The first principle calculation gives evidence that the electron-type band (Te2/Te3−p) form a rectangular network with the distances of 0.279/0.310 nm along the Zr-axis below 2 K. Pressure(

\(T_c \)~63 K with a CDW vector \(q \approx \left(\frac{1}{4}, 0, \frac{1}{2} \right) \) but also a nearly isotropic in-plane and quasi-two-dimensional (2D) electronic transport\(^{4,7,8}\). There is a filamentary SC in a stoichiometric single crystal with higher onset of \(T_c \) for \(a \)-axis from resistivity measurement than for \(b \)-axis\(^{7,9}\). Heat capacity data suggest that SC transitions in \(ZrTe_3 \) are successive from filamentary-to-bulk with local pair fluctuations above \(T_c \). SC phase first condenses into filaments along \(a \)-axis, becoming phase coherent below 2 K\(^{9}\). Pressure\((P)\), intercalation, and disorder can tune \(ZrTe_3 \) into bulk SC with suppression of CDW order\(^{10-12}\).

Here we provide evidence for the pronounced upper critical field \(H_{c2}(T) \) anisotropy and emerging 1D electronic transport along the \(ZrTe_3 \) chain-direction \(b \) axis in \(ZrTe_{3-x}Se_x \) (0 ≤ \(x \) ≤ 0.1). The \(H_{c2}(T) \) anisotropy and new Raman modes suggest coexistence of local CDW modes and enhanced superconducting \(T_c(x) \) in \(ZrTe_{3-x}Se_x \).
Figure 1. (a) Crystal structure of ZrTe$_3$. (b) Top Te$_2$/Te$_3$ rectangular network layer viewed from c-axis. The quasi 1D ZrTe$_6$ chains run along the b-axis, with the shortest Zr-Zr distance and Te$_1$-Te$_1$ distance of 0.393 nm. Solid line denotes the alternately spaced Te$_2$/Te$_3$ chain. (c) Temperature dependence of normalized $\rho_a/\rho_a(300\text{ K})$ for ZrTe$_{3-x}$Se$_x$. The inset shows a typical photograph of cleaved ZrTe$_{3-x}$Se$_x$ crystal. Some fibers along b-axis can be observed. (d) The TCDW is determined from the dips in the differential curves of $\rho_a/\rho_a(300\text{ K}) - T$ (shown in the inset). Solid rectangular, circle and triangle represent x = 0, 1% and 2%, respectively. The arrows mark the T$_{CDW}$. (e) Low temperature $\rho_a/\rho_a(300\text{ K}) - T$. Superconducting T$_c$ is determined as the midpoint of the superconducting transition. (f) The temperature dependence of magnetic susceptibility (\chi) measured for ZrTe$_{2.96}$Se$_{0.04}$, ZrTe$_{2.93}$Se$_{0.07}$, and ZrTe$_{2.87}$Se$_{0.1}$. The applied magnetic field(H) is 2 Oe and parallel to the b-axis of crystal.
Results
Normalized \(\rho_\parallel \) \(\frac{\rho_\parallel}{\rho_\perp} \) [300 K] [Fig. 1(e)] shows that the CDW anomaly is suppressed with increasing Se content. The \(T_{CDW} \) [Fig. 1(d)] decreases whereas the bulk superconductivity sets in [Fig. 1(e,f)]. For \(x \leq 0.04 \), as shown in Fig. 1(e), the superconducting transition temperature \((T_c) \) determined from the \(\rho_\parallel (T) \) curves tends to increase, and transition width decreases. With increasing Se content \(x \geq 0.04 \), [Fig. 1(f)], however, with increasing Se content \(x \), room temperature \(\rho_\parallel \) tends to increase, while \(\rho_\perp \) tends to decrease [Fig. 2(a)]. This indicates that ZrTe\(_{3-x}\)Se\(_x\) becomes highly conducting along \(b \)-axis in the normal state. If ZrTe\(_{3-x}\)Se\(_x\) is an anisotropic superconductor with dominant quasi-1D (super)conductivity along the \(b \)-axis, upper critical field along \(b \) axis \((H_{c2}(b)) \) should be larger than \(H_{c2}(a) \) according to the single band anisotropic Ginzburg-Landau theory since

\[
\Gamma_{ij} = m_i^* / m_j^* = H_{c2} || H_{c2} || t \sim \sqrt{\rho_i / \rho_j} \tag{1}
\]

