Nuclear $0\nu2\beta$ decays in $B-L$ symmetric SUSY model and in TeV scale left-right symmetric model

Jin-Lei Yang1,2, Chao-Hsi Chang1,2 and Tai-Fu Feng1,3

1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics, Hebei University, Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding, 071002, China

Abstract

In this paper we take B-L supersymmetric standard model (B-LSSM) and TeV scale left-right symmetric model (LRSM) as two representations of the two kinds of new physics models to study the nuclear neutrinoless double beta decays ($0\nu2\beta$) so as to see the senses onto these two kinds of models when the decays are taken into account additionally. Within the parameter spaces allowed by all the exist experimental data, the decay half-life of the nucleus ^{76}Ge and ^{136}Xe, $T_{1/2}^{0\nu}(^{76}\text{Ge},^{136}\text{Xe})$, is precisely calculated and the results are presented properly. Based on the numerical results, we conclude that the room of LRSM type models for the foreseeable future experimental observations on the decays is greater than that of B-LSSM type models.

Keywords: neutrinoless double beta decay, QCD correction, B-LSSM, LRSM

*Electronic address: yangjinlei@itp.ac.cn
†Electronic address: zhangzx@itp.ac.cn
‡Electronic address: fengtf@hbu.edu.cn
I. INTRODUCTION

Tiny but nonzero neutrino masses explaining neutrino oscillation experiments \[1\] are unambiguous evidences of new physics (NP) beyond the standard model (SM). It is because that in SM there are only left-handed neutrinos, so that the neutrinos can acquire neither Dirac masses nor Majorana masses. Hence to explore any mechanism inducing the tiny neutrino masses, as well as relevant phenomenology, is an important direction to search for NP. The simple extension of SM is to introduce three right-handed neutrinos in singlet of the gauge group SU(2) additionally, where the neutrinos acquire Dirac masses, and to fit the neutrino oscillation and nuclear decay experiments as well as astronomy observations, the corresponding Yukawa couplings of Higgs to the neutrinos are requested so tiny as \(\lesssim 10^{-12} \), that is quite unnatural.

However neutrino(s) may acquire masses naturally by introducing Majorana mass terms in extended SMs. Once a Majorana mass term is introduced, certain interesting physics arise. One of the consequences is that the lepton-number violation (LNV) processes, e.g. the nuclear neutrinoless double beta decays (0\(\nu\)2\(\beta\)) etc may occur. Of them, the 0\(\nu\)2\(\beta\) decays are specially interesting, because they may tell us sensitively some on the nature, whether Dirac \[2\] or Majorana \[3\], of the neutrinos. When the decays 0\(\nu\)2\(\beta\) are observed in experiments, most likely, the neutrinos contain Majorana components. Thus studying 0\(\nu\)2\(\beta\) decays is attracting special attentions.

Nowadays there are several experiments running to observe the 0\(\nu\)2\(\beta\) decays, and the most stringent experimental bounds on the processes are obtained by GERDA \[4, 5\] and KamLAND-Zen \[6, 7\]. They adopt suitable approaches and nucleus such as \(^{76}\)Ge and \(^{136}\)Xe respectively. Now the latest experimental lower bound on the decay half-life given by GERDA experiments is \(T_{1/2}^{0\nu} > 1.8 \times 10^{26}\) years (90\% C.L.) for nucleus \(^{76}\)Ge \[8\], and in the near future the sensitivity can reach to \(10^{28}\) years \[9\]. For the nucleus \(^{136}\)Xe, the most stringent lower bound on the decay half-life is \(T_{1/2}^{0\nu} > 1.07 \times 10^{26}\) years (90\% C.L.) given by KamLAND-Zen \[6\], and the corresponding future sensitivity can reach to \(2.4 \times 10^{27}\) years \[10\]. Moreover, underground experiments PANDAX, CDEX etc, which are originally designed for searching for WIMP dark matter, are also planning to seek the 0\(\nu\)2\(\beta\) decays i.e.
they may observe the $0\nu 2\beta$ decays with the sensitivity which at least will set a fresh lower bound.

In literature, there are a lot of theoretical analyses on the $0\nu 2\beta$ decays. The analyses are carried out generally by dividing the estimation of the $0\nu 2\beta$ decays into three ‘factors’: one is at quark level to evaluate the amplitude for the ‘core’ process $d + d \rightarrow u + u + e + e$ of the decays; the second one is, from quark level to nucleon level, to involve the quark process into the relevant nucleon one i.e. the ‘initial’ quarks d and d involve into the two neutrons in the initial nucleus and the ‘final’ quarks u and u involve into the two protons in the final nucleus; the third one is, from nucleon level to nucleus level, the relevant nucleons involve in the initial nucleus and the final nucleus properly. For the ‘core’ process, in Ref. [11] a general Lorentz-invariant effective Lagrangian is constructed by dimension-9 operators, and in Ref. [12, 13] the QCD corrections to all of these dimension-9 operators are calculated. In Ref. [14] the short-range effects at quark level are considered, the analyses of the decay rates in the SM effective field theory are presented in Refs. [15–17], the $0\nu 2\beta$ decay rates are derived in Refs. [18], the corresponding nuclear matrix elements (NME) and phase-space factors (PSF) for the second and the third factors of the decays i.e. from quark level to nucleon and nucleus levels, are considered in Refs. [19–29], some theoretical predictions on the $0\nu 2\beta$ for certain models are presented in Refs. [30–34], and the theoretical analyses on the decays are reviewed in Refs. [35–37].

In this work, we are investigating the constrains from the $0\nu 2\beta$ decays for the $B - L$ supersymmetric model (B-LSSM) and for the TeV scale left-right symmetric model (LRSM) comparatively. It is because that the two models are typical: both have LNV source but the mechanisms which give rise to the Majorana mass terms are different [38–51]. In the B-LSSM, the tiny neutrino masses are acquired naturally through the so-called type-I seesaw mechanism which is proposed firstly by Weinberg [52]. In the LRSM [53, 54], the tiny neutrino masses are acquired by both of type-I and type-II seesaw mechanisms, in addition, the new right-handed gauge bosons W_R^\pm is introduced in this model, then both of left-handed and right-handed currents cause the $0\nu 2\beta$ decays [55–72]. As results, the computations of the decays are much more complicated in the LRSM than those in the B-LSSM. Hence these two models, being representatives of NP models, are typical for the $0\nu 2\beta$ decays, and one
may learn the mechanisms in the models well via analyzing the $0\nu 2\beta$ decays comparatively.

In the study here, we will mainly focus on the first ‘factor’ about the quark level i.e. the core process, which relates to the applied specific model closely. We will evaluate the Wilson coefficients of the operators relevant to the core process $d+d \rightarrow u+u+e+e$ etc on the models, whereas the estimation of the other two ‘factors’, i.e. to evaluate ‘NME’ and ‘PSF’ etc, we will follow the literatures [29–33]. Respect to the ‘core’ process $d+d \rightarrow u+u+e+e$, all of the contributions in the B-LSSM can be deduced directly quite well, while the contributions in LRSM cannot be so. As shown in Ref. [73], the calculations in the LRSM are much complicated and the interference effects are quite hard to be considered well. In this work, a new approximation, i.e. the momenta of the two involved quarks inside the initial or final nuclei is tried to be set equal, is made so as may reduce all contributions in the LRSM quite similar to the case of B-LSSM. Then the calculations in LRSM are simplified quite a lot and under the approximation the interference effects can be treated comparatively well. Finally, for comparison, we also present the results obtained by the traditional method [65].

The paper is organized as follows: In Sec. II for B-LSSM, the seesaw mechanisms which give rise to the tiny neutrino masses, the heavy neutral leptons as well, the relevant interactions etc, the calculations of the $0\nu 2\beta$ decay half-lifes of the nuclei are given. Similarly, in Sec. III for LRSM, the seesaw mechanisms which give rise to the tiny neutrino masses, as well the heavy neutral leptons, the relevant interactions and the calculations of the $0\nu 2\beta$ decay half-lifes of the nuclei are given. In Sec. IV A and IV B the numerical results for B-LSSM and LRSM are presented respectively. Finally, in Sec. V brief discussions and conclusions are given. In the appendix, the needed QCD corrections to the effective Lagrangian which contains the dimension-9 operators in the region from the energy scale $\mu \simeq M_W$ to the energy scale $\mu \simeq 1.0 \text{ GeV}$ are collected.

II. THE B-LSSM FOR $0\nu 2\beta$ DECAYS

In the B-LSSM, the local gauge group is $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_{B-L}$, where B, L denote the baryon number and lepton number respectively, and the details about the gauge fields, their breaking, extra lepton and Higgs fields etc can be found in Refs. [42–51].
In this model, tiny neutrino masses are acquired by the so-called type-I seesaw mechanism, when the $U(1)_{B-L}$ symmetry is broken spontaneously by the two $U(1)_{B-L}$ singlet scalars (Higgs). The mass matrix for neutrinos and neutral heavy leptons in the model can be expressed as

$$
\begin{pmatrix}
0, & M_D^T \\
M_D, & M_R
\end{pmatrix},
\tag{1}
$$

and the mass matrix can be diagonalized in terms of a unitary matrix U_ν as follows:

$$
U_\nu^T \begin{pmatrix}
0, & M_D^T \\
M_D, & M_R
\end{pmatrix} U_\nu = \begin{pmatrix}
\hat{m}_\nu, & 0 \\
0, & \hat{M}_N
\end{pmatrix},
\tag{2}
$$

where the neutrino masses $\hat{m}_\nu = \text{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3})$, the masses of the heavy neutral leptons $\hat{M}_N = \text{diag}(M_{N_1}, M_{N_2}, M_{N_3})$ and U_ν is a matrix of 6×6 which can be rewritten as

$$
U_\nu = \begin{pmatrix}
U & S \\
T & V
\end{pmatrix},
\tag{3}
$$

where U, S, T, V are matrices of 3×3.

The interactions, being applied later on, in the model are

$$
\mathcal{L}_I = \frac{ig_2}{\sqrt{2}} \sum_{j=1}^{3} \left[U_{ij} \bar{e}_i \gamma^\mu P_L \nu_j W^-_{L,\mu} + S_{ij} \bar{e}_i \gamma^\mu P_L N_j W^-_{L,\mu} + \text{h.c} \right],
\tag{4}
$$

where ν, N are the four-component fermion fields of the light and heavy neutral leptons respectively.

The Feynman diagrams which response for the dominated contributions to the $0\nu2\beta$ decays in the B-LSSM are plotted in Fig. 1. Note here that the contributions from charged Higgs exchange(s) are ignored safely as they are highly suppressed by the charged Higgs masses and Yukawa couplings, thus in Fig. 1 the charged Higgs exchange do not appear at all. To evaluate the contributions corresponding to the Feynman diagrams for the $0\nu2\beta$ decays, and to consider the roles of the neutral leptons (light neutrinos and heavy neutral leptons) in the Feynman diagrams, the useful formulae are collected below so as to deal with the neutrino propagator sandwiched by various chiral project operators $P_{L,R} = \frac{1}{2}(1 \mp \gamma_5)$:

$$
P_L \frac{k + m}{k^2 - m^2} P_L = \frac{m}{k^2 - m^2} P_L, \quad P_R \frac{k + m}{k^2 - m^2} P_R = \frac{m}{k^2 - m^2} P_R,
\tag{5}
$$

$$
P_L \frac{k + m}{k^2 - m^2} P_R = \frac{k}{k^2 - m^2} P_R, \quad P_R \frac{k + m}{k^2 - m^2} P_L = \frac{k}{k^2 - m^2} P_L.
FIG. 1: The dominant Feynman diagrams for the $0\nu 2\beta$ decays in the B-LSSM Model. (a) The contributions from the heavy neutral lepton exchanges, (b) The contributions from the light neutrino exchanges.

and the propagator

$$\frac{k + m}{k^2 - m^2} \approx \begin{cases} \frac{-1}{m}, & m^2 \gg k^2 \\ \frac{k + m}{k^2}, & m^2 \ll k^2 \end{cases}, \quad \text{(6)}$$

Relating to the exchanges of the heavy neutral leptons (the virtual neutral lepton momentum k has $|k| \simeq 0.10 \text{ GeV} \ll M_{N_i}$) for the decays, from Fig. (a) the effective Lagrangian at the energy scale $\mu \simeq M_{W_L}$ can be read out as

$$\frac{2m_p}{G_F \cos \theta_C^2} \mathcal{L}^{\text{eff}}_{\text{BL}}(N) = \sum_i \frac{2m_p}{M_{N_i}} (S_{1i})^2 [4(\bar{u}\gamma_\mu P_L d)(\bar{u}\gamma^\mu P_L d)\bar{e}P_R e^c] \equiv C_{3R}^{LL}(N) \mathcal{O}_{3R}^{LL},$$

$$C_{3R}^{LL}(N) = \sum_i \frac{2m_p}{M_{N_i}} (S_{1i})^2, \quad \mathcal{O}_{3Z}^{XY} = 8(\bar{u}\gamma_\mu P_X d)(\bar{u}\gamma^\mu P_Y d)\bar{e}P_Z e^c, \quad \text{(7)}$$

where $X, Y, Z = L, R, \theta_C$ is the Cabibbo angle, m_p is proton mass introduced for normalization of the effective Lagrangian, and S_{1i} is the matrix elements in Eq. (3).

