Jet schemes and generating sequences of divisorial valuations in dimension two

Hussein Mourtada

November 13, 2015

Abstract

Using the theory of jet schemes, we give a new approach to the description of a minimal generating sequence of a divisorial valuations on \(\mathbb{A}^2 \). For this purpose, we show how one can recover the approximate roots of an analytically irreducible plane curve from the equations of its jet schemes. As an application, for a given divisorial valuation \(v \) centered at the origin of \(\mathbb{A}^2 \), we construct an algebraic embedding \(\mathbb{A}^2 \rightarrow \mathbb{A}^N, N \geq 2 \) such that \(v \) is the trace of a monomial valuation on \(\mathbb{A}^N \). We explain how results in this direction give a constructive approach to a conjecture of Teissier on resolution of singularities by one toric morphism.

1 Introduction

Let \(X = \mathbb{A}^d = Spec \ R \), where \(R = K[x_1, \ldots, x_d] \) is a polynomial ring over an algebraically closed field \(K \). The arc space of \(X \), that we denote by \(X_{\infty} \), is the scheme whose \(K \)-rational points are

\[X_{\infty}(K) = Hom_K(Spec \ K[[t]], X). \]

We have a natural truncation morphism \(X_{\infty} \rightarrow X \), that we denote by \(\Psi_0 \). For \(p \in \mathbb{N} \) and \(Y = V(I) \subset X \) a subvariety defined by an ideal \(I \), we consider the subset of arcs in \(X_{\infty} \) that have an order of contact \(p \) with \(Y \), this is

\[Cont^p(Y) = \{ \gamma \in X_{\infty} | ord_t \gamma^*(I) = p \}, \]

where \(\gamma^* : R \rightarrow K[[t]] \) is the \(K \)-algebra homomorphism associated with \(\gamma \) and

\[ord_t \gamma^*(I) = \min_{h \in I} \{ ord_t \gamma^*(h) \}. \]

With an irreducible component \(\mathcal{W} \) of \(Cont^p(Y) \), which is contained in the fibre \(\Psi_0^{-1}(0) \) above the origin, we associate a valuation \(v_\mathcal{W} : R \rightarrow \mathbb{N} \) as follows:

\[v_\mathcal{W}(h) = \min_{\gamma \in \mathcal{W}} \{ ord_t \gamma^*(h) \}, \]

2010 Mathematics Subject Classification. 13A80,14E15,14E18,14M25.

Keywords Divisorial valuations, Generating sequences, Resolution of singularities, Toric Geometry.

This research was partially supported by the ANR-12-JS01-0002-01 SUSI.
for $h \in R$. It follows from [ELM] (see also [dFEI], [Re], prop. 3.7 (vii)), that $v_\mathbb{W}$ is a divisorial valuation centered at the origin $0 \in X$, and that all divisorial valuations centered at $0 \in X$, can be obtained by this way.

We are interested in determining a generating sequence of such a valuation, this is a sequence of elements of R which determines completely the valuation. Let us explain what is such a sequence:

For $\alpha \in \mathbb{N}$, let

$$ P_\alpha = \{ h \in R \mid v_\mathbb{W}(h) \geq \alpha \}. $$

Following [T3], we define the \mathbb{K}-graded algebra

$$ \text{gr}_{v_\mathbb{W}} R = \bigoplus_{\alpha \in \mathbb{N}} \frac{P_\alpha}{P_{\alpha+1}}. $$

We call $in_{v_\mathbb{W}}$ the natural map

$$ in_{v_\mathbb{W}} : R \to \text{gr}_{v_\mathbb{W}} R, \quad h \mapsto h \mod P_{v_\mathbb{W}(h)+1}. $$

Definition 1.1. [S] A generating sequence of $v_\mathbb{W}$ is a set of elements of R such that their image by $in_{v_\mathbb{W}}$ generates $\text{gr}_{v_\mathbb{W}} R$ as a \mathbb{K}-algebra.

In this article we will give a new way to determine generating sequence of $v_\mathbb{W}$ in dimension 2, i.e. when $d = 2$. Traditionally, there are three approaches to determine such a generating sequence:

1) By studying the relations in the semigroup $v_\mathbb{W}(R)$ [T3]. The new developments of this theory in higher dimensions treat only valuations with maximal rational rank [T1], [T2], which does not include divisorial valuations.

2) By considering curvettes [S]: let π be the composition of the minimal sequence of blow ups that produces the divisor defining $v_\mathbb{W}$. Let G be its dual graph, then a curvette is a curve which is an image of a transversal arc to a rupture divisor of G. If we choose the equation of a curvette for every rupture divisor, plus the variables of R, we obtain a generating sequence of $v_\mathbb{W}$. This approach has not been generalized to higher dimensions, and this seems to be a difficult mission.

3) Maclane’s method [Mc](see also [AM],[FJ]): A generating sequence is obtained by induction using euclidean division. The generalizations of this method to higher dimensions ([V1],[HOS],[Ma]) do not produce elements in R, which is essential for our applications. See also [CV] for a comparable approach.

Our approach is based on the definition of a divisorial valuation that we gave above in terms of arcs (and jet schemes). It will enable us to build a generating sequence from the equations of the subset \mathbb{W} of the arc space which defines the divisorial valuation. The construction of a generating sequence passes by the extraction of the approximate roots of
a plane branch from its jet schemes.

One motivating application that we will present, and which remains true for a particular type of divisorial valuations in higher dimensions [Mo4], is the following: Given a divisorial valuation \(v \) centered at \(0 \in \mathbb{A}^2 \), we will determine an embedding \(e : \mathbb{A}^2 \hookrightarrow \mathbb{A}^n \), (where \(n \) depends on \(v \)) and a toric proper birational morphism \(\mu : X_\Sigma \to \mathbb{A}^n \) such that:

\[
\begin{array}{ccc}
\mathbb{A}^2 & \to & X_\Sigma \\
\downarrow & & \downarrow \mu \\
\mathbb{A}^2 & \to & \mathbb{A}^n \\
\end{array}
\]

- \(X_\Sigma \) is a smooth toric variety (i.e \(\Sigma \) is a fan which is obtained by a regular subdivision of the positive quadrant \(\mathbb{R}_{>0}^n \), this quadrant is the cone that defines \(\mathbb{A}^n \) as a toric variety),
- the strict transform \(\tilde{\mathbb{A}}^2 \) of \(\mathbb{A}^2 \) by \(\mu \) is smooth,
- a toric divisor \(E' \) (associated with one of the edges of \(\Sigma \) and which is determined by the values of the elements in a generating sequence) intersects \(\tilde{\mathbb{A}}^2 \) transversally along a divisor \(E \); note that the valuation associated with \(E' \) is monomial and is given by the weight vector corresponding to \(E' \),
- the valuation defined by the divisor \(E \) is \(v \).

Our goal is to use such a construction to answer constructively the following conjecture of Teissier [T2]:

For a subvariety \(Y \subset \mathbb{A}^n \), there exists an embedding \(\mathbb{A}^n \hookrightarrow \mathbb{A}^N, N \geq n \) such that the singularities of \(Y \) can be resolved by a birational proper toric map \(Z \to \mathbb{A}^N \).

A solution of this problem in the case of quasi-ordinary singularities is given in [GP]. A related result was proved in [Te2], but the author starts with a given resolution of singularities.

For a given singular subvariety \(Y \subset \mathbb{A}^n \), our idea is to extract a finite number of significant divisorial valuations \(v_1, \ldots, v_r \) on \(\mathbb{A}^n \) from the jet schemes of \(Y \) (this is to compare with the Nash map [I],[ELM]), then to embed as above \(\mathbb{A}^n \) in a larger affine space \(\mathbb{A}^N \) in such a way that all the valuations \(v_1, \ldots, v_r \) can be seen as the traces of monomial valuations on \(\mathbb{A}^N \). If \(v_1, \ldots, v_r \), are well chosen, this should guarantee Newton non-degeneracy ([AGS],[Te1]) of \(Y \subset \mathbb{A}^N \) and hence would give the desired embedding. There remains the subtle matter of detecting the valuations \(v_1, \ldots, v_r \), (see [Mo3],[LMR] for simple examples) and finding the embedding described above for general divisorial valuations. In [Mo4] we present a progress in this last problem.

