Estimating the number of communities in a network

M. E. J. Newman1,2 and Gesine Reinert3

1Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
2Rudolph Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford, UK
3Department of Statistics, University of Oxford, 24–29 St. Giles, Oxford, UK

Community detection, the division of a network into dense subnetworks with only sparse connections between them, has been a topic of vigorous study in recent years. However, while there exist a range of powerful and flexible methods for dividing a network into a specified number of communities, it is an open question how to determine exactly how many communities one should use. Here we describe a mathematically principled approach for finding the number of communities in a network using a maximum-likelihood method. We demonstrate this approach on a range of real-world examples with known community structure, finding that it is able to determine the number of communities correctly in every case.

The large-scale structure of empirically observed networks, such as social, biological, and technological networks, is often complex and difficult to comprehend 1. Community detection, the division of the nodes of a network into densely connected groups with only sparse between-group connections, is one of the most effective tools at our disposal for reducing this complexity to a level where network topology can be more easily understood and interpreted. The development of algorithmic methods for community detection has been the subject of a large volume of recent research 2-4, as a result of which we now have a number of efficient and sensitive detection techniques that are able to find meaningful communities in real-world settings 5-11.

A fundamental limitation of most of these methods, however, is that they only divide networks into a fixed number of groups, so that one must know in advance how many groups one is looking for. Normally one does not have this information, which significantly diminishes the usefulness of community detection as an analytic tool. In this paper, we present a rigorous, first-principles solution to this problem in the form of an algorithm that, when applied to a given network, returns the number of communities the network contains. The algorithm makes use of widely accepted methods of statistical inference coupled with a numerical approach that scales efficiently to large networks.

There have been a number of previous approaches proposed for this problem, among which perhaps the best known is the method of modularity maximization 5,12, which is a method both for choosing the number of communities and for performing the community division itself. This method is employed in, for example, the widely used Louvain algorithm 8, but it suffers from being only heuristically motivated and there are instances where it is known to give incorrect results 13,14. More rigorous approaches include minimum description length methods 15 and various approximations to integrated likelihoods, including variants of the Bayesian information criterion 16,17, Laplace-style approximations 18, and variational approximations 19. Perhaps most similar to our work is that of 20 which uses an exact integral of the likelihood as we do, but makes approximations elsewhere in the calculation and also assumes a Poisson degree distribution for the observed network, making it unsuitable for most real-world network data.

Our approach, like much of the recent work in this area, is based on methods of statistical inference. In these methods one defines a model of a network with community structure, then fits that model to observed network data. The parameters of the fit tell us about the community structure in much the same way that the fit of a straight line through a set of data points can tell us about their slope. The model most commonly employed in this context is the stochastic block model 11,21,22. In this model one specifies the number of nodes \(n \) in the network along with the number \(k \) of communities or groups, then one assigns each node in turn to one of the groups at random, with probability \(\gamma_r \) of assignment to community \(r \) (where \(r \) runs from 1 to \(k \)). Note that we must have \(\sum_{r=1}^{k} \gamma_r = 1 \) for consistency. Once all nodes have been assigned to a group, one places undirected edges independently at random between pairs of distinct nodes with probabilities \(\omega_{rs} \), where \(r \) and \(s \) are the groups to which the nodes belong. If the diagonal parameters \(\omega_{rr} \) are greater than the off-diagonal ones, this produces a network with traditional “assortative” community structure—groups of nodes with denser in-group connections than between-group ones—although other choices are possible too.

In practice, this model is often studied in a slightly different formulation in which one places not just a single edge between any pair of nodes \(i,j \) but a Poisson distributed number with mean \(\omega_{rs} \), or half that number when \(i = j \) 11. In this variant of the model the generated network may contain both multiedges and self-edges, which is in a sense unrealistic—most real networks contain neither. But in typical situations the edge probabilities are so small that both multiedges and self-edges occur with very low frequency, and the model is virtually identical to the first (Bernoulli) formulation given above.

