HIGHER DIMENSIONAL FORMAL ORBIFOLDS AND ORBIFOLD
BUNDLES IN POSITIVE CHARACTERISTIC

INDRANIL BISWAS, MANISH KUMAR, AND A. J. PARAMESWARAN

ABSTRACT. In [5], the last two authors introduced formal orbifold curves defined over an
algebraically closed field of positive characteristics. They studied both étale and Nori fun-
damental group schemes associated to such objects. Our aim here is to study the higher
dimensional analog of these objects objects and their fundamental groups.

1. Introduction

Given a quasiprojective variety X defined over an algebraically closed field k of positive
characteristic, and a base point $x_0 \in X$, the Nori fundamental group $\pi^N(X, x_0)$ is defined
using the torsors on X for finite k–group schemes. This construction gives the étale funda-
mental group of X if we restrict to the reduced group schemes. When X is complete,
$\pi^N(X, x_0)$ has a Tannakian description using the essentially finite bundles on X introduced
in [7]. The homomorphisms between the fundamental groups induced by étale morphisms of
varieties are well understood. The paper [5], which is a predecessor of the present work, origin-
ated from attempts to understand the homomorphisms between the fundamental groups
induced by ramified maps between curves.

We quickly recall the aspects of [5] that connect it to the present work. Given a finite
morphism $f : X \rightarrow Y$ between curves, consider all finite morphisms $g : Z \rightarrow Y$ that
are locally dominated by f. This will form an inverse system, and by taking corresponding
Galois extensions, it is possible define a group obtained by the inverse limits. This is made
precise by introducing a branch data on Y and a condition in terms of this branch data
is imposed on these coverings of Y. Those branch data coming from a global finite map
are referred to as geometrical branch data. In [5], a class of bundles on those coverings are
defined, and it is shown there that they form a tensor abelian category; the Tannakian dual
of this tensor abelian category is called orbifold fundamental group with respect the orbifold
structure defined by the branch data.

Here we consider the questions addressed in [5] in the set-up of higher dimensional varieties.
We recall the definition of formal orbifolds (X, P), where X is a normal proper variety defined
over k, and P is a branch data on X (see Section 2). Associated to (X, P) is a tensor abelian
category $\text{Vect}^f(X, P)$ (see [21]). It is defined by taking equivariant essentially finite bundles
on suitable ramified Galois coverings Y of X whose ramifications are are controlled by P.

After fixing a base point $x \in X$ outside P, this tensor abelian category produces a proalgebraic group scheme which is denoted by $\pi^N((X, P), x)$. Our first theorem is the
following (see Theorem 3.1):

2010 Mathematics Subject Classification. 14H30, 14J60.
Key words and phrases. Formal orbifolds, Nori fundamental group, essentially finite bundle, Tannakian
category.
Theorem 1.1. Let \(f : (Y, O) \rightarrow (X, P) \) be an étale \(\Gamma \)-Galois cover of projective formal orbifolds. Take a point \(y \in Y \). There is a natural exact sequence
\[
1 \rightarrow \pi^N(Y, y) \xrightarrow{i} \pi^N((X, P), f(y)) \xrightarrow{q} \Gamma \rightarrow 1.
\]

Let \(X^o \) be an open dense subset of a normal projective variety, we define (3.3) a fundamental group scheme \(\pi_n((X, P), x) \) as inverse limit of \(\pi^N(X, P) \) where the limit is taken over branch data \(P \) whose branch locus is disjoint from \(X^o \). We observe that \(\pi_n((X, P), x) \) is a quotient of the Nori fundamental group \(\pi^N(X, P) \) (Proposition 3.4). We also show that \(\pi_n((X, P), x) \) classifies finite group scheme torsors over \(X^o \) which étale locally extends to \(X \) (Proposition 3.5).

Our second theorem (Theorem 4.1) identified the kernel of the natural homomorphism \(\pi^N((X, P), x) \rightarrow \pi^\text{et}_1((X, P), x) \).

