THE GENERALIZED CASSELS-TATE DUAL EXACT SEQUENCE FOR 1-MOTIVES

CRISTIAN D. GONZÁLEZ-AVILÉS AND KI-SENG TAN

Abstract. We establish a generalized Cassels-Tate dual exact sequence for 1-motives over global fields. We thereby extend the main theorem of [4] from abelian varieties to arbitrary 1-motives.

1. Introduction

Let \(K \) be a global field and let \(M = (Y \to G) \) be a (Deligne) 1-motive over \(K \), where \(Y \) is étale-locally isomorphic to \(\mathbb{Z}^r \) for some \(r \geq 0 \) and \(G \) is a semiabelian variety over \(K \). Let \(M^* \) be the 1-motive dual to \(M \). If \(B \) is a topological abelian group, \(B^\wedge \) will denote the completion of \(B \) with respect to the family of open subgroups of finite index. Let \(\mathfrak{H}^1(M) \) (resp. \(\mathfrak{H}^1_\omega(M) \)) denote the subgroup of \(\mathfrak{H}^1(K,M) \) of all classes which are locally trivial at all (resp. all but finitely many) primes of \(K \). There exists a canonical exact sequence of discrete torsion groups

\[
0 \to \mathfrak{H}^1(M) \to \mathfrak{H}^1_\omega(M) \to \bigoplus_{\text{all } v} \mathfrak{H}^1(K_v,M) \to \mathfrak{U}^1(M) \to 0,
\]

where we have written \(\mathfrak{U}^1(M) \) for the cokernel of the middle map. By the local duality theorem for 1-motives [7, Theorem 2.3 and Proposition 2.9], the Pontryagin dual of the above exact sequence is an exact sequence

\[
0 \to \mathfrak{U}^1(M)^D \to \prod_{\text{all } v} \mathfrak{H}^0(K_v,M^*^\wedge) \to \mathfrak{H}^1_\omega(M)^D \to \mathfrak{H}^1(M)^D \to 0,
\]

where each group \(\mathfrak{H}^0(K_v,M^*) \) is endowed with the topology defined in [7, p.99]. A fundamental problem is to describe \(\mathfrak{U}^1(M)^D \). This problem was first addressed in the case of elliptic curves \(E \) over number
fields \(K \) (i.e., \(Y = 0 \) and \(G = E \) above), by J.W.S.Cassels (see [2, Theorem 7.1] and [3, Appendix 2]). Cassels showed that \(\Psi^1(E^*)^D \) is canonically isomorphic to the pro-Selmer group \(T\text{Sel}(E) \) of \(E \). This result was extended to abelian varieties \(A \) over number fields \(K \) by J.Tate, under the assumption that \(\text{X}_1(A) \) is finite (unpublished). In this case \(T\text{Sel}(A) \) is isomorphic to \(H^0(K, A) \) and \(\text{X}_1(A^*) = H^1(K, A^*) \) for any \(v \) since \(H^0(K, A) \) is profinite. Further, \(\text{X}_1(\text{A}^*) = H^1(K, A^*) \) and \(\text{III}^1(\text{A}^*) = \text{III}^1(\text{A}) \). The exact sequence obtained by Tate, now known as the Cassels-Tate dual exact sequence, is

\[
0 \to H^0(K, A) \to \prod_{v} H^0(K_v, A) \to H^1(K, A^*)^D \to \text{III}^1(\text{A}) \to 0. \tag{1}
\]

Further, the image of \(H^0(K, A) \) is isomorphic to the closure \(\overline{H^0(K, A)} \) of the diagonal image of \(H^0(K, A) \) in \(\prod_{v} H^0(K_v, A) \). See [11, Remark I.6.14(b), p.102]. The preceding exact sequence was recently extended to arbitrary 1-motives over number fields by D.Harari and T.Szamuely [7, Theorem 1.2], again under the assumption that \(\text{III}^1(\text{M}) \) is finite. These authors established the exactness of the sequence

\[
0 \to \overline{H^0(K, M)} \to \prod_{v} \overline{H^0(K_v, M)} \to \text{III}^1(\text{M}^*)^D \to \text{III}^1(\text{M}) \to 0,
\]

where the middle map is induced by the local pairings of [7, §2]. This natural analogue of (1) was used in [op.cit., §6] to study weak approximation on semiabelian varieties over number fields. However, it does not provide a description of \(\Psi^1(M)^D \) when \(\text{III}^1(M) \) is infinite. Our objective in this paper is to describe \(\Psi^1(M)^D \) for any \(K \) independently of the finiteness assumption on \(\text{III}^1(M) \). In order to state our main result, let

\[
\text{Sel}(M) = \text{Ker} \left[H^1(K, T_{Z/n}(M)) \to \prod_{v} \text{H}^1(K_v, M)_n \right]
\]

be the \(n \)-th Selmer group of \(M \), where \(n \) is any positive integer and \(T_{Z/n}(M) \) is the \(n \)-adic realization of \(M \). Let \(T\text{Sel}(M) = \lim_{\longrightarrow n} \text{Sel}(M)_n \) be the pro-Selmer group of \(M \). Our main theorem is the following result.

Theorem 1.1. (The generalized Cassels-Tate dual exact sequence for 1-motives). Let \(M \) be a 1-motive over a global field \(K \). Then there
exists a canonical exact sequence of profinite groups
\[
0 \rightarrow \mathbb{H}^2(M^*)^D \rightarrow T\text{Sel}(M)^\wedge \rightarrow \prod_{v} \mathbb{H}^0(K_v, M)^\wedge \\
\rightarrow \mathbb{H}^1(M^*)^D \rightarrow \mathbb{H}^1(M)^D \rightarrow 0.
\]

If \(M = (0 \rightarrow A) \) is an abelian variety, then \(\mathbb{H}^2(M^*)^D = 0 \) and we recover the main theorem of [4]. Applications of Theorem 1.1 will be given in [6].

