EFFECT OF CONVENTIONAL AND MICROWAVE DRYING TECHNIQUES ON FLAT AND CURLY PARSLEY QUALITY CULTIVATED IN EGYPT

ESHAK M. EL-HADIDY¹ and OMNEYA F.A. MOSTAFA²

1. Food Technology Research Institute, Agric. Res. Center, Giza, Egypt.
2. Medicinal & Aromatic Plant Research Department, Horticultural Research Institute, Agric. Res. Center, Giza, Egypt.

(Manuscript received 18 March 2019)

Abstract

This study performed out during seasons 2016 and 2017 at special farm near Cairo-Alex Desert Road, Egypt, to investigate the effect of dehydration by sun, oven, hot air, oven under vacuum and microwave treatments on some bioactive compounds and their activities in flat (Petrosilium crispum var. neapolitanum) and curly (Petroselinum crispum var. crispum) parsley varieties cultivated in Egypt. The results showed that yield, ash and acid insoluble ash were the highest in flat parsley than curly, while curly parsley was the highest in total hydrolysable carbohydrates and dietary fiber. The results from bioactive compounds showed that the gradually decrease contents of chlorophyll a and b, carotenoids, β-carotene, flavonoids, polyphenols, vitamin C and volatile oil percentage in commercial techniques (sun, oven and hot air dried) and controlling techniques (oven dried 55°C under vacuum and microwave 400W and 800W in either flat or curly parsley. Those results reflected to free radical scavenging activity and total antioxidants activity. Total identified volatile oil components in flat parsley in different dehydration techniques ranged from 11 to 28 items while, in curly parsley ranged from 13 to 28 items. The percentage of total identified components were higher in two parsley cultivars treated by microwave 800W/6 min (66.99 and 66.77%) and 800W/12 min (63.08 and 64.18%) followed by microwave 400W/12 min (58.70 and 56.50%) and 400W/24 min (47.37 and 48.79%) than other treatments either in flat or curly parsley, respectively. the major components of curly leaves essential oil were Myristicin (15.05%), 2-Allyl-4-methyl phenol (10.15%), Isolongipholene (8.59%) and β-Caryophyllene (6.43%).While, volatile oil of flat parsley, the highest compounds were Myristicin (12.65%), 2-Allyl-4- methyl phenol (10.77%), Apioi (9.5%) and Isolongipholene (9.45%). From the obviously results it could be recommended that the best dehydration methods were microwave 800W/6min. > microwave 400W/12min. > oven under vacuum > sun dried > microwave 800W/12min> oven dryer> hot air dried. Finally, through this study, it could be clearly concluded that, it is technical and economical to utilize microwave as a new untraditional dehydration technique in producing flat and curly parsley, rather than traditional dehydration techniques in Egypt, Thus improving the quality specifications of dried parsley which increases the opportunity of exporting.

Key words: Parsley flat, Parsley curly, Dehydration techniques, Microwave, Oven dryer, Hot air dried, Sun dried, Antioxidant contents, Volatile oils.
INTRODUCTION

The common varieties of parsley, the curly leave variety (Petroselinum crispum var. crispum) which often used as a garnish, while the flat leave or Italian variety (P. crispum var. neapolitanum) used in tabbouleh and other Mediterranean dishes; and root parsley (P. crispum var. tuberosum), which grown as a root vegetable (Craft and Setzer, 2017). Petroselinum is the genus name of the plants commonly known as parsley commonly used for cooking and in medicinal folk remedies. Parsley is a member of the Apiaceae family of plants which native to Europe and Western Asia. It is widely used in both fresh and dry to enhance the flavor of many foods and also in perfume manufacturing (Simon and Quinn, 1988). Drying is widely used not only as a way to preserve foods but also to reduce weight of the product. The quality of the dried product can be affected by high temperatures resulting in off-odors, change of color or loss of nutrients (Mangkoltriluk et al., 2005). But, drying is the most traditional methods for preservation of agricultural post-harvest products and preventing activities of enzymes and microorganisms (Ebadi et al., 2010). Oven dry method has the disadvantage of entailing a time consuming process. In contact with oxygen the product becomes exposed to high temperatures for a long time which reduces the content of some valuable components (Nawirska et al., 2009). Microwave drying, fluidized bed dries and hot air drying systems offer opportunities as less drying time, uniform energy and high thermal conductivity with high quality of dried product (Ozkan et al., 2007). Microwave drying method under vacuum is a modern and efficient method for food preservation. The advantages of microwave treatments, the microwave assisted procedure available high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit (Cellemme et al., 2013). Also, the total aerobe bacteria count was reduce with microwave drying in comparison with convective drying alone, especially in herbs and spices dehydration (Heindl and Müller, 2007). Kamel (2013) found that parsley leaf had higher total phenolic, chlorophyll, carotenoids and antioxidants scavenging activity (1031.4 mg/100g, 32.47 mg/kg, 40.0 mg/kg and 40.1%, respectively). The effect on the volatiles by different drying treatments in parsley (Petroselinum crispum L.) was studied. Air drying at room temperature (25±5°C) resulted in decrease losses in volatile compounds compared with the fresh herb, whereas oven drying at 45 °C and freeze-drying caused a reduction in the concentrations of the most volatile components, especially those with the considerable impact on parsley aroma: p-mentha-1,3,8-triene and apiole (Díaz-Maroto et al., 2002). The time/temperature required for drying Coleus leaves by hot air
drying revealed that the lowest reduction in the quality characteristics of leaves at 60°C (Dwivedy et al., 2012). While, time/temperature required by microwave drying can be successfully used to dry Coleus leaves with maximum preservation of aroma. In absence of the availability of commercial microwave drying, hot air drying may be adopted for large scale drying of leaves. However, the same author reported that selection of drying method depended on the use of end product and the economic consideration. Thus, the aim of this study is to compare other conventional drying techniques and microwave drying technique, as a hot drying systems offer opportunities as less drying time, uniform energy and high thermal conductivity with high quality of dried product.

