Title
Measurement of environmental tobacco smoke exposure among adults with asthma.

Permalink
https://escholarship.org/uc/item/6qm2s843

Journal
Environmental health perspectives, 109(8)

ISSN
0091-6765

Authors
Eisner, MD
Katz, PP
Yelin, EH
et al.

Publication Date
2001-08-01

DOI
10.1289/ehp.01109809

Peer reviewed
Measurement of Environmental Tobacco Smoke Exposure among Adults with Asthma

Mark D. Eisner, Patricia P. Katz, Edward H. Yelin, S. Katharine Hammond, and Paul D. Blank

1Division of Occupational and Environmental Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, and 2Institute for Health Policy Studies and Department of Medicine, University of California, San Francisco, San Francisco, California, USA; 3Center for Occupational and Environmental Health and School of Public Health, University of California, Berkeley, California, USA

Because the morbidity and mortality from adult asthma have been increasing, the identification of modifiable environmental exposures that exacerbate asthma has become a priority. Limited evidence suggests that exposure to environmental tobacco smoke (ETS) may adversely affect adults with asthma. To study the effects of ETS better, we developed a survey instrument to measure ETS exposure in a cohort of adults with asthma living in northern California, where public indoor smoking is limited. To validate this survey instrument, we used a passive badge monitor that measures actual exposure to ambient nicotine, a direct and specific measure of ETS. In this validation study, we recruited 50 subjects from an ongoing longitudinal asthma cohort study who had a positive screening question for ETS exposure or potential exposure. Each subject wore a passive nicotine badge monitor for 7 days. After the personal monitoring period, we readministered the ETS exposure survey instrument. Based on the survey, self-reported total ETS exposure duration ranged from 0 to 70 hr during the previous 7 days. Based on the upper-range boundary, bars or nightclubs (55 hr) and the home (50 hr) were the sites associated with maximal self-reported exposure. As measured by the personal nicotine badge monitors, the overall median 7-day nicotine concentration was 0.03 µg/m³ (25th–75th interquartile range 0–3.69 µg/m³). Measured nicotine concentrations were highest among persons who reported home exposure (median 0.61 µg/m³), followed by work exposure (0.03 µg/m³), other (outdoor) exposure (0.025 µg/m³), and no exposure (0 µg/m³; p = 0.03). The Spearman rank correlation coefficient between self-reported ETS exposure duration and directly measured personal nicotine concentration during the same 7-day period was 0.47, supporting the survey’s validity (p = 0.0006). Compared to persons with no measured exposure, lower-level (odds ratio (OR) 1.9; 95% confidence interval (CI), 0.4–8.8) and higher-level ETS exposures (OR 6.8; 95% CI, 1.4–32.3) were associated with increased risk of respiratory symptoms. A brief, validated survey instrument can be used to assess ETS exposure among adults with asthma, even with low levels of exposure. This instrument could be a valuable tool for studying the effect of ETS exposure on adult asthma health outcomes. Key words: asthma, biological markers, environmental monitoring, nicotine, smoking, tobacco smoke pollution. Environ Health Perspect 109:809–814 (2001). [Online 13 August 2001] http://ehpnet1.niehs.nih.gov/docs/2001/109p809-814dsnr/abstract.html

