Symptom Clusters and Functional Impairment in Individuals Treated for Lyme Borreliosis

Nevena Zubcevik1,2,3, Charlotte Mao2,4, Qing Mei Wang1,5, Eliezer L. Bose5, Rose Nadlyne Octavien2, David Crandell2 and Lisa J. Wood6,7*

1 Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States, 2 The Dean Center for Tickborne Illness, Spaulding Research Institute, Spaulding Rehabilitation Hospital, Boston, MA, United States, 3 Invisible International, Cambridge, MA, United States, 4 Massachusetts General Hospital, Department of Pediatric Infectious Diseases, Boston, MA, United States, 5 Stroke Biological Recovery Laboratory, Spaulding Research Institute, Spaulding Rehabilitation Hospital, Boston, MA, United States, 6 Massachusetts General Hospital, Institute for Health Professions, School of Nursing, Charlestown, MA, United States, 7 William F. Connell School of Nursing, Boston College, Chestnut Hill, MA, United States

Context: Persistent fatigue, pain, and neurocognitive impairment are common in individuals following treatment for Lyme borreliosis (LB). Poor sleep, depression, visual disturbance, and sensory neuropathies have also been reported. The cause of these symptoms is unclear, and widely accepted effective treatment strategies are lacking.

Objectives: To identify symptom clusters in people with persistent symptoms previously treated for LB and to examine the relationship between symptom severity and perceived disability.

Methods: This was a retrospective chart review of individuals with a history of treatment of LB referred to The Dean Center for Tick-Borne Illness at Spaulding Rehabilitation Hospital between 2015 and 2018 (n = 270) because of persistent symptoms. Symptoms and functional impairment were collected using the General Symptom Questionnaire-30 (GSQ-30), and the Sheehan Disability Scale. Clinical tests were conducted to evaluate for tick-borne co-infections and to rule out medical disorders that could mimic LB symptomatology. Exploratory factor analysis was performed to identify symptom clusters.

Results: Five symptom clusters were identified. Each cluster was assigned a name to reflect the possible underlying etiology and was based on the majority of the symptoms in the cluster: the neuropathy symptom cluster, sleep-fatigue symptom cluster, migraine symptom cluster, cognitive symptom cluster, and mood symptom cluster. Symptom severity for each symptom cluster was positively associated with global functional impairment (p < 0.001).

Conclusion: Identifying the interrelationship between symptoms in post-treatment LB in a cluster can aid in the identification of the etiological basis of these symptoms and could lead to more effective symptom management strategies.
Key Message: This article describes symptom clusters in individuals with a history of Lyme borreliosis. Five clusters were identified: sleep-fatigue, neuropathy, migraine-like, cognition, and mood clusters. Identifying the interrelationship between symptoms in each of the identified clusters could aid in more effective symptom management through identifying triggering symptoms or an underlying etiology.

Keywords: Lyme borreliosis, symptom cluster, disability, fatigue, neurocognitive impairment

INTRODUCTION

Lyme borreliosis (LB) is caused by various tick-borne genospecies of the spirochete bacteria *Borrelia burgdorferi sensu lato* (1, 2) and is a multisystem, multi-stage disease. LB is the most common vector-borne illness in the US, and the number of cases has increased steadily over the last 25 years (3). Transmission of the *B. burgdorferi* spirochete from infected ticks to its human host begins with the translocation of *B. burgdorferi* from the gut to the salivary glands of infected ticks while feeding on its human host (4). At the time of initial presentation of LB, *erythema migrans* (commonly described as a “bullseye” rash or an expanding, homogeneously red rash), is observed in <60% of infected patients within 7–10 days at the site of the tick bite (5–8). The rash usually resolves within weeks, even in the absence of antibacterial therapy. Additional signs of acute disseminated LB include fever, fatigue, muscle and joint pain, headache, and lymphadenopathy (5). Notably, other tick-borne infections such as Anaplasma and Ehrlichia can manifest with similar flu-like symptoms and when co-existing with *B. burgdorferi*, increase the severity of the presentation. If *erythema migrans* is absent at the onset of infection and the flu-like symptoms are presumed to be related to non-specific viral infection (9), LB can go undiagnosed and untreated for weeks, months, or even years. Importantly, the spirochete can enter the bloodstream and disseminate, often affecting the heart, joints, and nervous system (5). Lyme neuroborreliosis (LNB) is reported to occur in 10–15% of LB patients although this may be an underestimate, as *Borrelia burgdorferi* has been shown to disseminate to the central nervous system (CNS) very early in the course of acute disseminated infection with minimal if any clinical evidence of CNS involvement (10). Furthermore, a latent neuroborreliosis can exist for quite some time without significant symptoms, then present with late CNS involvement many months to years after initial infection and less characteristic symptoms (11). Symptoms may include facial paralysis and other cranial neuropathies, headache, neck stiffness, fatigue, paresthesias, meningeal signs, depression, anxiety disorders, peripheral nervous system problems, encephalitis or encephalomyelitis, chronic meningitis, and stroke secondary to cerebral vasculitis (11–18).

