Evidence for the decay $B^0 \rightarrow \eta \eta$

A. Abdesselam,92 I. Adachi,20,16 K. Adamczyk,66 H. Aihara,100 S. Al Said,92,42 K. Arinstein,5,70 Y. Arita,59
D. M. Asner,73 T. Aso,105 H. Atmacan,55 V. Aulchenko,5,70 T. Aszhev,58 R. Ayad,92 T. Aziz,93 V. Babu,93
I. Badhrees,92,41 S. Bahinipati,26 A. M. Bakich,91 A. Bala,74 Y. Ban,75 V. Bansal,75 E. Barberio,54
M. Barrett,19 W. Bartel,10 A. Bay,47 I. Bedny,5,70 P. Behera,28 M. Belhorn,9 K. Belous,32 M. Berger,89
D. Besson,57 V. Bhardwaj,25 B. Bhuyan,27 J. Biswal,26 T. Bloomfield,54 S. Blyth,64 A. Bobrov,5,70 A. Bondar,5,70
G. Bonvicini,108 C. Bookwalter,73 C. Bouhouchaou,92 A. Bozek,66 M. Bračko,52,36 F. Breibie,31 J. Brodzicka,66
T. E. Browder,19 E. Waheed,65 C. Červenkov,6 M.-C. Chang,12 P. Chiang,65 Y. Chao,65 V. Chekedian,53 A. Chen,63
K.-F. Chen,65 P. Chen 65 B. G. Cheon,18 K. Chilikin,48,57 R. Chistov,48,57 K. Cho 43 V. Chobanova,53 S.-K. Choi,17
Y. Choi,90 D. Cinabro,108 J. Crnkovic,24 J. Dalseno,53,94 M. Danilov,57,48 N. Dash,26 S. Di Carlo,108 J. Dingfelder,4
Z. Doležal,6 D. Dossett,54 Z. Drážal,6 A. Drutskoy,48,57 S. Dubey,19 D. Dutta,93 K. Dutta,27 S. Eidelman,5,70
D. Epifanov,100 S. Eser,9 H. Farhat,108 J. E. Fast,73 M. Feindt,38 T. Ferber,10 A. Frey,15 O. Frost,10 B. G. Fulsom,73
V. Gaur,93 N. Gabyshev,5,70 S. Ganguly,108 A. Garmash,5,70 D. Getzkov,13 R. Gillard,108 F. Giordano,24
R. Glattauer,31 Y. M. Koh,18 P. Goldenzweig,38 B. Golob,49,36 D. Greenwald,95 M. Grosse Perdekamp,24,81
J. Grygier,38 O. Gryznikowska,66 H. Guo,83 H. Jaba,20,15 P. Hamer,15 Y. L. Han,30 K. Hara,20 T. Hara,20,16
Y. Hasegawa,85 J. Hasenbusch,6 K. Hayasaka,68 H. Hayashii,62 X. H. He,75 M. Heck,38 M. T. Hedges,19
D. Heffernan,72 M. Heider,38 A. Heller,83 T. Higuchi,59 S. Himori,98 S. Hirose,59 T. Horiguchi,98 Y. Hoshi,97
K. Hoshina,103 W.-S. Hou,65 Y. B. Hsiung,65 C.-L. Hsu,54 M. Huschle,38 H. J. Hyun,46 Y. Igarashi,20 T. Iijima,60,59
M. Imamurah,59 K. Inami,59 G. Inguglia,10 A. Ishikawa,98 K. Itagaki,98 R. Itoh,20,16 M. Iwabuchi,110 M. Iwasaki,100
Y. Iwasaki,30 S. Iwata,102 W. W. Jacobs,29 I. Jaegle,11 H. B. Jeon,46 Y. Jin,100 D. Joffe,48 M. Jones,19 K. K. Joo,8
T. Julius,54 H. Kakuno,102 A. B. Kaliyayi,28 J. H. Kang,110 H. K. Kang,46 P. Kapusta,66 S. U. Kataoka,61 E. Kato,98
Y. Kato,59 P. Katrenko,58,48 H. Kawai,7 T. Kawasaki,58 T. Keck,38 H. Kichimi,20 C. Kiesling,53 B. H. Kim,84
D. Y. Kim,87 H. J. Kim,46 H.-J. Kim,110 J. B. Kim,44 J. H. Kim,43 K. T. Kim,44 M. J. Kim,46 S. H. Kim,18
