18 F-FDG-PET/CT assessment of Takayasu arteritis and effect of time-of-flight reconstruction: an observational study

CURRENT STATUS: POSTED

shuichi yanai
dknpy539@yahoo.co.jp Corresponding Author
ORCID: https://orcid.org/0000-0001-6912-6611

junichi tsuchiya
tokyo medical and dental university

shinichi taura
Ome municipal general hospital

ukihide tateishi
tokyo medical and dental university

DOI:
10.21203/rs.3.rs-16586/v1

SUBJECT AREAS
Nuclear Medicine & Medical Imaging

KEYWORDS
Takayasu arteritis, 18F-FDG-PET/CT, time-of-flight, large-vessel vasculitis
Abstract

Background

To assess the impact of time-of-flight (TOF) positron emission tomography (PET)/computed tomography (CT) image reconstruction on assessment of Takayasu arteritis (TKA). We reviewed 14 patients (15 cases) who underwent TOF-PET/CT. PET images were reconstructed using ordered-subsets expectation maximisation ± TOF. Uptake in 10 vascular regions was assessed using the four-point visual grading system (3, higher than liver uptake; 0, no uptake). The grades in the TOF-PET/CT and non-TOF-PET/CT groups were compared using the sign test. Relationships between visual grade and arterial FDG uptake pattern in the 10 regions and clinical findings were assessed.

Results

Except for the highest visual grade, the visual grades in all regions were significantly higher in the TOF-PET/CT group (p=0.003). FDG uptake pattern and region were not significant determinants of the effect of TOF reconstruction. Assessment of disease activity was inconsistent between the groups in 6 (4%) of 150 regions when grade 2/3 was defined as active and in 5 (3.3%) of 150 when grade 3 was defined as active.

Conclusions

Visual grades were significantly higher in all regions when assessed by TOF-PET/CT. Use of the same reconstruction algorithm before and after treatment is recommended when evaluating the response to treatment.

Background

Takayasu arteritis (TKA) is a chronic granulomatous large-vessel vasculitis that is rare and has severe potentially lethal complications, including aortic dissection/rupture, refractory hypertension, and myocardial infarction.\(^1\)\(^-\)\(^2\) Early diagnosis and detection of inflammation in the arterial wall is essential for improvement of the short-term and long-term outcomes in patients with TKA. However, the disease is difficult to evaluate because it has no specific symptoms and there are no laboratory biomarkers that accurately reflect its activity or progression.

\(^{18}\text{F}\)-fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) is a
functional imaging modality that has an important role in the management of patients with cancer. Moreover, FDG-PET/CT has been demonstrated to be an effective imaging modality for assessment of TKA.3−8

Time-of-flight (TOF) reconstruction uses the time difference between the arrival of two photons and localises the emission point with much higher precision than non-TOF detection.9 Previous studies have demonstrated the effects of TOF on PET/CT imaging in the fields of oncology and cardiology.10−13 However, to the best of our knowledge, the impact of TOF reconstruction on evaluation of TKA has not been reported previously. Therefore, the aim of this study was to investigate how TOF reconstruction affects PET/CT assessment of patients with TKA.

Methods

Patients
Consecutive patients who underwent TOF-FDG-PET/CT at Tokyo Medical and Dental University for assessment of large-vessel vasculitis between July 2018 and January 2019 were retrospectively reviewed. Patients who were under the age of 20 years and those who had undergone aortic surgery before FDG-PET/CT were excluded.

We evaluated disease activity using the following four National Institutes of Health (NIH) criteria devised by Kerr et al.14: 1, systemic features; 2, features of vascular ischemia or inflammation; 3, laboratory data; and 4, typical angiographic features. Cases with new occurrence or aggravation of at least two of these four features were defined as active. Our assessment of laboratory parameters included the C-reactive protein or matrix metalloproteinase-3 level measured within 3 weeks before or after PET/CT in addition to the erythrocyte sedimentation rate. Angiographic features were assessed on CT or magnetic resonance images acquired in the 2 months before or after PET/CT scanning.

