Introduction

The role of prostate volume in diagnosis and aetiology of benign hyperplasia and need for treatment has been fraught with uncertainty and conflicting information. The view that has prevailed was that size was completely unimportant [1]. Previous methods to determine size have used the DRE, transabdominal US, TRUS and MRI.

The gland can be divided into two distinct zones, the peripheral zone which is composed principally of epithelium and the inner gland which is mainly stroma [2,3]. Using this asymmetry of macroscopic and microscopic differences one can develop a new concept, the “prostatocrit” [4] to model the relative growths of epithelial and stromal components. The peripheral zone will have a higher prostatocrit than the transition zone and this ratio is key to the model. This has proven to be more accurate in prostate cancer diagnosis than traditional methods of PSA densities [4].

There is a need to better relate the PSA production to the growth dynamics of the normal and the abnormal gland. We propose that all gland volumes and PSA related phenomena can be better characterised, with better risk stratification, with this new more detailed and intuitive model of the gland.

Previous studies all have used the whole gland volume as the entity in question. We propose using the easily measured peripheral zone and the asymmetry in epithelial, acinar, content to generate a prostatocrit (similar to a haematocrit) to better describe prostatic growth.

We propose the converse to the long held view that size is not important. Size or volume of the gland and its subdivisions do matter. The gland is not a homogenous organ. By noting the asymmetry of acini within the principal zones, peripheral and transitional, we generate four new zones and reveal their differential growth and influence on PSA. We plot the growth of each zone and their relation to PSA. We also document the change in IPSS with whole gland and principal zones.
Methods

This is a retrospective study of 409 patients who had negative prostate biopsies who were referred for elevated PSA, abnormal DRE or anxiety of cancer 2006-2013. The patient filled out an IPSS questionnaire. One surgeon performed the biopsies using a BK medical Hawk 2102XD1 machine. The whole gland (ellipsoid formula) and the zonal volumes were documented.

The rational for this formula lies in the fact that a normal gland is composed of 70% acinal epithelium and 30% stroma. Most of the acini lie in the periphery by definition. The periphery therefore has to be either 80, 90 or 100% acini. We chose to be conservative and elected for 80%. The rest of the acini must lie in the transition zone. The $W_{Gv} \times 0.7$ yields the Whole Gland Acinar Volume (W_{Gav}). By definition, $1-W_{Gav}$ yields the Whole Gland Stromal Volume (W_{Gsv}). The peripheral zone was attributed a percentage of 80%. $0.8 \times P_{Zv}$ yields the Peripheral Zone Acinar Volume (P_{Zav}). $1-P_{Zav}$ yields the Peripheral Zone Stromal Volume (P_{Zsv}). The $W_{Gav}-P_{Zav}$ yields the Transition Zone Acinar Volume (T_{Zav}). $1-T_{Zav}$ yields the Transition Zone Stromal Volume (T_{Zsv}).

Densities

The serum PSA is divided into W_{Gav} to yield the whole gland acinar density. The peripheral zone acinar density is calculated by multiplying the W_{Gad} times the ratio of the P_{Zav}/W_{Gav}. The transition zone acinar density is $W_{Gad}-P_{Zad}$.

Formula

$$0.7W_{Gv} = W_{Gav}$$
$$PSA/W_{Gav} = W_{Gad}$$
$$0.8P_{Zv} = P_{Zav}$$
$$W_{Gav} - P_{Zav} = T_{Zav}$$
$$W_{Gad} \times P_{Zav}/W_{Gav} = P_{Zad}$$
$$W_{Gad} - P_{Zad} = T_{Zad}$$
$$W_{Gv} - W_{Gav} = W_{Gsv}$$
$$T_{Zv} - T_{Zav} = T_{Zsv}$$
$$P_{Zv} - P_{Zav} = P_{Zsv}$$

To ascertain accuracy of imaging, 547 radical prostatectomy specimens with documented gland volumes from histology were documented. Statistics were performed using med calc statistical software.

We used univariate analysis to monitor trends of each zone and subcomponent and related them to IPSS, PSA, growth, densities and ratio with ageing. We then performed multivariate analysis for prediction of PSA.

