Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state

Ahmed El-Badawy 1, Mohamed A. Ghoneim 2, Mahmoud M. Gabr 2, Radwa Ayman Salah 1, Ihab K. Mohamed 3, Marwa Amer 1 and Nagwa El-Badri 1

Abstract

Background: Mesenchymal stem cells (MSCs) play different roles in modulating tumor progression, growth, and metastasis. MSCs are recruited to the tumor site in large numbers and subsequently have an important microenvironmental role in modulating tumor progression and drug sensitivity. However, the effect of the tumor microenvironment on MSC plasticity remains poorly understood. Herein, we report a paracrine effect of cancer cells, in which they secrete soluble factors that promote a more stem-like state in bone marrow mesenchymal stem cells (BM-MSCs).

Methods: The effect of soluble factors secreted from MCF7, Hela, and HepG2 cancer cell lines on BM-MSCs was assessed using a Transwell indirect coculture system. After 5 days of coculture, BM-MSCs were characterized by flow cytometry for surface marker expression, by qPCR for gene expression profile, and by confocal immunofluorescence for marker expression. We then measured the sensitivity of cocultured BM-MSCs to chemotherapeutic agents, their cell cycle profile, and their response to DNA damage. The sphere formation, invasive properties, and in-vivo performance of BM-MSCs after coculture with cancer cells were also measured.

Results: Indirect coculture of cancer cells and BM-MSCs, without direct cell contact, generated slow cycling, chemoresistant spheroid stem cells that highly expressed markers of pluripotency, cancer cells, and cancer stem cells (CSCs). They also displayed properties of a side population and enhanced sphere formation in culture. Accordingly, these cells were termed cancer-induced stem cells (CiSCs). CiSCs showed a more mesenchymal phenotype that was further augmented upon TGF-β stimulation and demonstrated a high expression of the β-catenin pathway and ALDH1A1.

Conclusions: These findings demonstrate that MSCs, recruited to the tumor microenvironment in large numbers, may display cellular plasticity, acquire a more stem-like state, and acquire some properties of CSCs upon exposure to cancer cell-secreted factors. These acquired characteristics may contribute to tumor progression, survival, and metastasis. Our findings provide new insights into the interactions between MSCs and cancer cells, with the potential to identify novel molecular targets for cancer therapy.
Background
Cancer cells alone cannot drive tumor growth or progression. An assemblage of normal tissue and bone marrow-derived stromal cells are recruited to constitute tumorigenic microenvironments [1]. Cancer progression seems to be mediated by a subgroup of these cells, mesenchymal stem cells (MSCs). MSCs are multipotent cells capable of differentiating into numerous cell types, including adipocytes, osteoblasts, chondrocytes, fibroblasts, and perivascular and vascular structures [2]. In addition to their high regenerative capacities [3, 4], MSCs have also been reported to be among the cells recruited in large numbers to the stroma of developing tumors [5–8] and subsequently have important microenvironmental roles in modulating tumor progression and drug sensitivity [9–11]. Several studies have reported the effect of MSCs on cancer cells [10, 12], but the fate of MSCs in the tumor stroma and the effect of cancer cells on MSCs remain poorly understood. The long lifespan and self-renewal capacity of stem cells make them survive long enough to accumulate DNA damage to produce cancer cells [13]. In addition, committed progenitors can acquire self-renewal ability and function as CSCs [14, 15]. Although direct evidence for the initial cause of the transformation of adult stem cells into CSCs is lacking, extensive research shows that host–tumor interaction results in the production of proinflammatory cytokines and chemokines, believed to modulate the microenvironment to the benefit of tumor growth, invasion, and metastasis [16–20].

Herein, we report the results of assays designed to assess the effect of coculture of human cancer cell lines MCF7, Hela, and HepG2 with human bone marrow mesenchymal stem cells (BM-MSCs) on their functional properties, phenotypic characteristics, and gene expression profiles. Coculture of BM-MSCs with different cancer cell lines resulted in the generation of chemoresistant, sphere-like cells with many properties of pluripotent cells and CSCs. In this report, we refer to these cells as cancer-induced stem cells (CiSCs), generated directly from human BM-MSCs upon exposure to cancer cell lines.

Methods
Cells and coculture conditions
Human BM-MSCs and cancer cell lines MCF7, HepG2, and HeLa (ATCC, Manassas, VA, USA) were maintained in DMEM supplemented with 10% fetal bovine serum (FBS), streptomycin, and penicillin (Life Technologies, USA) at 37 °C in a humidified incubator containing 5% CO2. For coculture experiments, human BM-MSCs were seeded in the lower wells of a Transwell cell culture system (six-well type, high-density membrane with 0.4-μm pores; Greiner, Germany) and grown to 60–70% confluence for 24–72 hours. Cancer cell lines (MCF7, HeLa, and HepG2) (∼1 x 10^5 cells) were each then seeded in the upper chambers (cell culture inserts) and cultured in DMEM supplemented with 10% FBS, streptomycin, and penicillin (Life Technologies, USA). After a 5-day incubation, the medium (DMEM supplemented with 10% FBS) was replaced with CSC medium as described previously [21, 22], consisting of DMEM/F12 medium (Life Technologies, USA), 2% B27 supplement (Life Technologies, USA), 20 ng/ml epidermal growth factor (EGF; Life Technologies, USA), 20 ng/ml basic fibroblast growth factor (bFGF; Life Technologies, USA), and 10 μg/ml insulin (Sigma-Aldrich, USA), and the upper chamber containing the cancer cells was removed.

