indirect emissions increased three-fold over the 1990-2019 period, thus becoming the largest emission source from energy use in agriculture since 2005. Overall the global trends were a result of counterbalancing effects: marked decreases in developed countries in 2019 compared to 1990 (-273 Mt CO₂eq yr⁻¹) were masked by slightly larger increases in developing and emerging economies (+ 339 Mt CO₂eq yr⁻¹). The information used in this work is available as open data at: https://zenodo.org/record/5153241 (Tubiello and Pan, 2021). The relevant FAOSTAT (FAO, 2021b) emissions database is maintained and updated annually by FAO.

1. Introduction

Historically, productivity increases were achieved through transitions from traditional, extensive agri-food systems to modern, intensive production systems, characterized by greater energy use within the farm (Sims et al., 2014; Smil, 2008). Direct on-farm energy inputs include fuel to power tractors and other agricultural field machinery, irrigation pumps, heat to warm greenhouses and animal shelters. Other uses beyond the farm may include power for forestry machinery and fishing vessels (Dubois et al., 2017). Agricultural production more than doubled over...
The period 1990–2019, with additional increases of more than 50% expected to 2050, to meet projected increases in food demand (FAO, 2018; Calcagno et al., 2019). Historically, productivity increases were achieved through transitions from traditional, extensive agri-food systems to modern, intensive production systems, characterized by greater energy use within the farm (Smil, 2008). Direct on-farm energy inputs include fuel to power tractors and other agricultural field machinery, irrigation pumps, heat to warm greenhouses and animal shelters. Other uses beyond the farm may include power for forestry machinery and fishing vessels. We consider herein additionally the energy used to generate electricity that may be used on the farm in substitution of on-site fossil fuel combustion but do not include all other indirect energy uses that is typically addressed in life cycle type analyses (FAO, 2014; Sims et al., 2015; FAO, 2018).

On-farm energy use is a significant component of agricultural production and growth (Utz, 2011), however it often escapes attention in food-related emissions analysis relevant to National Determined Contributions (Tubiello et al., 2021). Escapes analysis of greenhouse gas (GHG) emissions in agriculture. Indeed, the ‘agriculture’ sector within national GHG inventories (NGHGI), which countries submit regularly to the UN Framework Convention on Climate Change (UNFCCC), contains only non-CO₂ emissions from crop and livestock bio-physical processes, for instance enteric fermentation in ruminants or nitrous oxide from fertilizers on cropland (IPCC, 2006; Tubiello et al., 2019). The on-farm energy use emissions are reported instead under the “Energy” sector of the NGHGI, therefore often escaping attention in food-related emissions analysis relevant to National Determined Contributions (Tubiello et al., 2021). Within the UNFCCC context, emissions from agriculture are currently about 5.6 Gt CO₂eq yr⁻¹, having increased by roughly 50% since 1961 (Tubiello, 2019). They are dominated by livestock processes and are fairly equally split between CH₄ and N₂O components, respectively in simple gases units corresponding to annual emissions in 2018 of 1.4 Mt CH₄ yr⁻¹ and 7.7 Mt N₂O yr⁻¹ (FAO, 2020; Tubiello et al., 2021).

Energy use in agriculture, forestry and fisheries nonetheless deserves more attention than paid in current reporting and associated studies because it is an important food-production component deserving analysis in its own right alongside the biophysical crop and livestock processes mentioned above. Additionally, it offers significant opportunities for on-farm mitigation actions directly focused on CO₂ reductions (Tubiello et al., 2019). This paper therefore focuses on quantifying the GHG emissions that arise from the combustion of fossil fuels for energy use in agriculture, forestry and fisheries (capture fishing and aquaculture). As detailed in the methods section, this quantification will focus mainly on the farm and on fishing activities, stemming that emissions associated to energy used to transport and handle crops and livestock on and off the farm. We include additional estimates of the emissions associated to the off-site generation of electricity used on the farm, tracking results both separately for electricity and on-site fossil fuel use, as well as in the aggregate. Agricultural production more than doubled over the period 1990–2019, with additional increases of more than 50% expected to 2050, to meet projected increases in food demand (FAO, 2018; Calcagno et al., 2019). Historically, productivity increases were achieved through transitions from traditional, extensive agri-food systems to modern, intensive production systems, characterized by greater energy use within the farm (Smil, 2008). Direct on-farm energy inputs include fuel to power tractors and other agricultural field machinery, irrigation pumps, heat to warm greenhouses and animal shelters. Other uses beyond the farm may include power for forestry machinery and fishing vessels. We consider herein additionally the energy used to generate electricity that may be used on the farm in substitution of on-site fossil fuel combustion but do not include all other indirect energy uses that is typically addressed in life cycle type analyses (FAO, 2014; Sims et al., 2015; FAO, 2018).
On-farm energy use is a significant component of agricultural production and growth (Sims et al., 2014; Utz, 2011), however, it often attracts less attention in food-related emissions analysis relevant to National Determined Contributions (Tubiello et al., 2021) as the on-farm energy use emissions are reported instead under the ‘Energy’ sector of the national GHG inventories (NGHGI). In fact, countries regularly submit to the UN Framework Convention on Climate Change (UNFCCC), containing only non-CO$_2$ emissions from crop and livestock biophysical processes. For instance, enteric fermentation in ruminants or nitrous oxide from fertilizers on cropland (IPCC, 2006; Tubiello et al., 2019). Within the UNFCCC context, emissions from agriculture are currently about 5 Gt CO$_2$eq yr$^{-1}$, having increased by roughly 50% since 1961 (Tubiello, 2019). They are dominated by livestock processes and are fairly equally split between CH$_4$ and N$_2$O components, respectively in single gases units corresponding to annual emissions in 2019 of 140 Mt CH$_4$ yr$^{-1}$ and 7.7 Mt N$_2$O yr$^{-1}$ (FAOb, 2021; Tubiello et al., 2021).

Energy use in agriculture, forestry and fisheries nonetheless deserves more attention than paid in current reporting and associated studies, because it is an important food production component deserving analysis in its own right alongside the biophysical crop and livestock processes mentioned above. Additionally, it offers significant opportunities for on-farm mitigation actions directly focussed on CO$_2$ (Dyer et al., 2014).