At the same time the Poisson formulation is significantly

\[\text{Estimating the number of communities in a network} \]

\[M. E. J. Newman^1,^2 \text{ and Gesine Reinert}^3 \]

1Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
2Rudolph Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Rd., Oxford, UK
3Department of Statistics, University of Oxford, 24–29 St. Giles, Oxford, UK

Community detection, the division of a network into dense subnetworks with only sparse connections between them, has been a topic of vigorous study in recent years. However, while there exist a range of powerful and flexible methods for dividing a network into a specified number of communities, it is an open question how to determine exactly how many communities one should use. Here we describe a mathematically principled approach for finding the number of communities in a network using a maximum-likelihood method. We demonstrate this approach on a range of real-world examples with known community structure, finding that it is able to determine the number of communities correctly in every case.

The large-scale structure of empirically observed networks, such as social, biological, and technological networks, is often complex and difficult to comprehend 1. Community detection, the division of the nodes of a network into densely connected groups with only sparse between-group connections, is one of the most effective tools at our disposal for reducing this complexity to a level where network topology can be more easily understood and interpreted. The development of algorithmic methods for community detection has been the subject of a large volume of recent research 2-4, as a result of which we now have a number of efficient and sensitive detection techniques that are able to find meaningful communities in real-world settings 5-11.

A fundamental limitation of most of these methods, however, is that they only divide networks into a fixed number of groups, so that one must know in advance how many groups one is looking for. Normally one does not have this information, which significantly diminishes the usefulness of community detection as an analytic tool. In this paper, we present a rigorous, first-principles solution to this problem in the form of an algorithm that, when applied to a given network, returns the number of communities the network contains. The algorithm makes use of widely accepted methods of statistical inference coupled with a numerical approach that scales efficiently to large networks.

There have been a number of previous approaches proposed for this problem, among which perhaps the best known is the method of modularity maximization 5,12, which is a method both for choosing the number of communities and for performing the community division itself. This method is employed in, for example, the widely used Louvain algorithm 8, but it suffers from being only heuristically motivated and there are instances where it is known to give incorrect results 13,14. More rigorous approaches include minimum description length methods 15 and various approximations to integrated likelihoods, including variants of the Bayesian information criterion 16,17, Laplace-style approximations 18, and variational approximations 19. Perhaps most similar to our work is that of 20 which uses an exact integral of the likelihood as we do, but makes approximations elsewhere in the calculation and also assumes a Poisson degree distribution for the observed network, making it unsuitable for most real-world network data.

Our approach, like much of the recent work in this area, is based on methods of statistical inference. In these methods one defines a model of a network with community structure, then fits that model to observed network data. The parameters of the fit tell us about the community structure in much the same way that the fit of a straight line through a set of data points can tell us about their slope. The model most commonly employed in this context is the stochastic block model 11,21,22. In this model one specifies the number of nodes \(n \) in the network along with the number \(k \) of communities or groups, then one assigns each node in turn to one of the groups at random, with probability \(\gamma_r \) of assignment to community \(r \) (where \(r \) runs from 1 to \(k \)). Note that we must have \(\sum_{r=1}^{k} \gamma_r = 1 \) for consistency. Once all nodes have been assigned to a group, one places undirected edges independently at random between pairs of distinct nodes with probabilities \(\omega_{rs} \), where \(r \) and \(s \) are the groups to which the nodes belong. If the diagonal parameters \(\omega_{rr} \) are greater than the off-diagonal ones, this produces a network with traditional “assortative” community structure—groups of nodes with denser in-group connections than between-group ones—although other choices are possible too.

In practice, this model is often studied in a slightly different formulation in which one places not just a single edge between any pair of nodes \(i,j \) but a Poisson distributed number with mean \(\omega_{rs} \), or half that number when \(i = j \) 11. In this variant of the model the generated network may contain both multiedges and self-edges, which is in a sense unrealistic—most real networks contain neither. But in typical situations the edge probabilities are so small that both multiedges and self-edges occur with very low frequency, and the model is virtually identical to the first (Bernoulli) formulation given above.

At the same time the Poisson formulation is significantly
easier to treat mathematically. In this paper we use the Poisson version; equivalent calculations can be performed for the Bernoulli version, but they do not give measurably different results and the formulas are significantly more complicated.

