For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover
Temporal changes in species richness of waterfowl (Anseriformes) community in D’Ering Memorial Wildlife Sanctuary, Arunachal Pradesh, India

Tapak Tamir1 & Daniel Mize2

1,2 Department of Zoology (Wildlife Biology Unit), Rajiv Gandhi University, Doimukh, Arunachal Pradesh 791112, India.
1 tapaktamir86@gmail.com (corresponding author), 2 mizezoology@yahoo.co.in

Abstract: We conducted five yearly field surveys to assess long-term changes in the species richness, abundance, and composition of waterfowl populations (Anseriformes) in the D’Ering Memorial Wildlife Sanctuary, a significant staging area on migratory flyways with one of the largest concentrations of waterfowl in Arunachal Pradesh, especially during winter. A total of 8,040 birds belonging to 17 species of Anatidae were recorded, including two threatened species. The most abundant species were Tadorna ferruginea, Anas poecilorhyncha, and Bucephala clangula, with relative abundances of 29%, 10%, and 9.4%, respectively. Species richness was highest in winter (H’ = 2.40; January H’ = 2.43) and lowest in the monsoon (H’ = 1.48; August, H’ = 1.12). Seasonal difference in species richness was noticed for winter visitors, but not for year-round residents. We observed a major declining trend for seven species. Findings from this study can be used for further ecological assessment of the waterfowl community of the sanctuary.

Keywords: Anatidae, Critically Endangered, diversity indices, Near Threatened, Ramsar Site, Vulnerable.
INTRODUCTION

Habitat is a fundamental unifying entity and concept in wildlife ecology and conservation (Block & Brennan 1993), its use and selection vary seasonally, especially for migratory species (Kaminski & Elmberg 2014). Habitat configuration and composition of the landscape affect the occurrence of species and richness (Guadagnin & Maltchik 2007; Mora et al. 2011; Xu et al. 2014; Zhang et al. 2018), and the seasonal distributions of waterbirds are influenced by various conditions like habitat types, climatic conditions, resource stability, and immediate human impact. Availability of water bodies, wetland size, and wetland connectivity positively affect waterfowl species occurrence and richness (Guadagnin & Maltchik 2007; Zhang et al. 2018). There is about 75,819 km² of wetlands in India, which make up 5% of the world’s wetland area (AWB & WWF-India 1993), covering 4.1 million hectares and corresponding to 18.4% of the country’s land area (MoEF 2003). A total of 2,175 wetlands, covering a total area of 1.5 million hectares, are natural, and 65,254 are manmade, with a total area of 2.6 million hectares (Chatrath 1998). At present, 46 sites in India have been designated as wetlands of international importance, especially as waterfowl habitats (Ramsar Sites) covering an area of 1,083,322 hectares (Ramsar Sites Information Service, 2021).

D’Ering Memorial Wildlife Sanctuary (DEMWS) is the only wildlife sanctuary with subtropical forest, grassland, riverine, and inland water body habitats in Arunachal Pradesh, harbouring a variety of waterfowl species and other birds. Birdlife International has declared DEMWS an Important Bird Area (IBA). Covering an area of 190 km², the entire area is a riverine plain criss-crossed by the rivers Siang and Sibia, forming several riverine islands. The sanctuary’s dominant grasses are *Erianthus ravannae*, *Imperata cylindrica*, *Phragmites karka*, *Saccharum spontaneum*, *S. arundinaceum*, & *Neyraudia rennaudiana* and dominant tree species are *Albizia procera*, *Amoora wallichii*, *Bombax ceiba*, *Dalbergia sissoo*, *Daubanga grandiflora*, *Dillenia indica*, *Lagerstroemia speciosa*, & *Terminalia myriocarpa*. The altitudinal gradient of the sanctuary ranges 135–140 m, which gradually decreases from north to south. Within a 10-km radius of the sanctuary are 22 villages with a population of 40,065 (2011 census). The whole sanctuary is surrounded by river water on all sides, making it suitable for various migratory waterfowl.

The term ‘waterfowl’ has been applied to the members of the family Anatidae, popularly known as ducks, geese, swans, and smaller teals (Delacour 1974). The Ramsar Convention, on the other hand, defines waterfowl as birds ‘ecologically dependent on wetlands’, and in the second edition of Wetlands International and Waterfowl Population Estimates, waterfowl was defined more precisely as all species of the 33 families (WI 2002). Among these 33 families, eight families are found in DEMWS (Mize et al. 2014), viz., Phalacrocoracidae, Anhingidae, Ardeidae, Ciconiidae, Anatidae, Charadriidae, Scolopacidae, and Laridae.

Various works done by Osmaston (1922), Singh (1929), Ali (1932), Ghazi (1962), Kannan (1980), Mujumdar (1984), Davidar (1985), Newton et al. (1986), Jhingran (1988), Ghosal (1995), Wadatkar & Kasambe (2002), Kulkarni et al. (2005), and Harney (2014) have studied waterbird communities for seasonal variations in abundance and species composition from different freshwater bodies of India but such study is yet to be unveiled in DEMWS. Only a few studies like population status and distribution of Bengal Florican (Rahmani et al. 1991), the population status of Swamp Francolin (Singh 1995), 113 species of bird including 14 species of waterfowl (Barman 1996), the occurrence of White-winged Wood Duck *Asarcornis scutulata* (Choudhury 1996, 2002), records of 55 species of birds and Near Threatened Cinereous Vulture *Aegypius monachus* (Mize et al. 2016), and recent records of Swamp Grass Babbler *Laticilla cinerascens* (Hussain et al. 2019) had been done here.

