Mapping the journey of transition - A single center study of 170 childhood onset GH deficiency patients

Mirjana Doknic1,8, Marko Stojanovic1,8, Ivan Soldatovic6,8, Tatjana Milenkovic2, Vera Zdravkovic3,8, Maja Jesic3,8, Sladjana Todorovic2, Katarina Mitrovic2,8, Rade Vukovic2,8, Dragana Miljic1,8, Dragan Savic4, Mihajlo Milicevic4, Aleksandar Stanimirovic4, Vojislav Bogosavljevic4,8, Sandra Pekic1,8, Emilija Manojlovic-Gacic5,8, Aleksandar Djukic7, Danica Grujicic4,8, Milan Petakov1,8

1Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia
2Mother and Child Health Care Institute of Serbia “Dr Vukan Cupic”
3University Children’s Clinic, Belgrade
4Clinic for Neurosurgery, University Clinical Center of Serbia
5Institute of Pathology, Faculty of Medicine, University of Belgrade
6Institute of Medical Statistics and Informatics, Belgrade, Serbia.
7Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac
8Faculty of Medicine, University of Belgrade

Running Head: COGHD patients in transition period

Key words: COGHD, transition period, metabolism, body composition, bone mineral density

Word Count: 3523

Corresponding author:

Mirjana Doknic MD, PhD, Professor
Neuroendocrine Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia
Dr Subotica 13, Belgrade 11000, Serbia,
Tel: +381 63 8675537
Fax: +381 11 2685357
E-mail: mirjanadoknic@gmail.com

Funding: This study was supported by grant from the Ministry of Science of the Republic of Serbia (Grant No 175033)

Conflict of Interest: The authors declare that they have no conflict of interest.
Abstract

Objective: To analyze metabolic parameters, body composition (BC) and bone mineral density (BMD) in childhood onset GH deficiency (COGHD) patients during transition period (TP).

Design: Single center, retrospective study was performed on 170 consecutive COGHD patients (age 19.2±2.0 years, range 16-25) transferred after growth completion from two pediatric clinics to adult endocrine unit. Two separate analyses were performed: 1) cross-sectional analysis of hormonal status, metabolic parameters, BC and BMD at first evaluation after transfer from pediatrics to adult department; 2) longitudinal analysis of BC and BMD dynamics after 3 years of GH replacement therapy (rhGH) in TP.

Results: COGHD was of a congenital cause (CONG) in 50.6% subjects, tumor related (TUMC) in 23.5% and idiopathic (IDOP) in 25.9%. TUMC patients had increased insulin and lipids levels ($p<0.01$) and lower Z score at L-spine ($p< 0.05$) compared to CONG and IDOP groups. Patients treated with rhGH in childhood demonstrated lower fat mass and increased BMD compared to rhGH-untreated group ($p<0.01$). Three years of rhGH after growth completion resulted in significant increase in lean body mass (12.1%) and BMD at L-spine (6.9%), parallel with decrease in FM (5.2%).

Conclusion: The effect of rhGH in childhood is invaluable for metabolic status, BC and BMD in transition to adulthood. Tumor related COGHD subjects are at higher risk for metabolic abnormalities, alteration of body composition and decreased BMD, compared to those with COGHD of other causes. Continuation of rhGH in transition is important for improving BD and BMD in patients with persistent COGHD.
Introduction

Patients with childhood onset GH deficiency (COGHD) represent a heterogeneous group in terms of etiology of growth hormone deficiency (GHD), time of GHD onset and recombinant human GH (rhGH) replacement commencement, duration, length of gap in rhGH between pediatric and adult endocrine care or in comorbidities. Reported studies are inconsistent regarding the anthropometric characteristics, metabolic profile alteration, body composition (BC) deterioration, bone mineral density (BMD) impairment in different COGHD subgroups (1). Observations are particularly contradictory concerning BC and BMD in respect of the role of rhGH continuation in transition period (TP). Several studies have demonstrated improvement of these parameters, while some others have reported no change (2-4).

Almost all published studies related to COGHD in transition with sizable number of patients are multicentric. Monocentric studies on this topic involved a smaller number of subjects (5-8). We focused on investigating BC and BMD alterations in COGHD patients on rhGH during TP. Our framework consisted of assessment of hormonal and metabolic parameters, BC and BMD in different etiology-dependent subgroups of patients with COGHD, in relation to rhGH replacement in childhood and to the GHD persistence at retesting after growth completion. To our knowledge, this is the largest single center study addressing different aspects of COGHD patients and the effects of rhGH treatment during TP.

Patients and methods

We conducted a single center observational, retrospective study on 170 consecutive COGHD patients in TP transferred after growth completion from two pediatric clinics to adult endocrine care. The study was conducted at the Neuroendocrine Department at the Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia from December 2006 to March 2021. In this study two separate analyses were performed: 1) cross-sectional analysis of auxological data, etiology of
COGHD, start and duration of rhGH treatment in childhood, duration of rhGH pause after pediatric care termination, hormonal status, metabolic parameters, bone turnover markers, BC, BMD and associated comorbidities at first evaluation after transfer from pediatrics to adult endocrine care; 2) longitudinal analysis of BC and BMD alterations after 3 years of rhGH replacement in TP. Metabolic profile was assessed by analyzing fasting glycemia, fasting insulin, peak and AUC glycaemia and peak and AUC insulin in OGGT, HOMA index, HbA1c, lipid profile - total cholesterol, HDL, LDL and triglycerides. BMD at lumbar spine (BMD LS) and femoral neck (BMD FN) presented as BMD- \(\text{g/cm}^2 \) and Z score, and BC (percentage of fat-Fat\%, fat mass-FM, lean body mass-LBM, total bone mineral content- TBMC) were examined by dual-energy x-ray absorptiometry (DXA; Discovery W-QDR, Software Apex 2.3.2; Hologic Inc., Waltham, Mass., USA). Subjects were analyzed by comparison of following subgroups: i) according to etiology (congenital vs tumor related vs idiopathic COGHD); ii) COGHD treated in childhood with rhGH vs COGHD untreated with rhGH before TP; iii) persistent vs transient GHD group after retesting in TP.

At first evaluation upon transfer to adult care all enrolled patients were reassessed regarding GHD etiology and retested for GHD persistence. One or two tests were performed (insulin tolerance test - ITT and glucagon test) depending on the presence of isolated GHD or multiple pituitary hormone deficiency (MPHD) during childhood. Stimulated peak GH of less than 15 mU/l was considered confirmatory for GHD in both tests (9-11). Prior to retesting, rhGH therapy was discontinued for at least one month. Subjects with three or more pituitary hormones deficiencies were exempt from further testing of GH secretion. All patients who continued rhGH in transition were on adequate replacement for other hormonal deficiencies.

