Characteristics of *Bacillus* CgM22 and the Effect of Induction on the Growth Rate in Carp (*Cyprinus carpio*)

Aisyah a*Y*, Kiki Haetami b, Yuniar Mulyani b, Iskandar b, Ibnu Dwi Buwono b and Roffi Grandiosa b

a Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Jatinangor, Sumedang Regency, West Java 45363, Indonesia.

b Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Jatinangor, Sumedang Regency, West Java 45363, Indonesia.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJFAR/2022/v18i430450

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/89749

Received 18 May 2022
Accepted 23 July 2022
Published 25 July 2022

ABSTRACT

Bacillus is a potential probiotic candidate which is currently widely applied in aquaculture. *Bacillus* can be found in various hosts, one of which is found in the intestines of fish. This study contains the genus *Bacillus subtilis* intestinal fish *Bacillus CgM22*. The steps taken were the characterization of *Bacillus CgM22* with gram staining test, inhibition test, and proteolytic test. The method at the fish rearing stage is an experimental method with a Completely Randomized Design (CRD) model that uses four treatments and three replications. Treatment A was control with no addition of antimicrobials in the feed. Treatment B was the addition of 10^8 CFU *Bacillus CgM22* at a dose of 15 ml/kg of feed. Treatment C was the addition of supernatant from *Bacillus CgM22* at a dose of 5 ml/kg of feed. Treatment D was the addition of supernatant from *Bacillus CgM22* at a dose of 10 ml/kg of feed. Furthermore, *Bacillus CgM22* was induced in carp (*Cyprinus carpio*) to see its effect on absolute weight. The results showed that the gene characteristics of the bacteria genus *Bacillus CgM22*, including gram-positive bacteria, had the shape of a rod or *Bacillus*. It was also found that the growing *Bacillus CgM22* could inhibit the growth of...
Aeromonas hydrophilla. There are proteolytic test results that can be seen from the formation of a clear zone with a proteolytic index of IP = 2.19. Based on statistical tests, it was shown that the addition of probiotics was not significantly different (P > 0.05) on the growth rate of carp (Cyprinus carpio).

Keywords: Absolute weight; Bacillus subtilis; carp; proteolytic.

1. INTRODUCTION

Probiotics are live microorganisms that provide health benefits to the host [1]. Probiotics have the function of increasing the host's response to disease and can be used as biocontrol agents to reduce disease attacks. One of the probiotics that can be used is Bacillus subtilis because this bacterium can stimulate immunity both in vivo and in vitro [2]. Induction of B. subtilis added to feed can express genes from the immune system and physiologically will increase the body's resistance to disease.

Currently, there have been many studies regarding the potential of Bacillus sp. Based on the results of research Mulyani et al. [3], several types of Bacillus bacteria were obtained which were isolated from the intestines of carp. Furthermore, Bacillus bacteria were also identified to select alternative sources of immunostimulant candidates and one of them was found in Bacillus CgM22 that identified as Bacillus subtilis [4].

Bacillus are also given to fish as probiotics and can have a better effect on the growth and health status of carp [5]. Several probiotics have been shown to be growth promoters in several carp species. The results showed that supplementation of B. subtilis significantly improved the growth performance than other groups whereas feed efficiency was unaffected by dietary treatments [6]. B. subtilis can increasing the digestive enzymes activities and improving the intestinal morphology. β-glucan and B. subtilis supplementation significantly improved the fillet quality, immune responses and antioxidant status of Pengze crucian carp [7].

Based on this description, it is necessary to conduct research on Bacillus CgM22 which is a bacterium derived from fish intestines to analyze its gene characteristics by gram staining test, inhibition test, proteolytic test, and its effect on growth rate.

2. METODOLOGY

2.1 Methods

The steps taken were the characterization of Bacillus CgM22 by gram staining test, inhibition test, and proteolytic test. Next, fish rearing is carried out. The method at the fish rearing stage is an experimental method with a Completely Randomized Design (CRD) model that uses four treatments and three replications. The treatment given was different at each dose concentration of Bacillus CgM22 supernatant mixed into artificial feed. Treatment A was control with no addition of antimicrobials in the feed. Treatment B was the addition of 10⁸ CFU Bacillus CgM22 at a dose of 15 ml/kg of feed. Treatment C was the addition of supernatant from Bacillus CgM22 at a dose of 5 ml/kg of feed. Treatment D was the addition of supernatant from Bacillus CgM22 at a dose of 10 ml/kg of feed. Furthermore, the weight of the fish is observed until the end of fish rearing period.