A subset of individuals with Lyme borreliosis go on to experience persistent or relapsing-remitting symptoms including fatigue, pain, and neurocognitive difficulties after treatment; an illness referred to as post-treatment Lyme disease syndrome (PTLDS). These chronic symptoms are of sufficient severity to impact quality of life and physical functioning (15, 19–23). The current definition of PTLDS, developed by the Infectious Diseases Society of America (IDSA), is clinician-documented Lyme borreliosis treated with standard antibiotic regimens, with onset of fatigue, widespread musculoskeletal pain, or cognitive difficulties within 6 months of Lyme disease diagnosis and with continuous or relapsing symptoms persisting for at least 6 months after treatment has ended (24). Risk factors for the development of persistent symptoms include a delay in diagnosis and treatment, the severity of the initial infection, incomplete recovery at 4-months post-treatment, and a history of relapse (15, 21, 22, 25, 26).

While mounting scientific evidence in the last decade points to potential persistence of the bacterium *Borrelia* after antibiotic treatment, *in vitro* and *in vivo* (27–32), there exists ongoing confusion and controversy in the literature around PTLDS symptoms, including their etiology and management. The benefits of additional antibiotic therapy for PTLDS have been debated. Significant gains in certain domains have been reported in open label prospective studies utilizing extended antibiotic courses (33, 34), as well as two of the four randomized controlled trials of regimens containing intravenous ceftriaxone (20, 35–37); however, the authors of both randomized controlled trials that found gains in select domains with intravenous ceftriaxone therapy ultimately concluded that their studies did not support general use of IV ceftriaxone for PTLDS (35, 36). Although statistically significant improvements were seen in certain domains, their conclusions were based on risks of treatment as well as—in one trial—the lack of sustained benefit in cognitive improvement after completion of therapy (36), or—in the other—the benefit being limited to sustained improvement in a single domain, fatigue, which despite being a primary outcome measure, was deemed a “nonspecific” symptom (35). Issues surrounding the design of the randomized controlled trials and interpretation of their results have been debated (38–40). Importantly, studies to date have not led to comprehensive consensus guidelines for diagnosis and management of PTLDS. This underscores the need to more fully characterize its varied symptoms with the aim of better understanding potential underlying mechanisms which, in turn, can help inform management decisions.

While continuous or remitting fatigue, musculoskeletal pain, and/or cognitive difficulties are predominant, patients with persistent symptoms following LB treatment frequently report a variety of other symptoms including poor sleep, depression, visual disturbance, and sensory neuropathies that can be similarly burdensome and may affect fitness and function (41, 42). The cause of these persistent symptoms is not known, although...
several mechanisms have been proposed, including the direct neurotoxic effects of the spirochete, neuroinflammation, or autoimmunity (4, 43–48).

A symptom cluster is defined as a group of two or more symptoms that co-occur and are interrelated (49). The identification of symptom clusters has been used extensively in chronic conditions, including cancer (50, 51), inflammatory bowel disease (52), chronic obstructive pulmonary disease (53), and multiple sclerosis (54), in which symptoms seldom occur individually. Identifying the interrelationship between symptoms in a cluster can aid in more effective symptom management. For instance, symptoms may cluster together through a shared etiology such as neuroinflammation (55) or because they share the same triggering symptom (56). Identifying symptom clusters in individuals who report persistent symptoms following treatment for LB who could aid in more effective symptom management through identifying triggering symptoms or an underlying etiology. The purpose of this study was to identify symptom clusters in individuals with persistent symptoms following treatment for LB and to examine the relationship between symptom severity and perceived disability in this population.

MATERIALS AND METHODS

Cases
A retrospective chart review was conducted to examine symptoms and disability in individuals with a history of treatment for LB who were referred to The Dean Center for Tick-Borne Illness at Spaulding Rehabilitation Hospital in Boston. At the Dean Center, all patients completed symptom and disability surveys, which were incorporated into their medical chart. In addition, all patients underwent a complete blood count (CBC) and chemistry, tests of kidney, liver, thyroid function, and HgBAlc to rule out disorders that could mimic post-treatment Lyme borreliosis symptomatology (i.e., hypothyroidism, anemia, diabetes, etc.). Patients had serological testing for co-infections that are known or postulated to be tick-borne (i.e., Babesia, Anaplasama, Ehrlichia, Rickettsia, and Bartonella), either through their referring physician or at our center, and those with evidence of infection were treated according to established clinical protocols. The analysis of co-infection data have been omitted from this report and will be the subject of a separate study. Between 2015 and 2018, two-hundred and seventy adults (≥18 years) were identified by medical chart review. The Institutional Review Board approved this retrospective chart review, and data was de-identified prior to analysis. Responsible Conduct of Research (National Institutes of Health; Massachusetts General Hospital) and the Health Insurance Portability and Accountability Act of 1996 Privacy Rule were observed.

