BIG BANG NUCLEOSYNTHESIS CONSTRAINTS AND LIGHT ELEMENT ABUNDANCE ESTIMATES

Lawrence M. Krauss1 and Peter J. Kernan

Department of Physics
Case Western Reserve University
10900 Euclid Ave., Cleveland, OH 44106-7079

Abstract
To elucidate the significance of the effect of systematic uncertainties in light element abundance estimates on cosmological bounds derivable from Big Bang Nucleosynthesis (BBN) we present tables giving bounds on Ω_{baryon} and N_ν as one changes the limits on primordial ^4He and ^7Li. This allows us to derive new relations between these estimates and constraints on Ω_{baryon} and N_ν. For example, only if the helium mass fraction, $Y_p \geq .245$ does ^7Li (or D) presently play a role in placing an upper limit on the baryon density, and only if $Y_p \geq .250$ does ^4He cease to play a role in bounding η_{10}. All the elements combine together tend to give a stringent upper bound of 0.16 on Ω_{baryon}. We also find that Y_p must exceed .239 for consistency between theory and observation if D+$^3\text{He}/H$ is less than 10^{-4}. Updated nuclear reaction rates, an updated neutron half life, Monte Carlo techniques, and correlations between the predicted abundances are incorporated in our analysis. We also discuss the handling of systematic uncertainties in the context of statistical analyses of BBN predictions.

1Also Dept of Astronomy
The theoretical analysis of BBN predictions for light element abundances has improved greatly in recent years, allowing in principle the derivation of very stringent constraints on various cosmological and particle physics parameters. Unfortunately however, the key factor in limiting the efficacy of this procedure is the reliability of the inferred light element primordial abundance estimates. Like many quantities based on astronomical observations, these are subject to large systematic uncertainties, many of which are difficult to accurately estimate.

In a recent work (Kernan and Krauss 1994, hereafter KK) we underscored the importance of considering such systematic errors when deriving BBN constraints by demonstrating that a comprehensive analysis which used the most up to date reaction rate uncertainties, and also incorporated quantitatively for the first time correlations between elemental abundances yielded, when compared with previously quoted observational upper limits on \(^4\text{He} \), \(D +^3\text{He} \), and \(^7\text{Li} \), embarrassingly stringent limits on both the number of effective neutrino types and the present baryon density. Indeed, it was clear that standard BBN has a very limited range of consistency if systematic uncertainties in abundance estimates are not allowed for. While we argued that our results suggested the need for consideration of systematic uncertainties, this conclusion was not as widely quoted as were the limits we derived based on previous quoted abundance estimates which did not explicitly incorporate such uncertainties.

Subsequently, several groups have recently assessed more carefully the systematic uncertainties present particularly in the primordial \(^4\text{He} \) abundance estimates (Olive and Steigman 1994, Copi, Schramm and Turner 1994, Sas-
selov and Goldwirth 1994), and have quoted various new upper limits on
cosmological parameters based on their assessments. It is very clear, based
in part on the differing estimates, that it is quite difficult at the present time
to get an accurate handle on these uncertainties.

Because of this, and because we can utilize the full statistical machin-
ery we previously developed when comparing predictions to “observations”,
we felt it would be useful to prepare a comprehensive table of constraints
on N_ν and Ω_{Baryon} for a relatively complete range of different assumptions
about light element abundances. In the first place such a table does not
exist anywhere in the literature. Because of the interplay between various
different elemental abundance constraints in deriving cosmological bounds,
it is not possible to easily extrapolate previously existing limits, including
our own, as abundance estimates are varied. Different groups which advo-
cate different abundance limits can then only roughly translate these into
bounds on Ω_B and N_ν. We hoped that a relatively complete tabulation of
cosmological bounds as a function of abundance estimates would thus pro-
vide a useful reference for researchers. Next, the world average neutron half
life value has just been updated to be $\tau_N = 887 \pm 2\text{ sec}$ (Particle Data Group
1994), which results in a change in all BBN constraints. Our new tables thus
update our previous results, besides expanding upon them. In addition, the
present analysis allows us us to explore the role of different estimates in the
constraints, as well as the effect of correlations as the light element abun-
dance estimates vary. It also allows us to address several points which we
feel are important to consider when deriving cosmological constraints using
BBN predictions. Finally, this analysis leads to new simple relations between
the light element abundances and limits on cosmological parameters such as the number of neutrinos N_{ν}, and the baryon to photon ratio η_{10}, defined by $\Omega_B = .00366 h^{-2} (T/2.726)^3 \eta_{10}$, where the Hubble constant is defined as $100 h$ km/sec/Mpc.

