Genus Terminalia: A phytochemical and Biological Review

Fahmy NM, Al-Sayed E and Singab AN*
Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt

Abstract

Context: Terminalia is the second largest genus of family Combretaceae. The plants of this genus were used in traditional folk medicine worldwide.

Objectives: This review is a comprehensive literature survey of different Terminalia species regarding their biological activities and their isolated phytochemicals. The aim of this review is to attract the attention to unexplored potential of natural products obtained from Terminalia species, thereby contributing to the development of new therapeutic alternatives that may improve the health of people suffering from various health problems.

Materials and methods: All the available information on genus Terminalia was compiled from electronic databases such as Medline, Google Scholar, PubMed, ScienceDirect, SCOPUS, Chemical Abstract Search and Springer Link.

Results: Phytochemical research has led to the isolation of different classes of compounds including, tannins, flavonoids, phenolic acids, triterpenes, triterpenoidal glycosides, lignan and lignan derivatives. Crude extracts and isolated components of different Terminalia species showed a wide spectrum of biological activities.

Conclusion: Phytochemical studies on genus Terminalia have revealed a variety of chemical constituents. Numerous biological activities have validated the use of this genus in treatment of various diseases in traditional medicine. Further studies are needed to explore the bioactive compounds responsible for the pharmacological effects and their mechanism of action.

Keywords: Terminalia; Tannins; Flavonoids; Terpenoids; Combretaceae; Traditional medicine

Abbreviations: A549: Human lung epithelial cancer; AChE: Acetylcholinesterase; ACP: Acid phosphatase; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; Bw: Body weight; COLO-205: Human colon cancer; COX-2: Cyclooxygenase-2 enzyme; DPPH•: 2,2-diphenyl-1-picrylhydrazyl radical; DU-145: Human prostate cancer; FRAP: Ferric reducing ability of plasma; GSH: Glutathione; HbA1c: Glycated hemoglobin; HCT-15: Human colorectal cancer; HL-60: Human promyelocytic leukemia; IMR: Ischemic mitral regurgitation; iNOS: inducible nitric oxide synthase; K562: Human immortalised myelogenous leukaemia; MBC: Minimum bactericidal concentration; MDA-MB-231: M.D.anderson-metastatic breast cancer; MIC: Minimum inhibitory concentration; ORAC: Oxygen radical absorbance capacity; PPARα / PPARγ: Peroxisome proliferator-activated receptor alpha/ gamma; STZ: Streptozotocin; T: Terminalia

Introduction

The genus Terminalia is the second largest genus of the Combretaceae after Combretum, with about 200 species. These plants are distributed in tropical regions of the world with the greatest genetic diversity in Southeast Asia [1]. Genus Terminalia gets its name from Latin terminus, since the leaves appear at the tips of the shoots [2]. Terminalia species range from shrubs to large deciduous forest trees. Mostly they are very large trees reaching in height up to 75 m tall [3]. Members of the genus Terminalia are widely used in traditional medicine in several continents in the world for the treatment of numerous diseases including, abdominal disorders, bacterial infections, colds, sore throats, conjunctivitis, diarrhea, dysentery, fever, gastric ulcers, headaches, heart diseases, hookworm, hypertension, jaundice, leprosy, nosebleed, edema, pneumonia and skin diseases [4]. The fruits of both T. bellerica and T. chebula are important components of triphala, a popular Ayurvedic formulation that possess numerous activities in the Indian traditional medicine [5]. T. chebula fruit possess an extraordinary power of healing and is called the "King of Medicine" in Tibet as it's used for the treatment of various diseases [6,7]. The Bark of T. arjuna are used as cardioprotective and anti-hyperlipidemic in folklore medicine [8]. In Africa, T. mollis is used to treat diarrhea, gonorrhea, malaria, and in HIV treatment, while T. brasica was used for the treatment of shistosomiasis and gastrointestinal disorders [9]. The diverse phytochemical constituents and various biological activities attracted us to perform a comprehensive literature survey of different Terminalia species regarding their phytochemical constituents, their ability to exert biological activities and the evidence-based information regarding the phytochemistry and biological activities of this genus. The present review is divided into two main sections, the first include a phytochemical studies on various chemical constituents and their occurrence within the Terminalia species, the second comprises the numerous biological studies conducted for different species of the genus Terminalia.

Phytochemical Studies

Phytochemical studies performed on different Terminalia species have demonstrated the occurrence of several classes of active constituents, such as tannins, pentacyclic triterpenes and their glycoside derivatives, flavonoids and other phenolic compounds [10].

Literature survey has revealed that genus Terminalia is a rich source of tannins and pseudotannins, including gallic acid and its simple galacte esters, chebulic and non-chebulic ellagittannins, ellagic acid derivatives and ellagic acid glycosides (Table 1 and Figure 1).

*Corresponding author: Singab AN, Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt. Tel: +20224051120; Fax: +20224051107; E-mail: dean@pharma.asu.edu.eg

Received October 17, 2015; Accepted November 23, 2015; Published November 26, 2015

Citation: Fahmy NM, Al-Sayed E, Singab AN (2015) Genus Terminalia: A phytochemical and Biological Review. Med Aromat Plants 4: 218. doi:10.4172/2167-0412.1000218

Copyright: © 2015 Fahmy NM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
No.	Compound	Species	Part used (Type of extract)	Reference(s)
A.	Gallic acid and simple gallate esters			
1	Gallic acid	T. chebula	Leaves (H₂O), fruits (MeOH)	[27, 82]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
		T. myricarpaea	Leaves (MeOH), fruits (MeOH)	[27, 50]
	T. nenrovenusolasa	T. arjuna	Leaves (EtOH), fruits, bark	[83, 84]
	T. superba	T. macropera	Stem bark (CH₃Cl₂, MeOH)	[18]
	T. superba	T. catappa	Leaves (H₂O)	[63]
		T. oblongata	Leaves	[86]
	T. paillda	T. stenostachya	Fruits (EtOH)	[87]
		T. myricarpaea	Leaves	[49]
		T. myricarpaea	Leaves	[88]
2	Methyl gallate	T. chebula	Fruits (MeOH)	[27]
		T. bellerica	Fruits (MeOH)	[27]
	1,6-di-O-galloyl-β-D-Glc	T. horrida	Fruits (MeOH)	[27]
	3,4,6-tri-O-galloyl-β-D-Glc	T. chebula	Leaves (H₂O), fruits (MeOH)	[27, 82]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
5	3,4,6-tri-O-galloyl-β-D-Glc	T. chebula	Leaves (H₂O), fruits (MeOH)	[27, 82]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
6	1,3,4,6-tetra-O-galloyl-β-D-Glc	T. chebula	Leaves (H₂O), fruits (MeOH)	[27, 82]
		T. bellerica	Fruits (MeOH)	[5, 27]
		T. horrida	Fruits (MeOH)	[27]
7	2,3,4,6-tetra-O-galloyl-β-D-Glc	T. arjuna	Leaves (EtOH)	[83]
8	1,2,3,4,6-penta-O-galloyl-β-D-Glc	T. chebula	Leaves (H₂O), fruits (MeOH)	[27, 82]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
		T. myricarpaea	Leaves (EtOH)	[33]
9	3,4,5-tri-O-galloyl-shikimic acid	T. chebula	Fruits (MeOH)	[27]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
ii.	Chebulic acid and chebulic ellagitannins	T. chebula	Fruits (MeOH), EtOH	[27, 33]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
10	Chebulic acid	T. chebula	Fruits (MeOH), EtOH	[27, 33]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
11	Neo-chebulic acid	T. chebula	Fruits (EtOH)	[33]
12	Chebulanin (1-O-galloyl-2,4-O-chebuloyl-β-D-Glc)	T. chebula	Fruits (MeOH), EtOH	[12, 27]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
		T. myricarpaea	Leaves (MeOH), fruits (MeOH)	[9]
13	Chebulinic acid (1,3,6-tri-O-galloyl-2,4-O-chebuloyl-β-D-Glc)	T. chebula	Fruits (MeOH)	[12, 27]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
14	Methyl ne-chebulanin	T. chebula	Fruits (MeOH)	[27, 60]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
15	Methyl neochebulinate	T. chebula	Fruits (MeOH)	[27]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
16	Chebulagic acid (1-O-galloyl-2,4-O-chebuloyl-3,6-O-HHDP-β-D-Glc)	T. chebula	Fruits (MeOH), seeds	[27, 89]
		T. bellerica	Fruits (MeOH)	[5, 27]
		T. horrida	Fruits (MeOH)	[27]
		T. myricarpaea	Leaves (H₂O)	[34]
17	Methyl neochebulagate	T. chebula	Fruits (MeOH)	[27]
		T. bellerica	Fruits (MeOH)	[27]
		T. horrida	Fruits (MeOH)	[27]
18	1,6-di-O-galloyl-2,4-O-chebuloyl-β-D-Glc	T. chebula	Fruits (MeOH), seeds	[27, 89]
		T. bellerica	Fruits (MeOH)	[5, 27]
		T. horrida	Fruits (MeOH)	[27]
		(or 1,3-)+	Fruits (MeOH)	[27]
Page 3 of 21	Volume 4 • Issue 5 • 1000218	Med Aromat Plants	ISSN: 2167-0412	MAP, an open access journal

