Perturbing free motions on hyperspheres without degeneracy lift

A Pallares-Rivera, F de J Rosales-Aldape and M Kirchbach

Institute of Physics, Autonomous University of San Luis Potosí, Av. Manuel Nava 6, University Campus, SLP 78290 San Luis Potosí, Mexico

E-mail: pallares@ifisica.uaslp.mx, r_felipedesus@yahoo.com.mx and mariana@ifisica.uaslp.mx

Received 6 May 2013, revised 8 January 2014
Accepted for publication 13 January 2014
Published 11 February 2014

Abstract

We consider quantum motion on S^3 perturbed by the trigonometric Scarf potential (Scarf I) with one internal quantized dimensionless parameter, ℓ, the ordinary orbital angular momentum value, and another continuous parameter, b, through which an external scale is introduced. We argue that a loss of the geometric hyperspherical so(4) symmetry of the free motion occurs that leaves intact the unperturbed hydrogen-like degeneracy patterns characterizing the spectrum under discussion. The argument is based on the observation that the expansions of the Scarf I wave functions for fixed ℓ-values on the basis of properly identified so(4) representation functions are power series in the perturbation parameter, b, in which carrier spaces of dimensionality $(K+1)^2$ with K varying as $K \in [\ell, N-1]$, and N being the principal quantum number of the Scarf I potential problem, contribute up to the order $O(b^{N-1-K})$. Nonetheless, the degeneracy patterns can still be interpreted as a consequence of an effective so(4) symmetry, i.e. a symmetry realized at the level of the dynamic of the system, in so far as from the perspective of the eigenvalue problem, the Scarf I Hamiltonian results are equivalent to a Hamiltonian whose matrix elements are polynomials in a properly identified so(4) Casimir operator. The scheme applies to any dimension d.

Keywords: geometric so(4) symmetry loss, degeneracy conservation, trigonometric Scarf potential

PACS numbers: 03.65.Ge, 03.65.Fd, 02.20.Sv

1. Symmetry and degeneracy: introductory remarks

Symmetry and degeneracy are two concepts which one traditionally associates with the basics of quantum mechanics teachings. One may think of degeneracy with respect to the magnetic
quantum number, \(m \), of a quantum level of a given angular momentum, \(\ell \), which is \((2\ell + 1)\)-fold, and typical for the states bound within all central potentials. A more advanced example would be the degeneracy of the states within the levels describing the quantum motion within the Coulomb potential of an electron without spin, which is \(N^2 \)-fold, with \(N \) standing for the principal quantum number of the Coulomb potential problem. In the first case, the degeneracy is due to the rotational invariance of the three-dimensional position space, which requires conservation of angular momentum, and demands the total wave functions of the central potentials to be simultaneously eigenfunctions of \(L^2 \) and \(L_z \), with \(L \) standing for the angular momentum pseudo-vector, and \(L_z \) for its \(z \)-component. As long as \(L^2 \) acts as the Casimir invariant of the \(\mathfrak{so}(3) \) algebra, the degeneracy with respect to the magnetic quantum number (the \(L_z \) eigenvalues \(m \in [-\ell, +\ell] \)) is attributed to the rotational invariance of the Hamiltonian.

The second case is a bit more involved; in order to explain the larger \(N^2 \)-fold degeneracy, one needs to invoke the higher \(\mathfrak{so}(4) \) symmetry algebra underlying the Coulomb potential problem by accounting for the constancy of the Runge–Lenz vector as well as that of angular momentum [1].

The list can be continued with some more examples, a popular one being the case of the Pöschl–Teller potential, \(V_{PT} = -\lambda(\lambda + 1) \cosh^2 \eta \). In [2] it was noted that the free quantum motion on the one-sheeted two-dimensional hyperboloid, \(x^2 + y^2 - z^2 = 1 \), an \(\text{AdS}_2 \) space [3], transforms, upon an appropriate change of variables, into the one-dimensional (1D) Schrödinger equation with the same potential. As long as the kinetic energy Laplace–Beltrami operator on the hyperboloid is proportional to the Casimir operator of the \(\mathfrak{so}(2, 1) \) isometry algebra of the \(\text{AdS}_2 \) surface, the Hamiltonian of the free motion on the curved space is equivalent (up to an additive constant) to the aforementioned Casimir invariant, and the spectrum of the potential under discussion correspondingly exhibits spectral patterns characteristic of \(\mathfrak{so}(2, 1) \). In consequence, the spectrum of the related 1D Schrödinger equation with the Pöschl–Teller potential will also be classified according to the irreducible representations of the same algebra and will carry patterns identical to those of the free motion on \(\text{AdS}_2 \).

The idea that the spectrum of a Schrödinger equation with a given potential exhibits certain Lie algebraic degeneracies because in some appropriately chosen variables it becomes identical to the eigenvalue problem of the Casimir operator of the isometry algebra of a curved surface (the former not necessarily being unitarily equivalent to its canonical representation) has been further elaborated and generalized by many authors (see [4] for a review). It has become known in the literature under the name of ‘symmetry algebra of a potential’, or simply ‘potential algebra’. The potential algebra concept attributes the degeneracy patterns of a potential to an underlying algebraic symmetry. Predominantly, the \(\mathfrak{su}(1, 1) \) symmetry of the Natanzon-class potentials has been extensively studied within this context, for example in [5–8] among others. However, due attention has also been paid to the \(\mathfrak{so}(4) \) symmetry of the trigonometric Pöschl–Teller potential [9], on the one side, and the trigonometric Rosen–Morse potential [10, 11] on the other side. In effect, the observation of degeneracies in the spectrum of a given potential problem that appear patterned after a known regular Lie algebraic symmetry, as a rule awakens the expectation that the very same algebra may determine the symmetry of the interaction in question.

In the literature on exactly solvable potentials, degeneracy is usually interpreted as a consequence of some underlying potential algebra. However, it is a well-known fact that at the same time quantum mechanics successfully describes phenomena of degeneracy without symmetry, as in the violation of the non-crossing rule in the correlated electron system of Benzene described by means of the Hubbard Hamiltonian [12], or the detection of resonance degeneracies in a double well potential [13]. This type of degeneracies is ordinarily termed as accidental, better or fortuitous. An indispensable text on the aspects of degeneracy without
symmetry is provided by [14] within the context of quantum chaotic motion. However, one should keep in mind that conditioning degeneracy by symmetry is not exclusive to regular Lie symmetries alone. Especially in nonlinear systems, degeneracy can find explanation in terms of quantum group symmetries, obtained by deforming ordinary Lie algebras, as observed for degenerate Landau levels describing plane motion within a constant magnetic field of a charged massive spinless particle [15]. Recapitulating the literature on exactly solvable potentials, degeneracies so far have been either associated with eigenvalue problems (in properly chosen variables) of differential Casimir operators of Lie symmetry algebras (regular or deformed), or with the absence of such.

