Abstract

Transport current values of 7.5×10^4 A/cm2 at 4.2 K and self-field are reported for MgB$_2$-based tapes. MgB$_2$ strands were formed by directly filling commercially available MgB$_2$ powder into Nb-lined, monel tubes and then wire drawing. The wires were then rolled into tapes 2.56×0.32 mm2, with a total superconducting cross section of 0.2319 mm2. Transport measurements were performed using a standard four-point technique at $T = 4.2$ K (in liquid helium) and at self field. Three samples were prepared, with heat treatments of 900°C for 1, 2, and 3 h under 1/3 at Ar. Measured values of transport current were 4.7, 7.5, and 1.1×10^4 A/cm2, respectively, at 4.2 K and self field. M-H loops taken on the sample HT for 1 h showed magnetic J_cs of 4.2×10^4 A/cm2 at 4.2 K and 1 T, indicating that the material had reasonably well connected grains.

Keywords: MgB$_2$, transport current
Introduction

The recent announcement of the discovery of MgB$_2$ [1] has triggered a great deal of interest in the research community. The origin of its transition has been described in terms of an electron-phonon coupling [2] with its associated isotope effect [3]. Alternatively, it has been described in terms of a hole-carrier-based pairing mechanism [4]. The crystal structure of MgB$_2$ is the AlB$_2$ structure, with honeycomb layers of boron atoms alternating with hexagonal layers of Mg atoms. MgB$_2$ decomposes peritectically, with the phase diagram given in [4]. Even though this makes formation of single crystals difficult, polycrystalline MgB$_2$ can be easily formed. In fact, MgB$_2$ powder is commercially available, and has been successfully sintered into a reasonably well connected pellets by heat treatment (HT) under pressure at 1000°C [5]. It is also possible to start with sufficiently small elemental powders and sinter to form high quality MgB$_2$ by reaction at similar temperatures [6].

A number of groups have now fabricated the powders in pellet or similar form and have reported B_{c2} and magnetically derived J_c properties [5-7]. Takano et al. [5] starting with -100 Mesh MgB$_2$ powders, sintered them at 775, 1000, and 1250°C under pressure. They find some level of MgO (present in the powder as-received) and MgB$_4$ impurity phases (at higher temperatures). The powders are seen to sinter together during the 1000°C HT, leading to 20 K, 1 T magnetic J_cs of approximately 10^5 A/cm2 for the powder and 4×10^4 A/cm2 in the sintered bulk. On the other hand Larbalestier et al. have started with elemental Mg and B powders. They pressed them into pellets, placed them on Ta foil on Al$_2$O$_3$ boats and fired them under Ar for 1 h at 600°C, 800°C, and 900°C.
The powders were then lightly ground, pressed into pellets and HT under pressure at temperatures between 650°C and 800°C for times between 1 and 5.5 h. They obtained 10^4 A/cm² at 20 K and 1 T, and also 4×10^4 A/cm² at 4.2 K 1 T. Recent results from Dou et al., using again elemental powders gives 10^5 A/cm² at 4.2 K, 1 T for the J_c of currents flowing across the whole of the slab 3 x 3 x 2 mm [8].

Larbalestier et al. [6] give values of 17.5 T for $B_{c2}(0)$, similar to the estimates from [5]. The level of intrinsic anisotropy has not been determined. The grain to grain link properties seem good in view of results from [5-7] and also [8]. In fact the macroscopic J_c was sufficiently high in [8] that flux jumping was seen.

The properties of MgB₂ are increasing rather quickly, suggesting that this system will be much easier to work with than “high Tc” materials. The next step is to make the material in wire form. Below some initial progress in that direction is shown.

Experimental

MgB₂ powder (-100 mesh) was filled into a Nb-lined monel tube 6 mm in diameter. The tube was then drawn through conical dies to form a wire 50 mils in diameter which was subsequently rolled. The samples were then encapsulated under Ar and reacted at 900°C for 1 and 2 hours. Transport J_c measurements were made in liquid helium at self field using the standard four-point technique. M-H loops were measured using an EG&G PAR vibrating sample magnetometer with a 1.7 T iron core magnet.
Results

Transport measurements were made for two samples, listed in Table 1, below. Sample MGB1, heated treated 1 had an I_c of 108 A and J_c of 4.7 x 10^4 A/cm2, while sample MGB2 had an I_c of 173 A and a J_c of 7.5 x 10^4. MGB2 went normal via quench, indicating that the intrinsic transport J_c is higher, and the practical J_c will be improved with proper stabilization. M-H loops were performed on MGB1, and the result is shown in Fig. 1. Here the loop has a ferromagnetic component due to the monel which causes the unusual looking asymmetry, and a peak at low fields due to Nb. However, we have extracted the resulting 1 T ΔM and it is listed in Table 2. Magnetic J_c was extracted using the expression $\Delta M = (0.2/3\pi)J_cd$, where d is the width perpendicular to the applied field. For the present measurements the field was applied perpendicular to the sample. The resulting magnetic J_c of 4.2 x 10^4 A/cm2 at 4.2 K and self field is close (somewhat less) than the transport J_c for this sample. The slightly lower magnetic J_c is due to a slight drop in J_c between self field and 1 T.