Information on energy consumption in different agricultural operations is available from the literature, albeit there is a lack of consistent global data with country detail provided over relevant time series. Available information indicates that on-farm energy demand in OECD countries is mainly for crop cultivation, harvesting, heating protected crops in greenhouses, crop drying and storage, water pumping and livestock housing (OECD, 2008).

Furthermore, on-farm use in high-GDP countries (20 GJ/ha) is almost double the use in low-GDP countries (11 GJ/ha) (FAO, 2011). Fossil fuel energy inputs have reduced labor inputs, or around 152 MJ for every man-hour of labor inputs in high-GDP countries, and 4 MJ in low-GDP countries (Sims, 2014). Smil (2008) and FAO (2011) estimated global direct and indirect energy use in agriculture in the early 2000s using available literature and global estimates at 17 EJ, of which 5 EJ to power machinery; 4 EJ for animal husbandry, aquaculture, and fisheries; 2 EJ to manufacture and maintain agricultural machinery; 5 EJ to extract, synthesize and distribute fertilizers; 0.5 EJ to manufacture pesticides and herbicides; and 0.3 to manufacture irrigation systems. Direct energy use in agriculture was a bit more than half this total, about 9 EJ. In addition to these amounts, energy use in agriculture includes electricity from the grid, decentralized renewable sources including bioenergy, conventional technologies, mechanical and thermal energy and biodiesel/biofuels. In many traditional systems, human labour and draught animal power add significant energy inputs.

As opposed to GHG emission estimates from global analysis (top-down analysis), this paper therefore focuses on quantifying the GHG emissions that arise from the combustion of fossil fuels for energy use in agriculture, forestry and fisheries (i.e. capture, fishing and aquaculture) with a “bottom-up” approach, i.e. using official statistical data reported by countries to the UN Statistics Division. It also provides an overview of total emissions and key trends at the global, regional and country level.

The dataset and the related analysis refers to one single ‘agriculture’ sector, which covers the three agricultural sub-sectors: agriculture, forestry and fisheries. Some additional disaggregated information is provided for fishing alone.
As detailed in the methods section, our quantification will focus mostly on the farm and on fishing activities, assuming that emissions associated to energy used in forestry is negligible—i.e., it will focus on energy use for farm operations, for aquaculture and for powering fishing vessels. We include additional estimates of the emissions associated to the off-site generation of electricity used on the farm, tracking results both separately for electricity and on-site fossil fuel use, as well as in the aggregate.

Meanwhile, agricultural production more than doubled over the period 1990-2010, with additional increases of more than 50% expected to 2050 to meet projected increases in food demand (FAO, 2018; Colistine et al., 2010). Historically, productivity increases were achieved through transitions from traditional, extensive agri-food systems to modern, intensive production systems, characterized by greater energy use within the farm (Smil, 2008). Direct on-farm energy inputs include fuel to power tractors and other agricultural field machinery, irrigation pumps, heat to warm greenhouses and animal shelters. Other uses beyond the farm may include power for forestry machinery and fishing vessels. We consider herein additionally the energy used to generate electricity that may be used on the farm in substitution of on-site fossil-fuel combustion, but do The analysis does not include all other indirect energy uses that are typically addressed in life-cycle type analyses, such as embedded energy for manufacturing of agriculture machinery (FAO, 2011; Sims et al., 2015; FAO, 2018).

Information on energy consumption in different agricultural operations is available from the literature, albeit there is a lack of consistent global data with country detail provided over relevant time series. Available information indicates that in farm energy demand in OECD countries is mainly for crop cultivation, harvesting, heating, protected crops in greenhouses, crop drying and storage, water pumping and livestock housing (OECD, 2008). Furthermore, on-farm use in high GDP countries (70 GJ/ha) is almost double the use in low GDP countries (11 GJ/ha) (FAO, 2011a). Fossil fuel energy inputs have reduced labor inputs, or around 152 MJ for every man hour of labor input in high GDP countries, and 14 MJ in low GDP countries (Sims, 2014).

Smil (2008) and FAO (2011) estimated global direct and indirect energy use in agriculture in the early 2000s at 17 EJ, of which 5 EJ to power machinery, 1 EJ for animal husbandry, aquaculture, and fisheries, 2 EJ to produce and maintain agricultural machinery, 5 EJ to extract, synthesize and distribute fertilizers, 0.5 EJ to manufacture pesticides and herbicides, and 0.3 to manufacture irrigation systems. Hence direct energy use in agriculture was a bit more than half this total, about 9 EJ. In addition to these amounts, energy use in agriculture includes electricity from the grid, decentralized renewable sources including bioenergy, conventional technologies, mechanical and thermal energy and biodiesel/biofuels. In many traditional systems, human labour and draught animal power add significant energy inputs.

2. Materials and methods

Data on energy use in agriculture forestry and fisheries, by fuel type, over the annual time series 1979-2019, were available from UNSD and IEA. These Agencies regularly collect energy data from member countries, including for use in agriculture, forestry and fishing. Biofuels, renewables, and other energy carriers derived from biomass, were analyzed but not considered for calculating GHG emissions, since they were assumed to be carbon neutral (IPCC, 2006). In particular, UNSD energy consumption data were used to estimate GHG emission from agriculture.
as a whole, while IEA data were used to provide a breakdown for GHG from fisheries for information purposes. UNSD data are publicly available through the UNDATA portal, while access to IEA data is restricted, and the latter was kindly made available by IEA for this analysis. The dataset has used IEA energy data as a reference since the UNSD database covers IEA data and expand its data for OECD countries to all the countries. Energy use data from the UNSD Energy Statistics Database (UNSD, 2020) included the following fuels, over the period 1970-2019: Diesel oil; Motor gasoline; Liquefied petroleum gas (LPG); Natural gas, including Liquefied Natural Gas (LNG); Fuel oil; Hard coal. Energy use data from the IEA Energy Statistics included Diesel oil and Fuel oil used in fisheries. Emission factors of above energy carriers are from IPCC. Electricity use data were also taken from the same database with emission factors taken from IEA from the year of 1970 to 2017 and FAO estimation for 2013 to 2019.

