Epidemiological and clinical features of hepatitis B virus related liver failure in China

Chen Liu, Yu-Ming Wang, Ke Fan

Chen Liu, Yu-Ming Wang, Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China

Author contributions: Liu C and Fan K collected the data; Liu C analyzed the data and wrote the paper; Wang YM revised the paper.

Supported by The National Basic Research Program of China (973 Program 2007CB512903) and the State Key Project of China in HBV-related severe hepatitis (2008ZX10002-005)

Correspondence to: Yu-Ming Wang, Professor, Department of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China. wym417@163.com Telephone: +86-23-68754141 Fax: +86-23-65334998 Received: September 28, 2010 Revised: June 20, 2011 Accepted: June 27, 2011 Published online: July 7, 2011

Abstract

AIM: To examine the epidemiologic and clinical characteristics of hepatitis B virus (HBV) related liver failure in patients in China.

METHODS: This study was conducted with a retrospective design to examine 1066 patients with HBV-related liver failure in the southwest of China.

RESULTS: There were more male than female patients. Young and middle-aged people comprised most of the patients. Farmers and laborers comprised the largest proportion (63.09%). Han Chinese accounted for 98.12%, while minority ethnic groups only accounted for 0.88% of patients. A total of 43.47% patients had a family history of HBV-related liver failure and 56.66% patients had a history of drinking alcohol. A total of 42.59% patients with HBV-related liver failure had definite causes. With regard to the clinical manifestation of HBV-related liver failure, the symptoms were: hypodynamia, anorexia and abdominal distension. Total bilirubin (TBIL) and alanine aminotransferase (ALT) levels were altered in 46.23% of patients with evident damage of the liver. Univariate logistic regression analysis showed that the patients’ prognoses were correlated with ALT, aspartate aminotransferase, albumin, TBIL, prothrombin activity (PTA), and alpha-fetoprotein levels, and drinking alcohol, ascites, hepatorenal syndrome, infection and ≥ 2 complications. Multifactor logistic regression analysis showed that the activity of thrombinogen and the number of complications were related to the prognosis.

CONCLUSION: Alcohol influences the patients’ prognosis and condition. PTA and complications are independent factors that can be used for estimating the prognosis of HBV-related liver failure.

Peer reviewer: Qin Su, Professor, Department of Pathology, Cancer Hospital and Cancer Institute, Chinese Academy of Medical Sciences and Peking Medical College, PO Box 2258, Beijing 100021, China

INTRODUCTION

Hepatitis B virus (HBV) infection is a severe threat of public health worldwide. Two billion people have been infected with HBV out of a total population of 6 billion, including chronic HBV infection in 350 million people[1,2]. One million people have died of liver disease related to HBV, 75% of which are distributed in the Asian-Pacific area[3]. China has a high occurrence of HBV infection. A survey of national epidemiology announced in April 2008 by the Ministry of Health showed that 93 million people in China have been infected with HBV.
The features of HBV-related liver failure include a lot of complications in patients, difficulty of treatment and a high fatality rate. Therefore, a large sample investigation about the natural history and the clinical process of HBV-related liver failure are required. This study analyzed the epidemiologic and clinical characteristics of HBV-related liver failure, based on a sample of 1066 cases in the southwest region of China.

MATERIALS AND METHODS

Case selection
All the 1066 cases were chosen from inpatients of the General Infectious Disease Institute of Southwest Hospital, the Third Military Medical University of China PLA, from February 2003 to December 2009. The patients were mostly from Chongqing and Sichuan, including the southwest regions in Guizhou and Yunnan.

The selection criteria included: (1) patients with chronic hepatitis B; (2) serum total bilirubin (TBIL) ≥ 171 μmol/L, prothrombin activity (PTA) ≤ 40% and complete data. The exclusion criteria were: (1) liver transplanted patients; (2) a short time of hospitalization (< 72 h); (3) patients with missing clinical and laboratory data; and (4) patients with associated tumors and other major diseases.

Methods

Epidemiologic survey: A questionnaire was given to the patients, which required information such as age, sex, ethnic group, career, family history, history of drinking alcohol, inducement of HBV-related failure, symptoms, physical signs, laboratory examinations, and complications. Questions that were not properly answered were not included in the statistical analysis. The daily alcohol intake (g) is equal to: alcohol intake × 0.8 × spirit (%), which was classified into low, medium, and high degrees (Table 1).

