Characterization of proliferative, glial and angiogenic responses after a CoCl₂-induced injury of photoreceptor cells in the adult zebrafish retina

Matias Pedro Medrano¹ | Antonella Pisera Fuster¹ | Pablo Antonio Sanchis¹ | Natalia Paez¹ | Ramon Oscar Bernabeu¹,² | Maria Paula Faillace¹,²

Abstract

The adult zebrafish is considered a useful model for studying mechanisms involved in tissue growth and regeneration. We have characterized cytotoxic damage to the retina of adult zebrafish caused by the injection of cobalt chloride (CoCl₂) into the vitreous cavity. The CoCl₂ concentration we used primarily caused injury to photoreceptors. We observed the complete disappearance of cones, followed by rods, across the retina surface from 28 to 96 hr after CoCl₂ injury. The loss of 30% of bipolar cells was also observed by 50 hr after lesion (hpl). CoCl₂ injury provoked a strong induction of the proliferative activity of multipotent Müller glia and derived progenitors. The effect of CoCl₂ on retina cells was significantly reduced by treatment with glutamate ionotropic receptor antagonists. Cone photoreceptor regeneration occurred 25 days after injury. Moreover, a single dose of CoCl₂ induced vascular damage and regeneration, whereas three injections of CoCl₂ administered weekly provoked neovascular-like changes 20 days after injury. CoCl₂ injury also caused microglial reactivity in the optic disc, retina periphery and fibre layer. CoCl₂-induced damage enhanced pluripotency and proneural transcription factor gene expression in the mature retina 72 hpl. Tumour necrosis factor alpha, vascular endothelial growth factor (VEGF) and VEGF receptor mRNA levels were also significantly enhanced by 72 hpl. The injury paradigm we have described in this work may be useful for the discovery of signalling molecules and pathways that participate in the regenerative

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate; APV, DL-2-amino-5-phosphonovalerate; ascl1,achaete-scute homolog 1 or achaete-scute bHLH transcription factor 1; atoh7, atonal homolog 7 or atonal bHLH transcription factor 7; BC, bipolar cell; bHLH, basic helix-loop-helix transcription factor; BrdU, 5-bromo-2′-deoxyuridine; BV, blood vessel; CMZ, ciliary marginal zone; Co²⁺, cobalt ion; CoCl₂, cobalt chloride; CV, collector circumferential vein; DCN, double cone nuclei; DNQX, 6,7-Dinitroquinoxaline-2,3(1H,4H)-dione; dpl, days after lesion; efl1-α, elongation factor 1 alpha; GCL, ganglion cell layer; GFAP, glial fibrillary acidic protein; GSL1, Griffonia simplicifolia lectin 1; HIF-1α, hypoxia inducible factor 1 alpha; hpl, hours after lesion; ILM, inner limiting membrane; INL, inner nuclear layer; IPL, inner plexiform layer; ivc, intravitreal concentration; LEC, Lycopersicum esculentum lectin; mRNA, messenger RNA; neuroD, neurogenic differentiation bHLH transcription factor; NMDA, N-methyl-D-aspartate; OD, optic disc; ONL, outer nuclear layer; OPL, outer plexiform layer; PCNA, proliferating cellular nuclear antigen; PKC, protein kinase C; PRS, photoreceptor segments; RGC, retinal ganglion cells; RPE, retinal pigmented epithelium; SV2, synaptic vesicle 2 protein; TNFα, tumour necrosis factor alpha; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor; VEGF, vascular endothelial growth factor.
1 | INTRODUCTION

Zebrafish (*Danio rerio*) represent an experimentally convenient alternative vertebrate model for the investigation of human diseases. The use of the zebrafish as a model system for studying molecules and pathways involved in health and disease is supported on the basis of evolutionary conservation of cellular, molecular and physiological processes; an average homology of 70% between human and zebrafish genes (Barbazuk et al., 2000); and the finding that 84% of genes that cause diseases in humans have a zebrafish orthologue. Furthermore, the experimental use of zebrafish allows for the validation of new therapeutic targets (Zon & Peterson, 2005), with the advantage of using drugs in an in vivo model that can be added directly to the fish water.

Zebrafish have the capacity to regenerate several tissues and organs, such as the heart, kidneys and peripheral and central nervous systems, including portions of the brain (Gemberling, Bailey, Hyde, & Poss, 2013). Therefore, zebrafish are valuable experimental animals for the development of tissue and organ injury strategies and for the investigation of tissue and cell regenerative mechanisms. For instance, zebrafish as well as many other teleost fish species, are able to regenerate the whole retina. The retina can be injured with different levels of severity, including different retina layers and cell types, and regeneration originates from intrinsic multipotent progenitors, which are represented by a subpopulation of differentiated Müller glia (Lenkowski & Raymond, 2014). Many paradigms of damage (e.g., chemical, surgical, laser, intense light and transgenic ablation) have been extensively investigated, and they range from injury of almost the whole retina to targeted neuronal cell ablation (Fimbel, Montgomery, Burket, & Hyde, 2007; Sherpa et al., 2008; Vihtelic & Hyde, 2000; Wu et al., 2001; Yurco & Cameron, 2005). Lesion paradigms have been developed and characterized to the end of studying molecular and cellular mechanisms that regulate and mediate retina regeneration (Ail & Perron, 2017; Mensinger & Powers, 2007; Powell, Cornblath, Elsaedi, Wan, & Goldman, 2016; Rajaram, Summerbell, & Patton, 2014). Zebrafish have also been rated as suitable experimental vertebrates—an alternative to rodents—for the investigation of the mechanisms involved in regulating physiological and pathological angiogenesis (Cao et al., 2010; Chávez, Aedo, Fierro, Allende, & Egana, 2016). Zebrafish embryos can be used for the screening of angiogenic inhibitors, which could lead to the discovery of therapeutic approaches for the treatment of angiogenesis-dependent eye diseases (Cunvong, Huffmire, Ethell, & Cameron, 2013; Rezzola, Paganini, Semeraro, Presta, & Tobiam, 2016).

A previous study has described injury to the rodent retina using cobalt chloride (CoCl₂) (Hara et al., 2006). The goal of that study was to investigate molecular and cellular targets for neuroprotective and anti-angiogenic therapies that could be used as possible treatments of ocular diseases (Hara et al., 2006). CoCl₂ has also been added to the water of zebrafish embryos to evaluate the effects on the developmental morphology of whole-body vasculature (Wu et al., 2015).

Cobalt ions (Co²⁺) are necessary at trace concentrations as co-factors for some proteins and vitamin B12 synthesis, but it is associated with toxic effects when present at higher concentrations. Co²⁺-induced pathologies include severe cardiomyopathy, vision or hearing impairments, reversible hypothyroidism and polycythemia (Scharf et al., 2014).

CoCl₂ prevents prolyl and asparaginyl hydroxylase activity and proteasome degradation of the hypoxia inducible factor-1α (HIF-1α) (Jaakkola et al., 2001; Semenza, 2001), and it prevents the incorporation of iron for heme production (Maines & Sinclair, 1977), which can lead to chemical hypoxia. Hypoxia and CoCl₂ provoke HIF-1α intracellular accumulation, which stimulates vascular endothelial growth factor (VEGF) secretion, angiogenesis and haemorrhages (Goldberg & Schneider, 1994; Ladoux & Frelin, 1994; Minchenko, Bauer, Salceda, & Caro, 1994). HIF-1α accumulation induces oxidative stress, inflammation, mitochondrial damage and signalling for cell survival, death, migration and proliferation (Masoud & Li, 2015; Wigerup, Pålman, & Bexell, 2016). Cobalt-associated mechanisms of toxicity are not yet understood, and hypoxic effects are far from being the unique cause of cell death induced by this metal. Co²⁺ can cause a large increase in oxidative stress, DNA breakage, epigenetic changes, histone modifications, inflammation, loss of biological functions and necrotic and apoptotic cell death (Scharf et al., 2014; Ubaldi et al., 2016). Additionally, some Co²⁺-associated toxic effects can be due to the deregulation of Ca²⁺ homeostasis and signalling by blocking Ca²⁺ entry through channels and Ca²⁺ binding to intracellular proteins (Krizaj & Copenhagen, 2002; Scharf et al., 2014).

In the present report, we described a paradigm in which retina photoreceptors were injured by injecting a particular dose of CoCl₂ into the vitreous cavity of adult wild-type zebrafish. We characterized the

KEYWORDS

HIF-1α, multipotent progenitors, neuronal regeneration, proneural transcription factors, VEGF
CoCl$_2$-dependent damage, and we studied its effects on photoreceptor, bipolar cells (BC) and synaptic layer integrity; Müller glia and microglia activation; HIF-1α, VEGF and VEGFR gene expression; intraretina vessel angiogenesis; and apoptotic cell death at different time intervals following injury. We showed that CoCl$_2$ deleterious effects were significantly mediated by glutamate. Furthermore, we characterized the CoCl$_2$ treatment effect on multipotent Müller glia and Müller glia-derived progenitor mitotic induction and on pluripotency and proneural gene expression, which is indicative of retinal repair after injury.

2 | MATERIALS AND METHODS

2.1 | Materials

Paraformaldehyde; 137 mM NaCl, 2.7 mM KCl, 5.7 mM phosphate, pH: 7.4 (PBS); Tris base 20 mM, NaCl 140 mM, pH: 7.5 (TBS); Tween-20; MS-222 (tricaine); sucrose; cresyl violet; 5-bromo-2′-deoxyuridine (BrdU); cobalt (II) chloride hexahydrate; and dimethyl sulfoxide (DMSO) (SIGMA-Aldrich, St Louis, MO). Tissue freezing medium (Biopack; Buenos Aires, Argentina). Vectashield and normal goat serum (NGS) (Vector Labs, Burlingame, CA). Random primers (Invitrogen, Carlsbad, CA). Moloney Murine Leukemia Virus reverse transcriptase (MMLV-RT); dNTPs; 1,4-dithiothreitol (DTT); ribonuclease inhibitor (RNAsin); and RNA extraction reagent RNAzol (Genbiotech, Buenos Aires, Argentina). Sense and antisense primers (IDT, Coralville, IA). DNase-I (Promega, Madison, WI). Real-time PCR mix (Roche Applied Sciences, Mannheim, Germany).

