Prevalence of *pediculosis capitis* and associated factors among schoolchildren in Woreta town, northwest Ethiopia

Henok Dagne1*, Awel Aba Biya1, Amanuel Tirfie1, Walelegn Worku Yallew1 and Baye Dagnew2

Abstract

Objectives: The aim of the study was to determine the associated risk factors and prevalence of pediculosis capitis among school-aged children in Woreta town, northwest Ethiopia. An institution-based cross-sectional study was carried out on 402 schoolchildren in Woreta town public schools from grades 1 to 4 students conducted from April to June 2018. After selection by simple random sampling, face to face interview and observations were performed using a semi-structured pre-tested questionnaire. Data were entered into EPI Info 7 and exported to SPSS 21 for further analysis. Descriptive results were presented by simple frequency, percentage, and mean. Binary logistic regression was used to identify associated factors. Those variables with a p-value ≤ 0.05 in the multivariable logistic regression were declared as significantly associated with *pediculosis capitis* infestation.

Result: The prevalence of *pediculosis capitis* was 65.7% [95% CI 60.01–70.3%]. Sex of child, age of the child, maternal education, sharing hair comb, knowledge, and attitude towards *pediculosis capitis* infestation and hygiene practice were significantly associated with pediculosis (a p-value ≤ 0.05). Pediculosis infestation is found to be a major public health problem which demands special attention of the community and the government at large particularly the health sector to reduce the problem.

Keywords: *Pediculosis capitis*, Schoolchildren, Ethiopia

Introduction

Lice are human-specific ectoparasites and blood-sucking insects which are known to cause trench fever, epidemic typhus, and relapsing fever [1–3]. It affects all strata of the society infesting the hair and skin of humans as *pediculus capitis* (head lice), *Pediculus humanus* and *Phthiris pubis* [4]. Infestation by lice is a major public health problem globally. It is most common in resource-limited countries [5]. It is a ubiquitous problem in children [6]. *Pediculosis capitis* can cause sleep loss, irritation, pruritus, discomfort, secondary bacterial infections (such as impetigo and acute glomerulonephritis), and lymphadenopathy [7, 8]. Head lice infestations can occasionally cause mental disorders [9]. Several studies from various regions in the world have reported that *pediculosis capitis* infestation prevalence varies from country to country. Studies conducted in southeast Iran reported 67.3% [10], Bangkok, Thailand 23.32% [11], Bilbao, Spain 9.39% [12] prevalence of *pediculosis capitis* infestation among schoolchildren. It is recommended that local research to obtain evidence on epidemiology, knowledge, and attitudes on lice infestation to find effective medications as currently there are no available data on the prevalence of pediculosis capitis in Woreta town [13]. Although pediculosis infestation is a major public health problem, there is lack of evidence in the study area. The study will help authorities to allocate resources and target risk factors to reduce the burden of infestation. Therefore, the current study aimed to assess the prevalence and associated factors of infestation by *Pediculus humanus capitis* among schoolchildren in Woreta town, 2018.
Main text

Methods

Study setting and period

The study was conducted on schoolchildren in Woreta town public first cycle (grades 1 to 4) elementary schools from April to June 2018. The town is located at 2092 meters above sea level, 589 km far from Addis Ababa, the capital city of Ethiopia. There were three elementary schools namely Woreta (formerly known as Guaya), Dudemegn and Esteber with a total number of students of 1419, 1320 and 500 respectively.

Study design

Institution-based cross-sectional study was employed.

Study population and eligibility criteria

Schoolchildren from grades 1 to 4 who were available during the period of data collection whose guardians/parents have given assent and who agreed to participate, and who did not have active head scabies were included.

Sample size determination and sampling technique

The sample size was determined by using a single population proportion formula [14] with assumptions; \(p = 50\% \) (as there was no previous study in the country), 95% confidence level (\(Z_{a/2} \)) and margin of error (\(d \)) = 0.05

\[
 n = \frac{\left(Z_{a/2} \right)^2 p(1-p)}{d^2} = \frac{(1.96)^2 0.5(1 - 0.5)}{0.05^2} = 384.
\]

Considering 5% of the non-response rate, the total sample size was 402. Samples were selected by simple random sampling technique and allocated proportionally to the three schools based on the number of students at each school.

