Артериальная гипертензия и сердечная недостаточность у загальновідомих практик

В.М. Ждан, О.Є. Кітура, Є.М. Кітура, М.Ю. Бабаніна, М.В. Ткаченко
Українська медична стоматологічна академія, м. Полтава

За данимі Фремінгемського дослідження, серед хворих на хронічну серцеву недостатність (XCH) тільки у 25% причинною розвитт-ку був перенесений інфаркт міокарда, а у 75% — артеріальна гіпертензія (АГ). Найбільш значним предиктором розвитку XCH було зниження систолічного артеріального тиску (САТ) і пульсового тиску відповідно, кожне зниження САТ на 20 мм рт.ст. і пульсово- го АД на 16 мм рт.ст. приводило до зниження частоти розвитку XCH на 32% і 55% відповідно.

На прикладі наведеного клінічного випадку пацієнта з XCH, яка розвивалась на тлі довготривалої АГ, розглянуто механізми розвит-ку XCH, також висвітлено питання фармакотерапії АГ у поєднанні з XCH з іАПФ і діуретиками. Основними механізмами, що безпосередньо приводять до розвитку XCH при АГ, є гемодинамічне перевантаження, зниження міокардіальної скоротливості, гіпертрофія лівого шлуночка (ГЛШ). Так, у пацієнтів з АГ імовірність у подальшому розвитку XCH підвищується у 4 рази, а з ГЛШ — у 15 разів. Поряд із ГЛШ, одним із ранніх проявів ремоделювання ЛШ в умовах АГ є розвиток диастолічної дисфункції, яка пере-дує розвитку систолічних порушень при АГ і ГЛШ. Антигіпертензивна терапія приводила до зменшення у середньому на 32% частоти розвитку XCH порівняно з хворими, які не отримували адекватну терапію. Зниження частоти розвитку XCH лінійно залежало від зниження САТ: кожне зниження на 10 мм рт.ст. САТ призвело до зменшення на 26% відносно число ризику розвитку XCH.

Встановлено, що АГ є не тільки одним із провідних етіологічних чинників розвитку XCH, а й має з останньою спільність в ключо- вих звеньях патогенезу. Стратегія вибору патогенетичної фармакотерапії визначається з урахуванням цієї обставини. На сьогодні європейське товариство кардіологів рекомендує призначати β-АВ усім пацієнтам зі стабільною XCH II–IV ФК в якості стандартного лікування разом із іАПФ і діуретиками за відсутності протипоказань. У хворих із поєднанням АГ та систолічною XCH можливе застосування додатково до блокаторів РААС гіпіназів або петлевих діуретиків та антагоністів мінералокортикоїдних рецепторів (АМР). Ключові слова: серцева недостатність, артеріальна гіпертензія, систолічна дисфункція β-адреноблокатори, інhibатори АПФ.

Артериальная гипертензия и сердечная недостаточность в общей врачебной практике

В.Н. Ждан, О.Е. Китура, Е.М. Китура, М.Ю. Бабанина, М.В. Ткаченко

The Framingham study demonstrated that myocardial infarction (25% of cases) and arterial hypertension (AH) (75% of cases) caused the development of chronic heart failure (CHF). The most significant predictor of CHF development was an increase in systolic blood pressure (SBP) and pulse pressure and each increase in SBP by 20 mm Hg and pulse blood pressure by 16 mm Hg led to an increase in the incidence of CHF by 52% and 55%, respectively. The presented clinical case of a patient with CHF, developed due to long-term hypertension, considered the mechanisms of CHF development, as well as the issue of pathogenetic pharmacotherapy. The key mechanisms that directly lead to the development of CHF in AH are hemodynamic overload, reduction of myocardial contractility, left ventricular hypertrophy (LVH). The likelihood of CHF development in patients with AH is by 4 times higher, whilst in patients with LVH it is by 15 times higher. Along with LVH, one of the early manifestations of LV remodeling in AH is the development of diastolic dysfunction, which precedes the development of systolic abnormalities in AH and LVH. Antihypertensive therapy resulted in reduction of the incidence of CHF by approximately 52% compared to patients who did not receive adequate therapy. The decrease in the incidence of CHF was linearly dependent on the decrease in SBP: each decrease of SBP by 10 mm Hg led to a 26% reduction in the relative risk in CHF development. It has been established that AH is not only one of the leading etiological factors in CHF development, but also have similar key links in pathogenesis. The strategy for the selection of pathogenetic pharmacotherapy should be determined taking into account the above circumstance. Currently, the European Society of Cardiology recommends prescribing β-blockers to all patients with stable CHF Class II–IV as a standard treatment in combination with ACE inhibitors and diuretics in the absence of contraindications. In addition to RAAS blockers, medications for patients with AH in combination with systolic CHF can be supplemented with thiazide or loop diuretics, as well as mineralocorticoid receptor antagonists (MRA).

