Structural Behavior of an RC Building Frame due to Wind Pressure in Bangladesh

Md. Abdullah Al Arafat*1

1Department of Civil Engineering, Faculty of Sciences & Engineering, European University of Bangladesh, Dhaka-1216, Bangladesh

KEYWORDS

Wind Pressure
Human Risk
ETABS 9.6
BNBC Provision
Displacement and Drift

ABSTRACT

Since the necessity for larger and slimmer structures has arisen in Bangladesh, wind engineering has become increasingly important. The traditional approach of manual high-rise building design is time-consuming and prone to human mistakes. ETABS is a structural program that is currently widely used by structural engineers to handle common problems such as static analysis, wind analysis, and confirming multiple codes using various load combinations. The study's purpose is to compare wind pressure's impacts on eight distinct places in Bangladesh. ETABS 9.6 software with the BNBC provision was used to conduct this research on a 106-foot residential building. The study's major goal is to examine the reactions of stories, narrative displacement, and drift under the influence of wind in eight major distinct areas out of five divisions of Bangladeshi areas. Based on the investigation findings, we attempted to determine their attitude to various wind pressures. Analysis shows that wind pressure in the South-East and South-West is higher than in the North-East and North-West and most of it is found in the South-East.

1. INTRODUCTION

When structures are taller than average, wind pressure analysis is required for the building design. Buildings become more flexible as they get taller, allowing them to accelerate away more quickly due to the high frequency of wind pressure. The wind analyses of high-rise buildings in different zones of Bangladesh's region are described in this research. In Bangladesh, wind engineering is frequently confused with wind energy. Wind engineering, on the other hand, is a distinct branch of engineering that studies the effects of wind on structures and their surroundings. Wind loads on formwork are necessary for the selection of formwork, so that wind loads on structural frames are required for the design of beams, columns, lateral bracing, and foundations. A ten-story reinforced concrete-framed structure has been chosen for the purpose of analysis. The BNBC code is used to determine wind analysis.

1.1 Literature Review

With the rise of human civilization, towering building designs have gained relevance. So, it is crucial to take into account the impact of lateral loads, such as earthquakes and wind loads. Because the Key causes of structural collapse include dynamic excitations like winds and earthquakes [1][12][13]. The term "wind" refers to moving air and is frequently used to refer to the atmosphere's horizontal motion within a building. Building wind action is dynamic and affected by outside elements such as terrain type, height, exposure category, building type, location, fundamental wind speed, and building configuration. According to the BNBC recommendations for calculating the wind load for the study [2][15]. Bangladesh is situated at the longitudes of 88°01' and 92°4E and the latitudes of 20°34' and 26°38'N, which are made up of a number of tiny islands and a 724 km-long coastline [3]. The yearly average wind speed at 30 meters is more than 5 meters per second during the summer months. While the rest of Bangladesh has winds of about 3.5 m/s, northeast Bangladesh experiences winds of over 4.5 m/s [3]. In some circumstances, the wind load is more significant than the earthquake load. This depends on the location and zone factor, which are identified by regulations [5]. Because the effects of wind speed are so terrible, wind studies of structures are now required. Therefore, we must first evaluate the structure for wind speed. The worst outcomes will be...
experienced in the future if we choose to disregard this [4]. These structures’ exterior surfaces are stroked directly by the wind, passing through the external surfaces' porosity to move the inside surfaces side to side. When the wind blows, it creates stresses that are perpendicular to the surface of the building or on certain cladding components. So, it has a significant impact on vertically standing walls, columns, and beams, among other architectural components like roof structures, such as truss structures, and flat slabs, which can be easily analyzed [6][9]. As a result, the shape of the structure and the computation of the wind forces on the various sides of the structure will be the focus of our analysis of wind load actions and its design. The two variables—wind velocity and building size—have an impact on how wind loads are calculated. As the need for higher, lighter, and more slender structures grows, so does the significance of wind-induced building motion design. Tall structures that fulfill the lateral drift standards of the code can nonetheless waver in high winds. As a result, a study of the computation strategies currently in use for determining wind load is required [7].

