Tetradenia riparia (Lamiaceae) essential oil: an alternative to Rhipicephalus sanguineus

Giuliana Zardeto-Sabec¹, Renan Almeida de Jesus¹, Herika Line Marko de Oliveira¹, Caio Franco de Araújo Almeida Campo², Ezilda jacomassi³, José Eduardo Gonçalves³,³⁴ and Zilda Cristiani Gazim¹∗

¹Programa de Pós-Graduação em Biotecnologia Aplicada à Agricultura. Universidade Paranaense - UNIPAR, Praça Mascarenhas de Moraes, 4282, CEP 87502-210, Umuarama-PR, Brasil
²Mestrado em Tecnologia Limpas e ³Instituto Cesumar de Ciência, Tecnologia e Inovação – ICETI. Centro Universitário Cesumar-UNICesumar, Av. Guedner, 1610. Jardim Aclimação, Maringá, Paraná, 87050-900, Brasil
⁴Mestrado Profissional em Plantas Medicinais e Fitoterápicos na Atenção Básica, Universidade Paranaense (UNIPAR), Praça Mascarenhas de Moraes, 4282, Umuarama, PR, 87502-210, Brasil

*Corresponding author: cristianigazim@prof.unipar.br

Abstract

In Brazil, Rhipicephalus sanguineus resistance to some pyrethroids have been detected, motivating research on new phytoinsecticides such as essential oil from Tetradenia riparia leaves (EO_L) and flower buds (EO_FB). The essential oils were obtained by hydrodistillation (3h) and identified by GC/MS. In addition, a multivariate exploratory analysis was done to determine the analysis of the major compounds (PCA). The bioassays on R. sanguineus larvae were done by immersion test at different EO concentrations which ranged from 50,000 to 0.47 mg/mL (v/v). The action mechanism of EOs were determined by bioautographic method evaluating the inhibitory potential on the acetylcholinesterase enzyme. The EO yield in leaves was 0.29±0.22 (%) and in flower buds 0.38±0.17 (%). The class projections showed oxygenated sesquiterpenes (43.62%) and diterpenes (15.60%) in EO_FB, and hydrocarbon sesquiterpenes (26.44%) and oxygenated monoterpenes (16.44%) in EO_L. Four components presented a greater distancing of mass flow: fenchone (11.57 and 6.01 %), α-cadinol (12.21 and 13.69 %), 14-hydroxy-9-epi-caryophyllene (8.56 and 15.38 %), and caryophyllene oxide (1.32 and 4.50 %) in EO_L and EO_FB, respectively. The lethal concentrations (LCs) to kill R. sanguineus larvae were (LC50: 2.18±0.24 and LC99.9: 9.98±0.10 mg/mL) for EO_FB, and (LC50: 2.13±0.24 and LC99.9: 20.12±0.54 mg/mL) for EO_FB. The action mechanism of EOs by bioautographic methods indicated an inhibition of 0.70 mg/mL (EO_L) and 1.40 mg/mL (EO_FB) on the acetylcholinesterase enzyme (ACHE). Therefore, this species can be considered promising to be part of the chemical larvicides to control this ectoparasite.

Keywords: dog ticks, monoterpenes, fenchone, limonene, camphor, acetylcholinesterase, bio insecticides, falsa mirra.

Abbreviations: GC/MS_gas chromatographer coupled to mass spectrometer; LC_lethal concentration; LC99.9_lethal concentration to eliminate 99.9% of larvae and ticks, LC50_lethal concentration to eliminate 50% of larvae and ticks.

Introduction

Rhipicephalus sanguineus, a cosmopolitan tick is probably the most distributed ixodid worldwide (Szabó et al., 2009), and has been found more and more often in man’s home and peridomiciliary environments of the main urban host of this ectoparasite, the domestic dog Canis familiaris (Paz et al., 2008). In dogs, besides the direct damages, this ectoparasite is responsible for the transmission of Ehrlichia canis, Babesia canis, Haemobartonella canis and Hepatozoon canis. In humans, it is the vector of Rickettsia conori and Rickettsia rickettsia, and this diagnosis is especially important once there have been reports on human parasitism by tick in Brazil (Borges et al., 2007). The growing number of cases of human parasitism by R. sanguineus has indicated that the interaction between human beings and R. sanguineus may be more common than it has been imagined (Cunha et al., 2009; Salkeld et al., 2019).

The control of this mite happens with the utilization of chemical acaricides from the classes of Isoxazolines (Afoxolaner, Fluralaner, Sarolaner and Lotilaner), Phenylpyrazoles (Fipronyl), Spinozins (Spinosad), Neonicotinoids (Nitenpyram), Carbamates and Organophosphates (Pereira et al., 2008; Raimundo et al., 2017); however, the indiscriminate use of these substances resulted in the selection of resistant populations (Jeyathilakan et al., 2019). In Brazil, R. sanguineus resistance to some pyrethroids were recorded by Fernandes (2001), and since then the literature has been reporting that several synthetic acaricides have lost or reduced their efficiency due to the development of resistant strains (Brito et al., 2011). Another problem regards the number of animal and human
poisoned mostly by organophosphates and carbamates (Raimundo et al., 2017; Bortolucci et al., 2018) due to the easy product acquisition and their indiscriminate utilization (Xavier et al., 2007).

