Citrus and Arginine Are Moderately Heritable in Two Red-fleshed Watermelon Populations

Jordan L. Hartman¹, Penelope Perkins-Veazie, and Todd C. Wehner
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609

Abstract. Watermelon fruit [Citrus lanatus (Thumb) Matsum & Nakai] is a natural source of phytonutrients, including lycopene, citrulline, and arginine. Two segregating, highly outcrossed North Carolina watermelon populations, NC High Yield (NCHYW) and NC Small Fruit (NSCFW), were evaluated for these traits and for indicators of ripeness (pH and soluble solids content). Parents tested in 2015 (N_{SF} = 300, N_{HV} = 300) were sampled for the above and offspring were tested in 2016 if the sampled fruit of the parents were of qualifying ripeness [soluble solids concentration (SSC) > 8, pH 5.5–6.5], resulting in 251 families (N_{SF} = 72, N_{HV} = 175). Narrow-sense heritability was estimated in each of the populations using the methods of 1) parent-offspring regression and 2) variance of half-sibling family means. Heritability for citrulline in NCHYW was moderate in both parent-offspring and half-sibling estimations (38% and 43%), as was arginine (40% and 44%) and lycopene (46% and 47%, respectively). Estimates for these traits in NSCFW were considerably different, with parent-offspring and half-sibling estimations for citrulline (65% and 22%), arginine (9% and 20%), and lycopene (44% and 68%). In NCHYW, moderate phenotypic correlations were found between SSC and citrulline (0.40), arginine (0.40), their combination (0.45), and lycopene (0.30) all of which were significant, except lycopene. Lycopene was significantly and weakly correlated to citrulline (0.22), but was not correlated to arginine (0.06). Similar correlations were found in NSCFW; SSC was significantly correlated to citrulline (0.24), arginine (0.18), and their combination (0.23), whereas lycopene was slightly correlated to citrulline (0.15) and not significantly correlated to arginine. Based on these heritabilities and phenotypic correlations, tandem selection for high lycopene and citrulline content may be accomplished efficiently using progeny rows with minimal replication using the NSCFW population, whereas replication with multiple years, rows, and locations may be necessary for creating stable lines using the NCHYW population.

Received for publication 31 Oct. 2018. Accepted for publication 1 Dec. 2018.

I thank my advisor, Todd Wehner, and lab colleagues James, Takshay, Brandon, Lauren, and Emily for help in the field. I thank my advisor, Penelope Perkins-Veazie, and lab colleagues Joyce, Jenny, Erin, Mariah, and Chris for help in the laboratory. In addition, I thank my work-study mentees Desstein, Sicely, and Madison, and field stations and crews in Castle Hayne, Clinton, and Kinston, NC. Special thanks to Rachel Naegle (U.S. Department of Agriculture–Agricultural Research Service), Consuelo Arellano (North Carolina State University Department of Horticultural Science), Luis Rivera (Department of Crop and Soil Science), and Dahlia Nielsen (Department of Biological Sciences) for individual consultations and to Juan and Courtney for seed and sample preparation.

¹Corresponding author. E-mail: jordanleighhartman@gmail.com
the rind. Analysis of the same RNA sequencing profiles found that two biosynthetic enzymes, N-acetylornithine aminotransferase (Clao15337) and N-acetyl Glu synthase (Clao14036) were progressively upregulated during fruit development in only the rind.

Of the bioactive metabolites found in watermelon fruit, carotenoid content most directly correlates with the stage of fruit development and ripeness. Carotenogenesis increases during development in a sigmoid fashion, whereas reports on phenolic compounds, and vitamin C relative to fruit development are conflicting or inconclusive (Tilli et al., 2011). Understanding carotenoid metabolism, the primary contributor to watermelon flesh color, is important to maintaining high quality in transport and storage, and may also relate to citrulline content.

