RESEARCH ARTICLE

Does Total Gastrectomy Provide Better Outcomes than Distal Subtotal Gastrectomy for Distal Gastric Cancer? A Systematic Review and Meta-Analysis

Jin Qi¹,²,³, Peng Zhang², Yanan Wang⁴, Hao Chen¹,², Yumin Li¹,²*

¹ The Second Hospital of Lanzhou University, Lanzhou, Gansu, People’s Republic of China, ² Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, Gansu, People’s Republic of China, ³ Key Laboratory of Orthopedics of Gansu Province, Lanzhou, Gansu, People’s Republic of China, ⁴ The Evidence-Based Medicine Center of Lanzhou University, Lanzhou, Gansu, People’s Republic of China

* 2864887359@qq.com

Abstract

Background/Aims

Total gastrectomy (TG) has shown to be superior regarding low risk of recurrence and readmission to distal subtotal gastrectomy (DG) for treatment of distal stomach cancer, but the incidence of postoperative morbidity and mortality in TG cannot be ignored. Therefore, we performed a meta-analysis to compare the effectiveness between TG and DG for distal stomach cancer.

Methodology

A search in PubMed, EMBASE, the Cochrane Library, Web of Science, Chinese Biomedical Database through January 2016 was performed. Eligible studies in comparing of TG and DG for distal gastric cancer were included in this meta-analysis. Review Manager 5.2 software from the Cochrane Collaboration was used for the performance of meta-analysis and STATA 12.0 software for meta-regression analysis.

Results

Ten retrospective cohort studies and one randomized control trial involving 5447 patients were included. The meta-analysis showed no significant difference of postoperative mortality (RR = 1.48, 95%CI = 0.90–2.44, p = 0.12), intraoperative blood loss (MD = 24.34, 95%CI = -3.31–51.99, p = 0.08) and length of hospital stay (MD = 0.76, 95%CI: -0.26–1.79, p = 0.15). TG procedure could retrieve more lymph nodes than DG (MD = 4.33, 95% CI = 2.34–6.31, p < 0.0001). According to different postoperative complications, we performed subgroup analysis, subgroup analysis revealed that patients in TG group tended to have a higher rate of postoperative intra-abdominal abscess than DG procedure (RR = 3.41, 95% CI = 1.21–9.63, p < 0.05). No statistical differences were found in leakage, intestinal obstruction, postoperative...
bleeding, anastomotic stricture and wound infection between the two groups \((p>0.05)\). We pooled the data together, the accumulated 5-year Overall Survival rates of TG and DG groups were 49.6% (919/1852) vs. 55.9% (721/1290) respectively. Meta-analysis revealed a favoring trend to DG procedure and there was a statistical difference between the two groups \((RR = 0.91, 95\% CI = 0.85–0.97, p = 0.006)\).

Conclusion

Based on current retrospective evidences, we found that in spite of similar postoperative mortality, TG for distal gastric cancer provided a high risk of five-year Overall Survival rate. DG procedure can be a recommendation for distal gastric cancer, whereas due to lack of high quality RCTs in multicenter and the relatively small sample size of long-term outcomes, further comparative studies are still needed.

Introduction

Gastric cancer is the second leading cause of cancer deaths worldwide with an estimated incidence of 870000 per year nearly two-thirds of cases occurring in the developing countries[1]. Surgical resection is the only therapy and an option to enhance the survival rate of patients with gastric cancer[2]. The extent of gastrectomy for curative treatment of gastric cancer depends on tumor location, tumor size and tumor stage[3,4]. However, the distal subtotal gastrectomy and total gastrectomy for centuries, there has been controversy about the choice of the best surgical procedure for the distal half of gastric cancer which is usually resection by the distal subtotal gastrectomy in china[5]. Although total gastrectomy can maximally reduce gastric remnant cancer[6], it leads to the postoperative limited diet, dysphagia, dry mouth, and reflux symptoms which will affect the patient’s quality of life [7]. Whether distal subtotal gastrectomy and total gastrectomy is the same in perioperative period, complications and long-term survival rate or not, different studies have different results. The purpose of this meta-analysis is to evaluate which surgical procedure is the superior surgical treatment for the distal half of gastric cancer, concerning operation time, intraoperative blood loss, hospital stay, postoperative mortality and five-years overall survival rate, as well as the patient’s quality of life, etc.

