t-STRUCTURES FOR RELATIVE \(\mathcal{D}\)-MODULES AND t-EXACTNESS OF THE DE RHAM FUNCTOR

LUISA FIOROT AND TERESA MONTEIRO FERNANDES

Abstract. This paper is a contribution to the study of relative holonomic \(\mathcal{D}\)-modules. Contrary to the absolute case, the standard \(t\)-structure on holonomic \(\mathcal{D}\)-modules is not preserved by duality and hence the solution functor is no longer \(t\)-exact with respect to the canonical, resp. middle-perverse, \(t\)-structure. We provide an explicit description of these dual \(t\)-structures.

When the parameter space is 1-dimensional, we use this description to prove that the solution functor as well as the relative Riemann-Hilbert functor are \(t\)-exact with respect to the dual \(t\)-structure and to the middle-perverse one while the de Rham functor is \(t\)-exact for the canonical, resp. middle-perverse, \(t\)-structure and their duals.

Contents

1. Introduction 1

2. Torsion pairs, quasi-abelian categories and \(t\)-structures 3

3. \(t\)-structures on \(\mathcal{D}^b_{\text{hol}}(\mathcal{D}_{X\times S/S})\) 5

4. \(t\)-structures on \(\mathcal{D}^b_{\text{c.c.}}(p^{-1}_X\mathcal{O}_S)\) 13

5. \(t\)-exactness of the \(p\text{-DR}\) and the \(\text{RH}^S\) functors for \(d_S = 1\)
 4.a. Reminder on the construction of \(\text{RH}^S\) 19
 4.b. Main results and proofs 20

References 24

Introduction.

Let \(X\) and \(S\) be complex manifolds and let \(p_X\) denote the projection of \(X \times S \to S\). We shall denote by \(d_X\) and \(d_S\) their respective complex dimensions and will often write \(p\) instead of \(p_X\) whenever there is no ambiguity.

2010 Mathematics Subject Classification. 14F10, 32C38, 35A27, 58J15.

Key words and phrases. relative \(\mathcal{D}\)-modules, De Rham functor, \(t\)-structure.

The research of T. Monteiro Fernandes was supported by Fundação para a Ciência e Tecnologia, PEst OE/MAT/UI0209/2011.
An extensive study of holonomic and regular holonomic $\mathcal{D}_{X \times S/S}$-modules as well as of their derived categories was performed in \[17\] and \[18\]. Such modules are called for convenience respectively relative holonomic and regular holonomic modules. Relative holonomic modules are coherent modules whose characteristic variety, in the product $(T^*X) \times S$, is contained in $\Lambda \times S$ for some Lagrangian conic closed analytic subset Λ of T^*X. Regular relative holonomic modules are holonomic modules whose restriction to the fibers of p_X have regular holonomic \mathcal{D}_X-modules as cohomologies.

Another notion introduced in \[17\] was that of \mathbb{C}-constructibility over $p_X^{-1}\mathcal{O}_S$, conducting to the (bounded) derived category of sheaves of $p_X^{-1}\mathcal{O}_S$-modules with \mathbb{C}-constructible cohomology, the \mathbb{S}-\mathbb{C}-constructible complexes (this category is denoted by $\mathcal{D}^b_{c,c}(p_X^{-1}\mathcal{O}_S)$), where a natural notion of perversity was also introduced. In loc.cit. it was proved that the essential image of the de Rham functor DR as well as of the solution functor Sol, when restricted to the bounded derived category of $\mathcal{D}_{X \times S/S}$-modules with holonomic cohomology, is $\mathcal{D}^b_{c,c}(p_X^{-1}\mathcal{O}_S)$. Recall that, denoting by $\text{pSol}(\mathcal{M})$ (resp. $\text{pDR}(\mathcal{M})$) the complex $\text{Sol}(\mathcal{M})[d_X]$ (resp. $\text{DR}(\mathcal{M})[d_X]$), these two functors satisfy a natural isomorphism of commutation with duality: $\mathcal{D} \text{pSol}(-) \simeq \text{pDR}(-)$.

Under the assumption $d_S = 1$, a right quasi-inverse functor to pSol, the functor RH^S, was introduced in \[18\], so naturally RH^S is a functor from $\mathcal{D}^b_{c,c}(p_X^{-1}\mathcal{O}_S)$ to the bounded derived category $\mathcal{D}^b_{\text{hol}}(\mathcal{D}_{X \times S/S})$ of $\mathcal{D}_{X \times S/S}$-modules with regular holonomic modules. RH^S is the relative version of Kashiwara’s Riemann Hilbert functor RH (cf. \[9\]) as explained in Section 3.a where we briefly recall its construction. Recall that the importance of this apparently restrictive assumption on S is two-sided: for $d_S = 1$, \mathcal{O}_S-flatness and absence of \mathcal{O}_S torsion are equivalent, so we can split proofs in the torsion case and in the torsion free case; on the other hand, although we will not enter into details here, the construction of RH^S requires, locally on S, the existence of bases of the coverings of the subanalytic site S_{sa} formed by \mathcal{O}_S-acyclic open subanalytic sets which is possible in the case $d_S = 1$.

The main goal of this paper is to prove the t-exactness of pSol, pDR and RH^S with respect to the t-structures involved (assuming $d_S = 1$). To be more precise, in the holonomic side we have the standard t-structure P as well as its dual Π, which, contrary to the absolute case proved by Kashiwara in \[9\], do not coincide if $d_X \geq 1$, $d_S \geq 1$ which is not surprising due to the possible absence of \mathcal{O}_S-flatness. Similarly, on the \mathbb{C}-constructible side, we have the perverse t-structure p introduced in \[17\] and its dual $\pi, \text{which do not coincide if } d_X, d_S \geq 1$ as well. Kashiwara’s paper \[10\] provides a wide setting for this kind of problems covering the case $d_X = 0$ (the \mathcal{O}_S-coherent case) as well as the standard t-structure on the \mathbb{C}-constructible case and the correspondent t-structure on $\mathcal{D}^b_{\text{hol}}(\mathcal{D}_X)$ via RH. We took there our inspiration, adapting the ideas of several proofs.

In Theorems 2.11 and 3.9 we completely describe Π and π for any d_X and d_S. In particular, when $d_S = 1$, we prove in Proposition 2.6 that Π is obtained by left tilting P with respect to a natural torsion pair (respectively P is obtained by...
right tilting II with respect to a natural torsion pair) and we conclude in Corollary 2.7 that the category of strict relative holonomic modules is quasi-abelian ([22]). Similar results are deduced for π and p in Proposition 5.7 leading to the conclusion that perverse S-C-constructible complexes with a perverse dual are the objects of a quasi-abelian category. Recall that the procedure of tilting a t-structure $(D^{\leq 0}, D^{>0})$ on a triangulated category C with respect to a given torsion pair $(\mathcal{T}, \mathcal{F})$ on its heart has been introduced by Happel, Reiten and Smalø in their work [6]. Following the notation of Bridgeland ([2] and [3]) Polishuk proved in [21] that performing the left tilting procedure one gets all the t-structures $(D^{\leq 0}, D^{>0})$ satisfying the condition $D^{\leq 0} \subseteq D^{\leq 0} \subseteq D^{\leq 1}$. The relations between torsion pairs, tilted t-structures and quasi-abelian categories have been clarified in [1] and [4].

With these informations in hand we have the tools to prove, under the assumption $d_S = 1$, in Theorem 1.1 that p_{DR} is exact with respect to P and p (so, by duality, with respect to Π and π) which gives a precision to the behavior of p_{DR} already studied in [18]. However, since it is not known if RH_S provides an equivalence of categories for general d_X, we do not dispose of a morphism of functors $D RH_S(\cdot) \rightarrow RH_S(D(\cdot))$ allowing us to argue by duality as in the C-constructible framework. Nevertheless, by a direct proof, in Theorem 4.2 we prove that RH_S is exact with respect to p and Π as well as to the dual structures π and P.

1. TORSION PAIRS, QUASI-ABELIAN CATEGORIES AND T-STRUCTURES

A torsion pair in an abelian category A is a pair $(\mathcal{T}, \mathcal{F})$ of strict (i.e. closed under isomorphisms) full subcategories of A satisfying the following conditions: $\text{Hom}_A(T, F) = 0$ for every $T \in \mathcal{T}$ and every $F \in \mathcal{F}$; for any object $A \in A$ there exists a short exact sequence: $0 \rightarrow t(A) \rightarrow A \rightarrow f(A) \rightarrow 0$ in A such that $t(A) \in \mathcal{T}$ and $f(A) \in \mathcal{F}$. The class \mathcal{T} is called the torsion class and it is closed under extensions, direct sums and quotients, while \mathcal{F} is the torsion-free class and it is closed under extensions, subobjects and direct products. In particular, \mathcal{T} is a full subcategory of A such that the inclusion functor $i_\mathcal{T} : \mathcal{T} \rightarrow A$ admits a right adjoint $t : A \rightarrow \mathcal{T}$ such that $ti_\mathcal{T} = \text{id}_\mathcal{T}$, and dually, the inclusion functor $i_\mathcal{F} : \mathcal{F} \rightarrow A$ admits a left adjoint $f : A \rightarrow \mathcal{F}$ such that $fi_\mathcal{F} = \text{id}_\mathcal{F}$.

In general, the categories \mathcal{T} and \mathcal{F} are not abelian categories but, as observed in [1, 5.4], they are quasi-abelian categories. Let us recall that an additive category \mathcal{E} is called quasi-abelian if it admits kernels and cokernels, and the class of short exact sequences $0 \rightarrow E_1 \xrightarrow{\alpha} E_2 \xrightarrow{\beta} E_3 \rightarrow 0$ with $E_1 \cong \text{Ker} \beta$ and $E_3 \cong \text{Coker} \alpha$ is stable by pushouts and pullbacks. Both \mathcal{T} and \mathcal{F} admit kernels and cokernels such that: $\text{Ker}_\mathcal{T} = t \circ \text{Ker}_A$, $\text{Coker}_\mathcal{T} = \text{Coker}_A$, $\text{Ker}_\mathcal{F} = \text{Ker}_A$ and $\text{Coker}_\mathcal{F} = f \circ \text{Coker}_A$. Exact sequences in \mathcal{T} (respectively in \mathcal{F}) coincide with short exact sequences in A whose terms belong to \mathcal{T} (respectively \mathcal{F}) and hence they are stable by pullbacks and push-outs thus proving that \mathcal{T} and \mathcal{F} are quasi-abelian categories. For more details on quasi-abelian categories we refer to Schneiders’ work [22].
Definition 1.1. ([6] Ch. I, Proposition 2.1, [2] Proposition 2.5). Let \(\mathcal{H}_D \) be the heart of a \(t \)-structure \(D = (D^<0, D^>0) \) on a triangulated category \(\mathcal{C} \) and let \((\mathcal{F}, \mathcal{F}) \) be a torsion pair on \(\mathcal{H}_D \). Then the pair \(\mathcal{D}_{(\mathcal{F}, \mathcal{F})} := (D^<0_{(\mathcal{F}, \mathcal{F})}, D^>0_{(\mathcal{F}, \mathcal{F})}) \) of full subcategories of \(\mathcal{C} \)

\[
\begin{align*}
D^<0_{(\mathcal{F}, \mathcal{F})} & = \{ C \in \mathcal{C} | H_D^0(C) \in \mathcal{F}, \ H_D^0(C) = 0 \forall i > 1 \} \\
D^>0_{(\mathcal{F}, \mathcal{F})} & = \{ C \in \mathcal{C} | H_D^0(C) \in \mathcal{F}, \ H_D^0(C) = 0 \forall i < 0 \}
\end{align*}
\]

is a \(t \)-structure on \(\mathcal{C} \) whose heart is

\[
\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} = \{ C \in \mathcal{C} | H_D^0(C) \in \mathcal{F}, \ H_D^1(C) = 0 \forall i \notin \{0, 1\} \}.
\]

Following [2] we say that \(D_{(\mathcal{F}, \mathcal{F})} \) is obtained by left tilting \(D \) with respect to the torsion pair \((\mathcal{F}, \mathcal{F}) \) while the \(t \)-structure \(\widetilde{D}_{(\mathcal{F}, \mathcal{F})} := D_{(\mathcal{F}, \mathcal{F})}[1] \) is called the right-structure obtained by right tilting \(D \) with respect to the torsion pair \((\mathcal{F}, \mathcal{F}) \) and in this case the right tilted heart is:

\[
\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} = \{ C \in \mathcal{C} | H_D^0(C) \in \mathcal{F}, \ H_D^{-1}(C) \in \mathcal{F}, \ H_D^1(C) = 0 \forall i \notin \{0, -1\} \}.
\]

Remark 1.2. ([6]). Following the previous notations, whenever one performs a left tilting of \(D \) with respect to a given torsion pair \((\mathcal{F}, \mathcal{F}) \) on \(\mathcal{H}_D \) one obtains the new heart \(\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} \) and the starting torsion pair is “tilted” in the torsion pair \((\mathcal{F}, \mathcal{F}[−1]) \) which is a torsion pair in \(\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} \): the class \(\mathcal{F} \) placed in degree zero is the torsion class for this torsion pair while the old torsion class \(\mathcal{F} \) shifted by \([−1] \) becomes the new torsion-free class and, for any \(M \in \mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} \), the sequence

\[
0 \to H^0(M) \to M \to H^1(M)[-1] \to 0
\]

is the short exact sequence associated to the torsion pair \((\mathcal{F}, \mathcal{F}[−1]) \).

Performing a right tilting of \(D_{(\mathcal{F}, \mathcal{F})} \) with respect to the torsion pair \((\mathcal{F}, \mathcal{F}[−1]) \) on \(\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} \) one re-obtains the starting \(t \)-structure \(D \) endowed with its torsion pair \((\mathcal{F}, \mathcal{F}) \). In such a way the right tilting by \((\mathcal{F}, \mathcal{F}[−1]) \) in \(\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} \) is the inverse of the left tilting of \(D \) with respect to \((\mathcal{F}, \mathcal{F}) \) on \(\mathcal{H}_D \).

