We suppose that a Lévy process is observed at discrete time points. A rather general construction of minimum-distance estimators is shown to give consistent estimators of the Lévy-Khinchine characteristics as the number of observations tends to infinity, keeping the observation distance fixed. For a specific C^2-criterion this estimator is rate-optimal. The connection with deconvolution and inverse problems is explained. A key step in the proof is a uniform control on the deviations of the empirical characteristic function on the whole real line.

2000 Mathematics Subject Classification. Primary 62G15; secondary 62M15.
Keywords and Phrases. Lévy-Khinchine characteristics, density estimation, minimum distance estimator, deconvolution.
Short title. Nonparametric estimation for Lévy processes.
1. Introduction

Lévy processes form the fundamental building block for stochastic continuous-time models with jumps. There is an important trend using Lévy models in finance, see Cont and Tankov (2004), but also many recent models in physics or biology rely on Lévy processes. We consider here the problem of estimating the Lévy-Khintchine characteristics from time-discrete observations of a Lévy process. Since these characteristics involve the Lévy measure (or jump measure) and we do not want to impose a parametric model, we face a nonparametric estimation problem.

When the Lévy process \((X_t)_{t \geq 0}\) is observed at high frequency, at times \((t_i)_{i=0,\ldots,n}\) with \(\max_i (t_i - t_{i-1})\) small, then a large increment \(X_{t_i} - X_{t_{i-1}}\) indicates that a jump occurred between time \(t_{i-1}\) and \(t_i\). Based on this insight and the continuous-time observation analogue, nonparametric inference for Lévy processes from high-frequency data has been considered by Basawa and Brockwell (1982), Figueroa-López and Houdré (2006) and Nishiyama (2007). For low-frequency observations, however, we cannot be sure to what extent the increment \(X_{t_i} - X_{t_{i-1}}\) is due to one or several jumps or just to the Brownian motion part of the Lévy process. The only way to draw inference is to use that the increments form independent realisations of infinitely divisible probability distributions. We shall assume that we dispose of equidistant observations at \(t_i = i\Delta, i = 0,\ldots,n\), and consider the asymptotic behaviour of estimators for \(n \to \infty\) and \(\Delta > 0\) fixed. This can be cast into the classical framework of i.i.d. observations \((X_{i\Delta} - X_{(i-1)\Delta})_{i=1,\ldots,n}\) from an infinitely divisible distribution. A natural question in this framework is to estimate the underlying Lévy-Khintchine characteristics. In this general setting we are only aware of the work by Watteel and Kulperger (2003) who propose and implement an approach for estimating the jump distribution by a fixed spectral cut-off procedure, which is related to the pilot estimator in Section 5 below. In the special case of compound Poisson processes the problem of estimating the jump density is known as decompounding, see van Es, Gugushvili, and Spreij (2007), Gugushvili (2007) and the references therein. For parametric inference under the assumption of a stable law see e.g. Feuerverger and McDunnough (1981b). A related low-frequency problem for the canonical function in Lévy-Ornstein-Uhlenbeck processes has been considered by Jongbloed, van der Meulen, and van der Vaart (2005), where a consistent estimator has been constructed.

In Section 2 we recall basic facts about Lévy processes and prepare the idea of minimum-distance estimators based on the empirical characteristic function. Under very general conditions we then show in Section 3 consistency of these estimators for the Lévy-Khintchine characteristics. The only way to achieve this is to merge the diffusion coefficient \(\sigma^2\) and the Lévy measure \(\nu\) to a single quantity \(\nu_\sigma\), which is a finite Borel measure, and to consider weak convergence of estimators of \(\nu_\sigma\). In Section 4 we construct a rate-optimal estimator using a minimum-distance fit, based on a \(C^2\)-criterion for the empirical characteristic function. A fundamental tool is Theorem 4.1, which gives a uniform control on the deviations of the empirical characteristic function on the whole real line and may be of independent interest. The optimal rates of convergence depend on the decay
of the characteristic function as in deconvolution problems. Interestingly, our estimator attains the optimal rates without knowing this decay behaviour and without any further regularisation parameter. In Section 5 we briefly discuss the implementation of the estimator, using a two-step procedure, and show a typical numerical example. Most proofs are postponed to Section 6.

2. Basic notions, assumptions, and a few simple facts

We assume that we observe a one-dimensional Lévy process \((X_t)_{t \geq 0}\) at equidistant time points \(0 = t_0 < t_1 < \cdots < t_n\). Such a process is characterized by its characteristic function

\[
\varphi(u, t; \bar{b}, \sigma, \nu) := \mathbb{E} \left[\exp(iuX_t) \right] = \exp(t \Psi(u; \bar{b}, \sigma, \nu)), \quad u \in \mathbb{R},
\]

where

\[
\Psi(u) = \Psi(u; \bar{b}, \sigma, \nu) = iu\bar{b} - \frac{\sigma^2}{2}u^2 + \int_{\mathbb{R}} \left(e^{iux} - 1 - \frac{iu}{1+x^2} \right) \nu(dx).
\]

The triplet \((\bar{b}, \sigma, \nu)\) is called Lévy-Khintchine characteristic or characteristic triplet with drift-like part \(\bar{b} \in \mathbb{R}\), volatility \(\sigma \geq 0\) and jump measure \(\nu\), which is a non-negative \(\sigma\)-finite measure on \((\mathbb{R}, \mathcal{B})\) with \(\int x^2 \frac{1}{1+x^2} \nu(dx) < \infty\). The function \(\Psi\) is called characteristic exponent or cumulant function.

For reasons explained below, we introduce a measure \(\bar{\nu}_\sigma\) by

\[
\bar{\nu}_\sigma(dx) = \sigma^2 \delta_0(dx) + \frac{x^2}{1+x^2} \nu(dx),
\]

where \(\delta_0\) denotes the point measure in zero. This gives another representation of \(\Psi\) in terms of \(\bar{b} \in \mathbb{R}\) and the finite Borel measure \(\bar{\nu}_\sigma\) as

\[
\Psi(u) = \Psi(u; \bar{b}, \bar{\nu}_\sigma) = iu\bar{b} + \int_{\mathbb{R}} \frac{(e^{iux} - 1)(1 + x^2) - iux}{x^2} \bar{\nu}_\sigma(dx).
\]

Here we have used the continuous extension of the integrand at \(x = 0\), which evaluates to \(-u^2/2\). Let \(P_{\bar{b}, \bar{\nu}_\sigma}\) denote the probability distribution with characteristic function \(\varphi(\bullet, t; \bar{b}, \bar{\nu}_\sigma) = \exp(t \Psi(\bullet; \bar{b}, \bar{\nu}_\sigma))\) for some fixed \(t > 0\). Writing \(\mu_n \Rightarrow \mu\) for weak convergence of the finite Borel measures \(\mu_n\) to the finite Borel measure \(\mu\) on \((\mathbb{R}, \mathcal{B})\), the following well-known result will be essential in the sequel (Theorem VII.2.9 and Remark VII.2.10 in Jacod and Shiryaev (2002) or Theorem 19.1 in Gnedenko and Kolmogorov (1968)).

Proposition 2.1. The convergence \(P_{\bar{b}, \bar{\nu}_\sigma, n} \Rightarrow P_{\bar{b}, \bar{\nu}_\sigma}\) takes place if and only if \(\bar{b}_n \to \bar{b}\) and \(\bar{\nu}_{\sigma, n} \Rightarrow \bar{\nu}_\sigma\).

By the scaling properties of Lévy processes there is no loss in generality when we suppose \(t_k = k, k = 0, \ldots, n\). We write \(\varphi(u; \bar{b}, \bar{\nu}_\sigma)\) short for \(\varphi(u, 1; \bar{b}, \bar{\nu}_\sigma)\). Let us introduce the empirical characteristic function of the increments

\[
\hat{\varphi}_n(u) := \frac{1}{n} \sum_{t=1}^n e^{in(X_t - X_{t-1})}, \quad u \in \mathbb{R}.
\]
Since these increments are independent and identically distributed it follows from the Glivenko-Cantelli theorem that

\begin{equation}
\label{eq:2.1}
P_{b,\nu_\sigma} \left(\hat{\varphi}_n(u) \xrightarrow{n \to \infty} \varphi(u; \tilde{b}, \tilde{\nu}_\sigma) \quad \forall u \in \mathbb{R} \right) = 1.
\end{equation}

We will consider minimum distance fits, that is, we intend to choose \(\hat{b}_n \) and \(\hat{\nu}_{\sigma,n} \) such that, for an appropriate metric \(d \),

\begin{equation}
\label{eq:2.2}
d(\hat{\varphi}_n, \varphi(\bullet; \hat{b}_n, \hat{\nu}_{\sigma,n})) = \inf_{\tilde{b} \in \mathbb{R}, \tilde{\nu}_\sigma \in \mathcal{M}(\mathbb{R})} d(\hat{\varphi}_n, \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)).
\end{equation}

Here \(\mathcal{M}(\mathbb{R}) \) denotes the space of all finite Borel measures on \((\mathbb{R}, \mathcal{B}) \). Our basic motivation for this estimation procedure arises from the fact that an exact maximum likelihood estimator is not feasible since there is in general no closed form expression for the probability density of the observations available. Moreover, it is well-known that methods based on the empirical characteristic function can be asymptotically efficient; see Feuerverger and McDunnough (1981a, 1981b). Since we are not sure that the infimum in (2.2) is always obtained, we take a sequence of positive reals \((\delta_n)_{n \in \mathbb{N}} \) with \(\delta_n \to 0 \) as \(n \to \infty \) and choose \(\hat{b}_n \) and \(\hat{\nu}_{\sigma,n} \) such that

\begin{equation}
\label{eq:2.3}
d(\hat{\varphi}_n, \varphi(\bullet; \hat{b}_n, \hat{\nu}_{\sigma,n})) \leq \inf_{\tilde{b} \in \mathbb{R}, \tilde{\nu}_\sigma \in \mathcal{M}(\mathbb{R})} d(\hat{\varphi}_n, \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)) + \delta_n.
\end{equation}

For the metric \(d \), we assume that

\begin{equation}
\label{eq:2.4}
\lim_{n \to \infty} d(\hat{\varphi}_n, \varphi(\bullet; \hat{b}, \hat{\nu}_\sigma)) = 0 \quad P_{b,\nu_\sigma}-\text{almost surely}
\end{equation}

and that the following implication holds:

\begin{equation}
\label{eq:2.5}
\left\{ \begin{array}{l}
\lim_{n \to \infty} d(\varphi(\bullet; \hat{b}_n, \hat{\nu}_{\sigma,n}), \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)) = 0 \\
\lim_{n \to \infty} \int_{s}^{t} \varphi(u; \hat{b}_n, \hat{\nu}_{\sigma,n}) \, du = \int_{s}^{t} \varphi(u; \tilde{b}, \tilde{\nu}_\sigma) \, du \quad \forall s, t \in \mathbb{R}.
\end{array} \right.
\end{equation}

A simple example of such a distance is given by the weighted \(L^p \)-norms,

\begin{equation}
\label{eq:2.6}
d(\varphi_1, \varphi_2) = \left(\int_{-\infty}^{\infty} w(u) \, du \right)^{1/p},
\end{equation}

where \(p \geq 1 \) and \(w : \mathbb{R} \to (0, \infty) \) is a continuous weight function with \(\int_{-\infty}^{\infty} w(u) \, du < \infty \). Then Assumption (2.4) follows by dominated convergence from the convergence result (2.1), while Assumption (2.5) is immediate.

