Emergence of zero-field non-synthetic single and catenated antiferromagnetic skyrmions in thin films

Amal Aldarawsheh1,2*, Imara Lima Fernandes1, Sascha Brinker1, Moritz Sallermann1,3,4, Muayad Abusaa5, Stefan Blügel1, and Samir Lounis1,2*

1Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany
2Faculty of Physics, University of Duisburg-Essen and CENIDE, 47053 Duisburg, Germany
3RWTH Aachen University, 52056 Aachen, Germany
4Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
5Department of Physics, Arab American University, Jenin, Palestine
*a.aldarawsheh@fz-juelich.de; s.lounis@fz-juelich.de

Antiferromagnetic (AFM) skyrmions are envisioned as ideal localized topological magnetic bits in future information technologies. In contrast to ferromagnetic (FM) skyrmions, they are immune to the skyrmion Hall effect1,2, might offer potential terahertz dynamics3,4 while being insensitive to external magnetic fields and dipolar interactions. Although observed in synthetic AFM structures5 and as complex meronic textures in intrinsic AFM bulk materials6,7, their realization in non-synthetic AFM films, of crucial importance in racetrack concepts, has been elusive. Here, we unveil their presence in a row-wise AFM Cr film deposited on PdFe bilayer grown on fcc Ir(111) surface. Using first principles, we demonstrate the emergence of single and strikingly interpenetrating catenated AFM skyrmions, which
can co-exist with the rich inhomogeneous exchange field, including that of FM skyrmions, hosted by PdFe. Besides the identification of an ideal platform of materials for intrinsic AFM skyrmions, we anticipate the uncovered knotted solitons to be promising building blocks in AFM spintronics.

Introduction

Magnetic skyrmions are particle-like topologically protected twisted magnetic textures with exquisite and exciting properties. They often result from the competition between the Heisenberg exchange and the relativistic Dzyaloshinskii-Moriya interaction (DMI), which is present in materials, that lack inversion symmetry and have a finite spin orbit coupling. Since their discovery in multiple systems, ranging from bulk, thin films, surfaces to multilayers, skyrmions are envisioned as promising candidates for bits, potentially usable in the transmission and storage of information in the next generation of spintronic devices. However, requirements for future (nano-)technologies are not only limited to the generation of information bits but are also highly stringent from the point of view of simultaneous efficiency in reading, control, and power consumption. Miniaturization of ferromagnetic (FM) skyrmions suffers from the presence of dipolar interactions, while their stabilization generally requires an external magnetic field. Another drawback is the skyrmion Hall effect, caused by the Magnus force that deflects FM skyrmions when driven with a current, which hinders the control of their motion. Additionally, FM skyrmions exhibit a rather complex dynamical behavior as function of applied currents, under the presence of defects.
Antiferromagnetic (AFM) skyrmions are expected to resolve several of the previous issues and offer various advantages. Indeed, AFM materials being at the heart of the rapidly evolving field of AFM spintronics are much more ubiquitous than ferromagnets. Their compensated spin structure inherently forbids dipolar interactions, which should allow the stabilization of rather small skyrmions while enhancing their robustness against magnetic perturbations. AFM skyrmions were predicted early on using continuum models, followed with multiple phenomenology-based studies on a plethora of properties and applications, see e.g. Refs. 2, 41–52. The predicted disappearance of the Magnus force, which triggers the skyrmion Hall effect, would then enable a better control of the skyrmion’s motion, which has been partially illustrated experimentally in a ferromagnet.

Intrinsic AFM meronic spin-textures (complexes made of half-skyrmions) were recently detected in bulk phases while synthetic AFM skyrmions were found within multilayers. However, the observation of intrinsic AFM skyrmions has so far been elusive, in particular at surfaces and interfaces, where they are highly desirable for racetrack concepts. A synthetic AFM skyrmion consists of two FM skyrmions realized in two different magnetic layers, which are antiferromagnetically coupled through a non-magnetic spacer layer. In contrast to that an intrinsic AFM skyrmion is a unique magnetic entity since it is entirely located in a single layer. Here we predict from first-principles (see Method section) intrinsic AFM skyrmions in a monolayer of Cr deposited on a surface known to host ferromagnetic skyrmions: A PdFe bilayer grown on Ir(111) fcc surface as illustrated in Fig. 1a. The AFM nature of Cr coupled antiferromagnetically to PdFe remarkably offers the right conditions for the emergence of a rich set of complex AFM textures. The ground
The difference to the latter, however, is that although being collinear, the Cr layer interfaces with a magnetic surface, the highly non-collinear PdFe bilayer.

A plethora of localized chiral AFM-skyrmionic spin textures (Fig. 1c) and metastable AFM domain walls (see Supplementary Figure 1) emerge in the Cr overlayer. Besides isolated topological AFM solitons, we identify strikingly unusual interpenetrating AFM skyrmions, which are reminiscent of crossing rings (see schematic Fig. 1b), the building blocks of knot theory where topological concepts such as Brunnian links are a major concept. The latter has far reaching consequences in various fields of research, not only in mathematics or physics but extends to chemistry and biology. For instance, the exciting and intriguing process of catenation is paramount in carbon-, molecular-, protein- or DNA-based assemblies. We discuss the mechanisms enforcing the stability of the unveiled catenated topological objects, their response to magnetic fields and the subtle dependence on the underlying magnetic textures hosted in PdFe bilayer. Our findings are of prime importance in promoting AFM localized entities as information carriers in future AFM spintronic devices.

