The object of this study is granular adsorbents based on kaolinite and zero-valent iron. The ceramic mass for their preparation contained polyvinyl alcohol as a powder-forming additive. It was established that its addition in quantities of 1.8–3.3% practically does not change the porosity of the granules but increases their strength. X-ray phase and chemical analyzes confirmed the presence of a layer of zero-valent iron on the surface of the granules. The structural and adsorption characteristics of adsorption materials have been studied and the calculations of the main parameters of their porous structure were carried out. It is shown that when modifying granules with zero-valent iron, there is a decrease in the specific surface area and micropores volume for samples without a powder-forming additive by almost 2 times compared to the original granules. Moreover, these values almost do not change for samples obtained with the addition of polyvinyl alcohol. It was found that the application of the reaction layer to the granules leads to a significant increase in their adsorption capacity with respect to heavy metal ions Cu(II), Cd(II), Co(II), Zn(II), and Cr(VI). It has been shown that the resulting adsorbents can be used for wastewater treatment containing a mixture of these toxicants. It was found that the values of maximum adsorption on modified samples are 10–20 times higher than those for the original granules. A feature of the obtained adsorbents is the ability to simultaneously remove metal ions, both in the form of cations and anions. A significant increase in the adsorption values of Cr(VI) anionic forms, which are difficult to remove from water by natural ion exchangers, has been established.

References

1. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., Beer-gowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7 (2), 60–72. doi: https://doi.org/10.2478/intox-2014-0009
2. Saleh, T. A., Mustaqeem, M., Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring & Management, 17, 100617. doi: https://doi.org/10.1016/j.enmm.2021.100617
3. Aboudi Mana, S. C., Hanafiah, M. M., Chowdhury, A. J. K. (2017). Water treatment containing a mixture of these toxicants. It was found that the application of the reaction layer to the granules changes for samples obtained with the addition of polyvinyl alcohol.
4. Hassan, E.-S., Selim, K., Rostom, M., Youssef, M., Abdel Khalek, N. (2018). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Journal of Water Reuse and Desalination, 7 (4), 387–419. doi: https://doi.org/10.2166/wrd.2016.104
5. Gu, S., Kang, X., Wang, L., Lichtousse, E., Wang, C. (2018). Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environmental Chemistry Letters, 17 (2), 629–634. doi: https://doi.org/10.1007/s10311-018-0813-9
6. Sasson, E.-S., Selim, K., Rostom, M., Youssef, M., Abdel Khalek, N., Abdel Khalek, M. (2020). Surface modified bentonite mineral as a sorbent for Pb2+ and Zn2+ ions removal from aqueous solutions. Physicochemical Problems of Mineral Processing, 145–157. doi: https://doi.org/10.37190/ppmp.127833
7. Saito, T., Shiraiwa, N., Morioka, Y., Akagi, K., Nakayama, K. S., Adschiri, T., Asao, N. (2019). Granular Barium Titanate Nanowire-Based Adsorbents for the Removal of Strontium Ions from Contaminated Water. ACS Applied Nano Materials, 2 (11), 6793–6797. doi: https://doi.org/10.1021/acsnano.9b01737
8. Mukherjee, R., Kumar, R., Sinha, A., Lama, Y., Saha, A. K. (2015). A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Critical Reviews in Environmental Science and Technology, 46 (5), 443–466. doi: https://doi.org/10.1080/10643389.2015.1103832
9. Yin, Y., Zheng, W., Yan, A., Zhang, C., Gou, Y., Shen, C. (2021). A Review on Montmorillonite-Supported Nanoscale Zerovalent Iron for Contaminant Removal from Water and Soil. Adsorption Science & Technology, 2021, 1–19. doi: https://doi.org/10.1155/2021/9340362
10. Bondarieva, A. I., Tolibko, V. Y., Khodolko, Y. M., Kornilovych, B. Y., Zahorodnitskii, N. A. (2022). Efficient removal of arsenic(V) from water using iron-containing nanocomposites based on kaolinite. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 11–18. doi: https://doi.org/10.32434/0321-4095-2022-140-1-11-18

ABSTRACT AND REFERENCES
on the initial concentrations of sulfate and sodium chloride in the range of 20–1000 mg/dm3 at the degrees of permeate selection of 1–90% with the use of pressure of 3.6–10.0 atm. The dynamics of increasing the content of sulfates and chlorides in concentrates with an increase in the degree of permeate selection, selectivity, productivity, and filtration coefficient of the membrane have been determined. The conditions for calculating the membrane performance depending on the working pressure for sodium sulfate and sodium chloride have been defined.

It is shown that the concentrations of sulfates and chlorides in permeates depend on their initial concentration in solutions and increase both with an increase in the initial concentration and with an increase in the degree of permeate selection. The latter factor is quite significant at the initial concentrations of chlorides and sulfates at a concentration of 1000 mg/dm3. The productivity of the membrane increases with a decrease in the salt content in water and decreases as the degree of permeate selection increases, which leads to an increase in the concentration of salts in the permeate stream.

The selectivity of the membrane increases with increasing concentration of sodium sulfate and sodium chloride solutions in solutions, despite a certain increase in salt concentrations in permeates. For solutions of Na$_2$SO$_4$ and NaCl (20–1000 mg/dm3) at their reverse-osmotic desalting on the membrane, the filtration coefficients have constant values. For these initial concentrations, the filtration coefficient for Na$_2$SO$_4$ is 3.4–3.8 dm3/(m2·atm), and for NaCl – 2.6–3.2 dm3/(m2·atm). The data reported here allow us to conclude about the permissible level of mineralization, at which it is advisable to use reverse-osmotic low-pressure membranes. It is shown that an increase in the concentration of salts in concentrates leads to an increase in osmotic and working pressures.

Keywords: water demineralization, reverse osmosis, low-pressure membranes, permeate, concentrate.

References

1. Gomel’ya, M., Hrabitschenko, V., Trokhymenko, A., Shabliy, T. (2016). Research into ion exchange softening of highly mineralized waters. Eastern-European journal of Enterprise Technologies, 4 (10 (82)), 4–9. doi: http://doi.org/10.15587/1729-4061.2016.75338

2. Julien, D., Alain, D. (2011). Comparison of adsorption models for study of Cl$^-$, NO$_3^-$, and SO$_4^{2-}$ removal from aqueous solutions by anion exchange. Journal of Hazardous Materials, 1–3, 306–307. doi: http://doi.org/10.1016/j.jhazmat.2011.03.049

3. Daracq, G., Joyeux, J. (2014). Kinetic and isotherm studies on perchlorate sorption by ion-exchange resins in drinking water treatment. Journal of Water Process Engineering, 3, 123–131. doi: http://doi.org/10.1016/j.jwpe.2014.06.002

4. Lazar, L., Bandrabur, B., Tatariu-Fărmuş, R-E., Drobotă, M., Bălgaru, L., Gutti, G. (2014). FTIR analysis of ion exchange resins with application in permanent hard water softening. Environmental Engineering and Management Journal, 13 (9), 2145–2152. doi: http://doi.org/10.1007/s13666-014-2357

5. Naful, L., Saravanam, S., Chidambaram, M., Goel, M., Das, A., Sarat, J., Babu, C. (2015). Nanofiltration in transforming surface water into healthy water: comparison with reverse osmosis. Journal of Chemistry, 2015, 1–6. doi: http://doi.org/10.1155/2015/326869

6. Gomel’ya, M. D., Trus, I. M., Grabitschenko, V. M. (2014). Nanofiltratsionoe opriixnenia slабomineralizovanykh vod. Voprosy khoimi i khimicheskoi technologii, 1(1), 98–102. Available at: http://vkh.dp.ua/wp-content/uploads/pdf/2014/1/23.pdf

