DIRECT DETECTION OF GIANT CLOSE-IN PLANETS AROUND THE SOURCE STARS OF CAUSTIC-CROSSING MICROLENSING EVENTS

DAVID S. GRAFF AND B. SCOTT GAUDI
Departments of Astronomy and Physics, The Ohio State University, Columbus, OH 43210, USA

ABSTRACT

We propose a direct method to detect close-in giant planets orbiting stars in the Galactic bulge. This method uses caustic-crossing binary microlensing events discovered by survey teams monitoring the bulge to measure light from a planet orbiting the source star. When the planet crosses the caustic, it is more magnified than the source star; its light is magnified by two orders of magnitude for Jupiter size planets. If the planet is a giant close to the star, it may be bright enough to make a significant deviation in the light curve of the star. Detection of this deviation requires intensive monitoring of the microlensing light curve using a 10-meter class telescope for a few hours after the caustic. This is the only method yet proposed to directly detect close-in planets around stars outside the solar neighborhood.

INTRODUCTION

One of the scientific goals of microlensing searches towards the Galactic bulge is the detection of planets orbiting the primary lenses. These searches are conducted in the following manner: One of the microlensing searches, EROS (Glicenstein 2000) or OGLE (Udalski et al. 1994) or the now terminated MACHO program (Alcock et al. 1996) launches an electronic alert of an ongoing microlensing event. These events are then monitored by follow-up groups such as the PLANET (Albrow et al. 1998), MPS (Rhiie et al. 1996), or GMAN (Alcock et al. 1997d) collaborations. While the searching teams typically monitor stars ~ once per day, the follow-up campaigns, with a network of telescopes around the globe, sample much more frequently. A planet orbiting the primary lens with semi-major axis a in the “lensing zone”, $0.6 - 1.5 R_E$ (Mao & Paczynski 1991; Gould & Loeb 1992), where the Einstein radius, R_E is

$$R_E = \left(\frac{4GM}{c^2} \frac{D_L D_{LS}}{D_S} \right)^{1/2},$$

may cause detectable deviations from the standard microlensing light curve (see Sackett 1999 for a review). Here, D_L, D_S, and D_{LS} are respectively the distances to the lens, the source star, and between the lens and source stars. For a bulge source lensed by a 0.3 M_\odot lens, the lensing zone, where one is most sensitive to planets, is in the range 1.2 – 3.2 AU.

In this paper, we discuss another means by which a microlensing follow-up experiment may detect a planet, in this case a giant planet close ($a \lesssim 0.1$ AU) to the source star. Confounding prior expectations, such close-in planets are found to be relatively common. They have been detected by several collaborations (Mayor & Queloz 1995, Cochran et al. 1997, Noyes et al. 1997) see Marcy & Butler 1998 for a review) and can be found around $\sim 1\%$ of all stars (Marcy & Butler 2000).

Since direct detection is most sensitive to planets close to the source ($a \lesssim 0.1$ AU), it is complementary to the traditional microlensing light curve deviation method which can only detect planets in the lensing zone ($a \sim 1 – 3$ AU). Unlike other methods of planet detection, such as radial velocity measurements or astrometric shifts\(^1\), this method can be used to directly detect planets in the bulge of our Galaxy, thus allowing us to compare planet formation under conditions different from those in the solar neighborhood.

1.1. Caustics

All strong gravitational lenses produce “caustics,” regions in which a point source is (formally) infinitely magnified. In reality, no source is truly point-like, and the passage of the source through the caustic allows us to spatially resolve the source. Already, limb-darkening profiles have been measured in sources as far away as the Small Magellanic Cloud (Alfonso et al. 2000), and it has been proposed that star-spots could be imaged when a source passes through a caustic (Heyrovsky & Sassevlov 2000, Hart et al. 2000, Bryce & Hendry 2000). In this paper, we examine the possibilities of directly detecting light from a planet as it passes through a caustic.

There are several different types of caustics depending on the lens configuration. A single point lens has a point caustic corresponding to perfect alignment between the source and the lens, when the image of the source is the Einstein ring. These events are rare since they require perfect alignment. In the case of binary lenses, the caustics form a network of “folds” and “cusps.” The caustic structure of binary lenses is cataloged in Schneider & Weiss (1986) and Erdl & Schneider (1993).