PET/CT protocol
All FDG-PET/CT images were obtained using a Celesteion scanner (Canon Medical Systems, Otawara, Japan). After fasting for at least 4 hours, all patients received an intravenous injection of 3.7 MBq/kg
of FDG. Whole-body CT data were obtained for attenuation correction and anatomical co-registration with free breathing. The technical CT scan parameters were as follows: tube voltage, 120 kV; field of view, 550 mm; pitch, 16.0; and slice thickness, 2.0 mm. After CT, whole-body PET scanning was started about 60 min after the injection of FDG. PET emission scans were acquired in 3D mode using the following parameters: 2 min per bed position, a pixel size of 4 mm, and a Gaussian filter size of 6 mm. The PET images were reconstructed using two algorithms, i.e., ordered-subsets expectation maximisation (OSEM) and OSEM + TOF. The reconstruction parameters were two iterations and 10 subsets for both algorithms.

Imaging analysis
All PET/CT images were analysed and scored by two nuclear medicine radiologists working independently. The four-point grading system was used for visual assessment of vascular FDG uptake (3, vascular uptake higher than liver uptake; 2, vascular uptake similar to liver uptake; 1, vascular uptake lower than liver uptake; 0, no vascular uptake) [3–5]. Ten vascular regions, i.e., the ascending aorta, aortic arch, innominate artery, right and left common carotid arteries, right and left subclavian arteries, descending aorta, abdominal aorta, and pulmonary artery, were visually assessed in each patient. When FDG uptake was detected in a specific vascular region, we evaluated whether it was diffuse or patchy. When there was a discrepancy, the final decisions on visual grade and uptake pattern were reached by consensus. In each patient, the highest visual grade in the 10 vascular regions was defined as the final visual grade. In all regions, a difference in visual grade was identified by subtraction of the grade for non-TOF (OSEM)-PET/CT from that for TOF (OSEM + TOF)-PET/CT.

Statistical analysis
The sign test was used to compare the visual grades between the TOF and non-TOF groups. Fisher’s exact test was used to compare the diffuse pattern with the patchy pattern and to compare the 10 vascular regions. All statistical analyses were performed using R 3.5.1 software (R Foundation for Statistical Computing, Vienna, Austria). A p-value < 0.05 was considered statistically significant.

Results
Eighteen patients (19 cases) met the study inclusion criteria. Four patients (4 cases) were excluded (3
because of previous aortic surgery and 1 who was below the age limit). The characteristics of the 14 patients (15 cases) included in the analysis are shown in Table 1. The mean blood glucose level was 102.2 ± 10.8 mg/dl. The mean fasting duration was 391 ± 85 min (data for 4 patients were excluded from the calculation because their fasting duration was over 4 hours but their last mealtime was uncertain). We did not assess disease activity in 5 cases because of lack of laboratory and angiographic data; in 7 of 10 cases, we were able to assess disease activity but not necessarily accurately because of lack of angiographic data. The final visual grades were not significantly different between the non-TOF and TOF-PET/CT groups (p = 1.0).

Table 1
Patient characteristics

Case	Sex	Age, years	BMI	Final visual grade (non-TOF)*	Final visual grade (TOF)*	Diagnosis	Activity
1	F	39	22.6	3	3	TKA	+
2	F	26	19.5	2	3	TKA	+
3	F	32	19.4	0	1	BD s/o	+
4	F	39	23.8	2	2	TKA	+
5	F	46	17.8	1	1	TKA	NA
6	F	36	20.5	1	0	TKA	-
7	F	30	19.9	1	1	TKA	-
8	F	41	20.7	3	3	TKA	NA
9	F	32	21.9	0	0	TKA	NA
10	M	48	22.4	1	1	TKA + IgG4RD	-
11	F	43	19.3	1	1	TKA	NA
12	F	67	16.4	0	0	TKA	-
13	F	29	16.7	3	3	TKA	NA
14	M	21	18.1	2	2	TKA	-
15	F	60	22.7	1	1	TKA	-

*There was no significant difference in the final visual grade between the non-TOF and TOF groups (p = 1.0). The final visual grade is the highest visual grade in each patient. †Cases 1 and 4 are for the same patient. BD, Behcet’s disease; BMI, body mass index; IgG4RD, IgG4-related disease; NA, not available; TKA, Takayasu arteritis; TOF, time-of-flight; PET, positron emission tomography; TOF, time-of-flight.

