Commentary

A holistic approach to predicting diabetes risk via biomarkers

Alan A. Cohen

A holistic approach to predicting diabetes risk via biomarkers

In this issue of EBioMedicine, Flores-Guerrero et al. [8] break new ground by bringing the MD metric toward the clinical realm. Specifically, using a longitudinal sample of 6,247 non-diabetics in the Netherlands, they asked whether MD scores calculated from 32 circulating biomarkers predicted risk of Type-II diabetes incidence. Across an elegant series of analyses, they consistently found support for this hypothesis. Furthermore, MD appears to be at least partially tapping into information that is not generally included in current diabetes prediction: hazard ratios remained important after adjustment for classical risk factors such as glucose level, obesity, and family history. The non-negligible effect sizes suggest substantial potential to integrate the information into clinical risk algorithms, though much work would remain to identify an optimal biomarker panel, demonstrate superiority to existing algorithms, and validate clinical utility.

Etiologically, some of the sensitivity analyses presented by Flores-Guerrero et al. [8] imply that the MD signal is broadly distributed among many biomarkers rather than specific to a set of cardio-metabolic indicators, making it unlikely that MD is directly detecting metabolic syndrome or related diabetes precursors. Rather, MD may detect a more general physiological dysfunction that can feed into metabolic processes, or an incidental correlate such as a lifestyle-driven dysfunction that could co-vary with diabetes risk. Teasing apart such hypotheses will be important to validate the clinical potential.

Going forward, the work by Flores-Guerrero et al. [8] is likely to represent the tip of the iceberg, both in terms of clinically oriented applications of MD, and for development of multivariate approaches to synthesize relevant underlying physiological processes. More broadly, the Anna Karenina Principle is one expression of a more general shift away from reductionism, in which the approach is a gentle challenge to the reductionist approaches that tend to dominate biomedical research. Reductionism breaks the biology down into component molecules, cells, and pathways, and looks for diagnostic or therapeutic molecules. This conventional approach has certainly produced some impressive results, and will continue to do so, but in many domains reductionism has already picked the lowest hanging fruits, and is bumping up against the limits of small effect sizes, contingent results and complex networks of molecules that defy simple characterization or manipulation. For example, Alzheimer’s research targeting amyloid-beta has been strikingly unsuccessful, perhaps due to a failure to understand the complexity of amyloid-beta’s integration into immune networks and the delicate balance between adaptation and pathology [10]. The broader question posed by Flores-
Guerrero et al. [8] is, what might we gain by using integrative rather than compartmentalized ways to study physiology? In both clinical and research contexts, methods such as MD present a way to reconceptualize health in a more integrative fashion and to uncover novel processes that function at the intersection of multiple pathways and systems. Long-term, this will fuel more precise and personalized interventions that account for the ensemble of an individual’s dynamic physiology.

Contributors

AAC is the sole author.

Declaration of Competing Interest

AAC is founder and CEO at Oken Health.

References

[1] Mahalanobis PC. Mahalanobis distance. Proc Natl Inst Sci India 1936;49:234–56.
[2] Cohen AA, Milot E, Yong J, Seplaki CL, Fulop T, Bandeen-Roche K, et al. A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mech Ageing Dev 2013;134. doi: 10.1016/j.mad.2013.01.004.
[3] Belsky DW, Huffman KM, Pieper CF, Shaley I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE biobank analysis. J Gerontol A Biol Sci Med Sci 2017;73:4–10.
[4] Milot E, Morissette-Thomas V, Li Q, Fried LP, Ferrucci L, Cohen AA. Trajectories of physiological dysregulation predicts mortality and health outcomes in a consistent manner across three populations. Mech Ageing Dev 2014;141–2. doi: 10.1016/j.mad.2014.10.001.
[5] Kraft T, Stiegliitz J, Trumble BC, Garcia A, Kaplan HS, Gurven MD. Physiological dysregulation and aging in evolutionary perspective. Philos Trans R Soc Lond B Biol Sci n.d 2019.
[6] Shahrestani P, Tran X, Mueller LD. Physiology declines prior to death in Drosophila melanogaster. Biogerontology 2012. doi: 10.1007/s10522-012-9398-z.
[7] Dansereau G, Wey TW, Legault V, Brunet MA, Kemnitz JW, Ferrucci L, et al. Conservation of physiological dysregulation signatures of aging across primates. Aging Cell 2019;18. doi: 10.1111/ace.13295.
[8] Flores-Guerrero JL, Grzegorczyk MA, Connelly MA, Garcia E, Navis G, Dullaart RPF, et al. Mahalanobis distance, a novel statistical proxy of homeostasis loss is longitudinally associated with risk of type 2 diabetes. EBioMedicine 2021;71:103550.
[9] Ivanov PC, Liu KKL, Bartsch RP. Focus on the emerging new fields of network physiology and network medicine. New J Phys 2016;18. doi: 10.1088/1367-2630/18/10/100201.
[10] Fulop T, Witkowski JM, Bourgade K, Khalil A, Zerif E, Larbi A, et al. Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front Aging Neurosci 2018;10:224.