Screening of cytoprotector against methotrexate-induced cytogenotoxicity from bioactive phytochemicals

Shaobin Gu, Ying Wu, Jianbo Yang

As one of well known anti-neoplastic drugs, the cytogenotoxicity of methotrexate (MTX) has received more attention in recent years. To develop new cytoprotector to reduce the risk of second cancers caused by methotrexate, umu test combined with micronucleus assay was employed to estimated cytoprotective effects of ten kinds of bioactive phytochemicals and their combinations. The results showed that allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones owned higher antimutagenic activities than other phytochemicals. At the highest dose tested, the MTX genetoxicity was suppressed by 34.03%~67.12%. Of all the bioactive phytochemical combinations, the combination of grape seed proanthocyanidins and eleutherosides from siberian ginseng as well as green tea polyphenols and eleutherosides exhibited stronger antimutagenic effects, the inhibition rate of methotrexate-induced genotoxicity separately reached 74.7 ± 6.5 % and 71.8 ± 4.7%. Pretreatment of Kunming mice with phytochemical combinations revealed a significant reduction in micronucleus and sperm abnormality rate following exposure to MTX (p<0.01). Moreover, obvious increases in thymus and spleen indices were observed in cytoprotector candidates treated groups. The results indicated that bioactive phytochemicals combinations owned potentials to be used as new cytoprotectors.
Title: Screening of cytoprotector against methotrexate-induced cytogenotoxicity from bioactive phytochemicals

Author: Shaobin Gu\(^1,2\), Ying Wu\(^1,3\), Jianbo Yang\(^4\)

Institution: \(^1\)Department of Bioengineering, College of Food and Bioengineering, Henan University of Science and Technology, Postcode 471023, Luoyang, People’s Republic of China.
\(^2\)Luoyang Engineering and Technology Research Center of Microbial Fermentation, Postcode 471023, Luoyang, People’s Republic of China.
\(^3\)Henan Engineering Research Center of Food Material, Postcode 471023, Luoyang, People’s Republic of China.
\(^4\)Rice Research Institute, Anhui Academy of Agricultural Science, Postcode 230031, Hefei, People’s Republic of China.

Corresponding author: Dr. Shaobin Gu
E-mail: shaobingu@haust.edu.cn
Address: College of food and bioengineering, Henan University of Science and Technology, No.263, Kaiyuan Ave., Luoyang, People’s Republic of China.
Postcode: 471023.
Tel.: +86-379-64283053;
Fax: +86-379-64282342;

Abstract

As one of well known anti-neoplastic drugs, the cytogenotoxicity of methotrexate (MTX) has received more attention in recent years. To develop new cytoprotector to reduce the risk of second cancers caused by methotrexate, umu test combined with micronucleus assay was employed to estimated cytoprotective effects of ten kinds of bioactive phytochemicals and their combinations. The results showed that allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones owned higher antimutagenic activities than other phytochemicals. At the highest dose tested, the MTX genetoxicity was suppressed by 34.03%~67.12%. Of all the bioactive phytochemical combinations, the combination of grape seed proanthocyanidins and eleutherosides from siberian ginseng as well as green tea polyphenols and eleutherosides exhibited stronger antimutagenic effects, the inhibition rate of methotrexate-induced genotoxicity separately reached 74.7 ± 6.5 % and 71.8 ± 4.7%. Pretreatment of Kunming mice with phytochemical combinations revealed an obvious reduction in micronucleus and sperm abnormality rate following exposure to MTX (p<0.01). Moreover, significant increases in thymus and spleen indices were observed in cytoprotector candidates treated groups. The results indicated that bioactive phytochemicals combinations owned potentials to be used as new cytoprotectors.
Key words: cytoprotector; methotrexate; phytochemical; umu test

Introduction

Methotrexate (MTX) is one of the most intensively investigated and effective chemotherapeutic agents by inhibiting dihydrofolate reductase, resulting in depletion of tetrahydrofolate. However, the genotoxic effects of MTX have been reported in the somatic cells employing chromosome aberration and micronucleus test as the end points of evaluation (Choudhury et al. 2004). A present study has confirmed that MTX induced cytotoxic and genotoxic effects in the germ cells (Padmanabhan et al. 2008). Furthermore, MTX-treated RA patients have an increasing incidence of melanoma, non-Hodgkin's lymphoma, and lung cancer (Buchbinder et al. 2008). And, MTX chemotherapy for gestational trophoblastic tumors and acute lymphoblastic leukemia really increases the risk of second tumors (Schmiegelow et al. 2009). Being a structural analogue of folic acid (FA), MTX competes with the normal substrate FA for the binding site on dihydrofolate reductase (DHFR) which is the critical enzyme involved in the synthesis of essential DNA precursors such as thymidylates and purines. Suppression of DHFR leads to depletion of tetrahydrofolates which are required for the synthesis of purines and thymidilate and thereby perturb the DNA synthesis (Aggarwal et al. 2006). Another hand, the deficiency of folates induced by MTX interfering in the folate metabolism is often accompanied with genotoxic damage including strand breaks, chromosomal abnormalities, extensive incorporation of uracil in place of thymine into the DNA, defective DNA repair, anomalous DNA methylation patterns and increased somatic mutation rates (Vinson et al., 2002; Branda et al. 2001; Knock et al. 2008; Kapiszewska et al. 2005; Branda et al. 2007). In addition, Coleshowers’s work indicated that MTX causes oxidative stress by reducing the activities of superoxide dismutase, catalase and glutathione reductase (Coleshowers et al. 2010). Gressier et al. demonstrated that MTX increases the amount of hydrogen peroxide and other free radicals which may lead to toxicity thus accelerating the rate of cellular damage (Gressier et al. 1994). Several studies suggested that oxidative stress in the pathogenesis of MTX-induced damage play an important role in the various organs (Vardi et al. 2012). Thus, the development of efficient protective agents against methotrexate-induced cytogenotoxicity has attracted more and more attention.

