Mapping *Drosophila* insulin receptor structure to the regulation of aging through analysis of amino acid substitutions

Rochele Yamamoto ¹, Michael Palmer ¹,², Helen Koski ¹, Noelle Curtis-Joseph ¹, Marc Tatar ¹

¹Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA

² Current address: C4 Therapeutics, Watertown, MA, USA

Correspondence to:
Marc Tatar
Email: Marc_Tatar@Brown.edu

Running Title: Mapping InR structure to aging in *Drosophila*

Key words: insulin receptor, longevity, reproduction, *Drosophila*, transphosphorylation, kinase insert domain
ABSTRACT
Genetic manipulations of the *Drosophila* insulin/IGF signaling system slow aging, but it remains unknown how the insulin/IGF receptor acts to modulate lifespan or differentiate this control from that of growth, reproduction and metabolism. With homologous recombination we produced an allelic series of single amino acid substitutions in the fly insulin receptor (InR). Based on emerging biochemical and structural data, we map amino acid substitutions to receptor function to longevity and fecundity. We propose InR mutants generate bias in the process of asymmetric transphosphorylation when the receptor is activated. This induces specific kinase subdomains that modulate lifespan by additive processes, one involving survival costs of reproduction and the other involving reproduction-independent systems of longevity assurance. We identify a mutant in the kinase insert domain that robustly extends lifespan without affecting growth or reproduction, suggesting this element controls aging through unique mechanisms of longevity assurance.
INTRODUCTION

Analysis of insulin-like signaling provides a powerful approach to study aging. Early work extended lifespan through mutations of the insulin-like receptors *C. elegans daf-2* and *Drosophila InR* (1-3). The homology of these receptors to human insulin receptor (IR) and insulin growth factor-1 receptor (IGF1R) encouraged we could address human aging if we understood how they extend lifespan (4, 5). Progress has been simultaneously impressive and frustrated. Studies identified many downstream outputs of insulin/IGF receptors to mediate aging, including transduction pathways, transcription factors, interactions with TOR, and post-translational regulation of cellular metabolism (6-12). These outputs modulate cellular mechanisms of homeostasis including autophagy, mitochondrial uncoupling, reactive oxygen species, genomic stability, collagen remodeling, lipogenesis and AMP kinase (13-24). Work with invertebrates uncovered how insulin/IGF signaling controls aging within cells and tissues as well as non-autonomously across tissues (25-28). Altered insulin/IGF likewise effects aging in mammals. With some variation in outcome, knockdown of IR, IGF1R and insulin receptor substrates (IRS1, IRS2) is associated with extended mouse lifespan and reduced functional aging (29-33). In humans, polymorphisms of IGF1R and the transcription factor FOXO3A are associated with successful aging and exceptional lifespan (34-36). Overall, insulin/IGF signaling integrates cells, tissue and physiology to control adult survival and lifespan.

The breadth of insulin/IGF function, however, also challenges our ability to understand how it affects aging (37-40). Insulin/IGF signaling simultaneously regulates many traits including growth, metabolism, cell proliferation, differentiation, Dauer/diapause, and reproduction. Furthermore, these traits are mediated by a single insulin-like receptor in *C elegans* and *Drosophila* while these invertebrates produce many insulin-like ligands (41-43). The insulin-like receptor is a molecular switch-board taking many incoming calls and routing each to distinct signaling destinations. Broadly, understanding such pleiotropy is a longstanding problem in receptor tyrosine kinase biology (44, 45). For instance, how does mammalian IR and IGFR differentially control metabolism relative to growth (46, 47), how does the fibroblast growth factor receptor (FGFR) modulate mitogenesis relative to glucose homeostasis (48), or how does the c-Kit receptor differentially activate progenitors of hematopoietic cells relative to mast cells (49)?
One approach to this problem studies insulin/IGF receptor amino acid variants in cultured cells, in polymorphic or mutant animals, and even in humans with inherited insulin and IGF resistance (50-54). Insight is developed by relating the amino acid substitutions to knowledge of receptor structure. This strategy was illustrated by work with *C. elegans daf-2* (55, 56). About two dozen *daf-2* variants extend lifespan, and variously also effect Dauer, fertility, and growth. Classes of these traits were defined by where substitutions fell in the ectodomain relative to the kinase domain, but understanding how the substitutions control outcomes was limited by the known structural data of the time.

Structural analysis has advanced in recent years and we can now productively apply this approach with *Drosophila*. The *Drosophila* insulin-like receptor was initially identified in the lab of Rosen (57). Subsequently, EMS mutants screened over a deficiency produced alleles that were viable as trans-heterozygotes (58-60). Sequencing of the cytoplasmic portion of several alleles identified substitutions in the kinase domain (42). These genotypes variously reduced cell growth, fecundity and receptor kinase activity (42, 60). In early work with this receptor, aging was slowed by one EMS-generated mutant (*InR^{E19}*) when heterozygous over a P-element insertion allele (5). Here, we characterize how other, archival single amino acid *InR* EMS mutants effect aging using the method of Quantitative Complementation Testing (61, 62). We validate and extend these results by independently generating the putative substitutions of the *InR* EMS alleles through homologous recombination gene replacement and evaluate lifespan, growth, development rate and fecundity. Finally, recent advances provide remarkable insights into the structure of activated human insulin receptors (63, 64). We combine these data with our genetic analysis to generate new ways to understand how the insulin-like receptor modulates aging.

We will propose four interpretations. 1) *Drosophila* InR mediates aging in two independent ways. One effects reproduction that carries associated adult survival costs, the other effects mechanisms of longevity assurance independent of reproduction. These outcomes may explain why a variety of longevity-extending manipulations reduce reproduction, but others do not: they impact different programs regulated by insulin/IGF signaling. 2) Reducing the *quantity* of insulin receptors has little effect on aging. Longevity mutants of the insulin receptor simultaneously change the *intensity and quality* of signaling. 3) The genetic effects of *InR* alleles may be understood through the model of tyrosine kinase receptor activation by asymmetric
transphosphorylation (45, 64). In wildtype homodimeric receptors the direction of asymmetry is random. We propose particular InR mutants bias asymmetry whereby only the protomer from one allele of the InR heterodimer can be activated. In mutant heterozygotes, aging is slowed when the activated protomer carries an appropriate mutation. 4) Some mutants slow aging by altering the receptor’s specificity for substrate adaptor proteins. We identify a dominant substitution in the kinase insert domain that robustly increases lifespan yet paradoxically produces normal growth and robust fecundity in the lab setting. We hypothesize the kinase insert domain modulates a unique SH2 binding site that regulates mechanisms of longevity assurance that are independent of reproduction.

RESULTS

Demographic quantitative complementation

We used Quantitative Complementation Testing (QTC) to screen InR EMS-alleles (Frasch series) for their ability to slow aging. QTC measures allelic effects as the phenotypic difference of a tested allele complemented to a standard hypomorph or deficiency relative to when complemented to a standard wildtype allele (61, 62, 65-67). Figure 1 illustrates mortality for several InR alleles when complemented to InRE19 relative to TM3, InR+ Sb (Fig. 1, Table S1). Mortality rate increases exponentially for all cohorts after the ‘left-hand boundary’ (68). The natural wildtype InRNC442 is tested in each block \(i\) of demographic analysis to control for period effects (Table S2). Figure 1G, H (Block 3) illustrates modestly reduced mortality (\(\beta < 0\)) for InRNC442/ InRE19 relative to InRNC442/TM3, InR+ Sb – a pattern observed in all blocks. In contrast, mortality coefficients for EMS alleles ranged from -1.80 to 1.64 (block adjusted \(\beta^\text{adj}\)) (Table S1).

To infer when an allele slows aging, we asked when does an EMS allele effect mortality more than expected relative to segregating variation among a sample of wildtype alleles? Accordingly, we applied QCT to a collection of 18 wildtype InR alleles extracted from a natural population (NC series) and evaluated each EMS mutant relative to this distribution (\(z\)-test) (Table S1). Mortality coefficients for five EMS InR mutants did not significantly differ from wildtype alleles. One EMS mutant (InR327) increased mortally. InR74 and InR211 significantly reduced mortality in males and females. The InR353 allele reduced female mortality but this difference did not reach significance relative to the wildtype distribution. The transformation \(\exp |\beta^\text{adj}_i|\) estimates fold change in mortality: InR74 and InR211 alleles reduced male and female mortality 2.6- to 6-fold, while InR353 reduced female mortality about 2-fold (Fig 2A, B).
Figure 1. Mortality of EMS-generated and wildtype InR alleles in Quantitative Complementation Test. Log mortality rate derived from observed age-specific mortality (q_x), $\ln \mu_x = \ln(-\ln(1-q_x))$. Block 3 data; InR^{allele}/InR^{E19} (solid line), $InR^{allele}/TM3$, $InR^+ Sb$ (dashed line). Initial cohort size (N_0) of genotypes combined. A, B) InR^{211}: males ($N_0 = 484$, $\beta = -1.65$, s.e. = 0.11); females ($N_0 = 712$, $\beta = -1.82$, s.e. = 0.10). C, D) InR^{74}: males ($N_0 = 337$, $\beta = -0.98$, s.e. = 0.12); females ($N_0 = 442$, $\beta = -1.68$, s.e. = 0.13). E, F) InR^{353}: males ($N_0 = 394$, $\beta = -0.99$, s.e. = 0.11); females ($N_0 = 560$, $\beta = -1.42$, s.e. = 0.099). G, H) NC442 third chromosome (wildtype InR): males ($N_0 = 443$, $\beta = -0.504$, s.e. = 0.099); females ($N_0 = 571$, $\beta = -0.97$, s.e. = 0.11). Cox proportional hazard analysis used to estimate mortality coefficient β for each allele as InR^{allele}/InR^{E19} relative to allele/TM3 $InR^+ Sb$. $\beta < 1.0$ indicates InR^{allele}/InR^{E19} has reduced mortality, $p < 0.0001$ in A-H (survival statistics in Table S1).
Body size quantitative complementation

To describe the allelic effects on body size, we quantified the ratio of each EMS allele complemented to InRE19 relative to TM3, InRSB. All EMS InR alleles significantly reduced body size (female), with relative effects ranging from 0.9 to less than 0.75. (Fig 2C). Among the EMS InR alleles, relative body size does not associate with proportional change in mortality (Fig 2D).

