Use of fermentable carbohydrate in efforts to improve in vitro rumen fermentation products

S M Salamony¹, F M Suhartati², M Bata³, H V Saiya¹, Nurcholis¹, Gardis Andari¹ and N Abdullah³
¹Musamus University, Merauke, Indonesia
²Jenderal Soedirman University, Purwokerto, Indonesia
³Department of Agricultural Technology, Hasanuddin University, Makassar, Indonesia

Email: maya.salamony66@gmail.com

Abstract
Global warming increases as the gas concentration rises into the atmosphere such as N-NH₃, CO₂, CH₄, carbon (c), Florine, Chlorine, and Bromine. One method used to overcome this problem is to use additive feed ingredients containing carbohydrates fermentable. This study aims to examine the use of carbohydrates fermentable in ammonia of rice straw in an effort to improve rumen fermentation products in vitro to the concentration of N-NH₃ and total VFA concentration. The experiment was carried out using 1000 g of dry ingredients of rice straw, 2%carbohydrates fermentable, 4% urea, and 10% water. Carbohydrate fermentable balance in ammoniated rice straw with 40: 60 concentrate and divided into four treatments, namely R₀: rice straw without carbohydrate fermentable, R₁: onggok, R₂: cassava, R₃: bran and R₄ soun waste and five replications. Data were analyzed using Honest Real Difference Test (BNJ) variance. The results showed that the highest VFA concentration was found in group R₄ (47.5 mM) and the lowest in group R₁ (15.0 mM). The highest N-NH₃ concentration was found in group R₂ (9.8 mM) and the lowest in group R₄ (6.0). This study concluded that absorption of VFA in the rumen was much better in group R₁ and absorption of N-NH₃ was much better in group R₂.

1. Introduction
Global warming is one of the most important problems because around 60 - 70 percent of NH₃ comes from ammonia to the atmosphere which causes depletion of the ozone layer so that it can threaten life in the world, due to global warming various adverse effects arise which are problems environment [1]. One way that is used to reduce high gas N-NH₃ and CO₂ are wasted free to air is to use feed additive ingredients containing a source of carbohydrate fermentable in the process of ammoniation the easily fermented height that can bind gas N-NH₃ and CO₂ wasted into the atmosphere [1,2]. Ammonia is a process of preserving feed ingredients by using spontaneous work of lactic acid fermentation under conditions anaerobic. Epiphytic lactic acid bacteria (LAB) carbohydrates fermentable into lactic acid and a small portion is converted to acetic acid [3].

Addition of additives in the form of carbohydrates fermentable such as onggok, cassava, bran, and soun waste are used to accelerate the ammonia process and decrease pH so that acidic conditions can be obtained, and as an energy source for the growth of lactic acid-forming bacteria that can use excess NH₃ when ammonia with urea then the function of urea is to destroy the lignin, cellulose and silica bonding tissue which causes increased ammonia digestibility of rice straw due to loosening of lignocellulose and lignohemellulose bonds and increasing non-protein nitrogen (NBP), protein and non-protein nitrogen (NPN) are needed for the synthesis of rumen microbial proteins [2–6]. Rumen
microbes will hydrolyze non-protein proteins and nitrogen (NPN) into peptides and amino acids that are easily degraded to ammonia (NH$_3$). This easily fermented ammonia is used by rumen microbes as the main nitrogen source for microbial protein synthesis.

2. Methods

Study was conducted at the Laboratory of Animal Food Nutrition Science (ITMT) of the General Sudirman University in Purwokerto from July to September 2015. Proximate analysis: VFA and N-NH$_3$ at the Animal Food Nutrition Science Laboratory (ITMT) Jenderal Sudirman University Purwokerto. The variables measured in the study are rumen fermentation products which include: Total VFA concentration and N-NH$_3$ concentration.

The design used is Complete Random Design (CRD) according to the method [7]. This study consisted of 5 treatments and 4 replications. Each treatment was calculated based on dry matter in proportion to ammoniated rice straw which was added fermentable carbohydrate with 40:60 concentrates, namely R$_0$ control; R$_1$ onggok; R$_2$ cassava; R$_3$ bran; R$_4$ soun waste. The treatment of each sample can be tested as follows:

1) 1000 g BK JP A + 4 % Urea + 10 % Air + No fermentable carbohydrates
2) 1000 g BK JP A + 4 % Urea + 10 % Air + 2 % Onggok
3) 1000 g BK JP A + 4 % Urea + 10 % Air + 2 % Gaplek
4) 1000 g BK JP A + 4 % Urea + 10 % Air + 2 % Dedak
5) 1000 g BK JP A + 4 % Urea + 10 % Air + 2 % Soun waste

2.1. Making ammonia straw flour

Experimental preparation for making ammoniated rice straw flour with the following stages (1) Preparation of the tested material and tools used (2) ammonia material as for the work order: After the 21-day soaked time is finished then the bags of ammonia material opened and aerated under the sun for 2 hours to reduce the water content and ammonia level, then the ammonia material was weighed for each treatment as much as 1 g then the ammonia material was put into the oven at 50$^\circ$C for 24 hours to remove the water content. After drying, the ammoniated material is blended or smoothed to flour after it is filtered to get smoother results.

