INTRODUCTION

Fractures of the posterior malleolus (PM) form a diverse group. Their oversimplified classification according to the size on a lateral X-ray image is based back on the article of Nelson and Jensen published in 1942 [1]. Despite the limited number of patients (just 8), their conclusions influenced the way of thinking of many trauma surgeons up to this day. Recent studies challenged the isolated importance...
of articular involvement [2, 3]. They showed that the grade of dislocation, the articular incongruency and the tibio-talar subluxation, may influence the final outcome to a far greater extent. The biomechanical importance of the posterior tibial rim explains these findings. It not only contributes to the syndesmal stability, but also determines the tibio-talar kinematics [4, 5].

Those new findings justify the trend towards more aggressive treatment of PM fractures. This was the reason to alter our treatment algorithm. In the current article we discuss the rationale of these changes as well as our preliminary results.

MATERIALS AND METHODS

For a period of 2 years (2018-2020) we operated 14 patients with posterior malleolus (PM) fractures. The average patient’s age was 51 years. Eight of the patients were males, the rest 6 were females. Fractures were classified according to Bartoníček classification system [6]. This classification is based on recent biomechanical studies and has the advantage to guide the treatment process. It divides the PM fractures into 5 groups, on the basis of their CT scan morphology. The first group comprises PM fractures out of the fibular incisura. The second group includes single fragment PM fractures that involve the fibular incisura. The postero-medial PM fractures form the third group. The postero-lateral PM fractures comprise the fourth group. The last (fifth) group is formed by the osteoporotic irregular PM fractures. All of the included patients had a type 3 PM fracture.

Direct open reduction was performed, if the fibular incisura was involved in the fracture, if there was a marked posterior luxation of the joint, or there were intercalated articular fragments.

All fractures were treated through the postero-medial approach. The patients were in a supine position. The calf was flexed in a figure of 4 position. The skin incision was placed medially to the Achilles tendon and curved around the medial malleolus. Its length was determined by the metaphyseal component of the fracture. Deep dissection depended on fracture morphology. The interval between flexor hallucis longus and the tibial artery was uncovered, if a better approach to the lateral tibial portion was needed. More often, we preferred the access between the tendons of m.tibialis posterior and flexor digitorum longus. In those cases the tibial artery and nerve were not visualized. If there were intercalated fragments, the PM was mobilized like an open book, in order to achieve perfect articular reduction. It was then closed and fixed provisionally with K wires. After the reduction was verified in a lateral X-ray projection, the definitive fixation was completed by a posterior buttress plate (Figure 1). Bone grafting was found indicated in one case.

In order to fix the medial malleolus, a separate interval was developed in front of the tibialis posterior tendon. Lag screws or Weber dynamic fixation carried through the stabilization (Figure 1). The fibular fracture was reduced and fixed in a usual manner, through a lateral approach. The syndesmosis was visually inspected and tested at this time. Standard tricortical syndesmosis screws were used if necessary.

A. Bartonicek type 3 fracture-dislocation of the ankle
B. Postero-medial approach for buttress plating of the fractures
C. X-ray image

Fig. 1
After the operation the leg was splinted for a period of 14 days. After this period of time rehabilitation was started according to the guidelines described by Mindova [7]. Touch weight bearing was immediately allowed. After the second month it progressed gradually until the patients could place their full body weight on the fractured leg.

RESULTS

All of the fractures united for an average period of 9 weeks (range 8-10). The average follow-up period was 10 months (6-20). Functional rating was done according to the criteria of the American Orthopaedic Foot and Ankle Society AOFAS [8]. A maximum of 100 points were awarded in two categories: objective assessment (pain, stability, ROM) and functional assessment (ability to walk on rough surfaces and to climb stairs). A total of six patients achieved an excellent score, five had a good one and the rest had an average score. The overall score was 84,02 (54-100). The average range of motion was 38° (15°-50°).

At the time of their final follow up, eleven patients had no pain and three reported only minor pain. Three patients could walk less than a kilometer, two needed a cane.

All patients returned to their previous occupation.

Complications

There were no serious intraoperative complications, deep infections, septic arthritis or thrombophlebitis. Three patients had superficial skin necrosis along the surgical incision, which healed without any additional procedures.

One patient had significant swelling (that lasted till the sixth month). The functional recovery was impeded and took significantly longer. There might have been some smaller venous thrombosis that couldn’t be diagnosed.

Five patients had their fibular plates removed due to local irritation.

DISCUSSION

How important is the posterior malleolus? Removal of up to 50% of PM didn’t alter ankle stability [9], nor did the contact pressure increase [10]. Papachristou found that during normal ROM it didn’t bear any weight [11]. In an experimental and clinical investigation, Gardner established that a fracture of the PM didn’t disturb the posterior syndesmosis ligament and that fixing of the fractures can restore ankle stability [12].

When the PM is left to heal in a dislocated position, the contact stress shifts antero-medially, which may lead to articular degeneration in the future [5]. Bartoniček considers that PM is the main syndesmosis stabilization structure, so he treated those fractures as syndesmotic lesions [13].

The unique shape of the talus and ankle mortise allow the foot to both adapt to the irregular surfaces and transfer the load of the body. In order for this interaction to take place, the intact syndesmosis is of paramount importance.

