Evaluation of the Structural disorder of the protein FMR1 with Carbon Composition

Abstract: Ever since the disorder of proteins is the main cause for many diseases. As compared with other disorders, the major reason that causes disease is of structural inability of many proteins. The potentially imminent availability of recent datasets helps one to discover the protein disorders, however in majority of cases, the stability of proteins depend on the carbon content. Addressing this distinct feature, it is possible to hit upon the carbon distribution along the sequence and can easily recognize the stable nature of protein. There are certain reported mental disorders which fall in to this category. Regardless, such kind of disorder prone protein FMR1p (Fragile X mental retardation 1 protein) is identified as the main cause for the disease Fragile X syndrome. This paper deals with the identification of defects in the FMR1 protein sequence considering the carbon contents along the sequence. This attempt is to evaluate the stability of proteins, accordingly the protein disorders in order to improvised the certain Biological functions of proteins to prevent disease. The transition of the disorder to order protein involves careful considerations and can be achieved by detecting the unstable region that lacks hydrophobicity. This work focuses the low carbon content in the FMR1 protein so as to attain the stable status in future to reduce the morbidity rate caused by Fragile X syndrome for the society.

Keywords: Disorder protein, FMR1 protein, Carbon composition, Fragile X syndrome

I. INTRODUCTION:

Fragile X syndrome evolves its greatest threat to human kind with severe mental retardation and in general known as genomic syndrome due to the expansion of trinucleotide gene sequence (CGG) within X chromosome [1, 2, 3, 4]. What if the gene expands? And what could be the effects? To address these issues, it is been identified that the CGG repeat get amplified just before the coding region and intensely disrupts the final end product FMR1 protein, thus the expression of FMR1 protein is hindered [5, 6, 7]. This results in macroorchidism (enlargement of the testicles), large ears, prominent jaw, and high-pitched, jocular speech [8, 9, 10, 11, 12, 13, 14, and 15]. People with fragile X syndrome is believed to have 55 to 200 CGG repeats whereas the normal individuals have 6-54 CGG sequences [16]. Ultimately it results in methylation of FMR gene and the biological function of the FMR1 protein like translational efficiency and/or trafficking of certain mRNAs is disturbed and remains unstable [17, 18]. It is intended that the unstable protein lost its nature to fold itself to involve in biological process. Current research shows that carbon content along the sequence plays important role in maintaining the stability of the proteins and it has been proved 31.45% carbon content prefers to promote the stable nature of protein [19]. With this analysis, the disordered region of the protein sequences can be identified for further research programs. Henceforth the development of robust scientifically informed guidance on how best to improve the stable nature of protein need to be implemented for better function of FMR1 protein to depose the Down syndrome. In this work we attempt to show the nonstable region of the FMR1 protein based on carbon composition that is responsible for the misfolding of proteins.

II. RESEARCH BACKGROUND:

Many research works are based on the folded confirmation of the proteins so as to retrieve the tertiary structure and to carry out specific biological function. Nonetheless, most of the proteins remain unfolded and thus reported as disordered proteins. As a result, it involves complex scientific, ethical and political considerations such as whether and how best to deal the protein disorder [20]. The role of FMR1 protein results in many functions as stated above. Kwon et al., 2001 in his work says the expression of FMR1 protein inherently increases the activation of parietal lobe and also involved in early brain development. It also accelerates the regulation of protein synthesis in synapses [17]. The estimation of FMR1 protein expression within neurons is been done by Yu cui Chen et al., 2010. All these works adds weight to the importance of FMR1 protein.

All previous studies have shown that FMR1 gene alone is considered unlikely to pose unique risks and also FMR1p found to accelerate all normal neural functions [22, 23]. Such gene expansion will disrupts the expression of FMR1p and ends up in synaptic abnormalities. As a result many functions of synaptic proteins are up or down regulated and ultimately affect the neurotransmission and ends up in some neuronal disorders [24]. Such defect in FMR1p expression is found likely to be reporting some adverse events like dendritic abnormalities [25]. Finally the main cause of Fragile X syndrome is found to be associated with the defects in FMR1 protein expression.
III. METHODOLOGY:

The goal is to understand the molecular level of FMR1 protein. In general the folding properties of proteins depend on non covalent interactions. The rich and scarce distribution of carbon along the sequence contributes the folding nature of proteins. Accordingly, it confers the stability of proteins [26]. It is clear that considerable inherent variability in the carbon content affects the structure of proteins. For this reason, it is important to calculate the carbon level to encounter the disorder protein. The ideology is that to predict the carbon content with applicable C program called CARBANA [19]