MATERIALS AND METHODS

Materials:

Flat (*Petroselinum crispum* var. *neapolitanum*, Danert) and Curly (*Petroselinum crispum* var. *crispum*) parsley were planted and collected at special farm near Cairo-Alex Desert Road. The part of collected samples was used fresh. Other samples were solar dried, dried at hot air 100°C pumped in oven dryer and continuous mixing. Also, Sample was dehydrated by mechanical commercial technique 135°C/h followed by 60-70°C/h then ventilated one hour. Meanwhile, another sample was dried in oven under vacuum at 55°C. Furthermore, samples were dried by microwave 400W at 12, 24 and 36 min and 800W at 6, 12 and 24 min, respectively. The dried samples were crushed by crusher then packaged in paper inner polyliner bags.

Methods:

The chemical analyses such as, moisture, ash, acid insoluble ash, ether extract, dietary fiber and crude protein were determined according the procedures described in AOAC, (2012), While, total hydrolysable carbohydrates were calculated by difference according to Mathew et al., (2014).

Total polyphenol components were determined using Folin–Ciocalteu method as described by Boligon et al., (2009). The content of flavonoids was determined by a Pharmacopeia method (1989).

Chlorophyll-A, chlorophyll-B and total carotenoids were extracted from fresh, dehydrated parsley according to the methods of Schopfer, (1989). Then samples were measured in a UV-spectrophotometer at 480 nm and 510 nm for carotenoids and at 644nm and 662nm for chlorophyll. β-carotene was determination as described by Nagata and Yamashita, (1992). The absorbance was measured at 453, 505, 645 and 663 nm. β- carotene (mg/g) = 0.216 A663 – (0.304 A505 + 0.452 A453). While, ascorbic acid was analyzed as described by Klein and Perry, (1982).
The free radical scavenging activity of the extracts was examined using DPPH radical according to the method of Shimada et al., (1992) with slight modification. 1.0 ml of various concentrations of extracts (2-10 mg/ml) was mixed with 1.0 ml of 0.8 mM DPPH solution. The mixture was shaken vigorously and left to stand for 30 min and the absorbance was measured at 517 nm against a reagent blank. Gallic acid and BHT were used as standards. The inhibition percentage for scavenging DPPH radical was calculated according to the equation: % Decolorization = \[1 - (\text{ABS sample}/\text{ABS control}) \times 100\].

The total antioxidant capacity was determined as described by Prieto et al., (1999). At different ethanol extracts which were prepared in their respective solvents and combined in a tube with 1ml of reagent solution (0.6M H_2SO_4, 28mM sodium phosphate, 4mM ammonium molybdate mixture). The tubes were incubated for 90min at 95ºC. The mixture was cooled to room temperature (25± 5ºC) and the absorbance was read at 695nm against blank. Ascorbic acid equivalents were calculated using standard graph of ascorbic acid. The experiment was conducted in triplicates and values are expressed as equivalents of ascorbic acid in µg per g. Also, volatile oils were determined according to ISO Method 6571 (2009). Samples were analyzed using DSChrom 6200 Gas Liquid Chromatography equipped with a flame ionization detector for separation of volatile oil constituents.

The GC analysis of the essential oil samples was performed using gas chromatography-mass spectrometry instrument stands at the Department of Medicinal and Aromatic Plants Research, Horticultural Institute, Agricultural Research Center, Egypt with the following specifications:

The chromatograph apparatus was fitted with capillary column BPX-5, 5% phenyle(equiv.) polysilphenylene-siloxane 30m X 0.25 mm ID X 0.25µm film. Temperature program ramp increase with a rate of 10ºC/ min from 70º to 200º C. Flow rates of gases were nitrogen at 1 ml / min, hydrogen at 30 ml/ min and 330 ml / min for air. Detector and injector temperatures were 300ºC and 250ºC, respectively. The obtained chromatogram and report of GC analysis for each sample were analyzed to calculate the percentage of main components of volatile oil (British Pharmacopoeia, 1963).

Statistical analysis:

All data were analyzed by SPSS 19.0 Program (2000). Means and standard deviations were determined using descriptive statistics. Statistical analysis was performed using one way analysis of variance (ANOVA) followed by Duncan's multiple range test with \(P \leq 0.05\) being considered statistically significant.
RESULTS AND DISCUSSIONS

Yield and chemical composition of parsley varieties

Data in table 1 indicated that yield in flat parsley was higher (6.50 and 7.00 Ton /Fadden) than in curly parsley (4.00 and 4.50 Ton /Fadden) at first and second year. Furthermore, the yield of parsley after dehydration in commercial technique was 11 ton in fresh flat parsley given 1 ton dry, while 9 ton fresh curly given 1 ton dry.

Table 1. Flat and curly parsley Productivity in fresh and after dehydration in 2 years.

Items	Flat (Italian) Parsley	Curly (French) parsley		
	First year 2016	Second Year 2017	First year 2016	Second year 2017
Ton /Fadden/cut	6.50± 0.60	7.00± 1.00	4.00± 0.95	4.50± 0.50
Moisture (%)	90.20± 1.84	89.85± 1.71	80.13± 1.90	78.99± 1.54
After dehydration	11 ton fresh given 1 ton dry weight	9 ton fresh given 1 ton dry weight		

Means ± SD, means having the same letter within column are not significantly different at p<0.05. Data were mean of three determinations (n=3).

Data in table 2 showed that leaves percentage in curly parsley was higher than flat parsley (79.38 and 42.10%), respectively, whereas the yield of leaves in curly parsley was the highest.

Table 2. Percentage of leaves and stem in fresh flat and curly parsley after dehydration in 2 years.

constituents	Flat (Italian) Parsley	Curly (French) parsley		
	First year 2016	Second year 2017	First year 2016	Second year 2017
Leaves	42.10± 5.36	40.25± 3.98	79.38± 7.34	81.24± 8.23
Stems	47.37± 6.55	43.22± 5.68	20.63± 2.60	21.33± 2.58

Means ± SD, means having the same letter within column are not significantly different at p<0.05. Data were mean of three determinations (n=3).

