Simple Properties of PUL-Stieltjes Integral in Banach Space

GREIG BATES C. FLORES¹ and JULIUS V. BENITEZ²

Department of Mathematics and Statistics, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines
Corresponding Author Email: ¹greigbates.flores@g.msuiit.edu.ph
Co-Author Email: ²julius.benitez@g.msuiit.edu.ph
http://dx.doi.org/10.22147/jusps-A/290302

Acceptance Date 28th Feb., 2017 Online Publication Date 2nd April, 2017

Abstract

Using PUL integrals, Boonpogkrong in ² defined and discussed the Kurzweil-Henstock integral on manifolds. In this paper, we introduce the PUL-Stieltjes integral of Banach-valued functions and give some simple properties of this integral. Moreover, a characterization of PUL-Stieltjes integral is also given by establishing the Cauchy criterion.

1 Introduction

In ², Kurzweil-Henstock integral on manifolds is defined using partition of unity, a concept introduced by J. Kurzweil and J. Jarnik in ³. In the said paper, the authors defined the PUL integral and proved its equivalence to the Lebesgue integral in Rⁿ using lower and upper semi-continuous functions.

In classical theory, integration on manifolds is done by change of variables and the PUL integral can be used in such process. Although the PUL integral of a real-valued function f : M → R defined on compact differentiable r-manifold M is defined using an atlas Θ, its value is independent in the choice of Θ.

In this paper, we introduce and discuss some of the simple properties of the PUL-Stieltjes integral of functions taking values in a Banach space. Properties such as uniqueness, homogeneity, and linearity of both the integrands and integrators are proved. Moreover, Cauchy criterion for the PUL-Stieltjes integral is formulated and used to characterize such integrals.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)
2 PUL-Stieltjes Integral in Banach Space

In what follows, we denote a compact interval in \(\mathbb{R}^n \) by \([a, b] = \prod_{k=1}^{n} [a_k, b_k] \) with \([a_k, b_k] \subseteq \mathbb{R}\) for each \(k = 1, 2, \ldots, n \) and \(\mu([a, b]) = \prod_{k=1}^{n}(b_k - a_k) \) be the volume of \([a, b]\). Moreover, \(\mathbb{R}^n \) is equipped with the norm \(\| \cdot \|_n \) defined by

\[
\|x\|_n = \max \{|x_i| : i = 1, 2, \ldots, n\}
\]

and for \(r > 0 \), we write \(B(x; r) = \{y \in \mathbb{R}^n : \|x - y\|_n < r\} \), where \(x - y = (x_1 - y_1, x_2 - y_2, \ldots, x_n - y_n) \) for \(x = (x_1, x_2, \ldots, x_n) \) and \(y = (y_1, y_2, \ldots, y_n) \).

For a smooth function \(\psi : [a, b] \to \mathbb{R} \), the support of \(\psi \), denoted by supp \(\psi \), is given by

\[
\text{supp } \psi = \{x \in [a, b] : \psi(x) \neq 0\},
\]

where \(\overline{A} \) denotes the closure of \(A \subseteq \mathbb{R}^n \). A gauge on \([a, b]\) is a positive function defined on \([a, b]\).

Definition 2.1 A finite collection \(\{\psi_k\}_{k=1}^{m} \) of smooth functions defined on \([a, b]\) is said to be a partial partition of unity if the following holds:

1. \(\psi_k(\xi) \geq 0 \) for all \(\xi \in [a, b] \) and for all \(k \in \{1, 2, \ldots, m\} \) and
2. \(\sum_{k=1}^{m} \psi_k(\xi) \leq 1 \) for all \(\xi \in [a, b] \).

If \(\sum_{k=1}^{m} \psi_k(\xi) = 1 \) for all \(\xi \in [a, b] \), then \(\{\psi_k\}_{k=1}^{m} \) is said to be a partition of unity.

Definition 2.2 Let \(\psi : [a, b] \to \mathbb{R} \) be a smooth function and \(\delta \) a gauge on \([a, b]\). A triple \((\xi, I, \psi) \), with \(\xi \in [a, b] \) and \(I \subseteq [a, b] \), is said to be \(\delta \)-fine if

\[
\text{supp } \psi \subseteq I \subseteq B(\xi; \delta(\xi)).
\]

Note that \(\xi \) may not be in \(\text{supp } \psi \). If \((\xi, I, \psi) \) is \(\delta \)-fine and \(x \notin I \), then \(\psi(x) = 0 \).