7. Goncharuk, V., Kavitskaya, A., Skil’kaya, M. (2011). Nanofiltration in drinking water supply. Water Treatment and Demin-
eralization Technology, 33, 37–54. doi: http://doi.org/10.3103/s1063455x11010073
8. Prodanovic, J., Vasic, V. (2013). Application of membrane processes for distillery wastewater purification (a review). Desalination and water treatment, 51 (16–18), 3325–3334. doi: 10.1080/19443994.2012.749178
9. Curcio, E. E., Ji, X., Quazi, A. M. (2010). Hybrid Nano filtration membrane crystallization system for the treatment of sulfate wastes. Journal of Membrane Science, 360 (1-2), 493–498. doi: 10.1016/j.memsc 2010.05.053
10. Homelia, M. D., Trus, I. M., Radovenchyk, V. M. (2013). Application of membrane processes for the treatment of mine water concentrates with their demineralization. Eastern-European Journal of Enterprise Technologies, 5, 100–105.
11. Altace, A., Zaragoza, G., Tonningen, R. (2014). Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination, 336, 50–57. doi: http://doi.org/10.1016/j.desal.2014.01.002
12. Sayyad, S., Kamthe, N., Sarvade, S. (2022). Design and simulation of reverse osmosis process in a hybrid forward osmosis-reverse osmosis system. Chemical Engineering Research and Design, 183, 210–220. doi: http://doi.org/10.1016/j. chered.2022.05.002
13. Brika, B., Omrani, A., Greesh, N., Abutartour, A. (2019). Reuse of reverse osmosis membranes – case study: Tajoura reverse osmosis desalination plant. Iranian Journal of Energy and Environment, 10 (4), 269–300. doi: http://doi.org/10.5829/ijece.2019.10.04.11
14. Hunter, R., Dvorak, B. (2012). Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs. Water Environment Research, 84 (6), 535–543. doi: http://doi.org/10.2175/10614301x1337550427354
15. Akhter, M., Habib, G., Qamar, S. (2018). Application of electrodialysis in waste water treatment and impact of fouling on process performance. Journal of Membrane Science & Technology, 8 (2), 1–8. doi: http://doi.org/10.4172/2155-9589.1000182
16. Hilal, N., Kochkodan, V., Abdulghader, H., Mandale, S., Al-Jil, S. (2015). A combined ion exchange–nanofiltration process for water desalination: I. sulphate-chloride ion-exchange in saline solutions. Desalination, 363, 44–50. doi: http://doi.org/10.1016/j.desal.2014.11.016
17. Lakehal, A., Bouhidel, K. (2017). Optimization of the electrodeionization process: comparison of different resin bed configurations. Desalination and Water Treatment, 86, 96–101. doi: http://doi.org/10.5004/dwt.2017.21326
18. Homelia, M. D., Trus, I. M., Shablii, T. O. (2014). Elektrodializne oprisnennia rozchyniv z vosykom vistom ioniv zhorshchot. Visnyk Chernihivskoho derzhavnoho tekhnichnoho universytetu, 1 (71), 50–55.
19. Trus, I., Hrabitchenko, V., Gomelya, M. (2014). Electrochemical processing of mine water concentrates with obtaining available chlorine. British journal of science, education and culture, 21, 103–108.
20. Chen, Y., Davis, J., Nguyen, C., Baigents, J., Farrell, J. (2016). Electrochemical ion-exchange regeneration and fluidized bed crystallization for zero-liquid-discharge water softening. Environmental Science and Technology, 50 (11) 5900–5907. doi: http://doi.org/10.1021/acs.est.5b05606
21. Trus, I. M., Hrabitchenko, V. M., Homelia, M. D. (2012). Application of aluminium coagulants for wastewater treatment from sulfates with their demineralization. Eastern-European Journal of Enterprise Technologies, 6 (10 (60)), 13–17. Available at: http://journals.uran.ua/ejet/article/view/5600
22. Shablii, T. O., Rysukhin, V. V., Homelia, M. D. (2011). Ochyschchennia mineralizovanykh stichnykh vod vid sulfatov ta yii poni`akshennia. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut», 43, 31–38. Available at: http://repository.kpi.kharkov.ua/handle/KHiP-Press/15034
23. Lure, Yu. Yu. (1984). Analitycheskaia khimiia prirodnoi sredstvoj. Kyiv: Lybid, 304.
24. Homelia, M. D., Trus, I. M., Radovenchyk, V. M. (2014). Evaluating the efficiency of reverse osmosis desalination after its mitigation at subacid cation resin. Visnyk Vinnytskogo politekhnichnoho instytutu, 3, 32–36. Available at: https://visnyk.vntu.edu.ua/index.php/visnyk/article/view/926/925
25. Balakina, M. N., Kucheruk, D. D., Bilyk, Yu. S., Ospenko V. O., Shkavro, Z. N. (2013). Wastewater treatment from biogenic elements. Journal of water chemistry and technology, 35 (5), 386–397. doi: http://doi.org/10.3103/s1063455x13050044
26. 1 leveleva, O. S., Honcharuk, V. V. (2015). The Material Balance Calculation of Flowsheet for Nitrate Removal from Water Solutions Using Baromembrane Methods. Naukovii visti NTUU «KPI», 5, 113–118. Available at: http://bulletin.kpi.ua/article/view/63073
27. DSanPIN 2.2.4-171-10. Derzhavni sanitarni normy ta pravyli «Hi- hienichni vymohy do vody pytnoi, pryznachenoi dla spozhyvannya liudynto».

DOI: 10.15587/1729-4061.2022.262249

JUSTIFYING THE EXPERIMENTAL METHOD FOR DETERMINING THE PARAMETERS OF LIQUID INFILTRATION IN BULK MATERIAL (p. 24–29)

Volodymyr Olinik
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-5193-1775

Yuriy Abramov
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0001-7901-3768

Oleksii Basmanov
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-6434-6575

Ihor Khmyrov
National University of Civil Defence of Ukraine, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-7958-463X

The object of this study is the process of impregnation of liquid into the bulk material, in particular, into the soil. Determining the impregnation parameters is a relevant task when assessing the consequences of an emergency spill of a hazardous liquid. Infiltration of liquid into the soil leads to pollution of water resources. However, the greatest danger is the ignition of the spill of a combustible liquid. Based on the Green-Ampt model, a mathematical description of the impregnation of liquid into bulk material was built. It is a system of two ordinary differential equations of the first order, one of which describes the reduction of the thickness of the liquid layer on the surface, and the other describes the dynamics of the impregnation of liquid into depth. The solution to the system was derived in the form of time dependence on the depth of impregnation.

An experimental study was conducted on the example of impregnation of crude oil in the sand. To this end, sand was poured into a
vertical measuring glass cylinder. After that, the liquid was poured and a video recording of the impregnation process was carried out. By processing the video recording, the depth of impregnation and the corresponding time were determined. The results of the study show that the relationship between the thickness of the liquid layer on the surface of the sand and the depth of impregnation is linear in nature: the relative deviation of linear approximation from experimental data does not exceed 3.5.

By expanding the logarithmic function contained in the solution to the system of differential equations into the Taylor series, a polynomial dependence of time on the depth of impregnation was established. To determine the coefficients of the polynomial based on the experimental data, the least squares method was used. In this case, the approximation error after the first minute after spilling does not exceed 10%.

The proposed method could be used to account for seepage in the model of liquid spreading on the ground and the burning model of a flammable liquid spill.

Keywords: liquid spill, impregnation parameters, Green-Ampt model, porosity coefficient, bulk material.

References
1. Raja, S., Tauseef, S. M., Abbasi, T., Abbasi, S. A. (2018). Risk of Fuel Spills and the Transient Models of Spill Area Forecasting. Journal of Failure Analysis and Prevention, 18 (2), 445–455. doi: https://doi.org/10.1007/s11668-018-0429-1
2. Vasuyuk, A., Loboichenko, V., Bushche, S. (2016). Identification of bottled natural waters by using direct conductivity. Ecology, Environment and Conservation, 22 (3), 1171–1176. Available at: http://reposistc.nuczu.edu.ua/handle/123456789/1633
3. Loboichenko, V. M., Vasuyuk, A. E., Tishakova, T. S. (2017). Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine. Asian Journal of Water, Environment and Pollution, 14 (4), 37–41. doi: https://doi.org/10.3233/awj-170035
4. Kustov, M. V., Kalugin, V. D., Tutunik, V. V., Tarakhno, E. V. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimi i Khimicheskoi Tekhnologii, 1, 92–99. doi: https://doi.org/10.32434/0321-4095-2019-122-1-92-99
5. Poptov, O., Iatsyshyn, A., Kovach, V., Artemchuk, V., Kameneva, I., Taraduda, D. et. al. (2020). Risk Assessment for the Population of Kyiv, Ukraine as a Result of Atmospheric Air Pollution. Journal of Health and Pollution, 10 (25), 200303. doi: https://doi.org/10.5696/2156-9614-10.25.200303
6. Huang, W., Shuai, B., Zuo, B., Xu, Y., Antwi, E. (2019). A systematric railway dangerous goods transportation system risk analysis approach. The 24 model. Journal of Loss Prevention in the Process Industries, 61, 94–103. doi: https://doi.org/10.1016/j.jlp.2019.05.021
7. Ekin, D. S., Horn, M., Wolford, A. (2017). CBR-Spill RISK: Model to Calculate Crude-by-Rail Probabilities and Spill Volumes. International Oil Spill Conference Proceedings, 2017 (1), 3189–3210. doi: https://doi.org/10.7901/2169-3358-2017.1.3189
8. Zhao, X., Chen, C., Shi, C., Chen, J., Zhao, D. (2019). An extended model for predicting the temperature distribution of large area fire ascribed to multiple fuel source in tunnel. Tunnelling and Underground Space Technology, 85, 252–258. doi: https://doi.org/10.1016/j.tust.2018.12.013
9. Migalenko, K., Nuianz, V., Zemlanskiy, A., Dominik, A., Pozdziev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727
10. Kovalov, A., Otrosh, Y., Rybka, E., Kovalevsk, T., Togobytska, V., Rolin, I. (2020). Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. Materials Science Forum, 1006, 179–184. doi: https://doi.org/10.4028/www.scientific.net/MSF.1006.179
11. Dadashov, I., Loboichenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77. Available at: https://doi.org/10.15587/1729-4061.2018.121727
12. Pan, Y., Li, M., Luo, X., Wang, C., Luo, Q., Li, J. (2020). Analysis of heat transfer of spilling fire spread over steady flow of n-butanol fuel. International Communications in Heat and Mass Transfer, 116, 104685. doi: https://doi.org/10.1016/j.icheatmasstransfer.2020.104685
13. Zhao, J., Liu, Q., Huang, H., Yang, R., Zhang, H. (2017). Experiments investigating fuel spread behaviors for continuous spill fires on fireproof glass. Journal of Fire Sciences, 35 (1), 80–95. doi: https://doi.org/10.1177/0734904116683716
14. Seo, J., Lee, J. S., Kim, H. Y., Yoon, S. S. (2015). Empirical model for the maximum spreading diameter of low-viscosity droplets on a dry wall. Experimental Thermal and Fluid Science, 61, 121–129. doi: https://doi.org/10.1016/j.expthermflusci.2014.10.019
15. Abramov, Y. O., Basmanov, O. Y., Krvstsova, V. I., Salamov, J. (2019). Modeling of spilling and extinguishing of burning fuel on horizontal surface. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4. doi: https://doi.org/10.29202/avngu/2019-4/16
16. Raja, S., Abbasi, T., Tauseef, S. M., Abbasi, S. A. (2019). Equilibrium models for predicting areas covered by accidentally spilled liquid fuels and an assessment of their efficacy. Process Safety and Environmental Protection, 130, 153–162. doi: https://doi.org/10.1016/j.jspesp.2019.08.009
17. Meel, A., Khajehnajafi, S. (2012). A comparative analysis of two approaches for pool evaporation modeling: Shrinking versus non-shrinking pool area. Process Safety Progress, 31 (3), 304–314. doi: https://doi.org/10.1002/prs.11502
18. Tokunaga, T. K. (2020). Simplified Green-Ampt Model, Inhibition-Based Estimates of Permeability, and Implications for Leak-off in Hydraulic Fracturing. Water Resources Research, 56 (4). doi: https://doi.org/10.1029/2019wr026019
19. Abramov, Y. A., Basmanov, O. E., Salamov, J., Mikhayluk, A. A. (2018). Model of thermal effect of fire within a dike on the oil tank. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 95–101. doi: https://doi.org/10.29202/avngu/2018-2/12
20. Otrosh, Y., Senkiv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065