In recent years, a number of natural plant products have been investigated as cytoprotectors to defend normal cells from the damage induced by MTX. Horie et al. reported that aged garlic extract could protect IEC-6 cells from the MTX-induced intestinal damage (Horie et al. 2006). Verschaeye et al. found that apricot and β-carotene treatment could alleviate the impairment of oxidative stress and ameliorate MTX-induced intestine damage (Verschaeye & Van Staden 2008). Chang et al. showed that MTX-induced apoptosis of IEC-6 cells could be repressed by the pre-treatment of lutein (Chang et al. 2013). Daggulli et al. observed that carvacrol significantly reduced deleterious effects of MTX on testicular tissue (Daggulli et al. 2014). Vardi et al demonstrated that chlorogenic acid treatment may protect the impairment of oxidative stress and ameliorate MTX-induced cerebellar damage in rats (Vardi et al. 2012). It appears that proanthocyanidin from Vitis vinifera can protect the small intestine of rats and inhibits methotrexate-induced oxidative stress (Gulgun et al. 2010). There is evidence indicated that grape seed extract could ameliorate the MTX-induced oxidative injury in the rat liver (Cetin et al. 2008). Contrasting with garlic, apricot, Origanum onites L. panax ginseng, chlorogenic acid , proanthocyanidin and American ginseng, cytoprotective effect of those bioactive phytochemicals against methotrexate-induced cytogenotoxicity has been reported rarely, such as Eleutherosides (Siberian ginseng root), Gingerols (ginger root), Ginkgo flavone (ginkgo leaf), Ginsenosides (ginseng root), Polyphenols (green tea), Polysaccharides (reishi mushroom), and Isoflavones (soybean). Actually, ginger phenolic compounds exhibited potential antioxidant properties, moderate activity against xanthine oxidase, monoamine oxidase-A and α-glucosidase, and protection of PC-12 and primary rat liver cells against H₂O₂-induced damage (Peng et al. 2012). Ginkgo flavonoids might protect against apoptosis of hippocampal neurons through inhibiting death receptor pathway or mitochondrial pathway underTNF-α background (Gao et al. 2015). Ginsenoside can increase the activities of antioxidant enzymes such as T-SOD and GSH-Px and decrease the level of lipid peroxidation such as TBARS and protein carbonyl to block oxidative pathways (Zhao et al. 2011). Green tea polyphenols can protect against oxidative stress/damage and bladder cell death (Coyle et al. 2008). The antimutagenic and antioxidant properties of mushrooms polysaccharides have been also reported in many literatures (Delmanto et al. 2001; Kozarski et al. 2011; Wang et al. 2015). The antioxidant ability of soybean isoflavone is well known. However, most of the previous studies are focused on the cytoprotection of individual plant extracts or combined with other agents, such as β-carotene and...
quercetin. Studies on the protective potentials of various bioactive phytochemicals against MTX-induced damage, such as siberian ginseng eleutherosides, chrysanthemum chlorogenic acid, ginger gingerols, grape seed proanthocyanidins, green tea polyphenols and so on, especially plant extract combinations have received less attention. To develop more efficient protective agent against MTX-induced cytogenotoxicity, cytoprotective activity of ten different extracts and some extracts combinations were evaluated in vivo and in vitro tests. The combination of grape seed proanthocyanidins and eleutherosides from siberian ginseng as well as green tea polyphenols and eleutherosides owned potentials to be used as new cytoprotectors.

Materials and methods

Materials

S. typhimurium TA1535/pSK1002 was kindly provided by Dr. Yoshimitsu Oda (Osaka Prefectural Institute of Public Health, Osaka, Japan). 4-NQO was used as a positive control. DMSO served as control and solvent. All bioactive phytochemicals (Chrysanthemum Chlorogenic Acid, Garlic Allicin, Ginger root Gingerols, Ginkgo leaf flavone, Ginseng root Ginsenosides, Grape seed Proanthocyanidins, Reishi mushroom Polysaccharides, Siberian Ginseng root Eleutherosides, Soybean Isoflavones) were purchased from Changsha Active Ingredients Group Inc (China). The purity of tested compounds was more than 95%. Kunming specific pathogen-free mice (4-6 weeks old, average body weight 19 ± 2 g) were provided by the Henan Laboratory Animal Center. License number: SCXK (Yu) 2005-0001. The present study was conducted in accordance with the principles outlined in the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Umu test

To investigate protective effects of ten phytochemical compounds and their combinations against MTX induced Genotoxicity, umu test was applied in the study. Doses of phytochemical compounds refer to the recommended dosage of Pharmacopoeia of the People's Republic of China (2010 English Edition). According to the compatibility theory of traditional Chinese medicine (li 2011), pairwise combinations of phytochemical compounds with cytoprotective effects were prepared by dissolving two plant extracts in DMSO solvent. The active ingredient content of each phytochemical compound is 1 mg / ml in the plant extract combinations. The umu test was performed according to the method of Oda (Oda et al., 1985). The induction units (IU) of β-galactosidase activity, was calculated according to the following equation:

\[IU = 1000 \left(\frac{A_{500} - 1.75 \times A_{450}}{25 \times 0.1 \times A_{600}} \right) \]

Induction ratio (R) was calculated according to the following equation:

\[R = \frac{\text{sample IU}}{\text{control IU}} \]

Assay of bone marrow micronucleus and indices of thymus, spleens in mice

The total of 32 mice were randomly divided into four groups with eight each group (4 males and 4 females). The combination of bioactive phytochemicals was prepared by dissolving the two bioactive phytochemicals in DMSO, later diluted it with distilled water to an active ingredient content of 50 mg L\(^{-1}\) for each bioactive phytochemical. The combination of bioactive phytochemicals was administered one week prior to the MTX exposure. Treatment group I: mice were given a combination of green tea polyphenols and eleutherosides from Siberian ginseng (0.2 ml/10 g.W, i.e. once daily) for 15 days, and a single dose of MTX (2 mg kg\(^{-1}\), i.e. once daily) was added on the 8th day. Treatment group II: mice were given a combination of grape seed proanthocyanidins and eleutherosides from Siberian ginseng for 15 days, and MTX was administered on the 8th day in a similar manner. Model group: animals received distilled water instead of bioactive phytochemicals combinations for 15 days and the same MTX protocol applied to this group on the 8th day. Control group: mice were given distilled water through 15 days and physiological saline instead of MTX was administered on the 8th day in a similar manner. Twelve hours after the final doses, the animals were euthanized by cervical dislocation.

