Transcriptome data and gene ontology analysis in human macrophages ingesting modified lipoproteins in the presence or absence of complement protein C1q

Minh-Minh Ho, Deborah A. Fraser *

Department of Biological Sciences, California State University, Long Beach, CA 90840, USA

Abstract

We characterized the transcriptional effects of complement opsonization on foam cell formation in human monocyte-derived macrophages (HMDM). RNA-sequencing was used to identify the pathways modulated by complement protein C1q during HMDM ingestion of the atherogenic lipoproteins oxidized low density lipoprotein (oxLDL) and acetylated low density lipoprotein (acLDL). All raw data were submitted to the MIAME-compliant database Gene Expression Omnibus (accession number GEO: GSE80442; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80442). Data presented here include Venn diagram overviews of up- and down-regulated genes for each condition tested, gene ontology analyses of biological processes, molecular functions and cellular components and KEGG pathway analysis. Further investigation of the pathways modulated by C1q in HMDM during ingestion of atherogenic lipoproteins and their functional relevance are described in “Macrophage molecular signaling and inflammatory responses during ingestion of atherogenic lipoproteins are modulated by complement protein C1q” (M.M. Ho, A. Manughian-Peter, W.R. Spivia, A. Taylor, D.A. Fraser, 2016) [1].

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Biology
More specific subject area	Complement and Atherosclerosis
Type of data	Tables, Figure
How data was acquired	RNA-sequencing was performed using Illumina HiSeq 2500. Gene expression data were input into the DAVID online tool for Gene Ontology and KEGG Pathway analysis.
Data format	Analyzed, raw
Experimental factors	RNA was isolated from human monocyte-derived macrophages (HMDM) incubated with either oxidized (oxLDL) or acetylated low-density lipoprotein (acLDL) in the presence or absence of C1q.
Experimental features	RNA-seq analysis was performed and data subjected to gene ontology analysis to identify biological processes, molecular functions and cellular components modulated by C1q.
Data source location	Long Beach, CA
Data accessibility	Analyzed data is within this article and raw data is available at the NCBI database at GEO series accession number GEO: GSE80442, http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE80442

Value of the data

- These data provide a list of all genes modulated in human macrophages during foam cell formation.
- These data may be used to identify the effect of complement C1q opsonization on macrophage gene expression.
- Gene ontology analysis identifies pathways that may provide therapeutic targets for restoring defective foam cell removal in atherosclerosis.

1. Data

The data shown here include quantification of genes that were up or down-regulated by complement protein C1q in macrophages during ingestion of the atherogenic lipoproteins oxLDL and acLDL and gene ontology analysis. Overlapping upregulated and downregulated genes in the presence of C1q are visualized in Venn diagrams (Fig. 1). Data presented include gene ontology analysis based on biological processes of all significantly modulated genes (Table 1), upregulated genes (Table 2), and downregulated genes (Table 3) due to C1q during ingestion of oxLDL or acLDL and the overlap of the genes in common between lipoprotein treatment. Gene ontology analysis of all modulated genes based on molecular function (Table 4) and cellular component (Table 5) are also provided. Table 6 includes KEGG pathway analysis of all C1q modulated genes based on canonical pathways.

2. Experimental design, materials and methods

2.1. Experimental design

To examine and identify biological processes modulated by C1q during ingestion of modified lipoproteins in an unbiased manner, mRNA was collected from human monocyte-derived macrophages treated with physiologically relevant concentrations of oxidized and acetylated forms of LDL
alone, or opsonized with C1q. RNA-seq was performed to identify genes that were up- or down-regulated by C1q in macrophages during ingestion of these atherogenic modified lipoproteins.

2.2. Cell isolation and lipoprotein treatment

Human monocyte-derived macrophages (HMDM) were prepared from human blood of 10 donors, according to the guidelines and approval of California University Long Beach (CSULB) Institutional

![Fig. 1. Overlap of genes modulated by C1q. HMDM pooled from 10 healthy donors were incubated with 10 μg protein/ml oxLDL or acLDL in the absence or presence of 75 μg/ml C1q for 3 h at 37 °C in triplicate. Differentially expressed genes from RNA-sequencing were determined using Cyber-T software (n = 3, p < 0.05, t-test). Libraries were compared to each other to show the intersection of all significant genes upregulated, or downregulated by C1q between acLDL or oxLDL treatment.](image)

Biological Processes GO Term: All Genes	Number of genes in the gene set	Overlap oxLDL/acLDL		
	p < 0.05	oxLDL	acLDL	
Immune response		105*	98	39
Defense response		87*	88	38
Inflammatory response		56*	55	23
Response to wounding		66*	73	28
Positive regulation of immune system process		37*	37	15
Positive regulation of cell activation		22*	26	10
Regulation of transcription		–	324*	–
Anti-apoptosis		–	44*	–
RNA processing		53	88*	26
Programmed cell death		–	95*	–
Cell death		62	108*	37
Death		62	108*	37
Apoptosis		–	93*	–
Transcription		–	261*	–
tRNA metabolic process		17	28*	7
ncRNA metabolic process		28	44*	12
I-kappaB kinase/NF-kappaB cascade		10	19*	7
Positive regulation of protein kinase cascade		27	35*	12
Regulation of I-kappaB kinase/NF-kappaB cascade		19	26*	9
Regulation of programmed cell death		71	115*	32

* FDR q < 0.05.
Table 2
Gene ontology analysis of all C1q upregulated genes based on biological processes.

