Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Anti-influenza virus activity and structure–activity relationship of aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains

Lieve Naesensa,∗, Evelien Vanderlindena, Erzsébet Róthb, József Jekőb, Graciela Andreia, Robert Snoecka, Christophe Pannecouquea, Eszter Illyésc, Gyula Battab, Pál Herczeghb, Ferenc Sztaricskaiib,∗∗

a Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
b Department of Pharmaceutical Chemistry, University of Debrecen, H-4010 Debrecen, Hungary
c Department of Chemistry, Eötvös Loránd University, H-111 Budapest, Hungary

Article info

Article history:
Received 2 December 2008
Received in revised form 8 January 2009
Accepted 13 January 2009

Keywords:
Glycopeptide antibiotic
Ristocetin
Influenza
Antiviral

Abstract

Previous studies have demonstrated that glycopeptide compounds carrying hydrophobic substituents can have favorable pharmacological (i.e. antibacterial and antiviral) properties. We here report on the \textit{in vitro} anti-influenza virus activity of aglycoristocetin derivatives containing hydrophobic side chain-substituted cyclobutenedione. The lead compound $8e$ displayed an antivirally effective concentration of $0.4\mu M$, which was consistent amongst influenza A/H1N1, A/H3N2 and B viruses, and a selectivity index ≥ 50. Structural analogues derived from aglycovancocycin were found to be inactive. The hydrophobic side chain was shown to be an important determinant of activity. The narrow structure–activity relationship and broad activity against several human influenza viruses suggest a highly conserved interaction site, which is presumably related to the influenza virus entry process. Compound $8e$ proved to be inactive against several unrelated RNA and DNA viruses, except for varicella-zoster virus, against which a favorable activity was noted.

© 2009 Elsevier B.V. All rights reserved.

Currently available drugs for the treatment of influenza virus infections comprise the M2 ion channel blockers amantadine and rimantadine, and the neuraminidase inhibitors oseltamivir and zanamivir (De Clercq, 2006; Moscona, 2008). Stockpiling of oseltamivir and, to a lesser extent, zanamivir has been advocated in the context of pandemic preparedness (Schünemann et al., 2007), yet the recent isolation of oseltamivir-resistant seasonal influenza virus mutants, even from untreated patients, warrants for continued caution (Lackenby et al., 2008; Van der Vries et al., 2008).

Additional anti-influenza virus compounds should be urgently developed, having a novel antiviral target that is highly conserved amongst influenza virus (sub)types and, hence, less prone to genetic variation and resistance selection.

One of the attractive therapeutic strategies would be a blockade of the viral entry into the host cell. The cellular entry process of influenza viruses has been unraveled since many years (reviewed in Skehel and Wiley, 2000). A key role is being played by the viral envelope glycoprotein hemagglutinin (HA), which contains the receptor-binding site for initial attachment to the siaalglycosylated cellular receptors, and governs the receptor specificity of human versus avian influenza virus subtypes (Chandrasekaran et al., 2008; Nicholls et al., 2008). In addition, after cellular uptake of the virus by endocytosis, the HA mediates the low pH-induced fusion of the viral envelope with the endosomal membrane, leading to release of the viral ribonucleoprotein in the cytosol. Although the HA has been extensively studied from a biochemical and epidemiological perspective, specific antiviral drugs blocking the HA-receptor interaction remain to be clinically developed. Several reports are available on the \textit{in vitro} activity of small-molecule inhibitors of influenza virus fusion, which act by preventing the conformational change of the HA at low pH (Russell et al., 2008; Deshpande et al., 2001; Plotch et al., 1999). Unfortunately, their development has been slow due to their inferior activity against some human influenza virus (sub)types, rapid selection for resistance and/or unsatisfactory outcome in animal models (Yagi et al., 1999).

Glycopeptide compounds represent a large series of natural, semisynthetic or fully synthetic compounds, which are widely recognized for their potent activity against Gram-positive bacteria (Nicolaou et al., 1999). Several studies have demon...
Chemical structures of aglycovancomycin (1) and aglycoristocetin (2). The arrow indicates the secondary amine (aglycovancomycin) and primary amine (aglycoristocetin) functions where the coupling reaction took place.

