Avian Influenza

Etiology

Avian influenza viruses are a large group of viruses that belong to the species influenza A virus (genus Alphainfluenzavirus, family Orthomyxoviridae) and have birds as their reservoir hosts. Influenza A viruses are classified into subtypes (e.g., H1N2) based on two variable surface proteins, the hemagglutinin (HA) and neuraminidase (NA). At least 16 hemagglutinins (H1 to H16), and 9 neuraminidases (N1 to N9) have been found in viruses from birds, potentially resulting in more than a hundred different subtypes, although some hemagglutinins (e.g., H14, H15) seem to be uncommon, or perhaps are maintained in host species or locations that are not usually sampled.7 The hemagglutinin and neuraminidase proteins are major targets for the immune response, and there is ordinarily little or no cross-protection between different HA or NA types.69-78

Influenza viruses change frequently, as the result of mutations and gene reassortment between viruses.79 Mutations cause gradual changes in a virus’s HA and NA genes, a process called ‘antigenic drift.’ Once a virus has circulated for a time in poultry or other birds, antigenic drift can produce numerous viral variants. If the hemagglutinin and neuraminidase proteins change enough, a host’s existing immune responses against that virus may no longer be protective. Genetic reassortment, which results from “re-shuffling” the 8 viral gene segments when two different viruses infect a single cell, can result in more rapid changes. The introduction of a new HA and/or NA by genetic reassortment, which is called an ‘antigenic shift,’ may be sufficient for the virus to immediately evade the existing immunity in its host species.

Highly pathogenic and low pathogenicity avian influenza viruses

Avian influenza viruses are categorized into ‘highly pathogenic’ or ‘high pathogenicity’ (HPAI) viruses, which usually cause severe disease in chickens and turkeys, and ‘low pathogenic’ or ‘low pathogenicity’ (LPAI) viruses, which are...
Highly Pathogenic Avian Influenza

Generally much less virulent in all birds, including poultry. The technical definition of an HPAI virus was originally based on its ability to cause severe disease in intravenously inoculated young chickens in the laboratory. It was later expanded to include viruses with certain genetic features associated with HPAI viruses, i.e., the sequence at the HA cleavage site, which influences its distribution in the body.2,58 Due to the second part of this definition, it is possible for a virus to be technically considered HPAI but cause only mild signs in poultry.67,68 Such viruses are thought to be evolving from LPAI to HPAI when they are found.

HPAI viruses found in nature have always contained the H5 or H7 hemagglutinin, with a few rare (and arguable) exceptions.10,61-63 Laboratory experiments suggest that other hemagglutinins can be artificially engineered to become HPAI,65 however, a genetic structure found in most naturally occurring H5 viruses and about half of H7 viruses seems to encourage their transition to HPAI.69 This structure was also found infrequently in H4, H6, H9, H10, and H16 viruses, opening the possibility that HPAI or HPAI-like transformation might be possible in these viruses.69 Consistent with this, there are reports of two H10 viruses that technically fit the HPAI definition in intravenously inoculated chickens, though they caused only mild illness in birds infected by the normal respiratory (intranasal) route; an H10 virus that affected the kidneys and had a high mortality rate even in intranasally inoculated young chickens; and an H4N2 virus, found in quail, that had a genetic signature characteristic of HPAI viruses but low virulence in experimentally infected chickens.62,64,66

The Eurasian and North American lineages

There are two well-recognized lineages of avian influenza viruses, Eurasian and North American.7 As implied by their names, Eurasian lineage viruses primarily circulate among birds in Eurasia, and North American lineage viruses in the Americas. However, viruses can occasionally cross between these geographic regions, particularly where there is overlap between migratory flyways, such as in Alaska and Iceland.7,80-92,670 Limited information from Central and South America suggests that some of the viruses in this region are closely related to the North American lineage, but they may co-circulate with some viruses unique to South America.93-95,642 The viruses in New Zealand and Australia might be geographically isolated to some extent, though there is evidence of mixing with viruses from other areas.96-98

Species Affected

Avian influenza viruses are apparently capable of infecting most or all birds, though a given species is not necessarily susceptible to all individual viruses, and some birds may not develop clinical signs or shed viruses efficiently.2,27,72,146-147,149-151,165-190,663,699 A few subtypes seem to have a limited host range. H13 and H16 viruses have mainly been found in gulls and terns, and H14 viruses have been detected rarely and only in a few species, i.e., a few ducks, sea ducks and a herring gull.7,80,84,112,120-126

The vast majority of LPAI viruses are maintained in asymptomatic wild birds, particularly birds found in wetlands and other aquatic habitats.1-9 Some species may maintain viruses long-term, while others might be spillover hosts. Infections seem to be especially common among some members of the order Anseriformes (waterfowl, such as ducks, geese and swans) and two families within the order Charadriiformes, the Laridae (gulls and terns) and Scolopacidae (shorebirds).1-3,5,9,46,84,89,109-113,631 The importance of other aquatic birds (e.g., sea ducks, herons and egrets) is still poorly understood, but some might be important hosts.9,114,115-117,633-634,645,664,699,718 Many studies have found that infections are usually sporadic or uncommon in terrestrial wild birds (birds that live on land, e.g., raptors, passerines) and concluded that they are not important virus reservoirs.8,9,127,136 However, a few recent studies described significant virus circulation in some terrestrial birds that gather in flocks and/or reside in tropical regions.129,135,614

When LPAI viruses from wild birds are transferred to gallinaceous poultry, the viruses may circulate inefficiently and die out; become adapted to the new host and continue to circulate as LPAI viruses, or if they contain H5 or H7, they may evolve into HPAI viruses.9,10,12 Most HPAI viruses do not circulate in wild birds, although they may be isolated transiently near outbreaks in poultry.10,131 However, the Asian lineage H5N1 viruses and their reassortants (e.g., H5N8 viruses), which have been found repeatedly in wild birds, appear to be an exception. Rare reports of HPAI viruses found in wild birds without an obvious poultry origin include an unrelated H5N2 virus found in a few asymptomatic wild ducks and geese in Africa, an H5N3 virus isolated from an outbreak among terns in the 1960s, and an H7N1 virus that was isolated from a sick wild siskin (Carduelis spinus).27,32,108,138-164

Mammals

Infections with diverse avian influenza viruses have been reported sporadically in mammals including domesticated species such as pigs, cats, dogs and equids; farmed guinea pigs, foxes, mink and raccoon dogs (Nectereutes procyonoides); and various free-living or captive wild mammals, such as large zoo felids, stone martens (Mustela foina), palm civets (Chrotogale owstoni), plateau pikas (Ochotona curzoniae) and raccoons (Procyon lotor); as well as wild seals, whales and other marine mammals.1,12,20,35,37-38,40-43,99,191-204,231,276,277,283,285-287,291-296,703,709,717 Experimental infections with diverse subtypes have been established in these and other mammals, such as striped skunks (Mephitis mephitis) and cottontail rabbits (Sylvilagus sp.).1,3,1,280-282,284,286,288,289,290,629,687 Ferrets and laboratory mice (Mus musculus) are often used as models for avian influenza virus infections.297,309 Laboratory mice owe their suitability to a defective gene (Mx1), which increases...
their susceptibility compared to their wild-type progenitors.306-308 While wild mice have also been inoculated with certain LPAI viruses and might sometimes be naturally infected, some evidence suggests they are probably not common hosts.306,309-311

Most infections with avian influenza viruses in mammals are transient: the virus cannot be transmitted efficiently and soon disappears.1,5,12,31,45,50,79-99,106-109 On rare occasions, however, a virus continues to circulate in the new host, either “whole” or after reassorting with another influenza virus.45-46,50-55,57,102,106-107 Some established swine influenza viruses in pigs are wholly of avian origin or contain avian-origin gene segments, and one avian influenza virus recently became established in dogs as the H3N2 canine influenza virus.45-46,55,57,193,194,252,706 Equine influenza viruses are also thought to have originated in birds.616

Important viral lineages and susceptible species

Three viral lineages currently circulating in poultry are of particular concern for both birds and mammals, including humans.

- **Asian lineage H5N1 avian influenza viruses and their reassortants (e.g., H5N2, H5N5, H5N6, H5N8)**

 The A/goose/Guangdong/1996 (‘Asian lineage’) H5N1 HPAI viruses first emerged among poultry in China in the late 1990s, and have become widespread and very diverse since then, with a number of lineages, sublineages and variants.12,205-211 These viruses, which can circulate in wild birds and may be transferred long distances during their annual migrations, have also reassorted with local Eurasian lineage LPAI viruses in Asia and Europe to generate additional subtypes of H5 HPAI viruses (e.g., H5N2, H5N3, H5N4, H5N5, H5N6, H5N8).158, 213-220,613,624,635,656,661,711 In some cases, there may be more than one reassortant with the same subtype. For example, Asian lineage H5N6 HPAI viruses that arose in East Asia circulate in chickens there, while Asian lineage H5N6 HPAI viruses recently described in wild birds in Europe are genetically different and seem to preferentially replicate in wild and domestic waterfowl.692,704,712 Some reassortants apparently disappear after a relatively short time, while others persist. H5N6 and H5N8 viruses have also been detected in Africa.698

 Eurasian H5N8 HPAI viruses reached North America via wild bird migration in late 2014 and reassorted with North American lineage viruses to produce new and unique H5N1 and H5N2 HPAI viruses.157,159-161,220-224 An H5N2 HPAI virus was isolated from a wild bird in Alaska in late summer 2016, suggesting possible maintenance in wild bird populations.654 New H5N1 variants, apparently unrelated to these earlier viruses, caused outbreaks in wild birds and poultry in North America in late 2021 and 2022.679-680

 Asian lineage H5 viruses are detected sporadically in mammals, including humans. H5N1 viruses have been found in pigs, cats, most species of captive large felids, dogs, donkeys, stone martens, raccoon dogs, wild red foxes (Vulpes vulpes), palm civets, wild plateau pikas and a wild mink (Mustela vison), while serological evidence of possible infection/ exposure has been reported in horses and raccoons.12,17-37,229-231,618,639,677,686 Cattle could be experimentally infected with viruses isolated from cats, but studies in Egypt detected no antibodies to H5N1 viruses in cattle, buffalo, sheep or goats, suggesting that ruminants are not normally infected.229,240 Additional species known to be susceptible to H5N1 viruses, based on laboratory experiments, include ferrets, cynomolgus macaques (Macaca fascicularis) and rabbits.7,27,31,108,151,192,212,232-240

 Other Asian lineage H5 HPAI viruses have not been circulating as long, but there are a few reports of mammals infected with these viruses. An H5N8 HPAI virus caused clinical cases in a red fox, common seals (Phoca vitulina) and a juvenile gray seal (Halichoerus grypus) at a rehabilitation center in the U.K., and H5N8 viruses were found in the brains of three dead free-living harbor seals on the North Sea coast in Europe.676 Seropositive dogs were detected on some H5N8-virus infected farms in Asia, and experimental infections with H5N8 viruses have been established in dogs, cats and ferrets.242-244,727 H5N6 viruses were suspected in the deaths of a few cats in South Korea, and were also found in apparently healthy pigs in China.39,655,666 In addition, experimental infections were established in dogs.666 An H5N2 virus recovered from a sick dog in China could be transmitted from experimentally infected dogs to dogs, chickens and cats.80-82 Cottontail rabbits and pigs were inoculated with North American H5N2 and H5N8 viruses; however, in pigs, virus replication appeared limited and further virus transmission absent.644,688

 Host range of Eurasian H9N2 (LPAI) avian influenza viruses

 A Eurasian lineage of H9N2 (LPAI) viruses has become widespread among poultry in some areas, and like the Asian lineage H5 viruses, it has become very diverse.195,245-249,672 This lineage has occasionally been reported in wild birds including some terrestrial species, though there is currently no evidence they are spreading it.249-251 H9N2 viruses have been found occasionally in pigs, and might sometimes cause clinical signs in this species, though they are not thought to circulate in swine populations.193-196,252-253,672 They have also been detected in farmed mink, dogs, and a horse, as well as humans, and serological evidence of infection was found in cats near live bird markets, farmed foxes and raccoon dogs, and performing macaques.35,43,204,254,256,672 Experimental infections have been established in pikas, dogs and cats, though virus replication was sometimes limited in the latter two species.202,204,257-259

 Host range of the zoonotic H7N9 avian influenza viruses

 A lineage of H7N9 LPAI viruses has been found among poultry in China since 2013.14,15,260-264 Control programs, including routine poultry vaccination, have suppressed, but not eliminated, this virus, and like other long-circulating poultry viruses, it has diversified considerably.266,657,728 This lineage has also produced HPAI viruses, which have been
Highly Pathogenic Avian Influenza

detected concurrently with LPAI viruses in poultry. One HPAI virus emerged in 2017, and at least one unrelated HPAI virus was found in 2019.657,724,728

Among birds, infections with these viruses have mainly been reported in poultry, although LPAI viruses or their nucleic acids were also detected in pigeons, an asymptomatic tree sparrow (Passer montanus), and wild waterfowl.264-267,268 Experimental H7N9 LPAI virus infections were established in Japanese quail (Coturnix coturnix japonica), some domestic waterfowl, pigeons, parakeets (Melopsittacus undulates), and several species of passerines.241,270-272 Whether wild birds could play any role in spreading these viruses is uncertain.264,268,269

Many human infections with H7N9 LPAI and HPAI viruses have been reported, mostly between 2013 and 2017, but there are no reports of naturally occurring infections among other mammals as of May 2022. However, experimental infections with H7N9 LPAI viruses were established in miniature pigs, ferrets, striped skunks, raccoons, cottontail rabbits, laboratory mice and cynomolgus macaques.273-275,630,687

Zoonotic potential

Avian influenza infections are reported sporadically in people who are in close contact with birds, and volunteers were experimentally infected with H4N8, H6N1 and H10N7 viruses.328 Reports of zoonotic infections before the late 1990s were limited to conjunctivitis, mild illnesses or asymptomatic infections. The Asian lineage H5N1 viruses were the first viruses recognized to cause serious illnesses in people, but the H7N9 LPAI and HPAI viruses currently circulating in China have caused a number of severe or fatal cases, and there are rare reports of deaths from other subtypes.14,16-46,108,260-264,312-315,712,719

Adaptation of an avian influenza virus to humans is possible, though rare, and some human pandemics were caused by partially or wholly avian viruses.1,44-46,48-49,355 Such viruses continue to circulate as human influenza viruses after the pandemic.

Geographic Distribution

LPAI viruses are cosmopolitan in wild birds, although the circulating viruses differ between regions.1,7,93,96 Control programs in developed nations usually exclude these viruses from commercial, confinement-raised poultry.3 However, they may still be found in other birds, such as backyard flocks or live poultry markets.3 Eurasian lineage H9N2 LPAI viruses are endemic in poultry in parts of Asia, the Middle East and Africa.356-359,672 with sporadic reports of their presence in poultry flocks, wild birds or game birds in Europe.250,360-361 The zoonotic H7N9 LPAI viruses remain endemic in poultry in mainland China, but they have not been reported from other regions, other than imported cases in people who had visited China.14-15,362-363

HPAI viruses are eradicated from domestic flocks whenever possible, but the circulation of Asian lineage H5 viruses in wild birds has made outbreaks more common in formerly HPAI-free countries.12,157-158,220-221,613,624,635,656,661,711 Asian lineage H5N1 HPAI viruses remain endemic in poultry in certain countries in Asia and the Middle East.635 Other subtypes of this lineage, particularly H5N6 and H5N8 HPAI viruses, are also common in poultry in parts of Asia, and have been seen in Africa,613,656,698,712 Diverse subtypes of Asian lineage H5 HPAI viruses are seen periodically in wild birds in Eurasia and North America.12,158,220,613,624,635,656,661,679-680,711

Transmission

Avian influenza viruses are shed in the feces and respiratory secretions of birds, but the relative amount of virus in these two locations varies with the virus and host species.1,2,58,79,369-370 Aquatic birds, such as waterfowl, usually shed large amounts of virus in the feces, and fecal-oral transmission is usually the most important route in these birds (fecal-cloacal transmission might also be possible).7,150,371-372 However, respiratory transmission has been shown to predominate with a few waterfowl LPAI viruses, as well as some viruses transferred to these birds from gallinaceous poultry (e.g., Asian lineage H5N1 HPAI viruses).150,172,373-375,628 Respiratory spread might also be important in some terrestrial wild birds, while contaminated carcasses are thought to be a significant source of exposure for raptors.7,133,699

In poultry flocks, avian influenza viruses can spread by both the fecal–oral route and aerosols. Respiratory transmission tends to predominate among LPAI viruses, but fecal shedding can also be important in some instances.672 Fomites can be important in transmission, and flies might act as mechanical vectors.2,4,376-377 The possibility of wind-borne transmission of HPAI viruses between farms was suggested by one study, but has not been conclusively demonstrated.378 Avian influenza viruses have sometimes been found in the yolk and albumen of eggs from chickens, turkeys and quail infected with HPAI viruses, as well as on their shells.379-385,703 It might also be possible for birds to shed LPAI viruses in eggs, but the current evidence suggests this is very rare, if it occurs at all.379,386,625

Transmission of avian influenza viruses to mammals

Mammals, including humans, are usually infected with avian influenza viruses during close contact with infected birds or their tissues, though indirect contact via fomites is also thought possible.12,15,23,25-26,29-30,33,191,233,390-400 Respiratory transmission is likely to be important, and the eye may act as an additional entry point.274,303,305,401-402 Laboratory experiments provide evidence for oral transmission, and a few Asian lineage H5N1 HPAI virus infections in animals, and rare cases in humans (e.g., two cases reported after eating uncooked duck blood), were linked to eating raw tissues from infected birds.22,23,25-26,29-30,33,233,235-236,393,398-399,403-404
Highly Pathogenic Avian Influenza

Mammals usually shed avian influenza viruses in respiratory secretions. Fecal shedding has also been reported occasionally in humans and some experimentally infected mammals, though its significance is still uncertain.29,235-239,257,407,412,708 and there are reports of Asian lineage H5N1 HPAI viruses in the urine of mammals.31 Avian influenza viruses typically do not seem to spread readily between mammals.17,26,191,233,235,237,237,242,253,316-318,321,322 However, limited host-to-host transmission has occasionally caused clusters of infections or larger outbreaks.1,15,30,31,40-42,103-105,199,233,235,238,291-292,321,302,391-392,394-397,414-423,716,730 Asian lineage H5 HPAI viruses and the Chinese H7N9 viruses have infrequently been transmitted to other people, typically family members, during close contact.15,302,391-392,394-397,417-423 A ferret model suggested that some viruses might infect to the fetus if high viremia occurs during a systemic infection, and viral antigens and nucleic acids were found in the fetus of a woman who died of an Asian lineage H5N1 HPAI virus infection.405-406

Survival of influenza viruses in the environment

Environmental survival of avian influenza viruses is influenced by the initial amount of virus; temperature and exposure to sunlight; presence of organic material; pH and salinity (viruses in water); relative humidity (on solid surfaces or in feces); and possibly the viral strain.387-388,425-440,633 Some viruses may remain viable for several weeks to several months or more in the laboratory, when suspended in distilled water or sterilized environmental water, especially under cold conditions.425-426,428-430 However, the presence of natural microbial flora or other physical, chemical or biological factors in natural aquatic environments may considerably reduce their survival, and at some temperatures, viruses in natural water sources may remain viable for only a few days (or less) to a few weeks.429-431,434,442-443,633 Freeze-thaw cycles might increase inactivation in cold climates.433