Flow cytometry characterization
For the flow cytometry analysis, cells were incubated in a blocking solution (PBS containing 1% BSA) for 10 minutes. After centrifugation, cells were resuspended in the blocking solution and stained with the following monoclonal antibodies for 30 minutes: FITC anti-CD44, PE anti-CD24, PerCP anti-CD19, APC anti-CD45, and FITC anti-CD34. For intracellular staining, cells were fixed in 4% paraformaldehyde, permeabilized with 0.1% Triton X-100, and blocked with 4% BSA. The cells were then stained with Oct-4 antibody (Cell Signaling Technology, USA), Sox2 antibody (R&D Systems, USA), Nanog antibody (Bioss Antibodies, USA), E-Cadherin antibody (Cell Signaling Technology, USA), N-Cadherin antibody (Abcam, USA), Snail + Slug antibody (Abcam, USA), ALDH1A1 antibody (Pierce Antibodies, USA), and β-Catenin antibody (Cell Signaling Technology, USA). Cells were then labeled with the appropriate Alexa Fluor® secondary antibodies (Molecular Probes, USA). Flow cytometry was carried out using FACS Calibur (Becton Dickinson, USA) following standard procedures with CellQuest Pro Software (Becton Dickinson, USA). Data analysis was performed using FlowJo v. 10.2 software (Treestar, USA) with superenhanced Dmax (SED) subtraction analysis for determination of differences in histograms.

Real-time qPCR
RNA was extracted using the PureLink® RNA Mini Kit (Life Technologies, USA) according to the manufacturer’s instructions and treated with DNase I (Sigma-Aldrich). The cDNA was synthesized using the iScript™ cDNA Synthesis Kit (Bio-Rad, USA) and quantitative Real-Time PCR assay was performed using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad, USA) in the Quanta Studio™ 12 K Flex Real-Time PCR System (Applied Biosystems, USA). The sequences of the used primers are indicated in Additional file 1: Table S1. The relative gene expression was calculated by the 2^-ΔΔCT method and the β-actin gene was used to normalize the data. Each reaction was performed in triplicate, and each experiment was performed twice.
Confocal fluorescence microscopy immunostaining
To determine the changes in cytoskeleton structure and expression of different markers, CiSCs, BM-MSCs, and MCF7 cells were seeded on glass slides precoated with poly-D-lysine (Sigma-Aldrich, USA). Cells were fixed in 4% paraformaldehyde, permeabilized with 0.1% Triton X-100, and blocked with 4% BSA. Cells were then stained with Alexa Fluor® 488 Phalloidin (Molecular Probes, USA), α-tubulin antibody (Cell Signaling Technology, USA), Ki-67 antibody (Cell Signaling Technology, USA), Oct-4 antibody (Cell Signaling Technology, USA), Sox2 antibody (R&D Systems, USA), Nanog antibody (Bios Antibodies, USA), E-Cadherin antibody (Abcam, USA), Snail + Slug antibody (Abcam, USA), ALDH1A1 antibody (Pierce Antibodies, USA), and β-Catenin antibody (Cell Signaling Technology, USA). Cells were labeled with the appropriate Alexa Fluor® secondary antibodies (Molecular Probes, USA) and counterstained with Hoechst 33342 (Molecular Probes, USA) to visualize the cell nucleus. Cells were imaged either under a 60× or 100× objective with a Nikon A1R inverted laser scanning confocal microscope (Nikon microsystems, France).

Chemotherapy sensitivity assay
CiSCs, BM-MSCs, MCF7 cells, and Hela cells were plated in a 12-well plate at a density of 4 × 10⁵ cells per well. Cells were then treated with cisplatin (at concentrations of 5, 10, 15, 20, and 25 μM) or doxorubicin (2, 6, and 10 nM). After incubation for 24 hours, the viability and apoptosis induced by anticancer regimens was analyzed by flow cytometry using an Annexin-V-FITC and propidium iodide (PI) apoptosis detection kit (Miltenyi Biotec Inc., USA) according to the manufacturer’s protocol. Experiments were performed three times in triplicate each.

Cell cycle analysis
CiSCs, BM-MSCs, and MCF7 and Hela cells were collected in ice-cold PBS and fixed by chilled 70% ethanol overnight at 4 °C. These cells were then stained in PBS containing 100 μg/ml propidium iodide (Sigma Aldrich, USA) and 20 μg/ml RNase A (Thermo Fisher Scientific, USA). Flow cytometry was carried out using a FACSCalibur (Becton Dickinson, USA) following standard procedures and analyzed using CellQuest Pro Software (Becton Dickinson, USA).

Single-cell gel electrophoresis assay (Comet assay)
DNA damage repair in response to different concentrations of chemotherapeutic agents was assessed by single-cell gel electrophoresis assay under alkaline conditions as described previously [23] with slight modifications. After treatment with cisplatin, CiSCs, BM-MSCs, and cancer cells were harvested and mixed with 1.3% low-melting agarose and the mix immediately placed onto frosted glass slides precoated with 0.6% agarose. After the agarose was solidified, slides were incubated in prechilled fresh lysis solution (2.5 M NaCl, 100 mM EDTA, 10 mM Tris-base, 1% Triton X-100, and 10% DMSO; pH 10.0) for 1 hour at 4 °C. Slides were placed in a reservoir filled with fresh prechilled alkaline electrophoresis buffer (300 mM NaOH, 1 mM ethylenediaminetetraacetic (EDTA) acid, pH > 13) for 30 minutes and then subjected to electrophoresis for another 30 minutes (25 V, 300 mA), followed by neutralization in 400 mM Tris–HCl (pH 7.5) for 30 minutes. Finally, DNA was stained with propidium iodide (2.5 μg/ml in PBS) for 30 minutes and imaged under a Leica DMi8 fluorescent microscope (Leica Microsystems, Germany). Average tail moments from 50 cells per sample were measured using Comet Assay IV software (Perceptive Instruments, UK).

Sphere formation assay
The sphere formation assay was performed as described previously with slight modifications [24]. Single-cell suspensions of CiSCs were plated in ultralow-attachment flasks in DMEM-F12 2% B27 supplement (Life Technologies, USA), 20 ng/ml EGF (Life Technologies, USA), 20 ng/ml bFGF (Life Technologies, USA), 10 μg/ml insulin, and 10 μg/ml hydrocortisone. Spheres were cultured for 8 days, and then the cells collected from nonadherent cultures were quantified with a Bio-Rad TC20™ Automated Cell Counter (sizing range 20–336 μm). Experiments were performed three times in triplicate each.

