Chapter

Effect of Insecticides on Natural-Enemies

Mohamed Abdel-Raheem

Abstract

Pesticides management options for control of invertebrate pests in many parts of the world. Despite an increase in the use of pesticides, crop losses due to pests have remained largely unchanged for 30–40 years. Beyond the target pests, broad-spectrum pesticides may affect non-target invertebrate species, including causing reductions in natural enemy population abundance and activity, and competition between pest species. Assays of invertebrates against weathered residues have shown the persistence of pesticides might play an important part in their negative impacts on natural enemies in the field. A potential outcome of frequent broad-spectrum pesticide use is the emergence of pests not controlled by the pesticides but benefiting from reduced mortality from natural enemies and competitive release, commonly known as secondary pests.

Keywords: effect, insecticides, natural enemies

1. Introduction

Pesticides management options for control of invertebrate pests in many parts of the world [1, 2]. Despite an increase in the use of pesticides, crop losses due to pests have remained largely unchanged for 30–40 years [3]. Beyond the target pests, broad-spectrum pesticides may affect non-target invertebrate species [4], including causing reductions in natural enemy population abundance and activity [5, 6], and competition between pest species [7]. Assays of invertebrates against weathered residues have shown the persistence of pesticides might play an important part in their negative impacts on natural enemies in the field [8].

A potential outcome of frequent broad-spectrum pesticide use is the emergence of pests not controlled by the pesticides but benefiting from reduced mortality from natural enemies and competitive release, commonly known as secondary pests [9–11]. Secondary pest outbreaks are challenging as they may also be caused by other mechanisms, which inherently make it difficult to determine how frequently pesticide use results in this outcome [10]. In cotton fields, it was estimated that 20% of late-season pesticide costs were attributable to secondary pest outbreaks caused by early-season pesticide applications for Lygus pests [10]. Higher numbers of cotton aphids, Aphis gossypii Glover and spider mites, Tetranychus urticae Koch were found in cotton fields that received early-season applications of insecticides against Helicoverpa spp. [5, 6].

One standardized approach for assessing non-target impacts of pesticides is the International Organization for Biological and Integrated Control—Pesticides and Beneficial Organisms (IOBC) rating system [12–14]. Subsequently, more bioassays
Insecticides

under field conditions are needed to incorporate the dynamic interaction between pest populations and their natural enemy communities [15] and the environmental context at the time of application [16–18].

In Australian broad-acre grains the pest management practitioners are primarily concerned with pesticide efficacy, crop phytotoxicity, and cost; seldom are broader impacts of pesticides included in decision-making [19–21]. Chlorpyrifos is applied for the control of pests such as earwigs, isopods, and millipedes (Portuguese millipede, Ommatoiulus moreleti Lucas, 1860) [15], despite not being registered specifically to control those pests. A reduced application rate of broad-spectrum pesticides may lessen the impact on natural enemies but remain efficacious against pests [5, 22]. Repeated applications of broad-spectrum pesticides to control typical pest species are common in broad-acre crops, in particular canola [21] and pulses [23], therefore growers cannot often relate the pest numbers observed in a field to likely yield losses and adjust pesticide application [24]. The outcome is that pesticides are often applied prophylactically or in response to some observed crop damage that may or may not result in yield loss.

2. Indirect effects of pesticides on natural enemies

The indirect effects of pesticides on natural enemies have not been studied as extensively compared to direct effects, this chapter presents the indirect effects of pesticides that have primarily involved evaluating fecundity and longevity [25–35].

Prey consumption is the most important to successfully integrating natural enemies with pesticides and prevents indirect consequences on population dynamics [36, 37].

Some factors affiliated with natural enemies that may influence the indirect effects of pesticides include natural enemy age, type of natural enemy, life stages exposed to pesticides, and sex [38, 39]. Indirect affect may be related to residues remaining after a foliar application [40, 41]. Residues remaining after application may indirectly affect parasitoids by inhibiting adult emergence [42].

Natural enemies, indirectly affected by feeding on contaminated honeydew excreted by phloem-feeding insect prey [43, 44]. Certain pesticides may also exhibit repellent activity [45, 46] or alter host plant physiology [47, 48] indirectly affecting the ability of natural enemies to regulate existing arthropod pest populations [49].

3. Systemic insecticides

Applied as granules have been promoted to be relatively non-toxic to natural enemies [49–51]. However, insecticides as systemic effect exhibit indirect effects against natural enemies via several mechanisms of prey floral parts contaminated with the active ingredients [52–54]. Systemic insecticides may indirectly influence natural enemies if the mortality of prey populations is high [55, 56].

Natural enemies decrease the populations during starvation or dispersal [55, 57–59]. This effect depends on the foraging efficiency of the specific natural enemy. Decrease quantity or density of available prey or decrease their quality such that they are not acceptable as a food source, indirectly affected on larvae and adults or female parasitoids not lay eggs. Reproduction, foraging, fecundity, and longevity [33].

The active ingredient of systemic insecticide is distributed into flower parts indirectly impact natural enemies that feed on plant pollen or nectar such as minute pirate bug, Orius spp., which feed on plants during their life cycle [60–62], After feeding on the nectar of buckwheat (Fagopyrum esculentum) plants adults of, Anagyrus pseudococci Microplitis croceipes after feeding on the extrafloral nectaries
of cotton plants was decreased foraging ability and longevity [63]. The application method and possibly timing of application may influence any indirect effects on parasitoids that feed on flower pollen and nectar as a food source [63]. Translocation of systemic insecticides into flowers indirectly affect natural enemies by altering foraging behavior as has been shown with the pink lady beetle, the green lacewing, and the parasitoid, *A. pseudococci* [53, 62]. The ability of systemic insecticides, when applied to the soil or growing medium as a drench or granule, to move into floral parts contingent on water solubility, application rate, and plant type [38, 63].

4. Insect growth regulators

Insect growth regulators are active directly on immature stages of some insect pests, there are three types of insect growth regulators: juvenile hormone mimics, chitin synthesis inhibitors, and ecdysone antagonists [64–69].