2.2 Gap filling

The information used in this work is available at open data at: https://zenodo.org/record/5153241 (Tabellone and Pan, 2021). The relevant FAOSTAT (FAO, 2021) emissions database is maintained and updated annually by FAO.

2.2.1 Gap filling

The energy use data sourced from UNSD were gap filled for both improving the quality of available time series by country and generating data for missing countries. The original set had several missing data points especially for Africa (FAO, 2021). First, a simple linear gap-filling method was applied to estimate data points missing within intervals with data points, over the period time period 1970-2019. Conversely, gap-filling of values for carrying backward and forward values without an available interval was performed by applying sub-regional trends. Finally, time series for countries with no data were generated with a multivariate approach, i.e., by computing the sub-regional energy use in agriculture divided by the sub-regional total energy use, and applying the coefficient to the time series of national total energy use, which was available in the UNSD database without major gaps. We validated our gap-filling method by performing random substitutions of existing values and computing the associated error, which was on average below 5%.

2.4.2 Emissions Estimates

The activity data on energy use described in previous sections served as input for estimates of GHG emissions, made following the Tier 1 method of the Guidelines of the Intergovernmental Panel on Climate Change (IPCC, 2006). In particular, we used default fuel-specific CO2 emission factors for off-road mobile combustion sources (e.g., tractors, harvesters and other mobile machinery) and stationary combustion sources (i.e., irrigation pumps, space heating), within the following formula:

\[E_i = AD_i \times EF_i \] \hspace{1cm} (1)

Where \(E_i \) are the emissions (in t CO2 yr\(^{-1}\)) for energy carrier \(i \), computed by multiplying the amount of fossil fuel type AD, (GJ yr\(^{-1}\)) by the relevant emission factor EF\(_i\) (t CO2 GJ\(^{-1}\)). The default emission factors applied to relevant
fuel categories were those for stationary combustion in the residential and agriculture/forestry/fishing farms
categories, assumed by IPCC to be used for power generation (heat and/or electricity) (Tab. 2). Fuels reported in
metric tons were converted to GJ by assuming a net calorific value of 43.0 GJ/t for diesel, 44.3 GJ/t for gasoline,
47.3 GJ/t for LPG, 44.2 GJ/t for natural gas liquids, 40.4 GJ/t for fuel oil, 25.8 for coal1 (IPCC, 2016).
Finally, country-specific grid emission factors needed to estimate CO2 emissions from electricity used were taken
from IEA (2014) and imputed from 2013 to 2019. They were complemented with associated emissions of CH4
and N2O country-specific grid emission factors estimated by the authors on the basis of the default emission factors
for stationary combustion in the energy industries, according to IPCC (2006), were not considered. As our
calculations (not shown) indicated, CH4 and N2O emissions, calculated as a proportion of CO2 emissions, are only
a minor share (< 5%) of total GHG emissions from electricity; the latter would be five to six orders of magnitude
smaller compared to CO2 on a per ton basis.
Emissions from fisheries were estimated as a separate item (until 2018), using dedicated IEA data, and for
information purposes only, i.e., they were assumed to represent additional information, since energy used in
agriculture, forestry and fisheries are already included in the UNSD energy statistics. Fisheries statistics from IEA
were limited to OECD countries. Only diesel and fuel oil for powering fishing vessels and aquaculture are
reported under fisheries, since these two fuels (followed by heat) represent the bulk of energy used in the sector
(followed by heat).
Uncertainties were derived by applying ranges for GHG emission factors provided by IPCC 2006 to fuels
considered and an error of 5% for emissions associated with electricity consumption (calculated based on the global
energy mix for electricity generation in the IEA database).

2.3 Limitations and uncertainty

There are limitations and uncertainties associated with the estimates presented herein. First, we note that the input
data on energy refers to use in agriculture, forestry and fisheries, without further breakdown. While we refer often
to the associated emissions as generated within the farm gate, they include components of unknown relative
magnitude that are in fact generated through forestry and fisheries activities. For the latter, we have provided a
partial and incomplete breakdown in the database, using IEA fisheries data. Second, the underlying data on energy
use have significant geographical gaps, especially in Africa, as well as temporal gaps, particularly before 1990.
Out of 233 countries and territories, 51 were imputed in the energy emissions FAOSTAT database. However, these
are all small countries and their total share of global GHG emissions from energy use in agriculture is less than
1%. As mentioned above, the error associated with activity data gap-filling was on average below 5%. For
estimates of GHG emissions, we applied default IPCC methods and uncertainty values for EFs to compute the
error propagation in equation (1) above, finding an uncertainty range in emissions of -7 to 16% (Figs. 4-5). The
uncertainty is the original energy consumption data is much smaller for some countries than for others, depending
on whether the activity data are collected using specific surveys, where a sense of the uncertainty can be measured,
or whether national statistical offices use proxies and/or assumptions. The uncertainty also varies by product,
depending on what administrative data may be available for them (sales, taxes, etc.), or even on whether they are
traded in the formal or informal sector (or not traded at all). According to the default uncertainty for activity data
set by IPCC energy guidelines, the uncertainty is measured mainly from two aspects: 1) the adequacy of the

1 We assumed that coal used in agriculture is mostly ‘bituminous coal.’
2.4 Data availability

The GHG emission data presented herein cover the period 1990-2019, at the country level, with regional and global aggregates. Significant gaps in some countries and regions, especially Africa, imply that specific regional estimates may be systematically underestimated. Additionally, statistics on energy consumption and emissions from fisheries are highly uncertain and likely underestimate, considering that significant amounts of fuel consumed by small vessels, constituting a majority of the global fishing fleet, are not typically reported in official statistics.

Data on energy use in agriculture and associated emissions used in this work are available as open data at: https://zenodo.org/record/5153241 (Tubiello and Pan, 2021). A thorough description of the dataset and metadata information are available through FAOSTAT at https://www.fao.org/faostat/en/#data/GN. The relevant FAOSTAT (FAO, 2021) database is maintained and updated annually by FAO.