The study was approved by Ethical Committee of University Clinical Center of Serbia. Written consent has been obtained from each subject after full explanation of the purpose and nature of all procedures used.
Statistics

Results were presented as count (%), means ± standard deviation (range) or median (25th-75th Percentile) depending on data type and distribution. Groups were compared using parametric tests (t test, ANOVA). To assess correlation between variables Pearson and Spearman correlation were used. All p values less than 0.05 were considered significant. Integrated areas of serum glucose and insulin levels during OGTT (AUC\textsubscript{0-120min}) were calculated using the trapezoidal method. All data were analyzed using SPSS 20.0 (IBM Corp.).

Results

We enrolled 170 COGHD patients (mean age 19.2 ± 2.0 years, range 16-25), 123 males (72.4%) and 47 females (27.6%) referred by two pediatric centers to our adult neuroendocrine unit. Patients with pituitary and midline axial structural abnormalities or genetic syndromes were classified as congenital (CONG) COGHD accounting for more than half of all included patients (86/170; 50.6%), Figure 1. Patients with history of cranial tumor, hematological malignancies or pituitary TSH hyperplasia (non-tumoral TSH-cell hyperplasia occurring in primary hypothyroidism) were marked as tumoral cause (TUMC) of COGHD; TUMC included 40/170 patients, (23.5%). Patients with normal cranial/pituitary MRI and unknown cause were assigned to group of idiopathic (IDOP) COGHD which included 44/170 patients (25.9%). Detailed distribution according to the etiology of all 170 patients is presented in Table 1. In TUMC group cranial surgery was performed in 87.5% patients (35/40), while 40.0% (16/40) of TUMC subjects were treated with chemotherapy and 61.0% (25/40) received cranial radiotherapy. Concomitant comorbidities observed in the investigated COGHD cohort in TP are presented in Table 2.

Upon first assessment after transfer from pediatric care, isolated GHD was detected in 40/170 (23.5%) of patients. MPHD were detected in 88/170 (51.8%) (Table 3). Diabetes insipidus was observed in 21 patients (12.3%) - out of which 3 from the CONG group and remaining 18 from the TUMC group.
MPHD was confirmed in 80% (20/25) subjects treated with cranial irradiation and in 62.5% (10/16) treated with chemotherapy. After first evaluation of our patients thyroxine replacement was continued in 46.4%, hydrocortisone in 35.8%, testosterone in 36.5% of males and estradiol in 55.3% of females.

Growth hormone replacement

One hundred and forty-two patients (142/170; 83.5%) received rhGH during childhood for average duration of 6.7±3.7 years (range 2.5-17yrs). The mean age at the start of childhood rhGH was 10.7 ± 3.5 years (range 2-16). rhGH replacement was discontinued prior to transfer to adult care at an average age of 17.4 ± 1.8 (11-25) yrs. Duration of rhGH gap between pediatric and adult care evaluation was 1.7±2.4 yrs (range 0.1 -14 yrs) (Table 4). Majority of subjects had an interval without rhGH of 1 to 3 months before retesting in TP (88/142; 62.0%). Recovery of GH/IGF-I axis was confirmed in 28.2% of all patients in this cohort (40/142). The prevalence of GH/IGF-I axis recovery was greatest in the IDIOP subgroup (31/43; 72%). TUMC and CONG groups demonstrated significantly lower prevalence of transient GHD (3/28; 10.7% and 6/71; 8.4%, respectively). Patients with persistent COGHD had lower IGF-I than transient GHD group after cessation of rhGH at retesting in adult care unit (77.5 vs 373.5 ng/ml, p< 0.01). Beside etiology, the number of missing pituitary hormones was associated with persistency of GHD in transition (p <0.01). Of the 102 patients with persistent COGHD treated during childhood, 10 have declined the advice to continue rhGH and were subsequently lost to follow-up (Figure 1). In the remaining 92 patients rhGH was reintroduced at age 19.3 ± 2.0 yrs (15-25).

Twenty-eight patients (28/170;16.5%) were not treated with rhGH during childhood and 24 of them started with rhGH in TP at the average age of 18.8 ± 1.7 years (16-22 yrs). Thus, a total of 116 patients have been on rhGH in TP, receiving the average daily rhGH dose of 0.5±0.3 mg (Figure 1).

Glucose and lipids metabolism

Metabolic profiles of 142 patients rhGH-replaced in childhood were analyzed according to their COGHD etiology (Table 5). TUMC subjects had increased peak insulin and insulin-AUC in OGTT, total
cholesterol, LDL cholesterol and triglycerides, compared to CONG and IDOP groups (significant at 0.001 level), (Table 5).

Comparison of metabolic parameters in childhood-GH-treated and untreated patients revealed significantly higher fasting insulin, insulin peak, insulin AUC, and glucose AUC in OGTT, HOMA index and triglycerides (Table 4).

Subjects who recovered GH/IGF-I axis in transition (majority belonging to the IDOP group) demonstrated significantly higher fasting glucose (p=0.05), glucose peak and glucose AUC in OGTT (p<0.001), but lower total cholesterol and LDL cholesterol (p<0.001) compared to those with persistent GHD after growth completion (p<0.001) (Table 4). Insulin levels and HOMA index did not differ between persistent and transient GHD groups.

We found that the length of rhGH-treatment gap between pediatric and adult care (rho=-0.23; p=0.013) correlated negatively with HDL levels after transfer to adult care. Figure 2.

Body composition

BC analysis in 142 patients on rhGH in childhood revealed that body weight, BMI, and waist circumference were significantly increased in TUMC compared to CONG and IDOP groups (p<0.05). IDOP subjects had significantly higher LBM compared to CONG group (p<0.05) and lower Fat% and FM compared to TUMC and CONG group (p<0.01), Table 5.

Increased TBMC (p=0.05), lower Fat% (p=0.03) and tendency to LBM increase (p =0.08) were demonstrated in childhood-GH-treated compared to GH-untreated group (n=28), Table 4.

Patients who recovered GH/IGF-I axis were taller (p=0.01), with lower Fat% and FM compared to persistent GHD subjects (p<0.001), Table 4.

In search for predictors of BC outcomes we observed that final body height correlated significantly negatively with Fat% and positively with LBM and TBMC (data not shown). BMI was predictive of higher Fat%, FM, LBM and TBMC at first evaluation in adult endocrine unit (data not
shown). Number of missing pituitary hormones was associated with Fat% increase (rho= 0.49, p <0.001) and FM (rho= 0.41, p <0.001) of investigated COGHD patients. Duration of rhGH was positive predictor of Fat% (rho= 0.23; p=0.019) and FM (rho=0.26; p= 0.01).

