The superconducting gap in the Hubbard model and the two gap energy scales in high-T_c cuprates

M. Aichhorn, 1 E. Arrigoni, 2 Z. B. Huang, 3 and W. Hanke 1

1 Institute for Theoretical Physics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
2 Institute of Theoretical Physics and Computational Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
3 Department of Physics, Hubei University, Wuhan 430062, PRC

Recent experiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-T_c superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensional Hubbard model are presented which show that this model qualitatively describes this gap dichotomy: One gap (antinodal) increases with less doping, a behavior long considered as reflecting the general gap behavior of the HTSC. On the other hand, the near-nodal gap shows a strongly peaked structure around (π, π), which is related to the pseudogap and the superconducting gap below T_c, and is consistent with the $d_{x^2-y^2}$ symmetry [2]. In addition, both gaps were found to have a more or less identical doping dependence, increasing when the doping was reduced [2,3]. This strongly supported a picture, where the pseudogap is a precursor to the $d_{x^2-y^2}$-superconducting (SC) state, i.e. the pseudogap smoothly evolves into the SC gap, when phase coherence of the pairs develops below T_c [4,5,6]. Accordingly, there seemed to be only one energy scale in the system, namely the magnitude of the gap in the antinodal region around $(\pi, 0)$. However, this picture has been challenged severely by Raman [7,8] and very recent ARPES investigations [9,10,11]: The experiments done below T_c suggest two distinct energy gaps exhibiting different doping dependences. While the gap near the antinodal $(\pi, 0)$-region was still found to strongly increase with decreasing doping, the other gap, identified from sharp (coherent) peaks near the nodal region, has a rather different doping dependence, i.e. does not increase with less doping. These surprising observations have been interpreted as a two-gap scenario, in which there are two energy scales, one corresponding to the near nodal and one to the antinodal region around the Fermi surface (FS). Clearly, these recent findings pose also a substantial challenge to the microscopic theory.

In this letter, we show that the two-dimensional (2D) Hubbard model accounts, at least qualitatively, for the observed different doping dependencies of the gaps near the nodal and near the antinodal regions. We suggest (see below) that this “two gaps” scenario can be naturally explained by the anisotropy of the d-wave coupling strength at the Fermi surface, which is related to the peaked structure of the spin-mediated pairing interaction V_{pairing} around $Q_{\text{AF}} = (\pi, \pi)$. These results emphasize the importance of spin fluctuations in the pairing mechanism for HTSC materials [12,13,14,15,16]. In addition, they support the premise that the physics of the intriguing HTSC materials should be contained in the 2D one-band Hubbard model. This premise has recently also obtained support from a variety of cluster calculations which reproduce the overall ground-state phase diagram of the HTSC as well as their single-particle excitation spectra [17,18,19,20,21].

Our main results, obtained by means of the Variational Cluster Approach (VCA) [22,23], are shown in Figs. 2 and 3. In Fig. 2, we plot the SC gap near the antinodal and near the nodal point as a function of doping for the two-dimensional Hubbard model, whereby the d-wave factor has been divided off for a better comparison. The two gaps clearly behave differently as a function of doping, in agreement with the experimental findings [3,10,11]. While the antinodal gap increases, the nodal gap decreases with less doping. However, an analysis of our results in terms of the anomalous self-energy indicates that below T_c there is only one gap mechanism. Both gaps are due to superconductivity, and there is no contribution from the normal self-energy, i.e. a remnant of the normal-state pseudogap.

As we will show below, the so-called “two-gap” behavior can be explained by the doping dependence of the spin-fluctuation mediated pairing interaction $V_{\text{pairing}}(q)$ which displays a strongly peaked structure around (π, π). The width a of this structure is given by the inverse antiferromagnetic correlation length and, despite the reduction effect of vertex corrections, a decreases with decreasing doping [24,25]. Due to the d-wave factor, the contribution to the superconducting gap $\Delta_{\text{SC}}(k)$ has a different dependence on the transfer momentum q of the effective interaction depending on whether k is close to...
the nodal or antinodal region. This fact, connected with the doping dependence of the peak structure of \(V_{\text{Pairing}} \) around \((\pi,\pi)\) accounts for both the qualitatively different doping dependencies of the gaps near \((\pi,0)\) or near \((\frac{\pi}{2},\frac{\pi}{2})\), as well as for the deviation of the SC gap from the nearest-neighbor \(d\)-wave form \(\cos k_x - \cos k_y\) as observed in experiments [4, 10, 11, 26].

