Land suitability assessment for surface irrigation development at Ethiopian highlands using geospatial technology

Yonas Gebresilasie Hagos1,2 · Mequanent Abathun Mengie1 · Tesfa Gebrie Andualem2,5 · Mesenbet Yibeltal3,6 · Nguyen Thi Thuy Linh4 · Diress Yigezu Tenagashaw2 · Guna Hewa5

Received: 6 December 2021 / Accepted: 7 March 2022 / Published online: 4 April 2022 © The Author(s) 2022

Abstract
Irrigation development necessitates suitable lands for higher yield production and the development of long-term irrigation systems. The purpose of this research was to identify appropriate irrigation lands for irrigation in the Minch Yekest watershed in West Amhara, Ethiopia. Geospatial and multi-criteria decision-making techniques were used in this study. For land suitability analysis for surface irrigation, slope, land use, altitude, distance from the water source, soil characteristics, and available water storage capacity parameters were used. To find the best location for surface irrigation, the values were weighted and combined using the weighted overlay tool. The irrigation land suitability of each physical land parameter was classified into four suitability classes (S1, S2, S3, and N) based on the Food and Agricultural Organization guideline. According to the findings, 63% of the watershed area is highly suitable, 6.25% is moderately suitable, 28.69% is marginally suitable, and 2.06% is not suitable for the aforementioned purposes. The methodological approach and study findings could help policymakers make better decisions when developing irrigation projects in Ethiopia.

Keywords Ethiopia · GIS · Land suitability · Surface irrigation · Multi-criteria decision

Introduction
The use of land resources is becoming more common in order to fulfill the needs of the world’s rising population. The urgent need for land resource optimization is required to meet rising food demand and resource utilization trends (Kutter et al. 1997). The primary goal of land use planning, according to the UN report (FAO 1993), is to achieve the optimal use of land for higher production and profit. This entails making decisions about how to use land resources. Irrigated land produces approximately 40% of the world’s agricultural output (Albaji et al. 2008), but only 6 million ha (4%) of Sub-Saharan Africa’s total cultivated area is irrigated (Kadigi et al. 2019). According to the World Bank’s collection of development indicators compiled from officially recognized sources, Ethiopia’s agricultural irrigated land was 2.0807 percent in 2018. Crop production increases irrigable land for long-term production, maximizing irrigation practice (English et al. 2002).

Land evaluation for irrigation suitability was concerned with overall land performances, including landforms, climate, vegetation, and soils, for assessing land productivity when the land is used for specified purposes under a specified management system (SYS et al. 1991; Davidson 1992; FAO 2007). The evaluation of land suitability is critical in sustaining and developing land use on a spatial scale. It is used to identify geographical patterns and levels of biophysical factors, as well as to assess the potential capacity of land and its long-term use for irrigation. The suitability analysis leads to effective resource management through sound policies and planning, which improves the long-term
management of the land resource. As a result, evaluating land resources is critical for agricultural development planning (Ashraf and Normohammadan 2011). In contrast, unorganized use of natural resource scarcity, land resource obliteration, and associated socioeconomic issues occur as a result of inappropriate land use. Because land evaluation promotes rational land use planning and the appropriate and sustainable use of natural resources, it is an important aspect of the solution to the land-use problem.