4.1 Pyriproxyfen

Pyriproxyfen, a juvenile hormone mimic is not indirect harmful effects against adult female oviposition and egg viability of green lacewing, *C. carnea* [70–72]. Also, not indirect effects on development time, female longevity, and fertility of *Orius* sp. [72]; exposure to pyriproxyfen delayed development and decreased the rate of parasitism of, *Hyposoter didymator* [73], and demonstrated to substantially alter of development time on *Chrysoperla rufilabris* of immatures [74], also, did not indirect impact against *Delphastus catalinae* female fecundity [70].

Fifth instars of *Podisus maculiventris* exposure to pyriproxyfen did not an indirect effect against reproduction. *Encarsia pergandiella* and *Encarsia transvena* are not indirect affect after exposure while *Encarsia formosa* exhibited decreased rates of emergence [75].

4.2 Kinoprene

Kinoprene is indirectly harmful against natural enemies by inhibiting adult emergence of, *Opius dimidiatus* and *Aphidius nigripes* [76, 77]. Kinoprene did not indirectly affect parasitoid emergence from *Planococcus citri* mummies [78]. Also, it inhibits adult emergence against some parasitoids [79].

4.3 Fenoxycarb

It is a juvenile hormone analog [80, 81] that has shown to be indirectly harmful to some natural enemies. It is delay development time from of pupae and adult of *C. rufilabris* [81], also, delay development of third instar larvae but not first instar larvae. Also, reproduction of females is inhibiting when second and third instars were initially exposed to it [82, 83]. Also, the same result against third instar larvae of *C. carnea* [84]. Also, happened indirect affect against female longevity and fecundity of, *Micromus tasmaniae* [74].

4.4 Cyromazine

It is a growth regulator that disrupts molting, it is affecting cuticle sclerotization during increasing cuticle stiffness [65], and exhibits indirect effects on the reproduction of *Phytoseiulus persimilis* [74], no indirect effect, against rates of adult
emergence, of *Chrysocharis parksi* [85]. Exposure to it did not indirectly affect on longevity and reproduction of, *Hemiptarsenus varicornis* and *Diglyphus isaea* [86].

4.5 Diflubenzuron

It is a chitin synthesis inhibitor [65], less indirect impact against natural enemies, both parasitoids and predators [87]. Exposure to it decreased female longevity and reduced the parasitization rate of, *Hyposoter didymator* [73] and reproduction of, *Eulophus pennicornis* [88].

M. tasmaniae, exposed to diflubenzuron, resulted in indirect affects on reproduction, sex ratio, and longevity [74]. Diflubenzuron exhibited no indirect effects on the reproduction of, *Podisus maculiventris* adults. Diflubenzuron displayed minimal indirect effects on the parasitoid, *Macrocentrus ancylichorius* [89].

4.6 Buprofezin

It is a chitin synthesis inhibitor [66, 90], sterilizes certain natural enemies [91], reduces the number of progeny per female and sex ratios [73]. Feeding on it decreases female fertility and fecundity, and sterilized the males of the predatory coccinellid, *Delphastus catalinae* [69]. It did not affect the development of *Orius tristicolor* [92] or inhibits the reproduction of females of, *P. persimilis* [74]. Also, no indirect affect on oviposition and foraging of some parasitoids as *Eretmocerus* sp., and *Encarsia luteola* [90, 93]. Insect growth regulators are susceptible to early instars [90, 94, 95].

Indirect effects on natural enemies due to the volatility of the compound as it is known to be volatile and display vapor activity on some insect pests [98].

4.7 Azadirachtin

It is an ecdysone antagonist [72, 97–101], indirect effects against natural enemies [102]. It inhibits oviposition of the green lacewing, *C. carnea* and indirect affect against fertility and fecundity [99, 100]. Reproduction of, *Aphidoletes aphidimyza* is not indirect affect after exposure to it [103], and did not indirectly affect on the fecundity of, *Aphidius colemani* [91]; longevity and foraging ability of the parasitoids, *Cotesia plutellae* and *Diaea dactylopii*, and sex ratio of progeny [6]; nor a reproduction of, *Neoseiulus californicus* [104]. Also, do not inhibit prey consumption of, *Atheta coriaria* adults [105].

First larvae of *Harmonia axyridis,* exhibit increase of development time, also, no indirect effect on adult fecundity [106–108].

5. Selective feeding blockers

It is include flonicamid and pymetrozine, inhibits feeding activity of piercing-sucking insects after initial insertion of their stylets into plant tissues and interfere with neural regulation of fluid intake through the mouthparts resulting in starvation [102, 109–112]. Flonicamid and pymetrozine, did not affect the development time, fertility, and parasitism of natural enemies, *Epilachna varivestis*, *Bembidion lampros,* *Aphidius rhopalosiphi,* *Adalia bipunctata*; and *Aleochara bilineata* [112]. Pymetrozine exhibited minimal indirect effects on the reproduction of *N. californicus* [104]. Flonicamid did not indirectly affect parasitism, the sex ratio, and adult emergence of the parasitoid, *L. dactylopii*. Overall, minimal research has been conducted to determine the indirect effects of these types of pesticides on natural enemies [113].
6. Microbials

Entomopathogenic fungi and bacteria are, in general, not indirectly harmful to natural enemies, this may vary depending on concentration, natural enemy type, life stage exposed, the timing of application, and environmental conditions [114, 115]. Indirect effect not be associated with entomopathogenic fungi or bacteria [116].

B. thuringiensis has been indirect effects on some parasitoids this is depended on the formulation [117].

Natural enemies ingest fungal spores during grooming or feeding on contaminated hosts [89]; also, indirect effects depend on the concentration of spores [118]. Entomopathogenic fungi indirectly affect some natural enemies during feeding on prey that have been sprayed. Larvae of, Cryptolaemus montrouzieri were killed (50% mortality) after consuming mealybugs that had been sprayed with Beauveria bassiana [115]. B. bassiana decreased the fecundity of N. californicus females [104]. Fungus Cephalosporium lecanii exhibited no indirect effects on the longevity of the leafminer parasitoid, Diglyphus begini [119]. Exposure to Metarhizium anisopliae had no indirect effect on prey consumption (fungus gnat larvae) of rove beetle, A. coriaria adults [101]. Exposure to Isaria (=Paecilomyces fumosoroseus at low relative humidity (55%) resulted in no indirect effects on foraging behavior and longevity of the aphid parasitoid, Aphelinus asychis whereas both parameters were significantly reduced when exposed to a high (≥95%) relative humidity, which could impact the ability of the parasitoid to regulate aphid populations. Ovipositing females may avoid prey that is infected by entomopathogenic fungi [114].

