TWO-CLOSURES OF SUPERSolVABLE PERMUTATION GROUPS IN POLYNOMIAL TIME

IliA Ponomarenko and Andrey Vasil’ev

Abstract. The 2-closure \overline{G} of a permutation group G on Ω is defined to be the largest permutation group on Ω, having the same orbits on $\Omega \times \Omega$ as G. It is proved that if G is supersolvable, then \overline{G} can be found in polynomial time in $|\Omega|$. As a by-product of our technique, it is shown that the composition factors of \overline{G} are cyclic or alternating.

Keywords. Permutation group, 2-closure, Polynomial-time algorithm

Subject classification. 20B25, 20B40

1. Introduction

It is well known that the computational problem of finding the automorphism group of a finite graph is polynomial-time equivalent to the graph isomorphism problem. None of these two problems becomes easier if the input graphs assumed to be arc-colored. One could ask whether an a priori knowledge of certain symmetries of a graph can be used to solve the former problem efficiently? In the limit case, this knowledge could include an automorphism group acting transitively on each color class of arcs. This naturally leads to the notion of the closure of a permutation group, which comes from a method of invariant relations, developed in Wielandt (1969).

In Wielandt’s method, a permutation group $G \leq \text{Sym}(\Omega)$ is studied by analyses of the set of m-orbits (m is a positive integer)

$$\text{Orb}_m(G) = \text{Orb}(G, \Omega^m),$$
consisting of the orbits of componentwise action of \(G \) on the Cartesian power \(\Omega^m \) of the set \(\Omega \). When \(m \) is sufficiently large, the group \(G \) is uniquely determined by its \(m \)-orbits. However, if \(m \) is small, then we have to reckon with the fact that there are groups \(m \)-equivalent to \(G \), i.e., those having the same \(m \)-orbits as \(G \). For example, the only thing that can be said about 1-equivalent groups is that they have the same orbits on \(\Omega \); one more example is that a group 2-equivalent to a solvable group is not necessarily solvable. On the other hand, it was proved by Wielandt that the property of \(G \) to be primitive (2-transitive, abelian, or nilpotent) is preserved with respect to the 2-equivalence.

The \(m \)-closure \(G^{(m)} \) of a group \(G \leq \text{Sym}(\Omega) \) is defined to be the subgroup of \(\text{Sym}(\Omega) \) leaving each \(m \)-orbit of \(G \) fixed,

\[
G^{(m)} = \{ k \in \text{Sym}(\Omega) : s^k = s \text{ for all } s \in \text{Orb}_m(G) \};
\]

the group \(G \) is said to be \(m \)-closed if \(G = G^{(m)} \). The \(m \)-closure is \(m \)-equivalent to \(G \) and, in fact, does not depend on the choice of \(G \) in the class of permutation groups on \(\Omega \), that are \(m \)-equivalent to \(G \). In general, \(G^{(m)} = G \) for a certain \(m \leq |\Omega| \) and

\[
G^{(1)} \geq G^{(2)} \geq \cdots \geq G^{(m)} = G^{(m+1)} = \cdots = G.
\]

The first member \(G^{(1)} \) of this sequence is obviously equal to the direct product of symmetric groups acting on the orbits of \(G \). It is far less trivial to find the \(m \)-closure for \(m > 1 \). After Wielandt’s pioneering work, there was some progress on the subject achieved mostly in the case of primitive groups. In Liebeck et al. (1988) and Praeger & Saxl (1992), the socles of the \(m \)-closures of primitive permutation groups were described. More recent results on invariants of the \(m \)-equivalence can be found in Xu et al. (2011) and Yu & Pan (2019).

The case of 2-closure is of particular interest because of its connection with the graph isomorphism problem. Indeed, an equivalent way to define the 2-closure \(\overline{G} = G^{(2)} \) of a group \(G \leq \text{Sym}(\Omega) \) is to consider an arc-colored graph \(X = \text{Inv}(G) \) with vertex set \(\Omega \) and the 2-orbis of \(G \) as the color classes; this graph is nothing else than the coherent configuration associated with \(G \) in the sense
of Higman (1975). Then \overline{G} is equal to the full automorphism group $\text{Aut}(X)$ of this graph.

A more abstract way to see the essence of the 2-closure is as follows. The sets of permutation groups on Ω and of coherent configurations on Ω are partially ordered: with respect to inclusion and with respect to refinements of the partitions of Ω^2, induced by the color classes, respectively. Moreover, the mappings

\begin{align*}
G \to \text{Inv}(G), & \quad X \to \text{Aut}(X),
\end{align*}

are order-reversing. One can easily verify that they form a Galois correspondence (in other terms, connection) between the permutation groups and the corresponding graphs; the closed objects under this correspondence are exactly the 2-closed groups and schurian coherent configurations, see Evdokimov & Ponomarenko (2009, Sect. 3.1) and Chen & Ponomarenko (2019, Sect. 2.2).

In this paper, we are interested in the computational complexity of 2-closure problem: find the 2-closure of a permutation group. As usual, it is assumed that the input and output groups are given by sets of generators.

Modulo the recent breakthrough result Babai (2018), this problem can be solved in time quasipolynomial in the degree of a given group, so the attention should be restricted to the question whether a polynomial-time algorithm exists.

From this point of view, the 2-closure problem was apparently first studied in Ponomarenko (1994), where a polynomial-time algorithm constructing the 2-closure of a nilpotent group was proposed. Since then the 2-closure problem has been solved for the odd order groups Evdokimov & Ponomarenko (2001), for groups containing a regular cyclic subgroup Ponomarenko (2005), and for 3/2-transitive groups Vasil’ev & Churikov (2019). It should be noted that all these classes are invariant with respect to taking the 2-closure. In the present paper, we deal with the class of supersolvable groups, in which this property does not hold: The 2-closure of the supersolvable group $\text{AGL}_1(p)$, where p is a prime, is the symmetric group $\text{Sym}(p)$. Recall that a finite group is said to be supersolvable if it contains a normal series with cyclic factors.
Theorem 1.2. The 2-closure of a supersolvable permutation group of degree n can be found in time $\text{poly}(n)$.

A challenging problem is to find the 2-closure \overline{G} of a solvable group G. The main obstacle here is that among the composition factors of \overline{G}, simple groups other than cyclic and alternating can occur: the examples have recently been found in Skresanov (2019). This effect does not appear for the supersolvable groups, this follows from the theorem below, obtained as a by-product of a technique used to prove Theorem 1.2.

Theorem 1.3. Every composition factor of the 2-closure of a supersolvable permutation group is a cyclic or alternating group of prime degree.

Theorem 1.2 and Theorem 1.3 are proved in Section 6.5 and Section 5.3, respectively. The main idea of the proof is to separate (as much as possible) the “nonsolvable part” of the 2-closure \overline{G} of a supersolvable permutation group G. In this way, we define a relative closure K of G (Section 4.3), a “solvable part” of \overline{G}, which is constructed with the help of the Babai-Luks algorithm Babai & Luks (1983). It turns out that $\overline{G} = K$, and every nonsolvable section of K has a very special form as a permutation group (Section 3.3), which can efficiently be revealed from the corresponding section of G (Section 5.4). This fact is a cornerstone of the Main Algorithm presented in Section 6.5.

Notation.

Throughout the paper, Ω is a set of cardinality n. The diagonal of $\Omega \times \Omega$ and the identity permutation of Ω are denoted by 1_{Ω} and id_{Ω}, respectively. The set of all classes of an equivalence relation e on Ω is denoted by Ω/e; for a set $\Delta \subseteq \Omega$, we put $e_{\Delta} = e \cap (\Delta \times \Delta)$. The symmetric and alternating group on Ω are denoted by $\text{Sym}(\Omega)$ and $\text{Alt}(\Omega)$, or $\text{Sym}(n)$ and $\text{Alt}(n)$ if the underlying set is fixed or irrelevant.

2. Permutation groups: preliminaries

Throughout the paper, all sets and groups are assumed to be finite. Our notation for permutation groups is mainly compati-
ble with that in Dixon & Mortimer (1996). In particular, given $G \leq \text{Sym}(\Omega)$, we refer to the set of orbits of G on Ω as $\text{Orb}(G, \Omega)$, or briefly $\text{Orb}(G)$ if Ω is fixed. The permutation group (respectively, the permutation) induced by an appropriate action of a group G (respectively, of a permutation g) on a set Γ is denoted by G^Γ (respectively, g^Γ). Given $\Delta \subseteq \Omega$, we denote by G_Δ and $G_{\{\Delta\}}$ the pointwise and setwise stabilizers of Δ in G, respectively. We set

$$G^\Delta := (G_{\{\Delta\}})^\Delta,$$

so $G^\Delta \cong G_{\{\Delta\}}/G_\Delta$.

Given an equivalence relation e on Ω, we set

$$G_e := \bigcap_{\Delta \in \Omega/e} G_{\{\Delta\}}.$$

It is easily seen that the orbits of G_e are subsets of the classes of e. If, in addition,

$$\text{Orb}(G_e, \Omega) = \Omega/e,$$

then e is said to be normal.