Any \(t \)-structure \(D_{(\mathcal{F}, \mathcal{F})} \) obtained by left tilting \(D \) with respect to a torsion pair \((\mathcal{F}, \mathcal{F}) \) in the heart \(\mathcal{H}_D \) of a \(t \)-structure \(D \) in \(\mathcal{C} \) satisfies

\[
D^<0 \subseteq D^<0_{(\mathcal{F}, \mathcal{F})} \subseteq D^<1 \quad \text{or equivalently} \quad D^>1 \subseteq D^>0_{(\mathcal{F}, \mathcal{F})} \subseteq D^>0
\]

and hence the heart \(\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} \) of the \(t \)-structure \(D_{(\mathcal{F}, \mathcal{F})} \) satisfies \(\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} \subseteq D^{[0:1]} := D^<1 \cap D^>0 \). Dually any \(t \)-structure \(\widetilde{D}_{(\mathcal{F}, \mathcal{F})} := D_{(\mathcal{F}, \mathcal{F})}[1] \) obtained by right tilting \(D \) with respect to a torsion pair \((\mathcal{F}, \mathcal{F}) \) in the heart \(\mathcal{H}_D \) of a \(t \)-structure \(D \) in \(\mathcal{C} \) satisfies

\[
D^<1 \subseteq \widetilde{D}^<0_{(\mathcal{F}, \mathcal{F})} \subseteq D^<0 \quad \text{or equivalently} \quad D^>0 \subseteq \widetilde{D}^>0_{(\mathcal{F}, \mathcal{F})} \subseteq D^>0^{-1}
\]

and hence \(\mathcal{H}_{D_{(\mathcal{F}, \mathcal{F})}} \subseteq D^{[0:1]} := D^<0 \cap D^>0^{-1} \).

Polishchuk in [21] Lemma 1.2.2 proved the following:
Lemma 1.3. In any pair of t-structures D, D' on a triangulated category C verifying the condition $D^{≤0} \subseteq D'^{≤0} \subseteq D'^{≤1}$ (resp. $D^{≤−1} \subseteq D'^{≤0} \subseteq D'^{≤0}$), the t-structure D' is obtained by left tilting (resp. right tilting) D with respect to the torsion pair $(T, F) := (D^{≤−1} \cap \mathcal{H}_D, D'^{≥0} \cap \mathcal{H}_D)$ (resp. $(T, F) := (D'^{≤0} \cap \mathcal{H}_D, D'^{≥1} \cap \mathcal{H}_D)$) and in particular, for any $A \in \mathcal{H}_D$, the approximating triangle for the t-structure D' is the short exact sequence for this torsion pair.

Remark 1.4. In the work [5] the authors propose a generalization of the previous result. In [5, Theorem 2.14 and 4.3] the authors proved that, under some technical hypotheses, given any pair of t-structures D, D' satisfying the condition:

$$D^{≤0} \subseteq D'^{≤0} \subseteq D'^{≤1}$$

one can recover the t-structure D' by an iterated procedure of left tilting of length ℓ starting with D. Equivalently the t-structure D' can be obtained by an iterated procedure of right tilting of length ℓ starting with D.

In particular by [5, Lemma 2.10 (ii)] these hypotheses are joined whenever, following the definition of Keller and Vossieck [15] (cf. also [5, Definition 6.8]), the t-structure D' is left D-compatible i.e. the class $D'^{≤0}$ is stable under the left truncations $\tau^{≤k}_D$ of D for any $k \in \mathbb{Z}$.

2. t-structures on $D^b_{hol}(D_{X \times S/S})$

Let X and S denote complex manifolds of dimension $n := d_X$ and $\ell := d_S$ and let $p_X : X \times S \to S$ be the projection on S. We denote by $D_{X \times S/S}$ the subsheaf of $D_{X \times S}$ of relative differential operators with respect to p_X. We denote by $D^b_{hol}(D_{X \times S/S})$ the bounded derived category of left $D_{X \times S/S}$-modules with coherent cohomologies.

As in the absolute case (in which S is a point) the triangulated category $D^b_{coh}(D_{X \times S/S})$ is endowed with a duality functor: given $M \in D^b_{coh}(D_{X \times S/S})$ we set

$$D(M) := R\mathcal{H}(om_{D_{X \times S/S}}(M, D_{X \times S/S} \otimes_{D_{X \times S/S}} \Omega^{<1}_{X \times S/S}))[n]$$

and hence $M \cong DDDM$ (since, as explained in [17] Proposition 3.2], any coherent $D_{X \times S/S}$-module locally admits a free resolution of length at most $2n + \ell$).

In [17] 3.4] the authors introduce the notion of holonomic $D_{X \times S/S}$-module (whose characteristic variety is contained $\Lambda \times S$ for some closed conic Lagrangian complex analytic subset Λ of T^*X) and they proved that the dual of a holonomic $D_{X \times S/S}$-module is an object in $D^b_{hol}(D_{X \times S/S})$ ([17 Corollary 3.6]). Hence the previous duality restricts into a duality in $D^b_{hol}(D_{X \times S/S})$ (the bounded derived category of left $D_{X \times S/S}$-modules with holonomic cohomologies), but despite the absolute case it is no longer true that the dual of a holonomic $D_{X \times S/S}$-module is a holonomic $D_{X \times S/S}$-module.
Due to the previous considerations, we can endow the triangulated category $\mathcal{D}_{\text{hol}}^b(\mathcal{D}_X \times S/S)$ with two t-structures P and Π: we denote by P the natural t-structure and by Π its dual t-structure with respect to the functor D. Thus, by definition, complexes in $P \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X \times S/S)$ (respectively $P \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X \times S/S)$) are isomorphic in $\mathcal{D}_{\text{hol}}^b(\mathcal{D}_X \times S/S)$ to complexes of $\mathcal{D}_X \times S/S$-modules which have zero entries in positive (respectively negative) degrees and holonomic cohomologies. The dual t-structure Π is by definition:

\[
\Pi \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X \times S/S) = \{ M \in \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X \times S/S) \mid DM \in P \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X \times S/S) \}
\]

\[
\Pi \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X \times S/S) = \{ M \in \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X \times S/S) \mid DM \in P \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X \times S/S) \}.
\]

Remark 2.1. We have the following statements:

1. If $S = \{pt\}$ then $\Pi = P$ (cf. [3, 4.11]).

2. If $X = \{pt\}$ then P is nothing more than the natural t-structure in $\mathcal{D}_{\text{coh}}(\mathcal{O}_S)$ and Π is its dual t-structure with respect to the functor $D(\cdot) := R\text{Hom}_{\mathcal{O}_S}(\cdot, \mathcal{O}_S)$ described by Kashiwara in [10, §4, Proposition 4.3] which we shall denote by π:

\[
\pi \mathcal{D}_{\text{coh}}^{\leq 0}(\mathcal{O}_S) = \{ M \in \mathcal{D}_{\text{coh}}^b(\mathcal{O}_S) \mid \text{codim Supp}(\mathcal{H}^k(M)) \geq k \}
\]

\[
\pi \mathcal{D}_{\text{coh}}^{\geq 0}(\mathcal{O}_S) = \{ M \in \mathcal{D}_{\text{coh}}^b(\mathcal{O}_S) \mid \mathcal{H}^k[Z](M) = 0 \text{ for any analytic closed subset } Z \text{ and } k < \text{codim } Z \}.
\]

Recall that, following [14], for $s \in S$ on denotes by Li_s^* the derived functor $p_X^{-1}(\mathcal{O}_S/m) \otimes_{p_X^{-1}\mathcal{O}_S} (\cdot)$ where m is the maximal ideal of functions vanishing at s.

Lemma 2.2. Let consider the functors $\text{Li}_s^* : \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X \times S/S) \rightarrow \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X)$ with s varying in S. The following holds true:

1. The complex $M \in \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X \times S/S)$ is isomorphic to 0 if and only if $\text{Li}_s^* M = 0$ for any s in S;

2. $\text{Li}_s^* M \in \mathcal{D}_{\text{hol}}^{\leq k}(\mathcal{D}_X)$ for each $s \in S$ if and only if $M \in P \mathcal{D}_{\text{hol}}^{\leq k}(\mathcal{D}_X \times S/S)$;

3. if $\text{Li}_s^* M \in \mathcal{D}_{\text{hol}}^{\leq k}(\mathcal{D}_X)$ for each $s \in S$ then $M \in P \mathcal{D}_{\text{hol}}^{\leq k}(\mathcal{D}_X \times S/S)$;

4. $\text{Li}_s^* M \in \mathcal{D}_{\text{hol}}^{\geq k}(\mathcal{D}_X)$ for each $s \in S$ if and only if $M \in \Pi \mathcal{D}_{\text{hol}}^{\geq k}(\mathcal{D}_X \times S/S)$.

Proof. These statements are a slight generalization of [18 Corollary 1.11], with exactly the same idea of proof. In particular (4) can be deduced by duality from (2) since we can characterize the objects in $\Pi \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X \times S/S)$ as follows:

\[
M \in \Pi \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_X \times S/S) \iff DM \in P \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X \times S/S)
\]

by (2) $M \in \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X \times S/S)$ and $\forall s \in S$, $\text{Li}_s^* DM \cong D\text{Li}_s^* M \in \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X)$

$\iff M \in \mathcal{D}_{\text{hol}}^b(\mathcal{D}_X \times S/S)$ and $\forall s \in S$, $\text{Li}_s^* M \in \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_X)$
where the last equivalence holds true since in the absolute case the functor D on $Dhol^b(D_X)$ is exact with respect to the natural t-structure.

$q.e.d.$

Lemma 2.3. We have the double inclusion

$$
\Pi Dhol^{\leq t}(D_{X\times S/S}) \subseteq P Dhol^{\leq 0}(D_{X\times S/S}) \subseteq \Pi Dhol^{\leq 0}(D_{X\times S/S})
$$

hence, given M a holonomic $D_{X\times S/S}$-module, its dual satisfies

$$
DM \in P Dhol^{[0, t]}(D_{X\times S/S}).
$$

Proof. In general, if $M \in P Dhol^{\leq 0}(D_{X\times S/S})$, for any $s \in S$, $Li_s^*M \in Dhol^{\leq 0}(D_X)$ and hence $Li_s^*DM \cong DLI_s^*M \in Dhol^{\geq 0}(D_X)$ thus, according to (3) of Lemma 2.2, $DM \in P Dhol^{\geq 0}(D_{X\times S/S})$ and so $M \in \Pi Dhol^{\leq 0}(D_{X\times S/S})$.

According to the definitions, Lemma 2.2 and by the t-exactness of the functor D in the absolute case, we have the following chain:

$$
\begin{align*}
M \in \Pi Dhol^{\leq -t}(D_{X\times S/S}) & \iff DM \in P Dhol^{\geq t}(D_{X\times S/S}) \\
& \Rightarrow \forall s \in S, Li_s^*DM \cong DLI_s^*M \in Dhol^{\geq 0}(D_X) \iff \forall s \in S, Li_s^*M \in Dhol^{\leq 0}(D_X) \\
& \iff M \in P Dhol^{\leq 0}(D_{X\times S/S}).
\end{align*}
$$

$q.e.d.$

The following result will be useful in the sequel:

Lemma 2.4. Let $N \in P Dhol^{\leq 0}(D_{X\times S/S})$. Then DN is quasi-isomorphic to a bounded complex \mathfrak{F}^\bullet of coherent $D_{X\times S/S}$-modules whose terms in negative degrees are zero while the terms in positive degrees are strict coherent $D_{X\times S/S}$-modules. In particular $\mathcal{H}^{\geq 0}DN$ is torsion free.

Proof. Since any coherent $D_{X\times S/S}$-module locally admits a resolution of finite length by free $D_{X\times S/S}$-modules of finite rank, any complex $N \in P Dhol^{\leq 0}(D_{X\times S/S})$ locally admits a resolution \mathcal{L}^\bullet by free $D_{X\times S/S}$-modules of finite rank such that $\mathcal{L}^i = 0$ for any $i > 0$ and for $i \ll 0$. Thus DN can be represented locally by the complex $\mathcal{L}^{\bullet \bullet} := \mathcal{H}om_{D_{X\times S/S}}(\mathcal{L}^\bullet, D_{X\times S/S} \otimes_{O_{X\times S}} O_{X\times S}^{-1})[n]$ whose terms are free $D_{X\times S/S}$-modules of finite rank and whose cohomology in negative degrees is zero. By the assumption

$$
DN \simeq P_{\tau^{\geq 0}}(DN) \simeq \mathfrak{F}^\bullet \in \Pi Dhol^{\leq 0}(D_{X\times S/S}) \text{ (since } N \in P Dhol^{\leq 0}(D_{X\times S/S})\text{)}
$$

with

$$
\mathfrak{F}^\bullet := \cdots 0 \rightarrow 0 \rightarrow \text{Coker}(d_{\mathcal{L}^1}^{-1}) \rightarrow \mathcal{L}^{t1} \rightarrow \cdots
$$

where $\text{Coker}(d_{\mathcal{L}^1})$ is placed in degree 0. It remains to prove that $\text{Coker}(d_{\mathcal{L}^1})$ is a strict coherent $D_{X\times S/S}$-module.

