BRYOPHYTES AS HIDDEN TREASURE

Assoc. Prof. Dr. Ozlem TONGUC YAYINTAS*
Canakkale Onsekiz Mart University, School of Applied Sciences, Fisheries Technology, Canakkale, Turkey, E-mail: ozlemayintas@hotmail.com

Assist. Prof. Dr. Latife Ceyda İRKİN
Canakkale Onsekiz Mart University, School of Applied Sciences, Fisheries Technology, Canakkale, Turkey

ARTICLE INFO

Article History:
Received: 02 January 2018
Accepted: 29 January 2018

Keywords: Bryophytes, therapeutic, antimicrobial, antiviral, antitumor.

DOI: 10.26900/jsp.2018.07

ABSTRACT

Bryophytes are the second largest heterogeneous group of terrestrial plants. The bryophytes placed taxonomically between Algae and Pteridophytes, are further divided into three classes; Hornworts (class Anthocerotae), Liverworts (class Hepaticae) and Mosses (class Musci). They are the most captivating exotic species on earth with distinguishing characteristics.

Bryophytes are rich in a variety of secondary biological active compounds. Bryophytes contain potentially useful natural products, including polysaccharides, terpenoids, lipids, amino acids and phenylpropanoids. Bryophyte isolated compounds and extracts have cytotoxic, antimicrobial, insecticidal, antiviral, nematocidal effects on smooth and non-striated muscles, weight loss, plant growth regulation and allelopathic activities.

In the present review, the therapeutic uses of bryophytes were focused in detail. This will highlight bryophytes as potential source for phytotherapeutic remedies and chemical products used in different fields of chemistry, pharmacology, biology and different branches of life sciences.

1. INTRODUCTION

The bryophytes comprises the liverworts (Marchantiophyta, 6,000 species), the hornworts (Anthocerotophyta, 300 species) and the mosses (Bryophyta, 15,000 species) were thought to be the second largest group of land pivotal plants after flowering plants in the early land plant evolution (Shaw and Renzalia, 2004). Bryophytes are characterized by dominant perennial gametophytic stages, with small and unbranched sporophyte remain attached to the maternal gametophyte (Cox et al., 2010). They may be that are important components in forest ecosystems and constitute a major part of the biodiversity in moist environments and mountain ecosystems (Hallingback and Hodgetts, 2000).

Bryophytes are found in habitats of every ecosystem and play a significant role in each ecosystems for example nutrient cycling, water economy or providing shelter for other organismal groups.

The size of bryophyte species varies from few millimeters to few metres. In liverwort Monocarpus to 0.7 m in the self supporting Dawsonia superba Turner and Fontinalis antipyretica Hedw. to 2 m as observed in the water habitat (Sabovljevic et al., 2016).
Some have a cuticle, some absorb water directly through leaf surfaces. They do not have true roots. They instead have multicelled, root like appendages called “rhizoids,” which anchor the plants and take in water and minerals.

Bryophytes have pigments, chlorophyll a and b, xanthophyll and carotene. They store starch as energy saver molecule in plastids. Flavonoids are common in this group which is in accordance with their ability to cope with UV radiation (Sabovljevic et al., 2016).

Bryophytes are important environmental indicators and have been used as predictors of climate change to validate climate models and potential indicators of global warming (Rao, 2009).

Bryophytes also can be important contributors to the total stream metabolism, nutrient cycling, food web interactions in streams and as direct food source for some vertebrates (Andrea et al., 2011). More importantly, some species are of great source for herbal medicine. Bryophyte are used as indicator species for erosion control, bioindicators of heavy metals in air pollution, aquatic bioindicators, radioactivity indicators, as material for seed beds, fuel, medicines and food sources, pesticides, nitrogen fixation, moss gardening, treatment of waste, construction, clothing, furnishing, packing, genetic engineering, for soil conditioning and culturing (Chandra et al., 2016).

Bryophytes are small biomass in various ecosystems and seldom part of ethnomedicine that rarely subject to medicinal and chemical analyses. Hundreds of natural products have been isolated from bryophytes. Bryophytes have potentially useful natural products, like polysaccharides, terpenoids, amino acids, lipids, quinones, phenylpropanoids and other specialized metabolites (Sabovljevic et al., 2016).