Let an equivalence relation e be G-invariant (in the transitive case, this means that Ω/e is an imprimitivity system for G). Then G acts naturally on Ω/e; the permutation group induced by this action is denoted by $G^{\Omega/e}$. The kernel of the action coincides with G_e; in particular, $G_e \leq G$. For an arbitrary $\Delta \subseteq \Omega$, we set

$$G^{\Delta/e} := (G^\Delta)^{\Delta/e}.$$

In what follows, the 2-closure of a permutation group G is denoted by \overline{G}. The following statement collects some relevant properties of the group \overline{G}; the proof is based on the Galois correspondence (1.1) between permutation groups and coherent configurations. The notation, concepts, and results used in the proof are taken from Chen & Ponomarenko (2019).

Lemma 2.1. Given $G \leq \text{Sym}(\Omega)$ and a G-invariant equivalence relation e on Ω,

(i) $G^{\Omega/e}$ and $\overline{G}^{\Omega/e}$ are 2-equivalent; in particular, $\overline{G}^{\Omega/e} \leq \overline{G}^{\Omega/e}$,
(ii) $\overline{G}_e \leq G_e$,

(iii) if $\Delta \in \Omega/e$, then G^Δ and \overline{G}^Δ are 2-equivalent; in particular, $\overline{G}^\Delta \leq G^{\overline{\Delta}}$.

Proof. Let $\text{Inv}(G) = (\Omega, \text{Orb}_2(G))$ be the coherent configuration associated with the group G. Then the 2-closure \overline{G} of G is equal to $\text{Aut}(\text{Inv}(G))$. According to Chen & Ponomarenko (2019, Definitions 3.1.12 and 3.1.20), $\text{Inv}(G)_{\Omega/e}$ is the quotient of $\text{Inv}(G)$ modulo e, and $\text{Inv}(G)_e$ is the extension of $\text{Inv}(G)$ with respect to e.

(i) Applying Chen & Ponomarenko (2019, Theorem 3.1.16), we have

$$\text{Inv}(G^\Omega/e) = \text{Inv}(G)_{\Omega/e} = \text{Inv}(\overline{G})_{\Omega/e} = \text{Inv}(\overline{G}^\Omega/e).$$

(ii) By virtue of Chen & Ponomarenko (2019, Theorem 3.1.21),

$$\overline{G}_e = \text{Aut}(\text{Inv}(G)_e) \leq \text{Aut}(\text{Inv}(G)_e) = (\text{Aut}(\text{Inv}(G)))_e = G_e.$$

(iii) Set $L = \overline{G}^\Delta$. Since $\text{Inv}(G) = \text{Inv}(\overline{G})$, we have $G^{\overline{\Delta}} = L$. Obviously, $L \geq L$, and we are done. \square

3. Permutation groups with orbits of prime cardinality

3.1. Transitive case.

Let p be a prime and Δ a set of cardinality p. Every transitive subgroup of $\text{Sym}(\Delta)$ contains a regular cyclic subgroup $C(\Delta)$ of order p. The normalizer of $C(\Delta)$ in $\text{Sym}(\Delta)$ is obviously isomorphic to $\text{AGL}_1(p)$, and is denoted by $\text{AGL}_1(\Delta)$.

Lemma 3.1. Let Δ be a set of prime cardinality, G a transitive subgroup of $\text{Sym}(\Delta)$, and $C(\Delta)$ a regular subgroup of G. Then either $G \leq \text{AGL}_1(\Delta)$ or G is nonsolvable and 2-transitive. In the latter case, if $G \geq \text{AGL}_1(\Delta)$, then $G = \text{Sym}(\Delta)$.

Proof. The first part of the lemma is well known. Indeed, as Galois proved, G is solvable if and only if any two-point stabilizer of G is trivial (cf., Wielandt (1964, Theorem 11.6)). Therefore, if G is solvable and nonregular, then it is a Frobenius group, and hence
If G is nonsolvable, then it is 2-transitive due to Burnside’s theorem, see Dixon & Mortimer (1996, Theorem 3.5B).

The second part can easily be deduced from the known description of nonsolvable 2-transitive groups with cyclic regular subgroup. Suppose that G is nonsolvable (and so 2-transitive). Assume on the contrary that $G ≤ AGL_1(Δ)$. Let N be the normalizer of $C(Δ)$ in G. It suffices to prove that the order of N is less than $|AGL_1(Δ)| = p(p − 1)$, where $p = |Δ|$. This trivially holds for $G = PSL_2(11)$, M_{11}, and M_{23} (see, e.g., Conway et al. (1985)). Thus we may also assume that

$$PSL_d(q) ≤ G ≤ PΓL_d(q),$$

where $d ≥ 2$ and $p = (q^d − 1)/(q − 1)$, see (Feit 1980, Theorem 4.1). Then $G ≥ PGL_d(q)$ and $C(Δ)$ is conjugated to a Singer cycle of $PGL_d(q)$ by virtue of Jones (2002, Corollary 2). It follows that if q is the kth power of a prime, then $|N| ≤ dkp$. On the other hand, one can verify that

$$dk ≤ (q^d − 1)/(q − 1) − 1 = p − 1$$

and the equality is attained only if $d = 2$ and $q = 2$ or 4. Thus, $|N| < p(p − 1)$ unless $p = 3$ or 5. By the assumption, this implies that $G = Sym(3)$ or Sym(5), a contradiction. □

We complete the subsection by a simple observation to be used in the proof of Theorem 5.5.

Lemma 3.2. Under the condition of Lemma 3.1, assume that G is a proper subgroup of $AGL_1(Δ)$. Then G is 2-closed.

Proof. If $G = C(Δ)$, then it is regular and so 2-closed. Hence, by the hypothesis of the lemma, we may assume that G is a Frobenius group. Therefore every its irreflexive (as a binary relation) 2-orbit is of cardinality $|G|$. It follows that no two distinct such groups have the same 2-orbits. Thus, $G = \overline{G}$ as required. □
3.2. **Index-distinguishable groups.** We call a subgroup L of a group G *index-distinguishable* if L is conjugated in G to any subgroup of the same index. A transitive permutation group G is said to be *distinguishable* if a point stabilizer in G is an index-distinguishable subgroup of G. The following lemma gives some examples of distinguishable groups. It would be interesting to get a description of primitive distinguishable groups.

Lemma 3.3. The following permutation groups are distinguishable:

(i) $\text{Alt}(n)$ and $\text{Sym}(n)$, $n \neq 6$;

(ii) a Frobenius group, in particular, any transitive subgroup of $\text{AGL}_1(p)$ (p is prime).

Proof. Both facts are well known. To prove (i), let $G = \text{Alt}(n)$ or $\text{Sym}(n)$, and H a subgroup of G of index n. Without loss of generality, we may assume that $n \geq 5$. It follows that the smallest nontrivial normal subgroup of G is $\text{Alt}(n)$, so the action of G on the set G/H of right cosets by right multiplications is faithful. Therefore, if $G = \text{Alt}(n)$ (respectively, $G = \text{Sym}(n)$), then H is isomorphic to $\text{Alt}(n-1)$ (respectively, to $\text{Sym}(n-1)$). The rest follows from, e.g., Wilson (2009, Lemma 2.2).

To prove (ii), we note that any subgroup of a Frobenius group, that has the same order as a point stabilizer, meets the Frobenius kernel trivially. It follows that this subgroup is a complement of the kernel and their orders are coprime. Since all the complements are conjugated by the Schur-Zassenhaus theorem, the first statement follows. It remains to note that each transitive subgroup of $\text{AGL}_1(p)$ is either Frobenius or regular. \[\square\]

3.3. **Plain groups.** Let $G \leq \text{Sym}(\Omega)$. There is an equivalence relation \sim on the orbits of G such that $\Delta \sim \Gamma$ if there exists a bijection $f : \Delta \to \Gamma$ for which

$$\alpha^{gf} = \alpha^{fg} \quad \text{for all } \alpha \in \Delta, \; g \in G,$$

i.e., the actions of G on Δ and Γ are *equivalent* in the sense of Dixon & Mortimer (1996, p. 21). The bijection f treated as a binary relation on Ω is a 2-orbit of G.
Definition 3.5. The group G is said to be plain if given $\Delta, \Gamma \in \text{Orb}(G)$,

$$\Delta \times \Gamma \in \text{Orb}_2(G) \quad \text{or} \quad \Delta \sim \Gamma.$$

Clearly, the two above conditions for Δ and Γ are satisfied simultaneously if and only if Δ and Γ are both singletons; in particular, an identity permutation group is always plain.

In the following statement, we establish a sufficient condition for a permutation group to be plain. Recall that a permutation group is said to be $1\frac{1}{2}$-transitive if all its orbits are of the same size. A permutation group is said to be quasiprimitive if every nontrivial normal subgroup of it is transitive. It is easily seen that primitive groups and transitive simple groups are quasiprimitive.

Lemma 3.6. A $1\frac{1}{2}$-transitive permutation group G is plain if every transitive constituent of G is quasiprimitive and distinguishable.

Proof. Let Δ and Γ be two distinct G-orbits. We may assume that both of them are non-singletons, for otherwise $\Delta \times \Gamma \in \text{Orb}_2(G)$.

Recall that $G^{\Delta \cup \Gamma} \cong G/(G_\Delta \cap G_\Gamma)$ and set

$$f_\Delta : G^{\Delta \cup \Gamma} \to G_\Delta \cong G/G_\Delta$$

and

$$f_\Gamma : G^{\Delta \cup \Gamma} \to G_\Gamma \cong G/G_\Gamma$$

to be the natural epimorphisms from $G^{\Delta \cup \Gamma}$ onto the transitive constituents G_Δ and G_Γ, respectively.