If \(\delta_1 \) and \(\delta_2 \) are gauges on \([a, b]\) such that \(\delta_1(\xi) \geq \delta_2(\xi) \) and \((\xi, I, \psi) \) is \(\delta_2 \)-fine, then \((\xi, I, \psi) \) is also \(\delta_1 \)-fine.
Throughout this paper, a division of \([a, b]\) is a finite collection \(D = \{I_k\}_{k=1}^m\) of subintervals \(I_k = \prod_{i=1}^{n} [a_i^{(k)}, b_i^{(k)}]\) of \([a, b]\) such that \(\text{int}(I_k) \cap \text{int}(I_j) = \emptyset\) for \(k \neq j\) and \(\bigcup_{k=1}^{m} I_k = [a, b]\). A division \(D = \{I_k\}_{k=1}^m\) of \([a, b]\) is a net if for each \(k = 1, 2, \ldots, m\) there exists a division \(D_k\) of \([a_k, b_k]\) such that
\[
D = \left\{ \prod_{k=1}^{m} [s_k, t_k] : [s_k, t_k] \in D_k \text{ for } k = 1, 2, \ldots, m \right\}.
\]

Definition 2.3 A finite collection \(D = \{(\xi_k, I_k, \psi_k)\}_{k=1}^m\) is said to be a \(\delta\)-fine partial division of \([a, b]\) if the collection \(\{\psi_k\}_{k=1}^m\) is a partition of unity and every \((\xi_k, I_k, \psi_k)\) is \(\delta\)-fine. If \(\{\psi_k\}_{k=1}^m\) is a partition of unity, then \(D\) is said to be a \(\delta\)-fine division of \([a, b]\).

The existence of \(\delta\)-fine divisions of \([a, b]\) is guaranteed by the open covering theorem and the existence of a partition of unity.

Let \(D = \{(\xi_k, I_k, \psi_k)\}_{k=1}^m\) be a \(\delta\)-fine division of \([a, b]\), and \(g : [a, b] \to \mathbb{R}\) be a function. Suppose that for each \(k \in \{1, 2, \ldots, m\}\), the Riemann-Stieltjes integral \(\int_{I_k} \psi_k \, dg\) exists. Define the PUL-Stieltjes sum of \(f\) with respect to \(g\) over \(D\) by
\[
S(f, g, D) = \sum_{k=1}^{m} f(\xi_k) \int_{I_k} \psi_k(x) \, dg(x) = \sum_{k=1}^{m} f(\xi_k) \int_{I_k} \psi_k \, dg.
\]

For brevity, we write a \(\delta\)-fine division of \([a, b]\) by \(D = \{\xi, I, \psi\}\) and a PUL-Stieltjes sum of \(f\) with respect to \(g\) over \(D\) by
\[
S(f, g, D) = (D) \sum_{\xi} f(\xi) \int_{I} \psi \, dg = \sum_{D} f(\xi) \int_{I} \psi \, dg.
\]

Remark 2.4 If \(D_1 = \{(\xi_k, I_k, \varphi_k)\}_{k=1}^m\) and \(D_2 = \{(\xi_j, I_j, \psi_j)\}_{j=1}^m\) are two \(\delta\)-fine divisions of \([a, b]\), then \(S(f, g, D_1) = S(f, g, D_2)\).

