Orbit-induced spin squeezing in a spin-orbit coupled Bose-Einstein condensate

Jinling Lian1,2, Lixian Yu1,3, J.-Q. Liang2, Gang Chen1 & Suotang Jia1

1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser spectroscopy, Shanxi University, Taiyuan 030006, P. R. China, 2Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, P. R. China, 3Department of Physics, Shaoxing University, Shaoxing 312000, P. R. China.

In recent pioneer experiment, a strong spin-orbit coupling, with equal Rashba and Dresselhaus strengths, has been created in a trapped Bose-Einstein condensate. Moreover, many exotic superfluid phenomena induced by this strong spin-orbit coupling have been predicted. In this report, we show that this novel spin-orbit coupling has important applications in quantum metrology, such as spin squeezing. We first demonstrate that an effective spin-spin interaction, which is the heart for producing spin squeezing, can be generated by controlling the orbital degree of freedom (i.e., the momentum) of the ultracold atoms. Compared with previous schemes, this realized spin-spin interaction has advantages of no dissipation, high tunability, and strong coupling. More importantly, a giant squeezing factor (lower than 2^{15} dB) can be achieved by tuning a pair of Raman lasers in current experimental setup. Finally, we find numerically that the phase factor of the prepared initial state affects dramatically on spin squeezing.

Spin squeezing is a quantum correlation with reduced fluctuations in one of the collective spin components. It not only has possible applications in atom interferometers and high-precision atom clocks, but also is closely related to and implies quantum entanglement. Nonlinear spin-spin interactions are the heart for producing spin squeezing. In experiments, the multi-component BEC is a powerful system to achieve spin squeezing, since the required spin-spin interactions can be induced by the intrinsic atom-atom collision interactions. Although these atom-atom collision interactions can, in principle, be tuned widely by varying the scattering lengths via Feshbach resonances, the experimental achievements are still difficult, and thus the maximal squeezing factors measured experimentally are higher than -15 dB. Moreover, the atom-atom collision interactions usually induce atom decoherence and dissipations, which limits the achievable squeezing factor.

In this report, we show that the important spin-spin interaction can be induced by controlling the orbital degree of freedom (i.e., the momentum) of the ultracold atoms in the trapped BEC, with the equal Rashba and Dresselhaus SOCs. Since the generated interaction by the orbit is an indirect spin-spin interaction, it has advantages of no dissipation, high tunability, and strong coupling, compared with previous schemes. Then, we obtain an analytical spin squeezing factor by means of the frozen-spin approximation. Interestingly, the maximal squeezing factor can reach a large negative value (lower than -30 dB) by tuning the Raman lasers in current experimental setup of NIST. This giant squeezing factor is far larger than previous ones. Finally, we find numerically that the phase factor of the prepared initial state affects dramatically on spin squeezing.
Results

Model and hamiltonian. Figure 1(a) shows the experimental setup of NIST for realizing the equal Rashba and Dresselhaus SOCs in the trapped BEC, with 87Rb atoms5. In their experiment, all ultracold atoms are prepared in the xy plane, using a strong confinement along the z direction. Moreover, two hyperfine ground states, $|F = 1, m_F = -1\rangle$ and $|F = 1, m_F = 0\rangle$, act respectively as effective spin-\uparrow and spin-\downarrow components in a large detuning Δ from the excited state, as shown in Fig. 1(b). When these components are coupled by a pair of Raman lasers incident at a $\pi/4$ angle from the x axis, as shown in Fig. 1(a), the equal Rashba and Dresselhaus SOCs can be created in a dressed-state basis ($|\uparrow\rangle = \exp(\mathbf{i}k_z \mathbf{r} |\uparrow\rangle$) and $|\downarrow\rangle = \exp(\mathbf{i}k_z \mathbf{r} |\downarrow\rangle$), where k_x and k_z are the wave vectors of the Raman lasers.