First, we assume that one of these epimorphisms, say f_Δ, is not injective. Then

$$G_\Delta = \ker(f_\Delta) > G_\Delta \cap G_\Gamma.$$

Therefore, $G_\Gamma \cong G/G_\Gamma$ includes the nontrivial normal subgroup

$$(G_\Delta)^\Gamma \cong G_\Delta G_\Gamma / G_\Gamma \cong G_\Delta / (G_\Delta \cap G_\Gamma).$$

Since G_Γ is quasiprimitive, $(G_\Delta)^\Gamma$ is transitive. It follows that

$$\Delta \times \Gamma \in \text{Orb}_2(G).$$

Thus, we may assume that both f_Δ and f_Γ are isomorphisms. This implies that the composition $f = f_\Delta^{-1} f_\Gamma$ is a group isomorphism from G_Δ onto G_Γ. Since G_Γ is distinguishable, the image H^f of a point stabilizer H in G_Δ is conjugated to some point stabilizer in G_Γ. It follows that H^f is a point stabilizer itself, so the actions of G on Δ and Γ are equivalent by Dixon & Mortimer (1996, Lemma 1.6B), and we are done. \qed
Corollary 3.7. Suppose that all orbits of a permutation group \(G \) are of the same prime cardinality, and all nonsolvable transitive constituents of \(G \) are alternating or symmetric. Then \(G \) is plain.

Proof. In view of the previous lemma, it is suffice to check that the transitive constituents of \(G \) are distinguishable. However, this immediately follows from Lemma 3.1 and Lemma 3.3. \(\square \)

When \(G \) is a plain group, we say that \(\sim \) and the \(f \) are the *standard equivalence relation* and *plain bijections*, respectively. In what follows, given a class \(\Lambda \) of \(\sim \), the union of all orbits of \(G \) contained in \(\Lambda \) is denoted by \(\Omega_\Lambda \).

Lemma 3.8. Let \(G \leq \text{Sym}(\Omega) \) be a plain group. Then

(i) for each class \(\Lambda \) of the standard equivalence relation for \(G \), and each \(\Delta \in \Lambda \), the epimorphism \(G^{\Omega_\Lambda} \to G^\Delta \) is injective,

(ii) if \(G^\Delta \) is primitive and nonregular for all \(\Delta \in \text{Orb}(G) \), then there is at most one plain bijection \(f : \Delta \to \Gamma \) for fixed \(\Delta, \Gamma \in \text{Orb}(G) \),

(iii) if \(G^\Delta \) is a distinguishable nonabelian simple group for all \(\Delta \in \text{Orb}(G) \), then \(G = \prod_\Lambda G^{\Omega_\Lambda} \), where \(\Lambda \) runs over the classes of the standard equivalence relation for \(G \).

Proof. To prove (i), let \(g \in G \) satisfy \(g^\Delta = \text{id}_\Delta \). We should verify that \(g^{\Omega_\Lambda} = \text{id}_{\Omega_\Lambda} \). To this end, let \(\beta \in \Omega_\Lambda \). Then there exists \(\alpha \in \Delta \) such that \(\beta = \alpha^f \) for a suitable plain bijection \(f \). It follows that

\[
\beta^g = (\alpha^f)^g = (\alpha^g)^f = \alpha^f = \beta,
\]

as required.

To prove (ii), assume on the contrary that \(f' : \Delta \to \Gamma \) is a plain bijection different from \(f \). Then \(f'f^{-1} \neq 1_\Delta \) is an \(G^\Delta \)-invariant binary relation of cardinality \(\Delta \). It follows that there exists \(\alpha \in \Delta \) such that \(\beta := \alpha f'f^{-1} \) is different from \(\alpha \) and

\[
(G^\Delta)_\alpha = ((G^\Delta)_\alpha)^{f'f^{-1}} = (G^\Delta)_{\alpha f'f^{-1}} = (G^\Delta)_\beta.
\]

Since the group \(G^\Delta \) is primitive, this is possible only if it is regular Wielandt (1964, Proposition 8.6), a contradiction.
Let us prove (iii). By statement (i), for each class \(\Lambda \) of the standard equivalence relation for \(G \), and each \(\Delta \in \Lambda \), the group \(G^{\Omega^{\Lambda}} \) is isomorphic to \(G^\Delta \) and hence is nonabelian simple. Therefore it suffices to verify that given \(\Delta, \Gamma \in \text{Orb}(G) \) such that \(\Delta \not\sim \Gamma \),

\[
G^{\Delta \cup \Gamma} = G^\Delta \times G^\Gamma.
\]

Assume the contrary. Then the simplicity of \(G^\Delta \) and \(G^\Gamma \) implies that the restriction homomorphisms \(G^{\Delta \cup \Gamma} \to G^\Delta \) and \(G^{\Delta \cup \Gamma} \to G^\Gamma \) are isomorphisms. Since \(G^\Delta \) and \(G^\Gamma \) are distinguishable, they are equivalent (see the proof of Lemma 3.6). It follows that \(\Delta \sim \Gamma \), a contradiction. \(\square \)

3.4. Auxiliary lemma. The following lemma establishes an important property of normal plain subgroups of transitive group; it will be used in the proofs of Theorem 5.5 and Theorem 5.9.

Lemma 3.9. Let \(e \) be an equivalence relation on a set \(\Omega \), \(G \leq \text{Sym}(\Omega) \) a transitive group, and \(L \) a normal subgroup of \(G \). Suppose that the following hold:

(i) \(e \) is \(G \)-invariant and \(\text{Orb}(L) = \Omega/e \),

(ii) \(L \) is plain,

(iii) each transitive constituent of \(L \) is primitive and nonregular,

Then the standard equivalence relation for \(L \) does not depend (for a fixed \(e \)) on \(G \) and \(L \), and depends only on the 2-orbits of \(G \).

Proof. It suffices to verify that given \(\Delta, \Gamma \in \text{Orb}(L) \) and any \(r \in \text{Orb}_2(G) \) intersecting \(\Delta \times \Gamma \),

\[
\Delta \times \Gamma \in \text{Orb}_2(L) \iff \Delta \times \Gamma \subseteq r.
\]

The implication \(\Rightarrow \) follows from the fact that each 2-orbit of \(L \) is contained in a unique 2-orbit of \(G \). Conversely, suppose on the contrary that \(\Delta \times \Gamma \) is contained in a certain \(r \in \text{Orb}_2(G) \) but is not a 2-orbit of \(L \). Since \(L \) is plain, this implies that there is a plain bijection

\[
f : \Delta \to \Gamma.
\]
Taking into account that $L \subseteq G$, we see that for each $g \in G$, the bijection

$$g^{-1}fg : \Delta^g \to \Gamma^g$$

is also plain. Moreover, the hypothesis on the transitive constituents of L and Lemma 3.8(ii) imply that either $f = g^{-1}fg$, or $(\Delta \times \Gamma) \cap g^{-1}fg = \emptyset$. This shows that if r' is the union of all $g^{-1}fg$, then

$$r' \cap (\Delta \times \Gamma) = \{f\} \neq \Delta \times \Gamma,$$

unless $|\Delta| = |\Gamma| = 1$, i.e., $e = 1_\Omega$. But the latter is impossible in view of (i) and (iii).

On the other hand, r' is obviously a G-invariant relation intersecting r. Since r is a 2-orbit of G, this implies that $r \subseteq r'$. But then

$$\Delta \times \Gamma \subseteq r \subseteq r',$$

a contradiction. □

4. Permutation groups: flags, majorants, and relative closures

Throughout this section, $G \leq \text{Sym}(\Omega)$ and $F = \{e_i : i = 0, \ldots, m\}$ is a family of G-invariant equivalence relations.

4.1. Flags. We say that F is a G-flag of length m if

$$(4.1) \quad 1_\Omega = e_0 \subset e_1 \subset \cdots \subset e_m \quad \text{and} \quad \Omega/e_m = \text{Orb}(G, \Omega).$$

In this case, each class of the equivalence relation e_i is contained in a uniquely determined G-orbit and forms a block in the corresponding transitive constituent.

The flag F is said to be normal if the equivalence relation e_i is normal with respect to G for all i. In this case, the equivalence relation on Ω/e_{i-1} with classes Δ/e_{i-1}, $\Delta \in \tilde{\Omega}/e_i$, is normal and $G^{\Omega/e_{i-1}}$-invariant. A normal G-flag F' extends F if $F' \supseteq F'$; when $F' \neq F$, we say that F' strictly extends F. A normal flag F is said to be maximal if no normal G-flag strictly extends F. Thus F
is maximal if there is no normal equivalence relation lying strictly between e_{i-1} and e_i for all $i \geq 1$.

Let

$$1 = L_0 < L_1 < \cdots < L_m = G$$

be a normal series for the group G. Given $i \in \{0, 1, \ldots, m\}$, denote by e_i the equivalence relation on Ω such that

$$\Omega/e_i = \text{Orb}(L_i, \Omega),$$

in particular, the classes of e_m are the orbits of G. The family $F = \{e_i\}_{i=0}^m$ is obviously a normal G-flag. In addition, if $(L_i)^{\Omega/e_i^{-1}}$ is a minimal normal subgroup of $G^{\Omega/e_i^{-1}}$, $i = 1, \ldots, m$, then the flag F is maximal. Thus, the following statement holds.

Lemma 4.3. For every permutation group G there exists a maximal normal G-flag.

