Distinct clinical and biological characteristics of acute myeloid leukemia with higher expression of long noncoding RNA KIAA0125

Yu-Hung Wang1,2,* , Chien-Chin Lin1,2,3,* , Chia-Lang Hsu4, Sheng-Yu Hung5, Chi-Yuan Yao3,5, Sze-Hwei Lee1,6, Cheng-Hong Tsa12, Hsin-An Hou2, Wen-Chien Chou2,3,@, Hwei-Fang Tien2,@

1 Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, 2 Division of Hematology, Department of Internal Medicine, 3 Department of Laboratory Medicine, 4 Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, 5 Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan, 6 Tai-Cheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan

*Yu-Hung Wang and Chien-Chin Lin contribute equally to this study.

@Correspondence: Dr. Wen-Chien Chou, Department of Laboratory Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S. Rd., Taipei City 10002, Taiwan; E-mail: wchou@ntu.edu.tw; Tel: +886-2-23123456; or Dr. Hwei-Fang Tien, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan S. Rd., Taipei City 10002, Taiwan; E-mail: httien@ntu.edu.tw; Tel: +886-2-23123456.

Abstract

Expression of long non-coding RNA KIAA0125 has been incorporated in various gene expression signatures for prognostic prediction in acute myeloid leukemia (AML) patients, yet its functions and clinical significance remain unclear. This study was aimed to investigate

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
the clinical and biological characteristics of AML bearing different levels of *KIAA0125*. We
profiled *KIAA0125* expression levels in bone marrow cells from 347 *de novo* AML patients
and found higher *KIAA0125* expression was closely associated with *FLT3-ITD*, *RUNX1*, and
DNMT3A mutations, and M1 subtype by the French-American-British classification, but
inversely correlated with t(8;21) and t(15;17). Among the 227 patients who received
standard chemotherapy, those with higher *KIAA0125* expression had a lower complete
remission rate, shorter overall survival (OS) and disease-free survival (DFS) than those with
lower expression. The prognostic significance was validated in both TCGA and GSE12417
cohorts. Subgroup analyses showed that higher *KIAA0125* expression also predicted shorter
DFS and OS in patients with normal karyotype or non-M3 AML. In multivariable analysis,
higher *KIAA0125* expression remained an adverse risk factor independent of age, WBC
counts, karyotypes, and mutation patterns. Bioinformatics analyses revealed that higher
KIAA0125 expression was associated with hematopoietic and leukemic stem cell signatures
and ATP-binding cassette transporters, two predisposing factors for chemoresistance.
Introduction

Long non-coding RNAs (lncRNAs) are non-protein coding RNAs that are longer than 200 nucleotides. Comparing to other classes of ncRNAs, lncRNAs exhibit a wide range of structures and functions[1]. Recently, lncRNAs have emerged as important regulators for gene expression via remodeling nuclear architecture, modulating mRNA stability and translation, and post-translational modifications[1-4]. Besides, some lncRNAs are dysregulated and harbor prognostic relevance in several types of cancers[5-8]. However, the roles of lncRNAs in tumorigenesis are still largely unknown.

In recent years, several gene expression-based prognostic scores have been developed for better risk stratification of acute myeloid leukemia (AML) patients[9-14]. Among those high-risk genes, lncRNA gene KIAA0125 (also named as FAM30A) is unique because it is the only non-coding gene and is expressed in humans but not in mice (From the UniProt database, https://www.uniprot.org/uniprot/Q9NZY2). Additionally, KIAA0125 expression was integrated into a recently proposed 17-gene stemness score, which could predict outcomes in AML patients[9].

In this study, we aimed to investigate the association of KIAA0125 expression with clinical and biological characteristics in AML patients. We first profiled the expression levels of KIAA0125 in bone marrow (BM) cells from AML patients and normal controls and demonstrated that AML patients had higher KIAA0125 expression than normal controls. Higher expression of KIAA0125 was associated with distinct clinical and biological characteristics and served as an independent poor prognostic biomarker for AML patients in
ours and two other publicly annotated cohorts. Further bioinformatics analyses showed that higher expression of $KIAA0125$ in AML was closely associated with hematopoietic stem cell (HSC) and leukemic stem cell (LSC) signatures and several important ATP-binding cassette transporters (ABC transporters); these factors are regarded responsible for chemoresistance in AML. $KIAA0125$ could be a potential target for novel treatment in AML patients with high $KIAA0125$ expression.