The corresponding dynamics is governed by the following Gross-Pitaevskii (GP) equation7

$$i\hbar \frac{\partial \Psi}{\partial t} = \left(\frac{\hbar^2}{2m} \mathbf{v} + V(\mathbf{r}) + \overline{H_{SOC}} + \overline{H_{INT}} \right) \Psi,$$

where $\mathbf{v}(\mathbf{r})$ is the normalization wave function in the dressed-state representation. The harmonic trap potential

$$V(\mathbf{r}) = \frac{1}{2} m \mathbf{v}^2 = \frac{1}{2} m \frac{\hbar^2}{2m} \mathbf{v}^2 + V(\mathbf{r}),$$

is the Hamiltonian for the GP equation (1) into a generalized harmonic trap potential, $\overline{H_{SOC}}$ is the Hamiltonian for the equal Rashba and Dresselhaus SOCs is written as

$$\overline{H_{SOC}} = \gamma_1 \sigma_x + \gamma_2 \sigma_\downarrow + \gamma_3 \sigma_\uparrow,$$

where $\gamma_1 = \gamma_2 = \gamma_3 = \gamma$. The Hamiltonian of the equal Rashba and Dresselhaus SOCs in the trapped BEC. As a result, we can introduce two boson operators, $a = \sqrt{\omega_{maz}/2} [\mathbf{p} + \mathbf{v}_a / \omega_{maz}]$ and $b = \sqrt{\omega_{maz}/2} [\mathbf{p} + \mathbf{v}_b / \omega_{maz}]$, to map the Hamiltonian for the GP equation (1) into a generalized Dicke model $H_1 = \hbar \omega_{maz} N b^\dagger b + \hbar \omega_{maz} N a^\dagger a + \hbar \Omega S_z + \sqrt{2} \gamma \sqrt{\hbar \omega_{maz}} i (a^\dagger - a) S_z + \nu S_z^{(2)}$, where $S_z = N \sigma_z/2 = (\psi^\dagger \psi_\uparrow - \psi^\dagger \psi_\downarrow)/2$ and $S_z = N \sigma_z - 2 (\psi^\dagger \psi_\uparrow + \psi^\dagger \psi_\downarrow)/2$ are the collective spin operators, with the field operators ψ_\uparrow and ψ_\downarrow for the different spin components, $\nu = \gamma_1 + \gamma_3 - 2 \gamma_2 / 4$ is an effective spin-spin interaction induced by the direct atom-atom collision interactions. Due to the fact $\gamma_1 = \gamma_3$, this effective spin-spin interaction disappears ($\nu = 0$), but the strong atom-atom collision interactions have still remained. On the other hand, the boson mode in the y direction does not interact with the ultracold atoms. Thus, the system’s properties of the spin-orbit coupled BEC in Fig. 1(a) is governed by the standard Dicke model3

$$H = \hbar \omega_{maz} N a^\dagger a + \hbar \Omega S_z + \sqrt{2} \gamma \sqrt{\hbar \omega_{maz}} i (a^\dagger - a) S_z + \nu S_z^{(2)},$$

where ω_{maz} is the recoil energy. In experiment, the trap frequency ω_{maz} and the Rabi frequency γ are of the orders of 10 Hz and kHz, respectively. For a large atom number, we have $\omega_{maz} N \gg \max(\Delta, \sqrt{2} \gamma)$, but $\nu \approx 0$, so that $\nu S_z^{(2)}$ is negligible.

Before proceeding, we check the validity of the Hamiltonian (3) for current experimental conditions of NIST. For a sufficiently strong repulsive interaction between the different spin components, i.e., $\gamma_1 > 0$ and $\gamma_1 \gg (\gamma_1 \gamma_3)$, the trapped BEC undergoes an imaginary excitation and is thus unstable39,40. In such a case, the mapping of the Dicke model is invalid. On the other hand, for the opposite limit that the trapped BEC has no interactions, including both the same and different spin components, all ultracold atoms occupy the same many-body quantum state. As a result, the momentum for each atom has the same freedom of the ultracold atoms. To prove this argument clearly, we employ a unitary transformation, $U = \exp(\mathbf{iG} (a^\dagger + a) S_z)$ with $G = \sqrt{2} \gamma \sqrt{\hbar \omega_{maz}} / (\hbar \omega_{maz})$, to rewrite the Hamiltonian (2) as

$$H' = \hbar \omega_{maz} N (a^\dagger a + \hbar \Omega S_z + \sqrt{2} \gamma \sqrt{\hbar \omega_{maz}} i (a^\dagger - a) S_z + \nu S_z^{(2)}),$$

where $\sqrt{2} \gamma \sqrt{\hbar \omega_{maz}} i (a^\dagger - a) S_z + \nu S_z^{(2)}$ is the recoil energy. In experiment of NIST, the trap frequency ω_{maz} and the Rabi frequency γ are of the orders of 10 Hz and kHz, respectively. For a large atom number, we have $\omega_{maz} N \gg \max(\Delta, \sqrt{2} \gamma)$, but $\nu \approx 0$, so that $\nu S_z^{(2)}$ is negligible. This means that the term $\hbar \Omega S_z$ is safely omitted in the Hamiltonian (3) cannot be applied.