Rimando and Perkins-Veazie (2005) studied variation in citrulline content in watermelon, considering ploidy level, cultivar, flesh color, and fresh weight (FW) vs. dry weight. Red watermelons had significantly less citrulline than orange and yellow-fleshed fruit on both a fresh and dry weight basis. The two yellow cultivars had similarly high citrulline, but there was significant variation within red and orange colors. Red flesh ranged from 0.70 to 3.5 g/kg FW citrulline (mean reported as 1.0), while orange flesh cultivars, 'Tendersweet Orange Flesh' and 'Orange Sunshine', had 0.50 and 3.0 g/kg FW citrulline, respectively (Rimando and Perkins-Veazie, 2005). However, 'Orange Sunshine' is seedless, whereas 'Tendersweet Orange Flesh' is seeded, grown using different cultural practices that may impact bioactive profiles. Both yellow-fleshed cultivars had high citrulline, with 3.6 g/kg for the seeded ‘Summer Gold’ and 3.5 g/kg for the seedless ‘Solid Gold’. Still, carotenoids are considered a potential predictor of the amount of citrulline in watermelons. Another study found that six seeded cultivars yielded less citrulline than eight seedless cultivars, with 1.8 g/kg FW (seeded) and 2.4 g/kg FW (seedless) (Davis et al., 2010). To estimate effects of ploidy on citrulline content, six experimental lines (2x) and their autotriploids (4x) and triploids (3x) were investigated for amount of citrulline produced. Of the six families, only one showed significant differences in citrulline content (3x and 4x > 2x), but when all families were averaged by ploidy, no significant differences among ploidy were observed. These data parallel results of Liu et al. (2010), using watermelon from nine triploid hybrids and their diploid and autotetraploid progenitors grown under greenhouse conditions. In contrast, 3x watermelons had higher citrulline content than 2x fruit in field-grown watermelons (Perkins-Veazie et al., 2006).

Citrulline accumulation in watermelon fruit appears to be correlated to ripeness. Akashi et al. (2017) investigated spatial and temporal citrulline accumulation in watermelon fruits, noting that it peaks roughly with soluble solids content (SSC) (Akashi et al., 2017; Fish, 2014). Akashi et al. (2017) also described a bimodal accumulation pattern of citrulline, with peel (4.4 ± 0.8 g/kg) having the highest content on a FW basis compared with heart (2.4 ± 0.99 g/kg FW) and rind (2.1 ± 0.94 g/kg FW). Citrulline content in the rind varied among cultivars, within cultivar, and with fruit stage. Despite reports of much variation among cultivars (+47.1% CV in Fish, 2014), rind had consistently higher citrulline content than flesh in most studies that compared tissue types (Fish, 2014; Jayaprakasha et al., 2011; Rimando and Perkins-Veazie, 2005).

Davis et al. (2010–11) investigated response to environment using five watermelon cultivars produced in three locations: ‘Cream of Saskatchewan’, ‘Red-N-Sweet’, and ‘Tendersweet Orange Flesh’ in Clinton and Kinston, NC, and ‘Black Diamond’ and ‘Dixielee’ in Lane, OK. There was a wide range of values for citrulline within cultivar, but no significant differences among cultivars or across environments tested. Because location did not seem to affect within-cultivar variation, breeding for high citrulline content in watermelons across widely different environments may be possible. Other findings suggest that citrulline is significantly affected by environment; when grown in two locations (Oklahoma and Texas), citrulline content varied widely within the same cultivars (Fish and Bruton, 2010).

Breeding for plant metabolites proves difficult when environmental effects predominate. Citrulline concentrations change significantly with many factors, including cultural practices (grafting, planting densities, harvest date), environmental effects (growing season, location, year, drought, and salt stress), fruit ripeness, cultivar-level variation and correlations (genotype, ploidy, lycopene content, arginine content), and analytical methods (tissue type, tissue processing, sample storage, extraction method, analytical instrumentation). The objective of this study was to estimate narrow-sense heritability and phenotypic relationships among fruit metabolites in two red-fleshed watermelon populations.

Methods

Cultivation and field design

Summer 2015: Parents. In 2015, two North Carolina watermelon populations, NC Small Fruit (NCSFW) and NC High Yield (NCHYW), (NSH = 300, NHY = 300) were grown in Castle Hayne, NC. Plots were planted on raised, shaped beds with 3.1-m centers and single hills 1.2 m apart. Single fruit were harvested, and seeds were extracted from single-plot plants for planting in 2016 (Table 1).