DOI: 10.15587/1729-4061.2022.263583

IMPROVING A METHOD FOR ELIMINATING THE SPILL OF HAZARDOUS SUBSTANCES BY USING “UNIVERSAL ABSORBENT CLOTH” (p. 30–37)

Yuliya Zelenko
Ukrainian State University of Science and Technologies, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0001-5531-0305

Nicolay Calimbet
Ukrainian State University of Science and Technologies, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-2209-6395
In order to increase efficiency and implement the principles of resource saving during the elimination of emergency spills of dangerous goods when transporting them by rail, proposals have been offered to improve the method of localization and elimination of emissions of hazardous substances using the «Universal Absorbent Cloth» («UAC»).

The specificity of localization of the emergency emission site and the principles of elimination based on sorption technologies using «UAC» are described.

To manufacture «UAC», special equipment (carbonizer) was designed, which provides effective carbonization of raw materials from plant waste at sufficiently low temperatures ≤500 °C. Using a carbonizer, a universal sorbent was obtained, which is subsequently used for the manufacture of «UAC». The total carbonization time of plant waste samples did not exceed 60 minutes. The universal absorbent obtained during the carbonization process was placed in a fabric matrix to produce «UAC» absorbent cloth.

Standardized procedures for conducting experiments are described. Studies of the adsorption characteristics of the proposed «UAC» involving various model solutions (Gasoline A-95, 25 % solution of ammonia water, and 15 % solution of hydrogen peroxide) confirm its versatility and efficiency; the degree of purification reaches 92 %.

It is proposed to use certain types of railroad cars to transport «UAC» as part of a freight train, which is supported by the corresponding dynamic indicators. Recommendations for the regeneration or disposal of spent «UAC» cloth are provided.

The proposals for improving the method of emergency emission elimination using the «Universal Absorbent Cloth» («UAC») make it possible to minimize the negative consequences of emergency spills of liquid cargoes of different hazard classes and reduce the time spent on elimination operations. These advantages ensure the competitiveness and profitability of the proposed technology.

Keywords: environmental technologies, hazardous cargoes, localization of accidents, elimination of accidents, carbonization, universal absorbent cloth.

References

1. «Elektrovazhmash» zmožno vziaty uchast v onovlenni rukhomo kladu «Ukrzaliznytsia». Kharkivska oblasna vishkova administratsiia. Available at: https://kharkivvoda.gov.ua/news/108760
2. Elagin, Y. V., Hinchchenko, Y. V., Tsipko, L. V. (2018). State and replenishment of the rolling stock in conditions of Ukrzaliznytsia reform. The bulletin of transport and industry economics, 64, 209–216. doi: https://doi.org/10.18664/338.47.338.45.v064.149571
3. Lővér, I., Kóvári, B., Béess, T., Aradi, S. (2022). Environment Representations of Railway Infrastructure for Reinforcement Learning-Based Traffic Control. Applied Sciences, 12 (9), 4465. doi: https://doi.org/10.3390/app12094465
4. Kurbangaliyeva, M. (2022). Improvement of Emergency Oil Spill Management Technology. IOP Conference Series: Earth and Environmental Science, 988 (2), 022008. doi: https://doi.org/10.1088/1755-1315/988/2/022008
5. Zelenko, J., Kalmehet, M. (2021). Production of the sorption sheet from composite materials as a liquidation agent for spill response of hazardous materials on transport. Collection of Scientific Works of the State University of Environment and Technologies Series "Transport Systems and Technologies", 1 (38), 24–35. doi: https://doi.org/10.32703/2017-9040-2021-38-24-3
6. Murray, M. L., Poulson, S. M., Murray, B. R. (2020). Decontaminating Terrestrial Oil Spills: A Comparative Assessment of Dog Fur, Human Hair, Peat Moss and Polypropylene Sorbents. Environments, 7 (7), 52. doi: https://doi.org/10.3390/environments7070052
7. Tabakaev, R. B., Astafev, A. V., Ivashutennko, A. S., Yazykov, N. A., Zavorin, A. S. (2021). Changes in thermophysical characteristics of biomass with different mineralization amount during its slow pyrolysis. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 332 (3), 74–84. Available at: https://cyberleninka.ru/article/n/izmenenie-teplofizicheskih-kharakteristik-biomas-s-razli-chnoy-dolej-mineralizatsii-v-protse-smedlennogo-piroliza
8. Brown, R. A., Kercher, A. K., Nguyen, T. H., Nagle, D. C., Ball, W. P. (2006). Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry, 37 (3), 321–333. doi: https://doi.org/10.1016/j.orggeochem.2005.10.008
9. Valeev, I. A., Gaziyov, R. A. (2015). Razrabotka promyshlennoy ustanovki dlya poluchenia syr'ya, ispol'uzovannogo v proizvodstve sorbenta meditisskogo razmacheniya. Vestnik technologicheskogo universiteta, 18 (15), 56–59. Available at: https://www.elibrary.ru/item.asp?id=2496313
10. Bulauka, Y. A., Mayorava, K. I., Ayoub, Z. (2018). Emergency sorbents for oil and petroleum product spills based on vegetable raw materials. IOP Conference Series: Materials Science and Engineering, 451, 012218. doi: https://doi.org/10.1088/1757-899X/451/1/012218
11. Osokin, V. M., Somin, V. M. (2013). Issledovaniya po polucheniyu novykh sorbentov iz rastitel'nogo syr'ya. Polzunovskiy vestnik, 1, 280–282. Available at: https://journal.altstu.ru/media/1/old2/pv2013_01/pdf/280osokin.pdf
12. Davydova, S. L. (2004). Neft' i nefteprodukti v okruzhayuschey srede. Moscow: Izv-lo RUDDN, 163.
13. Glazkova E. A. (2003). Novyy sinteticheskiy sorbtsionniy material. Khimiya nefti i gaza. Tomks: IOA SO RAN, 392.
14. Anurov, S. A., Anurova, T. V., Klushin, V. N. i dr. (2011). Poluchenie uglerodnykh adsorbentov iz rastitel’nykh otkhodov: Karbonizatsiya syr’ya. Elektronny nauchny zhurnal «Issledovano v Rossi». 15. Kholkhlov, A., Kholkhlova, L. (2021). Development of biocarbon sorbent from corn waste with increased destructive activity in relation to oil. Technology Audit and Production Reserves, 4 (3 (60)), 21–26. doi: https://doi.org/10.15367/2706-5448.2021.238342
16. Borthelerti, F., Malavasi, G. (2016). Road accessibility model to the rail network in emergency conditions. Journal of Rail Transport Planning & Management, 6 (3), 237–254. doi: https://doi.org/10.1016/j.jrpm.2016.10.001
17. Conca, A., Ridella, C., Saporri, E. (2016). A Risk Assessment for Road Transportation of Dangerous Goods: A Routing Solution. Transportation Research Procedia, 14, 2890–2899. doi: https://doi.org/10.1016/j.trpro.2016.05.407
18. Solé, M., Hovance, M. (2015). The Importance of Dangerous Goods Transport by Rail. Naše More, 62 (3), 181–186. doi: https://doi.org/10.17818/num/2015/617
19. Soroka, L. M., Yaryshkina, L. A. (2012). Technology for the oil spills clean-up which provides preliminary accumulation of sorbents into the area of emergence and localization of oil spills. Science and Transport Progress, 42 (12), 45–55. Available at: http://st.pd uit.edu.vn/article/view/9275/8035
20. Tkan’ filtrrovaynaja TGF-8 (56035). Available at: https://epicentrk.ua/shop/tkan-filtrovalnaya-tgf-8-56035.html?ssh=revenue&gclid=Cj0KCQiAkzP9BRckR1sA2GKE8V7AXF7BPBJy8HY0zzXM7_hDMyHzs3xoviszB1vxf563RwRSZegaAWEALw_wcB
21. MVV No. 081/12-0116-03. Gruntovy metodika vymir vannya masovoi chastky naftoproduktiv hravimetrychnym metodom. Available at: http://online.budstandart.com/ua/catalog/doc-page?id_doc=76437
This paper considers and analyzes a relevant issue of treatment of disturbed soils. The equipment to carry out various processes of mining reclamation of waste heaps and quarries with a significant reduction in the level of environmental risks through the operation of an energy-saving small-sized apparatus has been designed. The use of the developed soil reclamator is also adequate for pre-sowing and other types of agrotechnical tillage, plant care in agricultural fields, as well as in areas with a heterogeneous landscape. The functionality of the unit is able to provide energy autonomy and automation of the technological process. The low weight of the device makes it possible to reduce the pressure on the soil, which minimizes the environmentally hazardous formation of dust during the treatment of waste heaps, the destruction of its structure, the machine degradation of the fertile layer during the processing of all types of territories. The device also reduces the risk of fertile soils slipping from the slopes of mine dumps due to the fact that the soil reclamator is self-propelled and functions without the need to involve a heavy tractor. The mathematical modeling of the operation of the proposed technical support for the treatment of waste heap reclamation in comparison with the opposed analog proves the ecological and economic efficiency of the eco-adaptive soil reclamator. The average value of profit ratios, when using the proposed soil reclamator, is 121.82% higher than with the opposed analog proves the ecological and economic efficiency of the eco-adaptive soil reclamator. The average value of profit ratios, when using the proposed soil reclamator, is 121.82% higher than with the opposed analog proves the ecological and economic efficiency of the eco-adaptive soil reclamator. The average value of profit ratios, when using the proposed soil reclamator, is 121.82% higher than with the opposed analog proves the ecological and economic efficiency of the eco-adaptive soil reclamator. The average value of profit ratios, when using the proposed soil reclamator, is 121.82% higher than with the opposed analog proves the ecological and economic efficiency of the eco-adaptive soil reclamator. The average value of profit ratios, when using the proposed soil reclamator, is 121.82% higher than with the opposed analog proves the ecological and economic efficiency of the eco-adaptive soil reclamator.