Proof: Let \(D_1 = \{(\xi_k, I_k, \varphi_k)\}_{k=1}^m\) and \(D_2 = \{(\xi_j, I_j, \psi_j)\}_{j=1}^m\) be \(\delta\)-fine divisions of \([a, b]\). Note that \(D_1\) and \(D_2\) differ only by the partition of unity. Then for each \(k = 1, 2, \ldots, m\), \(\psi_j(x) = 0\), for all \(j \neq k\) and \(x \notin I_k\). Thus, for each \(k = 1, 2, \ldots, m\) and for all \(x \in I_k\)
\[
\sum_{j=1}^{m} \psi_j(x) = \varphi_k(x).
\]

Hence,
\[
S(f, g, D_1) = \sum_{k=1}^{m} f(\xi_k) \int_{I_k} \varphi_k(x) \, dg(x) = \sum_{k=1}^{m} f(\xi_k) \int_{I_k} 1 \cdot \varphi_k(x) \, dg(x)
= \sum_{k=1}^{m} f(\xi_k) \int_{I_k} \left(\sum_{j=1}^{m} \psi_j(x) \right) \cdot \varphi_k(x) \, dg(x) = \sum_{k=1}^{m} f(\xi_k) \int_{I_k} \psi_k(x) \cdot \varphi_k(x) \, dg(x).
\]
Similarly,
\[S(f, g, D_2) = \sum_{j=1}^{m} f(\xi_k) \int_{I_j} \psi_j(x) \, dg(x) = \sum_{j=1}^{m} f(\xi_j) \int_{I_j} 1 \cdot \psi_j(x) \, dg(x) \]
\[= \sum_{j=1}^{m} f(\xi_j) \int_{I_j} \left[\sum_{k=1}^{m} \phi_k(x) \right] \cdot \psi_j(x) \, dg(x) = \sum_{j=1}^{m} f(\xi_j) \int_{I_j} \varphi_j(x) \cdot \psi_j(x) \, dg(x). \]

Consequently, \(S(f, g, D_1) = S(f, g, D_2). \)

Definition 2.5 Let \((X, \| \cdot \|)\) be a Banach space. A function \(f : [a, b] \to X \) is said to be \textit{PUL-Stieltjes integrable to} \(A \in X \) with respect to \(g : [a, b] \to \mathbb{R} \) if for every \(\epsilon > 0 \), there exists a gauge \(\delta(\xi) \) on \([a, b]\) such that for every \(\delta\)-fine division \(D = \{(\xi_k, I_k, \psi_k)\}_{k=1}^{m} \) of \([a, b]\), we have
\[\|S(f, g, D) - A\| < \epsilon. \]

If \(A \) is the PUL-Stieltjes integral of \(f \) with respect to \(g \), then we write
\[A = \int_{[a,b]} f \, dg. \]

Note that Remark 2.4 means that a PUL-Stieltjes sum is independent of the choice of the partition of unity. Consequently, the value the PUL-Stieltjes integral is independent of the choice of the partition of unity.

Theorem 2.6 The PUL-Stieltjes integral of \(f \) with respect to \(g \) is unique.

Proof: Let \(A \) and \(B \) be PUL-Stieltjes integrals of \(f \) with respect to \(g \). Then there is a gauge \(\delta_1(\xi) > 0 \) on \([a, b]\) such that for any \(\delta_1\)-fine division \(D \) of \([a, b]\), we have
\[\|S(f, g, D) - A\| < \frac{\epsilon}{2}. \]

Similarly, there exists a gauge \(\delta_2(\xi) \) on \([a, b]\) such that for any \(\delta_2\)-fine division \(D' \) of \([a, b]\), we have
\[\|S(f, g, D') - B\| < \frac{\epsilon}{2}. \]

Take \(\delta = \min\{\delta_1, \delta_2\} \). Then \(\delta \) is a gauge in \([a, b]\). Now, fix a \(\delta\)-fine division \(D \) of \([a, b]\). Then \(D \) is both \(\delta_1\)-fine and \(\delta_2\)-fine. Thus,
\[\|A - B\| \leq \|A - S(f, g, D)\| + \|S(f, g, D) - B\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \]

Since \(\epsilon > 0 \) is arbitrary, \(\|A - B\| = 0 \). Hence, \(A = B \).
3 Simple Properties of PUL-Stieltjes Integral

Here, we show that the PUL-Stieltjes integral has the homogeneity and linearity properties over both the integrands and integrators.

