Ectoplasm with an Edge

P.S. Howe, T.G. Pugh, K.S. Stelle and C. Strickland-Constable

* Department of Mathematics, King’s College, University of London, Strand, London WC2R 2LS, UK

† Theoretical Physics Group, Imperial College London, Prince Consort Road, London SW7 2AZ, UK

‡ Kavli Institute for Theoretical Physics, University of California, Santa Barbara CA 93106, USA

Abstract

The construction of supersymmetric invariant actions on a spacetime manifold with a boundary is carried out using the “ectoplasm” formalism for the construction of closed forms in superspace. Non-trivial actions are obtained from the pull-backs to the bosonic bodies of closed but non-exact forms in superspace; finding supersymmetric invariants thus becomes a cohomology problem. For a spacetime with a boundary, the appropriate mathematical language changes to relative cohomology, which we use to give a general formulation of off-shell supersymmetric invariants in the presence of boundaries. We also relate this construction to the superembedding formalism for the construction of brane actions, and we give examples with bulk spacetimes of dimension 3, 4 and 5. The closed superform in the 5D example needs to be constructed as a Chern-Simons type of invariant, obtained from a closed 6-form displaying Weil triviality.
Contents

1 Introduction .. 1

2 Superinvariants with boundaries 3

3 Superform invariants without boundaries 5

4 Superform invariants with boundaries 8
 4.1 Relative Cohomology and the Superboundary 10

5 Examples ... 13
 5.1 3D and 4D Ectoplasm with an Edge 13
 5.2 5D Ectoplasm with an Edge 14

6 Conclusion ... 16

A Conventions ... 18

B J_d closure conditions 20

1 Introduction

The representation of supersymmetry on spacetimes with boundaries has become an important issue owing to the advent of AdS/CFT dualities and the potential importance of Hořava-Witten \[1,2,3,4\] or single-boundary constructions in cosmological \[5,6,7,8,9,10\].
and particle-physics contexts. Arranging for a heterogeneous system of a bulk theory and a boundary theory to be jointly supersymmetric was originally achieved by a traditional perturbative Noether construction. Boundaries can be treated in an “upstairs picture” with the boundary realised via a doubled spacetime endowed with a \(\mathbb{Z}_2 \) reflection symmetry. Corrections to bulk-field symmetry transformations and constraints then typically involve Dirac delta functions, which can pose problems at higher orders when they begin to pile up nonlinearly. Another way to treat boundaries is in the “downstairs picture” where boundaries are treated just as boundaries, and instead of delta functions, one deals with systems of boundary conditions for bulk fields in interaction with fields defined only on the boundary. In either formalism, the iterative construction is rather laborious and can be rather tricky, especially when the requirements of anomaly cancellation involve dealing with “classical” systems that have supersymmetry violation linked to gauge non-invariance by systems of Wess-Zumino consistency conditions.

It would clearly be advantageous to have a formalism that automates the bulk-plus-boundary construction in a fashion similar to the standard tensor calculus of supersymmetry and supergravity. This is precisely the aim of the “supersymmetry without boundary conditions” formalism which has recently been introduced and put to use in. This formalism relies upon the existence of an off-shell supersymmetry formalism, however, which is not available for all supersymmetric theories, including the key maximal super Yang-Mills and maximal supergravity theories.

In the study of invariants for such theories, another approach to the study of supersymmetric invariants has been developed: the “ectoplasm” formalism, which can be employed to codify the integrands of supersymmetric invariants through the study of closed forms in superspace (see, for example). It is clearly of interest to relate the “supersymmetry without boundary conditions” formalism to the construction of supersymmetric invariants via closed forms in superspace. Relating these two approaches to supersymmetric theories on spaces with boundaries is the main aim of the present article.

The study of closed forms in superspace is a problem in superspace cohomology. Studies of \(p \)-brane worldvolume theories, another context for supersymmetric boundary theory investigations, have pointed out the rôle played by relative cohomology in such contexts. As we shall see, relative cohomology is precisely the mathematical language needed for the formulation of supersymmetry boundary theory problems in terms of closed forms and ectoplasm.

In this paper, we first review in Section the construction of supersymmetric theories on manifolds with boundaries, then in Section we review the construction of super-

1The ectoplasm formalism, referring to out-of-body material, employs the use of closed forms in full superspace and not just in the “body” or purely bosonic subspace.
symmetric invariants via closed forms in superspace. In Section 4, we re-express the construction in terms of relative cohomology in superspace and establish the relation between the present formulation and the superembedding formalism [30, 31, 32, 33], which has been applied to supersymmetric brane worldvolume actions in [34, 35]. We also introduce the notion of a “superboundary” with half-projected surviving supersymmetry on the boundary. In Section 5, we illustrate the construction with 3D, 4D and 5D examples. The 5D example involves the construction of a Chern-Simons type closed superform via the mechanism of Weil triviality [38]. In the Conclusion, we comment on some open issues and in Appendices A and B we summarise our conventions and give details of the closure conditions for the various examples discussed in the text.

2 Superinvariants with boundaries

We begin by briefly reviewing the construction of a supersymmetric action on a manifold with a boundary. The inclusion of the boundary has an immediate effect of breaking the diffeomorphism invariance under transformations that would move the boundary. This implies that surviving diffeomorphisms will be generated by a vector ξ^m such that $n^m \xi^m = 0$, where n^m is the outward pointing unit normal to the boundary, satisfying $n^m n_m = 1$. However, the commutator of two supersymmetry transformations generates a diffeomorphism given by

$$[\delta_{\xi_1}, \delta_{\xi_2}] = \delta_{\tilde{\xi}} + \ldots ,$$

where $\tilde{\xi}^m \sim \bar{\epsilon}_1 \gamma^m \epsilon_2 - \bar{\epsilon}_2 \gamma^m \epsilon_1$. We therefore need to also impose the condition that $n^m \tilde{\xi}^m = 0$ in order to prevent repeated supersymmetry transformations from generating a diffeomorphism that would move the boundary and break the symmetry. This is solved by imposing the conditions

$$n^m \xi^m = 0 , \quad n^m \gamma^m \epsilon = \epsilon .$$

With these conditions in mind, we can attempt to construct actions that are invariant under the surviving supersymmetry. Usually, the Lagrangian for an invariant action is considered to be one that varies into a total derivative,

$$\delta \mathcal{L} = \partial_m (\bar{\epsilon} \lambda^m + \lambda^m \bar{\epsilon}) ,$$

where λ^m is some function of the fundamental fields in the theory. This means that if we integrate this Lagrangian over a manifold \mathcal{M}_0 without boundaries, then we form an action

$$S = \int_{\mathcal{M}_0} d^d x \mathcal{L} ,$$

2The superembedding formalism was first proposed in the context of superparticles [36, 37].
which is invariant. However, if we now consider \mathcal{M}_0 to have a boundary $\partial \mathcal{M}_0$, then under supersymmetry this action will vary into

$$\delta S = \int_{\mathcal{M}_0} d^d x \partial_m (\tau \lambda^m + \overline{\lambda}^m \epsilon) = \int_{\partial \mathcal{M}_0} d^{d-1} x n_m (\tau \lambda^m + \overline{\lambda}^m \epsilon).$$

(2.5)

The traditional method for considering supersymmetric actions with boundaries was to impose some boundary conditions such as $\frac{1}{2} (1 - n_a \gamma^a) \lambda^m n_m \big|_{\partial \mathcal{M}_0} = 0$ which would then force (2.5) to vanish subject to (2.2). This means that the action (2.4) is only invariant under supersymmetry up to boundary conditions and so we refer to this approach as being a “SUSY with b.c.” formalism. However, an alternative approach to these constructions has recently been developed [17] in which one instead modifies the action by the addition of a boundary localised term such that

$$S = \int_{\mathcal{M}_0} d^d x \mathcal{L} + \int_{\partial \mathcal{M}_0} d^{d-1} x \mathcal{L}_B,$$

(2.6)

where \mathcal{L}_B varies under supersymmetry as

$$\delta \mathcal{L}_B = -n_m (\tau \lambda^m + \overline{\lambda}^m \epsilon).$$

(2.7)

This implies that the modified action (2.6) is invariant under supersymmetry without having to impose boundary conditions and accordingly this is known as the “SUSY without b.c.” formalism.