Given a G-invariant set Δ, one can define a G^Δ-flag

$$F_\Delta = \{e_\Delta : e \in F\}$$

and given an equivalence relation $e \in F$, one can define a $G^{\Omega/e}$-flag

$$F_{\Omega/e} = \{e'_{\Omega/e} : e' \in F, e' \supseteq e\},$$

where $e'_{\Omega/e}$ is the equivalence relation the classes of which are Δ/e with $\Delta \in \Omega/e'$. Of course, in both cases, the length of the new flag can be smaller than m. One can see that the flags F_Δ and $F_{\Omega/e}$ are normal if so is F.

The following statement directly follows from the definitions.

Lemma 4.4. Let G and K be permutation groups on the same set, and let F be a G-flag. Then

(i) if G and K are 2-equivalent, then F is a K-flag;

(ii) if $K \geq G$ and F is a K-flag, then F is normal as K-flag whenever F is a normal as G-flag.
4.2. Sections. Let F be an arbitrary G-flag of length m. Given $i \in \{1, \ldots, m\}$, the group G_{e_i} acts on the set Ω/e_{i-1}. Denote by Ω_i the union of all non-singleton orbits of the induced permutation group. This set is definitely nonempty if the equivalence relation e_i is normal. In the latter case, the group

$$S := (G_{e_i})^{\Omega_i}.$$

is called a section of G with respect to F, or briefly, an F-section of G. We put $i(S) = i$, $e_s := e_i$, and $\Omega_s := \Omega_i$.

Lemma 4.5. If S is a section of G with respect to a maximal normal flag F, then the action of $S \leq \text{Sym}(\Omega_s)$ on any nonempty G^{Ω_s}-invariant set is faithful. In particular, the transitive constituents of S are isomorphic as abstract groups.

Proof. Let $\Delta \subseteq \Omega_S$ be a nonempty G^{Ω_s}-invariant set. Clearly, we may suppose that $\Delta \neq \Omega_S$. Denote by \overline{e} the equivalence relation on Ω_S such that

$$\Omega_S/\overline{e} = \text{Orb}(S_\Delta, \Omega_S),$$

where S_Δ is the pointwise stabilizer of Δ in S. From the choice of Δ, it follows that S_Δ is normal in G^{Ω_s}, so \overline{e} is G^{Ω_s}-invariant. Assume on the contrary that the action of S on Δ is not faithful. Then

$$(4.6) \quad 1_{\Omega_S} \subseteq \overline{e} \subseteq e_s.$$

Now let $i = i(S)$. Denote by e the equivalence relation on Ω such that the restriction of e to Ω/e_{i-1} coincides with \overline{e} inside Ω_i and has singleton classes outside Ω_i. Then e is G-invariant and normal. Moreover, in view of (4.6),

$$e_{i-1} \subseteq e \subseteq e_i$$

in contrast to the maximality of the flag F. \hfill \square

From **Lemma 4.5**, it follows that if S is a nonsolvable section with respect to a maximal normal flag then all transitive constituents of $S \leq \text{Sym}(\Omega_S)$ are nonsolvable.
4.3. Relative closure. Let F be an arbitrary G-flag of length m. Assume first that the group G is transitive. For each i, choose a class Δ_i of the equivalence relation e_i so that

$$\Delta_0 \subset \Delta_1 \subset \cdots \subset \Delta_m.$$

In particular, Δ_0 is a singleton and $\Delta_m = \Omega$. Set $\overline{\Delta}_i = \Delta_i/e_{i-1}$, $i = 1, \ldots, m$, and identify Ω with the Cartesian product of the $\overline{\Delta}_i$,

$$\Omega = \overline{\Delta}_1 \times \cdots \times \overline{\Delta}_m. \quad (4.7)$$

Note that this identification is not canonical and depends on the choice of suitable permutations belonging to G.

Under identification (4.7), the group G can naturally be treated as a subgroup of the iterated (imprimitive) wreath product

$$\text{Wr}(G; \Delta_0, \ldots, \Delta_m) = G^{\overline{\Delta}_1} \wr G^{\overline{\Delta}_2} \wr \cdots \wr G^{\overline{\Delta}_m}, \quad (4.8)$$

where for $i = 1, \ldots, m$, we set $G^{\overline{\Delta}_i}$ to be the permutation group induced by the action of G^{Δ_i} on $\overline{\Delta}_i$. In the spirit of Evdokimov & Ponomarenko (2004), the group (4.8) is called an F-majorant for G and is denoted by $W_F(G)$. It should be stressed that a different choice of the permutations used for the above identification can lead to different majorants. But once the identification has been fixed, the F-majorant is well defined (cf. Evdokimov & Ponomarenko (2004, Lemma 3.4)).

In the general case, when the group G is not necessarily transitive, the majorant is defined to be the direct product of the majorants for the transitive constituents of G,

$$W_F(G) = \prod_{\Delta \in \text{Orb}(G)} W_{F_\Delta}(G^\Delta),$$

where the direct product acts on the disjoint union of the underlying sets of the factors. As is easily seen from the definition, $G \leq W_F(G)$.

Definition 4.9. The group $K = \overline{G} \cap W_F(G)$ is called a relative closure of the group G with respect to the flag F (and the majorant $W_F(G)$).

We conclude this subsection collecting some elementary properties of a majorant and relative closure of G.
Lemma 4.10. Let $G \leq \text{Sym}(\Omega)$, F a G-flag, $W = W_F(G)$ a majorant for G, and K the relative closure of G with respect to F. Then

(i) $\overline{G} = \overline{K}$,

(ii) $\overline{K} \cap W_F(K) = K$,

(iii) if G is solvable, then W and K are solvable.

Proof. We have $G \leq K \leq \overline{G}$ and hence K is 2-equivalent to G. This yields (i).

Under identification (4.7), every orbit Δ of G is represented as the direct product $\Delta = \overline{\Delta_1} \times \cdots \times \overline{\Delta_m}$. By the definition of F-majorant,

(4.11) $G^{\overline{\Delta_i}} = W^{\overline{\Delta_i}}$, $i = 1, \ldots, m$.

This immediately implies (iii).

Next, $G \leq K \leq W$ yields $W \leq W_F(K) \leq W_F(W)$. In view of equalities (4.11), $W = W_F(W)$. Thus, $\overline{K} \cap W_F(K) = \overline{G} \cap W = K$, and (ii) holds. \square

4.4. Standard representation. In what follows, we use a standard representation for the permutations belonging to the group $W := W_F(G)$, where the G-flag F is assumed to be normal. Namely, such a representation of a permutation $k \in W$ is given by a family $\{k_\Delta\}$, where $k_\Delta \in G^\Delta$ and Δ runs over the elements of the sets

$O_i = \text{Orb}(G_{e_i}, \Omega/e_{i-1})$, $i = 1, \ldots, m$;

the permutation k_Δ is called a Δ-coordinate of k and is defined as follows.

Let $i \geq 1$ and $\Delta \in O_i$. Denote by Λ the orbit of $G^{\Omega/e_{i-1}}$ that contains Δ. Then

$k^\Lambda \in W_{\tilde{F}}(\tilde{G}) \leq (\tilde{G})^\Lambda \cdot G^{\Lambda/e_i}$,

where \tilde{F} and \tilde{G} are the restrictions of $F_{\Omega/e_{i-1}}$ and $G^{\Omega/e_{i-1}}$ to Λ, respectively. Now, the Δ-coordinates of the permutation k are...
obtained from the representation of k^Λ as an element of the wreath product on the right-hand side of the above inclusion:

$$k^\Lambda = \{k_\Delta : \Delta \in O_\Lambda\}; k^{\Lambda/e_i}_i).$$

where $O_\Lambda = \{\Delta \in O_i : \Delta \subseteq \Lambda\}$.

We note that by an inductive argument, the permutation k^{Λ/e_i}_i can also be written in terms of the Δ-coordinates of k, corresponding to the indices i, \ldots, m. Since Ω/e_{i-1} is a disjoint union of $\Lambda \in \text{Orb}(G^{\Omega/e_{i-1}})$,

$$W^{\Omega/e_{i-1}} = \prod_{\Lambda \in \text{Orb}(G^{\Omega/e_{i-1}})} W^\Lambda.$$

It follows that the action of k on Ω/e_{i-1} can be written in the form $\left(\{k_\Delta\}; k^{\Omega/e_{i-1}}_i\right)$, where this time Δ runs over the whole set O_i. The multiplication of the permutations given in this form is performed as in the case of wreath product. In particular,

$$(4.12) \quad \left(\{l_\Delta\}; \text{id}_{\Omega/e_i}\right) \cdot \left(\{k_\Delta\}; k^{\Omega/e_i}_i\right) = \left(\{l_\Delta k_\Delta\}; k^{\Omega/e_i}_i\right).$$

The Δ-coordinates taken for a plain section satisfy some additional relations. Namely, the following statement is true.

Lemma 4.13. Let F be a normal G-flag. Then for every plain F-section S of G,

$$\Delta \sim \Gamma \Rightarrow k_\Gamma = f^{-1}k_\Delta f,$$

for all $k \in G_{eS}$ and $\Delta, \Gamma \in \text{Orb}(S)$, where \sim is the standard equivalence relation for S and $f : \Delta \rightarrow \Gamma$ is a plain bijection.