Spinosad has been demonstrated to be indirectly harmful to a variety of predatory insects such as, C. carnea [120]; Hippodamia convergens; Orius laevigatus, Geocoris punctipes; and Nabis sp. [121, 122]. Exposure to spinosad extended development time from the first instar to adult and decreased fertility of Harmonia axyridis females. Nevertheless, exposure to spinosad did not inhibit foraging behavior and reproduction of P. persimilis females [123, 124]. Parasitoids may be indirectly affected by spinosad based on decreased reproduction and reduced longevity [125, 126].

7. Miticides

It is like other pesticides, demonstrate variability in regards to any indirect effects against natural enemies depending on the type of mite and predatory mite species [127]. It did not affect Neoseiulus (=Amblyseius) womersleyi on Tetranychus urticae, eggs [127, 128]. Exposure to concentrations of fenpyroximate indirectly affect on longevity and fecundity of P. plumifer [129]. Pyridaben inhibited reproduction of Galendromus occidentalis [130]. No indirect effects associated with sex ratio and prey consumption of P. persimilis [131, 132].

Exposure to bifenazate did not reduce fecundity, longevity, or prey consumption of P. persimilis or N. californicus [133].

8. Fungicides

It is considered low harmful to natural enemies comparing with insecticides and miticides [134]. Mancozeb was negatively affected against fecundity and reproduction of, Amblyseius andersoni, G. occidentalis [135], and Euseius victoriensis and inhibited the reproduction of, Amblyseius fallacis [130, 136]. Also, it did not
indirectly affect on longevity or reproduction of, *Hemiptarsenus varicornis* and *Diglyphus isaea* [55]. Fungicides did not indirectly affect the fecundity of both *E. victoriensis* and *G. occidentalis* [130].

9. **Additional factors associated with indirect effects of pesticides on natural enemies**

The methodology evaluates the indirect effects of pesticides on natural enemies that may influence the results obtained [136–144]. The indirect effects of pesticides against natural enemies not necessarily are affiliated with the active ingredient [136, 141–144]. It is can be formulations as emulsifiable concentrates (EC) and soluble powders (SP) contain additives as adjuvants, surfactants, solvents, or carriers that are indirectly harmful to natural enemies [145].

10. **Summary**

This chapter has demonstrated the feasibility of combining or integrating natural enemies with certain pesticides including systemic insecticides, insect growth regulators, selective feeding blockers, microbials, miticides, and fungicides. There are three primary means by which natural enemies integrated with pesticides including pesticide selection, spatial separation of natural enemies and pesticides, and temporal discontinuity between natural enemies and pesticides [114]. Indirect effects are evaluated to determine if pesticides are compatible with natural enemies [29]. Indirect effects depending on concentration, natural enemy species, pesticide exposure time, developmental life stage(s) evaluated, and the influence of residues and repellency [50].

Author details

Mohamed Abdel-Raheem
Pests and Plant Protection Department, Agricultural and Biological Research Division, National Research Centre, Cairo, Egypt

Address all correspondence to: ma.abdel-raheem@nrc.sci.eg; abdelraheem_nrc@yahoo.com; abdelraheem_nrc@homail.com

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References

[1] Thomson LJ, Hoffmann AA. Field validation of laboratory-derived IOBC toxicity ratings for natural enemies in commercial vineyards. Biological Control. 2006;39(3):507-515. DOI: 10.1016/j.biocontrol.2006.06.009

[2] Guedes RNC, Smagghe G, Stark JD, Desneux N. Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annual Review of Entomology. 2016;61:43-62. DOI: 10.1146/annurev-ento-010715-023646

[3] Altieri MA, Nicholls CI. Biodiversity and Pest Management in Agrosystems. 2nd ed. Boca Raton, FL: CRC Press; 2004

[4] Readshaw JL. Biological control of orchard mites in Australia with an insecticide-resistant predator. Journal of the Australian Institute of Agricultural Science. 1975;41(3):213-214

[5] Wilson LJ, Bauer LR, Lally DA. Effect of early season insecticide use on predators and outbreaks of spider mites (Acari: Tetranychidae) in cotton. Bulletin of Entomological Research. 1998;88(4):477-488. DOI: 10.1017/S000748530004222X

[6] Wilson LJ, Bauer LR, Lally DA. Insecticide-induced increases in aphid abundance in cotton. Austral Entomology. 1999;38(3):242-243. DOI: 10.1046/j.1440-6055.1999.00100.x

[7] Zeilinger AR, Olson DM, Andow DA. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton. Ecological Applications. 2016;26(4):1047-1054. DOI: 10.1890/15-1314

[8] Grundy PR, Maelzer D, Collins PJ, Hassan E. Potential for integrating eleven agricultural insecticides with the predatory bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Journal of Economic Entomology. 2000;93:584-589. DOI: 10.1603/0022-0493-93.3.584

[9] Dutcher JD. A review of resurgence and replacement causing pest outbreaks in IPM. In: General Concepts in Integrated Pest and Disease Management. Dordrecht, Netherlands: Springer; 2007. pp. 27-43

[10] Gross K, Rosenheim JA. Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecological Applications. 2011;21(7):2770-2780. DOI: 10.1890/11-0118.1

[11] Steinmann KP, Zhang M, Grant JA. Does use of pesticides known to harm natural enemies of spider mites (Acari: Tetranychidae) result in increased number of miticide applications? An examination of California walnut orchards. Journal of Economic Entomology. 2011;104(5):1496-1501. DOI: 10.1603/EC11168

