Reply to “On the cutoff parameter in the translation-invariant theory of the strong coupling polaron”

S. N. Klimina,b, J. T. Devreesea,c*

aTheorie van Kwantumsystemen en Complexe Systemen (TQC), Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
bDepartment of Theoretical Physics, State University of Moldova, MD-2009 Chisinau, Moldova
cCOBRA, Eindhoven University of Technology, 5000 MB Eindhoven, The Netherlands

Abstract

The present work is a reply to the paper \cite{1}. It is proven that the argumentation of Ref. \cite{1} is inconsistent. The variational functional for the polaron ground state energy considered in Ref. \cite{1} contains an incomplete recoil energy. Since the variational functional of Ref. \cite{1} is incomplete, it is not proven to provide a variational upper bound for the polaron ground-state energy. The same conclusion follows also for the bipolaron ground-state energy.

Keywords:
Polarons, Fröhlich Hamiltonian, Bipolarons

Polarons and bipolarons are invoked in the study of polar materials, including high-T_c superconductors \cite{2, 3, 4}. Rigorous variational methods (see, e. g., Refs. \cite{5, 6, 7}) are important in this field, i. a. because in the bipolaron mechanism of superconductivity, the parameters of the superconducting state and the critical temperature strongly depend on the bipolaron binding energy. The work \cite{1} is a reply to our comments \cite{8} on the variational approach aimed at in Refs. \cite{9, 10, 11}. In Ref. \cite{8} we show that the strong-coupling expression for the bipolaron ground state energy calculated in Refs. \cite{9, 10} is not justified as a variational upper bound.

It is suggested in Ref. \cite{1} that a properly chosen cutoff for the phonon momenta leads to correct variational polaron and bipolaron ground-state energies in the strong-coupling limit. However, this conclusion is not valid, because the recoil energy treated in Refs. \cite{9, 10, 11} is incomplete, as we wrote in Ref. \cite{8}.

The complete polaron recoil energy within the approach of Ref. \cite{11} was found by Porsch and Rösseler \cite{12}. They showed that, when imposing a cutoff for the phonon momentum, the polaron recoil energy E_R consists of two parts:

$$E_R = E_R^{(T)} + \delta E_R^{(PR)},$$

where $E_R^{(T)}$ is the recoil energy determined in Ref. \cite{11}, and the term $\delta E_R^{(PR)}$ is given by Eq. (43) of Ref. \cite{12}:

$$\delta E_R^{(PR)} = \frac{3\hbar}{2} \left(\Omega_{q_0} - \omega_{q_0} \right).$$

where q_0 is the cutoff value for the phonon momentum, $\omega_q = \omega_0 + \frac{q^2}{2m}$ with ω_0 the LO-phonon frequency, and $\{\Omega_q\}$ are the frequency eigenvalues resulting from the Bogoliubov-like canonical transformation for the phonon operators (performed in Refs. \cite{11, 12}).

It is stated in the reply \cite{1} that the reasoning of Ref. \cite{8} is “based on the erroneous approach … to the strong coupling limit when the cutoff parameter is introduced in the theory.” However, the argumentation of Ref. \cite{1} is related only to the term $E_R^{(T)}$, ignoring the Porsch — Rösseler term $\delta E_R^{(PR)}$. In the present work we treat the contribution to the recoil energy $\delta E_R^{(PR)}$, missed in Refs. \cite{1, 2, 9, 10, 11}.

The expression obtained in Ref. \cite{12} for Ω_{q_0} reads

$$\Omega_{q_0} = \left\{ \omega_q^2 + \frac{1}{3} \int_0^1 d\eta \int_0^{q_0} dq \, \frac{\hbar^2 q^4}{3\pi^2 m} \left(\frac{1}{\omega_q + i\eta} + \frac{1}{\omega_q - i\eta} \right) \omega_q \right\}^{1/2} \times \left[1 + F(\omega_q + i\eta)^2 \right], \quad (3)$$

with the function

$$F(z) = \frac{\hbar}{6\pi^2 im} \int_0^{q_0} dq \, q^4 f^2 (q) \left(\frac{1}{\omega_q + z} + \frac{1}{\omega_q - z} \right). \quad (4)$$

Here, $f(q)$ are variational functions. In Ref. \cite{11}, they are chosen as

$$f(q) = -\frac{V_q}{\hbar \omega_0} \exp \left(-\frac{q^2}{2a^2} \right), \quad (5)$$

with the variational parameter a and the amplitudes of the electron-phonon interaction V_q.

In Fig. 1, we plot the complete recoil energy E_R and the contributions $E_R^{(T)}, \delta E_R^{(PR)}$ as a function of a for $q_0 = 8$ and

*Phone: +32-3-2652485 Fax: +32-3-2653318 Email address: jozef.devreese@ua.ac.be (J. T. Devreese)
$a = 4$ (measured in units of $\sqrt{\frac{m\omega}{\hbar}}$). The arrow indicates the value of the coupling constant

$$\alpha_c = \sqrt{\frac{4a^4}{a^4}},$$

at which the steep maximum of the integrand in $E_R^{(T)}$ (mentioned in Ref. [11]) crosses the cutoff boundary.

For sufficiently small α, the Tulub's recoil energy $E_R^{(T)}$ dominates, and $\delta E_R^{(PR)}$ is negligibly small. When α increases (keeping other parameters constant), $E_R^{(T)}$ tends to a finite value, while $\delta E_R^{(PR)}$ monotonically increases.

![Figure 1: The recoil energy E_R (solid black curve), the contributions $E_R^{(T)}$ (dashed red curve) and $\delta E_R^{(PR)}$ (dotted green curve) as a function of α for $q_0 = 8$ and $a = 4$. The dot-dashed blue curve is the recoil energy without cutoff.]()