Multiple-criteria decision-making (MCDA) methods include the analytic hierarchy process (AHP) (Saaty 1980), Topsis (Chen 2000), Electre (Tzeng and Huang 2011), and Grey theory (zcan et al. 2011). AHP is an MCDA method used for assessing and analyzing land-use suitability. AHP entails multiple selections within a hierarchical system based on the significance and weight of the parameters in comparison with one another (Saaty 1980). It is critical to use a hierarchical approach to develop a specific relationship between a large numbers of criteria. The system uses scoring and a pair-wise comparison matrix to determine the relative significance of factors on a level. For assessing land suitability, an integrated approach of remote sensing (RS), Geographical Information System (GIS), and MCDA techniques was used (Negash and Seleshi 2004). Several researchers (Joerin et al. 2001; Cengiz and Akbulak 2009; Mustafa et al. 2011; Adhikary et al. 2015; Worqlul et al. 2015; Zolekar and Bhagat 2015; Aldababseh et al. 2018) have used GIS to create land suitability maps in their research areas. The land suitability evaluation is critical in developing a land-use map based on irrigation potential on a spatial basis (Diallo et al. 2016). The irrigation potential can be assessed by incorporating Multi-Criteria Decision Analysis in the ArcGIS environment and employing the weight overlay rule (Hussien et al. 2019; Gurara 2020; Chen et al. 2010). The assessment of land suitability for irrigation is critical for designing and implementing worthwhile irrigation projects and increasing agricultural production. So far, no research has been conducted in this area to determine whether the land is suitable for surface irrigation. As a result, the main objective of this study was to determine the suitability of land for surface irrigation by considering various factors based on their influence on surface irrigation development such as slope, altitude, soil texture, soil drainage, soil depth, available water storage capacity, land use/land cover, and distance from water sources.

Materials and methods

Description of the study area

The research was carried out in the West Amhara Region’s Minch Yekest catchment, covering a total area of 3321.44 ha. It is located between 10° 25′ 19″ and 10° 28′ 17″ North and 37° 18′ 13″ and 37° 23′ 58″ East (Fig. 1). The study area's altitude ranges from 1671 to 2132 m.a.s.l. and the range of slope from 0 to 220 percent. The mean annual minimum and maximum air temperatures in the area are 10.3 °C and 20.1 °C, respectively. In the study region, the mean annual rainfall varies between 900 and 1800 mm.

The major soil types of the Minch Yekest catchment are Lithic Leptosols and Humic Nitisols, with Lithic Leptosols (clay loam) occurring in the upper part of the catchment covering an area of 1018.83 ha and Humic Nitisols (clay) is occurring in the lower part of the catchment covering an area of 2302.61 ha. Farmland, grassland, forest land, and shrub land cover 1530.27 ha, 59.30 ha, 1528.56 ha, and 203.31 ha of the Minch Yekest watershed, respectively. Farmers’ main crops include wheat (Triticum aestivum L.), maize (Zea mays L.), barley (Hordeum vulgare), and teff (Eragrostis tef).

Data collection

To achieve the study’s objectives, various data inputs (Table 1) were gathered from the study area and various sources, including land use data from Ethiopia’s Ministry of Water, Irrigation, and Energy, meteorological data from the National Meteorological Agency (NMA), ASTER DEM downloaded from the USGS website, and soil data obtained from the website of the Harmonized World Soil Database (HWSD) (Nachtergaele et al. 2010). Following the collection of data, additional analysis is carried out. To complete the investigation efficiently, ArcGIS 10.3.1, Excel, and ERDAS Imagine 2014 were used.

Data analysis

The necessary information was acquired from multiple sources, and the potential suitability of the area for surface irrigation was determined using the ArcGIS Spatial Analyst Toolbox’s Weighted Overlay tool, which is based on Multi-Criteria Decision Analysis (MCDA) methodology. The major factors were developed and weighted to determine land suitability (Ceballos-Silva and López-Blanco 2003; Hamere and Teshome 2018). The key irrigation suitability criteria (Table 2) addressed during this study were slope, altitude, soil texture, soil drainage, soil depth, available water storage capacity, land use/land cover, and distance from water sources (Girma et al. 2020; Kassaye et al. 2019; Yohannes and Soromessa 2018; Yalew et al. 2016; Bagherzadeh and Gholizadeh 2016; Pramanik 2016). Finally, using the Weighted Overlay tool of the Spatial Analyst Toolbox in the ArcGIS 10.3.1 environment, the reclassified and
weighted factor maps are overlaid, and the final irrigation suitability map is generated.

Land suitability factors for surface irrigation

Land suitability classification is the process of evaluating and classifying specific areas of land based on their suitability for specific uses (FAO 1976). This type of land suitability analysis is crucial for development because it provides important information about the many constraints and potential opportunities for land use that are being investigated based on land capabilities.

