SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves

Guo, Woei-Jiun; Nagy, Reka; Chen, Hsin-Yi; Pirrunder, Stefanie; Yu, Ya-Chi; Santelia, Diana; Frommer, Wolf B; Martinoia, Enrico

Abstract: Fructose (Fru) is a major storage form of sugars found in vacuoles, yet the molecular regulation of vacuolar Fru transport is poorly studied. Although SWEET17 (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS17) has been characterized as a vacuolar Fru exporter in leaves, its expression in leaves is low. Here, RNA analysis and SWEET17-glucuronidase/GREEN FLUORESCENT PROTEIN fusions expressed in Arabidopsis (Arabidopsis thaliana) reveal that SWEET17 is highly expressed in the cortex of roots and localizes to the tonoplast of root cells. Expression of SWEET17 in roots was inducible by Fru and darkness, treatments that activate accumulation and release of vacuolar Fru, respectively. Mutation and ectopic expression of SWEET17 led to increased and decreased root growth in the presence of Fru, respectively. Overexpression of SWEET17 specifically reduced the Fru content in leaves by 80% during cold stress. These results intimate that SWEET17 functions as a Fru-specific uniporter on the root tonoplast. Vacuoles overexpressing SWEET17 showed increased [14C]Fru uptake compared with the wild type. SWEET17-mediated Fru uptake was insensitive to ATP or treatment with NH4Cl or carbonyl cyanide m-chlorophenyl hydrazone, indicating that SWEET17 functions as an energy-independent facilitative carrier. The Arabidopsis genome contains a close paralog of SWEET17 in clade IV, SWEET16. The predominant expression of SWEET16 in root vacuoles and reduced root growth of mutants under Fru excess indicate that SWEET16 also functions as a vacuolar transporter in roots. We propose that in addition to a role in leaves, SWEET17 plays a key role in facilitating bidirectional Fru transport across the tonoplast of roots in response to metabolic demand to maintain cytosolic Fru homeostasis.

DOI: https://doi.org/10.1104/pp.113.232751
Guo, Woei-Jiun; Nagy, Reka; Chen, Hsin-Yi; Pfrunder, Stefanie; Yu, Ya-Chi; Santelia, Diana; Frommer, Wolf B; Martinoia, Enrico (2014). SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology, 164(2):777-789. DOI: https://doi.org/10.1104/pp.113.232751
Running Title:
SWEET17 transports fructose across the root tonoplast

Corresponding authors:
Wolf Frommer
Woei-Jiun Guo

Address:
Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford CA 94305, USA
Institute of Tropical Plant Science, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan 7013

Tel:
(650) 7394208
+886-6-5050635 ext 3040

Fax:
(650) 325-6857
+886-6-2083663

Email:
wfrommer@stanford.edu
wjguo@mail.ncku.edu.tw

Research area:
Membranes, Transport and Bioenergetics
SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves

Woei Jiun Guo1,2,5, Reka Nagy3,4, Hsin-Yi Chen2, Stefanie Pfrunder3, Ya-Chi Yu2, Diana Santelia3, Wolf B. Frommer1,5 and Enrico Martinoia3
Footnotes:

1 Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford CA 94305, USA

2 Institute of Tropical Plant Science, National Cheng Kung University, No.1, University Road, Tainan City 7013, Taiwan

3 Institute of Plant Biology, University of Zürich, Zollikerstr. 107, CH-8008, Zürich, Switzerland

4 Present address: Promega, Wallisellenstrasse 55, 8600 Dubendorf, 8006 Zurich, Switzerland

5 Corresponding authors: wfrommer@stanford.edu; wjguo@mail.ncku.edu.tw

Key words: facilitator, sugar efflux, sugar homeostasis, uniporter, passive transport, vacuole
Abstract

Fructose (Frc) is a major storage form of sugars found in vacuoles, yet the molecular regulation of vacuolar Frc transport is poorly studied. Although SWEET17 has been characterized as a vacuolar Frc exporter in leaves, its expression in leaves is low. Here, RNA analysis and SWEET17-β-glucuronidase-green fluorescent protein fusions expressed in Arabidopsis revealed that SWEET17 was highly expressed in the cortex of roots and showed clear tonoplast localization in root cells. Expression of SWEET17 in roots was induced by Frc supply and darkness that activate accumulation and release of vacuolar Frc, respectively. Mutation and ectopic expression of SWEET17 led to increased and decreased root growth in the presence of Frc, respectively. Overexpression of SWEET17 specifically reduced the Frc content in leaves by 80% during cold stress. These results intimate that SWEET17 functions as a Frc-specific uniporter on the root tonoplast. Indeed, vacuoles overexpressing SWEET17 showed an enhanced uptake rate to 14C-labeled Frc compared to the wildtype. SWEET17-mediated Frc uptake was insensitive to ATP and treatments with NH$_4$Cl or CCCP, supporting that SWEET17 function as an energy-independent facilitative carrier. The Arabidopsis genome contains a close paralog of SWEET17 in clade IV, SWEET16. The predominant expression of SWEET16 in root vacuoles and reduced root growth of mutants under Frc excess indicate that SWEET16 also functions as a vacuolar transporter in roots. We propose that beside a role in leaves, SWEET17 plays a key role in facilitating bi-directional Frc transport across the tonoplast of roots upon metabolic demand to maintain cytosolic Frc homeostasis.
Sugars are the main energy sources to generate adenosine triphosphate, the major precursors to various storage carbohydrates as well as key signaling molecules important for normal growth in higher plants (Rolland et al., 2006). Depending on metabolic demand, sugars are transported over a long distance or stored intracellularly. SWEET and SUT-type sucrose (Suc) transporters are responsible for cellular efflux and load Suc from the phloem parenchyma into the sieve element companion cell complex for long distance translocation (Riesmeier et al., 1992; Sauer, 2007; Kühn and Grof, 2010; Chen et al., 2012). Suc or hexoses derived from Suc hydrolysis in the cell wall are then taken up into sink cells by SUT transporters (Braun and Slewinski, 2009) or monosaccharide transporters (Pego and Smeekens, 2000; Sherson et al., 2003), such as sugar transporter 1, AtSTP1 (Sauer et al., 1990). Alternatively, sugars can move between cells via plasmodesmata (Voitsekhovskaja et al., 2006; Ayre, 2011). The major sugar storage pools within a plant cell are the plastid, where starch is either stored transiently or as a long term reserve, and the vacuole.

Vacuoles, which account for 80 to 90% of the cell volume (Winter et al., 1993), play central roles in temporary and long-term storage of soluble sugars (Martinoia et al., 2007; Etxeberria et al., 2012). Some agriculturally important crops like sugar beet (Leigh, 1984; Getz and Klein, 1995), citrus (Echeverria and Valich, 1988), sugar cane (Thom et al., 1982) and carrot (Keller, 1988) can store considerable amounts (> 10% of plant dry weight) of Suc, Glucose (Glc) or Fre in vacuoles of the storage parenchyma. Due to a high capacity of vacuoles for storing sugars, vacuolar sugars can serve as the important carbohydrate supply during energy starvation after starch has been exhausted (Echeverria and Valich, 1988) as well as for the production of other compounds (e.g. osmoprotectants). Sugars are known to regulate photosynthesis; therefore the release of sugars from vacuoles could be important for modulating photosynthesis (Kaiser and Heber, 1984). Moreover, vacuole-derived sugars are commercially used to produce biofuels, such as ethanol, from sugarcane. Knowledge of the key transporters involved in sugar exchange between the vacuole and cytoplasm is thus relevant in the context of bioenergy (Grennan and Gragg, 2009).

To facilitate the exchange of sugars across the tonoplast, plant vacuoles are equipped with a multitude of transporters (Neuhaus, 2007; Etxeberria et al., 2012;
comprising both facilitated diffusion and active transport systems of vacuolar sugars (Martinoa et al., 2000). Typically, Suc is actively imported into vacuoles by the tonoplast monosaccharide transporter (AtTMT1/2) (Schulz et al., 2011) and exported by the SUT4 family (AtSUC4, OsSUT2) (Eom et al., 2011; Payyavula et al., 2011; Schulz et al., 2011). Two H+-dependent sugar antiporters, the vacuolar Glc transporter (AtVGT1) (Aluri and Buttner, 2007) and AtTMT1 (Wormit et al., 2006), mediate Glc uptake across the tonoplast to promote carbohydrate accumulation in Arabidopsis. The Early Responsive to Dehydration-Like 6 (AtERDL6) protein has been shown to export vacuolar Glc into the cytosol (Poschet et al., 2011), likely via an energy-independent diffusion mechanism (Yamada et al., 2010). Defects in these vacuolar sugar transporters alter carbohydrate allocation and inhibit plant growth and seed yield (Aluri and Buttner, 2007; Wingenter et al., 2010; Eom et al., 2011; Poschet et al., 2011).

In contrast to numerous studies on vacuolar transport of Suc and Glc, limited efforts had been devoted to the molecular mechanism of vacuolar Frc transport even though Frc is predominantly located in vacuoles (Martinoa et al., 1987; Voitsekhovskaja et al., 2006; Tohge et al., 2011). Vacuolar Frc is important in turgor pressure regulation (Pontis, 1989), anti-oxidative defense (Bogdanovi et al., 2008), and signal transduction during early seedling development (Cho and Yoo, 2011; Li et al., 2011). Thus, control over Frc transport across the tonoplast is thought to be important for plant growth and development. One vacuolar Glc transporter from the Arabidopsis MST family, AtVGT1, has been reported to mediate low affinity Frc uptake when expressed in yeast vacuoles (Aluri and Buttner, 2007). Yet, the high vacuolar uptake activity to Frc intimates the existence of additional high capacity Frc-specific vacuolar transporters (Thom et al., 1982). Recently, quantitative mapping of a quantitative trait locus for Frc content led to the identification of a Frc-specific vacuolar transporter, SWEET17 (Chardon et al., 2013).

