Supporting Information

Excitonic Au\textsubscript{4}Ru\textsubscript{2}(PPh\textsubscript{3})\textsubscript{2}(SC\textsubscript{2}H\textsubscript{4}Ph)\textsubscript{8} cluster for light-driven dinitrogen fixation

Yongnan Sun,1,* Wei Pei,2,* Mingcai Xie,1 Shun Xu,1 Si Zhou,1,* Jijun Zhao,2 Kang Xiao,3 and Yan Zhu1,*

1Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
2Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China
3School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Experimental Section

Materials

Tetrachloroauric (III) acid (HAuCl$_4$·4H$_2$O, >99.9% metals basis, Aldrich), Triphenylphosphine gold(I) chloride (98%, Aldrich), Dichloro(pentamethylcyclopentadienyl) ruthenium(III) polymer (98%, MERYER), Triphenylphosphine ruthenium chloride (99%, Aldrich), 2-Phenylethanethiol (98%, Acros Organics), Triphenylphosphine (PPh$_3$, 98%, Aldrich), Tetraoctylammonium bromide (TOAB, ≥98%, Aldrich), 4-tert-butylbenzenethiol (TBBT, 97%, J&K), Cyclohexanethiol (SC$_6$H$_{11}$, 98%, Aldrich), Sodium borohydride (NaBH$_4$, Aldrich), Methanol (AR, ≥99 %, Sinopharm Chemical Reagent Co., Ltd), Ethanol (AR, ≥99 %, Sinopharm Chemical Reagent Co., Ltd), Toluene (AR, >99%, Sinopharm Chemical Reagent Co., Ltd), dichloromethane (AR, >99%, Sinopharm Chemical Reagent Co., Ltd), Tetrahydrofuran (AR, >99%, Sinopharm Chemical Reagent Co., Ltd), Acetonitrile (AR, >99%, Sinopharm Chemical Reagent Co., Ltd), Titanium(IV) butoxide (97%, Aldrich), Hydrofluoric acid (HF, Sinopharm Chemical Reagent Co., Ltd), Titanium(IV) oxide (P25, 25 nm primary particle size (TEM), 98%, Macklin)

Synthesis of Au$_4$Ru$_2$(PPh)$_3$(SC$_2$H$_4$Ph)$_8$: 0.14 mmol AuPPh$_3$Cl and 0.055 mmol Ru(PPh)$_3$Cl$_2$ were dissolved in 6 mL ethanol. After vigorously stirring for 15 min, 6 mL ethanol solution of 14 mg NaBH$_4$ was added to the above solution. After 2 h, the mixture was evaporated. The product was separated using 15 mL CH$_2$Cl$_2$ and 140 μL 2-phenylethylthiol was then added to give a dark solid. Then, the mixture was kept at 50 °C for 2 h. The crude product was separated from the reaction mixture by washing with n-
hexane and extraction with CH$_2$Cl$_2$. The crude product dissolved in CH$_2$Cl$_2$ was pipetted on PTLC plate (10 cm × 20 cm), and the separation was conducted in developing tank (developing solvent: CH$_2$Cl$_2$) for 20 min. A knife was used to cut the bands in the PTLC plate, and the green product was extracted by pure CH$_2$Cl$_2$. Green needle-like crystals of Au$_4$Ru$_2$(PPh$_3$)$_2$(SC$_2$H$_4$Ph)$_8$ were crystallized from CH$_2$Cl$_2$/menthol for 3–5 days.

Synthesis of [Au$_9$(PPh$_3$)$_8$](NO$_3$)$_3$

S1 NaBH$_4$ (1.2 mg) dissolved in ethanol (2.5 mL) was added into Au(PPh$_3$)(NO$_3$) (50 mg). After 2 h of stirring at room temperature, the reaction mixture was evaporated and then dissolved in dichloromethane (5 mL). After centrifugation and evaporation, the obtained solid was washed with THF. Finally, green powder was obtained.

Synthesis of [Au$_8$(PPh$_3$)$_7$](NO$_3$)$_2$

S2 The [Au$_8$(PPh$_3$)$_7$](NO$_3$)$_2$ clusters were synthesized by reacting [Au$_9$(PPh$_3$)$_8$](NO$_3$)$_3$ clusters with excess PPh$_3$ (380 mg).

