Letter to the Editor

Bevacizumab and Triamcinolone for Branch Vein Occlusion

To the Editor,

I write to you with regard to the article by Kim and Park, titled ‘Comparison between intravitreal bevacizumab and triamcinolone for macular edema secondary to branch retinal vein occlusion’ [1]. Their study compared the effects of standard doses of bevacizumab (1.25 mg) and triamcinolone (4 mg) intravitreally for the treatment of macular edema (ME) secondary to branch retinal vein occlusion (BRVO). The results in terms of improvements in visual acuity and central macular thickness were similar between those treated with intravitreal bevacizumab (IVB) and those treated with intravitreal triamcinolone (IVT). Despite the seemingly promising results, there are two concerns we would like to address.

First, subjects were given treatment without being given an observation period to allow for spontaneous resolution. The natural history of BRVO can be variable and can resolve without treatment, especially for cases in which perfusion is re-established after the initial attack. In the classic Branch Vein Occlusion Study (BVOS) [2], subjects were observed for spontaneous resolution for at least 12 weeks, and, in the cases in which resolution was unlikely, treatment was offered. In the current study, both IVB and IVT were given without an observation period in which spontaneous resolution may occur. Although the mean time from diagnosis to injection was more than 12 weeks in both groups, some patients received injection treatment as early as 0 weeks after diagnosis of BRVO (Table 1) [1]. This may only add potential risks to eyes in which spontaneous resolution can occur. Furthermore, this precluded comparison with the BVOS, since the treatment time frames were different.

Next, the only well-established, evidence-based treatment of choice for macular edema secondary to BRVO is grid laser treatment, according to the BVOS [2] and the recent Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study [3]. In the multi-center randomized trial SCORE study, IVT (either 1 mg or 4 mg) failed to produce a superior effect, when compared to that of subjects who received grid laser treatment, and risk of adverse events was highest in the 4 mg-IVT treatment arm. Hence, to date, grid laser treatment remains the benchmark for other new treatment options in

Table 1. Comparison of patient demographics and characteristics of intravitreal bevacizumab and triamcinolone acetone injection group

	Bevacizumab injection group	Triamcinolone acetone injection group	p-value between injection groups
Age (mean±SD, range)	56.86±9.64 (37-73)	59.42±11.56 (33-78)	0.407
Sex (%)			
Male	10 (45.5)	11 (39.3)	0.621†
Female	12 (54.5)	17 (60.7)	
Pre injection BCVA (logMAR, mean±SD)	0.60±0.41	0.67±0.28	0.160*
Pre injection CMT (μm, mean±SD)	399.64±128.32	466.39±121.29	0.057*
Pre injection IOP (mmHg, mean±SD)	13.09±2.07	13.36±2.57	0.694
Mean time between injection and diagnosis (wk, range)	13.6 (0-22)	14.4 (8-28)	
Associated systemic disease (%)			
Hypertension	14 (63.6)	16 (57.1)	
Diabetes mellitus	5 (22.7)	7 (25.0)	
Hyperlipidemia	2 (9.0)	3 (10.7)	

BCVA=best corrected visual acuity; logMAR=logarithm of the minimal angle of resolution; CMT=center macular thickness; IOP=intracocular pressure.

*p-Test; †Chi-square test.

Received: February 9, 2010 Accepted: May 7, 2010

Reprint requests to Ian Yat Hin Wong. Department of Ophthalmology, Tung Wah Eastern Hospital, 19 Eastern Hospital Rd, Hong Kong. Tel: 852-2162-6901, Fax: 852-2882-9909, E-mail: ianyhwong@gmail.com

© 2010 The Korean Ophthalmological Society

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
comparing effects in eyes with vision loss due to ME from
BRVO [3]. That being said, if the authors intend to demon-
strate the effectiveness of IVB, comparison with subjects that
had grid laser treatment, rather than IVT, is required.

Ian Yat Hin Wong
Department of Ophthalmology, Tung Wah Eastern Hospital, Hong
Kong

Conflict of Interest
No potential conflict of interest relevant to this article was
reported.