Summer 2016: Offspring. Seeds from 2015 parents of qualifying ripeness (SSC ≥75, pH 5.5–6.5) were planted in 2016 (NSH = 72, NHY = 175). Offspring were tested at two locations: the Horticultural Crops Research Station in Clinton, NC, and the Cunningham Research Station in Kinston, NC. The experiment was performed using randomized complete blocks with two replications. Each population was planted in a randomized complete block design. Field layout was identical to the parent population, except that offspring were grown using six-plant plots 3.7 m long, instead of single-plant hills (Table 1).

Single-plant hills and six-plant plots were grown using horticultural practices recommended by the North Carolina Extension Service (Sanders, 2004). Irrigation was with drip tubes in beds covered with black polyethylene mulch. Soil type was a Norfolk fine sand at Castle Hayne, Orangeburg loamy sand at Clinton, and a Norfolk sandy loam at Kinston. Plants were manually trained each week in a spiral by turning all vines in a clockwise circle around the crown until the start of fruit set. Vine training may affect fruit set, but this allowed for efficient sampling of fruit from single plants later in the season, thus reducing experimental error.

Germplasm

NC small fruit. The population was created in 2005 and included cultivars ‘New Hampshire Midget’, ‘Minilee’, and ‘Allsweet’, which contributed yield, earliness, quality, disease resistance, and different fruit size. This population was intercrossed nine times, while selecting for yield, earliness, quality, disease resistance, and small fruit size.

NC high yield. The population was created in 2005 from crosses of ‘Calhoun Gray’, ‘Dixielee’, ‘Mountain Hoosier’, ‘Big Crimson’, ‘Starbrite F1’, ‘Legacy’, ‘Red-N-Sweet’, ‘Sangria F1’, and ‘Early Arizona’. The population was intercrossed five times while selecting for yield, earliness, quality, disease resistance, and large fruit size.

Sample collection

For parents, single fruit were harvested when ripe (indicated by a brown tendril near the peduncle, large fruit, filled seeds, red flesh) from each plot for quality analysis. Red flesh was chosen preferentially because some fruit in the population had mixes of red and yellow flesh. Watermelons were cut transversely between blossom- and stem-ends. Samples of 100-g size were taken from the center of the watermelon using an ice cream scoop and bagged individually in polyethylene bags of 4-ml thickness with a locking seal (Uline, Braselton, GA). NCSFW samples were mixed tissue samples (heart, locule, interlocule); NCHYW samples were from heart only. Samples were kept on ice for no longer than 6 h, after which they were frozen at −18 °C until blended.

For the offspring, the same sampling procedure was applied using four fruit per plot, of which the three ripest were sampled for quality analysis using the ripeness indicators described previously. Samples were placed in plastic bags with a locking seal and later blended individually for ripeness qualification.

Blending and ripeness qualification

Samples in plastic bags were half-thawed in water, and seeds were removed before
Lycopene quantification

Lycopene concentration was measured using 5-mL thawed aliquots diluted in 15-mL deionized water. Sample absorbance at 560 and 700 nm was measured using a QuantiChrom Spectrophotometer (BioAssay Systems, Toronto, ON) equipped with a stainless steel reflectometer (PH177-SS; Hach). Individual purees (parents) or pooled purees (offspring) were further processed using a homogenizer for 15 s (Polytron PT 10-35 GT; Kinematica, Bohemia, NY), aliquoted into 1.5-mL tubes, and frozen at –18°C. Aliquots were transported on ice to Kannapolis, NC, where they were stored at –80°C until extraction.

Citrulline and arginine extraction and quantification

Extraction. Frozen watermelon purees stored at –18°C were thawed at room temperature, 0.03M H$_3$PO$_4$ (1.2 mL) added to 0.2 g ± 0.01 g aliquots of puree, and vortexed for 1 min. Purees were then sonicated (30 min), left at room temperature to rest (10 min), and then centrifuged (23,447 g$_{av}$, 4°C, 20 min; centrifuge 5417 R; Eppendorf, Hamburg, Germany). Supernatants (1 mL) were filtered into amber high-performance liquid chromatography (HPLC) vials (17-mm nylon syringe filter, F2513-2; Thermo Scientific, Waltham, MA) and frozen at ~80°C until HPLC analysis.