Tellimagrandin(I)
(2,3-di-O-galloyl-4,6-O-HHDP-α/β-o-Glc)

T. chebula	Fruits (MeOH)	[27]
T. bellerica	Fruits (MeOH)	[27]
T. horrida	Fruits (MeOH)	[27]

Corilagin
(1-O-galloyl-3,6-O-HHDP-β-o-Glc)

T. chebula	Fruits (MeOH, EIOH)	[27, 90]
T. bellerica	Fruits (MeOH)	[27]
T. horrida	Fruits (MeOH)	[27]
T. catappa	Leaves (H₂O)	[34]

Tercatanin
(1,4-di-O-galloyl-3,6-O-HHDP-β-o-Glc)

| T. catappa | Leaves (Acetone) | [91] |

Arjunin
(3-O-galloyl-4,6-O-gallagyl-α/β-o-Glc)

T. bellerica	Fruits (MeOH)	[27]
T. horrida	Fruits (MeOH)	[27]
T. arjuna	Leaves (EIOH)	[83]
T. catappa	Leaves (Acetone)	[91]

Punicin
(4,6-O-gallagyl-α/β-o-Glc)

T. chebula	Leaves (H₂O), fruits (MeOH)	[27, 90]
T. bellerica	Fruits (MeOH)	[27]
T. horrida	Fruits (MeOH)	[27]
T. oblongata	Leaves (H₂O)	[92]
T. brachystemma	Leaves (Acetone)	[9]
T. macropera	Roots (EIOH)	[55]
T. catappa	Leaves (Acetone, H₂O)	[91, 93]
T. arjuna	Bark	[93]
T. myriocarpa	Leaves	[88]

Tergeflavin (A)
(4-O-flavogallonyl-6-O-galloyl-2,3-O-HHDP-α/β-o-Glc)

T. chebula	Leaves (Acetone)	[90]
T. catappa	Stem bark (EIOAc)	[94]
T. macropera		

Tergeflavin (B)
(4-O-flavogallonyl-6-O-galloyl-4,6-O-HHDP-α/β-o-Glc)

T. chebula	Fruits (H₂O)	[90]
T. bellerica	Leaves (Acetone)	[91]
T. horrida	Stem bark (EIOAc)	[94]
T. catappa		

Terchebulin
(4-O-flavogallonyl-2,3-O-HHDP-α/β-o-Glc)

T. chebula	Fruits (H₂O)	[90]
T. catappa	Leaves (Acetone)	[91]
T. arjuna	Bark	[93]

Calamansanin
(4-O-flavogallonyl-6-O-galloyl-2,3-O-HHDP-α/o-Glc)

| T. calamansanai | Leaves | [93] |

Isoterchebulin
(4,6-O-isoterchebuloyl-α/β-o-Glc)

| T. macropera | Stem bark (EIOAc) | [94] |

Casurarinin
T. chebula

| T. chebula | Fruits (H₂O) | [90] |
| T. arjuna | Bark (Acetone) | [48] |

Castalagin
T. arjuna

| T. arjuna | Leaves | [93] |

D. Ellagic acid and ellagic acid derivatives

Ellagic acid

T. chebula	Fruits (MeOH)	[27]
T. bellerica	Fruits (MeOH)	[27]
T. horrida	Fruits (MeOH)	[27]
T. muelleri	Bark, fruits (MeOH)	[26]
T. arjuna	Leaves (EIOH), fruits	[83, 84]
T. superba	Stem bark (CH₃C₂H₅, MeOH)	[18]
T. macropera	Leaves	[54]
T. patilida	Fruits (EIOH)	[87]
T. paniculata	Heartwood (alc.)	[97]

3-O-methyl ellagic acid

T. chebula	Fruits (MeOH)	[27]
T. bellerica	Fruits (MeOH)	[27]
T. horrida	Fruits (MeOH)	[27]

3,3’-di-O-methyl ellagic acid

T. chebula	Fruits (MeOH)	[27]
T. bellerica	Fruits (MeOH)	[27]
T. horrida	Fruits (MeOH)	[27]
T. superba	Stem bark (CH₃C₂H₅, MeOH)	[18]
T. paniculata	Heart wood (alc.)	[97]

3,4,4’-tri-O-methyl ellagic acid

| T. catappa | Fruits, Leaves (EIOH) | [98] |
Phenolic acids (Table 2 and Figure 2), flavonoids (Table 3 and Figure 3), triterpenes and triterpenoidal glycosides (Table 4 and Figure 4) are also present in high amounts in various Terminalia species, few lignan and lignin derivatives have been isolated from genus Terminalia (Table 5 and Figure 5).

Biological Studies

Screening of available literature on genus *Terminalia* revealed numerous biological activities in various *in vivo* and *in vitro* models. Biological activities included anti-diabetic, anti-hyperlipidemic, antioxidant, anti-bacterial, anti-fungal, anti-viral, anti-inflammatory, anti-cancer, anti-ulcer, anti-parasitic, hepatoprotective and cardioprotective activities.

Anti-diabetic activity

T. chebula showed a strong anti-diabetic activity, compounds isolated from the fruits, such as corilagin and ellagic acid acted as α-glucosidase inhibitors [11]. Additionally, chebulanin, chebulagic acid and chebulinic acid possessed a potent intestinal maltase inhibitory activity, with IC$_{50}$ values of 690 μM, 97 μM and 36 μM, respectively [12]. In another study, *T. chebula* fruit extracts enhanced the PPARα and/or PPARγ signaling [5]. The aqueous extract of *T. chebula* fruits exhibited a potent α-amylase and α-glucosidase inhibitory activity [11]. Additionally, chebulanic acid possessed a potent intestinal maltase inhibitory activity, with IC$_{50}$ values of 690 μM, 97 μM and 36 μM, respectively [12]. In another study, *T. chebula* fruit extracts enhanced the PPARα and/or PPARγ signaling [5].

Table 1: Tannins and pseudotannins and their occurrence within *Terminalia* species.

No.	Name	Species	Fruits (MeOH)	Leaves (MeOH)	Stems (MeOH)
41	3,4,8,9,10-Pentahydroxydibenzo[b,d]pyran-6-one	*T. chebula*	Fruits (MeOH)		
42	Flavogallonic acid	*T. chebula*	Fruits (MeOH)		
43	Methylflavogallinate	*T. superba*	Fruits (MeOH)		
44	3,4,3'-O-trimethyl flavellagic acid	*T. paniculata*	Heartwood (alcohol)		
45	Gallagic acid	*T. chebula*	Fruits (MeOH)		

Table 1: Tannins and pseudotannins and their occurrence within *Terminalia* species.
Citation: Fahmy NM, Al-Sayed E, Singab AN (2015) Genus Terminalia: A phytochemical and Biological Review. (Montin.) Species. Med Aromat Plants 4: 218. doi:10.4172/2167-0412.1000218
Figure 1: Chemical structures of tannins and pseudotannins isolated from different Terminalia species.
Table 2: Phenolic acids and their occurrence within Terminalia species.

No.	Compound	Species	Part used (Type of extract)	Reference(s)
57	Caffeic acid	T. chebula	Leaves	[90]
58	Ferulic acid	T. chebula	Leaves	[90]
59	Vanillic acid	T. chebula T. catappa	Leaves (EtOH)	[90]
60	Coumaric acid	T. chebula T. catappa	Leaves, fruits (EtOH)	[90]
61	p-hydroxybenzoic acid	T. catappa	Leaves (H₂O)	[85]
62	3,4-dihydroxybenzoic acid	T. nigrovulosa T. catappa	Leaves (H₂O)	[75]

Figure 2: Chemical structures of phenolic acids isolated from different Terminalia species.

Table 2: Phenolic acids and their occurrence within Terminalia species.