- Aglycovancomycin (1) and aglycoristocetin (2) were first converted into their squaric acid amide esters (4 and 5, respectively), followed by conversion to the asymmetric squaric diamides (7a–g and 8a–j, respectively). See Table 1 for the structures of the R1 group, as present in the primary amines 6a–j and the final products 7a–g and 8a–j.

The compounds were evaluated for antiviral activity against the following human influenza virus strains: A/Puerto Rico/8/34 (A/H1N1); A/X-31 (A/H3N2) [A/Aichi/2/68 (H3N2) x A/Puerto Rico/8/34 (H1N1)]; A/Hong Kong/7/87 (A/H3N2), and B/Hong Kong/5/72. Virus stocks were inoculated into 10-day-old embryonated hen eggs, followed by harvesting of the allantoic fluid at 48 h post-infection (p.i.) and titration in Madin–Darby

High-yield synthesis of aglycovancomycin (1) and aglycoristocetin (2) (Fig. 1) was performed as originally described by Wanner et al. (2003) and consisted of deglycosidation of the parent antibiotics with hydrogen fluoride in anisole at neutral pH (Fig. 2) (Sztaricskai et al., 2006). The aglycones were converted into the squaric acid amide esters (4 and 5) by coupling with dimethyl squarate (3). This was followed by reaction with primary amines (6a–j) to yield the corresponding asymmetric squaric diamides (7a–g, 8a–j), using a regioselective procedure without the requirement for a protecting group strategy (Tietze et al., 1991; Sztaricskai et al., 2006). The primary amines were: 6-aminohexanol (6a); 6-aminohexanecarboxylic acid (6b); triglycine (6b1); dopamine (6c); N-(4-aminophenyl)piperidine (6d) and 4-phenyl-benzylamine (6e).

Based on the observation that compound 8e displayed favorable anti-influenza virus activity (see below), subsequent modifications were performed to study the impact of an increasing steric bulk in the rigid aromatic side chain of 7f–g and 8f–h, which were prepared with 1-naphthylamine (6f), 4-aminoterphenyl (6g) or 2-aminoanthracene (6h). It has been shown that introduction of hydrophobic substituents into glycopeptide antibiotics enhances their activity against glycopeptide-resistant bacteria (Cooper et al., 1996; Printsevskaya et al., 2002; Pace and Yang, 2006), but, unfortunately, these products have lower water-solubility. To improve solubility, the squaric acid amide ester 5 was reacted (Sztaricskai et al., 2007b) with d-glucosamine (6i) or D-galactosamine (6j), resulting in the asymmetric squaric diamides 8i and 8j, respectively. In these products, the carbohydrate moiety is linked to the aglycone in an unusual manner, i.e. through a cyclobutandione moiety, and not directly through one of the hydroxyl groups, as in the parent glycopeptide antibiotics.

The structure, reaction yield and physico-chemical data for the aglycones, their squaric acid amide esters and corresponding asymmetric diamides, are summarized in Table 1. The homogeneity of all compounds was checked by TLC and HPLC, and the structures were confirmed by mass spectrometry.
Table 1
Chemical structure and physico-chemical properties of the test compounds.