Let us consider the distinguished triangle induced by the following short exact sequence of complexes of coherent $D_{X\times S/S}$-modules:
\[\mathcal{L}^{* \geq 1} \quad \cdots \quad 0 \quad \xrightarrow{0} \quad \mathcal{L}^{* 1} \quad \xrightarrow{\mathcal{L}^{* 2}} \cdots \]

\[\xrightarrow{\text{Coker}(d_{\mathcal{L}}^{-1, *})[0]} \quad \cdots \quad 0 \quad \xrightarrow{\text{Coker}(d_{\mathcal{L}}^{-1, *})} \quad \mathcal{L}^{* 1} \quad \xrightarrow{\mathcal{L}^{* 2}} \cdots \]

The triangle \(\text{Li}_s^* \mathcal{L}^{* \geq 1} \rightarrow \text{Li}_s^* \mathcal{F}^* \rightarrow \text{Li}_s^* (\text{Coker}(d_{\mathcal{L}}^{-1, *})) \Downarrow \) is distinguished, since each \(\mathcal{L}^{* i} \) is strict, \(\text{Li}_s^* \mathcal{L}^{* \geq 1} \in \mathcal{D}^{>1}_{\text{coh}}(\mathcal{D}_X) \) while \(\text{Li}_s^* \mathcal{F}^* \in \mathcal{D}^{0}_{\text{coh}}(\mathcal{D}_X) \) in view of Lemma 2.2 (4). Hence, for any \(s \in S \), \(\text{Li}_s^* (\text{Coker}(d_{\mathcal{L}}^{-1, *})) \in \mathcal{D}^{>0}_{\text{hol}}(\mathcal{D}_X) \), so \(\mathcal{H}^0 \text{Li}_s^* (\text{Coker}(d_{\mathcal{L}}^{-1, *})) = 0, \forall j \neq 0 \) since \(\text{Li}_s^* (\text{Coker}(d_{\mathcal{L}}^{-1, *})) \in \mathcal{D}^{<0}_{\text{hol}}(\mathcal{D}_X) \). According to [18, Lemma 1.13] we conclude that \(\text{Coker}(d_{\mathcal{L}}^{-1, *}) \) is strict and so \(\mathcal{H}^0 DN \) is torsion free. q.e.d.

Remark 2.5. In accordance with Lemma 2.4, if \(M \) is a torsion module, \(\mathcal{H}^0 D(M) \), being torsion free and a torsion module, is zero.

Following [20], \(p_X^{-1}O_S \)-flat holonomic \(\mathcal{D}_{X \times S/S}\)-modules are called strict. When \(d_S = 1 \), it is well known that \(p_X^{-1}O_S \)-flatness is equivalent to absence of \(p_X^{-1}O_S \)-torsion, hence a holonomic \(\mathcal{D}_{X \times S/S}\)-module \(M \) is strict if and only if for any \(f \in O_S \) the morphism \(M \xrightarrow{f} M \) (multiplication by \(f \)) is a monomorphism.

In this case, for a given coherent \(\mathcal{D}_{X \times S/S}\)-module \(M \), we denote by \(M_t \) the coherent sub-module of sections locally annihilated by some \(f \in O_S \) and we denote by \(M_{t, f} \) the quotient \(M/M_t \). We denote by \(\text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})_t \) the full subcategory of holonomic \(\mathcal{D}_{X \times S/S}\)-modules satisfying \(M_t \simeq M \) and by \(\text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})_{t, f} \) the full subcategory of holonomic \(\mathcal{D}_{X \times S/S}\)-modules satisfying \(M \simeq M_{t, f} \). The properties of torsion pair in \(\text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \) are clearly satisfied by \(\text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})_t, \text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})_{t, f} \).

Moreover this torsion pair is hereditary i.e. the class of torsion modules (which coincides with the class of holonomic \(\mathcal{D}_{X \times S/S}\)-modules \(M \) satisfying \(\dim_{p_X}(\text{Supp}(M)) = 0 \) plus the zero module) is closed under sub-objects and so it forms an abelian category.

Proposition 2.6. If \(d_S = 1 \), \(\Pi \) is the \(t \)-structure obtained by left tilting \(P \) with respect to the torsion pair \((\text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})_t, \text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})_{t, f}) \) in \(\text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \) while \(P \) is the \(t \)-structure obtained by right tilting \(\Pi \) with respect to the torsion pair \((\text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})_{t, f}, \text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})_{t}[-1]) \) in \(\mathcal{H}_\Pi \).

Proof. By Lemma 2.3 we have

\[\Pi \mathcal{D}_{\text{hol}}^{\leq -1}(\mathcal{D}_{X \times S/S}) \subset P \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S/S}) \subset \Pi \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S/S}) \subset P \mathcal{D}_{\text{hol}}^{\leq 1}(\mathcal{D}_{X \times S/S}) \]

(the last inclusion on the right is obtained by shifting by \([-1]\) the first one) and hence, by Polishchuk’s result (Lemma 1.3), the \(t \)-structure \(\Pi \) is obtained by left tilting \(P \) with respect to the torsion pair

\[(\Pi \mathcal{D}_{\text{hol}}^{\leq -1}(\mathcal{D}_{X \times S/S}) \cap \text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S}), \Pi \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_{X \times S/S}) \cap \text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})). \]
Also by Lemma 2.3, if M is holonomic, then $DM \in \mathcal{D}_{\text{hol}}^{[0,1]}(\mathcal{D}_{X/S})$, that is, DM is concentrated in degrees 0 and 1. The result will then be a consequence of the following statements:

- (i) M is a strict holonomic module if and only if $D(M)$ is concentrated in degree zero and strict.
- (ii) If M belongs to $\text{Mod}_{\text{hol}}(\mathcal{D}_{X/S})$, then $D(M)$ is concentrated in degree 1 and $P \mathcal{H}^1(DM)$ belongs to $\text{Mod}_{\text{hol}}(\mathcal{D}_{X/S})$.

Item (i) is contained in Proposition 2 of [18]. Therefore it remains to check item (ii). Let $M \in \text{Mod}_{\text{hol}}(\mathcal{D}_{X/S})$. First we remark that, by the functoriality of the action of $p_X^{-1}\mathcal{O}_S$, all cohomology groups $P \mathcal{H}^i(DM)$ belong to $\text{Mod}_{\text{hol}}(\mathcal{D}_{X/S})$.

As a consequence, the heart of Π can be described as

$$\mathcal{H}_{\Pi} = \{ M \in \mathcal{D}_{\text{hol}}^{[0,1]}(\mathcal{D}_{X/S}) | P \mathcal{H}^0(M) \text{ strict and } P \mathcal{H}^1(M) \text{ torsion} \}$$

and thus the t-structure P is obtained by right tilting Π with respect to $(\text{Mod}_{\text{hol}}(\mathcal{D}_{X/S})|_{t}, \text{Mod}_{\text{hol}}(\mathcal{D}_{X/S})|_{t[-1]})$ in \mathcal{H}_{Π} (cf. [6] and Remark [12]).

q.e.d.

Corollary 2.7. If $d_S = 1$ then the full subcategory of strict holonomic $\mathcal{D}_{X/S/S}$-modules (thus holonomic $\mathcal{D}_{X/S/S}$-modules with a strict holonomic dual) is quasi-abelian.

Therefore the problem of expliciting Π only matters for $d_S \geq 2$ and $d_X \geq 1$. The following Lemmas permit to describe the t-structure Π in terms of support conditions as done by Kashiwara in the case of $X = \{pt\}$ (cf. [10]).

Lemma 2.8. The sets

$$S^k \subseteq \{ Z \mid Z \text{ is a closed analytic subset of } X \times S \text{ such that } Z \subseteq X \times W \text{ with } W \text{ a closed analytic subset of } S \text{ such that } \text{codim}_S(W) \geq k \}$$

with $k \in \mathbb{Z}$ form a support datum in $X \times S$ and the following classes:

- $S^k \mathcal{D}_{X/S/S}^{[0]} = \{ M \in \mathcal{D}_b(\mathcal{D}_{X/S/S}) | \text{codim}_X(\text{Supp}(P \mathcal{H}^0(M))) \geq k \}$
- $S^k \mathcal{D}_{X/S/S}^{[\geq 0]} = \{ M \in \mathcal{D}_b(\mathcal{D}_{X/S/S}) | P \mathcal{H}^0_{\mathcal{X} \times W}(M) = 0 \text{ for any closed analytic subset } W \text{ of } S \text{ and } k < \text{codim}_S(W) \}$

(respectively analogs $S^k \mathcal{D}_b(\mathcal{O}_{X/S}), S^k \mathcal{D}_b(\mathcal{O}_{X/S}))$ define a t-structure on $\mathcal{D}_b(\mathcal{D}_{X/S/S})$.

Proof. Let us recall that (cf. [10] page 850-852) a family of supports in $X \times S$ is a set Φ^k of closed subsets of $X \times S$ closed by closed subsets and finite unions and a support datum is a decreasing sequence $\Phi = \{ \Phi^k \}_{k \in \mathbb{Z}}$ of families of supports such that for $k < 0$, Φ^k is the set of all closed subsets of $X \times S$ and for $k \geq 0$, $\Phi^k = \emptyset$.
Thus $s\mathcal{E} := \{s\mathcal{E}^k\}_{k \in \mathbb{Z}}$ is a support datum in $X \times S$. By [10, Theorem 3.5] (with $\mathcal{A} = \mathcal{D}_{X \times S/S}$) the following classes:

\[
\begin{align*}
&s\mathcal{E}^0(\mathcal{D}_{X \times S/S}) = \{ M \in \mathcal{D}^b(\mathcal{D}_{X \times S/S}) : \text{Supp}(\mathcal{H}^k(M)) \subset s\mathcal{E}^k \}, \\
&s\mathcal{E}^{\geq 0}(\mathcal{D}_{X \times S/S}) = \{ M \in \mathcal{D}^b(\mathcal{D}_{X \times S/S}) : \text{RT}_{[Z]}(M) \in P \mathcal{D}^{\geq k}(\mathcal{D}_{X \times S/S}), \forall Z \in s\mathcal{E}^k \}
\end{align*}
\]

(resp. their analogs $(s\mathcal{E}^0(\mathcal{O}_{X \times S}), s\mathcal{E}^{\geq 0}(\mathcal{O}_{X \times S}))$) define a t-structure on $\mathcal{D}^b(\mathcal{D}_{X \times S/S})$ (resp. $\mathcal{D}^b(\mathcal{O}_{X \times S})$). The assumption $\text{Supp}(P\mathcal{H}^k(M)) \in s\mathcal{E}^k$ is equivalent to require that $\text{codim}_X(\text{Supp}(P\mathcal{H}^k(M))) \geq k$ and so

\[
\begin{align*}
&s\mathcal{E}^0(\mathcal{D}_{X \times S/S}) = \{ M \in \mathcal{D}^b(\mathcal{D}_{X \times S/S}) : \text{codim}_X(\text{Supp}(P\mathcal{H}^k(M))) \geq k \}.
\end{align*}
\]

Let $Z \in s\mathcal{E}^k$ such that $Z \subset X \times W$ with W a closed analytic subset of S such that $\text{codim}_S W \geq k$. If M satisfies $\text{RT}_{[X \times W]}(M) \in P \mathcal{D}^{\geq k}(\mathcal{D}_{X \times S/S})$ according to [7] and the left exactness of $\Gamma_{[Z]}(\cdot)$

\[
\text{RT}_{[Z]}(M) \cong \text{RT}_{[Z]}(\text{RT}_{[X \times W]}(M)) \in P \mathcal{D}^{\geq k}(\mathcal{D}_{X \times S/S})
\]

thus

\[
\begin{align*}
&s\mathcal{E}^{\geq 0}(\mathcal{D}_{X \times S/S}) = \{ M \in P \mathcal{D}^{\geq 0}(\mathcal{D}_{X \times S/S}) : \text{RT}_{[X \times W]}(M) \in P \mathcal{D}^{\geq k}(\mathcal{D}_{X \times S/S}) \\
&\quad \text{for any closed analytic subset } W \text{ of } S \text{ and } \text{codim}_S W \geq k \}.
\end{align*}
\]

q.e.d.

Lemma 2.9. Let consider $F : \mathcal{C} \longrightarrow \mathcal{T}$ a triangulated functor between two triangulated categories \mathcal{C} and \mathcal{T}. Let $P := (P \mathcal{D}^{\leq 0}, P \mathcal{D}^{\geq 0})$ be a bounded t-structure on \mathcal{C} and $P \mathcal{D}^{\leq 0}$ (resp. $P \mathcal{D}^{\geq 0}$) a class on \mathcal{T} closed under extensions and shift by $[1]$ (resp. closed under extensions and shift by $[-1]$). The following statements hold true:

1. the functor $F(P \mathcal{D}^{\leq 0}) \subseteq P \mathcal{D}^{\leq 0}$ if and only if $F(\mathcal{H}_P) \subseteq P \mathcal{D}^{\leq 0}$;
2. the functor $F(P \mathcal{D}^{\geq 0}) \subseteq P \mathcal{D}^{\geq 0}$ if and only if $F(\mathcal{H}_P) \subseteq P \mathcal{D}^{\geq 0}$;
3. the previous conditions are simultaneously satisfied if and only if $F(\mathcal{H}_P) \subseteq P \mathcal{T}$

Proof. Let us recall that by definition a t-structure $P := (P \mathcal{D}^{\leq 0}, P \mathcal{D}^{\geq 0})$ on \mathcal{C} is bounded if for any $X \in \mathcal{C}$ there exist $m \leq n \in \mathbb{Z}$ such that $X \in P \mathcal{D}^{\leq n} \cap P \mathcal{D}^{\geq m}$ and as remarked by Bridgeland in [2, Lemma 2.3] these t-structures are completely determined by their hearts (via its Postnikov tower).