Key words: heart failure, arterial hypertension, systolic dysfunction, β-blockers, ACE inhibitors.
Артеріальна гіпертензія (АГ) залишається однією з найважливіших причин розвитку хронічної серцевої недостатності (ХСН) у всіх вікових групах. За даними Френкельського дослідження, серед хворих на ХСН тільки в 25% причиною розвитку був перенесений інфаркт міокарда, а у 75% – АГ. У 25 країнах Європи АГ є причиною розвитку ХСН у 53% хворих (Дослідження Euro Heart Survey, 2002–2003) [8, 13]. В особі артеріального тиску (АТ) понад 140/90 мм рт.ст. ризик розвитку ХСН збільшується вдвічі порівняно з особами, в яких систолічний артеріальний тиск (САТ) менше 140/90 мм рт.ст. Найбільш значним предиктором розвитку ХСН було збільшення САТ і нульового тиску відповідно, коже збільшення САТ на 20 мм рт.ст. і нульового АТ на 16 мм рт.ст. призводило до збільшення частоти розвитку ХСН на 52% і 53% відповідно [8]. При сумарному аналізі досліджень EPRP і DIG було виявлено, що у пацієнтів з ХСН і фракцією викиду 30% – 50% спостерігалась зависимість смертності від рівня САТ у формі U-кривої, тобто була максимальна при високому і низькому САТ.

Основними механізмами, що безпосередньо призводять до розвитку ХСН при АГ, є гемодинамічне перенавантаження, зниження міокардіальної скоротливості, гіпертрофія лівого шлуночка, гіпертензія, втрати апартатури, а також відмінності надмірного відновлення та систолічної функції ЛШ, яка передує розвитку систолічних порушень при АГ і ГЛШ. У 75% хворих на ХСН був перенесений інфаркт міокарда, а у 75% – АГ. У 25% досліджень серед хворих на ХСН тільки у 25% причиною підвищення його функції. Наступним механізмом розвитку у подальшому ХСН є збільшення лівого і правого шлуночків, застійні дрібнопузырчаті кінцівки, збільшення живота.

Діабет 2-го типу. У 2018 році виникла задишка, набряки нижньої кінцівки, збільшення живота.

Хворого було виписано додому у задовільному стані.

Через 7 днів після стабілізації стану хворому було назначено β-адреноблокатор (β-АВ) карведилол по 3,125 мг 2 рази на добу.

Клінічний випадок наочно демонструє, що нелікувана АГ спричинила розвиток ХСН із систолічною функцією ЛШ, що призводить до здійснення некомпенсованого вигоргання серця.

Популяційні і клінічні дослідження підтвердили також тісний взаємозв'язок цукрового діабету і розвитку ХСН. Розвиток останньої може бути прискорено, що підвищує ризик душевних хвороб, і відбувається збільшення ризику виникнення фібриляції передсердь. Фібриляція передсердь є незалежним фактором виникнення ХСН і, як правило, зростає ризик душевних хвороб у 70% хворих. Фібриляція передсердь підвищує ризик виникнення фібриляції передсердь, яка передує розвитку систолічних порушень при АГ і ГЛШ, а також при підвищенні активності ренін-ангіотензинового шляху. ГЛШ є незалежним чинником розвитку ХСН. Розвиток останньої може бути прискорено, а також у відсотку подій, що призводять до відшкодування міокарда вільними жирними кислотами.

При дослідженні: Нb – 120 г/л, Ер – 3,8×1012/л, Л – 5,0×10⁹/л, ШОЕ – 5 мм/год; у загальному аналізі: середній білко (сліди), εr – 2–3 у п/зору, лейкотроїд – 6–8 у п/зору; у біохімічному аналізі: креатинін – 133 мкмоль/л, сечовина – 10 ммоль/л, глюкоза – 6,3 ммоль/л, Хс ЛПНП – 2,4 ммоль/л, сечова кислота – 370 ммоль/л, фібриноген – 4,0 г/л, глікозований Нb – 7,5%.

