Identification of a transcriptional activation domain in yeast repressor activator protein 1 (Rap1) using an altered DNA-binding specificity variant

Amanda N. Johnson1 and P. Anthony Weil2

From the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232

Edited by Joel Gottesfeld

Repressor activator protein 1 (Rap1) performs multiple vital cellular functions in the budding yeast Saccharomyces cerevisiae. These include regulation of telomere length, transcriptional repression of both telomere-proximal genes and the silent mating type loci, and transcriptional activation of hundreds of mRNA-encoding genes, including the highly transcribed ribosomal protein- and glycolytic enzyme-encoding genes. Studies of the contributions of Rap1 to telomere length regulation and transcriptional repression have yielded significant mechanistic insights. However, the mechanism of Rap1 transcriptional activation remains poorly understood because Rap1 is encoded by a single copy essential gene and is involved in many disparate and essential cellular functions, preventing easy interpretation of attempts to directly dissect Rap1 structure-function relationships. Moreover, conflicting reports on the ability of Rap1-heterologous DNA-binding domain fusion proteins to serve as chimeric transcriptional activators challenge use of this approach to study Rap1. Described here is the development of an altered DNA-binding specificity variant of Rap1 (Rap1AS). We used Rap1AS to map and characterize a 41-amino acid activation domain (AD) within the Rap1 C terminus. We found that this AD is required for transcription of both chimeric reporter genes and authentic chromosomal Rap1 enhancer-containing target genes. Finally, as predicted for a bona fide AD, mutation of this newly identified AD reduced the efficiency of Rap1 binding to a known transcriptional coactivator TFIID-binding target, Taf5. In summary, we show here that Rap1 contains an AD required for Rap1-dependent gene transcription. The Rap1AS variant will likely also be useful for studies of the functions of Rap1 in other biological pathways.

Transcription activation is the first step in the carefully orchestrated process of eukaryotic protein-coding gene expression (1). This complex and evolutionarily conserved (2) process is essential for life as it controls the precise location, timing, and level of production of specific mRNA transcripts and hence the cognate encoded protein products (3, 4). Eukaryotic cells employ multiple distinct proteins, and protein complexes, to catalyze mRNA gene transcription (5). Collectively termed the transcription machinery, these proteins include the 12-subunit DNA-dependent RNA polymerase II (RNAPII)3 and six general transcription factors (GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. Upon interaction with accessible promoters, the GTFs seed the formation of a functional pre-initiation complex (PIC) by RNAPII. Under appropriate conditions the PIC is able to initiate mRNA gene transcription (6) and transition into early elongation complexes (ECs). PIC formation occurs upon nucleosomal DNA, and both PIC formation and PIC/EC function are controlled by a cadre of transcriptional coregulators (coactivators and corepressors), some of which act at the level of chromatin to alter the accessibility of the underlying DNA, covalently modify histones, and/or modulate the activity of the transcription machinery (7, 8).

Although together the transcription machinery and coregulators clearly play essential roles in mRNA biosynthesis, it is the enhancer DNA-binding transcriptional activator proteins that confer gene specificity to transcriptional control by selectively responding to discrete cell-external and/or cell-internal molecular cues (9). Activator proteins typically carry out this function through the use of (minimally) two modular, functionally distinct domains, a DNA-binding domain (DBD) and an activation domain (AD) (10). Upon receiving the signal for gene activation, a transcriptional activator protein binds to its specific and accessible enhancer target recognition site in chromatin through its DBD. These enhancer DNA-bound proteins then transmit a signal for activation, via their AD, which either directly or indirectly results in the activation of the mRNA gene transcription machinery on the promoter of the cis-linked target gene (10).

1 Recipient of National Institutes of Health Grant R01GM115892 (to P. A. W.) and National Institutes of Health Cancer Center Core Grant SP30CA06848. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

2 To whom correspondence should be addressed: Dept. of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232-0615. Tel.: 615-322-7007; Fax: 615-322-7236; E-mail: tony.weil@vanderbilt.edu.

3 The abbreviations used are: RNAPII, DNA-dependent RNA polymerase II; GTF, general transcription factors; PIC, pre-initiation complex; EC, RNA polymerase II elongation complex; DBD, DNA-binding domain; AD, activation domain; RP, ribosomal protein; GE, glycolytic enzyme; UAS, upstream activating sequence; aa, amino acid(s); nt, nucleotide; Rif, Rap1 interacting factor; Taf, TBP associated factor; Sir, Silent information regulator; AS, altered specificity; 3-AT, 3-amino-1,2,4-triazole; SC, synthetic complete media; NLS, nuclear localization signal; MTSEA, (2-(biotinoyl)amino)ethyl methanethiosulfonate; nt, nucleotide; RBD, Rap1-binding domain; ChIP-Seq-Exo, chromatin immunoprecipitation-sequencing/chromatin immunoprecipitation-exonuclease; BiStrs, 2-bis(2-hydroxyethyl)amino)-2-(hydroxymethyl)propane-1,3-diol; TBP, TATA-binding protein; qRT, quantitative RT; Ni-NTA, nickel-nitrilotriacetic acid; 5-FOA, 5-fluoro- orotic acid; Bicine, N,N-bis(2-hydroxyethyl)glycine.

VOLUME 292 • NUMBER 14

© 2017 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
Activation signal transmission usually occurs through direct AD-coactivator interaction. Characterized coactivator targets are quite diverse. Some coactivators, like TFIIB, TFIIID, and TFIIA, are obligate critical components of the transcription machinery (11–15), whereas others such as SAGA, Swi/Snf, p300, and OCA-B target chromatin and/or other coregulators (16–19). Identifying AD-coregulator interactions and, more importantly, understanding the mechanistic outcomes of these interactions is an active yet incompletely understood area of research (2, 4, 20).

Studies that define the structure and function of transactivator ADs, and their coactivator targets, will provide critical tools for developing deeper insight into the molecular mechanisms that regulate specific target gene transcription.

Saccharomyces cerevisiae repressor activator protein 1 (Rap1) is an evolutionarily conserved protein whose cognate enhancer binding site (upstream activating sequence; UASRap1), DBD structure, and biological activities have been studied for over 30 years (21). In budding yeast, Rap1 is encoded by a single copy essential gene (22). As its name suggests, the 827-amino acid Rap1 protein performs key repression and activation functions in the cell. In addition to transcriptional regulation, Rap1 also modulates critical aspects of telomere biology, boundary element formation, and meiotic DNA recombination (23). Early sequence alignments, gross deletion analyses, and functional studies indicated that Rap1 is tripartite. The three major domains of S. cerevisiae Rap1 include a dispensable N terminus, part of which encodes a breast cancer 1 C-terminal (BRCT) homology domain (amino acids (aa) 1–360) (24–26), a central DNA-binding domain (DBD) (aa 361–599 (27)), and a C-terminal domain (aa 600–827) that is important for multiple telomere functions as well as HML/HMR mating type locus silencing (28, 29). Bioinformatic analyses have failed to identify any clear consensus AD element(s) within the protein.

Of the three domains of Rap1, only the DBD is essential, although yeast expressing just the DBD are extremely slow growing. Removal of Rap1 sequences C-terminal to the DBD produce yeast that display a slow growth phenotype (30, 31). Several analyses have shown that aa within the very C terminus of Rap1 function in silencing through direct binding of the silent information regulator (Sir) and Rap1 interacting factor (Rif) proteins (28, 29, 32–34). These proteins serve to modulate telomere length and repress telomere proximal gene transcription. Out of the many cellular functions that Rap1 performs, the telomere-specific functions of Rap1 are the best understood in terms of molecular mechanism (25, 34, 35).

Rap1 was first identified as an enhancer DNA-binding factor for ribosomal protein (RP)-encoding genes (21). Subsequent studies have extensively characterized RP gene enhancer elements (i.e. the UASRap1). This work defined the following: (a) a 13-base pair (bp) UASRap1 consensus sequence 5′-A(A/G)(G/C/A)A/C/T/C(C/A/G)(G/C/A)NCA(C/T)(C/T)3′3′-3′ (30, 36–38); (b) the contribution of each nucleotide (nt) within the enhancer to both Rap1- UASRap1 DNA binding (36) and Rap1-dependent reporter gene activity (39); and (c) there appear to be biologically important functional differences in the sequences of Rap1 DNA-binding sites involved in transcriptional activation, transcriptional repression, and telomere function(s) (40–46). The structure of the Rap1 DBD (27) in complex with multiple Rap1 DNA-binding elements has been solved by X-ray crystallography. The DBD is composed of two very similar homeodomain motifs that bind Rap1 DNA sites in tandem. Multiple specific protein-DNA contacts form throughout the protein-DNA complex. These contacts do not markedly change when Rap1 binds different DNA target sequences (47–49).

Compared with the amount of knowledge describing how Rap1 binds DNA and silences telomeres, almost nothing is known about how Rap1 performs its transcription activation function. Indeed, the existence of a putative Rap1 AD(s) has remained ambiguous. One study mapped a potential AD to Rap1 aa 630–695 through the use of Gal4 DBD-Rap1 fusions (33). However, these investigators neither assessed the putative AD function of these aa in the context of the intact protein nor precisely mapped and assessed the contributions of individual aa within the implicated domain sequence toward transcriptional activation of the UASRap1 reporter gene they utilized. Soon after, others tested this idea by direct internal deletion of putative AD sequences. Although removal of Rap1 aa 630–695 induces slow growth, such cells exhibit a 2-fold increase over wild type (WT) of the two Rap1-dependent ribosomal protein gene mRNA transcripts scored (RPL19 and RPL45), and a variable decrease in the two Rap1-dependent GE gene mRNAs scored (PYK1 mRNA ~70% WT; PGK1 mRNA ~10% WT) (30). These data challenge the idea that Rap1 C-terminal aa 630–695 compose an AD. Two additional sets of observations further complicate this issue. First, Morse and co-workers (50–52) have extensively documented the nucleosome remodeling activity of Rap1 and its impact on gene transcription activation. These workers found that Rap1 appears to drive transcription via a chromatin opening mechanism. In this context both Rap1 N- and C-terminal sequences are dispensable for HIS4 gene transcription activation, suggesting that the Rap1 DBD alone drives activation through a chromatin-based mechanism (50–52). Consistent with these observations, Rap1 can efficiently bind nucleosomal UASRap1 sequences, in vitro and in vivo (53, 54). Second, several other groups have reported that Rap1-heterologous DBD fusions fail to robustly drive reporter gene expression in vivo in yeast (55–57). Collectively, these data leave open the questions of which Rap1 domain(s) and via what molecular mechanism(s) Rap1 turns on target gene transcription.