The micronucleus assay was performed according to the method of Schmid (Schmid, 1975). Femurs were removed from the animals, bone marrow extracted with fetal calf serum and maintained at 37°C. The material was homogenized, transferred to a centrifuge tube and centrifuged at 1,000 × g for 5 minutes. The supernatant was discarded and samples were prepared with the remaining cells. Then, samples were allowed to air dry and 24 hours later they were fixed in absolute methanol during 5 minutes. After staining with 2% Giemsa stain diluted with distilled water. Slides were coded and from dry slides about 1500 tinge blue coloured polychromatic erythrocytes were scanned from each animal, and the incidence of micronuclei in polychromatic (PCEs) and normochromatic (NCEs) erythrocytes were counted.
The micronucleus assay is internationally recognized as the standard method to detect mutagenicity of chemicals. In order to assess the protective effects of the candidate cytoprotectors against the genotoxicity caused by MTX, micronucleus assay was employed in the next trial. With administration of the candidate plant extract combinations, the data of bone marrow polychromatic erythrocyte micronucleus test in mice exposed to MTX were presented in Fig.4. Whether male or female, there were statistically significant increases (p<0.01) in the frequency of micronucleus. The other mutagenic tests, such as Thymus or spleen index, were determined to evaluate the effect of individual and combination of bioactive phytochemicals on cell protective agent candidates. Table 1 showed the results of thymus or spleen index in mice exposed to MTX. It was observed that the thymus or spleen index reduced by 17.5%~71.8% when the MTX concentration reached 100mg L⁻¹. The thymus or spleen index of the combination of grape seed proanthocyanidins and eleutherosides from siberian ginseng as well as eleutherosides and isoflavones showed stronger antimutagenic activities than other five kinds of plant extracts. The statistical analysis was performed using t-test (SPSS 13.0 for Windows). A p value of less than 0.05 was deemed as significant.

Evaluation of the antimutagenic potentials of cytoprotector candidates by micronucleus test

To ensure the reliability of screening results of cell protective agent from bioactive phytochemicals plant extracts and avoid the interference on genetic toxicity test from the growth inhibition effect, it is necessary to select the appropriate concentration of MTX in SOS/umu test. Our previous study suggested that growth inhibition of S. typhimurium TA1535/pSK1002 was clearly observed while the concentration of MTX above 100mg L⁻¹. Herein, we investigated the genotoxicity of MTX within the concentration range of 0-100 mg L⁻¹. Fig.1 showed that the dose-response relationship between umu gene expression level and MTX genotoxicity wasn’t linear relationship. Before the MTX concentration approached 50 mg L⁻¹, R value has already reached the platform. This result is similar to the kinetics of induction of the umu operon by mitomycin C in S. typhimurium NM2009 (Oda et al. 1995). In order To ensure the reliability of screening results of cell protective agent from plant extracts, 50mg L⁻¹ MTX was chosen in subsequent SOS/umu test.

Effects of ten different plant extracts on umu gene expression in Salmonella typhimurium TA1535/pSK1002 exposed to MTX were shown in Fig.2. It was demonstrated that allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones showed stronger antimutagenic activities than other five kinds of plant extracts. At the highest dose tested, the MTX genotoxicity was inhibited by 34.03%~67.12%. Subsequently, the pairwise combinations of the five bioactive phytochemicals with antimutagenic activities were prepared by dissolving two plant extracts in DMSO solvent. The concentration of effective components of each extracts reached 1g L⁻¹. According to the above methods, antimutagenic activity of various combinations of plant extracts was determined by umu test. Antimutagenic potential of plant extract combinations were illustrated in Fig.3. Of all the plant extract combinations, the combination of grape seed proanthocyanidins and eleutherosides from siberian ginseng as well as green tea polyphenols and siberian ginseng extract exhibited higher cytoprotective activity. The inhibition rate of methotrexate-induced genotoxicity separately reached 74.7 ± 6.5 % and 71.8 ± 4.7%. The both combinations of plant extracts were selected as cell protective agent candidates, and the cytoprotective effects of candidates would be subsequently assessed by micronucleus test and sperm malformation test in vitro.

diabetes mellitus (NCEs) erythrocytes was counted and the PCEs/NCEs ratios were scored. The thymus and spleen indices were assayed according to the method (Zhang et al., 2003) and calculated as follows:

thymus or spleen index = thymus or spleen weight/body weight × 1000.

Sperm Deforomity Test in mice

Twenty-four male mice were randomly divided into four groups with six each group. MTX and the combination of bioactive phytochemicals were administered into the body by using the above-mentioned methods. Twelve hours after the final doses, the mice were sacrificed by cervical dislocation to get the bilateral epididymis. The sperm was spread on a slide glass and stained with 1% Eosine Y for 45 min after which the slides were air dried. 1000 sperm cells of mice were assessed for morphological abnormalities under oil immersion at × 1,000 magnification. Sperm head morphology was scored under the category of normal, sperm without hook, amorphous head, banana head and triangular head.

Statistical analysis

Values are presented as means ± standard deviation (SD). The data were analyzed for statistical significance using t-test (SPSS 13.0 for Windows). A p value of less than 0.05 was deemed as significant.

Results

Screening of cytoprotector derived bioactive phytochemicals based on SOS/umu test

To ensure the reliability of screening results of cell protective agent from bioactive phytochemicals plant extracts and avoid the interference on genetic toxicity test from the growth inhibition effect, it is necessary to select the appropriate concentration of MTX in SOS/umu test. Our previous study suggested that growth inhibition of S. typhimurium TA1535/pSK1002 was clearly observed while the concentration of MTX above 100mg L⁻¹. Herein, we investigated the genotoxicity of MTX within the concentration range of 0-100 mg L⁻¹. Fig.1 showed that the dose-response relationship between umu gene expression level and MTX genotoxicity wasn’t linear relationship. Before the MTX concentration approached 50 mg L⁻¹, R value has already reached the platform. This result is similar to the kinetics of induction of the umu operon by mitomycin C in S. typhimurium NM2009 (Oda et al. 1995). In order To ensure the reliability of screening results of cell protective agent from plant extracts, 50mg L⁻¹ MTX was chosen in subsequent SOS/umu test.

Effects of ten different plant extracts on umu gene expression in Salmonella typhimurium TA1535/pSK1002 exposed to MTX were shown in Fig.2. It was demonstrated that allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones showed stronger antimutagenic activities than other five kinds of plant extracts. At the highest dose tested, the MTX genotoxicity was inhibited by 34.03%~67.12%. Subsequently, the pairwise combinations of the five bioactive phytochemicals with antimutagenic activities were prepared by dissolving two plant extracts in DMSO solvent. The concentration of effective components of each extracts reached 1g L⁻¹. According to the above methods, antimutagenic activity of various combinations of plant extracts was determined by umu test. Antimutagenic potential of plant extract combinations were illustrated in Fig.3. Of all the plant extract combinations, the combination of grape seed proanthocyanidins and eleutherosides from siberian ginseng as well as green tea polyphenols and siberian ginseng extract exhibited higher cytoprotective activity. The inhibition rate of methotrexate-induced genotoxicity separately reached 74.7 ± 6.5 % and 71.8 ± 4.7%. The both combinations of plant extracts were selected as cell protective agent candidates, and the cytoprotective effects of candidates would be subsequently assessed by micronucleus test and sperm malformation test in vitro.