The larger darker peripheral zone is packed with islands of acini. The smaller lighter transition zone has a few scattered acini (Figure 1).

We compared the whole gland volume with MRI measurements to estimate if there were any significant difference.

Bland-Altman plot of MRI vs TRUS in estimating volume.

There were 319 TRUS volumes documented pre operatively with 34 MRI volumes documented pre operatively and compared to radical prostatectomy displacement volumes. There was no significant difference in accuracy between the two imaging modalities (Table 1) (Figure 2).

Results

The age range is from 40 to 84 years with the first quartile at 58 and the third at 68.5 years. The PSA ranges from 0.47 to 83 (clearly an outlier given where the third quartile is) with first quartile at 4.6 and third at 9.1. The IPSS ranges from 0 to 35 with first quartile at 11 and the third at 15. The whole gland volumes range from 10cc to 220cc. the transition zone ranges from 2cc to 156cc. the peripheral zone ranges from 3cc to 104cc. Thus we see less range in the peripheral zone compared to the transition zone despite a similar mean volume (Table 2).

Using the Prostatocrit model, we can estimate the key indice, the proportion of acini in the peripheral zone ($0.8 \times 27.7cc = 22.2cc$). From this we can deduce that the remaining volume is stroma ($27.7cc - 22.2cc = 5.5cc$). We estimate the whole acina mass as $0.7 \times 57.6cc = 40.3cc$. We deduce the transition zone acinal volume by subtracting the peripheral acina volume from the total acina volume ($40.3cc - 22.2cc = 18.1cc$).

Table 1: MRI vs US estimation of whole gland volume.

Method	Correlation coefficient	Fishers r to z transformation
Trans rectal ultrasound	$r = 0.706$	$Z = 0.17$ $P = 0.865$
Magnetic resonance imaging	$r = 0.69$	

We used univariate analysis to monitor trends of each zone and subcomponent and related them to IPSS, PSA, growth, densities and ratio with ageing. We then performed multivariate analysis for prediction of PSA.

The larger darker peripheral zone is packed with islands of acini. The smaller lighter transition zone has a few scattered acini (Figure 1).

We compared the whole gland volume with MRI measurements to estimate if there were any significant difference.

Bland-Altman plot of MRI vs TRUS in estimating volume.

There were 319 TRUS volumes documented pre operatively with 34 MRI volumes documented pre operatively and compared to radical prostatectomy displacement volumes. There was no significant difference in accuracy between the two imaging modalities (Table 1) (Figure 2).

Results

The age range is from 40 to 84 years with the first quartile at 58 and the third at 68.5 years. The PSA ranges from 0.47 to 83 (clearly an outlier given where the third quartile is) with first quartile at 4.6 and third at 9.1. The IPSS ranges from 0 to 35 with first quartile at 11 and the third at 15. The whole gland volumes range from 10cc to 220cc. the transition zone ranges from 2cc to 156cc. the peripheral zone ranges from 3cc to 104cc. Thus we see less range in the peripheral zone compared to the transition zone despite a similar mean volume (Table 2).

Using the Prostatocrit model, we can estimate the key indice, the proportion of acini in the peripheral zone ($0.8 \times 27.7cc = 22.2cc$). From this we can deduce that the remaining volume is stroma ($27.7cc - 22.2cc = 5.5cc$). We estimate the whole acina mass as $0.7 \times 57.6cc = 40.3cc$. We deduce the transition zone acinal volume by subtracting the peripheral acina volume from the total acina volume ($40.3cc - 22.2cc = 18.1cc$).
Table 2: Characteristics, age, PSA, symptoms and derived acinar and stromal volumes using a Prostatocrit model (PZav = 0.8PZv).