This slow growing group of plants is stockroom of naturally occurring materials and have been investigated for the antimicrobial, antioxidant, anti-inflammatory, anti-venomous and anti-leukemic activity (Mishra et al., 2014).

Bryophyte extracts and isolated compounds may be shown antimicrobial, antiviral, cytotoxic, nematocidal, insecticidal, effects on smooth and non-striated muscles, weight loss, plant growth regulators and allelopathic activities (Sabovljevic et al., 2016). In the recent years bryophytes has emerged as a potential biopharming tool for production of complex biopharmaceuticals. Bryophytes considered as ‘remarkable reservoir’ of natural products and secondary metabolites, which show interesting biological activity could be used in medicine.

Bryophytes especially moss and liverworts are the source of many biologically active novel compounds pertaining to pharmaceutical uses (Singh et al., 2007). About 3.2 % of mosses and 8.8 % of liverworts have been chemically investigated. Species like Bryum, Marchantia, Sphagnum, Octeblepharum, Riccia, Barbula, and Fontinalis are used to treat different diseases such as cardiovascular diseases, fever, inflammation, lung diseases, infections, skin diseases and wounds (Glime, 2007).

Bryophytes are known to produce secondary metabolites to combat a number of stress condiotions such as microbial decomposition predation, extreme temperature and UV-radiation. They are the large variety source of secondary metabolites, thus provide a great potential for biotechnological and biopharmaceutical applications for bryophytes (Xie et al., 2009).

Although bryophytes are important source of various plant derivatives but only few studies have been conducted to get an in depth knowledge regarding role of various metabolites of bryophytes. Present review focused on the therapeutic uses of bryophytes and the various phytochemical and pharmaceutical constituents obtained from the bryophytes.
2. MATERIAL AND METHODS

In the present review, information about bryophytes, their medicinal properties and biochemical properties was gathered searching scientific databases including Elsevier, Google Scholar, PubMed, Springer, related books and manuscripts online or offline.

3. AIM OF THE PRESENT REVIEW

In the present review, scientific databases and pharmacological properties of bryophyte species were given.

4. MEDICINAL PROPERTIES

4.1. Ethnomedicinal Properties

In general, bryophytes never play a direct role in human life because the uses of bryophytes by ethnic people (for their healthcare or other needs) have not been exactly understood. It is clear that these little plants do not have ethnobotanical importance in different cultures (Alam et al., 2015). Because bryophytes produce little biomass per locality and are not often used as medicinal plants. However, the small size of these plants as well as usually not huge biomass in the nature, made these plants neglected for wide use.

Miller and Miller (1979), stated that the ancient method of determining the medicinal properties of a plant is ‘doctrine signature’ deals with resemblance of plant parts to structure and shape of organs in animal or human body for which it is remedial. As an example, some liverworts (e.g. Marchantia polymorpha L.) were believed to treat liver ailments because of its shape like liver. Similarly, Polytrichum commune Hedw. called hair cup moss, was used for hair treatment (Miller and Miller, 1979).

The first medicinal mosses are mentioned already in Renaissance herbals (by Fuchs, 1543 and Lobelius, 1581). From the 18th century, physicians were interested in using bryophytes as medicinal alternatives (Drobnik and Stebel, 2014).

Flowers (1957), indicated that the majority use of bryophytes as ethnomedicine reported from Chinese, Indian and Native American medicines. Bryophytes are highly used in horticulture in Far East, and Chinese and Indian people use them widely in ethno therapeutics (Kumar et al., 2000; Ando and Matsuo, 1984).

Chemical constituents of these plants have been used as biologically active agents. Many bryophyte compounds have shown biological activity with particular properties to their application in medicine and agriculture (Pant and Tewari, 1998). For example Polytrichum commune which is used as antipyretic and anti-inflammatory agent or boiled as a tea for treating the cold. Rhodobryum giganteum Schwägr is another species used to treat cardiovascular diseases or angina (Ando and Matsuo, 1984). In different parts of the world, different ethnic groups used plants to cure various diseases. Gaddi tribes people in India, used Plagiochasma appendiculatum Leh. et Lind. for treating skin diseases (Kumar et al., 2000). Irular tribe used also Targionia hypophylla L. for skin diseases in Kerala state. In South India, people used hair-like thallus Frullania ericoides (Nees) Mont for hair-related afflictions (Remesh and Manju, 2009).