SWEET17 belongs to the recently identified SWEET (PFAM:PF03083) super family, which contains 17 members in Arabidopsis and about 21 homologs in rice (Chen et al., 2010; Frommer et al., 2013; Xuan et al., 2013). Based on amino acid similarity, plant SWEET proteins were grouped into four subclades exhibiting 27 to 80% identity (Chen et al., 2010). Transport assays using radiotracers in Xenopus oocytes or sugar nanosensors in mammalian cells showed that most SWEET transporters are plasma...
membrane localized and function as low-affinity and pH-independent uniporters that have both uptake and efflux activity (Chen et al., 2010; Chen et al., 2012). In particular, clade I and II SWEETs transport monosaccharides and clade III SWEETs transport disaccharides, mainly Suc (Chen et al., 2010; Chen et al., 2012). Mutant phenotypes and developmental expression of several SWEET transporters support important roles in sugar allocation between organs. The clade III SWEETs, SWEET11 and 12 mediate the key step of Suc efflux from phloem parenchyma cells for phloem translocation (Chen et al., 2012). SWEETs are co-opted by pathogens to provide energy resources and carbon at the site of infection (Chen et al., 2010). Mutations of SWEET8/AtRPG1 in Arabidopsis, OsSWEET11 (also called Os8N3 or Xa13) in rice, and petunia NEC1 resulted in male sterility (Ge et al., 2001; Yang et al., 2006; Guan et al., 2008), possibly caused by inhibiting the Glc or Suc transport required for pollen or pollen tube function (Guan et al., 2008). Similarly, mutations of SWEET17 expression caused Frc accumulation in Arabidopsis leaves, indicating that it plays a key role in exporting Frc from leaf vacuoles (Chardon et al., 2013). A more recent study has demonstrated that SWEET16 also functions as a vacuolar sugar transporter using the same heterologous system as shown for SWEET17 (Klemens et al., 2013). Surprisingly, however, SWEET17 expression in mature leaves was comparatively low (Chardon et al., 2013), which leads us to ask the question whether this transporter could play a major role in another tissue or under specific developmental or environmental conditions. Although Arabidopsis SWEET17 has been shown to transport Frc in a heterologous system where accumulated in part at the plasma membrane (Chardon et al., 2013), the biochemical properties of SWEET17 transport in vivo were still elusive. SWEET17 and 16 from Arabidopsis belong to the clade IV SWEETs. Whether clade IV proteins both transport vacuolar sugars in planta deserves further studies.

Here, we used GUS/GFP fusions to reveal the root-dominant expression and vacuolar localization of the SWEET17 protein in vivo and its regulation in response to intracellular Frc. Phenotypes of mutants and overexpressors were consistent with a role of SWEET17 in bi-directional Frc transport across root vacuoles. The uniport feature of SWEET17 transport in vivo was further confirmed using isolated mesophyll vacuoles. Using the same approaches, SWEET16 was also shown to function in vacuolar sugar
transport in roots. Our work, performed in parallel, provide direct evidences to show the Frc-specific uniport activity of SWEET17 in planta proposed by a recent study (Chardon et al., 2013) and presents functional analyses to uncover important roles of these vacuolar transporters in maintain intracellular Frc homeostasis in sink cells, roots.

Results

SWEET17 proteins are highly expressed in roots

A very recent report had indicated that SWEET17 (At4g15920) functions as a Frc exporter in leaf vacuoles. However, SWEET17 expression appeared to be very low in leaves (Chardon et al., 2013), indicating that SWEET17 may predominantly function in other sink organs than leaves under specific environmental conditions. A quantitative reverse transcription (qRT)-PCR analysis revealed that SWEET17 mRNA was expressed to high levels in roots of 2-week-old seedlings (Fig. 1). In soil-grown mature plants, some aerial organs, i.e. stems, flowers and siliques also accumulated high levels of SWEET17 transcripts. By contrast, expression of SWEET17 was comparatively low in both young and mature leaves (Fig. 1). The high levels of SWEET17 transcripts in roots observed here correlated well with the steady state expression profile from the Arabidopsis eFP Browser (Supplemental Fig. S1A) (Winter et al., 2007) and the Translatome database (polysome-bound mRNA) (Mustroph et al., 2009) (Supplemental Fig. S1B). Since steady state mRNA levels do not necessarily reflect protein abundance (Krügel and Kühn, 2013), translational fusions were analyzed. We generated transgenic Arabidopsis plants expressing a C-terminal translational GUS gene fusion of SWEET17 driven by the native SWEET17 promoter (SWEET17-GUS). In particular, the full length of SWEET17 gene containing all introns was used to observe the genuine expression of the protein in planta. In 7-d-old transgenic seedlings, SWEET17-GUS fusion proteins were mainly found in cotyledons and roots (Fig. 2A). A similar expression pattern was also observed in 2-week-old seedlings (Fig. 2B), where, however, much lower GUS staining was seen in aerial tissues. The expression pattern of SWEET17 proteins was also consistent with the expression pattern analyzed by a GUS reporter driven by the SWEET17 promoter (Supplemental Fig. S1C). In roots, SWEET17 was predominantly expressed in root tips (Fig. 2C) and mature regions of roots (Fig. 2D). Only low expression was observed in the
elongation zone of roots (Fig. 2C). Three independent reporter lines showed comparable patterns of GUS staining (data not shown). Handsections of mature roots histochemically stained for GUS activity further demonstrated that SWEET17 predominantly accumulated in the root cortex (Fig. 2E). The cell-type specific expression was comparable with that of root array data from the Arabidopsis eFP Browser (Supplemental Fig. S2, A and B) and the Translatome database (Supplemental Fig. S2C). In soil-grown mature plants, expression of SWEET17-GUS was consistently observed to be high in roots and low in aerial tissues, such as leaves, stems and flowers (Supplemental Fig. S3A). When the reaction time of GUS staining was doubled (to 4 h), low and patchy expression of the SWEET17-GUS fusion proteins was observed in mature leaves (Fig. 2F). After extended staining, some GUS activity was also observed in the vascular tissues of flowers (Fig. 2G) and the bottom of siliques (Fig. 2H), but not in seeds (Fig. 2I).

Expression of SWEET17 is regulated by Frc in roots

Since expression of some sugar transporters is modulated by altering sugar contents (Williams et al., 2000), we investigated if altered sugar levels would affect the spatial pattern of expression of SWEET17. Transgenic Arabidopsis seedlings expressing SWEET17-GUS fusion proteins were grown on media supplemented with 1% Suc for 5 days then transferred to media without or with 1% Suc, Glc, or Frc for 2 days. Histochemical staining for GUS activity showed that SWEET17 accumulation was similar in the presence of Suc or Glc (Supplemental Fig. S3B), but highly induced by 1% Frc in elongation regions of roots compared to control conditions (Fig. 2, J and K). To address whether SWEET17 expression responds to a low intracellular sugar status, seedlings expressing SWEET17-GUS fusion proteins were grown on media supplemented with 1% Suc under 16 h daylength for 5 days then transferred to sugar-free media in the dark for additional 2 days. The extended dark period leads to sugar starvation in plant cells (Usadel et al., 2008). Interestingly, accumulation of SWEET17-GUS fusion proteins in elongation regions of roots was also highly induced by darkness (Fig. 2, J and L). The same Frc and sugar-starvation inducible patterns in roots were observed at the transcriptional level using a SWEET17 promoter:GUS fusion (Supplemental Fig. S3C). Weak induction of SWEET17-GUS expression in leaves was also observed upon exposure to darkness or by combining darkness with cold stress (Supplemental Fig. S4). These observations were
consistent with a predicted role of SWEET17 as a Frc unipporter for uptake of excess cytosolic Frc or for release the stored Frc across the vacuolar membrane to maintain homeostasis.

SWEET17 proteins in root vacuoles

To investigate whether SWEET17 is targeted to the tonoplast also in roots, we generated transgenic Arabidopsis plants expressing a C-terminal translational GFP fusion of SWEET17 (SWEET17-GFP) driven by the native SWEET17 promoter. To allow possible transcriptional regulation, the full length genomic SWEET17 gene was used. Confocal images of intact roots from homozygous transformants revealed that the fluorescence derived from SWEET17-GFP fusion proteins was predominantly present at the tonoplast of root tips (Fig. 3A). The vacuolar localization was evidenced by fluorescence surrounding small pre-mature vacuoles located inside the plasma membrane labeled by FM4-64 (Fig. 3, B and C) (Wayne, 2009). The vacuolar pattern was also observed in mature regions of roots as shown by fluorescence lining the inner side of the nucleus and plasma membrane (Fig. 3, D-F) (Wayne, 2009). The fluorescence derived from SWEET17-GFP fusion proteins in the cytosol or at the plasma membrane was not significant. Tonoplast-specific localization of SWEET17-GFP was also observed in mesophyll protoplasts (Supplemental Fig. S5). Despite overall low levels of fluorescence in leaf tissues, SWEET17-GFP fluorescence in Arabidopsis protoplasts was clearly concaved by chloroplast autofluorescence (Supplemental Fig. S5A) and not detected at the plasma membrane (Supplemental Fig. S5B). These observations indicate that SWEET17 locates to and functions predominantly at the tonoplast of roots.

Import activity of SWEET17 confers tolerance to Frc inhibition

High levels of cytosolic Frc inhibit root growth and arrest seedling development (Bhagyalakshmi et al., 2004; Cho and Yoo, 2011). If SWEET17 could act as a vacuolar importer to store excess Frc in roots, as suggested by the expression pattern (Fig. 2 and 3), altered expression of SWEET17 may affect intracellular Frc allocation and thereby affect sensitivity of roots to Frc. To test this hypothesis, Arabidopsis knockout mutants, sweet17-1 and sweet17-2 with T-DNAs inserted in the SWEET17 gene were obtained (Chardon et al., 2013). While the relative root growth of the segregating wildtype (Col-
TDNA) and mutants (sweet17-1 and sweet17-2) was similar when grown on media with
or without 1% Suc, root growth of sweet17-1 and sweet17-2 seedlings was significantly
more sensitive to 1 to 2% of Frc compared to the wildtype (Fig. 4A). SWEET17 thus
appears to be, at least partially, necessary for Frc tolerance. We therefore tested whether
SWEET17 is also sufficient for Frc tolerance in roots. We generated transgenic
Arabidopsis plants overexpressing the full length genomic SWEET17 gene driven by the
constitutive cauliflower mosaic virus 35S promoter. In 7-d-old seedlings, RT-PCR
analysis showed that levels of SWEET17 transcripts in homozygous transgenic plants
were highly increased in overexpressing lines, 35S:SWEET17-1, -6 and -2, compared to
plants transformed with the empty vector (Col-Vector; Supplemental Fig. S6A). In
contrast to the increased sensitivity of root growth in sweet17 mutants (Fig. 4A), three
independent overexpressor lines (35S:SWEET17-1, -6 and -2) showed enhanced tolerance
compared to wildtype plants (Col-Vector-1 and -2) in the presence of 0.1 to 1% Frc (Fig.
4B). Excess sugars inhibit seed germination (Dekkers et al., 2004). To examine if
SWEET17 also contributes to Frc translocation during early seedling development, we
compared germination rates of mutants and overexpressors subjected to excess Frc.
However, after 2 to 4 d of incubation, we did not observe significant differences between
all lines tested (Supplemental Fig. S6, B and C; data not shown).

