NITROGEN ISOTOPE FRACTIONATION IN INTERSTELLAR AMMONIA

D. C. Lin1, A. Wootten2, M. Gerin3, and E. Roueff4

1 California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125, USA; dcl@caltech.edu
2 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA; awootten@nrao.edu
3 LERMA, CNRS UMR8112, Observatoire de Paris and Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France; maryvonne.gerin@lra.ens.fr
4 LUTH, CNRS UMR8102, Observatoire de Paris, Section de Meudon, Place J. Janssen, 92195 Meudon, France; evelyne.roueff@obspm.fr

Received 2009 November 6; accepted 2009 December 30; published 2010 January 20

ABSTRACT

Using the Green Bank Telescope, we have obtained accurate measurements of the 14N/15N isotopic ratio in ammonia in two nearby cold, dense molecular clouds, Barnard 1 and NGC 1333. The 14N/15N ratio in Barnard 1, 334 ± 50 (3σ), is particularly well constrained and falls in between the local interstellar medium/proto-solar value of ~450 and the terrestrial atmospheric value of 272. The NGC 1333 measurement is consistent with the Barnard 1 result, but has a larger uncertainty. We do not see evidence for the very high 15N enhancements seen in cometary CN. Sensitive observations of a larger, carefully selected sample of prestellar cores with varying temperatures and gas densities can significantly improve our understanding of the nitrogen fractionation in the local interstellar medium and its relation to the isotopic ratios measured in various solar system reservoirs.

Key words: astrochemistry – ISM: abundances – ISM: individual objects (Barnard 1, NGC 1333) – ISM: molecules – molecular processes – radio lines: ISM

1. INTRODUCTION

Molecular isotopic ratios are an important tool in the study of the origin of interstellar and solar system materials. After hydrogen, nitrogen displays the largest isotopic variations in the solar system, typically explained by mixing of various proto-solar or pre-solar reservoirs. Earth, Mars interior, Venus, and most primitive meteorites have nitrogen isotopic ratios within 5% of the terrestrial atmospheric value, 14N/15N = 272 (see Marty et al. 2009). However, the proto-solar nebula was poorer in 15N, with 14N/15N ≥ 450, as evidenced by infrared and in situ measurements in the Jupiter atmosphere (530±380), ISO, Fouchet et al. 2000; 435 ± 57, Galileo, Owen et al. 2001; 448 ± 62, Cassini, Abbas et al. 2004; 450 ± 106, Cassini, Fouchet et al. 2004) and recent solar wind measurements (442 ± 131, 2σ, Genesis, Marty et al. 2009). The proto-solar 14N/15N ratio is in agreement with the local interstellar medium (ISM) value (450 ± 22, Wilson & Rood 1994; or 414 ± 32 at the birth place of the Sun, Wielen & Wilson 1997).

Very low nitrogen isotopic ratios, 14N/15N = 148 ± 6, have been measured in CN in a large sample of comets (Manfroid et al. 2009). Similar isotopic ratios have been recently derived by Bockelée-Morvan et al. (2008) in comet 17P/Holmes in CN and HCN, the presumed parent of the CN radical in cometary atmospheres (14N/15N = 165 ± 40 and 139 ± 26, respectively). Although higher ratios in HCN were initially reported in comet Hale-Bopp, Bockelée-Morvan’s re-analysis of the archival data suggests that the 14N/15N ratio in HCN in this comet is also consistent with the CN value, given the measurement uncertainties. The exact chemical networks explaining the HCN isotopic anomaly in comets have yet to be proposed. However, one clear conclusion is that HCN has never isotopically equilibrated with the nebular N$_2$ at the later phases of the evolution of the solar system (Bockelée-Morvan et al. 2008). Low nitrogen isotopic ratios are also found in some meteorites, interplanetary dust particles (IDPs), and samples of material returned from comet 81P/Wild 2 by the Stardust spacecraft; amine groups in particular often show low 14N/15N ratios (Engel & Macko 1997; Keller et al. 2004; Floss et al. 2006; McKeeagan et al. 2006).