Gasuite Indians (Utah, USA) used species such as Philonotis, Bryum, Mnium and some hypnaceous forms to alleviate burn pains (Sabovljevic et al., 2001). Ding (1982) indicated that 40 species have been used in Chinese traditional medicine.
The liverworts *Conocephalum conicum* (L.) Dumort and *Marchantia polymorpha* (Hedw.) mixed with vegetable oils, are used as ointments for burns, eczema, cuts and bites (Sabovljevic *et al*., 2016). For eye diseases, Chinese used Peat-moss *Spagnum teres* (Schimp.) Ángstr. ex Hartm and for tonsillitis, bronchitis, cystitis and timpanitis. *Haplocladium microphyllum* (Hedw.) Broth. and *Polytrichum commune* Hedw. is widely used as a medicinal cure to antipyretic, diuretic and hemostatic properties (Chandra *et al*., 2016).

136 species bryophytes have been reported that used in ethnobotany for a variety of purposes (Harris, 2006). Nearly half of these species used for their pharmaceutical constituents (Table 1).

Asakawa (2001) indicated that, 500 bryophytes have been studied with respect to their chemistry, pharmacology and application as cosmetics and medicinal drugs in Asia.

Today, ethnobotany has become a crucial area of research and development in resource management of biodiversity. As tribal communities has their own health care systems. Their ancient knowledge referred to as ethno-therapeutics, has provided a more useful and effective strategy for the discovery of active drugs.

4.2. Therapeutical Properties

Bryophytes are natural reservoir products of secondary metabolites. These metabolites have shown biological activity used in pharmacology. Bryophytes especially moss and liverworts are the source of biological active constituents pertaining to pharmaceutical uses (Nath and Singh, 2007).

In past few years, more than 400 chemical compounds were isolated from bryophytes (Asakawa, 2007). Biologically active compounds obtained from mosses includes biflavonoids, terpenes, terpenoid and flavonoids whereas liverworts to contain a large variety of lipophilic mono-, di- and sesquiterpenoids aromatic compounds like bibenzyls, benzoates, cinnamates and naphtalenes (Asakawa, 2007).

Secondary metabolites of plants that are the potential therapeutic introduction of novel drugs has increased in recent years. Investigations on secondary metabolites of bryophytes have revealed the few original compounds, some of which are not isolated from higher plants.

Antibiotic resistant bacteria have motivated researchers to look forward for new plant based natural active compounds. Botanist and microbiologist indicated precious antibiotic substances in bryophytes. They have compounds such as alkaloids, polyphenolic acids and flavonoids.

The antibiosis of bryophytes has been studied in recent years. Some of the species of bryophytes like *Polytrichum* sp. and *M. polymorpha* are used against pulmonary tuberculosis and to treat gingivitis.

Antibiotic polyphenols were identified in *Atrichum, Dicranum, Mnium, Polytrichum* and *Sphagnum* sp. (McCleary and Walkington, 1966). Apigenin, luteolin, kaempferol and orobol glycosides and their dimers are also found in mosses (Zinsmeister *et al*., 1991; Basile *et al*., 1999). Extracts of various medicinal plants containing flavonoids have been reported to show antimicrobial activity (Waage and Hedin, 1995).
Table 1. Ethanomedicinal uses of bryophytes