Some anecdotal field observations stated that LPAI viruses can survive for at least 44 or 105 days under unspecified conditions,425 while laboratory studies under controlled conditions report varying survival times depending on the substrate. In feces between 15°C (59°F) and 35°C (95°F), LPAI or HPAI virus persistence ranged from < 1 day to 7 days, depending on factors such as the moisture content and protection from sunlight, while two studies at 4°C (39°F) reported survival of at least 30-40 days, and two other reports found it ranged from < 4 days to 13 days.388,432,434,436,440-441,444 On various solid surfaces and protected from sunlight, viruses were reported to persist for at least 20 days and up to 32 days at 15-30°C (59-86°F); and for at least 2 weeks at 4°C if the relative humidity was low; but also for less than 2 days on porous surfaces (fabric or egg trays) or less than 6 days on nonporous surfaces at room temperature.388,432,445 Some groups have reported prolonged survival on feathers: at least 6 days at room temperature in one study, and 15-30 days at 20°C (68°F) and 160-240 days at 4°C in another report.441,445,722 Other studies reported virus persistence for up to 13 days in soil (4°C), 20 to > 50 days in poultry meat at 20°C; up to 5-6 months in poultry meat at 4°C;3 3 days (20°C) to 20 days (4°C) in liver, and 15 days in allantoic fluid at 37°C (99°F).427,432,438,722 Environmental sampling in Cambodia suggested that virus persistence in tropical environments might be brief; although RNA from Asian lineage H5N1 HPAI viruses was found in diverse environmental samples, live virus could only be isolated from one water puddle.446

Disinfection

Influenza A viruses are susceptible to a wide variety of disinfectants including sodium hypochlorite, 60-95% ethanol, quaternary ammonium compounds, aldehydes (glutaraldehyde, formaldehyde), phenols, acids, povidone-iodine and other agents.79,425,447-450 They can also be inactivated by heat of 56-60°C (133-140°F) for a minimum of 60 minutes (or higher temperatures for shorter periods), as well as by ionizing radiation or extremes of pH (pH 1-3 or pH 10-14).79,388,425,447,449 One report suggested that the zoonotic H7N9 viruses in China might be more stable than some other viruses at 50°C.451

Infections in Animals

Incubation Period

The incubation period in birds is often a few hours to a few days; however, there are reports of longer periods in some species including turkeys and ostriches.2,3,79,609,702 The incubation period for avian influenza viruses in mammals is also thought to be short, and might sometimes be as little as 1-2 days.403

Clinical Signs

Low pathogenic avian influenza

LPAI viruses usually cause subclinical infections or mild illnesses, which can be exacerbated by concurrent infections or poor husbandry, in poultry and other birds.2,3,70,180,264,270-271,460 Common clinical signs during outbreaks in chickens and turkeys include disorders of egg laying (decreased egg production, misshapen eggs, decreased fertility or hatchability of the eggs), respiratory signs (sneezing, coughing, ocular and nasal discharge, swollen infraorbital sinuses), lethargy, decreased feed and water consumption, or somewhat increased flock mortality.2,3,70,383,452-460 The diseases caused by the Eurasian H9N2 and H7N9 viruses are generally consistent with these descriptions; however, some reports suggested that certain H9N2 variants might be more virulent.359,464-465,672 and the H7N9 viruses caused high mortality (75%) in some experimentally infected turkeys while being mild in chickens.700 There are infrequent reports of other LPAI viruses with higher virulence, such as an H10 virus isolated from waterfowl that affected the kidneys and had a 50% mortality rate in some intranasally inoculated chickens.64
Clinical signs, if any, are generally similar in game birds (e.g., quail, pheasants, guinea fowl, partridges), pigeons and cage birds, but neurological signs and elevated mortality were reported in guinea fowl (*Numida meleagris*) infected with an H7N1 virus.\(^{241,264,267,271,461,464,668}\) Domestic ducks and geese are often infected subclinically, although there may be mild signs such as sinusitis.\(^{3,180}\) Free-living wild birds mostly appear to be asymptomatic,\(^{7,114,115,121,116}\) but a few reports described subtle effects such as decreased weight gain, behavioral effects or transient increases in body temperature.\(^{84,462-463,638}\)

HPAI viruses in birds

HPAI viruses cause a systemic illness with a low survival rate in chickens and turkeys.\(^{1,2,165}\) Common clinical signs include marked depression, anorexia, coughing, sneezing, sinusitis, blood-tinged oral and nasal discharge, diarrhea, neurological signs, ecchymoses on the shanks and feet, and edema and cyanosis of the skin on the head, comb, wattle and/or snood.\(^{2-4,10,58,79,165-166,170,383,467-470}\) Egg production decreases or stops, and depigmented, deformed and shell-less eggs may be produced. Some birds may die suddenly with few or no preceding signs. Because a virus can be defined as HPAI based on its genetic composition alone, on rare occasions these viruses have been found in flocks that are only mildly ill.\(^{58,67}\)

Outbreaks in gallinaceous game birds may also be severe, with nonspecific signs, diarrhea, neurological signs and/or sudden death, but milder or minimal signs were reported in some flocks.\(^{166-168,461,659}\) The illness is variable in ostriches. These birds sometimes have few or no signs other than bilirubinuria (green urine syndrome), whether they are infected with HPAI or LPAI viruses, though more severe cases with neurological signs, mucosal hemorrhages, tracheitis and other syndromes have also been seen.\(^{183,185-189,152,241,609,648}\) Pigeons are thought to be relatively resistant to most HPAI viruses. Reports of overt illness in this species described nonspecific signs, neurological signs, greenish diarrhea or sudden death.\(^{10,112,474}\)

Domestic and wild waterfowl tend to be mildly affected, though domestic flocks can have respiratory signs (e.g., sinusitis), diarrhea, corneal opacity, occasional cases with neurological signs, and increased mortality. Some Asian lineage H5 HPAI viruses are an exception to this pattern, and can cause severe acute disease with neurological signs and high mortality in both domestic and wild waterfowl.\(^{2-10,79,141,146-147,149-151,172,193,471-473}\) These viruses are also reported to cause serious illnesses in various captive or free-living wild birds, with occasional reports of high mortality and combinations of nonspecific signs, neurological disease, respiratory signs, greenish diarrhea and/or sudden death.\(^{10,32,127,152,138-139,144-145,147,149-153,158,161-163,172,221,222,228,241,474-488,611,622,649-650,663,667,696,707}\) Some of these reports described outbreaks where one or more species suffered severe effects, while others were apparently unaffected.\(^{32}\) Information about the effects of other HPAI viruses on wild birds is limited, but an H5N3 HPAI virus caused high mortality among South African terns in the 1960s, and an H7N1 HPAI virus caused conjunctivitis, apathy and anorexia, with a high mortality rate, in captive canaries (*Serinus canarius*) that had been exposed to a sick wild siskin.\(^{140,142}\)

Mammals infected with Asian lineage H5 viruses

Asian lineage H5 HPAI viruses have been found sporadically in mammals. Reported syndromes range from asymptomatic infections or mild respiratory signs to neurological signs and severe systemic illnesses. The viruses involved are diverse, and only a few cases have been described in most species.

Both symptomatic and subclinical infections have been reported in H5N1 virus-infected felids. One severely-affected cat had a fever, dyspnea and neurological signs (convulsions, ataxia), while a few other cats were found dead, with one of these animals apparently well 24 hours earlier.\(^{242,25,29}\) Fatal illnesses with conjunctivitis and severe respiratory signs were described in experimentally infected cats.\(^{233,235,237,403,488}\) However, cats at an animal shelter that had been exposed to an H5N1 virus-infected swan were infected subclinically.\(^{191}\) Likewise, some captive large felids infected with H5N1 viruses died with respiratory signs (e.g., dyspnea, nasal discharge), high fever, vomiting and/or neurological signs,\(^{22-23,26,31,37,618,639}\) but zoo felids in one outbreak had much milder signs, with lethargy and a reduced appetite for up to a week, and recovered.\(^{32}\) The detection of antibodies to H5 viruses in cats and captive tigers also suggests the possibility of mild or asymptomatic infections.\(^{18,229,255,533-534,691,729}\)

Few serious illnesses have been documented in H5N1 virus-infected dogs. One dog that had eaten infected poultry developed a high fever, with panting and lethargy, and died the following day.\(^{30}\) However, serological and virological evidence of infection was also found in live stray dogs in China during this time.\(^{35}\) Furthermore, while some intranasally inoculated dogs developed clinical signs (fever, anorexia, conjunctivitis, mild respiratory signs and/or diarrhea), more severe respiratory signs, with a single death, were only reported in dogs inoculated directly into the trachea.\(^{34,237,238,488,666}\)

Respiratory signs were seen in a dog infected with an Asian lineage H5N2 HPAI virus, and this virus caused mild respiratory signs in experimentally infected dogs.\(^{40,42}\) One cat exposed to these dogs developed respiratory signs and conjunctivitis, but four other cats became subclinically infected.\(^{41}\) Asian lineage H5N6 HPAI viruses were thought to be the cause of death in three cats that died a few days after developing sudden onset of salivation, lethargy, convulsions, and bloody nasal and/or oral discharges.\(^{555,666}\) Dogs inoculated with an Asian H5N6 virus had only mild respiratory signs (sneezing, nasal discharge), while their contacts remained asymptomatic.\(^{666}\) Another study reported few or no clinical signs in dogs inoculated with an Asian

© 2006-2022 www.cfsph.iastate.edu
lineage H5N8 virus, while cats had mild and transient signs, including fever and marginal weight loss.642 Reports of infected herds, as well as evidence from experimental infections, suggest that pigs infected with Asian lineage H5N1, H5N6, H5N8 and H5N2 HPAI viruses usually remain asymptomatic or have only nonspecific signs and/or mild respiratory disease.17,36,93,229,236,415,444 An H5N1 virus was isolated from donkeys during a respiratory disease outbreak in Egypt, and a subsequent investigation detected antibodies to these viruses in healthy donkeys and horses in that country.20,229 The role of the H5N1 virus in this outbreak was unclear, as the affected donkeys responded well to antibiotics.

Mild illnesses caused by Asian lineage H5 viruses are unlikely to be observed in free-living wild species. Reports of serious or fatal illnesses from H5N1 viruses include neurological signs in several wild red fox cubs and possibly one vixen; fatal respiratory disease in captive raccoon dogs; and neurological signs in captive palm civets and a wild stone marten.31,33,677,686 A juvenile red fox, which was being treated for mange at a wildlife rehabilitation center in the U.K., became infected with an H5N8 virus and died shortly after developing malaise and inappetence.626 Seals infected during this outbreak had signs ranging from lymphadenopathy alone to fatal neurological signs.626 Three wild harbor seals (Phoca vitulina) found dead in Europe had high levels of an H5N8 virus in the brain.676 Cottontail rabbits experimentally infected with North American isolates of H5N2 or H5N8 viruses remained asymptomatic.688

Mammals infected with other subtypes

Many avian influenza viruses seem to cause respiratory signs or subclinical infections in most infected mammals. LPAI viruses of diverse subtypes have been isolated occasionally from pigs.99,193-195,197,201,206-207 Generally, these outbreaks resemble swine influenza, with respiratory signs or subclinical virus circulation, and little or no mortality. Pigs experimentally infected with a variety of LPAI viruses from North America, Asia or Europe did not develop any overt clinical signs, except mild transient anorexia in some cases.273,610,629,647 Avian influenza virus (H9N2, H10N4) outbreaks in mink were characterized by respiratory signs of varying severity, accompanied by elevated mortality in some but not all outbreaks.131,204 An avian H3N8 virus epidemic among horses in China resembled equine influenza.278-279 Mortality was initially high (20-30%), but subsequently became minimal.

Few or no clinical signs were seen in cats inoculated with an H7N7 HPAI virus isolated from a fatal human case, an H9N2 poultry virus or several LPAI viruses from waterfowl.258,280-281 One H7N2 LPAI virus caused an outbreak among cats at three animal shelters in New York.536,674 Approximately 500 of the cats developed mild to moderate upper respiratory signs (coughing, sneezing, nasal discharge) and recovered fully, though the virus cased severe pneumonia in an elderly cat with underlying health conditions, which was euthanized. Cats that were experimentally infected with this virus had very mild signs, with one animal developing a fever and another cat sneezing extensively on a single day.636

One group isolated 13 H9N2 viruses from sick and healthy dogs in China, but whether these viruses were responsible for the clinical signs was unclear.43 Dogs inoculated with an H9N2 virus developed respiratory signs in one study, but they remained asymptomatic or had only a mild fever in two other reports.257-258,259

Various influenza A viruses, apparently of avian origin, have been associated with outbreaks of pneumonia or mass mortality in seals.1,101,203,489,490,709 The clinical signs in some outbreaks included weakness, incoordination, dyspnea, subcutaneous emphysema of the neck, and in some cases, a wheezy or bloody nasal discharge.31,291,489 Experimental infections with these viruses were milder or asymptomatic, suggesting that co-infections may have increased the severity of the illness.31 An influenza virus was also isolated from a diseased pilot whale, which had nonspecific signs including extreme emaciation, difficulty maneuvering and sloughing skin.489 Whether this virus was the cause of the disease or an incidental finding is uncertain.414 Other avian influenza viruses were isolated from whales that had been hunted, and were not linked with illness.491

The H7N9 LPAI viruses in China caused respiratory signs in experimentally infected ferrets and skunks, while nonspecific signs (fever, reduced appetite, lethargy) and nasal discharge were seen in some individual raccoons and rabbits, and cynomolgus macaques developed a fever.273,274,643,687 Experimentally infected miniature pigs remained asymptomatic.273 Few or no clinical signs were seen in raccoons experimentally infected with an H4N8 virus.286

Post Mortem Lesions

Low pathogenic avian influenza in birds

Lesions in LPAI virus-infected poultry may include rhinitis, sinusitis, and congestion and inflammation in the trachea, but lower respiratory tract lesions such as pneumonia usually occur only in birds with secondary bacterial infections.1,2 Lesions (e.g., hemorrhagic ovary, involuted and degenerated ova) may also be observed in the reproductive tract of laying hens, and the presence of yolk in the abdominal cavity can cause air sacculitis and peritonitis.2 A small number of birds may have signs of acute renal failure and visceral urate deposition.3 Marked pancreatic hemorrhages were seen in turkeys experimentally infected with Chinese H7N9 LPAI viruses, but this is unusual.700

Highly pathogenic avian influenza in birds

The lesions in HPAI virus-infected chickens and turkeys are variable and resemble those found in other systemic avian diseases.471,492 Classically, they include edema and cyanosis of the head, wattles and comb; excess fluid (which may be blood-stained) in the nares and oral cavity; edema and diffuse subcutaneous hemorrhages on the feet and
shanks; and petechiae on the viscera and sometimes in the muscles. There may also be other abnormalities, including hemorrhages, edema and/or congestion in various internal organs including the lungs, as well as severe airsacculitis and peritonitis. Birds that die peracutely may have few or no lesions, and the gross lesions in some outbreaks may not fit the classical pattern.

Similar internal lesions may be seen in other birds, though some lesions common in chickens and turkeys, such as cyanosis and hemorrhagic lesions in unfeathered skin, may be absent or less prominent. Necrotic lesions in the pancreas appear to be common in wild or domestic birds infected with Asian lineage H5 HPAI viruses. Some birds infected with these viruses also had encephalitis and/or meningitis.

Avian influenza viruses in mammals

Some mild to fatal infections in mammals are limited to the respiratory tract, with gross lesions that may include bronchitis, tracheitis, and congestion, consolidation, edema and/or emphysema of the lungs. However, some viruses, particularly Asian lineage H5 HPAI viruses, can cause systemic disease, with hemorrhagic lesions on various internal organs, multifocal hepatic necrosis, pancreatic necrosis, and enlargement and/or congestion of other internal organs including the spleen, kidney and liver. Lesions have also been reported in the brain.

Diagnostic Tests

Avian influenza viruses, their nucleic acids and antigens can be found in oropharyngeal, tracheal and/or cloacal swabs (or, if necessary, feces) from live birds. Immature feathers have also been proposed. The optimal samples can depend on the specific virus, species of bird and other factors. Samples from internal organs (e.g., trachea, lungs, air sacs, intestine, cecal tonsils, spleen, kidney, brain, liver and heart) are collected in dead birds suspected of highly pathogenic avian influenza.

Diagnostic tests should be validated for the avian species; some tests that are useful in chickens and turkeys may be less reliable in other birds. RT-PCR tests can detect influenza viruses directly in clinical samples, and real-time RT-PCR is the diagnostic method of choice in many laboratories. ELISAs including rapid tests are available for viral antigens. Due to the limitations of antigen detection tests, however, the World Organization for Animal Health (OIE) recommends that they be used to identify avian influenza only in flocks and not individual birds. Virus isolation, performed in embryonated eggs, can be useful for virus characterization. Recovered viruses are identified as influenza A with agar gel immunodiffusion (AGID), antigen-detection ELISAs or other immunoassays, or a molecular test such as RT-PCR. Avian influenza viruses can be subtyped with specific antisera in hemagglutination and neuraminidase inhibition tests, by RT-PCR, or by sequence analysis of the viral HA and NA genes. Genetic tests to identify characteristic patterns in the HA (at its cleavage site) and/or virulence tests in young chickens are used to distinguish LPAI viruses from HPAI viruses.

Serology can be valuable for surveillance and demonstrating freedom from infection, but chickens, turkeys and some other birds infected with HPAI viruses often die before developing antibodies. Serological tests used in poultry include AGID, hemagglutination inhibition (HI) and ELISAs. AGID and ELISAs to detect conserved influenza virus proteins can recognize all avian influenza subtypes, but HI tests are subtype specific and may miss some infections. Cross-reactivity between influenza viruses can be an issue in serological tests. Tests that can distinguish infected from vaccinated birds (DIVA tests) should be used in surveillance when vaccination is part of a control program.

Mammals

Tests to detect the virus directly, such as RT-PCR and virus isolation, are used to diagnose clinical cases in mammals. Serology has been employed in surveillance; however, tests differ in their ability to detect antibodies to avian influenza viruses, and they have rarely been thoroughly evaluated in uncommonly tested species, such as wildlife. This may result either in false positives (e.g., due to cross-reactions with other viruses) or false negatives. There are reports of infected mammals developing detectable antibodies to other viral proteins (e.g., the nucleoprotein) but not the hemagglutinin.

Treatment

Poultry flocks infected with HPAI viruses are normally depopulated (this is generally mandatory in HPAI-free countries), while the disposition of infected LPAI flocks may differ, depending on the specific virus and the country. Treatment for sick animals is usually symptomatic and supportive; antiviral agents used for influenza in humans are not prescribed for animals in most countries. Administering such drugs (e.g., amantadine) to sick birds might contribute to drug resistance.

Control

Disease reporting

Reporting requirements depend on the specific virus, host species and country, but HPAI viruses and LPAI viruses that contain H5 or H7 are often nationally notifiable. In the U.S., state or federal veterinary authorities should be informed immediately of these viruses. Some states may have additional LPAI virus reporting requirements. Unusual mortality among wild birds might indicate the introduction of an HPAI virus, and should be reported to state, tribal or federal natural resource agencies in the U.S. Veterinarians in other countries should follow their national and/or local guidelines.
Highly Pathogenic Avian Influenza

Prevention

The risk of introducing a virus to poultry or other birds can be reduced by good biosecurity and hygiene, which includes preventing any contact with domestic or wild birds and contaminated fomites including water sources. All-in/ all-out flock management is helpful in poultry, and birds should not be returned to the farm from live bird markets or other slaughter channels. Birds added to established flocks can be quarantined and tested. To reduce the risk of reassortment between human and avian influenza viruses, people are encouraged to avoid contact with birds while suffering flu symptoms.

