The Sum of Squares Law

Julio Kovacs*, Fang Fang, Garrett Sadler, and Klee Irwin†

Quantum Gravity Research, Topanga, CA, U.S.

27 September 2012

Abstract

We show that when projecting an edge-transitive N-dimensional polytope onto an M-dimensional subspace of \mathbb{R}^N, the sums of the squares of the original and projected edges are in the ratio N/M.

Statement

Let $X \subset \mathbb{R}^N$ a set of points that determines an N-dimensional polytope. Let E denote the number of its edges, and σ the sum of the squares of the edge lengths. Let S be an M-dimensional subspace of \mathbb{R}^N, and σ' the sum of the squares of the lengths of the projections, onto S, of the edges of X.

Let G be the group of proper symmetries of the polytope X (that is, no reflections). If G acts transitively on the set of edges of X, then:

$$\sigma' = \sigma \cdot \frac{M}{N}.$$

The orthogonality relations

The basic result used in our proof is the so-called orthogonality relations in the context of representations of groups. The form of these relations that we need is the following:

Theorem 1. Let $\Gamma : G \to V \times V$ be an irreducible unitary representation of a finite group G. Denoting by $\Gamma(R)_{nm}$ the matrix elements of the linear map $\Gamma(R)$ with respect to an orthonormal basis of V, we have:

$$\sum_{R \in G} \Gamma(R)^*_{nm} \Gamma(R)_{n'm'} = \delta_{nn'}\delta_{mm'} \frac{|G|}{\dim V},$$

where the * denotes complex conjugation.

A proof of these relation can be found in standard books on representation theory, for instance [1, p. 79] or [2, p. 14]. See also the Wikipedia article \textcolor{blue}{http://en.wikipedia.org/wiki/Schur_orthogonality_relations}.

*Corresponding author. Email: julio@quantumgravityresearch.org

†Group leader. Email: klee@quantumgravityresearch.org
Proof of the sum of squares law

The idea is apply the orthogonality relations (1) to the group G of proper symmetries of the polytope X, considering its standard representation on the space \mathbb{R}^N (i.e., $R \cdot x = R(x)$). This representation is clearly unitary, since the elements of the group are rotations and hence orthogonal transformations. Also, the representation is irreducible, since G takes a given edge to all the other edges, which do not lie on any proper subspace due to the assumption of X being an N-dimensional polytope.

We can assume that the edge lengths of X are all equal to 1. Let $\{v_1, \ldots, v_N\}$ be an orthonormal basis for \mathbb{R}^N such that v_1 coincides with the direction of one of the edges e of X. Then, for $R \in G$, let $\Gamma(R)$ be the matrix of R in that basis, that is:

$$R(v_j) = \sum_{i=1}^N \Gamma(R)_{ij} v_i.$$

Since this is an orthonormal basis, we have:

$$\Gamma(R)_{ij} = \langle R(v_j), v_i \rangle,$$

where \langle , \rangle denotes the standard inner product in \mathbb{R}^N. In particular, for $j = 1$:

$$\Gamma(R)_{i1} = \langle R(e), v_i \rangle \quad (i = 1, \ldots, N). \tag{2}$$

Note that this is exactly the length of the projection of each edge onto the line spanned by v_i. Now, from equation (1), by putting $n' = n$ and $m' = m$, we get:

$$\sum_{R \in G} |\Gamma(R)_{nm}|^2 = \frac{|G|}{N}. \tag{3}$$

Using the Γs given by the previous equation:

$$\sum_{R \in G} \langle R(e), v_i \rangle^2 = \frac{|G|}{N} \quad (i = 1, \ldots, N). \tag{4}$$

