The Design of Sustainable Retrofitting Strategies and Energy-efficiency Optimization for Residential Buildings

Guopeng Li, Yingqing Xu, and Yue Fan
School of Architecture and Fine Arts, Dalian University of Technology, Dalian, China

E-mail: liguopeng@dlut.edu.cn

Abstract. There is a huge stock of existing residential buildings in China, with high energy consumption but low comfort, so it is of great significance to retrofit the residential buildings in order to enhance energy-efficiency of the buildings. In this paper, residential buildings, built between 1980 and 2000 in typical cities of the Northeast China, are defined as the research objects. This project tries to systematically put forward an applicable design method and an overall retrofitting plan of residential buildings. Dealing with the issues of the existing research on practical retrofitting of residential buildings in China, such as short of basic data and statistics, neglect of preliminary design planning and lack of guidance evaluation criteria, this project, based on the classification of residential building envelope system, builds a façade system information modelling database of residential buildings in typical cities of the Northeast China and abstracts a design prototype. Relying on the design prototype, Matrix method is used to organize, discover and edit the retrofit design strategies. BIM - EnergyPlus integrated technique is also introduced to evaluate and optimize the design strategies suitable for reference methods for realizing the sustainable retrofitting and energy efficiency optimization. The findings of this research will extend and improve the role and scientificity of architectural design in the retrofitting of residential buildings.

Keywords: Residential Buildings; Sustainable Retrofitting; Energy-efficiency Optimizations; Design Strategies; Facade Refurbishment

1. Research Background and the Issue
Since the reform and opening up, China's urban housing construction has developed rapidly and achieved tremendous success especially the construction of residential buildings. However, cities in China have a huge housing stock which accounts for more than half of China's existing building area. However, its building performance lags behind the needs. On the one hand, it is of great significance to improve the energy efficiency of existing homes because of the low design standards for energy efficiency in buildings, especially in the Northeast. On the other hand, the designed life is far from the useful life when the functional have expired. So, it is imperative to renovate existing housing, which is the focus of China's construction industry in the new era.

Building energy efficiency is an important part of the national energy conservation and emission reduction work. And the energy-saving renovation of existing buildings is an important part of building energy conservation. However, there are still problems in the retrofitting of existing residential buildings. In the scope of architectural design, the following are mainly reflected in: lack of basic information data; ignoring the previous design planning; and lack of effective design evaluation.
Above problems have led to a single retrofitting method, extensive operation processes, and unclear energy-saving effects. It is difficult to achieve the best comprehensive optimization.

2. Research Definition
There is a lack of research on the collection and arrangement of basic data and the specific application guidance of the design strategy in the actual retrofitting projects of existing residences in China. Therefore, this study proposes that it is necessary to establish a design strategy system which is applicable for complex existing residential situations. And it should be the focus of exploration. Based on the idea of hierarchical and partial reform, this study proposes should focus on the weak links of thermal performance in the various components of the existing residential enclosure structure. It is also important to advance the quantitative evaluation of the existing residential renovation performance to the design phase. This requires the integration of optimization technology methods to optimize the energy efficiency of the building renovation design.

This study takes the retrofitting performance of the existing residential buildings in the Northeast China as an example, selecting the typical urban residences in the northeastern region which constructed between 1980 and 2000 as the research object to explore the selection and optimization methods of green residential design strategies for existing residences. Green retrofitting is the source of design strategies in this topic and is also the goal of energy efficiency optimization.

The ultimate goal of this project is to select green building retrofit design strategies and energy efficiency optimization methods for existing dwellings to provide effective design guidance and reference for designers and related practitioners.

3. Research content

3.1 Construct an information model database for the facade system of old cities in typical cities in Northeast China and establish a design prototype:
- Sort out the constituent elements (walls, windows and balconies) and facade system information (architectural form, shape factor, orientation of each facade, and ratio of window to wall) of the old residential facade system. The corresponding materials, structural forms, structural characteristics (heat preservation measures and thermal performance, presence or absence of special structural nodes, etc.) and degradation degree of the elements of the old residential facade system should be recorded and arranged. The BIM information data is constructed as Carrier of northeastern region typical old house facade system information model database;
- Based on the facade system information model database, some typical old residential design prototypes in Northeast China were established through type selection.

3.2 Reorganization, editing and integration of existing housing renovation design strategies:
- Collect and sort out existing home renovation design strategies.
- Based on the design prototypes of typical old residential buildings in the northeastern region, it carried out exploration and integration of retrofitting design strategies, including: solar direct and thermal collectors (winter), natural lighting (winter, summer), natural ventilation and passive cooling (summer), and other low-cost passive design integration methods (ventilation form module design, double Layers of windows and walls integrated technology applications, etc.).

