Research Article

Generation and Analysis of Expressed Sequence Tags from Chimonanthus praecox (Wintersweet) Flowers for Discovering Stress-Responsive and Floral Development-Related Genes

Shunzhao Sui,1 Jianghui Luo,1 Jing Ma,1 Qinlong Zhu,2 Xinghua Lei,3 and Mingyang Li1

1 College of Horticulture and Landscape, Chongqing Engineering Research Center for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions of Ministry of Education, Southwest University, Chongqing 400715, China
2 College of Life Science, South China Agricultural University, Guangzhou 510642, China
3 Department of Botony, Chongqing Agricultural School, Chongqing 401329, China

Correspondence should be addressed to Mingyang Li, limy@swu.edu.cn

Received 16 September 2011; Revised 26 December 2011; Accepted 26 December 2011

Copyright © 2012 Shunzhao Sui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A complementary DNA library was constructed from the flowers of Chimonanthus praecox, an ornamental perennial shrub blossoming in winter in China. Eight hundred sixty-seven high-quality expressed sequence tag sequences with an average read length of 673.8 bp were acquired. A nonredundant set of 479 unigenes, including 94 contigs and 385 singletons, was identified after the expressed sequence tags were clustered and assembled. BLAST analysis against the nonredundant protein database and nonredundant nucleotide database revealed that 405 unigenes shared significant homology with known genes. The homologous unigenes were categorized according to Gene Ontology hierarchies (biological, cellular, and molecular). By BLAST analysis and Gene Ontology annotation, 95 unigenes involved in stress and defense and 19 unigenes related to floral development were identified based on existing knowledge. Twelve genes, of which 9 were annotated as "cold response," were examined by real-time RT-PCR to understand the changes in expression patterns under cold stress and to validate the findings. Fourteen genes, including 11 genes related to floral development, were also detected by real-time RT-PCR to validate the expression patterns in the blooming process and in different tissues. This study provides a useful basis for the genomic analysis of C. praecox.

1. Introduction

Chimonanthus praecox (L.) Link, wintersweet, belongs to the Calycanthaceae family. It is a perennial deciduous shrub and blossoms in winter, from late November to March. Its unique flowering time and long blooming period make it one of the most popular ornamental plants in China [1]. C. praecox is mainly a garden plant that also provides cut flowers. The flower is strongly fragrant and may be used as a source of essential oil, which has received much attention in New Zealand [2]. C. praecox thrives in cold environments and blooms in low-temperature seasons with little rainfall. The plant is assumed to be rich in genes related to floral development and adversities, especially those responding to environmental stress factors. However, the molecular mechanism that regulates floral development and copes with stresses in C. praecox flowers remains unclear.

Expressed sequence tags (ESTs) have been proven to be an efficient and rapid means to identify novel genes (and proteins) induced by environmental changes or stresses [3–7]. Genes related to flower form, longevity, and scent from roses, Phalaenopsis equestris, and Pandanus fascicularis were identified by ESTs [8–10]. The present study used transcriptomic analysis of C. praecox flowers to identify novel genes induced by environmental changes or related to floral development and ultimately to better understand the physiological and genetic basis of cold acclimation in flowers of woody plants.

2. Materials and Methods

2.1. Complementary DNA (cDNA) Library Construction and Sequencing. The process of C. praecox blossoming includes
the following: Stage 1, sprout period; Stage 2, flower-bud period; Stage 4, initiating bloom period; Stage 5, bloom period; Stage 6, wither period [11]. *C. praecox* flower buds or flowers at the six stages of development (Figure 1) were collected from the nursery at Southwest University, Chongqing, China, for cDNA library construction. The samples were immediately frozen with liquid nitrogen and then refrigerated at −80°C until RNA isolation. Total RNA samples were extracted from these flower buds or flowers using RNA isolation kits (W6771; Watson Biotechnologies Inc.), and RNA quality was detected by BioSpec-mini (Shimadzu). The final RNA sample for the cDNA library construction was bulked by pooling equal amounts of total RNA from each stage.

cDNA synthesis from the mixed total RNA and library construction through directional cloning of cDNAs into the λTriplEx2 vector was performed using a SMART cDNA Library Construction Kit (K1051-1) according to the manufacturer’s instructions. The size of the insert fragment and the recombinant rate were measured by PCR, as described by Gao and Hu [12], using a random selection of 50 clones. All clones were sequenced from the 5′ end using ABI 3700 (Applied Biosystems).

2.2. Sequence Clustering, Annotation, and Functional Categorization. Poor-quality sequences, sequences with less than 100 bases, and vector sequences were trimmed from the raw sequences using SeqMan II (DNASTAR, Inc., Madison, WI) and manually. The trimmed cDNA sequences were assembled into clusters using the assembly program within SeqMan II set to default parameters. The assembly parameters were set to require a minimum match of 80% over 12 bp to initiate the assembly process. A consensus sequence for unigenes was exported from SeqMan II.

Unigenes (contigs and singletons) were annotated using BLASTX against the NCBI nonredundant protein database with a cut-off *E* value of the best hit of ≤10^−5 [13]. Sequences without a reliable match (>10^−5) were subsequently compared with the NCBI nonredundant nucleotide database by performing BLASTN (score >100) for complementary annotation [14]. All well-annotated unigenes were then further classified and mapped to the three Gene Ontology (GO) categories (biological, cellular, and molecular) via AmiGO (http://amigo.geneontology.org/) [15].

2.3. Expression Analysis of Selected Genes Using Quantitative Real-Time RT-PCR. For real-time expression studies, *C. praecox* seeds were kept under a 16 h light/8 h dark cycle in a growth chamber at 25°C. Small seedlings were subsequently transferred to plastic pots containing a mixture of soilrite and vermiculite (1:1). The plantlets were raised to the sixth leaf stage and then subjected to cold treatment (4°C) for 15 min, 1 h, and 6 h. Control plantlets were maintained at 25°C. The tissues were harvested and snap-frozen in liquid nitrogen and kept at −80°C until further use.