Self-Report Symptoms and Functional Impairment
At the time of the first clinic encounter, each patient completed the 30-item General Symptom Questionnaire-30 (GSQ-30) which assesses symptom burden over the past 2 weeks (57) on a 0 to 4 scale where 0 = not at all, 1 = a little bit, 2 = somewhat, 3 = quite a bit, and 4 = very much. Patients also indicated whether any of the symptoms impaired their work, social, or family functioning, and if yes, which symptom was the most impairing. The GSQ-30 has shown excellent validity and internal consistency (57). The Sheehan Disability Scale (SDS) was also administered at the same time. The SDS is a widely used assessment of function in three domains: work/school, social life/leisure activities, and family life/home responsibilities (58). Each domain is scored using a 0–10 scale where 0 = not at all and 10 = extremely. The three domains are summed into a single-dimensional measure of global functional impairment with a range from 0 (no impairment) to 30 (highly impaired).

Statistical Analyses
All statistical analyses were performed using IBM SPSS version 24.0 (IBM) and R version 3.6.1. Descriptive statistics and frequency distributions were calculated for demographic and clinical characteristics. We used the standard Cronbachs α coefficient to determine reliability. We used exploratory factor analysis (EFA) with principal axis factoring to identify factors or “symptom clusters.” The key concept of EFA is that multiple items on the GSQ have similar patterns of responses across individuals because they are all associated with a latent (i.e., not directly measured) variable. Principal axis factoring with oblique rotation (Varimax) was used as the factor model with squared multiple correlations used to establish communalities. The Kaiser-Meyer-Olkin test, a measure of how suited our dataset was for EFA, verified the sampling adequacy for the analysis; KMO = 0.922. The number of factors was determined using a scree plot and the total percentage of variance explained by each factor with an eigenvalue greater than the average eigenvalue. A factor loading ≥0.4 was used to identify significant factors, with at least two items loaded in each cluster (59). As symptoms are complex and could be cross-loaded on more than one factor, the decision to retain the symptom on one factor was based on the significance of the loading and the conceptual and clinical relevance of the symptom. Each factor or symptom cluster was assigned a name to reflect the possible underlying etiology. Three items were removed from the EFA due to insufficient variation in the occurrence of these symptoms: shortness of breath, feeling feverish, and sweats, and/or chills.

RESULTS
Two-hundred and seventy adult cases were identified, of which 67.8% were female, with a mean age of 49 ± 14.8 years (Range 18–88) and 16.1 ± 1.4 years of education. For employment status, 12.7% were on disability or unemployed, 8.5% were retired, 6.8% were students, 2.5% were homemakers, and 69.6% were employed. The mean time since LB diagnosis and treatment was 10 ± 8.2 years (Range 1–43 years, median = 8 years).

Table 1 shows the mean symptom severity scores and symptom rankings based on responses to each of the 30 questions on the GSQ-30. Potential scores ranged from 0 (Not at all) to 4 (Very much). The mean symptom severity score range for the total study population was 0.7 ± 1.1 for “feeling feverish” to
TABLE 1 | Symptom severity and impairment scores.

Symptom	Rank	Severitya	Impairedb	
	Mean	SD	%	
Feeling fatigued or having low energy	1	2.9	1.3	20
Muscle aches and pains	2	2.5	1.3	7.9
Not feeling rested upon wakening	3	2.5	1.5	1.4
Trouble with memory	4	2.4	1.3	6.0
Feeling worse after normal physical exertion	5	2.4	1.5	2.3
Slower speed of thinking	6	2.4	1.4	10.2
Trouble finding words or retrieving names	7	2.3	1.4	4.7
Needing more sleep than usual	8	2.2	1.5	1.4
Trouble falling or staying asleep	9	2.2	1.5	2.3
Joint pain or swelling	10	2.2	1.5	6.5
Stiff or painful neck	11	2.1	1.5	1.9
Muscle weakness	12	2.1	1.4	2.8
Back pain	13	2.1	1.5	6.0
Numbness or tingling	14	1.9	1.5	0.9
Headaches	15	1.9	1.4	5.1
Feeling irritable, sad, or decreased pleasure	16	1.9	1.4	2.8
Feeling panicky, anxious, or worried	17	1.8	1.5	3.7
Shooting, stabbing or burning pains	18	1.8	1.5	0.9
Change in visual clarity or trouble focusing	19	1.8	1.5	0.9
Discomfort with normal light or sound	20	1.7	1.5	2.3
Balance problems or sense of room spinning	21	1.7	1.5	2.3
Skin or muscle twitching	22	1.6	1.5	0.9
Hot or cold sensations in extremities	23	1.6	1.5	0.5
Light headed or uncomfortable on standing	24	1.6	1.4	0.5
Sweats and/or chills	25	1.4	1.3	1.9
Bladder discomfort or change in urination	26	1.2	1.4	-
Irregular or rapid heart beats	27	1.1	1.3	0.9
Nausea and/or vomiting	28	1.1	1.3	1.4
Shortness of breath	29	1.0	1.1	1.4
Feeling feverish	30	0.7	1.1	-