Now let v be any unit vector. We’ll show that the above equality holds for v as it does for v_i. To see this, write v as a linear combination of the basis vectors v_i: $v = \sum a_i v_i$. Since $\|v\| = 1$, we have $\sum a_i^2 = 1$. Then:

$$\sum_R \langle R(e), v \rangle^2 = \sum_R \langle R(e), \sum_i a_i v_i \rangle^2 = \sum_R \left(\sum_i a_i \langle R(e), v_i \rangle \right)^2$$

$$= \sum_R \left(\sum_i a_i^2 \langle R(e), v_i \rangle^2 + 2 \sum_{i<j} a_i a_j \langle R(e), v_i \rangle \langle R(e), v_j \rangle \right)$$

$$= \sum_i a_i^2 \sum_R \langle R(e), v_i \rangle^2 + 2 \sum_{i<j} a_i a_j \sum_R \langle R(e), v_i \rangle \langle R(e), v_j \rangle$$

$$= \frac{|G|}{N} + 2 \sum_{i<j} a_i a_j \sum_R \Gamma(R)_{i1} \Gamma(R)_{j1},$$

due to eqs. (4) and (2). Now it turns out that the second term is 0. This is an immediate consequence of eq. (1) with $n = i$, $n' = j$, $m = m' = 1$. Therefore, the equality:

$$\sum_R \langle R(e), v \rangle^2 = \frac{|G|}{N} \tag{5}$$
holds for any unit vector v.

Now let S be the projection subspace of dimension $M > 1$, and let’s denote by $P_S : \mathbb{R}^N \to S$ the projection operator. Choose an orthonormal basis $\{u_1, \ldots, u_M\}$ of S. Then:

$$P_S(R(e)) = \sum_{i=1}^{M} b_i u_i,$$

with

$$b_i = \langle P_S(R(e)), u_i \rangle = \langle R(e), u_i \rangle.$$

Therefore,

$$\sum_{R \in G} \|P_S(R(e))\|^2 = \sum_{R \in \cup_{l=1}^{E} C_l} \sum_{i} b_i^2 = \sum_{R \in \cup_{l=1}^{E} C_l} \sum_{i} \langle R(e), u_i \rangle^2 = \sum_{R \in \cup_{l=1}^{E} C_l} \left(\sum_{i} \langle R(e), u_i \rangle^2 \right) = |G| \cdot \frac{M}{N},$$

where the last equality is because of eq. [5].

To obtain the required result, we observe that G can be partitioned in E “cosets” of the same cardinality k, where E is the number of edges of X. To see this, let $H = \{g \in G \mid g \cdot e = e\}$ be the subgroup of G that leaves edge e invariant. Then the coset $RH = \{g \in G \mid g \cdot e = R(e)\}$ is the subset of elements of G that send edge e to edge $R(e)$. Denote the cardinality of H by k. Since there are E edges and the action is edge-transitive, there are E cosets, each of cardinality k. Therefore, $|G| = kE$. Denoting the edges by e_1, \ldots, e_E, and the corresponding cosets by C_1, \ldots, C_E (so that $R(e) = e_l$ for $R \in C_l$), we have:

$$\sum_{R \in G} \|P_S(R(e))\|^2 = \sum_{R \in \cup_{l=1}^{E} C_l} \|P_S(R(e))\|^2 = \sum_{l=1}^{E} \sum_{R \in C_l} \|P_S(R(e))\|^2 = \sum_{l=1}^{E} k \|P_S(e_l)\|^2 = k \sum_{l=1}^{E} \|P_S(e_l)\|^2.$$

On the other hand, we saw that the left-hand side of this equation equals $|G| \cdot M/N$, which is $kE \cdot M/N$. Equating this to the above and canceling the factor k, we obtain:

$$\sigma' = \sum_{l=1}^{E} \|P_S(e_l)\|^2 = E \cdot \frac{M}{N} = \sigma \cdot \frac{M}{N},$$

which completes the proof.

References

[1] T. Bröcker and T. tom Dieck. *Representations of Compact Lie Groups*. Springer-Verlag, New York, 1985.

[2] J.-P. Serre. *Linear Representations of Finite Groups*. Springer-Verlag, New York, 1977.