Methods

Search strategy

Trials were identified by searching PubMed, EMBASE, the Cochrane Library, Web of Science, Chinese Biomedical Database through January, 2016, Search strings of PubMed were “gastric cancer” (Mesh) AND “carcinoma” (Mesh) AND “total gastrectomy” (Mesh) AND (“distal gastrectomy” (Text word) OR “distal subtotal gastrectomy” (Text word) OR “distal resection” (Text word) OR “partial gastrectomy” (Text word)). Relative reference lists were also screened for relative articles. All the searches were conducted independently by two investigators(JQ and YNW). Discrepancies in the interpretation were resolved by discussion.

Inclusion and exclusion criteria

We only identified studies comparing Total versus Distal Gastrectomy for Gastric Cancer. Either prospective or retrospective controlled studies were eligible. For all gastric cancer
patients who had undergone gastrectomy or laparoscopic-assisted gastrectomy were either distal subtotal gastrectomy (DG) or total gastrectomy (TG). The primary outcome measure were mortality and five-year Overall Survival (OS), while secondary outcomes were operation time, intraoperative blood loss, harvested lymph nodes, hospital stay, quality of life, postoperative complication including wound infection, leakage, anastomotic stenosis, intestinal obstruction, intra-abdominal abscess, etc.

We excluded studies which did not report the baseline information between DG and TG groups. Article of too small size, failure to meet the inclusion criteria and data unusable were excluded. Of course, duplicated studies were identified for exclusion.

Date extraction and Quality Assessment
The data was extracted and critically appraised independently by two authors. We extracted operative time, intraoperative blood loss, hospital stay, postoperative mortality, five-year overall survival were used to compare the postoperative recovery of the procedures. The postoperative complications including wound infection, anastomotic leakage, anastomotic stricture, intestinal obstruction, intra-abdominal abscess and bleeding were compared. The hospital mortality, five-year overall survival rate were used to estimate the postoperative safety of DG versus TG.

Newcastle–Ottawa Quality Assessment Scale for cohort studies was used for assessing the quality of non-randomized studies included in this meta-analyzes (Table 1)[8]. Using the tool, each study is judged on eight items, which were used to assess patient population and selection, study comparability, follow-up, and the outcome of interest. A star system is used to allow a semi-quantitative assessment of studies which are awarded a maximum of one star for each item in the assignment of two stars. The NOS stars are added up to compare the study quality. Each study was graded as either low quality (0–5) or high quality (6–9). The methodological quality of included studies is shown in Table 2, the most of low-quality studies were excluded.

Statistical analysis
Data was analyzed using Review Manager 5.2 software programs (Cochrane Collaboration) and STATA 12.0. For dichotomous scales, the data from these comparative trials were expressed as risk ratio (RR) along with 95% confidence interval (CI). If there were continuous data of measurement, the mean difference (MD) was used as the measure of association. Effects on quantitative measures (e.g. operation time, blood loss) were evaluated by mean difference (MD) approach. Five-year OS were analyzed by pooled hazard ratios (HR) and their 95% confidence intervals (CI). HRs and their 95% CIs for five-year OS rate was obtained by used the published methods to calculate them. Inverse Variance (IV) test was used for MD estimate. Date was pooled using the fixed-effect model but the random-effects model was also considered to ensure robustness of the model. The heterogeneity among studies was performed using the I-squared index (I^2) statistic[18]. When the heterogeneity was high ($I^2 > 50\%$), we used random-effects model to analysis. Otherwise a fixed-effect model was used. All the p values were two-tailed with significance level of 0.05, except for the heterogeneity test ($p = 0.10$).

Results
Literature search and selection
The initial search revealed 31 citations, and 19 potentially eligible articles were secondarily selected by reading the full-text and 8 articles were excluded because of a small size, failure to
meet the inclusion criteria, data were unusable. The flow diagram of reviews shows the detailed process of selection (Fig 1). Finally, 11 studies [6,7,9–17] involving 5447 patients (2418 by TG vs 3029 by DG) were included for our analysis which included Laparoscopy-assisted and open gastrectomy for gastric cancer (Table 3). The baseline characteristics between both groups were shown in Table 4.

Table 1. Newcastle-Ottawa quality assessment scale*.

