SYSTEMATIC REVIEW

Pharmacological and non-pharmacological interventions to prevent delirium in critically ill patients: a systematic review and network meta-analysis

Lisa D. Burry1,2,3*, Wei Cheng4, David R. Williamson5,6, Neill K. Adhikari7,8, Ingrid Egerod9, Salmaan Kanji10,11, Claudio M. Martin12,13, Brian Hutton10,14 and Louise Rose15

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Purpose: To compare the effects of prevention interventions on delirium occurrence in critically ill adults.

Methods: MEDLINE, Embase, PsychINFO, CINAHL, Web of Science, Cochrane Library, Prospero, and WHO international clinical trial registry were searched from inception to April 8, 2021. Randomized controlled trials of pharmacological, sedation, non-pharmacological, and multi-component interventions enrolling adult critically ill patients were included. We performed conventional pairwise meta-analyses, NMA within Bayesian random effects modeling, and determined surface under the cumulative ranking curve values and mean rank. Reviewer pairs independently extracted data, assessed bias using Cochrane Risk of Bias tool and evidence certainty with GRADE. The primary outcome was delirium occurrence; secondary outcomes were durations of delirium and mechanical ventilation, length of stay, mortality, and adverse effects.

Results: Eighty trials met eligibility criteria: 67.5% pharmacological, 31.3% non-pharmacological and 1.2% mixed pharmacological and non-pharmacological interventions. For delirium occurrence, 11 pharmacological interventions (38 trials, \(N = 11,993\)) connected to the evidence network. Compared to placebo, only dexmedetomidine (21/22 alpha2 agonist trials were dexmedetomidine) probably reduces delirium occurrence (odds ratio (OR) 0.43, 95% Credible Interval (CrI) 0.21–0.85; moderate certainty). Compared to benzodiazepines, dexmedetomidine (OR 0.21, 95% CrI 0.08–0.51; low certainty), sedation interruption (OR 0.21, 95% CrI 0.06–0.69; very low certainty), opioid plus benzodiazepine (OR 0.27, 95% CrI 0.10–0.76; very low certainty), and protocolized sedation (OR 0.27, 95% CrI 0.09–0.80; very low certainty) may reduce delirium occurrence but the evidence is very uncertain. Dexmedetomidine probably reduces ICU length of stay compared to placebo (Ratio of Means (RoM) 0.78, CrI 0.64–0.95; low certainty) and compared to antipsychotics (RoM 0.76, CrI 0.61–0.98; low certainty). Sedative interruption, protocolized sedation and opioids may reduce hospital length of stay compared to placebo, but the evidence is very uncertain. No intervention influenced mechanical ventilation duration, mortality, or arrhythmia. Single and multi-component non-pharmacological interventions did not connect to any evidence networks to allow for ranking and comparisons as planned; pairwise comparisons did not detect differences compared to standard care.

*Correspondence: lisa.burry@sinahealth.ca

1 Department of Pharmacy, Mount Sinai Hospital, Room 18-377, 600 University Avenue, Toronto, ON M5G 1X5, Canada

Full author information is available at the end of the article
Conclusion: Compared to placebo and benzodiazepines, we found dexmedetomidine likely reduced the occurrence of delirium in critically ill adults. Compared to benzodiazepines, sedation-minimization strategies may also reduce delirium occurrence, but the evidence is uncertain.

Keywords: Delirium, Prevention, Pharmacological, Non-pharmacological interventions, Critical care

Introduction

Delirium, a highly prevalent syndrome in critically ill patients, is characterized by acute changes in mental status with inattention, disorganized thinking, and altered level of consciousness not explained by pre-existing conditions [1]. Although delirium is potentially preventable and reversible, it is associated with adverse patient consequences with excess mortality, cognitive impairment, functional decline, and increased healthcare system costs associated with prolonged mechanical ventilation and length of stay [2, 3]. The pathophysiology of delirium is not yet fully understood but is likely multifactorial, although sedatives, especially benzodiazepines, commonly administered for intensive care unit (ICU) sedation, are associated with delirium occurrence [2, 4, 5].

Effective interventions to treat established ICU delirium have not yet been identified [6]. Pharmacological interventions that target known alterations in neurotransmitter pathways, primarily dopaminergic and cholinergic pathways, have failed to demonstrate effect [2, 6]. Antipsychotics are commonly administered to mitigate agitated delirium, but have not yet shown to reduce delirium severity or resolve symptoms in ICU or hospitalized non-ICU patients [6, 7]. Non-pharmacological interventions (e.g., patient orientation, multi-component) shown to be effective in hospitalized non-ICU populations [8] have failed to demonstrate consistent treatment effect in the ICU [9]. In the absence of known effective treatments, it is imperative to identify effective prevention strategies. The current coronavirus disease 2019 (COVID-19) pandemic with the worldwide surge in critical illness has further highlighted the extent of delirium in the ICU and the importance of understanding the best approach to preventing ICU delirium [10, 11].

A wide-ranging list of prevention strategies evaluated to date include pharmacological, sedation, and non-pharmacological single or multi-component interventions that can be commenced during or immediately prior to (e.g., peri-operative) an ICU admission. Non-pharmacologic multi-component interventions have been studied extensively in hospitalized older non-ICU adults with evidence suggesting these are the most effective method to prevent delirium [12]. Previous systematic reviews investigating the effect of delirium prevention have either focused on direct evidence from head-to-head comparisons for a single intervention (versus placebo or alternative drug class) or have mixed critically ill patients with hospitalized non-ICU patient populations [2, 7, 13]. Given the numerous interventions to choose from, the abundance of trials, and the inconsistent findings reported, we believed a network meta-analysis (NMA) would provide clinicians with additional information to further support bedside decision-making. A NMA is a statistical approach that enables synthesis of both direct and indirect evidence in a multi-treatment comparison analytical framework, allowing assessment and ranking of relative efficacy and safety of multiple interventions that clinicians might consider at the bedside that may or may not have been directly compared in the published trials [14].

Our primary objective was to synthesize data from trials comparing any intervention for preventing delirium in critically ill adults using NMA. Our secondary objectives were to compare the effects of these interventions on the numbers of delirium-free and coma-free days, delirium duration, delirium severity, incidence of sub-syndromal delirium, duration of mechanical ventilation, length of stay, mortality, long-term outcomes (cognitive, discharge disposition, health-related quality of life), and adverse events.