Homologous recombination alleles

Quantitative Complementation Testing has limitations: it only measures recessive allelic effects; it confounds epistatic interactions from cosegregating second site mutations; alleles are not derived from the same wildtype InR or background and may contain unrecognized polymorphisms; and allelic effects are relative rather than absolute and in each case these relative measures include deleterious effects of the TM3 haplotype.

To resolve these issues we generated new, single amino acid substitutions from a common InR in a universal background, focusing on alleles that potentially slowed aging in QTC, or in one case an allele that did not reduce mortality but produced small adults (InR246). We used published and unpublished data on the putative substitution sites (Fig 3, S1) to produce new alleles with single amino acid substitutions by ends out homologous recombination, designated as InRE19(HR), InR74(HR), InR211(HR), InR246(HR), and InR353(HR), along with a wildtype control (InR+(HR)), a double mutant allele (InRE19;74(HR)), and a null InR allele (InRnull(HR)).

Except for the allele InRE19(HR) which resides in the Fibronectin III-1 ectodomain, the remaining substitutions are located in the intracellular kinase domain (Fig 3).

We evaluated viability, eclosion time, and adult size for all allele combinations (Fig 4A, B, Fig S2). InR+(HR) complemented every mutant to produce normal phenotypes, while all mutants were homozygous lethal except for some escapes in InRE19(HR)/InRE19(HR). All kinase domain mutants complemented InRE19(HR), albeit with some delay in development. Several kinase domain mutants were viable as transheterozygotes: InR74(HR)/InR353(HR) and InR211(HR)/InR246(HR).

Adult size was reduced in all viable mutant genotypes, except InR+(HR)/InR253(HR) which were as large as wildtype.

Demography of hemizygote InR+(HR)/InRnull(HR)
Figure 2. Traits from Quantitative Complementation Test of *InR* among EMS mutant and wildtype accessions. A) Males, B) Females; distribution of proportional hazard (fold risk of mortality) for nine EMS mutants (red bars) and 18 wildtype (NC series) accessions (black bars); estimated as exp(|β|). Labeled *InR* alleles have difference relative to distribution of wildtype hazard (Table S1). C) Distribution of relative body size (head capsule width) among mutant (red) and wildtype (black) females. All mutants smaller than the expected distribution of wildtype, *z*-test each allele, *p* < 0.0007. D) Absence of correlation between relative female mortality (*β*) and relative body size among *InR* alleles assessed in QCT (*r^2* = 0.08, *p* = 0.85).
Figure 3. Sites, nomenclature and structure site of InR alleles generated by homologous recombination. Amino acids numbered from the translation initiation site of wDah progenitor InR wildtype used in homologous recombination (GenBank accession MT_563159; Supplemental Figs S1-3). This TIS is 45 additional N-terminal amino acids from the TIS reported in the Fernandez (59). Human insulin receptor sequence is numbered following nomenclature of the Human Genome Variation Society (HGVS; http://www.hgvs.org/rec.html) and based on the mature, long-form type IR cDNA (105). The human IGF1R amino acid sequence is based on NCBI Reference Sequence: NP_000866.1. KD: kinase domain. FnIII: extra-cellular fibronectin domain III. Ribbon model of kinase domain (based on hIR), indicating conserved sites of amino acid substitutions (red). N-terminal lobe: green; C-terminal lobe: grey; kinase insert domain: magenta; Tyrosine residues of the activation loop: yellow.

InR^(HR) allele	Mutation (InR in wDah)	Drosophila ^{InR} (Fernandez)	human IR equivalent (HGVS)	human IR equivalent (mature, long)	human IGFR equivalent	Domain	
E19	GTC/GAC	Val810Asp	Val765	Phe502	Phe475	Phe495	FnIII-1
74	ATC/TTC	Ile1543Phe	Ile1498	Ile1184	Ile1157	Ile1150	KD activation loop
211	GGA/AGA	Gly1598Arg	Gly1553	Gly1239	Gly1212	Gly1215	KD C-terminal lobe
246	GTG/ATG	Val1384Met	Val1339	Val1037	Val1010	Val1013	KD N-terminal lobe
353	CGT/TGT	Arg1466Cys	Arg1421	Arg1119	Arg1092	Arg1195	kinase insert

InR²⁴⁶ Val1384

InR⁷⁴ Ile1543

InR³⁵³ Arg1466

InR²¹¹ Gly1598
Insulin receptors are preformed dimers assembled with protomers from both alleles (Fig 4C). Homodimeric receptors of InR(HR) mutants appear to be nonfunctional because homozygotes of each mutant are inviable. Heterozygotes between two different mutants must produce functional heterodimers because these genotypes are viable, but these heterozygotes will also generate fewer functional dimers per cell. This raises the possibility that InR mutant heterozygotes extend longevity because their cells contain fewer functional receptors. To address this issue, we measured the survival of the hemizygote InR+(HR)/InRnull(HR). Hemizygotes produced 26% less InR mRNA and increased life expectancy between 2 to 4 days when assessed across replicate trials, but only significantly so in Trial 2 (Fig 5, Table S3). We use this 2 to 4-day difference as a benchmark to infer when an InR genotype extends longevity more than expected from quantitative loss of functional InR receptor dimers.

Demography of mutant InR(HR) alleles

The heterozygote InR(E19(HR))/InR+(HR) does not extend lifespan (Fig 6A): average median life expectancy among replicate accessions was 43.3 d, compared to 44 d for wildtype (Table S4). Likewise, the intracellular kinase domain alleles InR74(HR), InR211(HR) and InR246(HR) when complemented by InR+(HR) did not reduce mortality any more than InR hemizygotes (Fig 6B, 6C, Table S4). In contrast, in replicated trials with independent accessions, InR+/InR353(HR) increased life expectancy by 10 to 16d by decreasing mortality ~4-fold (Fig 6C, D) (Table S4).

In QTC, kinase domain alleles reduced mortality when complemented to InR(E19 relative to when complemented to TM3, InR+Sb. Here we estimate the absolute allelic effect of each substitution using the InR homologous recombination alleles. Across replicate trials, the genotypes InR74(HR)/InR(E19(HR) and InR211(HR)/InR(E19(HR)) extend lifespan 6-14 days (Fig 6E, F, Table S4). In a result not available from QTC, the heterozygote of kinase domain mutations InR74(HR)/InR211(HR) also extended lifespan (Fig 6E, F). In every case, longevity benefits exceeded that of wildtype hemizygotes (Table S4).

Because the trans-heterozygote InR(E19(HR) and InR74(HR) slows aging, we asked if these alleles could extend lifespan as a cis-double mutant, where both substitutions are on the same protomer. They do not: InR(E19,74(HR) had little effect on survival when heterozygous with wildtype InR+(HR) (Fig 6B). We likewise tested InR(E19,74(HR) when trans-heterozygous with InR211(HR), and here adults were long-lived but no more so than InR74(HR)/InR211(HR) (Fig 6E, Table
Figure 4. Characteristics of homologous recombination $InR^{(HR)}$ alleles. A) Development time (days to first eclosion), or stage of lethality for all allele combinations, reciprocal crosses. Lethality at first or second stage larvae (L), late pupae (P) or pharate adult (PA). ¶: $InR^{E19(HR)}/InR^{E19(HR)}$ produce few minute adults at 20 days, but otherwise pupal/pharate lethal. B) Adult size (thorax length, mm) of $InR^{(HR)}$ alleles across genotypes. Means, std. dev. and range shown, N=20 females each genotype. Means not connected by same letter are significantly different (one-way ANOVA, Tukey-Kramer HSD comparison, $p < 0.05$). C) InR genotypes produce combinations of constitutive dimers within expressing cells, with indicated ratios if protomers pair randomly. Wildtype homozygotes produce a full complement of functional dimers, while homozygote mutants generate (largely) nonfunctional (dead) dimers. In mutant/wildtype heterozygotes, homodimers are nonfunctional but their heterodimers are inferred to be functional, along with their wildtype homodimers. In mutant/$InR^{E19(HR)}$ heterozygotes, only heterodimeric receptors are viable. Viable trans-heterozygotes (mutant-x/wildtype) must produce viable heterodimers. The double mutant $InR^{cis-74(HR),E19(HR)}$ when heterozygote with wildtype is inferred to produce functional heterodimers along with normal wildtype homodimers.
A)

	wildtype	E19(HR)	246(HR)	353(HR)	74(HR)	211(HR)
wildtype	10	10	10	10	10	10
E19(HR)	10	P/PA	11	13	15	14
246(HR)	10	12	L	P/PA	P/PA	P/PA
353(HR)	10	14	P/PA	L	13	P/PA
74(HR)	10	16	P/PA	13	L	13
211(HR)	10	14	P/PA	P/PA	13	P/PA