Evaluation of the antimutagenic potentials of cytoprotector candidates by micronucleus Test

The micronucleus assay is internationally recognized as the standard method to detect mutagenicity of chemicals. In order to assess the protective effects of the candidate cytoprotectors against the genotoxicity caused by MTX, micronucleus assay was employed in the next trial. With administration of the candidate plant extract combinations, the data of bone marrow polychromatic erythrocyte micronucleus test in mice exposed to MTX were presented in Fig.4. Whether male or female, there were statistically significant increases (p<0.01) in the frequency
of micronucleated polychromatic erythrocytes and ratio of polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) in model group and control group. But, the treatment of the candidate cytoprotectors markedly restrained the incidence of mice bone marrow micronucleus, and improved the ratio of PEC and NEC. Furthermore, there were significant difference between treatment groups and model group ($p<0.01$). In terms of the inhibition of micronucleus formation, the combination of grape seed proanthocyanidins and eleutherosides from siberian ginseng was superior to the combination of green tea polyphenols and eleutherosides. Meanwhile, the two treatment groups did not cause differences between male and female mice. It could be considered that the two combinations had promising effects on suppression of MTX-induced micronuclei in mice bone marrow cells.

Influence of cytoprotector candidates on reproductive toxicity induced by MTX

To investigate whether the combinations of bioactive phytochemicals treatment could strengthen or weaken the reproductive toxicity induced by MTX, sperm tests had been adopted. The method is one reliable and easy way to detect reproductive toxicity. In this study, the kinds of abnormal sperm in any group were mainly no hooks, amorphous, bananas and triangular head heads. As could be seen from Fig.5, the incidence of mouse sperm head deformity of treatment groups had no significant difference from that of the control ($p>0.05$). Significant differences could be observed between the treatment groups and model groups ($p<0.01$). The summary of no hooks and amorphism heads in model accounted up to 90% of the total sperm head morphology, significantly higher than that of control group and treatment group. The results illustrated that the two combinations of bioactive phytochemicals may alleviate the reproductive toxicity caused by MTX. Compared with the model group, the percentage of different types of abnormal sperm showed significant difference. The percent of Lack hook, Amorphous, Banana-like and triangular in Treatment I were 39.9%, 47.2%, 9.8% and 3.1%, respectively. In the case of sperm aberration, the result of the Treatment II was closes to the data of control group. It seemed that cytoprotective activities of proanthocyanidins and eleutherosides combination were superior to that of polyphenols and eleutherosides.

Influence of cytoprotector candidates on immune organ indices

As cytoprotector candidates, the effect of two combinations of bioactive phytochemicals on thymus and spleen indices of mice exposed to MTX was shown in Fig.6. The thymus and spleen indices were similar between control and the treatment groups in both male and female mice. MTX exposure reduced thymus and spleen indices of mice. Kawai reported that MTX could markedly decrease white blood cells, thymic and splenic lymphocytes at dose ≥ 5 mg/kg (Kawai, 2014). But, there was a significant difference between the treatment plus control group and the model group ($p<0.01$). The combination of grape seed proanthocyanidins and siberian ginseng eleutherosides obviously diminished the effects of MTX exposure on indices of thymus and spleens in mice. And, the increase of spleens index in the treatment of grape seed proanthocyanidins and siberian ginseng eleutherosides combination was higher than that of green tea polyphenols and siberian ginseng eleutherosides combination administration. Our findings implied that the two combinations of bioactive phytochemicals not only could affect the immune organ indices of experimental animal Kunming mice, but also could effectively relieve the immune toxicity caused by MTX.

Discussion

The effective estimating for antimutagenic properties of bioactive phytochemicals includes the bacterial gene mutation assay (Ames test (Verschaeye and Van Staden, 2008; Horn and Vargas, 2003), mammalian cell culture benzo(a)pyrene metabolism assay (Cassady et al., 1988), the mammalian cell gene mutation assay (Mersch-Sundermann et al., 2004), and the in vitro micronucleus assay (Serpeloni et al., 2008). Compared with animal-cell-based systems, microbe-based assays for screening cytoprotectors present several advantages, such as the simplicity of the procedures, the relatively short time needed to obtain results, and cost-effective. Nevertheless, except for Ames test, there are few reports in the literature describing the studies of evaluation for antimutagenic properties of bioactive phytochemicals by umu test so far. In this study, we selected a short term bacterial test systems, umu test, to evaluate antimutagenic potential of plant extracts. According to above results, it was deduced that the umu test own the ability to assess antimutagenic activity of plant extracts. Moreover, based on comparison of umu test results (486 chemicals) with Ames test (274 compounds) as well as rodent carcinogenicity data (179 compounds), Reifferscheid and Heil found good agreement between umu test and Ames test results (Reifferscheid & Heil 1996). Thus umu test could be developed an effective high-throughput screening assay to evaluate antimutagenic potential of phytochemicals same as Ames test and comet assay.

Natural plant medicine is an important resource to develop new cytoprotectors. Cytoprotective effects of many
bioactive phytochemicals have been proved in the past several decades. Isoflavones from soybean seeds have showed antimutagenic activity in *S. typhimurium* TA1535/pSK1002 and TA100 (Miyazawa et al., 1999). Garlic extract has been proved that it could reduce apoptotic cell injury induced by MTX. It should be noted that garlic was most popular supplement in U.S. households (Amagase et al., 2001). Meanwhile, polyphenols from green tea (Chinese Gunpowder and Japanese Sencha) exhibited high antimutagenic activity in the Ames test as well as in *S. cerevisiae D7* test. Moreover, in the peripheral blood lymphocytes method reduced number of abberant cells as well as decreased number of chromosome breaks was observed using both green tea extracts (Bunkova et al., 2005).