Results

AFM skyrmions in CrPdFe/Ir(111) surface. PdFe deposited on Ir(111) surface hosts a homochiral spin spiral as a ground state emerging from the interplay of the Heisenberg exchange
Figure 1: Catenated AFM skyrmions in CrPdFe trilayer on Ir(111). a Schematic representation of the investigated trilayer deposited on Ir(111) following fcc stacking. b The catenation of skyrmions is reminiscent of interpenetrating rings, which realize topologically protected phases. c The ground state being RW-AFM (see inset) can host AFM skyrmions that can be isolated or catenated to form multimers of skyrmions, here we show examples ranging from dimers to pentamers. The AFM skyrmions can be decomposed into FM skyrmions living in sublattices illustrated in d. In case of the single AFM skyrmion, two of the sublattices, L1 and L2, are occupied by the FM skyrmions shown in e. L3 and L4 host quasi-collinear AFM spins in contrast to the FM skyrmions emerging in the case of the double AFM skyrmion presented in f. Note that the separation of sublattices L1, L2, L3 and L4 shown in e and f is only done for illustration.
interactions and DMI. The latter is induced by the heavy Ir substrate, which has a strong spin-orbit coupling. Upon application of a magnetic field, sub 10-nm FM skyrmions are formed \(^{21,25,61–65}\).

After deposition of the Cr overlayer, the magnetic interactions characterizing Fe are strongly modified (see comparison plotted in Supplementary Figure 2) due to changes induced in the electronic structure (Supplementary Figure 3). The Heisenberg exchange interaction among Fe nearest neighbors (n.n.) reduces by 5.5 meV (a decrease of 33\%). This enhances the non-collinear magnetic behavior of Fe, which leads to FM skyrmions even without the application of a magnetic field (see Supplementary Figure 4). The n.n. Cr atoms couple strongly antiferromagnetically (-51.93 meV), which along with the antiferromagnetic coupling of the second n.n (-6.69 meV) favors the Néel state. The subtle competition with the ferromagnetic exchange interactions of the third n.n. (5.32 meV) stabilizes the RW-AFM state independently from the AFM interaction with the Fe substrate (the detailed magnetic interactions are shown in Supplementary Figure 2). As illustrated in Fig. 1c, the RW-AFM configuration is characterized by parallel magnetic moments along a close-packed atomic row, with antiparallel alignment between adjacent rows. Due to the hexagonal symmetry of the atomic lattice, the AFM rows can be rotated in three symmetrically equivalent directions. We note that the moments point out-of-plane due to the magnetic anisotropy energy (0.5 meV per magnetic atom).

The n.n. Cr DMI (1.13 meV) is of the same chiral nature and order of magnitude as that of Fe atoms (1.56 meV), which gives rise to the chiral non-collinear behavior illustrated in Fig. 1c. We note that the solitons are only observed if Cr magnetic interactions beyond the n.n. are incorporated, which signals the significance of the long-range coupling in stabilizing the observed
textures. Since the Heisenberg exchange interaction among the Cr atoms is much larger than that of Fe, the AFM solitons are bigger, about a factor of three larger than the FM skyrmions found in Fe.

While the RW-AFM state is defined by two sublattices, the different AFM skyrmions, isolated or catenated, can be decomposed into interpenetrating FM skyrmions living in 4 sublattices illustrated in Fig. 1d and denoted as L1, L2, L3 and L4. In the RW-AFM phase, L1 and L4 are equivalent and likewise for L2 and L3. It is evident that the moments in L1 and L4 are antiparallel to the ones in L2 and L3. Taking a closer look at the the isolated AFM magnetic texture, one can dismantle it into two FM skyrmions with opposite topological charges anchored in the distinct antiparallel FM sublattices L1 and L2, while L3 and L4 carry rather collinear magnetization (Fig. 1e). In the case of the overlapped AFM skyrmions, however, no sublattice remains in the collinear state. As an example, the dimer consists of two couples of antiferromagnetically aligned skyrmions, each being embedded in one of the four sublattices (Fig. 1f). The total topological charge naturally cancels out, indicating the absence of the skyrmion Hall effect in the Cr layer.

Our study reveals that in contrast to catenated magnetic textures, single AFM skyrmions are significantly sensitive to the magnetic environment hosted by the underlying PdFe bilayer. For brevity, we focus in the next sections on the single and two-overlapping AFM skyrmions and address the mechanisms dictating their stability.