Laboratory examinations: Serum biochemical tests of alanine aminotransferase (ALT), AST, total bilirubin and albumin levels were measured by a Hitachi 7060 full-automatic chemical analyzer. α-fetoprotein (AFP), hepatitis B surface antigen (HbsAg), hepatitis B core antibody (HbcAb), hepatitis B e antigen (HbeAg) and hepatitis B e antibody (HbeAb) were measured using a German Roche Elecsys 2010 full-automatic electrochemiluminescence analyzer.

Serum HBV DNA was measured by a PE5700 instrument (ABI) and the reagent kits were from Cloning Biological High-tech Co., Ltd. (Shanghai, China). HBV DNA ≥ 1000 copy/mL (3.0 log10) was positive.

Statistical analysis
SAS V8.0 statistical software was used for analysis. Data were shown as means ± SD. Potential factors that may have influenced the prognosis were examined by logistic analysis. \(P < 0.05 \) indicates statistical significance.

RESULTS

Epidemiology

Among the 1066 patients with HBV-related liver failure, there were 901 males (84.52%) and 165 females (15.48%), with a male: female ratio of 5.46:1.

The mean age was 39.76 ± 11.69 years (range, 12-75 years). The highest morbidity was in the age group of 30-39 years (31.71%, Table 2). The age group with the second highest morbidity was between 40 and 49 years (28.61%), followed by 20-29 years (18.01%), 50-59 years (14.26%), > 60 years (6.19%) and < 20 years (1.22%) (Table 2).

With regard to the occupation structure of the patients with HBV-related liver failure, farmers comprised the highest proportion, followed by laborers, cadres, teachers, students, businessmen, drivers, doctors, nurses and a painter and a policeman (Table 2).

A total of 1046 (98.12%) patients belonged to the Han ethnic group, followed by the Tuja minority ethnic group (1.50%), the Miao minority ethnic group (0.28%), and the Gelao minority ethnic group (0.09%) (Table 2).

Family history and history of alcohol drinking

A total of 463 patients (43.47%) had a family history of HBV-related liver failure and 56.66% of patients had a history of drinking alcohol. Two hundred patients seldom drank alcohol (18.76%), 171 patients drank alcohol lightly (28.61%), 13 patients drank alcohol moderately (1.22%) and 2 patients drank alcohol heavily (0.28%).
108 patients drank alcohol moderately (10.13%) and 125 patients drank alcohol heavily (11.73%).

Induction of chronic hepatitis B into severe hepatitis/liver failure

The incidence rate of HBV-related liver failure was highest in the presence of other contagious viruses that infect the liver. Among 192 cases (18.01%), 109 cases were also infected by HDV (Table 3). The second highest cause of induction of disease was drinking alcohol, followed by fatigue and other infections. Over half of the patients had no ascertainable cause of disease. In those patients in whom the cause of disease was known, most only had 1 factor that induced the disease. None of the patients had more than 3 types of inducement of disease.

Clinical manifestations

On admission, the patients’ main clinical manifestations were hypodynamia, loss of appetite and abdominal distension (Table 4).

Laboratory data in patients with hepatitis B virus related liver failure

Table 5

Laboratory indexes	Mean
ALT (IU/L)	272.51 ± 541.51
AST (IU/L)	262.13 ± 440.55
Glutamyltranspeptidase (IU/L)	91.24 ± 55.74
Alkaline phosphatase (IU/L)	187.41 ± 96.01
ALB (g/L)	32.08 ± 7.95
TBIL (μmol/L)	396.56 ± 190.52
Direct bilirubin (μmol/L)	234.48 ± 100.75
PTA (%)	15.62 ± 12.98
Glucose (mmol/L)	5.35 ± 3.86
Blood urea nitrogen (mmol/L)	59.45 ± 970.09
Creatinine (μmol/L)	204.40 ± 613.78
AFP (ng/mL)	191.26 ± 221.36
HBV DNA (copies/mL)	4.3 ± 8.8 × 10^7

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ALB: Albumin; TBIL: Total bilirubin; PTA: Prothrombin activity; AFP: α-fetoprotein; HBV: Hepatitis B virus.