The total RNA of flowers at the different developmental stages as well as floral organs dissected from Stage 4 flowers, roots, stems, and leaves were extracted with the above-mentioned method. Equal amounts of DNA-free RNA (5 μg) from different tissues were reverse-transcribed using a PrimeScript RT Reagent Kit with gDNA Eraser (TaKaRa). The primers used for real-time PCR (Table 1) were designed by Primer Premier 5.0 (PREMIER Biosoft, USA). Real-time PCRs were performed in triplicate on 10 μL reactions using...
Gene code	Annotation (sequence homology)	Primer sequence (5′ → 3′)	Tm (°C)	Cycles	Product length
Cp88	Membrane channel protein	F: ATGTTGAGCTTTTCTGGAAGTTTTT 59 40 90			
		R: GCAATACACGTTATTACCCAGTGCTCT			
Cp173	Low temperature and salt responsive protein	F: CTGACGCTCTTTGGATGGCTACC 59 40 172			
		R: ACGAATCAACGGTCAAAACACG			
Cp215	Putative abscisic acid-induced protein	F: TGTCTTTTACTGCTGGCTGTTCT 59 40 193			
		R: TCTCCGCCATCTCTCTCTATGTAATTTC			
Cp274	Glutathione S-transferase	F: ATGTGTAATAATCAATTCCAGTCTT 59 40 85			
		R: GCCGATATCCTGCGGAAACTAG			
Cp359	1,4-Alpha-glucan-maltohydrolase	F: TATTAATCTGGCAAGGTCATCTCCTGTT 59 40 86			
		R: TGTGTTGAGAAACCCAGCGACTCG			
Cp364	Cold acclimation Protein WCOR413-like protein beta form	F: TCCATAAGCGCAATCAAATACACTT 59 40 84			
		R: GTCTCTCTTCATCGCCAAATACCTC			
Cp375	3-Oxoacyl-[acyl-carrier-protein] synthase	F: GTAACGCGCGCCGAAACGAGAAGAG 59 40 78			
		R: CCAAGACAGAAACCGACGCC			
Cp440	Putative multiple stress-responsive zinc-finger protein	F: GTTTGCGATTTTTGAGGCG 59 40 183			
		R: AGTTGTAGTGAGAATGTGCTCT			
Cp465	Catalase	F: CATGGTGCACTCCCTCTCTCTTATTT 59 40 118			
		R: TGTGTTGCAACCATCAAGTTTACC			
Cp197	AGL9.2	F: TGAGAATAAGATAAATCGGACGTCATCGAC 59 40 128			
		R: TTTCTCTCTGCGGAGAAGAACAG			
Cp203	LLP-B3 protein	F: GGGATGTGAAACTTGTTGGAGGAGG 59 40 171			
		R: AGTTTTGGAGAAATCAGGAGG			
Cp268	Caffeoyl-CoA O-methyl-transferase-like protein	F: AACACAAATGGGAGAAGAGAAGAACC 59 40 193			
		R: CATCGCAGGGTGCTGCAAGAAGA			
Cp297	SRG1-like protein	F: TAAGAACCGCGCTCCATCTGCTAC 59 40 143			
		R: GAGTGCGATGCTCTCTAACTCATCAG			
Gene code	Annotation (sequence homology)	Primer sequence (5’ – 3’)	Tm (°C) a	Cycles	Product length
-----------	---	---	-----------	--------	----------------
Cp328	STYLOSA protein	F: GGGGAACCAACAAAGAAACACAGAT	59	40	161
		R: GCCCAGTGGCAACCATTGAAAAT			
Cp330	RAC-like G-protein Rac1	F: ACGGCTCTGACGCCTTTCTCC	59	40	166
		R: AGGTCTTTTCAACAGGACACCATTCTCC			
Cp360	Peroxisomal fatty acid beta-oxidation multifunctional protein AIM1	F: TATGCTGTTGTTTGAAGAGAGGCG	59	40	193
		R: CTATGCCCAGACCCCATCAAACCTC			
Cp383	Secondary cell wall-related glycosyltransferase family 47	F: CAGGGGACACCCCTCTCTCTAC	59	40	150
		R: TCAAGGCATCAGAGTTACGCACAAAG			
Cp423	Putative polyketide synthase	F: GAGTTGCAGACACTGATGCGCTTTGG	59	40	165
		R: TTGCTTTGCAAATTTGCTCGTT			
Cp436	Allergen-like protein BRSn20	F: CTCTTATCGCCTCTCCTCTCCTCC	59	40	176
		R: GTGTTGTTAAGTGCTCTGCATTT			
Cp458	MADS-box protein 9	F: TGGAAATGAAAGGAAGAAATACAGCG	59	40	98
		R: ACCCACTCACTGAAAGTTGCTATT			
Cp82	Dormancy related protein	F: TGGAAATGAAAGGAAGAAATACAGCG	59	40	172
		R: TACAAAAGGCTAATGGGCTCC			
Cp24	No hits	F: GCAGTTTACATACTAGCGGGAGAAGGCT	59	40	106
		R: CCGTCTAGGAACTGCTACAC			
Cp64	Putative protein	F: CCAATACATCTCCCTGAGGATGAT	59	40	159
		R: TTACCGACTCTCCCTGAGGATGAT			
Internal	Actin	F: GTTATGTTGGTGGAGGAGAAGA	59	40	199
control		R: GGCGCTAGTAAAG AAAACACGA			
Internal	Tublin	F: TAGTGACAAGACAGTGGAGTAGGGAAT	59	40	139
control		R: GTAGGTTCAGTCACTCTCAACTCC			

