The systemic inflammatory response and clinicopathological characteristics in patients admitted to hospital with COVID-19 infection: Comparison of 2 consecutive cohorts

Donogh Maguire 1§, Conor Richards 2*, Marylynne Woods 2*, Ross Dolan 3, Jesse Wilson Veitch 2, Wei MJ Sim 2, Olivia EH Kemmett2, David C Milton 2, Sophie LW Randall 2, Ly D Bui 2, Nicola Goldmann 2, Amy Brown 1, Eilidh Gillen 1, Allan Cameron 4, Barry Laird 5,6, Dinesh Talwar 7, Ian M Godber 8, John Wadsworth 7, Anthony Catchpole 7, Alan Davidson 1, Donald C McMillan 3

1. Emergency Medicine Department, Glasgow Royal infirmary, G4 0SF, U.K.
2. University of Glasgow, School of Medicine Veterinary and Life Sciences, Wolfson Medical School Building, University Avenue, G12 8QQ, U.K.
3. Academic Unit of Surgery, School of Medicine, University of Glasgow, New Lister Building, Royal Infirmary, Glasgow, G31 2ER, UK
4. Department of Acute Medicine, Glasgow Royal infirmary, G4 0SF, U.K.
5. Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
6. St Columba’s Hospice, 15 Boswall Rd, Edinburgh, EH5 3RW, UK
7. The Scottish Trace Element and Micronutrient Reference Laboratory, Department of Biochemistry, Royal Infirmary, Glasgow, G31 2ER, UK
8. Department of Clinical Biochemistry, Queen Elizabeth University Hospital, Govan, G51 4TF

*Contributed equally

§ Corresponding author: Dr. Donogh Maguire, Emergency Medicine Department, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 0SF, U.K.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background

In order to manage the COVID-19 systemic inflammatory response, it is important to identify clinicopathological characteristics across multiple cohorts.

Methods

Electronic patient records for 2 consecutive cohorts of patients admitted to two urban teaching hospitals with COVID-19 during two 7-week periods of the COVID-19 pandemic in Glasgow, U.K. (cohort 1: 17th March 2020 - 1st May 2020) and (cohort 2: 18th May 2020 – 6th July 2020) were examined for routine clinical, laboratory and clinical outcome data.

Results

Compared with cohort 1, cohort 2 were older (p<0.001), more likely to be female (p<0.05) and have less independent living circumstances (p<0.001). More patients in cohort 2 were PCR positive, CXR negative (both p<0.001) and had low serum albumin concentrations (p<0.001). 30-day mortality was similar between both cohorts (23% and 22%). Over the 2 cohorts, age ≥70 (p<0.001), male gender (p<0.05), hypertension (p<0.01), heart failure (p<0.05), cognitive impairment (p<0.001), frailty (p<0.001), COPD (p<0.05), delirium (p<0.001), elevated perioperative Glasgow Prognostic Score (p≤0.001), elevated neutrophil-lymphocyte ratio (p<0.001), low haematocrit (p<0.01), elevated urea (p<0.001), creatinine (p<0.001), glucose (p<0.05) and lactate (p<0.01); and the 4C score were associated with 30-day mortality. When compared with the 4C score, greater frailty (OR 10.2, 95% C.I. 3.4 – 30.6, p<0.01) and low albumin (OR 5.6, 95% C.I. 2.0 – 15.6, p<0.01) were strongly independently associated with 30-day mortality.
Conclusion

In addition to the 4C mortality score, frailty score and a low albumin were strongly independently associated with 30-day mortality in two consecutive cohorts of patients admitted to hospital with COVID-19.

Article summary

- In two consecutive cohorts of patients with COVID-19 infection admitted to two urban teaching hospitals in Glasgow, UK, there were variations in a number of clinicopathological characteristics despite similar mortality (23 and 22%).

- In these two cohorts, in a multivariate analysis that included the 4C mortality score, clinical frailty score >3, low serum albumin concentration (<35 g/L), high neutrophil-lymphocyte ratio (>5), and abnormal serum sodium concentration (<133/>145 mmol/L) remained independently associated with 30-day mortality.