To confirm this, we choose the ZrTe\(_{2.96}\)Se\(_{0.04}\) crystal where the ratio of \(\rho_\parallel (T) / \rho_\perp (T) \) is about 10 at 300 K [Fig. 2(a)]. The magnetic hysteresis \((M - H) \) loop for ZrTe\(_{2.96}\)Se\(_{0.04}\) [Fig. 2(b) inset] confirms that it is a typical type-II superconductor with some electromagnetic granularity. In ZrTe\(_{2.96}\)Se\(_{0.04}\), \(H_{c2}(T) || a > H_{c2}(T) || b > H_{c2}(T) || c \) relation can be observed [Fig. 2(b)]. This is in contrast to the \(b \)-axis quasi-1D conductivity in the normal state suggesting multiband effects and/or additional factors that can contribute to mass tensor anisotropy. The upward curvature of \(H_{c2}(T) \) curves implies that the multiband effects should be considered.

The \(H_{c2}(T) \) for the two-band BCS model with orbital pair breaking is\(^{13}\):

\[
a_0 \ln t + U(h) [\ln t + U(\psi h)] + a_1 \ln t + U(\psi h)] + a_1 \ln t + U(h) = 0,
\]

\[
U(x) = \psi(1/2 + x) - \psi(1/2),\tag{2}
\]

where \(t = T/T_c, \psi(x) \) is the digamma function, \(\eta = D_2/D_1, D_1 \) and \(D_2 \) are band 1 and band 2 diffusivities, \(h = H_{c2} || H_{c2} || t / (2 \phi_0 T) \), and \(\phi_0 = 2.07 \times 10^{-15} \) Wb is the magnetic flux quantum. \(a_0 = 2w/\lambda_0, a_1 = 1 + \lambda_1/\lambda_0, \) and \(a_2 = 1 - \lambda_2/\lambda_0, \)

where \(\phi = \lambda_1 \lambda_2^{1/2} - \lambda_1 \lambda_2^{1/2} + (\lambda_1 + \lambda_2) \lambda_1^{1/2}, \) and \(\lambda_1 = \lambda_{11} - \lambda_{12}. \) Interband coupling in two bands is given by \(\lambda_{12} \) whereas \(\lambda_{11} \) and \(\lambda_{12} \) are intraband coupling constants in band 1 and 2, when \(D_1 = D_2 \), this simplifies to the one-band model orbital pair breaking in the dirty limit\(^{14}. \) Dominant intraband (interband) coupling is obtained for \(w > 0 (w < 0). \) The fits to the multiband model using \(\lambda_{ij} i, j = 1, 2 \) in Table 1 are excellent [solid lines in Fig. 2(b)]. Overall, the fitting results indicate dominant intraband coupling\(^{15,16}. \) Interestingly, the
η ≈ 0.10(4) suggest different D₁ and D₂, i.e. approximately an order of magnitude different carrier mobilities in the two bands. This difference in the intraband diffusivities could be due to differences in scattering or effective masses.13,15.

Table 1. Coupling parameters of H_{\perp} for Cu₀.₀₆₅ZrTe₃.