2.2 | Animals

Zebrafish (Danio rerio, Singapore strain) were purchased from a local breeding farm, in La Plata, Buenos Aires, Argentina. Zebrafish were acclimatised to the laboratory facility conditions for at least 1 month. They were maintained at 28°C in a 14:10 hr light:dark cycle, and they were fed with Arthemia sp. and dry food. The adult zebrafish used in the experiment were an average of 3 cm in length. Animals were euthanized by immersion in ice-cold MS-222 anaesthetic solution (0.02% w/v), decapitated and enucleated on ice. The Committee on Animal Research at University of Buenos Aires (CICUAL) approved protocols for ethical animal use and care.

FIGURE 1 Morphological analyses of retina sections after injury with CoCl$_2$. Pictures in the upper row depict cresyl violet stain of retina sections obtained from zebrafish injected into the vitreous cavity with sterile saline solution (a), 4.0 mM (b), 2.4 mM (c) or 1.3 mM (d) of CoCl$_2$ and analysed 96 hr after lesion (hpl). Images in the lower row show cresyl violet stain of retina sections obtained from zebrafish injected in vivo into the vitreous cavity with sterile saline solution (e) or with 1.3 mM CoCl$_2$ and analysed 50 hr (f), 96 hr (g) and 25 days (h) after injury with CoCl$_2$. Black arrows in (b) indicate membrane vesicles containing pigmented material. Dpl: days after lesion. RPE: retina pigmented epithelium, PRS: photoreceptor segments, DCN: double cone nuclei, ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, GCL: ganglion cell layer, ILM: inner limiting membrane. Scale bar: 55 μm. [Colour figure can be viewed at wileyonlinelibrary.com]
2.3 Cobalt chloride and ouabain treatments

Zebrafish were deeply anesthetized in the anaesthetic solution prepared in fish tank water and placed on a humid surface under a dissecting microscope. On day 0 for the majority of assays, the left eyes of the experimental zebrafish were given a single 0.6 μl injection into the vitreous cavity of 6.5 mM CoCl₂ hexahydrate diluted in sterile saline solution. The zebrafish were injected during a 10–15 s period under a dissecting microscope, and they fully recovered from anaesthesia in fish tank water in 5–10 s. Recovery rates were 100%.

For the majority of experiments performed, the intravitreal concentration (ivc) of CoCl₂ was estimated to be 1.3 mM on the basis of a vitreous volume of approximately 3 μl. This approximate value was calculated from the volume difference between the posterior chamber of the eye and the lens radius (Cunvong et al., 2013). A bevelled 33 gauge needle (0.375”, PT2) and 10 μl syringe (701 RN) (Hamilton Company, Reno, NV) were used to deliver appropriate volumes. For experiments shown in Figure 1, different zebrafish were injected once into the vitreous cavity with a solution containing 20 mM (ivc = 4.0 mM), 12 mM (ivc = 2.4 mM) or 6.5 mM (ivc = 1.3 mM) CoCl₂ on day 0. For experiments in Figure 9n–p, eyes were injected once with 6.5 mM CoCl₂ on day 0, the eyes were then injected with a solution containing 20 mM (ivc = 4.0 mM), 12 mM (ivc = 2.4 mM) or 6.5 mM (ivc = 1.3 mM) CoCl₂ on day 0. For experiments in Figure 1, different zebrafish were injected once into the vitreous cavity with a solution containing 20 mM (ivc = 4.0 mM), 12 mM (ivc = 2.4 mM) or 6.5 mM (ivc = 1.3 mM) CoCl₂ on day 0. For experiments in Figure 9n–p, eyes were injected once with 6.5 mM CoCl₂ on day 0, the eyes were then injected with 3 mM (ivc = 0.6 mM) CoCl₂ on days 7 and 15 after the first injection and the zebrafish were euthanized 20 days after lesion (dpl). For assays in Figure 6a–e, three groups of four zebrafish per group were injected with either 6.5 mM CoCl₂, 16 μM ouabain (estimated ivc = 3.2 μM) or saline solution into both eyes over a period of 20 s under the dissecting microscope. Zebrafish were euthanized and enucleated 8 hr after lesion (hpl). For experiments in Figures 6f–k and 7, three groups of five zebrafish per group were injected with 6.5 mM CoCl₂ or saline solution in both eyes, and zebrafish were euthanized and enucleated 72 hpl. Either the left eye or both eyes of zebrafish in control groups were injected with an equivalent volume of vehicle, and an equal number of injections were performed in the vitreous cavity at the same intervals as the experimental groups of zebrafish.

2.4 5-Bromo-2’deoxyuridine administration

Groups of five to six zebrafish were injected into the vitreous cavity with 0.6 μl of a solution containing 20 μg/μl BrdU. At all intervals after saline solution or CoCl₂ injection, the BrdU solution was injected 4 hr before euthanizing the fish using the same orifice punctured in the cornea on day 0. BrdU intravitreal concentration was estimated to be 4 μg/μl.

2.5 Glutamate receptor antagonist treatment of CoCl₂-injured eyes

Three groups of six zebrafish per group were injected into the vitreous cavity of the left eye with 0.6 μl of a solution containing 1.5 mM 2-amino-5-phosphonopentanoic acid (APV; estimated ivc = 300 μM), 250 μM 6,7-dinitroquinoxaline-2,3-dione (DNQX; estimated ivc = 50 μM) in dimethyl sulfoxide (DMSO, 0.2% V/V in saline solution; ivc = 0.04%), or vehicle (0.2% DMSO in saline solution; ivc = 0.04%). APV is a selective N-methyl-o-aspartate (NMDA) receptor antagonist that competitively inhibits glutamate binding to this ionotropic receptor. DNQX is a selective non-NMDA ionotropic receptor antagonist that competitively blocks glutamate binding to α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptors. Glutamate receptor antagonist (or vehicle) injections were performed 18 hr before and 6 and 30 hr after damage with CoCl₂ (or saline solution). Fifty hours after CoCl₂ treatment, zebrafish were euthanized and enucleated, and eye-cups and cryosections were prepared. All groups were injected with BrdU 4 hr before euthanasia, as explained above. Tissue sections from each eye were used for Hoechst staining to examine nuclear layer morphology, and other sections from the same eyes were used for BrdU immunolabelling.

2.6 Tissue processing and immunocytochemistry

To prepare eyecups, the cornea, lens and vitreous were removed. Eyecups were fixed with 4% paraformaldehyde for 2 hr at room temperature. For proliferating cell nuclear antigen (PCNA) staining, eyecups were fixed with ethanol:formaldehyde (9:1) for 2 hr. Eyecups were then incubated in 5%, 10% (30 min) and 20% sucrose (overnight) and embedded in tissue-freezing medium. Eyecups were cut into 16-μm cryosections in horizontal planes so that the sections that were collected on slides contained temporal and nasal ciliary marginal zones (CMZ). Each slide contained sections representing different portions of the eyecup. Tissue sections were incubated in PBST (PBS plus 0.1% Tween-20) and then in 5% NGS (in PBST) at room temperature for 1 hr. For BrdU labelling, retinas were preincubated in 2N HCl at 37°C for 25 min and washed with PBST. Sections were then incubated at 4°C overnight with a primary antibody (diluted in 3% NGS). Slides were washed and incubated in darkness at room temperature for 2 hr with a fluorescent secondary antibody (1:1,000 in 3% NGS). For double-labelling assays, sections were incubated in 3% NGS containing both primary antibodies, washed extensively and then incubated with both fluorescent secondary antibodies at room temperature for 2 hr. Finally, sections were washed with PBST and stained with Hoechst (1:1,000; SIGMA-Aldrich) diluted in PBST for 15 min, washed with PBS and mounted. Omission of either
the primary or secondary antibodies was performed as a negative control.

2.7 | Microglial cell detection and immunostaining for 5-Bromo-2’-deoxyuridine

To detect microglial cells in the zebrafish retina, 0.5–0.6 μl of 1 mg/ml FITC-conjugated *Griponia simplicifolia* lectin 1 (GSL1) (Vector Labs) was injected directly in the vitreous cavity 4 hr before euthanizing the fish. Then, eyecups were fixed with 4% paraformaldehyde for 2 hr and either cryostat sections or whole flat retinas were prepared and mounted for direct microscopic observation. For triple-labelling assays, GSL 1-injected eyes were enucleated, eyecups were fixed with 4% paraformaldehyde and BrdU immunostaining and Hoechst staining were performed on the sections, as previously mentioned (Zou, Tian, Ge, & Hu, 2013).

2.8 | Blood vessel detection with tomato lectin in whole-mount retinas

Ten micrograms per millilitre of biotinylated *Lycopersicum esculentum* (tomato) lectin (Vector Labs) and Alexa 488-conjugated streptavidin (1:300; Vector Labs) were diluted in PBST and used to detect blood vessels on whole-mount zebrafish retinas. Retinas were fixed with 4% paraformaldehyde for 2 hr, carefully washed and then incubated at 4°C overnight with the tomato lectin, washed with PBST and incubated with the fluorescent streptavidin at room temperature for 2 hr and, finally, washed and mounted.

2.9 | Counting of proliferative nuclei, GSL1- and protein kinase C (PKC)-positive cells

We counted BrdU- or PCNA-positive nuclei in all retinal layers under direct observation with an epifluorescence microscope, which allowed us to focus through the section and identify individual nuclei on the neural retina layers, as well as the CMZ. We did not count cells in areas near or on the optic disc that were not layered. We counted BrdU-positive nuclei throughout five different retina sections from each eye (using five to six eyes from different zebrafish) in a double-blind assay. BrdU was present within the eye over a 4-hr period before euthanasia, so it labelled the nuclei of progenitors that had initiated S-phase within this time window. Therefore, the stained nuclei that were observed belonged to progenitors that were in S- or G2-M-phases of the cell cycle. PCNA detection indicated progenitor nuclei principally in G1-, S- or G2-M-phases of the cell cycle (Ersoy, Bunyak, Chagin, Cardoso, & Palaniappan, 2009).

