Long-Term Effect of Fertilization and Algalization on Aggregate Stability, Aggregate Associated Carbon and Nitrogen Under Rice-Wheat Cropping System

S.K. Joshi¹, R. K. Bajpai¹, Prahalad Kumar², Alok Tiwari¹ and Vinay Bachkaiya¹

¹Department of Soil Science and Agricultural Chemistry, Indira Gandhi Krishi Vishwavidyalaya, Raipur -492012, Chhattisgarh, India
²Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur -492012, Chhattisgarh, India

*Corresponding author

Abstract

An experiment was carried out under long term trial in randomized block design (RBD) at Indira Gandhi Krishi Vishwavidyalaya, Raipur, India to comprehend the long-term effect of fertilization and algalization on soil aggregation; C and N fractions associated with such aggregates under rice based cropping sequence. Three treatments viz. control, 50% NPK and NPK + BGA (blue green algae) were studied and results revealed that the treatments amended with 50% NPK and 50% NPK + BGA significantly enhanced soil aggregate stability and C as well as N associated with aggregates at upper and lower profile depths over control. The present experiment suggested that inappropriate nutrient management strategy under unremitting cereal- cereal (rice-wheat) cropping system resulted poor aggregate stability, lower C and N content in aggregates, whereas; the addition of suboptimal dose of NPK with or without blue green algae (BGA) gave rise to increase such properties over no fertilization.

Keywords

Long-term, Fertilization, Algalization, Aggregate stability, BGA, Rice-wheat.

Introduction

Indian agriculture has been perceived several methodological changes during past few decades and as a consequences, improved nutrient as well as water management practices has become the integral part of modern farming. Adaptation of such improved approaches resulted boosting crop yield but also altered soil quality. Beside soil nutrient status, soil aggregation and other physical properties were also deteriorated due to continuous intensive farming without apposite nutrient management. Soil aggregation contributed to productivity and structural improvement of soil (Campbell et al., 2001) and is positively related with soil organic matter (SOM) content (Hati et al., 2006); thus addition of organic matter in soil improved aggregation (Rose, 1991).

The influence of fertilizers on soil aggregation has also been observed by Campbell et al., (2001). Furthermore,
application of composted manure led to improve more water stable aggregates in soil (Whalen et al., 2003).

Carbon and nitrogen associated with water stable aggregates contributed to the soil productivity and also influenced by several factors viz. tillage (Chen et al., 2009), manuring (Wortmann and Shapiro, 2007) and fertilization (Hua et al., 2014), cropping systemetc. Beside these, soil depth is one of the major factors affecting aggregate protected C and N in soil. These C and N fractions comprising the slow pool and are intermediate between active and passive fractions.

Rice-wheat system is major cropping system in Chhattisgarh, popularly known as rice bowl of India. The term ‘algalization’ is prevalently used for application of blue green algae (BGA) in rice field. There has seldom been engrossed on the influence of BGA in combination with fertilizers on soil physical properties. Hence, it was hypothesized that algalization with fertilization may be a strategic nutrient management practice for reducing nitrogen demand from off farm sources and for improvement of soil physical qualities under rice dominated cropping systems. For this purpose, the study was done with following objectives: (1) to assess the distribution of water stable aggregates in surface and subsurface soils and (2) to determine the C and N associated with those aggregates.

