Frequency-dependent Specific Heat from Thermal Effusion in Spherical Geometry

Bo Jakobsen, Niels Boye Olsen, and Tage Christensen.

DNRF Centre “Glass and Time”,
Roskilde University, Denmark

arXiv:0809.4617 [cond-mat.soft]
Close to T_g the specific heat becomes complex and frequency dependent.

\[C(\omega) = \frac{Q_\omega}{\delta T_\omega} \]

for heat and temperature varying harmonically

\[Q(t) = \Re \left\{ Q_\omega e^{i\omega t} \right\} \]
\[\delta T(t) = \Re \left\{ \delta T_\omega e^{i\omega t} \right\} \]
Background

Thermoviscoelastic coupling is normally not taken into account!
Background

Thermomechanical coupling

Normally it is assumed that:

$$\frac{\partial \delta T}{\partial t} = \frac{\lambda}{c_p} \nabla^2 \delta T$$

Close to T_g the full thermomechanical problem has to be addressed:

$$M_T \nabla (\nabla \cdot u) - G \nabla \times (\nabla \times u) - \beta_V \nabla \delta T = 0$$

$$c_V \frac{\partial \delta T}{\partial t} + T_0 \beta_V \frac{\partial}{\partial t} (\nabla \cdot u) = \lambda \nabla^2 \delta T$$

$$\beta_V = \left(\frac{\partial p}{\partial T} \right)_V$$
Theoretical results

Longitudinal specific heat

It is the longitudinal specific heat that enters the solutions and not c_p even though we have free outer boundaries.

\[
\begin{align*}
 c_p &= \frac{K_S}{K_T} c_v \\
 c_l &= \frac{M_S}{M_T} c_v = \frac{K_S + 4/3G}{K_T + 4/3G} c_v \\
 \frac{c_p - c_l}{c_p} &= \frac{4}{3} \frac{G}{M_T} \frac{c_p - c_v}{c_p}
\end{align*}
\]

Longitudinal moduli $M_s = K_S + 4/3G$ and $M_T = K_T + 4/3G$
Theoretical results

Thermal effusion in thermally thick \((L \gg |l_D|)\) limit

Thermal impedance:
\[
Z_{\text{liq}}(\omega) = \frac{\delta T_\omega}{P_\omega}
\]

\[
\delta T(t) = \Re \{ \delta T_\omega e^{i\omega t} \}
\]

\[
P(t) = \Re \{ P_\omega e^{i\omega t} \}
\]

Planar 1D geometry: (Christensen et al., PRE 75, 041502, 2007)

\[
Z_{\text{liq},1D}(\omega) = \frac{1}{A \sqrt{i\omega c_l(\omega)\lambda}}
\]

Spherical geometry: (Christensen and Dyre, PRE 78, 021501, 2008)

\[
Z_{\text{liq},\text{spherical}}(\omega) = \frac{1}{4\pi r_0 \lambda \left(1 + \sqrt{i\omega r_0^2 c_l(\omega)/\lambda} \right)}
\]
Experimental

Proof of concept experiment, in spherical geometry

- Measurement on 5-polyphenyl-4-ether
 (Santovac 5 vacuum pump fluid)
- Thermistor bead
 Large temperature dependency of resistivity
- 3ω detection technique
- Temperature amplitude < 2.3K
- Measurements from room temperature down to 10K above T_g
Experimental setup

\[V(t) = \frac{R_{\text{pre}}}{R_{\text{pre}} + R(T(t))} U(t) \]

(Igarashi et al., Rev. Sci. Instrum. 79, 045105, 2008)
(Igarashi et al., Rev. Sci. Instrum. 79, 045106, 2008)
3ω method

First order solution

\[T_2 = -2 \frac{V_3 (A + 1)}{aU_1} \]
\[T_0 = - \frac{V_1 (A + 1) - (U_1 - \frac{1}{2} aT_2 U_1^*)}{aU_1} \]
\[T_0 = Z_0 P_0, \quad T_2 = Z_2 P_2 \]

With

\[A = \frac{R_0}{R_{pre}}, \quad a = \frac{A \alpha_1}{1 + A} \]

\[T = 295.6K \]