Theorem 3.1 If \(f_1 : [a, b] \rightarrow X \) and \(f_2 : [a, b] \rightarrow X \) are PUL-Stieltjes integrable with respect to \(g : [a, b] \rightarrow \mathbb{R} \) and \(c \in \mathbb{R} \), then \(cf_1 \) and \(f_1 + f_2 \) is PUL-Stieltjes integrable with respect to \(g \) on \([a, b]\) and

\[
\int_{[a, b]} cf_1 \, dg = c \int_{[a, b]} f_1 \, dg \quad \text{and} \quad \int_{[a, b]} (f_1 + f_2) \, dg = \int_{[a, b]} f_1 \, dg + \int_{[a, b]} f_2 \, dg.
\]

Proof: Let \(c \in \mathbb{R} \) and let \(\epsilon > 0 \). Then there exists a gauge \(\delta(\xi) \) on \([a, b]\) such that for any \(\delta \)-fine division \(D \) of \([a, b]\), we have

\[
\left\| S(f, g, D) - \int_{[a, b]} f_1 \, dg \right\| < \frac{\epsilon}{1 + |c|}.
\]

Thus, for any \(\delta \)-fine division \(D \) of \([a, b]\) we have

\[
\left\| S(cf, g, D) - \int_{[a, b]} cf_1 \, dg \right\| = |c| \cdot \left\| S(f, g, D) - \int_{[a, b]} f_1 \, dg \right\| < |c| \cdot \frac{\epsilon}{1 + |c|} < \epsilon.
\]

Hence, \(cf_1 \) is PUL-Stieltjes integrable with respect to \(g \) and

\[
\int_{[a, b]} cf_1 \, dg = c \int_{[a, b]} f_1 \, dg.
\]

For the remaining part, let \(\epsilon > 0 \). Then there exists a gauge \(\delta_1(\xi) \) on \([a, b]\) such that for any \(\delta_1 \)-fine division \(D \) of \([a, b]\), we have

\[
\left\| S(f_1, g, D) - \int_{[a, b]} f_1 \, dg \right\| < \frac{\epsilon}{2}.
\]

Also, there exists a gauge \(\delta_2(\xi) \) on \([a, b]\) such that for any \(\delta_2 \)-fine division \(D' \) of \([a, b]\), we have

\[
\left\| S(f_2, g, D') - \int_{[a, b]} f_2 \, dg \right\| < \frac{\epsilon}{2}.
\]

Let \(\delta(\xi) = \min\{\delta_1(\xi), \delta_2(\xi)\} \) for all \(\xi \in [a, b] \). Then \(\delta \) is a gauge on \([a, b]\). Let \(D \) be a \(\delta \)-fine of \([a, b]\). Then \(D \) is both \(\delta_1 \)-fine and \(\delta_2 \)-fine of \([a, b]\). Thus,

\[
\left\| S(f_1 + f_2, g, D) - \left[\int_{[a, b]} f_1 \, dg + \int_{[a, b]} f_2 \, dg \right] \right\| \\
\leq \left\| S(f_1, g, D) - \int_{[a, b]} f_1 \, dg \right\| + \left\| S(f_2, g, D) - \int_{[a, b]} f_2 \, dg \right\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

Thus, \(f_1 + f_2 \) is PUL-Stieltjes integrable with respect to \(g \) on \([a, b]\) and

\[
\int_{[a, b]} (f_1 + f_2) \, dg = \int_{[a, b]} f_1 \, dg + \int_{[a, b]} f_2 \, dg.
\]

\[\blacksquare\]
Theorem 3.2 If \(f : [a, b] \rightarrow X \) is PUL-Stieltjes integrable with respect to both \(g_1 : [a, b] \rightarrow \mathbb{R} \) and \(g_2 : [a, b] \rightarrow \mathbb{R} \) on \([a, b]\) and \(c \in \mathbb{R} \), then \(f \) PUL-Stieltjes integrable with respect to both \(cg_1 \) and \(g_1 + g_2 \) on \([a, b]\) and
\[
\int_{[a,b]} f \, d(cg_1) = c \int_{[a,b]} f \, dg_1 \quad \text{and} \quad \int_{[a,b]} f \, d(g_1 + g_2) = \int_{[a,b]} f \, dg_1 + \int_{[a,b]} f \, dg_2.
\]
The proof is similar to Theorem 3.1.

4 Cauchy Criterion

We the Cauchy criterion for the PUL-Stieltjes integral.