No.	Compound	Species	Part used (Type of extract)	Reference(s)
A.	Flavonols			
63	Quercetin	T. arjuna T. muelleri T. macropera T. bellerica T. chebula	Fruits (MeOH) Bark, fruits, leaves (MeOH) Leaves	[28] [28] [54] [28] [100]
64	Kaempferol	T. arjuna	Bark	[101]
65	Kaempferol 3-O-rutinoside	T. myriocarpa	Leaves	[88]
66	Rutin (Quercetin-3-O-rutinoside)	T. chebula T. myriocarpa	Leaves	[100]
				[88]
B.	Flavones			
67	Luteolin	T. arjuna T. chebula	Arial parts (MeOH) Fruits	[64] [59]
68	Apigenin	T. arjuna	Leaves (MeOH)	[102]
69	Arjunolone (6,4'-dihydroxy-7-O-methyl-flavones)	T. arjuna	Stem bark	[103, 104]
70	Baicalein (5,6,7-trihydroxy-flavones)	T. arjuna	Stem bark	[103, 104]
71	Orientin	T. mollis T. catappa T. myriocarpa	Leaves (Acetone) Leaves	[9] [105] [88]
72	Isoorientin	T. brachystemma T. catappa T. macropera T. myriocarpa	Leaves (Acetone) Leaves	[9] [105] [54] [88]
73	Vitexin	T. arjuna T. catappa T. myriocarpa	Leaves (MeOH) Leaves	[102] [105] [88]
Bark 7,4'—dihydroxy-3'—2—Epigallocatechin
T. bellerica
3—Roots (EtOH)
7-hydroxy-3',4'-methylenedioxy-
Catachin
T. alata
Fruits (EtOH)
T. catappa
Leaves
Epicatechin
T. bellerica
Arjunone
T. arjuna
Bark (EtOH)
8-methyl-5,7,2—T. pallida
Fruits (EtOH)
T. superba
Leaves
Pelargonidin
T. catappa
Arjunone
T. mollis
Isovitexin
T. alata
Fruits
Gallocatechin
T. argentea
Bark (EtOH)
8-methyl-5,7,2—tetra-flavanone
T. alata
Roots (EtOH)
81
5,7,2—tri-O-methyl-flavanone
T. alata
Roots
82
5,7,2—4'-O-methyl-flavones
T. chebula
Bark (MeOH)
83
8-methyl-5,7,2—tetra-O-methyl-flavone
T. arjuna
Stem bark
84
Gallocatechin
T. arjuna
Stem bark
85
Epicatechin
T. arjuna
Stem bark
86
3-O-galloyl-epicatechin
T. catappa
Bark
87
Epigallocatechin
T. arjuna
Stem bark
88
3-O-galloyl-epigallocatechin
T. arjuna
Bark
89
2-O-β-D-glucosylxy-4,6,2—
tetramethoxychalcone
T. alata
Roots (EtOH)
90
Pelargonidin
T. arjuna
Bark
91
Leucocyanidin
T. arjuna
Bark (MeOH)

| Table 3. Flavonoids and their occurrence within Terminalia species. |

Number	Flavonoids	Species	Parts	Refs.
74	Isovitenin	T. arjuna	Leaves (MeOH)	[102]
75	2'O-galloylvinetin	T. mollis	Leaves (EtOH)	[9]
76	2'-O-galloyloisovitenin	T. catappa	Leaves	[105]
77	Arjunone (5,7,2—tetra-O-methyl-flavones)	T. arjuna	Fruits (EIOH)	[106]
C. Flavans				
78	7,3—dihydroxy-4'—O-methyl-flavan	T. argentea	Bark (EIOH)	[107]
79	7,4—dihydroxy-3'—O-methyl-flavan	T. argentea	Bark (EIOH)	[107]
80	7-hydroxy-3',4'-methyleneoxy-flavan	T. bellerica	Fruits	[108]
D. Flavanones				
81	8-methyl-5,7,2—tetra-O-methyl-flavone	T. alata	Roots (EIOH)	[109]
82	5,7,2—4'-O-methyl-flavone	T. chebula	Fruits	[58]
E. Flavan-3—ol				
83	Catachin	T. arjuna	Leaves, stem bark	[84]
84	Gallocatechin	T. arjuna	Stem bark (MeOH)	[9]
85	Epicatechin	T. arjuna	Stem bark (MeOH)	[9]
86	3-O-galloyl-epicatechin	T. catappa	Bark	[9]
87	Epigallocatechin	T. arjuna	Stem bark (MeOH)	[9]
88	3-O-galloyl-epigallocatechin	T. catappa	Bark	[9]
F. Chalcones				
89	2-O-β-D-glucosylxy-4,6,2—tetratmethoxychalcone	T. alata	Roots (EIOH)	[109]
G. Anthocyanidins				
90	Petargonidin	T. arjuna	Bark	[101]
H. Leucoanthocyanidins				
91	Leucocyanidin	T. arjuna	Bark (MeOH)	[110]

The oral administration of gallic acid isolated from T. bellerica fruit at a dose of 20 mg/kg bw significantly reduced the serum total cholesterol, triglyceride and LDL-cholesterol levels [21]. Moreover, T. chebula fruits possessed anti-hyperlipidemic activity against cholesterol-induced hypercholesterolemia and atherosclerosis in rabbits [22]. In addition, the ethanolic extract of T. arjuna tree bark reduced the serum total cholesterol, LDL, VLDL, triglycerides and raised HDL levels in diet-induced hyperlipidemic rabbits [23]. Also, it was shown that T. bellerica, T. chebula and T. arjuna had anti-hyperlipidemic activities T. arjuna the most potent one caused an inhibition of rabbit atheroma after oral administration in hyperlipidemic rabbits [24].

Antioxidant activity

Most Terminalia species were reported to possess an antioxidant activity. The antioxidant activity of the T. arjuna bark was studied and the results of DPPH assay, superoxide radical scavenging activity and lipid peroxidation assay were comparable with the standard antioxidant ascorbic acid [25]. T. chebula fruit extract possessed a potent antioxidant activity and can be used as a radio-protector as it protected ascorbic acid [25].

The antioxidant activities of the methanolic fruit extract of T. bellerica and its isolated compounds was examined using DPPH, oxygen radical absorbance capacity (ORAC) and ferric reducing ability of plasma (FRAP) in vitro assays. Chebulic ellagitannins showed the highest antioxidant activity [27]. Moreover, the high antioxidant activity of the aqueous methanolic extracts of the leaves, bark and fruits of T. arjuna, T. bellerica, T. chebula and T. muelleri were attributed to their high phenolic contents (72.00—167.20 mg/g) [28].

Anti-hyperlipidemic activity

The oral administration of gallic acid isolated from T. bellerica fruit at a dose of 20 mg/kg bw significantly reduced the serum total cholesterol, triglyceride and LDL-cholesterol levels [21]. Moreover, T. chebula fruits possessed anti-hyperlipidemic activity against cholesterol-induced hypercholesterolemia and atherosclerosis in rabbits [22]. In addition, the ethanolic extract of T. arjuna tree bark reduced the serum total cholesterol, LDL, VLDL, triglycerides and raised HDL levels in diet-induced hyperlipidemic rabbits [23]. Also, it was shown that T. bellerica, T. chebula and T. arjuna had anti-hyperlipidemic activities T. arjuna the most potent one caused an inhibition of rabbit atheroma after oral administration in hyperlipidemic rabbits [24].
Figure 3: Chemical structures of flavonoids isolated from different Terminalia species.
A. Triterpenes

No.	Compound	Species	Part used (Type of extract)	Reference(s)
92	Ursolic acid	T. brachystemma	Leaves (n-hexane)	[9]
		T. catappa	Leaves (EtOH)	[42]
93	2α-hydroxyursolic acid	T. chebula	Leaves (Acetone)	[111]
		T. mollis	Stem bark (n-hexane)	[9]
94	2α,3β,23-trihydroxyurs-12-en-28-oic acid	T. catappa	Leaves (EtOH)	[42]
95	Asiatic acid	T. brassii	Wood (EtO)	[112]
		T. complanata	Wood (EtO)	[112]
96	Oleanolic acid	T. arjuna	Root bark	[84]
		T. superba	Stem bark (CH\textsubscript{3}Cl\textsubscript{2}, MeOH)	[18]
97	Methyl oleonate	T. arjuna	Fruits	[106]
98	Arjunic acid	T. arjuna	Fruits, roots, stem bark	[84, 113], [114]
99	Arjunolic acid (2α,3β,23-trihydroxyolean-12-en-28-oic acid)	T. arjuna	Bark (pet. ether)	[32]
		T. brassii	Wood (EtO)	[112]
		T. complanata	Wood (EtO)	[112]
100	23-O-galloyl-arjunolic acid	T. macroptera	Stem bark (EtOAc)	[114]
101	Arjungenin (2α,3β,19α,23-tetrahydroxyolean-12-ene-28-oic acid)	T. arjuna	Stem bark	[113]
		T. bellerica	Stem bark (MeOH)	[115]
		T. macroptera	Stem bark	[114]
102	Tomentosic acid (2α,3β,19α,23-tetrahydroxyolean-12-ene-28-oic acid)	T. arjuna	Stem bark	[84]
		T. tomentosa (T. alata)	Heart wood	[116]
103	Seric acid (2α,3β,19α,23-tetrahydroxy-olean-12-en-28-oic acid)	T. sericea	Roots	[117]
		T. macroptera	Stem bark	[114]
104	Belleric acid (2α,3β,23,24-tetrahydroxy-olean-12-en-28-oic acid)	T. bellerica	Stem bark (MeOH)	[115]
105	Bellericagenin A (2α,3β,7α,23-tetrahydroxyolean-12-en-28-oic acid)	T. bellerica	Stem bark	[118]
106	Bellericagenin B (2α,3β,19α,23,24-pentahydroxyolean-12-en-28-oic acid)	T. bellerica	Stem bark	[118]
107	Terminolic acid (2α,3β,6β,23-tetrahydroxyolean-12-en-28-oic acid)	T. macroptera	Stem bark	[114]
		T. glaucescens	Heartwood (EtO)	[119]
		T. catappa	Heartwood (EtO)	[119]
		T. laxiflora	Heartwood (EtO)	[119]
		T. avicennioides	Heartwood (EtO)	[119]
108	Maslinic acid (2α,3β-dihydroxyolean-12-en-28-oic acid)	T. chebula	Leaves (Acetone)	[111]
109	3-acetylmaslinic acid	T. alata	Root bark	[120]
110	2α-hydroxyimicromeric acid	T. chebula	Leaves (Acetone)	[111]
111	Terminic acid (3β,13β,8β-dihydroxylop-20-en-28-oic acid)	T. arjuna	Root bark (n-hexane)	[121]
112	Friedelin	T. arjuna	Fruits	[106]
		T. glaucescens	Stem bark	[122]
		T. mollis	Stem bark (n-hexane)	[9]
		T. alata	Roots	[58]
113	3β-sitosterol	T. chebula	Stem bark	[123]
		T. superba	Stem bark (CH\textsubscript{3}Cl\textsubscript{2}, MeOH)	[18]
		T. bellerica	Fruits	[124]
		T. glaucescens	Stem bark	[122]
		T. phanerophlebia T. sambesiaca	Leaves (EtO)	[36]
		T. arjuna	Stem bark	[125]
				[84]
114	3β-sitosterone	T. phanerophlebia	Leaves (EtO)	[36]
115	Stigmasterol	T. superba	Stem bark (CH\textsubscript{3}Cl\textsubscript{2}, MeOH)	[18]
		T. glaucescens	Stem bark	[122]
		T. arjuna	Leaves (MeOH)	[102]
116	Stigma-4-ene,3,6-dione	T. phanerophlebia	Leaves (EtO)	[36]
117	Terminalin A	T. glaucescens	Stem bark	[122]