1.2 Objectives
- Wind analysis at eight different locations of a multi-story G+10 reinforced concrete building: story drift, story response, and displacement and
- to determine the design wind pressure at eight different sites.

2. BUILDING PROPERTIES
A model of G+10 stories is developed for analysis and design using ETABS software. The building plan dimensions are 59ft x 40ft.

Column Size	Beam Size
C1	18”x18”
C2	20”x20”
C3	22”x22”
GB	16”x18”
SB	14”x18”

Table 1. Building Properties

Live load = 110 psf \(f_y = 4 \) ksi
PW = 40 psf \(f_y = 60 \) ksi

2.1 Building Plan View

2.2 Location Description

Table 2. Location Description as per BNBC Guidelines

Name of District	Zone Coefficient,(Z)	Site Soil Coefficient,(S) [Table 6.2.9]	Structure importance coefficient,(I) [Table 6.2.9]	Basic Wind Speed, (mph) [Table 6.2.8]
Dhaka	Z-II = 0.20	S-2 = 1.2	1	130
Chittagong	Z-III = 0.28	S-2 = 1.2	1	160
Rajshahi	Z-I = 0.12	S-2 = 1.2	1	95
Khulna	Z-I = 0.12	S-2 = 1.2	1	150
Gaibandha	Z-III = 0.28	S-2 = 1.2	1	146
Comilla	Z-II = 0.20	S-2 = 1.2	1	136
Jessore	Z-I = 0.12	S-2 = 1.2	1	142
Sirajganj	Z-III = 0.28	S-2 = 1.2	1	112

[The values of all coefficients and other information have been used as guided by BNBC.]

Wind speed variations at different location

![Fig. 1. Plan View of G+10 Storied RCC Frame Structure](image)

Md. Abdullah Al Arafat et al. / Malaysian Journal of Science and Advanced Technology 141
Fig. 2. Wind Speed at Different Location

Fig. 4. Basic Wind Speed map
3. **STATIC LOAD CASE**

For Dhaka City

![Fig. 5. Case of Static Load in the X-Direction](image)

![Fig. 6. Case of Static Load in the Y-Direction](image)

Chittagong City

![Fig. 7. Case of Static Load in the X-Direction](image)

![Fig. 8. Case of Static Load in the Y-Direction](image)

Rajshahi City

![Fig. 9. Case of Static Load in the X-Direction](image)

![Fig. 10. Case of Static Load in the Y-Direction](image)
Gaibandha
Wind Speed $V_b = 146$ mph
"Structure importance coefficient" $I=1$
The pressure coefficient is 1.77 in the X direction and 2.40 in the Y direction.

Khulna
Wind Speed $V_b = 150$ mph
"Structure importance coefficient" $I=1$
The pressure coefficient is 1.77 in the X direction and 2.40 in the Y direction.

Comilla
Wind Speed $V_b = 136$ mph
"Structure importance coefficient" $I=1$
The pressure coefficient is 1.77 in the X direction and 2.40 in the Y direction.

Jessore
Wind Speed $V_b = 142$ mph
"Structure importance coefficient" $I=1$
The pressure coefficient is 1.77 in the X direction and 2.40 in the Y direction.

Sirajganj
Wind Speed $V_b = 112$ mph
"Structure importance coefficient" $I=1$
The pressure coefficient is 1.77 in the X direction and 2.40 in the Y direction.