Because caustics form closed curves, a caustic light curve generically has pairs of crossings. The time of the second caustic crossing can often be predicted days in advance, allowing for scheduling of detailed monitoring of the caustic crossing.

The best studied caustic crossing event, which allows us to illustrate the technology, is MACHO-98-SMC-1 (Al-
so that, during the caustic crossing, the fractional deviation of the light curve due to the planet is
\[
\delta_p \simeq 1\% p \left(\frac{R_p}{R_{\text{Jup}}} \right)^{1.5} \left(\frac{0.05\text{AU}}{a} \right)^2 \left(\frac{M_{\text{Lens}}}{1M_\odot} \right)^{1/2} \phi.
\] (5)

The duration of the planetary caustic crossing will be quite brief. The typical planet diameter crossing time scale is
\[
t_p = 12 \frac{R_p}{R_{\text{Jup}}} \frac{100 \text{ km s}^{-1}}{v_\perp} \text{ minutes}
\] (6)
where \(v_\perp\) is the component of the velocity of the planet normal to the caustic and the line of sight. This velocity is made up of two components, the velocity of the planet around its star, and the velocity of the star relative to the caustic. In addition, the planet will not be uniformly illuminated and thus the width of crossing will depend on the star/planet geometry at the time of the crossing. For example, the caustic crossing from a “quarter-moon” planet with the terminator parallel to the caustic will have an effective width that is two times smaller than that arising from a “quarter-moon” planet with the terminator perpendicular to the caustic.

Thus, we see that direct detection of a giant close-in planet requires relative photometry accurate to better than 1% and a sampling frequency of minutes. The Poisson noise for \(I = 19.7\) (a G0V star at 8 kpc with 1 mag of extinction), assuming an overall throughput of 0.1 is
\[
\sigma \simeq 0.5\% \left(\frac{t_{\exp}}{1 \text{ min.}} \right)^{-1/2} \left(\frac{D}{10 \text{ m}} \right)^{-1}
\] (7)
where \(t_{\exp}\) is the total exposure time and \(D\) is the diameter of the telescope. Therefore, for \(t_p = t_{\exp} = 12\) min., the planet will be detected with a signal-to-noise of \(\delta/\sigma \approx 6\) for a 10 meter telescope.

In addition to the caustic crossing, one may be able to detect the planet in the pre-crossing phase. Ultimately, the magnification of the planet inside the crossing depends on the geometry of the lens, but can reach a factor of typically around 10. In this case, before the planet crosses the caustic, the source will be approximately 0.1% brighter than after the caustic crossing. This brightening lasts much longer than the caustic crossing, \(\Delta t \approx 20\) hours \((a_\perp/0.05\text{AU})(100\text{km s}^{-1}/v_\perp)\) where \(a_\perp\) is the planet-star distance normal to the caustic. Since of order 50 times more measurements will be taken of this deviation than of the caustic, but the deviation is of order 10 times smaller, the pre-caustic component will have a signal-to-noise of roughly half that of the planetary caustic crossing.

This level of photometric precision and temporal sampling will challenge present day microlensing searches, but may be possible with future microlensing follow-up searches.

3. SAMPLE LIGHT CURVES

In the previous section, we derived simple scaling relations to estimate the magnitude of the deviation one might expect during a caustic-crossing event from a close-in giant planet orbiting the source. We now present a few sample...
light curves to confirm our estimates from § 2 and illustrate the effect.

FIG. 1 Top panel: Magnification as a function of time from the primary caustic crossing. The lens is an equal-mass binary at 6 kpc with total mass 1 M_\odot. The source system is an analog of HD 209458 at 8 kpc: a G0V primary with a planet of radius 1.27 R_{Jup} and semi-major axis $a = 0.0467$ AU. The top-left inset shows the geometry of the source system trajectory: the dashed line shows the path of the primary while the dotted line is the path of the secondary. The solid line is the caustic. The right inset shows a blow-up of the primary caustic crossing, and 0.5 – 1.0% in the ~ 30 min. interval during which the planet is crossing the caustic.