Materials and Methods

Patients

We recruited 347 adult patients with de novo AML diagnosed in the National Taiwan University Hospital (NTUH) from 1996 to 2011 who had enough cryopreserved BM cells for tests. The diagnoses were based on the French-American-British (FAB) and the 2016 World Health Organization classifications[15, 16]. Among them, 227 patients received standard chemotherapy. Non M3 (acute promyelocytic leukemia, APL) patients received idarubicin 12 mg/m2 per day days 1-3 and cytarabine 100 mg/m2 per day days 1-7, and then consolidation chemotherapy with 2-4 courses of high-dose cytarabine 2000 mg/m2 q12h for total 8 doses, with or without an anthracycline (Idarubicin or Mitoxantrone), after achieving complete remission (CR) as described previously[17]. APL patients received concurrent all-trans retinoic acid and chemotherapy. The remaining 120 patients received supportive care and/or reduced-intensity anti-leukemia therapy due to underlying comorbidities or based on the decision of the physicians or patients. BM samples from 30 healthy donors of hematopoietic
stem cell transplantation (HSCT) were collected as normal controls. This study was approved by the Institutional Review Board of the NTUH.

Microarray and genetic alteration analysis

We profiled the global gene expression of BM mononuclear cells from 347 AML patients and 30 healthy transplant donors by Affymetrix GeneChip Human Transcriptome Array 2.0 as described previously[11, 18, 19]. The raw and normalized microarray data reported in this article have been deposited in the Gene Expression Omnibus database (accession number GSE68469 and GSE71014)[11, 18, 19]. For external validation, we analyzed microarray datasets of GSE12662 (n=76) and GSE12417-GPL96 cohorts (n=163), and RNAseq dataset of the TCGA cohort (n=186)[20-22]. Cytogenetic analyses were performed and interpreted as described previously[23]. We also analyzed the mutation statuses of 17 myeloid-relevant genes including ASXL1, IDH1, IDH2, TET2, DNMT3A, FLT3-ITD, FLT3-TKD, KIT, NRAS, KRAS, RUNX1, MLL/PTD, CEBPA, NPM1, PTPN11, TP53, and WT1 by Sanger sequencing as previously described[17, 18, 23-26].

Analysis of gene expression in next-generation sequencing datasets

We analyzed gene expression data of 141 AML samples profiled with Illumina Genome Analyzer RNA Sequencing in the TCGA database[22] to investigate the absolute gene expression levels.

Gene Set Enrichment Analysis

The preranked Gene Set Enrichment Analysis (GSEA) implemented by R package clusterProfiler was performed using the stem cell-related gene sets from the MSigDB
databases. The genes were ranked based on the Spearman’s correlation coefficient between
the given gene and KIAA0125.

Statistical analysis

We used the Mann-Whitney U test to compare continuous variables and medians of
distributions. The Fisher exact test or the χ2 test were performed to examine the difference
in discrete variables, including gender, FAB classification, cytogenetic changes, and genetic
alterations between patients with lower and higher KIAA0125 expression. Overall survival
(OS) was the duration from the date of initial diagnosis to the time of last follow-up or death
from any cause, whichever occurred first. Disease free survival (DFS) was the duration from
the date of attaining leukemia-free state until the date of AML relapse or death from any
cause, whichever occurred first. The survival prediction power of KIAA0125 expression was
evaluated by both the log-rank test and the univariate Cox proportional hazards model. We
plotted the survival curves with Kaplan-Meier analysis and calculated the statistical
significance with the log-rank test. The Cox proportional hazards model was used in
multivariable regression analysis. P values <0.05 were considered statistically significant. All
statistical analyses were performed with BRB-ArrayTools (version 4.5.1; Biometric Research
Branch, National Cancer Institute, Rockville, MD), and IBM SPSS Statistics 23 for Windows.

Results

The median age of the 347 AML patients was 57 years. Among the 331 patients who had
cytogenetic data at diagnosis, 165 (49.8%) had clonal chromosomal abnormalities. Sixty
patients (18.1%) had favorable cytogenetics; 223 (67.2%), intermediate-risk cytogenetics; and 14.8%, unfavorable cytogenetics (Supplement Table 1) based on the refined British Medical Research Council (MRC) classification[27]. The clinical and laboratory characteristics of these patients at diagnosis are summarized in Table 1.

