Salmonella Genomic Island 1B Variant Found in a Sequence Type 117 Avian Pathogenic *Escherichia coli* Isolate

Max Laurence Cummins,a Piklu Roy Chowdhury,a Marc Serge Marenda,c Glenn Francis Browning,b Steven Philip Djordjevica

aThe ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia
bAsia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
cAsia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia

ABSTRACT *Salmonella* genomic island 1 (SGI1) is an integrative genetic island first described in *Salmonella enterica* serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of *S. enterica*, as well as in *Proteus mirabilis*, *Acinetobacter baumannii*, *Morganella morganii*, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry *bla*_{NDM-1}, *bla*_{VEB-6}, and *bla*_{CTX-M15} genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic *Escherichia coli* (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3’ end of *trmE*, also known as the *attB* site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type *E. coli*. The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of IS_{Ec43} in open reading frame (ORF) S023.

IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum β-lactams and carbapenems, and have been found in diverse *S. enterica* serovars, *Acinetobacter baumannii*, and other members of the *Enterobacteriaceae*. SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3’ end of *trmE*, known as the *attB* site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type *E. coli*. The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of IS_{Ec43} in open reading frame (ORF) S023.

KEYWORDS *Escherichia coli*, One Health, *Salmonella* genomic island 1, antibiotic resistance, avian pathogenic *E. coli*, genomics, multidrug resistance, poultry, veterinary microbiology, veterinary pathogens, whole-genome sequencing, zoonotic infections
circularized form via a process that requires intSGI1 (1), the frequency at which this occurs in the wild is thought to be very low and is not well understood (3). The transcriptional regulator complex AcaCD encoded by genes on IncA/C plasmids is sufficient to trigger excision and mobilization of SGI1 (1, 4), yet IncA/C plasmids are not known to coexist in the same host as SGI1, suggesting that an active exclusion mechanism limits opportunities for transposition. These observations in part explain why SGI1 is stably maintained in the chromosome, the difficulties encountered in assaying for circular forms of SGI1 (low abundance), and the apparent low transposition frequency of the island (1, 5).

SGI1 comprises a backbone of 27.4 kb and a complex class 1 integron (In104) of 15 kb that resides in resG (open reading frame [ORF] S027). In104 is flanked by a 5-bp duplication consistent with transposition into resG. Variations in the size of In104 arise depending on the resistance gene cargo it carries, homologous recombination events between shared sequences within the integron, the presence of other mobile elements, and the action of IS elements (6), particularly IS26. The introduction of IS26 in SGI1 creates further opportunities for the acquisition of diverse antibiotic resistance genes and the rapid evolution of these elements. Notable in this regard is SGI1-L2, which carries an IS26-flanked composite transposon containing multiple antibiotic resistance genes in S024 (7). IS elements such as ISVch4 (IS1359) are associated with deletions in the SGI1 backbone, and these events contribute to the ongoing evolution of the element.

SGI1 and variants of it may be able to integrate into a wide variety of Gram-negative bacteria because the sequence of the terminal 18 nucleotides of trmE (attB) is well conserved (8). Experiments performed in vitro have demonstrated that SGI1 is able to integrate into Klebsiella pneumoniae and Escherichia coli (9), but evidence of the presence of the island in these species in natural environments has been lacking. Since the identification of SGI1 in Salmonella enterica serovar Typhimurium DT104 almost 20 years ago, homologous recombination events, as well as insertion sequence-mediated indels, have led to the emergence of more than 30 SGI1 variants, some of which carry antimicrobial resistance genes that are of major clinical significance (10). SGI1 and variants of it have been detected in diverse serovars of S. enterica and other Gram-negative pathogens (6, 11–14). For example, Proteus genomic island 1 (PGI1), identified in Proteus mirabilis, carries extended-spectrum β-lactamase and/or metallo-β-lactamasases (15, 16), and SGI variants have been reported in Morganella morganii subsp. morganii (10), Acinetobacter baumannii (17), Enterobacter hormaechei subsp. oharae (18), and Providencia stuartii (19).

While performing an in silico analysis of whole-genome sequencing (WGS) data from 97 Australian avian pathogenic E. coli (APEC) isolates (20), one isolate (AVC96) from a diseased 26-week-old broiler chicken was found to carry genetic signatures typically found in SGI1 (GenBank accession no. AF261825). Details of the materials and methods used for analysis of the isolate are given in Text S1 in the supplemental material. Sequence analysis identified AVC96 as an APEC isolate with sequence type 117 (ST117), a lineage associated with extraintestinal infections in humans and poultry (21). A hybrid assembly using the program Unicycler, which combined Illumina short reads and single-molecule real-time (SMRT) sequences derived from a Pacific Biosystems RSII sequencer, resolved the structure of the SGI1 variant in isolate AVC96 and placed it a single 4,886,273-bp chromosomal contig. The SGI1 variant was inserted in the terminal 18 bp of trmE. The variant of SGI1 was here named SGI1-B-Ec1.

