Some Characterizations of a Normal Subgroup of a Group

Vipul Kakkar* and R.P. Shukla
Department of Mathematics, University of Allahabad
Allahabad (India) 211 002
Email: vplkakkar@gmail.com; shuklarp@gmail.com

Abstract

Let G be a group and H be a subgroup of G which is either finite or of finite index in G. In this note, we give some characterizations for normality of H in G. As a consequence we get a very short and elementary proof of the Main Theorem of [5], which avoids the use of the classification of finite simple groups.

Key words: Right loop, Normalized Right Transversal, Right Inverse Property.

1 Introduction

Let G be a group and H be a subgroup of G. A normalized right transversal (NRT) S of H in G is a subset of G obtained by choosing one and only one element from each right coset of H in G and $1 \in S$. Then S has a induced binary operation \circ given by $\{x \circ y\} = Hxy \cap S$, with respect to which S is a right loop with identity 1, that is, a right quasigroup with both sided identity (see [8 Proposition 4.3.3, p.102],[4]). Conversely, every right loop can be embedded as an NRT in a group with some universal property (see [4 Theorem 3.4, p.76]).

*The first author is supported by CSIR, Government of India.
Let \(T(G, H) \) denote the set of all NRTs (normalized right transversals) of \(H \) in \(G \). We say that \(S, T \in T(G, H) \) are isomorphic, if their induced right loop structures are isomorphic. If \(H \) is normal subgroup in \(G \), then each \(S \in T(G, H) \) is isomorphic to the quotient group \(G/H \). The converse of this statement was proved in [5, Main Theorem, p.643] for finite groups:

Theorem 1.1 (Main Therem [5]). Let \(G \) be a finite group and \(H \) a subgroup of \(G \). If all NRTs of \(H \) in \(G \) are isomorphic, then \(H \) is normal in \(G \).

The proof of the Main Theorem in [5] used the classification of finite simple groups (the knowledge of order of automorphism groups of finite non-abelian simple groups). In this note, we obtain an elementary short proof of Theorem 1.1, which avoids the use of the classification of finite simple groups.

Let \(S \in T(G, H) \). For \(x \in S \), we denote the map \(y \mapsto y \circ x \) \((y \in S)\) by \(R_x \), where \(\circ \) is the binary operation on \(S \) defined in the first paragraph of Section 1. We say that (1) \(S \) has right inverse property (RIP), if there is a map \(r : S \to S \) such that \(R_{x}^{-1} = R_{r(x)} \), for all \(x \in S \), (2) \(S \) is right conjugacy closed (RCC), if for each pair \((x, y) \in S \times S \) there exists \(z \in S \) such that \(R_x R_y R_z = R_z \), (3) \(S \) is \(A_r \)-transversal if \(H \subseteq N_G(S) \), where \(N_G(S) \) denotes the normalizer of \(S \) in \(G \). Now, we state the main result of this note:

Theorem 1.2. Let \(H \) be subgroup of \(G \) such that either the order \(|H|\) of \(H \) or the index \([G:H]\) is finite. Then following are equivalent:

1. \(H \) is a normal subgroup of \(G \).
2. All \(S \in T(G, H) \) are both sided transversals.
3. All \(S \in T(G, H) \) are isomorphic.
4. All \(S \in T(G, H) \) have RIP.
5. All \(S \in T(G, H) \) are RCC.

2 Proof of the Theorem 1.2

Let \(G \) be a group and \(H \) a subgroup of \(G \). It is shown in [1] and [6] that if \(H \) is finite subgroup of \(G \) then there exists a common set of representatives for the left and right cosets of \(H \) in \(G \). Let us call such a transversal as both
sided transversal. In [9, Theorem 3, p. 12], it is observed that if the index $[G : H]$ of H in G is finite, then both sided transversal exists. O. Ore has generalized these results in [7].

Let $S \in T(G, H)$ and \circ be the binary operation on S defined in the first paragraph of Section 1. Let $x, y \in S$ and $h \in H$. Then $x.y = f(x, y)(x \circ y)$ for some $f(x, y) \in H$ and $x \circ y \in S$. Also $x.h = \sigma_x(h)x\theta h$ for some $\sigma_x(h) \in H$ and $x\theta h \in S$. This gives us a map $f : S \times S \to H$ and a map $\sigma : S \to H^H$ defined by $f((x, y)) = f(x, y)$ and $\sigma(x)(h) = \sigma_x(h)$. Also θ is a right action of H on S. The quadruple (S, H, σ, f) is a c-groupoid (see [4, Definition 2.1, p.71]). Infact, every c-groupoid comes in this way (see [4, Theorem 2.2, p.72]). The same is observed in [2] but with different notations (see [2, Section 3, p. 289]). We need following result of [2] to prove Theorem 1.2:

Proposition 2.1 ([2], Proposition 3.5, p. 292). Let $S \in T(G, H)$ and (S, H, σ, f) be the associated c-groupoid. Then following are equivalent:

1. $\sigma_x : S \to S$ is surjective, for all $x \in S$.
2. The equation $x \circ X = 1$, where X is unknown, has a solution, for all $x \in S$.
3. S is a both sided transversal.

The equivalence of (2) and (3) has also been proved in [3, Lemma 7*, p.30]

Lemma 2.2. Let $S, T \in T(G, H)$ be isomorphic and S be a both sided transversal. Then T is also both sided transversal.