Variable (mean)	BPH n=409
Age	Mean 63.3 years
	range 40-84
	1st quartile 58
	3rd quartile 68.5
PSA	Mean 8.1 ng/ml
	Range 0.47-83
	1st quartile 4.6
	3rd quartile 9.1
IPSS	Mean 10 units
	Range 0-35
	First quartile 11
	3rd quartile 15
Whole gland volume	Range 10-220
Whole gland acinar volume	57.6cc
Whole gland stromal volume	17.3cc
Transition zone volume	29.8cc
Transition zone acinar volume	22.2cc
Transition zone stromal volume	11.7cc
Peripheral zone volume	27.7cc
Peripheral zone acinar volume	22.2cc
Peripheral zone stromal volume	5.5cc

There is a greater relative amount of stroma in the transition zone. The peripheral zone has less than half the stroma of the transition zone (9.5cc vs 11.7cc) and the two zones have similar acini volume (22.2cc vs 18.1cc). Here lies the asymmetry (Table 3) (Figures 3a & 3b).

Table 3: PSA of this population compared to Oesterlings.

Age range	Oesterlings mean PSA ng/ml	Our mean PSA ng/ml
40-50	2.5	4
50-60	3.5	5.9
60-70	4.5	8.3
70-80	6.5	12.3

Table 4: IPSS changes with zones.

- **IPSS Whole gland volume**: 0.025, **R²**: 0.010, **P**: 0.006
- **IPSS Transition zone volume**: 0.047, **R²**: 0.019, **P**: 0.004
- **IPSS Peripheral zone volume**: 0.020, **R²**: 0.001, **P**: 0.355

Symptoms and age and symptoms vs conventional volumes (Table 4) (Figures 4a-4d). There is no significant increase in the IPSS score with ageing (deterioration of 0.025 IPSS units/cc) (P = 0.56). However, when we look at the deterioration of IPSS with overall gland volume we do see a significant effect of 0.025 IPSS units/cc (P = 0.006). This is due to a highly significant transition zone effect of 0.047 ipss units/cc (P = 0.0004) compared to a non-significant association with the peripheral zone of 0.02 ipss/cc (P=0.355). The peripheral zone, which is mostly acini, is not associated with a deterioration in symptom score. The transition zone which has a greater amount of stroma is associated with a deterioration of symptom score with increasing size. The slope is twice as steep for the transition zone compared to either whole gland or peripheral zone.

The whole gland grows at 1.16 cc/year mostly due to acini (0.81cc/year). The transition zone grows at a greater rate, ×3, than the peripheral zone (0.89cc/year cf 0.27cc/year) (Table 5) (Figures 5a-5i). However, when one look at the relative acinal and stromal growth patterns, we see the transition zone acini growing ×3 that of the peripheral zone acini (0.6cc/year cf 0.21cc/year) with an even more pronounced difference in the stromal components. The transition zone stroma grows at × 6 that of the peripheral zone stroma which is almost negligible (0.29cc/year vs 0.05cc/year). This prostatocrit insight confirms what would be predicted from clinical and pathological experience.

Citation: Robinson S. Prostate Volume, Size does Matter: Growth Dynamics of the Acini and the Stroma using a “Prostatocrit” Model. SM J Urol. 2018; 4(1):1037. https://dx.doi.org/10.36876/smju.1037
PSA secretion is greater in the transition zone acini than the peripheral zone acini (0.134 cf 0.081) despite more acini within the peripheral zone. This is well recognised [26,27] and appears to be due to the paracrine growth factor activity of the stoma on the acini. The TZav (Figure 6d) has a coefficient of 0.286 which explains 53% of PSA secretion (Table 6) (Figures 6a-6f).

Dividing the PSA into the acinal bulk we get a “true” acinal density. There is a non significant increase in overall density with age whether one considers the entire gland or the acinal bulk itself (P=0.107).

Neither does the overall transition zone density increase with time (P=0.425), despite an increase in acini, no doubt due to variable decrements in PSA production.

However, when accounting for TZ acinal bulk using the prostatocrit, the PSA density increases significantly (P=0.0001).
Figure 5b: Whole gland stromal volume and age.

Figure 5c: Whole gland acinar volume and age.

Figure 5d: Transition zone volume with age.

Figure 5e: Transition zone acinar volume with age.

Figure 5f: Transition zone stromal volume with age.