3 Results

Our estimates indicated that world-total GHG emissions from energy use in agriculture including electricity were above 1 billion tonnes in 2019 (1,029 Mt CO\textsubscript{2}eq yr-1; 7% greater than in 1990). The average annual increase was 0.2% over the period 1990-2019 and was consistent with the overall growth in agricultural emissions within the farm gate. Almost half of the estimated emissions (496 Mt CO\textsubscript{2}eq yr-1) arose from combustion of fossil fuels for power generation of electricity used on the farm. The most important energy sources after electricity were gas/diesel oil and coal, while motor gasoline, typically associated to field machinery and tractor use in irrigation in developing countries, contributed a mere 5% of the total (Figs. 12-13). Emissions from electricity grew rapidly over the study period (mean annual growth rates of more than 6%), overtaking gas diesel oil and motor gasoline as the main emission source by roughly the year 2012. This, together with an increase of LPG use, suggests a global transition towards cleaner on-farm energy use, considering grid electricity is typically associated to lower emissions per energy compared to single fossil fuel sources.

At the same time, use and hence emissions from natural gas, fuel oil and coal were rather constant over the period 1990-2019, about 38, 123,- and 25- Mt CO\textsubscript{2}eq yr-1 on average. While data for on farm energy use were rich in coverage, trends in emissions from use of diesel oil and fuel oil in fishing vessels were limited by data paucity. Within such limitations, we find a small, decreasing share of emissions from fishing vessels compared to world-total energy use in agriculture, with a total contribution in 2018 (the breakdown of energy used in fisheries is available only until 2018) of about 27 Mt CO\textsubscript{2}eq yr-1 (3%).

3.4 The spatial pattern of GHG emissions and the species characteristics of emissions
In terms of total emissions, the top 15 countries (out of 199 countries covered by the dataset) are responsible for 54% of global GHG emissions in 2019. No country from Africa or Oceania were among the top 10 GHG emitters. As these are typically densely populated countries, an analysis of GHG emission per person (done on the basis of population data also available in FAOSTAT) led to the same result. Of the 10 top emitters, three are from Asia, two from North America, two from Europe, and three from Latin America. However, in terms of GHG emission from energy use in agriculture per person, no Asian country appears in the top 10.

China and India were the largest emitters in 2019. Although gas/diesel oil was responsible for the most GHG emissions in Asia, in China and India, most of the on-farm emissions from on-farm energy use originate from coal (50% and 88% respectively).

3.2 Regional Distributions and Trends

Our results indicate that on-farm energy use is an important and increasing component of GHG emissions in agriculture, corresponding to 892 Mt CO₂ eq yr⁻¹ out of 6,804 Mt CO₂ eq yr⁻¹ on-farm emissions in 1990 and 962 Mt CO₂ eq yr⁻¹ in 2019 (Fig. 1). Emissions declined in Annex I countries over the period 1990-2019, especially from coal (-88%) and fuel oil (-77%). Such decline was more than counterbalanced by increases in energy use in non-Annex I parties (NAI), with significant increases in emissions from electricity (three-fold increases since 1990) (Fig. 24).

Asia and Europe were the largest emitters among FAO regions, although with starkly different trends over 1990-2019. Indeed, while emissions in Europe decreased over the whole period, from 730 Mt CO₂ eq yr⁻¹ in 1970 to 410 Mt CO₂ eq yr⁻¹ in 1990, and further decreased to 145 Mt CO₂ eq yr⁻¹ in 2019, emissions in Asia nearly doubled over 1990 to 2019, from 380 Mt CO₂ eq yr⁻¹ to 629 Mt CO₂ eq yr⁻¹, while they were 453 Mt CO₂ eq yr⁻¹ in 1970. Africa was a significant emission source in 2019, having more than doubled since 1990, from 18 MtCO₂ eq to 48 Mt CO₂ eq yr⁻¹. Emissions increased more than 55% in Latin America, but only 18% in North America. The smallest contributor to global emissions was Oceania, despite increases by nearly 55% from 1990 (Fig. 24). Top emitting countries in 2019 in terms of energy use in agriculture were China (233 Mt CO₂ eq yr⁻¹), followed by India (212 Mt CO₂ eq yr⁻¹) and the USA (79 Mt CO₂ eq yr⁻¹). The top 10 emitting countries were responsible for nearly two-thirds of the world total (Fig. 24).

Emissions from mobile combustion in agriculture (typically tractors or other field machinery) represent a large share in most continents. In 2019, gas/diesel oil burning was the largest CO₂ on-farm emission source in all the continents: 55% in Asia, 48% in Africa, Northern America (57%), Oceania (88%), and Latin America (76%). The second-largest emitter is motor gas in Africa (21%), Ocean (7%) and North America (23%), coal in Asia (31%), natural gas (13%) in Europe, and fuel oil (9%) in Latin America.

In countries dominated by fisheries as the main agricultural sub-sector, the result are significantly different, with diesel oil and fuel oil as the main sources of GHG emissions. For example, in Faroe Island, gas diesel oil generated 75% of CO₂ emissions, followed by fuel oil (18%) and electricity (7%). Greenland had 63% CO₂ emissions from gas/diesel oil, followed by fuel oil (20%) and motor gasoline (17%).

3.3 Indicators
We developed indicators by cropland area and agricultural production value to help us disentangle effects of country agricultural size, both in terms of area and economy. We defined GHG emission intensity per unit cropland as the total GHG emissions from energy use in agriculture divided by total cropland area of a country. Likewise, energy GHG intensity per production value was computed by dividing total GHG from national energy use in agriculture by total agricultural value added. \cite{fig:68}. Data for denominators of both indicators were taken from FAOSTAT \citep{FAO, 2021, bb, ce}.

Our results indicate that energy GHG emissions per unit cropland have been fluctuating but have been substantially stable over the last two decades. Nonetheless, significant differences can be noted among regions \citep{fig:45724}.