In the ISM, nitrogen bearing molecules are important tracers of cold, dense gas, as they do not freeze out onto grain mantles at densities below a few ×106 cm$^{-3}$, in contrast to carbon and oxygen species, such as CO or CS. In cold, dense, CO depleted ISM regions, high 15N enhancements have been suggested to be present in gas-phase molecules, in particular in ammonia (see Rodgers & Charnley 2008a, 2008b, and references therein). These isotopic enhancements could be preserved as spatial heterogeneity in ammonia ice mantles, as monolayers deposited at different times would have different isotopic compositions and may in turn explain the 15N enhancements seen in primitive solar system refractory organics, if they are synthesized from ammonia.

Measurements of nitrogen isotopic ratios in ammonia in cold molecular clouds are of great interest, as they provide quantitative observational constraints for the chemical fractionation models. However, the data available are scarce. In a recent study, Gerin et al. (2009) detected a doubly fractionated ammonia isotopologue, 15NH$_2$D, in several ISM regions. They derive 14N/15N isotopic ratios ~350–850, similar to the proto-solar value of 450. However, the 15NH$_2$D lines are weak, and the corresponding measurement uncertainties are large. To better constrain the nitrogen isotopic ratios in the solar neighborhood, we have observed the 14NH$_3$ and 15NH$_3$ inversion lines using the NRAO 100 m Robert C. Byrd Green Bank Telescope (GBT). We present here results for two nearby clouds, Barnard 1 and NGC 1333, and discuss prospects for future studies of nitrogen isotopic ratios using the GBT.

2. OBSERVATIONS

Observations of ammonia inversion lines presented here were carried out in 2009 February using the GBT. Conditions were calm under a lightly overcast sky resulting in a stable system temperature of ~48–50 K. The K-band receiver feed/amplifer set covering 22–26.5 GHz was employed. The GBT spectrom-
Figure 1. Spectra of the ammonia inversion lines in Barnard 1-b ($\alpha_{1900} = 03^h33^m20^s8, \delta_{1900} = +31^\circ07'34''$). Gray lines show hyperfine structure fits—a single velocity component for the 14NH$_3$ (1,1), (2,2), and 15NH$_3$ (1,1) transitions and two components for the 15NH$_3$ (3,3) transition, as described in the text. The 15NH$_3$ (2,2) spectrum, shown with a Gaussian line fit, is formally a 3.5 σ upper limit. The bottom-right panels show the local thermodynamic equilibrium (LTE) rotation diagram, as described in the text. LHS stands for the left-hand side in Equation (2) of Blake et al. (1987).

Automatically updated dynamic pointing and focusing corrections were employed based on real-time temperature measurements and a thermal model of the GBT; zero points were adjusted typically every 2 hr or less, using 0336+3218 as a calibrator. The two polarization outputs from the spectrometer were averaged in the final data reduction process to improve the signal-to-noise ratio. The total integration times for Barnard 1 and NGC 1333 are 174 min and 48 min, respectively.

3. RESULTS

Figure 1 shows spectra of the 14NH$_3$ and 15NH$_3$ inversion lines toward Barnard 1. The satellite hyperfine lines are detected with high signal-to-noise ratios for the (1,1) and (2,2) transitions of 14NH$_3$. Results of hyperfine structure (HFS) fits, obtained using the IRAM CLASS software package, are shown in Table 1. The (1,1) and (2,2) 14NH$_3$ lines have the same line width of 0.80 km s$^{-1}$, while the (3,3) spectrum is much broader, indicating the presence of a high-velocity component originating in warmer gas. Consequently, we fitted the (3,3) line with two velocity components, fixing the line width of the first component at the value obtained for the (1,1) and (2,2) lines. All parameters for the second component were allowed to vary in the fit. The 15NH$_3$(1,1) line is slightly narrower than the 14NH$_3$ (1,1) and (2,2) lines, as expected for an optically thin line. Figure 2 shows the NGC 1333 spectra. The lines are weaker and broader than in Barnard 1. The (3,3) transition shows strong blueshifted emission from the molecular outflow driven by IRAS 4A. The line width derived from the HFS fit to the 15NH$_3$ data is significantly smaller than the values obtained for 14NH$_3$.