Some countries use avian influenza vaccines to suppress illness and reduce virus circulation in poultry flocks, or to protect valuable species such as zoo birds from highly virulent viruses. Most vaccines are produced for chickens, but some have also been validated for use in turkeys. Their efficacy may differ in other species. By suppressing clinical signs, vaccination can mask the introduction of a virus, unless there is a good surveillance program to detect asymptomatic infections. It can also promote the emergence of vaccine-resistant isolates. Thus, vaccination in the U.S. is restricted and requires the approval of the state veterinarian, and in the case of H5 and H7 vaccines, USDA approval.

Avian influenza viruses can be eradicated by depopulation of infected flocks, followed by cleaning and disinfection, typically combined with movement controls, quarantines, and perhaps vaccination. Insect and rodent control is recommended, though their importance as mechanical or biological vectors is still unclear. Mammals should be kept from contact with potentially infected birds and should not be fed any of their tissues.

Morbidity and Mortality

Birds

Influenza virus infections and shedding patterns among wild birds are complex and likely to reflect their exposure to different habitats, as well as gregariousness and other social factors. Reported infection rates with LPAI viruses in different species and environments range from 1% to 40% or more, and seroprevalence from 1% to > 90%. These rates are generally higher in aquatic than terrestrial species. In temperate climates, LPAI virus prevalence is reported to rise in late summer staging areas before migration, when bird densities are high and young hatch-year birds have not yet developed immunity. Conversely, seasonal changes appear to be limited in tropical wetlands of Africa, where young birds may be present year-round and birds aggregate more gradually as wetlands dry out.

In endemic regions, avian influenza viruses tend to re-emerge in poultry during the colder months. LPAI viruses are relatively common in poultry in the absence of control programs, while HPAI outbreaks were historically uncommon. However, the dissemination of Asian lineage H5 HPAI viruses by migratory wild birds has elevated the risk of outbreaks. Some epemics in Europe (e.g., 2017-2018 H5N6) mainly affected wild birds, while other viruses (e.g., 2016-2017 H5N8) were often transferred to poultry.

LPAI viruses usually cause mild illnesses or asymptomatic infections in birds, including chickens and turkeys, but outbreaks can be more severe when there are concurrent infections or other exacerbating factors. HPAI viruses, in contrast, have cumulative morbidity and mortality rates that may approach 90-100% in chickens and turkeys. Most HPAI viruses spread rapidly though the flock, and any birds that survive are usually in poor condition. Morbidity and mortality rates in other domestic and wild species are variable. Some birds, such as waterfowl, are minimally affected by many HPAI viruses, with few or no deaths, but mortality may approach 100% in others. Some Asian lineage H5N1 viruses and reassortants can be highly virulent even in waterfowl, and their introduction may be heralded by unusual deaths among wild birds (e.g., swans in Europe, crows in Pakistan). Certain individuals within a species also seem to be more susceptible, sometimes but not always due to factors such as age or comorbidities.

Mammals

Pigs seem to be infected fairly regularly by avian influenza viruses from birds, often with only minor consequences even when the virus is an Asian lineage H5 HPAI virus. Studies often report antibodies to avian viruses in < 1% to 5% of the pigs sampled, though higher rates have also been seen, including in reports from impoverished areas where pigs are fed scraps that may include dead bird carcasses.

Clinical cases in other mammals seem to be sporadic and uncommon, typically with one to a few cases reported at a time. A few avian influenza outbreaks have been documented in mink, cats, and horses. In 1984, an H10N4 virus affected 33 mink farms in Sweden, with nearly 100% morbidity and 3% mortality. An H9N2 outbreak among mink in China was milder, with no elevated mortality, and some additional farms with no history of outbreaks had seropositive mink. An outbreak caused by an H7N2 LPAI virus at three New York animal shelters affected approximately 500 cats, mostly with mild to moderate respiratory signs, and an H3N8 virus caused an extensive epidemic among horses in China in 1989. The latter virus circulated for a few years in horses before disappearing. Mortality was initially around 20-30%, but later became minimal.

The Asian lineage H5 HPAI viruses, which are widespread, have caused a number of clinical cases in mammals, with some of the most severe illnesses reported in cats and other felids.
Highly Pathogenic Avian Influenza

Reports that compared experimental infections in cats and dogs found that cats appeared more likely to develop severe clinical signs from an H5N1 virus, and they were more readily infected with an H5N8 virus though the symptoms were mild. Nevertheless, serological studies suggest that asymptomatic or mild cases are possible in both species. Reported seroprevalence to various avian influenza viruses, including H5 viruses, ranges from <2% to 45% in dogs and from <2% to 73% (the latter a very small sample of 11 cats in Thailand) in cats, though most studies in both species found antibodies in less than 5% of the animals sampled.

Infections in Humans

Incubation Period

The incubation period for Asian lineage H5N1 HPAI and H7N9 LPAI/HPAI virus infections is estimated to be about 3-5 days in most cases, with a range of 1-13 days in H7N9 virus infections, and up to 8 and possibly 17 days in H5N1 virus infections.

Clinical Signs

Asian lineage H5 HPAI viruses

Most documented infections with Asian lineage H5N1 HPAI viruses, which often affect younger people, have been severe. Common initial signs are a high fever and upper respiratory signs resembling human seasonal influenza, but some patients may also have mucosal bleeding, or gastrointestinal signs such as diarrhea, vomiting and abdominal pain. Respiratory signs are not always present at diagnosis; two patients from Vietnam had acute encephalitis and no obvious respiratory involvement. Similarly, a patient from Thailand initially exhibited only fever and diarrhea. Lower respiratory signs (e.g., chest pain, dyspnea, tachypnea, sometimes with blood-tinged sputum) often develop soon after the onset of the illness. Most patients deteriorate rapidly, and serious complications including heart failure, kidney disease, encephalitis and multiorgan dysfunction are common in the later stages.

Milder cases have been reported occasionally, particularly among children, some of whom had symptoms consistent with childhood respiratory illnesses and recovered without antiviral treatment. Two mild cases were also described during recent poultry outbreaks in Europe and North America, though it is possible that the use of antiviral drugs influenced their course. In one case, a man in his 80s, who had been exposed to infected birds in the U.K., was prescribed prophylactic oseltamivir and remained asymptomatic. In the other, a man in his 40s in the U.S. had no symptoms except fatigue.

Most reported illnesses caused by Asian lineage H5N6 HPAI viruses, to date, occurred in older adults, but clinically resembled cases caused by H5N1 viruses, with a high case fatality rate. Rare H5N6 cases documented in children included mild illnesses in a few young children but also a fatal case in an obese 9-year-old. As of May 2022, no reports of illnesses caused by H5N8 viruses have been published, though there are a few reports of virus isolation and/or the detection of nucleic acids in nasal swabs from asymptomatic poultry workers, and a few people seroconverted in paired serum samples.

Zoonotic H7N9 LPAI viruses in China

A number of clinical cases caused by H7N9 viruses have been reported in China, most often in older people. The illnesses caused by LPAI viruses and the 2017 HPAI viruses appeared to be clinically similar. The most common symptoms are fever and coughing, and a minority of patients had diarrhea and vomiting, but conjunctivitis was uncommon. Many patients deteriorated rapidly, developing severe pneumonia with dyspnea and/or hemoptyis, frequently complicated by acute respiratory distress syndrome and multiorgan dysfunction. Concurrent bacterial and/or fungal infections (including ventilator-associated pathogens) were identified in some patients, and may have contributed to the clinical picture. There are a few reports of uncomplicated cases with mild upper respiratory signs or fever alone, especially in children.

Sero logical surveys and case investigations also suggest that asymptomatic infections or mild cases are possible.

Other avian influenza viruses

Illnesses caused by H9N2 viruses have mainly been reported in children, including infants. Most of these cases were mild and very similar to human influenza, with upper respiratory signs, fever, and in some cases, gastrointestinal signs (mainly vomiting and abdominal pain) and mild dehydration. More severe respiratory illnesses are occasionally seen, including one case in a 17-month-old child initially thought to have a respiratory syncytial virus infection. All of these younger patients, including a 3-month-old infant with acute lymphoblastic lymphoma, made an uneventful recovery. Acute, influenza-like upper respiratory signs or asymptomatic infections were also seen in some adults ranging in age from their 20s to 80s, though one 32-year-old developed pneumonia and a severely immunocompromised 47-year-old woman had respiratory failure. Two deaths occurred in adults with underlying medical conditions.

Conjunctivitis and/or mild to moderate upper respiratory signs have been reported in many people infected with various H7 LPAI or HPAI viruses, an H10N7 virus and some other subtypes. One mild clinical case occurred in a person exposed to H7N3-virus infected cats during an outbreak at an animal shelter, where serological testing of shelter employees and adopters also found significant antibody titers in one of 121 shelter workers.
Human volunteers infected with H4N8, H10N7 and H6N1 viruses sometimes developed mild respiratory signs and other symptoms that resembled human influenza.328

However, serious illnesses have also been seen. One H7N7 HPAI virus, which caused only mild symptoms in most people, resulted in fatal acute respiratory distress syndrome and other complications in a previously healthy person, while an H7N4 LAI virus caused serious pneumonia in a 68-year-old woman with underlying comorbidities, and an LAI H7N2 virus caused severe pneumonia in a person infected with both HIV and a member of the Mycobacterium avium complex.318,321,640 Severe lower respiratory tract disease, progressing in some cases to multiple organ failure and septic shock, was seen in three people, ranging in age from 55 to 75 years, infected with H10N8 infections in China.316,335 Two of these cases were fatal despite treatment, though the youngest patient recovered with intensive care and antiviral drugs. An H10N3 virus caused severe pneumonia in a young person in China.683 A 20-year-old woman infected with an H6N1 virus in China developed a persistent high fever, cough and dyspnea, with radiological evidence of lower respiratory tract disease, but made an uneventful recovery after treatment with oseltamivir and antibiotics.317

Diagnostic Tests

The assays used to diagnose avian influenza virus infections in people are similar to those in animals.12,209,264 Commercial rapid diagnostic test kits for routine influenza diagnosis might detect some viruses; however, these tests are optimized for human influenza viruses, and their sensitivity for avian influenza viruses can be much lower.12,553-558 Testing that identifies the presence of an influenza A virus, but does not detect the hemagglutinins in human influenza viruses, might indicate a novel, possibly zoonotic, virus.12 Specific tests for novel influenza viruses are generally performed by state, regional or national public health laboratories, and in some cases by reference laboratories capable of handling dangerous human pathogens such as H5N1 HPAI viruses.12,209 RT-PCR tests are available for Asian lineage H5N1 HPAI viruses as well as the zoonotic H7N9 viruses in China.209,418,551-552

Serology is mainly employed in research, but it may occasionally be useful for retrospective diagnosis of a clinical case.390 Tests used for avian influenza serology in humans include the microneutralization assay, which is the most commonly used test, and other assays such as hemagglutination inhibition.209,328,554,559 Serology is not always reliable: titers to avian viruses in people may be low and sometimes decay quickly, especially in mild illnesses, and some people with virologically confirmed cases do not seem to seroconvert.324,327,560,617 Conversely, some titers may be caused by cross-reactivity with human influenza viruses.

Treatment

Treatment sometimes includes antiviral drugs, as well as symptomatic and supportive treatment.78,448,553,558,561-566 Phenotypic tests or gene-based testing can evaluate a virus’s susceptibility to antiviral agents, but these tests are available in a limited number of laboratories and take several days to perform.554 Thus, the initial choice of drug is often empirical. Oseltamivir and other neuraminidase inhibitors are generally used for Asian lineage H5N1 HPAI and Chinese H7N9 viruses, as these viruses are often (H5N1) or usually (H7N9) resistant to adamantanes.12,209,261,362,527,539,540,544,546,560,568,570,657 Antiviral drugs are most effective if they are started within the first 48 hours after the clinical signs begin, although they may also be used in severe or high-risk cases first seen after this time.448,553,558,563-566 Antiviral resistance can develop rapidly, sometimes emerging even during treatment.1,78,558,569

Prevention

Preventive efforts for zoonotic avian influenza viruses include controlling the source of the virus (e.g., eradicating HPAI viruses, implementing measures to reduce transmission in live poultry markets); avoiding contact with sick animals and their environments; employing good sanitation and hygiene when around birds (e.g., hand washing before contacting mucous membranes, eating or dinking); and using personal protective equipment (PPE) where appropriate.12,205,392,499,673 While the recommended PPE differs, depending on the situation and risk of illness, it may include respiratory and eye protection such as respirators and goggles, as well as protective clothing including gloves.12,499,572 Certain cultural practices in some impoverished areas, such as keeping poultry inside the home to observe sick birds or to prevent theft or predation, or eating sick birds to prevent the loss of a valuable protein source, are likely to increase the risk of infection.527

Because HPAI viruses have been found in meat and/or eggs from several avian species,71,178,379-385,454,573-577 careful food handling practices are important when working with raw poultry or wild game bird products in endemic areas, and meat, eggs or other tissues should be completely cooked before eating.12,499,578 Eating sick poultry or wild birds increases the risk of exposure during food preparation, and should be avoided.499 More detailed recommendations for specific groups at risk of exposure (e.g., people who cull infected birds, field biologists, and hunters) have been published by some national and international agencies.12,499,572,580 In some cases, these recommendations may include antiviral prophylaxis, for instance in people who cull birds infected with Asian lineage H5N1 HPAI viruses.12,45,540 Vaccines for humans are not in routine use, but they have been developed for some avian influenza subtypes in the event of an epidemic.12,579,660 People who become ill should inform their physician of any exposure to avian influenza viruses.
Morbidity and Mortality

The consequences of infection with avian influenza viruses vary greatly. While many viruses seem to mostly cause conjunctivitis or mild respiratory illnesses, some appear more likely to cause severe disease. Like human influenza viruses, even less virulent avian influenza viruses can occasionally cause a serious clinical case, typically (though not invariably) in the elderly, very young children, and those with underlying illnesses.

H5N1 avian influenza

As of spring 2022, 863 laboratory-confirmed human infections with Asian lineage H5N1 HPAI viruses had been reported to the World Health Organization (WHO) since 1997. Additional probable cases not included in this count may raise the total to around 900. H5N1 HPAI viruses are, nevertheless, considered to affect humans only rarely; the large number of cases is attributed to the widespread circulation of these viruses for more than 2 decades, resulting in frequent human exposure in some countries. Most clinical cases have been seen in younger people with no predisposing conditions. The overall case fatality rate in known, laboratory-confirmed cases is estimated to be around 53-56%, though it appears to be lower in young children than adults, and there also seem to be significant differences between countries. Case fatality rates as low as 28% have been reported during some time periods (e.g., 2006-2010) in Egypt, where many of the reported cases affect children.

Antibodies to H5N1 viruses and reports of seroconversion have been seen in some poultry-exposed populations, fueling speculation on the possibility of additional asymptomatic or mild infections. Most of these studies suggest that exposure is low (e.g., < 0.5-2%) in the general population, while seropositivity in poultry-exposed groups ranges from < 0.5% to 10% or higher, with a few reports of antibodies in > 40% of tested poultry workers or hospital staff in parts of Asia during active outbreaks. Rare virologically-confirmed asymptomatic or mild cases have also been recognized; however, only a few of these people had not received antiviral drugs, complicating the interpretation of these cases. Cross-reactivity with human influenza viruses in serological assays and, conversely, poor seroconversion to H5N1 viruses, might influence estimates of exposure, and the true prevalence of mild cases is still uncertain and controversial.

Other Asian lineage H5 viruses

Asian lineage H5N6 HPAI viruses have become common in poultry in parts of Asia, resulting in occasional human infections. As of April 2022, 78 laboratory-confirmed cases and 32 deaths had been reported to the WHO, and sporadic cases continue to be reported. Many of these cases, which often affected older adults, were severe. There are a few known mild illnesses in children, at least one of which was identified through a routine flu surveillance program in Laos; however, one fatal case was seen in an obese 9-year-old.

A different H5N6 HPAI virus found in Europe has not been linked to any human infections, as of 2022.

H7N9 avian influenza

Approximately 1500 laboratory-confirmed illnesses caused by H7N9 viruses have been reported to WHO by China, as of April 2022. They mainly occurred during the winter months from 2013 to 2017, with sporadic cases seen between winter outbreaks and after 2017, 2018. The number of cases reported each year varied, with 134 laboratory confirmed cases in spring 2013, 306 cases in 2013-14, 219 in 2014-15, 114 in 2015-16, and 447 in 2016-17. A human case in 2019 was caused by a variant distinct from the 2017 strains, suggesting the development of resistance to the vaccines used to control infections in poultry. Both LPAI and HPAI viruses caused human cases in 2016-2017. The severity of these illnesses appeared to be similar, though the case fatality rate was slightly higher in the HPAI group (a much smaller number of patients in the HPAI group makes the significance of this finding difficult to assess).

Most human cases were associated with live bird poultry markets, although some occurred on infected farms. Significant environmental contamination with H7N9 viruses has since been reported in some new poultry slaughter and processing plants, which have replaced live bird markets or serve as an alternative in some areas. Elderly men were overrepresented among the cases in urban areas, particularly in locations where their traditional family roles result in increased exposure to retail live poultry, but men were not affected significantly more often than women in rural regions.

Many of the reported cases were in older individuals, and the risk of serious illness and death increased significantly with age, while cases in children were often mild. Concurrent diseases or other comorbidities were noted in many patients, although serious cases and fatalities also occurred in previously healthy individuals, including some who were young or middle-aged. The overall case fatality rate in the cases reported to WHO is currently 39%. However, serological studies have found some evidence of exposure in people with no history of illness, suggesting that some milder cases may be missed and the fatality rate is likely to be lower.

Other avian influenza viruses

Many of the sporadic illnesses caused by other H7 LPAI or HPAI viruses, H9N2 LPAI viruses and various additional LPAI subtypes in healthy people have been...
Highly Pathogenic Avian Influenza

The few serious cases were mostly reported in those who are elderly and/or had underlying illnesses; nevertheless, there are rare reports of severe illnesses even in healthy young people. These cases may be unpredictable: one H7N7 HPAI virus caused a fatal illness in a healthy person while affecting others only mildly.

The possibility of additional unrecognized mild cases or asymptomatic infections is suggested by the occurrence of antibodies to H4, H5, H6, H7, H9, H10, H11 and H12 viruses, generally at a relatively low prevalence, in people who are exposed to poultry or waterfowl; seroconversion up to 4% among poultry workers during some H7 virus outbreaks; and rare seroconversion to H6, H7 and H12 viruses in prospective studies of adults with poultry exposure in Cambodia and rural Thailand. No symptomatic cases were identified in these prospective studies. Exposure to avian H1 and H3 viruses is also likely, but it can be difficult to distinguish from human influenza viruses by serology.

Internet Resources

Canadian Food Inspection Agency [CFIA]. Notifiable Avian Influenza Hazard Specific Plan

Centers for Disease Control and Prevention, U.S. Avian Influenza

European Center for Disease Prevention and Control (ECDC). Avian Influenza

Public Health Agency of Canada. Pathogen Safety Data Sheets

The Merck Manual

The Merck Veterinary Manual

United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS)

USDA APHIS. Avian Health

United States Geological Survey (USGS). National Wildlife Health Center. Wildlife Health Bulletins.