SD is standard deviation.
aPatients were asked how much they had been bothered by each of the symptoms listed during the past 2 weeks.
bSymptom severity: 0 = not at all, 1 = a little bit, 2 = somewhat, 3 = quite a bit, 4 = very much.
c% of total respondents (N = 215) who identified symptom as most impairing on work, social, or family functioning.

2.9 ± 1.3 for “feeling fatigued or having low energy.” Over 80% (n = 220) of patients reported “yes” when asked whether any of the symptoms impaired work, social or family function. The top five symptoms identified as the greatest cause of impaired work, social, or family function, making up over 50% of respondents, were feeling fatigued or having low energy, slower speed of thinking, muscle aches or pains, joint pain or swelling, and trouble with memory (Table 1).

Figure 1 shows results from the exploratory factor analysis for responses on the GSQ-30 symptom survey in all patients. The six items in factor 1 (balance problems, discomfort with normal light and sound, nausea and/or vomiting, etc.) were called the migraine-like symptom cluster. The six items in factor 2 (feeling fatigued or having low energy, needing more sleep than usual, etc.) were called the sleep-fatigue symptom cluster. The eight symptoms in Factor 3 (i.e., muscle aches and pain, numbness and tingling, shooting, stabbing and burning pains, etc.) were called the neuropathy symptom cluster. The three symptoms in factor 4- trouble with memory, slower speed of thinking, and trouble finding words or retrieving names- were called the cognitive symptom cluster. Finally, the two items in factor 5, feeling panicky, anxious, or worried and feeling irritable, sad, or decreased pleasure, were called the mood symptom cluster.

Figure 2 shows the percentage of patients who reported being bothered by symptoms in each of the five symptom clusters ranging from “not at all” to “very much.” Approximately 45% of patients reported that they were troubled quite a bit or very much by fatigue or cognitive difficulties. Mood symptoms were the next most troubling, with approximately 30% of patients reporting that they were bothered quite a bit or very much by these symptoms. Although migraine-like and neuropathic symptoms were the least troublesome, they were still troubling for approximately 20% of patients.

SDS data was available for 220 patients. Mean scores on the SDS work/school, social life/leisure activities, and family life/home responsibilities domains were 5.7 ± 3.5, 6.5 ± 3.0, and 6.2 ± 3.1, respectively. The mean Global Functional Impairment score was 18.2 ± 8.9. Increasing symptom severity for each symptom cluster was linearly associated with greater global disability (p < 0.001, Table 2). Functional impairment increased when the severity of fatigue, cognitive, mood, and migraine-like symptoms increased from moderate to severe, and when neuropathy symptoms increased from mild to moderate (Figure 3).

DISCUSSION

This is the first study to examine symptom clusters in a large cohort of individuals with persistent symptoms following treatment for Lyme borreliosis. The identification of symptom clusters may help us to identify mechanisms, and allow us to correlate clusters to specific infectious agents. We identified five symptom clusters, which we named the neuropathy, sleep-fatigue, migraine-like, cognitive, and mood symptom clusters. The sleep-fatigue symptom cluster included three items related to sleep quality: needing more sleep than usual, not feeling rested upon awakening, and trouble falling or staying asleep. Prior studies have reported poorer sleep in individuals with

Symptom cluster	β Coefficient (95% CI)
Neuropathy	0.46 (2.59–4.36)*
Fatigue-Sleep	0.57 (3.43–5.05)*
Migraine-like	0.54 (3.43–5.22)*
Cognition	0.44 (2.10–3.68)*
Mood	0.44 (2.28–3.73)*