**Materials and Methods**

A long term field experiment was initiated during 1999 under All India Coordinate Research Project (AICRP) at Indira Gandhi Krishi Vishwavidyalaya, Raipur (21°4'N, 81°4'E and 293 m mean sea level), Chhattisgarh. The climate is classified as sub-humid type and the average annual precipitation is 1317.77 mm of which mostly occurs during monsoon season (June to September). The soil order is Vertisol and dominant clay mineral is fine montmorillonite. Rice was transplanted in kharif season (first week of July) followed by sowing of wheat in Rabi season (November). Rice was harvested in October and that of wheat was done in March. The following treatments were studied in Randomized Block Design (RBD) with three replications with plot size of 20x10 m: control (no fertilization), 50% NPK (50:30:20 kg ha⁻¹ N: P₂O₅: K₂O respectively) and 50% NPK+ BGA (50:30:20 kg ha⁻¹ N:P₂O₅:K₂O respectively + 10 kg ha⁻¹ dry BGA culture in kharif (rice) crop only). The fertilizers used during 1999 to 2014 were urea for N, single super phosphate (SSP) for P and muriate of potash (MOP) for K. It was hypothesized that in addition to fixing atmospheric nitrogen, BGA may also help to improve aggregate stability and increase slow C and N stock in soil. The soil samples were collected randomly in June 2014 after harvesting of wheat and before rice transplantation from both surface (0-15 cm) and subsurface soils (15-30 cm). The samples were dried; ground, processed and analyzed in the laboratory of Indian Institute of Soil Science, Bhopal. Aggregate separation method as described by Camberdella and Elliott, (1993) was adopted to determine sand free mass of water stable aggregates. The aggregates of >2 mm size were pre-wetted in water on the largest sieve (>2 mm) fitted in Yodder’s apparatus for 5 minutes before sieving. Aggregate distribution was accomplished by moving the sieve vertically in water. The >2 mm aggregates were collected in aluminum pan and dried in oven at 65 C. Soil plus water that passed through sieve was poured in next finer sieve and repeated the procedure for every sieve classes. Silt plus clay fraction was centrifuged for 10 minutes at 3000 rpm and backwashed in aluminum pan. Dried fractions
were weighed and quantified and expressed as sand free mass. The aggregates were ground to pass 0.2 mm sieve for estimating water stable carbon and nitrogen. Method suggested by Walkley and black (1934) was adopted for analysis of water stable aggregate carbon. Total N concentration associated with aggregates was determined by Kjeldahl method (Page, 1982). Sand free C and N was calculated with formula suggested by Six et al., (2000) after dispersing soil with 1% sodium hexametaphosphate.

**Results and Discussion**

**Long-term effect of fertilization & algalization on aggregate stability**

A significant distribution of aggregates was recorded in both surface (0-15 cm) and subsurface (15-30 cm) soils. The small macro aggregates (2000-250 μm) were dominant fractions over all the classes followed by micro aggregates (250-53 μm) and large macroaggregates (>2000 μm). The least aggregate mass were found in silt plus clay fraction (<53 μm). Similar trend was observed in subsurface soil as well. The significant difference attributable to treatments was also observed. In surface soil, 50% NPK+BGA treatment contributed significantly large mass of aggregates in large and small macro aggregate size classes followed by 50% NPK and the least proportion of aggregates were recorded in control. Whereas; the control comprised larger proportion of soil mass in micro aggregate and silt + clay fractions (Fig. 1). Similar trend was also observed in subsurface soil, however; the difference among treatments was non-significant for silt + clay fraction (Fig.2). The graph clearly indicated that the algalization and fertilization significantly improved soil aggregation and aggregate stability in both surface and subsurface soil over control. Fertilization enhanced aggregation by its effect on plant growth and ultimately, biomass returned to soil (Campbell et al., 2001). Similarly, blue green algae formed a gluing mesh and bound soil particles consequently; promoted aggregation (Belnap, 1993; Malam Issa et al., 2001). Additionally, extracellular polymeric secretions mainly composed of polysaccharides, by BGA; have also reported which acts as binding agent (Lynch and Bragg 1985). Likewise, BGA also added considerable amount of organic matter in soil (Goyal, 2002) and soil aggregation may be related with the binding effect of such organic matter.