Species	Medicinal uses	References
Liverworts		
Riccardia sp.	anti-leukemic activity	Alam, 2012
Plagiochasma appendiculatum	skin diseases	Shirsat, 2008
Reboulia hemisphaerica	blotches, hemostasis, external wounds, and bruises	Asakawa, 2007
Conocephalum conicum	antimicrobial, antifungal, antipyretic, antidotal activity	Ding, 1982
Herbertus sp.	antiseptics, antiarheal agents, expectorants and astringents	Azuelo et al., 2011
Frullania tamarisci	antiseptic activity	Asakawa, 2007
Frullania ericoides	to get rid from head lice and nourishment of hair	Remesh, 2009
Marchantia polymorpha	inflammation, used as diuretics, for liver ailments, insect bites, used to cure cuts, fractures, poisonous snake bites	Hu, 1987
Marchantia convoluta	treatment of hepatitis, fever and gastric intolerance	Rao, 2009
Marchantia palmata	acute inflammation caused by the touch of fire and hot skin tumefaction, hepatitis and as antipyretic	Tag et al., 2007
Marchantia paleacea	source for antibiotics	Sabovljevic et al., 2011
Dumortiera hirsuta	antimicrobial agent	Azuelo et al., 2011
Pallavicinia sp.	anti-leukemic activity/antimicrobial activity and used as perfumes or as perfume components	Azuelo et al., 2011
Plagiochila sp.	wound healing	Alam, 2012
Plagiochila beddomei	mixed with jiggery and given to the children affected by the ringworms.	Lubaina et al., 2014
Riccia sp.		

Journal of Scientific Perspectives, Volume:2, Issue:1, January 2018, 71-83
Bryophytes As Hidden Treasure

Species	Uses and Properties	Reference
Targionia hypophyslla	mixed with two tablespoons of coconut oil for scabies itches and other skin diseases	Remesh and Manju, 2009

Hornworts

Species	Properties	
Ceratophylhum demersum	purgative, astringent, constipating and antipyretic	Pullaiah, 2006

Mosses

Species	Uses and Properties	
Cratoneuron filicinum	heart disease	Pant and Tewari, 1998
Leptodictyum riparium	antipyretic in uropathy	Pant and Tewari, 1998
Philonotis fontana	to relieve pain of burn and heal burns, adenopharyngitis, antipyretic	Flowers, 1957
Philonotis sp.	heal burns, for adenopharyngitis, as antipyretic and antidote	Asakawa, 2007
Plagiopus oederi	sedative, epilepsy	Pant and Tewari, 1998
Bryum argenteum	antidote, antipyretic, antifungal	Asakawa, 2007
Rhodobryum giganteum	to treat cardiovascular problem and nervous prostration, to cure angina, anti-hypoxia, diuretic, antipyretic, and antihypertensive	Pant and Tewari, 1998
Rhodobryum roseum	to treat nervous prostration and cardiovascular diseases	Wu, 1977
Leucobryum bowringii	body pain, paste of leaf tips mixed with *Phoenix sylvestris*	Lubaina et al., 2014
Oreas martiana	anodyne (pain), hemostasis, external wounds, epilepsy, menorrhagia and neurasthenia (nervosism, nervous exhaustion)	Asakawa, 2007
Ditrichum pallidum	for convulsions, particularly in infants	Pant and Tewari, 1998
Entodon flavescens
 - Used during earache, leaf juice is used as ear drops, during cold, leaf juice is administered daily twice
 - Reference: Lubaina et al., 2014

Fissidens nobilis
 - For growth of hairs and diuretic activity
 - Reference: Azuelo, 2011

Funaria hygrometrica
 - Hemostasis, pulmonary tuberculosis, bruises, skin infection
 - Reference: Pant and Tewari, 1998

Fontinalis antipyretica
 - Used in chest fever
 - Reference: Drobnik and Stebel, 2014

Taxiphyllum taxirameum
 - For external wounds, hemostasis
 - Reference: Asakawa, 2007

Aerobryum lanosum
 - Used during burns, decoction of whole plant boiled in goat urine is applied externally
 - Reference: Lubaina et al., 2014

Mnium cuspidatum
 - For hemostasis, nose bleeding
 - Reference: Pant and Tewari, 1998

Mnium sp.
 - To reduce pain of burns, bruises and wounds
 - Reference: Azuelo et al., 2011

Plagiomnium sp.
 - For infections and swellings
 - Reference: Azuelo et al., 2011

Octoblepharum albidum
 - Used as febrifuge and anodyne
 - Reference: Singh, 2011

Dawsonia superba
 - Used as diuretics, hair growth
 - Reference: Azuelo et al., 2011