Here we draw attention to a different option in showing that degeneracy conservation by perturbation can also be understood as equivalence between the matrix elements of an interaction Hamiltonian and the matrix elements of finite polynomials of a Casimir operator of a properly identified Lie algebra, the polynomial coefficients being interaction (potential)-specific. Such is the case of the perturbation of the free quantum motion on S^3 by the two-parameter potential,

$$V_{S^3}(\chi) = b^2 \sec^2 \chi - b(2\ell + 1) \tan \chi \sec \chi.$$

(1)

Here, ℓ is a discrete natural number, while the external scale introduced by the parameter b is continuous.

The paper is structured as follows. In the next section, for the sake of self-sufficiency of the presentation, we briefly review the 1D Schrödinger equation with Scarf I with the emphasis on its hydrogen-like degeneracies for an ℓ non-negative integer, and review the proof of an so(4) potential algebra for the case of two quantized parameters. In section 3 we place the Scarf potential problem on S_{d+1}^R for any d, although then we focus without loss of generality on S^3 for the sake of concreteness. We show that the wave functions, $\psi_{N\ell n}(\chi, \theta, \phi)$, of Scarf I (with N standing for the principal quantum number, $N = (\ell + n + 1)$, and n denoting the nodes of the wave function) do not transform irreducibly under so(4) because they are mixtures of representation functions transforming according to $(K + 1)^2$-dimensional carrier spaces of a properly identified so(4) algebra realization, with the value of the 4D angular momentum, K, varying as $K \in [\ell = (N - 1 - n), N - 1] \in \mathbb{N}$. The above decompositions are simultaneously expansions in power series in the perturbation parameter, b, in which carrier spaces of dimensionality $(K + 1)^2$ contribute up to the order $O(b^{N - 1 - K})$. Here we also present the generalization of the notion of a Hamiltonian from a single differential Casimir operator (potential algebra concept [2]) to an equivalent diagonal matrix form whose elements are potential-specific finite polynomials of the aforementioned Casimir operator (‘dynamics governed by generalized symmetry algebra invariants’, abbreviated to ‘dynamical symmetry’ [16]). We employ the latter concept in the explanation of the hydrogen-like degeneracy patterns in the spectrum of the Scarf I Hamiltonian. The closing section contains the summary of the results and discusses the perspectives.

2. The trigonometric Scarf potential and its degeneracy patterns

The (periodic) trigonometric Scarf potential is of frequent use in the description of di-atomic and poly-atomic molecules in solid-state physics, on the one side, and in di-molecular and poly-molecular systems in physical chemistry, on the other. In several quantum systems it simulates reasonably well the average effect exercised by the inter-atomic (intermolecular) interactions on a single atom (molecule). The potential is characterized by two parameters only, is exactly solvable and is easy to handle with computational software; all advantages that make it interesting in both theoretical studies and applications. Specifically in the present
study, we focus on the peculiarity that the spectrum of Scarf I in (1) exclusively depends on the \(\ell \) parameter alone, while the importance of the \(b \) parameter is confined to the level of the wave functions. For non-negative integer \(\ell \)-values, the latter spectrum shows typical hydrogen-like degeneracy and one expects the potential to have the geometric \(so(4) \) as a potential algebra. In such a case the Scarf I Hamiltonian would be linear in the Casimir operator of the \(so(4) \) algebra in a properly designed representation. This is true only restrictively; namely, only if the second parameter, \(b \), which is irrelevant to the spectrum, has been properly quantized too. This case has been studied in the literature in great detail and it is understood that the corresponding wave functions transform as genuine \(so(4) \) representation functions \[6\]. However, for continuous \(b \) values this is not the case, although the spectrum, in remaining unaffected, continues to exhibit those very same \(so(4) \) degeneracy patterns. Therefore, the case of Scarf I with one quantized and one continuous parameter may provide an intriguing template for studying the phenomenon of possibly observing Lie algebraic degeneracies without an underlying geometric algebraic symmetry of the potential. The goal of the present study is to illuminate this issue.

2.1. The general 1D Schrödinger equation with the two-parameter Scarf I potential

The 1D Schrödinger Hamiltonian, \(H_{\text{ScI}}(\chi) \), with the trigonometric Scarf potential, here denoted by \(V_{\text{ScI}}(\chi) \), and its exact solutions \[6\] are very well known and given (here in dimensionless units \(\hbar^2/2MR^2 = 1 \)) by

\[
H_{\text{ScI}}(\chi) U(\chi) = \left[-\frac{d^2}{d\chi^2} + V_{\text{ScI}}(\chi) \right] U(\chi) = \epsilon U(\chi),
\]

\[
V_{\text{ScI}}(\chi) = \frac{b^2 + a(a+1)}{\cos^2 \chi} - \frac{b(2a+1) \tan \chi}{\cos \chi},
\]

\[
b^2 = \frac{2MR^2B^2}{\hbar^2}, \quad a(a+1) = \frac{2MR^2}{\hbar^2}A(A-1),
\]

\[
U(\chi) = F^{-1}(\chi) \cos^{a+1} \chi P_{n}^{a+b+\frac{1}{2},a+b+\frac{1}{2}}(\sin \chi),
\]

\[
F^{-1}(\chi) = \left(\frac{1 + \sin \chi}{1 - \sin \chi} \right)^{b/2} = e^{-b \tanh^{-1} \sin \chi},
\]

\[
\epsilon = (a + n + 1)^2, \quad \epsilon = \frac{2MER^2}{\hbar^2}.
\]

The Scarf I potential is determined by two parameters, denoted by \(a \) and \(b \) when adimensional, or by \(A \) and \(B \) when carrying the dimensionality of energies. The dimensionless angular variable \(\chi \) is represented as \(\chi = r/R \), where \(r \) is a distance, \(R \) is a suited matching-length parameter, \(E \) is the bound state energy in MeV, \(\epsilon \) stands for adimensional energy, and \(P_{n}^{a+b+\frac{1}{2},a+b+\frac{1}{2}}(\sin \chi) \) are the Jacobi polynomials.

2.2. The \(so(4) \) algebra of Scarf I with two quantized parameters

The expression for the energy, \(\epsilon \), in (7) is such that for a non-negative integer \(a = \ell \in \mathbb{N} \), the spectrum exhibits a hydrogen-like \(N^2 = (\ell + n + 1)^2 \)-fold degeneracy which is characteristic of an algebraic \(so(4) \) symmetry. This observation suggests \(H_{\text{ScI}}(\chi) \) behaves as a differential Casimir operator of a properly constructed \(so(4) \) algebra. In general, to prove the symmetry of an interaction it is necessary to
identify the symmetry algebra of the emerging degeneracy patterns (recognized as $so(4)$ in the case of interest),

confirm irreducibility of the wave functions under transformations of the same algebra.