To demonstrate explicitly how this formalism works, it is helpful to consider some examples. Firstly, we consider the case of 3D N=1 rigid supersymmetry. Here, actions are determined by an unconstrained superfield J_0 with components

$$J_0| = A, \quad D_\alpha J_0| = \frac{1}{\sqrt{2}} \bar{\chi}_{\alpha}, \quad D^\alpha D_\alpha J_0| = -i F,$$

(2.8)

where $|$ denotes evaluation on the surface where all fermionic coordinates are set to zero. These component fields transform under supersymmetry as

$$\delta A = i e^{\alpha} \chi_\alpha, \quad \delta \chi_\alpha = \gamma^m \alpha \beta \epsilon^\beta \partial_m A + F \epsilon_\alpha, \quad \delta F = i e^\alpha \gamma^m \alpha \beta \partial_m \chi_\beta,$$

(2.9)

where the 3D spinors are Majorana.

The standard rule for constructing an F-density from this superfield is to build an action given by

$$S = \int_{\mathcal{M}_0} d^3 x i D^\alpha D_\alpha J_0| = \int_{\mathcal{M}_0} d^3 x F.$$

(2.10)

Since this action varies into a surface term on $\partial \mathcal{M}_0$, the traditional prescription for creating a supersymmetric action would be to impose boundary conditions on the component
fields in J_0 that set this surface term to zero. However, in the “SUSY without b.c.” formalism, one modifies instead the F-density rule such that

$$S = \int_{M_0} d^3 \tilde{x} i D^\alpha D_\alpha J_0 \mid + \int_{\partial M_0} d^2 x J_0 \mid = \int_{M_0} d^3 x F + \int_{\partial M_0} d^2 x A .$$ \hspace{1cm} (2.11)$$

Using (2.9), one then finds that the modified action varies into

$$\delta S = \int_{\partial M_0} d^2 x i \bar{\chi}^\alpha (\epsilon_\alpha - n_\alpha \gamma^\alpha \beta \epsilon_\beta) ,$$ \hspace{1cm} (2.12)$$

which is set to zero by the conditions (2.2) regardless of the choice of boundary conditions on the component fields in J_0.

As a second example, we review briefly the construction of “SUSY without b.c.” actions in rigid 4D N=1. Here, the action is determined by a chiral superfield J_0 satisfying $\nabla_{\dot{\alpha}} J_0 = 0$ with components

$$J_0 \mid = A , \hspace{1cm} D_\alpha J_0 \mid = i \chi_\alpha , \hspace{1cm} D^\alpha D_\alpha J_0 \mid = -2 i F .$$ \hspace{1cm} (2.13)$$

These components transform under SUSY as

$$\delta A = i \epsilon^\alpha \chi_\alpha , \hspace{1cm} \delta \chi_\alpha = \sigma^m_{\alpha \beta} \bar{\bar{\gamma}}_\beta \partial_m A + F \epsilon_\alpha , \hspace{1cm} \delta F = \bar{\epsilon}^\alpha \sigma^m_{\alpha \beta} \partial_m \chi_\beta .$$ \hspace{1cm} (2.14)$$

The modified F-density rule in this case gives the action as

$$S = \int_{M_0} d^4 x \frac{1}{2} \left[D^\alpha D_\alpha J_0 \mid + \bar{D}^\dot{\alpha} \bar{D}_{\dot{\alpha}} \bar{J}_0 \mid \right] + \int_{\partial M_0} d^3 x \left[J_0 \mid + \bar{J}_0 \mid \right]$$

$$= \int_{M_0} d^4 x (F + \bar{F}) + \int_{\partial M_0} d^3 x (A + \bar{A}) .$$ \hspace{1cm} (2.15)$$

As before, it is easy to show that the variation of this modified F-density under (2.14) vanishes subject to a chirality condition on ϵ such as (2.2) without the need for any boundary conditions on J_0.

3 Superform invariants without boundaries

We next review the standard superform approach to the construction of supersymmetric invariants ignoring boundary effects, following the discussion in [25]. Here we will show that the construction of an invariant action amounts to finding a super d-form J_d that is closed, $d J_d = 0$, and that is nontrivial under the cohomology equivalence $J_d \sim J_d + d \lambda_{d-1}$.

Consider a supermanifold \mathcal{M} with d bosonic dimensions and n fermionic dimensions. Let \mathcal{M}_0 be the d-dimensional body of \mathcal{M}, without boundary: $\partial \mathcal{M}_0 = 0$. Let $b : \mathcal{M} \rightarrow \mathcal{M}_0$
be the projection of the supermanifold onto its body and let \(s : M_0 \to M \) be a section of this projection. Finally, let \(J_d \) be an arbitrary super \(d \)-form on \(M \). We can then consider the integral of the pullback of \(J_d \) to \(M_0 \),

\[
S = \int_{s(M_0)} J_d = \int_{M_0} s^* J_d ,
\]

which will form our action. As \(M_0 \) has no boundary, we find that \(S[J_d] = S[J_d + d\lambda] \) so the action depends only on the de Rham cohomology class of \(J_d \), i.e.

\[
J_d \sim J_d + d\lambda_{d-1} .
\]

In order for the action to be nonzero, we require that \(J_d \) not be exact. Since we consider only forms \(\lambda_{d-1} \) that can be constructed from the physical fields of the theory, the cohomology can be non-trivial even if the spacetime has trivial topology.

The condition that \(S \) is invariant under supersymmetry is equivalent to the statement that \(S \) is independent of the choice of even submanifold \(s(M_0) \subset M \) and so is independent of the section \(s \) chosen. To find the corresponding condition on \(J_d \), we consider a one-parameter family of diffeomorphisms \(f_t : M \to M \). These give rise to a one-parameter family of even submanifolds \(s_t(M_0) \) where \(s_t = f_t \circ s \). The diffeomorphism \(f_t \) then transforms \(S \) to

\[
S_t = \int_{s_t(M_0)} J_d = \int_{M_0} s^* \circ f_t^* J_d .
\]

If \(S \) is independent of the section \(s \), then it will be invariant under this diffeomorphism, so

\[
\frac{dS_t}{dt} = 0 ,
\]

for any diffeomorphism family \(f_t \). Then, since

\[
\frac{d(f_t^* \omega)}{dt} = L_v \omega ,
\]

for any superform \(\omega \), where \(v \) is the vector field generating the diffeomorphism family \(f_t \), we find that \(S \) will be independent of the section \(s \) if

\[
0 = \frac{dS_t}{dt} ,
\]

\[
= \int_{M_0} s^* L_v J_d ,
\]

\[
= \int_{M_0} s^* (di_v J_d + i_v dJ_d) ,
\]

\[
= \int_{M_0} (d(s^* i_v J_d) + s^* i_v dJ_d) ,
\]

\[
= \int_{M_0} s^* i_v dJ_d ,
\]

(3.6)
which is solved for arbitrary v if $dJ_d = 0$.

Thus we find that we can build a supersymmetric action from a super d-form J_d with $dJ_d = 0$ but where J_d is cohomologically non-trivial under $J_d \sim J_d + d\lambda_{d-1}$. This implies that J_d is a representative of a class in the de Rham cohomology group $H^d(M)$. As we have just seen that the action is independent of the section s chosen, it is then natural to chose s to be the section where all fermionic coordinates vanish.

To make the discussion more specific, we now need to refine the notation. We will label directions on the supermanifold tangent space with an index $A = 1, \ldots, d+n$; the tangent space then splits into bosonic directions carrying an index $a = 0, \ldots, d-1$ and fermionic directions carrying an index $\alpha = 1, \ldots, n$. Any super P-form can be written as a sum of super (p,q)-forms with $p+q = P$:

$$\Omega_P = \frac{1}{P!} E^{A_1} \ldots E^{A_P} \Omega_{A_1 \ldots A_P} = \sum_{i=0}^{P} \omega_{P-i,i},$$ \hspace{1cm} (3.7)

where

$$\omega_{p,q} = \frac{1}{p!q!} E^{a_{p+q}} \ldots E^{a_1} E^{a_{p+q}} \ldots E^{a_1} \omega_{a_1 \ldots a_p \alpha_1 \ldots \alpha_q}. \hspace{1cm} (3.8)$$

Letting $P = d$, we can write the closure condition on J_d as

$$\nabla_{[A_1} J_{A_2 \ldots A_{d+1}]} + \frac{d}{2} T_{[A_1 A_2]}^B J_B | A_3 \ldots A_{d+1}] = 0,$$ \hspace{1cm} (3.9)

where ∇_A is the covariant derivative on the supermanifold, T_{AB}^C is the torsion and $[..]_+$ indicates graded antisymmetrization. Similarly, we find that under the cohomology relation $J_d \sim J_d + d\lambda_{d-1}$, J_d is equivalent to $J_d + \delta J_d$ where δJ_d is given by

$$\delta J_{A_1 \ldots A_D} = \frac{1}{(d-1)!} \left(\nabla_{[A_1} \lambda_{A_2 \ldots A_d]} + \frac{d-1}{2} T_{[A_1 A_2]}^B \lambda_B | A_3 \ldots A_d] \right).$$ \hspace{1cm} (3.10)