Since the nuclear $0\nu 2\beta$ decays take place at the energy scale about $\mu \approx 0.10 \text{ GeV}$, obviously we need to consider the QCD corrections for the effective Lagrangian obtained at the energy scale $\mu \simeq M_{W_L}$ in Eq. (7) i.e. to evolute the effective Lagrangian in terms of renormalization group equation (RGE) method from the energy scale $\mu \simeq M_{W_L}$ to that $\mu \simeq 1.0 \text{ GeV}$ first, where the corrections are in perturbative QCD (pQCD) region. Thus, for completeness, the QCD corrections to all of the possible dimension-9 operators which may contribute to the nuclear $0\nu 2\beta$ decays, are calculated by the RGE method, and the details of computations are collected in the appendix. Whereas the QCD corrections in the
energy scale region $\mu \simeq 1.0 \text{ GeV} \sim \mu \simeq 0.10 \text{ GeV}$, being in non-perturbative QCD region, we take into account them by inputting the experimental measurements for the relevant current matrix elements of nucleons, which emerge when calculating the amplitude based on the effective Lagrangian at $\mu \simeq 0.10 \text{ GeV}$.

For the decays when considering contributions from the neutrino ($m_{\nu_i} \ll |k|$) exchanges as described by the Feynman diagram Fig. 4 (b), and the interferences between the light neutrinos’ and heavy neutral leptons’ contributions, to derive the effective Lagrangian for the neutrino contributions is better at the energy scale $\mu \simeq 1.0 \text{ GeV}$ as heavy neutral leptons too. At this energy scale the effective Lagrangian can be written down according to the Feynman diagram Fig. 4 (b) as below:

$$\frac{2m_p}{G_F \cos \theta_C} \mathcal{L}^\text{BL}_{\text{eff}} (\nu) = \frac{m_{\nu_i}}{m_e} (U_{1i})^2 \cdot \frac{2m_p m_e}{-k^2} \mathcal{O}_{3R}^{\text{LL}} \equiv C^{LL}_{3R} (\nu) \frac{2m_p m_e}{-k^2} \mathcal{O}_{3R}^{\text{LL}},$$

$$C^{LL}_{3R} (\nu) = \frac{m_{\nu_i}}{m_e} (U_{1i})^2.$$ \hspace{1cm} (8)

Since the light neutrino exchange is of long range, the QCD corrections in the region $\mu \simeq 1.0 \text{ GeV} \sim \mu \simeq 0.10 \text{ GeV}$ to the coefficients in Eq. (8) may be involved just as that in the case done as in the above for the heavy neutral lepton case, via inputting the experimental measurements for the relevant current matrix elements of nucleons, which emerge when calculating the matrix elements in the amplitudes at $\mu \approx 0.10 \text{ GeV}$.

To evaluate the half-life $T_{1/2}^{0\nu} \equiv \ln 2/\Gamma$ of the $0\nu2\beta$ decays, the contributions from the heavy neutral leptons (Fig 4(a)) and those from the neutrinos (Fig 4(b)) should be summed up for the amplitudes. The half-life $T_{1/2}^{0\nu} \equiv \ln 2/\Gamma$ of the $0\nu2\beta$ decays can be written as \[28\]

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} |M^{0\nu}|^2 |\frac{m_e}{m_e}|^2,$$ \hspace{1cm} (9)

where $G^{0\nu} = 2.36 \times 10^{-15} \ (14.56 \times 10^{-15})$ years$^{-1}$ \[28\] for $^{76}\text{Ge} \ (^{136}\text{Xe})$ is the PSF, $M^{0\nu} = -6.64 \pm 1.06 \ (-3.60 \pm 0.58)$ \[19, 28\] for $^{76}\text{Ge} \ (^{136}\text{Xe})$ is the NME corresponding to the long

\footnote{The NMEs adopted here are obtained within the framework of the microscopic interacting meson model for nuclei \[28\], and the uncertainties for NMEs calculations from the various nuclear structure models are quite wild, here we remind only that the NMEs obtained by various approaches are varying by a factor of (2 ∼ 3) roughly \[74\].}
range contributions which is defined as

$$M^{0\nu} \equiv \langle O^+ | \frac{2m_\nu m_e}{-k^2} [4(\bar{u}\gamma_\mu P_L d)(\bar{u}\gamma^\mu P_L d)] | O^+_I \rangle$$ \hspace{1cm} (10)

with $|O^+_I\rangle$, $\langle O^+_F| \langle O^+_F|$ denoting the initial and final nuclear states respectively. Note that in Eq. (10) that the factor $\frac{2m_\nu m_e}{-k^2}$ in Eq. (8) is absorbed into the so-called 'neutrino potential' which is used to compute the long range NME. And

$$m^{BL}_{ee} \equiv U^{XX}_3 C^{LL}_{3R}(N) \frac{M^{XX}_3(N)}{M^{0\nu}} + C^{LL}_{3R}(\nu),$$ \hspace{1cm} (11)

where U^{XX}_3 is the QCD running factor from $\mu \simeq M_{W_L}$ to $\mu \simeq 1.0$ GeV (the numerical result of U^{XX}_3 can be found in Eq. (A60)), $M^{XX}_3(N) = -200 \pm 56 (-111 \pm 31.08)$ 19,28 for 76Ge (136Xe) is the NME corresponding to short range contributions which is defined as

$$M^{XX}_3(N) \equiv \langle O^+_F | [4(\bar{u}\gamma_\mu P_X d)(\bar{u}\gamma^\mu P_X d)] | O^+_I \rangle.$$ \hspace{1cm} (12)

III. THE LRSM

For the model LRSM, the gauge fields are $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$, and the details about the gauge fields and their breaking can be found in Refs. $^{38-41}$. In this model, the tiny neutrino masses are obtained by both of type-I and type-II seesaw mechanisms due to introducing the right-handed neutral leptons and two triplet Higgs (scalars) accordingly. In the model, the mass matrix for the neutral leptons generally is written as

$$\begin{pmatrix}
M_L, & M^T_D \\
M_D, & M_R
\end{pmatrix}$$ \hspace{1cm} (13)

and the mass matrix Eq. (13)2 can be diagonalized in terms of a unitary matrix U_ν, whereas the matrix U_ν can be expressed similarly as that in the case of the B-LSSM Eq. (3).

For the model LRSM, if the left-right symmetry is not broken manifestly but spontaneously, i.e. $g_L = g_R \equiv g_2$ and as one consequence, the mass terms of W bosons can be

2 The matrix Eq. (13) with $M_L = 0$ indicates the masses are acquired by type-I seesaw mechanism; it with $M_D = 0$ indicates the masses are acquired by type-II seesaw mechanism; it in general feature indicates the masses are acquired by type-I+II seesaw mechanism.
written as
\[
\mathcal{L}_{M_W} = \frac{g_2^2}{4} \left(W_L^+, W_R^+ \right) \left(\begin{array}{cc}
2v_1^2 + v_2^2 + 2v_1^2, & 2v_1 v_2 \\
2v_1 v_2, & v_1^2 + v_2^2 + 2v_R^2
\end{array} \right) \left(\begin{array}{c}
W_L^- \\
W_R^-
\end{array} \right),
\] (14)
where \(v_1, v_2, v_L, v_R \) are the VEVs of new scalars (Higgs) in the LRSM. Then the physical masses of the \(W \) bosons can be obtained
\[
M_{W_1} \simeq \frac{g_2^2}{2} (v_1^2 + v_2^2)^{1/2}, \quad M_{W_2} \simeq \frac{g_2}{\sqrt{2}} v_R.
\] (15)
The mass eigenstates \(W_{1,2}^\pm \) are related to the interaction eigenstates \(W_{L,R}^\pm \) by \(\zeta \)
\[
\begin{pmatrix}
W_1^+ \\
W_2^+
\end{pmatrix} = \begin{pmatrix}
\cos \zeta, & \sin \zeta \\
-\sin \zeta, & \cos \zeta
\end{pmatrix} \begin{pmatrix}
W_L^+ \\
W_R^+
\end{pmatrix},
\] (16)
where \(\tan 2\zeta = \frac{v_1 v_2}{v_R^2 - v_L^2} \).

The interactions, being applied later on, in the model are
\[
\mathcal{L}_{I_{LRSM}}^{\text{LRSM}} = \frac{ig_2}{\sqrt{2}} \sum_{j=1}^{3} \left[\bar{e}_i (\cos \zeta U_{ij} \gamma^\mu P_L + \sin \zeta T_{ij}^* \gamma^\mu P_R) \nu_j W_{1,\mu}^- \\
+ \bar{e}_i (\cos \zeta T_{ij}^* \gamma^\mu P_R - \sin \zeta U_{ij} \gamma^\mu P_L) \nu_j W_{2,\mu}^- \\
+ \bar{e}_i (\cos \zeta S_{ij} \gamma^\mu P_L + \sin \zeta V_{ij}^* \gamma^\mu P_R) N_j W_{1,\mu}^- \\
+ \bar{e}_i (\cos \zeta V_{ij}^* \gamma^\mu P_R - \sin \zeta S_{ij} \gamma^\mu P_L) N_j W_{2,\mu}^- \\
+ \bar{u} (\cos \zeta \gamma^\mu P_L + \sin \zeta \gamma^\mu P_R) dW_{1,\mu}^- \\
+ \bar{u} (\cos \zeta \gamma^\mu P_R - \sin \zeta \gamma^\mu P_L) dW_{2,\mu}^- + \text{h.c.} \right],
\] (17)
where the definitions for \(U, S, T, V, \nu, N \) are same as the ones in the B-LSSM.

In the LRSM, the dominant contributions to the \(0\nu2\beta \) decays are represented by Feynman diagrams Fig. \[2\] In comparison with those of the B-LSSM, the contributions from the Higgs exchanges can be ignored so in Fig. \[2\] there is no Higgs exchange at all, but besides the left-handed gauge boson components \(W_{L}^\pm \), there are right-handed components \(W_{R}^\pm \) in \(W_{1}^\pm \) and \(W_{2}^\pm \) gauge bosons. Therefore the situation in determining the effective Lagrangian for the \(0\nu2\beta \) decays is different and comparatively complicated than that for the B-LSSM. In the case for the contributions from the heavy neutral lepton exchanges shown in Fig. \[2\] (a), considering the fact that the heavy neutral leptons propagator \(\frac{M_{N_i} + h}{k^2 - M_{N_i}^2} \approx \frac{-1}{M_{N_i}} \) \((M_{N_i} \geq M_{W_1}) \)
and sin $\zeta, S_{1i}, T_{1i} \ll 1.0$ in the decays, by using Eqs. (5, 6) the effective Lagrangian at the energy scale $\mu \simeq M_{W_1}$ (W_1 is the lighter one boson between $W_{1,2}$) can be written down as follows

$$\frac{2m_p}{G_F \cos \theta_C^2} \mathcal{L}_{\text{eff}}^\text{LR}(N) = C_{3R}^{LL}(N) \mathcal{O}_{3R}^{LL} + C_{3L}^{LL}(N) \mathcal{O}_{3L}^{LL} + C_{3R}^{RL}(N) \mathcal{O}_{3L}^{RL} + C_{3L}^{RR}(N) \mathcal{O}_{3L}^{RR};$$

$$C_{3R}^{LL}(N) = \frac{2m_p}{M_{N_i}} \cos^4 \zeta S_{1i}^2, \quad C_{3L}^{LL}(N) = \frac{2m_p}{M_{N_i}} \cos^2 \zeta \sin^2 \zeta V_{1i}^2;$$

$$C_{3L}^{RL}(N) = \frac{2m_p}{M_{N_i}} \cos^3 \zeta \sin \zeta V_{1i}^2 \left(\frac{M_{W_2}}{M_{W_1}}\right)^2, \quad C_{3L}^{RR}(N) = \frac{2m_p}{M_{N_i}} \cos^4 \zeta V_{1i}^2 \left(\frac{M_{W_2}}{M_{W_1}}\right)^4. \quad (18)$$

In literatures, due to small ζ, the contributions corresponding to $C_{3L}^{RL}(N), C_{3L}^{LL}(N)$ in Eq. (18) are neglected. However, since $\tan 2\zeta = \frac{2m_{\nu_i}}{v_2 - v_1}$, i.e. $\zeta \approx x M_{W_1}/M_{W_2}$ and when $x \equiv v_2/v_1 > 0.02$ \cite{12}, the terms with $C_{3L}^{RL}(N)$ and $C_{3L}^{LL}(N)$ can also make essential contributions compared with the terms with $C_{3R}^{RR}(N), C_{3L}^{RR}(N)$. Thus in this work, when evaluating the $0\nu 2\beta$ decays we would like to keep the contributions from the terms of $C_{3L}^{RL}(N), C_{3L}^{LL}(N)$, and consider the QCD corrections to the effective Lagrangian Eq. (18) in the similar way as that in the B-LSSM.

