Addendum: Attenuation of the intensity within a superdeformed band

A. J. Sargeant, M. S. Hussein, and M. P. Pato
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, SP, Brazil

N. Takigawa
Department of Physics, Tohoku University, Sendai, 980-8578, Japan

M. Ueda
Akita National College of Technology, Iijima Bunkyo-cho 1-1, Akita, 011-8511, Japan
(Dated: January 28, 2004)

We investigate a random matrix model [Phys. Rev. C 65 024302 (2002)] for the decay-out of a superdeformed band as a function of the parameters: Γ_i/Γ_S, Γ_N/D, Γ_S/D and Δ/D. Here Γ_i is the spreading width for the mixing of an SD state $|0\rangle$ with a normally deformed (ND) doorway state $|d\rangle$, Γ_S and Γ_N are the electromagnetic widths of the the SD and ND states respectively, D is the mean level spacing of the compound ND states and Δ is the energy difference between $|0\rangle$ and $|d\rangle$. The maximum possible effect of an order-chaos transition is inferred from analytical and numerical calculations of the decay intensity in the limiting cases for which the ND states obey Poisson and GOE statistics. Our results show that the sharp attenuation of the decay intensity cannot be explained solely by an order-chaos transition.

PACS numbers: 21.10.Re, 23.20.Lv, 24.60.Dr, 24.60.Lz

In superdeformed (SD) bands the total intraband decay intensity of the super-collective $E2\gamma$ transitions disappear suddenly due to tunneling through the barrier separating the superdeformed (SD) and normally deformed (ND) minima. [1, 2, 3, 4]. The theoretical calculation of the spin at which the decay-out occurs for different mass regions and the steepness of the attenuation of the decay intensity are subject to uncertainties concerning the density of ND states and the parameters describing the deformation barrier and collective motion [5, 6]. In Ref. [6] Åberg suggested an alternative explanation of the sharp decay-out: an order-chaos transition in the ND states enhances the tunneling probability and consequently the decay-out is a manifestation of “chaos assisted tunneling”.

In Ref. [7] the authors investigated Åberg’s suggestion by calculating the decay intensity as a function of the chaoticity parameter which produces a transition from order to chaos. We found that increasing the chaoticity did not enhance the decay out and concluded on this basis that the decay-out must be due to the spin dependence of the barrier. Subsequently, Åberg [8] criticised our assumption of an energy difference of zero between the decaying SD state and the ND doorway state to which it is assumed to decay. In the following we study the decay intensity as a function of the energy difference and as function of the other parameters relevant to the decay-out, calculating the decay intensity in the limits that the ND states obey Poisson and GOE statistics. This permits us to infer the maximum possible effect that an order-chaos transition in the ND states can have on the decay intensity. Our results reinforce our belief that the decay-out is mostly due to the spin dependence of the barrier.

The total average intra-band decay intensity of an SD band is given by [10, 11, 15]

$$I_{\text{av}} = \frac{\Gamma_S}{2\pi} \int_{-\infty}^{\infty} dE \frac{1}{|E - E_0 - 2\pi |V_{0d}| R_d|^2 + |\Gamma_S + 2\pi |V_{0d}|^2 S_d|^2/4}. \tag{1}$$

The intermediate SD state in the two-step decay which Eq. (1) describes is denoted $|0\rangle$ and has energy E_0. The
electromagnetic width for the intra-band decay is Γ_S. In what follows we assume that $|0\rangle$ only mixes (by tunnelling through the barrier in deformation space separating the SD and ND wells) with one special ND doorway state $|d\rangle$ whose energy is E_d. The interaction energy of $|0\rangle$ and $|d\rangle$ is V_{0d}. The state $|d\rangle$ is subsequently mixed by the residual interaction with the remaining ND states, $|Q\rangle$, $Q = 1,...,N$, having the same spin as $|0\rangle$ and $|d\rangle$. This strong doorway assumption was called model B in Ref. [7]. The $|Q\rangle$ lie in the interval $L = ND$ where D denotes the mean spacing in energy of the $|Q\rangle$. The functions $R_d(E)$ and $S_d(E)$ describe the manner in which $|d\rangle$ is distributed in energy over the remaining ND states and are given by

$$R_d(E) = \frac{1}{2\pi} \sum_{Q=0}^{N} |c_d(Q)|^2 \frac{E - E_Q}{(E - E_Q)^2 + \Gamma_N^2/4}$$

and

$$S_d(E) = \frac{1}{2\pi} \sum_{Q=0}^{N} |c_d(Q)|^2 \frac{\Gamma_N}{(E - E_Q)^2 + \Gamma_N^2/4}$$

respectively, where Γ_N is the electromagnetic width of the ND states.