To illustrate the diversity of features possible, in Figure 2 we show light curves one would expect under various assumptions about the lens and source systems. If the planet is very close to the primary $a < 0.03$ AU, relatively large $R_p > 1.5$ Jup, or the lens has a low mass $M_{\text{lens}} < 0.3 M_\odot$, then the magnitude of the deviation can be quite substantial $\delta_p \gtrsim 1\%$, and may be detectable by current microlensing follow-up surveys (at least for bright sources). Also, if the period of the planetary orbit is smaller than the time it takes for diameter of the orbit to traverse the caustic, then the planet will cross the caustic three (or more) times. As we discuss in § 4, this would allow one to extract additional information about the planet.

FIG. 2 The right panels show the fractional deviation from the single-source (i.e. no planet) light curve as a function of time from the primary caustic crossing for three different assumptions of the lens and/or planet parameters. In all cases, the primary is a G0V star at 8 kpc. For each panel, the geometry of the source system trajectory is shown to the left. Line types are the same as in Fig. 1. Top panels: Lens mass $M_{\text{lens}} = 0.3 M_\odot$, lens distance $D_L = 7$ kpc, lens transverse velocity $v = 60$ km s$^{-1}$. The planet has a radius $R_p = 1.27 R_{\text{Jup}}$ with semi-major axis $a = 0.0467$ AU (as in Fig. 1). Middle panels: $M_{\text{lens}} = 0.3 M_\odot$, $D_L = 6$ kpc, $v = 150$ km s$^{-1}$, $R_p = 1.5 R_{\text{Jup}}$, $a = 0.03$ AU. Bottom panels: $M_{\text{lens}} = 1.0 M_\odot$, $D_L = 2$ kpc, $v = 20$ km s$^{-1}$, $R_p = 1.5 R_{\text{Jup}}$, $a = 0.03$ AU.

4. DISCUSSION

The current microlensing follow-ups are only marginally able to detect planets around bright source stars by this method. They will only detect the closest in, largest, slowest moving giant planets around relatively bright sources, with low signal to noise and only a handful of photometric measurements. However, these follow-up experiments currently use only 1 meter class ground based telescopes and are further hindered by their relatively poor seeing in extremely crowded fields. A follow-up program involving 1 night on a 10m class telescope with adaptive optics should be able to provide millimagnitude photometry of 19th magnitude bulge sources with 5 minute time resolution, and have a good chance of finding a close in giant planet around the source if one is there to be found.

How many planets per year could be detected? Currently, ~ 50 events are alerted toward the Galactic bulge each year; future upgrades may provide as many as ~ 500
alerts per year. Caustic crossing binaries comprise \(\sim 7\% \) of all events (Udalski et al. 2000). Assuming that the fraction of stars in the bulge with close planets is similar to the local neighborhood, \(\sim 1\% \), than we would expect to detect of order 1 planet per year. This would require a total \(\sim 400 \) hours per season on 10-m-class telescopes.

Although the simple detection of a planet around a bulge star is interesting, ultimately, one would like to measure physical parameters of the planet: its radius, semi-major axis, and albedo. Unfortunately, the observables are complicated functions of not only these parameters, but also the inclination and phase of the orbit and the mass and distance to the lensing system. For example, the time scale of the caustic crossing depends on not only the radius of the planet, but also on the projected velocity of the planet around its star and the phase of the planet (a crescent planet will appear to have a smaller radius than a full planet).

Given excellent data on one caustic crossing, it would be possible to determine the effect of the phase of the planet on the width of the caustic crossing from the shape of the crossing alone. The required level of data will probably not be possible with a 10-meter class telescope, but should be possible with a 100-meter telescope such as the OWL (Glicenstein et al. 2000). Even then, it still will not be possible to recover the velocity of the planet, and therefore impossible to measure its radius. However, if the transverse velocity of the star normal to the caustic is smaller than the velocity of the planet, it is possible that there will be three caustic crossings. If all three are detected, each with its own time and its own time scale, then the orbit can be solved, and the radius determined, even without inferring the planetary phase from small fluctuations in the light curve.

Irrespective of whether or not the orbit can be solved, planetary caustic crossings act like a telescope with tremendous angular resolution perpendicular to the caustic. The angular dependence of the planetary albedo may be observable. In the future, enormous telescopes such as the OWL may be able to achieve enough temporal resolution to see the bands and red spot on a Jupiter around a star clear across the Galaxy.