While Europe has decreased significantly its energy-related GHG emission intensity in agriculture (-57%) in the period 1990-2018, Africa, Central America and Asia have increased it substantially (+88%, +51% and +44% respectively). This means that more GHG emissions are associated with the cultivation of one unit of cropland in these regions. In absolute terms, the lowest energy intensity per unit of cropland in 2018 was achieved in Africa (0.16 t CO$_2$eq ha$^{-1}$), followed by Oceania (0.38 t CO$_2$eq ha$^{-1}$), South America (0.42 t CO$_2$eq ha$^{-1}$) and Europe (0.48 t CO$_2$eq ha$^{-1}$). A clear diverging trend can be noticed between Annex I and non-Annex I countries, with the former significantly decreasing the energy-related agricultural emissions intensity, and the latter significantly increasing them \citep{fig:8}.

In terms of energy-related GHG emissions to agricultural value added, the picture is substantially different, with Europe having significantly improved its energy intensity since 1990 (-68%), followed by Asia (-61%), Latin America and the Caribbean (-54%), Northern America (-53%) and Oceania (-45%), while Africa’s intensity remained substantially stable over the last two decades.

This picture is significantly different when analyzing energy-related emission per capita \citep{fig:9}. Per capita, the emission intensity is lowest in most African countries and India, while it is high in Canada, Australia and Argentina, among others.

In 2019, high levels of GHG emissions per capita (from energy used in agriculture) were estimated for Faro Islands, Greenland and Iceland \citep{fig:10, 12}. In those territories, emissions from gas/diesel oil take more than two-thirds of the total. Fishing is one of the most responsible factors contributing to the high per capita emission from energy use in agriculture in Faroe Island, as fishing vessels take almost one-third of energy use at national level. Fishing is also the primary industry in Iceland. For Greenland, fishing is the second-largest industry by employment. Though Greenland has the highest ratio of using renewable energy (70%), fishing remains a sector depending on traditional fossil fuels.

A spatial pattern of GHG emissions and the species characteristics of emissions. In total emissions, the top 15 countries and regions (out of 199) take 54% of global emissions in 2019. No country from Africa or Oceania was among the top 10 emitters in absolute values or the top 10 emitters per person. Of the 15 emitters in absolute values, three are from Asia, two from North America, two from Europe, and three from Latin America. While of the 10 emitters in emission per person, four are from Europe, four are from North America, three are from Latin America, and none is from Asia.

Emission from transportation in on-farm agriculture activities takes the significant part in most continents. In 2019,Except electricity, transportation is the largest CO$_2$ emissions in all the continents with Asia (55%), Africa (48%), Northern America (52%), Oceania (88%), and Latin America (76%). The second-largest emitter is
From the 2019 top emission per person, countries with more developed fishery industries tend to have even more significant emissions from on-farm agriculture transportation. In Foreo Island, gas/diesel oil generated 75% CO2 emissions, accounted by fuel oil(45%) and electricity(25%). Greenland had 67% CO2 emissions from gas/diesel oil, fuel oil(20%), and motor gasoline(17%). More than half of the emissions come from gas/diesel oil(34%) and motor gasoline(37%) in the United States.

China and India were the most prominent and second largest emitters in 2019. Though gas/diesel oil was responsible for the most CO2 emissions in Asia, most of the CO2 emissions from on-farm energy use come from coal in China(50%) and India(38%), without considering electricity.

Discussion

Emissions from energy use in agriculture are only about one-fifth of the total in CO2eq generated from crop and livestock production (Tubiello et al. 2019), however they represent an important contribution in terms of CO2 gas, the other process emitting CO2 on the farm being the drainage of organic soils. They are therefore of great importance to GHG mitigation in agriculture. In terms of comparing these results with the existing literature, we note that our approach covers only 7.2% of the 8-10 EJ usually estimated for total fuel consumption within the farm gate (Arizpe et al., 2011; FAO, 2011; Smil, 2008). Additionally, our estimates of energy use in fisheries is admittedly incomplete (0.3 EJ) compared to amounts reported in other studies (Buthag et al., 2009; FAO, 2011).

The reason is that we focused only on electricity and on the most relevant fuels consumed in agriculture, but not all. Specifically for fisheries, the relatively low coverage is also due to the fact that still few countries report disaggregated energy consumption statistics for fisheries alone.

Electricity generation and gas/diesel oil used in agriculture were the two most important emissions sources, responsible for roughly 40% of the total on average during the period 1990-2019. Electricity is used for different agriculture purposes: irrigation, processes that require heat or mechanical power, such as drying or milling. LPG, natural gas, and heavy fuel oil are typically used for heat generation and, in some rare cases, for motive power. Apart from some sharp variation of their total consumption in agriculture between consecutive years, mainly at the beginning of the 90s, probably due to reporting issues of important consumer countries such as India and the dissolution of the USSR, their emissions remained relatively stable. Compared to other emissions, coal and fuel oil emissions decreased over the last few years, while agricultural production still increased. This can be explained by updated energy use structure - the increased uptake of cleaner energy carriers such as electricity and LPG over fuel oil and coal for heating. China, for example, one of the major emitting countries, decreased emissions from fuel oil use by 48%, while increased emissions due to diesel use by around 59% and emissions due to electricity use by over 170% over the same period 1990-2019. There is anyway still a long way to go to decrease emissions in the agricultural sector in China, due to its still very high reliance on coal as a heat source.

Unlike other regions, Europe's emissions went significantly down, partly because less energy was consumed by primary production in absolute terms. Also, Europe has gradually moved from high GHG emitting energy carriers such as coal and fuel oil towards cleaner ones, such as natural gas and electricity. This is confirmed by the additional analysis done using the energy-related GHG intensity indicators. This analysis shows how Europe has
been steadily improving its agricultural GHG intensity (both in terms of unit of cropland and of unit of agricultural production value), thus providing a good example for other regions.

3.4 The Spatial Pattern of GHG Emissions and the Species Characteristics of Emissions

By total emission, the top 15 countries and regions (out of 199) take 54% of global emissions in 2019. No countries from Africa or Oceania were among the top 10 emitters in absolute values or the top 10 emitters per person. Of the 10 emitters in absolute values, there are from Asia, two from North America, two from Europe, and three from Latin America. While of the 10 emitters in emission per person, four are from Europe, four are from North America, three are from Latin American, and none is from Asia.