Overexpressing SWEET17 decreases Frc accumulation in leaves

The induction of SWEET17 expression by energy starvation (Fig. 2, J and L)
indicates that SWEET17 may be able not only to import, but also export Frc stored in the
vacuole into the cytosol when there is a metabolic demand. To examine how the
increased export activity of SWEET17 proteins affects the capacity of vacuoles to store
sugars, we determined sugar contents of leaves of SWEET17 overexpressors under
standard growth conditions and in response to cold stress (4°C) for 1 week. Cold stress
has been shown to induce Frc accumulation in vacuoles by 2 to 10 fold within 24 h
(Wormit et al., 2006). Under standard conditions, no dramatic differences in leaf sugar
levels were observed when comparing wildtypes and overexpressors (Supplemental Fig.
S7A). However, under cold stress conditions, the Frc content of leaves of 35S:SWEET17-
1 overexpressor plants was significantly reduced by 80% compared to the wildtype
transformed with the empty vector (Col-Vector) (Fig. 5). No significant differences in
Glc and Suc levels were observed in cold-stressed overexpressors (Fig. 5 and Supplemental Fig. S7B). These results provide functional evidence that SWEET17 is involved in vacuolar Frc export in planta.

Direct evidence for a role of SWEET17 as a low affinity tonoplast Frc uniporter

The sensitivity of root growth to Frc inhibition in sweet17 mutants (Fig. 4A) and the decreased Frc content in cold stressed SWEET17 overexpressors (Fig. 5) indicated that SWEET17 mediates bi-directional Frc-specific transport in vivo. To directly measure the transport properties of SWEET17, leaf vacuoles were isolated from overexpressors plants grown under standard conditions and used to perform time-course uptake assays with \[^{14}\text{C}]\text{Suc}, \[^{14}\text{C}]\text{Glc}, \text{and }[^{14}\text{C}]\text{Frc. Vacuoles isolated from 35S:SWEET17-1 and -6 mesophyll protoplasts exhibited an enhanced time-dependent Frc uptake activity compared to those isolated from control leaves (Col-Vector, Fig. 6A). By comparison, the uptake activities for Glc or Suc were not significantly increased (Supplemental Fig. S8). These results show that SWEET17 can import Frc specifically into vacuoles along a concentration gradient in vivo.**

To confirm if SWEET17 acts as a uniporter as observed from phenotypes (Fig. 4 and 5), we examined the effect of ATP and treatments with a uncoupler, NH\(_4\)Cl (5 mM) (Wormit et al., 2006) or a protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 10 \(\mu\text{M}\)) (Eom et al., 2011), on the Frc uptake activity of SWEET17 (Fig. 6B). After an incubation time of 20 min in the presence of 0.2 mM \[^{14}\text{C}]\text{Frc and MgATP, vacuoles from plants overexpressing SWEET17 had taken up 2.5 times more Frc uptake than those expressing the empty vector (Fig. 6B). The absence of ATP as well as treatments of NH\(_4\)Cl or CCCP, which disrupt the preexisting proton gradient, had no impact on the transport activity (Fig. 6B).**

To investigate the affinity of the vacuolar Frc transporter, we performed a concentration-dependent uptake experiment. Saturation of Frc uptake was not observed at a concentration even up to 20 mM (Fig. 6C). The deduced \(K_m\) and \(V_{\text{max}}\) values of SWEET17 activity were 25.6 mM and 479.8 pmol Frc \(\mu\text{l vacuole}^{-1} \text{min}^{-1}\), respectively, demonstrating that SWEET17 is a low affinity Frc transporter.
Both clade IV SWEETs function as vacuolar transporters in roots

The Arabidopsis genome contains a close homolog of SWEET17 in clade IV, named SWEET16. In a recent study, SWEET16 (At3g16690) was also shown to function as a vacuolar sugar facilitator in vascular parenchyma cells (Klemens et al., 2013). However, the expression of SWEET16, measured as GUS activity driven by the SWEET16 promoter is relatively low in most tissues, including roots (Klemens et al., 2013). Since SWEET16 and 17 proteins share 70% amino acid identity (Supplemental Fig. S9A), we suspected that SWEET16 may play a partially redundant function with SWEET17 in roots under certain environmental stimuli. To address this hypothesis, we performed similar experiments as for SWEET17. Interestingly, the (qRT)-PCR analysis showed predominant expression of SWEET16 mRNA in roots compared to all aerial organs, such as leaves, stems and flowers in both young seedlings and mature plants (Fig. 1). The expression pattern was consistent with the developmental expression profile from the Arabidopsis eFP Browser (Supplemental Fig. S1A) and the Translatome database (Supplemental Fig. S1B). To investigate if SWEET17 and 16 are the only SWEET genes highly expressed in roots, we performed (qRT)-PCR to analyze expression levels of all 17 Arabidopsis SWEET genes in roots. Under the condition tested, SWEET17 and 16 genes, which are part of the clade IV (Chen et al., 2010), were the most highly expressed SWEET genes; a few other SWEET genes were expressed at low levels in roots (Fig. 7). The pattern was consistent with the expression profile derived from the AtGeneExpress database (Supplemental Fig. S9B).

To analyze the tissue-specific expression of SWEET16 proteins, we generated transgenic Arabidopsis expressing C-terminal translational fusions to GUS and GFP under the control of the native SWEET16 promoter (SWEET16-GUS/GFP), again using the full length SWEET16 genomic gene. Similar to SWEET17, both SWEET16-GUS fusion proteins and promoter activity were mainly found in roots (Supplemental Fig. S10, A and B). SWEET16 fusions accumulated predominantly in the cortex cells of mature roots (Supplemental Fig. S10, C and D). The cell-type specific expression was consistent with the Arabidopsis eFP Browser (Supplemental Fig. S2, A and B) and the Translatome
database (Supplemental Fig. S2C). Confocal images of intact roots in homozygous transformed seedlings clearly demonstrated that the fluorescence of SWEET16-GFP fusion proteins localized to the vacuolar membrane in roots (Supplemental Fig. S10, E-G). To functionally characterize SWEET16 in planta, we obtained Arabidopsis sweet16 T-DNA insertion knockout mutants (Supplemental Fig. S11A) and generated a sweet17-1/sweet16-1 double mutant (Supplemental Fig. S11B) as well as SWEET16 overexpressor lines (Supplemental Fig. S11C). Vacuoles isolated from sweet17-1/sweet16-1 showed a markedly decrease in Frc uptake activity (Supplemental Fig. S12A). Although overexpression of SWEET16 in leaves did not increase the Frc transport activity (Supplemental Fig. S12B), Frc content in leaves was significantly decreased in response to cold stress (Supplemental Fig. S7B) compared to standard growth conditions (Supplemental Fig. S7A). These results imply that SWEET16 is probably involved in Frc transport in planta, although at a much lower degree than SWEET17. Consistent with this observation, root growth of sweet16-1 and sweet16-2 seedlings was significantly more sensitive to 0.5 to 2% of Frc than the wildtype (Fig. 8A). However, compared to sweet16 single mutants, the sweet17-1/sweet16-1 double mutant did not show enhanced sensitivity to excess Frc. In addition, overexpressing SWEET16 significantly enhanced root growth at 0.5 to 2% of Frc (Fig. 8B).

Discussion

SWEET17 function at the root tonoplast

Tight regulation of sugar compartmentation between the cytosol and vacuole is important for proper plant development (Martinoia et al., 2000). A QTL analysis identified SWEET17 as a key player in controlling leaf Frc content and provided evidence that SWEET17 localizes to the vacuole. However, based on promoter-GUS fusions, SWEET17 expression was restricted to the main vein of the leaf, and was found only in the basal part of the leaf (Chardon et al., 2013). Using (qRT)-PCR analysis and a whole-gene SWEET17-GUS translational fusion, here we show that SWEET17 is highly expressed in roots and confirm that it is only present at low levels in leaves at all vegetative stages (Fig. 1 and 2; Supplemental Fig. S3A). The trend correlated well with results from microarray and translatome databases (Supplemental Fig. S1, A and B). In
contrast to high levels of steady-state SWEET17 transcripts detected in stems, flowers and siliques (Fig. 1; Supplemental Fig. S1A), very low levels of SWEET17 proteins analyzed by a GUS fusion were observed in those tissues (Fig. 2F-H; Supplemental Fig. S3A). Organ-specific post-translational regulation may modulate SWEET17 function as been observed for other sugar transporters (Krügel and Kühn, 2013). The discrepancy between our observations using a whole-gene construct and the previous report using a promoter-GUS construct (Chardon et al., 2013) may be due to intragenic regulatory elements within introns or exons that regulate gene expression. That has been observed in the Arabidopsis sucrose transporters, AtSUC1 and AtSUC9 (Sivitz et al., 2007) and well described in some nutrient transporters, such as AtAMT1 (Yuan et al., 2007) and AtNRT2 (Laugier et al., 2012). Further studies will be required to discover the regulatory mechanism. Nevertheless, these observations point out that expression of SWEET17 is tightly regulated to cope with the dynamics of cellular sugar homeostasis (Fig. 2, J-L; Supplemental Fig. S3C and S4). The tonoplast-specific localization of SWEET17-GFP in Arabidopsis roots and leaves (Fig. 3; Supplemental Fig. S5) provided a clear evidence of its role on vacuoles as suggested by a transient ectopic expression of SWEET17 cDNA-GFP fusion in protoplasts (Chardon et al., 2013). Taken together, these observations point to a potential role of SWEET17 on the root tonoplast.

