Weight enumerator of some irreducible cyclic codes

Fabio Enrique Brochero Martínez · Carmen Rosa Giraldo Vergara

Received: 8 May 2014 / Revised: 13 November 2014 / Accepted: 15 November 2014 /
Published online: 10 December 2014
© Springer Science+Business Media New York 2014

Abstract In this article, we show explicitly all possible weight enumerators for every irreducible cyclic code of length \(n \) over a finite field \(\mathbb{F}_q \), in the case which each prime divisor of \(n \) is also a divisor of \(q - 1 \).

Keywords Cyclic codes · Weight enumerator · Minimum distance

Mathematics Subject Classification 12E05 · 94B05

1 Introduction

A code of length \(n \) and dimension \(k \) over a finite field \(\mathbb{F}_q \) is a linear \(k \)-dimensional subspace of \(\mathbb{F}_q^n \). A \([n,k]_q\)-code \(C \) is called cyclic if it is invariant by the shift permutation, i.e., if \((a_1, a_2, \ldots, a_n) \in C\) then the shift \((a_n, a_1, \ldots, a_{n-1})\) is also in \(C \). The cyclic code \(C \) can be viewed as an ideal in the group algebra \(\mathbb{F}_q C_n \), where \(C_n \) is the cyclic group of order \(n \). We note that \(\mathbb{F}_q C_n \) is isomorphic to \(\mathcal{R}_n = \frac{\mathbb{F}_q[x]}{(x^n - 1)} \) and since subspaces of \(\mathcal{R}_n \) are ideals and \(\mathcal{R}_n \) is a principal ideal domain, it follows that each ideal is generated by a polynomial \(g(x) \in \mathcal{R}_n \), where \(g \) is a divisor of \(x^n - 1 \).

Codes generated by a polynomial of the form \(\frac{x^n - 1}{g(x)} \), where \(g \) is an irreducible factor of \(x^n - 1 \), are called minimal cyclic codes. Thus, each minimal cyclic code is associated of natural form with an irreducible factor of \(x^n - 1 \) in \(\mathbb{F}_q[x] \). An example of minimal cyclic code is the Golay code that was used on the Mariner Jupiter-Saturn Mission (see [7]), the BCH code used in communication systems like VOIP telephones and Reed–Solomon code.
used in two-dimensional bar codes and storage systems like compact disc players, DVDs, disk drives, etc (see [5, Sects. 5.8 and 5.9]). The advantage of the cyclic codes, with respect to other linear codes, is that they have efficient encoding and decoding algorithms (see [5, Sect. 3.7]).

For each element of \(g \in \mathcal{R}_n \), \(\omega(g) \) is defined as the number of non-zero coefficients of \(g \) and is called the Hamming weight of the word \(g \). Denote by \(A_i \) the number of codewords with weight \(i \) and by \(d = \min\{i > 0 : A_i \neq 0\} \) the minimum distance of the code. A \([n,k]_q\)-code with minimum distance \(d \) will be denoted by \([n, k, d]_q\)-code. The sequence \(\{A_i\}_{i=0}^n \) is called the weight distribution of the code and \(A(z) := \sum_{i=0}^n A_i z^i \) is its weight enumerator. The importance of the weight distribution is that it allows us to measure the probability of non-detecting an error of the code: For instance, the probability of undetecting an error in a binary symmetric channel is \(\sum_{i=0}^n A_i p^i (1-p)^{n-i} \), where \(p \) is the probability that, when the transmitter sends a binary symbol (0 or 1), the receptor gets the wrong symbol.

The weight distribution of irreducible cyclic codes has been determined for a small number of special cases. For a survey about this subject see [3,4] and their references.

In this article, we show all the possible weight distributions of length \(n \) over a finite field \(\mathbb{F}_q \) in the case that every prime divisor of \(n \) divides \(q - 1 \).