The carbon prediction may provide valuable insights in Medical research and the initial dataset for this analysis can be accessed through online available databases. Here the disorder protein of FMR1 is accessed with DisProt (www.disprot.org). Similar databases are Disopred2 [27], On-D-CRF [28], FoldIndex [29], GeneSilico Metadisoreder [30], MDFp [31]. The disorder FMR1 protein was retrieved and its disport ID is DP00134 and the Unprot ID is Q06787.

Fasta Sequence of FMR1 protein:

>DisProt|DP00134|uniprot|Q06787|unigene|Hs.103183|sp|
MELVVEVGSNGAFYKVPDKVDHESTDIFVENNYQPDQPIFDHVFRPFPVGVYNQNDSEDEVYLYSRANEKEPCVWMLAKVRMIKGYFVIEYACDA
TYNEIVETLRSLVPNPKATDKTPHIKIDVPELDRLQMCHEAHAHKDFK
AVGFASYTDYSGYNVLQILSINEVTSKRAMLIDHHRFSLRTKLISLMREE
ASKQLESSRQLSRFHEQFIVREDLMGLAGTHGANIQAQARVPGVYTAIDL
EDCTFHUYGEDQAVKARSPLFAEDVDPVQVRLVEKVIYGNKLGJIEV
DKGSVVRVIBEAEENENKPVPOJEEMMPNSLPSNRSVPNPACHEKKLIDE
NTHSFSQPSTNKTQVRLAVSSVSAYAGESQPKAWGMVFFVFPVGTK3DA
NATVLDDYHLNLYKEVDQLRLERLQDEQVRIGASRSSPPNRTDECKSYT
DDQGMGRSRRPRYRNYGRGPGYGTSQTNSEAAGNASTESDHDLSDLW
SLAPTEERERESFLRQGRGRGGGHRGGGGRRGGGRGGGGKNDDRHSDSNRP
RNPREAKGRTTDGSLQIRVDCNNERSVHTKLTQNSSESGRLTRGDKNQK
KEKPSVDGQLQPLVNGP

CARBANA (www.rajasekaran.net.in/tools/carbana.html) has window size limit and the chosen window size is 700 as its sequence length is 632. The DisProt shows 41% disorder in FMR1 Protein. It is analyzed with its carbon composition and has been visualized (Fig 1).

IV. RESULTS AND DISCUSSION:

FMR1 gene and FMR1 protein intricately get involved in Fragile X syndrome. The initiative of this work focused on disorder portion of the FMR protein sequence. It gives the analysis to certain extent with which the unstable portion of the protein is predicted with the help of C program CARBANA. It tried to cover the disorder portion to the maximum by estimating the carbon distribution along the sequence. The misfolding and unfolding region of protein depends on carbon content and protein acquires its stable form with 31.45% carbon (Sneha et al., 2011). If any change in the carbon content happens, it leads to the disorder. The prediction of disorder portion helps to figure out the root cause for fragile X syndrome.

Figure 1 represents the disorder region of the protein and at the molecule level; we tried to show the carbon distribution with the provided input. As a result the amino acid position and its carbon composition are predicted and visualized (Table 1).

V. CONCLUSION:

Overall analysis provides an evidence of disorder portion of the protein FMR1. This striking observation of this analysis helps to identify the disorder in FMR1 protein. Our finding of protein sequence below the normal carbon content (31.45%) indicates the protein can misregulate and that approximates the reported gene disruption. Our work greatly expands to detect the possible cause of malfunctioning of the protein in causing fragile X syndrome. It provides potential insights in to underlying mechanism such as the failure of FMR1 protein expression due to disorder nature and unfit to fold itself to attain certain conformations to perform its biological function. Further studies using recent technologies can explore the translation of disorder to order protein.

