DETERMINATION OF THE PRIMORDIAL MAGNETIC FIELD POWER SPECTRUM
BY FARADAY ROTATION CORRELATIONS

TSAFRIR KOLATT
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; and Department of Physics and Lick Observatory, University of California at Santa Cruz, Santa Cruz, CA 95064; tsafir@physics.ucsc.edu

Received 1997 April 8; accepted 1997 October 16

ABSTRACT

This paper introduces the formalism which connects between rotation measure (RM) measurements for extragalactic sources and the cosmological magnetic field power spectrum. It is shown that the amplitude and shape of the cosmological magnetic field power spectrum can be constrained by using a few hundred radio sources, for which Faraday RMs are available. This constraint is of the form \(B_{\text{rms}} \propto 1 \times (2.6 \times 10^{-7} \text{ cm}^{-3}/n_{b}) h \) nG on \(\sim 10^{-5} h^{-1} \) Mpc scales, with \(n_{b} \) the average baryon density and \(h \) the Hubble parameter in units of \(100 \text{ km s}^{-1} \text{ Mpc}^{-1} \). The constraint is superior to and supersedes any other constraint that comes from either cosmic microwave background (CMB) fluctuations, baryonic nucleosynthesis, or the first two multipoles of the magnetic field expansion. The most adequate method for the constraint calculation uses the Bayesian approach to the maximum likelihood function. I demonstrate the ability to detect such magnetic fields by constructing simulations of the field and mimicking observations. This procedure also provides error estimates for the derived quantities.

The two main noise contributions due to the Galactic RM and the internal RM are treated in a statistical way following an evaluation of their distribution. For a range of magnetic field power spectra with power indices \(-1 \leq n \leq 1\) in a flat cosmology \((\Omega_{n} = 1)\) we estimate the signal-to-noise ratio, \(Q \), for limits on the magnetic field \(B_{\text{rms}} \) on a \(\sim 50 h^{-1} \) Mpc scale. Employing one patch of a few square degrees on the sky with source number density \(n_{\text{src}} \), an approximate estimate yields \(Q \propto 3(B_{\text{rms}}/1 \text{nG})/50 n_{\text{src}} \). An all-sky coverage, with a much sparser but carefully tailored sample of \(\sim 500 \) sources, yields \(Q \approx 1 \) with the same scaling. An ideal combination of small densely sampled patches and sparse all-sky coverage yields \(Q \approx 3 \) with better constraints for the power index. All of these estimates are corroborated by the simulations.

Subject headings: intergalactic medium — large-scale structure of universe — magnetic fields — polarization

1. INTRODUCTION

There is plenty of evidence for magnetic fields on the scale of the Earth, the solar system, the interstellar medium, galaxies, and clusters of galaxies (for the extragalactic magnetic field see the review by Kronberg 1994, and references therein). We still do not know, however, whether any larger scale magnetic fields exist. There are various upper limits on the rms value of the cosmological magnetic field, but the upper limits are still too high to exclude any relevance to magnetic fields observed on smaller scales. Cosmological magnetic fields might help to resolve the bothersome question of the origin of the \(\sim 10^{-6} \text{ G} \) magnetic field which exists on galactic scales or fields of similar size seen on the scales of galaxy clusters. A primordial (pre-galaxy formation) magnetic field amplified by the gravitational collapse, and then by processes like differential rotation and dynamo amplification (Parker 1979, p. 616), can serve to seed these observed smaller scale magnetic fields.

The most stringent upper limits to date for magnetic fields on cosmological scales come from three different sources:

1. Big bang baryonic nucleosynthesis (BBN).—Magnetic fields that existed during the BBN epoch would affect the expansion rates, the reaction rates, and the electron density (and possibly the spacetime geometry). By taking all these effects into account in the calculation of the element abundances, and then comparing the results with the observed abundances, one can set limits on the magnetic field amplitude. The limits for homogeneous magnetic fields on scales \(\gg 10^{-14} h^{-1} \) Mpc (distances are quoted in comoving coordinates) and up to the BBN horizon size \((\sim 10^{-6} h^{-1} \) Mpc) are \(10^{-9} \) to \(10^{-6} \) G in terms of today’s values (Grasso & Rubinstein 1995, 1996; Cheng et al. 1996). The relevance of these limits for the maximum value of magnetic field seeds on the subgalactic scale is obvious, but in order for these limits to be relevant to the intergalactic magnetic field, further assumptions about the superhorizon magnetic field power spectrum and the magnetic field generation epoch should be made.

2. The CMB radiation.—The presence of magnetic fields during the time of decoupling causes anisotropy, i.e., different expansion rates in different directions (Zeldovich & Novikov 1975). Masden (1989) provides a useful formula for the connection between the measured temperature fluctuations on a given scale at \(z_{d} \), the decoupling time, and the limits on the equivalent scale today. For a magnetic field energy density much smaller than the matter energy density, the limit is

\[
B_{\text{rms}}(R) \leq 3 \times 10^{-4} h \left[\frac{\Delta T}{T}(R) \Omega \sqrt{1 + z_{d}} \right] \text{ nG}.
\]

For typical values of \(h = 1 \) (the Hubble constant in units of \(100 \text{ km s}^{-1} \text{ Mpc}^{-1} \)), temperature fluctuations of \(\sim 10^{-5} \), \(\Omega = 1 \), and \(z_{d} \approx 5 \), the limit becomes \(B_{\text{rms}} < 10^{-8} \) to \(10^{-9} \) G. Recently, Barrow, Ferreira, & Silk (1997) used the COBE 4 year data to constrain the magnetic field on the horizon scale by \(B(R = R_{d}) < 6.8(\Omega h)^{1/2} \) nG.
3. *Multipole expansion of RM observations.*—Passing through a magnetoeionic medium, polarized light undergoes rotation of the polarization vector (Faraday rotation; for definition see § 2). The rotation amount is proportional to the dot product of the magnetic field and the light propagation direction, and to the distance the light travels through the medium. If any cosmological magnetic field exists, the farther away the source, the more the polarized light component is rotated. We refer to this as the “monopole” term. This term exists even if the field has no preferred direction on the horizon scale, namely, even without breaking the isotropy hypothesis.

If there is a preferred direction to the field on a cosmological scale, a dipole will show up in the RM measurements across the sky, due to the different sign of the dot product (and thus the different rotation direction). So far attempts have been made only to identify a monopole or a dipole in the magnetic field for scales of $\zeta \approx 2.5$ (Kronberg 1976) and $\zeta \approx 3.6$ (Valleé 1990). The search for a dipole signature in the Faraday rotation values for a sample of extragalactic sources (QSOs) yields limits of $B < 10^{-1}$ nG depending on the assumed cosmology (Kronberg & Simard-Normandin 1976; Kronberg 1976). Valleé (1990) tried to estimate the limits on the dipole and the monopole terms and concluded that an all-prevailing (up to $\zeta = 3.6$) field must be smaller than $6 \times 10^{-2}(10^{-6}$ cm$^{-3})/n_h$, nG.

Other potential methods of detecting a possible cosmological magnetic field include distortion of the acoustic (“Doppler”) peak in the CMB power spectrum (Adams et al. 1996) and Faraday rotation of the CMB radiation polarized components (Loeb & Kosowsky 1996). These methods were not designed to probe any magnetic field generated after recombination. Their implementation is still pending on the upcoming measurements of the CMB fluctuations and polarization.

A method that does probe magnetic fields generated in the postrecombination era relies on cosmic-ray (CR) detection. The effect of magnetic fields on high-energy CRs ($> 10^{18}$ eV) is twofold. It will first alter the energy distribution of CRs (Lee, Olinto, & Sigl 1995; Waxman & Miralda-Escudé 1996), and then, if the CR direction is identified and attributed to a known region or source, the magnetic field either smears the directionality (for field coherent scales much smaller than the distance to the source) or deflects the CR direction from aligning with the source direction. Current limits from this last effect are either very weak or nonexistent.

Theories for primordial magnetic fields in the framework of structure evolution paradigms have been suggested by a number of authors. Magnetic fields on cosmological scales emerge in the framework of these theories in one of three epochs: the inflation era, the plasma era, and the postrecombination era. In the inflation era, magnetic fields form due to quantum mechanical processes (Turner & Widrow 1988; Quashnock, Loeb, & Spergel 1989; Vachaspati 1991; Ratra 1992a, 1992b; Dolgov & Silk 1993) or possibly magnetohydrodynamics (Brandenburg, Enquist, & Olesen 1996). During the plasma era, prior to recombination, magnetic fields form due to vorticity caused by the mass difference between the electron and the proton (Harrison 1973, but see Rees 1987), or where magnetic field fluctuation survival (no vorticity assumed) depends on the fluctuation scale (Tajima et al. 1992). Other authors have pointed out that even in the postrecombination era (but before galaxy formation) magnetic fields can be generated by tidal torques (Zweibel 1988) or by cosmic string wakes (Ostriker & Thompson 1987; Thompson 1990). Magnetic field generated in the process of structure formation itself, due to falling matter (Pudritz & Silk 1989), or starburst regions, are less likely to feed back into the intergalactic space and to affect the cosmological magnetic field. Nevertheless, proposals in this spirit were also considered by taking into account wind-driven plasma that fills intergalactic space with magnetic fields.