Bone mass

Densitometric (DXA) analysis at first evaluation after transfer from pediatric care, on 142 COGHD patients treated with rhGH during childhood revealed BMD Z-scores of < -2 in 31.4% at lumbar spine (LS) and in 8% at the femoral neck level (FN). TUMC subjects had significantly lower Z-sc LS (p<0.05) and bone turnover markers compared to CONG and IDOP groups, Table 5.

By comparing patients receiving rhGH in childhood and those deprived of rhGH before TP (n=28) lower BMD LS, Z-sc LS and Z-sc FN were demonstrated in untreated group (p<0.01), Table 4. Subjects from the untreated group had Z-sc LS < -2 in 45.8% and Z-sc FN < -2 in 22.7% at first evaluation.

BMD at LS and FN did not differ statistically between transient and persistent COGHD patients (p =0.75 and p=0.31, respectively). However, osteocalcin (OC) and beta cross laps (BCL) levels were significantly higher in patients who have recovered GH/IGF-I axis (Table 4).

The final body height and BMI correlated significantly positively with BMD and Z-sc at LS and FN (data not shown). Duration of rhGH in pediatric age predicted higher bone mass according to BMD LS (rho =0.20, p =0.040), BMD FN (rho=0.19, p=0.053). Duration of pause in rhGH between pediatric and adult care did not predict values of bone parameters. However, age at rhGH treatment cessation before transfer to adult endocrine care correlated negatively with BMD LS and Z-sc LS (r= -0.18, p = 0.05; r= -0.19, p=0.03, respectively), Figure 3.

Changes in body composition and BMD during follow-up on rhGH in transition period

Out of 116 subjects on rhGH in TP, we evaluated BC and BMD in 40 (34.4%) of them (32 patients continuing rhGH and 8 patients starting rhGH in TP) after 3 years of treatment. Significant improvement in BC was observed, manifesting as Fat% decrease by 5.2% and LBM increase of 12.1% during three-year
follow-up (Table 6). Changes in bone mass indicated significant increment of BMD LS by 6.9%. BMD increment was additionally demonstrated by Z-sc LS and Z-sc FN improvement. (Table 6).

Of these 40 patients, we followed up 15 subjects after 6 years of rhGH in TP (some outgrowing 25 years as the end-age for transition period). We detected further trend of increase in LBM and BMD LS. Fat mass and Fat% did not change over this extended follow-up, but BMD FN had tendency of decreasing (data not shown).

Discussion

In this study we analyzed 170 patients with COGHD recruited over the last 15 years and referred to single adult neuroendocrine unit from two pediatric centers after completion of linear growth. More than a half of enrolled patients had congenital etiology of GHD, while tumor caused and idiopathic COGHD were represented about one-fourth each. The observed distribution is in agreement with results of our earlier study relating to the etiology of hypopituitarism in Serbia (12). In monocentric French study on 112 COGHD patients in transition, acquired GHD was recorded in 56% of subjects, congenital in 33% and idiopathic in 11% (6). In KIMS database study involving 314 young adult COGHD patients, the most common single cause of GHD was idiopathic (in 33%) followed by craniopharyngioma (in 20%) (13). A Scottish multicentric study focusing on management of COGHD in 130 young adults, structural abnormalities were detected in 30%, tumor related COGHD in 40% while GHD cause was unknown in 11%. (5).

Cranial tumor and ALL were behind COGHD in 23.5% of patients in our study. Cranial surgery and/or radiotherapy, experienced by majority of these patients, made them prone to develop hypothalamic damage presenting as a higher prevalence of MPH and metabolic deterioration. We demonstrated that TUMC had notably more pituitary hormone deficits and higher incidence of diabetes insipidus compared to other two etiological groups. Subjects belonging to TUMC demonstrated worse
metabolic outcomes according to higher values insulin in OGTT and worse lipid profile than CONG and IDIOP groups. They had increased Fat% and FM compared to IDIOP, but similar to CONG group. Most numerous patients in the TUMC group were those treated for craniopharyngioma in childhood. Yuen et al. analyzed 260 adults with COGHD caused by craniopharyngioma and showed that they had higher prevalence MPH and greater BC alterations but comparable fasting glucose, HbA1c, cholesterol levels as the patients with other causes of COGHD (14). Subjects with history of medulloblastoma tend to develop MPH dependent on the received craniospinal radiation dose (15). Metabolic syndrome was reported in 23% as a late effect in childhood ALL survivors treated with cranial irradiation (16). Our tumor related group included 5 patients who experienced medulloblastoma and 2 subjects who underwent chemotherapy and cranial irradiation due to ALL. These underlying diseases probably contributed to the poorer metabolic profile of this group. Hoybye et al. observed that patients with organic pituitary disease are commonly overweight with adverse lipid profile (17). Survivors of childhood brain tumor are recognized as a high-risk population for decreased BMD due to the neoplasia itself, treatments and their sequelae, hypopituitarism, malnutrition, and lifestyle - all likely to negatively affect bone metabolism (18). Results of our study support this, as TUMC patients had lower Z-sc LS and bone turnover compared to two other etiology-dependent groups. We enrolled 4 patients with history of intracranial germinoma, who contributed the reduced BMD in TUMC group. Low BMD was reported as prevalent in patients with a history of intracranial germinoma (19, 20).

Comparison of COGHD patients treated with rhGH in childhood (before age of 16, for at least 2.5 years) with those deprived of rhGH demonstrated worse metabolic profile in untreated group regarding adverse lipid profile and higher insulin resistance. Benefits of rhGH in childhood were manifested by increased TBMC, BMD LS, Z-sc LS and Z-sc FN, tendency to increased LBM and parallel Fat% reduction in TP. Upon reaching the final height, approximately 20% of GHD children treated with rhGH had a BMD LS between -1 and -2SD of the normal mean (21). Kaufman et al. indicated that COGHD presents with a
low bone mass despite prior rhGH in childhood (22). Cohen et al. analyzed BMD in 36 post-pubertal adolescents with cranial tumor related COGHD on rhGH in childhood had a higher BMD Z sc LS and Z-sc FN than untreated subjects (18). Similarly, we detected Z-sc LS < -2 in 31.4% patients adequately replaced with rhGH in childhood, contrary to 45.8% in GH-untreated COGHD group. We observed that longer duration of rhGH replacement correlated positively with BMD in both investigated skeletal sites. On the other hand, older age at rhGH cessation before transfer to adult endocrine care was associated with lower BMD LS and Z-sc LS. Tritos et al. showed that a longer gap between pediatric and adult age rhGH replacement was negatively associated with BMD at FN in adults (13). Conversely, we did not find any influence of duration of interval between stopping and recommencement of rhGH on bone parameters. However, we detected a negative correlation of the length of that interval (1.7 years) with HDL levels in transition. The similar was observed in the KIMS study in which the duration of rhGH discontinuation between childhood and adulthood (4.4 years) was associated with significantly more detrimental lipid profiles (23).

