Light hadron spectrum and quark masses in QCD with two flavors of dynamical quarks

CP-PACS Collaboration:
A. Ali Khan, A. Aoki, G. Boyd, R. Burkhalter, S. Ejiri, M. Fukugita, S. Hashimoto, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi, T. Manke, K. Nagai, M. Okawa, H.P. Shanahan, A. Ukawa, and T. Yoshiba

aCenter for Computational Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
bInstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
cInstitute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188-8502, Japan
dHigh Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
eDAMTP, University of Cambridge, Cambridge, CB3 9EW, England, UK

We present updated results of the CP-PACS calculation of the light hadron spectrum in $N_f = 2$ full QCD. Simulations are made with an RG-improved gauge action and a tadpole-improved clover quark action for sea quark masses corresponding to $m_{PS}/m_V \approx 0.8–0.6$ and the lattice spacing $a = 0.22–0.09$ fm. A comparison of the $N_f = 2$ QCD spectrum with new quenched results, obtained with the same improved action, shows clearly the existence of sea quark effects in vector meson masses. Results for light quark masses are also presented.

1. Introduction

Understanding sea quark effects in the light hadron spectrum is an important issue, sharpened by the recent finding of a systematic deviation of the quenched spectrum from experiment[1]. To this end, we have been pursuing $N_f = 2$ QCD simulations using an RG-improved gauge action and a tadpole-improved clover quark action to be called RC simulations in this article.

The parameters of these simulations are listed in Table 1. The statistics at $\beta = 2.2$ have been increased since Lattice'98, and the runs at $\beta = 2.1$ are new. In addition we have carried out quenched simulations with the plaquette gauge and Wilson quark action as well, which we denote as qPW.

2. Full QCD spectrum

The analysis procedure of our full QCD spectrum data follows that in Ref. [2]. m_π and m_ρ are used to set the scale and determine the up and down quark mass m_{ud}, while the strange quark mass m_s is fixed from either m_K or m_ϕ. We tested several fitting forms for the continuum extrapolation, and found that the fit is stable; e.g., for the meson masses, linear extrapolations in a and in $a\alpha_{MS}$ are consistent with each other and a quadratic fit in a is also consistent within 2 standard deviations. Here, we present results from
Table 1
Parameters in RC and qRC simulations. Scale a_{σ} is fixed by $\sqrt{\sigma} = 440$ MeV. qRC runs have 200 configurations for each β.

RC simulations

lattice	K_{sea}	#traj.	m_{π}/m_{ρ}	m_{σ}/m_{ρ}
$12^3 \times 24$	0.1409 6250	0.806(1) 0.289(3)		
$\beta = 1.80$	0.1430 5000	0.753(1) 0.152(2)		
$c_{SW} = 1.60$	0.1445 7000	0.696(2) 0.269(3)		
$a = 0.215(2)$ fm	0.1464 5250	0.548(4) 0.248(2)		
$16^3 \times 32$	0.1375 7000	0.805(1) 0.204(1)		
$\beta = 1.80$	0.1390 7000	0.751(1) 0.193(2)		
$c_{SW} = 1.53$	0.1400 7000	0.688(1) 0.181(1)		
$a = 0.153(2)$ fm	0.1410 7000	0.586(3) 0.170(1)		
$24^3 \times 48$	0.1357 2000	0.806(2) 0.1342(8)		
$\beta = 2.10$	0.1367 2000	0.757(2) 0.1259(5)		
$c_{SW} = 1.47$	0.1374 2000	0.690(3) 0.1201(5)		
$a = 0.108(2)$ fm	0.1382 2000	0.575(6) 0.1128(3)		
$24^3 \times 48$	0.1351 2000	0.800(2) 0.1049(2)		
$\beta = 2.20$	0.1358 2000	0.754(2) 0.1012(3)		
$c_{SW} = 1.44$	0.1363 2000	0.704(3) 0.0977(3)		
$a = 0.086(3)$ fm	0.1368 2000	0.629(5) 0.0947(2)		

qRC simulations

lattice	K_{sea}	#traj.	m_{π}/m_{ρ}	m_{σ}/m_{ρ}
$16^3 \times 32$	0.2187 0.2079(13)	0.1351 0.1335(9)		
$\beta = 2.10$	0.1397 0.1977(13)	0.2456 0.1266(13)		
$c_{SW} = 1.44$	0.247 0.1853(9)	0.2487 0.1206(9)		
$a = 2.281$	0.2281 0.1727(10)	0.2528 0.1130(9)		
$24^3 \times 48$	0.2334 0.1577(9)	0.2575 0.1065(7)		

The linear extrapolation in a.