Crude protein and oil extract contents in flat and curly parsley ranged from 24.40 to 24.85% and from 6.28 to 6.72% at first and second year (Table 3). While, curly parsley was higher in total hydrolysable carbohydrates and dietary fiber (57.27, 57.70 and 31.55, 32.00%) than in flat parsley (55.56, 55.47 and 30.41 and 30.55%) in the two years, respectively. In contrast, ash and acid insoluble ash were higher contents in flat parsley than in curly parsley. Ayyobi et al., (2014) found that increasing oven temperature led to reduction of essential oil yield. Minimum and maximum essential oil were obtained when dill and peppermint were oven dried at 75°C (20.11 ml) and dried in shading (28.44 ml), respectively.
Table 3. Chemical analyses in dried flat and curly parsley (g/100g on dry weight basis).

Components	Flat (Italian) Parsley	Curly (French) parsley		
	First year	Second year	First year	Second year
Crude protein	24.40 ± 1.88	24.85 ± 1.35	24.59 ± 0.90	24.88 ± 1.01
Oil extract	6.72 ± 0.12	6.28 ± 0.23	6.34 ± 0.88	6.50 ± 1.02
Total hydrolysable carbohydrates	55.56 ± 1.78	55.47 ± 2.01	57.27 ± 3.21	57.70 ± 3.04
Dietary fiber	30.41 ± 1.23	30.55 ± 1.45	31.55 ± 1.10	32.00 ± 0.99
Ash	13.32 ± 0.54	13.40 ± 0.62	11.80 ± 0.63	10.92 ± 0.40
Acid insoluble ash	0.82 ± 0.11	0.77 ± 0.08	0.42 ± 0.02	0.45 ± 0.04

Means ± SD, means having the same letter within column are not significantly different at p<0.05. Data were mean of three determinations (n=3).

Bioactive compounds of dehydrated parsley varieties:

Chlorophyll a, b, carotenoids, β-carotene have higher content in fresh curly parsley than in flat parsley. While, flavonoids and vitamin C were the nearest contents in either flat (294.94 and 47.94 mg/100g) or curly (296.53 and 47.70 mg/100g) parsley, respectively. Furthermore, fresh flat parsley was higher content in polyphenols and volatile oil (88.89 mg/100g and 0.34 %) than in fresh curly parsley (77.91 mg/100g and 0.05 %), respectively. Also, free radical scavenging activity and total antioxidant activity in flat parsley (82.61% and 454.11 mg/100g) were higher than in curly parsley (78.86% and 324.89 mg/100g), respectively. In general, microwave technique seems to be the most suitable drying method in terms of preservation of pigments, this result agree with Droštinová et al. (2015) who showed higher content of pigments in Melissa officinalis when microwave drying procedure was applied compared to the oven dried samples and the sun dried samples.

Data in Table (4 and 5) indicated that gradually decrease contents of chlorophyll a and b, carotenoids, b-carotene, flavonoids, polyphenols, vitamin C and essential oil in commercial techniques (sun, oven and hot air dried) and controlling techniques (oven dried 55°C under vacuum and microwave 400W and 800W in either flat or curly parsley. These results reflected to free radical scavenging activity (FRSC) and total antioxidants activity (TAC). Also, the antioxidant contents and its activity were decrease as follows: microwave 800W/6min. > microwave 400W/12min. > oven under vacuum > sun dried > microwave 800W/24min > oven dryer > hot air dried.

The contents of antioxidants and their activities in controlling techniques were higher than in commercial techniques. While, microwave technique were the best controlling techniques compared to other techniques. This observation is agreed with those reported by Ayyobi et al., (2014); Kouřímská et al. (2013); and Priecina and Karlina (2013).
Table 4. Antioxidant contents and its activity in fresh, oven dried and microwave treatments in Flat parsley.

Constituents	Chlo. A	Chlo. B	Carotenoids	β-carotene	Flavonoids	Polyphenols	Vitamin C	Volatile oil *	FRSC**	TAC***
Fresh***	97.87g	18.78g	45.52g	17.37g	296.53g	88.89g	47.70g	0.34i	81.61i	454.11i
Commercial (traditional) Techniques										
Sun dried	210.81c	73.32d	160.0c	74.37d	617.19c	277.69c	96.63c	0.77ab	86.24d	2492.00c
Oven dried	162.32e	20.78g	98.93e	61.14f	583.75c	173.80d	95.25e	0.39e	82.86d	899.56f
Hot air dried	143.71g	19.91g	75.83f	49.21g	332.94f	127.55h	47.94b	0.10f	82.79b	780.44g
Controlling Techniques										
Oven under vacuum	233.02b	89.92c	183.49b	125.22c	619.30c	291.07bc	96.65a	0.80b	87.37ab	2492.00c
Microwave 400W 12 min	290.01a	95.07a	202.19a	129.84a	626.73a	301.76a	96.67a	1.27a	89.07a	4906.67a
24 min	168.95b	47.31f	109.89b	65.55b	602.41d	237.15c	95.64b	0.67f	83.56b	1175.56b
36 min	151.76f	22.39g	103.03e	65.08f	592.13c	214.28b	95.25e	0.49f	83.49b	1400.44b
Microwave 800W 6 min	297.68d	141.90a	207.22a	129.17a	641.53a	342.85a	97.00a	1.35a	89.37a	6634.67a
12 min	204.57d	68.05b	117.25d	71.99b	617.00c	262.39a	96.03b	0.75b	86.01b	1956.44b
18 min	199.87d	50.54d	111.45de	65.75b	610.16d	259.20a	95.75e	0.59d	85.29b	1424.43b

LSD (5%) | 1.02 | 0.34 | 4.44 | 16.51 | 4.80 | 2.01 | 0.11 | 0.03 | 0.25 | 23.38

% FRSC Free radical scavenging activity ** TAC total antioxidant activity µg ascorbic acid/g ** mg/100g fresh weight
Means ± SD, means having the same letter within column are not significantly different at p<0.05.Data were mean of three determinations (n=3).
Table 5. Antioxidant contents and its activity in fresh, oven dried and microwave treatments in Curly parsley.