Selection	
1) Representativeness of the exposed cohort	
a) truly representative of the average__GC Patient__ in the community	
b) somewhat representative of the average__GC Patient__ in the community	
c) selected group of users eg nurses, volunteers	
d) no description of the derivation of the cohort	
2) Selection of the non exposed cohort	
a) drawn from the same community as the exposed cohort	
b) drawn from a different source	
c) no description of the derivation of the non exposed cohort	
3) Ascertainment of exposure	
a) secure record (eg surgical records)	
b) structured interview	
c) written self report	
d) no description	
4) Demonstration that outcome of interest was not present at start of study	
a) yes	
b) no	

Comparability

1) Comparability of cohorts on the basis of the design or analysis
| a) study controls for__age, sex, BMI__ | |
| b) study controls for any additional factor (tumor size, stage, etc.) | |

Outcome

1) Assessment of outcome
| a) independent blind assessment | |
| b) record linkage | |
| c) self report | |
| d) no description | |

2) Was follow-up long enough for outcomes to occur
| a) yes (5 years) | |
| b) no | |

3) Adequacy of follow up of cohorts
| a) complete follow up—all subjects accounted for | |
| b) subjects lost to follow up unlikely to introduce bias—small number lost—>90% (select an adequate %) follow up, or description provided of those lost | |
| c) follow up rate <60% (select an adequate %) and no description of those lost | |
| d) no statement | |

* A study can be awarded a maximum of one star for each numbered item within the Selection and Outcome categories. A maximum of two stars can be given for Comparability

GC, gastric cancer; BMI, body mass index.

doi:10.1371/journal.pone.0165179.t001
Results of the meta-analysis

Operative findings. Three articles [6,13,17] reported blood loss and four studies [6,7,13,17] reported operation time. Meta-analyses showed that DG took obviously shorter operative time than TG procedure (MD = 50.73, 95% CI: 12.75–88.72, \(p = 0.009\)), heterogeneity was observed (\(p<0.00001\); \(I^2 = 96\%\)), so we used a random-effect model for this analysis. DG involving 1261 patients took less volume of intraoperative blood loss than TG procedure involving 1114 patients, but no statistical differences were found between the two groups, (MD = 24.34, 95% CI = -3.31–51.99, \(p = 0.08\)) (Fig 2). There was significant heterogeneity among studies (\(p = 0.13\); \(I^2 = 51\%\)), so we used a random-effect model here (Fig 2). Five studies [6,7,13,14,17] reported harvested lymph nodes, meta-analysis confirmed that TG procedure could retrieve more lymph nodes than DG (MD = 4.33, 95% CI = 2.34–6.31, \(p<0.0001\)) (Fig 2).

Length of hospital stay. There was significant heterogeneity (\(p = 0.01\); \(I^2 = 73\%\)) between studies, so we used a random-effect model for the meta-analysis of length of hospital stay. Data regarding hospital stay were provided in four studies [6,7,12,17] involving 2559 patients, meta-analysis showed that there was no significant difference in the length of hospital stay between TG and DG group (MD = 0.76, 95% CI:-0.26–1.79, \(p = 0.15\)) (Fig 3).

Postoperative complication. Meta-analysis on 8 observational studies [6,7,9,11–13,15,17] showed that patients after TG group experienced significantly higher total postoperative complication risk compared to DG procedure. (RR = 1.76, 95% CI = 1.31–2. 36, \(p = 0.0002\)) (Fig 4). According to different postoperative complications, we performed subgroup analysis, subgroup analysis revealed that patients in TG group tended at a higher rate of postoperative intra-abdominal abscess than DG procedure (RR = 3.41, 95% CI = 1.21–9.63, \(p<0.05\)) (Fig 4). No statistical differences were found in leakage, intestinal obstruction, postoperative bleeding, anastomotic stricture and wound infection between the two groups (\(p>0.05\)) (Fig 4). It implied a trend of potential survival benefit of TG procedure for distal gastric cancer.

Postoperative mortality and Overall survival. Date regarding to patient 30-day mortality at postoperation were reported in eight studies [6,7,9,11–13,15,16] involving 1866 patients of TG and 2424 patients of DG. The accumulated mortality rates of TG and DG groups were 2.14% (40/1866) and 1.16% (28/2424) respectively. Although TG took higher accumulated mortality rate than DG group, meta-analysis revealed there was no significant difference on postoperative mortality. (RR = 1.48, 95% CI = 0. 90–2.44, \(p = 0.12\)) (Fig 5).
The long-term Overall Survival (OS) is an important outcome to assess the safety of the operation type. Five articles[6,10,11,14,15] reported the five-year OS of both procedures. We pooled the data together, the accumulated 5-year OS rates of TG and DG groups were 49.6% (919/1852) vs. 55.9% (721/1290) respectively. Meta-analysis revealed a favoring trend to DG procedure, and there was statistically difference between the two groups (HR = 0.91, 95% CI = 0.85–0.97, p = 0.006) (Fig 6).
We examined the outcome variables with high heterogeneity ($I^2 > 50\%$) in a meta-regression model. The analyses indicated that study quality, sample size, year of publication, country of patients, and stage of gastric cancer were significant sources of heterogeneity (Table 5).