The visual grades for the 10 vascular regions in all patients are shown in Table 2. The visual grades were significantly higher in the TOF-PET/CT group than in the non-TOF-PET/CT (p = 0.003).

Table 2
Visual grade values in 150 regions

Non-TOF-PET/CT visual grade	TOF-PET/CT visual grade
0	1
1	0
2	5
3	4

The visual grade value was significantly higher in the TOF group than in the non-TOF group (p = 0.003). CT, computed tomography; PET, positron emission tomography; TOF, time-of-flight.

The relationship between change in visual grade and symptoms is shown in Table 3. The visual grade
was elevated from 0 or 1 (non-TOF-PET/CT) to 2 (TOF-PET/CT) for 6 regions in 2 cases and from 2 to 3 for 4 regions in 3 cases.

Table 3

Visual grade (non-TOF/TOF)	Case	Region	Symptomatology
0/2 or 1/2	4	Arch, Innom A, rt Ca, lt subcl A	New-onset bruit in right subclavian region
	14	lt CA, Innom A	No symptom (slight dilation of aortic arch)
2/3	1	A abd, rt subcl A	Right neck and shoulder pain
	2	lt CA	Vascular pain in lt CA
	13	rt CA	Vascular pain in rt CA

Arch, aortic arch; Innom A, Innominate artery; lt/rt subcl A, left/right subclavian artery; lt/rt CA, left/right common carotid artery; A abd, abdominal aorta; TOF, time-of-flight

There was no significant difference in the distribution of differences in visual grade between the patchy and diffuse uptake patterns (p = 0.66 in the non-TOF group and p = 0.83 in the TOF group; Fig. 1).

There were significant between-group differences in the distribution of visual grades in the 10 vascular regions (p = 0.002 in the non-TOF group and p = 0.011 in the TOF group). The presence of FDG uptake was markedly more common at the aortic arch and innominate artery in both the TOF and non-TOF groups (Fig. 2). There was no significant difference in the distribution of differences in the visual grade between the 10 vascular regions (p = 0.37, Fig. 3). A representative case (case 2) is shown in Fig. 4.

Discussion

This study investigated the effect of PET/CT reconstruction using TOF on assessment of patients with TKA when using the established four-point visual grading system. Although TOF reconstruction had no significant impact on the final visual grade, we found that the visual grade for all regions assessed was significantly higher in the TOF-PET/CT group than in the non-TOF-PET/CT group. An earlier study demonstrated the effect of TOF reconstruction on uptake in the normal aorta; however, subjects with suspected large-vessel vasculitis were excluded in that study. Therefore, the present study is the first to investigate the effect of TOF reconstruction on assessment of TKA.

