Improved algorithm to determine 3-colorability of graphs with the minimum degree at least 7

Nicholas Crawford, Sogol Jahanbekam, and Katerina Potika

Abstract

Let G be an n-vertex graph with the maximum degree Δ and the minimum degree δ. We give algorithms with complexity $O(1.3158n^{\frac{1}{0.7}}\Delta(G))$ and $O(1.32n^{\frac{1}{0.73}}\Delta(G))$ that determines if G is 3-colorable, when $\delta(G) \geq 8$ and $\delta(G) \geq 7$, respectively.

Keywords: algorithms, complexity, proper coloring, 68W01, 68Q25, 05C15

1 Introduction

A coloring of the vertices of a graph is proper if adjacent vertices receive different colors. A graph G is k-colorable if it has a proper coloring using k colors. The chromatic number of a graph G, written as $\chi(G)$, is the smallest integer k such that G is k-colorable.

The proper coloring problem is one of the most studied problems in graph theory. To determine the chromatic number of a graph, one should find the smallest integer k for which the graph is k-colorable. The k-colorability problem, for $k \geq 3$, is one of the classical NP-complete problems [9].

Even approximating the chromatic number has been shown to be a very hard problem. Lund and Yannakakis [8] have shown that there is an ϵ such that the chromatic number of a general n-vertex graph cannot be approximated with ratio n^ϵ unless $P = NP$.

In 1971, Christofides obtained the first non-trivial algorithm computing the chromatic number of n-vertex graphs running in $n!n^{O(1)}$ time [3]. Five years later Lawler [7] used dynamic programming and enumerations of maximal independent sets to improve it to an
algorithm with running time $O^*(2.4423^n)$. Later the running time was improved by Eppstein [4]. The best-known complexity for determining the chromatic number of graphs is due to Björklund, Husfeldt, and Koivisto [2] who used a combination of inclusion-exclusion and dynamic programming to develop a $O(2^n)$ algorithm to determine the chromatic number of n-vertex graphs.

The k-colorability problem for small values of k, like 3 and 4 is also a highly-studied problem that has attracted a lot of attention. Not only this problem has its own importance, but also improving the bounds for small values of k could be used to improve the bound for higher values of k and as a result, improve the complexity of the general coloring problem. The fastest known algorithm deciding if a graph is 3-colorable or not runs in $O(1.3289^n)$ time and is due to Beigel and Eppstein [1]. The fastest known algorithm for 4-colorability runs in $O(1.7272^n)$ and is due to Fomin, Gaspers, and Saurabh [5].

In this paper, we prove the following.

Theorem 1. Let G be an n-vertex graph with maximum degree Δ and minimum degree δ, where $\delta(G) \geq 8$. We can determine in $O(1.3158^n - 0.7\Delta)$ time if G is 3-colorable or not.

Theorem 2. Let G be an n-vertex graph with maximum degree Δ and minimum degree δ, where $\delta(G) \geq 7$. We can determine in $O(1.32^n - 0.73\Delta)$ time if G is 3-colorable or not.

For smaller minimum degree conditions, results similar to the statements of Theorems 1 and 2 can be proved, but the complexity would increase. For example, the 3-colorability of a graph with minimum degree 6 can be determined in $O(1.368^n - 0.7d(v))$ time. This result is not an improvement compared to that of Beigel and Eppstein [1] however, because $1.368 > 1.3289$.

2 Definitions, Notation, and Tools

In this section we define the terms and notation we use to prove Theorems 1 and 2.

For a graph G with vertex set $V(G)$ and edge set $E(G)$, we denote the minimum degree by $\delta(G)$ and the maximum degree by $\Delta(G)$. We suppose all graphs studied in this note are simple. Let v be a vertex in G. The degree of v in G is denoted by $d_G(v)$ or simply $d(v)$ (when there is no fear of confusion). The open neighborhood of v in G, denoted by $N_G(v)$ (or simply $N(v)$), is the set of neighbors of v in G and $N^2(v)$ denotes the set of vertices in G that are in distance (exactly) 2 from v. Therefore $N(v) \cap N^2(v) = \emptyset$. The closed neighborhood of v in G, denoted by $N[v]$, is equal to $N(v) \cup \{v\}$.