Methods

We registered this review prospectively in PROSPERO (CRD42016036313) and published the protocol [15]. Institutional review board approval was not required as this study did not include individual patient data. Reporting of findings was guided by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Extension Statement for NMA (eTable 1) [16].
Eligibility criteria, search, and study selection
Using a search strategy developed in consultation with a Medical Information Specialist and peer reviewed by a second using the PRESS framework (search strategy previously published [6]), we searched the following databases from respective inception dates to April 8, 2021: Ovid MEDLINE ALL, Embase Classic + Embase, PsychINFO, CINAHL and Web of Science. We searched the grey literature using sources listed in the Canadian Agency for Drugs and Technologies in Health (CADTH) Grey Matters, the Cochrane Library and Prospero for relevant reviews, and the WHO international clinical trial registry for unpublished and ongoing trials.

We sought randomized and quasi-randomized controlled trials that examined any non-pharmacologic, pharmacologic, or multi-component for prevention of delirium in critically ill adults (≥16 years of age in an ICU of any type or high-acuity unit) as well as sedation strategy (e.g., protocolized sedation). We included studies that reported delirium incidence or prevalence and grouped them under the outcome delirium occurrence. We excluded trials using a crossover design, those focused on delirium treatment, and those with interventions applied in the pre- or intra-operative period only. We did not apply restrictions based on publication language, sex, or race. Two authors (LB, LR) independently screened citations against pre-set inclusion–exclusion criteria.

Outcomes
The selection of outcomes was informed by the core outcome sets for effectiveness trials of interventions to prevent and/or treat delirium [17, 18]. The primary outcome was delirium occurrence; secondary outcomes were numbers of delirium-free and coma-free days, delirium duration, delirium severity, incidence of sub-syndromal delirium, duration of mechanical ventilation, length of stay, mortality, long-term outcomes (cognitive, discharge disposition, health-related quality of life), and adverse events. For outcomes reported at multiple time intervals, such as mortality, we used the longest time point available [19].

Data extraction, risk of bias, and GRADE certainty assessment
Working in pairs, two authors independently abstracted data on study characteristics, interventions, outcomes, and risk of bias. Risk of bias was assessed as recommended by the Cochrane Collaboration (version 1), judging the overall risk of bias as the worst score of six domains (random sequence generation, allocation concealment, blinding, attrition, selective reporting, and other biases) [20]. A third author (LB) confirmed extraction, adjudicated inconsistencies, and another (WC) entered data into Review Manager (version 5.3, The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). We used the GRADE approach (Grading of Recommendations Assessment, Development and Evaluation, https//gradpro.org) to assess and report the certainty of each NMA estimate as either high, moderate, low, or very low certainty [21, 22]. The authors (WC, LB) assessed the certainty of each direct, indirect, and network meta-analysis estimate using the four-step GRADE approach (i.e., risk of bias, inconsistency, indirectness, and publication bias) with limitations in any of these domains resulting in a downgrade of the certainty. Imprecision was assessed for the NMA estimate. If differences were detected between direct and indirect evidence (i.e., incoherence), we selected the lower certainty of the assessments.

Statistical analysis
For continuous outcomes, we transformed means and standard deviations (SDs) to the log scale due to their skewed nature [23]; medians and interquartile ranges (IQRs) were converted to means and SDs using established methods [24]. We performed DerSimonian–Laird random effects pairwise meta-analyses for all continuous and binary outcomes [25]. We performed NMA for interventions that connected to an evidence network by data available from ≥2 studies. For outcomes without adequate network structure, we performed pairwise meta-analyses only. Using established procedures, we assessed validity of assumptions of homogeneity, similarity, and consistency, and performed NMAs using Bayesian fixed and random effect models with normal likelihood and the identify link, accounting for correlations in multi-arm studies [26], with comparisons reported as ratio of means (RoM) with 95% credible intervals (Crl). We addressed transitivity or exchangeability within the network, such that treatment effects in direct comparisons that informed indirect estimates of effect would not be biased by study characteristics. To do so, clinical experts and methodologists reviewed the extracted key clinical and methodological factors (i.e., age, severity of illness, mechanical ventilation, assessment tools for delirium and sedation, and control for analgesia, sedation, agitation, and non-pharmacological interventions) and determined that there was reasonable balance across studies to proceed. For binary outcomes, we fitted both fixed and random effects NMA models with binomial likelihood, with comparisons reported as odds ratios (OR) (95% Crl). If a trial reported multiple mortality outcomes, we prioritized selection of analyzed data as follows: 90-day, hospital, 28/30-day, and ICU mortality. We used a vague prior
distribution for the common between-study variance parameter in random effects NMAs [specifically, Uniform (0, 3)], and vague prior distribution for log RoM for each intervention compared with placebo [specifically, Normal (0, 100)].

Models were evaluated for adequacy of fit by comparing posterior total residual deviance to the number of unconstrained data points (i.e., total number of study arms); fit was considered adequate if these quantities were of similar magnitude. We compared models using the deviance information criterion (DIC), with lower values indicating better model fit [27]. We also fitted unrelated means models to the data and compared DIC values and posterior mean deviance contributions with those from consistency models to detect violations of the consistency assumption. We assessed model convergence with established methods including inspection of the Gelman–Rubin–Brooks diagnostics plots and the potential scale reduction factor (with threshold 1.01) [28].

For each outcome, we estimated secondary measures of effect, including surface under the cumulative ranking curve (SUCRA) values [29]. Methodological heterogeneity was assessed using similarity of point estimates, overlap of confidence intervals (CIs), and statistical tests (χ² test for homogeneity and I² measure for heterogeneity) [30]. All NMAs were performed using Open Bayesian inference Using Gibbs Sampling (BUGS) software version 3.2.3 and the R2WinBUGS package version 3.2–3.2 in R [31–33].

Results
The search strategy resulted in 80 trials that met inclusion criteria (Fig. 1), with a total of 17,140 participants [34–113]. Included trials were comprised of 54 (67.5%) pharmacological or sedation intervention studies [34–36, 38–40, 42–45, 47, 49–51, 55–57, 59–63, 67–69, 71, 73–76, 78, 79, 81, 82, 85–87, 89, 90, 92–94, 97–100, 102, 103, 105–108, 110, 112, 113] with 14,224 participants, 25 (31.3%) studies of non-pharmacological single or multi-component interventions with 2904 participants [37, 41, 46, 48, 52, 53, 57, 58, 64–66, 70, 72, 77, 80, 83, 84, 88, 91, 95, 96, 101, 104, 109, 111], and 1 study (1.2%) included a combination non-pharmacological with a pharmacological intervention with 12 participants [54]. Key features of all included trials are presented in detail in eTable 2. Trials were geographically dispersed but primarily conducted in North America (22.5%), Europe (25.0%) and Asia (26.3%). All trials were published between 2006 and 2021 and 43 (53.8%) were conducted in mixed ICUs. Trials allocated participants to two to four study arms and enrolled between 11 and 4000 ICU participants. The mean or median age at randomization ranged from 34.6 to 77.4 years, and 56 (70%) of trials reported a mean or median age of 60 or greater. Nearly all trials (78 trials, 97.5%) used a validated delirium assessment tools; 72 trials (90.0%) used either the Confusion Assessment Method for the ICU (CAM-ICU) or Intensive Care Delirium Screening Checklist (ICDSC). From the perspective of the primary outcome, 51% (41) trials had high risk of bias, primarily due to lack of blinding and risk of differential co-interventions (eTable 3).