Soil

Soil is an important factor in determining an area's suitability for agriculture and long-term irrigation (Sultan 2013; USDIBR 2003). The irrigation suitability of the soil

Table 1 Sources of data

Data type	Original sources format	Spatial resolution	Source of data	Derived map
Soil map	Vector	1:250,000	MoWIE/HWSD V: 1.2	Soil texture, soil drainage, soil depth and available water storage capacity
DEM	Raster	30 m	USGS portal: http://www.earthexplorer.usgs.gov	Slope, altitude and distance from water sources
LULC data	Raster	30 m	MoWIE	Land use/cover

DEM: Digital elevation model; LULC: Land use/land cover; MoWIE: Ministry of Water, Irrigation, and Energy of Ethiopia; HWSD: Harmonized World Soil Database Version 1.2; NMA: National Meteorological Agency
was determined using the revised FAO/UNESCO soil map of the East Africa classification system (FAO 1997; Dent and Young 1981). Different soil characteristics, such as soil texture, drainage, depth, and available water storage capacity (AWSC), were used to determine whether or not soil was suitable for irrigation (USDIBR 2003). The depth of the soil profile from the top to the layer of obstacles for roots is critical for determining land suitability for irrigation. Deep soils are important for anchoring plant nutrients and promoting plant growth.

Topographic factors

The study area’s topographic features (slope and altitude) were used to assess land suitability. The altitude was divided into two classes: 1671–2000 m and 2000–2132 m, with 1596.44 ha (48.06 percent) and 1725.00 ha (51.94 percent) coverage, respectively (Table 8). The slope has a direct impact on irrigation methods, erosion susceptibility, land development, soil tillage, agricultural machine use, design of on-farm irrigation systems, plant adaptation, and drainage requirements. The slope of the area was calculated using a 20 m resolution DEM and classified into four groups based on the FAO (1996) and USDIBR (2003) classification systems as 0–2, 2–5, 5–8, and > 8 percent.

Distance from the water source

One of the fundamental criteria for determining land suitability for irrigation is the proximity of the water source (Paul et al. 2020). The distance from the water source was determined and categorized into three classes using ArcGIS 10.3 (0–0.721 km, 0.721–1.442 km, and 1.442–2.163.5 km).

Land use/land cover

Another important factor used is land use, which was obtained from the Ethiopian mapping agency. The primary land use types found in the study area are farmland, grassland, shrub land, and forest land. Expert judgment was used to divide the land use classes into four categories of suitability (S1, S2, S3, and N).

Table 2 Studies on land suitability evaluation

Author	Methods	Crop	Criteria
Girma et al. 2020	GIS and AHP	General agriculture	Land use/land cover, soil, slope, and proximity to water sources
Kassaye et al. 2020	GIS and AHP	General agriculture	Soil pH, soil type, soil drainage, soil depth, AWSC, impermeable layer, electrical conductivity (ECe), cation-exchange capacity (CEC), phase, organic carbon, texture classes, an obstacle to root, land use/land cover, slope, and distance
Nasir et al. 2019	GIS and AHP	General agriculture	Slope, texture, depth, drainage characteristics, land use/cover, and distance to the water source
Yohannes and Soromessa 2018	GIS and AHP	Barley & Wheat	Soil depth, soil texture, soil drainage (permeability), soil erosion, slope, aspect, altitude fertility and soil chemical characteristics (pH, cation-exchange capacity (CEC), electrical conductivity (EC), organic matter (OM), available phosphorus, total nitrogen, and calcium carbonate), climatic parameters (temperature and rainfall) and accessibly (distance from road and water point)
Hailu and Quraishi 2017	GIS and AHP	General agriculture	Slope, soil texture, depth, drainage characteristics, soil type, and land use/cover
Yalew et al. 2016	GIS and AHP	General agriculture	Soil moisture, stoniness, soil group, water resources, elevation, slope, soil depth, distance from roads
Bagherzadeh and Gholizadeh 2016	Parametric and TOP-SIS approaches using GIS	Wheat	Soil, texture, electrical conductivity (ECe), exchangeable sodium percentage (ESP), CaCO₃, Gravel, Soil depth, organic carbon (OC), pH, Climate, Slope, Drainage, Flooding, Gypsum
Pramanik 2016	GIS and AHP	General agriculture	Slope, Elevation, Aspect, land use/land cover (LULC), Soil moisture, Drainage, Transport network, Soil characteristics, Geology
Akinci et al. 2013	GIS and AHP	General agriculture	Soil group, land use capability class (LUCS), land use capability sub-class (LUCSS), soil depth, slope, aspect, elevation, erosion, other soil properties
Structure of the land suitability classification