Therefore, alternative controls have been studied and, therefore, the exploration of plants as efficient sources of botanical acaricides is promising and must be motivated (Sugauara et al., 2019). The utilization of secondary phytochemical metabolites have been able to interfere in arthropods’ physiology such as neuroendocrine systems, feeding, metamorphoses, vulnerable points to population control based on arthropods’ life cycle (Garcia and Azambuja, 2004).

Interest in the development of pesticide products with essential oils is based on studies that showed that they have repellent, fumigating, larvicidal and adulticide action (Tripathi and Mishra, 2016). The insecticide effect of essential oils occurs due to the variability of phytochemical standards and the way this phytomolecules penetrate the organism considering that essential oils can be inhaled, ingested or absorbed by the skin of insects (Magalhães et al., 2015). Another advantage to the use of essential oils regards their fast degradation in the environment and their increased specificity that favors benefic insects (Tripathi et al., 2009). Little is known on the physiological actions of essential oils on insects, but Kostyukovsky et al. (2002) suggested a neurotoxic action as it was shown with linalool that acts on the nervous system, affecting the ionic transport and the release of acetylcholinesterase in insects (Junior, 2003). This action mechanism was demonstrated in our study where *T. riparia* essential oil acted out by inhibiting acetylcholinesterase enzyme.

Tetradenia riparia (Hochst) Codd, from the Lamiaceae family (Souza and Lorenzi, 2005; Martins et al., 2008), is a plant utilized in popular medicine, and the essential oil extracted from its leaves has been used to treat malaria, criptococosis, candidiasis and respiratory infections (Van Puyvelde et al., 1986; Campbell et al., 1997; Okem et al., 2012, York et al., 2012). Studies carried out with this species have shown antimicrobial activity (Boily and Van Puyvelde 1986; Van Puyvelde et al. 1994; Gazim et al., 2010; Ndamane et al., 2009). Another advantage to the use of essential oils regards their fast degradation in the environment and their discrimination against pests due to the variability of phytochemical standards and the way this phytomolecules penetrate the organism considering that essential oils can be inhaled, ingested or absorbed by the skin of insects (Magalhães et al., 2015). Another advantage to the use of essential oils regards their fast degradation in the environment and their increased specificity that favors benefic insects (Tripathi et al., 2009). Little is known on the physiological actions of essential oils on insects, but Kostyukovsky et al. (2002) suggested a neurotoxic action as it was shown with linalool that acts on the nervous system, affecting the ionic transport and the release of acetylcholinesterase in insects (Junior, 2003). This action mechanism was demonstrated in our study where *T. riparia* essential oil acted out by inhibiting acetylcholinesterase enzyme.

Tetradenia riparia (Hochst) Codd, from the Lamiaceae family (Souza and Lorenzi, 2005; Martins et al., 2008), is a plant utilized in popular medicine, and the essential oil extracted from its leaves has been used to treat malaria, criptococosis, candidiasis and respiratory infections (Van Puyvelde et al., 1986; Campbell et al., 1997; Okem et al., 2012, York et al., 2012). Studies carried out with this species have shown antimicrobial activity (Boily and Van Puyvelde 1986; Van Puyvelde et al. 1994; Gazim et al., 2010; Ndamane et al., 2009). Another advantage to the use of essential oils regards their fast degradation in the environment and their increased specificity that favors benefic insects (Tripathi et al., 2009). Little is known on the physiological actions of essential oils on insects, but Kostyukovsky et al. (2002) suggested a neurotoxic action as it was shown with linalool that acts on the nervous system, affecting the ionic transport and the release of acetylcholinesterase in insects (Junior, 2003). This action mechanism was demonstrated in our study where *T. riparia* essential oil acted out by inhibiting acetylcholinesterase enzyme.

This study aimed to investigate the larvicidal potential of essential oil from *T. riparia* leaves and flower buds against *Rhipicephalus sanguineus* tick.

Results

Physical Aspects and Yield (%)

The essential oil from *T. riparia* leaves (EO_L) presented orange color, yield of 0.29±0.22 (%), whereas the essential oil from flower buds (EO_B) had reddish orange color with yield of 0.38±0.17 (%).

Chemical Composition and Principal Components analysis (PCA)

Through the chemical analysis by GC/MS 48 compounds were identified in EO_L and 56 in EO_B (Table 1). The class projection showed oxygenated sesquiterpenes (43.62%) and oxygenated diterpenes (15.60%) in EO_L, and hydrocarbon sesquiterpenes (26.44%) and oxygenated monoterpenes (16.44%) in EO_B (Fig 1).