Neither single nor multi-component non-pharmacological intervention trials connected to evidence networks for any outcomes of interest; pairwise comparisons are presented in eFigure 1. In the presentation of results below, we focus on the NMA estimates from random effects models for interventions (pharmacological and sedation strategies) that connected to the network; random effects models were superior to fixed effects. Model fit details including posterior mean deviance contributions plots, DIC, between-study SD and funnel plots are presented in eTable 4 and eFigures 2 and 3.

Delirium occurrence
Eleven pharmacological interventions studied in 38 trials [34–36, 38, 40, 43, 44, 49–51, 56, 59, 61, 67, 69, 71, 73, 74, 76, 79, 81, 82, 85, 86, 89, 90, 93, 94, 97–100, 103, 105–107, 112, 113] (N=11,993) connected to the evidence network (Table 1, Fig. 2A, eTable 5 summarizes node references); 24% (13/55) of the pairwise comparisons included direct evidence. Compared to placebo, only α₁ agonists (all trials but one examined dexmedetomidine) probably reduce delirium occurrence (OR 0.43, 95% CrI 0.21–0.85; moderate certainty) (Fig. 3A, Table 2, eFigure 1). Compared to benzodiazepines, dexmedetomidine (OR 0.21, 95% CrI 0.08–0.51; low certainty), sedation interruption (OR 0.21, 95% CrI 0.06–0.69; very low certainty), opioid plus benzodiazepine (OR 0.27, 95% CrI 0.10–0.76; very low certainty), and protocolized sedation (OR 0.27, 95% CrI 0.09–0.80; very low certainty) may reduce delirium occurrence, but the evidence is uncertain. The Bayesian NMA Summary of Findings with GRADE is presented in Table 3. Pairwise comparisons for environmental or multi-component interventions found no differences compared to standard care, with wide CIs (0.83, 95% CI 0.49–1.41 and 0.65, 95% CI 0.40–1.05, respectively) (eFigure 1).

Duration of mechanical ventilation
Ten interventions studied in 23 trials (N=5203) [36, 38, 40, 44, 50, 51, 55, 60, 61, 63, 67, 69, 71, 73, 74, 76, 93, 97, 102, 103, 107, 112, 113] connected the evidence network (Table 1, Fig. 2B, eTable 5); 29% (13/45) of the pairwise comparisons included direct evidence. No intervention reduced the duration of mechanical ventilation compared to placebo or each other (Fig. 3B, eTables 7, 8 and
9). Compared to benzodiazepines, duration of mechanical ventilation may be reduced by dexmedetomidine (OR 0.66, 95% CrI 0.44–0.98; low certainty). Pairwise comparisons for neither environmental nor multi-component interventions found differences compared to standard care (eFigure 1).

Length of stay

Nine interventions studied in 31 trials \((N=10,270) \) [34–36, 38, 40, 44, 50, 51, 55, 56, 59, 63, 67, 69, 71, 73, 74, 76, 79, 81, 82, 85, 89, 93, 97, 98, 102, 103, 107, 113] connected to the evidence network for ICU length of stay (Table 1, Fig. 2C, eTable 5); 28% (10/36) of the pairwise comparisons included direct evidence. Compared to placebo, only \(\alpha_2 \) agonists (all trials but one examined dexmedetomidine) probably reduce ICU length of stay (RoM 0.78, 95% CrI 0.64–0.95; moderate certainty) (Fig. 3C; eTables 10, 11 and 12). \(\alpha_2 \) agonists may reduce ICU length of stay compared to antipsychotics (RoM 0.76, 95% CrI 0.61–0.98; low certainty). Pairwise comparisons for single or multi-component non-pharmacological interventions found no differences compared to standard care (eFigure 1).