[12] Hassan SA, Bigler F, Blaisingher P, Bogenschütz H, Brun J, Chiverton P, et al. Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS Working Group ‘pesticides and beneficial organisms’. Bulletin OEPP/EPPO. 1985;15:214-255. DOI: 10.1111/j.1365-2338.1985.tb00224.x

[13] Nash MA, Thomson LJ, Hoffmann AA. Effect of remnant vegetation, pesticides and farm management on abundance of the beneficial predator Notonomus gravis (Chaudoir) (Coleoptera: Carabidae). Biological Control. 2008;46:83-93. DOI: 10.1016/j.biocontrol.2008.03.018

[14] Stark JD, Banks JE, Acheampong S. Estimating susceptibility of biological control agents to pesticides: Influence of life history strategies and population
structure. Biological Control. 2004;29(3):392-398. DOI: 10.1016/j.biocontrol.2003.07.003

[15] Thomson LJ, Hoffmann AA. Ecologically sustainable chemical recommendations for agricultural pest control? Journal of Economic Entomology. 2007;100(6):1741-1750. DOI: 10.1093/jee/100.6.1741

[16] Naranjo SE. Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies. Environmental Entomology. 2005;34(5):1193-1210. DOI: 10.1093/ee/34.5.1193

[17] Whitehouse MA, Wilson LJ, Fitt GP. A comparison of arthropod communities in transgenic Bt and conventional cotton in Australia. Environmental Entomology. 2005;34(5):1224-1241. DOI: 10.1093/ee/34.5.1224

[18] Rose R, Dively GP. Effects of insecticide-treated and lepidopteran-active Bt transgenic sweet corn on the abundance and diversity of arthropods. Environmental Entomology. 2007;36(5):1254-1268. DOI: 10.1603/0046-225X(2007)36[1254:EOIABL]2.0.CO;2

[19] Van der Werf HM. Assessing the impact of pesticides on the environment. Agriculture, Ecosystems & Environment. 1996;60(2-3):81-96. DOI: 10.1016/S0167-8809(96)01096-1

[20] Umina PA, Jenkins S, McColl S, Arthur A, Hoffmann AA. A framework for identifying selective chemical applications for IPM in dryland agriculture. Insects. 2015;6(4):988-1012. DOI: 10.3390/insects6040988

[21] Gu H, Fitt GP, Baker GH. Invertebrate pests of canola and their management in Australia: A review. Australian Journal of Entomology. 2007;46:231-243. DOI: 10.1111/j.1440-6055.2007.00594.x

[22] Edwards OR, Franzmann B, Thackray D, Micic S. Insecticide resistance and implications for future aphid management in Australian grains and pastures: A review. Australian Journal of Experimental Agriculture. 2008;48(12):1523-1530. DOI: 10.1071/EA07426

[23] Murray DAH, Clarke MB, Ronning DA. Estimating invertebrate pest losses in six major Australian grain crops. Australian Journal of Entomology. 2013;52:227-241. DOI: 10.1111/aen.12017

[24] Valenzuela I, Hoffmann AA. Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomology. 2015;54:292-305. DOI: 10.1111/aen.12122

[25] Grosch DS. Reproductive performance of a braconid after heptachlor poisoning. Journal of Economic Entomology. 1970;63:1348-1349

[26] Grosch DS. Reproductive performance of Bracon hebetor after sublethal doses of carbaryl. Journal of Economic Entomology. 1975;68:659-662

[27] O’Brien PJ, Elzen GW, Vinson SB. Toxicity of azinophos methyl and chlordimeform to parasitoid Bracon mellitor (Hymenoptera: Braconidae): Lethal and sublethal effects. Environmental Entomology. 1985;14:891-894

[28] Hsieh CY, Allen WW. Effects of insecticides on emergence, survival, longevity, and fecundity of the parasitoid Diaeretiella rapae (Hymenoptera: Aphididae) from mummified Myzus persicae (Homoptera: Aphididae). Journal of Economic Entomology. 1986;79:1599-1602

[29] Rosenheim JA, Hoy MA. Sublethal effects of pesticides on the parasitoid Aphytis melinus (Hymenoptera:
Effect of Insecticides on Natural-Enemies
DOI: http://dx.doi.org/10.5772/intechopen.100616

Effect of Insecticides on Natural-Enemies
DOI: http://dx.doi.org/10.5772/intechopen.100616

[30] Borgemeister C, Poehling HM, Dinter A, Holler C. Effects of insecticides on life-history parameters of the aphid parasitoid *Aphidius rhopalosiphi* (Hym, Aphidiidae). Entomophaga. 1993;38:245-255

[31] Haseeb M, Liu TX, Jones WA. Effects of selected insecticides on *Cotesia plutellae*, endoparasitoid of *Plutella xylostella*. BioControl. 2004;49:33-46

[32] Elzen GW. Sublethal effects of pesticides on beneficial parasitoids. In: Jepson PC, editor. Pesticides and Non-Target Invertebrates. Wimborne, UK: Intercept; 1990. pp. 129-150

[33] Croft BA. Arthropod Biological Control Agents and Pesticides. New York, NY: John Wiley & Sons; 1990

[34] van de Veire M, Tirry L. Side effects of pesticides on four species of beneficials used in IPM in glasshouse vegetable crops: ‘Worst case’ laboratory tests. Bulletin of the Organization of International Biological Control. 2003;26:41-50

[35] Grafton-Cardwell EE, Lee JE, Stewart JR, Olsen KD. Role of two insect growth regulators in integrated pest management of citrus scales. Journal of Economic Entomology. 2006;99:733-744

[36] Sáenz-de-Cabzón Irigaray FJ, Zalom FG, Thompson PB. Residual toxicity of acaricides to *Galendromus occidentalis* and *Phytoseiulus persimilis* reproductive potential. Biological Control. 2007;40:153-159

[37] Desneux N, Decourtaye A, Delpuech J-M. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology. 2007;52:81-106

[38] Cloyd RA, Bethke JA. Impact of Neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Management Science. 2011;67:3-9