Operational definitions

Pediculosis A child with at least one head louse by wet combing is considered as being infested by *pediculus capitis* [15].

Schoolchildren Children attending classes from grades 1 to 4 were regarded as schoolchildren in the current study.

Knowledge Knowledge was assessed by 10 knowledge items with yes/no category. Students who scored mean and above mean of knowledge questions were considered as knowledgeable.

Attitude Attitude was measured by 8 attitude questions with a 5-scale Likert (1-strongly disagree to 5-

Data processing and analysis

Data were entered into EPI Info 7 and exported to SPSS 21 for analysis. Mean, frequency and percentage were used for description. A binary logistic regression model was used to identify significantly associated variables at a \(p \)-value \(\leq 0.05 \). During bivariable analysis, variables with a \(p \)-value \(\leq 0.2 \) were candidates for multivariable logistic regression for the final model. Hosmer and Lemeshow goodness-of-fit test was performed.

Result

Socio-demographic characteristics

Four hundred two schoolchildren with a mean age of 10.19±1.62 years participated in this study. About 186 (46.3%) were males (Table 1). Two hundred and
thirty-eight (59.2%) students reported taking bath once per week, 296 (73.6%) sleep with others, and 187 (46.5%) share comb (Table 2).

Two hundred and sixty-four (65.7%) [95% CI 61.0–70.3%] students were infested by *pediculus capitis*. Females were 3.29 times [AOR=3.29, 95% CI (1.94, 5.59)] more infested by *pediculus capitis* than males. The odds of *pediculus capitis* infestation was twice among students aged 9 to 11 years than aged above 12 years [AOR=2.04, 95% CI (1.07, 3.87)].

Students having illiterate mothers were 3.57 [AOR=3.57, 95% CI (1.74, 7.33)] times at risk of being infested than those with mother’s education greater than elementary level.

Students who shared hair comb were 2.72 [AOR=2.72, 95% CI (1.58, 4.69)] times being infested than those who did not share hair comb. Those with poor knowledge were 2.51 [AOR=2.51, 95% CI (1.24, 5.10)] times, students with a poor attitude were 2.42 [AOR=2.42, 95% CI (1.28, 4.60)] times and children with poor practice were 3.84 (AOR=3.84, 95% CI (1.45, 10.15) times being infested by *pediculus capitis* as compared to those having good knowledge, attitude and practice respectively (Table 3).

Discussion
Lice infestation is a major public health problem to which primary school students are more prone across the globe particularly in developing states. In this study, prevalence of *pediculus capitis* was 65.7%. A study conducted in Southeast Iran reported similar findings with prevalence of 67.3% [10]. The prevalence of the current study is higher than a report from Bangkok, 23.32% [11], Iran 10.5% [17], Bilbao 9.39% [12], central Iran 29.35% [18], Argentina; 42.7% [19] and Cambodia 15.1% [20]. This difference might be related to differences in sample size, geo-cultural and socioeconomic variations. The prevalence in the current study is lower than a study conducted in Ratchaburi reporting 86.5% prevalence [21]. This difference might be due to sample size and socioeconomic factors.

In the current study sex, age, maternal education, sharing hair comb, knowledge, attitude and practice were significantly associated with *pediculus capitis* infestation.

Factors associated with Pediculus Capitis infestation
In bivariable analysis; grade level, sex and age of children, maternal education and occupation, family size, sleeping arrangement, sharing of hair comb, knowledge, attitude and practice towards pediculous were candidate variables (p-value ≤ 0.2) for multivariable logistic regression. Only age of child, sex of a child, maternal education, sharing hair comb, knowledge, attitude and practice were significantly associated with *pediculus capitis* infestation.