References
1. Kim JY, Park SP. Comparison between intravitreal bevacizumab
and triamcinolone for macular edema secondary to branch
retinal vein occlusion. Korean J Ophthalmol 2009;23:259-65.
2. Argon laser photocoagulation for macular edema in branch
vein occlusion. The Branch Vein Occlusion Study Group. Am
J Ophthalmol 1984;98:271-82.
3. Scott IU, Ip MS, VanVeldhuisen PC, et al. A randomized trial
comparing the efficacy and safety of intravitreal triamcinolone
with standard care to treat vision loss associated with macular
Edema secondary to branch retinal vein occlusion: the
Standard Care vs Corticosteroid for Retinal Vein Occlusion
(SCORE) study report 6. Arch Ophthalmol 2009;127:1115-28.
4. Guthoff R, Meigen T, Hennemann K, Schrader W. Comparison
of bevacizumab and triamcinolone for treatment of macular
edema secondary to branch retinal vein occlusion: a single
injection-course of BRVO with ME has special significance.

Reply from the authors
First, the natural course of branch retinal vein occlusion
(BRVO) with macular edema (ME) is now known to be very
diverse, resolving without treatment in many cases [1]. Thus,
I think that it is right to control the initial treatment period.
In this regard, I agree with the comment of Wong I. However,
in our study, the mean times and ranges between diagnosis and
injection were 14.4 weeks (8 to 28 weeks) in the intravitreal
triamcinolone (IVT) group and 13.6 weeks (0 to 22 weeks) in
the IVB group. According to the distribution, in most cases,
the time frames were more than eight weeks, with only a
small number of patients in each group having 0 to 4 weeks
between diagnosis and treatment. The distribution tended to
be slightly negatively skewed. In addition, there were no
differences in the results, even if we excluded these cases
with the time frames of 0 to 4 weeks. In conclusion, even if
we controlled the interval between diagnosis and initial
treatment, the results suggest that there is no significant
difference. However, additional research, including more
control subjects, may be warranted.

Secondly, the recent results of the Standard Care vs
Corticosteroid for Retinal Vein Occlusion study have shown
that, just as we suspected, grid laser treatment is effective and
safe treatment [2]. Based on these results, grid laser treat-
ment became the mainstay in the treatment of BRVO with
ME [2] and is expected to play an important role in the treat-
ment of other disease entities. Unfortunately, just as Wong I
commented, we do not compare our treatment with efficacy
and safety of grid laser treatment. However, when with intra-
vitreal bevacizumab (IVB) treatment was introduced and
performing off-label uses in many cases, we intend to study
the differences in effectiveness and adverse events between
IVT and IVB from the viewpoint of “injection” [3-5]. Among
the recent studies, Cheng et al. [5] reported similar results to
those of our study. Their study is more meaningful with-
respect to the “Asian race”. Consequently, our study shows
that IVB may be a useful treatment option, as compared with
IVT, as it results in fewer adverse events. Also, we performed
a single injection in each group and showed that the single
injection-course of BRVO with ME has special significance.

Jin Young Kim, Sung Pyo Park
Department of Ophthalmology, Kangdong Sacred Heart Hospital,
Hallym University College of Medicine, Seoul, Korea

Conflict of Interest
No potential conflict of interest relevant to this article was
reported.

References
1. Argon laser photocoagulation for macular edema in branch
vein occlusion. The Branch Vein Occlusion Study Group. Am
J Ophthalmol 1984;98:271-82.
2. Scott IU, Ip MS, VanVeldhuisen PC, et al. A randomized trial
comparing the efficacy and safety of intravitreal triamcinolone
with standard care to treat vision loss associated with macular
Edema secondary to branch retinal vein occlusion: the
Standard Care vs Corticosteroid for Retinal Vein Occlusion
(SCORE) study report 6. Arch Ophthalmol 2009;127:1115-28.
3. Hou J, Tao Y, Jiang YR, et al. Intravitreal bevacizumab versus
triamcinoloe acetonide for macular edem due to branch retinal
vein occlusion: a matched study. Chin Med J 2009;122:2695-9.
4. Guthoff R, Meigen T, Hennemann K, Schrader W. Comparison
of bevacizumab and triamcinolone for treatment of macular
edema secondary to branch retinal vein occlusion in a pair-
matched analysis. Ophthalmologica 2010;224:319-24.
5. Cheng KC, Wu WC, Chen KJ. Intravitreal triamcinolone ace-
tonide vs bevacizumab for treatment of macular oedema sec-
dary to branch retinal vein occlusion. Eye 2009;23:2023-33.