Grouping by ACP was done including the major compounds identified in EO from leaves and flower buds. Four compounds out of them presented greater distancing of larvae in 10 minutes of exposure. L-fenchone (11.57 % and 6.01 %), α-cadinol (1.21 % and 13.69 %), 14-hidroxy-9-epi-caryophyllene (8.56 % and 15.38 %) and caryophyllene oxide (1.32 % and 4.50 %), respectively (Fig 2).

Larvicidal activity by Larval Packet Test

The results found for larvicidal activity of *T. riparia* EO_L and EO_B on *Rhipicephalus sanguineus* larvae are shown in Table 2. The lethal concentrations (CLs) found to kill *Rhipicephalus sanguineus* larvae are presented in Table 3. Another important aspect within this study was to determine which action mechanism of the EO acted on *R. sanguineus* larvae.

The Utilized protocol was based on the evaluation of the inhibitory capacity of EOs on the acetylcholinesterase enzyme by bioautographic method and whose results are shown on Table 4. The leaves essential oil presented greater larvicidal activity (CL_{99.9} 9.98 mg/mL) when compared to the essential oil from flower buds (CL_{99.9} 20.12 mg/mL). This difference can be related to the greater amount of hydrocarbon and oxygenated monoterpenes in EO_L (23.21%) when compared to EO_B (10.80%) according to Table 1 and Figures 1 and 2, because, according to Tripathi and Mishra (2016), monoterpenes present insecticidal potential and, according to Lee et al. (2004), this potential can be explained by the fact that the compounds are volatile, lipophilic and able to quickly penetrate inside insects interfering in their physiological functions. Analyzing the chemical composition of *T. riparia* essential oil, four monoterpenes are found in greater amount in EO_L when compared to EO_B: L-fenchone (11.57 %; 6.01 %), limonene (1.16 %; 0.37 %), L-camphor (2.38 %; 1.36 %), α-pinene (1.57 %; 0.23 %) and δ-caryophyllene (5.70 %; 3.85 %), respectively, which present potential insecticide by bibliographic review as described in Table 5. Limonene has pyoimmune potential and is an active ingredient in commercially available shampoo against fleas (Atthea Laboratories, Inc., Cornell, USA) (Tripathi et al., 2009). Also, it can be used in combination with detergent to control aphids, mealybugs, ants, fleas, ticks and mites (Moreira et al., 2006). The utilization of this compound is safe due to its low lethal concentration (LC₅₀) which is higher than 5.000 mg/kg. The bio insecticide potential of L-fenchone was studied by Sánchez-Ramos and Castañera (2001) in female *Tyrophagus putrescentiae* (Schrank) mites exposed to inhalation (9.0 µL/L) of fenchone for 24 h, resulting in 100 % of mortality. The larvicidal activity of monoterpenes α- and β-pinene on *R. (B.) microplus* tick was measured by Prates et al. (1993) and the results indicated 100 % lethality of larvae in 10 minutes of exposure. Sutherst et al. (1982) attributed the toxic effect that caused the immobilization and death of 100 % of *R. (B.) microplus* larvae to a mixture of α-pinene and β-pinene, found in tropical legumes *Stylosanthes scabra* and *S. viscosa*, after 24 hours of contact with these legumes. In research studies developed by Prates et al. (1998), it took (+)–camphor 60 minutes to
Table 1. Chemical composition of essential oil from *Tetradenia riparia* leaves and flower buds.