B)

Thorax length (mm)

C)

- **wildtype/wildtype**: 1/1 viable
- **mutant-x/wildtype**: 1/4 viable, 1/2 viable, 1/4 viable
- **mutant-x/E19**: 1/4 viable, 1/2 viable, 1/4 viable
- **mutant-x/mutant-x**: 1/1 dead
- **mutant-x/mutant-y**: 1/4 viable, 1/2 viable, 1/4 viable
- **mutant-74-E19/wildtype**: 1/4 viable, 1/2 viable, 1/4 viable
Figure 5. Impact of InR hemizygosity upon adult survival. A) Trial 1. Two hemizygote genotypes using one InR-null (HR), and wildtypes InR+ (HR) and wDah (InR*Dah), compared to four homozygous wildtype genotypes generated from reciprocal, pairwise combinations of wildtype alleles. Triangles mark among cohort average of median lifespan within genotypic class, with standard deviation (bars). Hemizygotes are 2 days longer lived (among genotype-class median survival); derives from lower proportional hazard mortality of hemizygote ($\beta = -0.14$, likelihood ratio genotype class $\chi^2 = 36.4$, $p < 0.0001$, DF = 1, $N_0 = 2126$). B) Trial 2. Four hemizygote genotypes (combinations of two null and three wildtype) compared to seven homozygous wildtype (combinations of three wildtypes). Plotted: genotype-class survival with standard deviation. Hemizygotes are 4 days longer lived (among genotype-class median survival); derives from lower proportional hazard mortality of hemizygote ($\beta = -0.25$, likelihood ratio genotype class $\chi^2 = 275.1$, $p < 0.0001$, DF = 1, $N_0 = 5002$).
Among these mutant alleles, longevity is only extended when substitutions occur on opposing protomers.

In QCT, the InR246 allele did not slow aging more than expected relative to a sample of wildtype alleles, although it did reduce body size. We confirm these observations with InR$^{246(HR)}/$InR$^{E19(HR)}$: adults are small (Fig 4) but not long-lived (Fig 6G, H). We note, however, the survival curve of InR$^{246(HR)}/$InR$^{E19(HR)}$ crosses over that of wildtype, suggesting the mutant cohort has high age-independent mortality potentially coupled with reduced demographic aging.

As noted, InR$^{-}(HR)/$InR$^{353(HR)}$ extends lifespan relative to wildtype. Remarkably, InR$^{353(HR)}$ further slows aging when complemented with InR$^{E19(HR)}$ (14 to 15 days) and even more so when complemented with InR$^{74(HR)}$ (21 to 22 days from 6-fold decrease in mortality risk) (Fig 6G, H, Table S4).

Overall, the homologous recombination alleles validate inferences from QCT but now measured as absolute effects. We also describe a new heteroallelic genotype that extend lifespan, and document an exceptional longevity benefit conferred by InR$^{353(HR)}$ that was obscured in QCT because this allele is dominant.

Fecundity

Drosophila insulin signaling modulates fecundity, and survival is a well-known cost of reproduction (69). We therefore determined how the InR alleles effect egg production (Fig 7A, B). Wildtype, hemizygotes and InR$^{E19(HR)}/$InR$^{246(HR)}$ have similar egg production. Mutant heterozygotes reduce fecundity. In contrast, InR$^{-}(HR)/$InR$^{353(HR)}$ females produce more eggs than wildtype. This exceptional fecundity could arise because these females have more ovarioles or produce more eggs per ovariole. Accordingly, we measured the number of ovarioles for all genotypes and regressed this trait against daily egg production. Fecundity associates with ovariole number, but ovarioles from genotypes with high fecundity also produces more eggs per ovariole. Accordingly, we measured the number of ovarioles for all genotypes and regressed this trait against daily egg production. Fecundity associates with ovariole number, but ovarioles from genotypes with high fecundity also produces more eggs per day because the observed slope < 1.0 implies fecundity increases faster than the number of ovarioles (Fig 7C). We therefore regressed lifespan against ovariole egg production (eggs/day/ovariole) across genotypes, treating the InR$^{353(HR)}$ allele as a covariate (Fig 7D). A striking pattern emerges: egg production per ovariole is negatively associated with life expectancy (although, N=8, $p = 0.06$), but independent of egg production, genotypes with one InR$^{353(HR)}$ allele have ~ 10 to 13 days greater life expectancy ($p = 0.013$). The InR$^{353(HR)}$ allele
Figure 6. Survival of homologous recombination InR alleles. Females. Plots represent independent trials except for contemporaneous data in 6B and 6E, and in 6C, 6F and 6G. Wildtype and null in all trials were homologous recombinant InRHR\textsubscript{29B} and InRnullHR\textsubscript{29B} respectively. A) Wildtype heterozygotes with three accessions of ectodomain InRE19HR. B) Wildtype heterozygotes with mutants of the kinase domain A-loop and C-terminal lobe. C) Wildtype heterozygote and hemizygote with mutants of kinase domain N-terminal lobe, A-loop, KID and C-terminal lobe. D) Wildtype heterozygotes with the InR353HR mutant of the kinase domain KID, three accessions. E) Heterozygote mutant genotypes with ectodomain InRE19HR and kinase domain mutants InR74HR and InR211HR. F) Heterozygote mutant genotypes with ectodomain InRE19HR and kinase domain mutants InR74HR and InR211HR (independent trial). G) Heterozygote mutant genotypes with ectodomain InRE19HR, A-loop InR74HR, N-terminal lobe InR246HR and KID InR353HR. H) Heterozygote mutant genotypes with ectodomain InRE19HR, A-loop InR74HR, N-terminal lobe InR246HR and KID InR353HR (independent trial). Lifetable summaries and proportional hazard statistics in Supplemental Table S4.
confers an additive effect upon longevity assurance that is independent of reproductive trade-offs.

DISCUSSION

The impact of InR on longevity was originally studied with EMS-generated alleles heterozygous with a p-element InR mutant (3, 59). In particular, $\text{InR}^{E19}/\text{P}\{\text{PZ}\}\text{InR}^{05545}$ extended lifespan and this genotype reduced InR tyrosine kinase activity (3). InR mutants are generally said to slow aging because they diminish insulin signaling, but this explanation is incomplete because many InR mutants reduce growth and reproduction without benefits to survival (3). Rather, InR may regulate aging through signals that are distinct from how it effects other traits. Here we explore this idea based on how *Drosophila* InR alleles impact aging, growth and reproduction.

Alleles in the quantitative complementation test

We used quantitative complementation testing (QCT) to identify EMS InR mutants that reduced adult mortality. Among alleles complemented to InR^{E19} relative to TM3, InR^{+}Sb, three alleles reduced relative mortality more than expected from a sample of naturally occurring wildtype alleles. We followed the same approach to quantify how mutant alleles effect growth. Every allele significantly reduced adult size, and there was no association between relative size and relative mortality among genotypes.

QCT has caveats (62, 67). Our archival InR mutants were not generated on a common third chromosome. Unknown second site mutations could affect traits we attribute to InR and we cannot rule out the impact of epistatic loci that segregate with InR$^+$ upon the TM3Sb balancer chromosome. We only estimate recessive effects of the mutants as they complement InR^{E19} relative to when complement TM3, InR^+Sb. We cannot evaluate other mutant heterozygote combinations. The causal substitutions within InR were not actually known, and unknown polymorphisms within each InR locus might exist in the stocks. Finally, QCT measures relative rather than absolute allelic effects, and the balancer haplotype itself appears to be somewhat deleterious.

