Supplementation of Micronutrients Against COVID-19.

Dr. Ajaya Kumar Ayyappan Unnithan (drajayakumara@gmail.com)
Muthoot Hospital, Kozhencherry, Kerala

Short Report

Keywords: SARS Virus, Vitamins, Micronutrients, Cytokines, Immunomodulation

Posted Date: April 28th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-432151/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Archives of Clinical and Biomedical Research on January 4th, 2022. See the published version at https://doi.org/10.26502/acbr.50170221.
Abstract

Background and Objectives: There is no pharmacological treatment with proven efficacy against coronavirus disease-19. Certain micronutrients have roles in the maintenance of an effective immune system. From the point of view of public health, it will be good to adopt a nutritional strategy to enhance the immunity of the general population against viral diseases.

Method and Study design: A review was done to now the evidence for the antiviral and immunomodulatory properties of micronutrients. A search was done in Pubmed, Scopus, and Google Scholar for the nutrients with proven effect against viral infection. Experimental studies, clinical studies, reviews, and meta-analyses were studied descriptively.

Results: There are experimental studies about the effects of micronutrients against viral infection. Vitamins such as A, B6, B12, C, D, E, and folate, and trace elements such as zinc, selenium, iron, magnesium, and copper boost the immune response. The antioxidants like vitamin C and vitamin E can help in controlling the 'cytokine storm', produced by excessive inflammation. Vitamin D can increase anti-inflammatory cytokines. Selenium and zinc can protect the lungs in acute respiratory distress syndrome. There are many meta-analyses on the randomized controlled trials (RCT) about the effect of micronutrients on viral infection. The analyses of the trials supplementing vitamin C, vitamin D, vitamin E, and selenium have shown significance.

Conclusions: There is level 2A evidence for the beneficial effects of vitamins and micronutrients in modulating the immunity against viral infections. So a programme for nutritional supplementation of these can help in fighting the pandemic.

Highlights:

- From the point of view of public health, it will be good to adopt a nutritional strategy to enhance the immunity of the general population against viral diseases.
- Vitamins such as A, B6, B12, C, D, E, and folate, and trace elements such as zinc, selenium, iron, magnesium, and copper boost the immune response.
- The antioxidants like vitamin C and vitamin E can help in controlling the 'cytokine storm', produced by excessive inflammation.
- Vitamin D can increase anti-inflammatory cytokines.
- Selenium and zinc can protect the lungs in acute respiratory distress syndrome.
- There is level 2A evidence for the beneficial effects of vitamins and micronutrients in improving the immunity against viral infections.
- A programme for nutritional supplementation of these can help in fighting the pandemic.

Introduction:
The pandemic caused by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is not controlled in world. There is no pharmacological treatment with proven efficacy and safety¹. About 147 million persons are infected worldwide and 3.11 million died. Although vaccination has started, now many countries are facing the second wave of the pandemic. So from the point of view of public health, it will be good to adopt a nutrional strategy to enhance the immunity of the general population against viral diseases. Undernutrition impairs immune system². Certain micronutrients have roles in the maintenance of an effective immune system. Nutrition is also very important in controlling the crisis of sepsis. Vitamins such as A, B6, B12, C, D, E, and folate, and trace elements such as zinc, selenium, iron, magnesium, and copper boost the immune response against viral infection³.

Objective, Materials, And Methods:

A review was done to now the evidence for the antiviral and immunomodulatory properties of micronutrients. A search was done in Pubmed, Scopus, and Google Scholar for the nutrients with proven effect against viral infection. Experimental studies, clinical studies, reviews, and meta-analyses were studied descriptively.