Acknowledgements

We thank C.U.Jensen, P.Jossen and J.S.Milne for helpful comments.

2. Preliminaries

Let \(K \) be a global field, i.e. \(K \) is a finite extension of \(\mathbb{Q} \) (the “number field case”) or is finitely generated and of transcendence degree 1 over a finite field of constants \(k \) (the “function field case”). For any prime \(v \) of \(K \), \(K_v \) will denote the completion of \(K \) at \(v \) and \(\mathcal{O}_v \) will denote the corresponding ring of integers. Thus \(\mathcal{O}_v \) is a complete discrete valuation ring. Further, \(X \) will denote either the spectrum of the ring of integers of \(K \) (in the number field case) or the unique smooth complete curve over \(k \) with function field \(K \) (in the function field case).

All cohomology groups below are flat (fppf) cohomology groups.

For any topological abelian group \(B \), we set \(B^D = \text{Hom}_{\text{cont.}}(B, \mathbb{Q}/\mathbb{Z}) \) and endow it with the compact-open topology, where \(\mathbb{Q}/\mathbb{Z} \) carries the discrete topology. If \(n \) is any positive integer, \(B/n \) will denote \(B/nB \) with the quotient topology. Let \(B_\wedge = \lim_{\longrightarrow} B/n \) with the inverse limit topology. Further, define \(B^\wedge = \lim_{U \in \mathcal{U}} B/U \), where \(\mathcal{U} \) denotes the family of open subgroups of finite index in \(B \). If \(B_\sim = \lim_{\longleftarrow} B/n \), where \(nB \) denotes the closure of \(nB \) in \(B \), then there exists a canonical isomorphism \((B_\sim)^\wedge = B^\wedge \). Consequently, there exists a canonical map \(B_\wedge \to B^\wedge \). If \(B \) is discrete (or compact), then \(B_\sim = B_\wedge \) and therefore \((B_\sim)^\wedge = B^\wedge \). We also note that \(B^\wedge = B \) if \(B \) is profinite (see, e.g., [14, Theorem 2.1.3, p.22]). For any positive integer \(n \), \(B_n \) will denote the \(n \)-torsion subgroup of \(B \) and \(TB = \lim_{n \in \mathbb{N}} B/nB \) is the total Tate module of \(B \). Note that \(TB = 0 \) if \(B \) is finite.

Let \(M = (Y \to G) \) be a Deligne 1-motive over \(K \), where \(Y \) is étale-locally isomorphic to \(\mathbb{Z}^r \) for some \(r \) and \(G \) is a semiabelian variety (for basic information on 1-motives over global fields, see [7, §1] or [5, §3].
Let n be a positive integer. The n-adic realization of M is a finite and flat K-group scheme $T_{\mathbb{Z}/n}(M)$ which fits into an exact sequence

$$0 \to G_n \to T_{\mathbb{Z}/n}(M) \to Y/n \to 0.$$

There exists a perfect pairing

$$T_{\mathbb{Z}/n}(M) \times T_{\mathbb{Z}/n}(M^*) \to \mu_n,$$

where μ_n is the sheaf of n-th roots of unity. Further, given positive integers n and m with $n | m$, there exist canonical maps $T_{\mathbb{Z}/n}(M) \to T_{\mathbb{Z}/m}(M)$ and $T_{\mathbb{Z}/m}(M) \to T_{\mathbb{Z}/n}(M)$. Let $T(M)_{\text{tors}} = \lim \limits_{\longrightarrow} T_{\mathbb{Z}/n}(M)$.

Further, for any $i \geq 0$, define

$$H^i(K, T(M)) = \lim \limits_{\longleftarrow} H^i(K, T_{\mathbb{Z}/n}(M)).$$

If v is archimedean and $i \geq -1$, $\mathbb{H}^i(K_v, M)$ will denote the (finite, 2-torsion) reduced (Tate) hypercohomology groups of M_{K_v} defined in [7, p.103]. All groups $\mathbb{H}^i(K_v, M)$ will be given the discrete topology, except for $\mathbb{H}^0(K_v, M)$ for non-archimedean v. The latter group will be given the topology defined in [7, p.99]. Thus there exists an exact sequence $0 \to I \to \mathbb{H}^0(K_v, M) \to F \to 0$, where F is finite and I is an open subgroup of $\mathbb{H}^0(K_v, M)$ which is isomorphic to $G(K_v)/L$ for some finitely generated subgroup L of $G(K_v)$. If n is a positive integer, $G(K_v)/n$ is profinite (see [5, beginning of §5]). Thus the exactness of

$$L/n \to G(K_v)/n \to I/n \to 0$$

shows that I/n is profinite as well. Now the exactness of

$$F_n \to I/n \to \mathbb{H}^0(K_v, M)/n \to F/n \to 0$$

shows that $\mathbb{H}^0(K_v, M)/n$ is profinite (see [14, Proposition 2.2.1(e), p.28]). The latter also holds if v is archimedean. We conclude that $\mathbb{H}^0(K_v, M)_\wedge$ is profinite for every v (see [14, Proposition 2.2.1(d), p.28]).

All groups $\mathbb{H}^i(K, M)$ will be endowed with the discrete topology.

Lemma 2.1. $\mathbb{H}^0(K, M)_\wedge$ is Hausdorff, locally compact and σ-compact.