H_{\perp}	λ₁₁	λ₁₂	λ₄₁	λ₂₂	
a	0.098	0.60	0.25	0.25	0.80
b	0.124	0.60	0.50	0.50	0.60
c	0.145	0.60	0.25	0.25	0.80

Figure 3. (a) The phase diagram of T_{CDW} and T_s versus Se doping content; insets show electronic specific heat and the Kadowaki - Woods ratio for ZrTe₂.₉₆Se₀.₀₄ (refs 26,27). The $a_{TM} = 0.4 \mu \Omega \text{cm} \text{mol}^{-1} \text{K}^2 \text{J}^{-2}$ and $a_{HF} = 10 \mu \Omega \text{cm} \text{mol}^{-1} \text{K}^2 \text{J}^{-2}$ are values seen in the transition metals and heavy fermions, respectively. Even though values of electron-electron scattering rate A and mass renormalization γ are smaller than in strongly correlated materials, it appears that the scaling A/γ^2 in ZrTe₃ is similar to Na₀.₇₄CoO₂ and Sr₂RuO₄. (b) The normalized Raman scattering spectra for ZrTe₃, ZrTe₂.₉₆Se₀.₀₄, and ZrTe₂.₉Se₀.₁ measured at 5 K and 300 K with Z(XX)/Z polarization. The two CDW modes at 115 cm⁻¹ and 152 cm⁻¹ are marked by arrows.
IrTe₂, in which only 5d Ir site substitution can suppress the charge/orbital order and induce SC. The Hf doping does not alter the Te2/Te3 bands, which explains why Hf doping cannot suppress the CDW order and induce SC.

In what follows we compare the Raman signal of superconducting crystals to Raman signal of pure ZrTe₃ with long range CDW order. Figure 3(b) depicts the Raman spectra normalized to 86 cm⁻¹ mode of ZrTe₃-₅Se, measured at 5 K and 300 K with Z(XX)Z polarization for different Se content. Small Se doping should not change the phonon spectrum at the room temperature and indeed, the 300 K spectra nearly overlap with each other. As expected, the Raman spectrum of ZrTe₃ measured at 5 K is different from the one measured at 300 K. Two new modes appear around 115 cm⁻¹ and 152 cm⁻¹, which we assign to CDW (CDW mode)²⁹,³⁰. Periodic lattice distortions in the CDW state will result in the new phonon modes below TCDW and some (CDW modes) can be observed in the Raman spectra, for example in 1T-TiSe₂,²¹ and 2H-NbSe₂.²² The 108 cm⁻¹, 140 cm⁻¹ and 145 cm⁻¹ modes are suppressed to low intensity with small temperature dependent shift at low temperature. The intensity of the two CDW modes 115 at cm⁻¹ and 152 cm⁻¹ becomes weaker for x = 0.04 and 0.1. It should be noted that CDW modes are detected outside the phase boundary of CDW order. The normalized amplitudes of the two CDW modes exist for x = 0.04 and 0.1, in crystals with no CDW signature in resistivity. This suggests a coexistence of superconductivity and CDW-related lattice distortions.

Discussion

Fermi surface of ZrTe₃ contains multiple bands with both flat and dispersive portions as well as substantial hybridization of high mobility chalcogen-derived bands with low mobility metal-derived bands.²³ We note that in ZrTe₃, CDW fluctuations affect the angular resolved photoemission spectral function A(k, ω) at temperatures above 200 K.²³ Scattering in such multiband CDW electronic system in the presence of local CDW fluctuations is dominated by scattering off collective CDW excitations below TCDW (ρ(T) ~ AT²), where A is a constant parameter and the electron-phonon and impurity-like scattering off local CDW fluctuations above the TCDW [ρ(T) ~ aT + b]²³. Both ρ₀ and b are perfectly linear from about 60 K up to highest measured temperature of 300 K, whereas a ~ T² resistivity is observed from superconducting Tc up to about 80 K [Fig. 4(a,b)]. With suppression of the CDW order by pressure or doping, CDW mode should vanish²⁹, and indeed the absence of characteristic CDW-related hump is observed in resistivity. However as evident in Fig. 4(c), the signature of CDW mode in ZrTe₃₅Se₅ appears below about 100 K suggesting that the crystallographic vibration of the unit cell still senses CDW presence, but we speculate with no phase coherence.