Peak	Compounds	Relative Area (%)	Leaves	Flower buds	RI	Identification methods
1	α-pinene	1.57	0.23	901	a,b,c	
2	Camphene	1.22	0.16	913	a,b,c	
3	Sabine	1.41	0.34	930	a,b,c	
4	δ-pinene	0.73	0.23	935	a,b,c	
5	Limonene	1.16	0.37	973	a,b,c	
6	cis-octene	0.49	0.09	976	a,b,c	
7	Trans-δ-octene	-	0.30	977	a,b,c	
8	δ-terpinene	0.20	-	996	a,b,c	
9	L-fenchone	11.57	6.01	1111	a,b,c	
10	Fenchol	0.81	0.55	1122	a,b,c	
11	L-camphor	2.38	1.36	1136	a,b,c	
12	Bornyl L	0.82	0.61	1145	a,b,c	
13	Terpinene-4-ol	0.46	0.16	1150	a,b,c	
14	L-α-Terpine	0.40	0.39	1155	a,b,c	
15	Bicycloelemene	0.34	0.31	1314	a,b,c	
16	α-copaene	0.88	0.47	1334	a,b,c	
17	δ-elemene	0.68	0.53	1342	a,b,c	
18	α-gurjene	1.69	1.33	1350	a,b,c	
19	δ-carenylene	5.70	3.85	1354	a,b,c	
20	Trans-α-benigmatone	0.83	0.69	1461	a,b,c	
21	Aromadendrene	0.36	-	1468	a,b,c	
22	α-humulene	0.59	0.24	1468	a,b,c	
23	Trans-δ-farnesene	0.31	0.23	1471	a,b,c	
24	Allo- aromadendrene	0.30	0.42	1478	a,b,c	
25	α-amorphene	0.61	0.16	1481	a,b,c	
26	Zingiberene	1.24	0.45	1482	a,b,c	
27	Viridiflorene	-	1.83	1484	a,b,c	
28	Bicyclogermacrene	3.68	3.55	1486	a,b,c	
29	α-murolene	0.84	0.48	1487	a,b,c	
30	Trans-α-farnesene	0.51	0.33	1489	a,b,c	
31	Cis-α-bisabolene	1.15	0.67	1492	a,b,c	
32	γ-cadinene	1.29	2.07	1494	a,b,c	
33	δ-cadinene	4.60	2.61	1495	a,b,c	
34	Trans-cadin-1,4-diene	0.84	1.41	1496	a,b,c	
35	Elemol	0.23	-	1501	a,b,c	
36	Palustrol	-	0.18	1530	a,b,c	
37	1,6-germacraad-5-ol	-	2.93	-	a,b,c	
38	Caryophyllene oxide	1.32	4.50	1538	a,b,c	
39	Globulol	-	1.08	1545	a,b,c	
40	Zingiberene	0.25	0.26	1553	a,b,c	
41	Ledol	0.54	0.53	1563	a,b,c	
42	δ-oplopanone	0.21	0.32	1573	a,b,c	
43	α-murolol	3.69	1.73	1595	a,b,c	
44	T-cadinol	1.60	2.05	1596	a,b,c	
45	T-murolol	3.43	3.90	1609	a,b,c	
46	α-cadinol	12.21	13.69	1622	a,b,c	
47	14-hydroxy-9-epi-caryophyllene	8.56	15.38	1645	a,b,c	
48	Abietadiene	7.29	7.45	2012	a,b,c	
49	n.i	-	0.29	2016	a,b,c	
50	Calyculone	0.28	0.22	2016	a,b,c	
51	5-Indacene-1,7-dione, 2,3,5,6-tetrahydro-3,3,4,5,5,8-hexamethyl	-	0.51	2075	a,b,c	
52	Manoyl oxide	1.43	2.90	2089	a,b,c	
53	Cembrene	-	0.16	2097	a,b,c	
54	9β,13β-epoxy-7-abietene	0.31	0.45	2097	d*	
55	n.i	-	0.20	2136	a,b,c	
56	13-α,15-α-epoxypimar-8-one	-	0.16	2161	a,b,c	
57	(1E,3E,11E)-Cembradiene-1,3,11-trien-6-one	-	0.60	2173	a,b,c	
58	6,7-dehidroxylanolone	5.80	9.61	2192	d*	
59	Anthracene, 1,4-dimethoxy-9-phenyl	-	0.99	2244	a,b,c	
60	n.i	-	0.15	2256	a,b,c	
61	Gibberelin A3	-	0.28	2225	a,b,c	
	Total identified	99.74	99.38			

Compounds listed according to the retention order in HP-30 column. Retention index (RI) calculated using columns Carbowax 20M, FFAP, and SP-1000. Identification based on the comparison with mass spectrum from Wiley 275. Library; Relative area(%); percentage of the area occupied by the compounds in the chromatogram. n.i = not identified; t = traces; d = absent; d* = identification by Nuclear Magnetic Resonance (NMR) (Su et al., 2016).
Fig 1. Biplot of PCA scores and loadings for the GC-MS representing the projection of chemical classes of the essential oil from *Tetradenia riparia* (Hochst.) (Lamiaceae) leaves and flowers buds.

Table 2. Larval mortality (%) of essential oil from *Tetradenia riparia* leaves and flower buds on *Rhipicephalus sanguineus* larvae.

Concentration (mg/mL)	Essential Oil from leaves	Essential Oil from flower buds
Positive control	100^A,a	100^A,a
25.00	100^A,a	100^A,a
12.50	100^A,a	90.64±2.71^AB,b
6.25	90.61±1.21^AB,a	70.48±2.24^BC,b
3.12	80.77±0.72^BC,a	65.85±6.47^CD,b
1.50	69.59±6.38^CD,a	36.68±1.18^EF,b
0.70	30.46±1.92^CD,a	18.88±1.92^EF,b
0.39	0.00^E,c	0.00^E,c
Negative control	0.00^E,c	0.00^E,c

Values presented with average ± standard deviation. Different capital letters in the same column and small letters in the same row indicate significant difference by Tukey’s test (p ≤ 0.05). Positive control: commercial organophosphorus (cypermethrin 15%; chlorpyrifos 25%; citronellal 1%). Negative control: polysorbate 80 aqueous solution 2%.

Table 3. Lethal concentrations (LC_{50} and LC_{99.9} mg/mL) of essential oil from *Tetradenia riparia* leaves and flower buds on *Rhipicephalus sanguineus* larvae by Probit analysis.