Figure 5g: Peripheral zone volume and age.
Table 6: Prostatocrit volumes (conventional and prostatocrit) and PSA secretion.

Zone	PSA zonal secretion ng/ml/cc	R²	P
Whole gland volume	0.06	0.0718	<0.0001
Whole gland acina volume	0.086	0.0718	<0.0001
Transition zone volume	0.088	0.272	<0.0001
Transition zone acinal volume	0.134	0.286	<0.0001
Peripheral zone volume	0.065	0.050	<0.0001
Peripheral zone acinal volume	0.081	0.050	<0.0001

The peripheral zone density appears to increase with time due to the increased cell number, bulk, of acini. The acinar density shows it not to be significant (P=0.879) and this would be expected as ageing cells fail to maintain their rate of PSA production (Table 7) (Figures 7a-7f).
As expected all measurements of relative growth show a consistent and well recognised picture. The rate of peripheral zone, overall, acinal and stromal growth, relative to the whole gland, decreases with time and hence gives a negative ratio (P<0.0001). The rate of transitional, whole gland, acinal and stromal, increases with time (P<0.0001) and hence yields a positive ratio (Table 8) (Figures 8a-8f).

Age, TZsv, PZav, PZv, TZav, TZv, WGv were all entered to see which yielded significant predictors of PSA secretion (Table 9).

Table 7: PSA density and ageing.

Zone	ng/ml/cc/year	R²	P
Whole gland density	0.0015	0.006	0.107
Whole gland acinar density	0.00218	0.006	0.107
Transition zone density	-0.0024	0.001	0.425
Transition zone acinal density	0.00233	0.055	<0.0001
Peripheral zone density	0.0077	0.038	<0.0001
Peripheral zone acinal density	-0.00015	0.00005	0.879
Only age and the stromal component of the Transition Zone (TZsv) were significant predictors of PSA production. Neither the acini of the transition zone nor the peripheral zone acini/stroma nor whole gland volume were significant.
Discussion

Previous studies all reference the whole gland volume as the important entity. We use a "prostatocrit model (Figure 1) which generates four new zonal entities. The acinal (epithelial) volume of the peripheral zone, the acinal volume of the transition zone, the stromal volume of the peripheral zone and the stromal volume of the transition zone.

We discuss what we mean by size. There has been an almost universal use to refer to the whole gland volume. The gland is quite

Table 9: Multivariate (forward) analysis.

Independent variables	Coefficient	Std. Error	r_pla	t	P
(Constant)	-5.31				
Age	0.1768	0.04073	0.2106	4.341	<0.0001
Transition zone stromal volume	0.1894	0.04664	0.1976	4.061	<0.0001
complex and composed of several divisions each with varying amounts of secretory acinar cells and fibromuscular non-secretory elements [2]. The peripheral zone stays relatively constant in structure whereas the transition zone varies dramatically with ageing [3].

We can measure the contribution of each element due to the fact that the epithelial components have a secretory product, the PSA. This yields an “acinar density” which we can use to model growth [4]. Conversely we highlight the importance of the transition zone stromal volume which does not secrete PSA.

In our previous study it was shown that none of the traditional zonal densities (whole gland, transitional or peripheral zone) were included in a model to predict high grade cancer or all grades of cancer [4]. However, the prostatocrit peripheral zone acinar volumes were included and so we extend this concept to benign growth of the gland predicting that the transition zone stromal volume will be the most significant element in PSA secretion. We made the growth measurements using TRUS with no significant difference found when comparing MRI measurements for whole gland volumes (Table 1, Figure 2).

The growth, proliferation rate of the gland is under the influence of both hormones and ageing. The evidence is conflicting. Regarding Ki67, there was no significant correlation between ageing and proliferation rates in stroma and epithelium. They concluded that a large whole gland volume is not always associated with a high proliferation rate [5]. However, most studies all refer to the global volume of the gland with no discrimination between the subzones. Longitudinal growth rates of the whole gland, not zones, have been assessed [6] using ultrasound. They found an average increase of 1.6%/year. A baseline volume of 29cc showed a general trend to increase with time from 0.3cc/year for younger men and 0.6cc/year for older men. The bigger the baseline volume, the bigger the yearly increase.