The left to right implication is clear since $\mathcal{H}_P \subseteq P \mathcal{D}^{\leq 0}$ so let us suppose that $F(\mathcal{H}_P) \subseteq P \mathcal{D}^{\leq 0}$ and let us prove that $F(P \mathcal{D}^{\leq 0}) \subseteq P \mathcal{D}^{\leq 0}$. Recall that for any $X \in P \mathcal{D}^{\leq 0}$ there exists a suitable $k \in \mathbb{N}$ such that $X \in P \mathcal{D}^{\leq k} \cap P \mathcal{D}^{\geq k}$. Let us proceed by induction on $k \in \mathbb{N}$. For $k = 0$ we get $X \in \mathcal{H}_P$ and thus $F(X) \in P \mathcal{D}^{\leq 0}$ by hypothesis. Let us suppose by inductive hypothesis that the first statement holds true for k and let $X \in P \mathcal{D}^{\leq 0} \cap P \mathcal{D}^{\geq k-1}$. By applying the functor F to the distinguished triangle $P\mathcal{H}^{-k-1}(X)[k + 1] \to X \to P\mathcal{H}^{-k}(X) \to P\mathcal{H}^{-k-1}(X)[k + 1]$ we obtain $F(P\mathcal{H}^{-k-1}(X))[k + 1] \to F(X) \to F(P\mathcal{H}^{-k}(X)) \to F(P\mathcal{H}^{-k-1}(X))[k + 1]$. By hypothesis
\[F(PH^{-1}(X))[k+1] \in \mathcal{T}_{\mathcal{D}^{\leq 0}} \subseteq \mathcal{T}_{\mathcal{D}^{\leq 0}} \] (thanks to the fact that \(\mathcal{T}_{\mathcal{D}^{\leq 0}} \) is closed under \([1]\)) and by inductive hypothesis \(F(P_{\mathcal{T}^{\geq -k}}(X)) \in \mathcal{T}_{\mathcal{D}^{\leq 0}} \). Thus \(F(X) \in \mathcal{T}_{\mathcal{D}^{\leq 0}} \) since \(\mathcal{T}_{\mathcal{D}^{\leq 0}} \) is closed under extensions. The second statement follows similarly and the third is the consequence of the first and second ones.

q.e.d.

Lemma 2.10. Let \(N \) be a coherent \(\mathcal{D}_{X \times S/S} \)-module. Then, for each \(k \),

\[\text{codim char}(\mathcal{E}_{\mathcal{D}_{X \times S/S}}(N, \mathcal{D}_{X \times S/S})) \geq k, \]

in particular

\[\text{codim char}(\mathcal{H}_{\mathcal{D}_{X \times S/S}}^k(N)) \geq k + d_X. \]

Proof. According to the faithfull flatness of \(\mathcal{D}_{X \times S} \) over \(\mathcal{D}_{X \times S/S} \) and to \([8, \text{Theorem 2.19 (2)}]\), we have, for each \(k \),

\[\text{codim char}(\mathcal{E}_{\mathcal{D}_{X \times S/S}}(\mathcal{D}_{X \times S} \otimes \mathcal{D}_{X \times S/S} N, \mathcal{D}_{X \times S})) \]

= \[\text{codim char}(\mathcal{E}_{\mathcal{D}_{X \times S/S}}(N, \mathcal{D}_{X \times S/S}) \otimes \mathcal{D}_{X \times S} \mathcal{D}_{X \times S}) \geq k \]

Since

\[\text{char}(\mathcal{E}_{\mathcal{D}_{X \times S/S}}(N, \mathcal{D}_{X \times S/S}) \otimes \mathcal{D}_{X \times S/S}) = \pi^{-1} \text{char}(\mathcal{E}_{\mathcal{D}_{X \times S/S}}(N, \mathcal{D}_{X \times S/S})) \]

where \(\pi : T^*X \times T^*S \to T^*X \times S \) is the projection, we conclude that

\[\text{codim char}(\mathcal{E}_{\mathcal{D}_{X \times S/S}}(N, \mathcal{D}_{X \times S/S})) \geq k \]

as desired.

q.e.d.

We have now the tools to obtain the description of \(\Pi \) for arbitrary \(ds \):

Theorem 2.11. The \(t \)-structure \(\Pi \) on \(\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \) can be described in the following way:

\[\Pi_{\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S})}^0(\mathcal{D}_{X \times S/S}) = \{ M \in \mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \mid \forall k, \text{codim char}(P\mathcal{E}_{\mathcal{D}_{X \times S/S}}^k(M)) \geq k + d_X \} \]

\[\Pi_{\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S})}^0(\mathcal{D}_{X \times S/S}) = \{ M \in P\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \mid P\mathcal{E}_{\mathcal{T}\mathcal{X}_{W}^k}(M) = 0 \text{ for any closed analytic subset } W \text{ of } S \text{ and } k < \text{codim}_{S} W \}. \]

Proof. Note that the statement is true in the absolute case since we get \(\Pi_{\mathcal{D}_{\text{hol}}(\mathcal{D}_{X})} = P\mathcal{D}_{\text{hol}}(\mathcal{D}_{X}) \) (an holonomic \(\mathcal{D}_{X} \)-module whose characteristic variety has codimension grater than \(d_X \) is necessarily zero). In the case \(X \{pt\} \) the statement is true since we recover the \(t \)-structure \(\pi \) on \(\mathcal{D}_{\text{hol}}(\mathcal{O}_{S}) \) (see Remark \([24]\)).

Step 1. Following the notation of Lemma \([23]\) let us prove the equality

\[\Pi_{\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S})}^0(\mathcal{D}_{X \times S/S}) = \mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \cap s_{\mathcal{E}} \mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}). \]

We start by proving the inclusion \(\Pi_{\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S})}^0(\mathcal{D}_{X \times S/S}) \subseteq \mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \cap s_{\mathcal{E}} \mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}). \) Let \(W \) be a closed analytic subset of \(S \) such that \(\text{codim } W \geq k \).

Let us prove that \(R\Gamma_{[X \times W]}(\mathcal{D}N) \in P\mathcal{D}^k(\mathcal{D}_{X \times S/S}) \) for any complex \(N \in \mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \).
$P \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S / S})$. This will be a consequence of Lemma 2.3. Indeed, keeping the notation of the proof of this Lemma, we have

$$R\Gamma_{[X \times W]}(\mathcal{D}N) \cong R\Gamma_{[W]}(p_X^{-1}O_S) \otimes_{p_X^{-1}O_S} \mathcal{I}^* \in P \mathcal{D}_{\text{hol}}^{\geq k}(\mathcal{D}_{X \times S / S})$$

since $R\Gamma_{[W]}(p_X^{-1}O_S) \in \mathcal{D}^{\geq k}(p_X^{-1}O_S)$.

Let us now prove the inclusion $\mathcal{D}_{\text{hol}}^{b}(\mathcal{D}_{X \times S / S}) \cap s^\mathcal{E} \mathcal{D}^{\geq 0}(\mathcal{D}_{X \times S / S}) \subseteq \Pi \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_{X \times S / S})$. Let $M \in \mathcal{D}_{\text{hol}}^{b}(\mathcal{D}_{X \times S / S}) \cap s^\mathcal{E} \mathcal{D}^{\geq 0}(\mathcal{D}_{X \times S / S})$. In view of Lemma 2.2 (4) it suffices to check that, for each $s \in S$, $Li_s^*M \in \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_{X})$. We have

$$Li_s^*M := \frac{O_{X \times S}}{(\mathcal{I}^*)_{(s)}} \otimes_{O_{X \times S}} M \cong \cong R\text{Hom}_{O_{X \times S}} \left(R\text{Hom}_{O_{X \times S}} \left(\frac{O_{X \times S}}{(\mathcal{I}^*)_{(s)}}, O_{X \times S} \right), M \right) \cong \cong R\text{Hom}_{O_{X \times S}} \left(R\text{Hom}_{p_X^{-1}O_S} \left(\frac{O_S}{(\mathcal{I}^*)_{(s)}}, p_X^{-1}O_S \right) \otimes_{p_X^{-1}O_S} O_{X \times S} \right) \otimes_{O_{X \times S}} M.$$

Since $s^\mathcal{E} \mathcal{D}^{\geq 0}(\mathcal{D}_{X \times S / S}) \subseteq s^\mathcal{E} \mathcal{D}^{\leq 0}(O_{X \times S})$ and

$$R\text{Hom}_{p_X^{-1}O_S} \left(\frac{O_S}{(\mathcal{I}^*)_{(s)}}, p_X^{-1}O_S \right) \otimes_{p_X^{-1}O_S} O_{X \times S} \in s^\mathcal{E} \mathcal{D}^{\leq 0}(O_{X \times S})$$

we conclude that $R\text{Hom}_{O_{X \times S}} \left(R\text{Hom}_{O_{X \times S}} \left(\frac{O_{X \times S}}{(\mathcal{I}^*)_{(s)}}, O_{X \times S} \right), M \right)[h], M) = 0$ for any $h > 0$. This proves that $Li_s^*M \in \mathcal{D}_{\text{hol}}^{\geq 0}(\mathcal{D}_{X})$ as desired.

Step 2. Let us prove that

$$\{ M \in \mathcal{D}_{\text{hol}}^{b}(\mathcal{D}_{X \times S / S}) \mid \text{codim Char}(P \mathcal{H}^k(M)) \geq k + d_X \} = \Pi \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S / S}).$$

First we prove the inclusion:

$$\{ M \in \mathcal{D}_{\text{hol}}^{b}(\mathcal{D}_{X \times S / S}) \mid \text{codim Char}(P \mathcal{H}^k(M)) \geq k + d_X \} \subseteq \Pi \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S / S}).$$

Let us argue by induction on m such that $M \in P \mathcal{D}_{\text{hol}}^{\leq m}(\mathcal{D}_{X \times S / S})$ and that codim Char$\left(P \mathcal{H}^k(M)\right) \geq k + d_X$. For $m = 0$ we have by Lemma 2.3 $P \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S / S}) \subseteq \Pi \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S / S})$. Let us suppose that any complex in $P \mathcal{D}_{\text{hol}}^{\leq m}(\mathcal{D}_{X \times S / S})$ satisfying codim Char$\left(P \mathcal{H}^k(M)\right) \geq k + d_X$ belongs to $\Pi \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S / S})$ and let $M \in P \mathcal{D}_{\text{hol}}^{\leq m+1}(\mathcal{D}_{X \times S / S})$ satisfying codim Char$\left(P \mathcal{H}^k(M)\right) \geq k + d_X$. By inductive hypothesis we have that $P \tau \leq m M \in \Pi \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S / S})$ and the distinguished triangle

$$P \tau \leq m M \rightarrow M \rightarrow P \mathcal{H}^{m+1}(M)[-m-1] \rightarrow$$

proves that $M \in \Pi \mathcal{D}_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S / S})$ if and only if $P \mathcal{H}^{m+1}(M) \in \Pi \mathcal{D}_{\text{hol}}^{\leq -m-1}(\mathcal{D}_{X \times S / S})$. This last condition is satisfied in view of the assumption on M according to Theorem 2.19 (1) together with the faithfulness flatness of $\mathcal{D}_{X \times S}$ over $\mathcal{D}_{X \times S / S}$, which shows that $D(P \mathcal{H}^{m+1}(M)) \in P \mathcal{D}_{\text{hol}}^{\leq m+1}(\mathcal{D}_{X \times S / S})$.

Let us now prove the inclusion
\[\Pi D_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S/S}) \subseteq \{ M \in \mathcal{D}_{\text{hol}}^b(\mathcal{D}_{X \times S/S}) \mid \text{codim } \text{Char}(\mathcal{P} \mathcal{H}^k(M)) \geq k + d_X \}. \]

Recalling that \(\Pi D_{\text{hol}}^{\leq 0} := D(\Pi D_{\text{hol}}^{\geq 0}(\mathcal{D}_{X \times S/S})) \) we can apply Lemma 2.9 with \(F = D \) and so we need only to prove that given \(N \) a holonomic \(\mathcal{D}_{X \times S/S} \)-module, \(D(N) \) satisfies
\[\text{codim } \text{Char}(\mathcal{P} \mathcal{H}^k(D(N))) \geq k + d_X \]
and this holds true by Lemma 2.10. q.e.d.

Remark 2.12. In the course of the previous proof, following the notation of Lemma 2.8 we show that \(D_{\text{hol}}^b(\mathcal{D}_{X \times S/S}) \cap s^C \mathcal{D}_{\geq 0}(\mathcal{D}_{X \times S/S}) = \Pi D_{\text{hol}}^{\geq 0}(\mathcal{D}_{X \times S/S}) \) while we only have an inclusion
\[D_{\text{hol}}^b(\mathcal{D}_{X \times S/S}) \cap s^C \mathcal{D}_{\leq 0}(\mathcal{D}_{X \times S/S}) \subseteq \Pi D_{\text{hol}}^{\leq 0}(\mathcal{D}_{X \times S/S}). \]

Remark 2.13. We conclude by the previous Theorem 2.11 that the \(t \)-structure \(\Pi \) is left \(P \)-compatible (cf. Remark 1.4) and so, according to Lemma 2.3 and to [5, Theorem 4.3], it can be recovered from \(P \) via an iterated right tilting procedure of length \(\ell \).

3. \(t \)-structures on \(D_{\mathcal{C}, c}^b(p_X^{-1}\mathcal{O}_S) \)

In \(D_{\mathcal{C}, c}^b(p_X^{-1}\mathcal{O}_S) \) the natural dualizing complex is \(p_X\mathcal{O}_S = p_X^{-1}\mathcal{O}_S[2d_X] \) and one defines the duality functor (cf. [17] for details) by setting
\[D(F) = R5\text{com}_{p_X^{-1}\mathcal{O}_S}(F, p_X^{-1}\mathcal{O}_S)[2d_X]. \]

Hence the canonical morphism \(F \to DD(F) \) is an isomorphism for any \(F \in D_{\mathcal{C}, c}^b(p_X^{-1}\mathcal{O}_S) \).