Emission from transportation in on-farm agriculture activities takes the significant parts in most continents. In 2019, except electricity, gas/diesel oil was the largest CO₂ emitters in all the continents with Asia (55%), Africa (48%), Northern America (57%), Oceania (88%), and Latin America (76%). The second-largest emitter is motor gas in Africa (31%), Ocean (7%), and North America (23%), coal in Asia (31%), natural gas (13%) in Europe, and fuel oil (38%) in Latin America.

From the 2019 top-emission person, countries with more developed fishery industries tend to have even more significant emissions from off-farm agriculture transportation. In Feroe Island, gas/diesel oil generated 75% CO₂ emissions, seconded by fuel oil (18%) and electricity (7%). Greenland had 63% CO₂ emissions from gas/diesel oil, fuel oil (20%), and motor gasoline (17%). More than half of the emissions come from gas/diesel oil (34%) and motor gasoline (17%) in the United States.

China and India were the most prominent and second-largest emitters in 2019. Though gas/diesel oil was responsible for most CO₂ emissions in Asia, most of the CO₂ emissions from off-farm energy use come from coal in China (50%) and India (88%), without considering electricity.

5.5 Conclusions

This paper provides details of a new dataset added to the existing section of FAOSTAT, which contains information about emissions due to agricultural activities, and which was just opened publicly online (July 2021).

It also provides an analysis of energy-related GHG intensity in agriculture, per unit of cropland and per unit of agricultural production value, which has not been published yet. It complements the analysis with selected GHG emission intensity indicators, which are derived directly from FAOSTAT. The calculation makes use of official statistics as reported by countries to the UN, applying IPCC Tier 1 default emission factors for fuels and IEA country-specific emission factors for electricity generation (considering the national energy mix) and relies on official energy consumption in agriculture data reported by countries to the UNSD and the IEA. Further to the above, the share of emissions on fisheries’ energy use is estimated and reported separately as a subset. These estimated emission shares provide references to their relevance compared with total emissions but should be used with relevant uncertainties taken into consideration.
References

Ahokas, J., Rajanieni, M., Mikkola, H., Frorip, J., Kokin, E., Praks, J., Poikalainen, V., Veermäe, I. and Schafer, W.: Energy use and sustainability of intensive livestock production, in Sustainable Energy Solutions in Agriculture, p. 50. CRC Press, 2014.

Angelou, N., Elizondo Azuela, G., Banerjee, S. G., Bhatia, M., Bushueva, I., Inon, J. G., Jaques Goldenberg, L. Portale and Sarkar, A.: Global tracking framework (Vol. 2): Overview (English), Sustain. Energy Wash. DC World Bank Group, 2013.

Arize, N., Giampietro, M. and Ramos-Martín, J.: Food Security and Fossil Energy Dependence: An International Comparison of the Use of Fossil Energy in Agriculture (1991–2003), Crit. Rev. Plant Sci., 30(1–2), 45–63, https://doi.org/10.1080/07352689.2011.554352, 2011.

Boissy, J., Aubin, J., Drissi, A., Bell, J. G. B. and Kaushik, S.: Environmental impacts of plant-based salmonid diets at feed and farm scales, Aquaculture, 321, 61–70, https://doi.org/10.1016/j.aquaculture.2011.08.033, 2011.

Bosma, R., Anh, P. T. and Potting, J.: Life cycle assessment of intensive striped catfish farming in the Mekong Delta for screening hotspots as input to environmental policy and research agenda, Int. J. Life Cycle Assess., 16(9), 903, https://doi.org/10.1007/s11367-011-0324-4, 2011.

Buhaug, Ø., Corbett, J., Endresen, Ø., Erying, V., Faber, J., Hanayama, S., Lee, D., Lee, D., Lindstad, E., Mjelde, A., Pålsson, C., Wanquing, W., Winebrake, J. and Yoshida, K.: Second IMO Greenhouse Gas Study 2009, International Maritime Organization., 2009.

Bundschuh, J. and Chen, G.: Sustainable Energy Solutions in Agriculture, CRC Press, London., 2014.

Calicioglu, O.; Flammini, A.; Bracco, S.; Bellu, L.; Sims, R. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability 2019, 11, 222. https://doi.org/10.3390/su11010222

Cao, L., Diana, J., Keoleian, G. and Lai, Q.: Life Cycle Assessment of Chinese Shrimp Farming Systems Targeted for Export and Domestic Sales, Environ. Sci. Technol., 45, 6531–8, https://doi.org/10.1021/es104058z, 2011.

Dalgaard, T., Olesen, J. E., Petersen, S. O., Petersen, B. M., Jørgensen, U., Kristensen, T., Hutchings, N. J., Gyldenkærne, S. and Hermansen, J. E.: Developments in greenhouse gas emissions and net energy use in Danish agriculture – How to achieve substantial CO2 reductions?, Environ. Pollut., 159(11), 3193–3203, https://doi.org/10.1016/j.envpol.2011.02.024, 2011.

Desjardins, R. L., Vergé, X. P. C., Hutchinson, J. J., Smith, W. N., Grant, B. B., McConkey, B. G. and Worth, D. E.: Final Report to the Agri-Environmental Indicator Project, AAFC East. Cereal Oilseed Res. Cent., 2005.

Dubois, O., Flammini A., Kojakovic A., Maltooselog L., Pari M., Rincon L.: Energy access : food and agriculture, State of Electricity Access Report. Washington, D.C.: World Bank Group , 2017.

Dyer, J. and Desjardins, R.: A Review and Evaluation of Fossil Energy and Carbon Dioxide Emissions in Canadian Agriculture, J. Sustain. Agr. - J Sustain. Agr., 33, 210–228, https://doi.org/10.1080/10440040802660137, 2009.

Dyer, J. A., Desjardins, R. L. and McConkey, B. G.: The fossil energy use and CO2 emissions budget for Canadian agriculture, in Sustainable Energy Solutions in Agriculture, Taylor & Francis /CRC press, , 2014.