Let A be a subset of $V(G)$. The graph $G[A]$ is the induced subgraph of G with vertex set A. Let u and v be two vertices of G. The graph G/uv is the graph obtained from G after contracting (identifying) the vertices u and v in G and replacing multiple edges by one edge, so that the resulting graph is simple.

Suppose for each vertex v in $V(G)$, there exists a list of colors denoted by $L(v)$. A proper list coloring of G is a choice function that maps every vertex v to a color in the list $L(v)$ in such a way that the coloring is proper. A graph is k-choosable if it has a proper list coloring whenever each vertex has a list of size k.

A Boolean expression is a logical statement that is either TRUE or FALSE. In computer science, the Boolean satisfiability problem (abbreviated to SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean expression. The 3-satisfiability problem or 3-SAT problem is a special case of SAT problem, where the Boolean expression can be divided into clauses such that every clause contains three literals.

The constraint satisfiability problem is a satisfiability problem which is not necessarily Boolean. In an (r,t)-CSP instance, we are given a collection of n variables, each of which can be given one of up to r different colors and a set of constraints, where each constraint is expressed using t variables, i.e. certain color combinations are forbidden for t variables.

By the above definition 3-SAT is the same as $(2,3)$-CSP. It was proved in [1] that each (a,b)-CSP instance is equivalent to a (b,a)-CSP instance. Therefore any 3-SAT is equivalent to a $(3,2)$-CSP instance.

The following result was proved by Beigen and Eppstein in [1]. We will apply this theorem in the proof of Theorem 1.

Theorem 3. [1] n-variable $(3,2)$-CSP instances can be solved in $O(1.3645^n)$ time.

3 Proof of Theorem [1]

To prove Theorem [1] we prove the following stronger theorem.

Theorem 4. Let G be a graph and v be a vertex in G with the property that all vertices in $V(G) - (N[v] \cup N^2(v))$ have degree at least 8 in G, then we can determine in time $O(1.3158^n - 0.7d(v))$ if G is 3-colorable or not.

Proof. We apply induction on $n - d(v)$ to prove the assertion. Since G is simple, we have $d(v) \leq n - 1$. Therefore $n - d(v) \geq 1$.

When $n - d(v) = 1$, the graph G has a vertex v of degree $n-1$. In this case G is 3-colorable if and only if $G - v$ is 2-colorable. Since 2-colorability can be determined in polynomial time
(for example using a simple Breadth First Search algorithm we can determine in linear time if the graph is bipartite), the assertion holds in this case.

Let us assume that for any \(n \)-vertex graph \(H \), with a vertex \(v \) of degree \(d(v) \), where \(n - d(v) \leq k \) and \(k \geq 1 \), we can determine if \(H \) is 3-colorable in \(O(1.3158^{n-0.7d(v)}) \) time, given all vertices in \(V(H) - (N[v] \cup N^2(v)) \) have degree at least 8 in \(H \).

We prove that the Theorem holds when the graph \(G \) is an \(n \)-vertex graph having a vertex \(v \) with \(n - d(v) = k + 1 \), where all vertices in \(V(G) - (N[v] \cup N^2[v]) \) have degree at least 8 in \(G \).

If there are three vertices \(u_1, u_2, u_3 \) in \(N(v) \) with \(u_1u_2, u_2u_3 \in E(G) \) (see Figure 1), then \(u_1u_3 \in E(G) \) implies that \(G \) is not 3-colorable, and \(u_1u_3 \notin E(G) \) implies that the vertices \(u_1 \) and \(u_3 \) must get the same colors in any proper 3-coloring of \(G \). As a result, we can identify \(u_1 \) and \(u_3 \) in \(G \) and study the smaller graph. Hence we may suppose that \(G[N(v)] \) has no vertex of degree at least 2.