Proof. Let $k \in G_{eS}$. Then in the standard representation, we have $k = \left(\{k_\Delta\}; 1\right)$, where 1 denotes $\text{id}_{\Omega/eS}$. By the definition of plain bijection, this implies that for all $\beta \in \Gamma$,

$$\beta^{k_\Gamma} = \beta^{\left(\{k_\Gamma\}; 1\right)} = (\beta f^{-1})^{\left(\{k_\Gamma\}; 1\right)} = (\beta f^{-1})^{\left(\{k_\Gamma\}; 1\right)} = (\beta f^{-1})^{k_\Delta f},$$

as required. ∎
5. The relative closure of a supersolvable permutation group

Throughout this section, \(K \leq \text{Sym}(\Omega) \) is the relative closure of a supersolvable group \(G \), and \(\overline{K} = K^{(2)} \) is the 2-closure of \(K \). It should be noted that the group \(K \) is not necessarily supersolvable.

5.1. The orbits of a section of \(K \). Let \(F \) be a maximal normal \(G \)-flag of length \(m \geq 1 \). Observe that \(F \) is also a normal \(K \)- and \(\overline{K} \)-flag, see Lemma 4.10.

Theorem 5.1. Let \(S \) be an \(F \)-section of \(K \). Then there exists a prime \(p \) such that \(|\Delta| = p \) for all \(\Delta \in \text{Orb}(S) \).

Proof. Let \(T \) be the \(F \)-section of \(G \) with \(i(T) = i(S) =: i \). The normality of \(F \) as a \(G \)-flag and as a \(K \)-flag yields
\[
\text{Orb}(T) = \Omega_T/e = \Omega_S/e = \text{Orb}(S),
\]
where \(e = (e_i)_{\Omega/e_i-1} \). Thus it suffices to show that \(|\Delta| = p \) for all \(\Delta \in \text{Orb}(T) \).

Let \(1 < N \leq T \) be a minimal normal subgroup of \(G^{\Omega_T} \). Then the orbits of \(N \) define a \(G^{\Omega_T} \)-invariant equivalence relation. Therefore, the maximality of \(F \) as a \(G \)-flag implies that
\[
\text{Orb}(N) = \text{Orb}(T).
\]
Moreover, since \(G \) and so \(G^{\Omega_T} \) is supersolvable, \(N \) is a cyclic group of prime order \(p \). Thus any orbit of \(N \) and hence of \(T \) is of cardinality \(p \), as required. \(\square \)

Corollary 5.2. Let \(F' \) be a normal \(K \)-flag extending the flag \(F \). Then
\[
F'_\Lambda = F_\Lambda, \quad \Lambda \in \text{Orb}(K).
\]

Proof. Let \(\Lambda \in \text{Orb}(K) \). From Theorem 5.1, it follows that given \(\Delta \in \Lambda/e_i \) and \(\Delta' \in \Delta/e_{i-1} \) \((1 \leq i \leq m)\),
\[
|\Delta| = |\Delta'| \quad \text{or} \quad |\Delta| = p|\Delta'|.
\]
On the other hand, any two classes of every \(K^\Lambda \)-invariant equivalence relation, being blocks of \(K^\Lambda \), have the same cardinality. Thus
the normal flag F_A is maximal. Since F'_A is a normal flag extending F_A, we are done. □

From Corollary 5.2, it follows that if G is transitive, then every maximal normal G-flag is also maximal normal K-flag. In the intransitive case, we cannot guarantee the maximality. The following statement enables us to control it (cf. Lemma 4.5).

Lemma 5.3. Let F' be a nonmaximal normal K-flag extending the flag F. Then there is an equivalence relation $e = e'_{i-1}$ of F', a non-singleton $K^{Ω/e}$-orbit $Λ$, and a minimal normal subgroup N of $K^{Ω/e}$, contained in $(K_\overline{e})^{Ω/e}$ with $\overline{e} = e'_i$, such that

$$N^A = \{id_A\} \text{ and } N^{A'} \neq \{id_{A'}\},$$

where A' is the complement of A in $Ω/e$.

Proof. Let $F' = \{e'_i : i = 0, \ldots, m'\}$, where $m' \geq m$. By the assumption, there exists an integer $1 \leq i \leq m'$ and an equivalence relation e^* on $Ω$ such that

$$\{e'_0, \ldots, e'_{i-1}, e^*, e'_i, \ldots, e'_{m'}\}$$

is a normal K-flag extending F'. Setting $e = e'_{i-1}$ and $\overline{e} = e'_i$, we have $e \subsetneq e^* \subsetneq \overline{e}$. This implies that

$$1_A = e_A \subseteq e^*_A \subseteq \overline{e}_A, \quad A \in \text{Orb}(K^{Ω/e}),$$

and for at least one non-singleton orbit $Λ$, the right-hand side inclusion is strict. On the other hand, the maximality of F implies that the normal flag F_A is maximal. Thus by Corollary 5.2, we conclude that

$$e^*_A = 1_A.$$

Since the flag F' is normal, the orbits of $(K_{e^*})^A$ are singletons. Moreover, the group $(K_{e^*})^A$ is nontrivial, for otherwise $e^* = e$. This proves the required statement for any minimal normal subgroup N of $K^{Ω/e}$, contained in $(K_\overline{e})^{Ω/e} \leq (K_\overline{e})^{Ω/e}$. □

Corollary 5.4. For every maximal normal G-flag F, there exists a maximal normal K-flag extending F.
5.2. The constituents of a section of K. From now on, we always assume that F is a maximal normal K-flag. Let S be an F-section of K. Since F is a normal K-flag, the F-section \overline{S} of \overline{K} satisfying $\Omega_{\overline{S}} = \Omega_S$ is well defined. Clearly,

$$\text{Orb}(\overline{S}) = \text{Orb}(S) \text{ and } \overline{S} \leq S^{(2)}.$$

It should be noted that \overline{S} and $S^{(2)}$ do not necessarily coincide (cf. Lemma 2.1).

Theorem 5.5. Let S be an F-section of K. Then

(i) given $\Delta \in \text{Orb}(S)$,

(a) if \overline{S} is solvable, then $\overline{K}^{\Delta} = K^{\Delta} \leq AGL_1(\Delta)$,

(b) if \overline{S} is nonsolvable, then $|\Delta| \geq 5$, $K^{\Delta} = AGL_1(\Delta)$, $\overline{K}^{\Delta} = \text{Sym}(\Delta)$, and $\text{Soc}(\overline{S}^{\Delta}) = \text{Alt}(\Delta)$,

(ii) S, $\text{Soc}(\overline{S})$, and \overline{S} are plain groups; if \overline{S} is nonsolvable, then the corresponding standard equivalence relations of $\text{Soc}(\overline{S})$ and \overline{S} coincide.

Proof. To prove (i), let $\Delta \in \text{Orb}(S)$. By statements (i) and (iii) of Lemma 2.1, the groups \overline{K}^{Δ} and K^{Δ} are 2-equivalent. Moreover, both of them are of prime degree p by Theorem 5.1. Now if \overline{S} is nonsolvable, then $p \geq 5$ and $\overline{K}^{\Delta} \geq \overline{S}^{\Delta}$ is also nonsolvable (Lemma 4.5). By Lemma 3.1, this implies that \overline{K}^{Δ} and hence K^{Δ} is 2-transitive; in particular, $K^{\Delta} = AGL_1(\Delta)$. Taking into account that $\overline{K}^{\Delta} \geq K^{\Delta}$, we conclude by the same lemma that $\overline{K}^{\Delta} = \text{Sym}(\Delta)$.

Let \overline{S} be solvable. If, in addition, \overline{K}^{Δ} is solvable, then the required statement follows from Lemma 3.1 and Lemma 3.2. Assume that \overline{K}^{Δ} is nonsolvable. Then $p \geq 5$, and each normal transitive subgroup of \overline{K}^{Δ} coincides with $\text{Alt}(\Delta)$ or $\text{Sym}(\Delta)$ (Lemma 3.1). Therefore, the group $\overline{S}^{\Delta} = (\overline{K}_e)^{\Delta}$ being a nontrivial normal subgroup of \overline{K}^{Δ} contains $\text{Alt}(\Delta)$ as a subgroup. Then \overline{S} is not solvable in contrast to the hypothesis. This completes the proof of (i).

The first part of statement (ii) follows from Theorem 5.1, statement (i), and Corollary 3.7. To prove the second part, we apply Lemma 3.9, setting

$$\Omega = \Omega_S, \quad e = e_S, \quad G = \overline{K}^{\Omega_S}, \quad L \in \{\text{Soc}(\overline{S}), \overline{S}\}$$
in the hypothesis of this lemma. Obviously, \(e_S \) is \(\overline{K}^{\Omega_S} \)-invariant. Since \(\overline{S} \) is nonsolvable, we have \(\text{Soc}(\overline{S}^\Delta) = \text{Alt}(\Delta) \) for each \(\Delta \in \text{Orb}(S) \) (see statement (i)(b) above). It follows that condition (iii) of Lemma 3.9 holds. Moreover, by Theorem 5.1,

\[
\text{Orb}(\text{Soc}(\overline{S})) = \text{Orb}(S) = \text{Orb}(\overline{S}),
\]

which proves condition (i) of that lemma. Finally, condition (ii) follows from the first part of statement (ii). Now Lemma 3.9 yields that the standard equivalence relations for \(\text{Soc}(\overline{S}) \) and \(\overline{S} \) are the same, as required. \(\square \)

5.3. A reduction lemma. A key point in our arguments is the following statement, which enables us to lift certain permutations from sections of \(\overline{K} \).