*Annealing temperature.
5 μL of SsoFast EvaGreen Supermix (Bio-Rad), 0.5 μL of each primer (final concentration of 500 nM), 3.5 μL of water, and 0.5 μL of cDNA template. Table 1 shows the primer pair-specific temperatures. PCR was carried out using a Bio-Rad CFX96 real-time system machine based on the manufacturer’s instructions under the following conditions: denaturation at 95°C for 30 s; 40 cycles of 95°C for 5 s; 59°C for 5 s. Dissociation kinetics was performed using the real-time PCR system at the end of the experiment (60 to 95°C; continuous fluorescence measurement) to check the annealing specificity of the oligonucleotides. A comparative Ct (threshold cycles) method of relative quantification was used to analyze the real-time quantitative RT-PCR data using Bio-Rad CFX Manager Software Version 1.6. Actin and tubulin were used as housekeeping genes for the calculation of relative transcript abundance. The sizes of the amplified products were confirmed via gel electrophoresis. Negative controls with no templates were carried out concurrently.

3. Results

3.1. General Characteristics of the cDNA Library and the ESTs. A cDNA library constructed from *C. praecox* flowers at different stages of development was used as a source of ESTs. The titer of the primary library and amplified library were 1.4 × 10^6 and 1.0 × 10^10 pfu/mL, respectively, with a recombinant rate of 96% for the original library. The sizes of the inserts ranged from 0.5 to 2.5 kb, and the average insert size was estimated to be 1.1 kb by PCR amplification of inserts from 50 randomly selected clones. These results indicate that our cDNA library was qualified.

In total, 896 random cDNA clones were successfully sequenced to generate ESTs. Trimming of the short sequences (<100 bp), vector sequences, and poor-quality sequences resulted in 867 high-quality ESTs, constituting a total of 584,201 bases in the *C. praecox* sequence. The average read length of these ESTs was 673.8 bp. All 867 sequences were deposited in GenBank under accession numbers DW222667 to DW225533. The clustering of ESTs generated 94 contigs (containing 2 or more ESTs) and 385 singletons (containing only 1 EST), yielding 479 unigenes. The redundancy of the library was calculated as 44.8% [(1 – Number of Unigenes/Number of ESTs) × 100%]. Figure 2 shows the distribution of ESTs in unigenes after clustering. Forty-two contigs had more than 2 ESTs, with the largest one containing 77 ESTs.

3.2. Functional Annotation and Classification of *C. praecox* Unigenes. The 479 unigenes were compared with the nonredundant protein and nucleotide sequences database in NCBI using BLAST. Four hundred five unique sequences, corresponding to 84.6% of all the unigenes, shared significant homology with sequences in the public databases. Of these, 266 were similar to genes of known functions, whereas 139 were similar to putative uncharacterized proteins (Table 2). The remaining 74 unigenes (15.4%) had only very weak or no matches and were considered as novel genes in *C. praecox* flowers.

Table 3 summarizes the highly expressed genes that contained more than 5 ESTs in one contig. The first and third most abundant ESTs were homologous to lipid transfer protein (LTP); the second most abundant ESTs encoded protein related to the adenine nucleotide translocator and then seed-specific protein, mannose-specific lectin, and LEA III protein (Table 3). These ESTs possibly corresponded to the most abundantly expressed genes in *C. praecox* flowers. Two hundred eighty-one ESTs were found to have more than five copies (Table 3), 385 had single copies of ESTs, and the remaining ESTs contained two to four copies in *C. praecox* flowers.

The database-matched 405 unigenes were found to have BLAST hits with 99 organisms, among which the highest number was from *Arabidopsis thaliana* (32.6%; 132 unigenes), followed by *Oryza sativa* (24.0%; 97 unigenes) and *Nicotiana tabacum* (4.2%; 17 unigenes) (Table 4). The remaining 67 unigenes (16.5%) had BLAST hits with a single organism only. The extensive distribution of the matched organisms may be attributed to the fact that the genome of *C. praecox* significantly differed from the genomes of model plants, as well as the fact that the relative plants’ genomes have not yet been widely studied.

The initial annotations were further simplified into plant-specific annotations (plant GO slim; http://amigo.geneontology.org/) to obtain additional insights into the putative functions of unigenes. Of the 479 *C. praecox* unigenes, 364 were assigned GO terms in any category (biological, cellular, and molecular). Figures 3, 4, and 5 classify the unigenes according to terms in the biological process ontology, molecular function ontology, and cellular component ontology, respectively.
Table 3: The 15 most abundant ESTs in the *C. praecox* flowers cDNA library.

Gene code	Length (bp)	Putative function	E-value	Number of ESTs
Cp1	1319	lipid transfer protein	1.00E – 34	77
Cp2	2124	adenine nucleotide translocator	9.00E – 80	47
Cp4	1024	lipid transfer protein	2.00E – 35	37
Cp6	1144	hypothetical protein	1.00E – 34	19
Cp7	710	seed specific protein Bn15D18B	4.00E – 19	1
Cp20	896	mannosae specific lectin	5.00E – 28	17
Cp16	593	putative LEA III protein isoform 2	6.00E – 10	10
Cp10	900	glutathione S-transferase GST 22	4.00E – 80	8
Cp11	928	palmitoyl-acyl carrier protein thioesterase	7.00E – 22	8
Cp14	1531	hypothetical protein	2.00E – 79	8
Cp17	717	stearoyl acyl carrier protein desaturase	2.00E – 31	7
Cp26	1074	aquaporin	8.00E – 97	7
Cp23	696	S28 ribosomal protein	4.00E – 20	6
Cp24	574	No hits NULL	6	
Cp27	652	proline-rich protein	1.00E – 30	6
Total	14882		15	281

3.3. Sequences Related to Stress and Defense. Among the ESTs that matched genes with known or putative functions, approximately 95 unigenes (291 ESTs) involved in stress and defense accounted for 19.8% (95/479) of all unigenes and 33.6% (291/867) of all ESTs. Table 5 shows the nonredundant ESTs that share similarities with genes related to defense and stress response according to GO classifications and previously published data. As expected, the ESTs involved in stress and defense were highly abundant in the library because the *C. praecox* thrives and blossoms in winter, thereby confirming previous reports of related transcripts with higher levels of defense in developing flowers [16–20].