As per our preliminary field investigations and interactions with hunters of the villagers residing near the sanctuary area, we have found that waterfowl belonging to the family Anatidae (ducks, geese, and swans, hereinafter ‘waterfowl’) are frequently hunted for meat and traded by them. Considering this vital information and the significance of DEMWS, an effort has been made to investigate the long-term temporal changes, species richness, and species abundance of the waterfowl (Anseriformes) community in DEMWS. This information will be useful for better understanding the underlying mechanisms of how seasonal variation affects different migratory species of waterfowl in the sanctuary, so that targeted conservation strategies can be developed. The study will also add to the existing information on the previous checklist of birds of DEMWS and stimulate interest in waterfowl watching, which will help the wildlife division and researchers.
STUDY AREA AND METHODS

Study Area

The study was carried out in the D’Ering Memorial Wildlife Sanctuary (DEMWS) in the East Siang District of the state of Arunachal Pradesh, northeastern India. The sanctuary area is divided into three managerial ranges, namely, the Anchalghat Range, the Sibiamukh Range, and the Borguli Range (Figure 1). It is located at latitudes ranging from 27.850–28.083 N and longitudes from 95.366–95.483 E. In terms of topography, 80% of the sanctuary is grassland, with the remaining being riverine forest patches with mixed bamboo and secondary forests. The region has climatic conditions that are subtropical with average temperature variations of 5 °C during winter to 45 °C during summer and comprises four seasons, taking mean climatic conditions into account, viz., pre-monsoon (March–May), monsoon (June–August), post-monsoon (September–November), and winter (December–February). The lowest rainfall occurs in January with an average of 41.80 mm, and the highest rainfall occurs in July with an average of 1,433.20 mm.

Field Surveys

Five-year field surveys were carried out from March 2015 to February 2020, dividing the year into four seasons. For the waterfowl survey, a modified point count method—vantage points counts—was used (Bhupathy et al. 1998). A total of 15 vantage points were designated, covering the whole of the Anchalghat Range and Sibiamukh Range of DEMWS, based on the best visibility of the site from where the fixed-area was scanned for waterfowl flocks (Figure 1). Due to logistical constraints, the Borguli Range of the Sanctuary was excluded for the study. Each vantage point was visited at least once every month on foot on days with suitable weather, avoiding rainy days because rain interferes with visibility (Ralph et al. 1993). Twenty minutes were spent at each vantage point recording waterfowl in the water or on the shoreline and its vicinity using binoculars (8 × 56 and Olympus 10 × 50); almost 65% of our observations were photo-documented with a DSLR camera (NIKON, D5200 with 70–300 mm lens). Waterfowl species were identified following Grimmett et al. (2011) and Ali & Ripley (1995); and we followed the classification used in the checklist of the birds in the Oriental Region, Oriental Bird Club (Inskipp et al. 2001) for species’ systematic position (order, family), common name, and scientific name. A Garmin GPS device with a mobile app was used to record the locations for conducting the waterfowl survey at that particular sampling vantage point.
point. Waterfowl were found active the most after sunrise to midmorning and before sunset; therefore, the timing was adjusted depending on the day length of the seasons, viz., late sunrise in winter and post-monsoon observation was done (0600–1100 h) and (1400–1630 h) and early sunrise in pre-monsoon and monsoon observation was done (0500–1000 h) and (1430–1730 h). The count period covered all the seasons, but the most extensive data was collected in the years 2018–2020, and less frequent counts occurred in 2015–2017, when counts were not able to cover all three months of the monsoon seasons due to heavy rainfall and heavy floods along the Siang River, as already mentioned in the study area.

Data Analysis

The relative abundance of a species is its percentage among all species utilising the same habitat (Simon & Okoth 2016; Walag & Canencia 2016; James et al. 2017). By assessing the relative abundance of species, one can identify the most common or rare species in a given area. The relative abundance (%) of waterfowl species was determined using the following formula:

$$\text{Relative Abundance} = \frac{n_i}{N} \times 100$$

Where, n_i = total number of waterfowl of each species and N = total numbers of waterfowl of all species detected in DEMWS following (Bibby et al. 2000; Hubbell 2001; McGill et al. 2007).

