Regional modelling with flood-duration-frequency approach in the middle Cheliff watershed

Mohamed RENIMA¹) ABCDEF, Mohamed REMAOUN²) ADF, Abdelkader BOUCEFIANE³) CD, Abdelkader SADEUK BEN ABBES³) BD

¹) University Hassib Benbouali of Chlef, Laboratory of Chemistry Vegetable-Water-Energy, 02000 Chlef, Algeria; e-mail: renimamohamed@yahoo.fr
²) University Hassib Benbouali of Chlef, Laboratory of Chemistry Vegetable-Water-Energy, Hydraulic Department, Algeria; e-mail: remaoun2000@yahoo.fr
³) National Higher Hydraulic School, Water Engineering and Environment Laboratory, Blida, Algeria; e-mail: Boucefiane_abdelkader@yahoo.fr, sbkad2002@yahoo.fr

For citation: Renima M., Remaoun M., Boucefiane A., Sadeuk Ben Abbes A. 2018. Regional modelling with flood-duration-frequency approach in the middle Cheliff watershed. Journal of Water and Land Development. No. 36 p. 129–141. DOI: 10.2478/jwld-2018-0013.

Abstract

This study describes a statistical approach of watercourses hydrological regimes in flood, taking into account the latter duration and return period. The choice of Middle Cheliff watershed as study area is linked to disasters strong return period in the western region of Algeria. The Middle Cheliff catchment basin, located in northwest Algeria, has particularly experienced severe floods over the last years. In view of the recurrence of these unusual events, the estimation and the predetermination of floods extreme quantiles are a strategic axis for prevention against floods in this region. The curves are first of all locally determined, directly from a statistical analysis of flow continuously exceeded during a duration on different durations from available data of the study region. Then, these curves are compared to those obtained by application of different regional models VFS (Vandenesse, Florac and Soyans) in which two indices of the watershed characteristic flood are taken into account, a descriptive duration of the flood dynamics and the instantaneous maximal annual flow of 10 year return period. The final choice of the model is based on verification of certain criteria, such as: Nash and the root mean squared error. The closest regional models to the local ones are Florac’s for low duration and return periods, and Vandennes’ for large return periods, for different durations. These results could be used to build regional Q-d-F curves on ungauged or partially gauged Algerian basins.

Key words: Algeria, characteristic duration, flood, flood-duration-frequency, Middle Cheliff, watershed

INTRODUCTION

Algeria is among the Mediterranean countries the most vulnerable to floods caused by overflowing streams crossing towns and suburbs. These unexpected floods; are often difficult to predict, rapid rise time and relatively important specific flow, these floods are generally linked to intense rainy episodes and appear on medium size basins. Several catastrophes caused by those floods have been listed in Algeria (Algiers in November 2001, Sidi Bel Abbès in April 2007, Ghardaia and Bechar in October 2008, etc.).

Floods are often described by three main characteristics: the peak, the volume and the duration. In several works, this fact is linked to climate change [BOUCHEHED et al. 2017; GĄDEK et al. 2016; KRIŠČIUKAITIENĖ et al. 2015; LJUBENKOV 2015; NOOR et al. 2014; WAŁĘGA 2016; WOJAS, TYSZEWSKI 2013].
Although some studies had to be dedicated to Q-d-F models; an approach that is still not much used. The Q-d-F models have first been developed in 1990 in France GALÉA and PRUDHOMME [1994; 1997] The floods modelling by Q-d-F models among other has been applied to flood regionalisation of France watershed. Furthermore, a converging and continuous Q-d-F model has been proposed by JAVELLE et al. [1999]. It is based on properties of scale invariance of flood distribution applied by MEUNIER [2001] in Martinique, this model has also been combined to flood indices method [DALRYMPLE 1960] by JAVELLE et al. [2002; 2003] which brings some improvements to the estimation procedure and apply this corrected version of the model for spring floods to Quebec provinces [GALÉA and PRUDHOMME [1994; 1997]. Moreover, the Q-d-F modelling allowed studying 1.200 ungauged sites in Himalaya [SINGH et al. 2001] and so on regions of Burkina Faso [MAR et al. 2002], of Romania [Mic et al. 2002]. In Algeria this method was successfilly applied on some basins [BESSENSESE et al. 2003; 2004; 2006; 2014; KETROUCI et al. 2012; RENIMA et al. 2013; 2014; SADEUK BEN ABBES, MEDDI 2016; SAUQUET et al. 2004]. Application of Q-d-F modelling on three watersheds: VFS (Vandenesse, Soyans and Florac) by OBERLIN et al. [1989] allowed to define a regional typology of flow regimes which is wide spatial representation [GALÉA, PRUDHOMME 1997]. So, it has been shown that flood regimes could be adequately described with help of three regional models VFS, representing the names of representative basins (in France) retained for each of the concerned regions. The goal of this article is to study the Q-d-F modelling application conditions and consequently, the determination of the corresponding curves on the Cheliff mean watershed in northwest Algeria. The Q-d-F curves are first determined locally, directly from a statistical analysis of the continuously exceeded during a duration d (Q_{CXd}) over different durations, based on the data available at the studied stations. These curves are then compared with those obtained by applying different regional models VFS, in which two of the catchment characteristic flood indices are taken into account, a descriptive duration of flood dynamics (D) and the instantaneous maximal annual flow of 10 year return period (Q_{IX10}).