Keyword

COVID-19 (SARS-CoV-2 infection)
Systemic inflammatory response syndrome (SIRS)
C-reactive protein (CRP)
Albumin
Peri-operative Glasgow Prognostic Score (poGPS)
Neutrophil-Lymphocyte Ratio (NLR)
30-day mortality
Host inflammatory response
Background

The number of people worldwide who are known to have been infected with COVID-19 (SARS-CoV-2 infection) increased from 30 million to 84 million in a twelve week period between September 2020 and January 2021, and the number who have died has almost doubled (1 million to 1.8 million) (1). The severity of this viral disease for an individual is associated with a widespread perturbation of immune, physiological and metabolic parameters (2, 3). These whole-body changes are characteristic of a systemic inflammatory response to tissue injury. Indeed, measures of this systemic inflammatory response have been shown to have prognostic value (4-6). In particular, the 4C mortality score was developed in more than 55,000 patients with COVID-19 and measured the systemic inflammatory response using C-reactive protein (6). Other measures of the systemic inflammatory response such as the neutrophil lymphocyte ratio (NLR) have also been shown to have prognostic value (7). Moreover, the systemic inflammatory response has been shown to be a useful therapeutic target in patients with COVID-19 (8-10). However, to date, as there have been variations in the assessment of the systemic inflammatory response, other important factors may remain to be identified. Experience in consecutive cohorts also remains limited.

The aim of the present study was to compare the 4C mortality score, other measures of the systemic inflammatory response and clinicopathological characteristics in two consecutive cohorts of patients on admission with COVID-19.
Patients and methods

Electronic patient records for patients who were admitted to two large city teaching hospitals (Glasgow Royal Infirmary (GRI) and the Queen Elizabeth University Hospital (QEUH), Glasgow, U.K.), for two consecutive cohorts, cohort 1 (n=243, 1/4/2020-18/5/2020) and cohort 2 (n=261, 18/5/2020-6/7/2020) were examined for routine clinical, laboratory and clinical outcome data. These teaching hospitals serve urban populations with a high burden of socio-economic deprivation and offer the full spectrum of adult acute receiving specialties to patients over 16 years old. In line with NHS policy, the NHS Greater Glasgow and Clyde Caldicott guardian approved this study. The study protocol (GN20AE307) was approved by the North West England – Preston research ethics committee (20/NW/0336) and registered with clinicaltrials.gov (NCT04484545).

Details of the recruitment of patients between 1/4/2020-18/5/2020 for cohort 1 have been previously described (5). In patients admitted to hospital between 18/5/2020-6/7/2020, age, sex, BMI and polymerase chain reaction (PCR) confirmed evidence of COVID-19 infection at time of discharge or death certification were considered minimal criteria for inclusion in cohort 2.

As per routine clinical practice in the Emergency Department (ED) and Acute Assessment Unit (AAU) in both hospitals, patients were scored on the National Early Warning Score (NEWS) at presentation to triage. NEWS is a validated score of severity of physiological derangement that allocates a score (0–3) to six clinical parameters (pulse rate, blood pressure, respiratory rate, oxygen saturations, requirement for supplemental oxygen and level of responsiveness (alert (A), responding to verbal (V), painful (P) stimuli and unresponsive (U))
AVPU scale)) (11). NEWS determines the triage category and level of immediate treatment that is required at the time of presentation, and the interval to re-administering the NEWS scoring tool according to the score achieved (i.e. the severity of physiological derangement). NEWS >4 and >7 are considered to indicate moderately severe and severe physiological derangement respectively.

The 4C Mortality Score is a validated prognostic score that predicts in-hospital mortality among patients with COVID-19 who are admitted to a general hospital setting in the U.K. (6). It includes eight variables that are readily available at initial hospital assessment: age, sex, number of comorbidities, respiratory rate, peripheral oxygen saturation, level of consciousness, urea level, and C-reactive protein (score range 0-21 points) (see Table 1).
Table 1. Final 4C Mortality Score for in-hospital mortality in patients with covid-19. Prognostic index derived from penalised logistic regression (LASSO) model (6)

Variable	4C Mortality Score
Age (years)	
<50	—
50-59	+2
60-69	+4
70-79	+6
≥80	+7
Sex	
Female	—
Male	+1
No of comorbidities*	
0	—
1	+1
≥2	+2
Respiratory rate (breaths/min)	
<20	—
20-29	+1
≥30	+2
Peripheral oxygen saturation on room air (%)	
≥92	—
<92	+2
Glasgow coma scale score	
15	—
<15	+2
Urea (mmol/L)	
≤7	—
7-14	+1
>14	+3
C reactive protein (mg/dL)	
<50	—
50-99	+1
≥100	+2
Table 1 * Comorbidities were defined by using Charlson comorbidity index, with the addition of clinician defined obesity

In the present study, age was grouped as less than 40 years, 40-49 years, 50-59 years, 60-69 years, 70-79 years and 80 years and older. Age categories were further simplified to <70 years. Social deprivation was defined by the Scottish Indices of Multiple Deprivation 2019 based on individual home postcode. Ethnicity was classified as White, Mixed, Asian, Black, or other ethnic group.