The definition of the model above specifies its behavior in the “forward” direction, for the generation of random artificial networks, but our interest here is in its use in the reverse direction for inference, where we hypothesize that an observed network was generated using the model and then estimate by looking at the network which parameter set is most likely.

Let the observed network be represented by its adjacency matrix \(A \), with elements \(a_{ij} = 1 \) if nodes \(i \) and \(j \) are connected by an edge and 0 if they are not, and let the assignment of nodes to groups be represented by a vector \(g \) with elements \(g_i \) equal to the group to which node \(i \) is assigned. Then the probability, or likelihood, that the model generates a particular network \(A \) and group assignment \(g \), given the parameters \(\gamma \), \(\omega \), and \(k \), and bearing in mind that a self-edge in a network is represented by an adjacency matrix element \(a_{ii} = 2 \), is

\[
P(A, g|\omega, \gamma, k) = P(g|\gamma, k)P(A|g, \omega)
\]

\[
= \prod_i \gamma_{g_i} \prod_{i, j} \left(\frac{e^\omega_{g_i g_j}}{1 + e^\omega_{g_i g_j}} \right)^{a_{ij}/2} e^{-\omega_{g_i g_j}/2} \prod_{i < j} \omega_{g_i g_j} \omega_{g_j g_i} e^{-\omega_{g_i g_j} - \omega_{g_j g_i}}
\]

\[
= \prod_r \gamma_{g_r} \prod_r \omega_{rr}^{m_{rr}} e^{-n_r^2 \omega_{rr}/2} \prod_{r < s} \omega_{rs} m_{rs}/ \prod e^{-n_r \omega_{rs}}
\]

(1)

where \(n_r = \sum_i \delta_{g_i, r} \), is the number of nodes in group \(r \) (with \(\delta_{ij} \) being the Kronecker delta), and \(m_{rs} \) is the number of edges running between groups \(r \) and \(s \), given by \(m_{rs} = \sum_{ij} a_{ij} \delta_{g_i, r} \delta_{g_j, s} \) for \(r \neq s \) or a half that number when \(r = s \). (We have also neglected an overall multiplicative constant in (1), since it cancels out of later calculations anyway.)

We can use this expression to derive the probability \(P(k, g|A) \) that, given an observed network \(A \), the block model from which it was generated had \(k \) groups and group assignment \(g \). We assume maximum-entropy (least informative) prior probability distributions on the unknown quantities \(k \), \(\gamma \), and \(\omega \), which implies for instance that the prior on \(k \) is uniform between the minimum and maximum allowed values of \(k = 1 \) and \(k = n \), meaning that \(P(k) = 1/n \), independent of \(k \). The prior on the group assignment probabilities \(\gamma \) is also uniform, but because of the constraint \(\sum_r \gamma_r = 1 \) it occupies a more complicated space, a regular simplex with \(k \) vertices and volume \(1/(k-1)! \), so that the prior probability density is \(P(\gamma|k) = (k-1)! \). For \(\omega \) we set the scale of the prior (and hence the density of the network) by requiring that the mean of the edge probability \(\omega_{rs} \) be equal to the observed average edge probability in the network as a whole \(p = 2m/n^2 \), where \(m \) is the observed number of edges in the network. Then the maximum-entropy prior is an exponential \(P(\omega) = p^{-1} e^{-\omega/p} \). (Approaches of this kind, where the prior is chosen to match features of the input data, are known as “empirical Bayes” techniques and typically give consistent results in the large-\(n \) limit [24, 25].)

Given the prior probabilities, we now have

\[
P(k, g|A) = \frac{P(k)P(g|k)P(A|g)}{P(A)}
\]

(2)

where

\[
P(g|k) = \int P(g|\gamma, k)P(\gamma|k) \, d\gamma = \frac{(k-1)!}{(n+k-1)!} \prod_{r=1}^k n_r!
\]

(3)

\[
P(A|g) = \int P(A|g, \omega)P(\omega) \, d\omega
\]

\[
= \prod_r \frac{m_{rr}!}{(\frac{1}{2}pn_r^2 + 1)^{m_{rr} + 1}} \prod_{r<s} \frac{m_{rs}!}{(pn_rn_s + 1)^{m_{rs} + 1}}
\]

(4)

The probability \(P(A) \) in the denominator of (2) is unknown but cancels out of later calculations (and we have again neglected an overall multiplicative constant in (3)).