The land suitability classes of the Food and Agricultural Organization describe the degrees of suitability of a given type of land for a specific use (FAO 1976). The FAO (1976, 2007) proposed a method for evaluating land suitability in terms of suitability ratings ranging from highly suitable to not suitable based on the suitability of land characteristics to various crops. According to FAO (1976, 1983), land suitability maps are divided into two categories: suitable (S) and unsuitable (N). Based on their benefits and limitations, these orders are further classified into three and two classes, respectively: highly suitable (S1), moderately suitable (S2), marginally suitable (S3), and not suitable (N).

Table 3 Land suitability classification

FAO symbol	Suitability	Description	Land index
Class S1	Highly suitable	Land having no significant limitations to the sustained application of a given use, or only minor limitations that will not significantly reduce productivity or benefits and will not raise inputs above an acceptable level	75–100
Class S2	Moderately suitable	Land having limitations which in the aggregate are moderately severe for sustained application of a given use; the limitations will reduce productivity or benefits and increase required inputs to the extent that the overall advantage to be gained from the use, although still attractive, will be appreciably inferior to that expected on Class S1 land	50–75
Class S3	Marginally suitable	Land having limitations which in the aggregate are severe for sustained application of a given use and will so reduce productivity or benefits, or increase required inputs, that this expenditure will be only marginally justified	25–50
N	Not suitable	Land which has qualities that appear to preclude sustained use of the kind under consideration	0–25

Fig. 2 Overall Conceptual Framework used in the study
temporarily not suitable S4 (N1), and permanently not suitable S5 (N2) (Table 3).

The overall conceptual methodology employed during study presented in Fig. 2. Table 4 depicts the weights given to each of the contributing parameters and its classes.

Weight assignment using the AHP

The analytical hierarchy process was assigned weights to each contributing factor (AHP). AHP adopted a procedure that identifies and classifying criteria in order to assess the context of the spatial planning decisions (Vogel 2008). AHP assigns weights based on three principles: decomposition, comparative judgment, and priority synthesis (Eldrandaly 2007). AHP was used in the multi-criteria decision-making approach, which constructs a matrix of pairwise comparisons between the parameters affecting land suitability for agricultural purposes. A scale of 1 to 9 is used in AHP to indicate whether the two factors are equally important or one is more important than the others. Reciprocals of one to nine (1/1 and 1/9) indicate that one is less important than the other (Table 5).

To find the eigenvalues, which represent the parameter weights, a pair-wise comparison of contributing factors was

Table 4	Land suitability factor rating for irrigation					
Main factor	Sub factor	Factor rating	Source			
Topography	Slope (%)	0–2	2–5	5–8	> 8	Mandal et al. 2018, USDIBR (2003)
Soil	Drainage class	Well	Moderately well	Imperfectly	Poor	Nachtergaele et al. (2009)
Soil	Depth (cm)	> 100 (Very deep)	50–100 (Moderately deep)	10–50 (Shallow)	< 10 (Very shallow)	Mandal et al. 2018
Soil	Texture AWSC (mm/m)	L–SiCL, C	SiL, SCL, CL	SL	LS, Si–L	Nachtergaele et al. 2018
Soil	Distance from water source	0—721	721—1442	1442—2163	–	USDIBR (2003)
LU/LC	LU/LC	Farmland	Grassland	Barren & shrub land	Constraints (Forest, built-up, water, wetland)	Yohannes and Soromessa, 2018

where, SiL = silty-loam, SCL = silty-clay, LS = loamy-sand, L = loam, SL = sandy-loam, C = clay, CL = clay loam, Si = silt