For the potential under discussion this program has been executed in [6]. The line of reasoning is based on the fact that for discrete (quantized) parameters, $a = m - \frac{1}{2}$ and $b = m'$, the Jacobi polynomials in (5) defining the Scarf wave functions become

$$P_n^{a-b+\frac{1}{2}, a+b+\frac{3}{2}}(\sin \chi) \longrightarrow P_n^{m-m', m+m'}(\sin \chi).$$

Then, the wave function $U(\chi)$ in (5) allows for a factorization of Wigner’s $d^{m-m'}$ functions, the representation functions of an $su(2)$ algebra, according to

$$U(\chi) = G^{-1}(\chi) a_{m-m'}(\sin \chi),$$

with $F^{-1}(\chi)$ from (6), and \mathcal{N} being a normalization constant. Such wave functions behave as representation functions of the following similarity transformed canonical rotational algebra,

$$\mathcal{J}^2(\chi, \psi) = G^{-1}(\chi) \mathcal{J}^2(\chi, \psi) G^{-1}(\chi),$$

with χ now playing the role of the ordinary angular momentum. This algebra has not been worked out explicitly in [6] but its ladder operators have been properly identified by inspection on the basis of the Schrödinger ladder operators, $A^{\pm} = -\partial_\chi \pm W_{ScI}$, with $W_{ScI} = -(a - 1) \tan \chi + b \sec \chi$ standing for the super-potential of V_{ScI}, and exploiting their property to factorize H_{ScI}. In a similar way, a second $su(2)$ algebra has been constructed on the basis of the super-symmetric partner, $\widetilde{H}_{ScI}(\chi)$. The discrete parameters m and m' have been introduced as auxiliary phases into the wave functions according to $U(\chi) \rightarrow \exp(i\alpha + im'\beta) U(\chi)$. In effect, two sets of ladder operators have been designed, in turn labeled as left (L) and right (R) handed. Their algebras have then been closed to $su(2)_{L}$ and $su(2)_{R}$ by $(-i\partial_\chi)$ and $(-i\partial_\psi)$, respectively, identified with the algebra of the universal cover $SU_L(2) \otimes SU_R(2)$ of the group $SO(4)$. This algebra is locally isomorphic to $so(4)$, i.e. $su_L(2) \oplus su_R(2) \simeq so(4)$. Then the Scarf I Hamiltonian has been cast in the form of the corresponding Casimir operator, denoted by $C_{2L}^{L,R}$, that is expressed in terms of the respective squared left- and right-handed angular momentum operators, J_L^2 and J_R^2, as

$$C_{2L}^{L,R} = 2(J_L^2 + J_R^2) = 2K^2,$$

with K^2 standing for the operator of the squared 4D angular momentum. The above scheme has been independently employed to establish the $so(4)$ symmetry of the trigonometric Pöschl–Teller potential by Quesne in [9]. Here, we precisely followed this very reference. Using the algebra locally isomorphic to $so(4)$ from above has the advantage that one generates both the common and the projective representations. As a reminder, the group $SO(4)$ is the quotient of the universal covering $SU(2)_L \otimes SU(2)_R$ by the center Z, i.e. $SO(4) \simeq SU(2)_L \otimes SU(2)_R / Z$. It is interesting to notice that $SO(4)$ can alternatively be viewed as the quotient of the Euclidean group $E^+(4)$ by the group of translations, i.e. $SO(4) \simeq E^+(4)/T$, which would provide a different technique for the treatment of the above problem [17].

To recapitulate, the requirement on algebraic $so(4)$ symmetry of the Scarf I Hamiltonian imposes stringent conditions of quantization on its parameters. The property of the Schrödinger ladder operators to partake in closed Lie algebra under certain restrictions on the values of the potential parameters, provides when possible a powerful method for the algebraic description of various quantum mechanical problems such as those related to the Coulomb and the harmonic oscillator, as well as other interactions [7].
However, without the quantization of the \(b \) parameter, the equality in (8) is no longer valid and one is left with

\[
U(\chi) = F^{-1}(\chi) \cos^{\ell+\frac{1}{2}} \sin^b (\sin \chi),
\]

where from now onwards \(a \) will be quantized to a non-negative integer as \(a = \ell \). The Jacobi polynomials in the latter equation are such that neither Wigner functions nor Gegenbauer polynomials can be in general factorized, a circumstance that strongly points towards serious difficulties in the construction of an explicit similarity transformation of the canonical geometric \(so(4) \) algebra towards the Scarf I Hamiltonian with one quantized and one continuous parameter.

In effect, the status of \(so(4) \) as a symmetry algebra of the Scarf I Hamiltonian is no longer obvious, although the spectrum, in being independent of \(b \), remains unaltered. It is one of the goals of the present study to examine the relationship between the Scarf I Hamiltonian and

\[
\tilde{K}^2 = F^{-1}K^2F,
\]

as suggested by the wave function in (12). For that purpose, placing the problem on a hyperspherical surface is found to be helpful.

3. Perturbing the free quantum motion on \(S^{d+1} \) by Scarf I with one quantized parameter

The free motion on the \((d+1)\) dimensional unit hypersphere, to be denoted by \(S^{d+1} \), embedded within a \((d + 2)\) dimensional Euclidean space, \(E_{d+2} \), is given by

\[
\Delta_{S^{d+1}} \chi Y_{K_1, K_2, \ldots, K_{d+1}}(\chi, \eta, \theta, \phi) = K_{d+2}(K_{d+2} + d) Y_{K_1, K_2, \ldots, K_{d+1}}(\chi, \eta, \theta, \phi),
\]

where \(\Delta_{S^{d+1}} \) is the Laplace–Beltrami operator on the surface under consideration, defined as

\[
\Delta_{S^{d+1}} = -\frac{1}{\cos^d \chi} \frac{\partial}{\partial \chi} \cos^d \chi \frac{\partial}{\partial \chi} + \frac{K_{d+1}^2}{\cos^2 \chi}. \tag{15}
\]