Orbit-induced spin-spin interaction. For the Hamiltonian (2), it seems that no spin-spin interaction can be found, i.e., spin squeezing cannot be achieved. In fact, we can demonstrate, as shown in Fig. 1(c), that the spin-spin interaction can be induced by the momentum, $-i(a^\dagger - a)$, which reflects the orbital degree of freedom of the ultracold atoms. To prove this argument clearly, we employ a unitary transformation, $U = \exp(\mathbf{iG} (a^\dagger + a) S_z)$ with $G = \sqrt{2} \gamma \sqrt{\hbar \omega_{maz}} / (\hbar \omega_{maz})$, to rewrite the Hamiltonian (2) as

$$H' = \hbar \omega_{maz} N (a^\dagger a - \hbar \Omega S_z + \sqrt{2} \gamma \sqrt{\hbar \omega_{maz}} i (a^\dagger - a) S_z + \nu S_z^{(2)}),$$

where $\sqrt{2} \gamma \sqrt{\hbar \omega_{maz}} i (a^\dagger - a) S_z + \nu S_z^{(2)}$ is the recoil energy. In experiment of NIST, the trap frequency ω_{maz} and the Rabi frequency γ are of the orders of 10 Hz and kHz, respectively. For a large atom number, we have $\omega_{maz} N \gg \max(\Delta, \sqrt{2} \gamma)$, but $\nu \approx 0$, so that $\nu S_z^{(2)}$ is negligible. This means that the term $\hbar \Omega S_z$ is safely omitted in the Hamiltonian (3) cannot be applied.

Figure 1 | Illustration about how to achieve spin squeezing, using the experimental setup of NIST. (a) The specified experimental setup for realizing the equal Rashba and Dresselhaus SOCs in the trapped BEC. (b) The energy levels, labeled respectively as $|F = 1, m_F = -1\rangle$, $|F = 1, m_F = 0\rangle$, and $|F = 1, m_F = +1\rangle$, are coupled by a pair of Raman lasers. (c) A schematic diagram about how to use SOC to create spin correlation between the ultracold atoms. Under the strong atom-atom collision interactions, all ultracold atoms are forced to occupy the same many-body quantum state. As a result, the momentum for each atom has the same term. This identical momentum acts as a bus, generating an effective spin-spin interaction.
The ground-state properties and the time-dependent spin dynamics for both the Hamiltonian (3) and the GP equation (1). (a) The atom population $2\langle S_z \rangle /N$ as a function of the strength of SOC, when $N = 1.8 \times 10^5$. The critical point is evaluated as $g_1 = 0.003$ m/s. The black line denotes the analytical result (AR) (see the Methods section), whereas the red open symbol reflects the direct numerical simulation (NS) of the GP equation (1). (b) The time-dependent spin dynamics $2\langle S_z(t) \rangle /N$ for both the Hamiltonian (3) and the GP equation (1), when $N = 2 \times 10^5$. Initially, all ultracold atoms are prepared as the spin-1 component. Here the black line and the red open symbol denote the numerical results for the Hamiltonian (3) and the GP equation (1), respectively. In (a) and (b), the other parameters are chosen as the experimental parameters, i.e., $m = 1.44 \times 10^{-23}$ kg, $\lambda = 804.1$ nm, $\omega_x = 2\pi \times 50$ Hz, and $\Omega = 2\pi \times 17.8$ kHz.

$\gamma > \mu \Omega (4m)$. This analytical result agrees well with the direct numerical simulation of the GP equation (1), as shown in Fig. 2(a), as well as the experimental observation39. In addition, the spin dynamics for the Hamiltonian (3) is also similar to that of the GP equation (1), as shown in Fig. 2(b). Based on the above demonstrations, we can argue that the spin properties for the trapped BEC, with the equal Rashba and Dresselhaus SOCs, can be described by the generalized one-axis twisting model (3).