USGS Wildlife Health Bulletin #05-03 (with recommendations for field biologists, hunters and others regarding contact with wild birds

World Health Organization. Influenza, Avian and Other Zoonotic

World Organization for Animal Health (OIE)

OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals

OIE Terrestrial Animal Health Code

Acknowledgements

This factsheet was written by Anna Rovid Spickler, DVM, PhD, Veterinary Specialist from the Center for Food Security and Public Health. The U.S. Department of Agriculture Animal and Plant Health Inspection Service (USDA APHIS) provided funding for this factsheet through a series of cooperative agreements related to the development of resources for initial accreditation training.

The following format can be used to cite this factsheet. Spickler, Anna Rovid. 2022. Highly Pathogenic Avian Influenza. Retrieved from http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php.

References

1. Acha PN, Szyfres B (Pan American Health Organization 309). Zoonoses and communicable diseases common to man and animals. Volume 2. Chlamydiosis, rickettsioses and viruses. 3rd ed. Washington DC: PAHO; 2003. Scientific and Technical Publication No. 580. Influenza; p. 155-72.

2. Swayne DE. Avian influenza. In: Foreign animal diseases. Boca Raton, FL: United States Animal Health Association; 2008. p. 137-46.

3. Swayne DE. Overview of avian influenza. In: Aiello SE, Moses MA, editors. The Merck veterinary manual [online]. Whitehouse Station, NJ: Merck and Co; 2014. Available at: http://www.merckmanuals.com/mvm/poultry/avian_influenza/overview_of_avian_influenza.html. Accessed 1 Nov 2015.

4. United States Department of Agriculture. Animal and Plant Health Inspection Service, Veterinary Services [USDA APHIS, VS]. Highly pathogenic avian influenza. A threat to U.S. poultry [online]. USDA APHIS, VS; 2002 Feb. Available at: http://www.aphis.usda.gov/oa/pubs/avianflu.html.* Accessed 30 Aug 2004.

5. Brown IH (OIE/FAO/EU International Reference Laboratory for Avian Influenza). Influenza virus infections of pigs. Part 1: swine, avian & human influenza viruses [online]. Available at: http://www.pighealth.com/influenza.htm.* Accessed 31 Dec 2006.

6. Olsen CW, Brammer L, Easterday BC, Arden N, Belay E, Baker I, Cox NJ. Serologic evidence of H1 swine influenza virus infection in swine farm residents and employees. Emerg Infect Dis. 2002;8(8):814-9.

7. Fouchier RA, Munster VJ. Epidemiology of low pathogenic avian influenza viruses in wild birds. Rev Sci Tech. 2009;28(1):49-58.

8. Marchenko VY, Alekseev AY, Shashkov KA, Petrov VN, Silko NY, Susloparov IM, Tsrennorov D, Otonbaatar D, Savchenko IA, Shestopavol AM. Ecology of influenza virus in wild bird populations in Central Asia. Avian Dis. 2012;56(1):234-7.

9. Brown IH. Summary of avian influenza activity in Europe, Asia, and Africa, 2006-2009. Avian Dis. 2010;54(1 Suppl):187-93.

10. Swayne DE. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds. Avian Dis. 2007;51(1 Suppl):242-9.
Highly Pathogenic Avian Influenza

11. World Organization for Animal Health (OIE). Terrestrial animal health code [online]. Paris: OIE; 2021. Infection with highly pathogenic avian influenza viruses. Available at: https://www.who.int/animal_health/oie_standards_standards/t *</p>
Highly Pathogenic Avian Influenza

39. Li X, Fu Y, Yang J, Guo J, He J, Guo J, Weng S, Jia Y, Liu B, Li X, Zhu Q, Chen H. Genetic and biological characterization of two novel reassortant H5N6 swine influenza viruses in mice and chickens. Infect Genet Evol. 2015;36:462-6.

40. Song QQ, Zhang FX, Liu JJ, Ling ZS, Zhu YL, Jiang SJ, Xie ZJ. Dog to dog transmission of a novel influenza virus (H5N2) isolated from a canine. Vet Microbiol. 2013;161(3-4):313-3.

41. Hai-Xia F, Yuan-Yuan L, Qian-Qian S, Zong-Shuai L, Feng-Xia Z, Yan-Li Z, Shi-Jin J, Zhi-Jing X. Interspecies transmission of canine influenza virus H5N2 to cats and chickens by close contact with experimentally infected dogs. Vet Microbiol. 2014;170(3-4):414-7.

42. Zhan GJ, Ling ZS, Zhu YL, Jiang SJ, Xie ZJ. Genetic characterization of a novel influenza A virus H5N2 isolated from a dog in China. Vet Microbiol. 2012;155(2-4):409-16.

43. Sun X, Xu X, Liu Q, Liang D, Li C, Cui Y, Li J, Zheng L, Guo J, Xiong Y, Yan J. Evidence of avian-like H9N2 influenza A virus among dogs in Guangxi, China. Infect Genet Evol. 2013;20:471-5.

44. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature. 2005;437(7060):889-93.

45. Reid AH, Taubenberger JK. The origin of the 1918 pandemic influenza virus: a continuing enigma. J Gen Virol. 2003;84(Pt 9):2285-92.

46. Heinen P. Swine influenza: a zoonosis. Vet Sci Tomorrow [serial online]. 2003 Sept 15. Available at: http://www.vetscite.org/publish/articles/000041/print.html. Accessed 26 Aug 2004.

47. Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe. 2010;7(6):440-51.

48. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459(7250):1122-5.

49. Vana G, Westover KM. Origins of the 2009 swine influenza virus (H3N2) to dogs. Emerg Infect Dis. 2008;14(5):741-6.

50. Song D, Kang B, Lee C, Jung K, Ha G, Kang D, Park S, Park B, Oh J. Transmission of avian influenza virus (H3N2) to dogs. Emerg Infect Dis. 2008;14(5):741-6.

51. Song D, Lee C, Kang B, Jung K, Oh T, Kim H, Park B, Oh J. Experimental infection of dogs with avian-origin canine influenza A virus (H3N2). Emerg Infect Dis. 2009;15(1):56-8.

52. Zhang YB, Chen JD, Xie JX, Zhu YL, Li J. Characterization of an H4N2 influenza virus from quails with a multibasic motif in the haemagglutinin cleavage site. Avian Pathol. 1996;25(4):799-806.

53. Zhan G, Liu J, Shi Z, Jiao P, Zhang G, Zhong Z, Tian W, Long LP, Cai Z, Zhu X, Liao M, Wan XF. Avian-origin H3N2 canine influenza A viruses in southern China. Infect Genet Evol. 2010;10(8):1286-8.

54. Bunnepong N, Nonthabenjawar N, Chaiwong S, Tangwangvivat R, Boonyapisitsopa S, Jairak W, Tuanudom R, Prakairungnathip D, Suradhat S, Thanawongnuwech R, Amonsin A. Genetic characterization of canine influenza A virus (H3N2) in Thailand. Virus Genes. 2014;48(1):56-63.

55. Brown IH. History and epidemiology of swine influenza in Europe. Curr Top Microbiol Immunol. 2013;370:133-46.

56. Karasin AI, Schutten MM, Cooper LA, Smith CB, Subbarao K, Anderson GA, Carman S, Olsen CW. Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977-1999: evidence for wholly human and reassortant virus genotypes. Virus Res. 2000;68(1):71-85.

57. Vincent AL, Ma W, Lager KM, Janke BH, Richt JA. Swine influenza viruses a North American perspective. Adv Virus Res. 2008;72:127-54.

58. World Organization for Animal Health [OIE]. Manual of diagnostic tests and vaccines for terrestrial animals [online]. Paris; OIE; 2021. Swine influenza. Available at: https://www.who.int/health-topics/swine-influenza#vaccine. Accessed 15 May 2022.

59. Tong S, Li Y, Rivailler P, Conrady C, Castillo DA, Chen LM et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109(11):4269-74.

60. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M et al. New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9(10):e1003657.

61. Soda K, Asakura S, Okamatsu M, Sakoda Y, Kida H. H9N2 influenza virus acquires intravenous pathogenicity on the introduction of a pair of di-basic amino acid residues at the cleavage site of the hemagglutinin and consecutive passages in chickens. Virol J. 2011;8:64.

62. Wood GW, Banks J, Strong I, Parsons G, Alexander DJ. An avian influenza virus of H10 subtype that is highly pathogenic for chickens, but lacks multiple basic amino acids at the haemagglutinin cleavage site. Avian Pathol. 1996;25(4):799-806.

63. Gohrbandt S, Veits J, Breithaupt A, Hundt J, Teifke JP, Stech O, Mettenleiter TC, Stech J. H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken. J Gen Virol. 2011;92(8):1843-53.

64. Bonfante F, Fusaro A, Zanardello C, Patrono LV, De Nardi R, Maniero S, Terregino C. Lethal nephrotropism of an H10N1 influenza virus (H3N2) in Thailand. Virus Genes. 2014;173(3-4):189-200.

65. Macnab C, Weber S, Stech O, Breithaupt A, Graber M, Gohrbandt S, Bogs J, Hundt J, Teifke JP, Mettenleiter TC, Stech J. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proc Natl Acad Sci U S A. 2012;109(7):2579-84.

66. Wood GW, Banks J, Strong I, Parsons G, Alexander DJ. An avian influenza virus of H10 subtype that is highly pathogenic for chickens, but lacks multiple basic amino acids at the haemagglutinin cleavage site. Avian Pathol. 1996;25(4):799-806.

67. Gohrbandt S, Veits J, Breithaupt A, Hundt J, Teifke JP, Stech O, Mettenleiter TC, Stech J. H9 avian influenza reassortant with engineered polybasic cleavage site displays a highly pathogenic phenotype in chicken. J Gen Virol. 2011;92(8):1843-53.

68. Bonfante F, Fusaro A, Zanardello C, Patrono LV, De Nardi R, Maniero S, Terregino C. Lethal nephrotropism of an H10N1 influenza virus (H3N2) in Thailand. Virus Genes. 2014;173(3-4):189-200.

69. Veits J, Weber S, Stech O, Breithaupt A, Graber M, Gohrbandt S, Bogs J, Hundt J, Teifke JP, Mettenleiter TC, Stech J. Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proc Natl Acad Sci U S A. 2012;109(7):2579-84.

70. Wood GW, Banks J, Strong I, Parsons G, Alexander DJ. An avian influenza virus of H10 subtype that is highly pathogenic for chickens, but lacks multiple basic amino acids at the haemagglutinin cleavage site. Avian Pathol. 1996;25(4):799-806.
Highly Pathogenic Avian Influenza

68. Pelzel AM, McCluskey BJ, Scott AE. Review of the highly pathogenic avian influenza outbreak in Texas, 2004. J Am Vet Med Assoc. 2006;228(12):1869-75.

69. Grebe KM, Yewdell JW, Bennink JR. Heterosubtypic immunity to influenza A virus: where do we stand? Microbes Infect. 2008;10(9):1024-9.

70. Swayne DE. Principles for vaccine protection in chickens and domestic waterfowl against avian influenza: emphasis on Asian HSN1 high pathogenicity avian influenza. Ann N Y Acad Sci. 2006;1081:174-81.

71. Swayne DE, Suarez DL. Current developments in avian influenza vaccines, including safety of vaccinated birds as food. Dev Biol (Basel). 2007;130:123-33.

72. Marangon S, Cecchinato M, Capua I. Use of vaccination in avian influenza control and eradication. Zoonoses Public Health. 2008;55(1):65-72.

73. Kapczynski DR, Swayne DE. Influenza vaccines for avian species. Curr Top Microbiol Immunol. 2009;333:133-52.

74. Lee CW, Saif YM. Avian influenza virus. Comp Immunol Microbiol Infect Dis. 2009;32(4):301-10.

75. Sylte MJ, Suarez DL. Influenza neuraminidase as a vaccine antigen. Curr Top Microbiol Immunol. 2009;333:227-41.

76. Samuji T. Influenza A: understanding the viral life cycle. Yale J Biol Med. 2009;82(4):153-9.

77. Ma W, Rich TJ. Swine influenza vaccines: current status and future perspectives. Anim Health Res Rev. 2010;11(1):81-96.

78. Couch RB. Orthomyxoviruses [monograph online]. In: Baron S, editor. Medical microbiology. 4th ed. New York: Churchill Livingstone; 1996. Available at: http://www.gsbs.utmb.edu/microbook/* Accessed 29 Dec 2006.

79. Fenner F, Bachmann PA, Gibbs EPJ, Murphy FA, Studdert MJ, White DO. Veterinary virology. San Diego, CA: Academic Press Inc.; 1987. Orthomyxoviridae; p. 473-84.

80. Ramey AM, Pearce JM, Ely CR, Guy LM, Iorns DB, Derksen DV, Ip HS. Transmission and reassortment of avian influenza viruses at the Asian-North American interface. Virology. 2010;406(2):352-9.

81. Pearce JM, Ramey AM, Ip HS, Gill RE, Jr. Limited evidence of trans-hemispheric movement of avian influenza viruses among contemporary North American shorebird isolates. Virus Res. 2010;148(1-2):44-50.

82. Reeves AB, Pearce JM, Ramey AM, Ely CR, Schmutz JA, Flint PL, Derksen DV, Ip HS, Trust KA. Genomic analysis of avian influenza viruses from waterfowl in western Alaska, USA. J Wildl Dis. 2013;49(3):600-10.

83. Ramey AM, Pearce JM, Flint PL, Ip HS, Derksen DV, Franson JC, Petruta MJ, Scotton BD, Sowal KM, Wege ML, Trust KA. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: examining the evidence through space and time. Virology. 2010;401(2):179-89.

84. Krauss S, Webster RG. Avian influenza virus surveillance and wild birds: past and present. Avian Dis. 2010;54(1 Suppl):394-8.

85. Wille M, Robertson GI, Whitney H, Bishop MA, Runstadler JA, Lang AS. Extensive geographic mosaicism in avian influenza viruses from gulls in the northern hemisphere. PLoS One. 2011;6(6):e20664.

86. Hall JS, TeSlaa JL, Nashold SW, Halpin RA, Stockwell T, Wentworth DE, Dugan V, Ip HS. Evolution of a reassortant North American gull influenza virus lineage: drift, shift and stability. Virol J. 2013;10:179.

87. Dusek RJ, Hallgrimsson GT, Ip HS, Jonsson JE, Sreevatsan S, Nashold SW et al. North Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza viruses. PLoS One. 2014;9(3):e92075.

88. Pearce JM, Ramey AM, Flint PL, Koehler AV, Fleskes JP, Franson JC, Hall JS, Derksen DV, Ip HS. Avian influenza At both ends of a migratory flyway: characterizing viral genomic diversity to optimize surveillance plans for North America. Evol Appl. 2009;2:457-68.

89. Tonnessen R, Kristoffersen AB, Jonassen CM, Hjorttaas MJ, Hansen EF, Rimstad E, Hauge AG. Molecular and epidemiological characterization of avian influenza viruses from gulls and dabbling ducks in Norway. Virol J. 2013;10:112.

90. Huang Y, Wille M, Dobbin A, Walzthoni NM, Robertson GJ, Ojkic D, Whitney H, Lang AS. Genetic structure of avian influenza viruses from ducks of the Atlantic flyway of North America. PLoS One. 2014;9(1):e86999.

91. Ramey AM, Reeves AB, Sonsthagen SA, TeSlaa JL, Nashold S, Donnelly T, Casler B, Hall JS. Dispersal of H9N2 influenza A viruses between East Asia and North America by wild birds. Virology. 2015;482:79-83.

92. Hall JS, Hallgrimsson GT, Suwannanarn K, Sreevatsan S, Ip HS, Magnusdottir E, TeSlaa JL, Nashold SW, Dusek RJ. Avian influenza virus ecology in Iceland shorebirds: intercontinental reassortment and movement. Infect Genet Evol. 2014;28:130-6.

93. Gonzalez-Reiche AS, Perez DR. Where do avian influenza viruses meet in the Americas? Avian Dis. 2012;56(4 Suppl):1025-33.

94. Mathieu C, Moreno V, Pedersen J, Jeria J, Agredo M, Gutierrez C, Garcia A, Vasquez M, Avalos P, Retamal P. Avian influenza in wild birds from Chile, 2007-2009. Virus Res. 2015;199:42-5.

95. Nelson MI, Pollett S, Gheresi B, Silva M, Simons MP, Icochea E, Gonzalez AE, Segovia K, Kasper MR, Montgomery JM, Bausch DG. The genetic diversity of influenza A viruses in wild birds in Peru. PLoS One. 2016;11(1):e0146059.

96. Bulach D, Halpin R, Spiro D, Pomeroy L, Janies D, Boyle DB. Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007. J Virol. 2010;84(19):9957-66.

97. Curran JM, Ellis TM, Robertson ID. Surveillance of Charadriiformes in northern Australia shows species variations in exposure to avian influenza virus and suggests negligible virus prevalence. Avian Dis. 2014;58(2):199-204.

98. Hoque MA, Burgess GW, Cheam AL, Skerratt LF. Epidemiology of avian influenza in wild aquatic birds in a biosafety hotspot, North Queensland, Australia. Prev Vet Med. 2015;118(1):169-81.

99. Yassine HM, Lee CW, Saif YM. Interspecies transmission of influenza A viruses between swine and poultry. Curr Top Microbiol Immunol. 2013;370:227-40.
Highly Pathogenic Avian Influenza

100. Tremblay D, Allard V, Doyon JF, Bellehumeur C, Spearman JG, Harel J, Gagnon CA. Emergence of a new swine H3N2 and pandemic (H1N1) 2009 influenza A virus reassortant in two Canadian animal populations, mink and swine. J Clin Microbiol. 2011;49(12):4386-90.

101. Hinshaw VS, Bean WJ, Webster RG, Rehg JE, Fiorelli P, Early G, Geraci JR, St Aubin DJ. Are seals frequently infected with avian influenza viruses? J Virol. 1984;51(3):863-5.

102. Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EP, Chen L et al. Transmission of equine influenza virus to dogs. Science. 2005;310(5747):482-5.

103. Daly JM, Blunden AS, Macrae S, Miller J, Bowman SJ, Kolodziejek J, Nowotny N, Smith KC. Transmission of equine influenza virus to English foxhounds. Emerg Infect Dis. 2008;14(3):461-4.

104. Gagnon CA, Spearman G, Hamel A, Godson DL, Fortin A, Daly JM, Blunden AS, Macrae S, Miller J, Bowman SJ, Kolodziejek J, Nowotny N, Smith KC. Transmission of equine influenza virus to English foxhounds. Emerg Infect Dis. 2008;14(3):461-4.

105. Patterson AR, Cooper VL, Yoon KJ, Janke BH, Gauger PC. Naturally occurring influenza infection in a ferret (Mustela putorius furo) colony. J Vet Diagn Invest. 2009;21(4):527-30.

106. Enserink M. Epidemiology. Horse flu virus jumps to dogs. Science. 2005;310(5747):482-5.

107. Payungporn S, Crawford PC, Kouo TS, Chen LM, Pompey J, Crawford PC, Kouo TS, Chen LM, Pompey J. Naturally occurring influenza infection in a ferret (Mustela putorius furo) colony. J Vet Diagn Invest. 2009;21(4):527-30.

108. Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, Zhang L, Liu Z, Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, Zhang L, Liu Z, Li Z, Li Z, Tian G. Naturally occurring influenza infection in a ferret (Mustela putorius furo) colony. J Vet Diagn Invest. 2009;21(4):527-30.

109. Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ, Webster RG. Coincident muddy turnstone migration and horseshoe crab spawning creates an ecological ‘hot spot’ for influenza viruses. Proc Biol Sci. 2010;277(1699):3373-9.

110. Tolf C, Bengtsson D, Rodrigues D, Latorre-Margalef N, Wille M, Figueredo ME, Jainkowska-Hjortas M, Germundsson A, Duby PY, Lebarbenchon C, Gauthier-Desharnais R, Webster RG, Yu K. The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci U S A. 2004;101(28):10452-7.