Complications in patients with hepatitis B virus related liver failure

Table 6

Complications	n (cases)	Percentage (%)
Ascites	509	47.83
Hepatic encephalopathy	506	47.48
I level	34	3.86
II level	178	20.23
III level	122	13.86
IV level	172	19.55
Hernia of brain	29	2.72
Hydrocephalus	78	7.32
Hemorrhage of digestive tract	234	21.95
Hepatorenal syndrome	210	19.70
Spontaneous bacterial peritonitis	103	9.66
Infection	417	39.12
Electrlyte imbalance	141	13.23

The laboratory data of the patients are shown in Table 5. A total of 11.54% (123 cases) of the cases were HBeAg positive, 22.52% (240 cases) were HBeAb positive, 78.30% (834 cases) were HBV DNA positive, and the mean value was 4.3 ± 8.8 × 10^7 copies/mL.

Complications

The most common complications were ascites, hepatic encephalopathy, and infection. Hemorrhage of the digestive tract and electrolyte imbalance were the next most common complications (Table 6).

Prognosis

The patients were divided into 2 groups: the improved group and the deteriorated group (including exacerbation and death). The description “improved” was used...
to define those patients who were able to be discharged from hospital because clinical symptoms improved and liver function recovered. The description of “deteriorated” was defined as patients who died or deteriorated when they were voluntarily discharged from the hospital, except for those who died or further deteriorated because of other diseases or accidents. Three hundred and forty-five cases improved (34.36%) and 721 cases were deteriorated (67.64%) (369 cases died and 352 cases were exacerbated). The rate of death due to the disease was 34.62%.

Logistic single factor regression analysis
Logistic regression analysis was performed for 42 factors that might have influenced the prognosis, using prognosis (improvement and unsuccessfully treated) as the dependent variable. The result showed that the patients’ prognoses were related to ALT, AST, ALB, TBIL, PTA, and AFP levels, and drinking alcohol, ascites, hepatorenal syndrome, infection and ≥ 2 complications.

Logistic multifactor regression analysis
Logistic multifactor regression analysis was performed for prognostic factors that were screened out by single factor regression analysis. We found that PTA ($P = 0.03$) and the number of complications ($P = 0.01$) were independently related to the prognosis of HBV-related liver failure.

DISCUSSION
In China, the main transmission route of HBV is vertical transmission and the secondary way is by blood products. Among the patients in our study, there were more males than females, while the number of males with HBV-related liver failure is increasing. With regard to profession, farmers and laborers comprised the largest proportion at 63.09%, with farmers occupying even larger proportion than laborers. The cause of the illness might be related to people’s life style and working environment, inaccurate comprehension of the disease due to poor medical conditions and minimal schooling, and missing the best time for treatment because of not visiting a doctor in time. Among the ethnic groups, the Han accounted for 98.12% of patients, while minority ethnic groups only accounted for 0.88%. This finding could be because economic conditions are better and the population of the Han is higher compared with the ethnic minorities in the southwest of China. The result of single factor analysis showed that the patients’ prognosis was not related to sex, age, occupation and ethnic groups.

The recurrence and aggravation of chronic HBV are due to various inducements during the long repetitive chronic process. Based on our data analysis, illness conditions deteriorated in 42.59% of patients in whom the cause of disease was known. The main factors responsible for inducing the illness were as follows: superinfection with other contagious viruses that infected the liver, drinking alcohol, fatigue and being complicated with other infections. With regard to superinfection with other contagious viruses that infect the liver, internationally, it is regarded that HGV virus infection does not cause liver failure, but it is rather found in patients co-infected with HBV. In China, drinking alcohol is common because of the rich “alcohol culture” and gradually enriched material conditions. Young and middle-aged people are busy with work and are under great social pressure. These factors, which have resulted in a trend for a lower average age for HBV-related liver failure, are the reasons for inducing and exacerbating the illness. Infection was found to be another cause of HBV-related liver failure, with 10 cases having liver failure due to an unclean diet history. Eight of these 10 cases had diarrhea and the patients may have been complicated with gastrointestinal infection. If the inducement of HBV-related liver failure is fatigue, it is related to damage of the patient’s immune system. In 57.41% of patients, their illness deteriorated and there did not appear to be any definite cause of HBV-related liver failure. This may be related to several factors such as social environment, job competition, mental stress and emotional factors. In summary, infection (including being complicated with other hepatitis virus infections and other infections) is the biggest inducement of the disease, which is similar to the findings in other reports[6-8]. In addition, the factor of alcohol further increased the possibility of HBV-related liver failure.