3. Consistency

We derive from the triangle inequality, the definition of the minimum-distance estimator and Assumption (2.4) that

\begin{equation}
\label{eq:3.1}
d(\varphi(\bullet; \hat{b}_n, \hat{\nu}_{\sigma,n}), \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)) \leq d(\varphi(\bullet; \hat{b}_n, \hat{\nu}_{\sigma,n}), \hat{\varphi}_n) + d(\hat{\varphi}_n, \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)) \leq 2d(\hat{\varphi}_n, \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)) + \delta_n \rightarrow 0 \quad P_{b,\nu_\sigma}-\text{a.s.}
\end{equation}
By Assumption (2.5) this implies for the integrated characteristic function that
\begin{equation}
P_{\bar{b}, \bar{\nu}_\sigma}(\int_s^t \varphi(u; \hat{\bar{b}}, \hat{\nu}_{\sigma,n}) \, du \xrightarrow{n \to \infty} \int_s^t \varphi(u; \bar{b}, \bar{\nu}_\sigma) \, du \quad \forall s, t \in \mathbb{R}) = 1.
\end{equation}

By Theorem 6.3.3 in Chung (1974, page 163), we obtain from (3.2) that
\[P_{\hat{\bar{b}}, \hat{\nu}_{\sigma,n}, \bar{b}, \bar{\nu}_\sigma} \xrightarrow{v} P_{\bar{b}, \bar{\nu}_\sigma} - \text{a.s.}, \]
where ‘\(\xrightarrow{v}\)’ denotes vague convergence to a possibly defective (that is, with a mass less than 1) measure. However, since this vague limit is a probability measure, it turns out that the mode of convergence is actually the weak one, that is,
\begin{equation}
P_{\hat{\bar{b}}, \hat{\nu}_{\sigma,n}, \bar{b}, \bar{\nu}_\sigma} \Rightarrow P_{\bar{b}, \bar{\nu}_\sigma} - \text{a.s.}
\end{equation}

As an immediate consequence of Equation (3.3) and Proposition 2.1 above we obtain the following consistency result for the parameters of the Lévy process:

Theorem 3.1. If the distance \(d\) satisfies properties (2.4) and (2.5), then the minimum distance fit \((\hat{\bar{b}}_n, \hat{\nu}_{\sigma,n})\) is a strongly consistent estimator, that is, with probability one we have for \(n \to \infty\)
\[\hat{\bar{b}}_n \to \bar{b} \quad \text{and} \quad \hat{\nu}_{\sigma,n} \Rightarrow \nu_\sigma. \]

Remark 3.2. Without further assumptions we cannot estimate the diffusion parameter \(\sigma\) in a uniformly consistent way. We have for example that the stable law with characteristic function \(\varphi_\alpha(u) = e^{-|u|^\alpha/2}\) converges for \(\alpha \uparrow 2\) to the standard normal law (\(\alpha = 2\)) in total variation norm: by Scheffe’s Lemma it suffices to show pointwise convergence of the density functions, which follows from the \(L^1\)-convergence of the characteristic functions. Hence, for \(n\) observations no test can separate the hypotheses \(H_0 : \alpha = 2\) and \(H_1 : \alpha < 2\). Since we have \(\sigma = 1\) for \(\alpha = 2\) and \(\sigma = 0\) for \(\alpha < 2\), this implies for the estimation problem uniform inconsistency in the following sense:
\[\lim \sup_{n \to \infty} \inf_{\sigma_n} \sup_{\hat{b}, \hat{\nu}_\sigma} P_{b, \nu_\sigma}(|\hat{\sigma}_n - \sigma| \geq 1/2) > 0, \]
where the infimum is taken over all estimators based on \(n\) observations. Thus, from a statistical perspective the estimation of the volatility \(\sigma\) makes no sense, unless we restrict the class of Lévy processes under consideration, e.g. to the finite intensity case as in Belomestny and Reiß (2006).

The practical implementation of the minimum distance method raises naturally the question of computational feasibility. It is certainly not possible to compute \(\hat{\nu}_{\sigma,n}\) by an optimisation over the full set \(\mathcal{M}(\mathbb{R})\). In our simulations, for example, we approximate the measure \(\bar{\nu}_\sigma\) by measures with step-wise constant densities. To assess the effect of such an approximation, consider a sequence of subsets \(\mathcal{M}^{(n)} \subseteq \mathcal{M}(\mathbb{R})\) with the density property
that there exist measures \(\tilde{\nu}^{(n)} \in \mathcal{M}^{(n)} \) with \(\tilde{\nu}^{(n)} \Rightarrow \tilde{\nu}_\sigma \), as \(n \to \infty \). The definition from (2.3) is now replaced by

\[
d(\bar{\varphi}_n, \varphi(\bullet; \tilde{b}_n, \tilde{\nu}_{\sigma,n})) \leq \inf_{\tilde{b} \in \mathbb{R}, \tilde{\nu} \in \mathcal{M}^{(n)}} d(\bar{\varphi}_n, \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)) + \delta_n.
\]

We obtain instead of (3.1) that

\[
d(\varphi(\bullet; \tilde{b}_n, \tilde{\nu}_{\sigma,n}), \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)) \leq 2d(\bar{\varphi}_n, \varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma)) + \delta_n + d(\varphi(\bullet; \tilde{b}, \tilde{\nu}_\sigma), \varphi(\bullet; \tilde{b}, \tilde{\nu}^{(n)})) \to 0 \quad P_{\tilde{b}, \tilde{\nu}_\sigma} \text{-a.s.}
\]

Hence, we obtain in complete analogy to Theorem 3.1 that with probability one for \(n \to \infty \)

\[
\tilde{b}_n \to \tilde{b} \quad \text{and} \quad \tilde{\nu}_{\sigma,n} \Rightarrow \tilde{\nu}_\sigma.
\]

Given the existence of certain moments for \(P_{\tilde{b}, \tilde{\nu}_\sigma} \), we could also search our minimum-distance estimator in the class of those parameter values that fit the empirical moments. Using a similar error decomposition and the consistency of the empirical moments, this approach will also yield consistent estimators under mild conditions on the distance \(d \).

4. A rate-optimal estimator

4.1. The construction. In this section we intend to devise estimators which attain optimal rates of convergence. We henceforth restrict the class of Lévy processes to those with finite second moments. This is equivalent to requiring that the Lévy measure satisfies \(\int x^2 \nu(dx) < \infty \). In this case the following reparametrisation of the characteristic exponent is much more convenient:

\[
\Psi(u; b, \sigma, \nu) = iub - \frac{\sigma^2}{2}u^2 + \int \left(e^{iux} - 1 - iux \right) \nu(dx),
\]

where the parameter \(b = \bar{b} + \int (x - \frac{x}{1+x^2}) \nu(dx) \) denotes now indeed the mean trend because of \(\mathbb{E}[X_1] = -i \varphi'(0) = b \). Let us mention that this is the original Kolmogorov canonical representation of a Lévy process (Kolmogorov 1932), the historical background of which is nicely exposed by Mainardi and Rogosin (2006). Instead of \(\tilde{\nu}_\sigma \), we consider the finite measure \(\nu_\sigma \) defined by

\[
\nu_\sigma(dx) = \sigma^2 \delta_0(dx) + x^2 \nu(dx),
\]

which allows the nice identity \(\text{Var}(X_1) = -\varphi''(0) + \varphi'(0)^2 = \nu_\sigma(\mathbb{R}) \). From now on, we shall express the characteristic exponent in terms of \((b, \nu_\sigma) \):

\[
\Psi(u) = \Psi(u; b, \nu_\sigma) = iub + \int \frac{e^{iux} - 1 - iux}{x^2} \nu_\sigma(dx).
\]

While \(b \) can be easily estimated by \(\frac{1}{n} \sum_{t=1}^{n} (X_t - X_{t-1}) = X_n/n \), the construction of an optimal nonparametric estimator of \(\nu_\sigma \) requires more work. Before we start with our search for optimal rates of convergence for estimators of \(\nu_\sigma \), we have to decide about an appropriate metric to measure the deviation of any potential estimator \(\tilde{\nu}_{\sigma,n} \) from its target \(\nu_\sigma \).
The parameter ν_σ lies in the space of finite Borel measures, which is naturally equipped with the total variation norm. As we have seen above in the consistent estimation problem for σ, this topology is too strong here. Moreover, we are usually not interested in the problem of estimating ν_σ itself, but rather in estimating integrals $\int f \, d\nu_\sigma$ for certain integrands f. In mathematical finance for example, the so-called Δ in the quadratic hedging approach requires calculating $\int C(t,S(1+z)) - C(t,S) \, d\nu_\sigma(z)$, where $C(t,S)$ denotes the option price at time t and S the corresponding stock price, cf. Proposition 10.5 in Cont and Tankov (2004). This is why we choose to measure the performance of our estimator by metrizing weak convergence with certain classes F of continuous test functions:

$$l(\tilde{\nu}_{\sigma,n}, \nu_\sigma) = \sup \left\{ \left| \int f \, d\tilde{\nu}_{\sigma,n} - \int f \, d\nu_\sigma \right| : f \in F \right\}.$$

Note that for any class F of uniformly bounded, equicontinuous functions consistency with respect to weak convergence implies $l(\tilde{\nu}_{\sigma,n}, \nu_\sigma) \to 0$ (Dudley 1989, Cor. 11.3.4). For instance, the bounded Lipschitz metric is generated by the test functions of Lipschitz norm less than one.

Let us introduce the Fourier transform for functions $f \in L^1(\mathbb{R})$ or measures $\mu \in \mathcal{M}(\mathbb{R})$ by

$$\mathcal{F}f(u) = \int f(x)e^{iux} \, dx, \quad \mathcal{F}\mu(u) = \int e^{iux} \, \mu(dx), \quad u \in \mathbb{R}.$$

Note that we have by Parseval’s equality

$$\int f \, d\nu_\sigma = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{F}f(u) \overline{\mathcal{F}\nu_\sigma(u)} \, du,$n

provided $\mathcal{F}f \in L^1(\mathbb{R})$ (Katznelson 1976, Theorem VI.2.2). Estimation of ν_σ turns out to be particularly transparent when we employ the fact that

$$\Psi''(u) = d^2 \log(e^{iux} - 1 - iux) \nu_\sigma(dx) = -\mathcal{F}\nu_\sigma(u),$$

and consequently

$$\mathcal{F}\nu_\sigma(u) = -d^2 \log(\varphi(u)) = \frac{\varphi'(u)^2}{\varphi(u)^2} - \frac{\varphi''(u)}{\varphi(u)}.$$

(4.1)

Recall that $\int x^2 \nu(dx) < \infty$ implies $\mathbb{E}[X_1^2] < \infty$ and hence $\varphi \in C^2$. Moreover, in order to recover Ψ from φ we use the distinguished logarithm of the complex-valued function $u \mapsto \varphi(u)$, which is required to ensure $\log(\varphi(0)) = 0$ and continuity of $u \mapsto \log(\varphi(u))$, cf. Cont and Tankov (2004). This formula indicates that estimating ν_σ is strongly related to estimating φ in a C^2-sense. Before we study rates of convergence, we need to investigate uniform rates of convergence of the empirical characteristic function $\tilde{\varphi}_n$ and its derivatives.

