EXACTLY SOLVABLE MODELS
OF STRONGLY CORRELATED ELECTRONS

Dedicated to Prof. C.N. Yang on the occasion of his seventieth birthday

Editors:

Vladimir E. Korepin
and
Fabian H.L. Eßler

Institute for Theoretical Physics
State University of New York at Stony Brook
Stony Brook, NY 11794-3840
Introduction

In recent years there has been a strong increase of interest in strongly correlated electronic systems in the Condensed Matter community. The reason for this development is that certain phenomena like high-T_c superconductivity cannot seem to be explained in the framework of weak interactions, that is mean field theory and perturbation around it. There are mainly two different approaches in dealing with strong correlations: numerical studies and exact analytical solutions. Analytical solutions provide a complete and unambiguous picture of the dynamics of the models under consideration. The analytical approach is mainly limited to one spatial dimension, but there are indications that two-dimensional systems may share certain features with their one-dimensional analogs (see e.g. P.W. Anderson in [1]; for a modified Hubbard model it was recently shown that the ground state structure is identical in one and two dimensions[2]). This volume is devoted to exact solutions of models of strongly correlated electrons in one spatial dimension by means of the Bethe Ansatz.

The first such exactly solved model is the non-relativistic continuum model of electrons with local interaction, solved by C.N. Yang in 1967[3] (see also [4]). In the solution of the model the nested Bethe Ansatz, which is the basis for all exact solutions of electronic models in one dimension, was discovered.

The most important model of strongly correlated electrons, and the central topic of this volume, is the Hubbard model. The first chapter is devoted to its exact solution in one space and one time dimension, which started with E.H. Lieb’s and F.Y. Wu’s work of 1968. The chapter starts with reprints dealing with the construction of eigenstates of the Hubbard hamiltonian and the determination of the ground state and excitation spectrum at zero temperature. The next few topics are the study of magnetic properties in an external magnetic field, the thermodynamics of the model, and the asymptotical behaviour of correlation functions. The chapter closes with reprints on transport properties of the model.

The second chapter is devoted to the t-J model at the supersymmetric point $J = \pm 2t$. The t-J model first appeared as an effective model describing the strong coupling limit of the Hubbard model (for $J \ll t$). Later the model was reinvented to describe copper-oxide planes in high-T_c superconductors. Nowadays the t-J model is the most thoroughly studied model of strongly correlated electrons after the Hubbard model. The organization of chapter II is similar to that of chapter I.

The third chapter is about other solvable models of strongly correlated electrons. The first half of the chapter is devoted to various electronic models with local interaction - the non-relativistic continuum model of electrons with local interaction, the Luttinger model, and models which were constructed recently in relation with high-T_c superconductivity. The second part of the chapter deals with models with long-range interactions, which have recently attracted much attention in relation with fractional statistics.

The reprinted papers are complemented by a list of some 230 references at the end of the volume. In this list reprinted papers are marked by a ●. When referring to reprinted
papers in the comments we first give the chapter number and then the number of the reprint within the chapter, e.g. [repr.III.A.2] would refer to the paper by M. Takahashi reprinted in part A of chapter III under the number 2.

The central topic of this volume are lattice models of strongly correlated electrons. We did not include reprints on models describing interactions of electrons with impurities (see the excellent reviews [5,6]) or other excitations in this volume. We also did not include papers dealing with purely mathematical aspects of integrable models. There are many excellent books dealing with these issues[7–16] and we refer the interested reader to them. We also did not include any reviews on the Hubbard model.

Due to financial problems caused by republication fees charged by certain journals we were not able to include a significant number of papers which we had originally planned to get reprinted. We are very sorry about this unfortunate development but are confident that the volume in its current form will still be helpful for researchers and students.

While working on this volume we have benefitted greatly from discussions with L.D. Faddeev, F.D.M. Haldane, A.I. Larkin, E.H. Lieb, B.S. Shastry, E.K. Sklyanin, B. Sutherland, F. Woynarovich, and C.N. Yang. We would like to take this opportunity to sincerely thank them for their help and support.