Comparative analysis with published SGI1 reference sequences revealed that the structure of SGI1-B-Ec1 in isolate AVC96 is related to SGI1-1B (accession no. KU987430), as seen in Fig. 1. A homologous recombination event between the copies of intI1 resulted in the loss of the intervening DNA, a feature of this variant. SGI1-8-Ec1 differs from SGI1-B and other SGI1 variants via the insertion of ISEc43 in S023. ISEc43 is flanked by an 8-bp direct repeat, suggesting its integration is a recent event. The location of ISEc43 in S023 has not been previously described, and it may serve as a unique epidemiological marker for tracking isolates that carry SGI1-B-Ec1 in Australia. SGI1-B-Ec1 also carries a unique single nucleotide polymorphism within qacEΔ1 (228 bp).
In *E. coli*, *trmE* sits proximal to *tnaC*, which encodes a tryptophanase. In the case of AVC96, SGI1-B-Ec1 sits between these ORFs. An analysis of 455,632 bacterial whole-genome sequence data sets in the short-read archive (22) indicated that none of the approximately 38,000 *E. coli* genomes available therein carry an SGI1 variant at this locus. BLASTn analysis of the publicly available nucleotide database yielded one entry (GenBank accession no. KU842063.1) that spanned from base 31 of *s044* to base 153 of *tnaA*. This sequence was the derived from an *in vitro* experiment that sought to determine the ability of SGI1 to integrate into *E. coli* (9). Therefore, our findings support the contention that AVC96 is the first description of the occurrence of a variant of SGI1 in wild-type *E. coli*. It is notable that variants of SGI1 carrying *bla*NDM-1 (23), *bla*VEB-6 and *qnrA1* (15), and *bla*CTX-M-15 (24) have been identified in multiple drug-resistant *Proteus mirabilis* and *Salmonella enterica* isolates. This discovery should prompt investigations on the prevalence of SGI1-B-Ec1 in Australia and how it might evolve to capture a broader selection of antimicrobial resistance genes.

Data availability. Long-read whole-genome sequence data and short-read whole-genome sequence data are available in the SRA under accession no. SRR8671292 and SRR7469869, respectively, while the nucleotide sequence of SGI1-B-Ec1 is available on the NCBI nucleotide database under accession no. MK599281.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mSphere.00169-19.

TEXT S1, DOCX file, 0.1 MB.

ACKNOWLEDGMENTS

These studies were supported in part by grants from Australian Poultry and Poultry Cooperative Research Centres. We also thank Mohammad Hamidian for contributions in the development of Fig. 1.

This project was partly funded by the Australian Centre for Genomic Epidemiological Microbiology (AusGEM), a collaborative partnership between the NSW Department of Primary Industries and the University of Technology Sydney. M.C. is a recipient of an Australian Government Research Training Program Scholarship.

The authors declare they have no conflicts of interest.

REFERENCES

1. Doublet B, Boyd D, Mulvey MR, Cloeckaert A. 2005. The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol 55:1911–1924. https://doi.org/10.1111/j.1365-2958.2005.04520.x.

2. Huguet KT, Gonnet M, Doublet B, Cloeckaert A. 2016. A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella genomic island 1. Sci Rep 6:32285. https://doi.org/10.1038/srep32285.