Accumulation of SWEET17 is predominantly found in the cortex cells of mature roots (Fig. 2, D and E; Supplemental Fig. S2, B and C). The cortex cells mainly serve as a storage pool of carbohydrates and metabolites related to biotic and abiotic stresses (Hassan and Mathesius, 2012). In some plant species, the prime location of pathogen or symbiotic bacterial infection in roots occurs through the cortex (Czajkowski et al., 2010). A previous study had shown that OsSWEET11 expressed in rice leaves can be hijacked by pathogens to export sugars for their energy supply during infection (Chen et al., 2010). Several SWEET family members are also highly induced by pathogen infection. Whether SWEET17 is involved in releasing stored vacuolar sugars in root cortex cells during interaction with root microorganisms will be a very interesting aspect to investigate in the future.

SWEET17 regulates Frc homeostasis in roots
Given that most of Frc is stored in vacuoles (Voitsekhovskaja et al., 2006; Tohge et al., 2011), vacuolar SWEET17 is probably involved in importing excess cytosolic Frc into vacuoles for storage in roots after sugars are unloaded from the phloem stream and hydrolyzed by invertases. Several observations support this notion. In presence of externally supplied Frc, which activates Frc accumulation in vacuoles, expression of SWEET17 was highly induced in the elongation region of roots (Fig. 1, J and K), where active sugar uptake from the outside of roots occurs and most of Frc is accumulated (Jones and Darrah, 1996). Root growth was significantly reduced in sweet17 mutant plants under excess Frc (Fig. 4A), probably caused by a limited allocation of Frc into vacuoles leading to a higher cytosolic Frc concentration (Cho and Yoo, 2011). The inhibitory effect on root growth could be alleviated by ectopic overexpression of SWEET17 (Fig. 4B). We could also demonstrate vacuolar import activity of SWEET17 in planta vacuole transport assays (Fig. 6A). These import features of SWEET17 lead us to conclude that physiologically SWEET17 mediates Frc uptake into vacuoles for storage in response to a high concentration of cytosolic Frc in roots.

Frc stored in root vacuoles may serve as an important source of energy for actively growing cells (Echeverria and Valich, 1988; Etxeberria et al., 2012), such as those in the elongation region where newly formed cells are quickly expanding and accelerate maturation of the organelles. Interestingly, upon 48 h incubation in darkness that leads to intracellular energy depletion and triggers the release of stored sugars (Usadel et al., 2008), expression of SWEET17 is up-regulated in the root elongation zone (Fig. 2, J and L). The induced expression in dark suggests that SWEET17 also can function in Frc export from the vacuole to meet energy requirement in planta. The exporter activity of SWEET17 became evident under conditions in which high levels of Frc are accumulated in vacuoles, i.e. cold stress (Kaplan et al., 2004; Worrapt et al., 2006). The reduced Frc accumulation by ectopic expression of SWEET17 demonstrated that SWEET17 can passively export Frc out of vacuoles along a concentration gradient in vivo as observed in a transport assay performed in a heterologous system (Chardon et al., 2013). Despite the distinct reduction of Frc content in leaves was observed (Fig. 5), we did not observe phenotypic differences between overexpressors and wildtype plants (data not shown). It is possible that other compensatory mechanisms such as organic compounds and sugar...
alcohols are also induced during the osmotic adjustment to sustain cold tolerance (Sanghera et al., 2011).

Despite the fact that SWEET17 protein levels of leaves were extremely low (Fig. 2F; Supplemental Fig. S3A and S5), Frc content of leaves was dramatically increased in leaves of sweet17 mutants under normal conditions (Chardon et al., 2013). The reduced Frc uptake activity of leaf-derived vacuoles from sweet17-1/sweet16-1 demonstrates that despite the low levels of protein, SWEET17 is likely function in leaf vacuoles (Supplemental Fig. S12A). Alternatively, the reduced import activity of Frc in roots of sweet17 mutants may reduce their storage capacity and sink strength, which, in turn, can reduce Suc unloading and ultimately increase sugar or carbohydrate accumulation in leaf mesophyll cells (Ayre, 2011).

SWEET17 acts as a bi-directional Frc-specific facilitator

Transport assays using isolated leaf mesophyll vacuoles verified that SWEET17 is an important vacuolar Frc-specific transporter *in vivo* (Fig. 5; Supplemental Fig. S12A). Although we cannot exclude the possibility that SWEET17 exhibits a minor transport activity for other hexoses or disaccharides, such activities would be very low compared to Frc (Fig. 6B; Supplemental Fig. S8). Furthermore, excess Suc or Glc did not affect the expression level of SWEET17-GUS (Supplemental Fig. S3B). When sugar accumulation is induced by cold stress (Wingenter et al., 2010), only the concentration of Frc was significantly affected in leaves of SWEET17 overexpressors (Fig. 5; Supplemental Fig. S7B) and in vacuoles lacking SWEET17 (Chardon et al., 2013). Thus, unlike Arabidopsis vacuolar AtTMTs (Schulz et al., 2011), AtVG1 (Aluri and Buttner, 2007) and AtES1 (Yamada et al., 2010) which may act as general tonoplastic hexose transporters (Wormit et al., 2006), SWEET17 exhibits Frc specific transport functions *in vivo* and is probably regulated by Frc-specific signaling. Moreover, insensitivity of the transport activity to ATP and treatments with NH₄⁺ and CCCP (Fig. 6B) clearly showed that SWEET17 acts as a proton-independent bi-directional facilitator *in vivo*. This finding was consistent with our functional assays (Fig. 4 and 5) and previous observations performed in a heterologous oocyte system (Chardon et al., 2013). The uniport feature concurs with that of other plasma membrane SWEET members (Chen et al., 2010; Chen et al., 2012). One
common property of all SWEETs described is the high apparent K_m value ranging from 9 mM for SWEET1 (to Glc) (Chen et al., 2010) to 71 mM for SWEET12 (to Suc) (Chen et al., 2012). Similarly, the high K_m value at 25.6 mM determined here for SWEET17 (Fig. 6C) suggests that vacuolar SWEETs share this property with those of the plasma membrane. An even higher K_m of 102 mM was reported for the vacuolar monosaccharide facilitator, AtESL1 (Yamada et al., 2010). A relative lower K_m for Frc transport compared to Glu may reflect the preference of many plants to accumulate more Glc than Frc.

Clade IV SWEETs function as vacuolar transporters

SWEET17 has a very close homolog, SWEET16 (Supplemental Fig. S9A), which has recently been demonstrated to function also as a vacuolar transporter (Klemens et al., 2013). Furthermore, using a promoter-GUS construct it had been shown that SWEET16 is mainly expressed at very low levels in xylem parenchyma cells in leaves and flower stalks (Klemens et al., 2013). However, similar to SWEET17, our expression analysis by (qRT)-PCR as well as by the GUS reporter showed that SWEET16 is predominantly expressed in roots at all stages (Fig. 1; Supplemental Fig. S1 and S10, A and B). Highest expression was detected in the cortex cells of mature roots (Supplemental Fig. S10, C and D). Although our expression profiles are different from the previous report (Klemens et al., 2013), all our results were well in line with data from public expression databases (Supplemental Fig. S1 and S2). Moreover, localization of a stable translational GFP fusion clearly assigned SWEET16 to the tonoplast in Arabidopsis roots (Supplemental Fig. S10, E-G), as suggested using the transient expression in leaf protoplasts (Klemens et al., 2013). Therefore, we conclude that SWEET16, like SWEET17, mainly functions in roots. Compared with other SWEETs, SWEET16 and SWEET17 are the only two SWEETs found to be highly expressed in roots (Fig. 7; Supplemental Fig. S9B). These results imply that the clade IV SWEETs have evolved from other SWEET clades to specifically function on root vacuoles. This is in analogy with the ALMTs or full-size ABC transporter family in which one clade (ALMT) and one subfamily (ABCCs) are also localized in the vacuolar membrane, while the others are localized in the plasma membrane (Kang et al., 2011).
From their similarities in amino acids, expression patterns, and localizations we expected that these two SWEETs would either function in a complementary way, e.g. one transporting Glc, the other Frc or redundantly. Indeed, mutations in both SWEET17 and SWEET16 dramatically reduced the Frc uptake activity of vacuoles to Frc in vivo (Supplemental Fig. S12A). A reduced accumulation of Frc was also observed in a SWEET16 overexpressor line under cold stress (Supplemental Fig. S7B). However, in contrast to the previous study performed in an oocyte expressing system (Klemens et al., 2013), we did not detect any transport activity of SWEET16 to sugars (Supplemental Fig. S12B; data not shown). It is possible that the uptake mediated by SWEET16 on the tonoplast was below the detection limit due to a high background (Fig. 6B; data not shown) (Klemens et al., 2013) than SWEET17 (Km lower than 10 mM measured using an oocyte system) (Chardon et al., 2013). Nevertheless, similar to SWEET17, altered sensitivity of the root growth to excess Frc was observed in sweet16 mutants and overexpressors (Fig. 8). However, a loss-of-function of both sweet16 and sweet17 double mutant did not further reduce the root tolerance to excess Frc compared to sweet16 single mutant (Fig. 8A). These results indicate that SWEET17 and 16 may function in independent pathways by exchanging sugars across the tonoplast of root cells. Given that SWEET17 is expressed to a much higher level in roots (Fig. 1; Supplemental Fig. S1), it is likely that SWEET17 is the dominant Frc transporter on the root tonoplast.

In summary, our work provides a functional characterization of the vacuolar Frc-specific uniporter SWEET17. Based on these results, we propose that when photosynthesis is very active, Suc is allocated from the leaf to the root where Suc is hydrolyzed to Glc and Frc that are imported into vacuoles for storage by hexose transporters and SWEET17, respectively. Depending on the metabolic stage of the root cells, defect of SWEET17 will either reduce the vacuolar loading or unloading. In this case, excess of Frc in the cytosol will lead to growth retardation due to toxic effects of Frc, while under energy-limiting conditions the plant is not able to use all the carbohydrate reserves. During these processes, SWEET16 may also contribute to sugar compartmentation across the root vacuole independently from SWEET17.