Whatever the origin of cosmological magnetic fields, each suggested theory specifies the magnetic field amplitude and power spectrum shape. Thus, each of the theories can in principle become refutable if we can measure, or put limits on, the normalized power spectrum of the cosmological magnetic field.

This challenge, and the realization that with existing or upcoming data it will be possible to measure the magnetic field power spectrum, have led us to develop a method for doing so. We argue that much better estimates (or upper limits) for the cosmological magnetic field can be calculated by using the RM correlation matrix.

All previous attempts to limit the cosmological magnetic field dipole on very large scales ($\zeta \approx 2.5–3.6$) suffer from two drawbacks. From a theoretical point of view it is difficult to reconcile the necessary anisotropy such a dipole imposes with other evidence which suggests global isotropy. From a practical point of view, this test is confined to one scale, and does not allow measurements over a whole range. Only by extending the measurement to a whole range can one estimate the full power spectrum (PS). Although contribution from a “random walk” can be useful even if only a monopole is calculated (see below), the information is partial, inferior to the full derivation of the magnetic field by RM correlations, and sensitive to evolutionary effects.

Why is the correlation approach more advantageous than other types of statistics, and in particular why is it better than the monopole approach? In the monopole approach we are looking for a correlation between RM values and the source redshift. Let us pretend at first that all measurements are exact and there are no noise sources (we will notice in § 3 that these two assumptions are far too optimistic). Consider a scale l_0 over which the magnetic field is coherent with an rms value of B_{rms}. A line of sight to a source at a distance r_{src} will cross $N_l = r_{\text{src}}/l_0$ such regions. There is no correlation in the magnetic field orientation between the regions, and on average each one of them contributes $\text{RM}_{\text{rms}} \propto B_{\text{rms}}l_0$. The overall contribution due to N_l random walk steps sums up to $\text{RM}_{\text{rms}} = N_l^{1/2} \text{RM}_{\text{rms}} \propto B_{\text{rms}}(l_0 r_{\text{src}})^{1/2}$. It is thus clear that the larger r_{src}, the bigger RM_{rms} we expect for an ensemble of sources located at r_{src}. Now let us turn to the correlation approach. Two lines of sight to two adjacent sources (with separation angle γ and assuming the same redshift for the two) are observed for correlation between the RM values of the polarized light emanating from them. If $\gamma_{\text{src}} \approx l_0$, the two light rays undergo the same rotation in each patch of length l_0 (for small γ we neglect the difference in the $\cos \theta$ term between the magnetic field and the line of sight). The ensemble average of the correlation term would then be $\langle \text{RM}_1 \text{RM}_2 \rangle^{1/2} = N_l \text{RM}_{\text{rms}} \propto B_{\text{rms}}r_{\text{src}}$, with the same proportionality constant as before. In the limit of $l_0 \to r_{\text{src}}$, the two expressions coincide, but for any value of $l_0 < r_{\text{src}}$ the
signal from the correlation calculation is amplified by the factor $(r_{\text{src}}/l_0)^{1/2}$. For example, if $r_{\text{src}} = 1700 \ h^{-1} \ Mpc$ ($z \approx 1$) and $l_0 = 10 \ h^{-1} \ Mpc$, the signal is amplified by more than an order of magnitude. Moreover, the correlation provides information about the power spectrum (different γ and r_{src} values) of the magnetic field that otherwise we would not be able to obtain. The correlation also makes it easier to separate the noise from the signal, unlike the monopole approach. We will return to this approximation later on, under more realistic considerations (§ 3.5), when we attempt to evaluate the number of pairs needed in order to establish a certain signal-to-noise ratio at a given scale (γ). For now, this simple model demonstrates the advantages of this paper’s approach.

In order to relate actual data of RM measurements to the magnetic field, we begin by considering the connection between the two. In § 2 we introduce the magnetic field correlation tensor and its connection to the RM correlation. In § 3 we make use of these definitions and describe the calculation procedure for the RM correlation from the raw data to the constraints on the magnetic field power spectrum. A key issue is the estimate of signal from noncosmological contributions to the RM. The impatient reader can turn immediately to § 3.5 to get a rough estimate for the expected signal-to-noise ratio. We demonstrate the procedure in § 4, where we simulate a few realistic examples of cosmological magnetic fields and exploit them to get RM measurements from which we derive our estimate of the original power spectrum. The simulations also allow us to perform a realistic error analysis. In § 5 we discuss prospects for applying the procedure to real data and conclude with our results.

2. THE ROTATION MEASURE CORRELATION MATRIX

Linearly polarized electromagnetic radiation of frequency v traveling a distance dl through a nonrelativistic plasma medium with the magnetic field B is rotated by the angle $d\phi$. In other words, the polarization angle is changed by (e.g., Lang 1978, eqs. [1-268]–[1-270])

$$d\phi = \frac{e^3 n_e}{2\pi m_e^2} \frac{B \cdot dl}{v^2},$$

(2)

where e, m_e, and n_e are the electron charge, mass, and number density, respectively (we use units of $c = 1$). The rotated polarization vector itself is written

$$p(v) = |p(v)| e^{i2\phi},$$

(3)

a pseudovector degenerated in rotation of ϕ by πn. It is related to the Stokes parameters via

$$|p| = \left(\frac{Q^2 + U^2}{I} \right)^{1/2}, \quad \phi = \frac{1}{2} \tan^{-1} \left(\frac{U}{Q} \right),$$

(4)

which in turn are expressed by the electric field components perpendicular to the wave propagation direction (z):

$$I = E_z^2 + E_y^2,$$
$$Q = E_z^2 - E_y^2,$$
$$U = E_x^2 + E_y E_x,$$

(5)

where time average is explicitly assumed.

In the cosmological context, some of the quantities are functions of time (or equivalently redshift or distance). We assume fully ionized gas (ionization fraction $X_e = 1$), and thus the average number density of free electrons is

$$\bar{n}_e = X_e \bar{n}_b = \bar{n}_b.$$

(6)

The baryon number density at a specific location is $n_b(x) = \bar{n}_b(1 + \delta(x))$, with $\delta(x)$ the dimensionless density fluctuation. Number densities scale as a^{-3}, where a is the scale factor. The frequency scales as a^{-1}, and under the assumption of flux conservation, B scales as a^{-2}. The distance unit dl in a Robertson-Walker metric is given by

$$dl = dt = a(t)dr = \frac{dr}{\sqrt{1 - Kr^2}},$$

(7)

expressed via η, the conformal time. Since $a = (1 + z)^{-1}$ for the redshift z, the overall rotation of the polarized radiation of a source at the redshift z, the direction \hat{q} as observed from x (we set $x = 0$ for simplicity) and at frequency v_0, is given by

$$\int_0^{r_z} d\phi = \frac{e^3 \bar{n}_b}{2\pi m_e^2 v_0} \int_0^{r_{\text{src}(x)}} [1 + \delta(\hat{q} \cdot \hat{r})](1 + z)^3$$
$$\times B_\phi(\hat{q} \cdot \hat{r}) \cdot \frac{dr'}{\sqrt{1 - Kr'^2}} = \frac{RM(\hat{q}, z)}{v_0^2},$$

(8)

Today’s values are all denoted by the subscript zero and $z’ = z(r’).$ The time dependence of $\delta(\hat{q} \cdot \hat{r})$ is taken into account later on (cf. eq. [12]). The two-point correlation function of the RM is defined by

$$\langle \text{RM}(\hat{q}_1, z_1) \text{RM}(\hat{q}_2, z_2) \rangle;$$

(9)

see Nissen & Thielheim (1975) for a similar definition. Throughout the paper, angular brackets denote an ensemble average. We use the notation $r’ = r_1 - r_2$ and obtain

$$\text{Y} = \left(\frac{e^3 \bar{n}_b}{2\pi m_e^2} \right)^2 \int_0^{r_{\text{src}(z_1)}} \frac{dr_1}{\sqrt{1 - Kr_1^2}} [1 + \delta(\hat{q}_1 \cdot \hat{r}_1)](1 + z_1)^3$$
$$\times \int_0^{r_{\text{src}(z_2)}} \frac{dr_2}{\sqrt{1 - Kr_2^2}} [1 + \delta(\hat{q}_2 \cdot \hat{r}_2)](1 + z_2)^3$$
$$\times \hat{q}_{1i} \hat{q}_{2j} \frac{1}{V} \int B_{0i}(x) B_{0j}(x + r') d^3 x,$$

(10)

where summation over the spatial components i, j is assumed. The integral (10) is made out of four terms. Two of the terms (those involving only one power of δ) vanish because $\langle \delta \rangle = 0$ and we assume vanishing correlation between the density fluctuations and magnetic fluctuations $\langle [B(x) \delta(x + r)] = 0 \forall (x, r) \rangle$ due to the vector nature of B and the scalar δ.