During the past decade, the morbidity and mortality from adult asthma have been increasing. Consequently, identifying modifiable environmental factors that exacerbate asthma has become a priority. Limited evidence indicates that exposure to environmental tobacco smoke (ETS) may exacerbate asthma among adults (1). Further research is necessary to establish the causal connection between ETS exposure and adverse asthma health outcomes in adults. To elucidate the effects of ETS better, we developed a survey instrument to measure ETS exposure in a cohort of adults with asthma living in northern California. Previous questionnaires have been designed to assess ETS exposure, but they have limitations for studying the effect of ETS exposure on asthma health status in adults. The validation of most previous ETS questionnaire instruments occurred in places and times at which cigarette smoking was more common. Consequently, their utility in California, where the prevalence of smoking currently is substantially lower than in most other states, is unclear (5). Since most previous ETS survey instruments have been published, California state law has prohibited smoking in nearly all workplaces effective 1 January 1995 (6). This change may have affected the locations of ETS exposure, including a shift in indoor workplace exposure to outdoor locations. Moreover, previous instruments have not ascertained asthma-related ETS effects, such as respiratory symptoms and medication use. To study the effects of ETS on adults with asthma living in northern California, we developed a survey instrument that measures exposure in relevant microenvironments, including outdoor workplaces. Another limitation of previous studies is validation using serum, urine, or salivary cotinine, a nicotine metabolite and biomarker of ETS exposure (7–16). Because it has substantial person-to-person variability due to uptake, metabolism, and elimination, cotinine has limitations as a biomarker of ETS exposure (17). Cotinine is also found in several foods, reducing its specificity for ETS when exposure levels are very low (17, 18). The half-life of cotinine is relatively short (1–2 days), which limits its utility for assessing exposure during a longer period. To validate the ETS exposure survey instrument, we used a passive badge monitor that measures actual exposure to ambient nicotine, a more direct and specific measure of personal ETS exposure (19, 20).

Materials and Methods

Overview. We developed a survey instrument to measure ETS exposure among adults with asthma living in northern California. To validate the instrument, we recruited 50 subjects from an ongoing longitudinal asthma cohort study who had a positive screening question for ETS exposure or potential exposure. Each subject wore a passive nicotine badge monitor for 7 days. After the personal monitoring period, we readministered the ETS exposure survey instrument. The study was approved by the University of California San Francisco Committee on Human Research.

Subject recruitment. We used data collected during an ongoing prospective, longitudinal cohort study of adults with asthma recruited from physician practices in northern California. Details of recruitment have been reported previously (21–23). In brief, we initially recruited subjects from a random sample of board-certified internal medicine and pulmonary specialists, internal medicine and allergy/immunology specialists, and family practice specialists. The present study eligibility is based on follow-up interviews conducted between July 1998 and December 1999, which included 402 subjects.

Address correspondence to M. D. Eisner, Division of Occupational and Environmental Medicine and Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, 350 Parnassus Avenue, Suite 609, San Francisco, CA 94117 USA. Telephone: (415) 476-7351. Fax: (415) 476-6426. E-mail: eisner@itsa.ucsf.edu

This study was supported by National Research Service award F32 HL0504 and NIH K23 HL04201 to M. D. Eisner and NIH RO1 HL56438 to P. D. Blank.

Received 18 December 2000; accepted 16 February 2001.
We included the newly developed ETS exposure survey instrument in structured telephone interviews. Subjects with no current personal tobacco smoking and a positive answer to any screening question indicating potential ETS exposure were eligible for the validation study (n = 235). The screening questions assessed residence with a smoker and ETS exposure during the previous 7 days at home, another person’s home, work, car or other vehicle, bars and nightclub, and other locations. We enrolled 50 sequential subjects who agreed to participate in the validation study, which included wearing the personal nicotine badge monitor for 7 days and then completing a second telephone administration of the ETS survey instrument. Structured telephone interview content also included demographic characteristics, asthma history, asthma-specific severity and quality of life (24–26), environmental exposures, health status (SF-12) (27), and health care utilization for asthma.

As shown in Table 1, there were no statistical differences in demographic characteristics or smoking status between participants (n = 50) and nonparticipants (n = 185) who had indicated potential ETS exposure at the initial interview. Compared to nonparticipants, participants had somewhat worse SF-12 physical component summary scores (41.7 vs. 46.5, p = 0.007) and severity-of-asthma scores (10.7 vs. 9.2, p = 0.09). Conversely, SF-12 mental component summary scores were slightly better among participants (47.2 vs. 44.6, p = 0.04). There were no statistical differences in asthma-specific quality-of-life scores. At the initial interview, self-reported duration of ETS exposure during the previous 7 days was similar for participants and nonparticipants (p = 0.33). Because of study logistics, the median interval between initial interview and subsequent validation interview was 225 days (25th–75th interquartile range 138–311 days).