Quantification. Citrulline and arginine concentrations were determined using a modified method of Jayaprakasha et al. (2011). HPLC was performed using an Elite LabChrom, Hitachi (Tokyo, Japan) system equipped with an autosampler and photodiode array detector. A 5 mL volume of filtered supernatant was injected onto a Gemini 3μ C18, 110 A, 250 × 4.6 mm, 00G-4439-EO column and C18 4 × 2.0; AJO-4286 SecurityGuard cartridges (Phenomenex, Torrance, CA) and amino acids separated using a mobile phase of 0.015 M H$_3$PO$_4$ at 0.5 mL/min at room temperature (25°C) with a runtime of 30 min.

Table 1. Count, mean, low value, and high value for soluble solids concentration (SSC) (°Brix), acidity (pH), lycopene, citrulline, and arginine for NC High Yield watermelon (NCHYW) and Small Fruit (NCSFW) populations across two locations and two replications.

Statistic	SSC (°Brix)	pH	Lycopene (mg kg$^{-1}$ FW)	Citrulline (g kg$^{-1}$ FW)	Arginine (g kg$^{-1}$ FW)	Cit+Arga (g kg$^{-1}$ FW)
NCHYW parent population						
N	175	175	175	175	175	175
M	9.4 ± 0.9	5.49 ± 0.2	45.9 ± 9.0	1.60 ± 0.60	0.99 ± 0.21	260.0 ± 76.0
X$_{L}$ – X$_{H}$	8–11.8	5.04–6.29	29.3–93.1	0.21–3.6	0.45–1.5	66.4–487.1
NCHYW offspring population						
N	645	646	653	642	642	642
M	10.3 ± 0.7	5.8 ± 0.1	42.8 ± 8.5	2.38 ± 0.57	1.2 ± 0.21	362
X$_{L}$ – X$_{H}$	8.1–11.5	5.9–6.3	19.7–82.3	0.17–5.3	0.10–2.2	0.38–6.7
NCSFW parent population						
N	72	72	72	72	72	72
M	9.54 ± 1.0	5.56 ± 0.2	64.25 ± 14	1.27 ± 0.64	1.1 ± 0.27	2.3 ± 0.81
X$_{L}$ – X$_{H}$	8.0–12.4	5.03–6.33	40.3–115.3	0.34–2.0	0.16–2.9	0.52–4.4
NCSFW offspring population						
N	263	258	271	263	263	263
M	10.0 ± 0.7	5.62 ± 0.2	52.3 ± 12.2	228.6 ± 90.3	142.6 ± 48.0	371.2 ± 129.6
X$_{L}$ – X$_{H}$	8.1–11.7	5.00–6.46	27.6–84.5	0.27–5.6	0.14–3.0	0.15–8.4

aParent values are of single watermelons planted in 2015; offspring values are averaged over two locations and two replications, with up to three fruit sampled per plot, planted in 2016. bCombined citrulline and arginine concentration in g/kg fresh weight (FW).
Statistic	SSC	pH	Lycopene	Citrulline	Arginine	Cit+Arg
NCHYW statistical variance component estimates | | | | | |
Location | 0.045 | 10.96 | 10.36 | 115.97 | 11.74 | 11.19
Rep (Loc) | 0.016 | 1.01 | 2.33 | 147.39 | –0.547 | 172.79
Cultigen | 0.14 | 14.49 | 13.14 | 513.96 | 66.82 | 533.93
Loc × Cultigen | 0.013 | 5.91 | 8.6 | 114.39 | –13.15 | 161.83
Error | 0.35 | 73.07 | 43.08 | 2,426.4 | 374.92 | 3,847.8
NCHYW quantitative genetic estimates | | | | | |
Additive | 0.57 | 57.94 | 52.55 | 2,055.85 | 267.3 | 2,135.71
Phenotypic | 0.67 | 79.17 | 67.62 | 2,719.64 | 354.45 | 3,178.58
h² | 0.6 | 0.41 | 0.47 | 0.43 | 0.44 | 0.34
NCSFW statistical variance component estimates | | | | | |
Location | –0.0195 | 61.25 | 106.88 | 238.89 | –119.42 | 11.19
Rep (Loc) | 0.0463 | –1.4 | 0.165 | 1.163 | 256.01 | 172.79
Cultigen | 0.12 | 6.55 | 34.73 | 565.58 | 139 | 533.93
Loc × Cultigen | 0.0256 | 5.78 | 3.155 | 1,379.9 | 252.26 | 161.83
Error | 0.27 | 135.81 | 57.96 | 5,457 | 1,786.6 | 3,847.8
NCSFW quantitative genetic estimates | | | | | |
Additive | 0.47 | 26.2 | 138.92 | 2,262.3 | 556.01 | 2,715.31
Phenotypic | 0.55 | 63.04 | 154.98 | 4,316.52 | 1,128.78 | 7,077.02
h² | 0.6 | 0.15 | 0.68 | 0.22 | 0.2 | 0.14