Synthesis of [Au$_{11}$(PPh$_3$)$_8$Cl$_2$]

S3 100 mg Au(PPh$_3$)Cl was dissolved in 5 mL dichloromethane. 1.9 mg NaBH$_4$ dissolved in 2 mL ethanol was added to this above solution under stirring at room temperature for 24 h, and then the solvent was evaporated. The residue was dissolved in a minimum amount of CH$_2$Cl$_2$ and the product was precipitated with 20 times this volume of pentane. The resulting mixture was centrifuged, and the supernatant was discarded. The residue was stirred with pentane (20 mL) and centrifuged. The final solid was dissolved in EtOH, transferred to a round-bottom flask, and the solvent was evaporated to obtain the crude product.
Synthesis of Au$_{18}$(SC$_6$H$_{11}$)$_{16}$S4: 0.2 mmol HAuCl$_4$·4H$_2$O dissolved in 0.5 mL ethanol was added in 10 mL CH$_2$Cl$_2$ solution of 0.232 mol TOAB under vigorously stirring for 15 min. 125 µL 1-cyclohexanethiol was added in the mixture at room temperature. After 30 min, 20 mg NaBH$_4$ of 2 mL ethanol solution was added to the above solution. The mixed solution was stirred for 5 h. Finally, the obtained product washed with methanol and extracted with CH$_2$Cl$_2$.

Synthesis of Au$_{24}$(PPh$_3$)$_{10}$(SC$_2$H$_4$Ph)$_5$Cl$_2$S5: 0.23 mmol HAuCl$_4$·4H$_2$O was first dissolved in 5 mL water, and then 180 mg PPh$_3$ was added into organic phase under vigorous stirring. 26 mg NaBH$_4$ of 5 mL ethanol solution was added to the above solution. After vigorous stirring for 4 h, the reaction product was separated using 10~12 mL CH$_2$Cl$_2$, and 200 µL 2-phenylethylthiol was added to the solution. Then, the mixture was kept at 40 °C for 5~8 h. Then, 1.2 g PPh$_3$ was added in the above mixture, and the reaction was continued for 24 h at 40 °C. Finally, the product washed with n-hexane and extracted with toluene.

Synthesis of Au$_{25}$(SC$_2$H$_4$Ph)$_{18}$S6: 0.203 mmol of HAuCl$_4$·3H$_2$O and 0.235 mmol of TOAB were dissolved in 15 mL tetrahydrofuran in an ice bath. Until the above solution turned a wine red (30min), 140 µL of phenylethanethiol was added into the above solution. The mixture was slowly stirred about 1~3 h, then 5 mL cold water of 78 mg NaBH$_4$ was added. After stirring for 3 h, the ice water bath was removed. Then, the mixture solution was stirred to proceed overnight. The obtained product was washed with methanol five times. Finally, the Au$_{25}$(SC$_2$H$_4$Ph)$_{18}$ clusters were extracted with CH$_3$CN.

Synthesis of Au$_{28}$(TBBT)$_{20}$S7: 10 mg Au$_{25}$(SC$_2$H$_4$Ph)$_{18}$ was added to the mixture of 0.5 mL toluene and 0.5 mL TBBT. The reaction solution was heated at 80 °C oil bath for 2 h.
The reaction product was washed with methanol three times. Finally, the Au_{28}(TBBT)_{20} clusters were extracted with CH_{2}Cl_{2}.

Synthesis of Au_{36}(TBBT)_{24} and Au_{44}(TBBT)_{28}\(^{S7,S8}\) The Au_{36}(TBBT)_{24} and Au_{44}(TBBT)_{28} clusters were synthesized by a two-step size focusing process. In the first step, HAuCl\(_{4}\)∙3H\(_{2}\)O (90 mg) of 2 mL water was added to 15 mL of CH\(_{2}\)Cl\(_{2}\) solution containing TOAB (154 mg) in a 50 mL flask. After 30 min, the water phase was removed, then 125 µL TBBT was added to the organic phase. The reactants are stirred vigorously in an ice bath. After 4 h, 50 mg NaBH\(_{4}\) dissolved in 5 mL water was quickly poured into the reaction mixture. The mixture was stirred to proceed overnight in the ice bath. The reaction product was washed with methanol three times to remove redundant TOAB and TBBT. In the second step, the product was divided evenly into two parts. One of parts is added with 0.5 mL toluene and 100 µL TBBT at 80 °C for 22 h, and then the Au_{36}(TBBT)_{24} clusters were separated from the reaction mixture by washing with methanol and extraction with CH\(_{2}\)Cl\(_{2}\). The other part was added 0.5 mL toluene and 100 µL TBBT and kept at 60 °C for 22 h, and then the Au_{44}(TBBT)_{28} clusters were separated from the reaction mixture by washing with methanol and extraction with CH\(_{2}\)Cl\(_{2}\).