S. K. Kim,84 Y. J. Kim,43 K. Kinoshita,9 C. Kleinwort,10 J. Klucar,36 B. R. Ko,44 N. Kobayashi,101 S. Koblitz,53
P. Kodyś,6 Y. Koga,59 S. Korpar,52,36 D. Kotchetkov,19 R. T. Kouzes,73 P. Krizan,49,36 P. Krokovny,5,70
B. Kronenbitter,35 T. Kuhl,50 R. Kulasiri,40 R. Kumar,77 T. Kumita,102 E. Kurihara,7 Y. Kuroki,72 A. Kuzmin,5,70
P. Kvasnička,6 Y.-J. Kwon,110 Y.-T. Lai,65 J. S. Lange,13 D. H. Lee,44 I. S. Lee,18 S.-H. Lee,44 M. Leitgab,24,81
R. Leitner,6 D. Levit,95 P. Lewis,19 C. H. Li,54 H. Li,29 J. Li,84 L. Li,83 X. Li,84 Y. Li,107 L. Li gioi,53 J. Libby,28
A. Limosani,54 C. Liu,83 Y. Liu,9 Z. Q. Liu,30 D. Liventsev,107,20 A. Loos,88 R. Louvot,47 M. Lubej,36 P. Lukin,5,70
T. Luo,76 J. MacNaught,20 M. Masuda,99 T. Matsuda,56 D. Matvienko,5,70 A. Matyja,66 S. McOnie,91
Y. Mikami,98 K. Miyabayashi,62 Y. Miyachi,109 H. Miyake,20,16 H. Miyata,68 Y. Miyazaki,59 R. Mizuk,48,57,58
G. B. Mohanty,93 S. Mohanty,93 H. Mhapatra,73 A. Moll,53,94 H. K. Moon,44 T. Mori,59 T. Mori,39
H.-G. Mose,53 T. Müller,38 N. Muramatsu,78 R. Mussa,34 T. Nagamine,98 Y. Nagasaka,22 Y. Nakahama,100
I. Nakamura,20,16 K. R. Nakamura,20 E. Nakano,71 H. Nakano,98 T. Nakano,79 T. Nakao,20,16 H. Nakayama,20,16
H. Nakazawa,63 T. Namut,36 K. J. Nast,27 Z. Natkaniec,66 M. Nayak,108,20 E. Nedelkovska,53 K. Negishi,98
K. Neich,97 C. Ng,100 C. Niebuhr,10 M. Niyama,45 N. K. Nisar,93 S. Nishioka,20,16 K. Nishimura,19 O. Nitioh,103
T. Nozaki,20 A. Ogawa,81 S. Ogawa,96 T. Ohshima,59 S. Okuno,37 S. L. Olsen,34 Y. Ono,98 Y. Ouni,100
W. Ostrowicz,66 C. Oswald,4 H. Ozaki,20,16 P. Pakhlov,48,57 G. Pakhlova,48,57 B. Pal,9 H. Palka,66
E. Panzenböck,15,62 C.-S. Park,110 C. W. Park,90 H. Park,46 K. S. Park,90 S. Paul,95 L. S. Peak,91 T. K. Pedlar,51
T. Peng,83 L. Pęsint,194 R. Pestotnik,36 M. Peters,19 M. Petrič,36 L. E. Piilonen,107 A. Poluektov,5,70 K. Prasanth,28
M. Prim,38 K. Prokhvatilov,53,94 C. Pulvermacher,29 M. V. Purol,83 J. Rauch,95 B. Reisert,53 E. Ribežel,36
M. Ritter,50 J. Röhe,19 A. Rostomyan,10 C. Rotzanka,56 S. Ruemml,50 S. Ryu,84 H. Sahoo,19 T. Saito,98 K. Sakai,20
Y. Sakai,20,16 S. Sandilya,9 D. Santel,9 L. Santelj,20 T. Sanuki,98 J. Sasaki,100 N. Sasao,45 Y. Sato,59 V. Savinov,76
T. Schlüter,59 O. Schneider,47 G. Schnell,25,25 P. Schönherr,98 M. Schram,73 C. Schwanda,53 J. Schwaert,9
B. Schwenker,15 R. Seidl,81 Y. Seino,68 D. Semmler,13 K. Senyo,109 O. Seon,59 I. S. Seong,19 M. E. Sevior,54