Entry, replication, and immune response:

The spike or S protein of coronavirus binds to angiotensin-converting enzyme 2 (ACE2) receptor of host cell⁴. The viral RNA[ribonucleic acid] enter into the host cell. The proteins are translated. The assembly and budding occur in the endoplasmic reticulum and Golgi compartment. Virions are then released from the infected cell through exocytosis. The antiviral drugs target the steps of this process. The macrophages present coronavirus antigens to T cells⁵. T cell activation produces cytokines. The cytokines amplify immune response. Interferons(IFN) limit virus spread, and promote macrophage phagocytosis of antigens. The CD8 cytotoxic T cells kill the infected cells. The B cells produce antibodies against the virus. The T cells assist the B cells to differentiate into plasma cells, which then produce immunoglobulinM(IgM) and immunoglobulin G(IgG) antibodies specific to the viral antigens⁶,⁷. An IgG antibody can block the virus from entering into host cells. The messenger RNA(mRNA) vaccine, adenovirus vaccine, and the whole-virus inactivated vaccine induce response against the S protein⁸.

The immune responses induced by SARS-CoV-2 infection have two phases⁹. During the non-severe stage, strategies to boost adaptive immune response is required to eliminate the virus. The damaged cells induce inflammation in the lungs, mediated by pro-inflammatory macrophages and granulocytes. In the severe stage of ‘cytokine storm’, inflammation should be suppressed.

Experimental evidence:

Atherton et al exposed chick embryo tracheal organ cultures to ascorbic acid¹⁰. Increased resistance to infection by coronavirus was observed. An animal study by Jee et al. has shown that a diet high in vitamin A boosted the production of immunoglobulin G(IgG) in calves injected with bovine coronavirus¹¹.
Research has shown that vitamin D stimulates genetic expression of antimicrobial peptides such as defensins and cathelicidins in human monocytes, and neutrophils12. They have antiviral activity. Animal studies have shown that vitamin E increases lymphocyte proliferation, immunoglobulin levels, natural killer (NK) cell activity, and interleukin (IL)-2 production13. A study in healthy individuals showed that repletion of vitamin B6 resulted in decreased lymphocyte and interleukin-214. Folic acid deficiency results in atrophy of thymus and spleen, and decreased circulating T lymphocytes in animals15. Vitamin B12 administration increases CD8 and NK cells16.

Zinc inhibited the replication of SARS-CoV in cell culture study17. Supplementation with selenium has been shown to cause increase in the activity of cytotoxic lymphocytes and NK cells18. A study in aged mice has shown that dietary selenium increased the ability of splenic lymphocytes to undergo blastogenesis19. Iron deficiency impairs cell-mediated and innate immunity20. The T cell proliferation on stimulation is only 40-50\% in iron-deficient women, compared to iron-sufficient women. A murine cell line study demonstrated that magnesium induced macrophages to produce the cytokines interleukin (IL)-4 and IL-1021. Cell culture studies have shown that a decline in copper status decreases IL-2 production by activated human T-cells22.

Control of inflammation:

The antioxidants like vitamin C and vitamin E can help in controlling the pro-oxidative state known as a ‘cytokine storm’, produced by excessive inflammation15. Intravenous vitamin C is being investigated as a treatment for cytokine storm syndrome23. Selenium has been shown to moderate the inflammatory responses, and restore the antioxidant capacity of the lungs in patients with acute respiratory distress syndrome (ARDS)24. Zinc has protective effects on the lungs in patients receiving mechanical ventilation for ARDS25. Vitamin D can reduce the expression of pro-inflammatory cytokines and increase anti-inflammatory cytokines26.

The results of the review are tabulated (table-1).
Table 1
Effect of micronutrients on the immune system.

Micronutrient	Observed effect
Vitamin C	Increased resistance to infection by coronavirus. Has antioxidant effect.
Vitamin A	Boosts the production of immunoglobulin G.
Vitamin D	Stimulates the expression of antimicrobial peptides such as defensins and cathelicidin. Increases the anti-inflammatory cytokines.
Vitamin E	Increases lymphocyte proliferation, natural killer cell activity, immunoglobulin level, and interleukin-2 production. Has antioxidant effect.
Vitamin B6	Needed for lymphocyte and interleukin-2.
Folic acid	Needed for thymus, spleen, and circulating T lymphocytes.
Vitamin B12	Increases CD8 and natural killer cells.
Zinc	Inhibits the replication of SARS-CoVirus. Has protective effect on the lungs.
Selenium	Increases the activity of cytotoxic lymphocytes and natural killer cells. Restores the antioxidant capacity of the lungs.
Iron	Necessary for T cell proliferation.
Magnesium	Induces the production of interleukin-4 and interleukin-10.
Copper	Needed for the production of interleukin-2.

