Analysis of mathematics learning outcomes on senior high school students in Madiun City, Indonesia in COVID-19 pandemic

G Ariyanti* and F G I Santoso
Mathematics Education Study Program, Universitas Katolik Widya Mandala Surabaya, Indonesia

* Corresponding author’s e-mail: gregoria@staff.widyamandala.ac.id

Abstract. In the COVID-19 pandemic, the learning process is carried out from home. This research aims to determine: 1) the effect of online learning on student mathematics learning outcomes, and 2) student responses in learning mathematics through online learning. This research is descriptive quantitative research. This research was conducted in the even semester of the academic year 2019/2020. The number of the sample in this research were 96 students of class XI from two senior high schools in Madiun City, Indonesia. Data collection techniques using the method of documentation and questionnaires. There are two sources of data, namely mathematics learning outcome data and student response data. The instrument used in this method is an online questionnaire in the form of student responses. The data of student mathematics learning outcome is used to determine the effect of online learning during the COVID-19 pandemic, while student response questionnaires are used to determine student responses to the online mathematics learning process. The results are 1) The average of Mathematics Learning Outcomes of class XI students before online learning is greater than the average after online learning, and 2) Based on the effect of online learning, more students do not like mathematics.

1. Introduction
One measure of a student’s success is learning outcomes, especially in schools. Learning outcomes obtained at school are the results that can be achieved by students after participating in a series of activities or learning processes or learning activities. The level of mastery of learning outcomes called learning outcomes is generally indicated by test scores or grades given by the teacher, and the value is usually determined through measurement and assessment. High and low values determined through measurement and assessment indicate high and low student learning outcomes. Because student learning outcomes are the result of participating in a series of learning processes, learning outcomes cannot be separated from how the learning activities or processes take place, meaning that the learning outcomes of a student are very dependent on whether the learning activities carried out by these students take place in conditions that enable them to obtain high levels of learning. If the learning activities carried out by students take place in conditions that allow for the achievement of high learning outcomes, then the student’s academic achievement will be high and vice versa. The conventional learning process makes student activity more on listening and taking notes on the
material provided by the teacher so that students are less active. The learning process is more teacher-centered. This is one of the factors that cause students' low mathematics learning outcomes [1].

Mathematics is one of the disciplines studied in schools, both elementary, junior high schools, senior high school, and even in college. Mathematics is one component of basic education in teaching fields that requires students not only to be skilled in using mathematics but able to understand the mathematics that can provide provisions for the management of reason that is useful in people’s lives. At the end of 2019, the world was shocked by the coronavirus that struck Wuhan, one of the cities in China. Not too long afterward, several countries also experienced the same outbreak. So on January 30, 2020, the World Health Organization (WHO) declared this outbreak as a Public Health Emergency. WHO wrote to President Joko Widodo regarding the handling of the coronavirus that causes COVID-19 disease in Indonesia. In the letter, the WHO asked President Jokowi to take several steps, including declaring a national emergency coronavirus. The letter was signed by WHO Director-General Tedros Adhanom and sent to Jokowi on March 10, 2020. The letter was also forwarded to the Ministry of Health and the Ministry of Foreign Affairs. And now has infected more than 4.7 million people, as many as 1.8 million recovered and killed more than 300 thousand people worldwide, based on an update on May 17, 2020 [2].

Therefore on January 30, 2020, the World Health Organization (WHO) declared this outbreak as a Public Health Emergency. In a letter written by WHO’s Director-General, Tedros Adhanom, to President Jokowi on March 10, 2020, the organization advised Indonesia to undertake several steps to prevent the spread of the virus, declaring a national coronavirus emergency. The letter was also forwarded to the Ministries of Health and Foreign Affairs. Currently, COVID-19 has infected more than 4.7 million people, with 1.8 million recoveries and more than 300 thousand deaths, based on updated across the world on May 17, 2020 [2]. On March 15, 2020, Indonesia has determined COVID-19 as a national disaster. The effect of that condition is the problems in the health, education, and economic fields. The Indonesian government has established a public health emergency as stated in the Decree of the Head of the National Disaster Management Agency [3]. Due to this effect, learning activities that are usually carried out at school eventually take place online.

