SOLAR OBLIQUITY INDUCED BY PLANET NINE: SIMPLE CALCULATION

DONG LAI
Cornell Center for Astrophysics and Planetary Science, Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
Received 2016 August 3; revised 2016 September 10; accepted 2016 September 14; published 2016 December 5

ABSTRACT

Bailey et al. and Gomes et al. recently suggested that the 6° misalignment between the Sun’s rotational equator and the orbital plane of the major planets may be produced by forcing from the hypothetical Planet Nine on an inclined orbit. Here, we present a simple yet accurate calculation of the effect, which provides a clear description of how the Sun’s spin orientation depends on the property of Planet Nine in this scenario.

Key words: planet–star interactions – planets and satellites: dynamical evolution and stability

1. INTRODUCTION

Batygin & Brown (2016) showed that a hypothetical planet (“Planet Nine”) in the outer solar system can explain several otherwise intriguing orbital properties of distant KBOs. Recently, Bailey et al. (2016) and Gomes et al. (2016) suggested that Planet Nine, which has an inclined orbit relative to the orbital plane of the major planets, may also be responsible for generating the 6° solar obliquity (the misalignment angle between the Sun’s rotational equator and the solar system invariant plane). These studies were based on somewhat formal treatments and involved numerical integrations. In this note, we present a pedestrian yet accurate calculation of the solar obliquity generated by Planet Nine. This calculation yields a simple and transparent description of how the solar spin orientation depends on the property of Planet Nine.

2. EXPLICIT ANALYTIC CALCULATION

Batygin & Brown (2016) showed that to explain the spatial clustering of the orbits of distant KBOs, Planet Nine (labeled “p”) must have mass $m_p = (5-20)m_\oplus$, perihelion distance $q_p = a_p(1-e_p) \sim 250$ au, significant eccentricity $e_p \gtrsim 0.5$, and tens of degrees of orbital inclination with respect to the solar system invariant plane. The angular momentum of Planet Nine is $L_p = L_p \hat{l}_p$ (where \hat{l}_p is the unit vector), with

$$L_p = 0.276 L_j \left(\frac{m_p}{10 m_\oplus} \right) \left(\frac{\hat{a}_p}{400 \text{ au}} \right)^{1/2} (1 - e_p^2)^{1/4},$$

where L_j is the orbital angular momentum of Jupiter, and we have defined the “effective” semimajor axis $\hat{a}_p \equiv a_p \sqrt{1 - e_p^2}$.

Planet Nine exerts a torque on each of the “canonical” planets (labeled “j,” from Mercury to Neptune); this torque tends to induce a retrograde nodal precession of \hat{l}_j (the orbital angular momentum unit vector of planet j) around \hat{l}_p at the characteristic rate

$$\Omega_{lp} = \frac{3m_p}{4M_\odot} \left(\frac{a_j}{\hat{a}_p} \right)^3 n_j,$$

where a_j, n_j are the semimajor axis and mean motion of planet j. Note that Ω_{lp} depends on a_j, so each planet has a different Ω_{lp}. However, since the precession frequency due to mutual planet–planet interactions is much larger than the differential Ω_{lp}, all of the canonical planets are strongly coupled, with their angular momentum axes aligned to each other, i.e., $\hat{l}_j = \hat{l}$ (see Lai & Pu 2016 for a precise calculation of the mutual inclinations induced by an inclined external perturber). The orbital angular momentum unit vector \hat{l} of the canonical solar system planets then evolves according to the equation

$$\frac{d\hat{l}}{dt} = \Omega_L \cos \theta_p (\hat{l} \times \hat{l}_p) = \frac{J}{L_p} \Omega_L \cos \theta_p (\hat{l} \times \hat{j}),$$

where θ_p is the inclination of Planet Nine ($\cos \theta_p = \hat{l} \cdot \hat{l}_p$), J is the total angular momentum

$$J = J \hat{j} = L + L_p = L \hat{l} + L_p \hat{l}_p,$$

with $L = \sum_j L_j = 1.624 L_j$ (note that the spin angular momentum of the Sun, $S_* \sim 0.01L_\odot$, is much smaller), and

$$\Omega_L = \frac{\sum_j L_j \Omega_{lp}}{L} = 2.74 \Omega_p,$$

Note that in Equation (3) we have neglected the torque from the Solar spin on \hat{l}—this is an excellent approximation, as $S_* \ll L$ (e.g., Boué & Fabrycky 2014; Lai 2014).