2 Preliminaries

Throughout this article, \(\mathbb{F}_q \) denotes a finite field of order \(q \), where \(q \) is a power of a prime, \(n \) is a positive integer such that \(\gcd(n, q) = 1 \), \(\theta \) is a generator of the cyclic group \(\mathbb{F}_q^* \) and \(\alpha \) is a generator of the cyclic group \(\mathbb{F}_q^* \) such that \(\alpha^{q+1} = \theta \). For each \(a \in \mathbb{F}_q^* \), \(\text{ord}_q a \) denotes the minimal positive integer \(k \) such that \(a^k = 1 \), for each prime \(p \) and each integer \(m \), \(\nu_p(m) \) denotes the maximal power of \(p \) that divides \(m \) and \(\text{rad}(m) \) denotes the radical of \(m \), i.e., if \(m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_l^{\alpha_l} \) is the factorization of \(m \) in prime factors, then \(\text{rad}(m) = p_1 p_2 \cdots p_l \).

Finally, \(a_{\gcd(a,b)} \) denotes the integer \(\frac{a}{\gcd(a,b)} \).

Since each irreducible factor of \(x^n - 1 \in \mathbb{F}_q[x] \) generates an irreducible cyclic code of length \(n \), then a fundamental problem of code theory is to characterize these irreducible factors. The problem of finding a “generic algorithm” to split \(x^n - 1 \) in \(\mathbb{F}_q[x] \), for any \(n \) and \(q \), is an open one and only some particular cases are known. Since \(x^n - 1 = \prod_{d|\Phi(x)} \Phi_d(x) \), where \(\Phi_d(x) \) denotes the \(d \)-th cyclotomic polynomial (see [8] Theorem 2.45), it follows that the factorization of \(x^n - 1 \) strongly depends on the factorization of the cyclotomic polynomial that has been studied by several authors (see [6,9,11] and [2]).

In particular, a natural question is to find conditions in order to have all the irreducible factors binomials or trinomials. In this direction, some results are the following ones

\[\sum_{t|m} \prod_{1 \leq u \leq \gcd(n,q-1) \atop \gcd(u,t)=1} (x^t - \theta^u), \]

\[\text{Lemma 1} \] [1, Corollary 3.3] Suppose that

1. \(\text{rad}(n)|(q - 1) \) and
2. \(8 \nmid n \text{ or } q \equiv 3 \pmod{4}. \)

Then the factorization of \(x^n - 1 \) in irreducible factors of \(\mathbb{F}_q[x] \) is
where \(m = n_{\frac{(q-1)}{\gcd(n,q-1)}} \) and \(l = (q-1)_{\frac{n}{\gcd(n,q-1)}} \). In addition, for each \(t \) such that \(t \mid m \), the number of irreducible factors of degree \(t \) is \(\frac{\varphi(t)}{t} \cdot \gcd(n,q-1) \), where \(\varphi \) denotes the Euler Totient function.

Lemma 2 [1, Corollary 3.6] Suppose that

1. \(\gcd(n)(q-1) \)
2. \(8 \mid n \) and \(q \equiv 3 \pmod{4} \).

Then the factorization of \(x^n - 1 \) in irreducible factors of \(\mathbb{F}_q[x] \) is

\[
\prod_{t \mid m'} \prod_{1 \leq w \leq \gcd(n,q-1)} (x^t - \theta^w) \cdot \prod_{t \mid m' \gcd(n,q-1)} (x^{2rt} - (\alpha^{ul') + \alpha^{vul'})x^t + \theta^{ul'}),
\]

where \(m' = n_{\frac{(q-2)}{q-1}} \) and \(l = (q-1)_{\frac{n}{q-1}}, l' = (q^2 - 1)_{\frac{n}{q-1}}, r = \min\{v_2(\frac{n}{2}), v_2(q+1)\} \) and \(S_t \) is the set

\[
\left\{ u \in \mathbb{N} \mid 1 \leq u \leq \gcd(n,q^2-1), \gcd(u,t) = 1 \right\},
\]

where \([a]_b\) denotes the remainder of the division of \(a \) by \(b \), i.e., it is the number \(0 \leq c < b \) such that \(a \equiv c \pmod{b} \).