Online learning is education that takes place over the internet. Online learning is just one type of distance learning for any learning that takes place across distance and not in a traditional classroom. One of the main reasons for this is it gives students greater access to education in comparison to traditional methods of teaching as students can undertake their study from anywhere and at any time as well as being given the option to study part-time or full-time [4]. Students sometimes feel bored in following the conventional learning process, and it will affect their learning outcomes. During the COVID-19 pandemic, of course, conventional learning cannot be carried out as usual. Through online learning, interactive activities such as teacher-student interaction, student-student interaction, student-content interaction, and student–technology interaction are considered. Students participated in the blended learning course in which formative assessment was used to evaluate student learning outcomes by the combination of different learning activities through a learning management system [5].

Online learning can refer to the situation where the interaction between the students and the teacher is done through an online system. Students have received training and taught through online systems, and teachers are may also in the same building with them [6]. Mathematics is known as a subject that is quite difficult and does not like students. With online learning, of course, it will also cause student responses to Mathematics.

Therefore, learning activities that are usually routinely carried out in schools finally take place online. Regarding learning from home, the Minister of Education and Culture of Indonesia emphasizes that online or distance learning is carried out to provide meaningful learning experiences for students, without being burdened with the demands of completing all curriculum achievements for grade promotion or graduation. The Minister of Education and Culture also recommends regions that have learned from home to ensure that teachers also teach from home to maintain teacher safety [2].

The decision to study from home is also enforced in Madiun City, Indonesia, at all levels of education. Likewise, for class XI senior high school students in Madiun City.
Various school efforts have been made to continue learning even though the school is on vacation. Related to the description above, the problem of this research as follows: 1) Is there a difference in the mathematics learning outcomes of class XI students in Madiun City before online learning with the mathematics learning outcomes of class XI students in Madiun City after online learning? And 2) What is the response of students in learning mathematics during online learning?

2. Methods

2.1 Type of research
Because this study aims to determine the effect of online learning in the COVID-19 pandemic period on the learning outcomes of students of class XI mathematics learning in the City of Madiun, the type of this research is descriptive quantitative research. It is a quantitative study because the research data are in the form of numbers and statistical processing.

The quantitative research method was used to determine the effect of the online learning outcome of mathematics in senior high school students at Madiun. The quantitative study was used because the research data were taken in the form of numbers and statistical processing. Furthermore, this is quantitative research due to its ability to use samples to solve problems related to online learning. This research used the one-group pre-test - post-test design to compare the conditions before and after online learning [7].

Another reason for using quantitative research is because it works using samples to solve the problems at hand. Meanwhile, included in descriptive quantitative research because it would be described or described the situation of students in this case, the results of student responses to online mathematics learning. Also, the research design used was one group pretest-posttest design because it compared conditions before and after the treatment [8].

2.2 Population and sample
In this study, the research population consists of class XI students from senior high schools in Madiun City, Indonesia. Meanwhile, the number of samples of this research were 96 students of class XI from two senior high schools in Madiun City. The technique used in sampling is the non-random sampling method. It is used to obtain data from teachers who are alumni of the Mathematics Education Study Program at Widy Mandala Surabaya Catholic University, Madiun City Campus, Indonesia. The non-random sampling method was chosen with the consideration that during the COVID-19 pandemic, several cities implemented the Large-Scale Social Restrictions (LSSR) to stop the spread of the coronavirus. Hence, it was not possible to meet samples directly in many schools in Madiun City. Therefore, the research team contacted the teacher through telephone interviews.