The Hamiltonian (3) is a key result of this report. It shows clearly that the effective spin-spin interaction is generated by controlling the orbital degree of freedom (i.e., the momentum) of the ultracold atoms. If the realized SOC disappears ($\gamma = 0$), the Hamiltonian (3) reduces to the form $H' = \mu \Delta S_z$, in which no spin-spin interaction can be found. In fact, the spin-spin interaction can also be realized by controlling the direct atom-atom collision interactions via Feshbach resonance. However, its strength $v = (g_{11} + g_{12} - 2g_{13})/4$ is still very weak in current experimental setups. For example, in the experiment of producing spin squeezing40, the spin-spin interaction strength $v = 2\pi \times 0.063$ Hz, when $N = 2300$. Moreover, this direct spin-spin interaction usually induces atom decoherence and dissipations, which limit the achievable squeezing factor52,53. In addition, in atom-cavity interacting systems, the virtual photon can also generate a weak spin-spin interaction56,57. Compared with the previous results, our proposal in this report has two advantages. The first is that the generated interaction induced by the orbit is an indirect spin-spin interaction, which does not lead to the atom decoherence and dissipations. The other is that the corresponding spin-spin interaction strength can reach a large value. For instance, when we choose $N = 2300$ in the experimental setup of NIST, $q = 2\pi \times 6.175$ Hz, which has 2 orders larger than v. This strong spin-spin interaction will generate a giant spin squeezing factor.

Spin squeezing. In the absence of the Rabi frequency ($\Omega = 0$), the Hamiltonian (3) reduces to the form $H = -\mu q S_z$, in which the squeezing factor was demonstrated analytically to scale as N^{-2}.39 However, in our proposal, the Rabi frequency Ω cannot be considered to be zero. In fact, it ranges from 10^{-2} kHz to MHz, and thus satisfies the condition of $\Omega \gg q$ in current experimental setup.46 In such a case, the squeezing factor can be derived from the frozen-spin approximation40.

We first consider the following initial coherent spin state $|\phi(0)\rangle = (|1\rangle + |2\rangle)^{N/2}$, with the mean spin $\langle S_z(0)\rangle = N/2$ and $\langle S_x(0)\rangle = \langle S_y(0)\rangle = 0$. For a weak spin-spin interaction q (or strong Rabi frequency Ω) in the Hamiltonian (3), all ultracold atoms are almost uncorrected in the framework of this prepared coherent spin state. As a result, the quantum noise is evenly distributed in the yz components of spin, namely, $\Delta S_z^1(0) = \Delta S_z^2(0) = N/4$, which is governed by the standard Heisenberg uncertainty relation $\Delta S_z(0)\Delta S_x(0) = \langle S_x(0)\rangle^2$, where $\Delta A^2 = \langle A^2 \rangle - \langle A \rangle^2$ is the standard deviation. This quantum noise leads to the standard quantum limit, if the coherent spin state is used in a Ramsey interferometer, such as an atom clock41. In order to reduce variance of one spin quadrature in the yz plane (the variance of the orthogonal one increases), quantum correlation between the ultracold atoms is very important, and results in a spin-squeezing state47. For the given initial coherent spin state in the Hamiltonian (3), quantum correlation can be created by increasing the nonlinear spin-spin interaction (or decreasing the Rabi frequency). Moreover, the corresponding squeezing factor is defined as40

$$
\xi_2(t) = \frac{4\Delta S_z^2(t)}{N},
$$

Figure 3 | The maximal squeezing factor ξ_2 as a function of the Rabi frequency Ω. The black solid line stands for the analytical result (AR) in Eq. (5), whereas the red open symbol reflects the direct numerical simulation (NS). The atom number is chosen as $N = 2 \times 10^5$.46
where $\Delta S^z_2(t) = \langle S^z_2(t) \rangle - \langle S^z_2 \rangle^2$. Since $\langle S^z_2 \rangle$ stands for the atom population, Eq. (4) is also called the atom squeezing factor. If $\tilde{z}_2 < 1$, all ultracold atoms are squeezed, and vice versa.