**Long-term effect of fertilization & algalization on aggregate associated carbon**

Aggregate associated carbon concentrations were greater in large macro aggregates than rest of the classes in surface soil. Significant buildup of carbon was recorded in treatment amended with 50% NPK + BGA in all the aggregate size classes. However, it was at par with 50% NPK treatment in micro aggregate class and non-significant in silt + clay fraction. The lowest concentrations were observed in control. In subsurface soil, greater carbon concentrations were observed in 50% NPK + BGA treatment followed by 50% NPK and the least concentrations were recorded in control, however; the difference among the treatments were non-significant for micro aggregates and silt clay fraction (Table 1). Integrated application of organic matter with fertilizers significantly increased the aggregate associated C (Yuan et al., 2013) and it might be a cause for greater C in 50% NPK + BGA and 50% NPK treatment as BGA added substantial amount of organic matter in soil while fertilizer promoted rhizospheric deposition and rhizobial activity. Similar results were also observed by Wei et al., (2011). The significant greater yield of rice and wheat in treatment receiving 50% NPK + BGA and 50% NPK over control has
observed by Singh and Wanjari ((2013) and this might be contributed to greater biomass returned to soil and increased C concentration. Significant buildup of soil C fractions under fertilization and algalization has been reported (Joshi et al., 2017) which contributed to soil aggregate C. The lowest aggregate protected C content in control was also reported by Yuan et al., (2013). Further, the decreasing C content in aggregate with increasing soil depth is evident (Das et al., 2014) which resembled with this finding.

Fig.1 Long-term effect of fertilization and algalization on aggregate stability under rice-wheat Cropping system at surface (0-15 cm) soil

Fig.2 Long-term effect of fertilization and algalization on aggregate stability under rice-wheat Cropping system at subsurface (15-30 cm) soil
Long-term effect of fertilization and algalization on soil aggregate Carbon under rice-Wheat cropping system at 0-15 and 15-30 cm soil depth

| Carbon associated with water stable aggregates (sand free mass g kg⁻¹) | Soil depth 0-15 cm | >2000 μm | 2000-250 μm | 250-53 μm | <53 μm |
|---|---|---|---|---|---|
| Control | 5.68 c | 3.90 c | 3.75 b | 3.10 |
| 50% NPK | 6.33 b | 4.97 b | 4.77 a | 3.73 |
| 50% NPK + BGA | 8.14 a | 5.57 a | 5.11 a | 3.73 |

| Soil depth 0-15 cm | >2000 μm | 2000-250 μm | 250-53 μm | <53 μm |
|---|---|---|---|---|
| Control | 3.85 c | 1.89 c | 2.46 | 2.17 |
| 50% NPK | 5.42 b | 2.17 b | 3.06 | 2.48 |
| 50% NPK + BGA | 6.03 a | 3.79 a | 3.36 | 2.79 |

Long-term effect of fertilization and algalization on aggregate associated nitrogen

| Nitrogen associated with water stable aggregates (sand free mass g kg⁻¹) | Soil depth 0-15 cm | >2000 μm | 2000-250 μm | 250-53 μm | <53 μm |
|---|---|---|---|---|---|
| Control | 0.73 c | 0.52 c | 0.40 b | 0.31 b |
| 50% NPK | 0.79 b | 0.63 b | 0.60ab | 0.45 a |
| 50% NPK + BGA | 0.94 a | 0.72 a | 0.66 a | 0.50 a |

| Soil depth 0-15 cm | >2000 μm | 2000-250 μm | 250-53 μm | <53 μm |
|---|---|---|---|---|
| Control | 0.38 b | 0.17 c | 0.27 | 0.23 |
| 50% NPK | 0.51 a | 0.22 b | 0.34 | 0.24 |
| 50% NPK + BGA | 0.54 a | 0.44 a | 0.39 | 0.29 |