We can then split the super d-form J_d up into its super (p,q)-form parts $J_{p,q}$ with $p+q = d$ and can consequently analyse the constraint that J_d be closed but not exact in terms of constraints on these parts \cite{25}. We will refer to the nonvanishing $J_{p,q}$ with highest q as the generator of J_d. This must satisfy

$$T_{(a_1 a_2}^{a_{p+q} A_1 \ldots A_p | a_3 \ldots a_{q+2})} = 0.$$

In the case of rigid 3D N=1 supersymmetry, the only nonvanishing component of the torsion is $T_{\alpha \beta}^c = i \gamma_c \alpha \beta$. Then (3.11) implies that the generator is of the form $J_{1,2} \sim \gamma_{1,2} J_0$ where J_0 is a superscalar and $\gamma_{1,2}$ is a single gamma matrix expressed as a superform.
Using the closure condition (3.9), we can then find the other parts of J_d iteratively, obtaining

$$
J_{\alpha \beta \gamma} = 0 , \\
J_{aba} = \epsilon_{abc} \gamma^c \alpha \beta D_\beta J_0 , \\
J_{abc} = i\epsilon_{abc} D_\alpha D_\alpha J_0 .
$$

(3.12)

Similarly, in rigid 4D N=1 supersymmetry, the nonvanishing components of the torsion are just $(T_{\alpha \dot{\beta} c} = i\sigma_{\alpha \dot{\beta}}^c, T_{\dot{\alpha} \beta c} = i\overline{\sigma}^c_{\dot{\alpha} \beta})$. This means that (3.11) implies that the generator of J_d is given by $J_{2,2} \sim \gamma_{2,2} J_0$. Once again, we can use (3.9) iteratively to construct the closed superform J_d, which is given by

$$
\begin{align*}
J_{aba\dot{\beta}} &= 2\sigma_{a b \dot{\beta}} J_0 , \\
J_{ab\dot{c}} &= \epsilon_{abcd} \alpha \beta D_\alpha D_\beta J_0 , \\
J_{a\dot{b}c} &= i\epsilon_{abcd} \alpha \beta D_\alpha D_\beta J_0 , \\
J_{a\dot{b}\dot{c}} &= -i\epsilon_{abcd} \alpha \beta D_\alpha D_\beta J_0 , \\
J_{abcd} &= \frac{1}{2} (D^\alpha D_\alpha J_0 + \overline{D}\alpha D_\alpha J_0) , \\
\overline{D}\alpha J_0 &= 0 ,
\end{align*}
$$

(3.13)

with all other components vanishing. The unmodified F-density rules are then obtained by substituting these closed superforms into (3.1).

4 Superform invariants with boundaries

We now combine the ideas of Sections 2 and 3. This will allow us to arrive at a prescription for deriving the boundary modifications to the F-density rules, resulting in a “SUSY without b.c.” action. To do this, we again begin by considering a supermanifold \mathcal{M} with d bosonic dimensions and n fermionic dimensions, a d-dimensional body \mathcal{M}_0 and a projection to the body $b : \mathcal{M} \to \mathcal{M}_0$ with a section $s : \mathcal{M}_0 \to \mathcal{M}$. However, we now consider \mathcal{M}_0 to have a boundary $\partial \mathcal{M}_0$ and a mapping $c : \partial \mathcal{M}_0 \to \mathcal{M}_0$. As before, let J_d be an arbitrary d-form on \mathcal{M} but also let I_{d-1} be an additional arbitrary $(d-1)$-form on \mathcal{M}. We again consider building an action by integrating over \mathcal{M}_0 but now, motivated by the “SUSY without b.c.” approach, we also include an additional boundary-localised part integrated over $\partial \mathcal{M}_0$:

$$
S = \int_{\mathcal{M}_0} s^* J_d - \int_{\partial \mathcal{M}_0} c^* \circ s^* I_{d-1} .
$$

(4.1)

The equivalence (3.2) now becomes modified to

$$
\begin{pmatrix} J_d \\ I_{d-1} \end{pmatrix} \sim \begin{pmatrix} J_d + d\lambda_{d-1} \\ I_{d-1} + \lambda_{d-1} - d\kappa_{d-2} \end{pmatrix} .
$$

(4.2)

As before, if a nonvanishing action is to exist, one must have (J_d, I_{d-1}) non-trivial under this equivalence.
Now consider the effect of a one-parameter family of superdiffeomorphisms \(f_t : \mathcal{M} \rightarrow \mathcal{M} \) as before. As we saw in Section 2, we cannot expect that the action on a manifold with boundary will be invariant under the full set of superdiffeomorphisms. Instead, it can only be invariant under a subset of diffeomorphisms such that both single transformations and composites of transformations preserve the bosonic normal to the boundary. This condition restricts us to diffeomorphisms generated by a subspace of supervectors \(\mathcal{V} \subset T\mathcal{M} \) where

\[
i_v^{(1)} n = 0 , \quad i_v^{(2)} n = 0 , \quad i_{[v^{(1)},v^{(2)}]} n = 0 , \quad \forall \quad v^{(1)}, v^{(2)} \in \mathcal{V} , \quad (4.3)
\]

where \(n = E^a n_a \) is the outward-pointing bosonic unit normal form. These constraints imply that

\[
v^{(1)} A v^{(2)} T_{AB} C n_C = 0 . \quad (4.4)
\]

which we will refer to as the quadratic constraint.

Under the surviving diffeomorphisms, the transformed action is given by

\[
S_t = \int_{\mathcal{M}_0} s^* \circ f_t^* J_d - \int_{\partial \mathcal{M}_0} c^* \circ s^* \circ f_t^* I_{d-1} . \quad (4.5)
\]

Thus, the action will be supersymmetric if

\[
0 = \frac{dS_t}{dt} = \int_{\mathcal{M}_0} s^* \mathcal{L}_v J_d - \int_{\partial \mathcal{M}_0} c^* \circ s^* \mathcal{L}_v I_{d-1} ,
\]

\[
= \int_{\mathcal{M}_0} s^*(di_v J_d + i_v dJ_d) - \int_{\partial \mathcal{M}_0} c^* \circ s^*(di_v I_{d-1} + i_v dI_{d-1}) ,
\]

\[
= \int_{\mathcal{M}_0} (d(s^* i_v J_d) + s^* i_v dJ_d) - \int_{\partial \mathcal{M}_0} (d(c^* \circ s^* i_v I_{d-1}) + c^* \circ s^* i_v dI_{d-1}) ,
\]

\[
= \int_{\mathcal{M}_0} s^* i_v dJ_d + \int_{\partial \mathcal{M}_0} c^* \circ s^* i_v (J_d - dI_{d-1}) . \quad (4.6)
\]

To solve this, both the first and the second term must vanish separately. The vanishing of the first term is achieved by imposing \(dJ_d = 0 \) as before. This means that when boundary effects are included, the bulk action is constructed exactly in the same way as when they are ignored. Clearly, the vanishing of the second term places some constraints on \(I_{d-1} \). On the surface, it would appear that one requires \(J_d = dI_{d-1} \). However, this constraint forces \(J_d \) and \(I_{d-1} \) to be exact under the equivalence \((4.2)\) and so makes the action vanish. In fact this constraint is not required as \(v \) is not a general vector but one which must satisfy \((4.3)\). To proceed, we now impose \(dJ_d = 0 \) and consider the second term in more detail:

\[
\frac{dS}{dt} = \int_{\partial \mathcal{M}_0} c^* \circ s^* i_v (J_d - dI_{d-1}) = 0 . \quad (4.7)
\]
In the rigid case, this implies
\[n \wedge \left[i_v(J - dI)\right]_{d-1,0} = 0 . \] (4.8)

Then, expanding out \(J_d - dI_{d-1} \) in terms of its super \((p, q)\)-form parts, we find
\[(i_v n)(J - dI)_{d,0} + n \wedge (i_v n_1(J - dI)_{d-1,1}) = 0 . \] (4.9)

The first term of this vanishes upon using (4.3) and the remaining constraint is expressed in components as
\[n_\alpha v_{\varepsilon_1 a_1 \ldots a_d} (J_{\varepsilon a_2 \ldots a_d} - d\nabla_{[\varepsilon} I_{a_2 \ldots a_d]} - \frac{d(d-1)}{2} T_{[\varepsilon a_2]} I_{B|a_3 \ldots a_d]} \right) = 0 . \] (4.10)

By making an ansatz for \(I_{d-1} \) which solves these equations, we can find the appropriate boundary completion to a given bulk action, which we will demonstrate with some examples in Section 5.