Frailty was assessed using the Clinical Frailty Scale (CFS) (12, 13). The CFS is a validated measure of clinical frailty that has been shown to have prognostic value (13). The CFS includes items such as comorbidity, cognitive impairment and disability while also incorporating functional interpretation of physical frailty according to level of dependence in living circumstances (12). In the present study, living circumstances were classified as: independent; living at home with support from family member / paid carer or sheltered accommodation; care home; or dependent living in a nursing home.

Admission serum C-reactive protein (CRP), albumin concentrations and differential blood cell counts were categorised using local reference intervals. Neutrophil-lymphocyte ratio (NLR) and the peri-operative Glasgow Prognostic Score (poGPS) were calculated as outlined in Tables 2 and 3 (14-16). The NLR and poGPS are validated prognostic scoring systems that have been used in a variety of clinical settings. They both utilise two components, neutrophils/ lymphocytes and C-reactive protein/ albumin respectively, that are routinely measured in patients admitted to the general hospital setting. For this study, each scoring system had 3 divisions indicating mild, moderate and severe systemic inflammatory response respectively (17).
Table 2. Calculation of the Neutrophil Lymphocyte Ratio (NLR)

Neutrophil Lymphocyte Ratio (NLR):	Ratio	SIRS Severity
Neutrophil count: lymphocyte count	<3	Mild
Neutrophil count: lymphocyte count	3-5	Moderate
Neutrophil count: lymphocyte count	>5	Severe

Table 3. Peri-operative Glasgow Prognostic Score (poGPS)

peri-operative Glasgow Prognostic Score (poGPS)	Score	SIRS Severity
C-reactive protein ≤ 150mg/l and Albumin ≥ 25 g/l	0	Mild
C-reactive protein > 150mg/l and Albumin ≥ 25 g/l	1	Moderate
C-reactive protein ≤ 150mg/l and Albumin < 25 g/l	1	Moderate
C-reactive protein > 150mg/l and Albumin < 25 g/l	2	Severe
Statistical Analysis

Demographical and clinicopathological data were presented as categorical variables using recognized clinical thresholds. These variables were analysed using \(\chi^2 \) test for linear-by-linear association, or \(\chi^2 \) test for 2-by-2 tables.

Associations between demographical, clinicopathological characteristics and mortality were analysed using univariate and a multivariate backward conditional approach. A \(p < 0.05 \) was applied to inclusion at each step in the multivariate analysis.

A convenience sampling strategy was adopted based on the patients admitted during the study period; therefore, a formal sample size calculation was not performed. Missing data were excluded from analysis on a variable-by-variable basis. Two-tailed \(p \) values \(<0.05\) were considered statistically significant. Statistical analysis was performed using SPSS software version 27.0. (SPSS Inc., Chicago, IL, USA).
Results

Details of the recruitment of patients for cohort 1 (n=243) have been previously described (5). In cohort 2, of the 356 patients who were confirmed to have COVID-19 infection by PCR test, 278 patients fulfilled the criteria for inclusion with age, sex, BMI. Seventeen patients were re-admitted and these were excluded from the analysis at second admission leaving 261 patients to be included in the analysis.

Comparison of the demographical and clinicopathological characteristics of the two cohorts are shown in Table 4. Compared with cohort 1, cohort 2 were older (p<0.001), more likely to be female (p<0.05) and have less independent living circumstances (p<0.001). With reference to previous medical history, compared with cohort 1, cohort 2 had hypertension and heart failure (both p<0.05), had chronic renal failure (p<0.001), had cognitive impairment and previous delirium (both p<0.01), were less frail (p<0.001) and had less asthma (p<0.01). With reference to diagnostic criteria, compared with cohort 1, cohort 2 were more likely to be PCR positive and CXR negative (both p<0.001). With reference to laboratory results, compared with cohort 1, cohort 2 had low albumin (p<0.001), low haemoglobin (p<0.001), low haematocrit (p<0.05), lower MCV (0.05), abnormal sodium (p<0.01), elevated creatinine (p<0.01), elevated alkaline phosphatase (p<0.001). 30-day mortality was similar between the cohorts (23% and 22%).
Table 4. Comparison of the demographical and clinicopathological characteristics of 2 consecutive cohorts patients admitted to hospital with COVID-19.