Although the data noted above leaves unanswered the question of what domain(s) of Rap1 might serve as an AD to stimulate target gene transcription, there is no doubt that Rap1 activates many genes in yeast, including the RP- and GE-encoding genes. Numerous studies have shown that mutation of the Rap1 UASRap1-binding sites located upstream of RP- and GE-encoding genes reduces mRNA levels by 50–90% depending on the gene in question (57–60). Other studies show that RP gene transcription absolutely depends on Rap1 (31, 61, 62), despite the fact that multiple transcription regulators, including Fhl1, Iff1/Crf1, Sfp1, Esa1, and Hmo1, have all been shown to contribute to RP gene regulation (61–67). Confirming these studies, chromatin immunoprecipitation (ChIP)-Seq and ChIP-Exo studies document the presence of Rap1 on genes carrying UASRap1 elements (37, 45, 46, 58, 68), whereas acute depletion of nuclear Rap1 using the “anchor-away” technique (69) shows that ongoing RP gene transcription requires Rap1 (58). Finally, Rap1
Altered DNA-binding specificity variant identifies Rap1 AD

exhibits another characteristic of bona fide transcription activators; it directly binds to coactivator complexes (2, 5, 70). Rap1 binds the purified coregulators Swi/Snf, a chromatin remodeler (19), and the coactivator TFIID (31). Collectively, these studies argue that Rap1 has all the predicted properties of a typical transactivator and thus likely contains an AD.

Our previous analyses of Rap1-TFIID interaction have shown that Rap1-TFIID TBP-associated factor (Taf) interaction occurs through the Taf4, Taf5, and Taf12 subunits of the complex. Furthermore, we have mapped the relevant Rap1-binding domains (RBDs) of each protein (31) and demonstrated that deletion of the cognate RBD-encoding sequences of TAF4 or TAF5 causes lethality (31, 71), results consistent with the idea that these RBDs play important roles in cell physiology. Point mutagenesis of the two RBDs induces temperature-conditional growth, decreases the affinity of Rap1-Taf4/12 and Rap1-Taf5 interaction, and concomitantly drastically and preferentially reduces cellular RP gene transcript levels (71). These data have led us to conclude that TFIID serves as a key Rap1 coactivator on the RP genes, one that transduces activating signals from Rap1 directly to the transcription machinery. Collectively, these data motivated us to redouble our efforts to identify, characterize, and ultimately generate mutant variants of an AD within Rap1 to facilitate dissection of the molecular mechanism(s) by which this potent activator turns on transcription of its target genes.

As an alternative approach toward identifying an AD within budding yeast Rap1, we devised a strategy to attempt to generate an altered DNA-binding specificity Rap1 variant (Rap1AS). Our goal was to identify a form of Rap1 that exhibited true altered specificity (AS) of DNA binding. Such a variant form of the protein, Rap1AS, would not efficiently bind at “WT” UASRap1 elements but could bind and drive the expression of an integrated selectable reporter gene from a distinct mutated form of the UASRap1 enhancer. Thus, Rap1AS would obviate the complications that arise as a result of the myriad Rap1 activities required for the proper expression of hundreds of essential Rap1-dependent genes as well as regulation of telomere function.

Generation of a Rap1AS variant would allow for the straightforward molecular genetic dissection of Rap1 structure-function relationships by scoring function/expression of the Rap1AS-dependent reporter gene in cells containing engineered deletion or point-mutated variant forms of Rap1AS. Breakthroughs in the understanding of transcription mechanisms have been made through the generation and utilization of altered DNA-binding specificity mutants of other essential transcription factors, in both prokaryotes and eukaryotes. Examples include AS variants of bacteriophage λ cro protein (72); Escherichia coli Trp repressor (73) and sigma factor σ70 (74); yeast TBP (75) and transcription factor Gcn4 (76); mammalian estrogen receptor (77, 78); and Drosophila transcription factor Engrailed (79). These altered DNA-binding variant proteins proved key in unlocking the molecular mechanisms by which these disparate DNA-binding proteins operate.

This report describes structure-based, site-directed mutagenesis of UASRap1 DNA and the gene encoding the Rap1 protein itself, coupled with a sensitive yeast screening strategy, to identify an altered DNA-binding specificity variant of Rap1, termed Rap1AS. The gene encoding Rap1AS was subjected to systematic deletion and point mutagenesis to identify a 41-amino acid-long AD within the C-terminal portion of the protein that is essential for driving high level reporter gene expression. This AD has the features of acidic activation domains described in other eukaryotes as it contains seven evolutionarily conserved hydrophobic residues within the element that contribute critically to the activation potential of Rap1AS. Mutation of all seven of these conserved residues to alanine within WT Rap1 (Rap1WT) induces a dramatic slow growth phenotype while simultaneously reducing transcription of RP- and GE-encoding genes.

Our work definitively establishes the fact that Rap1 contains an AD that is required for Rap1-dependent chromosomal gene transcription. Access to WT and multiple distinct variant forms of Rap1 will prove invaluable for further dissection of the molecular mechanisms through which this protein drives high level transcription of the vigorously transcribed RP- and GE-encoding genes. Indeed, we present the results of protein-protein interaction experiments that show that mutation of key Rap1 AS residues significantly reduces the binding of the variant Rap1 to Taf5, one of the known TFIID coactivator subunit targets of Rap1 (31, 71). Finally, we note that the Rap1AS variant should also prove useful for investigators who study the complex biological functions of Rap1 in transcriptional repression, boundary element establishment, telomere length regulation, chromatin opening, and meiotic recombination (23, 80, 81).

Results

Generation of an altered DNA-binding specificity variant Rap1AS

Generation of Rap1AS was approached in two steps. First, specific subsequences of the UASRap1 were systematically mutagenized to identify variants that significantly decreased binding of Rap1WT to UASRap1 DNA. These experiments identified a specific “inactivated” UASRap1. Second, the RAP1 sequences encoding the Rap1 amino acid residues predicted by X-ray crystallography to contact the key mutationally sensitive UASRap1 DNA bps were subjected to site-directed mutagenesis. Plasmids carrying these mutant RAP1 variants were then introduced into yeast carrying an integrated reporter gene whose expression was driven by the inactivated mutant UASRap1 enhancer. Screening many such yeast transformant colonies, each expressing a different variant form of mutated Rap1, was expected to result in the identification of rare mutant variants that had gained the ability to bind the mutant UASRap1 and thereby activate reporter gene expression driven by the inactivated UASRap1 identified in the first step of this strategy.

The structure of the Rap1 DBD (27) bound to various target DNAs guided our Rap1AS generation strategy. These Rap1-DNA structures show that the Rap1 DBD binds its recognition motif primarily via two homeodomains and an unstructured tail (47–49). Multiple studies have shown that within a homeodomain, the third, or recognition helix of the three helix bundle, mediates sequence-specific DNA recognition (82, 83). The apposition of the homeodomain recognition helix with the upstream half of the Rap1-binding sequence is shown in Fig. 1A. DNA bps b1, b3, and bp4 are contacted by the recognition helix of Rap1 DBD homeodomain 1 (Fig. 1A (bp labeled b1, b3, and bp4, and the homeodomain is dark blue)). These base pairs were spe...
Altered DNA-binding specificity variant identifies Rap1 AD

Figure 1. Mutation of WT UAS_{Rap1} nucleotides 3A and 4T to 3T and 4A significantly decreases binding of WT Rap1 to 3T4A UAS_{Rap1}. A. Rap1 DBD homeodomain-1 recognition helix (dark blue, top) is shown in complex with its DNA recognition site labeled bp₁ to bp₆. Hydrogen bonds between protein and DNA are indicated by dashed green lines; H-bonds mediated by H₂O molecules are indicated by black dashed lines. The DNA base pairs mutated to create the 3T4A mutant-binding site are bp₃ and bp₄. Rap1 DBD recognition helix amino acid residues targeted for codon randomization mutagenesis are indicated by yellow ovals at amino acid positions N401, S402, H405, R408, and V409. Image was generated using PyMOL (130) from Protein Data Bank code 1IGN (47). B. gel shift competition DNA-binding analyses with WT UAS_{Rap1} or 3T4A UAS_{Rap1} DNAs. Gel shift binding reactions were performed by incubating 100 fmol of purified recombinant Rap1^{WT} with 50 fmol (700 cpm/fmol) of duplex 32P-labeled WT UAS_{Rap1} DNA (5'-ACACCCATTT-3') alone (No Rap1, - Rap1), or with Rap1 and either no competitor (−), or the indicated fold molar-excess of either cold WT UAS_{Rap1}, (top gel scan) or cold 3T4A UAS_{Rap1} (bottom gel scan); 0.5×, 1×, 2×, 5×, 10×, 25×, 50×, 100×, or 200× left to right (WT, blue circles; 3T4A, red squares) in a final volume of 20 µl. Reactions were fractionated on non-denaturing polyacrylamide gels, vacuum-dried, and imaged using a Bio-Rad Pharos FX imager. The amount of unbound Rap1 protein is determined by over 25-fold mole excesses; Fig. 1B). This reduction in affinity (competition strength) was the largest of the double mutants tested (data not shown). Consequently, the 3T4A UAS_{Rap1} was selected to serve as the inactivated UAS_{Rap1} sequence in screens for selection of Rap1^{AS} variants.

Rap1 mutagenesis and screening strategy

To generate a Rap1^{AS} variant capable of binding the 3T4A UAS_{Rap1} site, we utilized a mutagenesis approach recently employed to create altered DNA-binding specificity variants of the <i>Drosophila</i> engrailed homeodomain (79). The six amino acids of the Rap1 DBD homeodomain-1 DNA recognition helix that face DNA (Fig. 1A) were chosen as targets for codon-directed randomization mutagenesis (Fig. 2A; Rap1 aa Asn-401, Ser-402, Arg-404, His-405, Arg-408, and Val-409) (84). To identify a Rap1^{AS} from the library, a direct yeast screening strategy was devised that could rapidly test millions of Rap1 mutant variants for the ability to functionally interact with 3T4A UAS_{Rap1} in vivo. The functional interaction chosen for this screen utilized a HIS3 reporter gene. In the reporter used for Rap1^{AS} screening, the two WT UAS_{Rap1} DNA-binding sites present in a previously characterized UAS_{Rap1}-HIS3 reporter (31, 57) were replaced with two copies of the 3T4A variant UAS_{Rap1} (see Figs. 1B and 2B). HIS3 reporter gene expression can be selected by the addition of 3-aminotriazole (3-AT) to the growth media. Because aminotriazole is a competitive inhibitor of the HIS3 gene product, the enzyme imidazoleglycerol-phosphate dehydrogenase (85), simple growth tests can be used to select for
Altered DNA-binding specificity variant identifies Rap1 AD

Table 1

Yeast strains used in this study	Genotype	Name	Strain	Refs.
		MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	BY4741	123
RAP1Δ		MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rap1Δ::HPMX4 (pRS416 UASADH-RAP1)	BY4741 rap1Δ	71
		MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rap1Δ::HPMX4 (pRS415 UASrap1-MYC5-RAP1)	3T4A-HIS3 #1	This study
WT-HIS3		MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rap1Δ::HPMX4 (pRS416 UASrap1-FLAG5-RAP1)	YAM23	This study
		MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rap1Δ::HPMX4 (pRS416 UASrap1-FLAG5-RAP1)	YAM30	This study
		MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rap1Δ::HPMX4 (pRS416 UASrap1-FLAG5-RAP1)	YAM31	This study
		MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rap1Δ::HPMX4 (pRS416 UASrap1-FLAG5-RAP1)	YAM32	This study
		MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rap1Δ::HPMX4 (pRS416 UASrap1-FLAG5-RAP1)	YAM33	This study

Increasing levels of HIS3 gene expression by varying the concentration of 3-AT in the growth media. Because Rap1WT does not bind 3T4A UASrap1 efficiently (cf. Fig. 1B), yeast expressing only Rap1WT have no means to drive 3T4A UASrap1-HIS3 expression, and hence they fail to grow on media containing 3-AT. By contrast, a cell expressing a Rap1AT variant that can bind and drive efficient 3T4A UASrap1-HIS3 expression will confer resistance to 3-AT (3-ATR) and thus grow in the presence of the inhibitor.