Publication Bias. Funnel plots and Egger’s weighted regression test were used to assess the publication bias. When the number of included studies was less than ten, we did not assess the publication bias, otherwise, it could have a big bias[19]. In our study, we did not perform the publication bias, because funnel plots test was advisable in the event of at least ten individual studies.

Discussion

This is the first meta-analysis focusing on the surgical outcomes, postoperative morbidity and long-term effects of TG and DG surgical treatment in gastric cancer patients. From a surgical point of view, the best choice for surgical procedure in distal stomach cancer is still controversial. USA surgeons usually perform TG for cancer of the distal stomach[20]. Studies have shown that TG did not increase postoperative hospital stay, mortality and even morbidity in comparison with DG. Moreover, DG procedure have higher risk of recurrence and readmission than that of TG, consequently a great number of second surgeries in these gastric cancer patients[21]. While in most European countries, DG was the general procedure of choice[22,23]. They regarded that the incidence of postoperative morbidity and mortality in TG was at least two times higher than that of DG procedure[13,24,25]. Studies have reported similar short- and long-term outcome between these two surgical procedures[10,26,27]. According to “Japanese gastric cancer treatment guideline 2010”, the standard surgical procedure for clinically node-positive or T2-T4a tumors is either total or distal gastrectomy. DG is selected when a satisfactory proximal resection margin can be obtained[28]. But it is difficult to assess whether the tumor cell remain or not in the proximal resection margin, we therefore compared operation time, intraoperative blood loss, retrieved lymph nodes, postoperative morbidity, 30-day mortality and five-year OS rate after TG or DG surgical procedure in patients with gastric cancer. Because the quality of our included studies was scaled by NOS and most of the clinical characteristics were matched, the two groups(TG vs DG) were comparable. Based on our study, we found that operative time of TG procedure was longer than DG group and the difference has statistically significance. However, blood loss during the operation tended to have an

Table 3. Details of the articles included in the meta-analysis.

Studies	Year	Country	Journal	Sample size	Type of study
Bozzetti F[9]	1997	Italy	Ann. Surg	304/320	Randomized control trial
Bozzetti F[10]	1999	Italy	Ann. Surg	303/315	Randomized control trial
Gockel I[11]	2005	Germany	Langenbecks Arch Surg	240/80	Retrospective cohort study
Moghimi M[12]	2008	Iran	Chin J cancer Res	35/31	Retrospective cohort study
Lee SE[13]	2009	Korea	J Surg Oncol	67/473	Retrospective cohort study
Jang YJ[14]	2010	Korea	J Surg Oncol244/158	178/148	Retrospective cohort study
Mocan L[15]	2013	Romania	J Gastrointestiniver Dis	89/91	Retrospective cohort study
Park SJ[16]	2014	Korea	J Gastric cancer	61/214	Retrospective cohort study
Kim DJ[17]	2015	Korea	Surg Endosc	94/569	Retrospective cohort study
Lin JX[6]	2015	China	Surg Endosc	976/646	Retrospective cohort study
Liu Z[17]	2015	China	Chin J Gastrointest Surg	71/142	Retrospective cohort study

doi:10.1371/journal.pone.0165179.t003
Studies	Approach	Age (years)	Male/Female	BMI (Kg/m²)	Tumor diameter(cm)	Tumor depth	Number of metastatic LN	Stage(e))	Extension of surgery	Lymphadenectomy	Follow-up (Months)
Bozzetti F [9]	TG	175/129	130	137	7	1212	44919	I	None	Splenic	304
	DG	187/133	157	268	17	12	3	II	None	Splenic and other organs	320
Gockel I [10]	TG	156/84	36	100	70	25	679	N0	None	None	153
	DG	184/106	22	34	17	7	209	I	None	None	240
Mighani M [11]	TG	58 ±7.2	2015	0	0	0	0	303	None	None	68
	DG	63 ±5.1	21/30	0	0	0	0	75	None	None	75
Lee S [12]	TG	52 ±13.6	220	22.5±9	4	0	51	090	None	None	32
	DG	57 ±12.1	24 ±3.5	3 ±1.5	4	0	429	453	None	None	274
Jang Y [13]	TG	50 ±13.5	101 ±17	6.5 ±3.3	0	0	17	45 ±0.11	None	None	36
	DG	54 ±13.5	95 ±56	4 ±0.11	0	0	369	134	None	None	60
Moon L [14]	TG	63 ± 8.1	5801	24	249	12	44	565	0	None	49
	DG	63 ± 8.1	4942	30	18	7	39	31	0	None	49
Park S [15]	TG	56 ±13.1	4100	23 ±8.2	0	0	55	61	61	None	245
	DG	59 ±11.1	12150	22 ±8.2	0	0	259	214	0	None	214
Kim D [16]	TG	61 ±12.3	6707	5.9 ±3.3	37	14	219	61	6	10	17
	DG	61 ±12.0	346221	3 ±0.2	409	60	639	446	46	38	452
Lin J [17]	TG	62 ±10.8	769105	21.9±9.2	5.9 ±3.9	129	367	154	175	420	72
	DG	40 ±10.7	444202	22.9±13.2	4.9 ±1.9	136	225	146	86	158	426
Liu Z [18]	TG	54 ±11.0	51.00	9	9	26	199	11	15	26	10
	DG	55 ±11.9	10141	16	18	52	55	41	44	25	32