Half-siblings found similar heritabilities for citrulline (43%), arginine (44%), citrulline plus arginine (29%), lycopene (47%), and pH (40%). Heritability from half-siblings was higher for SSC (60%, Table 4). In NCSFW, heritabilities from parent-offspring regression were high for citrulline (65%) and SSC (60%), moderate for lycopene (44%) and citrulline plus arginine (33%), and low for arginine, pH, and SSC (9.4%, 9.8%, and ≈0%, respectively). Estimation using half-siblings revealed significantly different values. Citrulline had low heritability (22%) compared with its parent-offspring estimate (65%). Arginine was low (14%), along with pH (15%). Lycopene was more heritable in NCSFW considering half-siblings (68%) compared with parent-offspring (44%, Table 4).

Both populations had weak, positive correlations between lycopene and citrulline (rHY = 0.22; rSF = 0.15) and lycopene and citrulline plus arginine (rHY = –0.20; rSF = 0.13). Citrulline and arginine were positively correlated in both populations, with NCSFW having a much stronger correlation (rHY = 0.43; rSF = 0.73). In both populations, SSC was correlated significantly with citrulline (rHY = 0.40; rSF = 0.24), arginine (rHY = 0.40; rSF = 0.18), and citrulline plus arginine (rHY = 0.45; rSF = 0.23). Although pH was negatively correlated with all other traits and was significant for each trait in at least one population, significance was not consistent between populations (significant for citrulline plus arginine and citrulline in NCHYW, and significant for arginine and lycopene in NCSFW) (Table 5).

Discussion

Watermelon is an economically significant crop globally and has important nutritive and bioactive profiles and properties with high concentrations of lycopene and citrulline in addition to potassium and vitamins C and A. In mammals, these phytonutrients can improve vasodilation, cardiovascular health, and reduce risks for stroke and several cancers (Collins et al., 2006; Perkins-Veazie et al., 2012). Breeding to increase lycopene and citrulline in watermelon may also help increase stress tolerance in the plant (Akashi et al., 2001; Kusvuran et al., 2013; Wang et al., 2014).

Genetic variance was present for all six quality traits in both the parents and the offspring of the two populations studied (Table 1). For citrulline, there are several studies that report variation among and within cultivar in different environments, including that of Davis et al. (2011) and Wehner et al. (2017), which prompted this study. Lycopene abundance varies greatly in red, orange, and yellow-fleshed watermelons, with red-fleshed cultivars containing lycopene as the major carotenoid, followed by orange-fleshed and yellow-fleshed cultivars. Perkins-Veazie et al. (2016) found great variation in lycopene among 50 watermelon cultivars, ranging from 33 to 100 mg/kg. Yoo et al. (2012) and Nagal et al. (2012) both reported high variation in lycopene among cultivars.

Heritability estimates are used to plan efficient breeding strategies to improve trait value and are now available to improve citrulline and arginine. Zhang et al. (2010) reported the general combining ability and heritability of lycopene, which were relatively high, suggesting a potential additive effect due to dominant genes. A study considering broad-sense heritability of fruit quality traits in a variety of red, orange, and yellow flesh found that arginine and lycopene were highly heritable (89% and 99%, respectively) (Wehner et al., 2017). Broad-sense heritability for citrulline, pH, and SSC was low to moderate (41%, 61%, and 46%, respectively) (Wehner et al., 2017). However, there have been no studies reporting narrow-sense heritability of lycopene, citrulline, or arginine in watermelon.

