Nonsymmetric extension of the Green-Osher inequality *

Yunlong Yang
College of Science, Dalian Maritime University, Dalian, 116026, P. R. China
e-mail: ylyang@dlmu.edu.cn

Abstract In this paper we obtain the extended Green-Osher inequality when two smooth, planar strictly convex bodies are at a dilation position and show the necessary and sufficient condition for the case of equality.

Mathematics Subject Classification 2010: 52A40, 52A10
Key words: dilation position, Green-Osher’s inequality, nonsymmetric, relative Steiner polynomial

1 Introduction
We denote by \(\mathbb{R}^n \) the usual \(n \)-dimensional Euclidean space with the canonical inner product \(\langle \cdot , \cdot \rangle \). A compact convex set \(K \) in \(\mathbb{R}^n \) is called a convex body if it contains the origin and has nonempty interior. When \(n = 2 \), it is called a planar convex body. The volume of a set \(S \subseteq \mathbb{R}^n \) is denoted by \(V(S) \). The Minkowski sum of convex bodies \(K \) and \(L \), and the Minkowski scalar product of \(K \) for positive real number \(t \) are, respectively, defined by
\[
K + L = \{ x + y \mid x \in K, y \in L \}
\]
and
\[
tK = \{ tx \mid x \in K \}.
\]
For two planar convex bodies \(K \) and \(L \), the volume of the Minkowski sum \(K + tL \) gives the relative Steiner polynomial of \(K \) with respect to \(L \):
\[
V(K + tL) = V(K) + 2V(K, L)t + V(L)t^2,
\]
where \(V(K, L) \) is the mixed area of \(K \) and \(L \). Formula (1.1) is closely related to the classical isoperimetric inequality, the Brunn-Minkowski inequality and the log-Brunn-Minkowski inequality. Many proofs, sharpened forms and generalization of the isoperimetric inequality can be found in Chavel [2], Dergiades [3], Osserman [9] and Schneider [10].

Using remarkable symmetrization, Gage [4] successfully obtained an inequality for the total squared curvature for convex curves. Following his work, for a planar strictly convex body \(K \) and a symmetric,

*The author is supported by the Doctoral Scientific Research Foundation of Liaoning Province (No.20170520382) and the Fundamental Research Funds for the Central Universities (No.3132017046).
planar strictly convex body E, Green and Osher [8] (see also [12]) obtained a generalized formula:

$$
\frac{1}{V(E)} \int_0^{2\pi} F(\rho(\theta))h_E(\theta)(h_E(\theta) + h_E''(\theta))d\theta \geq F(-t_1) + F(-t_2),
$$

(1.2)

where $\rho(\theta)$ is the relative curvature radius of K with respect to E, $F(x)$ is a strictly convex function on $(0, +\infty)$, t_1 and t_2 are the two roots of the relative Steiner polynomial of K with respect to E. Inequality (1.2) plays a significant role in studying the curve shortening flow (see Gage [5, 6] and Gage-Hamilton [7]).

A natural question is whether the Green-Osher inequality holds without symmetric condition. Similar question is asked by the log-Brunn-Minkowski inequality (see Böröczky-Lutwak-Yang-Zhang [1], Xi-Leng [11] and Yang-Zhang [13]). Xi and Leng [11] gave the definition of dilation position for the first time to prove the log-Brunn-Minkowski inequality and solve the planar Dar’s conjecture.

Let K and L be two convex bodies. Convex bodies K and L are at a dilation position, if the origin $o \in K \cap L$ and

$$
r(K, L)L \subseteq K \subseteq R(K, L)L.
$$

(1.3)

Here $r(K, L)$ and $R(K, L)$ are the inradius and outradius of K with respect to L, i.e.,

$$
r(K, L) = \max\{t > 0 \mid x + tL \subseteq K \text{ and } x \in \mathbb{R}^n\},
$$

$$
R(K, L) = \max\{t > 0 \mid x + tL \supseteq K \text{ and } x \in \mathbb{R}^n\}
$$

Noticing that there is a common center when K and L are at a dilation position, then the ratio of the support functions of K and L belongs to the range from $r(K, L)$ to $R(K, L)$, which leads to the Green-Osher inequality holds without symmetric condition. Properties of convex bodies are at a dilation position can be found in Lemma 5.1 (see also Xi-Leng [11]).