Stony Brook, July 1993

Vladimir E. Korepin Fabian H.L. Essler
I. REPRINTS ON THE ONE-DIMENSIONAL HUBBARD MODEL

1. E.H. Lieb and F.Y. Wu : Absence of Mott Transition in an Exact Solution of the Short-Range One-Band Model in One Dimension, Phys. Rev. Lett. 20 (1968) 1445.
2. A.A. Ovchinnikov : Excitation Spectrum of the One-Dimensional Hubbard Model, Sov. Phys. JETP 30 (1970) 1160.
3. C.F. Coll : Excitation spectrum in the one-dimensional Hubbard model, Phys. Rev. B9 (1974) 2150.
4. F. Woynarovich : Excitations with complex wavenumbers in a Hubbard chain : I. States with one pair of complex wavenumbers, J. Physics C15 (1982) 85.
5. F. Woynarovich : Excitations with complex wavenumbers in a Hubbard chain : II. States with several pairs of complex wavenumbers, J. Physics C15 (1982) 97.
6. F. Woynarovich : Spin Excitations in a Hubbard chain, J. Physics C16 (1983) 5293.
7. F. Woynarovich : Low-energy excited states in a Hubbard chain with on-site attraction, J. Physics C16 (1983) 6593.
8. A. Klümper, A. Schadschneider and J. Zittartz : A new method for the excitations of the one-dimensional Hubbard model, Z.Phys. B78 (1990) 99.
9. M. Takahashi : Magnetization Curve for the Half-Filled Hubbard Model, Prog. Theor. Phys. 42 (1969) 1098.
10. K. Penc and F. Woynarovich : Novel magnetic properties of the Hubbard chain with an attractive interaction, Z.Phys. B85 (1991) 269.
11. M. Takahashi : One-Dimensional Hubbard Model at Finite Temperature, Prog. Theor. Phys. 47 (1972) 69.
12. M. Takahashi : Low Temperature Specific Heat of One-Dimensional Hubbard Model, Prog. Theor. Phys. 52 (1974) 103.
13. F.H.L. Eßler, V.E. Korepin and K. Schoutens : Completeness of the SO(4) extended Bethe ansatz for the one-dimensional Hubbard Model, Nucl. Phys. B384 (1992) 431.
14. B.S. Shastry : Decorated Star-Triangle Relations and Exact Integrability of the One-Dimensional Hubbard Model, J. Stat. Phys. 50 (1988) 57.
15. T. Koma : An Extension of the Thermal Bethe Ansatz, Prog. Theor. Phys. 83 (1990) 655.
16. H. Tsunetsugu : Temperature Dependence of Spin Correlation Length of Half-Filled One-Dimensional Hubbard Model, J. Phys. Soc. Japan 60 (1991) 1460.
17. A.M. Finkel’shtein : Correlation functions in the one-dimensional Hubbard model, Sov. Phys. JETP Lett. 25 (1977) 73.
18. H.J. Schulz : Correlated Fermions in One Dimension, Int. J. Mod. Phys. B5 (1991) 57.
19. J.M.P. Carmelo and A.A. Ovchinnikov: Generalization of the Landau Liquid Concept: Example of the Luttinger Liquid, J. Physics Cond. Mat. 3 (1991) 757.

20. F. Woynarovich and H.P. Eckle: Finite-size corrections for the low lying states of a half-filled Hubbard chain, J. Physics A20 (1987) L443.

21. N.M. Bogoliubov and V.E. Korepin: The role of quasi-one-dimensional structures in high-\(T_c\) superconductivity, Int. J. Mod. Phys. B3 (1989) 427.

22. F. Woynarovich: Finite-size effects in a non-half-filled Hubbard chain, J. Physics A22 (1989) 4243.

23. H. Frahm and V.E. Korepin: Correlation functions of the one-dimensional Hubbard model in a magnetic field, Phys. Rev. B43 (1991) 5653.

24. B.S. Shastry and B. Sutherland: Twisted Boundary Conditions and Effective Mass in Heisenberg-Ising and Hubbard Rings, Phys. Rev. Lett. 65 (1990) 243.

25. M. Fowler and N. Yu: Persistent Current of a Hubbard Ring Threaded with a Magnetic Flux, Phys. Rev. B45 (1992) 11795.
II. Reprints on the Supersymmetric t-J Model

1. B. Sutherland : Model for a multicomponent quantum system, Phys. Rev. B12 (1975) 3795.
2. P. Schlottmann : Integrable narrow-band model with possible relevance to heavy-fermion systems, Phys. Rev. B36 (1987) 5177.
3. P.A. Bares and G. Blatter : Supersymmetric t-J Model in One Dimension: Separation of Spin and Charge, Phys. Rev. Lett. 64 (1990) 2567.
4. S. Sarkar : The supersymmetric t-J model in one dimension, J. Physics A24 (1991) 1137.
5. N. Kawakami and S.-K. Yang : Luttinger liquid properties of highly correlated electron systems in one dimension, J. Physics C3 (1991) 5983.
6. A. Förster and M. Karowski : Algebraic properties of the Bethe ansatz for an $spl(2,1)$-supersymmetric t-J model, Nucl. Phys. B396 (1993) 611.
III. Reprints on other Models of Strongly Correlated Electrons