What's more, grape seed extract played a role in attenuating the genotoxicity induced by cisplatin (Attia et al., 2008). Contrasting with allin, proanthocyanidins, polyphenols and isoflavones, chlorogenic acid, proanthocyanidin and American ginseng, cytoprotective effect of those bioactive phytochemicals against methotrexate-induced cytogenotoxicity has been reported rarely, such as Siberian ginseng Eleutherosides, ginger Gingerols, Ginkgo flavone, ginseng Ginsenosides, mushroom Polysaccharides, and soybeam Isoflavones. Our results suggested that allin, proanthocyanidins, polyphenols, eleutherosides and isoflavones showed stronger antimutagenic activities than other five kinds of plant extracts. Moreover, it was demonstrated results single eleutherosides and its combinations with proanthocyanidins, polyphenols had strong antimutagenic effect. As well known that the detrimental effects of MTX was partly due to its direct toxic action by increasing reactive oxygen species production, although the exact mechanisms of methotrexate-induced toxicity had not yet been elucidated to date (Oktem, 2006). Coleshowers’s work indicated that MTX causes oxidative stress by reducing the activities of superoxide dismutase, catalase and glutathione reductase (Coleshowers et al. 2010). Gressier et al. demonstrated that MTX increases the amount of hydrogen peroxide and other free radicals which may lead to toxicity thus accelerating the rate of cellular damage (Gressier et al. 1994). Several studies have well confirmed the contribution of oxidative stress in the pathogenesis of MTX-induced damage in the various organs (Vardi et al. 2012). It is supposed that the oxidative stress induced by MTX was reduced and the cell damage caused by free radical accumulation was alleviated owing to potential antioxidant activity of the grape seed proanthocyanidins, green tea polyphenols, soybean isoflavone and Siberian gingseng eleutherosides. Gulgun et al demonstrated that proanthocyanidin from *Vitis vinifera* can inhibits methotrexate-induced oxidative stress (Gulgun et al. 2010). Yu et al found that a polyphenol-rich Herb (*Scutellariae radix*) ingestion increased the systemic exposure and mean residence time of MTX via modulation on efflux transporters multidrug resistance–associated protein 2 and breast cancer resistance protein (Yu et al. 2016). Chiang et al observed that the coadministration of Pueraria lobata root decoction (an isoflavone-rich herb) significantly decreased the elimination and resulted in markedly increased exposure of MTX in rats (Chiang et al. 2005). Recently, it was proved that eleutherosides (as one kind of polyphenols) were promising chemical substances with antioxidant properties. Substantially, grape seed proanthocyanidins, green tea polyphenol, soybean isoflavone and Siberian ginseng eleutherosides belong to the members of polyphenols which have strong antioxidant capacity. In this radical scavenging mechanism, polyphenols sacrificially reduce ROS/RNS, such as ‘OH, O$_2^\cdot$’, NO’, or OONO’ after generation, preventing damage to biomolecules or formation of more reactive ROS (Perron and Brumaghim, 2009). Previous research found that water extract of Siberian ginseng showed significant antioxidant activity and protective effect against oxidative DNA damage induced by H$_2$O$_2$ (Park et al., 2006). Moreover, the methanol extract of root, stem, and leaf of *Eleutherococcous senticosus* showed inhibitory effects on the mutagenicity induced by 2-AF or Trp-P-1 in *S. typhimurium* TA98 (Park et al., 2002). Therefore, we inferred that the cytoprotector candidates may play a key role in attenuating the methotrexate-induced cytogenotoxicity due to their antimutagenic and antioxidant activity.

In addition, the previous study had proved that MTX could bring out the reproductive toxicity (Padmanabhan et al., 2008). MTX treatment significantly reduced the sperm count and increased the occurrence of sperm head abnormalities. However, the administration of phytochemicals combinations to Kunming specific pathogen-free mice appeared clearly decreases in sperm abnormality rate in the case of MTX exposure. Akram et al (2012) ever reported that American ginseng extract treatment exhibited therapeutic effects on sperm parameters in rats treated with Cyclophosphamide (CP), which is an antineoplastic agent and immunosuppressive medicine in the treatment of various types of tumors, and autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis (Tripathi and Jena, 2009). Moreover, ginseng has been demonstrated to have a cytoprotective effects against these toxins, in which administration of *Panax ginseng* extract was reported to markedly decrease the 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced pathological and genotoxic damages in rat testes (Lee et al., 2007). Recent studies had confirmed that green tea and soybean extracts showed protective effects against reproductive toxicity induced by CP. Fahmy et al (2014) found a significant decrease in the percentage of sperm abnormalities in orally administrated soybean extracts. Zanchi et al (2015) demonstrated that polyphenols improved CP-induced...
damage on reproductive system, and its effect is probably due to high concentrations of catechins and antioxidant activity.

Although some evidence suggested that Siberian ginseng may not stimulate immune function (Wang et al. 2003), it has been indicated that polyphenols from green tea and grape seed proanthocyanidin have apparent immunomodulatory effects. Sheikhzadeh found that decaffeinated green tea in lower doses of administration could enhance the immunity of rainbow trout (Sheikhzadeh et al. 2011). The dietary administration of green tea supplementation positively raises the cellular immune responses and disease resistance of kelp grouper Epinephelus bruneus to Vibrio carcariae (Harikrishnan et al. 2011). Tong et al (2011) demonstrated that grape seed proanthocyanidins (GSPs) could improve functional activation of the immune system, and the antitumor effects of GSPs were achieved by immunostimulating properties. Our findings implied that the two combinations of phytochemical compounds not only could affect the immune organ indices of experimental animal Kunming mice, but also could effectively relieve the immune toxicity caused by MTX. According to the above results, it can be deduced that the combination of grape seed proanthocyanidins and Siberian ginseng eleutherosides as well as green tea polyphenols and eleutherosides was able to weaken the reproductive toxicity induced by MTX.

Conclusions

In this study, we developed an effective screening assay to evaluate antimutagenic potential of bioactive phytochemicals based on umu assay coupled with micronucleus test. Allicin, proanthocyanidins, polyphenols, eleutherosides and isoflavones showed higher antimutagenic activity than other phytochemicals. Moreover, of all the bioactive phytochemicals combinations, the combination of proanthocyanidins and eleutherosides as well as polyphenols and eleutherosides obtained higher cytoprotective effects. In the case of MTX exposure, the administration of the two combinations of bioactive phytochemicals to Kunming mice presented clearly decreases in micronucleus induction and sperm abnormality rate. Moreover, obvious increases in thymus and spleen indices were observed in cytoprotector candidates treated groups. The results implied that phytochemicals combination of proanthocyanidins, eleutherosides and polyphenols could be used as new cytoprotectors.

Acknowledgments

We are grateful to Dr. Yoshimitsu Oda for generous gifts of S. typhimurium TA1535/pSK1002.

References

Aggarwal P, Naik S, Mishra KP, Aggarwal A, Misra R. 2006. Correlation between methotrexate efficacy & toxicity with C677T polymorphism of themethylenetetrahydrofolate gene in rheumatoid arthritis patients on folate supplementation, Indian Journal of Medical Research 124: 521-526.

Akram H, Ghaderi Pakde F, Ahmadi A, Zare S. 2012. Beneficial effects of american ginseng on epididymal sperm analyses in cyclophosphamide treated rats. Cell Journal 14:116-121.

Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. 2001. Intake of garlic and its bioactive components. The Journal of Nutrition 131: 955S-962S.

Attia, S.M. Helal, G.K. Abd-Ellah, M.F. Mansour, A.M. El-sayed, E.-SM. 2008. The effects of oral grape seed extract on Cisplatin-induced cytogenotoxicity in mice. Saudi Pharmaceutical Journal 16: 161-167.