Regarding size and symptoms, the Olmsted study [7] described treatment and relation to an enlarged whole gland volume of 30cc. Others have classified BPH as an overall volume of 20g [8]. They did not find a strong correlation (0.22) between volume and symptoms. A weak relation (correlation coefficient 0.185) was found when using a cut-off of 50mls for symptoms and flow rate [9], regarding obstruction, it is dependent on three parameters, whole gland volume, maximal flow rate and mean voided volume [10] and this is used to generate a bladder outflow obstruction number.

The Krimpen study [11] used a similar population of biopsy negative men and found increasing accuracy of PSA for increasing size of gland. They used 30cc as a cut-off for dichotomisation of whole gland volume. This gave as good area under the curve as higher volumes.

Whole gland volume and PSA are significantly correlated (0.54) and increase with age [12]. They found no influence of volume on symptoms. Whole gland volume on its own is not useful to estimate disease severity. Whole gland volume and serum PSA have an age dependent log-linear relation in those without cancer. The relation is stronger with increasing age and there is a greater increase in overall volume per unit of PSA leading to a "dilution" effect in context of the whole gland volume [13].

Nevertheless, 42% of the variance of whole gland volume can be explained by PSA and age [14]. This has implications for pharmacological outcomes when the whole gland volume is a prognostic factor of treatment.

Trials such as CombAT [15] have classified glands as being enlarged if over 30cc and concluded that a combination of drugs, Tamsulosin and Dutasteride, are efficacious in treating symptoms. MTOPS [16] examined the effects of Doxazosin to relieve tone and Finasteride to induce epithelial atrophy. The risk of progression increased with increasing baseline PSA and whole gland volume of 40mls. The decrease in volume of 19% in those receiving Finasteride refers to whole gland volume only. The reduction in acute retention and need for surgery was attributed to reduction in overall gland volume. Using the PLESS data it was shown that, by dividing men into differing overall gland volumes, that volume and PSA were predictive of the natural history of symptoms and flow rates [17]. In addition, Finasteride gave a better improvement in bother score than placebo [18] after PSA stratification. PLESS was also used to analyse, by volume and PSA, the risk of acute urinary retention and the need for surgery. The risk was higher in those with high baseline PSA and/or whole gland volume.

More recently focus has been on zonal volumes using MRI [19]. They used zonal contouring to measure the whole gland and the central and peripheral zones. They found a positive correlation between whole gland and central gland volumes and patient age. No correlation with the peripheral zone. Similarly there was a positive correlation of whole gland and the central gland with PSA and with IPSS. They point out that ellipsoid assumptions in calculating the prostate volume are inaccurate. T2 weighted MRI readily distinguishes between peripheral and central zones. They also document how the peripheral zone is relatively static with ageing. They state that the central gland is the major determinant on BPH and elevation of PSA.

Similar techniques using zonal volumes and adjustment of PSA for whole gland and central gland have improved the diagnostic accuracy and personalised risk of cancer [20]. The level of abnormal PSA is a longstanding problematic issue and leads to over-diagnosis and overtreatment of cancer [21]. The accuracy of early changes in PSA as a predictor of lethal cancer is poor [22].

TRUS is quick, simple and safe and not only is useful for volume measurement but also for cancer diagnosis [23]. On the other hand, TRUS has been criticised for being inaccurate [24].

The model is supported by the finding that only age and TZsv were significant predictors of PSA secretion.

Not included were the following. PZav,PZv,TZav TZv WGv. The peripheral zone is not significant at all and the transition acini has no role.

This is consistent with prostatocrit stroma being the chief mediator of BPH and LUTS [26,27].

Limitations

Many of the negative biopsies will have undetected prostate cancer and finding a cohort without this is problematic.