Definition 3.1. [17, 2.7] The perverse \(t \)-structure \(p \) on the triangulated category \(D_{\mathcal{C}, c}^b(p_X^{-1}\mathcal{O}_S) \) is given by
\[p D_{\mathcal{C}, c}^{\leq 0}(p_X^{-1}\mathcal{O}_S) = \{ F \in D_{\mathcal{C}, c}(p^{-1}\mathcal{O}_S) \mid \forall \alpha, i^{-k}_F \in \mathcal{D}_{\text{coh}}^{\leq -d_X}(p_X^{-1}\mathcal{O}_S), \text{ for some adapted } \mu\text{-stratification } (X_{\alpha}) \} \]
\[p D_{\mathcal{C}, c}^{\geq 0}(p_X^{-1}\mathcal{O}_S) = \{ F \in D_{\mathcal{C}, c}(p^{-1}\mathcal{O}_S) \mid \forall \alpha, i^{+k}_F \in \mathcal{D}_{\text{coh}}^{\geq -d_X}(p_X^{-1}\mathcal{O}_S), \text{ for some adapted } \mu\text{-stratification } (X_{\alpha}) \} \]

or equivalently
\[p D_{\mathcal{C}, c}^{\leq 0}(p_X^{-1}\mathcal{O}_S) = \{ F \in D_{\mathcal{C}, c}^b(p^{-1}\mathcal{O}_S) \mid \forall \alpha, i^{-k}_F \in \mathcal{D}_{\text{coh}}^{\leq -d_X}(\mathcal{O}_S), \text{ for any } x \in X_{\alpha} \}
\text{ and for some adapted } \mu\text{-stratification } (X_{\alpha}) \}
\[p D_{\mathcal{C}, c}^{\geq 0}(p_X^{-1}\mathcal{O}_S) = \{ F \in D_{\mathcal{C}, c}^b(p^{-1}\mathcal{O}_S) \mid \forall \alpha, i^{+k}_F \in \mathcal{D}_{\text{coh}}^{\geq d_X}(\mathcal{O}_S), \text{ for any } x \in X_{\alpha} \}
\text{ and for some adapted } \mu\text{-stratification } (X_{\alpha}) \}. \]

(See [11, Definition 8.3.19] for the definition of adapted \(\mu \)-stratification.) Hence its dual \(\pi \) with respect to the functor \(D \) is
\[p D_{\mathcal{C}, c}^{\leq 0}(p_X^{-1}\mathcal{O}_S) = \{ M \in D_{\mathcal{C}, c}^b(p_X^{-1}\mathcal{O}_S) \mid DM \in p D_{\mathcal{C}, c}^{\geq 0}(p_X^{-1}\mathcal{O}_S) \}
\[p D_{\mathcal{C}, c}^{\geq 0}(p_X^{-1}\mathcal{O}_S) = \{ M \in D_{\mathcal{C}, c}^b(p_X^{-1}\mathcal{O}_S) \mid DM \in p D_{\mathcal{C}, c}^{\leq 0}(p_X^{-1}\mathcal{O}_S) \}. \]
Notation 3.2. We shall denote by \(\text{perv}(p_X^{-1}(\mathcal{O}_S)) \) the heart of the \(t \)-structure \(p \).

We have the following statements:

1. If \(S = \{ pt \} \) then \(p \) equals the middle-perversity \(t \)-structure (cf. [8, 4.11]).
2. If \(X = \{ pt \} \) then \(p \) is, as above, the standard \(t \)-structure in \(\mathcal{D}_{\text{coh}}^b(\mathcal{O}_S) \) and \(\pi \) is the dual \(t \)-structure in \(\mathcal{D}_{\text{coh}}^b(\mathcal{O}_S) \) described by Kashiwara in [10] (cf. Remark 2.1).

Therefore, the problem of explicating \(\pi \) only matters for \(d_S \geq 1 \) and \(d_X \geq 1 \).

Lemma 3.3. Let us consider the functors \(Li^*_s : \mathcal{D}_{\text{C},c}^b(p_X^{-1}\mathcal{O}_S) \to \mathcal{D}_{\text{C},c}^b(\mathcal{C}_X) \) with \(s \) varying in \(S \). The following holds true:

1. the complex \(F \in \mathcal{D}_{\text{C},c}^b(p_X^{-1}\mathcal{O}_S) \) is isomorphic to 0 if and only if \(Li^*_s F = 0 \) for any \(s \) in \(S \);
2. \(Li^*_s F \in \mathcal{D}_{\text{C},c}^k(\mathcal{C}_X) \) for each \(s \in S \) if and only if \(F \in \mathcal{D}_{\text{C},c}^{\leq k}(p_X^{-1}\mathcal{O}_S) \);
3. if \(Li^*_s F \in \mathcal{D}_{\text{C},c}^k(\mathcal{C}_X) \) for each \(s \in S \) then \(F \in \mathcal{D}_{\text{C},c}^{\leq k}(p_X^{-1}\mathcal{O}_S) \).

Proof. (1) is proved in [17, Proposition 2.2]. The other implications can also be deduced by the proof of Proposition 2.2 in [17]. q.e.d.

Statement (2) of the previous Lemma affirms that a complex \(F \) belongs to the aisle of the natural \(t \)-structure on \(\mathcal{D}_{\text{C},c}^b(p_X^{-1}\mathcal{O}_S) \) if and only if any \(Li^*_s F \) belongs to the aisle of the natural \(t \)-structure on \(\mathcal{D}_{\text{C},c}^b(\mathcal{C}_X) \). This result admits the following counterpart for the perverse \(t \)-structure thus obtaining an analog of Lemma 2.2.

Lemma 3.4. The following statements hold true:

1. \(Li^*_s F \in \mathcal{D}_{\text{C},c}^{\leq k}(\mathcal{C}_X) \) for each \(s \in S \) if and only if \(F \in \mathcal{D}_{\text{C},c}^{\leq k}(p_X^{-1}\mathcal{O}_S) \);
2. if \(Li^*_s F \in \mathcal{D}_{\text{C},c}^{\geq k}(\mathcal{C}_X) \) for each \(s \in S \) then \(F \in \mathcal{D}_{\text{C},c}^{\geq k}(p_X^{-1}\mathcal{O}_S) \);
3. if \(F \in \mathcal{D}_{\text{C},c}^{\geq k}(p_X^{-1}\mathcal{O}_S) \) then \(Li^*_s F \in \mathcal{D}_{\text{C},c}^{\geq k}(p_X^{-1}\mathcal{O}_S) \) for each \(s \in S \).
4. if \(F \in \mathcal{D}_{\text{C},c}^{\geq k}(p_X^{-1}\mathcal{O}_S) \) then \(Li^*_s F \in \mathcal{D}_{\text{C},c}^{\geq k}(p_X^{-1}\mathcal{O}_S) \) for each \(s \in S \).

Proof. (1) Recall that \(F \in \mathcal{D}_{\text{C},c}^b(p_X^{-1}\mathcal{O}_S) \) belongs to \(\mathcal{D}_{\text{C},c}^{\leq k}(p_X^{-1}\mathcal{O}_S) \) if for some adapted \(\mu \)-stratification \((X_\alpha)_{\alpha \in A} \) we have
\[
\forall \alpha, i_\alpha^{-1} F \in \mathcal{D}_{\text{C},c}^{\leq k-d_\alpha}(p_{X_\alpha}^{-1}(\mathcal{O}_S))
\]
or equivalently, by Lemma 3.3 (2),
\[
\forall \alpha, Li^*_s i_\alpha^{-1} F \cong i_\alpha^{-1} Li^*_s F \in \mathcal{D}_{\text{C},c}^{\leq k-d_\alpha}(\mathcal{C}_X) \quad \forall s \in S
\]
which is equivalent to
\[
Li^*_s F \in \mathcal{D}_{\text{C},c}^{\leq k}(\mathcal{C}_X).
\]

(2) If \(Li^*_s F \in \mathcal{D}_{\text{C},c}^{\geq k}(\mathcal{C}_X) \) for each \(s \in S \) we get:
\[
\forall \alpha, Li^*_s i_\alpha^{-1} F \cong i_\alpha^{-1} Li^*_s F \in \mathcal{D}_{\text{C},c}^{\geq k-d_\alpha}(\mathcal{C}_X) \quad \forall \alpha, s \in S
\]
and so by (3) of Lemma 3.3 we obtain \(F \in \mathcal{D}_{\text{C},c}^{\geq k}(p_X^{-1}\mathcal{O}_S) \).

(3) can be deduced by duality from (1) since \(Li^*_s DF \cong DLi^*_s F \) for any \(F \in \mathcal{D}_{\text{C},c}^b(p_X^{-1}\mathcal{O}_S) \) we have:
Lemma 3.5. \(F \in \pi D_{\mathbb{C}^c}^{\leq 0}(p_X^{-1}\mathcal{O}_S) \iff DF \in p D_{\mathbb{C}^c}^{\leq 0}(p_X^{-1}\mathcal{O}_S) \)

by (1) \(F \in D_{\mathbb{C}^c}^b(p_X^{-1}\mathcal{O}_S) \) and \(\forall s \in S, Li_s^*DF \equiv DLi_s^*F \in D_{\mathbb{C}^c}^{\leq 0}(\mathcal{C}_X) \)

\(\iff F \in D_{\mathbb{C}^c}^b(p_X^{-1}\mathcal{O}_S) \) and \(\forall s \in S, Li_s^*F \in D_{\mathbb{C}^c}^{\geq 0}(\mathcal{C}_X) \)

where the last equivalence holds true since in the absolute case the functor \(D \) on \(D_{\mathbb{C}^c}^b(\mathcal{C}_X) \) is \(t \)-exact with respect to the perverse \(t \)-structure.

Let us prove (4): we have

\[
F \in p D_{\mathbb{C}^c}^{\geq 0}(p_X^{-1}\mathcal{O}_S) \iff \\
R\Gamma X_\times S(F) \in D^{\geq -d_X}(p_X^{-1}\mathcal{O}_S) \forall \alpha, \text{ for some adapted } \mu \text{-\emph{stratification } } (X_\alpha) \Rightarrow \\
R\Gamma X_\times (Li_s^*F) \equiv Li_s^*R\Gamma X_\times S(F) \in D^{\geq -d_X-\ell}(X) \forall s \in S, \forall \alpha, \\
\text{for some adapted } \mu \text{-\emph{stratification } } (X_\alpha) \\
\iff Li_s^*F \in p D_{\mathbb{C}^c}^{\geq -\ell}(X).
\]

q.e.d.

Lemma 3.5. We have the double inclusion

\[
\pi D_{\mathbb{C}^c}^{\leq -\ell}(p_X^{-1}\mathcal{O}_S) \subseteq p D_{\mathbb{C}^c}^{\leq 0}(p_X^{-1}\mathcal{O}_S) \subseteq \pi D_{\mathbb{C}^c}^{\leq 0}(p_X^{-1}\mathcal{O}_S)
\]

hence, given a perverse \(p_X^{-1}(\mathcal{O}_S) \)-module \(F \), its dual satisfies

\[
DF \in p D_{\mathbb{C}^c}^{[0,\ell]}(p_X^{-1}(\mathcal{O}_S)).
\]

Proof. If \(F \in p D_{\mathbb{C}^c}^{\leq 0}(p_X^{-1}(\mathcal{O}_S)) \) by (1) of Lemma 3.4 we get for any \(s \in S, Li_s^*F \in p D_{\mathbb{C}^c}^{\leq 0}(\mathcal{C}_X) \) and hence \(Li_s^*DF \equiv DLi_s^*F \in p D_{\mathbb{C}^c}^{\geq 0}(\mathcal{C}_X) \). Thus, according to (2) of Lemma 3.4 \(DF \in p D_{\mathbb{C}^c}^{\geq 0}(p_X^{-1}(\mathcal{O}_S)) \) and so \(F \in \pi D_{\mathbb{C}^c}^{\leq 0}(p_X^{-1}(\mathcal{O}_S)) \).

According to the definitions, Lemma 3.4, and by the \(t \)-exactness of the functor \(D \) for the perverse \(t \)-structure in the absolute case, we have:

\[
F \in \pi D_{\mathbb{C}^c}^{\leq -\ell}(p_X^{-1}(\mathcal{O}_S)) \iff DF \in p D_{\mathbb{C}^c}^{\geq \ell}(p_X^{-1}(\mathcal{O}_S))
\]

\(\Rightarrow \forall s \in S, Li_s^*DF \equiv DLi_s^*F \in D_{\mathbb{C}^c}^{\geq 0}(\mathcal{C}_X) \Rightarrow \forall s \in S, Li_s^*F \in D_{\mathbb{C}^c}^{\geq 0}(\mathcal{C}_X) \)

\(\iff F \in p D_{\mathbb{C}^c}^{\geq 0}(p_X^{-1}(\mathcal{O}_S)). \)

q.e.d.

Definition 3.6. Let \(d_S = 1 \). A perverse sheaf \(F \in \text{perv}(p_X^{-1}(\mathcal{O}_S)) \) is called \textit{torsion-free} if for any \(s \in S \) we have \(Li_s^*F \in \text{perv}(\mathcal{C}_X) \). We will denote by \(\text{perv}(p_X^{-1}(\mathcal{O}_S))_{\text{tf}} \) the full subcategory of perverse sheaves which are torsion-free.
In other words, for each $s_0 \in S$, given a local coordinate on S vanishing on s_0, the morphism $F \to F$ is injective in the abelian category $\text{perv}(p^{-1}_X(\mathcal{O}_{S}))$.

Proposition 3.7. If $d_S = 1$, π is the t-structure obtained by left tilting p with respect to the torsion pair

$$(\pi D^{≤-1}_{cc}(p^{-1}_X\mathcal{O}_S) \cap \text{perv}(p^{-1}_X(\mathcal{O}_S)), \pi D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S) \cap \text{perv}(p^{-1}_X(\mathcal{O}_S)))$$

and $\pi D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S) \cap \text{perv}(p^{-1}_X(\mathcal{O}_S)) = \text{perv}(p^{-1}_X(\mathcal{O}_S))_{tf}$.