Rap1AT screen

The Rap1AT screen was performed using yeast strain YAM23 (relevant genotype: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 rap1Δ::HPMX4 (pRS415 UASrap1-MYC5-RAP1) trp1Δ::KANMX4 HA3-TAF1 UASrap1(UASrap1)-TATA-HIS3:TRP1::DED1, see Table 1) that was transformed to Urα with mutagenized Rap1 DBD library plasmids carried on the URA3-marked plasmid pRS416. An estimated 1 × 10⁶ independent Urα colonies (~1% of the total library) were plated onto SC−His + 5 mM 3-AT selective media plates. After 4 days of incubation at 30°C, 158 His+ colonies were isolated. The growth phenotype of these colonies was re-tested by patching onto SC−His + 3-ATR plates; 136 colonies screened true. To determine whether the His+, 3-ATR phenotype displayed by these colonies was plasmid-borne, Rap1 mutant expression plasmids were isolated from the 30 colonies that had appeared the earliest on the 3-AT-containing selection plates (ranked in order of appearance with colony 1 appearing 1st and colony 30 appearing 30th). Plasmids were recovered from these 30 strains and used to transform the original selection yeast strain, YAM23. The resulting transformants were retested for growth on SC-His + 5 mM 3-AT selective media plates. Fourteen of the 30 recovered Rap1 mutant expression plasmids conferred 3-ATR, and thus they represented putative altered DNA-binding specificity variants of Rap1.

Analyses of putative altered DNA-binding specificity Rap1AT variants

The 14 Rap1 mutants identified in the screen were characterized to allow selection of one variant for use as a Rap1AT in Rap1 AD mapping studies. The complete ORFs of the 14 plasmid-borne rap1AT genes were sequenced. All mutations identified were within the targeted Rap1 aa (Fig. 3A, top). Only two of the mutants (10 and 11) possessed identical sequences, indicating that the screen was likely not saturated. Sequence analyses were performed to identify any patterns present in the types of aa changes within the Rap1 variants identified in the screen (MEME motif; Fig. 3A, lower). Rap1 aa Asn-401 was frequently found mutated to a Gly or a Pro, whereas residue His-405 was frequently mutated to Trp or Ser. There were no clear aa substitution patterns for Arg-408 and Arg-409. Despite being targeted for mutagenesis, Ser-402 and Arg-404 were mutated only rarely (Ser-402) or not at all (Arg-404). These data suggest either a failure to efficiently mutantize Rap1 aa residue 404 or a strong/absolute requirement of Arg-404 for Rap1 DNA binding.

As predicted from the competition DNA binding data of Fig. 1, Rap1WT cannot utilize the 3T4A UASrap1 site to drive HIS3 expression (compare top two growth tests, Fig. 3B). By contrast, all of the putative Rap1AT variants have the ability to promote efficient expression of the 3T4A UASrap1-HIS3 reporter gene to confer 3-ATR growth (mutants #2–18; Fig. 3B). Interestingly, those mutant variants recovered from colonies that appeared the earliest during the screen grow slightly faster than those recovered from colonies that had appeared later (i.e. variants 2–14 earlier than variants 17 and 18; Fig. 3, A and B). Overall, the 3-ATR growth properties of variants 2–14 are comparable with yeast containing Rap1WT and the WT UASrap1-HIS3 reporter, although variants 17 and 18 grow somewhat slower.

To allow unambiguous Rap1 AD mapping, a true altered DNA-binding specificity mutant that fails to bind WT UASrap1 (and thereby interfere with Rap1WT essential function) was desired. To find such a Rap1 mutant whose improved 3T4A UASrap1 binding is accompanied by a reduced WT UASrap1 binding, 6 of the 14 preliminarily characterized Rap1 screen hits (see below) were selected for purification and gel shift DNA binding competition assays. Because there was no way to predict a priori, which if any of the Rap1 screen hits possessed true altered DNA-binding specificity, the six screen hits were chosen to cover the sequence variation present in the collection of Rap1 mutants whose plasmid-borne expression supported 3-ATR. Variants 5 and 10 were chosen because their sequences were highly similar to the logo that was generated by motif analysis. Rap1 variants 2, 5, 13, 17, and 18 were selected because of deviations from the sequence logo, in either the presence of additional mutations (i.e. variant 5), the absence of a mutation that was present in other variants (17 and 18), or an uncommon mutation (i.e. 2) such as a basic Arg residue at position 401 instead of an uncharged Gly, Pro, or Ala. All six of these Rap1
Altered DNA-binding specificity variant identifies Rap1 AD

Figure 3. Rap1 mutagenesis screen identifies a Rap1 variant with altered DNA-binding specificity.

A. amino acid sequence of mutagenized Rap1 DBD amino acids 400–409 (yellow highlighting) and 14 variant forms (#2–18) of Rap1 identified in the Rap1AS screen. Amino acid changes in these variants are indicated (green). Lower, a motif of putative Rap1AS hit homeodomain-1 recognition helix sequences generated using MEME. The size of each letter is proportional to its frequency of appearance among the Rap1 variant sequences #2–18. B. yeast growth test to assess the ability of various forms of Rap1 (WT) or variant (#2–18) to confer resistance to 5 mM 3-aminotriazole via expression of either the WT UASRap1-HIS3 reporter variant (blue) or the 3T4A UASRap1-HIS3 (red) variant and either a second copy of Rap1WT or the indicated Rap1AS screen hit. Yeast were serially diluted 1:4 (left to right) and spotted using a pinning tool onto non-selective media (/-H11001 His) and media that selected from expression of the UASRap1-HIS3 reporter (/-H11001 3-AT). Plates were photographed after growth at 30 °C for 2 days. Images are representative of three independent biological replicates.

B. gel shift competition analysis performed to compare the binding affinity of WT and Rap1AS screen hit variant 2 for binding to either WT UASRap1 or 3T4A UASRap1 DNAs. Assays were performed (as in Fig. 1B) by incubating purified Rap1WT or Rap1 variant 2 with its cognate binding site 32P-WT UASRap1 (blue) or 32P-3T4A UASRap1 (red). Binding reactions also included either no competitor (H11002) or 50-fold molar excess of either cold WT UASRap1 (W, blue) or cold 3T4A UASRap1 (M, red) as shown. A representative image from two independent replicates is presented.

C. plasmid shuffle analysis of altered DNA-binding specificity Rap1 variant 2 performed to test its ability to complement the rap1/H9004 null allele. Yeast carrying a chromosomal null RAP1 allele (rap1/H9004) and a URA3-marked RAP1 covering plasmid were transformed with a test variant of RAP1, labeled rap1*: (i) a second plasmid-borne copy of RAP1 (labeled WT, blue); (ii) empty plasmid vector (labeled H11002, black); or (iii) the same plasmid vector expressing Rap1 variant 2 (labeled AS#2, red). Yeast were serially diluted 1:4 (left to right), and growth was scored on media lacking 5-FOA (“Unshuffled”; relevant genotype: RAP1, rap1/H9004, rap1*) or containing 5-FOA (“Shuffled” relevant genotype: - , rap1Δ, rap1*). Plates were incubated at 30 °C for 2 days and then photographed; a representative image from three independent replicates is shown.

mutant variants bound 32P-3T4A UASRap1 in a gel shift assay (Fig. 3C, and data not shown). Out of the six, Rap1 mutants 5, 17, and 18 displayed expanded DNA-binding specificity, and they bound both WT and 3T4A UASRap1 sites with similar affinity. By contrast, Rap1 variants 2, 10, and 13 showed reduced affinity for the WT UASRap1 site. In particular, mutant 2 concomitantly displayed the largest reduction in WT UASRap1 affinity (Fig. 3C and data not shown). Consistent with its significantly reduced affinity for WT UASRap1, Rap1 mutant 2 also failed to complement the null rap1 allele (rap1Δ) in a plasmid shuffle assay (Fig. 3D), indicating that it could not efficiently bind the WT UASRap1 of (at least one) essential Rap1-dependent genes in vivo. Based upon all these data, Rap1 variant 2 showed true altered DNA-binding specificity in vitro and in vivo, and henceforth is referred to as Rap1AS (or AS).

Molecular genetic characterization of Rap1AS

Rap1AS was subjected to further characterization to ensure that it would serve as an appropriate reagent for attempted AD identification and mapping studies. The AS form of Rap1 was tested to document the following: (a) Rap1AS-driven reporter expression actually requires an enhancer and is specific to the 3T4A UASRap1 site; (b) Rap1AS efficiently drives HIS3 reporter expression as scored at the mRNAHIS3 level; (c) Rap1AS is
stably expressed at levels similar to Rap1WT; and (d) when coex-
pressed with Rap1WT, Rap1AS does not compete with the WT
protein and cause a dominant slow growth phenotype.

To demonstrate that Rap1AS drives reporter gene expression
efficiently and specifically from 3T4A
UASRap1
HIS3,
two new
HIS3
reporter variants were constructed. The first, termed /H9004
UASRap1
HIS3,
completely lacks
UASRap1
sites upstream of
HIS3.
This construct tests the hypothesis that Rap1 AS might bypass the
requirement for an enhancer, while simultaneously defining
background expression of the
UASRap1-TATA-HIS3
reporter.
The second construct substituted a 3G5G
UASRap1
enhancer in place of either the WT or 3T4A enhancer. This variant
enhancer tested the functional DNA-binding specificity of
Rap1AS, which was selected to bind the 3T4A site. Previous
work has shown that both mutations (i.e. UASRap1 deletion or
3G5G substitution) dramatically reduce Rap1-driven transcrip-
tion
in vivo
(31, 57). HIS3 expression was scored inappropri-
ate yeast strains by 3-ATR growth and qRT-PCR-measured
mRNA
HIS3
analyses. As shown in both growth (Fig. 4A)
and
HIS3
mRNA analyses (Fig. 4B), Rap1WT and Rap1AS were only able to
robustly drive expression of the reporter containing their cog-
nate DNA recognition site (WT
UASRap1
and 3T4A
UASRap1,
respectively). It is important to note that as detailed under
“Experimental Procedures,” HIS3 mRNA levels are scored by
qRT-PCR using total RNA extracted from cells grown in SC
/his
histidine to prevent any selection for reporter gene expression
that occurs when 3-AT is added to growth media (i.e. mRNA
analyses of Figs. 4–7). Interestingly, Rap1AS drives expression
of the 3T4A
UASRap1-HIS3
reporter gene mRNA
HIS3
to a level
greater than that observed with the WT
UASRap1-HIS3 re-
Figure 4. Functional characterization of Rap1AS. A, Rap1AS specifically drives the mutant 3T4A
UASRap1-HIS3 reporter. Upper, test of the ability of WT and AS
forms of Rap1 to bind different enhancers to confer aminotriazole-resistant growth using the assay detailed in Fig. 3B. Yeast strains carrying the indicated
UASRap1-HIS3 reporter variant (WT, 3G5G, ∆UAS, or 3T4A, as shown) and either a second copy of Rap1WT (blue) or Rap1AS (red) were grown on non-selective
(+/H11001 His) or HIS3-reporter gene selection (+/H11001 3-AT) media. Images shown are representative of three independent replicates. Lower, detailed structures of the
UASRap1-HIS3 reporters used in these growth tests. B, qRT-PCR analyses of the steady-state levels of HIS3 reporter mRNA, relative to ACT1 in the yeast strains
tested in A. Data were obtained by testing three biological replicates (each indicated by a white circle) analyzed in duplicate and plotted as a percentage of the
HIS3 mRNA levels present in WT Rap1 + WT UASRap1 yeast. Mean ± S.D. is depicted. *, p < 0.01; **, p < 0.001. C, steady-state protein expression levels of Rap1WT
and Rap1AS. MYC-tagged Rap1 forms (top, WT, AS; Test Rap1 (Myc) IB) were scored using immunoblotting (IB) with anti-Myc IgG. A strain carrying a plasmid
expressing only untagged Rap1 was used as a specificity control for the Myc antibody (labeled no tag). Prior to incubation with antibodies, blots were stained
with Ponceau S to monitor total protein loading (bottom, Ponceau S). Equal protein loading was also monitored via immunoblotting with anti-actin IgG (middle,
Actin IB). Images are representative of three independent replicates. D, growth curves of yeast expressing WT or AS forms of Rap1 from a plasmid carrying either
a second copy of Rap1WT or Rap1AS (labeled WT/WT or WT/AS). Overnight-grown yeast starter cultures were diluted to a starting OD600 of 0.5, and the optical
density of the cultures was monitored over the course of 12 h. Data shown represents the average of three biological replicates. Error bars represent S.D.
Altered DNA-binding specificity variant identifies Rap1 AD