	LC_{50}	LC_{99.9}
Positive Control	0.019 ± 0.001^a	0.20 ± 0.015^a
Essential oil from leaves	2.18 ± 0.24^b	9.98 ± 0.10^c
	(1.73 – 2.63)	(9.49 – 10.46)
Essential oil from flower buds	5.36 ± 0.50^c	20.26 ± 0.59^d
	(2.51 – 8.21)	(19.77 – 20.75)

Values presented with average ± standard deviation. Different letters in the same column indicate significant difference by Tukey’s test (p ≤ 0.05). LC_{50}: lethal concentration 50%; LC_{99.9}: lethal concentration 99.9%; CI: confidence interval. Positive control: commercial organophosphorus.
Fig 2. Biplot of PCA scores and loadings for the GC-MS representing the projection of chemical compounds of the essential oil from Tetradenia riparia (Hochst.) (Lamiaceae) leaves and flowers buds.

Table 5. Bioinsecticidal activities of monoterpenes found in essential oil from Tetradenia riparia leaves and flower buds.

Monoterpenes	Chemical structure	Bioinsecticidal activities
Limonene	![Limonene](image)	Insecticide (Nakatani 1999, Prates & Santos 2000, Trumble 2002, Júnior 2003, Lee et al. 2003, Moreira et al. 2006, Tripathi et al. 2016, Niculau et al. 2013), Larvicidal (Santos et al. 2011), Acaricidal (Jaenson et al. 2005, Badawy et al. 2010, Roh et al. 2013, Abdelgaleil et al. 2019).
Fenchone	![Fenchone](image)	Acaricide (Sánchez-Ramos & Castañera 2001, Lee 2004, Lage et al. 2015, Abdelgaleil et al. 2019), Insecticide (Kim & Ahn 2001).
α-pinene	![α-pinene](image)	Insecticide (Harborne & Baxter 1993, Júnior 2003).
β-pinene	![β-pinene](image)	Insecticide (Nakatani et al. 1998, Júnior 2003), Larvicide (Pohilt et al. 2011).
L-camphor	![L-camphor](image)	Repellent (Negahban et al. 2007; Jeon et al. 2014)
β-caryophyllene	![β-caryophyllene](image)	Larvicidal (Santos et al. 2012).

Table 4. Inhibiting activity of acetylcholinesterase enzyme at different concentrations of essential oil (EO) from Tetradenia riparia leaves and flower buds by bioautographic method.

Concentration (mg/mL)	EO from Tetradenia riparia leaves	EO from Tetradenia riparia flower buds	CP
45.00	+++	+++	+++
22.50	++	++	+++
11.25	++	+	+++
5.62	++	+	++
2.81	+	+	++
1.40	+	+	+
0.70	-	-	+

PC: Positive control: commercial organophosphorus (cypermethrin 15%; chlorpyriphos 25%; citronella 1%); (+++): strong inhibition of acetylcholinesterase enzyme; (+): moderate inhibition; (-): weak inhibition; (-): absence of inhibition. EO: essential oil.
cause mortality to 100% of R. (B.) microplus larvae while it took (+)-isopinocamphor 45 minutes of contact. According to Wright (1975), the action mechanism of camphor is already known, blocking the olfactory receptors of insects. Another monoterpene found in T. riparia EO, and EO_R is δ-caryophyllene; this compound is also found in Alpinia purpurata essential oil and showed activity against A. aegypti larvae (LC_{50} 0.071 mg/mL) (Santos et al., 2012). Therefore, the results found in our experiment, along the data found in the literature, suggest that monoterpenes may have been responsible for the larvical activity which was found. Another aspect refers to recent research studies with other plant species in order to propose new biomolecules with biocide potential against R. sanguineus. In this context, Goode, Elise and Wall (2018) utilized Curcuma longa (Zingiberaceae) essential oil at the concentration of 25 mg/mL, observing some R. sanguineus detachment from the animal body. Godara et al. (2013) evaluated chloroform extract of Absinthe (Artemisia absinthium) (Asteraceae) aerial parts at the concentration of 200 mg/mL indicating a mortality rate of 93.3% for adult tick and also reducing the hatching of R. sanguineus eggs at the concentrations of 50, 100 and 200 mg/mL. Perpetua et al. (2009) tested Neem (Azadirachta indica) (Meliaeaceae) oil at the concentration of 100 mg/mL at the dose of 0.6 mL/kg under top spot applications every 5 days for a 30-day period, showing to be efficient to control R. sanguineus tick. Studies developed by Silva et al. (2007) evaluated the effect of Neem (Azadirachta indica) and lemongrass (Cymbopogon citratus) (Poaceae) alcoholic extract against R. sanguineus engorged females and found a decrease of reproductive efficiency (27.6%) for Azadirachta indica and 28.6% for Cymbopogon citratus. The efficiency of Neem was also evaluated in a field test by Weeb and David (2002), because engorged females submitted to the action of this substance presented partial lay with 0% hatchability and 100% efficiency. Our experiment also evaluated the probable action mechanism of EOs, measuring the inhibitory power of acetylcholinesterase enzyme. The results (Table 4) indicated that the EO from leaves inhibited the enzyme up to 0.70 mg/mL and the EO from flower buds up to 1.40 mg/mL. The in vitro bioautographic results were superior to the LCs on in vivo larvae (Table 4), justified by the absence of physiological conditions that interfere in the biochemical reactions of mite because the bioautographic protocol is carried out in controlled environment with all pre-established conditions, without interference of the cellular wall permeability, molecule size and solubility of these molecules in hydrophilic and lipophilic media (Brain et al., 2007). The importance to establish the action mechanism of T. riparia EOs is related to the action mechanism of chemical acaricides and larvicides utilized in the control of fleas and ticks in dogs that act by inhibiting the receptor of the neurotransmitter gamma-aminobutyric acid (GABA) and glutamate receptor that act on the neuromuscular joint of insects. Therefore, because it presents the inhibitory effect of acetylcholinesterase (Ache), T. riparia EO becomes an alternative for the resistance these chemical acaricides may present since the excessive utilization, without understanding the ecology and epidemiology of ticks with the detection flaws, caused resistance development to almost all drug classes (Pereira et al., 2008).