In the distant 1940 Nelson and Jansen classified the fractures of PM as minimal (below 1/3 of the articular surface on lateral projection) and classical (involving more than 1/3 of the articular surface). They recommended fixing only the latter ones [1]. Their oversimplified recommendations influenced the treatment protocols for many decades. Magid warned that the exact assessment of PM fracture morphology and size on a single lateral X-ray is not always possible or accurate [14]. Placing a fibular plate makes this task almost impossible, since it is X-ray positive and is usually superimposed on the PM fracture line. Yao recommended a CT-scan in every PM fracture [15]. Bartoniček is perhaps the most quoted author in regard of the PM fracture treatment and theory. He considered the involvement of the fibular incisura as a primary indication for an open reduction. It can be reliably assessed only on a CT-scan [13]. In a large prospective study, Shi et al. compared the results after either direct or indirect fixation of the PM fractures. In all of the cases the fractures involved more than 25% of the articular surface. A total of 116 cases were followed up. The results showed that the direct fixation may lead to better anatomical and functional results [16].

The direct posterior approach is not without limitations. The surgical dissection is increased and so is the surgical time. In our study, the postero-medial approach did not imply changing the patient’s position and allowed simultaneous fixation of both the posterior and medial malleoli fractures. Bartonicek type 3 fractures, with or without intercalated articular fragments, were ideally indicated. Another important indication was the involvement of the fibular incisura, that is usually accompanied by posterior luxation (instability) of the ankle. In those fractures the most favorable position of the buttress plate is on the posterior cortex. This can only be achieved through a direct approach.

If the medial malleolus was intact we preferred the postero-lateral approach, which made possible the fixation of the fibular fracture through a single incision. We experienced three cases of skin necrosis, that presented a potential risk for deep infection. The most
probable reason for this complication is the extended surgical dissection needed to properly reduce the PM fracture. In the best scenario the plate is positioned deep on the posterior surface of the tibia and is covered by muscles and tendons, so the probability for bacterial contamination is low. In all of the cases the wounds healed without further complications.

CONCLUSION

Our results showed that the direct postero-medial approach is safe and effective. It allows precise anatomical reduction of the PM fracture and biomechanically optimal placement of the plate. This is an obligatory prerequisite for an optimal and predictable functional recovery.

On the basis of our experience we recommend direct fixation of the PM fractures which run through the fibular incisura and are complicated with posterior luxation of the ankle.

Disclosure summary: The authors have nothing to disclose.

REFERENCES

1. Nelson MC, Jensen NK. The treatment of trimalleolar fractures of the ankle. Surg Gynecol Obstet. 1940;71:509-14.
2. Odak S, Ahluwalia R, Unnikrishnan P et al. Management of Posterior Malleolar Fractures: A Systematic Review. J Foot Ankle Surg. 2016;55(1):140-5.
3. Veltman ES, Halma JJ, de Gast A. Longterm outcome of 886 posterior malleolar fractures: A systematic review of the literature. Foot Ankle Surg. 2016;22(2):73-7.
4. Macko VW, Matthews LS, Zwirkoiski P, Goldstein SA. The joint-contact area of the ankle. The contribution of the posterior malleolus. J Bone Joint Surg Am. 1991 Mar;73(3):347-51.
5. Fitzpatrick DC, Otto JK, McKinley TO et al. Kinematic and contact stress analysis of posterior malleolus fractures of the ankle. J Orthop Trauma. 2004;18(5):271-8.
6. Bartoniček J, Rammelt S, Tuček M, Naříka O. Posterior malleolar fractures of the ankle. Eur J Trauma Emerg Surg. 2015;41(6):587-600.
7. Mindova S, Karaganova I, Stefanova L. Procedural options for measuring muscle strength. Acta Medica Bulgarica, 2016;53(2):p80-85.
8. Kitaoka HB, Alexander IJ, Adelaar RS et al. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int. 1994;15(7):349-53.
9. Harper MC. Talus shift. The stabilizing role of the medial, lateral, and posterior ankle structures. Clin Orthop Relat Res. 1990 Aug;(257):177-83.
10. Hartford JM, Gorczyca JT, McNamara JL, Mayor MB. Tibiotalar contact area. Contribution of posterior malleolus and deltoid ligament. Clin Orthop Relat Res. 1995;(320):182-7.
11. Papachristou G, Efstathopoulos N, Levidiotis C, Chronopoulos E. Early weight bearing after posterior malleolar fractures: an experimental and prospective clinical study. J Foot Ankle Surg. 2003;42(2):99-104.
12. Gardner MJ, Brodsky A, Briggs SM et al. Fixation of posterior malleolar fractures provides greater syndesmotic stability. Clin Orthop Relat Res. 2006;447:165-71.
13. Bartoniček J, Rammelt S, Tuček M. Posterior Malleolar Fractures: Changing Concepts and Recent Developments. Foot Ankle Clin. 2017;22(1):125-145.
14. Magid D, Michelson JD, N ey DR, Fishman EK. Adult ankle fractures: comparison of plain films and interactive two- and three-dimensional CT scans. Am J Roentgenol. 1990;154(5):1017-23.
15. Yao L, Zhang W, Yang G et al. Morphologic characteristics of the posterior malleolus fragment: a 3-D computer tomography based study. Arch Orthop Trauma Surg. 2014;134(3):389-94.
16. Shi HF, Xiong J, Chen YX, et al. Comparison of the direct and indirect reduction techniques during the surgical management of posterior malleolar fractures. BMC Musculoskelet Disord. 2017;18(1):109.