Strictly regarding study area, based on presence or absence of species throughout the study periods, we have distinguished four categories of relative seasonal occurrence and residential status of waterfowl as: (a) year-round residents—waterfowl recorded throughout the year; (b) winter visitors—waterfowl recorded in abundance during winter seasons; (c) monsoon migrants—species that occur only during the monsoon; and (d) passage migrants—waterfowl that stay for a short time in the sanctuary during the study period. The abundance status of the recorded waterfowl species was established, viz., common (C), fairly common (FC), uncommon (UC), and rare (RA), based on frequency of sighting following (Kumar & Gupta 2009). The conservation status and global trend were assessed according to IUCN (2021). The diversity indices were determined as follows: Simpson’s diversity index (1-D) (Simpson 1949), Shannon-Wiener index for alpha diversity (Shannon & Weiner 1949), Margalef index for species richness (Margalef 1958), and Pielou’s evenness index for species evenness (Pielou 1966): Simpson’s diversity index (1-D): was calculated using the formula

$$D = \frac{1}{\sum(P_i^2)}$$

Where D= Simpson’s index

P_i= total proportion of each species in sample

Shannon-Wiener index: Measures the average diversity of a sample and is given by equation:

$$H' = -\sum P_i \ln(P_i)$$

Where H'= Shannon-Wiener index

P_i= total proportion of each species in sample

Margalef’s diversity index: M is calculated by using the formula

$$M = \frac{(S - 1)}{\ln N}$$

Where, M = Margalef’s diversity index

S= number of species

N= number of individuals

Pielou’s evenness index: Measures evenness with which individuals were distributed among the species.

$$J = \frac{H'}{\ln S}$$

Where S= number of observed species

H'= Shannon-Wiener index

All survey data were compiled using Microsoft Excel Version 2010. The yearly observations and diversity index data were pooled together within four seasons to test the seasonal pattern of the waterfowl assemblage in DEMWS. The data was further subjected to non-parametric Kruskal-Wallis tests with subsequent post-hoc Tukey’s HSD (Honestly Significant Difference) tests, performed separately to determine the seasonal difference between species richness across all the seasons in DEMWS as well as between year-round residents, winter visitors, monsoon migrants, and passage migrants. Statistical tests were computed using PAleontological STatistics Version 4.03. All statistical tests were set at a significance level of $p <0.05$.

RESULTS

During the five-year study in DEMWS, we have recorded 8,040 birds of waterfowl belonging to 17 species of the family Anatidae of the Order Anseriformes at a rate of 1,608 birds per year (Table 1, Image 1–12). The most abundant species are Ruddy Shelduck *Tadorna ferruginea*, followed by Indian Spot-billed Duck *Anas poecilorhyncha* and Common Goldeneye *Bucephala clangula*, with relative abundances of 28.96%, 10.24%, and 9.38%, respectively (Table 1). The relative seasonal and residential status of different waterfowl species
Temporal changes in waterfowl community in D’Ering Memorial WS

Table 1. Checklist and status of waterfowl found in DEMWS from March 2015–February 2020.

Common name	Species (Scientific name & authors)	IUCN status	Relative abundance	Residental status	Abundance status	Global trend
1 Baer’s Pochard	Aythya baeri (Radder, 1863)	CR	2.28%	WV	RA	Dec
2 Common Goldeneye	Bucephala clangula (Linnaeus, 1758)	LC	9.38%	WV	FC	Stable
3 Goosander	Mergus merganser orientalis (Gould, 1845)	LC	2.95%	YRR	FC	Unknown
4 Common Pochard	Aythya ferina (Linnaeus, 1758)	VU	5.00%	WV	UC	Dec
5 Common Teal	Anas crecca (Linnaeus, 1758)	LC	4.40%	WV	UC	Unknown
6 Cotton Pygmy-goose	Nettapus coromandelianus (J.F. Gmelin, 1789)	LC	2.40%	WV	RA	Stable
7 Ferruginous Duck	Aythya nyroca (Güldenstädt, 1770)	NT	4.76%	WV	UC	Dec
8 Fulvous Whistling-duck	Dendrocygna bicolor (Vieillot, 1816)	LC	0.37%	PM	RA	Dec
9 Gadwall	Mareca strepera (Linnaeus, 1758)	LC	6.60%	WV	FC	Inc
10 Indian Spot-billed Duck	Anas poecilorhyncha (J.R. Forster, 1781)	LC	10.24%	YRR	C	Dec
11 Lesser Whistling-duck	Dendrocygna javanica (Horsfield, 1821)	LC	0.87%	MM	RA	Dec
12 Mallard	Anas platyrhynchos (Linnaeus, 1758)	LC	6.28%	YRR	C	Inc
13 Northern Pintail	Anas acuta (Linnaeus, 1758)	LC	4.29%	YRR	C	Dec
14 Red-breasted Merganser	Mergus serrator (Linnaeus, 1758)	LC	0.39%	WV	RA	Stable
15 Red-crested Pochard	Netta rufina (Pallas, 1773)	LC	6.69%	WV	FC	Unknown
16 Ruddy Shelduck	Tadorna ferruginea (Pallas, 1764)	LC	28.96%	YRR	C	Unknown
17 Tufted Duck	Aythya fuligula (Linnaeus, 1758)	LC	4.14%	WV	UC	Stable