111. Krauss S, Stallknecht DE, Negovetich NJ, Niles LJ, Webby RJ, Webster RG. Coincident muddy turnstone migration and horseshoe crab spawning creates an ecological ‘hot spot’ for influenza viruses. Proc Biol Sci. 2010;277(1699):3373-9.

112. Payungporn S, Crawford PC, Kouo TS, Chen LM, Pompey J, Crawford PC, Kouo TS, Chen LM, Pompey J. Naturally occurring influenza infection in a ferret (Mustela putorius furo) colony. J Vet Diagn Invest. 2009;21(4):527-30.

113. Ely CR, Hall JS, Schmutz JA, Pearce JM, Terenzi J, Sedinger JS, Ip HS. Evidence that life history characteristics of wild birds influence infection and exposure to influenza A viruses. PLoS One. 2013;8(3):e57614.

114. Payungporn S, Crawford PC, Kouo TS, Chen LM, Pompey J, Crawford PC, Kouo TS, Chen LM, Pompey J. Naturally occurring influenza infection in a ferret (Mustela putorius furo) colony. J Vet Diagn Invest. 2009;21(4):527-30.
Highly Pathogenic Avian Influenza

128. Brown JD, Luttrell MP, Berghaus RD, Kistler W, Keeler SP, Howey A, Wilcox B, Hall J, Niles L, Dey A, Knutsen G, Fritz K, Stallknecht DE. Prevalence of antibodies to type A influenza virus in wild avian species using two serologic assays. J Wildl Dis. 2010;46(3):896-911.

129. Thin T, Gilbert M, Bunnapong N, Amonsin A, Nguyen DT, Doherty PF, Jr., Huyvaert KP. Avian influenza viruses in wild land birds in northern Vietnam. J Wildl Dis. 2012;48(1):195-200.

130. Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus AD, Fouchier RA. Global patterns of influenza A virus in wild birds. Science. 2006;312(5772):384-8.

131. Stallknecht DE, Brown JD. Wild birds and the epidemiology of avian influenza. J Wildl Dis. 2007;43 Suppl:S15-20.

132. Abolnik C. A current review of avian influenza in pigeons and doves (Columbidae). Vet Microbiol. 2014;170(3-4):181-96.

133. Nemeth NM, Oesterle PT, Poulsen RL, Jones CA, Tompkins SM, Brown JD, Stallknecht DE. Experimental infection of European starlings (Sturnus vulgaris) and house sparrows (Passer domesticus) with pandemic 2009 H1N1 and swine H1N1 and H3N2 triple reassortant influenza vFiebig201 viruses. J Wildl Dis. 2013;49(2):437-40.

134. Goyal SM, Jindal N, Chander Y, Ramakrishnan MA, Redig PT, Sreevatsan S. Isolation of mixed subtypes of influenza A virus from a bald eagle (Haliaeetus leucocephalus). Virol J. 2010;7:174.

135. Fuller TL, Saatchi SS, Cerd EE, Toffelmier E, Thomassen HA, Buermann W, DeSante DF, Nott MP, Saracco JF, Ralph C, Alexander JD, Pollinger JP, Smith TB. Mapping the risk of avian influenza virus in wild birds in the US. BMC Infect Dis. 2010;10:187.

136. Slusher MJ, Wilcox BR, Luttrell MP, Poulsen RL, Brown JD, Yabsley MJ, Stallknecht DE. Are passerine birds reservoirs for influenza A viruses? J Wildl Dis. 2014;50(4):792-806.

137. Fuller TL, Ducatez MF, Njabo KY, Couacy-Hymann E, Chasar A, Aplogan GL, Lao S, Awoume F, Tehou A, Langeois Q, Krauss S, Smith TB. Avian influenza surveillance in Central and West Africa, 2010-2014. Epidemiol Infect. 2015;143(10):2205-12.

138. Kim HR, Kwon YK, Jang I, Lee YJ, Kang HM, Lee HK, Song BM, Lee HS, Joo YS, Lee KH, Lee HK, Baek KH, Bae YC. Pathologic changes in wild birds infected with highly pathogenic avian influenza A(H5N8) viruses, South Korea, 2014. Emerg Infect Dis. 2015;21(5):775-80.

139. Verhagen JH, van der Jeugd HP, Nolet BA, Slaterus R, Kharitonov SP, de Vries PP, Vuong O, Majoor F, Kuiken T, Fouchier RA. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways. Euro Surveill. 2015;20.

140. Becker WB. The isolation and classification of Tern virus: influenza A-Tern South Africa--1961. J Hyg (Lond). 1966;64(3):309-20.

141. Gaidet N, Cattoli G, Hammoumi S, Newman SH, Hagemeijer W, Takekawa JY et al. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog. 2008;4(8):e1000127.

142. Kaleta EF, Honicke A. A retrospective description of a highly pathogenic avian influenza A virus (H7N1/Carduelis/Germany/72) in a free-living siskin (Carduelis spinus Linnaeus, 1758) and its accidental transmission to yellow canaries (Serinus canaria Linnaeus, 1758). Dtsch Tierarztl Wochenschr. 2005;112(1):17-9.

143. Gilbert M, Xiao X, Domenech J, Lubroth J, Martin V, Slingenbergh J. Anatidae migration in the western Palearctic and spread of highly pathogenic avian influenza H5NI virus. Emerg Infect Dis. 2006;12(11):1650-6.

144. Nagy A, Machova J, Hornickova J, Tomci M, Nagl I, Horyna B, Holko I. Highly pathogenic avian influenza virus subtype H5N1 in mute swans in the Czech Republic. Vet Microbiol. 2007;120(1-2):9-16.

145. Teifke JP, Klopfleisch R, Globig A, Starick E, Hoffmann B, Wolf PU, Beer M, Mettenleiter TC, Harder TC. Pathology of natural infections by H5NI highly pathogenic avian influenza virus in mute (Cygnus olor) and whooper (Cygnus cygnus) swans. Vet Pathol. 2007;44(2):137-43.

146. Ellis TM, Leung CY, Chow MK, Bissett LA, Wong W, Guan Y, Malik Peiris JS. Vaccination of chickens against H5NI avian influenza in the face of an outbreak interrupts virus transmission. Avian Pathol. 2004;33(4):405-12.

147. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF. Highly pathogenic H5NI influenza virus infection in migratory birds. Science. 2005;309(5738):1206.

148. Lei F, Tang S, Zhao D, Zhang X, Kou Z, Li Y, Zhang Z, Yin Z, Chen S, Li S, Zhang D, Yan B, Li T. Characterization of H5NI influenza viruses isolated from migratory birds in Qinghai province of China in 2006. Avian Dis. 2007;51(2):568-72.

149. Brown JD, Stallknecht DE, Beck JR, Suarez DL, Swayne DE. Susceptibility of North American ducks and gulls to H5NI highly pathogenic avian influenza viruses. Emerg Infect Dis. 2006;12(11):1663-70.

150. Sturm-Ramirez KM, Ellis T, Bousfield B, Bissett L, Dyrtwing K, Rehg JE, Poon L, Guan Y, Peiris M, Webster PG. Reemerging H5NI influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J Virol. 2004;78(9):4892-901.

151. Isoda N, Sakoda Y, Kishida N, Bai GR, Matsuda K, Umemura T, Kida H. Pathogenicity of a highly pathogenic avian influenza virus, A/chicken/Yamaguchi/7/04 (H5N1) in different species of birds and mammals. Arch Virol. 2006;151(7):1267-79.

152. Perkins LE, Swayne DE. Varied pathogenicity of a Hong Kong-origian H5NI avian influenza virus in four passerine species and budgerigars. Vet Pathol. 2003;40(1):14-24.

153. Boon AC, Sandbulte MR, Seiler P, Webby RJ, Songserm T, Guan Y, Webster PG. Role of terrestrial wild birds in the ecology of influenza A virus (H5N1). Emerg Infect Dis. 2007;13(11):1720-4.

154. Khan SU, Berman L, Haider N, Gerloff N, Rahman MZ, Shu B et al. Investigating a crow die-off in January-February 2011 during the introduction of a new clade of highly pathogenic avian influenza virus H5N1 into Bangladesh. Arch Virol. 2014;159(3):509-18.
Highly Pathogenic Avian Influenza

155. Siengsanan J, Chaichoune K, Phonaknguen R, Sariya L, Prompiram P, Kocharin W, Tansugdiu S, Suwanpuckdee S, Wiriyarat W, Pattanaranngs R, Robertson I, Blacksell SD, Ratnakorn P. Comparison of outbreaks of H5N1 highly pathogenic avian influenza in wild birds and poultry in Thailand. J Wildl Dis. 2009;45(3):740-7.

156. Chang H, Dai F, Liu Z, Yuan F, Zhao S, Xiang Y, Zou F, Zeng B, Fan Y, Duan G. Seroprevalence survey of avian influenza A (H5) in wild migratory birds in Yunnan Province, Southwestern China. Virol J. 2014;11:18.

157. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services [USDA APHIS, VS]. Update on avian influenza findings in the Pacific flyway. Available at: http://www.aphis.usda.gov/wps/portal/?urile=wcm:path:/aphis_content_library/sa_animal_health/sa_animal_disease_information/sa_avian_health.* Accessed 6 Feb 2015.

158. Shin HJ, Woo C, Wang SJ, Jeong J, An JI, Hwang JK, Jo SD, Yu SD, Choi K, Chung HM, Suh JH, Kim SH. Prevalence of avian influenza virus in wild birds before and after the HPAI H5N8 outbreak in 2014 in South Korea. J Microbiol. 2015;53(7-8):475-80.

159. Lee DH, Torcchetti MK, Winker K, Ip HS, Song CS, Swayne DE. Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J Virol. 2015;89(12):6521-4.

160. Pasick J, Berhane Y, Joseph T, Bowes V, Hisanaga T, Lee DH, Torchetti MK, Winker K, Ip HS. Seroprevalence of four avian influenza viruses for fowls, turkeys and ducks. Res Vet Sci. 1978;24(2):242-7.

161. Hamamoto Y, Nakamura K, Kitagawa K, Ikenaga N, Yamada M, Mase N, Narita R. Severe nonpurulent encephalitis with mortality and feather lesions in call ducks (Anas platyrhyncha var. domestica) inoculated intravenously with H5N1 highly pathogenic avian influenza virus. Avian Dis. 2007;51(1):52-7.

162. Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, Seiler P, Puthavathana P et al. Are ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus in Asia? J Virol. 2005;79(17):11269-79.

163. Ohara M, Ishida T, Mizuno Y, Kuroki M, Sato T. The pathogenicity of an H5N1 avian influenza virus in wild migratory birds in Yunnan Province, Southwestern China. Virol J. 2014;11:18.

164. van der Goot JA, van Boven M, Koch G, de Jong MC. Variable effect of vaccination against highly pathogenic avian influenza (H7N7) virus on disease and transmission in pheasants and teals. Vaccine. 2007;25(49):8318-25.

165. Wood GW, Parsons G, Alexander DJ. Replication of influenza A viruses of high and low pathogenicity for chickens at different sites in chickens and ducks following intranasal inoculation. Avian Pathol. 1995;24(3):545-51.

166. Wood GW, Parsons G, Alexander DJ. The pathogenicity of four avian influenza A viruses for fowls, turkeys and ducks. Res Vet Sci. 1978;24(2):242-7.

167. Westbury HA, Turner AJ, Kovesdy L. The pathogenicity of three Australian fowl plague viruses for chickens, turkeys and ducks. Vet Microbiol. 1979;4:223-34.

168. Garcia-Barrionuevo, DJ, Hulse-Post, Et al. Novel Eurasian highly pathogenic avian influenza H5 viruses in wild birds, Washington, USA, 2014. Emerg Infect Dis. 2015;21(5):886-90.

169. Hulse-Post DJ, Sturm-Ramirez KM, Humberd J, Seiler P, Govorkova EA, Krauss S et al. Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia. Proc Natl Acad Sci U S A. 2005;102(30):10682-7.

170. Kwon YK, Joh SJ, Kim MC, Sung HW, Lee YJ, Choi JG, Lee EK, Kim JH. Highly pathogenic avian influenza (H5N1) in the commercial domestic ducks of South Korea. Avian Pathol. 2005;34(4):367-70.

171. Alexander DJ, Parsons G, Manvell RJ. Experimental assessment of the pathogenicity of eight avian influenza A viruses of H5 subtype for chickens, turkeys, ducks and quail. Avian Pathol. 1986;15(4):647-62.

172. Perkins LE, Swayne DE. Pathobiology of A/chicken/Hong Kong/2209/97 (H5N1) avian influenza virus in seven gallinaceous species. Vet Pathol. 2001;38(2):149-64.

173. Wood JM, Webster RG, Nettles VF. Host range of A/Chicken/Pennsylvania/45 (H5N2) influenza virus. Avian Dis. 1985;29(1):198-207.

174. Promed Mail. Avian influenza, ostriches - South Africa. Aug 7, 2004. Archive Number 20040807.2176. Available at: http://www.promedmail.org. Accessed 10 Jan 2007.

175. Promed Mail. Avian influenza, ostriches – South Africa (H5N2)(03) – OIE. July 18, 2006. Archive Number 20060718.1970. Available at: http://www.promedmail.org. Accessed 10 Jan 2007.

176. Alexander DY. A review of avian influenza [monograph online]. Available at: http://www.esvv.unizh.ch/poster_abstracts/Alexander.html.* Accessed 10 Jan 2007.

177. Alexander DY. A review of avian influenza [monograph online]. Available at: http://www.esvv.unizh.ch/poster_abstracts/Alexander.html.* Accessed 30 Aug 2004.

178. Beato MS, Toffan A, De Nardi R., Cristalli A, Terregino C, Cattoli G, Capua I. A conventional, inactivated oil emulsion vaccine developed by reverse genetics. Virology. 2005;341(1):153-62.

179. Webster RG, Webby RJ, Hoffman E, Rodenberg J, Kumar M, Chu HJ, Seiler P, Krauss S, Songserm T. The immunogenicity and efficacy against H5N1 challenge of reverse genetics-derived H5N3 influenza vaccine in ducks and chickens. Avian Pathol. 2006;35(2):303-11.

180. Beato MS, Toffan A, De Nardi R., Cristalli A, Terregino C, Cattoli G, Capua I. A conventional, inactivated oil emulsion vaccine suppresses shedding and prevents viral meat colonisation in commercial (Pekin) ducks challenged with HPAI H5N1. Vaccine. 2007;25(20):4064-72.

181. Middleton D, Bingham J, Selleck P, Louthier S, Glessens L, Lehrbach P, Robinson S, Rodenberg J, Kumar M, Andrew M. Efficacy of inactivated vaccines against H5N1 avian influenza infection in ducks. Virology. 2007;359(1):66-71.

182. Alexander J, van der Goot J, van Boven M, Koch G, de Jong MC. Variable effect of vaccination against highly pathogenic avian influenza (H7N7) virus on disease and transmission in pheasants and teals. Vaccine. 2007;25(49):8318-25.
Highly Pathogenic Avian Influenza

183. Manvell RJ, English C, Jorgensen PH, Brown IH. Pathogenesis of H7 influenza A viruses isolated from ostriches in the homologous host infected experimentally. Avian Dis. 2003;47(3 Suppl):1150-3.

184. Shinde PV, Koratkar SS, Pawar SD, Kale SD, Rawankar AS, Mishra AC. Serological evidence of avian influenza H9N2 and paramyxovirus type 1 infection in emus (Dromaius novaehollandiae) in India. Avian Dis. 2012;56(1):257-60.

185. Toffan A, Olivier A, Mancin M, Tuttolimondo V, Facco D, Capua I, Terregino C. Evaluation of different serological tests for the detection of antibodies against highly pathogenic avian influenza in experimentally infected ostriches (Struthio camelus). Avian Pathol. 2010;39(1):11-5.

186. Olivier AJ. Ecology and epidemiology of avian influenza in ostriches. Dev Biol (Basel). 2006;124:51-7.

187. Capua I, Mutinelli F, Terregino C, Cattoli G, Manvell RJ, Burlini F. High pathogenic avian influenza (H7N1) in ostriches farmed in Italy. Vet Rec. 2000;146(12):356.

188. Abolnik C, Olivier AJ, Grewar J, Gers S, Romito M. Molecular analysis of the 2011 HPAI H5N2 outbreak in ostriches, South Africa. Avian Dis. 2012;56(4 Suppl):865-79.

189. Howerth EW, Olivier A, Franca M, Stallknecht DE, Gers S. Pathobiology of highly pathogenic avian influenza virus H5N2 infection in juvenile ostriches from South Africa. Avian Dis. 2012;56(4 Suppl):966-8.

190. Ismail MM, El-Sabagh IM, Al-Ankari AR. Characterization and phylogenetic analysis of a highly pathogenic avian influenza H5N1 virus isolated from diseased ostriches (Struthio camelus) in the Kingdom of Saudi Arabia. Avian Dis. 2014;58(2):309-12.

191. Leschkam M, Weikel J, Mostl K, Revilla Fernandez S, Wodak E, Bago Z, Vanek E, Beneta V, Hess M, Thalhammer JG. Subclinical infection with avian influenza A (H5N1) virus in cats. Emerg Infect Dis. 2007;13(2):243-7.

192. Zhou J, Sun W, Wang J, Guo J, Yin W, Wu N, Li L, Yan Y, Liao M, Huang Y, Luo K, Jiang X, Chen H. Characterization of the H5N1 highly pathogenic avian influenza virus derived from wild pikas in China. J Virol. 2009;83(17):8957-64.

193. Choi YK, Pascua PN, Song MS. Swine influenza viruses: an Asian perspective. Curr Top Microbiol Immunol. 2013;370:147-72.

194. Zhu H, Webby R, Lam TT, Smith DK, Peiris JS, Guan Y. History of swine influenza viruses in Asia. Curr Top Microbiol Immunol. 2013;370:57-68.

195. Cong YL, Pu J, Liu QF, Wang S, Zhang GZ, Zhang XL, Fan WX, Brown EG, Liu JH. Antigenic and genetic characterization of H9N2 swine influenza viruses in China. J Gen Virol. 2007;88(Pt 7):2035-41.

196. Monne I, Cattoli G, Mazzacan E, Amarin NM, Al Maaitah HM, Al-Natour MQ, Capua I. Genetic comparison of H9N2 AI viruses isolated in Jordan in 2003. Avian Dis. 2007;51(1 Suppl):451-4.

197. Wang N, Zou W, Yang Y, Guo X, Hua Y, Zhang Q, Zhao Z, Jin M. Complete genome sequence of an H10N5 avian influenza virus isolated from pigs in central China. J Virol. 2012;86(24):13865-6.

198. Zhang G, Kong W, Qi W, Long LP, Cao Z, Huang L, Qi H, Cao N, Wang W, Zhao F, Ning Z, Liao M, Wan XF. Identification of an H6N6 swine influenza virus in southern China. Infect Genet Evol. 2011;11(5):1174-7.
Highly Pathogenic Avian Influenza

227. Beato MS, Capua I. Transboundary spread of highly pathogenic avian influenza viruses in China. Vet Microbiol. 2013;163(3-4):351-7.

228. Kwon YK, Thomas C, Swayne DE. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl. Vet Pathol. 2010;47(3):495-506.

229. El-Sayed A, Prince A, Fawzy A, Nadra E, Abdou MI, Omar L, Fayed A, Salem M. Sero-prevalence of avian influenza in animals and human in Egypt. Pak J Biol Sci. 2013;16(11):524-9.