2. Formal orbifold and Orbifold bundles

Let \(X \) be a normal variety \(X \) defined over a perfect field \(k \). We recall from [6, Section 3] the definition of a branch data on \(X \). Let \(x \in X \) be a point of codimension at least one, and let \(U \) be an affine open connected neighborhood of \(x \); we note that \(U \) is integral because \(X \) is normal. Again normality of \(X \) implies that the completion \(\widehat{\mathcal{O}_X(U)} \) of the coordinate ring \(\mathcal{O}_X(U) \) along \(x \) is an integral domain. Let \(\mathcal{K}_X(U) \) denote the field of fractions for \(\widehat{\mathcal{O}_X(U)} \). The fraction field of \(\widehat{\mathcal{O}_X,x} \) will be denoted by \(\mathcal{K}_X,x \).

A quasi branch data \(P \) on \(X \) assigns to every such pair \((x, U)\) a finite Galois extension of \(\mathcal{K}_X(U) \) in a fixed algebraic closure of \(\mathcal{K}_X(U) \), which is denoted by \(P(x, U) \), such that the following compatibility conditions hold:

1. \(P(x_1, U) = P(x_2, U)\mathcal{K}_X(x_2)(U) \), where \(x_1 \in \{ x_2 \} \), and \(U \) is an affine open connected neighborhood of \(x_1 \) and \(x_2 \).
2. For \(x \in V \subset U \subset X \), with \(U \) and \(V \) affine open connected subsets, we have \(P(x, V) = P(x, U)\mathcal{K}_X(V) \).

Define \(P(x) := P(x, U)\mathcal{K}_X,x \); note that \(P(x) \) is independent of the choice of \(U \). Also, define
\[
\text{BL}(P) := \{ x \in X \mid \widehat{\mathcal{O}_X,x} \text{ is branched in } \mathcal{K}_X,x \}.
\]
A quasi branch data \(P \) is called a branch data if \(\text{BL}(P) \) is a closed subset of \(X \) of codimension at least one. This \(\text{BL}(P) \) is called the branch locus of \(P \).

Note that if \(\dim X = 1 \), then \(P(x, U) = P(x) \) (i.e., it is independent of \(U \)), and hence it agrees with the notion in [5].

The branch data in which all the Galois extensions are trivial is called the trivial branch data, and it is denoted by \(O \). For a finite morphism \(f : Y \rightarrow X \) of normal varieties, the natural branch data associated to \(f \) will be denoted by \(B_f \).

We recall the definition of formal orbifolds from [6]. As before, \(k \) is a perfect field. A formal orbifold over \(k \) is a pair \((X, P)\), where \(X \) is a normal finite type scheme over \(k \) and \(P \) is a branch data on \(X \).
A morphism of formal orbifolds \(f: (Y, Q) \to (X, P) \) is a quasi-finite dominant separable morphism \(f: Y \to X \) such that for all points \(y \in Y \) of codimension at least one and some affine open neighborhood \(U \) of \(f(y) \), we have
\[
Q(y, f^{-1}(U)) \supset P(f(y), U).
\]
It is said to be étale if the extension \(Q(y)/P(f(y)) \) is unramified, for all \(y \in Y \) of codimension at least one. Moreover, \(f \) is called a covering morphism (or simply a covering) if it is also proper.

A formal orbifold \((X, P)\) is called geometric if there exist an étale cover \((Y, O) \to (X, P)\) and in this case \(P \) is called a geometric branch data [5].