Materials and Methods
Plant and growth conditions

Arabidopsis plants and mutants used in this study are all in Columbia ecotype. Arabidopsis thaliana were grown with potting medium or solid agar media in a controlled growth room (22/18°C day/night temperature, 16-h light/8-h dark regime of ~100 μmol m⁻² s⁻¹ illumination). For treatments of excess sugars, surface sterilized seeds (30% of concentrated bleach and 0.1% triton) were stratified at 4°C in the dark for 3 d and sown on 1/2MS solid media supplemented with 1% (w/v) Suc. After 5 d of growth, similar sizes of seedlings were transferred to 1/2MS media supplemented with various concentrations of Frc, Glc, or Suc as indicated. Expression patterns of reporter genes were observed after 2 d of transfer. To analyze effects on root growth, lengths of primary roots were recorded after 6 d of transfer and the relative root growth was determined using National Institutes of Health Image J 1.46v. For sugar content analysis, plants were grown in the growth chamber under 8-h light/16-h dark regime for 6 weeks. For treatment of cold stress, plants were grown for 5 weeks and subsequently transferred to a cooled growth chamber (4°C) for 1 week before analysis. For vacuole isolation, plants were grown for 4 to 5 weeks in a growth chamber under 8-h light/16-h dark regime, then transferred to low light condition (40 μmol m⁻² s⁻¹) for 5 d before isolation. For liquid culture, seedlings were grown for 7 d on a mesh with Murashige and Skoog (MS) solid media containing 1% Suc. Plants were then transferred to MS liquid media containing 1 to 2% Suc and cultured for 16 d before analysis. The MS or 1/2MS media used in this study included full or half strength of MS salt, respectively, 0.05 % (w/v) MES, and 1.5% agar for solid medium (adjust to pH 5.7 with KOH).

Generation of plants expressing GUS and GFP reporter genes

For P_{SWEET17}:GUS and P_{SWEET16}:GUS transcriptional constructs, SWEET17 and 16 promoter fragments containing the 5' UTR region were amplified from Arabidopsis genomic DNA with Phusion polymerase (New England Biolabs, MA, USA) and specific primers (5-PSWT17-BP and 3-PSWT17-BP for P_{SWEET17}; 5-PSWT16-BP and 3-PSWT16-BP for P_{SWEET16}). The resulting 2746 bp and 1521 fragments, respectively, were first cloned into pDONR221-fl and then transferred to a binary vector, pWUGW that contains a GUS reporter gene, using Gateway technology (Invitrogen, CA, USA). For
SWEET17-GUS/GFP and SWEET16-GUS/GFP translational constructs, the promoter fragments were first amplified from the pDONR221-f1 clones mentioned above and cloned into pGEM-T Easy (Promega, WI, USA). The promoter fragments were then cloned via ΡstI and KpnI sites into pMDC32-SWEET17 and pMDC32-SWEET16 constructs (refer to the section of “Overexpression of SWEET17 and 16 in Arabidopsis“) to replace the 35S promoter in those plasmids. The full P\textsubscript{SWEET17}\textasciitilde SWEET17 and P\textsubscript{SWEET16}\textasciitilde SWEET16 genomic fragments were then amplified using Phusion polymerase, cloned into pGEM-T Easy, digested, and subcloned into SacII and PstI sites of pUTKan or pGTKan, harboring the GUS or GFP reporter gene, respectively. All constructs were transformed into wildtype Arabidopsis plants using Agrobacterium tumefaciens strain C58 PGV3850 and flower dipping method (Clough and Bent, 1998). Transformants were identified on 1/2MS medium containing 50 µg mL-1 Kanamycin. For analysis of reporter gene expression, plants from six independent transgenic lines were examined for each construct. Patterns of gene expression were consistent within a construct and representative 3 homozygous lines were further analyzed in other experiments. Sequences of primers were listed in Supplemental Table S1.

Histochemical localization of GUS

Expression of transcriptional or translational fusions of the GUS reporter gene was analyzed by histochemical staining. Transgenic plants or excised plant tissues were stained at 37°C for 2 h or 4 h as indicated using X-Gluc solution (0.1 M NaH\textsubscript{2}PO\textsubscript{4}, 10 mM ethylenediaminetetraacetic acid, 0.5 mM each of potassium ferricyanide and potassium ferrocyanide, 0.1% Triton X-100 and 0.25 mg mL-1 X-glucuronidecyclohexylamine salt). After staining, tissues were cleared by replacing the staining solution with several changes of 70% and 90% ethanol as necessary.

Confocal microscopy for GFP observation

Fluorescence imaging of plants expressing SWEET17–GFP and SWEET16-GFP was performed on a Carl Zeiss LSM780 confocal microscope (Instrument Development Center, NCKU). Seedlings were incubated in 6 μM of FM4-64 (Invitrogen, CA, USA) for 5 min before imaging in order to visualize the plasma membrane. GFP was visualized by excitation with an argon laser at 488 nm and spectral detector set between 500 and 545
nm for the emission. The red fluorescence of FM4-64 was visualized by excitation with an argon laser at 561 nm and spectral detector set between 566 and 585 nm for the emission.

Identification of SWEET17/16 insertion mutants

The T-DNA insertion mutants for SWEET17 (sweet17-1 and sweet17-2) (Chardon et al., 2013) and SWEET16 (sweet16-1 and sweet16-2 were obtained from the Salk Institute Genomic Analysis Laboratory (http://signal.salk.edu/cgi-bin/tdnaexpress): SM_3_15143, as sweet17-1; SM_3_30077, as sweet16-2. To confirm the homozygosity of T-DNA insertion lines, gene-specific primers were used to examine wildtype alleles (swt17-1-RP and swt17-1-LP for sweet17-1; swt17-2-RP and SWT17-5-UTR for sweet17-2; swt16-1-RP and swt16-1-LP for sweet16-1; swt16-2-RP and swt16-2-LP for sweet16-2). Locations of T-DNA insertions in sweet16 mutants were confirmed by sequencing PCR products amplified with gene-specific primers (swt16-1-RP and swt16-2-RP) and the corresponding T-DNA left border primer (Spm32). The positions were located at 32 and 945 bp downstream of the translational start codon, corresponding to the forth and the first exon in the sweet16-1 and sweet16-2 mutant, respectively (Supplemental Fig. S11A). To confirm the expression level, RT-PCR was performed with specific primers (SWT17-5-UTR and swt17-1-LP for SWEET17; SWT16-5-UTR and SWT16-3-UTR for SWEET16) to amplify the full-length of cDNA. Sequences of primers were listed in Supplemental Table S1.

Overexpression of SWEET17 and 16 in Arabidopsis

To express SWEET17 and SWEET16 under the control of the 35S promoter, full length SWEET17/16 genomic sequences including all introns were amplified using Phusion polymerase with gene specific primers (SWT17-5-UTR-BP and SWT17-3-UTR-BP for SWEET17; SWT16-5-UTR-BP and SWT16-3-UTR-BP for SWEET16). The resulting 2856 bp and 2119 bp fragments were cloned into pDONR221-f1 and then transferred to a binary vector pMDC32 (Curtis and Grossniklaus, 2003) via Gateway technology. The resulting plasmids, pMDC32-SWEET17, pMDC32-SWEET16, and the corresponding empty vector, pMDC32 without the Gateway cassette, were transformed into wildtype Arabidopsis plants using the Agrobacterium tumefaciens strain C58.
PGV3850 and flower dipping method (Clough and Bent, 1998). Transformants were identified on 1/2MS medium containing 25 µg mL⁻¹ hygromycin B. Six single-copy T2 lines were obtained and three homozygous lines of highest expression were used in this study. Sequences of primers were listed in Supplemental Table S1.

qPCR and RT–PCR analysis

For aerial tissues in mature plants, total mRNA was isolated from leaves, stems, flowers and siliques of 7 to 8-week-old soil grown plants. For mRNA from young seedlings, shoots and roots of 2-week-old plants or 7-d-old whole seedlings grown on 1/2MS agar were harvested for extraction. To analyze expression in mature roots, total mRNA was isolated from roots of 23-d-old liquid cultured seedlings. Total mRNA was isolated using TRIsupre (Bioline, London, UK) reagent or RNeasy mini kit (Qiagen, Hilden, Germany) as instructed by the manufacture. The resulting cDNA produced by MMLV (Qiagen, Hilden, Germany) was diluted and used as the template and subjected to 25 to 30 cycles of PCR reaction (94°C for 30 s, 55°C for 30 s, and 72°C for 40 s) using Taq DNA polymerase and a pair of gene-specific primers as indicated. Amplification of an Actin cDNA (Actin2, At3G18780) using Act2-F and Act2-R primers (Supplemental Table S1) was used to normalize results from different samples. For RT-PCR, samples were separated on a 1.5% agarose gel. For real-time qPCR, the amplification was performed using HotStart-IT SYBR Green qPCR Master Mix (USB, OH, USA) or KAPA SYBR FAST qPCR Kit (Kapa Biosystems, MA, USA) according to the manufacturer’s instructions on a 7300 PCR system (Applied Biosystems, CA, USA). The relative expression level was determined by comparing with the expression of Actin 2 (1000*2^(-ΔΔCtSWEET-ΔCtActin)). The gene-specific primers used in qRT-PCR for 17 Arabidopsis SWEET genes were listed in Supplemental Table S1.

Extraction and assay of soluble sugars

Ground, freeze-dried Arabidopsis rosette leaf material (~ 0.5 g FW) was extracted in 800 µl ice-cold 0.7 M perchloric acid for 5 min with intermittent mixing, using a Mixer Mill (Retsch, Haan, Germany). All the subsequent steps were carried out between 0 and 4°C. After centrifugation (5 min, 5000 g, 4°C), 600 µl of supernatant (soluble fraction) was adjust to pH 5 to 6 by adding 2 M KOH, 0.4 M 2-ethanesulfonic acid
Precipitated potassium perchlorate was removed by centrifugation (10 min, 10000g, 4°C). For desalting, samples of the neutralized soluble fraction (250 µl) were applied to sequential 1.5-mL columns of Dowex 50 W and Dowex 1 (Sigma-Aldrich). The neutral compounds were eluted with 5 ml of water, lyophilized, and redissolved in 200 µl of water. Soluble sugars (Glc, Suc and Frc) were separated using High-Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) on a Dionex PA-20 column (Dionex, Thermo Scientific, MA, USA), according to the following conditions: eluent A, 100 mM NaOH; eluent B, 150 mM NaOH and 500 mM sodium acetate. At a flow rate of 0.5 mL min⁻¹, the gradient was as follows: 0 to 7 min, 100% A and 0% B; 7 to 26.5 min, a concave gradient to 20% A and 80% B (malto-oligosaccharide elution); 26.5 to 32 min, hold at 20% A and 80% B (column wash step); 32 to 40 min, step to 100% A and 0% B (column re-equilibration). Peaks were identified by co-elution with known malto-oligosaccharide standards. Peak areas were determined using Chromeleon software (Dionex, Thermo Scientific, MA, USA).