ETS exposure survey instrument. We designed a survey instrument to measure recent ETS exposure among adults with asthma living in northern California (survey included in Appendix). The instrument assesses exposure during the previous 7 days in six microenvironments: the respondent’s home, another person’s home, traveling in a car or another vehicle, workplace, bars and nightclub, and other locations. For home exposure, the survey assesses both residence with a smoker and duration of exposure during the previous 7 days (in hours). For each microenvironment, a screening question elicits exposure during the previous 7 days. If there was no exposure, the remaining location-specific items are skipped. Given the workplace smoking restrictions in California, the instrument specifically ascertains exposure in the most likely work-related locations: outdoor smoking areas at work and outdoor job duties. In each area, the instrument ascertains the total duration (in hours) of exposure during the previous 7 days and the intensity of exposure, as indicated by the presence of tobacco smoke odor or visible smoke. In each location, we also assessed exposure-related sensory irritation symptoms (eye and nose irritation) and potential asthma-related respiratory symptoms (coughing, wheezing, or chest tightness). Furthermore, the instrument ascertains whether the subject used extra metered-dose inhaler asthma medications after ETS exposure during the same period.

Personal nicotine badge monitors. Each subject was instructed to wear the personal nicotine badge monitor during regular activities for 7 days. The passive monitor, which has been described previously (19,20), samples nicotine from ambient air. A 4-cm diameter polystyrene cassette holds a filter treated with sodium bisulfite and a membrane filter functions as a windscreen. Ambient nicotine diffuses to the treated filter, where it is trapped. The collected nicotine is analyzed by gas chromatography with nitrogen selective detection. From the amount of nicotine measured on the filter (micrograms), which represents the total amount of nicotine collected during the monitoring period, we calculated the nicotine concentrations by dividing the nicotine collected by the estimated volume of air sampled (monitoring duration multiplied by sampling rate of 24 mL/min). The passive monitors have a limit of detection < 0.01 μg per filter and a coefficient of variability of 0.11 for replicate analysis (20). We included two control badges (field blanks), which revealed no detectable nicotine.

Statistical analysis. We analyzed the data using SAS version 6.12 (SAS Institute, Cary, NC). We performed bivariate analysis using the chi-square test for categorical variables, t-test for continuous normally distributed variables, and Wilcoxon rank-sum test for non-normally distributed, continuous variables. Because self-reported duration of ETS exposure and measured nicotine concentration were non-normally distributed, we report the median values, range, and interquartile range.

To validate the ETS exposure instrument, we calculated the Spearman rank correlation between total self-reported hours of exposure in all locations with the nicotine concentration measured by personal badge monitoring. In addition to this primary analysis, we tested two alternative scoring systems defined a priori. First, we calculated an ETS exposure score weighted for exposure intensity. For each location of

Table 1. Baseline characteristics of subjects participating in personal nicotine badge monitor study compared with other subjects from the asthma cohort.

Variable	No ETS exposure (n = 167)	ETS exposure, nonparticipant (n = 185)	ETS exposure, badge participant (n = 50)	p-Value for participant vs. nonparticipant
Demographic characteristics				
Age (mean years, SD)	45.0 (7.4)	43.1 (7.8)	44.4 (7.9)	0.30
Sex (% female)	121 (72)	128 (69)	36 (72)	0.70
Race/ethnicity (% white, non-Hispanic)	133 (80)	120 (65)	36 (72)	0.34
Income (median $, 25th–75th IQR)	62,500 (35,000–87,500)	45,000 (35,000–87,500)	62,500 (31,250–87,500)	0.95
Ever smoked cigarettes (%)	70 (42)	63 (34)	15 (30)	0.59
Currently smoke cigarettes (%)	27 (16)	0	0	—
Asthma severity/health status				
Severity-of-asthma score	9.2 (5.3)	9.2 (5.1)	10.7 (6.8)	0.09
Asthma quality-of-life score	15.3 (14.9)	16.3 (13.8)	18.8 (16.0)	0.27
SF-36 physical summary score	45.8 (12.1)	46.5 (10.7)	41.7 (12.2)	0.007
SF-36 mental summary score	45.4 (7.7)	44.6 (8.3)	47.2 (7.2)	0.04
ETS exposure				
Duration of exposure, past 7 days	0 (0–0)	0 (0–1)	0 (0–2)	0.33