Our results are obtained on the basis of two numerical techniques, which are appropriate for the treatment of strongly-correlated materials, namely, the Variational Cluster Approach (VCA) [22, 23] and a quantum Monte Carlo (QMC) cluster solution [24, 25]. The VCA is based on the self-energy functional theory, which was proposed and applied by Potthoff et al. [27, 28, 29]. It provides a variational scheme to use dynamical information from an exactly solvable “reference” system (in the VCA an isolated cluster) to go to the infinite-sized lattice fermion system at low temperatures and at \(T = 0\), in particular. The ground-state phase diagram of the 2D Hubbard model

\[
H = \sum_{ij \sigma} t_{ij} c^\dagger_{i \sigma} c_{j \sigma} + U \sum_i n_{i \uparrow} n_{i \downarrow},
\]

where \(t_{ij}\) denote hopping matrix elements, \(n_{i \sigma}\) the density at site \(i\) with spin \(\sigma\) and \(U\) the local Coulomb repulsion was calculated within the VCA by Sénéchal et al. [18], and by our group [19, 29, 30]. For the cluster size used in the VCA (up to 10 site clusters solved by a Lanczos technique), the \(T = 0\) phase diagram of the Hubbard model in Eq. 1, with hopping terms up to third-nearest neighbors, correctly reproduces salient features of the HTSC, such as the AF and dSC ground states in doping ranges, which are qualitatively in agreement with electron- and hole-doped cuprates.

Also the single-particle excitations agree with earlier QMC data [31] and with the main features observed in experiment [32]: clear signatures of the Mott gap, as well as the “coherent” quasiparticle band of width \(J\) (≡ magnetic exchange) and the “incoherent” lower and upper Hubbard bands are identified.

In Fig. 1, we show a typical Fermi surface for the underdoped case at \(x = 0.07\) hole doping, obtained from the weight of the VCA single-particle spectral function at zero energy, \(A(k,\omega = 0)\). The largest weight is found near the nodal direction, marked by N in Fig. 1, which corresponds to the “Fermi arc”. The weak features suggesting a splitting of the Fermi surface when going to the antinodal region are due to the finite cluster used as a reference system. Accordingly, we measure the gap in the coherent region around the node between line 0 and line 6 in Fig. 1, and at the antinodal region marked by AN in Fig. 1.

In Fig. 2, we plot the (normalized) SC gaps \(\Delta_0 \equiv 2\Delta_k/(\cos k_x - \cos k_y)\) near the nodal and near the antinodal Fermi points as a function of doping \(x\). Like in experiment, the amplitude of the d-wave gap in the nodal region decreases when driving the system from the optimal doped into the underdoped region, while it increases in the antinodal region. The different doping dependences for the nodal and the antinodal regions correspond to the different energy scales observed in photoemission experiments. From the figure it is clear that \(\Delta(k)\) cannot be described by a simple nearest-neighbor d-wave form near both the nodal and the antinodal point, especially for low dopings. On the other hand, our plot of \(\Delta(k)\) displayed in Fig. 2b shows that in an extended

FIG. 2: (Color online) (a) “Normalized” SC gap \(\Delta_0 \equiv 2\Delta_k/(\cos k_x - \cos k_y)\) for \(k\) near the antinodal (dashed) and near the nodal FS point (solid) as a function of doping for the Hubbard model (parameters are given in the text). (b) SC gap as a function of the \(d\)-wave factor \((\cos k_x - \cos k_y)\) on the Fermi arc for \(x = 0.07\) hole doping. The numbers correspond to the momentum scans marked in Fig. 1. Inset: \(A(k,\omega)\) in a small window around the FS for points 0 to 6.

FIG. 1: (Color online) Left (a): Spectral function of the Hubbard model for \(U = 8t\), \(t' = -0.3t\) and \(x = 0.07\) hole-doping, calculated with the VCA on a \(3 \times 3\) cluster in the SC symmetry-broken phase. The blue arrow denotes the antinodal (AN) region. Right (b): The corresponding Fermi surface. The antinodal region is marked by AN (blue), the nodal region by N (red). Solid lines indicate the momentum scans, along which the gap is determined. Numbers refer to Fig. 2.
In the following way. In matrix-Nambu formalism the Dyson equation reads
\[G_{\alpha\beta}(Q,\omega) = \left(\omega - T_{\alpha\beta}(Q) - \Sigma_{\alpha\beta}(\omega) - \Sigma_{\alpha\beta}(\omega - \Sigma_{\alpha\beta}(\omega)) \right)^{-1}, \]
with \(T_{\alpha\beta}(Q) \) the hopping matrix, and \(\alpha, \beta \) being the quantum numbers within the reference system, i.e., the cluster sites. After the variational optimization procedure, we set the SC-related parts of the self-energy \(\Sigma_{\alpha\beta}^{\text{SC}} \) to zero and evaluate the corresponding spectral function. By comparing the left (full SC solution) and the middle panel (\(\Sigma_{\alpha\beta} = 0 \)) in Fig. 3, one can clearly see that the gap around \((\pi, 0)\) is only due to \(\Sigma_{\alpha\beta}^{\text{SC}} \), and there are no signatures of a remaining underlying pseudogap produced by a mechanism different from superconductivity. Fig. 3 shows results for \(x = 0.07 \) hole doping, but we have checked that this behavior is the same in the whole doping range under investigation.