As the next step, when considering the contributions from the light neutrino exchanges as Fig. 2 (b), owing to the fact that $W_{1,2}^\pm$ contain both components $W_{L,R}^\pm$ in LRSM, according to Eqs. (5, 6), the light neutrino propagators with chiral project operators $P_{L,R}\frac{m_{\nu_i} + \xi}{k^2 - m_{\nu_i}^2} P_{L,R}$ or $P_{L,R}\frac{m_{\nu_i} + \xi}{k^2 - m_{\nu_i}^2} P_{R,L}$, as central factors, finally contribute the factors as $\frac{m_{\nu_i}}{k^2} P_{L,R}$ or $\frac{\xi}{k^2} P_{L,R}$ respectively to the results. Namely the factors $\frac{\xi}{k^2} P_{L,R}$ are new and substantial, and in B-LSSM they do not appear at all. Moreover when the contributions from the ‘higher order’
terms for \(\sin \zeta, S_{i1}, T_{i1} \), such as those small terms proportional to \(\sin^2 \zeta, S^2_{i1}, T^2_{i1} \) etc., are ignored, then the effective Lagrangian at the energy scale \(\mu \simeq 1.0 \, \text{GeV} \) may be read out from Fig. 2(b) as

\[
\frac{2m_p}{G_F \cos \theta_C} \mathcal{L}_{\text{eff}}^{\text{LR}}(\nu) = \cos^4 \zeta \frac{U_{i1}^2 m_{\nu i} 2m_p m_e}{m_e} \mathcal{O}^L + \\
\cos^3 \zeta \sin \zeta U_{i1} T_{i1}^* [4(\bar{u}\gamma_\mu P_L d)(\bar{u}\gamma_\nu P_L d)\bar{e}\gamma^\mu \frac{2m_p k}{k^2} \gamma^\nu e^c] + \\
\cos^4 \zeta U_{i1} T_{1i}^* \frac{M^2_{W_L}}{M^2_{W_R}} [4(\bar{u}\gamma_\mu P_R d)(\bar{u}\gamma_\nu P_L d)\bar{e}\gamma^\mu \frac{2m_p k}{k^2} \gamma^\nu P_R e^c].
\] (19)

The QCD corrections in the energy scale region \(\mu \simeq 1.0 \, \text{GeV} \) to \(\mu \simeq 0.10 \, \text{GeV} \), being of non-perturbative QCD, are taken into account by inputting in the experimental measurements for the relevant current matrix elements of nucleons, which emerge at the effective Lagrangian at \(\mu \simeq 0.10 \, \text{GeV} \).

In Refs. [55–66], the second term and the third term of Eq. (19) are defined as \(\eta, \lambda \) respectively. Extracting the factors

\[
C_{\eta} = \cos^3 \zeta \sin \zeta U_{i1} T_{i1}^* , \quad C_{\lambda} = \cos^4 \zeta U_{i1} T_{1i}^* \frac{M^2_{W_L}}{M^2_{W_R}},
\] (20)

then the operators \([4(\bar{u}\gamma_\mu P_L d)(\bar{u}\gamma_\nu P_L d)\bar{e}\gamma^\mu \frac{2m_p k}{k^2} \gamma^\nu e^c] , \) \([4(\bar{u}\gamma_\mu P_R d)(\bar{u}\gamma_\nu P_L d)\bar{e}\gamma^\mu \frac{2m_p k}{k^2} \gamma^\nu P_R e^c] \)
are attributed to the calculations of NME and PSF.

Whereas when calculating the NMEs and PSF, the interference effects among the contributions, especially to consider the contributions from the factors \(\frac{k}{k^2} P_{L,R} \) for the light neutrino exchanges, are complicated and hard (in literatures to treat them even the Lorentz covariance is lost [76]). In this work to calculate NMEs and PSF, we try to make an additional approximation on the contributions relevant the factors \(\frac{k}{k^2} P_{L,R} \) for the light neutrino exchanges, which we call as ‘frozen approximation’. Under the approximation, the momenta of the two involved quarks inside the initial nucleus and two involved quarks inside the final nucleus (Fig. 2) are assumed to be equal approximately:

\[
p_1 \simeq p_2 \equiv \bar{p}, \quad k_1 \simeq k_2 \equiv \bar{k}.
\] (21)

With the ‘frozen approximation’ and ‘the on-shell approximation’ onto the momenta for the out legs as well, all contributions corresponding to Fig. 2(b) can be well-deduced and the
final results can be collected as

\[
\frac{2m_p}{G_F^2 \cos \theta_W} L_{\text{LR}}^{\text{eff}}(\nu) = \frac{2m_p m_e}{-k^2} [C_{3R}^{LL}(\nu) O_{3R}^{LL} + C_{3L}^{LL}(\nu) O_{3L}^{LL} + C_{3L}^{RL}(\nu) O_{3L}^{RL} + C_{3R}^{RL}(\nu) O_{3R}^{RL} + C_{5}^{LL}(\nu) O_{5}^{LL} + C_{5}^{RR}(\nu) O_{5}^{RR} + C_{5}^{LR}(\nu) O_{5}^{LR} + C_{5}^{RL}(\nu) O_{5}^{RL}],
\]

(22)

where

\[
O_{5}^{XY} = 4(\bar{u} \gamma_\mu P_X d)(\bar{u} P_Y d) e^5 \gamma^5 e,
\]

\[
C_{3R}^{LL}(\nu) = \frac{1}{m_e} \cos^3 \zeta U_{1i}(m_u \cos \zeta U_{1i} - m_e \sin \zeta T_{1i}^*),
\]

\[
C_{3L}^{LL}(\nu) = -\cos^3 \zeta \sin \zeta U_{1i} T_{1i}^*,
\]

\[
C_{3L}^{RL}(\nu) = C_{3R}^{RL}(\nu) = -\frac{1}{2} \cos^4 \zeta U_{1i} T_{1i}^* \left(\frac{M_{W1}}{M_{W2}}\right)^2,
\]

\[
C_{5}^{LL}(\nu) = -C_{5}^{RR}(\nu) = \frac{m_u - m_d}{m_e} \cos^3 \zeta \sin \zeta U_{1i} T_{1i}^* - \frac{m_d}{m_e} \cos^4 \zeta U_{1i} T_{1i}^* \left(\frac{M_{W1}}{M_{W2}}\right)^2;
\]

\[
C_{5}^{LR}(\nu) = -C_{5}^{RL}(\nu) = \frac{m_d - m_u}{m_e} \cos^3 \zeta \sin \zeta U_{1i} T_{1i}^* - \frac{m_u}{m_e} \cos^4 \zeta U_{1i} T_{1i}^* \left(\frac{M_{W1}}{M_{W2}}\right)^2.
\]

Then in LRSM the half-life of 0ν2β decays can be written as

\[
\frac{1}{T_{0\nu}^{1/2}} = G^{0\nu} |M^{0\nu}|^2 \left| \frac{m_{ee}}{m_e} \right|^2,
\]

(24)

where

\[
m_{ee}^{LR} = m_e \left\{ \left[[C_{3L}^{RR}(N) + C_{3L}^{LL}(N)] U_{3X}^{XX} M_{3X}^{XX}(N) \right] M_{0\nu}^3 + C_{3L}^{RL}(N) U_{3X}^{XY}(N) M_{3X}^{YY}(N) \right\}^{1/2},
\]

\[
+ C_{3L}^{LL}(\nu) + C_{3L}^{RL}(\nu) \left[M_{3X}^{XX}(N) \right] M_{0\nu}^3 + C_{3L}^{RL}(\nu) \right\}^{1/2},
\]

\[
+ 2 \left[\frac{G^{(0)}_{11}}{G^{0\nu}} \left[[C_{3L}^{RR}(N) + C_{3L}^{LL}(N)] U_{3X}^{XX} M_{3X}^{XX}(N) \right] M_{0\nu}^3 + C_{3L}^{RL}(N) U_{3X}^{XY}(N) M_{3X}^{YY}(N) \right] \left[C_{3L}^{RL}(N) U_{3X}^{XX} M_{3X}^{XX}(N) + C_{3L}^{LL}(\nu) \right] \right\}^{1/2},
\]

(25)

where \(U_{3X}^{YY}(N) \) is the 2 × 2 RGE evolution matrix from \(\mu \simeq M_{W1} \) to \(\mu \simeq 1.0 \text{ GeV} \) (the numerical result of \(U_{3X}^{YY}(N) \) can be found in Eq. \([A60]\)), \(C_{3L}^{XY}(N, \nu) \) is the coefficient defined in Eq. \([A23]\), \(G^{(0)}_{11} = -0.28 \times 10^{-15} \) (−1.197 × 10−15) years−1 \([A23]\) for 76Ge \(^{136}\text{Xe}\) is the PSF, and \(M_{3X}^{YY}(N) = 4.24 \pm 0.68 \) (2.17 ± 0.35), \(M_{3X}^{YY}(N) = 99.8 \pm 27.94 \) (51.2 ± 14.34) \([A13, A28]\) for 76Ge \(^{136}\text{Xe}\) are the NMEs corresponding to the exchange of light neutrinos, heavy neutral
leptons respectively which are defined as

\[M_{3XY}(\nu) \equiv \langle O_F^+ | \frac{2m_p m_e}{-k^2} [4(\bar{u}\gamma_\mu P_X d)(\bar{u}\gamma_\mu P_Y d)] | O_I^+ \rangle, \]
\[M_{3XY}(N) \equiv \langle O_F^+ | [4(\bar{u}\gamma_\mu P_X d)(\bar{u}\gamma_\mu P_Y d)] | O_I^+ \rangle. \] (26)

Similar to the case of B-LSSM, the factor \(\frac{2m_p m_e}{-k^2} \) in Eq. (22) is absorbed into the ‘neutrino potential’ which is used to compute the long range NME. In addition, we should note that in Eq. (25) the terms of \(C_{RR}^5(\nu), C_{LL}^5(\nu), C_{RL}^5(\nu), C_{LR}^5(\nu) \) in Eq. (23) do not make contributions to the \(0\nu2\beta \) decays for the reason below. They make contributions to \(0\nu2\beta \) decays in the form

\[M_{5XX}^X(\nu)[C_{RR}^5(\nu) + C_{LL}^5(\nu)] + M_{5XY}(\nu)[C_{RL}^5(\nu) + C_{LR}^5(\nu)], \] (27)

where

\[M_{5XX}^X(\nu) \equiv \langle O_F^+ | \frac{2m_p m_e}{-k^2} [4(\bar{u}\gamma_\mu P_X d)(\bar{u}P_X d)] | O_I^+ \rangle, \]
\[M_{5XY}(\nu) \equiv \langle O_F^+ | \frac{2m_p m_e}{-k^2} [4(\bar{u}\gamma_\mu P_X d)(\bar{u}P_Y d)] | O_I^+ \rangle. \] (28)

Since \(C_{RR}^5(\nu) = -C_{LL}^5(\nu), C_{RL}^5(\nu) = -C_{LR}^5(\nu) \) as shown in Eq. (23), then Eq. (27) shows the contributions to the decays from the operators corresponding to the coefficients \(C_{RR}^5(\nu), C_{LL}^5(\nu), C_{RL}^5(\nu), C_{LR}^5(\nu) \) are cancelled completely.