Figure 5. Mapping the activation domain of Rap1 to amino acids 630–671. A, schematic of the Rap1 protein. Shown are the well characterized Rap1 DNA DBD (aa 330–600) and silencing domain (SD) as well as the region suspected to contain the AD (AD? 600–671). B, growth analysis of yeast strains carrying the 3T4A version of the HIS3 reporter (left column, UAS_HIS3-red, labeled 3T4A) and various forms of Rap1 (labeled Rap1, 2nd column) either Rap1AS (AS, red), Rap1WT (WT, blue), or the indicated rap1AS deletion mutant (ΔAD?, Δ600–610, Δ611–620, Δ621–630, Δ631–640, Δ641–650, Δ651–660, Δ660–671; red). Serial dilutions of cells were plated and grown on non-selective (+ His), or reporter gene-selective (+ 3-AT) media as in Figs. 3A and 4A. Images are representative of three independent replicates. C, qRT-PCR analysis to score reporter HIS3 mRNA expression levels in the various yeast strains tested in B. Results of these analyses are plotted as in Fig. 4B, except that data are expressed as a percentage of the relative HIS3 mRNA levels in yeast carrying Rap1AS instead of Rap1WT. Data represent three biological replicates (+ S.D. is depicted). *, p < 0.05; **, p < 0.01; ***, p < 0.005. D, Immunoblot analysis of Rap1AS, Rap1WT, and Rap1AS deletion variant protein expression levels. This analysis was performed as detailed in Fig. 4C. Images are representative of three independent replicates. E, schematic indicating the location of the Rap1 activation domain (AD; aa 630–671) mapped through the deletion mutagenesis experiments shown here.

Systematic deletion mutagenesis of Rap1 identifies a potential activation domain

As described in the Introduction, prior analyses of Rap1 led to the hypothesis that an AD was located within a C-terminal portion of the protein (Fig. 5A; aa 600–671, labeled AD? (32, 46)) distinct from the sequences implicated in silencing of telomere-proximal genes whose deletion has little effect on cell viability (28, 29, 32, 34). To directly test this hypothesis, a variant of Rap1AS was generated wherein the RAP1AS ORF sequences encoding aa 600–671 were deleted. This deletion generated a protein termed ΔAD?-Rap1AS. Yeast carrying an integrated 3T4A UAS_Rap1-HIS3 reporter were then used to score the ability of intact Rap1WT, Rap1AS, and the internally deleted ΔAD?-Rap1AS forms of the protein to promote 3-ATR growth (top three rows of yeast cell growth, labeled AS, WT, ΔAD? respectively; Fig. 5B). As shown above in Fig. 4A, positive control cells that express intact Rap1AS grew well in the presence of 3-AT due to efficient expression of HIS3 (Fig. 5, B and C). Negative control cells expressing only Rap1WT (which is unable to bind the 3T4A UAS_Rap1 enhancer) fail to drive high level HIS3 transcription (Fig. 5C) or exhibit ATR (Fig. 5B) as expected (see Figs. 1, 3, and 4). The test strain, which expresses the ΔAD?-form of Rap1AS, was similarly unable to confer ATR or drive significant levels of HIS3 transcription (Fig. 5, B and C). All three forms of Rap1 (Rap1AS, Rap1WT, and ΔAD?-Rap1AS) were stably expressed at equivalent levels (Fig. 5D; lanes labeled AD, WT, ΔAD?). These data indicate that an activation domain indeed resides within the sequences between aa 600 and 671.

To identify the aa within the 600–671-aa interval that comprise the AD, a series of internal, N-terminal, and C-terminal deletion variants of the 600–671-aa region of Rap1AS were generated. Only data for the series of seven internal 10-aa deletions...
Altered DNA-binding specificity variant identifies Rap1 AD

Figure 6. Activation function of the Rap1 AD depends upon evolutionarily conserved hydrophobic amino acids. A, multiple sequence alignment of \(S. \) \(cerevisiae \) \((S. \) \(cer \) \) Rap1 activation domain amino acids 630–671 with the corresponding region of Rap1 proteins from the sensu lato yeast \(S. \) \(castelli \) \((S. \) \(cas \) \) \) and \(S. \) \(kluyveri \) \((S. \) \(klu \) \) \) \(\). Amino acids that are identical in all three yeast species are boxed in yellow. These conserved amino acids were targeted for site-directed mutagenesis. \(B \), growth analysis of yeast strains carrying the 3T4A UAS\textsubscript{Rap1}-HIS3 reporter and either positive (AS, Rap1AS) and negative (WT, Rap1WT) control forms of Rap1 on the three sets of plates shown (i.e. AS, WT to N645A; AS, WT to Y665A; or AS, WT to E671E) or the indicated Rap1mut variant (shown, I633A to E671A). Growth tests were performed as in Figs. 3–5 by plating serial dilutions of cells on either non-selective (+ His) or reporter gene-selective (+ 3-AT) media. Rap1mut AD point mutants that display a large decrease in growth relative to Rap1AS are boxed in blue. Images are representative of five independent replicates. \(C \), qRT-PCR analysis performed on total RNA prepared from yeast carrying the 3T4A UAS\textsubscript{Rap1}-HIS3 reporter and either Rap1AS (AS), Rap1WT (WT), or the indicated Rap1mut AD point mutant variant. Analyses were performed as detailed for Fig. 5C. Data are representative of three biological replicates, each measured in duplicate. Mean ± S.D. is depicted. *, \(p < 0.005; ***, \(p = 0.0001 \).}

Moving through Rap1 aa 600–671 are shown here (Fig. 5, B–D, labeled \(\Delta 600–610, \Delta 611–620, \Delta 621–630, \Delta 631–640, \Delta 641–650, \Delta 651–660, \) and \(\Delta 660–671 \)). These Rap1AS variants were tested for 3T4A UAS\textsubscript{Rap1}-HIS3 expression by scoring growth on 3-AT-containing plates and mRNAHIS3 levels by qRT-PCR. To ensure that all constructs were stably expressed, steady-state protein expression levels were also monitored (Fig. 5D). Deletion of the first 30 aa of the 600–671 region (i.e. constructs \(\Delta 600–610, \Delta 611–620, \) and \(\Delta 621–630 \); Fig. 5, B and C) had no significant effect upon either growth in the presence of 3-AT or HIS3 reporter mRNA transcript levels. By contrast, removal of aa within the distal 40 aa of Rap1 AD? sequences (\(\Delta 631–640, \Delta 641–650, \Delta 651–660, \) and \(\Delta 660–671 \); Fig. 5, B and C) dramatically reduced HIS3 reporter expression as scored by ATR growth (Fig. 5B) and mRNAHIS3 levels (Fig. 5C). All Rap1mut deletion constructs were as stable as Rap1WT, results excluding any contribution of Rap1AS protein abundance to reporter gene expression (Fig. 5D). These data, which are consistent with the data obtained from the N- and C-terminal AD? deletion variants (data not shown), indicate that the Rap1 AD resides within amino acids 630–671 (domain labeled AD; Fig. 5E).

Identification of key Rap1 AD amino acids.

The deletion mutagenesis-defined AD of Rap1AS (i.e. aa 630–671) was subjected to site-directed mutagenesis to identify the specific amino acid residues that contribute essential AD function. Based on the idea that evolutionary conservation implies function, Rap1 AD-like sequences from \(S. \) \(cerevisiae \) and the distantly related sensu lato yeast strains \(Saccharomyces castelli \) and \(Saccharomyces kluyveri \) were subjected to a multiple sequence alignment to identify amino acids conserved in all three yeast species (labeled \(S. \) \(cer \) \(, S. \) \(cas \) \) \(, and \) \(S. \) \(klu \) \) \(\), respectively, Fig. 6A). Alignment shows that 24 of the 42 aa within the Rap1 AD were identical among \(S. \) \(cerevisiae \) and sensu lato yeast (Fig. 6A). Based on this sequence conservation, single point mutant variants were generated within the AD of Rap1AS by changing each of the 24 identical aa to alanine (except for Ala-670, which was mutated to arginine). These Rap1mut point mutant variants were transformed into the 3T4A UAS\textsubscript{Rap1}-HIS3 reporter yeast strain and tested for the ability to confer 3-ATR. Growth assays performed with very high levels of 3-AT (300 mM) revealed that eight aa, seven of which were hydrophobic, were required for robust 3-ATR growth (Fig. 6B; hydrophobic aa Leu-639, Phe-646, Leu-650, Phe-663, Tyr-665, and Ile-669, as well as A670R; all boxed). Steady-state protein levels of all variant proteins were essentially identical to WT (data not shown). Parallel qRT-PCR analyses of mRNAHIS3 levels in these same strains showed some correlation with ATR patterns (Fig. 6C). Importantly, the L650A mutant, which displayed the largest growth defect, also showed a significant reduction in mRNAHIS3 lev-
Altered DNA-binding specificity variant identifies Rap1 AD

Figure 7. Seven hydrophobic Rap1 AD amino acids confer Rap1 activation function. A, schematic of Rap1 illustrating the structures of two AD knock-out alleles. Middle, schematic of intact Rap1 illustrating the location of known functional domains (DBD, AD, and SD). Top, Rap1 AD sequences 630–671 that were deleted from Rap1. Bottom, location and sequence of the seven hydrophobic amino acids identified by site-directed mutagenesis and functional assays (Fig. 6, above) that were all mutated to alanine (L639A, F646A, L650A, L654A, F663A, Y665A, and I669A) to create the Rap1AS 7Ala variant. B, steady-state protein levels of Rap1 variants were transformed into the 3T4A test strain, and protein and mRNA levels were scored by immunoblot and qRT-PCR analysis performed on total RNA prepared from yeast carrying the 3T4A strains, row 1 (WT), or Rap1AS AD knock-out variants (Δ630–671 or 7Ala). Analyses were performed as detailed for Figs. 5C and 6C. Data are representative of three biological replicates, each measured in triplicate. Mean ± S.D. is depicted. *, p = 0.0002; **, p = 0.0001.

els (Fig. 6C). These data suggest that Rap1 AD activity depends on key hydrophobic aa.