In Ref. [7] the effect of the chaoticity of the ND states on I_{av} was investigated by varying the strength of the residual interaction of the $|Q\rangle$ and their interaction with $|d\rangle$, both assumed to be proportional to a parameter λ (the chaoticity parameter) which may be varied continuously in the range $0 < \lambda \leq 1$. The limiting value $\lambda = 0$ results in the $|Q\rangle$ having Poisson statistics (regularity) while $\lambda = 1$ results in their having GOE statistics (chaos). The value of λ determines the shape of $S_d(E)$ [and $R_d(E)$] which is precisely the strength function that was investigated as a function of λ in Ref. [10]. In Ref. [8] it was pointed out that the calculations of Ref. [7] were restricted to $E_d = E_0$. We now study the Poisson limit of model B of Ref. [7] for $E_d \neq E_0$.

As $\lambda \to 0$ and $\Gamma_N \to 0$, $S_d(E) \to \delta(E - E_d)$. For non-zero λ, $S_d(E)$ broadens with increasing λ until when $\lambda = 1$ it takes a form well approximated by GOE.

Inserting Eq. (11) into Eq. (10) we find that

$$I_{av}^{\text{GOE}} = (1 + \frac{\Gamma}{\Gamma_S})^{-1},$$

as long as $\Gamma_S + \Gamma \ll L$.

Instead of studying the interpolation between the limits $\lambda = 0$ and $\lambda = 1$ by numerically diagonalising random matrices and performing ensemble averages as was done in Ref. [7, 10], we restrict ourselves to the limiting case $\lambda = 0$ and use two representations of $\delta(E - E_d)$ broadened by Γ_N: the Breit-Wigner function,

$$S_d^{\text{BW}}(E) = \frac{1}{2\pi} \frac{\Gamma_N}{(E - E_d)^2 + \Gamma_N^2/4},$$

and the box function,

$$S_d^{\text{BOX}}(E) = \begin{cases} \frac{2/(\pi \Gamma_N)}{\Gamma_N}, & |E - E_d| \leq \frac{\pi \Gamma_N}{2} \\ 0, & |E - E_d| > \frac{\pi \Gamma_N}{2} \end{cases}.$$

Eq. (11) for I_{av} depends on four parameters: Γ_S, $|V_{0d}|^2$, Γ_N and the distance in energy separating $|d\rangle$ from $|0\rangle$, $\Delta = E_d - E_0$. It is useful to introduce a spreading width defined by $\Gamma = 2\pi |V_{0d}|^2/D$. Upon making the change of integration variable $x = (E - E_0)/D$, Eq. (11) takes the form

$$I_{av}^{\text{GOE}} = \int_{-\infty}^{\infty} \frac{dx}{2\pi} \frac{dx}{D} \frac{\Gamma_N}{(x^2 + \Gamma^2)^2 + \Gamma_N^2/4}.$$
form (we set the energy shift $R_d(E) = 0$ as doing so does not modify our conclusions)

$$I_{\text{av}} = \frac{\Gamma_S/D}{2\pi} \frac{1}{x^2 + \left(\Gamma_S/D\right)^2 \left[1 + \frac{1}{\pi} \arctan \theta_+ \right.}$$

Inserting Eq. (4) for S_d into Eq. (8) we obtain

$$I_{\text{av}}^{\text{BOX}} = 1 + \frac{1}{\pi} \left[\arctan \theta_+ - \arctan \theta_- \right. + \frac{1}{1 + \frac{2\Gamma^4/S_N}{\pi \Gamma_S/D}} \left[\arctan \phi_+ - \arctan \phi_- \right] \right],$$

where

$$\theta_{\pm} = \frac{1}{\Gamma_S/D} \left[2\Delta/D \pm \pi \Gamma_N/D \right]$$

and

$$\phi_{\pm} = \frac{\theta_{\pm}}{1 + \frac{2\Gamma^4/S_N}{\pi \Gamma_S/D}}.$$

From Eqs. (9) and (11) it is seen that as $\lambda \to 0$, I_{av} is a function of four dimensionless variables: Γ^4/Γ_S, Γ_N/D, Γ_S/D and Δ/D. Figures 1, 2, 3, 4 show I_{av} vs. Δ/D, Γ^4/Γ_S and Γ_N/D and Γ_S/D respectively. For the Poisson limit a significant dependence of I_{av} on all four parameters is observed. In all the graphs $D = 16.3$ eV, $\Gamma_S = 4.8 \times 10^{-3}$ eV and $\Gamma_N = 97 \times 10^{-6}$ eV which are the values for ^{194}Hg-1 at spin 12 h. The triangles and squares represent the Breit-Wigner and box function representations of the Poisson limit respectively, whilst the circles represent the GOE limit. The decay-out is enhanced by increasing the degree of chaos if the triangles or squares are above the circles and it is hindered if the triangles or squares are below the circles.

The authors of Ref. [4] obtained a spreading width of $\Gamma^4 = 0.025$ eV ($\Gamma^4/\Gamma_S = 258$) from an experimental value for the total intraband decay intensity at spin 12 h equal to 0.58, using the theory of Ref. [12]. They assume that the fluctuation contribution dominates ($I_{\text{av}}^{\text{GOE}} = 0.259$). It is clear from Fig. 4 that the extraction of Γ^4 from experimental data using the results for the Poisson limit of the present paper would be extremely sensitive to Δ. The energy difference Δ is an additional unknown parameter.