IV. NUMERICAL RESULTS

With the formulas obtained above, now in this section we do the numerical calculations and present the results on the \(0\nu2\beta \) decays for the the nuclei \(^{76}\text{Ge} \) and \(^{136}\text{Xe} \) accordingly. In our numerical calculations, the parameters are taken as the weak boson mass: \(M_{W_L} = 80.385 \) GeV for B-LSSM and \(M_{W_1} = 80.385 \) GeV for LRSM, \(m_b = 4.65 \) GeV for b-quark mass, \(m_c = 1.275 \) GeV for c-quark mass, \(\alpha_{em}(m_Z) = 1/128.9 \) for the coupling of the electromagnetic interaction, \(\alpha_s(m_Z) = 0.118 \) for the coupling of the strong interaction. The constraints from available experimental data, such as the most stringent upper limit on the sum of neutrino masses by PLANK \(\sum m_{\nu_i} < 0.12 \) eV; the neutrino mass-squared differences obtained
via analyzing the solar and atmospheric neutrino oscillation data at 3σ deviations:

\[\Delta m_{12}^2 \equiv m_{\nu_2}^2 - m_{\nu_1}^2 = (7.4 \pm 0.61) \times 10^{-5} \text{ eV}^2, \]

\[\Delta m_{13}^2 \equiv m_{\nu_3}^2 - m_{\nu_1}^2 \approx (2.526 \pm 0.1) \times 10^{-3} \text{ eV}^2 \quad \text{(NH)} \]

\[\Delta m_{32}^2 \equiv m_{\nu_2}^2 - m_{\nu_3}^2 \approx (2.508 \pm 0.1) \times 10^{-3} \text{ eV}^2 \quad \text{(IH)}, \]

etc, are well-considered. Owing to the fact that the hierarchy of neutrino masses has not been fixed yet, we take the two possibilities below to carry out the analyses i.e. the normal hierarchy (NH) \(m_{\nu_1} < m_{\nu_2} < m_{\nu_3} \) and the inverse hierarchy (IH) \(m_{\nu_3} < m_{\nu_1} < m_{\nu_2} \). Moreover, we use the matrix \(U \), the upper-left sub-matrix of the whole matrix \(U_\nu \) in Eq. (3), being the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix to describe the mixing of the light neutrinos. Then we have

\[(U_{1i})^2 m_{\nu_i} = c_{12}^2 c_{13}^2 e^{i\alpha} m_{\nu_1} + c_{13}^2 s_{12}^2 e^{i\beta} m_{\nu_2} + s_{13}^2 m_{\nu_3}, \]

where \(\alpha, \beta \) are Majorana CP violating phases, \(c_{12,13} \equiv \cos \theta_{12,13}, s_{12,13} \equiv \sin \theta_{12,13} \) are the neutrino oscillation parameters and at 3σ error level they can be written as

\[s_{12}^2 = 0.3125 \pm 0.0375, \quad s_{13}^2 = 0.022405 \pm 0.001965. \]

The direct searching for the right-handed gauge boson sets the lower bound for the mass of \(W_2 \) boson as \(M_{W_2} \gtrsim 4.8 \text{ TeV} \), and the \(W_R, W_L \) mixing angle as \(\zeta \lesssim 7.7 \times 10^{-4} \). Finally we have \(x \equiv v_2/v_1 > 0.02 \) required by the CP-violation data for the \(K \) and \(B \) mesons, where \(v_1, v_2 \) are the VEVs of the two Higgs particles in the LRSM.

Eq. (11) and Eq. (25) shows \(m_{ee}^{LR} \) depends the NME and phase space factor of the chosen nuclei. However these factors appears in the expression of \(m_{ee}^{LR} \) in the form of some ratios, and these ratios for \(^{76}\text{Ge} \) are equal to those for \(^{136}\text{Xe} \) roughly, hence we can use the same expression of \(m_{ee}^{LR} \) for \(^{76}\text{Ge}, ^{136}\text{Xe} \) in the analyses later on.

A. The numerical results for the B-LSSM

According to the above analysis, in B-LSSM the contributions from the heavy neutral leptons shown in Eq. (7) are highly suppressed (\(S_{1i} \approx 10^{-7} \)) for the TeV-scale heavy neutral
FIG. 3: m_{ee}^{BL} versus $m_{\nu-\text{lightest}}$ under scanning the neutrino mass-squared differences Eq. (29) at 3\(\sigma\) error level and the parameter regions Eq. (32). The green (red) points denote the NH (IH) results, the blue (purple) solid line denotes the experimental constraints from the 0ν2β decay half-life of 76Ge (136Xe), the blue (purple) dashed line denotes the experimental ability of 76Ge (136Xe) for the next generation of experiments, the orange solid (dashed) line denotes the constraints from PLANK 2018 for the case of NH (IH).

leptons, hence the dominant contributions to the 0ν2β decays come from the light neutrinos. Then with the neutrino mixing parameters

$$s_{12}^2 = (0.275 \sim 0.35), \quad s_{13}^2 = (0.02044 \sim 0.02437), \quad \alpha = (0 \sim 2\pi), \quad \beta = (0 \sim 2\pi).$$

(32)

and the neutrino mass-squared differences as those in Eq. (29) at 3\(\sigma\) error level, m_{ee}^{BL} versus $m_{\nu-\text{lightest}}$ (the lightest neutrino mass) for the B-LSSM is plotted in Fig. 3, where the green (red) points denote the NH (IH) results, the blue (purple) solid line denotes the constraints from the lower 0ν2β decay half-life bound of 76Ge (136Xe), the blue (purple) dashed line denotes the experimental ability of 76Ge (136Xe) for the next generation of experiments, the orange solid (dashed) line denotes the constraints from PLANK 2018 for NH (IH) neutrino masses (the meaning for the red points, green points, blue lines, purple lines, orange lines is also adopted accordingly in the figures later on). In the figure Fig. 3 m_{ee}^{BL} is well-below the experimental upper bounds in the cases of NH and IH, and there is not tighter restriction on the $m_{\nu-\text{lightest}}$ than that offered by PLANK. Additionally, the blue dashed line shows that there is certain opportunity to observe the 0ν2β decays in the next generation of experiments, whereas if any of the decays is not observed in the next generation of experiments, then the
IH neutrino masses will be excluded completely by the blue dashed line in Fig. 3.

B. The numerical results for the LRSM

In the LRSM owing to the bosons W_L, W_R and their mixing, the situation is much more complicated than that in the B-LSSM, and both of the light neutrinos and heavy neutral leptons make substantial contributions to the $0\nu2\beta$ decays. For TeV-scale heavy neutral leptons in the LRSM, the consequences of the type II seesaw dominance are similar to those of the type I seesaw dominance, while the consequences are very different from the ones of type I+II seesaw dominance, because the light-heavy neutral lepton mixing is not much suppressed in this case. Hence we do the numerical computations for the type I and type I+II seesaw dominance cases in our analyses. For simplicity and not losing general features, we assume that there is only one of heavy neutral leptons to make substantial contributions in the model. It indicates that there are no off-diagonal elements in the matrix M_R in Eq. (13), i.e. we have $M_R \simeq \hat{M}_N = \text{diag}(M_{N_1}, M_{N_2}, M_{N_3})$. Then under the dominance of either the type I seesaw or the type I+II seesaw mass mechanisms, we compute m_{ee}^{LR} numerically in tern.

1. The results under type I seesaw dominance

Under the type I seesaw dominance and due to the tiny neutrino masses, the sub-matrix T in Eq. (3) has $T_{1j} \ll 1$ ($j = 1, 2, 3$). It indicates that the contributions from the terms proportional to T_{1j}^* as shown in Eq. (23) are highly suppressed. Then scanning the parameter space in Eqs. (29, 32) and in the parameter space

$$x = (0.02 \sim 0.5), \ M_{W_2} = (4.8 \sim 10.0) \ \text{TeV}, \ M_{N_1} = (0.10 \sim 3.0) \ \text{TeV},$$

we plot m_{ee}^{LR} versus m_{ν}-lightest in Fig. 4. Comparing Fig. 4 with Fig. 3, the red points show that the range of m_{ee}^{LR} is similar to the range of m_{ee}^{BL} in the case of IH neutrino masses, but in the case of NH neutrino masses there are points with $m_{ee}^{LR} > m_{ee}^{BL}$. For IH neutrino masses, the contributions to m_{ee}^{LR} are dominated by the terms proportional to light neutrino masses, hence m_{ee}^{LR} depends on x, M_{W_2}, M_{N_1} negligibly, that leads to the the range of reds points is
FIG. 4: $m_{\nu-\text{lightest}}^{LR}$ versus $m_{\nu-\text{lightest}}$ with scanning the parameter space in Eqs. (29, 32, 33).

FIG. 5: With $m_{\nu_1} = 0.001$ eV for NH neutrino masses, (a): $m_{\nu-ee}^{LR}$ versus M_{N_1} for $M_{W_2} = 5.0$ TeV, (b): $m_{\nu-ee}^{LR}$ versus M_{W_2} for $M_{N_1} = 0.2$ TeV. The solid, dashed, dotted lines denote the obtained $m_{\nu-ee}^{LR}$ for $x = 0.10, 0.25, 0.40$ respectively.

similar to the results of $m_{\nu-ee}^{BL}$. Additionally, $m_{\nu-ee}^{LR} > m_{\nu-ee}^{BL}$ shown as green points indicates the contributions to $m_{\nu-ee}^{LR}$ can be dominated by heavy neutral leptons for appropriate values of x, M_{W_2}, M_{N_1}.

In order to see the effects of x, M_{W_2}, M_{N_1} clearly, we take $m_{\nu_1} = 0.001$ eV for the NH neutrino masses, $s_{12}, s_{13}, \Delta m^2_{12}, \Delta m^2_{13}$ at the corresponding center values and the CP violation phases $\alpha = \beta = 0$. Then taking $M_{W_2} = 5.0$ TeV, we plot $m_{\nu-ee}^{LR}$ versus M_{N_1} in Fig. 5 (a), where the solid, dashed, dotted lines denote the results for $x = 0.10, 0.25, 0.40$ respectively. Similarly, $m_{\nu-ee}^{LR}$ versus M_{W_2} for $M_{N_1} = 0.20$ TeV is plotted in Fig. 5 (b). From Fig. 5, one may see the fact that the obtained $m_{\nu-ee}^{LR}$ decreases with the increasing of M_{N_1}, M_{W_2}, then $m_{\nu-ee}^{LR}$ approaches to a constant when M_{N_1} or M_{W_2} becomes large. According to the definition
of W_L-W_R mixing parameter ζ, the coefficient $C_{2H}^{RL}(N)$ in Eq. (18) increases with increasing $x \equiv \frac{v_2}{v_1}$, which leads to that m_{ee}^{LR} increases with x increasing as shown in the figures. Additionally one may see that m_{ee}^{LR} depends on the values of x, M_{W_2}, M_{N_1} mildly when M_{N_1} or M_{W_2} is large. It is because that the contributions from heavy neutral lepton(s) are highly suppressed when its mass or right handed boson mass becomes large, thus the contributions from the light neutrinos become dominant and proportional merely to the light neutrino masses in this case.

2. The results under the type I+II seesaw dominance

As pointed out above, the mixing parameters of the light neutrinos and the heavy neutral leptons are not tiny under the type I+II seesaw dominance, hence the Dirac mass matrix M_D can also affect the numerical results via the mixing of the light neutrinos and the heavy neutral leptons. For simplicity and not losing general feature, we assume that the mass matrix M_D in Eq. (13) is diagonal as $M_D = \text{diag}(M_{D11}, M_{D22}, M_{D33})$. Taking the assumption that only one generation of heavy neutral leptons makes substantial contributions, i.e. M_{D22} and M_{D33} do not affect the results. Scanning the ranges determined by Eqs. (29, 32) and the parameter space

$$x = (0.02 \sim 0.5), \ M_{W_2} = (4.8 \sim 10) \ \text{TeV}, \ M_{N_1} = (0.10 \sim 3.0) \ \text{TeV},$$

$$M_{D11} = (0.10 \sim 100) \ \text{MeV},$$

(34)

m_{ee}^{LR} versus $m_{\nu-\text{lightest}}$ as the results is plotted in Fig. 6. Comparing Fig. 6 with Fig. 4 (also Fig. 3), a larger m_{ee}^{LR} can be reached in the case of type I+II seesaw dominance. Because the contributions are dominated by the terms proportional to S_{1i} or T_{1i}^* when M_{D11} is large (shown in Eqs. (18, 23)), and larger m_{ee}^{LR} is reached in this case. As indicated in Fig. 6 there are some points which are smaller than the points in Fig. 4 both for NH and IH neutrino masses, that is due to the existence of the cancellation effect, i.e. the contributions from the terms proportional to M_{D11} can be cancelled some amount of the contributions from the other terms. The parameter M_{D11} represents the strength of light-heavy neutral lepton mixing, that we can introduce a familiar parameter $S_c^2 \equiv \sum_{i=1}^{3} |S_{1i}|^2$ for the following
FIG. 6: m_{ee}^{LR} versus m_{ν}-lightest with scanning the parameter space in Eqs. (29, 32, 34).

analysis to describe the light-heavy neutral lepton mixing.

In order to show the effects of light-heavy mixing parameter S_e^2 and the cancellation effect well, we take $M_{N_1} = 0.2$ TeV, $m_{\nu_1} = 0.001$ eV for the NH neutrino masses, s_{12}^2, s_{13}^2, Δm_{12}^2, Δm_{13}^2 with the center values and the CP violation phases $\alpha = \beta = 0$ accordingly. The effects with the parameters being fixed above are presented a similar behavior as the case of type I seesaw dominance, hence we do not repeat the study of the effects on these parameters. With $M_{W_2} = 5.0$ TeV, in Fig. 7 (a) we plot m_{ee}^{LR} versus S_e^2, and the solid, dashed, dotted lines denote the results for $x = 0.02, 0.06, 0.1$ respectively. Similarly, with $x = 0.02$, m_{ee}^{LR} versus S_e^2 is plotted in Fig. 7 (b), where the solid, dashed, dotted lines denote the results for $M_{W_2} = 5.0, 6.0, 7.0$ TeV respectively.