2.2. Manufacture of ammoniated straw flour

Making McDouglls solution pH 6.8 was composed of 19.8 g NaHCO$_3$, 14 g Na$_2$HPO$_4$ 7 H$_2$O. (2985 g, Na$_2$HPO$_4$ 2H$_2$O), 1.14 g KCl 0.9433 g MgSO$_4$ 7 H$_2$O and 0.08 g CaCl. The ingredients are dissolved with distilled water in Erlenmeyer flask, up to 2 liters, pH is monitored to 6.8, and to determine the pH by means of CO$_2$ gas until the pH reaches 6.8.

2.3. Mathematical model

The mathematical model can be described as follows:

\[Y_{ij} = \mu + \tau_i + \varepsilon_{ij} \]

Description :

- \(Y_{ij} \) = The variable measured from the treatment that gets carbohydrates fermentable at the end of the test
- \(\mu \) = Middle value of treatment variable
- \(\tau_i \) = Effect of treatment of carbohydrates fermentable to-i
- \(\varepsilon_{ij} \) = Error trial
- \(i \) = Number of treatment (1,2,3,4, 5)
- \(j \) = Number of replications (1,2,3, 4).

1. Regarding total VFA levels can be calculated as follows:

\[\text{Total VFA} = (Y - Z) \times \text{N HCl} \times (1000/5) \text{ mM} \]
Information:

Y: ml HCl used for blank titration
Z: ml HCl used for titillation of distillates (samples)

2. Calculation of N-NH₃ levels can be calculated by the formula:

\[
\text{Levels of N-NH}_3 = \text{(ml titran x N H}_2\text{SO}_4 \times 1000/1) \text{ mM.}
\]

Table 1. Nutrient composition of carbohydrates fermentable used.

No	Bahan Pakan	R₀JPA	R₁Onggok	R₂Gaplek	R₃Dedak	R₄Soun Waste
1	Crude protein	8.9	1.9	3.34	12.5	50.82
2	Dry Materials	52.47	9.28	7.48	9.10	-
3	Crude fat	-	0.3	1.16	8.20	4.93
4	Rough Fiber	-	8.9	5.50	8.00	2.32
5	Ash	15.3	2.4	2.34	-	-
6	TDN	54.17	8.3	-	64.30	-
7	Organic materials	84.7	-	-	-	-
8	NDF	89.8	-	-	-	-
9	ADF	15.0	-	-	-	-
10	BETN	-	-	-	50.9	91.41

Source: * R₀ JPA [8]; **R₁ Onggok [9]; *** R₂ Gaplek[10]; ****R₃ Dedak[4] and ***** R₄ Soun waste [11].

3. Results and discussion

3.1. Production of volatile fatty acid (vfa) rumen

VFA is the end product of carbohydrate feed metabolism in the rumen which is the main energy source for ruminants and also rumen microbes. In addition, VFA is also a carbon framework for the formation of microbial proteins. The average VFA production in various treatments is shown in Table 2. The results of the variance analysis showed that the treatment had a very significant effect (P <0.05) on VFA production.

Table 2. Average production of VFA, N-aNH₃ in various treatments

Data	NH₃ (mM)	VFA (Mm)
R₀	9.5ᵃ	37.5ᵇ
R₁	8.3ᵃ	15.0ᵇ
R₂	9.8ᵃ	27.5ᵇ
R₃	9.5ᵇ	40.0ᵃᵇ
R₄	6.0ᶜ	47.5ᵃ

Superscript: Numbers followed by letters that are not the same in the column show the test results that are significantly different (P <0.05).

Table 3. Average results of measurements of carbohydrates fermentable in ammoniation of rice straw with concentrations to total VFA concentrations in each treatment.

Treatments	Replication						Total	Average	Standard Deviation
	1	2	3	4					
R₀	40	40	40	30			150	37.5	5.0
R₁	20	10	10	20			60	15.0	5.0
R₂	30	20	30	30			110	27.5	5.0
R₃	40	50	40	30			160	40.0	5.8
R₄	50	50	40	50			190	47.5	8.2
Total	670						33.5		SD of sample =12.7
The results of the real honest difference test showed that VFA production in R4 glassy waste (47.5) was higher (P <0.05) than R0 and R3 but the same (P> 0.05) with R1 and R2. The high total VFA production in the treatment of R4 soun waste (47.5) compared to VFA produced from R0 and R3 reflects the amount of carbohydrate ration material that is easily fermented by rumen microbes for microbial protein formation or in other words the addition of soun waste as a source the initial energy used by rumen microbes to ferment structural carbohydrates such as cellulose and hemicellulose. However, when viewed from R1 and R2 containing additives onggok and cassava, it tends to be higher than R4. This causes the activity of microorganisms in R1 and R2 to be more optimal so that the utilization of VFA in both is better than R4. Soun waste may contain chemicals or preservatives that interfere with the activity of rumen microorganisms so that their activities are not optimal which ultimately disrupts the digestion process of cellulose and hemicellulose and other nutrients. [8]

This is different from rice bran which has lower fermentability, which tends to cause slower energy availability. Aside from being the main energy source for landlords, VFA is also an energy source for rumen microorganisms and their high and low levels are highly dependent on carbohydrate fermentability in the substrate or feed.