4.2. Estimating the characteristic function. For i.i.d. random variables $(Z_t)_{t \in \mathbb{N}}$, denote by

$$C_n(u) := n^{-1/2} \sum_{i=1}^{n} \left(e^{iuZ_i} - \mathbb{E}[e^{iuZ_1}] \right)$$

the normalized characteristic function process. Furthermore, denote by $C^{(k)}_n$ its kth derivative which exists if $E|Z_1|^k < \infty$. For an appropriate weight function $w : \mathbb{R} \rightarrow [0, \infty)$, we consider

$$E\|C^{(k)}_n\|_{L_\infty(w)} := E \sup_{u \in \mathbb{R}} \left\{ |C^{(k)}_n(u)|w(u) \right\}.$$

For every $k \geq 0$ we have the following general result.

Theorem 4.1. Suppose that $(Z_t)_{t \in \mathbb{N}}$ are i.i.d. random variables with $E|Z_1|^{2k+\gamma} < \infty$ for some $\gamma > 0$ and let the weight function be defined as $w(u) = (\log(e + |u|))^{-1/2-\delta}$ for some $\delta > 0$. Then

$$\sup_{n \geq 1} E\|C^{(k)}_n\|_{L_\infty(w)} < \infty.$$

Its proof is given in Section 6.1. Let us mention that the logarithmic decay of the weight function w is in accordance with the well known result that $\hat{\varphi}_n \rightarrow \varphi$ a.s. holds uniformly on intervals $[-T_n, T_n]$ whenever $\log(T_n)/n \rightarrow 0$, cf. Csörgö and Totik (1983).

4.3. **Upper risk bounds.** In view of (4.1) and Theorem 4.1 we define our estimators of b and b_σ by a minimum distance fit based on a weighted C^2-norm. Defining

$$d^{(2)}(\varphi, \varphi) := \sum_{k=0}^{2} \|\varphi^{(k)}_1 - \varphi^{(k)}_2\|_{L_\infty(w)},$$

we choose the estimators $\hat{b}_n \in \mathbb{R}$ and $\hat{b}_\sigma, n \in \mathcal{M}(\mathbb{R})$ such that

$$(4.2) \quad d^{(2)}(\varphi(\bullet; \hat{b}_n, \hat{\sigma}, n), \hat{\varphi}_n) \leq \inf_{\hat{b} \in \mathbb{R}, \hat{\sigma} \in \mathcal{M}(\mathbb{R})} d^{(2)}(\varphi(\bullet; \hat{b}, \hat{\sigma}), \hat{\varphi}_n) + \delta_n,$$

where $\delta_n \rightarrow 0$ as $n \rightarrow \infty$. We verify by Theorem 4.1 that $d^{(2)}$ satisfies Assumptions (2.4) and (2.5), hence, Theorem 3.1 gives immediately a consistency result. Moreover, with the choice $\delta_n = O(n^{-1/2})$ these estimators will turn out to be rate-optimal.

While b can always be estimated at rate $n^{-1/2}$, rates of convergence of $\int f d\hat{\sigma}$, n depend both on the smoothness of f and on the decay of $|\varphi(u)|$ as $|u| \rightarrow \infty$. For the function f, we will assume that it belongs to the class

$$F_{s} := \left\{ f : \int (1 + |u|^s)|\mathcal{F}f(u)| \, du \leq 1 \right\},$$

for some $s \geq 0$. Note that $\int |\mathcal{F}f(u)| \, du \leq 1$ implies by the Riemann-Lebesgue Lemma that f is continuous with $\|f\|_{\infty} \leq 1$. By Fourier theory the condition $f \in F_s$ is slightly stronger than requiring $f \in C^s$ with $\|f\|_{C^s} \leq 1$ for a suitable norming of C^s. We therefore introduce a loss function for an estimator $\hat{\mu}$ of the finite measure μ by

$$\ell_s(\hat{\mu}, \mu) := \sup_{f \in F_s} \left| \int f \, d\hat{\mu} - \int f \, d\mu \right|.$$

Note that by duality the loss ℓ_s can be interpreted as a negative smoothness norm of order $-s$.
The faster $|φ(u)|$ decays, the more difficult it will be to estimate $ν_σ$. We consider in particular the following three cases:

(a) **Gaussian part**

If $σ^2 > 0$, then the characteristic function $φ$ has Gaussian tails, i.e.

$$\log |φ(u)| = \text{Re} (\log φ(u)) = -σ^2 u^2 / 2 \left(1 + o(u)\right), \quad \text{as } |u| → ∞.$$

(To see this, note that $F(x,u) := (e^{iux} - 1 - iux)/ux$ is uniformly bounded with $\lim_{|u|→∞} F(x,u) = 0$ for $x \neq 0$ such that by dominated convergence $\lim_{|u|→∞} \int_R F(x,u)x^2 ν(dx) = 0$ and thus $\log φ(u) = -σ^2 u^2 / 2 + o(u^2)$.)

(b) **Exponential decay**

Here the characteristic function $φ$ decays at most exponentially, i.e. for some $α > 0$, $C > 0$,

$$|φ(u)| ≥ C e^{-α|u|}, \quad \text{for all } u ∈ ℝ.$$

Examples of distributions with this property include normal inverse Gaussian (Cont and Tankov 2004, page 117), and generalized tempered stable distributions (Cont and Tankov 2004, page 122).

(c) **Polynomial decay**

In this case the characteristic function satisfies, for some $β ≥ 0$, $C > 0$,

$$|φ(u)| ≥ C (1 + |u|)^{-β}, \quad \text{for all } u ∈ ℝ.$$

Typical examples for this are the compound Poisson distribution, the gamma distribution, the variance gamma distribution and the generalized hyperbolic distribution (Cont and Tankov 2004, pages 75, 116, 117, 127).

The proof of the following main theorem is postponed to Section 6.2.

Theorem 4.2. Suppose that $E_b,ν|X_1|^{4+γ} < ∞$ for some $γ > 0$. We choose the weight function w as $w(u) = (\log(e + |u|))^{-1/2-δ}$, where $δ$ is any positive number. The estimators \hat{b}_n and $\hat{ν}_σn$ of b and $ν_σ$, respectively, are chosen according to (4.2) with $δ_n = O(n^{-1/2})$. Then

$$E_{b,ν}|\hat{b}_n - b| = O(n^{-1/2})$$

and for any $s > 0$

$$ℓ_s(\hat{ν}_σn, ν_σ) = O_{P_{b,ν}} \left(n^{-1/2} \sup_{u \in [0,U_n]} \left\{ \frac{(1 + u)^{2-s}}{w(u)|φ(u; b, ν_σ)|} \right\} \right),$$

where

$$U_n := \inf \left\{ u > 0 : \frac{(1 + u)^2 n^{-1/2}}{w(u)|φ(u; b, ν_σ)|} ≥ 1 \right\}.$$

The constants in the risk bounds depend continuously on $|b|$ and $ν_σ(ℝ)$. In the specific cases we obtain the following rates of convergence for $ℓ_s(\hat{ν}_σn, ν_σ)$ in $P_{b,ν}$-probability:

(a) **Gaussian part:** $(\log n)^{-s/2}$

(b) **Exponential decay:** $(\log n)^{-s}$
(c) Polynomial decay of order $\beta \geq 0$: $[(\log n)^{1/2+2\delta} n^{-1/2}]^{s/\beta} \vee n^{-1/2}$.

Remark 4.3. The results are presented for convergence in probability, but the proof immediately yields convergence of moments of order 1/2 of the loss in cases (a), (b), cf. Equation 6.4. Higher moments are achieved whenever the order of the moment bound in Theorem 4.1 can be increased.

4.4. Lower risk bounds. We prove that the rates of convergence obtained in Theorem 4.2 for cases (a), (b), (c) are optimal, at least up to a logarithmic factor in the latter case. The proof in Section 6.3 can be naturally generalized to cover further decay scenarios of the characteristic function.

Theorem 4.4. For $C, \bar{C} > 0$ large enough and for any $\alpha > 0$, $\beta \geq 0$ introduce the following nonparametric classes of ν_σ:

\[A(C, \sigma) := \left\{ \nu_\sigma \in \mathcal{M}(\mathbb{R}) \mid \nu_\sigma(\mathbb{R}) \leq C \right\} \quad (\sigma > 0), \]

\[B(C, \alpha) := \left\{ \nu_\sigma \in \mathcal{M}(\mathbb{R}) \mid \nu_\sigma(\mathbb{R}) \leq C, \ |\varphi(u)| \geq \bar{C}e^{-\alpha|u|} \right\} \quad (\sigma = 0), \]

\[C(C, \bar{C}, \beta) := \left\{ \nu_\sigma \in \mathcal{M}(\mathbb{R}) \mid \nu_\sigma(\mathbb{R}) \leq C, \ |\varphi(u)| \geq \bar{C}^{-1}(1+|u|)^{-\beta} \right\} \quad (\sigma = 0). \]

Then we obtain for some fixed $b \in \mathbb{R}$ and for any $s > 0$ the following minimax lower bounds, where $\tilde{\nu}_{\sigma,n}$ denotes any estimator of ν_σ based on n observations:

(a) $\exists \varepsilon > 0 : \liminf_{n \to \infty} \inf_{\tilde{\nu}_{\sigma,n} \in A(C, \sigma)} \sup_{\nu_\sigma \in B(C, \alpha)} P_{b, \nu_\sigma} \left((\log n)^{s/2} \ell_s(\tilde{\nu}_{\sigma,n}, \nu_\sigma) > \varepsilon \right) = 0,$

(b) $\exists \varepsilon > 0 : \liminf_{n \to \infty} \inf_{\tilde{\nu}_{\sigma,n} \in B(C, \alpha)} \sup_{\nu_\sigma \in C(C, \bar{C}, \beta)} P_{b, \nu_\sigma} \left((\log n)^{s} \ell_s(\tilde{\nu}_{\sigma,n}, \nu_\sigma) > \varepsilon \right) = 0,$

(c) $\exists \varepsilon > 0 : \liminf_{n \to \infty} \inf_{\tilde{\nu}_{\sigma,n} \in C(C, \bar{C}, \beta)} \sup_{\nu_\sigma \in C(C, \bar{C}, \beta)} P_{b, \nu_\sigma} \left(n^{(s/2) \wedge (1/2)} \ell_s(\tilde{\nu}_{\sigma,n}, \nu_\sigma) > \varepsilon \right) = 0.$

4.5. Discussion. The convergence rates for $\tilde{\nu}_{\sigma,n}$ can be understood in analogy with a deconvolution problem where the Fourier transform of the error density decays like the characteristic function φ in our case, see e.g. Fan (1991). The interesting point here is that this decay property is not assumed to be known and depends on the parameters to be estimated. At first sight, it is rather surprising that our minimum distance estimator adapts automatically to the decay of φ, even for the whole range of loss functions ℓ_s, $s > 0$. This is due to the fact that the noise level in the empirical characteristic function $\hat{\varphi}_n$ is of the same size for different frequencies and this is where we fit our estimator. In contrast, when fitting the characteristic exponent Ψ, which is more attractive from a computational point of view and for example advocated in Jongbloed, van der Meulen, and van der Vaart (2005), we face a highly heteroskedastic noise level in $\log(\hat{\varphi}_n(u))$ governed by $|\varphi(u)|^{-1}$ because of $\log(\hat{\varphi}_n(u)) - \Psi(u) \approx (\hat{\varphi}_n(u) - \varphi(u))/\varphi(u)$.