Twelve unigenes (22 ESTs) related to cold stress tolerance were found in the library; these were classified as “response to cold” according to GO terms [e.g., β-amylase, acyl-CoA-binding protein, 3-hydroxyisobutryl-coenzyme A hydrolase, catalase, low-temperature and salt-responsive protein, glutathione S-transferase (GST), membrane channel protein, and abscisic-acid-induced protein] and “cold acclimation” (e.g., fatty acid biosynthesis 1 and WCOR413-like protein). In this class, the most abundant sequences encode GST. Five GSTs encoded by 16 ESTs were identified in the library. GST genes exhibited a diverse range of responses to jasmonates, salicylic acid, ethylene, as well as oxidative...
Table 4: Statistics of organism origin of matched-function homologs.

Organism name	No. of unigenes	Percentage (%)
Arabidopsis thaliana	132	32.6%
Oryza sativa (japonica cultivar-group)	97	24.0%
Nicotiana tabacum	17	4.2%
Glycine max	8	2.0%
Lycopersicon esculentum	7	1.7%
Gossypium hirsutum	6	1.5%
Cucumis sativus	5	1.2%
Capsicum annuum	5	1.2%
Pisum sativum	4	1.0%
Solanum tuberosum	4	1.0%
Petunia x hybrida	4	1.0%
Nicotiana attenuata	3	0.7%
Helianthus annuus	3	0.7%
Beta vulgaris	3	0.7%
Calycanthus floridus var. glaucus	3	0.7%
Ipomoea batatas	3	0.7%
Hyacinthus orientalis	3	0.7%
Persea americana	3	0.7%
Ricinus communis	3	0.7%
Lily mollie virus	3	0.7%
Medicago sativa	2	0.5%
Zea mays	2	0.5%
Cicer arietinum	2	0.5%
Triticum aestivum	2	0.5%
Hevea brasiliensis	2	0.5%
Asparagus officinalis	2	0.5%
Panax ginseng	2	0.5%
Malus x domestica	2	0.5%
Elaeis oleifera	2	0.5%
Pinus taeda	2	0.5%
Spinacia oleracea	2	0.5%
The other 67 organisms	1	16.5%

*Proportion from unigenes with BLAST hits.

stress in Arabidopsis [21], and were induced by heavy metals and hypoxic stress in rice roots [22]. In the current study, however, not enough cold-related unigenes were obtained, as expected. Some unknown functional genes related to cold stress tolerance likely exist in this library.

Another class of genes involved in “response to absence of light,” “low light intensity,” and “response to red or blue light” according to GO terms was also represented in the library. Eight unigenes (10 ESTs) were identified, including acyl-CoA-binding protein, sadtoma tomato protein, and catalase, among others.

Of the stress- and defense-related unigenes, 39 were possibly related to development. Nine types of LTPs or LTP precursors were encoded by the highest number of ESTs in this study (Table 5). Research has suggested different functions for LTPs in the physiology of plants, such as cutin synthesis, β-oxidation, somatic embryogenesis, pollen development, allergens, plant signaling, and plant defense [23–25], but the true physiological role of LTPs in C. praecox flowers has yet to be determined. Fourteen ESTs encoding two kinds of LEA proteins, groups III and V, were identified. The presence of LEA proteins correlates well with freezing, water deficit, and salt stress [26–28], probably through the prevention of enzyme aggregation [29], and likely plays a similar role in C. praecox. Some other development-related unigenes were also found, such as MYB, calmodulin, actin, CCR4-associated factor, ubiquitin-conjugating enzyme E2, and ABC transporter, which are involved in transcription factor activity, signal transduction, cell structure, nucleotide metabolism, protein metabolic process, and transporter activity, respectively.

3.4. Sequences Related to Floral Development. Table 6 shows the 19 unigenes related to floral development. Five of these were homologous to MADS box transcription factor genes. Plant life critically depends on the function of MADS box genes encoding MADS domain transcription factors, which are present to a limited extent in nearly all major eukaryotic groups but constitute a large gene family in land plants [30].

MADS box genes control diverse developmental processes in flowering plants—ranging from root to flower and fruit development—and they especially control the processes of the transition from vegetative to reproductive development and establishment of floral organ identity [31]. The present study has also identified six unigenes related to secondary metabolism that are probably involved in floral color and fragrance.

The role of chilling temperature in dormancy in vegetative buds and induction of flowering has been investigated in many temperate-region species, particularly in A. thaliana and Populus spp. [32, 33]. The physiological processes of dormancy release and induction of flowering competence rely on longer-term chilling temperature and a period of vernalization, respectively [34, 35]. The current study has identified dormancy and vernalization-related genes; however, only one unigene (Cp82; E-value = 6.00E-15) was annotated as a dormancy-related protein in the library. The possible reason was only a small-scale sequencing in our study or the processes of dormancy release and induction of flowering competence in C. praecox only last a short period.