	Cohort 1 (n=243)	Cohort 2 (n=261)	p-value		
	n	%	n	%	
30-days post admission (alive/dead)	188/55	77/23	203/58	78/22	0.912
Age (<=70 years)	157/86	65/35	89/172	34/66	<0.001
Sex (male/female)	133/110	55/45	119/142	46/54	0.041
BMI (<20; >20 - 29; >30 kg/m²)	18/119/106	7/44/49	42/139/80	16/53/31	0.475
SIMD (1 (most) – 6 (least) deprived)	124/35/25/26/22/11	51/14/10/11/9/5	98/49/27/29/32/20	38/19/11/11/13/8	0.011
Ethnicity (1-5)	209/0/7/2/5	93/0/4/1/2	239/1/20/1/0	91/0.4/8/0.4/0	0.818
Living circumstances (0-5)	206/16/15/4/2	84/7/6/2/1	178/18/24/41/0	68/7/9/16	<0.001
Past Medical History					
Hypertension (y/n)	96/147 (40/60)	39/61	129/132	49/51	0.025
Heart failure (y/n)	23/220	10/90	42/219	16/84	0.027
T1DM (y/n)	2/241	1/99	2/259	1/99	0.943
T2DM (y/n)	58/185	24/76	61/199	24/76	0.915
Chronic renal failure (y/n)	29/214	12/88	62/199	24/76	0.001
Cognitive impairment (y/n)	31/212	13/87	85/176	33/67	<0.001
Previous delirium (y/n)	16/225	7/93	41/219	16/84	0.001
Clinical frailty score (<> 3)	134/109	55/45	75/185	71/29	<0.001
COPD (y/n)	41/202	17/83	47/214	18/82	0.738
Smoker (never/ex/active)	82/70/20	48/42/10	24/27/1	56/38/6	0.428
Alcohol excess (y/n)	33/210	14/86	30/231	12/88	0.480
Liver disease (y/n)	20/223	8/92	12/249	5/95	0.095
Hep C (never/previous/active)	237/3/2	98/1/1	260/0/1	99/0.5/0	0.166
Active cancer (y/n)	11/232	5/95	16/245	6/94	0.425
Asthma (y/n)	47/196	20/80	24/237	9/91	0.001
Diagnostic criteria					
PCR positive/Clinical Dx. /Radiological Dx	120/8/115	50/3/47	261/0/0	100/0/0	<0.001
PCR negative/indeterminate/positive	49/54/136	20/22/58	0/24/237	0/8/92	<0.001
CXR negative/positive	101/138	42/58	148/98	60/40	<0.001
Physiology at presentation	92/149	38/62	126/123	51/49	0.006
Delirium (y/n)	26/211	11/89	54/179	23/77	<0.001
Laboratory results at presentation	92/149	38/62	126/123	51/49	0.711
NEWS (< / > 4)	81/19	30/70	62/17/21	0.107	
Delirium (y/n)	192/53/8	76/21/3	0.176		
CXR negative/positive	104/135	43/57	75/179	30/70	<0.001
CACR (<150 / ≥150 mg/L)	182/60	75/25	211/49	0.006	
Albumin (≥35/<35 g/L)	185/71	72/28	0.395		
poGPS (0/1/2)	52/24/54	22/24/54	0.587		
WCC (< 4.5 / > 4.5 - <11.0 / >11.0 x 10^9/L)	185/71	72/28	0.395		
Lymphocytes (≥ / < 1.5 x 10^9/L)	52/24/54	22/24/54	0.587		
NLR (<3/ 3-5 / ≥ 5)	195/46	81/19	163/93	64/36	<0.001
Hb (≥/<12.0 g/dL)	169/73	70/30	153/104	60/40	0.016
Hct (male ≥/< 0.40) (female ≥/< 0.37) L/L	6/218/16	3/91/7	2/80/18	0.111	
MCV (<80/<80 - <99/≥ 99 fl)	28/210/5	12/86/4	0.065		
Platelets (< 150/ ≥150 - <400/>400x10^9)	16/188/9	78/18/4	13/77/10	0.103	
Sodium (<133/>133- ≤146/>146 mmol/L	183/59	76/24	185/71	72/28	0.395
Potassium (<3.5/>3.5- ≤5.5/>5.5 mmol/L	52/24/54	22/24/54	0.587		
Mg (≥/ < 0.75 mmol/L	195/46	81/19	163/93	64/36	<0.001
Urea (</> 7.5 mmol/L	162/81	67/33	150/111	58/42	0.034
Creatinine (</> 130 umol/L	218/25	90/10	208/53	80/20	0.002
AST (</> 40 IU	131/78	63/37	153/74	67/33	0.302
ALT (</> 56 IU	203/35	85/15	211/43	83/17	0.500
AST: ALT </> 2	180/29	86/14	183/43	81/19	0.149
ALP (</> 130 IU	221/18	93/7	198/56	78/22	<0.001
Bilirubin (</> 17 mmol/L	213/26	89/11	217/37	85/15	0.221
Glucose (</> 7 mmol/L	123/81	60/40	124/58	68/32	0.110
Lactate (</> 2 mmol/L	60/35	64/36	60/45	57/43	0.299
HCO₃ (</> 22 mmol/L	46/12	80/20	66/33	67/33	0.092
PT (</> 13 seconds	125/70	64/36	94/55	63/37	0.846
--------------------------	---------	---------	---------	---------	---------
APPT (≤ / > 38 seconds)	177/12	94/6	126/22	85/15	0.010
Alive/Dead at 30-days	188/55	77/23	203/58	78/22	0.912
Level of care (ward/HDU/ITU)					
Initial level of care	199/15/8	89/7/4	236/13/6	93/5/2	0.261
Max level of care	159/38/25	72/17/11	228/13/14	89/5/6	<0.001