Table 1 Sociodemographic characteristics of study participants school Woreta town, 2018 (n = 402)

Variables	Categories	Frequency	Percent (%)
Student grade level	Grade 1	99	24.6
	Grade 2	99	24.6
	Grade 3	100	24.9
	Grade 4	104	25.9
Sex	Male	186	46.3
	Female	216	53.7
Age	5–8	85	21.1
	9–11	230	57.2
	> 12	87	21.6
Religion	Orthodox	291	72.4
	Muslim	108	26.9
	Protestant	3	0.7
Fathers education	Illiterate	111	27.6
	Elementary	161	40
	Secondary and above	130	32.3
Mothers education	Illiterate	171	42.5
	Elementary	162	40.3
	Secondary and above	69	17.2
Fathers occupation	Private worker	153	38.1
	Government worker	64	15.9
	Daily labor	42	10.4
	Others	143	35.6
Mother’s occupation	Private worker	62	15.4
	Government worker	25	6.2
	Housewife	240	59.7
	Others	75	18.7
Family size	2 to 3	21	5.2
	4 to 5	206	51.2
	6 to 7	136	33.8
	> 8	39	9.7
This might be due to a higher level of personal hygiene practice among children with greater age. This result is supported by previous study done among primary schoolchildren in Kurdistan province [8].

Mothers’ education level was one of the predictors of pediculosis capitis infestation among schoolchildren. Children with illiterate mothers were 3.57 times at higher risk of being infested than children whose mothers’ educational status is secondary and above. This might be because education is correlated with eagerness and ability to gain new knowledge and knowledge may help to have good

Table 2 Behavioral characteristics of respondents, Woreta town (n = 402)

Variable	Category	Frequency	Percent (%)
Sleeping arrangement	Alone	106	26.4
	With others	296	73.6
Sharing of hair comb	Yes	187	46.5
	No	215	53.5
Frequency of combing hair	Once a week	166	41.3
	Twice a week	100	24.9
	Thrice a week	74	18.4
	Never	62	15.4
The class situation for learning	Comfortable	46	11.4
	Not comfortable	356	88.6
Presence of hygiene inspection club	Yes	106	26.4
	No	296	73.6
Frequency of class inspection	Once week	107	26.6
	Twice a week	1	0.2
	Never	294	73.1
Water accessibility in the school	Yes	29	7.2
	No	373	92.8

Table 3 Associated factors of pediculosis capitis in regression of bivariate and multivariate analysis among school-aged children in Woreta town, 2018 (n = 402)

Variables	Categories	Pediculosis	COR (95% CI)	AOR (95% CI)	
Sex	Male	102	84	1.0	
	Female	162	54	2.47 (1.62, 3.77)	3.29 (1.94-5.59)***
Age in years	5 to 8	60	25	1.77 (0.94,0.34)	2.19 (0.96, 5.01)
	9 to 11	154	76	1.49 (0.90, 2.49)	2.04 (1.07, 3.87)**
	≥ 12	50	37	1	1
Mothers education	Illiterate	136	35	5.05 (2.76, 9.24)	3.57 (1.74, 7.33)***
	Elementary	98	64	1.99 (1.13, 3.52)	1.68 (0.86–3.28)
	Secondary and above	30	39	1	1
Sharing hair comb	Share	153	34	4.2 (2.67, 6.67)	2.72 (1.58, 4.69)***
	No share	111	104	1	1.00
Knowledge towards pediculosis capitis	Poor	144	22	6.33 (3.78, 10.60)	2.51 (1.24, 5.10)**
	Good	120	116	1	1
Attitude towards pediculosis capitis	Poor	183	35	6.65 (4.18, 10.56)	2.42 (1.28, 4.60)**
	Good	81	103	1	1
Practice towards pediculosis capitis	Poor	80	6	9.56 (4.05, 22.59)	3.84 (1.45, 10.15)**
	Good	184	132	1	1

COR crude odds ratio, AOR adjusted odds ratio, CI confidence interval
Significant at * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, Hosmer–Lemeshow goodness-of-fit (p = 0.436)
personal hygiene practice which reduces infestation. However, in other studies maternal education was not associated [22, 26]. Students who shared comb were 2.7 times more likely to be infested than those who do not share comb. Sharing articles such as comb was significantly associated with pediculosis infestation in previous studies, too [10, 27, 28]. This is due to the fact that sharing comb is an efficient mechanism of louse and egg transmission. In contrast to this in an epidemiological study conducted in Asadabad, Iran sharing comb was not significantly associated with head lice infestation [26].

The knowledge of students regarding head lice infestation was significantly associated with infestation status. This is in line with a previous study [29]. This may be due to the fact that knowledge deficiency leads to inadequate ability to manage lice infestation [30]. The attitude towards pediculosis capitis and hygiene practice of schoolchildren were also significantly associated with pediculosis capitis infestation in the current study.