Moreover, for each \(t \) odd such that \(t \mid m' \), the number of irreducible binomials of degree \(t \) and \(2t \) is \(\frac{\varphi(t)}{t} \cdot \gcd(n,q-1) \) and \(\frac{\varphi(t)}{2t} \cdot \gcd(n,q-1) \) respectively, and the number irreducible trinomials of degree \(2t \) is

\[
\begin{cases}
\frac{\varphi(t)}{t} \cdot 2r-1 \gcd(n,q-1), & \text{if } t \text{ is even} \\
\frac{\varphi(t)}{t} \cdot (2r-1-1) \gcd(n,q-1), & \text{if } t \text{ is odd}.
\end{cases}
\]

3 Weight distribution

Throughout this section, we assume that \(\gcd(n) \) divides \(q-1 \) and \(m, m', l, l' \) and \(r \) are as in the Lemmas 1 and 2. The following results characterize all the possible cyclic codes of length \(n \) over \(\mathbb{F}_q \) and show explicitly the weight distribution in each case.

Theorem 1 If \(8 \mid n \) or \(q \not\equiv 3 \pmod{4} \), then every irreducible code of length \(n \) over \(\mathbb{F}_q \) is an \([n,t,\frac{q}{t}]_q\)-code where \(t \) divides \(m \) and its weight enumerator is

\[
A(z) = \sum_{j=0}^{t} \binom{t}{j} (q-1)^j z^{\frac{n}{t}} = \left(1 + (q-1)z^{\frac{n}{t}}\right)^t.
\]

Proof As a consequence of Lemma 1, every irreducible factor of \(x^n - 1 \) is of the form \(x^t - a \) where \(t \mid n \) and \(a^{n/t} = 1 \), so every irreducible code \(C \) of length \(n \) is generated by a polynomial of the form

\[
g(x) = \frac{x^n - 1}{x^t - a} = \sum_{j=0}^{n/t-1} a^{\frac{q}{t}-1-j} x^{tj}
\]
and \([g(x), xg(x), \ldots, x^{t-1}g(x)]\) is a basis of the \(\mathbb{F}_q\)-linear subspace \(\mathcal{C}\). Thus, every codeword in \(\mathcal{C}\) is of the form \(a_0g + a_1xg + \cdots + a_{t-1}x^{t-1}g\), with \(a_j \in \mathbb{F}_q\) and

\[
\omega \left(a_0g + a_1xg + \cdots + a_{t-1}x^{t-1}g \right) = \omega(a_0g) + \omega(a_1xg) + \cdots + \omega(a_{t-1}x^{t-1}g).
\]

Since \(\omega(g) = \frac{n}{t}\), it follows that

\[
\omega \left(a_0g + a_1xg + \cdots + a_{t-1}x^{t-1}g \right) = \frac{n}{t} \# \{ j | a_j \neq 0 \}.
\]

Clearly we have \(A_k = 0\), for all \(k\) that is not divisible by \(\frac{n}{t}\). On the other hand, if \(k = j \frac{n}{t}\), then exactly \(j\) elements of this base have non-zero coefficients in the linear combination and each non-zero coefficient can be chosen of \(q - 1\) distinct forms. Hence \(A_k = \binom{j}{n}(q - 1)^j\).

Then the weight distribution is

\[
A_k = \begin{cases}
0, & \text{if } t \nmid k \\
\binom{j}{n}(q - 1)^j, & \text{if } k = j \frac{n}{t},
\end{cases}
\]

as we want to prove. \(\square\)

Remark 1 The previous result generalizes Theorem 3 in [10] (see also Theorem 22 in [4]).

Remark 2 As a direct consequence of Lemma 1, for all positive divisor \(t\) of \(m\), there exist \(\frac{\varphi(t)}{t} \gcd(n, q - 1)\) irreducible cyclic \([n, t, \frac{n}{t}]_{q}\)-codes.

In order to find the weight distribution in the case that \(q \equiv 3 \pmod{4}\) and \(8 \mid n\), we need some additional lemmas.