Current guidelines:

The European Food Safety Authority (EFSA) has endorsed 10 micronutrients as essential for healthy maintenance of the immune system: vitamin A, vitamin B6, vitamin B12, vitamin C, vitamin D, folate, zinc, iron, copper, and selenium27. There are several trials ongoing involving vitamins A, C, D, and E, and micronutrients magnesium, and zinc against coronavirus disease-19 (COVID-19), registered by the world health organization (WHO)28. There are many meta-analyses on the randomized controlled trials (RCT) about the effect of micronutrients on viral infection29. The analyses of the trials supplementing vitamin C, vitamin D, vitamin E, and selenium have shown significance. Han et al did a pilot study of high dose
vitamin D administration in ventilated intensive care unit patients30. It was found that high-dose vitamin D3 was associated with decreased the length of hospital stay.

Safety of supplementation:

There are concerns about the adverse effects of vitamin and mineral supplementation31. It has been found in systematic review that the use of multivitamins and minerals within the range of the dietary reference intake will not result in excess intake32. The American and European boards have defined the Tolerable Upper Intake Levels (UL) of vitamins and minerals to avoid the adverse health effects33. There are micronutrient supplementation programmes in developing countries for at-risk groups34. Examples are vitamin A supplementation for children and iron and folic acid for pregnant women35.

Conclusion:

There is level 2A evidence for the beneficial effects of vitamins and micronutrients in improving the immunity against viral infections and in modulating the immune responses. So a programme for nutritional supplementation of these can help in fighting the pandemic. Since the vaccination has started, an adjuvant programme for nutritional supplementation can help in increasing the immunity of the people.

List Of Abbreviations:

RCT- Randomized controlled trials.

SARS-CoV-2- Severe acute respiratory syndrome virus-2.

ACE2- Angiotensin-converting enzyme 2.

IFN- Interferons.

IgM- Immunoglobulin M.

IgG- Immunoglobin G.

mRNA- messenger RNA

NK- Natural killer cells.

IL- Interleukins.

ARDS- Acute respiratory distress syndrome.

EFSA- European Food Safety Authority.
COVID-19 -Coronavirus disease-19.
WHO- World health organization
UL- Upper Intake Levels.

Declarations:

Ethics approval and consent to participate- not applicable.

Consent for publication-not applicable.

Availability of data and materials- Pubmed.

Competing interests- nil.

Funding- no external funding.

Authors' contributions- did the literature search and wrote the manuscript.

Acknowledgements- nil.

References:

1. Cascella M, Rajnik M, Cuomo A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19) [Updated 2020 Aug 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-.

2. Childs CE, Calder PC, Miles EA. Diet and Immune Function. Nutrients. 2019 Aug 16;11(8):1933. doi: 10.3390/nu11081933. PMID: 31426423; PMCID: PMC6723551.

3. Alkhatib A. Antiviral Functional Foods and Exercise Lifestyle Prevention of Coronavirus. Nutrients. 2020 Aug 28;12(9):E2633. doi: 10.3390/nu12092633. PMID: 32872374.

4. Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. Drug targets for corona virus: A systematic review. Indian J Pharmacol. 2020 Jan-Feb;52(1):56-65. doi: 10.4103/ijp.IJP_115_20. Epub 2020 Mar 11. PMID: 32201449; PMCID: PMC7074424.

5. Li, G, Fan, Y, Lai, Y, et al. Coronavirus infections and immune responses. J Med Virol.2020; 92: 424–432.https://doi.org/10.1002/jmv.25685.

6. Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. J Infect Public Health. 2020 Nov;13(11):1619-1629. doi: 10.1016/j.jiph.2020.07.001. Epub 2020 Jul 14. PMID: 32718895; PMCID: PMC7359800.
7. Rawat K, Kumari P, Saha L. COVID-19 vaccine: A recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol. 2021 Feb 5;892:173751. doi: 10.1016/j.ejphar.2020.173751. Epub 2020 Nov 25. PMID: 33245898; PMCID: PMC7685956.