VI. REFERENCES

[1] M Peretti, FP Zhang, YH Fu, ST Warren, BA Oostra, CT Caskey, DL Nelson . Absence of expression of the FMR1 gene in fragile X syndrome.1991. Cell 66:817– 822.
[2] EE Eichler, JJ Holden, BW Popovich, AL Reiss, K Snow, SN Thibodeau, CS Richards, PA Ward, DL Nelson. Length of uninterrupted CGGrepeats determines instability in the FMR1 gene. 1994. Nat Genet 8:88–94.
[3] H Siomi, M Choi, MC Siomi, RL Nussbaum, G Dreyfuss Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. 1994. Cell 77:33–39.
[4] Y Feng, F Zhang, LK Lokey, JL Chastain, L Lakkis, D Eberhart, ST Warren . Translational suppression by trinucleotide repeat expansion at FMR1. 1995. Science 268:731–734.
[5] I Oberle, F Rousseau, D Heitz, C Kretz, D Devys, A Hanauer, J Boue, MF Berthes, JL Mandel . Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. 1991. Science 252:1097–1102.
[6] AJ Verkerk, M Peretti, JS Sutcliffe, YH Fu, DP Kuhl, A Pizzuti, O Reiner, S Richards, MF Victoria, FP Zhang, BE Eussen, G-J van Ommen, LAJ Blonden, GJ Riggins, JL Chastain, CB Kunst, H Galjaard, CT Caskey, DL Nelson, BA Oostra, et al. Identification of a gene (FMR1) containing a CGG repeat coincident with a breakpoint cluster region...
exhibiting length variation in fragile X syndrome. 1991. Cell 65:905–914.

[7] RF Kooey. Of mice and the fragile X syndrome. 2003. Trends Genet 19:148–154.

[8] H Siomi, MC Siomi, RL Nussbaum, G Dreyfuss. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. 1993. Cell 74:291–298. PubMed: 7688265.

[9] D Devys, Y Lutz, N Rouyer, JP Bellocq, JL Mandel. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation.1993. Nat. Genet. 4:335–340. PubMed: 8401578.

[10] R Valverde, I Poznyakova, T Kajander, J Venkatraman, L Regan. Fragile X mental retardation syndrome: structure of the KH1-KH2 domains of fragile X mental retardation protein. 2007. Structure 15:1090–1098. PubMed: 17850748.

[11] K de Boule, AJMH Verkerk, E Reynolds, L Vits, J Hendrickx, B van Roy, F van den Bos, E de Graaf, BA Oostra, PJ Willems. A point mutation in the FMR1 gene associated with fragile X mental retardation. 1993. Nat. Genet. 3:31–35. PubMed: 8490650.

[12] C Verheij, E de Graaf, CE Bakker, R Willemsen, PJ Willems, N Meijer, H Galjaard, AJJ Reuser, BA Oostra, AT Hoevegeen. Characterization of FMR1 proteins isolated from different tissues. 1995. Hum. Mol. Genet. 4:895–901. PubMed: 7633450.

[13] Y Feng, D Absher, DE Eberhart, V Brown, HE Malter, ST Warren. FMRP associates with polyribosomes as an mRNP, and the I04N mutation of severe fragile X syndrome abolishes this association.1997. Mol. Cell 1:109–118. PubMed: 9659908.

[14] JC Darnell, CE Fraser, O Mostovetsky, G Stefani, TA Jones, SR Eddy, RB Darnell. Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. 2005. Genes Dev. 19:903–918. PubMed: 15805463.

[15] B Linder, O Ploettner, M Kroiss, E Hartmann, B Laggerbauer, G Meister, E Keidel, U Fischer. Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP. 2008. Hum. Mol. Genet. 17:3236–3246. PubMed: 18664458.

[16] B Donald Bailey, Jr Debra Skinner and L Karen Sparkman. Discovering Fragile X Syndrome: Family Experiences and Perceptions. 2003. Pediatrics 2003;111:407. DOI: 10.1542/peds.111.2.407.

[17] P Jin, ST Warren. New insights into fragile X syndrome: from molecules to neurobehaviors. 2003. Trends Biochem Sci 28:152–158.

[18] R Willemsen, BA Oostra, GJ Bassell, J Dictenberg . The fragile X syndrome: from molecular genetics to neurobiology. 2004. Ment Retard Dev Disabil Res Rev 10:60–67.

[19] E Rajasekaran & M Vijayasarith. 2011. Bioinformatics S: 455 [PMID: 21423892]

[20] R Charles Kissinger, A Keith Dunker, Eugene Shakhnovich. Disorder in protein structure and function. 1999. Pacific Symposium on Biocomputing 4:517–519.

