A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials

Yi Zhao, Jiaxin Li, Chuxin Wu, Lunhui Guan*

Abstract

We report a general strategy for synthesis of a large variety of metal oxide nanoparticles on different carbon nanomaterials (CNMs), including single-walled carbon nanotubes, multi-walled carbon nanotubes, and a few-layer graphene. The approach was based on the \(\pi-\pi\) interaction between CNMs and modified aromatic organic ligands, which acted as bridges connecting metal ions and CNMs. Our methods can be applicable for a large variety of metal ions, thus offering a great potential application.

Introduction

The attachment of nanoparticles (NPs) on carbon nanomaterials (CNMs), including single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs), and graphene has attracted great interest, for the nanocomposites not only combine the extraordinary properties of the NPs and CNMs, but also exhibit some new properties caused by the interaction between them [1,2]. For examples, when the light-harvesting NPs, such as TiO\(_2\), ZnO, CdS, CdSe, were attached on carbon nanotubes (CNTs) with high conductivity, the photocatalytic properties increased dramatically [3-5]. In addition, CNTs with large surface areas are ideal supporting materials for catalysts NPs, leading to improvements in the efficiency of the catalysts [6-8]. A lot of approaches including assembling pre-synthesized NPs as building blocks on CNTs, and spontaneous formation of NPs on CNTs, have been applied to prepare NPs/CNTs [9-14]. The previous reports mainly focused on attaching NPs on MWNTs by using benzyl alcohol or pyrene derivatives as linkages [15,16]. Development to SWNTs and graphene, both with well-defined structures, may provide important information to explore the mechanisms of the enhanced properties of NPs after attached on CNMs. However, it still remains a challenge to fabricate uniform NPs/CNM nanocomposites in a controlled manner. Here we present a unified strategy for synthesis of a large variety of NPs of metal oxides, including transition and rare earth metal oxides on SWNTs, MWNTs, and a few-layer graphene. The strategy was based on a noncovalent \(\pi-\pi\) interaction between delocalized \(\pi\)-electrons of CNMs and aromatic organic compounds, in this case phenylphosphonic acid, which acid tail can be connected with metal ions. After a hydrothermal treatment, the metal oxides NPs were formed and strongly anchored to the surface of CNMs.

Experimental sections

In our experiments, MWNTs (purity 95%, 20-30 nm in diameters) were obtained from Shenzhen Nanotech Port (Shenzhen, China) and used as received, SWNTs (purity 99%, 1.4 nm in diameter) were produced by our recent methods [17], and graphene was produced by a modified arc-discharged [18]. The experimental scheme is shown in Figure 1: metal ions were ligated by phenylphosphonic acid, which was then connected with CNMs via noncovalent \(\pi-\pi\) interaction after sonication, then \((\text{NH}_2)_2\text{CO}\) was added. The solution was transferred to an autoclave and incubated by a hydrothermal treatment. The hydrothermal reaction of metal ions and urea will result in the formation of metal oxide NPs [19]. The final precipitates were filtered and washed several times with water. The samples were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). See Additional file 1 (SI 1) for more experimental details. In this study, phenylphosphonic acid played a key role on attaching NPs on CNMs. For comparison, a TEM image of the typical products without phenylphosphonic acid was shown in Additional file 1 (SI 2). The particles size

* Correspondence: guanlh@fjirsm.ac.cn
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian 350002, P. R. China

© 2011 Zhao et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
was obviously larger and did not connect with SWNTs. We also checked the intermediate product after sonication by TGA. The TGA measured the total metal content with a heating rate of 10°C/min in air. The results proved that there was weak interaction between metal ions and CNMs without phenylphosphonic acid. The TGA residue (mainly iron oxide) of the products, made from SWNTs sonicated with only Fe3+, was nearly zero. The results proved that without phenylphosphonic acid, the interaction between Fe3+ and SWNTs was so weak that the metal ions were easily washed away. On the contrary, the resulting residue from SWNTs sonicated with Fe3+ was around 20%. The results provided direct evidence that phenylphosphonic acid acted as bridges connecting metal ions and CNMs.