This idea corresponds to an approach of resolution of singularities by one toric morphism which is different from the one suggested in [GT]. Indeed in loc.cit., this resolution of an irreducible plane curve \(\mathcal{C} \) is constructed by considering the curve valuation \(\nu_{\mathcal{C}} \), while
the approach suggested by this article is to study the divisorial valuations which are associated to special components of the jet schemes. The two approaches lead to the same result for plane branches, but bifurcate in higher dimensions.

One application of the result of this article would be a resolution of singularities of a reducible plane curve with one toric morphism. This will be treated elsewhere.

I have found inspiration for this article in [T2], I am thankful to Bernard Teissier for all the explanations he gave to me about it, and for several corrections and suggestions he made about an earlier version of this article. I would also like to thank Pedro González Pérez, Monique Lejeune-Jalabert, Mohammad Moghaddam, Patrick Popescu-Pampu and Matteo Ruggiero for several discussions about this subject.

The article assumes some knowledge of valuations and toric geometry. This can be found respectively in [V2] and [AGS].

2 Jet schemes

Let \(K \) be an algebraically closed field of arbitrary characteristic. Let \(X \) be a \(K \)-algebraic variety and let \(m \in \mathbb{N} \). The functor \(F_m : K - \text{Schemes} \rightarrow \text{Sets} \) which with an affine scheme defined by a \(K \)-algebra \(A \) associates

\[
F_m(\text{Spec}(A)) = \text{Hom}_K(\text{Spec}(A)[[t]]/(t^{m+1}), X)
\]

is representable by a \(K \)-scheme \(X_m ([EM],[I]) \). \(X_m \) is the \(m \)-th jet scheme of \(X \), and \(F_m \) is isomorphic to its functor of points. So we have the following bijection

\[
\text{Hom}_K(\text{Spec}(A), X_m) \cong \text{Hom}_K(\text{Spec}(A)[[t]]/(t^{m+1}), X).
\] (1)

If \(X = \text{Spec}(R) \) is affine, then \(X_m = \text{Spec}(R_m) \) is also affine, and by taking \(A = R_m \) in the bijection (1), we obtain a universal morphism \(\Lambda^* : R \rightarrow R_m[[t]]/(t^{m+1}) \), which is the morphism associated to the image of the identity \(\text{id} \in \text{Hom}_K(X_m, X_m) \) by the bijection (1). For example, if \(X = \text{Spec}(K[x_0,x_1]) \), and \(f \in K[x_0,x_1] \) then

\[
X_m = \text{Spec}(K[x_0^{(0)}, x_1^{(0)}, \ldots, x_0^{(m)}, x_1^{(m)}]) = \text{Spec}(R_m),
\]

and

\[
\Lambda^*(f) = F^{(0)} + F^{(1)}t + \cdots + F^{(m)}t^m,
\] (2)

where \(F^{(i)} \) is the coefficient of \(t^i \) in the expansion of

\[
f(x_0^{(0)} + x_0^{(1)}t + \cdots x_0^{(m)}t^m, x_1^{(0)} + x_1^{(1)}t + \cdots x_1^{(m)}t^m).
\] (3)

Note that since we are interested in the ideal generated by the \(F^{(i)} \)'s, in characteristic 0, we can reconstruct them in such a way that they are obtained by a derivation process, see proposition 2.3 in [Mo1].
For $m, p \in \mathbb{N}, m > p$, the truncation homomorphism $A[t]/(t^{m+1}) \rightarrow A[t]/(t^{p+1})$ induces a canonical projection $\pi_{m,p} : X_m \rightarrow X_p$. These morphisms clearly satisfy $\pi_{m,p} \circ \pi_{q,m} = \pi_{q,p}$ for $p < m < q$, and they are affine morphisms, so that they define a projective system whose limit is a scheme that we denote X_∞; it is the arc space of X.

Note that $X_0 = X$. We denote the canonical projection $\pi_{m,0} : X_m \rightarrow X_0$ by π_m, and Ψ_m the canonical morphisms $X_\infty \rightarrow X_m$.

3 Minimal generating sequences of a curve valuation from the equations of jet schemes

In [Mo1] and [LMR], we have used the approximate roots to study the geometry of the jet schemes of plane branches and to obtain toric resolutions of singularities of these curves. In this section we show how one can obtain a minimal generating sequence of the valuation defined by a plane branch, i.e a curve valuation, from the jet schemes of the branch. Note that the graph that we have introduced in [Mo1] is not sufficient to determine this generating sequence. The invariants of the jet schemes that we consider below are finer and are not determined by the topological type.

Let C be a plane branch defined by an irreducible power series $f \in K[[x_0, x_1]]$, where K is an algebraically closed field. We assume that $x_0 = 0$ (resp. $x_1 = 0$) is transversal (resp. tangent) to C, this always can be achieved by a linear change of variables. Let $\bar{\beta}_0, \ldots, \bar{\beta}_g$ be the minimal system of generators of the semigroup $\Gamma(C)$ of C. Let $e_0 = \bar{\beta}_0$ (this is also the multiplicity of C at the origin) and $e_i = \gcd(e_{i-1}, \bar{\beta}_i), i \geq 1$ (where \gcd is the great common divisor). Since the sequence of positive integers

$e_0 > e_1 > \cdots > e_i > \cdots$

is strictly decreasing, there exists $g \in \mathbb{N}$, such that $e_g = 1$. We set

$$n_i := \frac{e_{i-1}}{e_i}, m_i := \frac{\bar{\beta}_i}{e_i}, i = 1, \ldots, g$$

and by convention, we set $\bar{\beta}_{g+1} = +\infty$ and $n_{g+1} = 1$.

We have that

1. $e_i = \gcd(\bar{\beta}_0, \ldots, \bar{\beta}_i), 0 \leq i \leq g$,

2. For $1 \leq i \leq g$, there exists a unique system of nonnegative integers $b_{ij}, 0 \leq j < i$ such that for $1 \leq j < i$, $b_{ij} < n_j$ and $n_i \bar{\beta}_i = \sum_{0 \leq j < i} b_{ij} \bar{\beta}_j$.

To such a plane branch $C = \{f = 0\}$, we associate a (curve) valuation

$$\nu_C : K[[x_0, x_1]] \rightarrow \mathbb{N} \cup \infty,$$
which is positive on the maximal ideal \((x_0, x_1)\), by using local intersection multiplicity:

\[
\nu_C(h) = \dim \frac{K[[x_0, x_1]]}{(f, h)},
\]

for every \(h \in K[[x_0, x_1]]\). Note that \(\text{tr.deg}(\nu_C) = 0\) and \(\text{rank}(\nu_C) = 2\) (see [FJ] page 17).

For an irreducible \(h \in K[[x_0, x_1]]\), we have that \(h\), up to multiplication by a constant, of the form

\[
h = (x_1^{n_h} - \alpha_h x_0^{m_h})^\delta_h + \sum_{(a, b)} c_{ab} x_0^a x_1^b,
\]

where \(m_h\) and \(n_h\) are coprime, \(\alpha_h \in K^*, c_{ab} \in K\), and the points \((a, b)\) are strictly above the Newton polygon of \(h([CA])\).

Lemma 3.1. Given \(f, h\) in the form (4) above, we have \(x^n_f - \alpha_f x_0^{m_f} \neq x_1^{n_h} - \alpha_h x_0^{m_h}\) if and only if

\[
\nu_C(h) = \min(\tilde{\beta}_0 m_h, \tilde{\beta}_1 n_h, \delta_h).
\]

Moreover, we have that

\[
\begin{cases}
\nu_C(h) = x_0^{m_h} & \text{if } (m_f, n_f) \\ \nu_C(h) = x_1^{n_h} - \alpha_h x_0^{m_h} \delta_h & \text{if } (m_f, n_f) \neq (m_h, n_h)
\end{cases}
\]

if \((m_f, n_f) = (m_h, n_h)\) and \(\alpha_f \neq \alpha_h\).