Polytrichum commune
 - Used for hemostasis, wound healer, antipyretic, antidotal activity, dissolve kidney and gall bladder stones, to speed up labor process during child birth
 - Reference: Turner et al., 1983

Polytrichum juniperinum
 - To treat prostate, urinary difficulties and skin ailments
 - Reference: Gulabani, 1974

Pogonatum macrophyllum
 - To reduce inflammation and fever, also used as detergent diuretic, laxative and hemostatic agent
 - Reference: Alam, 2012
Barbula unguiculata to treat fever and body aches Azuelo et al., 2011
Barbula indica used during menstrual pain and intermittent fever Lubaina et al., 2014
Hyophila attenuata used during cold, cough and neck pain, leaf decoction is administered with a pinch of pepper powder daily Lubaina et al., 2011
Weisia viridula to treat cold and fever Asakawa, 2007
Sphagnum sericeum used for dressing wounds, with anti-microbial properties for skin ailments (insects bites, scabies, acne), haemorrhoids and to treat eye diseases Sphagnum teres to treat eye diseases Ding, 1982
Haplocladium microphyllum to treat cystitis, bronchitis, tonsillitis pneumonia and fever Ding, 1982

Studies on Platypilla and D. scoparium showed antimicrobial effects on the gram-positive bacteria Bacillus subtilis, Staphylococcus aureus and Sarcinalutea, but no activity against gram-negative Escherichia coli (Pavletic and Stilinovic, 1963).

Bryophytes have shown antibacterial activities against gram negative and gram positive bacteria (Basile et al., 1999).

Phenolic compounds isolated from Dicranum, Atrichum, Polytrichum, Mnium, and Sphagnum sp. showed antimicrobial properties (Mishra et al., 2014). Also lipids and fatty acids were analyzed in the general of families, e.g. Dicranaceae, Ditrichaceae and Entodontaceae (Ichikawa et al., 1983; Dembitsky et al., 1993; Wasley et al., 2006).

Nikolajeva (2012), indicated that the antimicrobial activity for two liverwort Frullania dilatata and Lophocolea heterophylla, and three moss species Eurhynchium angustirete, Rhytidiadelphus squarrosus and Rhodobryum roseum has been reported.

Decker et al., (2003) reported that aqueous extract of few bryophytes have some inhibitory effect on the growth of E. coli.

All bryophyte extracts showed a specific antifungal property against the plant pathogenic fungi depending on the concentration. Different crops like tomatoes, wheat and green pepper were infected with Botrytis cinerea, Phytophora infestans and Erysiphe gramin. After they were treated with alcoholic extracts of different bryophytes species. These alcoholic extracts of different bryophytes species showed antifungal activity for these crops (Frahm, 2014).

Neckera crispa and Porella obtusata extracts had showed fungicidal and antifeedant effects several times, and thus commercial product was developed as natural pesticide for Portuguese slug Aarion lusitanicus from Neckera crispa and Porella obtusata extracts (Frahm and Kirchoff, 2002).
Some of the moss and liverworts possess antioxidative activities which helps them to survive in the extreme climate and stress condition (Mishra et al., 2014). Heavy metal, desiccation and UV radiation have been found to cause an array of some different enzymes in bryophytes (Dey and De, 2012).

Bryophytes have been found to accumulate some metals and few others were able to insulates the toxic metals.

Antioxidant and free radical scavenging activities are in the focus of pharmacists and nutrition scientists. Free radicals are playing a role in the pathogenesis of many diseases (Castro and Freeman, 2001). Oxidation processes may also decrease the stability of drugs and foods. Bhattacharj et al., (2009) indicated the potential of Antarctic mosses Sanionia uncinata and Polytrichastrum alpinum to be used as antioxidants for medicinal and cosmetic purpose.

Antioxidant property, scavenging activities and phenolic content of the aqueous extract of Brachythecium rutabulum, Calliergonella cuspidata and Hypnum mammillatum have investigated. B. rutabulum showed the higher phenolic property than other species (Chobot et al., 2008).

Methanolic and ethyl acetate extracts of M. polymorpha have also shown antioxidant property. Bryophyte could be the source of many antioxidants which could be used for novel drug discovery (Mishra et al., 2014).

