Discriminative Learning of Selectional Preference from Unlabeled Text

Shane Bergsma
University of Alberta

Dekang Lin
Google, Inc.

Randy Goebel
University of Alberta

EMNLP 2008
Selectional Preferences

• Compatibility of word pairs:
 – “eat bacon” vs. “eat Reliance Industries Ltd.”

• Input: verb-object pair Output: plausibility

• Method:
 – Train SVM to distinguish pairs observed in a corpus from other (unobserved) pairings
 – DSP: Discriminative Selectional Preference
Outline

1. Introduction and Motivation
2. Learning from Unlabeled Text
3. Features
4. Experiments and Results
Selectional Preferences

- Which arguments can go with which predicates?
- Typically, the argument is a noun, and the predicate is a verb or adjective:
- This paper: verbs and object nouns
- Typical approach: look at a corpus
- Unfortunately, observed data is never sufficient – can we use it to generalize?
Motivation

- **Pronoun Resolution:**
 “My dog ate my homework so I couldn’t finish it”

- **Parsing:**
 “Later we ate their signature *Choucroute garnie*”

- **Model of human acquisition**
Human Acquisition
Selectional Preferences

Verb	Noun
eat	quail
eat	*Choucroute garnie*
eat	Reliance Industries Ltd.
eat	Harry Whittington
Selectional Preferences

Verb	Noun
shoot	quail
shoot	*Choucroute garnie*
shoot	Reliance Industries Ltd.
shoot	Harry Whittington
Selectional Preference Features

• Did the noun and verb occur together before or not?
• What other words does the noun occur with (its distribution)?
• Number of tokens
• Capitalized, upper or lower-case
• Contains tokens like “Harry” or “Ltd.”
Combining Feature Information

• Plausibility score of \((v, n)\) is sum of a weighted linear combination of arbitrary and potentially interdependent features:

\[
y = \lambda \cdot \Phi(v, n)
\]

• Use discriminative training to set feature weights: Discriminative Selectional Preference (DSP)
Training Examples

• Parse a corpus and collect verb-object co-occurrence statistics:

$$\text{MI}(v, n) = \log \frac{\Pr(v, n)}{\Pr(v)\Pr(n)} = \log \frac{\Pr(n|v)}{\Pr(n)}$$

• Positives: MI greater than some threshold
• Negatives: for each positive, match with nouns of similar freq. that are not positive
Training

• For efficiency, DSP trains a separate classifier for each verb

• Features are for noun only:

\[y^v = \lambda^v \cdot \Phi^v(n) \]

• 57K features, 6.5 million training instances
Similarity Smoothing

• Other approaches generalize from similar predicates

• Dagan, Lee, & Pereira (1999):

\[
\Pr_{\text{SIM}}(n|v) = \sum_{v' \in \text{SIMS}(v)} \text{Sim}(v', v) \Pr(n|v')
\]

• E.g. More likely to believe “shoot quail” if we’ve seen “hunt quail” or “stab quail”
Co-occurrence Features

• For \((v,n)\), DSP has features for probability of \(n\) occurring as object of other verbs, \(v'\).
 – E.g. for \(SP(\text{shoot-n})\), feature[10] = \(\Pr(n|\text{hunt})\)

\[
y^v = \sum_{v'} \lambda^v_{v'} \Pr(n|v')
\]

• Also features for number of tokens, case, capitalization, semantic-class, etc.
Implementation

• Parse 3 GB AQUAINT corpus using Minipar
• Use MI>0 as threshold, have 2 negatives for every positive
• 95% for training, 2.5% for development, 2.5% for testing
• Use SVM-light, set C-parameter and j-parameter on development set.
Feature Weights: \(\text{Pr}_{\text{object}}(n|\text{join}) \)

Learned Weights	Lin (1998) Similarity	
lead-\(n \)	participate-\(n \)	0.164
rejoin-\(n \)	lead-\(n \)	0.150
form-\(n \)	return to-\(n \)	0.148
belong to-\(n \)	say-\(n \)	0.143
found-\(n \)	rejoin-\(n \)	0.142
quit-\(n \)	sign-\(n \)	0.142
guide-\(n \)	meet-\(n \)	0.142
induct-\(n \)	include-\(n \)	0.141
\(n \)-launch	leave-\(n \)	0.140
String-based Feature Weights

- E.g. Is noun lower-case?

Verb	Weight
become	0.972
eat	0.505
embroil	-0.573
accuse	-0.675
Disambiguation Results

![Bar chart showing disambiguation results for Dagan et al., Erk, Keller & Lapata, and DSP. Precision and recall are indicated by different colors.]
Results by Noun Frequency

![Graph showing F-Score vs. Noun Frequency with lines for DSP_{all}, Erk (2007), and Keller and Lapata (2003).]
Human Plausibility

- Human Plausibility – 16 (v,n)-pairs used in Resnik (1996, Journal of Cognition)
 - e.g. “repeat comment” / “repeat journal”

- DSP scores plausible ahead of implausible in each case

- MI also scores plausibles highly, but undefined for most negatives
Unseen Corpus Experiment

- Proportion of accepted \((v,n)\) pairs in San Jose Mercury News Corpus
Pronoun Resolution

- MUC-7 Corpus
- Object pronouns, e.g. “study it”

Resolution Accuracy

- Most Recent Noun
- Maximum MI
- Maximum DSP
Conclusion

• Discriminative training for selectional preference improves performance
• Unlike most supervised approaches, no labeling or annotation cost
• Allows for combination of arbitrary features
• Yields similar-word list as latent information
• Lots more details in paper
Future Work

• DSP uses no direct co-occurrence information, could use counts from other corpora (e.g. the web) as a feature in DSP
• Lots of other potential features:
 – e.g. “Choucroute garnie” listed as French cuisine on Wikipedia
Thanks!