SPHERICAL MULTIPLE FLAGS

P. ACHINGER AND N. PERRIN

Abstract. For a reductive group G, the products of projective rational varieties homogeneous under G that are spherical for G have been classified by Stembridge. We consider the B-orbit closures in these spherical varieties and prove that under some mild restrictions they are normal, Cohen-Macaulay and have a rational resolution.

Introduction

A classical problem in geometric representation theory is to prove regularity properties of B-orbit closures inside a G-variety X. Here and henceforth G is a reductive group over an algebraically closed field k and B is a Borel subgroup of G. The most famous example of such a theorem is the result of Mehta and Ramanathan [MeRa85] that Schubert varieties (that is, B-orbit closures inside $X = G/P$ a projective rational homogeneous space) are normal, Cohen-Macaulay and have a rational resolution. For general spherical varieties (i.e., normal G-varieties with finitely many B-orbits), this is more complicated and the B-orbit closures are not even normal in general (for a survey of partial results in this direction, cf. [Per12b, Section 4.4]). In this paper, we restrict our attention to products of homogeneous spaces. Our result is the following

Theorem 1. Assume that G is a simply laced (i.e., with simple factors of types A, D, E). Let P_1, P_2 be two cominuscule (see Definition 1.5) parabolic subgroups of G containing B and let $X = G/P_1 \times G/P_2$. Then the B-orbit closures inside X are normal, Cohen-Macaulay and have a rational resolution.

To prove these regularity properties, we need to study in more detail the B-orbit structure of X and the weak order (cf. Definition 2.1) among the B-orbits. We prove the following two facts, whose proof constitutes most of the paper, and which we hope might be of independent interest:

(a) the minimal B-orbits with respect to the weak order are $B \times B$-stable (see Theorem 2.13), hence their closures are products of Schubert varieties,

(b) the action maps $P \times^B O \to P O$, where O is a B-orbit in X, $P \supset B$ a minimal parabolic subgroup with $P O \neq \emptyset$, are birational (see Corollary 3.20).

With these results in hand, the structure of the proof of Theorem 1 is as follows. For a B-orbit closure $\bar{O} \subseteq X$, we find a minimal (with respect to the weak order) B-orbit $O' \trianglelefteq \bar{O}$. Since by (a) the orbit closure \bar{O}' is a product of two Schubert varieties, it admits a rational resolution $Z \to \bar{O}'$ (for example, the product of two Bott-Samelson resolutions [Dem74] of the two factors). Since $\bar{O}' \trianglelefteq \bar{O}$ there exists a sequence $P_{γ_1}, \ldots, P_{γ_l}$ of minimal parabolic subgroups of G containing B raising

Key words: spherical varieties, normal and rational singularities, homogeneous spaces
Mathematics Subject Classification:.
\(O' \) to \(O \) (see Definition 2.1). Then by (b) the action map

\[
P_{r_{\gamma}} \times^B \ldots \times^B P_{r_{\gamma_1}} \times Z \rightarrow \bar{O}
\]

is a rational resolution of \(\bar{O} \). To prove normality, we proceed by descending induction in the weak order. First, maximal \(B \)-orbits are \(G \)-stable, and their closures are normal as locally trivial fibrations with Schubert varieties as fibers. In the induction step, we use (a) and (b) again and follow ideas of Brion [Bri03]. Finally, Cohen-Macaulayness follows from general arguments from Brion [Bri03, Section 3, Remark 2] and the fact that this holds for the \(G \)-orbit closures.

In addition, we show that the "simply-lacedness" assumption in Theorem 1 is necessary – in Section 5 we find a \(B \)-orbit inside \(X = (\text{Sp}_6/P)^2 \) where \(P \) is a stabilizer of a 3-dimensional isotropic subspace whose closure is not normal (and in fact the property (b) above fails). We do not know whether Theorem 1 holds without the assumption that \(P_1 \) and \(P_2 \) be cominuscule. Note that examples of such pairs with \(X \) spherical are quite restricted – see [Lit94] and [Ste03] for a complete list. The main reason for the assumption that \(P_1, P_2 \) are cominuscule is that in such case the \(G \)-orbits are induced from symmetric varieties (see Definition 2.4 and Corollary 1.7) in which case minimal orbits for the weak order are closed.

The case of Theorem 1 when \(X \) is a product of two Graßmannian varieties was proved in [BoZw02] thanks to a detour into quiver representations. It was one of the motivations of this work to present a direct proof of this result. It was also inspired by a complete combinatorial description of the weak order in a product of two Graßmann varieties due to Smirnov [Smi08], where the two phenomena (a) and (b) mentioned above have been observed.

The structure of the paper is as follows. In Section 1, we define opposite pairs of parabolic subgroups and show how one can reduce the study of \(G \)-orbits inside \(G/P_1 \times G/P_2 \) to the case when \(P_1 \) and \(P_2 \) are opposite to each other. In that case the variety is symmetric which turns out to be very important. In Section 2, we recall the definition and basic properties of the weak order among the \(B \)-orbits in a spherical variety \(X \) and prove (a) (Theorem 2.13). In Section 3, we introduce a distance function between torus-fixed points in \(X \), generalizing a previous notion introduced in [ChMaPe08] and used in [ChMaPe07, ChMaPe10, ChPe11, BuChMiPe10] to study quantum cohomology of cominuscule rational homogeneous spaces. We use it to prove (b) (Corollary 3.20). The proof of Theorem 1 occupies Section 4, and our counterexample with \(G \) non-simply laced can be found in Section 5.

Contents

1. Structure of \(G \)-orbits 3
2. Minimal orbits for the weak order 4
 2.1. Weak order 4
 2.2. Minimal orbits: The case of opposite pairs 5
 2.3. Minimal orbits: General case 7
3. Distance and rank 7
 3.1. Distance 8
 3.2. Connection with the rank 9
4. Proof of Theorem 1 12
5. Example of non normal closures 14
References 15
1. Structure of G-orbits

Let G be a reductive group, T a maximal torus of G and B a Borel subgroup of G containing T. Let $W = N_G(T)/T$ be the Weyl group associated to T. Let P_1 and P_2 be two parabolic subgroups of G containing B and define

$$X = G/P_1 \times G/P_2.$$

The variety X has finitely many G-orbits. Any orbit is of the form: $G \cdot (P_1, wP_2)$ for some $w \in W$ and is isomorphic to G/H with

$$H = P_1 \cap P_2^w$$

where $P_2^w = wP_2w^{-1}$. The inclusion morphism $\iota : G/H \to G/P_1 \times G/P_2$ is induced by the morphism $G \to G \times G$ defined by $g \mapsto (g, gn_w)$ where n_w is any representative of w in $N_G(T)$.

In this section we prove a structure result on G-orbits which reduces the study to the case of an opposite pair (P_1, P_2) (see Definition 1.1). For this we fix a G-orbit $G \cdot (P_1, wP_2) \simeq G/H$ of X with $w \in W$ and $H = P_1 \cap P_2^w$.

Recall that if $\chi : G_m \to T$ is a cocharacter of T, we may define a parabolic subgroup P_χ of G as follows:

$$P_\chi = \{ g \in G / \lim_{t \to 0} \chi(t)g\chi(t)^{-1} \text{ exists} \}.$$

In the above definition, the limit exists if the map $G_m \to G$, $t \mapsto \chi(t)g\chi(t)^{-1}$ extends to $K \geq G_m$. Note that P_χ contains T. Any parabolic subgroup containing T can be defined this way. The set of all possible characters for a given parabolic P is a semigroup with unit a the minimal cocharacter χ_P such that $P = P_{\chi_P}$. For example, the cocharacter of P_2^w is $w(\chi_{P_2})$.

Definition 1.1. A pair (P_1, P_2) is called opposite if $w_0(\chi_{P_1}) = -\chi_{P_2}$, where w_0 is the longest element of the Weyl group.

Definition 1.2. We define a parabolic subgroup R of G by its cocharacter $\chi_R = \chi_{P_1} + w(\chi_{P_2})$.

We denote by L_R the Levi subgroup of R containing T and by U_R the unipotent radical of R. We have a semidirect product $R = L_R \rtimes U_R$.