The two remaining terms are

$$\text{Y}_0 = \left(\frac{e^3 \bar{n}_b}{2\pi m_e^2} \right)^2$$
$$\times \int_0^{r_{\text{src}(z_1)}} \frac{dr_1}{\sqrt{1 - Kr_1^2}} (1 + z_1)^3 \int_0^{r_{\text{src}(z_2)}} \frac{dr_2}{\sqrt{1 - Kr_2^2}} (1 + z_2)^3$$
$$\times \hat{q}_{1i} \hat{q}_{2j} \frac{1}{V} \int B_{0i}(x) B_{0j}(x + r') d^3 x,$$

(11)

and
\[Y_\gamma = \left(\frac{e^3 \hbar_0}{2 \pi m_e^2} \right)^2 \times \int_0^{r_1(z_1)} \frac{dr_1}{\sqrt{1 - Kr_1^2}} (1 + z_1)^2 \int_0^{r_2(z_2)} \frac{dr_2}{\sqrt{1 - Kr_2^2}} \xi_0(r') \times \left[(1 + z_2)^2 \hat{q}_1 \cdot \hat{r} (\hat{q}_2 \cdot \hat{r}) + (1 + z_1)^2 \hat{q}_1 \cdot \hat{r} \right], \quad (12) \]

where \(\xi(r) \) is the baryonic matter correlation function that we identify with the matter correlation function. Today’s value of it is \(\xi_0 \), and the missing powers of \((1 + z)\) in equation (12) account for the linear evolution of this correlation. The RM correlation function is the sum

\[\Upsilon = Y_\gamma + Y_\delta. \]

The last integral of equations (10), (11), and (12) is the correlation tensor of the magnetic field defined as \(C_\gamma(r) = \langle B(x)B(x + r) \rangle \). In the cosmological case, we assume isotropy on scales much smaller than the horizon and confine \(C_\gamma \) to be a function of \(|r|\) only. Because the magnetic field is a divergence-free field, the magnetic field correlation can be written (Monin & Yaglom 1975, p. 29) as a combination of parallel \((C_\parallel)\) and perpendicular \((C_\perp)\) functions. The parallelism and orthogonality are given with respect to the connecting vector \(r = r_1 - r_2 \):

\[C_\gamma(r) = C_\parallel(r) + C_\perp(r) \delta_{ij}, \]

\[C_\gamma(k) = \int C_\gamma(r) \exp(-ik \cdot r) d^3r, \quad (13) \]

\[C_\gamma(k) = [C_\parallel(k) - C_\perp(k)] \frac{k_j k_i}{k^2} + C_\perp(k) \delta_{ij}, \]

where \(\delta_{ij} \) is the Kronecker \(\delta \)-function. In the spectral domain we define the function \(E(k) = 4\pi k^2 C_\gamma(k) \) and express both correlation functions by the function \(E(k) \), namely,

\[C_\parallel(r) = \int_0^\infty dk E(k) \left[j_0(kr) - \frac{j_1(kr)}{kr} \right], \]

\[C_\perp(r) = 2 \int_0^\infty dk E(k) \frac{j_1(kr)}{kr}, \quad (14) \]

with \(j_i \) denoting the spherical Bessel function of the \(i \)-th order. When people refer to the “magnetic power spectrum,” they usually mean \(C_\parallel(k) \), which should further be multiplied by \(k^2 \) in order to get \(E(k) \). We shall hereafter comply with this notation and refer to \(C_\gamma(k) \) as the three-dimensional “magnetic power spectrum,” \(P_\gamma(k) \). Figure 1 shows the two functions \(C_\parallel(r) \) and \(C_\perp(r) \) in units of \(C_\gamma(0) \) for three values of the power index \(n = -1, 0, 1 \) \([P_\gamma(k) \propto k^n]\). Each function is shown with a minimal Gaussian smoothing of 1.5 \(h^{-1} \) Mpc. Naturally, smaller power indices mean larger correlation length.

Going back to expression (10) for the RM correlation, we can rewrite it as

\[Y_\gamma = \left(\frac{e^3 \hbar_0}{2 \pi m_e^2} \right)^2 \times \int_0^{r_1(z_1)} \frac{dr_1}{\sqrt{1 - Kr_1^2}} (1 + z_1)^3 \int_0^{r_2(z_2)} \frac{dr_2}{\sqrt{1 - Kr_2^2}} (1 + z_2)^3 \times \left[(C_\parallel(r') - C_\perp(r')) \hat{q}_1 \cdot \hat{r} (\hat{q}_2 \cdot \hat{r}) + C_\perp(r') \hat{q}_1 \cdot \hat{q}_2 \right]. \quad (15) \]

As expected, the RM correlation depends only on the relative distance, \(|r|\), and the angle.

For comoving distances between two sources at \(z_1 \) and \(z_2 \) separated by the angle \(\gamma \) on the sky, we use the coordinate transformation of Weinberg (1972, p. 413, eq. [14.27]), implemented by Osmer (1981) for the \(q_0 \) = 0 case (where \(q_0 \) is the deceleration parameter) and generalized by Boyle (1986) for other \(q_0 \) values. For the flat universe case \((q_0 = 0.5) \) the comoving relative distance reduces to the simple form

\[r(z_1, z_2, \gamma) = \frac{1}{H_0} \left[r_1(z_1)^2 + r_2(z_2)^2 - 2r_1(z_1)r_2(z_2) \cos \gamma \right]^{1/2}. \quad (16) \]

The distance to a source at the redshift \(z \) (no cosmological constant) is given by (Kolb & Turner 1990, p. 84, eq. [3.112])

\[r(z) = \frac{1}{H_0} \left(2\Omega_0 z + (2\Omega_0 - 4)(\sqrt{\Omega_0 z + 1} - 1) \right), \quad (17) \]

and can be easily generalized for other cases.

In order to estimate the importance of \(Y_\gamma \) (eq. [12]), we adopt the APM power spectrum (Baugh & Efstathiou 1993; Tadros & Efstathiou 1995) with the fitting formula

\[P_m(k) = \frac{2\pi^2}{k^3} \left(\frac{m}{k_0^3} \right)^{-m} \left(1 + \frac{k}{k_0} \right)^{-m - n}, \quad (18) \]

the fitting parameters \(m = 1.4, k_0 = 0.02, k_0 = 0.19, \) and Gaussian smoothing of \(1.5 h^{-1} \) Mpc. We then derive the real-space correlation function by the Fourier transform of the smoothed power spectrum. In the range \(3 \sim 30 h^{-1} \) Mpc the result is very similar to the derived APM real-space correlation function (no explicit smoothing) \(\xi_0 = (r/5.25) h^{-1} \) Mpc \(\sim 1.7 \) (Baugh 1995). For this choice we get

[regardless of the \(P_m(k) \) form, and for \(z_{src} \geq 0.5 \)] \(|Y_\gamma/\Upsilon| < 10^{-4}. \) We hence take \(\Upsilon = Y_\gamma \) hereafter.

2.1. The Power Spectrum Normalization

We relate the magnetic field normalization to the power spectrum by \(B_{rms}(R) \), where

\[B_{rms}^2(R) = \frac{3}{2\pi^2} \int_0^\infty P_m(k)k^2 W^2_{G,TH}(kR)dk, \quad (19) \]

the factor 3 is due to the definition of \(P_m(k) \) [as \(C_\gamma(r) \)], and \(W_{G,TH}(kR) \) is the Gaussian (top-hat) window function of radius \(R \), in k-space,

\[W_G = \exp \left[-\frac{(kR)^2}{2} \right]; \]

\[W_{TH} = \frac{3}{(kR)^3} \sin (kR) - kR \cos (kR) \]. \quad (20) \]

A good benchmark to use for the normalization range is the CMB limit, because of its simplicity and the availability of \(\Delta T/T \) measurements on many scales (either today or in the near future). We therefore work in the range of \(\sim 1 \text{ nG} \) throughout this paper.

The observational limits on the magnetic field as deduced from the RM dipole \([R \approx (z = 2.5) \text{ or } R \approx (z = 3.6)]\) are thus very different from the limits imposed by CMB fluctua-
Fig. 1.—Parallel (dot-dashed line) and perpendicular (solid line) components of the magnetic field correlation tensor. Units are $C_i (i = C_i)$ at the origin. Plotted are three cases: (a) $P_g(k) \propto k^{-1}$, (b) $P_g(k) = \text{constant}$, (c) $P_g(k) \propto k$. Gaussian smoothing of 1.5 h^{-1} Mpc applied.