doi:10.1371/journal.pone.0165179.t004
increase in TG group, but TG procedure could retrieve more lymph nodes than DG. To some extent, although the complexity and trauma of TG was the main reason, the number of harvested lymph nodes in TG group, which was more than that in DG group (MD = 4.33, 95% CI = 2.34–6.31, \(p < 0.0001 \)) was regarded as surgically acceptable. We supposed that with the technological improvement and the development of the instruments, the volume of

Fig 2. Meta-analysis of surgical outcomes between TG and DG for gastric cancer.

doi:10.1371/journal.pone.0165179.g002

Fig 3. Meta-analysis of Length of hospital stay between TG and DG for gastric cancer.

doi:10.1371/journal.pone.0165179.g003
Fig 4. Meta-analysis of postoperative complication between TG and DG for gastric cancer.

doi:10.1371/journal.pone.0165179.g004
intraoperative blood loss of TG procedure seemed to be more than that of DG, but the reduction of the operative time and blood loss has been observed in TG procedure. The postoperative complication was an important outcome to assess the safety of the operation type. In the subgroup-analysis, we found the total postoperative complications tended to be less in DG group which was associated with relatively minor trauma. However, it was difficult to ensure that the proximal resection margin was without gastric cancer cell residue by DG. Interestingly, in our meta-analysis revealed that the accumulated five-year OS rate was lower in TG group (49.6% vs. 55.9%). And there was statistical difference indeed and the five-year OS results favored the DG group. It implied a trend of potential survival benefit of TG procedure for distal gastric cancer.

With the improvement of laparoscopic techniques and the development of laparoscopic instruments, laparoscopic gastrectomy has been widely performed in the world for its benefits over open surgery such as less blood loss, less postoperative pain, quicker bowel function recovery, shorter hospital stay and lower postoperative morbidity except longer operative time [29,30]. So in this meta-analysis, we included studies with compared Laparoscopic-assisted DG and TG for analysis. The short or long term outcomes of laparoscopic assisted gastrectomy...
consisted that of open procedure. With the improvement of surgical techniques and the development of the instruments, the number of long-term survivors after resection for gastric cancer has been increasing and their QoL has become an important issue. In this study, due to lacking of QoL questionnaire standard scales, several articles we searched in comparison to short- or long-term QoL after undergone TG and DG could not be system evaluated[16,27,31–36]. Studies have shown that patients who undergone DG have a better QoL than those who undergone TG in shorter postoperative follow-up period[36]. However, along with time frame, these differences diminished whether patients underwent TG or DG[16,32,35]. Jentschura D et al. reported that there were no differences between aged and younger patients indicates that age alone is no contraindication to major surgery, among the long-term survivors aged patients can have the same postoperative QoL as young people[31]. As we all know, the digestive function has important effect on the clinical outcomes and quality of life. EijiNomura investigated digestive functions of gastric cancer patients and found that postoperative functional outcomes were not affected by the manner of reconstruction, but by the size of the remnant stomach[37].

Table 5. Meta-regression analysis.