Branda RF, O’Neill JP, Brooks EM, Powden C, Naud SJ, Nicklas JA. 2007. The effect of dietary folic acid deficiency on the cytotoxic and mutagenic responses to methyl methanesulfonate in wild-type and in 3-methyladenine DNA glycosylase-deficient Aag null mice. Mutation Research, 615:12-17.

Branda RF, O’Neill JP, Brooks EM, Trombley LM, Nicklas JA. 2001. The effect of folate deficiency on the cytotoxic and mutagenic responses to ethyl methanesulfonate in human lymphoblastoid cell lines that differ in p53 status. Mutation Research, 473:51-71.

Buchbinder RI, Barber M, Heuzenroeder L, Wluka AE, Giles G, Hall S, Harkness A, Lewis D, Littlejohn G, Miller MH, Ryan PF, Jolley D. 2008. Incidence of melanoma and other malignancies among rheumatoid arthritis patients treated with methotrexate. Arthritis Rheum 59:794-799 DOI: 10.1002/art.23716.

Bunkova R, Marova I, Nemec M. 2005. Antimutagenic properties of green tea. Plant Foods for Human Nutrition 60:25-29.

Cassady JM, Zennie TM, Chae YH, Ferin MA, Portuondo NE, Baird WM. 1988. Use of a mammalian cell culture benzo(a)pyrene metabolism assay for the detection of potential anticarcinogens from natural products: inhibition of metabolism by biochanin A, an isoflavone from Trifolium pratense L. Cancer Research 48:6257-6261.
Chang CJ, Lin JF, Chang HH, Lee GA, Hung CF. 2013. Lutein protects against methotrexate-induced and reactive oxygen species-mediated apoptotic cell injury of IEC-6 cells. PLoS One 8:e72553. DOI: 10.1371/journal.pone.0072553.

Chiang HM, Fang SH, Wen KC, Hsiu SL, Tsai SY, Hou YC, Chi YC, Chao PD. 2005. Life-threatening interaction between the root extract of Pueraria lobata and methotrexate in rats. Toxicology and Applied Pharmacology, 209: 263-268.

Choudhury RC, Palo AK. 2004. Modulatory effects of caffeine on methotrexate-induced cyto genotoxicity in mouse bone marrow. Environmental Toxicology and Pharmacology 15:79-85 DOI: 10.1016/j.etap.2003.10.001.

Coleshovers CL, Oguntibeju OO, Ukpong M, Truter JE. 2010. Effects of methotrexate on antioxidant enzyme status in a rodent model. Medical Technology Sa, 24:5-9.

Coyle CH, Philips BJ, Morrisroe SN, Chancellor MB, Yoshimura N. 2008. Antioxidant effects of green tea and its polyphenols on bladder cells. Life Sciences, 83: 12-18.

Daggulli M, Dede O, Utangac MM, Bodakci MN, Hatipoglu NK, Penbegul N, Sancahtukta AA, Bozkurt Y, Türkü G, Yüksel H. 2014. Protective effects of carvacrol against methotrexate-induced testicular toxicity in rats. International Journal of Clinical and Experimental Medicine 7:5511-5516.

Delmanto RD, Lima PLA, Sugui MM, da Eira AF, Salvadori D MF, Speit G, Ribeiro LR. 2001. Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutation Research 496:15-21.

Fahmy MA, Hassan NHA, Melek FR, Hassan ZM, Al-Ashaa HA. 2014. Studies on the Genotoxic Effect of Nickel Chloride in Mice and the Possible Protective Role of Soybean Seeds Extracts. Global Journal of Pharmacology 8: 625-634 DOI: 10.5829/idosi.gjp.2014.8.4.85195.

Gressier B, Lebegue S, Brunet C, Luyckx M, Dine T, Cazin M and Cazin JC. 1994. Pro-oxidant properties of methotrexate: evaluation and prevention by an antioxidant drug. Pharmazie, 49: 679-681.

Gulguna M, Erdemb O, Oztasc E, Kesikd V, Balamtekin N, Vuruca S, Kula M, Kismet E, Koseoglu V. 2010. Proanthocyanidin prevents methotrexate-induced intestinal damage and oxidative stress. Experimental and Toxicologic Pathology, 62:109-115.

Guo M, Suo Y, Gao Q, Du H, Zeng W, Wang Y, Hu X, Jiang X. 2015. The protective mechanism of Ginkgo biloba and Ginkgo flavonoids on the TNF-α induced apoptosis of rat hippocampal neurons and its mechanisms in vitro. Heliyon, DOI: 10.1016/j.heliyon.2015.e00020.

Harikrishnan R, Balasundaram C, Heo MS. 2011. Influence of diet enriched with green tea on innate humoral and cellular immune response of kelp grouper (Epinephelus bruneus) to Vibrio cararchae infection. Fish Shellfish Immunol 30: 972-979.

Horie T, Li T, Ito K, Sumi S, Fuwa T. 2006. Aged garlic extract protects against methotrexate-induced apoptotic cell injury of IEC-6 cells. The Journal of Nutrition 136:861S-863S.

Horn RC, Vargas VM. 2003. Antimutagenic activity of extracts of natural substances in the Salmonella/microsome assay. Mutagenesis 18:113-118 DOI: 10.1093/mutage/18.2.113.

Kapiszewska M, Kalemba M, Wojciech U, Milewicz T. 2005. Uracil misincorporation into DNA of leukocytes of young women with positive folate balance depends on plasma vitamin B12 concentrations and methylenetetrahydrofolate reductase polymorphisms. A pilot study. Journal of Nutritional Biochemistry. 16:467-478.

Kawai R. 2014. Studies on primary and secondary responses to a T-cell-dependent antigen, keyhole limpet hemocyanin (KLH), in immunotoxicology evaluation. PhD dissertation, Kyoto: Kyoto University 63-65.

Klock E, Deng L, Wu Q, Lawrance AK, Wang XL, Rozen R. 2008. Strain differences in mice highlight the role of DNA damage in neoplasia induced by low dietary folate. Journal of Nutrition, 138: 653-658.

Kozarski M, Klaus A, Niksic M, Jakovljevic D, Helsper JPFG, Van Griensven LJLD. 2011. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chemistry,129:1667 –1675.

Lee JH, Sul D, Oh E, Jung WW, Hwang KW, Hwang TS, Lee KC, Won NH. 2007. Panax ginseng effects on DNA damage, CYP1A1 expression and histopathological changes in testes of rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxid. Food and Chemical Toxicology 45:2237-2244 DOI:10.1016/j.fct.2007.05.019.

Li Z, Xu C. 2011. The fundamental theory of traditional Chinese medicine and the consideration in its research strategy. Frontiers of Medicine, 5: 208-211.

