Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts

Philip Bille
IT University of Copenhagen

Rolf Fagerberg
University of Southern Denmark

Inge Li Gørtz
Technical University of Denmark
Approximate String Matching

• The *edit distance* between two strings is the minimum number of insertions, deletions, and substitutions needed to convert one string to the other. E.g., edit-distance(“cocoa”, “cola”) = 2.

• Let P and Q be strings and let k (integer > 0) be an *error threshold*.

• The approximate string matching problem is to find all ending positions of substrings in Q whose edit distance to P is at most k.
Results

Time	Space	Reference
$O(um)$	$O(m)$	[Sellers1980]
$O(uk)$	$O(m)$	[LV1989]
$O\left(\frac{uk^4}{m} + u\right)$	$O(m)$	[CH2002]

$|P| = m$ and $|Q| = u$
Ziv-Lempel 1978 compression

\[Q = \text{ananas} \]

\[Z = (0, a)(0, n)(1, n)(1, s) \]

\[Z = Z_0 Z_1 Z_2 Z_3 Z_4 \]
Approximate String Matching on ZL78 compressed texts

- Let \(P \) be a string and \(Z \) be a ZL78 compressed representation of a string \(Q \).

- Given \(P \) and \(Z \), the \textit{compressed approximate string matching problem} is to solve the approximate string matching for \(P \) and \(Q \) without decompressing \(Z \).

- Goal: Do it more efficiently than decompressing \(Z \) and using the best (uncompressed) approximate string matching algorithm.
Applications

• Textual data bases (e.g. DNA sequence collections) issues:

 • Save space = keep data in compressed form.

 • Search efficiently.

• Solution: Compressed string matching algorithms.
Results

• Let $|P| = m$ and $|Z| = n$.

• Kärkkäinen, Navarro, and Ukkonen [KNU2003]:

 • $O(nmk + \text{occ})$ time and $O(nmk)$ space.

• Our result (Theorem 1): For any parameter $\tau \geq 1$:

 • $O(n(\tau + m + t(m, 2m + 2k, k)) + \text{occ})$ expected time and

 • $O(n/\tau + m + s(m, 2m + 2k, k)) + \text{occ}$ space.
Example Results

Time	Space	Reference
\(O(nmk + \text{occ})\)	\(O(nmk)\)	[KNU2003]
\(O(nmk + \text{occ})\)	\(O\left(\frac{n}{mk} + m + \text{occ}\right)\)	LV + \(\tau = mk\)
\(O(nk^4 + nm + \text{occ})\)	\(O\left(\frac{n}{k^4 + m} + m + \text{occ}\right)\)	CH + \(\tau = k^4 + m\)

\(|P| = m\) and \(|Z| = n\)
Selecting Compression Elements

For parameter $\tau \geq 1$, select a subset C of the compression elements of Z such that:

- $|C| = O(n/\tau)$.
- From any compression element z_i, the distance (minimum number of references) to any compression element in C is at most 2τ.
Selecting Compression Elements

- Maintain C using dynamic perfect hashing while scanning Z from left-to-right.
- Initially, set $C = \{z_0\}$.
- To process element z_{i+1} follow references until we encounter $y \in C$:
 - If the distance l from z_{i+1} to y is less than 2τ we are done.
 - Otherwise ($l = 2\tau$), insert element the element at distance τ into C.
Selecting Compression Elements

\[Z = \]

- Lemma: For any parameter \(\tau \geq 1 \), \(C \) is constructed in

 - \(O(n\tau) \) expected time and

 - \(O(n/\tau) \) space.
Computing Matches

\[Q = \cdots \begin{array}{|c|c|} \hline \text{phrase}(z_{i-1}) & \text{phrase}(z_i) \ \hline \end{array} \cdots \]

- Strategy:
 - Process \(Z \) from left-to-right.
 - At \(z_i \) we compute all matches ending in the substring encoded by \(z_i \).
Computing Overlapping Matches

Let \([u_i, u_i + l_i - 1]\) be the positions in \(Q\) of \(\text{phrase}(z_i)\).

Goal: Find all overlapping matches for \(z_i\), i.e., the matches starting before \(u_i\) and ending in \([u_i, u_i + l_i - 1]\).