Let \((Y, O) \to (X, P)\) be an étale \(\Gamma \)-Galois covering of formal orbifolds. Like in [5], we define vector bundles on \((X, P)\) as the \(\Gamma \)-equivariant bundles on \(Y \), while morphisms between two vector bundles on \((X, P)\) are defined to be the \(\Gamma \)-equivariant homomorphisms between the corresponding \(\Gamma \)-bundles on \(Y \). For the case of curves, it was shown in [5] that this definition does not depend on the choice of the étale cover. The key point is that if \((Y_i, O) \to (X, P)\) are étale \(\Gamma_i \)-covers for \(i = 1, 2 \), then take an étale \(\Gamma \)-cover \((Y, O) \to (X, P)\) that dominates these two covers (for instance \(Y \) can be the normalized fiber product of \(Y_1 \) and \(Y_2 \)). It follows that \(Y \to Y_i \) are Galois étale covers, and then using Galois descent it is shown that the pullback functor defines an equivalence of category of \(\Gamma \)-bundles of \(Y \) and the category of \(\Gamma_i \)-bundles on \(Y_i \). (See [5, Lemma 3.3, Lemma 3.4, Proposition 3.6] for the proof.) It should be clarified that the proofs of these results in [5] do not use the hypothesis in [5] that \(Y \) is a curve.

Now assume the base field \(k \) to be algebraically closed. Let \(X \) be a smooth proper variety over \(k \). A vector bundle on \((X, P)\) is called stable (respectively, semi-stable) if the corresponding \(\Gamma \)-equivariant bundle on \(Y \) is equivariantly stable (respectively, equivariantly semistable). However, an equivariant vector bundle is equivariantly semistable if and only if the underlying vector bundle is semistable. Similarly, a vector bundle on \((X, P)\) is called essentially finite if the corresponding \(\Gamma \)-equivariant bundle on \(Y \) is essentially finite. However, an equivariant vector bundle is equivariantly

The tensor product and duals of vector bundles on \((X, P)\) are defined in the usual way. This makes the category
\[
\text{Vect}^\Gamma(X, P)
\]
of essentially finite bundles a Tannakian category, and any closed point \(x \in X \) outside support of \(P \) defines a fiber functor from \(\text{Vect}^\Gamma(X, P) \) to the category of \(k \)-vector spaces. Hence we define \(\pi^N((X, P), x) \) to be the automorphism of this fiber functor. Note that if \(P \) is the trivial branch data, then \(\pi^N((X, P), x) \) is the fundamental group \(\pi^N(X, x) \) corresponding to the essentially finite bundles [7], [8] (its definition is recalled in Section 3).

3. Basic properties of \(\pi^N(X, P) \)

Let \(f: (Y, O) \to (X, P) \) be an étale \(\Gamma \)-Galois cover of projective formal orbifolds.

Theorem 3.1. Take a point \(y \in Y \). There is a natural exact sequence
\[
1 \to \pi^N(Y, y) \to i^* \pi^N((X, P), f(y)) \to \Gamma \to 1.
\]
Proof. Let E be a $\pi^N((X, P), y)$–module, meaning it is an essentially finite vector bundle on (X, P). So E is also an essentially finite vector bundle on Y. Hence we have a homomorphism

$$i : \pi^N(Y) \longrightarrow \pi^N(X, P)$$

(3.1)

(the base point is suppressed). We note that any essentially finite vector bundle F on Y is a sub-bundle of the Γ–equivariant bundle $\bigoplus_{\gamma \in \Gamma} \gamma^*F$ on Y; this direct sum $\bigoplus_{\gamma \in \Gamma} \gamma^*F$ is essentially finite because F is so. Consequently, $\bigoplus_{\gamma \in \Gamma} \gamma^*F$ is an essentially finite vector bundle on (X, P). Hence the homomorphism i in (3.1) is a closed immersion [2, p. 139, Proposition 2.21(b)].

Given a Γ–module V, we have the Γ–equivariant vector bundle

$$Y(V) := Y \times V \longrightarrow Y;$$

here Γ acts diagonally on $Y \times V$ using its actions on Y and V. Since $Y(V)$ is essentially finite, it defines an essentially finite bundle on (X, P). This construction produces a homomorphism

$$q : \pi^N((X, P)) \longrightarrow \Gamma$$

(the base point is suppressed). This q is surjective because the above functor from Γ–modules to $\text{Vect}^f(X, P)$ (defined in (2.1)) is fully faithful [2, p. 139, Proposition 2.21(a)].

The composition $q \circ i$ is evidently trivial, because the vector bundle underlying the Γ–equivariant bundle $Y(V)$ is trivial.