5. CONCLUSIONS

We have shown that the presence of a giant close-in planet around the source star of a caustic crossing microlensing event could generate an order 1\% deviation in the light curve. This deviation would be detectable with a 10 meter class telescope making measurements every few minutes over the course of a night. In some cases, the planet will transit the caustic more than once, allowing for complete solution of the orbit and a determination of the radius and albedo of the planet. Follow-up with 100 meter class telescopes may allow for resolution of limb darkening and spots or bands on the surface of these planets.

This paper profitted from useful discussions with Pierre Vermaak, Andrew Gould and Penny Sackett. This work was supported in part by grant AST 97-27520 from the NSF. B.S.G. acknowledges the support of a Presidential Fellowship from the Ohio State University.

REFERENCES

Afonso, C., et al. 1998, A&A, 337, L17
Afonso, C., et al. 2000, ApJ, in press
Albrow, M., et al. 1998, ApJ, 509, 687
Albrow, M., et al. 1999, ApJ, 512, 619
Albrow, M., et al. 2000, in preparation
Alcock, C., et al. 1996, ApJ, 463, L67
Alcock, C., et al. 1997, ApJ, 491, 436
Alcock, C., et al. 1999, ApJ, 518, 44
Alcock, C., et al. 2000, ApJ, submitted [astro-ph/9907369]
Bryce, H. & Hendry, M. 2000, in “Microlensing 2000: A New Era of Microlensing Astrophysics”, ed. P. Sackett & J. Menzies, to be published in ASP Conference Proceedings Series
Charbonneau, D., et al. 2000, ApJ, 529, L45
Cochran, W.D., et al. 1997, ApJ, 483, 457
Erdl, H., & Schneider, P. 1993, A&A, 268, 453
Gaudi, B.S. 1998, ApJ, 506, 533
Glicenstein, J.-F. 1998, SPIE, 3352, 778
Glicenstein, J.-F. 2000, in “Microlensing 2000: A New Era of Microlensing Astrophysics”, ed. P. Sackett & J. Menzies, to be published in ASP Conference Proceedings Series
Heyrovský, D., & Sasselov, D. 2000, ApJ, 529, 69
Mao, S., & Paczyński, B. 1991, ApJ, 374, 37
Marcy, G, & Butler, R. 1998, ARA&A, 36, 57
Marcy, G., & Butler, R. 2000, PASP, 112, 137
Mayor, M., & Queloz, D. 1995, Nature, 378, 355
Noyes, R.W., et al. 1997, ApJ, 483, L111
Rhie, S.H., et al. 1999, ApJ, 522, 1037
Sackett, P.D. 1999, in Planets outside the Solar System: theory and observations, eds. J.-M. Mariotti & D. Alloin (NATO-ASI Ser. C; Kluwer), 189
Schneider, P., & Weiss, A. 1986, A&A, 164, 237
Schneider, P., & Weiss, A. 1987, A&A, 171, 49
Schneider, P., Ehlers, J., & Falco, E.E. 1992, Gravitational Lenses (Berlin, Springer)
Udalski, A., et al. 1994, Acta Astron., 44, 227
Udalski, A., et al. 1993, Acta Astron., 47, 169
Udalski, A., et al. 2000, Acta Astron., submitted [astro-ph/0002418]

Gould, A., & Loeb, A. 1992, ApJ, 396, 104
Han, C., et al. 2000, MNRAS, in press
Heyrovský, D., & Sasselov, D. 2000, ApJ, 529, 69
Marcy, G., & Butler, R. 1998, ARA&A, 36, 57
Marcy, G., & Butler, R. 2000, PASP, 112, 137
Mayor, M., & Queloz, D. 1995, Nature, 378, 355
Noyes, R.W., et al. 1997, ApJ, 483, L111
Rhie, S.H., et al. 1999, ApJ, 522, 1037
Sackett, P.D. 1999, in Planets outside the Solar System: theory and observations, eds. J.-M. Mariotti & D. Alloin (NATO-ASI Ser. C; Kluwer), 189
Schneider, P., & Weiss, A. 1986, A&A, 164, 237
Schneider, P., & Weiss, A. 1987, A&A, 171, 49
Schneider, P., Ehlers, J., & Falco, E.E. 1992, Gravitational Lenses (Berlin, Springer)
Udalski, A., et al. 1994, Acta Astron., 44, 227
Udalski, A., et al. 1993, Acta Astron., 47, 169
Udalski, A., et al. 2000, Acta Astron., submitted [astro-ph/0002418]