4.1 Relative Cohomology and the Superboundary

We now consider an alternative perspective on the above construction involving relative cohomology, which is helpful in illuminating additional structure in the bulk + boundary system. To do this, we recall that, given a \(d \) dimensional manifold \(\mathcal{A} \) and an inclusion \(\iota : \mathcal{B} \to \mathcal{A} \) of a \(d-1 \) dimensional submanifold \(\mathcal{B} \subset \mathcal{A} \), one can define
\[\Omega^*(\iota) = \sum_p \Omega^p(\iota) , \quad \text{where} \quad \Omega^p(\iota) = \Omega^p(\mathcal{A}) \oplus \Omega^{p-1}(\mathcal{B}) , \] (4.12)

and where \(\Omega^p(\mathcal{A}) \) is the set of \(p \)-forms on the manifold \(\mathcal{A} \). Then, considering \((A_p, B_{p-1}) \in \Omega^p(\iota)\) one can define a natural exterior derivative \(d^{(\iota)} : \Omega^p(\iota) \to \Omega^{p+1}(\iota) \) given by
\[d^{(\iota)}(A_p, B_{p-1}) = (dA_p, \iota^* A_p - dB_{p-1}) . \] (4.13)

The relative cohomology group \(H^p(\mathcal{A}, \mathcal{B}) \) is then defined to be the usual quotient of the \(d^{(\iota)} \)-closed forms in \(\Omega^p(\iota) \) by the \(d^{(\iota)} \)-exact ones. A \(d^{(\iota)} \)-closed element \((A_p, B_{p-1})\) has
\[dA_p = 0 , \quad \iota^* A_p = dB_{p-1} , \] (4.14)

\footnote{For an application of relative cohomology to the problem of large gauge transformations in 2-brane and 5-brane M-theory backgrounds, see Ref. [29].}
so A_p is closed and the pullback of A_p onto B is exact, while a $d^{(i)}$-exact element has
\[A_p = dC_{p-1} , \quad B_{p-1} = \iota^*C_{p-1} - dD_{p-2} . \] (4.15)

Next we can define the integral of (A_d, B_{d-1}) over the pair of spaces (A, B) by
\[\int_{(A,B)} (A_d, B_{d-1}) = \int_A A_d - \int_B B_{d-1} . \] (4.16)

Next we define the relative boundary operator $\partial^{(i)}$ to act on the pair (A, B) as
\[\partial^{(i)}(A, B) = (\iota(B) - \partial A, \partial B) , \] (4.17)
where $\iota : B \to \partial A$ such that $c_{\partial A} \circ \iota = \iota$ and $c_{\partial A} : \partial A \to A$. Using the standard version of Stokes’ theorem,
\[\int_A dA_{d-1} = \int_{\partial A} c_{\partial A}^* A_{d-1} , \] (4.18)
one can show that the generalised Stokes’ theorem relating $\partial^{(i)}$ and $d^{(i)}$ is
\[\int_{(A,B)} d^{(i)}(A_{d-1}, B_{d-2}) = -\int_{\partial^{(i)}(A,B)} (c_{\partial A}^* A_{d-1}, c_{\partial B}^* B_{d-2}) . \] (4.19)

If we now consider the case where $\partial A = B$ and let $c = c_{\partial A} = \iota$, $\iota = 1$, $c_{\partial B} = 0$ we can construct an integral of the form
\[S[(A_d, B_{d-1})] = \int_{(A, \partial A)} (A_d, B_{d-1}) . \] (4.20)
Then, if (A_d, B_{d-1}) is $d^{(i)}$-exact, one finds
\[S[d^{(i)}(C_{d-1}, D_{d-2})] = \int_{\partial^{(i)}(A, \partial A)} (c^* C_{d-1}, 0) = 0 . \] (4.21)
Consequently, the integral (4.20) depends only on the relative cohomology class of (A_d, B_{d-1}):
\[S[(A_d, B_{d-1})] = S[(A_d + dC_{d-1}, B_{d-1} + c^* C_{d-1} - dD_{d-2})] . \] (4.22)
If $A = M_0$, $B = \partial M_0$, $A_d = s^* J_d$ and $B_{d-1} = c^* \circ s^* I_{d-1}$, then this becomes equivalent to (4.2).

Next we define the “superboundary” $\overline{\mathcal{M}}$ to be the manifold with $d-1$ bosonic dimensions and $\frac{d}{2}$ fermionic dimensions given by the locus of the boundary ∂M_0 under the

4 The notion of a boundary superspace has appeared previously in the context of two-dimensional supersymmetry in [39].
surviving supersymmetry transformations \((4.3)\). Then, choosing \(z^M\) to be coordinates on \(\tilde{\mathcal{M}}\) and \(\tilde{z}^\tilde{M}\) to be coordinates on \(\tilde{\mathcal{M}}\), we may define the embedding matrix

\[
E_A^A = E_A^\tilde{M} \partial_{\tilde{M}} z^M E_M^A.
\]

(4.23)

We can then follow the standard description of one supermanifold embedded into another one \([31]\). We thus impose the condition that the odd tangent space of \(\tilde{\mathcal{M}}\) lies within the odd tangent space of \(\mathcal{M}\). This implies that the embedding matrix satisfies

\[
E_{\tilde{\alpha}}^a = 0.
\]

(4.24)

Combining this with the defining equation for the torsion and extracting the dimension-zero part, we obtain

\[
E_{\tilde{\alpha}}^a E_{\tilde{\beta}}^c T_{\alpha \beta}^\varepsilon E_{\varepsilon}^c = 0,
\]

(4.25)

where \(T_{\alpha \beta}^\varepsilon\) is the dimension-zero part of the torsion on \(\tilde{\mathcal{M}}\). Contracting the indices on this equation with two fermionic vectors \(\tilde{v}_{\tilde{1}}\) and \(\tilde{v}_{\tilde{2}}\) defined on \(\tilde{\mathcal{M}}\) and with the bosonic normal \(n_a\) gives

\[
\tilde{v}_{\tilde{1}} \tilde{v}_{\tilde{2}} E_{\tilde{\alpha}}^a E_{\tilde{\beta}}^c T_{\alpha \beta}^\varepsilon n_\varepsilon = 0,
\]

(4.26)

where we have used \(E_\varepsilon^\varepsilon n_\varepsilon = 0\). This shows that the quadratic constraint \((4.4)\) is satisfied if

\[
v^\alpha = \tilde{v}_{\tilde{\alpha}} E_{\tilde{\alpha}}^\alpha
\]

(4.27)

where \(\tilde{v}_{\tilde{\alpha}}\) is any odd supervector on \(\tilde{\mathcal{M}}\).

Next let \(\tilde{s} : \partial M_0 \to \tilde{\mathcal{M}}\) and \(c : \tilde{\mathcal{M}} \to \mathcal{M}\) in such a way that we have a commuting diagram of maps:

\[
\begin{array}{ccc}
\partial M_0 & \xrightarrow{c} & M_0 \\
\tilde{s} \downarrow & & \downarrow s \\
\tilde{\mathcal{M}} & \xrightarrow{\tilde{c}} & \mathcal{M}
\end{array}
\]

(4.28)

with corresponding pullbacks that satisfy \(\tilde{s}^* \circ \tilde{c}^* = c^* \circ s^*\). As before, we define a bulk superform \(J_d\) on \(\mathcal{M}\) but we now define the boundary superform \(\tilde{I}_{d-1}\) on \(\tilde{\mathcal{M}}\). The action we consider is then given by

\[
S = \int_{(M_0, \partial M_0)} (s^* J_d, \tilde{s}^* \tilde{I}_{d-1}).
\]

(4.29)

Under an odd superdiffeomorphism, this is transformed to

\[
S_t = \int_{(M_0, \partial M_0)} (s^* \circ f_t^* J_d, \tilde{s}^* \circ f_t^* \tilde{I}_{d-1}),
\]

(4.30)
where \(f_t^* : \mathcal{M} \rightarrow \mathcal{M} \) is a one-parameter family of superdiffeomorphisms generated by \(v^\alpha \) satisfying (4.27) and \(\tilde{f}_t^* : \tilde{\mathcal{M}} \rightarrow \tilde{\mathcal{M}} \) is a one-parameter family of superdiffeomorphisms generated by \(\tilde{v}^\tilde{\alpha} \). Proceeding as before, one can show that the action is supersymmetric if

\[
0 = \frac{dS_t}{dt} = \int_{(M_0, \partial M_0)} \left(s^* i_v dJ^a d \tilde{I}_{d-1} - \tilde{c}^* J_d \right),
\]

which implies that

\[
dJ^a = 0, \quad \tilde{c}^* J_d = d \tilde{I}_{d-1} \quad \text{so} \quad d^{(c)}(J_d, \tilde{I}_{d-1}) = 0.
\]

We consequently find that the pair \((J_d, \tilde{I}_{d-1})\) is an element of the relative cohomology group \(H^d(M, \tilde{M})\) and that the invariant action is the natural generalisation in the relative cohomology framework of the case without a boundary.