We now obtain the explicit solution of Eq. (4) by applying the Heisenberg equation of motion, with respect to the collective spin operators S_x and S_y in the Holstein (3), namely, $\dot{S}_x = \Omega S_y$ and $\dot{S}_y = -\Omega S_x - g(S_x S_y + S_y S_x)$. In general, these differential equations cannot be solved analytically. However, when $\Omega \gg q$, $2\langle S^z_2 \rangle / N$ remains approximately unchanged under the initial state $|\psi_0\rangle$. This implies that we can make an approximation by replacing S_y by $N/2$, which leads to the following harmonic solutions: $S_x(t) \approx S_x(0) \cos \omega t + \Delta S^x_2(t) / \omega$ and $S_y(t) \approx -\cos S_y(0) \sin \omega t / \Omega + S_y(0) \cos \omega t$, where $\omega = \sqrt{\Omega^2 + N q \Omega}$. Based on these solutions, we have $\Delta S^x_2(t) = N \left[\cos^2(\omega t) + \Omega^2 \sin^2(\omega t) / \omega^2 \right] / 4$ and $\Delta S^z_2(t) = N \left[\cos^2(\omega t) + \omega^2 \sin^2(\omega t) / \Omega^2 \right] / 4$. Since $\omega > \Omega$, the reduced spin fluctuations occur in the z direction. Moreover, when $t = (2n + 1) \pi (2/\omega)$ with $n = 0, 1, 2, \ldots$, the maximal squeezing factor is obtained by

$$\tilde{z}^2_M = \frac{\Omega^2}{\omega^2} = \frac{1}{1 + qN/\Omega^2}.$$

In Fig. 3, we compare the analytical result in Eq. (5) with the direct numerical simulation. When $\Omega \gg q$, the analytical result agrees well with the numerical calculation. It implies that the orbit-induced spin squeezing can be well described by the formula (5) in the case of $\Omega \gg q$. Based on Eq. (5), we find that if we choose current experimental parameters, especially with $\Omega = 50q$ and $N = 1.8 \times 10^{10}$, the maximal squeezing factor can reach $\tilde{z}^2_M = -35.6$. This giant squeezing factor is far larger than previous ones. In Fig. 4, we numerically plot the maximal squeezing factor as a function of the phase ϕ of the initial state, defined as $|\psi_0\rangle = \{\langle \uparrow \rangle + e^{i\phi} \langle \downarrow \rangle\} / \sqrt{2}$. This figure shows that the maximal squeezing factor depends strongly on the phase ϕ. It means that if we choose a proper phase ϕ in preparing the initial state, the maximal squeezing factor can also be largely enhanced.

Discussion

In summary, we have proposed a new way to generate the spin-spin interaction by controlling the orbital degree of freedom (i.e., the momentum) of the ultracold atoms in the trapped BEC, with the equal Rashba and Dresselhaus SOCs. More importantly, a giant spin squeezing factor (lower than -30 dB) has been achieved by manipulating a pair of Raman lasers. We have also found that the maximal squeezing factor can be largely enhanced by tuning the phase of the prepared initial state. We hope that our predictions could be observed in future experiments, since spin squeezing has an important concept in quantum information, and moreover, are closely related to designing the best atomic clocks.

Methods

Ground-state properties under a mean-field method. Here we employ the Holstein-Primakoff transformation and boson expansion method to discuss the ground-state properties of the Hamiltonian (3). By means of the Holstein-Primakoff transformation, which is defined as $S_x = c^\dagger \sqrt{N} - c \sqrt{N} c^\dagger - c^\dagger \sqrt{N}$, $S_y = \sqrt{N} c^\dagger c - N/2$, with $[c, c^\dagger] = 1$, the Hamiltonian (3) is rewritten as

$$H = -\left(\frac{1}{2} \right) \left(\frac{\hbar^2}{M} \right) \left[\frac{1}{2} \hbar^2 \left(\frac{N}{M} - \frac{1}{2} \right) + \frac{1}{2} \hbar^2 \sqrt{N - 1} c^\dagger c - \frac{1}{2} \hbar^2 \sqrt{N - 1} c c^\dagger - \frac{1}{2} \hbar^2 \sqrt{N - 1} c^\dagger c - \frac{1}{2} \hbar^2 \sqrt{N - 1} c c^\dagger \right].$$

(6)

We now introduce a shifting boson operator $d^\dagger = c^\dagger + \sqrt{N} \beta$, where β is a auxiliary parameter to be determined, to describe the collective excitation of the ultracold atoms. Substituting this shifting boson operator d^\dagger into the Hamiltonian (6) and then using the boson expansion method, we have $H = NH_0 + N^{1/2} H_1 + \cdots = N$.