Here, \(K_{d+1}^2 \) stands for the squared angular momentum operator in the Euclidean space, \(E_{d+1} \), of one less dimension; \(\chi, \eta, \ldots, \theta, \phi \) are the hyperspherical harmonics on \(S^{d+1} \); and \(K_{d+2} \) stands for the angular momentum values within the Euclidean space of \(t \) less dimensions, i.e. in \(E_{d+2} \). Finally, \(\ell \) and \(m \) are in turn the standard \(E_1 \) and \(E_2 \) angular momenta. Confining to the quasi-radial motion with wave function, denoted by \(R_{K_1, K_2, \ldots, K_d}(\chi) \), and changing the variable as

\[
R_{K_1, K_2, \ldots, K_d}(\chi) = \frac{U_{K_1, K_2, \ldots, K_d}(\chi)}{\cos^\frac{d}{2} \chi},
\]

amounts to the following 1D Schrödinger equation:

\[
\left[-\frac{d^2}{d\chi^2} + \frac{(K_{d+1} + \frac{d+1}{2})^2}{\cos^2 \chi} - \frac{1}{4} \right] U_{K_1, K_2, \ldots, K_d}(\chi) = \left[K_{d+2}(K_{d+2} + d) + \frac{d^2}{4} \right] U_{K_1, K_2, \ldots, K_d}(\chi). \tag{17}
\]

Comparison to (3) reveals (17) as the Scarf I potential problem for \(b = 0 \), and

\[
a = K_{d+1} + \frac{d - 1}{2} - \frac{1}{2}, \tag{18}
\]

with \(a \) either an integer or semi-integer. In this manner, the explicit \(so(d + 2) \) potential algebras of the \(\sec^2 \) interaction of the 1D Schrödinger equation have been made manifest.
Switching now to the full Scarf I potential in (2)–(7) amounts to the following perturbed motion on S^{d+1}:

$$\left[-\frac{1}{\cos^2 \chi} \frac{\partial}{\partial \chi} \cos^d \chi \frac{\partial}{\partial \chi} + \frac{b^2 + (K_{d+1} + \frac{d-1}{2})^2 - \frac{1}{4} - b(2K_{d+1} + d - 1) \tan \chi}{\cos \chi} \right]$$

$$\times \phi_{K_d,\epsilon K_{d+1}}(\chi) = \epsilon_{K_d,\epsilon} \phi_{K_d,\epsilon K_{d+1}}(\chi)$$

$$\epsilon_{K_d,\epsilon} = K_{d+2} (K_{d+2} + d) + \frac{d^2}{4}. \quad (19)$$

Correspondingly, the solutions to (19) are read off from (5) as

$$\phi_{K_d,\epsilon K_{d+1}}(\chi) = \frac{U(\chi)}{\cos \chi} = F^{-1}(\chi) \cos^{K_{d+1}} \chi F_{n}^{K_{d+1}+\frac{d-1}{2}-b, K_{d+1}+\frac{d-1}{2}+b} (\sin \chi). \quad (20)$$

with a from (18). Comparison to (14) shows that the perturbation retains the degeneracy patterns of the free motion in any dimension and raises the question of the symmetry of the full trigonometric Scarf potential.

In the following, we shall focus on S^3, setting $d = 2$ for concreteness and without loss of generality. In doing so, K_2 becomes the 4D angular momentum value, to be denoted by K only, while K_{2+1} is no more than the ordinary angular momentum, ℓ. With that, i.e. for $a = \ell$, the perturbation potential announced in (1) in the introduction becomes

$$V^S(\chi) = \frac{b^2}{\cos^2 \chi} - \frac{b(2\ell + 1)}{\cos \chi} \tan \chi. \quad (21)$$

It is that very potential that will be referred to from now onwards as Scarf I on S^3. Apparently, for $b = 0$ the free quantum motion on the curved surface under consideration is recovered. For $d = 2$, the equation (19) can also be viewed as the 4D quantum mechanical rigid rotator perturbed by $V^S(\chi)$, a problem of interest in di-atomic or di-molecular systems. Furthermore, by recalling the relationship between the Laplace–Beltrami operator and the operator of the squared 4D angular momentum, \mathcal{K}^2, a Casimir invariant of the $so(4)$ isometry algebra of S^3,

$$-\Delta^S = \mathcal{K}^2, \quad (22)$$

allows to cast the free quantum motion on the unit hypersphere S^3 in terms of the \mathcal{K}^2 eigenvalue problem as

$$(\mathcal{K}^2 + 1) Y_{K\ell m}(\chi, \theta, \psi) = (K + 1)^2 Y_{K\ell m}(\chi, \theta, \psi). \quad (23)$$

Here, $Y_{K\ell m}(\chi, \theta, \psi)$ stands for the well-known 4D hyperspherical harmonics, and with $K \in [0, \infty)$, $\ell \in [0, K]$ and $m \in [-\ell, +\ell]$. The 4D hyperspherical harmonics are the representation functions of the isometry $so(4)$ algebra, which describe $(K + 1)^2$-dimensional $so(4)$ carrier spaces and are defined according to

$$Y_{K\ell m}(\chi, \theta, \psi) = S_{K\ell}(\chi) Y_{m}^{\ell}(\theta, \psi), \quad S_{K\ell}(\chi) = \cos^\ell \chi \mathcal{G}^{\ell+1}_{m, K-\ell}(\sin \chi). \quad (24)$$

Here, $\mathcal{G}^{\ell+1}_{m, K-\ell}(\sin \chi)$ stands for the Gegenbauer polynomials. The $S_{K\ell}(\chi)$ functions are sometimes referred to as the ‘quasi-radial’ functions of the free motion [18].

Here, \mathcal{K}^2 is expressed in terms of the six generators J_i and A_i with $i = 1, 2, 3$, spanning the $so(4)$ algebra [19],

$$[J_i, J_j] = i\epsilon_{ijk} J_k, \quad [A_i, A_j] = i\epsilon_{ijk} A_k, \quad [J_i, A_j] = i\epsilon_{ijk} A_k, \quad (25)$$

as

$$\mathcal{K}^2 = 2(J^2 + A^2). \quad (26)$$
In terms of (22), the equation of the perturbed motion on S^3, which we will be dealing with here, takes the following final shape:

\begin{align*}
\mathcal{H}_{Sc}(\chi)\psi_{N\ell m}(\chi, \theta, \varphi) &= \epsilon_N \psi_{N\ell m}(\chi, \theta, \varphi), \\
\mathcal{H}_{Sc}(\chi) &= \mathcal{K}^2 + 1 + V_3(\chi), \\
\mathcal{K}^2 &= -\frac{1}{\cos^2 \chi} \frac{\partial}{\partial \chi} \cos^2 \chi \frac{\partial}{\partial \chi} + \frac{\mathbf{L}^2}{\cos^2 \chi}, \\
\psi_{N\ell m}(\chi, \theta, \varphi) &= \phi_{N\ell}(\chi) Y^m_\ell(\theta, \varphi).
\end{align*}