arXiv:1609.03267v1 [hep-ex] 12 Sep 2016
45 Kyoto University, Kyoto 606-8502
46 Kyungpook National University, Daegu 702-701
47 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
48 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
49 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
50 Ludwig Maximilians University, 80539 Munich
51 Luther College, Decorah, Iowa 52101
52 University of Maribor, 2000 Maribor
53 Max-Planck-Institut für Physik, 80805 München
54 School of Physics, University of Melbourne, Victoria 3010
55 Middle East Technical University, 06531 Ankara
56 University of Miyazaki, Miyazaki 889-2192
57 Moscow Physical Engineering Institute, Moscow 115409
58 Moscow Institute of Physics and Technology, Moscow Region 141700
59 Graduate School of Science, Nagoya University, Nagoya 464-8602
60 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
61 Nara University of Education, Nara 630-8528
62 Nara Women’s University, Nara 630-8506
63 National Central University, Chung-li 32054
64 National United University, Miaoli 36003
65 Department of Physics, National Taiwan University, Taipei 10617
66 H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
67 Nippon Dental University, Niigata 951-8580
68 Niigata University, Niigata 950-2181
69 University of Nova Gorica, 5000 Nova Gorica
70 Novosibirsk State University, Novosibirsk 630090
71 Osaka City University, Osaka 558-8585
72 Osaka University, Osaka 565-0871
73 Pacific Northwest National Laboratory, Richland, Washington 99352
74 Panjab University, Chandigarh 160014
75 Peking University, Beijing 100871
76 University of Pittsburgh, Pittsburgh, Pennsylvania 15260
77 Panjab Agricultural University, Ludhiana 141004
78 Research Center for Electron Photon Science, Tohoku University, Sendai 980-8578
79 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
80 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198
81 RIKEN BNL Research Center, Upton, New York 11973
82 Saga University, Saga 840-8502
83 University of Science and Technology of China, Hefei 230026
84 Seoul National University, Seoul 151-742
85 Shinshu University, Nagano 390-8621
86 Showa Pharmaceutical University, Tokyo 194-8543
87 Soongsil University, Seoul 156-743
88 University of South Carolina, Columbia, South Carolina 29208
89 Stefan Meyer Institute for Subatomic Physics, Vienna 1090
90 Sungkyunkwan University, Suwon 440-746
91 School of Physics, University of Sydney, New South Wales 2006
92 Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
93 Tata Institute of Fundamental Research, Mumbai 400005
94 Excellence Cluster Universe, Technische Universität München, 85748 Garching
95 Department of Physics, Technische Universität München, 85748 Garching
96 Toho University, Funabashi 274-8510
97 Tohoku Gakuin University, Tagajo 985-8537
98 Department of Physics, Tohoku University, Sendai 980-8578
99 Earthquake Research Institute, University of Tokyo, Tokyo 113-0032
100 Department of Physics, University of Tokyo, Tokyo 113-0033
101 Tokyo Institute of Technology, Tokyo 152-8550
102 Tokyo Metropolitan University, Tokyo 192-0397
103 Tokyo University of Agriculture and Technology, Tokyo 184-8588
104 University of Torino, 10124 Torino
105 Toyama National College of Maritime Technology, Toyama 933-0293
106 Utkal University, Bhubaneswar 751004
107 Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
108 Wayne State University, Detroit, Michigan 48202
We report a search for $B^0 \rightarrow \eta \eta$ with a data sample corresponding to an integrated luminosity of 698 fb$^{-1}$ containing 753 x 106 BB pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. The branching fraction is measured to be $B(B^0 \rightarrow \eta \eta) = (7.6^{+2.7+1.4}_{-2.3-1.6}) \times 10^{-7}$ at the level of 3.3 standard deviations above zero, which provides the first evidence for the decay $B^0 \rightarrow \eta \eta$.