B. Triterpenoidal glycosides

No.	Compound	Species	Part used (Type of extract)	Reference(s)	
118	2α,3β-dihydroxyurs-12,18-dien-28-oic acid-28-O-β-D-glucopyranoside	T. arjuna	Bark (MeOH)	[99]	
119	2α,3β,23 trihydroxyurs-12,18-dien-28-oic acid-28-O-β-D-glucopyranoside	T. arjuna	Bark (MeOH)	[99]	
120	2α,3β,23 trihydroxyurs-12,19-dien-28-oic acid-28-O-β-D-glucopyranoside	T. arjuna	Bark (MeOH)	[99]	
121	Quadranoside VIII (2α,3β,23-trihydroxyurs-12,19-dien-28-oic acid-28-O-β-D-glucopyranoside)	T. arjuna	Bark (MeOH)	[99]	
122	Kajichigoside F1 (2α,3β,19α,23-trihydroxyurs-12-en-28-oic acid-28-O-β-D-glucopyranoside)	T. arjuna	Bark (MeOH)	[99]	
Entry	Compound	Source	Type	References	
-------	----------	--------	------	------------	
123	Arjunetin	T. argentea	Bark (EIOH)	[107]	
		T. arjuna	Stem, root bark (EIOH)	[113, 126]	
124	Arjunosides (I)	(3-O-β-D-glucosylgeraniol)	T. arjuna	Root bark (EIOH)	[84, 126]
	Arjunosides (II)	(3-O-β-D-glucosyl-2-deoxy-α-L-rhamnoside of arjunic acid)	T. arjuna	Root bark (EIOH)	[109]
	Arjunosides (III)	(28-β-D-glucuronopyranoside of arjunic acid)	T. arjuna	Root bark (EIOH)	[127]
	Arjunosides (IV)	(3-O-L-rhamnoside of arjunic acid)	T. arjuna	Root bark (EIOH)	[58]
125	2α,3β,19β,23-tetrahydroxyl-12-en-28-oic acid-methyl ester-3-O-rutinoside	T. alata	Roots (EIOH)	[110]	
126	2α,3β,19β-hexadecahydroxyl-12-en-28-oic acid-3-0-β-D-glucopyranosyl-(1→3)-β-D-glucopyranoside	T. alata	Roots (EIOH)	[115]	
127	2α,3β,19β,23-tetrahydroxyl-12-en-28-oic acid-3-0-β-D-glucopyranosyl-(1→3)-β-D-glucopyranoside	T. alata	Roots (EIOH)	[128]	
128	Chebuloside (I)	T. arjuna	Stem bark (EIOH)	[114]	
	Chebuloside (II)	T. chebula	Stem bark (MeOH)	[112]	
	Chebuloside (III)	T. chebula	Stem bark (MeOH)	[123]	
130	Chebuloside (IV)	T. chebula	Stem bark (MeOH)	[123]	
131	2α,3β,19β,23-tetrahydroxyl-12-en-28-oic acid-3-0-β-D-glucopyranoside	T. chebula	Stem bark (MeOH)	[123]	
132	Arjungspongoside (IV)	T. macroptera	Stem bark (MeOH)	[114]	
133	Arjunogluconoside (I)	(3-O-β-D-glucopyranoside)	T. macroptera	Fruits, Stem bark (MeOH)	[117]
	Arjunogluconoside (II)	(3-O-β-D-glucopyranoside)	T. macroptera	Fruits, Stem bark (MeOH)	[114]
135	Terminoside (A)	(3α,5α,25-trihydroxy-12-en-28-oic acid-3-0-β-D-glucopyranoside)	T. arjuna	Stem bark (EIOH)	[130]
136	Terminoside (B)	(3α,5α,25-trihydroxy-12-en-28-oic acid-3-0-β-D-glucopyranoside)	T. arjuna	Stem bark (EIOH)	[131]
137	Terminoside (C)	(3α,5α,25-trihydroxy-12-en-28-oic acid-3-0-β-D-glucopyranoside)	T. arjuna	Stem bark (EIOH)	[131]
138	Sericoside	T. sericea	Roots (EIOH)	[117]	
	Sericoside	T. sericea	Stem bark (MeOH)	[114]	
139	Ivorenoside (A)	(Dimer of 18,19-seco-2α,3β,19α,23,24-pentahydroxy-12-en-28-oic acid-28-β-D-glucopyranoside and 2α,3β,19α,23,24-pentahydroxy-12-en-28-oic acid-28-β-D-glucopyranoside)	T. ivorenis	Bark	[65]
140	Ivorenoside (B)	(Dimer of 18,19-seco-2α,3β,19α,23,24-pentahydroxy-12-en-28-oic acid-28-β-D-glucopyranoside and 2α,3β,19α,23,24-pentahydroxy-12-en-28-oic acid-28-β-D-glucopyranoside)	T. ivorenis	Bark	[65]
141	Ivorenoside (C)	(Dimer of 18,19-seco-2α,3β,19α,23,24-pentahydroxy-12-en-28-oic acid-28-β-D-glucopyranoside)	T. ivorenis	Bark	[65]
142	Bellericoside	T. chebula	Stem bark (MeOH)	[123]	
	Bellericoside	T. chebula	Stem bark (MeOH)	[115]	
143	Bellericoside (A)	(Dimer of 18,19-seco-2α,3β,19α,23,24-pentahydroxy-12-en-28-oic acid-28-β-D-glucopyranoside)	T. chebula	Stem bark (MeOH)	[118]
144	Bellericoside (B)	(Dimer of 18,19-seco-2α,3β,19α,23,24-pentahydroxy-12-en-28-oic acid-28-β-D-glucopyranoside)	T. chebula	Stem bark (MeOH)	[118]
145	2α,19-dihydroxy-3-0-oxo-olean-12-en-28-oic acid-28-β-D-glucopyranoside	T. arjuna	Roots (MeOH)	[101]	
146	1α,3β,23-trihydroxy-12-en-29-oic acid-23-O-α-L-4-acetylhamnopyanoside	T. stuhlmanii	Stem bark (MeOH)	[132]	
147	1α,3β,23-trihydroxy-12-en-29-oic acid-23-O-α-L-(4-acetylhamnopyanosyl)-29-O-hamnopyanoside	T. stuhlmanii	Stem bark (MeOH)	[132]	
148	16,17-dihydroxidienone-3-0-β-D-glucopyranosyl-(1→6)-0-β-D-glucopyranoside	T. arjuna	Roots	[133]	
149	Daucosterol	T. catappa	Fruits, leaves (EIOH)	[58]	
	Daucosterol	T. arjuna	Fruits (MeOH)	[102]	
	Daucosterol	T. arjuna	Fruits (MeOH)	[5]	