MATERIAL AND METHODS

STUDY AREA

The Cheliff basin is 44,630 km2 in area, it is located between geographic coordinates 34° and 36°30' of latitude North, 0° and 3°30' of longitude East and takes the shape of an axe-blade North-South. Middle Cheliff watershed is located in North-West of the national territory. It is characterized by a Mediterranean arid to semi-arid climate with Sahara hot influences in the South and cool in both northern and eastern part of it. Rainfalls are very regular in time and space; we distinguish two extreme zones, the first one is rainy with annual average of 658 mm at the rain-control station 011806 (Elanab, Dahra) and 524 mm at the rain station 011605 (Theniet El Had, Ouarsenis), and another zone (the plain included in-between) less rainy with annual average, 355 mm at rain control station 012219 (Chlef National Agency of Hydraulic Resources – Fr. Agence Nationale des Ressources Hydrauliques – ANRH).

DATA

They are chronicles of river station flows, the flows’ variables are at variable time step. These stations are located in Cheliff watershed code 01 recorded by ANRH (Tab. 1, Fig. 1).

Fig. 1. Location of the study area; source: own elaboration
SAMPLING METHODS

There are two commonly used methods [SAUQUET, RIBATET 2004].

1. Selecting the annual maximum is the simplest. It consists of selecting only one maximum over a hydrological year or a season-at-risk [ASSANI 1997]. The main disadvantage is that the formed sample may contain non-significant events (e.g. no major events are recorded in a dry year) and lack of important ones happening during the same year.

2. Sampling by value greater than a threshold (sup-threshold). Consists in retaining the maximum value of a set of independent events having exceeded a given threshold [LANG et al. 1997]. It offers greater flexibility and robustness, since it allows a greater number of selected events to be gathered, if the threshold is high enough, only the major events will be retained. BEZAK et al. [2014] in Serbia, FISHER and SCHUMANN [2014] in Germany and LANG [1999] in France showed this method is considered to be more reliable than the annual maxima method.

ESTIMATION OF Q_{IXA10} AND DETERMINATION OF THE CHARACTERISTIC DURATION D

The concept of modelling in flood-duration-frequency has been established on an objective basis [GALÈA, PRUDHOMME 1993; 1997] and its extension towards ungauged watershed, supplies a theoretical frequency description of multi-duration of flood quantiles. It is essentially focused on hydrological variables representing basin flood regime, extracted from annual flows chronicle $Q(t)$. In addition to hydrological variables, two indices of watershed flood regime are essential to be determined, which are the maximum instantaneous flow of 10 year return period Q_{IXA10} and flood characteristic duration of watershed D.

We retain as definition of the flood characteristic duration D, duration during which half of the peak flow Q_s is continuously exceeded. For each observed and recorded flood, studied at the level of each sub-watershed, its characteristic duration D and its peak flow Q_s have been determined. In a plan (Q_s, ds) of the used flood periods in the Bir Ouled Tahar, refers the parameter D to the time when the mean peakflow is exceeded, when it shows the characteristic duration of Bir Ouled Tahar is 3 hours as it is shown in Figure 2 by using the same method the characteristic duration for Tikazel, Laraba Ouled Fares and Sidi Akkacha are 3, 4 and 6 hours, respectively.

THE Q-d-F CONVERGING MODEL

The Q-d-F converging model is born from a property observed on a large number of treated hydrological chronicles: Adjustments $Q_d(T)$ are the series of sup-threshold flows values, over a given duration d that can be derived from an instantaneous streamflow time series $Q(t)$ likely to meet in the same point towards the weakest return periods.

$$V_d(T) = aq_d\ln(T) + x_{0,d}$$ (1)

Where: aq_d = flows Gradex or even scale parameter of adjustment law; $x_{0,d}$ = position parameter of adjustment law or: simultaneously on the whole durations by adjustment of a mathematical function $V_d(d, T)$ and/or $Q_d(d, T)$ on samples, V_d and Q_d knowing that: V_d is the average volume on a continuous duration d, maximal during flood episode, Q_d represents the threshold flow, continually exceeded on the duration d during the flood episode (Fig. 3).

The first manner to reach $V_d(d, T)$ and/or $Q_d(d, T)$ consists therefore in using mathematical expressions of a dimensionless bookshelf model named “Reference Model”. It comes to choose the best model among the three VFS available according to meteorological criteria and to distort formulations with help of two characteristics: one in flow and another in duration, all of them obtained from study zone’s interest-site. The second possibility is to apply the “converg-
Vsimultaneously obtain a consolidated distribution approaches may be considered to evaluate Δ and to
time of the peak flows
because all durations participate in parameters estimation of theoretical laws of probability of relative quantiles of different durations [SAUQUET et al. 2004]. The converging $Q-d-F$
model allows synthesizing in unique analytical formulation, quantiles of flood relating to different durations, independently of retained-probabilities laws.

$$V(d, T) = \frac{V(0, T)}{1 + d/\Delta}$$ \hspace{1cm} (2)

Where: $V(0, T) =$ theoretical distribution of peak flows (QIX) consolidated by modelling: $\Delta =$ parameter to be set, homogeneous to a time and linked to flood dynamics.