1IQR, interquartile range. All data are mean (SD) unless otherwise indicated.
2A positive answer to a screening question for each location: home, other person’s home, work, car or other vehicle, bar or nightclub, or other location. **Based on initial interview.
Results

ETS exposure and measured nicotine concentration. At the initial interview, 45 of 50
participants reported at least 1 hr of ETS exposure during the previous 7 days, and five
additional subjects indicated potential ETS exposure, indicated by residence with a
smoker. At the validation interview performed at completion of personal nicotine
monitoring, most subjects who initially reported exposure or potential exposure indicated
a least 1 hr of ETS exposure (38 of 50, 76%; Table 2). A greater proportion of sub-
jects who reported >1 hr of ETS exposure at initial interview reported recent exposure at
validation interview (37 of 45, 82%).

Of subjects reporting exposure at vali-
dation interview, the proportion with
indoor exposure and outdoor exposure
were comparable (53% and 47%). Of the
20 subjects with indoor exposure, 12 per-
sons also indicated outdoor exposure
(60%). The workplace was the major site
of exposure (38%), followed by "other"
locations, which were all outdoors, and
home (14%). All subjects with workplace
exposure reported recent exposure in an
outdoor smoking area at work, whereas
only one subject also reported outdoor
exposure during work duties. Only a
minority of subjects who lived with a
smoker reported any domestic ETS ex-
sure during the previous 7 days (6 of 17
persons, 35%). Conversely, nearly all sub-
jects who had no smoking cohabitants
indicated no recent home ETS exposure
(32 of 33 persons, 97%).

Table 2. Prevalence of self-reported ETS exposure among 50 subjects in ETS badge study.

Location	Number	Prevalence (%)
No exposure	12	24
Any exposure	38	76
Indoor/outdoor		
None	12	24
Indoor*	20	40
Outdoor only	18	36
Work/home		
None	12	24
Work only	19	38
Home only	5	10
Both home and work	2	4
Other only	12	24

*Includes 12 subjects with both indoor and outdoor exposure.

As measured by the personal nicotine
badge monitors, the overall median 7-day
nicotine concentration was 0.03 µg/m³
(25th–75th interquartile range 0.36–3.69
µg/m³; Table 4). The measured nicotine
concentration varied significantly by self-
reported exposure location. Compared with
subjects indicating no ETS exposure
(median 0.01 µg/m³), persons with outdoor
exposure (median 0.05 µg/m³) and indoor
exposure (0.05 µg/m³) had progressively
higher levels (p < 0.03; Table 4). Of note,
more than half of subjects who reported
outdoor exposure only had detectable nico-
tine levels. Measured nicotine concentra-
tions were highest among persons who
reported home exposure (median 0.61
µg/m³), followed by work exposure (0.03
µg/m³), other (outdoor) exposure (0.025
µg/m³), and no exposure (0 µg/m³; p = 0.03).

Survey instrument validity. To assess
validity, we compared the measurements of
ETS exposure based on the survey instru-
ment and the passive badge monitors (Table
5). The Spearman rank correlation coeffi-
cient between self-reported ETS exposure
duration and directly measured personal
nicotine concentration during the same 7-
day period was 0.47, indicating moderate
agreement (p = 0.0006). The exposure scores
adjusting for exposure intensity and expo-
sure intensity plus sensory irritation and res-
piratory symptoms did not improve the
correlation (Table 5). Excluding subjects
with no measurable nicotine concentration
did not affect these results appreciably. To
examine the stability of recent ETS exposure
over time, we compared the self-reported
total hours of ETS exposure ascertained du-
during the validation interview with the initial
interview. The intraclass correlation was
0.72, indicating moderate to high stability
over time.