The inclusion homomorphism $\ker(q) \hookrightarrow \pi^N((X, P))$ corresponds to the forgetful functor that simply forgets the Γ–action on a Γ–equivariant vector bundle on Y. From this it follows that $\ker(q) = \text{image}(i)$. This completes the proof. \square

Let k be an algebraically closed field of positive characteristic. Take a reduced and connected k–scheme X, and fix a rational point $x \in X$. We recall from [8] the construction of a profinite group-scheme over k associated to the pair (X, x). Consider all quadruples of the form (G, f, y), where

- G is a finite group-scheme defined over k,
- $f : Y \longrightarrow X$ is a G–torsor, and
- $y \in Y$ is a rational point such that $f(y) = x$.

A morphism $(G, f, y) \longrightarrow (G', f', y')$ between two such quadruples is a pair of the form (ρ, φ), where $\rho : G \longrightarrow G'$ is a homomorphism of k–group-schemes and $\varphi : Y \longrightarrow Y'$ is a morphism, such that

- $f' \circ \varphi = f$,
- $\varphi(y) = y'$,
- the morphism φ is G–equivariant, for the action of G on the G'–torsor Y' given by ρ.

Let $N(X, x)$ denote the category constructed using these quadruples and morphisms between them.

The category $N(X, x)$ forms an inverse system. Nori proved that the inverse limit

$$\lim \limits_{\longrightarrow} \frac{\text{lim}}{N(X, x)} G$$
exists as a profinite group-scheme over k [8, Chapter 2, Proposition 2]. This inverse limit will be denoted by $\pi^N(X, x)$. When X is a projective variety, this profinite group-scheme $\pi^N(X, x)$ coincides with the Tannaka dual of the category of essentially finite vector bundles on X [8, Chapter 1, Proposition 3.11].

Definition 3.2. Let X^o be an open dense subset of a normal projective variety X. Let G be a finite group scheme, and let $Z^o \rightarrow X^o$ be a G–torsor. We say that this G–torsor Z^o étale locally extends to X if there exist a connected étale cover

$$\phi : U \rightarrow X^o$$

such that the G–torsor ϕ^*Z^o extends to the normalization of X in the function field $k(U)$.

Definition 3.3. Let $X^o \subset X$ be a dense open subset. Define

$$\pi^n(X^o, x) := \lim_{\text{BL}(P) \cap X^o = \emptyset} \pi^N((X, P), x)$$

to be the inverse limit.

Proposition 3.4. As before, $X^o \subset X$ is a dense open subset. There is a natural homomorphism $\pi^N(X^o, x) \rightarrow \pi^n(X^o, x)$, which is surjective.

Proof. Let G be a finite group scheme and $f : \pi^n(X^o) \rightarrow G$ a surjection. Then f defines a functor $\text{Rep}(G) \rightarrow \text{Rep}(\pi^N(X, P))$ for some geometric branch data P on X such that $\text{BL}(P) \cap X^o = \emptyset$. But $\text{Rep}(\pi^N((X, P)))$ is same as $\text{Vect}^f(Y, P)$ which is same as $\text{Vect}^f(Y)$, where

$$f : (Y, O) \rightarrow (X, P)$$

is an étale Γ–cover. By Nori’s result a functor $\text{Rep}(G) \rightarrow \text{Vect}^f(Y)$ defines a G–torsor W on Y which is Γ–equivariant. Set $Y^o := f^{-1}(X^o)$, and let W^o be the preimage of Y^o in W. This W^o is a G–torsor on Y^o which is Γ–equivariant. But $Y^o \rightarrow X^o$ is an étale Γ–cover, and hence W^o descends to a G–torsor on X^o. Therefore, it defines a surjection $\pi^N(X^o) \rightarrow G$. This construction is compatible with epimorphism of finite group schemes, and $\pi^n(X^o)$ is the inverse limit of its finite group scheme quotients. Consequently, this construction gives a surjection from $\pi^N(X^o) \rightarrow \pi^n(X^o)$. \qed

Proposition 3.5. Let G be a finite group scheme, and let $Z^o \rightarrow X^o$ be a G–torsor which étale locally extends to X. Then G is a quotient of $\pi^n(X^o)$. Conversely, given a surjection $\pi^n((X, P)) \rightarrow G$, where P is such that $\text{BL}(P) \cap X^o = \emptyset$ and G is a finite group scheme, the associated G–torsor $Z^o \rightarrow X^o$ étale locally extends to X.