Nitrogen associated with soil aggregates were recorded greater in surface soil than subsurface soil. In surface soil, treatment amended with 50% NPK + BGA contributed to greater N accumulation, however; it was at par with 50% NPK receiving treatment in silt + clay fraction. The least concentration was observed in control. In subsurface soil, 50% NPK + BGA enhanced N accumulation in all aggregate size classes. However; 50% NPK + BGA and 50% NPK treatments were statistically at par with each other in large macro aggregates, while variation was non-significant in micro aggregates and silt + clay fraction (Table 2). BGA fixed atmospheric N by using sunlight as energy source (Stewart, 1980) and thus; accelerated the aggregate protected N concentration in 50% NPK + BGA treatment over control. Potential N fixation in rice field by blue green algae was also observed by Roger et al., (1993). Moreover, application of BGA with half dose of NPK also improved microbial biomass nitrogen in soil (Joshi, et al., 2017). Similarly, mineral fertilizers enhanced plant growth and led to greater residual biomass return to soil which act as food substrate for microorganisms involved in N mineralization. Greater aggregate-N concentration due to fertilizer application was also reported by Manna et al., (2013). Control, as a result of continuous cropping without nutrient management led to decreased N in all aggregate fractions in paddy soil (Wei et al., 2011).
In conclusion, soil parameters under rice-wheat system, as a consequence of one and
half decade of continuous cropping and crop nourishment showed significant response
towards nutrient addition. Soil aggregation, aggregate associated C and N concentrations
were greater in treatment receiving suboptimal dose of primary nutrients over
control in 0-15 as well as 15-30 cm soil depth. However, the improvement were accelerated
when BGA were applied in combination with suboptimal dose of NPK. Therefore, it can be
concluded from above investigation that BGA in combination with fertilizers may not only
enhance the soil nutrient status but also improve stability of soil aggregates and may
reduce soil loss from water erosion.

Acknowledgement

Authors are grateful to scientists and staffs of IISS, Bhopal and also express their sincere
thanks to the workers associated with LTFE.

References

Belnap, J., 1993, Recovery rates of crypto
biotic crusts: inoculant use and
assessment methods. Great Basin
Naturalist, 53: 80–95.
Camberdella, C.A., and Elliott, E.T. 1993.
Carbon and nitrogen distribution in
aggregates from cultivated and native
grassland soils. Soil Sci. Soc. Am. J.,
57:1071-1076.
Campell, C.A., Selles, F., Lafond, G.P.,
Biederbeck, V.Q. and Zenter, R.P.
2001. Tillage-Fertilizer changes: effect
on soil quality attributes under long-
term crop rotations in a thin Black
Chernozem. Can J. Soil Sci. 81(10):157–165.
Chen, H., Hou, R., Gong, Y., Li, H., Fan, M.
and Kuzyakov, Y. 2009. Effects of 11
years of conservation tillage on soil
organic matter fractions in wheat
monoculture in Loess plateau of China.
Soil & Tillage Research, 106:85-94.
Das, B., Chakraborty, D., Singh, V.K.,
Aggarwal, P., Singh, R., Dwivedi, B.S.
and Mishra, R.P. 2014. Effect of
integrated nutrient management practice
on soil aggregate properties, its stability
and aggregate-associated carbon content
in an intensive rice–wheat system. Soil
& Tillage Research, 136: 9–18.
Goyal, S.K., 2002. Algal inoculants for
sustainability in rice cultivation. In:
Arora, J.K., Marwaha, S.S. and Grover,
R. (eds) Biotechnology in agriculture
and environment. Asitech Publishers,
New Delhi. 233–243.
Hati, K.M., Swarup, A., Singh, D., Misra,
A.K., Ghosh, P.K., 2006. Long-term
continuous cropping, fertilization and
manuring effects on physical properties
and organic carbon content of a sandy
loam soil. Aust. J. Soil Res. 44, 487–
495.
Hua, K.K., Zhu, B., Wang, X.G., Guo, X.S.,
Wang, D.Z. and Guo Z.B. 2014. Effect
of long-term fertilization on soil
aggregate-associated dissolved organic
nitrogen on sloping cropland of purple
soil. Plant Soil Environ, 60(2): 51–56.
Joshi, S.K., Kumar, P. and Kumari, P. 2017.
Effect of long-term fertilization and
algalization on active soil Organic pools,
crop yield and dehydrogenase activity
underrice- wheat cropping sequences,
Indian J. Ecology 44(2): 221-225.
Lynch, J.M., and Bragg, E. 1985.
Microorganisms and aggregate stability.
In: Advances in Soil Sciences, Springer
Verlag, New York. 134–170.
Malam Issa, O., Bissonnais, Y.L., Defarge, C.
and Trichet, J. 2001. Role of a microbial
cover on structural stability of a sandy
soil in Sahelian part of western Niger.
Geoderma, 101: 15–30.
Manna, M.C., Bhattacharyya, P., Adhya,
T.K., Singh, M., Wanjari, R.H.,
Ramana, S., Tripathi, A.K., Singh, K.N., Reddy, K.S., SubbaRao, A., Sisodia, R.S., Dongre, M., Jha, P., Neogi, S., Roy, K.S. Rao, K.S. Sawarkar, S.D. and Rao, V.R. 2013. Carbon fractions and productivity under changed climate scenario in soybean–wheat system. Field Crops Research 145: 10–20.