For the outcome of hospital length of stay, 9 interventions studied in 22 trials \((N=9471) \) [34, 35, 40, 43, 44, 51, 55, 59, 67, 69, 76, 81, 86, 89, 97–99, 102, 105–107, 113]
Study, year [reference]	N	Intervention	Control	Delirium occurrence	Duration of mechanical ventilation	Length of stay—ICU	Length of stay—hospital	Mortality	Arrhythmia	Risk of bias*
Abbasi 2018 [34]	137	Melatonin PO	Placebo PO	+	+	+	+	+	+	Low
Abdelgalel 2016 [35]	90	Dexmedetomidine IV infusion with optional LD	Placebo IV intermittent	+	+	+	+	Low		
Al-Qadheeb 2016 [36]	68	Haloperidol IV intermittent	Placebo IV intermittent	+	+	+	Len			
Azeem 2018 [38]	60	Dexmedetomidine IV LD+ infusion	Morphine IV + midazolam IV	+	+	+	Low			
vanden Boogaard 2018 [40]	1789	Haloperidol IV intermittent	Placebo IV intermittent	+	+	+	+	Low		
Chang 2018 [43]	60	Dexmedetomidine IV infusion	Propofol IV infusion	+	+	+	+	High		
Chanques 2017 [44]	137	IV sedation interruption	Usual sedation	+	+	+	+	High		
Delonghe 2018 [49]	1174	IV sedation protocol	Usual sedation	+	+	+	+	High		
Devlin 2014 [50]	33	Dexmedetomidine IV infusion	Placebo IV infusion	+	+	+	+	Low		
Djafari 2016 [51]	183	Dexmedetomidine IV LD+ infusion	Propofol IV infusion	+	+	+	+	Low		
Gandolfi 2020 [55]	203	Melatonin PO	Placebo PO	+	+	+	+	Low		
Girard 2008 [56]	336	IV sedation interruption	Usual sedation	+	+	+	+	High		
Hakim 2012 [59]	101	Risperidone PO	Placebo PO	+	+	+	+	Low		
Hu 2015 [60]	76	Intervention 1: dexmedetomidine IV infusion + propofol IV infusion	Sedation IV infusion without dexmedetomidine	+	+	+	+	High		
Huang 2014 [61]	108	Dexmedetomidine IV infusion	Propofol IV infusion	+	+	+	+	High		
Hughes 2021 [62]	432	Dexmedetomidine IV infusion	Propofol IV infusion	+	+	+	+	Low		
Javaherforooh Zadeh 2021 [63]	60	Melatonin PO	Placebo PO	+	+	+	+	High		
Kawazoe 2017 [67]	201	Dexmedetomidine IV infusion	Sedation IV infusion without dexmedetomidine	+	+	+	+	High		
Khan 2018 [69]	135	Haloperidol IV intermittent dose	Placebo IV intermittent dose	+	+	+	+	Low		
Li 2016 [71]	70	3 groups of dexmedetomidine, propofol or combination IV infusion to circadian clock	Sedation IV infusion without regulation to circadian clock	+	+	+	+	High		
Study, year [reference]	N	Intervention	Control	Delirium occurrence	Duration of mechanical ventilation	Length of stay—ICU	Length of stay—hospital	Mortality	Arrhythmia	Risk of bias*
-------------------------	----	---	--	---------------------	-----------------------------------	-------------------	--------------------------	-----------	------------	--------------
Liu 2017 [73]	105	Intervention 1: remifentanil IV + midazolam IV infusions								
Intervention 2: fentanyl + midazolam IV infusions										
Placebo + midazolam IV infusion	+	+	+	+	+	Low				
Lyu 2015 [74]	140	Remifentanil + midazolam IV infusion	Midazolam IV infusion	+	+	+	+	High		
Mehta 2012 [76]	423	Protocolized sedation + daily interruption	Protocolized sedation	+	+	+	+	High		
Mokhtari 2020 [79]		Aripiprazole PO	Placebo PO	+	+	+	+	High		
Nassar 2014 [81]		Daily IV sedation interruption	Intermittent IV sedation	+	+	+	+	High		
Nishikimi 2018 [82]	88	Ramelteon PO	Placebo PO	+	+	+	+	Low		
Pandharipande 2007 [85]	103	Dexmedetomidine IV LD + infusion	Lorazepam IV LD + infusion	+	+	+	+	Low		
Park 2014 [86]	142	Dexmedetomidine IV LD + infusion	Remifentanil IV infusion	+	+	+	+	High		
Prakanrattana 2007 [89]	126	Risperidone PO	Placebo PO	+	+	+	+	Low		
Priye 2015 [90]	64	Dexmedetomidine IV infusion	Placebo IV infusion	+	+	+	+	Low		
Rubino 2010 [93]	30	Clonidine IV LD + infusion	Placebo IV infusion	+	+	+	+	Moderate		
Ruokonen 2009 [94]	85	Dexmedetomidine IV infusion	Propofol or midazolam IV infusion	+	+	+	+	Low		
Shehabi 2009 [97]	299	Dexmedetomidine IV infusion	Morphine IV infusion	+	+	+	+	+		Low
Shehabi 2013 [98]	37	Early goal directed sedation								
Dexmedetomidine IV infusion	Propofol or midazolam IV infusion	+	+	+	+	High				
Shehabi 2019 [99]	4000	Dexmedetomidine IV infusion	Propofol or midazolam IV infusion	+	+	+	+	+		High
Shu 2019 [100]	80	Dexmedetomidine IV LD + infusion	Midazolam IV infusion	+	+	+	+	High		
Skrobik 2018 [102]	100	Dexmedetomidine IV infusion	Placebo IV infusion	+	+	+	+	Low		
Song 2015 [103]	90	Dexmedetomidine IV infusion	Midazolam IV infusion	+	+	+	+	High		
connected the evidence network (Table 1, Fig. 2D, eTable 5); 28% (10/36) of the pairwise comparisons included direct evidence. Compared to placebo, alpha2 agonists (RoM 0.65, 95% CrI 0.52–0.83; moderate certainty) probably reduce hospital length of stay. Opioids (non-short acting RoM 0.47, 95% CrI 0.27–0.80; very low certainty, or short-acting opioids RoM 0.52, 95% CrI 0.32–0.83; very low certainty), sedation interruption (RoM 0.64, 95% CrI 0.41–0.99; very low certainty), protocolized sedation (RoM 0.68, 95% CrI 0.47–0.97; very low certainty) may do so as well (Fig. 3D; eTables 13, 14 and 15), but the evidence is very uncertain. Compared with antipsychotics, opioids (non-short acting opioids RoM 0.46, 95% CrI 0.26–0.81; very low certainty) or short-acting opioids RoM 0.51, 95% CrI 0.31–0.84; very low certainty), protocolized sedation (RoM 0.67, 95% CrI 0.45–0.99; very low certainty) and alpha2 agonists (RoM 0.64, 95% CrI 0.49–0.85; low certainty) may reduce hospital length of stay but the evidence is uncertain. Pairwise comparisons for single or multi-component non-pharmacological interventions found no differences compared to standard care for ICU or hospital length of stay, except for mobilization with occupational or physical therapists compared to standard care (eFigure 1).

Mortality
Nine interventions studied in 26 trials (N=11,385) [34–36, 40, 44, 49–51, 55, 56, 59, 62, 67, 69, 73, 74, 76, 81, 82, 85, 97–99, 102, 107, 113] connected to the evidence network for mortality (Table 1, Fig. 2E, eTable 5); 25% (9/36) of the pairwise comparisons were direct evidence. No intervention reduced mortality (Fig. 3E; eTables 16, 17 and 18) compared to placebo or compared to each other. There were no differences detected for single or multi-component non-pharmacological interventions compared to standard care (eFigure 1).

Other outcomes
For delirium duration, eight interventions were reported in 13 trials (N=2752) [34, 36, 40, 44, 56, 59, 69, 73, 74, 82, 85, 97, 102]. However, there were insufficient trials of comparable interventions to connect to an evidence network. Treatment effect estimates from pairwise meta-analyses indicated no intervention was effective for reducing delirium duration compared to placebo (eFigure 4); nor for non-pharmacological interventions compared to standard care (eFigure 1). There were insufficient trials of comparable interventions to conduct pairwise comparisons for delirium-free and coma-free days, delirium severity, incidence of sub-syndromal delirium, long-term outcomes of cognition, discharge disposition, and health-related quality of life.
Fig. 2 Network plots for delirium prevention strategies for outcomes. Network geometry displays nodes as interventions and head-to-head direct comparisons as lines connecting these nodes. The width of the edges each representing a pairwise comparison was weighted by the corresponding number of studies, while the size of treatment nodes was weighted by the number of patients.
Fig. 3 Forest plots with interventions ordered in descending order of SUCRA values for each network. All outcomes are reported as network odds or ratio of means with 95% credible intervals (Crl).
Table 2 Delirium occurrence league table of pairwise ORs with 95% CrI (lower triangle) and pairwise probabilities of superiority (upper triangle)

