PHENIX Highlights

Takao Sakaguchi
Brookhaven National Laboratory
for the PHENIX Collaboration
What’s New at PHENIX and RHIC

New era of heavy flavor physics
- VTX (2011) and FVTX (2012) are installed

New Collision species and high luminosity (2012)
- U+U 193GeV
 - 3 weeks, 90/ub
- Cu+Au 200GeV
 - 5.5 weeks, 2.5/nb
 \(\rightarrow\) geometry control

PHENIX took data with high efficiency

Energy scans (2010-2012): 7.7, 19.6, 27, 39, 62, 200GeV

T. Sakaguchi, QM2012@Washington D.C.
Probing initial state with high precision d+Au data
Direct photon

- No modification in initial hard scattering and PDF compared to p+p at mid-rapidity

Graph:
- Data points for d+Au at $\sqrt{s_{NN}}=200$ GeV
- Fits: virtual γ, π^0-tagging, Cronin+Isospin, Cronin+Isospin+Shadowing, Cronin+Isospin+Shadowing+ΔE_{init}

Note:
- See I. Tserruya (Thu) talk

Reference:
- arXiv:1208.1234
Initial state - Jet probes -

- Jets are reconstructed in d+Au up to 40 GeV/c
Initial state - Jet probes -

- Jets are reconstructed at mid-rapidity in d+Au up to 40 GeV/c
- R_{dA} increases for more peripheral collisions at high p_T

See M. Wysocki (Mon) and B. Sahlmueller (Wed) talk
First measurement of ψ' in d+Au ($y=0$)

$d+Au$ 0-88% Centrality

$\psi' / (J/\psi) = 0.8 \pm 0.2 \pm 0.3\%$

$|y| < 0.35$, $s_{NN} = 200$ GeV

Best Fit

Data

Total fit

J/ψ

ψ'

$c\bar{c} \rightarrow e^+ e^-$ (Pythia)

$b\bar{b} \rightarrow e^+ e^-$ (Pythia)

Drell Yan

$M_{e^+e^-}$ [GeV/c2]
First measurement of ψ' in $d+Au$ ($y=0$)

- $\psi'/(J/\psi) = 2\%$ in $p+p$, 0.8% in $d+Au$

![Graph showing the measurement of ψ' in $d+Au$](image)
ψ’ is strongly suppressed in dAu

- Very challenging for models!

See M. Wysocki (Mon) and D. McGlinchey (Tue) talk
Probing Hot dense matter with collision geometry control
PID’ed v2 in Au+Au and U+U

\[V_2 = \sqrt{s_{NN}} \]

(a) Au+Au $\sqrt{s_{NN}} = 200$ GeV

(b) U+U $\sqrt{s_{NN}} = 193$ GeV

2012-08-13
T. Sakaguchi, QM2012@Washington D.C.
PID’ed v2 in Au+Au and U+U

- Flattening of v_2 at low p_T for (anti) protons in UU

![Graph showing v_2 vs. p_T for Au+Au and U+U collisions at different energies.](image-url)
PID’ed v2 in Au+Au and U+U

- Similar radial flow at RHIC and LHC

ALICE preliminary, Pb-Pb events at $\sqrt{s_{NN}} = 2.76$ TeV
centrality 10%-20%

LHC

U+U $\sqrt{s_{NN}} = 193$ GeV

π^+, v_2(SP, |$\Delta\eta$|>1)
K^+, v_2(SP, |$\Delta\eta$|>1)
\bar{p}, v_2(SP, |$\Delta\eta$|>1)

hydro LHC
(CG initial conditions)
($\eta/s=0.2$)
Strong radial flow in Tip-Tip enriched events

(a) 0–2%
(b) 2–4%
(c) 4–6%
(d) 6–10%

0–2% U+U $s_{NN} = 193$ GeV
Strong radial flow in Tip-Tip

- Strong radial flow due to geometry or higher energy density?