Transition	T_A^d (K km s$^{-1}$)	V_{LSR} (km s$^{-1}$)	ΔV (km s$^{-1}$)	τ	N_{mol} (cm$^{-2}$)
14NH$_3$ (1,1)	37.7 ± 0.006	6.7	0.80	4.0	2.8×10^{15}
14NH$_3$ (2,2)	1.90 ± 0.005	6.5	0.80	0.3	2.8×10^{15}
14NH$_3$ (3,3)	0.076 ± 0.029	6.5	0.80	8.0	10^{15}
15NH$_3$ (1,1)a	0.26 ± 0.11	7.1	3.5
15NH$_3$ (2,1)	0.012 ± 0.004
15NH$_3$ (1,1)a	0.106 ± 0.004	6.6	0.63	...	8.4×10^{12}
15NH$_3$ (2,2)	0.013 ± 0.004

Notes. Upper limit for the 14NH$_3$ (2,1) and 15NH$_3$ (2,2) transitions included for completeness. Molecular column densities are computed assuming LTE with temperatures of 10.9 and 14.7 K for Barnard 1 and NGC 1333, respectively, as described in the text.

a Uncertainties are from the HFS fit for the 14NH$_3$ (1,1)–(3,3) lines and computed from the rms in the spectra for the remaining weak lines and upper limits.

b Fixed parameter.

The hyperfine structure of 15NH$_3$ has been recently revised by Bethlem et al. (2008) who give the level energies with unprecedented accuracy. We have calculated the corresponding transition strengths using the theory of Kukolich (1967) and assuming half-integer values of the quantum numbers of the levels involved.

Transition	T_A^d (K km s$^{-1}$)	V_{LSR} (km s$^{-1}$)	ΔV (km s$^{-1}$)	τ	N_{mol} (cm$^{-2}$)
15NH$_3$ (1,1)	16.4 ± 0.015	7.5	1.2	1.2	8.9×10^{14}
15NH$_3$ (2,2)	2.22 ± 0.07	7.3	1.3	1.1	9.9×10^{14}
15NH$_3$ (3,3)	0.37 ± 0.06	6.8	1.3b	...	2.6×10^{15}
15NH$_3$ (2,1)	0.61 ± 0.04	4.7	9.5
15NH$_3$ (1,1)a	0.023 ± 0.007
15NH$_3$ (2,2)	0.045 ± 0.007	7.2	0.85	...	2.6×10^{12}
15NH$_3$ (2,2)	0.012 ± 0.008

Notes. Upper limit for the 14NH$_3$ (2,1) and 15NH$_3$ (2,2) transitions included for completeness. Molecular column densities are computed assuming LTE with temperatures of 10.9 and 14.7 K for Barnard 1 and NGC 1333, respectively, as described in the text.

a Uncertainties are from the HFS fit for the 14NH$_3$ (1,1)–(3,3) lines and computed from the rms in the spectra for the remaining weak lines and upper limits.

b Fixed parameter.

The hyperfine structure of 15NH$_3$ has been recently revised by Bethlem et al. (2008) who give the level energies with unprecedented accuracy. We have calculated the corresponding transition strengths using the theory of Kukolich (1967) and assuming half-integer values of the quantum numbers of the levels involved.
However, the signal-to-noise ratio in the 15NH$_3$ spectrum is relatively low, formally 6.2σ.

We use the rotation diagram technique (see, e.g., Equation (2) of Blake et al. 1987) to derive the excitation temperatures and molecular column densities. We use the spectroscopic constants and partition functions for 14NH$_3$ and 15NH$_3$ from the JPL Molecular Spectroscopy database (http://spec.jpl.nasa.gov/). The resulting rotation diagrams are shown in Figures 1 and 2, bottom-right panels. The least-squares fit to the line intensities of the (1,1)–(3,3) data (narrow component) in Barnard 1 gives a 3.7σ upper limit. The bottom-right panel shows the LTE rotation diagram, as described in the text. Lines as in Figure 1.