Biological processes GO term upregulated genes	Number of genes in the gene set		
	$p < 0.05$	Overlap oxLDL/ acLDL	
	oxLDL	acLDL	
Anti-apoptosis	–	27*	–
Positive regulation of cellular biosynthetic process	31	54*	21
Regulation of transcription from RNA polymerase II promoter	27	56*	18
Positive regulation of biosynthetic process	–	47*	–
Intracellular signaling cascade	52*	81*	31
Positive regulation of nitrogen compound metabolic process	28	50*	19
Positive regulation of macromolecule biosynthetic process	28	50*	20
Apoptosis	–	47*	–
Programmed cell death	–	47*	–
Cell death	–	52*	–
Protein kinase cascade	18 33*	13	
Regulation of transcription	–	138*	–
Positive regulation of transcription, DNA-dependent	22	39*	15
Death	–	52*	–
Positive regulation of RNA metabolic process	22 39*	15	
Regulation of programmed cell death	–	56*	–
Positive regulation of NF-kappaB transcription factor activity	–	10*	–
Regulation of cell death	–	56*	–
I-kappaB kinase/NF-kappaB cascade	–	12*	–
Regulation of apoptosis	–	55*	–

* FDR q < 0.05.

Table 3
Gene ontology analysis of all C1q downregulated genes based on biological processes.

Biological Processes GO Term Downregulated Genes	Number of genes in the gene set		
	$p < 0.05$	Overlap oxLDL/ acLDL	
	oxLDL	acLDL	
Immune response	79*	–	–
Defense response	59*	–	–
Inflammatory response	37*	–	–
Response to virus	17*	15	–
ncRNA metabolic process	24 40*	12	
tRNA metabolic process	14 26*	7	
RNA processing	39 67*	19	
DNA repair	–	42*	–
ncRNA processing	19 30*	10	
Response to DNA damage stimulus	–	47*	–
DNA metabolic process	–	57*	–
Translation	26 41*	12	

* FDR q < 0.05.
Review Board and as described [2,3]. RNA was isolated from untreated HMDM or HMDM treated with 10 μg protein/ml oxLDL or acLDL alone, or opsonized with 75 μg/ml C1q. Cells were incubated at 37 °C for 3 h in 5% CO2 as described [1].

2.3. RNA isolation and RNA-seq

RNA was isolated and RNA-seq was performed as described [1].

2.4. Data analysis

Statistically significant differences in gene expression (p < 0.05) were determined using UCI’s CyberT in-house software [4]. The overlap of genes determined to be up- or down-regulated by C1q during acLDL or oxLDL treatment was shown with Venn diagrams (Fig. 1). Gene lists of all significantly modulated genes by C1q during ingestion of oxLDL or acLDL (p < 0.05) were used as input for gene ontology (GO) analysis (Tables 2,4,5) or KEGG pathway analysis (Table 6) using DAVID (https://david.ncifcrf.gov/) [5]. In addition, resulting upregulated (Table 2) and downregulated (Table 3) gene lists were also used as input separately in DAVID. An adjusted EASE (Expression Analysis Systemic Explore Score) score of 0.05 and a threshold count of > 2 genes were used. Benjamini–Hochberg multiple

Molecular function GO term all genes	Number of genes in the gene set	Overlap oxLDL/ acLDL	
	p < 0.05	oxLDL	acLDL
RNA binding		72	110*
Zinc ion binding		–	285*
Transition metal ion binding		–	329*
DNA binding		–	281*

* FDR q < 0.05.

Cellular component GO term: All genes	Number of genes in the gene set	Overlap oxLDL/ acLDL	
	p < 0.05	oxLDL	acLDL
Intracellular organelle lumen		145	255*
Membrane-enclosed lumen		149	262*
Organelle lumen		146	256*
Nuclear lumen		123	214*
Nucleolus		69	116*
Intracellular non-membrane-bounded organelle		–	304*
Non-membrane-bounded organelle		–	304*
Ribonucleoprotein complex		–	84*
Nucleoplasm		–	123*
Cytoplasm		111	166*
Mitochondrion		82	133*

* FDR q < 0.05.
testing correction was applied to the \(p \)-values. GO terms with FDR \(q < 0.05 \) were considered significantly enriched within the gene set. The overlap between oxLDL and acLDL gene sets for each GO term was also determined.

Acknowledgments

Research reported in this manuscript was supported by National Institute of General Medical Sciences of the National Institutes of Health under Award Number SC3GM111146. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.09.008.

References

[1] M.M. Ho, A. Manughian-Peter, W.R. Spivia, A. Taylor, D.A. Fraser, Macrophage molecular signaling and inflammatory responses during ingestion of atherogenic lipoproteins are modulated by complement protein C1q, Atherosclerosis 253 (2016) 38–46.

[2] F.J. Lionetti, S.M. Hunt, C.R. Valera, Methods of Cell Separation, Plenum Publishing Corp, New York, 1980.

[3] D.A. Bobak, M.M. Frank, A.J. Tenner, Characterization of C1q receptor expression on human phagocytic cells: effects of PDBu and fMLP, J. Immunol. 136 (1986) 4604–4610.

[4] M.A. Kayala, P. Baldi, Cyber-T web server: differential analysis of high-throughput data, Nucleic Acids Res. 40 (2012) W553–W559.

[5] W. Huang da, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc. 4 (2009) 44–57.