Comparison of clinical characteristics and genetic alterations between patients with higher and lower KIAA0125 expression

We first compared the BM KIAA0125 expression between the 30 healthy controls and 347 AML patients. The expression of KIAA0125 was significantly higher in AML samples than healthy controls ($p<0.001$, Figure 1a). Then, the 347 AML patients were divided into two groups by the median value of the KIAA0125 expression. The comparison of clinical and laboratory features between the two groups is shown in Table 1. The higher-KIAA0125 group had higher circulating blasts at diagnosis ($p=0.021$) and higher incidence of FAB M1 subtype ($p<0.001$), but lower incidence of M3 subtype ($p<0.001$), compared to the lower-KIAA0125 group (Table 1). Patients with FAB immature subtype of M0 or M1 had higher KIAA0125 expression while those with M3 subtype had lower expression of KIAA0125 ($p<0.001$, Figure 1c), and similar results were noted in the GSE12662 cohort ($p<0.001$, Figure 1d). Moreover, higher-KIAA0125 patients had significantly lower frequencies of t(8;21) and t(15;17) in both NTUH cohort (both $p<0.001$, Supplement Table 1) and TCGA cohort ($p=0.006$ and $p=0.001$, respectively, Supplement Table 1). The higher-KIAA0125 patients more frequently had FLT3-ITD ($p=0.048$) and mutations in DNMT3A ($p=0.015$), and RUNX1 ($p=0.034$) (Supplement Table 2). Compatible with this finding, patients with
DNMT3A or RUNX1 mutation had higher **KIAA0125** expression than those without the

mutation (\(p=0.019\) and 0.045, respectively, Supplement Figure 1). Similarly, there was close

association between higher **KIAA0125** expression and **DNMT3A** (\(p=0.001\))

and **RUNX1** mutations (\(p=0.017\)) in the TCGA cohort (Supplement Table 3). Among the 227

patients who received standard chemotherapy, 166 (73.1%) patients attained a complete

remission (CR) while 43 (18.9%) patients had primary refractory diseases. Notably, the

patients with higher **KIAA0125** expression had a lower CR rate (61.2% vs. 84.7%, \(p<0.001\))

than those with lower expression. In accordance with this finding, the patients who achieved

CR after induction chemotherapy had lower expression of BM **KIAA0125** at diagnosis than

those who did not (\(p<0.001\), Figure 1b).

The impacts of the **KIAA0125 expression on OS and DFS**

Patients with higher **KIAA0125** expression had an inferior DFS and OS than those with lower

expression, no matter whether the survival was censored on the day of hematopoietic stem

cell transplantation (HSCT) (median, 11.7 months vs. 101.7 months, \(p<0.001\); and 20 months

vs not reached (NR), \(p=0.001\), respectively; Figure 2a and 2b) or not (\(p=0.001\) and \(p=0.001\),

respectively; Supplement Figure 2a and 2b). Subgroup analyses showed that the prognostic

significance of **KIAA0125** expression for DFS and OS remained valid in both non-APL and

normal karyotype patients (Figure 2c and 2d).

In multivariable analysis, we included clinically relevant parameters and variables with

a \(p\)-value <0.05 in univariate Cox regression analysis (Supplement Table 4) as covariates,

including age, white blood cell counts at diagnosis, karyotypes, mutation statuses
of \textit{NPM1/FLT3}-ITD, \textit{CEBP\textsubscript{A} double mutations}, \textit{RUNX1}, \textit{MLL}-PTD, and \textit{TP53}, and \textit{KIAA0125} expression. Higher \textit{KIAA0125} expression, either divided by a median (Table 2) or calculated as continuous values (Supplement Table 5), was an independent adverse prognostic factor for DFS ($p<0.001$ and $p<0.001$, respectively) and OS ($p=0.002$ and $p=0.001$, respectively). To verify the prognostication power of the \textit{KIAA0125} expression, we analyzed the expression of \textit{KIAA0125} and its prognostic significance in the TCGA cohort and the GSE12417-GPL96 cohort. Consistent with the findings in the NTUH cohort, patients with higher \textit{KIAA0125} expressions had a significantly shorter OS (12.2 months vs. 27.4 months, $p=0.004$, and 7.8 months vs. 33.3 months, $p<0.001$, respectively, Figure 2e and 2f) than those with lower \textit{KIAA0125} expression in the two external validation cohorts.

\textbf{Biological impacts of \textit{KIAA0125} in AML}

To gain biological insights into the underlying mechanism of unfavorable prognosis related to \textit{KIAA0125} overexpression, we investigated the genes whose expression are strongly correlated with that of \textit{KIAA0125}. Since \textit{KIAA0125} was reported as an LSC marker, we curated several published HSC and LSC signatures from different studies[28-30]. GSEA showed HSC and LSC signatures were all significantly enriched in the patients with higher \textit{KIAA0125} expression in both the NTUH and TCGA cohorts (both $p<0.001$, Figure 3a). We next checked the leading-edge genes whose expression levels were most positively correlated to \textit{KIAA0125} expression in both NTUH and TCGA cohort. Among them, \textit{SPINK2}, \textit{MAP7}, \textit{HOPX}, \textit{MMRN1}, \textit{DNMT3B}, \textit{TCF4}, \textit{SLC38A1}, \textit{DOCK1}, \textit{ARHGAP22}, \textit{MN1}, and 4 genes in the ATP-binding cassette (ABC) superfamily (\textit{ABCG1}, \textit{ABCA2}, \textit{ABCB1}, and \textit{ABCC1}) have been
reported to be associated with poor prognosis or chemoresistance in AML (Figure 3b and Table 3)[9, 31-50].