Total 17 Species

Total 100.00%

Legends: IUCN—International Union for Conservation of Nature | LC—Least Concerned | NT—Near Threatened | VU—Vulnerable | CR—Critically Endangered | YRR—Year Round Resident | WV—Winter Visitor | MM—Monsoon migrant | PM—Passage Migrants | C—Common | FC—Fairly common | UC—Uncommon | RA—Rare | Inc—Increasing | Dec—Decreasing | Unk—Unknown

revealed that 10 species (59%) were winter visitors, five species (29%) were year-round residents, one species (6%) was a monsoon migrant, and one species (6%) was a passage migrant (Figure 2). The waterfowl species richness was highest in January ($H^* = 2.43$) and lowest in August ($H^* = 1.12$) (Figure 3). Similarly, the overall seasonal species richness is highest in winter ($H^* = 2.40$) and lowest in the monsoon ($H^* = 1.48$) (Figure 4). The Shannon-Weiner species richness index was highest in winter ($H^* = 2.398$) and lowest in the monsoon ($H^* = 1.483$), but the Simpson dominance index and Margalef species richness index were highest in the pre-monsoon (1-D= 0.8817) and (M= 2.024), respectively, and lowest in the monsoon (1-D= 0.7371) and (M= 0.8138), respectively, whereas Pielou’s evenness index was highest in the monsoon (J= 0.7343) and lowest in the post-monsoon (J= 0.5744), showing the high temporal variations of various diversity indices. The present study shows an increasing trend in the yearly total population of waterfowl (Figure 6), and a major declining trend of population of seven species (Figures 7 & 8). The non-parametric Kruskal-Wallis test results in no significant seasonal variation in species richness of year-round resident waterfowl (Kruskal-Wallis test: $K = 7.769$, $df= 3$, $p= 0.051$), which remains almost similar throughout the study period. On the other hand, a significant seasonal difference was noticed in the case of winter visitors (Kruskal-Wallis test: K= 16.65, $df= 3$, $p < 0.05$). The Fulvous Whistling Duck *Dendrocygna bicolor* was the only passage migrant species that was observed only in May in a very small population. Similarly, the sanctuary’s only single monsoon migrant, the Lesser Whistling Duck *Dendrocygna javanica* has been observed mostly during June, with the largest flock of 20 in 2015. The number of winter visitors significantly increased in October–November (post-monsoon season), reached its peak in January (winter) and then sharply declined in the pre-monsoon (Figure 5). The results of the Tukey’s HSD post-hoc tests using the Lund-Lund (1983) procedure also revealed that the species richness of year-round residents varies insignificantly (Table 2), whereas the species richness of winter visitors varies significantly ($p < 0.05$) (Table 3). The Tukey’s HSD Multiple Comparison test among all seasons also shows significant at $p < 0.05$; winter vs pre-monsoon ($p= 0.000591$), winter vs monsoon ($p= 0.000225$), and winter vs post-monsoon ($p= 0.000465$) (Table 4).
Figure 2. Comparison of percentage of residential and local abundance status of waterfowl in DEMWS from March 2015–February 2020.

Figure 3. Monthly trend of diversity indices of waterfowl in DEMWS from March 2015–February 2020.

Figure 4. Diversity indices of waterfowl in different season in DEMWS from March 2015–February 2020.

Table 2. Tukey’s HSD multiple comparison test among all season of YRR (p < 0.05).

	Pre-monsoon	Monsoon	Post-monsoon	Winter
Pre-monsoon	0.9608	0.9997	0.000591	
Monsoon	0.6948	0.9788	0.000225	0.000591
Post-monsoon	0.1343	0.5604	0.000465	
Winter	5.952	6.647	6.087	

Table 3. Tukey’s HSD multiple comparison test among three season of WV (p < 0.05, significant in bold).

	Pre-monsoon	Post-monsoon	Winter
Pre-monsoon	0.998	1.000	0.225
Monsoon	0.269	0.990	0.165
Post-monsoon	0.160	0.429	0.268
Winter	2.845	3.114	2.685

Table 4. Tukey’s HSD multiple comparison test among all season (p < 0.05, significant in bold).

	Pre-monsoon	Monsoon	Post-monsoon	Winter
Pre-monsoon	0.9149	0.000131		
Monsoon	0.5692	0.000128		
Post-monsoon	8.492	9.061		

Figure 5. Monthly Population variation of YRR & WV in DEMWS from March 2015–February 2020.
DISCUSSION AND CONCLUSION

The results showed the presence of 17 species of waterfowl (Anseriformes) in DEMWS. This includes the first-time reports of three species from DEMWS: Baer’s Pochard *Aythya baeri*, Fulvous Whistling Duck *Dendrocygna bicolor*, and Red-breasted Merganser *Mergus serrator*. These species were not reported from the sanctuary by early observations (e.g., Rahmani et al. 1991; Singh 1995; Barman 1996; Choudhury 1996, 2002; Mize et al. 2014; Hussain et al. 2019). The other 13 species were already recorded and cited earlier (Barman 1996; Borang 2013; Mize et al. 2014). The present study shows high temporal changes in the waterfowl community, as shown in the results. In contrast to the increasing trend of the total population of waterfowl in the study area (Figure 6), there is a major declining trend among the seven species of waterfowl (Figure 6). This includes one Critically Endangered species Baer’s Pochard *Aythya baeri*, Common Merganser *Mergus merganser*, Common Pochard *Aythya ferina*, Fulvous Whistling Duck *Dendrocygna bicolor*, Lesser Whistling Duck *Dendrocygna javanica*, Red-breasted Merganser *Mergus serrator*, and Red-crested Pochard *Netta rufina*. Year-wise records of declining waterfowl populations are provided in Figure 7.