2.3 Data collection technique
The data collection techniques in this study are the documentation method and the questionnaire method. The documentation is in the form of student mathematics learning outcomes before and after online learning. Meanwhile, a questionnaire in the form of several questions must be answered or responded to by students. The questionnaire used contains closed and open questions. Closed questions in the form of students’ responses to mathematics while learning online process. At the same time, open questions are in the form of responses to the online Mathematics learning process, the problem of the learning process, and the efforts that have been made by students to solve the learning process problem.

2.4 Data analysis techniques
Because the secondary data, namely the mathematics test score of the student, are processed in intervals so data will be compared on the same subject on the Paired Sample Test [8]. The paired samples test can be interpreted as samples with the same subject but experience different treatments.
As a prefix to a statistical test, the population normality test is will be conducted. Both statistical tests were carried out using the SPSS program.

The population normality test uses the Kolmogorov Smirnov Goodness of Fit Test test statistics. The computing data processing uses the SPSS program with menu procedures, namely Analyze, Descriptive Statistics, and Explore. In Display, select Plot and check the Normality Plot With Test. From the output in the Tests of Normality table, record the Kolmogorov-Smirnov Statistics value as the Kolmogorov-Smirnov count (KScount).

Meanwhile, the paired sample tests have two conditions. When both data are normally distributed, then the Paired Sample t-Tests are used. Furthermore, data processing is carried out by using the SPSS program with the menu procedure, namely, Analyze, Compare Means, and Paired Sample t-Test. Based on the outputs results in the Paired Samples Test table, the t- value is recorded as t-count (tcount) and the df value as degrees of freedom to determine t table (ttable). Assuming one or both of the data are not normally distributed, then the non-parametric statistical testing which is the Wilcoxon Signed Ranking Test, test the two paired samples is used. Data processing is carried out using the SPSS program with the menu procedure, namely Analyze, Compare Means, and 2 Related Samples, with the Test Type selected by Wilcoxon. Based on the output results in the Test Statistics table, the Asymp Sig. (2-tailed) is recorded as the Asymp count (Asympcount).

3. Results and discussion

3.1 The student Mathematics learning outcomes
After conducting research and obtaining data on the student mathematics learning outcomes, data analysis was conducted. The data obtained in this study are secondary data that is the data obtained not directly from the data source. The sample is chosen because the data is given by the mathematics’ teacher. The samples in this study are 96 students of class XI from two senior high schools in Madiun City, Indonesia. Table 1 shows the results of student mathematics learning outcomes based on data processing using the SPSS program.

Table 1. Description of statistics learning outcomes of Mathematics.

	N	Minimum	Maximum	Mean	Std. Deviation	Variance
The mathematics learning outcomes before online learning	96	60	100	83.60	9.153	83.779
The mathematics learning outcomes before online learning Valid N (Listwise)	96	53	98	76.82	9.072	82.295

A normality test is carried out to determine whether the data from the population is normally distributed. Based on the analysis of normality tests, the results showed that student mathematics learning outcomes before and after online learning does not come from normally distributed populations. The processing of data obtained using the SPSS program is given in table 2. The Mathematics learning outcomes before online learning have KScount = 0.172 as the Kolmogorov-Smirnov statistical values. Furthermore, we have Kolmogorov-Smirnov table Kstable = 0.1364 based on the Kolmogorov-Smirnov Test Critical Value Table with n = 96 and a significant level (α) = 0.05. So, the critical area is DK = {KS | KS > 0.1364}. Because KScount ∈ DK, H0 is rejected, which means that the Mathematics learning outcomes of class XI students before online learning does not come from a normally distributed population. Analog with the Mathematics learning outcomes before the
online learning process, we have the Mathematics learning results of class XI students after online learning did not come from a normally distributed population.