Clinical studies of bone density in COGHD adolescents reported conflicting findings related to the effect of continuation of rhGH after final height achievement (24, 25). Our results demonstrated significant increase of BMD LS (6.9%), Z-sc LS and Z-sc FN in 40 COGHD subjects on rhGH treatment after 3 years during TP. Also, other studies have confirmed that continuation of rhGH is associated with increasing of BMD LS by 2% to 6% after 1-2 years of follow-up (2, 3, 7, 26). In addition, study of Hyldstrup et al. showed that 24 months of continuation of rhGH after achievement of final height in young COGHD adults resulted in increased cortical bone thickness (27). However, some studies observed no change in BMD after 6-24 months of rhGH discontinuation after growth completion compared to control subjects (4, 28, 29). Many factors such as gender, height, age at onset, body composition, gonadal status or GHD severity may contribute to conflicting data on bone mass in patients with COGHD (25).
Similar to the contradictory reports related to bone mass, there are inconsistent findings on the effect of continuing rhGH on body composition in TP. Our study showed the favorable effect of the resumption of rhGH in 40 COGHD subjects after 3 years in TP. We observed significant decrease of Fat% (5.2%) and increase of LBM (12.1%). In accordance to our results, other studies demonstrated that recommencement of rhGH in TP with duration of 1-2 years manifested a significant LBM increase (6-14%) and FM reduction (7-12%). Discontinuation of rhGH treatment for 6-24 months in COGHD adolescents after final height achievement resulted in FM increase (10-17%) and LBM decrease by up to 8% (3, 8, 30-35). By contrast, a few studies reported no difference in BC parameters after 6-24 months period off rhGH after growth completion (4, 36). At first evaluation after transfer from pediatric care we showed that final body height correlated negatively with Fat% and positively with LBM and TBMC. However, BMI was predictive of not only higher Fat% and FM, but increased LBM and TBMC. In addition, number of missing pituitary hormones was associated with higher Fat% and FM.

Previous studies reported prevalence of persistent GHD upon retesting in adulthood ranging from 52 to 94% (5, 6, 37). After retesting we detected 28.2% of patients who recovered GH/IGF-I axis and showed that predictors of persistent GHD included tumor etiology and number of missing pituitary hormones, similarly as reported previously (13). Quigley et al. reported that in idiopathic GHD patients the best predictor of persistent GHD is IGF-I below -5.3 SD measured after 6 weeks from rhGH termination (38). In line with that, our transient-GHD group had significantly higher IGF-I compared to persistent-GHD subjects at retesting. In accordance to reports of Bechtold et al., we detected better BC in transient GHD compared to those with persistent GHD (39). However, their fasting glucose, peak and AUC glucose in OGTT were higher than in persistent GHD. Observed glucose impairments could have a possible explanation in predominant origin of these subjects in idiopathic COGHD. Early retesting in idiopathic GHD children before TP was reported to reveal complete GH-secretion normalization in 84%
These patients may experience endogenous GH normalization by the time adult height is achieved and possible over-treatment with prolonged rhGH leading to risk of glucose metabolism impairment.

The advantages of this comprehensive study are a large number of enrolled patients who have been evaluated at the same adult department after transfer from two pediatric centers which resulted in uniform recruitment and evaluation protocol, thus presenting well organized “transition unit care” (41). The limitation of our study may lay in focusing the follow up of BMD to the patients with worse baseline values at first evaluation possibly creating some bias in obtained results. Reaching the accepted cut-off response of GH excludes severe GHD, but not a possible lesser degree of GH deficiency. This is an inherent limitation of every assessment of GH-secretion by stimulation tests, and a possible source of discrepancies between different studies, in addition to occasional divergence in selected cut-off points.

In conclusion, the effect of growth hormone replacement in childhood is invaluable for metabolism, body composition and skeletal system during transition period. Patients with COGHD caused by a cranial tumor are at greatest risk for metabolic abnormalities, altered body composition and lower BMD. Continuation of rhGH in transition is important for improving body composition and increasing bone mass in patient with persistent GHD.
References:

1. Fideleff HL, Jonsson B, Koltowska-Häggström M, Boguszewski MC, Wilton P & Boquete HR. GH deficiency during the transition period: clinical characteristics before and after GH replacement therapy in two different subgroups of patients. Journal of Pediatric Endocrinology and Metabolism 2012 25 97-105. (doi: 10.1515/jpem.2011.349)

2. Drake WM, Carroll PV, Maher KT, Metcalfe KA, Camacho-Hübner C, Shaw NJ, Dunger DB, Cheetham TD, Savage MO & Monson JP. The effect of cessation of growth hormone (GH) therapy on bone mineral accretion in GH-deficient adolescents at the completion of linear growth Journal of Clinical Endocrinology and Metabolism 2003 88 1658-63. (doi: 10.1210/jc.2002-021541)

3. Underwood LE, Attie KM, Baptista J & Genentech Collaborative Study Group Growth hormone (GH) dose-response in young adults with childhood-onset GH deficiency: a two-year, multicenter, multiple-dose, placebo-controlled study. Journal of Clinical Endocrinology and Metabolism 2003 88 5273-80. (doi: 10.1210/jc.2003-030204)

4. Mauras N, Pescovitz OH, Allada V, Messig M, Wajnrajch MP, Lippe B & Transition Study Group. Limited efficacy of growth hormone (GH) during transition of GH-deficient patients from adolescence to adulthood: a phase III multicenter, double-blind, randomized two-year trial. Journal of Clinical Endocrinology and Metabolism 2005 90 :3946-55. (doi: 10.1210/jc.2005-0208)

5. Ahmad M, Fisher V, Graveling AJ, McGeoch S, McNeil E, Roach J, Bevan JS, Bath L, Donaldson M, Leese G, Mason A, Perry CG, Zammitt NN, Ahmed SF & Shaikh MG. An audit of the management of childhood-onset growth hormone deficiency during young adulthood in Scotland. International Journal of Pediatric Endocrinology 2016 2016 6. (doi: 10.1186/s13633-016-0024-8)

6. Courtillot C, Baudoin R, Du Souich T, Saatdjian L, Tejedor I, Pinto G, Léger J, Polak M, Golmard JL, Touraine P & Transition GHD Group. Monocentric study of 112 consecutive patients with childhood onset GH deficiency around and after transition. European Journal of Endocrinology. 2013 169 587-96. (doi: 10.1530/EJE-13-0572)
7. Conway GS, Szarras-Czapnik M, Racz K, Keller A, Chanson P, Tauber M, Zacharin M & 1369 GHD to GHDA Transition Study Group. Treatment for 24 months with recombinant human GH has a beneficial effect on bone mineral density in young adults with childhood-onset GH deficiency European Journal of Endocrinology 2009 160 899-907. (doi: 10.1530/EJE-08-0436)