Variable	Coef.	Std. Err.	p value	95% Conf.Interval
Operative time				
Study quality	-37.321	7.013	0.034	-67.494 to -7.146
Simple sizes	0.022	0.107	0.857	-0.4391 to 0.483
year of publication	0.257	7.981	0.977	-34.085 to 34.598
country of patients	-46.490	25.357	0.208	-155.595 to 62.614
stage of gastric cancer	42.472	35.851	0.358	-111.782 to 196.725
Blood loss				
Study quality	-34.315	17.923	0.306	-262.054 to 193.423
Simple sizes	-0.029	0.014	0.297	-0.213 to 0.155
year of publication	-1.387	6.972	0.875	-89.974 to 87.200
country of patients	-8.324	41.831	0.875	-539.844 to 523.196
stage of gastric cancer	34.315	17.923	0.306	-193.423 to 262.054
Harvested Lymph nodes				
Study quality	-0.879	1.445	0.586	-5.479 to 3.720
Simple sizes	-0.002	0.002	0.337	-0.007 to 0.003
year of publication	-0.749	0.265	0.066	-1.591 to 0.093
country of patients	-3.445	1.214	0.066	-7.308 to 0.418
stage of gastric cancer	1.73	2.035	0.458	-4.747 to 8.206
Hospital stay				
Study quality	-0.912	1.996	0.679	-9.111 to 7.287
Simple sizes	0.001	0.002	0.675	0.008 to 0.010
year of publication	0.458	0.115	0.058	-0.037 to 0.953
country of patients	1.233	2.523	0.674	-9.648 to 12.115
stage of gastric cancer	-0.216	3.054	0.950	-13.354 to 12.922
Anastomotic stricture				
Study quality	-2.582	1.112	0.259	-16.712 to 11.548
Simple sizes	0.012	0.005	0.245	-0.048 to 0.071
year of publication	-0.176	0.724	0.848	-9.377 to 9.025
country of patients	-3.957	1.732	0.263	-25.962 to 18.047
stage of gastric cancer	3.115	3.337	0.522	-22.746 to 45.519

doi:10.1371/journal.pone.0165179.t005
reflux, diarrhea, and nausea/vomiting because of a restricted food reservoir in the TG group. Lee SS regarded that survivors after TG exhibited ongoing QoL inferiority on various functional and symptom scales at postoperative five years, beyond that time, QoL inferiority of the TG to the DG group generally disappeared except of eating restrictions implicates[34]. It is possible that some form of gastric substitute, such as jejunal interposition, might also be helpful in reducing eating restrictions following TG in the longer term[38].

Although this meta-analysis study was strictly executed according to the quality of reporting meta-analysis statement[39], there are several limitations to our meta-analysis. Firstly, the methodological quality of studies was not optimal, just only two RCTs were included in our study. Secondly, the relative small sample size in short- and long-term outcomes made our conclusion not convincible enough, more studies focusing on this subject are still needed. Lastly, The studies included were just conducted in Italy, Germany, Iran, Korea, Romania and China, whereas many centers in the rest of the world have not been included in this study. Therefore, we still need more high-quality, multicenter, randomized, controlled trials from other countries and regions.

In conclusion, In spite of similar 30-day mortality and long-term QoL compared with TG procedure, DG procedure for distal gastric cancer have advantages of less operative time, less blood loss, quicker postoperative recovery, relative higher OS rate, which is feasible and recommended surgery for distal gastric cancer in locally early and advanced stages. However, high quality RCTs in multicenter and the comparative studies are still needed for further validation.

Supporting Information

S1 PRISMA Checklist. PRISMA checklist. (DOC)

Author Contributions

Conceptualization: YML JQ.
Formal analysis: YML HC.
Investigation: JQ YNW.
Methodology: JQ YNW.
Resources: JQ YNW.
Software: JQ YNW.
Supervision: YML HC.
Writing – original draft: JQ.
Writing – review & editing: JQ PZ.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90. doi: 10.3322/caac.20107 PMID: 21296855
2. Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, et al. (2014) Treatment of gastric cancer. World J Gastroenterol 20: 1635–1649. doi: 10.3748/wjg.v20.i7.1635 PMID: 24587643
3. Robertson CS, Chung SC, Woods SD, Griffin SM, Raimes SA, Lau JT, et al. (1994) A prospective randomized trial comparing R1 subtotal gastrectomy with R3 total gastrectomy for antral cancer. Ann Surg 220: 176–182. PMID: 8053740
4. Roukos D, Schmidt-Mathiesen A, Encke A (1995) Adenocarcinoma of the gastric antrum: does D2 total gastrectomy with splenectomy improve prognosis compared to D1 subtotal gastrectomy? A long-term survival analysis with emphasis on Lauren classification. Surg Oncol 4: 323–332. PMID: 8809955

5. Wang Q, Yan ZQ, Wang HB, Xie HT, Yu Y (2012) [Comparison among three reconstruction techniques after distal radical gastrectomy]. Zhonghua Wei Chang Wai Ke Za Zhi 15: 845–847. PMID: 22941692

6. Lin JX, Huang CM, Zheng CH, Li P, Xie JW, Wang JB, et al. (2016) Evaluation of laparoscopic total gastrectomy for advanced gastric cancer: results of a comparison with laparoscopic distal gastrectomy. Surg Endosc 30: 1988–1998. doi: 10.1007/s00464-015-4429-x PMID: 26208499

7. Kim DJ, Lee JH, Kim W (2015) Comparison of the major postoperative complications between laparoscopic distal and total gastrectomies for gastric cancer using Clavien-Dindo classification. Surg Endosc 29: 3196–3204. doi: 10.1007/s00464-014-4429-x PMID: 25582964

8. GA W LB, DO C, BS, DH, et al. (2003) An Evaluation of the Newcastle Ottawa Scale: An Assessment Tool for Evaluating the Quality of Non-Randomized Studies. In XI Cochrane Colloquium Vo10—63p26 Barcelona: XI International Cochrane Colloquium Book of Abstracts.