Table 5	Saaty’s scale in AHP (Saaty 1980)	
Importance scale	Definition	Explanation
1	Equal importance	Two activities contribute equally to the objective
3	Moderately importance	Experience and judgment slightly favor one activity over another
5	Strongly more important/Much more important	Experience and judgment strongly favor one activity over another
7	Very strongly/Far more important	Demonstrated importance an activity is strongly favored and its dominance demonstrated in practice
9	Extremely more important	The evidence favoring one activity over another is of the highest possible order of affirmation
2,4,6,8	Intermediate values between the two adjacent judgments	When compromise is needed
Reciprocals	Values for inverse comparison	

Table 6	Values of random index (RI)									
n	1	2	3	4	5	6	7	8	9	10
RI	0.00	0.00	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49
performed and normalized. The random consistency indices (RI) (Table 6) developed by Saaty (1980) were used to determine the consistency ratio (CR), which measures the degree of consistency.

Consistency index (CI) computed using the formula below:

\[CI = \frac{\lambda_{\text{max}} - n}{n - 1} \]

where \(\lambda_{\text{max}} \) is the largest eigenvalue of the pairwise comparison matrix and \(n \) is the number of classes.

Then, \(CR \) is given by the following formula (Saaty 1980):

\[CR = \frac{CI}{RI} \]

Table 7 Pairwise comparison matrix for assessing the relative relevance of eight factors

	Euclidian distance	Depth	Slope	AWSC	Texture	Drainage class	LU/LC	Altitude	Average weights	Weights (%)
Euclidian distance	1								0.331	33.1
Depth	0.5	1							0.231	23.1
Slope	0.33	0.5	1						0.157	15.7
AWSC	0.25	0.33	0.5	1					0.106	10.6
Texture	0.2	0.25	0.33	0.5	1				0.071	7.1
Drainage class	0.17	0.2	0.25	0.33	0.5	1			0.048	4.8
LU/LC	0.14	0.17	0.2	0.25	0.33	0.5	1		0.033	3.3
Altitude	0.12	0.14	0.17	0.2	0.25	0.33	0.5	1	0.024	2.4

CR = 2.9%
Consistency is acceptable

Results and discussion

Weight of land suitability parameters

For land suitability analysis, the distance from the water source (Euclidian distance), soil depth, and slope were given the most weight (Table 7). For various reasons, such as access to water and minimizing power consumption for the pump, land located closer to water sources (rivers) was deemed more suitable for surface irrigation. Soil depth influences agricultural production by determining the potential for rooting depth. Surface irrigation was prioritized over deep soil, and vice versa. Subsurface irrigation was prioritized in low slope to flat areas, while steep slopes were deemed unsuitable for surface irrigation.

Surface irrigation was prioritized in areas with the greatest available water storage capacity (AWSC) (Table 7). Surface irrigation was deemed highly and moderately suitable for clay and clay loam textured soils, respectively. As a result, in this study, clay textured soil was assigned a high relative influence value (Table 8). Weights are assigned based on the theme feature’s characteristics and its relationship to irrigation suitability. The geometric mean and normalized weights were calculated using the weights assigned to each feature and a pairwise comparison of the feature classes.

Land and soil characteristics of the watershed

In this study, approximately 74.81 percent of the area was found to be above an 8 percent slope. According to USDI-BR (2003) and Mandal et al. (2018), landscapes with 1–2 percent slope are 95 percent suitable, 2–5 percent slope are 90 percent suitable, 5–8 percent slope are 80 percent suitable, and more than 8 percent slope are 70 percent suitable for none terraced slopes. The distance between irrigable
land and rivers in the study area ranges from 0 to 2.16 km. Irrigated areas should be as close to rivers or other water sources as possible.

The depth of the soil ranges from 10 to 100 cm. About 2302.61 ha (69.33%) of the area has a soil depth of 100 cm with clay texture, while the remaining 1018.83 ha (30.67%) has a soil depth of 10 cm with clay loam texture (Table 8). The soil in the study area was moderately well and imperfectly draining. Soil drainage in a specific area can be classified into four types, according to Nachtergaele et al. (2010). These are well, moderately well, imperfectly well, and poorly drained. Drainage ensures that the soil is aerated properly. Excess or standing water on the land can choke the crops. According to USDIBR (2003), available water storage capacity (AWSC) is divided into four categories: > 100 mm/m, 75–100 mm/m, 15–75 mm/m, and 15 mm/m. AWSC of > 100 mm/m and 15–75 mm/m are found in approximately 69.33% and 30.67% of the study area, respectively (Table 8).