Lemma 1.3. Let $w_0^{L_R}$ be the longest element of the Weyl group of L_R.

(i) The parabolic subgroup R contains the intersection $P_1 \cap P_2^w$.

(ii) The pair (Q_1, Q_2) with $Q_1 = L_R \cap P_1$ and $Q_2 = (P_2^w \cap L_R)^{w_0^{L_R}}$ is opposite in L_R.

Proof. (i) This is obvious by definition.

(ii) We have the equality $\chi_{P_1}|_{L_R} + w(\chi_{P_2})|_{L_R} = 0$ proving the result. \qed

Definition 1.4. We set $K = L_R \cap H$. Note that this is the Levi subgroup of both parabolic subgroups of the opposite pair (Q_1, Q_2).

We have a G-equivariant morphism $p : G/H \to G/R$, which is a locally trivial fibration with fiber isomorphic to R/H. In other words we have an isomorphism $G/H \simeq G \times^R R/H$. We have a R-equivariant morphism $R/H \to L_R/K$ which induces a morphism

$$G/H \simeq G \times^R R/H \to G \times^R L_R/K.$$
Note that since $K = Q_1 \cap Q_2$, the diagonal embedding $L_R \to L_R \times L_R$ induces an embedding $L_R/K \to L_R/Q_1 \times L_R/Q_2$.

Recall the following definition.

Definition 1.5. A parabolic subgroup is cominuscule if its associated cocharacter χ_P satisfies $|\langle \chi_P, \alpha \rangle| \leq 1$ for any root α.

Lemma 1.6. (i) The variety L_R/K is the dense L_R-orbit in $L_R/Q_1 \times L_R/Q_2$.

(ii) The fiber of $R/H \to L_R/K$ is isomorphic to $U_R/U_R \cap H$. It can be embedded in $U_R/U_R \cap P_1 \times U_R/U_R \cap P_2^w$.

(iii) If P_1 is cominuscule, then the second factor $U_R/U_R \cap P_2^w$ is trivial.

Proof. (i) Follows from the fact that Q_1 and Q_2 are opposite.

(ii) The statement on the fiber is clear by construction. The claimed embedding is induced by the diagonal embedding $U_R \to U_R \times U_R$.

(iii) The group U_R is spanned by the groups U_α for α a root with $\langle \chi_R, \alpha \rangle > 0$ while the group $U_R \cap P_2^w$ is spanned by the groups U_α for α a root with $\langle \chi_R, \alpha \rangle > 0$ and $\langle \chi_{P_2^w}, \alpha \rangle \geq 0$.

Let α be a root such that $\langle \chi_R, \alpha \rangle > 0$ and $\langle \chi_{P_2^w}, \alpha \rangle < 0$. Recall that $\chi_R = \chi_{P_1} + \chi_{P_2}$ therefore we must have $\langle \chi_{P_1}, \alpha \rangle > -\langle \chi_{P_2^w}, \alpha \rangle > 0$ and in particular $\langle \chi_{P_1}, \alpha \rangle > 1$. A contradiction with the assumption P_1 cominuscule. \qed

Corollary 1.7. For P_1 and P_2 cominuscule, G/H is isomorphic to $G \times_R L_R/K$.

Remark 1.8. If P_1 and P_2 are cominuscule, the G-orbit G/H is therefore obtained by parabolic induction from L_R/K (see Definition 2.4) that is to say form the case of an opposite pair of parabolic subgroups.

2. Minimal orbits for the weak order

Let G be a reductive group and B a Borel subgroup. Recall that a G-spherical variety, or simply a spherical variety X is a normal G-variety with a dense B-orbit. This in particular implies that the set $B(X)$ of B-orbits is finite.

In this section we first recall general results on B-orbits in a spherical variety X. We then apply these results to the case where $X = G/P_1 \times G/P_2$ with P_1 and P_2 cominuscule parabolic subgroups.

2.1. Weak order

Let X be a spherical variety and let \emptyset be a B-orbit in X. There is a natural partial order, called the weak order on the set $B(X)$ of B-orbits in X defined as follows. Recall that a minimal parabolic subgroup is a parabolic subgroup with semisimple rank one.

Definition 2.1. Let \emptyset be a B-orbit in X.

(i) If P is a minimal parabolic subgroup containing B such that \emptyset is not P-stable, we say that P raises \emptyset.

(ii) The weak order is the order generated by the following cover relations $\emptyset < \emptyset'$ where \emptyset is any B-orbit in X and where \emptyset' is the dense B-orbit in $P\emptyset$ for P a minimal parabolic raising \emptyset.

By results of [RiSp90] or [Bri01] three cases can occur. Recall that there exists a morphism $P \times_B \emptyset \to P\emptyset$ induced by the action. Recall also that the rank $\text{rk}(Z)$ of a B-variety Z is the minimal codimension of U-orbits with U the unipotent radical of B.

Lemma 2.2. Let \emptyset be a B-orbit in X and let P be a minimal parabolic subgroup raising \emptyset. Let \emptyset' be the dense B-orbit in $P\emptyset$. Then $\dim \emptyset' = \dim \emptyset + 1$ and one of the following three cases occurs:

(U) The P-orbit $P\emptyset$ contains two B-orbits \emptyset and \emptyset' and $P \times B \emptyset \to P\emptyset$ is birational. We have $\text{rk}(\emptyset') = \text{rk}(\emptyset)$.

(N) The P-orbit $P\emptyset$ contains two B-orbits \emptyset and \emptyset' and $P \times B \emptyset \to P\emptyset$ is of degree 2. We have $\text{rk}(\emptyset') = \text{rk}(\emptyset) + 1$.

(T) The P-orbit $P\emptyset$ contains three B-orbits \emptyset, \emptyset' and \emptyset'' and $P \times B \emptyset \to P\emptyset$ is birational. We have $\dim \emptyset = \dim \emptyset''$ and $\text{rk}(\emptyset') = \text{rk}(\emptyset) + 1 = \text{rk}(\emptyset'') + 1$.

Definition 2.3. We define a graph $\Gamma(X)$ whose vertices are the elements in $B(X)$ and whose edges are the pairs (\emptyset, \emptyset') with \emptyset raised to \emptyset' by a minimal parabolic subgroup P. We say that an edge is of type U, N or T if we are in the corresponding U, N or T situation of the previous lemma.

Let R be a parabolic subgroup of G and let L_R be its Levi quotient. Let Y be a L_R-variety. We write B_{L_R} for the image of $B \cap R$ in L_R. Note that this is a Borel subgroup of L_R.

Definition 2.4. We say that a G-variety X is obtained from Y by parabolic induction if of the form $X = G \times_R Y$ where Y is a L-variety.

The following result is a direct application of [Bri01, Lemma 6].

Lemma 2.5. Let X be a G-variety obtained by parabolic induction from Y.

(i) The variety X is G-spherical if and only if Y is L_R-spherical. Assume that X is spherical.

(ii) The set $B(X)$ is in bijection with the product $B_{L_R}(Y) \times B(G/R)$. The bijection $B_{L_R}(Y) \times B(G/R) \to B(X)$ is given by $(\emptyset, BgR/R) \mapsto BgR \times R \emptyset$. Furthermore, the edges are of two types:

- either of the form $((\emptyset, BgR/R), (\emptyset, Bg'R/R))$ with $(BgR/R, Bg'R/R)$ an edge of $B(G/R)$. These edges are of type U;
- or of the form $((\emptyset, BgR/R), (\emptyset', BgR/R))$ with (\emptyset, \emptyset') an edge of $B_{L_R}(Y)$. The edges $((\emptyset, BgR/R), (\emptyset', BgR/R))$ and (\emptyset, \emptyset') have the same type.

Let P_1 and P_2 be cominuscule parabolic subgroups and let $X = G/P_1 \times G/P_2$. The following result was proved in [Lit94] (see also [Ste03] for a complete classification of products of projective homogeneous G-varieties which are G-spherical).

Proposition 2.6. The variety X is G-spherical.