Summary

Transport current values of 7.5 x 10^4 A/cm2 at 4.2 K and self-field were shown for MgB$_2$-based tapes. MgB$_2$ strands were formed by directly filling commercially available MgB$_2$ powder into Nb-lined, monel tubes and then wire drawing. The wires were then rolled into tapes 2.56 x 0.32 mm2, with a total superconducting cross section of 0.2319 mm2. Transport measurements were performed using a standard four-point technique at $T = 4.2$ K (in liquid helium) and at self field. Three samples were prepared, with heat treatments at 900°C for 1, 2, and 3 h under 1/3 at Ar. Measured values of transport
current were 4.7, 7.5, and 1.1×10^4 A/cm2, respectively, at 4.2 K and self field. M-H loops taken on the sample HT at 900°C/1 h showed magnetic J_s of 4.2×10^4 A/cm2 at 4.2 K and 1 T, indicating that the material had reasonably well connected grains.

Acknowledgments

We wish to thank S.X. Dou and J. Horvat from the ISEM in Wollongong, Australia for their helpful comments and discussions.

References

1. J. Akimitsu, announcement at the Symposium on Transition Metal Oxides, Sendai, January 10, 2001.
2. J. Kortus, I.I. Mazin, K.D. Belashchenko, A.P. Antropov, and L.L. Boyer, “Superconductivity of Metallic Boron in MgB$_2$”, Cond-mat/0101446, Jan 30, 2001.
3. S.L. Bud’ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, and P.C. Canfield, “Boron Isotope Effect in Superconducting MgB$_2$”, Cond-mat/0101463V2 Feb, 23, 2001. Binary phase diagram from: Binary Alloy Phase Diagrams, Second Edition, Edited by T. Massalski, (ASM International, 1990).
4. J.E. Hirsch, “Hole Superconductivity in MgB$_2$: a High T_c Cuprate without Cu”, Cond-mat/0102115V3, Feb 12, 2001.
5. Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, K. Tagano, H. Kito, and H. Ihara, “Superconducting Properties of MgB$_2$ Bulk Materials Prepared by High Pressure Sintering”, Preprint.
6. D.C. Larbalestier, M.O. Rikel, L.D. Cooley, A.A. Polyanski, J.Y. Jiang, S. Patnaik, X.Y. Cai, D.M. Feldmann, A. Gurevich, A.A. Squitieri, M.T. Naus, C.B. Eom, E.E. Helstrom, R.J. Cava, K.A. Regan, N. Rogado, M.A. Hayward, T. He, J.S. Slusky, P. Khalifah, K. Inumaru, and M. Haas, “Strongly Linked Current Flow in Polycrystalline Forms of the New Superconductor MgB$_2$”, Preprint.

7. D.K. Finnemore, J.E. Ostenson, S.L. Budko, G. Laertot, P.C. Canfield, “Thermodynamic and Transport Properties of Superconducting MgB2”, Cond-mat-abstract 0102114.

8. X.L. Wang, J. Horvat, D. Milliken, E.W. Collings, M. D. Sumption, and S.X. Dou “Flux Jumping and a Bulk-to-Granular Transition in the Magnetization of a Compacted and Sintered MgB$_2$ Superconductor”, submitted to for Applied Physics Letters, Feb 19, 2001.
Table 1. Transport J_c values for MgB$_2$ samples at 4.2 K and self field

Sample Name	Heat Treatment	Superconductor Area, mm2	I_c (4.2 K, self field), A	J_c (4.2 K, self field), A/cm2
MGB1	900$^\circ$C/1h	0.23	108	4.7 x 104
MGB2	900$^\circ$C/2h	0.23	173	7.5 x 104
MGB3	900$^\circ$C/3h	0.23	25	1.1 x 104

Table 2. Magnetic J_c values for MgB$_2$ samples at 4.2 K and 1 T

Name	Superconductor, w x t x L mm3	ΔM, emu/cm3, 1 T, 4.2 K	Magnetic J_c, A/cm2, 4.2 K, 1 T
MGB1	2.26 x 0.103 x 10.0	400	4.2 x 104
Figure 1. M-H loops for MgB$_2$ sample MGB1 at 4.2 K