To address these issues, we reconstituted the putative InR substitutions using ends-out homologous recombination. These *de novo* alleles provide new, well-defined substitutions derived from a common wildtype progenitor in a controlled genetic background. We produced four homologous recombination (HR) alleles of the Frasch series ($\text{InR}^{74(\text{HR})}$, $\text{InR}^{211(\text{HR})}$, ...
Figure 7. Fecundity, ovarioles and visual model. A) Among female mean eggs laid from eclosion through age 15d for mutant heterozygotes, wildtype and hemizygote. B) Average daily fecundity. Eggs per day averaged over 16 days. ANOVA with Tukey HSD post hoc analysis: genotypes with the same letter show no significant difference in average egg production. C) Regression of mean ovariole number (total from both ovarioles) upon average fecundity among genotypes. Least squares linear regression: $R^2 = 0.85$, $m = 0.27 < 1.0$, $F = 34.1$, $p < 0.001$. D) Relationship between lifespan and rate of ovariole egg production among genotypes treating InR353 as a covariate. Average median lifespan is the average of median lifespans observed for each genotype among all its independent cohorts and accessions. Eggs/day/ovariole is estimated from average daily fecundity/mean ovariole number of each genotype. Parameters by ANCOVA: $\beta_{(\text{fecundity/ovariole})} = -9.15$, $t = -2.58$, $p = 0.061$; $\beta_{(\text{InR353})} = 6.23$, $t = 4.25$, $p = 0.013$; $\beta_{(\text{fecundity/ovariole } \times \text{InR353})} = 1.01$, $t = 0.28$, $p = 0.79$. E) Model for biased asymmetry modulates aging through InR domain specific function. Wildtype protomers (blue) each have the potential to asymmetrically act as either enzyme or substrate, activating catalysis by either tyrosine kinase (TK), producing wildtype phenotypes through the activation of just one TK. Protomers with mutation in tyrosine kinase activity (green) can act as substrate or enzyme protomers; when heterozygous with a wildtype protomer, enough dimers produce wildtype TK activation for normal phenotypes. The $\text{InR}^{E19(HR)}$ protomer (grey) can only act as enzyme and transphosphorylate its partner protomer (biased asymmetry). When this is a wildtype protomer, the TK is active and phenotypes are normal. When the partner protomer has a hypomorphic mutation in the TK, this mutant TK reduces growth and reproduction, relieving survival costs of reproduction (COR) to extend lifespan. The 353 protomer only acts as substrate (biased asymmetry) but retains normal TK catalytic activity when transphosphorylated, and thus normal growth and reproduction. The protomer alters its kinase insert domain (KID) function, which induces a program of longevity assurance independent of reproduction.
Mean eggs per female/day

Age (d)

+/-

+ /InR null (HR)

+ /InR 353 (HR)

+ /InR 246 (HR)

+ /InR 211 (HR)

+ /InR 74 (HR)

Eggs/day/ovariole

Average median lifespan (d)

Avg. fecundity

Tukey HSD

Genotype

+ /InR 353 (HR)

61.9 a

+ /+ TK Mutant/E19

38.9 b

+ /InR null (HR)

46.6 b

InR E19 (HR) / InR 246 (HR)

38.1 b

InR 211 (HR) / InR 74 (HR)

29.9 c

InR 353 (HR) / InR 211 (HR)

20.1 cd

InR E19 (HR) / InR 74 (HR)

11.5 ed

+ /353 TK active KID altered

2.0 e

Biased asymmetry

Either wildtype TK active

Wildtype TK active

Wildtype TK active

Mutant TK hypoactive

353 TK active KID altered

Normal: growth, fecundity, COR

Reduced: growth, fecundity, COR

Activated longevity assurance
InR^{246(HR)}, InR^{353(HR)}, an InR^{E19(HR)}, an HR-derived wildtype allele, a null allele, and double mutant with the E19 and 74 substitutions upon the same receptor protomer (InR^{E19,74(HR)}). Our first question with these new alleles was, how does the quantity of InR affect aging?

InR gene dosage in longevity assurance

InR, like human IR and IGFR, is a symmetric dimeric transmembrane receptor. Flies with two wildtype alleles generate two normal protomers and all dimeric receptors are potentially functional. Heterozygotes, on the other hand, may produce fewer viable receptors within each cell – mutant-mutant and mutant-wildtype dimers may not be functional. In insulin resistant humans with one mutant IR allele, mutant-wildtype and mutant-mutant dimers are reported to lack tyrosine kinase activity in cell-based assays; patients survive with limited wildtype-wildtype dimers (70). Accordingly, we tested whether *Drosophila* aging is slowed in InR heterozygotes because cells have less functional receptors. This does not seem to be the case for two reasons. First, we find compound heterozygotes (InR^{74(HR)}/InR^{211(HR)} and InR^{74(HR)}/InR^{353(HR)}) that are long-lived, despite the fact that each allele is homozygous lethal because their homodimer receptors are presumed to be nonfunctional. Second, the hemizygote InR^{+(HR)}/InR^{null(HR)} slows aging by only 2-4 days. To the extent hemizygotes have fewer wildtype functional InR within cells, loss of receptor quantity has little effect on longevity. These data provide a benchmark: genotypes that extend longevity more than a few days may alter the quality of receptor signaling, not just the number of wildtype-dimer receptors. We seek potential qualitative mechanisms by relating the structure of human IR to single amino acid substitutions engineered into *Drosophila* InR.

InR^{E19}: extracellular fibronectin domain

InR⁺/InR^{E19(HR)} produces normal phenotypes while InR^{E19(HR)}/InR^{E19(HR)} is lethal. InR^{E19(HR)} complemented with the alleles InR^{74(HR)}, InR^{353(HR)}, and InR^{211(HR)} is long-lived, yet InR^{E19(HR)} is not required to slow aging because some genotypes without this allele are also long-lived. How does InR^{E19(HR)} slow aging?

The InR^{E19} substitution Val810Asp occurs in a linker sequence between the L2 and FnIII-1 ectodomains, corresponding to Phe475 of human IR (Ebina) and to Phe495 of human IGF-1R (Figure 3, Suppl fig 3). Recent cryo-EM analyses show insulin induces a hinge motion in this linker to swing the fibronectin domains inward, bringing together the intracellular domains of each protomer (63, 71, 72). This proximity permits asymmetric kinase transphosphorylation, a
non-reciprocal process whereby the kinase domain of one protomer acts as enzyme to phosphorylate the opposing (substrate) activation loop (A-loop) (45, 64, 73). Phosphorylation of the substrate A-loop releases the catalytic potential of its corresponding kinase and the dimer has full function derived from activation of this one kinase domain.

We propose the *Drosophila* InR Val810Asp substitution disrupts L2-FnIII linker movement and destabilizes of the protomer’s intracellular position. This event biases the direction of asymmetric transphosphorylation. Thus, \(\text{InR}^+/\text{InR}^{E19\text{(HR)}}\) has wildtype traits because while the Val810Asp protomer loses its own capacity to be transactivated, it can still transphosphorylate the opposing, normal kinase domain and this is sufficient for full receptor function. \(\text{InR}^{E19\text{(HR)}}/\text{InR}^{E19\text{(HR)}}\) is lethal because no dimers are transactivated, although some viability might be restored at lower temperatures (3).

InR\(^{74\text{(HR)}}\): kinase domain activation loop

The activation loop (A-loop) of the *Drosophila* insulin/IGF-like receptor is nearly identical to that of human IR and IGF1R (74). This highly conserved loop begins with a DFG motif, followed by five amino acids (MTRDI), a seven amino acid sequence containing three tyrosines that participate in transphosphorylation (Ebina human IR: Tyr1158, Try1162, Tyr1163), and a final 13 residues (75). In unliganded receptors, the A-loop blocks the kinase catalytic cleft and the Mg-ATP binding site of its own protomer. Ligand binding induces A-loop transphosphorylation to alleviate this autoinhibition.

Drosophila \(\text{InR}^{74\text{(HR)}}\) is an Ile1543Phe substitution of the MTRDI motif, plus-one residue from Tyr1544 (human Tyr1158, Ebina). The MTRDI segment becomes structurally organized when the A-loop is transphosphorylated to provide a platform for substrate binding, and this structure could be destabilized by the Ile1543Phe substitution (76-78). Alternatively, Ile1543Phe may reduce the ability for Tyr1544 to be phosphorylated and thus diminish the domain’s catalytic activity (75, 79, 80).

Because \(\text{InR}^+/\text{InR}^{74\text{(HR)}}\) generates normal phenotypes, we predict the protomer with the Ile1543Phe substitution is still able to transactivate its complementing wildtype protomer. In heteroallelic \(\text{InR}^{E19\text{(HR)}}/\text{InR}^{74\text{(HR)}}\), the Val810Asp protomer from \(\text{InR}^{E19\text{(HR)}}\) cannot be activated, yet it transphosphorylates the protomer containing Ile1543Phe; the asymmetry of transphosphorylation is biased. Aging is slowed by the hypomorphic function of the sole activated protomer, all with Ile1543Phe kinase domains. To test this explanation, we produced a
double mutant where Val810Asp and Ile1543Phe are in same protomer (\(\text{InR}^{E19, \text{HR}}\)). \(\text{InR}^{E19, \text{HR}}\) is homozygous lethal, but \(\text{InR}^+/\text{InR}^{E19, \text{HR}}\) has normal phenotypes. These substitutions extend longevity only when they trans-complement, supporting our model whereby aging is slowed when Ile1543Phe resides in the transphosphorylated kinase domain.