We notice that for close pairs, high-redshift sources are preferable in order to get high signal, while a transition typically occurs at a fraction of a degree, where it becomes preferable to use lower redshift sources. This transition is due to the uncorrelated magnetic fields experienced by high-redshift sources with large separation. Only when the two lines of sight approach the correlation length does the contribution to the RM correlation becomes substantial. The different, uncorrelated magnetic fields up to the correlation length play the role of uncorrelated noise and dominate the correlated signal from the low-redshift segment of the line of sight.

On the scale $0.5-2.5$, the RM correlation signal still stands on $\sim 10-10^2$ rad2 m$^{-4}$ depending on the power spectrum.
Fig. 2.—RM correlation as a function of the separation angle between source pairs at three different redshifts. The redshift values are $z_{\text{src}} = 0.5, 1, 2$ with thicker lines for higher redshift. The magnetic field normalization in all cases is $B_{\text{rms}}(50 \text{ kpc}) = 1 \text{ nG}$. Three magnetic power spectra are shown with the power indices $n = -1, 0, 1$. Note the different y-axis scales.

3. CALCULATION PROCEDURE FOR THE CORRELATION MATRIX

3.1. The Raw Data

The raw data consist of N_{src} extragalactic objects for which polarization measurements are available in N_{λ} wavelengths. Broten, Macleod, & Vallée (1988), and Oren & Wolfe (1995) have emphasized the need for a careful selection of wavelengths for each observed source. For the current application there are additional special requirements that will become clear when we get to the discussion (§ 5). Each of such N_{λ} measurements consists of two types of data: the degree of polarization and the polarization position angle ($|p|$ and 2ϕ of eq. [3]). Two functions are then constructed which give the dependence of these on wavelength. The RM is computed from the latter by using equation (3), where $\text{RM} = \phi \lambda^{-2}$. Each measured RM_m value has an error, ϵ_m, that emerges from the measurement error (instrumental, ionosphere model, the Earth magnetic field model, etc.) and translates to the error in the fit from which the RM is derived. For typical sources with polarization degree of $\geq 10\%$ (namely, 10^{-1} to 10^{-2} Jy of polarized component at a few gigahertz frequency), the measurement error in each datum is of the order of a few degrees (e.g., Kato et al. 1987; Simard-Normandin, Kronberg, & Button 1980, hereafter SKB; Oren & Wolfe 1995). For realistic $N_{\lambda} = 4$, this instrumental error translates to a typical error in the $\phi^{-\lambda^2}$ fit of 0.5–5 rad m$^{-2}$ and is dwarfed by other noise terms in the procedure (cf. §§ 3.2 and 3.3). We therefore set $\epsilon_m \approx 0$ from now on.

The measured RMs are the sum of a few contributions, and cannot be directly plugged into expression (15) to evaluate Y. To begin with, there exists the internal RM, for every one of the N_{src} extragalactic sources. Then there is the integrated RM, which is presumably due to the cosmological magnetic field (and the free electrons) along the line
of sight to the source. There may also exist a contribution \(\text{RM}_f \) from intervening systems along the line of sight (foreground screen) either next to the source itself (e.g., the host galaxy of a quasar), \(\text{Ly}\alpha \) systems, galaxies, or clusters of galaxies. Before this combined signal gets to the detector it still has to go through the Galactic magnetic field, where it is rotated once more by the amount \(\text{RM}_G \). The final measurement, \(\text{RM}_{\text{tot}} \), is thus the linear sum

\[
\text{RM}_{\text{tot}}(z_i) = \text{RM}_f(\vec{z}_i) + \text{RM}_G(z_i) + \text{RM}(\vec{z}_i) + \text{RM}_{\text{G}}(\vec{z}_i),
\]

where \(z_i \) is the redshift vector (actually translated to a distance vector; cf. § 2) for the \(i \)th source. Since we are interested in the cosmological contribution to the RM (i.e., the second term in eq. [21]), the first step should involve "cleaning" the measured signal of all irrelevant extra contributions. We shall attempt to perform this cleaning in a statistical way.

3.2. The Galactic Mask

There are two alternative ways to assess the Galactic contribution to the measured RM. The two ways differ by the population sample used for the assessment. If an independent population at the outskirts of the Galaxy exists, for which the RM can be measured, this population can be used to map out the Galactic RM. We shall hereafter use the term "mask source population" for the set of objects by which we map the Galactic contribution to the RM.

An estimate for the thickness of the Galactic magnetic layer is \(\sim 1 \) kpc (Simard-Normandin & Kronberg 1980). That means that, apart from the Galactic center direction, sources of distances that satisfy \(\tau_{\text{mag}} > 1/\sin b \) kpc (\(\sim 3 \) kpc for \(|b| = 20° \)) are located beyond the Reynolds layer and fully probe the Galactic contribution to the RM. We hence consider two possibilities for the mask source population.

One natural candidate for this role is the pulsar population, for which RMs are available. In order to make use of the pulsars, we need to find a subset of them that reside in the outer part of the Milky Way magnetic layer. A class of pulsars that is especially appropriate for the task of probing the Galactic RM contribution is the millisecond pulsars. This population of old pulsars is believed to reside far out of the Galactic plane. The number density of millisecond pulsars as implied by a number of surveys at high Galactic latitude (\(\sim 1 \) mJy sensitivity at \(\sim 1 \) GHz) ranges between 0.01 and 0.0175 deg\(^{-2}\), i.e., 400–700 pulsars over the sky (Foster et al. 1995; Camilo, Nice, & Taylor 1996).

The alternative mask population for assessment of the Galactic RM contribution is a subset of the closest extragalactic sources. The disadvantage of using this population is the need for a large enough source number at low enough redshift, to allow differentiation between the cosmological contribution and the Galactic one. Exploiting extragalactic sources for the resolution of the Galactic contribution only slightly affects the amount of cosmological contribution correlation, as long as the nearby sources are taken within \(z \lesssim 0.1 \), since the bulk of the sources is at \(z \gtrsim 1 \) (cf. § 4).

To make possible the use of either one of the Galactic mask populations, its number density should exceed a certain minimal number density. We now attempt to assess this minimal number. The Galactic RM contribution is a two-dimensional field with RM values. The data, on the other hand, are made of distinctive sources located at discrete directions. The lines of sight to the Galactic mask population, do not necessarily coincide with the line-of-sight direction toward the extragalactic sources. The way to circumvent this difficulty is by introducing a smooth version of the Galactic RM map, namely, the field \(\text{RM}_{\text{G}}(\vec{z}) \).

The two fields are connected via the smoothing angle \(\theta_s \), and by a specific choice of a Gaussian smoothing for \(N_G \) measurements of the Galactic RM \(\text{RM}_{\text{G}}(\vec{z}_i) \) located at the directions \(\vec{z}_i \)

\[
\bar{\text{RM}}_{\text{G}}(\vec{z}) = \frac{1}{N_G} \sum_{i=1}^{N_G} \text{RM}_{\text{G}}(\vec{z}_i) \exp \left[-\left(\frac{\vec{z} - \vec{z}_i}{\theta_s} \right)^2 \right].
\]

When implemented using real data, the smoothing involves weights by measurement errors as well. For the purpose of this paper, we ignore these weights to avoid unnecessary complication. Using a smooth field for the Galactic RM contribution introduces random noise, \(\epsilon_G \), that can be directly evaluated by the very same \(N_G \) sample via

\[
\epsilon_G^2 = \frac{1}{N_G} \sum_{i=1}^{N_G} \left[\text{RM}_{\text{G}}(\vec{z}_i) - \bar{\text{RM}}_{\text{G}}(\vec{z}_i) \right]^2.
\]

The noise can be a function of position; it is difficult, however, to account for a position-dependent noise with low \(N_G \). There are a few estimates in the literature for the noise level, \(\epsilon_G \), on different smoothing scales. An upper limit for \(\epsilon_G \) is given in Minter & Spangler (1996), who calculate the observed "structure function," \(D_{\text{RM}} \), which is the same as equation (23) but with an arbitrary lag \(y \) and the unsmoothed values of the RM. They conclude that \(D_{\text{RM}}(y > 1°) = (340 \pm 30) \times 10^2 \) rad\(^2\) m\(^{-4}\), and drops steeper for \(y < 1° \). The value of the \(D_{\text{RM}} \) is an upper limit for \(\epsilon_G^2(y) \) as calculated here, due to the smoothing we apply (and which was not applied in the \(D_{\text{RM}} \) calculation).

Simonetti, Cordes, & Spangler (1984) calculate \(D_{\text{RM}} = 484–8100 \) rad\(^2\) m\(^{-4}\), depending on the Galactic latitude, for much larger angular scales of \(30°–50° \) (linear scale). Simonetti & Cordes (1986) corroborate these results and consider even larger angular scales to obtain typically \(D_{\text{RM}} \lesssim 1000 \) rad\(^2\) m\(^{-4}\) on scales less than 100°. Oren & Wolfe (1995) calculate a very similar quantity to \(\epsilon_G \) (with a varying top-hat window instead of a fixed Gaussian), and obtain a typical variance of less than 1000 rad\(^2\) m\(^{-4}\) on \(\sim 30° \) scales. All of these measurements suggest that for a mask population with number density of about 1 source per 1000 deg\(^2\), the Galactic contribution to the RM (\(b > 20° \)) can be resolved with a 1 \(\sigma \) accuracy of 30 rad m\(^{-2}\). That means that an isotropic coverage of about 100–200 mask sources on the sky is enough to achieve this noise level.