Our data showed that the characteristics of severe hepatitis in the southwest of China are similar to acute liver failure and acute-on-chronic liver failure abroad, and these included acute onset, inducement for initiating or worsening of the disease, superinfection by hepatitis B and D viruses, and being complicated by infection and fatigue. Clinical manifestations of HBV-related liver failure involve two main types: alimentary tract symptoms, such as yellowing of the skin and sclera, hypodynamia, anorexia, abdominal distension, and physical signs of hepatitis such as liver palms, hepatic face, and spider nevus. Some of the patients did not have encephalopathy at the early stage of the disease, and this occurred after hospitalization. Some of the patients had ascites as the main clinical manifestation at admission, and most of them had secondary onset of hepatic encephalopathy. The prognosis of patients with hepatic encephalopathy greater than stage II was worse.

According to the laboratory data, liver function indicated damage to the liver and PTA was decreased. In the early stage of the disease, ALT and AST levels were increased. TBIL was also increased. The results of single factor analysis showed that patients’ prognoses were related to ALT, AST, ALB, TBIL, PTA and AFP levels, which is consistent with other studies in China and in other countries[9-11]. Multifactor logistic regression analysis showed that PTA was independently related to the prognosis. PTA is the most important biochemical index used to determine the aggravation of chronic hepatitis B[9]. The lower the level of PTA, the higher the rates of hemorrhage and fatality[9]. The prognosis is bad if PTA is < 30%, and if this
is the case, the majority of patients die10. The quantity of serum bilirubin reflects the degree of damage to liver cells. TBIL appeared to be related to HBV-related liver failure, but multifactor analysis showed that TBIL was not a factor that affected the prognosis. It is generally acknowledged that the higher the level of AFP, the better the prognosis of patients with liver failure. The US Acute Liver Failure Study Group has shown that a 1-fold higher level of AFP is not related to a good prognosis; however, patients’ prognoses are relatively good when AFP levels are increased 3 days after hospitalization34.

HBV-related liver failure/severe hepatitis B is a serious disease. The incidence rate of complications is high. It is critical to prevent complications to improve the survival rate11. Our study results showed that 70.73% of patients had up to several complications. A total of 48.78% of patients had 2 or more complications. The type, quantity and the degree of severity of complications are important factors that can influence the outcome of HBV-related liver failure/severe hepatitis B. In our study, single factor analysis showed that the patients’ prognoses were related to ascites, hepatorenal syndrome, infection and ≥ 2 complications. Multifactor analysis showed that the number of complications was an independent risk factor of HBV-related liver failure. In the USA and European countries, the first manifestation of hepatic failure is often hepatic encephalopathy. However, according to our data, ascites is the main manifestation in China. Infection is usually the earliest complication occurring in the middle stage of the disease. Our data showed that infection was a complication that occurred in the early stage of HBV-related liver failure. Infection was related to the prognosis and it also aggravated the disease. Previous studies have shown that 60% to 80% of liver failure patients have secondary bacterial or fungal infection12,13. Riordan and Williams demonstrated that approximately 80% of patients with severe HBV are complicated with infection, which is difficultly controlled14. Because of the complexity of the pathogenesis of liver failure, the present system for estimating the prognosis cannot predict the results, although there is a great deal of patients’ data available.

Liver failure is severe liver damage caused by various factors, which cause obstruction or compensation of function, such as composition, detoxification, drainage and biotransformation15. Various clinical syndromes can appear, including the obstruction of coagulation mechanisms, icterus, hepatic encephalopathy and ascites16. According to the speed of pathological development, histology of liver failure and the patient’s condition, liver failure can be classified into 3 types: acute liver failure (ALF), acute-on-chronic liver failure (ACLF) and chronic liver failure (CLF)17,18. According to morbid physiology, liver failure is mainly divided into two types that separately result in necrosis caused by the inflammation of liver cells and the decompensation of liver cells. ALF belongs to the type of liver failure that results in necrosis caused by inflammation of liver cells19. ACLF and CLF belong to the type of liver failure with decompensation of liver cells20. Patients with ALF have symptoms such as abnormal crur (usually an international normalized ratio ≥ 1.5), a change in consciousness to varying degrees (encephalopathy), and the duration of disease is less than 26 wk21,22. Patients with ACLF have acute decompensation on the basis of chronic liver disease (TBIL $\geq 171 \mu \text{mol/L}$)23. Patients with CLF have chronic decompensation of liver function (TBIL $< 171 \mu \text{mol/L}$) caused by a decrease in liver function on the basis of the final phase of hepatitis19. According to the diagnostic standard discussed above19-23, in our study, 654 cases had ACLF, 296 cases had CLF, and 116 cases had ALF.