Stabilization mechanism of the overlapping AFM skyrmions. The formation of overlapped solitons is an unusual phenomenon since FM skyrmions repel each other. It results from com-
Figure 2: Energetics of two catenated AFM skyrmions. a Two overlapping AFM skyrmions decoupled from the PdFe bilayer with black and blue line representing two examples of paths along which the lower skyrmion is rigid-shifted with respect to the upper one, which is pinned. b Two-dimensional map of the total energy difference with respect to the magnetic state shown in a as a function of the distance between the skyrmion centers. c Energy profile along the blue line shown in a. A double minimum is found once the skyrmions swap their positions and become truly degenerate once the rigidity of the spin state is removed (see the red circle). d The Heisenberg exchange is the most prominent contribution to the skyrmion stabilization, as shown along the path hosting a single minimum. The total skyrmion-skyrmion repulsive homo-interaction is dominated by the attractive hetero-interaction, red curves in e and f respectively. The DMI contribution, shown in insets, is smaller and sublattice independent. It favors the overlap of AFM skyrmions.
peting interactions among the skyrmions living in the different sublattices, which finds origin in the natural AFM coupling between the n.n. magnetic moments. Depending on the hosting sublattice, the four skyrmions shown in Fig. 1f experience attraction or repulsion. We can define the skyrmion-skyrmion homo-interaction if the skyrmions are living in a similar magnetic background such as sublattices (L1, L4) and (L2, L3) and the hetero-interaction if the background is different as it is for (L1, L2), (L2, L4), (L3, L4) and (L1, L3). The homo-interaction induces the known repulsion experienced by the usual FM skyrmion and is expected to be out-numbered by the hetero-interaction, which leads to attraction. Both are obviously dictated by the AFM coupling between the magnetic moments and a compromise is found with an equilibrium distance of 2.58 nm between the two AFM skyrmions, which can then overlap.

To substantiate the proposed mechanism, we quantify the skyrmion-skyrmion interaction. We simplify the analysis by neglecting the Cr-Fe magnetic interactions, which puts aside the impact of the rich non-collinear magnetic behavior hosted by the PdFe bilayer. In this case, single AFM skyrmions disappear and only the overlapping ones are observed. We take the skyrmion dimer illustrated in Fig. 2a and proceed to a rigid shift of the lower AFM skyrmion while pinning the upper one at the equilibrium position. We extract the skyrmion-skyrmion interaction map as a function of distance, as shown in Fig. 2b, which clearly demonstrates that as soon as the AFM skyrmions are pulled away from each other, the energy of the system increases. Note that within this procedure, the contributions from the sublattice interactions (L1, L2) and (L3, L4) do not contribute to the plots since they are assigned to each of the AFM skyrmions moved apart from each other. Two minima are identified along a single direction as favored by the symmetry reduction
due to the AFM arrangement of the magnetic moments in which the skyrmions are created. Indeed, one notices in Fig. 1d that due to the sublattice decomposition symmetry operations are reduced to C_2, i.e. rotation by 180°, while mirror symmetries, for example, originally present in the fcc(111) lattice are broken. Figs. 2c-d depict the skyrmion-skyrmion interaction, which hosts either one or two minima, as a function of distance along two directions indicated by the dashed lines, blue and black, in Fig. 2a. The two minima found along the blue line should be degenerate and correspond to the swapping of the two AFM skyrmions. The breaking of degeneracy is an artifact of the rigid shift assumed in the simulations, which can be corrected by allowing the moments to relax (see red circle in Fig. 2c). The maximum of repulsion is realized when the two AFM skyrmions perfectly overlap (see inset).

The interaction profile shown in Fig. 2d is decomposed into two contributions: the skyrmion-skyrmion homo- and hetero-interactions, which we plot in Fig. 2e and f respectively. The data clearly reveals the strong repulsive nature of the homo-interaction mediated by the Heisenberg exchange, which competes with the attractive hetero-interaction driven by both the Heisenberg exchange coupling and DMI. The latter skyrmion-skyrmion interaction is strong enough to impose the unusual compromise of having strongly overlapping solitons.

Impact of magnetic field. Prior to discussing stability aspects pertaining to the single AFM skyrmion in detail, we apply a magnetic field perpendicular to the substrate and disclose pivotal ingredients for the formation of the isolated solitons. In general, the reaction of FM and AFM skyrmions to an external magnetic field is expected to be deeply different. When applied along the
Figure 3: Impact of magnetic field of AFM skyrmion radius. Radius of the sublattice FM skyrmions for two-catenated AFM skyrmions a decoupled from and b coupled to the Fe magnetization. c A single case is shown for the isolated AFM skyrmion since it disappears without the inhomogeneous magnetic field emerging from the substrate. Examples of snapshots of the AFM skyrmions are illustrated as insets of the different figures. In Fe, the amount of FM skyrmions and antiskyrmions increases once applying a magnetic field, which erases the ground state spin-spiral. The coupling to the Fe magnetization affects the evolution of the AFM skyrmions as function of the magnetic field dramatically. d depicts the dependence of the AFM skyrmion under a magnetic field of 70 Tesla on the surrounding magnetic environment, by sequentially deleting one FM skyrmion or antiskyrmion in the Fe layer and relaxing the spin structure. At some point, removing any of the single FM skyrmions in the lower left of d annihilates the AFM skyrmion.
direction of the background magnetization, FM skyrmions reduce in size while recent predictions expect a size expansion of AFM skyrmions \(^{41,45,46}\), thereby enhancing their stability.