In our study, environment was a significant contributor in all traits for NCHYW and had the largest mean squares, although error and cultivar had the largest variance components, except for lycopene, where location was the largest. Despite that, heritability for lycopene was moderate (47%). In NCHYW, heritability was essentially the same for citrulline and arginine, considering both parent-offspring regression (38% and 40%, respectively) and half-siblings (43% and 44%, respectively). In NCSFW, heritabilities were considerably different and there were fewer significant variance components, possibly due to insufficient sample size. Variance components for all traits were more consistently distributed in the NCHYW population, with error predominating, followed by cultivar. This difference may be from the larger sample size, compared with NCSFW (NHY ≈650; NSF ≈230), failure to capture three ripe fruits from 5% of plots, different harvest dates for second collections when three rip fruits were not found during the first harvest (≈10% of plots), and the differing pedigrees of the two watermelon populations. Davis et al. (2013) determined that SSC and lycopene content were slightly and
positively correlated, using a study of six diploid cultivars, their autotetraploids, and their triploid progeny. No correlation was found between citrulline and SSC. In contrast, this study found moderate correlations between SSC and citrulline (0.40), arginine (0.40), citrulline plus arginine (0.45), and lycopene (0.30), which included only diploids. Lycopene was only weakly correlated with citrulline (0.22) and not correlated with arginine (0.06). Similarly, directional and significant correlations were found in NCSFW, although correlations were generally weaker.

Plant breeders interested in developing cultivars that have high citrulline (or arginine) or high lycopene content should be able to make good progress because the heritabilities are generally in the moderate range (25% to 50%). Selection should be based on progeny rows, perhaps with only a single replication. Single-plant selection would not be advised unless heritability was above 50% to 100% (the range for high heritability).

In this study, heritability estimates were calculated using both parent-offspring regression and the variance of half-sibling family means. In both estimations for the NCHYW population, heritability of citrulline was moderate (40%), as was arginine (±40%) and lycopene (±50%). Heritabilities of these traits in the NCSFW population were highly varied, likely due to the smaller population size and cultivars chosen for the genesis of each population. Overall, the narrow-sense heritability estimates in this study were much lower compared with the broad-sense heritabilities of our 2017 study, suggesting there may have been additional alleles coding for fruit quality traits in the genotypes chosen for the 2017 study.

Table 5. Pearson correlation coefficient soluble solids concentration (SSC) (°Brix), acidity (pH), lycopene, citrulline, and arginine for NC High Yield watermelon (NCHYW, left) and Small Fruit (NCSFW, right) populations across two locations and two replications.

SSC	pH	Lycopene	Citrulline	Arginine	Cit+Arg
NCHYW					
h² by parent-offspring	0.17	0.46	0.38	0.40	0.29
h² by half-siblings	0.60	0.47	0.43	0.44	0.34
NCSFW					
h² by parent-offspring	-0.34*	0.44	0.65	0.09	0.33
h² by half-siblings	0.60	0.15	0.68	0.22	0.20

*Combined citrulline and arginine concentrations.

Literature Cited

Akashi, K., C. Miyake, and A. Yokota. 2001. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett. 508(3):438–442.

Akashi, K., Y. Mifune, K. Morita, S. Ishitsuka, H. Tsuboi, and T. Ishihara. 2017. Serial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. J. Sci. Food Agr. 97:479–487.

American Heart Association. 2018 How the Heart Check food certification program works. 11 Oct. 2018. <http://www.checkmark.org/HeartCheckByCategory/.

Amir, H., M. Karas, J. Giat, M. Danilenko, R. Levy, T. Yermiah, J. Levi, and Y. Sharoni. 1999. Lycopene and 1, 25-dihydroxyvitamin D3 cooperate in the inhibition of cell cycle progression and induction of differentiation in HL-60 leukemic cells. Nutr. Cancer 33:105–112.

Arab, L. and S. Steck. 2000. Lycopene and cardiovascular disease. Amer. J. Clin. Nutr. 71:1691S–1695S.

Ashraf, M. and P.J. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166:3–16.

Bahl, S., N. Zerrouk, C. Ausel, C. Moinard, P. Crenn, E. Curis, J.C. Chaumel, E. C. L. Cynober, and S. Sfar. 2013. Citrulline: From metabolism to therapeutic use. Nutrition 29:479–484.