8. Drugs and Lactation Database (LactMed) [Internet]. Bethesda (MD): National Library of Medicine (US); 2006-. COVID-19 vaccines. 2021 Apr 19. PMID: 33355732.

9. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G, Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020 May;27(5):1451-1454. doi: 10.1038/s41418-020-0530-3. Epub 2020 Mar 23. PMID: 32205856; PMCID: PMC7091918.

10. Atherton JG, Kratzing CC, Fisher A. The effect of ascorbic acid on infection chick-embryo ciliated tracheal organ cultures by coronavirus. Arch Virol. 1978;56(3):195-9. doi: 10.1007/BF01317848. PMID: 205194; PMCID: PMC7087159.

11. Jee J, Hoet AE, Azevedo MP, Vlasova AN, Loerch SC, Pickworth CL, Hanson J, Saif LJ. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am J Vet Res. 2013 Oct;74(10):1353-62. doi: 10.2460/ajvr.74.10.1353. PMID: 24066921.

12. Cannell JJ, Vieth R, Umhau JC, Holick MF, Grant WB, Madronich S, Garland CF, Giovannucci E. Epidemic influenza and vitamin D. Epidemiol Infect. 2006 Dec;134(6):1129-40. doi: 10.1017/S0950268806007175. Epub 2006 Sep 7. PMID: 16959053; PMCID: PMC2870528.

13. Lee GY, Han SN. The Role of Vitamin E in Immunity. Nutrients. 2018 Nov 1;10(11):1614. doi: 10.3390/nu10111614. PMID: 30388871; PMCID: PMC6266234.

14. Meydani SN, Ribaya-Mercado JD, Russell RM, et al. Vitamin B – 6 deficiency impairs interleukin 2 production and lymphocyte proliferation in elderly adults. Am J Clin Nutr 1991;53:1275–80. doi:10.1093/ajcn/53.5.1275.

15. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutrition, Prevention & Health 2020;3:doi: 10.1136/bmjnph-2020-000085.

16. Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, Tamura T, Saitoh T, Kurabayshi H, Naruse T. Immunomodulation by vitamin B12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol. 1999 Apr;116(1):28-32. doi: 10.1046/j.1365-2249.1999.00870.x. PMID: 10209501; PMCID: PMC1905232.

17. teVelthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (2010) Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog 6(11): e1001176. https://doi.org/10.1371/journal.ppat.1001176.
18. Kiremidjian-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G. Supplementation with selenium and human immune cell functions. II. Effect on cytotoxic lymphocytes and natural killer cells. Biol Trace Elem Res. 1994 Apr-May;41(1-2):115-27. doi: 10.1007/BF02917222. Erratum in: Biol Trace Elem Res 1994 Oct-Nov;46(1-2):183. PMID: 7946899.

19. Roy M, Kiremidjian-Schumacher L, Wishe HI, Cohen MW, Stotzky G. Supplementation with selenium restores age-related decline in immune cell function. Proc Soc Exp Biol Med. 1995 Sep;209(4):369-75. doi: 10.3181/00379727-209-43909. PMID: 7638244.

20. Ahluwalia N, Sun J, Krause D, et al. Immune function is impaired in iron-deficient, homebound, older women. Am J Clin Nutr 2004;79:516–21. doi:10.1093/ajcn/79.3.516.

21. Li B, Cao H, Zhao Y, Cheng M, Qin H, Cheng T, Hu Y, Zhang X, Liu X. In vitro and in vivo responses of macrophages to magnesium-doped titanium. Sci Rep. 2017 Feb 15;7:42707. doi: 10.1038/srep42707. PMID: 28198427; PMCID: PMC5309879.

22. Hopkins RG, Failla ML. Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. J Nutr 1997;127:257–62. doi:10.1093/jn/127.2.257.

23. Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020 Jun;12:100190. doi: 10.1016/j.phanu.2020.100190. Epub 2020 Apr 21. PMID: 32322486; PMCID: PMC7172861.