The retrofitting and design strategy of collation and integration applies BIM information data as a form of expression in the editing process, establishing the corresponding relationship between the retrofitting design strategy and the components of the facade system of the research object.

3.3 The selection, evaluation and optimization of green retrofitting design strategies for old houses in typical cities in Northeast China:
• According to the corresponding relationship between the various components of the façade system and editing design strategies, taking a comprehensive analysis of different factors are required to select green retrofitting design strategy;
• According to the current normative standards or set up energy efficiency promotion goals, use the BIM-EnergyPlus integrated technology optimization platform to form green retrofitting design strategies which are targeted and operational.

4. Research method
To achieve research goals, specific research methods include:

4.1 Field survey and data collection methods based on element sorting and type processing:
The important foundations of this topic are field research and data collection work. The field survey of the existing residential facade system form and status sorts current existing residences (each component of the facade system and the architectural form, shape coefficient, the orientation of each façade and the ratio of window to wall) and type of treatment (materials, structural forms, thermal insulation properties, structural characteristics, and degradation levels) and data collection work. The results of field research and data will be edited by Autodesk Revit Architecture based on BIM information data to form the existing housing renovation information model library material. This provides the basis for further deepening integration and research.

Façade System Information Survey : No. 117-2, Taishan Street
Location: Taishan Street, Shahaikou District, Dalian
Construction year: 1985-1990
2800 households, with a total area of 163,300 m²
Construction company: Dalian City Construction Development Corporation
Peripheral conditions: The supporting facilities are relatively complete, with secondary schools and elementary schools evenly distributed around the area, and large areas of natural greening parks on the west and southeast sides.

Standard floor plan:

Façade	East façade	South façade	West façade	North façade
Wall	Lightweight concrete	Lightweight concrete	Lightweight concrete	Lightweight concrete
Non-insulated hollow brick	Non-insulated hollow brick	Non-insulated hollow brick	Non-insulated hollow brick	
Shape coefficient : 0.31	Window to wall ratio: 18%	Window to wall ratio: 50%	Window to wall ratio: 18%	Window to wall ratio: 30%
Performance	0.8 W/m²K	0.8 W/m²K	0.8 W/m²K	0.8 W/m²K
System Design	Window Form	L-shaped window, double-layered glass	Early stage double glass	Early stage double glass
Performance	3.3 W/m²K	3.3 W/m²K	3.3 W/m²K	3.3 W/m²K
Elements Balc	Form	Continuous plate without insulation	Continuous plate without insulation	
Performance	6.0 W/m²K	6.0W/m²K	6.0W/m²K	

 privile. 1. Façade system information survey (taking No.117-2, Taishan Street, Dalian as an example)
4.2 The hierarchical matrix editing method applied to the consolidation and integration of green retrofitting design strategies:
The research focuses of this project are selecting and designing a suitable retrofitting strategy for the retrofitting site of the facade system and the design integration method between the various components of the facade system. Therefore, this project uses the hierarchical matrix editing methods to organize design strategies, emphasis the progressiveness of retrofitting design, and formulate a hierarchical retrofitting method that transforms the individual elements of the facade system elements into facades.

Measure	Description	Energy	Material	Forecasts	Limitations	Variations
Upgrade windows	Enable to replace existing window frame	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame
Secondary single-leaf glazing	Add-on to the facade frame	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame
Secondary double-leaf glazing	Add-on to the facade frame	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame
Rearranged windows with double-glazed	Add-on to the facade frame	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame
Rearranged windows with triple-glazed	Add-on to the facade frame	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame
Shading roof	Shading devices attached to the facade frame	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame
Studio additives	Wooden frame thermal insulation wall	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame
External insulation	Add-on to the facade frame	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame
Space intervention	Increase the space area for the facade	Abnet	Glazing	Low energy	Additional weight and wind risks for lightweight materials detected	Influence types of glass and frame

Figure 2. Matrix method (taking window retrofitting as an example-left, and its position in the façade renovation system-right)

4.3. Building energy efficiency design optimization method based on BIM-EnergyPlus integrated optimization technology platform:
The important part of the research purpose of this project is the performance evaluation and optimization of the remodeling design strategy by using BIM-EnergyPlus. Based on the data convertibility between the BIM information model file IFC and the EnergyPlus model data file IDF, the BIM information model can be integrated with the EnergyPlus energy consumption simulation to form an integrated technology. At the same time, a genetic algorithm batch generation file can be introduced, which can efficiently promote design interaction between architectural design and performance quantification, the specific process is:

- Adopt the Autodesk Revit Architecture to integrate retrofitting design strategies of existing home prototypes to form a BIM information database, and use the IFC conversion function of Revit to generate an IFC data exchange file of the BIM information model;
- Create IDF files with geometric information through IFC and IDF files. It is necessary to embed a material thermal property database and establish the correspondence between the material name and the parameter. This can search the corresponding parameter according to the material name in the conversion process, and integrate energy-related information into the IDF file with geometric information for EnergyPlus energy consumption simulation;
- Track specific retrofitting sites through genetic algorithms, change geometry and material design parameters in batches within a certain range, generate a variety of design options, and conduct energy evaluation by EnergyPlus to perform verification and verification. Plans that meet the design criteria will go to the next step;
- Transfer the IDF file that meets the requirements of the design standard to the IFCViewer graphical interface through the VRML/DXF format, and then fed back to the Revit Architecture in the IFC/CAD format to be reflected in the building information model to complete the energy efficiency optimization process.
5. The Technical Framework
Combining the research contents and research methods, the technical framework of this project is shown as follows:

6. Summary and Discussions
This research study attempts to explore a design approach to improve energy efficiency in existing residential buildings by utilizing passive design strategies. The study takes existing residential buildings built between 1980 and 2000 in Northern China heating areas as research objects. This study can provide integrated passive design strategies that quantify the impact of residential building facade components refurbishment, as well as decision-making information towards energy-efficiency upgrade for designers and related groups, such as contractors and home owners.

The research methods involve case studies and energy performance calculation. Existing residential buildings in different cities of Northern China heating areas are investigated. And based on the case studies, the early stage of this study has laid a solid foundation for energy performance calculation. The key methods of energy performance calculation rely on computer simulations and physical model testing. These approaches are relatively reliable and repeatable. However, the feasibility of this
method has not been fully verified due to time limits. A comprehensive consideration of inspection process is needed in the future research plan.

7. References

[1] Bauer, M., Mösle, P. & Schwarz, M. 2010 Green Building – Guidebook for Sustainable Architecture. Berlin Heidelberg : Springer-Verlag.
[2] Carletti, C. Sciurpi, F. & Pierangioli, L. 2014 The Energy Upgrading of Existing Buildings: Window and Shading Device Typologies for Energy Efficiency Refurbishment, Sustainability (6): 5354-5377.
[3] Gorse, C. & Highfield, D. 2009 Refurbishment and Upgrading of Buildings. New York: Spon Press.
[4] Häkkinen, T. 2012 Systematic method for the sustainability analysis of refurbishment concepts of exterior walls, Construction and Building Materials (37): 783–790.
[5] Industrial Advisory Ad-Hoc. 2012 Energy-Efficient Buildings PPP beyond 2013: Research & Innovation Roadmap; Energy Efficient Buildings Association: Brussels, Belgium.
[6] Konstantinou, T. 2014 Façade Refurbishment Toolbox: Supporting the Design of Residential Energy Upgrades. Delft University of Technology, Faculty of Architecture and The Build Environment.
[7] Kwok, A. & Grondzik, W. 2007 The Green Studio Handbook - Environmental strategies for schematic design. Oxford: Architectural Press.
[8] Poel, B., van Cruchten, G. & Balaras, C. A. 2007 Energy performance assessment of existing dwellings, Energy and Buildings (39): 393-403.
[9] Ruparathna, R., Hewage, K. & Sadiq, R. 2016 Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings, Renewable and Sustainable Energy Reviews (53): 1032-1045.
[10] Ruut, P., Sverre, H., Stig, G., Jonas, H., Christopher, T., & Kruti, G. 2011 Guidelines for the use of building physical modelling methods and tools in the development of sustainable refurbishment technologies for external walls. SUSREF Deliverable 2.2; 2011. <http://cic.vtt.fi/susref/node/20> [22.12.2015].
[11] Tommerup, H. and Svendsen, S. 2006 Energy savings in Danish residential building stock. Energy and Buildings (38): 618-626.
[12] Xing, Y., Hewitt, N. & Griffiths, P. 2011 Zero carbon buildings refurbishment—A Hierarchical pathway, Renewable and Sustainable Energy Reviews (15): 3229-3236.

Acknowledgments
The project is funded by the National Natural Science Foundation of China (no.51808093, no.51638003) and the Fundamental Research Funds for Central Universities (DUT17RC(4)21).