Proof. Let $Y^o \rightarrow X^o$ be a connected étale cover such that the pullback of the G–torsor Z^o to Y^o extends to the normalization of X in $k(Y^o)$ (the unique normal proper model of Y^o finite over X). By passing to the Galois closure, we may assume that $f : Y \rightarrow X$ is a Galois cover; the Galois group for f will be denoted by Γ. Let P be the branch data on X associated to f, i.e., $P = B_f$ in the notation of [5]. Then $f : (Y, O) \rightarrow (X, P)$ is an étale Γ–cover. Also, the pull back of the G–torsor $Z^o \rightarrow X^o$ to Y^o and its extension to Y is a Γ–equivariant G–torsor. Now a representation V of G induces an essentially finite Γ–equivariant
bundle V on Y. The Tannaka subcategory generated by V in the Tannaka category of Γ-equivariant essentially finite bundles on Y induces a surjection $\pi^N((X, P)) \rightarrow G$. Hence we get a surjection $\pi^n(X^o) \rightarrow G$.

For the converse, first note that since G is a finite group scheme, a surjection $\pi^n(X^o)$ factors through $\pi_N((X, P))$ for some branch data P such that $BL(P) \cap X^o = \emptyset$.

Let $f : (Y, O) \rightarrow (X, P)$ be an étale Γ-Galois cover of formal orbifolds. The surjection $\pi^N((X, P)) \rightarrow G$ by Tannaka formalism yields a finite collection S of essentially finite Γ-equivariant bundle on Y such that the Tannaka dual of the Tannaka subcategory generated by S is G. This by an equivariant version of Nori’s reconstruction, [1, Section 2], yields a Γ-equivariant G-torsor on Y. This torsor restricts to a Γ-equivariant G-torsor on $Y^o = f^{-1}(X^o)$. But $Y^o \rightarrow X^o$ is an étale Γ cover. Hence by Galois descent we get a G-torsor on X^o and by construction it étale locally extends to X. □

Let P and Q be two branch data on a normal variety X. We say that $P \geq Q$ if for all points $x \in X$ of codimension at least one and for every affine connected open neighborhood U of x,

$$P(x, U) \supset Q(x, U).$$

Proposition 3.6. Let X be a smooth projective variety over k, and let $P \geq Q$ be two geometric branch data on X. There is a fully faithful functor

$$\text{Vect}^f(X, Q) \rightarrow \text{Vect}^f(X, P)$$

that makes $\text{Vect}^f(X, Q)$ into a Tannakian subcategory of $\text{Vect}^f(X, P)$. In particular, this functor induces an epimorphism $\pi^N((X, P)) \rightarrow \pi^N((X, Q))$.

Proof. This is proved in [5, Theorem 3.7]. We note that although [5, Theorem 3.7] is stated for curves, its proof works, without any change, for all dimensions. □

4. THE KERNEL OF PROJECTION FROM $\pi^N((X, P))$ TO $\pi^N_1((X, P))$

Let $\mathcal{X} = (X, P)$ be a proper formal orbifold, and let $\text{Vect}^f(\mathcal{X})$ be the Tannakian category of essentially finite vector bundles on \mathcal{X}. We now define a new category $\text{Vect}^f_1(\mathcal{X})$.