Compound	R	Yield (%)	HPLC^a R_t	TLC^c R_t	Formula	Molecular weight^b Calculated	Measured MALDI-TOF^d (M+Na)^b
Aglycons							
1	Me	90	14.68 (A) 0.62		C₅₃H₅₂N₈O₁₇Cl₂	1143	1165
2	H	65	14.60 (B) 0.26		C₆₀H₅₃N₉O₁₉	1173	1196
Squaric acid amide esters							
4	Me	83	13.60 (A) 0.73		C₅₈H₅₄N₈O₂₀Cl₂	1254	1275
5	H	60	36.51 (B) 0.36		C₆₅H₅₃N₇O₂₂	1284	1306
Asymmetric squaric diamides							
7a	Me	38	12.99 (B) 0.13		C₆₃H₆₅N₉O₂₀Cl₂	1139	1160
8a	H	72	13.06 (B) 0.42		C₇₀H₆₄N₈O₂₂	1369	1392
7b	Me	34	13.02 (B) 0.12		C₆₃H₆₅N₉O₂₀Cl₂	1353	1374
8b	H	38	13.03 (B) 0.24		C₆₃H₆₅N₉O₂₀Cl₂	1383	1405
8b₁	H	62	10.90 (A) 0.68		C₆₉H₆₈N₉O₂₅	1441	1464
7c	Me	68	13.28 (C) 0.29		C₆₅H₆₁N₉O₂₁Cl₂	1375 (3)	1396
8c	H	87	ND (B) 0.43		C₇₂H₆₂N₉O₂₃	1405	1428
8d	H	73	16.68 (B) 0.59		C₇₅H₆₅N₉O₂₁	1428	1450
7e	Me	63	18.24 (B) 0.44		C₇₀H₆₃N₉O₁₉Cl₂	1405	1426
8e	H	68	18.47 (B) 0.53		C₇₂H₆₄N₉O₂₁	1435	1457
7f	Me	58	16.70 (B) 0.28		C₆₆H₆₀N₉O₂₁Cl₂	1365	1386
8f	H	54	16.75 (B) 0.73		C₆₇H₆₁N₉O₂₁	1335	1347
7g	Me	20	21.16 (C) 0.60		C₆₃H₆₅N₉O₁₉Cl₂	1467 (65)	1488
8g	H	42	21.21 (C) 0.56		C₆₅H₆₃N₉O₁₉Cl₂	1496	1519
8h	H	62	19.31 (B) 0.75		C₆₉H₆₈N₉O₂₁	1445	1467
8i	H	75	10.07 (B) 0.34		C₇₀H₆₂N₉O₂₄	1431	1454
8j	H	69	10.05 (B) 0.33		C₇₀H₆₂N₉O₂₄	1431	1454

* After conversion of the aglycons aglycovancomycin (1) and aglycoristocetin (2) into their squaric acid amide esters (4 and 5, respectively), these were converted to the asymmetric squaric diamides (7a–g, derived from aglycovancomycin, and 8a–j, derived from aglycoristocetin).

^a HPLC conditions: instrument: Waters 600 with UV230nm detection; column: Lichrospher RP-8 (4 mm × 250 mm; 10 μm); injection volume: 20 μl (corresponding to 2 μg compound); solvents: (A) CF₃COOH–H₂O (pH 2.6) and (B) acetonitrile–H₂O; gradient elution from 10 to 90% B; ND: not done.

^b TLC conditions: silicagel 60F₂₅₄; solvent systems: (A) nBuOH–Pyr–AcOH–H₂O (15:10:3:12); (B) toluene–MeOH–AcOH (1:1:0.01); (C) nBuOH–AcOH–H₂O (4:2:2); (D) toluene–MeOH–AcOH (1:1:0.05).

^c MALDI-TOF MS: instrument: Bruker BIFLEX III. The analytes at a concentration of 5 mg per ml in acetonitrile–H₂O–0.1% HCOOH (50:50:0.1) were prepared with 2,5-dihydroxybenzoic acid (DHB) matrix (20 μg/ml in DMSO).
Table 2
Antiviral activity in influenza virus-infected MDCK4 cells.