Collins, J.K., P. Perkins-Vazie, and W. Roberts. 2006. Lycopene: From plants to humans. HortScience 41:1135–1144.

Collins, J.K., G. Wu, P. Perkins-Vazie, K. Spears, L. Claypool, R.A. Baker, and B.A. Clevidence. 2007. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition 23:261–266.

Davis, A.R., C.L. Webber, W.W. Fish, T.C. Wehner, S. King, and P. Perkins-Vazie. 2010. L-citrulline levels in watermelon cultivars tested in two environments. HortScience 46:1572–1575.

Davis, A.R., W. Fish, and P. Perkins-Vazie. 2003. A rapid hexane-free method for analyzing lycopene content in watermelon. J. Food Sci. 68:328–332.

Davis, A.R., C.L. Webber, III, W. Liu, P. Perkins-Vazie, A. Levi, and S. King. 2013. Watermelon quality traits as affected by ploidy. HortScience 48:1113–1118.

Davis, A.R., W.W. Fish, A. Levi, S. King, T. Wehner, and P. Perkins-Vazie. 2010–11. L-Citrulline levels in watermelon cultivars from three locations. Rep. Cucurbit Genet. Coop. 33:34–36–39.

DiMascio, P., S.P. Kaiser, and H. Sies. 1989. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 274:532–538.

Drewes, S.E., J. George, and F. Khan. 2003. Recent findings on natural products with erectile-dysfunction activity. Phytochemistry 62(7):1019–1025.

Figuerola, A., M.A. Sanchez-Gonzalez, P.M. Perkins-Vazie, and B.H. Arjmandi. 2011. Effects of watermelon supplementation on aortic blood pressure and wave reflection in individuals with prehypertension: A pilot study. Amer. J. Hypertens. 24:40–44.

Fish, W.W. 2012. A reliable methodology for quantitative extraction of fruit and vegetable physiological amino acids and their subsequent analysis with commonly available HPLC systems. Food Nutr. Sci. 03(06):863–871.

Fish, W.W. 2014. The expression of citrulline and other members of the arginine metabolic family in developing watermelon fruit. Int. J. Agr. Innov. Res. 25(5):665–672.

Fish, W.W. and B.D. Bruton. 2010. Quantification of L-Citrulline and other physiologic amino acids in watermelon and selected cucurbits. In: Cucurbitec2010 Proceedings, Nov. 14–18, 2010, Charleston, SC. p. 152–154.

Gianetti, J. R. Pedrini, R. Pertucci, G. Lazzerini, M. DeCaterina, G. Bellomo, and R. DeCaterina. 2002. Inverse association between Carotid intima-media thickness and the antioxidant lycopene in atherosclerosis. Amer. Heart J. 143:467–474.

Guo, S., J. Zhang, H. Sun, J. Salse, W.J. Lucas, H. Zhang, Y. Zheng, B. Luo, Y. Ren, Z. Wang, J. Min, X. Guo, F. Murat, B. Ham, Z. Zhang, S. Gao, M. Huang, Y. Xu, S. Zhong, A. Bombarely, L.A., and S. Zhang. 2018. Plant Breeding 12(3):447–452.
Mansour, M.M. 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol. Plant. 43:491–500.

Mandel, H., N. Levy, S. Izkovitch, and S.H. Korman. 2005. Elevated plasma due to consumption of parboiled paddy rice with watermelon (Citrullus lanatus) and resequencing of selected watermelon genotypes and genetic analysis. Hort. Environ. Biotech. 46:611–618.

Nagal, S., C. Kaur, H. Choudhary, J. Singh, B.B. Isik, F., J. Holland, and C. Maltecca. 2017. Genetic association of L-citrulline in watermelon cultivars. J. Agr. Food Chem. 54:2593–2597.

Oketch-Rabah, H.A., A.L. Roe, B.J. Gurely, J.C. Perkins-Veazie, and G.I. Ganciaco. 2016. The importance of quality specifications in safety assessments of amino acids: The cases of L-tryptophan and L-citrulline. J. Nutr. 146(12):2643s–2651s.

Pérez-Guisado, J. and F.M. Jakeman. 2010. Citrulline malate increases athletic anaerobic performance and relieves muscle soreness. J. Strength Cond. Res. 24:1161–1168.