Invasion assay
Cell invasion assays were carried out in Transwell chambers with 8-μm pore polycarbonate filter inserts for six-well plates (Greiner, Germany). Inserts were coated with 1000 μl of ice-cold basement membrane matrix (Geltrex, Invitrogen) diluted 1:6 in DMEM/F12 and incubated for 1 hour at 37 °C. Cells (1.0 × 10⁵) were seeded in serum-free medium into the upper chamber and were allowed to invade toward the lower chamber with 10% FBS as the chemotactrant. After 24 hours of incubation at 37 °C, noninvasive cells were removed from the upper chamber with a cotton swab and the invading cells on the underside were fixed with 70% ethanol for 10 minutes and stained with 0.2% crystal violet for 15 minutes. Images were acquired using a Leica DMi8 phase-contrast microscope (Leica Microsystems, Germany) at 20× magnification. Ten independent fields were analyzed using ImageJ software and the experiments were done in triplicate.

Surface ultrastructure characterization by electron microscopy
Briefly, cells were rapidly fixed in 0.1 M cacodylate buffered 2% glutaraldehyde for 2 hours at 4 °C, and then washed in
and diazepam (5 mg/kg). A total of 1 × 10^6 CiSCs were im-
tilated by intraperitoneal injection of ketamine (100 mg/kg)
(Fig. 1j).

During this period, the invasive capacity of the CiSCs, a critical factor in-
filtrate in cellular metastasis [32, 33]. A Matrigel-coated,

In-vivo xenotransplantation studies in nude mice
All animal procedures were carried out at the Urology and Nephrology Center Animal House in accordance
with the institutional and National Institute of Health
guidelines for the care and use of laboratory animals.
The study protocol was approved by the ethical committee
of Mansoura University. Nude mice (Swiss Nu/Nu; Charles
River Laboratories, Paris, France) were housed as one
mouse per cage. The mice (n = 5 per group) were anesthe-
tized by intraperitoneal injection of ketamine (100 mg/kg)
and diazepam (5 mg/kg). A total of 1 × 10^6 CiSCs were im-
planted under the kidney capsule. After 2 months, the mice
were euthanized and the kidneys were stained for histo-
logical analysis.

Statistical analysis
All of the data are presented as the mean ± SD. An un-
paired two-tailed Student t test was used to calculate the
P values. P < 0.05 was considered statistically significant.

Results
Generation of CiSCs from adult BM-MSCs
The protocol for induction of human CiSCs from BM-
MSCs is summarized in Fig. 1a. Human BM-MSCs were
cocultured with different cancer cell lines using a Trans-
well culture system, which allowed for the exchange of
soluble mediators yet segregated the cells. After 2 days
of coculture, BM-MSCs began to form 3D colonies in
suspension (Fig. 1c–e). Subsequently, outgrowth of cells
in these 3D colonies detached from the colonies and
formed spheres in suspension. After 5 days, most of the
cocultured BM-MSCs formed spheres (Fig. 1g–i). By
contrast, parental BM-MSCs did not form such 3D col-
onies or spheres (Fig. 1f). On day 5, the cells were trans-
ferred into low-attachment flasks and the medium
(DMEM containing 10% FBS) was replaced with a CSC-
specific culture medium (DMEM/F12 with 2% B27 sup-
plement, 20 ng/ml EGF, 20 ng/ml bFGF, and 10 μg/ml
insulin). When transferred to plates that do not permit
adherence, these spheres could be maintained in suspen-
sion and grew in colonies (Fig. 1j–l). During this period,
they increased in size and formed a central cavity
(Fig. 1j–m). The proliferation capacity of the generated

CiSCs was confirmed by positive immunostaining for
Ki-67, a proliferation marker (Fig. 1n–v).

CiSCs express human embryonic stem cell-specific
markers
There is strong evidence that overexpression of embryonic
stem cell (ESC) genes occurs in human cancers and is
relevant to tumor formation, tumorigenicity, tumor me-
tastasis [25], and tumor recurrence after chemotherapy or
radiotherapy [26]. To investigate the pluripotency state of
CiSCs, we used confocal immunofluorescence imaging to
examine the expression of pluripotency markers, based on
previously reported ESC markers [27]. CiSCs expressed
higher levels of typical pluripotency markers including
OCT4, NANOG, and SOX2 as shown by immunostaining
(Fig. 2a). To investigate expression at the mRNA level, we
performed real-time qPCR analysis and found a significant
increase in mRNA expression levels of OCT4, SOX2,
NANOG, and REX1 (Fig. 2b) in CiSCs compared to their
parental BM-MSCs. Interestingly, telomerase reverse tran-
scriptase (hTERT) increased up to 3-fold in CiSCs when
compared to its levels in parental BM-MSCs (Fig. 2b).

To further confirm pluripotency marker protein expres-
sion levels, we performed intracellular flow cytometry stai-
ing. Our data showed increased expression of pluripotency
markers (Fig. 2c–e). The level of Oct4 was further increased
at 30 days in culture as shown by intracellular flow cyto-
metry (Fig. 2f), suggesting that CiSCs could maintain their
self-renewal capacities in vitro. These results suggest that at
least some CiSCs are reexpressing pluripotency genes.

Single-cell colony formation, sphere formation, and
invasiveness of CiSCs
A critical feature of stem cells is their capacity to self-
renew and generate hierarchically organized structures
in which their progeny loses their self-renewing capacity
during differentiation [28, 29]. We thus assayed the cap-
acity of a single CiSC to generate a large number of pro-
geny by single-cell colony formation assay, as assayed to
determine functional heterogeneity among cancer cells
derived from lung, ovary, and brain tumors [30, 31]. We
initiated a series of single-cell cloning experiments in
96-well plates, and each well contained a single cell as
assessed by phase-contrast inverted microscopy. A single
CiSC showed the capacity to form colonies and produce
a large number of progeny, indicating their self-renewal
and tumorigenic potential (Fig. 3a).

