Traffic flow simulation using agent-based model: A case of single lane with multiple traffic lights and input-output node

S Viridi*, M Dwitasari, M Takaendengan, KN Sari, US Pasaribu

1Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
2Master Program in Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
3Deptartement of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
*dudung@fi.itb.ac.id

Abstract. Vehicle is modeled as a point, which is moving along a closed trajectory. A small amount of time is defined as the time step, the smallest time difference, so that any time measurement is simply multiple of this value. Lowest positive velocity (but greater than zero) is where in the time step a vehicle advances its position for only a spatial step. Higher velocities and also the negative ones can be constructed from this value. Only a single lane is investigated in this work, where a vehicle must wait until there is an empty space in front of it before it can move forward. As perturbation several traffic lights are also installed in the trajectory. Number of vehicles stop at a stoplight or N_s is observed.

1. Introduction
It is still interesting nowadays to study traffic flow using simulation. In an agent-based multilane traffic model a related concept of entropy can be used to describe the self-organization phenomenon in traffic dynamics [1], even when a Java-based simulator for different type of junctions is already available for microscopic traffic models with open source code [2].

2. Model
In this work only single lane is considered. A lane L_i is started with an input cell I_i and ended with an output cell O_i, where as simulation object, vehicles or agents A_j are created in I_i dan destroyed in O_i. Two lanes I_i and I_k can intersect and vehicle A_j can change its lane in the intersection. Along a lane there are possible several stop light S. Illustration of the model is given figure 1. Creation of agents in O_i can have a certain distribution [3].

Time t can be only advanced by a time step Δt to be $t + \Delta t$ and each agent moves forward v_i cells in the direction from I_i to O_i in lane L_j, with v_i is vehicle velocity with discrete value, e.g. 1, 2, .., V, where

$$V << l_j,$$ \hspace{1cm} (1)

with l is length of lane L or number of cells between I_i and O_i. Equation (1) assures that the vehicle A does not go to nowhere since it is too fast compared to available lane length l_j at each time step Δt. Cell k in lane L has two possible states 0 or 1
There are possible some vehicles located at several cells in the same lane. In a lane L_i before vehicle A_j can move from cell k to cell l it must check whether the destination cell is empty or the state of a stop lamp S_m before the destination cell.

\[
L_{j,k} = \begin{cases}
0, & \text{cell } k \text{ is empty}, \\
1, & \text{cell } k \text{ is occupied}.
\end{cases}
\]

There are several configuration tested in this work.

3. Results and discussion

Simulation is built using JavaScript programming language running on an ordinary internet browser, e.g. Google Chrome, and does not need a special computational resources. A typical processor of 2 GHz and 4 GB RAMs are already sufficient. The JavaScript code of this simulation can be accessed at GitHub https://github.com/dudung/butiran/blob/master/app/ab_ssltfs.js, which should be first included in a HTML file and then the HTML file is opened using an internet browser.

3.1. Variation of stoplight duration

BC = periodic, $N_{\text{max}} = 5$, $c_{\text{max}} = [0, 1, 2, 3, 4]$, $v_{\text{max}} \in [1, 5]$, $l_{\text{max}} = 20$, $S_m = 10$.

![Image 1](image1.png)

Figure 1. Lanes ($L_1 \ldots L_3$) are represented by series of connected cells, where agents ($A_1 \ldots A_9$) are created in I_i and destroyed in O_i, while they must obey state of stop light S_i as they move along their lane, whereas two lanes can intersect and also be connected through relation I_i–O_j.

Figure 2. Results in case 0 for $S_{\text{pattern}} = [0000011111]$ at iteration 4, 148, 308.

Figure 3. Results in case 1 for $S_{\text{pattern}} = [0000111111]$ at iteration 4, 148, 341.
Figure 4. Results in case 2 for $S_{\text{pattern}} = [000111]$ at iteration 4, 148, 322.

Figure 5. Results in case 3 for $S_{\text{pattern}} = [0011]$ at iteration 4, 148, 330.

Figure 6. Results in case 4 for $S_{\text{pattern}} = [01]$ at iteration 4, 148, 344.

From figures 2 – 6 average number of stopped vehicle N_{stop} in the stoplight against stoplight duration $T_{\text{stoplight}}$ is given in figure 7.

![Figure 7](image_url)

Figure 7. Average number of stopped vehicles in the stoplight influenced by stoplight duration.

3.2. Variation of number of vehicles

$BC = \text{periodic, } c_{\text{veh}} = [0, 1, 2, 3, 4], v_{\text{veh}} \in [1, 5], l_\text{veh} = 20, S_\text{veh} = 10, S_{\text{pattern}} = [0000111111]$.

![Graph](image_url)
Figure 8. Results in case 5 for $N_{\text{max}} = 1$ at iteration 8, 145, 308.

Figure 9. Results in case 6 for $N_{\text{max}} = 2$ at iteration 8, 145, 308.