Mersch-Sundermann V, Knasmüller S, Wu XJ, Darroudi F, Kassie F. 2004. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 198:329-340.
Manuscript to be reviewed

393 DOI:10.1016/j.tox.2004.02.009.
394 Miyazawa M, Sakano K, Nakamura Si, Kosaka H. 1999. Antimutagenic activity of isoflavones
395 from soybean seeds (Glycine max Merrill). Journal of Agricultural and Food Chemistry 47: 1346-1349 DOI:
396 10.1021/jf803583
397 Oda Y, Nakamura S, Oki I, Kato T, Shinagawa H. 1985. Evaluation of the new system (umu-test) for the detection
398 of environmental mutagens and carcinogens. Mutagenesis Research 147: 219-229
399 Oda Y, Yamazaki H, Watanabe M, Nohmi T, Shimada T (1995) Development of high sensitive umu test system:
400 rapid detection of genotoxicity of promutagenic aromatic amines by Salmonella typhimurium strain NM2009
401 possessing high O-acetyltransferase activity. Mutat Res 334, 145-156
402 Oktem F. 2006. Methotrexate-induced renal oxidative stress in rats: the role of a novel antioxidant caffeic acid
403 phenethyl ester. Toxicology and Industrial Health 22: 241-247 DOI: 10.1191/0748233706th265oa
404 Padmanabhan S, Tripathi DN, Vikram A, Ramarao P, Jena GB. 2008. Cytotoxic and genotoxic effects of
405 methotrexate in germ cells of male Swiss mice. Mutation Research 655:59-67 DOI:
406 10.1016/j.mrgentox.2008.07.003.
407 Park HR, Park E, Rim AR, Jeon KI, Hwang JH, Lee SC. 2006. Antioxidant activity of extracts from Acanthopanax
408 senticosus. African Journal of Biotechnology 5: 2388-2396
409 Park JS, Oh CH, Koh HY, Choi DS. 2002. Antimutagenic Effect of Extract of Eleutherococcus senticosus Maxim.
410 Korean Journal of Food Science and Technology 34: 1110-1114
411 Peng, Tao Q, Wu X, Dou H, Spencer S, Mang C, Xu L, Sun L, Zhao Y, Li H, Zeng, Liu G, Hao X. 2012. Cytotoxic,
412 cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia, 83:568-
413 585
414 Perron NR, Brumaghim JL. 2009. A Review of the Antioxidant Mechanisms of Polyphenol
415 Compounds Related to Iron Binding. Cell Biochemistry and Biophysics, 53:75-100.
416 Reifferscheid G, Heil J. 1996. Validation of the SOS/umu test using test results of 486 chemicals and comparison
417 with the Ames test and carcinogenicity data. Mutation Research 369:129-145 DOI: 10.1016/S0165-
418 411-721.
419 Schmid W. 1975. The micronucleus test. Mutation Research 31:9-15.
420 Schmiegelow K, AI-Modhwahi I, Andersen MK, Behrendtz M, Forestier E, Hasle H, Heyman M, Kristinsson J,
421 Nersting J, Nygaard R, Svendsen AL, Vettenranta K, Weinshilboum R; Nordic Society for Paediatric
422 Haematology and Oncology (2009) Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 113:6077-6084.
423 Serpeloni JM, Bisarro dos Reis M, Rodrigues J, Campaner dos Santos L, Vilegas W, Varanda EA, Dokkedal AL,
424 Côlus IM. 2008. In vivo assessment of DNA damage and protective effects of extracts from Miconia species
425 using the comet assay and micronucleus test. Mutagenesis 23:501-507 DOI: 10.1093/mutage/gen043.
426 Sheikhzadeh N, Nofouzi K, Delazar A, Oushani AK. 2011. Immunomodulatory effects of decaffeinated green tea
427 (Camellia sinensis) on the immune system of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol
428 31:1268-1269.
429 Tripathi DN, Jena GB. 2009. Intervention of astaxanthin against cyclophosphamide-induced oxidative stress and
430 DNA damage: a study in mice. Chemico-Biological Interactions 180:398-406 DOI: 10.1016/j.cbi.2009.03.017.
431 Vardi N, Parlakphan H, Ates B. 2012. Beneficial effects of chlorogenic acid on methotrexate-induced cerebellar
432 Purkinje cell damage in rats. Journal of Chemical Neuroanatomy, 43:43-47.
433 Verschaeve L, Van Staden J. 2008. Mutagenic and antimutagenic properties of extracts from South African
classical medicinal plants. Journal of Ethnopharmacology 119:575-587 DOI: 10.1016/j.jep.2008.06.007.
434 Vinson RK, Hales BF. 2002. Expression and activity of the DNA repair enzyme uracil DNA glycosylase during
435 organogenesis in the rat conceptus and following methotrexate exposure in vitro, Biochem. Pharmacol. 64:
436 711-721.
437 Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. 2003. Asian and Siberian ginseng as a potential modulator of
438 immune function: an in vitro cytokine study using mouse macrophages. Clin Chim Acta 327:123-128.
439 Wang JH, Xu JL, Zhang JC, Liu Y, Sun HJ, Zha X. 2015. Physicochemical properties and antioxidant activities of
440 polysaccharide from floral mushroom cultivated in Huangshan Mountain. Carbohydrate Polymers, 131:240-
441 247
442 Wyrobek AJ, Gordon LA, Burkhart JG, Francis MW, Kapp RW, Jr, Letz G, Malling HG, Topham JC, Whorton MD.
443 1983. An evaluation of the mouse sperm morphology test and other sperm tests in non-human mammals. A
Yu CP, Hsieh YC, Shia CS, Hsu PW, Chen JY, Hou YC, Hsieh YW. 2016. Increased Systemic Exposure of Methotrexate by a Polyphenol-Rich Herb via Modulation on Efflux Transporters Multidrug Resistance Associated Protein 2 and Breast Cancer Resistance Protein. Journal of Pharmaceutical Sciences 105:343-349.

Zanchi MM, Manfredini V, Brum Daniela dos Santos, Vargas LM, Spiazzi CC, Soares MB, Izaguirry AP, Santos FW (2015) Green tea infusion improves cyclophosphamide-induced damage on male mice reproductive system. Toxicology Reports 2:252–260.

Zhang QB, Li N, Zhou GF, Lu XL, Xu ZH, Li ZE. 2003. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacological Research 48: 151-155 DOI: 10.1016/S1043-6618(03)00103-8.

