Modified techniques of heterotopic total small intestinal transplantation in rats

Xiao-Ting Wu, Jie-Shou Li, Xiao-Fei Zhao, Wen Zhuang, Xie-Lin Feng

Xiao-Ting Wu, Wen Zhuang, Xie-Lin Feng, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
Jie-Shou Li, Research Institute of General Surgery, Nanjing General Hospital of PLA, Clinical School of Medical College, Nanjing University, Nanjing 210002, Jiangsu Province, China
Xiao-Fei Zhao, Sichuan Reproductive Health Institute, Chengdu 610041, Sichuan Province, China

INTRODUCTION

Since Monchick and Russell[1] established the model of small intestinal transplantation (SIT) in 1971, much modification and development have been achieved[2-11]. However, the technical complexity and high mortality have hindered the wide use of this valuable model[12-20]. Parallel to our clinical SIT practice, we have successfully established a stable and practical model of heterotopic SIT with fewer complications and higher survival rate using the modified techniques.

MATERIALS AND METHODS

Animals

One hundred and ninety-six male adult Wistar inbred strain rats weighing between 180g and 310g (Shanghai Laboratory Animal Center of Academy of Sciences of China) were used as donors and recipients. Housed and fed at the Animal Center of Nanjing University, the rats were put accustomed to the environment for at least 7 days before surgery. The donor and recipient were paired according to the similar body weight.

Preoperative care and anesthesia

All the donor and recipient rats stayed fasting in metabolic cages with no access to water but allowed to drink 5% glucose normal saline added with 160 000U/L gentamycin ad libitum for 10 h-12 h. The rats were anesthetized with an intraperitoneal injection of 1% ketamine (1ml/100g) supplemented with the 1/4 primitive dose of ketamine as required.

Donor operation

Lactated Ringer’s solution with 2.5g/L Cefazomelin was infused via the penile vein by micropump (Perfusor Secura FT, B. Braun Melsunge AF, Germany) at 4 ml/h. The abdomen was opened using a “J” - shaped incision, and the jejunum was cut at 1 cm away from the Treitz’ s ligament and ileum at 2 cm proximal to ileocecal valve. The entire colon was removed. The portal vein (PV) was separated from pancreas. The segment of abdominal aorta (AA) containing the superior mesenteric artery (SMA) was mobilized by ligating and dividing the lumbar artery. The lumbar arteries from the AA were meticulously ligated with 8-0 nylon sutures to minimize bleeding between the celiac and left renal artery. The left renal vessels were then ligated. The dissected AA was ligated below the left renal artery. The celiac artery was ligated, followed by the ligation of the pyloric vein and splenic vein. Five to eight ml 2.5g/L Cefazomelin in saline was injected into the small intestine through the upper end of the jejunum. The AA was cannulated with a fine polyethylene catheter and the PV was cut off near hepatic hilum. The graft was perfused in situ with 2-3 ml 4 °C lactate Ringer’s solution containing 125 000U/L heparin by micropump at 40 ml/h until the graft intestine and mesentery turned pale, and the fluid in the PV became clear. At last, the intestine and its vascular supply including a part of AA were removed en bloc. Under operational microscope and
in lactated Ringer’s solution ice-water bath, the PV end was placed into a polyethylene cuff tube and its end part of endothelium was turned over to cover the end of cuff tube. The PV end and cuff tube were fixed with 6-0 silk sutures. Hence, the round orifice of the PV was exactly in the center of the cuff tube (Figure 1). The small intestinal graft was stored in lactated Ringer’s solution at 4 °C[25-27].