One speaks of consolidated adjustment $V(0, T)$ because all durations participate in parameters estimation of the theoretical distribution. Distributions of duration d (2) are deducted from modelled distribution of the peak flows $V(0, T)$ knowing Δ. Several approaches may be considered to evaluate Δ and to simultaneously obtain a consolidated distribution $V(0, T)$ [JAVELLE et al. 2003; KOUTSOYIANNIS et al. 1998; MEUNIER 2001]. The preferred procedure introduces a Δ setting process by using successive iterations on the principle of the least squares. It presents an advantage of a simple and economical application in hypothesis.

From expression (2), and taking account of the following property:

$$V(d, T) = \frac{1}{d} \int_{0}^{d} Q(t, T) dt$$ \hspace{1cm} (3)

We deduc an expression of quantiles estimations of threshold flows $Q(d, T)$:

$$Q(d, T) = \frac{V(d, T)}{(1 + d/\Delta)^2}$$ \hspace{1cm} (4)

In case of adjustment $V(d, T)$ for exponential law, it comes:

$$V(d, T) = \frac{x_0 + a_0 \ln(T)}{(1 + d/\Delta)^2}$$ \hspace{1cm} (5)

and

$$Q(d, T) = \frac{x_0 + a_0 \ln(T)}{(1 + d/\Delta)^2}$$ \hspace{1cm} (6)

Where parameters a_0, x_0 and Δ are to be determined.

MODEL TYPE OF “REFERENCE BASIN”

With help of $Q-d-F$ model, supposed to represent the considered-watershed floods regime. The choice of this model among three other referenced in France is based on local rainfall and of instantaneous maximal annual flow of 10 year return period $QIX10$ [GALÉA, PRUDHOMME 1997].

A $Q-d-F$ model type of reference basin allows translating under an operational synthetic shape, the watershed large spatio-temporal variability of flows $QCXd$, observed or not [GALÉA, PRUDHOMME 1994]. The formal representation of $Q-d-F$ models in QCX is: for $0.5 \leq T(\text{yr}) \leq 20$: generalization of an exponential law with two parameters adapted to extreme values, according to d/D (continuous duration/characteristic duration) and $QIX10$:

$$\frac{Q_{CXd}}{Q_{IX10}} = A_{q} \left(\frac{q}{q_{0}} \right) T + B_{q} \left(\frac{q}{q_{0}} \right)$$ \hspace{1cm} (7)

For $20 < T(\text{yr}) \leq 1,000$: generalization of extrapolation shape of esthetic Gradex by Gradex of maximal rains [MICHEL 1982] according to d/D and $QIX10$:

$$\frac{Q_{CXd}}{Q_{IX10}} = \frac{Q_{CXd}}{Q_{IX10}} + \frac{A_{q} \left(\frac{q_{0}}{q} \right)}{Q_{IX10}}$$ \hspace{1cm} (8)

With Q_{CXd} is the quantiles of maximum flow, for a duration d and of return period T, Q_{CXd}, decennial quantile of volume flow is obtained from Equation 3. A_{q}, B and A_{p} are respectively: Gradex of the flows (is the Gradex of the maximum discharges provided by the convergent model for the duration d), position parameter of exponential law and rains Gradex; they are explained according to d/D by Equation (9, 10 and 11):

$$A_{q} \left(\frac{q}{q_{0}} \right) = \frac{1}{x_{1} \frac{q}{q_{0}} + x_{2}} + x_{3}$$ \hspace{1cm} (9)

$$B_{q} \left(\frac{q}{q_{0}} \right) = \frac{1}{x_{4} \frac{q}{q_{0}} + x_{5}} + x_{6}$$ \hspace{1cm} (10)

$$A_{p} \left(\frac{q}{q_{0}} \right) = \frac{1}{x_{7} \frac{q}{q_{0}} + x_{8}} + x_{9}$$ \hspace{1cm} (11)

To determine x_{1}, x_{2}, ..., x_{9}, three watersheds have been chosen including long series of quality data at variable time step and representing recognized regimes. These basins allow approaching a typology of flood regime:
– station of Dragne at Vandennes, region of Bourgogne (Vandennes),
– station of Roubion at Soyans, region of Rhône-Alpes (Soyans),
– station of Mimente at Florac, region of Languedoc-Roussillon (Florac).

These stations have been chosen by the Cemagref [GILARD 1998] for reliability and quality of their provided data, and due to hydro-meteorological context to which they belong. The Vandennes model is represented by a station widely set under oceanic influence. The Soyans model based on a station located not far away from the Rhone valley and it takes into account more continental influences. As for Florac model, it is based on a station placed under Mediterranean influence. According to availability of rainfall data at level of the three watersheds VFS, parameters \(x_1, x_2, x_3, \ldots, x_7 \) have been defined for each \(Q-d-F \) model in \(QCX \) (Tab. 2).