Table 4. Triterpenes and tetraterpenoidal glycosides and their occurrence within Terminalia species.
Figure 4A: Chemical structures of triterpenes isolated from different *Terminalia* species.
R = β-D-galactopyranosyl-(1→3)-β-D-glucopyranose

R₁ = β-D-galactose(1→3)-β-D-glucose
R₂ = β-D-glucose

R = β-D-galactopyranosyl(1→3)-β-D-glucopyranose

β-D-Glc
Hepato and nephro-protective activities

T. muelleri polyphenolic-rich fraction possessed hepatoprotective and nephro-protective activities in CCl₄-induced hepato- and nephrotoxicities in mice [29]. The ethanolic bark extract of *T. paniculata* possessed hepatoprotective activity and reduced the elevated serum biochemical parameters and lipid peroxides in paracetamol-induced liver damage in rats [30]. Also, oral administration of *T. arjuna* fruit extract inhibited the hepatic damage and oxidative stress in cadmium-induced hepatotoxicity in rats [31]. In addition, Manna demonstrated the protective role of arjunolic acid, isolated from the bark of *T. arjuna*, against sodium arsenite-induced oxidative stress in mouse hepatocytes [32]. In vitro treatment of hepatocytes with chebulic acid and neochebulic acid, isolated from *T. chebula* ethanolic fruit extract, significantly reduced the tert-butyl hydroperoxide-induced cell cytotoxicity, reactive oxygen species level, and increased the hepatic GSH [33]. Corilagin, isolated from *T. catappa* protected against galactosamine and lipopolysaccharide-induced hepatotoxicity in rats at a dose of 1 mg/kg by decreasing the oxidative stress and apoptosis [34]. Also, pre-treatment with *T. bellirica* leaf extract in CCl₄-induced hepatotoxicty, exhibited a dose-dependent recovery in all the biochemical parameters, while gallic acid from its extract had a more pronounced effect at a dose of 200 mg/kg [35].

Anti-inflammatory activity

The ethanolic extract of *T. phanerophlebia* stem as well as its isolated compound β-sitosterol selectively inhibited cyclooxygenase enzyme.
stems and bark (CH water)

Table 5. Lignan and lignan derivatives and their occurrence within *Terminalia* species.

No.	Compound	Species	Part used (Type of extract)	Reference(s)
150	Isoguaiacin	*T. argentea*	Bark (EIOH)	[107]
151	Termitilignan	*T. bellerica*	Fruits	[108]
152	Thannilignan	*T. bellerica*	Fruits	[108]
153	Anolignan (B)	*T. sericea*	Fruits	[108]
154	4'-hydroxy-4-methoxy-7,7-epoxyllignan	*T. superb*	Stem bark (CH₃Cl, MeOH)	[10]
155	4,4'-dimethoxy-7,7-epoxyllignan	*T. superb*	Stem bark (CH₃Cl, MeOH)	[18]

Figure 5: Chemical structures of lignans isolated from different *Terminalia* species.

(COX-2) [36]. The aqueous extract of *T. paniculata* bark significantly reduced the edema volume in carrageenan-induced rat paw edema [37]. Furthermore, the extract at a dose of 400 mg/kg also reduced the carrageenan-induced leukocyte migration and myeloperoxidase activity in air pouch exudates and exhibited anti-rheumatic and analgesic activities at a dose of 200 mg/kg. *T. ferdinandiana* fruit had a unique anti-inflammatory activity in lipopolysaccharide-activated murine macrophages, by inhibiting the expression of COX-2 and inducible nitric oxide synthase (iNOS), as well as by inhibiting the production of prostaglandin E₂ [38].

Chebulagic acid from *T. chebula* seeds, significantly suppressed the onset and progression of collagen-induced arthritis in mice [39]. Moreover, anolignan B isolated from the ethyl acetate root extract of *T. sericea* possessed an inhibitory activity against both COX-1 and COX-2 enzymes [40]. Punicalagin at a dose of 10 mg/kg and punicalin at a dose of 5 mg/kg isolated from the leaves of *T. catappa* possessed an anti-inflammatory activity against carrageenan-induced hind paw edema in rats [41]. Ursolic acid and 2α,3β,23-trihydroxyurs-12-en-28-oic acid isolated from *T. catappa* leaf ethanolic extract were responsible for its anti-inflammatory activity, as it caused a significant reduction (over 50%) of the edema induced in mice ear at 0.30 mg/ear dose [42].

Gastroprotective activity

Chebulagic acid isolated from *T. chebula* fruit showed a gastro protective effect against ulcers induced by cold restraint (62.90% gastro protection), aspirin (55.30%), alcohol (80.67%) and pyloric ligation (66.63%) induced ulcer models. Chebulagic acid significantly reduced free acidity (48.82%), total acidity (38.29%) and upregulated mucin secretion (by 59.75%). Additionally, chebulinic acid significantly inhibited H⁺ K⁺-ATPase activity in vitro with an IC₅₀ value of 65.01 μg/ml compared to that of Omeprazole 30.24 μg/ml, proving its anti-secretory activity [43]. In addition, the methanolic extract of *T. arjuna* caused a significant reduction in the lesion index in diclofenac-induced ulcer, and a significant increase in pH, non-protein sulfhydrils, reduced glutathione, protein bound carbohydrate complexes, adherent mucus content with a significant decrease in the volume of gastric juice, free and total acidity, pepsin concentration, acid output, lipid peroxidase content with a significant decrease in the volume of gastric juice, free and total acidity, pepsin concentration, acid output, lipid peroxidase activity, histamine and ethanol in Swiss albino rats by enhancing the antioxidant state of the gastric mucosa, thereby reducing mucosal damage [45].

Antimicrobial and Antiviral activity

Various *Terminalia* species were reported to exert a potent antimicrobial effect on different microorganism. *T. chebula* water extract had a significant antibacterial activity on *Helicobacter pylori* with MIC and MBC of 125 and 150 μg/ml respectively [46]. Additionally, the acetone extract of *T. chebula* exhibited a potent antibacterial activity on *Enterococcus faecalis*, *Bacillus sabtilis* and *Klebsiella pneumoniae* bacteria [47]. Casuarrin isolated from the bark of *T. arjuna*, showed a strong antiviral activity on *Herpes simplex* type 2 at a concentration of 25 μM and reduced the viral titers up to 100,000-fold by inhibiting the viral attachment and penetration [48]. Recently, Fyhrquist reported that the methanolic root and stem bark extracts of *T. sambesiaca* showed lower MIC values than its aqueous, butanol and chloroform fractions against mycobacterium [49]. The strong antibacterial activity of *T. muelleri* ethylacetate leaf extract was attributed to its gallic acid content [50].

The antifungal activity of different leaf extracts prepared from six *Terminalia* species (*T. prunioides, T. brachystemma, T. sericca, T. gazensis, T. mollis* and *T. sambesiaca*) were examined against numerous fungi. It was found that the acetone extracts possessed the highest antifungal activity. *T. sericca* extracts were the most active again nearly all tested microorganisms [51]. Another study revealed that anolignan B isolated...
from the ethyl acetate root extract of *T. sericea* had a strong antimicrobial activity with MIC values ranging from 3.80 µg/ml against *Bacillus subtilis* to 31 µg/ml against *Escherichia coli* [40]. Gallic acid isolated from the methanolic extract of *T. nigrovulosa* bark showed a high antifungal activity against *Fusarium solani* [52]. Ethanolic root extract of *T. macropera* had a significant antimicrobial activity, where the lowest MICs were obtained for *Shigella dysenteriae*, *Staphylococcus aureus* and *Vibrio cholera* with a significant activity against *Campylobacter* species [53]. Also, the leaf extract of *T. macropera* showed an antimicrobial activity against *Neisseria gonorrhoeae* with an MIC value between 100 and 200 µg/ml, the diethyl ether fraction was the most active fraction with MIC values between 25 and 50 µg/ml [54]. Moreover, it was assumed that punicalagin and terchebulin, the major compounds of the *T. macropera* root extract were responsible for the in vitro activity of the extract against *Helicobacter pylori* [55]. The methanolic extract of *T. superba* stem bark, together with its major component 3',4-di-O-methyl-3-O-(β-D-xylopyranosyl) ellagic acid prevented the growth of various mycobacteria and fungal species [56]. Punicalagin, isolated from the acetone extract of *T. brachystemma* leaves, displayed a good antifungal activity against *Candida parapsilosis* (MIC=6.25 µg/ml), *Candida kruzie* (MIC=6.25 µg/ml) and *Candida albicans* (MIC=12.50 µg/ml) [9]. *T. australis* methanol and aqueous extracts were effective against the several *Aspergillus* and *Candida* strains [57]. The compounds 5,7,2'-tri-O-methyl-flavanone-4'-O-a-L-rhamnopyranosyl-(1-4)-β-D-glucopyranoside and 2α,3β,19β,23-tetrahydroxyolean-12-en-28-oic-acid-3-O-β-D-galactopyranosyl-(1-3)-β-D-glucopyranoside-28-O-β-D-glucopyranoside isolated from the roots of *T. alata* were reported to have a strong antifungal activity [58].

