A born-digital field-to-database solution for collections-based research using collNotes and collBook

Caleb Powell1,3, Jacob Motley2, Hong Qin1, and Joey Shaw1

PREMISE: The digitization of natural history collections includes transcribing specimen label data into standardized formats. Born-digital specimen data initially gathered in digital formats do not need to be transcribed, enabling their efficient integration into digitized collections. Modernizing field collection methods for born-digital workflows requires the development of new tools and processes.

METHODS AND RESULTS: collNotes, a mobile application, was developed for Android and iOS to supplement traditional field journals. Designed for efficiency in the field, collNotes avoids redundant data entries and does not require cellular service. collBook, a companion desktop application, refines field notes into database-ready formats and produces specimen labels.

CONCLUSIONS: collNotes and collBook can be used in combination as a field-to-database solution for gathering born-digital voucher specimen data for plants and fungi. Both programs are open source and use common file types simplifying either program’s integration into existing workflows.

KEYWORDS: biodiversity data; born digital; collection app; field work; herbarium labels; natural history collections.
field. One time-intensive and generally tedious step in the traditional collection process is label preparation, which requires the collector to organize and digitally transcribe field notes. To encourage adoption, a PDF file containing formatted, ready-to-print labels is the second output of this solution. Both collNotes and collBook are open source projects, released under the GNU General Public License v3.0. It is our hope that these programs will improve the efficiency, accuracy, and accessibility of collections-based research.

METHODS AND RESULTS

collNotes development

A mobile application, collNotes, was developed using Microsoft’s Xamarin development kit (Xamarin, San Francisco, California, USA) and is available on Android and iOS devices. collNotes was developed to supplement a traditional field journal. Although it is a mobile application, collNotes does not require cellular service to record field notes. It was designed with a minimalistic interface, prioritizing time-saving features, especially where location data are concerned. The locality entered by the user is expected to be limited to the highest-resolution portion of a locality string (e.g., “50 m northeast of the Illinois Monument”). There are no state, county, or municipality entry fields in collNotes. These location data are inferred later in collBook based on global positioning system (GPS) coordinates captured in the field, by collNotes. Most entry fields in collNotes are optional, and some, such as eventDate and primary collector, can be automatically populated. In the case of the entry field “reproductive condition,” where the DwC recommends controlled vocabulary, a list of terms is provided. Data from collNotes are stored in the mobile device’s local storage as an SQLite database file. Exporting records produces a UTF-8 encoded CSV file, organized (with few exceptions) under DwC terms. This resulting output may then be refined into labels and database-ready records using collBook. Features included in collNotes are: structured data, field number generation, and coordinate capture.

Structured data—Records from a collection event often contain redundant information. To avoid repetitive manual entries, we designed a hierarchy of data categories (i.e., classes) similar to DwC classes. In collNotes, we used three classes: “trip,” “site,” and “specimen.” These classes identify which data are appropriate to duplicate across records. For example, a collection trip for a project named “Flora of Risa” might be associated with multiple sites, all of which inherit “Flora of Risa” as the project name. The classes and the data fields they are associated with are listed in Box 1. One advantage of this kind of structured data can be illustrated if numerous voucher specimens are collected from a single location. In this scenario, locality and habitat information can be entered once and propagated to pertinent records. The geographic range of a single site is left to the researcher’s discretion. However, because localities and coordinates are inherited by the site class, and mobile device GPS is generally accurate to about 20 m (Tomástík et al., 2017), a site range between 5 and 30 m is recommended.

Field number generation—When creating a new site in collNotes, a site number is automatically generated and is used by collNotes and collBook to link associated specimen records. When collections are made indiscriminately, i.e., multiple taxa from a single site are placed in the same container, the site number should be used to label the container. This allows users the option to forgo documenting specimen-specific data in the field, and instead to generate it while refining the records in collBook. Similarly, when creating a specimen record in collNotes, a specimen number is generated that is synonymous to a traditional field number. A specimen number is formatted as two values separated by a dash, with the first value being a site number and the second being a unique value for that specimen. The starting number for specimen collection can be user defined to accommodate workers keeping lifetime numbers, although it will prepend a site number. To avoid duplicate specimen numbers, the starting site or specimen numbers can be altered in collNote’s settings. For proper specimen container labeling, both site and specimen numbers are prominently displayed when generating a new record of either class (i.e., site or specimen).