From Figs. 1-3, we see that increasing the chaoticity, λ, from 0 to 1 only hinders the decay-out when $\Delta \sim 0$ as was observed by Åberg [5]. However, even though a chaos enhancement is obtained for Δ sufficiently large, it is more convincing to explain the decay-out by an increase in Γ^4/Γ_S, than by an increase in λ, for the following reasons: Firstly, we see from Figs. 1 to 3 that increasing λ from 0 to 1 cannot exhaust all of the intraband decay intensity unless $\Gamma^4/\Gamma_S \to \infty$. Indeed, the extent to which the order-chaos transition may exhaust the intra-band decay intensity is determined solely by Γ^4/Γ_S, $I_{\text{av}}^{\text{GOE}} = (1 + \Gamma^4/\Gamma_S)^{-1}$. For example, when $\Gamma^4/\Gamma_S = 0.01$, an order-chaos transition will reduce (if $\Delta \gg 0$) I_{av} from 1 to 0.99 - a rather small effect. Further, when $\Gamma^4/\Gamma_S = 0$ it is impossible for an increase of chaos to trigger the decay-out since $I_{\text{av}} = 1$ for values of λ (see Eq. 5); Secondly, a chaos-order transition is not necessary to trigger the decay-out since $I_{\text{av}} \to 0$ as $\Gamma^4/\Gamma_S \to \infty$ whatever the values of λ and Δ as long as Γ_N has a non-zero value [see Eq. 8]. It may be seen from Fig. 2 that this is the case even for $\lambda = 0$ (when $S_d(E)$ is described by the Breit-Wigner function).

It is true to say that λ modifies the spin at which the decay-out occurs as can be seen from Fig. 2 (see also Fig. 3 of Ref. [7]). However, the arguments of the preceding paragraph convince us that the spin dependence of Γ^4/Γ_S is of more importance. Since Γ^4/Γ_S is determined by the deformation barrier these arguments reinforce our belief in the conclusion of Ref. [7] that the attenuation of the intra-band intensity with decreasing spin is mostly due to the spin dependence of the barrier.

[1] A. N. Wilson, G. D. Dracoulis, A. P. Byrne, P. M. Davidson, G. J. Lane, R. M. Clark, P. Fallon, A. Görgen, A. O. Macchiavelli, and D. Ward, Phys. Rev. Lett. 90, (2003).
[2] T. Lauritsen, M. P. Carpenter, T. Dissing, P. Fallon, B. Herskind, R. V. Janssens, D. G. Jenkins, T. L. Khoo,
F. G. Kondev, A. Lopez-Martens, et al., Phys. Rev. Lett. 88, 042501 (2002).

[3] E. S. Paul, S. A. Forbes, J. Gizon, K. Hauschild, I. M. Hibbert, D. T. Joss, P. J. Nolan, B. M. Nyakó, J. A. Sampson, A. T. Semple, et al., Nucl. Phys. A690, 341 (2001).

[4] A. Dewald, R. Kühn, R. Peusquens, P. von Brentano, R. Krücken, M. A. Deleplanque, I. Y. Lee, R. M. Clark, P. Fallon, A. O. Macchiavelli, et al., Phys. Rev. C 64, 054309 (2001).

[5] K. Yoshida, M. Matsuo, and Y. R. Shimizu, Nucl. Phys. A696, 85 (2001).

[6] S. Åberg, Phys. Rev. Lett. 82, 299 (1999).

[7] A. J. Sargeant, M. S. Hussein, M. P. Pato, N. Takigawa, and M. Ueda, Phys. Rev. C 65, 024302 (2002).

[8] S. Åberg, Phys. Rev. C 68, 069801 (2003).

[9] R. Krücken, A. Dewald, P. von Brentano, and H. A. Weidenmüller, Phys. Rev. C 64, 064316 (2001).

[10] A. J. Sargeant, M. S. Hussein, M. P. Pato, and M. Ueda, Phys. Rev. C 61, 011302 (2000).

[11] H. A. Weidenmüller, P. von Brentano, and B. R. Barrett, Phys. Rev. Lett. 81, 3603 (1998).

[12] J.-z. Gu and H. A. Weidenmüller, Nucl. Phys. A660, 197 (1999).

[13] A. J. Sargeant, M. S. Hussein, M. P. Pato, and M. Ueda, Phys. Rev. C 66, 064301 (2002).

[14] M. S. Hussein, A. J. Sargeant, M. P. Pato, N. Takigawa, and M. Ueda (2003), to appear in Progress of Theoretical Physics, nucl-th/0312129.

[15] Eq. (11) is in fact the background contribution to the average decay intensity. The fluctuation contribution should be added to I_{av} [12, 13, 14]. Further, it appears possible that the variance of the decay intensity contains useful information about the decay-out mechanism [12, 13, 14].