Compound	Antiviral EC50b (μM)	Cytotoxicityc	Selectivity indexd							
	Influenza A/H3N2 (strain X-31)									
	CPE	MTS	Influenza A/H3N2 (strain A/HK/7/87)	CPE	MTS	Influenza B (strain B/HK/5/72)	MCE	CC50 (μM)		
1	38 ± 3	58 ± 22	≥31	ND	>100	>100	>100	>100	ND	14 ND
2	8.4 ± 2.4	10.7 ± 2.5	4.3 ± 2.9	3.2 ± 1.6	7.8 ± 2.2	6.6 ± 4.4	>100	>100	ND	15 ND
4	>100	>100	>100	>100	>100	>100	>100	>100	ND	41 ND
5	3.2 ± 1.2	nd	2.0 ± 0.3	5.0 ± 3.5	1.4 ± 1.3	0.5	>100	>100	ND	ND
7a	>100	>100	>100	>100	>100	>100	>100	>100	ND	ND
8a	1.0 ± 0.9	0.6	1.1 ± 0.5	0.9	1.2	1.8	>100	>100	ND	14 ND
7b	>100	>100	>100	>100	>100	>100	>100	>100	ND	ND
8b	>100	>100	>100	>100	>100	>100	>100	>100	ND	2 ND
8i, 8h	4.6 ± 3.2	10.1	2.4 ± 1.4	3.4	>100	>100	>100	>100	4	11
7c	>100	>100	>100	>100	>100	>100	>100	>100	14 ND	20
8c	2.3 ± 2.4	6.6 ± 3.7	5.5 ± 5.9	2.9 ± 3.3	>100	>100	>100	>100	20	45 ± 33
8d	>100	>100	>100	>100	>100	>100	>100	>100	20	80
7e	>100	>100	>100	>100	>100	>100	>100	>100	≥14 ND	ND
8e	0.36 ± 0.25	0.65 ± 0.58	0.32 ± 0.17	0.55 ± 0.21	0.30 ± 0.16	0.31 ± 0.20	20	47	50	
7f	>100	>100	>100	>100	>100	>100	>100	>100	73	ND
8f	0.50 ± 0.14	0.2	1.8 ± 0.9	0.9	2.9	2.4	14 ND	10		
7g	>100	>100	>100	>100	>100	>100	>100	>100	8	0.8
8g	>100	>100	>100	>100	>100	>100	>100	>100	4	10
8h	>100	>100	>100	>100	>100	>100	>100	>100	8	16
8j	>100	>100	5.7 ± 2.9	6.8 ± 4.6	>100	≥18	100	100	100	16
Ribavirin	9.0 ± 0.04	9.6 ± 2.2	8.0 ± 2.2	7.6 ± 3.0	9.0 ± 0.04	7.2 ± 1.9	>100	>100	>12	
Osetamivir	0.027 ± 0.013	0.064 ± 0.078	0.26 ± 0.30	0.23 ± 0.23	11 ± 8	5.1 ± 1.8	>100	>100	100	
Carboxylate										
Amanadine	54 ± 33	45 ± 21	3.9 ± 4.1	3.2 ± 4.0	>100	>100	>100	>100	100	

Data shown are the mean ± S.D. of 2–7-independent tests; ND: not done.

a: MDCK: Madin–Darby canine kidney cells.
b: Antiviral activity was expressed as the EC50 value, defined as the compound concentration producing 50% inhibition of virus replication, as estimated by microscopic scoring of the cytopathic effect (CPE), or by measuring cell viability in the formazan-based MTS assay.
c: Cytotoxicity was expressed as the minimum cytotoxic concentration (MCC; compound concentration producing minimal changes in cell morphology, as estimated by microscopy), or the 50% cytotoxic concentration (CC50; estimated by the MTS cell viability assay).
d: Ratio of MCC to average EC50. The ‘–’ symbol means that the compound showed no activity and/or cytotoxicity at the highest concentration tested (100 μM).