Alpha2 Agonist	Sedation interruption	0.478	0.765	0.635	0.818	0.721	0.970	0.926	0.970	0.999	0.991
1.02 (0.44 - 2.33)	Protocolized sedation	0.810	0.627	0.755	0.706	0.934	0.938	0.962	0.994	0.947	
0.80 (0.41 - 1.50)	Opioid + Antipsychotic	0.502	0.612	0.599	0.891	0.876	0.929	0.990	0.906		
0.80 (0.20 - 3.04)	Antipsychotic	0.86	0.86 (0.18 - 4.42)	0.95 (0.22 - 3.64)	0.573	0.578	0.809	0.799	0.861	0.992	0.791
0.69 (0.29 - 1.59)	Melatonin / MRA	1.00	0.69	0.60	0.58 (0.07 - 1.49)	0.820	0.798	0.874	0.972	0.965	
0.66 (0.14 - 2.68)	Opioid (short acting)	0.86	0.86	0.86	0.86 (0.18 - 4.42)	0.573	0.733	0.734	0.802	0.901	0.741
0.38 (0.13 - 1.05)	Opioid	0.54	0.54	0.54	0.54 (0.10 - 3.62)	0.542	0.636	0.794	0.411		
0.34 (0.07 - 1.49)	Propofol	0.47	0.47	0.47	0.47 (0.08 - 2.68)	0.510	0.706	0.387			
0.28 (0.07 - 1.06)	Benzodiazepine	0.43	0.43	0.43	0.43 (0.06 - 3.25)	0.52	0.91	0.52	0.283		
0.21 (0.08 - 0.51)	Placebo	0.35	0.35	0.35	0.35 (0.05 - 2.42)	0.41	0.74	0.82	0.30		
0.43 (0.21 - 0.85)		0.27	0.27	0.27	0.27 (0.10 - 0.76)	0.31	0.57	0.62	0.105		

Abbreviations: CrI = credible intervals; OR = odds ratio; RoM = ratio of means; SUCRA = Surface Under the Cumulative Ranking

A complete summary of estimates for efficacy from the random-effects consistency model assuming vague priors.

Treatments other than placebo are ranked in order (upper left–lower right) of decreasing SUCRA value. For pairwise probabilities of superiority for each comparison (i.e., a treatment is better than another), the lower/right-most treatment is the reference treatment. Thus, values < 1 favor the upper/left-most intervention. Differences where the 95% CrI excludes the null value of 1 are shown in bold font.

Adverse events identified included device removal [34, 36, 44, 47, 56, 76, 81, 86, 97, 106], reintubation [44, 56, 76, 81, 86, 97, 106], arrhythmias [35, 67, 89, 97, 99, 107, 113], tracheostomy [44, 56, 76, 81, 106], and extrapyramidal side effects [36, 40, 59, 113]. Except for arrhythmias, we identified insufficient data to conduct pairwise comparisons or form a network. For arrhythmias, four interventions reported in seven trials (N=5761) connected to the evidence network [35, 67, 89, 97, 99, 107, 113]. Compared to placebo, there was no difference in occurrence of arrhythmia with any intervention in trials reporting this outcome (Table 1, Fig. 3F; eTables 5, 19, 20 and 21); 100% direct evidence. There was no difference in NMA estimates for any other intervention comparison.

Discussion

In this systematic review and network meta-analysis of 11 pharmacological interventions from 38 trials enrolling 11,993 critically ill participants, we found that dexmedetomidine (studied in 21/22 alpha2 agonist trials) probably reduces the odds of delirium occurrence relative to placebo. The included trials used similar dexmedetomidine dose ranges, mostly without a loading dose that has been associated with bradycardia. Relative to benzodiazepine sedation, we found dexmedetomidine and strategies to reduce sedative exposure such as analgesia-first, protocolization and daily interruption, also may reduce delirium occurrence, but the evidence is uncertain. Dexmedetomidine was the only intervention identified that probably reduces length of ICU or hospital stay relative to placebo and may also do so relative to antipsychotics, but with less certainty. Opioids, sedation strategies, and dexmedetomidine may reduce hospital length of stay compared with antipsychotics commonly used in everyday ICU practice, but the evidence is very certain. No pharmacological intervention evaluated influenced mortality or arrhythmias. Non-pharmacological interventions did not connect to the evidence network; however, pairwise comparisons did not detect differences compared to standard care.

Clinicians need to consider multiple available therapeutic interventions as part of routine decision-making, without necessarily having evidence from direct comparisons or head-to-head trials. This NMA combines direct and indirect evidence for a multitude of available delirium prevention interventions and thus fills an important evidence gap, allowing for the assessment of clinically important treatment comparisons where direct
Table 3 Bayesian NMA Summary of Findings—delirium occurrence.

Patient or population: critically ill adults, includes both non-ventilated and mechanically ventilated patients.

Interventions: any interventions and strategies for sedation titration (e.g., protocolized and interruption).

Comparator (reference): placebo.

Outcome: delirium occurrence.

Setting(s): mixed intensive care unit settings.