8. Johannsson G, Albertsson-Wikland K & Bengtsson BA. Discontinuation of growth hormone (GH) treatment: metabolic effects in GH-deficient and GH-sufficient adolescent patients compared with control subjects. Scandinavian Study Group for Growth Hormone Treatment in Children. Journal of Clinical Endocrinology and Metabolism 1999 84 4516-24. (doi: 10.1210/jcem.84.12.6176)

9. Clayton PE, Cuneo RC, Juul A, Monson JP, Shalet SM, Tauber M & European Society of Paediatric Endocrinology Consensus statement on the management of the GH-treated adolescent in the transition to adult care. European Journal of Endocrinology 2005 152 165-70. (doi: 10.1530/eje.1.01829)

10. Yuen KCJ, Biller BMK, Radovick S, Carmichael JD, Jasim S, Pantalone KM & Hoffman AR. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF GROWTH HORMONE DEFICIENCY IN ADULTS AND PATIENTS TRANSITIONING FROM PEDIATRIC TO ADULT CARE. Endocrine Practice 2019 25 1191-1232. (doi: 10.4158/GL-2019-0405)

11. Inzaghi E, Cianfarani S The Challenge of Growth Hormone Deficiency Diagnosis and Treatment during the Transition from Puberty into Adulthood. Frontiers in Endocrinology (Lausanne). 2013 4 34. doi: 10.3389/fendo.2013.00034.

12. Doknić M, Pekić S, Miljić D, Soldatović I, Popović V, Stojanović M & Petakov M. Etiology of Hypopituitarism in Adult Patients: The Experience of a Single Center Database in the Serbian Population. International Journal of Endocrinology 2017 2017:6969286 (doi: 10.1155/2017/6969286)

13. Tritos NA, Hamrahian AH, King D, Greenspan SL, Cook DM, Jönsson PJ, Wajnrajch MP, Koltowska-Häggstrom M & Biller BM. A longer interval without GH replacement and female gender are associated with lower bone mineral density in adults with childhood-onset GH deficiency: a KIMS database analysis. European Journal of Endocrinology 2012 167 343-51. (doi: 10.1530/EJE-12-0070)
14. Yuen KCJ, Koltovska-Häggström M, Cook DM, Fox JL, Jönsson PJ, Geffner ME & Abs R. Clinical characteristics and effects of GH replacement therapy in adults with childhood-onset craniopharyngioma compared with those in adults with other causes of childhood-onset hypothalamic-pituitary dysfunction. European Journal of Endocrinology 2013 169 511-9. (doi: 10.1530/EJE-13-0280)

15. Xu W, Janss A, Packer RJ, Phillips P, Goldwein J & Moshang T Jr. Endocrine outcome in children with medulloblastoma treated with 18 Gy of craniospinal radiation therapy Neuro-Oncology 2004 6 113-8. (doi: 10.1215/s1152851703000462)

16. van Waas M, Neggers SJ, Pieters R & van den Heuvel-Eibrink MM. Components of the metabolic syndrome in 500 adult long-term survivors of childhood cancer. Annals of Oncology 2010 21 1121-6. (doi: 10.1093/annonc/mdp414).

17. Hoybye C, Jönsson P, Monson JP, Koltovska-Häggström M, Hána V, Geffner M & Abs R. Impact of the primary aetiology upon the clinical outcome of adults with childhood-onset GH deficiency. European Journal of Endocrinology 2007 157 589-96. (doi: 10.1530/EJE-07-0364).

18. Cohen LE, Gordon JH, Popovsky EY, Sainath NN, Feldman HA, Kieran MW & Gordon CM. Bone density in post-pubertal adolescent survivors of childhood brain tumors. Pediatric Blood Cancer 2012 58 959-63. (doi: 10.1002/pbc.23300).

19. Kang MJ, Kim SM, Lee YA, Shin CH, Yang SW & Lim JS. Risk factors for osteoporosis in long-term survivors of intracranial germ cell tumors. Osteoporosis International 2012 23 1921-9. (doi: 10.1007/s00198-011-1821-9)

20. Doknic M, Savic D, Manojlovic-Gacic E, Savo R, Bokun J, Milenkovic T, Pavlovic S, Vreca M, Andjelkovic M, Stojanovic M, Miljic D, Pekic S, Petakov M, Grujicic D. Clinical case seminar: Familial intracranial germinoma. Endokrynologia Polska. 2018 69 612-618. (doi: 10.5603/EP.2018.0060)

21. Saggese G, Baroncelli GI, Vanacore T, Fiore L, Ruggieri S, Federico G Indications and strategies for continuing GH treatment during transition from late adolescence to early adulthood in patients with GH deficiency: the impact on bone mass. Journal of Endocrinology Investigation 2004 27 596-602. (doi: 10.1007/BF03347486).
22. Kaufman JM, Taelman P, Vermeulen A & Vandeweghe M. Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. Journal of Clinical Endocrinology and Metabolism 1992 74 118-23. (doi: 10.1210/jcem.74.1.1727808)

23. Kołtowska-Haggstrom M, Geffner ME, Jonsson P, Monson JP, Abs R, Hana V, Hoybye S & Wollmann HA. Discontinuation of Growth Hormone (GH) Treatment during the Transition Phase Is an Important Factor Determining the Phenotype of Young Adults with Non idiopathic Childhood-Onset GH Deficiency. Journal of Clinical Endocrinology and Metabolism 2010 95 2646-54

24. Ahmid M, Perry CG, Ahmed SF & Shaikh MG. Growth hormone deficiency during young adulthood and the benefits of growth hormone replacement. Endocrine Connections. 2016 5 R1-R11. (doi: 10.1530/EC-16-0024)

25. Ahmid M, Ahmed SF, Shaikh MG. Childhood-onset growth hormone deficiency and the transition to adulthood: current perspective. Therapeutics and Clinical Risk management 2018 14 2283-2291. doi: 10.2147/TCRM.S136576.

26. Shalet SM, Shavrikova E, Cromer M, Child CJ, Keller E, Zapletalová J, Moshang T, Blum WF, Chipman JJ, Quigley CA & Attanasio AF. Effect of growth hormone (GH) treatment on bone in postpubertal GH-deficient patients: a 2-year randomized, controlled, dose-ranging study. Journal of Clinical Endocrinology and Metabolism 2003 88 4124-9. (doi: 10.1210/jc.2003-030126)

27. Hyldestrup L, Conway GS, Raczk K, Keller A, Chanson P, Zacharin M, Lysgaard AL, Andreasen AH & Kappelgaard AM. Growth hormone effects on cortical bone dimensions in young adults with childhood-onset growth hormone deficiency. Osteoporosis International 2012 23 2219-26. (doi: 10.1007/s00198-011-1854-0).