Proof. This follows from the classical formula of the local intersection multiplicity:

\[
\nu_C(h) = \text{ord}_t h(x(t), y(t)),
\]

where \((x(t), y(t))\) is a special parametrization of \(C\) obtained by the Newton-Puiseux theorem [CA].

Following [Mo1], we describe the irreducible components of the schemes of jets centered at 0, i.e. \(C_m^0 := \pi_m^{-1}(0)\), where \(\pi_m : C_m \rightarrow C\) is the canonical morphism.

We set

\[
\text{Cont}^e(x_0)_m (\text{resp.} \text{Cont}^{>e}(x_0)_m) := \{ \gamma \in C_m \mid \text{ord}_i x_0 \circ \gamma = e (\text{resp.} > e) \}
\]

then we can state:

Theorem 3.2. (Th. 4.9, [Mo1]) Let \(C\) be a plane branch with \(g\) Puiseux exponents. Let \(m \in \mathbb{N}\). For \(1 \leq m < n_1 \beta_1 + e_1\), \(C_m^0 = \text{Cont}^{>0}(x_0)_m\) is irreducible. For \(q = \left\lfloor \frac{m - e_1}{n_1 \beta_1} \right\rfloor \geq 1\), the irreducible components of \(C_m^0\) are:

\[
C_{m\kappa} = \text{Cont}^{\kappa \beta_0 \beta_1 + e_1}(x_0)_m
\]

for \(1 \leq \kappa \) and \(\kappa \beta_0 \beta_1 + e_1 \leq m\),

\[
C_{mne} = \text{Cont}^{\kappa \beta_0}(x_0)_m
\]

for \(j = 2, \cdots, g, 1 \leq \kappa \) and \(\kappa \not\equiv 0 \mod n_j\) and such that \(\kappa n_1 \cdots n_{j-1} \beta_1 + e_1 \leq m < \kappa \beta_j\),

\[
B_m = \text{Cont}^{>n_1 q}(x_0)_m.
\]
We are interested in the following inverse system of irreducible components:

\[\cdots \to C(\beta_0 \beta_1 + e_1 + 2) \to C(\beta_0 \beta_1 + e_1 + 1) \to C(\beta_0 \beta_1 + e_1) \to B_{\beta_0 \beta_1 + e_1 - 1} \to B_{\beta_0 \beta_1}. \]

Let \(C_m := \text{Cont}^{\beta_0}(x_0)_m \) (the notation \(C_m \) will be used all over the paper). Let \(\gamma_m \) be the generic point of \(C_m \). From corollary 4.1 in [Mo1], we can see that for \(m \) large enough,

\[\text{ord}_t x_1 \circ \gamma_m(t) = \bar{\beta}_1. \]

Note that the only data we need to detect the inverse system (\(\ast \)) is the multiplicity \(\bar{\beta}_0 \) of the curve. Indeed, the components in the system (\(\ast \)) are given by the closure of \(\text{Cont}^{\beta_0}(x_0)_m \), for \(m \geq \bar{\beta}_0 \bar{\beta}_1 - 1 \).

In the following lemma, we compute the intersection multiplicity of two curves in terms of ideals of jet schemes. Our first goal is to give a new way to determine the initial part of an element \(h \in K[[x, y]] \), with respect to the valuation \(\nu_C \). This is achieved in corollary 3.6.

Let \(D^m(x_0^{(\beta)}) \) be the open subscheme of \(A^2_m \) defined by \(x_0^{(\beta)} \neq 0 \). Let \(I_m \) be the ideal defining \(\text{Cont}^{\beta}(x_0)_m \) in \(D^m(x_0^{(\beta)}) \) and let \(I'_m \) be its radical. Let \(h \in K[[x, y]] \) be irreducible and \(H^{(t)} \) be the coefficient of \(t^l \) in \(\Lambda(h) \) (see equation (2)).

Remark 3.3. In what follows, unless stated otherwise, when we use the symbol \(= \), we just want to replace elements which are congruent to zero by zero.

Lemma 3.4. \(\nu_C(h) = l \) if and only if for \(m > 0 \), we have that \(H^{(t)} \equiv 0 \mod I'_m \), if \(i < l \), and \(H^{(t)} \neq 0 \mod I'_m \).

Proof. If \(\nu_C(h) = l \). We have that \(\nu_C(h) = \text{ord}_t h(x_0(t), x_1(t)) \), for any good parametrization (i.e. a general point of the curve corresponds to just one value of the parameter) \((x_0(t), x_1(t)) \) of \(C \). Let \(x_0^{(0)}, \ldots, x_0^{(a_0)}, x_1^{(0)}, \ldots, x_1^{(a_1)} \) be the variables that intervene in the generators of \(I'_m \). Note that \(i_m, j_m < m \). By definition of \(I'_m \), for any closed point \((a_0^{(0)}, \ldots, a_0^{(i_m)}, a_1^{(0)}, \ldots, a_1^{(j_m)}) \in V(I'_m) \subset \text{Spec} K[x_0^{(0)}, \ldots, x_0^{(i_m)}, x_1^{(0)}, \ldots, x_1^{(j_m)}] \), there is a good parametrization of \(C \) of the form

\[(a_0^{(0)} + a_0^{(1)} t + \ldots + a_0^{(i_m)} t^{i_m} + \ldots, a_1^{(0)} + a_1^{(1)} t + \ldots + a_1^{(j_m)} t^{j_m} + \ldots). \]

It follows that

\[\text{ord}_t h(a_0^{(0)} + a_0^{(1)} t + \ldots + a_0^{(i_m)} t^{i_m} + \ldots, a_1^{(0)} + a_1^{(1)} t + \ldots + a_1^{(j_m)} t^{j_m} + \ldots) = l, \]

and so \(H^{(t)}(a_0^{(0)}, \ldots, a_0^{(i_m)}, a_1^{(0)}, \ldots, a_1^{(j_m)}) = 0 \) for every \(i < l \), and

\[H^{(t)}(a_0^{(0)}, \ldots, a_0^{(i_m)}, a_1^{(0)}, \ldots, a_1^{(j_m)}) \neq 0. \]

Hence, \(H^{(t)} \equiv 0 \mod I'_m \), for every \(i < l \), and \(H^{(t)} \neq 0 \mod I'_m \).

The converse is straightforward. \(\square \)
Remark 3.5. 1. In the proof of lemma 3.4, the fact that for a closed point of $V(I^r_m) \subset \text{Spec} \mathbb{K}[[x_0^{(0)}, \ldots, x_0^{(m)}, x_1^{(0)}, \ldots, x_1^{(j_m)}]]$, we find an arc which “lifts” this point, is not equivalent to saying that any m–jet in the irreducible component defined by I^r_m is liftable (which is not true). The reason is that we need more coordinates to define an m–jet, namely there remains to specify $x_0^{(i_{m+1})}, \ldots, x_0^{(j_m)}, x_1^{(i_{m+1})}, \ldots, x_1^{(j_m)}$, which can be chosen freely, but for such a jet to be liftable, these coordinates should satisfy more equations.

2. We can estimate the minimum m that verifies lemma 3.4, by determining the variables that appears in the equations of jet schemes. We find $m = \kappa_h := \lfloor \frac{\text{mult}(f)}{\text{mult}(h)} \rfloor$.

where mult denotes multiplicity, $l = \nu_C(h)$ and the brackets $[\cdot]$ denote the integral part.

We continue with the settings of lemma 3.4. Since $H^{(l)} \not\equiv 0 \mod I^r_{\kappa_h}$, let $P \in \mathbb{K}[[x_0, x_1]]$, be the minimal part of h such that

$$(h - P)^{(i)} \equiv 0 \mod I^r_{\kappa_h} \text{ for } i \leq l.$$

This means that the terms (a term is a constant times a monomial in x_0 and x_1) of P are terms of h, and P has the least number of terms with the above property. We thus obtain the following important corollary of lemma 3.4:

Corollary 3.6. We have that

$$\text{in}_{\nu_C} P = \text{in}_{\nu_C} h.$$

Moreover, P is the minimal part of h achieving this equality.