The Vandennes model characterizes a sustained flood hydrologic regime on observable frequencies. The exceptional events are not very different from the rare events. The Soyans model defines a fast-flow regime, but with storage restoration during floods. The floods are flash, not voluminous, but are part of the hydrologic regime on observable frequencies. According to availability of rainfall data at level of the three watersheds VFS, parameters \(x_1, x_2, x_3, x_4, x_5, x_6, x_7 \) have been defined for each \(Q-d-F \) model in \(QCX \) (Tab. 2).

VALIDATION CRITERION

The evaluation criterion of Nash [NASH, SUTCLIFFE 1970]; the Nash’s criterion can vary of \(\infty \) to 1; optimal value is 1 (perfect setting); an upper value to 0.7 is usually considered as satisfactory; this criterion is expressed by equation:

\[
Nash(T) = 1 - \frac{\sum_{d=D+1}^{SD} \left(QCXdT - QCXdt_{\text{model}} \right)^2}{\sum_{d=D+1}^{SD} \left(QCXdT - QCXdt \right)^2} \quad (12)
\]

Where:

\[
QCX_{\text{moy}} = \sum_{d=D+1}^{SD} \frac{QCXdT}{1 + SD - D/2} \quad (13)
\]

– the criterion of average root-mean squared error (RMSE), translates the average error between flows estimated or modelled, and flows calculated by one of the \(Q-d-F \) models (VFS), it is expressed by Equation (14):

\[
RMSE(T) = \left(\frac{1}{d_2 - d_1 + 1} \sum_{i=d_1}^{d_2} \left(QCXdT - QCXdt_{\text{model}} \right)^2 \right)^{1/2} \quad (14)
\]

RESULTS AND DISCUSSION

LOCAL DISTRIBUTIONS AND FLOOD QUANTILES

Figure 3 shows \(Q-d-F \) modelling obtained for floods of low or large return period, as well as samples observed or estimated by sampling of events above the threshold.

We recorded two or three exceptional events in peak of theoretical return period close to the centennial for all the studied stations and which flow on the large durations are rather scarce, or even very rare for one of them. As for time step, the relative extrapolation verifies the rare experimental quantiles estimated from sup-threshold samples adjustment by exponential law (Fig. 4). The calculations results are flows and flood hydrographs values. Each sampling duration has respective results: the average annual flow, maximum flows, threshold, adjustment parameters (scale parameter and position) and so number of flood corresponding events, at last, estimated theoretical quantiles. In effect, all values and flows diagrams are set in function of sampling duration or of the return period.

The sup-threshold events are well adjusted with the \(QdF \) curves for the Zeddine basins (Fig. 4a), Ouahrame (Fig. 4b) and Allala (Fig. 4d) except for the Tikezal basin events (Fig. 4c), the duration \(Q \) 1.5 hours to 15 hours (T).

CONVERGING DISTRIBUTIONS AND FLOOD QUANTILES

Six durations are considered, giving six series of threshold flows \(Qd \) with \(d \) included between 1.5 and 15 hours for Rouina basin, between 2 and 20 hours for Ouahrame basin, between 1.5 and 15 hours for Tikazal basin and between 3 and 30 hours for Allala basin. The converging model \(Qd(T) \) is applied to series with sup-threshold values of flows \(Qd \) (Fig. 5). Chronicle examination of raw data of Rouina shows that water flows on durations less than 24 hours are substantially equivalent to peaks values. This is translated into distributions of quantiles \(Q(1.5 \text{ hours}, T) \) and \(Q(15 \text{ hours}, T) \) relatively close (Fig. 5a). However, adjustments obtained for basin of Ouahrame and
Fig. 4. Application of local model to threshold flows $Q_d(T)$ of stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha; $d = \text{continuous duration}$; source: own study

Fig. 5. Application of converging model to threshold flows $Q_d(T)$ of stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha; $d = \text{continuous duration}$; source: own study
Tikazel for a range of lower durations less than 24 hours are very distinct and reveal a rapid collapse of water flows with duration (Fig. 5b, c). The quantile \(Q(1.5 \text{ hours}, T) \) is the double of \(Q(24 \text{ hours}, T) \) for this station. Parameter \(\Delta \) gives shape of hyperboles defining quantiles \(Q(d, T) \) for \(T \) fixed. If \(\Delta \) is weak, hyperboles are much curved. Reversely, if \(\Delta \) is strong, hyperboles are much flattened. Whereas is schematized by (Fig. 5), the shape of hyperboles is linked to those of the floods observed.

In effect, the whole studied flood is rapid, more is the difference between peak flows and average maximum flows on a duration \(d \) (for instance over one day, on figure 5d) is large. This difference between peaks flows and middle flows is translated for \(Q(d-F) \) curves (in function of \(T \), for \(d \) fixed) by more or less strong \(Q(d-F) \) highly-arched curves (Fig. 5b, c). Reversely, if it is characterized by slow floods, its \(Q(d-F) \) curves are more flattened (Fig. 5a). Parameter \(\Delta \) is used to describe shape of hyperboles (Fig. 5), its value informs us thus, on the dynamics of studied floods. \(\Delta \), which has a time dimension, may therefore be considered as a characteristic duration of the studied basin’s flood. On the other hand, duration \(\Delta \) may also be translated by the following way. Distribution of threshold flows relative to this duration is at half-distance between instantaneous flows distribution \(Q(0, T) \) and the right being ordinate of convergence point. This relation is checked whatever be \(T \) due to convergence property of distributions. Duration \(\Delta \) obtained for the four studied sub-basins, with rapid dynamics, is lower at 12 hours (Tab. 3). It is then necessary to calibrate the convergent model into a regional one according to the 3 basins of references (VFS).