"Damage control" for ignoring the position dependence can be devised by comparing the "clean" RM field dipole and quadrupole to the Galactic direction of the two. These first two multipoles should be the most prominent signature of the Galactic RM mask.

We go back to the suggested mask populations and examine whether they are able to fulfill the requirement of the minimal number density. The largest pulsar catalog to date (the electronic version of Taylor, Manchester, & Lyne 1993) consists of 800 pulsars, of which 259 have RM measurements. This catalog was not compiled with a specific emphasis for millisecond pulsars, and therefore only 124 pulsars with RM values lie in the range Galactic latitude \(b > 5° \). The softer condition \(\tau_{\text{mag}} > 2/\sin |b| \) (i.e., considering an "RM layer" of 4 kpc) is fulfilled for 237 pulsars with both RM registered value and estimated distance \(r_{\text{src}} \).
However, these 237 pulsars still are not distributed isotropically across the sky, and tend to concentrate near the Galactic plane.

A way to avoid this anisotropy is to compile a sample of millisecond pulsars that lie far away from the Galactic plane. This population has a number density that exceeds the necessary $\sim 10^{-2} \text{ deg}^{-2}$ by at least a factor of 2, and it may be as high as 7 times denser than the minimal value. This population can be detected for RM (F. Camilo 1997, private communication)\(^1\) and ensures the $\epsilon_G \approx 30 \text{ rad m}^{-2}$ noise level. This kind of sample is ideal for the current paper analysis, since it does not contain any cosmological contribution or internal RM contribution. Its main disadvantage is that it does not exist yet.

In considering the extragalactic mask population, for the sources needed to resolve the Galactic contribution, it is sufficient to have a sample of 1 mJy sensitivity (at a few GHz) up to $z \approx 0.1$ (see Loan, Wall, & Lahav 1997 for the number density of radio sources with flux greater than 35 mJy, and Dunlop & Peacock 1990 for the combined flat/steep-spectrum luminosity function for extrapolation to the 1 mJy limit).

For this paper we follow Oren & Wolfe (1995) and use an extragalactic sample of RM measurements as an upper limit for the noise that appears by the Galactic RM removal procedure. The sample we use consists of 555 sources as listed by SKB. The SKB catalog allows us to mimic the Galactic mask realistically, and is an overestimate, since we ascribe all the RM of the sources to the Galactic contribution. Moreover, unlike Oren & Wolfe, we do not exclude "outliers." This use aims to provide a realistic model of the Galactic mask contribution, and allows us to demonstrate the method power. For our purpose it should not be taken literally as the true Galactic mask contribution (even though Oren & Wolfe did consider it that way) because no segregation by redshift was applied to choose mask sources from the SKB list. We also did not attempt to evaluate the internal RM (by means explained in § 3.3) in order to minimize the ϵ_G value.

The SKB source locations (projected, and therefore concentrated toward the circumference) are marked as black dots in Figure 3 and shown on top of the smoothed Galactic RM field with smoothing scale of $\theta_s = 1^\circ$. The smooth map is shown in celestial coordinates. Figure 4 shows the RM residuals as functions of Galactic latitude and longitude, and Figure 5 shows the contour map of the smoothed residual field. Both figures show hardly any longitude dependence of the residuals (in spite of the solar system off-center position), and bigger residuals in the $\sim \pm 20^\circ$ strip about the Galactic plane (cf. the same conclusion by Oren & Wolfe 1995). In an all-sky coverage of sources, this residual deviation should cause some concern, but, as we shall see (§ 4.2), it does not bias the result for the most likely power spectrum as calculated by the Bayesian analysis. If the analysis is confined to high latitudes, then no systematic error due to the Galactic mask is expected (cf. § 4). For an area of a few square degrees, we notice there are typically no significant gradients in the Galactic RM field beyond $b \gtrsim 30^\circ$. This allows us to use the smooth value safely when analyzing a small area with extragalactic RM measure-

\(^1\) In the Taylor, Manchester, & Lyne (1993) catalog there are two pulsars with both RM registered value and $p < 10$ ms, and five for which $p < 100$ ms. The smallest polarized flux at 1.4 GHz for a pulsar with a registered RM is 0.2 mJy
ments. This value is also consistent with all the above-mentioned values of D_{RM} as obtained by more detailed analyses.

3.3. The Internal Variation and Foreground Screens

We would like to get an estimate for the internal RM contribution and for the foreground screen contribution (if it exists). We do not attempt to correct each individual source for the RM contribution due to the internal and foreground screen terms. We do not take the measured RM and subtract an estimate for RM$_{I+f}$; rather, we attempt to estimate the distribution of RM$_{I+f}$ and treat it as another noise term.

The difference between the two separate terms in equation (21) (RM$_I$ and RM$_f$) emerges from the fact that while the internal contribution is obtained from the same medium that emits the polarized light, the foreground screen only serves as a filter for an already existing signal. In

\[\Delta \text{RM} = 30.00 \text{ rad m}^{-2} \]

Fig. 5.—The 1° smoothed RM residuals of the Galactic mask in celestial coordinates. Symbols as in Fig. 3.
previous investigations, attempts were made to separate the two contributions (Burn 1966; Laing 1984); later on, it became clear that the signature of the two is rather similar (Tribble 1991).

For our purposes we are interested in the “leftovers” of all previous calculations; their signal is our noise and vice versa. For the noise estimate we claim it is legitimate to take the internal contribution and the foreground screen contribution together. We argue that the two can be dealt with simultaneously. To this end we shall use the other piece of information provided by the observations—the polarization degree.

Tribble (1991) shows the connection between the observed depolarization (as a function of wavelength) and the observed RM for an extended source. Using this connection, and provided that the polarization measurements are available, a direct estimate for the internal RM can be carried out. Recall that we do not expect any depolarization due to the cosmological RM, since the cosmological coherence we are after is orders of magnitude bigger (≥ a few times h⁻¹ Mpc) than the source size.

It is interesting to note that even if we had perfect information about the depolarization due to the source structure and foreground screen contribution and an exact relation between the depolarization degree and the RM, we still could not subtract this derived RM from the observed one. This is due to the fact that the polarization degree does not specify the RM direction.

Tribble’s statistical connection between the observed depolarization and the observed RM is valid only if the correlation scale of the RM structure function for the source or the foreground screen is much shorter than the telescope beam size. This condition is probably not valid for individual damped Lyα systems and galaxies that serve as foreground screens, and for which long-range correlation across the telescope beam may exist.

Full justification for neglecting damped Lyα systems and galaxies exists only if we can avoid lines of sight that cross such systems. Otherwise the order of magnitude of an intervening galaxy contribution is obtained as follows: For a galaxy seen face-on, where there is a danger of a well-ordered magnetic field, the disk thickness, to which the magnetic field is presumably connected, is of the order of kiloparsecs (Simard-Normandin & Kronberg 1980). Observations show magnetic field magnitude of the order of microgauss, mainly in the disk plane. In order to equate this to a cosmological magnetic field of the order of nanogauss, and a coherent scale of 50 h⁻¹ Mpc, the average baryon number density across the galaxy should be at least 50 times higher than the cosmological n₀.

However, we do not expect any correlation between the magnetic field orientation of galaxies along the line of sight, or galaxies adjacent (in angle) to each other. The worst contribution to the RM could only come from a random walk of Nᵣ steps, where Nᵣ is the number of foreground screens (intervening systems) along the line of sight. Since one can model the probability for an intersecting system along the line of sight as a function of the source redshift (Welter, Perry, & Kronberg 1984; Lanzetta, Wolfe, & Turner 1995), another noise term can be added. We did not attempt to model this noise term here, because we believe that the best strategy would be to avoid highly contributing (i.e., damped Lyα and Lyman limit) intervening systems. Low column density Lyα systems contribute very little to the RM signal (see eq. [1.2] in Welter, Perry, & Kronberg 1984). An exception may exist if two sources (or two separated parts of the same source) cross the same cluster. In that case the noise of the two sources (RM₁+₂) may be correlated, but then we can go back to the technique that uses the depolarization, in an attempt to remove the noise correlation.

The best strategy, as stated earlier, would be to avoid intervening systems altogether. There are two methods for doing this. The first method is simply to avoid intervening systems by looking for sources that exhibit no absorption lines in their spectra (we assume spectroscopy is carried out anyway, to allow redshift determination). The existence of a large fraction of quasar lines of sight which do not intersect a dense intervenor is corroborated by Möller & Jakobsen (1990) and Lanzetta, Wolfe, & Turner (1995) analyses.