BBN Predictions and Observations: Systematics, Correlations and Consistency

The chief developments of recent years which have affected the BBN predictions for light element abundances include: an updated BBN code, a more accurate measured neutron half life (Particle Data Group 1992,1994) and the determination of BBN uncertainties via Monte Carlo analysis; (Krauss and Romanelli 1990; Smith, Kawano and Malaney 1993). Most recently, we created (KK) an updated Monte Carlo code to account both for what was then the newest measured neutron half life, greater numerical accuracy (Kernan 1993) and also for new higher order effects in weak rates (Seckel 1993). The net effect of these changes is to both reduce the statistical error on the predicted value of Y_p, and also raise the predicted abundance by an η_{10}-independent factor of $+.0031$ compared to the value used in previous published analyses (Walker *et al* 1991; Krauss and Romanelli 1990). See KK for a more detailed description of our analysis.

We present here an updated figure for the predicted elemental abundances as a function of η_{10} (figure 1). However, as we stressed in KK, this standard figure should not be used alone to derive confidence limits on cosmological and particle physics parameters when comparing theoretical predictions and

We remind the reader that N_{ν} represents the effective number of relativistic degrees of freedom in the radiation gas during the BBN era, and is thus merely bounded below by the actual number of light neutrino species present in nature.
observations. Because the various elemental abundances are correlated deriving a limit using a single element throws out valuable information from other elements which, if incorporated, could lead to more stringent constraints. Stated another way, the predicted elemental abundances are generally not statistically independent. For example, there is a strong anti-correlation between Y_p and the remnant $D^{+3}He$ abundance (the normalized covariance ranges from -0.7 to -0.4 in the η_{10} range of interest). Thus, if one generates 1000 predictions using a Monte Carlo scheme, those where the predicted 4He is lower than the mean, which therefore may be allowed by some fixed observational upper bound Y_p, will also generally predict a larger than average remnant $D^{+3}He/H$ abundance, which in turn could exceed the observational upper bound on this combination. Ignoring this correlation will result in a bound which is at the very least not statistically consistent. As we showed in KK, including such correlations in our analysis had a significant effect on limits on the number of neutrinos, and a less dramatic, but still noticeable effect on limits on η_{10}.

Of course, if systematic uncertainties in the inferred primordial element abundances are dominant, one might wonder whether one need concern oneself with the proper handling of statistics in the predicted range. There is, after all, no well defined way to treat systematic uncertainties statistically. For example, should one treat a parameter range governed by systematic uncertainties as if it were gaussianly distributed, or uniformly distributed? The latter is no doubt a better approximation—i.e. a large deviation within some range may be as equally likely as a small deviation. But how should one handle the distribution for extreme values? Clearly it cannot remain
uniform forever.

Thankfully, there are two factors which make the comparison of predictions and observations less ambiguous in the case of BBN:

(1) Because the allowed range in the observationally inferred abundances is much larger than the uncertainty in the predicted abundances, any constraint one deduces by comparing the two depends merely on the upper or lower observational limit for each individual element, and not only both at the same time. Thus, one is not so much interested in the entire distribution of allowed abundances as one is in one extremum of this distribution.

(2) Systematic uncertainties dominate for the observations, while statistical uncertainties dominate for the predictions.

Both of these factors suggest that a conservative but still well defined approach involves setting *strict* upper limits on Y_p, $D+^3He$, and 7Li, and a lower limit on D, which incorporate the widest range of reasonably accepted systematic uncertainties. Determining what is reasonable in this sense is of course where most of the “art” lies. We will return to this issue shortly. Nevertheless, once such limits are set and treated as strict bounds, then one can compare correlated predictions with these limits in a well defined way. In this way one replaces the ambiguity of properly treating the distribution of observational estimates with what in the worst case may be a somewhat arbitrary determination of the extreme allowed observational values.