Discussion

AML cells have abnormal genetic background, either mutations or aberrant expression of specific genes. In recent years, several gene expression scores have been proposed for prognostic prediction of AML patients. We previously developed a 11-gene mRNA expression signature, including \textit{AIF1L}, \textit{CXCR7}, \textit{DNTT}, \textit{GPR56}, \textit{HIF0}, \textit{IFITM3}, \textit{KIAA0125}, \textit{MX1}, \textit{STAB1}, \textit{TM4SF1} and \textit{TNS3}, for prognostication in AML patients[11]. Another group built a six-gene leukemia stem cell (LSC) score with the incorporation of \textit{DNMT3B}, \textit{GPR56}, \textit{CD34}, \textit{SOCS2}, \textit{SPINK2}, and \textit{KIAA0125} expressions for pediatric AML[32]. Recently, Ng et al. proposed a 17-gene LSC score that incorporated expressions of 17 stemness-related genes, including \textit{KIAA0125}, and showed the scoring system was powerful to predict prognosis in AML patients[9]. Among these prognostic-relevant genes, \textit{KIAA0125} is the only non-coding gene and expressed only in the homo sapiens, but not in mice. \textit{KIAA0125} is located on chromosome 14 of the human genome. It was reported to be upregulated in ameloblastoma but shown as a tumor suppressor gene in colorectal cancer[51, 52]. However, its role in tumorigenesis is still largely unknown. In this study, we found that the expression level of \textit{KIAA0125} in BM was significantly higher in AML patients than normal HSC transplant donors. The expression of \textit{KIAA0125} was lower in the mature subtype M3, but higher in more immature subtypes, M0 and M1, compatible with the
finding that it is an LSC-related gene [20]. The similar finding could be seen in the GSE 12662 cohort. Further bioinformatics study also showed highly significant association of KIAAO125 expression with stem cell signatures, either HSC or LSC. We found that expressions of SPINK2, MAP7, HOPX, MMRN1, DNMT3B, TCF4, SLC38A1, DOCK1, ARHGAP22, MN1, and 4 genes in the ATP-binding cassette (ABC) superfamily (ABCG1, ABCA2, ABCB1, and ABCC1), which have been reported to be associated with poor prognosis or chemoresistance in AML, were positively correlated to higher expression of KIAAO125 (Figure 3b and Table 3). HOPX, DOCK1, DNMT3B, MMRN1, and ARHGAP22 genes were reported as important leukemia stem cell markers [9, 34, 35, 37, 42]. Higher SPINK2 expression was associated with poor prognosis in adult and pediatric AML [31, 32]. TCF4 expression could predict outcome in RUNX1-mutated and translocated AML [39, 40]. MN1 overexpression could induce AML in mice and predict ATRA resistance in human AML patients [43, 44]. Current knowledge about the association between these KIAAO125-correlated genes and AML is summarized in Table 3. Interestingly, the expression levels of several ABC transporter genes, including ABCA2, ABCB1, ABCC1, and ABCG1, were also significantly higher in AML patients with higher KIAAO125 expression. The ABC transporter family consists of 48 proteins in subfamilies designated A to G and some of them are known to be associated with multidrug resistance via ATP-dependent drug efflux [45, 46, 49]. ABCB1, ABCC1 and ABCG1 were reported to be responsible for chemoresistance in AML [45, 48]. The translational expression of ABCA2 was shown to be a prognostic marker for drug resistance in pediatric acute lymphoblastic
leukemia[47, 50]. The underlying mechanistic basis of the high correlation of these 4 genes to the expression of KIAA0125 warrants further studies.

To the best of our knowledge, this is by far the first study specifically addressing the expression of IncRNA KIAA0125 and its clinical and biological associations in AML patients. We found that higher KIAA0125 expression were closely associated with RUNX1 and DNMT3A1 mutations in both the NTUH and TCGA cohorts. Patients with higher KIAA0125 expression were more refractory to chemotherapy with a lower CR rate and higher refractory rate (Table 1). They had shorter OS and DFS not only among total cohort, but also in subgroups of patients with non-APL and those with normal karyotype. Based on its important clinical significance, KIAA0125 could be a potential therapeutic target for AML and might give some directives to future work. Further experimental studies are necessary to delineate how KIAA0125 participates in the stem cell biology of hematopoietic lineages and its role in the pathogenesis in AML.
Acknowledgements

We would like to acknowledge the service provided by Department of Laboratory Medicine, Department of Medical Research, and Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital.