To inspect the response of AFM skyrmions to a magnetic field perpendicular to the substrate, we first remove, as done in the previous section, the Cr-Fe interaction since it gives rise to a non-homogeneous and strong effective exchange field. In this particular case, we can only explore the case of AFM skyrmion dimers. As illustrated in Fig. 3a, the size of each of the sublattice skyrmions, which together form the AFM skyrmion dimer, increases with an increasing magnetic field. The type of the hosting sublattice, with the magnetization being parallel or antiparallel to the applied field, seems important in shaping the skyrmions dimension. Strikingly, and in strong contrast to what is known for FM skyrmions, the AFM skyrmions, single and multimers, were found to be stable up to extremely large magnetic fields. Although the assumed fields are unrealistic in the lab, they can be emulated by the exchange field induced by the underlying magnetic substrate. Indeed, the magnetic interaction between Cr and its nearest neighboring Fe atoms, carrying each a spin moment of 2.51 \(\mu_B\), reaches 3.05 meV, which translates to an effective field of about 21 T. At this value, the average skyrmion radius is about 1.6 nm, which is 30% smaller than the one found once the Cr-Fe magnetic coupling is enabled (see Fig. 3b). We note that the we defined the skyrmion radius by the position where the spin moments lie in-plane. The significant size difference is induced by the strong inhomogenous exchange field emanating from the Fe sub-layer, which can host spirals, skyrmions and antiskyrmions.

If the Cr-Fe interaction is included, the size dependence changes completely. Instead of the
rather monotonic increase with the field, the size of the skyrmion is barely affected until reaching about 50 T, which is accompanied by substantial miniaturization of the AFM skyrmions. Here, a phase transition occurs in Fe, which initially hosts spin spirals that turn into FM skyrmions (see Supplementary Figure 5). After being squeezed down to an average radius of 1.48 nm at 140 T, the size expansion observed without the Cr-Fe interaction is recovered because the substrate magnetization is fully homogeneous and parallel to the Zeeman field. Likewise, single AFM skyrmions, found only once the coupling to the substrate is enabled, react in a similar fashion to the field as depicted in Fig. 3c. The substantial difference, however, is that fields larger than 80 T destroy the AFM skyrmions due to the annihilation of the Fe FM skyrmions. This highlights an enhanced sensitivity to the underlying magnetic environment and clearly demonstrates the robustness enabled by skyrmion catenation.

Stabilization mechanism for single AFM skyrmions. We learned that single AFM skyrmions can be deleted after application of an external magnetic field or by switching off the exchange coupling to the magnetic substrate. Both effects find their origin in the magnetization behavior of the PdFe bilayer. To explore the underlying correlation, we consider as an example the magnetic configuration obtained with a field of 70 T and delete one after the other the skyrmions and antiskyrmions found in Fe, then check whether the AFM skyrmion in Cr survives (see example in Fig. 3d). We notice that the AFM skyrmion disappears by deleting the FM solitons located directly underneath or even a bit away. Supplementary Figure 6 shows that when shifted across the lattice, the AFM skyrmion disappears if fixed above a magnetically collinear Fe area.
Figure 4: Interaction map of the single AFM skyrmion with the magnetic substrate. In the first row of figures, sublattice decomposition of Cr skyrmion including the underlying Fe skyrmions shown in four columns a, d, g and j, corresponding respectively to L1, L2, L3 and L4. The AFM skyrmion is made of two FM skyrmions hosted by sublattices L1 and L2. In Fe, FM skyrmions and antiskyrmions can be found in all four lattices. The second row (b, e, h and k) illustrates the sublattice dependent two dimensional Heisenberg exchange energy map corresponding to the areas plotted in the first row, followed by the third row (c, f, i and l) corresponding to DMI. Note that the energy difference ΔE is defined with respect to the RW-AFM background.
We proceed in Fig. 4 to an analysis of the Fe-Cr interaction pertaining to the lower-right snapshot presented in Fig. 3d by separating the Heisenberg exchange contribution from that of DMI and plotting the corresponding heat maps of the site-dependent of these two contributions for each sublattice. Here, we consider as reference energy that of the RW-AFM collinear state surrounding the non-collinear states in Fig. 3d. The building-blocks of the AFM skyrmion are shown in Figs. 4a and 4d, where one can recognize the underlying Fe FM skyrmions in the background. The latter are more distinguishable in the sublattices free from the AFM skyrmion as illustrated in Figs. 4g and j. The order of magnitude of the interactions clearly indicates that the DMI plays a minor role and that one can basically neglect the interactions arising in the skyrmion-free sublattices, namely L3 and L4. It is the Heisenberg exchange interaction emerging in the sublattices L1 and L2 that dictates the overall stability of the AFM skyrmion.