In this paper, inspired by the impressive work in [11], we obtain the main result.

Theorem 1.1. Let K, L be two smooth, planar strictly convex bodies and $\rho(\theta)$ the relative curvature radius of K with respect to L. If K and L are at a dilation position and $F(x)$ is a strictly convex function on $(0, +\infty)$, then

$$
\frac{1}{V(L)} \int_0^{2\pi} F(\rho(\theta))h_L(\theta)(h_L(\theta) + h_L''(\theta))d\theta \geq F(-t_1) + F(-t_2),
$$

(1.4)

where t_1 and t_2 are the two roots of the relative Steiner polynomial of K with respect to L, and the equality in (1.4) holds if and only if K and L are homothetic.

This paper is organized as follows. In Section 2 we give some basic facts about planar convex bodies. In Section 3 we get the extended Green-Osher inequality when two smooth, planar strictly convex bodies are at a dilation position.

2 Preliminaries

Let K be a planar convex body. A line l is called a support line of K if it passes through at least one boundary point of K and if the entire planar convex body K lies on one side of l. Let $l(\theta)$ be the support line of K in the direction $u(\theta) = (\cos \theta, \sin \theta)$, where θ is the oriented angle from the positive x-axis to the perpendicular line of $l(\theta)$. The support function of K is defined by

$$
h_K(\theta) = \sup_{x \in K} \langle x, u(\theta) \rangle, \quad u(\theta) \in S^1.
$$
It is easy to see that $h_K(\theta)$ is the signed distance of the support line $l(\theta)$ of K with exterior normal vector $u(\theta)$ from the origin. Clearly, h_K, as a function of θ, is single-valued and 2π-periodic.

If $h_K(\theta)$ and $h_L(\theta)$ are continuously differentiable, then

$$V(K, L) = \frac{1}{2} \int_0^{2\pi} (h_K(\theta)h_L(\theta) - h'_K(\theta)h'_L(\theta))d\theta.$$

Furthermore, if $h_K(\theta)$ and $h_L(\theta)$ are smooth, then

$$V(K, L) = \frac{1}{2} \int_0^{2\pi} h_K(\theta)(h_L(\theta) + h''_L(\theta))d\theta = \frac{1}{2} \int_0^{2\pi} h_L(\theta)(h_K(\theta) + h''_K(\theta))d\theta.$$

From the Minkowski inequality, it follows that the expression $V(K + tL) = 0$ has two negative real roots. Denote by t_1 and t_2 ($t_1 \geq t_2$) the two roots of the relative Steiner polynomial of K with respect to L, that is,

$$t_1 = -\frac{V(K, L)}{V(L)} + \frac{\delta}{V(L)}, \quad t_2 = -\frac{V(K, L)}{V(L)} - \frac{\delta}{V(L)}, \quad \delta = \sqrt{V(K, L)^2 - V(K)V(L)}.$$

In order to prove the extended Green-Osher inequality, we have the following definition that is similar to the Definition 3.3 of [8].

Definition 2.1 ([8]). Let K, L be two smooth, planar strictly convex bodies. Consider

$$\sup \left\{ \int_I \rho(\theta)h_L(\theta)(h_L(\theta) + h''_L(\theta))d\theta \mid I \subseteq S^1, \int_I h_L(\theta)(h_L(\theta) + h''_L(\theta))d\theta = V(L) \right\}.$$

Let I_1 denote the smallest subset of S^1 with measure $V(L)$ and realizing the above supremum, and let I_2 be its complement. Then, there exists an $a \in \mathbb{R}^+$ such that

$$I_1 \subseteq \{ \theta \mid \rho(\theta) \geq a \}, \quad I_2 \subseteq \{ \theta \mid \rho(\theta) \leq a \}.$$