Recipient operation
Anesthesia and intravenous infusion for the recipient were the same as for the donors. The abdomen was opened via a midline incision from the enisternum to the bladder level. The left ureter and renal atery were ligated. The left renal vein was dissected. The pedicle near renal helium was ligated and the ligating suture was left as a tractor after removal of the left kidney. Segment of the recipient’s abdominal AA (0.6-1.0 cm) was mobilized below the vessels to the left kidney. Under operating microscope (×10 amplification), the AA of the adventitia membrane of the anterior wall was removed and opened via a longitudinal arteriotomy. The lumen was flushed with low molecular dextran solution. The donor’s small intestine was picked up from the ice water, surrounded by a gauze sponge packed with ice crystals, and then placed onto the right flank of the rats. The arterial anastomosis was performed first. After ensuring that the artery was not twisted, an end-to-side anastomosis was performed using continuous 9-0 non-traumatic nylon suture. The posterior wall of the artery was sutured externally. Each lateral wall of the artery was sutured with 8-10 sutures. The end of the left renal vein of the recipient was opened with a longitudinal incision. Two 9-0 nylon stay sutures were placed at the lateral sides of the anastomosis as a self-retaining retractor. The upper and lower sides of the incision were hauled by the pedicle ligating suture and microtweezer respectively. The cuffed PV of the small intestinal graft was inserted into the left renal vein of the recipient to revascularize the heterotopic small intestinal graft. The anastomosis was fixed with 5-0 silk suture (Figure 2). The left renal venous clamp was released first, followed by the clamps over and beneath the AA anastomosis, and the blood supply of the small intestinal graft was recovered. The arterial anastomosis was compressed lightly with a dry sponge for 1 to 2 min after reperfusion and then usually the oozing blood could be easily stopped. If blood was spouting from the arterial anastomosis, it should be quickly repaired with interruptive sutures. For the purpose of warm and flush, 20 mL warm saline was instilled in the peritoneal cavity. The small intestinal graft was put in order, and placed onto the left flank of the rats. Both ends of the graft were exteriorized as stomas. The stomas were sutured with four 7-0 silk sutures between the host peritoneum and the seromuscular layer of the graft and four 5-0 silk sutures between the skin and the everted mucosa of the graft (Figure 3). The abdomen was closed using two layers of 1-0 silk continuous sutures.

RESULTS
Operated by one person, the average time for the donor surgery was 86±20 min, and 115±20 min for the recipient and the average warm ischemic time being 40±5 min. There was a shorter revascularization time of the graft, the AA to AA anastomosis was 21±10 min, and the cuffed PV to the renal vein anastomosis was 5±5 min. Sixteen rats which died from anesthetic accidents and hemorrhage during operation were not included in the statistical data. Among the 98 heterotopic whole small intestinal transplantation, 11 rats died in 6 days, the autopsy verified 2 cases of arterial anastomotic hemorrhage, 3 cases of the native small intestinal dysfunction, 4 cases of infection of abdominal cavity, and 2 cases of the pulmonary complications (Figure 4). There was no gross or microscopic evidence of either vascular occlusion in any of the grafts or stoma-related complications. The one-week survival rate was 88.7% (87/98). The rats recovered vigor and vitality after the operative day. The shape and color of the transplanted small intestines were nearly the same as the native intestines from the tenth day. The longest survival time of recipient rats was more than 389 days after SIT when the data were collected. They maintained normal weight, perfect intestinal function and intact intestinal histology.
The use of a gauze sponge with saline was employed to gently mobilize the graft during the procedure, as non-traumatic techniques should be adopted. Failure to death within 1-2 days after SIT mostly occurred due to inadequate perfusion during the surgery. The recipient rat would exhibit “stupor” or “no vitality” during the procedure, and the solution in the gut lumen could easily flow out, avoiding over-distention of the donor small intestine. The volume of graft perfusion in situ was reduced from 12-20 ml to 3-5 ml. The speed and volume of perfusion were accurately controlled by micropump instead of gravity, ensuring complete graft perfusion and minimizing the damage.

Enhancement of operative tolerance

Shortening fasting time Both donor and recipient rats were placed in metabolic cages and kept fasting before surgery, with the donor rats fasting for 48 h (donors) and 24 h (recipients), respectively. It was observed that a fasting period of 48 h was sufficient for adequate preparation and that shorter fasting periods did not affect the outcome.

Intravenous infusion Hypovolemic shock was the most common cause of postoperative death in SIT rats due to ischemic damage. In our experiments, the volume of intra-luminal irrigation from 50-70 ml was reduced to 20-30 ml to prevent over-distention of the donor small intestine. The volume of graft perfusion was accurately controlled by micropump instead of gravity, thus improving survival rate in rats.

Improvement of recipient surgical procedure It was critical that there was an adequate blood flow from the SMA to the graft and out through the PV smoothly. Based on Zhong’s and Kiyozaki’s surgical procedures, improved techniques were employed. These techniques included the use of low molecular dextran solution without heparin to minimize complications and increasing survival rate in rats.