Relative diff:

\[|Z_{amp=4.9V} - Z_{amp=2.9V}| / |Z_{amp=2.9V}| \]
3\omega method

Higher order solution

\[T_2 = -2 \frac{V_3(A+1) - (U_3 + X_3)}{aU_1} \]
\[T_0 = - \frac{V_1(A+1) - (U_1 - \frac{1}{2} aT_2U_1^* + X_1)}{aU_1} \]
\[T_0 = Z_0 P_0, \quad T_2 = Z_2 P_2 \]

With

\[X_1 = -aT_1U_0 + bT_0^2U_1 + \frac{1}{2} bT_2T_1^*U_1 + bT_0T_2U_1^* \]
\[X_3 = -\frac{1}{2} aT_4U_1^* + \frac{1}{4} bT_2^2U_1^* + bT_0T_2U_1 \]
\[a = \frac{A\alpha_1}{1 + A}, \quad b = \left(\frac{A\alpha_1}{1 + A} \right)^2 - \frac{A\alpha_2}{1 + A} \]

\[T = 295.6K \] Relative diff:
\[|Z_{\text{amp}}=4.9V - Z_{\text{amp}}=2.9V|/|Z_{\text{amp}}=2.9V| \]
Measured thermal impedance

Small difference due to frequency dependent c_I

$\log_{10}(Z')$ and $\log_{10}(-Z'')$ [K/W]

Dots: $T = 252.7K$, Lines: $T = 256.7K$
Thermal structure of the bead

Connection between: Measured impedance, Z, and Liquid impedance, Z_{liq}.

$$Z_{liq}(\omega) = \frac{1}{4\pi r_1 \lambda} \left(1 + \sqrt{i\omega r_0^2 c_l(\omega)/\lambda} \right)$$

Depends on λ_b, c_b, r_0, r_1.

(Christensen and Dyre, PRE 78, 021501, 2008)
Thermal impedance of the liquid

Full model compared to measured data

\[T = 295.6K \]

6 parameter fit:
Bead: \(\lambda_b, c_b, r_0, r_1 \)
Liquid: \(\lambda, c_l \)
Characterization of the bead

Calibration using temperatures where liquid is non-relaxing

6 parameter fit:
Bead: λ_b, c_b, r_0, r_1
Liquid: λ, c_l

4 parameter fit:
Bead: λ_b, c_b
Liquid: λ, c_l

Frequency-dependent Specific Heat from Thermal Effusion in Spherical Geometry – p. 13
Thermal conductivity of the liquid

Thermal admittance:

\[Y_{\text{liq}} = \frac{1}{Z_{\text{liq}}} \]

\[= \frac{4\pi \lambda r_1}{4\pi r_1} \left(1 + \sqrt{i\omega r_1^2 c_l/\lambda} \right) \]

For \(c_l \) frequency independent

\[\lambda = \frac{Y'_{\text{liq}} - Y''_{\text{liq}}}{4\pi r_1} \]

Generally

\[\frac{Y'_{\text{liq}} - Y''_{\text{liq}}}{4\pi r_1} \xrightarrow{\omega \to 0} \lambda \]
Longitudinal specific heat

Temperatures: 295.6K, 270.8K, 260.8K, 256.7K, 254.7K, 253.7K, and 252.7K.
DC specific heat

\[c_0 \cdot 10^6 \text{ J/(m}^3 \cdot \text{K)} \]

\[T \text{ [K]} \]

\(T \) vs. \(c_0 \cdot 10^6 \text{ J/(m}^3 \cdot \text{K)} \) plot.
Conclusions

Effusion in spherical geometry

- Thermomechanical coupling and boundary problems can be treated analytically
- Allows for determining both heat conductivity and specific heat
- Has limited frequency range
- Might also be interesting for determining DC specific heat

3ω technique

- 3ω technique has been generalized to include higher order terms.
Outlook

- Smaller bead: allow for higher frequencies
- Larger bead: allow for lower frequencies
- Better modeling of inner structure of bead: allows for higher frequencies

Conjecture:
if sample size is big enough, geometry does not matter:

\[Z_{\text{liq, finite sphere}} = Z_{\text{liq, infinite medium}} \]

(AIP Conf. Proc. 982, 139 (2008). arXiv:0710.5059v1)

- Easy to incorporate in other experiments
- Allows for measuring \(c_l \) under pressure