ЕКГ – відхилення електричної вісі серця вище, зниження вольтаж, фібриляція передсердь із ЧСС 100–120 за 1 хв.

ЕХОС – КДР (кінцевий діастолічний розмір) лівого шлуночка – 70 мм, КСР (кінцевий систолічний розмір) – 62 мм, ліве передсердя – 46 мм, фракція викиду (ФВ) – 37%, підніжка ЧСС є рівномірною на мітральному і трикуспідальному клапанах. У відповідності до другого і третього ступеніхіпертонічної кардіоміопатії, гіпертрофія лівого шлуночка, фібриляція передсердь, збільшення фракції викиду за 37%.

При дослідженні рентгенографії органів грудної клітки: кардіомегалія, передсердя розширені, серце і циркуляційна схема усереднені.

За даними Фремінгемського дослідження Eurо НеаrtSurvеу, 2002–2003) [8, 13], клінічний випадок підтверджує, що нелікувана АГ спричинила розвиток ХСН із систолічною дисфункцією ЛШ. Навіть при систолічному ТІІ ФК розвиток ХСН виявляється у 2 рази, а з ГЛШ – у 4 рази, породжені невиправними патологічними змінами серця.

У хворих на АГ є розвиток атеросклеротичного ураження коронарних артерій. На основі вищезазначеної артеріальної гіпертензії і діабету 2-го типу збільшується ризик розвитку ХСН. Розвиток останньої може бути прискорено, а також у відсотку подій, що призводять до відшкодування міокарда вільними жирними кислотами.

Ще один важливий механізм, шляхом якого АГ спричинила розвиток ХСН, є виникнення фібриляції передсердь, причиною розвитку якої є АГ у 70% хворих. Фібриляція передсердь є незалежним фактором виникнення ХСН і, як правило, зростає ризик душевних хвороб у 70% хворих.
метаболізму кальцію, формування колагену, гіпертрофію і фіброз визначають відповідний фенотип діабетичної кардіоміопатії [12].

Тому зрозуміло, що раннє й адекватне лікування АГ та супутніх захворювань є реальним напрямом профілактики ХСН, зменшує частоту її виникнення._meta-analіs 12 досліджень, в яких містилася інформація про частоту розвитку ХСН, засвідчилось, що антигіпертензивна терапія сприяла зменшенню у середньому на 52% частоти розвитку ХСН порівняно з хворими, які не отримували адекватну терапію. Зниження частоти розвитку ХСН лінійно залежало від зниження САТ: кожне зниження на 10 мм рт.ст. САТ призвело до зменшення на 26% відносного ризику розвитку ХСН.

Аналігічні результати були отримані і в більш пізніх дослідженнях. У дослідженні SOLVD була показана кореляція від зниження АГ у хворих із систолічною ХСН і АГ при застосуванні інгібітору АПФ. Ефективність іАПФ у зменшення смертності була вища у пацієнтів з АГ та ХСН порівняно з нормотензивними хворими. Досягнення фундаментальної та клінічної медицини дозволили істотно покращити прогноз ХСН.

На сьогодні загальноприйнятим є, що іАПФ і β-адреноблокатори є основними засобами патогенетичної терапії ХСН, оскільки тільки вони реально впливають на темпи прогресування порушення функції серця і на смертність від ХСН [2, 4, 15].

Фармакологічні ефекти інгібіторів АПФ при АГ і ХСН якісно однакові. По суті іАПФ впливають практично на всі гормональні і гемодинамічні механізми, впливають на всі компоненти патогенезу серцевої недостатності і в значній мірі способні впливати на частоту виникнення і швидкість прогресування ХСН, зменшуючи частоту і швидкість прогресування порушення функції серця, зменшуючи частоту і швидкість прогресування порушення функції щитовидної залози. Вони знижують ризик ІМ і раптової смерті у таких них, як і в супутніх захворюваннях (цукровий діабет, дисліпідемія, фібрилляція передсердь) є реальним напрямком профілактики.

Артеріальна гіпертензія, яка є однією із найпоширеніших причин хронічної серцевої недостатності (ХСН), є одним з провідних етіологічних чинників розвитку ХСН. На сьогодні Європейське товариство кардіологів рекомендуеться призначати β-АГ усім пацієнтам зі стабільною ХСН [II–IV ФК] в якості стандартного лікування разом з іАПФ [1, 2, 4].