Clearly all the power, or lack thereof, in this procedure lies in the judicious choice of observational upper or lower limits. Because of our concern about the ability at present to prescribe such limits we present below results for a variety of them. Nevertheless, we do wish to stress that once one does choose
such a set, it is inconsistent not to use all of it throughout in deriving ones
constraints. If one uses one observational upper limit for Y_p, for example,
to derive constraints on the number of neutrinos, but does not use it when
deriving bounds on the baryon density, then probably one has not chosen
a sufficiently conservative bound on Y_p in the former analysis. It has been
argued that a weak, logarithmic, dependence of Y_p on η_{10} invalidates its use
in deriving bounds on the latter quantity. It is one of our more interesting
conclusions that not only can this argument be somewhat misrepresentative
for an interesting range of Y_p values, but that until Y_p exceeds statistically
derived upper limits by a large amount, it can continue to play a significant
role in bounding η_{10} from above. (Note that the lower bound on η_{10} is
presently governed by the observational upper limit on the D+3He. For a
discussion of this bound on η_{10} see KK and (Krauss and Kernan 1994).

Before proceeding to give our results, we briefly outline the rationale for
the range of limits on light element abundances we choose to explore here.

Abundance Estimate Uncertainties: The Range

It is beyond the scope of this work to examine in detail the observational
uncertainties associated with the determination of primordial light element
abundances. Our purpose instead is to exploit recent observational and theo-
retical estimates of these uncertainties in order to examine how BBN con-
straints will be affected by incorporating such uncertainties. Thus we merely
provide here a very brief review of the recent literature. The reader is referred
to the cited papers and references therein for further details.

(a) 4He: By correlating 4He abundances with metallicity for various heavy
elements including O,N and C, in low-metallicity HII regions one can attempt
to derive a "primordial" abundance defined as the intercept for zero metallicity. This can be determined by a best fit technique, assuming some linear or quadratic correlation between elemental abundances (i.e. see Peimbert, and Torres-Peimbert 1974; Pagel, Terlevich and Melnick 1986; Pagel, Simonson, Terlevich, and Kennicutt 1992; Walker et al 1991). The statistical errors associated with such fits are now small. Best fit values obtained typically range from .228-.232, with statistical "1σ" errors on the order of .003-.005. This argument yields the upper limit of .24 (Walker et al 1991) which has been oft quoted in the literature. Recently this number has begun to drift upwards slightly. New observations of HII regions in metal poor galaxies have tended to increase the statistically derived zero intercept value of Y_p by perhaps .005 (i.e. (Skillman et al 1993, Olive and Steigman 1994)). In addition, the recognition that systematic, and not statistical uncertainties may dominate any such fit has become more widespread recently. The key systematic uncertainty which interferes with this procedure is the uncertainty in the 4He abundance determined for each individual system, based on uncertainties in modelling HII regions, ionization, etc used to translate observed line strengths into mass fractions. Many observational factors come into play here (see (Skillman et al 1994) for a discussion of observational uncertainties), and people have argued that one should add an extra systematic uncertainty of anywhere from .005-.015 to the above estimate. Clearly thus, one should examine implications of 4He abundances in the range .24-.25. We shall show that for Y_p above .25; (a) 4He becomes unimportant for bounding η_{10}, and (b) the effect on bounds on N_ν can be obtained by straightforward extrapolation from the data obtained for the range .24-.25.
(b) 7Li: It is by now generally accepted that the primordial abundance of 7Li is closer to the Spite Pop II plateau than the Pop I plateau. Nevertheless, even if one attempts to fit the primordial abundance by fitting evolutionary models to the Pop II data points (Deliyannis et al. 1989), assuming no depletion, one still finds an 2σ upper limit as large as 2.3×10^{-10}. The role of rotationally induced depletion is still controversial. It is clear some such depletion is expected, and can be allowed for (Pinsonneault, Deliyannis and Demarque 1992), but observations of 6Li, which is more easily depleted, put limits on the amount of 7Li depletion which can be allowed. We will assume an extreme factor of 2 depletion as allowable, and thus we explore how cosmological bounds are affected by a 7Li upper limit as large as $\approx 5 \times 10^{-10}$.

(c) D and D+3He: We take the solar system D abundance of 2×10^{-5} as a safe firm lower bound on D, and the previously quoted upper limit of 10^{-4} as a firm upper limit on D+3He (Walker et al. 1991). The recent Songaila et al. (1994) result for D (see also (Carswell et al. 1994), which is larger than this upper limit, is in apparent conflict with another similar measurement, and with estimates of the pre-solar D+3He abundance, and there are preliminary reports of contradictory data taken along other lines of sight. In any case, the dramatic change in BBN limits should the former result be confirmed is discussed in great detail in (Krauss and Kernan 1994), so we do not discuss this possibility further here.