Theorem 4.1 (Cauchy Criterion) A function \(f : [a, b] \rightarrow X \) is PUL-Stieltjes integrable with respect to \(g : [a, b] \rightarrow \mathbb{R} \) on \([a, b]\) if and only if for any \(\epsilon > 0 \), there exists a gauge \(\delta(\xi) \) on \([a, b]\) such that for any pair of \(\delta \)-fine divisions \(D_1 \) and \(D_2 \) of \([a, b]\), we have
\[
\| S(f, g, D_1) - S(f, g, D_2) \| < \epsilon.
\]

Proof: \((\Rightarrow)\) Let \(\epsilon > 0 \). Then there is a gauge \(\delta(\xi) \) on \([a, b]\) such that for any \(\delta \)-fine division \(D \) of \([a, b]\), we have
\[
\left\| S(f, g, D) - \int_{[a,b]} f \, dg \right\| < \frac{\epsilon}{2}.
\]
Let \(D_1 \) and \(D_2 \) be any two \(\delta \)-fine divisions of \([a, b]\). Then
\[
\left\| S(f, g, D_1) - S(f, g, D_2) \right\|
\leq \left\| S(f, g, D_1) - \int_{[a,b]} f \, dg \right\| + \left\| \int_{[a,b]} f \, dg - S(f, g, D_2) \right\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]
\((\Leftarrow)\) By hypothesis, for each \(n \in \mathbb{N} \), there exists a gauge \(\delta_n(\xi) \) on \([a, b]\) such that for any \(\delta_n \)-fine divisions \(D_n \) and \(D'_n \) of \([a, b]\), we have
\[
\| S(f, g, D_n) - S(f, g, D'_n) \| < \frac{1}{n}.
\]
We may assume that \(\delta_n(\xi) \geq \delta_{n+1}(\xi) \) for each \(\xi \in [a, b] \) and for all \(n \in \mathbb{N} \).

For every \(n \in \mathbb{N} \), let \(D_n \) be a fix \(\delta_n \)-fine division of \([a, b]\) and consider its corresponding PUL-Stieltjes sum \(s_n = S(f, g, D_n) \). We show that the sequence \(\{s_n\}_{n=1}^{+\infty} \) is Cauchy in \(X \).

Let \(\epsilon > 0 \) and let \(N \in \mathbb{N} \) with \(\frac{1}{N} < \epsilon \). Suppose that \(n, m \geq N \). Then \(\delta_n(\xi) \leq \delta_N(\xi) \) and \(\delta_m(\xi) \leq \delta_N(\xi) \) for all \(\xi \in [a, b] \). Thus, \(D_n \) and \(D_m \) are both \(\delta_N \)-fine division of \([a, b]\). Hence,
\[
\| s_n - s_m \| = \| S(f, g, D_n) - S(f, g, D_m) \| < \frac{1}{N} < \epsilon.
\]
This shows that $\langle s_n \rangle_{n=1}^{+\infty}$ is Cauchy in X. Since X is complete, $\langle s_n \rangle_{n=1}^{+\infty}$ converges in X, say, $\lim_{n \to \infty} s_n = A$.

We now show that f is PUL-Stieltjes integrable with respect to g on $[a, b]$ and

$$\int_{[a,b]} f \, dg = A.$$

Let $\epsilon > 0$. Since $\lim_{n \to \infty} s_n = A$, there exists $N \in \mathbb{N}$ such that for all $n \geq N$

$$\|S(f, g, D_n) - A\| = \|s_n - A\| < \frac{\epsilon}{2}.$$ \hfill (2)

We chose $N \in \mathbb{N}$ in which $\frac{1}{N} < \epsilon$. Put $\delta(\xi) = \delta_N(\xi)$ for all $\xi \in [a, b]$. Let D be any δ-fine division of $[a, b]$. Then D is δ_N-fine division of $[a, b]$. Since $N \geq N_2$, by (1) we have

$$\|S(f, g, D) - S(f, g, D_N)\| < \frac{1}{N} < \frac{\epsilon}{2}.$$ \hfill (3)

Also, since $N \geq N_1$, inequality (2) for $n = N$; i.e.

$$\|S(f, g, D_N) - A\| < \frac{\epsilon}{2}.$$ \hfill (4)

Hence, by (3) and (4) we have

$$\|S(f, g, D) - A\| \leq \|S(f, g, D) - S(f, g, D_N)\| + \|S(f, g, D_N) - A\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This shows that f is a PUL-Stieltjes integrable with respect to g on $[a, b]$ and

$$\int_{[a,b]} f \, dg = A.$$ \hfill \blacksquare

In what follows, we denote the set of all compact subintervals of $[a, b] \subseteq \mathbb{R}^n$ by $\mathcal{I}_n([a, b])$.