We can regard the values \(k, g \) as defining a “state” of a statistical mechanical system with probability \(P(k, g|A) \). We will sample states of this system in proportion to this probability using Markov chain Monte Carlo importance sampling [26, 27]. Then an estimate of the probability \(P(k|A) \) of having \(k \) communities given the observed network \(A \), is simply given by the histogram of values of \(k \) over the Monte Carlo sample, and the most likely value of \(k \), which is the quantity we are ultimately interested in, is the one for which \(P(k|A) \) is greatest.

This defines our method for calculating the number of groups \(k \). It remains only to choose the Monte Carlo procedure. In order to sample over both \(k \) and \(g \) we use two different Monte Carlo steps.

To sample over group assignments \(g \) for given \(k \), we perform steps consisting of the movement of a single node from one group to another. One could perform such steps using the classic Metropolis–Hastings rejection scheme, but we have found better efficiency and ergodicity (especially for larger values of \(k \)) with a so-called heat-bath algorithm [26], in which a randomly chosen node \(i \) is moved to group \(r \) with probability \(P(g_i = r|k, A) = P(k, g_i = r|A)/\sum_s P(k, g_i = s|A) \), all other \(g_i \) being held constant. (Note that indeed the unknown constant \(P(A) \), along with any other multiplicative constant, cancels out of this expression and hence has no effect on the calculation.)

To sample values of \(k \) with \(g \) held constant we perform steps in which the value of \(k \) is either increased or decreased by 1. For states \(g \) with \(k \) non-empty groups, the probabilities \(P(k, g|A) \) and \(P(k+1, g|A) \) are related by

\[
\frac{P(k+1, g|A)}{P(k, g|A)} = \frac{P(k+1)P(g|k+1)P(A|g)/P(A)}{P(k)P(g|k)P(A|g)/P(A)}
\]

\[
= \frac{k!/(n+k)!}{(k-1)!/(n+k-1)!} = \frac{k}{n+k}
\]

(5)
where we have made use of Eqs. (2) and (3) and the fact that \(P(k) = 1/n \) is independent of \(k \). Thus, an appropriate Monte Carlo step is one in which moves \(k \rightarrow k-1 \) are always accepted (provided they are possible at all, i.e., whenever \(g \) has only \(k-1 \) non-empty groups), and moves \(k \rightarrow k+1 \) are accepted with probability \(k/(n+k) \). Then the entire set of probabilities \(P(k|A) \) can be calculated simply by counting the fraction of time the simulation spends at each value of \(k \).

This is a complete algorithm for determining the best-fit value of \(k \) but, helpful though it is as an illustration of the proposed method, it turns out to perform poorly in most real-world situations, for well-understood reasons. The ordinary stochastic block model used here is known to give a poor fit, and hence poor results, for most real-world network data, because it fails to fit the broad degree distributions commonly observed in such data. The solution to this problem is to use a more elaborate model, the degree-corrected stochastic block model, which is able to fit networks with any degree distribution [11]. In this model one defines an additional set of continuous-valued node parameters \(\theta_i \), one for each node \(i \), and the expected number of edges between any pair of nodes \(i,j \) is now \(\theta_i \theta_j \omega_{rs} \), where again \(r \) and \(s \) are the groups to which the nodes belong. As discussed in [11], the parameters \(\theta_i \) allow us to independently control the average degree of each node and hence match any desired distribution, while the parameters \(\omega_{rs} \) control the community structure as before.