To test the hypothesis that the majority, if not all, of the AD activity of Rap1 is conferred by aa 630–671, particularly the seven hydrophobic aa identified by alanine mutagenesis, two additional Rap1AS AD variants were prepared. Each was predicted to ablate, or knock out (KO) AD activity. The first “AD-KO” variant of Rap1AS lacked the entire mapped Rap1 AD region aa 630–671 (Fig. 7A, top, labeled Δ630–671). The second Rap1AS AD-KO variant was created by simultaneously mutating all seven of the key (cf. Fig. 6B) hydrophobic aa to alanine (Fig. 7A, labeled 7Ala, bottom). Plasmid-borne genes encoding Rap1AS, Rap1WT, Rap1AS Δ630–671 and Rap1AS 7Ala were transformed into the 3T4A-ΔUAS Rap1-HIS3 test strain, and protein and mRNA levels were scored by immunoblot and qRT-PCR (Fig. 7, B and C, respectively). All proteins were equivalently expressed. Notably however, the two AD-KO strains both displayed drastically reduced HIS3 mRNA levels relative to the WT version of Rap1AS. Thus, 3T4A ΔUAS Rap1-HIS3 reporter gene expression depends predominantly on the mapped Rap1 AD, particularly the seven key hydrophobic amino acids implicated in AD function by alanine scanning mutagenesis.

Rap1 AD Is required for normal cell growth and transcription

We reasoned that if the Rap1 AD (and key AD amino acids mapped therein using Rap1AS) truly represents the bona fide activation domain of Rap1, then introducing the 7Ala mutation into the context of the Rap1WT should cause a decrease in the transcription of chromosomal Rap1-dependent genes and a concomitant decrease in growth rate. Introducing these mutations into the WT version of the protein also controls for potential synthetic genetic interactions between the altered DBD sequences of Rap1AS and the altered sequences that were introduced into the mapped AD. To probe the question of essentiality of the Rap1 AD for growth, the ability of the 7Ala mutation in the otherwise Rap1WT protein was scored for complementation of a rap1Δ null mutant strain using the plasmid shuffle method. Rap1WT and empty plasmid vector, respectively, served as positive and negative controls for this test. Although Rap1WT efficiently and specifically complements rap1Δ, the Rap17Ala variant only weakly complemented (compare growth of WT versus 7Ala strains, row 1 versus row 3; Fig. 8A) despite the fact that the two proteins were equally expressed (Fig. 8B). The dramatic growth deficiency of the Rap17Ala-expressing strain was quantified via growth curves. The WT strain doubling time is 94 min, whereas the Rap17Ala expressing strain requires nearly twice as long (155 min) to double (Fig. 8C). Thus, consistent with expectations, the Rap1 AD is required for normal rates of cell growth.

Assuming that the Rap1 activation domain mapped here actually functions specifically in the activation of authentic chromosomal target genes, it is reasonable to predict that Rap1 AD loss-of-function mutants would exhibit reduced expression of both RP- and GE-encoding genes. Indeed, extensive cis-element mapping, use of conditional alleles, and ChIP-based in vivo occupancy studies all support the idea that Rap1 contributes importantly to the expression of the two gene classes (37, 45, 58, 68, 86, 87). However, two considerations preclude
Altered DNA-binding specificity variant identifies Rap1 AD

Figure 8. Rap1 AD is required both for normal growth and transcription of authentic chromosomal Rap1 target genes. A, ability of the Rap17Ala variant to support cell viability was assessed by plasmid shuffle analyses. Yeast carrying a chromosomal null RAP1 allele (rap1Δ) and a URA3-marked RAP1 covering plasmid were transformed with a test variant of RAP1, labeled rap1*: (i) a second plasmid-borne copy of RAP1 (labeled WT); (ii) empty plasmid vector (labeled −); or (iii) the same plasmid vector expressing the Rap17Ala variant (labeled 7Ala). Yeast were serially diluted 1:4 (left to right), and growth was scored on media either lacking 5-FOA (Unshuffled; relevant genotype, RAP1, rap1Δ rap1*) or containing 5-FOA (Shuffled relevant genotype: −, rap1Δ rap1*) as detailed in Fig. 3D. Images are representative of five independent replicates. B, immunoblot (IB) analysis of the in vivo steady-state levels of Rap1WT and Rap17Ala proteins. Analysis was performed as described in Figs. 5D and 7B. Images are representative of four independent replicates. C, growth curve analysis of three biological replicates of shuffled yeast strains expressing either only Rap1WT or Rap17Ala and performed and plotted as described in Fig. 4D. Images are representative of four independent replicates. D, analysis of nascent RNA levels for several chromosomal yeast genes (integrated UASrap1-HIS3 reporter, ENO1, PYK1, RPS3, RPL26B, and RPL3) in cells solely expressing WT Rap1 or the 7Ala variant of RAP1. Cellular RNAs were pulse-labeled with 4sU for 2.5 min, extracted, and purified. RNA thiol groups present on 4sU-labeled RNA were chemically biotinylated, and affinity-purified. Affinity-purified RNA was analyzed via qRT-PCR to quantify the amount of nascent transcripts produced from each of the six genes noted above. qRT-PCR analyses were performed as described in Fig. 5C except that data were normalized to S. pombe β-tubulin mRNA present due to the addition of 4sU-labeled S. pombe cells into each sample prior to RNA extraction. Data are representative of three biological replicates, each measured in triplicate. Mean ± S.D. is depicted. * = p < 0.002; ** = p < 0.0001. See "Experimental Procedures" for details.

straightforward interpretation of the effects of mutations in Rap1 (or other transcription proteins) on cellular steady-state mRNA levels. First, unlike the synthetic chimeric UASrap1-HIS3 reporter gene studied in the experiments of Figs. 2–7, expression of both RP- and GE-encoding genes is modulated by the Rap1 AD, mapped and characterized here through the use of the altered DNA-binding specificity variant of Rap1, is a bona fide activation domain.
Mutation of the Rap1 activation domain reduces binding to the RBD of the TFIIID coactivator subunit Taf5

We have previously shown that Rap1 binds specifically, and with high affinity, to distinct RBDs within the Taf4, Taf5, and Taf12 subunits of TFIIID (31, 71). Rap1-Taf RBD binding is sensitive to RBD mutation, and we found that yeast expressing such mutations in either Taf4 or Taf5 display reduced ribosomal protein mRNA gene expression (71, 96). These data argue that TFIIID serves as a coactivator for Rap1. However, we did not know which domain(s) within Rap1 was responsible for Rap1-Taf RBD interactions. We theorized that if the Rap1 AD mapped herein plays a key role in Rap1-TFIIID Taf-RBD interaction, then mutation of the AD should reduce Rap1-Taf binding. Because we had previously documented synthetic lethal interactions between Taf5 RBD mutants and Rap1 deletion variants (71), we decided to perform GST-Rap1/Taf5 pull-down binding experiments as a first test of our Rap1 AD-Taf RBD direct interaction hypothesis. These studies used an N-terminal RBD-containing fragment of Taf5 (aa 1–337) and either GST– alone (GST–), GST-fused to WT Rap1 (GST-Rap1 WT), GST-fused to the 7Ala variant of Rap1 (GST-Rap1 7Ala), and GST-fused to Rap1 ΔC (GST Rap1 ΔC). We observed that both the 7Ala- and the ΔC-Rap1 variants reproducibly displayed an ~50% reduction in binding to the Taf5 RBD (Fig. 9). These results are consistent with the hypothesis that the Rap1 AD we have mapped is central to transcriptional activation.

Discussion

Transcription factor AD mapping represents a critical step in the path toward determining the mechanism by which a gene, or group of co-regulated genes, is activated. We were particularly interested in the Rap1 AD because Rap1 in budding yeast drives the transcription of 128 of the 137 genes encoding ribosomal proteins as well as many of the genes encoding the enzymes of glycolysis (37, 58, 81, 97). These two classes of genes are among the most vigorously transcribed families of genes in most organisms. Understanding the mechanisms controlling the expression of such highly transcribed classes of genes will provide valuable and potentially generalizable mechanistic insights into how highly expressed eukaryotic genes are regulated.

In budding yeast, transcription of the genes encoding RPs is controlled through the action of multiple DNA binding transcription proteins. These include Rap1, Ifh1, Fhl1, Sfp1, and Hmo1 (61–67). RP gene transcription is responsive to a variety of regulatory inputs, several of which respond to nutrient availability and/or cell size (61–64, 81, 98). These regulatory pathways appear to work through Ifh1/Fhl1 and Sfp1 (61–64) and thus appear distinct from Rap1 function(s). Meanwhile, Rap1 is the only activator that is absolutely required for transcription of the RP encoding genes, as deletion of the genes encoding these other factors (or their cognate DNA binding elements) reduces but does not eliminate RP gene expression (31, 57).

Our laboratory has had a long-standing interest in Rap1- and RP-encoding genes because transcription of this gene family requires TFIIID (31, 57, 71, 96, 99–109). We have previously shown that Rap1 directly interacts with the RP gene coactivator TFIIID (31) and that this binding is specific, high affinity, and mediated through distinct RBDs present in TFIIID subunits Taf4, Taf5, and Taf12 (31, 71). Deletion of the RBDs from either Taf4 or Taf5 is lethal, whereas the amino acids within these ~100–300 amino acid domains are mutable, and certain point mutations within either RBD leads to temperature-conditional growth and reduced affinity of binding to Rap1. Moreover, certain combinations of distinct, non-lethal rap1 deletion mutants with taf5Δ mutants induce synthetic lethality, whereas shifting strains carrying either taf4Δ or taf5Δ mutant alleles to non-permissive temperatures induce a large and selective decrease in expression of essentially the entire complement of ribosomal protein encoding genes (71).

We have also previously documented and characterized important interactions between Rap1 and TFIIA. Mutations that compromise these interactions decrease TFIIA-TFIIID and
Altered DNA-binding specificity variant identifies Rap1 AD

TFIIA-Taf4 interaction/bind, RP gene expression in vitro, and Rap1-driven reporter gene transcription in vitro (96). Finally, we have previously described unique Rap1-induced TFIIA- and TFIIID-dependent DNA loops and Rap1-dependent protein structural transitions of TFIIA within a quaternary Rap1-TFIIA-TFIIID-UAS\textsubscript{Rap1}, TATA DNA complex (the enhancer-promoter reporter DNA used here) (105). Collectively, these data lead us to propose that Rap1 directly and specifically binds subunits of both TFIIA and TFIIID to activate transcription of the RP encoding genes (31, 71, 96, 105, 110). As a prerequisite to advance these studies, and to more fully dissect the molecular mechanisms utilized by Rap1 to activate transcription, it is essential to have a collection of AD variants of Rap1 that are defective in RP gene transcription activation.