5 Examples

5.1 3D and 4D Ectoplasm with an Edge

As an example of the construction given in Section 4, we now consider the rigid 3D case, for which the only nonvanishing component of the torsion is \(T_{a\beta c}^\gamma = i \gamma c a\beta \). Accordingly, we solve the constraints (4.3) by imposing

\[
n_a v^a = 0, \quad n_a \gamma_a^\alpha \beta v^\beta = v^\alpha .
\]

We know that \(J_3 \) is given by (3.12) and so we make the ansatz that \(I_2 \) is given by

\[
I_{ab} = -\epsilon_{abc} n^c J_0 , \quad I_{ab} = 0 .
\]

Substituting this into (4.10), we find that

\[
0 = \epsilon^{abc} n_c v^\beta (\epsilon_{abcd} \gamma_c^d \beta^a D_0^a J_0 + \epsilon_{abcd} n^d D_\beta J_0) ,
\]

which can be rearranged to give

\[
0 = D^a J_0 (v^\alpha - \gamma^\alpha a^\beta n_a v^\beta) .
\]

This is then satisfied by imposing the constraint (5.1). Substituting the derived values of \(J_d \) (3.12) and \(J_{d-1} \) (5.2) into (4.1), we find that the boundary modified F-density is given by

\[
\int_{M_0} d^3 x i D^a D_\alpha J_0 \mid + \int_{\partial M_0} d^2 x J_0 \mid .
\]
As another example, consider the rigid 4D case. Here, the nonvanishing components of the torsion are \((T_{\alpha\beta}^c = i\sigma^c_{\alpha\beta}, T_{\alpha\beta}^c = i\sigma^c_{\alpha\beta})\), so we solve (4.13) by imposing

\[n_a v^a = 0, \quad \sigma^- n_a \bar{v}_a = v_a. \]

(5.6)

Then, by considering the form of (4.10) and the superform (3.13), we make the following ansatz for \(I_3\):

\[I_{abc} = -\epsilon^{abcd}n_d (J_0 + \overline{J}_0), \quad I_{abc} = 0. \]

(5.7)

Substituting this into (4.10), we find

\[0 = \epsilon^{abcd}n_d v^a (\epsilon_{abce}\sigma^e_{\alpha\alpha}D_{\alpha} + \epsilon_{abce}n^e D_{\alpha} J_0) \]

\[+ \epsilon^{abcd}n_d \bar{v}_a (\epsilon_{abce}\sigma^e_{\alpha\alpha}D_{\alpha} + \epsilon_{abce}n^e D_{\alpha} J_0), \]

which can be rearranged to give

\[0 = D^\alpha J_0 (\sigma^- n_e \bar{v}_a - v_a) + \overline{D}^\alpha \overline{J}_0 (\sigma^- n_e v_a - \bar{v}_a). \]

(5.8)

(5.9)

As before, this is satisfied by imposing the constraint (5.6). Rewriting (4.1) using (3.13) and (5.7), we find

\[S = \int_{M_0} d^4 x \frac{1}{2} \left[D^\alpha D_{\alpha} J_0 \right] + \int_{\partial M_0} d^3 x \left[J_0 + \overline{J}_0 \right]. \]

(5.10)

This reproduces the rigidly supersymmetric results of references [17] and [18]. In a similar fashion, one can use the present method to deduce the appropriate boundary modification to any superform action and hence obtain the corresponding “SUSY without b.c.” superfield action.

5.2 5D Ectoplasm with an Edge

Having reproduced the known rigid “SUSY without b.c.” results, we can use the present “Ectoplasm with an Edge” formalism to derive the boundary modifications to the rigid F-density in 5D supersymmetry. As far as we know, this will be a new result. In standard 5D superspace without boundaries, actions can be built by considering a linear superfield \(J_{ij}\), which satisfies by definition

\[J^{ij} = J^{(ij)}, \quad D^{(i} J^{jk)} = 0, \]

(5.11)

where \(i\) is an \(SU(2)\) doublet index with respect to which the spinors are symplectic-Majorana:

\[\bar{v}_\alpha^i = -\epsilon^{\alpha\beta} \epsilon_{ij} v^i_\beta. \]

(5.12)
We take the only non-vanishing component of the torsion to be \(T_{\alpha i \beta j}^c = i \gamma^c_{\alpha \beta i j} \). The standard F-density then reads

\[
S = \int_{M_5} d^5 x i D^\alpha D_\alpha J_{ij} \bigg|.
\]

To find the appropriate boundary modification to this action, we begin by finding the relevant closed super 5-form. The construction of this superform is different from the cases considered previously as it turns out that the closed super 5-form that we will construct is of a particular type known as a Chern-Simons superform.

We begin the construction by considering the closed super 4-form given by

\[
X_{\alpha i \beta j \gamma k \lambda \mu} = 0, \quad X_{\alpha ai \beta j} = -12i \gamma_{\alpha ai \beta j} J_{ij}, \quad X_{abai \beta j} = -4 \gamma_{abai \beta j} D_\alpha^i D_\alpha^j J_{ij}, \quad X_{abcd} = -i \gamma_{abcd} D_\alpha^i D_\alpha^j J_{ij}.
\]

(5.14)

Using Poincaré’s lemma, we can then write \(X_4 = dQ_3 \), where generally \(Q_3 \) cannot be expressed solely in terms of \(J_{ij} \) and its derivatives. For example, in the case where the action describes the kinetic terms of 5D super Yang-Mills, \(X_4 = \text{tr} F_2 F_2 \), where \(F_{2,0}| \) is the Yang-Mills field strength, so \(J_{ij} \) is gauge invariant. However, \(Q_{3,0}| \) is the Chern-Simons 3-form, which is not gauge-invariant and cannot be built solely from \(J_{ij} \).

We next proceed by considering the super 6-form described by

\[
W_6 = C_{0,2} X_4, \quad X_{\alpha i \beta j} = 0, \quad X_{abai \beta j} = -12i \gamma_{abai \beta j} J_{ij}, \quad X_{abcd} = -i \gamma_{abcd} D_\alpha^i D_\alpha^j J_{ij}.
\]

(5.15)

The possibility of writing \(W_6 \) both as \(dZ_5 \) and as \(dK_5 \) is known as Weil triviality. In consequence of the Weil triviality, we can form a closed super 5-form from the difference: \(J_5 = K_5 - Z_5 \), the integral of which gives the action (5.13)\(^5\).

As before, the presence of a boundary in the spacetime manifold partially breaks the supersymmetry, forcing us to impose conditions (4.3). One might think that, by analogy with the 3D and 4D examples, the quadratic constraint (4.4) could be solved by imposing

\[
n_{\alpha i} \gamma^\alpha_{\beta \alpha} v_{\beta i} = v_{\alpha i}.
\]

(5.16)

\(^5\)An alternative for \(Z_5 \) can be constructed in a chosen \(\theta_{ai} \) frame as \(Z_5 = \frac{1}{2} \theta_{0,1} X_4 \), where \(\theta_{0,1} = E_{\alpha i} \theta_{ai} \). This can easily be shown to satisfy \(dZ_5 = W_6 \), but it does not transform as a superform under superdiffeomorphisms owing to the explicit \(\theta_{0,1} \) term.
However, this is not the case since imposing (5.12) and (5.16) simultaneously would imply that the spinor \(v_i^\alpha \) is identically zero. Instead, we solve (4.3) by imposing

\[n_a v^a = 0 , \quad m_I n_a \sigma^I j \gamma^a_{\alpha} \beta v_{\beta j} = v_{\alpha i} , \quad (5.17) \]

where \(I = 1, 2, 3 \) is an \(SU(2) \) triplet index and \(\sigma^I_{ij} \) are the Pauli matrices; \(m_i \) is an arbitrary \(SU(2) \) normalised constant triplet. Combining this with (5.12) now does not imply that \(v_i^\alpha = 0 \). We see from this that the introduction of the boundary has not only broken 5D supersymmetry and Poincaré symmetry, but it has also broken the \(SU(2) \) symmetry by forcing us to introduce the vector \(m_I \) which picks out a fixed direction in \(SU(2) \).