Flattening appears only in 0-2%

See S. Huang (Thu) talk
Asymmetric Cu+Au collisions

- Asymmetric coordinate space leads to asymmetric density profile and pressure gradient
- Shower Max Detector (SMD) sees Au-spectator and defines Ψ_1
v_1 and v_2 in Cu+Au collisions

- SMD sees Au-spectator and defines Ψ_1
- Sizable v_1 is seen (direction opposite to AMPT)
J/ψ in Cu+Au

- J/ψ is more suppressed in Cu going direction compared to Au going direction (CNM and final state?)
J/ψ in Cu+Au, Au+Au

- J/ψ suppression in Au-going direction is same as Au+Au
- Cu-going direction stronger suppression than in Au+Au

See M. Rosati (Tue) and R. Hollis (Fri) talk
Probing the geometry evolution with HBT
Triangularity from HBT in Au+Au

Rside

Rout

\(R_{s}^{2} [\text{fm}^{2}] \)

\(R_{t}^{2} [\text{fm}^{2}] \)

Au+Au 200GeV 0-10%

See T. Niida (Tue) talk
Triangularity from HBT in Au+Au

- Large modulation of HBT radii (R_0) with respect to ψ_3 is seen for the first time.

See T. Niida (Tue) talk.
Probing hot dense matter with hard probes
γ-h correlation in Au+Au

$z_T = p_{Ta}/p_{Tt}$
$\xi = \ln(1/z_T)$

- Associated particles in three angle ranges are integrated

$|\Delta \phi| > 5\pi/6$
$|\Delta \phi| > 2\pi/3$
$|\Delta \phi| > \pi/2$

$I_{AA} \equiv \frac{(1/N_{trig}dN/d\xi)_{AA}}{(1/N_{trig}dN/d\xi)_{pp}}$
γ-h correlation in Au+Au

$$I_{AA} \equiv \frac{(1/N_{\text{trig}}dN/d\xi)_{AA}}{(1/N_{\text{trig}}dN/d\xi)_{pp}}$$

Low z_T away side particles distributed over wider angle

$5 < p_T^\gamma < 9$ GeV/c x $0.5 < p_T^h < 7$ GeV/c

- $|\Delta \phi| > \pi/2$
- $|\Delta \phi| > 2\pi/3$
- $|\Delta \phi| > 5\pi/6$

0 - 40% Au + Au

See J. Frantz (Thu) talk
Single hadron R_{AA} RHIC energy

- π^0 in Au+Au 200GeV 0-5%
- Rising slope in R_{AA}: $(1.06 \pm 0.34 -0.29) \times 10^{-2}$ (GeV/c)$^{-1}$
Single hadron R_{AA} RHIC vs LHC

- Charged hadrons in Pb+Pb 2.76TeV 0-5%
- R_{AA} for both systems look very similar

![Graph showing R_{AA} for PHENIX and ALICE at 0-5% centrality.](image)
Fractional momentum loss

- Measure fractional mom. loss ($\delta p_T/p_T$) instead of R_{AA}
- Different $\delta p_T/p_T$ for same R_{AA}

See M. McCumber (Tue) talk

ρ_T vs p_T (GeV/c) for (p+p) and (p+p) x T_{AB}

LHC

RHIC

$\delta p_T/p_T$ vs p_T (GeV/c)

- Pb+Pb 0-5%, δ(global)=0.3%
- Au+Au 0-5%, δ(global)=1.0%
- Pb+Pb 70-80%, δ(global)=0.7%
- Au+Au 70-80%, δ(global)=2.9%

arXiv:1208.2254
Energy dependence of $\delta p_T/p_T$:

- $\delta p_T/p_T$ decreases significantly going from 200GeV to 62, 39GeV.

See E. O’Brien (Fri) talk.

[Graph showing the energy dependence of $\delta p_T/p_T$ for π^0, Au+Au 0-10% at 39 GeV, 62.4 GeV, and 200 GeV.]
Energy dependence of $\delta p_T/p_T$

- $\delta p_T/p_T$ from 39GeV to 2.76TeV!

\[\pi^0, \text{Au+Au 0-10 \%} \]

\[R_{AA}, p_T [\text{GeV/c}] \]

\[\delta p_T/p_T \]

\[p_T [\text{GeV/c}] \]

\[\text{LHC 0-5\%} \]

See E. O’Brien (Fri) talk
Single electrons

- Heavy flavor electron R_{AA} is a mixture of charm and bottom contributions
- We really want R_{AA} for charm and bottom
Charm and bottom decomposition