Lemma 3 Let \(t\) be a positive integer such that \(t\) divides \(m'\) and assume that \(q \equiv 3 \pmod{4}\) and \(8 \nmid n\). If \(x^{2r} - (a + a^q)x^i + a^{q+1} \in \mathbb{F}_q[x]\) is an irreducible trinomial, where \(a = \alpha^{ul'} \in \mathbb{F}_q^2\), and \(g(x)\) is the polynomial \(\frac{x^n - 1}{x^{2r} - (a + a^q)x^i + a^{q+1}} \in \mathbb{F}_q[x]\), then \(v_2(u) \leq r - 2\) and

\[
\omega(g(x)) = \frac{n}{t} \left(1 - \frac{1}{2^{r-v_2(u)}} \right), \quad \text{if } \lambda \in \Lambda_u
\]

\[
\frac{n}{2^r}, \quad \text{if } \lambda \notin \Lambda_u,
\]

where \(\Lambda_u = \left\{ \frac{a^i - a^{qi}}{a^{q+1} - a^{q(t+1)}} \mid i = 0, 1, \ldots, 2r - v_2(u) - 2 \right\}.
\]

Proof Since \(x^{2r} - (a + a^q)x^i + a^{q+1}\) is an irreducible trinomial in \(\mathbb{F}_q[x]\), then \(\gcd(t, u) = 1\), \(2^{r} \nmid u\) and \(a \neq -a^q\). In particular, \(\text{ord}_{q^2} a\) does not divide either \(q - 1\) or \(2(q - 1)\). Observe that

\[
\text{ord}_{q^2} a = \frac{q^2 - 1}{\gcd(q^2 - 1, ul')} = \frac{q^2 - 1}{\gcd\left(q^2 - 1, u\frac{q^2-1}{\gcd(q^2-1,n)}\right)}
\]

\[
= \frac{\gcd(q^2 - 1, n)}{\gcd(q^2 - 1, n, u)}
\]

\[
= \frac{2^r \gcd(q - 1, n)}{\gcd(2^r(q - 1), n, u)},
\]

and for each odd prime \(p\), we have

\[
v_p\left(\frac{2^r \gcd(q - 1, n)}{\gcd(2^r(q - 1), n, u)} \right) \leq v_p(\gcd(q - 1, n)) \leq v_p(q - 1). \quad (1)
\]

\(\square\) Springer
Therefore, \(\text{ord}_{q^2} a \mid 2(q - 1) \) implies that \(v_2(\text{ord}_{q^2} a) > v_2(2(q - 1)) = 2 \), and since
\[
v_2 \left(\frac{2^r \gcd(q - 1, n)}{\gcd(2^r(q - 1), n, u)} \right) = r + 1 - \min \left\{ v_2(\gcd(2^r(q - 1), n)), v_2(u) \right\}
\]
\[
= r + 1 - \min(r + 1, v_2(u)) = r + 1 - v_2(u),
\]
we conclude that \(v_2(u) \leq r - 2 \).

On the other hand
\[
g(x) = \frac{x^n - 1}{x^{2t} - (a + a^q)x^t + a^{q+1}}
\]
\[
= \frac{x^n - 1}{a - a^q} \left(\frac{1}{x^t - a} - \frac{1}{x^t - a^q} \right)
\]
\[
= \sum_{j=1}^{n/2t-1} \left(\frac{a^j - a^{qj}}{a - a^q} \right) x^{n - t - tj},
\]
is a polynomial whose degree is \(n - 2t \) and every non-zero monomial is such that its degree is divisible by \(t \). Now, suppose that there exist \(1 \leq i < j \leq \frac{n}{2} - 2 \) such that the coefficients of the monomials \(x^{n - t - j} \) and \(x^{n - t - it} \) in the polynomial \(g_{\lambda} := g(x) - \lambda x^t g(x) \) are simultaneously zero. Then
\[
\frac{a^j - a^{qj}}{a - a^q} = \lambda \frac{a^{j+1} - a^{q(j+1)}}{a - a^q} \quad \text{and} \quad \frac{a^i - a^{qi}}{a - a^q} = \lambda \frac{a^{i+1} - a^{q(i+1)}}{a - a^q}.
\]
So, in the case of \(\lambda \neq 0 \), we have
\[
\lambda = \frac{a^j - a^{qj}}{a^{j+1} - a^{q(j+1)}} = \frac{a^i - a^{qi}}{a^{i+1} - a^{q(i+1)}}.
\]
This last equality is equivalent to \(a^{(q-1)(j-i)} = 1 \), i.e., \(\text{ord}_{q^2} a \) divides \((q - 1)(j - i) \). In the case of \(\lambda = 0 \), we obtain that \(\text{ord}_{q^2} a \) divides \((q - 1)j \) and \((q - 1)i \) by the same argument. Therefore, we can treat this case as a particular case of the above one making \(i = 0 \). It follows that
\[
\frac{2^r \gcd(q - 1, n)}{\gcd(2^r(q - 1), n, u)} \quad \text{divides} \quad (q - 1)(j - i).
\]
So, by Eq. (1), the condition \(\text{ord}_{q^2} a \mid (q - 1)(j - i) \) is equivalent to
\[
v_2 \left(\frac{2^r \gcd(q - 1, n)}{\gcd(2^r(q - 1), n, u)} \right) = r + 1 - v_2(u) \leq v_2((p - 1)(j - i)) = 1 + v_2(j - i),
\]
and thus \(2^{r-v_2(u)}((j - i) \).