The resistivity shows that electron-electron scattering due to CDW fluctuations dominates over the electron-phonon scattering and provides ρ₀ ~ AT² temperature dependence with relatively high values of coefficient A. As a result, Kadowaki-Woods scaling A_1/A_2 is comparable to Ti₂Ba₂CuO₆, Sr₂RuO₄ or Na₀.7CoO₂ [Fig. 3(a) insets]²⁶⁻²⁸. In ZrTe₃, with increasing P, CDW order is first enhanced and reaches maximum TCDW around 2 GPa²⁹, then decreases, vanishing around 5 Gpa, whereas superconducting Tc increases monotonically up to highest pressures. The phase diagram in Fig. 4b is different from this but Se could act as a chemical pressure due to its smaller size. Therefore slight increase in band filling of the quasi-1D Fermi surface sheet seen in pure ZrTe₃ under pressure could be the mechanism for the in-plane anisotropy and promotion of SC²⁹. However, due to very small Se content (up to about 3 atomic %) and no appreciable change in the unit cell parameters, this would imply strong sensitivity of CDW to substitutions on Te site and possibly to disorder.

As doping increases beyond x = 0.04 the superconducting Tc forms a weak dome or plateau-like temperature dependence similar to PrFeAsO₁₋ₓFₓ.³⁰ Charge-mediated attraction is involved in both CDW and SC. For well nested Fermi surface long range CDW is stable and superconductivity is only filamentary along a axis arising in the Te₂/Te₃ 5p₃ band.³¹ With Se doping the CDW is no longer detected in scattering but dominant intraband interaction could ensure that patches of CDW still survive, as seen by Raman. The small Se substitution is unlikely to remove the nesting condition but may perturb the long range phase coherence of CDW and consequently resistivity hump. Broad superconducting transition, small reduction of SC transition temperature and significant decrease in the superconducting volume fraction suggest that the percolative SC is independent of Se content once the CDW-related resistivity anomaly is absent.

The above discussion suggests a possibility for a CDW-fluctuation induced heavy-fermion-like mass enhancement contribution to mass tensor anisotropy in ZrTe₃₅Se₅. Moreover, superconductivity on the verge of the breakdown of the long-range CDW order is reminiscent to magnetic fluctuation mediated superconductivity in copper oxide and heavy fermion materials where the magnetic order is tuned by doping or pressure to T→0 at the Quantum Critical Point³²⁻³⁵.

Conclusion

In summary, we show that superconductivity in ZrTe₃₅Se₅ single crystals arises in the background of CDW fluctuations that contribute to significant anisotropy of the both normal state resistivity and the upper critical field in the superconducting state. The CDW fluctuations exist outside of the phase boundary of CDW order.

Methods

Single crystals of ZrTe₃₅Se₅ were grown via iodine vapor transport method.¹¹ The as grown single crystals can be easily cleaved along b-axis and c-axis, which usually produces needle- or tape-like crystals along b-axis in the ab plane (shown in inset of Fig. 1c). Elemental analysis was performed by energy-dispersive X-ray spectroscopy (EDS) on an FEI Helios Nanolab 600i to determine the Se content. The Se content in as grown crystal is found to be less than the content in the starting material; measured EDS values are presented in figures. Powder X ray diffraction confirms phase purity however there were no appreciable changes of the lattice parameters (below 0.002 Å for a, b and below 0.005 Å for c lattice parameter), as expected for atomic substitution of up to about 3%.
The crystal size becomes smaller when the Se content x increases, reducing from about $3 \times 5 \text{ mm}^2$ for $x = (0–0.04)$ down to $1.5 \times 1.5 \text{ mm}^2$ in ab-plane for $x = 0.1$. Magnetization was measured in Quantum Design MPMS-XL-5. Resistance and magneto-resistance were measured by four probe method on Quantum Design PPMS-9 and PPMS-16. Raman spectra were measured on Horiba T64000, with excitation wavelength 647.4 nm and the power density was kept below 20 mW cm$^{-2}$ in order to minimize the heating effects.