In L2, the core of the magnetization of the Cr FM skyrmion points along the same direction as that of the underlying Fe atoms, which obviously is disfavored by the AFM coupling between Cr and Fe (-3.05 meV for nearest neighbors). This induces the red exchange area surrounding the core of the AFM skyrmion (black circle in Fig. 4e), which is nevertheless sputtered with blue spots induced by the magnetization of the core of the Fe FM skyrmions pointing in the direction opposite to that of the Cr moments in L2. The latter is a mechanism reducing the instability of the Cr skyrmion. Overall, the total energy cost in having the Cr skyrmion in L2 reaches +693.7 meV and is compensated by the exchange energy of -712.4 meV generated by the one living in sublattice L1. Here, the scenario is completely reversed since the core of the Cr skyrmion has its magnetization pointing in the opposite direction than that of the neighboring Fe atoms and therefore the large
negative blue area with the surrounding area being sputtered by the Fe skyrmions, similar to the observation made in L2 (see Fig. 4d). Overall, the Cr AFM skyrmion arranges its building blocks such that the energy is lowered by the skyrmion anchored in sublattice L1. Here, the details of the non-collinear magnetic textures hosted by Fe play a primary role in offering the right balance to enable stabilization. This explains the sensitivity of the single AFM skyrmion to the number and location of the underlying FM Fe skyrmions. Removing non-collinearity in Fe makes both building blocks of the AFM skyrmion equivalent without any gain in energy from the Cr-Fe interaction, which facilitates the annihilation of the Cr skyrmion.

Discussion

Following a two-pronged approach based on first-principles simulations combined with atomistic spin dynamics, we identify a thin film that can host intrinsic, i.e. non-synthetic, AFM skyrmions at zero magnetic field. A Cr monolayer deposited on a substrate known to host FM skyrmions, PdFe/Ir(111), offers the right AFM interface combination enabling the emergence of a rich set of AFM topological solitons. Owing to the AFM nature of Cr, its ground state is RW-AFM as induced by magnetic interactions beyond nearest neighbors. We strikingly discovered catenated AFM skyrmions, which can be cut and decoupled into isolated solitons via the inhomogenous exchange field emanating from PdFe bilayer. The intra-overlayer skyrmion-skyrmion interaction favors the important overlap of the AFM skyrmions, and makes them robust against the rich magnetic nature of the PdFe substrate. In contrast, the single AFM skyrmion annihilates if positioned on a homogeneously magnetized substrate and it is only through the presence of various spin-textures
such as spin spirals and multiples of skyrmions or antiskyrmions that one of the building-blocks of the AFM skyrmion can lower the energy enough to enable stability.

Since the experimental observation of intrinsic AFM skyrmions has so far been elusive at interfaces, our predictions open the door for their realization in well defined materials and offer the opportunity to explore them in thin film geometries. The robustness of the catenated skyrmions qualify them as ideal particles for racetrack memory devices to be driven with currents while avoiding the skyrmion Hall effect. The ability to control the substrate magnetization makes the system, we studied, a rich playground to design and tune the highly sensitive single AFM skyrmion living in the overlayer. We envision patterning the ferromagnetic surface with regions hosting different magnetic textures, being trivial, such as the ferromagnetic regions, or topological, to define areas where the AFM skyrmion can be confined or driven within specific paths. We envisage a rich and complex response to in-plane currents, which could move the underlying FM solitons along specific directions subjected to the Magnus effect. The latter would affect the response of the overlaying isolated AFM skyrmions in a non-trivial fashion.

We anticipate that the proposed material and the FM-substrate on which AFM films can be deposited offer an ideal platform to explore the physics of AFM skyrmions. Noticing already that different catenated AFM skyrmions can co-exist establishes a novel set of multi-soliton objects worth exploring in future studies. Besides their fundamental importance enhanced by the potential parallel with topological concepts known in knot theory, such unusual AFM localized entities might become exciting and useful constituents of future nanotechnology devices resting on non-
collinear spin-textures and the emerging field of antiferromagnetic spintronics.

Methods

First-principles calculations. The relaxation parameters were obtained using the Quantum-Espresso computational package66. The projector augmented wave pseudo potentials from the PS Library67 and a $28 \times 28 \times 1$ k-point grid were used for the calculations. The Cr, Pd, Fe and Ir interface layer were fcc-stacked along the [111] direction and relaxed by 4\%, 5.8\%, 8.1\% and -1\% with respect to the Ir ideal interlayer distance, respectively. Positive (negative) numbers refer to atomic relaxations towards (outward of) the Ir surface.

The electronic structure and magnetic properties were simulated using all electron full potential scalar relativistic Koringa-Kohn-Rostoker (KKR) Green function method68,69 in the local spin density approximation. The slab contains 30 layers (3 vacuum + 1 Cr + 1 Pd + 1 Fe + 20 Ir + 4 vacuum). The momentum expansion of the Green function was truncated at $\ell_{\text{max}} = 3$. The self-consistent calculations were performed with a k-mesh of 30×30 points and the energy contour contained 23 complex energy points in the upper complex plane with 9 Matsubara poles. The Heisenberg exchange interactions and DM vectors were extracted using the infinitesimal rotation method70,71 with a k-mesh of a 200×200.