Results and Analysis

Tables 1-3 give our key results. The data were obtained using 1000 Monte Carlo BBN runs at each value of η_{10}, with nuclear reaction rate input parameters chosen as Gaussian random variables with appropriate widths (see
In each case the number of runs which resulted in abundances which satisfied the joint constraints obtained by using combinations of the upper limits on 4He, 7Li, and D+3He or the lower limit on D was determined. Limits on parameters were determined by varying these until less than 50 runs out of 1000 (up to \sqrt{N} statistical fluctuations) satisfied all of the constraints.

Table 1 displays the upper limit on N_ν for various values of Y_p. As is shown, this was governed by the combination of 4He and D+3He upper limits. Shown in the table are the number of acceptable runs out of 1000 when the two elemental bounds are considered separately and together, for an η_{10} range which was found to maximize the number of acceptable models. Throughout the Y_p^{max} region from .24 to .25, both the Y_p and D+3He limits play a roughly equal role in determining the maximum value of N_ν. We are able to find a remarkably good analytical fit for the maximum value of N_ν as a function of Y_p as follows:

$$N_\nu^{max} = 3.07 + 74.07(Y_p^{max} - .240)$$

The linearity of this relation is striking over the whole region from .24 to .25 in spite of the interplay between the two different limits in determining the constraint. Note also that this relation differs from that quoted in Walker et al (1991) between Y_p and N_ν in that the slope we find is about 13% less steep than that quoted there. The two formulae are not strictly equivalent in that the one presented in Walker et al (1991) presented the best fit value of Y_p determined in terms of N_ν, while the present formula gives a relation between the maximum allowed values of these parameters, based on limits on the combination Y_p and D+3He, and on the width of the
predicted distribution. In this sense, eq. (1) is the appropriate relation to utilize when relating bounds on \(Y_p \) to bounds on \(N_\nu \).

Tables 2 and 3, which display the upper bounds on \(\eta_{10} \), are perhaps even more enlightening. They demonstrate the sensitivity of the upper limit on \(\eta_{10} \) and hence \(\Omega_{\text{baryon}} \) to the various other elemental upper limits as \(Y_p \) is varied. Several features of the data are striking. First, note that \(^4\text{He}\) completely dominates in the determination of the upper limit on \(\eta_{10} \) until \(Y_p \approx .245 \), even for the most stringent chosen upper limit on \(^7\text{Li}\). If this limit on \(^7\text{Li}\) is relaxed, then \(^4\text{He}\) dominates as long as the upper limit on \(Y_p \leq .248 \). Also note that the “turn on” in significance of the \(^7\text{Li}\) contribution to the constrain is somewhat more gradual than the “turn off” of the \(^4\text{He}\) constraint. The former turns on over a range of \(\eta_{10} \) of about 2, while the latter turns off over a range of about 1-1.5. This gives one some idea of the size of the error introduced in determining upper bounds by using only either element alone, rather than the combination. Next, for a \(Y_p \) upper limit which exceeds .248, the lower bound on \(D \) begins to become important. It quickly turns on in significance so that by the time the upper limit on \(Y_p \) is increased to .25, \(^4\text{He}\) essentially no longer plays a role in bounding \(\eta_{10} \). Finally, note that both the relaxed bound on \(^7\text{Li}\) and the \(D \) bound converge in significance at about the same time, so that for \(\eta_{10} > 7.25 \), both constraints are significantly violated. This implies a “safe” upper limit on \(\eta_{10} \) at this level, which corresponds to an upper bound \(\Omega_{\text{baryon}} \leq .163 \), assuming a Hubble constant in excess of 40 km/sec/Mpc. We again stress that a value this large is only allowed if \(Y_p \) exceeds .250. If, for example, \(Y_p \leq .245 \), then the upper bound on \(\Omega_{\text{baryon}} \) is essentially completely determined by \(^4\text{He}\) and is then at most 0.11.
These limits may be compared to recent estimates of Ω_{baryon} based on X-ray determinations of the baryon fraction in clusters (White et al 1993).