*p < 0.001.
PTLDS compared to healthy controls (41, 60, 61), and self-reported fatigue and perceived poor sleep quality frequently co-occur in other chronic conditions, including cancer (62), diabetes (60, 63), and chronic fatigue syndrome (64). While there are frequent reports of sleep disruption in LB, only one study has examined both patient-reported and objectively measured sleep outcomes in this population. Greenberg et al. compared self-reported and polysomnographic assessment of sleep quality in LB patients and in matched healthy controls (65). Compared to healthy controls, LB patients reported greater difficulty falling asleep, more restless sleep, and increased daytime sleepiness (65). Objective sleep assessment revealed an increase in onset latency (time to fall asleep), decreased sleep efficiency (time in actual sleep divided by time attempting to sleep), and higher frequency of awakenings (65). Poor sleep quality could be the triggering symptom in this cluster since...
inadequate sleep would likely increase fatigue. Alternatively, individuals with high levels of fatigue, in particular, daytime sleepiness, could resort to daytime napping, which, in turn, could lead to fragmented and non-refreshing sleep at night. Further characterization of sleep deficits in people with persistent symptoms post LB are needed to develop strategies aimed at improving sleep and possibly fatigue in LB patients with documented sleep deficits.

The majority of the symptoms in the neuropathy symptom cluster were related to musculoskeletal pain and weakness, paresthesia, and hot and cold sensation in the extremities, symptoms common in small fiber neuropathy (SFN). In a recent study, Novak et al. examined SFN in individuals with persistent LB symptoms and found abnormal epidermal nerve fiber density (ENFD) in 90%, abnormal sweat gland nerve fiber density (SGNFD) in 50%, and both ENFD and SGNFD in 40% (42). Consistent with these sensorimotor deficits, many LB patients have been shown to have a reduced vibration threshold in their extremities. In the study by Rebman et al., approximately 30% of LB patients had scores below the age-adjusted cutoffs for vibration threshold in upper and lower extremities (41). Despite evidence of somatosensory deficits in the lower extremities, there have been no studies to date that have performed a detailed examination of gait and balance deficits in LB. Although the mechanism whereby LB causes SFN is not known, several mechanisms of neuronal injury have been proposed, including the direct neurotoxic effects of the spirochete, neuroinflammation, or autoimmunity (4, 43, 46, 48).

Neuroinflammatory processes may also underlie the symptoms found in the migraine symptom cluster, which included items related to visual disturbances, sensitivity to light or sound, balance problems, or being lightheaded or uncomfortable while standing. Indeed, we labeled this symptom cluster the migraine-like cluster because these symptoms are common in migraine. The overlap between migraine symptoms and those of post-treatment LB suggests that they may share a common mechanism. Migraine is a chronic neurological disorder that affects the central and peripheral nervous systems (66). Altered activity of the thalamic and thalamo-cortical areas contribute to aberrant sensory processing inherent in migraine, while MRI studies have demonstrated altered connectivity in a number of brain regions, including the cerebellum, hypothalamus, and brain stem (66). Recently the neurogenic inflammatory mediator calcitonin gene-related peptide (CGRP) has been implicated in the etiology of migraine...
significant differences in several cognitive tests including tests of verbal comprehension, attention, executive function, working memory, and processing speed between patients with a history of LB and healthy controls (78–82). Given the reported sensorimotor deficits in LB patients, testing performance on cognitive tasks with a concurrent motor task may be a better indicator of cognitive decline than performance on a cognitive task administered alone under laboratory conditions. Further work is needed to fully understand the scope of neurocognitive problems in LB patients and to identify neural pathways that contribute to these deficits.

Finally, the two items in the mood symptom cluster—feeling panicky, anxious, or worried and feeling irritable, sad, or having decreased pleasure—are common symptoms of anxiety and depression. Symptoms of irritability and depression have been documented in LB (83–89) although it is unclear whether these symptoms are of sufficient severity to meet criteria for clinical anxiety/depression (89). A prior population-based retrospective cohort study did not show increased rates of depression in individuals with a history of LB and persistent symptoms compared to those without symptoms (19).

There are several limitations to the current study, including its retrospective, cross-sectional design. Data used in the analyses were extracted from the medical record and therefore lacked consistently documented clinical and demographic information that would typically be collected in a prospective research study. Although all patients seen at the clinic had a history of treatment for LB and were referred because of lingering symptoms, their charts lacked several pieces of information needed to determine whether they met the criteria for a diagnosis of PTLDS. Future studies should include a detailed analysis of the infectious origins of symptoms in these patients (i.e., multiplex PCR analysis combined with serology), which would allow us to determine whether specific clusters correlate to a particular infectious organism, or allow differential diagnoses. Because only clinical data from the initial clinic visit was used to create the symptom clusters, the stability of these clusters over time is not known. Future studies are needed to identify shared or distinct mechanisms, including distinct infectious organisms, that underlie these symptom clusters, which will aid in the development of new treatment strategies.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Spaulding Rehabilitation Hospital Review Board. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.
AUTHOR CONTRIBUTIONS

NZ, CM, EB, and LW had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. LW and EB conducted the statistical analyses. LW and NZ take responsibility for the study's concept and design. LW, NZ, CM, and EB participated in the drafting of the manuscript. NZ and DC obtained funding. QW and RO provided administrative, technical, or material support. All authors contributed to the acquisition, analysis or interpretation of the data and all contributed to critical revision of the manuscript for important intellectual content.