This does not completely specify the model, however, because there is an arbitrary constant in the definition of \(\theta_i \); if we increase all the \(\theta_i \) in group \(r \) by a factor of \(c_r \) and correspondingly decrease all \(\omega_{rs} \) by a factor of \(c_r c_s \), the probability distribution over networks remains the same, regardless of the values of the \(c_r \). In the language of statistics, the model parameters are not identifiable. To fix the arbitrary constants one must specify a normalization for the \(\theta_i \) in each group, which can be done in a variety of ways. In our work we impose the condition that the average value of \(\theta_i \) be 1 in every group:

\[
\frac{1}{n_r} \sum_i \theta_i \delta_{g_i,r} = 1, \tag{6}
\]

for all \(r \). This choice is convenient, since it has the effect of making the average number of edges between two different groups \(r \) and \(s \) equal to \(\sum_{ij} \theta_i \theta_j \omega_{rs} \delta_{g_i,r} \delta_{g_j,s} = n_r n_s \omega_{rs} \). In other words, with this choice \(\omega_{rs} \) represents the average probability of an edge between nodes in groups \(r \) and \(s \), just as it does in the standard stochastic block model.

With these definitions, the likelihood of a network \(A \) within the degree-corrected model, given a group assignment \(g \) and parameter sets \(\theta, \omega \), is

\[
P(A|g, \theta, \omega) = \prod_i \left(\frac{1}{2} \omega_{g_i,g_i} \right)^{a_{i,i}/2} e^{-\theta_i^2 \omega_{g_i,g_i}/2} \times \prod_{i<j} \left(\theta_i \theta_j \omega_{g_i,g_j} \right)^{a_{i,j}/2} e^{-\theta_i \theta_j \omega_{g_i,g_j}} \]

\[
= \prod_i \theta_i^{d_i} \prod_r \omega_{rr}^{m_{rr}} e^{-n_r^2 \omega_{rr}/2} \prod_{r<s} \omega_{rs}^{m_{rs}} e^{-n_r n_s \omega_{rs}}, \tag{7}
\]

where \(d_i = \sum_j a_{ij} \) is the observed degree of node \(i \) and we have used (5) in the second equality.

We assume maximum-entropy priors as before, which again implies an exponential distribution \(p = e^{-w/p} \) for \(\omega \). For \(\theta \) it implies a uniform distribution over the regular simplex defined by Eq. (4). Integrating over \(\theta \) and \(\omega \), we find the value of \(P(A|g) \) in the degree-corrected model to be the same as that for the uncorrected model, Eq. (4), except for the addition of a leading multiplicative factor \(\prod_{r=1}^{c_r} (n_r - 1)!/(n_r + c_r - 1)! \) where \(\kappa_r = \sum_i d_i \delta_{g_i,r} \) is the sum of the degrees of the nodes in group \(r \). All other formulas remain the same as for the uncorrected model. Modest though the change in \(P(A|g) \) may seem, it produces a substantial difference in the behavior of the model, giving us a method that now works well on networks with any degree distribution.

Implementation of the complete method is straightforward. In our calculations we perform one group-update Monte Carlo step per node (one “sweep” of the system) followed by a single \(k \)-update step, and repeat. Run time per sweep is linear in \(n \), and we typically perform a few thousand sweeps in total. The calculations for the figures in this paper took seconds to minutes per network on a standard desktop computer, depending on network size. The largest system we have studied comprises about 100,000 nodes and 800,000 edges and required an hour of running time for 10,000 Monte Carlo sweeps. On some networks, particularly those with very weakly connected communities, the algorithm can get stuck in a metastable state, in which case faster equilibration may be achieved by performing repeated runs on the same network with random initial conditions and using results from the run that achieves the highest average likelihood.