Unfortunately, although much is known regarding the TFIIID coactivator subunit targets of Rap1, prior to the work described in this report, there was no unambiguous data regarding whether Rap1 actually contains a functional AD. As a consequence, we decided to undertake an alternative approach to identify an AD within budding yeast Rap1. Despite the challenges involved, we undertook the generation of an altered DNA-binding specificity variant of Rap1, termed Rap1AS. We planned to use Rap1AS as a novel tool to facilitate the identification and high resolution characterization of an activation domain within Rap1.

With the exception of proteins that bind DNA via zinc finger motifs, true altered DNA-binding specificity variants are fairly difficult to generate. This is underscored by the fact that few such proteins have been described in the literature. That said, successful generation of altered DNA-binding specificity variant proteins has yielded significant insights into deciphering the determinants of protein-DNA recognition while simultaneously providing novel tools to probe and dissect the activity of DNA-binding proteins. Recognition of a mutant enhancer or UAS site requires that a DBD gain the ability to bind the mutant DNA sequence via alteration in the ability of a protein to bind novel DNA sequences and/or shapes. True-altered DNA-binding specificity variants (rather than expanded DNA-binding specificity variants) display significantly reduced WT DNA binding specificity variants (rather than expanded DNA-binding specificity variants) display significantly reduced WT DNA sequence binding in addition to gaining mutant DNA recognition. The AS Rap1 variant identified in this report, termed Rap1AS, exhibits exactly these properties and hence was deemed ideal for initiating efforts to discover and pinpoint the AD of Rap1 absent the many complications imposed by the multiple essential cellular functions of the protein (see Introduction).

Analysis of the aa sequences of the Rap1 AS mutants recovered in our screen provides insights into the DNA recognition determinants of WT and mutant UAS\textsubscript{Rap1}, DNA base pairs 3 and 4. The fact that consistent aa sequence patterns were found among the mutations present at Rap1 aa 401 and 405 (see Fig. 3A) in all of the Rap1 variants suggests that these aa changes are required to enable Rap1 binding to 3TA UAS\textsubscript{Rap1}. Furthermore, comparison of the sequences of altered DNA-binding specificity Rap1 variants 2, 10, and 13, with the sequences of expanded DNA-binding Rap1 variants 5, 17, and 18, suggests that the true altered DNA-binding specificity variants contained both a mutation at aa 408 and a bulky hydrophobic amino acid (i.e. Trp or Phe) at Rap1 aa 405 (cf. Fig. 3). These mutations may decrease Rap1 mutant binding to WT UAS\textsubscript{Rap1} by breaking a favorable water-mediated contact between Rap1 Arg-408 and WT UAS\textsubscript{Rap1}, base pair 3 (47) or by using a bulky hydrophobic aa at Rap1 position 405 to actively exclude binding to the WT UAS\textsubscript{Rap1} element (see Fig. 1A).

Our unambiguous AD mapping data also show that the best of our altered DNA-binding specificity variants, Rap1AS, represents a powerful tool to study Rap1 structure-function relationships. Activator proteins, such as Rap1, can contain one or more ADs, usually 30–100 aa in size. ADs have been classified based on the kinds of aa that dominate the activation domain: acidic, proline-rich, serine-rich, and glutamine-rich (111, 112). Using Rap1AS, a single AD of the protein, was successfully mapped to Rap1 aa 630–671. This 41-aa region contains nine glutamic and aspartic aa, 20% of the total AD residues, and it has a predicted pI of 3.84. Thus, the Rap1 AD should be considered to be an acidic activation domain.

Although this acidic AD is located within the AD mapped using the Gal4 DBD-Rap1 fusion approach (aa 630–692) (33), our analyses provide important additional insights. Studies of acidic ADs have shown that typically they contain small clusters of key hydrophobic aa that actually confer AD activity (113–116) rather than their acidic aa (116, 117). Consistent with this principle, our mutational analyses of individual Rap1 AD amino acids showed, for the first time, that specific individual hydrophobic amino acids (i.e. Leu-639, Phe-646, Leu-650, Leu-654, Phe-663, Tyr-665, and Ile-669A; Fig. 6B) displayed defects in activation as scored by growth. It is also surprising that it was the non-polar L650A mutant that showed a significant decrease in mRNAHIS3 levels in qRT-PCR (Fig. 6C), instead of a bulky aromatic hydrophobic amino acid (i.e. Phe or Tyr), which have been shown to be the most critical contributors to AD function in other well characterized ADs (113–116, 118). Finally, the Rap1 AD activity is spread over a large number of contiguous aa (i.e. 7 amino acids; see Figs. 6–9) compared with other ADs whose activity is concentrated on only 2–3 aa (113, 114, 116, 118, 119). It is tempting to speculate that these seven key hydrophobic aa may represent separate/overlapping binding domains for the known distinct coactivator targets of Rap1 (19, 31, 71, 96). Alternatively, these seven critical AD aa may collectively enable Rap1 to bind with unusually high affinity to its coactivator targets and thus drive the high levels of transcription observed at the RP- and GE-encoding genes. Indeed, it was recently shown that the addition of hydrophobic aa to a small nine-residue AD sub-motif of yeast Gcn4 could increase coactivator binding affinity and transcription activity (119). We believe that the collection of the Rap1 AD point mutants generated here will prove to be powerful reagents for investigating these possibilities.

Importantly, our study also demonstrates, for the first time, that transcription of authentic chromosomal Rap1-dependent
target genes and Rap1-TFIID Taf5 coactivator target binding depend on a discrete AD within Rap1. The results of the Rap1WT and Rap1TAla variant pulse-labeling studies reported here provide compelling evidence that the Rap1 AD functions to specifically modulate transcription activation of chromosomal Rap1 target genes (Fig. 8). These results are all the more notable given the number of recent studies that document the robust ability of yeast to maintain normal steady-state transcript levels in the face of mutations in genes encoding key mRNA synthesis and mRNA degradation proteins. It is highly likely that our findings would have been difficult to observe without the use of the nascent RNA labeling technique. Meanwhile, our GST-Rap1/Taf5 pulldown binding experiments (Fig. 9) show that the Rap1 AD binds coactivator targets as expected and provides a starting point for dissecting the biochemical mechanism of transcription activation by the Rap1 AD.

Because Rap1 can bind nucleosomal UASrap1 sites (54) and reposition nucleosomes (50), the Rap1 AD may target chromatin remodelling factors, in addition to TFIIID and TFIIA subunits, to modulate target gene transcription. Indeed, several recent studies have suggested that the high level of RP- and GE gene transcription requires altered nucleosome stabilities and/or positioning (58, 68, 120). Consistent with these observations, the ATP-dependent nucleosome remodelling complex Swi/Snf has been shown to interact with Rap1 (19). The Rap1 AD may also directly contact the chromatin remodelling RSC complex (120) and/or the histone acetyltransferase NuA4 complex, both of which have been identified as important regulators of Rap1-dependent gene transcription (65, 121, 122). Future studies will address these important questions.

In conclusion, the Rap1 AD mapping and the Rap1 AD mutants generated through this study represent an important advance in Rap1 biology. This information and the reagents generated will enable future work aimed at molecularly dissecting the mechanisms responsible for regulating the robustly transcribed RP- and GE-encoding genes. These advances were made possible through the generation of a true-altered DNA-binding specificity Rap1AS. In addition to providing new knowledge to advance Rap1 biology, this information and the reagents generated will also markedly help studies of Rap1 biology move forward.

Experimental procedures

Yeast strains

All of the yeast strains for this study are listed in Table 1. These strains were derived from a rap1Δ null strain created in the BY4741 background (123). These strains carry either a pRS416 FLAG3-RAP1 or pRS415 MYC3-RAP1 covering plasmid expressed under the control of the native RAP1 promoter (RAP1 nt position -433 to +1) (30) and terminator (RAP1 nt position +2485 to +2533). These strains also carry an HA3-tagged TAF1 allele and various integrated UASrap1-HIS3 reporter genes derived from a similar reporter characterized in previous studies (31, 57).

Test Rap1 yeast expression vectors

Test RAP1 yeast expression vectors are the same as the pRS415-MYC3, RAP1 expression vector except that the SV40 nuclear localization signal (PKKKRKV (124)) was inserted via PCR between the MYC3 tag and the RAP1 open-reading frame (ORF). Mutant RAP1 test expression vectors were created either by replacing the BlpI to SphI fragment of RAP1 in plasmid pRS415-MYC3-NLS-RAP1 with the BlpI to SphI fragment of a mutant RAP1 generated via library construction (see below) or splicing by overlap extension PCR (125).

Rap1 expression and purification

To prepare Rap1 for DNA binding assays, Rap1 ORFs encoded on the pRS415 expression plasmid were subjected to PCR to generate Rap1 coding sequences with EcoRI and XhoI and ligated into similarly digested pET28a expression vector, in-frame with the vector encoded N-terminal His6 tag. Plasmids were transformed and propagated at 37 °C in the E. coli Rosetta II (DE3) expression strain (Novagen) in Luria-Bertani media (126) supplemented with kanamycin (10 μg/ml) and chloramphenicol (34 μg/ml). His6-Rap1 expression was induced for 4 h following addition of isopropylthiogalactoside to 1 mM. Cell pellets from 500 ml of culture were resuspended in 20 ml of Lysis/Wash buffer (25 mM HEPES-NaOH (pH 7.6), 10% v/v glycerol, 300 mM NaCl, 0.01% v/v Nonidet P-40, 1 mM benzamidine, 0.2 mM PMSF). Cells were lysed by treatment with lysozyme (final concentration of 1 mg/ml) and sonication. After centrifugation, each cleared lysate was incubated with 2.5 ml of Ni-NTA-agarose (Qiagen) pre-equilibrated with an equal volume of Lysis/Wash buffer. Proteins were bound for 3 h at 4 °C, washed three times with Lysis/Wash buffer, and transferred to a disposable column (Bio-Rad), and bound proteins were eluted using Lysis/Wash buffer containing 200 mM imidazole.

To generate Rap1 for GST pulldown assays, Rap1 ORFs encoded on the pRS415 expression plasmid were subjected to PCR to generate Rap1 coding sequences with EcoRI and XhoI ends that could be cloned in-frame with the His6-GST tag in the pBG101 expression vector. His6-GST-Rap1 variants were expressed and subjected to Ni-NTA purification as described for His6-Rap1 scaled up for 2 liters of E. coli culture. Ni-NTA-purified His6-GST-Rap1 variants were dialyzed to reduce the concentration of NaCl in the Lysis/Wash buffer to 150 mM and permit binding to 2.5 ml of Sepharose SP Fast Flow (Pharmacia) pre-equilibrated in a disposable column (Bio-Rad) with 4 column volumes of Buffer B150 (25 mM HEPES-NaOH (pH 7.6), 10% v/v glycerol, 150 mM NaCl, 0.01% v/v Nonidet P-40, 1 mM benzamidine, 0.2 mM PMSF). After binding, Sepharose SP was washed with 4 more column volumes of Buffer B150. Bound proteins were eluted using 3 column volumes of Buffer B1000 (25 mM HEPES NaOH (pH 7.6), 10% v/v glycerol, 1 mM NaCl, 0.01% v/v Nonidet P-40, 1 mM benzamidine, 0.2 mM PMSF).