An object of this category is a pair $\{f : (Y, Q) \rightarrow (X, P), V\}$, where f is étale and V is an object of $\text{Vect}^f(Y, Q)$ (i.e., V is an essentially finite vector bundle on (Y, Q)). Let $\{f_i : (Y_i, Q_i) \rightarrow (X, P), V_i\}$, $i = 1, 2$, be two objects, and let $f : (Y, Q) \rightarrow (X, P)$ be any étale morphism dominating f_1 and f_2; let $g_i : Y \rightarrow Y_i$ be the morphisms through which f factors. Define

$$\text{Hom}((f_1, V_1), (f_2, V_2)) := \lim_{f : (Y, Q) \rightarrow (X, P)} \text{Hom}_{\text{Vect}^f_1(Y, Q)}(g_1^* V_1, g_2^* V_2);$$
here the limit is over all étale morphisms f dominating f_1 and f_2. Since $\text{Vect}^f(Y, Q)$ is an abelian category for any proper formal orbifold (Y, Q), the category $\text{Vect}_{\text{et}}^f(\mathcal{X})$ is also abelian.

The tensor product $(f_1, V_1) \otimes (f_2, V_2)$ is defined as follows: let $f : (Y, Q) \to (X, P)$ be a dominating connected component of the fiber product of f_1 and f_2, and let p_1 and p_2 be the natural projection morphisms from this fiber product. Then

$$(f_1, V_1) \otimes (f_2, V_2) = (f, p_1^*V_1 \otimes p_2^*V_2).$$

The dual of (f_1, V_1) is (f_1, V_1^\vee). So $\text{Vect}_{\text{et}}^f(\mathcal{X})$ is a rigid tensor abelian category.

Let x be a closed point of the complement $X \setminus \text{BL}(P)$. Let \tilde{x} be a point of the universal cover $\tilde{\mathcal{X}}$ of \mathcal{X}; this means that for every finite étale connected cover $(Y, Q) \to (X, P)$ we choose a point in x over \tilde{x} in a compatible way. The point \tilde{x} defines a fiber functor $\mathcal{F}_{\tilde{x},\mathcal{X}}$ from $\text{Vect}^f(\mathcal{X})$ to the category of vector spaces Vect_k by sending $\{f : (Y, Q) \to (X, P), V\}$ to the stalk of V at the image of \tilde{x} in Y. This makes $\text{Vect}_{\text{et}}^f(\mathcal{X})$ into a Tannakian category. Let corresponding proalgebraic group scheme will be denoted by $S(X, P)$.

Theorem 4.1. Let $\mathcal{X} = (X, P)$ be a projective smooth formal orbifold. The dual group of the Tannakian category $(\text{Vect}_{\text{et}}^f(X, P), \mathcal{F}_{\tilde{x},\mathcal{X}})$ is the kernel

$$K(X, P) := \ker(\pi^N(\mathcal{X}, x) \to \pi^N(x, x)).$$

Proof. Let $S(X, P)$ denote the Tannaka dual of the category $(\text{Vect}_{\text{et}}^f(X, P), \mathcal{F}_{\tilde{x},\mathcal{X}})$. Let $f : \mathcal{Y} \to \mathcal{X}$ be a finite connected étale cover with $y \in \mathcal{Y}$ being the image of \tilde{x}. Note that there is a natural functor of Tannakian categories

$$I_{\mathcal{Y}} : \text{Vect}^f(\mathcal{Y}) \to \text{Vect}_{\text{et}}^f(\mathcal{X})$$

that sends an essentially finite vector bundle V on \mathcal{Y} to (f, V). This functor is a full embedding. Note that $\mathcal{F}_{\tilde{x},\mathcal{Y}} := \mathcal{F}_{\tilde{x},\mathcal{X}} \circ I_{\mathcal{Y}}$ is a fiber functor from $\text{Vect}^f(\mathcal{Y})$ to the category Vect_k of k-vector spaces. The functor $I_{\mathcal{Y}}$ in (4.1) induces a homomorphism of the duals

$$S(X, P) \to \pi^N(\mathcal{Y}, y).$$

Also the pullback f^* defines a functor $\text{Vect}^f(\mathcal{X}) \to \text{Vect}^f(\mathcal{Y})$, and we have an isomorphism of the functors $I_{\mathcal{X}}$ and $I_{\mathcal{Y}} \circ f^*$. Hence the homomorphism $S(X, P) \to \pi^N(\mathcal{X}, x)$, constructed using the homomorphisms in (4.2), factors through $S(X, P) \to \pi^N(\mathcal{Y}, y)$ for every finite étale cover $\mathcal{Y} \to \mathcal{X}$. Consequently, the image of $S(X, P)$ in $\pi^N(\mathcal{X}, x)$ lies in $K(X, P)$.