Anti-leukemic activity has also been demonstrated in several compounds from leafy liverworts. A new enteudesmanolide called diplophyllin, was isolated from Diplophyllin albicans and D. taxifolium. Diplophyllin has an alpha-methylene lactone against human epidermoid carcinoma (KB cell culture). Marchantin A from M. palacea, M. polymorpha, and M. tosana, ricardin from Riccardia multifida and perrottetin E from Radula perrottetii show cytotoxicity against the leukemic KB cells (Chandra et al., 2016). Also compounds from Plagiochila fasciculata seemed to inhibit leukaemia (P388 cells) (Saxena and Harinder, 2004).

Apart from ethno-medicinal uses some bryophytes possesses antitumor activities against different cancer cells and thus bryophytes needs to be more focused on the next years.

5. CONCLUSION

Natural products derived from the plants can be used an alternative recipe for development of drug resistance in pathogens. Herbal compounds have been discovered with therapeutic potential. Bioactive compounds used as drugs are a new production system for major problems in medicine.

Bryophytes, a small group of plants, are an important source of biological active compounds. Many of the bryophytes are the source of medicinal recipes with antibacterial, antimicrobial, antifungal and anti-leukemic agents (Bhattacharj et al., 2009). Bryophytes being rich source of secondary metabolites could be a source of the bioactive compounds with immense therapeutic potential.

The current researches are going on the medicinal active constituents of bryophytes are used in curing diseases such as skin diseases, cardiovascular diseases, hepatic disorders and many more other ailments.

This evaluation and validation of traditional practices with medicinal active constituents of bryophytes provides significant opportunities for newer drug discoveries for human health care.
REFERENCES

ALAM, A., 2012, Some Indian bryophytes for their biologically active compounds, *International Journal of Bio pharma Tech.*, 3, 239-246.

ALAM, A., SHRAMA V., RAWAT K., VERMA P., 2015, Bryophytes-the ignored medicinal plants, *SMU Medical Journal* 2, 299–316.

ANDO H., MATSUO A., 1984, Applied bryology, In W. Schultze Motel (ed.), *Advances in Bryology 2* Cramer, 133-224.

ANDREA G., LALAÎNE G., MELANÎE P., 2011, Some medicinal bryophytes: their ethnobotanical uses and morphology, *Asian Journal of Biodiversity*, 2, 50–80.

ASAKAWA Y., 2001, Pharmacologically active substances from oriental bryophytes and inedible mushrooms and fijian kava, *World Conference on Medicinal and Aromatic Plants Book of Abstracts*, Vol. 86.

ASAKAWA, Y., 2007, Biologically active compounds from bryophytes, *Pure Appl Chem*, 79, 557–580.

AZUELO A.G., SARIANA L.G., PABUALAN M.P., 2011, Some medicinal bryophytes: their ethnobotanical uses and morphology, *Asian Journal of Biodiversity*, 2,50-80.

BASILE A.S., GIORDANO J.A., Lopez S., 1999, Castaldo C.R., Antibacterial activity of pure flavonids isolated from mosses, *Phytochemistry*, 52, 1479-1482.

BEIKE A.K., DECKER E., WOLFGANG F., LANG D., SCHEEBAUM M.V., ZIMMER A., RESKI R., 2010, *Applied Bryology Bryotechnology Tropical Bryology*, 31, 22-32.

BHATTARAI H. D., PAUDEL B., LEE H. K., OH H., YIM J. H., 2009, In vitro antioxidant capacities of two benzo naphtoxanthenones: Ohiensis F and G, isolated from the Antarctic moss *Polytrichas trumalpinum*, *Zeitschrift fur Natur for schung*, 64, 197–200.

CASTRO L., FREEMAN B. A., 2001, Reactive oxygen species in human health and disease, *Nutrition*, 17, 163-165.

CHANDRA S., CHANDRA D., BARH A., PANDEY R.K., SHARMA I.P., 2016, Bryophytes: hoard of remedies, an ethnomedical review, *Journal of Traditional and Complementary Medicine* 6, on line first. doi: 10.1016/j.jctme.2016.01.007.