[39] Bartlett BR. Integration of chemical and biological control. In: DeBach P, editor. Biological Control of Insect Pests and Weeds. New York, NY: Chapman and Hall; 1964. pp. 489-511

[40] Dicke M, Vet LEM. Plant-carnivore interactions: Evolutionary and ecological consequences for plant, herbivore and carnivore. In: Oliff H, Brown VK, Drent RH, editors. Herbivores: Between Plant and Predators. Oxford, UK: Blackwell Science; 1999. pp. 483-520

[41] Teodoro AV, Pallini A, Oliveira C. Sub-lethal effects of fenbutatin oxide on prey location by the predatory mite *Iphiseiodes zuluagai* (Acari: Phytoseiidae). Experimental and Applied Acarology. 2009;47:293-299

[42] Rill SM, Grafton-Cardwell EE, Morse JG. Effects of two insect growth regulators and a neonicotinoid on various life stages of *Aphytis melinus* (Hymenoptera: Aphelinidae). BioControl. 2008;53:579

[43] Longley M, Jepson PC. Effects of honeydew and insecticide residues on the distribution of foraging aphid parasitoids under glasshouse and field conditions. Entomologia Experimentalis et Applicata. 1996;81:189-198

[44] Wang HY, Yang Y, Su JY, Shen JL, Gao CF, Zhu YC. Assessment of the impact of insecticides on *Anagrus nilaparvatae* (Pang et Wang) (Hymenoptera: Mymanidae), an egg parasitoid of the rice planthopper, *Nilaparvata lugens* (Hemiptera: Delphacidae). Crop Protection. 2008;27:514-522

[45] Bartlett BR. The repellent effects of some pesticides to hymenopterous
parasites and coccinellid predators. Journal of Economic Entomology. 1965;58:294-296

[46] Garcia P. Sublethal effects of pyrethroids on insect parasitoids: What we need further know. In: Stoytcheva M, editor. Pesticides: Formulations, Effects, Fate. Rijeka: Intech; 2011. pp. 477-494

[47] Elzen GW, O’Brien PJ, Powell JE. Toxic and behavioral effects of selected insecticides on the Heliothis Parasitoid Microplitis croceipes. Entomophaga. 1989;34:87-94

[48] Tran DH, Takagi M, Takasu K. Effects of selective insecticides on host searching and oviposition behavior of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a larval parasitoid of the American serpentine leafminer. Applied Entomology and Zoology. 2004;39:435-441

[49] Ripper WE, Greenslade RM, Hartley GS. Selective insecticides and biological control. Journal of Economic Entomology. 1951;44:448-459

[50] McClanahan RJ. Food-chain toxicity of systemic acaricides to predaceous mites. Nature. 1967;215:1001

[51] Mizell RF, Sconyers MC. Toxicity of imidacloprid to selected arthropod predators in the laboratory. Florida Entomologist. 1992;75:277-280

[52] Tillman PG, Mullix BG. Comparison of susceptibility of pest Euschistus servus and predator Podisus maculiventris (Heteroptera: Pentatomidae) to selected insecticides. Journal of Economic Entomology. 2004;97:800-806

[53] Krischik VA, Landmark AL, Heimpel GE. Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae). Environmental Entomology. 2007;36:1238-1245

[54] Szczepaniec A, Creary SF, Laskowski KL, Nyrop JP, Raupp MJ. Neonicotinoid insecticide imidacloprid causes outbreaks of spider mites on elm trees in urban landscapes. PLoS One. 2011;6(5):e20018. DOI: 10.1371/journal.pone.0020018

[55] Radcliffe EB. Population responses of green peach aphid in Minnesota on potatoes treated with various insecticides. Proceedings of the North Central Branch of the Entomological Society of America. 1972;27:103-105

[56] Kiritani K. Pest management of rice. Annual Review of Entomology. 1979;24:79-312

[57] Hardin MR, Benrey B, Coll M, Lamp WO, Roderick GK, Barbosa P. Arthropod pest resurgence: An overview of potential mechanisms. Crop Protection. 1995;14:3-18

[58] Flanders SE. Environmental resistance to the establishment of parasitic hymenoptera. Annals of the Entomological Society of America. 1940;33:245-253

[59] Ripper WE. Biological control as a supplement to chemical control of insects. Nature. 1944;153:448-551

[60] Kiman ZB, Yeargan KV. Development and reproduction of the predator Orius insidiosus (Hemiptera: Anthocoridae) reared on the diets of selected plant material and arthropod prey. Annals of the Entomological Society of America. 1985;78:464-467

[61] Hagen KS. Ecosystem analysis: Plant cultivars (HPR), entomophagous species and food supplements. In: Boethel DJ, Eikenbary RD, editors. Interactions of Plant Resistance and Parasitoids and Predators of Insects.
New York, NY: John Wiley & Sons, Inc.; 1986. pp. 151-197

[62] Stapel JO, Cortesero AM, De Moraes CM, Tumlinson JH, Lewis WJ. Effects of extrafloral nectar, honeydew, and sucrose on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environmental Entomology. 1997;26:617-623

[63] Stapel JO, Cortesero AM, Lewis WJ. Disruptive sublethal effects of insecticides on biological control: Altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biological Control. 2000;17:243-249

[64] Stenersen J. Chemical Pesticides: Mode of Action and Toxicology. Boca Raton, FL: CRC Press; 2004

[65] Yu SJ. The Toxicology and Biochemistry of Insecticides. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2008

[66] Staal GB. Insect growth regulators with juvenile hormone activity. Annual Review of Entomology. 1975;20:417-460

[67] Ables JR, Jones SL, Bee MJ. Effect of diflubenzuron on beneficial arthropods associated with cotton. Southwestern Entomologist. 1977;2:66-72

[68] Keever DW, Bradley JR Jr, Ganyard MC. Effects of diflubenzuron (dimilin) on selected beneficial arthropods on cotton fields. Environmental Entomology. 1977;6:732-736

[69] Liu T-X, Stansly PA. Lethal and sublethal effects of two insect growth regulators on adult Delphastus catalinae (Coleoptera: Coccinellidae), a predator of whiteflies (Homoptera: Aleyrodidae). Biological Control. 2004;30:298-305