ETS exposure and the risk of symptoms.
To evaluate the validity of self-reported
ETS-attributed symptoms, we examined the
cross-sectional relation between directly
measured personal nicotine concentration
and the risk of sensory irritation symptoms,
respiratory symptoms, and medication use.
Compared to persons with no measured
exposure, lower-level and higher-level ETS
exposures were associated with increased risk
of sensory symptoms, including eye, nose,
and throat irritation [odds ratio (OR) 2.2 and 5.9, respectively; Table 6]. Lower- and higher-level ETS exposures also were related to an increased risk of respiratory symptoms (OR 1.9 and 6.8) and extra bronchodilator use after ETS exposure (OR 2.2 and 8.1). For all three outcomes, there was statistical evidence of a simple exposure–response relation (p = 0.054, 0.017, and 0.022, respectively). There was no evidence of a quadratic exposure–response relation (p > 0.5 in all cases).

Discussion

We developed an ETS exposure instrument that is brief and easy to administer by telephone interview. The ETS questionnaire can be incorporated easily into a larger survey instrument. Self-reported total hours of ETS exposure during the previous 7 days correlated moderately with measured nicotine concentration, supporting the instrument’s validity. More complex scoring systems that incorporate intensity of exposure or intensity plus respiratory and sensory irritation symptoms do not appreciably improve instrument validity. Exposure monitoring also supported the validity of self-reported ETS-attributed symptoms and medication use. ETS exposure, measured by the personal nicotine badge, was associated with a greater risk of ETS-attributed sensory irritation symptoms, respiratory symptoms, and extra medication use.

We found a moderate correlation between self-reported ETS exposure duration and direct personal nicotine measurements, consistent with previous studies that used cotinine as a biomarker (7–16). Fewer studies have used personal nicotine monitoring, which measures actual exposure, to validate questionnaire instruments. In a study of 415 pregnant women, O’Connor and colleagues (28) demonstrated a similar correlation between total duration of ETS exposure and nicotine concentration (r = 0.41). The investigators cautioned that their results should not be extrapolated to nonpregnant women, who may have different patterns of exposure. Other investigators used a more complicated questionnaire instrument that assessed duration, intensity, and proximity of each individual ETS exposure during the previous week (29). Using personal nicotine monitoring, they found a higher correlation with an index of ETS exposure based on these variables (r = 0.91). This questionnaire requires subject response entry in multicell tables that would be difficult to administer by telephone.

For most subjects, the observed nicotine concentrations were low, with a median of 0.03 µg/m³ (range 0–3.69 µg/m³). Compared to our study, Coghlin and colleagues (29) found higher nicotine concentrations among 53 volunteers who wore personal monitors during a typical week (median 1.7 µg/m³ and 2.8 µg/m³ in two different periods) (29). The observed concentrations among 50 adults with asthma were more comparable to those of pregnant women who reported ETS exposure (median 0.1 µg/m³). Pregnant women who reported only social exposure had even lower concentrations (median 0.08 µg/m³). Both pregnant women and adults with asthma, because of their health conditions, might be expected to limit their ETS exposure.

Adults with asthma living in northern California had low levels of ETS exposure, reflecting the restrictions on public smoking. Moreover, the locations where ETS exposure occurs appear to be changing. Residence with a smoker, which has been used in many epidemiologic studies as a key marker of ETS exposure (30–32), was a poor indicator of recent exposure. Only a minority of adults with asthma who live with a smoker reported any exposure during the previous 7 days, most likely because smoking was not permitted indoors. A shift from indoor to outdoor exposure was also observed, with 38% of subjects indicating outdoor workplace exposure. Future ETS exposure survey instrument should take these temporal trends into account.