3.1 Analysis

3.2 Displacement(inch) on the Top Floor

Table 3. Displacement(inch) on the top floor (X-direction)

LOCATION	STORY	DISP-X	DISP-Y
Dhaka	Top	0.661542	-0.039688
Chittagong	Top	1.002099	-0.060119
Rajshahi	Top	0.353279	-0.021194
Khulna	Top	0.880751	-0.052839
Gaibandha	Top	0.834404	-0.050058
Comilla	Top	0.724016	-0.043436
Jessore	Top	0.789309	-0.047353
Sirajganj	Top	0.491028	-0.029458

Table 4. Displacement(inch) on the top floor (Y-direction)

LOCATION	STORY	DISP-X	DISP-Y
Dhaka	Top	-0.239188	1.070779
Chittagong	Top	-0.36232	1.622009
Rajshahi	Top	-0.127732	0.571821
Khulna	Top	-0.318445	1.425593
Gaibandha	Top	-0.301688	1.350576
Comilla	Top	-0.261776	1.171901
Jessore	Top	-0.285383	1.277585
Sirajganj	Top	-0.177537	0.794784
3.3 Drift On the upper floor

Table 5. Drift (inch) on the top floor (X-direction)

LOCATION	STORY	DRIFT-X	DRIFT-Y
Dhaka	Top	0.000327	0.000016
Chittagong	Top	0.000495	0.000025
Rajshahi	Top	0.000174	0.000009
Khulna	Top	0.000435	0.000022
Gaibandha	Top	0.000412	0.000021
Comilla	Top	0.000357	0.000018
Jessore	Top	0.000039	0.00002
Sirajganj	Top	0.000242	0.000012

Table 6. Drift (inch) on the top floor (Y-direction)

LOCATION	STORY	DRIFT-X	DRIFT-Y
Dhaka	Top	0.000014	0.000498
Chittagong	Top	0.000022	0.000754
Rajshahi	Top	0.000008	0.000266
Khulna	Top	0.000019	0.000663
Gaibandha	Top	0.000018	0.000628
Comilla	Top	0.000016	0.000545
Jessore	Top	0.000017	0.000094
Sirajganj	Top	0.000011	0.00037

Fig. 13. Locational Displacement in the X and Y Directions

Fig. 14. Locational Drift in the X and Y Directions
3.4 Story Response (inch) on the Top Floor

Fig. 15. Story Response on the Top Floor at X Direction (Dhaka)

Fig. 16. Story Response on the Top Floor at X Direction (Dhaka)

Fig. 17. Story Response on the Top Floor at X Direction (Chittagong)

Fig. 18. Story Response on the Top Floor at Y Direction (Chittagong)

Fig. 19. Story Response on the Top Floor at X Direction (Rajshahi)

Fig. 19. Story Response on the Top Floor at Y Direction (Rajshahi)
The design wind pressure at a height z is given by \(p_z = 0.00256 \times 1.00 \times C_z \times C_G \times 1.00 \times 1.77 \times 130^2 \text{ (Dhaka)} \)

Same as,

\[p_z = 0.00256 \times 1.00 \times C_z \times C_G \times 1.00 \times 1.77 \times 160^2 \text{ (Chittagong)} \]

\[p_z = 0.00256 \times 1.00 \times C_z \times C_G \times 1.00 \times 1.77 \times 95^2 \text{ (Rajshahi)} \]

\[p_z = 0.00256 \times 1.00 \times C_z \times C_G \times 1.00 \times 1.77 \times 150^2 \text{ (Khulna)} \]

The corresponding force \(F_z = B \times h_{eff} \times p_z \)

Where \(h_{eff} = \text{effective height of the tributary area,} \)

\[h_{eff} = 3' + 5' = 8' \text{ at 1st floor, (5' + 5') = 10' between 2nd and 10th floor, and} 5' \text{ at the 11th floor.} \]

The coefficients \(C_z, \ C_G \) and the design wind pressure \(p_z \) and force \(F_z \) at different heights are shown below.