Active caspase 3-positive cells were counted when co-localized with a single Hoechst stained nuclei. PKC-, active caspase 3-, and GSL1-positive cells were counted in nuclear layers within a (212 μm)^2^ microscopic field, in 5–6 retina sections from 5 to 6 eyes of different zebrafish. Whole retinas were excised from five eyes per experimental or control group of different zebrafish. The number of microglial cells was also counted in the periphery of whole-mount retinas in two-dimensionally reconstructed confocal images of a (316 μm)^2^ microscopic field. We analysed 10 fields per retina and four to six eyes from different zebrafish. Serial confocal images throughout the z-axis were taken for several sections of different retinas. Two-dimensional reconstructions were performed, and cells were counted to confirm the number of cells we computed under direct observation or in epifluorescence images.

2.10 | Primary antibodies

Antibodies were diluted in 3% NGS from stocks prepared according to manufacturers’ instructions.

1. Mouse monoclonal anti-BrdU antibody (1:400; Roche Applied Sciences) was used to detect 5-bromo-2’-deoxyuridine, a thymidine analogue that incorporates into DNA during the S phase of the cell cycle.
2. Mouse monoclonal anti-PCNA antibody (1:500, Santa Cruz, CA, USA). PCNA is a nuclear protein which is expressed during S-phase and G2 phase of the cell cycle.
3. Rabbit polyclonal anti-glial fibrillary acidic protein (GFAP) antibody (1:500; DAKO, Agilent Santa Clara, CA, USA) was used to stain Müller glia (particularly after injury).
4. Mouse monoclonal anti-synaptic vesicle protein 2 (SV2) antibody (1:750; Developmental Studies Hybridoma Bank, IA, USA) was used to stain presynaptic terminals containing vesicles in plexiform layers.
5. Rabbit polyclonal anti-PKC antibody (1:350; Santa Cruz, CA, USA) was used to stain α, β, γ, δ and ε-subunits expressed by on- and off-BC.
6. Rabbit polyclonal anti-active caspase 3 antibody (1:350; BD Biosciences, San Jose, CA, USA) was used to stain caspase 3-dependent apoptotic cells.

2.11 | Secondary antibodies

Secondary antibodies for immunohistochemistry were polyclonal antibodies produced in goat and directed against mouse or rabbit primary antibodies. Secondary antibodies were conjugated to fluorescent molecules Cy3 or Alexa 488 (Jackson Immunoresearch labs, West Grove; PA, USA). Secondary antibodies (1 mg/ml) were diluted 1:1,000 in 3% NGS.
2.12 | Microscopy

Counting was performed using a BX50 epifluorescence microscope (Olympus, Japan) with 40x and 60× objectives and numerical apertures (NA) of 0.65 and 1.35 respectively. All microphotographs were captured with a FV1000 Fluoview confocal spectral microscope with SAPO-60x-oil or SAPO-40x-oil objectives and NA of 1.35 and 0.9 respectively (Olympus). Images from double- or triple-labelled retinas were taken with adequate laser beams and spectral filters with a maximum depth of 1.0 μm in the z-axis and in a fixed x–y-plane of the same microscopic field. Two- or three-dimensional reconstructions were performed with Fluoview Software (Olympus). Images were adjusted for brightness and contrast, combined and labelled with Adobe Photoshop CS5. The autofluorescence of photoreceptor segments were observed in two-dimensional reconstructions of confocal images from Z-stacks or with the epifluorescence microscope.

2.13 | Quantitative real-time polymerase chain reaction

Zebrafish were euthanized; eight neural retinas were homogenized in the RNA extraction reagent RNAzol and were considered to be one sample. Three independent samples were examined for each treatment with CoCl₂ (ivc = 1.3 mM), ouabain (ivc = 3.4 μM) or saline solution at 8 hpl and with CoCl₂ (ivc = 1.3 mM) or saline solution at 72 hpl. RNA was quantified with a NanoDrop 3300 spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and treated with DNAse-1. Complementary DNA (cDNA) was reverse transcribed from RNA with random primers and quantified. One-hundred nanograms of RNA were used for quantitative real-time polymerase chain reaction (qPCR; Applied Biosystems 7500, Thermo Fisher Scientific). Specific primers were selected from the zebrafish genome reported in the Ensembl database (Table 1). Quantitative PCR products were checked by electrophoresis in 2% agarose gels. No-RT controls in which the MMLV-reverse transcriptase was omitted were amplified. No-RT and cDNA-containing samples were run in triplicate. Elongation factor 1-α (ef1-α) and vascular endothelial growth factor-aa (vegfaa) gene expression showed no significant variations among groups and were amplified as reference genes. Data analyses were performed using the “Gene expression’s CT Difference” (GED) method, which considered individual amplification efficiencies (Schefe, Lehmann, Buschmann, Unger, & Funke-Kaiser, 2006). Amplification efficiencies for all samples were between 0.95 and 1.0. Results were also calculated by the 2-ΔCT (cycle threshold) method, which considers 100% reaction efficiencies (E = 1.0), and values were not significantly different from values obtained with GED analysis.

2.14 | Statistical analyses

Data are expressed as mean values ± standard error of the mean (SEM) from n independent experiments or animals. Statistical analyses were performed using one-way analysis of variance (ANOVA), with the number of positive cells as a factor, followed by Tukey’s post hoc multiple comparison test. For relative changes in gene expression (i.e., mRNA relative levels) at 8 hpl, statistical analyses were performed using the nonparametric Kruskal–Wallis test followed by Dunn’s multiple comparison test. When two groups of data were compared (i.e., control vs. CoCl₂-treatment at a particular time point), a two-tailed Student’s t test was performed, and Welch’s correction was applied when the standard deviations between groups were

Gene symbol/Gene ID	Forward 5′–3′	Reverse 5′–3′
efl1-α (ENSDARG00000020850)	cagcagctgaggaagtact	gtagatagagtcggctgtgg
gfap (ENSDARG00000025301)	gagagtggaggtttagcgc	gattecgagtcagtgctgg
ascl1a (ENSDARG00000038386)	acacctctgctcagcaaa	gacatctcacaagctgtg
lin28a (ENSDARG00000016999)	ttcttctctacaccccgcc	tcaagctcagaaaccctcct
atoh7 (ENSDARG00000069552)	acctgctcctcagctgtgct	gtcctagccgcgtgctgg
neurod (ENSDARG00000019566)	accaagggcccatgaaact	acatctgctctgctgg
hif1ab (ENSDARG00000034293)	cagcagccacattcttc	gatagctgagttgccaag
vegfaa (ENSDARG000000103542)	gtataccctgcctcggcgc	gcgtactctttgctgctgg
vegfab (ENSDARG000000134700)	tgctgcttgaattcagcaag	caccctgtgagacagaggg
infa1 (ENSDARG00000009511)	tgttttatttcaggttact	gatagctgagttgccaag
vegfr1 (ENSDARG00000019371)	gtctgtgaggaacttcag	gtcgttgctctgatgccaag
vegfr2/4 (ENSDARG000000105215)	catgtgacaccctgctgt	tcaagcttcatgggaagag
vegfr3 (ENSDARG000000104453)	cagcagctgaggaagtact	caagggccacagtggg

TABLE 1 Primers were selected by using exon sequences reported in the *Danio rerio* genome in Ensembl database. RNA transcript number (Gene ID) from the Ensembl database is shown in the first column. Selected primer pairs did not hybridize with other sequences in the genome of zebrafish. Primer pairs were designed to detect all transcript variants with coding sequences of each gene.
significantly different ($p < 0.05$). Statistic tests and significance levels (alpha values) are indicated in figure legends. F- and p-values for each statistical comparison were obtained with Graphpad Prism software and are indicated in the Results section.

3 | RESULTS

3.1 | Histology of the retina treated with CoCl$_2$ at different intervals after treatment

Morphological analyses of retina sections were performed at different intervals after a single injection of CoCl$_2$. Different concentrations of CoCl$_2$ were able to induce cell death in all, several or specific retina layers (Figure 1). At 96 hpl, a concentration of 4.0 mM CoCl$_2$ caused complete cell death across the neural retina, the retinal pigmented epithelium (RPE) and the choroid layer (Figure 1b). A concentration of 2.4 mM CoCl$_2$ caused damage to the retinas; however, a noticeable number of cells remained alive in the inner nuclear layer (INL) and ganglion cell layer (GCL) (Figure 1c). A concentration of 1.3 mM CoCl$_2$ provoked a specific lesion of the photoreceptor layer without any apparent effect on other neural retina layers (Figure 1d). Damage to photoreceptors was uniformly produced across the surface of the outer retina. Moreover, a less homogenous but conspicuous damage was observed in the RPE.

Next, we analysed the morphology of the retina at different time points following a single injection of 1.3 mM CoCl$_2$. At 50 hpl, the photoreceptor inner and outer segments (PRS) were highly disorganized, and many of them had disappeared (Figure 1f). Double cone photoreceptor nuclei disappeared shortly thereafter, followed by the complete absence of single cone and then rod nuclei in the outer nuclear layer (ONL) and ganglion cell layer (GCL) (Figure 1c). A concentration of 1.3 mM CoCl$_2$ provoked a specific lesion of the photoreceptor layer without any apparent effect on other neural retina layers (Figure 1d). Damage to photoreceptors was uniformly produced across the surface of the outer retina. Moreover, a less homogenous but conspicuous damage was observed in the RPE.

3.2 | CoCl$_2$ treatment induced caspase 3-dependent apoptosis in the photoreceptor layer

To further evaluate the effect of 1.3 mM CoCl$_2$ on photoreceptors, we used a specific antibody directed against active caspase 3, which labelled late apoptotic events. At all time points analysed, the majority of active caspase 3-positive cells were observed in the ONL (Figure 2). At 28 hpl, cells labelled with active caspase 3 were mainly observed in the double cone nuclei layer (Figure 2d–f), whereas no active caspase 3 was detected in saline solution-treated retinas (Figure 2a–c). At 50 hpl, the remaining cone nuclei were picnotic and their membrane segments were ripped, whereas rod nuclei remained with reduced density near the outer plexiform layer (OPL) (Figure 2g–i). At 72 hpl, the remaining nuclei in the ONL expressed active caspase 3, whereas the INL and GCL thickness was virtually unchanged (Figure 2j–l). A very low number of active caspase 3-expressing cells were observed in the INL.