PACS numbers:

INTRODUCTION

The CP violation measurements using charmless hadronic decays of B mesons are primarily important for testing the Standard Model (SM) and searching for physics beyond the SM.

The $B^0 \rightarrow \eta \eta$ decay mode mainly proceeds via the $b \rightarrow u$ Cabibbo- and color-suppressed tree diagram and the $b \rightarrow d$ penguin diagram shown in Fig. 1(a) and Fig. 1(b) respectively. The expected branching fraction of this decay mode is $(0.3-3.1) \times 10^{-6}$, estimated from the calculations based on QCD factorization [1], soft collinear effective theory [2], SU(3) flavor symmetry [3] and flavor $U(3)$ symmetry [4].

This mode plays an important role in improving the flavor SU(3) calculations of $|S_{ccs} - S_f|$, where the final state f is ηK or ϕK, the CP-violating parameter $S_f \sim \sin 2\phi_1$ is measured in the time-dependent analysis [5], and the CP-violating parameter S_{ccs} is measured in the Cabibbo-Kobayashi-Maskawa (CKM)-favored $b \rightarrow c\bar{c}s$ decays. The bound on this difference can be improved by more precise measurements of the branching fraction of $B^0 \rightarrow \eta \eta$ [6, 7].

This mode has been studied by Belle and BABAR [8, 9]. The best previous upper limit on this branching fraction is $B(B^0 \rightarrow \eta \eta) < 1.0 \times 10^{-6}$ at 90% confidence level (CL) [9].

We update our previous result [8] using the full data set of the Belle experiment running on the $\Upsilon(4S)$ resonance at the KEKB asymmetric-energy e^+e^- collider [10]. This data set corresponds to 753 x 106 BB pairs, which is a factor of five larger than in the previous Belle study.

DETECTOR AND DATASET

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons (KLM). The detector is described in detail elsewhere [10]. Two inner detector configurations were used. A 2.0 cm beampipe and a 3-layer silicon vertex detector was used for the first sample of 133 x 106 BB pairs, while a 1.5 cm beampipe, a 4-layer silicon detector and a small-cell inner drift chamber were used to record the remaining 620 x 106 BB pairs [11].

RECONSTRUCTION

The $B^0 \rightarrow \eta \eta$ candidate is reconstructed from the subdecay channels of $\eta \rightarrow \gamma \gamma (\eta \gamma \gamma)$ and $\eta \rightarrow \pi^+\pi^-\pi^0 (\eta \pi \pi)$. Photons used for $\eta \rightarrow \gamma \gamma$ and $\pi^0 \rightarrow \gamma \gamma$ are required to have an energy greater than 50 (100) MeV in the barrel (end-cap) region of the ECL [10]. The ECL timing information, which measures the time of energy deposit relative to the beam-collision time, is used to reject out-of-time photons.

Charged tracks are required to have a transverse momentum greater than 0.1 GeV/c and an impact parameter with respect to the interaction point of less than 0.3 cm in the $r-\phi$ plane and 3.0 cm along the z axis, which is opposite the e^+ beam. Charged pions are identified using information obtained from the CDC (dE/dx, the TOF, and the ACC (number of photoelectrons). This information is combined to form a likelihood L for hadron identification (PID). We require that charged pions satisfy $L_K/(L_{\pi} + L_K) < 0.4$, where L_K (L_{π}) denotes the likelihood for a track with the kaon (pion) hypothesis.

A π^0 candidate is required to have a $\gamma \gamma$ invariant mass between 117 and 155 MeV/c^2, which corresponds to $\pm 3\sigma$ around the nominal π^0 mass [12]. To improve the π^0 momentum resolution, we perform a mass-constrained fit and require that the resulting goodness-of-fit parameter
(χ²) be less than 50.