An earlier review showed that a visual grade of 2 was possibly indicative and that a grade of 3 was
positive when assessing disease activity in large-vessel vasculitis. In our study, 18/150 regions were regarded as active on non-TOF-PET/CT and 24/150 were regarded as active on TOF-PET/CT when grade 2 or 3 uptake was defined as active (Table 2). Assessment of disease activity by non-TOF-PET/CT and TOF-PET/CT was inconsistent for 6 (4%) of 150 regions when grade 2 or 3 was considered as active. These regions were shown in case 4 (4 regions) and case 14 (2 regions). In these cases, TOF reconstruction had no effect on the final visual grades; in 2 of 10 cases there was a discrepancy between the final visual grade and disease activity according to the NIH criteria (cases 3 and 14). Furthermore, when we defined grade 3 uptake as active, there was inconsistency between non-TOF-PET/CT and TOF-PET/CT in 5 (3.3%) of 150 regions. These 5 inconsistencies were in cases 1 (3 regions), 2 (1 region), and 13 (1 region). In case 2, there was a difference in the final grade between non-TOF-PET/CT and TOF-PET/CT; however, the disease activity based on the visual grade assessed by TOF-PET/CT and by the NIH criteria were consistent (Table 1, Fig. 4). These findings indicate that use of different reconstruction algorithms before and after treatment may lead to incorrect evaluation of the response to therapy in patients with TKA. Therefore, we recommend use of the same reconstruction algorithm when evaluating their response to treatment.

As shown in Table 3, the visual grade increased from 0/1 to 2 in 2 cases (4 and 14) when TOF-PET/CT was used. In case 4, new-onset bruit and vascular obstruction in the right subclavian region were detected and the visual grade was elevated near the right subclavian artery (innominate and right common carotid arteries), even though the visual grade for the right subclavian artery in this case was assessed as 0 by both reconstruction algorithms. In case 14, aortic surgery was performed 37 days after PET/CT, at which time pathology specimens were obtained from the ascending aorta, left subclavian artery, and left common carotid artery. Infiltration of focal lymphocytes and neutrophils with disruption of elastic fibres and broad adventitial fibrosis were observed in the left common carotid artery, indicating coexistence of acute and chronic inflammation. Elevation of the visual grade may reflect mild chronic inflammation in these regions. Moreover, the visual grade was elevated from 2 to 3 on TOF-PET/CT in 4 regions (Table 3). Vascular pain was observed in 3 of these 4
regions (the right subclavian artery in case 1, left common carotid artery in case 2, and right common carotid artery in case 13). The symptomatology suggested acute inflammation in these regions, and TOF-PET/CT may reflect acute inflammation more accurately. TOF reconstruction has been reported to increase the standard uptake value for lymph node metastases,11,17 and this finding is compatible with our present results. In previous studies that used semi-quantitative analysis, there was no significant difference in FDG uptake in the normal aorta or liver between non-TOF-PET/CT and TOF-PET/CT.15,18 Furthermore, Daube-Witherspoon et al. demonstrated that TOF reconstruction improved the accuracy and precision of measurement of FDG uptake using clinical whole-body patient data with embedded artificial lesions that had known activity uptake.19 Therefore, on the basis of the above findings, elevation of the visual grade from non-TOF-PET/CT to TOF-PET/CT may reflect a more accurate assessment of FDG uptake in the arterial wall.

There was no significant difference in the effect of TOF reconstruction on visual grade between the patchy and diffuse uptake patterns. As shown in an earlier phantom study, TOF reconstruction improved the contrast of hot lesions, particularly if they were small.10 Therefore, we expected that the difference in visual grade for the patchy uptake pattern would be higher than that for the diffuse uptake pattern because the patchy uptake pattern was smaller. We speculate that the arterial wall lesions were so small that there was no significant difference between the patchy and diffuse uptake pattern.

In most cases, FDG uptake was detected at the aortic arch and innominate artery. This finding is consistent with previous studies showing that TKA involves predominantly the thoracic and cervical arteries in the Japanese population.20,21

Finally, as shown in Fig. 3, the effect of TOF reconstruction was not significantly different between the 10 vascular regions assessed. This is in contrast with an earlier study that found a difference in the gain in the signal-to-noise ratio as a result of TOF reconstruction in three body regions, i.e., the head and neck, abdomen, and lung.22 In that study, the gain in the abdominal lesions showed a clear increase as a function of body mass index (BMI) in the range of 1.1–1.8. In contrast, the gain in the
head and neck lesions showed a slight increase as a function of BMI in the range of 1.1–1.4. In our study, the effect of TOF on assessment of TKA was not significantly different between the 10 vascular regions, which included the abdominal aorta and carotid arteries. This finding may reflect the relatively low mean BMI (20.1 ± 2.3) in our cohort.