Globally, 28% of all assessed species are threatened with extinction (IUCN 2021), confirming the importance of monitoring species’ abundance. Baer’s Pochard *Aythya baeri*, Common Pochard *Aythya ferina* and Ferruginous Pochard *Aythya nyroca* are the Critically Endangered, Vulnerable and Near Threatened waterfowl species, respectively, recorded in DEMWS (IUCN 2021). Baer’s Pochard was classified as vulnerable in 1994 but, following an assessment that probably fewer than 1,000 individuals remained, it was listed as Endangered in 2008 (Wang et al. 2012). It was upgraded to Critically Endangered (BirdLife International 2021). The largest flock of 30 birds was observed in January 2016. The last observation was flocks of six birds diving almost 2 km away from the observer near the Sibiamukh range in February 2020. Baer’s Pochard is extremely difficult to find anywhere in its range (Richard et al. 2013) hence, this observation needs attention from the scientific world as this globally threatened bird has a serious contraction in wintering distribution and is heading for extinction in the wild (Chowdhury et al. 2012; Wang et al. 2012; Richard et al. 2013). The Common Pochard *Aythya ferina* a globally threatened waterfowl breeds largely in freshwater to the south of the tundra region across the Palearctic, from Iceland to the steppe lakes of Mongolia and the Daurian region (Kear 2005). However, due to rapid population decline across the majority of the range, it has therefore been uplisted to Vulnerable (BirdLife International 2021). During the study periods, a total of 400 adult individuals...
were observed, i.e., 2015–16 (129 individuals), 2016–17 (95 individuals), 2017–18 (68 individuals), 2018–19 (62 individuals), and 2019–20 (46 individuals). The largest flock of 52 was seen in January 2016 and the last record was a pair of adults in February 2020. Ferruginous Pochard is a winter visitor to the Indian subcontinent and has been subjected to a variety of human-induced disturbances for a long time (Islam 2003). During the second half of the 20th century, its population underwent a global, large, long-term decline due to habitat destruction and hunting (BirdLife International 2021). The species is not only listed as Near Threatened, but it is a priority species across four prominent international conservation treaties: the European Union Bird Directive, the Bern Convention, the
Bonn Convention, and the African Eurasian Migratory Waterbird Agreement (Robinson & Hughes 2003). During the study periods, a total of 383 adult individuals were observed, i.e., 2015–16 (61 individuals), 2016–17 (66 individuals), 2017–18 (77 individuals), 2018–19 (82 individuals), and 2019–20 (97 individuals). The largest flock of 38 was seen in January 2020.

Throughout the five years of waterfowl surveys in the sanctuary, we did not encounter the White-winged Duck *Asarcornis scutulata*, an endangered species recorded earlier from the sanctuary (Barman 1996; Choudhury 1996, 2002). There have been no sighting records of this waterfowl in the sanctuary for the last eight years, the last being November 2012 (Mize et al. 2014). However, this bird has been reported from various locales including Nameni National Park, Assam (Saikia & Saikia 2011; Das & Deori 2012); Pakke Tiger Reserve, Arunachal Pradesh (Selvan et al. 2013); in Hollongapar Gibbon Sanctuary, Assam (Sharma et al. 2015); at Hkakabo Razi Landscape, Kachin State, Myanmar (Lin et al. 2018). Although we made an extra effort to locate this waterfowl in suitable areas by following (Saikia & Saikia 2011), it was in vain. Field staff reports and the extent of suitable habitat in the study area suggest that this species is perhaps not seen in DEMWS, as all the suitable habitat for this waterfowl has been destroyed by the frequent flooding of Siang Rivers and changing watercourses.

Long-term monitoring of population numbers, population structure, and demographic rates improves our understanding of the biological reasons for population trends (Nichols 1991; Thomas & Martin 1996). DEMWS seems an important staging place on migratory flyways and has one of the highest populations of waterfowl in Keoladeo National Park, Bharatpur. Journal of the Bombay Natural History Society 95: 287–294.

REFERENCES

Ali, S. & S.D. Riple (1995). A Pictorial Guide to the Birds of the Indian Subcontinent. 2nd Edition (Updated). Bombay Natural History Society and Oxford University Press, Mumbai, 183 pp.

Ali, S. (1932). Flowers-birds and birds-flowers in India. Journal of the Bombay Natural History Society 35(5): 573–605.

AWB & WWF-India (1993). Directory of Indian Wetlands. Published by WWF-India, New Delhi & Asian Wetland Bureau. Kuala Lumpur, 264pp.

Barman, R. (1996). Birds of D’Ering Memorial Wildlife Sanctuary, Arunachal Pradesh. Newsletter for Birdwatchers 36(3): 47–49.

Bhupathy, S., R. Mathur & V.S. Vijayan (1998): Population ecology of migratory waterfowl in Keoladeo National Park, Bharatpur. Journal of the Bombay Natural History Society 95: 287–294.