The remarkable aspect of the perturbation by the trigonometric Scarf potential is that despite the drastic change in the quasi-radial wave functions from unperturbed $S_{K}(\chi)$ in (24), to perturbed $\phi_{N\ell}(\chi)$ in (27) according to,

\begin{equation}
S_{K}(\chi) = \cos \chi G_{\ell+1}^0 N^- (\sin \chi) \rightarrow \phi_{N\ell}(\chi) = e^{b_{1,0}} \sin \chi \cos \chi P_{N-1}^{\ell-b}(\sin \chi), \quad (29)
\end{equation}

its spectrum remains independent of the external scale introducing parameter b, which can be infinitesimally small, as well as finite. This spectrum is still characterized by that very same N^2-fold degeneracy of the states in a level, just as the hydrogen atom is, and formally copies the $(\mathcal{K}^2 + 1)$ eigenvalue problem. From the equation (29) one immediately reads off that for the particular case of the parameter ℓ taking its maximal value of $\ell = (N-1)$ (it includes the ground state, $(N-1) = \ell = 0$), the polynomials on both sides are of zero degree, i.e., constants, and one encounters equality between the Scarf I solutions on S^3, on the one side, and the $F^{-1}(\chi)$ transformed representation functions of the isometry $so(4)$ algebra on the other; namely,

\begin{equation}
\psi_{N,\ell=m(N-1),m}(\chi, \theta, \varphi) = F^{-1}(\chi) Y_{K=m(N-1),\ell=m(N-1),m}(\chi, \theta, \varphi) \equiv \tilde{Y}_{N,\ell=m(N-1),m}(\chi, \theta, \varphi)
\end{equation}

holds valid. Notice that $\tilde{Y}_{N,\ell=m(N-1),m}(\chi, \theta, \varphi)$ behave as representation functions of an $so(4)$ algebra similarity transformed to $F^{-1} K^2 F = \tilde{K}^2$. For this particular case the solutions of the perturbed quantum motion on S^3 under discussion are $so(4)$ symmetric, though the algebra is in a representation that is unitarily nonequivalent to the hyperspherical one. The equation (30) is suggestive of a relationship between the Scarf I Hamiltonian and a similarity transformation of the geometric $so(4)$ algebra in (25) by the exponential function $F^{-1}(\chi)$ in (6), which also formed part of the design of the explicit potential algebra of Scarf I with two quantized parameters in (9). The next subsection is devoted to the construction of the transformed algebra (13) (with $C_{l,h}^2 \chi$ being replaced by the squared 4D angular momentum operator, K^2) and to the comparison of its Casimir operator to the Scarf I Hamiltonian in (27).

3.1. Geometric $so(4)$ symmetry loss in the Scarf I potential problem on S^3 without lifting the degeneracy of the free quantum motion

We are interested in calculating the class of representation functions of the $so(4)$ algebra to which $\tilde{Y}_{N,\ell=m(N-1),m}(\chi, \theta, \varphi)$ in (30) belong. For this purpose we consider the algebra spanned by the set of elements,

\begin{align*}
\tilde{J}_i &= F^{-1} j_i F, &\tilde{A}_i &= F^{-1} A_i F, &i = 1, 2, 3, \\
\tilde{K}^2 &= F^{-1} K^2 F, &\tilde{R}^2 &= 2 \sum_{i=1}^{3} (\tilde{P}^2_i + \tilde{A}_i^2),
\end{align*}

with V_3 from (21), and $F^{-1}(\chi)$ from (6). The energy excitations are

\begin{equation}
\epsilon_N = N^2, \quad N \in \mathbb{N}, \quad N \in [1, \infty).
\end{equation}
Next, we calculate the similarity transformed Casimir operator, \([\tilde{K}^2 + 1] = [F^{-1}(\chi)K^2F(\chi) + 1]\), together with its action on the \(\tilde{S}_{K\ell}(\chi)\) functions, i.e.

\[
[K^2 + 1] \tilde{S}_{K\ell}(\chi) = [F^{-1}(\chi)K^2F(\chi) + 1] \tilde{S}_{K\ell}(\chi).
\]

In so doing we find the following general expression (see [2] for a similar procedure),

\[
[F^{-1}(\chi)K^2F(\chi) + 1] \tilde{S}_{K\ell}(\chi) = [K^2 + 1 + V(\chi)] \tilde{S}_{K\ell}(\chi),
\]

\[
V(\chi) = -F^{-1}(\chi) \left[\frac{\partial^2 F(\chi)}{\partial \chi^2} - 2 \tan \chi \frac{\partial F(\chi)}{\partial \chi} \right] \tilde{S}_{K\ell}(\chi) - 2F^{-1}(\chi) \frac{\partial F(\chi)}{\partial \chi} \frac{\partial \tilde{S}_{K\ell}(\chi)}{\partial \chi}.
\]

The latter equation shows that similarity transformations of algebra invariants generate potentials \(V(\chi)\), which in general contain gradiental terms.

For the specific form of the function \(F(\chi)\) defined in (6), one finds

\[
-F^{-1}(\chi) \left(-b^2 \frac{\tan \chi}{\cos \chi} + b \right),
\]

\[
2 \tan \chi F^{-1}(\chi) \frac{\partial F(\chi)}{\partial \chi} = -2b \frac{\tan \chi}{\cos \chi},
\]

\[
-2F^{-1}(\chi) \left[\frac{\partial \tilde{S}_{K\ell}(\chi)}{\partial \chi} \frac{\partial F(\chi)}{\partial \chi} = \frac{2b^2}{\cos^3 \chi} \tilde{S}_{K\ell}(\chi) - \frac{2b}{\cos \chi} \tan \chi \tilde{S}_{K\ell}(\chi)
\]

\[
+ \frac{2b}{\cos \chi} F^{-1}(\chi) \cos \chi \frac{\partial \tilde{G}_{\ell+1}^\prime(\sin \chi)}{\partial \chi},
\]

where use has been made of

\[
\frac{\partial F(\chi)}{\partial \chi} = -b \frac{\cos \chi}{\cos \chi},
\]

Putting all together and back-substituting the equations (35)–(37) into (34) yields

\[
(K^2 + 1) \tilde{S}_{K\ell}(\chi) = \left[K^2 + 1 + \frac{b^2}{\cos^3 \chi} \right] \tilde{S}_{K\ell}(\chi)
\]

\[
+ \frac{2b}{\cos \chi} F^{-1}(\chi) \cos \chi \frac{\partial \tilde{G}_{\ell+1}^\prime(\sin \chi)}{\partial \chi},
\]

meaning that the similarity transformation of \(K^2\) by \(F^{-1}(\chi)\) gives only partial rise to the anticipated trigonometric Scarf potential, \(V_G(\chi)\), in (21), the rest being a gradiental term,

\[
(K^2 + 1) \tilde{S}_{K\ell}(\chi) = \mathcal{H}_{S\ell}(\chi) \tilde{S}_{K\ell}(\chi) + \frac{2b}{\cos \chi} F^{-1}(\chi) \cos \chi \frac{\partial \tilde{G}_{\ell+1}^\prime(\sin \chi)}{\partial \chi}.
\]