In other words, if the coefficient of the monomial of degree \(n - t - it \) is zero, then all the coefficients of the monomials of degree \(n - t - jt \) with \(j \equiv i \pmod{2^{r-v_2(u)}} \) are zero. Thus, if \(\lambda \neq \Lambda_u \), then any coefficient of the form \(x^{ij} \) is zero and the weight of \(g_{\lambda} \) is \(\frac{n}{t} \). Otherwise, exactly \(\frac{n}{r} \cdot \frac{1}{2^{r-v_2(u)}} \) coefficients of the monomials of the form \(x^{ij} \) are zero, then the weight of \(g_{\lambda} \) is \(\frac{n}{r}(1 - \frac{1}{2^{r-v_2(u)}}) \), as we want to prove. \(\square \)

Corollary 1 Let \(g \) be a polynomial in the same condition of Lemma 3. Then
\[
\# \left\{ (\mu, \lambda) \in \mathbb{F}_q^2 \mid \omega(\mu g(x) + \lambda x^t g(x)) = \frac{n}{t} \left(1 - \frac{1}{2^{r-v_2(u)}} \right) \right\} = 2^{r-v_2(u)}(q - 1).
\]
Proof If \(\mu = 0 \) and \(\lambda \neq 0 \), then \(\omega(\lambda x^t g(x)) = \frac{n}{t} (1 - \frac{1}{2^r - v_2(a)}) \) and we have \((q - 1)\) ways to choose \(\lambda \).

Suppose that \(\mu \neq 0 \), then \(\omega(\mu g(x) + \lambda x^t g(x)) = \omega(g(x) + \frac{\lambda}{\mu} x^t g(x)) \), i.e., the weight only depends on the quotient \(\frac{\lambda}{\mu} \). By Lemma 3, there exist \(2^{r-v_2(a)} - 1 \) values of \(\frac{\lambda}{\mu} \) such that \(g(x) + \frac{\lambda}{\mu} x^t g(x) \) has weight \(\frac{n}{t} (1 - \frac{1}{2^r - v_2(a)}) \), so we have \((q - 1)(2^{r-v_2(a)} - 1)\) pairs of this type. \(\square \)

Theorem 2 If \(8|n \) and \(q \equiv 3 \pmod{4} \), then every irreducible code of length \(n \) over \(\mathbb{F}_q \) is one of the following classes:

(a) A \([n,t,\frac{n}{t}]_q\)-code, where \(4 \nmid t \), \(t|m' \) and its weight enumerator is

\[
A(z) = \sum_{j=0}^{t} \binom{t}{j} (q - 1)^j z^j r = \left(1 + (q - 1)z^r\right)^t.
\]

(b) A \([n,2t,d]_q\)-code, where \(t|m' \), \(d = \frac{n}{t} (1 - \frac{1}{2^r - v_2(a)}) \), \(0 \leq u \leq r - 2 \) and its weight enumerator is

\[
A(z) = \left(1 + 2^{r-v_2(a)}(q - 1)z^d + (q - 1)(q + 1 - 2^{r-v_2(a)})z^d\right)^t.
\]

In particular, if \(\frac{n}{t2^{r-v_2(a)}} \nmid k \), then \(A_k = 0 \).