Let $\{f : \mathcal{Y} \to \mathcal{X}, V\}$ be an object of $\text{Vect}^f_{\text{et}}(\mathcal{X})$. Then V embeds into f^*f_*V. Also for a vector bundle W on \mathcal{X} the objects $\{f : \mathcal{Y} \to \mathcal{X}, f^*W\}$ and $\{\text{id} : \mathcal{X} \to \mathcal{X}, W\}$ are isomorphic. Hence $\{f : \mathcal{Y} \to \mathcal{X}, V\}$ is a subobject of $I_{\mathcal{X}}(V)$. So an automorphism of $\mathcal{F}_{\tilde{x},\mathcal{X}}$ which restricts to identity automorphism on the category $\text{Vect}^f(\mathcal{X})$ must be identity. Hence the induced homomorphism $S(X, P) \to K(X, P)$ is injective.

Let Φ be an automorphism of the fiber functor $F_x : \text{Vect}^f(\mathcal{X}) \to \text{Vect}_k$ such that its image in $\pi^N_{\text{et}}(\mathcal{X}, x)$ is trivial. So $\Phi \in \pi^N(\mathcal{Y}, y)$ for every étale connected covering $\mathcal{Y} \to \mathcal{X}$ and any point $y \in Y$ lying above x. Therefore, Φ is an automorphism of the fiber functor $F_y : \text{Vect}^f(\mathcal{Y}) \to \text{Vect}_k$.

Let \(O := \{ f : Y \to X, V \} \) be an object of \(\text{Vect}_l^f(X) \); define a map \(\tilde{\Phi} \) from \(\mathcal{F}_x(X, Q) \) to itself to be the map \(\Phi \) from \(F_y(V) \) to itself. Note that \(\tilde{\Phi} \) defines an automorphism of the fiber functor \(\mathcal{F}_x(X) \) whose restriction to \(F_x \) is \(\Phi \). Hence the natural map \(S(X, P) \to K(X, P) \) is also surjective and so it, being injective also, is an isomorphism.

Corollary 4.2. Let \(X \) be a projective normal variety, and let \(P \geq Q \) be two geometric branch data on \(X \). Then we have the following morphism of exact sequences in which all the vertical arrows are surjective:

\[
\begin{array}{c}
1 \longrightarrow K(X, P) \longrightarrow \pi^N((X, P)) \longrightarrow \pi^e_1((X, P)) \longrightarrow 1 \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
1 \longrightarrow K(X, Q) \longrightarrow \pi^N((X, Q)) \longrightarrow \pi^e_1((X, Q)) \longrightarrow 1
\end{array}
\]

Proof. The surjectivity of the third arrow follows from \([6]\). The surjectivity of the first (respectively, second) arrow follows from the observation that \(\text{Vect}_l^f(X, Q) \) (respectively, \(\text{Vect}_l^e(X, Q) \)) is a fully faithful subcategory of \(\text{Vect}_l^f(X, P) \) (respectively, \(\text{Vect}_l^e(X, P) \)). \(\square\)

Corollary 4.3. Let \(X \) be a projective normal variety and \(X^o \) be an open subset of \(X \) such that \(X \setminus X^o \) is a normal crossing divisor. Then we have the following morphism of exact sequences in which all the vertical arrows are surjective:

\[
\begin{array}{c}
1 \longrightarrow K^o \longrightarrow \pi^a(X^o) \longrightarrow \pi^e_1(X^o) \longrightarrow 1 \\
\downarrow \quad \downarrow \quad \downarrow \\
1 \longrightarrow K \longrightarrow \pi^N(X) \longrightarrow \pi^e_1(X) \longrightarrow 1
\end{array}
\]