Story	Z(ft.)	\(C_z \)	\(C_G \)	\(p_z \) (psf)	\(F_z \) (kips)
1	6	0.368	1.654	46.61	14.92
2	16	0.375	1.661	47.70	19.08
3	26	0.385	1.731	51.04	20.41
4	36	0.455	1.801	62.75	25.10
5	46	0.525	1.871	75.22	30.09
6	56	0.595	1.941	88.44	35.38
7	66	0.665	2.011	102.41	40.96
8	76	0.735	2.081	117.13	46.85
9	86	0.805	2.151	132.60	53.04
10	96	0.875	2.221	148.82	59.53
11	106	0.945	2.291	165.80	33.16

3.6 Design Wind Pressure on the Top Floor

Table 7. Design Wind Pressure on the Top Floor (X-Direction)

Location	Story	\(p \) (psf)
Dhaka	Top	165.79
Chittagong	Top 251.13	
Rajshahi	Top	88.54
Khulna	Top	220.72
Gaibandha	Top 209.11	
Comilla	Top	181.45
Jessore	Top	197.81
Sirajganj	Top 123.06	

3.5 Numerically calculated design wind pressure in the X-direction (Dhaka City)

[The values of all coefficients and other information have been used as guided by BNBC.]
Table 8. Design Wind Pressure on the Top Floor (X-Direction)

Location	Story	Design Wind Pressure, p (psf)
Dhaka	Top	224.791
Chittagong	Top	340.532
Rajshahi	Top	120.049
Khulna	Top	299.289
Gaibandha	Top	283.54
Comilla	Top	246.03
Jessore	Top	268.22
Sirajganj	Top	166.86

4. DISCUSSIONS

Table 3 shows that when the wind operates in the x-direction on the structure, the greatest displacement is 1.00 inch in Chittagong city and the smallest displacement is 0.035 inch in Rajshahi city at the top level. When the wind operates in the y-direction on the structure, the maximum displacement of 1.62 inches in Chittagong city and the minimum displacement of 0.571 inches in Rajshahi city at the top level are shown in Table 4. When the wind load acts on the structure in the x-direction, the maximum drift of 0.00049 inch in Chittagong city and the minimum drift of 0.00017 inch in Rajshahi city at the top level is shown in Table 5. The highest drift of 0.00002 inch in Chittagong city and the minimum drift of 0.000008 inch in Rajshahi city at the top level is shown in Table 6. When the wind load acts on the structure in the y-direction. As shown in Fig. 23, the largest story response in Chittagong city and the least story response in Rajshahi city occur at the top level when the wind acts on the structure in both directions. Table 6 shows the maximum design wind pressure of 251.13 psf in Chittagong city and the minimum design wind pressure of 88.54 in Rajshahi city at the top level when the wind load acts on the structure in the x-direction. Table 8 shows the highest design wind pressure of 340.53 psf in Chittagong city and the lowest design wind pressure of 120.059 psf in Rajshahi city at the top floor, which happens when the wind blows on the structure in the y-direction.

5. CONCLUSION

The drift variation, displacement, and design wind pressure of eight districts are obtained in this paper. The impact of wind pressure increased gradually with the increase in the height of the structure. From software analysis and numerical analysis, we found that all impacts of wind activities are high in Chittagong and low in Rajshahi. The research has convinced me that the wind pressure in the South-East and South-West is higher than in the North-East and North-West, and most of it is found in the South-East.