230. Horimoto T, Maeda K, Murakami S, Kiso M, Iwatsuki-Horimoto K, Sashika M, Itô T, Suzuki K, Yokoyama M, Kawaoaka Y. Highly pathogenic avian influenza virus infection in feral raccoons. Japan. Emerg Infect Dis. 2011;17(4):714-7.

231. Yamaguchi E, Sashika M, Fujii K, Kobayashi K, Bui VN, Ogawa H, Imai K. Prevalence of multiple subtypes of influenza A virus in Japanese wild raccoons. Virus Res. 2014;189:8-13.

232. Guan Y, Peiris JS, Lipatov AS, Ellis TM, Dyrting KC, Krauss S, Zhang LJ, Webster RG, Shortridge KE. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A. 2002;99(13):8950-5.

233. Kuiken T, Rimmelzwaan G, van Riel D, van Amerongen G, Baars M, Fouchier R, Osterhaus A. Avian H5N1 influenza in cats. Science. 2004;306(5694):241.

234. Perkins LE, Swayne DE. Comparative susceptibility of selected avian and mammalian species to a Hong Kong-origin H5N1 high-pathogenicity avian influenza virus. Avian Dis. 2003;47(3 Suppl):956-67.

235. Rimmelzwaan GF, van Riel D, Baars M, Bestebroer TM, van Amerongen G, Fouchier RA, Osterhaus AD, Kuiken T. Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. Am J Pathol. 2006;168(1):176-83.

236. Lipatov AS, Kalthoff D, Hoffmann B, Harder T, Durban M, Beer M. Avian H5N1 influenza in cats. Science. 2004;306(5694):241.

237. Giese M, Harder TC, Teifke JP, Klopfleisch R, Breithaupt A, Suarez DL, Swayne DE. Domestic pigs have low susceptibility to H5N1 highly pathogenic avian influenza viruses. PLoS Pathog. 2008;4(7):e1000102.

238. Reperant LA, van Amerongen G, van de Bildt MW, Rimmelzwaan GF, Dobson AP, Osterhaus AD, Kuiken T. Highly pathogenic avian influenza virus (H5N1) infection in red foxes fed infected bird carcasses. Emerg Infect Dis. 2008;14(2):308-10.

239. Kuiken T, Rimmelzwaan G, van Riel D, van Amerongen G, Baars M, Fouchier R, Osterhaus A. Avian H5N1 influenza in cats. Science. 2004;306(5694):241.

240. Weber TP, Stilianakis NI. Ecologic immunology of avian influenza (H5N1) in migratory birds. Emerg Infect Dis. 2007;13(8):1139-43.

241. Feare CJ. Role of wild birds in the spread of highly pathogenic avian influenza virus H5N1 and implications for global surveillance. Avian Dis. 2010;54(1 Suppl):201-12.

242. Beato MS, Capua I. Transboundary spread of highly pathogenic avian influenza through poultry commodities and wild birds: a review. Rev Sci Tech. 2011;30(1):51-61.
Highly Pathogenic Avian Influenza

242. Kim YI, Pascua PN, Kwon HI, Lim GJ, Kim EH, Yoon SW et al. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerg Microbes Infect. 2014;3(3):e75.

243. Richard M, Herfst S, van den Brand JM, Lexmond P, Bestebroer TM, Rimmelzwaan GF, Koopmans M, Kuiken T, Fouchier RA. Low virulence and lack of airborne transmission of the Dutch highly pathogenic avian influenza virus H5N8 in ferrets. PLoS One. 2015;10(6):e0129827.

244. Pulit-Penalosa JA, Sun X, Creager HM, Zeng H, Belser JA, Maines TR, Tumpey TM. Pathogenesis and transmission of novel HPAI H5N2 and H5N8 avian influenza viruses in ferrets and mice. J Virol. 2015;89(20):10286-93.

245. Ge FF, Zhou JP, Liu J, Wang J, Zhang WY, Sheng LP, Xu F, Ju HB, Sun QY, Liu PH. Genetic evolution of H9 subtype influenza viruses from live poultry markets in Shanghali, China. J Clin Microbiol. 2009;47(10):3294-300.

246. Zhang P, Tang Y, Liu X, Liu W, Zhang X, Liu H, Peng D, Gao S, Wu Y, Zhang L, Lu S, Liu X. A novel genotype H9N2 influenza virus possessing human H5N1 internal genomes has been circulating in poultry in eastern China since 1998. J Virol. 2009;83(17):8428-38.

247. Bi Y, Lu L, Li J, Yin Y, Zhang Y, Gao H, Qin Z, Zhang H, Liu J, Sun L, Liu W. Novel genetic reassortants in H9N2 influenza A viruses and their diverse pathogenicity to mice. Virol J. 2011;8:505.

248. Fuszaro A, Monne I, Salvatoi V, Valastro V, Schivo A, Amarim NM et al. Phylogeography and evolutionary history of reasortant H9N2 viruses with potential human health implications. J Virol. 2011;85(16):8413-21.

249. Dong G, Xu C, Wang C, Wu B, Luo J, Zhang H, Nolte DL, DeLiberto TJ, Duan M, Ji G, He H. Reassortant H9N2 influenza viruses containing H5N1-like PB1 genes isolated from black-billed magpies in Southern China. PLoS One. 2011;6(9):e25808.

250. Lindh E, Ek-Kommonen C, Vaananen VM, Vaheeri A, Vapalaihi O, Huovilainen A. Molecular epidemiology of H9N2 influenza viruses in northern Europe. Vet Microbiol. 2014;172(3-4):548-54.

251. Body MH, Alrarawahi AH, Alhubsy SS, Saravanan N, Rajmony S, Mansoor MK. Characterization of low pathogenic avian influenza virus subtype H9N2 isolated from free-living mynah birds (Acridotheres tristis) in the Sultanate of Oman. Avian Dis. 2015;59(2):329-34.

252. Vijaykrishna D, Smith GJ, Pybus OG, Zhu H, Bhatt S, Poon LL et al. Long-term evolution and transmission dynamics of swine influenza A virus. Nature. 2011;473(7348):519-22.

253. Wang J, Wu M, Hong W, Fan X, Chen R, Zheng Z, Zeng Y, Huang R, Zhang Y, Lam TT, Smith DK, Zhu H, Guan Y. Infectivity and transmissibility of avian H9N2 influenza viruses in pigs. J Virol. 2016;90(7):3506-14.

254. Zhang C, Xuan Y, Shan H, Yang H, Wang J, Wang K, Li G, Qiao J. Avian influenza virus H9N2 infections in farmed minks. Virol J. 2015;12(1):180.

255. Zhou H, He SY, Sun L, He H, Ji F, Sun Y, Jia K, Ning Z, Wang H, Yuan L, Zhou P, Zhang G, Li S. Serological evidence of avian influenza virus and canine influenza virus infections among stray cats in live poultry markets, China. Vet Microbiol. 2015;175(2-4):369-73.
Highly Pathogenic Avian Influenza

272. Liu Y, Yang Z, Wang X, Chen J, Yao J, Song Y, Lin J, Han C, Duan H, Zhao J, Pan J, Xie J. Pigeons are resistant to experimental infection with H7N9 avian influenza virus. Avian Pathol. 2015;44(5):342-6.

273. Watanae T, Kiso M, Fukuyama S, Nakajima N, Imai M, Yamada S et al. Characterization of H7N9 influenza A viruses isolated from humans. Nature. 2013;501(7468):551-5.

274. Belsel JA, Gustin KM, Pearce MB, Maines TR, Zeng H, Watanabe T, Kiso M, Fukuyama S, Liu Y, Yang Z, Wang X, Chen J, Yao J, Song Y, Lin J, Han. Experimental infection of dogs with H6N1 avian influenza A (H7N9) virus in ferrets and mice. Nature. 2013;501(7468):556-9.

275. Xu L, Bao L, Deng W, Zhu H, Chen T, Lv Q et al. The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus. Virol J. 2013;10:253.

276. Zhou P, Hong M, Merrill MM, He H, Sun L, Zhang G. Serological report of influenza A (H7N9) infections among pigs in southern China. BMC Vet Res. 2014;10(1):203.

277. Su S, Qi W, Chen J, Zhu W, Huang Z, Xie J, Zhang G. Seroepidemiological evidence of avian influenza A virus transmission to pigs in southern China. J Clin Microbiol. 2013;51(2):601-2.

278. Daly JM, Cullinan. Influenza infections [online]. In: Leekue P, editor. Equine respiratory diseases. Ithaca NY: International Veterinary Information Service 189; 2013. Available at: http://www.ivis.org/special_books/Leekue/chapter.asp?LA=1,* Accessed 16 June 2014.

279. Rooney, JR. Equine pathology. Ames, IA: Iowa State University Press; 1996. Influenza; p. 36-8.

280. van Riel D, Rimmelewaan GF, van Amerongen G, Osterhaus AD, Kuiken T. Highly pathogenic avian influenza virus H7N7 isolated from a fatal human case causes respiratory disease in cats but does not spread systemically. Am J Pathol. 2010;177(5):2185-90.

281. Driskell EA, Jones CA, Stallknecht DE, Howerth EW, Tompkins SM. Domestic cats are susceptible to infection with low pathogenic avian influenza viruses from shorebirds. Vet Pathol. 2013;50(1):39-45.

282. Hinshaw VS, Webster RG, Easterday BC, Bean WJ, Jr. Replication of avian influenza A viruses in mammals. Infect Immun. 1981;34(2):354-61.

283. Su S, Qi W, Zhou P, Xiao C, Yan Z, Cui J, Jia K, Zhang G, Gray GC, Liao M, Li S. First evidence of H10N8 Avian influenza virus in guinea pigs raised as livestock, Ecuador. Emerg Infect Dis. 2011;17(5):2185-90.

284. Driskell EA, Jones CA, Stallknecht DE, Howerton EW, Tompkins SM. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virol J. 2009;4:52:519-21.

285. Ohishi K, Ninomiya A, Kida H, Park CH, Maruyama T, Arai T, Katsumata E, Tobayama T, Boltunov AN, Khuraskin LS, Miyazaki N. Serological evidence of transmission of human influenza A and B viruses to Caspian seals (Phoca caspica). Microbiol Immunol. 2002;46(9):639-44.

286. Nielsen O, Clavijo A, Boughen JA. Serologic evidence of influenza A infection in marine mammals of arctic Canada. J Wildl Dis. 2001;37(4):820-7.

287. Driskell EA, Jones CA, Stallknecht DE, Howerton EW, Tompkins SM. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virol J. 2011;8:52:3271-7.

288. Root JJ, Shriner SA, Bentler KT, Gidleswki T, Mooers NL, Ellis JW, Spraker TR, VanDalen KK, Sullivan HJ, Franklin AB. Extended viral shedding of a low pathogenic avian influenza virus by striped skunks (Mephitis mephitis). PLoS One. 2014;9(1):e70639.

289. Root JJ, Shriner SA, Bentler KT, Gidleswki T, Mooers NL, Spraker TR, VanDalen KK, Sullivan HJ, Franklin AB. Shedding of a low pathogenic avian influenza virus in a common synanthropic mammal--thecottontail rabbit. PLoS One. 2014;9(8):e102513.

290. Bailey CF. Experimental infection of raccoon, skunk, and thirteen-lined ground squirrels with avian-derived influenza A viruses. Thesis, University of Minnesota; 1983.

291. White VC. A review of influenza viruses in seals and the implications for public health. US Army Med Dep J. 2013;45-50.

292. Anthony SJ, St Leger JA, Pugliareas K, Ip HS, Chan JM, Carpenter ZW et al. Emergence of fatal avian influenza in New England harbor seals. MBio. 2012;3(4):e00166-12.

293. Bodewes R, Zohari S, Krog JS, Hall MD, Harder TC, Bestebroer TM et al. Spatiotemporal analysis of the genetic diversity of seal influenza A(H10N7) virus, northwestern Europe. J Virol. 2016;90(9):4269-77.

294. Blanc A, Ruchansky D, Clara M, Achaval F, Le Bas A, Arbiza J. Serologic evidence of influenza A and B viruses in South American fur seals (Arctocephalus australis). J Wildl Dis. 2009;45(2):519-21.

295. Ohishi K, Ninomiya A, Kida H, Park CH, Maruyama T, Arai T, Katsumata E, Tobayama T, Boltunov AN, Khuraskin LS, Miyazaki N. Serological evidence of transmission of human influenza A and B viruses to Caspian seals (Phoca caspica). Microbiol Immunol. 2002;46(9):639-44.

296. Nielsen O, Clavijo A, Boughen JA. Serologic evidence of influenza A infection in marine mammals of arctic Canada. J Wildl Dis. 2001;37(4):820-7.

297. Driskell EA, Jones CA, Stallknecht DE, Howerton EW, Tompkins SM. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virol J. 2011;8:52:3271-7.

298. Driskell EA, Pickens JA, Humberd SM, Gordy JT, Bradley KC, Steinhauser DA, Berghaus RD, Stallknecht DE, Howerton EW, Tompkins SM. Avian influenza virus isolates from wild birds replicate and cause disease in a mouse model of infection. Virol J. 2010;399(2):280-9.

299. Bui VN, Ogawa H, Xininen, Karibe K, Matsuo K, Awad SS et al. H4N8 subtype Avian influenza virus isolated from shorebirds contains a unique PB1 gene and causes severe respiratory disease in mice. Virology. 2012;423(1):77-88.

300. Nam JH, Kim EH, Song D, Choi YK, Kim JK, Poo H. Emergence of mammalian species-infectious and -pathogenic avian influenza H6N5 virus with no evidence of adaptation. J Virol. 2011;85(24):13271-7.

301. Driskell EA, Pickens JA, Humberd-Smith J, Gordy JT, Bradley KC, Steinhauser DA, Berghaus RD, Stallknecht DE, Howerton EW, Tompkins SM. Low pathogenic avian influenza isolates from wild birds replicate and transmit via contact in ferrets without prior adaptation. PLoS One. 2012;7(6):e38067.

302. Song H, Wan H, Araya Y, Perez DR. Partial direct contact transmission in ferrets of a mallard H7N3 influenza virus with typical avian-like receptor specificity. Virol J. 2009;14(6):126.

303. Marois P, Boudreault A, DiFranco E, Pavilanis V. Response of ferrets and monkeys to intranasal infection with human, equine and avian influenza viruses. Can J Comp Med. 1971;35(1):71-6.
Highly Pathogenic Avian Influenza

303. Aamir UB, Naeem K, Ahmed Z, Obert CA, Franks J, Krauss S, Seiler P, Webster RG. Zoonotic potential of highly pathogenic avian H7N3 influenza viruses from Pakistan. Virology. 2009;390(2):212-20.

304. Gillim-Ross L, Santos C, Chen Z, Aspelund A, Yang CF, Ye D, Jin H, Kemble G, Subbarao K. Avian influenza H6 viruses productively infect and cause illness in mice and ferrets. J Virol. 2008;82(21):10854-63.

305. Belsel JA, Lu X, Maines TR, Smith C, Li Y, Donis RO, Katz JM, Tumpey TM. Pathogenesis of avian influenza (H7) virus infection in mice and ferrets: enhanced virulence of Eurasian H7N7 viruses isolated from humans. J Virol. 2007;81(20):11139-47.

306. Shriner SA, VanDalen KK, Mooers NL, Ellis JW, Sullivan HJ, Root JJ, Pelzel AM, Franklin AB. Low-pathogenic avian influenza viruses in wild house mice. PLoS One. 2012;7(6):e39206.

307. Jin HK, Yamashita T, Ochiai K, Haller O, Watanabe T. Characterization and expression of the Mx1 gene in wild mouse species. Biochem Genet. 1998;36(9-10):311-22.

308. Tumpey TM, Szretter KJ, Van Hoeven N, Katz JM, Kochs G, Haller O, Garcia-Sastre A, Stacheli P. The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. J Virol. 2007;81(19):10818-21.

309. Nettles VF, Wood JM, Webster RG. Wildlife surveillance associated with an outbreak of lethal H5N2 avian influenza in domestic poultry. Avian Dis. 1985;29(3):733-41.

310. Henzler DJ, Kradal DC, Davison S, Ziegler AF, Singletary D, DeBok P, Castro AE, Lu H, Eckroade R, Swayne D, Lagoda W, Schmucker B, Nesselrodt A. Epidemiology, production losses, and control measures associated with an outbreak of avian influenza subtype H7N2 in Pennsylvania (1996-98). Avian Dis. 2003;47(3 Suppl):1022-36.

311. Shortridge KF, Gao P, Guan Y, Ito T, Kawaioka Y, Markwell D, Takada A, Webster RG. Interspecies transmission of influenza viruses: H5N1 virus and a Hong Kong SAR perspective. Vet Microbiol. 2000;74(1-2):141-7.

312. World Health Organization [WHO]. Cumulative number of confirmed human cases of avian influenza A/H5N1 reported to WHO [online]. WHO:29 Aug 2013. Available at: http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/index.html.* Accessed 27 Sept 2013.

313. Chen T, Zhang R. Symptoms seem to be mild in children infected with avian influenza A (H5N6) and other subtypes. J Infect. 2015;71(6):702-3.

314. Pan M, Gao R, Ly Q, Huang S, Zhou Z, Yang L, et al. Human infection with a novel highly pathogenic avian influenza A (H5N6) virus: Virological and clinical findings. J Infect. 2016;72(1):52-9.

315. Yang ZF, Mok CK, Peiris JS, Zhong NS. Human infection with a novel avian influenza A(H5N6) virus. N Engl J Med. 2015;373(5):487-9.

316. Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet. 2014;383(9918):714-21.

317. Wei SH, Yang JR, Wu HS, Chang MC, Lin JS, Lin CY et al. Human infection with avian influenza A H6N1 virus: an epidemiological analysis. Lancet Respir Med. 2013;1(10):771-8.

318. Ostrowsky B, Huang A, Terry W, Anton D, Brunagel B, Traynor L, Abid S, Johnson G, Kacica M, Katz J, Edwards L, Lindstrom S, Klimgo A, Uyeki TM. Low pathogenic avian influenza A (H7N2) virus infection in immunocompromised adult, New York, USA, 2003. Emerg Infect Dis. 2012;18(7):1128-31.

319. Update: influenza Activity—United States and worldwide, 2003-04 season, and composition of the 2004-05 influenza vaccine. MMWR Morb Mortal Wkly Rep. 2004;53(25):547-52.

320. Edwards LE, Terebuh P, Adija A, et al. Serological diagnosis of human infection with avian influenza A (H7N2) virus [Abstract 60, Session 44]. Presented at the International Conference on Emerging Infectious Diseases 2004, Atlanta, Georgia, February 22–March 3, 2004.

321. Fouchier RA, Schneeeberger PM, Rozendaal FW, Broeckman JM, Kemink SA, Munster V, Kuiken T, Rimmelzaan GF, Schutten M, Van Doornum GJ, Koch G, Bosman A, Koopmans M, Osterhaus AD. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101(5):1356-61.

322. Tweed SA, Skowronski DM, David ST, Larder A, Petric M, Lees W et al. Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis. 2004;10(12):2196-9.

323. Skowronski DM, Tweed SA, Petric M, Booth T, Li Y, Tam T. Human illness and isolation of low-pathogenicity avian influenza virus of the H7N3 subtype in British Columbia, Canada. J Infect Dis. 2006;193(6):899-900.

324. Eames KT, Webb C, Thomas K, Smith J, Salmon R, Temple JM. Assessing the role of contact tracing in a suspected H7N2 influenza A outbreak in humans in Wales. BMC Infect Dis. 2010;10:141.