We examined the self-renewal capacity of CiSCs by
sphere-forming ability in suspension culture, an in-vitro
measure of stem cell activity [24]. CiSCs showed about a
10-fold increase in sphere-forming ability compared to
the parental BM-MSCs (Fig. 3b, c). We then investigated
the invasive capacity of the CiSCs, a critical factor in-
volved in cellular metastasis [32, 33]. A Matrigel-coated,
modified Boyden chamber was used to quantitatively evaluate cell invasion. As shown in Fig. 3d, CiSCs had a high invasive capacity, comparable to their parental BM-MSCs and MCF7 and Hela cancer cells.

CiSCs express cancer and cancer stem cells markers and display properties of a side population

To assess the “cancerous” status of the generated CiSCs, the expression of previously reported candidate cancer genes was compared to the parental BM-MSCs. qPCR results showed increased expression in mRNAs of KRAS, HER2, TP53, BRCA2, E2F3, APC, SMAD7, ABCB1, and CDK4 (Fig. 4a), which is associated with acquiring a cancerous phenotype. qPCR analysis showed increased expression of many cancer stem cell marker genes [34–36] such as ALDH1, ABCG2, CD90, NESTIN, PTEN, and EpCam. It is also of note that mRNAs of CD44 were increased and CD24 mRNA was downregulated (Fig. 4b). Flow cytometry
Fig. 2 (See legend on next page)
analysis showed that more than 75% of cells converted from the CD44+/CD24+ phenotype of the parental BM-MSCs into a CD44+/CD24low phenotype upon exposure to cancer cell-secreted factors (Fig. 4c, d), which is a pattern of expression seen in some cancer stem cells [37], suggesting that some of these cells may have acquired cancer stem cell properties.

Aldehyde dehydrogenase 1A1 (ALDH1A1) has been shown to be a potential marker of stemness, and also plays a role in the biology of CSCs [38, 39]. It has also

![Figure 2](Image)

Fig. 2 CiSCs express human ESC-specific markers. **a** Confocal immunofluorescence images for Oct4 (green), Nanog (red), and Sox2 (green) of control BM-MSCs and MCF7, Hela, and HepG2 CiSCs. Nuclei stained with DAPI (blue). Scale bars = 60 μM. **b** Expression levels of mRNAs encoding OCT4, NANOG, SOX2, REX1, and hTERT in MCF7, Hela, and HepG2 CiSCs relative to parental BM-MSCs determined by real-time qRT-PCR. Data reported on a log-10 scale as mean ± SD. **c** Flow cytometry overlay histogram analysis of Oct4, Sox2, and Nanog in BM-MSCs and MCF7, Hela, and HepG2 CiSCs. For comparison, isotype control (black) was used to define the positive and negative populations for each marker. **d** Oct-4 protein expression levels increase with the number of days (7–30) when cultured in the presence of B27, EGF, and bFGF, as determined by intracellular flow cytometry staining, indicating the self-renewal capacity of CiSCs. **e** Quantification of the percentage of Sox2-positive and **f** Nanog-positive cells compared to parental BM-MSCs by intracellular flow cytometry staining. Proportions of positive cells measured by subtracting control parental BM-MSC staining from test histograms using super-enhanced Dmax (SED) normalized subtraction using FlowJo v. 10.2 software. Data presented as mean ± SD. BM-MSC bone marrow mesenchymal stem cell, CiSC cancer-induced stem cell

![Figure 3](Image)

Fig. 3 Single-cell colony formation, tumorsphere formation, and invasiveness of CiSCs. **a** Representative phase-contrast images of single CiSCs plated at a clonal density by limited dilution assays showing the colony-forming efficiency of a single CiSC. **b** Phase-contrast images of tumorspheres formed from BM-MSCs and MCF7, Hela, and HepG2 CiSCs. **c** Quantification of tumorsphere-forming ability of BM-MSCs and MCF7, Hela, and HepG2 CiSCs showing CiSCs to have significantly higher tumorsphere formation percentage (P < 0.05). Data presented as mean ± SD. **d** Quantification of invading cells toward lower chamber of the insert (average of 10 picture fields at 200× total magnification for each cell type). Data presented as mean ± SD. BM-MSC bone marrow mesenchymal stem cell, CiSC cancer-induced stem cell
Fig. 4 (See legend on next page.)
been shown to play an important role in chemoresistance pathways, and its level was shown to correlate with the disease prognosis [40, 41]. Examination of the expression of ALDH1A1 in CiSCs at the protein level by immunofluorescence staining showed that CiSCs had a higher expression for ALDH1A1 in comparison with the parental BM-MSCs (Fig. 4e), and this increased expression of ALDH1A1 was confirmed by intracellular flow cytometry analysis (Fig. 4g, i).

To determine the possible molecular pathway(s) enabling the observed in-vitro change of BM-MSCs into the CiSC phenotype, we analyzed Wnt/β-catenin signaling in both cells. The Wnt/β-catenin signaling pathway is essential in the functioning of CSCs [42–45]. For instance, mammary stem cells with high levels of Wnt/β-catenin signaling have a much greater tumorigenic potential than their counterparts with low levels of Wnt/β-catenin signaling [46]. Moreover, Wnt/β-catenin signaling regulates CSC self-renewal, tumorigenesis, and cancer chemoresistance [47]. Our data showed increased cytoplasmic β-catenin expression in CiSCs in comparison to their parental BM-MSCs as shown by immunofluorescence confocal imaging, in which cytoplasmic β-catenin has been associated previously with poor outcome in breast cancer patients [48] (Fig. 4f). Using intracellular flow cytometry, β-catenin expression increased by approximately 50% compared to the parental BM-MSCs (Fig. 4h, j). These results suggest that Wnt/β-catenin signaling may be important in the conversion from BM-MSCs to CiSCs. These data show that soluble factors produced by cancer cells contribute to converting normal human BM-MSCs into cells with cancer stem cell characteristics.

CiSCs are characterized by their ability to exclude Hoechst 33342 dye (and chemotherapy drugs) as they express multidrug-resistant transporters such as ABCG2, known as side population (SP) cells [49, 50]. We compared the CiSCs to their parental BM-MSCs for Hoechst dye exclusion. While parental BM-MSCs did not exclude the dye, more than 95% of sphere-derived CiSCs were Hoechst-negative (Fig. 4k, l), indicating their SP characteristics. Notably, these Hoechst-negative cells were much smaller (approximately 10 μm in diameter) than the major population (MP) cells, which consisted of Hoechst-positive cells (>20 μm). Taken together, it appears that CiSCs display properties of SP cells.