2.2 Research Materials

The materials used for gram-bacteria staining were distilled water, Bacillus CgM22 bacterial isolate, Nutrient agar (NA), iodine, gentian violet dye, safranin/water fuchsin dye. In addition, the materials used for the inhibition zone test included chloramphenicol antibiotics, cotton buds, isolates of Aeromonas hydrophila bacteria, Nutrient agar (NA), Nutrient broth (NB). Materials for proteolytic assay are agar, Nutrient Broth (NB), skim milk. Materials for feed induction include carp seeds as test 120 carp, Bacillus CgM22, artificial feed and The aquarium used is 15 with each aquarium containing 10 carp.

2.3 Working Procedure

Based on Agustina et al. [8], Gram staining is carried out through several stages, namely the bacterial sample is scratched on the object glass. 1 drop of gentian violet dye is placed on the smear area and left for 20 seconds. Then washed gently using distilled water and left for 2 seconds. Next, 1 drop of Iodine is placed on the smear area for 1 minute and then
washed gently with alcohol and left for 10 – 20 seconds. After that, the Object glass was washed gently using distilled water, left for 2 seconds. Safranin dye / fuchsin water as much as 1 drop is dripped over the smear area and left for 2 seconds and washed slowly using distilled water and left for 2 seconds. The bacterial smear on the object glass was allowed to dry at room temperature then covered with a cover glass, and the sample was observed under a microscope with the help of immersion oil with a 100x objective magnification.

The zone of inhibition test was carried out by the well diffusion method. The zone of inhibition test against the pathogen *Aeromonas hydrophila* was carried out by growing bacterial isolates on agar medium. The steps taken were as follows [9]: Sterile petri dishes were prepared and filled with starter culture, 50% and 100% supernatants, chloramphenicol antibiotics, and sterile distilled water, respectively. Then, 10 ml of NA was poured into a petri dish. Petri dishes were divided into 4 quadrants and *Aeromonas hydrophila* bacteria were planted on NA media by pouring 0.1 ml of bacteria. After that, the *Aeromonas hydrophila* bacteria were flattened using a sterile lab cottonbud and waited for the bacteria to absorb into the media. Furthermore, the media was made wells with each treatment inserted into the well as much as 15 l, and then incubated at a temperature of 30°C for 24 hours.

The proteolytic test was carried out using skim milk agar media. The proteolytic test on the *Bacillus CgM22* was carried out by growing bacterial isolates on agar media. The skim milk agar medium was prepared by dissolving 1 g of Nutrient Broth (1%), 2 g of agar (2%), and 2 g of skim milk (2%) into 100 ml of distilled water. Then the media was sterilized using an autoclave at 121°C for 60 minutes. Aseptically, the media was poured into sterile petri dishes evenly until all surfaces of the petri dishes were filled with the media. After the media hardened, each bacterial isolate was streaked with an ose needle on the skim milk media. The samples were then incubated for 24-48 hours at 30°C. The presence of protease enzyme activity was then observed with the formation of a clear zone around the bacterial colonies after incubation [10].

Induction was carried out by weighing the feed and adding *Bacillus CgM22* culture using a density of 10^8 with a dose of 10 ml/kg and the supernatant with a dose of 5 ml/kg and 10 ml/kg of feed, respectively. Before being mixed into the feed, a binder (egg white) was added as much as 2% of the weight of the feed. Then the feed is mixed and stirred until evenly distributed until dry. Feeding per day only 2 times a day using the method of feeding by calculating feed requirements based on body weight (ad libitum). Before being fed fish from each aquarium, they were weighed in order to know their weight and to be able to determine the weight of feed that should be given per day. Provision of probiotic feed was carried out for 2 months of the maintenance period [11].