Set

$$\rho_i = \frac{1}{V(L)} \int_{I_i} \rho(\theta)h_L(\theta)(h_L(\theta) + h''_L(\theta))d\theta, \quad i = 1, 2,$$

which yield that

$$\rho_1 + \rho_2 = \frac{2V(K, L)}{V(L)} \quad \text{and} \quad \rho_1 \geq \rho_2,$$

and there is a real number $b \geq 0$ such that

$$\rho_1 = \frac{V(K, L)}{V(L)} + b \quad \text{and} \quad \rho_2 = \frac{V(K, L)}{V(L)} - b.$$

3 Nonsymmetric extension of the Green-Osher inequality

In order to prove the main result, we first give four lemmas, in which Lemma 3.1 shows that convex bodies are at a dilation position by appropriate translations and the location of "dilation position" (detailed proof can be found in [11 Lemma 2.1]), Lemmas 3.2 and 3.3 are used to prove inequality (1.4), and Lemma 3.4 is used to deal with its equality case.
Lemma 3.1. Let K, L be two convex bodies in \mathbb{R}^n.

(i) There is a translate of L, say \bar{L}, and a translate of K, say \bar{K}, so that \bar{K} and \bar{L} are at a dilation position.

(ii) If K and L are at a dilation position, then the origin $o \in \text{int}(K \cap L) \cup (\partial K \cap \partial L)$.

Lemma 3.2. Let K, L be two smooth, planar strictly convex bodies. If K and L are at a dilation position, then the origin $o \in \text{int}(K \cap L)$ or o is the point of tangency of ∂K and ∂L such that $K \subseteq L$ (or $L \subseteq K$).

Proof. By Lemma 3.1(ii), the origin $o \in \text{int}(K \cap L) \cup (\partial K \cap \partial L)$. If the origin $o \in \text{int}(K \cap L)$, we are done. If the origin $o \in \partial K \cap \partial L$, then o must be the point of tangency of ∂K and ∂L such that $K \subseteq L$ (or $L \subseteq K$). Otherwise, o is the point of intersection of ∂K and ∂L, which contradicts to Lemma 3.3.

Lemma 3.3. Let K, L be two smooth, planar strictly convex bodies. If K and L are at a dilation position, then

$$\rho_1 \geq -t_2.$$ (3.1)

Proof. From [1, Lemma 4.1] and the Minkowski inequality, it follows that

$$-t_1 \leq r(K, L) \leq R(K, L) \leq -t_2.$$

By Lemma 3.2, the origin $o \in \text{int}(K \cap L)$ or o is the point of tangency of ∂K and ∂L such that $K \subseteq L$ (or $L \subseteq K$).

If the origin $o \in \text{int}(K \cap L)$, then $r(K, L) \leq \frac{h_K(\theta)}{\pi L(\theta)} \leq R(K, L)$, which implies

$$-\frac{\delta}{V(L)} h_L(\theta) \leq h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) \leq \frac{\delta}{V(L)} h_L(\theta), \quad \delta = \sqrt{V(K, L)^2 - V(K)V(L)} \geq 0.$$

On I_1, $\rho(\theta) - a \geq 0$, combining with the above inequality, it yields

$$-\left(h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) \right) (\rho(\theta) - a) \leq \frac{\delta}{V(L)} h_L(\theta)(\rho(\theta) - a).$$

By integrating this on the interval I_1,

$$-\frac{1}{V(L)} \int_{I_1} \left(h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) \right) (\rho(\theta) - a) (h_L(\theta) + h_L''(\theta)) d\theta \leq \frac{\delta}{V(L)} (\rho_1 - a).$$ (3.2)

Similarly, on I_2, we have

$$-\frac{1}{V(L)} \int_{I_2} \left(h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) \right) (\rho(\theta) - a) (h_L(\theta) + h_L''(\theta)) d\theta \leq -\frac{\delta}{V(L)} (\rho_2 - a).$$ (3.3)

It can be seen from (3.2) and (3.3) that

$$-\frac{1}{V(L)} \int_0^{2\pi} \left(h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) \right) (\rho(\theta) - a) (h_L(\theta) + h_L''(\theta)) d\theta \leq \frac{2b\delta}{V(L)}$$

and its left-hand side can be simplified to $\frac{2\delta^2}{V(L)}$, thus we have, $b \geq \frac{\delta}{V(L)} \geq 0$, that is, $\rho_1 \geq -t_2$.