poGPS: peri-operative Glasgow prognostic score; NLR: neutrophil lymphocyte ratio
The relationship between demographic and clinicopathological characteristics and 30-day mortality in the two combined cohorts is shown in Table 5. Over the 2 cohorts, age ≥70 years (p<0.001), males (p<0.05), hypertension (p<0.01), heart failure (p<0.05), cognitive impairment (p<0.001), frailty (p<0.001), COPD (p<0.05), less asthma (p<0.01), delirium (p<0.001), elevated poGPS (p<0.001), elevated NLR (p<0.001), low haematocrit (p<0.01), abnormal sodium (p<0.001), elevated urea (p<0.001), elevated creatinine (p<0.001), elevated glucose (p<0.05, elevated lactate (p<0.01), elevated PT (p<0.05) and the 4C score were associated with 30-day mortality.
Table 5. Univariate analysis of demographical, clinicopathological characteristics and 30-day mortality in the two combined cohorts of patients admitted with confirmed COVID-19 (n=504).

	Alive (n=391)	Dead (n=113)	p-value
Cohort 1 / Cohort 2	188/203	55/58	0.912
Age (</=70 years)	214/177	32/81	<0.001
Sex (male/female)	184/207	68/45	0.014
BMI (</=30 kg/m^2)	41/197/41	19/61/33	0.712
SIMD (1 (most) – 6 (least) deprived)	176/65/38/39/44/25	46/19/14/16/10/6	0.814
Ethnicity (1-5)	358/1/25/3/3	107/0/4/0/2	0.532
Living circumstances (0-4)	310/28/23/28/2	74/6/16/17/0	0.001
Past Medical History			
Hypertension (y/n)	161/230	64/49	0.004
Heart failure (y/n)	43/348	22/91	0.018
T1DM (y/n)	3/338	1/121	0.901
T2DM (y/n)	85/305	34/79	0.068
Chronic renal failure (y/n)	62/329	29/84	0.017
Cognitive impairment (y/n)	76/315	40/73	<0.001
Previous delirium (y/n)	37/353	20/91	0.013
Clinical frailty score (</= 3)	192/198	17/96	<0.001
COPD (y/n)	60/331	28/85	0.020
Smoker (never/ex/active)	212/144/35	51/59/3	0.679
Alcohol excess (y/n)	48/343	15/98	0.778
Liver disease (y/n)	24/367	8/105	0.718
Hep C (never/previous/active)	386/2/2	111/1/1	0.543
Active cancer (y/n)	19/372	8/105	0.356
Asthma (y/n)	64/327	7/106	0.006
Diagnostic radiology			
CXR negative/positive	188/188	61/48	0.273
Physiology at presentation			
NEWS (</= 4)	184/196	34/76	0.001
Delirium (y/n)