Conclusion
Head lice infestation is a major public health problem and needs educational campaigns targeting mothers and planning of knowledge, attitude and practice improvement strategies by national and regional health authorities.

Limitations of the study
The limitation of the current study were the inherent weakness of cross-sectional study design to establish cause-effect relationship, recall and social desirability bias.

Abbreviations
AOR: adjusted odds ratio; OR: crude odds ratio; CI: confidence interval; EPI Info: epidemiological information; SPSS: statistical package for social sciences.

Acknowledgements
We would like to thank our study participants, school directors, and the University of Gondar and data collectors.

Authors’ contributions
AA, AT, WWY and HD involved in proposal development, participated in data collection, statistical analysis. BD and HD prepared the manuscript. All authors have participated actively in the entire research process. All authors read and approved the final manuscript.

Funding
No funding agent.

Availability of data and materials
The dataset in the current study is available from the corresponding author upon request.

Ethical approval and consent to participate
Ethical approval was obtained from the Ethical Committee of the Department of Environmental and Occupational Health and Safety, University of Gondar. The purpose of the study was clearly explained to the study subjects, to school directors and parents of the students and assent was obtained from them. Written informed consent was obtained. Confidentiality of the information had been maintained at all levels of the study. Students found infested received soap for washing free of charge. Health education was given for students, teachers and school directors after data collection is finalized.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Environmental and Occupational Health and Safety, Institute of Public Health, University of Gondar (UoG), P.O. Box 196, Gondar, Ethiopia.
2 Department of Human Physiology, School of Medicine, UoG, P.O. Box 196, Gondar, Ethiopia.