Proof. This follows from the fact that $\mathbb{H}^0(K, M)_\wedge$ is topologically isomorphic to a countable direct limit of compact groups. Indeed, there exists a canonical isomorphism

$$\mathbb{H}^0(K, M)_\wedge = \lim \limits_{(U, \mathcal{M}) \in \mathcal{F}} \mathbb{H}^0(U, \mathcal{M})_\wedge,$$

where \mathcal{F} is the set of all pairs (U, \mathcal{M}) such that U is a nonempty open affine subscheme of X and \mathcal{M} is a 1-motive over U which extends M (cf. [5, proof of Lemma 2.3]). By [7, Lemma 3.2(3), p.107], each
THE GENERALIZED CASSELS-TATE DUAL EXACT SEQUENCE

\[H_0(U, M) \wedge \text{is profinite. Further, since the complement of } U \text{ in } X \text{ is a finite set of primes of } K \text{ and } K \text{ has only countably many primes, } \mathcal{F} \text{ is countable.} \]

For each \(i \geq 0 \), let \(\mathbb{P}^i(M) \) be the restricted direct product over all primes of \(K \) of the groups \(H^i(K_v, M) \) with respect to the subgroups

\[H^i_{nr}(K_v, M) = \text{Im} \left[H^i(O_v, \mathcal{M}) \to H^i(K_v, M) \right] \]

for \(v \in U \), where \(U \) is any nonempty open subscheme of \(X \) such that \(M \) extends to a 1-motive \(M \) over \(U \). The groups \(\mathbb{P}^i(M) \) are defined similarly for any abelian fppf sheaf \(F \) on \(\text{Spec } K \). By [7, Lemma 5.3], \(\mathbb{P}^0(M) \wedge \) is the restricted direct product of the groups \(H^0(K_v, M) \wedge \) with respect to the subgroups \(H^0_{nr}(K_v, M) \wedge \). It is therefore Hausdorff, locally compact and \(\sigma \)-compact (see [10, 6.16(c), p.57]). Further, by [7, Theorems 2.3 and 2.10], the dual of \(\mathbb{P}^0(M) \wedge \) is \(\mathbb{P}^1(M^*_{\text{tors}}) \).

Recall that a morphism \(f : A \to B \) of topological groups is said to be \textit{strict} if the induced map \(A/\text{Ker } f \to \text{Im } f \) is an isomorphism of topological groups. Equivalently, \(f \) is strict if it is open onto its image [1, §III.2.8, Proposition 24(b), p.236]. We will need the following

Lemma 2.2. Let \(A \xrightarrow{f} B \xrightarrow{g} C \) be an exact sequence of abelian topological groups and strict morphisms. If \(C \to C^\wedge \) is injective, then \(A^\wedge \xrightarrow{\tilde{f}} B^\wedge \xrightarrow{\tilde{g}} C^\wedge \) is also exact.

Proof. The map \(A \to \text{Im } f \) induced by \(f \) is an open surjection, so \(A^\wedge \to (\text{Im } f)^\wedge \) is surjective as well. Further, since \(B \to \text{Im } g \) is an open surjection, the sequence \((\text{Im } f)^\wedge \to B^\wedge \to (\text{Im } g)^\wedge \to 0 \) is exact [7, Appendix]. Finally, since \(C \) injects into \(C^\wedge \), \((\text{Im } g)^\wedge \) is the closure of \(\text{Im } g \) in \(C^\wedge \), whence \((\text{Im } g)^\wedge \to C^\wedge \) is injective. \(\square \)

3. THE POITOU-TATE EXACT SEQUENCE FOR 1-MOTIVES OVER FUNCTION FIELDS

For any positive integer \(n \), there exists a canonical exact commutative diagram

\[
\begin{array}{c}
0 \longrightarrow \mathbb{H}^0(K, M)/n \longrightarrow H^1(K, T_{\mathbb{Z}/n}(M)) \longrightarrow \mathbb{H}^1(K, M)_n \longrightarrow 0 \\
0 \longrightarrow \mathbb{P}^0(M)/n \longrightarrow \mathbb{P}^1(T_{\mathbb{Z}/n}(M)) \longrightarrow \mathbb{P}^1(M)_n \longrightarrow 0,
\end{array}
\]

\[^1 \text{This result and its proof remain valid in the function field case, using the fact that } H^1_v(O_v, T_{\mathbb{Z}/p^m}(M)) = 0 \text{ for any } m \text{ by [13, beginning of §7, p.349].} \]
whose vertical maps are induced by the canonical morphisms $\text{Spec } K_\nu \to \text{Spec } K$. For the exactness of the rows, see [7, p.109]. Now, for any $i \geq -1$, set

$$\mathbb{II}^i(M) = \text{Ker} \left[H^i(K, M) \to \mathbb{P}^i(M) \right].$$

Further, define

$$\text{Sel}(M)_n = \text{Ker} \left[H^1(K, T \mathbb{Z}/n(M)) \to \mathbb{P}^1(M)_n \right],$$

where the map involved is the composite

$$H^1(K, T \mathbb{Z}/n(M)) \to P^1(T \mathbb{Z}/n(M)) \to \mathbb{P}^1(M)_n.$$

Now set

$$T\text{Sel}(M) = \lim_{\leftarrow} \text{Sel}(M)_n$$

$$P^1(T(M)) = \lim_{\leftarrow} \mathbb{P}^1(T \mathbb{Z}/n(M)).$$

Since $(\mathbb{H}^0(K, M)/n)$ and $(\mathbb{P}^0(M)/n)$ are inverse systems with surjective transition maps, the inverse limit of (2) is an exact commutative diagram

\[
0 \longrightarrow \mathbb{H}^0(K, M) \longrightarrow H^1(K, T(M)) \longrightarrow \mathbb{T} \mathbb{H}^1(K, M) \longrightarrow 0
\]

\[
0 \longrightarrow \mathbb{P}^0(M) \longrightarrow P^1(T(M)) \longrightarrow \mathbb{T} \mathbb{P}^1(M) \longrightarrow 0
\]