This validation study is potentially limited by the low observed exposure levels, which may have attenuated the correlation between self-reported exposure and nicotine concentration. However, these low exposure levels reflect current restrictions in public smoking that require consideration in epidemiologic studies. Even among persons who may have lower than average ETS exposure due to their disease, the instrument appears to have adequate validity. The ETS exposure survey instrument also measures a 7-day period, which may not be fully representative of a subject’s usual exposure. Furthermore, our instrument, which is adapted for use in California, does not assess indoor workplace exposure. A

Table 4. Location of ETS exposure and measured nicotine exposure level.

Location	No. of subjects	Nicotine concentration (µg/m³)	p-Value	
	Median	Range	25th–75th IQR	
Indoor/outdoor				0.03
None	12	0	0–0.06	0–0.035
Indoor	20	0.05	0–3.69	0–0.49
Work only	19	0.03	0–0.08	0–0.05
Home only	7	0.61	0–3.69	0–0.02–3.03
Home/Work	12	0.025	0–0.84	0–0.05
Total	50	0.03	0–3.69	0–0.03–0.06

Table 5. Validity of questionnaire measurement of ETS exposure.

Questionnaire-based measure	Spearman correlation with nicotine concentration	p-Value
Exposure duration (hours/previous 7 days)	0.47	0.0006
Score adjusted for exposure intensitya	0.46	0.0007
Score adjusted for exposure intensity, sensory irritation symptoms, and respiratory symptomsb	0.45	0.001

Table 6. ETS exposure (nicotine level) and the risk of sensory irritation symptoms, respiratory symptoms, and extra bronchodilator use.

Measured nicotine level	Sensory irritation (OR, 95% CI)	Respiratory symptoms (OR, 95% CI)	Extra bronchodilator use (OR, 95% CI)
None (referent)	1.0	1.0	1.0
Lower level (< 0.05 µg/m³)	2.2 (0.3–15)	1.9 (0.4–8.8)	2.2 (0.3–15)
Higher level (> 0.05 µg/m³)	5.9 (0.95–37)	6.8 (1.4–32.3)	8.1 (1.3–50)
p-Value for trend	0.054	0.017	0.022

aSensory irritation symptoms: eye or nose irritation; respiratory symptoms: cough, wheezing, or dyspnea.
section for indoor work exposure can be easily added, modeled on those developed for other microenvironments (available from the authors). Further research will be necessary to evaluate the survey in other environmental settings, such as large industrial workplaces, where building ventilation may be different. In such settings, tailor-made survey instruments could be required.

Validation of the ETS exposure survey instrument was also limited by measurement of a single marker of ETS exposure. Because ETS contains more than 4,000 chemical compounds, it is not feasible to measure all ETS constituents (32,33). Although nicotine is a highly specific marker of ETS, it may not always track with the ETS components responsible for disease causation or exacerbation. In particular, the relationship between nicotine concentration and other ETS constituents may be affected by factors such as building ventilation rate and indoor air volume (17,33). In addition, nicotine may adsorb to indoor surfaces and be reemitted in the absence of active smoking, changing its concentration relative to other ETS constituents (17). Despite these factors, field studies indicate that nicotine correlates strongly with other ETS constituents, including respiratory suspended particles (34,35) and 3-ethylpyridine (a volatile organic compound unique to ETS) (34).

Most epidemiologic studies of ETS-related health effects have used self-reported ETS exposure. All survey-based methods of ascertaining ETS exposure are potentially limited by information bias (i.e., misclassification of exposure). For example, persons with symptomatic respiratory disease may be more likely to remember and report recent ETS exposure. In our study of adults with asthma, personal nicotine badge monitoring was a feasible method for directly measuring ETS exposure, potentially minimizing this information bias.

A brief survey instrument can be used to assess ETS exposure among adults with asthma, even with low levels of exposure. The instrument is valid and can be incorporated into larger telephone-based interviews. This instrument could be a valuable tool for studying the effect of ETS exposure on adult asthma health outcomes.

References and Notes

1. Ostro BD, Lipsett MJ, Mann JK, Wiener MB, Selner J. Indoor air pollution and asthma. Results from a panel study. Am J Respir Crit Care Med 149:1400–1406 (1994).