Proof Observe that every irreducible code is generated by a polynomial of the form \(\frac{x^n - 1}{x - a} \), where \(a \in \mathbb{F}_q \), or a polynomial of the form \(g(x) = \frac{x^n - 1}{(x^t - a_0)(x^t - a_1)} \), where \(a \) satisfies the condition of Lemma 3. In the first case, the result is the same as Theorem 1. In the second case, each codeword is of the form

\[
\sum_{j=0}^{2t-1} \lambda_j x^j g(x) = \sum_{j=0}^{t-1} h_j,
\]

where \(h_j = \lambda_j x^j g(x) + \lambda_{t+j} x^{t+j} g(x) \). Since, for \(0 \leq i < j \leq t - 1 \), the polynomial \(h_i \) and \(h_j \) do not have non-zero monomials of the same degree, it follows that

\[
\omega\left(\sum_{j=0}^{t-1} h_j\right) = \sum_{j=0}^{t-1} \omega(h_j).
\]

By Lemma 3, \(h_j \) has weight \(\frac{n}{t} \), \(d \) or 0, for all \(f = 0, \ldots, t - 1 \). For each \(j = 0, 1, \ldots, t - 1 \), there exist \((q^2 - 1) \) non-zero pairs \((\lambda_j, \lambda_{j+t}) \), and by Corollary 1, we know that there exist \(2^{r-v_2(a)}(q - 1) \) pairs with weight \(d \). Therefore, there exist

\[
q^2 - 1 - 2^{r-v_2(a)}(q - 1) = (q - 1)(q + 1 - 2^{r-v_2(a)})
\]

pairs with weight \(\frac{n}{t} \).

So, in order to calculate \(A_k \), we need to select the polynomials \(h_i \)’s which have weight \(d = \frac{n}{t} (1 - \frac{1}{2^r - v_2(a)}) \) and those ones which have weight \(\frac{n}{t} \) in such a way that the total weight is \(k \).

\(\square \) Springer
If we chose \(i \) of the first type and \(j \) of the second type, the first \(h_l \)'s can be chosen by \(\binom{l}{i}(2^{r-v_2(u)}(q-1))^i \) ways and for the other \(t-i \) ones, there are \(\binom{l}{j}((q-1)(q+1-2^{r-v_2(u)})^j \) ways of choosing \(j \) with weight \(\frac{n}{2} \). The remaining \(h_j \)'s have weight zero. Therefore

\[
A_k = \sum_{k=di+\frac{n}{2}j \atop 0 \leq i+j \leq t} \binom{t}{i} \binom{l}{i} \binom{l-i}{j} \binom{t-i}{j} \binom{t}{j} (q-1)^i (q+1-2^{r-v_2(u)})^j \]

and

\[
A(z) = \sum_{0 \leq i+j \leq t} \binom{t}{i} \binom{l}{i} \binom{l-i}{j} \binom{t-i}{j} \binom{t}{j} (q-1)^i (q+1-2^{r-v_2(u)})^j = (1+2^{r-v_2(u)}(q-1)z^d+(q-1)(q+1-2^{r-v_2(u)})z^{\frac{n}{2}})^t.
\]

In particular, the minimum distance is \(d \) and every non-zero weight is divisible by \(\gcd(d, \frac{n}{2}) \).

Remark 3 As a direct consequence of Lemma 2, for all positive divisor \(t \) of \(m' \), there exist \(2^{r-1-v_2(u)}(q-1) \) irreducible cyclic \([n, t, d]_q\)-codes if \(t \) is odd, and \(2^{r-1}v(t) \) \(\gcd(n, q-1) \) irreducible cyclic \([n, 2t, \frac{n}{2}(1-1+2^{r-v_2(u)})]_q\)-codes if \(t \) is even.