2.4 Analysis Method

Inhibition zone test analysis was carried out by measuring the transparent zone after 24 hours of incubation from bacterial cultivation and disc placement. The results obtained are divided by two to get the average as in the following formula [12].

$$D = \frac{(D1-A)+(D2-A)}{2}$$

Description:

D: average inhibition zone diameter (mm)
D1: horizontal diameter of clear zone (mm)
D2: vertical diameter of clear zone (mm)
A: well diameter (mm)

The analysis of the proteolytic test is to calculate the proteolic index, namely the comparison between the diameter of the clear zone and the diameter of the colony to obtain potential isolates [13]. The proteolytic index is obtained by the formula based on [14] as follow:

$$IP = \frac{\text{Clear zone diameter}}{\text{Colony diameter}}$$

Description:

IP: Proteolytic Index

3. RESULTS AND DISCUSSION

The results of *Bacillus CgM22* staining can be seen in Fig. 1.

Based on the results obtained, the results showed that the bacterial isolates had the shape of a rod or *Bacillus* and included gram-positive bacteria. Gram-positive bacteria cells look purple because they can form complex bonds with the main dye (crystal violet), namely purple. The cell wall of Gram-negative bacteria consists of 5-20%
peptidoglycan, the rest is polysaccharide. Giving 95% alcohol solution to the cell can increase the porosity of the cell wall by dissolving the lipids in the outer membrane, so that the purple color will be released and the cell will become colorless. Furthermore, the cells will be red because they are colored by the comparison color, namely safranin [15].

Tests for the inhibition of *Bacillus* CgM22 against *Aeromonas hydrophilla* were carried out with distilled water as a negative control and the antibiotic chloramphenicol as a positive control. The method used is the well diffusion method using 5 treatments, namely chloramphenicol, distilled water, culture, and bacterial supernatants 50% and 100%. This test was carried out for 3 days and the results were as shown in Fig. 2.

Based on the results obtained, there is an inhibitory activity on *Bacillus* CgM22. According to Morales et al. [16], the inhibitory zone activity was grouped into four categories, namely: weak (<5 mm), moderate (5–10 mm), strong (>10–20 mm), very strong (>20–30 mm). Bacterial inhibitory activity was expressed based on the clear zone produced around the well. The diameter of the zone of inhibition of bacterial growth was measured in mm. The larger the clear zone formed, the greater the inhibitory activity of lactic acid bacteria isolates against pathogenic bacteria [17]. This inhibition zone activity is indicated by the presence of a clear zone around the well. Based on the results obtained, the activity of this bacterium was proven to inhibit *Aeromonas hydrophilla* bacteria.

![Fig. 1. Gram Bacillus CgM22 staining results with 100x magnification](image1)

Fig. 1. Gram Bacillus CgM22 staining results with 100x magnification

![Fig. 2. Test Results for Bacillus CgM22. Inhibitory zone](image2)

Fig. 2. Test Results for Bacillus CgM22. Inhibitory zone

Description: (a) Culture, (b) 50% supernatant, (c) 100% supernatant, (+) Chloramphenicol 1000ppm, (-) Aquades
Table 1. Inhibitory zone test results on *Bacillus* CgM22

Test	Hours of	Inhibition Zone Diameter (mm)					
		Treatment	Control +	Control –	Culture	Supernatant 100%	Supernatant 50%
1	24	10.3	0	1.26	1.49	0.85	
	48	10.73	0	3.06	2.59	2.18	
	72	11.31	0	4.33	2.94	2.19	
2	24	10.11	0	1.5	0.97	0.92	
	48	10.46	0	5.11	1.02	1.68	
	72	11.58	0	3.95	3.3	2.57	
3	24	9.87	0	1.24	1	1	
	48	10.89	0	2.55	1.01	1.16	
	72	10.99	0	4.37	3.43	3.63	
Average		10.69	0	3.04	1.97	1.80	
Interpretation	Strong –	Weak	Weak	Weak			

Based on the results of the completely randomized design test (Table 1), it was found that the results obtained from the complete design test were significantly different from each treatment \(P < 0.05 \). The notation results obtained are treatment C 2.0\(^a\), treatment B 2.68\(^ab\), treatment A 3.24\(^b\), treatment D 10.69\(^c\), seen from the highest average obtained, and the best inhibition zone test for *Bacillus* CgM22 in culture treatment with an average 3.04mm. Utilization of *B. subtilis* bacteria in cultivation systems has been used as a solution to prevent the development of pathogens, increase nutrient assimilation and improve environmental parameters [18].