This study has several limitations. First, the sample size was small, which was inevitable given the rarity of TKA. Second, patients with types of vasculitis other than TKA were included. Third, our investigation of the association between visual grade and clinical findings was inadequate because of the small sample size and our lack of ability to assess disease activity fully using the NIH criteria. A further prospective study would be required to investigate the relationship between the findings of TOF-FDG-PET/CT and the activity of TKA. Fourth, this study was performed at a single centre in a Japanese population. Therefore, studies in other populations may be needed. Fifth, we used the four-point visual grading system without semi-quantitative analysis. However, this grading system is recommended for assessment of TKA in the clinical setting. The present study was the first to evaluate the effect of TOF reconstruction on assessment of TKA using this system.

Conclusions
In this study we found that the visual grades observed by TOF-PET/CT were significantly higher in all vascular regions than those observed by non-TOF-PET/CT in patients with TKA. Although evaluation of the activity of TKA does not change markedly when TOF-PET/CT is used, we recommend that the same reconstruction algorithm be used before and after treatment when possible to assess the response to therapy in patients with TKA.

Abbreviations
CT, computed tomography; FDG, 18F-fluorodeoxyglucose; PET, positron emission tomography; TKA, Takayasu arteritis; TOF, time-of-flight

Declarations
Ethics approval and consent to participate
The study was approved by the institutional ethics review committee of Tokyo Medical and Dental University (M2019-013). The need for written informed consent was waived in view of the retrospective nature of the study and the anonymity of the data.
Consent for publication
Not applicable

Availability of data and material
The data that support the findings of this study are available from the corresponding author on request.

Competing interests
The authors declare that they have no competing interests.

Funding
Not applicable

Authors' contributions
SY, JT, ST, and UT contributed to the concept and design of the study. SY drafted the manuscript. SY and JT contributed to the data analysis and interpretation of the data. JT and UT critically revised the manuscript. All authors read and approved the final manuscript.

Acknowledgments
Not applicable

References
1. Russo RAG, Katsicas MM. Takayasu arteritis. Front Pediatr. 2018;6:265.
2. Chatterjee S, Flamm SD, Tan CS, Rodriguez ER. Clinical diagnosis and management of large vessel vasculitis: Takayasu arteritis. Curr Cardiol Rep. 2014;16:499.
3. Slart RHJA; Writing group; Reviewer group; Members of EANM Cardiovascular; Members of EANM Infection & Inflammation; Members of Committees, SNMMI Cardiovascular; Members of Council, PET Interest Group; Members of ASNC; EANM Committee Coordinator. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging. 2018;45:1250-69.
4. Dejaco C, Rabasco P, Lotumolo A, Besson FL, Bley TA, Blockmans D, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018;77:636-43.

5. Meller J, Strutz F, Siefker U, Scheel A, Sahlmann CO, Lehmann K, et al. Early diagnosis and follow-up of aortitis with [18F]FDG PET and MRI. Eur J Nucl Med Mol Imaging. 2003;30:730-6.

6. Walter MA, Melzer RA, Schindler C, Müller-Brand J, Tyndall A, Nitzsche EU. The value of [18F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging. 2005;32:674-81.

7. Tezuka D, Haraguchi G, Ishihara T, Ohigashi H, Inagaki H, Suzuki J, et al. Role of FDG PET-CT in Takayasu arteritis: sensitive detection of recurrences. JACC Cardiovasc Imaging. 2012;5:422-9.

8. Lee KH, Cho A, Choi YJ, Lee SW, Ha YJ, Jung SJ, et al. The role of (18) F-fluorodeoxyglucose-positron emission tomography in the assessment of disease activity in patients with Takayasu arteritis. Arthritis Rheum. 2012;64:866-75.