3.3 | Death of photoreceptors caused by CoCl$_2$ triggered progenitor proliferation

The intravitreal treatment with CoCl$_2$ induced mitotic activation of progenitor Müller glia and Müller glia-derived progenitors (Figure 3). At 50 hpl, nuclei labelled with a 4-hr pulse of BrdU were observed across retina sections within a single stratum in the INL (Figure 3d–f,q). GFAP expression extended from the feet of Müller glia in the control retinas (Figure 3a–c) to their projections across inner layers (Figure 3d–f). At 50 hpl, BrdU-positive nuclei co-localise with GFAP cytoplasmic stain in the vertical processes of Müller glia. At 72 hpl, numerous proliferative clusters that were also labelled with a 4-hr pulse of BrdU were observed across the whole retina in the INL (Figure 3g–r). GFAP-positive processes were hypertrophic. The proliferative nuclei in the outer portion of the INL were, in turn, surrounded by horizontal processes of Müller glia on the ventricular side.

At 96 hpl, outer retina layers were completely absent across the whole retina section, but no conspicuous change was observed in the INL or inner plexiform layer (IPL) (Figure 3j–s). The maximum number of BrdU-positive cells was observed at 96 hpl (plot; $F = 272.4$; one-way ANOVA $p < 0.0001$). Severely damaged retinas following exposure to 2.4 mM CoCl$_2$ also exhibited a large number of proliferative cells distributed in clusters at 96 hpl (Figure 3p).

We observed Müller glia reactivity in response to injury by GFAP overexpression at 28 hpl (data not shown), with a progressive increase in GFAP expression and thickening (hypertrophy) of its cellular processes and feet until at least 96 hpl. Müller glia-derived progenitor proliferative clusters observed on the fourth day after injury were limited by the inner limiting membrane (ILM) formed by Müller glia hypertrophic feet. On the outer retina, Müller glia processes Anastomosed, resulting in limited proliferative progenitors in the region that would normally occupy the OPL, which was no longer present. At 10 dpl, many nuclei labelled with PCNA were localized in the regenerating ONL across the retina section (Figure 3m–o,t and plot). A low number of mitotically active nuclei were observed in the INL in close proximity to GFAP-positive processes. GFAP expression was significantly reduced, and it was mostly detected in the ILM and INL outer border.

Figure 4 shows the effect of 1.3 mM CoCl$_2$ on synaptic layers. At 50 hpl, the OPL was completely disorganized, as shown
by the downregulation of SV2—a protein in the membrane of presynaptic vesicles—when the PRS and the ONL were also disappearing (Figure 4e–h). At 96 hpl, the OPL was no longer detected by SV2 immunoreactivity (Figure 4i–l). SV2 expression in the IPL was not affected by CoCl2 treatment at 50 and 96 hpl.

3.4 | Specific PKC-immunoreactive bipolar cells were lost following photoreceptor cell death

BC were detected with a PKC antibody that recognized all of the subunits of this kinase (Figure 5). At 28 hpl, no significant changes in the number of BC in the INL were observed between saline- and 1.3 mM CoCl2-treated eyes at the time that the photoreceptor layer began to degenerate (data not shown). From 50 to 96 hpl, the number of BC showed a significant decrease of about 30% in injured retinas (plot in Figure 5j); \(F = 19.42, \text{one-way ANOVA} p = 0.0005 \). PKC staining was undetectable in small soma BC in the INL and in the synaptic contacts of off-BC and on-BC in the IPL (Figure 5e,f). PKC immunoreactivity detected in the Mb-type BC (rod and cone on-BC) was not affected at any interval after injury (D–I).

3.5 | Effect of glutamate ionotropic receptor antagonists on CoCl2-induced retinal damage

To better understand the mechanism of injury induced by CoCl2, we assessed the effect of treating retinas with two different glutamate ionotropic receptor antagonists several hours before and after injury induction. This was meant as a protective treatment to avoid glutamate excitotoxicity after CoCl2-induced damage. We found that nuclear layers detected with Hoechst in retinas treated with DNQX or APV showed a significantly improved morphology when analysed at 50 hpl. DNQX-treated retinas exhibited healthy double cone nuclei, and the ONL itself, including single-cone and rod nuclei, was densely populated by well-formed nuclei. Moreover, the INL was also better preserved compared to the unprotected injured retinas. The APV treatment also caused strong photoreceptor layer protection, and INL integrity was almost completely preserved. INL thickness was normal, and its nuclei were well-organized. Horizontal cell nuclei were also clearly arranged at the outer border of the INL. Principally in injured retinas treated with APV, GFAP expression in Müller cells was significantly reduced and limited to the inner limiting membrane. Nuclei detected with BrdU were observed in all retina sections treated with CoCl2, indicating a significant injury-induced increase in progenitor proliferative activity (Figure 6f–h). Nonetheless, the number of BrdU-labelled nuclei was significantly reduced in injured retinas by NMDA- or AMPA-receptor antagonist treatment (scatter plot in Figure 6; \(F = 77.55, \text{one-way ANOVA} p < 0.0001 \)).

3.6 | Differential expression of HIF-1α, VEGF and VEGFR mRNA levels in the retina at two intervals after injury

To further characterize the deleterious mechanism of CoCl2, we analysed its effect on regulating HIF-1α, VEGF and VEGFR mRNA levels. We also compared the effects of CoCl2 treatment on gene expression compared to ouabain treatment. We determined HIF-1α mRNA levels at an early interval after injury (8 hpl) in different groups of zebrafish that were injured with either 1.3 mM CoCl2 or 3.2 μM ouabain, whereas other groups of zebrafish were treated with saline solution. At 8 hpl, we found that HIF-1α mRNA levels showed a significant decrease to 0.5-fold in the retinas injured with CoCl2 relative to undamaged retinas; in comparison, ouabain-treated retinas showed a nonsignificant decrease to 0.8-fold (Figure 7a; \(p = 0.0241 \), Kruskal–Wallis statistic = 7.448). We also assessed the relative levels of vascular endothelial growth factor ab (VEGFab) and aa (VEGFaa) mRNA, which did not show significant changes by 8 hpl for either ouabain or CoCl2 (Figure 7b,c; \(p = 0.1133 \) and \(p = 0.0794 \) respectively; Kruskal–Wallis statistic = 4.356 and 5.067 respectively). At 8 hpl, VEGF receptor-1 (VEGFR1) mRNA levels showed a significant decrease to 0.4-fold in retinas damaged with CoCl2, whereas ouabain induced a nonsignificant decrease (Figure 7d; \(p = 0.0273 \), Kruskal–Wallis statistic = 7.20). In contrast, shortly following an injury, VEGF receptor-2/4 (VEGFR2/4) mRNA levels did not show changes relative to saline solution- or ouabain-treated retinas (Figure 7e; \(p = 0.1931 \), Kruskal–Wallis statistic = 3.289).

At 72 hpl with CoCl2, relative levels of HIF-1α mRNA in the mature region of neural retinas (without CMZ) did not show significant changes (Figure 7f; two-tailed unpaired \(t \) test with Welch’s correction \(p = 0.6802 \)).
FIGURE 3 BrdU and GFAP double immunolabelling in retina sections after damage with CoCl₂. Confocal images of retina sections depict 5-bromo-2′-deoxyuridine (BrdU)-positive nuclei in green, except in (M) where green stain depicts nuclei expressing PCNA. BrdU was administered in the vitreous cavity 4 hr before euthanasia. GFAP immunoreactivity is depicted in red, except in (t) where red labelling depicts nuclei expressing PCNA. Zebrafish were injected into the vitreous cavity with a single dose of 1.3 mM CoCl₂ or with saline solution (a–c) and euthanized at different intervals after injury. Images in (q, r, s, t) show whole retina sections digitally reconstructed with 9–10 photomicrographs. The image in (s) depicts a whole retina section stained with cresyl violet to reveal nuclear and plexiform layer morphology at 96 hpl. Images of retinas were obtained from groups of zebrafish euthanized at: 50 hpl (d–f, q); 72 hpl (g–i, r); 96 hpl (j–l, s, p); and 10 dpl (m–o, t). The section depicted in (p) was obtained from a retina injured with a single dose of 2.4 mM CoCl₂. The graph shows the number of proliferative cells per retinal section at different intervals after CoCl₂ or saline solution treatment. ***p < 0.001; &&&p < 0.001 (vs. control) by Tukey’s multiple comparison test after one-way ANOVA (n = 5 zebrafish per group). PCNA: proliferating cell nuclear antigen; GFAP: glial fibrillary acidic protein; RPE: retina pigmented epithelium, PRS: photoreceptor segments, ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, GCL: ganglion cell layer, hpl: hours after lesion, dpl: days after lesion. Scale bar indicates 35 μm (a); 400 μm (q). [Colour figure can be viewed at wileyonlinelibrary.com]
same interval after injury, VEGFab mRNA levels showed a significant increase of about 40-fold, whereas VEGFaa mRNA levels showed no significant changes (Figure 7g,h; two-tailed unpaired t test with Welch’s correction \(p = 0.0134, p = 0.3764 \) respectively). At 72 hpl, relative levels of VEGFR1, VEGFR2/4 and VEGFR3 mRNA showed significant increases of 10-, 30- and 15-fold, respectively, in mature neural retinas treated with 1.3 mM CoCl\(_2\) (Figure 7i–k; two-tailed unpaired t test with Welch’s correction \(p = 0.0481, p = 0.0394, \) and \(p = 0.0354 \) respectively). Relative levels of HIF-1\(\alpha\), VEGF and VEGF receptor mRNA in injured retinas were compared with mRNA levels that were identified in undamaged, saline solution-treated mature neural retinas. An increase in HIF-1\(\alpha\) gene expression was expected to occur shortly after injury with CoCl\(_2\). In contrast, our findings indicated that CoCl\(_2\) detrimental effect on retinal cells was likely not mediated by HIF-1\(\alpha\) gene induction.