Laboratory results at presentation	47/321	33/69	<0.001
CRP (< / ≥150 mg/L)	316/73	36/77	0.003
Albumin (≥/<35 g/L)	151/233	28/81	0.009
poGPS (0/1/2)	299/74/9	69/34/6	0.001
WCC (< 4.5 / ≥4.5 - ≤11.0 / >11.0 x 10^9/L)	67/256/63	13/69/31	0.053
Neutrophils (< / ≥ 7.5 x 10^9/L)	303/82	65/48	<0.001
Lymphocytes (≥ / < 1.5 x 10^9/L)	112/270	14/98	<0.001
NLR (<3/ 3-5 ≥5)	103/107/173	9/14/90	<0.001
Hb (≥/<12.0 g/dL)	281/104	77/35	0.380
Hct (male ≥/≤0.40) (female ≥/≤0.37) L/L	261/125	61/52	0.008
MCV (<80/ ≥80 - <99/ ≤ 99 fl)	11/331/43	0/18/94	0.860
Platelets (< 150/ ≥ 150 - <400/ >400x10^9)	53/304/26	24/81/8	0.204
Sodium (<133/ ≥133- ≤146/ >146 mmol/L)	50/33/29	19/82/12	<0.001
Potassium (<3.5/>3.5- ≤5.5/>5.5 mmol/L)	37/31/56	14/83/3	0.173
Mg (≥/≥0.75 mmol/L)	95/54	19/39	0.638
Urea (≥/> 7.5 mmol/L)	268/123	44/69	<0.001
Creatinine (≥/≥130 umol/L)	349/42	77/36	<0.001
AST (≥/> 40 IU)	227/115	57/37	0.302
ALT (≥/> 56 IU)	317/67	97/11	0.068
AST: ALT ≤/≥ 2	292/49	71/23	0.020
ALP (≥/> 130 IU)	328/56	91/18	0.619
Bilirubin (≥/≥17 mmol/L)	349/44	90/19	0.100
Glucose (≥/≥7 mmol/L)	202/98	45/41	0.011
Lactate (≥/≥2 mmol/L)	96/46	27/34	0.002
HCO₃ (≥/ ≥ 22 mmol/L)	84/28	28/17	0.111
PT (≤/ ≥ 13 seconds)	179/88	40/37	0.015
APPT (≤/ ≥ 38 seconds)	235/26	68/8	0.886
4C score (0 - <4 / ≥4 - <9 / ≥9 - <15 / ≥15)	69/149/139/10	1/18/68/20	<0.001
To determine which admission parameters were independently associated with 30-day mortality, those factors identified in Table 5 as significant and not in the 4C mortality score were also entered into a binary logistic regression analysis (Table 6). In this multivariate analysis of a restricted dataset (due to limited lactate measurements), only greater frailty (OR 10.2, 95% C.I. 3.4 – 30.6, p<0.01), low albumin (OR 5.6, 95% C.I. 2.0 – 15.6, p<0.01), high NLR (OR 2.2, 95% C.I. 1.1 – 4.6, p<0.05) and abnormal sodium (OR 2.7, 95% C.I. 1.1 – 6.4, p<0.05) remained independently associated with 30-day mortality.
Table 6. Binary logistic regression analysis of demographical, clinicopathological characteristics and 30-day mortality in the two combined cohorts of patients admitted with confirmed COVID-19 (n=203).

Characteristic	Alive (n=142)	Dead (n=61)	p-value	Odds Ratio	95% CI	p-value
Clinical frailty score (< 3)	79/63	12/49	<0.001	10.2	3.4 – 30.6	<0.001
Albumin (≥ 30 g/L)	119/23	39/22	0.002	5.6	2.0 – 15.6	0.001
NLR (<3/3 - <5/5)	28/37/77	3/8/50	<0.001	2.2	1.1 – 4.6	0.028
Hct (male ≥/≤ 0.40) (female ≥/≤ 0.37)	106/36	35/26	0.015	1.1	0.915	
Sodium (≤133/13-≤146/ 146 mmol/L)	15/123/4	12/41/8	<0.001	2.7	1.1 – 6.4	0.029
Glucose (≤ 7 mmol/L)	80/49	24/30	0.029	0.847		
Lactate (≤ 2 mmol/L)	96/46	27/34	0.002	0.765		
PT (≤ / > 13 seconds)	71/41	22/27	0.029	0.599		
4C score (0 - <4 / ≥4 - <9 / ≥9 - <15 / ≥15)	19/56/50/6	0/6/38/14	<0.001			0.153