Corollary 4.2 If $f : [a, b] \to X$ is PUL-Stieltjes integrable with respect to $g : [a, b] \to \mathbb{R}$ on $[a, b]$ and $I \in \mathcal{I}_n([a, b])$, then f is PUL-Stieltjes integrable with respect to g on I.

Proof: Let $\epsilon > 0$. By Theorem 4.1, there exists a gauge $\delta(\xi)$ on $[a, b]$ such that for any δ-fine divisions D_1 and D_2 of $[a, b]$, we have

$$\|S(f, g, D_1) - S(f, g, D_2)\| < \epsilon.$$ \hfill (5)

If $I = [a, b]$, then we are done. Suppose that $I \subset [a, b]$. Then there is a finite collection $\mathcal{J} \subseteq \mathcal{I}([a, b])$ such that $I \notin \mathcal{J}$ and $\mathcal{J} \cup \{I\}$ is a net of $[a, b]$. For each $J \in \mathcal{J} \cup \{I\}$, fix a δ-fine division D_J of J. Let $D_I^{(1)}$ and $D_I^{(2)}$ be two δ-fine divisions of I. Let

$$D_1 = D_I^{(1)} \cup \bigcup_{J \in \mathcal{J}} D_J \quad \text{and} \quad D_2 = D_I^{(2)} \cup \bigcup_{J \in \mathcal{J}} D_J.$$
Then D_1 and D_2 are δ-fine divisions of $[a, b]$ and

$$S(f, g, D_I^{(1)}) = S(f, g, D_1) - \sum_{J \in J} S(f, g, D_J) \quad \text{and} \quad S(f, g, D_I^{(2)}) = S(f, g, D_2) - \sum_{J \in J} S(f, g, D_J).$$

Thus, by (5)

$$\|S(f, g, D_I^{(1)}) - S(f, g, D_I^{(2)})\| = \|S(f, g, D_1) - S(f, g, D_2)\| < \epsilon.$$

The desired result now follows from Theorem 4.1. \hfill \qed

In what follows, let $\mathcal{V}[u, v]$ be the collection of all the vertices of an interval $[u, v]$.

Definition 4.3 2 Let $g : [a, b] \to \mathbb{R}$. The total variation of g over $[a, b]$ is given by

$$\text{Var}(g, [a, b]) = \sup \left\{ \sum_{[u, v] \in D} |\Delta_g([u, v])| : D \text{ is a division of } [a, b] \right\}$$

where $\Delta_g([u, v]) = \sum_{t \in \mathcal{V}[u, v]} g(t) \prod_{k=1}^{m} (-1)^{x_{(uk)}(tk)}$.

Definition 4.4 8 A function $g : [a, b] \to \mathbb{R}$ is said to be of bounded variation on $[a, b]$ if $\text{Var}(g, [a, b])$ is finite. We denote $BV([a, b])$ to be the collection of functions of bounded variation on the interval $[a, b]$.

Theorem 4.5 If $f : [a, b] \to X$ is continuous on $[a, b]$ and $g : [a, b] \to \mathbb{R}$ is of bounded variation on $[a, b]$, then f is PUL-stieltjes integrable on $[a, b]$ with respect to g.