\(\text{InR}^{246\text{HR}}\): kinase domain N-terminal lobe

\(\text{InR}^{246\text{HR}}/\text{InR}^{E19\text{HR}}\) delays development and produces small adults that otherwise have normal fecundity and life expectancy (although with a survival crossover). The \(\text{InR}^{246\text{HR}}\) allele is a Val1384Met substitution at the invariant ATP binding loop of the N-terminal lobe (IR Val1037, Ebina; IGFR Val1013, Fig S3) (77). Val1384Met will reduce the catalytic rate of the activated protomer (81, 82). The heterozygote \(\text{InR}^+/\text{InR}^{246\text{HR}}\) is normal because the wildtype protomer kinase is sufficient when activated, and the \(\text{InR}^{246\text{HR}}/\text{InR}^{246\text{HR}}\) is lethal because neither protomer provides enough catalytic activity. \(\text{InR}^{E19\text{HR}}/\text{InR}^{246\text{HR}}\) is viable but small, suggesting either that the protomer from \(\text{InR}^{E19\text{HR}}\) might act as a weak substrate, or the Val1384Met protomer produces enough catalytic activity to permit growth although with high age-independent adult mortality.

\(\text{InR}^{211\text{HR}}\): kinase domain C-terminal lobe

The \(\text{InR}^{211\text{HR}}\) allele is normal when heterozygous with wildtype, lethal as a homozygote and extends lifespan when heterozygous with \(\text{InR}^{E19}\). Unexpectedly, \(\text{InR}^{211\text{HR}}\) also complements \(\text{InR}^{74\text{HR}}\) to produce small, long-lived adults with low fecundity; their heterodimeric receptors must slow aging by altering the quality of signaling rather than by reducing the number of normal receptors.

The Gly1598Arg substitution of \(\text{InR}^{211\text{HR}}\) is in the C-terminal lobe of the kinase domain, at a conserved site with human IR (Gly1212 Ebina) and IGFR1 (Gly1215) These sites are three conserved residues from the site of the canonical *C. elegans* longevity allele *daf*-2(e1370), Pro1466Ser. We can gain insights on this segment from human the fibroblast growth factor receptor FGFR3 where the homologous C-terminal region stabilizes the asymmetric dimer interface required for transphosphorylation (64). *C. elegans* Pro1466 corresponds to P694 of FGFR3, and substitution to serine will disrupt a stabilizing hydrogen bond in this interface. The Drosophila G1598R substitution corresponds to G697 of FGFR3 and this change is likely to disrupt an interface hydrophobic pocket. Based on the FGFR3 structure, we propose that loss of stability at the dimer interface reduces the ability of the protomer with Gly1598Arg to act as the
enzyme in A-loop transphosphorylation, but maintains its capacity to be transactivated. Like \(InR^{E19(HR)}\), the biased asymmetry of \(InR^{211(HR)}\) may explain why the allele is normal over wildtype while it complements mutations on opposing protomers to extend lifespan.

\(InR^{353(HR)}\): kinase insert domain

The \(InR^{213(HR)}\) allele is exceptional. It is homozygous lethal, yet \(InR^+/InR^{353(HR)}\) extends lifespan with normal growth and elevated fecundity. \(InR^{213(HR)}\) combined with \(InR^{E19(HR)}\) and \(InR^{74(HR)}\) also produces long-lived, small adults with reduced fecundity.

Remarkably, the site of \(InR^{353(HR)}\), Arg1466, is described in human disease (42). Drosophila Arg1466 corresponds to IR Arg1092 (Ebina). Humans with one Arg1092Glu allele have mild insulin resistance, while homozygotes have retarded growth, low viability and severe insulin resistance (83). Chen et al. (64) recently described Arg1092 function in human insulin receptors. Arg1092 sits in the \(\alpha_D\) helix of the kinase insert domain (KID) (107). When the A-loop of the substrate protomer is transphosphorylated, Arg1092 on the enzyme-protomer forms a salt bridge with the substrate-protomer to stabilize the dimer in its active state. We therefore expect the disease substitution Arg1092Glu disrupts the salt bridge and inhibits substrate protomer kinase activation. However, the Arg1092Glu protomer itself can be transphosphorylated and serve as the substrate kinase. We surmise human heterozygotes are effectively haplo-insufficient while homozygotes produce no function IR.

The *Drosophila* kinase insert domain is identical to that of human IR at the first three residues (R1466/1092PE), and at the distal residues PPT (76, 84). The \(InR^{213(HR)}\) allele replaces the conserved arginine at 1466 with cysteine (Arg1466Cys). We propose this disrupts the dimer interface salt-bridge and produces biased asymmetry: the Arg1466Cys protomer becomes the default substrate kinase of InR heterodimers. Because \(InR^+/InR^{353(HR)}\) has normal growth and fecundity, we infer the Arg1466Cys protomer still retains kinase catalytic activity when transphosphorylated. Why then is \(InR^+/InR^{353(HR)}\) long-lived? Aside from biased asymmetry, we hypothesize Arg1466Cys also alters the function of the kinase insert domain so as to favor longevity assurance.

Relative to the kinase insert of human IR, the *Drosophila* KID contains 12 additional amino acids including a potential SH2 motif, Tyr(1477)-Leu-Asn. This motif occurs in mammalian IRS-2 where it specifies binding with Grb2 (85) and deletion of IRS-2 extends mouse lifespan (30, 86). *Drosophila* Chico likewise contains SH2 binding motifs for Grb/Drk
(Grb/Downstream-of-kinase), and a Y243A mutation of this Grb/Drk site extends lifespan (87, 88). Drosophila InR itself contains adaptor protein binding sites. The C-terminal tail has SH3-sites that recruit Dock to direct axon guidance, and SH2-sites that recruit Chico to regulate growth (89). At the InR N-terminal juxtamembrane domain, SH2B sites recruit Lnk to modulate interaction with Chico, and mutation of \(\text{lnk} \) extends lifespan (90-93). Based on these facts, we propose the Drosophila InR kinase insert domain likewise recruits Drosophila Grb/Drk, and Arg1466Cys impedes this interaction to induce longevity assurance.

Caveats

Some of our observations do not fit our interpretations. We predict the \(\text{InR}^{E19(\text{HR})} \) protomer can transphosphorylate its opposing protomer but not act as a substrate protomer (biased asymmetry), while the \(\text{InR}^{74(\text{HR})} \) protomer can act as enzyme or substrate. Thus, \(\text{InR}^{E19(\text{HR})}/\text{InR}^{74(\text{HR})} \) is long-lived, but we then expect \(\text{InR}^{74(\text{HR})}/\text{InR}^{74(\text{HR})} \) to transphosphorylate protomers and produce slow-aging adults. Yet, \(\text{InR}^{74(\text{HR})}/\text{InR}^{74(\text{HR})} \) is inviable. A second case involves \(\text{InR}^{E19(\text{HR})}/\text{InR}^{211(\text{HR})} \). We propose both protomers cause biased asymmetry, which implies neither can be transactivated. Yet this genotype is viable and long-lived. Finally, we argue \(\text{InR}^{353(\text{HR})} \) can only serve as a substrate protomer with normal kinase activity but with altered KID. This accounts for phenotypes of \(\text{InR}^{+/}\text{InR}^{353(\text{HR})} \) and \(\text{InR}^{E19(\text{HR})}/\text{InR}^{353(\text{HR})} \) but does not explain why \(\text{InR}^{74(\text{HR})}/\text{InR}^{353(\text{HR})} \) has even greater longevity. Overall, a more accurate model requires further biochemical and structural data.

Synthesis: Drosophila InR modulates aging through distinct structure-defined mechanisms

The phenotypes of \(\text{InR}^{+}/\text{InR}^{353(\text{HR})} \) present a paradox: adults are highly fecundity (and large) and yet long-lived. This positive trait association is seen in other cases involving C. elegans and Drosophila and challenges life-history theory that expects longevity to trade-off with reproduction (1, 56, 94, 95). Here we propose a mechanistic explanation: InR regulates survival in distinct, independent ways (Fig 7E).

The first involves reproductive costs (69). The alleles \(\text{InR}^{E19(\text{HR})}, \text{InR}^{74(\text{HR})}, \text{InR}^{211(\text{HR})}, \text{InR}^{246(\text{HR})} \) slow oogenesis, and previous work shows Drosophila longevity is increased when germline stem cell activity is suppressed (96). We propose these InR alleles quantitatively reduce germline proliferation and thus proportionally relieve survival costs-of-reproduction. This explanation is consistent with how life expectancy is negatively associated with per-ovariole oogenesis when the \(\text{InR}^{353(\text{HR})} \) allele is treated as a covariate. How these alleles might modulate
oogenesis is unknown but we propose they affect the level of kinase activity in ovarioles and secondarily reduce non-autonomous signals regulating survival-reproduction trade-offs.

The second mechanism confers longevity assurance independent of reproductive costs. We propose the kinase insert domain of InR\(^{353}\)(HR) recruits adaptor proteins that regulate longevity assurance – systems that increase robustness, homeostasis and survival. These effects are additive to effects of reproduction on survival. Thus, while InR\(^{+}\)(HR)/InR\(^{353}\)(HR) has elevated per-ovariole production and may suffer associated survival costs, the genotype gains \(\sim 13\) days of reproduction-independent longevity assurance to yield a net increase in lifespan. InR\(^{E19}\)(HR)/InR\(^{353}\)(HR) and InR\(^{211}\)(HR)/InR\(^{353}\)(HR) gain the same longevity assurance but now added to benefits from reduced survival costs-of-reproduction.