The other method is to put a depolarization limit on the observations (e.g., the one imposed by Tabara & Inoue 1979). Such a limit naturally reduces the noise term of ϵ₁+₂ and does not affect the correlation signal. As a matter of fact, a sequence of such depolarization limits may be helpful in constituting the estimate for ϵ₁+₂. There are still more methods for minimizing the number of sources that manifest internal RM, as we shall point out when we consider real observations (§ 5).

3.4. Bayesian Likelihood Analysis

In the current stage of research we have very little knowledge about the power spectrum of the cosmological magnetic field. We can hardly even put limits on its integral value, i.e., the rms value of the field. There are, however, predictions regarding the power spectrum shape and amplitude. In the absence of any observational preference for any of these predictions (apart from the limits on its rms value), we assume that all models are equally probable. Conventional estimates of the RM correlation, estimates of the sort applied to galaxies, are not very useful. It is difficult to get a correct error estimate without simulations that in turn must assume some magnetic field power spectrum; moreover, in the traditional correlation calculation procedure, the errors of different bins in r-space are correlated. On top of that, the quantity we are after is the magnetic field power spectrum, and the inversion from the integrated RM back to the magnetic field is a nontrivial one. All of the above considerations lead us to the use of Bayesian statistics as a tool for finding the best parameters, and their probability, given a model. In the Bayesian formalism, the a posteriori probability density of a model m, given the data d, is

$$\mathcal{P}(m \mid d) = \frac{\mathcal{P}(m) \mathcal{P}(d \mid m)}{\mathcal{P}(d)} \quad (24)$$

As stated earlier, $\mathcal{P}(m)$, the model probability density, is unknown and therefore assumed uniform for all models. The data probability, in the denominator, is the same for all models, and therefore serves as a normalization factor. We are thus left with equivalence between the operation of maximizing the probability of the model, given the data $[\mathcal{P}(m \mid d)]$ and the operation of maximizing the probability of the data, given the model $[\mathcal{P}(d \mid m)]$. This equivalence allows us to write down the likelihood function for Nsrc sources with measured RM.

We begin by constructing the $N_{\text{src}} \times N_{\text{src}}$ symmetric matrix Y_{ij} of the expectation values for the RM correlation.
(eq. [15]) between these sources (as determined by their position). We further assume that the errors in each RM value are uncorrelated and Gaussian-distributed. The variance of the overall error is the sum of the quadratures of the various error sources, i.e.,

$$\epsilon_i^2 = \epsilon_G^2 + \epsilon_{i+f,i}^2 + \epsilon_{m,i}^2,$$

and the likelihood function becomes

$$L = (2\pi)^{N_{src}} \det (\hat{Y}_{ij})^{-1/2} \times \exp \left(-\frac{1}{2} \sum_{i,j} RM_i \hat{Y}_{ij}^{-1} RM_j \right),$$

(26)

where \(\hat{Y}_{ij} = Y_{ij} + \delta Q_{ij} \). The \(\chi^2 \) statistic is defined as \(\chi^2 = -2 \ln L \). The \(\chi^2 \) statistic as defined is a \(\chi^2 \) distribution (of \(N_{src} \) degrees of freedom) with respect to the data points, not the model parameters. This \(\chi^2 \) is interpreted as a rough estimate for the confidence levels in the parameter space.

3.5. Estimating the Signal-to-Noise Ratio

Before proceeding to the elaborated description of the various tests we performed with artificial data, we would like to get a rough estimate for the expected RM correlation and the necessary number of sources for a high enough signal-to-noise ratio at various scales. We temporarily abandon the Bayesian approach, and focus on \(\mathcal{P}(m\mid d) \). Recall that the noise in the cross-correlation is not correlated but may still dominate the signal if not appropriately separated angles may still dominate the signal if not appropriately averaged over many pairs. The signal-to-noise ratio for an individual measurement of a pair at identical redshift, a separation angle \(\gamma \), and in the context of a specific model, is given by

$$\left\langle \frac{Y(z, \gamma)}{\epsilon^2} \right\rangle = \left\langle \frac{Y(z, \gamma)}{\epsilon^2} \right\rangle,$$

(27)

where in the last equality we assume no dependence between the various noise terms and the model (cosmology + power spectrum). The cosmological parameters we choose to use are as follows: We restrict ourselves to flat cosmology with \(\Omega_m = 1 \), we choose \(H_0 = 100 \text{ km s}^{-1} \text{ Mpc}^{-1} \) (but the scaling with \(h \) is straightforward). We take the ionization factor to be \(X_e = 1 \), which according to the Gunn-Peterson effect (Gunn & Peterson 1965) is a reasonable choice, and \(\Omega_b = 0.024h^{-2} \) (Tytler, Fan, & Burles 1996), i.e., \(\theta_h = 2.6 \times 10^{-7} \text{ cm}^{-3} \).

For \(N_{pair} \) pairs, where each source is a member of one pair only, the signal-to-noise ratio can be further increased by \(N_{pair}^{1/2} \). In Figure 6 we plot the necessary number of pairs in order to achieve a signal-to-noise ratio of \(Q = 3 \). All sources are assumed to be at the same redshift (2, 1, or 0.5); we take the noise values \(\epsilon_G = 32 \text{ rad m}^{-2} \) (this is the value for \(\theta_e = 1^{\circ} \)). For the noise term due to the internal RM and the (possible) foreground screen we use the Tabara & Inoue (1979) catalog as a guideline. Tabara & Inoue listed \(\sim 1500 \) radio sources in their catalog with RM \(\leq 200 \text{ rad m}^{-2} \). The most conservative assumption one can make is to attribute all of this RM to the internal and foreground contributions. The procedure for deriving the internal and foreground contributions from the depolarization (cf. §3.3) bears noise itself and is correct only statistically. We model its accuracy as a Gaussian with one-quarter the power spectra. A typical number of \(N_{src} \) sources gives results between the \(\sim 3 \) in the range \(\gamma \leq 0.5 \) is between 10 and 2 \(\times 10^3 \) pairs, depending on the power spectrum.

This estimate of \(Q \) is not accurate. To begin with, for \(N_{src} \) sources we expect less than \((N_{src} - N_{src})/2 \) statistically independent pairs. We do not expect all sources to reside at the same redshift; neither do we expect the errors to be identical.
for all sources. Furthermore, the separation between the sources is not fixed but rather is spread from the arcminute scale to 180°. The need for a realistic error estimate, and a demonstration of an actual implementation of the technique we propose, led us to apply it to mock catalogs, for which the underlying power spectrum is known.

4. TESTING WITH ARTIFICIAL DATA

As a reliable probe for our method we create artificial catalogs of radio sources for which RM values are measured. We first generate a Gaussian random field of the magnetic vector potential, A, with the power spectrum $P_A(k) = k^2 P_B(k)$ [$E(k)$]. The realization takes place on 256^3 grid points equally spaced in comoving coordinates. The $P_B(k)$ power spectrum is Gaussianly smoothed on the 1 grid cell scale. The amplitude of the field is arbitrary. We then derive the magnetic field itself by the real-space relation $B = V \times A$ translated to k-space, i.e., $B(k) = -ik \times A$. We use the k-space symmetries due to the real nature of the A field (no imaginary part), and go back to real space to obtain a divergence-free magnetic field with the desired correlation function and periodic boundary conditions. We check the resultant field by calculating the field divergence about each and every grid point in real space and get $\nabla \cdot B/B_{\text{rms}} < 5 \times 10^{-5}$.

At this point we select the cosmology into which we embed the simulation. Our standard choice is identical to the one described in the signal-to-noise estimate (§ 3.5). Because of the limited dynamical range, we choose the grid scale to represent $1.5 \text{ h}^{-1} \text{ Mpc}$, and we are therefore confined to a largest simulation wavelength of $768 \text{ h}^{-1} \text{ Mpc}$.

We then select the source mask, i.e., the source distribution across the sky, and the source redshifts. The twodimensional distribution is taken to be Poisson-like; this choice allows us to have close pairs (unlike grid selection) but to be as conservative as possible in terms of the angular distribution of (15 rad m$^{-2}$)² variance. This is the error in the polarized light. A random sample taken from the radio catalogs of this flux limit is a few per square degree, when we prepare an “all-sky” coverage catalog (see below), we are always far below the available number of sources. For smaller angular coverage with higher source density, one has to further decrease the flux limit. For example, in the 2.5 mJy limit we expect ~ 50 sources per square degree (NVSS [Condon et al. 1994]), and in the 1 mJy limit we expect a source density of about 100 per square degree (The “FIRST” Survey; Becker, White, & Helfand 1995).

The $N(z)$ function of Loan et al. (1997) is therefore interpreted as a normalized selection function, with a cutoff at the highest redshift of the catalog. We expect this selection function to provide an underestimate for the number of sources at high redshift, if a lower flux limit is set. Since sources at higher redshift typically bear higher signal (without changing the noise), such an imposed selection is a conservative choice in terms of the expected signal-to-noise ratio.