9. Bozzetti F, Marubini E, Bonfanti G, Miceli R, Piano C, Crose N, et al. (1997) Total versus subtotal gastrectomy: surgical morbidity and mortality rates in a multicenter Italian randomized trial. The Italian Gastrointestinal Tumor Study Group. Ann Surg 226: 613–620. PMID: 9389395

10. Bozzetti F, Marubini E, Bonfanti G, Miceli R, Piano C, Gennari L (1999) Subtotal versus total gastrectomy for gastric cancer: five-year survival rates in a multicenter randomized Italian trial. Italian Gastrointestinal Tumor Study Group. Ann Surg 230: 170–178. PMID: 10450730

11. Gockel I, Pietzka S, Gonner U, Hommel G, Jungenberger T (2005) Subtotal or total gastrectomy for gastric cancer: impact of the surgical procedure on morbidity and prognosis—analysis of a 10-year experience. Langenbecks Arch Surg 390: 148–155. doi: 10.1007/s00423-005-0544-9 PMID: 15711817

12. Mehrdad Moghimi SAM, Taghi Salehian, Habibollah Peirovi, Faezeh Sodagari (2008) surgical outcomes and local recurrence following total or subtotal gastrectomy for early adenocarcinoma of antrum. Chinese Journal of Cancer Research 20: 279–285.

13. Lee SE, Ryu KW, Nam BH, Lee JH, Kim YW, Yu JS, et al. (2009) Technical feasibility and safety of laparoscopy-assisted total gastrectomy in gastric cancer: a comparative study with laparoscopy-assisted distal gastrectomy. J Surg Oncol 100: 392–395. doi: 10.1002/jso.21345 PMID: 19598150

14. Jang YJ, Park MS, Kim JH, Park SS, Park SH, Kim SJ, et al. (2010) Advanced gastric cancer in the middle one-third of the stomach: Should surgeons perform total gastrectomy? J Surg Oncol 101: 451–456. doi: 10.1002/jso.21431 PMID: 19924722

15. Mocan L, Tomus C, Bartos D, Zaharie F, Ioana I, Bartos A, et al. (2013) Long term outcome following surgical treatment for distal gastric cancer. J Gastrointest Liver Dis 22: 53–58. PMID: 23539391

16. Park S, Chung HY, Lee SS, Kwon O, Yu W (2014) Serial comparisons of quality of life after distal subtotal or total gastrectomy: what are the rational approaches for quality of life management? J Gastric Cancer 14: 32–38. doi: 10.5230/jgc.2014.14.1.32 PMID: 24765535

17. Liu Z, Huang B, Jin Y, Feng F, Sun L, Guo M, et al. (2015) [Distal gastrectomy brings a better long-term survival for patients with distal gastric cancer compared with total gastrectomy]. Zhonghua Wei Chang Wai Ke Za Zhi 18: 1240–1243. PMID: 26704007

18. Higgins JPT G S (2008) Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.2 (updated September 2009). The Cochrane Collaboration.

19. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, et al. (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343: d4002. doi: 10.1136/bmj.d4002 PMID: 21784880

20. Smith JK, McPhee JT, Hill JS, Whalen GF, Sullivan ME, Litwin DE, et al. (2007) National outcomes after gastric resection for neoplasm. Arch Surg 142: 387–393. PMID: 17441293

21. An JY, Youn HG, Choi MG, Noh JH, Sohn TS, Kim S (2008) The difficult choice between total and proximal gastrectomy in proximal early gastric cancer. Am J Surg 196: 587–591. doi: 10.1016/j.amjsurg.2007.09.040 PMID: 18519129

22. Meyer HJ, Jahnke J, Wilke H, Pichlmayr R (1991) Surgical treatment of gastric cancer: retrospective survey of 1,704 operated cases with special reference to total gastrectomy as the operation of choice. Semin Surg Oncol 7: 356–364. PMID: 1759084