Page, A.L., 1982. Methods of soil analysis, Part 2. Editor. Chemical and Microbiological Properties, Soil Science Society of America Journal, Inc. Madison, Wisconsin, U.S.A.

Roger, P.A., Zimmerman, W.J. and Lumpkin, T.A. 1993. Microbiological management of wetland rice fields. In: Metting B (ed.) Soil Microbiological Ecology—application in agricultural and microbiological management, Marcel Dekker, New York. 417–455.

Rose, D.A., 1991. The effect of long-continued organic manuring on some physical properties of soils. In: Wilson, W.S. (Ed.), Advances in Soil Organic Matter Research. Special Publication no. 90. Royal Society of Chemistry, Cambridge, pp. 197–205.

Singh, M., and Wanjari, R.H. 2013. Annual Report- 2012-13. All India Coordinate Research Project on Long-term Fertilizer Experiments to study changes in soil quality, crop productivity and sustainability. AICRP – LTFE, Indian Institute of Soil Science (ICAR), Nabibagh, Bhopal Pp. 1-142.

Six, J., Paustian, K., Elliott, E.T. and Combrink, C. 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregates-associated carbon. Soil Sci. Soc. Am. J. 64: 681–689.

Stewart, W.D.P., 1980. Some aspects of structure and function in nitrogen fixing Cyanobacteria. Annual Review of Microbiology 34: 497–536.

Walkley, A., and Black, C. 1934. An examination of digestion of method for determining soil organic matter and a proposed modification of the chromic and titration method. Soil Sci.29-38.

Wei, W., Wei-cai, C., Kai-rong, W., Xiao-li, X., Chun-mei, Y. and An-lei, C. 2011. Effects of long term fertilization on the distribution of carbon, nitrogen and phosphorus in water soluble aggregates in paddy soils. Agricultural Science in China, 10(12): 1932-1940.

Whalen, J.K., Hu, Q. and Liu, A. 2003. Manure applications improve aggregate stability in conventional and no tillage systems. Soil Sci. Soc Am J 67:1842–1847.

Wortmann, C.S., and Shapiro, C.A. 2007. The effect of manure application on soil aggregation. Nutr. Cycl. Agroecosyst, DOI 10.1007/s10705-007-9130-6.

Yuan, Y., Li, L., Li, N., Yang, C. and Hang, X. 2013. Long-term fertilization effects on organic carbon stabilization in aggregates of Mollisols. J. food, Agric. & Environ., 11(2): 1164-1168.

How to cite this article:

Joshi, S.K., R.K. Bajpai, Prahalad Kumar, Alok Tiwari and Vinay Bachkaiya. 2017. Long-Term Effect of Fertilization and Algalization on Aggregate Stability, Aggregate Associated Carbon and Nitrogen Under Rice-Wheat Cropping System. Int.J.Curr.Microbiol.App.Sci. 6(8): 3289-3295. doi: https://doi.org/10.20546/ijemas.2017.608.392