- \((b \rightarrow e)/(b \rightarrow e + c \rightarrow e)\) ratio for p+p collisions from partial reconstruction of \(D \rightarrow e^+/-K^-/+X\)

![Graph showing the ratio of charm and bottom decomposition over electron p_T (GeV/c)]
First direct c/b decomposition with new VTX detector

- New direct measurement of bottom fraction agrees with FONLL

See M. Rosati (Tue) and R. Nouicer (Fri) talk
R_{AA} for $c \rightarrow e$

PHENIX Preliminary

Using FONLL shape as reference

Charm: 200 GeV Au+Au MB

See M. Rosati (Tue) and R. Nouicer (Fri) talk
R_{AA} for $c \rightarrow e$ and π^0

- Charm contribution is less suppressed

Diagram:

- **PHENIX Preliminary**
- **Using FONLL shape as reference**
- **Charm:** 200 GeV Au+Au MB
- **π^0** PRL 101, 232301 (2008)

Legend:

- Red circle: Charm
- Black square: π^0

Axes:

- **R_{AA}**
- **p_T (GeV/c)**

Note:

- See M. Rosati (Tue) and R. Nouicer (Fri) talk
R_{AA} for $c \rightarrow e$, $b \rightarrow e$ and π^0

- Bottom contribution is heavily suppressed!

See M. Rosati (Tue) and R. Nouicer (Fri) talk
R_{AA} for $c \to e$, $b \to e$ and HF e

- R_{AA} for $c \to e$ is consistent with R_{AA} for HF electrons

PHENIX Preliminary

Using FONLL shape as reference

- Charm: 200 GeV Au+Au MB
- e^{HF}: Au+Au PRC 84, 044905
- Bottom: 200 GeV Au+Au MB

Electron p_T (GeV/c)

90% C.L.
PHENIX talks

- **Plenary talks**
 - M. Wysocki (Mon, *Initial state, Global & Collective Dynamics*)
 - M. McCumber (Tue, *Jets*)
 - M. Rosati (Tue, *Heavy Flavor*)
 - I. Tserruya (Thu, *Quarkonia, Real & Virtual Photons*)
 - E. O’Brien (Fri, *Exploring the QCD Phase Diagram*)

- **Parallel talks (Tue)**
 - T. Niida (*Correlations & Fluctuations, Parallel #3*)
 - Y. Gu (*Global & Collective Dynamics, Parallel #1*)
 - J. Frantz (*Jets, Parallel #2*)
 - D. McGlinchey (*Heavy Flavor & Quarkonia, Parallel #4*)

- **Parallel talks (Wed)**
 - E. Atomssa (*Electro-Weak Probes, Parallel #7*)
 - M. Kurosawa (*Global & Collective Dynamics Parallel #5*)

- **Parallel talks (Thu)**
 - B. Sahlmueller (*Pre-Equilibrium & Initial State, Parallel #8*)
 - S. Huang (*Global & Collective Dynamics Parallel #5*)

- **Parallel talks (Fri)**
 - J. Haggerty (*New Experimental Developments, Parallel #15*)
 - R. Nouicer (*Heavy Flavor & Quarkonia, Parallel #13*)
 - J. Seele (*New Experimental Developments, Parallel #15*)
 - T. Todoroki (*Correlations & Fluctuations, Parallel #16*)
 - R. Hollis (*Correlations & Fluctuations, Parallel #16*)
 - J. Mitchell (*Exploring the QCD Phase Diagram, Parallel #14*)

And, Many posters
Summary

- Understanding the baseline – d+Au -
 - Direct photons – no modification
 - Jets and high $p_T \pi^0/\eta$ – Little modification
 - ψ' is very heavily suppressed

- Varying the geometry
 - U+U - Strong radial flow
 - positive v_1 in Cu+Au
 - J/ψ suppressed in Cu-going direction more than Au+Au at same N_{part}

- Varying the energy
 - $\delta p_T/p_T$ for hadrons increases by a factor of 6 from 39GeV to 2.76TeV

- Know your hard probes
 - γ-h – Detail jet tomography, hints of jet broadening

- Separating heavy flavor electrons into charm and bottom
 - Strong suppression of b in Au+Au for $p_T<5\text{GeV}/c$
Backup