23. Hansson LE, Ekstrom AM, Bergstrom R, Nyren O (2000) Surgery for stomach cancer in a defined Swedish population: current practices and operative results. Swedish Gastric Cancer Study Group. Eur J Surg 166: 787–795. doi: 10.1080/110241500447425 PMID: 11071166
24. Wu CW, Hsieh MC, Lo SS, Wang LS, Hsu WH, Lui WY, et al. (1995) Morbidity and mortality after radical gastrectomy for patients with carcinoma of the stomach. J Am Coll Surg 181: 26–32. PMID: 7599767

25. Schumacher IK, Hunsicker A, Petermann J, Lorenz D (1999) [Surgery of stomach carcinoma—established and controversial procedures. Retrospective 1-year analysis with discussion of current aspects]. Chirurg 70: 1447–1453. PMID: 10637701

26. Lau M, Le A, El-Serag HB (2006) Noncardia gastric adenocarcinoma remains an important and deadly cancer in the United States: secular trends in incidence and survival. Am J Gastroenterol 101: 2485–2492. doi: 10.1111/j.1572-0241.2006.00778.x PMID: 17029617

27. Le A, Berger D, Lau M, El-Serag HB (2007) Secular trends in the use, quality, and outcomes of gastrectomy for noncardia gastric cancer in the United States. Ann Surg Oncol 14: 2519–2527. doi: 10.1245/s10434-007-9386-8 PMID: 17610016

28. Japanese Gastric Cancer A (2011) Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer 14: 113–123. doi: 10.1007/s10120-011-0042-4 PMID: 21573742

29. Wang W, Zhang X, Shen C, Zhi X, Wang B, Xu Z (2014) Laparoscopic versus open total gastrectomy for gastric cancer: an updated meta-analysis. PLoS One 9: e88753. doi: 10.1371/journal.pone.0088753 PMID: 24558421

30. Gordon AC, Kojima K, Inokuchi M, Kato K, Sugihara K (2013) Long-term comparison of laparoscopy-assisted distal gastrectomy and open distal gastrectomy in advanced gastric cancer. Surg Endosc 27: 462–470. doi: 10.1007/s00464-012-2459-1 PMID: 22890478

31. Jentschura D, Winkler M, Strohmeier N, Rumstadt B, Hagmuller E (1997) Quality-of-life after curative surgery for gastric cancer: a comparison between total gastrectomy and subtotal gastric resection. Hepatogastroenterology 44: 1137–1142. PMID: 9261613

32. Lee SS HS, Jeong H, Song J, Chung HY, Yu W (2010) Quality of Life of Long-term Survivors after a Subtotal or a Total Gastrectomy for Gastric Cancer. J Korean Gastric Cancer Assoc 10: 34–36.

33. Mangano A, Rausei S, L Ianos GD, Dionigi G (2015) Quality of Life After Gastrectomy for Adenocarcinoma: A Prospective Cohort Study. Ann Surg 262: e110. doi: 10.1097/SLA.0000000000000696 PMID: 24836146

34. Lee SS, Chung HY, Kwon OK, Yu W (2016) Long-term Quality of Life After Distal Subtotal and Total Gastrectomy: Symptom- and Behavior-oriented Consequences. Ann Surg 263: 738–744. doi: 10.1097/SLA.0000000000001481 PMID: 26501699

35. Diaz De Liano A, Oteiza Martinez F, Ciga MA, Aizcorbe M, Cobo F, Trujillo R (2003) Impact of surgical procedure for gastric cancer on quality of life. Br J Surg 90: 91–94. doi: 10.1002/bjs.4011 PMID: 12520582

36. Huang CC, Lien HH, Wang PC, Yang JC, Cheng CY, Huang CS (2007) Quality of life in disease-free gastric adenocarcinoma survivors: impacts of clinical stages and reconstructive surgical procedures. Dig Surg 24: 59–65. doi: 10.1159/000100920 PMID: 17369683

37. Nomura E, Lee SW, Tokuhara T, Nitta T, Kawai M, Uchiyama K (2013) Functional outcomes according to the size of the gastric remnant and the type of reconstruction following distal gastrectomy for gastric cancer: an investigation including total gastrectomy. Jpn J Clin Oncol 43: 1195–1202. doi: 10.1093/jco/hyt141 PMID: 24065202

38. Goh YM, Gillespie C, Couper G, Paterson-Brown S (2015) Quality of life after total and subtotal gastrectomy for gastric carcinoma. Surgeon 13: 267–270. doi: 10.1016/j.surge.2014.07.002 PMID: 25127442

39. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF (2000) [Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM Statement]. Rev Esp Salud Publica 74: 107–118. PMID: 10918802