Proof. This follows from Corollary 4.2 by taking \(Q \) to be the trivial branch data and taking the inverse limit over the branch data \(P \) whose branch locus lie in \(X \setminus X^o \). \(\square\)

Remark 4.4. Let \(K^t \) be the kernel of the epimorphism \(\pi^N(X^o) \to \pi^a_1(X^o) \). It is not clear to us whether \(K^t \) is trivial. But the image of \(K^t \) in \(K \) under the natural homomorphism induced from \(\pi^N(X^o) \to \pi^N(X) \) is trivial, since \(\pi^N(X^o) \to \pi^N(X) \) factors through \(\pi^a_1(X^o) \).

Example 4.5. Let \(X = \mathbb{P}^1, Q = O, P \) to be tame ramification at four points of \(\mathbb{P}^1 \) of order 2 (i.e., characteristic \(p \neq 2 \)). Let \(E \to X \) be a \(\mathbb{Z}/2\mathbb{Z} \)-cover by an elliptic curve of \(X = \mathbb{P}^1 \). Let \(V \) be a non-trivial Frobenius-trivial \(\mathbb{Z}/2\mathbb{Z} \)-equivariant bundle on the elliptic curve. This can be constructed by starting with a non-trivial Frobenius-trivial bundle \(L \) on \(E \) (for instance take the bundle associated to \(\mu_p \) torsor which arises from the kernel of the Frobenius morphism). Let \(V = L \oplus g^*L \) where \(g \in \mathbb{Z}/2\mathbb{Z} \) is the nontrivial element. This shows that \(K(\mathbb{P}^1, P) \) is non-trivial but \(K(\mathbb{P}^1, Q) \) is trivial (as \(\pi^N(\mathbb{P}^1, Q) = \pi^N(\mathbb{P}^1) \) is trivial). Hence \(K(X, P) \to K(X, Q) \) is not an isomorphism. In particular, the map \(K^o \to K \) in the above corollary need not be an isomorphism. This also demonstrates that \(\pi^N((X, P)) \not\cong \pi^N(X) \times \pi^e_1(X) \). \(\pi^e_1((X, P)) \) in general.

References

[1] Biswas, I., Dey, A., Poddar, M., Tannakian classification of equivariant principal bundles on toric varieties. *Transform. Groups* (in press), arXiv:1806.02526.
[2] Deligne, P., Milne, J. S. (1982). Tannakian Categories,
Hodge cycles, motives, and Shimura varieties,
by P. Deligne, J. S. Milne, A. Ogus and K.-Y. Shih, pp. 101–228, Lecture Notes in Mathematics, 900,
Springer-Verlag, Berlin-Heidelberg-New York, 1982.

[3] Harbater, D. (2003). Patching and Galois theory,
Galois groups and fundamental groups, 313–424,
Math. Sci. Res. Inst. Publ., 41, Cambridge Univ. Press, Cambridge, 2003.

[4] Kumar, M., Majumder, S. (2018). Parabolic bundles in positive characteristic.
J. Ramanujan Math. Soc. 33, 1–36.

[5] Kumar, M., Parameswaran, A. J. (2019). Formal orbifolds and orbifold bundles in positive characteristic.
Internat. J. Math. 30, no. 12, 1950067.

[6] Kumar, M. (2019). Ramification theory and formal orbifolds in arbitrary dimension.
Proc. Indian Acad. Sci. Math. Sci. 129, no. 3, Art. 38.

[7] Nori, M. V. (1976). On the representations of the fundamental group,
Compositio Math. 33, 29–41.

[8] Nori, M. V. (1982). The Fundamental Group-Scheme.
Proc. Ind. Acad. Sc. (Math. Sci.) 91, 73–122.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Bombay 400005, India

Email address: indranil@math.tifr.res.in

Statistics and Mathematics Unit, Indian Statistical Institute, Bangalore 560059, India

Email address: manish@isibang.ac.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Bombay 400005, India

Email address: param@math.tifr.res.in