Consider a G-orbit $G \cdot (P_1, wP_2) \simeq G/H$ of X with $w \in W$ and $H = P_1 \cap P_2^w$ and recall the notation from Section 1. Corollary 1.7 gives the isomorphism $G/H \simeq G \times_R L_R/K$. In particular, by Lemma 2.5, to describe the weak order on G/H we only need to study the weak order on L_R/K. Thanks to Lemma 1.3, it is therefore enough to consider the case where (P_1, P_2) is an opposite pair and w is the longest element.

2.2. Minimal orbits: The case of opposite pairs. In this subsection, we consider the spherical variety $X = G/P_1 \times G/P_2$ with P_1 and P_2 two cominuscule parabolic subgroups of G such that (P_1, P_2) is an opposite pair. We pick the dense G-orbit in X i.e. the orbit $G \cdot (P_1, wP_2) \simeq G/H$ with $H = P_1 \cap P_2^w$ and $w = w_0$ the longest element of W.
We start with results on minimal length representatives: for P a parabolic subgroup of G containing B, we write W_P for its Weyl group and W^P for the subset of W of minimal length representatives of the quotient W/W_P.

Lemma 2.7. Let w_{P_1} and w_{P_2} be the longest elements in W^{P_1} and W^{P_2}, then $w_{P_2} = w_{P_1}^{-1}$.

Proof. The length of w_{P_1} and w_{P_2} are equal to the dimensions of G/P_1 and G/P_2. Since (P_1, P_2) is an opposite pair, these dimensions are equal and $w_{P_1}(\chi_{P_1}) = -\chi_{P_2}$. Thus $l(w_{P_1}^{-1}) = l(w_{P_2})$ and we compute $w_{P_1}^{-1}(\chi_{P_1}) = w_{P_2}(\chi_{P_2})$. Therefore $w_{P_1}^{-1}$ is in the same class as w_{P_2} in W/W_{P_1} proving the result.

Lemma 2.8. Let $u \in W^{P_1}$, there exists a unique $u^\vee \in W^{P_2}$ such that $(uP_1, u^\vee P_2)$ is in the dense G-orbit in $G/P_1 \times G/P_2^w$. We have the formulas
\[
 u^{-1}u^\vee = w_{P_2} \text{ and } l(u) + l(u^\vee) = l(w_{P_2}).
\]
where w_{P_2} is the longest element in W^{P_2}.

Proof. Let $v \in W$ such that (uP_1, vP_2) is in the dense G-orbit i.e. have $u(\chi_{P_1}) = -v(\chi_{P_2})$. Because (P_1, P_2) is an opposite pair we have $w_{P_1}(\chi_{P_2}) = -\chi_{P_2}$ thus we get $w_{P_1}^{-1}(\chi_{P_2}) = u^{-1}v(\chi_{P_2})$ and the equality $w_{P_1}^{-1} = u^{-1}v$ in W/W_{P_2}. Let $v' \in W_{P_2}$ such that the equality $w_{P_1}^{-1} = u^{-1}v'v'$ holds in W. By the previous lemma we get $w_{P_2} = u^{-1}v'v$. Write $w_{P_2} = w'u$ with $l(w_{P_2}) = l(u) + l(u')$ (this is possible since $u \in W^{P_1}$). Note that the have $u' = v'^{-1}u^{-1}$ and therefore $l(w_{P_2}) = l(u^{-1}) + l(u')$ and the expression $w_{P_2} = u^{-1}u'$ is length additive. Since $w_{P_2} \in W^{P_2}$ this implies $u^{-1} \in W^{P_2}$. The element $u^\vee = u^{-1}$ satisfies the conclusions of the lemma.

Lemma 2.9. The B-orbit $B \cdot (uP_1, u^\vee P_2)$ is a $B \times B$-orbit.

Proof. Recall that we have the following equalities
\[
 B \cdot uP_1 = \bigcup_{\alpha > 0, u^{-1}(\alpha) \notin P_1} U_{\alpha} \cdot uP_1 \text{ and } B \cdot u^\vee P_2 = \bigcup_{\alpha > 0, u^{-1}(\alpha) \notin P_2} U_{\alpha} \cdot u^\vee P_2.
\]
We are thus left to prove that there is no positive root α with $u^{-1}(\alpha) \notin P_1$ and $u^{-1}(\alpha) \notin P_2$. Let α be such a root. We have the inequalities $\langle \chi_{P_1}, u^{-1}(\alpha) \rangle < 0$ and $\langle \chi_{P_2}, u^{-1}(\alpha) \rangle < 0$. By Lemma 2.8, the second inequality is equivalent to $\langle w_{P_1}(\chi_{P_2}), u^{-1}(\alpha) \rangle < 0$. But since $w_{P_1}(\chi_{P_2}) = -\chi_{P_1}$ this leads to a contradiction with the first inequality.

Lemma 2.10. The minimal orbits for the weak order in G/H are closed.

Proof. This follows from the fact that this statement holds true for symmetric homogeneous spaces (see [Spr85]) and the fact that H is a symmetric subgroup: H is the connected component of the subgroup of fixed points under the involution given by conjugation by $\chi_{P_1}(-1)$ (see also [Per12a, Proposition 3.5]).

Proposition 2.11. The minimal B-orbits in G/H are $B \times B$-orbits.

Proof. Let $z = (xP_1, yP_2)$ be an element in the dense G-orbit of $G/P_1 \times G/P_2$ such that the B-orbit $B \cdot z$ is minimal for the weak order. By letting B act on the first factor, we may assume that xP_1 is fixed by T i.e. we have $x \in N_G(T)$. Let u be its class in the Weyl group $W = N_G(T)/T$. We may assume that $u \in W^{P_1}$.

We want to prove that \(y \) is also stable by \(T \). For this we introduce the minimal equivariant embedding \(G/P_2 \subset \mathbb{P}(V_2) \) of \(G/P_2 \). The vector space \(V_2 \) is a representation of \(G \) of highest weight \(\varpi_{P_2} \). This is the fundamental weight corresponding to the coweight \(\chi_{P_2} \). Let us denote by \(\Pi_2 \) the set of \(T \)-weights of this representation. We have a decomposition
\[
V_2 = \bigoplus_{\chi \in \Pi_2} V_2^\chi
\]
where \(V_2^\chi \) is the eigenspace of weight \(\chi \). Let \(v_1^\chi \) be a basis of the eigenspace \(V_2^\chi \) for \(\chi \in \Pi_2 \). We may therefore write \(y \cdot v_{\varpi_{P_2}} = \sum_{\chi \in \Pi_2} y_\chi v_\chi \) with \(y_\chi \) a scalar. Note that for \(\chi \) of the form \(W \cdot \varpi_{P_2} \) we have \(\dim V_2^\chi = 1 \) and we write simply \(y_\chi \) in that case.

Lemma 2.12. We have \(y_{u \cdot \varpi_{P_2}} \neq 0 \).

Proof. Note that \((uP_1, u^\vee P_2) \) and \((xP_1, yP_2) \) are in the dense \(G \)-orbit. Since \(uP_1 = xP_1 \) by definition of \(u \), we have the inclusion \(yP_2 \subset P_1 \cdot u^\vee P_2 \). Therefore the class \([y \cdot v_{\varpi_{P_2}}] \) in \(\mathbb{P}(V_2) \) is in the \(P_1 \cdot u^\vee \)-orbit of the class of a vector of weight \(u^\vee (\varpi_{P_2}) \).

Consider on the other hand the divisor \(D_{u \cdot \varpi_{P_2}} \) of \(\mathbb{P}(V_2) \) defined as the locus of classes \([v]\) of vectors \(v \) with trivial coordinate on \(v_{u \cdot \varpi_{P_2}} \). We claim that this divisor is \(P_1 \cdot u^\vee \)-stable. If this is the case, then \([y \cdot v_{\varpi_{P_2}}]\) is not contained in it and the result follows.