Proof. It follows from the definition of P and from lemma 3.4 that $\nu_C(h - P) > \nu_C(h)$, and the assertion follows.

Remark 3.7.

Example 1. We assume the characteristic of \mathbb{K} is zero, which makes the computation easier.

1. Let $C = \{ f = (x_1^2 - x_0^3)^2 - x_0^6 x_1 = 0 \}$, and let $h = (x_1^2 - x_0^3)^2 - 4x_0^5 x_1 - x_0^7$. We have that $\nu_C(h) = 26$. We can see this by applying lemma 3.4, indeed:

$$I^r_{26} = (x_0^{(0)}, \ldots, x_0^{(3)}, x_1^{(0)}, \ldots, x_1^{(5)}, x_1^{(6)}, 2x_1^{(6)} x_1^{(7)} - 3x_0^{(4)^2} x_0^{(5)}, x_0^{(4)} \in (R_m)_{x_0^{(4)}},$$

where $(R_m)_{x_0^{(4)}}$ is the ring R_m localized by $x_0^{(4)}$. Note that, since in this example we have that f and h have the same multiplicity, we have $\kappa_h = \nu_C(h)$. We observe that for every $i < 26$, $H_i \equiv 0$ modulo I^r_{26}, and $H^{(26)} \equiv -4x_0^{(4)^5} x_1^{(6)} \not\equiv 0 \mod I^r_{26}$.

From corollary 3.6, we deduce that $\text{in}_{\nu_C} h = -4x_0^{5} x_1$.
2. Let $C = \{ f = (x_1^2 - x_0^3)^2 - x_0^6 x_1 \}$, and let $h = x_1^2 - x_0^3$. We have that $\nu_C(h) = 15$, and therefore $\kappa_h = 30$. We have that

$$I_{30}^\nu = (x_0^0, \ldots, x_0^{(3)}, x_1^{(0)}, \ldots, x_1^{(5)}, H^{(12)}, H^{(13)}, H^{(14)}, H^{(15)})^2 - x_0^{(4)} x_1^{(6)} \subset (R_m)_{x_0^{(4)}},$$

where $H^{(12)} = x_1^{(6)^2} - x_0^{(4)^3}$ and $H^{(13)} = 2x_1^{(6)} x_1^{(7)} - 3x_0^{(4)^2} x_0^{(5)}$. We observe that for every $i < 15$, $H^{(i)} \equiv 0$ modulo I_{30}^ν, and

$$H^{(15)} \not\equiv 0 \mod I_{30}^\nu.$$

From corollary 3.6, we deduce that $\inf_{\nu_C} h = h$.

Let us have a look at the equations of jet schemes. It follows from corollary 4.2 in [Mo1] that

$$I_{\vec{\beta}_0 \vec{\beta}_1}^\nu = (x_0^{(0)}, \ldots, x_0^{(\vec{\beta}_0 - 1)}, x_1^{(0)}, \ldots, x_1^{(\vec{\beta}_1 - 1)}).$$

We get from the same corollary that

$$F^{(\vec{\beta}_0 \vec{\beta}_1)} = (x_1^{(\vec{\beta}_1)^{n_1} - c x_0^{(\vec{\beta}_0)^{n_1}})} e_1 \mod I_{\vec{\beta}_0 \vec{\beta}_1}^\nu,$$

for some $c \in K, c \neq 0$.

Remark 3.8. Note that the equations (5) and (6) are conditional on the hypothesis we have made on the variables x_0 and x_1. These variables permit the best approximation of the valuation ν_C by a monomial valuation, namely the monomial valuation ν_1 which is determined by $\nu_1(x) = \nu_C(x)$ and $\nu_1(y) = \nu_C(y)$. Note that if we begin with any choice of variables, we can use jet schemes to detect variables verifying this property.

We now give the steps of an algorithm that determine the minimal generating sequence. This will be guided by the fact that we can detect the initial part of a function with respect to ν_C from the equations of the jet schemes of C; this follows from lemma 3.4 and corollary 3.6. So we will determine algorithmically elements in $K[x, y]$ whose images by the universal morphism Λ^* (see equation 2) generate the equations of the families of jets that define the valuations ν_C.

If $e_1 = 1$, then a minimal generating sequence of ν_C is given by x_0, x_1 and f itself. We assume that $e_1 > 1$.

We set $x_{2,0} = x_1^{n_1} - x_0^{n_1}$ and to every $C_m := \text{Cont}^{\vec{\beta}_0}(x_0)_m$ in (\star), we assign a vector $v_m^3 = v^{3,0}(C_m) \in \mathbb{N}^3$ as follows:

$$v_m^3 = (\text{ord}_t x_0 \circ \gamma(t), \text{ord}_t x_1 \circ \gamma(t), \text{ord}_t x_{2,0} \circ \gamma(t)),$$

where γ is the generic point of C_m. Let

$$\mu_{2,0} = \min \{ m \geq \vec{\beta}_0 \vec{\beta}_1 \mid \text{codim}(C_{m+1}) > \text{codim}(C_m) \}.$$
Let
\[F(\mu_{2,0} + 1) \equiv Q^l \mod I_{\mu_{2,0}}, \]
for some reduced polynomial \(Q \) and positive integer \(l \); note that \(Q \) is a non zero polynomial because the equation \(F(\mu_{2,0} + 1) \) forces the inequality \(\text{codim}(C^{\mu_{2,0} + 1}) > \text{codim}(C^{\mu_{2,0}}) \).

We then have two cases:

Case 1: \(l = e_1 \).

Claim 1

If \(l = e_1 \), then we have that
\[Q - x_{2,0}^{(\mu_{2,0} + 1)} e_1 \equiv Q' \mod I_{\mu_{2,0}}, \]
where \(Q'(x_0^{(\bar{\delta}_0)}, x_1^{(\bar{\delta}_1)}) \) is a polynomial in the variables \(x_0^{(\bar{\delta}_0)} \) and \(x_1^{(\bar{\delta}_1)} \).

We then define
\[x_{2,1} = x_{2,0} + Q(x_0, x_1), \]
and
\[v^{3,0}_m = v^{3,0}_{m+1}. \]

Case 2: If \(l = l_2 < e_1 \), and \(l_2 = 1 \) we stop.

Claim 2

If \(1 < l_2 < e_1 \), then we have that
\[Q - x_{2,0}^{(\mu_{2,0} + 1)} l_2^{\frac{e_1}{l_2}} \equiv Q' \mod I_{\mu_{2,0}}, \]
where \(Q'(x_0^{(\bar{\delta}_0)}, x_1^{(\bar{\delta}_1)}) \) is a polynomial in the variables \(x_0^{(\bar{\delta}_0)} \) and \(x_1^{(\bar{\delta}_1)} \).

We then set \(x_2 := x_{2,0}, \mu_2 := \mu_{2,0} \) and define
\[x_{3,0} = x_2^{l_1} + Q(x_0, x_1), \]
and
\[v^{4,0}_m = (\text{ord}_t x_0 \circ \gamma_m(t), \text{ord}_t x_1 \circ \gamma_m(t), \text{ord}_t x_2 \circ \gamma_m(t), \text{ord}_t x_{3,0} \circ \gamma_m(t)). \]

We assume that we have recursively determined \((x_2, \ldots, x_{i-1}, x_{i,j}),(e_1, l_2, \ldots, l_{i-1})\) and \((\mu_2, \ldots, \mu_{i-1}, \mu_{i,j-1})\) (if \(j = 0 \), we set \(\mu_{i,j-1} = \mu_{i-1} \)).

We define
\[v^{i,j}_m = (\text{ord}_t x_0 \circ \gamma_m(t), \text{ord}_t x_1 \circ \gamma_m(t), \ldots, \text{ord}_t x_{i,j} \circ \gamma_m(t)). \]
and
\[\mu_{i,j} = \min\{m \geq \mu_{i,j-1} + 1 \mid \text{codim}(C_{m+1}) > \text{codim}(C_m) \} \]
and
\[v^i_m = v^i_{m+1} \].