This hypothesis resonates with data on Drosophila chico. Like InR\(^{+}\)(HR)/InR\(^{353}\)(HR), Drosophila chico\(^{\text{wildtype}}\)/chico\(^{\text{null}}\) adults are large, fecund and long-lived (97-100). Chico contains phosphotyrosine binding sites for Grb2/Drk and p60 of the PI3K complex (87). Mutation to block Grb/Drk (Y\(^{243}\)) represses Ras-Erk signaling and extends fly lifespan without reducing growth or fertility (87, 88). This pathway mediates the ETS transcription factor Anterior-open (Aop). In a similar way, the C. elegans daf-2(sa223) allele is proposed to alter Ras signaling and is long-lived (55, 56).

We hypothesize the proposed SH2 motif Tyr(1477)-Leu-Asn of Drosophila KID facilitates binding of Grb2/Drk. We reason this SH2 binding event is repressed by Arg1466Cys of InR\(^{353}\)(HR). Reduced Grb2/Drk recruitment and activation slows aging by specific mechanisms of longevity assurance transduced by Ras, as does the Chico Y243 substitution. At the same time the InR\(^{353}\)(HR) protomer still activates PI3K-Akt-Foxo signaling to maintain growth and fecundity. Other InR mutant alleles, we propose, inhibit PI3K signaling; their substitutions reduce growth and fecundity, which extends lifespan by lessening survival costs-of-reproduction.

We suggest the longevity benefits of Ras-Erk-Aop and PI3K-Akt-Foxo regulate different cellular and physiological systems. The proposed KID-Grb2/Drk network controls longevity through mechanisms that do not involve costs-of-reproduction. Our data support emerging ideas (45, 89, 101, 102) where protein tyrosine receptors segregate phenotypes through the action of specific sites within particular structural domains.
METHODS

Quantitative complementation test

EMS mutant InR alleles

Lines with EMS-induced point mutations at InR generated on a ‘rutipa’ genetic background, balanced by TM3,Sb (provided in 1999 by M. Frasch, The Mount Sinai School of Medicine, ‘Frasch series’) (58, 59). We tested the ability of 17 mutant lines from this collection to produce viable adults when complemented to the EMS-induced mutant allele InRE19 provided by J. Jack (University of Connecticut School of Medicine, in 1999) (64). We previously reported (3) that the InRE19 allele recombined to a third chromosome marked with ri red e+ extends life span of males and females when complemented to the P-element allele InRP5545 (59). Nine alleles of the Frasch series produced viable adults when complemented to InRE19 ri red e+ (InR74, InR76, InR211, InR246, InR262, InR327, InR351, InR353, InR373). Each of these alleles and the InRE19 allele were crossed six generations into the inbred Samarkand I-236 (Sam) background using the stock Sam 1; Sam 2; TM3/TM6B (provided in 1999 by T. Mackay, North Carolina State University).

Wildtype InRNC alleles

Third chromosome extraction lines were derived from wildtype females caught at the Raleigh’s Farmer’s Market in 1999 (provided by T. Mackay, North Carolina State University) (103). Gravid females were crossed to males of Sam 1; Sam 2; TM3/TM6B and backcrossed to extract third chromosomes balanced by TM3 in the Samarkand background. Eighteen lines from this collection formed a sample of wildtype InR alleles (the InRNC series); in addition, InRNC442 was used in each block of demographic analysis to provide a common strain to normalize survival data across test periods.

Genotypes for Quantitative Complementation Analysis

We made reciprocal crosses between every InREMS/TM3 and InRNC/TM3 with InRE19/TM3 to produce F\textsubscript{1} genotypes. Offspring of reciprocal crosses were pooled for phenotype analyses. In complementation analysis, phenotypes of every InREMS/InRE19 and InRNC/InRE19 genotype were quantified and compared relative to a contemporaneous cohort of its corresponding InREMS/TM3, InR+ Sb or InRNC/TM3, InR+ Sb.

Demographic quantitative complementation

Life tables were generated for cohorts of each F\textsubscript{1} genotype (methods detailed in Supplemental Methods). Cohorts for each genotype were initiated with three replicate
demography cages of ~150 newly eclosed adults at ~1:1 sex ratio. In total we assessed the lifespan of 16,057 males and 17,223 females. Each two days food vials were changed and dead flies were removed and counted. Life tables were constructed by the extinct cohort method with data from replicate cages within a cohort combined for survival analysis.

Life table data were collected across five test blocks (blocks $j = 1$ to 5). To unify data across blocks, in every block we included the wild-derived line InR^{NC442}. Estimated survival parameters for each genotype within each block were normalized relative to InR^{NC442} of the corresponding block. We generated one lifetable for each InR^{EMS} mutant and InR^{NC} allele, except for InR^{211}, InR^{74} and InR^{353}, which were studied twice.

To conduct demographic Quantitative Complementation Testing, within each block j, we used proportional hazard analysis (104) executed in JMP (SAS Institute, Cary, NC) to quantify the proportional mortality difference (hazard coefficient β_{ij}) for each InR allele i (EMS or NC) when complemented to InR^{E19} relative to when complemented to TM3, $InR^{+} Sb$. In every block we estimated $\beta_{NC442,j}$ and calculated the adjusted mortality coefficient for each InR allele as $\beta_{i}^{adj} = \beta_{ij} - \beta_{NC442,j}$. Negative values of β_{i}^{adj} indicate mortality rate is reduced in InR^{i}/InR^{E19} relative to $InR^{i}/TM3$, $InR^{+} Sb$; values near zero indicate there is no effect on mortality and values greater than zero indicate there is increased mortality; $exp|\beta_{i}^{adj}|$ estimates the fold change in mortality risk (hazard ratio) induced by each InR allele complemented to InR^{E19} relative to when it is complemented to TM3, $InR^{+} Sb$. Life expectancy was also standardized among blocks: for each block j we calculated the difference in life expectancy between InR^{NC442}/InR^{E19} and $InR^{NC442}/TM3$, $InR^{+} Sb$ denoted $\Delta E_{0}(InR^{j}_{NC442})$. The adjusted difference in life expectancy for each InR allele i is $\Delta E_{0,ij}^{adj} = \Delta E_{0,ij} - \Delta E_{0}(InR^{NC442})$.

Body size quantitative complementation

Head capsule width was measured from 20 females from each InR EMS-mutant and NC-wildtype allele when complemented to InR^{E19} and to TM3, $InR^{+} Sb$. Adults were reared simultaneously on standard diet from vials seeded with 100 eggs, and collected from across three replicate vials. The effect of allele InR^{i} on body size, σ_{i}, is genotypic mean of $InR^{i}/TM3$, $InR^{+} Sb$ minus genotypic mean of InR^{i}/InR^{E19}.

Drosophila insulin receptor alignments with human IR and IGF1R
The annotation of *Drosophila* InR and human IR and IGF1R varies among sources (Fig 3, S1). The human insulin receptor (IR) is referenced as the mature long isoform of Ebina (105), and the Human Genome Variation Society (HGVS, http://hgvs.or/rec.html) that includes an additional 27 a.a. localization sequence (Fig 3, Fig S1). The human IGF1R sequence is numbered as NCBI Reference Sequence: NP_000866.1. *Drosophila* InR numbering begins at the first translation initiation site in wDah wildtype (GenBank accession MT_563159), +45 amino acids relative to the TIS reported by Fernandez (59) (NCBI Reference Sequence: NM_079712.6), which also differs by an insertion/deletion in the L1 ectodomain (wDah lacks H144) and the substitution H146Q. This polymorphism segregates along latitudinal clines of *Drosophila* natural populations (52). See Supplemental Materials (Fig S3, S4) for confirmed alignments of the homologous recombination allele series.

Sequence of EMS InR alleles

The EMS-generated InR^{E19} allele was sequenced using (rare) homozygous F₁ adults generated from an InR^{E19}/TM3 stock (64). This allele contained several polymorphisms compared to InR of wDah, including the unpublished substitution GTC/GAC, Val⁸¹⁰Asp (R. Kohanski, personal communication, Feb. 2004). The identity of the InR²⁴⁶ and InR⁷⁴ substitutions were provided by R. Kohanski (unpublished, personal communication, Feb. 2004). The substitutions for EMS alleles InR³⁵³ and InR²¹¹ were reported by Brogiolo (42). In the current work, each of these described substitutions were used to design site directed mutagenesis with homologous recombination to produce coisogenic, single amino acid substitution alleles.