Proof. Let \circ and \circ' be the induced binary operations on S and T respectively. Fix an isomorphism $p : S \to T$. Let $y \in T$ and $x = p^{-1}(y)$. Since S is a both sided transversal, by Proposition 2.1 there exists $a \in S$ such that $x \circ a = 1$. Hence $y \circ' p(a) = p(x) \circ' p(a) = p(1) = 1$. Thus by Proposition 2.1 T is a both sided transversal.

Proof.

Lemma 2.3. Let G be a group and H be a non-normal subgroup of G. Then there exists $S \in T(G, H)$, which is not a left transversal of H in G.

3
Proof. Since \(H \not\trianglelefteq G \), there exists \(x \in G \) such that \(xH \neq Hx \). We may assume that \(xH \setminus Hx \neq \emptyset \), for \(xH \subsetneq Hx \) if and only if \(Hx^{-1} \subsetneq x^{-1}H \) (and so we may replace \(x \) by \(x^{-1} \), if necessary). Choose \(y \in xH \setminus Hx \). Then \(xH = yH \) but \(Hx \neq Hy \). Let \(S \in \mathcal{T}(G, H) \) containing \(1, x, y \). Clearly \(S \) is a right transversal but not left transversal of \(H \) in \(G \).

Proposition 2.4. Let \(G \) be a group and \(H \) be a subgroup of \(G \). If all \(S \in \mathcal{T}(G, H) \) are \(A_r \)-transversals, then \(H \trianglelefteq G \).

Proof. Assume that all \(S \in \mathcal{T}(G, H) \) are \(A_r \)-transversals. Let \(S \in \mathcal{T}(G, H) \). Let \(x \in S \) and \(h \in H \). Since \(S \) is an \(A_r \)-transversal, \(h^{-1}xh \in S \). Hence \(xh = h(h^{-1}xh) \) implies that \(\sigma_x = I_H \), for all \(x \in S \), where \(I_H \) is the identity map on \(H \). By Proposition 2.1 all \(S \) are both sided transversals. Thus by Lemma 2.3 \(H \trianglelefteq G \).

Remark 2.5. The converse of Proposition 2.4 is not true. For example, let \(G = \text{Sym}(3) \), the symmetric group of degree 3. Let \(H \) and \(S \) be subgroups of \(G \) of order 3 and 2 respectively. Then \(H \trianglelefteq G \), \(S \in \mathcal{T}(G, H) \) and \(N_G(S) = S \). Thus \(S \) is not an \(A_r \)-transversal.

Proof of Theorem 1.2 The statement (1) implies each of the statements (2)-(6) (for all \(S \in \mathcal{T}(G, H) \) are isomorphic to the group \(G/H \)).

2 \(\Rightarrow \) 1: Follows from Lemma 2.3.

3 \(\Rightarrow \) 2: Assume that (3) holds. Let \(S \) be a both sided transversal of \(H \) in \(G \) (See first paragraph of Section 2). By Lemma 2.2 all \(S \in \mathcal{T}(G, H) \) are both sided transversals.

4 \(\Rightarrow \) 2: Assume that (4) holds. Let \(S \in \mathcal{T}(G, H) \). Since \(S \) has RIP, there exists a map \(r : S \to S \) such that \(R_x^{-1} = R_{r(x)} \) for all \(x \in S \). Fix \(x \in S \). Then \(R_x R_{r(x)}(x) = x \), that is, \((x \circ r(x)) \circ x = x = 1 \circ x \), where \(\circ \) is the binary operation on \(S \) defined in the first paragraph of Section 1. By right cancellation in \(S \), \(x \circ r(x) = 1 \). Hence by Proposition 2.1 \(S \) is a both sided transversal. Thus (2) holds.

5 \(\Rightarrow \) 2: Assume that (5) holds. Let \(S \in \mathcal{T}(G, H) \) and \(x' \) be the left inverse of \(x \) in \(S \). Since \(S \) is RCC, there exists \(z \in S \) such that \(R_x R_{x'} R_x^{-1} = R_z \). Hence \(R_x R_{x'} R_x^{-1}(x) = R_z(x) \), i.e. \(x \circ z = x' \circ x = 1 \), where \(\circ \) is the binary operation on \(S \) defined in the first paragraph of Section 1. Hence by Proposition 2.1
S is a both sided transversal. Thus (2) holds.

Acknowledgement

Authors are grateful to Prof. Yoav Segev for kindly pointing out an error in the earlier version of the manuscript. This resulted Remark 2.5.

References

[1] H. W. Chapman *A note on the elementary theory of groups of finite order*, Messenger of Math., 42, 132-134 (1913).

[2] J. Klim and S. Majid, *Bicrossproduct Hopf quasigroups*, Comm. Math. U. Carolinas, 51, 287-304 (2010).

[3] E.A. Kuznetsov, *Transversals in groups. 1: Elementary properties*, Quasigroups Related Systems 1, 22-42 (1994).

[4] R. Lal, *Transversals in Groups*, J. Algebra 181, 70-81 (1996).

[5] R. Lal and R. P. Shukla, *Perfectly stable subgroups of finite groups*, Comm. Algebra 24(2), 643-657 (1996).

[6] G. A. Miller, *On a method due to Galois*, Quart. J. Math. Oxford Ser. 41, 382-384 (1910).

[7] O. Ore, *On coset representatives in groups*, Proc. Amer. Math. Soc., 9, 665-670 (1958).

[8] J. D. H. Smith and Anna B. Romanowska, *Post-Modern Algebra*, John Wiley & Sons, Inc., 1999.

[9] H. Zassenhaus, *The Theory of Groups*, Chelsea, New York, 1949.