One final comment on the role of Y_p in constraining η_{10}: It has been stressed that because of the logarithmic dependence of the former on the latter, that Y_p cannot be effectively used to give a reliable upper bound on η_{10}. This is somewhat deceptive, however. We can compare how much more sensitive the bound on η_{10} is to Y_p than the bound on N_ν is by making a linear fit to the former relation and comparing it to (1). If we do this, we find first that the linear fit is quite good out to Y_p as large as .245 (after which a quadratic fit remains good all the way out to .248, where the D and relaxed ^7Li bounds begin to take over), and is given by

$$\eta_{10}^{\max} \approx 3.22 + 354(Y_p^{\max} - .240) \quad (2)$$

Seen in these terms, the η_{10} upper limit is approximately 4.5 times more sensitive to the precise upper limit chosen for Y_p than is the N_ν upper limit. Thus, while there is no doubt that varying the upper limit on Y_p has a more dramatic effect on the upper bound one might derive for η_{10} than it does for constraining N_ν, the quantitative nature of the relative sensitivities is perhaps displayed, for the relevant range of Y_p, by comparing the linear approximations presented here than by discussing logarithmic vs linear dependencies. More important, even recognizing the increased sensitivity of η_{10} on Y_p, unless one is willing to accept the possibility of a rigid upper bound on Y_p greater than .247, it is overly conservative to ignore ^4He when deriving BBN bounds on η_{10}.

Finally, we update one other quantity of importance for the comparison of BBN predictions with observations: the minimum value of Y_p such that
BBN predictions are consistent with observation. We explored the range of η_{10} allowed at the 95% confidence level (i.e. 50 out of 1000 models) as the value of Y_p^{max} was reduced. For $Y_p \leq .239$ no range of η_{10} was allowed when this constraint was combined with the D + 3He bound. Previously we derived a lower bound on Y_p of .238 if D+3He was used alone to first bound η_{10}, and then the η_{10} value was used to bound Y_p (to compare to earlier such bounds (i.e. (Krauss and Romanelli 1990)). The new neutron half life would not change that bound. However in any case the newly derived bound of .239 obtained using the correlated constraints is more stringent, and more consistent. If the primordial helium abundance is determined empirically to be less than this value with great confidence, and the D + 3He upper limit remains stable, standard BBN would be inconsistent with observation.

Conclusions: There can be little doubt that the present ability of BBN to constrain cosmological parameters is almost completely governed by systematic uncertainties in our inferences of the actual light element primordial abundances. Nevertheless, the fact that such systematic uncertainties need not be gaussian does not block our ability to utilize the statistically meaningful uncertainties in BBN predictions. As long as we are willing to quote conservative one-sided limits on the various abundances which incorporate reasonable estimates of the systematic uncertainties then the determination of what confidence levels can be assigned to various theoretical predictions is straightforward. Moreover, as the observational limits on various elemental abundances is varied, the significance of the different elements for constraining cosmological parameters varies. In addition, for a non-trivial range in η_{10}, correlations exist between the various abundance predictions, and a self
consistent use of all available constraints is important. Finally, Y_p, in spite of its systematic uncertainty, plays a dominant role unless one is willing to accept an upper limit of greater than .247. Beyond that, the convergence of D and 7Li limits suggest a safe upper bound of on the baryon density today of less than 16% of closure density.

As time proceeds and more independent observations are made we will undoubtedly get a better handle on the systematic uncertainties which presently limit the efficacy of BBN constraints. Until then, the updated tables and relations presented here should provide a useful reference to allow researchers to translate their own limits on the light element abundances into meaningful bounds on N_ν and η_{10}.

LMK thanks the Aspen Center for Physics for hospitality while much of this work was carried out, and also thanks George Smoot for alerting us to the likelihood that the neutron half life would be revised in the newest Particle Data Tables compilation.
REFERENCES