Canine kidney (MDCK) cells (a kind gift from Dr. M. Matrosovich, Marburg, Germany). For the antiviral assays, MDCK cells were resuspended in infection medium [Ultra-MDCK® medium (Lonza, Basel, Switzerland) supplemented with 2 mM l-glutamine, 0.0225% sodium bicarbonate and 2 μg per ml TPCK (tosylphenylalanylchloromethylketon)-treated trypsin (Sigma, St Louis MO, USA)]. The cells were transferred to 96-well plates at 7500 cells per well and allowed to adhere during 20 h incubation at 35 °C. Then, serial dilutions of the test compounds were added together with virus [multiplicity of infection: 50 CCID50 (cell culture infective dose 50%) per well which corresponds to 0.0003 PFU (plaque-forming units) per cell and incubated at 35 °C. At 72 h p.i., microscopy was performed to score the virus-induced cytopathic effect (CPE) and compound-induced cytotoxicity. The results were confirmed by a spectrophotometric formazan-based MTS cell viability test (CellTiter 96® AQueous One Solution Cell Proliferation Assay from Promega, Madison, WI, USA). Compound cytostatic activity was determined in uninfected MDCK cells, which were incubated with serial compound dilutions for 72 h, and then subjected to cell counting with a 21 Coulter Counter® apparatus (Beckman Coulter, Fullerton, CA, USA). The compound concentrations producing 50% antiviral effect (EC50), 50% cytotoxic effect (CC50) or 50% inhibition of cell proliferation (IC50) were calculated by extrapolation, whereas the MCC (minimal cytotoxic concentration) represented the tested compound concentration causing minimal changes in cell morphology.

As shown in Table 2, several asymmetric squaric diamides derived from aglycoristocetin exerted marked activity against influenza virus, the most potent compounds being the phenylbenzyl derivative 8a (average antiviral EC50: 0.4 μM; selectivity index (SI), defined as the ratio of MCC to EC50: 50); the hexanol derivative 8a (EC50: 1 μM; SI: 14) and the naphthyl derivative 8f (EC50: 1.4 μM; SI: 10). Their activity was 2- to 5-fold higher than that of the squaric acid amide ester of aglycoristocetin 5 (EC50: 2.4 μM; SI: 42). An intermediate activity (EC50: 5 μM) was observed for the triglycyl derivative 8b1 which, surprisingly, was comparably active as unsubstituted aglycoristocetin 2. The 3,4-dihydroxybenzyl derivative 8c and the D-galactosamine derivative 8j were active against two of the three influenza virus strains tested, and the derivatives containing carboxypentyl (8b) and D-glucosamine (8i) substituents had activity against only one virus strain. The compounds carrying 4-aminophenylpiperidine (8d), terphenyl (8g) and anthracene (8h) substituents were completely inactive. Thus, the intrinsic anti-influenza virus activity of aglycoristocetin is markedly increased by squaric acid amide coupling and addition of a hydrophobic side chain, with the phenylbenzyl group being the optimal substituent. The favorable effect of this side chain appears to depend on different factors, namely: neutral charge (the alcoholic aliphatic derivative 8a is clearly more active than the corresponding carboxypentyl compound 8b) and steric bulkiness (8e and 8f are active while the more bulky compounds 8g and 8h are not).

The aglycoristocetin backbone structure was shown to be critical for inhibition of influenza virus, since no activity was observed for compound 7e, which represents the aglycovancamycin analogue of 8e. Aglycoristocetin and aglycovancamycin both contain a central heptapeptide core and nonproteinogenic phenolic amino acids, i.e. β-hydroxytyrosine (C and E units), 4-hydroxyphenylglycine (B and D units) and 3,5-dihydroxyphenylglycine (A unit) (Fig. 1). The main structural differences between both glycopeptidyl aglycones are as follows (Fig. 1): (i) whereas aglycovancamycin has five aromatic rings (A-E) and two known amino acids (L-aspartic acid and N-methyl-D-leucine), aglycoristocetin has seven aromatic moi-
Cytotoxicity of selected aglycoristocetin derivatives in human and animal cell lines.a

Compound	MCC (µM)b	HEL	HeLa	Vero	CrFK
2	≥ 100	≥ 100	100	>100	100
5	100	>100	100	ND	
8a	>73	>73	>73	>73	
8b	>72	>72	>72		
8b2	100	>100	>100	ND	
8c	100	≥ 100	100	>100	
8e	≥70	≥70	≥70		
8f	72	>72	>72		
8i	≥100	>100	100	>100	
8j	≥100	>100	100	>100	

a Human embryonic lung (HEL) fibroblasts; human cervix epithelial (HeLa); African green monkey kidney (Vero); and Crandell feline kidney (CrFK) cells; ND: not done.
b The cytotoxic concentration was defined as the minimum cytotoxic concentration (MCC) or 50% cytotoxic concentration (CC50); cf. legend to Table 2.