Example 1 Let \(q = 31 \) and \(n = 288 = 2^5 \times 3 \). Then \(m' = 3, l' = 10, r = 4 \). If \(h(x) \) denotes a irreducible factor of \(x^{288} - 1 \), then \(h(x) \) is a binomial of degree 1, 2, 3 or 6, or a trinomial of degree 2 or 6. The irreducible codes generated by \(\frac{x^n-1}{h(x)} \) (and therefore parity check polynomial is \(h \)), and its weight enumerators are shown in the following tables

Codes generated by binomials	\([n, t, \frac{n}{2}]_q\)-code	\(h(x) \)	Weight enumerator
\([288, 1, 288]_31\)	\(x + 1 \)		1 + 30z^{288}
	\(x + 5 \)		
	\(x + 6 \)		
	\(x + 25 \)		
	\(x + 26 \)		
	\(x + 30 \)		
	\(x^2 + 1 \)		
	\(x^2 + 5 \)		(1 + 30z^{144})^2
	\(x^2 + 25 \)		
	\(x^3 + 5 \)		
	\(x^3 + 6 \)		(1 + 30z^{96})^3
	\(x^3 + 25 \)		
	\(x^3 + 26 \)		
	\(x^6 + 5 \)		(1 + 30z^{48})^6
	\(x^6 + 25 \)		
Codes generated by trinomials of the form $x^6 + ax^3 + b$

$[n, 2t, d]_q$-code	$v_2(u)$	$h(x)$	Weight enumerator
$[288, 6, 72]_{31}$	2	$x^6 + 9x^3 + 25$	$(1 + 120z^{72} + 840z^{96})^3$
		$x^6 + 14x^3 + 5$	
		$x^6 + 17x^3 + 5$	
		$x^6 + 22x^3 + 25$	
		$x^6 + 4x^3 + 5$	
		$x^6 + 6x^3 + 25$	
		$x^6 + 8x^3 + 25$	
$[288, 6, 84]_{31}$	1	$x^6 + 9x^3 + 5$	$(1 + 240z^{84} + 720z^{96})^3$
		$x^6 + 22x^3 + 5$	
		$x^6 + 23x^3 + 25$	
		$x^6 + 25x^3 + 25$	
		$x^6 + 25x^3 + 25$	
		$x^6 + 30x^3 + 5$	
		$x^6 + 2x^3 + 5$	
		$x^6 + 4x^3 + 5$	
		$x^6 + 7x^3 + 5$	
$[288, 6, 90]_{31}$	0	$x^6 + 14x^3 + 25$	$(1 + 480z^{90} + 480z^{96})^3$
		$x^6 + 17x^3 + 25$	
		$x^6 + 19x^3 + 25$	
		$x^6 + 20x^3 + 25$	
		$x^6 + 23x^3 + 5$	
		$x^6 + 24x^3 + 5$	
		$x^6 + 24x^3 + 25$	
		$x^6 + 27x^3 + 5$	
		$x^6 + 29x^3 + 5$	

Codes generated by trinomials of the form $x^2 + ax + b$

$[n, 2t, d]_q$-code	$v_2(u)$	$h(x)$	Weight enumerator
$[288, 2, 216]_{31}$	2	$x^2 + 8x + 1$	$1 + 120z^{216} + 840z^{288}$
		$x^2 + 9x + 25$	
		$x^2 + 14x + 5$	
		$x^2 + 17x + 5$	
		$x^2 + 22x + 25$	
		$x^2 + 23x + 1$	
Weight enumerator of some irreducible cyclic codes