Let
\[F^{(\mu_{i,j}+1)} = Q^l \mod I^r_{\mu_{i,j}}, \]
for some reduced polynomial \(Q \) and positive integer \(l \); note as above that \(Q \) is a non-zero polynomial because the equation \(F^{(\mu_{i,j}+1)} = 0 \) forces the inequality \(\text{codim}(C_{\mu_{i,j}+1}) > \text{codim}(C_{\mu_{i,j}}) \).

We then have two cases:

Case 1: If \(l = l_{i-1} \).

Claim 1 continues

Then we have that
\[Q - x^{(\mu_{i,j}+1)} \equiv Q' \mod I^r_{\mu_{i,j}}, \]
where \(Q' \) is a polynomial in \(x_0^{(\beta_0)}, x_1^{(\beta_1)}, x_2^{(\mu_{i,j}+1)}, \ldots, x_{i-1}^{(\mu_{i,j}+1)} \).

We then define
\[x_{i,j+1} = x_{i,j} + Q'(x_0, x_1, \ldots, x_{i-1}), \]
and
\[v^i_{m+1} = (\text{ord}_t x_0 \circ \gamma_m(t), \ldots, \text{ord}_t x_{i,j+1} \circ \gamma_m(t)). \]

Case 2: If \(l = l_i < l_{i-1} \), and \(l_i = 1 \) we stop. If \(1 < l_i < l_{i-1} \).

Claim 2 continues

Then we have that
\[Q - x^{(\mu_{i,j}+1)} \equiv Q' \mod I^r_{\mu_{i,j}}, \]
where \(Q' \) is a polynomial in \(x_0^{(\beta_0)}, x_1^{(\beta_1)}, x_2^{(\mu_{i,j}+1)}, \ldots, x_{i-1}^{(\mu_{i,j}+1)} \).

We then set \(x_i := x_{i,j}, \mu_i := \mu_{i,j} \) and define
\[x_{i+1,0} = x_{i,i}^{l_i-1} + Q'(x_0, x_1, \ldots, x_{i-1}). \]

Remark 3.9. If we want the elements of a generating sequence to be polynomials (which is more consistent with the terminology key polynomials), then we might need an infinite number of elements to form a generating sequence ([FJ]). These polynomials can be found by continuing the same algorithm, without stopping if we reach \(l_{\gamma} = 1 \), but only if we reach \(f \), a case which occurs after finitely many steps if and only if \(f \) is a polynomial. Here, we
permit as in [T1], elements in the ring $K[[x_0, x_1]]$. Hence, even if f is a power series and not a polynomial, we will take f as an element of a “minimal” generating sequence. In that case, we can think f as a limit key polynomial.

Proof of claim 1

By definition of $F(\mu_2, 0, 1)$, the term Q' comes from a polynomial P such that the terms of P^{e_1} appear in f. More precisely,

$$Q' \equiv P^{(\mu_2, 0, 1)} \mod I_{\mu_2, 0}^r$$

By construction we then have that

$$P^{(\mu_2, 0, 1)} \equiv P^{(\mu_2, 0, 1)} \mod I_{\mu_2, 0}^r,$$

and both members are not congruent to 0 modulo $I_{\mu_2, 0}^r$ (because the codimension of the irreducible component of the $(\mu_2, 0, 1)$-jet scheme that we are considering increases). We deduce from lemma 3.4 that

$$\nu_C(x_{2,0} - P) > \nu_C(x_{2,0}) = \nu_C(P) = \frac{\mu_2, 0 + 1}{e_1},$$

which implies that, $\text{in}_{\nu_C} x_{2,0} = x_{2,0} = \text{in}_{\nu_C} P$. Indeed, any polynomial whose terms are also terms of $x_{2,0}$, namely $x_1^{n_1}$ and $x_0^{m_1}$, have value less than $\nu_C(x_{2,0})$.

We have that P is of the form

$$P = P_1^{a_1} \cdots P_s^{a_s}.$$

This follows from the fact that the residue field of ν_C is K, since $\text{tr.deg}(\nu_C) = 0$ and K is algebraically closed. We want to prove that the $\text{in}_{\nu_C} P_j$’s are monomials in x_0 and x_1 for every j. If not, then by lemma 3.1 we have that

$$P_j = (x_1^{n_1} - \alpha_j x_0^{m_1})^{\delta_{P_j}} + \sum c_{ab} x_0^a x_1^b$$

where (a, b) is above the Newton polygon of P_j. If $(x_1^{n_1} - \alpha_j x_0^{m_1})^{\delta_{P_j}}$ is a part of $\text{in}_{\nu_C} P_j$, this implies that $\nu_C(P_j) \geq \nu_C(x_{2,0})$, and the equality follows from $\text{in}_{\nu_C} x_{2,0} = \text{in}_{\nu_C} P$. We deduce that $\delta_{P_j} = 1$. Then $\text{in}_{\nu_C} P = \text{in}_{\nu_C} P_j$ contains $x_{2,0}$, which contradicts the form of the equation (4) for f. It follows that $(x_1^{n_1} - \alpha_j x_0^{m_1})^{\delta_{P_j}}$ is not a part of $\text{in}_{\nu_C} P_j$, and we deduce by lemma 3.1 that $\text{in}_{\nu_C} P_j$ is a sum of monomials in x_0 and x_1.

Let’s prove he remaining part of the claim 1; the proof is by induction on i, we assume that the claim is true till $i - 1$; again the term Q' (in "claim 1 continues") comes from a polynomial P such that the terms of P^{e_i} appears in f. We have that P of the form

$$P = P_1^{a_1} \cdots P_s^{a_s},$$

where P_j is irreducible for $r = 1, \ldots, s$. This again follows from the fact that $\text{tr.deg}(\nu_C) = 0$. Note that as above

$$\nu_C(P) = \frac{\mu_{i,j} + 1}{i},$$
and we will have \(\nu_C(P_i) \leq \frac{\mu_i - 1}{l_{i-1}} \). It follows from corollary 3.6 and from the hypothesis of induction that \(i_{\nu_C} P_r \) is a polynomial in \(x_0^{(\beta_0)}, x_1^{(\beta_1)}, x_2^{(\mu_2 + 1)}, \ldots, x_{i-1}^{(\mu_{i-1} + 1)} \). The proof of claim 2 is similar to the proof of claim 1.

Theorem 3.10. We have that

1. For \(i = 2, \ldots, g \), \(\mu_i = e_{i-1} \bar{\beta}_i - 1 \), and \(l_i = e_i \). Therefore \(l_g = 1 \) and the algorithm stops at \(\mu_g = e_{g-1} \bar{\beta}_g \).

2. \(x_0, x_1, \ldots, x_g, f \) is a minimal generating sequence of \(\nu_C \).

Proof. The first part follows from the formula for the codimension of \(C_m \) in proposition 4.7 of [Mo1] and the construction of the \(\mu_i \)'s. We also recover that \(\nu_C(x_i) = \bar{\beta}_i, i = 0, \ldots, g \). The second part follows from corollary 3.6 and the description of the equations defining \(C_m \) in terms of the equations of the jet schemes of the curves defined by \(x_i, i = 1, \ldots, g \). Note that according to claim 1, \(i_{\nu_C} x_{i,j} \) is generated by \(x_0, \ldots, x_i \).