Cytotoxic activity

T. chebula methanolic fruit extract showed a reduction in cell viability, inhibition of cell proliferation, and induction of cell death in a dose-dependent manner on many malignant cell lines. In addition, it induced apoptosis at lower concentrations, and necrosis at higher concentrations. Chebulinic acid, tannic acid and ellagic acid, with IC₅₀ values of 53.20, 59.00 and 78.50 µg/ml, respectively, were the most cytotoxic compounds of *T. chebula* fruit [59]. Furthermore, chebulagic acid isolated from the *T. chebula* fruit extract possessed an anti-proliferative activity against HCT-15, COLO-205, MDA-MB-231, DU-145 and K562 cell lines [60]. *T. catappa* leaf water extract, along with its isolated component punicalagin was effective against bloemycin-induced genotoxicity in Chinese hamster ovary cells [61]. Furthermore, *T. catappa* leaf extract exerted a dose-dependent inhibitory effect on the invasion and motility of highly metastatic A549 and Lewis lung carcinoma cells [62]. Moreover, the ethanol extract of *T. catappa* leaves significantly inhibited the cell migration capacity of oral squamous cell carcinoma cells [63]. Luteolin, gallic acid and gallic acid ethyl ester isolated from the bark, stem and leaves of *T. arjuna* methanolic extract possessed a strong antiproliferative activity [64]. Moreover, ivorenoside C isolated from the bark of *T. ivorenis* had an antiproliferative activity against MDA-MB-231 and HCT116 human cancer cell lines with IC₅₀ values of 3.96 and 3.43 µM respectively [65]. Additionally, the acetone extract of *T. calamansani* leaves inhibited the viability of HL-60 cells [66].

Cardioprotective activity

T. arjuna bark has been used widely in traditional medicine as a cardioprotective. The ethanolic extract of *T. arjuna* bark enhanced the cardiac intracellular antioxidant status in CCl₄-induced oxidative stress in rats [67]. The protective effect was comparable to that of vitamin C. In addition, the butanol fraction of *T. arjuna* bark extract exhibited a protective effect against doxorubicin-induced cardiotoxicity by increasing cardiac antioxidant enzymes, decreasing serum creatine kinase-MB levels and reducing lipid peroxidation [68]. Many clinical trials were also conducted to prove the beneficial effect of *T. arjuna* bark on the heart. A group of scientists showed that patients with refractory chronic congestive heart failure, when received *T. arjuna* bark extract as an adjuvant therapy, showed a long lasting improvement in the signs and symptoms of heart failure with an improvement in left ventricular ejection phase indices and quality of life [69]. Moreover, a clinical study was done to evaluate the role of *T. arjuna* in ischemic mitral regurgitation (IMR) following acute myocardial infarction. Patients receiving adjuvant *T. arjuna* showed significant decrease in IMR and reduction in anginal frequency [70]. In addition, pretreatment with *T. pallida* fruit extract ameliorated myocardial injury in isoproterenol-induced myocardial infarction in rats and exhibited cardioprotective activity [71]. Similarly, pretreatment with *T. chebula* extract ameliorated the effect of isoproterenol on lipid peroxide formation [72].

Anti-hypertensive activity

T. superba bark extract showed a potent antihypertensive activity in spontaneously hypertensive rats, as well as in glucose-induced hypertensive rats due to the withdrawal of sympathetic tone and the improvement of the antioxidant status [73,74].

Antiparasitic and molluscicidal activity

The in vitro nematocidal activity of *T. nigrovulosa* bark against *Meloidogyne incognita* was attributed to 3,4-dihydroxybenzoic acid isolated from it. [75]. The ethyl acetate, acetone and methanol leaf and seed extracts of *T. chebula* showed in vitro ovicidal and larvicidal activities on *Haemonchus contortus* [76]. In addition, *T. chebula* fruit molluscicidal activity was due its tannic acid content that significantly inhibited the AChE, ACP and ALP activity in the nervous tissue of freshwater snail *Lymnaea acuminata* [77]. Additionally, ethanolic leaf extract of *T. catappa* possessed a molluscicidal activity against the snail intermediate hosts of schistosomiasis (*Biomphalaria pfefferi* and *Bulinus globosus*) with *B. pfefferi* being more susceptible [78].

Wound healing activity

Topical administration of *T. chebula* alcoholic leaf extract on the rat dorsal wounds showed a beneficial effect in the acceleration of the healing process, by increasing the tensile strength of tissues by about 40% and decreasing the period of epithelialization [79]. Moreover, the tannin-rich fraction obtained from *T. chebula* fruits endowed wound healing in rats due to the powerful antibacterial and angiogenic activity of the extract [80]. Topical application of *T. arjuna* hydro- alcoholic extract resulted in a significant increase in the tensile strength of the incision wounds and epithelialization of excision wounds. This wound healing property was more pronounced in the tannin-rich fraction compared to the other fractions [81].

Conclusion

An extensive literature survey on genus *Terminalia* has revealed a variety of chemical constituents produced by this genus. Tannins, flavonoids, phenolic acids, triterpenes, triterpenoidal glycosides, lignan and lignan derivatives constitute the major classes of phytoconstituents of this genus [82-105]. In addition, the current review showed that most of the biological studies performed on different extracts and isolated compounds from different species of *Terminalia* were focused on the assessment of the antimicrobial, antioxidant, hepatoprotective, anti-
inflammatory, hypoglycemic, hypolipidemic, cytotoxic and wound healing activities of these species. The various pharmacological studies validated the folk medicinal uses of different Terminalia species. Although many phytochemical and biological investigations were reported from the genus Terminalia, the studies have focused mainly on certain species, with bellerica, arjuna, catappa, horrídia, superba, macroptera, pallida, soroensis, sericea and alata being the most phytochemically and biologically studied species, leaving a fertile area for further investigations on other species that have not been fully explored yet [106-113]. The present review provides a comprehensive understanding of the chemistry and biology of different Terminalia species, which may help in the discovery and development of new alternative medications for the treatment of various diseases and health problems.

Declaration of Interest

The authors have declared no conflicts of interest.