Figure 4 | The maximal squeezing factor \tilde{z}^2_M as a function of the phase ϕ of the prepared initial state. This initial state is defined as $|\psi_0\rangle = (|\uparrow\rangle + e^{i\phi} |\downarrow\rangle) / \sqrt{2}$, with the atom number $N = 200$. The Rabi frequency is chosen as $(a) \Omega = 30q$ and $(b) \Omega = 50q$, respectively.

$$\tilde{z}^2_M = \frac{\hbar^2}{M} \left[\frac{1}{2} \hbar^2 \left(\frac{N}{M} - 1 \right) + \frac{1}{2} \hbar^2 \sqrt{N - 1} c^\dagger c - \frac{1}{2} \hbar^2 \sqrt{N - 1} c c^\dagger \right].$$

$$\frac{\hbar^2}{M} \left[\frac{1}{2} \hbar^2 \left(\frac{N}{M} - 1 \right) + \frac{1}{2} \hbar^2 \sqrt{N - 1} c^\dagger c - \frac{1}{2} \hbar^2 \sqrt{N - 1} c c^\dagger \right].$$

$$|\langle S_0 \rangle| = \frac{N \eta}{1 + \eta^2} = \left\{ \begin{array}{ll} 0, & \gamma^2 \leq \frac{\hbar^2}{M} \\ \frac{\hbar^2}{M} \left[\frac{1}{2} \hbar^2 \left(\frac{N}{M} - 1 \right) + \frac{1}{2} \hbar^2 \sqrt{N - 1} c^\dagger c - \frac{1}{2} \hbar^2 \sqrt{N - 1} c c^\dagger \right], & \gamma^2 > \frac{\hbar^2}{M} \end{array} \right. \quad (9)$$

1. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
2. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
3. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
4. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
5. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
6. Stanev, T. D., Anderson, B. & Galitski, V. Spin-orbit coupled Bose-Einstein condensates. Phys. Rev. A 79, 023616 (2008).
7. Lin, Y.-L., Jimenez-Garcia, K. & Spielman, I. B. Spin-orbit-coupled Bose-Einstein condensates. Nature 471, 83–86 (2011).
8. Larson, J. & Sjoqvist, E. Jahn-Teller-induced Berry phase in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A 79, 043627 (2009).
27. Ozawa, T. & Baym, G. Ground-state phases of ultracold bosons with Rashba–
26. Ozawa, T. & Baym, G. Stability of ultracold atomic Bose condensates with Rashba
24. Li, Y., Pitaevskii, L. P. & Stringari, S. Quantum tricriticality and phase transitions
22. Zhang, Y., Mao, L. & Zhang, C. Mean-field dynamics of spin-orbit coupled Bose-
20. Zhu, Q., Zhang, C. & Wu, B. Exotic superfluidity in spin-orbit coupled Bose-
18. Kawakami, T., Mizushima, T. & Machida, K. Textures of F
17. Zhou, X.-F., Zhou, J. & Wu, C. Vortex structures of rotating spin-orbit-coupled
16. Xu, Z. F., Lu¨, R. & You, L. Emergent patterns in a spin-orbit-coupled spin-2 Bose-
15. Yip, S.-K. Bose-Einstein condensation in the presence of artificial spin-orbit
14. Wu, C.-J., Mondragon-Shem, I. & Zhou, X.-F. Unconventional Bose-Einstein
13. Xu, X.-Q. & Han, J. H. Emergence of chiral magnetism in spinor Bose-Einstein
12. Xu, X.-Q. & Han, J. H. Spin-orbit coupled Bose-Einstein condensate under
11. Sinha, S., Nath, R. & Santos, L. Trapped two-dimensional condensates with
39. Sørensen, A., Duan, L.-M., Cirac, J. I. & Zoller, P. Many-particle entanglement
38. Santarelli, G. et al. Collective dipole oscillations of a spin-orbit coupled Bose-
37. Zhang, D.-W., Xue, Z.-Y., Van, H., Wang, Z. D. & Zhu, S.-L. Macroscopic Klein
36. Zhang, D.-W., Fu, L.-B., Wang, Z. D. & Zhu, S.-L. Josephson dynamics of a
35. Chen, G., Ma, J. & Jia, S. Long-range superfluid order in trapped Bose-Einstein
34. Xu, Z. F., Kawaguchi, Y., You, L. & Ueda, M. Symmetry classification of spin-
33. Zhang, D.-W., Fu, L.-B., Wang, Z. D. & Zhu, S.-L. –Phase transitions of a
32. Radic, I., Ciolo, A. D., Sun, K. & Galitski, V. Exotic quantum spin models in spin-orbit-coupled Mott insulators. Phys. Rev. Lett. 109, 085303 (2012).
31. Cole, W. S., Zhang, S., Paramakanti, A. & Trivedi, N. Bose-Hubbard models with synthetic spin-orbit coupling: Mott insulators, spin textures, and superfluidity. Phys. Rev. Lett. 109, 085302 (2012).
30. Zhang, J.-Y. et al. Collective dipole oscillations of a spin-orbit coupled Bose-
29. Radic, I., Ciolo, A. D., Sun, K. & Galitski, V. Exotic quantum spin models in spin-orbit-coupled Mott insulators. Phys. Rev. Lett. 109, 085303 (2012).
28. Kawakami, T., Mizushima, T. & Machida, K. Stable skyrmions in $SU(2)$
gauged Bose-Einstein condensates. Phys. Rev. Lett. 109, 015301 (2012).
27. Radic, I., Ciolo, A. D., Sun, K. & Galitski, V. Exotic quantum spin models in spin-orbit-coupled Mott insulators. Phys. Rev. Lett. 109, 085303 (2012).
26. Ozawa, T. & Baym, G. Stability of ultracold atomic Bose condensates with Rashba spin-orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett. 109, 025301 (2012).
25. Lian, J. et al. Thermodynamics of spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A 86, 063620 (2012).
24. Ozawa, T. & Baym, G. Stability of ultracold atomic Bose condensates with Rashba spin-orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett. 109, 025301 (2012).
23. Hu, H., Ramachandran, B., Pu, H. & Liu, X.-J. Spin-orbit coupled weakly
22. Zhang, Y., Mao, L. & Zhang, C. Mean-field dynamics of spin-orbit coupled Bose-
21. Zhong, X.-F., Zhou, J. & Wu, C. Vortex structures of rotating spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A 84, 063624 (2011).
20. Zhang, Y., Mao, L. & Zhang, C. Mean-field dynamics of spin-orbit coupled Bose-
19. Fu, Z., Wang, P., Chai, S., Huang, L. & Zhang, J. Bose-Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers. Phys. Rev. A 84, 043609 (2011).
18. Kawakami, T., Mizushima, T. & Machida, K. Textures of $F = 2$ spinor Bose-
17. Zhou, X.-F., Zhou, J. & Wu, C. Vortex structures of rotating spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A 84, 016302 (2011).
16. Xu, Z. F., Lu¨, R. & You, L. Emergent patterns in a spin-orbit-coupled spin-2 Bose-
15. Yip, S.-K. Bose-Einstein condensation in the presence of artificial spin-orbit
14. Wu, C.-J., Mondragon-Shem, I. & Zhou, X.-F. Unconventional Bose-Einstein condensations from spin-orbit coupling. Chin. Phys. Lett. 28, 097102 (2011).
13. Xu, X.-Q. & Han, J. H. Spin-orbit coupled Bose-Einstein condensate under
12. Xu, X.-Q. & Han, J. H. Spin-orbit coupled Bose-Einstein condensate under
11. Sinha, S., Nath, R. & Santos, L. Trapped two-dimensional condensates with
10. Ho, T.-L. & Zhang, S. Bose-Einstein condensates with spin-orbit interaction. Phys. Rev. Lett. 107, 150403 (2011).
9. Wang, C., Gao, C., Jian, C.-M. & Zhai, H. Spin-orbit coupled spinor Bose-Einstein condensates. Phys. Rev. Lett. 105, 160403 (2010).