From Fig. 7 (a, b) one may see the fact that with the mixing parameter S_e^2 increasing, m_{ee}^{LR} decreases to a minimum value and then increases. In the case of the type I+II seesaw dominance, i.e. S_{1i} and T_{1i} are not too small, the contributions from the light neutrinos are dominated over those terms which do not depend on the neutrino mass m_{ν_1} in Eq. (23). When S_e^2 is small, $C_{3L}^{RR}(N)$ in Eq. (18) plays a dominant role, and as S_e^2 increasing, the contributions from $C_{3L/R}^{LL}(\nu)$ in Eq. (23) become larger. The minimum values for m_{ee}^{LR} as shown in Fig. 7 is due to the opposite signs for $M_{3}^{XX}(N)$ and $M_{3}^{XY}(\nu)$, i.e. it is caused by cancellation of the contributions from $C_{3L}^{RR}(N)$ and $C_{3L/R}^{RL}(\nu)$. From the figures the fact can be seen clearly that when S_e^2 is increasing, the contributions from $C_{3L/R}^{RL}(\nu)$ become dominant which leads to the increasing of m_{ee}^{LR} as long as S_e^2 becomes large enough. The
FIG. 7: m_{ee}^{LR} versus S_e^2 with $M_{N_1} = 0.2$ TeV, $m_{\nu_1} = 0.001$ eV for the NH neutrino masses, s_{12}, s_{13}, Δm_{12}^2, Δm_{13}^2 at the corresponding center values and the CP violation phases $\alpha = \beta = 0$. (a): the results for $M_W = 5.0$ TeV, and the solid, dashed, dotted lines denote the results for $x = 0.02, 0.06, 0.10$ respectively. (b): the results for $x = 0.02$, and the solid, dashed, dotted lines denote the results for $M_W = 5.0, 6.0, 7.0$ TeV respectively.

results indeed show that with S_e^2 varying, the cancellation takes place in a proper manner. When the cancellation takes place, the value of S_e^2 depends on M_W and x explicitly.

To compare the results obtained under the fresh approximation in this work with the ones obtained by traditional way, we take the results from Ref. [65] and present m_{ee}^{LR} versus M_{W_2} in Fig. 8 (a), (b) for $s_e^2 = 0.25 \times 10^{-8}, 10^{-8}$ respectively, where the solid, dashed lines denote the results obtained under the fresh approximation in this work and those by the traditions way from in Ref. [65] respectively. In Fig. 8 we take $M_{N_1} = 0.2$ TeV, $m_{\nu_1} = 0.010$ eV, $x = 0.020, s_{12}, s_{13}, \Delta m_{12}^2, \Delta m_{13}^2$ at the corresponding center values and the CP violation phases $\alpha = \beta = 0$. Note that in the figures the results obtained in this work coincide well with the traditional ones when S_e^2 is small or M_{W_2} is large in the chosen parameter space. In addition, the results obtained in this work, being approximate ones but having the interference effects considered better, are smaller than the ones obtained in traditional way when W_2 is not heavy enough, and the reduction factor depends on the parameters in LRSM completely and also comes from the uncertainties of NMEs partly. Considering the difficulties and the uncertainties etc in computing NMEs and the interference effects among the various contributions by the way in literatures and the approximation approach in this work, from Fig. 8 it seems that the results with very heavy W_2 ($M_{W_2} \geq 12$ TeV) or small S_e^2
FIG. 8: (a): m_{ee}^{LR} versus M_{W_2} for $S_e^2 = 0.25 \times 10^{-8}$. (b): m_{ee}^{LR} versus M_{W_2} for $S_e^2 = 10^{-8}$. Both are with $M_{N_1} = 0.2$ TeV, $m_{\nu_1} = 0.01$ eV for the NH neutrino masses. The solid, dashed lines denote the results obtained under the new approximation in this work and the traditions method shown in Ref. [65] respectively.

($\lesssim 10^{-9}$) may be convinced more as the results approach to coinciding with each other.

V. SUMMARY AND DISCUSSIONS

In the paper we take B-L supersymmetric standard model (B-LSSM) and TeV scale left-right symmetric model (LRSM) as two representations of two kinds of new physics models to study the nuclear neutrinoless double beta decays ($0\nu2\beta$). As stated in Introduction, the calculations, on which are focused the lights, are those about the factor on the 'core' factor of the decays: evaluating the process $d + d \rightarrow u + u + e + e$ by considering the effective Lagrangian containing the operators with the Wilson coefficients or considering the relevant amplitude etc. Whereas here the estimations of the other necessary 'factors' for the decays, i.e. to evaluate relevant nuclear matrix element (NME) and phase space factor (PSF) etc, that does not relate to the specific models, are treated by following literatures.

In the B-LSSM, all of the calculations can be well deduced and the results are dominated by the neutrino mass terms. However, in the LRSM owing to the existence of right-handed gauge boson W_R, the calculations are complicated, and the interference effects are hard and not well to be estimated. In this work, a new approximation, i.e. the momenta of the two involved quarks inside the initial nucleus and inside the final nucleus are assumed to be equal.
approximately, is made, then all contributions in the LRSM can be well reduced and summed up all the contributions. Then the calculations in LRSM are simplified and the interference effects can be calculated comparatively easily. To see the consequences of the approximation, we compare the results obtained in this work with the ones obtained by the traditional method numerically, and the results coincide with each other well when light-heavy neutral lepton mixing parameter S_e^2 is small or M_{W_2} is large. For the effective dimension-9 contact interactions in these two models, the contributions from heavy neutral lepton exchange, the QCD corrections from the energy scale $\mu \simeq M_{W_L}$ (or M_{W_1}) to the energy scale $\mu \simeq 1.0$ GeV to all dimension-9 operators in the effective Lagrangian which is responsible for the $0\nu 2\beta$ decays are calculated by the RGE method, and all the QCD corrections including the contributions from light neutrinos in the energy scale region $\mu \simeq 1.0$ GeV to $\mu \simeq 0.10$ GeV, being of non-perturbative QCD, are taken into account alternatively by inputting in the experimental measurements for the relevant current matrix elements of nucleons, which emerge at the effective Lagrangian at $\mu \simeq 0.10$ GeV.

With necessary input parameters allowed by experimental data, the theoretical predictions on $0\nu 2\beta$ decay half life ^{76}Ge and ^{136}Xe is obtained in these two models. In the B-LSSM, the contributions from heavy neutral leptons are highly suppressed by the tiny light-heavy neutral lepton mixing parameters for TeV-scale heavy neutral leptons. Hence m_{ee}^{BL} depends on the light neutrino masses mainly, and the numerical results show that the $0\nu 2\beta$ decays may be observed with quite great opportunity in the near future. Whereas if the decays are not observed in the next generation of $0\nu 2\beta$ experiments, the IH neutrino masses are excluded completely by the lower bound on $T_{1/2}^{0\nu}(^{76}\text{Ge})$ (as shown in Fig. 3).

In the LRSM, the situation is much more complicated than that in the B-LSSM, so we have learnt a lot of experiences in study the $0\nu 2\beta$ decays for the model. As for the type I seesaw dominance, the contributions from the terms proportional to T_{ii}^* (see Eq. (23)) are highly suppressed by the tiny neutrino masses. The numerical results of the contributions from light neutrinos are similar to the ones for B-LSSM, but the heavy neutral leptons can make comparatively large contributions through the right-handed current when M_{N_i} ($\lesssim 0.5$ TeV) and M_{W_2} ($\lesssim 7$ TeV) both are not too heavy. For the type I+II seesaw dominance, the terms which do not depend on the neutrino mass m_{ν_i} in Eq. (23) play the dominant roles.
In this case, the contributions from $C_{3L/R}^{RL}(L)$ can be cancelled some by the contributions from $C_{3L}^{RR}(H)$ when the light-heavy mixing parameter S^2_e is appropriate, because the signs of the corresponding NMEs are opposite. Moreover the effects of the cancellation are affected by S^2_e, x and the right-handed W-boson mass M_{W_2} etc in a complicated way. In addition, Fig. 6 shows that the points either in green (NH) or in red (IH) spread out a lot, and there are many ‘exotic points’, where cannot be reached for the cases of the B-LSSM and type I seesaw dominance LRSM. Thus the characteristic feature on the distribution of m_{ee}^{LR} versus $m_{\nu-\text{lightest}}$ may help to realize whether the decays are caused by the LRSM in the type I+II seesaw dominance or not, particularly when the $0\nu2\beta$ decays are observed and the points for m_{ee}^{LR} versus $m_{\nu-\text{lightest}}$ just fall on the exotic points.

Finally, according to the numerical results of the present comparative studies on the $0\nu2\beta$ decays for the two typical models LRSM and B-LSSM, it may be concluded that the room of LRSM type models for the foreseeable future decay experiments is greater than that of B-LSSM type models, and having the right handed gauge bosons the feature of the LRSM type models is more complicated than that of the B-LSSM type models.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China (NNSFC) under Grants No. 11821505 No. 12047503, No. 12075301 and No. 11705045. It was also supported in part by the Key Research Program of Frontier Sciences, CAS, Grant No. QYZDY-SSW-SYS006. The authors (J.-L. Yang and C.-H. Chang) would like to thank Prof. J.-H. Yu (ITP, CAS) for helpful discussions and suggestion.

Appendix A: QCD corrections to the relevant dimension-9 operators

The essential process $d+d \rightarrow u+u+e+e$ for the $0\nu2\beta$ decays involves six ‘fermion legs’, so the effective Lagrangian for the decays is composed generally by a set of independent dimension-9 operators as follows [14]:

$$L_{DBD}^{\text{eff}} = \frac{G^2_F \cos^2 \theta_C}{2m_p} \sum_{X,Y,Z} \left[\sum_{i=1}^{3} C_{iZ}^{XY} (\mu) \cdot \mathcal{O}^{XY}_{iZ} (\mu) + \sum_{j=4}^{5} C_{j}^{XY} (\mu) \cdot \mathcal{O}^{XY}_{j} (\mu) \right], \quad (A1)$$
where θ_C is the Cabibbo angle, $\mu \simeq 0.1$ GeV is the energy scale where the decays take place, and the independent dimension-9 operators $O_{1Z}^{XY}(\mu)$, $O_{j}^{XY}(\mu)$ are defined as:

$$
O_{1Z}^{XY}(\mu) = 4(\bar{u}P_X d)(\bar{u}P_Y d)j_Z,
$$

$$
O_{2Z}^{XY}(\mu) = 4(\bar{u}\sigma_{\mu\nu} P_X d)(\bar{u}\sigma_{\mu\nu} P_Y d)j_Z,
$$

$$
O_{3Z}^{XY}(\mu) = 4(\bar{u}\gamma_{\mu} P_X d)(\bar{u}\gamma_{\mu} P_Y d)j_Z,
$$

$$
O_{4}^{XY}(\mu) = 4(\bar{u}\gamma_{\mu} P_X d)(\bar{u}\sigma_{\mu\nu} P_Y d)j_{\nu},
$$

$$
O_{5}^{XY}(\mu) = 4(\bar{u}\gamma_{\mu} P_X d)(\bar{u}P_Y d)j_{\mu},
$$

(A2)

where $X, Y, Z = L, R$; $P_{R/L} = (1 \pm \gamma^5)/2$, the leptonic currents are defined as

$$
\bar{e}(1 \pm \gamma^5)e^c, \quad j_{\mu} = \bar{e}\gamma_{\mu}\gamma^5 e^c.
$$

(A3)

In the region from M_{W_L} to 1.0 GeV for the energy scale μ, the pQCD is applicable, so the QCD corrections to the effective Lagrangian for the $0\nu2\beta$ decays can be carried out by renormalization group equation method [82, 83]. The corresponding QCD corrections for the $0\nu2\beta$ decays were also calculated in Ref. [12], so here we describe how the corrections are calculated briefly. In RGE method the renormalized operator matrix elements $< \mathcal{O}_i >^{(R)}$ (\mathcal{O}_i is defined in Eq. (A2)) for pQCD relate to their bare ones up to one-loop level generally as the following form:

$$
< \mathcal{O}_i >^{(R)} = [\delta_{ij} + \frac{\alpha_s}{4\pi} b_{ij} \left(\frac{1}{\xi} + \ln \frac{\mu^2}{-p^2} \right)] < \mathcal{O}_j >^{\text{bare}},
$$