CHOBOT V., KUBICOVA L., NABBOUT S., JAHODAR L., HADACEK F., 2008, Evaluation of antioxidant activity of some common moss species, *Zeitschrift fur Natur for schung C*, 63, 476–482.

COX C.J., GOFFINET B., WICKETT N.J., BOLES S.B., SHAW A.J., 2010, Moss diversity: A molecular phylogenetic analysis of genera, *Phytotaxa*, 175-195.

DECKER E. L., GORR G., RESKI R., MOSS; An Innovative Tool for Protein Production, *Bioforum Europe*, 2, 96-97.

DEMBITSKY V., REZANKA T., BRYCHEK A., AFONIA M., 1993, Acetylenic acids and lipid composition of some mosses from Russia, *Phytochemistry*, 33, 1021-1027.

DEY A., DE J. N., 2012, Antioxidative potential of bryophytes stress tolerance and commercial perspectives: a review, *Pharmacologia*, 3, 151-159.

DING H., 1982, *Medicinal Spore-bearing Plants of China. Shanghai*, Shanghai Science and Technology Press.
DROBNIK J., STEBEL A., 2014, Medicinal mosses in pre-Linnaean bryophyte floras of central Europe: An example from the natural history of Poland, J. Ethnopharmacology, 153, 682-685.

FLOWERS S., 1957, Ethnobryology of the Goshute Indians of Utah, Bryologist, 60, 11-14.

FRAHM J. P., 2014, Recent developments of commercial products from bryophytes, Bryologist, 107, 277–283.

FRAHM J. P., KIRCHHOFF K., 2002, Antifeedant effects of bryophyte extracts from Neckeracrispa and Porellaobtusata against the slug Aarionlusitanicus, Cryptogamie Bryologie, 23, 271-275.

GLIME J. M., 2007, Economic and Ethnic Uses of Bryophytes, Fl North America: America Editorial Committee, 27, 14-41.

GULABANI A., 1974, Bryophytes as economic plants, Botanica, 14, 73-75.

HALLINGBACK T, HODGETTS N., 2000, Mosses, Liverworts and Hornworts, Status Survey and Conservation Action Plan for Bryophytes. vol. 53. World Conservation Union.

HARRIS E. S. J., 2006, Ethnobotany, evolution and chemistry of medicinal bryophytes: examples from the moss genus Plagiomnium, PhD Thesis, Berkeley University of California, p. 364.

HU R., 1987, Bryology, Beijing, China: Higher Education Press, p. 465.

ICHIKAWA T., NAMIKAWA M., YAMADAS K., SAKAI K., KONDO K., 1983, Novel cyclopentenonyl fatty acids from mosses Dicranum scoparium and Dicranum japonicum, Tetrahedron Letters, 24, 3337-3340.

KUMAR K., SINGH K. K., ASTHANA A. K., NATH V., 2000, Ethnoterapeutics of bryophyte Plagiochasma appendiculatum among the Gaddi tribes of Kangra Valley, Himachal Pradesh, India Pharmaceutical Biology, 38, 353–356.

LUBAINA A. S., PRADEEP D. P., ASWATHY J. M., REMYA KRISHNAN M. K. V., MURUGAN K., 2014, Traditional knowledge of medicinal bryophytes by the kani tribes of Agasthiyarmalai biosphere reserve, southern western ghats, IAJPS, 4, 2116-2121.

MCCLEARY J. A., Walkington D.L., 1966, Moss and antibiosis, Revue bryologique et lichenologique, 34, 309–314.

MILLER N. G., MILLER H., 1979, Make ye the bryophytes, Horticulture, 1979;57, 40-47.

MISHRA R., VIJAY P., RAMESH C., 2014, Potential of Bryophytes as Therapeutics, Int. Journal of Pharm. Sci. and Research, 5(9), 3584-3593.

NIKOLAJEVA V., LIEPIINA L., PETRNA Z., KRUMINA G., GRUBE M., MUZNIEKS I., 2012, Antibacterial activity of extracts of extracts of some bryophytes, Advance in Microbiology, 2, 345-353.