InR homologous recombination allelic series

Details of fly stocks and culture, constructs, primers, cloning and work flow for homologous recombination are in Supplemental Materials. In brief, targeting arms for ends-out homologous recombination of InR (cloned from wDah) (106) were cloned into the pW25.2 vector (Drosophila Genomics Resource Center, Bloomington, IN) and injected into w¹¹¹⁸ embryos by Genetic Services, Inc. (Sudbury, MA). Targeting arms contained single nucleotide substitutions to specify the desired amino acid replacements (Fig 3), while the native wDah sequence provided both arms to produce InR^{+(HR)}. Flies with the white⁺ eye color marker mapped to the first or second chromosomes were used for homologous recombination. These lines were crossed to flies expressing flipase and the restriction enzyme I-SceI to execute excision and linearization of the transgenic construct. Replicate, independent (accession) candidate insertion lines were selected.
based on white+ mapped to chromosome 3. Gene replacement and mutant validation were confirmed by sequencing. Strains with gene replacement strains were crossed to flies expressing cre recombinase to remove the white+ marker. The white+ marker was retained to produce InRnull(HR).

Phenotypes of InR homologous recombination allelic series

Viability, development time, adult size. Reciprocal, diallel crosses were made among all InR(HR) alleles. In replicate vials with yeast-supplemented standard media, four virgin females and males were mated over 24h and removed. Stage of lethality (larvae, prepupae or pupae) was recorded to determine viability. Eclosing adults were recorded every 24 hours. Size (thorax length) was measured from 20 F\textsubscript{1} females of each viable cross.

Lifetable demography. Newly eclosed male and females were collected, transferred to bottles with fresh medium and kept at 25°C for two days (details in Supplemental Materials). Mated females were transferred to demography cages maintained at 25°C at an initial density of 125 females per cage. Three to five replicate cages were initiated for each genotype cohort. Food was changed every two days, at which time dead flies were removed and counted. Life tables were constructed by the extinct cohort method with data from replicate cages within a cohort combined for survival analysis. In total we assessed the lifespan of 17,184 HR females.

Fecundity and ovariole number. Fecundity was measured twice daily from eclosion through 15 days old. For each genotype, 15 newly eclosed females were placed with 15 wDah males into three replicate demography cages, modified for egg collection (method in Supplemental Methods). Egg plates were supplemented with yeast paste and changed twice a day at which time eggs were counted. Dead females were removed and counted daily. Daily fecundity (mean eggs per day) is total daily eggs across replicate cages/number of alive females each day. Average fecundity is the daily fecundity averaged across all days. Ovary number was measured from 10-day old females of each genotype. Ovaries were dissected in PBS and fixed with 4% paraformaldehyde. The number of ovarioles per ovary was recorded as the sum over both ovaries from 15 females of each genotype.
Author contributions: R.Y., M.P. and N.C-J conducted the experiments. R.Y., M.P. and M.T. designed the experiments. M.T. and R.Y. analyzed the data and wrote the paper.

Acknowledgements:
For patient mentoring and discussion on insulin receptor structure and function that made this work possible, MT thanks P. de Meyts, R. Kohanski, B. Garofalo, B. Forbes, Y. Suh, X. Bai, M. Mohammadi, S. Takahashi, and W. Peti. M. Frasch generously shared his archival collection of \(\text{InR} \) EMS mutants. R. Kohanski shared unpublished data in the sites of substitutions in the Frasch alleles. W. Peti provided the structural diagram of substitutions mapped to the kinase domain. Thanks for supporting work in the Tatar lab is due to Aleksandra Norton, Miyo Malouf, Richard Martinez, Dante Ordantella, Colette Toal, Roy Hsu. Funding was provided by NIH R01AG16632 and R37AG024360.

Competing interests:
No competing interests declared.
References

1. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461-4.

2. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277:942-6.

3. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science. 2001;292(5514):107-10.

4. Finch CE, Ruvkun G. The genetics of aging. Annual Review of Genomics and Human Genetics. 2001;2:435-62.

5. Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299:1346-51.

6. Altintas O, Park S, Lee SJ. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 2016;49(2):81-92.

7. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;14:1319-22.

8. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28:102-4.

9. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131(16):3897-906.

10. Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science. 2002;296:1118-20.

11. Post S, Karashchuk G, Wade JD, Sajid W, De Meyts P, Tatar M. Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity. Front Endocrinol (Lausanne). 2018;9:245.

12. Hsu A-L, Murphy CT, Kenyon C. Regulation of Aging and Age-Related Disease by DAF-16 and Heat-Shock Factor. Science. 2003;300(5622):1142-5.

13. Murphy CT, McCarrick SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature. 2003;424:277-84.

14. Lee SS, Kennedy S, Tolonen AC, Ruvkun G. DAF-16 target genes that control C. elegans life-span and metabolism. Science. 2003;300:644-7.

15. Bai H, Kang P, Hernandez AM, Tatar M. Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet. 2013;9(11):e1003941.

16. Barthel A, Schmoil D, Unterman T. FoxO proteins in insulin action and metabolism. TEM. 2005;16:183-9.

17. Honda Y, Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999;13:1385-93.

18. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997;389:994-9.

19. Mostoslavsky R. DNA repair, insulin signaling and sirtuins: at the crossroads between cancer and aging. Front Biosci. 2008;13:6966-90.
20. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, et al. An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol. 2007;17(19):1646-56.
21. Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10-25.
22. Ewald CY, Landis JN, Porter Abate J, Murphy CT, Blackwell TK. Dauer-independent insulin/IGF-1-signalling implicates collagen remodelling in longevity. Nature. 2015;519(7541):97-101.
23. Zarse K, Schneissler S, Groth M, Pribe S, Beuster G, Kuhlow D, et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab. 2012;15(4):451-65.
24. Perez CL, Van Gilst MR. A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C. elegans. Cell Metab. 2008;8(3):266-74.
25. Libina N, Berman JR, Kenyon C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell. 2003;115:489-502.
26. Hwangbo DS, Gershman B, Tu MP, Palmer MR, Tatar M. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature. 2004;429:562-6.
27. Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R. Insulin regulation of heart function in aging Drosophila. Nat Genet. 2004;36:1275-81.
28. Wolkow CA, Kimura KD, Lee M-S, Ruvkun G. Regulation of C. elegans life-span by insulin-like signaling in the nervous system. Science. 2000;290:147-50.
29. Blüher M, Kahn BB, Kahn RC. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299:572.
30. Taguchi A, Wartschow LM, White MF. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science. 2007;317(5836):369-72.
31. Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J. 2008;22(3):807-18.
32. Xu J, Gontier G, Chaker Z, Lacube P, Dupont J, Holzenberger M. Longevity effect of IGF-1R(+/-) mutation depends on genetic background-specific receptor activation. Aging Cell. 2014;13(1):19-28.
33. Merry TL, Kuhlow D, Laube B, Pohlmann D, Pfeiffer AFH, Kahn CR, et al. Impairment of insulin signalling in peripheral tissue fails to extend murine lifespan. Aging Cell. 2017;16(4):761-72.
34. Suh Y, Atzmon G, Cho M-O, Hwang D, Liu B, Leahy DJ, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proceedings of the National Academy of Sciences. 2008;105(9):3438-42 %R 10.1073/pnas.0705467105.
35. van Heemst D, Beekman M, Mooljaart SP, Heijmans BT, Brandt BW, Zwaan BJ, et al. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell. 2005;4(2):79-85.
36. Bao JM, Song XL, Hong YQ, Zhu HL, Li C, Zhang T, et al. Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis. Asian J Androl. 2014;16(3):446-52.
37. Kido Y, Nakae J, Accili D. Clinical review 125: The insulin receptor and its cellular targets. J Clin Endocrinol Metab. 2001;86(3):972-9.
39. Ashpole NM, Logan S, Yabluchanskiy A, Mitschelen MC, Yan H, Farley JA, et al. IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience. 2017;39(2):129-45.
40. Bartke A, Sun LY, Longo V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev. 2013;93(2):571-98.
41. Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, al. e. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans gene family. Genes and Development. 2001;15:672-86.
42. Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 2001 Feb 20;11(4): 2001;11:213-21.
43. Gronke S, Clarke DF, Broughton S, Andrews TD, Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 2010;6(2):e1000857.
44. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80(2):179-85.
45. Zinkle A, Mohammadi M. A threshold model for receptor tyrosine kinase signaling specificity and cell fate determination. F1000Res. 2018;7.
46. Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne). 2012;3:34.
47. Nakae J, Kido Y, Accili D. Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev. 2001;22(6):818-35.
48. Huang Z, Tan Y, Gu J, Liu Y, Song L, Niu J, et al. Uncoupling the Mitogenic and Metabolic Functions of FGF1 by Tuning FGF1-FGF Receptor Dimer Stability. Cell Rep. 2017;20(7):1717-28.
49. Ho CCM, Chhabra A, Starkl P, Schnorr PJ, Wilmes S, Moraga I, et al. Decoupling the Functional Pleiotropy of Stem Cell Factor by Tuning c-Kit Signaling. Cell. 2017;168(6):1041-52 e18.
50. Tazearslan C, Huang J, Barzilai N, Suh Y. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell. 2011;10(3):551-4.
51. Chen H, Huang Z, Dutta K, Blais S, Neubert TA, Li X, et al. Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations. Cell Rep. 2013;4(2):376-84.
52. Paaby AB, Bergland AO, Behrman EL, Schmidt PS. A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation. Evolution. 2014;68(12):3395-409.
53. Ardon O, Procter M, Tvrdik T, Longo N, Mao R. Sequencing analysis of insulin receptor defects and detection of two novel mutations in INSR gene. Mol Genet Metab Rep. 2014;1:71-84.
54. Klammt J, Kiess W, Pfaffle R. IGF1R mutations as cause of SGA. Best Pract Res Clin Endocrinol Metab. 2011;25(1):191-206.
55. Patel DS, Garza-Garcia A, Nanji M, McElwee JJ, Ackerman D, Driscoll PC, et al. Clustering of genetically defined allele classes in the Caenorhabditis elegans DAF-2 insulin/IGF-1 receptor. Genetics. 2008;178(2):931-46.
56. Gems D, Sutton ML, Sundermeyer PS, Albert KV, King ML, Edgley PL, et al. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics. 1998;150:129-55.