3. Schmieger H, Schicklmaier P. 1999. Transduction of multiple drug resistance of *Salmonella enterica* serovar *typhimurium* DT104. FEMS
Microbiol Lett 170:251–256. https://doi.org/10.1111/j.1574-6968.1999.tb13381.x.
4. Carraro N, Matteau D, Luo P, Rodrigue S, Burrey V. 2014. The master activator of Inca/C conjugative plasmids stimulates genomic islands and multidrug resistance dissemination. PLoS Genet 10:e1004714. https://doi.org/10.1371/journal.pgen.1004714.
5. Kiss J, Nagy B, Olasz F. 2012. Stability, entrapment and variant formation of Salmonella genomic island 1. PLoS One 7:e32497. https://doi.org/10.1371/journal.pone.0032497.
6. Hall RM. 2010. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol 5:1525–1538. https://doi.org/10.2217/fmb.10.122.
7. Doublet B, Praud K, Well FX, Cloeckaert A. 2009. Association of IS26-composite transposons and complex In4-type integrons generates novel multidrug resistance loci in Salmonella genomic island 1. J Antimicrob Chemother 63:282–289. https://doi.org/10.1093/jac/dkn500.
8. Doublet B, Golding GR, Mulvey MR, Cloeckaert A. 2007. Potential integration sites of the Salmonella genomic island 1 in Proteus mirabilis and other bacteria. J Antimicrob Chemother 59:801–803. https://doi.org/10.1093/jac/dk0340.
9. Siebor E, de Curraize C, Amoureux L, Neuwirth C. 2016. Mobilization of the Salmonella genomic island SG1 and the Proteus genomic island PG1 by the A/C2 plasmid carrying blaTEM-24 harboured by various clinical species of Enterobacteriaceae. J Antimicrob Chemother 71:2167–2170. https://doi.org/10.1093/jac/dkw151.
10. Schultz E, Barraud O, Haenni M, Cloeckaert A, Ploy M-C. 2004. Class 1 integrons in various Salmonella enterica serovars. mSphere 2:e00118-17. https://doi.org/10.1128/mSphere.00118-17.
11. Ebner P, Garner K, Mathew A. 2004. Class 1 integrons in various Salmonella enterica serovars isolated from animals and identification of genomic island SG1 in Salmonella enterica var. Meleagridis. J Antimicrob Chemother 53:1004–1009. https://doi.org/10.1093/jac/dkh192.
12. Levings RS, Lightfoot D, Partridge SR, Hall RM, Djordjevic SP. 2007. The genomic island SG1, containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars. J Bacteriol 187:4401–4409. https://doi.org/10.1128/JB.187.13.4401-4409.2005.
13. Levings RS, Partridge SR, Djordjevic SP, Hall RM. 2007. SG1-K, a variant of the SG1 genomic island carrying a mercury resistance region, in Salmonella enterica serovar Kentucky. Antimicrob Agents Chemother 51:317–323. https://doi.org/10.1128/AAC.01229-06.
14. Djordjevic SP, Cain AK, Evershed NJ, Falconer L, Levings RS, Lightfoot D, Hall RM. 2009. Emergence and evolution of multiply antibiotic-resistant Salmonella enterica serovar Paratyphy B O-tartrate-utilizing strains containing SGI1. Antimicrob Agents Chemother 53:2319–2326. https://doi.org/10.1128/AAC.01532-08.
15. Siebor E, Neuwirth C. 2011. The new variant of Salmonella genomic island 1 (SGI1-V) from a Proteus mirabilis French clinical isolate harbours blaVEB-6 and qnrA1 in the multiple antibiotic resistance region. J Antimicrob Chemother 66:2513–2520. https://doi.org/10.1093/jac/dkr335.
16. Siebor E, Neuwirth C. 2013. Emergence of Salmonella genomic island 1 (SGI1) among Proteus mirabilis clinical isolates in Dijon, France. J Antimicrob Chemother 68:1750–1756. https://doi.org/10.1093/jac/dkt100.
17. Hamidian M, Holt KE, Hall RM. 2015. Genomic resistance island AGI1 carrying a complex class 1 integron in a multiply antibiotic-resistant ST25 Acinetobacter baumannii isolate. J Antimicrob Chemother 70:2519–2523. https://doi.org/10.1093/jac/dkv137.
18. Siebor E, de Curraize C, Neuwirth C. 2019. Identification of AGI1-A, a variant of Acinetobacter genomic island 1 (AGI1), in a French clinical isolate belonging to the Enterobacter cloacae complex. J Antimicrob Chemother 74:311–314. https://doi.org/10.1093/jac/dky442.
19. Soliman AM, Shimamoto T, Nariya H, Shimamoto T. 2018. Emergence of Salmonella genomic island 1 variant SGI1-W in a clinical isolate of Providencia stuartii from Egypt. Antimicrob Agents Chemother 63: e01793-18. https://doi.org/10.1128/AAC.01793-18.
20. Cummins ML, Reid CJ, Roy Chowdhury P, Bushell RN, Ebert N, Tivendale KA, Noormohammadi AH, Islam S, Marenda MS, Browning GF, Markham PF, Djordjevic SP. 2019. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb Genom. https://doi.org/10.1099/mgen.0.000250.
21. Manges AR, Johnson JR. 2012. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 55:712–719. https://doi.org/10.1093/cid/cis502.
22. Bradley P, den Bakker H, Rocha E, McVean G, Iqbal Z. 2017. Real-time search of all bacterial and viral genomic data. bioRxiv https://doi.org/10.1101/234955.
23. Girlich D, Dortet L, Poirel L, Nordmann P. 2015. Integration of the blaNDM-1 carbapenemase gene into Proteus genomic island 1 (PGI1-PmPEL) in a Proteus mirabilis French clinical isolate. J Antimicrob Chemother 70:98–102. https://doi.org/10.1093/jac/dku371.
24. de Curraize C, Neuwirth C, Bador J, Chapuis A, Amoureux L, Siebor E. 2018. Two new Salmonella genomic islands 1 from Proteus mirabilis and description of blaCTX-M-15 on a variant (SG1-K?). J Antimicrob Chemother 73:1804–1807. https://doi.org/10.1093/jac/dky108.
Author/s:
Cummins, ML; Chowdhury, PR; Marenda, MS; Browning, GF; Djordjevic, SP

Title:
Salmonella Genomic Island 1B Variant Found in a Sequence Type 117 Avian Pathogenic Escherichia coli Isolate

Date:
2019-05-01

Citation:
Cummins, M. L., Chowdhury, P. R., Marenda, M. S., Browning, G. F. & Djordjevic, S. P. (2019). Salmonella Genomic Island 1B Variant Found in a Sequence Type 117 Avian Pathogenic Escherichia coli Isolate. MSPHERE, 4 (3), https://doi.org/10.1128/mSphere.00169-19.

Persistent Link:
http://hdl.handle.net/11343/245747

File Description:
published version

License:
CC BY