Perkins-Veazie, P.M., A. Davis, and J.K. Collins. 2012. Watermelon: From dessert to functional food. Isr. J. Plant Sci. 60:395–402.

Perkins-Veazie, P.M., J.K. Collins, A.R. Davis, and W. Roberts. 2006. Carotenoid content of 50 watermelon cultivars. J. Agr. Food Chem. 54:2593–2597.

Rimando, A.M. and P.M. Perkins-Veazie. 2005. Determination of citrulline in watermelon rind. J. Chrom. 193:196–206.

Rougé, C., C. Des Robert, A. Robins, O. Le Bacquer, C. Volteau, M.F. De La Cochetière, and D. Darmoun. 2007. Manipulation of citrulline availability in humans. Amer. J. Physiol. Gastrointest. Liver Physiol. 293:G1061–G1067.

Sadi, M., P.M. Perkins-Veazie, N.F. Ndiaye, D. Traore, G. Ma, C. Zongo, Y. Traore, M.D. Sall, and A. Traore. 2015. Enhanced L-citrulline in parboiled paddy rice with watermelon (Citrullus lanatus) juice for preventing sarcopenia: A preliminary study. Afr. J. Food Sci. 9(10):508–513.

Sanders, D.C. (ed.). 2004. Vegetable crop guidelines for the Southeastern U.S. 2004–2005. North Carolina Vegetable Growers Association, Raleigh, NC.

SAS. 2006. SAS enterprise guide. Release 4.01 ed. SAS Institute, Cary, NC.

Sase, A., S. Dahayana, H. Höger, G. Wu, and G. Sureda. 2008. Effects of L-citrulline oral supplementation on polymorphonuclear neutrophils oxidative burst and nitric oxide production after exercise. Free Radic. Res. 43:828–835.

Tadmor, Y., S. King, A. Levi, A. Davis, A. Meir, B. Wasserman, J. Hirschberg, and E. Levinson. 2004. Comparative fruit colouration in watermelon and tomato. Food Res. Int. 38:837–841.

Tarazona-Diaz, M.P., F. Alacid, and M. Carrasco. 2013. Watermelon juice: Potential functional drink for sore muscle relief in athletes. J. Agr. Food Chem. 61:7522–7528.

Tedesco, T.A., A.S. Benford, R.C. Foster, and L.A. Barnes. 1984. Free amino acids in Citrullus vulgaris (watermelon). Pediatrics 73(6):879.

Thibault, R., L. Flet, F. Vavasseur, M. Lemerle, V. Ferchand-Roucher, D. Picot, and D. Darmoun. 2011. Oral citrulline does not affect whole body protein metabolism in healthy human volunteers: Results of a prospective, randomized, double-blind, cross-over study. Clin. Nutr. 30:807–811.

Tili, I., C. Hbid, M. Hay, G. Jaberi, and G. Dalessandro. 2011. Bioactive compounds and antioxidant activities during fruit ripening of watermelon cultivars. J. Food Compos. Anal. 24:923–928.

Tomes, M.L., K.W. Johnson, and M. Hess. 1963. The carotene pigment content of certain red fleshed watermelons. Proc. Amer. Soc. Hort. Sci. 82:460–464.

Wang, Z., H. Hu, L.R. Goertzen, J.S. McElroy, and F. Dane. 2014. Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS One 9(8):1–12.

Wehner, T.C., R.P. Naegele, and P. Perkins-Veazie. 2017. Heritability and variance component associations with arginine metabolism, citrulline, and lycopenoid content in diverse watermelon cultivars. HortScience 52:936–940.

Winter, G., C.D. Todd, M. Trovato, and D. Funck. 2015. Physiological implications of arginine metabolism in plants. Front. Plant Sci. 6:534.

Yoo, K.S., H. Bang, E.J. Lee, K. Crosby, and B.S. Patil. 2012. Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic analysis. Hort. Environ. Biotechnol. 53:552–560.

Zhong, H., F. He, and Y. Xu. 2010. Watermelon lycopene content correlation with flesh colour and genetic research. ISHS Acta Hort. 856: International Symposium on Vegetable Safety and Human Health (abstr.).