REFERENCES

1. Raj, R., Rukhiaiyar, A., Jayant, B., & Dahiya, K. (2022). CFD Analysis for wind flow characteristics of varying cross section tall building using ANSYS. https://doi.org/10.21203/rs.3.rs-1471297/v1
2. Mir, A., Kuddus, & Priom Dey, P. (2017). Cost Analysis of RCC, Steel and Composite Multi-Storyed Car Parking Subjected to High Wind Exposure in Bangladesh. Civil Engineering Journal, 3(2). Retrieved from https://pdfs.semanticscholar.org/40de/f7788b85fddd451591ed6b2e612a2d8794.pdf
3. Khan, M. J., Iqbal, M. T., & Mahboob, S. (2004). A wind map of Bangladesh. Renewable Energy, 29(5), 643–660. https://doi.org/10.1016/j.renene.2003.10.002
4. Keyur Bharatbhai, N., Dubey, P., & Hardiya, A. (n.d.). Response of multistory irregular l shape building under basic wind speed OF 39 M/S. In International Research Journal of Modernization in Engineering Technology and Science (pp. 2582–5208). Retrieved from https://www.ijrjets.com/uploadedfiles/paper/issue_3_march_2022/198490/final/fin_ijrjets647361058.pdf
5. Ashish Sadh, A., Pal. A Literature Study of Wind Analysis on High Rise Building. Retrieved June 29, 2022, from webcache.googleusercontent.com .com website: https://dx.doi.org/10.22161/ijrj.ers5.11.36
6. Najmul Hoque, S. M., & Kumar Das, B. (2013). Present status of solar home and photovoltaic micro utility systems in Bangladesh and recommendation for further expansion and upgrading for rural electrification. Journal of Renewable and Sustainable Energy, 5(4), 042301. https://doi.org/10.1063/1.4812903
7. Arvind Y. (2012). Analysis of tall building for across wind response. International Journal of Civil and Structural Engineering, 2(3). https://doi.org/10.6089/ijcser.0020230024
8. Fuka, V., Xie, Z.-T., Castro, I. P., Hayden, P., Capretti, M., & Robins, A. G. (2017). Scalar Fluxes Near a Tall Building in an Aligned Array of Rectangular Buildings. Boundary-Layer Meteorology, 167(1), 53–76. https://doi.org/10.1007/s10546-017-0308-4
9. Ahmed, M., & Banerjee, M. (n.d.).(2019) Comparison of Different Parameters of a High Rise Building Due to Wind Forces for a Regular 20 Storeyed Building for Lucknow and Bhubaneswar-A Review. Retrieved from https://www.ijert.org/research/comparison-of-different-parameters-of-a-high-rise-building-due-to-wind-forces-for-a-regular-20-storeyed-building-for-lucknow-and-bhubaneswar- IJERTV8I3110167.pdf
10. A. A. Kale & S. A. Rasal (2017, March). Seismic & Wind Analysis of Multistory Building. International Journal of Science and Research (IJSR), 6(3), 1894-1896.
11. https://www.ijsr.net/archive/v6i3/ART20172033.pdf. Retrieved June 29, 2022.
12. Trivedi, V. T. & S. Pahwa (2018, February). Wind Analysis of Multistory Building. International Research Journal of Engineering and Technology (IRJET), 5(2), 1420-1425.
13. https://irjet.net/archives/V5I2/IRJET-V5I2311.pdf. Retrieved June 29, 2022.
14. Ukey, N. F., Varghese, V., & Ruprai, B. S. (2019). An overview of seismic and wind loading effect on G+11 building. AIP Conference Proceedings. Retrieved from https://www.academia.edu/69567045/An_overview_of_seismic_and_wind_loading_effect_on_G_11_building?from_sitemaps=true&version=2
15. Shaikh Muffassir I & L.G. Kalurkar 2 (2016). Review of Comparative Study on Wind Analysis of Multi-story RCC and Composite Structure for Different Plan Configuration. Retrieved from IOSR-JMCE, 13(4), 42-49
16. http://www.iosrjournals.org/iosrjmce/papers/vol13-issue4/Version-7/G1304074249.pdf. Retrieved June 29, 2022.
17. C.V.Siva Rama Prasad, Bhavani.K, Linga Raju.J, & Prashanth.M. (2019). [Review of Seismic and Wind analysis of a multi storey building (G+12) by using ETABS software]. Retrieved from jetir, 6(3), 662-667.
18. https://www.researchgate.net/publication/336148110_Seismic_and_Wind_analysis_of_a_multi_storey_building_G12_by_using_ETABS_software. Retrieved June 29, 2022.
19. BNBC, Bangladesh National Building Code, 1993, Dhaka, Bangladesh.