CiSCs display resistance to chemotherapy and are slow-cycling

CiSCs have been reported to be relatively resistant to chemotherapy [51]. Since CiSCs were shown to express markers of stemness and displayed SP cell properties, we investigated the response of the CiSCs and their parental cells to conventional chemotherapeutic agents using an Annexin-V-FITC and PI apoptosis detection kit. CiSCs were exposed for 24 hours to varying concentrations of cisplatin (0, 5, 10, 15, 20, and 25 μM) and for 24 hours to varying concentrations of doxorubicin (2, 6, and 10 nM) anti-cancer chemotherapeutic medications. Chemotherapy-induced cell death was significantly reduced in CiSCs relative to the parental BM-MSCs. CiSCs were more resistant than the parental BM-MSCs to two commonly used chemotherapeutic drugs, cisplatin (~40% increase) (Fig. 5a) and doxorubicin (~50% increase) (Fig. 5b). In response to cisplatin and doxorubicin chemotherapeutic agents, CiSCs displayed significantly lower Annexin-V positivity as compared to the parental BM-MSCs and the control MCF7 and Hela cells, indicating that CiSCs are more resistant to apoptosis (Fig. 5c, d). To investigate the possible mechanism enabling the CiSCs to block chemotherapy-induced apoptosis, we used qPCR to analyze the expression of Bcl-2 (an anti-apoptotic protein) and Bax (a pro-apoptotic molecule). Bcl-2 was overexpressed, while the pro-apoptotic molecule Bax was downregulated (Fig. 5e), suggesting that CiSCs block chemotherapy-induced apoptosis by preferential activation of the Bcl-2 cell survival response.

Several studies showed that the quiescent and slow-cycling stem cell population can frequently evade drug or radiation therapy rather than actively dividing cancer
cells [51–53]. We thus analyzed the cell cycle status of the CiSCs and the parental BM-MSCs, as well as different cancer cell lines (MCF7 and Hela), and found remarkable difference in G0/G1 and G2/M phase cells (Fig. 5f). The CiSCs appeared to show slower cell cycle progress than their parental BM-MSCs.

One possible mechanism for the resistance of CSCs to chemotherapeutic agents is that the cells display a highly efficient DNA damage response, believed to contribute to their resistance to DNA-damaging chemotherapeutic agents [54–56]. We therefore sought to directly evaluate and quantify DNA damage in CiSCs in response to cisplatin.
The function and generation of CSCs [69, 70], has been recently tightly linked to drug resistance [57, 58], has been associated with tumor recurrence, metastasis, and result in loss of tumor-initiating capacity of the CSCs and induces differentiation [73, 74]. mRNA for markers of all three embryonic layers was detected in spheres and CiSCs (Fig. 7a). These markers included important developmental transcription factors such as βIII-tubulin (a marker of ectoderm), α-fetoprotein (AFP, endoderm), glial fibrillary acidic protein (GFAP, ectoderm), forkhead box A2 (FOXA2, endoderm), paired box 6 (PAX6, ectoderm), Msh homeobox 1 (MSX1, mesoderm), and SRY-box containing gene 17 (SOX17, endoderm) (Fig. 7a). In contrast, expression of OCT3/4 was markedly decreased in the cells cultured in FBS-supplemented media as determined by intracellular flow cytometry staining (Fig. 7b).

Following their culture in FBS supplemented media, CiSCs were shown to be highly positive for markers of terminally differentiated cells such as α-SMA and Desmin, as determined by immunofluorescence confocal imaging (Fig. 7c). Flow cytometry of CiSCs showed that approximately 29% of the population expressed the hematopoietic stem cell marker CD34, 16% expressed the B-cell marker CD19, and approximately 30% expressed the hematopoietic marker CD45 (Fig. 7d and Additional file 1: Figure S1C, D). Spheroid CiSCs that were supplemented with FBS in adherent plates for up to 21 days were initially adherent. After 1 week in culture, they differentiated into large, polygonal epithelial-like cells, a phenotype similar to that of the adherent cancer cell line cultures (Additional file 1: Figure S1A). Importantly, when CiSC spheroids were cultured in the presence of FBS in Matrigel, which represents a reconstituted 3D culture system, the generated colonies differentiated and formed complex secondary structures (Additional file 1: Figure S1B). The formation of these complex secondary structures on Matrigel may indicate their differentiation capacities as described previously [75]. These data demonstrated that CiSCs could differentiate into the three germ layers in vitro.
Fig. 6 (See legend on next page.)
Cytoskeleton organization and ultrastructural characterization of CiSCs

The cytoskeleton is known to have many roles in motility, invasion, polarity, survival, and growth of normal cells. Recent reports, however, demonstrated that the cytoskeleton is usually subverted in cancer cells to contribute to cancer cell growth, stiffness, movement, and invasiveness [76]. Recent reports show that cancerous cells exhibit an increasing deformability pattern and biomechanical homogeneity as they transition into more aggressive phenotypes [77]. This transformation is associated with changes in the actin cytoskeleton, with little to no effect on the microtubule network [76], suggesting that cell stiffness is inversely related to tumorigenesis and metastatic potential [78]. We thus characterized the actin and microtubule network in the CiSCs. In accordance with previous studies [79], our data show that the cytoskeleton of CiSCs displayed more deformability compared to their parental BM-MSCs. This is shown by localization of the actin filaments around the cell periphery, while no change in the tubulin network was observed (Fig. 8a). The localization of actin filaments around the cell periphery has been shown recently to act as a cage protecting the cellular contents from environmental insults and damage when migrating through tiny spaces [80].