(A4)

where $< \mathcal{O}_j >^{\text{bare}}$ are the ‘bare operator matrix elements’. The ‘renormalization’ for quark fields q and operator elements $< \mathcal{O}_j >$ are given by

$$
q^{\text{bare}} = Z_q^{1/2} q^R \quad (q = u, d), \quad < \mathcal{O}_j >^{\text{bare}} = Z_j^{2} Z_{ij}^{-1} < \mathcal{O}_j >^R,
$$

(A5)

where

$$
Z_q = 1 - C_F \frac{\alpha_s}{4\pi} \frac{1}{\xi} + O(\alpha^2_s),
$$

(A6)

and $C_F = (N^2 - 1)/(2N)$ is the SU(N) color factor ($N = 3$). The singularities in Eq. (A4) are required to be cancelled, then we have

$$
Z_{ij} Z_q^{-2} = [\delta_{ij} + \frac{\alpha_s}{4\pi} b_{ij} \frac{1}{\xi}] .
$$

(A7)
Then Z_{ij} can be read out and written as

$$Z_{ij} = \delta_{ij} + \frac{\alpha_s}{4\pi} (b_{ij} - 2C_F \delta_{ij}) \frac{1}{\varepsilon} + \mathcal{O}(\alpha_s^2). \quad (A8)$$

Considering the 4-quark-leg operators $\mathcal{O}(q^{\text{bare}})$ in the effective Lagrangian Eq. (A1) are constructed by the bare quark field q^{bare}, and the corresponding coefficients C^{bare} are also bare. Then q^{bare}, C^{bare} relate to the renormalized ones as

$$q^{\text{bare}} = Z_q^{1/2} q^R, \quad C_i^{\text{bare}} = Z_{ij}^C C_j^R. \quad (A9)$$

Hence we have

$$C_k^{\text{bare}} \mathcal{O}_k(q^{\text{bare}}) = Z_q^2 Z_{ij}^C C_j^R \mathcal{O}_i(q^R), \quad (A10)$$

and the matrix elements for the QCD corrections are read as

$$Z_q^2 Z_{ij}^C C_j^R < \mathcal{O}_i(q^R) >^{\text{bare}} = C_j^R < \mathcal{O}_i(q^{\text{bare}}) >^R, \quad (A11)$$

Combining Eq. (A11) and Eq. (A5), we can obtain

$$Z_{ij}^C = Z_{ij}^{-1}. \quad (A12)$$

Due to the fact that the bare quantities C_i^{bare} do not depend on the renormalization energy scale μ, we have

$$\frac{d}{d \ln \mu} C_i^{\text{bare}} = \frac{d}{d \ln \mu} Z_{ij}^{-1} C_j^R = 0, \quad (A13)$$

which can be rewritten as

$$\frac{d\tilde{C}^R(\mu)}{d \ln \mu} = \hat{\gamma}^T \tilde{C}^R(\mu). \quad (A14)$$

Eq. (A14) is the RGE accordingly for the Wilson coefficients, where $\tilde{C} = (C_1, C_2, \cdots)$ is written as a vector form. Then the anomalous dimension matrix $\hat{\gamma}$ can be written as

$$\hat{\gamma} = \frac{1}{\tilde{Z}} \frac{d}{d \ln \mu} \tilde{Z}. \quad (A15)$$

Combining with the one-loop expression in the \text{\overline{MS}}-scheme

$$\hat{\gamma}(\alpha_s) = -2\alpha_s \frac{\partial \tilde{Z}_1(\alpha_s)}{\partial \alpha_s}, \quad (A16)$$
where \(\hat{Z}_1 \) is the coefficient matrix of \(1/\varepsilon \) in Eq. (A8), the ‘anomalous dimension matrix’ to the leading order can be written as

\[
\gamma_{ij}(\alpha_s) = \frac{\alpha_s}{4\pi} \gamma_{ij}, \quad \text{with} \quad \gamma_{ij} = -2(b_{ij} - 2C_F \delta_{ij}).
\]

(A17)

Then solving Eq. (A14), the evolution of Wilson coefficients \(\vec{C}_R(\mu) \) can be expressed by \(\vec{C}_R(\Lambda) \) in terms of the \(\mu \)-evolution matrix \(\hat{U}(\mu, \Lambda) \):

\[
\vec{C}_R(\mu) = \hat{U}(\mu, \Lambda) \cdot \vec{C}_R(\Lambda),
\]

(A18)

where precisely

\[
\hat{U}(\mu, \Lambda) = \hat{V} \text{Diag}\left\{ \left[\frac{\alpha_s(\Lambda)}{\alpha_s(\mu)} \right]^{\gamma/(2\beta_0)} \right\} \hat{V}^{-1},
\]

(A19)

and

\[
\text{Diag}\{\gamma_{ij}\} = \hat{V}^{-1} \hat{\gamma} \hat{V},
\]

(A20)

with \(\hat{\gamma} \) is \(\gamma_{ij} \) in matrix form. The running coupling constant to one-loop level of QCD can be written as

\[
\alpha_s(\mu) = \frac{\alpha_s(\Lambda)}{1 - \beta_0 \frac{\alpha_s(\Lambda)}{2\pi} \ln(\frac{\Lambda}{\mu})},
\]

(A21)

with \(\beta_0 = (33 - 2f)/3 \), and \(f \) is the number of the active quark flavors which is varied with the energy scale \(\mu \), and only the quark \(q^f \) with mass \(m_f \) smaller than the upper bound of the considered energy scale region are ‘active’. Thus in the region from \(\sim 1.0 \) GeV to \(m_c \sim 1.3 \) GeV we have \(f = 3 \), in the region from \(m_c \) to \(m_b \sim 4.6 \) GeV we have \(f = 4 \) and in the region from \(m_b \) to \(M_W \) we have \(f = 5 \). As a result, the required matrix to describe the QCD RGE evolution from \(\mu = M_W \) to \(\mu \simeq 1.0 \) GeV is

\[
\hat{U}(\mu, \Lambda = M_W) = \hat{U}^{f=3}(\mu, \mu_c)\hat{U}^{f=4}(\mu_c, \mu_b)\hat{U}^{f=5}(\mu_b, M_W).
\]

(A22)

To the leading order, the QCD corrections of the operators in Eq. (A2) correspond to Fig. 9 as follows. Calculating the diagrams respectively, the operator matrix elements cor-
FIG. 9: One-loop QCD corrections to the dimension-9 operators for the $0\nu 2\beta$ decays in the effective Lagrangian.

responding to those in Eq. (A4), have the following structures

Fig. 9(a1) \(\Rightarrow \) \(\mu^{4-D} \int \! \frac{d^Dk}{(2\pi)^D} \frac{i}{k_3\gamma^3} \Gamma_i \frac{i}{k_7\gamma^7} \gamma^\alpha d) (\bar{u}\Gamma_j d) \cdot \frac{-i}{(k-p)^2} (ig_3)^2 C_F \)

\begin{align*}
= (\bar{u}\gamma^\alpha \gamma^\beta \Gamma_i \gamma^\gamma d) (\bar{u}\Gamma_j d) \cdot \frac{1}{4} C_F \frac{\alpha_s}{4\pi} \left(\frac{1}{\varepsilon} + \ln \frac{\mu^2}{-p^2} \right),
\end{align*}

(A23)

Fig. 9(a2) \(\Rightarrow \) \(\mu^{4-D} \int \! \frac{d^Dk}{(2\pi)^D} \frac{i}{k_5\gamma^5} \Gamma_i \frac{i}{k_7\gamma^7} \gamma^\alpha d) (\bar{u}\Gamma_j d) \cdot \frac{-i}{(k-p)^2} (ig_3)^2 C_F \)

\begin{align*}
= (\bar{u}\Gamma_i d) (\bar{u}\gamma^\alpha \gamma^\beta \Gamma_j \gamma^\gamma d) \cdot \frac{1}{4} C_F \frac{\alpha_s}{4\pi} \left(\frac{1}{\varepsilon} + \ln \frac{\mu^2}{-p^2} \right),
\end{align*}

(A24)

Fig. 9(b1) \(\Rightarrow \) \(\mu^{4-D} \int \! \frac{d^Dk}{(2\pi)^D} \frac{i}{k_5\gamma^5} \gamma_\sigma T^\alpha d) (\bar{u}\Gamma_j \frac{i}{k_7\gamma^7} \gamma^\alpha d) \cdot \frac{-i}{(k-p)^2} (ig_3)^2 \)

\begin{align*}
= -(\bar{u}\Gamma_i \gamma^\sigma \gamma_\alpha T^\alpha d) (\bar{u}\Gamma_j \gamma^\gamma T^\alpha d) \cdot \frac{1}{4} C_F \frac{\alpha_s}{4\pi} \left(\frac{1}{\varepsilon} + \ln \frac{\mu^2}{-p^2} \right),
\end{align*}

(A25)

Fig. 9(b2) \(\Rightarrow \) \(\mu^{4-D} \int \! \frac{d^Dk}{(2\pi)^D} \frac{i}{k_5\gamma^5} \gamma_\sigma T^\alpha d) (\bar{u}\Gamma_j \gamma^\gamma T^\alpha d) \cdot \frac{-i}{(k-p)^2} (ig_3)^2 \)

\begin{align*}
= -(\bar{u}\gamma^\alpha \gamma_\sigma \Gamma_i T^\alpha d) (\bar{u}\gamma^\gamma \Gamma_j T^\alpha d) \cdot \frac{1}{4} C_F \frac{\alpha_s}{4\pi} \left(\frac{1}{\varepsilon} + \ln \frac{\mu^2}{-p^2} \right),
\end{align*}

(A26)
Fig. (c1) $\Rightarrow \mu^{4-D} \int \frac{d^Dk}{(2\pi)^D} (\bar{u}\gamma_\alpha \gamma_\beta \gamma_\rho \gamma_\sigma P_X d)(\bar{u}\sigma_{\mu\nu}P_X d) = C_F(\bar{u}\gamma_\mu P_X d)(\bar{u}\sigma_{\mu\nu}P_X d)$, (A30)

Fig. (c2) $\Rightarrow \mu^{4-D} \int \frac{d^Dk}{(2\pi)^D} (\bar{u}\gamma_\alpha \gamma_\beta \gamma_\rho \gamma_\sigma P_X d)(\bar{u}\gamma_\sigma \Gamma_i T^a d) = (\bar{u}\gamma_\alpha \gamma_\beta \gamma_\rho \gamma_\sigma P_X d)$, (A27)

where Γ_i are the Lorentz structures of the operators in Eq. (A2), and T^a are the generators of $SU(N)$. Since the lepton sector is irrelevant with the QCD corrections, so in the calculation the leptonic factor in the operators is irrelevant. According to Eqs. (A4–A17), the anomalous dimension matrix elements can be extracted from Eqs. (A23–A28).

Summarizing the obtained anomalous dimension matrix elements for O_{12}^{XY}, O_{22}^{XY}, O_{32}^{XY}, O_{4}^{XY} and O_{5}^{XY}, we have

$$\gamma_{(12)}^{XX} = -2 \left(\begin{array}{cc} 6C_F - 3, & \frac{1}{2N} + \frac{1}{4} \\ -12 - \frac{2}{N}, & 3 - 2C_F \end{array} \right), \quad \gamma_{(31)}^{XY} = -2 \left(\begin{array}{cc} -\frac{3}{N}, & -6 \\ 0, & 6C_F \end{array} \right),$$

$$\gamma_{(3)}^{XX} = -2 \left(\frac{3}{N} - 3 \right),$$

$$\gamma_{(45)}^{XX} = -2 \left(\begin{array}{cc} \frac{3}{2} - C_F, & \frac{3}{2} - \frac{3i}{N} \\ \frac{i}{2} + \frac{i}{N}, & 3C_F - \frac{3}{2} \end{array} \right), \quad \gamma_{(45)}^{XY} = -2 \left(\begin{array}{cc} -\frac{3}{2} - C_F, & \frac{3}{2}i + \frac{3i}{N} \\ \frac{i}{2} - \frac{i}{N}, & 3C_F - \frac{3}{2} \end{array} \right).$$

(A29)

It is easy to realize that our results on the anomalous dimensions for the matrix elements $O_{4,5}^{XY}$ coincide with those in Ref. [13], but do not coincide with those in Ref. [12]. Hence the calculational details about the anomalous dimensions of O_{4}^{XY}, O_{5}^{XY} are given below:

- O_{4}^{XX} :

 $$\begin{align*}
 (a) & \quad - (1) : \frac{1}{4} C_F(\bar{u}\gamma_\alpha \gamma_\beta \gamma_\rho \gamma_\sigma P_X d)(\bar{u}\sigma_{\mu\nu}P_X d) = C_F(\bar{u}\gamma_\mu P_X d)(\bar{u}\sigma_{\mu\nu}P_X d), \\
 (a) & \quad - (2) : \frac{1}{4} C_F(\bar{u}\gamma_\mu P_X d)(\bar{u}\gamma_\alpha \gamma_\beta \gamma_\rho \gamma_\sigma P_X d) = 0, \\
 (b) & \quad - (1) : -\frac{1}{4}(\bar{u}\gamma_\alpha \gamma_\mu \gamma_\rho T^a P_X d)(\bar{u}\gamma_\rho \gamma_\sigma \gamma_\sigma P_X d) \\
 & \quad = -3(\bar{u}\gamma_\alpha \gamma_\mu \gamma_\rho P_X d)(\bar{u}\gamma_\rho \gamma_\sigma \gamma_\sigma P_X d) + 3i(\bar{u}\gamma_\alpha \gamma_\mu \gamma_\rho P_X d)(\bar{u}\gamma_\rho \gamma_\sigma \gamma_\sigma P_X d), \\
 (b) & \quad - (2) : -\frac{1}{4}(\bar{u}\gamma_\alpha \gamma_\mu \gamma_\rho T^a P_X d)(\bar{u}\gamma_\rho \gamma_\sigma \gamma_\sigma T^a P_X d)
 \end{align*}$$

(A31)
\[-(\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_X d), \quad (A33)\]

\[(c) - (1) : \frac{1}{4}(\bar{u}\gamma^\mu \gamma^\rho \gamma^\alpha T^a P_X d)(\bar{u}\gamma_\alpha \gamma_\sigma \sigma_{\mu\nu} T^a P_X d)\]
\[= 3(\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_X d) + 3i(\bar{u}\gamma_\nu T^a P_X d)(\bar{u}T^a P_X d), \quad (A34)\]

\[(c) - (2) : \frac{1}{4}(\bar{u}\gamma^\mu \gamma^\rho \gamma^\alpha T^a P_X d)(\bar{u}\sigma_{\mu\nu} \gamma_\sigma \gamma_\alpha T^a P_X d) = (\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_X d), \quad (A35)\]

\[\Rightarrow (a) + (b) + (c) = C_F(\bar{u}\gamma^\mu P_X d)(\bar{u}\sigma_{\mu\nu} P_X d) - 3(\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_X d)\]
\[+ 3i(\bar{u}\gamma_\nu T^a P_X d)(\bar{u}T^a P_X d) - (\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_X d)\]
\[+ 3(\bar{u}\gamma_\nu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_X d) + 3i(\bar{u}\gamma_\nu T^a P_X d)(\bar{u}T^a P_X d)\]
\[+ (\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_X d)\]
\[= (C_F - \frac{3}{2})O_4^{XY} + (\frac{-3}{2} - \frac{3i}{N})O_5^{XY}. \quad (A36)\]

\[\bullet O_4^{XY} (X \neq Y) :\]

\[(a) - (1) : \frac{1}{4} C_F(\bar{u}\gamma_\alpha \gamma_\beta \gamma^\mu \gamma^\rho \gamma^\alpha P_X d)(\bar{u}\sigma_{\mu\nu} P_Y d) = C_F(\bar{u}\gamma^\mu P_X d)(\bar{u}\sigma_{\mu\nu} P_Y d), \quad (A37)\]

\[(a) - (2) : \frac{1}{4} C_F(\bar{u}\gamma_\mu P_X d)(\bar{u}\gamma_\alpha \gamma_\sigma \sigma_{\mu\nu} \gamma^\alpha P_Y d) = 0, \quad (A38)\]

\[(b) - (1) : -\frac{1}{4}(\bar{u}\gamma^\mu \gamma^\rho \gamma^\alpha T^a P_X d)(\bar{u}\sigma_{\mu\nu} \gamma_\sigma \gamma_\alpha T^a P_Y d)\]
\[= -(\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_Y d), \quad (A39)\]

\[(b) - (2) : -\frac{1}{4}(\bar{u}\gamma^\mu \gamma^\rho \gamma^\alpha T^a P_X d)(\bar{u}\gamma_\sigma \gamma_\alpha \sigma_{\mu\nu} T^a P_Y d)\]
\[= -3(\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_Y d) - 3i(\bar{u}\gamma_\nu T^a P_X d)(\bar{u}T^a P_Y d), \quad (A40)\]

\[(c) - (1) : \frac{1}{4}(\bar{u}\gamma^\mu \gamma^\rho \gamma^\alpha T^a P_X d)(\bar{u}\gamma_\alpha \gamma_\sigma \sigma_{\mu\nu} T^a P_Y d) = (\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_Y d), \quad (A41)\]

\[(c) - (2) : \frac{1}{4}(\bar{u}\gamma^\mu \gamma^\rho \gamma^\alpha T^a P_X d)(\bar{u}\sigma_{\mu\nu} \gamma_\sigma \gamma_\alpha T^a P_Y d)\]
\[= 3(\bar{u}\gamma^\mu T^a P_X d)(\bar{u}\sigma_{\mu\nu} T^a P_Y d) - 3i(\bar{u}\gamma_\nu T^a P_X d)(\bar{u}T^a P_Y d), \quad (A42)\]

\[\Rightarrow (a) + (b) + (c) = C_F O_4^{XY} - 4i(\bar{u}\gamma_\nu T^a P_X d)(\bar{u}T^a P_Y d)\]
\[= (C_F - \frac{3}{2})O_4^{XY} + (\frac{3}{2} + \frac{3i}{N})O_5^{XY}. \quad (A43)\]

\[\bullet O_5^{XY} :\]

\[(a) - (1) : \frac{1}{4} C_F(\bar{u}\gamma_\alpha \gamma_\beta \gamma_\mu \gamma^\rho \gamma^\alpha P_X d)(\bar{u} P_X d) = C_F(\bar{u}\gamma^\mu P_X d)(\bar{u} P_X d), \quad (A44)\]

\[(a) - (2) : \frac{1}{4} C_F(\bar{u}\gamma_\mu P_X d)(\bar{u}\gamma_\alpha \gamma_\beta \gamma^\rho \gamma^\alpha P_X d) = 4C_F(\bar{u}\gamma^\mu P_X d)(\bar{u} P_X d), \quad (A45)\]
The Fierz transformation formalisms used in above calculation read

\[
(P_X)_{12}(P_X)_{34} = \frac{1}{2}(P_X)_{14}(P_X)_{32} + \frac{1}{8}(\sigma_{\mu\nu}P_X)_{14}(\sigma^{\mu\nu}P_X)_{32},
\]

\[
(P_X)_{12}(P_Y)_{34} = \frac{1}{2}(\gamma^\mu P_X)_{14}(\gamma_\mu P_Y)_{32},
\]

\[
(\sigma_{\mu\nu}P_X)_{12}(\sigma^{\mu\nu}P_X)_{34} = 6(P_X)_{14}(P_X)_{32} - \frac{1}{2}(\sigma_{\mu\nu}P_X)_{14}(\sigma^{\mu\nu}P_X)_{32},
\]

\[
(\gamma^\mu P_X)_{12}(\gamma_\mu P_X)_{34} = -(\gamma^\mu P_X)_{14}(\gamma_\mu P_X)_{32},
\]

\[
(\gamma^\mu P_X)_{12}(\gamma_\mu P_X)_{34} = -(\gamma^\mu P_X)_{14}(\gamma_\mu P_X)_{32},
\]
\[
(\gamma^\mu P_X)_{12}(\gamma^\nu P_Y)_{34} = 2(P_X)_{14}(P_Y)_{32},
\]
\[
(\gamma^\mu P_X)_{12}(P_X)_{34} = \frac{1}{2}(\gamma^\nu P_X)_{14}(P_X)_{32} - i\frac{1}{2}(\gamma^\nu P_X)_{14}(\sigma^{\nu\mu} P_X)_{32},
\]
\[
(\gamma^\mu P_X)_{12}(P_Y)_{34} = \frac{1}{2}(\gamma^\nu P_X)_{14}(P_Y)_{32} + i\frac{1}{2}(\gamma^\nu P_X)_{14}(\sigma^{\nu\mu} P_Y)_{32},
\]
\[
(\gamma^\mu P_X)_{12}(\sigma^{\mu\nu} P_X)_{34} = \frac{3i}{2}(\gamma^\nu P_X)_{14}(P_X)_{32} - i\frac{1}{2}(\gamma^\mu P_X)_{14}(\sigma^{\mu\nu} P_X)_{32},
\]
\[
(\gamma^\mu P_X)_{12}(\sigma^{\mu\nu} P_Y)_{34} = -\frac{3i}{2}(\gamma^\nu P_X)_{14}(P_X)_{32} - i\frac{1}{2}(\gamma^\mu P_X)_{14}(\sigma^{\mu\nu} P_X)_{32};
\] (A58)

and for the generators \(T^a\) of \(SU(N)\) we have
\[
T^a_{ij}T^a_{jk} = \frac{N^2 - 1}{2N}\delta_{ik} = C_F\delta_{ik}, \quad T^a_{ij}T^a_{kl} = \frac{1}{2}(\delta_{il}\delta_{kj} - \frac{1}{N}\delta_{ij}\delta_{kl}).
\] (A59)

Combining Eqs. (A20-A22) with Eq. (A29), we can compute out the numerical QCD RGE evolution matrices from \(\Lambda = M_{W_L}\) to \(\mu \approx 1.0\) GeV as
\[
\hat{U}^{XX}_{(12)}(\mu, \Lambda) = \begin{pmatrix} 1.96 & 0.01 \\ -2.82 & 0.45 \end{pmatrix}, \quad \hat{U}^{XY}_{(31)}(\mu, \Lambda) = \begin{pmatrix} 0.87 & -1.4 \\ 0 & 2.97 \end{pmatrix},
\]
\[
U^{XX}_{3}(\mu, \Lambda) = 0.76,
\]
\[
\hat{U}^{XX}_{(45)}(\mu, \Lambda) = \begin{pmatrix} 0.68 & -0.24i \\ -0.016i & 0.71 \end{pmatrix}, \quad \hat{U}^{XY}_{(45)}(\mu, \Lambda) = \begin{pmatrix} 0.68 & 0.34i \\ 0.023i & 1.4 \end{pmatrix}.
\] (A60)

[1] M. Tanabashi et al. [Particle Data Group], “Review of Particle Physics”, Phys. Rev. D 98, 030001 (2018).

[2] P. A. Dirac, “The fundamental equations of quantum mechanics”, Proc. Roy. Soc. Lond. A A109, 642-653 (1925).

[3] E. Majorana, “Teoria simmetrica dell’elettrone e del positrone”, Nuovo Cim. 14, 171-184 (1937).

[4] M. Agostini et al., “Background-free search for neutrinoless double-\(\beta\) decay of \(^{76}\)Ge with GERDA”, Nature 544, 47 (2017).

[5] V. Guiseppe et al., “The Status and Initial Results of the MAJORANA DEMONSTRATOR Experiment”, AIP Conf. Proc. 1894, 020010 (2017).
[6] A. Gando, Y. Gando, T. Hachiya, A. Hayashi, S. Hayashida, H. Ikeda et al. [KamLAND-Zen], “”, Phys. Rev. Lett. 117, 082503 (2016).

[7] J. Albert et al. [EXO], “Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector”, Phys. Rev. Lett. 120, 072701 (2018).

[8] M. Agostini et al. [GERDA], “Final Results of GERDA on the Search for Neutrinoless Double-β Decay,” Phys. Rev. Lett. 125, 252502 (2020).

[9] Zsigmond A J 2019 LEGEND: The future of neutrinoless double-beta decay search with germanium detectors, Talk presented at TAUP-2019 Toyama, Japan.

[10] F. Agostini et al. [DARWIN], “Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of \(^{136}\)Xe”, Eur. Phys. J. C 80, 808 (2020).

[11] H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, “Towards a superformula for neutrinoless double beta decay”, Phys. Lett. B 453, 194-198 (1999).

[12] M. González, S. G. Kovalenko and M. Hirsch, “QCD running in neutrinoless double beta decay: Short-range mechanisms”, Phys. Rev. D 93, 013017 (2016); M. González, S. G. Kovalenko and M. Hirsch, Phys. Rev. D 97, 099907 (2018)(E).

[13] Y. Liao, X. D. Ma and H. L. Wang, “Effective field theory approach to lepton number violating decays \(K^\pm \rightarrow \pi^\pm l_\alpha^\pm l_\beta^\pm\): long-distance contribution”, JHEP 03, 120 (2020).

[14] H. Pas, M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, “A Superformula for neutrinoless double beta decay. 2. The Short range part”, Phys. Lett. B 498, 35-39 (2001).

[15] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser and E. Mereghetti, “Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven”, JHEP 12, 082 (2017).

[16] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser, E. Mereghetti, S. Pastore and U. Van Kolck, “New Leading Contribution to Neutrinoless Double-\(\beta\) Decay”, Phys. Rev. Lett. 120, 202001 (2018).