The spin axis \hat{s}_* (unit vector) of the Sun evolves due to the torques from all planets,

$$\frac{d\hat{s}_*}{dt} = \Omega_{sps} \cos \theta_{sl} (\hat{s}_* \times \hat{l}),$$

where θ_{sl} is the angle between \hat{s}_* and \hat{l} and the characteristic spin precession frequency is given by

$$\Omega_{sps} = \sum_j \Omega_{sj} = \sum_j \frac{3k_{pj}}{2k_*} \left(\frac{m_j}{M_*} \right) \left(\frac{R_*}{a_j} \right)^3 \Omega_*.$$

Here, $\Omega_* = 2\pi/P_*$ is the angular frequency of the Sun, and k_{sj}, k_{pj} are defined through the Sun’s moment of inertia and quadrupole moment: $I_3 = k_* M_\odot R_*^2$ and $I_3 - I_1 = k_{pj} \hat{s}_* \hat{s}_* M_\odot R_*^2$, with $\hat{s}_* = \Omega_* (GM_\odot R_*^3)^{-1/2}$. Normalizing to the values $k_* \approx 0.06$ and $k_{pj} \approx 0.01$ (corresponding to $J_2 = k_{pj} \hat{s}_*^2 \approx 2.2 \times 10^{-7}$;
The rotation rate of the Sun decreases over time due to magnetic braking. We ignore these complications and treat λ_s / P_s as a free parameter.

Mecheri et al. 2004), we find

$$\Omega_{\ast, \text{ps}} = 2.88 \Omega_{\ast, J} = \frac{2 \pi}{55.8 \text{ Gyr}} \lambda_s \left(\frac{P_s}{10 \text{ day}} \right)^{-1},$$

where $\lambda_s \equiv 6 k_{g_1} / k_s \approx 1$. Note that in Equation (6), we have neglected the torque from m_p on \hat{s}_s—this is obviously an excellent approximation.

Equations (3) and (6) completely determine the evolution of the spin axis of the Sun.

To solve $\hat{s}_s(t)$ analytically, we note that Equation (3) implies that \hat{l} precesses around the constant unit vector \hat{j} at the rate $-J / L_p \Omega_{\ast, \text{ps}} \cos \theta_p$. We transform Equation (6) into the frame corotating with \hat{l}, giving

$$\left(\frac{\text{d} \hat{s}_s}{\text{d} t} \right)_{\text{rot}} = \frac{J}{L_p} \Omega_{\ast, \text{ps}} \cos \theta_p \hat{j} - \Omega_{\ast, \text{ps}} \cos \theta_{\text{id}} \hat{l} \times \hat{s}_s.$$

In this rotating frame, \hat{j} and \hat{l} are constant in time, and for $\theta_{\text{id}} \ll 1$ and constant P_s, Equation (9) describes a uniform rotation of \hat{s}_s.

Figure 1. Parameters of Planet Nine required to produce the solar obliquity $\theta = 6^\circ$ and the relative longitude of ascending node $\Delta \Omega$ (between Planet Nine and the solar equator). The effective semimajor axis of Planet Nine $a_p \equiv a_p (1 - e_p^2)^{1/2}$ (where a_p is the semimajor axis) is shown as a function of e_p, the inclination of Planet Nine relative to the orbital plane of the canonical solar system planets. The mass of Planet Nine is set to $m_p = 10 m_\oplus$, and the solar rotation parameter is set to $P_s / \lambda_s = 20$ days. The three solid lines depict Equation (17) with three values of $\Delta \Omega$ (covering the allowed range, 12°—52°). The dashed and dotted lines depict Equation (18) for different $\Delta \Omega$ and e_p (the eccentricity of Planet Nine). The intersect of a solid line and a corresponding dashed/dotted line of the same color marks the values of a_p and θ (with the corresponding m_p and e_p) required to generate the observed $\theta = 6^\circ$ and $\Delta \Omega$.

Figure 2. Similar to Figure 1, except that the different curves correspond to different values of the solar rotation parameter $P_s / \lambda_s = 24$ days (black; the current solar rotation period), 15 days (blue), and ∞ (red; implying that the spin axis of the Sun is constant in time, the limit that was considered by Gomes et al. 2016), all for $\Delta \Omega = 45^\circ$. Note that the solid line (depicting Equation (17)) does not depend on P_s / λ_s.

around a fixed axis (see Lai 2014). We set up a Cartesian coordinate system where $\hat{l} = \hat{x}$ and $\hat{l}_p = -(\sin \theta_p) \hat{y} + (\cos \theta_p) \hat{z}$ (so that the polar and azimuthal angles of \hat{l}_p are θ_p and $\phi_p = 270^\circ$). In this coordinate system, Equation (9) reduces to

$$\frac{\text{d} \hat{s}_{x\perp}}{\text{d} t} = -\Omega_y \hat{s}_{z\perp} + \Omega_{\perp} \hat{s}_{x\parallel},$$

$$\frac{\text{d} \hat{s}_{x\parallel}}{\text{d} t} = -\Omega_z \hat{s}_{x\parallel},$$

where

$$\Omega_y = \Omega_{\ast, \text{ps}} \cos \theta_p,$$

$$\Omega_{\perp} = \Omega_{\ast, \text{ps}} - \Omega_{\ast, \text{ps}} \cos \theta_{\text{id}} \left(\frac{L}{L_p} + \cos \theta_p \right).$$