Table 2. Calculation results for the normality test with Kolmogorov-Sminorv Test before and after the online learning.
Kolmogorov-Sminorv
The mathematics learning outcomes before online learning
The mathematics learning outcomes after online learning

Therefore, the Paired Sample Test has been used to analysis of the student Mathematics learning outcomes before and after online learning. In this study, two research hypotheses were examined to determine which hypotheses should be accepted and which should be rejected. The H_0 hypothesis is there is a difference between the average of the Mathematics learning outcomes of class XI students before online learning and the average of the Mathematics learning outcomes of class XI students after the online learning. Because the two data are not normally distributed, so the two paired samples use non-parametric statistical testing, namely, the Wilcoxon Signed Ranking Test. Data processing using SPSS assisted with the menu procedure Analyze, Compare Means, and 2-Related Samples, with Test Type selected by Wilcoxon.

Table 3. The results of the Wilcoxon Signed Ranks Test and Test Statistics.
Mathematics learning outcomes after online learning
Learning outcomes before online learning
N

Negative Ranks
Positive Ranks
Ties
Total

Based on table 3, for an Asymp Sig (2-tailed), we have $\text{Asymp}_{\text{count}} = 0.000$. Furthermore, because of area of criticism is $\text{DK} = \{\text{Asymp} \mid \text{Asymp} < 0.05\}$ and $\text{Asymp}_{\text{count}} = 0.000 \in \text{DK}$, so H_0 is rejected. We conclude that the average mathematics learning outcomes of class XI students before learning online is different from the average mathematics learning outcomes of class XI students after online learning. Based on table 1, we conclude that the average mathematics learning outcomes of class XI students before online learning is greater than the average mathematics learning outcomes of class XI students after online learning.

3.2 The student’s response to Mathematics
Questionnaire data of the student’s response to mathematics was obtained from 75 high school students in Madiun City. From the processing of the questionnaire of students’ responses to Mathematics, we obtain the student’s response as shown in figure 1.
Positive responses to mathematics after students take online learning were obtained from five questions of questionnaires. The following are the results obtained from filling out the questionnaire as many as 75 students, namely:

1. Based on figure 1, as many as 45% of students like mathematics and 55% of students do not like mathematics;
2. Obstacles by students when participating in online learning, namely bad signals, internet limited access, the teacher directly gives questions without any material explaining how to solve problems so that students do not understand the material, and feel disturbed by noise in the home environment;
3. The efforts that have been made by students in overcoming these obstacles, namely: look for a smooth internet/wifi network to neighbours or other places outside the home; search for material on the internet (browsing) and access YouTube; asking friends and doing it together; studying in the room to avoid noise;
4. As many as 58.16% of students study itself, but some help in learning, namely friends, relatives, tutors, and parents; and
5. Suggestions from students for online mathematics learning, that is, teachers should make videos or explain material through videos so that students can better understand completion steps and formulas that can be used.

4. Conclusion
Based on the discussion of research results, it can be concluded that the average student learning outcomes in mathematics before online learning are greater than the average student learning outcomes in mathematics after online learning. Based on the effect of online learning, as many as 45% of students like mathematics and 55% of students do not like mathematics. This research is limited to studying the effect of online learning without studying the online learning platform and strategy. The recommendation for further research is to develop a structured online learning model.

References
[1] Mulyono D 2017 Int. Elec. J. Math. Educ. 12 689-708
[2] Sari H P 2020 Respond to WHO, government declares corona outbreak as national disaster (Jakarta: Kompas)
[3] Novanda G D 2020 Indones. J. Int. Clinical Legal Educ. 2 101-110
[4] El-Seoud S A, Seddiek N, Taj-Eddin I A T F, Ghenghesh P and Nosseir A 2014 Int. J. Emerging Technol. Learn. (IJET) 9 20-26
[5] Nguyen V A 2017 J. Inf. Knowl. Manag. 16 4
[6] Salamat L, Ahmad G, Bakht I and Saifi I L 2018 Asian Innov. J. Soc. Sci. Humanities 2 1-12
[7] Wijayanto P A, Utaya S and Astina I K 2017 Int. J. Soc. Sci. Manag. 4 240-247
[8] Rea L M and Parker R A 2014 Designing and Conducting Survey Research: A Comprehensive Guide (New York: John Wiley & Sons).