Table 3. Estimation of characteristic duration of flood and \(QIXA10 \)

Station code	\(D \) (hour)	\(QIXA10 \) (m\(^3\) s\(^{-1}\))	\(\Delta \) (hour)	\(Q_{max} \) (m\(^3\) s\(^{-1}\))
011905	3	108	10.08	164
012004	3	33	6	40
012201	4	76	12	79
020207	6	220	12	214

Source: own study.

CHOICE OF REGIONAL MODEL “REFERENCE BASIN” TYPE

Results of the three regional models (Fig. 6, 7, 8) show that Florac’s model is better adjusted to quantiles compared to that of Soyns and Vandenesse, quantiles obtained by Florac model are closest to those locally estimated by adjustment of exponential law, then sup-threshold events follow regional curves of Florac model for all return periods and for majority of considered durations. So, adjustments carried out present a hyperbolic shape and all converging towards low durations (Fig. 4, 5). By contrast, curves of Soyns and Vandenesse’s models (Fig. 7, 8) are very flattened; experimental quantiles do not follow regional curves excepted for return periods upper to 10 years for majority of the stations. The regional \(Q-d-F \) models VFS represent correct distributions of flows characteristics, whatever variables and used procedures are.

Also, results of criteria (Nash and RMSE) Figures 9 and 10, and Table 4 show that the best values for the whole of the studied stations are obtained by \(Q-d-F \) Florac model and notably for observable frequencies field \((0.5 \leq T(\text{yr}) \leq 50) \) while beyond frequencies \((T(\text{yr}) > 50 \text{ years}) \), Vandennesse and Florac \(Q-d-F \) models present similar values with light difference. Similar studies showed robustness of Florac model in Mediterranean contexts characterized by intense rainfall in Alcaucin du Vinuela basin (South Spain), \(Q-d-F \) of Vandennesse in basin of Tevere in Ponte Nuovo (Italia), and in France by GALEA and PREDHOMME [1994], in Algeria, works conducted on Tafna basin show that Florac \(Q-d-F \) model is the most adapted for pre-determination of floods from watersheds of Wad Isser. This result is similar to that one found by YAHAOUI et al. [2011] during study of Mekerra flood regime, being a watershed neighbouring that of wadi Isser [KETROUCI 2014]. These results reinforce performance of the regional model of “Reference Basin” type in pre-determination of extreme flood flows.

Besides of these criteria, there is also the hydroclimatologic context where we found Middle Cheliff Watershed where region is influenced by local Mediterranean climate, and according to NOUACEUR et al. [2013], the response of pluviometry at The North Atlantic Oscillation (NAO) shows that period of strong drought corresponds to positive indices NAO of strong intensity, which witnesses a reinforcement of anticyclone in the Azores and widening a depression in Iceland. In these conditions, depressions track moves towards Northern latitudes which favours implementation of dry and soft weather around the Mediterranean basin, notably in Maghreb.

Furthermore, several studies showed that variations of pluviometry regime in Mediterranean basin are linked to the general atmospheric circulation such as the North Atlantic Oscillation (NOA) [BRANDIMARTE et al. 2011] El Nino South Oscillation (ENSO) [MEDDIT et al. 2010].

In Algeria, a study conducted by MEDDI et al. [2010] shows that temporal variability of annual rainfall in West of Algeria is influenced by ENSO. TAIBI et al. [2015] have also found a significant relation between monthly rains of Algeria North-West including the Chelif and indice MO. Which bring us to say, that the \(Q-d-F \) model is the most adapted for pre-determination of floods of Algerian ungauged or partly gauged basins.
Fig. 6. The regional model of Florac for stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha;
\[d = \text{continuous duration}; \text{source: own study} \]

Fig. 7. The regional model of Soyans for stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha;
\[d = \text{continuous duration}; \text{source: own study} \]
Fig. 8. The regional model of Vandenesse for stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha; $d =$ continuous duration; source: own study

Fig. 9. Coefficient of Nash between local model and Q-d-F reference model for stations: a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha; $d =$ continuous duration, $F =$ Florac watershed model, $S =$ Soyans watershed model, $V =$ Vandenesse watershed model; source: own study
Fig. 10. Criterion of root mean squared error (RMSE) between local model and Q-d-F reference model for stations:
a) Bir Ouled Tahar, b) Larabaa Ouled Fares, c) Tikazel, d) Sidi Akkacha; F, S, V as in Fig. 9; source: own study

Table 4. Coefficient of Nash and criterion of RMSE (root-mean squared error) between local model and Q-d-F reference model VFS (Vandenesse, Florac and Soyans watersheds) for all stations