Since it is known that above \(T_c \) the Hubbard model shows a pseudogap behavior, we also compare our superconducting results with “normal”-state solutions, where we do not allow for \(U(1) \) symmetry breaking in the variational procedure. The right panel of Fig. 3 shows that in this solution there is indeed a pseudogap. Interestingly, this pseudogap increases with lowering the doping and, thus, shows a doping dependence in qualitative agreement with finite-\(T \) QMC simulations and also ARPES experiments, identifying the pseudogap above \(T_c \) with the leading edge features near \((\pi, 0)\). Our calculation is at \(T = 0 \). However, taking all the above results together, they indicate that the breaking of the \(U(1) \) symmetry destroys the “normal-state” origin of the pseudogap, and the gap “below \(T_c \)” is only due to superconductivity.

What is the physical reason for the different doping dependence of the nodal and antinodal gap? We argue that this behavior is related to the anisotropy of the \(d \)-wave coupling strength at the Fermi surface in combination with the doping dependence of the peaked structure of the spin-fluctuation mediated pairing interaction including full vertex corrections. With a previously developed formalism based on QMC, this effective pairing strength including the renormalization of the density of states can be calculated. Results obtained for the \(t-t'-U \) (2D) Hubbard model showed that the effective pairing interaction \(V_{\text{pairing}} = v(k, q) \) mediated by AF spin fluctuations is significantly influenced and reduced due to vertex corrections, but it clearly remains peaked around \((\pi, \pi)\). This latter fact is, of course, well known from earlier unrenormalized random-phase approximation calculations. Most importantly, for transfer momenta \(q \) near \((\pi, \pi)\), the effective interaction (evaluated at the lowest Matsubara frequency) sharply increases with decreasing doping, see Fig. 4. In contrast, for transfer momenta away from \((\pi, \pi)\), such as \(q = (\pi, 0) \), \(v(k, q) \) only shows at best a very weak increase with doping.

Although HTSC materials are clearly strongly correlated, our argument can be understood qualitatively by means of a simple BCS gap equation for \(\Delta(k_F) \) at the Fermi point \(k_F \):
\[\Delta(k_F) = -\int \frac{d^2k'}{(2\pi)^2} v(k' - k_F) \frac{\Delta(k')}{E(k')} . \tag{3} \]
Here, \(E(k') = \sqrt{\xi_{k'}^2 + \Delta(k')^2} \), \(\xi_{k'} \) being the single-particle energy measured from the chemical potential. After integrating over momenta perpendicular to the Fermi Surface in a thin energy shell of width \(\Omega \propto J \ll t \),
one obtains for $\Delta \ll \Omega$:

$$\Delta(k_F) \approx -\int d\vec{k}_F' n(k_F') v(\vec{k}_F' - \vec{k}_F) \Delta(k_F') \log \frac{\Omega}{\Delta(k_F')} ,$$

with $n(k_F')$ the density of states per unit area of the FS at k_F'. The integral in Eq. (4) extends over the Fermi surface $d\vec{k}_F$, the log comes from the integration of the energy denominator, and we have exploited the fact that v depends mainly on the momentum transfer $q = k'_F - k_F$.

For k_F near the antinodal point $(\pi, 0)$, the strongest contribution (normalized to the value of $v(q)$) comes from k_F' near the two antinodal points $(0, \pi)$ and $(0, -\pi)$, i.e. for $q = k_F - k_F'$ near (π, π). It is thus clear from the behavior of $v(q)$ as a function of doping shown in Fig. 4 that one expects $\Delta(k_F \sim (\pi, 0))$ to decrease fast with increasing doping. On the other hand, for k_F around the nodal point $(\frac{\pi}{2}, \frac{\pi}{2})$, the contribution for other nodal points cannot be strong since it is suppressed by the nodes in $\Delta(k_F')$. As a result, the strength of the SC gap is controlled by $v(q)$ at momenta away from $q = (\pi, \pi)$. In order to elucidate this point, we plot in Fig. 4 the contributions to the integral Eq. (4) for typical parameters $\mu = -1.0t$, $t' = -0.3t$, which show exactly the behavior described above. Hence, the behavior of $v(q)$ for q away from (π, π) shown in Fig. 4 provides the physical reason for which the SC gap at the nodal point does not increase with decreasing doping $43, 34$.