Decompress substrings \(\text{rpre}(z_i)\) and \(\text{rsuf}(z_{i-1})\) of length \(m + k\) around \(u_i\).

Run favorite (uncompressed) approximate string matching algorithm to find matches of \(P\) in \(\text{rsuf}(z_{i-1}) \cdot \text{rpre}(z_i)\). Add offset to these to get the overlapping matches for \(z_i\).
Computing the Relevant Prefix and Suffix

• For parameter $\tau \geq 1$, select a subset C of the compression elements of Z according to Lemma 1.

• For each element in C at distance more than $m+k$ from z_0 add “shortcut” to element at distance $m+k$.
Computing the Relevant Prefix

- Follow references to nearest element in C.
- Follow shortcut if present.
- Compute the relevant prefix by decompressing length $m + k$ substring.
Computing the Relevant Suffix

- Follow references to decompress substring of length $m + k$.
- If the phrase is shorter than $m + k$, recursively apply to z_{i-1} until we have $m + k$ characters.
Analysis

- Time = preprocess + n(find nearest element + decompress + match) =

 \(O(n\tau + n(\tau + m + t(m, 2m + 2k, k))) \)

- Space = preprocess + decompress + match =

 \(O(n/\tau + m + s(m, 2m + 2k, k)) \)
Computing Internal Matches

- **Goal:** Find all *internal matches* for z_i, i.e., all matches starting and ending within $[u_i, u_i + l_i - 1]$.

- Compute and store all the internal match sets indexed by compression elements using dynamic perfect hashing.

- Decompress substring $rsuf'(z_i)$ of length $\min(l_i, m + k)$ ending at $u_i + l_i - 1$.

- Internal matches for $z_i =$

 \[
 (\text{internal matches for } reference(z_i)) \cup (\text{matches of } P \text{ in } rsuf'(z_i))
 \]
Analysis

• Time = n (decompress + match + internal matches) =

\[O(n(m + t(m, m + k, k)) + \text{occ}) \]

• Space = decompress + match + total number of internal matches =

\[O(m + s(m, m + k, k) + \text{occ}) \]
Putting the Pieces Together

• Merging overlapping and internal matches we get all matches for z_i ending within $[u_i, u_i + l_i - 1]$.

• Implies Theorem 1: For any parameter $\tau \geq 1$:

 • $O(n(\tau + m + t(m, 2m + 2k, k)) + \text{occ})$ expected time and

 • $O(n/\tau + m + s(m, 2m + 2k, k)) + \text{occ})$ space.

• Does not hold for ZLW compressed texts, unless $\Omega(n)$ space is used.

• For $\Omega(n)$ space the bounds hold in the worst-case and work for both ZL78 and ZLW.
Regular Expression Matching

• A regular expression is a generalized pattern composed from simple characters using union, concatenation, and Kleene star.

• Given a regular expression R and a string Q the regular expression matching problem is to find all ending positions of substrings in Q that matches a string in the language generated by R.
Regular Expression Matching

• Let $|R| = m$ and $|Q| = u$.

• Classic solution [Thompson1968]: $O(um)$ time and $O(m)$ space.

• Several improvements based on the Four-Russian technique or word-level parallelism [Myers1992, NR2004, BFC2005, Bille2006].
Compressed Regular Expression Matching

• Let $|R| = m$ and $|Z| = n$.

• Navarro [Navarro2003] simplified and without word-level parallel techniques:
 • $O(nm^2 + \text{occ} \cdot m \log m)$ time and $O(nm^2)$ space.

• Our result (Theorem 2): For any parameter $\tau \geq 1$:
 • $O(nm(m + \tau) + \text{occ} \cdot m \log m)$ time and
 • $O(nm^2 / \tau + nm)$ space.

• E.g. $\tau = m$ gives $O(nm^2 + \text{occ} \cdot m \log m)$ time and $O(nm)$ space.
Remarks

• Compressed strings are large and therefore $\Omega(n)$ space may not be feasible for large texts.

• Our result for compressed approximate string matching is one of the very few algorithms for compressed matching that uses $o(n)$ space.

• More sublinear space compressed string matching algorithms are needed!