We thus propose that the boundary superform is given by

\[I_{abcd} = 6 \epsilon_{abcde} n^e m_I \sigma^{lij} J_{ij} , \quad I_{aibcd} = 0 ; \quad (5.18) \]

we then find that substituting (5.15) and (5.18) into the requirement (4.10) gives

\[0 = \epsilon^{abcd} n_e v^{\alpha i}(4i \gamma_{abcda} \beta D_{\beta}^i J_{ij} - 6 \epsilon_{abcdef} n^f m_I \sigma^{fjk} D_{\alpha i} J_{jk}) , \quad (5.19) \]

which can be rearranged to give

\[0 = D^{\alpha j} J_{ij}(n^\alpha \gamma^a_{\alpha} \beta v_{\beta i} + m_I \sigma^{lij} k^k v_{\alpha}^k) . \quad (5.20) \]

This is indeed satisfied by imposing (5.17). We therefore find that the 5D rigid boundary modified F-density is given by

\[S = \int_{M_0} d^5 x D_{\alpha}^i D_{ij} J_{ij} \bigg| + \int_{\partial M_0} d^4 x 6 m_I \sigma^{lij} J_{ij} \bigg| . \quad (5.21) \]

6 Conclusion

In this paper, we have shown how the ectoplasm formalism for the construction of supersymmetric invariants via closed forms in superspace can be adapted to supersymmetric systems on manifolds with boundaries. A natural extension of this to local supersymmetry will be considered in a separate paper.

An important question that we have not addressed here is whether such a formalism can be applied to theories for which no off-shell formalism is available, such as maximal super Yang-Mills and maximal supergravity. The ectoplasm formalism has proven useful in characterising the properties of candidate ultraviolet counterterms in these theories [26, 27, 28], despite the on-shell character of their supersymmetries. An intermediate situation exists for systems formulated in harmonic superspace, involving an infinite number of
auxiliary fields, such as 8-supercharge hypermultiplet models and fully supercovariantised 8-supercharge SYM. These have appropriate harmonic superspace formulations in four [40] and six dimensions [41], and have been discussed ectoplasmically in [42]. The great advantage of all off-shell formalisms for theories on manifolds with boundaries is that one can straightforwardly include extra boundary matter supermultiplets. Their boundary actions in an off-shell formulation are separately supersymmetric, although they may also need to be covariantised by couplings to bulk gauge and supergravity fields.

An open question concerns the adaptation of the present boundary formalism to situations without a full off-shell supersymmetry formulation. Given the reduction in unbroken supersymmetry on the boundary, one possibility might be to generalise the present construction to cases where just the surviving supersymmetry is realised off-shell.

In this paper, we have also developed the relation between the boundary theory formulation and the superembedding formalism which has been employed in the study of worldvolume theories of supersymmetric \(p \)-branes [30, 31, 32, 33, 34, 35]. In the superembedding program, one implements the requirements of \(\kappa \)-symmetry in a natural geometrical context by the embedding conditions, commensurate with a reduction in the degree of unbroken supersymmetry on the brane worldvolume. In a boundary theory construction, this corresponds to the reduction in unbroken supersymmetry on the boundary. The superembedding formalism describes the natural dynamics of a brane itself, \(i.e. \) the dynamics of the Goldstone multiplet corresponding to its broken translation symmetry, supersymmetry and their superpartners. In the present paper, we have not focused attention on this Goldstone supermultiplet. But in braneworld and boundary contexts, such Goldstone supermultiplets play key rôles [5, 6, 43, 44], and it will be important to distinguish the dynamics of these “Goldstone” multiplets from the other dynamics on the brane or boundary surfaces.

Acknowledgments

KSS would like to thank the Kavli Institute for Theoretical Physics for hospitality during the course of this work, and for support in part by the National Science Foundation under Grant No. NSF PHY05-51164. The work of KSS was also supported in part by the STFC under rolling grant PP/D0744X/1.
A Conventions

Throughout this paper, we use the convention that \(M = 1, \ldots, d + n \) is a supermanifold world index with \(A = 1, \ldots, d + n \) an index on the supermanifold tangent space. Similarly \(m = 0, \ldots, d - 1 \) is a bosonic submanifold world index with \(a = 0, \ldots, d - 1 \) an index on the bosonic submanifold tangent space. In our general discussions here, we will take \(\mu = 1, \ldots, n \) to be a fermionic world index and \(\alpha = 1, \ldots, n \) to be a fermionic tangent space index. We make use of a superspace covariant derivative defined by

\[
\nabla_A E_M^B = \partial_A E_M^B + \Omega_{AC}^B E_M^C, \quad \nabla_A E_B^M = \partial_A E_B^M - \Omega_{AB}^C E_C^M.
\]

Then the torsion is defined in terms of this connection as

\[
T_{AB}^C = -2\nabla[A E_B]^M E_M^C = 2\Omega_{(AB)}^C - 2\partial[A E_B]^M E_M^C.
\]

where \(\partial_A = E_A^M \partial_M \) and \(E_M^A \) is the supervielbein. In the rigid cases that we consider, the only nonvanishing component of the torsion is \(T_{\alpha\beta}^c = i\gamma^c \alpha\beta \) and the connection vanishes, \(\Omega_{AB}^C = 0 \). Then \(\nabla_A \) is simply given by

\[
\nabla_a = E_a^M \partial_M = \partial_a \quad \nabla_\alpha = E_\alpha^M \partial_M = \partial_\alpha - \frac{1}{2} i\gamma^c \alpha\beta \theta^c \partial_c = D_\alpha,
\]

where \(D_\alpha \) is the standard flat-superspace covariant derivative. Here, we have used conventions in which \(\theta^\alpha \) is real, which means that since \((\theta^\alpha \theta^\beta)^* = \theta^\beta \theta^\alpha \) it follows that \(\partial_\alpha \) is imaginary.

In rigid 3D supersymmetry, we use the conventions

\[
\epsilon_{\alpha\beta} = \epsilon^{\alpha\beta}, \quad \epsilon^{12} = 1,
\]

\[
\epsilon_{\alpha\beta}\epsilon^{\beta\gamma} = -\delta_\alpha^\gamma, \quad \psi^\alpha = \epsilon^{\alpha\beta} \psi_\beta, \quad \psi_\beta = \psi^\alpha \epsilon_{\alpha\beta},
\]

\[
E^A J_A = E^a J_a + E^\alpha J_\alpha, \quad [\theta^\alpha]^* = \theta^\alpha, \quad [D_\alpha]^* = -D_\alpha,
\]

\[
\{\gamma_\alpha, \gamma_\beta\}_\alpha^\beta = \delta_\alpha^\beta \eta_{ab}, \quad \eta_{ab} = \text{diag}(-1, +1, +1), \quad \gamma_{abc}^\alpha = \epsilon_{abc} \delta^\alpha_\beta,
\]

\[
\epsilon_{abc} \epsilon^{def} = -3! \delta_{[a}^d \delta_b^e \delta_c^f], \quad \epsilon^{102} = 1,
\]

\[
\{D_\alpha, D_\beta\} = -i\gamma^c \alpha\beta \partial_c, \quad T_{\alpha\beta}^c = i\gamma^c \alpha\beta.
\]

This implies the useful identities

\[
\gamma_{\alpha(\beta \delta \gamma)}^\delta = \epsilon_{abc} \gamma^b_{(\alpha \beta \gamma \gamma)}^c, \quad D^\beta D_\alpha D_\beta = \{D_\alpha, D^\beta D_\beta\} = 0.
\]
In rigid 4D supersymmetry, we use the conventions

\[\epsilon_{\alpha\beta} \epsilon^{\beta\gamma} = -\delta^\gamma_{\alpha} , \quad \psi^\alpha = \epsilon^{\alpha\beta} \psi_{\beta} , \quad \psi_{\beta} = \psi^\alpha \epsilon_{\alpha\beta} , \quad (A.11) \]

\[\epsilon_{\dot{\alpha}\dot{\beta}} \epsilon^{\dot{\alpha}\dot{\gamma}} = -\delta^\gamma_{\dot{\alpha}} , \quad \bar{\psi} = \epsilon^{\dot{\alpha}\dot{\beta}} \bar{\psi}_{\dot{\beta}} , \quad \bar{\psi}_{\dot{\beta}} = \bar{\psi} \epsilon_{\dot{\alpha}\dot{\beta}} , \quad (A.12) \]

\[[\epsilon_{\alpha\beta}]^* = \epsilon_{\dot{\alpha}\dot{\beta}} , \quad [\epsilon^{\alpha\beta}]^* = \epsilon^{\dot{\alpha}\dot{\beta}} , \quad (A.13) \]

\[\sigma^a_{\dot{\alpha}\dot{\beta}} = \epsilon^{\dot{\alpha}\dot{\beta}} \epsilon^a_{\dot{\alpha}\dot{\beta}} , \quad [\sigma^a_{\dot{\alpha}\dot{\beta}}]^* = \sigma^a_{\dot{\alpha}\dot{\beta}} , \quad (A.14) \]