[21] H Kwon, V Menon, S Eliez, IS Warsofsky, CD White, J Dyer-Friedman,et al. Functional neuroanatomy of visuospatial working memory in fragileX syndrome: relation to behavioral and molecular measures. 2001. Am J Psychiatry; 158: 1040±51.

[22] Yucui Chen, Flora Tassone, Robert Berman, Paul Hagerman, Randi Hagerman, Rob Willemsen and Isaac Pessah, Murine hippocampal neurons expressing Fmr1 gene premutations show early developmental deficits and late degeneration. 2010. Human Molecular Genetics, Vol. 19, No. 1 196–208 doi:10.1093/hmg/ddp479.

[23] Verkerk, Pizzi, Sutcliffe, Fu, Kuhl, Pizzuti, Reiner, Richards, Victoria, Zhang et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. 1991. Cell, 65, 905–914.

[24] SA Irwin, R Galvez and WT Greenough. Dendritic spine structural abnormalities in fragile-X mental retardation syndrome. 2000. Cereb. Cortex, 10, 1038–1044.

[25] Lujuan Liao, Sung Kyo Park, Tao Xu, Peter Vanderklish, and John Yates. Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmrl knockout mice. 2008. PNAS, vol. 105, no. 40 , 15281–15286 www.pnas.org/cgi/doi/10.1073/pnas.0804678105.

[26] SA Irwin, B Patel, M Idupulapati, JB Harris, RA Crisostomo, BP Larsen, F Kooy, PJ Willems, P Cras, PB Kozlowski. RA Swain, JJ Wefer, WT Greenough. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. 2001. Am J Med Genet 98:161–167.

[27] NJ Smeha et al. CMBB-2010 IEEE. 2011 231–232.

[28] JJ Ward, JS Sudhi, LJ Mcguinn, BF Buxton, DT Jones. Prediction and functional analysis of native disorder in proteins using conditional random fields. 2008. Bioinformatics 24 (11): 1401–2. doi:10.1093/bioinformatics/btn312.

[29] J Prilusky, CE Felder, T Zeve-Ben-Mordeheu et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. 2005. Bioinformatics 21 (16): 3435–8. doi:10.1093/bioinformatics/bti537. PMID 15955783.http://bioinformatics.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=15955783.

[30] A Schlessinger, M Punta, G Yachdav, L Kajam, B Rost, Orgel, Joseph P, R.J4 O, ed. Improved disorder prediction by combination of orthogonal approaches. 2009. PLoS ONE 4 (2): e4433. doi:10.1371/journal.pone.0004433. PMC 2635965. PMID 19209228.

[31] MJ Mziani, W Stach, K Chen, KD Kedarisetti, FM Disfani, L Kurgan. Improved sequence-based prediction of disordered regions with multilayer fusion of multiple information sources. 2010. Bioinformatics 26 (18): 4489–96. doi:10.1093/bioinformatics/btp437. PMC 2935446. PMID 20823312.
Table 1: Carbon Distribution in FMR1 protein