![Figure 1: When \(G[N(v)] \) has a vertex \(u_2 \) of degree at least 2.](image1)

We consider three cases.

3.1 Case 1: When \(d(v) > 0.309n \).

In this case we transfer the problem into a \((3,2)\)-CSP problem with \(n - d(v) - 1 \) vertices. With no loss of generality we may suppose that in any coloring the color of \(v \) is 1. As a result, the vertices in \(N(v) \) must get colors in \(\{2, 3\} \). We create a \((3,2)\)-CSP on \(V(G) - N[v] \) in such a way that \(G \) is 3-colorable if and only if the \((3,2)\)-CSP problem has a solution.

Suppose \(N(v) = \{u_1, \ldots, u_r, w_1, \ldots, w_r, z_1, \ldots, z_t\} \), where \(u_1w_1, \ldots, u_rw_r \) are the only edges with both ends in \(N(v) \). This holds because \(G[N(v)] \) has no vertex of degree at least 2.

![Figure 2: Notation of Case 1.](image2)
If \(u_i \) and \(w_i \) for some integer \(i \), have a common neighbor \(y \) in \(N^2(v) \), then in any proper 3-coloring of \(G \) the vertices \(v \) and \(y \) must get the same color. As a result we can contract \(v \) and \(y \) in \(G \) and study the smaller graph. Hence we may suppose that \(u_i \) and \(w_i \) have no common neighbors in \(N^2(v) \).

Let \(H \) be a graph with \(V(H) = V(G) - N[v] \). We define a (3,2)-CSP on \(H \) as follows.

For vertices \(x, y \in V(H) \), if \(xy \in E(G) \), then we need to avoid patterns 1-1, 2-2, and 3-3 on \(x \) and \(y \), i.e. we need \((x,y) \neq (1,1), (2,2), (3,3)\). If \(x \) and \(y \) have a common neighbor in \(N(v) \) (in \(G \)), then we need to avoid patterns 2-3 and 3-2 on \(x \) and \(y \) (i.e. \((x,y) \neq (2,3), (3,2)\)), since otherwise we cannot extend the coloring on \(V(H) \) to a proper 3-coloring of \(G \). Finally, if \(xu_i, yw_i \in E(G) \), then we need to avoid patterns 2-2 and 3-3 on \(x \) and \(y \) (i.e. \((x,y) \neq (2,2), (3,3)\)), since otherwise we cannot extend the coloring on \(V(H) \) to a proper 3-coloring of \(G \).

By the above construction of the (3,2)-CSP on \(H \), the graph \(G \) is 3-colorable if and only if the (3,2)-CSP on \(H \) has a solution. Note that constructing \(H \) takes a polynomial time process and by Theorem 3 determining if the (3,2)-CSP instance on \(H \) has a solution or not has complexity \(O((1.3645)^{n-d(v)-1}) \). Since \(O((1.3645)^{n-d(v)}) \subseteq O(1.3157^{n-0.7d(v)}) \) for \(d(v) > 0.309n \). Therefore a polynomial factor of \(O(1.3157^{n-0.7d(v)}) \) is a subset of \(O(1.3158^{n-0.7d(v)}) \), as desired.

3.2 Case 2. When \(V(G) = N[v] \cup N^2(v) \) and \(d(v) \leq 0.309n \).

In this case with no loss of generality we may suppose that in any coloring the color of \(v \) is 1. As a result, the vertices in \(N(v) \) must get colors in \(\{2, 3\} \). Therefore there are at most \(2^{d(v)} \) different possibilities for the colors of the vertices in \(N[v] \). Since \(V(G) = N[v] \cup N^2(v) \), all vertices in \(V(G) - N[v] \) have at least one neighbor in \(N[v] \).