Figure 2. Spectra of the ammonia inversion lines in NGC 1333 ($\alpha_{2000} = 08^h29^m11.6, \delta_{2000} = +31^\circ13'26'$. The 14NH$_3$ (2,1) spectrum is formally a 3.7σ upper limit. The bottom-right panel shows the LTE rotation diagram, as described in the text. Lines as in Figure 1.

4. DISCUSSION

The uncertainty of the derived column densities is difficult to estimate quantitatively. As discussed in Section 2, all lines are observed simultaneously, and the relative calibration is largely determined by the signal-to-noise ratio in the spectra—24 and 6.2σ for 15NH$_3(1,1)$ in Barnard 1 and NGC 1333, respectively. The 14NH$_3$/15NH$_3$ column density ratio, when computed from the observed intensities of the (1,1) transitions of the two isotopologues, is insensitive to the exact value of the rotation temperature used in the calculations, as long as the temperature is the same for the two isotopologues. The remaining source of uncertainty is the determination of the 14NH$_3$ optical depth. The formal uncertainties for the opacity-corrected line intensities given by the HFS fits are negligible (see Table 1). In order to independently estimate the uncertainty of the 14NH$_3(1,1)$ integrated line intensities obtained from the HFS fit, we divide the full Barnard 1 data set into three subsets, 58 min integration time each, and fit each subset independently. From the three measurements, we derive a 2.7% uncertainty for the mean which we use as an estimate of the uncertainty of our final 14NH$_3(1,1)$ measurement. Adding in quadrature the corresponding statistical uncertainty for 15NH$_3$ of 4.2%, we derive a 3σ uncertainty for the 14NH$_3$/15NH$_3$ ratio of 15.0% in Barnard 1. Assuming a 5.2% uncertainty for the 14NH$_3(1,1)$ measurement in the shorter NGC 1333 integration (the Barnard 1 value scaled by the square root of the integration time ratio), and adding in quadrature a 16% uncertainty for the 15NH$_3$ measurement, we derive a 50% uncertainty (3σ) of the 14NH$_3$/15NH$_3$ ratio in this source. Our final estimates of the 14NH$_3$/15NH$_3$ abundance ratio are thus 334 \pm 50 and 344 \pm 173 (3σ) for Barnard 1 and NGC 1333, respectively.

The 14N/15N fractionation ratios in Barnard 1 and NGC 1333 derived from deuterated ammonia measurements by Gerin et al. (2009) are 470$^{+10}_{-10}$ and 360$^{+260}_{-110}$, respectively. The NH$_3$ and NH$_2$D results are thus consistent, given the NH$_2$D measurement uncertainties. Owing to the relatively short integration and low SNR in the 14NH$_3$ spectrum, our result for NGC 1333 is not very constraining. However, our Barnard 1 data are of excellent quality. The derived 14N/15N ratio falls in between the local ISM/proto-solar value (\sim450, as discussed in Section 1) and the terrestrial atmospheric ratio of 272. We do not see evidence for the very high 15N enhancements, as suggested by the cometary CN measurements (\sim150).

A comparison of our fractionation measurements with the nitrogen “superfractionation” models of Rodgers & Charnley (2008b) is of interest. In their Figure 3, Rodgers & Charnley (2008b) present results of time-dependent models of the evolution of the 14N/15N enhancement ratios in key species, including ammonia. For a temperature of 10 K, the gas-phase 15N fractionation in ammonia can reach a maximum enhancement of a factor \sim7–10, much higher than the value we derive for Barnard 1. However, the enhancement factor decreases with time to a factor of a few below the initial isotopic ratio assumed in the model. The time at which the maximum fractionation is reached depends strongly on the initial fraction of nitrogen in a molec-
ular form, but is typically of order 1 Myr. The enhancements of the magnitude that we measure can be present very early on, or a few tenths of a Myr after the peak enhancement time.