3.5. Expression Analysis of Cold-Responsive and Floral Development-Related Genes. Real-time RT-PCR was performed for 12 unigenes, including 9 selected from the GO Slim annotation belonging to “response to cold” (Cp88, Cp173, Cp215, Cp274, Cp359, Cp364, Cp375, Cp440, and Cp465), 1 annotated as a dormancy-related protein (Cp82), and 2 without functional annotation (Cp24 and Cp64), to analyze the changes in their expression due to cold stress (Figure 6). The data revealed that Cp82 responded to cold
stress immediately after treatment and reached peak expression levels as early as 15 min. Cp24 (no annotation), Cp88 (membrane channel protein), Cp274 (GST), Cp364 (cold acclimation protein WCor413-like protein), and Cp440 (multiple stress-responsive zinc-finger protein) were upregulated after 15 min of treatment and reached their expression peaks at 1 h. Cp173 (low-temperature and salt-responsive protein), Cp215 (abscisic acid-induced protein), Cp359 (1,4-alpha-glucan-maltohydrolase), Cp375 (3-oxoacyl-[acyl-carrier-protein] synthase), and Cp465 (catalase) displayed later responses and reached their peak expression levels at 6 h. Cp64 (no annotation) exhibited minor changes in its transcript level.

Real-time RT-PCR was also applied to validate the expression patterns of 11 genes related to floral development (Cp197, Cp203, Cp268, Cp297, Cp328, Cp330, Cp360, Cp383, Cp423, Cp436, and Cp458), Cp24, Cp64, and Cp82 (Figure 7). The expression patterns of these 14 genes were analyzed in roots, stems, leaves, outer tepals, middle tepals, inner tepals, stamina, and pistils. The results showed...
Gene code	Putative function	E-value	Matches no.	Number of ESTs	
Cp465	catalase	1.00E − 148	BAC79443.1	1	
Cp346	transporter	1.00E − 138	AAP13421.1	2	
Cp382	peroxidase	1.00E − 125	AAK52084.1	1	
Cp374	GMPas	1.00E − 122	AAT58365.1	1	
Cp333	putative aldolase	1.00E − 122	AAM64281.1	1	
Cp397	chitinase	1.00E − 105	AAF04454.1	1	
Cp452	cysteine synthase	3.00E − 99	BAA05965.1	1	
Cp314	tryptophan synthase beta chain	2.00E − 94	AAN15574.1	1	
Cp357	Stromal cell-derived factor 2-like protein	2.00E − 93	XP_481233.1	1	
Cp191	glutathione S-transferase GST 23	5.00E − 92	AAG34813.1	2	
Cp25	dehydroascorbate reductase	2.00E − 89	AAL71857.1	3	
Cp438	ras-related protein RAB8-3	9.00E − 89	BAA84324.1	1	
Cp459	GTP-binding protein	1.00E − 86	AAN31076.1	1	
Cp340	putative 3-Hydroxyisobutyryl-coenzyme A hydrolase	9.00E − 84	AAN41356.1	1	
Cp379	cell-autonomous heat shock cognate protein 70	1.00E − 82	gAAN86276.1	1	
Cp39	auxin-binding protein	3.00E − 80	AAB51240.1	4	
Cp10	glutathione S-transferase GST 22	4.00E − 80	AAG34812.1	8	
Cp304	putative 2-Nitropropane dioxygenase	2.00E − 79	AAL34288.1	3	
Cp21	glutathione S-transferase GST 22	2.00E − 78	AAG34812.1	3	
Cp311	GTP-binding protein	6.00E − 73	AAM12880.1	1	
Cp353	patatin-like protein	1.00E − 73	CAB16788.1	2	
Cp274	glutathione S-transferase	1.00E − 72	AA61392.1	1	
Cp359	1,4-Alpha-glucan-maltohydrolase	1.00E − 71	CAH60892.1	1	
Cp59	BTF3b-like transcription factor	2.00E − 68	AAT67244.1	3	
Cp76	NDKB_FLABI Nucleoside diphosphate kinase B	2.00E − 63	P47920	1	
Cp166	putative tropinone reductase	6.00E − 59	AAM62552.1	1	
Cp313	putative glutathione S-transferase T3	5.00E − 56	AAG16758.1	1	
Cp156	protolysis and peptidolysis	6.00E − 56	CAA50022.1	1	
Cp120	putative pyruvate dehydrogenase E1 alpha subunit	8.00E − 56	XP_467997.1	1	
Cp80	sadtomato protein	7.00E − 55	AAS7347.1	1	
Cp440	putative multiple stress-responsive zinc-finger protein	6.00E − 54	BAD55553.1	1	
Cp175	epoxide hydrolyase	6.00E − 50	AAB02096.1	1	
Cp364	cold acclimation protein WCO413-like protein beta form	4.00E − 49	AAG13394.1	1	
Cp471	pathogenesis-related protein 4B	1.00E − 48	eCAA41438.1	1	
Cp145	Thioredoxin	4.00E − 44	CAA77847.1	1	
Cp406	auxin-responsive family protein	1.00E − 43	NP_565113.1	1	
Cp38	basic PR-1 protein precursor	3.00E − 43	AUU20808.1	4	
Cp215	putative abscisic acid-induced protein	4.00E − 41	BAD37454.1	1	
Cp66	GLRX_RICCO Glutaredoxin	5.00E − 40	sp	P55143	2
Cp235	histone H2A	5.00E − 38	CA07234.1	1	
Cp111	topoisomerase 6 subunit B	5.00E − 37	CAC24690.1	1	
Cp232	cysteine proteinase inhibitor-like protein	2.00E − 36	BAB03156.1	2	
Cp220	glyoxalase I family protein	2.00E − 35	NP_973579.1	2	
Cp214	acyl-CoA-binding protein	3.00E − 35	CAA70200.1	1	
Cp27	proline-rich protein	1.00E − 30	AAF78903.1	6	
Cp20	lectin	5.00E − 28	AAD54520.1	17	
Cp134	metallothionein-like protein	6.00E − 27	CAB52585.1	1	
Cp127	Gip1-like protein	2.00E − 24	CAD10106.1	1	
Cp296	bZIP transcription factor	2.00E − 24	AAN61914.1	2	
Cp375	3-Oxoacyl-[acyl-carrier-protein] synthase	2.00E − 23	AAC78479.1	1	
Cp104	metallothionein-like protein type 2	4.00E − 18	CAB77242.1	2	
Cp372	allyl alcohol dehydrogenase	5.00E − 17	BAA89423.1	1	
Cp36	metallothionein-like protein type 2	1.00E − 13	AAV97748.1	5	
Table 5: Continued.