Another point of view on our estimation problem is that we want to estimate the linear functional $\int f \, d\nu_\sigma$ based on an inverse problem setting for estimating ν_σ. In an abstract
Hilbert scale context, adaptive estimation for this has been considered by Goldenshluger and Pereverzev (2003) and their rate for the polynomially ill-posed case reads in our notation \((n/\log(n))^{-(r+s)/(2r+2\beta)} \vee n^{-1/2}\), with \(r\) the regularity of \(\nu_\sigma\), \(s\) the regularity of \(f\) and \(\beta\) the degree of ill-posedness. In our case, we measure the regularity \(s\) of \(f\) in the Fourier domain by an \(L^1\)-criterion such that a dual \(L^\infty\)-criterion for the regularity of \(\nu_\sigma\) yields \(r = 0\) because \(\|\mathcal{F}\nu_\sigma\|_\infty\) is finite. Hence, the rate \((n/\log(n))^{-s/2^\beta} \vee n^{-1/2}\), up to the logarithmic factor of power \(\delta\), obtained in case (c) of Theorem 4.2 confirms this analogy. We suspect that the gap by a logarithmic factor in the polynomial case between our upper and lower bound is mainly due to a suboptimal lower bound, because \(\ell_s\) can be expressed in the Fourier domain via

\[
\ell_s(\hat{\mu}, \mu) = \sup_{f \in F_s} \left| \mathcal{F} f(u) \mathcal{F}(\hat{\mu} - \mu)(u) \right| = \sup_{u \in \mathbb{R}} (1 + |u|)^{-s} |\mathcal{F}(\hat{\mu} - \mu)(u)|,
\]

giving a supremum-type norm.

It is certainly remarkable that no regularisation parameter is involved in our estimation procedure which becomes more intuitive by noticing that the results of Section 3 imply consistency already for \(s = 0\). On the other hand, better rates of convergence can be obtained when we restrict the model to measures \(\nu_\sigma\) which have a regular Lebesgue density \(g_\sigma\). A natural plug-in approach yields the kernel-type estimator \(\hat{g}_{\sigma,n,h}(x) := K_h \ast \hat{\nu}_{\sigma,n}(x)\), convolving the minimum-distance estimator with a smooth kernel \(K_h\) of bandwidth \(h > 0\). Noting that \(\int f \hat{g}_{\sigma,n,h} = \int (f \ast K_h) d\hat{\nu}_{\sigma,n}\), we infer that the bound on the stochastic error

\[
\int f(\hat{g}_{\sigma,n,h} - K_h \ast g_\sigma) = \int (f \ast K_h)d(\hat{\nu}_{\sigma,n} - \nu_\sigma)
\]

is controlled by the regularity of \(f \ast K_h\). To be more specific, consider a function \(f\) with \(|\mathcal{F} f(u)| \asymp (1 + |u|)^{-s-1}\) (e.g. \(f(x) = e^{-|x|^2}\) with \(s = 1\)), suppose \(\sup_u (1 + |u|)^r |\mathcal{F} g_\sigma(u)| < \infty\) for \(r > 0\) and assume polynomial decay of order \(\beta \geq s\) of the characteristic function. Then \(\int (1 + |u|)^{\beta} |\mathcal{F} f(u)\mathcal{F} K_h(u)| du \asymp h^{s-\beta}\) holds such that \(c h^{s+\beta} f \ast K_h\) lies in \(F_{\beta, c > 0}\) some small constant, and Theorem 4.2 implies that

\[
\int f(\hat{g}_{\sigma,n,h} - K_h \ast g_\sigma) = O_P \left(h^{s-\beta} n^{-1/2} (\log n)^{1/2 + 2\delta} \right).
\]

Together with an easy bias estimate of order \(h^{s+r}\) this yields for the estimation error \(|\int f(\hat{g}_{\sigma,n,h} - g_\sigma)|\) up to logarithmic factors the rate \(n^{-(r+s)/(2r+2\beta)}\), provided the bandwidth is chosen in an optimal way. We conclude that our results also allow to obtain risk bounds under smoothness restrictions, which are coherent with the abstract results in Goldenshluger and Pereverzev (2003). The rates should also be compared with the case of continuous-time observations on \([0, T]\), where Figueroa-López and Houdré (2006) obtained the classical nonparametric rate \(T^{-r/(2r+1)}\) for estimating \(g_\sigma\) on a bounded interval.

5. Implementation

Although the main focus of our work is theoretical, we point out how the minimum distance estimator can be implemented and show a numerical example. The main computational problem is that the procedure requires to minimize a nonlinear functional over
the empirical characteristic function.

We have to be more careful with an estimator of ν. Since $\mathcal{F}_\nu(u) = \varphi''(u)/\varphi(u) - (\varphi'(u)/\varphi(u))^2$ one might be tempted to estimate its Fourier transform just by plugging in the empirical characteristic function $\hat{\varphi}_n$ for φ. It turns out, however, that the occurrence of $\hat{\varphi}_n(u)$ in the denominator might have unfavorable effects, particularly if $|\varphi(u)|$ is small.

To get some intuition for a possible remedy, consider the problem of estimating $1/\varphi(u)$. While the mean b will be easily estimated by

$$\bar{b}_n := \frac{1}{n} \sum_{t=1}^{n} (X_t - X_{t-1}) = X_n/n,$$

we have to be more careful with an estimator of ν. Since $\mathcal{F}_\nu(u) = \varphi''(u)/\varphi(u) - (\varphi'(u)/\varphi(u))^2$ one might be tempted to estimate its Fourier transform just by plugging in the empirical characteristic function $\hat{\varphi}_n$ for φ. It turns out, however, that the occurrence of $\hat{\varphi}_n(u)$ in the denominator might have unfavorable effects, particularly if $|\varphi(u)|$ is small.

To get some intuition for a possible remedy, consider the problem of estimating $1/\varphi(u)$.

We use the identification formula (4.1) to build a first-stage plug-in estimator $(\bar{b}_n, \bar{\nu}_{\sigma,n})$. While the mean b will be easily estimated by

$$\bar{b}_n := \frac{1}{n} \sum_{t=1}^{n} (X_t - X_{t-1}) = X_n/n,$$

we have to be more careful with an estimator of ν. Since $\mathcal{F}_\nu(u) = \varphi''(u)/\varphi(u) - (\varphi'(u)/\varphi(u))^2$ one might be tempted to estimate its Fourier transform just by plugging in the empirical characteristic function $\hat{\varphi}_n$ for φ. It turns out, however, that the occurrence of $\hat{\varphi}_n(u)$ in the denominator might have unfavorable effects, particularly if $|\varphi(u)|$ is small.

To get some intuition for a possible remedy, consider the problem of estimating $1/\varphi(u)$.

We have $\mathcal{F}_\nu(u) = \varphi''(u)/\varphi(u) - (\varphi'(u)/\varphi(u))^2$. Yet, it has certain drawbacks, most importantly $\mathcal{F}_\nu(u)$ is not necessarily a non-negative measure. In Section 6.4 below we shall prove the following result.

Proposition 5.1. We have $\mathbb{E}_{b,\nu_0}(\bar{b}_n - b)^2 = O(n^{-1})$ and for $u \in \mathbb{R}$

$$\mathbb{E}_{b,\nu_0} |\mathcal{F}_{\nu_{\sigma,n}}(u) - \mathcal{F}_\nu(u)| = O \left(\left(\frac{n^{-1/2}}{|\varphi(u)|} \right)^2 + 1 + |\varphi'(u)|^2 \right).$$

This will give pointwise rates of convergence in a similar fashion as before and serves well as a starting point of a local optimisation routine. Note that this pilot estimator is very easy and fast to implement. Yet, it has certain drawbacks, most importantly $\mathcal{F}_{\nu_{\sigma,n}}$ is usually not positive semidefinite so that $\bar{\nu}_{\sigma,n}$ is not necessarily a non-negative measure.

In practice, our two-stage procedure works reasonably well. For a numerical example we simulate a Lévy process $(X_t)_{t \geq 0}$ with $\sigma = 1$, $b = 1$ and $\nu(dx) = x^{-1}e^{-x}I_{x > 0}dx$. The process X is a superposition of an infinite-intensity Gamma process and a standard Brownian motion. The law of its increments $X_t - X_{t-1}$ is the convolution of an $N(0,1)$- and an $\text{Exp}(1)$-distribution. We have $n = 1000$ observations, see Figure 1(left) for a histogram.
of the increments. The sample is rather disperse with some increments close to 10 and a sample mean of \(\hat{b}_n = 0.936 \) (true \(b = 1 \)). The true characteristic function has Gaussian decay and its absolute value is shown together with that of the empirical characteristic function in Figure 1(right).

We discretize the pilot estimate \(\tilde{\nu}_{\sigma,n} \) of the jump measure by using a Haar wavelet basis on the interval \([-10, 10]\) with 15 basis functions. Moreover, we allow for a point measure in zero to have a better resolution there. Its pilot mass is set to zero. Using the \texttt{FindMinimum} local optimisation procedure in Mathematica, we minimize the \(d^{(2)} \)-criterion locally around the discretized pilot estimator, constraining to non-negative Lévy measures. In Figure 2(left) we display for the given data the imaginary part of the empirical characteristic function together with the imaginary parts of the other characteristic functions of interest (true, pilot, final estimator). The errors in fitting the real part are less pronounced because there a less oscillations around zero (note \((\text{Re} \varphi)'(0) = 0 \)). Typically, the pilot estimator gives already a reasonably good fit and the final estimator has a characteristic function which is closer to the empirical characteristic function than the true one.

Figure 2(right) finally shows the densities of the rescaled Lévy measures \(\nu_{\sigma} \), but suppresses the point masses in zero. Note that the original Lévy density and also its plug-in estimators have a singularity at zero because of \(\nu(dx) = x^{-2} \nu_{\sigma}(dx) \) for \(x \neq 0 \). The parameters are estimated as \(\hat{b}_n = 0.922 \) (true \(b = 1 \)) and \(\hat{\nu}_{\sigma,n}(\{0\})^{1/2} = 1.092 \) (true \(\sigma = 1 \)). The pilot estimator has no point mass in zero and its density is therefore large around zero. It is seen that the final estimator improves upon the pilot estimator, in particular by excluding negative values and catching the point mass in zero. Given 1000 observations and a Gaussian deconvolution problem, the estimation problem is quite hard. The rough, step-wise form of the final estimator is not so pleasant for the human eye, but we only
Figure 2. Left: Imaginary part of the empirical (dot-dashed blue), true (orange dashed), pilot (dotted green) and final estimated (red solid) characteristic function. Right: pilot (dotted green), final (red solid) estimator and true (dashed orange) density of ν_σ; the pilot estimator does not have a point mass in zero.

want to use this estimator as an integrator of smooth functions and, as discussed above, we could apply a kernel to obtain a smooth density function. As an example for a functional to be estimated, we calculated $\int_1^\infty x^{-2}\hat{\nu}_\sigma(dx)$ which estimates $\nu([1, \infty))$, the probability of jumps larger than one. In this sample, the true value 0.22 was estimated by 0.16. Let us remark that the high-frequency estimator, using the relative frequency of increments $X_t - X_{t-1}$ that are larger than one, yields the estimate 0.46. The large error of the latter confirms a strong violation of the underlying high-frequency assumption that between two observations very rarely more than one larger jump occurs and that the diffusion part is negligible. Hence, the frequency of the observations must indeed be considered as low for the construction of the estimator.