References

1. Gruner, G. Density Waves in Solids (Addison-Wesley, Reading MA 1994).
2. Gabovich, A. M., Voitenko, A. I. & Ausloos, M. Charge-density waves and spin-density waves in existing superconductors: competition between Cooper pairing and Peierls or excitonic instabilities. Phys. Rep. 367, 583–709 (2002).
3. Torchinsky, D. H. et al. Fluctuating charge-density waves in a cuprate superconductor. Nature Materials 12, 387–391 (2013).
4. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).
5. Felser, C. et al. Electronic properties of ZrTe$_5$. J. Mater. Chem. B, 1787–1798 (1998).
6. Hoesch, M. et al. Splitting in the Fermi surface of ZrTe$_3$: A surface charge density wave system. Phys. Rev. B 80, 075423, doi: 10.1103/PhysRevB.80.075423 (2009).
7. Eaglesham, D. I. et al. Electron microscope study of superlattices in ZrTe$_5$. J. Phys. C 17, L697–L698 (1984).
8. Takahashi, S., Sambongi, T. & Okada, S. Conduction properties of ZrTe$_5$. J. de Physique 44, 1733–1736 (1983).
9. Yamaya, K. et al. Mixed bulk-filament nature in superconductivity of the charge-density-wave conductor ZrTe$_5$. Phys. Rev. B 85, 184513, doi: 10.1103/PhysRevB.85.184513 (2012).
10. Yomo, R. et al. Pressure effect on competition between charge density wave and superconductivity in ZrTe$_5$: Appearance of pressure-induced reentrant superconductivity. Phys. Rev. B 71, 132508, doi: 10.1103/PhysRevB.71.132508 (2005).
11. Zhu, X. D., Lei, H. C. & Petrovic, C. Coexistence of bulk superconductivity and charge density wave in Cu$_x$ZrTe$_5$. Phys. Rev. Lett. 106, 246404, doi: 10.1103/PhysRevLett.106.246404 (2011).

