Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields

Christian Schneider and Ralf Schützhold

Fakultät für Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany

(Dated: July 15, 2014)

Via the worldline instanton method, we study electron-positron pair creation by a strong electric field of the profile $E(\cosh^2(kx))$ superimposed by a weaker pulse $E'/\cosh^2(\omega t)$. If the temporal Keldysh parameter $\gamma_\omega = m\omega/(qE)$ exceeds a threshold value γ_{crit}^0 which depends on the spatial Keldysh parameter $\gamma_k = mk/(qE)$, we find a drastic enhancement of the pair creation probability − reporting on what we believe to be the first analytic non-perturbative result for the interplay between temporal and spatial field dependences $E(t,x)$ in the Sauter-Schwinger effect.

PACS numbers: 12.20.-m, 11.15.Tk, 11.27.+d, 42.50.Xa.

I. INTRODUCTION

Despite the tremendous progress of quantum field theory as a fundamental description of nature, our understanding of its non-perturbative properties is still disappointingly incomplete. In quantum electrodynamics (QED), for example, a striking non-perturbative phenomenon is the Sauter-Schwinger effect predicting the creation of electron-positron pairs out of the vacuum (QED), for example, a striking non-perturbative phenomenon as a fundamental description of nature, our understanding is not only unsatisfactory from a theoretical point of view, a deeper insight into the impact of understanding is not only unsatisfactory from a theoretical point of view, a deeper insight into the impact of understanding is not only unsatisfactory from a theoretical point of view, a deeper insight into the impact.

II. WORLDLINE INSTANTON METHOD

Let us start with a brief review of the worldline instanton method. Since the electron spin does not affect the exponent of the pair creation probability, we consider the vacuum persistence amplitude of scalar QED

$$\langle 0_{\text{out}} | 0_{\text{in}} \rangle = \int \mathcal{D}\phi \mathcal{D}\phi^* e^{i \int d^4x (\partial_{\mu}\phi)^2 - m^2|\phi|^2}$$

with the covariant derivative $D_{\mu} = \partial_{\mu} + i q A_{\mu}$. After analytic continuation to Euclidean space, this functional path integral can be translated into the worldline representation where $\mathcal{D}\phi \mathcal{D}\phi^*$ is replaced by the sum over all closed loops $x_{\mu}(s)$ in Euclidean space. Then, via the saddle point method (with the electron mass m playing the role of the large expansion parameter), the pair creation probability can be estimated as

$$P_{e^+e^-} = 1 - |\langle 0_{\text{out}} | 0_{\text{in}} \rangle|^2 \sim e^{-S},$$

with the worldline instanton action

$$S = ma + i q \int_0^1 ds \dot{x}^{\mu} A_{\mu}(x^\nu).$$

Here $\dot{x}_\mu = dx_\mu/ds$ denotes the derivative of a closed loop $x_\mu(s) = x_\mu(s = 1)$ worldline loop $x_\mu(s)$ as a solution of the instanton equations

$$m\ddot{x}_\mu = iqF_{\mu\nu}\dot{x}^\nu a$$

with $\ddot{x}_\mu = d^2x_\mu/ds^2$ and $\dot{x}_\nu\dot{x}^\nu = a^2 = \text{const.}$

III. SUM OF SAUTER PULSES

Now let us apply the worldline instanton method to a space-time dependent electric field

$$E(t,x) = \left(\frac{E}{\cosh^2(kx)} + \frac{E'}{\cosh^2(\omega t)} \right) e_x$$

consisting of a strong spatial Sauter pulse $\propto E$ and a weaker temporal Sauter pulse $\propto E'$ where both field
strengths are sub-critical $E' < E < E_{\text{crit}} = m^2/q$. Furthermore, in order to be in the non-perturbative regime, we assume slowly varying pulses $\omega, k < m$. For convenience, we introduce the spatial and temporal Keldysh parameters via

$$\gamma_k = \frac{mk}{qE}, \gamma_0 = \frac{m\omega}{qE}. \quad (7)$$

The Euclidean vector potential reads

$$A_0(x_1) = \frac{E}{k} \tanh(kx_1), \quad A_1(x_0) = \frac{E'}{\omega} \tanh(\omega x_0). \quad (8)$$

with $x_0 = it$ and $x_1 = x$ as well as $A_2 = A_3 = 0$. As a result, the instanton equations [5] assume the form

$$\dot{x}_0 = + \frac{qEa}{m} \left(\frac{1}{\cosh^2(kx_1)} - \frac{E'}{E} \frac{1}{\cos^2(\omega x_0)} \right) \dot{x}_1, \quad (9)$$

and are analogous to the planar motion of a charged particle in a magnetic field $B(r) = B(x,y)\hat{e}_z$.