For $\hat{s}_{x\perp} \approx 1$ (consistent with $\theta_{\text{id}} \ll 1$), Equations (10)–(11) can be solved (assuming that $\hat{s}_{x\perp}$ is aligned with \hat{l} at $t = 0$):

$$\hat{s}_{x\parallel} = \frac{-\Omega_y}{\Omega_z} \sin \Omega_z t, \quad \hat{s}_{x\parallel} = \frac{\Omega_y}{\Omega_z} (1 - \cos \Omega_z t).$$

Thus, the polar and azimuthal angles of \hat{s}_s are given by

$$\theta_{x\parallel} \approx (\hat{s}_{x\perp}^2 + \hat{s}_{x\parallel}^2)^{1/2} = \sqrt{\frac{2 \Omega_y}{\Omega_z} \sin \Omega_z t},$$

$$\phi_{x\parallel} \approx (\hat{s}_{x\perp}^2 + \hat{s}_{x\parallel}^2)^{1/2} = \sqrt{\frac{2 \Omega_y}{\Omega_z} \sin \Omega_z t}.$$
3. DEPENDENCE AND CONSTRAINT ON PLANET NINE PARAMETERS

For a given P_\star/λ_\star, the values of θ_d, ϕ_\ast, and m_\star at $t = 4.5$ Gyr depend on the parameters of Planet Nine (\tilde{a}_p, m_p, θ_p, ϵ_p) through the combination of two frequencies, Ω_\star and Ω_*. Batygin & Brown (2016) suggested that the longitude of the ascending node of Planet Nine (relative to that of the solar equator), $\Delta \Omega \equiv \phi_\ast - \phi_\ast$, is about 45° and ranges from 12° to 52°. To produce this $\Delta \Omega$ and $\theta_d = 6^\circ$ over time 4.5 Gyr, the parameters of Planet Nine must satisfy the following conditions, derived from Equations (15)–(16):

$$\tilde{a}_p \simeq 462 \left(\frac{m_p}{10 \, m_\oplus} \frac{\sin 2\theta_p}{\theta_d f} \right)^{1/3} \text{au},$$

(17)

$$\frac{L}{L_p} \simeq \left[15g + 4.84\lambda_\star \left(\frac{P_\star}{10 \text{ days}} \right)^{-1} \sin \theta_p \right] \frac{\sin \theta_p}{\theta_d f} - \cos \theta_p,$$

(18)

where $L = 1.624L_\odot$ and L_p is given by Equation (1), and we have defined

$$\theta_d \equiv \theta_d/6^\circ, \quad g \equiv \left(\frac{\pi/2 - \Delta \Omega}{\pi/4} \right), \quad f \equiv \left(\frac{\pi/2 - \Delta \Omega}{\cos \Delta \Omega} \right).$$

(19)

Figures 1–3 illustrate the parameter space of Planet Nine required to produce $\theta_d = 6^\circ$ and $12^\circ < \Delta \Omega < 52^\circ$. Figure 1 shows the effective semimajor axis \tilde{a}_p as a function of θ_p for several values of planet mass and eccentricity, assuming an “averaged” P_\star/λ_\star or 20 days. Figure 2 illustrates how the result depends on the solar rotation parameter P_\star/λ_\star. Figure 3 shows \tilde{a}_p as a function of m_p for several values of θ_p and ϵ_p. In general, a larger m_p requires a smaller θ_p, with a modest change in \tilde{a}_p. There exists a minimum value of θ_p, as indicated by Equation (18). In all cases, \tilde{a}_p lies in the range between 340 and 480 au in order to produce the desired solar spin orientation.

This work has been supported in part by NASA grants NNX14AG94G and NNX14AP31G and a Simons Fellowship from the Simons Foundation.

REFERENCES

Bailey, E., Batygin, K., & Brown, M. E. 2016, arXiv:1607.03963
Batygin, K., & Brown, M. E. 2016, AJ, 151, 22
Boe, G., & Fabrycy, D. C. 2014, ApJ, 789, 111
Gomes, R., Deienno, R., & Morbidelli, A. 2016, arXiv:1607.05111
Lai, D. 2014, MNRAS, 440, 3532
Lai, D., & Pu, B. 2016, arXiv:1606.08855
Mecheri, R., Abdelatif, T., Irbah, A., Provost, J., & Berthomieu, G. 2004, SoPh, 222, 191