325. Lopez-Martinez I, Balish A, Barrera-Badillo G, Jones J, Nunez-Garcia TE, Jang Y et al. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012. Emerg Infect Dis. 2013;19.

326. Avian influenza A(H7N2) outbreak in the United Kingdom. Euro Surveill. 2007;12(5):E070531.

327. Arzey GG, Kirkland PD, Arzey KE, Frost M, Maywood P, Conaty S, Hurt AC, Deng YM, Iannello P, Barr I, Dwyer DE, Ratnamohan M, McPhee K, Selleck P. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg Infect Dis. 2012;18(5):814-6.

328. Malik Peiris J. Avian influenza viruses in humans. Rev Sci Tech. 2008;28(1):161-74.

329. Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF. Human infection with influenza H9N2 virus. Lancet. 1999;354(9182):916-7.

330. Guo Y, Li J, Cheng X, Wang M, Zhou Y, Li C, et al. Discovery of men infected by avian influenza A (H9N2) virus. Chin J Exp Clin Virol. 1999;13(5):10568.

331. Guo Y, Xie J, Wang M, Dang J, Guo J, Zhang Y, et al. A strain of influenza A H9N2 virus repeatedly isolated from human population in China. Chin J Exp Clin Virol. 2000;14:2096-12.

332. Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH, Xu KM, Lim W, Webster RG, Yuen KY, Peiris JS, Guan Y. Human infection with an avian H9N2 influenza virus in Hong Kong in 2003. J Clin Microbiol. 2005;43(11):5760-7.
Highly Pathogenic Avian Influenza

333. ProMed Mail. PRO/AH/EDR> Avian influenza, human (124): H9N2 China (HK). Dec 24, 2009. Archive Number 20091224.4328. Available at http://www.promedmail.org. Accessed 28 Dec 2009.

334. Cheng VC, Chan JF, Wen X, Wu WL, Que TL, Chen H, Chan KH, Yuen KY. Infection of immunocompromised patients by avian H9N2 influenza A virus. J Infect. 2011;62(5):394-9.

335. Zhang W, Wan J, Qian K, Liu X, Xiao Z, Sun J et al. Clinical characteristics of human infection with a novel avian-origin influenza A(H10N8) virus. Chin Med J (Engl). 2014;127(18):3238-42.

336. Abdelwhab EM, Veits J, Mettenleiter TC. Prevalence and characteristics of human infection with a novel avian-origin influenza A(H11N1) virus from a wild aquatic bird in Switzerland. Emerg Infect Dis. 2014;127(18):3238-42.

337. Kayali G, Barbour E, Dbaibo G, Tabet C, Saade M, Shaib HA, deBeauchamp J, Webbey RJ. Evidence of infection with H4 and H11 avian influenza viruses among Lebanese chicken growers. PLoS One. 2011;6(10):e26818.

338. Krueger WS, Khuntirat BP, Yoon IK, Blair PJ, Chittagarnpitch M, Putnam SD, Supawat K, Gibbons RV, Bhuddari D, Pattamadilok S, Sawanpanyalert P, Heil GL, Gray GC. Serological evidence for avian H9N2 influenza virus infections among rural Thai villagers. J Infect Dis. 2011;53(8):e72196.

339. Chen Y, Zheng Q, Yang K, Zeng F, Lau SY, Wu WL, Huang S, Zhang J, Chen H, Xia N. Serological survey of antibodies to influenza A viruses in a group of people without a history of influenza vaccination. Clin Microbiol Infect. 2011;7(9):1347-9.

340. Komadina N, McVernon J, Hall R, Leder K. A historical perspective of influenza A(H1N2) virus. Emerg Infect Dis. 2014;20(1):6-12.

341. Xu KM, Smith DJ, Bahl J, Duan L, Tai H, Vijaykrishna D, Wang J, Zhang JX, Li KS, Fan XH, Webster RG, Chen H, Peiris JS, Gao Y. The genesis and evolution of H9N2 influenza viruses in poultry from southern China, 2000 to 2005. J Virol. 2007;81(19):10389-401.

342. Negovetich NJ, Feeroz MM, Jones-Engel L, Walker D, Alam SM, Hasan K et al. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza. PLoS One. 2011;6(4):e19311.

343. Monne I, Hussein HA, Fusaaro A, Valastro V, Hamoud MM, Khalefa RA, Dardir SN, Radwan MI, Capua I, Cattoli G. H9N2 influenza A virus circulates in H5N1 endemically infected poultry population in Egypt. Influenza Other Respir Viruses. 2013;7(3):240-3.

344. Nili H, Asaki K, Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran. Avian Pathol. 2002;31:247-52.

345. Baumer A, Feldmann J, Renzullo S, Muller M, Thur B, Hofmann MA. Epidemiology of avian influenza virus in wild birds in Switzerland between 2006 and 2009. Avian Dis. 2010;54(2):875-84.

© 2006-2022 www.cfsph.iastate.edu page 25 of 39
Highly Pathogenic Avian Influenza

361. Globig A, Baumer A, Revilla-Fernandez S, Beer M, Wodak E, Fink M et al. Ducks as sentinels for avian influenza in wild birds. Emerg Infect Dis. 2009;15(10):1633-6.

362. Lin PH, Chao TL, Kuo SW, Wang JT, Hung CC, Lin HC et al. Virological, serological, and antiviral studies in an imported human case of avian influenza A(H7N9) virus in Taiwan. Clin Infect Dis. 2014;58(2):242-6.

363. To KK, Song W, Lau SY, Que TL, Lung DC, Hung IF, Chen H, Yuen KY. Unique reassortant of influenza A(H7N9) virus associated with severe disease emerging in Hong Kong. J Infect. 2014;69(1):60-8.

364. Duske RJ, Mandl L, Karesh WB, Fine A, Shillelaghba E, Dulan P et al. Highly pathogenic avian influenza virus among wild birds in Mongolia. PLoS One. 2012;7(9):e44097.

365. Shashov K, Silko N, Soussloparov I, Zaykovskaya A, Shestopalov A, Drozdov I. Avian influenza (H5N1) outbreak among wild birds, Russia, 2009. Emerg Infect Dis. 2010;16(2):349-51.

366. Dusek RJ, Bortner JB, DeLiberto TJ, Hoskins J, Franson JC, Bales BD, Yparraquirre D, Swafford SR, Ip HS. Surveillance for high pathogenicity avian influenza virus in wild birds in the Pacific Flyway of the United States, 2006-2007. Avian Dis. 2009;53(2):222-30.

367. Langstaff IG, McKenzie JS, Stanislawek WL, Reed CE, Poland R, Cork SC. Surveillance for highly pathogenic avian influenza in migratory shorebirds at the terminus of the East Asian-Australasian Flyway. N Z Vet J. 2009;57(3):160-5.

368. Sims LD. Progress in control of H5N1 highly pathogenic avian influenza and the future for eradication. Avian Dis. 2012;56(4 Suppl):829-35.

369. Tumpey TM, Kapczynski DR, Swayne DE, Characteristic susceptibility of chickens and turkeys to avian influenza A/H7N2 virus infection and protective efficacy of a commercial avian influenza H7N2 virus vaccine. Avian Dis. 2004;48(1):167-76.

370. Killian ML. Avian influenza virus sample types, collection, and handling. Methods Mol Biol. 2014;1161:83-91.

371. Hofle U, van de Bildt MW, Leijten LM, van Amerongen G, Verhagen JH, Foucheur RA, Osterhaus AD. Kuiken T. Tissue tropism and pathology of natural influenza virus infection in black-headed gulls (Chroicocephalus ridibundus). Avian Pathol. 2012;41(6):547-53.

372. Magor KE. Immunoglobulin genetics and antibody responses to influenza in ducks. Dev Comp Immunol. 2011;35(9):1008-16.

373. Pantin-Jackwood MJ, Suarez DL. Vaccination of domestic ducks against H5N1 HPAI: a review. Virus Res. 2013;178(1):21-34.

374. Antarasena C, Sirimujalajin P, Prommuang P, Blacksell SD, Promkuntod N, Prommuang P. Tissue tropism of a Thailand strain of high-pathogenicity avian influenza virus (H5N1) in tissues of naturally infected native chickens (Gallus gallus), Japanese quail (Coturnix coturnix japonica) and ducks (Anas spp.). Avian Pathol. 2006;35(3):250-3.

375. Krauss S, Pryor SP, Raven G, Danner A, Kayali G, Webby RJ, Webster RG. Respiratory tract versus cloacal sampling of migratory ducks for influenza A viruses: are both ends relevant? Influenza Other Respir Viruses. 2013;7(1):93-6.

376. Wanaratanat S, Panjym D, Pakpinyo S. The potential of house flies to act as a vector of avian influenza subtype H5N1 under experimental conditions. Med Vet Entomol. 2011;25(1):58-63.

377. Nielsen AA, Skovgard H, Stockmarr A, Handberg KJ, Borgstrom P, Jorgensen PH. Persistence of low-pathogenic avian influenza H5N7 and H7N1 subtypes in house flies (Diptera: Muscidae). J Med Entomol. 2011;48(3):608-14.

378. Ypma RJ, Jonges M, Bataille A, Stegeman A, Koch G, van Boven M, Koopmans M, van Ballegooijen WM, Wallinga J. Genetic data provide evidence for wind-mediated transmission of highly pathogenic avian influenza. J Infect Dis. 2013;207(5):730-5.

379. Cappuccio DT, Johnson DC, Brugh M, Smith TM, Jackson CF, Pearson JE, Senne DA. Isolation of avian influenza virus (subtype H5N2) from chicken eggs during a natural outbreak. Avian Dis. 1985;29:1195-200.

380. Moses HE, Brandley CA, Jones EE. The isolation and identification of fowl plague virus. Am J Vet Res. 1948;9:314.

381. Promkuntod N, Antarasena C, Prommuang P, Prommuang P. Isolation of avian influenza virus A subtype H5N1 from internal contents (albumen and allantoic fluid) of Japanese quail (Coturnix coturnix japonica) eggs and oviduct during a natural outbreak. Ann N Y Acad Sci. 2006;1081:171-3.

382. Beard CW, Brugh M, Johnson DC. Laboratory studies with the Pennsylvania avian influenza viruses (H5N2). In: Proceedings of the 88th Annual Conference of the United States Animal Health Association [USAHA], Fort Worth, TX: USAHA; 1984. p. 462-73.

383. Bean WJ, Kawaoka Y, Wood JM, Pearson JE, Webster RG. Characterization of virulent and avirulent A/chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature. J Virol. 1985;54(1):151-60.

384. Narayan O, Lang G, Rouse BT. A new influenza A virus infection in turkeys. IV. Experimental susceptibility of domestic birds to virus strain turkey-Ontario 7732-1966. Arch Gesamte Virusforsch. 1969;26(3):149-65.

385. Kilany WH, Arafa A, Eman AM, Ahmed MS, Nawar AA, Selim AA, Khoulougy SG, Hassan MK, Aly MM, Hafez HM, Abdelwhab EM. Isolation of highly pathogenic avian influenza H5N1 from table eggs after vaccinal break in chickens infected with high-pathogenicity avian influenza H5N1 virus. Avian Pathol. 2010;39(2):115-9.

386. Spickler AR, Trampel DW, Roth JA. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses. Avian Pathol. 2008;37:555-77.

387. Stallknecht DE, Brown JD. Tenacity of avian influenza viruses. Rev Sci Tech. 2009;28(1):59-67.

388. Lu H, Castro AE, Pennick K, Liu J, Yang Q, Dunn P, Weinstock D, Henzler D. Survival of avian influenza virus H7N2 in SPF chickens and their environments. Avian Dis. 2003;47(3 Suppl):1015-21.

389. Humberd J, Guan Y, Webster RG. Comparison of the replication of influenza A viruses in Chinese ring-necked pheasants and chukar partridges. J Virol. 2006;80(5):2151-61.

390. Shi J, Xie J, He Z, Hu Y, He Y, Huang Q, Leng B, He W, Sheng Y, Li F, Song Y, Bai C, Gu Y, Jie Z. A detailed epidemiological and clinical description of 6 human cases of avian-origin influenza A (H7N9) virus infection in Shanghai. PLoS One. 2013;8(10):e77651.
Highly Pathogenic Avian Influenza

391. Cowling BJ, Lin L, Lau EH, Liao Q, Wu P, Jiang H et al. Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet. 2013;382(9887):129-37.

392. Murhekar M, Arima Y, Horby P, Vandemaele KA, Vong S, Zijian F, Lee CK, Li A. Avian influenza A(H7N9) and the closure of live bird markets. Western Pac Surveill Response J. 2013;4(2):4-7.

393. Zhang J, Geng X, Ma Y, Ruan S, Xu S, Liu L, Xu H, Yang G, Wang C, Liu C, Han X, Yu Q, Cheng H, Li Z. Fatal avian influenza (H5N1) infection in human. China. Emerg Infect Dis. 2010;16(11):1799-801.

394. Ungchusak K, Auewarakul P, Dow 86. ProMed Mail. PRO/AH/EDR> Avian influenza, human - Cambodia. J Clin Virol. 2007;39(3):164-8.

395. Liao Q, Bai T, Zhou L, Vong S, Guo J, Lv W et al. Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med. 2005;352(4):333-40.

396. Human cases of avian influenza A (H5N1) virus in North-West Frontier Province, Pakistan, October-November 2007. Wkly Epidemiol Rec. 2008;83(40):359-64.

397. Wang H, Feng Z, Shu Y, Yu H, Zhou L, Zu R et al. Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet. 2008;371(9622):1427-34.

398. Lipatov AS, Kwon YK, Swayne DE. Pathogenesis of H5N1 influenza virus infections in mice and ferret models differs according to respiratory tract or digestive system exposure. J Infect Dis. 2009;199(5):717-25.

399. ProMed Mail. PRO/AH/EDR> Avian influenza, human - Cambodia. J Clin Virol. 2007;39(3):164-8.

400. Vong S, Ly S, Van Kerkhove MD, Achenbach J, Holl D, Auwanit W, Puthavathana P et al. Probable person to person transmission of novel avian influenza A(H7N9) virus in Cambodia. J Clin Virol. 2007;39(3):164-8.

401. Abbott A. Human fatality adds fresh impetus to fight against bird flu. Nature. 2003;423(6935):5.

402. Bischoff WE, Reid T, Russell GB, Peters TR. Transocular entry of seasonal influenza-attenuated virus aerosols and the efficacy of N95 respirators, surgical masks, and eye protection in humans. J Infect Dis. 2009;199(12):1744-52.

403. Belser JA, Wadford DA, Xu J, Katz JM, Tumpey TM. Ocular infection of mice with influenza A (H7) viruses: a site of primary replication and spread to the respiratory tract. J Virol. 2009;83(14):7075-84.

404. Vahlenkamp TW, Teifke JP, Harder TC, Beer M, Mettenleiter TC. Systemic influenza virus H5N1 infection in cats after gastrointestinal exposure. Influenza Other Respir Viruses. 2010;4(6):379-86.

405. Shinya K, Makino A, Tanaka H, Hatta M, Watanabe T, Le MQ, Imai H, Kawaoka Y. Systemic dissemination of H5N1 influenza A viruses in ferrets and hamsters after direct intra gastric inoculation. J Virol. 2011;85(10):4673-8.

406. Gu J, Xie Z, Gao Z, Liu J, Korteweg C, Ye J et al. H5N1 infection of the respiratory tract and beyond: a molecular pathology study. Lancet. 2007;370:1137-45.

407. Dilantika C, Sedyaningsih ER, Kasper MR, Agtini M, Listiyaningsih E, Uyeki TM, Burgess TH, Blair PJ, Putnam SD. Influenza virus infection among pediatric patients reporting diarrhea and influenza-like illness. BMC Infect Dis. 2010;10:3.

408. Chan MC, Lee N, Chan PK, To KF, Wong RY, Ho WS, Ngai KL, Sung JJ. Seasonal influenza A virus in feces of hospitalized adults. Emerg Infect Dis. 2011;17(11):2038-42.

409. de Jong MD, Bach VC, Phan TQ, Vo MH, Tran TT, Nguyen BH, Beld M, Le TP, Truong HK, Nguyen VV, Tran TH, Do QH, Farrar J. Fatal avian influenza A(H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med. 2005;352(7):686-91.

410. Buchy P, Mardy S, Vong S, Toyoda T, Aubin JT, Miller M et al. Influenza A/H5N1 virus infection in humans in Cambodia. J Clin Virol. 2007;39(3):164-8.

411. Song R, Pang X, Yang P, Shu Y, Zhang Y, Wang Q et al. Surveillance of the first case of human avian influenza A (H7N9) virus in China. Lancet. 2014;421(10867):127-33.

412. Yu L, Wang Z, Chen Y, Ding W, Jia H, Chan JF et al. Clinical, virological, and histopathological manifestations of fatal human infections by avian influenza A(H7N9) virus. Clin Infect Dis. 2013;57(10):1449-57.

413. Shu Y, Li CK, Li Z, Gao R, Liang Q, Zhang Y et al. Avian influenza A(H5N1) viruses can directly infect and replicate in human gut tissues. J Infect Dis. 2010;201(8):1173-7.

414. Goldstein T, Mena I, Anthony SJ, Medina R, Robinson PW, Greig DJ, Costa DP, Lipkin WI, Garcia-Sastre A, Boyce WM. Pandemic H1N1 influenza isolated from free-ranging northern elephant seals in 2010 off the central California coast. PLoS One. 2013;8(5):e62259.

415. Nidom CA, Takano R, Yamada S, Sakai-Tagawa Y, Daulay S, Aswadi D, Suzuki T, Suzuki Y, Shinya K, Iwatsuki-Horimoto K, Muramoto Y, Kawakita Y, Influenza A (H5N1) viruses from pigs, Indonesia. Emerg Infect Dis. 2010;16(10):1515-23.

416. Abbott A. Human fatality adds fresh impetus to fight against bird flu. Nature. 2003;423(6935):5.

417. Hsieh SM, Huang YS, Chang SY, Lin PH, Chang SC. Serological survey in cloacal contacts with a confirmed case of H7N9 influenza in Taiwan. J Infect. 2013;67(5):494-500.

418. Li Q, Zhou L, Zhou M, Chen Z, Li F, Wu H et al. Comparative epidemiology of human infections with avian influenza A (H7N9) virus in eastern China, 2013: a population-based study. Emerg Infect Dis. 2013;19(7):1137-43.

419. Qi X, Qian YH, Bao CJ, Guo XL, Cui LB, Tang FY et al. Comparative epidemiology of human infections with avian influenza A(H7N9) virus in China. N Engl J Med. 2014;370(6):520-32.

420. Hu J, Zhai Y, Zhao B, Li J, Liu L, Gu K, Zhang W, Su H, Teng Z, Tang S, Yuan Z, Feng Z, Wu F. Limited human-to-human transmission of avian influenza A(H7N9) virus, Shanghai, China, March to April 2013. Euro Surveill. 2014;19(25).

© 2006-2022 www.csfph.iastate.edu
Highly Pathogenic Avian Influenza

421. Xiao XC, Li KB, Chen ZQ, DI B, Yang ZC, Yuan J, Luo HB, Ye SL, Liu H, Lu JY, Nie Z, Tang XP, Wang M, Zheng BJ. Transmission of avian influenza A(H7N9) virus from father to child: a report of limited person-to-person transmission. Guangzhou, China, January 2014. Euro Surveill. 2014;19(25).

422. Fang CF, Ma MJ, Zhan BD, Lai SM, Hu Y, Yang XX et al. Nosocomial transmission of avian influenza A (H7N9) virus in China: epidemiological investigation. BMJ. 2015;351:h5765.