(see, e.g., [9, Example 9.1.1, p.192]). The above diagram yields an exact sequence

\[
0 \longrightarrow \mathbb{H}^0(K, M) \longrightarrow T\text{Sel}(M) \longrightarrow \mathbb{T} \mathbb{II}^1(M) \longrightarrow 0.
\]

Thus, if $\mathbb{II}^1(M)$ is finite, then $T\text{Sel}(M)$ is canonically isomorphic to $\mathbb{H}^0(K, M)$. In particular, $T\text{Sel}(M)^\wedge = (\mathbb{H}^0(K, M))^\wedge = \mathbb{H}^0(K, M)^\wedge$.

Lemma 3.1. $T\text{Sel}(M)$ is locally compact and σ-compact.

Proof. By [7, Lemma 3.2(2)] and [5, Lemma 6.5], $\mathbb{II}^1(M)_n$ is finite for any n. Thus $T \mathbb{II}^1(M)$ is profinite and the lemma follows from (4), Lemma 2.1 and [15, Theorem 6.10(c), p.57].

Lemma 3.2. The canonical map $H^1(K, T(M)) \to T \mathbb{H}^1(K, M)$ appearing in diagram (3) induces an isomorphism

$$H^1(K, T(M))/T\text{Sel}(M) \simeq T \mathbb{H}^1(K, M)/T \mathbb{II}^1(M).$$

Proof. This is immediate from diagram (3) and the definitions of $\mathbb{II}^1(M)$ and $T\text{Sel}(M)$.

\[\square\]
By definition of $\text{TSel}(M)$, diagram (3) induces a canonical map

$$\theta_0 : \text{TSel}(M) \to \mathbb{P}^0(M)_\wedge.$$

Proposition 3.3. There exists a perfect pairing

$$\text{Ker} \theta_0 \times \text{III}^2(M^*) \to \mathbb{Q}/\mathbb{Z},$$

where the first group is profinite and the second is discrete and torsion.

Proof. (Cf. [7, proof of Proposition 5.1, p.119]) There exists a canonical exact commutative diagram

\[
\begin{array}{cccccc}
0 & \to & \text{TSel}(M) & \to & H^1(K, T(M)) & \to & T \mathbb{H}^1(K, M)/T \text{III}^1(M) \\
\downarrow \theta_0 & & \downarrow \theta & & \downarrow & \\
0 & \to & \mathbb{P}^0(M)_\wedge & \to & P^1(T(M)) & \to & T \mathbb{P}^1(M).
\end{array}
\]

The top row is exact by Lemma 3.2. Clearly, $\text{Ker} (\theta_0) = \text{Ker} (\theta)$. Now, by Poitou-Tate duality for finite modules ([13, Theorem I.4.10, p.70] and [5, Theorem 4.9]), for each n there exists a perfect pairing of finite groups

$$\text{III}^1(T_{\mathbb{Z}/n}(M)) \times \text{III}^2(T_{\mathbb{Z}/n}(M^*)) \to \mathbb{Q}/\mathbb{Z}.$$

We conclude that $\text{Ker} (\theta) = \varprojlim_n \text{III}^1(T_{\mathbb{Z}/n}(M))$ is canonically dual to $\text{III}^2(T(M^*)_{\text{tors}}) := \varprojlim_n \text{III}^2(T_{\mathbb{Z}/n}(M^*))$. But [5, proof of Lemma 5.8(a)] shows that $\text{III}^2(T(M^*)_{\text{tors}}) = \text{III}^2(M^*)$, which completes the proof. \hfill \square

Remark 3.4. In the number field case, $\text{III}^2(M^*)$ is known to be finite [12]. Further [op.cit., proof of Theorem 9.4], the finite group $\text{Ker} (\theta_0) = \varprojlim_n \text{III}^1(T_{\mathbb{Z}/n}(M))$ is canonically isomorphic to

$$\text{Ker} \left[\mathbb{H}^0(K, M) \to \prod \mathbb{H}^0(K_v, M)_\wedge \right],$$

which conjecturally is the same as $\text{III}^0(M)$.

Lemma 3.5. θ_0 is a strict morphism.

Proof. By Lemma 3.1, [10, Theorem 5.29, p.42] and [15, Theorem 4.8, p.45], it suffices to check that $\text{Im} \theta_0$ is a closed subgroup of the locally compact Hausdorff group $\mathbb{P}^0(M)_\wedge$. The image of the map θ in diagram (5) can be identified with the kernel of the map

$$P^1(T(M)) \to H^1(K, T^*(M^*)_{\text{tors}})^D.$$
coming from the Poitou-Tate exact sequence for finite modules ([13, Theorem I.4.10, p.70] and [5, Theorem 4.12]). Now diagram (5) shows that $\text{Im} \theta_0$ can be identified with the kernel of the continuous composite map

$$\mathbb{P}^0(M) \to P^1(T(M)) \to H^1(K, T(M^*)_{\text{tors}})^D.$$

Thus $\text{Im} \theta_0$ is indeed closed in $\mathbb{P}^0(M)$. \hfill \Box

There exists a natural commutative diagram

$$\begin{array}{ccc}
TSel(M) & \xrightarrow{\theta_0} & \mathbb{P}^0(M) \\
\downarrow & & \downarrow \\
TSel(M)^\wedge & \xrightarrow{\beta_0} & \mathbb{P}^0(M)^\wedge,
\end{array}$$

where $\beta_0 = \hat{\theta}_0$.