The term “liver failure” is used in European countries and the USA because it is associated with function, whereas it is called severe chronic hepatitis in China and Japan because it is associated with inflammation. Hepatitis virus that appears to be acute liver failure is called severe hepatitis24. The main difference between the terms “liver failure” used in the USA and European countries and “severe hepatitis” used in China is whether to include hepatic encephalopathy in the diagnosis. Some patients with liver failure do not have hepatic encephalopathy25. Severe damage of the liver may develop into liver failure before hepatic encephalopathy occurs.

Although there are differences, liver failure has been divided into ALF, including the acute and sub-acute types, and CLF, including the chronic acute and chronic decompensated types, and this point of view gradually becomes consistent among international academic communities. Because of the large amount of etiologies of liver failure, physicians use a combination of clinical diagnoses (e.g. chronic severe hepatitis) and morbid physiology diagnoses (e.g. CLF). Liver decompensation is the main manifestation of chronic liver failure. Patients with this disease may not have hepatic encephalopathy, but patients with acute liver failure must have hepatic encephalopathy26-34.

In conclusion, the morbidity of chronic HBV is steadily increasing. Once chronic HBV develops into HBV-related liver failure/chronic severe hepatitis, the liver is seriously damaged with complex symptoms, it develops rapidly, it has many complications, it is difficult to treat and it has a high death rate. We advise patients with hepatitis to enhance self-protection and prevent bad life-style habits, so that they can be diagnosed in the early stage and be cured in a timely manner with positive results and treatment of complications, so as to ultimately reduce the death rate.

\textbf{COMMENTS}

\textbf{Background}

Hepatitis B virus (HBV) infection becomes a severe threat for public health worldwide. The features of HBV-related liver failure include: a serious condition (e.g. encephalopathies), and the duration of disease is usually less than 26 wk21,22. Patients with ACLF have acute decompensation on the basis of chronic liver disease (TBIL $\geq 171 \mu \text{mol/L}$)23. Patients with CLF have chronic decompensation of liver function (TBIL $< 171 \mu \text{mol/L}$) caused by a decrease in liver function on the basis of the final phase of hepatitis19. According to the diagnostic standard discussed above19-23, in our study, 654 cases had ACLF, 296 cases had CLF, and 116 cases had ALF.

The term “liver failure” is used in European countries and the USA because it is associated with function, whereas it is called severe chronic hepatitis in China and Japan because it is associated with inflammation. Hepatitis virus that appears to be acute liver failure is called severe hepatitis24. The main difference between the terms “liver failure” used in the USA and European countries and “severe hepatitis” used in China is whether to include hepatic encephalopathy in the diagnosis. Some patients with liver failure do not have hepatic encephalopathy25. Severe damage of the liver may develop into liver failure before hepatic encephalopathy occurs.

Although there are differences, liver failure has been divided into ALF, including the acute and sub-acute types, and CLF, including the chronic acute and chronic decompensated types, and this point of view gradually becomes consistent among international academic communities. Because of the large amount of etiologies of liver failure, physicians use a combination of clinical diagnoses (e.g. chronic severe hepatitis) and morbid physiology diagnoses (e.g. CLF). Liver decompensation is the main manifestation of chronic liver failure. Patients with this disease may not have hepatic encephalopathy, but patients with acute liver failure must have hepatic encephalopathy26-34.