Proving that \(D_{u \cdot \varpi_{P_2}} \) is \(P_1 \cdot u^\vee \)-stable is equivalent to proving that the weight vector \(v_{-u^\vee (\varpi_{P_2})} \) of weight \(-u^\vee (\varpi_{P_2})\) in the dual space \(V_2^\vee \) is \(P_1 \cdot u^\vee \)-stable. The cocharacter defining this stabiliser is precisely \(-u^\vee (\chi_{P_2})\) and we have the equalities \(-u^\vee (\chi_{P_2}) = u^\vee (w_1 (\chi_{P_1})) = u^\vee (w_1^{-1} (\chi_{P_1})) = u (\chi_{P_1})\) proving the claim. \(\square \)

As an easy consequence we get that \((uP_1, u^\vee P_2) \) is in the closure of the \(B \)-orbit \(B \cdot (xP_1, yP_2) \) in \(G/H \). Indeed, choose a one parameter subgroup \(G_m \) of \(T \) such that \(u (\varpi_{P_2}) \) has maximal weight on this subgroup. Note that since \(x \) is \(T \)-stable it is also \(G_m \)-stable and that \([v_{u \cdot \varpi_{P_2}}]\) is in the closure of the orbit \(G_m [y \cdot v_{\varpi_{P_2}}] \). Then letting \(G_m \) act on \((xP_1, yP_2) \) we get that \((uP_1, u^\vee P_2) \) is in the closure of \(B \cdot (xP_1, yP_2) \) in \(X \). Since \((uP_1, u^\vee P_2) \) is in the dense \(G \)-orbit \(G/H \) it is therefore in the closure of \(B \cdot (xP_1, yP_2) \) in \(G/H \).

Since by Lemma 2.10 the orbit \(B \cdot (xP_1, yP_2) \) is closed we get \((uP_1, u^\vee P_2) \in B \cdot (xP_1, yP_2) \). Lemma 2.9 concludes the proof. \(\square \)

2.3. Minimal orbits: General case. In this subsection, we consider the spherical variety \(X = G/P_1 \times G/P_2 \) with \(P_1 \) and \(P_2 \) two cominuscule parabolic subgroups and. We pick a \(G \)-orbit \(G \cdot (P_1, wP_2) \simeq G/H \) of \(X \) with \(H = P_1 \cap P_2^w \) and \(w \in W \).

Theorem 2.13. The minimal \(M \)-orbits in \(G/H \) are \(B \times B \)-orbits.

Proof. According to Lemma 2.5, a minimal \(B \)-orbit is of the form \(BgR \times K \) where \(BgR/R \) is a minimal \(B \)-orbit in \(B(G/R) \) and \(K \) is a minimal \(B_{L_R} \)-orbit in \(L_R/K \). Therefore \(BgR/R \) is a point and \(\emptyset \) is a \(B_{L_R} \times B_{L_R} \)-orbit. The result follows. \(\square \)

3. Distance and rank

In this section we consider \(X = G/P_1 \times G/P_2 \) with \(G \) simply laced and \(P_1 \), \(P_2 \) cominuscule. We prove that there is no edge of type \(N \) in the graph \(B(X) \).
Lemma 3.6. For chamber and result follows from this by an easy computation. □

Proof. For α there exists a simple root ∈ of the form Ωu = BuP1/P2 for a unique u ∈ Wp1. Fix (,) a W-invariant scalar product and write | · | for the associated norm.

Definition 3.1. For λ ∈ ΠπW, define d(λ1, λ2) = (πW, πW) - (λ1, λ2).

Remark 3.2. (i) The distance d(λ1, λ2) is W-invariant.
(ii) If πW = πW2, then we have d(λ1, λ2) = 1/2|λ1 - λ2|^2.

Lemma 3.3. We have d(λ1, λ2) ∈ [0, (πW, πW2 - wπW2(πW2))].

Proof. Since the distance is W-invariant, we have d(λ1, λ2) = d(πW, μ) for some μ ∈ ΠπW2. We have d(πW, μ) = (πW, πW2 - μ). Since πW2 is the highest weight of VπW2 and wπW2(πW2) the lowest weight, the result follows. □

Lemma 3.4. We have d(λ1, λ2) = 0 if and only if λ1 and λ2 belong to the same chamber.

Proof. If λ1 and λ2 belong to the same chamber, then letting W act we may assume that this chamber is the dominant chamber. In particular λ1 = πW and the distance vanishes. Conversely, we may assume by letting W act that λ1 = πW1. We proceed by induction on πW2 - λ2. If λ2 = πW2, we are done. Otherwise λ2 < πW2 and there exists a simple root α such that λ2 < sα(λ2) = λ2 + α ≤ πW2.

Furthermore, since d(λ1, λ2) = d(πW1, λ2) = (πW1, πW2 - λ2) = 0 we must have (πW1, α) = 0. Then we have 0 = d(sα(πW1), sα(λ2)) = d(πW1, sα(λ2)). By induction, πW1 and sα(λ2) are in the same chamber. The same is therefore true for sα(πW1) = πW1 and λ2. □

Corollary 3.5. If d(λ1, λ2) > 0, then there exists a root α with (λ1, α)(λ2, α) < 0.

Proof. If there is no root α with (λ1, α)(λ2, α) < 0, then λ1 and λ2 are in the same chamber and d(λ1, λ2) = 0 by the previous lemma. □

Lemma 3.6. For (λ1, α)(λ2, α) < 0, we have d(λ1, sα(λ2)) = d(λ1, λ2) - 1.

Proof. For P1 cominuscule and G simply laced, we have (λ1, α) ∈ {-1, 0, 1}. The result follows from this by an easy computation. □
Corollary 3.7. Let \(d = d(\lambda_1, \lambda_2) \).

(i) There exists a sequence \((\gamma_i)_{i \in [1,d]}\) of roots such that if \((\mu_i)_{i \in [0,d]}\) is defined by \(\mu_d = \lambda_2 \) and \(\mu_{i-1} = s_{\gamma_i}(\mu_i) \), then \(d(\lambda_1, \mu_i) = i \).

(ii) The roots \((\gamma_i)_{i \in [1,d]}\) are mutually orthogonal and satisfy \((\lambda_1, \gamma_i)(\lambda_2, \gamma_i) < 0 \) for all \(i \in [1,d] \).

Proof. (i) We proceed by induction on \(d \). By the former corollary, if \(d > 0 \), there exists a root \(\alpha \) with \(\langle \lambda_1, \alpha \rangle \langle \lambda_2, \alpha \rangle < 0 \). Set \(\gamma_d = \alpha \) and \(\mu_{d-1} = s_\alpha(\lambda_2) \), then \(d(\lambda_1, \mu_{d-1}) = d - 1 \). We conclude by induction.

(ii) Note that in the sequence \((\gamma_k)_{k \in [1,d]}\), we may replace \(\gamma_k \) by its opposite. Therefore we may assume that \((\lambda_1, \gamma_k) < 0 \) (and thus \((\mu_k, \gamma_k) > 0 \)) for all \(i \in [1,d] \).

We first prove by induction on \(j - i \) the vanishing \((\gamma_i, \gamma_j) = 0 \) for all \(i < j \). By induction assumption, we have

\[
\mu_i = s_{\gamma_{i+1}} \cdots s_{\gamma_j}(\mu_j) = \mu_j - \sum_{k=i+1}^{j} (\gamma_k, \mu_k) \gamma_k = \mu_j - \sum_{k=i+1}^{j} \gamma_k.
\]

We get, again using induction

\[
1 \geq (\gamma_i, \mu_j) = (\gamma_i, \mu_i) + \sum_{k=i+1}^{j} (\gamma_k, \mu_k)(\gamma_i, \gamma_k) = 1 + (\gamma_i, \gamma_j).
\]

In particular we get \((\gamma_i, \gamma_j) \leq 0 \). If \((\gamma_i, \gamma_j) = -1 \), then \(\gamma_i + \gamma_j \) would be a root and we would have \((\lambda_1, \gamma_i + \gamma_j) \geq -1 \). But \((\lambda_1, \gamma_i + \gamma_j) = -2 \) a contradiction. The second condition easily follows. \(\square \)

We can prove a converse of the above statement.