Bibby, C.J., N.D. Burgess, D.A. Hill & S. Mustoe (2000). Bird Census Techniques, 2nd Edition. Academic Press, London, 302pp.

BirdLife International (2021). IUCN Red List for birds. Downloaded from http://www.birdlife.org on 30 September 2021.

Block, W.M. & L.A. Brennan (1993). The habitat concept in ornithology: theory and applications. Current Ornithology 11: 35–91.

Borang, A. (2013). Checklist and Status of Birds of Arunachal Pradesh in Eastern Himalayas: Bulletin of Arunachal Forest Research 28 & 29 (1 & 2):19–54.

Chatrath, K.J.S. (1998). The challenge of Chilka, pp. 135–159. In: Wetlands of India, Ashish Publishing House New Delhi, 200pp.

Choudhury, A.U. (1996). Survey of White-winged Wood Duck and Bengal florican in Tinsukia district and adjacent areas of Assam and Arunachal Pradesh. Rhino Foundation for Nature, Guwahati, Assam.

Choudhury, A.U. (2002). Conservation of the White-winged Wood Duck *Cairina scutulata* in India, pp. 228. In: Rahmani, A.R. & G. Ugra (ed.). Birds of Wetlands and Grasslands. Proceedings of the Salim Ali Centenary Seminar on Conservation of Avifauna of Wetlands and Grasslands. Bombay Natural History Society, Mumbai.

Chowdhury, S.U., A.C. Lees & P.M. Thompson (2012). Status and distribution of the endangered Baer’s Pochard *Aythya baeri* in Bangladesh. Forktail 28: 57–61.

Das, N. & S. Deori (2012). Occurrence of White-Winged Wood Duck (*Cairina Scutulata*) in Nameni National Park, Assam. India Bird Populations 11:7–13.

Davidar, P. (1985). Ecological interactions between the mistletoes and their avian pollinators in south India. Journal of the Bombay Natural History Society 82: 45–60.

Delacour, J. (1974). Similitudes and differences of the Indian and Indochinae avifaunas. Journal of the Bombay Natural History Society 71: 452–5.

Ghazi, H.K. (1962). Piscivorous birds of Madras. Madras Journal of fisheries 1(1): 106–107.

Ghosal, D.N. (1995). Avifauna of conservation areas, No. 7, Fauna of Kanha Tiger Reserve. Zoological Survey of India (ZS), Calcutta.

Grimmert, R., C. Inskipp & T. Inskipp (2011). Birds of the Indian Subcontinent Oxford, 528 pp.

Guadagnin, D.L. & L. Maltchik (2007). Habitat and landscape factors associated with Neotropical waterbird occurrence and richness in wetland fragments. Biodiversity Conservation 16(4): 1231–1244.

Harney, N.V. (2014). Avifaunal diversity of Ghotnimbala Lake near Bhadravati, Chhindwara, Madhya Pradesh, India. *International Journal of Life Science* 2(1): 79–83.

Hubbell, S.P. (2001). A Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, 392pp.

Hussain, M.F., A. Sarkar & M.M Hussain (2019). Swamp Grass Babblers *Laticilla cinerascens* and the importance of D’Ering Memorial Wildlife Sanctuary, Arunachal Pradesh, India, for its conservation. *Birding Asia* 31:70–72.

Inskipp, T., A. Lindsey & W.A. Duckworth (2000). Checklist of the birds of the oriental region. Oriental Bird Club. Downloaded on 02 December 2021.

Islam, Z.U. (2003). Ferruginous Duck in India, pp. 104–113. In: Petkov
Temporal changes in waterfowl community in D’Ering Memorial WS

N., B. Hughes & U. Gallo-Ori (eds.). *Ferruginous Duck: From Research to Conservation*. Birdlife International, RSPB & TWSG, Sofia.

IUCN (2021). The IUCN Red List of Threatened Species. Version 2021–2. Downloaded on 02 December 2021.

James, A.O., D. Emmanuel & A.Y. Bright (2017). Diversity and abundance of bird species in Mole National Park, Damongo, Ghana. Journal of Natural Sciences Research 7(12): 20–33.

Jhingran, V.G. (1988). *Fish and fisheries of India*. Hindustan Publishing cooperation, New Delhi, 664 pp.

Kaminski, R.M. & J. Elmberg (2014). An introduction to habitat use and selection by waterfowl in the northern hemisphere. *Wildfowl* 4(Special Issue): 9–16.

Kannan, P. (1980). Nectar-feeding adaptation of flowerbirds. *Journal Bombay Natural History Society* 75(Suppl.): 1036–1050.

Kear, J. (2005). *Ducks, Geese and Swans*. Bird families of the World. Oxford: University Press. 908pp.

Kulkarni, A.N., V.S. Kanwate & V.D. Deshpande (2005). Status of Wetlands of India. Final Technical Report. MoEF (2003).

Lin, O.S.S., M. Kyaw, K. Meyers & S.C. Renner (2018).

Newton, P.N., S. Breeden & G.J. Norman (1986).