Some glycopeptides in this study were previously evaluated for antibacterial activity (Sztaricskai et al., 2006), with 8e emerging as a highly active compound. Our present anti-influenza virus data thus agree with the view that hydrophobic substitution has a positive impact on the pharmacological (i.e. antibacterial and antiviral) activities of glycopeptide compounds (Printsevskaya et al., 2002; Balzarini et al., 2003, 2006).

With regard to the antiviral mode of action, time-of-addition studies suggested that 8e blocks the viral entry process, since optimal anti-influenza virus activity was obtained when the compound was added to MDCK cells 30 min prior to or simultaneously with virus infection. A detailed analysis is currently ongoing to determine the effect of 8e on the virus-receptor interaction (i.e. binding of the viral HA to the sialic acid terminus of cell surface glycans), endocytosis or membrane fusion (i.e. fusion of the viral envelope with the endosomal membrane). Whatever the precise mode of action, the subtype-independent activity of 8e provides strong support that the interaction site of 8e is highly conserved amongst human influenza virus strains. This is consistent with our observation that influenza virus fully retained its sensitivity to 8e after eleven sequential virus passages in MDCK cells in the presence of 8e (at concentrations up to 25 µM). Within human influenza virus HA sequences, only few residues are fully conserved, in particular in the receptor-binding site and fusion peptide (Skehel and Wiley, 2000).

The aglycoristocetin compounds described here and represented by the lead compound 8e are not the first glycopeptides reported to have activity against influenza virus. In 1993, Naruse et al. reported on the isolation, characterization and anti-influenza virus activity of two kistamicin antibiotics (Naruse et al., 1993). Similarly to our compounds, both kistamincs showed strong activity against influenza virus and low activity against herpes simplex virus type 1. The kistamincs were reported to be inactive in HIV syncytium assays (Naruse et al., 1993). The observation that the anti-influenza virus activity of the kistamincs was higher when a lipophilic substituent was present at the terminal amine function, is reminiscent of our findings with the aglycoristocetin derivatives. In conclusion, the broad and robust anti-influenza virus activity of the aglycoristocetin derivatives described in this study creates a new avenue for the development of anti-influenza virus agents with a novel mode of action. The relatively narrow structure–activity relationship points to a highly specific interaction with the antiviral target, which is probably related to interaction of the influenza virus hemagglutinin with its cellular receptor. Further studies to unravel the structure–activity relationship and precise mode of action are underway in our laboratories.

Acknowledgements

This study was supported by grants from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO No. 9.0188.07), the International Consortium for Anti-Virals (ICAV) and the Hungarian National Scientific Research Foundation (No. OTKA T 46744). We thank Leentje Persoons, Frieda De Meyer and Vicky Broeckx for dedicated assistance, and Dr. Sándor Kéki (Department of Applied Chemistry, University of Debrecen) for recording the mass spectra. We thank Dr. T. Cihlar (Gilead Sciences, USA) for the generous gift of oseltamivir carboxylate.

References

Balzarini, J., Pannecoque, C., De Clercq, E., Pavlov, A.Y., Printsevskaya, S.S., Miroshnikova, G.V., Reznikova, M.L., Preobrazhenskaya, M.N., 2003. Antiretroviral activity of semisynthetic derivatives of glycopeptide antibiotics. J. Med. Chem. 46, 2755–2764.

Balzarini, J., Keyaerts, E., Vijgen, L., Egberink, H., De Clercq, E., Van Ranst, M., Printsevskaya, S.S., Olsufyeva, E.N., Solovieva, S.E., Preobrazhenskaya, M.N., 2006.