OPELT K., CHOBOT V., HADACEK F., SCHÖNMANN S., EBERL L., BERG G., 2007, Investigations of the structure and function of bacterial communities associated with Sphagnum mosses. Environ. Microbiology, 9, 2795-2809.

PANT G., TEWARI S. D., 1998, Various human uses of bryophytes in the Kumaun region of Northwest Himalaya, Bryologist, 92,120–122.
PAVLETIC Z., STILINOVIC B., 1963, Untersuchungenuber die antibiotische Wirkung von Moossex traktenaufeinige Bakterien, Acta Botanica Croatia, 22, 133-139.

PULLAIAH T., 2006, Encyclopaedia of World Medicinal Plants (Vol. 1), New Delhi: Dayabooks, p. 513-514.

RAO M., 2009, Microbes and Non-flowering Plants: Impact and Applications, New Delhi: Ane book Pvt. Ltd, 213-214.

REMESH M., MANJU C. N., 2009, Ethnobryological notes from Western Ghats, Indian Bryol., 112, 532-537.

SABOVLJEVIC M., BJELOVIC A., GRUBISIC D., 2001, Bryophytes as a potential source of medicinal compounds, Lekovite Sirovine, 21, 17–29.

SABOVLJEVIC A., SOKOVIC M., GLAMOCLIJA J., 2011, Bio-activities of extracts from some axenically farmed and naturally grown bryophytes, J Med Plants Res., 5, 565-571.

SABOVLJEVIC M.S., VUJICIC M., WANG X., GARAFFO M., BEWLEY C.A., SABOVLJEVIC A., 2016, Production of the macrocyclic bibisbenzyls in axenically farmed and wild liverwort Marchantia polymorpha L. subsp. ruderalis Bisch. Et Boisselier, Plant Biosystems, on line first. doi: 10.1080/11263504.2016.1179692.

SAXENA D., HARI NYER K., 2004, Uses of bryophytes, Resonance, 9, 56-65.

SHAW A. J., RENZAGLIA K. J., 2004, Phylogeny and diversification of bryophytes, American Journal of Botany, 91, 557-1581.

SHIRSAT R. P., 2008, Ethnomedicinal uses of some common bryophytes and pteridophytes used by tribals of Melghat region (Ms), India, Ethnobot Leafl., 1, 92.

SINGH A. P., NATH, V., 2007, Hepaticae of Khasi and Jaintia hills: Eastern Himalayas, Bishen Singh Mahendra Pal Singh, Dehradun, India.

SINGH M., RAWAT A.K., GOVINDARAJAN R., 2007, Antimicrobial activity of some Indian mosses, Fitoterapia, 78, 156-158.

SINGH A., 2011, Herbalism, Phytochemistry and Ethnopharmacology, CRC Press, New Delhi 286-293.

TAG H., DAS A.K., LOYI H., 2007, Anti-inflammatory plants used by the Khamti tribe of Lohit district in eastern Arunachal Pradesh, India, Nat Prod Radiance, 6, 334-340.

TURNER N. J., THOMAS J., CARLSON B.F., OGLIVIE R.T, 1983, Ethnobotany of the Nitinaht Indians of Vancouver Island, Victoria, In British Columbia Provincial Museum Occasional Paper Number 24, Victoria. British Columbia, Canada, p. 59.

WAAGE S. K., HEDIN P. A., 1995, Quercetin 3-O-galactosyl (1 4 6) glucosylde, a compound from narrow leaf vetch with anti-bacterial activity. Phytochemistry, 24, 243-245.

WASLEY J., ROBINSON S. A., LOVELOCK C. E., POPP M., 2006, Some like wet biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes, Funct. Plant Biol., 33, 443-455.

WU P. C., 1977, Rhodobryum giganteum (Schwaegr.) Par can be used for curing cardiovascular disease, Acta Phytotax Sin., 15, 93.

XIE C. F., LOU H. X., 2009, Secondary metabolites in Bryophytes, Chem. Biodiversity, 6, 302, 12.
ZINSMEISTER H.D., BECKER H., EICHER T., 1991, Moose; eine Quelle biologisch aktiver, Naturstoffe Angewandte Chemie, 103, 134-151.