3.7 | Effects on pluripotency and proneural basic helix-loop-helix (bHLH) gene expression following treatment with CoCl\(_2\)

The importance of the two pluripotency genes \textit{ascl1a} and \textit{lin28a} for retinal repair, which are expressed by injury-induced multipotent progenitors, has been extensively described elsewhere (Ramachandran, Fausett, & Goldman, 2010). We determined the relative expression

![Figure 4](image-url)
of these genes in mature regions of the neural retina. We found that the relative levels of ascl1a and lin28a mRNA showed significant increases of about 70- and 3,000-fold, respectively, by 72 hpl when compared with the expression levels of these genes normally observed in uninjured saline solution-treated retinas (Figure 8a,b; \(p = 0.0241 \), \(p = 0.0413 \), respectively, two-tailed unpaired \(t \) test with Welch’s correction). Furthermore, we quantified the relative expression of transcripts of two proneural bHLH factors that are expressed in progenitors of the photoreceptor cell lineage at different stages during development and retinogenesis, as well as in the regeneration of adult zebrafish retina (Poggi, Vitorino, Masai, & Harris, 2005; Taylor et al., 2015). The relative transcriptional expression level of atonal 7 (atoh-7), determined in the mature region of neural retinas, showed a significant increase of about 35-fold when assessed at 72 hpl (Figure 8c; two-tailed unpaired \(t \) test with Welch’s correction \(p = 0.0240 \)). In contrast, the relative expression levels of the mRNA of neurod (D) were not affected by cobalt treatment at the early interval of 72 hpl.

The relative mRNA expression levels of two injury-induced genes—GFAP and tumour necrosis factor alpha (TNFα)—in mature neural retinas without the CMZ were significantly increased by about 30- and 15-fold, respectively, by 72 hpl (Figure 8e,f; \(p = 0.0328 \), \(p = 0.0373 \), respectively, two-tailed unpaired \(t \) test with Welch’s correction).

3.8 | Activation of microglia in specific regions of the mature retina and the CMZ following treatment with CoCl2

Microglial cells were principally located in the peripheral tissue contiguous to the CMZ and around the collector circumferential vein (CV) (Figure 9a–d). An injury-induced increase in the number and size of microglial cells was observed in the CMZ and retinal ganglion cell (RGC) differentiating area at 55 hpl (Figure 9e–h), which temporally coincided with an increase in the proliferative activity of the CMZ (Figure 9r; two-tailed unpaired \(t \) test \(p = 0.0001 \)) and adjacent areas.

A significantly higher number of microglial cells were observed across retina sections in the fibre layer at 55 hpl (Figure 9m–p and plot in Q; two-tailed unpaired \(t \) test with Welch’s correction \(p = 0.0294 \)). In contrast, BrdU-positive cell numbers did not change in the GCL or fibre layer.

3.9 | The morphology of retina blood vessels at three intervals after injury caused by CoCl2

At 96 hpl with a single intravitreal injection of CoCl2, main artery branches (approximately 6–7 grade I arteries) emerging from the optic disc showed signs of oedema, rupture and leakage (Figure 10h–j). Erythrocytes were tightly packed inside the swollen vessels (Figure 10h). Capillary vessels branching at the retina periphery were ripped, and blood cells were spread in the parenchyma, which was also damaged in this zone (Figure 10i,j). In uninjured retinas (Figure 10e–g), grade III–V blood vessels were parallel to each other and followed straight paths. In contrast, vessels followed erratic and curvy pathways in CoCl2-treated retinas.

Eleven days after injury with a single dose of CoCl2 main artery branches appeared to be repaired, and their number was slightly increased (8–9), whereas grade II ramifications occurred closer to the optic disc compared to grade II ramifications in the control retinas (Figure 10k). At 11 dpl, capillary vessels in the retina periphery re-established their connections with the CV (Figure 10l,m).

A three-dose CoCl2 treatment administered at 0, 7 and 15 dpl generated severe damage to the retinal tissue (data not shown). At 20 dpl, the main optic artery exhibited 11–12 primary branches, some of which formed anastomosis loops (Figure 10n). Peripheral blood capillaries also showed a higher degree of branching (grade VI or higher), growth tips, anastomosis bridges and tortuous trajectories (Figure 10o,p).
This work characterized for the first time the use of CoCl₂ to cause specific photoreceptor cell death across the surface of the outer retina in adult zebrafish. Similar to other types of damage, the intravitreal injection of CoCl₂ induced cell death and Müller glia reprogramming and the subsequent mitotic activation of Müller glia-derived multipotent progenitors.
4.1 The induction of photoreceptor cell death following CoCl2 injury

Several active caspase 3-expressing cells were detected in the ONL at different time points after injury. Apoptotic cells and picnotic nuclei were first observed in the region occupied by double cone nuclei, then in the region occupied by single-cone nuclei and, finally, in the internal half of the ONL, which was composed only of rod nuclei. These findings and morphological observations of the damaged tissue indicated that photoreceptors died in an orderly sequence after CoCl2 treatment. Photoreceptors completely disappeared in the following order: (a) their segments, (b) their nuclei, and (c) their end feet, which was concordant with the way photoreceptors die in neurodegenerative eye diseases caused by ischemic, hypoxic and angiogenic disorders (Holopigian, Greenstein, Seiple, Hood, & Carr, 1997; Kern & Berkowitz, 2015; Scarinci, Nesper, & Fawzi, 2016). Not every cell in the dying tissue expressed active caspase 3, at least not simultaneously, which may indicate that many cells likely die through caspase 3-independent apoptotic mechanisms. It is possible that necrosis and autophagy are also involved in photoreceptor cell death (Bellot et al., 2009).

Cobalt-associated mechanisms of toxicity are far from being understood. CoCl2 might induce photoreceptor cell death by inhibiting prolyl hydroxylase activity, which regulates HIF-1α degradation. The cellular effects triggered by CoCl2 generate equivalent conditions as the ones observed in in vivo hypoxic microenvironments, and they share identical signal transduction and transcriptional regulation pathways (Bruick, 2003; Dui et al., 2012; Li, Wang, Yang, & Lin, 2006). It has been suggested that CoCl2 also affects haemoglobin, preventing an oxygen supply from reaching cells (Maines & Sinclair, 1977). However, we have not observed HIF-1α transcription induction at early (8 hpl) and late (72 hpl) intervals after injury. In vitro experiments have indicated that HIF-1α mRNA levels are increased from 30 min to 2–3 hr after hypoxia or CoCl2 treatment and they decay significantly over time, whereas the protein content remains elevated (Chamboredon et al., 2011; Li et al., 2006). Our in vivo experiments showed that relative levels of HIF-1α mRNA were decreased by 8 hpl following CoCl2 treatment, and to a lesser degree following ouabain treatment. At 72 hpl following CoCl2 treatment, HIF-1α mRNA retina levels were variable, but on average, they were not different from levels found in noninjured retinas. The initial decrease might indicate a possible feedback mechanism of the accumulated HIF-1α protein on its transcription, limiting the deleterious accumulation of this protein. Despite extensive attempts, we have not been able to reliably demonstrate whether CoCl2 intracellular treatment modifies HIF-1α protein content in the zebrafish retina at 24 hpl (data not shown). Furthermore, VEGF and VEGFR mRNA levels were not changed at 8 hpl, whereas VEGFR1 was reduced by the CoCl2 treatment, which is also at odds with chemical hypoxia effects.

On the other hand, CoCl2-induced cell injury might be due to its many and not completely characterized cytotoxic effects. For instance, it may be that photoreceptors die because Co2+ blocks Ca2+ entry, thereby interfering with intracellular Ca2+ homeostasis and signalling (Krizaj & Copenhagen, 2002; Scharf et al., 2014). It has been demonstrated that Co2+ is internalized in cells, provoking severe oxidative stress and necrotic, as well as apoptotic, cell death (Uboldi et al., 2016). In the present work, we observed that ouabain, which blocks Na+/K+-ATPases, affected relative levels of HIF-1α and VEGFR1 mRNA similar to CoCl2 in a short period following injury; however, the ouabain dose we assayed principally damaged inner retina cells (Battista, Ricatti, Pafundo, Gautier, & Faillace, 2009; Fimbel et al., 2007), indicating that their cytotoxic effects involved different mechanisms affecting different types of cells. In our assays, CoCl2 primarily damaged photoreceptors, and cones were the most sensitive to cobalt-toxicity. In agreement with our results, intense light lesions that primarily kill photoreceptors induced downregulation of HIF-1α transcripts in Müller glia between 8 and 36 hr after light treatment (Qin, Barthel, & Raymond, 2009). Nevertheless, it remains unclear why photoreceptors were the main type of cell affected by exposure to 1.3 mM CoCl2.

CoCl2 may also cause RPE cell death, which may in turn provoke photoreceptor death. This seems plausible given that RPE cells were injured early after CoCl2 treatment. However, the outer and inner segments of photoreceptors were concomitantly disrupted, followed by cone and then rod nuclei disappearance. More likely, the dose of CoCl2 that we assessed was directly deleterious to both RPE and photoreceptor cells. Cones present a higher metabolic rate and are more susceptible to hypoxic environments (Kawamura & Tachibanaki, 2008); therefore, their death might be due to CoCl2-induced cytotoxicity in choroid vessels, which leads to O2 deficit. Nonetheless, whether 1.3 mM CoCl2 kills photoreceptors via cytotoxic mechanisms, hypoxia-like mechanisms (probably indirectly) or both remains unclear.

4.2 The extensive activation of multipotent progenitors across the INL following CoCl2 treatment

Co-localization of BrdU-positive nuclei and GFAP cytoplasmic labelling in the same cells in the INL at 50 hpl indicated that the mitotically active cells were likely reprogrammed Müller glia and some early derived progenitors. At 72 hpl, a strong increase in the number of proliferative cells was likely due to an exponential production of rapidly dividing progenitors that originated from injury-responsive Müller glia. We observed that the injury following exposure to CoCl2, which targeted and killed virtually all photoreceptors, accelerated
the induction and rate of progenitor proliferation activity, peaking between 72 and 96 hpl. In contrast, when the injury was caused with a single injection of ouabain (either at a low, medium or high dose), the Müller glia-derived progenitor proliferative peak was observed at 5–7 dpl (Fimbel et al., 2007; Medrano et al., 2017; Sherpa et al., 2008).