Taf5 aa 1–337 expression and purification

His6-Taf5 aa 1–337 (containing the RBD) was expressed from a previously generated pET33b expression vector (71), and purified using Ni-NTA-agarose as described for His6-Rap1 scaled up for 2 liters of E. coli culture.

Rap1 DNA binding assays

10 ng (~100 fmol) of purified His6-Rap1 WT/variant proteins was incubated with 0.6 ng (~50 fmol, ~35,000 dpm) of 19-bp 32P-labeled duplex DNA containing a Rap1-binding site
Altered DNA-binding specificity variant identifies Rap1 AD

Mutagenesis of Rap1 DBD and construction of Rap1 variant expression library

Codon randomization of Asn-401, Ser-402, Arg-404, His-405, Arg-408, and Val-409 of the Rap1 DBD was achieved by overlap extension PCR (125) using the mutagenic oligonucleotide (see also Fig. 2A): 5'-CATATGTTGCTAACCAGGGTNNSSNATTTNNSNCGATTTNNSNStACTTTTCCAAAAGACTAGAGTACG-3', which targeted the expected amino acids. Sanger sequencing of library plasmid. The digest was used to transform E. coli MCR MAX DH5α cells (genotype F−, rpsL, mcrA, mcrC, mrr, and XhoI restriction sites. Mutagenic PCR products were digested with BlpI and XhoI restriction enzymes and ligated into similarly digested pRS416-RAP1, a plasmid that drives RAPI expression using the native RAPI enhancer-promoter (see under “Yeast Strains”). Ligation products were electroporated into ElectroMAX DH5αB cells (genotype F− mcrAΔ (mrr-hsdRMS mcrBC) F 80lacZAM15 ΔlacX74 recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ- rpsL mupG, Life Technologies, Inc.). Multiple electroporation reactions were used to create a library of ~1 × 108 independent bacterial clones, a number that exceeds the 8.6 × 107 variations theoretically generated by the codon randomization of six amino acids. Sanger sequencing of library expression plasmid isolated from 10 individual clones was used to confirm that the mutagenesis targeted the expected amino acids.

Screen for RAPI

To screen for a mutant RAPI variant that could drive expression of a reporter gene containing a mutant Rapi1-binding site (i.e.URA3, 3T4A), the library was introduced into yeast strain 3T4A-HIS3 #1 (see Table 1) and plated onto SC media (127) containing 5 mM 3-AT (Sigma); plates were incubated for 4 days at 30 °C. Colonies were then replica plated to SC media plates containing 5 mM 3-AT and 0.1% 5-FOA to determine whether growth of the colony on 5 mM 3-AT required Rapi1 produced from the URA3-marked pRS416 RAPI library plasmid. RAPI expression plasmids were recovered from colonies that grew on 5 mM 3-AT and failed to grow on 5 mM 3-AT + 0.1% 5-FOA. These purified plasmid preparations were treated with the restriction endonuclease BsRG1 (New England Biolabs) that cuts the pRS415-MYC5-RAP1 covering plasmid, but not pRS416-RAPI library plasmid. The digest was used to transform E. coli to Amp', and the resulting plasmids were isolated to generate putative RAPI encoding pRS416-RAP1 mutant plasmids. The recovered pRS416-RAP1 plasmids were retransformed into yeast strain 3T4A-HIS3 #1 and retested for growth on 5 mM 3-AT to confirm that 3-AT-resistant growth was conferred by the mutant pRS416-RAP1 plasmid.

Yeast cell growth assays

Yeast strains were grown overnight to saturation, serially diluted 1:4 in sterile water in 96-well plates, spotted using a pipetting tool (Sigma) onto non-selective media plates (SC + His) and selective media plates (SC-His + 3-AT), and grown overnight at 30 °C for 2–4 days. Plate images were acquired using a ChemiDoc MP imager (Bio-Rad) and processed using ImageLab software (Bio-Rad). Images were saved at a resolution of 300 dpi.

Immunoblotting

Total protein was extracted from yeast cell pellets containing ~1 × 107 cells (1 OD600 unit) via mild alkali treatment and heating in standard electrophoresis buffer. In brief, cell pellets were resuspended in 0.1 M NaOH (128) and incubated for 10 min at room temperature. Cells were re-pelleted; the 0.1 M NaOH was removed; and pellets were incubated for 10 min at 75 °C in SDS-PAGE sample buffer (1 × LDS Sample Buffer (Life Technologies, Inc.) with DTT added to 62.5 mM). Proteins were fractionated on denaturing 4–12% BisTris polyacrylamide gels (Life Technologies, Inc.); gels were equilibrated in transfer buffer (30 mM Bicine, 25 mM BisTris, 1 mM EDTA, 60 μM chlorobutanol), and then electrotransferred to PVDF membranes pre-equilibrated in transfer buffer (GE Healthcare, Immobilon-P, 0.45 μM). Loading and transfer efficiency was monitored after transfer by staining with 0.5% w/v Ponceau S in 1% v/v acetic acid. After imaging, three blot was removed using multiple changes of H2O. Blots were blocked with 5% w/v nonfat milk in 1 × Tris-buffered saline (TBS) (100 mM Tris-Cl (pH 7.5), 150 mM NaCl). Myc5-Rapi1 was detected using an anti-Myc antibody conjugated to HRP (Roche Applied Science catalog no. 11667203001) at a 1:2000 dilution. Endogenous actin was used as an additional loading control. Actin was detected using a 1:5000 dilution of anti-β-actin antibody (Abcam catalog no. ab8224) followed by incubation with a 1:2500 dilution of HRP-conjugated horse anti-mouse IgG antibody (Cell Signaling catalog no. 7076S). Both anti-Myc and anti-β-actin antibody incubations were performed in 1% w/v nonfat milk blocking in 1 × TBS. HRP-generated immune complexes were detected by exposing blots to enhanced chemiluminescence reagent (GE Healthcare) followed by exposure to X-ray film. X-ray films were scanned at 600 dpi and saved as TIFF images.

Steady-state RNA analysis

Total RNA was extracted and purified from equal numbers of yeast cells using the hot phenol method (129). RNA concentration was measured by monitoring absorbance at 260 and 280 nm using a NanoDrop 2000c spectrophotometer. RNA integrity was assessed by agarose gel electrophoresis, ethidium bromide staining, and scanning using a Pharo FX imager (Bio-
Altered DNA-binding specificity variant identifies Rap1 AD

Table 2
qRT-PCR primers used in this study

Gene	Primer name	Primer sequence (5’ → 3’)
HIS3	HIS3:F2	ACGAGCAAGACGAAAAGGC
	HIS3:R2	GCACTTACGATACTTGTAC
ACT1	ACT1:F2	TTGGCTCTTGGGTTCAAA
	ACT1:R2	AAGGACAAAAAGGCCGTTGAA
ENO1	ENO1:F	CTTCAACAGCTTATCATTCT
	ENO1:R	CAAGAGAACACTCAGAATCTG
PYK1	PYK1:F	CCACTCTCCACCCCGGAAAAC
	PYK1:R	GCTTTGCAACAATGATCCCA
RPS3	RPS3:F	TACCTGTCGGTCGATAGAC
	RPS3:R	GACCAAGTGGATCAAGAAACC
RPL26B	RPL26B:F	TTTGACGGCCATCTCTGCC
	RPL26B:R	GGACGAGAGCAGACACCAGGC
RPL3	RPL3:F	TGGACAGACGAGTTCAAG
	RPL3:R	AAATGGTCTCACCCAGACGC
Tubulin	Tubulin:F	CCCTGCTGCGAAAGPTGTTT
	Tubulin:R	GCCATTTCCAGACTCTGCACT

Rad). The intensity of the bands representing large (26S) and small (18S) yeast rRNAs were quantified using Quantity One software (Bio-Rad). Reverse transcription was performed using 2.5 μg of RNA from each strain using Superscript III (Life Technologies, Inc.) per the manufacturer’s instructions. Priming for cDNA synthesis was achieved using oligo(dT)16 (Life Technologies, Inc.). Quantitative real time PCRs (qRT-PCR) were performed using equal amounts of RNAs (−/+ RT (reverse transcription) controls) and cDNAs using IQ real time SYBR Green PCR Supermix (Bio-Rad), an iCycler (Bio-Rad), and the gene-specific primers listed in Table 2. Relative transcript levels for each gene of interest were determined by comparing the cycle threshold (Ct) values generated from cDNA-containing reactions to standard curves obtained in parallel by measuring serial 1:10 dilutions of yeast genomic DNA and normalizing to the reference gene ACT1. Scatter plots generated using Prism 7 (GraphPad) and representing data obtained from both biological (individual points) and technical replicates of each sample are expressed relative to the normalized amount of a target gene of interest in the indicated positive control sample.

Pulse labeling of nascent RNA

Nascent RNA levels in yeast strains of interest were assessed using efficient and reversible RNA labeling and purification (94). 200 ml of each yeast culture grown in YPD to a cell density of ~1.5 × 10^7 cells/ml (2.5 OD_600/ml) were pulse-labeled for 2.5 min with 5 mM 4-thiouracil (Sigma), immediately harvested via vacuum filtration, and immersed in a 1:1 ratio of phenol/RNA Buffer A (50 mM NaAc (pH 5.5), 10 mM EDTA (pH 8), 0.5% SDS) pre-warmed to 65 °C. ~4.8 × 10^7 cells (80 OD_600 units) of 6-min thiouracil labeled Schizosaccharomyces pombe cells were added into each sample prior to RNA extraction to provide a reference gene for later qRT-PCR analysis. Total RNA from the resulting S. cerevisiae/S. pombe mixtures was extracted using the hot phenol method (129). RNA concentration and integrity were assessed as described above. To prepare nascent thiolated RNA for separation from total RNA, 400 μg of each RNA in 1 ml of Biotinylated Buffer (10 mM Tris-HCl (pH 7.5), 1 mM EDTA (pH 8)) was heat-denatured at 65 °C for 10 min and then chilled for 2 min on ice. RNA was biotinylated for 30 min at room temperature in the dark on a tilt board following addition of 20 μl of 1 mg/ml 2-(biotinylamino)ethyl methanethiosulfonate (Biotium) dissolved in dimethylformamide. Unincorporated biotin was removed by two chloroform extractions (once with 1 ml and then with 0.75 ml), the second of which was performed using a Heavy Phase Lock Gel (5 Prime Inc.). RNA was precipitated using an equal volume (0.75 ml) of isopropl alcohol and dissolved in 100 μl of 0.1% diethyl pyrocarbonate (DEPC)-treated H_2O (Fisher). RNA was again heat-denatured at 65 °C for 10 min and then chilled on ice for 5 min. Biotinylated nascent RNAs were purified using 200 μl of a colloidal suspension of μMACs streptavidin beads/reaction (μMACs streptavidin kit, Miltenyi Biotec). Samples were placed in a light-tight container on a tilt board at room temperature for 15 min. Each RNA/bead mixture was added to a separate μMACs streptavidin kit column that had been placed in the μMACs separator and washed 2× with 0.2 ml of Nucleic Acid Wash Buffer (μMACs streptavidin kit, Miltenyi Biotec). The flow-through was collected and re-applied to the column. Columns were washed two times with 0.5 ml of the biotinylated RNA Wash Buffer (100 mM Tris-HCl (pH 7.5), 10 mM EDTA (pH 8), 1 M NaCl, 0.1% Tween 20), and biotinylated RNA was eluted with two 200-μl washes of 0.1 M DTT. Biotinylated RNA was ethanol-precipitated following addition of 40 μg of molecular biology grade glycerol (Roche Applied Science), 0.1× volume of 3 M NaOAc (pH 5.5), and 3× volumes of 100% ethanol. Precipitated RNAs were dissolved in Tris 0.1 EDTA (T.1E: 10 mM Tris-Cl (pH 7.5), 0.1 mM EDTA). cDNA synthesis was performed as described above except that gene-specific primers for genes of interest lacking a poly(A) tail were included in addition to oligo(dT)_16 qRT-PCR was performed, and relative transcript levels were determined as described above, except that S. pombe β-tubulin present in the samples due to the addition of S. pombe cells was used as a reference gene (93) (see “Steady-state RNA Analysis” above for details).