Synthesis of Au_{23}(SC_{6}H_{11})_{16}\(^{S9}\) 0.3 mmol HAuCl\(_{4}\)∙3H\(_{2}\)O and 0.348 mmol TOAB were dissolved in 15 mL methanol. After vigorously stirring for 15 min, 1.6 mmol 1-cyclohexanethiol was added to the mixture at room temperature. After 60~120 min, NaBH\(_{4}\) (3 mmol dissolved in 6 mL cold water) was added to the solution under vigorous stirring. The solution turned black immediately, which then precipitated out of the methanol.
solution. The reaction mixture was further allowed to overnight and finally gave rise to pure \(\text{Au}_{23}(\text{SC}_6\text{H}_{11})_{16} \) clusters.

Synthesis of \(\text{Au}_4\text{Pd}_2(\text{SC}_2\text{H}_4\text{Ph})_8 \):
0.12 mmol \(\text{HAuCl}_4\cdot\text{H}_2\text{O} \), 0.38 mmol \(\text{Pd(NO}_3)_2\cdot2\text{H}_2\text{O} \), 150 µL 2-phenylethylthiol and 150 µL triethylamine were dissolved in 6 mL acetonitrile under vigorously stirring for 5 h. The mixture was washed with water and methanol several times and extraction with \(\text{CH}_2\text{Cl}_2 \). Then, the \(\text{Au}_4\text{Pd}_2(\text{SC}_2\text{H}_4\text{Ph})_8 \) clusters were separated by PTLC (\(\text{CH}_2\text{Cl}_2 \): petroleum ether, 1/3 v: v).

Synthesis of \(\text{TiO}_2\)-Ov:
10 mL tetra-butyl titanate was added to a mixture of 1.2 mL HF and 30 mL ethanol, which was stirred for 30 min. The above solution was transferred to a 100 mL hydrothermal kettle and kept at 180 °C for 2 h. After 2 h, the product was filtered and washed with water, and then dried at 60 °C for 24 h.

Synthesis of \(\text{TiO}_2 \): Commercially purchased titanium(IV) oxide (P25, 25 nm primary particle size (TEM), 98%, Macklin) was calcined at 400 °C for 4 h to obtain \(\text{TiO}_2 \).

Preparation of supported \(\text{Au}_4\text{Ru}_2 \) catalysts:
10 mg \(\text{Au}_4\text{Ru}_2(\text{PPh})_3(\text{SC}_2\text{H}_4\text{Ph})_8 \) was dissolved in 2 mL \(\text{CH}_2\text{Cl}_2 \). Then 500 mg \(\text{TiO}_2\)-Ov was added into the above solution under vigorous stirring for 10 h. Finally, the \(\text{Au}_4\text{Ru}_2/\text{TiO}_2\)-Ov catalyst was obtained by removing the solvent in flowing nitrogen at room temperature. The actual loadings of Au and Ru on the \(\text{Au}_4\text{Ru}_2/\text{TiO}_2\)-Ov catalyst were 0.56 wt% and 0.14 wt% respectively by ICP-AES analysis. The preparation methods of other supported cluster catalysts were the same as the above described method.