Received: 2 May 2019 Accepted: 25 July 2019 Published online: 30 July 2019

References
1. Brouqui P, Raoult D. Anthropod-borne diseases in homeless. Ann N Y Acad Sci. 2006;1078(1):223–35.
2. Raoult D, Birtles RJ, Montoya M, Perez E, Tissot-Dupont H, Roux V, et al. Survey of three bacterial louse-associated diseases among rural Andean communities in Peru: prevalence of epidemic typhus, trench fever, and relapsing fever. Clin Infect Dis. 1999;29(2):434–6.
3. Boutellis A, Abi-Rached L, Raoult D. The origin and distribution of human lice in the world. Infect Genet Evol. 2014;23:209–17.
4. For ERL, OfI. Pediculosis (lice infestation) Frequently asked questions. Natl Inst Commun Dis. 2017;493:4–5.
5. Değerli S, Malatyeli E, Mumcuoğlu KI. Head lice prevalence and associated factors in two boarding schools in Sivas. Türkiye Parazitol Derg. 2013;37(1):32–5.
6. Bonilla DL, Durden LA, Eremeeva ME, Dasch GA. The biology and taxonomy of head and body lice—implications for louse-borne disease prevention. PLoS Pathog. 2013;9(11):e1003724.
7. Dorooodgar A, Sadr F, Dorooodgar M, Dorooodgar M, Sayyah M. Examining the prevalence rate of Pediculus capitis infestation according to sex and social factors in primary school children. Asian Pac J Trop Dis. 2014;4(1):25–9.
8. Vahabi A, Shemshad K, Sayyadi M, Biglarian A, Vahabi B, Sayyad S, et al. Prevalence and risk factors of Pediculus (humanus) capitis (Anoplura: Pediculidae), in primary schools in Sanandaj City, Kurdistan Province, Iran. Trop Biomed. 2012;29(2):207–11.
9. Oh J-M, Lee IY, Lee W-J, Seo M, Park S-A, Lee SH, et al. Prevalence of pediculosis capitis among Korean children. Parasitol Res. 2010;107(6):1415–9.
10. Soleimani-Ahmadi M, Jaberhashemi S, Zare M, Sanei-Dehkordi A. Prevalence of head lice infestation and pediculicidal effect of permethrine shampoo in primary school girls in a low-income area in southeast of Iran. BMC Dermatol. 2017;17(1):10.
11. Raissami-W, Soonwera M. Epidemiology of pediculosis capitis among schoolchildren in the eastern area of Bangkok, Thailand. Asian Pac J Trop Biomed. 2012;2(11):901–4.
12. Magra BG, Goira AJ, López MI, Pérez RC, Bonet RT, Caturla LJ. Pediculosis capitis: epidemiologic study of 23,624 schoolchildren in Bilbao. Rev Sanid Hig Public. 1989;63(1):2–49.
13. Speare R, Harrington H, Canyon D, Massey PD. A systematic literature review of pediculosis due to head lice in the Pacific Island Countries and Territories: what country specific research on head lice is needed? BMC Dermatol. 2014;14(1):11.
14. Arifin WN. Introduction to sample size calculation. Educ Med J. 2013;5.2.
15. Wegner Z, Racewicz M, Stariczak J. Occurrence of pediculosis capitis in a population of children from Gdansk, Sopot, Gdynia and the vicinities. Appl Parasitol. 1994;35(3):219–25.
16. George D. SPSS for windows step by step a simple guide and reference answers to selected exercises. Bacon: Allyn, 2003.
17. Nejati J, Keyhani A, Karshik AT, Mahmoudvand H, Saghaﬁpour A, Khoraminasab M, et al. Prevalence and Risk Factors of Pediculosis in Primary School Children in South-West of Iran. Iran J Public Health. 2016;47(12):1923.
18. Saghaﬁpour A, Nejati J, Zahraine Ramazani A, Vatandoost H, Mozaffari E, Rezaei F. Prevalence and risk factors associated with head louse (Pediculus humanus capitis) in Central Iran. Int J Pediatr. 2017;5(7):S245–S54.
19. Gutierrez MM, Gonzalez MW, Stefanazzi N, Serralunga G, Yafez L, Ferrero AA. Prevalence of Pediculus humanus capitis infestation among kindergarten children in Bahia Blanca city, Argentina. Parasitol Res. 2012;111(3):1309–13.
20. Ruankham W, Winyangkul P, Bunchu N. Prevalence and factors of head lice infestation among primary school students in northern Thailand. Asian Pac J Trop Dis. 2016;6(10):778–82.
21. Thanayavanich N, Maneekan P, Yimsamram S, Maneebnoonyang W, Puangsa-art S, Wuthiren P, et al. Epidemiology and risk factors of pediculosis capitis in 5 primary schools near the Thai-Myanmar border in Ratchaburi Province, Thailand. 2008.
22. Shayeghi M, Palka A. Epidemiology of head lice infestation in primary school pupils, in khajeh city, East azerbaijan province, iran. Iran J Arthropod-borne Dis. 2010;4(1):42.
23. Lopez-Valencia D, Medina-Ortega A, Vasquez-Artega L R. Prevalence and variables associated with pediculosis capitis in kindergarten children from Popayán, Colombia. Revista de la Facultad de Medicina. 2017;65(3):425–8.
24. Heukelbach J, Wilcke T, Winter B, Feldmeier H. Epidemiology and morbidity of scabies and pediculosis capitis in resource-poor communities in Brazil. Br J Dermatol. 2005;153(1):150–6.
25. Dehghanzadeh R, Asghari-Jafarabadi M, Salimian S, Hashemi AA, Khayatzadeh S. Impact of family ownerships, individual hygiene, and residential environments on the prevalence of pediculosis capitis among schoolchildren in urban and rural areas of northwest of iran. Parasitol Res. 2015;114(11):4205–303.
26. Nazari M, Goudarztaelejrdi R, Payman MA. Pediculosis capitis among primary and middle school children in Asadabad, Iran: an epidemiological study. Asian Pac J Trop Biomed. 2016;6(4):367–70.
27. Al Bashatwy M, Hasna F. Pediculosis capitis among primary-school children in Mafraq Governorate, Jordan. 2012.
28. Moradiasl E, Habilizadeh S, Rafinejad J, Abazari M, Ahari SS, Saghaﬁpour A, et al. Risk factors associated with head lice (pediculosis) infestation among elementary school students in Meshkinshahr county, North West of Iran. Int J Pediatr. 2018;6(3):7383–92.
29. Kassiri H, Esteghali E. Prevalence rate and risk factors of head lice infestation among primary school children in Iran. Arch Pediatr Infect Dis. 2016;4(1):e26390.
30. Sidoti E, Bonura F, Paolini G, Tringali G. A survey on knowledge and perceptions regarding head lice on a sample of teachers and students in primary schools of north and south of Italy. J Prev Med Hyg. 2009;50(3):141–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.