\[E^A J_A = E^a J_a + E^\alpha J_\alpha + E^{\dot{\alpha}} J_{\dot{\alpha}} , \quad [\theta^\alpha]^* = \bar{\theta}^\dot{\alpha} , \quad [D_\alpha]^* = -\bar{D}_\dot{\alpha} , \quad (A.15) \]

\[\sigma^{ab}_{\alpha\beta} = \eta_{ab} \epsilon^{\alpha\beta} + \sigma^{ab}_{\alpha\beta} , \quad \eta_{ab} = \text{diag}(-1, +1, +1, +1) , \quad (A.16) \]

\[\sigma^{ab}_{\alpha\beta} = -\frac{i}{2} \sigma^{abcd} \epsilon_{cd\alpha\beta} , \quad \sigma^{\dot{a}\dot{b}}_{\dot{\alpha}\dot{\beta}} = +\frac{i}{2} \epsilon^{\dot{a}\dot{b}\dot{c}\dot{d}} \sigma_{\dot{c}\dot{d}\alpha\beta} , \quad (A.17) \]

\[\epsilon_{abcd} \epsilon^{efgh} = -4! \delta_{[a}^{e\delta_{f}^{g]} \delta_{\delta_{\beta}^{h}]} , \quad \epsilon^{0123} = +1 \] \quad (A.18)

\[\{D_\dot{\alpha}, D_{\dot{\beta}}\} = -i \sigma^{\dot{a}\dot{b}}_{\dot{\alpha}\dot{\beta}} \partial_c , \quad T_{\dot{\alpha}\dot{\beta}}^c = i \sigma^{\dot{a}\dot{b}}_{\dot{\alpha}\dot{\beta}} , \quad T_{\alpha\beta}^c = i \sigma^{\alpha\beta} \quad (A.19) \]

which implies the useful identities

\[\sigma^{a\dot{a}}_{\dot{\alpha}\dot{\beta}} = -\frac{1}{2} \sigma^{ab}_{\alpha\beta} \epsilon^{\dot{\alpha}}_{\dot{\beta}} + \frac{1}{2} \sigma^{ab}_{\alpha\beta} \epsilon^{\dot{\beta}}_{\dot{\alpha}} , \quad D_\alpha D_{\beta} = -\frac{1}{2} \epsilon^{\alpha\beta} D^\gamma D_\gamma , \quad D_\alpha D_{\beta} D_\gamma = 0 . \quad (A.20) \]

In rigid 5D supersymmetry, we use the conventions

\[\epsilon_{ij} = \epsilon^{ij} , \quad \epsilon^{12} = 1 , \quad C^{\alpha\beta} = -C^{\beta\alpha} , \quad (A.21) \]

\[\epsilon_{ij} \epsilon^{jk} = -\delta^k_i , \quad \psi_{ij} = \epsilon^{ij} \psi_{ij} , \quad \psi_{ij} = \psi^i \epsilon_{ij} , \quad (A.22) \]

\[C_{\alpha\beta} C^{\beta\gamma} = -\delta^\gamma_{\alpha} , \quad \psi_{i}^{\alpha} = C^{\alpha\beta} \psi_{i}^{\beta} , \quad \psi_{i}^{\alpha} = \psi_{i}^{\alpha} C_{\alpha\beta} , \quad (A.23) \]

\[E^A J_A = E^a J_a + E^\alpha J_\alpha , \quad [\theta^\alpha]^* = \theta^\alpha , \quad [D_\alpha]^* = -D_\alpha , \quad (A.24) \]

\[\{\gamma_a , \gamma_b\}_{\alpha}^\beta = \delta_{\alpha}^\beta \eta_{ab} , \quad \eta_{ab} = \text{diag}(-1, +1, +1, +1, +1) , \quad \gamma^{abcde}_{\alpha} = i \epsilon^{abcde} \delta_{\alpha}^\beta , \quad (A.25) \]
\[\epsilon_{abcde} \epsilon^{fghij} = -5! \delta_i^f \delta_j^g \delta_c^h \delta_d^i \delta_e^j , \quad \epsilon^{01234} = 1 , \]
(A.26)

\[\{ D_{\alpha}, D_{\beta} \} = - i \gamma^c_{\alpha \beta} \epsilon_{ij} \partial_e , \quad T_{\alpha \beta}^c = i \gamma^c_{\alpha \beta} \epsilon_{ij} . \]
(A.27)

which implies the useful identities

\[\gamma_{\alpha \beta} \gamma^{ab} \gamma_{\delta \gamma} = 2 \left[\gamma^b_{[\alpha} \gamma C_{\beta] \delta} + (\gamma \leftrightarrow \delta) \right] , \]
\[\gamma_{\alpha \beta} \gamma^{cab} \gamma_{\delta \gamma} = -\frac{3}{4} \left[\gamma^{ab}_{(\beta \alpha} C_{\delta \gamma \alpha)} - (\alpha \leftrightarrow \beta) \right] - \frac{9}{4} \left[\gamma^{ab}_{[\alpha} C_{\beta] \gamma \delta} + (\gamma \leftrightarrow \delta) \right] , \]
\[\gamma^{[a}_{\alpha \beta} \gamma^{b]}_{\gamma \delta} = -\frac{3}{2} \left[\gamma^{ab}_{[\alpha} C_{\beta \gamma] \delta} - (\gamma \leftrightarrow \delta) \right] , \]
(A.28)

and also implies that for a Linear superfield satisfying \(D_{\alpha(i} J_{jk)} = 0 \)

\[D^k_{\alpha} D_{\beta k} J_{ij} = i \gamma^c_{\alpha \beta} \partial_a J_{ij} . \]
(A.29)

B \quad J_d \text{ closure conditions}

The condition that the 3D super 3-form be closed implies the non-trivially satisfied constraints

\[T_{(\alpha \beta^c} J_{\gamma \delta) e} = 0 \]
(B.1)

\[\nabla_{[a} J_{b] \alpha \beta} + \nabla_{(\alpha} J_{\beta) ab} = -\frac{1}{2} T_{\alpha \beta}^c J_{abc} \]
(B.2)

\[3 \nabla_{[a} J_{bc] \alpha} - \nabla_{\alpha} J_{abc} = 0 . \]
(B.3)

The condition that the 4D super 4-form be closed implies the non-trivial constraints

\[T_{\dot{\alpha}(\beta^c} J_{\gamma \delta) cd} = 0 \]
(B.4)

\[\nabla_{\dot{\alpha}} J_{\alpha \beta cd} = 2 T_{\dot{\alpha}(\alpha^e} J_{\beta) cde} \]
(B.5)

\[2 \nabla_{(\alpha} J_{\beta) cde} + 3 \nabla_{[c} J_{de] \alpha \beta} = 0 \]
(B.6)

\[\nabla_{\dot{\alpha}} J_{abcd} + \nabla_{\alpha} J_{\dot{\alpha} cde} = T_{\dot{\alpha} \alpha}^e J_{bcd e} \]
(B.7)

\[\nabla_{\alpha} J_{bcd e} + 4 \nabla_{[b} J_{cde] \alpha} = 0 . \]
(B.8)
The condition that the 5D super 4-form X_4 be closed implies the non-trivial constraints

\[T_{(\tilde{\alpha}\tilde{\beta})}^{\quad b}X_{\tilde{\gamma}\tilde{\lambda})ab} = 0 \] (B.9)

\[\nabla\tilde{\alpha}X_{\tilde{\beta}\tilde{\gamma})de} = T_{(\tilde{\alpha}\tilde{\beta})}^{\quad f}X_{\tilde{\gamma})def} \] (B.10)

\[2\nabla\tilde{\alpha}X_{\tilde{\beta})cde} + 3\nabla_{[c}\tilde{X}_{de]\tilde{\alpha}\tilde{\beta}} = T_{(\tilde{\alpha}\tilde{\beta})}^{\quad f}X_{cdef} \] (B.11)

\[\nabla\tilde{\alpha}X_{bcde} + 4\nabla_{[b}X_{cde]\tilde{\alpha} = 0 \] (B.12)

\[\nabla_{[a}X_{bcde] = 0 \] (B.13)

where $\tilde{\alpha}$ is a bi-index: $\tilde{\alpha} = \alpha i$.