Authorship Contributions

YHW and CCL contribute equally to this study. YHW and CCL were responsible for data collection and management, statistical analysis and interpretation, literature research, and manuscript writing; SYH and CYY were responsible for data management and statistical analysis; CLH assisted in statistical analysis; SHL, CHT and HAH was responsible for data collection and management; and WCC and HFT planned, designed, and coordinated the study over the entire period and wrote the manuscript.

Disclosure of Conflicts of Interest

The authors declare that they have no competing interests.

Funding

The study was supported by grants from Ministry of Health and Welfare, Taiwan (project number: MOHW107-TDU-B-211-114009) and Ministry of Science and Technology, Taiwan (project number: MOST 107-2314-B-002-013 and MOST 108-2314-B-002-011).
1. Fatika, A. and I. Bozzoni, Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet, 2014. 15(1): p. 7-21.

2. Wilusz, J.E., H. Sunwoo, and D.L. Spector, Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009. 23(13): p. 1494-504.

3. Kung, J.T., D. Colognori, and J.T. Lee, Long noncoding RNAs: past, present, and future. Genetics, 2013. 193(3): p. 651-69.

4. Mercer, T.R., M.E. Dinger, and J.S. Mattick, Long non-coding RNAs: insights into functions. Nat Rev Genet, 2009. 10(3): p. 155-9.

5. Lin, C. and L. Yang, Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol, 2018. 28(4): p. 287-301.

6. Prensner, J.R. and A.M. Chinnaiyan, The emergence of IncRNAs in cancer biology. Cancer Discov, 2011. 1(5): p. 391-407.

7. Huarte, M., The emerging role of IncRNAs in cancer. Nat Med, 2015. 21(11): p. 1253-61.

8. Cheetham, S.W., et al., Long noncoding RNAs and the genetics of cancer. Br J Cancer, 2013. 108(12): p. 2419-25.

9. Ng, S.W., et al., A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature, 2016. 540(7633): p. 433-437.

10. Metzeler, K.H., et al., An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood, 2008. 112(10): p. 4193-201.

11. Chuang, M.K., et al., An mRNA expression signature for prognostication in de novo acute myeloid leukemia patients with normal karyotype. Oncotarget, 2015. 6(36): p. 39098-110.

12. Wilop, S., et al., A three-gene expression-based risk score can refine the European LeukemiaNet AML classification. J Hematol Oncol, 2016. 9(1): p. 78.

13. Marcucci, G., et al., Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol, 2014. 32(6): p. 548-56.

14. Li, Z., et al., Identification of a 24-gene prognostic signature that improves the European LeukemiaNet risk classification of acute myeloid leukemia: an international collaborative study. J Clin Oncol, 2013. 31(9): p. 1172-81.

15. Arber, D.A., et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016. 127(20): p. 2391-405.

16. Bennett, J.M., et al., Proposals for the classification of the acute leukemias. French-American-British (FAB) co-operative group. Br J Haematol, 1976. 33(4): p. 451-8.

17. Tang, J.L., et al., AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood, 2009. 114(26): p. 5352-61.
18. Chiu, Y.C., et al., Prognostic significance of NPM1 mutation-modulated microRNA-mRNA regulation in acute myeloid leukemia. Leukemia, 2016. 30(2): p. 274-84.

19. Chuang, M.K., et al., A 3-microRNA scoring system for prognostication in de novo acute myeloid leukemia patients. Leukemia, 2015. 29(5): p. 1051-9.

20. Payton, J.E., et al., High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest, 2009. 119(6): p. 1714-26.

21. Metzeler, K.H., et al., An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood, 2008. 112(10): p. 4193-201.

22. Ley, T.J., et al., Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 2013. 368(22): p. 2059-74.

23. Chou, W.C., et al., TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood, 2011. 118(14): p. 3803-10.

24. Chou, W.C., et al., Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood, 2010. 115(14): p. 2749-54.

25. Chou, W.C., et al., Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood, 2010. 116(20): p. 4086-94.

26. Hou, H.A., et al., Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia. Leukemia, 2014. 28(1): p. 50-8.

27. Grimwade, D., et al., Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood, 2010. 116(3): p. 354-65.

28. Epper, K., et al., Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med, 2011. 17(9): p. 1086-93.

29. Ivanova, N.B., et al., A stem cell molecular signature. Science, 2002. 298(5593): p. 601-4.

30. Jaatinen, T., et al., Global gene expression profile of human cord blood-derived CD133+ cells. Stem Cells, 2006. 24(3): p. 631-41.