Characterization
The X-ray crystallography was performed on a Bruker D8 VENTURE with Mo Kα radiation ($\lambda = 0.71073 \text{ Å}$). The crystal structures were resolved by direct methods and refined by full-matrix least-squares methods with SHELXL-2013 (Sheldrick, 2013). UV/vis/NIR spectra with a range of 300-1400 nm were recorded on a UV3700 spectrophotometer (SHIMADZU). Diffuse reflectance UV-vis spectra were recorded on a UV-vis spectrometer using SHIMADZU UV-3600. Electrospray ionization (ESI) mass spectra were collected on a Waters Q-TOF mass spectrometer using a Z-spray source. The sample was first dissolved in toluene (0.5 mg/mL) and then diluted (2:1 v/v) with a methanol solution containing 50 mM CsOAc. The morphology and size of catalysts were characterized using a JEOL JEM-2100F field-emission high-resolution transmission electron microscope operated at 200 kV. The XRD patterns were recorded with an X’Pert PRO MPD (PANalytical) diffractometer using Cu Kα as the radiation source at 40 kV and 40 mA. Electron paramagnetic resonance (EPR) spectra were conducted on a Bruker 500 spectrometer at room temperature. The loading weight of metal was determined via the inductively coupled plasma–atomic emission spectroscopy (ICP-AES, Optima 5300DV).

A home-built wide-field fluorescence microscope based on Olympus IX73 was used with 450 nm CW diode laser for the fluorescence spectra measurements and 450 nm pulse laser from super continuous laser (Fianium SC-400) for the PL lifetime measurement. The fluorescence was collected by a dry objective lens (Olympus LUCPlanFI 40x, NA=0.6) and detected by an EMCCD camera (iXon Ultra 888, Andor). A transmission grating (Newport, 150 lines/mm) was put in front of the camera for the spectra measurement. The
PL lifetime measurement was done by using a single photon counting system (TCSPC, Picoharp 300).

Thermal gravimetric analyses (TGA) were performed using a NETZSCH Instruments TGA STA-449C under N$_2$ flow. Samples were run from 20 to 800 °C with a heating rate of 10 °C/min.

In situ diffuse reflectance FTIR spectra were collected using Nicolet iS50FT-IR spectrometer (Thermo, USA) with a designed reaction cell. The substrate (Au$_4$Ru$_2$/TiO$_2$-Ov film) is lying at the center of the reaction cell. Then, the gas in the reaction cell and the gas adsorbed on the surface of the catalyst was extracted by an ultra-high vacuum pump. A layer of water molecules was necessary to provide protons in our functional model. Therefore, the water vapor in the nitrogen gas is passed through the substrate to form a layer of adsorbed water molecules, after which the molecular N$_2$ is pumped into the cells to obtain a N$_2$ atmosphere. Finally, the Xe lamp was turned on and the in situ FTIR spectra was collected using a MCT detector along with the reaction.

The photoelectrochemical (PEC), electrochemical impedance spectroscopy (EIS) measurement and Mott-Schottky plots were performed on a CHI660B electrochemical workstation in a standard three-electrode system with a platinum foil as a counter electrode, a glassy carbon as working electrode and a saturated Ag/AgCl as a reference electrode. A 300W Xe lamp was utilized as the light source on the PEC and EIS measurement. PEC and ESI measurements were carried out at room temperature in 0.5 mol/L Na$_2$SO$_4$, which had been deoxygenated by bubbling high-purity Ar/N$_2$ for 30 min. The Nyquist plots were recorded from 1 to 100 kHz frequency range at an applied 0.5 V bias voltage.
Apparent Quantum Efficiency Calculation:

Apparent quantum efficiency (AQE) is defined as the following equation.S12

\[\Phi_{AQY} (\%) = 100 \times \frac{([\text{NH}_3 \text{ formed (mol)}] \times 3)}{[\text{photon number entered the reaction vessel (mol)}]} \]