Constituents	Chlo. A	Chlo.B	Carotenoids	Flavonoids	Polyphenols	Vitamin C	Volatile oil	FRSC**	TAC***
Fresh****	125.29a	25.16c	75.73a	33.40b	294.94d	77.91j	47.54f	78.86d	324.89j
Commercial (traditional) techniques									
Sun dry	236.94c	65.08d	172.35bc	105.36i	632.95f	264.89h	96.27j	85.40d	1152.0f
Oven dryer	165.47f	39.59f	96.93f	39.64g	573.29f	147.59h	95.62j	82.61c	704.67f
Hot air dried	127.79f	32.49f	93.51f	38.82g	328.15g	65.53f	47.79j	81.71c	670.44f
Controlling techniques									
Oven under vacuum	288.79f	73.95f	176.71b	109.34f	632.85f	265.97f	96.42a	84.45h	1311.56f
Microwave 400 W 12 min	297.68ab	84.92f	177.67b	132.73g	644.58f	266.75f	96.49a	87.46a	1398.67f
24 min	176.75f	47.05f	121.70b	64.66g	581.47f	224.03f	95.89a	82.92c	939.55f
36 min	159.43f	44.42f	118.39f	45.83g	580.66f	206.33f	95.86a	82.61c	820.89f
Microwave 800 W 6 min	315.17a	84.41f	194.20a	139.29i	697.74f	284.93f	96.51a	88.57a	1785.96a
12 min	234.89f	54.43f	160.70b	75.80c	632.21c	243.51f	96.17a	85.37c	989.78f
18 min	198.27f	54.01f	147.92a	72.67c	623.62f	234.32f	96.01a	85.02b	975.11f
LSD	2.65	0.99	5.27	7.66	1.46	1.33	0.03	0.08	0.50

% **FRSC Free radical scavenging activity *TAC total antioxidant activity µg ascorbic acid/g ****mg/100g fresh weight

Means ± SD, means having the same letter within column are not significantly different at p<0.05. Data were mean of three determinations (n=3).
Quantitative and identification of volatile oil composition in two parsley varieties.

The results of the GLC analysis of the volatile oils of flat and curly parsley are shown in Tables (6 and 7). Total identified volatile oil components in flat parsley in different dehydration techniques ranged from 11 to 28 items. The better flat parsley treatments were microwave 800W/6 min, 800W/12 min and 400W/12 min then 400W/24 min, while the lowest number of identified items in sun dried flat parsley (11 items). On the other hand, the number of identified components in curly parsley ranged from 13 to 24 items. The best treatments in curly parsley were microwave 400W/24 min (24 items) followed by microwave 800W/12 min and 400W/12 min are the same item numbers (22 items). The percentage of total identified components were higher in two parsley species treated by microwave 800W/6 min (66.99 and 66.77%) and 800W/12 (63.08 and 64.18%) min followed by microwave 400W/12 min (58.70 and 56.50%) and 400W/24 min (47.37 and 48.79%) than other treatments either in flat or curly. The main constituents in fresh flat and curly parsley leaves volatile oil were Myristicin (12.65 and 15.05%), 2-Allyl-4-methyl phenol (10.77 and 10.15%) and Isolongipholene (9.45 and 8.59%), respectively.

Results showed that α-Pinene was present only in two treatments (oven dryer under vacuum and sun dried) in the flat and curly parsley, in addition to microwave 800W/6 min treatment in curly parsley only (table 7). Also, β-Pinene was present in fresh flat and curly parsley, sun dried and oven dryer under vacuum treatments only [(2.95 and 0.80), (1.92 and 0.55) and (0.43 and 0.30%)], respectively in addition to microwave 800W/6 min treatment in curly parsley only, it recorded (4.25%).
Table 6. Volatile oil composition in fresh and treated leaves of flat parsley (%).

Peak No.	Components	Retention time (min)	1	2	3	4	5	6	7
1	α-pinene	7.40	-----	-----	-----	-----	-----	1.00	4.38
2	β-pinene	7.71	1.92	-----	-----	-----	-----	0.43	2.95
3	limonene	8.80	4.12	5.06	0.44	3.56	0.30	6.68	12.64
4	2-Allyl-4-methyl phenol	9.615	10.77	1.72	3.33	3.14	1.03	-----	-----
5	Myrtenal	9.80	1.93	4.97	1.35	3.72	-----	-----	-----
6	Pulegone	10.10	3.40	3.05	1.46	3.05	-----	-----	-----
7	γ-terpinol	10.82	3.62	0.87	4.88	3.57	2.12	-----	-----
8	β-citronelol	13.154	3.46	0.32	0.19	0.15	2.22	1.39	0.46
9	Methyl cinnamate	13.72	0.28	0.83	0.16	0.46	0.42	4.24	-----
10	2,5Dimethyl-p-cymene	13.80	1.68	-----	-----	-----	-----	-----	-----
11	Myristicin	13.922	12.65	0.13	0.31	0.17	0.27	1.11	-----
12	2,5Dimethoxy-p-cymene	14.076	2.44	1.02	0.44	1.05	0.45	-----	-----
13	α-Himachalene	14.17	3.09	0.99	0.18	0.5	0.23	0.81	0.36
14	β-Elemene	14.287	0.11	0.54	0.47	0.65	0.25	5.79	-----
15	β-Caryophyllene	14.42	4.62	-----	-----	0.61	-----	-----	
16	α-Copaene	14.49	3.51	0.48	0.19	0.14	2.85	3.27	-----
17	α-Elemene	14.55	0.67	4.75	6.45	3.19	7.57	6.92	12.76
18	β-Sesquiphellandrene	14.75	0.21	-----	-----	-----	-----	-----	
19	α-Ylangene	14.82	2.87	4.14	3.47	4.41	0.38	0.79	0.45
20	δ-Cadinene	14.983	2.57	3.51	2.11	2.96	1.27	0.35	-----
21	Isoledene	15.67	0.42	-----	-----	-----	-----	-----	
22	2-Methyl-4-[2,6,6-trimethylcyclohex-1-en-1-ol]	15.77	0.19	4.74	4.98	4.37	1.7	0.81	-----
23	Cedren-13ol	16.10	3.51	2.33	5.15	2.16	1.62	0.27	0.36
24	Isotigilophone	16.363	9.45	9.28	10.12	8.57	4.38	3.25	2.42
25	Apio	16.63	9.5	-----	-----	-----	-----	-----	
26	Isocalamendiol	16.683	5.89	3.18	4.32	2.47	1.83	1.40	0.63
27	10,13-Octadecadiynoic acid, methyl ester	16.788	2.52	2.84	1.53	1.99	1.05	-----	-----
28	Phytol	17.273	0.12	11.94	10.00	8.28	15.69	16.24	2.18
29	Phytol, acetate	17.92	0.41	0.30	1.55	0.14	1.13	3.38	-----