Aminoacid	Carbon composition (in %)	Aminoacid	Carbon composition (in %)	Aminoacid	Carbon composition (in %)
23	32.76	221	31.62	429	31.34
24	32.76	222	31.91	430	31.91
25	33.62	223	32.19	431	30.77
26	33.9	224	32.19	432	30.77
28	33.33	225	31.05	433	30.48
28	34.19	226	31.05	434	30.48
30	34.19	227	31.05	435	30.48
31	34.19	228	30.77	436	31.05
32	33.62	229	29.91	437	30.77
33	33.05	230	29.91	438	30.77
34	34.47	231	30.48	438	30.77
35	34.47	232	29.91	439	29.63
36	33.05	233	30.48	440	29.91
37	32.76	234	29.91	441	29.34
38	33.05	235	29.91	443	29.63
39	33.05	236	30.2	444	29.63
40	32.76	237	30.48	444	29.63
41	33.33	238	29.34	445	29.91
42	32.76	239	30.2	446	30.2
43	32.48	240	29.91	447	29.06
44	31.91	241	30.2	448	28.77
45	31.91	242	29.91	449	30.77
46	32.76	243	29.91	450	29.91
47	33.05	244	30.2	451	30.48
48	32.76	245	30.77	451	29.63
49	33.62	246	31.34	452	29.63
50	32.19	247	31.34	454	29.06
51	31.62	248	32.48	455	29.34
52	31.34	249	32.48	456	30.2
53	31.62	250	31.91	456	30.48
54	31.34	251	31.91	457	31.05
55	31.34	252	32.48	458	29.91
56	30.77	253	33.33	460	29.91
57	32.48	254	33.62	462	31.34
59	31.62	255	31.91	463	29.34
60	33.33	256	32.19	463	30.77
61	33.05	257	32.76	465	29.91
62	32.76	258	32.19	466	29.06
63	33.05	259	31.34	467	30.48
65	33.33	260	32.19	468	30.48
66	32.76	261	31.91	469	30.48
67	32.76	262	32.19	470	31.05
68	32.76	263	33.62	471	29.34
69	32.48	264	33.33	472	29.63
70	30.77	265	32.48	473	29.63
71	31.91	266	32.19	474	30.77
72	32.76	267	32.48	475	28.49
73	33.9	268	32.76	476	28.77
75	34.19	269	32.48	477	28.49
76	33.9	270	31.91	478	29.06
76	33.9	271	32.48	480	29.91
77	34.47	272	32.19	481	29.63
79	33.9	273	31.91	483	29.06
80	34.47	274	31.91	484	29.63
81	33.05	275	31.05	485	29.34
82	32.19	276	30.77	487	30.2
---	-----	-----	-----	-----	-----
83	32.48	283	31.62	488	29.06
83	33.05	284	31.34	489	30.77
85	31.91	285	32.76	490	29.34
86	33.62	286	30.48	491	29.91
87	33.05	287	30.77	491	29.63
87	33.33	288	31.05	492	29.91
88	33.9	289	30.2	493	29.06
89	33.33	290	29.63	494	31.05
90	33.62	291	29.63	497	30.77
91	33.62	292	30.2	498	29.91
92	33.9	294	30.2	499	29.63
93	33.05	294	29.91	500	30.48
94	31.34	295	30.2	500	31.05
95	31.34	296	30.2	502	30.48
96	30.77	298	29.34	504	32.19
97	31.05	298	29.91	504	31.34
98	30.48	299	29.63	506	31.34
99	32.2	300	29.91	508	31.05
101	30.48	301	29.91	509	31.34
102	31.62	303	29.34	510	32.19
104	30.48	304	30.2	511	32.19
105	29.91	305	30.2	513	31.91
106	29.91	306	29.06	514	32.48
107	29.63	307	28.77	516	32.19
108	29.91	308	29.06	517	31.62
109	30.2	309	30.2	518	33.05
110	30.48	310	30.2	520	33.33
111	30.48	312	29.34	521	33.05
112	30.77	313	30.2	522	31.62
113	30.77	314	30.2	523	31.34
114	31.34	314	30.2	524	32.19
115	31.34	315	30.2	525	31.62
115	31.62	317	29.91	526	31.05
117	32.19	317	29.91	527	31.91
118	31.91	319	30.48	529	31.62
119	31.62	320	29.91	529	29.34
120	31.34	321	30.77	531	29.63
121	31.34	322	30.77	531	30.2
122	31.34	324	31.62	533	28.49
123	31.34	325	31.05	534	28.49
124	30.77	325	30.48	535	29.06
126	31.34	326	30.77	536	28.77
127	29.91	327	30.77	538	28.77
128	31.34	328	31.05	538	27.92
129	30.48	329	31.05	539	28.21
130	29.63	330	31.05	541	27.92
131	29.63	331	30.77	541	27.92
132	29.06	333	31.05	542	27.92
133	31.34	334	31.05	543	27.35
133	31.62	334	31.05	544	27.35
134	31.62	336	31.34	545	28.49
135	30.77	337	31.91	546	28.77
136	31.05	338	31.05	548	27.92
137	31.05	339	31.34	549	29.63
139	31.91	340	30.77	549	28.49
140	30.77	341	29.91	550	28.77
141	30.2	342	29.91	551	29.34
142	29.91	343	30.2	554	29.91
143	32.19	344	30.2	555	29.06
143	32.48	345	30.2	556	30.2
144	33.33	347	30.77	558	29.34
146	32.76	348	29.63	559	29.91
147	33.62	349	29.91	562	30.2
148	33.62	350	30.2	562	29.06
149	34.47	351	31.05	564	29.06
151	33.05	353	30.48	564	30.77
152	33.33	354	30.2	567	29.91
153	34.19	355	32.48	568	28.77