Ellingsen, H. and Aanondsen, S.: Environmental Impacts of Wild Caught Cod and Farmed Salmon - A Comparison with Chicken, Int. J. Life Cycle Assess., 11, 60–65, https://doi.org/10.1065/ica2006.01.236, 2006.

energypedia: Literature Analysis: Energy in Agriculture, https://energypedia.info/wiki/Literature_Analysis:_Energy_in_Agriculture, 2020a.
Utz, V.: Modern Energy Services for Modern Agriculture: A Review of Smallholder Farming in Developing Countries, GIZ-HERA – Poverty-oriented Basic Energy Services. https://energypedia.info/images/b/fd/Energy_Services_for_Modern_Agriculture.pdf, 2011.

Wang, L.: Energy efficiency technologies for sustainable food processing, Energy Effic., 7(5), 791–810, https://doi.org/10.1007/s12053-014-9256-8, 2014.
TABLE LEGENDS

Table 1. Fuel-specific emission factors for agriculture off-road mobile combustion sources and machinery applied (IPCC 2006)..213
Table 2. Fuel-specific emission factors for stationary combustion in the residential and agriculture/forestry/fishing/fishing farms categories applied (IPCC 2006)..213
FIGURE LEGEND

Figure 1. Global emissions from energy use (orange bars) and emission from other on-farm total, excluding energy (blue bars) per year (Gt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 2. Global shares of emissions due to energy use in agriculture in 2019, by energy carrier (CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 3. Global GHG emissions from energy use in agriculture from 1990 to 2019, by energy carrier (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 4. GHG emission trends from 1990 to 2019 for Annex I and NAI, World, by energy carrier (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 5. Trend in global GHG emissions from 1990 to 2019, with uncertainty ranges (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 6. Global GHG emissions from energy use in agriculture (average 1990 – 2019) by energy source with uncertainty ranges (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 7. GHG emissions from energy use in agriculture from 1990 to 2019, by region (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 8. Top 10 countries emitting GHG from energy used in agriculture in 2019 (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 9. GHG emission from energy use in agriculture per gross agriculture production value 1991-2018 (Kt CO₂-eq/1,000 current USD). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 10. GHG emission from energy use in agriculture per unit of cropland for Annex I and Non-Annex I countries 1990-2018 (Kt CO₂-eq/ha). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 11. GHG emission intensity trends per unit of cropland by region (Kt CO₂-eq/ha). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 12. GHG emission from energy used in agriculture per capita in 2019 (Kg CO₂-eq/person).

Figure 13. Top 10 GHG emitting countries from energy use in agriculture per capita in 2019 (Kg CO₂-eq/person).
Fuel Type	CO₂	CH₄	N₂O						
	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper
Gas/Diesel	74100	72600	74800	4.15	1.67	10.4	28.6	11.3	85.8
Motor gasoline	69300	67500	73000	32	80	200	2	6	

Table 1. Fuel-specific emission factors for agriculture off-road mobile combustion sources and machinery applied (IPCC 2006)

Fuel Type	CO₂	CH₄	N₂O						
	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper
Liquefied Petroleum Gases	63100	61600	65600	5	1.5	1.5	0.1	0.03	0.3
Natural gas	56100	54300	58300	5	1.5	1.5	0.1	0.03	0.3
Residual fuel oil	77400	75500	78800	10	3	30	0.6	0.2	2
Other bituminous	94600	89500	99700	300	100	300	1.5	0.5	5

Table 2. Fuel-specific emission factors for stationary combustion in the residential and agriculture/forestry/fishing/fishing farms categories applied (IPCC 2006)

The default emission factors regard 4-stroke motor gasoline engines.
1 kg of greenhouse gas per TJ on a Net Calorific Basis.
Figure 1. Global emissions from energy use (orange bars) and emission from other on-farm total, excluding energy (blue bars) per year (Gt CO2-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 2. Global shares of emissions due to energy use in agriculture in 2019, by energy carrier (CO2 eq). Source: FAOSTAT based on data from IEA and UNSD, 2021
Figure 3. Global GHG emissions from energy use in agriculture from 1990 to 2019, by energy carrier (MtCO2-eq).

Source: FAOSTAT, based on data from IEA and UNSD, 2021
Figure 4. GHG emission trends from 1990 to 2019 for Annex I and NAI, World, by energy carrier (MtCO2-eq). Sources: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 5. Trend in global GHG emissions from 1990 to 2019, with uncertainty ranges (MtCO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 6. Global GHG emissions from energy use in agriculture (average 1990 – 2019) by energy source with uncertainty ranges (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 7. GHG emissions from energy use in agriculture from 1990 to 2019, by region (MtCO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 8. Top 10 countries emitting GHG from energy used in agriculture in 2019 (MtCO₂eq). Source: FAOSTAT based on data from IEA and UNSD, 2021.
Figure 9. GHG emissions from energy use in agriculture per gross agriculture production value 1991-2018 (Kt CO₂eq/1,000 current USD).
Figure 10. GHG emission from energy use in agriculture per unit of cropland for Annex I and Non-Annex I countries, 1990-2018 (Kt CO₂-eq/ha). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 11. GHG emission intensity trends per unit of cropland by region (Kt CO2-eq/ha). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 12. GHG emission from energy used in agriculture per capita in 2019 (Kg CO₂eq/person).

Figure 13. Top 10 GHG emitting countries from energy use in agriculture per capita in 2019 (Kg CO₂eq/person).

Figure 1. Global emissions from energy use in agriculture (orange bars) and total (blue bars) per year (Gt CO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 2. Global shares of emissions due to energy use in agriculture in 2019, by energy carrier (CO₂eq). Source: FAOSTAT based on data from IEA and UNSD, 2021.

Figure 3. Global GHG emissions from energy use in agriculture from 1990 to 2019, by energy carrier (MtCO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 4. GHG emission trends from 1990 to 2019 for Annex I and NAI, World, by energy carrier (MtCO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 5. Trend in global GHG emissions from 1990 to 2019, with uncertainty ranges (MtCO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 6. Global GHG emissions from energy use in agriculture (average 1990–2019) by energy source with uncertainty ranges (MtCO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 7. GHG emissions from energy use in agriculture from 1990 to 2019, by region (MtCO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 8. Top 10 countries emitting GHG from energy used in agriculture in 2019 (MtCO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

Figure 9. GHG emission from energy use in agriculture per gross agriculture production value 1991-2018 (KtCO₂eq/1,000 current USD).