9. Surti S. Update on time-of-flight PET imaging. J Nucl Med. 2015;56:98-105.

10. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462-70.

11. Akamatsu G, Mitsumoto K, Taniguchi T, Tsutsui Y, Baba S, Sasaki M. Influences of point-spread function and time-of-flight reconstructions on standardized uptake value of lymph node metastases in FDG-PET. Eur J Radiol. 2014;8:226-30.

12. DiFilippo FP, Brunken RC. Impact of time-of-flight reconstruction on cardiac PET images of obese patients. Clin Nucl Med. 2017;42:e103-8.

13. Matheoud R, Lecchi M. Time-of-flight in cardiac PET/TC: What do we know and what we should know? J Nucl Cardiol. 2018;25:1550-3.
14. Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, Hoffman GS. Takayasu arteritis. Ann Intern Med. 1994;120:919-29.

15. Hirji H, Sullivan K, Lasker I, Sharif MS, Nunes A, Shepherd C, et al. Effect of PET image reconstruction techniques on unexpected aorta uptake. Mol Imaging Radionucl Ther. 2019;28:1-7.

16. Stone JR, Bruneval P, Angelini A, Sharif MS, Nunes A, Shepherd C, et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases. Cardiovasc Pathol. 2015;24:267-8.

17. Li CY, Klohr S, Sadick H, Sharif MS, Nunes A, Shepherd C, et al. Effect of time-of-flight technique on the diagnostic performance of 18F-FDG PET/CT for assessment of lymph node metastases in head and neck squamous cell carcinoma. J Nucl Med Technol. 2014;42:181-7.

18. Thompson HM, Minamimoto R, Jamali M, Barkhodari A, von Eyben R, Iagaru A. A prospective, matched comparison study of SUV measurements from time-of-flight versus non-time-of-flight PET/CT scanners. Clin Nucl Med. 2016;41:e323-326.

19. Daube-Witherspoon ME, Surti S, Perkins AE, Karp JS. Determination of accuracy and precision of lesion uptake measurements in human subjects with time-of-flight PET. J Nucl Med. 2014;55:602-7.

20. Isobe M. Takayasu arteritis revisited: current diagnosis and treatment. Int J Cardiol. 2013;168:3-10.

21. Kobayashi Y, Numano F. Takayasu arteritis. Intern Med. 2002;41:44-6.

22. Lois C, Jakoby BW, Long MJ, Hubner KF, Barker DW, Casey ME, et al. An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging. J Nucl Med. 2010;51:237-45.
Bar plots showing the difference in visual grade value according to FDG uptake pattern. The difference in visual grade was obtained by subtracting the visual grade of non-TOF-PET/CT from that of TOF-PET/CT. CT, computed tomography; PET, positron emission tomography; TOF, time-of-flight
Figure 2

Bar plots showing the visual grades for 10 vascular regions. A Abd, abdominal aorta; Arch, aortic arch; Innom A, innominate artery; TOF, time-of-flight
Figure 3

Bar plot showing the difference in visual grade values for 10 vascular regions. The difference in visual grade was obtained by subtracting the visual grade of non-TOF-PET/CT from that of TOF-PET/CT. A Asc, ascending aorta; Arch, aortic arch; A desc, descending aorta; A abd, abdominal aorta; Innom A, innominate artery, lt/rt subcl A, left/right subclavian artery; lt/rt CA, left/right common carotid artery; PA, pulmonary artery. CT, computed tomography; PET, positron emission tomography; TOF, time-of-flight
Anterior maximum intensity projection FDG-PET/CT images from a representative case

Anterior maximum intensity projection FDG-PET/CT images from a 26-year-old woman with Takayasu arteritis showing FDG uptake in the left common carotid artery (arrowhead). FDG uptake is shown more clearly in the TOF-PET/CT image than in the non-TOF-PET/CT image. The visual grade value was assessed to be 2 on the non-TOF-PET/CT image and to be 3 on the TOF-PET/CT image.