Improvement of the vitality of small intestinal graft The quality of donor organ affected the result of transplantation. This is especially true for the small intestinal graft, which is more vulnerable to mechanical and ischemic injuries during the procedure. The recipient rat’s “stupor” or “no vitality” or failure to death within 1 d-2d after SIT mostly occurred due to the quality of small intestinal graft. During the whole harvest procedure, the non-traumatic techniques should be adopted, and a gauze sponge with saline was used to mobilize the graft gently instead of holding or clamping with hand and microtweezer, and not to toss and turn the graft repeatedly so as to avoid damage. Because of the “J”-shaped incision, the small intestinal graft dissected from the colon could be easily placed into abdominal cavity to reduce the exposure and vaporization damage. As vigorous intra-luminal irrigation and graft perfusion directly damaged the microcirculation of the graft, we changed the method of perfusion from parting body to in situ graft perfusion in living donors and significantly reduced the volume of intra-luminal irrigation from 50-70 ml to 5-8 ml. The small intestine was put in order before graft perfusion, then the solution in the gut lumen could easily flow out. The speed of irrigation was not quickened till the intra-luminal solution flowed out, avoiding over-distention of the donor small intestine. The volume of graft perfusion in situ was reduced from 12-20 ml to 3-5 ml. The speed and volume of perfusion were accurately controlled by micropump instead of gravity, ensuring complete graft perfusion and minimizing the damage.
that removal of one kidney did not increase the mortality in our experiment yet. After removal of one kidney, the remaining kidney usually has a capacity to compensate. The adaptation may take place within 12-24 h and reach the largest degree during 1-2 wk. There was no an obvious disadvantage effect on physiological function and some experimental researches such as the absorptive function and permeability of transplanted small intestine could be studied on the model without any inconvenient.

In conclusion, our results suggested that applying these modified techniques would remarkably reduce the complications and improve survival rate in rats, the transplanted small intestine had a long-term fine function, this provided a need of experimental and clinical studies.