Proof. By Lemma 3.5 $\pi D^{≤-1}_{cc}(p^{-1}_X\mathcal{O}_S) \subset p D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S) \subset \pi D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S)$ hence, by Polishchuk result (Lemma 1.3), the t-structure π is obtained by left tilting p with respect to the torsion pair

$$(\pi D^{≤-1}_{cc}(p^{-1}_X\mathcal{O}_S) \cap \text{perv}(p^{-1}_X(\mathcal{O}_S)), \pi D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S) \cap \text{perv}(p^{-1}_X(\mathcal{O}_S)))$$

By [13] Lemma 1.9 $\pi D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S) \cap \text{perv}(p^{-1}_X(\mathcal{O}_S)) = \text{perv}(p^{-1}_X(\mathcal{O}_S))_{tf}$. q.e.d.

Corollary 3.8. The full subcategory of perverse S-\mathcal{C}-constructible sheaves with a perverse dual is quasi-abelian.

We have the following description of π for arbitrary d_S:

Theorem 3.9. The t-structure π on $D^{b}_{cc}(p^{-1}_X\mathcal{O}_S)$ can be described in the following way:

- $\pi D^{≤0}_{cc}(p^{-1}_X\mathcal{O}_S) = \{ F \in D^{b}_{cc}(p^{-1}_X\mathcal{O}_S) | i^{-1}_x F \in \pi D^{≤-d\alpha}_{coh}(\mathcal{O}_S) \text{ for any } x \in X_\alpha \text{ and for some adapted } \mu \text{-stratification } (X_\alpha) \}$

- $\pi D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S) = \{ F \in D^{b}_{cc}(p^{-1}_X\mathcal{O}_S) | i^{!}_x F \in \pi D^{>0}_{coh}(\mathcal{O}_S) \text{ for any } x \in X_\alpha \text{ and for some adapted } \mu \text{-stratification } (X_\alpha) \}$

where the t-structure π on $D^{b}_{coh}(\mathcal{O}_S)$ is the dual of the canonical t-structure described in Remark 2.24.

Proof. Following the definition of the perverse t-structure and [17] Remark 2.24,

$$F \in \pi D^{≤0}_{cc}(p^{-1}_X\mathcal{O}_S) \iff D F \in \pi D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S) \iff$$

$$\forall \alpha, \forall x \in X_\alpha, i^{!}_x D F \cong D i^{-1}_x F \in \pi D^{≤-d\alpha}_{coh}(\mathcal{O}_S) \iff$$

$$\forall \alpha, \forall x \in X_\alpha, i^{-1}_x F \in \pi D^{≤-d\alpha}_{coh}(\mathcal{O}_S).$$

Dually

$$F \in \pi D^{>0}_{cc}(p^{-1}_X\mathcal{O}_S) \iff$$

$$D F \in \pi D^{≤0}_{cc}(p^{-1}_X\mathcal{O}_S) \iff$$

$$\forall \alpha, \forall x \in X_\alpha, i^{-1}_x D F \cong D i^{!}_x F \in \pi D^{≤-d\alpha}_{coh}(\mathcal{O}_S) \iff$$

$$\forall \alpha, \forall x \in X_\alpha, i^{!}_x F \in \pi D^{≤-d\alpha}_{coh}(\mathcal{O}_S).$$
q.e.d.

Remark 3.10. Let denote by \(p_{r,k} \) the truncation functor with respect to the \(t \)-structure \(p \) on \(D_{coh}(p_X^{-1}O_S) \). We observe that given \(F \in \pi D_{coh}^b(p_X^{-1}O_S) \) we get by the previous Theorem 3.9 that \(\tau_{r,k} F \in \pi D_{coh}^b(p_X^{-1}O_S) \) for any \(k \in \mathbb{Z} \) since the functors \(i_x^{-1} \) are exact and the \(t \)-structure \(\pi \) on \(D_{coh}^b(X) \) is stable by truncation with respect to the standard \(t \)-structure. So, in analogy with Remark 2.13 the \(t \)-structure \(\pi \) is left \(p \)-compatible and, according to Lemma 2.3 and to [5, Theorem 4.3], it can be recovered from \(p \) via an iterated right tilting procedure of length \(\ell \).

We can now explicitly describe the torsion class in the abelian category \(perv(p_X^{-1}(O_S)) \) as follows:

Proposition 3.11. Let \(d_S = 1 \). We have:

\[
perv(p_X^{-1}(O_S)) := \pi D_{coh}^b(p_X^{-1}O_S) \cap perv(p_X^{-1}(O_S)) = \{ F \in perv(p_X^{-1}(O_S)) | \text{codim} \, p_X(Supp \, F) \geq 1 \}
\]

Proof. We observe that \(perv(p_X^{-1}(O_S)) \) is \(\pi D_{coh}^b(p_X^{-1}O_S) \cap \pi D_{coh}^b(p_X^{-1}O_S) \) (since \(\pi D_{coh}^b(p_X^{-1}O_S) \subseteq \pi D_{coh}^b(p_X^{-1}O_S) \)). Let us recall that in the case \(d_S = 1 \) the dual \(t \)-structure on \(D_{coh}(O_S) \) described in Remark 2.1 reduces to:

\[
\begin{align*}
\pi D_{coh}^b(O_S) &= \{ M \in D_{coh}^b(O_S) | \text{codim} \, Supp(\mathcal{H}(M)) \geq 1 \} \\
\pi D_{coh}^b(O_S) &= \{ M \in D_{coh}^b(O_S) | \mathcal{H}(M) \text{ is strict} \}
\end{align*}
\]

where we recall that since \(d_S = 1 \) the condition \(\text{codim} \, Supp(\mathcal{H}(M)) \geq 1 \) is equivalent to \(d_{supp(\mathcal{H}(M))} = 0 \) or \(M = 0 \).

Accordingly to Proposition 4.8 an object \(F \) belongs to \(perv(p_X^{-1}(O_S)) \) if and only if it verifies the following two conditions where \((X_\alpha) \) is a \(\mu \)-stratification of \(X \) adapted to \(F \):

\[
\begin{align*}
(\text{i}) & \quad \forall \alpha, i_{\alpha,x}^{-1} F \in D_{coh}^b(X_\alpha) \quad \text{and} \quad \text{codim} \, Supp(i_{\alpha,x}^{-1} \mathcal{H}^{-d_{x_\alpha}}(F)) \geq 1, \quad \forall x \in X_\alpha \\
(\text{ii}) & \quad \forall \alpha, i_{\alpha,x}^{-1} F \in D_{coh}^b(X_\alpha) \quad \text{and} \quad \text{codim} \, Supp(i_{\alpha,x}^{-1} \mathcal{H}^{-d_{x_\alpha}}(p_X^{-1}(O_S))) \geq 1.
\end{align*}
\]

Recall that, locally on \(X_\alpha \), \(F \simeq p_{X_\alpha}^{-1} G \), for some \(G \in D_{coh}(O_S) \) and so \((\text{i}) \) is equivalent to the following

\[
(\text{i}^\prime) \quad i_{\alpha,x}^{-1} F \in D_{coh}^b(X_\alpha) \quad \text{and} \quad \text{codim} \, p_{X_\alpha}(Supp(i_{\alpha,x}^{-1} \mathcal{H}^{-d_{x_\alpha}}(F))) \geq 1.
\]

Step 1. Let us prove that, for any \(F \in perv(p_X^{-1}(O_S)) \), \(H^om_{perv(p_X^{-1}O_S)}(F,F) \simeq H^om_{D_{coh}(p_X^{-1}O_S)}(F,F) := H^0 R^\alpha H^om_{p_X^{-1}O_S}(F,F) \) satisfies:

\[
\text{codim} \, p_X(Supp(H^0 R^\alpha H^om_{p_X^{-1}O_S}(F,F))) \geq 1.
\]

We recall that \(R^\alpha H^om_{p_X^{-1}O_S}(F,F) \in D_{coh}^b(p_X^{-1}O_S) \) since \(F \in perv(p_X^{-1}(O_S)) \) (see [17, Proposition 2.26]). If \(\text{codim} \, p_X(Supp(H^0 R^\alpha H^om_{p_X^{-1}O_S}(F,F))) = 0 \) let \(X_\alpha \) be a stratum of maximal dimension such that

\[
\text{codim} \, p_{X_\alpha}(Supp(i_{\alpha,x}^{-1} H^0 R^\alpha H^om_{p_X^{-1}O_S}(F,F))) = 0.
\]
Let V be an open neighbourhood of $X_α$ in X such that $V \times X_α$ intersects only strata of dimension $> d_{X_α}$, and let $j_α : (V \times X_α) \times S \to V \times S$ be the inclusion. Then the complex $i^{α−1}_α Rj_α∗j^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F) \in D_{coh}(p^{-1}_X(0_S))$ and $\mathcal{H}om^{−1}_α Rj_α∗j^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F) \cong i^{α−1}_α j_α∗j^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F)$ and so

$$\text{codim } p_{X_α}(\text{Supp}(i^{α−1}_α Rj_α∗j^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F))) \geq 1.$$

By the conditions (i') and (ii) we deduce that

$$\mathcal{H}om^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F) \cong \mathcal{H}om^{−1}_α R\hom_{p^{→}_{X_α}O_S}(i^{α−1}_α F, i^{α}_α F)$$

$$\cong \mathcal{H}om_{p^→_{X_α}O_S}(\mathcal{H}om^{−1}_α (i^{α−1}_α F), \mathcal{H}om^{−1}_α (i^{α}_α F))$$

and since codim $p_{X_α}(\text{Supp}(i^{α−1}_α R\hom_{p^→_{X_α}O_S}(F, F))) \geq 1$ we obtain

$$\text{codim } p_{X_α}(\text{Supp}(\mathcal{H}om^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F))) \geq 1.$$

From the distinguished triangle

$$i^{α}_α R\hom_{p^{→}_{X}O_S}(F, F) \longrightarrow i^{α−1}_α R\hom_{p^→_{X_α}O_S}(F, F)$$

$$\longrightarrow i^{α−1}_α Rj_α∗j^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F) \longrightarrow 1,$$

we obtain the short left exact sequence

$$0 \longrightarrow \mathcal{H}om^{−1}_α R\hom_{p^{→}_{X}O_S}(F, F) \longrightarrow \mathcal{H}om^{−1}_α R\hom_{p^{→}_{X_α}O_S}(F, F)$$

$$\longrightarrow \mathcal{H}om^{−1}_α Rj_α∗j^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F)$$

which proves that codim $p_{X_α}(\text{Supp}(i^{α−1}_α R\hom_{p^→_{X_α}O_S}(F, F))) \geq 1$ since both the first and the third term of the sequence satisfy this condition.

Step 2. Let now deduce from step 1 that, for any $F \in \text{perv}(p^{-1}_X(0_S))_t$, codim $p_X(\text{Supp } F) \geq 1$.

The previous condition implies $\dim(p_X(\text{Supp } \mathcal{H}om_{\text{perv}(p^{-1}_XO_S)(F, F)})) = 0$ for any $F \neq 0$ and hence $\forall (x_0, s_0) \in X \times S$, choosing a local coordinate s in S vanishing in s_0, by the S-constructibility of $\mathcal{H}om_{\text{perv}(p^{-1}_XO_S)(F, F)} \cong \mathcal{H}om^{−1}_α R\hom_{p^→_{X_α}O_S}(F, F)$ there exists a positive integer N such that in a neighbourood of (x_0, s_0), $(s − s_0)^N \text{Hom}_{\text{perv}(p^{-1}_XO_S)(F, F)} = 0$. Therefore $(s − s_0)^N \text{id}_F = 0$ and so $\text{id}_{(s−s_0)^N F} = 0$ which entails the result. q.e.d.

Remark 3.12. Let $d_S = 1$. In Definition 3.6 we denoted by $\text{perv}(p^{−1}_X(0_S))_t$ the full subcategory of perverse sheaves which are torsion-free (i.e. for any $s \in S$ $L_i^*F \in \text{perv}(\mathcal{C}_X)$) while in Proposition 3.11 we proved that $\text{perv}(p^{−1}_X(0_S))_t = \{ F \in \text{perv}(p^{-1}_X(0_S)) | \text{codim } p_X(\text{Supp } F) \geq 1 \}$. Hence (cf. Proposition 3.7) π is the t-structure obtained by left tilting p with respect to the torsion pair $(\text{perv}(p^{−1}_X(0_S))_t)$, $\text{perv}(p^{−1}_X(0_S))_t$ in $\text{perv}(p^{−1}_X(0_S))_t$ while p is the t-structure obtained by right tilting π with respect to the tilted torsion pair.
(perv(\(p_X^{-1}(\mathcal{O}_S)\))_\mathcal{H}, perv(\(p_X^{-1}(\mathcal{O}_S)\))_\mathcal{H}[-1]) in \(\mathcal{H}_\pi\). In particular we obtain that

\[\mathcal{H}_\pi = \{ F \in p \mathcal{D}^{0,1}_{\text{c},c}(p_X^{-1}\mathcal{O}_S) | p^*\mathfrak{f}^0(F) \text{ torsion free and } p^*\mathfrak{f}^1(M) \text{ torsion} \}. \]

4. \textit{t-exactness of the} \(p\text{DR}\) \textit{functors for} \(d_S = 1\)

4.a. \textbf{Reminder on the construction of} \(\text{RH}^S\). For details on the relative subanalytic site and construction of relative subanalytic sheaves we refer to \([16]\). For details on the construction of \(\text{RH}^S\) we refer to \([18]\).