Carswell, R.F. et al 1994, MNRAS 268, L1
T.Copi, D.N.Schramm, M.S. Turner 1994 preprint U. Chicago
Deliyannis, C.P. et al 1989 Phys.Rev.Lett. 62, 1583
Kernan, P.J. 1993 Ph.D. Thesis Ohio State University, UMI-94-01290-mc
Kernan, P.J., and Krauss,L.M. 1994 Phys.Rev.Lett. 72, 3309
Krauss, L.M. and Kernan, P.J. 1994 Ap.J. in press
Krauss,L.M., and Romanelli,P. 1990 Ap.J., 358, 47
Olive, K.A. and Steigman, G. 1994 preprint UMN-TH-1230/94
Pagel, B.E.J., Simonson, E.A., Terlevich, R.J., and Kennicutt Jr, R.C. 1992,
Mon. Not. R. Astr. Soc. 255, 325
Pagel, B.E.J. Terlevich, R.J. and Melnick, J. 1986 P.A.S.P. 98, 1005
Particle Data Group 1992, Phys.Rev.D45 S1
Particle Data Group 1994, Phys.Rev.D50 1173
Peimbert,M and Torres-Peimbert, S. 1974 Ap J 193, 327
Pinsonneault, M.H. , Deliyannis C.P. and Demarque, P. 1992 Ap. J. Supp 407 699
Sasselov, D.D. and Goldwirth, D. 1994 preprint astro-ph 9407019
Seckel,D. 1993 Bartol Preprint BA-93-16 hep-ph/9305311
Skillman E.D. et al 1993 Ann. New York Acad. Sci. 688 739
Skillman, E. D. et al 1994, Ap. J. 431 172
Smith, M.K., Kawano, L.H., and Malaney, R.A. 1993 Ap.J.Supp. 85, 219
Songaila, A., Cowie, L.L., Hogan C.J., and Rugers, M. 1994 Nature 368, 599
Walker, T.P et al 1991 Ap. J. 376, 51
White, S.D.M. et al. 1993 Nature 366,429
Table 1: 4He Abundance Estimates & N_ν limits

Y_p	$N_{\nu_{\text{max}}}$	η_{10}	η_{10} limits	# allowed models: $\{^4\text{He} & [D+^3\text{He}]\}(^4\text{He}:D+^3\text{He})$
.240	3.07	2.75	2.80	40(603:148) 52(429:254) 46(268:376) 38(170:534)
.241	3.14	2.80	2.85	38(532:171) 46(354:309) 39(219:470) 35(131:625)
.242	3.21	2.85	2.90	41(562:154) 55(451:276) 53(272:423) 52(163:616)
.243	3.29	2.90	2.95	17(588:110) 32(410:220) 46(266:378) 36(184:513)
.244	3.36	2.95	3.00	30(669:102) 44(501:187) 38(353:336) 40(216:464)
.245	3.43	3.00	3.05	50(598:173) 68(449:296) 64(308:427) 54(173:586)
.247	3.59	3.05	3.10	27(635:84) 30(480:184) 47(338:306) 39(185:488)
.250	3.82	3.10		45(491:207) 47(364:374) 50(225:495) 32(131:587)

Table 2: 4He and 7Li Abundance Estimates & η_{10} limits

$Y_{p_{\text{max}}}$	$\eta_{10_{\text{max}}}$	$\eta_{10_{\text{max}}}$ limits	# allowed models: $\{^4\text{He} & [^7\text{Li}]\}(^4\text{He}:^7\text{Li})$	# allowed models: $\{^4\text{He} & [^7\text{Li}]\}(^4\text{He}:^7\text{Li})$
.240	3.26	(7Li_{10} < 2.3)	56 (60:998) 3.26	56 (60:1000) 3.26
.241	3.55		45 (45:986) 3.55	45 (45:1000) 3.55
.242	3.89		45 (47:905) 3.89	47 (47:1000) 3.89
.243	4.26		50 (60:626) 4.27	46 (46:1000) 4.27
.244	4.64		48 (92:296) 4.71	49 (49:1000) 4.71
.245	5.01		45 (211:118) 5.23	62 (62:984) 5.23
.246	5.23		51 (679:62) 5.80	46 (50:810) 5.80
.247	5.25		52 (997:52) 6.36	48 (80:500) 6.36

Table 3: 4He, D and 7Li Estimates & η_{10} limits (7Li_{10} < 5; $D_{-5} > 2$)

$Y_{p_{\text{max}}}$	$\eta_{10_{\text{max}}}$	# allowed models: $\{^4\text{He} & D & [^7\text{Li}]\}(^4\text{He}:D:^7\text{Li})$	# allowed models: $\{^4\text{He} & D & [^7\text{Li}]\}(^4\text{He}:D:^7\text{Li})$
.248	6.94	48 (136:53:156) (178:516:203)	
.249	7.22	52 (177:101:64) (654:217:136)	
.250	7.24	47 (191:113:47) (995:191:113)	
Figure Captions

Figure 1: BBN Monte Carlo predictions as a function of η_{10}. Shown are symmetric 95% confidence limits on each elemental abundance.
$Y_P \quad \tau_N = 887 \pm 2.0 \text{sec}$

$D + ^3\text{He} / H$

$^7\text{Li} / H$

Figure 1
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/astro-ph/9408023v3
This figure "fig2-1.png" is available in "png" format from:

http://arxiv.org/ps/astro-ph/9408023v3