References

1. De Morais Lima GR, de Sales IR, Caldas Filho MR, de Jesus NZ, de Sousa Falçio H, et al. (2012) Bioactivities of the genus Combretum (Combretaceae): a review. Molecules 17: 9142-9206.
2. Saxena VG, Mishra KK, Vishwakarma, Saxena A (2013) A comparative study on quantitative estimation of tannins in Terminalia chebula, Terminalia bellerica, Terminalia arjuna and Saraca indica using spectrophotometer. Asian J Pharm Clin Res 6: 148-149.
3. Stace CA (2007) Combretaceae: Springer 9: 67-82.
4. Elloff JN, Katereere DR, McGaw Lj (2008) The biological activity and chemistry of the southern African Combretaceae. J Ethnopharmacol 119: 686-699.
5. Yang MH, Vasquez Y, Ali Z, Khan IA, Khan SI (2013) Constituents from Terminalia species increase PPARα and PPARγ levels and stimulate glucose uptake without enhancing adipocyte differentiation. J Ethnopharmacol 149: 490-498.
6. Bag A, Bhattacharyya SK, Chattopadhyay RR (2013) The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac J Trop Biomed 3: 244-252.
7. Pellati F, Bruní R, Righi D, Grandini A, Tognolini M, et al. (2013) Metabolite profiling of polyphenols in a Terminalia chebula Retzis ayurvedic decoction and evaluation of its chemopreventive activity. J Ethnopharmacol 147: 277-285.
8. Dixit D, Dixit AK, Lad H, Gupta D, Bhatnagar D (2013) Radioprotective effect of Terminalia Chebula Retzius extract against irradiation-induced oxidative stress. Biomed Aging Pathol 3: 83-88.
9. Liu M, Katereere DR, Gray Al, Seidel V (2009) Phytochemical and antifungal studies on Terminalia mollis and Terminalia brachystemma. Fitoterapia 80: 369-373.
10. Garcez FR, Garcez WS, Miguel DL, Sereá AA, Prado FC (2003) Chemical constituents from Terminalia glabrescens. J Braz Chem Soc 14: 461-465.
11. Li DQ, Zhao J, Xie J, Li SP (2014) A novel sample preparation and on-line HPLC–DAD–MS/MS–BDB analysis for rapid screening and characterization of specific enzyme inhibitors in herbal extracts: Case study of a-glucoaldosase. J Pharm Biomed Anal 88: 130-135.
12. Gao H, Huang YN, Xu, Kawabata J (2007) Inhibitory effect on a-glucosidase by the fruits of Terminalia chebula Retz. Food Chem 105: 628-634.
13. Senthilkumar GP (2008) Biochemical studies on the effect of Terminalia chebula on the levels of glycoproteins in streptozotocin-induced experimental diabetes in rats. J Agric Food Chem 6: 105-115.
14. Ramachandran S, Rajasekaran A, Manisenthilkumar KT (2012) Investigation of hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark in diabetic rats. Asian Pac J Trop Biomed 2: 262-268.
15. Nampoothiri SV, Prathapan A, Cherian OL, Raghu KG, Venugopalan VV, et al. (2011) In vitro antioxidant and inhibitory potential of Terminalia belerica and Emblica officinalis fruits against LDL oxidation and key enzymes linked to type 2 diabetes. Food Chem Toxicol 49: 125-131.
16. Latha RC, Daisy P (2011) Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia belerica Roxb. in streptozotocin-induced diabetic rats. Chem Biol Interact 189: 112-118.
17. Anam K, Widhama RM, Kusrini D (2009) α-Glucosidase Inhibitor Activity of Terminalia Species. Int J Pharm 5: 277-280.
18. Wanski JD, Lallemend MC, Chiozem DD, Toze FA, Mbazé LE, et al. (2007) alpha-Glucosidase inhibitory constituents from stem bark of Terminalia superba (Combretaceae). Phytochemistry 68: 2096-2100.
19. Nagappa AN, Thakurdessai PA, Venkat Rao N, Singh J (2003) Antiadipogenic activity of Terminalia catappa Linn fruits. J Ethnopharmacol 88: 45-50.
20. Kameswarao Rao B, Renuka Sudarshan P, Rajasekhar MR, Nagaraju N, Appa Rao Ch (2003) Antidiabetic activity of Terminalia catappa linn fruit in alloxan induced diabetic rats. J Ethnopharmacol 85: 169-172.
21. Latha R, Daisy P (2011) Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia belerica Roxb. in streptozotocin-induced diabetic rats. Chemico-Biological Interactions 189: 112-118.
22. Israni DA, Patel KV, TR GR (2010) Anti-hyperglycemic activity of aqueous extract of Terminalia chebula and Gaunmuta in high cholesterol diet fed rats. Int J Pharm Pharm Sci 1: 48-59.
23. Ram A, Lauria P, Gupta R, Kumar P, Sharma VN (1997) Hypocholesterolaemic effects of Terminalia arjuna tree bark. J Ethnopharmacol 55: 165-169.
24. Shaila HP, Udupa SL, Udupa AL (1998) Hypolipidemic activity of three indigenous drugs in experimentally induced atherosclerosis. Int J Cardiol 67: 119-124.
25. Viswanathini GL, Vaidya SK, Krishnadas N, Ranagappa S (2010) Antioxidant and antimutagenic activities of bark extract of Terminalia arjuna. Asian Pac J Trop Biomed 3: 965-970.
26. Dixit D, Dixit AK, Lad H, Gupta D, Bhatnagar D (2013) Radioprotective effect of Terminalia Chebula Retzis extract against γ-irradiation-induced oxidative stress. Biomedicine and Aging Pathology 3: 83-98.
27. Pfundstein B, El Dexouky SK, Hull WE, Haubner R, Erben G, et al. (2010) Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia belerica, Terminalia chebula and Terminalia horrida): Characterization, quantitation and determination of antioxidant capacities. Phytochemistry 71: 1132-1148.
28. Bajpai M, Pande A, Tewari SK, Prakash D (2005) Phenolic contents and antioxidant activity of some food and medicinal plants. Int J Food Sci Nutr 56: 287-291.
29. Fahmy NM, Al-Sayed E, Abdel-Daim MM, Karonen M, Singab A (2015) Protective effect of Terminalia muelleri against carbon tetrachloride-induced hepato–nephro toxicity in mice and characterization of its bioactive constituents. Pharm Biol 1-11.
30. Eesha BR, Mohanbabu AV, Meena KK, Babu S, Vijay M, et al. (2011) Hepatoprotective activity of Terminalia paniculata against paracetamol induced hepatocellular damage in Wistar albino rats. Asian Pac J Trop Biomed 4: 466-469.
31. Ghosh J, Das J, Mannna P, Sil PC (2010) Protective effect of the fruits of Terminalia arjuna against cadmium-induced oxidative stress and hepatic cell injury via MAPK activation and mitochondria dependent pathway. Food Chem 123: 1062-1075.
32. Mannna P, Sinha M, Pal P, Sil PC (2007) Arjunonic acid, a triterpenoid saponin, ameliorates arsenic-induced cyto-toxicity in hepatocytes. Chem Biol Interact 170: 187-200.
33. Lee HS, Jung SH, Yun BS, Lee KW (2007) Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes. Arch Toxicol 81: 211-218.
34. Kinoshita S, Inoue Y, Nakama S, Ichiba T, Aniya Y (2007) Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L from Okinawa Island and its tannin corilagin. Phytomedicine 14: 755-762.
35. Jadon A, Bhadauria M, Shukla S (2007) Protective effect of Terminalia belerica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. J Ethnopharmacol 109: 214-218.
36. Nair JJ, Arumou AO, Van Staden J (2012) Anti-inflammatory effects of Terminalia phanerophlebia (Combretaceae) and identification of the active constituent principles. S Afr J Bot 81: 79-80.
37. Talwar S, Nandakumar K, Nayak PG, Bansal P, Mudgal J, et al. (2011) Anti-inflammatory activity of Terminalia paniculata bark extract against acute and chronic inflammation in rats. J Ethnopharmacol 134: 323-328.

38. Tan AC, Hsu DX, Konczak I, Tanigawa S, Ramzan I, et al. (2011) Native Australian fruit polyphenols inhibit COX-2 and iNOS expression in LPS-activated murine macrophages. Food Res Int 44: 2362-2367.

39. Nair V, Singh S, Gupta YK (2010) Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models. J Pharm Pharmacol 62: 1801-1806.

40. Eldeen IM, Elgorash EI, Mulhood DA, van Staden J (2006) Anognilan B: a bioactive compound from the roots of Terminalia sericea. J Ethnopharmacol 103: 135-138.

41. Lin CC, Hsu YF, Lin TC (1999) Effects of punicalin and punicalin on carrageenan-induced inflammation in rats. Am J Chin Med 27: 371-376.

42. Fan YM, Xu LZ, Gao J, Wang Y, Tang XH, et al. (2004) Phytochemical and anti-inflammatory studies of Terminalia catappa. Fitoterapia 76: 253-260.

43. Mishra V, Agrawal M, Osnanswe SA, Madhur G, Rastogi P, et al. (2013) Anti-secretory and cyto-protective effects of chebulinic acid isolated from the fruits of Terminalia chebula on gastric ulcers. Phytomedicine 20: 506-511.

44. Devi RS, Narayan S, Vani G, Shyamala Devi CS (2007) Gastroprotective effect of Terminalia arjuna bark on diclofenac sodium induced gastric ulcer. Chem Biol Interact 167: 71-83.

45. Gupta M, Mazumder UK, Manikanlard L, Bhattacharya S, Senthilkumgar KP, et al. (2005) Anti-ulcer activity of ethanol extract of Terminaliallallapida Brandis. in Swiss albino rats. J Ethnopharmacol 97: 405-408.

46. Malekzadeh F, Ehsanfar H, Shahamat M, Levin M, Cotwell RR (2001) Antibacterial activity of black myrobolan (Terminalia chebula retz) against Helicobacter pylori. Int J Antimicrob Agents 18: 85-88.

47. Kathirvel A, Sujatha V (2012) In vitro assessment of antioxidant and antibacterial properties of Terminalia chebula retz. leaves. Asian Pac J Trop Biomed 2: S788-S795.

48. Cheng HY, Lin CC, Lin TC (2002) Antithersis simplex virus type 2 activity of casaurinin from the bark of Terminalia arjuna Linn. Antiviral Res 55: 447-455.

49. Kyhrqust P, Laasko I, Garcia Marco S, Julkunen-Titto R, Hillunen R (2014) Antimycobacterial activity of ellagittannin and ellagic acid derive rich crude extracts and fractions of five selected species of Terminalia used for treatment of infectious diseases in African traditional medicine. S Afr J For 90: 1-16.

50. Anam K, Suganda A, Sukendar E, Karbono LBS (2010) Antibacterial effect of 3,4-dihydroxybenzoic acid purified from Terminalia nigrovenulosa component of Terminalia muelleri Benth. against Staphylococcus aureus. Int J Antimicrob Agents 18: 85-88.

51. Pettit GR, Hoard MS, Doubek DL, Schmidt JM, Pettit RK, et al. (1996) Antiplasmodic agents 338. The cancer cell growth inhibitory. Constituents of Terminalia arjuna (Combretaceae). J Ethnopharmacol 53: 57-63.

52. Fanou BK, Teponno BR, Ricciutelli M, Quassansi L, Brumacci M, et al. (2010) Dimeric antioxidant and cytotoxic triterpenoid saponins from Terminalia ivorenis A. Chev. Phytochemistry 71: 2108-2115.