We have not been able to follow up men longitudinally and have had to rely on a cross sectional study. MRI will almost certainly
be able to better quantify the zones. Although we have seen no significant difference in MRI and TRUS for whole gland volumes, we do not know that it applies to the zones. The estimation of acini is an approximation based on a standard normal prostate gland in a young man. The amount of acini is not the only factor governing PSA secretion and the relation between epithelium and stroma is difficult to quantify and this is reflected in our low correlation coefficients as well as others [7,8,9]. This complex relationship lies beyond simple measurement of zonal volumes and acinar asymmetry.

Strengths

The prostateocrit makes logical sense and is based on sound anatomic principles. TRUS can define the zones easily and cheaply and it is readily available although operator dependent. TRUS is a good approximation to the volume even if MRI subsequently outperforms it. Although estimation of acini percentage in the zones is problematic the asymmetry is not. We would predict stronger relationships for the effects of drugs in trials such as MTOPS, PLESS and COMBAT if this model were adopted. Potentially better stratification of patients i.e. those most likely to respond would be those with large transition zone stromal volumes.

We will also be able to compare the different growth dynamics of cancerous glands and we plan to demonstrate this. This model has been used to successfully predict the risk of prostate cancer and is superior to whole gland density and transition zone density [4].

Conclusions

The prostateocrit model is new and intuitive. It is consistent with current models. The transition zone stroma is key to PSA secretion and this was confirmed using the model.

This model is logical and illustrates known attributes and trends in growth of each zone into its acinal and stromal components, and may offer a more intuitive framework to gauge the behaviour of the gland. The decrease in transition zone acinar density and the increase in transition zone stromal/ acinar volume are the most likely cause of LUTS.