The condition that W_6 be exact in terms of K_5, $W_6 = C_{0,2}X_4 = dK_5$, implies the non-trivial conditions

\[T_{(\tilde{\alpha}\tilde{\beta})}^{\quad d}K_{\tilde{\gamma}\tilde{\delta})def} = C_{(\tilde{\alpha}\tilde{\beta})X_{\tilde{\gamma}\tilde{\delta})ef} \] (B.14)

\[\nabla\tilde{\alpha}K_{\tilde{\beta}\tilde{\gamma})def} - T_{(\tilde{\alpha}\tilde{\beta})}^{\quad c}K_{\tilde{\gamma})def} = C_{(\tilde{\alpha}\tilde{\beta})X_{\tilde{\gamma})def} \] (B.15)

\[2\nabla\tilde{\alpha}K_{\tilde{\beta})cdef} + 4\nabla_{[c}K_{def]\tilde{\alpha}\tilde{\beta}} + T_{\tilde{\alpha}\tilde{\beta}}^{\quad b}K_{bcdef} = C_{\tilde{\alpha}\tilde{\beta}X_{cdef} \] (B.16)

\[\nabla\tilde{\alpha}K_{bcdef} - 5\nabla_{[b}K_{cdef]\tilde{\alpha} = 0 \] (B.17)

References

[1] P. Horava and E. Witten, “Heterotic and type I string dynamics from eleven dimensions,” Nucl. Phys. B 460, 506 (1996) [arXiv:hep-th/9510209].

[2] P. Horava and E. Witten, “Eleven-Dimensional Supergravity on a Manifold with Boundary,” Nucl. Phys. B 475, 94 (1996) [arXiv:hep-th/9603142].

[3] I. G. Moss, “Boundary terms for supergravity and heterotic M-theory,” Nucl. Phys. B 729, 179 (2005) [arXiv:hep-th/0403106].

[4] I. G. Moss, “Higher order terms in an improved heterotic M theory,” JHEP 0811, 067 (2008) [arXiv:0810.1662 [hep-th]].
[5] A. Lukas, B. A. Ovrut, K. S. Stelle and D. Waldram, “The universe as a domain wall,” Phys. Rev. D 59, 086001 (1999) [arXiv:hep-th/9803235].

[6] A. Lukas, B. A. Ovrut, K. S. Stelle and D. Waldram, “Heterotic M-theory in five dimensions,” Nucl. Phys. B 552, 246 (1999) [arXiv:hep-th/9806051].

[7] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension,” Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221].

[8] L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064].

[9] J. Khoury, B. A. Ovrut, P. J. Steinhardt and N. Turok, “The ekpyrotic universe: Colliding branes and the origin of the hot big Phys. Rev. D 64, 123522 (2001) [arXiv:hep-th/0103239].

[10] J. L. Lehners, “Ekpyrotic and Cyclic Cosmology,” Phys. Rept. 465, 223 (2008) [arXiv:0806.1245 [astro-ph]].

[11] T. G. Pugh, E. Sezgin and K. S. Stelle, “D=7 / D=6 Heterotic Supergravity with Gauged R-Symmetry,” JHEP 1102, 115 (2011) [arXiv:1008.0726 [hep-th]].

[12] J. Wess and B. Zumino, “Supergauge Invariant Extension Of Quantum Electrodynamics,” Nucl. Phys. B 78 (1974) 1.

[13] S. Ferrara and P. van Nieuwenhuizen, “Tensor Calculus For Supergravity,” Phys. Lett. B 76, 404 (1978).

[14] K. S. Stelle and P. C. West, “Tensor Calculus For The Vector Multiplet Coupled To Supergravity,” Phys. Lett. B 77, 376 (1978).

[15] S. Ferrara and P. Van Nieuwenhuizen, “Structure Of Supergravity,” Phys. Lett. B 78, 573 (1978).

[16] K. S. Stelle and P. C. West, “Relation Between Vector And Scalar Multiplets And Gauge Invariance In Nucl. Phys. B 145, 175 (1978).

[17] D. V. Belyaev and P. van Nieuwenhuizen, “Tensor calculus for supergravity on a manifold with boundary,” JHEP 0802, 047 (2008) [arXiv:0711.2272 [hep-th]].

[18] D. V. Belyaev and P. van Nieuwenhuizen, “Rigid supersymmetry with boundaries,” JHEP 0804, 008 (2008) [arXiv:0801.2377 [hep-th]].

[19] D. V. Belyaev and P. van Nieuwenhuizen, “Simple d=4 supergravity with a boundary,” JHEP 0809, 069 (2008) [arXiv:0806.4723 [hep-th]].
[20] D. Grumiller, P. van Nieuwenhuizen, “Holographic counterterms from local supersymmetry without boundary conditions,” Phys. Lett. B682, 462-465 (2010). [arXiv:0908.3486 [hep-th]].

[21] D. V. Belyaev and T. G. Pugh, “The supermultiplet of boundary conditions in supergravity,” JHEP 1010, 031 (2010) [arXiv:1008.1574 [hep-th]].

[22] T. Voronov, “Geometric integration theory on supermanifolds”, Sov. Sci. Rev. C: Maths. Phys 9 (1992) 1.

[23] S. J. Gates, “Ectoplasm has no topology: The prelude,” hep-th/9709104.

[24] S. J. Gates, M. T. Grisaru, M. E. Knutt-Wehlau and W. Siegel, “Component actions from curved superspace: Normal coordinates and ectoplasm,” Phys. Lett. B 421 (1998) 203, hep-th/9711151.

[25] N. Berkovits and P. S. Howe, “The cohomology of superspace, pure spinors and invariant integrals,” 0803.3024 [hep-th].

[26] G. Bossard, P. S. Howe and K. S. Stelle, “A note on the UV behaviour of maximally supersymmetric Yang-Mills Phys. Lett. B 682 (2009) 137 [arXiv:0908.3883 [hep-th]].

[27] G. Bossard, P. S. Howe and K. S. Stelle, “On duality symmetries of supergravity invariants,” JHEP 1101 (2011) 020 [arXiv:1009.0743 [hep-th]].

[28] G. Bossard, P. S. Howe, U. Lindstrom, K. S. Stelle and L. Wulff, “Integral invariants in maximally supersymmetric Yang-Mills theories,” arXiv:1012.3142 [hep-th].

[29] J. Kalkkinen and K. S. Stelle, “Large gauge transformations in M-theory,” J. Geom. Phys. 48, 100 (2003) [arXiv:hep-th/0212081].

[30] I. A. Bandos, D. P. Sorokin, M. Tonin, P. Pasti and D. V. Volkov, “Superstrings and supermembranes in the doubly supersymmetric geometrical approach,” Nucl. Phys. B 446 (1995) 79 [arXiv:hep-th/9501113].

[31] P. S. Howe and E. Sezgin, “Superbranes,” Phys. Lett. B 390 (1997) 133 [arXiv:hep-th/9607227].

[32] P. S. Howe, E. Sezgin and P. C. West, “Aspects of superembeddings,” arXiv:hep-th/9705093.

[33] D. P. Sorokin, “Superbranes and superembeddings,” Phys. Rept. 329 (2000) 1 [arXiv:hep-th/9906142].

[34] I. A. Bandos, D. P. Sorokin and D. Volkov, “On the generalized action principle for superstrings and supermembranes,” Phys. Lett. B 352 (1995) 269 [arXiv:hep-th/9502141].
[35] P. S. Howe, O. Raetzel and E. Sezgin, “On brane actions and superembeddings,” JHEP 9808 (1998) 011 [arXiv:hep-th/9804051].

[36] D. P. Sorokin, V. I. Tkach, D. V. Volkov and A. A. Zheltukhin, “From the Superparticle Siegel Symmetry to the Spinning Particle Proper Time Supersymmetry,” Phys. Lett. B 216 (1989) 302.

[37] D. P. Sorokin, V. I. Tkach and D. V. Volkov, “Superparticles, Twistors and Siegel Symmetry,” Mod. Phys. Lett. A 4 (1989) 901.

[38] L. Bonora, P. Pasti and M. Tonin, “Chiral anomalies in higher dimensional supersymmetric theories,” Nucl. Phys. B 286 (1987) 150.

[39] S. Nevens, A. Sevrin, W. Troost and A. Wijns, “Derivative corrections to the Born-Infeld action through beta-function calculations in N=2 boundary superspace,” JHEP 0608 (2006) 086 [arXiv:hep-th/0606255].

[40] A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, “Unconstrained N=2 Matter, Yang-Mills And Supergravity Theories In Harmonic Class. Quant. Grav. 1 (1984) 469.

[41] P. S. Howe, K. S. Stelle and P. C. West, “N=1 D = 6 Harmonic Superspace,” Class. Quant. Grav. 2 (1985) 815.

[42] T. Biswas and W. Siegel, “N=2 harmonic superforms, multiplets and actions,” JHEP 0111 (2001) 004 [arXiv:hep-th/0105084].

[43] J. L. Lehners, P. Smyth and K. S. Stelle, “Stability of Horava-Witten spacetimes,” Class. Quant. Grav. 22 (2005) 2589 [arXiv:hep-th/0501212].

[44] J. L. Lehners and K. S. Stelle, “D = 5 M-theory radion supermultiplet dynamics,” Nucl. Phys. B 661 (2003) 273 [arXiv:hep-th/0210228].