Figure 10. Results in case 7 for $N_{\text{max}} = 3$ at iteration 8, 145, 308.

Figure 11. Results in case 8 for $N_{\text{max}} = 4$ at iteration 8, 145, 308.

Figure 12. Results in case 9 for $N_{\text{max}} = 5$ at iteration 8, 145, 317.

From figures 8 – 12 average number of stopped vehicle N_{stop} in the stoplight against number of vehicle N_{vehicle} is given in figure 13.
3.3. Variation of number of maximum velocity

BC = periodic, $N_{max} = 5$, $c_{max} = [0, 1, 2, 3, 4]$, $l_{ve} = 20$, $S_{p} = 10$, $S_{pattern} = [0000011111]$.

Figure 13. Average number of stopped vehicles in the stoplight influenced by number of vehicles.

Figure 14. Results in case 10 for $v_{ve} \in [1, 1]$ at iteration 8, 145, 308.

Figure 15. Results in case 11 for $v_{ve} \in [1, 2]$ at iteration 8, 145, 308.

Figure 16. Results in case 12 for $v_{ve} \in [1, 3]$ at iteration 8, 145, 308.

Figure 17. Results in case 13 for $v_{ve} \in [1, 4]$ at iteration 8, 145, 308.

Figure 18. Results in case 14 for $v_{ve} \in [1, 5]$ at iteration 8, 145, 308.
From figures 14 – 18 average number of stopped vehicle N_{stop} in the stoplight against maximum velocity v_{max} is given in figure 19.

![Graph showing N_{stop} vs v_{max}.](image)

Figure 19. Average number of stopped vehicles in the stoplight influenced by maximum velocity.

3.4. Variation of length of lane

$BC = \text{periodic}, N_{\text{max}} = 5, c_{\text{max}} = [0, 1, 2, 3, 4], v_{\text{max}} \in [1, 5], S_{\text{pos}} = 10, S_{\text{pattern}} = [000011111]$.

![Image of lane configurations.](image)

Figure 20. Results in case 14 for $L_{\text{lane}} = 16$ at iteration 8, 145, 308.

![Image of lane configurations.](image)

Figure 21. Results in case 14 for $L_{\text{lane}} = 17$ at iteration 8, 145, 308.

![Image of lane configurations.](image)

Figure 22. Results in case 14 for $L_{\text{lane}} = 18$ at iteration 8, 145, 308.
Figure 23. Results in case 14 for $l_{\text{lane}} = 19$ at iteration 8, 145, 308.

Figure 24. Results in case 14 for $l_{\text{lane}} = 20$ at iteration 8, 145, 308.

From figures 20 – 24 average number of stopped vehicle N_{stop} in the stoplight agains length of lane l_{lane} is given in figure 25.

Figure 25. Average number of stopped vehicles in the stoplight influenced by length of lane.

3.5. System with more than one lane
System with two lanes and one intersection is used for testing the simulation, where the system is shown in figure 26.

Figure 26. System of two lanes with one intersection and two stoplights as illustration.

Since periodic BC is also applied in figure 26, the results are simply composite of previous results.

3.6. Circular lane and four stoplights
BC = periodic, $N_{\text{veh}} = 5$, $c_{\text{veh}} = [0, 1, 2, 3, 4]$, $v_{\text{veh}} \in [1, 5]$, for $l_{\text{c}} = 76$, $S_{\text{pos}} = [10, 28, 48, 66]$, $S_{\text{pattern}} = [00001111, 00111100, 11110000, 11000011]$ with the results are shown in Figure 27.
Figure 27. A circular lane with four stoplights tends to segregate 10 vehicles to group of two at each stoplight as observed at iteration 0, 6, 15, 29, 37, 42, 63, 86, and 130.

All the results still must be compared to guidance in traffic management system in Indonesia [4], which is used to regulate the traffic. And for future plan it will be advanced into a multilane system.

4. Summary
From the results we can summarized that stoplight duration $T_{\text{stoplight}}$ has no tendency in influencing number of stopped vehicle N_{stop}, as also with length of lane L_{lane}. Initial N_{stop} is larger than final N_{stop} as influenced by maximum velocity v_{max}. Number of vehicle N_{vehicle} seperates initial and final stopped vehicle N_{stop} for larger value of N_{vehicle}.

Acknowledgments
Authors wishing to acknowledge financial support from P3MI research scheme.

References
[1] Sugihakim R and Alatas H 2016 Phys. Lett. A 380 147
[2] Treiber M, Kesting A 2010 IEEE Intel. Transp. Sy. 2 6
[3] S Viridi, P Premadi, P Aditijawati, E S Maqdir, T Suheri, J Halid, K N Sari, U S Pasaribu, N M Sudaryani, N Latifah and S Rahimah 2019 IOP Conf. Ser.: Earth Environ. Sci. 230 012118
[4] Dinas Pekerjaan Umum Indonesia 1997 Manual Kapasitas Jalan Indonesia, Indonesia