In conclusion, the morbidity of chronic HBV is steadily increasing. Once chronic HBV develops into HBV-related liver failure/chronic severe hepatitis, the liver is seriously damaged with complex symptoms, it develops rapidly, it has many complications, it is difficult to treat and it has a high death rate. We advise patients with hepatitis to enhance self-protection and prevent bad life-style habits, so that they can be diagnosed in the early stage and be cured in a timely manner with positive results and treatment of complications, so as to ultimately reduce the death rate.

\begin{center}
\textbf{BACKGROUND}
\end{center}

Hepatitis B virus (HBV) infection becomes a severe threat for public health worldwide. The features of HBV-related liver failure include: a serious condition (e.g. encephalopathies), and the duration of disease is usually less than 26 wk21,22. Patients with ACLF have acute decompensation on the basis of chronic liver disease (TBIL $\geq 171 \mu \text{mol/L}$)23. Patients with CLF have chronic decompensation of liver function (TBIL $< 171 \mu \text{mol/L}$) caused by a decrease in liver function on the basis of the final phase of hepatitis19. According to the diagnostic standard discussed above19-23, in our study, 654 cases had ACLF, 296 cases had CLF, and 116 cases had ALF.

The term “liver failure” is used in European countries and the USA because it is associated with function, whereas it is called severe chronic hepatitis in China and Japan because it is associated with inflammation. Hepatitis virus that appears to be acute liver failure is called severe hepatitis24. The main difference between the terms “liver failure” used in the USA and European countries and “severe hepatitis” used in China is whether to include hepatic encephalopathy in the diagnosis. Some patients with liver failure do not have hepatic encephalopathy25. Severe damage of the liver may develop into liver failure before hepatic encephalopathy occurs.

Although there are differences, liver failure has been divided into ALF, including the acute and sub-acute types, and CLF, including the chronic acute and chronic decompensated types, and this point of view gradually becomes consistent among international academic communities. Because of the large amount of etiologies of liver failure, physicians use a combination of clinical diagnoses (e.g. chronic severe hepatitis) and morbid physiology diagnoses (e.g. CLF). Liver decompensation is the main manifestation of chronic liver failure. Patients with this disease may not have hepatic encephalopathy, but patients with acute liver failure must have hepatic encephalopathy26-34.

In conclusion, the morbidity of chronic HBV is steadily increasing. Once chronic HBV develops into HBV-related liver failure/chronic severe hepatitis, the liver is seriously damaged with complex symptoms, it develops rapidly, it has many complications, it is difficult to treat and it has a high death rate. We advise patients with hepatitis to enhance self-protection and prevent bad life-style habits, so that they can be diagnosed in the early stage and be cured in a timely manner with positive results and treatment of complications, so as to ultimately reduce the death rate.

\textbf{RESEARCH FRONTIERS}

This study investigated the inducement of liver failure/severe hepatitis B and the independent risk factors associated with its prognosis.

