SURGERY ON LINKS WITH UNKNOTTED COMPONENTS AND THREE-MANIFOLDS

YU GUO† AND LI YU*

Abstract. It is shown that any closed three-manifold \(M \) obtained by integral surgery on a knot in the three-sphere can always be constructed from integral surgeries on a 3-component link \(L \) with each component being an unknot in the three-sphere. It is also interesting to notice that infinitely many different integral surgeries on the same link \(L \) could give the same three-manifold \(M \).

1. Introduction

It is well known that every closed, orientable, connected 3-manifold \(M \) can be obtained by integral surgery on a link in \(S^3 \). Moreover, one may always find a surgery presentation for \(M \) in which each component of the surgery link is an unknot (see [1]). For convenience, we use the word *simple* \(n \)-link to denote an \(n \)-component link with all its components being unknots in \(S^3 \). Then the minimal number \(\nu(M) \) of the components in all integral simple \(n \)-link surgery presentations for \(M \) is a topological invariant of \(M \), that is:

\[
\nu(M) := \min \{ n \mid L \text{ is a simple } n\text{-link in } S^3 \text{ and we can get } M \text{ by doing an integral surgery on } L \}
\]

For example: \(\nu(S^3) = 0 \) and \(\nu(L(p, 1)) = 1 \) where \(L(p, 1) \) is a lens space \((p \geq 2)\). However, it is not easy to compute \(\nu(M) \) in general. In particular, let \(S^3_K(m) \) denote the 3-manifold got from integral surgery on a knot \(K \subset S^3 \) with surgery index \(m \). Then it is easy to see that \(\nu(S^3_K(m)) \leq u(K) + 1 \), where \(u(K) \) is the unknotting number of \(K \). But in fact, We can prove the following:

Theorem 1.1. For any knot \(K \subset S^3 \) and any integer \(m \), \(\nu(S^3_K(m)) \leq 3 \), i.e. we can always construct \(S^3_K(m) \) by doing an integral surgery on a simple 3-link in \(S^3 \).

2000 Mathematics Subject Classification. Primary 57M25, 57M27; Secondary 57M05.
Remark: In [2], D.Auckly defined a topological invariant called surgery number of a closed 3-manifolds. By his definition, the surgery number of $S^3_K(m)$ is 1 for any knot K. The $\nu(M)$ defined above can be considered as another type of surgery number which is more subtle than Auckly’s in the sense that $\nu(S^3_K(m))$ could be different for different knot K.

The geometric and topological properties of $S^3_K(m)$ have been studied intensively, which reveals much topological information of the knot K itself. Theorem (1.1) ought to be useful to understand the geometry and topology of $S^3_K(m)$ and hence K in the future.

2. Turn knot into simple 2-links

In this section, we will introduce some special operations on a knot diagram called skein-move. We will see that the skein-move along with plane isotopies and the Reidemeister moves can turn any knot diagram on a plane into the diagram of a simple 2-link.

First of all, for any knot $K \subset S^3$, we can use plane isotopy and Reidemeister moves to turn any diagram of K into the form that all crossings in the diagram are on a short arc of K.

The idea is: starting from any diagram D of K, we consider D as the closure of a 1-tangle T. Then we label the crossings on T according to their first appearance when we travel from the bottom end A of T to the top end B of T, see figure [1] for example. Notice that we will meet each crossing of T twice in the process, but when we meet a crossing for the second time, we will not relabel it or count it.

Next, extend the tangle horizontally via a line from A to A'. See the figure [2] for example.

Denote the crossings by z_1, \ldots, z_n according to their labels. Then, start from the crossing z_1, we can extend a small segment of the strand (overstrand or understrand) at z_1 down along the arc of T that connects z_1 and the bottom end A, until it meet the line segment AA'. To be more precise, when we travel along the tangle starting from A and meet the crossing z_1 at the first time, if we are standing on the understrand of z_1, we extend the overstrand of z_1 down via the process described. Otherwise, we extend the understrand of z_1 down (See the figure [2]). Obviously, this will reduce the number of crossings of the
Figure 1. Label the crossings of a tangle

Figure 2. tangle

tangle above the line segment AA' by 1. Next, we do the same extension process to strands at z_2, \ldots, z_n one by one according to their labeled order. When we finish this, all the crossings of the tangle will be moved to the segment AA'. Then connect B and A' via a simple arc far away from T, we get a diagram of K in the required form. This form of knot diagram is called well-posed.
Figure 3. Use skein-move to turn a knot diagram into a simple 2-link

Remark: The Dowker notation (see [3]) of a well-posed knot diagram with m-crossings has the property that: in the two numbers associated to each crossing, one is $\leq m$, the other is $\geq m$.