Figure 10. GHG emission from energy use in agriculture per unit of cropland for Annex I and Non-Annex I countries 1990-2018 (Kt CO₂eq/ha). Source: FAOSTAT, based on data from IEA and UNSD, 2021.

*Energy data from FAOSTAT, 2021. Population data from the World Bank (https://data.worldbank.org/indicator/SP.POP.TOTL), with some countries from United Nations, Department of Economic and Social Affairs, Population Division; Falkland Islands (Malvinas), Guadeloupe, French Guiana, Martinique, Niue, Réunion, Romania, Palestine, Democratic Republic of the Congo.
Figure 1. Global GHG emissions from energy use in agriculture from 1990 to 2019 (Mt CO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 2. Global GHG emissions from energy use in agriculture from 1990 to 2019, by energy carrier (Mt CO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 3. GHG emission trends from 1990 to 2019 for Annex I and Non-Annex I by energy carrier (Mt CO₂eq). Source: FAOSTAT, 2021

Figure 4. Trend in global GHG emissions from 1990 to 2019, with uncertainty ranges (Mt CO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 5. Global GHG emissions from energy use in agriculture (average 1990 – 2019) by energy source, with uncertainty ranges (Mt CO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 6. GHG emissions from energy use in agriculture from 1990 to 2019, by region (Mt CO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 7. Top 10 countries emitting GHG from energy used in agriculture in 2019 (Mt CO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 8. GHG emission from energy use in agriculture per gross agriculture production value 1991–2018 (Kt CO₂eq/1,000 current USD). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 9. GHG emission from energy use in agriculture per unit of cropland by continents 1990–2018 (Kt CO₂eq/ha). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 10. GHG emission from energy use in agriculture per unit of cropland by Annex I and Non-Annex I countries, 1990–2018 (Kt CO₂eq/ha). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 11. GHG emission from energy use in agriculture per capita in 2019 (t CO₂eq/person). Source: FAOSTAT, based on data from IEA and UNSD, 2021

Figure 12. Top 10 GHG emitting countries from energy use in agriculture per capita in 2019 (t CO₂eq/person) in small graph. Source: FAOSTAT, based on data from IEA and UNSD, 2021
CO₂	CH₄	N₂O							
Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper	
Gas/Diesel oil	74100	72600	74800	4.15	1.67	10.4	28.6	14.3	85.8
Motor gasoline	69500	67500	73000	80	32	200	2	1	2

Table 1. Fuel-specific emission factors for agriculture off-road mobile combustion sources and machinery applied (IPCC 2006)

CO₂	CH₄	N₂O							
Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper	Default (kg/TJ)	Lower	Upper	
Liquefied Petroleum Gases	63100	61600	65600	5	1.5	15	0.1	0.03	0.3
Natural gas	56100	54300	58300	5	1.5	1.5	0.1	0.03	0.3
Residual fuel oil	73400	75500	78800	10	3	30	0.6	0.2	2
Other bituminous coal	94600	89500	99700	300	100	900	1.5	0.5	2

Table 2. Fuel-specific emission factors for stationary combustion in the residential and agriculture/forestry/fishing/fishing farms categories applied (IPCC 2006)

1 The default emission factors regard 4-stroke motor gasoline engines.
2 kg of greenhouse gas per TJ on a Net Calorific Basis
Figure 1. Global GHG emissions from energy use (orange bars) and from other on-farm emissions (blue bars), from 1990 to 2019 (Gt CO\text{2eq}). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 2.21. Global GHG emissions from energy use in agriculture from 1990 to 2019, by energy carrier (Mt CO$_2$eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 3.32 GHG emission trends from 1990 to 2019 for Annex I and non-Annex I by energy carrier (MtCO₂eq). Source: FAOSTAT, 2023.
Figure 4.43. Trend in global GHG emissions (from 1990 to 2019), and global GHG emissions from energy use in agriculture by energy source (average 1990–2019) with uncertainty ranges (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021

with uncertainty ranges (Mt CO₂-eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 5.5. Global GHG emissions from energy use in agriculture (average 1990–2019) by energy source with uncertainty ranges (Mt CO₂- eq Mt CO₂- eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 6.6. GHG emissions from energy use in agriculture from 1990 to 2019, by region (Mt CO₂eq/Mt CO₂eq). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 7.5. Top 10 countries emitting GHG from energy used in agriculture in 2019 (Mt CO2-eq, Mt CO2-eq) Source: FAOSTAT, based on data from IEA and UNSD, 2021.
Figure 8.86. GHG emission from energy use in agriculture per gross agriculture production value 1991-2018 (Kt CO2eq/1,000 current USD). Source: FAOSTAT, based on data from IEA and UNSD, 2021
Figure 9. GHG emission from energy use in agriculture per unit of cropland by continents 1990-2018 (Kt CO\textsubscript{2}-eq/ha).

Source: FAOSTAT, based on data from IEA and UNSD, 2021
Figure 8.10. GHG emission from energy use in agriculture per unit of cropland by Annex I and Non-Annex I countries, and by continents, 1990-2018 (Kt CO$_2$ eq/ha). Source: FAOSTAT, based on data from IEA and UNSD, 2021.
GHG emission from energy used in agriculture per capita in 2019 (Kg CO₂-eq/CO₂eq/person).

Source: Emissions data from FAOSTAT, 2021. Population data from the World Bank (https://data.worldbank.org/indicator/SP.POP.TOTL), complemented with UNDESA population data for Falkland Islands (Malvinas), Guadeloupe, French Guiana, Martinique, Niue, Réunion, Romania, Palestine, Democratic Republic of the Congo.

*Energy data from FAOSTAT, 2021. Population data from the World Bank (https://data.worldbank.org/indicator/SP.POP.TOTL), with some countries from United Nations, Department of Economic and Social Affairs, Population Division: Falkland Islands (Malvinas), Guadeloupe, French Guiana, Martinique, Niue, Réunion, Romania, Palestine, Democratic Republic of the Congo.
Figure 12. Top 10 GHG emitting countries from energy use in agriculture per capita in 2019 (t CO2eq/person) in small graph. Source: FAOSTAT, based on data from IEA and UNSD, 2021.