К А Р Д I О Л О Г I Я
СЕМЕЙНАЯ МЕДИЦИНА №1-2 (87-88); 2020
ISSN 2412-8708 (Online)
ISSN 2507-5112 (Print)
83
Сведения об авторах

Ждан Вячеслав Николаевич – Кафедра семейной медицины и терапии Украинской медицинской стоматологической академии, 36011, г. Полтава, ул. Шевченко, 23; тел.: (0532) 60-20-51

Китура Оксана Евгеньевна – Кафедра семейной медицины и терапии Украинской медицинской стоматологической академии, 36011, г. Полтава, ул. Шевченко, 23; тел.: (0532) 60-95-80, (050) 756-02-98. E-mail: fmedicine@mail.ru

Китура Евдокия Михайловна – Кафедра семейной медицины и терапии Украинской медицинской стоматологической академии, 36011, г. Полтава, ул. Шевченко, 23; тел.: (0532) 60-95-80, (050) 983-21-32

Ткаченко Максим Васильевич – Кафедра семейной медицины и терапии Украинской медицинской стоматологической академии, 36011, г. Полтава, ул. Шевченко, 23; тел.: (0532) 60-95-80, (099) 483-39-00

Список литературы

1. Жаринов О.Й. Переносимості та ефективність метопрололу та бісопрололу у хворих з хронічною серцевою недостатністю в залежності від віку / О.Й. Жаринов, О.Є. Кітура // Кардіологу-практику. – 2006. – № 1 (4). – С. 6–16.
2. Ждан В.М. Аспект терапії пацієнтів із серцевою недостатністю в поєднанні із фібриляцією/ Ждан О.В., Кітура О.Є., Бабанина М.Ю., Ждан О.В. // Кардіологу-практику. – 2013. – № 2. – С. 44–46.
3. Ждан В.М. Клінічні аспекти патогенетичної терапії хронічної серцевої недостатності в загальнолікарській практиці / В.М. Ждан, О.Є. Кітура, М.Ю. Бабанина // Медичні перспективи. – 2013. – № 2. – С. 44–46.

4. Рекомендації Асоціації кардіологів України з діагностики та лікування хронічної серцевої недостатності (2017). Серцева недостатність та коморбідні стани. 2018. – С. 6–66.
5. Buiciuc O, Rusinaru D, Lovy F, Peltier M, Slama M, Tribouilloy C. Low systolic blood pressure at admission predicts long-term mortality in heart failure with preserved ejection fraction. J Card Fail. 2011 Nov;17 (11):907-15.
6. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011 Jan 25;123 (3):327-34.
7. Guder G, Frantz S, Baurersachs J, Angermann CE, Störk S, Reverse epidemiology in systolic and non systolic heart failure: cumulative prognostic benefit of classical cardiovascular risk factors. Circ Heart Fail. 2009;2 (6):583-71.
8. Haider AW, Larson MG, Franklin SS, Levy D, Framingham Heart Study. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart Study. Ann Intern Med. 2003 Jan 7;138 (1):10–6.
9. Janardhanan R, Kramer CM. Imaging in hypertensive heart disease. Expert Rev Cardiovasc Ther. 2011 Feb;9 (2):199-209.
10. Kapoor JR, Heidenreich PA. Obesity and survival in patients with heart failure and preserved systolic function: a U-shaped relationship. Am Heart J. 2010 Jan;159 (1):75-80.
11. Matsu G, Alter P, Pankuwiet S, Diabetic cardiomyopathy - fact or fiction? Herz. 2011 Mar;36 (2):102-15.
12. Regitz-Zagwozdz V, Seeland U. Sex and gender differences in myocardial hypertrophy and heart failure. Wien Med Wochenshr. 2011 Mar;161 (5-6):109-16.
13. Roger VL, Weston SA, Redfield MM, HelligH-Homan JP, Killian J, Yawn BP et al. Trends in heart failure incidence and survival in a community-based population. JAMA 2004;292:344-50
14. Vasan RS, Levy D. The Role of Hypertension in the Pathogenesis of Heart Failure: A Clinical Mechanistic Overview. Arch Intern Med. 1996;156:1789-96.
15. Yip GW, Fung JW, Tan YT, Sanderson JE. Hypertension and heart failure: a dysfunction of systole, diastole or both? J Hum Hypertens. 2009 May;23 (5):295-306.

Статья поступила в редакцию 28.01.2020