Zhao H, Li Q, Li Y. 2011. Long-term ginsenoside administration prevents memory loss in aged female C57BL/6J mice by modulating the redox status and up-regulating the plasticity-related proteins in hippocampus. Neuroscience, 183: 189-202.
Figure Legends

Fig.1. Effects of methotrexate dose on *umu* gene expression in *S. typhimurium* TA1535/pSK1002

Fig.2. Effects of phytochemicals and phytochemical combinations on *umu* gene expression in *S. typhimurium* TA1535/pSK1002 exposed to 50 mg L\(^{-1}\) methotrexate

A: Allicin (1g L\(^{-1}\)); B: Allicin + Grape seed proanthocyanidins; C: Allicin + Green tea polyphenols, D: Allicin + Eleutherosides, E: Allicin + Soybean isoflavones, F: Grape seed proanthocyanidins (1g L\(^{-1}\)), G: Grape seed proanthocyanidins + Green tea polyphenols, H: Grape seed proanthocyanidins + Eleutherosides, I: Grape seed proanthocyanidins + Soybean isoflavones, J: Green tea polyphenols (1g L\(^{-1}\)), K: Green tea polyphenols + Eleutherosides, L: Green tea polyphenols + Soybean isoflavones, M: Eleutherosides + Soybean isoflavones, O: Soybean isoflavones (1g L\(^{-1}\)). a: \(p<0.01\) as compared to Eleutherosides treatment group, b: \(p<0.05\) as compared to Eleutherosides treatment group, *\(p<0.05\), **\(p<0.01\) as compared to control.

Fig.3. Effects of bioactive phytochemicals on *umu* gene expression in *Salmonella typhimurium* TA1535/pSK1002 exposed to 50 mg L\(^{-1}\) methotrexate

Inhibition(\%) = 100 × (\(R_{control}\) - \(R_{sample}\)) / \(R_{control}\); *\(p<0.05\), **\(p<0.01\).

Fig.4. Effect of cytoprotector candidates on incidence of micronucleated polychromatic erythrocytes in bone marrow cells of mice treated with methotrexate

(a) male mice; (b) female mice;

1) Control Group = saline; Model Group = methotrexate + normal saline; Treatment Group I = methotrexate + combination of polyphenols and eleutherosides; Treatment Group II = methotrexate + combination of proanthocyanidins and eleutherosides.

2) \(\Delta P<0.05\), \(\Delta\Delta P<0.01\) vs control. 3) *\(P<0.05\), **\(P<0.01\) vs Model Group. 4) \#\(P<0.05\), ##\(P<0.01\) vs Treatment I.

Fig.5. Effect of cytoprotector candidates on abnormalities of male Kunmin mice sperm head after consecutive 7 days of methotrexate exposure

1) Control Group = saline; Model Group = methotrexate + normal saline; Treatment Group I = methotrexate + combination of polyphenols and eleutherosides; Treatment Group II = methotrexate + combination of proanthocyanidins and eleutherosides.

2) \(\Delta P<0.05\), \(\Delta\Delta P<0.01\) vs control. 3) *\(P<0.05\), **\(P<0.01\) vs Model Group.

Fig.6. Effect of cytoprotector candidates on thymus and spleen indices of mice exposed to Methotrexate

(a) male mice; (b) female mice;

1) Control Group = saline; Model Group = methotrexate + normal saline; Treatment Group I = methotrexate + combination of polyphenols and eleutherosides; Treatment Group II = methotrexate + combination of proanthocyanidins and eleutherosides.

2) \(\Delta P<0.05\), \(\Delta\Delta P<0.01\) vs control. 3) *\(P<0.05\), **\(P<0.01\) vs Model Group.
Fig. 1. Effects of methotrexate dose on umu gene expression in *S. typhimurium*[TA1535/pSK1002]
Fig. 2. Effects of phytochemicals and phytochemical combinations on umu gene expression in S. typhimurium TA1535/pSK1002 exposed to 50 mg L-1 methotrexate

A: Allicin (1g L-1), B: Allicin + Grape seed proanthocyanidins; C: Allicin + Green tea polyphenols, D: Allicin + Eleutherosides, E: Allicin + Soybean isoflavones, F: Grape seed proanthocyanidins (1g L-1), G: Grape seed proanthocyanidins + Green tea polyphenols, H: Grape seed proanthocyanidins + Eleutherosides, I: Grape seed proanthocyanidins + Soybean isoflavones, J: Green tea polyphenols (1g L-1), K: Green tea polyphenols + Eleutherosides, L: Green tea polyphenols + Soybean isoflavones, M: Eleutherosides (1g L-1), N: Eleutherosides + Soybean isoflavones, O: Soybean isoflavones (1g L-1). a: p<0.01 as compared to Eleutherosides treatment group, b: p<0.05 as compared to Eleutherosides treatment group, *p<0.05, **p<0.01 as compared to control.
Fig. 3. Effects of bioactive phytochemicals on umu gene expression in Salmonella typhimurium TA1535/pSK1002 exposed to 50 mg L⁻¹ methotrexate

Inhibition(%) = 100 × (Rcontrol - Rsample) / Rcontrol; *p < 0.05, **p < 0.01.
Fig. 4. Effect of cytoprotector candidates on incidence of micronucleated polychromatic erythrocytes in bone marrow cells of mice treated with methotrexate

(a) male mice; (b) female mice; 1) Control Group = saline; Model Group = methotrexate + normal saline; Treatment Group I = methotrexate + combination of polyphenols and eleutherosides; Treatment Group II = methotrexate + combination of proanthocyanidins and eleutherosides. 2) $\Delta P<0.05$, $\Delta \Delta P<0.01$ vs control. 3) *$P<0.05$, **$P<0.01$ vs Model Group. 4) $P<0.05$, $$P<0.01$ vs Treatment I.
5

Fig. 5. Effect of cytoprotector candidates on abnormalities of male Kunmin mice sperm head after consecutive 7 days of methotrexate exposure

1) Control Group = saline; Model Group = methotrexate + normal saline; Treatment Group I = methotrexate + combination of polyphenols and eleutherosides; Treatment Group II = methotrexate + combination of proanthocyanidins and eleutherosides. 2) $\triangle P<0.05$, $\triangle\triangle P<0.01$ vs control. 3) *$P<0.05$, **$P<0.01$ vs Model Group.
Fig. 6. Effect of cytoprotector candidates on thymus and spleen indices of mice exposed to Methotrexate

(a) male mice; (b) female mice; 1) Control Group = saline; Model Group = methotrexate + normal saline; Treatment Group I = methotrexate + combination of polyphenols and eleutherosides; Treatment Group II = methotrexate + combination of proanthocyanidins and eleutherosides. 2) △P<0.05, △△P<0.01 vs control. 3) *P<0.05, **P<0.01 vs Model Group.