Total Identified components No. 28 22 22 22 21 18 11

Identified components (%) 95.93 66.99 63.08 58.70 47.37 58.13 39.59

Unidentified components (%) 4.07 33.01 36.92 41.3 52.63 41.87 60.41

1-Fresh 2-800W/6min 3-800W/12min 4-400W/12min 5-400W/24min 6-Oven dryer under vacuum 7-Sun dried

Four volatile oil components only appeared in fresh flat and curly parsley (2,5-Dimethyl-p-cymene, β-Sesquiphellandrene, Isolendene and Apio (1.68, 4.13; 0.21, 0.28; 0.42, 0.36 and 9.50, 2.26%, respectively). Also, β-Caryophyllene component was present only in fresh flat parsley and flat leaves treated by microwave 400W/24 min (4.62 and 0.71%, respectively), but β-Caryophyllene component was present only in fresh curly parsley (6.43%). Therefore, the dehydration treatments either commercial or controlling may affect the type's volatile oil components.
This result is in line with Díaz-Maroto et al., (2002); Mangkoltriluk et al., (2005) and Petropoulos et al., (2010) who stated that when fresh herbs, including parsley, are dried the aromatic and nutritional constituents may be altered or reduced depending on the drying conditions.

Limonene contents was the highest in flat parsley sun dried (12.64%) followed by oven dryer under vacuum (6.68%) then microwave 800W/6min (5.06%) and 400W/12min (3.56%) compared to fresh flat parsley (4.12%). Also, limonene content was higher content in flat than curly parsley.

Flat parsley dehydrated by microwave 800W/ 12min and 400W/12min treatments has higher content in 2-Allyl-4-methyl phenol (3.33 and 3.14%, respectively) than either microwave 800W/6 min or microwave 400W/24 min treatments (1.72 and 1.03%, respectively). In parallel for curly parsley, the same component contents in microwave treatment 400W/12 min, 400W/24 min and microwave treatment 800/12 min were (3.99, 3.43 and 1.34%), respectively compared to fresh curly parsley (10.15%).

As for microwave technique at 800W/6min and 400W/12min, they appeared with high content of Myrtenal in flat parsley (4.97 and 3.72%), respectively, also the content of Pulegone in flat or curly parsley was the same results (3.05%). In addition, Myrtenal and Pulegone content in curly parsley recorded (3.58, 3.05; 3.39, 3.03 and 1.54 and 2.57%) for microwave 400W/24 min, microwave 800W/ 12 min and 400W/12 min, respectively.

Flat and curly parsley revealed (4.88, 0.52; 3.57, 1.74 and 2.12, 3.91%) from γ-Terpineol content when treated by microwave 800W/12min, 400W/12min and 400/24min, respectively compared to fresh flat and curly parsley (3.62 and 4.07%). While, the two types of parsley have no γ-Terpineol when treated by oven dryer under vacuum and sun dried.

The results found that, microwave 400/24 min was the best treatment followed by oven dryer under vacuum in β-Citronellol contents (2.22 and 1.39%), respectively compared to fresh flat parsley (3.46%). Furthermore, curly parsley was rich in β-Citronellol contents when treated by sun dried and microwave 800W/12 min treatments (2.71 and 1.36), respectively.

Concerning to Methyl cinnamate, it has higher contents in flat parsley treated by oven under vacuum (4.24%) than other treatments, while the same components was the highest in curly parsley treated by microwave 800W/12 min and 400W/12 min (0.61 and 0.62%, respectively).
Table 7. Volatile oil composition in fresh and treated leaves of curly parsley (%).