Total studies: 38	Relative effect * (95% CrI)	Anticipated absolute effect (95% CrI)	Certainty of the evidence	Number of participants (trials)	Ranking*** (95% CrI)			
Total partici-pants: 11,993	Placebo Intervention Risk difference**							
Alpha2 agonist vs placebo	NMA estimate	OR 0.43 (0.21–0.85)	278 per 1000 (147/528 based on 5 trials)	163 per 1000 (86/527 based on 5 trials)	136 fewer per 1000 (from 204 to 30 fewer)	Moderate Due to inconsistency^2	Direct evidence: 1055 (5 trials)	2.73 (1–5)
Antipsychotics vs placebo	NMA estimate	OR 0.63 (0.36–1.04)	309 per 1000 (375/1199 based on 8 trials)	301 per 1000 (473/1577 based on 8 trials)	91 fewer per 1000 (from 170 fewer to 9 more)	Low Due to imprecision^1, and inconsistency^2	Direct evidence: 2776 (8 trials)	4.80 (1–9)
Melatonin/MRA vs placebo	NMA estimate	OR 0.66 (0.19–2.50)	186 per 1000 (21/113 based on 2 trials)	125 per 1000 (14/112 based on 2 trials)	55 fewer per 1000 (from 144 fewer to 178 more)	Low Due to imprecision^1 and inconsistency^2	Direct evidence: 225 (2 trials)	5.22 (1–11)
Sedation interruption vs placebo	NMA estimate	OR 0.42 (0.14–1.22)	330 per 1000	No head-to-head comparison with placebo	157 fewer per 1000 (from 265 fewer to 46 more)	Very low Due to imprecision^1, indirectness^2, inconsistency^2 and risk of bias	No direct evidence. Indirect evidence only	2.81 (1–7)
Protocolized sedation vs placebo	NMA estimate	OR 0.54 (0.21–1.40)	330 per 1000	No head-to-head comparison with placebo	119 fewer per 1000 (from 238 fewer to 77 more)	Very low Due to imprecision^1, indirectness^2, inconsistency^2 and risk of bias	No direct evidence. Indirect evidence only	4.27 (1–8)
Opioid + benzodiazepine vs placebo	NMA estimate	OR 0.54 (0.12–2.54)	330 per 1000	No head-to-head comparison with placebo	119 fewer per 1000 (from 275 fewer to 225 more)	Very low Due to imprecision^1, Serious indirectness^2, inconsistency^2 and risk of bias	No direct evidence. Indirect evidence only	4.36 (1–10)
Propofol vs placebo	NMA estimate	OR 1.15 (0.32–4.13)	330 per 1000	No head-to-head comparison with placebo	31 more per 1000 (from 192 fewer to 341 more)	Very low Due to imprecision^1, and inconsistency^2	No direct evidence. Indirect evidence only	7.77 (2–11)
Opioid vs placebo	NMA estimate	OR 1.26 (0.24–6.56)	330 per 1000	No head-to-head comparison with placebo	53 more per 1000 (from 222 fewer to 434 more)	Very low Due to imprecision^1, Serious indirectness^2, and inconsistency^2	No direct evidence. Indirect evidence only	7.91 (2–11)
comparisons are lacking. Through the use of NMA and inclusive selection criteria for interventions of interest, this review determined that dexmedetomidine reduces delirium occurrence compared to placebo and probably compared to benzodiazepines. We note our findings regarding dexmedetomidine and the occurrence of delirium are echoed by other systematic reviews including acutely ill patients requiring non-invasive mechanical ventilation [114] and cardiac surgery patients [115]. Dexmedetomidine’s pharmacological properties of minimal impact on respiratory effort, modest sedative effects with some analgesic properties make it an attractive alternative to benzodiazepines. Since benzodiazepines can increase delirium prevalence, worsen sleep architecture by altering stage 1 and 2 sleep, and suppress respiratory drive, dexmedetomidine is an attractive alternative [5, 116, 117]. Based on these properties and evidence from this review, clinicians may wish to consider dexmedetomidine for delirium prophylaxis. Other sedation strategies that reduce sedative drug exposure, such as analgesia-first or no sedation, protocolized sedation,
and daily interruption, may also be considered to reduce delirium occurrence but the evidence remains uncertain.

The evidence networks in our review provide further evidence, although very uncertain, of the lack of effect of antipsychotics on important patient outcomes including delirium occurrence, delirium duration, duration of ventilation, ICU stay or mortality. Caution should be applied when interpreting and applying these results given the very low certainty of evidence due to risk of bias (e.g., lack of blinding), indirectness, imprecision, and heterogeneity. A recent review of antipsychotics for delirium prevention similarly identified lack of effect on incident delirium or hospital length of stay compared to placebo in a mix of ICU and non-ICU hospitalized settings [118].

Strengths and limitations

The main strength of this review is the inclusion of a broad range of interventions in a NMA. Compared to previous reviews, we did not apply any restrictions on language, sample size, types of interventions, types of delirium assessment tools, or types of ICU patient populations enrolled, with the intent of increasing the generalizability of findings. However, this decision introduces clinical heterogeneity, and appraising the transitivity assumption inherent to NMA, therefore, becomes more complex. Patient populations ranged from mechanically ventilated participants with high illness severity and high risk of delirium (for example, in trials of sedation-minimization strategies) to non-ventilated participants, with lower illness acuity and lower risk of delirium (for example, in trials of a single drug for delirium prevention). We extracted covariates that may influence delirium occurrence and response to treatment such as age, severity of illness, and exposure to treatments for pain, sedation, and agitation, but were unable to adjust for these. Thus, the lack of adjustment for effect modifiers has unknown implications on our results. Except for sedation strategies, which are studied only in mechanically ventilated patients, the other interventions could be applied to mixed ICU patients. Included trials rarely controlled for co-interventions such as analgesics, co-sedative, agitation, or non-pharmacological treatments. We used GRADE to downgrade the evidence for risk of bias related to lack of blinding and differential co-interventions wherever applicable.

We were unable to conduct comparisons and rankings of single or multi-component non-pharmacological interventions compared with pharmacological interventions due to the number of studies reporting diverse interventions and no trials that permitted connection to evidence networks. Thus, we were limited to direct pairwise comparisons only for non-pharmacological strategies. While we found no effect of these strategies, similar to another review [9], further investigation is warranted given their common use. Finally, outcomes recently recommended as part of a core set, such delirium severity, time to delirium resolution, health-related quality of life, and emotional distress were generally not reported [18].

Conclusions

Given no known effective interventions to treat delirium and the high incidence of delirium in the ICU, this review provides clinicians with evidence on pharmacological, sedation management, and non-pharmacological strategies to prevent ICU delirium. Important take-home messages are that compared to placebo or benzodiazepines, dexmedetomidine probably prevents delirium; a sedation-minimization strategy that targets reduced exposure to sedatives might prevent delirium; and antipsychotics may not prevent delirium.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s00134-021-06490-3.

Author details

1 Department of Pharmacy, Mount Sinai Hospital, Room 18-377, 600 University Avenue, Toronto, ON M5G 1X5, Canada. 2 Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA. 3 Pharmacy Department, Université de Montréal, Montréal, Canada. 4 Pharmacy Department and Research Centre, CIUSSS-NIM Hôpital du Sacré-Cœur de Montréal, Montréal, Canada. 5 Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada. 6 Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA. 7 Department Medicine, Mount Sinai Hospital, Toronto, Canada. 8 Intensive Care Unit 4131, Rigshospitalet, University of Copenhagen, Copenhagen Ø, Denmark. 9 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada. 10 Department of Pharmacy, The Ottawa Hospital, Ottawa, Canada. 11 Division of Critical Care, London Health Sciences Centre, London, Canada. 12 Department of Medicine, The University of Western Ontario, London, Canada. 13 School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada. 14 School of Epidemiology and Public Health, King’s College London, London, UK.

Acknowledgements

We would like to acknowledge E. Wes Ely for his advice and support as a Knowledge Expert for our Canadian Institutes of Health Research grant application which shaped the design of this review.