For each selected source, we integrate along the line of sight over the dot product between the magnetic field and the line-of-sight direction using the periodic boundary conditions. The integration scheme assigns weights to each integration segment k, according to

$$w_k^B = \frac{(1 + z_f)^3}{\sqrt{1 - Kr(z_f)^2}}$$

(28)

in order to account for the cosmological evolution. We then add the following noise terms to the resultant RM:

1. Internal variation + foreground screens.—We draw this noise term from a Gaussian of $(59 \text{ rad m}^{-2})^2$ variance (cf. § 3.5). This is the RM added to the cosmological one. However, we also try to imitate the procedure of ϵ_{1+} evaluation by the depolarization. To this end, for a specific value of RM_{1+}^f (drawn earlier), we mimic the recovery of the ϵ_{1+} from the depolarization degree, by listing an ϵ_{1+} value scattered about RM_{1+}^f. The scatter has a Gaussian distribution of $(15 \text{ rad m}^{-2})^2$ variance. This is the error in the noise estimate. The “observer” takes into account the scattered value of the ϵ_{1+} and not the value that was actually added to the integrated cosmological RM.

2. Galactic mask.—We use the model estimate of the Galactic mask, smoothed to a 1° scale (see § 3.2). Since the smoothed Galactic RM differs from the true RM to the line of sight, we add a RM drawn from a Gaussian distribution with the standard deviation of $\epsilon_G = 32 \text{ rad m}^{-2}$ (eq. [23]).

At the end of this process we are left with a mock RM catalog that consists of source coordinates and redshift, measured RM value, and the total error in the RM value (i.e., ϵ_{1+}).

We proceed by feeding the mock catalog into the maximum likelihood procedure. In the current application, we consider only the right cosmology, i.e., the one in which the simulation was embedded. In principle the sensitivity to the cosmology choice can be checked as well. The two variables for the model are the amplitude and the power index. It is really the combination of the two that the likelihood procedure constrains best. The statistical significance of the
distribution (as defined following eq. [26]) is obtained in the standard way. The number of degrees of freedom is the source number minus the number of fitting parameters, and the goodness of fit is calculated by taking into account the value of \(\chi^2_{\text{min}} \). If the goodness of fit turns out to be very small (less than 0.1), this is a clear indication for convergence to the wrong minimum, and vice versa. For the right solution the minimum value for the \(\chi^2 \) per degree of freedom (the source number) is typically unity within \(10^{-3} \) accuracy.

4.1. Partial Sky Coverage

We first explore partial sky coverage mock RM catalogs. Figure 7 shows contour maps of \(\chi^2 - \chi^2_{\text{min}} \) with steps of unity. The thicker lines indicate the approximate 1, 2, and 3 \(\sigma \) levels of the probability function as ascribed by using two-parameter \(\chi^2 \) statistics (cf. § 3.4). The power spectrum normalization is our standard \(B_{\text{rms}}^{\text{TH}} (50 \ h^{-1} \ \text{Mpc}) = 1-5 \ \text{nG} \), depending on the power spectrum. We use 500–800 sources for the partial sky and 150 deg\(^2\) coverage. The different source number and \(B_{\text{rms}} \) values reflect the fact that we have fixed the angular sky coverage. That in turn translates differently for different spectra. A redshift cutoff of \(z < 5 \) has been applied. Figure 8 shows a particular example for the case \(n = 1 \), where we have increased \(B_{\text{rms}}^{\text{TH}} (50 \ h^{-1} \ \text{Mpc}) \) to the 17 nG level in order to verify the resulting dependence on \(B_{\text{rms}} \).

We notice that for all power spectra, the Bayesian approach recovers the correct value from the artificial catalog (marked by a cross) to within the 1 \(\sigma \) level. The method is more robust with respect to the amplitude determination. The power index is not well bound unless it is very different from the true one. The method (with the limited number of sources) tends to recover best the \(B_{\text{rms}} \) value on a certain scale, which is a combination of the

Fig. 7.—Contour plot of \(\chi^2 - \chi^2_{\text{min}} \) (as defined following eq. [26]) in the amplitude–spectral index plane. The amplitude is in units of the true simulation amplitude. The spacing is \(\Delta \chi^2 = 1 \), and confidence levels for 1, 2, and 3 \(\sigma \) are plotted (heavy lines) if the contours obey \(\chi^2 \) statistics in the two-dimensional parameter space. The true value of the simulation is marked by the cross. All plots are for a partial sky coverage of 150 deg\(^2\) about the Galactic north pole. The values for \(B_{\text{rms}}^{\text{TH}} (50 \ h^{-1} \ \text{Mpc}) \) are 5, 2, and 1 for \(n = -1, 0, \) and 1 (left, right, bottom), respectively. The total number of sources is marked on the plots.
power index and the amplitude. Typical values for the ratio between the true B_{rms} and the minimization result for B_{rms} are in the range 0.6–1.5.

Partial sky coverage is preferable in terms of the number of small separation pairs, and the indifference to the Galactic mask variation as function of direction. A collection of several of these small patches is expected to provide an even better constraint on the magnetic field power spectrum, but the analysis becomes a bit more complicated, as one should also include the large-scale correlation between the patches without increasing the noise from the autocorrelation to an intolerable level.

Given the relatively big errors, we desire off-diagonal terms in the correlation matrix to be as big as possible (i.e., small separation). This is meant to avoid heavy weight for diagonal terms that are dominated by noise. The price for choosing small patches with small sky coverage is a limited ability to constrain the power index. Under special conditions, this ability can be partially recovered by turning to an all-sky coverage, as we discuss in the next section.

4.2. All-Sky Coverage

An all-sky coverage, with the small correlation scales that are tested here, is impractical without lowering the error level significantly. Otherwise the Bayesian analysis will all be dominated by the diagonal terms with a large noise added to them, and one loses the advantage of the correlation scheme for noise reduction.

All-sky coverage is, however, still feasible if we design the sample very carefully. In order to minimize the Galactic noise, we should observe sources in proximity to the mask sources direction and avoid the necessity for smoothing the Galactic mask. Instead, the RM values as deduced from the mask source population can simply be subtracted from the observed RM values. The small variation in the Galactic magnetic field on small scales (Simonetti, Cordes, & Spangler 1984; Simonetti & Cordes 1986; Minter & Spangler 1996) allows this subtraction to take place.

If, on top of that, one can reduce the noise from internal RM to the level of 5 rad m$^{-2}$ (one can always avoid foreground screens) by multiwavelength observations, then it becomes sensible to exploit an all-sky coverage.

Figure 9 shows an example of a sample taken at directions of the mask source with $e_I = 5$ rad m$^{-2}$ and $B_{\text{rms}}^\text{TH}(50 h^{-1}$ Mpc) = 1 nG. The rest of the parameters are identical to those of the partial sky coverage ($n = 1$) of the last section. We notice that the power index is somewhat better constrained in an all-sky coverage, especially if the amplitude (or B_{rms}) is assumed or known from some different source. The true values are recovered to within the ~2 σ level. Moreover, such coverage allows us to calculate all prevailing magnetic fields on the sample scale, expressed as $P_{ij}(k) = \delta^2(k - \pi/R)$ with δ the Dirac delta function and R the sample depth. Notice, however, that using the formalism proposed in § 2, we cannot take into account power spectra that are not functions of $|k|$ alone, so this test is a bit weaker than the dipole test.

5. DISCUSSION AND CONCLUSIONS

We have presented the formalism for the RM correlation function and demonstrated that by using it we can put limits on the power spectrum of the cosmological magnetic field. These limits are more stringent than limits obtained by any other method that currently exists. Limits of the 2–3 σ level for a magnetic field of ~1 nG on intercluster scales ($\sim 50 h^{-1}$ Mpc) can be devised with only 10^2–10^3 sources. The increment of the source number reflects linearly in the B_{rms} limits.

We performed the statistical analysis following a Bayesian approach that seems to be the most adequate for this problem. The correlation method we propose is also less susceptible to systematic effects such as observational bias (or bias due to evolution) toward smaller internal RM measures for higher redshift sources. Both of these biases tend to lower the expected correlation signal as the source redshifts increase, whereas a cosmological magnetic field tends to raise the correlation signal between such sources.
In order to estimate the statistical significance of limits as derived by the proposed method, we have simulated a few possible cosmological magnetic fields. The simulations allow us to have a fair estimate of the errors involved in the power spectrum derivation. The analysis depends, however, on a few assumptions, and most crucially on the ability to eliminate or estimate the foreground screen and internal contribution to the observed RM.