REFERENCES

1. Mead PS. Epidemiology of Lyme disease. Infect Dis Clin North Am. (2015) 29:187–210. doi: 10.1016/j.idc.2015.02.011
2. Steere AC, Stele F, Wormser GP, Hu LT, Branda JA, Hovius JW, et al. Lyme borreliosis. Nat Rev Dis Primers. (2016) 2:16090. doi: 10.1038/nrdp.2016.99
3. Hinckley AF, Connally NR, Meek JL, Johnson BJ, Kemperman MM, Feldman KA, et al. Lyme disease testing by large commercial laboratories in the United States. Clin Infect Dis. (2014) 59:676–81. doi: 10.1093/cid/ciu397
4. Rupprecht TA, Koedel U, Fingerle V, Pfister HW. The pathogenesis of Lyme neuroborreliosis: from infection to inflammation. Mol Med. (2008) 14:205–12. doi: 10.2119/2007-00091.Rupprecht
5. Johnson KO, Nelder MP, Russell C, Li Y, Badiani T, Sander B, et al. Clinical trial of prophylaxis in the prevention of Lyme borreliosis in children with Lyme disease. Pediatr. (1995) 96:1053–6.
6. Berger BW. Dermatologic manifestations of Lyme disease. Rev Infect Dis. (1989) 11(Suppl. 6):S1475–81. doi: 10.1093/clinids/11.Supplement_6.S1475
7. Bingham PM, Galetta SL, Athreya B, Sladky J. Neurologic manifestations in children with Lyme disease. Pediatr. (1993) 96:1053–6.
8. Aucott JN, Seifter A. Misdiagnosis of early Lyme disease as the summer flu. Ann Intern Med. (1996) 124:125–6. doi: 10.7326/0003-4819-124-11-199606070-00019
9. Rupprecht TA, Koedel U, Fingerle V, Pfister HW. The pathogenesis of Lyme neuroborreliosis: from infection to inflammation. Mol Med. (2008) 14:205–12. doi: 10.2119/2007-00091.Rupprecht
10. Luft BJ, Steinlin M, Regenyi M, Roulet-Perez E, Weber P, Fluss M, et al. Invasion of the central nervous system by Borrelia burgdorferi in a patient with Lyme borreliosis. J Neurol. (1992) 267:1364–7. doi: 10.1001/jama.1992.03481001007033
11. Pachner AR, Steere AC. CNS manifestations of third-stage Lyme disease. Zentralbl Bakteriol Mikrobiol Hyg A. (1986) 263:301–6. doi: 10.1007/S00176-724(87)00801-0
12. Back T, Grunig S, Winter Y, Bodechtel U, Guthke K, Khati F, et al. Neuroborreliosis-associated cerebral vasculitis: long-term outcome and health-related quality of life. J Neurol. (2013) 260:1569–75. doi: 10.1007/s00415-013-6831-4
13. Monteventi O, Steinlin M, Regenyi M, Roulet-Perez E, Weber P, Fluss M, et al. Pediatric stroke related to Lyme neuroborreliosis: data from the Swiss neuropediatric stroke registry and literature review. Eur J Paediatr Neurol. (2018) 22:113–21. doi: 10.1016/j.ejpn.2017.10.010
14. Pearson S. On the radar: Lyme neuroborreliosis, an infectious cause of cerebral vasculitis. QJM. (2015) 108:755. doi: 10.1093/qjmed/hcv043
15. Shadick NA, Phillips CB, Logigian EL, Steere AC, Kaplan RF, Berard V, et al. The long-term clinical outcomes of Lyme disease: a population-based retrospective cohort study. Ann Intern Med. (1994) 121:560–7. doi: 10.7326/0003-4819-121-9-199410150-00002
16. Wittwer B, Pelletier S, Ducrocq X, Maillard L, Mione G, Richard S. Cerebrovascular events in Lyme neuroborreliosis. J Stroke Cerebrovasc Dis. (2015) 24:1671–8. doi: 10.1016/j.jstrokecerebrovasdis.2015.03.056