Hct Haematocrit; PT prothrombin time
Discussion

The results of the present study show that, in 2 consecutive cohorts, there was a variation in the admission demographic and clinicopathological characteristics. In particular, the latter cohort were older, had more cardiovascular and renal disease and greater derangement of their laboratory data. Despite this, 30-day mortality was similar between the cohorts. In both cohorts the 4C score, which incorporates age, sex, comorbidity, respiratory, renal and brain function and a measure of the activation of the systemic inflammatory response, had prognostic value. In addition, when compared directly with the 4C mortality score a number of other factors had independent prognostic value, in particular clinical frailty and a low albumin. Taken together, the present results would suggest that the relationship between clinicopathological factors and short-term mortality in patients with COVID-19 may vary with time. Also, that there are other important factors in short term mortality of patients with COVID-19, not captured by the 4C mortality score and such factors may improve the prognostic value of the 4C score. Therefore, there is a need for further work to determine independent prognostic value of clinicopathological factors in patients presenting with COVID-19.

The basis of the strong prognostic value of the clinical frailty scale and low albumin, independent of the 4C mortality score in these patients, is not clear. However, COVID-19 patients with a clinical frailty score >3 may be considered vulnerable and frail and this entity (the ability to care for themselves and its relationship with mortality) may not be captured directly by the 4C score. In particular, the present results may indicate that having COVID-19 induced cytokine storm in a frail patient is a life threatening event (18). Similarly, with reference to a low serum albumin concentration, a cytokine storm would increase the likelihood of mortality. In the case of a low albumin it is clear that this may reflect both an
ongoing systemic inflammatory response and also poor nutritional status (19). It may be that
the strong prognostic value of frailty also reflects poor nutritional status since a systemic
inflammatory response occurring against a background of low metabolic reserves is likely to
lead to cellular and organ dysfunction. If this was the case, then it might be expected that
frail and hypoalbuminaemic patients would benefit most from treatment with anti-
inflammatory agents and nutritional supplementation. Therefore, it may be important to also
consider nutritional risk in patients with COVID-19. Irrespective, it would be important to
consider frailty and a low albumin in the assessment of patients with COVID-19 (20).

To date, in patients with COVID-19, there has been a great deal of focus on the virus itself.
However, it is clear from the prognostic value of host physiology and the host systemic
inflammatory response in the 4C work (6) and in the efficacy of dexamethasone treatment
(13) that host factors are of considerable importance in outcome of patients with COVID-19.
From the present results it is also clear that frailty and nutritional status are important
characteristics to be taken into the “staging” of patients presenting with COVID-19.

Limitations

The present study has a number of limitations. The sample size is relatively small and
therefore subject to limitations such as sample bias. However, the clinicopathological data
collected was comprehensive across two cohorts, included factors validated in large cohorts
of patients with COVID-19 and therefore allowed direct comparison of these factors.
Conclusion

In the two consecutive cohorts there were variations in a number of clinicopathological characteristics despite similar mortality. In these two cohorts, in addition to the 4C mortality score, NLR>3, abnormal serum sodium concentration (<133 / >146 mmol/L), clinical frailty score >3 and low serum albumin concentration (<30 g/L) were independently associated with 30-day mortality in patients admitted to hospital with COVID-19 infection.
Abbreviations

- COVID-19 (SARS-CoV-2 infection)
- systemic inflammatory response syndrome (SIRS)
- International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) World Health Organization (WHO) Clinical Characterisation Protocol UK (CCP-UK) study (performed by the ISARIC Coronavirus Clinical Characterisation Consortium—ISARIC-4C) (4C mortality score)
- national early warning score (NEWS)
- Polymerase chain reaction (PCR)
- peri-operative Glasgow Prognostic Score (poGPS)
- neutrophil lymphocyte ratio (NLR)
- serum C-reactive protein (CRP)
- Glasgow Royal Infirmary (GRI)
- Queen Elizabeth University Hospital (QEUH)
- Emergency Department (ED)
- Acute Assessment Unit (AAU)
- chest X-ray (CXR)
- Body mass index (BMI)
- Clinical Frailty Scale (CFS)
- Alert (A), responding to verbal (V), painful (P) stimuli and unresponsive (U) (AVPU scale)
- Scottish Indices of Multiple Deprivation (SIMD)
- Chi-squared test (χ^2 test)
Declaration

In line with NHS policy, collection and analysis of data was approved by the NHS Greater Glasgow and Clyde Caldicott guardian. Ethics committee approval was obtained and requirement for patient consent was waived for this retrospective case note review. All authors have consented to publication and are guarantors of the manuscript and data presented. Anonymised data will be made available on reasonable request to the corresponding author. None of the authors have any conflict of interest to declare. DT is funded by the Scottish Trace Elements and Micronutrients Diagnostic and Reference Laboratory. DMcM is funded by the University of Glasgow.