6. Proofs

6.1. Proof of Theorem 4.1. We begin the proof with a few definitions. Given two functions $l, u : \mathbb{R} \rightarrow \mathbb{R}$ the bracket $[l, u]$ denotes the set of functions f with $l \leq f \leq u$. For a set G of functions the L^2-bracketing number $N_{[l]}(\varepsilon, G)$ is the minimum number of brackets $[l_i, u_i]$, satisfying $\mathbb{E}[(u_i(Z_1) - l_i(Z_1))^2] \leq \varepsilon^2$, that are needed to cover G. The associated bracketing integral is defined as

$$J_{[l]}(\delta, G) = \int_0^\delta \sqrt{\log(N_{[l]}(\varepsilon, G))} \, d\varepsilon.$$

Furthermore, a function \mathcal{F} is called envelope function for G, if $|f| \leq \mathcal{F}$ holds for all $f \in G$.

To apply Corollary 19.35 from van der Vaart (1998), we decompose C_n in its real and imaginary parts,

\[\text{Re}(C_n(u)) = n^{-1/2} \sum_{t=1}^{n} (\cos(uZ_t) - \mathbb{E}\cos(uZ_1)), \]

\[\text{Im}(C_n(u)) = n^{-1/2} \sum_{t=1}^{n} (\sin(uZ_t) - \mathbb{E}\sin(uZ_1)). \]

Accordingly, we consider the following class of functions:

\[G_k = \left\{ z \mapsto w(u) \frac{\partial^k}{\partial z^k} \cos(uz) \mid u \in \mathbb{R} \right\} \cup \left\{ z \mapsto w(u) \frac{\partial^k}{\partial z^k} \sin(uz) \mid u \in \mathbb{R} \right\}. \]

An envelope function \mathcal{J}_k for G_k is given by $\mathcal{J}_k = |x|^k$. Now we obtain from Corollary 19.35 in van der Vaart (1998) that

\[\mathbb{E}\|C_n^{(k)}\|_{L_\infty(w)} \leq C \left\{ \mathbb{E}\left(\mathcal{J}_k(Z_1)^2\right) + J_{11}(\sqrt{\mathbb{E}Z_1^{2k}}, G_k) \right\}. \]

Since $\mathbb{E}Z_1^{2k} < \infty$ it remains to bound the bracketing integral on the right-hand side of (6.1). Inspired by Yukich (1985), we proceed by setting, for every $\varepsilon > 0$,

\[M := M(\varepsilon, k) := \inf \left\{ m > 0 \mid \mathbb{E}[Z_1^{2k} \mathbb{I}_{|Z_1| > m}] \leq \varepsilon^2 \right\}. \]

Furthermore, we set, for grid points $u_j \in \mathbb{R}$ to be specified below,

\[g_j^+(z) = \left(w(u_j) \frac{\partial^k}{\partial z^k} \cos(u_j z) \pm \varepsilon|z|^k \right) \mathbb{I}_{[-M,M]}(z) \pm \|w\|_\infty |z|^k \mathbb{I}_{[-M,M]}(z), \]

\[h_j^+(z) = \left(w(u_j) \frac{\partial^k}{\partial z^k} \sin(u_j z) \pm \varepsilon|z|^k \right) \mathbb{I}_{[-M,M]}(z) \pm \|w\|_\infty |z|^k \mathbb{I}_{[-M,M]}(z). \]

We obtain for the width of the brackets that

\[\mathbb{E}\left[(g_j^+(Z_1) - g_j^-(Z_1))^2 \right] \leq \mathbb{E}\left[4\varepsilon^2 Z_1^{2k} \mathbb{I}_{[-M,M]}(Z_1) + 4\|w\|_\infty^2 Z_1^{2k} \mathbb{I}_{[-M,M]}(Z_1) \right] \]

\[\leq 4\varepsilon^2 \left(\mathbb{E}Z_1^{2k} + \|w\|_\infty^2 \right), \]

and, analogously,

\[\mathbb{E}\left[(h_j^+(Z_1) - h_j^-(Z_1))^2 \right] \leq 4\varepsilon^2 \left(\mathbb{E}Z_1^{2k} + \|w\|_\infty^2 \right). \]

It remains to choose the grid points u_j in such a way that the brackets cover the set G_k. We consider an arbitrary $u \in \mathbb{R}$ and any grid point u_j. Then with the Lipschitz constant $\text{Lip}(w)$ of the weight function w

\[\left| w(u) \frac{\partial^k}{\partial z^k} \cos(uz) - w(u_j) \frac{\partial^k}{\partial z^k} \cos(u_j z) \right| \leq |z|^k \min\{|u - u_j| (\text{Lip}(w) + \|w\|_\infty |z|), w(u) + w(u_j)\}. \]

Therefore, the function $z \mapsto w(u) \frac{\partial^k}{\partial z^k} \cos(uz)$ is contained in the bracket $[g_j^-, g_j^+]$ if

\[\min\{|u - u_j| (\text{Lip}(w) + \|w\|_\infty M), w(u) + w(u_j)\} \leq \varepsilon. \]

Consequently, we choose the grid points as

\[u_j = j\varepsilon/(\text{Lip}(w) + \|w\|_\infty M(\varepsilon, k)), \]
for $|j| \leq J(\varepsilon)$, where $J(\varepsilon)$ is the smallest integer such that $u_{J(\varepsilon)}$ is greater than or equal to

$$U(\varepsilon) = \inf \left\{ u > 0 \mid \sup_{w : |v| \geq u} w(v) \leq \varepsilon/2 \right\}.$$

This yields the estimate $N[\varepsilon, G_k] \leq 2(2J(\varepsilon) + 1)$. It follows from the generalized Markov inequality that

$$M(\varepsilon, k) \leq \left(\mathbb{E}[|Z_1|^{2\kappa + \gamma}]/\varepsilon^2 \right)^{1/\gamma}.$$

Now we obtain from the inequality

$$J(\varepsilon) \leq 2U(\varepsilon)(\text{Lip}(w) + \|w\|_{\infty}M(\varepsilon, k))/\varepsilon + 1$$

that $\log(N[\varepsilon, G_k]) = O(\log(J(\varepsilon))) = O(\varepsilon^{-\delta + 1/2}) + \log(\varepsilon^{-1/2}) = O(\varepsilon^{-\kappa})$ for $\kappa = (\delta + 1/2)^{-1} < 2$. This implies

$$\int_{\delta}^{\varepsilon} \sqrt{\log(N[\varepsilon, G_k])} \, d\varepsilon < \infty,$$

as required.

6.2. **Proof of Theorem 4.2.** To simplify the notation, we use the abbreviations $\Psi_n(u) = \Psi(u; \hat{b}_n, \hat{\nu}_{\sigma,n})$ and $\varphi_n(u) = \exp(\Psi_n(u))$.

First of all, we obtain from the triangle inequality that

$$d^{(2)}(\varphi_n, \varphi) \leq d^{(2)}(\tilde{\varphi}_n, \varphi) + d^{(2)}(\hat{\varphi}_n, \tilde{\varphi}_n) \leq 2d^{(2)}(\tilde{\varphi}_n, \varphi) + \delta_n.$$ \hspace{1cm} (6.2)

Proof for \hat{b}_n
We have that $\varphi'(0) = ib$ and $\varphi_n'(0) = i\hat{b}_n$. Therefore, we obtain from (6.2) and Theorem 4.1 that

$$\mathbb{E}_{\hat{b},\nu} |\hat{b}_n - b| = \mathbb{E}_{\hat{b},\nu} |\varphi_n'(0) - \varphi'(0)| \leq \mathbb{E}_{\hat{b},\nu} d^{(2)}(\varphi_n, \varphi) \leq 2\mathbb{E}_{\hat{b},\nu} d^{(2)}(\tilde{\varphi}_n, \varphi) + \delta_n = O(n^{-1/2}).$$

Proof for $\hat{\nu}_{\sigma,n}$
We consider the following set of “unfavorable” events:

$$A_n := \{ \hat{\nu}_{\sigma,n}(\mathbb{R}) > \nu_{\sigma}(\mathbb{R}) + 1 \} \cup \left\{ |\hat{b}_n| > |b| + 1 \right\}.$$

From $\varphi'(0)^2 - \varphi_n'(0) = \nu_{\sigma}(\mathbb{R})$ and the analogous formula for φ_n it follows that

$$|\hat{\nu}_{\sigma,n}(\mathbb{R}) - \nu_{\sigma}(\mathbb{R})| = |(\varphi'(0)^2 - \varphi_n'(0)^2) - (\varphi''(0) - \varphi_n''(0))| \leq (2|\varphi'(0)| + d^{(2)}(\varphi, \varphi_n) + 1)d^{(2)}(\varphi, \varphi_n),$$

\hspace{1cm} (6.3)
Consequently, the (generalized) Markov inequality yields

\[P_{b,\nu_n}(A_n) \leq \mathbb{E}_{b,\nu_n}[\tilde{\nu}_{\sigma,n}(\mathbb{R}) - \nu_{\sigma}(\mathbb{R})] + \mathbb{E}_{b,\nu_n}[|\tilde{b}_n - b|] \]

\[\leq \mathbb{E}_{b,\nu_n}\left[\left((2|b| + d^{(2)}(\varphi, \varphi_n) + 1) d^{(2)}(\varphi, \varphi_n)\right) \wedge 1\right] + \mathbb{E}_{b,\nu_n}\left[d^{(2)}(\varphi, \varphi_n)\right] \]

\[\leq \mathbb{E}_{b,\nu_n}\left[(4|b| + 2) d^{(2)}(\varphi, \varphi_n)\right] + \mathbb{E}_{b,\nu_n}\left[d^{(2)}(\varphi, \varphi_n)\right] \]

\[\leq (4|b| + 3) \left(\mathbb{E}_{b,\nu_n}[d^{(2)}(\varphi_n, \varphi)] + \delta_n\right) = O(n^{-1/2}), \]

which implies that

\[\mathbb{I}_{A_n} \cdot \sup_{f \in F_n} \left| \int f \, d\tilde{\nu}_{\sigma,n} - \int f \, d\nu_{\sigma}\right| \]

\[\leq \mathbb{I}_{A_n} \cdot \sup_{f \in F_n} \left| f \cdot (\tilde{\nu}_{\sigma,n}(\mathbb{R}) + \nu_{\sigma}(\mathbb{R})) \right| \]

\[\leq 2 \nu_{\sigma}(\mathbb{R}) \mathbb{I}_{A_n} + (2|\varphi'(0)| + d^{(2)}(\varphi, \varphi_n) + 1)d^{(2)}(\varphi, \varphi_n) \]

(6.4) \[= O_P_{b,\nu_n}(n^{-1/2}). \]

It remains to analyse the loss under \(A_n^c \). It follows from Parseval’s identity that

\[\left| \int f \, d\tilde{\nu}_{\sigma,n} - \int f \, d\nu_{\sigma}\right| \]

\[= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{F}f(u)(\mathcal{F}\tilde{\nu}_{\sigma,n}(u) - \mathcal{F}\nu_{\sigma}(u)) \, du \]

