Adverse gene–environment interactions (G × E) probably influence most chronic diseases, including neurologic disorders and cancer. The genetic (G) contribution to different diseases varies, but several lines of evidence clearly show that nongenetic factors have high attributable risks, often in the range of 80–90% (Willett 2002). The dominance of nongenetic components highlights the importance of the environment (E) to chronic disease risks.

Genomic tools arising from the Human Genome Project (HGP), combined with bioinformatics studies, have allowed epidemiologists to examine the genetic component of chronic diseases. Genome-wide association studies offer glimpses of the roles that particular genes play in disease development. However, the genetic factors identified thus far have generally been of low penetrance (a few percent at most) and have mainly offered clues as to which G × E (and G × G) effects might be worth pursuing.

In contrast, the tools for quantitative assessment of exposures—based on measurements of chemicals in air, water, food, and the human body—have changed little since the 1970s. The lack of high-throughput methods of exposure assessment has motivated epidemiologists to rely upon self-reported data to categorize chemical exposures from environmental, endogenous, and dietary sources. With the possible exceptions of smoking and alcohol consumption, such self-reports have been unreliable predictors of long-term exposure levels and are poorly suited for detecting G × E effects. Although 30 years of investment in G now illuminates genetic determinants of diseases, we are still in the dark ages when it comes to quantifying E (i.e., human exposures). Recognizing the disparity in current knowledge between genes and environmental exposures, Wild (2005) defined the “exposome,” representing all environmental exposures (including those from diet, lifestyle, and endogenous sources) from conception onward, as a quantity of critical interest to disease etiology. If we expect to have any success at identifying the effects of E, G, and G × E on chronic diseases, we must develop 21st-century tools to measure exposure levels in human populations. That is, we need an HGP-like commitment to quantify the exposome.
Elaborating the exposome will be challenging, but some promising analytical approaches are emerging from microfluidics, nanotechnologies, and mass spectrometry (MS). For example, a capillary lab-on-a-chip system has been developed to detect polycyclic aromatic hydrocarbons at parts-per-billion levels on the surface of Mars (Stockton et al. 2009), and surface enhanced Raman spectroscopy using silver nanoparticles has detected (and speculated) arsenic at parts-per-billion levels in water samples (Mulvihill et al. 2008). Both of these devices are portable, capable of high throughput, and can be adapted to other contaminants of interest.

Technologic developments with liquid chromatography/tandem MS (LC-MS/MS) now motivate ultrasensitive measurements of protein adducts; these are excellent long-term biomarkers of exposure and internal dose for carcinogens (Rubino et al. 2009). Indeed, with National Institutes of Health Genes and Environment Initiative funding, we are using protein adductomics to profile human exposures in archived serum from cancer case–control studies. We ultimately envision an analytical platform to rapidly quantify protein adducts in much the same way that the DNA sequencer made possible the success of the HGP. Given the relentless improvements in MS sensitivity, it is realistic to expect that this technology will be applied with a single drop of blood. In fact, our recent measurement of a benzene-related adduct in dried blood spots opens the door to measurements of in utero chemical exposures, using archived neonatal blood spots (Funk et al. 2008).

Simple and inexpensive monitoring methods can motivate reductions in exposures to toxic chemicals, as has been observed with inorganic lead (Pirkle et al. 2005). Indeed, given people’s concerns about elevated levels of xenobiotic chemicals in their bodies, commercial markets could ultimately develop for exposure sensors. However, without a regulatory mandate, we cannot rely upon the free market alone to generate an exposure-sensing industry. We must focus instead upon the profound shortcomings that epidemiologists face in discovering environmental causes of chronic diseases without adequate exposure data. Facing a similar dilemma three decades ago, the HGP created several DNA sequencing centers to rapidly sequence the genome, and thereby created an infrastructure from which we still benefit. Imagine if we could build six or seven exposure biology centers to quantify chemical exposures rapidly and at low cost. The impact such centers would have on our understanding of E and G × E as determinants of human disease would be extraordinary.

True, an HGP-like effort for the environment would require a large investment. However, at a government cost of $2.7 billion (in $1991), HGP technologies will generate a projected $45 billion this year in sales. It does not require a great leap of faith to expect a similar multiplier from concerted action to quantify human exposures. As important sources of exposure are recognized and controlled, one can also anticipate reductions in morbidity and mortality that would translate into enormous savings in health care expenses.

The researchers are supported by grants P42ES04705 and U54ES01611 from the National Institute of Environmental Health Sciences.

The authors declare they have no competing financial interests.

Martyn T. Smith
Stephen M. Rappaport
School of Public Health
University of California
Berkeley, California
E-mail: martynts@berkeley.edu
srappaport@berkeley.edu

REFERENCES

Funk WE, Waidyanatha S, Chaing SH, Rappaport SM. 2008. Hemoglobin adducts of benzene oxide in neonatal and adult dried blood spots. Cancer Epidemiol Biomarkers Prev 17(8):1996–1991.
Mulvihill M, Tao A, Benjaith K, Arnold J, Yang P. 2008. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew Chem Int Ed Engl 47(34):6456–6460.
Pirkle JL, Osterloh J, Needham LL, Sampson EJ. 2005. National exposure measurements for decisions to protect public health from environmental exposures. Int J Hyg Environ Health 208:1–5.
Rubino FM, Pitton M, Di Fabio D, Colombi A. 2009. Toward an “omic” physiopathology of reactive chemicals: Thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds. Mass Spectrom Rev doi:10.1002/mas.20207 [Online 6 January 2009].
Stockton AM, Chiesl TN, Scherer JR, Mathies RA. 2009. Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer micropip capillary electrophoresis system. Anal Chem 81(2):790–798.
Wild CP. 2005. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 14(8):1847–1850.
Willett WC. 2002. Balancing life-style and genomics research for disease prevention. Science 296(5568):695–698.

Martyn T. Smith is professor of toxicology in the Division of Environmental Health Sciences in the School of Public Health at the University of California, Berkeley. He has served as director of the Superfund Research Program at Berkeley since 1987. He is well-known for his work in molecular epidemiology, especially in regard to the toxic effects of benzene exposure.

Stephen M. Rappaport is professor of environmental health sciences at the University of California, Berkeley. He is a pioneer in the emerging field of exposure biology, and much of his current research involves the development and application of blood protein adducts as biomarkers of exposure to toxic chemicals.