A single intravitreal injection of ouabain at low concentrations damages inner retina cells (Fimbel et al., 2007),
FIGURE 9 Proliferative nuclei and microglial cells in the mature retina and the CMZ after lesion with CoCl₂. Zebrafish retinas were treated in vivo with 1.3 mM CoCl₂ or with an equivalent volume of saline solution (a-d and i-l) and euthanized at 55 hr after lesion with the cobalt salt (e-h and m-p). Microglial cells specifically labelled with *Griffonia simplicifolia* lectin 1 (GSL1) are depicted in green, and cell nuclei labelled with Hoechst and 5-bromo-2′-deoxyuridine (BrdU)-positive nuclei are depicted in blue and red respectively. BrdU was injected in the vitreous cavity 4 hr before euthanasia. Arrows in (b, f) show nuclei labelled with GSL1 in the ciliary epithelium, peripheral blood vessels (BV) and adjacent regions to the ciliary marginal zone (CMZ). Arrows in (j) depicts a low number of GSL1-positive cells in the GCL of saline solution-treated retinas. Arrows in (c) depict BrdU-positive cells in the CMZ and regions of differentiating retina adjacent to the CMZ. Arrowheads in (f, g) show photoreceptor segment debris. The arrowhead in (k, l) likely depicts a proliferating endothelial cell. Arrows in (h, p) indicate co-labelling of GSL1 and BrdU in a microglial cell. Dotted lines approximately delimit BV, CMZ and retinal ganglion cell (RGC) differentiating region. Scatter plots depict the average number of microglial cells in the GC and fibre layers (q) and BrdU-positive cells per CMZ (r) in a 16-μm thick retina section obtained 55 hpl from eyes treated with saline solution or 1.3 mM CoCl₂. *p < 0.05 and **p < 0.001 by two-tailed unpaired *t* test with Welch’s correction (*n* = 4 zebrafish per group) or two-tailed unpaired *t* test (*n* = 6 zebrafish per group). Hpl: hours after lesion, PRS: photoreceptor segments, DCN: double cone nuclei, ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, GCL: ganglion cell layer. Scale bars = 50 μm (e) and 20 μm (p). [Colour figure can be viewed at wileyonlinelibrary.com]
whereas higher doses of ouabain provoke cell death across all retina layers, including RPE and choroid cells (Medrano et al., 2017; Sherpa et al., 2008). In contrast, injury with intense light causes photoreceptor death as the original and principal effect (Rajaram et al., 2014; Weber et al., 2013; Wu et al., 2001). Results from our research group and from other authors suggest that the injury of photoreceptors induces a more potent damage-induced signalling, which in turn causes a faster activation of the proliferative response across the tissue.

A key fact we observed with CoCl₂ treatment was that photoreceptor cell loss was extensive and homogenous across the
retinal surface in almost all sections examined in each eye. Furthermore, CoCl₂ treatment homogenously increased multipotent progenitor proliferative activity across the whole retina surface, including the CMZ, soon after injury. Therefore, this paradigm model can be used to cause cell death in all photoreceptors in wild-type zebrafish, and it can be used as an alternative to light or laser damage. Light damage is mainly effective on albino zebrafish; very high-intensity light and several weeks of dark adaptation are required to induce damage in wild-type zebrafish retinas. Moreover, light injury in wild-type zebrafish is restricted to localized portions of the retina. For instance, the periphery is much less affected by intense light than the central part of the retina, and photoreceptors are affected in specific patches (Rajaram et al., 2014; Weber et al., 2013). Previous research characterized a lesion paradigm with N-Methyl-N-Nitrosourea (MNU) in adult wild-type zebrafish retina that preferentially affected rod photoreceptors (Tappeiner et al., 2013). The lesion paradigm we characterized in the present report completely eliminated cone photoreceptors first and then rod photoreceptors by 72 hpl.

4.3 | Regeneration of photoreceptors

On day 10 after injury, a relatively high number of proliferating progenitors were observed, mostly in the ONL. These mitotically active cells were likely rod and cone precursors that entered the S phase or remained in the G2 phase of the cell cycle when they were detected 10 days after damage (Lenkowski & Raymond, 2014; Wu et al., 2001). The number of proliferating cells was significantly higher than the proliferative activity generally detected in the ONL (rod precursors only) during normal growth. Moreover, a few dividing nuclei of injury-induced Müller glia were detected in the INL, suggesting that novel precursors in the ONL were still being generated by multipotent Müller glia.

At 25 dpl, we observed a conspicuous morphological regeneration of many cone cells, including their outer segments, in the newly formed ONL. The sequential differentiation of cone photoreceptors first, followed by rod photoreceptors, was in agreement with the formation of cells from retinal multipotent progenitors during retinogenesis (Poggi et al., 2005).

4.4 | Other retina layer effects caused by exposure to CoCl₂

The OPL was dismantled and the end feet of photoreceptors were severely damaged at 50 hpl, whereas the IPL thickness, which was also detected at the presynaptic level, was not significantly damaged. This further suggests that treatment with 1.3 mM CoCl₂ killed mainly photoreceptors. However, around 30% of BC were affected by injury at 50 hpl. Damage of INL cells can be ascribed to cytotoxic effects of CoCl₂, the death of photoreceptors or both. For instance, BC death, which occurs at a later interval after CoCl₂ injury, could be due to the absence of trophic signals released by photoreceptors or the impairment of function (that is, synaptic and electric activity) between outer- and inner-layer neurons. Glutamate released by dying photoreceptors might also be cytotoxic to BC (Anastassov, Ripps, & Chappell, 2014). In fact, almost all off-BC were affected by CoCl₂ treatment, and this cell type expresses excitatory cationic channel-associated glutamate receptors.

Horizontal cells in the INL, which form reciprocal synaptic connections with the end feet of photoreceptors, were also disrupted. Horizontal cell nuclei were affected by the time presynaptic portions of the OPL dismembered. Nevertheless, it was difficult to distinguish horizontal cell nuclei after damage because progenitors were migrating from the INL to the ONL by 72 hpl.

4.5 | Glutamate activation of NMDA and AMPA/kainate receptors as a mediator of CoCl₂ cytotoxicity

Retinas that were protected against glutamate excitotoxicity, with either NMDA or AMPA-receptor antagonists before and after damage induction, showed diminished progenitor proliferation levels compared with the proliferation levels observed in unprotected injured retinas. DNQX treatment robustly protected cone and rod photoreceptors and INL nuclei by 50 hpl. APV-treated retinas showed strongly protected nuclei in the ONL and particularly healthy and orderly distributed nuclei in the INL, including horizontal cell nuclei. These findings indicated that CoCl₂-induced second-order neuron death was probably mediated by glutamate cytotoxicity through AMPA and NMDA receptor activation. Moreover, CoCl₂-induced photoreceptor death involved, at least in part, glutamate-mediated cytotoxicity. Enhanced cell survival and improved retinal layer lamination, together with a significantly low degree of progenitor proliferation and a decreased glial reactivity to injury of Müller cells, indicated the protective nature of both antagonists of glutamate effects (Choi, 1988). These findings suggest that progenitor mitotic activation in the INL induced by the death of photoreceptors is partially, but significantly, mediated by glutamate binding to NMDA and AMPA/kainate receptors in outer and inner retina cells. Furthermore, our findings suggest that binding of glutamate to these receptors may be crucial for CoCl₂-induced photoreceptor cell death propagation across the whole retina surface (Saade, Alvarez-Delfin, & Fadool, 2013).

4.6 | Proneural gene induction with CoCl₂ at 72 hpl

Induction of the expression of the proneural bHLH transcription factor Ascl1a and the pluripotency factor Lin-28...
is needed for the injury-induced reprogramming of multipotent Müller glia following injury (Powell et al., 2016; Ramachandran et al., 2010). These gene transcripts, principally lin28a, are barely detected in undamaged neural retinas. We observed a significant increase in the transcriptional expression of these genes by 72 hpl, in agreement with the time of multipotent progenitor amplification. Furthermore, transcripts of the proneural bHLH factor Atoh7 were significantly increased in injured retinas by 72 hpl. In developmental retinogenesis of zebrafish, Atoh7 is required for RGC genesis; however, not all Atoh7-positive cells differentiate as RGC. This transcription factor is expressed in early multipotent progenitors of other retinal neurons, including photoreceptors (Bassett & Wallace, 2012; Poggi et al., 2005). Therefore, our findings indicate that Atoh7 transcriptional expression is induced early in proliferative multipotent progenitors that will primarily generate photoreceptors to replace lost cells. The transcription factor NeuroD is expressed by progenitors of photoreceptor and amacrine cells in vertebrate retinogenesis, and it induces photoreceptor genesis and differentiation in adult zebrafish retina regeneration (Taylor et al., 2015). In contrast to Atoh7, NeuroD transcriptional expression—which also induces cell cycle exit to initiate photoreceptor genesis—was not yet increased in Müller glia-derived multipotent progenitors by 72 hpl, probably because it was too early to induce photoreceptor genesis in this proliferative phase.

4.7 Injury-induced microglia activation and distribution in retina layers

Microglial cell number and distribution were significantly augmented after injury with CoCl2. However, microglial migration and proliferation were enhanced, albeit in a limited manner. For instance, microglial cells present in the fibre layer across the retina were more numerous after injury, but they remained localized in the same layer in which they were likely associated with the capillary network. Microglia migration to the IPL, INL or outer retina layers was never observed. Microglial cells detected in the ciliary epithelium before damage occupied a wider area adjacent to the CMZ and differentiating RGC region after injury. Activated microglial cells principally remained associated with areas surrounding peripheral vascular vessels. A similar situation was observed in whole-mount retinas; microglial cells occupied an extensive area around capillaries and the CV in the periphery and around the optic artery main branches of the injured retina. A recent report indicated that CoCl2 kills microglial cells in porcine retina cell organotypic cultures (Kuehn et al., 2017). In vitro conditions can be much more stringent than in vivo environments, which can trigger effective protective mechanisms and removal of toxic agents from the eye. Microglia activation releases proinflammatory signals—such as TNFα, among others cytokines—that trigger Müller glia reprogramming and mitotic activation (Nelson et al., 2013). Microglia activation and proinflammatory signal secretion might induce early mitotic activity in retinal areas adjacent to the optic disc and CMZ (at 55 hpl). It has been demonstrated that cultured RGC from rat samples release cytokines, including TNFα and several interleukins, to the extracellular medium (Lim, Lu, Beckel, & Mitchell, 2016). Our results showed that TNFα transcriptional expression was increased by 72 hpl, supporting the idea of enhanced TNFα release and its involvement in the induction of multipotent cell proliferation, in addition to its known proinflammatory role. Nevertheless, the proliferative activity of retinal tissue might be activated by TNFα in specific zones, as well as by several other characterized extracellular signals provided by lytic photoreceptors (Battista et al., 2009; Lenkowski & Raymond, 2014; Medrano et al., 2017; Powell et al., 2016).