Catalytic reaction: Photocatalytic N\textsubscript{2} reduction performance was tested using a quartz glass as the photocatalytic reactor under atmospheric pressure and ambient temperature, and a 300W Xe lamp (CEL-HXF300) was used as a light source. Specific catalytic evaluation scheme was as follows: 100 mg catalyst (0.7 wt% metal from ICP), 20 mL water and a magnetic stir bar were loaded into the quartz glass. The reactor was equipped with a circulating water shell to maintain room temperature. The suspension was stirred constantly in the dark, and a constant high-purity N\textsubscript{2} (>99.9\%) at a flow rate of 50 mL/min for 30 min was bubbled to obtain a saturated aqueous suspension of N\textsubscript{2}. The mixture was irradiated afterward with a 300W Xe lamp. 3 mL of the reaction solution was taken out every 30 min by a syringe, and then the catalyst was removed by centrifugation immediately. Concentration of NH\textsubscript{4}+ was determined using Nessler’s reagent methodS11 on a SHIMADZU UV-1800 spectrometer and ion chromatography (930 compact IC Flex), which the and standard curves for NH\textsubscript{4}+ with Nessler’s reagent and ion chromatography were shown in Figure S13. The content of N\textsubscript{2}H\textsubscript{4} was determined using colorimetry of para-(dimethylamino) benzaldehyde.S13 No NH\textsubscript{4}+ was detected when bubbling Ar only, indicating that background NH\textsubscript{3} was not produced in the system. In addition, the photocatalytic activity for H\textsubscript{2} as byproduct production was investigated and the rate of H\textsubscript{2} production was 3.45 μmol/g/h on the Au\textsubscript{4}Ru\textsubscript{2}/TiO\textsubscript{2}-Ov under full spectrum illumination.
However, given the established fact that H_2 production in N_2 photofixation is not a serious issue, NH_3 highly dissolves in water and is easily separated from gaseous H_2. Therefore, in this study, we focused on the evolution of ammonia.

The detailed preparation method of the standard curve for NH$_4^+$of Nessler's reagent was as follows. In alkaline environment, ammonia can react with mercury iodide and potassium iodide to produce a reddish gelatinous precipitate, which has an absorption peak at 420 nm. The specific method to obtain the standard curve of Nessler's reagent is as follows: 0, 50, 150, 250, 350, 450, and 500 µL of 10 mg/L NH$_4$Cl standard solution was transferred into seven colorimetric tubes respectively. And, the samples tubes were diluted with ultrapure water to 5 mL. Then, 100 µL potassium sodium tartrate was added to the sample tubes. After mixing well, 150 µL of Nessler's reagent was also added to the sample tubes and mixed for ageing 20 min, and then measured by the SHIMADZU UV-3600 spectrometer. The absorbance at 420 nm was measured and plotted as a function of ammonia concentration.

Computational methods

DFT calculations were performed by the Vienna ab initio simulation Package (VASP), using a planewave basis set with energy cutoff of 500 eV, projector augmented wave (PAW) pseudopotentials, and the generalized gradient approximation parameterized by Perdew, Burke, and Ernzerhof (GGA-PBE) for the exchange-correlation functional. The Grimme’s DFT-D3 scheme for dispersion correction was adopted for better description of the interactions between the gold clusters and reaction intermediates involved in N_2 fixation. The clusters were placed in a cubic supercell with a dimension of 30 Å, and its
Brillouin zone was sampled by the Γ point. All of structures were fully optimized for the ionic and electronic degrees of freedom using the convergence criteria of 10^{-4} eV for electronic energy and 10^{-2} eV/Å for the forces on each atom. The kinetic barriers and transition states for elementary steps of N$_2$ fixation were calculated by the climbing-image nudged elastic band (CI-NEB) method implemented in VASP518 with five images to mimic the reaction path. The intermediate images were relaxed until the perpendicular forces were less than 10^{-2} eV/Å. To simplify our models and improve the computational efficiency, the -triphenylphosphine (-PPh$_3$) and -phenylethanethiol (-SC$_2$H$_4$Ph) ligands were replaced by -trimethylphosphine -P(CH$_3$)$_3$ and -SCH$_3$, respectively, which, according to our test calculations, does not affect the binding strength of the cluster with N$_2$ molecule.

We used a slab model consisting of the six atomic layers of anatase TiO$_2$(101) and 2 × 3 unit cells for the lateral dimensions, including the 32 Ti atoms and 64 O atoms (Figure. S2). A single oxygen atom of surface and subsurface was removed to simulate oxygen vacancy on the surface (TiO$_2$-Ov$_1$) and subsurface (TiO$_2$-Ov$_2$) of anatase TiO$_2$(101). For model of ligand-protected Au$_4$Ru$_2$ cluster, the -triphenylphosphine (-PPh$_3$) and -phenylethanethiol (-SC$_2$H$_4$Ph) ligands were replaced by -trimethylphosphine -P(CH$_3$)$_3$ and -SCH$_3$, respectively, which, according to our test calculations, does not affect the binding strength of the cluster with N$_2$ molecule (Figure S12). We examined the adsorption of a N$_2$ molecule on the cluster with one ligand shed from either Ru or Au atom (Figure S14 and Table S1). Our calculations show that the exposed Au atom cannot chemisorb N$_2$ molecule. Only the exposed Ru atom in the cluster has activity for N$_2$ fixation.
To characterize the interactions between ligand-protected gold clusters and N$_2$ molecule, we defined the adsorption energy as