The average yield in the clear zone formed around the isolates was caused by the presence of extracellular antimicrobial compounds released. The formation of the diameter of the inhibition zone at each concentration can be caused by differences in the size of the concentration or the amount of antibacterial active substances contained therein and the rate of diffusion of these antibacterial compounds. Other factors affect the size of the inhibition zone, namely the length of time the sample is stored in the refrigerator and whether the container used to store bacterial samples is tight or not [4].

Furthermore, *Bacillus* CgM22 was tested for its proteolytic activity using skim milk agar media and incubated for 24 hours. Based on Fig. 3, it is known that there is a clear zone around the bacterial colonies. The presence of bacterial
extracellular protease activity causes casein in CCA media to hydrolyze into peptides and amino acids. The clear zone is an indicator that bacterial isolates can utilize casein in the media as a source of nutrition [19].

Based on the results of the study, it was found that the identified *Bacillus CgM22* could produce extracellular proteolytic enzymes. Proteolytic bacteria are bacteria that can degrade proteins because they produce extracellular protease enzymes. Protease is an enzyme that is widely used in the animal feed industry and has almost reached 65% of the total sales of enzymes in the world [20]. One of the functions of proteases is to play a role in the degradation of protein into amino acids which makes fish feed more easily absorbed by the digestive system [21].

Most of the genus *Bacillus* are major producers of extracellular proteases. The advantages of the *Bacillus* genus are that it does not produce toxins, is easy to grow, does not require expensive substrates, and can withstand high temperatures [22]. Among the various protease producers, *Bacillus* sp. is commercially recognized for exploiting microbes for protease production [23]. Several alkaline proteases derived from *Bacillus* with apparent activity, stability, wide pH, temperature, short fermentation time, and modest but high efficiency are getting more consideration for isolation and facilitating the study of the enzymes they produce [24].

Based on Table 2, it was found that the results of calculating the proteolytic index (IP) based on the clear zone obtained value IP ≥ 2. This index indicates that *Bacillus CgM22* has protease activity [25]. The ability of microorganisms to secrete proteases is due to the enzyme degrading proteins. The medium included with skim milk containing casein is a milk protein that can be broken down by proteolytic microorganisms into dissolved nitrogen compounds so that the colonies are surrounded by a clear zone, that these microorganisms have proteolytic activity [26].

Table 2. Proteolytic index of *Bacillus CgM22*

Test	Clear zone diameter (mm)	Colony diameter (mm)	IP
1	13.14	6.33	2.35
2	10.96	5.21	2.1
3	10.37	4.9	2.12
Average	12.05	5.48	2.19

![Fig. 4. Growth Rate After Induction of *Bacillus CgM22*](image)

(a) Control, (b) Addition of culture *Bacillus CgM22* 10⁸ CFU as much as 10 ml/kg feed, (c) addition of Supernatant from *Bacillus CgM22* as much as 5 ml/kg feed (d) addition of Supernatant from *Bacillus CgM22* as much as 10 ml/kg feed
Fish feed contains high enough protein as the main component of feed and a source of energy for fish. Feed that enters the digestive tract of fish will be degraded by digestive enzymes. Based on the results, Bacillus CgM22 has proteolytic properties, which can secrete protease enzymes to hydrolyze peptide bonds in proteins into oligopeptides and amino acids.

Based on the results of statistical tests, there was no significant difference between the addition of probiotics (P > 0.05). As the results of research giving Bacillus showed weight gain, increased growth performance, and feed conversion ratio [27]. The value of fish weight gain in each treatment was higher than the control treatment, presumably because the probiotic Bacillus given entered the digestive tract and was able to increase fish appetite. Furthermore, these bacteria in the digestive tract of fish will secrete digestive enzymes such as proteases and amylase [28]. [29] stated that the presence of enzymes produced by Bacillus probiotics such as amylase, lipase and protease that can trigger fish growth.

4. CONCLUSION
The characteristics of the gene for bacteria of the genus Bacillus CgM22, including gram-positive bacteria, have the shape of a rod or Bacillus. It was also found that the growing Bacillus CgM22 could inhibit the growth of Aeromonas hydrophila. There are proteolytic test results with a proteolytic index of IP = 2.19. Based on the results of statistical tests showed that the addition of probiotics was not significantly different (P > 0.05) to the growth rate of carp (Cyprinus carpio).