Keywords: reclamation, machine degradation, tilled furrow, ecological and economic efficiency, eco-adaptive soil reclamator, mine waste.

References

1. Ignatyeva, M., Yurak, V., Pustokhina, N. (2020). Revitaliziation of Post-Mining Disturbed Land: Review of Content and Comparative Law and Feasibility Study. Resources, 9 (6), 73. doi: https://doi.org/10.3390/resources9060073
2. Osendarp, S., Verburg, G., Bhutta, Z., Black, R. E., de Pee, S., Fabrizio, C. et al. (2022). Act now before Ukraine war plunges millions into malnutrition. Nature, 604 (7970), 620–624. doi: https://doi.org/10.1038/d41586-022-01076-5
3. Soldik, K. A., Arabov, F. P., Bobohonzoda, K. R., Asomuddin, K. R., Fozilov, S. R. (2022). Sustainable development of ecological and economic use of agricultural land and water resources of the Re-
public of Tajikistan. IOP Conference Series: Earth and Environmental Science, 98 (2), 022028. doi: https://doi.org/10.1088/1755-1315/981/2/022028

4. Kryszowska Wiatkusz, A. (2022). Sustainable reclamation practices for a large surface coal mine in shortgrass prairie, semiarid environment (Wyoming, USA): case study. International Journal of Coal Science & Technology, 9 (1). doi: https://doi.org/10.1007/s40789-022-00502-3

5. Khomenko, Y. V., Solidatova, A. S. (2015). The Problem of Waste Banks of Donbas. Ekonomichnyi visnyk Donbasu, 1 (39), 12–19. Available at: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/87535/2-Khomenko.pdf?sequence=1

6. Gorovaya, A. I., Pavlichenko, A. V., Kulya, S. L. (2009). Otsenka vliyaniya na okruzhyayuschnuyu sredu protsessov otvaloobrazovaniya (na primere L'vovsko-Volynskogo ugro'nogo bessyechnoy Ukrainy). Gornyi informatsionno-analitischeskiy byulleten' (nauchno-teknicheskiy zhurnal), 12, 197–207. Available at: https://cyberleninka.ru/article/n/otsenka-vliyaniya-na-okruzhyayuschnuyu-sredu-protsessov-otvaloobrazovaniya-na-primere-Lvovsko-Volynskogo-ugol'nogo-bessyechnoy-Ukrayiny

7. Checko, A., Jelonke, I., Jelonke, Z. (2022). Study on restoring abandoned mine lands to economically usable state using the post-occupancy evaluation method. Land Degradation & Development, 33 (11), 1836–1845. doi: https://doi.org/10.1002/ldr.4267

8. Zykov, V. N., Malejik, E. S. (2007). Ecological substantiation of terriloke recultivation. Vestnik Rossisskogo universitetta druzyby narodov. Seriya: Ekologiya i bezopasnost' zhiznedeyatel'nosti, 4, 68–70. Available at: https://cyberleninka.ru/article/n/ekologicheskeo-obsovanovanie-rekultivatsii-terrilokon

9. Yang, Y., Wu, D., He, L. (2022). A Coupled THM Model for Simulating Mechanical Response of Open Pit and Underground Stope to the Filling of the Pit. Geotechnical and Geological Engineering, 40 (3), 2657–2676. doi: https://doi.org/10.1007/s10706-022-02352-6

10. Wen, H., Zhang, Y., Cloquet, C., Zhu, C., Fan, H., Luo, C. (2015). Tracing sources of pollution in soils from the Jinding Pb–Zn mining district in China using cadmium and lead isotypes. Applied Geochemistry, 52, 147–154. doi: https://doi.org/10.1016/j.apgeochem.2014.11.025

11. Alekseenko, A. V., Drebenstedi, C., Bech, J. (2021). Assessment and abatement of the eco-risk caused by mine spoils in the dry subtropical climate. Environmental Geochemistry and Health, 44 (5), 1581–1603. doi: https://doi.org/10.1007/s10653-021-00885-3

12. Oktafia, D., Fekriyantiningrum, K., Jaidil, N., Nurfitria, N., Rahmadani, F., Amrullah, A., Hutayati, D. (2019). Short Communication: Assessment of reclamation success of former limestone quarries in Tuban, Indonesia, based on soil arthropod diversity and soil organic carbon content. Biodiversitas Journal of Biological Diversity, 8 (20), 60. doi: https://doi.org/10.13057/biodiv/v20i06234

13. Luna, L., Pastorelli, R., Bastida, F., Hernández, T., García, C., Míralles, I., Solé-Benet, A. (2016). The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties. Applied Soil Ecology, 107, 33–47. doi: https://doi.org/10.1016/j.apsoil.2016.05.006

14. Bangian, A. H., Ataei, M., Sayadi, A., Gholinejad, A. (2012). Optimizing post-mining land use for pit area in open-pit mining using fuzzy decision making method. International Journal of Environmental Science and Technology, 9 (4), 613–628. doi: https://doi.org/10.1007/s13762-012-0047-5

15. Talgamer, B. L., Murzin, N. V., Roslavtseva, Y. G., Semenov, M. E. (2021). Cutback angles for slope flattening during rehabilitation of degraded landscape due to open pit mining in friable sediments. Mining Informational and Analytical Bulletin, 3, 128–141. doi: https://doi.org/10.25018/0236-1493-2021-3-0-128-141

16. Talgamer, B. L., Murzin, N. V., Batzargal, D. (2020). Justification of reclamation parameters for lands disturbed during the development of gold placers. IOP Conference Series: Earth and Environmental Science, 408 (1), 012058. doi: https://doi.org/10.1088/1755-1315/408/1/012058

17. Novara, A., Novara, A., Comparetti, A., Santoro, A., Cerda, A., Rodri-gocomino, J., Cristina, L. (2022). Effect of Standard Disk Plough on Soil Translocation in Sloping Sicilian Vineyards. Land, 11 (2), 148. doi: https://doi.org/10.3390/land11020148

18. Hafzov, A. C., Hafizov, R. N., Nurmiev, A. A., Khalilullin, F. H. (2022). Minimum required power capacity of tractors depending on grain cultivation methods. IOP Conference Series: Earth and Environmental Science, 996 (1), 012031. doi: https://doi.org/10.1088/1755-1315/996/1/012031

19. Zhao, P., Chen, X., Wang, E. (2016). Quantitative assessment of tillage erosion on typical sloping field in black soil area of northeast China. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 32 (12), 151–157. doi: https://doi.org/10.11975/j.issn.1002-6819.2016.12.022

20. De Alba, S. (2001). Modeling the effects of complex topography and patterns of tillage on soil translocation by tillage with mouldboard plough. Journal of Soil and Water Conservation, 56 (4), 335–345. Available at: https://www.jswconline.org/content/56/4/335

21. Xu, L., Liu, M., Zhou, Z. (2014). Design of drive system for series hybrid electric tractor. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 30 (9), 11–18. doi: https://doi.org/10.3969/j.issn.1002-6819.2014.09.002

22. Singh, S. P., Singh, H. B., Verma, H. N. (2001). Tractor utilisation pattern for various agricultural and developmental operations- A case study. AMA, Agricultural Mechanization in Asia, Africa and Latin America, 32 (1), 43–47.