Lemma 5.6. Let \(k \in \overline{K} \), and \(\overline{S} \) be an \(F \)-section of \(\overline{K} \). Assume that \(k_\Delta \not\in K^\Delta \) for some \(\Delta \in \text{Orb}(\overline{S}) \). Then \(\overline{S} \) is nonsolvable and there exists \(l \in \overline{K} \) such that \(l^{\Omega_S} \in \text{Soc}(\overline{S}) \), and

\[
(lk)^{\Omega/\Omega_S} = k^{\Omega/\Omega_S}\quad\text{and}\quad(lk)_\Delta \in K^\Delta \quad\text{for all } \Delta \in \text{Orb}(\overline{S}).
\]

Proof. The section \(\overline{S} \) is nonsolvable due to statement (i)(a) of Theorem 5.5. By statement (i)(b) of the same theorem, this yields

\[
\text{Soc}(\overline{S}^\Delta) = \text{Alt}(\Delta) \quad\text{and}\quad K^\Delta = \text{AGL}_1(\Delta)
\]

for all \(\Delta \in \text{Orb}(\overline{S}) \). Since \(\text{Sym}(\Delta) = \text{Alt}(\Delta) \text{AGL}_1(\Delta) \), it follows that there exist \(u(\Delta) \in \text{Soc}(\overline{S}^\Delta) \) and \(v(\Delta) \in K^\Delta \) such that

\[
k_\Delta = u(\Delta)v(\Delta).
\]

The group \(\overline{S} \) is plain (Theorem 5.5(ii)) and the transitive constituents of \(\overline{S} \) are primitive and nonregular (Theorem 5.5(i)(b)). Hence for all \(\Delta, \Gamma \in \text{Orb}(\overline{S}) \)

\[
\Delta \sim \Gamma \quad\Rightarrow\quad f^{-1}u(\Delta)v(\Delta)f = u(\Gamma)v(\Gamma),
\]

where \(\sim \) is the standard equivalence relation for \(\overline{S} \) and \(f : \Delta \rightarrow \Gamma \) is a plain bijection (Lemma 4.13).
In each class of the standard equivalence relation, fix an \overline{S}-orbit Δ_0. For every $\Delta \sim \Delta_0$, take $u(\Delta)$ and $v(\Delta)$ so that $u(\Delta) = f^{-1}u(\Delta_0)f$. Theorem 5.5(ii) implies that the standard equivalence relations for \overline{S} and $\text{Soc}(\overline{S})$ are the same, so applying Lemma 3.8(iii), we obtain
\[
\prod_{\Delta \in \text{Orb}(\overline{S})} u(\Delta)^{-1} \in \text{Soc}(\overline{S}),
\]
where the factor $u(\Delta)^{-1}$ is interpreted as the permutation on Ω_S with support Δ. It follows that \overline{K} contains an element l whose Δ-coordinates are equal to $u(\Delta)^{-1}$ for all $\Delta \in \text{Orb}(\overline{S})$, and also $l^{\Omega_{es}} = \text{id}_{\Omega_{es}}$. In particular, $l^{\Omega_s} \in \text{Soc}(\overline{S})$ and the left-hand side equality in (5.7) holds. Furthermore, using formula (4.12), we have
\[
(lk)_\Delta = l_\Delta k_\Delta = u(\Delta)^{-1}(u(\Delta)v(\Delta)) = v(\Delta) \in K^\Delta,
\]
as required. \hfill \Box

Corollary 5.8. Let \overline{S} be an F-section of \overline{K}. Then every $\overline{k} \in \overline{S}$ can be lifted to $k \in \overline{K}$ such that $k_\Delta \in K^\Delta$ for all $\Delta \notin \text{Orb}(\overline{T})$, where \overline{T} runs over F-sections of \overline{K} with $i(\overline{T}) \neq i(\overline{S})$.

Proof. We have $\overline{k} = k^{\Omega_s}$ for some $k \in \overline{K}_{es}$. We apply Lemma 5.6 consecutively to each section \overline{T} of \overline{K}, $i(\overline{T}) = i(\overline{S}) - 1, \ldots, 1$, for which the hypothesis of this lemma is satisfied. Doing this, we replace each time k with lk. The permutation k obtained at the end has the property that the Δ-coordinate of k belongs K^Δ for all $\Delta \notin \text{Orb}(\overline{S})$. \hfill \Box

Theorem 5.9. In the notation and assumption of Theorem 5.5, suppose that the section \overline{S} is nonsolvable. Then

(i) S^Δ is nonregular for all $\Delta \in \text{Orb}(S)$,

(ii) the standard equivalence relations for S and \overline{S} coincide,

(iii) $\overline{S} = \text{Soc}(\overline{S})S$.

Proof. To prove (i), we note that for each $\Delta \in \text{Orb}(S)$, the group $K^\Delta = \text{AGL}_1(\Delta)$ is the normalizer of $C(\Delta) \leq S^\Delta$ (Theorem 5.1 and Theorem 5.5). It follows that there is $\overline{k} \in \overline{S}$ such that \overline{k}^Δ lies
in K^Δ but not in $C(\Delta)$ (the latter holds, because $p \geq 5$). By Corollary 5.8, \bar{k} can be lifted to $k \in \overline{K}$ such that $k_\Delta \in K^\Delta$ for all Δ-coordinates of k. It follows that $k \in W_F(K)$. By Lemma 4.10(ii), this implies that $k \in K$ and, therefore, $\bar{k} \in S$. The group S^Δ is nonregular, because $\bar{k}^\Delta \in S^\Delta \setminus C(\Delta)$.

To prove (ii), we apply Lemma 3.9 for $\Omega = \Omega_S$, $e = e_S$, and

$$(G, L) \in \{(K^{\Omega_S}, S), (\overline{K}^{\Omega_S}, \overline{S})\}.$$

It is easily seen that conditions (i) and (ii) of this lemma are satisfied for both pairs. Next, any $\Delta \in \text{Orb}(S)$ is of prime cardinality (Theorem 5.1). Therefore, the group S^Δ is primitive. It is nonregular by statement (i). Since $S^\Delta \leq \overline{S}^\Delta$, the group \overline{S}^Δ is primitive and nonregular. Consequently, condition (iii) of Lemma 3.9 is also satisfied. Thus, statement (ii) follows from Lemma 3.9.

To prove (iii), it suffices to check that $\text{Soc}(\overline{S})S \geq \overline{S}$. Let $\bar{k} \in \overline{S}$, and $k \in \overline{K}$ be such that $k^{\Omega_S} = \bar{k}$ and $k_\Delta \in K^\Delta$ for all $\Delta \notin \text{Orb}(\overline{S})$ (see Corollary 5.8). By virtue of Lemma 5.6, there is $l \in \overline{K}$ such that $l^{\Omega_S} \in \text{Soc}(\overline{S})$ and $(lk)_\Delta \in K^\Delta$ for all $\Delta \in \text{Orb}(\overline{S})$ (if $k_\Delta \in K^\Delta$ for all $\Delta \in \text{Orb}(\overline{S})$, then one can take $l = 1$). It follows that $lk \in \overline{K} \cap W_F(K) = K$ (Lemma 4.10(ii)). Thus,

$$\bar{k} = (l^{-1}lk)^{\Omega_S} = (l^{-1})^{\Omega_S}(lk)^{\Omega_S} \in \text{Soc}(\overline{S})S,$$

as required. \hfill \square

Proof of Theorem 1.3. Let G be a supersolvable group. Then there exists a maximal normal G-flag F_0 (Lemma 4.3). Let F be a maximal normal K-flag extending F_0, where K is the relative closure of G with respect to F_0 (Corollary 5.4). By Lemma 4.4, F is also a normal \overline{K}-flag. Therefore, the series

$$\{\text{id}_\Omega\} = \overline{K}_{e_0} < \overline{K}_{e_1} < \cdots < \overline{K}_{e_m} = \overline{K}$$

is normal, where m is the length of F. It follows that all composition factors of \overline{K} are among the composition factors of the F-sections of \overline{K}. Let \overline{S} be an F-section of \overline{K}. Then from Theorem 5.9(iii), it follows that all nonabelian composition factors of \overline{S} are among those of $\text{Soc}(\overline{S})$. By Theorem 5.5(i)(b), each
of them is an alternating group of prime degree. Since $G = \overline{K}$ (Lemma 4.10(i)), we are done. \hfill \square

We complete the subsection by one more corollary of the reduction lemma, to be used for verifying the correctness of the Main Algorithm in Section 6.5.

Theorem 5.10. Assume that for every F-section S of K such that \overline{S} is nonsolvable, we are given a set $X_S \subseteq \overline{K}_{e_S}$ for which $\langle K_{e_S}, X_S \rangle_{\Omega_S} = (\overline{K}_{e_S})_{\Omega_S}^\Delta$. Then

$$\overline{K} = \langle K, X \rangle,$$

where X is the union of all X_S.

Proof. It suffices to verify that $\overline{K} \leq \langle K, X \rangle$. Assume on the contrary that

(5.11) \quad $k \in \overline{K}$ and $k \notin \langle K, X \rangle$.

If $k_{\Delta} \in K_{\Delta}$ for all Δ, then $k \in W_F(K)$. By Lemma 4.10(ii), this implies that $k \in \overline{K} \cap W_F(K) = K$, a contradiction.