Photons that are not included in the final set of π⁰ candidates are combined to form ηγ candidates. To reduce combinatorial background from low-energy photons, ηγ candidates are required to have cos θη < 0.9, where θη is the angle in the η rest frame between the directions of the B meson and the more energetic photon. The ηπ candidates are reconstructed by combining two oppositely charged pion candidates with a π⁰ candidate. We require the invariant mass of ηγ (ηπ) candidates be in the range 476–579 (527–568) MeV/c², which corresponds to ±2.5σ (±3.0σ) around the nominal η mass [12]. For each such η candidate, a mass-constrained fit is performed to improve the momentum resolution; the resulting χ² of the ηγ (ηπ) candidates must be less than 50 (200).

For each B⁰ → ηπ candidate, we define two kinematic variables to distinguish signal from background: these are the energy difference (ΔE ≡ E_B − E_beam) and the beam-constrained mass (M_{bc} ≡ \sqrt{E_{beam}^2 − |p_B|^2} c^2 / c^2), where E_{beam} and E_B (|p_B|) are the beam energy and the energy (momentum) of the B meson candidate, respectively, in the e^+e^- center-of-mass (CM) frame. We retain B candidates satisfying −0.3 GeV < ΔE < 0.2 GeV and M_{bc} > 5.25 GeV/c².

BACKGROUND SUPPRESSION

The large background arising from continuum e^+e^- → q̅q (q = u, d, s, c) process is the dominant background here. To suppress this background, a neural network [13] is employed by combining the following four quantities: the event-shape variables formed from 16 modified Fox-Wolfram moments [14], the cosine of the angle between the flight direction of the B candidate and z axis in the e^+e^- CM frame, the tagging information of the flavor [15], and the cosine of the angle between the thrust axes [16] in the e^+e^- CM frame of the signal-B and the other-B candidates. The training and optimization of this neural network are accomplished with signal and continuum Monte Carlo (MC) simulated events. The signal MC sample is generated with EvtGen [17], taking the final-state radiation into account via PHOTOS [18]. After training, independent samples are used to test the neural network performance. The neural network output (C_{NB}) for an event ranges from −1 to +1; a value near +1 (−1) is more likely signal (continuum).

We require C_{NB} > −0.8 to suppress the continuum background. This requirement preserves approximately 97.7%, 97.6% and 97.2% of the signal while suppressing 68.3%, 64.5%, and 58.5% of the continuum background in ηγγ, ηγπ and ηππ respectively. The remaining of the C_{NB} distribution has a strong peak that falls off rapidly below 1 for signal, we use a transformed quantity to improve its modeling with an analytic shape:

\[
C'_{NB} = \frac{C_{NB} - C_{NB}^{-\text{min}}}{C_{NB}^{-\text{max}} - C_{NB}^{-\text{min}}}.
\]

where C_{NB}^{-\text{min}} = −0.8 and C_{NB}^{-\text{max}} is the maximum value of C_{NB} obtained from a large sample of signal MC decays. After applying all selection criteria, the average number of signal candidates per event is 1.08, 1.10 and 1.13 for ηγγ, ηγπ and ηππ, respectively, in the signal MC. We choose the candidate having the smallest value for the sum of the χ² values from the two η mass-constrained fits. We refer to the right-combination (RC) as the correctly-reconstructed B meson decays and the self-cross-fraud (SCF) as the misreconstructed signal components. MC simulation show that the SCF fraction is 6.8%, 9.3% and 13.4% in ηγγ, ηγπ and ηππ, respectively.