T, year	Nash F	RMSE F	Nash S	RMSE S	Nash V	RMSE V
1	0.94	7.94	-0.22	35.18	-2.69	61.16
2	0.96	9.37	0.51	34.29	-0.24	54.60
3	0.98	11.27	0.79	33.11	0.59	45.91
4	0.98	12.70	0.87	32.22	0.80	39.34
5	0.98	14.14	0.91	31.33	0.90	32.77
10	0.93	30.15	0.82	49.75	0.90	36.31
20	0.84	51.39	0.70	71.06	0.91	38.61
30	0.59	92.93	0.40	112.70	0.91	44.99
50	0.59	92.93	0.40	112.70	0.91	44.99
100	0.59	92.93	0.40	112.70	0.91	44.99
1	0.69	4.72	-1.39	13.05	-5.24	21.08
2	0.97	2.80	0.53	10.40	-0.22	16.69
3	1.00	0.25	0.92	6.90	0.79	10.90
4	1.00	1.67	0.98	4.25	0.95	6.51
5	0.99	3.60	1.00	1.59	1.00	2.13
10	1.00	1.45	0.98	5.83	1.00	1.81
20	1.00	0.45	0.95	10.71	1.00	0.87
30	0.97	4.17	0.84	21.06	1.00	0.41
50	1.00	1.76	0.70	15.72	-0.29	32.54
100	0.89	6.77	0.96	9.18	0.76	22.37
1	0.96	13.39	1.00	0.54	0.98	8.93
2	0.95	18.40	1.00	5.99	1.00	1.24
3	0.95	23.41	1.00	12.52	0.99	11.41
4	0.97	19.47	1.00	4.20	0.99	12.65
5	0.98	16.20	1.00	5.32	0.98	15.33
100	1.00	9.37	0.97	26.05	0.99	17.26
Modelling of flood regime has been established according to quantities of threshold flows coming from a statistic adjustment which are compared, taking into account characteristics of watershed flood regime \((Q\text{-}d\text{-}F)\), to different counterparts quantities from Flow-Duration-Frequency \((Q\text{-}d\text{-}F)\) models of reference basin type of VFS.

The relative quantities to low flows are better reconstituted than equivalent or superior quantities to \(Q\text{IXA}10\) and \(D\). The converging model applied to tested basins, constitutes equivalent values to those which could be obtained by adjustment on each duration taken separately. In general terms, using approach of \(Q\text{-}d\text{-}F\), seems to be well adapted, it is able to take into account duration, which is the essential notion when we are speaking about flood; it therefore considers “Variable time step”. So the description in \(Q\text{-}d\text{-}F\), whatever be the formulation, has several uses: estimation of floods quantities in middle flows or threshold flows for estimate of hydraulic works, insertion in a typology of flood regime, definition of hydrologic scenarios of reference for flood risk estimation, validation of outputs of hydrologic models, characterization of regime evolution of high water level.

According to criteria of Nash and of RMSE, on the first hand, and the hydro-climatologic context of watershed, on the other hand, the Florac model is more adapted, which allows to have a general overview and deepen the obtained knowledge as well as hydrometric observations and simulations by conceptual models. We could use these results to determine flood regime on the middle Cheliff watershed and neighbouring sub-basins in the case where there is an inadequacy action or rating curves. However, it is necessary to spread this study to basins for which we dispose chronic flows of over 40 years, in order to build a regional model more forthright and adapted to Algerian context.

CONCLUSIONS

Regional modelling with flood-duration-frequency approach in the middle Cheliff watershed

1	2	3	4	5	6	7
1	0.49	37.02	-1.39	79.93	-4.55	121.75
2	0.67	47.65	-0.07	86.51	-1.04	119.30
5	0.76	61.73	0.42	95.24	0.14	116.08
10	0.79	72.31	0.58	101.77	0.48	113.58
20	0.81	83.10	0.67	108.51	0.65	111.28
30	0.74	106.24	0.53	142.82	0.66	121.66
50	0.67	131.79	0.37	183.99	0.67	132.33
100	0.57	172.19	0.03	259.16	0.67	150.87

Source: own study.

Assani A.A. 1997. Recherche d’impacts d’une retenue sur le comportement d’une rivière ardenaise: hydrologie, sédimentologie, morphologie et végétation. Cas du barrage de Bütgenbach sur la Warche (Belgique) [Search for impacts of a reservoir on the behavior of an Ardenne river: hydrology, sedimentology, morphology and vegetation. Case of the Bütgenbach dam on the Warche (Belgium)]. PhD Thesis. Sciences Géographie, Université de Liège pp. 482.

Bessenasse M., Galea G., Paquier A. 2004. Modélisation bidimensionnelle du dépôt de sédiments dans un barrage en Algéria [Two-dimensional modeling of sediment deposition in a dam in Algeria]. La Houille Blanche. Vol. 1. p. 31–36.

Bessenasse M., Kettab A., Paquier A. 2004. Modélisation bidimensionnelle du dépôt de sédiments dans un barrage en Algéria [Two-dimensional modeling of sediment deposition in a dam in Algeria]. Revue des sciences de l'eau. Vol. 16. No. 1 p. 103–122.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Brandimarte L., Di Baldassarre G., Bruni G., D’Odo- rico P., Montanari A. 2011. Relation between the north-atlantic oscillation and hydroclimatic conditions in mediterranean areas. Water Resources Management. Vol. 25. Iss. 5 p. 1269–1279.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.