2. Sippel JM, Pedula KL, Vollmer WM, Buist AS, Osborne ML. Associations of smoking with hospital-based care and quality of life in patients with obstructive airway disease. Chest 115:692–698 (1999).

3. Jindal SK, Gupta D, Singh A. Indices of morbidity and...
Q43. In the past 7 days, how many hours in total were you exposed to someone else’s tobacco smoke in a bar or other place of entertainment?
Q44. During the past 7 days, did you enter a room in a bar or other place of entertainment that was visibly smoky?
Q45. In the past 7 days, did you take extra asthma sprays after exposure to tobacco smoke in a bar or other place of entertainment?
You answered that you were exposed to someone else’s tobacco smoke in a bar or other place of entertainment.
During the past 7 days, did you experience any of the following after this exposure:
Q46. Red eyes or eye irritation?
Q47. Runny nose or nose irritation?
Q48. Coughing, wheezing, or chest tightness?
Q49. In the past 7 days, did you take extra asthma sprays after exposure to tobacco smoke in a bar or other place of entertainment?
Q50. I have asked you about exposure to someone else’s tobacco smoke in your home, friends’ homes, work, and bars or nightclubs. In the past 7 days, was there any other location where you were exposed to tobacco smoke?

Administration and Scoring

Unless otherwise specified, all questions have yes/no response options. For each microenvironment, a screening question (in bold font) ascertains whether any ETS exposure occurred during the past 7 days. If the subject indicates ETS exposure in that environment, then a series of questions assess duration of exposure, exposure intensity, and symptoms/asthma medication use. Otherwise, the survey skips to the next microenvironment screening question.

To determine the total duration of exposure during the past 7 days, sum the individual microenvironment exposure durations (Q5 + Q13 + Q21 + Q35 + Q43). An ETS exposure score weighted for exposure intensity can also be calculated. For each location of exposure, we weighted exposure duration by 130% for reported tobacco smoke odor and 150% for visible smoke. A second ETS exposure score weighted for sensory irritation and respiratory symptoms is calculated by further adding 1 point added for each symptom.