Good VFA levels for optimum rumen microbial growth are around 80–160 mM (Toha Sutardi, 1979). In this study, total VFA production ranged from 15.0. mM and 47.5 mM or was in the range below normal to support rumen microbial growth [9]. Several factors that influence the concentration of VFA include microbial utilization, absorption, and fermentability of carbohydrates [6].

3.2. N-NH₃ concentration

The average concentration of NH₃ on various additives in rice straw ammonia is shown in Table 2. The results of the variance analysis showed that the treatment had a very significant effect (P <0.01) on the concentration of N-NH₃ (Table). The production of NH₃ at R4 is the lowest (P <0.01) compared to R0, R1, R2, and R3. Between R0, R1 and R2 showed no significant difference (P> 0.05).

Table 4. Average results of measurement of carbohydrate use fermentable in ammoniation of rice straw with concentrations to N-NH₃ concentrations in each treatment.

Treatments	Replications	Total	Average	Standard Deviation
	1 2 3 4			
R0	10 9 10 9	38	9.5	0.6
R1	10 9 9 10	38	9.5	0.6
R2	9 10 10 10	39	9.8	0.5
R3	9 8 8 8	33	8.3	0.5
R4	6 6 6 6	24	6.0	0.0
Total	6172	38.6	SD sample = 1.5	

Real honest difference test showed that the production of N-NH₃ in R2 (cassava) was highest (P <0.05) compared to R0 (Ammoniated Straw without Carbohydrates Fermentable), R1 (onggok), R3 (rice bran) and R4 (soun waste) but between R1 (onggok) and R4 (soun waste) were not significantly different (P> 0.05) presented in table 2. Increased ammoniated rice straw added with cassava (R2) caused an increase in N-NH₃ concentration. This occurs because of the increase in NPN contained in ammoniated rice straw and all NPNs degraded by microbes in the rumen into concentrations of N-NH₃ and CO₂. This is consistent with the opinion which states that N-concentration increases NH₃. The rumen is affected by an increase in urea (NPN). In addition, this increase occurs because of the activity of microorganisms

4. Conclusion

Based on the results of the study it can be concluded that:

The use of carbohydrates fermentable in rice straw in the ammoniation process with the balance of ammoniated rice straw: 40: 60 percent concentrate has not been able to influence the value of N-NH₃
and Soun Waste is a carbohydrate source *fermentable* tends to increase the total rumen VFA concentration *in vitro*.

References

[1] Taiwo A A, Adebowale E A, Greenhalgh J F D and Akinsoyinu A O 1995 Techniques for trapping ammonia generated from urea treatment of barley straw *Anim. Feed Sci. Technol.* **56** 133–41

[2] Sarwar M and Khan M A 2004 Effect of organic acids or fermentable carbohydrates on digestibility and nitrogen utilisation of urea-treated wheat straw in buffalo bulls *Aust. J. Agric. Res.* **55** 223–8

[3] Yokoyama M T and Johnson K A 1988 Microbiology of the rumen and intestine *Rumin. Anim. Dig. Physiol. Nutr.* **125** 44

[4] Susetyo S, Kismono I and Soewardi B 1969 Hijauan makanan ternak *Direktorat Peternak. Rakjat. Direktorat Djendral Peternakan. Dep. Pertanian, Jakarta*

[5] Komar A 1984 Teknologi Pengolahan Jerami Sebagai Makanan Ternak *Dian Grahita. Indones. Bandung*

[6] Satter L D and Roffler R E 1981 Influence of nitrogen and carbohydrate inputs on rumen fermentation *Recent developments in ruminant nutrition* (Butterworths London) pp 115–39

[7] Steel R G and Torrie J H 1993 Principles and Procedures of Statistics. Terjemahan oleh B. Sumantri *Prinsip dan Prosedur Stat. Suatu Pendekatan Biometrika*

[8] Wanapat M, Sundstøl F and Garmo T H 1985 A comparison of alkali treatment methods to improve the nutritive value of straw. I. Digestibility and metabolizability *Anim. Feed Sci. Technol.* **12** 295–309

[9] Sutardi T 1979 Ketahanan protein bahan makanan terhadap degradasi oleh mikroba rumen dan manfaatnya bagi peningkatan produktivitas ternak *Prosiding Seminar Penelitian dan Penunjang Peternakan, LPP. Bogor. Buku vol 2* pp 91–103

[10] Parakkasi A 1999 *Ilmu nutrisi dan makanan ternak ruminan* (Penerbit Universitas Indonesia)

[11] Ridla M 2003 Pengetahuan Bahan Makanan Ternak *Lab. Teknol. Pakan. Inst. Pertan. Bogor*, Bogor