Materials and methods

Plant material

Tetradenia riparia flower buds and leaves were manually collected at the Medicinal Garden of the Paranaense University (UNIPAR) (23° 46.225'S 53°16.730'W, 391m), state of Paraná – Brazil, in the beginning of the morning from 8:00 to 10:00 am. The collection time happened with the emergence of flower buds that occurred in the winter (June 21, 2017 to July 13, 2017). A sample was authenticated and deposited in the educational herbarium of the Paranaense University (HEUP), under the number 2502. This species is recorded in the National System of Genetic Patrimony Management and Associated Traditional Knowledge (SisGen) under the registration number AA6C8A8.

Essential oil extraction

The extraction of T. riparia essential oil was by hydro distillation (3 hours) (Gazim et al., 2014). The essential oil was withdrawn with n-hexane, filtered with anhydrous sodium sulfate (Na_{2}SO_{4}), stored in flasks and kept under refrigeration at -4°C until total evaporation of n-hexane. The essential oil yield was determined through the ratio of dry leaves mass and fresh flower bud (g) by essential oil mass (g%).

Essential oil chemical characterization

The essential oil chemical identification was carried out by GC-MS using a Gas Chromatographer, Agilent 7890B, coupled to a Mass Spectrometer, Agilent 5977 A MSD, and a HP5-MS UI - Agilent fused silica capillary (30×250μm×0.25μm; Agilent Technologies), with initial oven temperature from 80 °C (1 min), followed by increased by 185 °C at 2 °C/min and maintained for 1 min, followed by an increase to 275 °C at 9 °C/min and maintained for 2 min and finally increase to 300 °C at 25 °C/min and maintained for 1 min. Helium was utilized as the carrier gas at the linear speed of 1 mL/min up to 300 °C, and pressure release of 56 kPa. The injector temperature was 280°C; the injection volume was 1 μL; the injection occurred in split mode (2:1).The temperatures of the transfer line, ion source and quadrupole were 280, 230 and 150°C, respectively. The EM detection system was utilized in “scan” mode, at the mass/charge ratio/load (m/z) of 40-600, with “solvent delay” of 3 min. The compounds were identified by comparing the mass spectra found in NIST 11.0 libraries and by comparing the retention indices (RI) obtained by a homologous series of n-alkane standard (C7-C28) (Adams, 2017).

Principal component analysis (PCA)

A multivariate analysis was also done to determine the principal component analysis (PCA) which allowed the evaluation of the major chemical compounds and chemical class of all compounds found in the essential oil from leaves and floral bud. The analysis result was graphically presented (biplot), helping the characterization of the analyzed variable groups (Moita Neto and Moita, 1998). For each sample of the essential oil from leaves and floral buds, the identified major chemical compounds and their respective chemical classes (Table 1) were plotted. Data...
were transformed in orthogonal latent variables called
principal components which are linear combinations of
original variables created with the eigenvalues of the data
covariance matrix (Hair et al., 2005). Kaiser’s criterion was
utilized to choose the principal components and an
eigenvalue preserved the relevant information when it was
greater than the unit. This analysis was carried out in two
ways: the former contained only data referring to the
chemical composition of major compounds obtained in
three periods, and the latter analyzed the grouped chemical
classes to which those compounds belong to (Ferré, 1995;
Camacho et al., 2010). Both analyses were done utilizing
Statistica 7 software. (Statsoft Inc, 2018).

Essential oil larvicidal activity

The larval sensitivity was determined by Larval Packet Test,
described by Leite et al. (1995) and Fernandes et al. (2008)
where approximately 100 larvae were placed on 2 x 2 cm
filter paper recently impregnated with dilutions of *T. riparia*
EO forming a “sandwich”, sealed and stored in a Petri dish.
The EO dilutions ranged from 500 to 0.47 mg mL⁻¹. For this
bioassay, two control groups were made: a positive control
utilizing a conventional acaricide with (cypermethrin 15%;
chlorpyrifos 25%; citronellol 1%) at the concentration of
0.005%, and a negative control using an aqueous solution of
 polysorbate (80) at 2.0%. The envelopes were stored at
ambient temperature and the readings were done after 24 h,
separating live larvae from the dead ones, utilizing an
entomological loupe. The assays were carried out in
triplicate for each EO dilution used in larvae. The calculation
of larval mortality was done through Equation 1.