Coordinate capture—GPS coordinates are the most useful data the user can capture in collNotes. Coordinates are captured in collNotes using the “SET GPS” button, which is available when creating (or editing) a site-level record. When the user selects this feature, their phone makes a location request using the GeoLocator plugin (Montemagno, 2019). This location request includes the altitude, coordinates, and accuracy in the form of uncertainty in meters (e.g., “20,” meaning “±20 meters”). Onscreen text notifies the user of a successful location request. When uncertainty is high, successive location requests may improve it, so the font of this notification is color-coded to reflect coordinate uncertainty: less than 20 m is green, 21–30 m is yellow, and an uncertainty over 30 m is red.

collBook development

A desktop application, collBook was written in Python 3.7 (https://www.python.org/) using the Qt5 (The Qt Company, Espoo, Finland) framework for the graphical user interface. Qt Designer
TABLE 1. The Python modules written for collBook, and a brief description of their functions

Module	Description of function
associatedtaxa.py	A dialog for selecting which associated taxa to include for a site.
collBook.py	The “Main App,” delegates commands to other modules.
formview.py	Manages the user entry fields in the main screen.
importindexdialog.py	A dialog to assist importing unrecognized data formats.
locality.py	Refines location related fields and calls geocoding API services.
pandastablemodel.py	Displays the data in a table and handles data manipulation functions.
pdfviewer.py	Converts PDF objects into images to display preview labels.
printlabels.py	Generates PDF objects for previews or output as label files.
progressbar.py	Status bar replacement with a progress bar and “scope of view.”
sciinameinputdialog.py	A dialog requesting binomial names after a failed taxonomy check.
settingsdialog.py	A dialog for selecting and storing containing user preferences.
taxonomy.py	Verifies the status of binomial names and their authorities.

5.12 was used to design the interface layouts. Multiple custom Python modules are present in collBook’s source code. A list of those modules and a brief description of their function is provided in Table 1. Available for Linux, OS X, and Windows, collBook is designed to use at the same time as specimen identification for refining field notes into database-ready files and specimen labels. Performing data refinements in collBook, as opposed to collNotes, permits web service–dependent features without cell service dependency.

Designed to be feature rich, the user interface contains four prominent panes: a label preview, form view, site navigator, and table view (Fig. 1). The label preview (Fig. 1A) presents a dynamically generated label, which is updated as edits are made. The form view is the primary method of editing or adding new records (Fig. 1B). Many of the form view’s fields (e.g., date, latitude, and longitude) impose DwC-recommended formatting. The site navigator is used to select which records are to be edited, refined, or exported (Fig. 1C). All edits made to parent classes (i.e., those of a higher class) are automatically propagated to their associated children records (i.e., lower class records). For example, in Fig. 1C, selecting “Site 1” sets the scope of records to be acted upon as all those that were collected at that site. To avoid confusion caused by changing scopes, reminder text was placed in the status bar along the bottom of the interface informing the user of the current selection type (i.e., “All records,” “Site view,” or “Specimen view”). The table view presents spreadsheet-style access to all selected records (Fig. 1D). Contrary to the rest of the interface, the table view imposes no formatting, validation, or inheritance, providing a method to override many of the functions discussed above. Data entered using the table view may not always be visible in the form view, yet will be reflected on the label preview and in the exported data. Features included in collBook are: reverse geocoding localities, taxonomic alignments, inferred associated taxa, and creation of customizable labels that can optionally include catalog number barcodes.

Reverse geocoding—In collBook, location data not recorded in collNotes (i.e., “state,” “county,” “municipality”) are inferred from the GPS coordinates and prepended to the user-entered locality string, supplementing the minimal locality data recorded in collNotes. Inference from coordinates is performed using Google’s reverse geocoding web service (Google, 2019). For example, the locality string: “50 m northeast of the Illinois Monument” would become: “US, Tennessee, Hamilton County, Chattanooga, Orchard Knob Reservation, near East 4th Street, 50 m North East of the Illinois Monument.” One flaw inherent to this feature is that the user-entered locality and the generated preamble may contain redundant terms. While testing these programs, familiarity with this feature when using collNotes was found to reduce the occurrences of such redundant terms. Nevertheless, it must remain the user’s responsibility to verify labels in collBook for accuracy and redundancy.