Many reports have shown that the surface ultrastructure of cancer cells is unique and important for cancer development and can predict cell—cell and cell—matrix interactions, adhesion, and migration abilities [81, 82]. Accordingly, we analyzed the surface and cellular ultrastructure of CiSCs and their parental BM-MSCs as well as control Hela cells. SEM showed the parental BM-MSCs to have a smooth and uniform surface with no protrusions (Fig. 8b). However, the CiSCs showed many protrusions in the form of micro buds on the cell surface, with distinct microvilli (Fig. 8d–f), similar to the surface of Hela cancer cells (Fig. 8c). In the mitotic division phase of CiSCs, the cells were apophysis shaped (Fig. 8g, h) and adjacent cells were interconnected by active pseudopodia. SEM analysis of tumorspheres derived from CiSCs revealed tumor-like buds on their surface (Fig. 8i). These tumor-like buds have been recently shown to represent a population of migrating CSCs that have undergone EMT [83] and we are currently in the process of determining the development of these tumor-like buds and their role in tumor progression.

Functional analysis of CiSCs in vivo in nude mice

To determine whether CiSCs generated from BM-MSCs may have the tumor-forming capability of cancer stem cells, CiSCs cultured for 7 days in suspension were injected under the kidney capsule of nude mice. CiSCs failed to form tumors in vivo after 2 months (Additional file 1: Figure S2). However, several reports showed that tumor formation in vivo is not always the result of injecting CSCs. For example, the work by Quintana et al. [84] shows that after injection of single, unselected melanoma cells, 27% of melanoma cells initiated a tumor, suggesting that the frequency of rare cancer-initiating cells is so far significantly underestimated. This is also supported by the study from Kelly et al. [85], who showed that regardless of the number of lymphoma cells injected, all animals developed a tumor even when transplanting only a single neo-plastic cell, suggesting that tumor growth need not be driven by CSCs. Other work showed increased efficiency of transplantaion and tumor formation when the cell suspension was mixed with Matrigel (a basement membrane-like substance that contains many growth factors) prior to implantation [86]. These data support the notion that the interaction between tumor cells and their microenvironment is critical for tumor formation and cellular engraftment. Recently, scientists have argued that the xenotransplantation assays select for cells more fit to grow in a foreign and hostile environment [84, 87]. Some cells with tumor initiation activity in humans may thus not display growth as xenografts. Additionally, the fact that most CSC surface markers are, in one way or another, linked to cellular attachment supports the view that CSC
Fig. 7 (See legend on next page.)
The relationship between host and tumor has recently been shown to be dynamic, whereby the environment of the host affects the behavior of the tumor, and the tumor influences the host. Several recent studies now suggest that CSCs may arise from either stem cells or progenitors [14, 15, 91, 92], or may be generated by dedifferentiation of somatic cells that acquire CSC-like properties under certain conditions [93–98]. Recent reports indicate that CSCs may originate from stem cells that have acquired malignant mutations [99–102]. However, other studies suggest that CSCs are in a state of flux and that microenvironmental stimulations can enrich the CSC population [103–105]. Herein, we provide several lines of evidence demonstrating that MCF7, Hela, and HepG2 cancer cells secrete soluble factors that induce phenotypic and genotypic changes in BM-MSCs via a paracrine effect. Incubation of BM-MSCs with cancer cells induced the following changes in the somatic MSCs: generated proliferating sphere-like cells in suspension; upregulated the expression of pluripotency markers Oct4, Sox2, and Nanog, and maintained this expression profile in culture; generated cells with high nonadherent colony-forming ability and increased sphere formation capability; increased expression of CSCs and cancer-related genes; produced a CD44+CD24low CSC phenotype; generated cells with SP properties; increased the expression of ALDH1A1 and β-catenin; generated slow-cycling chemoresistant cells with low DNA damage response; generated cells that could differentiate into all three lineages and formed complex secondary structures when cultured on Matrigel; generated cells with a more pronounced mesenchymal phenotype than their parental BM-MSCs; and, with microenvironmental stimulation with TGF-β, further stimulated their cancerous properties and increased their sphere formation and invasion properties. Because some of these characteristics are related to acquiring CSC features, our study may provide evidence for the direct effect of the cancer microenvironment on generating the CSC phenotype.

MSCs have an important microenvironmental role in modulating tumor progression and drug sensitivity [9–11]. Recent reports demonstrated that MSCs are recruited in large numbers to the stroma of developing tumors [5–8]. Other studies showed that administration of BM-MSCs...
Fig. 8 (See legend on next page.)
with breast cancer cells increased the tumor size and enhanced metastatic capacity by about 10-fold [106, 107], suggesting that differentiated tumor cells may fail to create the right environment and need an appropriate microenvironment to display tumor-initiating capacity [108]. However, the fate of the MSCs in the tumor microenvironment and the mechanism of supporting tumor growth remain unclear. It is therefore imperative to understand the bidirectional communication between tumor cells and MSCs within the tumor stroma. Cancer cells alone cannot drive tumor growth or progression; instead, assemblages of normal tissue and bone marrow-derived stromal cells are recruited to constitute tumorigenic microenvironments [1]. Most of the recruited cells in the tumor microenvironment are then coopted by the tumor to acquire and transit into tumor-associated stromal cells in order to support tumor progression and growth [109]. Recent reports provide convincing evidence that tumor-associated macrophages [110], cancer-associated fibroblasts [111, 112], and myeloid-derived suppressor cells [113, 114] are tumor cells derived from normal cells, recruited to the site of malignancy. Our data further support these findings, and suggest that MSCs recruited to the tumor microenvironment are exposed to cancer cell-secreted factors and may transition into more stem cell-like cells and acquire some CSC properties, and accordingly may contribute to the origin of CSCs.