(6.5) \[= \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{F}f(u) \left\{ \left(\frac{\varphi'(u)}{\varphi(u)}\right)^2 - \left(\frac{\varphi'(u)}{\varphi(u)}\right) - \left(\frac{\varphi''(u)}{\varphi(u)} - \varphi''(u)\right) \right\} \, du. \]

The differences occurring in the integrand on the right-hand side of (6.5) can be estimated using \(\varphi'/\varphi = \Psi', \varphi''/\varphi_n = \Psi_n' \):

\[\left| \frac{\varphi'(u)}{\varphi(u)} \right|^2 - \left(\frac{\varphi'(u)}{\varphi(u)}\right) \]

\[= \left| \frac{\varphi''(u)}{\varphi(u)} - \varphi'(u) \right| \left| \Psi_n'(u) + \Psi'(u) \right| \]

(6.6) \[\leq \left\{ \left| \frac{\varphi_n(u) - \varphi(u)}{\varphi(u)} \right| \left| \Psi_n'(u) \right| + \left| \frac{\varphi_n(u) - \varphi(u)}{\varphi(u)} \right| \right\} \left| \Psi_n'(u) + \Psi'(u) \right| \]

and

\[\left| \frac{\varphi''(u)}{\varphi(u)} - \varphi''(u) \right| \leq \left| \frac{\varphi_n(u) - \varphi(u)}{\varphi(u)} \right| \left| \Psi_n''(u) \right| + \left| \frac{\varphi_n(u) - \varphi'(u)}{\varphi(u)} \right| \]

(6.7) \[\leq \left| \frac{\varphi_n(u) - \varphi(u)}{\varphi(u)} \right| \left| \Psi_n'(u) + \left(\Psi_n'(u)\right)^2 + \left| \frac{\varphi_n''(u) - \varphi''(u)}{\varphi(u)} \right| \right|. \]

Note that the following estimates hold true under \(A_n^c \):

(6.8) \[|\Psi_n'(u)| \leq |\tilde{b}_n| + |u|\tilde{\nu}_{\sigma,n}(\mathbb{R}) \leq |b| + 1 + |u|(\nu_{\sigma}(\mathbb{R}) + 1), \]

(6.9) \[|\Psi_n''(u)| \leq |\mathcal{F}\tilde{\nu}_{\sigma,n}(u)| \leq \tilde{\nu}_{\sigma,n}(\mathbb{R}) \leq \nu_{\sigma}(\mathbb{R}) + 1. \]
Hence, we obtain from (6.5) to (6.9) and the trivial estimate \(|\mathcal{F}\tilde{\nu}_{\sigma,n}(u) - \mathcal{F}\nu_{\sigma}(u)| \leq \tilde{\nu}_{\sigma,n}(\mathbb{R}) + \nu_{\sigma}(\mathbb{R})\) that under \(A_n^c\), with some constant \(C > 0\),

\[
\left| \int f \, d\tilde{\nu}_{\sigma,n} - \int f \, d\nu_{\sigma} \right| \\
\leq C \int_{-\infty}^{\infty} |\mathcal{F}f(u)| \left(\frac{\varphi_n(u) - \varphi(u)}{|\varphi(u)|} + \frac{\varphi'_n(u) - \varphi'(u)}{|\varphi(u)|} + \frac{\varphi''_n(u) - \varphi''(u)}{|\varphi(u)|} \right) (1 + |u|) \wedge 1 \, du
\]

\[
\leq C \int_{-\infty}^{\infty} (1 + |u|)^s |\mathcal{F}f(u)| \, du \sup_{u \in \mathbb{R}} \left\{ (1 + |u|)^{-s} \left(\frac{(1 + |u|)^2 d^{(2)}(\varphi_n, \varphi)}{w(u)|\varphi(u)|} \wedge 1 \right) \right\}
\]

\[
\leq C \sup_{u \geq 0} \left\{ (1 + u)^{-s} \left(\frac{(1 + u)^2 n^{-\frac{1}{2}}}{w(u)|\varphi(u)|} \wedge 1 \right) \right\} \left(n^{1/2} d^{(2)}(\varphi_n, \varphi) + 1 \right).
\]

By monotonicity of \((1 + u)^{-s}\) we can replace the supremum over \([0, \infty)\) by the supremum over \([0, U_n]\) and we arrive at

\[
\mathbb{E}_{b,\nu_{\sigma}} \left[\mathbb{I}_{A_n^c} \cdot \sup_{f \in \mathcal{F}_n^c} \int f \, d\tilde{\nu}_{\sigma,n} - \int f \, d\nu_{\sigma} \right]
\]

(6.10)

\[
= O \left(\sup_{u \in [0, U_n]} \left\{ (1 + u)^{-s} \left(\frac{(1 + u)^2 n^{-1/2}}{w(u)|\varphi(u)|} \wedge 1 \right) \right\} \right).
\]

Together with the bound (6.4) on the set \(A_n\) this yields the asserted general estimate. Tracing back the constants, we see that they depend continuously on \(|b|\) and \(\nu_{\sigma}(\mathbb{R})\).

Proof of the rate results (a), (b)

(a) Under the condition \(\log |\varphi(u)| \leq -\sigma^2 u^2/2(1 + o(u))\) we have \(U_n \propto \sqrt{\log n}\) and we obtain the rate \(U_n^{-s} = (\log n)^{-s/2}\).

(b) If \(|\varphi(u)| \geq Ce^{-\alpha u}\), then we have \(U_n \propto \log n\) and we obtain the rate \(U_n^{-s} = (\log n)^{-s}\).

Proof of the rate result (c)

The same reasoning as for cases (a) and (b) would only yield the rate \((\log n)^{1/2 + \delta n^{1/2}} - s/(\beta + 2)\) for \(s \in (0, \beta + 2]\) and the parametric rate for \(s > \beta + 2\). In the polynomial case (c), though, better estimates for \(|\Psi'_n(u)|\) hold, i.e. we can improve upon (6.8). First, we formulate and prove a lemma for \(|\Psi'(u)|\).

Lemma 6.1. If a Lévy process with a finite first moment has a characteristic function (at time \(t = 1\)) satisfying \(|\varphi(u)| \geq C(1 + |u|)^{-\beta}\) for some \(\beta \geq 0\), \(C > 0\) and all \(u \in \mathbb{R}\), then \(\int_{[-1,1]} |x|^\alpha \nu(dx)\) is finite for all \(\alpha > 0\) and the derivative of its characteristic exponent is uniformly bounded:

\[
\sup_{u \in \mathbb{R}} |\Psi'(u)| < \infty.
\]

Proof of Lemma 6.1. Since we have necessarily \(\sigma^2 = 0\) in the Lévy-Khinchine characteristic as well as \(\int_{[-1,1]} |x| \nu(dx) < \infty\) from the first moment condition, the additional
property \(\int_{[-1,+1]} |x| \nu(dx) < \infty \) implies
\[
\sup_{u \in \mathbb{R}} |\Psi'(u)| = \sup_{u \in \mathbb{R}} |ib + \int (e^{ix} - 1)ix \nu(dx)| \leq |b| + 2 \int |x| \nu(dx) < \infty.
\]

It therefore remains to prove the first result for any \(\alpha > 0 \). We obtain with \(c := \min_{u \in [1,2]} (1 - \cos(u)) > 0 \):
\[
\int_{[-1,+1]} |x|^{\alpha} \nu(dx) \leq \sum_{n=1}^{\infty} \int_{\{x: 2^{-n} \leq |x| \leq 2^{-n+1}\}} |x|^{\alpha} \nu(dx)
\leq \sum_{n=1}^{\infty} 2^{-\alpha(n-1)} \int_{\{x: 2^{-n} \leq |x| \leq 2^{-n+1}\}} c^{-1} (1 - \cos(2^n x)) \nu(dx)
\leq c^{-1} \sum_{n=1}^{\infty} 2^{-\alpha(n-1)} \Re(-\Psi(2^n))
\leq c^{-1} \sum_{n=1}^{\infty} 2^{-\alpha(n-1)} \left(\log(C^{-1}) + \beta \log(1 + 2^n) \right).
\]

This latter series is obviously finite. \(\square \)

Resuming the proof for case (c), we remark that \(|\varphi(u)| \geq C(1 + |u|)^{-\beta} \) implies for any \(U > 0 \)
\[
P_{b,\nu,\alpha}\left(\exists u \in [-U,U] : |\varphi_n(u)| < \frac{C}{2} (1 + |u|)^{-\beta} \right)
\leq P_{b,\nu,\alpha}\left(\sup_{|u| \leq U} |\varphi_n(u) - \varphi(u)|(1 + |u|)^{\beta} \geq C/2 \right)
\leq \frac{2}{C} \mathbb{E}[\|\varphi_n - \varphi\|_{L^{\infty}(w)}] w(U)^{-1} (1 + U)^{\beta} = O(n^{-1/2} w(U)^{-1} (1 + U)^{\beta}).
\]

Consequently, for \(U_n \to \infty \) with \(w(U_n)^{-1} U_n^\beta = o(n^{1/2}) \) we have
\[
\lim_{n \to \infty} P_{b,\nu,\alpha}\left(\forall u \in [-U_n,U_n] : |\varphi_n(u)| \geq \frac{C}{2} (1 + |u|)^{-\beta} \right) = 1;
\]
in the sequel we shall work with \(U_n = n^{1/(2\beta)} (\log n)^{-(1/2 + 2\beta)/\beta} \). Theorem 4.1 Lemma 6.1 and Equation (6.11) then yield
\[
\sup_{|u| \leq U_n} |\Psi_n'(u) - \Psi'(u)| \leq \sup_{|u| \leq U_n} \left\{ \frac{|\varphi_n(u) - \varphi'(u)|}{|\varphi_n(u)|} + |\Psi'(u)| \frac{|\varphi(u) - \varphi_n(u)|}{|\varphi_n(u)|} \right\}
\leq O_P(n^{-1/2} w(U_n)^{-1} 2^{-\beta} (1 + |U_n|)^{\beta}).
\]

Together with Estimate (6.12) and again Lemma 6.1 we have thus established for \(n \to \infty \)
\[
\sup_{|u| \leq U_n} |\Psi_n'(u)| = O_P \left(1 + n^{-1/2} w(U_n)^{-1} |U_n|^{\beta} \right) = O_P(1).
\]
We therefore get instead of (6.10) the estimate
\[
\sup_{f \in F_s} \left| \int f \, d\tilde{\nu}_{\sigma,n} - \int f \, d\nu_{\sigma} \right| = \sup_{u \in \mathbb{R}} \left\{ (1 + |u|)^{-s} \left(\frac{O_p(1) + u^2 \mathbb{1}_{\{|u| \geq U_n\}} n^{-1/2}}{w(u) |\varphi(u)|} \right) \wedge 1 \right\} O_p \left(n^{1/2} d^{(2)}(\varphi_n, \varphi) + 1 \right).
\]

For \(s \leq \beta \) the right-hand side is of order \(O_p(U_n^{-s}) \) and we obtain
\[
\sup_{f \in F_s} \left| \int f \, d\tilde{\nu}_{\sigma,n} - \int f \, d\nu_{\sigma} \right| = O_p \left(n^{-s/2} (\log n)^{s(1/2+2\delta)/\beta} \right),
\]
while for \(s > \beta \) the parametric rate \(O_p(n^{-1/2}) \) follows. \(\square \)

6.3. Proof of Theorem 4.4. The lower bound will be established by looking at a decision problem between two local alternatives, see e.g. Korostelev and Tsybakov (1993) for the general idea. For \(\gamma > 0 \) and \(\beta > 0 \) consider the bilateral Gamma distribution which is obtained as the law of \(X - Y \) where \(X \) and \(Y \) are independent and both \(\Gamma(\gamma, \beta/2) \)-distributed. This bilateral Gamma distribution is infinitely divisible with the following characteristic function and Lévy triplet:
\[
\varphi_{\Gamma}(u) := \left(1 + \gamma^2 u^2 \right)^{-\beta/2}, \quad b_{\Gamma} = 0, \quad \sigma_{\Gamma} = 0, \quad \nu_{\Gamma}(dx) := \beta |x|^{-1} e^{-\gamma |x|} dx.
\]
Its density \(f_{\Gamma} \) satisfies \(f_{\Gamma}(x) \geq ce^{-\gamma |x|} \) for some \(c > 0 \) (Küchler and Tappe 2008). For \(\sigma \geq 0 \) consider the infinitely divisible distribution with characteristic function
\[
(6.14) \quad \varphi_0(u) := \varphi_{\Gamma}(u) e^{iub - \sigma^2 u^2/2},
\]
which has a density \(f_0 \) that is a convolution of \(f_{\Gamma} \) with a normal density and therefore still satisfies \(f_0(x) \geq ce^{-\gamma |x|} \) with some \(c > 0 \). The corresponding Lévy density satisfies \(\nu_0 = \nu_{\Gamma} \).