Bouche Hed H., Mihoubi M.K., Derdous O., Diemili L. 2017. Evaluation of potential dam break flood risks of the cascade dams Mexa and Bougous (El Taref, Algeria). Journal of Water and Land Development. No 05 p. 133–137.
CUNDERLIK J.M., BURN D.H. 2003. Non-stationary pooled flood frequency analysis. Journal of Hydrology. Vol. 276. Iss. 1–4 p. 210–223.

CUNDERLIK J.M., JOURDAIN V., OUARDA T.B.M.J., BOBEE B. 2007. Local non-stationary flood-duration-frequency modelling. Canadian Water Resources Journal. Vol. 32. No. 1 p. 43–58. DOI 10.4296/cwrj3201043.

DALRYYL T. 1960. Flood frequency analysis. Manual of hydrology. Part 3. Flood-flow techniques. Geological Survey-Water-Supply Paper 1543-A. Washington. United States Government Printing Office pp. 80.

FISCHER S., SCHUMANN A. 2014. Comparison between classical annual maxima and peak over threshold approach concerning robustness. Discussion paper. Nr. 26 pp. 20.

GALEA G., PRUDHOMME C. 1993. Characterization of large scale variations in river flow behaviour with reference to hydrological macro-regionalization. Proc. 2nd FRIEND Conference. Braunschweig, October 1993. Technische Universität Braunschweig p. 11–15.

GALEA G., PRUDHOMME C. 1994. Modèles débit-fréquence et conceptualization of a synthetic flood hydrograph: validation on BVRE de Draix [Flow-duration-frequency models and conceptualization of a synthetic flood hydrograph: validation on BVRE de Draix]. Hydrologie. Continentale. Vol. 9. No. 2 p. 139–151.

GALEA G., PRUDHOMME C. 1997. Notions de base et concepts utiles pour la compréhension de la modélisation synthétique des régimes de crue des bassins versants au sens des modèles Qdf [Basics and concepts useful for understanding the synthetic modelling of watershed flood regimes in the sense of Qdf models]. Revue Science de l’Eau. Vol. 10. No. 1 p. 83–101.

GADEK W., TORKZYCZ T., SANDIELA A. 2016. Estimation of parametric flood hydrograph determined by means of Strupczewski method in the Vistula and Odra catchments. Journal of Water and Land Development. No. 31 p. 43–51. DOI 10.1515/jwld-2016-0035.

GILARD O. 1998. Les bases techniques de la méthode Inondabilité [The technical basis of the method Inondabilité]. Ed. Cemagref. ISBN 2853624978 pp. 207.

JAVELLE P. 2001. Caractérisation du régime des crues: le modèle débit-durée-fréquence convergent. Approche locale et régionale [Characterization of the flood regime: the flow-duration-frequency model converge. Local and regional approach]. Phd Thesis. Grenoble. Institut National Polytechnique de Grenoble pp. 267.

JAVELLE P., GRESILLON J.M., GALEA G. 1999. Discharge-duration-frequency curves modeling for floods and scale invariance. Comptes Rendus de l’Académie des Sciences. Sciences de la terre et des planètes. Vol. 329. No. 1 p. 39–44.

JAVELLE P., LE CLERC S., SAQUET E. 2003. Description des régimes hydrologiques des hautes eaux: nouvelle formulation pour l’analyse en débit-durée-fréquence et applications en ingénierie [Description of hydrological regimes of high water: new formulation for analysis by flow-duration-frequency and engineering applications]. Ingénierie. No 34 p. 3–15.

JAVELLE P., OUARDA T.B.M.J., BOBEE B. 2003. Flood regime definition using the flood-duration-frequency approach: Application to the provinces of Quebec and Ontario, Canada. Hydrological Processes. Vol. 17. No. 18 p. 3717–3736.

JAVELLE P., OUARDA T.B.M., LANG M., BOBEE B., GALEA G., GRESILLON J.M. 2002. Development of regional flood-duration-frequency curves based on the index-flood method. Journal of Hydrology. Vol. 258. Iss. 1–4 p. 249–259.

KETROUCI K. 2014. Application de modèles hydrologiques dans l’estimation des crues extrêmes en Algérie [Application of hydrological models in the estimation of extreme floods in Algeria]. PhD Thesis. Oran. Université de sciences et de la technologie Mohamed Boudiaf d’Oran pp. 224.

KETROUCI K., MEDDI M., ABDESSALAM B. 2012. Etude des crues extrêmes en Algérie: cas du bassin-versant de la Tafna [Study of extreme floods in Algeria: case of the Tafna watershed]. Sécheresse. Vol. 23. No. 4 p. 297–305.

KOUTSOYANNIS D., KOZONIS D., MANETAS A. 1998. A mathematical framework for studying rainfall intensity-duration-frequency relationships. Journal of Hydrology. Vol. 206. Iss. 1–2 p. 118–135.