Lemma 3.8. If \((\gamma_i)_{i \in [1,d]}\) is a sequence of mutually orthogonal roots such that for all \(i \in [1,d] \), we have \((\lambda_1, \gamma_i)(\lambda_2, \gamma_i) < 0 \), then \(d(\lambda_1, \lambda_2) \geq d \).

Proof. Define the sequence \((\mu_i)_{i \in [0,d]}\) of weights as above: \(\mu_d = \lambda_2 \) and \(\mu_{i-1} = s_{\gamma_i}(\mu_i) \). We have \(d(\lambda_1, \mu_{i+1}) = d(\lambda_1, \mu_i) - 1 \) for all \(i \), the result follows. \(\square \)

Corollary 3.9. The distance \(d(\lambda_1, \lambda_2) \) is the maximal length of sequences \((\gamma_i)_{i \in [1,d]}\) of mutually orthogonal roots satisfying \((\lambda_1, \gamma_i)(\lambda_2, \gamma_i) < 0 \) for all \(i \in [1,d] \).

3.2. Connection with the rank. Let \(B(X) \) be the set of \(B \)-orbits in \(X = G/P_1 \times G/P_2 \). We define a map \(\Phi : B(X) \to W^{P_1} \times W^{P_2} \) as follows. Let \(\mathcal{O} \) be a \(B \)-orbit in \(G/P_1 \times G/P_2 \). Then the images of \(\mathcal{O} \) in \(G/P_1 \) and in \(G/P_2 \) are Schubert cells \(\Omega_u \) and \(\Omega_v \) with \((u,v) \in W^{P_1} \times W^{P_2} \). We put

\[
\Phi(\mathcal{O}) = (u,v).
\]

Remark 3.10. We defined the distance on the pairs of weights in \(\Pi_1 \times \Pi_2 \). We extend this definition to \(W^{P_1} \times W^{P_2} \) by setting \(d(u,v) = d(u(\varpi_{P_1}), v(\varpi_{P_2})) \).

Lemma 3.11. Let \(\mathcal{O}, \mathcal{O}' \in B(X) \) with \(\mathcal{O} \leq \mathcal{O}' \) for the weak order. Let \((u,v) = \Phi(\mathcal{O}) \) and \((u',v') = \Phi(\mathcal{O}') \). We have \(d(u,v) - d(u',v') \leq \text{rk}(\mathcal{O}') - \text{rk}(\mathcal{O}) \).

Proof. Choose a sequence \((P_{\gamma_i})_{i \in [1,r]}\) of minimal parabolic subgroups raising \(\mathcal{O} \) to \(\mathcal{O}' \). Here \(\gamma_i \) for \(i \in [1,r] \) denotes the simple root whose opposite is a root of \(P_{\gamma_i} \). Let us write \(\mathcal{O}_i \) for the dense \(B \)-orbit in \(P_{\gamma_i} \cdots P_{\gamma_1}\mathcal{O} \) and write \(\Phi(\mathcal{O}_i) = (u_i, v_i) \). We have the three possibilities:
\begin{itemize}
\item if $\gamma_{i+1,1}(\varpi_{P_1}) = 1$, then we have $u_{i+1} = s_{\gamma_{i+1}}u_i$ and $u_{i+1}(\varpi_{P_1}) = s_{\gamma_{i+1}}u_i(\varpi_{P_1}) = u_i(\varpi_{P_1}) - \gamma_{i+1}$,
\item if $\gamma_{i+1,1}(\varpi_{P_1}) = 0$, then we have $u_{i+1} = u_i$ and $u_{i+1}(\varpi_{P_1}) = u_i(\varpi_{P_1}) = s_{\gamma_{i+1}}u_i(\varpi_{P_1})$,
\item if $\gamma_{i+1,1}(\varpi_{P_1}) = -1$, then we have $u_{i+1} = u_i$ and $u_{i+1}(\varpi_{P_1}) = u_i(\varpi_{P_1})$.
\end{itemize}

The same possibilities occur for v_i. There are only two cases for which we have $d(u_{i+1}, v_{i+1}) \neq d(u_i, v_i)$, namely for $(\gamma_{i+1,1}, u_i(\varpi_{P_1})) = (1, \gamma_{i+1,1}, v_i(\varpi_{P_1})) = (-1, \gamma_{i+1,1}, v_i(\varpi_{P_1})) = 1$. In both cases we have $d(u_{i+1}, v_{i+1}) = d(u_i, v_i) - 1$ by Lemma 3.6.

We claim that the following inequality holds
\[\text{rk}(O_{i+1}) - \text{rk}(O_i) \geq d(u_i, v_i) - d(u_{i+1}, v_{i+1}).\]

Since $\text{rk}(O_{i+1}) \geq \text{rk}(O_i)$ this is clear in all cases where $d(u_{i+1}, v_{i+1}) = d(u_i, v_i)$. The last two cases are symmetric, we only treat the first one. Remark that the orbit $O_{i+1} = P_{\gamma_{i+1}}O_i$ contains the orbit O_i and another orbit. Indeed, if y is the T-fixed element in Ω_{u_i}, then there exists an element of the form (x, y) in O_i. The element $s_{\gamma_{i+1}}(x, y)$ is in O_{i+1} and $s_{\gamma_{i+1}}(y)$ is a T-fixed point different from y. Since the image by the second projection to G/P_2 of O_i and O_{i+1} is Ω_{u_i} which does not contain $s_{\gamma_{i+1}}(y)$ there is a third orbit O'_i contained in O_{i+1} and containing $s_{\gamma_{i+1}}(y)$. In particular $\text{rk}(O_{i+1}) = \text{rk}(O_i) + 1$. The claim is proved.

Summing up we get the desired inequality. \qed

\begin{proposition}
Assume that P_1 and P_2 are opposite and w is the longest element. \textbf{We have the inequality} $d(\varpi_{P_1}, w(\varpi_{P_2})) \geq \text{rk}(X)$. \end{proposition}

\begin{proof}
Consider the dense G-orbit G/H with $H = P_1 \cap P_2^w$. This is the orbit of $\{[w_{P_1}(\varpi_{P_1})], [w_{P_2}(\varpi_{P_2})]\}$. We have a surjective morphism $p_1 : G/H \to G/P_1$ and we consider the fiber of $[w_{P_1}(\varpi_{P_1})]$ which is isomorphic to $P_1^{w_{P_1}} \cdot [w_{P_2}(\varpi_{P_2})] \simeq P_1^{w_{P_1}} \cap P_2 \simeq P_2^w \simeq P_2^- \cap P_2 \simeq L_2 U_{P_2}/L_2$ where U_{P_2} is the unipotent radical of P_2 and L_2 is the Levi subgroup containing T. We have a trivialisation of the morphism $p_1 : G/H \to G/P_1$ over the open subset $U_{P_1} \cdot [w_{P_1}(\varpi_{P_1})] \simeq U_{P_1}$ and therefore an open B-stable subset of X isomorphic to $U_{P_1} \times L_2 U_{P_2}/L_2$.

The rank of X as a G-variety is therefore the rank of $L_2 U_{P_2}/L_2 \simeq U_{P_2}$ as an L_2-variety. The action on U_{P_2} is by conjugation. To compute the rank we want to compute the dimension of the quotient U_{P_2}/U where U is the opposite maximal unipotent of L_2.

Let us note that U_{P_2} is a vector space direct sum of the U_α for $(\alpha, \varpi_{P_2}) = 1$. The action of $U_\beta \subset U$ on U_{P_2} induces a morphism $U_{\beta} \times U_\alpha \to U_\alpha \times U_{\alpha+\beta}$ defined by $(b, a) \mapsto (a, c_{\alpha,\beta}ab)$ for some constant $c_{\alpha,\beta}$ (non vanishing if $\alpha + \beta$ is a root, see [Spr98, Proposition 8.2.3]). We construct subspaces of U_{P_2} stable for the action of U.