Example 2. Let \(f = \left((x_1^2 - x_0^3 - x_0^4)^2 - x_0^5 x_1(x_1^2 - x_0^3 - x_0^4)\right) \), and let \(C \) be the curve defined by \(f \). We have that \(e_1 = 4 \), \(x_{2,0} = x_1^2 - x_0^3 \) and \(\mu_{2,0} = 127 \). Let

\[
F^{(\mu_{2,0} + 1)} = Q^l \mod I_{\mu_{2,0}}^r,
\]

then \(Q = x_{2,0}^{(32)} - x_0^{(8)^4} \) and \(l = 4 = e_1 \), hence we define

\[
x_{2,1} = x_{2,0} - x_0 = x_1^2 - x_0^3 - x_0^4.
\]

We have that \(\mu_{2,1} = 151 \). Let

\[
F^{(\mu_{2,1} + 1)} = Q^l \mod I_{\mu_{2,1}}^r,
\]

then \(Q = x_{2,1}^{(38)^2} - x_0^{(8)^8} x_1^{(12)} \) and \(l = l_2 = 2 < e_1 \). Since \(l_2 = 2 < e_1 \), we set \(\mu_2 := \mu_{2,1}, x_{2,1} = x_2 \), and we define

\[
x_{3,0} = x_2^2 - x_0^8 x_1 = (x_1^2 - x_0^3 - x_0^4)^2 - x_0^8 x_1.
\]

We have that \(\mu_{3,0} = 153 \), and we find that \(l_3 = 1 < l_2 \), hence we set \(\mu_3 := \mu_{3,0}, x_3 = x_{3,0} \) and we stop. A minimal system of generator is then given by \(x_0, x_1, x_2, x_3 \) and \(f \).

4 Generating sequences of divisorial valuations

We now apply the results of the previous section to determine from the jet schemes a minimal generating sequence for a divisorial valuation centered at the origin of \(A^2 \). The key point is that in dimension 2, a divisorial valuation \(\nu_P \) which is determined by a divisor
E is defined by an irreducible component of \(\text{Cont}^p(C) \), where \(p \in \mathbb{N} \) and \(C \) is an analytically irreducible plane curve. More precisely, the valuation is given by an irreducible component of \(C_{p-1} \) which is of the type \(C_{p-1} \) (see the definition of \(C_m \) after theorem 3.2) for \(p \geq n_g\bar{\beta}_g \), where \(\bar{\beta}_0, \ldots, \bar{\beta}_g \) give a minimal system of generators of the semigroup \(\Gamma(C) \). Note that these numbers (the \(\bar{\beta}_i \)'s) are also extracted from the jet schemes, this is the first part of theorem 3.10.

The existence of \(C \) follows for instance from theorem 2.7 in [LMR]: \(C \) is chosen to be a curvette of \(E \). Recall that \(C \) is a curvette of \(E \), if there exists \(\pi: X \to \mathbb{A}^2 \), a composition of point blow ups above the origin, where \(E \) is an irreducible component of the exceptional divisor of \(\pi \) and the strict transform of \(C \) by \(\pi \) is smooth and transversal to \(E \) at a point which is not an intersection of \(E \) with an other component of the exceptional divisor, i.e. a free point [GB],[FJ].

We will obtain a generating sequence of \(\nu_E \) from the equations of the jet schemes of the curvette \(C \), more precisely from the irreducible component \(C_{p-1} \). There are two cases:

If \(p = n_g\bar{\beta}_g \).

let \(x_2, \ldots, x_g \) be constructed by the algorithm of the previous section. Then a minimal generating sequence of the valuation \(\nu_E \) is given by \(x_0, \ldots, x_g \). This follows from the definition of \(\nu_E \) in terms of jet schemes. Indeed, \(C_{p-1} \) gives rise to an irreducible component \(\mathcal{W} \) of \(\text{Cont}^p(C) \) (see the discussion after theorem 3.2 in [Mo2]), and we have that

\[
\nu_{\mathcal{W}}(h) = \min_{\gamma \in \mathcal{W}} \{ \text{ord}_t \gamma^*(h) \},
\]

for \(h \in R = \mathbb{K}[x_0, x_1] \).

If \(p > n_g\bar{\beta}_g \).

then we need to continue the algorithm in the previous section. Assume that we have constructed \(x_0, \ldots, x_{g-1} \), hence we have

\[
F^{(n_g\bar{\beta}_g)} \equiv Q \mod I_{n_g\bar{\beta}_g-1},
\]

for some reduced polynomial \(Q \) (note that we do not have a power of \(Q \) because we have reached the step where \(l = 1 \)). We have that

\[
Q - x_g^{(\bar{\beta}_g)} \equiv Q' \mod I_{n_g\bar{\beta}_g-1},
\]

where \(Q' \) is a polynomial in \(x_0^{(\bar{\beta}_0)}, x_1^{(\bar{\beta}_1)}, x_2^{(\bar{\beta}_2)}, \ldots, x_{g-1}^{(\bar{\beta}_{g-1})} \). We then define

\[
x_{g+1,0} = x_g^{n_g} + Q'.
\]

We define

\[
u_{m}^{g+2,0} = (\text{ord}_t x_0 \circ \gamma_m(t), \text{ord}_t x_1 \circ \gamma_m(t), \ldots, \text{ord}_t x_{g+1,0} \circ \gamma_m(t)),
\]
and

\[\mu_{g+1,0} = \min \{ n_g \beta_g \leq m < p \mid v_m^{g+2,0} = v_{m+1}^{g+2,0} \}. \]

We have not imposed any condition on the codimension in the definition of \(\mu_{g+1,0} \) because for \(m \geq n_g \beta_g \) the codimension of \(C_m \) grows by 1 when \(m \) grows by 1 (proposition 4.7 in [Mo1]).

If \(\mu_{g+1,0} = p - 1 \), then a minimal generating sequence of \(\nu_E \) is given by

\[x_0, \ldots, x_{g+1} := x_{g+1,0}. \]

If not, let

\[F(\mu_{g+2,0}+1) \equiv Q \mod I_{\mu_{g+2,0}}, \]

for some reduced polynomial \(Q \). We have that

\[Q - F(\mu_{g+2,0}+1) \equiv Q' \mod I_{\mu_{g+1,0}}, \]

where \(Q' \) is a polynomial in \(x_0^{(\beta_0)}, x_1^{(\beta_1)}, x_2^{(\beta_2)}, \ldots, x_{g}^{(\beta_{g-1})} \). We then define

\[x_{g+1,1} = x_{g+1,0} + Q'. \]

Again, we define as above \(v_m^{g+2,1}, \mu_{g+1,1}, x_{g+1,2}, \ldots, v_m^{g+2,j}, \mu_{g+1,j}, \) until we have \(\mu_{g+1,j} = p - 1 \) (note that \(\mu_{g+1,i+1} > \mu_{g+1,i}, i \geq 0 \)). Then a minimal generating sequence of \(\nu_E \) is given by

\[x_0, \ldots, x_{g+1} := x_{g+1,j}. \]

Note that \(\nu_E(x_g) = \beta_g, \nu_E(x_{g+1}) = p \) and all the \(x_i \)'s are polynomials in \(K[x_0, x_1] \). Actually if we let \(D = \{ x_{g+1} = 0 \} \), then it follows from the definitions of \(\nu_E \) and \(D \) that for an irreducible \(h \in K[[x, y]] \), we have that

\[\nu_E(h) = \nu_D(h) \]

and the initial part \(\text{in}_{\nu_E}(h) = \text{in}_{\nu_D}(h) \) is a polynomial in \(x_0, \ldots, x_g, x_{g+1,j-1} \), unless if \(\text{in}_{\nu_E}(h) = x_g^{\beta_g+1} \) is a power of \(x_{g+1} \), in which case we have that \(\nu_E(h) = rp \). Note that \(x_{g+1,j-1} \) is a polynomial in the variables \(x_0, \ldots, x_{g+1} \).

We now assume that for a divisorial valuation \(\nu_E \), defined by the irreducible component \(C_{p-1} \) of the \((p-1)\text{-th}\) jet scheme of an irreducible curve \(C \), we have determined \(x_0, \ldots, x_g \) a minimal generating sequence as above. Then, by construction, we have that for \(i = 2, \ldots, g \), there exist polynomials \(f_i \) such that

\[x_i = f_i(x_0, \ldots, x_{i-1}). \]

We will use this to prove the following proposition which is the goal of this article.
Proposition 4.1. There exists an embedding \(e : \mathbb{A}^2 \hookrightarrow \mathbb{A}^{g+1} \), and a toric proper birational morphism \(\mu : X_\Sigma \rightarrow \mathbb{A}^{g+1} \) such that:

\[
\begin{array}{ccc}
\tilde{A}^2 & \xrightarrow{\eta} & X_\Sigma \\
\downarrow & & \downarrow \mu \\
A^2 & \xleftarrow{e} & A_{g+1}
\end{array}
\]

1. \(X_\Sigma \) is smooth, i.e. the fan \(\Sigma \) is a regular subdivision of \(\mathbb{R}_{+}^{g+1} \), and the vector

\(v_{\nu_E} := (\nu_E(x_0), \ldots, \nu_E(x_g)) \)

is an edge of a cone which belongs to \(\Sigma \),

2. the strict transform \(\tilde{A}^2 \) of \(A^2 \) by \(\mu : X_\Sigma \rightarrow \mathbb{A}^{g+1} \) is smooth,

3. The divisor \(E' \subset X_\Sigma \), which corresponds to the vector \(v_{\nu_E} \), intersects \(\tilde{A}^2 \) transversally along a divisor \(E \),

4. the valuation defined by the divisor \(E \) is \(\nu \).