Mortality (%) = dead larvae x 100 / total larvae
(Equation 1)

Essential oil anticholinesterase activity

The anticholinesterase activity was determined by bioautographic method described by Marston et al., (2002),
with modifications (Yang et al., 2009). *T. riparia* EOs were
tested from a concentration ranging from 45.00 to 0.70
mg/mL, diluted in methanol. The samples were plotted in
aluminum chromatoplates (10 x 10 cm, silica gel 60 F254
with 0.2 mm of thickness), after plotting the plates were
dried and a solution of acetylcholinesterase enzyme buffer
solution was sprayed on them; next, a solution of α
acetate was sprayed. The plates were kept at 37 °C during 20
minutes. After this period, the chromatoplates were sprayed
with Fast Blue B salt reagent, resulting in a purple color
surface. The larvicide (cypermethrin 15%; chlorpyrifos 25%;
citronellol 1%) was used as negative control.

The tests were done in triplicate and the results were
expressed as averages and their corresponding standard
deviation. The data were processed and submitted to
analysis of variance (ANOVA), and the differences between
the averages were determined by Tukey’s test or Scott-
Knott’s test at 5% significance level.

Statistical analysis

The experimental design was completely randomized.
The data were processed and submitted to analysis of variance
(ANOVA) and the differences between the arithmetical
averages and the standard deviation were determined by
Tukey’s test at 5% of significance. The lethal concentrations
that killed 50% (LC₅₀) and 99.9% (LC₉₉) of tick larvae and the
respective CI (5%) were calculated by Probit analysis (ED 50
Plus 1.0). All the tests were carried out in triplicate.

Conclusion

The essential oil extracted from *Tetradenia riparia* leaves
and flower buds were tested against *Rhipicephalus sanguineus* larvae. The presence of monoterpene: limonene, L-fenchone, α and β-pinene and L-camphor in
greater amount in leaves provided greater potential against
Rhipicephalus sanguineus larvae (LC₀₉₀: 9.98±0.10 mg/mL)
when compared to the essential oil extracted from flower
buds (LC₀₉₀: 20.12±0.54 mg/mL). The action mechanism
through which the oil killed larvae was by inhibition of the
acetylcholinesterase enzyme at the concentration of 0.70
mg/mL (leaves) and 1.40 mg/mL (flower buds), indicating
the presence of molecules in the essential oil from *T. riparia*
leaves with biocide potential.

Acknowledgment

The authors thank Universidade Paranaense- UNIPAR,
Centro Universitário de Maringá- UNI-Cesumar Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior – Brazil
(CAPES), Conselho Nacional de Desenvolvimento Científico
e Tecnológico (CNPq) for the fellowship and financial support.

Conflict of interest

The authors have no conflicts of interest to declare

References

Abdelgalel SA, Badawey ME, Mahmoud NF, Marei AESM (1919). Acaricidal activity,
biochemical effects and molecular docking of some monoterpene against two-
spotted spider mite (Tetranychus urticae Koch). Pest Biochem Physiol. 156: 105-115.
Adams RP (2017) Identification of essential oil components by Gas Chromatography/Mass Spectrometry, 4th ed. Allured Publishing Corporation. 804p.
Badawey MEI, Abdelgaleil SAM (2010). Acaricidal and quantitative structure activity
relationship of monoterpene against the two-spotted spider mite, Tetranychus urticae. Exp Appl Acarol. 52:261–274.
Badawey MEI, Abdelgaleil SAM (2010). Acaricidal and quantitative structure activity
relationship of monoterpene against the two-spotted spider mite, Tetranychus urticae. Exp Appl Acarol. 52:261–274.
Boly Y, Van Puyvelde L (1986) Screening of medicinal plants of Rwanda (Central Africa) for antimicrobial activity. J Ethnopharmacol. 16: 1-11.
Borges LMF, Soares SF, Fonseca IN, Chaves VV, Louly CCB (2007). Resistência acaricida em larvas de Rhipicephalus sanguineus (Acari: Ixodidae) de Goiânia-GO, Brasil. Rev Patol Trop. 36 (3): 1-9. 87.
Bontolucci WC, Oliveira HM, Silva ES, Boas MRV, Carvalho TM, Campos CFA, Gonçalves JE, Junior RP, Gazim ZC (2018) Acaricidal and larvicidal activity relationship of monoterpene against the two-spotted spider mite, Tetranychus urticae. Exp Appl Acarol. 52:261–274.
Cardoso BM, Barbieri FS, Rocha RB, Oliveira MCS, Ribiero ES (2011). Evaluation of the Efficacy of Acaricides Used to Control the Cattle Tick, Rhipicephalus microplus, in Dairy Herds Raised in the Brazilian Southwestern Amazon. Vet Med Int. 1-6.
Camacho J, Pich J, Ferrer A (2010) Data understanding with PCA: structural and
information plots. Chemometrics. Intell Lab. Syst. 100(1): 48-54.
Campbell WE, Gammon DW, Smith P, Abrahams M, Purves TD (1997). Composition and
chemical activity. J Ethnopharmacol. 16: 1-11.
Hochstetter) Codd in murine macropods. Flavour Fragr J. 30(6): 428-438.