Results and discussion

Figure 2 shows TEM images of typical samples of Fe2O3, SnO2, CeO2, and Er2O3 on SWNTs, respectively. The SWNTs without NPs attachment were seldom observed by TEM observation. The sizes and loading ratio of NPs on SWNTs can be controlled by altering temperature, the ligand, and the initial concentrations of the metal ions. It is worth to note that the loading ratio in Figure 2 was relatively high, around 80%, resulting in the agglomerating of the NPs on the CNMs. The interface between NPs and CNMs is not prominent. When we decreased the loading ratio, the uniformly dispersed NPs were appeared on the surface of CNMs. See Additional file 1 (SI 3) for the SnO2 on SWNTs as example. Inserted images corresponding to their high resolution (HR) TEM images indicated that the metal oxide NPs were usually in round shapes binding on SWNTs. HR-TEM images revealed the detailed structures of these nanocrystals. Typical HR-TEM image of Fe2O3 nanocrystals with diameters of approximately 4 nm presents a crystal lattice of approximately 0.25 nm, corresponding to (110) planes of α-Fe2O3. The result was accorded with XRD pattern shown in Additional file 1 (SI 3). The regular interplanar spacing of 0.33 nm for SnO2, 0.27 nm for CeO2, was ascribed to (110) planes of SnO2, (200) planes of CeO2, respectively. However, as for the rare earth metal oxide Er2O3, it did not form fine crystalline structures in such reaction conditions. The result was confirmed by the powder XRD pattern shown in Additional file 1 (SI 3). One might expect formation of crystalline Er2O3 NPs after thermal annealing. The nanohybrid materials have many potential applications compared with the isolated NPs, because SWNTs act as carrier to stabilize NPs, maintaining their integrity. We selected Fe2O3/SWNTs as a model case for superior anode materials of lithium ion batteries.

Figure 3 displays the high reversibility of the electrochemical reactions of Fe2O3/SWNTs nanohybrid over many charge-discharge cycles and the columbic efficiency. After 100 cycles at 150 mA g⁻¹, it still remained a high reversible capacity of 560 mAh g⁻¹, which was significantly higher than that of graphite (372 mAh g⁻¹) and Fe2O3 nanotube (510 mAh g⁻¹ at 100 mA g⁻¹) [20]. The columbic efficiency of the whole 100 cycles was around 97%. Our previous results indicated that the SWNTs produced by our method provided low Li insertion/de-insertion capabilities, around 200 mAh g⁻¹ [21], so the superior capabilities of Fe2O3 NP/SWNTs electrode were ascribed to the reactions involving Fe2⁺-Fe3⁺ conversions. The performance of the nanocomposites was mainly determined by the particle sizes and loading ratio of the NPs.

Our method was based on π–π interaction between ligand and CNMs, thus can also be generally applicable to graphene and MWNTs. Shown in Figure 4 are TEM images of Fe2O3, SnO2, CeO2, and TiO2 NPs assembled with a few-layer graphene. The diameters and loading ratio of NPs were controlled by temperature and the mole ratio of metal ions to graphene nanosheets. Typically, the particles are remarkably smaller when deposited on CNMs compared with unanchored phase, since CNMs can prevent crystal growth during crystallization. We also succeeded in introducing NPs of different rare
Figure 2 TEM images of various metal oxide NPs of Fe$_2$O$_3$, SnO$_2$, CeO$_2$, and Er$_2$O$_3$ on SWNTs.

Figure 3 Cycle performance and coulombic efficiency of Fe$_2$O$_3$/SWNTs nanohybrids with a current density of 150 mA g$^{-1}$.

Zhao et al. Nanoscale Research Letters 2011, 6:71
http://www.nanoscalereslett.com/content/6/1/71
earth metal oxides on MWNTs. See Additional file 1 (SI 5) for more details.

Conclusion

In summary, we report a general strategy for synthesis of a large variety of metal oxide NPs on CNMs, including SWNTs, MWNTs, and a few-layer graphene. The approach was based on the π-π interaction between CNMs and modified aromatic organic ligands, which acted as bridges connecting metal ions and CNMs. Our methods can be applicable for a large variety of metal ions. By adopting bi-metal or even tri-metal precursors in a certain mole ratio, composite oxide nanocrystals with novel structures and multi-function deposited on different CNMs can be effectively prepared through this method. The new class of hybrid nanomaterials offers a great potential application in sustainable energy, environment, and even biomedicine.

Additional material

Additional file 1: Supporting information Experimental details, the proof of π-π interaction between ligand and CNMs, the linkage of NPs and CNMs, electrochemical measurements and NPs on MWNTs.

Abbreviations

CNMs: carbon nanomaterials; CNTs: carbon nanotubes; MWNTs: multi-walled carbon nanotubes; NPs: nanoparticles; SWNTs: single-walled carbon nanotubes; TEM: transmission electron microscope; TGA: thermogravimetric analysis; XRD: X-ray diffraction.

Acknowledgements

Financial support for this study was provided by Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (SZD 09003), and the National Key Project on Basic Research (Grant No. 2009CB939801, 2011CB935904) of China.