Lemma 3.6. The vertical maps in the preceding diagram are injective.

Proof. (Cf. [7, proof of Proposition 5.4, p.119]) Let $\xi = (\xi_n) \in T\text{Sel}(M)$ be nonzero. Then, for some n, $\xi_n \in \text{Sel}(M)_n$ is nonzero. Since the canonical map $\text{Sel}(M)_n \to \text{Sel}(M)^\wedge_n$ is injective by [7, Lemma 5.5], we conclude that the image of ξ_n in $\text{Sel}(M)^\wedge_n$ is nonzero. Consequently, there exists a subgroup N of $\text{Sel}(M)_n$, of finite index, such that $\xi_n \notin N$. It follows that ξ is not contained in the inverse image of N under the canonical map $T\text{Sel}(M) \to \text{Sel}(M)_n$, which is an open subgroup of finite index in $T\text{Sel}(M)$. We conclude that the image of ξ in $T\text{Sel}(M)^\wedge$ is nonzero. This proves the injectivity of the left-hand vertical map in diagram (6). To prove the injectivity of the right-hand vertical map, let $x = (x_v) \in \mathbb{P}^0(M)^\wedge$ be nonzero. Then $x \notin n\mathbb{P}^0(M)$ for some n, whence $x_v \notin n\mathbb{H}^0(K_v, M)$ for some v (see [7, Lemma 5.3, p.118]). Thus the image of x under the canonical map

$$\mathbb{P}^0(M)^\wedge \to \mathbb{H}^0(K_v, M)/n = (\mathbb{H}^0(K_v, M)/n)^\wedge$$

is nonzero, where the equality comes from the fact that $\mathbb{H}^0(K_v, M)/n$ is profinite. But the preceding map factors through $\mathbb{P}^0(M)^\wedge$, so the image of x in $\mathbb{P}^0(M)^\wedge$ is nonzero. \hfill \Box

Proposition 3.7. The map $\text{Ker} \theta_0 \to \text{Ker} \beta_0$ induced by diagram (6) is an isomorphism.

\[2\] This uses the fact that $\lim_{\rightarrow} (1) \mathbb{H}^1(Z_n/M) = 0$, which holds since each $\mathbb{H}^1(Z_n/M)$ is finite. See [11, Proposition 2.3, p.14].
Proof. The injectivity of the above map is immediate from Lemma 3.6. Now, by Lemmas 2.2, 3.5 and 3.6, the exact sequence

$$\text{Ker } \theta_0 \to T \text{Sel}(M) \xrightarrow{\theta_0} P^0(M)$$

induces an exact sequence

$$(\text{Ker } \theta_0)^{\wedge} \to T \text{Sel}(M)^{\wedge} \xrightarrow{\beta_0} P^0(M)^{\wedge}.$$

But $$(\text{Ker } \theta_0)^{\wedge} = \text{Ker } \theta_0$$ since $\text{Ker } \theta_0$ is profinite by Proposition 3.3, so $\text{Ker } \theta_0 \to \text{Ker } \beta_0$ is indeed surjective. \qed

For each v and any $n \geq 1$, there exists a canonical pairing

$$(-, -)_v : H^0(K_v, M) / n \times H^1(K_v, M^*)_n \to \mathbb{Q} / \mathbb{Z}$$

which vanishes on $H^0_{nr}(K_v, M) / n \times H^1_{nr}(K_v, M^*)_n$. See [7, p.99 and proof of Theorem 2.10, p.104]. Let $\gamma_{0,n} : P^0(M) / n \to (H^1(K, M^*)_n)^D$ be defined as follows. For $x = (x_v) \in P^0(M) / n$ and $\xi \in H^1(K, M^*)_n$, set

$$\gamma_{0,n}(x)(\xi) = \sum_{v} (x_v, \xi|_{K_v}),$$

where $\xi|_{K_v}$ is the image of ξ under the canonical map $H^1(K_v, M^*)_n \to H^1(K_v, M^*)_n$ (the sum is actually finite since $x_v \in H^0_{nr}(K_v, M) / n$ and $\xi|_{K_v} \in H^1_{nr}(K_v, M)_n$ for all but finitely many primes v). Consider the map

$$\gamma'_{0,n} := \lim_{\leftarrow n} \gamma_{0,n} : P^0(M)^{\wedge} \to H^1(K, M^*)^{\wedge}.$$

By [7, p.122], the sequence

$$(7) \quad T \text{Sel}(M) \xrightarrow{\theta_0} P^0(M)^{\wedge} \xrightarrow{\gamma'_{0,n}} H^1(K, M^*)^{\wedge}$$

is a complex.

Lemma 3.8. The sequence (7) is exact.

Proof. As noted in the proof of Lemma 3.5, $\text{Im } \theta_0$ is the kernel of the composite map

$$P^0(M)^{\wedge} \to P^1(T(M)) \to H^1(K, T(M^*)_{\text{tors}})^D.$$

Further, there exists a canonical commutative diagram

$$\begin{array}{ccc}
P^0(M)^{\wedge} & \xrightarrow{\theta_0} & P^1(T(M)) \\
\downarrow{\gamma_0} & & \downarrow \\
H^1(K, M^*)^{\wedge} & \xrightarrow{\beta_0} & H^1(K, T(M^*)_{\text{tors}})^D,
\end{array}$$

where the bottom map is the dual of the surjection of discrete groups $H^1(K, T(M^*)_{\text{tors}}) \to H^1(K, M^*)$ (the latter map is the direct limit over
of the surjections appearing on the top row of diagram (2) for M^\ast).
We conclude that $\text{Im} \theta_0 = \text{Ker} \gamma'_0$, as claimed. □

Lemma 3.9. γ'_0 is a strict morphism.