Let \(c \) be a proper coloring over \(G[N[v]] \) using colors 2 and 3. As a result, to extend this coloring to a proper coloring of \(G \) each vertex in \(N^2(v) \) must avoid at least one color (the color(s) of its neighbor(s) in \(N[v] \)). Hence each vertex in \(N^2(v) \) has a list of size at most 2, such that \(c \) can be extended to a proper coloring of \(G \) if and only if there exists a proper list coloring on \(N^2(v) \). Note that we can determine in polynomial time if there exists a proper list coloring on the vertices of a graph, when each list has size at most 2 (see [3]).

Since there are at most \(2^{d(v)} \) proper coloring on \(N(v) \) in which all vertices get colors in \(\{2, 3\} \), we can determine in a polynomial factor of \(2^{d(v)} \) if \(G \) is 3-colorable or not. Since \(d(v) \leq 0.309n \), we have \(2^{d(v)} \leq (1.31578)^{n-0.7d(v)} \). Hence \(2^{d(v)} \subseteq O(1.31578)^{n-0.7d(v)} \), which implies \(poly(n)2^{d(v)} \subseteq O(1.3158)^{n-0.7d(v)} \), as desired.
3.3 Case 3. When $V(G) \neq N[v] \cup N^2(v)$ and $d(v) \leq 0.309n$.

Let x be a vertex in $V(G) - (N[v] \cup N^2(v))$. In any proper 3-coloring of G, if it exists, the vertex x either gets the same color as v or x receives a different color than v. Therefore it is enough to determine if any of the graphs G/xv and $G \cup xv$ are 3-colorable. Recall that by our hypothesis $d(x) \geq 8$.

Let $H = G/xv$ and $H' = G \cup xv$. The graph H has $n - 1$ vertices. Since x has degree at least 8 in G and since it has no common neighbor with v, we have $d_H(v) \geq d_G(v) + 8$. Similarly, we have $n(H') = n(G)$ and $d_{H'}(v) = d_G(v) + 1$. Therefore by the induction hypothesis, we can determine in $O(1.3158^{n-1-0.7(d(v)+8)})$ time if the graph H is 3-colorable and we can determine in $O(1.3158^{n-0.7(d(v)+1)})$ time if the graph H' is 3-colorable. Therefore to determine if G is 3-colorable, we require an algorithm of complexity at most $O(1.3158^{n-0.7d(v)-6.6} + O(1.3158^{n-0.7d(v)-0.7})$.

Note that $1.3158^{n-0.7d(v)-6.6} + 1.3158^{n-0.7d(v)-0.7} < 1.3158^{n-0.7d(v)}$. Therefore the assertion holds.

4 Proof of Theorem 2

The proof of Theorem 2 is very similar to the proof of Theorem 1. To avoid redundancy we skip the parts of the proof that are similar. We prove the following stronger result.

Theorem 5. Let G be a graph and v be a vertex in G with the property that all vertices in $V(G) - (N[v] \cup N^2(v))$ have degree at least 7 in G, then we can determine in $O(1.32^{n-0.73d(v)})$ time if G is 3-colorable or not.

Proof. We apply induction on $n - d(v)$. When $n - d(v) = 1$, the graph G has a vertex v of degree $n - 1$. In this case G is 3-colorable if and only if $G - v$ is 2-colorable (can be determined in polynomial time), the assertion holds in this case.

Assume that for any n-vertex graph H, with a vertex v of degree $d(v)$, where $n - d(v) \leq k$ and $k \geq 1$, we can determine if H is 3-colorable in $O(1.32^{n-0.73d(v)})$ time, given all vertices in $V(H) - (N[v] \cup N^2(v))$ have degree at least 7 in H.

We prove that the statement holds when an n-vertex graph G has a vertex v with $n - d(v) = k + 1$, where all vertices in $V(G) - (N[v] \cup N^2(v))$ have degree at least 7 in G.