Peak No.	components	Retention time (min)	1	2	3	4	5	6	7
1	α-pinene	7.40	3.13						
2	β-pinene	7.71	4.25	0.55					
3	Limonen	8.80	3.89	5.36	3.53	2.07	2.05	0.72	2.07
4	2-Allyl-4-methyl phenol	9.615	10.15	1.34	3.99	3.43			
5	Myrtenal	9.80	2.75		3.39	1.54	3.58		
6	Pulegone	10.10	2.64		3.03	2.57	3.05		
7	γ-Terpineol	10.826	4.07		0.52	1.74	3.91		
8	β-Carotolol	13.154	3.63	0.49	1.36	0.11	0.53	0.27	2.71
9	Myristicin	13.72	0.28		0.61	0.62	0.26	0.28	0.40
10	2,5-Dimethyl-p-cymene	13.8	4.13						
11	Myristicin	13.922	15.05	0.16	0.27	0.15	0.28	0.37	
12	2,5-Dimethoxy-p-cymene	14.076	0.15		1.26	0.87	0.53	0.27	
13	α-Himachalene	14.17	2.29	0.94	0.60	0.36	0.40		0.65
14	β-Elemene	14.287	0.43		0.56	0.54	0.17	0.28	1.51
15	β-Caryophyllene	14.42	6.43						
16	α-Copaene	14.49	0.21		0.92	0.24	0.55	3.33	6.7
17	β-Elemene	14.55	0.43	47.78	5.11	5.04	2.83	7.1	4.03
18	β-Sesquiphellandrene	14.75	0.28						
19	α-Ylangene	14.82	2.8	0.51	4.39	4.27	3.13	1.18	3.22
20	β-Cadinene	14.983	3.37	0.64	3.90	3.23	2.17	0.26	1.12
21	Isoldeane	15.67	0.36						
22	2-Methyl-4-[2,6,6-trimethylcyclohex-1-en-1-ol]	15.77	0.32		6.00	4.93	4.45		
23	Cedren-13ol,8	16.10	3.53	0.55	2.52	1.02	2.61	0.63	1.55
24	Isolongiphene	16.363	8.59	2.71	8.8	7.39	9.22	9.9	1.47
25	Aciol	16.63	2.26						
26	Isocalamendiol	16.683	4.08	0.77	3.11	3.46	0.79	2.60	0.54
27	10,13-Octadecadiynoic acid, methyl ester	16.788	2.36		2.92	3.21	0.67		
28	Phytol	17.273	0.33	3.34	9.58	8.21	3.73	9.76	7.76
29	Phytol, acetate	17.92	0.42		0.57	0.82	0.58	0.80	0.59

Total Identified Components No.

| Identified components (%) | 89.48 | 66.77 | 64.18 | 56.5 | 48.79 | 38.25 | 35.87 |
| Unidentified components (%) | 10.52 | 33.23 | 35.82 | 43.5 | 51.21 | 61.75 | 64.13 |

1 - Fresh 2 - microwave 800W/6min 3 - microwave 800W/12min
4 - microwave 400W/12min 5 - microwave W400/24 min 6 - Oven dryer under vacuum 7 - Sun dry
Meanwhile, 2,5 Dimethoxy-p-cymene was present only in fresh flat parsley (1.78%), while this component was higher content in curly parsley treated by microwave 400W/12 min and 400W/24 min (0.87 and 0.53%), respectively.

While, Myristin and β-Elemene content were the highest in flat parsley dried in oven dryer under vacuum (4.24, 1.11 and 5.79%), respectively, also the content of Myristin and β-Elemene were higher in sun dried curly parsley (0.37 and 1.51%) than other treatments. As for α- Himachalene, it has higher content either in flat or in curly in fresh or microwave 800W/6 min treatments (3.09, 2.29 and 0.99, 0.94), respectively.

The data revealed that, the highest content of α-Copaene was in flat parsley treated by microwave 400W/24 min followed by oven dryer under vacuum (2.85 and 3.27%), respectively compared to fresh flat parsley (3.51%). Also, α-Copaene was the highest content in curly parsley treated by oven dryer under vacuum (3.33%).

Concerning α-Elemene content, it was found to have lower contents in fresh flat parsley (0.67%) than in other different treatments, while it has the highest contents when treated by sun dried (12.76%) followed by microwave 400W/24 min, oven dryer under vacuum and microwave 800W/12 min (7.57, 6.92 and 645%), respectively. In the contrast, it was the highest content in curly parsley treated by microwave 800W/6 min (47.78% from 66.77% total identified components). The changes in the aromatic profile of the dried product vary with the genotype drying (Petropoulos et al., 2010).

As for α-Ylangene, it was the highest in flat parsley treated by microwave 400W/12 min (4.41%) followed by microwave 800W/6 min (4.14%) then microwave 800W/12 min treatment (3.47%) compared to fresh flat parsley (2.87%). While, δ-Cadinene ranged from 1.2 to 3.51% in microwave treatments compared to fresh flat parsley (2.57%). Also, flat parsley had 2-Methyl-4-[2,6,6-trimethylcyclohexa-1-en-ol] contained (4.74, 4.98 and 4.37%) treated by microwave treatments(800W/6, 800W/12 and 400W/12 min), respectively.

Also, α-Ylangene, δ-Cadinene and 2-Methyl-4-[2,6,6-trimethylcyclohexa-1-en-ol] were higher in curly parsley treated by microwave 800W/12 min, 400W/12 min and 400W/24 min (4.39, 3.90, 6.00; 4.27, 3.23, 4.93 and 3.13, 2.17 and 4.45%), respectively compared to other treatments.

Cedren-13-ol,8 was the highest in flat parsley treated by microwave 800W/12min (5.15%) followed by 800W/6 min (2.33 %), 400W/12 min (2.16%), respectively and 400W/24 min (1.62%) treatment. Also, Cedren-13-ol,8 was higher in curly parsley treated by microwave 400W/24 min and 800W/12 min (2.61 and 2.52%), respectively than other treatments.
Furthermore, Isolongipholene and Isocalamendiol contents were the highest contents in flat parsley treated by 800W/12 min (10.12 and 4.32%), respectively followed by 800W/6 min and 400W/12 min (9.28, 3.18 and 8.57, 2.42%), respectively, in the contrast the lowest Isolongipholene and Isocalamendiol contents in flat parsley treated by oven dryer under vacuum then sun dry treatments (3.25, 1.40 and 2.42, 0.63%), respectively. Also, Isolongipholene recorded (9.90, 9.22, 8.80, and 7.39 %) in curly parsley treated by oven under vacuum, microwave 400W/24 min, microwave 800W/6 min and 400W/12 min, respectively. Meanwhile, Isocalamendiol component was higher in curly parsley treated by microwave 400W/12 min, microwave 800W/12 min and oven dryer under vacuum (3.46, 3.11 and 2.60), respectively than other treatments.

10,13-Octadecadilynoic acid methyl ester component was higher content in flat parsley treated by microwave 800W/6 min and 400W/12 min (2.84 and 1.99%), respectively than which treated by microwave 800W/12 min and 400W/24 min (1.55 and 1.05%), respectively compared to fresh flat parsley.

