ERDŐS–KO–RADO AND HILTON–MILNER THEOREMS FOR TWO-FORMS

GRIGORY IVANOV AND SEYDA KÖSE

ABSTRACT. In this short note we show that both generalizations of celebrated Erdős–Ko–Rado theorem and Hilton–Milner theorem to the setting of exterior algebra in the simplest non-trivial case of two-forms follow from the folklore puzzle about possible arrangements of an intersecting family of lines.

1. Introduction

We recall that a family of sets is called intersecting if any two sets of the family have a non-empty intersection. We assume that n is strictly greater than 4 throughout the note. The celebrated Erdős–Ko–Rado theorem [EKR61] states

Suppose that $r \leq n/2$. If F is an intersecting family of r-element subsets of $\{1, \ldots, n\}$, then $|F| \leq \binom{n-1}{r-1}$. If more strongly $r < n/2$, then the equality $|F| = \binom{n-1}{r-1}$ holds only if all the sets in F share a common element.

Hilton and Milner [HM67] obtained the following stability extension of this result:

Suppose that $r < n/2$. If F is an intersecting family of r-element subsets of $\{1, \ldots, n\}$ such that there is no common element for all sets of F, then $|F| \leq \binom{n-1}{r-1} - \binom{n-r-1}{r-1} + 1$.

Except for the case $r = 3$, there is a unique up to renaming extremal intersecting family in the Hilton–Milner result (see [FF86]).

Recently, the Erdős–Ko–Rado theorem was extended to the exterior algebra (see [SW21, Theorem 2.3] and [Woo20, Theorem 1.4]), where instead of intersecting families of sets, the authors used self-annihilating subspaces of the space of r-forms over \mathbb{R}^n or \mathbb{C}^n. We will say that a subspace W of $\Lambda^r(\mathbb{R}^n)$ is self-annihilating if $w_1 \wedge w_2 = 0$ for any two r-forms w_1 and w_2 of W. The result may be formulated as follows.

Suppose that $r < n/2$. If W is a self-annihilating subspace of $\Lambda^r(\mathbb{R}^n)$, then $\dim W \leq \binom{n-1}{r-1}$.

This result implies the inequality of the Erdős–Ko–Rado theorem (consider the linear hull of forms $e_{i_1} \wedge \cdots \wedge e_{i_r}$ for $\{i_1, \ldots, i_r\} \in F$). However, neither the characterization of extremal configurations, nor an extension of the Hilton–Milner theorem were obtained in the setting of exterior algebra. The reasonable conjecture is that $\dim W = \binom{n-1}{r-1}$ if and only if all r-forms of W are of the form $a \wedge v$ for some fixed $a \in \mathbb{R}^n$.

In this note we show that in the simplest non-trivial case of $r = 2$ both the characterization of extremal configurations in the Erdős–Ko–Rado theorem and the extension of the Hilton–Milner theorem follows from the folklore fact, which we state without proof:

Folklore lemma. Let L be a set of lines in $\mathbb{R}P^{n-1}$ such that any two of them intersect. Then either all lines pass through one point, or all lines lie in a two-dimensional subspace.

2020 Mathematics Subject Classification. Primary: 05D05, Secondary: 15A75, 14N20.

Key words and phrases. Erdős–Ko–Rado theorem, Hilton–Milner theorem, intersecting family.
Our small contribution is the following theorem.

Theorem 1. Suppose $n \geq 5$, and W is a self-annihilating subspace of $\Lambda^2(\mathbb{R}^n)$. Then

1. $\dim W \leq n - 1$, and the equality holds if and only if all 2-forms of W are of the form $a \wedge v$ for some fixed $a \in \mathbb{R}^n$.

2. if there is no $a \in \mathbb{R}^n$ such that any 2-form of W is of the form $a \wedge v$, then $\dim W \leq 3$.

More strongly, $\dim W = 3$ in this case if and only if W is the linear hull of forms $x_1 \wedge x_2, x_2 \wedge x_3, x_3 \wedge x_1$ for some linearly independent $x_1, x_2, x_3 \in \mathbb{R}^n$.

Proof. Any two-form can be written in the standard form $e_1 \wedge e_2 + \cdots + e_{2k+1} \wedge e_{2k+2}$ in some basis [DS08, Theorem 1.1]. Thus, if a two-form w satisfies $w \wedge w = 0$, then it’s decomposable, that is, $w = v_1 \wedge v_2$ for some $v_1, v_2 \in \mathbb{R}^n$. Consequently, all elements of W are decomposable. That is, they correspond to two-dimensional subspaces of \mathbb{R}^n or, equivalently, to lines in $\mathbb{R}P^{n-1}$.

By Folklore lemma, there are two cases:

1. All the lines pass through one point. Then there are at most $n - 1$ linearly independent of them, which easily yields (1).

2. All the lines belong to some two-dimensional subspace. Then there are at most 3 of them that can be linearly independent, and we have (2).

\qed

References

[DS08] Ana Cannas Da Silva. *Lectures on symplectic geometry*. Springer, 2008.

[EKR61] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. *The Quarterly Journal of Mathematics*, 12(1):313–320, 1961.

[FF86] Peter Frankl and Zoltán Füredi. Non-trivial intersecting families. *Journal of Combinatorial Theory, Series A*, 41(1):150–153, 1986.

[HM67] A. Hilton and E. Milner. Some intersection theorems for systems of finite sets. *The Quarterly Journal of Mathematics*, 18(1):369–384, 1967.

[SW21] Alex Scott and Elizabeth Wilmer. Combinatorics in the exterior algebra and the Bollobás two families theorem. *Journal of the London Mathematical Society*, 104(4):1812–1839, 2021.

[Woo20] Russ Woodroofe. An algebraic groups perspective on Erdős–Ko–Rado. *arXiv preprint arXiv:2007.03707*, 2020.

Email address: GRIMIVANOVC@GMAIL.COM

Email address: SEYDA.KOESE@IST.AC.AT

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA (IST AUSTRIA), KLOSTERNEUBURG, 3400, AUSTRIA