4.8 Angiogenic effects of CoCl2-induced injury

We observed that VEGF Fab mRNA levels, as well as VEGFR1, VEGFR2/4 and VEGFR3 mRNA levels, were enhanced by 72 hpl, indicating the activation of angiogenic signalling pathways and the regenerative angiogenic response after 3 days of inducing damage with CoCl2.

Intraretina blood vessels were damaged by 96 hpl, indicating ischemic and hypoxic conditions. We normally observed 6–7 primary branches of the main optic artery in control zebrafish. These branches were significantly swollen and torn. Blood cells leaked out to the parenchyma due to rupture of the peripheral capillary–CV circuitry, which was observed by 4 days after injury with a single injection of CoCl2 and which suggested blood supply interruption.

At 11 dpl, primary branches in the optic disc area exhibited unswollen vascular walls, a slight increase in the number of branches (8–9) and secondary branching that occurred closer to the optic disc. Neovascular-like effects were more evident at 20 dpl when the retinal tissue was severely damaged with a three-dose treatment of CoCl2. These effects were likely causally related to the several-fold increases in the transcripts of vegfab and vegfr2/4 genes that were observed at 72 hpl. At this interval, parenchyma and endothelial cells regrew and partially recovered from injury. Main artery branches were more numerous (11–12) than in undamaged retinas, and some of them formed loops by anastomosis. Neovascular-like effects were also evident at the retina periphery where the capillaries join the CV. We found that capillary growth showed signs of neovascularization, such as enhanced branching (higher than grade VI); a tortuous morphology; and the presence of angiogenic tips and horizontal bridges between neighbouring capillaries,
which formed local loops that prevented normal blood flow. Similar effects were previously described in adult zebrafish in conditions where hypoxic damage occurred following 80–90% O2 depletion in aquarium water for several days (Cao et al., 2010).

The effect of CoCl2 treatment on angiogenic gene (vegf and vegfr) expression and intraretina blood flood interruption (ischaemia) observed by 72 and 96 hpl, respectively, could not be ascribed to HIF-1α-induction, but it was likely a consequence of Co2+ toxicity in endothelial cells. Indeed, early effects of cobalt (8 hpl) provoked a decrease in both HIF-1α and VEGFR1 mRNA levels, and it did not affect VEGFα, VEGFaa or VEGFR2/4 transcription, which could be induced by enhancements in the intracellular level of HIF-1α. Additionally, HIF-1α mRNA levels showed no change by 72 hpl, whereas VEGF and VEGFR mRNA levels were significantly enhanced.

Damage with a regulated concentration of CoCl2 could be appropriate for the investigation of cellular mechanisms underlying the regenerative response in the adult zebrafish retina, with an almost complete absence of differentiated photoreceptors together with damage to blood vessels. Other in vivo and in vitro models induced by CoCl2 have been described in mammalian retinas (Hara et al., 2006; Kuehn et al., 2017). CoCl2 kills inner retina and microglial cells in organotypic cultures of porcine retina. However, in vivo models in mouse indicated that controlled doses of CoCl2 delivered in the vitreous cavity kill mainly photoreceptors, as we observed in the adult zebrafish retina.

Furthermore, an in vivo model of the adult zebrafish retina may be useful for the study of changes in the homeostatic interaction of neurons, glial cells and endothelial cells after injury (Ail & Perron, 2017; Chávez et al., 2016). Finally, repeated injections of low doses of CoCl2 caused a moderate degree of aberrant angiogenesis, which provides an alternative animal model for the study of drugs that can control this process in regenerative retinas in place of neovascularization models induced by hypoxia in the whole animal (Cao et al., 2010; Wu et al., 2015).

ACKNOWLEDGEMENTS

We thank Dr. José Maria Delfino from The Institute of Biological Chemistry and Physic-chemistry (IQUIFIB, CONICET and University of Buenos Aires) for supplying cobalt chloride salt and insightful comments about this research. We also thank Dr. María Cecilia Sánchez from the Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba for kindly supplying anti-HIF-1α antibody (data not shown). Monoclonal antibody SV2 developed by Dr. Kathleen Buckley (Department of Neurobiology, Harvard Medical School) was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City, IA 52242.

CONFLICT OF INTEREST

The authors declare no competing financial interests.

DATA ACCESSIBILITY

Data analysed in this study is available from the corresponding author on reasonable request.

AUTHOR’S CONTRIBUTION

MPM contributed towards the conception and design, acquisition of data, initial draft, analysis and interpretation of data and manuscript revision. APF helped with the acquisition of data, data analysis and contributed to the final version of the manuscript. MPM contributed towards the conception and design, data interpretation, critical review and resources. MFP contributed towards the conception and design, analysis and interpretation of data, writing/manuscript preparation, resources and funding, manuscript revision, and final approval of the manuscript.

ORCID

Maria Paula Faillace http://orcid.org/0000-0002-9230-8138

REFERENCES

Ail, D., & Perron, M. (2017). Retinal degeneration and regeneration-lessons from fishes and amphibians. Current Pathobiology Reports, 5, 67–78. https://doi.org/10.1007/s40139-017-0127-9
Anastassov, I., Rippis, H., & Chappell, R. L. (2014). Cytoprotection by endogenous zinc in the vertebrate retina. Journal of Neurochemistry, 129, 249–255. https://doi.org/10.1111/jnc.12627
Barbazuk, W. B., Kor, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., … Johnson, S. L. (2000). The syntenic relationship of the zebrafish and human genomes. Genome Research, 10, 1351–1358. https://doi.org/10.1101/gr.144700
Bassett, E. A., & Wallace, V. A. (2012). Cell fate determination in the vertebrate retina. Trends in Neurosciences, 35, 565–573. https://doi.org/10.1016/j.tins.2012.05.004
Battista, A. G., Ricatti, M. J., Pafundo, D. E., Gautier, M. A., & Faillace, M. P. (2009). Extracellular ADP regulates lesion-induced in vivo cell proliferation and death in the zebrafish retina. Journal of Neurochemistry, 111, 600–613. https://doi.org/10.1111/j.1471-4159.2009.06352.x
Bellot, G., Garcia-Medina, R., Gounon, P., Chiche, J., Roux, D., Pouysségur, J., & Mazure, N. M. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular
and Cellular Biology, 29, 2570–2581. https://doi.org/10.1128/MCB.00166-09
Brück, R. K. (2003). Oxygen sensing in the hypoxic response pathway: Regulation of the hypoxia-inducible transcription factor. Genes & Development, 17, 2614–2623. https://doi.org/10.1101/gad.1145503
Cao, Z., Jensen, L. D., Rouhi, P., Hosaka, K., Lanne, T., Steffensen, J. F., … Cao, Y. (2010). Hypoxia-induced retinopathy model in adult zebrafish. Nature Protocols, 5, 1903–1910. https://doi.org/10.1038/nprot.2010.149
Chamboredon, S., Ciais, D., Desroches-Castan, A., Savi, P., Bono, F., Feige, J., & Cherradi, N. (2011). Hypoxia-inducible factor-1α mRNA: A new target for destabilization by tristetraprolin in endothelial cells. Molecular Biology of the Cell, 22, 3366–3378. https://doi.org/10.1091/mbc.e10-07-0617
Chávez, M. N., Aedo, G., Pacheco, A., Allende, M. L., & Egana, J. T. (2016). Zebrafish as an emerging model organism to study angiogenesis in development and regeneration. Frontiers in Physiology, 7, 56.
Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1, 623–634. https://doi.org/10.1016/0896-6273(88)90162-6
Cunvong, K., Huffmire, D., Ethell, D. W., & Cameron, D. J. (2013). Amyloid-beta increases capillary bed density in the adult zebrafish retina. Investigative Ophthalmology & Visual Science, 54, 1516–1521. https://doi.org/10.1167/iovs.12-10821
Dai, Z. J., Gao, J., Ma, X. B., Yan, K. L., Liu, Y. X., Kang, H., … Wang, X. J. (2012). Up-regulation of hypoxia inducible factor-1α by cobalt chloride correlates with proliferation and apoptosis in PC-2 cells. Journal of Experimental & Clinical Cancer Research, 31, 28. https://doi.org/10.1186/1756-9966-31-28
Ersoy, I., Unyazik, F., Chagin, V., Cardoso, M. C., & Palaniappan, K. (2009). Segmentation and classification of cell cycle phases in fluorescent imaging. Medical image computing and computer-assisted intervention: MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention, 5762, 617–624.
Fimbel, S. M., Montgomery, J. E., Burket, C. T., & Hyde, D. R. (2007). Regeneration of inner retinal neurons after intravitreal injection of ouabain in zebrafish. Journal of Neuroscience, 27, 1712–1724. https://doi.org/10.1523/JNEUROSCI.5317-06.2007
Gemberling, M., Bailey, T. J., Hyde, D. R., & Poss, K. D. (2013). The zebrafish as a model for complex tissue regeneration. Trends in Genetics, 29, 611–620. https://doi.org/10.1016/j.tig.2013.07.003
Goldberg, M. A., & Schneider, T. J. (1994). Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. Journal of Biological Chemistry, 269, 4355–4359.
Harada, A., Niwa, M., Aoki, H., Kumada, M., Kunisada, T., Oyama, T., … Mori, H. (2006). A new model of retinal photoreceptor cell degeneration induced by a chemical hypoxia-mimicking agent, cobalt chloride. Brain Research, 1109, 192–200. https://doi.org/10.1016/j.brainres.2006.06.037
Holopigian, K., Greenstein, V. C., Seiple, W., Hood, D. C., & Carr, R. E. (1997). Evidence for photoreceptor changes in patients with diabetic retinopathy. Investigative Ophthalmology & Visual Science, 38, 2355–2365.
Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., … Ratcliffe, P. J. (2001). Targeting of HIF-α-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468–472. https://doi.org/10.1126/science.1059796
Kawamura, S., & Tachibanaaki, S. (2008). Rod and cone photoreceptors: Molecular basis of the difference in their physiology. Comparative Biochemistry and Physiology Part A Molecular Integrative Physiology, 150, 369–377. https://doi.org/10.1016/j.cbpaa.2008.04.600
Kern, T. S., & Berkowitz, B. A. (2015). Photoreceptors in diabetic retinopathy. Journal of Diabetes Investigation, 6, 371–380. https://doi.org/10.1111/jdi.12312
Krizaj, D., & Copenhagen, D. R. (2002). Calcium regulation in photoreceptors. Frontiers in Bioscience, 7, d2023. https://doi.org/10.2741/A896
Kuehn, S., Hurst, J., Rensinghoff, F., Tsai, T., Grauthoff, S., Satgunarajah, Y., … Joachim, S. C. (2017). Degenerative effects of cobalt-chloride treatment on neurons and microglia in a porcine retina organ culture model. Experimental Eye Research, 155, 107–120. https://doi.org/10.1016/j.exer.2017.01.003
Ladoux, A., & Frelin, C. (1994). Cobalt stimulates the expression of vascular endothelial growth factor mRNA in rat cardiac cells. Biochemical and Biophysical Research Communications, 204, 794–798. https://doi.org/10.1006.bbrc.1994.2529
Lenkowski, J. R., & Raymond, P. A. (2014). Muller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Progress in Retinal and Eye Research, 40, 94–123. https://doi.org/10.1016/j.preteyeres.2013.12.007
Li, Q. F., Wang, X. R., Yang, Y. W., & Lin, H. (2006). Hypoxia upregulates hypoxia inducible factor (HIF)-3α expression in lung endothelial cells: Characterization and comparison with HIF-1α. Cell Research, 16, 548. https://doi.org/10.1038/sj.cr.7310072
Lim, J. C., Lu, W., Beckel, J. M., & Mitchell, C. H. (2016). Neuronal release of cytokine IL-3 triggered by mechanosensitive autostimulation of the P2X7 receptor is neuroprotective. Frontiers in Cellular Neuroscience, 10, 270.
Maines, M. D., & Sinclair, P. (1977). Cobalt regulation of heme synthesis and degradation in avian embryo liver cell culture. Journal of Biological Chemistry, 252, 219–223.
Masoud, G. N., & Li, W. (2015). HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B, 5, 378–389. https://doi.org/10.1016/j.apsb.2015.05.007
Medrano, M. P., Bejarano, C. A., Battista, A. G., Caro, J. (1994). Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Journal of Cell Biology, 1109, 192–200. https://doi.org/10.1016/j.jcb.2006.06.037
Mensinger, A. F., & Powers, M. K. (2007). Visual function in regenerating teleost retina following surgical lesioning. Visual Neuroscience, 24, 299–307. https://doi.org/10.1017/S0905252307070265
Minchenko, A., Bauer, T., Salceda, S., & Caro, J. (1994). Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Laboratory Investigation, 71, 374–379.
Nelson, C. M., Ackerman, K. M., O’Hayer, P., Bailey, T. J., Gorsuch, R. A., & Hyde, D. R. (2013). Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration. Journal of Neuroscience, 33, 6524–6539. https://doi.org/10.1523/JNEUROSCI.3838-12.2013
Poggi, L., Vitorino, M., Masai, L., & Harris, W. A. (2005). Influences on neural lineage and mode of division in the zebrafish retina in vivo. Journal of Cell Biology, 171, 991–999. https://doi.org/10.1083/jcb.200509098
Powell, C., Cornblath, E., Elsaedi, F., Wan, J., & Goldman, D. (2016). Zebrafish Muller glia-derived progenitors are multipotent, exhibit proliferative biases and regenerate excess neurons. *Scientific Reports*, 6, 24851. https://doi.org/10.1038/srep24851