Gene code	Putative function	E-value	Matches no.	Number of ESTs
Cp173	low temperature and salt responsive protein	1.00E – 12	BAC23051.1	1
Cp472	cystatin	2.00E – 07	AAO18638.1	1
Cp88	membrane channel protein	3.00E – 06	CAB83138.1	2
	Also related to development			
Cp391	actin	1.00E – 166	AAN40685.1	1
Cp402	xyloglucan endotransglycosylase precursor	1.00E – 110	AAO93888.1	1
Cp26	aquaporin	8.00E – 97	CAE53881.1	7
Cp381	4-Coumarate-CoA ligase-like protein	2.00E – 89	AAP03021.1	1
Cp461	glyceraldehyde-3-phosphate dehydrogenase	1.00E – 86	CAC88118.1	1
Cp291	3-Ketoacyl-CoA thiolase	6.00E – 84	CAA47926.1	1
Cp378	probable ubiquitin-conjugating enzyme E2	2.00E – 83	AAC32141.1	1
Cp400	auxin response factor 4	5.00E – 81	BAD19064.1	1
Cp288	expansin	4.00E – 80	AAO15998.1	2
Cp226	calmodulin	3.00E – 79	AAB68399.1	4
Cp323	putative calmodulin	3.00E – 73	CAC84563.1	2
Cp298	putative adrenal gland protein AD-004	2.00E – 65	XP.477670.1	1
Cp326	UDP-glucose:salicic acid glucosyltransferase	2.00E – 65	AAF61647.1	1
Cp58	actin-depolymerizing factor 1	1.00E – 63	AAK72617.1	2
Cp167	ABC transporter	4.00E – 60	AAP08385.1	1
Cp286	putative CCR4-associated factor	4.00E – 60	AAN13153.1	1
Cp368	MYB8 protein	1.00E – 60	CAD87008.1	1
Cp324	actin depolymerizing factor	2.00E – 59	AAD23407.1	1
Cp450	TAF9	1.00E – 58	AAR28026.1	1
Cp405	myb family transcription factor-like	2.00E – 52	BAD29383.1	1
Cp77	putative actin-depolymerizing factor 1	4.00E – 48	XP.475079.1	1
Cp121	TAF10	3.00E – 41	AAR28030.1	1
Cp347	putative transcription factor	2.00E – 38	XP.479103.11	2
Cp4	lipid-transfer protein	2.00E – 35	AAS13435.1	37
Cp1	lipid transfer protein	1.00E – 34	CAA63340.1	77
Cp275	lipid transfer protein precursor	4.00E – 30	AAL27855.1	2
Cp9	lipid transfer protein 1 precursor	3.00E – 25	AAT45202.1	1
Cp216	lipid-transfer protein	3.00E – 24	NP_915960.1	4
Cp90	zinc finger homeobox family protein	3.00E – 22	NP_565088.1	1
Cp41	lipid transfer protein	3.00E – 18	BAC77694.1	1
Cp13	lipid transfer protein isoform 4	1.00E – 16	AAO33394.1	1
Cp338	polypeptide	2.00E – 16	CAD92110.1	1
Cp82	dormancy related protein, putative	6.00E – 15	AAG51119.1	1
Cp8	lipid-transfer protein	7.00E – 14	AAS13435.1	1
Cp141	lipid-transfer protein	4.00E – 13	AAS13435.1	1
Cp211	neutral/alkaline invertase 1	2.00E – 12	AAV28809.1	1
Cp451	putative MYB family transcription factor	8.00E – 11	AAD23043.1	1
Cp34	Lea5 protein	3.00E – 10	CAA68581.1	4
Cp16	putative LEA III protein isoform 2	6.00E – 10	CAC39110.1	10

clear differences in their expression. The genes related to floral development, except for Cp203 (LLP-B3 protein) and Cp297 (SRG1-like protein), increased by more than twofold in middle tepals. Cp24 and Cp203 presented an active expression in stamina but showed a very slight accumulation in other tissues. Cp268 (caffeoyl-CoA O-methyl-transferase-like protein) and Cp458 (MADS box protein 9) presented a peak in middle tepals but were only slightly or not expressed at all in roots, stems, leaves, and pistils. Cp197 (AGL9.2) was higher in all reproductive organs and presented its peak in middle tepals but was not detected in roots, stems, and leaves. The expression of Cp328 (STYLOSA protein) and that of Cp383 (secondary cell wall-related glycosyltransferase family 47) were not detected in roots; moreover, Cp328...
Table 6: Sequences related to floral development.

Gene code	Putative function	E-value	Matches no.	Number of ESTs
Cp360	Peroxisomal fatty acid beta-oxidation multifunctional protein AIM1	1.00E – 108	XP_469420.1	1
Cp268	caffeoyl-CoA O-methyl-transferase-like protein	1.00E – 107	CAB80122.1	2
Cp237	MADS box protein	1.00E – 106	AAG83383.1	2
Cp116	MADS box transcription factor AP3-1	2.00E – 95	AAF73928.1	1
Cp330	RAC-like G-protein Rac1	1.00E – 93	AAD47828.2	1
Cp217	beta-D-glucosidase	2.00E – 92	AAQ17461.1	1
Cp413	leucine-rich repeat transmembrane protein kinase	6.00E – 86	NP_192248.2	1
Cp408	isoflavone reductase related protein	3.00E – 85	AAC24001.1	1
Cp423	putative polyketide synthase	8.00E – 76	NP_1919053.1	1
Cp335	AGL 6	3.00E – 73	AAY25580.1	1
Cp395	isopentenyl pyrophosphate:dimethylallyl pyrophosphate isomerase	2.00E – 70	BAB90611.1	1
Cp297	SRG1-like protein	1.00E – 61	CAB81342.1	3
Cp383	secondary cell wall-related glycosyltransferase family 47	3.00E – 49	AAX33231.1	1
Cp360	peroxisomal fatty acid beta-oxidation multifunctional protein AIM1	1.00E – 108	XP_469420.1	1
Cp297	allergen-like protein BRSn20	1.00E – 37	AAM62935.1	1
Cp407	caffeate O-methyltransferase	8.00E – 23	AAV36331.1	1
Cp203	LLP-B3 protein	1.00E – 22	AAN76546.1	1
Cp328	STYLOSA protein	1.00E – 15	CAF18245.1	1
Cp458	MADS-box protein 9	9.00E – 15	AAQ72497.1	1