23. Xuanbin, B., Xiangyu, Z., Jin, H., Hongwen, L., Qingjie, W., Wenzheng, L. (2019). Design and performance test of plowning and rotary tillage combined machine. INMATEH - Agricultural Engineering, 38 (2), 213–222.

24. Barteniev, I. M., Kurgalin, S. D., Turovskiy, Y. A., Lysych, M. N. (2015). Promising designs multipurpose cultivator to slopes with automatic corrected biometric control system lateral stability. Lesotekhnicheskiy zhurnal, 2, 158–165. Available at: https://cyberleninka.ru/article/n/perspektivnaya-konstruktitsiya-mnogo-funktsionalnogo-kultivatora-dlya-sklokov-s-avtomaticheskoy-biometricheskiy-korrektiruemoy

25. Glancy, J. (1996). Prediction of agricultural implement draft using an instrumented analog tillage tool. Soil and Tillage Research, 37 (1), 47–65. doi: https://doi.org/10.1016/0167-1987(95)00507-2

26. Fiorineschi, L., Frillici, F. S., Rotini, F. (2018). Enhancing functional decomposition and morphology with TRIZ: Literature review. Computers in Industry, 94, 1–15. doi: https://doi.org/10.1016/j.compind.2017.09.004

27. Bondarenko, I., Kutniaschenko, O., Toporov, A., Anishchenko, L., Zin, O., Dunayev, I. et al. (2020). Improving the efficiency of equipment and technology of waste briquetting. Eastern-European Journal of Enterprise Technologies, 6 (10 (108)), 36–52. doi: https://doi.org/10.15587/1729-4061.2020.220349

28. Bondarenko, I. V., Kutniaschenko, O. I., Rudyk, Y. I., Solyonyj, S. V. (2019). Modeling the efficiency of waste management. NEWS of National Academy of Sciences of the Republic of Kazakhstan, 2 (434), 120–130. doi: https://doi.org/10.32014/2019.2518-170x.45
ESTABLISHING REGULARITIES IN THE APPLICATION OF DRY PINE WOOD (p. 51–59)

Yuriy Tsapko
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-6625-0783

Nataliia Buiskykh
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-3229-7235

Ruslan Likhnyovskiy
Institute of Public Administration and Research in Civil Protection, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-9187-9780

Oksana Andrii Horbachova
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-7533-5628

Aleksei Tsapko
Ukrainian State Research Institute “Resource”, Kyiv, Ukraine
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2298-068X

Serhiy Mazurchuk
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6008-0591

Andrii Matviichuk
V. I. Vernadsky National Library of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-4051-2484

Maryna Sukhaneyevych
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-9644-2852

The issue related to using dry wood products for building structures is to ensure their stability and durability during operation while it is necessary to take into consideration changes in their properties and structure. Therefore, the object of this study was pine wood structure, damage by microorganisms. Specifically, with the area of damage in the range of 30–50 %, the strength limit decreases by more than 1.3 times, and if the fungus affects the area within 80–100 %, the wood becomes softer, more ductile while the strength limit is reduced by 1.1 times. Based on the results of physicochemical studies, discrepancies in the IR spectra were identified, indicating structural changes in the constituent components of wood. There is a decrease or absence of intensities of absorption bands of some functional groups and the appearance or intensification of others. Wood samples, in determining the highest calorific value, show a difference in values, which is explained by structural changes in wood components caused by biological processes. Thermogravimetric analysis data indicate complete burnout of dry pine wood. However, for wood with tree stands not weakened by drying, the coke residue burns out at a higher temperature. Wood with blue pigmentation affected by microorganisms has significant differences in the heating area of 400–700 °C. The nature of coke burnout allows us to make assumptions about the different qualitative and quantitative composition of the coke residue, which is formed due to structural changes. The practical significance is the fact that the results of determining the properties and structure of dry wood make it possible to establish the operating conditions for articles and building structures.

Keywords: pine wood, dry wood, tensile strength, change in wood structure, damage by microorganisms.

References
1. Mukhortova, L. V., Krivobokov, L. V, Schepaschenko, D. G., Knorre, A. A., Sobachkin, D. S. (2021). Stock of standing dead trees in boreal forests of Central Siberia. IOP Conference Series: Earth and Environmental Science, 875 (1), 012059. doi: https://doi.org/10.1088/1755-1315/875/1/012059
2. Allen, C. D., Macalady, A. K., Schepaschenko, D. G., McDowell, N., Vennetier, M. et. al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259 (4), 660–684. doi: https://doi.org/10.1016/j.foreco.2009.09.001
3. Woodall, C. W., Fraver, S., Osvald, S. N., Goeking, S. A., Domke, G. M., Russell, M. B. (2021). Decadal dead wood biomass dynamics of conterminous US forests. Environmental Research Letters, 16 (10), 104034. doi: https://doi.org/10.1088/1748-9326/ab29e8
4. Novitskii, S., Marchenko, N., Kovalenko, O., Buskhyk, N. (2020). Wood Science Characteristics of Timber from Pine Deadwood Trees (Pinus sylvestris L.). Key Engineering Materials, 864, 164–174. doi: https://doi.org/10.4028/www.scientific.net/KEM.864.164
5. Tsapko, Y., Zavialov, D., Bondarenko, O., Marchenko, N., Mazurchuk, S., Horbachova, O. (2019). Determination of thermal and physical characteristics of dead pine wood thermal insulation products. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 37–43. doi: https://doi.org/10.15587/1729-4061.2019.175346
6. Steffenrem, A., Sarpanpää, P., Lundqvist, S.-O., Skreppa, T. (2007). Variation in wood properties among five full-sib families of Norway spruce (Picea abies). Annals of Forest Science, 64 (8), 799–806. doi: https://doi.org/10.1051/forest:20070762
7. Missanjo, E., Matsumura, J. (2016). Wood Density and Mechanical Properties of Pinus kesiya Royle ex Gordon in Malawi. Forests, 7 (12), 135. doi: https://doi.org/10.3390/t7070135
8. Yin, Q., Liu, H.-H. (2021). Drying Stress and Strain of Wood: A Review. Applied Sciences, 11 (11), 5023. doi: https://doi.org/10.3390/app11115023
9. Kanteva, E., Snegireva, S., Platonov, A. (2021). Formation of density and porosity of pine wood in a tree trunk. IOP Conference Series: Earth and Environmental Science, 875 (1), 012016. doi: https://doi.org/10.1088/1755-1315/875/1/012016
10. Zashikhina, I. M., Pushkina, T. M. (2019). Experimental research on physical- mechanical properties of wood from drying-out forests.

DOI: 10.15587/1729-4061.2022.262203
The object of this study is the dynamics of a characteristic sign of an increment in the state of the gaseous medium in the premises when a thermal source of fire appears. The subject of the study is the type of an empirical cumulative function of the distribution of dynamics of a characteristic sign of an increment in the state of the gaseous medium in the absence and appearance of a thermal source of fire in the premises. As a characteristic feature, the probability of non-recurrence of the increments of the vector of states of the gaseous medium was chosen. The results of the study make it possible to quickly identify thermal sources of fire under uncertain conditions. The methodology for studying the empirical cumulative function of the distribution of the dynamics of the probability of non-recurrence of the increments of the vector of states of the gas medium has been substantiated. The technique includes the implementation of seven consecutive procedures and makes it possible to explore the specified function for arbitrary time intervals. The empirical cumulative distribution function for two fixed time intervals of equal duration before and after the appearance of test thermal sources of fire in the laboratory chamber was investigated. It was established that the features of the empirical cumulative functions of the distribution of the dynamics of the probability of non-recurrence of the increments of the vector of states of the gas environment allow for early detection of fire. The main sign of detection is a decrease in the fixed values of the empirical cumulative distribution function. For test thermal sources, fixed values of the empirical cumulative distribution function are in the range of 0.15–0.44. These probabilities are determined by the different ignitable gaseous medium in the absence and appearance of a thermal source of fire in the premises. As a characteristic feature, the probability of non-recurrence of the increments of the vector of states of the gaseous medium was chosen. The results of the study make it possible to quickly identify thermal sources of fire under uncertain conditions. The methodology for studying the empirical cumulative function of the distribution of the dynamics of the probability of non-recurrence of the increments of the vector of states of the gas medium has been substantiated. The technique includes the implementation of seven consecutive procedures and makes it possible to explore the specified function for arbitrary time intervals. The empirical cumulative distribution function for two fixed time intervals of equal duration before and after the appearance of test thermal sources of fire in the laboratory chamber was investigated. It was established that the features of the empirical cumulative functions of the distribution of the dynamics of the probability of non-recurrence of the increments of the vector of states of the gas environment allow for early detection of fire. The main sign of detection is a decrease in the fixed values of the empirical cumulative distribution function. For test thermal sources, fixed values of the empirical cumulative distribution function are in the range of 0.15–0.44. These probabilities are determined by the different ignitable conditions. The research results indicate the possibility of using the identified features of empirical cumulative distribution functions of the dynamics of the probability of non-recurrence of the increments of the vector of states of the gas environment for the early detection of fires.

Keywords: gas environment, dynamics of increments of states, thermal sources of fire, empirical cumulative distribution function.