Figure 4. (a,b) The a- and b-axis resistivity fits of ZrTe$_{2.96}$Se$_{0.04}$. Below 63 K $\rho(T) \sim AT^2$ and above that temperature $\rho(T) \sim aT + b$ up to highest measured 300 K. The fitting parameters are $A_a = 0.0107(1)$, $A_b = 0.0019(1)$, $a_a = 0.250(1)$, $a_b = 1.66(1)$ and $b_a = -9.0(2)$ and $b_b = -68(1)$. (c) Raman scattering in ZrTe$_{2.96}$Se$_{0.04}$ where CDW mode can be traced below about 100 K.
12. Zhu, X. et al. Disorder-induced bulk superconductivity in ZrTe3, single crystals via growth control. Phys. Rev. B 87, 024508, doi: 10.1103/PhysRevB.87.024508 (2013).
13. Gurevich, A. Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B 67, 184515, doi: 10.1103/PhysRevB.67.184515 (2003).
14. Werthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and Purity Dependence of the Superconducting Critical Field, Hc2. III. Electron Spin and Spin-Orbit Effects. Phys. Rev. 147, 295–302 (1966).
15. Jaroszynski, J. et al. Upper critical fields and thermally-activated transport of NdFeAsO0.6F0.4. single crystal. Phys. Rev. B 78, 174523, doi: 10.1103/PhysRevB.78.174523 (2008).
16. Lei, Hechang et al. Multiband effects on β-FeSe single crystals. Phys. Rev. B 85, 094515, doi: 10.1103/PhysRevB.85.094515 (2012).
17. Patel, K. et al. Optical and electrical properties of ZrSe3, single crystals grown by chemical vapour transport technique. Bulletin of Materials Science 28, 405–410 (2005).
18. Yang, J. et al. Charge-Orbital Density Wave and Superconductivity in the Strong Spin-Orbit Coupled IrTe3-Pd. Phys. Rev. Lett. 108, 116402, doi: 10.1103/PhysRevLett.108.116402 (2012).
19. Hu, Yuwen et al. Charge density waves and phonon-electron coupling in ZrTe3. Phys. Rev. B 91, 144502, doi: 11.1013/PhysRevB.91.144502 (2015).
20. Gleason, S. L. et al. Structural contributions to the pressure-tuned charge-density-wave to superconductor transition in ZrTe3: Raman scattering studies. Phys. Rev. B 91, 155124, doi: 10.1103/PhysRevB.91.155124 (2015).
21. Snow, C. S. et al. Quantum Melting of the Charge-Density-Wave State in 1T-TaSe2. Phys. Rev. Lett. 91, 136402, doi: 10.1103/PhysRevLett.91.136402 (2003).
22. Mässon, M. A. et al. Amplitude Higgs mode in the 2H-NbSe2 superconductor. Phys. Rev. B 89, 060503, doi: 10.1103/PhysRevB.89.060503 (2014).
23. Yokoya, T. et al. Role of charge-density-wave fluctuations in the spectral function of a metallic charge-density-wave system. Phys. Rev. B 71, 140504, doi: 10.1103/PhysRevB.71.140504 (2005).
24. Naito, M. & Tanaka, S. Electrical transport properties in 2H-NbSe2-NbSe2-Ta5S8TaTe2. J. Phys. Soc. Jpn. 51, 219–227 (1982).
25. Barath, H. et al. Quantum and Classical Mode Softening Near the Charge-Density-Wave Superconductor Transition of Cu3TiSe4. Phys. Rev. Lett. 100, 106402, doi: 10.1103/PhysRevLett.100.106402 (2008).
26. Kadowaki, K. & Woods, S. B. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 (1986).
27. Jacko, A. C., Fjærstad, J. O. & Powell, B. J. A unified explanation of the Kadowaki-Woods ratio in strongly correlated metals. Nature Physics 5, 422–425 (2009).
28. Nozières, P. & Pines, D. The theory of Quantum Liquids (Perseus Books, 1999).
29. Hoesch, M. et al. Evolution of the charge density wave superstructure in ZrTe3 under pressure. Phys. Rev. B 93, 125102, doi: 10.1103/PhysRevB.93.125102 (2016).
30. Rotundu, C. et al. Phase diagram of the PrFeAsO0.6_F. Phys. Rev. B 80, 144517, doi: 10.1103/PhysRevB.80.144517 (2009).
31. Murray, I. M. & Tesanovic, V. Theory of charge order and heavy-electron formation in the mixed-valence compound KNi4Se7. Phys. Rev. B 87, 081103, doi: 10.1103/PhysRevB.87.081103 (2013).
32. Monthoux, P., Pines D. & Lonzarich, G. G. Superconductivity without phonons. Nature (London) 450, 1177–1183 (2007).
33. Qi, Xiaoming & Sengstock, F. Heavy fermions and quantum phase transitions. Science 329, 1161–1166 (2010).
34. Sebastian, S. E. et al. Metal-insulator quantum critical point beneath the high Tc superconducting dome. Proc. Natl. Acad. Sci. USA 107, 6175–6179 (2010).
35. Cano-Cortes, L., Merino J. & Fratini, S. Quantum critical behavior of electrons at the edge of charge order. Phys. Rev. Lett. 105, 036405, doi: 10.1103/PhysRevLett.105.036405 (2010).

Acknowledgements
We thank Shile Zhang, Zhe Qu, Wenhai Song, Lanpo He, Shiyan Li for help on heat capacity measurements. Work at High magnetic field lab (Hefei) was supported by National Basic Research Program of China (973 Program), No. 2011CBA00111, and National Natural Science Foundation of China (Grants No. U1432251, 11204312, 11474289). Work at Brookhaven National Laboratory is supported by the US DOE under Contract No. DE-SC00112704.

Author Contributions
X.Z., C.P. and Y.Z. designed the experiments and wrote the draft. L.P., M.T. and Y.S. discussed the results and commented on the manuscript. Single crystals growth: X.Z. and L.L. SEM and EDS: H.D. Resistivity measurements and fits: W.N., K.W., L.L., X.Z. and C.P. Magnetization: L.L., Y.M. and Y.L. Raman: R.Z. and X.Z. Heat Capacity: J.Z.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhu, X. et al. Superconductivity and Charge Density Wave in ZrTe3−xSex. Sci. Rep. 6, 26974; doi: 10.1038/srep26974 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/