[70] Koehler PG, Patterson RJ. Incorporation of pyriproxyfen in German cockroach (Dictyoptera: Blattelidae) management program. Journal of Economic Entomology. 1991;84:917-921

[71] Ishaaya I, Barazani A, Kontsedalov S, Horowitz AR. Insecticides with novel modes of action: Mechanism, selectivity and cross-resistance. Entomological Research. 2007;37:148-152

[72] Nagai K. Effects of juvenile hormone mimic material, 4-phenoxyphenyl-(RS)-2-(2-pyridyloxy) propyl ether, on Thrips palmi Karny (Thysanoptera: Thripidae) and its predator Orius sp. (Hemiptera: Anthocoridae). Applied Entomology and Zoology. 1990;25:199-204

[73] Schneider MI, Smagghe G, Pineda S, Viñuela E. Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biological Control. 2004;31:189-198

[74] Blümel S, Stolz M. Investigations on the effect of insect growth regulators and inhibitors on the predatory mite Phytoseiulus persimilis A. H. with particular emphasis on cyromazine. Journal of Plant Diseases and Protection. 1993;100:150-154

[75] Liu T-X, Stansly PA. Effects of pyriproxyfen on three species of Encarsia (Hymenoptera: Aphelinidae), endoparasitoids of Bemisia argentifolii (Homoptera: Aleyrodidae). Journal of Economic Entomology. 1997;90(2):404-411

[76] Ware GW, Whitacre DM. The Pesticide Book. Willoughby, OH: MeisterPro Information Resources; 2005

[77] Lemma KM, Poe SL. Juvenile hormone analogues: Effects of ZR-777
Insecticides

on *Liromyza sativae* and its endoparasite. Florida Entomologist. 1978;61:67-68

[78] McNeil J. Juvenile hormone analogs: Detrimental effects on the development of an endoparasitoid. Science. 1975;189:640-642

[79] Rothwangl KB, Cloyd RA, Wiedenmann RN. Effects of insect growth regulators on citrus mealybug parasitoid *Leptomastix dactylopii* (Hymenoptera: Encyrtidae). Journal of Economic Entomology. 2004;97:1239-1244

[80] Grenier S, Grenier AM. Fenoxycarb, a fairly new insect growth regulator: A review of its effects on insects. Annals of Applied Biology. 1993;122:369-403

[81] Liu T-X, Chen T-Y. Effects of the insect growth regulator fenoxycarb on immature *Chrysoperla rufilabris* (Neuroptera: Chrysopidae). Florida Entomologist. 2001;84:628-633

[82] Celli G, Bortolotti L, Nanni C, Porrini C, Brenna GS. Effects of the IGR fenoxycarb on eggs and larvae of *Chrysoperla carnea* (Neuroptera: Chrysopidae) laboratory test. In: Haskell PT, McEwen PK, editors. New Studies in Ecotoxicology. Cardiff, UK: The Welsh Pest Management in Forum; 1997. pp. 15-18

[83] Grenier S, Plantevin G. Development modifications of the parasitoid *Pseudoperichaeta nigrolineata* (Dipt., Tachinidae) by fenoxycarb, an insect growth regulator, applied onto its host *Ostrinia nubilalis* (Lep., Pyralidae). Journal of Applied Entomology. 1990;110:462-470

[84] Rumpf S, Frampton C, Dietrich DR. Effects of conventional insecticides and insect growth regulators on fecundity and other life-table parameters of *Micromus tasmaniae* (Neuroptera: Hemerobiidae). Journal of Economic Entomology. 1998;91:34-40

[85] Parrella MP, Christie GD, Robb KL. Compatibility of insect growth regulators and *Chrysocharis parksi* (Hymenoptera: Eulophidae) for the control of *Liromyza trifolii* (Diptera: Agromyzidae). Journal of Economic Entomology. 1983;76:949-951

[86] Bjorksten TA, Robinson M. Juvenile and sublethal effects of selected pesticides on the leafminer parasitoids *Hemiptarsenus varicornis* and *Diglyphus isaea* (Hymenoptera: Eulophidae) from Australia. Journal of Economic Entomology. 2005;98:1831-1838

[87] Gordon R, Corney M. Toxicity of the insect growth regulator diflubenzuron to the rove beetle *Aleochara bilineata*, a parasitoid and predator of the cabbage maggot *Delia radicum*. Entomologia Experimentalis et Applicata. 1986;42:179-185

[88] Butaye L, Degheele D. Benzoylphenyl ureas effect on growth and development of *Eulophus pennicornis* (Hymenoptera: Eulophidae), a larval ectoparasite of the cabbage moth (Lepidoptera: Noctuidae). Journal of Economic Entomology. 1995;88(3):600-605

[89] Broadbent AB, Pree DJ. Effects of diflubenzuron and BAY SIR 8514 on beneficial insects associated with peach. Environmental Entomology. 1984;13:133-136

[90] Gerling D, Sinai P. Buprofezin effects on two parasitoid species of whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology. 1994;87:842-846

[91] Stara J, Ourednickova J, Kocourek F. Laboratory evaluation of the side effects of insecticides on *Aphidius colemani* (Hymenoptera: Aphidiidae), *Aphidoletes aphidimyza* (Diptera: Cecidomyiidae), and *Neoseiulus cucumeris* (Acari: Phytoseiidae). Journal of Pesticide Science. 2011;84:25-31
[92] James DG. Effect of buprofezin on survival of immature stages of *Harmonia axyridis*, *Sethorus punctum picipes* (Coleoptera: Coccinellidae), *Orius tristicolor* (Hemiptera: Anthocoridae), and *Geocoris* spp. (Hemiptera: Geocoridae). Journal of Economic Entomology. 2004;97:900-904

[93] Liu T-X, Chen T-Y. Effects of the chitin synthesis inhibitor buprofezin on survival and development of immatures of *Chrysoperla rufilabris* (Neuroptera: Chrysopidae). Journal of Economic Entomology. 2000;93:234-239