Due to $E'/E \ll 1$, the second term is negligible unless $\cos^2(\omega x_0)$ becomes very small near the poles of $E(x_0, x_1)$ at $\omega x_0 = \pm \pi/2$. Away from these poles, we may omit the second term and the above equations can be integrated

$$\dot{x}_0 = \frac{a}{\gamma_k} \tanh(kx_1) + ab,$$

$$\dot{x}_1 = \pm a \sqrt{1 - \left(\frac{\tanh(kx_1)}{\gamma_k} + b \right)^2}. \quad (10)$$

As mentioned after Eq. [5], the constant a is given by $\dot{x}_0 \dot{x}' = a^2 = \text{const}$. The other integration constant b determines the velocity \dot{x}_0 just before (or just after) crossing the x_0-axis, see Fig. 1.

Near the poles $\omega x_0 \approx \pm \pi/2$, on the other hand, the second term becomes important. Similar to the reflection of a charged particle at the region of a very strong magnetic field, the instanton trajectory is basically reflected by the “wall” at $\omega x_0 \approx \pm \pi/2$ if it reaches out far enough. Since this reflection occurs during a very short proper time Δs, we may neglect the regular terms in Eq. [9] and keep only the divergent contributions. Then, the equation for x_1 can be integrated approximately to

$$\dot{x}_1 \approx \frac{qEa}{m\omega} \tanh(\omega x_0) + \dot{x}_1^\text{in}, \quad (11)$$

and thus the equation for x_0 becomes

$$\dot{x}_0 \approx - \frac{(qEa)^2}{m^2\omega} \frac{\tanh(\omega x_0)}{\cos^2(\omega x_0)} \sim \frac{1}{(\omega x_0 \pm \pi/2)^3}. \quad (12)$$

As a result, the perpendicular velocity \dot{x}_0 is reversed by that reflection while the parallel velocity \dot{x}_1 has the same value \dot{x}_1^in before and after the reflection.

IV. TUNNELLING PROBABILITY

Again due to $E \gg E'$, the instanton action reads

$$S \approx ma - \frac{qE}{k} \int_0^{1} ds \tanh(kx_1) \dot{x}_0. \quad (13)$$

In order to calculate the above integral, we split the closed loop into four quarters: from $x_1 = 0$ to the spatial turning point x_1^*, from x_1^* to $x_1 = 0$, from $x_1 = 0$ to $-x_1^*$, and finally back to $x_1 = 0$, see Fig. 1. Since each quarter yields the same contribution, we get

$$S \approx ma - \frac{4m}{\gamma_k} \int_0^{x_1^*} dx_1 \tanh(kx_1) \left(\frac{\tanh(kx_1) + \gamma_k b}{\sqrt{\gamma_k^2 - (\tanh(kx_1) + \gamma_k b)^2}} \right). \quad (14)$$

where x_1^* denotes the spatial turning point given by

$$\tanh(kx_1^*) + \gamma_k b = \gamma_k, \quad (15)$$

i.e., the zero of the square root in the integral in Eq. [14], where $dx_1/dx_0 = 0$. The constant a is determined by

$$\dot{x}_0 \dot{x}' = a^2 \quad \text{and} \quad x_\mu(s = 0) = x_\mu(s = 1)$$

which gives

$$a = \frac{4}{\gamma_k} \int_0^{x_1^*} \frac{dx_1}{\sqrt{\gamma_k^2 - (\tanh(kx_1) + \gamma_k b)^2}}. \quad (16)$$

The remaining integration constant b depends on the frequency ω. If ω is too small and thus the poles at $\omega x_0 = \pm \pi/2$ are too far away, the instanton trajectory is not reflected at all and thus we have $b = 0$. In case of reflection, the integration constant b is non-zero and determined by the implicit condition

$$\frac{4m}{\gamma_k} \int_0^{x_1^*} \frac{dx_1}{\sqrt{\gamma_k^2 - (\tanh(kx_1) + \gamma_k b)^2}} = \frac{\pi}{2\omega}. \quad (17)$$

Together with the above equations for x_1^*, a, and b, Eq. [14] is the main result of this paper.
The threshold condition \(b = 0 \) translates into

\[
\gamma_0 = \frac{\pi}{2} \frac{\gamma_k \sqrt{1 - \gamma_k^2}}{\arcsin(\gamma_k)} \equiv \gamma_{\omega}^{\text{crit}}. \tag{18}
\]

If the frequency is too low \(\gamma_\omega < \gamma_{\omega}^{\text{crit}} \), the instanton trajectory is basically not affected by the poles at \(\omega x_0 = \pm \pi/2 \) leading to \(b = 0 \) and thus the weak temporal pulse \(\propto E' \) has negligible impact. In this case \(b = 0 \), we get \(x_1 = \text{artanh}(\gamma_k)/k \) and all the integrals can be carried out analytically, yielding the same results as for a static Sauter pulse, which have already been obtained in [5]. If the frequency exceeds this threshold value \(\gamma_\omega > \gamma_{\omega}^{\text{crit}} \), on the other hand, the instanton trajectory is reflected at the poles (i.e., \(b > 0 \)) and thus the instanton action (14) is reduced by the weak temporal pulse \(\propto E' \), leading to a significant enhancement of the pair creation probability. In the homogeneous limit \(\gamma_k \downarrow 0 \), the threshold value (18) approaches \(\gamma_{\omega}^{\text{crit}} = \pi/2 \) consistent with the results of [5]. For \(\gamma_k \uparrow 1 \), the threshold \(\gamma_{\omega}^{\text{crit}} \) scales as \(\gamma_{\omega}^{\text{crit}} \propto \sqrt{1 - \gamma_k^2} \), i.e., very small frequencies \(\omega \) can have a significant impact in this case.