We define a sequence $(R_i, \theta_i)_{i \in [1,r]}$ of pairs consisting of a root system R_i and a root $\theta_i \in R_i$ by induction. Let $R_1 = R$ be the root system of G and let θ_1 be the highest root of R_1. Define R_{i+1} as the root system of all roots orthogonal to θ_i and θ_{i+1} be the highest root in R_{i+1}.

\begin{lemma}
Let $\alpha = \theta_i - \beta$ with α and β two roots. Then $(\theta_i, \alpha) = (\theta_i, \beta) = 1$. Conversely, for α a root, if $(\alpha, \theta_i) = 1$, then $\beta = \theta - \alpha$ is a root. \end{lemma}
Proof. Since β is a root we have $2 = (\beta, \beta) = 4 - 2(\theta_i, \alpha)$ proving the first equality. A similar argument gives the second proof. For the converse write $\beta = \theta_i - \alpha = s_\alpha(\theta_i)$.

\[\square \]

Lemma 3.14. The following conditions are equivalent

- $\alpha \in R$ and $\alpha \leq \theta_i$;
- $\alpha \in R_i$.

Proof. The second condition implies obviously the first by definition of θ_i. Conversely, note that for the root system R_k, the root θ_k is in the dominant chamber thus if $\gamma_1, \ldots, \gamma_r$ are the simple roots of R_k orthogonal to θ_k, then the roots of R_{k+1} are exactly the roots with trivial coefficient on the simple roots $\gamma_1, \ldots, \gamma_r$. This in particular implies that if $\alpha \leq \theta_i$, then $\alpha \in R_i$.

\[\square \]

Lemma 3.15. We have $R_i \setminus R_{i+1} = \{ \alpha \in R \mid \exists \beta \text{ positive root with } \alpha = \theta_i - \beta \}$.

Proof. If $\alpha = \theta_i - \beta$, then $\alpha \leq \theta_i$ and by Lemma 3.14 $\alpha \in R_i$. Furthermore by Lemma 13.13 we have $(\alpha, \theta_i) = 1$ thus $\alpha \notin R_{i+1}$. Conversely, if $\alpha \in R_i \setminus R_{i+1}$, we have $(\alpha, \theta_i) \neq 0$ thus since θ_i is the highest root $(\alpha, \theta_i) = 1$. By Lemma 13.13 there is a root β with $\alpha = \theta_i - \beta$ and $\beta \in R_i$. Since θ_i is the highest root of R_i we have $\beta > 0$.

\[\square \]

Lemma 3.16. Let α_i and α_j two roots of U_{P_2} and assume that $\alpha_i = \theta_i - \beta_i$ and $\alpha_j = \theta_j - \beta_j$ for β_i, β_j positive roots.

1. If $i \neq j$. Then we have $\beta_i \neq \beta_j$.
2. If $i = j$. Then we have $(\beta_i, \beta_j) = 0$.

Proof. (1) We may assume $i < j$. Assume further that $\beta_i = \beta_j = \beta$ and recall that we have $(\alpha_i, \theta_i) = 1 = (\alpha_j, \theta_j)$, $(\alpha_i, \theta_i) = (\theta_i, \theta_j) = 0$. We may compute

$$ (\beta, \beta) = (\theta_i - \alpha_i, \theta_j - \alpha_j) = (\alpha_i, \alpha_j) - (\alpha_i, \theta_j). $$

But since α_j is in U_{P_2}, the same is true for θ_j and therefore $(\alpha_i, \theta_j) = 0$. We get $2 = (\alpha_i, \alpha_j)$ which would imply $\alpha_i = \alpha_j$ a contradiction.

(2) We have $(\beta_i, \beta_j) = (\theta_i, \theta_i) - (\theta_i, \alpha_j) - (\alpha_i, \theta_i) + (\alpha_i, \alpha_j) = 2 - 1 - 1 + 0$.

We set $U(\theta_i) = \bigcap_{\alpha \in R_i \setminus R_{i+1}, u \alpha \subset U_{P_2}} U_\alpha \subset U_{P_2}$ for $i \in [1, s]$ with $s \leq r$ such that $U(\theta_i)$ is not trivial for $i \leq s$. These are subspaces of U_{P_2}. Note that for α, β roots of U_{P_2} we have $U_\alpha U_\beta = U_\beta U_\alpha$ so that we do not have to take care of the order of the product. We also define for $i \in [1, s]$

$$ U_i = \prod_{\beta \in R^+, \theta_i - \beta \in R_i} U_{-\beta}. $$

Note that by Lemma 3.16, the above $U_{-\beta}$ commute so that we can take any order for this product.

Lemma 3.17. In the U_i-orbit of a general element in U_{P_2} there is a unique representative whose only non trivial coordinate in $U(\theta_i)$ lies in U_{θ_i}.

Proof. Indeed, choose an element with non trivial coordinate in U_{θ_i}. Letting U_i act we can kill all the other coordinates in $U(\theta_i)$ in a unique way.

\[\square \]
Lemma 3.18. In the U-orbit of a general element in U_{P_2} there is a representative whose only non trivial coordinates are in $\prod_{i=1}^s U_{\theta_i}$.

Proof. Apply the previous Lemma by induction. \qed

In particular, we see that $\text{rk}(X) = \dim U_{P_2}/U \leq s$. But $(\theta_i)_{i \in [1,s]}$ is a sequence of mutually orthogonal roots with $(\theta_i, \varpi_{P_2}) = 1$ and $(\theta_i, w_{P_1}(\varpi_{P_2})) = (\theta_i, -\varpi_{P_2}) = -1$ thus by Corollary 3.9 we have $d(\varpi_{P_1}, w_{P_2}(\varpi_{P_2})) = d(w_{P_1}(\varpi_{P_1}), \varpi_{P_2}) \geq s$ and the proposition is proved. \qed

Theorem 3.19. Assume that P_1 and P_2 are opposite and w is the longest element. Let $\emptyset \in B(X)$ and set $\Phi(\emptyset) = (u, v)$. Then $\text{rk}(\emptyset) + d(u, v) = \text{rk}(X)$.

Proof. As in the proof of Lemma 3.11, we may choose a sequence $(P_{\gamma_i})_{i \in [1,r]}$ of minimal parabolic subgroups raising a minimal orbit \emptyset' for the weak order to X such that if we write \emptyset_k for the dense B-orbit in $P_{\gamma_i} \cdots P_{\gamma_1} \emptyset'$ there is an index k such that $\emptyset_k = \emptyset$. Set $\Phi(\emptyset_k) = (u_i, v_i)$. According to the proof of Lemma 3.11, the equality $d(u_{i+1}, v_{i+1}) = d(u_i, v_i) - 1$ implies the equality $\text{rk}(\emptyset_{i+1}) = \text{rk}(\emptyset_i) + 1$. In particular, we get $d(u_0, v_0) = d(u_0, v_0) - d(u_i, v_i) \leq \text{rk}(X) - \text{rk}(\emptyset') \leq \text{rk}(X) - \text{rk}(\emptyset) \leq d(1, w_{P_2})$. But since \emptyset' is minimal for the weak order we have by Theorem 2.13 the equality $v_i = u_0^\gamma$ and by Lemma 2.8 we have $u_0^{-1}u_0^\gamma = w_{P_2}$. Therefore $d(u_0, v_0) = d(1, u_0^{-1}v_0) = d(1, w_{P_2})$ and we have equality in all the inequalities. The result follows. \qed

Corollary 3.20. There is no edge of type N in the graph $\Gamma(X)$.

Proof. By Lemma 2.5 and Corollary 1.7, we may assume that P_1 and P_2 are opposite and w is the longest element.

Choose any minimal orbit \emptyset in X and any sequence $(P_{\gamma_i})_{i \in [1,r]}$ of minimal parabolic subgroups raising \emptyset to X. Write \emptyset_i for the dense B-orbit in $P_{\gamma_i} \cdots P_{\gamma_1} \emptyset$ and set $\Phi(\emptyset_i) = (u_i, v_i)$. According to the proof of Lemma 3.11 and to Lemma 3.6, the equality $d(u_{i+1}, v_{i+1}) = d(u_i, v_i) - 1$ implies the equality $\text{rk}(\emptyset_{i+1}) = \text{rk}(\emptyset_i) + 1$ and occurs only when $(u_i(\varpi_{P_2}), \gamma_{i+1})(v_i(\varpi_{P_2}), \gamma_{i+1}) = 0$. All the edges corresponding to such a raising by $P_{\gamma_{i+1}}$ are of type T by the above proof. But since $d(u_0, v_0) = \text{rk}(X) - \text{rk}(\emptyset)$ there is no other edge of $\Gamma(X)$ raising the rank. Since edges of type N raise the rank there is no such edge. \qed

Let $(P_{\gamma_i})_{i \in [1,r]}$ be a sequence of parabolics raising the orbit \emptyset to $P_{\gamma_r} \cdots P_{\gamma_1} \emptyset$.