31. Xue, C., et al., Elevated SPINK2 gene expression is a predictor of poor prognosis in acute myeloid leukemia. Oncol Lett, 2019. 18(3): p. 2877-2884.

32. Elsayed, A.H., et al., A six-gene leukemic stem cell score identifies high risk pediatric acute myeloid leukemia. Leukemia, 2020. 34(3): p. 735-745.

33. Fu, L., et al., High expression of MAP7 predicts adverse prognosis in young patients with cytogenetically normal acute myeloid leukemia. Sci Rep, 2016. 6: p. 34546.
34. Lin, C.C., et al., *Higher HOX expression is associated with distinct clinical and biological features and predicts poor prognosis in de novo acute myeloid leukemia.* Haematologica, 2017. **102**(6): p. 1044-1053.

35. Laszlo, G.S., et al., *Multimerin-1 (MMRN1) as Novel Adverse Marker in Pediatric Acute Myeloid Leukemia: A Report from the Children’s Oncology Group.* Clin Cancer Res, 2015. **21**(14): p. 3187-95.

36. Hayette, S., et al., *High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia.* PLoS One, 2012. **7**(12): p. e51527.

37. Niederwieser, C., et al., *Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia.* Leukemia, 2015. **29**(3): p. 567-75.

38. Wong, K.K., C.H. Lawrie, and T.M. Green, *Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukemia.* Biomark Insights, 2019. **14**: p. 320-332.

39. Gerritsen, M., et al., *RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs.* Blood Adv, 2019. **3**(3): p. 1177271919846454.

40. In’t Hout, F.E.M., et al., *Transcription factor 4 (TCF4) expression predicts clinical outcome in RUNX1 mutated and translocated acute myeloid leukemia.* Haematologica, 2019.

41. Li, Y., et al., *High expression of SLC38A1 predicts poor prognosis in patients with de novo acute myeloid leukemia.* J Cell Physiol, 2019. **234**(11): p. 20322-20328.

42. Lee, S.H., et al., *High expression of dedicator of cytokinesis 1 (DOCK1) confers poor prognosis in acute myeloid leukemia.* Oncotarget, 2017. **8**(42): p. 72250-72259.

43. Heuser, M., et al., *MN1 overexpression induces acute myeloid leukemia in mice and predicts ATRA resistance in patients with AML.* Blood, 2007. **110**(5): p. 1639-47.

44. Heuser, M., et al., *Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex.* Cancer Cell, 2011. **20**(1): p. 39-52.

45. Choi, Y.H. and A.M. Yu, *ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development.* Curr Pharm Des, 2014. **20**(5): p. 793-807.

46. Dean, M., *The genetics of ATP-binding cassette transporters.* Methods Enzymol, 2005. **400**: p. 409-29.

47. Efferto, T., et al., *Expression profiling of ATP-binding cassette transporters in childhood T-cell acute lymphoblastic leukemia.* Mol Cancer Ther, 2006. **5**(8): p. 1986-94.

48. Marzac, C., et al., *ATP Binding Cassette transporters associated with chemoresistance: transcriptional profiling in extreme cohorts and their prognostic impact in a cohort of 281 acute myeloid leukemia patients.* Haematologica, 2011. **96**(9): p. 1293-301.
49. Vasiiliou, V., K. Vasiiliou, and D.W. Nebert, *Human ATP-binding cassette (ABC) transporter family.* Hum Genomics, 2009. **3**(3): p. 281-90.

50. Aberuij, N., et al., *The translational expression of ABCA2 and ABCA3 is a strong prognostic biomarker for multidrug resistance in pediatric acute lymphoblastic leukemia.* Onco Targets Ther, 2017. **10**: p. 3373-3380.

51. Diniz, M.G., et al., *The long noncoding RNA KIAA0125 is upregulated in ameloblastomas.* Pathol Res Pract, 2019. **215**(3): p. 466-469.