28. Boot AM, van der Sluis IM, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density and body composition in adolescents with childhood-onset growth hormone deficiency. Hormone Research 2007 1 364-71. (doi: 10.1159/000223422).

29. Fors H, Bjarnason R, Wirént L, Albertsson-Wikland K, Bosaeust L, Bengtsson BA & Johannson G. Currently used growth-promoting treatment of children results in normal bone mass and density. A
prospective trial of discontinuing growth hormone treatment in adolescents. Clinical Endocrinology (Oxf). 2001 55 617-24. (doi: 10.1046/j.1365-2265.2001.01386.x)

30. Attanasio AF, Shavrikova E, Blum WF, Cromer M, Child CJ, Paskova M, Lebl J, Chipman JJ, Shalet SM & Hypopituitary Developmental Outcome Study Group. Continued growth hormone (GH) treatment after final height is necessary to complete somatic development in childhood-onset GH-deficient patients. Journal of Clinical Endocrinology and Metabolism 2004 89 4857-62. (doi: 10.1210/jc.2004-0551)

31. Jørgensen JO, Vahl N, Hansen TB, Thuesen L, Hagen C & Christiansen JS. Growth hormone versus placebo treatment for one year in growth hormone deficient adults: increase in exercise capacity and normalization of body composition. Clinical Endocrinology (Oxf). 1996 45 681-8. (doi: 10.1046/j.1365-2265.1996.8720883.x.)

32. Carroll PV, Drake WM, Maher KT, Metcalfe K, Shaw NJ, Dunger DB, Cheetham TD, Camacho-Hübner C, Savage MO & Monson JP. Comparison of continuation or cessation of growth hormone (GH) therapy on body composition and metabolic status in adolescents with severe GH deficiency at completion of linear growth. Journal of Clinical Endocrinology and Metabolism 2004 89 3890-5. (doi: 10.1210/jc.2003-031588)

33. Binder G, Donner J, Becker B, Bauer JL, Schweizer R. Changes in body composition in male adolescents with childhood-onset GH deficiency during transition. Clinical Endocrinology (Oxf). 2019 91 432-439. (doi: 10.1111/cen.14041).

34. Vahl N, Juul A, Jørgensen JO, Orskov H, Skakkebaek NE & Christiansen JS. Continuation of growth hormone (GH) replacement in GH-deficient patients during transition from childhood to adulthood: a two-year placebo-controlled study. Journal of Clinical Endocrinology and Metabolism 2000 85 1874-81. doi: 10.1210/jcem.85.5.6598

35. Bazarra-Castro MÁ, Sievers C, Schwarz HP, Pozza SB & Stalla GK. Changes in BMI and management of patients with childhood onset growth hormone deficiency in the transition phase. Experimental and Clinical Endocrinology & Diabetes. 2012 120 507-10. (doi: 10.1055/s-0032-1327599)

36. Çamtosun E, Şıklar Z & Berberoğlu M. Prospective Follow-up of Children with Idiopathic Growth Hormone Deficiency After Termination of Growth Hormone Treatment: Is There Really Need for

Copyright © 2019 the authors
Treatment at Transition to Adulthood? Journal of Clinical Research in Pediatric Endocrinology 2018 10 247-255. (doi: 10.4274/jcrpe.0010)

37. Aimaretti G, Baffoni C, Bellone S, Di Vito L, Corneli G, Arvat E, Benso L, Camanni F & Ghigo E. Retesting young adults with childhood-onset growth hormone (GH) deficiency with GH-releasing-hormone-plus-arginine test. Journal of Clinical Endocrinology and Metabolism 2000 85 3693-9. (doi: 10.1210/jcem.85.10.6858)

38. Quigley CA, Zagar AJ, Liu CC, Brown DM, Huseman C, Levitsky L, Repaske DR, Tsalikian E & Chipman JJ. United States multicenter study of factors predicting the persistence of GH deficiency during the transition period between childhood and adulthood. International Journal of Pediatric Endocrinology 2013 2013 6 (doi: 10.1186/1687-9856-2013-6)

39. Bechtold S, Bachmann S, Putzker S, Dalla Pozza R & Schwarz HP. Early changes in body composition after cessation of growth hormone therapy in childhood-onset growth hormone deficiency. Journal of Clinical Densitometry 2011 14 471-7. (doi: 10.1016/j.jocd.2011.05.001)

40. Penta L, Cofini M, Lucchetti L, Zenzeri L, Leonardi A, Lanciotti L, Galeazzi D, Verrotti A & Esposito S. Growth Hormone (GH) Therapy During the Transition Period: Should We Think About Early Retesting in Patients with Idiopathic and Isolated GH Deficiency? International Journal of Environmental Research and Public Health 2019 16 307. (doi: 10.3390/ijerph16030307)

41. Yuen KCJ, Alter CA, Miller BS, Gannon AW, Tritos NA, Samson SL, Dobri G, Kurtz K, Strobl F & Kelepouris N. Adult growth hormone deficiency: Optimizing transition of care from pediatric to adult services. Growth Hormone & IGF Research 2021 56 101375. (doi: 10.1016/j.ghir.2020.101375)

Figure Legends:

Figure 1. Study cohort flow chart

Figure 2. Gap duration between rhGH in childhood and transition correlated negatively with HDL levels (n=142)
Figure 3. Z-sc at lumbar spine correlated negatively with age in the year of discontinuation of rhGH therapy before retesting in transition (n=142)
Figure 1. Study cohort flow chart

165x92mm (96 x 96 DPI)
Figure 2. Gap duration between rhGH in childhood and transition correlated negatively with HDL levels (n=142)
Figure 3. Z-sc at lumbar spine correlated negatively with age in the year of discontinuation of rhGH therapy before retesting in transition (n=142)
Table 1. Distribution of patients according to the etiology of CO-GHD in all included patients (n=170)

Etiology	No	%
Congenital COGHD		
Pituitary/midline structural abnormalities		
Anterior pituitary hypoplasia	25	14.7
PSIS	6	3.5
Anterior pituitary hypoplasia + EP	5	2.9
Anterior pituitary hypoplasia + PSIS	8	4.7
Anterior pituitary hypoplasia + EP + PSIS	13	7.6
Empty sella	5	2.9
Rathke cleft cyst	6	3.5
Arachnoid cyst	2	1.1
SOD	12	7.0
Genetic syndromes		
Charge Sy	1	0.5
Prader Willi Sy	1	0.5
Noonan Sy	1	0.5
Tuberous sclerosis	1	0.5
Tumor related COGHD		
Cranial tumor		
Craniopharyngioma	15	8.8
Germinoma	4	2.3
Histiocytosis X	6	3.5
Meduloblastoma	5	2.9
PNET	1	0.5
Hamartoma	1	0.5
Ganglioglioma	1	0.5
Astrocytoma	2	1.1
Pituitary pseudotumor (TSH hyperplasia)	2	1.1
Hematological malignancies		
ALL	2	1.1
Other malignancies		
Malignant triton tumor	1	0.5
Idiopathic COGHD		
	44	25.9