Let us further introduce for \(K > 0 \) and \(\rho > 0 \)
\[
\mu_K(x) := e^{-x^2/(2\rho^2)} \sin(Kx).
\]
For any \(\beta > 0 \) and \(\gamma > 0 \) we can choose \(\rho \) sufficiently small such that \(\nu_0(x) + \mu_K(x) \geq 0 \) holds for all \(K > 0 \). In this case the following characteristic function also generates an infinitely divisible distribution:
\[
\varphi_K(u) := \varphi_0(u) \exp \left(\int_{\mathbb{R}} (e^{iux} - 1) \mu_K(dx) \right) = \varphi_0(u) \exp(F \mu_K(u)).
\]
Using the fact that \(\sin(Kx) \sin(ux) = (\cos((K - u)x) - \cos((K + u)x))/2 \) we obtain the following explicit calculation of the Fourier transform of \(\mu_K \):

\[
\mathcal{F}\mu_K(u) = i \int_{-\infty}^{\infty} e^{-x^2/(2\rho^2)} \sin(Kx) \sin(ux) \, dx \\
= i \int_{0}^{\infty} e^{-x^2/(2\rho^2)} \cos((K - u)x) \, dx - i \int_{0}^{\infty} e^{-x^2/(2\rho^2)} \cos((K + u)x) \, dx \\
= i\rho \sqrt{\pi/2} (e^{-\rho^2(K-u)^2/2} - e^{-\rho^2(K+u)^2/2}).
\]

Note that \(\varphi_K \) has the same decay behavior as \(\varphi_0 \) due to \(\lim_{|u| \to \infty} \mathcal{F}\mu_K(u) = 0 \). Therefore \(\nu_{0,\sigma} \) and \(\nu_{K,\sigma} \) lie in the class \(\mathcal{A}(C, \sigma) \) \((\sigma > 0)\) or \(\mathcal{C}(C, \bar{C}, \beta) \) \((\sigma = 0)\), respectively, provided \(C, \bar{C} \) are large enough.

Let us now estimate the \(\chi^2 \)-distance between the distributions with characteristic functions \(\varphi_K \) and \(\varphi_0 \):

\[
\chi^2(f_K, f_0) := \int_{-\infty}^{\infty} \frac{(f_K(x) - f_0(x))^2}{f_0(x)} \, dx \\
\leq c^{-1} \int_{-\infty}^{\infty} \left(e^{\gamma|x|/2} f_K(x) - e^{-\gamma|x|/2} f_0(x) \right)^2 \, dx \\
\leq c^{-1} \left\{ \int_{-\infty}^{\infty} \left(e^{\gamma|x|/2} f_K(x) - e^{-\gamma|x|/2} f_0(x) \right)^2 \, dx \\
+ \int_{-\infty}^{\infty} \left(e^{-\gamma|x|/2} f_K(x) - e^{-\gamma|x|/2} f_0(x) \right)^2 \, dx \right\}. \tag{6.15}
\]

For functions \(g \) whose Fourier transform can be extended holomorphically to complex values \(z \) with \(|\text{Im}(z)| < \gamma \) we have:

\[
\mathcal{F}\left(e^{iz\gamma/2} g(x) \right)(u) = \int_{-\infty}^{\infty} g(x) e^{(iu+\gamma/2)x} \, dx = \mathcal{F}g(u \pm (-i)\gamma/2).
\]

Using this identity in Plancherel's formula and then the estimate \(|e^z - 1| \leq |z| e^{\Re(z)} \), \(z \in \mathbb{C} \), together with \(|\mathcal{F}\mu_K(u)| \leq ||\mu_K||_{L^1} \), we continue from (6.16):

\[
\chi^2(f_K, f_0) \\
\leq \frac{c^{-1}}{2\pi} \int_{-\infty}^{\infty} (|\varphi_K(u - i\gamma/2) - \varphi_0(u - i\gamma/2)|^2 + |\varphi_K(u + i\gamma/2) - \varphi_0(u + i\gamma/2)|^2) \, du \\
= \frac{c^{-1}}{2\pi} \int_{-\infty}^{\infty} e^{-\sigma^2 u^2} \left(\frac{3}{4} + \frac{u^2}{\gamma^2} + \frac{i\sigma}{\gamma} \right) \left(|\mathcal{F}\mu_K(u - i\gamma/2)|^2 + |\mathcal{F}\mu_K(u + i\gamma/2)|^2 \right) \, du \\
\leq \frac{c^{-1}||\mu_K||_{L^1}}{2\pi} \int_{-\infty}^{\infty} e^{-\sigma^2 u^2} \left(\frac{3}{4} + \frac{u^2}{\gamma^2} \right) \left(|\mathcal{F}\mu_K(u - i\gamma/2)|^2 + |\mathcal{F}\mu_K(u + i\gamma/2)|^2 \right) \, du \\
= \frac{c^{-1}||\mu_K||_{L^1}}{2\pi} \int_{-\infty}^{\infty} e^{-\sigma^2 u^2} \left(\frac{3}{4} + \frac{u^2}{\gamma^2} \right) \left(e^{-\rho^2(u-K)^2/2} - e^{-\rho^2/(u+K)^2/2} \right)^2 \, du.
\]

The last line is for \(K \to \infty \) of order \(\int_{-\infty}^{\infty} e^{-\sigma^2 u^2} (1 + u^2)^{-\beta} (e^{-\rho^2(u-K)^2} + e^{-\rho^2(u+K)^2}) \, du \). In the case \(\sigma = 0 \) (polynomial decay) this gives the order \(K^{-2\beta} \), whereas for \(\sigma > 0 \) (Gaussian part) the order is \(e^{-\sigma^2 K^2(1+o(1))} \).
For \(n \) observations the distributions do not separate provided \(K^{-2\beta} \asymp n^{-1} (\sigma = 0) \) and \(e^{-\sigma K^2 (1+o(1))} \asymp n^{-1} (\sigma > 0) \), respectively. Consequently, when choosing \(K_n \asymp n^{1/2\beta} \) (\(\sigma = 0 \)), respectively \(K_n = c \sqrt{\log(n)} \) with \(c > 0 \) sufficiently large (\(\sigma > 0 \)), this closeness of the distributions implies (Korostelev and Tsybakov 1993) that for any sequence of estimators \((\tilde{\nu}_{\sigma,n})_n \) we have

\[
\liminf_{n \to \infty} \left\{ P_0 \left(\ell_s(\tilde{\nu}_{\sigma,n}, \nu_{0,\sigma}) \geq \ell_s(\nu_{K_n,\sigma}, \nu_{0,\sigma})/2 \right) + P_{K_n} \left(\ell_s(\tilde{\nu}_{\sigma,n}, \nu_{0,\sigma}) \geq \ell_s(\nu_{K_n,\sigma}, \nu_{0,\sigma})/2 \right) \right\} > 0.
\]

It remains to consider the loss \(\ell_s \) between the alternatives. Using the formula \(F(x^2 e^{-x^2/(2\rho^2)})(u) = \rho^3 (1 - \rho^2 u^2) e^{-\rho^2 u^2/2} \), we calculate:

\[
\ell_s(\nu_{K_n,\sigma}, \nu_{0,\sigma}) = \sup_{f \in F_1} \left| \int_{-\infty}^{\infty} f(x) x^2 e^{-x^2/2\rho^2} \sin(Kx) \, dx \right|
\]

\[
= \frac{1}{2\pi} \sup_{f \in F_1} \left| \int_{-\infty}^{\infty} \Im (Ff * F(x^2 e^{-x^2/2\rho^2}))(Kx) \right|
\]

\[
= \frac{1}{2\pi} \sup_{f \in F_1} \left| \int_{-\infty}^{\infty} \Im (Ff(x)) \rho^3 (1 - \rho^2 (K-u)^2) e^{-\rho^2 (K-u)^2/2} \, du \right|
\]

\[
= \frac{1}{2\pi} \rho^3 \sup_{u \in \mathbb{R}} \left\{ (1 + |u|)^{-s} \left| 1 - \rho^2 (K-u)^2 \right| e^{-\rho^2 (K-u)^2/2} \right\}
\]

\[
\asymp K^{-s}.
\]

Setting \(\varepsilon := \liminf_{n \to \infty} K^s_n \ell_s(\nu_{K_n,\sigma}, \nu_{0,\sigma})/2 > 0 \), we have thus shown

\[
\liminf_{n \to \infty} \sup_{\nu_{0,\sigma}} P_{b,\nu_{0,\sigma}} (K^s_n \ell_s(\tilde{\nu}_{\sigma,n}, \nu_{\sigma}) \geq \varepsilon) > 0.
\]

For \(\sigma = 0 \) (polynomial decay) this gives the desired lower bound \(K^{-s} = n^{-s/(2\beta)} \) for any \(\beta > 0 \) and for \(s \leq \beta \). For \(s > \beta \) a standard parametric argument shows that the minimax rate is never faster than \(n^{-1/2} \). For \(\sigma > 0 \) (Gaussian part) we obtain the lower bound \(K^{-s} = (\log(n))^{-s/2} \), which matches exactly the upper bound.

In the case (b), i.e. where \(|\varphi(u)| \geq Ce^{-|u|} \), we consider instead of (6.14)

\[
\varphi_0(u) = \varphi_T(u) \varphi_\alpha(u),
\]

where \(\varphi_\alpha \) is an infinitely divisible characteristic function with \(|\varphi(u)| \asymp e^{-\alpha|u|} \) such that the corresponding density function \(f_\alpha \) has faster exponential decay than \(f_0 \). For example, a tempered stable law (Cont and Tankov 2004, Prop. 4.2) with \(\nu(dx) = \alpha |x|^{-\lambda} e^{-|\lambda|x} \, dx \) and \(\lambda > 0 \) sufficiently large meets these requirements. The remaining steps of the proof are exactly the same, just replace \(e^{-\sigma u^2/2} \) by \(e^{-\alpha|u|} \).

\[
\square
\]

6.4. Proof of Proposition 5.1 Note first that \(\mathbb{E}_{b,\nu_{0,\sigma}} \left| \hat{b}_n - b \right|^2 = O(n^{-1}) \) follows directly from \(\mathbb{E}X_1^2 < \infty \).