According to phytol component, it was the highest content in flat and curly parsley treated by oven dryer under vacuum (16.24 and 9.76%), respectively followed by flat parsley treated by microwave 800W/6 min, 800W/12 min (1.94 and 10.00%), respectively then which treated by microwave 400W/12 min and 400W/24 min (8.28 and 15.69%), respectively also, phytol in curly parsley treated by microwave 800W/12 min, 400W/12 min and sun dried (9.58, 8.21 and 7.76%), respectively were higher than other treatments. While, sun dry flat parsley leaves had the lowest phytol content (2.18%).

Furthermore, phytol acetate content was the highest content in flat parsley treated by oven dryer under vacuum (3.38%) followed by microwave 800W/12 min treatment, then microwave 400W/24 min (1.55 and 1.13%), respectively. While, the same components was higher in curly parsley leaves treated by microwave 400W/12 min and oven dryer under vacuum (0.82 and 0.80%), respectively than other treatments.

Ten volatile oil components were absent in flat parsley, while 13 components were absent in curly parsley treated by oven dryer under vacuum and sun dry. Although, flat parsley sun dried has high contents in α-Pinene (4.38%), β-Pinene (2.95%), Limonine (12.64%) and α-Elemene (12.76%). Curly (var. crispum) had plentiful in Myristicin, but contain much less essential oil than (var. latifolium) (Mangkoltriluk et al., 2005).
CONCLUSION

Total polyphenol contents, flavonoids and volatile oil components were achieved using different microwave treatment and oven dryer under vacuum on either flat or curly parsley. Also, controlling drying processes has positive effect on antiradical activity and may be considered as useful tool in improving nutritional and phytochemical properties of flat and curly parsley. Based on the aforementioned results, it could be concluded that parsley has effected dehydration is still a valuable commodity on the basis of its essential oil content and composition. This is important because although parsley is frequently dehydrated and sold as a dry condiment, the aromatic constituents of the dry product may be seriously reduced and altered.

RECOMMENDATION

From the obviously results it could be recommended that the best dehydration techniques were microwave 800W/6min., microwave 400W/12min. and oven under vacuum more than other traditional dehydration techniques (sun dried, oven dryer or hot air dried).

REFERENCES

1. A.O.A.C. 2012. Official Methods of Analysis Association of Official Analytical Chemists International, 19th Ed., Maryland, USA.
2. Ayyobi, H.; Peyvast, G.-A. and Olfati, J.-A. 2014. Effect of drying methods on essential oil yield, total phenol content and antioxidant capacity of peppermint and dill. Ratar. Povrt., 51(1):18-22. doi:10.5937/ratpov51-5077.
3. Boligon, A.A.; Pereira, R.P.; Feltrin, A.C.; Machado, M.M.; Janovik, V.; Rocha, J.B.T. and Athayde, M.L. 2009. Antioxidant activities of flavonol derivates from the leaves and stem bark of Scutia buxifolia Reiss. Bioresour. Technol., 100: 6592–6598.
4. British Pharmacopoeia. 1963. Determination of volatile oil in drugs. The pharmaceutical press 17 Bloomsburg, square. W. C. I. London.
5. Cellemme, S.L.; Matthew Van Vorst, M.; Paramore, E. and Gloria D. Elliott. 2013. Advancing microwave technology for dehydration processing of biologics. Biopresevation and Biobanking, 11 (5):278-284. DOI: 10.1089/bio.2013.0024.
6. Craft, J.D. and Setzer, W.N. 2017. The volatile components of parsley, Petroselinum crispum (Mill.) Fuss. American Journal of Essential Oils and Natural Products, 5(1): 27-32.
7. Díaz-Maroto, M.C.; Pérez-Coello, M.S. and Cabezudo, M.D. 2002. Effect of different drying methods on the volatile components of parsley (Petroselinum crispum L.). Eur. Food Res. Technol., 215:227–230.
8. Droštinová, L.; Braniša, J.; Bončíková, D. and Jomová, K. 2015. Effect of drying methods on content of some natural pigments in Urtica dioica L. and Melissa officinalis L. J. Microbiol. Biotech. Food Sci., 5 (2) 182-185.

9. Dwivedy, S.; Kalpana Rayaguru K. and Sahoo, G.R. 2012. Effect of drying methods on quality characteristics of medicinal Indian borage (Coleus aromaticus) Leaves. J. Food Process Technol., 3(188):1-6 http://dx.doi.org/10.4172/2157-7110.1000188.

10. Ebadi, M.T.; Rahmati, M. Azizi and Hassanzadeh-Khayyat, M. 2010. Effects of different drying methods (natural method, oven and microwave) on drying time, essential oil content and composition of Savory (Satureja hortensis L.). Ir. J. Med. and Arom. Plant, 25(2): 182-192.

11. Heindl, A.G. and Müller, J. 2007. Microwave drying of medicinal and aromatic plants. Stewart Postharvest Review, 4/5:1-6. doi: 10.2212/spr.2007.4.5

12. ISO 6571 (2009). Spices, condiments and herbs - Determination of volatile oil content (hydrodistillation method).

13. Kamel S.M. (2013). Effect of microwave heating time on some bioactive compounds of parsley (Petroselinum crispum) and dill (Anethum graveolens) leaves. Scientific J. Pure and Applied Sci., 2(5): 212-219.

14. Klein, B.P. and Perry, A.K. 1982. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United States. J. Food Sci., 47: 941-945.

15. Kouřimská, L., Chrpová, D.; Nový, P. and Pánek, J. 2013. The effect of concentration on the antioxidant activity of selected culinary herbs. J. Medicinal Plants Res., 7 (13): 766-771.

16. Mangkoltriluk, W.; Srzednicki, G. and Craske, J. 2005. Preservation of flavor components in parsley (Petroselinum crispum) by heat pump and cabinet drying. Pol. J. Food Nutr. Sci. 14/55 (1): 63-66.

17. Mathew, J.T.; Ndamitso, M.M.; Otori, A.A.; Shaba, E.Y. and Adamu, A. 2014. Proximate and mineral compositions of seeds and some conventional and non-conventional fruits in Niger State, Nigeria Acad. Res. Int., 5(2): 113-118.