We have tested the method on a range of different networks, including computer-generated (“synthetic”) data with known community structure and real-world examples. Figure 11 shows results for synthetic networks generated using the standard (non-degree-corrected) stochastic block model with edge probabilities \(\omega_{rs} \) equal to \(c_{in}/n \) when \(r = s \) (in-group connections), \(c_{out}/n \) when \(r \neq s \) (between-group connections), and \(c_{in} > c_{out} \), so that the network shows traditional assortative structure. Figure 11 shows results for the likelihood \(P(k|A) \) for networks with a range of values of \(k \) and, as the figure shows, the algorithm overwhelmingly assigns highest likelihood to the correct value of \(k \) in every case. We can make the
problem more challenging by decreasing the difference $c_{in} - c_{out}$ between the numbers of in- and out-group connections, thereby generating networks with weaker community structure that should be harder to detect. Typical community detection algorithms show progressively poorer performance as structure weakens and it can be proved that when it is sufficiently weak the structure becomes undetectable by any means, a phenomenon known as the detectability transition [28, 29]. We see similar behavior in detecting the number of groups in stochastic block models with $k = 4$ groups of 250 nodes each and average degree 16, as a function of the strength of the community structure. The vertical dashed line represents the theoretical detectability threshold below which every algorithm must fail. Each point is an average over 1000 networks and success is defined as assigning an absolute majority of the probability $P(k|A)$ to the correct value of k.

Figure 1 shows the results of tests of the algorithm on four real-world networks whose community structure is widely agreed upon: the well-studied “karate club” network of Zachary [30], which is generally thought to have two groups; the dolphin social network of Lusseau et al. [31], also thought to have two groups; the co-appearance network of fictional characters in the novel Les Miserables by Victor Hugo, with six groups corresponding to major subplots of the story [12]; and the network of games between Division I-A American college football teams in the year 2000, with 11 groups corresponding to the established conferences of US collegiate sports competition [12]. The figure shows histograms of the estimated probabilities $P(k|A)$ for each of these four networks and the peak probability falls at the agreed-upon value in every case—at $k = 2, 2, 6,$ and 11 respectively. In each case the accepted value easily outweighs any other and the choice of group number is clear, except arguably in the case of the karate club network, for which $k = 2$ does receive the most weight but $k = 1$ comes a close second. This is an interesting finding in the context of this particular network, which comes from a study of a university student club that was a single group at the time the network was observed but broke into two shortly afterwards. Our results fit this observation neatly, indicating that the network could be construed either as a single community or as a pair of communities.

Once the value of k for a network has been determined, one does not necessarily need to perform a separate calculation to determine the community structure itself. Since our Monte Carlo procedure samples group assignments g from the distribution $P(k, g|A)$, one can simply examine the subset of sampled assignments corresponding to the inferred value of k to get an estimate of the posterior distribution over network divisions. In particular, given that the prior on k is by hypothesis constant, one can calculate the marginal probability that a node belongs to any given group to within an overall constant
from $P(g_i = r|k, A) \propto \sum_{r} \delta_{g_i,r} P(k,g|A)$ and then assign each node to the group for which this probability is largest, obviating the need for other methods of fitting the block model, such as maximization of the profile likelihood \[11\] \[22\].

In summary, we have given a first-principles method for inferring the number of communities into which a network divides. In tests, the method, based on simultaneous Monte Carlo sampling of the distribution of community divisions and community number, gives correct answers on a range of benchmark networks with known community structure. The method can be scaled up, without significant modification, to allow the analysis of data sets with hundreds of thousands of nodes or more.

The authors thank Maria Riolo for useful conversations. This work was funded in part by the US National Science Foundation under grants DMS–1107796 and DMS–1407207 (MEJN), the UK Engineering and Physical Sciences Research Council under grant EP/K032402/1 (GR), the Simons Foundation, and the Advanced Studies Centre at Keble College, Oxford.