52. Yang, Y., et al., *IncRNA KIAA0125 functions as a tumor suppressor modulating growth and metastasis of colorectal cancer via Wnt/beta-catenin pathway.* Cell Biol Int, 2019.
Table 1. Comparison of clinical and laboratory features between AML patients with lower and higher BM KIAA0125 expression

Clinical characters	Total (N=347)	High KIAA0125 (n=174)	Low KIAA0125 (n=173)	P value
Sex				
Male	196	92	104	0.174
Female	151	82	69	
Age*				0.830
	57 (15-91)	58 (18-90)		
Laboratory data*				
WBC, X10^9/L	21.9 (0.38-423)	21.4 (0.38-417.5)	22.38 (0.65-423.0)	0.872
Hb, g/dL	8.1 (3.3-16.2)	8.1 (3.3-13.2)	8.1 (3.7-16.2)	0.959
Platelet, X10^9/L	45 (2-655)	54 (6-655)	41 (2-655)	0.060
Blast, X10^9/L	9.1 (0-369.1)	12.3 (0-345.9)	5.7 (0-369.1)	0.021
LDH (U/L)	917 (202-13130)	892.5 (242-7734)	925 (202-13130)	0.787
FAB classification, n (%)				
M0	6	4 (2.4)	2 (1.2)	0.414
M1	67	48 (28.4)	19 (11.1)	<0.001
M2	109	56 (33.1)	53 (30.8)	0.756
M3	28	3 (1.8)	25 (14.5)	<0.001
M4	103	49 (28.9)	54 (31.4)	0.534
M5	20	6 (3.6)	14 (8.1)	0.063
M6	8	3 (1.8)	5 (2.9)	0.469
Undetermined	6	5	1	0.215
Induction response, n (%)				
CR	165 (72.7)	71 (61.2)	94 (84.7)	<0.001
PR	5 (2.2)	4 (3.4)	1 (0.9)	0.191
Refractory	42 (18.5)	33 (28.4)	9 (8.1)	<0.001
Induction death	15 (6.6)	8 (6.9)	7 (6.3)	0.858
Relapse (%)	72 (31.7)	42 (36.2)	30 (27.0)	0.137

Abbreviations: CR, complete remission; Hb, hemoglobin; HSCT, allogeneic hematopoietic stem cell transplantation; LDH, lactate dehydrogenase; PR, partial remission.

*Median (range).
Table 2. Multivariable analysis for DFS and OS in 227 AML patients who received standard intensive chemotherapy

Variable	DFS HR 95% CI	OS HR 95% CI	P
Age*	1.009 (0.997, 1.021)	1.031 (1.014, 1.047)	<0.001
WBC*	1.004 (1.001, 1.007)	1.005 (1.001, 1.008)	0.009
Karyotype†	1.762 (1.310, 2.369)	1.910 (1.288, 2.833)	<0.001
NPM1/FLT3-ITD‡	0.540 (0.297, 0.981)	0.812 (0.404, 1.634)	0.559
CEBPAdouble	0.423 (0.216, 0.830)	0.253 (0.077, 0.833)	0.024
RUNXI	1.463 (0.841, 2.546)	1.492 (0.763, 2.914)	0.242
MLL-PTD	2.864 (1.346, 6.094)	3.017 (1.136, 8.017)	0.027
TP53	1.691 (0.607, 4.705)	2.798 (0.875, 8.950)	0.083
Higher KIAA0125 expression§	2.609 (1.760, 3.867)	2.226 (1.335, 3.711)	<0.001

Abbreviations: HR, hazard ratios; CI, confidence interval.

* As continuous variable.

† Unfavorable cytogenetics versus others. The classification of favorable, intermediate and unfavorable cytogenetics is based on the refined Medical Research Council (MRC) classification [27]. Favorable:

- t(15;17)(q22;q21), t(8;21)(q22;q22), and inv(16)(p13q22)/t(16;16)(p13q22); unfavorable: abn(3q) (excluding t(3;5)(q25q34)), inv(3)(q21q26)/t(3;3)(q21q26), add(5q)/del(5q), -5, -7, add(7q)/del(7q), t(6;11)(q27;q23), t(10;11)(p1113;q23), other t(11q23) (excluding t(9;11)(p21~22q23) and t(11;19)(q23;p13)), t(9;22)(q34;q11), -17, and abn(17p); and intermediate: entities not classified as favorable or adverse. Seven patients without chromosome data were not included in the analysis.

‡ NPM1+/FLT3-ITD versus other subtypes.