increased by more than fourfold in middle tepals, whereas Cp383 did in pistils and stems. The accumulation of Cp82 (dormancy-related protein) transcripts was higher in stems, leaves, stamina, and pistils. The other genes expressed in all the detected tissues, but Cp64 and Cp297 (SRG1-like protein) presented lower levels of expression. Cp360 (peroxisomal fatty acid beta-oxidation multifunctional protein AIM1) increased by more than twofold in roots, middle tepals, and pistils.

Quantitative real-time PCR methods were used to validate the transcript levels of the 14 genes further during the blooming process in C. praecox (Figure 8). The results showed that all these genes were not detected or very slightly expressed in Stage 1 and that Cp64, Cp82, Cp268, Cp297, Cp330, Cp360, and Cp383 had almost no accumulation in Stage 2. The transcript accumulations of Cp203 and Cp458 were sharply elevated to the highest level in Stage 2 but dramatically decreased at the subsequent stages of floral development. The expressions of Cp24, Cp82, and Cp436 presented a peak in Stage 4. The transcript accumulations of the other 9 genes increased during the six developmental stages and reached their peak in Stage 6. The expression of Cp297 (SRG1-like protein) was significantly high in Stage 6 but very low in the other stages, and it was associated with flower senescence. The SRG1 gene is reportedly expressed in senescing organs of Arabidopsis plants [36].
The current study found few references about bud dormancy in *C. praecox*. The expression pattern of Cp82 was very attractive. However, the results indicate that germination in C. praecox seeds [37]. These data warrant further research into the relativity of Cp82 to dormancy breaking and germination in *C. praecox* seeds.

4. Conclusions

A cDNA library was constructed to generate an EST collection from *C. praecox*, thereby providing a preliminary view into the genomic properties of this species. This collection of high-quality ESTs represents the first EST data set for *C. praecox*. Eight hundred sixty-seven EST sequences were generated, and 479 unigenes were assembled, among which 266 unigenes (55.53%) were identified according to their significant similarities with proteins of known functions. The EST sequences have been deposited in GenBank under accession numbers DW222667 to DW223533. Stress response genes and floral development-related genes were also identified. This study evaluated the expression patterns of 23 genes, including 2 novel ones, using real-time RT-PCR. Further investigations in this direction would help in the discovery of promising candidates with a key role in the development of stress tolerance for woody plants to bloom.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant nos. 31070622 and 30872063) and the Fundamental Research Funds for the Central Universities (Grant nos. XDJK2009A004 and XDJK2010C071).

References

[1] K. G. Zhao, M. Q. Zhou, L. Q. Chen, D. Zhang, and G. W. Robert, "Genetic diversity and discrimination of *Chimonanthus praecox* (L.) link germplasm using SSR and RAPD markers," *HortScience*, vol. 42, no. 5, pp. 1144–1148, 2007.

[2] J. Q. Feng, "New Zealand flower industry—with special reference to wintersweet introduction and commercialisation," *Journal of Beijing Forestry University*, vol. 29, supplement 1, pp. 4–8, 2007.

[3] H. Wei, A. L. Dhanaraj, L. J. Rowland, Y. Fu, S. L. Krebs, and R. Arora, "Comparative analysis of expressed sequence tags from cold-acclimated and non-acclimated leaves of *Rhus glabra* cv. ‘Micha’," *Planta*, vol. 221, no. 3, pp. 406–416, 2005.

[4] R. Mahalingam, A. Gomez-Butrago, N. Eckardt et al., "Characterizing the stress/defense transcriptome of *Arabidopsis*," *Genome Biology*, vol. 4, no. 3, article R20, 2003.

[5] G. Iturriaga, M. A. F. Cushman, and J. C. Cushman, "An EST catalogue from the resurrection plant *Selaginella lepidophylla* reveals abiostress-adaptive genes," *Plant Science*, vol. 170, no. 6, pp. 1173–1184, 2006.

[6] J. Zhang, U. P. John, Y. Wang et al., "Targeted mining of drought stress-responsive genes from EST resources in Cleistogenes songorica," *Journal of Plant Physiology*, vol. 168, no. 15, pp. 1844–1851, 2011.

[7] N. O. Ozgenturk, F. Oru, U. Sezerman et al., "Generation and analysis of expressed sequence tags from *Olea europaea* L.," *Comparative and Functional Genomics*, vol. 2010, Article ID 757512, 9 pages, 2010.

[8] S. Channieliere, S. Riviere, G. Scalliet et al., "Analysis of gene expression in rose petals using expressed sequence tags," *FEBS Letters*, vol. 515, no. 1–3, pp. 35–38, 2002.

[9] M. Vinod, H. M. Sankaramasubramanian, R. Priyanka, G. Ganesan, and A. Parida, "Gene expression analysis of volatile-rich male flowers of dioecious *Pandanus fascicularis* using expressed sequence tags," *Journal of Plant Physiology*, vol. 167, no. 11, pp. 914–919, 2010.

[10] W. C. Tsai, Y. H. Hsiao, S. H. Lee et al., "Expression analysis of the ESTs derived from the flower buds of *Phalaenopsis equestris*," *Plant Science*, vol. 170, no. 3, pp. 426–432, 2006.