[94] Retnakaran A, Wright JE. Control of insect pests with benzoylphenyl ureas. In: Wright JE, Retnakaran A, editors. Chitin and Benzoylphenyl Ureas. Netherlands: Dr. W. Junk Publishers; 1987. pp. 205-282

[95] Darvas B, Polgar LA. Novel type insecticides: Specificity and effects on non-target organisms. In: Ishaaya I, Degheelee D, editors. Insecticides with Novel Modes of Action. Berlin, Germany: Springer; 1998. pp. 188-259

[96] De Cock A, Ishaaya I, Degheelee D, Veierov D. Vapor toxicity and concentration dependent persistence of buprofezin applied to cotton foliage for controlling the sweet potato whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology. 1990;83:1254-1260

[97] Ascher KRS. Non-conventional insecticidal effects of pesticides available from the neem tree, *Azadirachta indica*. Archives of Insect Biochemistry and Physiology. 1993;22:433-449

[98] Mordue AJ, Simmonds MSJ, Ley SV, Blaney WM, Mordue W, Nasiruddin M, et al. Actions of azadirachtin, a plant allelochemical against insects. Pesticide Science. 1998;54:277-284

[99] Medina P, Smagghe G, Budia F, Tirry L, Vinuela E. Toxicity and absorption of azadirachtin, diflubenzuron, pyriproxyfen, and tebufenozide after topical application in predatory larvae of *Chrysoperla carnea* (Neuroptera: Chrysopidae). Environmental Entomology. 2003;32:196-203

[100] Medina P, Budia F, Del Estal P, Viñela E. Influence of azadirachtin, a botanical insecticide, on *Chrysoperla carnea* (Stephens) reproduction: Toxicity and ultrastructural approach. Journal of Economic Entomology. 2004;97:43-50

[101] Tedeschi R, Alma A, Tavella L. Side-effects of three neem (*Azadirachta indica* A. Juss) products on the predator *Macrophorus caliginosus* Wagner (Het., Miridae). Journal of Applied Entomology. 2001;125:397-402

[102] Hollingworth RM, Treacy MF. Classification and properties of commercial insecticides and acaricides. In: All JN, Treacy MF, editors. Use and Management of Insecticides, Acaricides, and Transgenic Crops. St. Paul, MN: The American Phytopathological Society; 2006. pp. 36-67

[103] Spollen KM, Isman MB. Acute and sublethal effects of a neem insecticide on the commercial biological control agents *Phytoseiulus persimilis* and *Amblyseius cucumeris* (Acari: Phytoseiidae) and *Aphidoletes aphidimyza* (Diptera: Cecidomyiidae). Journal of Economic Entomology. 1996;89:1379-1386

[104] Castagnoli M, Liguori M, Simoni S, Duso C. Toxicity of some insecticides to *Tetranychus urticae*, *Neoseiulus californicus* and *Tydeus californicus*. BioControl. 2005;50:611-622

[105] Cloyd RA, Timmons NR, Goebel JM, Kemp KE. Effect of pesticides on adult rove beetle *Atheta*
Insecticides

coriaria (Coleoptera: Staphylinidae) survival in growing medium. Journal of Economic Entomology. 2009;102:1750-1758

[106] Kraiss H, Cullen EM. Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of *Aphis glycines* (Homoptera: Aphididae) and its predator, *Harmonia axyrides* (Coleoptera: Coccinellidae). Pest Management Science. 2008;64:660-668

[107] Banken JA, Stark JD. Stage and age influence on the susceptibility of *Coccinella septempunctata* (Coleoptera: Coccinellidae) after direct exposure to neemix, a neem insecticide. Journal of Economic Entomology. 1997;90:1102-1105

[108] Schmutterer H. Side-effects of neem (*Azadirachta indica*) products on insect pathogens and natural enemies of spider mites and insects. Journal of Applied Entomology. 1997;121:121-128

[109] Harrewijn P, Kayser H. Pymetrozine, a fast-acting and selective inhibitor of aphid feeding. *In-situ* studies with electronic monitoring of feeding behavior. Pesticide Science. 1997;49:130-140

[110] Fuog D, Fergusson SJ, Fluckiger C. Pymetrozine: A novel insecticide affecting aphids and whiteflies. In: Ishaya I, Degheele D, editors. Insecticides with Novel Modes of Action. New York, NY: Springer-Verlag; 1998. pp. 40-49

[111] Morita M, Ueda T, Yoneda T, Koyanagi T, Haga T. Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Management Science. 2007;63:969-973

[112] Jansen JP, Defrance T, Warnier AM. Side effects of flonicamid and pymetrozine on five aphid natural enemy species. BioControl. 2011;56:759-770

[113] Cloyd RA, Dickinson A. Effect of insecticides on mealybug destroyer (Coleoptera: Coccinellidae) and parasitoid *Leptomastix dactylopii* (Hymenoptera: Encyrtidae), natural enemies of citrus mealybug (Homoptera: Pseudococcidae). Journal of Economic Entomology. 2006;99:1596-1604

[114] Lacey LA, Mesquita ALM, Mercadier G, Debire R, Kazmer DJ, Lecant F. Acute and sublethal activity of the entomopathogenic fungus *Paecilomyces fumosoroseus* (Deuteromycotina: Hyphomycetes) on adult *Aphelinus asychis* (Hymenoptera: Aphelinidae). Environmental Entomology. 1977;26:1452-1460

[115] Kiselek EV. The effect of biopreparations on insect enemies. Zashchita Rastenii Moskva. 1975;12:23

[116] Marchal-Segault D. Susceptibility of the hymenopterous braconids *Apanteles glomeratus* and *Phanerotoma glavitestacea* to the spore-crystal complex of *Bacillus thuringiensis* Berliner. Annales de Zoologie Ecologie Animale. 1975;6:521-528

[117] Thoms EM, Watson TF. Effect of dipel (*Bacillus thuringiensis*) on the survival of immature and adult *Hyposoter exiguae* (Hymenoptera: Ichneumonidae). Journal of Invertebrate Pathology. 1986;47:178-183