Next, we orient the knot from A' to A. The general picture of a well-posed knot diagram is like figure 3. Notice that, we can always use the skein move defined in figure 3 to turn a well-posed knot diagram into a two-component link \mathcal{L}. And it is easy to see that each component in \mathcal{L} is a diagram of the unknot, i.e. the link \mathcal{L} is a simple 2-link (see figure 4 for an example).

Conversely, given a diagram of simple 2-link \mathcal{L}, we can use Reidemeister moves and the skein move to turn it into a knot diagram.

Remark: The well-posed diagram for a knot K is not unique, nor is the corresponding simple 2-link.
3. 3-MANIFOLDS FROM INTEGRAL SURGERY ON A KNOT

Suppose K is a knot in S^3, let $N(K) \subset S^3$ be a small tubular neighborhood of K and $E(K) := S^3 - N(K)$. Up to isotopy, $\partial E(K)$ has a canonical longitude l which is homologically trivial in $S^3 - K$. And let m be a meridian of $\partial E(K)$ which bounds a disk in $N(K)$. Then doing (p, q)-surgery on K is first removing $N(K)$ from S^3 and then glue back a standard solid torus $S^1 \times D^2$ via a homeomorphism of $h : \partial D^2 \times S^1 \rightarrow \partial E(K)$ where h maps the $\partial D^2 \times 0$ to a curve on $\partial E(K)$ which is isotopic to $p \cdot m + q \cdot l$ on $\partial E(K)$. The 3-manifold we get is denoted by $S^3_K(p, q)$. A (p, q)-surgery is called integral if $q = \pm 1$. Moreover, $S^3_K(p, q)$ is always an orientable 3-manifold.

Remark: We do not need to orient the knot K in the surgery since the topological type of $S^3_K(p, q)$ depends only on the knot K.

Moreover, we can similarly define surgery on any link $L \subset S^3$. The surgery is called integral if the surgery on each component of L is integral.

Theorem 3.1 (Lickorish[4] and Wallace[5]). Every closed orientable 3-manifold can be obtained from S^3 by an integral surgery on a link in S^3. Moreover, each component of the link can be required to be an unknot in S^3.

Integral surgery on a link $L = L_1 \cup \cdots \cup L_m$ decides an integer n_i for each component L_i in L, which is called a framing of L. A link L with a fixed framing will be called framed link. So we can also say that any closed orientable 3-manifolds can be got from a surgery on a framed link in S^3.
Surgery on different framed links may give the same 3-manifold. Following are two elementary operations on a framed link L called Kirby moves (see [6]) which do not change the corresponding 3-manifold.

K1 Move: Add or delete an unknotted circle with framing ± 1 which belongs to a 3-ball that does not intersect the other components on L.

K2 Move: Slide one component L_1 onto another component L_2. Namely, let L_2^* be a longitude of the tubular neighborhood of L_2 whose linking number with L_2 is the framing index n_2 of L_2. Now replace L_1 by $L_1' = L_1 \# b L_2^*$ where b is any band connecting L_1 to L_2^* and disjoint from the other components of L. The framing of L_1' is $n_1 + n_2 + 2 \text{lk}(L_1, L_2)$ where $\text{lk}(L_1, L_2)$ is the linking number of L_1 and L_2 in S^3 with respect to some orientations of them. The rest of the framed link L remains unchanged. To compute $\text{lk}(L_1, L_2)$, we orient L_1 and L_2 in such a way that together they define an orientation on L_1'. So different orientations of L_1 and L_2 may end up with different framed links (see [7]).

Moreover, it is shown in [6] that any two framed links which give the same 3-manifolds can always be transformed into each other via a finite number of Kirby moves. We can use this to show the following lemma.

Lemma 3.2 (proposition 3.3 [7]). *If in a framed link L a component L_0 is an unknot with framing zero which links only one other component L_1 geometrically once, then $L_0 \cup L_1$ may be moved away from the link L without changing the resulting 3-manifold and framings of other components, and cancelled (See the following figure 7).*
From the proof of theorem 1.1 we can see the following:

1. The diagrams for L_1, L_2 have no self crossings and the geometric intersection number of L_1 or L_2 with a 2-disk bounded by
We can fix the framing on one of the L_1, L_2 to be 1 (or -1) in the simple 3-link.

(3) There are infinite different framings on a fixed simple 3-link that can give the same 3-manifold $S^3_K(m)$!

(4) We can require the linking number $lk(L_1, L_2) = 0$ in the simple 3-link by doing second Kirby moves to L_1 and L_0 in the figure.

Remark: Obviously, integral surgeries on simple 3-links will give lots of 3-manifolds other than $S^3_K(m)$. We can change the way how L_0 is linked to L_1, L_2 and the surgery index of L_0. So theorem may be useful for us to construct some interesting examples like integral homology 3-spheres other than $S^3_K(1)$.

Corollary 3.3. Suppose M is constructed from integral surgery on a n-component link \mathcal{L} in S^3, then $\nu(M) \leq 3n$.