$[n, 2t, d]_q$-code	$v_2(u)$	$h(x)$	Weight enumerator
$[288, 2, 252]_{31}$	1	$x^2 + x + 5$	
		$x^2 + 5x + 1$	
		$x^2 + 6x + 25$	
		$x^2 + 8x + 25$	
		$x^2 + 9x + 5$	
		$x^2 + 14x + 1$	
		$x^2 + 17x + 1$	
		$x^2 + 22x + 5$	
		$x^2 + 23x + 25$	
		$x^2 + 25x + 25$	
		$x^2 + 26x + 1$	
		$x^2 + 30x + 5$	
		$x^2 + 2x + 5$	
		$x^2 + 4x + 1$	
		$x^2 + 4x + 5$	
		$x^2 + 7x + 5$	
		$x^2 + 7x + 25$	
		$x^2 + 8x + 5$	
		$x^2 + 9x + 1$	
		$x^2 + 10x + 1$	
		$x^2 + 11x + 1$	
		$x^2 + 11x + 25$	
		$x^2 + 12x + 25$	
		$x^2 + 14x + 25$	
		$x^2 + 17x + 25$	
		$x^2 + 19x + 25$	
		$x^2 + 20x + 1$	
		$x^2 + 20x + 25$	
		$x^2 + 21x + 1$	
		$x^2 + 22x + 1$	
		$x^2 + 23x + 5$	
		$x^2 + 24x + 5$	
		$x^2 + 24x + 25$	
		$x^2 + 27x + 1$	
		$x^2 + 27x + 5$	
		$x^2 + 29x + 5$	
		$1 + 240z^{252} + 720z^{288}$	
$[288, 2, 270]_{31}$	0	$x^2 + x + 5$	
		$x^2 + 5x + 1$	
		$x^2 + 6x + 25$	
		$x^2 + 8x + 25$	
		$x^2 + 9x + 5$	
		$x^2 + 14x + 1$	
		$x^2 + 17x + 1$	
		$x^2 + 22x + 5$	
		$x^2 + 23x + 25$	
		$x^2 + 25x + 25$	
		$x^2 + 26x + 1$	
		$x^2 + 30x + 5$	
		$x^2 + 2x + 5$	
		$x^2 + 4x + 1$	
		$x^2 + 4x + 5$	
		$x^2 + 7x + 5$	
		$x^2 + 7x + 25$	
		$x^2 + 8x + 5$	
		$x^2 + 9x + 1$	
		$x^2 + 10x + 1$	
		$x^2 + 11x + 1$	
		$x^2 + 11x + 25$	
		$x^2 + 12x + 25$	
		$x^2 + 14x + 25$	
		$x^2 + 17x + 25$	
		$x^2 + 19x + 25$	
		$x^2 + 20x + 1$	
		$x^2 + 20x + 25$	
		$x^2 + 21x + 1$	
		$x^2 + 22x + 1$	
		$x^2 + 23x + 5$	
		$x^2 + 24x + 5$	
		$x^2 + 24x + 25$	
		$x^2 + 27x + 1$	
		$x^2 + 27x + 5$	
		$x^2 + 29x + 5$	
		$1 + 480z^{270} + 480z^{288}$	

References

1. Brochero Martínez F.E., Giraldo Vergara C.R., Batista de Oliveira L.: Explicit factorization of $x^n - 1 \in \mathbb{F}_q[x]$. Des. Codes Cryptogr. (Accepted).
2. Chen B., Li L., Tuerhong R.: Explicit factorization of $x^{2m}p^n - 1$ over a finite field. Finite Fields Appl. 24, 95–104 (2013).
3. Ding C.: The weight distribution of some irreducible cyclic codes. IEEE Trans. Inf. Theory 55, 955–960 (2009).
4. Ding C., Yang J.: Hamming weights in irreducible cyclic codes. Discret. Math. 313, 434–446 (2013).
5. Farrell P.G., Castieira Moreira J.: Essentials of Error-Control Coding. Wiley, Hoboken (2006).
6. Fitzgerald R.W., Yucas J.L.: Explicit factorization of cyclotomic and Dickson polynomials over finite fields. In Arithmetic of Finite Fields. Lecture Notes in Computer Science, vol. 4547, pp. 1–10. Springer, Berlin (2007).
7. Golay M.J.E.: Notes on digital coding. Proc. IRE 37, 657 (1949).
8. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, vol. 20. Addison-Wesley, Boston (1983).

9. Meyn H.: Factorization of the cyclotomic polynomials $x^{2^n} + 1$ over finite fields. Finite Fields Appl. 2, 439–442 (1996).

10. Sharma A., Bakshi G.: The weight distribution of some irreducible cyclic codes. Finite Fields Appl. 18, 144–159 (2012).

11. Wang L., Wang Q.: On explicit factors of cyclotomic polynomials over finite fields. Des. Codes Cryptogr. 63(1), 87–104 (2012).