Fig. 3 shows an update of results for vector meson and octet baryon masses in comparison to those from the qPW simulation. With increased statistics at $\beta = 2.2$ and new points at $\beta = 2.1$, we find our conclusion to remain unchanged since Lattice’98, i.e., meson masses in full QCD extrapolate significantly closer to experiment than in quenched QCD. For baryons, the statistical errors are still too large to draw definitive conclusions.

3. Sea quark mass dependence

In order to obtain a deeper understanding of the sea quark effect in meson masses, we investigate how their values depend on the sea quark mass. In this test, the valence strange quark mass is fixed by a phenomenological value of the ratio $m_{\eta}/m_{\phi} = 0.674$. To avoid uncertainties that may arise from chiral extrapolations, the light dynamical quark mass is set to one of the values corresponding to $m_{PS}/m_{V} = 0.7, 0.6$ or 0.5. The values of the masses “m_{K^*}” and “m_{ρ}” of fictitious mesons for such quark masses can then be determined by interpolations or short extrapolations of hadron mass results.

In Fig. 3, we plot “m_{K^*}/m_{ρ}” as a function of the lattice spacing normalized by “m_{ρ}” for different sea quark masses. Making linear extrapolations in a, we observe that the continuum limits of the two quenched simulations qRC and qPW are consistent. On the other hand, the full QCD result from RC exhibits an increasingly clearer deviation from the quenched value toward lighter sea quark masses. We consider that this result provides a clear demonstration of the sea quark effect on vector meson masses.

4. Quark masses

We plot our results for light quark masses in the \overline{MS} scheme at $\mu = 2$ GeV in Fig. 4, together with the quenched results of Ref. 4. Continu-
Figure 2. Fictitious mass ratio “m_{K^*}/m_ρ” defined in the text at different sea quark masses. Filled, thick open and thin open symbols are the results from RC, qRC and qPW simulations, respectively. Continuum extrapolations are made linearly in a with the constraint that the three definitions (using axial vector Ward identity(AWI) or vector Ward identity(VWI) with either K_c from sea quarks or partially quenched K_c) yield the same value. We confirm our previous finding [2] that i) quark masses in full QCD are much smaller than those in quenched QCD, and ii) the large discrepancy in the strange quark mass determined from m_K or m_ϕ observed in quenched QCD, is much reduced. Our current estimate for quark masses in $N_f=2$ QCD are $m_{ud} = 3.3(4)$ MeV, $m_s = 84(7)$ MeV (K-input) and $m_s = 87(11)$ MeV (ϕ-input). The quoted errors include our estimate of the systematic errors due to the choice of functional form of continuum extrapolations and the definition of the MS coupling used in the one-loop tadpole improved renormalization factor. Our results for quark masses are smaller than the values often used in phenomenology [3], though the ratio $m_{ud}/m_s = 26(3)$ is consistent with the result 24.4(1.5) [4] from chiral perturbation theory. The small values are quite interesting, especially for the strange quark mass: a smaller strange quark mass raises the prediction of the Standard Model for the direct CP violation parameter $\text{Re}(\epsilon'/\epsilon)$, as strongly favored by the experimental results from the KTeV [4] and NA31 Collaborations [5].

This work is supported in part by Grants-in-Aid of the Ministry of Education (Nos. 09304029, 10640246, 10640248, 11640250, 11640294, 10740107, 11740162). SE and KN are JSPS Research Fellows. AAK, TM and HPS are supported by the Research for the Future Program of JSPS, and HPS also by the Leverhulme foundation.

REFERENCES
1. CP-PACS collaboration, hep-lat/9904012.
2. R. Burkhalter, Nucl. Phys. B (Proc.Suppl.) 73 (1999) 3.
3. C.A. Dominguez, Nucl. Phys. B (Proc.Suppl.) 66 (1998) 486.
4. H. Leutwyler, Phys. Lett. B378 (1996) 313.
5. A. Alavi-Harati et al., Phys. Rev. Lett. 83 (1999) 22.
6. G.D. Barr et al., Phys. Lett. B317 (1993)1203.