COGHD - childhood onset growth hormone deficiency; PSIS- pituitary stalk interruption syndrome; EP- ectopic posterior pituitary; SOD- septo-optic dysplasia; ALL-acute lymphoblastic leukemia; PNET-primitive neuroectodermal tumor
Table 2. Comorbidities in enrolled patients (n=170)

Condition	No	%
No comorbidities	89	54.0
Visual field defect	15	8.8
Mental retardation	10	5.8
Epilepsy	10	5.8
Primary hypothyroidism	9	5.2
Undescended testis	8	4.7
Inguinal hernia	6	3.5
Heart defects	6	3.5
Benign tumors/cyst	6	3.5
(kidney 2, adrenal 1, mediastinum 1, skin 2)		
Skeletal deformities	5	2.9
Thyroid nodule	3	1.7
Schizophrenia	2	1.1
Gallbladder calculus	2	1.1
Bronchial asthma	2	1.1
Atopic dermatitis	2	1.1
Eyelid defect	2	1.1
Hepatic steatosis	2	1.1
Hyperthyroidism	1	0.5
Pyloric stenosis	1	0.5
Celiac Disease	1	0.5
Renal calculus	1	0.5
Acute pancreatitis	1	0.5
Bacterial meningitis	1	0.5
Sleep apnea	1	0.5
Table 3. Review of the literature regarding *HRAS* and *BRAF* mutations in ordinary PCC/PGL

Year	HRAS Mutation rate	Mutation sites	BRAF Mutation rate	Mutation sites	Ref
2004	N/A	-	0 (0/34)	-	(15)
2013	6.9% (4/58)	Q61R, Q61K, G13R	0 (0/58)	-	(16)
2014	5.2% (14/271)	Q61R, Q61K, G13R	N/A	-	(13)
2015	7.1% (6/85)	Q61R, G13R	1.2% (1/85)	V600E	(17)
2016	7.1% (11/156)	Q61R, Q61K, Q61L, G13R	N/A	-	(18)
2016	N/A	-	0 (0/110)	-	(19)
2017	N/A	-	0 (0/64)	-	(14)
2017	9.8% (17/173)	Q61R, Q61K, G13R, Q61L	0.6% (1/173)	G469A	(9)
2019	5.7% (13/227)	Q61R, Q61K, G13R, G12R	N/A	-	(20)
2020	6.7% (2/30)	Q61R, G12D	N/A	-	(21)
2020	16.5% (107/650) in Chinese; 9.8% (68/692) in European	Q61R, Q61K, G13R	N/A	-	(4)

Ref, reference. N/A, not reported.
Table 4. Comparison of COGHD patients according to rhGH replacement during childhood and persistency of GHD at first evaluation after transfer from pediatric care

Variable	Treated with GH in childhood (n=142)	Untreated with GH in childhood (n=28)	Persistent GHD (n=102) treated with GH in childhood	Transient GHD (n=40) treated with GH in childhood
	n	n	n	n
Body weight (kg)	66.7 ± 16.8	63.5 ± 24.8	67.3 ± 17.7	65.3 ± 14.8
Body height (cm)	171.0 ± 9.9	160.0 ± 11.8**	169.2 ± 10.8**	173.8 ± 6.6**
BMI (kg/m²)	22.6 ± 4.8	24.4 ± 7.6	23.1 ± 5.0	21.4 ± 4.0
Waist circumference (cm)	82.0 ± 11.9	85.8 ± 13.9	85.0 ± 12.8	76.1 ± 6.8**
Age at start of rhGH	10.7 ± 3.5	/	9.8 ± 3.6	10.3 ± 2.1**
Duration of rhGH	6.7 ± 3.7	/	7.6 ± 3.8	4.4 ± 1.9**
Duration of rhGH treatment gap	1.7 ± 2.4	/	2.1 ± 2.7	0.8 ± 0.9
Body weight (kg)	66.7 ± 16.8	63.5 ± 24.8	67.3 ± 17.7	65.3 ± 14.8
Body height (cm)	171.0 ± 9.9	160.0 ± 11.8**	169.2 ± 10.8**	173.8 ± 6.6**
BMI (kg/m²)	22.6 ± 4.8	24.4 ± 7.6	23.1 ± 5.0	21.4 ± 4.0
Waist circumference (cm)	82.0 ± 11.9	85.8 ± 13.9	85.0 ± 12.8	76.1 ± 6.8**
Age at start of rhGH	10.7 ± 3.5	/	9.8 ± 3.6	10.3 ± 2.1**
Duration of rhGH	6.7 ± 3.7	/	7.6 ± 3.8	4.4 ± 1.9**
Duration of rhGH treatment gap	1.7 ± 2.4	/	2.1 ± 2.7	0.8 ± 0.9
Fasting glucose (mmol/l)	4.5 ± 0.6	4.7 ± 0.5	4.4 ± 0.6	4.7 ± 0.5**
Fasting insulin (mU/l)	16.6 ± 13.3	20.3 ± 10.3**	17.3 ± 15.4	15.4 ± 10.4
Peak glucose in OGTT (mmol/l)	7.5 ± 1.8	8.0 ± 1.6	7.0 ± 1.5	8.4 ± 1.9**
Peak insulin in OGTT (mU/l)	91.8 ± 57.3	116.3 ± 56.9**	89.9 ± 58.8	95.5 ± 55.1
AUC glucose in OGTT (mmol/l/120min)	24.3 ± 5.0	27.3 ± 5.1**	23.3 ± 4.6	26.7 ± 5.1**
HbA1c (%)	5.1 ± 0.3	5.2 ± 0.3	5.0 ± 0.4	5.1 ± 0.3
HOMA index	3.2 ± 2.6	4.3 ± 2.2**	3.3 ± 2.8	3.1 ± 2.4
Total cholesterol (mmol/l)	4.6 ± 1.2	4.7 ± 1.2	4.8 ± 1.3	3.9 ± 0.6**
HDL cholesterol (mmol/l)	1.3 ± 0.3	1.1 ± 0.3**	1.3 ± 0.3	1.4 ± 0.4
LDL cholesterol (mmol/l)	2.6 ± 1.0	2.7 ± 0.9	2.9 ± 1.1	2.0 ± 0.6**
Triglycerides (mmol/l)	1.3 ± 1.0	1.7 ± 0.9**	1.3 ± 1.1	1.1 ± 0.9
OCL (ng/ml)	54.8 ± 38.4	48.4 ± 31.1	41.2 ± 24.0	80.3 ± 47.4**
BCL (pg/ml)	1197.2 ± 871.1	1112.8 ± 687.5	1011.8 ± 634.1	1558.4 ± 1145.2**
Fat%	27.5 ± 9.4	32.4 ± 9.4**	30.7 ± 8.3	18.9 ± 6.7**
Fat%	19.4 ± 9.8	23.7 ± 12.5	21.6 ± 9.3	13.2 ± 8.8**
Fat%	45.1 ± 10.4	40.2 ± 13.7	44.3 ± 11.2	47.0 ± 7.8
Fat%	2.2 ± 0.5	2.0 ± 0.7**	2.2 ± 0.4	2.3 ± 0.4
Fat%	0.90 ± 0.1	0.80 ± 0.1**	0.89 ± 0.1	0.90 ± 0.1
Fat%	-1.3 ± 1.3	-2.3 ± 1.8**	-1.4 ± 1.4	-1.1 ± 1.2
Fat%	0.87 ± 0.1	0.80 ± 0.2	0.86 ± 0.1	0.89 ± 0.1
Fat%	-0.6 ± 1.0	-1.1 ± 1.4**	-0.6 ± 0.9	-0.4 ± 0.9