Corollary 3.21. The map $\pi : P_{\gamma_r} \times^B \cdots \times^B P_{\gamma_1} \times^B \emptyset \to P_{\gamma_r} \cdots P_{\gamma_1} \emptyset$ is birational.

Let Y be the closure of a B-orbit in X.

Corollary 3.22. The normalisation morphism $\nu : \overline{Y} \to Y$ is an homeomorphism.

Proof. Let \emptyset be the dense B-orbit in Y. There exists a minimal B-orbit \emptyset' that can be raised to \emptyset. Let $(P_{\gamma_i})_{i \in [1,r]}$ be a sequence of parabolics raising the orbit \emptyset' to \emptyset. The closure Y' of \emptyset' is a product of Schubert varieties therefore normal and there is a morphism birational with connected fibers $P_{\gamma_r} \times^B \cdots \times^B P_{\gamma_1} \times^B Y' \to Y$. The result follows. \qed

4. Proof of Theorem 1

We want to use the technique developed in [Bri01] and [Bri03] to prove normality of the B-orbit closures. In particular Brion proves the following.
Proposition 4.1. Let X be G-spherical variety such that the graph $\Gamma(X)$ has no edge of type N. Let Y be a B-stable subvariety such that for all minimal parabolic subgroups P raising Y the variety PY is normal, then the non normal locus in Y is G-invariant.

We will use the following consequence of this result.

Corollary 4.2. Assume that X is G-spherical with a unique closed G-orbit Z and such that the graph $\Gamma(X)$ has no edge of type N. If any B-orbit closure containing Z is normal, then any B-orbit closure is normal.

Consider $X = G/P_1 \times G/P_2$ with P_1 and P_2 cominuscule. The variety X is G-spherical and has a unique closed G-orbit Z obtained as the image of the map $G/P_1 \cap P_2$ induced by the diagonal embedding $G \to G \times G$. To prove Theorem 1, we therefore only have to prove the normality of B-orbit closures containing Z.

Let Y' be a B-orbit closure containing Z. There exists a minimal orbit closure Y and a sequence of minimal parabolic subgroups $(P_\gamma)_{\gamma \in [1,r]}$ such that with $Y_0 = Y$ and $Y_i = P_{\gamma_i} \cdots P_{\gamma_1} Y$ for $i \geq 1$, the parabolic $P_{\gamma_{i+1}}$ raises Y_i to Y_{i+1} for all i and $Y_r = Y'$.

Proposition 4.3. The inverse image $\pi^{-1}(Z)$ of Z by $\pi : P_{\gamma_r} \times^B \cdots \times^B P_{\gamma_1} \times^B Y \to Y'$ is reduced. Furthermore, the differential of the map $P_{\gamma_r} \times^B \cdots \times^B P_{\gamma_1} \times^B (Z \cap Y) \to Z$ is generically surjective.

Proof. Since Z is G-stable, the inverse image of Z by the action $G \times X \to X$ is $G \times Z$. This implies that the inverse image $\pi^{-1}(Z)$ has to be contained in $P_{\gamma_r} \times^B \cdots \times^B P_{\gamma_1} \times^B (Z \cap Y)$ and thus isomorphic to it. But Y is a minimal B-orbit closure and as such (Theorem 2.13) is a product $X_u^P \times X_v^P$ of Schubert varieties (we write here X_u^P for the orbit closure of BuP/P in G/P). The intersection with the closed orbit is therefore an intersection Υ of two Schubert varieties for B in $Z = G/P_1 \cap P_2$ and in particular reduced. The above also implies that the map $P_{\gamma_r} \times^B \cdots \times^B P_{\gamma_1} \times^B (Z \cap Y) \to Z$ is the classical multiplication map $P_{\gamma_r} \times^B \cdots \times^B P_{\gamma_1} \times^B \Upsilon \to G/P_1 \cap P_2$ obtained by a partial Bott-Samelson resolution which has a generically surjective differential. □

Corollary 4.4. Let Y' be a B-orbit closure in X containing Z such that for any parabolic subgroup P raising Y', the variety PY' is normal, then Y' is normal.

Proof. Indeed, by Proposition 4.1, the non normal locus of Y' is G-invariant and therefore contains Z. Let $\nu : \tilde{Y'} \to Y'$ be the normalisation. The map ν is bijective. We therefore only have to prove that ν is an isomorphism on an open subset of Z. In particular, we only have to prove that the general fiber of ν over Z is reduced and that the differential of ν is generically surjective on Z. But there exists Y, the closure of a minimal B-orbit and a sequence $(P_\gamma)_{\gamma \in [1,r]}$ of minimal parabolic subgroups as in the previous Proposition. Furthermore, the morphism $\pi : P_{\gamma_r} \times^B \cdots \times^B P_{\gamma_1} \times^B Y \to Y'$ factorises through ν. This finishes the proof. □

Proof of Theorem 1. We prove the normality of B-orbit closures by descending induction with respect to the weak order.

A maximal B-orbit \emptyset is a G-orbit therefore of the form G/H with $H = P_1 \cap P_2^w$. We thus have $\emptyset \simeq G \times^{P_1} P_1^w \times^{P_2} P_2^w$. The closure is then a locally trivial fibration over G/P_1 with fiber the Schubert variety $\overline{T_1 P_2^w / P_2^w}$. It is normal since Schubert varieties are normal by [MeRa85].
Let Y be a B-orbit closure, then by Corollary 4.2, the non normal locus must be closed and G-stable. It is therefore either empty or contains the unique closed orbit Z. If Y does not contain Z, then it must be normal. If Y contains Z, then by induction assumption, the hypothesis of Corollary 4.4 are satisfied and Y is normal.

The Cohen-Macaulay property follows from general argument in [Bri03, Section 3, Remark 2]. It will also follow from the existence of a rational resolution. For this, let Y' be a B-orbit closure and Y and $(P_{\gamma_i})_{i \in \{1, \ldots, r\}}$ be the closure of a minimal B-orbit and a sequence of minimal parabolics raising Y to Y'. The variety Y is a product of Schubert varieties by Theorem 2.13. Let \overline{Y} be the product of the Bott-Samelson resolutions of these varieties. Then by the same arguments as in [Bri03, Section 3, end of Remark 2] the morphism $P_{\gamma_r} \times B \cdots \times B P_{\gamma_1} \times B \overline{Y} \rightarrow Y'$ is a rational resolution.

Remark 4.5. It would be interesting to obtain a proof of Theorem 1 in the spirit of [MeRa85], using Frobenius splitting techniques. However, we were not able to find a Frobenius splitting of $X = G/P_1 \times G/P_2$ with P_1 and P_2 cominuscule which compatibly splits the B-orbit closures. Note however that in type A there exists a Frobenius splitting which compatibly splits the B-orbit closures containing the closed orbit Z. This can be used to give an alternative proof of Theorem 1 in type A.

5. Example of non normal closures

In this section we give an counterexample to Theorem 1 and Corollary 3.20 for G non simply laced.