[17] V. Cirigliano, W. Dekens, J. de Vries, M. L. Graesser and E. Mereghetti, “A neutrinoless double beta decay master formula from effective field theory”, JHEP 12, 097 (2018).

[18] W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti and G. Zhou, “Sterile neutrinos and neutrinoless double beta decay in effective field theory”, JHEP 06, 097 (2020).
[19] J. Barea, J. Kotila and F. Iachello, “0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration”, Phys. Rev. C 91, 034304 (2015).
[20] J. Suhonen, “Calculation of the Beta and Beta Beta decay observables of Ca-48 using QRPA with and without particle number projection”, J. Phys. G 19, 139-160 (1993).
[21] E. Caurier, F. Nowacki and A. Poves, “Beta beta decay and nuclear structure”, Int. J. Mod. Phys. E 16, 552-560 (2007).
[22] F. Simkovic, A. Faessler, V. Rodin, P. Vogel and J. Engel, “Anatomy of nuclear matrix elements for neutrinoless double-beta decay”, Phys. Rev. C 77, 045503 (2008).
[23] J. Menendez, A. Poves, E. Caurier and F. Nowacki, “Disassembling the Nuclear Matrix Elements of the Neutrinoless beta beta Decay”, Nucl. Phys. A 818, 139-151 (2009).
[24] J. Barea and F. Iachello, “Neutrinoless double-beta decay in the microscopic interacting boson model”, Phys. Rev. C 79, 044301 (2009).
[25] T. R. Rodriguez and G. Martinez-Pinedo, “Energy density functional study of nuclear matrix elements for neutrinoless ββ decay”, Phys. Rev. Lett. 105, 252503 (2010).
[26] J. Suhonen, “Exotic weak decays of atomic nuclei”, AIP Conf. Proc. 1488, 326-333 (2012).
[27] J. Barea, J. Kotila and F. Iachello, “Nuclear matrix elements for double-β decay”, Phys. Rev. C 87, 014315 (2013).
[28] F. F. Deppisch, L. Graf, F. Iachello and J. Kotila, “Analysis of light neutrino exchange and short-range mechanisms in 0νββ decay”, Phys. Rev. D 102, 095016 (2020).
[29] L. Graf, F. F. Deppisch, F. Iachello and J. Kotila, “Short-Range Neutrinoless Double Beta Decay Mechanisms”, Phys. Rev. D 98, 095023 (2018).
[30] F. F. Deppisch, M. Hirsch and H. Pas, “Neutrinoless Double Beta Decay and Physics Beyond the Standard Model”, J. Phys. G 39, 124007 (2012).
[31] J. Lopez-Pavon, S. Pascoli and C. f. Wong, “Can heavy neutrinos dominate neutrinoless double beta decay?”, Phys. Rev. D 87, 093007 (2013).
[32] R. L. Awasthi, M. Parida and S. Patra, “Neutrino masses, dominant neutrinoless double beta decay, and observable lepton flavor violation in left-right models and SO(10) grand unification with low mass W_R, Z_R bosons”, JHEP 08, 122 (2013).
[33] T. Asaka, S. Eijima and H. Ishida, “On neutrinoless double beta decay in the νMSM”, Phys.
[34] M. Mitra, S. Pascoli and S. Wong, “Effect of cancellation in neutrinoless double beta decay”, Phys. Rev. D 90, 093005 (2014).

[35] S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, “Neutrinoless double beta decay: 2015 review”, Adv. High Energy Phys. 2016, 2162659 (2016).

[36] J. Engel and J. Menendez, “Status and Future of Nuclear Matrix Elements for Neutrinoless Double-Beta Decay: A Review”, Rept. Prog. Phys. 80, 046301 (2017).

[37] M. J. Dolinski, A. W. Poon and W. Rodejohann, “Neutrinoless Double-Beta Decay: Status and Prospects”, Ann. Rev. Nucl. Part. Sci. 69, 219-251 (2019).

[38] P. S. B. Dev, R. N. Mohapatra and Y. Zhang, “Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders”, JHEP 05, 174 (2016).

[39] S. Patra, F. S. Queiroz and W. Rodejohann, “Stringent Dilepton Bounds on Left-Right Models using LHC data”, Phys. Lett. B 752, 186-190 (2016).

[40] M. Mitra, R. Ruiz, D. J. Scott and M. Spannowsky, “Neutrino Jets from High-Mass W_R Gauge Bosons in TeV-Scale Left-Right Symmetric Models”, Phys. Rev. D 94, 095016 (2016).

[41] A. Maiezza, G. Senjanovic and J. C. Vasquez, “Higgs sector of the minimal left-right symmetric theory”, Phys. Rev. D 95, 095004 (2017).

[42] S. Khalil and H. Okada, “Dark Matter in B-L Extended MSSM Models”, Phys. Rev. D 79, 083510 (2009).

[43] A. Elsayed, S. Khalil and S. Moretti, “Higgs Mass Corrections in the SUSY B-L Model with Inverse Seesaw”, Phys. Lett. B 715, 208-213 (2012).

[44] S. Khalil and S. Moretti, “The $B-L$ Supersymmetric Standard Model with Inverse Seesaw at the Large Hadron Collider”, Rept. Prog. Phys. 80, 036201 (2017).

[45] L. Delle Rose, S. Khalil, S. J. D. King, C. Marzo, S. Moretti and C. S. Un, “Naturalness and dark matter in the supersymmetric B-L extension of the standard model”, Phys. Rev. D 96, 055004 (2017).

[46] J. L. Yang, T. F. Feng, S. M. Zhao, R. F. Zhu, X. Y. Yang and H. B. Zhang, “Two loop electroweak corrections to $B \to X_s \gamma$ and $B_s^0 \to \mu^+ \mu^-$ in the B-LSSM”, Eur. Phys. J. C 78, 714 (2018).
[47] J. L. Yang, T. F. Feng, H. B. Zhang, G. Z. Ning and X. Y. Yang, “Top quark decays with flavor violation in the B-LSSM”, Eur. Phys. J. C 78, 438 (2018).

[48] J. L. Yang, T. F. Feng, Y. L. Yan, W. Li, S. M. Zhao and H. B. Zhang, “Lepton-flavor violation and two loop electroweak corrections to $(g - 2)_{\mu}$ in the B-L symmetric SSM”, Phys. Rev. D 99, 015002 (2019).

[49] J. L. Yang, T. F. Feng, S. K. Cui, C. X. Liu, W. Li and H. B. Zhang, “Electric dipole moments of neutron and heavy quarks in the B-LSSM”, JHEP 04, 013 (2020).

[50] J. L. Yang, T. F. Feng and H. B. Zhang, “Electroweak baryogenesis and electron EDM in the B-LSSM”, Eur. Phys. J. C 80, 210 (2020).

[51] J. L. Yang, T. F. Feng and H. B. Zhang, “Electron and muon $(g - 2)$ in the B-LSSM”, J. Phys. G 47, 055004 (2020).

[52] S. Weinberg, “Baryon and Lepton Nonconserving Processes”, Phys. Rev. Lett. 43, 1566-1570 (1979).

[53] R. Mohapatra and A. Smirnov, “Neutrino Mass and New Physics”, Ann. Rev. Nucl. Part. Sci. 56, 569-628 (2006).

[54] R. Mohapatra et al., “Theory of neutrinos: A White paper”, Rept. Prog. Phys. 70, 1757-1867 (2007).

[55] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation”, Phys. Rev. Lett. 44, 912 (1980).

[56] R. N. Mohapatra and J. D. Vergados, “A New Contribution to Neutrinoless Double Beta Decay in Gauge Models”, Phys. Rev. Lett. 47, 1713-1716 (1981).

[57] C. E. Picciotto and M. S. Zahir, “Neutrinoless Double Beta Decay in Left-right Symmetric Models”, Phys. Rev. D 26, 2320 (1982).

[58] M. Hirsch, H. Klapdor-Kleingrothaus and O. Panella, “Double beta decay in left-right symmetric models”, Phys. Lett. B 374, 7-12 (1996).

[59] V. Tello, M. Nemevsek, F. Nesti, G. Senjanovic and F. Vissani, “Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay”, Phys. Rev. Lett. 106, 151801 (2011).

[60] J. Chakrabortty, H. Devi, S. Goswami and S. Patra, “Neutrinoless double-β decay in TeV scale Left-Right symmetric models”, JHEP 08, 008 (2012).
[61] J. Barry and W. Rodejohann, “Lepton number and flavour violation in TeV-scale left-right symmetric theories with large left-right mixing”, JHEP 09, 153 (2013).

[62] P. S. Bhupal Dev, S. Goswami, M. Mitra and W. Rodejohann, “Constraining Neutrino Mass from Neutrinoless Double Beta Decay”, Phys. Rev. D 88, 091301 (2013).

[63] C. H. Lee, P. S. Bhupal Dev and R. Mohapatra, “Natural TeV-scale left-right seesaw mechanism for neutrinos and experimental tests”, Phys. Rev. D 88, 093010 (2013).

[64] W. Huang and J. Lopez-Pavon, “On neutrinoless double beta decay in the minimal left-right symmetric model”, Eur. Phys. J. C 74, 2853 (2014).

[65] P. S. Bhupal Dev, S. Goswami and M. Mitra, “TeV Scale Left-Right Symmetry and Large Mixing Effects in Neutrinoless Double Beta Decay”, Phys. Rev. D 91, 113004 (2015).

[66] F. Ahmed and M. Horoi, “Interference effects for $0\nu\beta\beta$ decay in the left-right symmetric model”, Phys. Rev. C 101, 035504 (2020).

[67] D. Borah and A. Dasgupta, “Neutrinoless Double Beta Decay in Type I+II Seesaw Models”, JHEP 11, 208 (2015).

[68] S. Ge, M. Lindner and S. Patra, “New physics effects on neutrinoless double beta decay from right-handed current”, JHEP 10, 077 (2015).

[69] R. L. Awasthi, P. S. Bhupal Dev and M. Mitra, “Implications of the Diboson Excess for Neutrinoless Double Beta Decay and Lepton Flavor Violation in TeV Scale Left Right Symmetric Model”, Phys. Rev. D 93, 011701 (2016).

[70] G. Bambhaniya, P. S. B. Dev, S. Goswami and M. Mitra, “The Scalar Triplet Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric Model”, JHEP 04, 046 (2016).

[71] P. Pritimita, N. Dash and S. Patra, “Neutrinoless Double Beta Decay in LRSM with Natural Type-II seesaw Dominance”, JHEP 10, 147 (2016).

[72] F. F. Deppisch, C. Hati, S. Patra, P. Pritimita and U. Sarkar, “Neutrinoless double beta decay in left-right symmetric models with a universal seesaw mechanism”, Phys. Rev. D 97, 035005 (2018).

[73] J. Kotila, J. Ferretti and F. Iachello, “Long-range neutrinoless double beta decay mechanisms”, arXiv:2110.09141 [hep-ph]].
[74] J. Kotila, “Comparison of Microscopic Interacting Boson Model and Quasiparticle Random Phase Approximation $0\nu\beta\beta$ Decay Nuclear Matrix Elements”, Front. Astron. Space Sci. 8, 42 (2021).

[75] S. Bertolini, A. Maiezza and F. Nesti, “Present and Future K and B Meson Mixing Constraints on TeV Scale Left-Right Symmetry”, Phys. Rev. D 89, 095028 (2014).

[76] T. Tomoda, “Double beta decay”, Rept. Prog. Phys. 54, 53-126 (1991).

[77] I. Esteban, M. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, “Dynamics of Phase Separation from Holography”, JHEP 01, 106 (2019).

[78] A. M. Sirunyan et al. [CMS], “Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at $\sqrt{s} = 13$ TeV”, JHEP 07, 121 (2017).

[79] A. M. Sirunyan et al. [CMS], “Search for a heavy right-handed W boson and a heavy neutrino in events with two same-flavor leptons and two jets at $\sqrt{s} = 13$ TeV”, JHEP 05, 148 (2018).

[80] M. Aaboud et al. [ATLAS], “Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at $\sqrt{s} = 13$ TeV with the ATLAS detector”, JHEP 01, 016 (2019).

[81] M. Aaboud et al. [ATLAS], “Search for a right-handed gauge boson decaying into a high-momentum heavy neutrino and a charged lepton in pp collisions with the ATLAS detector at $\sqrt{s} = 13$ TeV”, Phys. Lett. B 798, 134942 (2019).

[82] G. Buchalla, A. J. Buras and M. E. Lautenbacher, “Weak decays beyond leading logarithms”, Rev. Mod. Phys. 68, 1125-1144 (1996).

[83] A. J. Buras, “Weak Hamiltonian, CP violation and rare decays”, arXiv:hep-ph/9806471 [hep-ph].