Data shown as mean ± SD

a p <0.05, treated vs untreated with GH in childhood;

*a** p <0.01, treated vs untreated with GH in childhood;

b p <0.05, persistent GHD vs transient GHD in patients treated with GH in childhood;

*b** p <0.01, persistent GHD vs transient GHD in patients treated with GH in childhood
Table 5. Characteristic of patients treated with rhGH during childhood (n=142) and difference according to etiology of COGHD

Variable	Congenital COGHD (n=71)	Tumor related COGHD (n= 28)	Idiopathic COGHD (n= 43)
	n	n	n
Body weight (kg)*	64.9 ± 18.4	72.7 ± 14.0	65.5 ± 15.0
Body height (cm)	169.3 ± 10.8	172.3 ± 10.2	173.5 ± 7.2
BMI (kg/m^2) *	22.4 ± 5.3	24.4 ± 4.0	21.5 ± 4.1
Waist circumference (cm) *	83.9 ± 15.1	87.2 ± 5.8	75.7 ± 5.9
Age at start of rhGH**	9.3 ± 3.8	10.8 ± 2.9	12.8 ± 2.2
Duration of rhGH *	7.9 ± 4.7	6.5 ± 4.2	5.7 ± 2.0
Duration of rhGH treatment gap	2.3 ± 2.8	2.0 ± 2.5	0.8 ± 1.2
Age at cessation of rhGH before transfer to adult care	17.1 ± 2.0	18.0 ± 1.8	17.4 ± 1.2
Fasting glucose (mmol/l) *	4.4 ± 0.6	4.5 ± 0.5	4.7 ± 0.3
Fasting insulin (mU/l)	16.4 ± 14.6	23.1 ± 19.1	13.4 ± 6.1
Peak glucose in OGTT (mmol/l) **	7.0 ± 1.6	7.4 ± 1.6	8.3 ± 1.9
Peak insulin in OGTT (mU/l)**	78.0 ± 42.8	137.4 ± 84.5	83.8 ± 40.8
AUC glucose in OGTT (mmol/l/120min)	23.1 ± 5.0	25.0 ± 5.1	25.5 ± 4.7
AUC insulin in OGTT (mU/l/120min)	215.6 ± 122.9	390.1 ± 274.0	220.2 ± 115.6
HbA1c (%)	5.0 ± 0.3	5.2 ± 0.4	5.1 ± 0.2
HOMA index	2.9 ± 2.2	4.8 ± 4.3	2.7 ± 1.3
Total cholesterol (mmol/l)**	4.6 ± 1.0	5.3 ± 1.7	3.9 ± 0.6
HDL cholesterol (mmol/l)	1.3 ± 0.4	1.2 ± 0.3	1.4 ± 0.3
LDL cholesterol (mmol/l) **	2.7 ± 1.0	3.1 ± 1.3	2.0 ± 0.5
Triglycerides (mmol/l) **	1.0 ± 0.6	1.9 ± 1.4	1.0 ± 0.8
OCL (ng/ml) **	45.5 ± 35.6	38.1 ± 20.0	73.3 ± 42.0
BCL (pg/ml) *	1133.9 ± 737.2	771.5 ± 473.3	1472.2 ± 1076.3
Fat% **	30.4 ± 9.2	29.8 ± 7.7	19.3 ± 6.3
FM (kg) **	21.4 ± 10.3	21.3 ± 7.8	13.7 ± 8.9
LBM (kg) *	42.8 ± 11.5	46.7 ± 8.8	48.4 ± 8.3
TBMC (kg)	2.1 ± 0.5	2.2 ± 0.4	2.3 ± 0.2
BMD lumbar spine (g/cm^2)	0.90 ± 0.1	0.86 ± 0.1	0.90 ± 0.1
Z-sc lumbar spine *	-1.31 ± 1.4	-1.72 ± 1.3	-0.95 ± 1.3
BMD femoral neck (g/cm^2)	0.85 ± 0.1	0.86 ± 0.1	0.90 ± 0.1
Z-sc femoral neck	-0.67 ± 1.1	-0.65 ± 1.1	-0.39 ± 1.0

Data shown as mean ± SD
* p <0.05, difference between three etiologies of COGHD
** p <0.01, difference between three etiologies of COGHD
Table 6. Effects of 3 years of rhGH replacement in transition period on body composition and BMD (n=40)

Parameter	Visit 0	Visit 1	Absolute change	Percent of change	P value
%Fat	30.7 ± 8.9	29.1 ± 9.1	-1.62	5.2	0.043
FM (kg)	20.7 ± 9.5	21.1 ± 9.1	0.40	1.9	0.571 (NS)
LBM (kg)	42.9 ± 10.5	47.3 ± 10.9	4.38	12.1	0.001
TBMC (kg)	2.14 ± 0.5	2.33 ± 0.5	0.19	8.8	0.001
BMD lumbar spine (g/cm²)	0.87 ± 0.2	0.93 ± 0.2	0.06	6.9	0.001
BMD femoral neck (g/cm²)	0.85 ± 0.2	0.86 ± 0.2	0.01	1.2	0.456 (NS)
Z-sc lumbar spine	-1.58 ± 1.7	-1.25 ± 1.5	0.33		0.005
Z-sc femoral neck	-0.77 ± 1.3	-0.50 ± 1.3	0.27		0.007

Visit 0- first DXA evaluation at admission on adult care unit
Visit 1-second DXA evaluation after 3 years of rhGH replacement in transition period