Qin, Z., Barthel, L. K., & Raymond, P. A. (2009). Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish. *Proceedings of the National Academy of Sciences of the United States of America*, 106, 9310–9315. https://doi.org/10.1073/pnas.0811186106

Rajaram, K., Summerbell, E. R., & Patton, J. G. (2014). Technical brief: Constant intense light exposure to lesion and initiate regeneration in normally pigmented zebrafish. *Molecular Vision*, 20, 1075–1084.

Ramachandran, R., Fauvet, B. V., & Goldman, D. (2010). Ascl1a regulates Muller glia dedifferentiation and retina regeneration via a Lin-28-dependent, let-7 miRNA signaling pathway. *Nature Cell Biology*, 12, 1101–1107. https://doi.org/10.1038/ncb2115

Rezzola, S., Paganini, G., Semeraro, F., Presta, M., & Tobiam, C. (2016). Zebrafish (*Danio rerio*) embryo as a platform for the identification of novel angiogenesis inhibitors of retinal vascular diseases. *Biochimica et Biophysica Acta*, 1862, 1291–1296. https://doi.org/10.1016/j.bbadis.2016.04.009

Saade, C. J., Alvarez-Delfin, K., & Fadool, J. M. (2013). Rod photoreceptors protect from cone degeneration-induced retinal remodelling and restore visual responses in zebrafish. *Journal of Neuroscience*, 33, 1804–1814. https://doi.org/10.1523/JNEUROSCI.2910-12.2013

Scarinci, F., Nesper, P. L., & Fawzi, A. A. (2016). Deep retinal capillary non-perfusion is associated with photoreceptor disruption in diabetic macular ischemia. *American Journal of Ophthalmology*, 168, 129–138. https://doi.org/10.1016/j.ajo.2016.05.002

Scharf, B., Clement, C. C., Zolla, V., Perino, G., Yan, B., Elci, S. G., … Santambrogio, L. (2014). Molecular analysis of chromium and cobalt-related toxicity. *Scientific Reports*, 4, 5729.

Schefe, J. H., Lehmann, K. E., Buschmann, I. R., Unger, T., & Funke-Kaiser, H. (2006). Quantitative real-time RT-PCR data analysis: Current concepts and the novel “gene expression’s CT difference” formula. *Journal of Molecular Medicine*, 84, 901–910. https://doi.org/10.1007/s00109-006-0097-6

Semenza, G. L. (2001). HIF-1 and mechanisms of hypoxia sensing. *Current Opinion in Cell Biology*, 13, 167–171. https://doi.org/10.1016/S0955-0674(00)01194-0

Sherpa, T., Fimbil, S. M., Mallory, D. E., Maaswinkel, H., Spritzer, S. D., Sand, J. A., … Stenkamp, D. L. (2008). Ganglion cell regeneration following whole-retina destruction in zebrafish. *Developmental Neurobiology*, 68, 166–181. https://doi.org/10.1002/ (ISSN)1932-846X

Tappeiner, C., Balmer, J., Iglicki, M., Schuerch, K., Jazwinska, A., Enzmann, V., & Tschopp, M. (2013). Characteristics of rod regeneration in a novel zebrafish retinal degeneration model using n-methyl-n-nitrosourea (MNU). *PLoS ONE*, 8, e71064. https://doi.org/10.1371/journal.pone.0071064

Taylor, S. M., Alvarez-Delfin, K., Saade, C. J., Thomas, J. L., Thummel, R., Fadool, J. M., & Hitchcock, P. F. (2015). The bHLH transcription factor NeuroD governs photoreceptor genesis and regeneration through delta-notch signaling. *Investigative Ophthalmology & Visual Science*, 56, 7496–7515. https://doi.org/10.1167/iovs.15-17616

Uboldi, C., Orsiere, T., Darolles, C., Aloin, V., Tassistro, V., George, I., & Malard, V. (2016). Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways. *Particle and Fibre Toxicology*, 13, 5.

Vihletic, T. S., & Hyde, D. R. (2000). Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (*Danio rerio*) retina. *Journal of Neurobiology*, 44, 289–307. https://doi.org/10.1002/(ISSN)1097-4695

Weber, A., Hochmann, S., Cimallia, P., Gartner, M., Kuscha, V., Hans, S., … Brand, M. (2013). Characterization of light lesion paradigms and optical coherence tomography as tools to study adult retina regeneration in zebrafish. *PLoS ONE*, 8, e80483. https://doi.org/10.1371/journal.pone.0080483

Wigerup, C., Pähm, S., & Bexell, D. (2016). Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. *Pharmacology & Therapeutics*, 164, 152–169. https://doi.org/10.1016/j.pharmthera.2016.04.009

Wu, Y.-C., Chang, C.-Y., Kao, A., Hsi, B., Lee, S.-H., Chen, Y.-H., & Wang, I.-J. (2015). Hypoxia-induced retinal neovascularization in zebrafish embryos: A potential model of retinopathy of prematurity. *PLoS ONE*, 10, e0126750. https://doi.org/10.1371/journal.pone.0126750

Wu, D. M., Schneiderman, T., Burgett, J., Gokhale, P., Barthel, L., & Raymond, P. A. (2001). Cones regenerate from retinal stem cells sequestered in the inner nuclear layer of adult goldfish retina. *Investigative Ophthalmology & Visual Science*, 42, 2115–2124.

Yurco, P., & Cameron, D. A. (2005). Responses of Muller glia to retinal injury in adult zebrafish. *Vision Research*, 45, 991–1002. https://doi.org/10.1016/j.visres.2004.10.022

Zon, L. I., & Peterson, R. T. (2005). In vivo drug discovery in the zebrafish. *Nature Reviews. Drug Discovery*, 4, 35–44. https://doi.org/10.1038/nrd1606

Zou, S., Tian, C., Ge, S., & Hu, B. (2013). Neurogenesis of retinal ganglion cells is not essential to visual functional recovery after optic nerve injury in adult zebrafish. *PLoS ONE*, 8, e57280. https://doi.org/10.1371/journal.pone.0057280

How to cite this article: Medrano MP, Pisera Fuster A, Sanchis PA, Paez N, Bernabeu RO, Faillace MP. Characterization of proliferative, glial and angiogenic responses after a CoCl2-induced injury of photoreceptor cells in the adult zebrafish retina. *Eur J Neurosci.* 2018;48:3019–3042. https://doi.org/10.1111/ejn.14113