Author contributions

LB, BH and LR generated the research question and designed and lead the conduct of the review. WC, LB, and BH lead the statistical analysis. DW, NA, SK, IE, CM contributed to the protocol, extracted data, and interpretation of the results. All the authors approved of the final manuscript and had final responsibility for the decision to submit for publication. LB is the guarantor.

Funding

This study was funded by the Canadian Institutes of Health Research (CIHR) (Grant No. CIHRFRN144048). The funding body did not have input into the design, conduct or reporting of this systematic review.
Declarations

Conflicts of interest
All the authors declare no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work. BH has previously provided methodologic advice to Eversana Inc for the conduct of systemic reviews and meta-analysis on unrelated topics.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 March 2021 Accepted: 19 July 2021
Published online: 11 August 2021

References
1. Wilson JE, Mart MF, Cunningham C, Shehabi Y, Girard TD, MacLullich AMJ, Sroeter AJC, Ely EW (2020) Delirium. Nat Rev Dis Primers 6:90
2. Devlin JW, Skrobik Y, Gelinas C, Needham DM, Sroeter AJC, Pandharipande PP, Watson PL, Weinhouse GL, Nunnally ME, Rochwerger B, Balas MC, van den Boogaard M, Bosma KJ, Brummel NE, Cheunges D, Denheey L, Droout X, Fraser GL, Harris JE, Joffe AM, Kho ME, Kress JP, Lanphere JA, McKinley S, Neufeld KJ, Pisani MA, Fayer JP, Pun BT, Puntillo KA, Riker RB, Robinson BRH, Shehabi Y, Sumrata PM, Winkelman C, Centofanti JE, Price C, Nijayan S, Misak CJ, Flood PD, Kellow DJ, Alhazzani W (2018) Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 46:1025–1087
3. Salluh JI, Fang H, Schneider EB, Nagaraja N, Yenokyan G, Damluji A, Reade MC, Finfer S (2014) Sedation and delirium in the intensive care unit. N Engl J Med 370:444–454
4. Reade MC, Finfer S (2014) Sedation and delirium in the intensive care unit. N Engl J Med 370:444–454
5. Fraser GL, Devlin JW, Worby CP, Alhazzani W, Barr J, Dasta JF, Kress JP, Holford TR, Cooney LM (1999) A multicomponent intervention to prevent delirium in hospitalized older patients. N Engl J Med 340:669–676
6. Burry L, Hutton B, Williamson DR, Mehta S, Adhikari NK, Cheng W, Ely EW, Egerod I, Ferguson DA, Rose L (2019) Pharmacological interventions for the treatment of delirium in critically ill adults. Cochrane Database Syst Rev 9:CD011749
7. Nelson RJ, Neufeld KJ, Oh ES, Wilson LM, Zhang A, Robinson KA, Needham DM (2019) Antipsychotics for treating delirium in hospitalized adults: a systematic review and meta-analysis of randomized trials. Crit Care Med 41:520–38
8. Burry L, Hutton B, Williamson DR, Mehta S, Adhikari NK, Cheng W, Ely EW, Egerod I, Ferguson DA, Rose L (2019) Antipsychotics for treating delirium in hospitalized adults: a systematic review. Ann Intern Med 171:485–495
9. Inouye SK, Bogardus ST, Charpentier PA, Leo-Summers LL, Acampora D, Fink A, Meltzer DO, Masoud N, Mix F, Rayford S, Riker RL, Rohner PJ, Jain JS, Kertesz S, Riker RL, Robinson BRH, Shehabi Y, Sumrata PM, Winkelman C, Centofanti JE, Price C, Nijayan S, Misak CJ, Flood PD, Kellow DJ, Alhazzani W (2018) Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 46:1025–1087
10. Kennedy M, Helfand BKI, Gou RY, Gartaganis SL, Webb M, Moccia JM, Rose L, Agar M, Burry LD, Campbell N, Clarke M, Lee J, Siddiqi N, Page VJ, Cq D (2017) Development of core outcome sets for effectiveness trials of interventions to prevent and/or treat delirium (Del-CORS): study protocol. BMJ Open 7:e016371
11. Rose L, Burry L, Agar M, Campbell NL, Clarke M, Lee J, Marshall JC, Devlin JW, Blackwood B, Needham DM, Siddiqi N, Page V, Del CG (2021) A core outcome set for research evaluating interventions to prevent and/or treat delirium in critically ill adults: an international consensus study (Del-CORS). Crit Care Med. https://doi.org/10.1097/CCM.0000000000008028
12. Sud S, Friedrich JO, Adhikari NK, Fan E, Ferguson ND, Guyatt G, Meade MO (2021) Comparative effectiveness of protective ventilation strategies for moderate and severe ARDS: network meta-analysis. Am J Respir Crit Care Med 203(11):1366–1377. https://doi.org/10.1164/rccm.202008-3309OC
13. Cumpton M, Li T, Page MJ, Chandler J, Welch VA, Higgins JPT, Thomas J (2019) Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev:10.ECD001042
14. Puhan MA, Schunemann HJ, Murad MH, Li T, Brigardello-Petersen R, Singh JA, Kessels AG, Guyatt GH, Group GW (2014) A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 349:g5630
15. Santesso N, Glenton C, Dahm P, Garner P, Akl EA, Alper B, Brigardello-Petersen R, Caracasa-Labra A, De Beer H, Hultcrantz M, Kuipers T, Meerpohl J, Morgan R, Mustafa R, Rzekot N, Sultan S, Wyssonge C, Guyatt G, Schunemann HJ (2020) GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 119:126–135
16. Higgins JP, White IR, Anzueta-Cabrera J (2008) Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med 27:6072–6092
17. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or inter-quartile range. BMC Med Res Methodol 14:135
18. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188
19. Dias S, Sutton AJ, Ades AE, Welton NJ (2013) Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Mak 33:607–617
20. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian core outcome set for research evaluating interventions to prevent and/or treat delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med 9:239–250
21. Hsieh TT, Yue J, Oh E, Puelle M, Dowal S, Traverson T, Inouye SK (2015) Effectiveness of multicomponent nonpharmacological delirium interventions: a meta-analysis. JAMA Intern Med 175:512–520
22. Wu YC, Tseng PT, Tu YK, Hsu CY, Liang CS, Yeh TC, Chen YF, Chu CS, Matsuoaka Y, Stubbins B, Carvalho AF, Wada S, Lin PY, Chen YY, Wu KP (2019) Association of delirium response and safety of pharmacological interventions for the management and prevention of delirium: a network meta-analysis. JAMA Psychiatr 76:526–535