Now we may assume that for k, the hypothesis of Lemma 5.6 is satisfied for some F-section \overline{S} and $\Delta \in \text{Orb}(\overline{S})$, and also the number $i(k) = i(S)$ is maximal possible. Without loss of generality, we may also assume that $i(k)$ is minimal possible among the k satisfying (5.11).

Let $l \in \overline{K}$ be as in the conclusion of Lemma 5.6. Then $l \in \overline{K}_{e_S}$. By the theorem hypothesis, this implies that there exists $l' \in \langle K_{e_S}, X_S \rangle$ such that

$$l^{\Omega/e_{i-1}} = (l')^{\Omega/e_{i-1}}.$$

Set $k' = l'k$. Then clearly, $k \in \langle K, X \rangle$ if and only if $k' \in \langle K, X \rangle$. Observe that k' belongs to \overline{K} and acts on Ω/e_S as k does. Moreover, for each $\Delta \in \text{Orb}(\overline{S})$,

$$k'_{\Delta} = (l'k)_{\Delta} = (l')_{\Delta}k_{\Delta} = l_{\Delta}k_{\Delta} = (lk)_{\Delta},$$

where the second equality holds because $(l')^{\Omega/e_S} = 1$ and one can apply formula (4.12). Thus, $k'_{\Delta} = (lk)_{\Delta} \in K_{\Delta}$ by Lemma 5.6. It follows that $i(k') < i(k)$, which contradicts the choice of k. \hfill \square
5.4. The generating sets X_S. Let S be an F-section of K. By Theorem 5.1 and Theorem 5.5, the group S is plain and each transitive constituent of S is a primitive group of prime cardinality.

In what follows, we assume that each transitive constituent of S is nonregular (Theorem 5.9(i), this condition is always satisfied if the section \overline{S} is nonsolvable). Consequently, a plain bijection $f : \Delta \to \Gamma$ is unique for all $\Delta, \Gamma \in \text{Orb}(S)$ such that $\Delta \sim \Gamma$ (Lemma 3.8(ii)).

Given a class Λ of the standard equivalence relation for S, we define a permutation $x = x_{\Lambda} \in \text{Sym}(\Omega_S)$ by the action on the S-orbits Δ:

(C1) x^Δ is a 3-cycle if $\Delta \in \Lambda$,

(C2) $x^\Gamma = f^{-1}x^\Delta f$ if $\Delta, \Gamma \in \Lambda$, where $f : \Delta \to \Gamma$ is the plain bijection,

(C3) $x^\Delta = \text{id}_\Delta$ if $\Delta \notin \Lambda$.

A role playing by these very special permutations is clarified in the following statement.

Lemma 5.12. In the above notation, assume that \overline{S} is nonsolvable. Let \overline{X}_S be the set of all permutations x_{Λ}, where Λ runs over the classes of the standard equivalence relation for the group S. Then

\begin{equation}
\langle S, \overline{X}_S \rangle = \overline{S}.
\end{equation}

Proof. From Theorem 5.5(i)(b) and Theorem 5.9(ii), it follows that $\overline{X}_S \subseteq \overline{S}$. Therefore, $\langle S, \overline{X}_S \rangle \leq \overline{S}$. To prove the reverse inclusion, it suffices to verify that $\text{Soc}(\overline{S}) \leq \langle S, \overline{X}_S \rangle$ (Theorem 5.9(iii)). However, given $\Delta \in \text{Orb}(S)$, the group S^Δ is primitive, the set $(\overline{X}_S)^\Delta$ contains a 3-cycle x^Δ, and $\text{Soc}(\overline{S})^\Delta = \text{Alt}(\Delta)$ (Theorem 5.1 and Theorem 5.5). By Wielandt (1964, Theorem 13.3), this implies that

$$
\text{Soc}(\overline{S})^\Delta \leq \langle S, \overline{X}_S \rangle^\Delta.
$$

Furthermore, $\text{Soc}(\overline{S})$ is a plain group and the standard equivalence relation for $\text{Soc}(\overline{S})$ coincides with that for \overline{S} (Theorem 5.5(ii)) and hence for S (Theorem 5.9(ii)). This completes the proof by statements (i) and (iii) of Lemma 3.8.
Given an element $x \in \overline{X}_S$, we define a permutation $k = k_x$ on Ω, the standard representation (see Section 4.4) of which is uniquely determined by the following three conditions:

(K1) $k^{\Omega/e_S} = \text{id}_{\Omega/e_S}$,

(K2) $k^{\Omega_S} = x$,

(K3) $k_\Delta = \text{id}_\Delta$, $\Delta \in \text{Orb}(T)$, where T is an F-section of K with $i(T) < i(S)$.

From Lemma 5.12, it follows that $k \in W_F(\overline{K})$.

Theorem 5.14. In the above notation, assume that \overline{S} is nonsolvable and $x \in \overline{X}_S$. Let $C_x := W_ek_x$, where $W = W_F(K)$ and $e = e_{i(S)}^{-1}$. Then the intersection $\overline{K} \cap C_x$ is not empty and $(\overline{K} \cap C_x)^{\Omega_S} = \{x\}$.

Proof. Since $\overline{X}_S \subseteq \overline{S}$ (see (5.13)), there is $k \in \overline{K}_{e_S}$ such that $k^{\Omega_S} = x$. By Corollary 5.8, we may assume that $k_\Delta \in K^\Delta$ for all $\Delta \in \text{Orb}(T)$, where T is an F-section of K with $i(T) < i(S)$. But then

$$kk_x^{-1} \in W_e,$$

which proves that $\overline{K} \cap C_x$ is not empty. Since $(W_e)^{\Omega_S} = \{\text{id}_S\}$, the second statement immediately follows from the first one. \hfill \Box

An F-section S of the group K is said to be *feasible* if each transitive constituent of S is a nonregular group of prime degree at least 5. A set X_S is called a *nonsolvability certificate* for S if exactly one of the following two conditions is satisfied:

(i) $X_S = \emptyset$ if S is not feasible or there exists $x \in \overline{X}_S$ such that $\overline{K} \cap C_x = \emptyset$,

(ii) X_S is a full set of distinct representatives of the family $\{\overline{K} \cap C_x : x \in \overline{X}_S\}$,

where \overline{X}_S and C_x are as in Lemma 5.12 and Theorem 5.14, respectively.
Corollary 5.15. Let S be an F-section of K. Then \overline{S} is nonsolvable if and only if $X_S \neq \emptyset$.

Proof. The necessity follows from Theorem 5.5(i)(b) and Theorem 5.14. To prove the sufficiency, let $x \in \overline{X}_S$ (note that \overline{X}_S is well defined, because S is feasible). Then there exists $k \in K$ such that $k^{\Omega_S} = x$; in particular, $k^{\Delta} \in \overline{S}^\Delta$ is a 3-cycle for some $\Delta \in \text{Orb}(S)$. On the other hand, $|\Delta| \geq 5$ and hence the group $\text{AGL}_1(\Delta)$ contains no 3-cycles. Thus by Theorem 5.5(i)(a), the group \overline{S}^Δ, and hence \overline{S}, is nonsolvable. \Box

Corollary 5.16. Let S be an F-section of K such that \overline{S} is nonsolvable. Then

$$X_S \subseteq \overline{K_{es}} \quad \text{and} \quad \langle K_{es}, X_S \rangle^{\Omega_S} = (\overline{K_{es}})^{\Omega_S}.$$

Proof. The first inclusion immediately follows from the definition of X_S. Further, by Theorem 5.14 the intersection $K \cap C_x$ is not empty for all $x \in \overline{X}_S$. It follows that $(X_S)^{\Omega_S} = \overline{X}_S$. Since $S = (K_{es})^{\Omega_S}$ and $\overline{S} = (\overline{K_{es}})^{\Omega_S}$, the required equality is a consequence of Lemma 5.12. \Box

6. Proof of Theorem 1.2

The Main Algorithm and its analysis is given at the end of the section. We start with description of auxiliary procedures used in the Main Algorithm.

6.1. Finding a maximal normal flag. It is known (see Seress (2003, p. 49)) that a minimal normal subgroup of a permutation group of degree n can be constructed in time $\text{poly}(n)$. It follows that series (4.2) can also be found efficiently. This proves the statement below.

Lemma 6.1. A maximal normal flag of a permutation group of degree n can be constructed in time $\text{poly}(n)$.

6.2. Finding the relative closure. Let $G \leq \text{Sym}(\Omega)$ and F a G-flag. To find the majorant $W_F(G)$, one needs first to identify each G-orbit Δ with the Cartesian product of quotient sets defined by the flag F_Δ (see formula (4.7)), and to construct a generator set X_Δ of the iterated wreath product (4.8) for $G = G^\Delta$ and suitable Δ_i’s. This can be done efficiently by standard permutation group algorithms. Then the generator set of $W_F(G)$ is obtained by taking the union of all the X_Δ.

The relative closure $\overline{G} \cap W_F(G)$ can be interpreted as the group $\text{Aut}(\mathfrak{G}) \cap W_F(G)$, where \mathfrak{G} is the arc-colored graph with vertex set Ω, the color classes of which are exactly the 2-orbits of G. Now if G is a solvable group, then the group $W_F(G)$ is also solvable (Lemma 4.10(iii)). Therefore, a generator set for $\overline{G} \cap W_F(G)$ can be constructed in time $\text{poly}(n)$ by the Babai–Luks algorithm [Babai & Luks (1983, Corollary 3.6)].