FIT MODEL

The branching fraction of B⁰ → ηπ is obtained using a simultaneous fit to the ηγγ, ηγπ and ηππ decay channels. In this fit, the branching fraction is determined by an unbinned extended maximum likelihood (ML) fit to the distributions of ΔE, M_{bc} and C_{NB}. The branching fraction of this mode is obtained using a simultaneous fit to the ηγγ, ηγπ and ηππ decay channels. The extended ML function is defined as

\[
\mathcal{L}_\text{fit} = e^{-\sum_j N_j} \prod_i \left(\sum_j N_j P_j(\Delta E, M_{bc}, C'_{NB}) \right),
\]

where \(P_j(\Delta E, M_{bc}, C'_{NB})\) is the probability density function (PDF) of the signal or background component (specified by index j), N_j is the fractional yield of this component for event i, and M is the total number of

Fit variables	Yield	ΔE	M_{bc}	C'_{NB}		
Signal MC	RC	N_{sig}	CB + G	CB	AG + AG	
SCF				AG + 1st CC	NV + ARG	AG + AG
b → c			N_{arg}	HistPDF	HistPDF	G
b → u, d, s		2nd CC	NV	G		

TABLE I: List of PDFs used to model ΔE, M_{bc} and C'_{NB} distributions for various event categories. G, AG, CB, NV, i-th CC, ARG and HistPDF stand for Gaussian, asymmetric Gaussian, Crystal Ball, i-th Chebyshev polynomial, ARGUS function [21] and histogram, respectively. N_i is the yields of signal or background components.
events in the sample. The background components include continuum events, the $b \to c$ process, charmless $b \to u, d, s$ processes other than $B^0 \to \pi^0 \eta$, and $B^0 \to \eta^0 \eta$ (treated separately). Compared to continuum, the other background processes are small and are modeled using MC simulations. The expected yields of $b \to c$ processes are 6, 6 and 2 events in $\eta\gamma \eta\gamma$, $\eta\gamma \eta\pi$, and $\eta\pi \eta\pi$, respectively, after passing all selection criteria based on MC simulations. The charmless $b \to u, d, s$ processes (excluding $B^0 \to \pi^0 \eta$), while having larger expected yields, exhibit no peaking structure in the ΔE and M_{bc}.

We find that the correlations among the fit variables are small enough to ignore. Thus, the three-dimensional PDF, P_j is expressed as the product of one-dimensional PDFs as

$$P_j = P_j(\Delta E) \cdot P_j(M_{bc}) \cdot P_j(C_{NB}).$$

Table II lists the PDF shapes used to model ΔE, M_{bc} and C_{NB} for all components in the fit.

We fix the parameters of the RC-signal PDF shapes to values obtained from the signal MC. Here, the peak positions and resolutions are adjusted according to data-MC differences observed in a high-statistics control sample of $B^0 \to \bar{D}^0(\rightarrow K^+\pi^- \pi^0)\eta$ decays.

The continuum $q\bar{q}$ background PDF parameters that are allowed to vary are the slope of ΔE, the shape of M_{bc} and the mean and width of the C_{NB} Gaussian function. All of the other background PDF parameters are fixed based on MC simulation.

The yields of signal and continuum $q\bar{q}$ are allowed to vary in the fit. The yields of the other backgrounds and the relative amount of SCF to RC signal are fixed. To test the stability of the fitter, we perform the fit to ensembles of 1000 pseudoexperiments using the extracted fitted yields from data and random samples of events for each component chosen from the simulated MC samples. We observe a fit bias of 1.7% for B, which is corrected and assigned as a systematic uncertainty.

FIT TO DATA

We extract $+3.6^{+0.8}_{-0.9}$, $9.2^{+3.2}_{-2.7}$ and $2.7^{+0.9}_{-0.8}$ signal events and $3860.5^{+63.1}_{-62.4}$, $3779.7^{+62.0}_{-61.5}$ and $621.4^{+25.4}_{-24.8}$ continuum background events for $\eta\gamma \eta\gamma$, $\eta\gamma \eta\pi$, and $\eta\pi \eta\pi$, respectively. The complete results of the ML fit are enumerated in Table II. Figure 3 shows the PDF and data distributions projected in the signal-enhanced region of $|\Delta E, M_{bc}| < 3\sigma$ and $C_{NB} > 2.0$, 2.0 and 1.5 for $\eta\gamma \eta\gamma$, $\eta\gamma \eta\pi$, and $\eta\pi \eta\pi$, respectively. In the fit, the signal yield of each sub-decay mode (with index k) is written in terms of the common branching fraction as