The latter equation can equivalently be rewritten as,

\[
(K + 1)^2 \tilde{S}_{K\ell}(\chi) = \mathcal{H}_{S\ell}(\chi) \tilde{S}_{K\ell}(\chi) + \frac{2b}{\cos \chi} F^{-1}(\chi) \cos \chi \frac{\partial \tilde{G}_{\ell+1}^\prime(\sin \chi)}{\partial \chi}.
\]

The conclusion is that \(\tilde{S}_{K\ell}(\chi)\) does not solve the \(\mathcal{H}_{S\ell}(\chi)\) eigenvalue problem, except for the \(\ell = (N - 1)\) case already discussed in the above equation (30). And vice versa, for the Scarf I solutions, \(\mathcal{H}_{S\ell}(\chi) \phi_{N\ell}(\chi) = N^2 \phi_{N\ell}(\chi)\), one finds

\[
N^2 \phi_{N\ell}(\chi) = (K^2 + 1) \phi_{N\ell}(\chi) - \frac{2b}{\cos \chi} F^{-1}(\chi) \cos \chi \frac{\partial \tilde{G}_{\ell+1}^\prime(\sin \chi)}{\partial \chi}.
\]
that they are not eigenfunctions to \tilde{K}^2 due to the non-commutativity of the Scarf I Hamiltonian and the Casimir operator of the transformed algebra,

$$[\mathcal{H}_S(\chi), \tilde{K}^2] \neq 0.$$

Our case is that for a general $\ell \neq (N-1)$, the wave functions $\psi_{N\ell m}(\chi, \theta, \varphi)$ in (27) describing the perturbed motion on S^3 behave as mixtures of the type $\psi_{N\ell m}(\chi, \theta, \varphi) = \Sigma_{K=\ell}^{K=N-1} c_K(b^\ell) \tilde{Y}_{K\ell m}(\chi, \theta, \varphi)$, with $\eta \in [0, n]$. Such a property is bound to remain independent of the parametrization of the hypersphere by virtue of the model independence of the Lie algebras.

3.2. The case $\ell = (N - 2)$ as an illustrative example

We now take a closer look at $\ell = (N - 2)$, the state with the next-to-highest orbital angular momentum value within the multiplet, in which case the wave function of interest is given by

$$\phi_{N(N-2)}(\chi) = F^{-1}(\chi) \cos^{N-2} \chi P_{1}^{-(N-2)-b+\frac{1}{2},(N-2)+b+\frac{1}{2}}(\sin \chi).$$

(44)

The Jacobi polynomial allows for the following decomposition into Gegenbauer polynomials,

$$P_{1}^{-(N-2)-b+\frac{1}{2},(N-2)+b+\frac{1}{2}}(\sin \chi) = -b + \frac{1}{2}(2N - 1) \sin \chi$$

$$= -b G_{0}^{N-1}(\sin \chi) + \frac{(2N - 1)}{4(N - 1)} G_{1}^{N-1}(\sin \chi).$$

(45)

In noticing that by the aid of equation (24),

$$\cos^{N-2} \chi \tilde{Y}_{0}^{N-1}(\sin \chi) = S_{(N-2)(N-2)}(\chi), \quad \cos^{N-2} \chi \tilde{G}_{1}^{N-1}(\sin \chi) = S_{(N-1)(N-2)}(\chi),$$

(46)

we can equivalently rewrite equation (44) as

$$\phi_{N(N-2)}(\chi) = -b \tilde{S}_{(N-2)(N-2)}(\chi) + \frac{(2N - 1)}{4(N - 1)} \tilde{S}_{(N-1)(N-2)}(\chi),$$

(47)

with $\tilde{S}_{K\ell}(\chi) = F^{-1}(\chi) S_{K\ell}(\chi)$ defined in (32), and standing for the quasi-radial representation functions of the transformed algebra in (31). In consequence, the same relationship holds valid at the level of the total Scarf I wave and \tilde{K}^2 representation functions, the exponentially rescaled hyperspherical harmonics in (32),

$$\psi_{N(N-2)\ell m}(\chi, \theta, \varphi) = -b \tilde{Y}_{(N-2)(N-2)m}(\chi, \theta, \varphi) + \frac{(2N - 1)}{4(N - 1)} \tilde{Y}_{(N-1)(N-2)m}(\chi, \theta, \varphi).$$

(48)

In effect, we observe that the lower dimensional $so(4)$ carrier space, $\tilde{Y}_{(N-2)(N-2)m}(\chi, \theta, \varphi)$, contributes to the order $O(b^\ell)$ to $\psi_{N(N-2)m}(\chi, \theta, \varphi)$, i.e.

$$\psi_{N\ell m}(\chi, \theta, \varphi) = \Sigma_{K=\ell}^{K=N-1} c_{K\ell}(b^{N-1-K}) \tilde{Y}_{K\ell m}(\chi, \theta, \varphi), \quad \ell = N - 2,$$

(49)

with the expansion coefficients $c_{K\ell}(b^{N-1-K})$ being uniquely fixed through the decomposition of the Jacobi into Gegenbauer polynomials. Therefore, for $\ell = (N - 2)$, the Scarf I Hamiltonian on S^3 deviates to the order $O(b^\ell)$ from the geometric $so(4)$ algebra Casimir in (31).

It is straightforward to verify that for any $\ell \neq (N - 1)$ the wave functions of a motion on S^3, perturbed by the trigonometric Scarf potential, always represent themselves as mixtures of $so(4)$ representation functions corresponding to carrier spaces of different dimensionality. Examples are listed in table 1. The generalization of equation (48) to any ℓ reads

$$\psi_{N\ell m}(\chi, \theta, \varphi) = \Sigma_{K=\ell}^{K=N-1} c_{K\ell}(b^{N-1-K}) \tilde{Y}_{K\ell m}(\chi, \theta, \varphi), \quad \eta \in [0, n].$$

(50)
The wave functions constituting an $\text{GL}(N)$, $\text{J. Phys. A: Math. Theor.}$

This simple exercise shows that the gradient term are such that one ends up with the common N solely under the Scarf potential with the basis vectors.