[11] C. L. Wu and N. Z. Hu, "Studies on the flower form and blooming characteristics of the wintersweet," *Acta Horticulturae Sinica*, vol. 22, no. 3, pp. 277–282, 1995.

[12] Q. K. Gao and C. Hu, "Construction of a cDNA library of host recognition kairomone for telenomus theophilac*," *Insect Science*, vol. 9, no. 1, pp. 35–39, 2002.

[13] Y. Ogihara, K. Mochida, Y. Nemoto et al., "Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags," *Plant Journal*, vol. 33, no. 6, pp. 1001–1011, 2003.

[14] F. Sterky, S. Regan, J. Karlsson et al., "Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags*," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 95, no. 22, pp. 13330–13335, 1998.

[15] S. Carbon, A. Ireland, C. J. Mungall et al., "AmiGO: online access to ontology and annotation data," *Bioinformatics*, vol. 25, no. 2, pp. 288–289, 2009.

[16] P. Fernández, N. Paniego, S. Lew, H. E. Hopp, and R. A. Heinz, "Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project," *BMC Genomics*, vol. 4, article no. 40, 2003.

[17] L. Totan, N. Ori, and R. Flihr, "Pathogenesis-related proteins are developmentally regulated in tobacco flowers," *The Plant Cell*, vol. 1, no. 9, pp. 881–887, 1989.

[18] A. D. Neale, J. A. Wahlleithner, M. Lund et al., "Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation," *Plant Cell*, vol. 2, no. 7, pp. 673–684, 1990.

[19] Q. Gu, E. E. Kawata, M. J. Morse, H. M. Wu, and A. Y. Cheung, "A flower-specific cDNA encoding a novel thionin in tobacco," *Molecular and General Genetics*, vol. 234, no. 1, pp. 89–96, 1992.

[20] A. H. Atkinson, R. L. Heath, R. J. Simpson, A. E. Clarke, and M. A. Anderson, "Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors," *Plant Cell*, vol. 5, no. 2, pp. 203–213, 1993.

[21] U. Wagner, R. Edwards, D. P. Dixon, and F. Mauch, "Probing the diversity of the *Arabidopsis* glutathione S-transferase gene family," *Plant Molecular Biology*, vol. 49, no. 5, pp. 515–532, 2002.

[22] A. Moons, "Ostgtsu3 and ostgtsu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots," *FEBS Letters*, vol. 553, no. 3, pp. 427–432, 2003.
[23] A. D. O. Carvalho and V. M. Gomes, “Role of plant lipid transfer proteins in plant cell physiology—a concise review,” Peptides, vol. 28, no. 5, pp. 1144–1153, 2007.

[24] C. Chen, G. Chen, X. Hao et al., “CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L.,” Plant Science, vol. 181, no. 4, pp. 439–448, 2011.

[25] A. Kielbowicz-Matuk, P. Rey, and T. Rorat, “The organ-dependent abundance of a Solanum lipid transfer protein is up-regulated upon osmotic constraints and associated with cold acclimation ability,” Journal of Experimental Botany, vol. 59, no. 8, pp. 2191–2203, 2008.

[26] C. Ndong, J. Danyluk, K. E. Wilson, T. Pocock, N. P. A. Huner, and F. Sarhan, “Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses,” Plant Physiology, vol. 129, no. 3, pp. 1368–1381, 2002.

[27] K. N. Dramé, D. Clavel, A. Repellin, C. Passaquet, and Y. Zuily-Fodil, “Water deficit induces variation in expression of stress-responsive genes in two peanut (Arachis hypogaea L.) cultivars with different tolerance to drought,” Plant Physiology and Biochemistry, vol. 45, no. 3-4, pp. 236–243, 2007.

[28] S. C. Park, Y. H. Kim, J. C. Jeong et al., “Sweeptato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli,” Planta, vol. 233, no. 3, pp. 621–634, 2011.

[29] J. Grelet, A. Benamar, E. Teysier, M. H. Avelange-Macherel, D. Grunwald, and D. Macherel, “Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying,” Plant Physiology, vol. 137, no. 1, pp. 157–167, 2005.

[30] L. Gramzow and G. Theissen, “A hitchhiker’s guide to the MADS world of plants,” Genome Biology, vol. 11, no. 6, article no. 214, 2010.

[31] A. Becker and G. Theißen, “The major clades of MADS-box genes and their role in the development and evolution of flowering plants,” Molecular Phylogenetics and Evolution, vol. 29, no. 3, pp. 464–489, 2003.

[32] W. S. Chao, M. E. Foley, and D. P. Horvath et al., “Signals regulating dormancy in vegetative buds,” International Journal of Plant Development Biology, vol. 1, no. 1, pp. 49–56, 2007.

[33] E. S. Dennis and W. J. Peacock, “Epigenetic regulation of flowering,” Current Opinion in Plant Biology, vol. 10, no. 5, pp. 520–527, 2007.

[34] P. Chouard, “Vernalization and its relations to dormancy,” Annual Review of Plant Physiology, vol. 11, pp. 191–238, 1960.

[35] A. Rohde and R. P. Bhalerao, “Plant dormancy in the perennial context,” Trends in Plant Science, vol. 12, no. 5, pp. 217–223, 2007.

[36] D. Callard, M. Axelos, and L. Mazzolini, “Novel molecular markers for late phases of the growth cycle of arabidopsis thaliana cell-suspension cultures are expressed during organ senescence,” Plant Physiology, vol. 112, no. 2, pp. 705–715, 1996.

[37] P. C. Bailey, G. W. Lycett, and J. A. Roberts, “A molecular study of dormancy breaking and germination in seeds of Trollius ledebouri,” Plant Molecular Biology, vol. 32, no. 3, pp. 559–564, 1996.