18. Nagata, M. and Yamashita, I. 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish, 39(10): 925–928.

19. Nawirska, A.; Figiel, A.; Kucharska, A.Z.; Sokol-Letowska, A. and Biesiada, A. 2009. Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. J. Food Eng., 94: 14-20.
20. Ozkan, A.I.; Akbudak, B. and Akbudak, N. 2007. Microwave drying characteristics of spinach. J. Food Eng., 78: 577–583.

21. Petropoulos, S.A.; Daferera, D.; Polissiou, M.G. and Passam, H.C. 2010. "Effect of freezing, drying and the duration of storage on the composition of essential oils of plain-leafed parsley (Petroselinum crispum [Mill.] Nym. ssp. neapolitanum Danert) and turnip-rooted parsley (Petroselinum crispum [Mill.] Nym. ssp. tuberosum [Bergh.] Cron.)". Flavour and Fragrance J., 25(1): 28–34.

22. Pharmacopeia. 1989. USSR, Moscow, Medicina, 2: 324-33 (in Russian).

23. Priecina, L. and Karlina, D. 2013. Total polyphenol, flavonoid content and antiradical activity of celery, dill, parsley, onion and garlic dried in convective and microwave-vacuum dryers. 2nd International Conference on Nutrition and Food Sciences. IACSIT Press, Singapore. DOI: 10.7763/IPCBEE. 2013. V53. 21

24. Prieto, P.; Pineda, M. and Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E, Anal. Biochem., 269: 337-341.

25. Schopfer. 1989. pH-Dependence of extension growth in Avena coleoptiles and its implications for the mechanism of auxin action. Plant Physiol., 90: 202-207.

26. Shimada, K.; Fujikawa, K.; Yahara, K. and Nakamura, T. 1992. Antioxidative properties of xanthan on the autooxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40: 945-948.

27. Simon, J.E. and Quinn, J. 1988. Characterization of essential oil of parsley. J. Agric. Food Chem., 36: 467–472.

28. SPSS. 2000. Statistical package for Social Sciences. SPSS for windows version 19, SPSS Inc., Chicago, IL, USA.
تأثير تقنيات التجفيف التقليدية والميكروويف على جودة البقدونس المسطح والمجد المنززع في مصر

إسكان مراد الحديدي 1، أمنية فاروق أبو الليل مصطفى 2

1. معهد بحوث تكنولوجيا الأغذية - مركز البحوث الزراعية - الجيزة - مصر
2. قسم النباتات الطبية والعطرية - معهد بحوث البساتين - مركز البحوث الزراعية - الجيزة - مصر

أجريت هذه الدراسة خلال موسم 2016-2017، في مزرعة خاصة بطرق القاهرة. الأسكندرية الصحراوي مصر. بهدف البحث في تأثير التجفيف الشمسي والآفوان، والهواء الساخن والهواء الساخن تحت تدريجية والتجفيف بمعاملات الميكروويف على بعض المركبات الحيوية ونشاطها في صنفين من البقدونس المسطح (Petroselinum crispum var. neapolitanum، flate) إلى جانب المجدد (Petroselinum crispum var. Crispum، Curly) المحصول والرماد والرماح غير الدافئ في الأحماض في الأعلى في البقدونس المسطح عن المجدد بينما الصنف المجدد تميز بزيادة الكروتهردات الكلية الذاتية والأليل الذائبة. وقد أوضحت النتائج المتاحة عليها أن المحترف من المركبات الحيوية النشطة ككروتهر مليم وكمفورف مليم وكمفورف مامئ وفيماتي ج ونسبة المئوية للزيت الطيار تقل تدريجياً باستخدام التقنيات التجارية (التجفيف الشمسي - الفرن - الهواء الساخن) و التقنيات المحتملاً (الآفوان تحت تدريجية (%55) والميكروويف (400-800 واط)) في كل من البقدونس المسطح والمجد. وهذه النتائج تعكس أهمية نشاط النفوذات الحرة ونشاط مضادات الأكسدة الكلية.

اظهرت النتائج المحتملة على أن الزيت الطيار التي تم تعرفها في البقدونس المسطح تتراوح من 11-28 واط في البقدونس المجدد، ونسبة المئوية للمركبات التي تم تعرفها في البقدونس الساخن والمجد كانت أعلى باستخدام الميكروويف 800 واط لمدة 6 دقائق (%66.99) والميكروويف 800 واط لمدة 12 دقيقة (%66.77). والميكروويف 400 واط لمدة 12 دقيقة (%56.50) والميكروويف 400 واط لمدة 24 دقيقة (%48.79). على التوالي بالنسبة للمجدد، فيها 4-2 آليل - ميثيل فينول (10.15%)، أيزولونجفلينون (8.59%) وبيتاكاروتينون (6.43%)، ونسبة المئوية للبقدونس الساخن كانت أعلى المكونات (الميكروويف بنسبة 12.65%) في البقدونس الساخن. الميكروويف 12 دقيقة عند 4-2 آليل - ميثيل فينول (10.77%) وآبول (9.5%) وآيزولونجفلينون (9.45%). من النتائج الواضحة يمكننا أن نوصي بأن أفضل الطرق المستخدمة للتجفيف هي استخدام الميكروويف 800 واط لمدة 6 دقائق وتبدأ لفترة 12 دقيقة الأفوان تحت تدريجية ثم الميكروويف 400 واط لمدة 12 دقيقة < التجفيف الشمسي < الميكروويف 800 واط لمدة 12 دقيقة < الفرن < التجفيف بالهواء الساخن. من خلال تلك الدراسة، يمكن استخدام الميكروويف كتقنية جديدة غير تقليدية واقتصادية لتجفيف البقدونس الساخن والمجد بدلاً من تقنيات التجفيف التقليدية في مصر وبالتالي تحسين مواصفات جودة البقدونس المحفوظ مما يزيد من فرصه التصدير.