23. Rose B, Chaimani A, Li T (2017) Network meta-analysis: an introduction for clinicians. Intern Emerg Med 12:103–111
24. Burry LD, Hutton B, Guenette M, Williamson D, Mehta S, Egerod I, Kanji S, Adhikari NK, Moher D, Martin CM, Rose L (2016) Comparison of pharmacological and non-pharmacological interventions to prevent delirium in critically ill patients: a protocol for a systematic review incorporating network meta-analyses. Syst Rev 5:153
25. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thonlund K, Jansen JP, Mulrow C, Catala-Lopez F, Gotzsche PC, Dickersin K, Boutin J, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784
26. Rose L, Agar M, Burry LD, Campbell N, Clarke M, Lee J, Siddiqi N, Page VJ, Cq D (2017) Development of core outcome sets for effectiveness trials of interventions to prevent and/or treat delirium (Del-CORS): study protocol. BMJ Open 7:e016371
27. Rose L, Burry L, Agar M, Campbell NL, Clarke M, Lee J, Marshall JC, Devlin JW, Blackwood B, Needham DM, Siddiqi N, Page V, Del CG (2021) A core outcome set for research evaluating interventions to prevent and/or treat delirium in critically ill adults: an international consensus study (Del-CORS). Crit Care Med. https://doi.org/10.1097/CCM.0000000000008028
28. Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455
29. Salanti G, Ades AE, Ioannidis JP (2011) Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 64:163–171
99. Shehabi Y, Howe BD, Bellomo R, Arabi YM, Bailey M, Bass FE, Bin Kadi-man S, McArthur CJ, Murray L, Reade MC, Seppelt IM, Takala J, Wise MP, Webb SA, Group ACT, the SIIII (2019) Early sedation with dexmedetomi-dine in critically ill patients. N Engl J Med 380:2506–2517
100. Shu AFY, Luo Y, Cao J, Jian W, Sun B, Tang Z (2019) An investigation on delirium and hemodynamics in influenced by dexmedetomidine for sedating elderly patients in mechanical ventilation. Int J Clin Exp Med 12:1942–1946
101. Simons KS, Laheij RJ, van den Boogaard M, Moviat MA, Polderman FN, Rozenendaal FW, Salet GA, van der Hoeven JG, Pickkers P, de Jager CP (2016) Dynamic light application therapy to reduce the incidence and duration of delirium in intensive-care patients: a randomised controlled trial. Lancet Respir Med 4:194–202
102. Skrobik Y, Dupreys MS, Hill NS, Devlin JW (2018) Low-dose nocturnal dexmedetomidine prevents ICU delirium: a randomized, placebo-controlled trial. Am J Respir Crit Care Med 197(9):1147–1156. https://doi.org/10.1164/rccm.201710-1995OC
103. Song R, Li J, Dong C, Yang J (2015) A study of using dexmedetomi-dine in ventilator bundle treatment in an ICU. Chin Crit Care Med 27:836–840
104. Sosnowski K, Mitchell ML, White H, Morrison L, Sutton J, Sharratt J, Lin F (2018) A feasibility study of a randomised controlled trial to examine the impact of the ABCDE bundle on quality of life in ICU survivors. Pilot Feasibility Stud 4:32
105. Spies C, MacGuill M, Heymann A, Ganea C, Krahne D, Assman A, Kosiek HR, Scholtz K, Wernecke KD, Martin J (2011) A prospective, randomized, double-blind, multicenter study comparing remifentanil with fentanyl in mechanically ventilated patients. Intensive Care Med 37:469–476
106. Strom T, Martinussen T, Toft P (2010) A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet 375:475–480
107. Su X, Meng ZT, Wu XH (2017) Dexmedetomidine for prevention of delirium in elderly patients after noncardiac surgery: a randomised, double-blind, placebo-controlled trial. J Neurosurg Anesthesiol 29:178–179
108. Susheela AT, Packiasabapathy S, Gasangwa DV, Patox M, O'Neal J, Marcantonio E, Subramaniam B (2017) The use of dexmedetomidine and intravenous acetaminophen for the prevention of postoperative delirium in cardiac surgery patients over 60 years of age: a pilot study. F1000Res 6:1842
109. Taguchi T, Yano M, Kido Y (2007) Influence of bright light therapy on postoperative patients: a pilot study. Intensive Crit Care Nurs 23:289–297
110. Takieddine SC, Drooge CA, Ernst N, Drooge ME, Webb M, Branson RD, Gerlach TW, Robinson BRH, Johannigman JA, Mueller EW (2018) Keta-mine versus hydromorphone patient-controlled analgesia for acute pain in trauma patients. J Surg Res 225:6–14
111. Van Rampaey B, Elseviers IM, Van DW, Fromont V, Jorens PG (2012) The effect of earplugs during the night on the onset of delirium and sleep perception: a randomized controlled trial in intensive care patients. Crit Care 16(3):R73
112. Wan L, Huang QQ, Yue JX, Lin L, Li SH (2011) Comparison of sedative effect of dexmedetomidine and midazolam for post-operative patients undergoing mechanical ventilation in surgical intensive care unit. Zhongguo Weizhongbing Jijiuyixue 23:543–546
113. Wang W, Li HL, Wang DX, Zhu X, Li SL, Yao GQ, Chen KS, Gu XE, Zhu SN (2012) Haloperidol prophylaxis decreases delirium incidence in elderly patients after noncardiac surgery: a randomized controlled trial*. Crit Care Med 40:731–739
114. Lewis K, Pticharu J, Chaudhuri D, Basmaji J, Fan E, Moller MH, Devlin JW, Alhazzani W (2021) Safety and efficacy of dexmedetomidine in acutely ill adults requiring non-invasive ventilation: a systematic review and meta-analysis of randomized trials. Chest 159(6):2274–2288. https://doi.org/10.1016/j.chest.2020.12.052
115. Wang G, Niu J, Li Z, Lv H, Cai H (2018) The efficacy and safety of dexmedetomidine in cardiac surgery patients: a systematic review and meta-analysis. PLoS ONE 13:e0202620
116. Alexopoulos C, Kondili E, Diamantaki E, Psarologakis C, Kokkini S, Bolaki M, Georgopoulos D (2014) Effects of dexmedetomidine on sleep qual-ity in critically ill patients: a pilot study. Anesthesiology 121:801–807
117. Hall JE, Ulrich TD, Barney JA, Arain SR, Ebert TJ (2000) Sedative, amnesic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg 90:699–705
118. Oh ES, Needham DM, Nikooie R, Wilson LM, Zhang A, Robinson KA, Neufeld KJ (2019) Antipsychotics for preventing delirium in hospitalized adults: a systematic review. Ann Intern Med 171:474–484