Authors' contributions

YZ carried out experiments, analysed and discussed data and wrote the paper; JL carried out experiments; CW carried out experiments, LG...
conceived, designed and carried out experiments, analysed and discussed data and wrote the paper.

Competing interests
The authors declare that they have no competing interests.

Received: 25 June 2010 Accepted: 12 January 2011
Published: 12 January 2011

References
1. Eder D: Carbon Nanotube-Inorganic Hybrids. Chem Rev 2010, 110:1348, and the reference there in.
2. Chu H, Wei L, Cui R, Wang J, Li Y: Carbon nanotubes combined with inorganic nanomaterials: Preparations and applications. Coord Chem Rev 2010, 254:1117, and the reference there in.
3. Banerjee S, Wong SS: Synthesis and Characterization of Carbon Nanotube-Nanocrystal Heterostructures. Nano Lett 2009, 9:313.
4. Woan K, Pyrgiotakis G, Sigmund W: Photocatalytic Carbon-Nanotube-TiO2 Composites. Adv Mater 2009, 21:2233.
5. Hungria AB, Juarez BH, Klinke C, Weller H, Midgley PA: 3-D characterization of CdSe nanoparticles attached to carbon nanotubes. Nano Res 2008, 1:89.
6. Tang JM, Jensen K, Waje M, Li W, Larsen P, Paulsen K, Chen Z, Ramesh P, Itkis P, Yan Y, Haddon RC: High Performance Hydrogen Fuel Cells with Ultralow Pt Loading Carbon Nanotube Thin Film Catalysts. J Phys Chem C 2007, 111:17901.
7. Wildgoose GG, Banks CE, Compton RG: Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications. Small 2006, 2:182.
8. Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi DM, Prato M: Decorating carbon nanotubes with metal or semiconductor nanoparticles. J Mater Chem 2007, 17:2679.
9. Qu LT, Dai LM: Shape/Size-Controlled Syntheses of Metal Nanoparticles for Site-Selective Modification of Carbon Nanotubes. J Am Chem Soc 2005, 127:10806.
10. Han IW, Zettl A: Coating Single-Walled Carbon Nanotubes with Tin Oxide. Nano Lett 2003, 3:681.
11. Coleman KS, Bailey SR, Fogden S, Green MLH: Functionalization of Single-Walled Carbon Nanotubes via the Bingel Reaction. J Am Chem Soc 2003, 125:8722.
12. Chu HB, Wang JY, Ding L, Yuan DN, Zhang Y, Liu J, Li Y: Decoration of Gold Nanoparticles on Surface-Grown Single-Walled Carbon Nanotubes for Detection of Every Nanotube by Surface-Enhanced Raman Spectroscopy. J Am Chem Soc 2009, 131:14310.
13. Li J, Tang SB, Lu L, Zeng HC: Preparation of Nanocomposites of Metals, Metal Oxides, and Carbon Nanotubes via Self-Assembly. J Am Chem Soc 2007, 129:9401.
14. Wang D, Li ZC, Chen LW: Templated Synthesis of Single-Walled Carbon Nanotube and Metal Nanoparticle Assemblies in Solution. J Am Chem Soc 2006, 128:15078.
15. Eder D, Windle AH: Carbon-Inorganic Hybrid Materials: The Carbon-Nanotube/TiO2 Interface. Adv Mater 2008, 20:1787.
16. Yang DQ, Hennequin B, Sacher E: XPS Demonstration of m-n Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and Their Use in the Adhesion of Pt Nanoparticles. Chem Mater 2006, 18:5033.
17. Wu CK, Li JX, Dong GF, Guan LH: Removal of Ferromagnetic Metals for the Large-Scale Purification of Single-Walled Carbon nanotubes. J Phys Chem C 2009, 113:3612.
18. Wu C, Dong G, Guan L: Production of graphene sheets by a simple helium arc-discharge. Physica E: Low-dimensional Systems and Nanostructures 2010, 42:1267.
19. Cao CY, Cui ZM, Chen CO, Song WG, Cai W: Ceria Hollow Nanospheres Produced by a Template-Free Microwave-Assisted Hydrothermal Method for Heavy Metal Ion Removal and Catalysis. J Phys Chem C 2010, 114:9865.
20. Chen J, Xu LN, Li WY, Gou XL: α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications. Adv Mater 2005, 17:582.
21. Li JX, Wu CY, Guan LH: Lithium Insertion/Extraction Properties of Nanocarbon Materials. J Phys Chem C 2009, 113:18431.

doi:10.1186/1556-276X-6-71
Cite this article as: Zhao et al.: A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials. Nanoscale Research Letters 2011 6:71.

Submit your manuscript to a SpringerOpen journal and benefit from:
- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com