References

1. Brushlinsky, N. N., Ahrens, M., Sokolov, S. V., Wagner, P. (2019). World Fire Statistics. Report No. 24. Berlin: Center of Fire Statistics of CTIF, 65.

2. Magalenko, K., Nuainzin, V., Zemlianisky, A., Dominik, A., Pudiev, S. (2018). Development of the technique for restricting the propagation of fire in natural peat ecosystems. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 31–37. doi: https://doi.org/10.15587/1729-4061.2018.121727

3. Vambol, S., Vambol, V., Kondratenko, O., Kołosov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-tempera-
ture utilization of used tires for liquefied methane production. Journal of Achievements in Materials and Manufacturing Engineering, 2 (87), 77–84. doi: https://doi.org/10.5604/01.3001.0012.2830

4. Vamkol, S., Vamkol, V., Sobyna, V., Koloskov, V., Poberezhna, L. (2019). Investigation of the energy efficiency of waste utilisation technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, 64 (4). doi: https://doi.org/10.6001/energetika.v64i4.3893

5. Semko, A., Beskrovnya, M., Vinogradov, S., Hritsina, I., Yagudina, N. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 (3), 655–664.

6. Otrosh, Y., Semikv, O., Rybka, E., Kovalov, A. (2019). About need of calculations for the steel framework building in temperature influences conditions. IOP Conference Series: Materials Science and Engineering, 708 (1), 012065. doi: https://doi.org/10.1088/1757-899x/708/1/012065

7. Ragimov, S., Sobyna, V., Vamkol, S., Vamkol, V., Feshchenko, A., Zakora, A. et. al. (2018). Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 1 (91), 27–33. doi: https://doi.org/10.5604/01.3001.0012.9654

8. Kovalov, A., Otrosh, Y., Ostroverkh, O., Hrushovinchuk, O., Savchenko, O. (2018). Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method. E3S Web of Conference, 60, 00003. doi: https://doi.org/10.1051/e3scconf/20186000003

9. Sadkoyiy, V., Andronov, V., Semikv, O., Kovalov, A., Rybka, E., Otrosh, Yu. et. al.; Sadkoyiy, V., Rybka, E., Otrosh, Yu. (Eds.) (2021). Fire resistance of reinforced concrete and steel structures. Kharkiv: PC TECHNOLOGY CENTER, 180. doi: https://doi.org/10.15387/978-617-7319-43-5

10. Dadashov, I., Loboiachenko, V., Kireev, A. (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37 (1), 63–77.

11. Reproduced with permission from Fire Loss in the United States During 2019 [2020]. National Fire Protection Association, 11.

12. Kustov, M., Kalugin, V., Tutunik, V., Tarakhno, O. (2019). Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy Khimi i Khimicheskoi Tekhnologii, 1, 92–99. doi: http://doi.org/10.32434/0321-4095-2019-122-1-92-99

13. Vasyukov, A., Loboiachenko, V., Bushiter, S. (2016). Identification of bottled natural waters by using direct conductometry. Ecology, Environment and Conservation, 22 (3), 1171–1176.

14. Dubinin, D., Korytchenko, K., Lisyak, A., Hrytsyna, I., Trigub, V. (2018). Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 38–43. doi: https://doi.org/10.15587/1729-4061.2018.127865

15. Semko, A., Rusanova, O., Kazak, O., Beskrovnya, M., Vinogradov, S., Gricina, I. (2015). The use of pulsed high-speed liquid jet for putting out gas blow-out. The International Journal of Multiphysics, 9 (1), 9–20. doi: https://doi.org/10.1260/1750-9548.9.1.9

16. Popov, O., Latsyshyn, A., Kovach, V., Artemchuk, V., Taraduda, D., Sobyna, V. et. al. (2019). Physical Features of Pollutants Spread in the Air During the Emergency at NPPs. Nuclear and Radiation Safety, 4 (84), 88–98. doi: https://doi.org/10.32918/ars.2019.4(84).11

17. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Romin, A. (2018). Experimental study of the fluctuations of gas medium parameters as early signs of fire. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 50–55. doi: https://doi.org/10.15587/1729-4061.2018.122419

18. Pospelov, B., Andronov, V., Rybka, E., Meleschenko, R., Borodych, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. Eastern-European Journal of Enterprise Technologies, 3 (9 (93)), 34–40. doi: https://doi.org/10.15587/1729-4061.2018.133127

19. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. Eastern-European Journal of Enterprise Technologies, 2 (10 (92)), 44–49. doi: https://doi.org/10.15587/1729-4061.2018.129526

20. Aih, C.-S., Kim, J.-Y. (2011). A study for a fire spread mechanism of residential buildings with numerical modeling. Safety and Security Engineering IV. doi: https://doi.org/10.2495/safe110171

21. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.108448

22. Andronov, V., Pospelov, B., Rybka, E., Skliarov, S. (2017). Examining the learning fire detectors under real conditions of application. Eastern-European Journal of Enterprise Technologies, 3 (9 (87)), 53–59. doi: https://doi.org/10.15587/1729-4061.2017.101985

23. Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Research into dynamics of setting the threshold and a probability of ignition detection by selfadjusting fire detectors. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 43–48. doi: https://doi.org/10.15587/1729-4061.2017.110092

24. Angus, D. (2019). Recurrence Methods for Communication Data, Reflecting on 20 Years of Progress. Frontiers in Applied Mathematics and Statistics, 5. doi: https://doi.org/10.3389/fams.2019.00054

25. Pospelov, B., Andronov, V., Rybka, E., Meleschenko, R., Gornostal, S. (2018). Analysis of correlation dimensionality of the state of a gas medium at early ignition of materials. Eastern-European Journal of Enterprise Technologies, 5 (10 (95)), 23–30. doi: https://doi.org/10.15587/1729-4061.2018.142995

26. Pospelov, B., Rybka, E., Meleschenko, R., Gornostal, S., Sticherbal, S. (2017). Results of experimental research into correlations between hazardous factors of ignition of materials in premises. Eastern-European Journal of Enterprise Technologies, 6 (10 (90)), 30–36. doi: https://doi.org/10.15587/1729-4061.2017.117789

27. Pospelov, B., Rybka, E., Toglbsytka, V., Meleschenko, R., Danchenko, Y., Butenko, T. et. al. (2019). Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4 (10 (100)), 22–29. doi: https://doi.org/10.15587/1729-4061.2019.176579

28. Bendat, J. S., Piersol, A. G. (2010). Random data: analysis and measurement procedures. John Wiley & Sons. doi: https://doi.org/10.1002/9781118032428

29. Shaifi, I., Ahmad, J., Shah, S. I., Kabir, F. M. (2009). Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review. EURASIP Journal on Advances in Signal Processing, 2009 (1). doi: https://doi.org/10.1155/2009/673539

30. Pospelov, B., Andronov, V., Rybka, E., Samoilov, M., Krainivukova, O., Biryukov, I. et. al. (2021). Development of the method of operational forecasting of fire in the premises of objects under real conditions. Eastern-European Journal of Enterprise Technologies, 2 (10 (110)), 43–50. doi: https://doi.org/10.15587/1729-4061.2021.226692
According to the results of experimental studies, the time of occurrence of an irreversible thermochemical reaction in a lithium-ion power cell was determined depending on the different DC current strengths. Additionally, the critical temperature of the onset of an irreversible thermochemical reaction and the total combustion temperature of the element have been established. The application of the Joule-Lenz and Fourier laws allowed for a mathematical notation of the dependence (influence) of DC strength over time and the heating of the element to a critical temperature.

The heating time of Panasonic NCR18650B LIPC (LiNi_{0.8}Co_{0.15}Al_{0.05}O_2) to a critical temperature of 100–150 °C under the influence of excess current was experimentally established and mathematically confirmed.

The determined critical indicators of the element (temperature, time, etc.) make it possible to further devise a number of necessary regulatory documents that will allow them to be certified, tested, and, in general, to better understand the dangers that they may pose.

A mathematical model was built, which, taking into account the geometrical parameters of the element, makes it possible to calculate the onset of the critical temperature of such elements with excellent geometric parameters without conducting experimental studies.

Keywords: fire hazard, lithium-ion power cell, excess current, burning temperature.