To prove the result for the jump measure, we distinguish between two cases. We set \(\hat{\Psi}_n'(u) = \frac{\hat{\varphi}_n'(u)}{\hat{\varphi}_n(u)} \) and \(\hat{\Psi}_n''(u) = \frac{\hat{\varphi}_n''(u)}{\hat{\varphi}_n(u)} - (\hat{\varphi}_n'(u)/\hat{\varphi}_n(u))^2 \).

Case 1: \(|\varphi(u)| \geq 2\kappa n^{-1/2} \)
It follows from (6.6) and (6.7) that
\[
|\mathcal{F}_{\nu_{\sigma,n}}(u) - \mathcal{F}_{\nu_{\sigma}}(u)| \\
\leq \left\{ \left| \frac{\widehat{\varphi}'(u) - \varphi'(u)}{\varphi(u)} \right| |\widehat{\Psi}'(u)| + \left| \frac{\widehat{\varphi}'(u) - \varphi'(u)}{\varphi(u)} \right| |\widehat{\Psi}'(u) + \Psi'(u)| \right\} \mathbb{I}_{\{|\widehat{\varphi}(u)| < \kappa n^{-1/2}\}} \\
+ \left\{ \left| \frac{\widehat{\varphi}'(u) - \varphi'(u)}{\varphi(u)} \right| |\widehat{\Psi}''(u) + (\widehat{\Psi}'(u))^2| + \left| \frac{\widehat{\varphi}'(u) - \varphi'(u)}{\varphi(u)} \right| |\widehat{\Psi}''(u) - \Psi''(u)| \right\} \mathbb{I}_{\{|\widehat{\varphi}(u)| \geq \kappa n^{-1/2}\}} \\
= T_{n,1} + T_{n,2} + T_{n,3},
\]
say.

We obtain from the inequality
\[
\frac{1}{|\varphi(u)|} \mathbb{I}_{\{|\widehat{\varphi}(u)| \geq \kappa n^{-1/2}\}} \leq \frac{1}{|\varphi(u)|} + \frac{|\widehat{\varphi}'(u) - \varphi'(u)|}{\kappa n^{-1/2} |\varphi(u)|}
\]
that
\[
(6.17) \quad \mathbb{E} \left[|\widehat{\varphi}'(u)|^{-p} \mathbb{I}_{\{|\widehat{\varphi}(u)| \geq \kappa n^{-1/2}\}} \right] = O \left(|\varphi(u)|^{-p} \right)
\]
holds for all $p \in \mathbb{N}$. This implies, by $\widehat{\Psi}'(u) = (\widehat{\varphi}'(u) - \varphi'(u))/\widehat{\varphi}(u) + \Psi'(u)\varphi(u)/\widehat{\varphi}(u)$, that
\[
(6.18) \quad \mathbb{E} \left[|\widehat{\Psi}'(u)|^p \mathbb{I}_{\{|\widehat{\varphi}(u)| \geq \kappa n^{-1/2}\}} \right] = O \left((1 + |\Psi'(u)|)^p \right).
\]
Therefore, we obtain that
\[
(6.19) \quad \mathbb{E} T_{n,1} = O \left(\frac{n^{-1/2}}{|\varphi(u)|} (1 + |\Psi'(u)|)^2 \right).
\]
Since
\[
\widehat{\Psi}''(u) = \frac{\widehat{\varphi}''(u)}{\widehat{\varphi}(u)} - \left(\frac{\widehat{\varphi}'(u)}{\widehat{\varphi}(u)} \right)^2 \\
= \frac{\widehat{\varphi}''(u) - \varphi''(u)}{\widehat{\varphi}(u)} - \left(\Psi''(u) + (\Psi'(u))^2 \right) \frac{\varphi(u)}{\widehat{\varphi}(u)} - \left(\widehat{\Psi}'(u) \right)^2
\]
we obtain, in conjunction with (6.17) and (6.18), that
\[
\mathbb{E} \left[|\widehat{\Psi}''(u)|^2 \mathbb{I}_{\{|\widehat{\varphi}(u)| \geq \kappa n^{-1/2}\}} \right] = O \left((1 + |\Psi'(u)|)^2 \right).
\]
We conclude that
\[
(6.20) \quad \mathbb{E} T_{n,2} = O \left(\frac{n^{-1/2}}{|\varphi(u)|} (1 + |\Psi'(u)|)^2 \right).
\]
Finally, it follows from Hoeffding’s inequality for bounded random variables that
\[
P \left(\frac{1}{\kappa n^{-1/2}} \right) \leq P \left(\frac{|\widehat{\varphi}(u) - \varphi(u)|}{|\varphi(u)| - \kappa n^{-1/2}} \right) \\
\leq P \left(\frac{|\widehat{\varphi}(u) - \varphi(u)|}{|\varphi(u)|/2} \right) \\
\leq \exp(-c n |\varphi(u)|^2),
\]
for some $c > 0$. This yields that $P(|\tilde{\varphi}_n(u)| < \kappa n^{-1/2}) = O(n^{-1/2} |\varphi(u)|^{-1})$, and therefore

\begin{equation}
\mathbb{E}T_{n, 3} = O\left(\frac{n^{-1/2}}{|\varphi(u)|}\right).
\end{equation}

Equations (6.16), (6.19), (6.20), and (6.21) yield the desired bound in the case $|\varphi(u)| \geq 2\kappa n^{-1/2}$.

Case 2: $|\varphi(u)| < 2\kappa n^{-1/2}$

In contrast to Case 1, this time we use the following decomposition:

\begin{equation}
|\mathcal{F}\tilde{\nu}_{\sigma,n}(u) - \mathcal{F}\nu_{\sigma}(u)| \\
\leq \left\{ \left| \frac{\tilde{\varphi}_n(u) - \varphi(u)}{\tilde{\varphi}_n(u)} \right| |\Psi'(u)| + \left| \frac{\tilde{\varphi}_n(u) - \varphi(u)}{\tilde{\varphi}_n(u)} \right| |\Psi'(u) + \tilde{\Psi}'_n(u)| \mathbb{I}_{|\tilde{\varphi}_n(u)| \geq \kappa n^{-1/2}} \right\} \\
+ \left\{ \left| \frac{\tilde{\varphi}_n(u) - \varphi(u)}{\tilde{\varphi}_n(u)} \right| |\Psi''(u) + (\Psi'(u))^2| + \left| \frac{\tilde{\varphi}_n(u) - \varphi''(u)}{\tilde{\varphi}_n(u)} \right| \right\} \mathbb{I}_{|\tilde{\varphi}_n(u)| \geq \kappa n^{-1/2}}.
\end{equation}

Taking into account that Ψ'' is bounded and using again (6.18) as well as the trivial estimate $|\mathcal{F}\nu_{\sigma}(u)| \leq \nu_{\sigma}(\mathbb{R}) < \infty$ we obtain that

\[\mathbb{E} |\mathcal{F}\tilde{\nu}_{\sigma,n}(u) - \mathcal{F}\nu_{\sigma}(u)| = O\left((1 + |\Psi'(u)|)^2\right), \]

as required.

\[\square \]

Acknowledgment. We thank Peter Tankov for the idea how to prove Lemma 6.1 and Shota Gugushvili for useful discussions and hints.

References

Basawa, I. V. and Brockwell, P. J. (1982). Non-parametric estimation for non-decreasing Lévy processes, *J. R. Statist. Soc. B* 44(2), 262–269.

Belomestny, D. and Reiss, M. (2006). Spectral calibration of exponential Lévy models. *Finance Stoch.* 10, 449–474.

Cont, R. and Tankov, P. (2004). *Financial Modelling with Jump Processes*. Chapman and Hall, Boca Raton.

Chung, K. L. (1974). *A Course in Probability Theory*. 2nd ed. Academic Press, San Diego.

Csörgő, S. and Totik, V. (1983). On how long interval is the empirical characteristic function uniformly consistent. *Acta Sci. Math. (Szeged)* 45, 141–149.

Dudley, R. M. (1989). *Real Analysis and Probability*. Wadsworth, Belmont.

Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. *Ann. Statist.* 19, 1257–1272.

Feuerverger, A. and McDunnough, P. (1981a). On the efficiency of empirical characteristic function procedures. *J. Royal Statist. Soc., Ser. B* 43, 20–27.

Feuerverger, A. and McDunnough, P. (1981b). On some Fourier methods for inference. *J. Amer. Statist. Assoc.* 76, 379–387.

Figueroa-López, J. and Houdré, C. (2006). Risk bounds for the nonparametric estimation of Lévy processes in *High Dimensional Probability*, IMS Lecture Notes 51, 96–116.
Gnedenko, B. V. and Kolmogorov, A. N. (1968). *Limit Distributions for Sums of Independent Random Variables*. 2nd ed. Addison-Wesley, Reading.

Goldenshluger, A. and Pereverzev, S. V. (2003). On adaptive inverse estimation of linear functionals in Hilbert scales. *Bernoulli* 9(5), 783–807.

Gugushvili, S. (2007). Decompounding under Gaussian noise. *Math Archive arXiv:0711.0719v1*.

Hall, P. and Yao, Q. (2003). Inference in components of variance models with low replication. *Ann. Statist.* 31, 414–441.

Jacod, J. and Shiryaev, A. (2002). *Limit Theorems for Stochastic Processes*. 2nd Edition. Grundlehren Vol. 288, Springer, Berlin.

Jongbloed, G., van der Meulen, F.H. and van der Vaart, A.W. (2005). Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes. *Bernoulli* 11(5), 759–791.

Katznelson, Y. (1976). *An Introduction to Harmonic Analysis*, 2nd Edition, Dover, New York.

Kolmogorov, A.N. (1932). Sulla formula generale di un processo stochastico omogeneo (Un problema di Bruno de Finetti) (*in Italian*), *Rendiconti della R. Accademia Nazionale dei Lincei (Ser. VI)* 15, 866–869.

Korostelev, A.P. and Tsybakov, A.B. (1993). *Minimax Theory of Image Reconstruction*. Lecture Notes in Statistics 82, Springer, New York.

Küchler, U. and Tappe, S. (2008). On the shapes of bilateral Gamma densities, *Stat. Proba. Letters*, to appear.

Mainardi, F. and Rogosin, S. (2006). The origin of infinitely-divisible distributions: from de Finetti’s problem to Lévy-Khinchine formula, *Mathematical Methods in Economics and Finance* 1, 37–55.

Nishiyama, Y. (2007). Nonparametric estimation and testing time-homogeneity for processes with independent increments. *Stoch. Proc. Appl.*, to appear.

van Es, B., Gugushvili, S. and Spreij, P. (2007). A kernel-type nonparametric density estimator for decompounding. *Bernoulli* 13, 672–694.

Van der Vaart, A. (1998). *Asymptotic Statistics*. Cambridge University Press, Cambridge.

Watteel, R. N. and Kulperger, R. J. (2003). Nonparametric estimation of the canonical measure for infinitely divisible distributions. *J. Stat. Comput Simul.* 73, 525–542.

Yukich, J. E. (1985). Weak convergence of the empirical characteristic function. *Proc. Amer. Math. Soc.* 95(3), 470–473.