The Rodgers & Charnley (2008b) model results depend strongly on the gas temperature—significantly higher enhancements are found in the gas-phase ammonia fractionation at 7 K, as compared to 10 K. The sources we have studied are somewhat warmer than the model clouds considered by Rodgers & Charnley (2008b). It would thus be extremely interesting to extend our measurements to colder clouds, such as LDN 1544 or LDN 134N, with central temperatures of order 7 K. Our present observations are exploratory in nature, but show that accurate measurements of nitrogen fractionation in ammonia in cold ISM sources are clearly feasible using the GBT. A focused observing program of a larger, carefully selected sample of prestellar cores with varying temperatures and gas densities would allow significant progress in our understanding of nitrogen fractionation in local ISM and its possible implications for the existing measurements in various solar system reservoirs. Observations of the ground state rotational transitions of ammonia isotopologues using the HIFI instrument aboard the Herschel Space Observatory offer another avenue for measuring ammonia isotopic ratios in dense gas.

The nitrogen fractionation enhancement levels derived here are well reproduced by the gas-phase models of Roueff et al. (see, e.g., Figure 2 of Gerin et al. 2009). For an H$_2$ density of 10^5 cm$^{-3}$ and a 10 K temperature, the gas-phase models predict 14NH$_3$/^{15}NH_3$ = 389 and 14NH$_2$D$/^{15}$NH$_2$D = 372. The models of Roueff et al. are steady-state models that focus on the gas-phase processes and approximate the adsorption of the species on grain surfaces by reducing the elemental abundances in the gas, as compared to the dynamical models of Rodgers & Charnley that explicitly take into account the mantle formation and gas–grain interactions.

We thank T. Minter and the GBT operator, D. Stricklin, for their assistance during the observations and J. Braatz for his advice in setting up the observing scripts. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. D. C. Lis is supported by the National Science Foundation grant AST-0540882 to the Caltech Submillimeter Observatory. M. Gerin and E. Roueff acknowledge support from the CNRS-INSU French National Program PCMI (Physique et Chimie du Milieu Interstellaire).

REFERENCES

Abbas, M. M., et al. 2004, ApJ, 602, 1063
Bachiller, R., Menten, K. M., & del Río-Alvarez, S. 1990, A&A, 236, 461
Bethlem, H. L., Kajita, M., Sartakov, B., Meijer, G., & Ubachs, W. 2008, Eur. Phys. J. Spec. Top., 163, 55
Blake, G. A., Sutton, E. C., Masson, C. R., & Phillips, T. G. 1987, ApJ, 315, 621
Bockelée-Morvan, D., et al. 2008, ApJ, 679, L49
Engel, M. H., & Macko, S. A. 1997, Nature, 389, 265
Floss, C., et al. 2006, Geochim. Cosmochim. Acta, 70, 2371
Fouchet, T., et al. 2000, Icarus, 143, 223
Fouchet, T., et al. 2004, Icarus, 172, 50
Gerin, M., et al. 2009, A&A, 498, L9
Keller, L. P., et al. 2004, Geochim. Cosmochim. Acta, 68, 2577
Kukolich, S. G. 1967, Phys. Rev., 156, 83
Manfroid, J., et al. 2009, A&A, 503, 613
Marty, B., et al. 2009, Geochim. Cosmochim. Acta, 74, 340
McKeegan, K. D., et al. 2006, Science, 314, 1724
Owen, T., Mahaffy, P. R., Niemann, H. B., Atreya, S., & Wong, M. 2001, ApJ, 553, L77
Rodgers, S. D., & Charnley, S. B. 2008a, ApJ, 689, 1448
Rodgers, S. D., & Charnley, S. B. 2008b, MNRAS, 385, L48
Ulich, B. L., & Haas, R. W. 1976, ApJ, 30, 247
Umemoto, T., Mikami, H., Yamamoto, S., & Hirano, N. 1999, ApJ, 525, L105
Wielen, R., & Wilson, T. L. 1997, A&A, 326, 139
Wilson, T. L., & Rood, R. T. 1994, ARA&A, 32, 191