Taxonomic alignments—When refining records, the status of the taxonomy, and the associated authority, are verified. To accommodate user preference, several sources for these alignments were included. The most recent version of the Integrated Taxonomic Information System (ITIS; https://www.itis.gov/) is bundled with the program, whereas Catalog of Life (Roskov et al., 2013) and the Taxonomic Name Resolution Service (TNRS; Boyle et al., 2013) are made available through...
their web services. So as not to overload web services, a one-second delay is imposed on web service requests, making alignments through ITIS much faster. Because ITIS was packaged with collBook, it is also used to inform autofill suggestions when entering scientific names. TNRS is capable of performing partial matches, correcting minor spelling discrepancies when verifying taxonomies. In those cases, TNRS returns a score of the match’s accuracy; a minimum threshold for this score can be modified at the user’s preference. Alignments from these sources are applied based on user-defined policies that delegate how recommendations should be made, and whether they should ever be automatically applied. Although not discussed in detail here, collNotes and collBook are being evaluated for groups beyond Plantae. Fungi, for example, is currently supported with a locally bundled MycoBank (Robert et al., 2013; http://www.mycobank.org/) taxonomy, as well as Catalog of Life support.

Inferred associated taxa—An additional benefit to structured data inheritance is the ability to document associations among sibling specimen records. Associated taxa information is frequently overlooked by field researchers yet may be informative for community composition, habitat, or ecosystem studies. At site level, collNotes offers an associated taxa entry field. In collBook, during record refinement, but after taxonomic alignments, the user is optionally presented with a checklist dialog box and may select some, all, or none of the taxa contemporaneously collected at the parent site. Once the taxon list is finalized, those taxa are included as comma-separated values in the pertinent records. Associated taxa are appended after any existing user entries that may have been recorded in the field using collNotes. The determined name of each record is omitted from the inferred associated taxa for that record so that no record names itself as an associated taxon. One potential flaw in this feature occurs when a user alters a determination after the refinement steps, thereby leaving an inappropriate associated taxon in the sibling records of the altered specimen. To avoid this issue, users are encouraged to perform record refinements only after they are confident in initial determinations.

Customizable labels—Label-containing PDF files are produced in collBook using the Python library ReportLab (https://www.reportlab.com/). There are numerous user settings for label customization, such as font type, base font size, label dimensions, and optional label elements such as: associated taxa, verified by, collection name, and collection logo. Label dimensions determine not only the resulting PDF’s size but also the space available on each label. It is assumed that no label should exceed the label dimensions (i.e., there should be no multi-page labels), and because collBook often produces information-rich labels, space availability can become an issue. User preferences, in conjunction with dynamic placement and sizing, aid in reducing this issue. For example, the associated taxa may be omitted or restricted in item length on the label without impacting the electronic record data. By default, some label elements will share a line, but when label width is insufficient those elements may be split into separate lines. The font size of some label elements are scaled relative to the base font size. For example, GPS coordinate size is always the base font size reduced by 20%, whereas the font size used for the scientific name is usually increased somewhat. Altering the base font size therefore impacts all fonts, but does not necessarily reflect the actual font size of all elements. Another customization option we’ve included is the ability to load an image as a background logo, or watermark. This logo may be anchored to set locations and scaled down in either size or opacity. For best results, users should select cropped images that are larger than the target labels’ dimensions.