Vacuole isolation from Arabidopsis leaves

Vacuoles were isolated as described by Song et al. (2010) with some minor modifications. Firstly, to isolate mesophyll protoplasts, the abaxial epidermis of mature healthy leaves was abraded using sandpaper (p 500). The abraded leaves were floated on medium A (0.5 M Sorbitol, 1 mM CaCl₂ 2H₂O, 10 mM MES-KOH, pH 5.6) containing 1% Cellulase R10 and 0.5% Mazerozyme R10 for 1.5 h at 30°C. The released protoplasts were collected by centrifugation for 8 min at 400 g (4°C) on a cushion of osmotically stabilized Percoll (100% Percoll, 0.5 M Sorbitol, 1 mM CaCl₂ 2H₂O, 10 mM MES, pH 6). The supernatant was aspirated and the sedimented protoplasts were resuspended in the residual solution, which was completed to a final Percoll concentration of 40% with the osmotically stabilized Percoll. A Percoll gradient was formed by overlaying the suspended protoplasts with 3:7 (v/v) mix of Percoll pH 7.2 (500 mM sorbitol, 20 mM HEPES in Percoll 100%) and medium B (400 mM sorbitol, 30 mM potassium gluconate, 20 mM HEPES, pH 7.2 adjusted with imidazole), overlaid with medium B containing 1 mg mL⁻¹ BSA and 1 mM DTT. After centrifugation for 8 min at 250g (4°C), the
protoplasts were recovered from the upper interphase and lysed with the same of volume of pre-warmed (42°C) lysismedium (200 mM Sorbitol, 20 mM EDTA, 10 mM HEPES pH 8.0 with KOH, 10% Ficoll, 0.2 mg mL⁻¹ BSA, 1 mM DTT) under 37°C for maximum 10 min. Vacuoles were purified by overlaying 5 ml of the lysate with 5 ml of 1:1 fresh lysismedium/medium C (400 mM betaine, 30 mM potassium gluconate, 20 mM HEPES, pH 7.2 adjusted with imidazole, 1 mg mL⁻¹ BSA, 1 mM DTT) and 1 ml medium C. After centrifugation for 8 min at 1300g (4°C), the vacuoles were recovered from the interface between the middle and upper layer. Microscopic analysis indicated that contamination with intact protoplasts was less than 3%.

Transport analysis with Arabidopsis vacuole

Transport experiments were performed using silicone oil centrifugation technique as described previously (Song et al., 2010). The Michaelis-Menten nonlinear least-square regression fits were calculated using the SSmicmen function without initial parameters within the nls function of R 2.14.0 (www.R-project.org).

ACKNOWLEDGEMENTS

This work was made possible by grants from the Department of Energy (DE-FG02-04ER15542) to W.B.F., and from the National Science Concil, Taiwan (NSC-101-2313-B-006-001-MY3) to W.J.G., and from Swiss National Foundation, (Nr3100A0-117790/1) to E.M., and the fellowship from Swiss National Foundation Marie Heim-Voegtlin (grant_PMPDP3_139645) to D.S. We thank Dr. Bo Burla for performing the curve fitting. We also thank Dr. Tong Seung Tseng and Dr. Kate Dreher at Carnegie Institution for Science for constructive comments on the manuscript.
SUPPLEMENTAL MATERIALS

1 Supplemental Table S1. Specific primers used in this study.

2 Supplemental Figure S1. Organ-specific expression of Arabidopsis SWEET17 and SWEET16.

3 Supplemental Figure S2. Cell-type specific expression of Arabidopsis SWEET17 and SWEET16 genes in roots.

4 Supplemental Figure S3. Developmental expression of SWEET17 and its regulation in response to the sugar status.

5 Supplemental Figure S4. Expression of SWEET17-GUS fusion proteins in shoots under normal conditions or in response to darkness and cold.

6 Supplemental Figure S5. Tonoplast localization of SWEET17-GFP fusion proteins in leaves.

7 Supplemental Figure S6. Functional characterization of SWEET17 overexpressing lines.

8 Supplemental Figure S7. The sugar composition in leaves of SWEET17 and SWEET16 overexpressors.

9 Supplemental Figure S8. Analysis of sugar transport activity of vacuoles ectopically expressing Arabidopsis SWEET17.

10 Supplemental Figure S9. Comparison of Arabidopsis clade IV SWEETs.

11 Supplemental Figure S10. Expression patterns of SWEET16-GUS/GFP fusion proteins in planta.

12 Supplemental Figure S11. Identification of SWEET16 mutants and overexpressing lines.
Supplemental Figure S12. Characterization of SWEET16 transport activity in planta.
LITERATURE CITED

1. **Aluri S, Büttner M** (2007) Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc Natl Acad Sci USA 104: 2537-2542

2. **Ayre BG** (2011) Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant: 1-18

3. **Bhagyalakshmi N, Thimmaraju R, Narayan MS** (2004) Various hexoses and di- and hexoses differently influence growth, morphology and pigment synthesis in transformed root cultures of red beet (*Beta vulgaris*). Plant cell Tiss Organ Cult 78: 183-195

4. **Bogdanović J, Mojović M, Milosavić N, Mitrović A, Vucinić, Spasojević I** (2008) Role of fructose in the adaptation of plants to cold-induced oxidative stress. Eur Biophys J 37: 1241-1246

5. **Braun DM, Slewinski TL** (2009) Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant Physiol 149: 71-81

6. **Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, Clement G, Chietera G, Léran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus HE, Daniel-Vedele F, Krapp A** (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol 23: 697-702

7. **Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB** (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335: 207-211

8. **Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB** (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468: 527-532
Cho Y-H, Yoo SD (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 7: e1001263

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133: 462-469

Czajkowski R, de Boer WJ, Velvis H, van der Wolf JM (2010) Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. Biovar 3. Phytopathology 100: 134-142

de Bruxelles GL, Roberts MR (2001) Signals regulating multiple responses to wounding and herbivores. Crit Rev Plant Sci 20: 487-521

Dekkers BJ, Schuurmans JA, Smeekens SC (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218: 579-588

Echeverria E, Valich J (1988) Carbohydrate and enzyme distribution in protoplasts from valencia orange juice sacs. Phytochemistry 27: 73-76

Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS (2011) Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol 157: 109-119

Etxeberria E, Pozueta-Romero J, Gonzalez P (2012) In and out of the plant storage vacuole. Plant Sci 190: 52-61

Frommer WB, Sosso D, Chen LQ (2013) SWEET glucoside transporter superfamily. In Gordon CKR, ed, Encyclopedia of Biophysics. Springer, New York, pp 2556-2558
Ge YX, Angenent GC, Dahlhaus E, Franken J, Peters J, Wullems GJ, Creemers-Molenaar J (2001) Partial silencing of the NEC1 gene results in early opening of anthers in Petunia hybrida. Mol Genet Genomics 265: 414-423

Getz HP, Klein M (1995) Characteristics of sucrose transport and sucrose-Induced H⁺ transport on the tonoplast of red beet (Beta vulgaris L.) storage tissue. Plant Physiol 107: 459-467

Grennan AK, Gragg J (2009) How sweet it is: identification of vacuolar sucrose transporters. Plant Physiol 150: 1109-1110

Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147: 852-863

Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63: 3429-3444

Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere III. Characteristics of sugar influx and efflux. Plant and Soil 178: 153-160

Kaiser G, Heber U (1984) Sucrose transport into vacuoles isolated from barley mesophyll protoplasts. Planta 161: 562-568

Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arabidopsis Book 9: e0153

Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136: 4159-4168

Keller F (1988) A Large-scale isolation of vacuoles from protoplasts of mature carrot taproots. J Plant Physiol 132: 199-203
Klemens PAW, Patzke K, Deitmer JW, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus E (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth and stress tolerance in Arabidopsis thaliana. Plant Physiol: 10.1104/pp.1113.224972

Krügel U, Kühn C (2013) Post-translational regulation of plant sucrose transporters by direct protein-protein interactions. Front Plant Sci 4: 10.3389/fpls.2013.00237

Kühn C, Grof CPL (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13: 287-297

Laugier E, Bouguyon Eo, Maurie’s A, Tillard P, Gojon A, Lejay L (2012) Regulation of high-affinity nitrate uptake in roots of Arabidopsis depends predominantly on posttranscriptional control of the NRT2.1/NAR2.1 transport system. Plant Physiol 158: 1067-1078

Leigh R (1984) The role of the vacuole in the accumulation and mobilization of sucrose. Plant Growth Regulation 2: 339-346

Li P, Wind JJ, Shi X, Zhang H, Hanson J, Smeekens SC, Teng S (2011) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. Proc Natl Acad Sci USA: doi: 10.1073.

