COMPETING LOCAL AND GLOBAL INTERACTIONS IN SOCIAL DYNAMICS: HOW IMPORTANT IS THE FRIENDSHIP NETWORK?

Arkadiusz Jędrzejewski, Bartłomiej Nowak, Angelika Abramiuk, and Katarzyna Sznajd-Weron
MOTIVATION

- **sources of social influence**
 - local: friends, family
 - global: mass media, online reviews, aggregate measures

- **study on movie ratings**
 "Do I Follow My Friends or the Crowd? Information Cascades in Online Movie Ratings"
 Y.-J. Lee, K. Hosanagar, Y. Tan, Manag. Sci. 61(9), 2241 (2015)

- **empirical findings**
 - friends' ratings
 - herding behavior \(\rightarrow\) conformity
 - strangers' ratings
 - herding or differentiation behavior \(\rightarrow\) anticonformity
Q-VOTER MODEL

- **agent-based models**
 - network of interacting N agents
 - source of social influence: q agents
 conformity, anticonformity

- **binary-state model**
 - positive attitude
 - negative attitude

\[s_i = 1 \quad s_i = -1 \]

\[i = 1, 2, \ldots, N \]

R. H. Willis, Sociometry 26(4), 499 (1963)

R. W. Robins, R. C. Fraley, and R. F. Krueger,
„Handbook of research methods in personality psychology“

C. Castellano et al., Phys. Rev. E 80, 041129 (2009)
P. Nyczka, K. Sznajd-Weron, and J. Cisło, Phys. Rev. E 86, 011105 (2012)
Q-VOTER MODEL

The Q-Voter model is defined by two parameters:

- \(p \) – probability of anticonformity
- \(q \) – size of the influence group

Conformity

- \(1 - p \)
 - A unanimous \(q \)-panel
 - OTHERWISE
 - \(s_i = 1 \)
 - \(s_i = -1 \)
 - \(s_i = \pm 1 \)

Anticonformity

- \(p \)
 - A unanimous \(q \)-panel
 - OTHERWISE
 - \(s_i = 1 \)
 - \(s_i = -1 \)
 - \(s_i = \pm 1 \)

P. Nyczka, K. Sznajd-Weron, and J. Cisło, Phys. Rev. E 86, 011105 (2012)
LOCAL AND GLOBAL INTERACTIONS

- 4 different q-voter models:
 - **GAGC** – global anticonformity and global conformity
 - **GALC** – global anticonformity and local conformity
 - **LALC** – local anticonformity and local conformity
 - **LAGC** – local anticonformity and global conformity

mean-field model study on movie ratings
WHAT DO WE STUDY?

- quantities of interest

 \[m = \frac{1}{N} \sum_{i=1}^{N} s_i \]

- phase transitions

 \[m = 0 \text{ – disordered phase } (c = 0.5) \]

 \[m \neq 0 \text{ – ordered phase } (c \neq 0.5) \]

\[c = \frac{1}{2} (1 + m) \]

concentration of positive agents

\[p \text{ – probability of anticonformity} \]
ANALYTICAL APPROACH

• pair approximation

\[
\frac{dc}{dt} = \sum_{j \in \{1,-1\}} c_j \sum_k P(k) \sum_{i=0}^{k} \binom{k}{i} \theta_j^i (1 - \theta_j)^{k-i} f(j,k,i) \Delta_c
\]

\[
\frac{db}{dt} = \sum_{j \in \{1,-1\}} c_j \sum_k P(k) \sum_{i=0}^{k} \binom{k}{i} \theta_j^i (1 - \theta_j)^{k-i} f(j,k,i) \Delta_b
\]

\[\Delta_c = -j \quad \Delta_b = \frac{2}{\langle k \rangle} (k - 2i)\]

\[j - \text{opinion} \quad k - \text{node degree} \quad i - \text{number of active bonds}\]

\[c_1 \equiv c \quad c_{-1} \equiv 1 - c\]

\[\theta_1 = \frac{b}{2c} \quad \theta_{-1} = \frac{b}{2(1 - c)}\]

• assumption:
 • active bonds binomially distributed

• steady states: \[\frac{dc}{dt} = 0 \land \frac{db}{dt} = 0\]
PHASE DIAGRAMS

GALC model

LALC model

LAGC model

\langle k \rangle \text{ increase direction, } \langle k \rangle \in \{8, 10, 16, 30\}, q = 3

c – concentration of positive agents
p – probability of anticonformity
\langle k \rangle – average node degree
q – size of the influence group

only average degree matters
MODEL COMPARISON

• how to choose q?

$q = 3$

$q = 5$

$q = 8$

c – concentration of positive agents

p – probability of anticonformity

$\langle k \rangle$ – average node degree

q – size of the influence group

„Statistical Physics Of Opinion Formation: Is it a SPOOF?”
A. Jędrzejewski, K. Sznajd-Weron, C. R. Physique 20(4), 244 (2019)
MONTE CARLO SIMULATIONS

- Watts-Strogatz network model: β – rewiring probability

c – concentration of positive agents
p – probability of anticonformity
q – size of the influence group
$\langle k \rangle$ – average node degree

GALC model
LALC model
LAGC model

$q = 4, \langle k \rangle = 50, N = 28160$
CONCLUSIONS

• differentiation between interaction lengths

• global anticonformity and local conformity
 • most sensitive to network structure
 • most difficult to achieve agreement

• local anticonformity and global conformity
 • low impact of network structure
 • average node degree $\langle k \rangle$ matters

study on movie ratings

A. Jędrzejewski, B. Nowak, A. Abramiuk, and K. Sznajd-Weron,
Chaos 30, 073105 (2020)