57. Petruzzelli L, Herrera R, Arenas-Garcia R, Fernandez R, Birnbaum MJ, Rosen OM. Isolation of a Drosophila genomic sequence homologous to the kinase domain of the human insulin receptor and detection of the phosphorylated Drosophila receptor with an anti-peptide antibody. Proc Natl Acad Sci U S A. 1986;83(13):4710-4.

58. Azpiazu N, Frasch M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 1993;7(7B):1325-40.

59. Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J. The Drosophila insulin receptor homolog: a gene essential for embryonic development encodes two receptor isoforms with different signaling potential. The EMBO Journal. 1995;14:3373-84.

60. Chen C, Jack J, Garofalo RS. The Drosophila insulin receptor is required for normal growth. Endocrinology. 1996;137(3):846-56.

61. Geiger-Thornsberry GL, Mackay TF. Quantitative trait loci affecting natural variation in Drosophila longevity. Mech Ageing Dev. 2004;125(3):179-89.

62. Flatt T. Assessing natural variation in genes affecting Drosophila lifespan. Mech Ageing Develop. 2004;125(3):155-9.

63. Uchikawa E, Choi E, Shang G, Yu H, Bai XC. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. Elife. 2019;8.

64. Chen L, Marsiglia WM, Chen H, Katigbak J, Erdjument-Bromage H, Kemble DJ, et al. Molecular basis for receptor tyrosine kinase A-loop tyrosine transphosphorylation. Nat Chem Biol. 2020;16(3):267-77.

65. Long AD, Mullaney SL, Mackay TFC, Langley CH. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics. 1996;144:1497-510.

66. Mackay TF, Fry JD. Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative trait loci. Genetics. 1996;144(2):671-88.

67. Turner TL. Fine-mapping natural alleles: quantitative complementation to the rescue. Mol Ecol. 2014;23(10):2377-82.

68. Promislow DE, Tatar M, Pletcher SD, J.R. C. Below-threshold mortality: implications for studies in evolution, ecology and demography. J evol Biol. 1999;12:314-28.

69. Flatt T. Survival costs of reproduction in Drosophila. Exp Gerontol. 2011;46(5):369-75.

70. Taylor SI. Lilly Lecture: molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes. 1992;41(11):1473-90.

71. Scapin G, Dandey VP, Zhang Z, Prosise W, Hruza A, Kelly T, et al. Structure of the insulin receptor-insulin complex by single-particle cryo-EM analysis. Nature. 2018;556(7699):122-5.

72. Gutmann T, Kim KH, Grzybek M, Walz T, Coskun U. Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor. J Cell Biol. 2018;217(5):1643-9.

73. Ferguson KM, Hu C, Lemmon MA. Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Protein Sci. 2020;29(6):1331-44.

74. Cabail MZ, Li S, Lemmon E, Bowen ME, Hubbard SR, Miller WT. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nat Commun. 2015;6:6406.
75. Favelyukis S, Till JH, Hubbard SR, Miller WT. Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat Struct Biol. 2001;8(12):1058-63.
76. Hubbard SR, Wei L, Ellis L, Hendrickson WA. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature. 1994;372(6508):746-54.
77. Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 1997;16(18):5572-81.
78. Till JH, Ablooglu AJ, Frankel M, Bishop SM, Kohanski RA, Hubbard SR. Crystallographic and solution studies of an activation loop mutant of the insulin receptor tyrosine kinase: insights into kinase mechanism. J Biol Chem. 2001;276(13):10049-55.
79. Cama A, de la Luz Sierra M, Quon MJ, Ottini L, Gorden P, Taylor SI. Substitution of glutamic acid for alanine 1135 in the putative "catalytic loop" of the tyrosine kinase domain of the human insulin receptor. A mutation that impairs proteolytic processing into subunits and inhibits receptor tyrosine kinase activity. J Biol Chem. 1993;268(11):8060-9.
80. Ablooglu AJ, Kohanski RA. Activation of the insulin receptor's kinase domain changes the rate-determining step of substrate phosphorylation. Biochemistry. 2001;40(2):504-13.
81. Chou CK, Dull TJ, Russell DS, Gherzi R, Lebwohl D, Ullrich A, et al. Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem. 1987;262(4):1842-7.
82. Odawara M, Kadowaki T, Yamamoto R, Shibasaka Y, Tobe K, Accili D, et al. Human diabetes associated with a mutation in the tyrosine kinase domain of the insulin receptor. Science. 1989;245(4913):66-8.
83. Takahashi Y, Kadowaki H, Momomura K, Fukushima Y, Orban T, Okai T, et al. A homozygous kinase-defective mutation in the insulin receptor gene in a patient with leprechaunism. Diabetologia. 1997;40(4):412-20.
84. Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995;9(8):576-96.
85. Patti ME, Sun XJ, Bruening JC, Araki E, Lipes MA, White MF, et al. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice. J Biol Chem. 1995;270(42):24670-3.
86. White MF. IRS2 integrates insulin/IGF1 signalling with metabolism, neurodegeneration and longevity. Diabetes Obes Metab. 2014;16 Suppl 1:4-15.
87. Oldham S, Stocker H, Laffargue M, Wittwer F, Wymann M, Hafen E. The Drosophila insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels. Development. 2002;129(17):4103-9.
88. Slack C, Alic N, Foley A, Cabecinha M, Hoddinott MP, Partridge L. The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity. Cell. 2015;162(1):72-83.
89. Li CR, Guo D, Pick L. Independent signaling by Drosophila insulin receptor for axon guidance and growth. Front Physiol. 2013;4:385.
90. Almudi I, Poernbacher I, Hafen E, Stocker H. The Lnk/SH2B adaptor provides a fail-safe mechanism to establish the Insulin receptor-Chico interaction. Cell Commun Signal. 2013;11(1):26.
91. Werz C, Kohler K, Hafen E, Stocker H. The Drosophila SH2B family adaptor Lnk acts in parallel to chico in the insulin signaling pathway. PLoS Genet. 2009;5(8):e1000596.
92. Song W, Ren D, Li W, Jiang L, Cho KW, Huang P, et al. SH2B regulation of growth, metabolism, and longevity in both insects and mammals. Cell Metab. 2010;11(5):427-37.
93. Slack C, Werz C, Wieser D, Alic N, Foley A, Stocker H, et al. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk. PLoS Genet. 2010;6(3):e1000881.

94. Jenkins NL, McColl G, Lithgow GJ. Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Biol Sci. 2004;271(1556):2523-6.

95. Leroi AM, Bartke A, De Benedictis G, Franceschi C, Gartner A, Gonos ES, et al. What evidence is there for the existence of individual genes with antagonistic pleiotropic effects? Mech Ageing Dev. 2005;126(3):421-9.

96. Flatt T, Min KJ, D'Alterio C, Villa-Cuesta E, Cumbres J, Lehmann R, et al. Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci U S A. 2008;105(17):6368-73.

97. Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruess BF, et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell. 1999;97:865-75.

98. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, et al. Extension of lifespan by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 2001;292:104-6.

99. Tu M-P, Epstein D, Tatar M. The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homolog chico. Aging Cell. 2002;1:75-80.

100. Bai H, Post S, Kang P, Tatar M. Drosophila Longevity Assurance Confirmed by Reduced Insulin Receptor Substrate Chico Partially Requires d4eBP. PLoS One. 2015;10(8):e0134415.

101. Liu BA, Engelmann BW, Jablonowski K, Higginbotham K, Stergachis AB, Nash PD. SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun Signal. 2012;10(1):27.

102. Oldham S, Hafen E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol. 2003;13(2):79-85.

103. De Luca M, Roshina NV, Geiger-Thornsberry GL, Lyman RF, Pasyukova EG, Mackay TF. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nat Genet. 2003;34:429-33.

104. Parmer MKB, Machin D. Survival Analysis: A practical approach. Chichester: Wiley; 1995.

105. Ebina Y, Ellis L, Jarnagin K, Edery M, Graf L, Clauser E, et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985;40(4):747-58.

106. Staber CJ, Gell S, Jepson JE, Reenan RA. Perturbing A-to-I RNA editing using genetics and homologous recombination. Methods Mol Biol. 2011;718:41-73.

107. Locascio LE, Donoghue DJ. KIDs rule: regulatory phosphorylation of RTKs. Trends Biochem Sci. 2013;38: 75-84.