References

1. Haider, W. H. (2020). Estimates of Total Oil & Gas Reserves in The World, Future of Oil and Gas Companies and SMART Investments by E & P Companies in Renewable Energy Sources for Future Energy Needs. Paper presented at the International Petroleum Technology Conference. doi: https://doi.org/10.2523/iptc-19729-ms

2. Mananga, E. S. (2020). Lithium-ion Battery and the Future. Recent Progress in Materials, 03 (02), 1–1. doi: https://doi.org/10.21926/rp.2102012

3. Nykvist, B., Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5 (4), 329–332. doi: https://doi.org/10.1038/nclimate2564

4. Huang, Z., Li, H., Mei, W., Zhao, C., Sun, J., Wang, Q. (2020). Thermal Runaway Behavior of Lithium Iron Phosphate Battery During Penetration. Fire Technology, 56 (6), 2405–2426. doi: https://doi.org/10.1007/s10694-020-00697-1

5. Lazarenko, O., Lok, V., Shtain, B., Riegert, D. (2018). Research on the Fire Hazards of Cells in Electric Car Batteries. Bezpieczeństwo i Technika Pożarnictwa, 52, 108–117. doi: https://doi.org/10.12845/btp.52.4.2018.7

6. Chombo, P. V., Lamonial, Y. (2020). A review of safety strategies of a Li-ion battery. Journal of Power Sources, 478, 228649. doi: https://doi.org/10.1016/j.jpowsour.2020.228649

7. Ruiz, V., Pfarng, A., Kriston, A., Omar, N., Van den Bosche, P., Boon-Brett, L. (2018). A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 81, 1427–1452. doi: https://doi.org/10.1016/j.rser.2017.05.195

8. Lazarenko, O., Pospolitak, V. (2021). Methods of testing lithium-ion batteries for fire hazard. Fire Safety, 39, 49–55. doi: https://doi.org/10.1016/j.firesaf.2020.04.005

9. Ren, D., Feng, X., Lu, L., He, X., Ouyang, M. (2019). Overcharge behaviors and failure mechanisms of lithium-ion batteries under different test conditions. Applied Energy, 250, 323–332. doi: https://doi.org/10.1016/j.apenergy.2019.05.015

10. Meywalla, A., Panchal, S., Tran, M.-K., Fowler, M., Fraser, R. (2020). Mathematical Heat Transfer Modeling and Experimental
Validation of Lithium-Ion Battery Considering Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode-Cathode Irreversible and Reversible Heat. Batteries, 6 (4), 61. doi: https://doi.org/10.3390/batteries6040061

11. Li, J., Sun, D., Jin, X., Shi, W., Sun, C. (2019). Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation. Applied Energy, 254, 113574. doi: https://doi.org/10.1016/j.apenergy.2019.113574

12. Bhundiy, H., Hunt, M., Drolen, B. (2018). Measurement of the effective radial thermal conductivities of 18650 and 26650 lithium-ion battery cells. TFWAS 2018. Available at: https://tfaws.nasa.gov/wp-content/uploads/TFAWS18-IN-08_Paper.pdf

13. Kimm Y., Siegel, J. B., Stefanopoulou, A. G. (2013). A computationally efficient thermal model of cylindrical battery cells for the estimation of radially distributed temperatures. 2013 American Control Conference. doi: https://doi.org/10.1109/acc.2013.6579917

14. Bubbico, R., D’Annibale, F., Mazzarotta, B., Menale, C. (2019). Thermal Model of Cylindrical Lithium-ion Batteries. Chemical Engineering Transactions, 74, 1291–1296. doi: https://doi.org/10.3303/CET1974216

15. Li, L., Ju, X., Zhou, X., Peng, Y., Zhou, Z., Cao, B., Yang, L. (2021). Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents. Materials, 14 (16), 4740. doi: https://doi.org/10.3390/ma14164740

16. Xu, B., Kong, L., Wen, G., Pecht, M. G. (2021). Protection Devices in Commercial 18650 Lithium-Ion Batteries. IEEE Access, 9, 66687–66695. doi: https://doi.org/10.1109/access.2021.3075972

17. Sun, P., Bisschop, R., Niu, H., Huang, X. (2020). A Review of Battery Fires in Electric Vehicles. Fire Technology, 56 (4), 1361–1410. doi: https://doi.org/10.1007/s10694-019-00944-3

18. Pazen, O., Tatsiy, R. (2021). Mathematical modeling of the heat transfer process in the system of multilayer cylindrical solid bodies considering internal sources of heat. Scientific Bulletin: Civil Protection and Fire Safety, 1 (9), 66–75. doi: https://doi.org/10.33269/nvcz.2020.1.66-75

19. Tatsiy, R., Stasiuk, M., Pazen, O., Vovk, S. (2018). Modeling of boundary-value problems of heat conduction for multilayered hollow cylinder. 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T). doi: https://doi.org/10.1109/infocommast.2018.8632131

20. Muenzel, V., Hollenkamp, A. F., Bhatt, A. I., de Hoog, J., Brazil, M., Thomas, D. A., Marceus, I. (2015). Comment on “A Comparative Testing Study of Commercial 18650-Format Lithium-Ion Battery Cells” [J. Electrochem. Soc., 162, A1592 (2015)]. Journal of The Electrochemical Society, 162 (12), Y11–Y12. doi: https://doi.org/10.1149/2.024151jes

21. Wang, D., Bao, Y., Shi, J. (2017). Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter. Energies, 10 (9), 1284. doi: https://doi.org/10.3390/en10091284

22. Duh, Y.-S., Tsai, M.-T., Kao, C.-S. (2016). Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. Journal of Thermal Analysis and Calorimetry, 127 (1), 983–993. doi: https://doi.org/10.1007/s10973-016-5767-1
Об’єктом дослідження є гранульовані сорбенти на основі каолініту та нульвалентного заліза. Керамічна маса для їх приготування містила полівініловий спирт в якості пороутворюючої добавки. Встановлено, що її додавання в кількостях 1,8–3,3 % практично не змінює пористість гранул, але підвищує їх міцність. Методами рентгенфазового та хімічного аналізу підтверджено наявність шару нульвалентного заліза на поверхні гранул. Виноситися структуро-сорбційні характеристики сорбційних матеріалів та проведено розрахунки основних параметрів їх поруватої структури. Показано, що при модифікації гранул нульвалентним залізом відбувається зменшення питової поверхні та об’єму мікропор для зерен без пороутворюючої добавки майже у 2 рази у порівнянні з вихідними гранулями. Причому ці величини практично не змінюються для зерен, одержаних із додаванням полівінілового спирту. Встановлено, що напе- сення реакційного шару на гранулі приводить до значного підвищення їх сорбційної здатності по відношенню до іонів важких металів Cu(II), Cd(II), Co(II), Zn(II) і Cr(VI). Показано, що одержані сорбенти можуть бути використані для очищення стічних вод, що містять суміші цих токсикантів. Встановлено, що величини максимальної сорбції на модифікованих зернах у 10–20 разів перевищують такі для вихідних гранул. Особливістю отриманих сорбентів є їх здатність одночасно видаляти іони металів, як у формі катіонів, так і аніонів. Встановлено суттєве підвищення селективності анионних форм Cr(VI), які важко видаляються із вод природними іонообмінниками. Показано, що гранули на основі каолініту та нульвалентного заліза є ефективними сорбентами для очищення вод від іонів важких металів та іонів важких металів. Одержані матеріали можна застосовувати для очищення стічних вод гальванічних виробництв та гідрометалургійної галузі.

Ключові слова: гранульовані сорбенти, каолініт, нульвалентне залізо, очищення вод, суміші важких металів.

В. М. Холодько, А. І. Бондарєва, В. Ю. Тобілко, В. М. Павленко, О. В. Мельничук, В. В. Глуховський

**Об’єктом дослідження є гранульовані сорбенти на основі каолініту та нульвалентного заліза. Керамічна маса для їх приготування містила полівініловий спирт в якості пороутворюючої добавки. Встановлено, що її додавання в кількостях 1,8–3,3 % практично не змінює пористість гранул, але підвищує їх міцність. Методами рентгенфазового та хімічного аналізу підтверджено наявність шару нульвалентного заліза на поверхні гранул. Виноситися структуро-сорбційні характеристики сорбційних матеріалів та проведено розрахунки основних параметрів їх поруватої структури. Показано, що при модифікації гранул нульвалентним залізом відбувається зменшення питової поверхні та об’єму мікропор для зерен без пороутворюючої добавки майже у 2 рази у порівнянні з вихідними гранулями. Причому ці величини практично не змінюються для зерен, одержаних із додаванням полівінілового спирту. Встановлено, що напе- сення реакційного шару на гранулі приводить до значного підвищення їх сорбційної здатності по відношенню до іонів важких металів Cu(II), Cd(II), Co(II), Zn(II) і Cr(VI). Показано, що одержані сорбенти можуть бути використані для очищення стічних вод, що містять суміші цих токсикантів. Встановлено, що величини максимальної сорбції на модифікованих зернах у 10–20 разів перевищують такі для вихідних гранул. Особливістю отриманих сорбентів є їх здатність одночасно видаляти іони металів, як у формі катіонів, так і аніонів. Встановлено суттєве підвищення селективності анионних форм Cr(VI), які важко видаляються із вод природними іонообмінниками. Показано, що гранули на основі каолініту та нульвалентного заліза є ефективними сорбентами для очищення вод від іонів важких металів та іонів важких металів. Одержані матеріали можна застосовувати для очищення стічних вод гальванічних виробництв та гідрометалургійної галузі.

Ключові слова: гранульовані сорбенти, каолініт, нульвалентне залізо, очищення вод, суміші важких металів.

