Fermionic dark matter in leptoquark portal

Rusa Mandal
IFIC, Universitat de Valencia-CSIC

On Eur. Phys. J. C 78, 726 (2018)
Outline

- Introduction
- Model
 - Relic density
 - Direct detection
 - Collider bounds
- Results
- Summary
One of the main reasons for the need of BSM physics is indirect evidence of Dark Matter consisting 26% of our Universe.

Popular scenario: `WIMP’

- Mass range GeV — TeV
- Weak interaction

Portal: WIMP can interact directly to SM &/or via BSM particle

Higgs portal, Z portal...

anything e.g., Z’ portal
Ways to probe WIMP models

Indirect detection

Annihilation

Direct detection

Scattering

Production

Colliers

DM

SM

DM

SM
Leptoquark portal DM

Diagram showing leptoquark interactions with quarks and leptons:

- **Scalar (S, R)**
- **Vector (V, U)**

R-parity violating SUSY

GUT like SU(5), SU(4) etc

Can accommodate a SM singlet fermion, would be DM candidate

Interaction	\((SU(3)_C, SU(2)_L, U(1)_Y)\)	Spin
\(\bar{d}^C_R X \psi\)	\(S_1 (\bar{3}, 1, 1/3)\)	0
\(\bar{u}^C_R X \psi\)	\(\bar{S}_1 (\bar{3}, 1, -2/3)\)	0
\(\bar{Q}_L X \psi\)	\(\bar{R}_2 (3, 2, 1/6)\)	0
\(\bar{Q}^C_L \gamma^\mu X_\mu \psi\)	\(\bar{V}_2 (\bar{3}, 2, -1/6)\)	1
\(\bar{u}_R \gamma^\mu X_\mu \psi\)	\(U_1 (3, 1, 2/3)\)	1
\(\bar{d}_R \gamma^\mu X_\mu \psi\)	\(\bar{U}_1 (3, 1, -1/3)\)	1

Tree level proton decay

Only viable case with Majorana DM

Dirac DM scenario compatible with relic density is excluded by XENON 2018 data

DAE-BRNS HEP 2018, Chennai
Model

Model

Lagrangian with new interaction terms

\[\mathcal{L} \subset - \frac{1}{2} (D_\nu U_\mu - D_\mu U_\nu)^\dagger (D^\nu U^\mu - D^\mu U^\nu) + m_U^2 U_\mu^\dagger U^\mu - \frac{1}{2} m_\chi \chi \chi \\
- y_L \bar{Q}_L \gamma_\mu U_\mu L_L - y_R \bar{d}_R \gamma_\mu U_\mu e_R - y_\chi \bar{u}_R \gamma_\mu U_\mu \chi \]

Can induce tree level 3-body & 1-loop decay of \(\chi \)

No tree level decay of \(\chi \) if \(m_\chi < m_U \)

DM stability assured with \(Z_2 \) symmetry
Relic density

\[\langle \sigma v \rangle = \frac{3 y^4 \tan^2 \theta}{8\pi \left(m^2 + m^2_U - m^2 \right)^2} \left(1 - \frac{m^2_q}{m^2} \right)^{1/2} \]

Dominant annihilation channel to \(t\bar{t} \)

For \(m_\chi < m_t \), \(\chi\chi \rightarrow u\bar{u}, c\bar{c} \) are insufficient for observed relic density.

Co-annihilation channels: \(\chi U \rightarrow tg \quad \chi U \rightarrow Wb \)

Efficient at \(m_\chi \approx m_U \)

Effective near \(t \) resonance only

Model parameters: \(m_\chi, m_U, y_\chi \)
Direct detection

- Effective interaction of the DM with u-quark

$$\mathcal{L}_{\text{eff}} \simeq - \frac{y^2_\chi}{4 (m_U^2 - m_\chi^2)} \bar{\chi} (1 - \gamma_5) \gamma^\mu u \bar{u} (1 - \gamma_5) \gamma^\mu \chi$$

- DM-nucleon scattering cross section

$$\sigma_{\text{SD}} = \frac{3m_\chi^2 m_N^2 \Delta_u^N}{4\pi (m_\chi + m_N)^2} \frac{y^4_\chi}{(m_U^2 - m_\chi^2)^2}$$

Model parameters: m_χ, m_U, y_χ
Collider bounds

Mediator mass	DM mass
Direct production at LHC	
Large rate due to color charge	
Final state topologies	
$U\bar{U} \rightarrow t\bar{t}\chi\chi, jj\chi\chi$	

CMS 13 TeV data excludes <1.5 TeV with 100% BR to $t\nu$

[CMS, 1805.10228]
Collider bounds

Mediator mass	DM mass
🌤️Direct production at LHC	🌤️Monojet(photon) + E_T
Large rate due to color charge	EW process, suppressed
Final state topologies	
$U\bar{U} \rightarrow t\bar{t}\chi\chi$, $jj\chi\chi$	$pp \rightarrow \chi\chi j$ generated using
CMS 13 TeV data excludes <1.5 TeV with 100% BR to $t\nu$	$qg \rightarrow \chi\chi q$ dominates for
[CMS, 1805.10228]	large parton distribution & ATLAS 13 TeV data excludes < 200 GeV
	satisfying relic with $y_\chi = 1$
	[ATLAS, 1711.03301]

[$pp \rightarrow \chi\chi j$ generated using $qg \rightarrow \chi\chi q$ dominates for large parton distribution & ATLAS 13 TeV data excludes < 200 GeV satisfying relic with $y_\chi = 1$ [ATLAS, 1711.03301]]
Collider bounds

Mediator mass	DM mass
Direct production at LHC	Monojet(photons) + E_T
Large rate due to color charge	EW process, suppressed
Final state topologies	
$U\bar{U} \rightarrow t\bar{t}\chi\chi, jj\chi\chi$	

Combining $m_U > 1$ TeV

$m_\chi > 200$ GeV

$gg \rightarrow \chi\chi q$ dominates for large parton distribution & ATLAS 13 TeV data excludes < 200 GeV satisfying relic with $y_\chi = 1$

CMS 13 TeV data excludes < 1.5 TeV with 100% BR to $t\nu$

[CMS, 1805.10228]

[ATLAS, 1711.03301]
Results

One coupling sensitive to all three properties of DM model

Indirect data excludes DM mass up to 400GeV
[Cuoco et. al, 1711.05274]

Future Direct detection experiments can probe the entire parameter space
Summary

☑ DM model mediated by colored particle—leptoquark is discussed

☑ One Yukawa type coupling responsible for relic density, direct & indirect detection

☑ Collider bounds exclude DM mass < 200 GeV

☑ AMS-02 data excludes DM mass < 400 GeV

☑ Latest LUX results allow region compatible with relic density

☑ LZ experiment can probe entire region up to perturbativity limit
Summary

- DM model mediated by colored particle—leptoquark is discussed
- One Yukawa type coupling responsible for relic density, direct & indirect detection
- Collider bounds exclude DM mass < 200 GeV
- AMS-02 data excludes DM mass < 400 GeV
- Latest LUX results allow region compatible with relic density
- LZ experiment can probe entire region up to perturbativity limit