§ High vs. low expression of KIAA0125 (median as cutoff)
Table 3. Summary of the biological functions of the *KIAA0125*-associated genes that have been reported to be associated with prognosis or drug resistance in AML patients and their correlation values with *KIAA0125* in ours and the TCGA cohorts

Genes	Correlation coefficient (p value)	Association with leukemia		
	NTUH	TCGA		
SPINK2	0.661 (3.4E-45)	0.5798 (6.2E-15)	Serine Peptidase Inhibitor; upregulation is associated with poor outcomes in adult patients with AML[31]; integrated into a 6-gene LSC score to identifies high risk pediatric AML[32]	
MAP7	0.653 1.0E-43	0.696 (<E-45)	Microtubule-associated proteins, overexpressed in cytogenetically normal AML patients with dismal outcomes[33]	
HOPX	0.619 (2.6E-38)	0.643 (<E-45)	The smallest homeodomain protein; higher expression predicts poor prognosis in *de novo* AML[34]	
MMRN1	0.609 (9.7E-37)	0.597 (<E-45)	A member of the elastin microfibrillar interface protein; an adverse marker in both pediatric and adult AML[35]	
DNMT3B	0.599 (1.7E-35)	0.631 (<E-45)	DNA methyltransferases; an important LSC marker[36-38]	
TCF4	0.556 (1.1E-29)	0.626 (<E-45)	A transcription factor; predict outcome in *RUNX1* mutated and translocated AML[39,40]	
SLC38A1	0.536 (2.3E-27)	0.585 (<E-45)	A glutamic acid transporter, overexpressed in AML patients with adverse clinical outcomes[41]	
DOCK1	0.530 (1.1E-26)	0.597 (5.9E-16)	A novel class of guanine nucleotide exchange factors; high expression confers poor prognosis in AML[42]	
ARHGAP22	0.519 (1.5E-25)	0.518 (<E-45)	Rho GTPase activating protein, incorporated in the 17-gene LSC score which predicts treatment response in AML[9]	
MN1	0.502 (1.1E-23)	0.565 (<E-45)	A transcriptional coactivator, overexpression could induce AML in mice and predict ATRA resistance in human AML patients[43,44]	
ABCG1	0.504 (6.7E-24)	0.610 (<E-45)	Belongs to ATP-binding cassette (ABC) superfamily, responsible for important chemoresistance mechanism in AML[45-50]	
ABCA2	0.367 (1.5E-12)	0.507 (2.3E-11)	Belongs to ATP-binding cassette (ABC) superfamily, a strong prognostic biomarker for multidrug resistance in pediatric acute lymphoblastic leukemia[45-50]	
ABCB1	0.353 (1.2E-11)	0.364 (5.2E-6)	Belongs to ATP-binding cassette (ABC) superfamily, responsible for important chemoresistance mechanism in AML[45-50]	
ABCC1	0.310 (3.2E-9)	0.458 (5.2E-9)	Belongs to ATP-binding cassette (ABC) superfamily, responsible for important chemoresistance mechanism in AML[45-50]	
Figure legends

Figure 1. Box plots depicting expression levels of KIAA0125 in healthy controls and various AML subgroups.

(a) Patients with AML had significantly higher expression of KIAA0125 than healthy controls; (b) patients who achieved CR after induction chemotherapy had lower expression of BM KIAA0125 at diagnosis than those who did not; and (c, d) patients with AML, M3 had significantly lower expression of KIAA0125 while those with more immature subtype M0 or M1 had significantly higher expression in both NTUH cohort (c) and GSE12662 cohort (d).

Figure 2. Kaplan-Meier survival curves stratified by expression of KIAA0125.

DFS (a) and OS (b) of the 227 AML patients receiving standard chemotherapy in the NTUH cohort; OS of 201 non-APL patients (c) and 110 cytogenetically normal AML patients (d) who received standard treatment in the NTUH cohort; and OS of 141 patients in the TCGA cohort (e) and GSE12417-GPL96 cohort. Patients with higher KIAA0125 expression had worse clinical outcomes than those with lower expression.

Figure 3. GSEA enrichment plots of HSC and LSC signatures and scatter plot of genes positively associated with higher KIAA0125 expression.

(a) GSEA enrichment plots show positive association of higher KIAA0125 expression with HSC and LSC signatures curated from several published reports in both the NTUH and TCGA cohorts; (b) the scatter plot reveals the genes strongly correlated to KIAA0125 expression in both the NTUH and TCGA cohorts (pink). The correlation measurement is based on the Spearman's correlation coefficient between the given gene and KIAA0125. The strongly
correlated genes are defined as their correlation values at top 5% of all genes in both cohorts.
a

NTUH
- LSC signature (reported by Eppard et al)
- HSC signature (reported by Eppard et al)

TCGA
- HSC signature (reported by Ivanova et al)
- HSC signature (reported by Jaatinen et al)

$p < 0.001$

Correlation to KIAA0125 (from pos. to neg.)

b

Correlation to KIAA0125 (TCGA cohort)

Correlation to KIAA0125 (NTUH cohort)