In the full space, obtained by multiplying (51) by $Y_{N-2}^{m}(\theta, \varphi)$ from the right, the latter equation amounts to

$$
(\tilde{K}^2 + 1) \psi_{N(N-2)m}(\chi, \theta, \varphi) - \frac{2b}{\cos \chi} F^{-1}(\chi) \cos^{\ell} \chi \frac{\partial P_{1}^{\alpha\beta}(\sin \chi)}{\partial \chi} \frac{\partial P_{1}^{\alpha\beta}(\sin \chi)}{\partial \chi} Y_{N-2}^{m}(\theta, \varphi) = N^{2} \psi_{N(N-2)m}(\chi, \theta, \varphi).
$$

This simple exercise shows that the N^2-fold degeneracy in the spectrum of the trigonometric Scarf potential with the a parameter quantized to non-negative integer values cannot be
attributed in the usual way to a geometric so(4) algebraic symmetry. Yet, one is still left with the option of allowing for algebra invariants in the form of finite polynomials of the transformed Casimir operator \(\tilde{K}^2 \) in (31) and (40). If so, the role of the gradiental term in ending up with \(\phi_{N}(\chi) \) functions belonging to the same \(N^2 \) eigenvalue, despite their evident decomposition into irreducible \(\tilde{K}^2 \) carrier space of different dimensionalities in (50), could be equally well played by properly chosen polynomial coefficients. Take again as an example the \(\ell = (N - 2) \) case considered above. The polynomial invariant of the transformed so(4) algebra whose eigenvalue problem for \(\phi_{N(N-2)}(\chi) \) is identical to that of \(\mathcal{H}_{\text{Sc}}(\chi) \) on the same space, is given by

\[
\left(\tilde{K}^2 + 1 \right) \tilde{K}^2 + 1 - (N - 1)^2 \overline{N}^2 - (N - 1)^2 - b \left(\tilde{K}^2 + 1 + (2N - 1) \right) \tilde{K}^2 + 1 - N^2 \overline{(N - 1)^2 - N^2}
\times \left(\tilde{Y}((N-1)(N-2)m) \chi, \theta, \varphi \right) + \tilde{Y}((N-2),(N-2),m) \chi, \theta, \varphi \right) \equiv \mathcal{H}_{\text{Sc}}(\chi_{N-2}(\chi, \theta, \varphi) = N^2 \psi_{N(N-2)m}(\chi, \theta, \varphi).
\]

Indeed, the term proportional to the projector\(^1\) on the \(S_{(N-2)(N-2)}(\chi) \) component in (51), i.e. on the \((N - 1)^2 \) eigenvalue, \(\mathcal{P}_{(N - 1)^2} = \frac{\tilde{K}^2 + 1 - N^2}{(N - 1)^2 - N^2} \), provides by construction the same contribution to \((N - 1)^2 \), namely \((2N - 1) \), as the gradiental term, thus allowing for the factorization of \(N^2 \) as a net eigenvalue.

In a similar way, the eigenvalue of \(N^2 \) to \(\phi_{N(N-3)}(\chi) \), a space that contains the two lower dimensional components according to the table, \(S_{(N-2)(N-3)}(\chi) \) and \(S_{(N-3)(N-3)}(\chi) \), can be understood to have the following identity:

\[
\left(\tilde{K}^2 + 1 \right) \tilde{K}^2 + 1 - (N - 1)^2 \overline{N}^2 - (N - 1)^2 - b \left(\tilde{K}^2 + 1 + (2N - 1) \right) \tilde{K}^2 + 1 - N^2 \overline{(N - 1)^2 - N^2}
\times \left(\tilde{Y}((N-1)(N-3)m) \chi, \theta, \varphi \right) + \tilde{Y}((N-2),(N-3),m) \chi, \theta, \varphi \right) + \tilde{Y}((N-3),(N-3),m) \chi, \theta, \varphi \right) \equiv \mathcal{H}_{\text{Sc}}(\chi_{N-3}(\chi, \theta, \varphi) = N^2 \psi_{N(N-3)m}(\chi, \theta, \varphi)).
\]

In this case the polynomial is of the third order in the Casimir operator \(\tilde{K}^2 \) in (40). Along this line, appropriate Casimir polynomials for any one of the degenerate states can be designed. The above perturbative construction amounts to a potential-specific diagonal matrix representation of the Scarf I Hamiltonian on \(S^3 \).

Designing particle dynamics in terms of Hamiltonians as functions of certain Lie algebra Casimir operators is of common use and great utility in nuclear physics, where the complexity of the systems presents an obstacle in the formulation of exactly solvable potential problems. This concept is of fundamental importance within the powerful approach of the interacting boson model (IBM) [16]. In the latter, such descriptions of degeneracies are termed as ‘dynamics governed by generalized invariants of a symmetry algebra’, abbreviated as ‘dynamical symmetries’ (not to be confused with the similar terminology used within the context of algebra realizations in the full phase space, as is the case of the \(H \)-atom and the Runge–Lenz vector [21]). Conversely, the notion of a ‘potential algebra’ is confined to

\(^1\) For the construction of such projectors see [20].
exactly solvable Hamiltonians, which turn out to be polynomials of the first order in a standard differential Casimir operator. In this fashion, and in reference to the IBM terminology, the hydrogen-like degeneracy patterns in the spectrum under investigation can be understood as a promotion of the geometric $so(4)$ potential algebra of the \sec^2 interaction (corresponding to the free motion) to a dynamical $so(4)$ symmetry of the Scarf I potential (corresponding to the perturbed motion), with the algebra being in a representation unitarily nonequivalent to the hyperspherical one. Polynomials of the type in (53) and (54), when considered in terms of coefficients distributed at random around the Scarf I-specific values, would allow for the description of $so(4)$ degeneracy patterns by means of wave functions fluctuating around the exact Scarf I solutions and could be of interest in simulation studies of systems with next-to-Scarf I potential interactions. The scheme extends to any $so(d + 2)$.