Summarizing, we have shown that VCA calculations within the t-t'-U Hubbard model qualitatively reproduce the different doping dependences of the superconducting gap recently seen in experiments. When going to lower hole dopings, the gap on the Fermi arc, near the nodal region, decreases, whereas the gap near the antinode increases. Moreover we have shown that there is no indication in our results for a “two-gap” scenario with distinct superconducting and pseudogap below T_c. Instead, we found that obviously the SC gap in the symmetry broken solution absorbs the “normal-state” pseudogap, resulting in a “one-gap” scenario with only a SC gap below T_c, exhibiting a more complicated structure in momentum space. This more complicated structure is shown to be naturally explained in terms of a spin-mediated pairing mechanism.

We thank Z.-X. Shen, A. V. Chubukov and E. Schachinger for constructive discussions, and in particular D. J. Scalapino for his comments on the SC self-energy. This work was supported by the Deutsche Forschungsgemeinschaft, grant FOR 538 and by the Austrian science fund (FWF project P18551-N16). Z.B.H. was supported in part by NSFC Grant No. 10674043.

* Electronic address: hanke@physik.uni-wuerzburg.de

[1] see, e.g., T. Timusk and B. W. Statt, Rep. Prog. Phys. 62, 61 (1999).
[2] A. G. Loeser et al., Science 273, 325 (1996).
[3] H. Ding et al., Nature 382, 51 (1996).
[4] Y. J. Uemura et al., Phys. Rev. Lett. 62, 2317 (1989).
[5] M. Randeria et al., Phys. Rev. Lett. 62, 981 (1989).
[6] V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).
[7] M. Opel et al., Phys. Rev. B 61, 9752 (2000).
[8] M. Le Tacon et al., Nature Physics 2, 537 (2006).
[9] K. Tanaka et al., Science 314, 1910 (2006).
[10] T. Kondo et al., Phys. Rev. Lett. 98, 267004 (2007).
[11] M. Hashimoto et al., Phys. Rev. B 75, 140503(R) (2007).
[12] For a review on the spin-fluctuation mechanism see, e.g., A. Abanov, A. V. Chubukov, and J. Schmalian, Adv. Phys. 52, 119 (2003).
[13] N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433 (1966).
[14] D. J. Scalapino et al., Phys. Rev. B 34, 8190 (1986).
[15] V. J. Emery, Synth. Met., 13, 21 (1986).
[16] A. J. Millis et al., Phys. Rev. B 42, 167 (1990).
[17] T. A. Maier et al., Phys. Rev. Lett. 95, 237001 (2005).
[18] D. Sénéchal et al., Phys. Rev. Lett. 94, 156404 (2005).
[19] M. Aichhorn et al., Phys. Rev. B 74, 024508 (2006).
[20] A. Macridin et al., Phys. Rev. Lett. 97, 036401 (2006).
[21] B. Kyung et al., Phys. Rev. B 73, 165114 (2006).
[22] M. Potthoff et al., Phys. Rev. Lett. 91, 206402 (2003).
[23] C. Dahnken et al., Phys. Rev. B 70, 245110 (2004).
[24] Z. B. Huang et al., Europhys. Lett. 71, 959 (2005).
[25] Z. B. Huang et al., Phys. Rev. B 74, 184508 (2006).
[26] J. Mesot et al., Phys. Rev. Lett. 83, 840 (1999).
[27] M. Potthoff, Eur. Phys. J B 36, 335 (2003).
[28] M. Potthoff, Eur. Phys. J B 32, 429 (2003).
[29] M. Aichhorn et al., Phys. Rev. B 74, 235117 (2006).
[30] M. Aichhorn and E. Arrigoni, Europhys. Lett. 72, 117 (2005).
[31] R. Preuss et al., Phys. Rev. Lett. 79, 1122 (1997).
[32] A. Damascelli et al., Rev. Mod. Phys. 75, 473 (2004).
[33] The fact that for strongly peaked pairing the gap deviates from the simple nearest-neighbor form was first discussed by A. Abanov et al., Europhys. Lett. 54, 485 (2001).
[34] We stress that this BCS calculation has been done in order to provide a first qualitative understanding of our theoretical results shown in Fig. 2. We have checked that this behavior is also obtained within an Eliashberg calculation [35], which is more appropriate for strong coupling
and which takes into account the frequency dependence of the gap.

[35] E. Schachinger et al., *in preparation* (unpublished).