Hamiltonian Model and atomistic spin dynamics. In our study, we consider a two dimensional Heisenberg model on a triangular lattice, equipped with Heisenberg exchange coupling, DMI, the magnetic anisotropy energy, and Zeeman term. All parameters were obtained from ab-initio. The
energy functional reads as follows:

\[H = H_{\text{Exc}} + H_{\text{DMI}} + H_{\text{Ani}} + H_{\text{Zeem}}, \]

(1)

with:

\[H_{\text{Exc}} = - \sum_{<i,j>} J_{ij}^{\text{Cr-Cr}} S_i \cdot S_j - \sum_{<i,j>} J_{ij}^{\text{Fe-Cr}} S_i \cdot S_j - \sum_{<i,j>} J_{ij}^{\text{Fe-Fe}} S_i \cdot S_j, \]

\[H_{\text{DMI}} = \sum_{<i,j>} D_{ij}^{\text{Cr-Cr}} \cdot [S_i \times S_j] + \sum_{<i,j>} D_{ij}^{\text{Fe-Cr}} \cdot [S_i \times S_j] + \sum_{<i,j>} D_{ij}^{\text{Fe-Fe}} \cdot [S_i \times S_j], \]

\[H_{\text{Ani}} = -K_{\text{Cr}} \sum_i (S_i^z)^2 - K_{\text{Fe}} \sum_i (S_i^z)^2, \]

\[H_{\text{Zeem}} = - \sum_i h_i S_i^z, \]

where \(i \) and \(j \) are site indices carrying each magnetic moments. \(S \) is a unit vector of the magnetic moment. \(J_{ij}^{X-Y} \) is the Heisenberge exchange coupling strength, being \(< 0\) for AFM interaction, between an \(X \) atom on site \(i \) and a \(Y \) atom on site \(j \). A similar notation is adopted for the DMI vector \(D \) and the magnetic anisotropy energy \(K \) (0.5 meV per magnetic atom). The latter favors the out-of-plane orientation of the magnetization, and \(h_i = \mu_i B \) describes the Zeeman coupling to the atomic spin moment \(\mu \) at site \(i \) assuming an out-of-plane field.

To explore the magnetic properties and emerging complex states we utilize the Landau-Lifshitz-equation (LLG) as implemented in the Spirit code.\(^7^2\) We assumed periodic boundary conditions to model the extended two-dimensional system with cells containing 100\(^2\), 200\(^2\), 300\(^2\), 400\(^2\) sites.

Data availability The data that support the findings of this study is available from the corresponding author upon reasonable request.
Acknowledgements We thank Markus Hoffmann for fruitful discussions. This work was supported by the Federal Ministry of Education and Research of Germany in the framework of the Palestinian-German Science Bridge (BMBF grant number 01DH16027) and the Deutsche Forschungsgemeinschaft (DFG) through SPP 2137 “Skyrmionics” (Projects LO 1659/8-1, BL 444/16-2). The authors gratefully acknowledge the computing time granted through JARA on the supercomputer JURECA at Forschungszentrum Jülich.

Author contributions S.L. initiated, designed and supervised the project. A.A. performed the simulations with support and supervision from I.L.F., S.Br. and M.S. All authors discussed the results. A.A. and S.L. wrote the manuscript to which all co-authors contributed.

Competing Interests The authors declare no competing interests.

Correspondence Correspondence and requests for materials should be addressed to A.A. (email: a.aldarawsheh@fz-juelich.de) or to S.L. (email: s.lounis@fz-juelich.de).

References

1. Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Physical review letters 116, 147203 (2016).

2. Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Scientific reports 6, 1–8 (2016).

3. Olejník, K. et al. Terahertz electrical writing speed in an antiferromagnetic memory. Science advances 4, eaar3566 (2018).
4. Gomonay, O., Baltz, V., Brataas, A. & Tserkovnyak, Y. Antiferromagnetic spin textures and dynamics. *Nature Physics* **14**, 213–216 (2018).

5. Legrand, W. *et al.* Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. *Nature materials* **19**, 34–42 (2020).

6. Gao, S. *et al.* Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings. *Nature* **586**, 37–41 (2020). URL https://doi.org/10.1038/s41586-020-2716-8.

7. Jani, H. *et al.* Antiferromagnetic half-skyrmions and bimerons at room temperature. *Nature* **590**, 74–79 (2021). URL https://doi.org/10.1038/s41586-021-03219-6.

8. Bogdanov, A. N. & Yablonskii, D. Thermodynamically stable “vortices” in magnetically ordered crystals. the mixed state of magnets. *J. Exp. Theor. Phys.* **95**, 178 (1989).

9. Bogdanov, A. & Hubert, A. Thermodynamically stable magnetic vortex states in magnetic crystals. *Journal of magnetism and magnetic materials* **138**, 255–269 (1994).

10. Rössler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. *Nature* **442**, 797–801 (2006).

11. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. *Nat. Nanotech.* **8**, 899–911 (2013).

12. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. *Nature nanotechnology* **8**, 152–156 (2013).
13. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. *Journal of physics and chemistry of solids* **4**, 241–255 (1958).

14. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. *Phys. Rev.* **120**, 91–98 (1960).

15. Mühlbauer, S. *et al.* Skyrmion lattice in a chiral magnet. *Science* **323**, 915–919 (2009).

16. Pappas, C. *et al.* Chiral paramagnetic skyrmion-like phase in mnsi. *Physical review letters* **102**, 197202 (2009).