$$n_{\text{sig},k} = B(B^0 \to \eta\eta) \times N_{\bar{B}B} \times \epsilon_{\text{rec},k} \times \prod B_{\eta_k},$$

where $N_{\bar{B}B}$ is the number of $\bar{B}B$ pairs, ϵ_{rec} is the signal efficiency obtained from MC simulation, n_{sig} is the number of signal events and $\prod B_{\eta_k}$ is the product of the two η-decay branching fractions. The efficiency ϵ_{rec} is corrected by the modest differences between data and MC in the particle identification efficiency ϵ_{rec}. The resulting branching fraction is $B(B^0 \to \eta\eta) = (7.6^{+2.7}_{-2.2}) \times 10^{-7}$, where the error is statistical only.

The significance S of the signal is defined as $\sqrt{-2 \log \frac{L_0}{L_{\text{max}}}}$, where L_{max} (L_0) is the likelihood value when the signal yield set to the measured signal yield (zero), corrected for the systematic errors by involving the likelihood function with an asymmetric Gaussian distribution whose left and right variances equal the signal-yield systematic errors in Table II. The resulting significance of the branching fraction is 3.3 standard deviations above zero which provides the first evidence of this decay mode.

SYSTEMATIC UNCERTAINTY ESTIMATION

The systematic uncertainties in the branching fraction are listed in Table III. The uncertainty due to the fixed parameters in the PDF is estimated by varying each, one by one, according to its statistical uncertainty. Deviations from the original fit are added in quadrature. We vary the bin height for all histogram PDFs by the bin’s statistical error and repeat the fit. The resulting changes are added in quadrature and the result is taken as the systematic uncertainty. The uncertainty due to calibration factors are evaluated in a similar manner. The uncertainty due to the fixed fractions of misreconstructed events and fixed yields are calculated by varying them by $\pm 50\%$.

We determine the uncertainty due to the slightly diff-
different continuum suppression efficiencies for $C_{NB} = -0.8$ in data and MC by using the $B^0 \rightarrow D^0 \eta$ control sample. The systematic uncertainty due to the charged-track reconstruction efficiency is estimated to be 0.35% per track by using a partially reconstructed $D^{*+} \rightarrow D^0(K_S^0\pi^+\pi^-)\pi^+$ events. An uncertainty of 0.8% per track is assigned due to PID criteria. The uncertainty in the reconstruction efficiency of each $\eta \rightarrow \gamma\gamma$ or $\pi^0 \rightarrow \gamma\gamma$ decay is 3% [22].

We assign systematic uncertainties of 0.5% and 1.2%, respectively, for the branching fractions of $\eta \rightarrow \gamma\gamma$ and $\eta \rightarrow \pi^+\pi^-\pi^0$ [12]. The uncertainty in the efficiency ϵ due to the limited signal MC statistics is 0.3% and the uncertainty due to the number of BB pairs is 1.3%.

In order to check for potential non-resonant $B^0 \rightarrow \eta\gamma\gamma$, $B^0 \rightarrow \gamma\gamma\gamma$, $B^0 \rightarrow \gamma\eta\pi^+\pi^-$, $B^0 \rightarrow \eta\gamma\pi^+\pi^-$, $B^0 \rightarrow \gamma\pi^+\pi^-\pi^0$, $B^0 \rightarrow \pi^+\pi^-\pi^0\pi^+\pi^-\pi^0$ contamination, we relax the η mass requirement; the invariant mass distributions are shown in Fig. 3. We choose the $\eta\gamma (\eta\pi\pi)$ mass-sideband re-

![FIG. 2: Signal-enhanced projections of the simultaneous fit: The points with the error bars are the real data, the black solid line is total PDF, the red solid line show the signal, the blue solid line represent the $q\bar{q}$, the green dashed line is $b \rightarrow u, d, s$, and the blue dashed line is $b \rightarrow c$ background.](image)