Let $(e_i)_{i \in \{1, 6\}}$ be the canonical basis in k^6. Define the symplectic form ω on k^6 by $\omega(e_i, e_j) = \delta_{i,j} + j$ for all $i < j$. Let G be the symplectic group Sp_6 of linear automorphisms preserving ω. Let $P_1 = P_2$ be the stabiliser of the 3-dimensional isotropic subspace $\langle e_1, e_2, e_3 \rangle$. Then $X = G/P_1 \times G/P_2$ is the set of pairs of maximal (of dimension 3) subspaces in k^6 isotropic for ω. Consider the full isotropic flag

$$\langle e_1 \rangle \subset \langle e_1, e_2 \rangle \subset \langle e_1, e_2, e_3 \rangle \subset \langle e_1, e_2, e_3, e_4 \rangle \subset \langle e_1, e_2, e_3, e_4, e_5 \rangle \subset k^6$$

and the Borel subgroup B of G stabilising this complete flag. We denote by T the maximal torus defined by the basis $(e_i)_{i \in \{1, 6\}}$. We denote by α_1, α_2 and α_3 the simple roots of G with notation as in [Bou54].

We construct a B-orbit \mathcal{O} for which Theorem 1 fails and prove that Corollary 3.20 also fails for X (note that G is not simply laced).

Proposition 5.1. The closure of the B-orbit \mathcal{O} of the element $x = (e_3, e_1 + e_5, e_2 + e_6), (e_4, e_5, e_6))$ is not normal.

Proof. To prove this result, we describe B-orbits \mathcal{O} in X such that the graph $B(X)$ contains the following subgraph (we denote by P_{α_1} and P_{α_2} the minimal parabolic subgroups containing B associated to the simple roots α_1 and α_2).

```
\hline
0                                  0_1 0_2
\hline
\downarrow
\hline
\text{raising of type } U \text{ with } P_{\alpha_1}
\hline
\text{raising of type } U \text{ with } P_{\alpha_2}
\hline
\text{raising of type } N \text{ with } P_{\alpha_2}
```


Subgraph of $\Gamma(X)$

If such a subgraph exists, we claim that the closure of \emptyset is not normal. This was proved in [Per12b, Corollary 4.4.5], we reproduce the simple proof for the convenience of the reader: the morphism $P_{\alpha_2} \times B \emptyset_1 \to \emptyset$ is birational while its restriction $P_{\alpha_2} \times B \emptyset_0 \to \emptyset_2$ has non connected fibres. Zariski’s Main Theorem gives the conclusion.

We are therefore left to prove that the above graph is indeed a subgraph of $\Gamma(X)$. Note that this will also produce a counterexample to Corollary 3.20 in the non simply laced case. We define the orbits \emptyset_0, \emptyset_1 and \emptyset_2 as follows:

- \emptyset_0 is the B-orbit of $x_0 = (\langle e_1, e_2 + e_4, e_3 + e_5 \rangle, \langle e_4, e_5, e_6 \rangle)$
- \emptyset_1 is the B-orbit of $x_1 = (\langle e_2, e_1 + e_4, e_3 + e_6 \rangle, \langle e_4, e_5, e_6 \rangle)$
- \emptyset_2 is the B-orbit of $x_2 = (\langle e_1, e_3 + e_4 + e_5 \rangle, \langle e_4, e_5, e_6 \rangle)$.

We first prove the following equalities: $P_{\alpha_1}x_0 = P_{\alpha_1}x_1$, $P_{\alpha_2}x_0 = P_{\alpha_2}x_2$ and $P_{\alpha_2}x_1 = P_{\alpha_2}x$. For this is is enough to produce elements $p_1 \in P_{\alpha_1}$, $p_2 \in P_{\alpha_2}$ and $p \in P_{\alpha_2}$ such that $p_1x_0 = x_1$, $p_2x_0 = x_2$ and $px_1 = x$. It is enough to take p_1, p_2, p as follows:

$$p_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad p_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 & 0 & 0 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},$$

$$p = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Computing the stabiliser of x_i for $i \in \{0, 1, 2, \emptyset\}$ in B, it is easy to compute the dimensions $\dim \emptyset_0 = 8$, $\dim \emptyset_1 = 9$, $\dim \emptyset_2 = 9$ and $\dim \emptyset = 10$. Note also that the orbits \emptyset_1 and \emptyset_2 are distinct: write $x_i = (V_i, W_i)$ for $i \in \{1, 2\}$, we have that V_1 is in the B-orbit of $\langle e_3, e_5, e_6 \rangle$ while V_2 is in the B-orbit of $\langle e_1, e_4, e_5 \rangle$. This proves that the above graph has the correct shape and we are left to proving that the types of the edges are as above.

To decide if the edge is of type U, T or N we use the following criteria (see [RiSp90, Page 405] or [Bri01, Page 268]: let P be a minimal parabolic subgroup raising a B-orbit \emptyset to a B-orbit \emptyset'. Let $x \in \emptyset'$ and P_x its stabiliser in P. Denote by S the image of P_x in $\text{Aut}(P/B)$. Then we have:

- the edge is of type U if S contains a positive dimensional unipotent subgroup,
- the edge is of type T if S is a maximal torus in $\text{Aut}(P/B)$,
- the edge is of type N if S is the normaliser of a maximal torus in $\text{Aut}(P/B)$.

An easy computation of stabiliser proves that the edges are of the above type finishing the proof. \(\square\)

References

[Bou54] Bourbaki, N. Groupes et algèbres de Lie. Hermann 1954.
Bobinski, G., Zwara, G., Schubert varieties and representations of Dynkin quivers. Colloq. Math. 94 (2002), no. 2, 285–309.

Brion, M., On orbit closures of spherical subgroups in flag varieties. Comment. Math. Helv. 76 (2001), no. 2, 263–299.

Brion, M., Multiplicity-free subvarieties of flag varieties. Commutative algebra (Grenoble/Lyon, 2001), Contemp. Math., 331, Amer. Math. Soc., Providence, RI, (2003), 13–23.

Buch, A., Chaput, P.-E., Mihalcea, L.C., Perrin, N., Finiteness of cominuscule quantum K-theory, to appear in Annales de l’ENS. arXiv:1011.6658

Chaput, P.-E., Manivel, L., Perrin, N., Quantum cohomology of minuscule homogeneous spaces. II. Hidden symmetries. IMRN 2007, no. 22.

Chaput, P.-E., Manivel, L., Perrin, N., Quantum cohomology of minuscule homogeneous spaces. Transform. Groups 13 (2008), no. 1, 47–89.

Chaput, P.-E., Manivel, L., Perrin, N., Quantum cohomology of minuscule homogeneous spaces III. Semi-simplicity and consequences. Canad. J. Math. 62 (2010), no. 6, 1246–1263.

Chaput, P.-E., Perrin, N., Rationality of some Gromov-Witten varieties and application to quantum K-theory. Comm. Contemp. Math. 13 (2011), no. 1, 67–90.

Demazure, M., Désingularisation des variétés de Schubert généralisées. Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I. Ann. Sci. ENS. (4) 7 (1974), 53–88.

Littelmann, P., On spherical double cones. J. Algebra 166 (1994), no. 1, 142–157.

Mehta, V.B., Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. of Math. (2) 122 (1985), no. 1, 27–40. 14M15 (20G10)

Perrin, N., Spherical varieties and Wahl’s conjecture. To appear in Annales de l’Institut Fourier. arXiv:1202.3236.

Perrin, N., Geometry of spherical varieties. arXiv:1211.1277

Richardson, R.W., Springer, T.A., The Bruhat order on symmetric varieties. Geom. Dedicata 35 (1990), no. 1-3, 389–436.

Smirnov, E.Y., Resolutions of singularities for Schubert varieties in double Grassmannians. Funktsional. Anal. i Prilozhen. 42 (2008), no. 2, 56–67, 96; translation in Funct. Anal. Appl. 42 (2008), no. 2, 126–134.

Springer, T.A., Linear algebraic groups. Second edition. Progress in Mathematics, 9. Birkhäuser Boston, Inc., Boston, MA, 1998.

Springer, T.A., Some results on algebraic groups with involutions. Algebraic groups and related topics (Kyoto/Nagoya, 1983), 525–543, Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985.

 Stembridge, J.R., Multiplicity-free products and restrictions of Weyl characters. Represent. Theory 7 (2003), 404–439.

Department of Mathematics, University of California, Berkeley CA 94720, USA
E-mail address: achinger@math.berkeley.edu

Mathematisches Institut, Heinrich-Heine-Universität, 40204 Düsseldorf, Germany
E-mail address: perrin@math.uni-duesseldorf.de