Nichols, J.D. (1991). Extensive monitoring programmes viewed as long term population studies: the case of North American waterfowl. *Ibis* 133(1): 89–98.

Osmaston, B.B. (1922). A bird of Pachmari. *Journal Bombay Natural History Society* 28: 453–459.

Pielew, E.C. (1966). The measurement of diversity in different types of biological collections. *Journal of Theoretical Biology* 13: 131–144.

Rahmani, A.R., G. Narayan, L. Rosalind, R. Sankaran & U. Ganguli (1991). Status of the Bengal floricorn *Houbaropsis bengalensis* in India. *Journal of the Bombay Natural History Society* 88(3): 349–375.

Ralph, C.J., G.R. Geupel, P. Pyle, T.E. Martin & D.F. DeSante (1993). Handbook of field methods for monitoring Landbirds, p. 41. In: U.S. Department of Agriculture General Technical Report PSW-GTR, Albany, California, 144 pp.

Ramsar Sites Information Service (2021). The List of Wetlands of International Importance. Downloaded on 26 November 2021.

Richard, H., T. Xudong & H. Geoff (2013). A species in serious trouble: Baer’s Pochard *Aythya baeri* is heading for extinction in the wild. *Birding ASIA* 19: 63–67.

Robinson, J.A. & B. Hughes (2003). The global status and distribution of the Ferruginous Duck. *Ferruginous Duck: from research to conservation*. Birdlife International, RSPB and TWSG, Sofia.

Saikia, P.K. & M.K. Saikia (2011). Present distribution, status, and ecology of White-winged Wood Duck and Hornbills in Nameri National Park, considering the tropical forest disturbances of Assam. Zoo’s Print 26(11): 1–11.

Selvan, K.M., S. Lyndoh, B. Habib & G.V. Gopi (2013). A photographic record of the White-winged Wood-duck *Asarcornis scutulata* from Pakke Tiger Reserve, Arunachal Pradesh, India. *Indian BIRDS* 8(4): 96–97.

Sharma, C.E. & W. Weaver (1949). *The Mathematical Theory of Communication*. University of Illinois Press, Urbana, 117 pp.

Sharma, N., S. Sengupta, D. Boruah, N. Bhuyan, D. Borah, L. Saikia & G. Saikia (2015). White-winged Duck *Asarcornis scutulata* in Hollongapar Gibbon Sanctuary, Assam, India. *Indian BIRDS* 10(5): 121–123.

Simon, G.S. & E.O. Okoth (2016). Species richness and abundance of birds in and around Nimule National Park, South Sudan. *Science Letter* 4(1): 92–94.

Simpson, E.H. (1949). Measurement of diversity. *Science* 163: 688. https://doi.org/10.1308/163688a0

Singh, P. (1995). Occurrence of Swamp Pratincole *Francolinus gularis* (Temminck) in Arunachal Pradesh. *Journal of the Bombay Natural History Society* 92(3): 419.

Singh, T.C.N. (1929). A preliminary note on the pollination of the coral tree (*Erythrina indica* Lamk.). *Journal of the Bombay Natural History Society* 33: 460–462.

Thomas, L. & K. Martin (1996). The importance of analysis method for breeding bird survey population trend estimates. *Conservation Biology* 10(2): 479–490.

Wadatkar, J.S. & R. Kasambe (2002). Checklist of Birds from Pohara-Malkhedi reserve forest, District Amravati, Maharashtra. *Zoo’s Print Journal* 17(6): 807–811.

Waglar, A.M. & M.O. Canencia (2016). Physico-chemical parameters and macrobenthic invertebrates of intertidal zone of Gusa, Cagayan de Oro City, Philippine. *Advances in Environmental Sciences* 8(1): 71–82.

Wang, X., M. Barter, L. Cao, J. Lei & A.D. Fox (2012). Serious contractions in wintering distribution and decline in abundance of Baer’s Pochard *Aythya baeri*. *Bird Conservation International* 22(2): 121–127. https://doi.org/10.1017/S0959570912000214

Wetlands International (2002). *Waterbird Population Estimates* 3rd edition. Wetlands International, the Netherlands, 226 pp.

Xu, C., Z.Y. Huang, T. Chi, B.J. Chen, M. Zhang & M. Liu (2014). Can local landscape attributes explain species richness patterns at macroecological scales? *Global Ecology and Biogeography* 23(4): 436–445. https://doi.org/10.1111/geb.12108

Zhang, W., X. Li, L. Yu & Y. Si (2018). Multi-scale habitat selection by two declining East Asian waterfowl species at their core spring stopover area. *Ecology Indicator* 18(7): 127–135. https://doi.org/10.1016/j.ecolind.2017.12.035
Article

Distribution, diet, and trophic level of Arvicanthis abyssinicus and Tachoryctes splendens around the area of recently extinct Ethiopian Wolf Canis simiensis on Mount Guna, northwestern Ethiopia

– Hirapa Teressa, Wondimu Ersino & Tadele Alemayo, Pp. 20539–20549

Communications

Seasonal composition of avian communities in different habitats of Harike Wetland, a Ramsar site in Punjab, India