Proof. The functions \(f_i \)'s provide an embedding \(A^2 \hookrightarrow \mathbb{A}^{g+1} \), which is the geometric counterpart of the following morphism

\[
K[x_0,x_1,y_1,\ldots,y_g] \rightarrow \frac{K[x_0,x_1,y_2,\ldots,y_g]}{(y_2 - f_2(x_0,x_1),\ldots,y_g - f_g(x_0,x_1,x_2,\ldots,y_g-1))} \simeq K[x_0,x_1].
\]

Let \(\Sigma' \) be a regular subdivision of \(\mathbb{R}^{g+1}_{+} \), which is compatible with the Newton dual fan of \(y_i - f_i, i = 2, \ldots, g \) (see section 5 of [GT] for the construction of \(\Sigma' \)), and let \(\Sigma'' \) be the Stellar subdivision of \(\Sigma' \) associated with the vector \(v_{\nu_E} \). Finally let \(\Sigma \) be a regular subdivision of \(\Sigma'' \). Then the first 3 properties of the proposition follows from theorem 5.2 in [GT]. Now by construction of the embedding \(e \), we have that if \(W \) is the irreducible component of \(Cont^P(\mathcal{C}) \) which defines \(\nu_E \), then

\[
e_{\infty}(W) = e_{\infty}(A^2_\infty) \cap Cont^{\nu_E(x_0)}(x_0) \cap Cont^{\nu_E(x_1)}(x_1) \cap Cont^{\nu_E(x_2)}(y_2) \cap \cdots \cap Cont^{\nu_E(x_g)}(y_g),
\]

where \(e_{\infty} : A^2_\infty \hookrightarrow A^{g+1}_\infty \) is the canonical morphism. But the divisorial valuation associated with

\[
U = Cont^{\nu_E(x_0)}(x_0) \cap Cont^{\nu_E(x_1)}(x_1) \cap Cont^{\nu_E(x_2)}(y_2) \cap \cdots \cap Cont^{\nu_E(x_g)}(y_g) \subset A^{g+1}_\infty
\]

is \(\nu_{E'} \), which in terms of arcs means that \(\mu_{\infty}(Cont^1(E')) \) dominates \(U \), hence we have that \(\eta_{\infty}(Cont^1(E)) \) dominates \(W \) where \(\eta \) is the restriction of \(\mu \) to \(A^2_\infty \). The property 4 in the proposition follows form the description of the valuation associated to \(W \).
Remark 4.2. Note that that we can use the equations \(f_i \) to define an overweight deformation in the sense of \([T2]\), hence \(\nu_E \) can be obtained from the monomial valuation \(\nu_{E'} \) as in proposition 3.3 \([T2]\).

Example 3. Let \(C \) be the irreducible curve defined by the equation \(x_1^2 - x_0^3 = 0 \). Let \(\nu \) be the valuation defined by \(C_6 \subset C_6 \) or equivalently by the corresponding irreducible component of \(\text{Cont}^7(x_1^2 - x_0^3) \). Note that the ideal of \(C_6 \) is generated by

\[
(x_0^{(0)}, x_0^{(1)}, x_1^{(0)}, x_1^{(2)}, x_1^{(3)}, x_0^{(2)} - x_0^{(3)}).
\]

Then by the discussion at the beginning of this section, we have that \(x_0, x_1 \) and \(x_2 = x_1^2 - x_0^3 \) give a minimal generating sequence of \(\nu \). We embed \(A^2 = \text{Spec} K[x_0, x_1] \hookrightarrow A^3 = \text{Spec} K[x_0, x_1, y_2] \) by the equation \(y_2 - (x_1^2 - x_0^3) = 0 \). A subdivision of \(\mathbb{R}^3_+ \) as in the proposition 4.1 is given by a fan \(\Sigma \) whose edge vectors are the vectors

\[
(1, 1, 1), (1, 2, 3), (2, 3, 5), (2, 3, 6), (2, 3, 7)
\]

where the last vector is the \(\nu_\Sigma = (\nu(x_0), \nu(x_1), \nu(x_2)) \). We are interested in a chart of \(X_\Sigma \) where we can see the divisor \(E' \) associated with the vector \(\nu_\Sigma \). We consider the chart \(X_\sigma = A^3 = \text{Spec} K[u, v, w] \) generated by the vectors \((1, 2, 3), (2, 3, 6), (2, 3, 7) \). The restriction of \(\mu \) to this chart is given by

\[
x_0 = uv^2w^2,
\]

\[
x_1 = u^2v^3w^3,
\]

\[
y_2 = u^3v^6w^7.
\]

The strict transform of \(A^2 = \{ y_2 - (x_1^2 - x_0^3) = 0 \} \subset A^3 \) is given by

\[
\tilde{A}^2 = \{ w - u + 1 = 0 \} \simeq \text{Spec} K[u, v] \subset A^3 = \text{Spec} K[u, v, w]
\]

and \(E' \) is defined by \(w = 0 \). Thus the divisor \(E \) is defined in \(A^2 \) by the equation \(u - 1 = 0 \). The restriction \(\eta \) of \(\mu \) to \(\tilde{A}^2 \) is obtained from the description of \(\mu \) by substituting \(w \) by \(u - 1 \). Hence \(\eta \) is given by

\[
x_0 = uv^2(u - 1)^2,
\]

\[
x_1 = u^2v^3(u - 1)^3.
\]

It is direct to verify that \(\eta \) is obtained as follows: First we consider the minimal embedded resolution of the curve \(C = \{ x_1^2 - x_0^3 = 0 \} \) (which is obtained by three consecutive point blowing ups), then we blow up the intersection of the strict transform of \(C \) with the exceptional divisor. The divisor obtained from this last blowing up satisfies \(\nu = \nu_E \). We see that the total transform of \(C \) by \(\eta \) is given by the equation \(w^5v^6(u - 1)^7 \) and hence that \(\nu_E(x_1^2 - x_0^3) = 7 \).
This result shows a different approach from the one of [GT] to the resolution of singularities of an irreducible plane curve C by one toric morphism. Indeed in loc.cit. the embedding e is constructed from the study of the curve valuation ν_C, while the approach suggested by this article is to study the divisorial valuation associated with the irreducible component C_{p-1} of C_{p-1} (where $p = n_y \beta_y$ is detected via invariants of jet schemes). The two approaches lead to the same embedding in this case, in higher dimensions they bifurcate.