Similar to the argument in the proof of Theorem 1 there are no three vertices u_1, u_2, u_3 in $N(v)$ with $u_1u_2, u_2u_3 \in E(G)$ (see Figure 1).

We consider the following three cases.
Case 1. When \(d(v) > 0.309n \).
Case 2. When \(V(G) = N[v] \cup N^2(v) \) and \(d(v) \leq 0.309n \).
Case 3. When \(V(G) \neq N[v] \cup N^2(v) \) and \(d(v) \leq 0.309n \).

The proof of Cases 1 and 2 is almost identical to that in the proof of Theorem 4 with the small difference that the base of the complexity \(1.3158 \) must be replaced by \(1.32 \) and 1.3157 and 1.31578 in Cases 1 and 2 must be replaced by 1.3199. Hence we move forward to the proof of Case 3, which is also similar to that in the proof of Theorem 4.

Let \(x \) be a vertex in \(V(G) - (N[v] \cup N^2(v)) \). Note that \(G \) is 3-colorable if and only if \(G/xv \) or \(G \cup xv \) is 3-colorable. Therefore it is enough to determine if any of the graphs \(G/xv \) and \(G \cup xv \) is 3-colorable. Recall that by our hypothesis \(d(x) \geq 7 \).

Let \(H = G/xv \) and \(H' = G \cup xv \). The graph \(H \) has \(n-1 \) vertices and \(d_H(v) \geq d_G(v) + 7 \). Similarly, we have \(n(H') = n(G) \) and \(d_{H'}(v) = d_G(v) + 1 \). Hence, by the hypothesis, we can determine in \(O(1.32^{n-1-0.73d(v)+7}) \) time if the graph \(H \) is 3-colorable, and we can determine in \(O(1.32^{n-0.73(d(v)+1)}) \) time if the graph \(H' \) is 3-colorable. All together, to determine if \(G \) is 3-colorable, the algorithm has a complexity of at most \(O(1.32^{n-0.73d(v)+6.11}) + O(1.32^{n-0.73d(v)-0.73}) \).

Since \(1.32^{n-0.73d(v)-6.11} + 1.32^{n-0.73d(v)-0.73} < 1.32^{n-0.73d(v)} \), the assertion holds.

Acknowledgment: The authors would like to thank the anonymous referees, whose suggestions greatly improved the exposition of this paper.

References

[1] R. Beigel and D. Eppstein, 3-coloring in time \(O(1.3289^n) \), *J. Algorithms*, 54:2, 168–204, 2005.

[2] A. Björklund, T. Husfeldt and M. Koivisto, Set partitioning via inclusion-exclusion, *SIAM J. Comput.* 39 (2009), 546–563.

[3] N. Christofides, An Algorithm for the Chromatic Number of a Graph, *Computer J.*, 14, 38–39, 1971.

[4] D. Eppstein, Small Maximal Independent Sets and Faster Exact Graph Coloring, *Journal of Graph Algorithms and Applications*, Vol. 7, no. 2, 131–140, 2003.
[5] F.V. Fomin, S. Gaspers, S. Saurabh, Improved Exact Algorithms for Counting 3- and
4-Colorings, *Proc. 13th Annual International Conference, COCOON 2007, Lecture Notes
in Computer Science, 4598, Springer*, 65–74, 2007.

[6] J. Kratochvila and Z. Tuza, Algorithmic complexity of list colorings, *Discrete Applied
Mathematics*, Volume 50, Issue 3, 297–302, 1994.

[7] E. L. Lawler, A note on the complexity of the chromatic number problem, *Information
Processing Letters*, 5 (3): 66-67, 1976.

[8] C. Lund and M. Yannakakis, On the hardness of approximating minimization problems,
Journal of the ACM (JACM), Volume 41 Issue 5, 960–981, 1994.

[9] D. B. West, *Introduction to Graph Theory*, Second edition, Published by Prentice Hall
1996, 2001. ISBN 0-13-014400-2.