GST pulldown assays

GST pulldown assays were conducted as 200-μl reactions in pulldown buffer (20 μM HEPES-NaOH (pH 7.5), 150 mM NaAc, 0.05% Triton X-100, 10% glycerol, 1 mM DTT, 25 ng/μl BSA) using 5 μl of glutathione-Sepharose 4 Fast Flow (GE Healthcare), 12 pmol of His₁₆-GST, or 6 pmol of His₁₆-GST-Rap1 variant and either 0 or 100 pmol of His₁₆-Taf5. Binding reactions were incubated for 1 h at room temperature on the tilt board. Following incubation, glutathione-Sepharose beads were pelleted and washed once with pulldown buffer. Beads were pelleted again, and bead-bound material was eluted with 1× NuPAGE sample buffer (1× LDS Sample Buffer (Life Technologies, Inc.) with DTT added to 62.5 mM). Bead-bound material was fractionated on 4–12% NuPAGE gels (Life Technologies, Inc.), stained with Sypro Ruby (Life Technologies, Inc.), and imaged with Pharos FX (Bio-Rad). Binding data were quantified using Quantity One software (Bio-Rad) and plotted using Prism 7 (GraphPad).

Author contributions—P. A. W. conceived of the study and assisted with the design and interpretation of the experiments. A. N. J. performed, designed, and interpreted all experiments. Both authors wrote the manuscript.
Acknowledgments—We thank our laboratory colleagues Drs. Jordan Feigler, Justin H. Layer, Julia M. Gilchuk, and Chiranthani Sumanasekera for reagents, advice, and thoughtful discussions throughout the course of this work. A. N. J. would also like to thank the members of her Ph.D. thesis advisory committee, Drs. Roger Colbran, Roland Stein, William Tansey, and Bryan Venters, for their helpful guidance and suggestions. We are grateful to Dr. Lazlo Tora and Tiago Baptista for their assistance in helping to set up the nascent RNA labeling technique in our laboratory.

References

1. Taats, D. J., Marr, M. T., and Tjian, R. (2004) Regulatory diversity among metazoan co-activator complexes. Nat. Rev. Mol. Cell Biol. 5, 403–410
2. Hahn, S., and Young, E. T. (2011) Transcriptional regulation in Saccaromyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189, 705–736
3. Shandilya, J., and Roberts, S. G. (2012) The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling. Biochim. Biophys. Acta 1819, 391–400
4. Weake, V. M., and Workman, J. L. (2010) Inducible gene expression: diverse regulatory mechanisms. Nat. Rev. Genet. 11, 426–437
5. Ranish, J. A., and Hahn, S. (1996) Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett. 379, 909–915
6. Jonkers, I., and Lis, J. T. (2015) Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177
7. Roeder, R. G. (2005) Transcriptional regulation and the role of diverse chromatin remodeling. Nat. Rev. Mol. Cell Biol. 7, 5393–5404
8. Shore, D., and Nasmyth, K. (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51, 721–732
9. Morse, R. H. (2000) RAP, RAP, open up! New wrinkles for RAPI in yeast. Trends Genet. 16, 51–53
10. Idrissi, F.-Z., Garcia-Reyero, N., Fernandez-Larrea, J. F., and Piña, B. (2001) Alternative mechanisms of transcriptional activation by RAP1. J. Biol. Chem. 276, 26090–26098
11. Li, B., Nierras, C. R., and Warner, J. J. (1999) Transcription elements involved in the repression of ribosomal protein synthesis. Mol. Cell. Biol. 19, 5393–5404
Altered DNA-binding specificity variant identifies Rap1 AD

44. Kasahara, K., Ohtsuki, K., Ki, S., Aoyama, K., Takahashi, H., Kobayashi, T., Shirahige, K., and Kokubo, T. (2007) Assembly of regulatory factors on rRNA and ribosomal protein genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 6668–6705

45. Lickwar, C. R., Mueller, F., Hanlon, S. E., McNally, J. G., and Lieb, J. D. (2012) Genome-wide protein–DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484, 251–255

46. Rhee, H. S., and Pugh, B. F. (2011) Comprehensive genome-wide protein–DNA interactions detected at single-nucleotide resolution. Cell 147, 1408–1419

47. Konig, P., Giraldo, R., Chapman, L., and Rhodes, D. (1996) The crystal structure of the DNA-binding domain of yeast RAPI in complex with telomeric DNA. Cell 85, 125–136

48. Taylor, H. O., O'Reilly, M., Leslie, A. G., and Rhodes, D. (2000) How the genome-wide chromatin structure influences gene transcription. Mol. Cell. Biol. 19, 5279–5288

49. Ganapathi, M., Palumbo, M. J., Ansari, S. A., He, Q., Tsui, K., Nislow, C., He, Q., and Shore, D. (2014) Two distinct promoter architectures centered around the yeast transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Mol. Cell. Biol. 34, 1054–1058

50. Schawalder, S. B., Kabani, M., Howald, I., Choudhury, U., Werner, M., and Shore, D. (2004) Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 432, 1054–1058

51. Rudra, D., Zhao, Y., and Warner, J. R. (2005) Central role of Ifh1p–Fhl1p interaction in the synthesis of yeast ribosomal proteins. EMBO J. 24, 533–542

52. Marion, R. M., Regev, A., Segal, E., Barash, Y., Koller, D., Friedman, N., and O'Shea, E. K. (2004) Sfp1 is a stress-and nutrient-sensitive regulator of ribosomal protein gene expression. Proc. Natl. Acad. Sci. U.S.A. 101, 14315–14322

53. Reid, J. L., Iyer, V. R., Brown, P. O., and Struhl, K. (2000) Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esai histone acetylase. Mol. Cell 6, 1297–1307

54. Hall, D. B., Wade, J. T., and Struhl, K. (2006) An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 3672–3679

55. Kasahara, K., Ki, S., Aoyama, K., Takahashi, H., and Kokubo, T. (2008) Saccharomyces cerevisiae HMO1 interacts with TFIIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res. 36, 1343–1357

56. Haruki, H., Nishikawa, J., and Maemili, U. K. (2008) The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932

57. Ptashne, M., and Gann, A. A. (1990) Activators and targets. Nature 346, 329–331

58. Layer, J. H., Miller, S. G., and Well, P. A. (2010) Direct transactivator–transcription factor IID (TFIID) contacts drive yeast ribosomal protein gene transcription. J. Biol. Chem. 285, 15489–15499

59. Nilsson, M. T., and Widersten, M. (2004) Repertoire selection of variant single-chain Cre: toward directed DNA binding specificity of helix-turn-helix proteins. Biochemistry 43, 12038–12047

60. Ptashne, M., and Struhl, K. (1992) Yeast and human TFIID with altered DNA binding specificity for TATA elements. Cell 68, 721–730

61. Kim, J., Tzamarias, D., Ellenberger, T., Harrison, S. C., and Struhl, K. (1993) Adaptability at the protein–DNA interface is an important aspect of sequence recognition by bZIP proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 4513–4517

62. Mader, S., Kumar, V., de Verneuil, H., and Chambon, P. (1989) Three amino acids of the oestrogen receptor are essential to its ability to lose oestrogen from a glucocorticoid-responsive element. Nature 338, 271–274

63. Voss, T. C., Schilt, R. L., Sung, M.-H., Yen, P. M., Stamatoyannopoulos, J. A., Bidde, S. C., Johnson, T. A., Miranda, T. B., John, S., and Hager, G. L. (2011) Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146, 544–554

64. Chu, S. W., Noyes, M. B., Christensen, R. G., Pierce, B. G., Zhu, L. J., Weng, Z., Stormo, G. D., and Wolfe, S. A. (2012) Exploring the DNA-recognition potential of homeodomains. Genome Res. 22, 1889–1898

65. Shore, D. (1994) TFIID: a protein regulator in yeast. Trends Genet. 10, 408–412

66. Rudra, D., and Warner, J. R. (2004) What better measure than ribosome synthesis? Genes Dev. 18, 2431–2436

67. Wolberger, C., Verson, A. K., Liu, B., Johnson, A. D., and Pabo, C. O. (1991) Crystal structure of a MATα1 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67, 517–528

68. Fraenkel, E., Roald, M. A., Chambers, K. A., and Pabo, C. O. (1998) Engrailed homeodomain-DNA complex at 2.2 Å resolution: a detailed examination of the DNA-binding interface. Nature 392, 50–54

69. Fraenkel, E., Rould, M. A., Chambers, K. A., and Pabo, C. O. (1998) Adaptability at the protein-DNA interface is an important aspect of sequence recognition by bZIP proteins. Proc. Natl. Acad. Sci. U.S.A. 90, 4513–4517

70. Rudra, D., and Warner, J. R. (2004) What better measure than ribosome synthesis? Genes Dev. 18, 2431–2436

71. Wolberger, C., Verson, A. K., Liu, B., Johnson, A. D., and Pabo, C. O. (1991) Crystal structure of a MATα1 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67, 517–528

72. Fraenkel, E., Roald, M. A., Chambers, K. A., and Pabo, C. O. (1998) Engrailed homeodomain-DNA complex at 2.2 Å resolution: a detailed examination of the DNA-binding interface. Nature 392, 50–54

73. Rudra, D., and Warner, J. R. (2004) What better measure than ribosome synthesis? Genes Dev. 18, 2431–2436

74. Wolberger, C., Verson, A. K., Liu, B., Johnson, A. D., and Pabo, C. O. (1991) Crystal structure of a MATα1 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions. Cell 67, 517–528

75. Fraenkel, E., Roald, M. A., Chambers, K. A., and Pabo, C. O. (1998) Engrailed homeodomain-DNA complex at 2.2 Å resolution: a detailed examination of the DNA-binding interface. Nature 392, 50–54