Farmland, grassland, shrub land, and forest land were identified as the area’s four land use/land cover classes, covering 1530.27 ha (46.07%), 59.30 ha (1.79%), 203.31 ha (6.12%), and 1528.56 ha (46.02%), respectively (Table 8).

Areas with slopes ranging from 0 to 2% were given high weights (S1 class) because they effectively infiltrate water to reach the crop root zone. Areas with slope percentages greater than 8 were deemed unsuitable because they tend to runoff rather than reach the crop root zone (Fig. 3 and Table 8).

Irrigation land suitability

Due to the small Euclidian distance from the water source, deep soil depth, flat slope, and high available water storage capacity, the upstream and central parts of the area were found to be highly suitable for surface irrigation on the land suitability map. The northwest parts of the watershed, on the other hand, were found to be unsuitable for surface irrigation (Fig. 4). The watershed 2092.59 ha (63.0%), 207.62 ha (6.25%), 952.83 ha (28.69%), and 68.40 ha (2.06%) were found to be highly suitable, moderately suitable, marginally suitable, and not suitable, respectively, out of a total area of 3321.44 ha (Table 9 and Fig. 4).

Table 8 Factors for surface irrigation land suitability assessment

Main factor	Criteria	Classes	Suitability	Local weight (%)	Global weight (%)	Area coverage (ha)	Area coverage (%)
Topography	Slope (%)	0–2	S1	46.7	15.6	87.60	2.64
		2–5	S2	27.7	286.96	8.64	
		5–8	S3	16	462.00	13.91	
		> 8	N	9.5	2484.88	74.81	
Altitude (m)		1671–2000	S2	33.3	2.4	1578.80	47.53
		2000–2132	S1	66.7		1742.64	52.47
Soil	Drainage class	Moderately well	S2	66.7	4.8	2302.61	69.33
		Imperfectly	S3	33.3		1018.83	30.67
	Depth (cm)	100	S2	75	23.1	2302.61	69.33
		10	S3	25		1018.83	30.67
Texture		Clay	S1	66.7	7.1	2302.61	69.33
		Clay loam	S2	33.3		1018.83	30.67
AWSC (mm/m)		150	S1	75	10.6	2302.61	69.33
		15	S3	25		1018.83	30.67
Distance from water source	Euclidian distance (m)	0–721	S1	54	33.1	3029.53	91.21
		721–1442	S2	29.7		280.00	8.43
		1442–2163.5	S3	16.3		11.91	0.36
LU/LC		Farm land	S1	56.4	3.3	1530.27	46.07
		Grassland	S2	25.8		59.30	1.79
		Shrubland	S3	10.9		203.31	6.12
		Forest land	N	6.9		1528.56	46.02
Fig. 3 Factors map and degree of suitability to assess the ideal location for surface irrigation: a Distance from water sources, b Soil Depth, c Slope, d Available water storage capacity, e Soil Texture, f Drainage, g Land use/land cover, h Altitude

Fig. 4 Land suitability map for agriculture
Table 9: The distribution of land suitability classes for agricultural purpose in the study area

Suitability	Area (ha)	Percentage
Highly suitable (S1)	2092.59	63.00
Moderate suitable (S2)	207.62	6.25
Marginally suitable (S3)	952.83	28.69
Not suitable (N)	68.40	2.06
Total	3321.44	100

Conclusion

The land suitability analysis for irrigation is critical for irrigation development and future planning. The assessment of land suitability for surface irrigation aids in decision-making and agricultural development planning. Using different thematic maps, remote sensing and GIS were integrated with the AHP for evaluating land suitability in the study area. The weights of thematic layers were assigned based on their land suitability characteristics, then they were overlaid and integrated for surface irrigation. According to the data, about 63% of the entire land is extremely suitable, indicating the possibility of agricultural and irrigation project development. This suggested that large area coverage could be used for small and medium-scale irrigation projects. This methodology, along with additional and modified parameters, can be used in future studies in various parts of the country. Before designing and constructing irrigation projects, development agents and policymakers could use this technique of suitability analysis.