\[1\] M. E. J. Newman, *Networks: An Introduction*. Oxford University Press, Oxford (2010).
\[2\] M. Girvan and M. E. J. Newman, Community structure in social and biological networks. *Proc. Natl. Acad. Sci. USA* **99**, 7821–7826 (2002).
\[3\] S. Fortunato, Community detection in graphs. *Phys. Rep.* **486**, 75–174 (2010).
\[4\] M. Coscia, F. Giannotti, and D. Pedreschi, A classification for community discovery methods in complex networks. *Statistical Analysis and Data Mining* **4**, 512–546 (2011).
\[5\] M. E. J. Newman, Fast algorithm for detecting community structure in networks. *Phys. Rev. E* **69**, 066133 (2004).
\[6\] P. Pons and M. Latapy, Computing communities in large networks using random walks. In *Proceedings of the 20th International Symposium on Computer and Information Sciences*, volume 3733 of *Lecture Notes in Computer Science*, pp. 284–293, Springer, New York (2005).
\[7\] M. Rosvall and C. T. Bergstrom, An information-theoretic framework for resolving community structure in complex networks. *Proc. Natl. Acad. Sci. USA* **104**, 7327–7331 (2007).
\[8\] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks. *J. Stat. Mech.* **2008**, P10008 (2008).
\[9\] G. Agrawal and D. Kempe, Modularity-maximizing network communities via mathematical programming. *Eur. Phys. J. B* **66**, 409–418 (2008).
\[10\] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, Link communities reveal multiscale complexity in networks. *Nature* **466**, 761764 (2010).
\[11\] B. Karrer and M. E. J. Newman, Stochastic blockmodels and community structure in networks. *Phys. Rev. E* **83**, 016107 (2011).
\[12\] M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks. *Phys. Rev. E* **69**, 026113 (2004).
\[13\] S. Fortunato and M. Barthélemy, Resolution limit in community detection. *Proc. Natl. Acad. Sci. USA* **104**, 36–41 (2007).
\[14\] B. H. Good, Y.-A. de Montjoye, and A. Clauset, Performance of modularity maximization in practical contexts. *Phys. Rev. E* **81**, 046106 (2010).
\[15\] T. P. Peixoto, Hierarchical block structures and high-resolution model selection in large networks. *Phys. Rev. X* **4**, 011047 (2014).
\[16\] M. S. Handcock and A. E. Raftery, Model-based clustering for social networks. *J. R. Statist. Soc. A* **170**, 301–354 (2007).
\[17\] P. Latouche, E. Birmelé, and C. Ambroise, in *Advances in Data Analysis, Data Handling, and Business Intelligence*, pp. 229–239. Springer, Berlin (2009).
\[18\] J. J. Daudin, F. Picard, and S. Robin, A mixture model for random graphs. *Statistical Computing* **18**, 173–183 (2007).
\[19\] P. Latouche, E. Birmelé, and C. Ambroise, Variational Bayesian inference and complexity control for stochastic block models. *Statistical Modelling* **12**, 93–115 (2012).
\[20\] E. Cóme and P. Latouche, Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood. *Statistical Modelling* **15**, 564–589 (2015).
\[21\] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: Some first steps. *Social Networks* **5**, 109–137 (1983).
\[22\] P. J. Bickel and A. Chen, A nonparametric view of network models and Newman–Girvan and other modularities. *Proc. Natl. Acad. Sci. USA* **106**, 21068–21073 (2009).
\[23\] K. Nowicki and T. A. B. Snijders, Estimation and prediction for stochastic blockstructures. *J. Amer. Stat. Assoc.* **96**, 1077–1087 (2001).
\[24\] B. P. Carlin and T. A. Louis, *Bayesian Methods for Data Analysis*. Chapman and Hall, New York, 3rd edition (2008).
\[25\] S. Petrone, J. Rousseau, and C. Scricciolo, Bayes and empirical Bayes: Do they merge? *Biometrika* **101**, 285–302 (2014).
\[26\] M. E. J. Newman and G. T. Barkema, *Monte Carlo Methods in Statistical Physics*. Oxford University Press, Oxford (1999).
\[27\] C. P. Robert and G. Casella, *Monte Carlo Statistical Methods*. Springer, Berlin (2010).
\[28\] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference and phase transitions in the detection of modules in sparse networks. *Phys. Rev. Lett.* **107**, 065701 (2011).
\[29\] E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation in the planted partition model. *Probability Theory and Related Fields* **162**, 431–461 (2015).
\[30\] W. W. Zachary, An information flow model for conflict and fission in small groups. *Journal of Anthropological Research* **33**, 452–473 (1977).
\[31\] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. Can geographic isolation explain this unique trait? *Behavioral Ecology and Sociobiology* **54**, 396–405 (2003).