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Adv Nutr. 2019;10:S49–66.
2. Mohapatra S, Chakraborty T, Kumar V, Deboeck G, Mohanta KN. Aquaculture and stress management: A review of probiotic intervention. J Anim Physiol Anim Nutr (Berl). 2013;97(3):405–30.
3. Mulyani Y, Aryantha INP, Suhandono S, Pancoro A. Intestinal bacteria of common carp (Cyprinus carpio L.) as a biological control agent for aeromonas. J Pure Appl Microbiol. 2018;12(2):601–10.
4. Sofandi ANF, Mulyani Y, Rochima E, Rosidah R. Growth characteristics and antagonistic potential of Bacillus cereus and Bacillus zhangzhouensis against pathogenic bacteria Aeromonas hydrophila in vitro. World Sci News. 2021;158(May):187–200.
5. Djauhari R, Suprawidya MA, Junior MZ. Kinerja pertumbuhan dan status kesehatan ikan mas (Cyprinus carpio) yang diberi probiotik Bacillus sp. NP5. Prebiotik dari ubi jalar (Ipomoea batatas L) DAN SINTERIOTIK Growth Performances and Health Status of Common Carp (Cyprinus carpio) Suplemen. Pros Semin Nas Perikan dan Kelaut. 2007;129–39.
6. Jiang H, Bian Q, Zeng W, Ren P, Sun H, Lin Z, et al. Oral delivery of Bacillus subtilis spores expressing grass carp reovirus VP4 protein produces protection against grass carp reovirus infection. Fish Shellfish Immunol [Internet]. 2019;84:768–80. Available:https://doi.org/10.1016/j.fsi.2018.10.008.
7. Cao H, Yu R, Zhang Y, Hu B, Jian S, Wen C, et al. Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquaculture [Internet]. 2019;508(April):106–12. Available:https://doi.org/10.1016/j.aquaculture.2019.04.064.
8. Agustina D, Yulvizar C, Nursanty R. Isolasi dan Karakterisasi Bakteri pada Ikan Kembug (Rastrelliger sp.) Asin Berkitosan. Biospecies. 2013;6(01):15–9.
9. Ambarwati D, Ibrahim M. Aktivitas Antibakteri Metabolit Ekstraseluler Bacillus subtilis terhadap Shigella dysenteriae secara In Vitro. In Vitro Antibacterial Activity of The Extracellular Metabolites of Bacillus subtilis towards Shigella dysenteriae. Lentera Bio. 2021;10(1):25–32.
10. Kabense R, Ginting EL, Wullur S, Kwung NJ, Losung F, Tombokan JL. Screening of the Proteolytic Bacteria Symbiont with Algae Gracilaria sp. J Iim Platax. 2019;7(2):421.
11. Septiarini, Harpeni E, Wardiyanto. Pengaruh Waktu Pemberian Prebiotik.
yang Berbeda Terhadap Respon Imun Non-Spesifik Ikan Mas (Cyprinus carpio L.) yang Diijui Tantang dengan Bakteri Aeromonas Salmonicida. e-Jurnal Rekayasa dan Teknol Budid Perair. 2012; 1(1):39–46.

12. Tuna MR, Kepel BJ, Leman MA. Uji Daya Hambat Ekstrak Etanol Daun Srikaya (Annona squamosa L.) Terhadap Pertumbuhan Staphylococcus aureus Secara In Vitro. J Ilm Farm. 2015; 4(4):65–70.

13. Dewi IM. Isolasi Bakteri Dan Uji Aktivitas Kitinase Termofilik Kasar Dari Sumber Air Panas Tinggi Raja, Simalungun Sumatera Utara, 2008 USU Repository © 2008. Thesis: Universitas Sumatera Utara; 2008.

14. Suryadi Y, Priyatno TP, Samudra IM, Susilowati DN, Lawati N, Kustaman E. Pemurnian Parsial dan Karakterisasi Kitinase Asal Jamur Entomopatogen Beauveria bassiana Isolat BB200109. J AgroBiogen. 2016;9(2):77.