Proof: Let $\epsilon > 0$. Note that the Riemann-stieltjes integral $\int_{[a,b]} \varphi dg$ exists, whenever φ is a partition of unity and g is of bounded variation on $[a, b]$. Since $g \in BV([a, b])$, $M = V(g, [a, b]) \in \mathbb{R}$. Since f is continuous on $[a, b]$, then f is uniformly continuous on $[a, b]$. Thus, there exists a $\delta > 0$ such that for any $x, y \in [a, b]$ with $\|x - y\|_{\mathbb{R}} < \delta(x)$, we have

$$\|f(x) - f(y)\|_X < \frac{\epsilon}{2[M + 1]}.$$

Let $D_1 = \{(\xi, I, \varphi)\}$ and $D_2 = \{(\zeta, J, \psi)\}$ be any two δ-fine divisions of $[a, b]$. Let $D_3 = \{\gamma, K, \sigma\}$ be a δ-fine division of $[a, b]$, where $K = I \cap J$ with $I \in D_1$ and $J \in D_2$. Observe that

$$S(f, g, D_1) = \sum_{I \in D_1} f(\xi) \int_I \varphi dg = \sum_{I \in D_1} f(\xi) \left[\sum_{J \in D_2} \int_{I \cap J} \varphi dg \right] = \sum_{K \in D_3} f(\xi) \int_K \sigma dg$$

and

$$S(f, g, D_2) = \sum_{J \in D_2} f(\zeta) \int_J \psi dg = \sum_{J \in D_2} f(\zeta) \left[\sum_{I \in D_1} \int_{J \cap I} \psi dg \right] = \sum_{K \in D_3} f(\zeta) \int_K \sigma dg.$$
Then
\[
\|S(f,g,D_1) - S(f,g,D_2)\| \leq \|S(f,g,D_1) - S(f,g,D_3)\| + \|S(f,g,D_3) - S(f,g,D_2)\|
\]
\[
= \left\| \sum_{K \in D_3} f(\xi) \int_{K} \sigma dg - \sum_{K \in D_3} f(\gamma) \int_{K} \sigma dg \right\| + \left\| \sum_{K \in D_3} f(\gamma) \int_{K} \sigma dg - \sum_{K \in D_3} f(\zeta) \int_{K} \sigma dg \right\|
\]
\[
\leq \sum_{K \in D_3} \left\| f(\xi) - f(\gamma) \right\| \left\| \int_{K} \sigma dg \right\| + \sum_{K \in D_3} \left\| f(\gamma) - f(\zeta) \right\| \left\| \int_{K} \sigma dg \right\|
\]
\[
< \sum_{K \in D_3} \left[\frac{\epsilon}{2(M+1)} \left\| \int_{K} \sigma dg \right\| \right] + \sum_{K \in D_3} \left[\frac{\epsilon}{2(M+1)} \left\| \int_{K} \sigma dg \right\| \right]
\]
\[
= \frac{\epsilon}{M+1} \sum_{K \in D_3} \left\| \int_{K} \sigma dg \right\| = \frac{\epsilon}{M+1} \sum_{K \in D_3} \Delta_g(K) \leq \frac{\epsilon}{M+1} \cdot M < \epsilon.
\]
Therefore, \(f \) is PUL-Stieltjes integrable on \([a,b]\) with respect to \(g \).

Acknowledgement

This research is funded by the Department of Science and Technology (DOST) through the Accelerated Science and Technology Human Resource Development Program (ASTHRDP), Philippines.

References

[1] R.G. Bartle and D.R. Sherbert, *Introduction to Real Analysis, 3rd ed.*, John Wiley and Sons, Inc., (2000).

[2] V. Boonpogkrong, *Kursweil-Henstock Integration on Manifolds*, Taiwanese Journal of Mathematics 15 (2), 559-571, (2011).

[3] J. Jarnik and J. Kurzweil, *A nonabsolutely convergent integral which admits transformation and can be used for integration on manifolds*, Czechoslovak Math. J., 35(1), 116-139, (1985).

[4] E. Kreyszig, *Introductory Functional Analysis with Applications*, John Wiley and Sons, Inc., (1978).

[5] J.R. Munkres, *Topology 2nd ed.*, Prentice Hall, Inc., (2000).

[6] S. Schwabik and Y. Guoju, *Topics in Banach Space Integration: Series in Real Analysis 10*, World Scientific Publishing Co., (2005).

[7] L.W. Tu, *An Introduction to Manifolds*, Springer, (2008).

[8] L.T. Yeong, *Henstock-Kurzweil Integration on Euclidean Spaces*, World Scientific Publishing Co. Pte. Ltd., (2011).