case-control study of asthma in adult patients exposed to environmental tobacco smoke. Chest 106:746–749 (1994).
4. Blanc PD, Elizbar S, J anson C, Narbade B, Norman E, Plaschke P, Toren K. Asthma-related work disability in Sweden. Am J Respir Crit Care Med 160:2028–2033 (1999).
5. State-specific prevalence of current cigarette and cigar smoking among adults—United States, 1998. Morb Mortal Wkly Rep 48:1034–1039 (1999).
6. McDonald HR, Glantz SA. Political realities of statewide smoking legislation: the passage of California’s Assembly Bill 13. Tob Control 6:41–54 (1997).
7. Delfino RJ, Ernst P, J aakkola MS, Solomon S, Becklake M R. Questionnaire assessments of recent exposure to environmental tobacco smoke in relation to salivary cotinine. Eur Respir J 13:513–518 (1999).
8. Kemmeren JM, van Poppel G, Verhoef P, J arvis M J. Plasma cotinine: stability in smokers and validation of self-reported smoke exposure in nonsmokers. Environ Res 66:235–243 (1994).
9. Pirkle J L, Flegal KM, Bernert J T, Brody DJ, Etzel RA, Maurer KR. Exposure of the U.S. population to environmental tobacco smoke: the Third National Health and Nutrition Examination Survey, 1988 to 1991. JAMA 275:1233–1240 (1996).
10. Rebagliato M, Bolufer M, Fiorey CD. Assessment of exposure to environmental tobacco smoke in nonsmoking pregnant women in different environments of daily living. Am J Epidemiol 142:525–530 (1995).
11. Emmons KM, Abrams DB, Marshall R J, Etzel RA, Novotny TE, Marcus BH, Kane ME. Exposure to environmental tobacco smoke in naturalistic settings. Am J Public Health 82:24–28 (1992).
12. Emmons KM, Abrams DB, Marshall R, Marcus BH, Kane M, Novotny TE, Etzel RA. An evaluation of the relationship between self-report and biochemical measures of environmental tobacco smoke exposure. Prev Med 23:35–39 (1994).
13. Riboli E, Preston-Martin S, Saracci R, Haley NJ, Trichopoulos D, Becher H, Burch J D, Fontham ET, Gao YT, J indal SK, et al. Exposure of nonsmoking women to environmental tobacco smoke: a 10-country collabora
tive study. Cancer Causes Control 12:45–252 (1990).
14. Coulter DB, Peake GT, Sament J M. Questionnaire assessment of lifetime and recent exposure to environmental tobacco smoke. Am J Epidemiol 130:338–347 (1989).
15. Masi MA, Hanley J, Ernst P, Becklake M R. Environmental exposure to tobacco smoke and lung function in young adults. Am Rev Respir Dis 138:296–299 (1988).
16. J aakkola M S, J aakkola J J, Becklake M R, Ernst P. Passive smoking and evolution of lung function in young adults: An 8-year longitudinal study. J Clin Epidemiol 48:317–327 (1995).
17. J aakkola M S, J aakkola J J. Assessment of exposure to environmental tobacco smoke. Eur Respir J 10:2384–2397 (1997).
18. Benowitz NL. Biomarkers of environmental tobacco smoke exposure. Environ Health Perspect 107(suppl 2):249–355 (1999).
19. Hammond SK, Sorensen G, Youngstrom R, Ockene J K. Occupational exposure to environmental tobacco smoke. JAMA 274:956–960 (1995).
20. Hammond SK, Leader B. A diffusion model to measure exposure to passive smoking. Environ Sci Technol 21:494–497 (1987).
21. Blanc PD, Cisternas M, Smith S, Yelin EH. Asthma, employment status, and disability among adults treated by pulmonary and allergy specialists. Chest 109:686–696 (1996).
22. Blanc PD, Eisner MD, Israel S, Yelin EH. The association between occupation and asthma in general medical practice. Chest 115:1296–1296 (1999).
23. Eisner MD. Eritatum to Assessment of asthma severity in adults with asthma treated by family practitioners, allergists, and pulmonologists. Med Care 38:880–885 (2000).
24. Eisner MD, Katz PP, Yelin EH, Henke J, Smith S, Blanc PD. Assessment of asthma severity in adults with asthma treated by family practitioners, allergists, and pulmonologists. Med Care 36:1567–1577 (1998).
25. Marks GB, Dunn SM, Woolcock AJ. A scale for the measurement of quality of life in adults with asthma. J Clin Epidemiol 45:461–472 (1992).
26. Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care 34:220–233 (1996).
27. O’Connor HT, Holford TR, Leader B P, Hammond SK, Bracken MB. Measurement of exposure to environmental tobacco smoke in pregnant women. Am J Epidemiol 142:1315–1321 (1995).
28. Coghlin J, Hammond SK, Gann PH. Development of epidemiologic tools for measuring environmental tobacco smoke exposure. Am J Epidemiol 136:696–704 (1992).
29. Wells AJ. Passive smoking as a cause of heart disease. J Am Coll Cardiol 24:546–554 (1994).
30. Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. BMJ 315:980–988 (1997).
31. California EPA. Health Effects of Exposure to Environmental Tobacco Smoke. Sacramento, CA:California Environmental Protection Agency, Office of Environmental Health Hazard Assessment, 1997.
32. Daisey J M. Tracers for assessing exposure to environmental tobacco smoke: what are they tracing? Environ Health Perspect 107(suppl 2):329–337 (1999).
33. Jenkins RA, Palusky A, Counts RW, Bayne CK, Dindal AB, Guerin MR. Exposure to environmental tobacco smoke in sixteen cities in the United States as determined by personal breathing zone air sampling. J Expo Anal Epidemiol 6:473–502 (1996).
34. Leader B F, Hammond SK. Evaluation of vapor-phase nicotine and respirable suspended particle mass as markers for environmental tobacco smoke. Environ Sci Technol 25:770–777 (1991).