1614
Fernandes FF, Freitas EPS (2001) Analysis of the use of fenthion via epicutaneous in dogs for Rhipicephalus sanguineus control. Rev Soc Bras Med Trop. 34: 339-342.

Ferré L (1995) Selection of components in principal component analysis: a comparison of methods. Comput Stat Data Anal. 19: 669-682.

Garcia ES, Azambuja P (2004) Lignoids in insects: chemical probes for the study of ecdysis, excretion and Typosomas crustacei-tritoni interactions. Toxicol. 44: 431-434.

Gazim ZC, Amorim ACI, Havell AMC, Rezende AM, Nascimento IA, Ferreira GA, Cortez DA (2010) Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of Tetradenia riparia (Hochst.) Cdd in southern Brazil. Molecules. 15(8): 5509-5524.

Gazim ZC, Demarchi L, Moreira FD, Amorim ACI, Havell AMC, Rezende CM, Ferreira GA, De Lima EL, De Cosimo FA, Cortez DA (2011) Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp Parasitol. 129: 175-178.

Gazim ZC, Rodrigues F, Amorim A, Rezende C, Sôkovi M, Te'vevi V, Vêç, Krst' G, Cortez L, Colauto N, Linde G, Cortez D (2014) New Natural Diterpene-Type Abietane from Tetradenia riparia Essential Oil with Cytotoxic and Antioxidant Activities. Molecules (Basel, Online). 19: 514-524.

Godara S, Parveen S, Katoch R, Yadav A, Verma PK, Katoch M, Kaur D, Gani A, Raghuvanshi P, Singh NK (2013) Acaricidal activity of extract of Artemisia absinthium against Rhipicephalus sanguineus of dogs. Parasitol Res. 112(2): 747-754.

Goode P, Ellse L, Wall R (2018) Preventing tick tangle to dogs using essential oils. Ticks and Tick-borne Diseases. 1-6. In press.

Hair JF, Anderson RE, Tatham RL, Black W, Hair J (2005) Multivariate Data Analysis. 6th edn. Prentice Hall, Englewood Cliffs, New Jersey.

Han LI, Han Y, Li W, Liang J, Yang J, Yang H, Piao Y (2013) Antimicrobial activity of Artemisia capillaris against Rhipicephalus sanguineus of dogs. Parasitol Res. 112(3): 681-687.

Hajenius PR, Henten DR, Van Der Meer JWM, Moll P, Mouton JW (2003) Antifungal activity of essential oils against Aspergillus fumigatus. Microb Ecol Health Dis. 15(6): 271-277.

Hair JF, Anderson RE, Tatham RL, Black W, Hair J (2005) Multivariate Data Analysis. 6th edn. Prentice Hall, Englewood Cliffs, New Jersey.

Han LI, Han Y, Li W, Liang J, Yang J, Yang H, Piao Y (2013) Antimicrobial activity of Artemisia capillaris against Rhipicephalus sanguineus of dogs. Parasitol Res. 112(3): 681-687.

Hajenius PR, Henten DR, Van Der Meer JWM, Moll P, Mouton JW (2003) Antifungal activity of essential oils against Aspergillus fumigatus. Microb Ecol Health Dis. 15(6): 271-277.

Hair JF, Anderson RE, Tatham RL, Black W, Hair J (2005) Multivariate Data Analysis. 6th edn. Prentice Hall, Englewood Cliffs, New Jersey.

Han LI, Han Y, Li W, Liang J, Yang J, Yang H, Piao Y (2013) Antimicrobial activity of Artemisia capillaris against Rhipicephalus sanguineus of dogs. Parasitol Res. 112(3): 681-687.

Hajenius PR, Henten DR, Van Der Meer JWM, Moll P, Mouton JW (2003) Antifungal activity of essential oils against Aspergillus fumigatus. Microb Ecol Health Dis. 15(6): 271-277.

Hair JF, Anderson RE, Tatham RL, Black W, Hair J (2005) Multivariate Data Analysis. 6th edn. Prentice Hall, Englewood Cliffs, New Jersey.

Han LI, Han Y, Li W, Liang J, Yang J, Yang H, Piao Y (2013) Antimicrobial activity of Artemisia capillaris against Rhipicephalus sanguineus of dogs. Parasitol Res. 112(3): 681-687.

Hajenius PR, Henten DR, Van Der Meer JWM, Moll P, Mouton JW (2003) Antifungal activity of essential oils against Aspergillus fumigatus. Microb Ecol Health Dis. 15(6): 271-277.