Funding

The authors received no direct funding for this research.

Declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adhikary PP, Chandrasekharan H, Trivedi SM, Dash CJ (2015) GIS applicability to assess spatio-temporal variation of groundwater quality and sustainable use for irrigation. Arab J Geosci 8(5):2699–2711

Akinci H, Özalp AY, Turgut B (2013) Agricultural land suitability analysis using GIS and AHP technique. Comput Electron Agric 97:71–82

Albaji M, Landi A, Boroomand Nasab S, Moravej K (2008) Land suitability evaluation for surface and drip irrigation in Shavoor Plain Iran. J Appl Sci 8(4):654–659

Aldabasheh A, Temimi M, Maghelal P, Branch O, Wulfmeyer V (2018) Multi-criteria evaluation of irrigated agricultural suitability to achieve food security in an arid environment. Sustainability 10(3):803

Arabameri A, Pradhan B, Pourghasemi HR, Rezaei K (2018) Identification of erosion-prone areas using different multi-criteria decision-making techniques and GIS. Geomat Nat Haz Risk 9(1):1129–1155

Ashraf S, Normohammadan B (2011) Comparing FAO methods to estimate wheat productivity potential in Damghan plain of Iran. World Appl Sci J 13(8):1787–1792

Bagherzadeh A, Gholizadeh A (2016) Modeling land suitability evaluation for wheat production by parametric and TOPSIS approaches using GIS, northeast of Iran. Model Earth Syst Environ 2(3):1–11

Ceballos-Silva A, Lopez-Blanco J (2003) Delination of suitable areas for crops using a multi-criteria evaluation approach and land use/cover mapping: a case study in Central Mexico. Agric Syst 77(2):117–136

Cengiz T, Akbulak C (2009) Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: a case study of Dümrek village (Çanakkale, Turkey). Int J Sust Dev World 16(4):286–294

Chen CT (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9

Chen Y, Yu J, Khan S (2010) Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ Model Softw 25(12):1582–1591

Davidson DA (1992) The evaluation of land resources. Longman Scientific and Technical, UK

Dent D, Young A (1981) Soil survey and land evaluation. George Allen & Unwin, Australia

Diallo MD, Wood SA, Diallo A, Mahatma-Saleh M, Ndiaye O, Tine AK, Guisse A (2016) Soil suitability for the production of rice, groundnut, and cassava in the peri-urban Niayes zone, Senegal. Soil Tillage Res 155:412–420

Eldrandaly K (2007) Expert systems, GIS, and spatial decision making: current practices and new trends. Expert Syst Trends 8:207–228

English MJ, Solomon KH, Hoffman GJ (2002) A paradigm shift in irrigation management. J Irrig Drain Eng 128(5):267–277

FAO (1996) An interactive multi-criteria analysis for land resource appraisal. Italy, Rome

FAO (1976) Food and agricultural organization of the United Nations: a framework for land evaluation. Soils Bulletin Rome, Rome

FAO (1983) Guidelines for the preparation of irrigation and drainage projects. Revised version

FAO (1984) Land evaluation: technical report 5, Part III. Crop environmental requirements; Report prepared for the Government of Ethiopia by FAO acting as executing agency for the UNDP, Rome, Italy