KRŚCIUKAITIENĖ I., BALEZENTIS T., GALNAITYTĖ A., NAMJOTKIS V. 2015. A methodology for flood risk appraisal in Lithuania. Journal of Water and Land Development. No. 25 p. 13–22.

LANG M., OUARDA T.B.M.J., BOBEE B. 1999. Towards operational guidelines for over-threshold modeling. Journal of Hydrology. Vol. 225. Iss. 3–4 p. 103–117.

LANG M., RASMUSSEN P., OBERLIN G., BOBEE B. 1997. Echantillonnage par valeurs supérieures à un seuil: modélisation des occurrences par la méthode du renouvellement [Sampling by values above a threshold: modeling of occurrences by the renewal method]. Revue des Sciences de l’Eau. Vol. 10. No. 3 p. 279–320.

LJUBENKOV I. 2015. Multicriteria flood mitigation in the Imotsko-Bekijsko Polje (Croatia, Bosnia and Herzegovina). Journal of Water and Land Development. No. 26 p. 73–81. DOI 10.1515/jwld-2015-0018.

MAR L., GINESTE P., HAMATTAN M., TOUNKARA A., TAPTORA L., JAVELLE P. 2002. la modélisation des débits-durée-fréquence appliquée aux grands bassin au Burkina Faso [Flood-duration-frequency modeling applied to big catchments in Burkina Faso]. [4th FRIEND International Conference]. [18–22.03.2002 Le Cap, Afrique du Sud].

MEDDI M., ASSANI A.A., MEDDI H. 2010. Temporal variability of annual rainfall in the Macta and Tafna catchments, Northwestern Algeria. Water Resources Management. Vol. 24. No. 14 p. 3817–3833.

MEUNIER M. 2001. Regional flow – duration – frequency model for the tropical island of Martinique. Journal of Hydrology. Vol. 247. Iss. 1–2 p. 31–53.

MIC R., GALEA G., JAVELLE P. 2002. Floods regionalization of the Cris catchments: application of the converging Qdf modeling concept to the Pearson III law. [Conference: 21th Conference of the Danube Countries]. [2–6.09.2002 Bucharest].

MICHEL C. 1982. Extrapolation par la méthode de GRADEX. Note interne n° KG 03.05.82, Cemagref-Antony. Division hydrologie pp. 3.

NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology. Vol. 10. Iss. 3 p. 282–290.

NERC 1975. Estimation of flood volumes over different durations. Flood Studies Report. Vol. 1. Chap. 5. National Environmental Research Council p. 243–264.

NOOR H., VAFAKHAI M., TAHERRIUN M., MOGHDASI M. 2014. Hydrology modelling in Taleghan mountainous watershed using SWAT. Journal of Water and Land Development. No. 20 p. 11–18. DOI 10.2478/jwld-2014-0003.

NOUACEUR Z., LAIGNEL B., TURKI I. 2013. Changements climatiques au Maghreb: vers des conditions plus humi-
Regional modelling with flood-duration-frequency approach in the middle Chelif watershed

Mohamed RENIMA, Mohamed REMAOUN, Abdelkader BOUCEFIANE, Abdelkader SADAFUK BEN ABBES

Modelowanie regionalne z wykorzystaniem metody powódź–czas trwania–częstotliwość w zlewni środkowej rzeki Chelif

STRESZCZENIE

W pracy opisano statystyczne podejście do reżimu hydrologicznego cieków w trakcie powodzi z uwzględnieniem czasu trwania d i okresu powtarzalności T. Wybór zlewni środkowej rzeki Chelif wiąże się z krótkim okresem powtarzalności katastrof w zachodnich regionach Algierii. Zlewnia środkowej rzeki Chelif usytuowana w północnozachodniej Algierii doświadcza w ciągu ostatnich lat silnych powodzi. Ze względu na powtarzalność tych ekstremalnych zjawisk ich ocena i przewidywanie mają znaczenie strategiczne dla zapobiegania powodziom w tym regionie. Krzywe a są najpierw oznaczone w skali lokalnej bezpośrednio w wyniku analizy statystycznej przepływu o czasie trwania d(QCxd) w warunkach różnego czasu trwania z wykorzystaniem dostępnych danych z regionu. Następnie krzywe te są porównywane z krzywymi uzyskanymi z zastosowania różnych modeli regionalnych VFS (Vandenesse, Florac i Soyans), w których bierz się pod uwagę dwa wskaźniki: opisywany przebieg dynamiki powodzi (D) i chwiliowy maksymalny roczny przepływ o okresie powtarzalności 10 lat (QIIX10). Ostateczny wybór modelu opiera się na weryfikacji pewnych kryteriów, takich jak Nash i pierwiastek ze średniego błędu kwadratowego (RMSE). Modele regionalne najbliższe lokalnym to Florac dla krótkiego czasu trwania i Vandenesse dla długich okresów powtarzalności w warunkach różnego czasu trwania. Wyniki badań mogą być zastosowane do zbudowania regionalnych krzywych Q-d-F dla algierskich zlewni bez lub z częściową sięcią punktów wodowodowych.

Słowa kluczowe: Algieria, charakterystyczne czas trwania, powódź, powódź–czas trwania–częstotliwość, zlewnia środkowa rzeki Chelif