24. Mahmoodpoor A, Hamishehkar H, Shadvar K, Ostadi Z, Sanaie S, Saghaieini SH, Nader ND. The Effect of Intravenous Selenium on Oxidative Stress in Critically Ill Patients with Acute Respiratory Distress Syndrome. Immunol Invest. 2019 Feb;48(2):147-159. doi: 10.1080/08820139.2018.1496098. Epub 2018 Jul 12. PMID: 30001171.

25. Boudreault F, Pinilla-Vera M, Englert JA, Kho AT, Isabelle C, Arciniegas AJ, Barragan-Bradford D, Quintana C, Amador-Munoz D, Guan J, Choi KM; MICU Registry, Sholl L, Hurwitz S, Tschumperlin DJ, Baron RM. Zinc deficiency primes the lung for ventilator-induced injury. JCI Insight. 2017 Jun 2;2(11):e86507. doi: 10.1172/jci.insight.86507. PMID: 28570269; PMCID: PMC5453708.

26. Razdan K, Singh K, Singh D. Vitamin D Levels and COVID-19 Susceptibility: Is there any Correlation? Med Drug Discov. 2020 Sep;7:100051. doi: 10.1016/j.medidd.2020.100051. Epub 2020 Jun 2. PMID: 32835212; PMCID: PMC7266578.

27. Galmés S, Serra F, Palou A. Current State of Evidence: Influence of Nutritional and Nutrigenetic Factors on Immunity in the COVID-19 Pandemic Framework. Nutrients. 2020 Sep 8;12(9):2738. doi: 10.3390/nu12092738. PMID: 32911778; PMCID: PMC7551697.

28. Junaid K, Ejaz H, Abdalla AE, Abosalif KOA, Ullah MI, Yasmeen H, Younas S, Hamam SSM, Rehman A. Effective Immune Functions of Micronutrients against SARS-CoV-2. Nutrients. 2020 Sep 29;12(10):2992.
doi: 10.3390/nu12102992. PMID: 33003648; PMCID: PMC7599934.

29. BourBour F, MirzaeiDahka S, Gholamalizadeh M, Akbari ME, Shadnoush M, Haghighi M, Taghvaye-Masoumi H, Ashoori N, Doaei S. Nutrients in prevention, treatment, and management of viral infections; special focus on Coronavirus. Arch PhysiolBiochem. 2020 Jul 9:1-10.doi: 10.1080/13813455.2020.1791188. Epub ahead of print. PMID: 32644876.

30. Han JE, Jones JL, Tangpricha V, Brown MA, Brown LAS, Hao L, Hebbar G, Lee MJ, Liu S, Ziegler TR, Martin GS. High Dose Vitamin D Administration in Ventilated Intensive Care Unit Patients: A Pilot Double Blind Randomized Controlled Trial. J ClinTranslEndocrinol. 2016 Jun;4:59-65. doi: 10.1016/j.jcte.2016.04.004. Epub 2016 May 5. PMID: 27419080; PMCID: PMC4939707.

31. Soni MG, Thurmond TS, Miller ER 3rd, Spriggs T, Bendich A, Omaye ST. Safety of vitamins and minerals: controversies and perspective. Toxicol Sci. 2010 Dec;118(2):348-55. doi: 10.1093/toxsci/kfq293. Epub 2010 Sep 22. PMID: 20861067.

32. Biesalski HK, Tinz J. Multivitamin/mineral supplements: Rationale and safety - A systematic review. Nutrition. 2017 Jan;33:76-82. doi: 10.1016/j.nut.2016.02.013. Epub 2016 Mar 4. PMID: 27553772.

33. Walter P. Towards ensuring the safety of vitamins and minerals. ToxicolLett. 2001 Mar 31;120(1-3):83-7. doi: 10.1016/s0378-4274(01)00286-7. PMID: 11323165.

34. Sheikholeslam R, Abdollahi Z, Haghighi FN. Managing nutritional programmes in developing countries. East Mediterr Health J. 2004 Nov;10(6):737-46. PMID: 16335759.

35. Gavaravarapu SM, Hemalatha R. National Institute of Nutrition: 100 years of empowering the nation through nutrition. Indian J Med Res. 2018 Nov;148(5):477-487. doi: 10.4103/ijmr.IJMR_2061_18. PMID: 30666974; PMCID: PMC6366263.