Emerging evidence suggests that the MSC source and status might contribute to cancer cell behavior. For example, the work of Castellone et al. [115] has shown recently that direct MSC–cancer cell coculture resulted in an interesting physical interaction via membrane protrusions between the two cell populations, where cancer cells can absorb the MSCs leading to a more aggressive metastatic cell. Another report by Bartosh et al. [116] showed that in 3D direct coculture MSCs surrounded breast cancer cells and promoted the formation of cancer spheroids, leading to phagocytosis of MSCs by breast cancer cells. This engulfing promoted dormancy and the activation of prosurvival factors in the tumor, which is indeed a characteristic of CSCs. In this study, we report a similar effect but through a paracrine effect in an indirect coculture, without cell–cell contact. In this culture condition, soluble factors produced by cancer cells generated spheroid-like cells with many properties of CSCs. Our findings that soluble factors can covert non-CSCs to cells with a CSC signature are in line with relevant studies on the contribution of the tumor microenvironment to converting normal cells to cells with CSC properties through secreted soluble factors. For instance, endothelial cell-conditioned media were shown to produce the CSC phenotype in colorectal cancer cells [117], and myofibroblast-secreted factors conferred the CSC phenotype on differentiated cancer cells [105]. Other studies demonstrated that hypoxia-inducible factors (HIFs) can induce a CSC phenotype [118].

Conclusions

Our findings herein may have far-reaching consequences in cancer therapy. Current strategies aim at attacking the tumor at its root, by developing CSC-selective therapies [119]. Our data also suggest that investigating the role of cancer-secreted factors, and not only cancer cells in promoting the disease and in therapy, should be of high priority. If cancer cell-specific factors can confer a more stem cell-like state with CSC characteristics on the recruited MSCs in the tumor stroma, then the approach of targeting only CSCs may fail to eradicate the cancer. Ongoing regeneration of new CSCs from the recruited MSCs, stimulated by the infectious properties of cancer cells, will continue the vicious cycle (Fig. 7e). The model we propose here indicates that therapeutic targeting should be directed to the microenvironmental factors, produced by cancer cells through their interaction with recruited MSCs, which contribute to the regeneration of CSCs. In addition to targeting CSCs, therapeutic approaches to cancer should focus on the cancer microenvironment.

Our findings also hold implications for development of anticancer therapeutics. We show that large-scale generation of chemoresistant cancer stem-like cells can be produced by coculturing BM-MSCs with cancerous cells without any genetic manipulations. The generated chemoresistant stem-like cells may be used for high-throughput screening for candidate therapeutic agents that specifically target CSCs. These cells can also be useful for studying the disease mechanism, biology, and toxicology. Further research in our laboratory is ongoing to determine specific factors and mechanisms responsible for the observed development of cancer stem-like cells from MSCs, with the promise of developing novel targets for cancer therapies aimed at targeting CSCs.
Additional file

Additional file 1: Figure S1. showing in-vitro differentiation of CiSCs, Figure S2. showing xenotransplantation of CiSCs under the kidney capsule of nude mice, Figure S3. showing effect of coculturing BM-MSCs with HDF, and Table S1. presenting sequences of primers used. (PDF 1426 kb)

Abbreviations
ALDH1A1: Aldehyde dehydrogenase 1 family member A1; bFGF: Basic fibroblast growth factor; BM-MSC: Bone marrow mesenchymal stem cell; CSC: Cancer-induced stem cell; ESC: Embryonic stem cell; EDTA: Ethylenediaminetetraacetic; EGF: Epidermal growth factor; EMT: Epithelial–mesenchymal transition; ESC: Embryonic stem cell; HDF: Human dermal fibroblasts; hTERT: Telomerase reverse transcriptase; MSC: Mesenchymal stem cell; PI: Propidium iodide; SP: Side population; TGF-β: Transforming growth factor beta

Acknowledgements
The authors would like to thank members of Zewail City and the CESC for useful discussions.

Funding
This work is supported by grant #5300, funded by the Science and Technology Development Fund (STDF), Egypt to NE-B.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its Additional file 1.

Authors’ contributions
NE-B conceived, designed, and supervised all aspects of the project with input from AE-B. AE-B performed most experiments with contributions from MA, MAG and MMG. SP performed, analyzed, and wrote the in-vivo experiments. RAS and IKW performed, analyzed, and wrote the electron microscopy experiments. AE-B and NE-B wrote the manuscript with input from all authors. All authors read and approved the final manuscript.

Authors’ information
Not available.

Ethics approval and consent to participate
Not available.

Consent for publication
Not available.

Competing interests
The authors report no conflicts of interest related to this work.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, 12588, 6th of October City, Giza, Egypt. 2Urology and Nephrology Center, Mansoura University, Mansoura, Egypt. 3Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt.

Received: 7 July 2017 Revised: 24 September 2017 Accepted: 23 October 2017 Published online: 07 November 2017