REFERENCES
1. Monchik GJ, Russell PS. Transplantation of small bowel in the rat: technical and immunological considerations. Surgery 1971; 70:693-702
2. Zhong R, Grant D, Sutherland F, Wang PZ, Chen HF, Lo S, Stiller C, Duff J. Refined technique for intestinal transplantation in the rat. Microsurgery 1991; 12:268-274
3. Kiyozaki H, Kobayashi E, Toyama N, Miyata M. Segmental small bowel transplantation in the rat: comparison of lipid absorption between jejunal and ileal grafts. JPN 1996; 20:67-70
4. Schraut WH, Abraham VS, Lee KKW. Portal versus caval venous drainage of small bowel allografts: technical and metabolic consequences. Surgery 1986; 99:193-198
5. Lee KKW, Schraut WH. Structure and function of orthotopic small bowel allografts in rats treated with cyclosporine. Am Surg 1986; 151:55-60
6. Kimura K, Moneky SR, Jaffe BM. The effects of size and site of origin of intestinal grafts on small-bowel transplantation in the rat. Surgery 1987; 101:618-622
7. Fujiwara H, Raju S, Grogan JB, Lewin JR, Johnson WW. Total orthotopic small bowel allotransplantation in the dog. Features of atypical rejection and graft-versus-host reaction. Transplantation 1987; 44:747-753
8. Kimura K, LaRosa CA, Moneky SR, Jaffe BM. Segmental intestinal transplantation in rats with resected entire small bowel, ileocecal valve, and cecum. J Surg Res 1988; 45:349-356
9. Kaneko H, Hancock W, Schweizer RT. Progress in experimental porcine small-bowel transplantation. Arch Surg 1989; 124:587-592
10. Kimura K, LaRosa CA, Blank MA, Jaffe BM. Successful segmental intestinal transplantation in enterectomized pigs. Ann Surg 1990; 211:158-164
11. Li N, Li JS, Liao CX, Li YS, Wu XH. Successful segmental small bowel allotransplantation in pigs. Chin Med J 1993; 106:187-190
12. Zhong R, Grant D, Black R, Stiller C, Duff J. Combined small bowel and kidney transplantation in the rat. Transplantation Proceedings 1989; 21:2907-2908
13. Schroeder P, Sandfort F, Gundleich M, Deltz E, Thiede A. Functional adaptation of small intestinal mucosa after syngeneic and allogeneic orthotopic small bowel transplantation. Transplantation Proceedings 1989; 21:2887-2889
14. Martinelli GP, Knight RK, Kaplan S, Racelis D, Dikman SH, Schanzer H. Small bowel transplantation. Effect of pretransplant blood transfusions and cyclosporine on host survival. Transplantation 1988; 45:1021-1026
15. Zhong R, Wang P, Chen H, Sutherland F, Duff J, Grant D. Surgical techniques for orthotopic intestinal transplantation in the rat. Transplantation Proceedings 1990; 22:2443-2444
16. Schweizer E, Gundlach M, Gassel HJ, Deltz E, Schroeder P. Effects of two-step small bowel transplantation on intestinal morphology and function. Transplantation Proceedings 1991; 23:688
17. Frankel WL, Zhang W, Afonso J, Klurfeld DM, Don SH, Labin E, Deaton D, Furth EE, Pietra GG, Naji A, Rombeau JL. Glutamine enhancement of structure and function in transplanted small intestine in the rat. JPN 1993; 17:47-55
18. Harmel RP Jr. A simplified technique of small intestinal transplantation in the rat. Pediatr Surgery 1984; 19:400-403
19. Sigaeta DL, Kneteman NN, Fedorak RN, Kizilisik T, Madsen KE, Thomson AB. Small intestinal function following syngeneic transplantation in the rat. Surg Res 1996; 61:379-384
20. Price BA, Cumberland NS, Clark CL, Pockley AG, Wood RM. Evidence that orthotopic transplantation following rat heterotopic small bowel transplantation corrects overgrowth of potentially pathogenic bacteria. Transplantation 1996; 61:649-651
21. Winkelhaar GB, Smith LJ, Martin GR, Sigaeta DL. Fat absorption after small intestinal transplantation in the rat. Transplantation 1997; 64:565-571
22. Raofi V, Fontaine MJ, Mihalov ML, Holman DM, Dunn TB, Vitelio JM, Asoalit M, Kuminis NH, Benedetti E. Comparison of jejunal and ileal surveillance biopsies in a porcine model of intestinal transplantation. Transplantation 1999; 68:188-191
23. Li YS, Li JS, Li N. Surgical technique for intestinal transplantation in rats. Hua ren Xiaohua Zazhi 1998; 6:667-669
24. Li YX, Li JS, Li N. Improved technique of vascular anastomosis for small intestinal transplantation in rats. World J Gastroenterol 2000; 6:259-262
25. Li YS, Li JS, Li N, Jiang ZW, Zhao YZ, Li NY, Liu FN. Evaluation of various solutions for small bowel graft preservation. World J Gastroenterol 1998; 4:140-143
26. Luther B, Lehmann C, David H, Klinnert J. Preservation of isolated intestinal segments using the University of Wisconsin solution. Transplantation Proceedings 1991; 23:2459
27. Zhang S, Kokudo Y, Nemoto EM, Todo S. Biochemical evidence of mucosal damage of intestinal grafts during cold preservation in University of Wisconsin, Euro-Collins, and lactated Ringer’s solutions. Transplantation Proceedings 1994; 26:1494-1495
28. Hatcher PA, Deaton DH, Bollinger RR. Transplantation of the entire small bowel in inbred rats using cyclosporine. Transplantation 1987; 43:478-484
29. Grant D, Zhong R, Gunn H, Duff J, Garcia B, Keown P, Wijsman J, Stiller C. Graft-versus-host disease associated with intestinal transplantation in the rat. Host immune function and general histology. Transplantation 1989; 48:545-549
30. de Bruin RW, Saat RE, Heineman E, Jekel J, Marquet RL. The effect of cyclosporine A in small-bowel transplantation in rats is dependent on the rat strain combination used. Transplantation Proceedings 1990; 22:2472-2473
31. Wang M, Xu X, Stepkowskia SM, Chou TC, Kahan BD. Beneficial effect of graft perfusion with anti-T cell receptor monoclonal antibodies on survival of small bowel allografts in rat recipients treated with brefquinil alone or in combination with cyclosporine and sirolimus. Transplantation 1997; 61:458-464
32. Alessiani M, Spada M, Dionigi P, Arbustini E, Regazzi M, Fossati GS, Zonta A. Combined immunosuppressive therapy with tacrolimus and mycophenolate mofetil for small bowel transplantation in pigs. Transplantation 1996; 61:563-567
33. Yin DP, Sankary HN, Williams J, Krieger N, Fathman CG. Induction of tolerance to small bowel allografts in high-responder rats by combining anti-CD4 with CTLA4Ig. Transplantation 1996; 62:1537-1539
34. Fryer J, Grant D, Jiang J, Metrakos P, Ozcan N, Ford C, et al. Modified techniques of heterotopic total small intestinal transplantation in rats.
Garcia B, Behme R, Zhong R. Influence of macrophage depletion on bacterial translocation and rejection in small bowel transplantation. Transplantation 1996;62:553-559

