TECHNOLOGY FOR PRODUCTION OF ULTRA-THIN CRYSTAL SILICON MEMBRANES

V.B. Vyssotsky1, E.V. Lobko2, A.S. Lobko3

1 “Integral” Production Concern, Minsk, Belarus
2 Research Institute for Radio-materials, Minsk, Belarus
3 Research Institute for Nuclear Problems, Belarus State University, Minsk, Belarus

lobko@inp.minsk.by

20th November 2018

Abstract

Ultra-thin crystal targets in shape of self-supporting membranes were produced for our experiments with parametric x-rays emitted by low-energy electrons. Concise description of the technology developed for production of silicon crystal membranes and the technique for the membrane thickness measurements are considered in the paper. Membrane thickness of $\sim 0.5\mu m$ at 1.0mm diameter supporting by 2×2 mm silicon substrate of $\sim 200\mu m$ thickness is achieved. Developed technology for thin crystal membrane production can also be applied for manufacturing of various membrane-containing sensors.

Experimental research with parametric x-rays emitting by non-relativistic electrons (NPXR) demands self-supporting crystal targets (membranes) of high perfection with thickness of 0.5micron and below. Concise description of the technology for production of ultra-thin crystal membranes developed for silicon and the technique for the membrane thickness measurements are considered in the current paper.

Typical targets for NPXR generation were made as of 2×2 mm silicon substrate of $\sim 200\mu m$ thickness with crystal membrane of 1.0mm diameter and $\sim 0.5\mu m$ thickness located inside this support. Base planes have (100) or (111) orientations. For clarity development of (100) membranes are discussing below.

Membrane material is the layer of un-doped epitaxial silicon of $\sim 0.9-1.0\mu m$ thickness grown on substrate of boron doped p-type Si with 0.01Ohm-cm resistivity of KDB 0.0111000 grade. Choice of such structure was determined by applied electrochemical etching technique, in which un-doped epitaxial Si serves as termination (or stop layer). To obtain membrane of other thickness one should take structures with epitaxial layer thickness close to the desired one. Precise membrane thickness adjustment can be performed by ion-beam etching with rate $\sim 10-15\mu m/min$, but ion treatment for a long time leads to the significant membrane surface erosion.

To perform electrochemical etching we produce electrical contact to KDB 0.01 $< 100 >$ through high-resistive epitaxial Si layer from the planar side and reduce substrate thickness to $\sim 200\mu m$. Substrate thinning is performed by mechanical polishing. For contact manufacturing planar side is covered by chemical resistant varnish with followed opening of the substrate peripheral region. Then the substrate is etched in Si etchant to the epitaxial layer ($\sim 1\mu m$) depth (Fig. 1a).

After varnish stripping and appropriate chemical treatment, non-planar side is covered by SiO\textsubscript{2} of about 0.3-0.4\mu m thickness, then Si\textsubscript{3}N\textsubscript{4} of $\sim 0.15-0.2\mu m$ thickness, and at last Cr layer of $\sim 0.05\mu m$ is vapor deposited to the better photoresist adhesion (Fig.1b). Next step is the membrane photolithography on the non-planar wafer side. Electric contact to KDB 0.01 $< 100 >$ is provided by
vapor deposition at \(\sim 180^\circ\) of \(\sim 0.5\mu\text{m}\) aluminum film through the mask to the substrate periphery, Fig.1c.

The membrane etching is performed in two stages. In the first stage we carry out electrochemical porous anodic treatment in HF:2H\(_5\)OH=4:1 electrolyte \(\text{[3]}\) during \(\sim 120\) minutes at \(\sim 1.8\mu\text{m/min}\) rate. Process is going until it reaches epitaxial Si at \(\sim 200\mu\text{m}\) depth (Fig.1d). Finishing of porous silicon formation one can observe at \(\sim 10\)-20\% potential jump. Additional etching during \(\sim 10\)min is needed for porous Si levelling along total substrate surface and also for membrane thinning down to \(\sim 0.5\mu\text{m}\). Etching rate of high-resistive epitaxial Si is low, approximately \(50\text{nm/min}\).

In the second stage porous Si is etched in \(1\%\) KOH solution during 30 minutes (Fig.1e). After porous Si etching the substrate is extracted out of holder. Photoresist, Cr, and Al are stripped in standard etchants. Dielectric (SiO\(_2\)+Si\(_3\)N\(_4\)) film is stripped by plasmachemical treatment.

Chipping is carried out by disk cutter while substrate is naphthalene glued on supporting Si wafer. Finished crystals (Fig.1f) with membranes come out after naphthalene sublimation in the thermostat at \(\sim 110^\circ\) temperature.

Final thickness of membranes is of the \(0.4\)-\(0.9\mu\text{m}\) range. To get thinner membranes one should apply ion-beam etching. Our experience shows that membranes with thickness below \(\sim 0.2\)-\(0.3\mu\text{m}\) can be hardly obtained in self-supporting mode due to its un-sufficient mechanical strength.

We have developed relatively simple technique to measure thickness of such ultra-thin Si targets. As Si membranes with thickness of about micron and thinner are semi-transparent in the visible light, one can record their optical transmittance spectra (example is in Fig.2, right panel). We can see here interference maxima against background of a standard optical transmittance. After background subtraction precise values of maxima locations can be measured (Fig.2, left panel).

Taking into consideration Si refraction index dispersion (it has about \(10\%\) variance in the visible region) and combining interference conditions for neighboring maxima one can obtain following expression for thickness of a parallel-sided plate

\[
d = \frac{\lambda_i\lambda_{i+1}}{2(n_i+1)\lambda_i - n_i\lambda_{i+1}},
\]

where \(n\) is the refraction index, \(\lambda\) is the wavelength in a maximum, \(i\) and \((i+1)\) identify values belonging to adjoined interference maxima. Data on some measured samples took randomly from one lot are presented in the Table. Dispersion of measured thickness values of five targets took randomly from one lot is below 5\%.

Developed technology for thin crystal membrane production can also be applied for manufacturing of various membrane-containing sensors, e.g. pressure meters, gas concentration and flow sensors, as well as other micro-mechanics items.

References

[1] V.G. Baryshevsky et al. LANL e-print arXive physics/0507036

[2] A. Splinter, O. Bartels, W. Benecke // Sensors and Actuators B76 (2001) 354-360.

[3] G. Lammel, Ph. Renaud // Sensors and Actuators 85 (2000) 356-360.

Table 1: Results of target thickness measurements

Sample No	1	2	3	4	5
Thickness, nm	520±2	514±3	505±25	495±17	467±25

Figure 1: Technology route for crystal Si membrane manufacturing

Figure 2: Target optical transmittance (right) and interference maxima locations (left)