Proof. Since $P^0(M)_\wedge$ is locally compact and σ-compact and $H^1(K, M^\ast)^D$ is profinite, it suffices to check, by [10, Theorem 5.29, p.42] and [15, Theorem 4.8, p.45], that $\text{Im} \gamma'_0$ is closed in $H^1(K, M^\ast)^D$ (cf. proof of Lemma 3.5). By Lemma 3.8 and diagram (5), $\text{Im} \gamma'_0 = \text{Coker} \theta_0$ (with the quotient topology) injects as a closed subgroup of $\text{Coker} \theta$. On the other hand, the Poitou-Tate exact sequence for finite modules ([13, Theorem I.4.10, p.70] and [5, Theorem 4.12]) shows that $\text{Coker} \theta$ is a closed subgroup of the compact group $H^1(K, T(M^\ast)_{\text{tors}})^D$. It follows that $\text{Im} \gamma'_0$ is a compact (and hence closed) subgroup of the Hausdorff group $H^1(K, M^\ast)^D$. □

Now consider

$$\gamma_0 = (\gamma'_0)^\wedge : P^0(M)^\wedge \to (H^1(K, M^\ast)^D)^\wedge = H^1(K, M^\ast)^D.$$

Proposition 3.10. The sequence

$$T\text{Sel}(M)^\wedge \xrightarrow{\beta_0} P^0(M)^\wedge \xrightarrow{\gamma_0} H^1(K, M^\ast)^D,$$

is exact.

Proof. This follows by applying Lemma 2.2 to the exact sequence (7) using Lemmas 3.5 and 3.9. □

The following is the main result of this Section. It extends [7, Theorem 5.6, p.120] to the function field case.

Theorem 3.11. Let K be a global function field and let M be a 1-motive over K. Assume that $\text{III}^1(M)$ is finite. Then there exists a canonical 12-term exact sequence

$$\begin{array}{ccccccccc}
H^{-1}(K, M)^\wedge & \xrightarrow{\gamma'_2} & \prod_{\text{all } v} H^2(K_v, M^\ast)^D & \xrightarrow{\beta_2^D} & H^2(K, M^\ast)^D \\
\downarrow & & \downarrow & & \\
H^1(K, M^\ast)^D & \xrightarrow{\gamma_0} & P^0(M)^\wedge & \xrightarrow{\beta_0} & H^0(K, M)^\wedge \\
\downarrow & & \downarrow & & \\
H^1(K, M) & \xrightarrow{\beta_1} & P^1(M)_{\text{tors}} & \xrightarrow{\gamma_1} & (H^0(K, M^\ast)^D)_{\text{tors}} \\
\downarrow & & \downarrow & & \\
H^{-1}(K, M^\ast)^D & \xrightarrow{\gamma_2} & \bigoplus_{\text{all } v} H^2(K_v, M) & \xrightarrow{\beta_2} & H^2(K, M),
\end{array}$$
where the maps \(\beta_i \) are canonical localization maps, the maps \(\gamma_i \) are induced by local duality and the unlabeled maps are defined in the proof.

Proof. The exactness of the first line follows as in [7, p.122], using [5, Theorem 4.12] and noting that [7, Lemma 5.8] remains valid (with the same proof) in the function field case. The top right-hand vertical map

\[
H^2(K, M^*)^D \to H^0(K, M)^\wedge
\]

is the composite

\[
H^2(K, M^*)^D \to III^2(M^*)^D \xrightarrow{\sim} \text{Ker } \theta_0 \xrightarrow{\sim} \text{Ker } \beta_0 \to T\text{Sel}(M)^\wedge = H^0(K, M)^\wedge,
\]

where the isomorphisms come from Propositions 3.3 and 3.7 and the equality is a consequence of the finiteness hypothesis on \(III^1(M) \). The exactness of the second line of the sequence of the theorem is the content of Proposition 3.10 (again using the equality \(T\text{Sel}(M)^\wedge = H^0(K, M)^\wedge \)). Since \(\gamma_0 \) is the dual of the natural map \(H^1(K, M^*) \to \mathbb{P}^1(M^*)_{\text{tors}} \) and \(III^1(M^*)^D \simeq III^1(M) \) by [7, Corollary 4.9 and Remark 5.10] and [5, corollary 6.7], we conclude that there exists an exact sequence

\[
0 \to H^{-1}(K, M)^\wedge \xrightarrow{\gamma_0} \prod_{v} H^2(K_v, M^*)_v^D \xrightarrow{\beta_0} H^2(K, M^*)^D
\]

\[
H^1(K, M^*)^D \xrightarrow{\gamma_0} \mathbb{P}^0(M)^\wedge \xrightarrow{\beta_0} H^0(K, M)^\wedge
\]

\[
III^1(M).
\]