Martinoia E, Kaiser G, Schramm MJ, Heber U (1987) Sugar transport across the plasmalemma and the tonoplast of barley mesophyll protoplasts. Evidence for different transport systems. J Plant Physiol 131: 467-478

Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58: 83-102

Martinoia E, Massonneau A, Fragne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41: 1175-1186

Martinoia E, Meyer S, De Angeli A, Nagy R (2012) Vacuolar transporters in their physiological context. Annu Rev Plant Biol 63: 183-214
Mustroph A, Zanetti ME, Jang CJH, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci USA 106: 18843-18848

Neuhaus HE (2007) Transport of primary metabolites across the plant vacuolar membrane. FEBS Letters 581: 2223-2226

Payyavula RS, Tay KH, Tsai CJ, Harding SA (2011) The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J 65: 757-770

Pego JV, Smeekens SCM (2000) Plant fructokinases: a sweet family get-together. Trends Plant Sci 5: 531-536

Pontis HG (1989) Fructans and cold stress. J Plant Physiol 134: 148-150

Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PAW, Krueger S, Wie S, Neuhaus HE, Büttner M (2011) A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. Plant Physiol 157: 1664-1676

Riesmeier JW, Willmitzer L, Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11: 4705-4713

Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57: 675-709

Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12: 30-43
Sauer N (2007) Molecular physiology of higher plant sucrose transporters. FEBS Letters 581: 2309-2317

Sauer N, Friedlander K, Graml-Wicke U (1990) Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. Embo J 9: 3045-3050

Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Büttner M, Schneider S, Sauer N, Hedrich R (2011) Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Plant J 68: 129-136

Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54: 525-531

Song W-Y, Park J, Mendoza-Cózatl DG, Suter-Grottemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107(49): 21187–21192

Thom M, Komor E, Maretzki A (1982) Vacuoles from sugarcane suspension cultures: II. characterization of sugar uptake. Plant Physiol. 69: 1320-1325

Tohge T, Ramos MS, Nunes-Nesi A, Mutwil M, Giavalisco P, Steinhauser D, Schellenberg M, Willmitzer L, Persson S, Martinoia E, Fernie AR (2011) Toward the storage metabolome: profiling the barley vacuole. Plant Physiol 157: 1469-1482

Usadel B, Bläsing OE, Gibon Y, Retzlaff K, Höhne M, Günther M, Stitt M (2008) Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes. Plant Physiol 146: 1834-1861

Voitsekhovskaja OV, Koroleva OA, Batashev DR, Knop C, Tomos AD, Gamalei YV, Heldt H-W, Lohaus G (2006) Phloem loading in two Scrophulariaceae species. What can drive symplastic flow via plasmodesmata? Plant Physiol 140: 383-395
Wayne RO (2009) The vacuole. In Plant Cell Biology: From astronomy to zoology. Elsevier Inc., Atlanta, pp 101-118

Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants - a diversity of roles and complex regulation. Trends Plant Sci 5: 283-290

Wingenter K, Schulz A, Wormit A, Wie S, Trentmann O, Hoermiller II, Heyer AG, Marten I, Hedrich R, Neuhaus HE (2010) Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiol 154: 665-677

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2: e718

Winter H, Robinson DG, Heldt HW (1993) Subcellular volumes and metabolite concentrations in barley leaves. Planta 191: 180-190

Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus HE (2006) Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18: 3476-3490

Xuan YH, Hu YB, Chen LQ, Sossoa D, Ducat DC, Hou BH, Frommer WB (2013) Functional role of oligomerization for bacterial and plant sugar transporters of the SWEET family. Proc Natl Acad Sci USA 110: E3685-3694.

Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2010) Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J Biol Chem 285: 1138-1146

Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103: 10503-10508
Yuan L, Loqué D, Ye F, Frommer WB, von Wirén N (2007) Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiol 143: 732-744
Figure Legends

Figure 1. Developmental expression profile of the SWEET17 gene in Arabidopsis. Total RNA was isolated from roots (R) and shoots (S) of 2-week-old seedlings or new leaves (NL), mature leaves (ML), stems (St), flowers (FL), siliques (Si) of 7 to 8-week-old soil-grown plants. The resulted cDNA was used for qRT-PCR with specific primers for SWEET17 and 16. The y axis indicates the relative expression level normalized to an internal control Actin2. The results are means ± SE from three independent biological repeats.

Figure 2. Expression patterns of SWEET17 in Arabidopsis. Histochemical analysis of GUS activity in transgenic Arabidopsis expressing SWEET17-GUS fusion proteins driven by the SWEET17 native promoter. A, Seven-d-old seedlings. B, Two-week-old plate grown plants. C and D, Root tip and mature zone of 7-d-old seedlings. E, Hand section of (D). F, Mature rosette leaf. G, Flower. H, Silique. I, Seed. Effects of Frc and darkness on the expression of SWEET17-GUS are also demonstrated. Five-d-old seedlings were treated with no sugar (J), 1% Frc (K) and no sugar in the dark (L) for 2 d and then the histochemical staining was performed. The reaction time for GUS staining is 2 h for seedlings and all root tissues (A-E; J-L) and 4 h for leaves, flowers, siliques and seeds (F-I). Bars = 1 mm in A, B, F and G; 0.5 mm in H; 100 μm in C-E and I-L.

Figure 3. Tonoplast localization of the SWEET17-GFP fusion protein in Arabidopsis roots. Arabidopsis plants were stably transformed with a SWEET17-GFP construct under the control of the SWEET17 native promoter. Fluorescence localizations of GFP fusion proteins in 7-d-old seedlings were imaged by confocal microscopy. A-C, root tips. D-F, mature roots. The GFP fluorescence images (A)(D), the FM4-64 staining (6 μM for 5
to label the plasma membrane (B)(E), and the merged images (C)(F) of the same cells are shown. The arrowheads point to the SWEET17-GFP labeled vacuole membranes lining around the side of the nucleus. Bar = 10 µm.

Figure 4. Altered expression of SWEET17 affects sensitivity of root growth to excess Frc. Arabidopsis seeds were germinated and grown on media supplemented with 1% sucrose for 5 d, then seedlings were transferred to media containing various concentrations of Frc. Relative growth of primary roots was measured after 6 d of treatments. A, Comparison of root growth in two independent sweet17 mutant lines and the wildtype that was identified from the segregating mutant population (Col-TDNA). B, Comparison of root growth in three independent SWEET17 overexpressor lines (35S:SWEET17-1, -6 and -2) and the wildtype that was transformed with the empty vector (Col-Vector-1 and -2). The data presented are means ± SE (n = 8). Significant differences from the wildtype were determined by Student’s t test indicated by asterisks: * P < 0.05, ** P < 0.01.

Figure 5. Ectopic expression of SWEET17 reduces Frc accumulation in leaves under cold stress conditions. Sugar contents in leaves of transgenic Arabidopsis expressing a 35S:SWEET17 transgene were shown. Samples were harvested from 6-week-old soil-grown plants treated with cold stress (4°C) for 1 week. Results are means ± SE (n = 9). Significant differences from the wildtype transformed with the empty vector (Col-Vector) or identified from the segregating mutant population (Col-TDNA) were determined by Student’s t test indicated by asterisks: ** P < 0.01.

Figure 6. The transport activity of Arabidopsis SWEET17 in vivo. A, Time course of Frc uptake into mesophyll vacuoles isolated from plants expressing the empty vector (Col-Vector) or the 35S:SWEET17 transgene. Vacuoles were incubated with 0.2 mM of 14C-labeled Frc. Results are means ± SE (n = 3 to 4). Significant differences from vacuoles expressing the vector were determined. B, Effector analysis of Frc uptake into vacuoles isolated from plants expressing the empty vector or the 35:SWEET17 transgene. The uptake level under treatments of no ATP, 5 mM NH4Cl and 10 mM CCCP was determined. Results are means ± SE (n = 3 to 4). Significant differences from vacuoles expressing the 35:SWEET17 and incubated with 4 mM ATP were determined. C, Kinetic
analysis of Frc uptake activity in vacuoles isolated from plants overexpressing SWEET17. Results are means ± SD (n = 4). In B-C, the uptake level was determined after 3 to 20 min of incubation in 0.2 mM (B) or indicated (C) ¹⁴C-labeled Frc. Significant differences were determined by Student’s t test indicated by asterisks: ** P < 0.01.

Figure 7. Expression of Arabidopsis SWEET genes in roots. Total RNA was isolated from roots of 23-d-old liquid cultured seedlings and the cDNA was used for (qRT)-PCR with specific primers for each SWEET gene. The y axis indicates the relative expression level normalized to internal control Actin2. The results are means ± SE from four independent biological repeats.
Figure 1. Developmental expression profile of the *SWEET17* gene in Arabidopsis. Total RNA was isolated from roots (R) and shoots (S) of 2-week-old seedlings or new leaves (NL), mature leaves (ML), stems (St), flowers (FL), siliques (Si) of 7 to 8-week-old soil-grown plants. The resulted cDNA was used for qRT-PCR with specific primers for *SWEET17* and 16. The y axis indicates the relative expression level normalized to an internal control *Actin2*. The results are means ± SE from three independent biological repeats.
Figure 2. Expression patterns of SWEET17 in Arabidopsis. Histochemical analysis of GUS activity in transgenic Arabidopsis expressing SWEET17-GUS fusion proteins driven by the SWEET17 native promoter. A, Seven-d-old seedlings. B, Two-week-old plate grown plants. C and D, Root tip and mature zone of 7-d-old seedlings. E, Hand section of (D). F, Mature rosette leaf. G, Flower. H, Silique. I, Seed. Effects of Frc and darkness on the expression of SWEET17-GUS are also demonstrated. Five-d-old seedlings were treated with no sugar (J), 1% Frc (K) and no sugar in the dark (L) for 2 d and then the histochemical staining was performed. The reaction time for GUS staining is 2 h for seedlings and all root tissues (A-E; J-L) and 4 h for leaves, flowers, siliques and seeds (F-I). Bars = 1 mm in A, B, F and G; 0.5 mm in H; 100 μm in C-E and I-L.
Figure 3. Tonoplast localization of the SWEET17-GFP fusion protein in Arabidopsis roots. Arabidopsis plants were stably transformed with a SWEET17-GFP construct under the control of the SWEET17 native promoter. Fluorescence localizations of GFP fusion proteins in 7-d-old seedlings were imaged by confocal microscopy. A-C, root tips. D-F, mature roots. The GFP fluorescence images (A)(D), the FM4-64 staining (6 μM for 5 min) label the plasma membrane (B)(E), and the merged images (C)(F) of the same cells are shown. The arrowheads point to the SWEET17-GFP labeled vacuole membranes lining around the side of the nucleus. Bar = 10 μm.
Figure 4. Altered expression of SWEET17 affects sensitivity of root growth to excess Frc. Arabidopsis seeds were germinated and grown on media supplemented with 1% Suc for 5 d, then seedlings were transferred to media containing various concentrations of Frc. Relative growth of primary roots was measured after 6 d of treatments. A, Comparison of root growth in two independent sweet17 mutant lines and the wildtype that was identified from the segregating mutant population (Col-TDNA). B, Comparison of root growth in three independent SWEET17 overexpressor lines (35S:SWEET17-1, -6 and -2) and the wildtype that was transformed with the empty vector (Col-Vector-1 and -2). The data presented are means ± SE (n = 8). Significant differences from the wildtype were determined by Student’s t test indicated by asterisks: * P < 0.05, ** P < 0.01.
Figure 5. Ectopic expression of SWEET17 reduces Frc accumulation in leaves under cold stress conditions. Sugar contents in leaves of transgenic Arabidopsis expressing a 35S:SWEET17 transgene were shown. Samples were harvested from 6-week-old soil-grown plants treated with cold stress (4°C) for 1 week. Results are means ± SE (n = 9). Significant differences from the wildtype transformed with the empty vector (Col-Vector) or identified from the segregating mutant population (Col-TDNA) were determined by Student’s t test indicated by asterisks: ** P < 0.01.
Figure 6. The transport activity of Arabidopsis SWEET17 in vivo. A, Time course of Frc uptake into mesophyll vacuoles isolated from plants expressing the empty vector (Col-Vector) or the 35S:SWEET17 transgene. Vacuoles were incubated with 0.2 mM of 14C-labeled Frc. Results are means ± SE (n = 3 to 4). Significant differences from vacuoles expressing the vector were determined. B, Effector analysis of Frc uptake into vacuoles isolated from plants expressing the empty vector or the 35S:SWEET17 transgene. The uptake level under treatments of no ATP, 5 mM NH₄Cl and 10 µM CCCP was determined. Results are means ± SE (n = 3 to 4). Significant differences from vacuoles expressing the 35S:SWEET17 and incubated with 4 mM ATP were determined. C, Kinetic analysis of Frc uptake activity in vacuoles isolated from plants overexpressing SWEET17. Results are means ± SD (n = 4). In B-C, the uptake level was determined after 3 to 20 min of incubation in 0.2 mM (B) or indicated (C) 14C-labeled Frc. Significant differences were determined by Student’s t test indicated by asterisks: ** P < 0.01.
Figure 7. Expression of Arabidopsis SWEET genes in roots. Total RNA was isolated from roots of 23-d-old liquid cultured seedlings and the cDNA was used for (qRT)-PCR with specific primers for each SWEET gene. The y axis indicates the relative expression level normalized to internal control Actin2. The results are means ± SE from four independent biological repeats.
Figure 8. Altered expression of *SWEET16* affects sensitivity of root growth to excess Frc. Arabidopsis seeds were germinated and grown on media supplemented with 1% Suc for 5 d, then seedlings were transferred to media containing various concentrations of Frc. Relative growth of primary roots were measured after 6 d of treatments. A, Comparison of root growth in two independent *sweet16* mutant lines and the wildtype that was identified from the segregating mutant population (Col-TDNA). B, Comparison of root growth in two independent *SWEET16* overexpressor lines (35S:*SWEET16*-1, -2) and the wildtype that was transformed with the empty vector (Col-Vector-1, -2). The data presented are means ± SE (n = 8). Significant differences from the wildtype were determined by Student’s t test indicated by asterisks: * P < 0.05, ** P < 0.01.
Supplemental Figure S1. Organ-specific expression of Arabidopsis SWEET17 and 16.
(A) Transcriptional levels of SWEET17 and 16 genes in different developmental stages deduced from the Arabidopsis eFP Browser (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Results are means ± SD from three replicates. (B) Displayes of absolute expression values of polysomal mRNA in roots and shoots obtained from the Arabidopsis Translatome eFP Browser (http://efp.ucr.edu/). (C) Histochemical staining of 7-d-old Arabidopsis seedlings expressing the SWEET17 promoter:GUS transgene was shown.
Supplemental Figure S2. Cell-type specific expression of Arabidopsis SWEET17 and 16 genes in roots.