References
1. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.
2. El-Badawy A, El-Badri N. Regulators of pluripotency and their implications in regenerative medicine. Stem Cells Cloning. 2015;8:67–80.
3. El-Badawy A, Amer M, Abdelbaset R, Sherif SN, Abo-Elela M, Ghalib YH, Abdelhamid H, Ismail Y, El-Badri N. Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetico properties compared to bone marrow-derived mesenchymal stromal cells. Sci Rep. 2016;6:37801.
4. El-Badawy A, El-Badri N. Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis. PLoS One. 2016;11(4):e0151938.
5. Chatunvedi P, Gilkes DM, Wong CC, Khitiz, Luo W, Zhang H, Wei H, Takano N, Schito L, Levchenko A, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem bidirectional signaling promotes metastasis. J Clin Invest. 2013;123(1):189–205.
6. Gwendal L, Paula YL. Recent discoveries concerning the tumor–mesenchymal stem cell interactions. Biochim Biophys Acta. 2016;1866(2):290–9.
7. Jung Y, Kim JH, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al. Recruitment of mesenchymal stem cells into tumors promotes metastasis. Nat Commun. 2013;4:1795.
8. Uchibori R, Tsukahara T, Miyazaki H, Saga Y, Urabe M, Mizukami H, Kume A, Ozawa K. NF-kappaB activity regulates mesenchymal stem cell accumulation at tumor sites. Cancer Res. 2013;73(1):364–72.
9. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks IW, Bell GW, Richardson AL, Polya K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007; 449(7162):557–63.
10. Li HJ, Reinhart F, Herschman HR, Weinberg RA. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostataglandin E2 signaling. Cancer Discov. 2012;2(9):840–55.
11. Rodhslt JM, Daenens LG, Stger EC, Prins HJ, Gerrits J, Houthuijzen JM, Gerritsen MG, Schipper HS, Backer MJ, van Aerskom M, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20(3):370–83.
12. Castellone et al., can be replaced with the following reference: Ridge SM, Sullivan FI, Glinn SA. Mesenchymal stem cells: key players in cancer progression. Molecular Cancer. 2017;16:31.
13. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.
14. Jamieson CH, Allees LE, Dylla SJ, Muljinks M, Jones C, Zehnder J, Gottlib J, Li K, Manz MG, Keating A, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.
15. Kritsos AV, Twomey DF, Feng Z, Stubbcs MC, Wang Y, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006; 442(7104):818–22.
16. Gallagher PG, Bao Y, Prorock A, Zigrino P, Nischt R, Politi V, Mauch C, Dragneu B, Fox JW. Gene expression profiling reveals cross-talk between oncology progression. Molecular Cancer. 2017;16:31.
17. Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela-Arispe ML, Yeo TK, Tognazz K, Dvorak HF. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res. 1999;5(3):1041–56.
18. Thomsen N, Locht C, Sympton C, Lund LR, Williams DR, Behrendtsen O, Werb Z, Bissell MJ. Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am J Pathol. 1998;153(2):457–67.
19. Brigatti C, Noonan DM, Albini A, Benelli R. Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis. 2002;19(3):247–58.
20. Shih IM, Elder DE, Hsu MY, Heryln M. Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. Am J Pathol. 1994;145(8):837–45.
21. Gilbert CA, Ross AH. Cancer stem cells: cell culture, markers and targets for new therapies. J Cell Biochem. 2009;108(5):1031–8.
22. Duhagon MA, Hurt EM, Sotelo-Silveira JR, Zhang X, Farrar WL. Genomic profiling of tumor initiating prostatespheres. BMC Genomics. 2010;11(1):324.
23. Tice RR, Agurell E, Anderson D, Buihnlin B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206–21.
24. Dontu G, Abdallah WM, Foley JEM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.
47. Mohammed MK, Shao C, Wang J, Wei Q, Wang X, Collier Z, Tang S, Liu H, Monteiro J, Gaspar C, Richer W, Franken PF, Sacchetti A, Joosten R, Idali A.

34. Keysar SB, Jimeno A. More than markers: biological significance of cancer chemoresistance. Genes Dis. 2016;3(1):11–20.

40. Huang CP, Tsai MF, Chang TH, Tang WC, Chen SY, Lai HH, Lin TY, Yang JC.

38. Moreb JS. Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther. 2008;3(4):237–46.

37. Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036.

33. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Cancer Res. 2006;66(23):11263–8.

31. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Cancer Res. 1977;37(4):1126–8.

28. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Rev Cancer. 2002;2(11):715–23. Two-dimensional cell culture model utilization in cancer stem cell research. Biol Rev. 2016;92(3):1505–20.

27. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25(7):803–16.

26. Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol. 2007;7(9):690–702.

25. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499–507.

24. Kesari SB, Jimeno A. More than markers: biological significance of cancer stem cell defining molecules. Mol Cancer Ther. 2010;9(9):2450–7.

23. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197(4302):461–3.

22. Balic M, Lin H, Young L, Dawes D, Giuliano A, McNamara G, Datar RH, Cote RJ. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006;12(19):5615–21.

21. Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Cancer Res. 1977;37(4):1126–8.

20. Keysar SB, Jimeno A. More than markers: biological significance of cancer stem cell defining molecules. Mol Cancer Ther. 2010;9(9):2450–7.

19. Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol. 2013;15(4):338–44.

18. Klonsch T, Wielicz E, Hombach-Klonsch S, Ande SR, Wesselborg S, Schulze-Osthoff K, Los M. Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol Med. 2006;12(10):450–60.

17. Jaggupilli A, Ellwart JW, Van der Zee E, Pardo E, Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036.

16. Moreb JS. Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther. 2008;3(4):237–46.

15. Flemisch AG. ALDH marks leukemia stem cell blood. Blood. 2012;119(15):3376–7.

14. Huang CP, Tsai MF, Chang TH, Tang WC, Chen SY, Lai HH, Lin TY, Yang JC, Yang PC, Shih YF, et al. ALDH-positive lung cancer stem cells confer resistance to epithelial growth factor receptor tyrosine kinase inhibitors. Cancer Lett. 2013;328(1):144–52.

13. Giestner C, Hur MH, Charafet-Jauffret E, Monville F, Dutcher J, Brown M, Jacquiermen J, Viens P, Kleer CG, Liu S, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

12. Reya T, Hamburger AW, Salmon SE. Stem cells: an updated definition for a expanding role in stem cell self-renewal, tumorigenesis and cancer chemotherapy. Cancer Lett. 2005;231(2):1–7.

11. Challen GA, Little MA. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24(1):13–22.

10. Morel AP, Lievre M, Thomas C, Hinkal G, Anassane S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3(8):e2888.

9. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton G, Weinberg RA. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525(7568):256–60.

8. Fang X, Cai Y, Liu J, Wang Z, Wu Q, Zhang Z, Yang CJ, Yuan L, Ouyang G. Twist2 contributes to breast cancer progression by promoting an epithelial-mesenchymal transition and cancer stem-like cell self-renewal. Oncogene. 2011;30(47):4707–20.

7. Baumb JM, Settleman J, Knu D, Tone MA. TGFbeta/TNFalpha-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011;71(13):4707–19.

6. Gregory PA, Cracken CP, Smith E, Bent AG, Kirt K, Roslan S, Morris M, Weyt L, Farshid G, Lin YY, et al. An autocrine TGF-beta/ERK/MAPK signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell. 2011;22(10):1868–86.

5. Katouso Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25(1):76–84.

4. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 2007;1(4):470–9.

3. Tan WL, Tripodo C, Russo A, Gulotta G, Medema JP, et al. Colon cancer stem cells: implication for cancer therapy. Cytotechnology. 2015;67(5):749–59.

2. El-Badawy et al. Stem Cell Research & Therapy 2017;8:254. Three-dimensional cell culture model utilization in cancer stem cell research. Biol Rev. 2016;92(3):1505–20.