References

1. Claus G Roehrborn. Prostate size: Does it matter? Rev Urol. 2000; 2: 95-98.
2. McNeal JE. Origin and evolution of benign prostatic enlargement. Invest Urol. 1978;15: 340-345.
3. Bartsch G, Müller HR, Oberholzer M, Rohr HP. Light microscopic stereological analysis of the normal human prostate and of benign prostatic hyperplasia. J Urol. 1979; 122: 487-491.
4. Simon Robinson , Marc Laniado , Bruce Montgomery. Prostate specific antigen and Acinar Density: A new dimension, the ‘Prostateocrit’. Int Braz J Urol 2007; 43: 230-238.
5. Siegfried Claus, Markus Wrenger, Theodor Senge, Harald Schulze. Immunohistochemical determination of age related proliferation rates in normal and benign hyperplastic human prostates. Urol Res. 1993; 21: 305-308.
6. Thomas Rhodes, Cynthia J Girman, Steven J Jacobsen, Rosebud O Roberts, Harry A Guess, Michael M Lieber. Longitudinal prostate growth rates during 5 years in randomly selected community men 40 to 79 years old. The Journal or Urology. 1999; 161: 1174-1179.
7. Jacobsen SJ, Jacobson DJ, Girman CJ, Roberts RO, Rhodes T, Guess HA, et al. Treatment for benign prostatic hyperplasia among community dwelling men: the Olmsted County study of urinary symptoms and health status. J Urol. 1999;162: 1301-1306.
8. WM Garraway, GN Collins, RJ Lee. High prevalence of prostatic hypertrophy in the community. The Lancet. 1991; 338: 469-471.
9. Cynthia Girman, Steven J Jacobsen, Harry A Guess, Joseph E Oesterling, Christopher G Chute, Laurel A Panser, et al. Natural history of prostatism: relationship among symptoms, prostate volume and peak urinary flow rate. The Journal of Urology. 1995; 153: 1510-1515.
10. Ger E P M van Venrooj, Mardy D Eckhart, Tom A Boon. Noninvasive assessment of prostatic obstruction in elderly men with lower urinary tract symptoms associated with benign prostatic hyperplasia. J urology. 2004; 63: 476-480.
11. Arthur M Bohnen, Frans P Groeneveld, JLBH Bosch. Serum prostate specific antigen as a predictor of prostate volume in the community: the Krimpen study. European urology. 2007; 51: 1645-1653.
12. Vesely S, Knutson T, Damber JE, Dicuio M, Dahlstrand C. Relationship between age, prostate volume, prostate specific antigen, symptom score and uroflowmetry in men with lower urinary tract symptoms. Scand J Urol Nephrol. 2003; 37: 322-328.
13. Claus G. Roehrborn, Peter Boyle, A. Lawrence Gould, Joanne Waldstreicher. Serum prostate specific antigen as a predictor of prostate volume in men with benign prostatic hyperplasia. Urology. 1999; 53: 581-589.
14. C A Mochtar, LA Kiempeny, MM van Rijmsdijk, GS Barnett, MP Laguna, FMJ Debruyne, et al. Prostate specific antigen as an estimator of prostate volume in the management of patients with symptomatic benign prostatic hyperplasia. European Urology. 2003; 44: 695-700.
15. Claus G. Roehrborn, Paul Siami, Jack Barkin, Ronaldo Damiao, Kim Major-Walker, Betsy Morril, Francesco Montorsi. The effects of dutasteride, Tamsulosin and combination therapy on lower urinary tract symptoms in men with benign prostatic hyperplasia and prostatic enlargement: 2-year results from the CombAT study. The journal of urology. 2008; 179: 616-621.
16. John D McConnell, Claus G Roehrborn, Oliver M Bautista, et al. The Long-Term Effect of Doxazosin, Finasteride, and Combination Therapy on the Clinical Progression of Benign Prostatic Hyperplasia. N engl j med. 2003; 349: 2387-2398.
17. Roehrborn CG, Boyle P, Bergner D, Gray T, Gittelman M, Shown T, et al. Serum prostate specific antigen and prostate volume predict long-term changes in symptoms and flow rate: results of a four year randomised trial comparing finasteride versus placebo. Pless study group. Urology. 1999; 54: 662-669.
18.布鲁克韦利茨R, 吉尔曼CJ, Fowler J, Rijgby OF, Sullivan M, Brickan RB, et al. Effect of finasteride on bother and other health related quality of life aspects associated with BPH. PLESS study group. Urology. 1999; 54: 670-678.
19. Baris Turkbey, Robert Huang, Snivivas Vouganti, Trivedi H, Bernardo M, Yan P, et al. Age related changes in zonal volumes as measured by high resolution magnetic resonance imaging: a cross-sectional study in over 500 patients. BJU Int. 2012: 110: 1642-1646.
20. Yahui Peng, Dinggang Shen, Shui liao, Turkbey B, Rais-Bahrami S, Wood B, et al. MRI based prostate volume adjusted prostate specific antigen in the diagnosis of prostate cancer. J Magn Reson Imaging. 2015; 42: 1733-1739.
21. H Gilbert Welch, Lisa M Schwartz, Steven Woloshin. Prostate specific antigen as a predictor of prostate volume in the community: the Krimpen study. European urology. 2007; 51: 1645-1653.
22. Katja Fall, Hans Garmo, Ove Andreen, Anna Bill-Axelson, Jan Adolfsson, Hans-OlovAdami, et al. Prostate specific antigen levels as a predictor of lethal prostate cancer. J natl cancer inst. 2005; 97: 1132-1137.
23. Hak Jong Lee, Kwang Gi Kim, Sang Eun Lee, Seok-Soo Byun, Sung Il Hwang, Sung Il Jung, et al. Role of transrectal ultrasound in the prediction of prostate cancer. J urology medicine. 2006; 25: 815-821.
24. Choi YJ, Kim JK, Cho KS. Interobserver variability of transrectal ultrasound for prostate volume measurement according to volume and observer experience. AJR Am J Roentgenol. 2009; 192: 444-449.

25. Oesterling JE, Jacobsen SJ, Chute CG, Guess HA, Girman CJ, Panser LA, et al. Serum prostate specific antigen in a community based population of healthy men. Establishment of age specific reference ranges. JAMA. 1993; 270: 860-864.

26. Lee C, Kozlowski J, Grayhack JT. Intrinsic and extrinsic factors controlling benign prostatic growth. Prostate. 1997; 31: 131-138.

27. Lee C, Kozlowski J, Grayhack JT. Etiology of benign prostatic hyperplasia. Urol Clin North Am. 1995; 22: 237-246.