We shall denote by \(\text{Op}(Z)\) the family of open subsets of a subanalytic site \(Z\). One denotes by \(\rho\), without reference to \(X \times S\) unless otherwise specified, the natural functor of sites \(\rho: X \times S \rightarrow (X \times S)_{\text{sa}}\) associated to the inclusion \(\text{Op}((X \times S)_{\text{sa}}) \subset \text{Op}(X \times S)\). Accordingly, we shall consider the associated functors \(\rho, \rho^{-1}\) introduced in \([13]\) and studied in \([19]\).

One also denotes by \(\rho': X \times S \rightarrow X_{\text{sa}} \times S_{\text{sa}}\) the natural functor of sites. We have well defined functors \(\rho'_*\) and \(\rho'_!\) from \(\text{Mod}(\mathcal{C}_{X \times S})\) to \(\text{Mod}(\mathcal{C}_{X_{\text{sa}} \times S_{\text{sa}}})\).

Note that \(W \in \text{Op}(X_{\text{sa}} \times S_{\text{sa}})\) if and only if \(W\) is a locally finite union of relatively compact subanalytic open subsets \(W\) of the form \(U \times V, U \in \text{Op}(X_{\text{sa}}), V \in \text{Op}(S_{\text{sa}})\). Note that there is a natural morphism of sites \(\eta: (X \times S)_{\text{sa}} \rightarrow X_{\text{sa}} \times S_{\text{sa}}\) associated to the inclusion \(\text{Op}(X_{\text{sa}} \times S_{\text{sa}}) \rightarrow \text{Op}((X \times S)_{\text{sa}})\).

In the absolute case, the Riemann-Hilbert reconstruction functor \(\text{RH}^S\) introduced by Kashiwara in \([9]\) from \(\mathcal{D}^{b}_{\text{e},c}(\mathcal{C}_X)\) to \(\mathcal{D}^{b}((\mathcal{D}_X)\) was later denoted by \(\mathcal{T}\text{Hom}(\cdot, \mathcal{O}_X)\) in \([13]\) where it was extensively studied. In \([14]\) the authors showed that it can be recovered using the language of subanalytic sheaves as \(\rho^{-1}\mathcal{T}\text{Hom}(\cdot, \mathcal{O}_X^!\) where \(\mathcal{O}_X^!\) is the subanalytic complex of tempered holomorphic functions on \(X_{\text{sa}}\).

Let \(F\) be a subanalytic sheaf on \((X \times S)_{\text{sa}}\). Following \([16]\), one denotes by \(F^{S,2}\) the sheaf on \(X_{\text{sa}} \times S_{\text{sa}}\) associated to the presheaf

\[\text{Op}(X_{\text{sa}} \times S_{\text{sa}}) \rightarrow \text{Mod}(\mathcal{C}) \]

\[U \times V \mapsto \Gamma(X \times V; \rho^{-1}\Gamma_{U \times S}F) \simeq \text{Hom}(\mathcal{C}_U \boxtimes \rho_!\mathcal{C}_V, F) \]

\[\simeq \lim_{W \in V} \Gamma(U \times W; F). \]

One also denotes by \((\ast)^{RS,2}\) the associated right derived functor.

Then \(\mathcal{O}^{S,2}_{X \times S} = (\mathcal{O}^!_{X \times S})^{RS,2}\) is an object of \(\mathcal{D}^b(\rho'_!p^{-1}\mathcal{O}_S)\) and we also have \(\mathcal{O}_{X \times S} \simeq \rho'^{-1}(\mathcal{O}^{S,2}_{X \times S})\) (cf. \([16]\) for details).

The functor \(\text{RH}^S: \mathcal{D}^{b}_{\text{e},c}(p_X^{-1}(\mathcal{O}_S)) \rightarrow \mathcal{D}^{b}((\mathcal{D}_X)_{X \times S/S})\) was then defined in \([18]\) by the expression

\[\text{RH}^S(F) = \rho'^{-1} \mathcal{T}\text{Hom}(\rho'_!p_X^{-1}\mathcal{O}_S, p'_*F, \mathcal{O}^{S,2}_{X \times S}; [d_X]). \]

When \(F\) is \(S - \mathbb{C}\) constructible, then \(\text{RH}^S(F)\) has regular holonomic \(\mathcal{D}_{X \times S/S}\)-cohomologies (\([18]\) Th. 3)).
4.b. Main results and proofs. The main results of this section are Theorem 4.1 and Theorem 4.2 below.

Theorem 4.1. If $d_S = 1$ the functor pDR is t-exact with respect to the t-structures P and p above and consequently, pDR is also t-exact with respect to the dual t-structures Π and π.

Theorem 4.2. If $d_S = 1$ the functor RH^S is t-exact with respect to the t-structures p and Π as well as with respect to their dual t-structures π and P.

We shall need the following results.

Lemma 4.3. Let q denote the projection $X \times S \to X$. Let be given a perverse sheaf F on X (where we consider the middle perversity on $D^b_{C, c}(\mathbb{C}_X)$). Let \mathcal{G} be a sheaf of \mathbb{C}-vector spaces on S. Assume that $F \boxtimes \mathcal{G} := q^{-1}F \otimes p^{-1}\mathcal{G}$ belongs to $D^b_{C, c}(p_X^{-1}\mathcal{O}_S)$. Then $F \boxtimes \mathcal{G}$ is perverse in $pD^b_{C, c}(p_X^{-1}\mathcal{O}_S)$.

Proof. The result is trivial for $d_S = 0$. Let us now consider $d_S \geq 1$. Let $(X_\alpha)_{\alpha \in A}$ be a stratification adapted to F. Then $(X_\alpha)_{\alpha \in A}$ is also adapted to $q^{-1}F \otimes p^{-1}\mathcal{G}$ as an object of $D^b_{C, c}(p_X^{-1}\mathcal{O}_S)$ because the microsupport of $q^{-1}F$, $\text{SS}(q^{-1}F)$, cuts $\text{SS}(p^{-1}\mathcal{G})$ along $T_X^s X \times T^s S$ (cf. [11] Propositions 5.4.5 and 5.4.14). Moreover, if $F \in pD^b_{C, c}(\mathbb{C}_X)$ it is clear that $F \boxtimes \mathcal{G} \in pD^b_{C, c}(p_X^{-1}\mathcal{O}_S)$.

Let us now prove that $F \boxtimes \mathcal{G} \in pD^b_{C, c}(p_X^{-1}\mathcal{O}_S)$. Let i_α denote either the inclusion $X_\alpha \subset X$ or $X_\alpha \times S \subset X \times S$, for each $\alpha \in A$. Let q_α (resp. p_α) denote the restriction of q (resp. of p) to $X_\alpha \times S$. We have the following commutative diagram

\[
\begin{array}{ccc}
X_\alpha \times S & \xrightarrow{q_\alpha} & X_\alpha \\
\downarrow{i_\alpha} & & \downarrow{i_\alpha} \\
X \times S & \xrightarrow{q} & X
\end{array}
\]

We get a sequence of isomorphisms in $D(\mathbb{C}_{X_\alpha \times S})$:

\[
i_\alpha^!(q^{-1}F \otimes p^{-1}\mathcal{G}) \simeq i_\alpha^!q^{-1}F \otimes i_\alpha^{-1}p^{-1}\mathcal{G}
\]

\[
\simeq i_\alpha^!\alpha^!F[-2d_s] \otimes p_\alpha^{-1}\mathcal{G}
\]

\[
\simeq (qi_\alpha)^!(F[-2d_S] \otimes p_\alpha^{-1}\mathcal{G})
\]

\[
\simeq (i_\alpha q_\alpha)^!(F[-2d_S] \otimes p_\alpha^{-1}\mathcal{G})
\]

\[
\simeq q_\alpha^{-1}i_\alpha^{-1}F[-2d_S] \otimes p_\alpha^{-1}\mathcal{G}
\]

\[
\simeq q_\alpha^{-1}i_\alpha^{-1}F[-2d_S + 2d_S] \otimes p_\alpha^{-1}\mathcal{G}
\]

Since $i_\alpha^!F \in D^{> - d_\alpha}(\mathbb{C}_{X_\alpha})$, the last isomorphism shows that $i_\alpha^!(q^{-1}F \otimes p^{-1}\mathcal{G}) \in D^{> - d_\alpha}(\mathbb{C}_{X_\alpha \times S})$ as desired.

q.e.d.
Proof of Theorem 4.1. The second statement follows obviously from the first thanks to the t-exactness of the duality functors (by definition of the dual t-structures and the commutation of $p\text{DR}$ with duality (cf. [17, Th. 3.11]). Let us now prove the first part of the statement. According to Lemma 2.9, it is sufficient to prove that if \mathcal{M} is a holonomic relative module then $p\text{DR}(\mathcal{M})$ is perverse.

Noting that, for $d_S = 1$, strictness is equivalent to absence of \mathcal{O}_S-torsion, and that, according to Proposition 2 of [13], the statement is true assuming that \mathcal{M} is strict, we are reduced to prove the statement assuming that \mathcal{M} is a torsion module. In such a case, for any $(x_0, s_0) \in X \times S$, choosing a local coordinate s in S vanishing in s_0, by the coherency of \mathcal{M} we can find a positive integer N such that $(s - s_0)^N \mathcal{M} = 0$ in a neighborhood of (x_0, s_0). Arguing by induction on N we are led to assume $N = 1$, in particular we may assume $\mathcal{M} = \mathcal{M}/(s - s_0)\mathcal{M}$ hence \mathcal{M} is naturally a holonomic D_X-module where we identify X to $X \times \{s_0\}$.

Locally, we get a chain of natural isomorphisms in $D^b(\mathcal{O}_S)$

$$p\text{DR} \mathcal{M} = R\mathcal{H}om_{D_X\times_S}(\mathcal{O}_X\times_S, \mathcal{M})[d_X]$$

$$\simeq R\mathcal{H}om_{D_X\times_S/(s-s_0)}(\mathcal{O}_X\times_S/(s-s_0)\mathcal{O}_X\times_S, \mathcal{M}/(s-s_0)\mathcal{M})[d_X]$$

We conclude a local isomorphism in $D^b(C_X\times_S)$

$$p\text{DR} \mathcal{M} \simeq q^{-1} F \otimes p^{-1} C_{\{s_0\}}$$

where F is the perverse sheaf $p\text{DR}(\mathcal{M}/(s - s_0)\mathcal{M})$ sur $X = X \times \{s_0\}$. The result then follows by Lemma 4.3 q.e.d.

Corollary 4.4. The functor $p\text{Sol}$ is t-exact with respect to the t-structures respectively P on $D^b(\mathcal{O}_X\times_S)\mathcal{O}_S^{op}$ and π on $D^b_c(p^{-1}\mathcal{O}_S)$.

Proof. The statement follows immediately from the relation $D^{p\text{DR}} = p\text{Sol}$ (cf. [17, Corollary 3.9]). q.e.d.

Remark 4.5. However the functor $p\text{Sol} : D^b(\mathcal{O}_X\times_S)\mathcal{O}_S^{op} \to D^b_c(p^{-1}\mathcal{O}_S)$ is not t-exact with respect to the t-structures respectively P on $D^b(\mathcal{O}_X\times_S)\mathcal{O}_S^{op}$ and π on $D^b_c(p^{-1}\mathcal{O}_S)$ as shown by the following example:

Example 4.6. Let $X = \mathbb{C}^*$ and $S = \mathbb{C}$ with respective coordinates x and s. Let \mathcal{M} be the quotient of $\mathcal{D}_X\times_S$ by the left ideal generated by ∂_x and s. Then \mathcal{M} can be identified with $\mathcal{O}_X\times(0)$ with the s-action being zero and the standard ∂_x-action. We notice that \mathcal{M} is holonomic, but not strict. As a $\mathcal{D}_X\times_S$-module, it has the following resolution:

$$0 \to \mathcal{D}_X\times_S \xrightarrow{p \mapsto (p\partial_x, Ps)} \mathcal{D}_X^2\times_S \xrightarrow{(Q,R) \mapsto -Q\partial_x - Qs} \mathcal{D}_X\times_S \to \mathcal{M} \to 0.$$
where $\phi(f) = (\partial_x f, sf)$ and $\psi(g, h) = sg - \partial_x h$. We know that $^p\text{Sol}(M)$ is constructible, and since we work on \mathbb{C}^*, we see that its cohomology is S-locally constant. We note that $\mathcal{H}^0(\text{Sol}(M)|_{X \times \{0\}}) \neq 0$, since $(g, h) = (0, 1)$ is a nonzero section of it. Therefore, $^p\text{Sol}(M)$ does not belong to $^p\mathcal{D}_{\mathbb{C}^0}^{-\leq 0}(p_X^{-1}O_S)$ and so $^p\text{Sol}(M)$ is not perverse.

However $^p\text{DR}M$ is a perverse object: it is realized by the complex

$$0 \rightarrow M \xrightarrow{-1} \frac{\partial_x}{0} M \rightarrow 0$$

and the surjectivity of ∂_x on $O_{X \times \{0\}}$ entails that $\mathcal{H}^0^p\text{DR}(M) = 0$. Moreover $\mathcal{H}^j\mathcal{R}^j\Gamma_{X \times S}^p\text{DR}M = \mathcal{H}^j^p\text{DR}M = 0$, for $j < -1$.