$$\Delta E^{*}_{N2} = E_{\text{total}} - E_{\text{cluster}} - E_{N2}$$ (1)

where E_{total} and E_{cluster} are the energies of a gold cluster with and without adsorption of a N$_2$ molecule, respectively; E_{N2} is the energy of the N$_2$ molecule in the gas phase.
Supporting Figures

Figure S1. TGA curve of the Au₄Ru₂(PPh₃)₂(SC₂H₄Ph)₈ cluster.
Figure S2. (A) XRD patterns and (B) EPR spectra of TiO$_2$-Ov and TiO$_2$. TEM images of (C) TiO$_2$-Ov and (D) TiO$_2$.
Figure S3. Structures of water adsorption and dissociation into *H and *OH species adsorbed on the anatase TiO$_2$(101) surface without defect (TiO$_2$) and with an oxygen vacancy on the surface (TiO$_2$-O$_{V1}$) and subsurface (TiO$_2$-O$_{V2}$). The H, O and Ti atoms are shown in light blue, red and yellowish colors, respectively.
Figure S4. Recyclability of the Au₄Ru₂/TiO₂-Ov catalyst for photocatalytic N₂ reduction.
Figure S5. The diffuse reflectance optical spectra of (A) the fresh and (B) the spent Au₄Ru₂/TiO₂-Ov. HRTEM images of (C) the fresh and (D) the spent Au₄Ru₂/TiO₂-Ov.
Figure S6. In situ FTIR spectra of the photocatalytic N₂ reduction over Au₄Ru₂/TiO₂-Ov under full spectrum illumination in the absence water.
Figure S7. UV-vis spectra of the Au₄Ru₂ clusters protected by different ligands.
Figure S8. (A) TEM image, (B) Element composition analysis, and (C) EDS elemental profiles of Au_Ru/TiO_2-Ov-300 (Au_Ru/TiO_2-Ov-300 was obtained by Au_Ru/TiO_2-Ov calcined at 300 °C in air for 2 h). (D) The photocatalytic activity of the Au_Ru/TiO_2-Ov and Au_Ru/TiO_2-Ov-300 for N_2 reduction.
Figure S9. Room-temperature steady-state PL spectra of Au₄Ru₂/TiO₂-Ov under Ar and N₂ atmospheres, respectively.
Figure S10. Electrochemical impedance spectra of Au$_4$Ru$_2$/TiO$_2$-Ov with and without light (300W Xenon lamp).
Figure S11. (A) The atomic structure of $\text{Au}_4\text{Pd}_2(\text{SC}_2\text{H}_4\text{Ph})_8$. H atoms are omitted for clarity. (B) The photocatalytic activity of the $\text{Au}_4\text{Pd}_2/\text{TiO}_2$ for N_2 reduction.
Figure S12. Top (left panel) and side views (right panel) of optimized Au₄Ru₂ on the surface of anatase TiO₂(101). The black box indicates the lateral dimension of the supercell used for DFT calculations. The H, C, O, P, S, Au, Ru and Ti atoms are shown in light blue, gray, red, green, yellow, orange, blackish green and yellowish, respectively. The closest distance between the cluster and substrate is shown as d.
Figure S13. Standard curves for NH₄⁺ with (A) Nessler’s reagent and (B) ion chromatography.
Figure S14. Structures of N\textsubscript{2} adsorption on (A) Au\textsubscript{4}Ru\textsubscript{2}(SC\textsubscript{2}H\textsubscript{4}Ph\textsubscript{8})(PPh\textsubscript{3})\textsubscript{2}, (B) Au\textsubscript{4}Ru\textsubscript{2}(SC\textsubscript{2}H\textsubscript{4}Ph\textsubscript{8})PPh\textsubscript{3}, (C) Au\textsubscript{4}Ru\textsubscript{2}(SCH\textsubscript{3})\textsubscript{8}(P(CH\textsubscript{3})\textsubscript{3})\textsubscript{2} and (D) Au\textsubscript{4}Ru\textsubscript{2}(SCH\textsubscript{3})\textsubscript{8}P(CH\textsubscript{3})\textsubscript{3}. The H, C, N, S, Au and Ru are shown in light blue, gray, blue, yellow, orange and green colors, respectively. When the cluster is fully covered by ligands (A, C), N\textsubscript{2} adsorption leads to severe structure distortion.
Table S1. Geometrical parameters including the bond length of N–N (\(d_{\text{N-N}}\)), Ru–N (\(d_{\text{Ru-N}}\)) and Ru–S (\(d_{\text{Ru-S}}\)) bonds and N2 adsorption energy (\(\Delta E_{\text{N2}}\)) for a N2 molecule on the ligand-protected Au4Ru2 clusters shown in Figure S14.