Lemma 6.2. The relative closure (with respect to a flag) of a solvable permutation group of degree n can be constructed in time $\text{poly}(n)$.

6.3. Extending of a flag. The following algorithm provides a constructive version of Corollary 5.4. Below, given a flag and its element $e = e_{i-1}$, we set $\overline{e} = e_i$.

Algorithm 1. Extending to maximal normal flag.

Input: a group $K \leq \text{Sym}(\Omega)$ and a normal K-flag F.

Output: a maximal normal K-flag F' extending F.

1. Set $F' := F$.
2. While there is $e \in F'$ and a non-singleton $\Lambda \in \text{Orb}(K_{\Omega/e})$ such that $\left(\left(K_{\overline{e}}\right)^{\Omega/e}\right)_\Lambda$ contains a proper minimal normal subgroup N of $K_{\Omega/e}$, set

$$F' := F' \cup \{e'\},$$

where e' is the equivalence relation on Ω, the classes of which on Ω/e are the N-orbits.

3. Return F'.
Theorem 6.3. Assume that K is the relative closure of a supersolvable group G with respect to F, and F is a maximal normal G-flag. Then the Algorithm 1 correctly finds a maximal normal K-flag F', extending F, in time $\text{poly}(n)$.

Proof. Each iteration at Step 2 increases the length of the flag F'. Therefore, the number of iterations is at most n. The cost of the iteration consists of two parts: finding the pointwise stabilizer of Λ in $(K_\pi)^{\Omega/e}$ and constructing minimal normal subgroup N. Thus the running time of the algorithm is $\text{poly}(n)$, see Seress (2003). Finally, the K-flag F' defined at Step 2 is normal by the construction, and the resulted flag is maximal normal by Corollary 5.4. □

6.4. An nonsolvability certificate. In this subsection, we present the following algorithm finding the nonsolvability certificate for a given section of a permutation group with respect to a given flag.

Algorithm 2. Finding nonsolvability certificate.

Input: a group $K \leq \text{Sym}(\Omega)$, a normal K-flag F, and a F-section S of K.

Output: the nonsolvability certificate X_S.

1. If S is not feasible, then return \emptyset.
2. If S is not plain, then return \emptyset; else construct the standard equivalence relation of S.
3. Construct the set X_S defined in Lemma 5.12.
4. Set $X_S := \emptyset$.
5. For each $x \in X_S$ do 6–8
6. Find the intersection $Y := K \cap C_x$.
7. If $Y = \emptyset$, then return \emptyset.
8. Add to X_S one (arbitrary) element of Y.
9. Return X_S.

Theorem 6.4. Assume that K is the relative closure of a supersolvable group, and F is a maximal normal K-flag. Then the Algorithm 2 correctly finds the nonsolvability certificate and runs in time $\text{poly}(n)$.
Proof. The correctness of the algorithm follows from the definition of the nonsolvability certificate. To estimate the running time, we note that Steps 1 and 2 require inspecting, respectively, the orbits and 2-orbits of S, and this can be done by standard permutation group algorithms. The complexity of Step 3 is bounded by a polynomial in

$$|X_S| = |\text{Orb}(S)/\sim| \leq n,$$

where \sim is the standard equivalence relation for S (recall that S is a plain group by Theorem 5.5(ii)).

At Step 5, one needs to find $|X_S|$ times the intersection Y of two cosets K and C_x. Note that the latter is a coset of a solvable group contained in $W_F(K)$ (Theorem 5.14). Therefore, finding the intersection can be interpreted as finding the automorphisms of the arc-colored graph associated with K, and hence can be implemented in time $\text{poly}(n)$ by the Babai–Luks algorithm Babai & Luks (1983). Thus the loop of Steps 5–8 and hence the algorithm runs in polynomial time. \square

6.5. The Main Algorithm. In this subsection, we complete the proof of Theorem 1.2.

Algorithm 3. Main Algorithm.

Input: a supersolvable group $G \leq \text{Sym}(\Omega)$.

Output: the 2-closure \overline{G}.

1. Find a maximal normal flag F of G (Lemma 6.1).
2. Find the relative closure K of G with respect to F (Lemma 6.2).
3. Find a maximal normal K-flag F' extending F (Theorem 6.3).
4. Set $X := \{\text{id}_\Omega\}$. For each F'-section S of K, find the nonsolvability certificate X_S, and put $X := X \cup X_S$ (Theorem 6.4).
5. Return $\overline{G} := \langle K, X \rangle$.

Theorem 6.5. The Algorithm 3 correctly finds the group \overline{G} in time $\text{poly}(n)$.
Proof. The fact that the Main Algorithm is polynomial-time follows from Lemma 6.1, Lemma 6.2, Theorem 6.4, and Theorem 6.3. Next, let S be a section appearing at Step 4 and such that $X_S \neq \emptyset$. Then the section \overline{S} is nonsolvable (Corollary 5.15) and hence the conditions of Theorem 5.10 are satisfied (Corollary 5.16). By this theorem, the output group coincides with \overline{K}. Since also $\overline{K} = \overline{G}$ (Lemma 4.10(i)), the output of the Main Algorithm is correct. □

Acknowledgements

The authors thank S. V. Skresanov and E. P. Vdovin for fruitful discussions and useful comments to the first draft of the paper, and are grateful to the anonymous referee for suggestions improving the presentation.

The work was partially supported by the RFBR Grant No. 18-01-00752, and by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

LÁSZLÓ BABAI (2018). Group, graphs, algorithms: the graph isomorphism problem. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, 3319–3336. World Sci. Publ., Hackensack, NJ.

LÁSZLÓ BABAI & EUGENE M. LUKS (1983). Canonical Labeling of Graphs. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC 83, 171183. Association for Computing Machinery, New York, NY, USA.

GANG CHEN & ILIA PONOMARENKO (2019). Coherent Configurations. Central China Normal University Press, Wuhan.

J. H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER & R. A. WILSON (1985). Atlas of finite groups. Oxford University Press, Eynsham.
JOHN D. DIXON & BRIAN MORTIMER (1996). *Permutation groups*, volume 163 of *Graduate Texts in Mathematics*. Springer-Verlag, New York.

SERGEI EVDOKIMOV & ILIA PONOMARENKO (2001). Two-closure of odd permutation group in polynomial time. *Discrete Math.* **235**(1-3), 221–232.

SERGEI EVDOKIMOV & ILIA PONOMARENKO (2004). Circulant graphs: recognizing and isomorphism testing in polynomial time. *St. Petersbg. Math. J.* **15**(6), 813–835.

SERGEI EVDOKIMOV & ILIA PONOMARENKO (2009). Permutation group approach to association schemes. *European J. Combin.* **30**(6), 1456–1476.

WALTER FEIT (1980). Some consequences of the classification of finite simple groups. In *The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979)*, volume 37 of *Proc. Sympos. Pure Math.*, 175–181. Amer. Math. Soc., Providence, R.I.

DONALD G. HIGMAN (1975). Coherent configurations. I. Ordinary representation theory. *Geometriae Dedicata* **4**(1), 1–32.

GARETH A. JONES (2002). Cyclic regular subgroups of primitive permutation groups. *J. Group Theory* **5**(4), 403–407.

MARTIN W. LIEBECK, CHERYL E. PRAEGER & JAN SAXL (1988). On the 2-closures of finite permutation groups. *J. London Math. Soc. (2)* **37**(2), 241–252.

ILIA PONOMARENKO (1994). Graph isomorphism problem and 2-closed permutation groups. *Appl. Algebra Engrg. Comm. Comput.* **5**(1), 9–22.

ILIA PONOMARENKO (2005). Determination of the automorphism group of a circulant association scheme in polynomial time. *Zap. Nauchn. Semin. POMI* **321**, 251–267.

CHERYL E. PRAEGER & JAN SAXL (1992). Closures of finite primitive permutation groups. *Bull. London Math. Soc.* **24**(3), 251–258.

ÁKOS SERESS (2003). *Permutation group algorithms*, volume 152 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge.
Saveliy V. Skresanov (2019). Counterexamples to two conjectures in the Kourovka notebook. *Algebra Logic* **58**(3), 249–253.

Andrey V. Vasil’ev & Dmitriy (2019). The 2-closure of a 3/2-transitive group in polynomial time. *Sib. Math. J.* **60**(2), 279–290.

Helmut Wielandt (1964). *Finite permutation groups*. Academic Press, New York-London.

Helmut Wielandt (1969). *Permutation groups through invariant relations and invariant functions*. The Ohio State University.

Robert A. Wilson (2009). *The finite simple groups*, volume 251 of *Graduate Texts in Mathematics*. Springer-Verlag London, Ltd., London.

Jing Xu, Michael Giudici, Cai Heng Li & Cheryl E. Praeger (2011). Invariant relations and Aschbacher classes of finite linear groups. *Electron. J. Combin.* **18**(1), Paper 225.

Xue Yu & Jiangmin Pan (2019). 2-closures of primitive permutation groups of holomorph type. *Open Math.* **17**(1), 795–801.

Manuscript received 21 December 2019

Ilia Ponomarenko
Steklov Institute of Mathematics
at St. Petersburg,
St. Petersburg, Russia
Sobolev Institute of Mathematics,
Novosibirsk, Russia
inp@pdmi.ras.ru

Andrey Vasil’ev
Sobolev Institute of Mathematics
Novosibirsk, Russia
Novosibirsk State University
Novosibirsk, Russia
vasand@math.nsc.ru