Proof of Theorem 4.2

i) Let us prove the first t-exactness. By Lemma 2.4 we have to prove that $\mathcal{R}^h(\text{Perv}(p_X^{-1}O_S)) \subseteq \Pi^\oplus D_{\text{hol}}^\geq 0(\mathcal{D}_{X \times S/S}) \cap \Pi^\oplus D_{\text{hol}}^\leq 0(\mathcal{D}_{X \times S/S})$. Recall that $\mathcal{R}L_i^\ast(F) \cong L_i^\ast \mathcal{R}^h(F)$ by [18, Proposition 3.25]. According to Lemma 3.4 given $F \in \text{perv}(p_X^{-1}O_S)$ we have $L_i^\ast F \in \mathcal{D}_{\mathbb{C}^0}^\geq 0(C_X)$ for each $s \in S$ and hence $\mathcal{R}L_i^\ast(F) \cong L_i^\ast \mathcal{R}^h(F) \in \mathcal{P} D_{\text{hol}}^\leq 0(\mathcal{D}_{X})$ for each $s \in S$ (since the functor R^h is t-exact in the absolute case) and so by Lemma 2.2 we obtain $\mathcal{R}^h_F(\Pi^\oplus D_{\text{hol}}^\geq 0(\mathcal{D}_{X \times S/S})).$

It remains to prove that $\mathcal{R}^h(\text{Perv}(p_X^{-1}O_S)) \subseteq \Pi^\oplus D_{\text{hol}}^\leq 0(\mathcal{D}_{X \times S/S})$. Let $F \in \text{perv}(p_X^{-1}O_S)$. According to Lemma 3.4 for any $s \in S$, $L_i^\ast F \in \mathcal{D}_{\mathbb{C}^0}^\leq 1(X)$. Hence $L_i^\ast(\mathcal{R}^h F) \cong \mathcal{R}H(L_i^\ast F) \in D_{\text{hol}}^\leq 1(\mathcal{D}_{X})$ and thus by (2) of Lemma 2.2 we obtain $(*) \mathcal{R}^h_F \in \mathcal{P} D_{\text{hol}}^\leq 1(\mathcal{D}_{X \times S/S})$. By Proposition 2.6 and Definition 1.1 it is sufficient to prove that $(**)^p\mathcal{H}^1(\mathcal{R}^h(F))$ is a torsion module.

We divide the question in two cases, the torsion case and the torsion free case. Let us first suppose that $F \in \text{perv}(p_X^{-1}(O_S))$. According to Proposition 3.11 we have $\text{codim}_{p_X}(\text{Sup}(F)) \geq 1$ and so also $\text{codim}_{p_X}(\text{Sup}(^p\mathcal{H}^1(\mathcal{R}^h(F)))) \geq 1$.

Let us now suppose that $F \in \text{perv}(p_X^{-1}(O_S))_t$. According to [18, Cor.4], $\mathcal{R}^h(F)$ is a regular strict holonomic $\mathcal{D}_{X \times S/S}$-module so it belongs to $\Pi^\oplus D_{\text{hol}}^\leq 0(\mathcal{D}_{X \times S/S}$ which achieves the proof of i).

ii) Let us now prove the second t-exactness. By Lemma 2.9 we have to prove that $\mathcal{R}^h(\mathcal{H}_\pi) \subseteq \text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})$. Given $F \in \mathcal{H}_\pi$ we know, according to Remark 3.12 that $F \in \mathcal{P}_{[0,1]}(p_X^{-1}O_S)$ with $^p\mathcal{H}^0(F)$ strict where $^p\mathcal{H}^1(F)$ is a torsion module. So, by Proposition 3.11 we have $\text{codim}_{p_X}(\text{Sup}(^p\mathcal{H}^1(F))) \geq 1$. Let us consider the distinguished triangle $^p\mathcal{H}^0(F) \rightarrow F \rightarrow ^p\mathcal{H}^1(F)[-1] \rightarrow 1$ (which provides the short exact sequence of F with respect to the torsion pair $(\text{perv}(p_X^{-1}(O_S))_t, \text{perv}(p_X^{-1}(O_S))_t[-1])$ in \mathcal{H}_π). According to [18, Cor.4] we conclude that $\mathcal{R}^h(\text{perv}(^p\mathcal{H}^0(F)))$ is a strict relative holonomic $\mathcal{D}_{X \times S/S}$-module while, by the previous t-exactness, $\mathcal{R}^h(\text{perv}(^p\mathcal{H}^1(F)[-1])) = \mathcal{R}^h(\text{perv}(^p\mathcal{H}^1(F)))[1] \in \mathcal{H}_\pi[1]$. Therefore, according to Proposition 2.6 we have

$$\mathcal{H}_\pi[1] = \{ \mathcal{M} \in \mathcal{P} D_{\text{hol}}^{-1,0}(\mathcal{D}_{X \times S/S}) \mid ^p\mathcal{H}^{-1}(\mathcal{M}) \text{ strict and } ^p\mathcal{H}^0(\mathcal{M}) \text{ torsion} \}. $$
On the other hand, since $\operatorname{codim}(p_X(S)) \geq 1$, the cohomology sheaves of $\operatorname{RH}^\ast(p\mathcal{H}^1(F)[1])$ are torsion $\mathcal{D}_{X \times S/S}$-modules. Therefore $p\mathcal{H}^{-1}(\operatorname{RH}^\ast(p\mathcal{H}^1(F))[1])$, being strict, must be equal to 0, in other words $\operatorname{RH}^S(p\mathcal{H}^1(F)[1]) \in \text{Mod}_{\text{hol}}(\mathcal{D}_{X \times S/S})$ which ends the proof.

In general for $\dim S \geq 1$ we have the following result:

Proposition 4.7. The functor $p\mathcal{D}R$ satisfies the following conditions:

1. $p\mathcal{D}R(p\mathcal{D}R(\mathcal{D}_{\text{hol}}(X \times S/S)) \subseteq \mathcal{D}_{\text{hol}}(p_X^{-1}\mathcal{O}_S)$;
2. $p\mathcal{D}R((\mathcal{D}_{\text{hol}}(X \times S/S) \cap s\mathcal{D})(\mathcal{D}_{\text{hol}}(X \times S/S)) \subseteq \mathcal{D}_{\text{hol}}(p_X^{-1}\mathcal{O}_S)$.

Proof. The first item is contained in [15, Proposition 1.15 (1)].

We set for short $s\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) := \mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \cap s\mathcal{D}(\mathcal{D}_{X \times S/S})$ and let us prove that $p\mathcal{D}R(s\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S})) \subseteq \mathcal{D}_{\text{hol}}(p_X^{-1}\mathcal{O}_S)$ (recall that $s\mathcal{D}_{X \times S/S} = M \in \mathcal{D}_{X \times S/S} | \operatorname{codim}(p_X(S)) \geq k$).

We denote by $p\tau_{\leq k}$ the truncation functor with respect to the t-structure P on $\mathcal{D}_{\text{hol}}(X \times S/S)$. Given $M \in s\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S})$, for any $k \in \mathbb{Z}$ both $p\tau_{\leq k}M$ and $p\tau_{\geq k+1}M$ belong to $s\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S})$ (since $p\mathcal{H}^i(p\tau_{\leq k}M)) = p\mathcal{H}^i(M))$ for $i \leq k$ or zero otherwise.

Let us prove that:

$$M \in s\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \cap p\mathcal{D}R(\mathcal{D}_{X \times S/S}) \Rightarrow p\mathcal{D}R(M) \in \mathcal{D}_{\text{hol}}(p_X^{-1}\mathcal{O}_S)$$

by induction on $k \geq 0$.

Let $k = 0$ by Lemma 3.5 and Lemma 3.5 we get $p\mathcal{D}R(p\mathcal{D}R(\mathcal{D}_{X \times S/S})) \subseteq \mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S})$ and $p\mathcal{D}R(p_X^{-1}\mathcal{O}_S) \subseteq \mathcal{D}_{\text{hol}}(p_X^{-1}\mathcal{O}_S)$ and so (I_0) holds true by Lemma 3.5. Let us suppose that (I_k) holds true and let us prove (I_{k+1}). Let consider $M \in s\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \cap p\mathcal{D}R(p\mathcal{D}R(\mathcal{D}_{X \times S/S}))$. The distinguished triangle

$$p\tau_{\leq k}M \rightarrow M \rightarrow p\tau_{\geq k+1}(M)[-k-1] \rightarrow$$

induces the distinguished triangle

$$p\mathcal{D}R(p\tau_{\leq k}M) \rightarrow p\mathcal{D}R(M) \rightarrow p\mathcal{D}R(p\tau_{\geq k+1}(M)[-k-1]) \rightarrow$$

By inductive hypothesis $p\mathcal{D}R(p\tau_{\leq k}M) \in \mathcal{D}_{\text{hol}}(p_X^{-1}\mathcal{O}_S)$ since $p\tau_{\leq k}M \in s\mathcal{D}_{\text{hol}}(\mathcal{D}_{X \times S/S}) \cap p\mathcal{D}R(p\mathcal{D}R(\mathcal{D}_{X \times S/S}))$. In order to conclude it is enough to prove that $p\mathcal{D}R(p\tau_{\geq k+1}(M)[-k-1]) \in \mathcal{D}_{\text{hol}}(p_X^{-1}\mathcal{O}_S)$.

By Proposition 3.4 we have to prove that

$$i_{x}^{-1}(p\mathcal{D}R(p\tau_{\geq k+1}(M)[-k-1])) \in \mathcal{D}_{\text{coh}}(\alpha)(\mathcal{O}_S)$$

for any α and any $x \in X_\alpha$, for some adapted μ-stratification (X_α). By the first item we have $p\mathcal{D}R(p\tau_{\geq k+1}(M)) \in \mathcal{D}_{\text{hol}}(p_X^{-1}\mathcal{O}_S)$ and thus (see Definition 3.1)

$$i_{x}^{-1}(p\mathcal{D}R(p\tau_{\geq k+1}(M)[-k-1])) \in \mathcal{D}_{\text{coh}}(\alpha+k+1)(\mathcal{O}_S)$$

$q.e.d.$
for any α and any $x \in X_\alpha$, for some adapted μ-stratification (X_α). Moreover codim $p_X(\text{Supp}(P^k\mathcal{H}^{k+1}(M))) \geq k+1$ since $M \in \mathcal{S}_\mu^{\leq 0}(\mathcal{D}X\times S/S)$ and thus codim $p_X(\text{Supp} p^{-1}_D(\mathcal{H}^{k+1}(M))[-k-1]) \geq k+1$ which proves (see Remark 2.1) that $p^{-1}_D(\mathcal{H}^{k+1}(M))[-k-1] \in \mathcal{H}^{\leq \text{coh}}_{d_S}(\mathcal{O}_S)$.

q.e.d.

However we don’t know if $\mathcal{S}_\mu^{\leq 0}(\mathcal{D}X\times S/S) = \mathcal{H}^{\leq \text{coh}}_{d_S}(\mathcal{O}_S)$. If that equality holds true then the previous Proposition would imply that the functor P^D is t-exact with respect to the t-structures P and p above without restriction on d_S, and consequently, P^D is also t-exact with respect to the dual t-structures Π and π.

References

[1] A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.

[2] T. Bridgeland, t-structures on some local Calabi–Yau varieties, Journal of Algebra 289 (2005), no. 2, 453–483.

[3] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2), 166 (2007), no. 2, 317–345.

[4] L. Fiorot, N-quasi abelian categories vs N-tilting torsion pairs, Math.arXiv: 1602.08253 (2016).

[5] L. Fiorot, F. Mattiello, and A. Tonolo, A classification theorem for t-structures, J. Algebra, 465, (2016), 214–258.

[6] D. Happel, I. Reiten, and O. S. Smals, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii + 88.

[7] M. Kashiwara, On the holonomic systems of linear differential equations II, Invent. Math., 49, (1978) 121-135.

[8] M. Kashiwara, \mathcal{D}-modules and microlocal calculus, Translations of Mathematical Monographs, 217 American Math. Soc. (2003).

[9] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto University, 437, (1983).

[10] M. Kashiwara, t-structures on the derived categories of holonomic \mathcal{D}-modules and coherent \mathcal{O}-modules, Mosc. Math. J. 4, 4, (2004) 847-868.

[11] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren der Math. Wiss. 292 Springer-Verlag (1990).

[12] M. Kashiwara and P. Schapira, Categories and Sheaves, Grundlehren der Math. Wiss. 332 Springer-Verlag (2006).

[13] M. Kashiwara and P. Schapira Ind-sheaves Soc. Math. France, 271 (2001)

[14] M. Kashiwara and P. Schapira Moderate and formal cohomology associated with constructible sheaves Mémoires de la Soc. Math. France 64 Société Mathématique de France (1996).

[15] B. Keller and D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Ser. A 40 (1988), no. 2, 239–253.

[16] T. Monteiro Fernandes and Luca Prelli Relative subanalytic sheaves Fundamenta Mathematica (2014) 79-89.

[17] T. Monteiro Fernandes and C. Sabbah, On the de Rham complex of mixed twistor \mathcal{D}-Modules Int. Math. Research Notes 21 (2013).

[18] T. Monteiro Fernandes and C. Sabbah, Riemann-Hilbert correspondence for mixed twistor \mathcal{D}-modules Math.arXiv: 1609.04192 (2016).
[19] L. Prelli, *Sheaves on subanalytic sites*, Rend. Sem. Mat. Univ. Padova. **120** 2008, 167-216.

[20] C. Sabbah, *Polarizable twistor D-modules*, Astérisque, Soc. Math. France **300** 2005.

[21] A. Polishchuk, *Constant families of t-structures on derived categories of coherent sheaves*, Mosc. Math. J. **7** (2007), no. 1, 109–134, 167.

[22] J.-P. Schneiders, *Quasi abelian categories and sheaves*, Mém. Soc. Math. France (1999).

Luisa Fiorot, Dipartimento di Matematica “Tullio Levi-Civita”, Via Trieste, 63 35121 Padova Italy, luisa.fiorot@unipd.it

Teresa Monteiro Fernandes, Centro de Matemática e Aplicações Fundamentais-CIO and Departamento de Matemática da FCUL, Bloco C6, Piso 2, Campo Grande, Lisboa Portugal, mtfernandes@fc.ul.pt