FAO (1993) Guidelines for land use planning; FAO development series 1. FAO: Rome, Italy, p 96
FAO (1997) Irrigation potential in Africa: a basin approach. FAO Land and Water Bulletin 4
FAO (2007) Land evaluation. Rome
Girma R, Gebre E, Tadesse T (2020) Land suitability evaluation for surface irrigation using spatial information technology in Omo-Gibe River Basin, Southern Ethiopia. Irrig Drain Syst Eng. https://doi.org/10.37421/isdce.2020.9.245
Gurara MA (2020) Evaluation of land suitability for irrigation development and sustainable land management using ArcGIS on Katar Watershed in Rift Valley Basin, Ethiopia. J Water Resour Ocean Sci 9(3):56–63
Hailu T, Quraishi S (2017) GIS based surface irrigation suitability assessment and development of map for the low land Gilo Sub-Basin of Gambella. Ethiop Civ Environ Res 9(5):21–27
Hamere Y, Teshome S (2018) Land suitability assessment for major crops by using GIS-based multi-criteria approach in Andit Tid watershed. Ethiop Cogent Food Agric 4(1):1470481
Hussien K, Woldu G, Birhanu S (2019) A GIS-based multi-criteria land suitability analysis for surface irrigation along the Erer Watershed, Eastern Hararghe Zone. Ethiop East Afr J Sci 13(2):169–184
Joerin F, Thériault M, Musy A (2001) Using GIS and outranking multicriteria analysis for land-use suitability assessment. Int J Geogr Inf Sci 15(2):153–174
Kadigi RM, Tesfay G, Bizoza A, Zibadou G, Zilberman D (2019) Irrigation and water use efficiency in Sub-Saharan Africa. Gates Open Res 3(587):587
Kassaye KT, Boullange J, Saito H, Watanabe H (2020) Monitoring soil water content for decision support in agricultural water management based on critical threshold values adopted for Andosol in the temperate monsoon climate. Agric Water Manag 229:105930
Kutter A, Nachtergaele FO, Verheye WH (1997) The new FAO approach to land use planning and management, and its application in Sierra Leone. ITC J 3(4):278–283
Mandal B, Dolui G, Satpathy S (2018) Land suitability assessment for potential surface irrigation of river catchment for irrigation development in Kansai watershed, Purulia, West Bengal. India Sustain Water Resour Manag 4(4):699–714
Mustafa AA, Singh M, Sahoo RN, Ahmed N, Khanna M, Sarangi A, Mishra AK (2011) Land suitability analysis for different crops: a multi criteria decision making approach using remote sensing and GIS. Researcher 3(12):61–84
Nachtergaele F, van Velthuizen H, Verelst L, Batjes NH, Dijkshoorn K, van Engelen VW and Montanarella L (2010) The harmonized world soil database. In: Proceedings of the 19th world congress of soil science, soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010, pp 34–37
Negash W, Seleshi B (2004) GIS based irrigation suitability analysis. J Water Sci Technol 8:55–61
Paul M, Negahban-Azar M, Shirmohammadi A, Montas H (2020) Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis. Agric Water Manag 231:105987
Pramanik MK (2016) Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Model Earth Syst Environ 2(2):56
Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resources allocation. McGraw, New York, p 281
Sultan D (2013) Assessment of irrigation land suitability and development of map for the fogera catchment using GIS, South Gondar. Asian J Agric Rural Dev 3(1):7–17
SYS C, Van Ranst E, and DEBAVEYE J Land evaluation. Part I: principles in land evaluation and crop production calculations. Agricultural Publications nr. 7, GADC, Brussels, Belgium, 1991
Tzeng GH, Huang JJ (2011) Multiple attribute decision making: methods and applications. CRC Press, USA
USDIBR (United State Development of the Interior Bureau of Reclamation) (2003) Technical guidelines for irrigation suitability land classification. Technical Service Center Land Suitability and Water Quality Group, Denver, Colorado
Vogel R (2008) A software framework for GIS-based multiple criteria evaluation of land suitability. In: 11th AGILE international conference on geographic information science, University of Girona, Spain, pp 1–12
Woryqlul AW, Collick AS, Rossiter DG, Langan S, Steenhuis TS (2015) Assessment of surface water irrigation potential in the Ethiopian highlands: The Lake Tana Basin. CATENA 129:76–85
Yalew SG, Van Griensven A, van der Zaag P (2016) AgriSuit: a web-based GIS-MCDA framework for agricultural land suitability assessment. Comput Electron Agric 128:1–8
Yohannes H, Soromessa T (2018) Land suitability assessment for major crops by using GIS-based multi-criteria approach in Andit Tid watershed. Ethiop Cogent Food Agric 4(1):1470481
Zolekar RB, Bhagat VS (2015) Multi-criteria land suitability analysis for agriculture in hilly zone: remote sensing and GIS approach. Comput Electron Agric 118:300–321

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.