17. Logigian EL, Kaplan RF, Steere AC. Chronic neurologic manifestations of Lyme disease. N Engl J Med. (1990) 323:1438–44. doi: 10.1056/NEJM199011223232102
18. Dersch R, Sommer H, Rauer S, Meerpohl JJ. Prevalence and spectrum of residual symptoms in Lyme neuroborreliosis after pharmacological treatment: a systematic review. J Neurol. (2016) 263:17–24. doi: 10.1007/s00415-015-7923-0
19. Shadick NA, Phillips CB, Sangha O, Logigian EL, Kaplan RF, Wright EA, et al. Musculoskeletal and neurologic outcomes in patients with previously treated Lyme disease. Ann Intern Med. (1999) 131:919–26. doi: 10.7326/0003-4819-131-12-19991220-00003
20. Klempner MS, Hu LT, Evans J, Schmid CH, Johnson GM, Trevino RP, et al. Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N Engl J Med. (2001) 345:85–92. doi: 10.1056/NEJM2001071223450202
21. Nowakowski J, Nadelman RB, Sell R, McKenna D, Cavaliere LF, Holmgren D, et al. Long-term follow-up of patients with culture-confirmed Lyme disease. Am J Med. (2003) 115:91–6. doi: 10.1016/S0002-9343(03)00308-5
22. Asch ES, Bujak DJ, Weiss M, Peterson MG, Weinstein A. Lyme disease: an infectious and postinfectious syndrome. J Rheumatol. (1994) 21:454–61.
23. Aucott JN, Relman AW, Crowder LA, Kortte KB. Post-treatment Lyme disease syndrome symptomatology and the impact on life functioning: is there something here? Qual Life Res. (2013) 22:75–84. doi: 10.1007/s11136-012-0126-6
24. Wormser GP, Dattwyler RJ, Shapiro ED, Finkel MF, et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. (2006) 43:1089–134. doi: 10.1086/508667
25. Kalish RA, Kaplan RF, Taylor E, Jones-Woodward L, Workman K, Steere AC. Evaluation of study patients with Lyme disease, 10-20-year follow-up. J Infect Dis. (2003) 183:453–60. doi: 10.1086/318082
26. Eikeland R, Mygland A, Hasenkampf NR, Jacobs MB, Tardo AC, Meyers LA, Philipp MT, et al. Variable manifestations, diverse pathogenicity and drug-tolerant persister cells. Antimicrob Agents Chemother. (2015) 59:4619–24. doi: 10.1128/AAC.00864-15
27. Embers ME, Hasenkampf NR, Jacobs MB, Tardo AC, Doyle-Meyers LA, Philipp MT, et al. Variable manifestations, diverse pathogenicity and post-treatment persistence in non-human primates exposed to borrelia burgdorferi by tick feeding. PLoS ONE. (2017) 12:0189071. doi: 10.1371/journal.pone.0189071
28. Crossland NA, Alvarez X, Embers ME. Late disseminated Lyme disease: associated pathology and spirochete persistence posttreatment in rhesus macaques. Am J Pathol. (2018) 188:672–82. doi: 10.1016/j.ajpath.2017.11.005
29. Sharma B, Brown AV, Nalick N, Lewis K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob Agents Chemother. (2015) 59:4616–24. doi: 10.1128/AAC.00864-15
30. Embers ME, Barthold SW, Borda JT, Bowers L, Doyle L, Hodzic E, et al. Persistence of borrelia burgdorferi in rhesus macaques following...
68. Kee Z, Kodji X, Brain SD. The role of calcitonin gene related peptide (CGRP) in neurogenic vasodilation and its cardioprotective effects. *Front Physiol.* (2018) 9:1249. doi: 10.3389/fphys.2018.01249