[118] James RR, Lighthart B. Susceptibility of the convergent lady beetle (Coleoptera: Coccinellidae) to four entomogenous fungi. Environmental Entomology. 1994;23:190-192

[119] Bethke JA, Parrella MP. Compatibility of the aphid fungus *Cephalosporium lecanii* with the leafminer parasite, *Diglyphus beginii* (Hymenoptera: Eulophidae). Pan-Pacific Entomologist. 1989;65:385-390
[120] Medina P, Budia F, Tirry L, Smagghe G, Vinuela E. Compatibility of spinosad, tebufenozide and azadirachtin with eggs and pupae of the predator Chrysopelea carnea (Stephens) under laboratory conditions. Biocontrol Science and Technology. 2001;11:597-610

[121] Thompson GD, Dutton R, Sparks TC. Spinosad—A case study: An example from natural products discovery programme. Pest Management Science. 2000;56:696-702

[122] Copping LG. The Biopesticide Manual. Bracknell, UK: BCPC Publishing; 2001

[123] Galvan TL, Koch RL, Hutchison WD. Effects of spinosad and indoxacarb on survival, development, and reproduction of the multicolored Asian lady beetle (Coleoptera: Coccinellidae). Biological Control. 2005;34:108-114

[124] Holt KM, Opit GP, Nechols JR, Margolies DC. Testing for non-target effects of spinosad on twospotted spider mites and their predator Phytoseiulus persimilis under greenhouse conditions. Experimental and Applied Acarology. 2006;38:141-149

[125] Miles M, Dutton R. Spinosad—A naturally derived insect control agent with potential for use in integrated pest management systems in greenhouses. In: Proceedings of the BCPC Conference—Pests and Diseases; 13-16 November 2000; Brighton, UK. Farnham, Surrey, UK: British Crop Protection Council; 2000. pp. 339-344

[126] Williams T, Valle J, Viñuela E. Is the naturally derived insecticide spinosad compatible with insect natural enemies? Biocontrol Science and Technology. 2003;13:459-475

[127] Park J-J, Kim M, Lee J-H, Shin K-I, Lee S-E, Kim J-G, et al. Sublethal effects of fenpyroximate and pyridaben on two predatory mite species, Neoseiulus womersleyi and Phytoseiulus persimilis (Acari, Phytoseiidae). Experimental and Applied Acarology. 2011;54:243-259

[128] Kim SS, Paik CH. Comparative toxicity of fenpyroximate to the predatory mite, Amblyseius womersleyi Schicha and the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acarina: Phytoseiidae, Tetranychidae). Applied Entomology and Zoology. 1996;31:369-377

[129] Hamedi N, Fathipour Y, Saber M. Sublethal effects of fenpyroximate on life table parameters of the predatory mite Phytoseius plumifer. BioControl. 2010;55:271-278

[130] Alston DG, Thomson SV. Effects of fungicide residues on the survival, fecundity, and predation of the mites Tetranychus urticae (Acari: Tetranychidae) and Galendromus occidentalis (Acari: Phytoseiidae). Journal of Economic Entomology. 2004;97:950-956

[131] Ahn K, Lee SY, Lee KY, Lee YS, Kim GH. Selective toxicity of pesticides to the predatory mite, Phytoseiulus persimilis and control effects of the two-spotted spider mite, Tetranychus urticae by predatory mite and pesticide mixture on rose. Korean Journal of Applied Entomology. 2004;43:71-79

[132] Kim SS, Yoo SS. Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the twospotted spider mite, Tetranychus urticae. BioControl. 2002;47:563-573

[133] Kim SS, Seo SG. Relative toxicity of some acaricides to the predatory mite, Amblyseius womersleyi and the twospotted spider mite, Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Applied Entomology and Zoology. 2001;36:509-514
[134] Wright DJ, Verkerk RHJ. Integration of chemical and biological control systems for arthropods: Evaluation in a multitrophic context. Pesticide Science. 1995; 44:207-218

[135] Angeli G, Ioriatti C. Susceptibility of two strains of Amblyseius andersoni Chant. (Acari: Phytoseiidae) to dithiocarbamate fungicides. Experimental and Applied Acarology. 1994; 18:669-679

[136] Cowles RS, Cowles EA, McDermott AM, Ramoutar D. “Inert” formulation ingredients with activity: Toxicity of trisiloxane surfactant solutions to twospotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology. 2000; 93:180-188

[137] Hoy MA, Cave FE. Laboratory evaluation of avermectin as a selective acaricide for use with Metaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Applied Entomology and Zoology. 1985; 39:401-409

[138] Kogan M. Ecological Theory and Integrated Pest Management Practice. New York, NY: John Wiley & Sons; 1986

[139] Stark JD, Jeppson PC, Mayer DF. Limitations to use of topical toxicity data for predictions of pesticide side effects in the field. Journal of Economic Entomology. 1995; 88:1081-1088

[140] Villanueva-Jimenez JA, Hoy MA. Toxicity of pesticides to the citrus leaf miner and its parasitoid Ageniaspis citricola evaluated to assess their suitability for an IPM program in citrus nurseries. BioControl. 1998; 43:357-388

[141] Dahl GH, Lowell JR. Microencapsulated pesticides and their effects on non-target insects. In: Scher HB, editor. Advances in Pesticide Formulation Technology. Washington, DC, USA: America Chemistry Society; 1984. pp. 141-150

[142] Stevens PJG. Organosilicone surfactants as adjuvants for agrochemicals. Pesticide Science. 1993; 38:103-122

[143] Imai T, Tsuchiya S, Fujimori T. Aphicidal effects of silwet L-77, organosilicone nonionic surfactant. Applied Entomology and Zoology. 1995; 30:380-382

[144] Wood BW, Tedders WL, Taylor J. Control of pecan aphids with an organosilicone surfactant. HortScience. 1997; 32:1074-1076

[145] Alix A, Cortesero AM, Nénon JP, Anger JP. Selectivity assessment of chlorfenvinphos reevaluated by including physiological and behavioral effects on an important beneficial insect. Environmental Toxicology and Chemistry. 2001; 20:2530-2536