В. В. Олійник, Ю. О. Абрамов, О. Є. Басманов, І. М. Хмиров

**Об’єктом дослідження є гранульовані сорбенти на основі каолініту та нульвалентного заліза. Керамічна маса для їх приготування містила полівініловий спирт в якості пороутворюючої добавки. Встановлено, що її додавання в кількостях 1,8–3,3 % практично не змінює пористість гранул, але підвищує їх міцність. Методами рентгенфазового та хімічного аналізу підтверджено наявність шару нульвалентного заліза на поверхні гранул. Виноситися структуро-сорбційні характеристики сорбційних матеріалів та проведено розрахунки основних параметрів їх поруватої структури. Показано, що при модифікації гранул нульвалентним залізом відбувається зменшення питової поверхні та об’єму мікропор для зерен без пороутворюючої добавки майже у 2 рази у порівнянні з вихідними гранулями. Причому ці величини практично не змінюються для зерен, одержаних із додаванням полівінілового спирту. Встановлено, що напе- сення реакційного шару на гранулі приводить до значного підвищення їх сорбційної здатності по відношенню до іонів важких металів Cu(II), Cd(II), Co(II), Zn(II) і Cr(VI). Показано, що одержані сорбенти можуть бути використані для очищення стічних вод, що містять суміші цих токсикантів. Встановлено, що величини максимальної сорбції на модифікованих зернах у 10–20 разів перевищують такі для вихідних гранул. Особливістю отриманих сорбентів є їх здатність одночасно видаляти іони металів, як у формі катіонів, так і аніонів. Встановлено суттєве підвищення селективності анионних форм Cr(VI), які важко видаляються із вод природними іонообмінниками. Показано, що гранули на основі каолініту та нульвалентного заліза є ефективними сорбентами для очищення вод від іонів важких металів та іонів важких металів. Одержані матеріали можна застосовувати для очищення стічних вод гальванічних виробництв та гідрометалургійної галузі.

Ключові слова: гранульовані сорбенти, каолініт, нульвалентне залізо, очищення вод, суміші важких металів.
шару рідини на поверхні піску і глибиновим просоченням має лінійний характер; відносно відхилення лінійної апроксимації від експериментальних даних не перевищує 3,5.

Шляхом розгляду в ряді Тейлора логарифмічної функції, що міститься в розв'язку системи диференціальних рівнянь, отримано поліноміальну залежність часу від глибин просочення. Для визначення коефіцієнтів полінома за експериментальними даними використано метод найменших квадратів. При цьому похибка апроксимації вже після першої хвилини після розливу не перевищує 10 %.

Запропонований метод може бути використаний для врахування просочення в моделі розташування рідин на грунті та моделі горіння розливу горючої рідкості.

Ключові слова: розлив рідкості, параметри просочення, модель Грін-Амп, коефіцієнт пористості, сипучий матеріал.

ДОИ: 10.15587/1729-4061.2022.263583
УДОСКОНАЛЕННЯ МЕТОДУ ЛІКВІДАЦІЇ РОЗЛІВІВ НЕБЕЗПЕЧНИХ РЕЧОВИН ШЛЯХОМ ВИКОРИСТАННЯ «УНІВЕРСАЛЬНОГО СОРБЦІЙНОГО ПОЛОТНА» (с. 38–37)
Ю. В. Зеленко, М. В. Калимбет

З метою підвищення ефективності та впровадження принципів ресурсосбереження під час ліквідації аварійних розливів небезпечних вантажів при перевезені їх залізничним транспортом, запропоновано пропозиції щодо удосконалення методу локалізації та ліквідації емісії небезпечних речовин з використанням «Універсального сорбційного полотна» («USS»).

Описано специфіку локалізації місця аварійної емісії та принципи ліквідації на основі сорбційних технологій з використанням «USS». Для виготовлення «USS» було розроблено специфічне устаткування (карбонізатор), що забезпечує ефективну карбонізацію сировини із рослинних відходів при достатньо низьких температурах ≤500 °C. За допомогою карбонізатора отримано універсальний сорбент, що надалі використовується для виготовлення «USS». Загальну час карбонізації залежно від сорбції дохідних відходів не перевищує 60 хвилин. Отриманий в процесі карбонізації універсальний сорбент розміцтували у тканинні матриці для виготовлення сорбційних полотен «USS».

Описано стандартизовані методики проведення експериментів. Дослідження адорбційних характеристик запропонованого «USS» за різними модельними розчинами (Бензин А-95, 25 % розчин аміачної води та 15 % розчин перекису водню), підтверджують його універсальність та ефективність, ступінь очищення сягає 92 %.

Запропоновано використання окремих типів вагонів для перевезення «USS» у складі вантажного потягу, що підкріплюється відповідними динамічними показниками. Надано рекомендації щодо регенерації або утилізації відпрацьованого полотна «USS».

Розроблені пропозиції щодо удосконалення методу ліквідації аварійної емісії з використанням «Універсального сорбційного полотна» («USS») дозволяють мінімізувати негативні наслідки аварійних розливів небезпечних класів небезпеки та зменшити витрати часу на ліквідаційні заходи. Зазначені переваги забезпечують конкурентоспроможність та рентабельність запропонованої технології.

Ключові слова: екологічні технології, небезпечні вантажі, локалізація аварій, ліквідація аварій, карбонізація, універсальне сорбційне полотно.

ДОИ: 10.15587/1729-4061.2022.263513
УДОСКОНАЛЕННЯ ТЕХНОЛОГІЇ РЕКУЛЬТИВАЦІЇ КАР’ЄРІВ ТА ТЕРИКОНІВ (с. 38–50)
Я. Ю. Байкалов, І. М. Джирий, В. І. Бецюг, О. А. Пряскурній, К. С. Березенко, С. В. Бойченко, М. І. Сергієнко, О. В. Давідін, О. І. Кутиненко

Розглянуто і проаналізовано сучасну проблему оброблення порушених ґрунтів Розроблено обладнання, що дає можливості діагностики різних процесів гірничотехнічної рекультивації териконів і кар’єрів із значніми зниженнями рівня екологічних ризиків, шляхом експлуатації енергоінтенсивного малогоабінтового, апарату. Використання розробленого рекультиватора також відповідає енергозйомні та інші типів агротехнічної обробки ґрунтів, що сприяє зниженню втратних витрат ресурсів різних класів небезпеки та зменшує витрати часу на ліквідаційні заходи. Зазначені переваги забезпечують конкурентоспроможність та рентабельність запропонованої технології.

Ключові слова: гірничотехнічна рекультивація, карбонізація, рекультивація, терикони, еколого-економічна ефективність, екоадаптивний рекультиватор, шахтні відходи.

ДОИ: 10.15587/1729-4061.2022.262203
ВСТАНОВЛЕННЯ ЗАКОНОМІРНОСТЕЙ ЗАСТОСУВАННЯ СУХОСТІЙНОЇ ДЕРЕВИНІ СОСНИ (с. 51–59)
Ю. В. Цапко, Н. В. Буйських, Р. В. Лізьковський, О.Ю. Горбачова, О. Ю. Цапко, С. М. Мазурчук, А. В. Матвійчук, М. В. Суханевич

Проблема застосування виробів з сухостійної деревини для будівельних конструкцій полягає в забезпеченні їх стійкості і довговічності при експлуатації, але необхідно врахувати зміну її властивостей та структури. Тому об’єктом досліджень була деревина
Без проведення експериментальних досліджень можлива здійснити розрахунок настання критичної температури подібних елементів з відмінними геометричними параметрами небезпеки, які вони можуть представляти. Отримана математична модель, яка враховує геометричні параметри елементу, дає необхідних регулюючих документів, що наддадуть змогу здійснювати їх сертифікацію, апробацію та загалом краще зрозуміти до критичної температури 100–150 °С за умови впливу надлишкового струму. Встановлено, що середній час початку горіння ЛІЕЖ математичний опис залежності (впливу) сили постійного струму в часі та нагрівання елемента до критичної температури. Термохімічна реакція та загальну температуру горіння елементу. Застосування законів Джоуля-Ленца та Фур'є дало змогу здійснити елементи живлення залежно від різної сили постійного струму. Додатково, встановлено критичну температуру початку незворотної необхідної властивостей та структури сухотійної деревини, уможливлюють встановити умови експлуатації виробів і будівельних конструкцій.

Ключові слова: деревина сосни, сухостійна деревина, межа міцності, зміна структури деревини, ураження мікроорганізмами.

DOI: 10.15587/1729-4061.2022.263194

Експериментально встановлено та математично підтверджено час нагріву ЛІЕЖ Panasonic NCR18650B (LiNi0.8Co0.15Al0.05O2) до 400°–700 °С. Характер вигоряння коксового дозволяє зробити припущення щодо різного за якісним і кількісним складом коксового залізниці, який утворюється завдяки структурним змінам. Практична цінність полягає в тому, що отримани результати визначення властивостей та структури сухотійної деревини, уможливлюють встановити умови експлуатації виробів і будівельних конструкцій.

Ключові слова: вигоряння, температура горіння, сосна, коксовий залізниці.

DOI: 10.15587/1729-4061.2022.263001

Було розглянуто літій-іонний елемент живлення (ЛІЕЖ) Panasonic NCR18650B (LiNi0.8Co0.15Al0.05O2) та його поведінку внаслідок дії на нього надлишкового постійного струму. Експериментально було встановлено, що вірогідною можливістю згоряння елементу, температури полум'я, час нагрівання елемента, тощо представлена ЛІЕЖ. За результатами експериментальних досліджень було визначено час настання незворотної термохімічної реакції в літій-іонному елементі живлення залежно від різної сили постійного струму. Додатково, встановлено критичну температуру початку нагрівання елемента, загальну температуру горіння елемента. За результатами експериментальних досліджень була встановлена суттєва відмінність в ІЧ-спектрах, що свідчать про можливість використання виявлених особливостей емпіричних кумулятивних функцій розподілу для дослідження властивостей та структури сухотійної деревини, уможливлюють встановити умови експлуатації виробів і будівельних конструкцій.

Ключові слова: літій-іонний елемент живлення, надлишковий струм.