Let us explain a little bit more the point of view suggested in this article about the embedding e. Let $\nu = \nu_\alpha$ be the monomial valuation defined on $A^n = \text{Spec} K[x_1, \ldots, x_n]$ by a vector $\alpha = (\alpha_1, \ldots, \alpha_n)$, where $\alpha_i \in \mathbb{N}, i = 1, \ldots, n$. Let $I \subset K[x_1, \ldots, x_n]$ be an ideal and we assume that the origin O belongs to the variety $V(I) \subset A^n = \text{Spec} K[x_1, \ldots, x_n]$ defined by this ideal. We will say that I or $V(I)$ is non-degenerate with respect to ν at O if the singular locus of the variety defined by the initial ideal $in_\nu(I)$ of I does not intersect the torus $(K^*)^n$. Note that in this context, the initial ideal of I is defined by

$$in_\nu(I) = \{in_\nu(f), f \in I\},$$

where for $f = \sum a_{1,\ldots,n} x_1^{i_1} \cdots x_n^{i_n} \in K[x_1, \ldots, x_n],$

$$in_\nu(f) = \sum_{a_{1,\ldots,n} \neq 0, i_1 a_1 + \cdots + i_n a_n = \nu(f)} a_{1,\ldots,n} x_1^{i_1} \cdots x_n^{i_n}.$$

It follows from [AGS], [Te1] (see also [Va] for the hypersurface case) that if for every $\alpha = (\alpha_1, \ldots, \alpha_n), \alpha_i \in \mathbb{N}, i = 1, \ldots, n, I$ is non-degenerate with respect to ν_α at O, then we can construct a proper toric birational morphism $Z \to A^n$ that resolve the singularities of $V(I)$ in a neighborhood of O. Notice that I can be degenerate with respect to a valuation defined by a vector α if there exists an irreducible family of jets (having a large contact with $V(I)$) or arcs on $V(I)$ which satisfy that for a generic $\gamma = (\gamma_1(t), \ldots, \gamma_n(t))$ in this family, $(\text{ord}_t \gamma_1(t), \ldots, \text{ord}_t \gamma_n(t)) = \alpha$: indeed, by Newton-Puiseux type theorem, if this is not satisfied, $in_{\nu_\alpha}(f)$ will contain monomials, hence by definition I will be non-degenerate with respect to ν_α. By studying irreducible components of jet schemes of a plane branch C, as we have done, we are also looking for the degeneracy behind the first Newton polygon. The embedding we have constructed by applying proposition 4.1 to the divisorial valuation associated with the irreducible component $C_{n_y \beta_y - 1}$ of $C_{n_y \beta_y - 1}$, have the following property: Let I be the defining ideal of the curve C in A^{p+1} and let $\alpha = (\beta_0, \ldots, \beta_y)$; the initial ideal $in_{\nu_\alpha}(I)$ is the defining ideal of the monomial curve defined by $\{(t^{\beta_0}, \ldots, t^{\beta_y}), t \in K\}$, which has an isolated singularity at O, hence I is non-degenerate with respect to ν_α. Moreover, this is the only relevant vector α with respect to which we should check degeneracy, the reason being that the initial ideal with respect to any other vector will contain monomials. One crucial thing is that in the curve case, the initial ideal we found is binomial, thus it defines a toric variety, in higher dimension it will not be the case, and more technology will be needed.
References

[AM] S. Abhyankar, T.T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II. J. Reine Angew. Math. 260 (1973), 47-83; ibid. 261 (1973), 29-54.

[AGS] F. Aroca, M. Gomez-Morales, K. Shabbir, Torical modification of Newton non-degenerate ideals. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 107 (2013), no. 1, 221-239.

[CA] Casas-Alvero, Eduardo Singularities of plane curves. London Mathematical Society Lecture Note Series, 276. Cambridge University Press, Cambridge, 2000.

[CV] S.D.Cutkosky, P.A.Vinh, Valuation semigroups of two-dimensional local rings. Proc. Lond. Math. Soc. (3) 108 (2014), no. 2, 350-384.

[dFEI] T. de Fernex, L. Ein, S. Ishii, Divisorial valuations via arcs. Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 425-448,

[DL1] J. Denef, F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201-232.

[ELM] L. Ein, R. Lazarsfeld, M. Mustata, Contact loci in arc spaces. Compos. Math. 140 (2004), no. 5, 1229-1244.

[EM] L. Ein, M. Mustata, Jet schemes and singularities. Algebraic geometry-Seattle 2005. Part 2, 505-546, Proc. Sympos. Pure Math., 80, Part 2, Amer. Math. Soc., Providence, RI, 2009.

[FJ] C. Favre, M. Jonsson, The valuative tree. Lecture Notes in Mathematics, 1853. Springer-Verlag, Berlin, 2004. xiv+234 pp.

[GB] E. Garcia Barroso, Invariants des singularités de courbes planes et courbure des fibres de Milnor. Servicio de Publicaciones de la ULL (2004).

[GT] R. Goldin, B. Teissier, Resolving singularities of plane analytic branches with one toric morphism. Resolution of singularities (Obergurgl, 1997), 315-340, Progr. Math., 181, Birkhauser, Basel, 2000.

[GP] P. Gonzalez-Perez, Toric embedded resolutions of quasi-ordinary hypersurface singularities Annales de l’Inst. Fourier, 56 (6), 2003, 1819-1881.

[HOS] F.J. Herrera Govantes, M.A. Olalla Acosta, M. Spivakovsky, Valuations in algebraic field extensions. J. Algebra 312 (2007), no. 2, 1033-1074.

[I] S. Ishii, Jet schemes, arc spaces and the Nash problem, C.R.Math. Rep. Acad. Canada, 29 (2007) 1-21.

[L] M. Jalabert-Lejeune, Sur l’équivalence des singularités de courbes algébroïdes planes. Coefficients de Newton. Introduction à la théorie des singularités, I, 49-124, Travaux en Cours, 36, Hermann, Paris, 1988.
[LMR] M. Lejeune-Jalabert, H. Mourtada, A. Reguera Jet schemes and minimal embedded desingularization of plane branches. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., DOI: 10.1007/s13398-012-0091-5, special issue dedicated to Professor H. Hirnaka.

[Mc] S.MacLane, A construction for absolute values in polynomial rings. Trans. Amer. Math. Soc. 40 (1936), no. 3, 363-395.

[Ma] W. Mahboub, Key polynomials, J. Pure Appl. Algebra 217 (2013), no. 6, 989-1006.

[Mo1] H. Mourtada, Jet schemes of complex plane branches and equisingularity, Ann. Inst. Fourier 61, No. 6, 2313-2336 (2011).

[Mo2] H. Mourtada, Jet schemes of rational double point singularities, Valuation Theory in Interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Sept. 2014, pp: 373-388, DOI: 10.4171/149-1/18.

[Mo3] H. Mourtada, Jet schemes of toric surfaces, C. R., Math., Acad. Sci. Paris 349, No. 9-10, 563-566 (2011).

[Mo4] H. Mourtada, Jet schemes and generating sequences of \(\mathbb{H}\)-divisorial valuations, in preparation.

[Re] A. Reguera, Towards the singular locus of the space of arcs. Amer. J. Math. 131 (2009), no. 2, 313-350.

[S] M. Spivakovsky, Valuations in Function Fields of Surfaces, American Journal of Mathematics Vol. 112 No. 1., 1990.

[T1] B. Teissier, Valuations, deformations, and toric geometry. Valuation theory and its applications, Vol. II (Saskatoon, SK, 1999), 361-459, Fields Inst. Commun., 33, Amer. Math. Soc., Providence, RI, 2003.

[T2] B. Teissier, Overweight deformations of affine toric varieties and local uniformization, Valuation Theory in Interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Sept. 2014, pp 252-265.

[T3] B. Teissier, Appendix to O. Zariski’s course: The moduli problem for plane branches. University Lecture Series, 39. American Mathematical Society, Providence, RI, 2006.

[Te1] J. Tevelev, Compactifications of subvarieties of tori. Amer. J. Math. 129(4), 1087-1104 (2007).

[Te2] J. Tevelev, On a question of B. Teissier. Collect. Math. 65 (2014), no. 1, 61-66.

[V1] M. Vaquié, Extension d’une valuation. Trans. Amer. Math. Soc. 359 (2007), no. 7, 3439-3481.

[V2] M. Vaquié, Valuations and local uniformization. Singularity theory and its applications, 477-527, Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2006.
[Va] A.N. Varchenko, Zeta-function of monodromy and Newton’s diagram. Invent. Math. 37 (1976), no. 3, 253-262.

Hussein Mourtada,
Equipe Géométrie et Dynamique,
Institut Mathématique de Jussieu-Paris Rive Gauche,
Université Paris 7,
Bâtiment Sophie Germain, case 7012,
75205 Paris Cedex 13, France.

Email: hussein.mourtada@imj-prg.fr