Unfortunately, due to the implicit nature of the condition for \(b \), we cannot provide a closed analytical expression for \(S \). However, near but above threshold, we can Taylor expand the involved quantities and obtain the following approximate formula for the instanton action

\[
S = \frac{m^2}{qE} \left(\frac{2\pi}{1 + \sqrt{1 - \gamma_k^2}} - \pi \frac{(1 - \gamma_k^2)^{3/2}}{\gamma_k^2 (\gamma_{\omega}^{\text{crit}})^4} \left[\gamma_\omega - \gamma_{\omega}^{\text{crit}} \right]^2 \right) + O \left(\left[\gamma_\omega - \gamma_{\omega}^{\text{crit}} \right]^3 \right). \tag{19}
\]

The zeroth order \(S_0 = \left(m^2/(qE) \right) 2\pi/\left(1 + \sqrt{1 - \gamma_k^2}\right) \) is just the result in the static case [5] and is valid below and at threshold \(\gamma_\omega \leq \gamma_{\omega}^{\text{crit}} \). For \(\gamma_k = 0 \), we recover Schwinger’s result [1] for a constant field [1]. Above threshold \(\gamma_\omega > \gamma_{\omega}^{\text{crit}} \) on the other hand, the action is reduced by the second-order term \(\propto (\gamma_\omega - \gamma_{\omega}^{\text{crit}})^2 \).

V. CONCLUSIONS

Via the worldline instanton technique, we derived an analytical estimate [14] for the electron-positron pair creation probability \(\omega \) induced by an electric field [6] which genuinely depends both on space and on time. Superimposing a strong spatial pulse by a weak temporal pulse [9], we found that the weak pulse is negligible for small frequencies \(\gamma_\omega \leq \gamma_{\omega}^{\text{crit}} \) but can enhance the pair creation probability significantly (dynamically assisted Sauter-Schwinger effect) for larger frequencies \(\gamma_\omega \geq \gamma_{\omega}^{\text{crit}} \) with the threshold (18) depending on the spatial Keldysh parameter \(\gamma_k \). In the homogeneous limit \(\gamma_k \downarrow 0 \), this threshold \(\gamma_{\omega}^{\text{crit}} \) converges to \(\pi/2 \) in accordance with [14]. If the spatial Keldysh parameter approaches unity \(\gamma_k \uparrow 1 \), on the other hand, the threshold \(\gamma_{\omega}^{\text{crit}} \) goes to zero. In this case \(\gamma_k \uparrow 1 \), the size of the spatial Sauter pulse is barely enough to produce electron-positron pairs (since the electrostatic potential difference is just above the gap of \(2mc^2 \)) and the instanton loop becomes very large, cf. \(x_1 = \text{artanh}(\gamma_k)/k \) for \(b = 0 \). Quite intuitively, even comparably small frequencies (leading to poles at large distances to the origin) can have an impact in this limit.

ACKNOWLEDGEMENTS

R. S. acknowledges fruitful discussions with G. Dunne and H. Gies as well as R. Alkofer, F. Hebenstreit, and many others.

[1] O. Klein, Zeitschrift für Physik 53 (1929).
[2] F. Sauter, Zeitschrift für Physik 69, 742 (1931).
[3] W. Heisenberg and H. Euler, Zeitschrift für Physik 98, 714 (1936).
[4] J. Schwinger, Physical Review 82, 664 (1951).
[5] G. Dunne and C. Schubert, Physical Review D 72, 105004 (2005).
[6] T. Tomaras, N. Tsamis, and R. Woodard, Physical Review D 62, 125005 (2000).
[7] F. Hebenstreit, R. Alkofer, and H. Gies, Physical Review D 82, 105026 (2010).
[8] M. Ruf, G. Mocken, C. Müller, K. Hatsagortsyan, and C. Keitel, Physical Review Letters 102, 080402 (2009).
[9] See, e.g., the Extreme Light Infrastructure project, http://www.eli-laser.eu/.
[10] I. K. Affleck, O. Alvarez, and N. S. Manton, Nuclear Physics B 197, 509 (1982).
[11] C. Schubert, Physics Reports 355, 73 (2001).
[12] G. Dunne and Q.-h. Wang, Physical Review D 74, 065015 (2006).
[13] G. Dunne, Q.-h. Wang, H. Gies, and C. Schubert, Physical Review D 73, 065028 (2006).
[14] R. Schützhold, H. Gies, and G. Dunne, Physical review letters, 4 (2008).