Author Contributions:

DM, DCM, RD, DT and BL conceived the idea for the study. DM, DCMM, RD, DT, IG, AC, JW, AD and BL contributed to the study design. MW, CR, JWV, WMS, OEK, DCM, SLR, LDB, NG, AB and EG performed manual data extraction from the electronic patient records. AC performed post-code analysis and deprivation scoring. DM performed the statistical analysis.

Acknowledgements

The research team wish to acknowledge the assistance of Mrs. Jill Dempster (Project Management Unit, Research and Development Department, Greater Glasgow and Clyde) for her expertise and dedication in relation to this work.
References

1. 2020. WC-cpM. [Available from: https://www.worldometers.info/coronavirus/.
2. Zhang ZL, Hou YL, Li DT, Li FZ. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020:1-7.
3. Tian W, Jiang W, Yao J, Nicholson CJ, Li RH, Sigurslid HH, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Med Virol. 2020.
4. Chidambaram V, Tun NL, Haque WZ, Majella MG, Sivakumar RK, Kumar A, et al. Factors associated with disease severity and mortality among patients with COVID-19: A systematic review and meta-analysis. PLoS One. 2020;15(11):e0241541.
5. Maguire D, Woods M, Richards C, Dolan R, Veitch JW, Sim WMJ, et al. Prognostic factors in patients admitted to an urban teaching hospital with COVID-19 infection. J Transl Med. 2020;18(1):354.
6. Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ. 2020;370:m3339.
7. Li X, Liu C, Mao Z, Xiao M, Wang L, Qi S, et al. Predictive values of neutrophil-to-lymphocyte ratio on disease severity and mortality in COVID-19 patients: a systematic review and meta-analysis. Crit Care. 2020;24(1):647.
8. Strohbehn GW, Heiss BL, Rouhani SJ, Trujillo JA, Yu J, Kacew AJ, et al. COVIDOSE: A phase 2 clinical trial of low-dose tocilizumab in the treatment of non-critical COVID-19 pneumonia. Clin Pharmacol Ther. 2020.
9. Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA. 2020;324(13):1330-41.
10. Turnquist C, Ryan BM, Horikawa I, Harris BT, Harris CC. Cytokine Storms in Cancer and COVID-19. Cancer Cell. 2020;38(5):598-601.
11. Keep JW, Messmer AS, Sladden R, Burrell N, Pinate R, Tunnicliff M, et al. National early warning score at Emergency Department triage may allow earlier identification of patients with severe sepsis and septic shock: a retrospective observational study. Emerg Med J. 2016;33(1):37-41.
12. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173(5):489-95.
13. Wallis SJ, Wall J, Biram RW, Romero-Ortuno R. Association of the clinical frailty scale with hospital outcomes. QJM. 2015;108(12):943-9.
14. Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol. 2020;84:106504.
15. Watt DG, McSorley ST, Park JH, Horgan PG, McMillan DC. A Postoperative Systemic Inflammation Score Predicts Short- and Long-Term Outcomes in Patients Undergoing Surgery for Colorectal Cancer. Ann Surg Oncol. 2017;24(4):1100-9.
16. Dolan RD, Laird BJA, Horgan PG, McMillan DC. The prognostic value of the systemic inflammatory response in randomised clinical trials in cancer: A systematic review. Critical Reviews in Oncology / Hematology. 2018;132:130-7.
17. Dolan RD, McSorley ST, Park JH, Watt DG, Roxburgh CS, Horgan PG, et al. The prognostic value of systemic inflammation in patients undergoing surgery for colon cancer: comparison of composite ratios and cumulative scores. Br J Cancer. 2018;119(1):40-51.
18. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255-73.
19. Almasaudi AS, Dolan RD, Edwards CA, McMillan DC. Hypoalbuminemia Reflects Nutritional Risk, Body Composition and Systemic Inflammation and Is Independently Associated with Survival in Patients with Colorectal Cancer. Cancers (Basel). 2020;12(7).

20. Zhang X, al e. Frailty as a Predictor for Mortality Among Patients With COVID-19: A Systematic Review and Meta-Analysis. 2020.