Catalog number barcodes—Assigning catalog numbers, usually by applying a barcode sticker, is an additional step of the digitization process. Optionally, in collBook, catalog numbers may be sequentially assigned and included on the labels as barcodes with human-readable subtext. These barcodes are generated in the “code 39” format, using ReportLab. The catalog numbers assigned are based on a series of user inputs available in the Preferences menu. By providing a prefix (e.g., “UCHT”), a digit count (e.g., “6”), and a starting value (e.g., 12345), catalog numbers are assigned sequentially to each record (e.g., “UCHT012345,” “UCHT012346,” etc.). This feature avoids the costs of procuring and the time of applying barcode stickers, which is a significant portion of the digitization process. Nevertheless, this feature should be used with caution, as it is possible to assign non-unique catalog numbers or to overprovision catalog numbers to specimens that are eventually not accessioned into collections. To reduce overprovisioning, catalog numbers are only assigned during the final export process; a dummy value is displayed in the preview window until those assignments are made (Fig. 1A). As these concerns do not impede the core function of the software, this feature was cautiously included. A catalog number management system that can overcome these issues remains a priority.

Interoperability with existing alternatives

We are not aware of any other solution for a complete field-to-database workflow, so alternatives were evaluated for collNotes and collBook independently. An alternative to collBook’s label-printing feature is to utilize Symbiota’s in-browser label-printing option. This provides basic label formatting with some of the same features in collBook, including barcode preparation. Because those specimens have already been accessioned with catalog numbers, barcode printing is less problematic. Because collNotes and collBook maintain data in Symbiota-friendly formats, these two platforms are not mutually exclusive. For example, a user may prepare their records with collBook, upload them to Symbiota, and use Symbiota’s in-browser label services.

There are a few alternatives to collNotes for gathering field notes directly into digital formats. Notably, the android application ColectoR (Maya-Lastra, 2016) was developed for quick and efficient data capture in the field. ColectoR features taxonomic and location refinements and can be integrated into a Microsoft Excel template for label production. However, ColectoR does not export to a standardized format and requires mobile data service for many of its features. A clever solution for gathering digital field notes was documented in the workflow presented by Heberling and Isaac (Heberling and Isaac, 2018), where the citizen science platform iNaturalist is used to record field observations. One advantage to Heberling and Isaac’s workflow is the association of iNaturalist-hosted data with the voucher specimen’s record. For example, in this process in situ photos captured using the iNaturalist mobile application are documented with the record and hosted through iNaturalist’s servers. Because it is designed for citizen science observations, the iNaturalist mobile application lacks entry fields for many field notes recommended for voucher specimen labels, such as habitat or relative abundance estimates (Bridson and Forman,
1998). As noted by Heberling and Isaac, custom observation fields may be added to records made using the iNaturalist app; however, these additional data must be entered through iNaturalist’s web interface, and not in the mobile application. This limitation makes either field web browser access or the eventual transcription of ancillary field notes necessary.

Preferences and priorities of individuals vary according to research needs. Therefore, while collBook has seamless integration with collNotes, we have also included functions in collBook to parse data produced by either ColectoR or iNaturalist. Additionally, a user may attempt to import into collBook any DwC-formatted CSV file. The degree of success from such an attempt, however, will vary depending on formatting. None of these alternatives incorporate a hierarchical data structure and so lack a method to link specimens collected from the same site or during the same event. For these reasons, we chose to develop both collNotes and collBook to address the challenge of born-digital collections-based research.

CONCLUSIONS

Used in combination, collNotes and collBook provide a solution for field researchers and natural history collections to transition to a born-digital process for new accessions. If adopted, we believe these applications can mitigate the continued growth of backlogged natural history data that need to be transcribed, while improving the efficiency, accuracy, and accessibility of collections-based research. The source code for both of these works is available on GitHub (collNotes: https://github.com/j-h-m/collNotes; collBook: https://github.com/CapPow/collBook) under the GNU General Public License v3.0. The mobile application collNotes may be downloaded for free on the Google Play store and the iOS App store. The desktop program collBook is distributed for free through GitHub (https://github.com/CapPow/collBook#Installation).

DATA AVAILABILITY STATEMENT

The source code for both of these works is available on GitHub (collNotes: https://github.com/j-h-m/collNotes; collBook: https://github.com/CapPow/collBook) under the GNU General Public License v3.0. The mobile application collNotes may be downloaded for free on the Google Play store and the iOS App store. The desktop program collBook is distributed for free through GitHub (https://github.com/CapPow/collBook#Installation).