17. Yu, X. *et al.* Real-space observation of a two-dimensional skyrmion crystal. *Nature* **465**, 901–904 (2010).

18. Yu, X. *et al.* Skyrmion flow near room temperature in an ultralow current density. *Nature communications* **3**, 1–6 (2012).

19. Yu, X. *et al.* Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet fege. *Nature materials* **10**, 106–109 (2011).

20. Heinze, S. *et al.* Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. *nature physics* **7**, 713–718 (2011).

21. Romming, N. *et al.* Writing and deleting single magnetic skyrmions. *Science* **341**, 636–639 (2013).

22. Chen, G., Mascaraque, A., N’Diaye, A. T. & Schmid, A. K. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. *Applied Physics Letters* **106**, 22
23. Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in ir/fe/co/pt multilayers. *Nature Materials* **16**, 898–904 (2017). URL https://doi.org/10.1038/nmat4934.

24. Kiselev, N., Bogdanov, A., Schäfer, R. & Rößler, U. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? *Journal of Physics D: Applied Physics* **44**, 392001 (2011).

25. Crum, D. M. et al. Perpendicular reading of single confined magnetic skyrmions. *Nature communications* **6**, 1–8 (2015).

26. Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. *Nat. Rev. Mater.* **1**, 16044 (2016).

27. Garcia-Sanchez, F., Sampaio, J., Reyren, N., Cros, V. & Kim, J. A skyrmion-based spin-torque nano-oscillator. *New J. Phys.* **18**, 075011 (2016).

28. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. *Nat. Rev. Mater.* **2**, 17031 (2017).

29. Fernandes, I. L., Bouhassoune, M. & Lounis, S. Defect-implantation for the all-electrical detection of non-collinear spin-textures. *Nature communications* **11**, 1–9 (2020).
30. Zhang, X. et al. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. *Journal of Physics: Condensed Matter* **32**, 143001 (2020). URL https://doi.org/10.1088/1361-648x/ab5488.

31. Büttner, F., Lemesh, I. & Beach, G. S. D. Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications. *Scientific Reports* **8**, 4464 (2018). URL https://doi.org/10.1038/s41598-018-22242-8.

32. Lin, S.-Z., Reichhardt, C., Batista, C. D. & Saxena, A. Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep. *prb* **87**, 214419 (2013).

33. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. *Nat. Mater.* **15**, 501–506 (2016).

34. Jiang, W. et al. Direct observation of the skyrmion Hall effect. *Nature Physics* **13**, 162–169 (2017).

35. Litzius, K. et al. Skyrmion hall effect revealed by direct time-resolved x-ray microscopy. *Nat. Phys.* **13**, 170–175 (2017).

36. Fernandes, I. L., Bouaziz, J., Blügel, S. & Lounis, S. Universality of defect-skyrmion interaction profiles. *Nature communications* **9**, 1–7 (2018).

37. Fernandes, I. L., Chico, J. & Lounis, S. Impurity-dependent gyrotropic motion, deflection and pinning of current-driven ultrasmall skyrmions in PdFe/Ir(111) surface. *Journal of Physics: Condensed Matter* (2020). URL http://iopscience.iop.org/10.1088/1361-648x/ab9cf0.
38. Arjana, I. G., Lima Fernandes, I., Chico, J. & Lounis, S. Sub-nanoscale atom-by-atom crafting of skyrmion-defect interaction profiles. *Scientific Reports* **10**, 14655 (2020). URL https://doi.org/10.1038/s41598-020-71232-2.

39. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. *Nature Nanotechnology* **11**, 231–241 (2016). URL https://doi.org/10.1038/nnano.2016.18.

40. Bogdanov, A., Roessler, U. K., Wolf, M. & Müller, K.-H. Magnetic structures and reorientation transitions in noncentrosymmetric uniaxial antiferromagnets. *Physical Review B* **66**, 214410 (2002).

41. Rosales, H. D., Cabra, D. C. & Pujol, P. Three-sublattice skyrmion crystal in the antiferromagnetic triangular lattice. *Physical Review B* **92**, 214439 (2015).

42. Keesman, R., Raaijmakers, M., Baerends, A., Barkema, G. & Duine, R. Skyrmions in square-lattice antiferromagnets. *Physical Review B* **94**, 054402 (2016).

43. Zhang, X., Ezawa, M. & Zhou, Y. Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks. *Physical Review B* **94**, 064406 (2016).

44. Göbel, B., Mook, A., Henk, J. & Mertig, I. Antiferromagnetic skyrmion crystals: Generation, topological hall, and topological spin hall effect. *Physical Review B* **96**, 060406 (2017).

45. Bessarab, P. *et al.* Stability and lifetime of antiferromagnetic skyrmions. *Physical Review B* **99**, 140411 (2019).
46. Potkina, M. N., Lobanov, I. S., Jónsson, H. & Uzdin, V. M. Skyrmions in antiferromagnets: Thermal stability and the effect of external field and impurities. *Journal of Applied Physics* **127**, 213906 (2020).