	Au4Ru2 (SC2H4Ph)8(PPh3)2	Au4Ru2 (SC2H4Ph)8PPh3	Au4Ru2 (SCH3)8(P(CH3)3)2	Au4Ru2 (SCH3)8P(CH3)3
\(d_{\text{N-N}}\) (Å)	1.13	1.14	1.13	1.14
\(d_{\text{Ru-N}}\) (Å)	1.90	1.84	1.90	1.84
\(d_{\text{Ru-S}}\) (Å)	4.18	2.27	4.83	2.27
\(\Delta E_{\text{N2}}\) (eV)	–1.19	–1.25	–1.28	–1.33
Supporting References

(S1). S. Yamazoe, S. Matsuo, S. Muramatsu, S. Takano, K. Nitta and T. Tsukuda, *Inorg. Chem.* 2017, **56**, 8319-8325.

(S2). T. Huang, L. Huang, Y. Jiang, F. Hu, Z. Sun, G. Pan and S. Wei, *Dalton Trans.* 2017, **46**, 12239-12244.

(S3). L. C. McKenzie, T. O. Zaikova and J. E. Hutchison, *J. Am. Chem. Soc.* 2014, **136**, 13426-13435.

(S4). A. Das, C. Liu, H. Y. Byun, K. Nobusada, S. Zhao, N. Rosi and R. Jin, *Angew. Chem. Int. Ed.* 2015, **54**, 3140-3144.

(S5). S. Wang, H. Abroshan, C. Liu, T. Luo, M. Zhu, H. J. Kim, N. L. Rosi and R. Jin, *Nat Commun.* 2017, **8**, 848.

(S6). Y. Zhu, H. Qian, B. Drake and R. Jin, *Angew. Chem. Int. Ed.* 2010, **49**, 1295-1298.

(S7). C. Zeng, Y. Chen, K. Iida, K. Nobusada, K. Kirschbaum, K. L. Lambright and R. Jin, *J. Am. Chem. Soc.* 2016, **138**, 3950-3953.

(S8). C. Zeng, Y. Chen, G. Li and R. Jin, *Chem. Commun.* 2014, **50**, 55-57.

(S9). A. Das, T. Li, K. Nobusada, C. Zeng, N. L. Rosi and R. Jin, *J. Am. Chem. Soc.* 2013, **135**, 18264-18267.

(S10). J. Chen, L. Liu, X. Liu, L. Liao, S. Zhuang, S. Zhou, J. Yang and Z. Wu, *Chem. Eur. J.* 2017, **23**, 18187-18192.

(S11). Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L. Wu, C. Tung and T. Zhang, *Adv. Mater.* 2019, 1806482.

(S12). H. Li, J. Shang, Z. Ai and L. Zhang, *J. Am. Chem. Soc.* 2015, **137**, 6393-6399.

(S13). W. G. Watt, and J. D. Chrissp, *Anal. Chem.* 1952, **24**, 2006-2008.
(S14). G. Kresse, and J. Furthmüller, Phys. Rev. B 1996, 54, 11169-11186.

(S15). G. Kresse, and D. Joubert, Phys. Rev. B 1999, 59, 1758-1775.

(S16). J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.

(S17). S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys. 2010, 132, 154104-154123.

(S18). G. Henkelman, B. P. U. Beruaga and H. Jónsson, J. Chem. Phys. 2000, 113, 9901-9904.