15. Ismail YS, Yulvizar C, Putriani. Isolasi, Characterization, and Antimicrobial Activity of Lactic Acid Bacteria from the Fermented Cacao Seed (Theobroma cacao L.). Bioleuser. 2017; 1(2):45–53.

16. Morales G, Sierra P, Manicilla A, Paredes A, Loyola LA, Gallardo O, et al. Secondary Metabolites From Four Medicinal Plants From Northern Chile: Antimicrobial Activity And Biodiversity Against Artemia salina. J Chil Chem Soc. 2006;51(1):9–14.

17. Afrika D, Effendi I, Siregar YI. Isolasi, Identifikasi dan Uji Antagonisme Bakteri Heterotrofik pada Tumbuhan Mangrove terhadap Bakteri Patogen (Vibrio alginolyticus, Aeromonas hydrophila, dan Pseudomonas sp.). J Perikan dan Kelaut. 2019;24(1):61–8.

18. Olmos J, Acosta M, Mendoza G, Pitones V. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol [Internet]. 2020; 202(3):427–35. Available:https://doi.org/10.1007/s00203-019-01757-2

19. Badiyiah BI, Ardyati T, Mikrobiologi L, Biologi J, Brawijaya U, Malang JV, et al. Deteksi aktivitas proteolitik isolat bakteri asal ampas tahu pada substrat bekatul. J Biotropika. 2013;1(3):109–13.

20. Huang G, Ying T, Huo P, Jiang J. Purification and characterization of a protease from Thermophilic bacillus strain HS08. African J Biotechnol. 2006;5(24): 2433–8.

21. Farida Z, Nurhayati, Handayani L. Aplikasi Penggunaan Enzim Protease Kasar Tanaman Biduri (Calotropis gigantea) Pada Pakan Ikan Nila (Oreochromis niloticus). J Tilapia. 2022;3(1):84–93.

22. Linggjarjati KF, Djunaedi A, Subagiyono. Uji Penggunaan Bacillus sp. sebagai Kandidat Probiotik untuk Pemeliharaan Rajungan (Portunus sp.). J Mar Res. 2013;2(1):1–6.

23. Musftaq A, Mustafa G, Ansari TM, Shad MA, Cruz-Reyes J, Jamil A. Antiviral activity of hexapeptides derived from conserved regions of bacterial proteases against HCV NS3 protease. Pak J Pharm Sci. 2021;34(1):215–23.

24. Pham VHT, Kim J, Shim J, Chang S, Chung W. Purification and Characterization of Strong Simultaneous Enzyme Production of Protease and α-Amylase from an Extremophile-Bacillus sp. FW2 and Its Possibility in Food Waste Degradation. Fermentation. 2022; 8(1).

25. Setiawan A, Arimurti S, Senjarini K, Biologi SJ. Aktivitas Proteolitik dan Fibrinolitik Isolat Bakteri dari Perairan Pantai Papuma Kabupaten Jember. Berk Sainstek. 2016; IV(1):1–4.

26. Colantuono A, D’Incecco P, Fortina MG, Rosi V, Ricci G, Pellegrino L. Milk substrates influence proteolytic activity of Pseudomonas fluorescens strains. Food Control [Internet]. 2020;111(October 2019):107063. Available: https://doi.org/10.1016/j.foodcont .2019.107063

27. Kuebutorny FKA, Tang J, Cai J, Yu H, Wang Z, Abarike ED, et al. In vivo assessment of the probiotic potentials of three host-associated Bacillus species on growth performance, health status and disease resistance of Oreochromis niloticus against Streptococcus agalactiae. Aquaculture [Internet]. 2020;527:735440. Available: https://doi.org/10.1016/j.aquacult ure.2020.735440

28. Irianto A. Probiotik Akuakultur. Yogyakarta: Gadjah Mada University Press. 2003; 12.

29. Alfian, Lukistyowati I, Syawal H. Pemberian probiotik Bacillus sp. berasal dari Udang Galah
Macrobranchium rosenbergii De Man dan Udang Windu (Penaeus monodon) terhadap Status Kesehatan Ikan Nila (Oreochromis niloticus). J Online Mhs Fak Perikan dan Ilmu Kelaut Univ Riau. 2017;4(1):1–10.

© 2022 Aisyah et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/89749