(A) Transcriptional levels of SWEET17 and 16 genes in different longitudinal sections of root cortex cells deduced from the Arabidopsis eFP Browser (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Results are means ± SD from two to three longitudinal sections of the same developmental stages. (B) Transcriptional levels of SWEET17 and 16 in different tissues of mature roots deduced from the Arabidopsis eFP Browser. Results are means ± SD from four longitudinal sections of the same tissues. (C) Display of absolute expression values of polysomal mRNA in specific cell types of roots and shoots obtained from the Arabidopsis Translatome eFP Browser (http://efp.ucr.edu/). Absolute expression levels of individual genes are shown by the corresponding color scales shown in each panel.
Supplemental Figure S3. Developmental expression of SWEET17 and its regulation in response to the sugar status.

(A) Histochemical staining of 8-week-old Arabidopsis plants expressing SWEET17-GUS fusions under the control of the SWEET17 promoter was shown. (B) Effects of 1% Suc or Glc on the expression of SWEET17-GUS fusion proteins in root tips were analyzed in 7-d-old seedlings. (C) Expression of the GUS transgene driven by the SWEET17 promoter was observed in 7-d-old Arabidopsis seedlings grown under control conditions or exposed to media containing 1% Frc or in the dark for 2 d. Bars = 5 mm in A and 100 μm in B and C.
Supplemental Figure S4. Expression of SWEET17-GUS fusion proteins in shoots under normal conditions or in response to darkness and cold.

Histochemical staining of 9-d-old Arabidopsis seedlings expressing SWEET17-GUS fusions under the control of SWEET17 promoter was shown. Seedlings were grown under the control condition supplemented with light or exposed to darkness or combination of darkness and cold stress (4°C) for 2 d. Bar = 1 mm.
Supplemental Figure S5. Tonoplast localization of SWEET17-GFP fusion proteins in leaves.

Arabidopsis plants were stably transformed with a SWEET17-GFP construct under the control of the *SWEET17* native promoter. The fluorescence of SWEET17-GFP fusion proteins in mesophyll protoplasts isolated from leaves of 2-week-old seedlings was shown without (A) or with FM4-64 staining (B). The individual optical sections of the same cells were imaged by a confocal microscopy. The arrowheads point to the SWEET16-GFP labeled vacuole membranes lining inside of chloroplasts (A) or the plasma membrane (B). Bar = 10 μm.
Supplemental Figure S6. Functional characterization of SWEET17 overexpressing lines.

(A) RT-PCR analysis of SWEET17 gene expression in transgenic Arabidopsis expressing the empty vector (Col-Vector) or the 35S:SWEET17 transgene. Total RNA was isolated from 7-d-old seedlings and the resulted cDNA products were used for amplification with primers for SWEET17. Expression of Actin 2 was used as a loading control. Numbers indicates various independent transgenic lines.

(B)(C) Germination efficiency under excess Frc. Seeds were germinated on media supplemented with various concentrations of Frc. Germination rates were calculated after 2 d between two independent sweet17 mutants, the double mutant sweet17-1/sweet16-1 and the wildtype that was identified from the segregating mutant population (Col-TDNA). The same experiment was also performed using two independent SWEET17 overexpressors (35S:SWEET17-1 and -6) and the wildtype that was transformed with the empty vector (Col-Vector-1). The data presented are means ± SE of four independent experiments. Significant differences from the wild type were determined by Student’s t test.
Supplemental Figure S7. The sugar composition in leaves of *SWEET17* and *16* overexpression.

Leaves of transgenic Arabidopsis expressing the empty vector (Col-Vector), the 35S:*SWEET17* or 35S:*SWEET16* transgenes were harvested from 6-week-old soil-grown plants grown under normal conditions (A) or subjected to 1 week of cold stress (4°C) (B). Results are means ± SE (n = 4). Significant differences from the wildtype (Col-Vector) were determined by Student’s t test indicated by asterisks: * P < 0.05, ** P < 0.01.
Supplemental Figure S8. Analysis of sugar transport activity of vacuoles ectopically expressing Arabidopsis *SWEET17*.

The uptake activity of Glc and Suc into vacuoles expressing the empty vector or the 35S:*SWEET17* transgene was determined by deducing the 3 min value from the 20 min to correct for vacuolar contamination with the medium containing 0.2 mM of 14C-labeled Glu or Suc. Results are means ± SE from three independent experiments.
Supplemental Figure S9. Comparison of Arabidopsis clade IV SWEETs.

(A) The alignment of amino acid sequences of SWEET17 and 16 was shown. Regions marked in yellow and green indicate the identical and similar regions, respectively. (B) The expression profile of the Arabidopsis SWEET gene family in roots was deduced from AtGeneExpress database (http://jsp.weigelworld.org/expviz/expviz.jsp). Results are means ± SD from different experiments.
Supplemental Figure S10. Expression patterns of SWEET16-GUS/GFP fusion proteins in planta.

Histochemical analysis of GUS activity in 2-week-old transgenic Arabidopsis seedlings expressing the SWEET16-GUS fusion (A) or the transcriptional fusion (B) of *SWEET16* that were driven by the *SWEET16* native promoter. Images of stained root tips (C) and mature roots (D) of 7-d-old seedlings expressing SWEET16-GUS fusion proteins were shown. The fluorescence of SWEET16-GFP fusion proteins driven by the *SWEET16* native promoter were demonstrated in root tips (E) of 7-d-old seedlings imaged by a confocal microscopy. The red fluorescence derived from the FM4-64 staining indicated the localization of the plasma membrane (F) and the corresponding merged image in the same cell was shown (G). Bars = 1 mm in A, B and 100 μm in C, D and 10 μm in E-G.
Supplemental Figure S11. Identification of SWEET16 mutants and overexpressing lines.

(A) The position and orientation of T-DNA insertions in SWEET16. Black boxes represent exon sequences and numbers indicate positions of insertions relative to the translational start codon. The arrows indicate the orientation of the left border. (B) RT-PCR analysis of SWEET17 and 16 gene expression in single sweet16 mutants, the sweet17-1/sweet16-1 double mutant and the wildtype identified from the sweet16-1 segregating population (Col-TDNA). (C) RT-PCR analysis of SWEET17 and 16 gene expression in transgenic Arabidopsis expressing the empty vector (Col-Vector) or the 35S:SWEET16 transgene. Numbers indicates various independent transgenic lines.

In (B) and (C), total mRNA was isolated from 7-d-old seedlings and the resulted cDNA products were used for amplification with primers for SWEET17 and 16 as indicated. Expression of Actin 2 was used as a loading control.
Supplemental Figure S12. Characterization of SWEET16 transport activity in planta.

Time course of Frc uptake into vacuoles of the sweet17-1/sweet16-1 double mutant and wildtype, Col-TDNA, isolated from the segregation mutant population (A), or those expressing the empty vector or the 35S:SWEET17/16 transgenes (B). Vacuoles from leaf mesophyll cells were isolated from plants grown in soil for 4 to 5 weeks and incubated in 0.2 mM of 14C-labeled Frc. Results are means ± SE (n = 4).