35 Toogood GJ, Rankin AM, Tam PK, Morris PJ, Dallman MJ. The immune response following small bowel transplantation: I. An unusual pattern of cytokine expression. Transplantation 1996;62:851-855

36 Koide S, McVay LD, Frankel WL, Behling CA, Zhou ED, Shimada T, Zhang W, Rombeau JL. Increased expression of tissue cytokines in graft-versus-host disease after small bowel transplantation in the rat. Transplantation 1997;64:518-524

37 Ozcay N, Fryer J, Grant D, Freeman D, Garcia B, Zhong R. Budesonide, a locally acting steroid, prevents graft rejection in a rat model of intestinal transplantation. Transplantation 1997;63:1220-1225

38 Toogood GJ, Rankin AM, Tam PK, Morris PJ, Dallman MJ. The immune response following small bowel transplantation. II. A very early cytokine response in the gut-associated lymphoid tissue. Transplantation 1997;63:1118-1123

39 Mueller AR, Platz KP, Heckert C, Hausler M, Guckelberger O, Schuppan D, Lobeck H, Neuhaus P. The extracellular matrix: an early target of preservation/reperfusion injury and acute rejection after small bowel transplantation. Transplantation 1998;65:770-776

40 Johnson C, Bengtsson M, Tufvesson G. Recipient-reactive antibodies occur during development of acute graft-versus-host reaction after small bowel transplantation. Transplantation 1996;62:343-346

41 van Oosterhout JMA, de Boer HH, Jerusalem CR. Small bowel transplantation in the rat: the adverse effect of increased pressure during the flushing procedure of the graft. J Surg Res 1984;36:140-146

42 Cicalese L, Caraceni P, Nalesnik MA, Borle AB, Schraut WH. Oxygen free radical content and neutrophil infiltration are important determinants in mucosal injury after rat small bowel transplantation. Transplantation 1996;62:161-166

43 Sugitani A, Bauer AJ, Reynolds JC, Halfter WM, Nomoto M, Sbarzi TE, Todo S. The effect of small bowel transplantation on the morphology and physiology of intestinal muscle: a comparison of autografts versus allografts in dogs. Transplantation 1997;63:186-194

44 Kaihara S, Egawa H, Inomata Y, Uemoto S, Asonuma K, Tanaka K. Serotonin as a useful parameter for cold and warm ischemic injury in small bowel transplantation. Transplantation 1997;64:405-410

45 Buckley RC, Davidson SF, Das SK. The role of various antithrombotic agents in microvascular surgery. Br J Plast Surg 1994;47:20-23

46 Cox GW, Runnels S, Hsu HS, Das SK. A comparison of heparinised saline irrigation solutions in a model of microvascular thrombosis. Br J Plast Surg 1992;45:345-348

47 Davidson SF, Brantley SK, Talbot PJ, Das SK. A functional model of microvascular thrombosis. Plast Reconstr Surg 1990;86:579-581

48 Khouri RK, Cooley BC, Kenna DM, Edstrom LE. Thrombosis of microvascular anastomoses in traumatized vessels: fibrin versus platelets. Plast Reconstr Surg 1990;86:110-117

49 Davidson SF, Brantley SK, Das SK. Comparison of single-dose antithrombotic agents in the prevention of microvascular thrombosis. J Hand Surg 1991;16:585-589

50 Buckley RC, Davidson SF, Das SK. Effects of ketorolac tromethamine (Toradol) on a functional model of microvascular thrombosis. Br J Plast Surg 1993;46:296-299

Edited by Ma JY