Proof. Apply the argument in the proof of theorem to each component of \mathcal{L}.

Obviously, if $\nu(M^3) = 1$, M^3 must be lens space. But it is not clear how to classify closed 3-manifolds M^3 with $\nu(M^3) = 2$. In particular, we can ask the following question.

Question 1: For what knot K and integer m, $\nu(S^3_K(m)) \leq 2$?

There are some obvious candidates for the question. For example: if the unknotting number of K is 1, $\nu(S^3_K(m)) \leq 2$ for any m. But it is not clear how to give a complete answer to this question. In particular, it is interesting to know whether $\nu(S^3_K(m)) \leq 2$ for all knot K and $m \in \mathbb{Z}$.

Also, it is natural to consider $\nu(S^3_K(p, q))$ for $p/q \notin \mathbb{Z}$. For example when K is the unknot, $S^3_K(p, q)$ is the lens space $L(p, q)$. Suppose the continued fraction decomposition of p/q is $[x_1, \ldots, x_n]$, where

$$[x_1, \ldots, x_n] = x_1 - \frac{1}{x_2 - \frac{1}{\cdots - \frac{1}{x_n}}}$$
then $L(p, q)$ has a surgery presentation as shown in the figure 8. So $
u(L(p, q)) \leq n$. Notice that there are examples for $p/q = [x_1, \ldots, x_n]$ with $n > 3$ but $\nu(L(p, q)) \leq 3$. In fact, in [8], it is shown that $L(23, 7)$ could be obtained by -23-surgery on the $(11, 2)$-cable knot about the trefoil knot, so $\nu(L(23, 7)) \leq 3$ while $23/7 = [4, 2, 2, 3]$. More examples of getting lens space via integral surgeries on knots in S^3 can be found in [8, 9, 10, 11].

Question 2: Does there exist an integer C such that $\nu(L(p, q)) \leq C$ for all $p, q \in \mathbb{Z}$?

Remark: [12] also gave a way of presenting $S^3_K(p, q)$ by an integral surgery on some link. But we will not get any universal bounds of $\nu(S^3_K(p, q))$ for all K and (p, q) via the method in [12].

Theorem [11] provides an interesting way to see $S^3_K(m)$ via surgery diagrams. From the proof of theorem [11] we can see that the topological information of $S^3_K(m)$ is completely encoded in how L_1 and L_2 are linked together and the surgery index m. Notice all the crossings in the diagrams of $L_1 \cup L_2$ are between L_1, L_2. So similar to Dowker notation for knots, we can use a sequence of numbers to represent $L_1 \cup L_2$. This could be interesting in its own sense.

References

[1] W.B.Raymond Lickrish, *an introduction to knot theory*, Springer-verlag, GTM 175, 1997.
[2] David Auckly, *surgery numbers of 3-manifolds: a hyperbolic example*, AMS/IP Studies in Advanced Mathematics, Volume 2,1997(Part1).
[3] Colin C. Adams, *the knot book*, American mathematical society, providence, Rhode Island, 2004.
[4] W.B.R. Lickorish, *A representation of orientable combinatorial 3-manifolds*, Ann. Math. (2) 76(1962), 531–540.
[5] A.D.Wallace, *Modifications and cobounding manifolds*, Canad. J. Math. 12 (1960), 503 - 528.
[6] R. Kirby, *A calculus for framed links in S^3*, Invent. Math. 45 (1978), 36-56.
[7] Nikolai Saveliev, *Lectures on the topology of 3-manifolds, an introduction to the Casson invariant*, Walter de Gruyter, Berlin, New York, 1999.
[8] J. Bailey and D. Rolfsen, *An unexpected construction of a lens space*, Pacific J. Math. **71** (1977), 295-298.
[9] R. Fintushel and R. J. Stern, *Constructing lens spaces by surgery on knots*, Math Z. **175** (1980), 33-51.
[10] S. A. Bleiler and R. A. Litherland, *Lens spaces and Dehn surgery*, Proc. Amer. Math. Soc. **107** (1989), 1127-1131.
[11] Y. Q. Wu, *Cyclic surgery and satellite knots*, Topology Appl. **36** (1990), 205-208.
[12] Dale Rolfsen, *rational surgery calculus: Extension of Kirby’s theorem*, Pacific journal of mathematics vol 110, No.2, 1984.
[13] Dale Rolfsen, *knots and links*, Publish or Perish, Berkeley, CA, 1976.
[14] C.McA. Gordon and J.Luecke, *knots are determined by their complements*, Bulletin of the American mathematical society, Volume 20, 1989.

†Department of Mathematics, Nanjing University, Nanjing, 210093, P.R.China
E-mail address: finier@yahoo.com.cn

*Department of Mathematics and IMS, Nanjing University, Nanjing, 210093, P.R.China
E-mail address: yuli@nju.edu.cn