LITERATURE CITED

Boyle, B., N. Hopkins, Z. Lu, J. A. R. Garay, D. Mozzerhin, T. Rees, N. Matasci, et al. 2013. The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics 14: 16.

Bridson, D. M., and L. Forman. 1998. Herbarium handbook. Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom.

Ellwood, E. R., B. A. Dunckel, P. Flemons, R. Guralnick, G. Nelson, G. Newman, S. Newman, et al. 2015. Accelerating the digitization of biodiversity research specimens through online public participation. BioScience 65: 383–396.

Global Biodiversity Information Facility. 2018. What is GBIF? Website https://www.gbif.org/what-is-gbif [accessed 3 May 2019].

Google. 2019. Google Geocoding API. Google Developers. Website https://developers.google.com/maps/documentation/geocoding [accessed 8 March 2019].

Gries, C., E. E. Gilbert, and N. M. Franz. 2014. Symbiota – A virtual platform for creating voucher‐based biodiversity information communities. Biodiversity Data Journal 2: e1114.

Harris, K. M., and T. D. Marsico. 2017. Digitizing specimens in a small herbarium: A viable workflow for collections working with limited resources. Applications in Plant Sciences 5: 1600125.

Heberling, J. M., and B. L. Isaac. 2018. iNaturalist as a tool to expand the research value of museum specimens. Applications in Plant Sciences 6: e01193.

Hill, A., R. Guralnick, A. Smith, A. Sallans, R. Gillespie, M. Denslow, J. Gross, et al. 2012. The notes from nature tool for unlocking biodiversity records from museum records through citizen science. ZooKeys 209: 219–233.

James, S. A., P. S. Soltis, L. Belbin, A. D. Chapman, G. Nelson, D. L. Paul, and M. Collins. 2018. Herbarium data: Global biodiversity and societal botanical needs for novel research. Applications in Plant Sciences 6: e1024.

Maya-Lastra, C. A. 2016. ColectoR, a digital field notebook for voucher specimen collection for smartphones. Applications in Plant Sciences 4: 1600035.

Montermagno, I. 2019. Geolocation plugin for Xamarin and Windows. Website https://github.com/jamesmontermagno/GeolocatorPlugin [accessed 15 March 2019].

Nelson, G., P. Sweeney, L. E. Wallace, R. K. Rabeler, D. Allard, H. Brown, J. R. Carter, et al. 2015. Digitization workflows for flat sheets and packets of plants, algae, and fungi. Applications in Plant Sciences 3: 1500065.

Paul, D., K. Seltmann, F. Michonneau, D. Masaki, P. Soltis, S. Ellis, and K. Love. 2015. iDigBio Wiki: Field to Database. Website https://www.idigbio.org/wiki/index.php/Field_to_Database [accessed 5 March 2019].

Robert, V., D. Yu, A. B. Amor, N. van de Wiele, C. Brouwer, B. Jabas, S. Szoke, et al. 2013. MycoBank gearing up for new horizons. IMA Fungus 4: 371–379.

Roskov, Y., T. Kunze, L. Paguinawan, T. Orrell, D. Nicolson, A. Culham, N. Bailly, et al. 2013. Species 2000 & ITIS Catalogue of Life, 2013 Annual Checklist. Technical Report. Report Species 2000/ITIS, Reading, United Kingdom.

Sweeney, P. W., B. Starly, P. J. Morris, Y. Xu, A. Jones, S. Radhakrishnan, C. J. Grassa, and C. C. Davis. 2018. Large-scale digitization of herbarium specimens: Development and usage of an automated, high-throughput conveyor system. Taxon 67: 165–178.

Tomašík, J., J. Tomašík, S. Saloň, and R. Piroh. 2017. Horizontal accuracy and applicability of smartphone GNSS positioning in forests. Forestry: An International Journal of Forest Research 90: 187–198.

Wieczorek, J. D., Bloom, R. Guralnick, S. Blum, M. Döring, R. Giovanni, T. Robertson, and D. Vieglais. 2012. Darwin Core: An evolving community-developed biodiversity data standard. PLoS ONE 7: e29715.