– Jagdeep Singh & Onkar Singh Bhraip, Pp. 20550–20565

Temporal changes in species richness of waterfowl (Anseriformes) community in D’Ering Memorial Wildlife Sanctuary, Arunachal Pradesh, India

– Tapak Tamir & Daniel Milz, Pp. 20566–20575

Reptilian assemblages in the wetlands of Amboli hill complex, northern Western Ghats, Maharashtra, India during the monsoon season

– Sachinkumar R. Patil & Kiran Choudaj, Pp. 20576–20583

Butterfly diversity and composition at Chemerong Amenity Forest, Terengganu, Malaysia

– Muhammad Hafiz Sulaiman, Abdul Munir Mohd Zaki, Geok Chin Yap, Nur Atiqah Aniruddin & Ju Lian Chong, Pp. 20584–20596

Ecological niche modeling for reintroduction and conservation of Aristolochia catharticar Hook.f. & Thomson (Aristolochiaceae), a threatened endemic plant in Assam, India

– Bhaskar Sarma & Bhaben Tanti, Pp. 20597–20605

New host plant records of Fig Wax Scale Ceroplastes rusci (Linnaeus, 1758) (Hemiptera: Coccomorpha: Coccidae) from India

– Arvind Kumar & Renu Pandey, Pp. 20606–20614

Seasonal variations influencing the abundance and diversity of plankton in the Swarnamukhi River Estuary, Nellore, India

– Krupa Ratnam, V.P.Limna Mol, S. Venkatnarayanan, Dilip Kumar Jha, G. Dharani & M. Prashanthi Devi, Pp. 20615–20624

Short Communications

First record of Prosoponoides Millidge & Russell-Smith, 1992 (Araneeae: Linphyphidae) from India, with the description of a new species

– Anumitha Dornichan & K. Sunil Jose, Pp. 20625–20630

Rediscovery of Platerus pilcher Distant (Hemiptera: Reduviidae), a forgotten assassin bug from India, with comments on its range extension

– H. Sankararaman, Anubhav Agarwal, Valérie A. Lemaître & Hemant V. Ghate, Pp. 20631–20636

First Indian DNA barcode record for the moth species Pygospila tyres (Cramer, 1780) (Lepidoptera: Crambidae: Spilomelinae) distributed in Asia and Australia

– Aparna S. Kalawate, A. Shabnam & K.P. Dinesh, Pp. 20637–20642

First record and description of female Onomarchus leuconotus (Cramer, 1780) (Hemiptera: Reduviidae), a threatened assassin bug from India, with comments on its range extension

– Zakir Hussain Najar, Bilal A. Bhat & Riyaz Ahmad, Pp. 20648–20653

New records of odonates (Insecta: Odonata), Archibasis oscillans Selys, 1877 and Merogomphus tamaracherriensis Fraser, 1931 from Maharashtra, India

– Akshay Dalvi & Yogesh Koli, Pp. 20648–20653

A checklist of dragonflies & damselflies (Insecta: Odonata) of Kerala, India

– Sujith V. Gopalan, Muhammed Sherif & A. Vivek Chandran, Pp. 20654–20665

Notes

First photographic evidence of Asiatic Black Bear Ursus thibetanus in Kaziranga Tiger Reserve, India

– Priyanka Borah, Jyotish Ranjan Dekha, Mujahid Ahamad, Rabindra Sharma, Ruchi Badola & Syed Anil Hussain, Pp. 20666–20671

First record of Small Minivet Pericrocotus cinnamomeus (Aves: Passeriformes: Campephagidae) from Kashmir, India

– Zakir Hussain Najar, Bilal A. Bhat & Riyaz Ahmad, Pp. 20680–20682

Cotesia anthelea (Wilkinson, 1829) (Hymenoptera: Braconidae) a natural parasitoid of Cirrochroa thais (Fabricius, 1787) (Lepidoptera: Nymphalidae), first report from the Oriental region

– Ankita Gupta & P. Manoj, Pp. 20683–20685

Melastoma imbricatum Wall. ex Triana (Melastomataceae): a new addition to the flora of Manipur, India

– Rajkumari Jashmi Devi, Deepashree Khuralajam, Peimichon Langkan & Biseshwori Thongam, Pp. 20686–20688

Geodorum laxiflorum Griff. (Orchidaceae), a new distribution record for Maharashtra state of India

– Ashish Ravindra Bhoyar, Swapnil Nandgawe, Syed Abrar Ahmed & Saduram Madavi, Pp. 20689–20691

Photographic record of Armillaria mellea a bioluminescent fungi from Lonavala in Western Ghats, India

– Swandam R. Patil & Shubham V. Yadav, Pp. 20692–20694

Response & Reply

Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)

– Pandi Karthik, Pp. 20695–20697

Reply to the “Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)” by Karthik

– S.R. Chandramouli, R.S. Naveen, S. Sureshmarimuthu, S. Babu, P.V. Karunakaran & Honnavalli N. Kumara, Pp. 20698–20700

Book Review

Conservation Kaleidoscope: People, Protected Areas and Wildlife in Contemporary India

– L.A.K. Singh, Pp. 20701–20702

Publisher & Host

Threatened Taxa