A. Models with Local Interaction

1. C.N. Yang : Some Exact Results for the Many-Body Problem in One Dimension with Repulsive Delta-Function Interaction, Phys. Rev. Lett. 19 (1967) 1312.
2. M. Takahashi : One-Dimensional Electron Gas with Delta-Function Interaction at Finite Temperature, Prog. Theor. Phys. 46 (1971) 1388.
3. D.C. Mattis, E.H. Lieb : Exact Solution of a Many-Fermion System and Its Associated Boson Field, J. Math. Phys. 6 (1965) 304.
4. F.D.M. Haldane : ‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas, J. Physics C14 (1981) 2585.
5. F.D.M. Haldane : Demonstration of the “Luttinger Liquid” character of Bethe-Ansatz-soluble models of 1-D Quantum Fluids, Phys. Lett. 81A (1981) 153.
6. R.Z. Bariev : Integrable spin chain with two- and three-particle interactions, J. Physics A24 (1991) L549.
7. R.Z. Bariev, A. Klümper, A. Schadschneider and J. Zittartz : Exact solution of a one-dimensional model of hole superconductivity, J. Physics A26 (1993) 1249.
8. F.H.L. Eßler, V.E. Korepin and K. Schoutens : New Exactly Solvable Model of Strongly Correlated Electrons Motivated by High T_c Superconductivity, Phys. Rev. Lett. 68 (1992) 2960.

B. Models with Long Range Interaction

1. B. Sutherland : Quantum Many-Body Problem in One Dimension : Ground State, J. Math. Phys. 12 (1971) 246.
2. B. Sutherland : Quantum Many-Body Problem in One Dimension : Thermodynamics, J. Math. Phys. 12 (1971) 251.
3. Y. Kuramoto, H. Yokoyama : Exactly Soluble Supersymmetric t-J-Type Model with Long-Range Exchange and Transfer, Phys. Rev. Lett. 67 (1991) 1338.
4. N. Kawakami : Asymptotic Bethe ansatz: Application to the one-dimensional t-J model with long-range exchange and transfer, Phys. Rev. B45 (1992) 7525.
REFERENCES

1. P.W. Anderson, Science 235 (1987) 1196.
2. F.H.L. Essler, V.E. Korepin, K. Schoutens, Phys. Rev. Lett. 70 (1993) 73.
3. C.N. Yang, Phys. Rev. Lett. 19 (1967) 1312.
4. M. Gaudin, Phys. Lett. 24A (1967) 55.
5. A.M. Tsvelick, P.B. Wiegmann, Advances in Phys. 32 (1983) 453.
6. N. Andrei, K. Furuya, J.H. Lowenstein, Rev. Mod. Phys. 55 (1983) 331.
7. R.J. Baxter, Exactly Solved Models in Statistical Mechanics, New York: Academic Press, (1982).
8. M. Gaudin, La Fonction d’Onde de Bethe, Masson, 1983.
9. V.E. Korepin, G. Izergin and N.M. Bogoliubov, Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz, Cambridge University Press, 1993
10. Yu.A. Izyumov, Yu.N. Skryabin, Statistical Mechanics of Magnetically Ordered Systems, Engl. Transl.; New York: Plenum, (1990).
11. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, (1987).
12. M. Jimbo, Yang-Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics v.10, Singapore: World Scientific, (1990).
13. C. Itzykson, H. Saleur, J.B. Zuber, Conformal Invariance and Applications to Statistical Mechanics, Singapore: World Scientific, (1986).
14. E.H. Lieb, D.C. Mattis (eds.), Mathematical Physics in One Dimension, New York: Academic Press, (1966).
15. B.M. McCoy, T.T. Wu, The Two-Dimensional Ising Model, Cambridge, Mass.: Harvard University Press, (1973).
16. B.S. Shastry, S.S. Jha, V. Singh (eds.), Exactly Solvable Problems in Condensed Matter and Relativistic field Theory, Lecture Notes in Physics, v.242, Berlin: Springer Verlag, (1985).