69. Benemei S, Nicoletti P, Capone JG, Geppetti P. CGRP receptors in the control of pain and inflammation. *Curr Opin Pharmacol.* (2009) 9:9–14. doi: 10.1016/j.coph.2008.12.007

70. Geppetti P, Capone JG, Trevisani M, Nicoletti P, Zagli G, Tola MR. CGRP and migraine: neurogenic inflammation revisited. *J Headache Pain.* (2005) 6:61–70. doi: 10.1007/s10194-005-0153-6

71. Huang J, Stohl LL, Zhou X, Ding W, Granstein RD. Calcitonin gene-related peptide inhibits chemokine production by human dermal microvascular endothelial cells. *Brain Behav Immun.* (2011) 25:787–99. doi: 10.1016/j.bbi.2011.02.007

72. Goadsby PJ, Edvinsson L. Human in vivo evidence for trigeminovascular activation in cluster headache. *Neuropeptide changes and effects of acute attacks therapies. Brain.* (1994) 117 (Pt 3):427–34. doi: 10.1093/brain/117.3.427

73. Berende A, Agelink van Rentergem J, Evers AWM, Ter Hofstede HJM, Vos FJ, Kullberg BJ, et al. Cognitive impairments in patients with persistent symptoms attributed to Lyme disease. *BMC Infect Dis.* (2019) 19:833. doi: 10.1186/s12879-019-4452-y

74. Kaplan RF, Trevino RP, Johnson GM, Levy L, Dornbush RL, Hu LT, et al. Cognitive function in post-treatment Lyme disease: do additional antibiotics help? *Neurology.* (2003) 60:1916–22. doi: 10.1212/01.WNL.0000086030.26992.25

75. Touradjé P, Aucoct IN, Yang T, Rebmam AW, Rechtole KT. Cognitive decline in post-treatment Lyme disease syndrome. *Arch Clin Neuropsychol.* (2019) 34:455–65. doi: 10.1093/arcclin/acy051

76. Tager FA, Fallon BA, Keipel J, Rissenberg M, Jones CR, Liebowitz MR. A controlled study of cognitive deficits in children with chronic Lyme disease. *J Neuropsychiatry Clin Neurosci.* (2001) 13:500–7. doi: 10.1176/jnp.13.4.500

77. Keipel JG, Corbera K, Gorlyn M, Oquendo MA, Mann JJ, Fallon BA. Neurocognition in post-treatment Lyme disease and major depressive disorder. *Arch Clin Neuropsychol.* (2019) 34:466–80. doi: 10.1093/arcclin/acy083

78. Paul L, Ellis BM, Leese GP, McFadyen AK, McMurray B. The effect of a cognitive or motor task on gait parameters of diabetic patients, with and without neuropathy. *Diabet Med.* (2009) 26:234–9. doi: 10.1111/j.1464-5491.2008.02655.x

79. Wajda DA, Motl RW, Sosnoff JJ. Correlates of dual task cost of standing balance in individuals with multiple sclerosis. *Gait Posture.* (2014) 40:352–6. doi: 10.1016/j.gaitpost.2014.04.209

80. Wajda DA, Motl RW, Sosnoff JJ. Dual task cost of walking is related to fall risk in persons with multiple sclerosis. *J Neurol Sci.* (2013) 335:160–3. doi: 10.1016/j.jns.2013.09.021

81. Wang XQ, PiYL, Chen BL, Wang R, Li X, Chen PJ. Cognitive motor intervention for gait and balance in Parkinson’s disease: systematic review and meta-analysis. *Clin Rehabil.* (2016) 30:134–44. doi: 10.1177/0269215515607829

82. Wang XQ, PiYL, Chen BL, Chen PJ, Liu Y, Wang R, et al. Cognitive motor interference for gait and balance in stroke: a systematic review and meta-analysis. *Eur J Neurol.* (2015) 22:555–e37. doi: 10.1111/ejn.12616

83. Barr WB, Rastogi R, Ravdin L, Hilton E. Relations among indexes of memory disturbance and depression in patients with Lyme borreliosis. *Appl Neuropsychol.* (1999) 6:12–8. doi: 10.1207/s15324826an1601_2

84. Elkins LE, Pollina DA, Scheffer SR, Krupp LB. Psychological states and neuropsychological performances in chronic Lyme disease. *Appl Neuropsychol.* (1999) 6:19–26. doi: 10.1207/s15324826an1601_3

85. Fallon BA, Nields JA. Lyme disease: a neuropsychiatric illness. *Am J Psychiatry.* (1994) 151:1571–83. doi: 10.1176/ajp.151.11.1571

86. Hassett AL, Radvanski DC, Buyske S, Savage SV, Gara M, Escobar JJ, et al. Role of psychiatric comorbidity in chronic Lyme disease. *Arthritis Rheum.* (2008) 59:1742–9. doi: 10.1002/art.24314

87. Doshi S, Keipel JG, Strobino B, McElhiney M, Rabkin J, Fallon BA. Depressive symptoms and suicidal ideation among symptomatic patients with a history of Lyme disease vs two comparison groups. *Psychosomatics.* (2018) 59:481–9. doi: 10.1016/j.psym.2018.02.004

88. Kaplan RF, Meadows ME, Vincent LC, Logigian EL, Steere AC. Memory impairment and depression in patients with Lyme encephalopathy: comparison with fibromyalgia and nonpsychotically depressed patients. *Neurology.* (1992) 42:1263–7. doi: 10.1212/WNL.42.7.1263

89. Bujak DI, Weinstein A, Dornbush RL. Clinical and neurocognitive features of the post Lyme syndrome. *J Rheumatol.* (1996) 23:1392–7.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Zubcevik et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.