If the origin o is the point of tangency of ∂K and ∂L such that $L \subseteq K$ (the case of $K \subseteq L$ is similar), then $r(K, L) \leq \frac{h_K(\theta)}{h_L(\theta)} \leq R(K, L)$ for $\theta \in \bar{I}$ (\bar{I} is a subset of S^1) and $h_K(\theta) = h_L(\theta) = 0$ for $\theta \in S^1 \backslash \bar{I}$. A similar discussion implies that $\rho_1 \geq -t_2$. \qed
Lemma 3.4. Let K, L be two smooth, planar strictly convex bodies. If K and L are at a dilation position but not homothetic, then
\[\rho_1 > -t_2. \] (3.4)

Proof. Since K and L are not homothetic, by [1, Lemma 4.1] and the fact that K and L are smooth and strictly convex,
\[-t_1 < r(K, L) < R(K, L) < -t_2. \]
By Lemma 3.2, the origin $o \in \text{int}(K \cap L)$ or o is the point of tangency of ∂K and ∂L such that $K \subseteq L$ (or $L \subseteq K$).

If the origin $o \in \text{int}(K \cap L)$, then
\[-\frac{\delta}{V(L)} h_L(\theta) < h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) < \frac{\delta}{V(L)} h_L(\theta), \quad \delta = \sqrt{V(K, L)^2 - V(K)V(L)} > 0.\]
For I_1 and I_2, $\rho(\theta) \equiv a$ holds on at most one interval, unless K and L are homothetic. Without loss of generality, assume that $\rho(\theta) > a$ on a subinterval I_1' of I_1. On I_1', $\rho(\theta) > a$ and
\[-\left(h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) \right) (\rho(\theta) - a) < \frac{\delta}{V(L)} h_L(\theta)(\rho(\theta) - a).\]
Integrating this expression over the interval I_1 yields
\[-\frac{1}{V(L)} \int_{I_1} \left(h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) \right) (\rho(\theta) - a) (h_L(\theta) + h''_L(\theta)) d\theta < \frac{\delta}{V(L)} (\rho_1 - a),\]
which, together with (3.3), gives
\[-\frac{1}{V(L)} \int_0^{2\pi} \left(h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) \right) (\rho(\theta) - a) (h_L(\theta) + h''_L(\theta)) d\theta < \frac{2b\delta}{V(L)}.\]
By a similar argument as in Lemma 3.3, $b > \frac{\delta}{V(L)} > 0$, which implies that $\rho_1 > -t_2$.

If the origin o is the point of tangency of ∂K and ∂L such that $L \subseteq K$ (the case of $K \subseteq L$ is similar), then
\[-\frac{\delta}{V(L)} h_L(\theta) < h_K(\theta) - \frac{V(K, L)}{V(L)} h_L(\theta) < \frac{\delta}{V(L)} h_L(\theta),\]
for $\theta \in \hat{I}$. Similar with the case that the origin $o \in \text{int}(K \cap L)$, one can get $\rho_1 > -t_2$. \hfill \Box