![FIG. 3: Distribution of $M_{\gamma\gamma}$ (a) and $M_{\pi^+\pi^-\pi^0}$ (b) invariant masses for events passing all selection requirements, except for $M_{\gamma\gamma}$ or $M_{\pi^+\pi^-\pi^0}$](image)

region as $0.45 - 0.48 \text{ GeV}/c^2$ or $0.58 - 0.63 \text{ GeV}/c^2$ ($0.45 - 0.52 \text{ GeV}/c^2$ or $0.57 - 0.63 \text{ GeV}/c^2$) and repeat the fitting procedure. We measure the branching fraction of the non-resonant contribution to be $(0.02^{+0.09}_{-0.05}) \times 10^{-6}$, consistent with zero. The positive uncertainty is assigned as the negative systematic uncertainty.

CONCLUSION

In summary, we have conducted a measurement of the branching fraction of the decay $B^0 \rightarrow \eta \eta$. We obtain

$$B(B^0 \rightarrow \eta \eta) = (7.6^{+2.7+1.4}_{-2.3-1.6}) \times 10^{-7},$$

where the first uncertainty is statistical and the second is systematic. The significance of this result is 3.3 standard deviations above zero, which provides the first evidence for this decay. The measured branching fraction is in good agreement with the theoretical expectations [1-3].

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grant No. P 2742-N16 and P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, No. 11475187 and No. 11575017; the Chinese Academy of Science Center for Excellence in Particle Physics; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the WCU program of the Ministry of Education, National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286, No. 2014R1A2A2A01002734, No. 2015R1A2A2A01003280, No. 2015H1A2A1033649; the Basic Research Lab program under NRF Grant No. KRF-2011-0020333, Center for Korean J-PARC Users, No. NRF-2013K1A3A7A0006592; the Brain Korea 21-Plus program and Radiation Science Research Institute; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science and the Euskal Herriko Unibertsitatea (UPV/EHU) under program UFI 11/55 (Spain); the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area (“New Development of Flavor Physics”) and from JSPS for Creative Scientific Research (“Evolution of Tau-lepton Physics”).

REFERENCES

[1] H.-Y. Chen and C.-K. Chua, Phys. Rev. D **80**, 114008 (2009).
[2] A. R. Williamson and J. Zupan, Phys. Rev. D **74**, 014003 (2006).
[3] C.-W. Chiang, M. Gronau, and J. L. Rosner, Phys. Rev. D **68**, 074012 (2003).
[4] H.-K. Fu, X.-G. He, and Y.-K. Hsiao, Phys. Rev. D **69**, 074002 (2004).
[5] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D **79**, 052003 (2009); Phys. Rev. Lett. **99**, 161802 (2007); K.-F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. **98**, 031802 (2007).
[6] Y. Grossman and Z. Ligeti, Phys. Rev. D **68**, 015004 (2003).
[7] M. Gronau, J. L. Rosner, and J. Zupan, Phys. Lett. B
[8] P. Chang et al. (Belle Collaboration), Phys. Rev. D 71, 091106 (2005).

[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 80, 112002 (2009).

[10] S. Kurokawa and E. and Kikutani, Nucl. Instrum. Meth. A 499, 1 (2003); T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013).

[11] Z. Natkaniec et al. (Belle SVD2 Group), Nucl. Instrum. Meth. A 560, 1 (2006).

[12] K. A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update.

[13] M. Feindt and U. Kerzel, Nucl. Instrum. Meth. A 559, 190 (2006).

[14] G. C. Fox and S. Wolfram, Nucl. Phys. B 149 (1979) 413; S. H. Lee et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).

[15] H. Kakuno et al., Nucl. Instrum. Meth. A 533, 516 (2004).

[16] S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, Phys. Lett. B 12, 57 (1964).

[17] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).

[18] E. Barberio and Z. W, Comput. Phys. Commun. A79, 291 (1994).

[19] T. Skwarnicki, DESY Report No. F31-86-02 (1986).

[20] H. Ikeda et. al., Nucl. Instrum. Meth. A 441 401426, 2000

[21] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).

[22] M. C. Chang et al. (Belle Collaboration), Phys. Rev. D 85, 091102(R) (2012).