\textbf{INNOVATIONS AND BREAKTHROUGHS}

This study explored the inducement and prognosis of hepatitis B virus related liver failure as well as the diagnostic classification of liver failure.
Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat 2004; 11: 97-107
2 Alter MJ. Epidemiology of hepatitis B in Europe and worldwide. J Hepatol 2003; 39 Suppl 1: S64-S69
3 Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009; 373: S82-S92
4 Sarin SK, Kumar A, Almeida JA, Chawla YK, Fan ST, Garg H, de Silva HJ, Hamid SS, Jalan R, Komolmit P, Lau GK, Liu Q, Madan K, Mohamed R, Ning Q, Rahman S, Rastogi A, Riordan SM, Sakhuja P, Samuel D, Shah S, Sharma BC, Sharma P, Takikawa Y, Thapa BR, Wai CT, Yuen MF. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL). Hepatol Int 2009; 3: 269-282
5 Liaw YF, Leung N, Kao JH, Piratvisuth T, Gane E, Han KH, Guan R, Lau GK, Locrarnini M. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2008 update. Hepatol Int 2008; 2: 263-283
6 Lai N, Guo SH, Zhang DZ, Shi L, Zhong XN, Yuan CL. A single factor analysis of the prognosis of 301 hepatitis failure cases and a study of a scoring system on their prognostic assessment. Zhongguo Ganzangbing Zazhi 2005; 3: 586-589
7 Ding HG, Gao GJ, Tao C, Rui J. Prognosis of severe types of hepatitis virus infection: study on multiple risk factors. Linchun Gandanbing Zazhi 2002; 18: 297-299
8 Acharya SK, Dasarathy S, Irshad M. Prospective study of plasma fibro micron in fulminant hepatitis: association with infection and mortality. J Hepatol 1995; 23: 8-13
9 Yuen MF, Sahlon E, Hui CK, Li TM, Yuan HJ, Wong DK, Doutrelves E, Bogaerts V, Wong BC, Fan ST, Lai CL. Prognostic factors in severe exacerbation of chronic hepatitis B. Clin Infect Dis 2003; 36: 979-984
10 Schiodt FV, Ostapowicz G, Murray N, Satyanarana R, Zaman A, Munoz S, Lee WM. Alpha-fetoprotein and prognosis in acute liver failure. Liver Transpl 2006; 12: 1776-1781
11 Tank PD, Nadanwary YS, Mayadene A. Outcome of pregnancy with severe liver disease. Int J Gynaecol Obstet 2002; 76: 27-31
12 Gustot T, Durand F, Lebrec D, Vincent JL, Moreau R. Severe sepsis in cirrhosis. Hepatology 2009; 50: 2022-2033
13 Wasmuth HE, Kunz D, Yagmur E, Timmer-Stranghöner A, Videace D, Siewert E, Bach J, Geier A, Purucker EA, Gressner AM, Matern S, Lammert F. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J Hepatol 2005; 42: 195-201
14 Galbois A, Thabut D, Tazi KA, Rudler M, Mohammadi MS, Bonnefont-Rousselot D, Bernani H, Bezaud A, Tellier Z, Guichard C, Coant N, Ogier-Denis E, Moreau R, Lecurel D. Ex vivo effects of high-density lipoprotein exposure on the lipopolysaccharide-induced inflammatory response in patients with severe cirrhosis. Hepatology 2009; 49: 175-184
15 Tazi KA, Biëche I, Paradis V, Guichard C, Laurentendau I, Dargère D, Legrand A, Fay M, Pedruzzi E, Robin MA, Casazs-Hatem D, Tellier Z, Bernaua D, Feldmann G, Vidaud M, Lebrec D, Ogier-Denis E, Moreau R. In vivo altered unfolded protein response and apoptosis in livers from lipopolysaccharide-challenged cirrhotic rats. J Hepatol 2007; 46: 1075-1088
16 Regueira T, Bruhn A, Hasbun P, Aguirre M, Romero C, Llanos O, Castro R, Bugedo G, Hernandez G. Intra-abdominal hypertension: incidence and association with organ dysfunction during early septic shock. J Crit Care 2008; 23: 461-467
17 Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Bruns-Buissin C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevranisky J, Thompson BT, Townsends E, Vender JS, Zimmerman J, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intens Care Med 2008; 34: 17-60
18 Riordan SM, Williams R. Acute liver failure: targeted artificial and hepatocyte-based support of liver regeneration and reversal of multiorgan failure. J Hepatol 2000; 32: 63-76
19 Diagnostic and treatment guidelines for liver failure. Zhihuagdanzhang Zazhi 2006; 14: 643-646
20 Wang YM. New concept in nomenclature, classification and diagnosis of liver failure. Chin J Hepatol 2010; 18: 803-804.
21 Polson J, Lee WM. AASLD position paper: the management of acute liver failure. Hepatology 2005; 41: 1179-1197
22 Diehl AM. Acute and chronic liver failure and hepatic encephalopathy. In: Goldman L, Bennett JC, editors. Cecil textbook of medicine. Philadelphia: Saunders, 2000: 813-816
23 Sen S, Williams R, Jalan R. The pathophysiological basis of acute-on-chronic liver failure. Liver 2002; 24 Suppl 2: 5-13
24 Gu CH, Wang YM. National diagnostic criteria of severe hepatitis and research review. Chin J Hepatol 2002; 1052-1057
25 Piotrowski D, Schiødt FV. Pathogenetic mechanisms of hepatic encephalopathy. Gut 2008; 57: 1156-1165
26 Merli M, Riggo O. Dietary and nutritional indications in hepatic encephalopathy. Metab Brain Dis 2009; 24: 211-221
27 Freeman RB. Model for end-stage liver disease (MELD) for liver allocation: a 5-year score card. Hepatology 2008; 47: 1052-1057
28 Stravitz RT, Kramer AH, Davern T, Shaikh AO, Caldwell SH, Mehta RL, Blei AT, Fontana RJ, McGuire BM, Rossaro L, Smith AD, Lee WM. Intensive care of patients with acute liver failure: recommendations of the U.S. Acute Liver Failure Study Group. Crit Care Med 2007; 35: 2498-508
29 Komarch PS, Kim WR. The model for end-stage liver disease (MELD). Hepatology 2007; 45: 797-805