The above is an exact sequence of profinite groups and continuous homomorphisms, so each morphism is strict [1, §III.2.8, p.237]. Consequently, the dual of the preceding sequence is also exact [15, Theorem 23.7, p.196]. Exchanging the roles of \(M \) and \(M^* \) in this dual exact sequence and noting that \((H^0(K, M^*)^\wedge)^D = (H^0(K, M^*)^D)_{\text{tors}} \) and \((H^{-1}(K, M^*)^\wedge)^D = H^{-1}(K, M^*)^D \) (since \(H^{-1}(K, M^*) \) is finitely
generated by [7, Lemma 2.1, p.98]), we obtain an exact sequence

\[
\begin{array}{cccccc}
\mathbb{H}^1(K, M) & \to & \mathbb{H}^1(M_{\text{tors}}) & \to & (\mathbb{H}^0(K, M^*)^D)_{\text{tors}} \\
\mathbb{H}^{-1}(K, M^*)^D & \to & \bigoplus_{\text{all } v} \mathbb{H}^2(K_v, M) & \to & \mathbb{H}^2(K, M).
\end{array}
\]

The sequence of the theorem may now be obtained by splicing together the preceding two exact sequences. \hfill \Box

4. The generalized Cassels-Tate dual exact sequence

For \(i = 1 \) or \(2 \), define

\[
\mathbb{III}^i(T(M)) = \text{Ker} \left[H^i(K, T(M)) \to \prod_{\text{all } v} H^i(K_v, T(M)) \right]
\]

and

\[
\mathbb{III}^i(M) = \text{Ker} \left[H^i(K, M) \to \prod_{\text{all } v} H^i(K_v, M) \right],
\]

where the \(v \)-component of each of the maps involved is induced by the natural morphism \(\text{Spec } K_v \to \text{Spec } K \).

Proposition 4.1. There exists a perfect pairing

\[
\mathbb{III}^1(T(M^*)) \times \mathbb{III}^2(M) \to \mathbb{Q}/\mathbb{Z},
\]

where the first group is profinite and the second is discrete and torsion.

Proof. The proof is similar to the proof of Proposition 3.3. \hfill \Box

Let \(S \) be any finite set of primes of \(K \) and define, for \(i = 1 \) or \(2 \),

\[
\mathbb{III}^i_S(T(M)) = \text{Ker} \left[H^i(K, T(M)) \to \prod_{v \notin S} H^i(K_v, T(M)) \right]
\]

and

\[
\mathbb{III}^i_S(M) = \text{Ker} \left[H^i(K, M) \to \prod_{v \notin S} H^i(K_v, M) \right].
\]
Thus $\Pi^i_\emptyset(M) = \Pi^i(T(M))$ and $\Pi^i\emptyset(M) = \Pi^i(M)$. Now partially order the family of finite sets S by defining $S \leq S'$ if $S \subset S'$. Then $\Pi^1_S(M) \subset \Pi^1_{S'}(M)$ for $S \leq S'$. Set

$$\Pi^1\omega(M) = \lim_{\leftarrow S} \Pi^1_S(M) = \bigcup_S \Pi^1_S(M) \subset \mathbb{H}^1(K, M),$$

where the transition maps in the direct limit are the inclusion maps. Thus $\Pi^1\omega(M)$ is the subgroup of $\mathbb{H}^1(K, M)$ of all classes which are locally trivial at all but finitely many places of K. Clearly, for each S as above, there exists an exact sequence of discrete torsion groups

$$0 \rightarrow \Pi^1(M^*) \rightarrow \Pi^1_S(M^*) \rightarrow \prod_{v \in S} \mathbb{H}^1(K_v, M^*)$$

whose dual is an exact sequence of profinite groups

$$(8) \quad \prod_{v \in S} \mathbb{H}^0(K_v, M)^\wedge \xrightarrow{\hat{\theta}_S} \Pi^1_S(M^*)^D \rightarrow \Pi^1(M^*)^D \rightarrow 0.$$
is also exact (cf. proof of Theorem 3.11). The above sequence induces
an exact sequence of discrete groups
\[\varprojlim \mathbb{H}^1(K_v, M^*) \to \prod_{v \in S} \mathbb{H}^1(K_v, M^*) \to (T\text{Sel}(M)^\wedge)^D \]
whose dual is an exact sequence
\[(T\text{Sel}(M)^\wedge \to \prod_{v \in S} \mathbb{H}^0(K_v, M)^\wedge \overset{\tilde{\beta}_S}{\longrightarrow} \varprojlim \mathbb{H}^1(K_v, M)^\wedge) \to \varprojlim \mathbb{H}^1(M^*)^D. \]
Taking the inverse limit over \(S \) above and noting that the inverse limit
functor is exact on the category of profinite groups [14, Proposition
2.2.4, p.32], we obtain the exact sequence of the proposition. That \(\hat{\phi} \)
has the stated factorization follows from the proof. \(\square \)

Proposition 4.3. There exists a canonical isomorphism
\[\text{Ker} \left[T\text{Sel}(M)^\wedge \overset{\hat{\phi}}{\longrightarrow} \prod_{v \in S} \mathbb{H}^0(K_v, M)^\wedge \right] = \varprojlim \mathbb{H}^2(M^*)^D, \]
where \(\hat{\phi} \) is the map of Proposition 4.2.