53. Chen LG, Huang WT, Lee LT, Wang CC (2009) Ellagitannins from Terminalia calendanisani induced apoptosis in HL-60 cells. Food Chem Toxicol 47: 630-639.

54. Gupta M, Mazumder UK, Manikanlard L, Bhattacharya S, Senthilkumgar KP, et al. (2005) Anti-ulcer activity of ethanol extract of Terminaliallallapida Brandis. in Swiss albino rats. J Ethnopharmacol 97: 405-408.

55. Maiezkadeh F, Ehsanfar H, Shahamat M, Levin M, Cotwell RR (2001) Antibacterial activity of black myrobolan (Terminalia chebula retz) againstHelicobacter pylori. Int J Antimicrob Agents 18: 85-88.

56. Devi RS, Narayan S, Vani G, Shyamala Devi CS (2007) Gastroprotective effect of Terminalia arjuna bark on diclofenac sodium induced gastric ulcer. Chem Biol Interact 167: 71-83.

57. Gupta M, Mazumder UK, Manikanlard L, Bhattacharya S, Senthilkumgar KP, et al. (2005) Anti-ulcer activity of ethanol extract of Terminaliallallapida Brandis. in Swiss albino rats. J Ethnopharmacol 97: 405-408.

58. Malekzadeh F, Ehsanfar H, Shahamat M, Levin M, Cotwell RR (2001) Antibacterial activity of black myrobolan (Terminalia chebula retz) againstHelicobacter pylori. Int J Antimicrob Agents 18: 85-88.

59. Kathirvel A, Sujatha V (2012) In vitro assessment of antioxidant and antibacterial properties of Terminalia chebula retz. leaves. Asian Pac J Trop Biomed 2: S788-S795.

60. Cheng HY, Lin CC, Lin TC (2002) Antithersis simplex virus type 2 activity of casaurinin from the bark of Terminalia arjuna Linn. Antiviral Res 55: 447-455.

61. Kyhrqust P, Laasko I, Garcia Marco S, Julkunen-Titto R, Hillunen R (2014) Antimycobacterial activity of ellagittannin and ellagic acid derive rich crude extracts and fractions of five selected species of Terminalia used for treatment of infectious diseases in African traditional medicine. S Afr J For 90: 1-16.

62. Anam K, Suganda A, Sukendar E, Karbono LBS (2010) Antibacterial effect of 3,4-dihydroxybenzoic acid purified from Terminalia nigrovenulosa component of Terminalia muelleri Benth. against Staphylococcus aureus. Int J Antimicrob Agents 18: 85-88.
82. Pelli et al., Bruni R, Righi D, Grandini A, Tognolini M, et al. (2013) Metabolite profiling of polyphenols in a Terminalia chebula Retzius ayurvedic decoction and evaluation of its chemopreventive activity. J Ethnopharmacol 147: 277-285.
83. Kandil FE, Nasser MI (1996) A tannin anti-cancer promoter from Terminalia arjuna. Phytochemistry 47: 1567-1568.
84. Paarakh PM (2010) Terminalia arjuna (Roxb.). Wt. and Arn.: A Review. Int J Pharm 6: 515-534.
85. Chiayu CC, Ko PT, Mau JL (2006) Antioxidant properties of aqueous extracts from Terminalia catappa leaves. LWT - Food Sci Technol 39: 1099-1108.
86. Mundluri T, McSweeney C, Lowry J (1992) Metabolism in sheep of gallic acid, tannic acid and hydrolysable tannin from Terminalia oblongata. Crop Pasture Sci 43: 1307-1319.
87. Gupta M, Mazumder UK, Manikandan L, Bhattacharya S, Senthilkumar GP, et al. (2005) Anti-ulcer activity of ethanol extract of Terminaliallialipida Brandis. in Swiss albino rats. J Ethnopharmacol 97: 405-408.
88. Marzouk MS, El-Toumy SA, Moharram FA, Shalaby NM, Ahmed AA (2002) Pharmacologically active ellagitannins from Terminalia myriocarpa. Planta Med 68: 523-527.
89. Nair V, Singh S, Gupta YK (2010) Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models. J Pharm Pharmacol 62: 1801-1806.
90. Bag A, Bhattacharyya SK, Chattopadhyay RR (2013) The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac J Trop Biomed 3: 244-252.
91. Tanaka T, Nonaka GI, Nishikawa I (1986) Tannins and related Compounds. XII.I. Isolation and Characterization of four new hydrolysable tannins, terfevins A and B, tergalatin and tercatan from the leaves of Terminalia catappa L. Chem Pharm Bull 34: 1039-1049.
92. Filippich LJ, Zhu J, Oelrichs P, Alsalami MT, Doig AJ, et al. (1991) Hepatotoxic and nephrotoxic principles in Terminalia oblongata. Res Vet Sci 50: 170-177.
93. Lin TC, Chien SC, Chen HF, Hsu FL (2000) Tannins and related compounds from combretaceae plants. Chin Pharm J 52: 1-26.
94. Conrad J, Vogler B, Reets S, Klaiber I, Roos G, Walter U, et al. (1998) Two triterpene oleanane derivatives in Terminalia arjuna. J Pharm Biomed Anal 28: 447-452.
95. Conrad J, Vogler B, Klaiber I, Roos G, Walter U, et al. (1998) Two triterpene esters from Terminalia macroptera bark. Phytochemistry 48: 647-650.
96. Nandy AK, Podder G, Sahu NP, Mahato SB (1989) Triterpenoids and their glucosides from Terminalia bellirica. Phytochemistry 28: 2769-2772.
97. Row RL, Subba Rao GSR (1962) Chemistry of Terminalia species—VI: The constitution of tomentosic acid, a new triterpene carboxylic acid from Terminalia tomentosa Wt et Am. Tetrahedron 18: 827-838.
98. Bombardelli E, Bonati A, Gabetta B, Mustich G (1974) Triterpenoids of Terminalia sericea. Phytochemistry 13: 2559-2562.
99. Mahato SB, Nandy AK, Kundu AP (1992) Pentacyclic triterpenoid sapogenins and their glucosides from Terminalia bellirica. Tetrahedron 48: 2483-2494.
100. Idemudia OG (1970) Terpenoids of Nigerian Terminalia species. Phytochemistry 9: 2401-2402.
101. Anjaneyulu ASR, Reddy AVR, Mallavarapu GR, Chandrasekharra RS (1986) 3-acetylmenlisminic acid from the root bark of Terminalia alata. Phytochemistry 25: 2670-2671.
102. Anjaneyulu ASR, Reddy AVR (1983) Structure of termic acid, a dihydroxytriterpene carboxylic acid from Terminalia arjuna. Phytochemistry 22: 993-998.
103. Atta UR, Zareen RS, Choudhary MI, Ngououni FN, Yasin A, et al. (2002) Terminalin A, a novel triterpenoid from Terminalia glaucescens. Tetrahedron Lett 43: 6233-6236.
104. Kundu AP, Mahato SB (1993) Triterpenoids and their glucosides from Terminalia chebula. Phytochemistry 32: 999-1002.
105. Row J, Murty P (1970) Chemical examination of Terminalia bellirica Roxb. Indian J Chem 8: 1047-1048.
106. Mekoaasane SI (2011) The isolation and characterization of an antibacterial compound from Terminalia sambesica (Combretaceae), North-West University. 192pp.
107. Anjaneyulu A, Rama Prasad A (1982) Chemical examination of the roots of Terminalia arjuna the structures of arjunoside III and arjunoside IV, two new triterpenoid glycosides. Phytochemistry 21: 2057-2060.
108. Srivastava SK, Chouksey BK, Srivastava SD (2001) Triterpenoid glycoside from the roots of Terminalia arjuna. Fitoterapia 72: 191-193.
109. Cao S, Brodie PJ, Callander M, Randhiarowni R, Rakotobe E, et al. (2010) Saponins and a lignan derivative of Terminalia troyerophylla from the Madagascar Dry Forest. Phytochemistry 71: 95-99.
110. Honda T, Murae T, Takuysui T, Takahashi T, Sawai M (1976) Arjunglucoside I and arjunglucoside II, a new triterpene and new triterpene glucosides from Terminalia arjuna. Bull Chem Soc Jpn 49: 3213-3218.
111. Ali A, Kaur G, Hamid H, Abdullah T, Ali M, et al. (2003) Terminaloside A, a new triterpene glycoside from the bark of Terminalia arjuna inhibits nitric oxide production in murine macrophages. J Asian Nat Prod Res 5: 137-142.
131. Ali A, Ali M, Alam MS (2006) Two new oleanane triterpene glycosides from the bark of Terminalia arjuna. Z Naturforsch B 61: 1282-1286.

132. Katerere DR, Gray AI, Nash RJ, Waigh RD (2003) Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry 63: 81-88.

133. Yadav RN, Rathore K (2001) A new cardenolide from the roots of Terminalia arjuna. Fitoterapia 72: 459-461.