47. Liu, Z., dos Santos Dias, M. & Lounis, S. Theoretical investigation of antiferromagnetic skyrmions in a triangular monolayer. *Journal of Physics: Condensed Matter* **32**, 425801 (2020).

48. Shen, L. *et al.* Dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient. *Physical Review B* **98**, 134448 (2018).

49. Silva, R., Silva, R., Pereira, A. & Moura-Melo, W. Antiferromagnetic skyrmions overcoming obstacles in a racetrack. *Journal of Physics: Condensed Matter* **31**, 225802 (2019).

50. Khoshlahni, R., Qaiumzadeh, A., Bergman, A. & Brataas, A. Ultrafast generation and dynamics of isolated skyrmions in antiferromagnetic insulators. *Physical Review B* **99**, 054423 (2019).

51. Díaz, S. A., Klinovaja, J. & Loss, D. Topological magnons and edge states in antiferromagnetic skyrmion crystals. *Phys. Rev. Lett.* **122**, 187203 (2019). URL https://link.aps.org/doi/10.1103/PhysRevLett.122.187203.

52. Zarzuela, R., Kim, S. K. & Tserkovnyak, Y. Stabilization of the skyrmion crystal phase and transport in thin-film antiferromagnets. *Physical Review B* **100**, 100408 (2019).

53. Woo, S. *et al.* Current-driven dynamics and inhibition of the skyrmion hall effect of ferrimagnetic skyrmions in gdfeco films. *Nature communications* **9**, 1–8 (2018).
54. Ross, A. et al. Structural sensitivity of the spin hall magnetoresistance in antiferromagnetic thin films. *Phys. Rev. B* **102**, 094415 (2020). URL https://link.aps.org/doi/10.1103/PhysRevB.102.094415.

55. Spethmann, J. et al. Discovery of magnetic single- and triple-q states in mn/re (0001). *Physical review letters* **124**, 227203 (2020).

56. Spethmann, J., Grünebohm, M., Wiesendanger, R., von Bergmann, K. & Kubetzka, A. Discovery and characterization of a new type of domain wall in a row-wise antiferromagnet. *Nature Communications* **12**, 1–8 (2021).

57. Wu, F. Y. Knot theory and statistical mechanics. *Rev. Mod. Phys.* **64**, 1099–1131 (1992). URL https://link.aps.org/doi/10.1103/RevModPhys.64.1099.

58. Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. *Chemical reviews* **95**, 2725–2828 (1995).

59. Dabrowski-Tumanski, P. & Sulkowska, J. I. Topological knots and links in proteins. *Proceedings of the National Academy of Sciences* **114**, 3415–3420 (2017). URL https://www.pnas.org/content/114/13/3415. https://www.pnas.org/content/114/13/3415.full.pdf.

60. Bates, A. D., Maxwell, A. et al. *DNA topology* (Oxford University Press, USA, 2005).

61. Dupé, B., Hoffmann, M., Paillard, C. & Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. *Nature communications* **5**, 1–6 (2014).
62. Simon, E., Palotás, K., Rózsa, L., Udvardi, L. & Szunyogh, L. Formation of magnetic skyrmions with tunable properties in PdFe bilayer deposited on Ir (111). *Phys. Rev. B* **90**, 094410 (2014).

63. Romming, N., Kubetzka, A., Hanneken, C., von Bergmann, K. & Wiesendanger, R. Field-dependent size and shape of single magnetic skyrmions. *Physical review letters* **114**, 177203 (2015).

64. Bouhassoune, M. & Lounis, S. Friedel oscillations induced by magnetic skyrmions: From scattering properties to all-electrical detection. *Nanomaterials* **11** (2021). URL https://www.mdpi.com/2079-4991/11/1/194.

65. Fernandes, I. L., Blügel, S. & Lounis, S. Spin-orbit enabled all-electrical readout of chiral spin-textures. *ArXiv:2202.11637* (2022).

66. Giannozzi, P. *et al.* Quantum espresso: a modular and open-source software project for quantum simulations of materials. *Journal of physics: Condensed matter* **21**, 395502 (2009).

67. Dal Corso, A. Pseudopotentials periodic table: From h to pu. *Computational Materials Science* **95**, 337–350 (2014).

68. Papanikolaou, N., Zeller, R. & Dederichs, P. H. Conceptual improvements of the KKR method. *J. Phys. Condens. Matter* **14**, 2799 (2002).

69. Bauer, D. S. G. *Development of a relativistic full-potential first-principles multiple scattering Green function method applied to complex magnetic textures of nano structures at surfaces* (Forschungszentrum Jülich Jülich, 2014).
70. Liechtenstein, A., Katsnelson, M., Antropov, V. & Gubanov, V. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. *jmnm* **67**, 65 – 74 (1987).

71. Ebert, H. & Mankovsky, S. Anisotropic exchange coupling in diluted magnetic semiconductors: *Ab initio* spin-density functional theory. *Phys. Rev. B* **79**, 045209 (2009).

72. Müller, G. P. *et al.* Spirit: Multifunctional framework for atomistic spin simulations. *Physical Review B* **99**, 224414 (2019).