Proof. By Proposition 4.2 and the fact that \(\text{Ker} \beta_0 = \text{Ker} \theta_0 = \varprojlim \mathbb{H}^2(M^*)^D \)
by Propositions 3.3 and 3.7, it suffices to check that the canonical map
\(\mathbb{P}^0(M)^\wedge \to \prod_{v \in S} \mathbb{H}^0(K_v, M)^\wedge \) is injective. The argument is similar to
that used in the proof of Lemma 3.6. Let \(x \in \mathbb{P}^0(M)^\wedge \) be nonzero.
There exists an open subgroup \(U \subset \mathbb{P}^0(M) \) of finite index \(n \) (say) such
that the \(U \)-component of \(x \), \(x_U + U \in \mathbb{P}^0(M) / U \) is nonzero, i.e., \(x_U \notin U \).
Then \(x_U \notin n\mathbb{P}^0(M) \), whence \((x_U)_v \notin n\mathbb{H}^0(K_v, M) \) for some \(v \). Thus
the image of \(x \) in \(\mathbb{H}^0(K_v, M) / n = (\mathbb{H}^0(K_v, M) / n)^\wedge \) is nonzero. Since
the map \(\mathbb{P}^0(M)^\wedge \to (\mathbb{H}^0(K_v, M) / n)^\wedge \) factors through \(\mathbb{H}^0(K_v, M)^\wedge \),
the image of \(x \) in \(\mathbb{H}^0(K_v, M)^\wedge \) is nonzero. \(\square \)

As noted earlier, the inverse limit functor is exact on the category of
profinite groups, so the inverse limit over \(S \) of (8) is an exact sequence
\[\prod_{v \in S} \mathbb{H}^0(K_v, M)^\wedge \overset{\tilde{\beta}}{\longrightarrow} \varprojlim \mathbb{H}^1(M^*)^D \to \varprojlim \mathbb{H}^1(M^*)^D \to 0. \]
We now use Propositions 4.2 and 4.3 to extend the above exact sequence
to the left and obtain

Theorem 4.4. (The generalized Cassels-Tate dual exact sequence)
There exists a canonical exact sequence of profinite groups
\[0 \to \varprojlim \mathbb{H}^2(M^*)^D \to \varprojlim \mathbb{H}^1(M)^\wedge \to \prod_{v \in S} \mathbb{H}^0(K_v, M)^\wedge \]
\[\to \varprojlim \mathbb{H}^1(M^*)^D \to \varprojlim \mathbb{H}^1(M^*)^D \to 0. \]
Corollary 4.5. There exists a canonical exact sequence of discrete torsion groups
\[0 \to \mathcal{H}^1(M) \to \mathcal{H}^1_\omega(M) \to \bigoplus_{v} \mathbb{H}^1(K_v, M) \]
\[\to (T\text{Sel}(M^*)^D \to \mathcal{H}^2(M) \to 0. \]
\[\square \]

We conclude this paper with the following result, which extends [8, Theorem 1.2] to the function field case.

Theorem 4.6. Let \(K \) be a global function field and let \(M \) be a 1-motive over \(K \). Assume that \(\mathcal{H}^1(M) \) is finite. Then there exists an exact sequence
\[0 \to \overline{\mathbb{H}^0(K, M)} \to \prod_{v} \mathbb{H}^0(K_v, M) \to \mathcal{H}^1_\omega(M^*)^D \to \mathcal{H}^1(M) \to 0, \]
where \(\overline{\mathbb{H}^0(K, M)} \) denotes the closure of the diagonal image of \(\mathbb{H}^0(K, M) \) in \(\prod_{v} \mathbb{H}^0(K_v, M) \).

Proof. The proof is essentially the same as that of [8, Theorem 1.2], noting that \(T\text{Sel}(M^*)^D = \overline{\mathbb{H}^0(K, M)} \) if \(\mathcal{H}^1(M) \) is finite and using Proposition 4.2 in place of [8, Proposition 5.3(1)]. \[\square \]

References

[1] Bourbaki, N.: General Topology. Chapters 1–4. Springer, Berlin 1989.
[2] Cassels, J.W.S: Arithmetic on curves of genus 1. III. The Tate-Sáfarevich and Selmer groups. Proc. London Math. Soc. (3), vol. 12 (1962), 259-296.
[3] Cassels, J.W.S: Arithmetic on curves of genus 1. VII. The dual exact sequence. J. Reine Angew. Math. 216, no. 1 (1964), 150-158.
[4] González-Avilés, C.D. and Tan, K.-S.: A Generalization of the Cassels-Tate dual exact sequence. Math. Res. Lett. 14, no. 2 (2007), 295-302.
[5] González-Avilés, C.: Arithmetic duality theorems for 1-motives over function fields. To appear (see http://front.math.ucdavis.edu/0709.4255).
[6] González-Avilés, C.: On Tate-Shafarevich groups of 1-motives over Galois extensions. In preparation.
[7] Harari, D. and Szamuely, T.: Arithmetic duality theorems for 1-motives. J. reine angew. Math. 578 (2005), 93-128.
[8] Harari, D. and Szamuely, T.: Local-global principles for 1-motives. Duke Math. J. 143 (2008), no. 3, 531-557.
[9] Hartshorne, R.: Algebraic Geometry. vol. I. Academic Press, Inc., New York, 1963.
[10] Hewitt, E. and Ross, K.: Abstract Harmonic Analysis, vol. I. Academic Press, Inc., New York, 1963.
[11] Jensen, C.U.: Les Foncteurs Dérivés de \(\lim^{-} \) et leurs Applications en Théorie des Modules. Lect. Notes in Math. vol. 254, Springer-Verlag, Heidelberg 1972.
[12] Jossen, P.: On the second Tate-Shafarevich group of a 1-motive. To appear.
[13] Milne, J.S.: *Arithmetic Duality Theorems*. Persp. in Math., vol. 1. Academic Press Inc., Orlando 1986.
[14] Ribes, L. and Zalesskii, P.: *Profinite groups*. Ergebnisse de Mathematik Series, vol. 40, Springer, Berlin 2000.
[15] Stroppel, M.: *Locally compact groups*. EMS textbooks in Mathematics, Zurich 2006.

Departamento de Matemáticas, Universidad de La Serena, Chile
E-mail address: cgonzalez@userena.cl

Department of Mathematics, National Taiwan University, Taipei 10764, Taiwan
E-mail address: tan@math.ntu.edu.tw