4. Conclusions and perspectives

The present study has been devoted to the explanation of the emerging $so(4)$-type of degeneracy patterns in the spectrum of the di-atomic (di-molecular) trigonometric Scarf potential for the case in which the parameter a in (7) was allowed to take only non-negative integer values, while b remained unrestricted. We first demonstrated that although perturbations by $V_{\delta}(\chi)$ in (21) of the free motion are degeneracy-conserving, they lead to the loss of the geometric $so(4)$ symmetry. Our argumentation was based on the observation that the wave functions of the perturbed motion behaved as mixtures of functions, properly identified as genuine $so(4)$ representation functions in (32), and which, as illustrated by (48) and the table, transformed as finite linear combinations of $so(4)$ carrier spaces of different dimensionality. Simultaneously, the decompositions presented themselves as finite power series expansions in the b parameter, which permitted the quantitative tracking of the order to which the symmetry under discussion is gradually fading away. Although the wave functions considered constitute a N^2-fold degenerate multiplet, in not behaving as eigenstates to the standard Casimir operator of the geometric $so(4)$ under discussion, they prevent the interpretation of this symmetry as the culprit for the observed degeneracy, unless the notion of an algebra invariant has not been generalized to an arbitrary function of the aforementioned Casimir operator. In such a case, we showed that the eigenvalue problem of the Scarf I Hamiltonian for a given $\psi_{N\ell m}$ is indistinguishable from that of the polynomial of degree $n = (N - 1 - \ell)$ in the Casimir operator of the similarity transformed hyperspherical algebra in equation (40). In this way, we presented an explicit example on promoting by external scales a manifest geometric $so(d + 2)$ symmetry of an exactly solvable potential (the $so(4)$ of \sec^2, in our case) to an effective algebraic symmetry of the dynamics following a perturbation that retains the degeneracy. Our findings are backed up by the established finite decompositions of the Jacobi polynomials, the key ingredients of the Scarf I solutions, on the basis of the Gegenbauer polynomials, the key ingredients of the canonical $so(4)/so(2 + d)$ representation functions.

The present study points towards the possibility of non-standard $so(4)/so(2 + d)$ realizations in the trigonometric Scarf potential problem, a further option being deformations of the algebras as defined on the full phase space, where the momentum space for the sphere could be elaborated along the lines of [22]. Alternatively, such a study could also be worked out in the parametrization of the sphere via its stereographic projection on an ambient linear space of more than one dimension, with the aim of finding the complete set of integrals of motion, a scheme that has already been successfully elaborated for the related Kepler–Coulomb problem on hyperspheres of any dimension [23] and which leads to algebra deformations.
To recapitulate, the goal of the present investigation has been to stress the possibility of retaining degeneracy in the process of a perturbation. The general interest in such an observation lies in the possibility to withdraw in a process of perturbation fundamental geometric Lie algebraic symmetries by scales such as temperatures, masses and lengths, without leaving any trace in the spectra. Such subtle symmetry losses remain undetectable at the level of the energy excitations but they inevitably show up in the disintegration modes of the system.

In view of the wide use of the hyperspherical geometry in the description of many-body systems such as Brownian motion [24] and coherent states [25], we expect the findings reported here to acquire relevance.

References

[1] Elliott J D and Dawber P G 1985 Symmetry in Physics (Oxford: Oxford University Press)
[2] Wu J and Alhassid Y 1990 The potential group approach and hypergeometric differential equations J. Math. Phys. 31 557–62
[3] Moschella U 2003 Quantum fields on dS and AdS Ann. Henri Poincaré 4 (Suppl. 1) S319–32
[4] Rasinariu C, Mallow J V and Gangopadhyaya A 2007 Exactly solvable problems of quantum mechanics and their spectrum generating algebras Cent. Eur. J. Phys. 5 111–34
[5] Barut A O, Inomata A and Wilson R 1987 A new realization of dynamical groups and factorization method J. Phys. A: Math. Gen. 20 4075–82
[6] Lévai G, Cannata F and Ventura A 2002 P T-symmetric potentials and the so(2,2) algebra J. Phys. A: Math. Gen. 35 5041–57
[7] Martinez D, Flores-Urbina J C, Mota R D and Granada V D 2010 The su(1,1) dynamical algebra from the Schrödinger ladder operators for N-dimensional systems: hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator J. Phys. A: Math. Theor. 43 135201
[8] Leija-Martinez N, Alvarez-Castillo D E and Kirchbach M 2011 Breaking pseudo-rotational symmetry through H 2 metric deformation in the Eckart potential problem SIGMA 7 113
[9] Quesne C 1988 An SL(4,R) Lie algebraic treatment of the first family of Pöschl–Teller potentials J. Phys. A: Math. Gen. 21 4487–500
[10] Pallares-Rivera A and Kirchbach M 2011 Symmetry and degeneracy of the curved Coulomb potential on the S3 ball J. Phys. A: Math. Theor. 44 445302
[11] Alvarez-Castillo D E, Compean C B and Kirchbach M 2011 Rotational symmetry and degeneracy: a cotangent perturbed rigid rotor of unperturbed level multiplicity Mol. Phys. 109 1477–83
[12] Heilmann O J and Lieb E H 1971 Violation of the non-crossing rule: the Hubbard Hamiltonian for Benzene Ann. New York Acad. Sci. 172 584–617
[13] Hernandez E, Jáuregui A and Mondragon A 2000 Degeneracy of resonances in a double barrier potential J. Phys. A: Math. Gen. 33 4507–23
[14] Berry M 1985 Aspects of degeneracy Chaotic Behavior in Quantum Systems ed G Casarti (New York: Plenum) pp 123–40
[15] Jellal A, Daoud M and Hassouni Y 2000 Supersymmetric sine algebra and degeneracy of Landau levels Phys. Lett. B 474 122–9
[16] Iachello F and Van Isacker P 2005 The Interacting Boson Model (Cambridge: Cambridge University Press)
[17] Miller W Jr 1964 Some applications of representation theory of the Euclidean group in three space Commun. Pure Appl. Math. 17 527–40
[18] MacGregor B R, McCoy A E and Wickramasekara S 2011 Unitary representations of the Galilean line group: quantum mechanical principle of equivalence arXiv:1107.2442V1[math-ph]
[19] Kalnin E, Miller W and Pogosyan G S 2002 The Coulomb-oscillator relation on n-dimensional spheres Phys. At. Nucl. 65 1086–94
[20] Englefield M J 1972 Group Theory and the Coulomb Problem (New York: Wiley)
[21] Tung W-K 1985 Group Theory in Physics (Singapore: World Scientific)
[22] Alonso M A, Pogosyan G S and Wolf K B 2003 Wigner functions for curved spaces: II. On spheres
J. Math. Phys. 44 1472–89
[23] Ballesteros A and Herranz F J 2009 Maximal superintegrability of the generalized Kepler–Coulomb
system on N-dimensional curved spaces J. Phys. A: Math. Theor. 42 245203
[24] Nissfolk J, Ekholm T and Elvinson C 2003 Brownian dynamics simulations on a hypersphere in
4-space J. Chem. Phys. 119 6423–32
Caillol J-M 2004 Random walks on hyperspheres of arbitrary dimension arXiv:cond-mat/0401209
[25] Cruz y Cruz S, Kuru S and Negro J 2008 Classical motion and coherent states for Pöschl–Teller
potentials Phys. Lett. A 372 1391–405