Now, we give the proof of Theorem 1.1

Proof of Theorem 1.1 By Jensen’s inequality on I_i, $i = 1, 2$, one has
\[\frac{1}{V(L)} \int_{I_i} F(\rho(\theta)) h_L(\theta) (h_L(\theta) + h''_L(\theta)) d\theta \geq F(\rho_i). \]
Then
\[\frac{1}{V(L)} \int_0^{2\pi} F(\rho(\theta)) h_L(\theta) (h_L(\theta) + h''_L(\theta)) d\theta \geq F(\rho_1) + F(\rho_2), \] (3.5)
where $\rho_1 = \frac{V(K, L)}{V(L)} + b$, $\rho_2 = \frac{V(K, L)}{V(L)} - b$ and $b \geq 0$. Again from (3.1), it follows that $b \geq \frac{\delta}{V(L)} \geq 0$ and $\delta = \sqrt{V(K, L)^2 - V(K)V(L)}$. Since function $F(x)$ is strict convexity,
\[F(\rho_1) + F(\rho_2) = F \left(\frac{V(K, L)}{V(L)} + b \right) + F \left(\frac{V(K, L)}{V(L)} - b \right). \]
\[
\geq F \left(\frac{V(K, L)}{V(L)} + \frac{\delta}{V(L)} \right) + F \left(\frac{V(K, L)}{V(L)} - \frac{\delta}{V(L)} \right) = F(-t_1) + F(-t_2),
\]

which together with (3.5) yields inequality (1.4).

On one hand, if \(K \) and \(L \) are homothetic, then \(-t_1 = -t_2 = \rho(\theta)\), it is clear that the equality holds in (1.4). On the other hand, in order to prove that \(K \) and \(L \) are homothetic when the equality holds in (1.4), it is enough to show that inequality (1.4) is strict when \(K \) and \(L \) are not homothetic. If \(K \) and \(L \) are not homothetic, then \(\delta = \sqrt{V(K, L)^2 - V(K)V(L)} > 0 \), and by (3.4), one has \(b > \frac{\delta}{V(L)} > 0 \). It follows from the strict convexity of function \(F(x) \) that (3.6) is strict, which together with (3.5) implies that (1.4) is strict.

\begin{remark}
If \(\mathbb{R}^2 \) is equipped with a suitable Minkowski metric such that \(\partial L \) becomes the isoperimetrix of the Minkowski plane, then (1.4) turns into an inequality in Minkowski geometry (see [12], Remark 3.6).
\end{remark}

\section*{Acknowledgements}

I am grateful to the anonymous referee for his or her careful reading of the original manuscript of this paper and giving us many invaluable comments. I would also like to thank Professor Shengliang Pan for posing this problem to me.

\begin{thebibliography}{99}

[1] K. J. Böröczky, E. Lutwak, D. Yang and G. Zhang, The log-Brunn-Minkowski inequality. Adv. Math. 231 (2012), 1974–1997.

[2] I. Chavel, Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives. Cambridge University Press, 2001.

[3] N. Dergiades, An elementary proof of the isoperimetric inequality. Forum Geom. 2 (2002), 129–130.

[4] M. E. Gage, An isoperimetric inequality with applications to curve shortening. Duke Math. J. 50 (1983) 1225–1229.

[5] M. E. Gage, Curve shortening makes convex curves circular. Invent. Math. 76 (1984) 357–364.

[6] M. E. Gage, Evolving plane curves by curvature in relative geometries. Duke Math. J. 72 (1993), 441–466.

[7] M. E. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves. J. Differential Geom. 23 (1986), 69–96.

[8] M. Green and S. Osher, Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves. Asian J. Math. 3 (1999), 659–676.

[9] R. Osserman, The isoperimetric inequality. Bull. Amer. Math. Soc. 84 (1978), 1182–1238.

[10] R. Schneider, Convex bodies: the Brunn-Minkowski theory. Second expanded edition, Cambridge University Press, Cambridge, 2014.

[11] D. M. Xi and G. S. Leng, Dar’s conjecture and the log-Brunn-Minkowski inequality. J. Differential Geom. 103 (2016), 145–189.

6
[12] Y. L. Yang and D. Y. Zhang, The Green-Osher inequality in relative geometry. Bull. Aust. Math. Soc. 94 (2016) 155–164.

[13] Y. L. Yang and D. Y. Zhang, The log-Brunn-Minkowski inequality in \mathbb{R}^3. To appear in Proceedings of the AMS DOI: https://doi.org/10.1090/proc/14366.