This crucial point can be addressed in the process of the sample compilation. Reduction of the foreground screen and internal RM contribution is achievable by applying two cutoff criteria to the sample. The first cutoff in minimal polarization degree is meant to avoid sources that exhibit a large depolarization degree. These sources are usually interpreted as having a big noncosmological contribution to their measured RM. The second cutoff is for sources that do not follow a λ^2 dependence of the RM. Following the recipe of Laing (1984), in order to minimize the number of sources with internal RM, the wavelength span should allow detection of deviation from the λ^2 dependence of the RM for $\phi > \pi/2$. Should this deviation occur, the source is to be eliminated from the catalog as a suspect for substantial internal RM contribution.

In addition to the above-mentioned cutoffs, all sources should preferably be detected for absorption lines, as a method of eliminating sources with intervening systems along the line of sight to the sources.

The spatial coverage of the sky should be twofold. Small patches of a few square degrees enable the small separation of the Galactic plane. The two sampling strategies ensure the right correlation terms in the correlation matrix. The Bayesian approach allows us to have a fair estimate of the errors involved in the power spectrum derivation. Accurate internal RM for these sources should be evaluated through depolarization measurements in order for them to be useful for the power spectrum evaluation. Ultimately, the sample can always be mimicked in terms of the exact source locations in the framework of all and every detected model. Exact imitation of the source locations ensures the right correlation terms in the correlation matrix.

The limits we have derived here are a combination of limits on the free electron average density, \bar{n}_e, and the magnetic field. If in any other fashion (such as H II absorption) an estimate for \bar{n}_e can be achieved, then the limits on B will become more robust. The estimate is also a function of the assumed cosmology, and may be entangled with magnetic field evolution in the postrecombination era. We have not modeled such evolution in this paper.

This method of RM correlation can further be generalized to the smoothed RM correlation. The data can be smoothed on a certain angular scale, and then either compared to the expectation value predicted by a model or inverted numerically to give limits on B. The Bayesian approach, however, ceases to be advantageous in the smoothed case, because even though the noise terms decrease, the smoothing introduces correlation among the errors, and the statistical interpretation becomes more hazardous.

A nice feature of the proposed analysis is that it is bound to yield results. These can be either limits on the magnetic field magnitude or actual detection of its value. Either way, these results may help lift the curtain over the mystery of the origin of the cluster and galactic magnetic fields.

I would like to thank Arthur Kosowsky for extensive discussions and helpful assistance, George Blumenthal for valuable insight and critical reading of the manuscript, and James Bullock for a very careful examination of the manuscript. This work was supported in part by the US National Science Foundation (PHY-9507695) and NASA ATP grant NAG 5-3061.

REFERENCES

Adams, J., Danielsson, U. H., Grasso, D., & Rubinstein, H. 1996, SISSA preprint (astro-ph/9607043)
Barrow, J. D., Ferreira, P. G., & Silk, J. 1997, SISSA preprint (astro-ph/9701063)
Baugh, C. M. 1995, SISSA preprint (astro-ph/9512011)
Baugh, C. M., & Efstathiou, G. 1993, MNRAS, 265, 145
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Boyle, B. J. 1986, Ph.D. thesis, Univ. Durham
Brandenburg, A., Enquist, K., & Olesen, P. 1996, SISSA preprint (astro-ph/9602031)
Broten, N. W., Macleod, J. M., & Vallée, J. P. 1988, Ap&SS, 141, 303
Burns, B. J. 1966, MNRAS, 133, 67
Camilo, F., Nice, D. J., & Taylor, J. H. 1996, ApJ, 461, 812
Cheng, B. L., Olinto, A. V., Schramm, D. N., & Truran, J. W. 1996, Phys. Rev. D, 54, 4714
Condon, J. J., Cotton, W. D., Greisen, E. W., Yin, Q. F., Perley, R. A., & Broderick, J. J. 1994, in ASP Conf. Ser. 61, Astronomical Data Analysis Software and Systems III, ed. R. Dennis, R. J. Crabtree, H. Barnes, & J. Barnes (San Francisco: ASP), 155
Cress, C. M., Helfand, D. J., Becker, R. H., Gregg, M. D., & White, R. L. 1996, ApJ, 473, 7
Dolgov, A., & Silk, J. 1993, Phys. Rev. D, 47, 3144
Dunlop, J. S., & Peacock, J. A. 1990, MNRAS, 247, 19
Foster, R. S., Cadwell, B. J., Wolszczan, A., & Anderson, S. B. 1995, ApJ, 454, 826
Grasso, D., & Rubinstein, H. R. 1995, Nucl. Phys. B, 43, 303
1996, Phys. Lett. B, 388, 253
Gunn, J. E., & Peterson, B. A. 1965, ApJ, 142, 1633
Harrison, E. R. 1973, Phys. Rev. Lett., 30, 18
Kato, T., Tabara, H., Inoue, M., & Aizu, K. 1987, Nature, 329, 223
Kohle, E., & Turner, M. S. 1990, The Early Universe (Reading: Addison-Wesley)

Kooiman, B. L., Burns, J. O., & Klypin, A. A. 1995, ApJ, 448, 500
Kronberg, P. P. 1976, in IAU Symp. 74, Radio Astronomy and Cosmology, ed. D. I. Jauncey (Dordrecht: Reidel), 367
1994, Rep. Prog. Phys., 57, 325
Kronberg, P. P., & Simard-Normandin, M. 1976, Nature, 263, 653
Laing, R. A. 1984, in Physics of Energy Transport in Extragalactic Radio Sources, ed. A. H. Bridle & J. A. Eilek (Green Bank: NRAO), 90
Lang, K. R. 1978, Astrophysical Formulae (New York: Springer), 57
Lanzetta, K. M., Wolfe, A. M., & Turnshek, D. A. 1995, ApJ, 440, 425
Lee, S., Olinto, A. V., & Sigl, G. 1995, ApJ, 455, L21
Loan, A. J., Wall, J. V., & Lahav, O. 1997, MNRAS, 286, 994
Loeb, A., & Kosowsky, A. 1996, ApJ, 469, 1
Maiden, M. S. 1989, MNRAS, 237, 109
Minter, P. J., & Jakobsen, P. 1990, A&A, 228, 299
Monin, A. S., & Volkov, A. M. 1975, Statistical Fluid Mechanics (Cambridge: MIT)
Nissen, D., & Thielheim, K. O. 1975, Ap&SS, 33, 441
Oren, A. L., & Wolfe, A. M. 1995, ApJ, 445, 624
Osmer, P. S. 1981, ApJ, 247, 762
Ostriker, J. P., & Thompson, C. 1987, ApJ, 323, 197
Parker, E. N. 1979, Cosmical Magnetic Fields (Oxford: Clarendon)
Pudritz, R. E., & Silk, J. 1989, ApJ, 342, 650
Quashnock, J. M., Loeb, A., & Spiegel, D. N. 1989, ApJ, 342, 650
Ratra, B. 1992a, Phys. Rev. D, 45, 1913
1992b, ApJ, 391, L1
Rees, M. J. 1987, QJRAS, 28, 197
ScoCitto, H. 1995, Ph.D. thesis, Princeton Univ.
Simard-Normandin, M., & Kronberg, P. P. 1980, ApJ, 242, 74
Simard-Normandin, M., Kronberg, P. P., & Button, S. 1980, ApJS, 45, 97
(SKB)
Simonetti, J. H., & Cordes, J. M. 1986, ApJ, 310, 160
Simonetti, J. H., Cordes, J. M., & Spangler, S. R. 1984, ApJ, 284, 126
Tadros, H., & Efstathiou, G. 1995, MNRAS, 276, 45
Tabara, H., & Inoue, M. 1979, A&AS, 39, 379
Tajima, T., Cable, S., Shibata, K., & Kulsrud, R. M. 1992, ApJ, 390, 309
Taylor, J. H., & Cordes, J. M. 1993, ApJ, 411, 674
Taylor, J. H., Manchester, R. N., & Lyne, A. G. 1993, ApJS, 88, 529
Tajima, J. H., & Cordes, J. M. 1993, ApJ, 411, 674
Thompson, C. 1990, in IAU Symp. 140, Galactic and Intergalactic Magnetic Fields, ed. R. Beck, P. P. Kronberg, & R. Wielebinski (Boston: Kluwer), 127
Tribble, P. C. 1991, MNRAS, 250, 726
Tribble, P. C. 1991, MNRAS, 250, 726

Turner, M. S., & Widrow, L. M. 1988, Phys. Rev. D, 37, 10
Tytler, D., Fan, X., & Burles, S. 1996, Nature, 381, 207
Vachaspati, T. 1991, Phys. Lett., 265, 258
Vallee, J. P. 1990, ApJ, 360, 1
Waxman, E., & Miralda-Escudé, J. 1996, ApJ, 472, L89
Weinberg, S. 1972, Gravitation and Cosmology (New York: Wiley)
Weiler, G. L., Perry, J. J., & Kronberg, P. P. 1984, ApJ, 279, 19
Zeldovich, Ya. B., & Novikov, I. D. 1975, Relativistic Astrophysics (Chicago: Univ. Chicago Press)
Zweibel, E. G. 1988, ApJ, 329, L1