423. Li H, Lin M, Tang Z, Lin X, Tan Y, Chen M, Zhong H, Liu H, Bi F, Lin J, Zhou S, Huang Z. [Investigation of a family clustering of human infection with avian influenza A (H7N9) virus in Nanning, Guangxi]. Zhonghua Liu Xing Bing Xue Za Zhi. 2015;36(5):481-3.

424. Hu X, Liu D, Wang M, Yang L, Wang M, Zhu Q, Li L, Gao GF. Clade 2.3.2 avian influenza virus (H5N1), Qinghai Lake region, China, 2009-2010. Emerg Infect Dis. 2011;17(3):560-2.

425. De Benedictis P, Beato MS, Capua I. Inactivation of avian influenza viruses by chemical agents and physical conditions: a review. Zoonoses Public Health. 2007;54(2):51-68.

426. Brown JD, Swayne DE, Cooper RJ, Burns RE. Stallknecht DE. Persistence of H5 and H7 avian influenza viruses in water. Avian Dis. 2007;51(1 Suppl):285-9.

427. Beato MS, Mancin M, Bertoli E, Buratin A, Terregino C, Capua I. Infectivity of H7 LP and HP influenza viruses at different temperatures and pH and persistence of H7 HP virus in poultry meat at refrigeration temperature. Virology. 2012;433(2):522-7.

428. Davidson I, Nagar S, Haddas R, Ben-Shabat M, Golender N, Lapin E, Altory A, Simanov L, Ribstein I, Pinshin A, Perk S. Avian influenza virus H9N2 survival at different temperatures and pHs. Avian Dis. 2010;54(1 Suppl):725-8.

429. Nielsen AA, Jensen TH, Stockmarr J, Jorgensen PH. Persistence of low-pathogenic H5N7 and H7N1 avian influenza subtypes in filtered natural waters. Vet Microbiol. 2013;166(3-4):419-28.

430. Domanska-Blicharz K, Minta Z, Smietanka K, Marche S, van den Berg T. H5N1 high pathogenicity avian influenza virus survival in different types of water. Avian Dis. 2010;54(1 Suppl):734-7.

431. Nazir I, Haumacher R, Ike AC, Marschang RE. Persistence of avian influenza viruses in lake sediment, duck feces, and duck meat. Appl Environ Microbiol. 2011;77(14):4981-5.

432. Horm SV, Gutierrez RA, Nichols JM, Buchy P. Highly pathogenic influenza A(H5N1) virus survival in complex artificial aquatic biotopes. PLoS One. 2012;7(4):e34160.

433. Chumpolbanchorn K, Suemanotham N, Siripara N, Puyati B, Chaichoune K. The effect of temperature and UV light on infectivity of avian influenza virus (H5N1, Thai field strain) in chicken fecal manure. Southeast Asian J Trop Med Public Health. 2006;37(1):102-5.

434. Tiwari A, Patnayak DP, Chander P. Survival of two avian respiratory viruses on porous and nonporous surfaces. Avian Dis. 2006;50(2):284-7.

435. Horm SV, Gutierrez RA, Sorn S, Buchy P. Environment: a potential source of animal and human infection with influenza A (H5N1) virus. Influenza Other Respir Viruses. 2012;6(6):448-8.

436. International Committee on Taxonomy of Viruses Universal Virus Database [ICTVdb] Management. Orthomyxoviridae.Virus taxonomy: 2020 Release EC 52, Online meeting, October 2020. Email ratification March 2021 (MSL #36) [online]. Available at: https://talk.ictvonline.org/taxonomy/, Accessed 13 Oct 2021.

437. Songserm T, Jam-On R, Sae-Heng N, Meemak N. Survival and stability of HPAI H5N1 in different environments and susceptibility to disinfectants. Dev Biol (Basel). 2006;124:254.

438. Paek MR, Lee YJ, Yoon H, Kang HM, Kim MC, Choi JG, Jeong OM, Kwon JS, Moon OK, Lee SJ, Kwon JH. Survival rate of H5N1 highly pathogenic avian influenza viruses at different temperatures. Poult Sci. 2010;89(8):1647-50.

439. Terregino C, Beato MS, Bertoli E, Mancin M, Capua I. Unexpected heat resistance of Italian low-pathogenicity and high-pathogenicity avian influenza A viruses of H7 subtype to prolonged exposure at 37 degrees C. Avian Pathol. 2009;38(6):519-22.

440. Brown J, Stallknecht D, Lebarbenchon C, Swayne D. Survivability of Eurasian H5N1 highly pathogenic avian influenza viruses in water varies between strains. Avian Dis. 2014;58(3):453-7.

441. Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoya Y et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology. 1998:252(2):331-42.

442. Yamamoto Y, Nakamura K, Yamada M, Mase M. Persistence of avian influenza virus (H5N1) in feathers detached from bodies of infected domestic ducks. Appl Environ Microbiol. 2010;76(16):5496-9.

443. Nazir J, Haumacher R, Ike AC, Marschang RE. Persistence of avian influenza viruses in lake sediment, duck feces, and duck meat. Appl Environ Microbiol. 2011;77(14):4981-5.

444. Horm SV, Gutierrez RA, Nichols JM, Buchy P. Highly pathogenic influenza A(H5N1) virus survival in complex artificial aquatic biotopes. PLoS One. 2012;7(4):e34160.

445. Chumpolbanchorn K, Suemanotham N, Siripara N, Puyati B, Chaichoune K. The effect of temperature and UV light on infectivity of avian influenza virus (H5N1, Thai field strain) in chicken fecal manure. Southeast Asian J Trop Med Public Health. 2006;37(1):102-5.

446. Tiwari A, Patnayak DP, Chander P. Survival of two avian respiratory viruses on porous and nonporous surfaces. Avian Dis. 2006;50(2):284-7.

447. Horm SV, Gutierrez RA, Sorn S, Buchy P. Environment: a potential source of animal and human infection with influenza A (H5N1) virus. Influenza Other Respir Viruses. 2012;6(6):448-8.

448. Public Health Agency of Canada (PHAC). Pathogen Safety Data Sheet – Influenza A virus type A. Pathogen Regulation Directorate, PHAC; 2010 Aug. Available at: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/influenza-virus-type-a.html. Accessed 16 June 2014.
Highly Pathogenic Avian Influenza

449. Public Health Agency of Canada (PHAC). Pathogen Safety Data Sheet – Influenza A virus subtypes H5, H7 and H9. Pathogen Regulation Directorate, PHAC; 2011 Dec. Available at: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/influenza-a-virus-subtypes-h5-h7-h9.html. Accessed 16 June 2014.

450. Ardans AA. Equine influenza. In: Hirsch DC, Zee YC, editors. Veterinary microbiology. Malden, MA: Blackwell Science; 1999. p. 398-9.

451. Nian QG, Jianguo T, Zhang Y, Deng YQ, Li J, Qin ED, Qin CF. High thermostability of the newly emerged influenza A (H7N9) virus. J Infect. 2016;72(3):393-4.

452. Johnson DC, Maxfield BG. An occurrence of avian influenza virus infection in laying chickens. Avian Dis. 1976;20(2):422-4.

453. Alexander DJ, Stuart JC. Isolation of an influenza A virus from domestic fowl in Great Britain. Vet Rec. 1982;111(18):416.

454. Hooper PT, Russell GW, Selleck PW, Stanislawek WL. Observations on the relationship in chickens between the virulence of some avian influenza viruses and their pathogenicity for various organs. Avian Dis. 1995;39(3):458-64.

455. Ziegler AF, Davison S, Acland H, Eckroade RJ. Characteristics of H7N2 (nonpathogenic) avian influenza virus infections in commercial layers, in Pennsylvania, 1997-98. Avian Dis. 1999;43(1):142-9.

456. Kinde H, Read DH, Daft BM, Hammarlund M, Moore J, Uzal F, Mukai J, Woolcock P. The occurrence of avian influenza A subtype H6N2 in commercial layer flocks in Southern California (2000-02): clinicopathologic findings. Avian Dis. 2003;47(3 Suppl):1214-8.

457. Mutinelli F, Capua T, Terregino C, Cattoli G. Clinical, gross, and microscopic findings in different avian species naturally infected during the H7N1 low- and high-pathogenicity avian influenza epidemics in Italy during 1999 and 2000. Avian Dis. 2003;47(3 Suppl):844-8.

458. Nili H, Assai K. Avian influenza (H9N2) outbreak in Iran. Avian Dis. 2003;47(3 Suppl):828-31.

459. Bowes VA, Ritchie SJ, Byrne S, Sojonky K, Bidulka JJ, Robinson JH. Virus characterization, clinical presentation, and pathology associated with H7N3 avian influenza in British Columbia broiler breeder chickens in 2004. Avian Dis. 2004;48(4):928-34.

460. Lu H, Castro AE. Evaluation of the infectivity, length of infection, and immune response of a low-pathogenicity H7N2 avian influenza virus in specific-pathogen-free chickens. Avian Dis. 2004;48(2):263-70.

461. Bertran K, Dolz R, Majo N. Pathobiology of avian influenza virus infection in minor gallinaceous species: a review. Avian Pathol. 2014;43(1):9-25.

462. Jourdain E, Gunnarsson G, Wahlgren J, Latorre-Margalef N, Brojer C, Sahlin S, Svensson L, Waldenstrom J, Lundkvist A, Olsen B. Influenza virus in a natural host, the mallard: experimental infection data. PLoS One. 2010;5(1):e98935.

463. van Gils JA, Munster VJ, Radersma R, Lieffheber D, Fouchier RA, Kaassen M. Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza A virus. PLoS One. 2007;2(1):e184.

464. Iqbal M, Yaqub T, Mukhtar N, Shabbir MZ, McCauley JW. Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds. Vet Res. 2013;44:100.

465. Pazani J, Marandi MV, Ashrafielhan J, Marjannemehr SH, Ghods F. Pathological studies of A/Chicken/Tehran/ZMT-173/99 (H9N2) influenza virus in commercial broiler chickens of Iran. Int J Poultry Sci. 2008;7:502-10.

466. Ebrahimim SM, Ziapor S, Tebianian M, Babaghamian M, Mohammadi M. Study of infection with an Iranian field-isolated H9N2 avian influenza virus in vaccinated and unvaccinated Japanese quail. Avian Dis. 2011;55(2):195-200.

467. Forman AJ, Parsonson IM, Doughty WJ. The pathogenicity of an avian influenza virus isolated in Victoria. Aust Vet J. 1986;63(9):294-6.

468. Elbers AR, Fabri TH, de Vries TS, de Wit JJ, Pijpers A, Koch G. The highly pathogenic avian influenza A (H7N7) virus epidemic in The Netherlands in 2003–2004. Emerg Infect Dis. 2004;10(3):530-4.

469. Nakatani H, Nakamura K, Yamamoto Y, Yamada M, Yamamoto Y. Epidemiology, pathology, and immunohistochemistry of layer hens naturally affected with H5N1 highly pathogenic avian influenza in Japan. Avian Dis. 2005;49(3):436-41.

470. Tsukamoto K, Imada T, Tanimura N, Okamatsu M, Mase M, Mizuhara T, Swayne D, Yamaguchi S. Impact of different husbandry conditions on contact and airborne transmission of H5N1 highly pathogenic avian influenza virus to chickens. Avian Dis. 2007;51(1):129-32.

471. Beard CW. Avian influenza. In: Foreign animal diseases. Richmond, VA: United States Animal Health Association; 1998. p. 71-80.

472. Capua I, Mutinelli F. Mortality in Muscovy ducks (Cairina moschata) and domestic geese (Anser anser, var. domestica) associated with natural infection with a highly pathogenic avian influenza virus of H7N9 subtype. Avian Pathol. 2001;30(2):179-83.

473. Yamamoto Y, Nakamura K, Yamada M, Mase M, Cone AE. Pathogenicity avian influenza virus H5N1 highly pathogenic avian influenza virus. Vet Pathol. 2015;53(1):65-76.

474. Mansour SM, ElBakrey RM, Ali H, Knudsen DE, Eid AA. Natural infection with highly pathogenic avian influenza virus H5N1 in domestic pigeons (Columba livia) in Egypt. Avian Pathol. 2014;43(4):319-24.

475. Kalthoff D, Breithaupt A, Teifke JP, Globig A, Harder T, Mettenleiter TC, Beer M. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerg Infect Dis. 2008;14(8):1267-70.

476. Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer WE, van Lavieren R, Osterhaus AD, Fouchier RA, Kuiken T. Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis. 2008;14(4):600-7.

477. Komar N, Olsen B. Avian influenza virus (H5N1) mortality surveillance. Emerg Infect Dis. 2008;14(7):1176-8.

478. Ramis A, van Amerongen G, van de Bilt M, Leijten L, Vanderstichel R, Osterhaus A, Kuiken T. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus). Vet Res. 2014;45(1):84.
Highly Pathogenic Avian Influenza

479. van den Brand JM, Krone O, Wolf PU, van de Bildt MW, van Amerongen G, Osterhaus AD, Kuiken T. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany. Vet Res. 2015;46:24.

480. Hall JS, Ip HS, Franson JC, Meteyer C, Nashold S, TeSlaa JL, French J, Redig P, Brand C. Experimental infection of a North American raptor, American Kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1). PLoS One. 2009;4(10):e7555.

481. Marinova-Petkova A, Georgiev G, Seiler P, Darnell D, Franks J, Krauss S, Webby RJ, Webster RG. Spread of influenza virus A (H5N1) clade 2.3.2.1 to Bulgaria in common buzzards. Emerg Infect Dis. 2012;18(10):1596-602.

482. Shikavoti S, Ito H, Otsuki K, Ito T. Characterization of H5N1 highly pathogenic avian influenza virus isolated from a mountain hawk eagle in Japan. J Vet Med Sci. 2010;72(4):459-63.

483. Naguib MM, Kinne J, Chen H, Chan KH, Joseph S, Wong PC, Woo PC, Wernery R, Beer M, Wernery U, Harder TC. Outbreaks of highly pathogenic avian influenza H5N1 clade 2.3.2.1c in hunting falcons and kept wild birds in Dubai implicate intercontinental virus spread. J Gen Virol. 2015;96(11):3212.

484. Fujiimoto Y, Usui T, Ito H, Ono E, Ito T. Susceptibility of wild passerines to subtype H5N1 highly pathogenic avian influenza viruses. Avian Pathol. 2015;44(4):243-7.

485. Jeong J, Kang HM, Lee EK, Song BM, Kwon YK, Kim HR et al. Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Vet Microbiol. 2014;173(3-4):249-57.

486. Kang HM, Lee EK, Song BM, Jeong J, Choi JG, Jeong J, Moon OK, Yoon H, Cho Y, Kang YM, Lee HS, Lee YJ. Novel reassortant influenza A(H5N8) viruses among inoculated domestic and wild ducks, South Korea, 2014. Emerg Infect Dis. 2015;21(2):298-304.

487. Shriran SA, Root JJ, Mooers NL, Ellis JW, Stopak SR, Sullivan HJ, VanDalen KK, Franklin AB. Susceptibility of rock doves to low-pathogenic avian influenza A viruses. Arch Virol. 2016;161(3):715-20.

488. Kim HM, Park EH, Yum J, Kim HS, Seo SH. Greater virulence of highly pathogenic H5N1 influenza virus in cats than in dogs. Arch Virol. 2015;160(1):305-13.

489. Stokoskop MK. Viral diseases of marine mammals: Influenza virus. In: Kahn CM, Line S, Aiello SE, editors. The Merck veterinary manual [online]. Whitehouse Station, NJ: Merck and Co; 2015. Available at: http://www.merckvetmanual.com/mvm/exotic_and_laboratory_animals/marine_mammals/viral_diseases_of_marine_mammals.html.* Accessed 6 Dec 2015.

490. Groth M, Lange J, Kanprai P, Pleschka S, Scholtissek C, Krumbholz A, Platzer M, Sauerbrei A, Zell R. The genome of an influenza virus from a pilot whale: Relation to influenza viruses of gulls and marine mammals. Infect Genet Evol. 2014;24:183-6.

491. Lyov DK, Zdanov VM, Sazonov AA, Braude NA, Vladimirtceva EA, Agafonova LV et al. Comparison of influenza viruses isolated from man and from whales. Bull World Health Organ. 1978;56(6):923-30.

492. Elbers AR, Kamps B, Koch G. Performance of gross lesions at postmortem for the detection of outbreaks during the avian influenza A virus (H7N7) epidemic in The Netherlands in 2003. Avian Pathol. 2004;33(4):418-22.

493. Ogawa S, Yamamoto Y, Yamada M, Mase M, Nakamura K. Pathology of whooper swans (Cygnus cygnus) infected with H5N1 avian influenza virus in Akita, Japan, in 2008. J Vet Med Sci. 2009;71(10):1377-80.

494. Nuredji H, Bingham J, Lother S, Wibawa H, Colling A, Long NT, Meers J. A comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of H5N1 highly pathogenic avian influenza infection in experimentally infected chickens and ducks. J Vet Diagn Invest. 2015;27(6):704-15.

495. Suarez DL, Das A, Ellis E. Review of rapid molecular diagnostic tools for avian influenza virus. Avian Dis. 2007;51(1 Suppl):201-8.

496. Capua I, Marangon S. The use of vaccination as an option for the control of avian influenza. Avian Pathol. 2003;32(4):335-43.

497. Solorzano A, Foni E, Cordoba L, Baratelli M, Razzuoli E, Bilato D et al. Cross-species infectivity of H3N8 influenza virus in an experimental infection in swine. J Virol. 2015;89(22):11190-202.

498. duplicate, deleted

499. United States Geological Survey [USGS], National Wildlife Health Center. Wildlife health bulletin #05-03 [online]. USGS; 2005 Aug. Available at: http://www.nwihc.usgs.gov/publications/wildlife_health_bulletins/WHB_05_03.jsp.* Accessed 25 Jan 2007.

500. Bouma A, Chen H, Erasmus B, Jones P, Marangon S, Domenech I [OIE Ad Hoc Group on AI Vaccination Guidelines]. Vaccination: a tool for the control of avian influenza. Proceedings of a meeting. March 20-22, 2007. Verona, Italy. Dev Biol (Basel). 2007;130:3-167. Available at: http://www.oie.int/eng/info_ev/Other%20Files/A_Guidelines%20on%20AI%20vaccination.pdf.* Accessed Dec 3 2010.

501. Villarreal C. Avian influenza in Mexico. Rev Sci Tech. 2009;28(1):261-5.

502. Chen H. Avian influenza vaccination: the experience in China. Rev Sci Tech. 2009;28(1):267-74.

503. Koch G, Steensels M, van den Berg T. Vaccination of birds other than chickens and turkeys against avian influenza. Rev Sci Tech. 2009;28(1):307-18.

504. Maas R, Tacken M, van Zoelen D, Oei H. Dose response effects of avian influenza (H7N7) vaccination of chickens: serology, clinical protection and reduction of virus excretion. Vaccine. 2009;27(27):3592-7.

505. Swayne DE, Lee CW, Spackman E. Inactivated North American and European H5N2 avian influenza virus vaccines protect chickens from Asian H5N1 highly pathogenic avian influenza virus. Avian Pathol. 2006;35(4):249-57.

506. Bouma A, Claassen I, Nathi K, Klinkenberg D, Donnelly CA. Comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of H5N1 highly pathogenic avian influenza in experimentally infected chickens and ducks. J Vet Diagn Invest. 2015;27(6):704-15.

507. van der Goot JA, Koch G, van Boven M. Estimation of transmission parameters of H5N1 avian influenza virus in chickens. Rev Sci Tech. 2009;28(1):307-18.

508. Cross Reference (1):e1000281.

509. Capua I, Marangon S. The use of vaccination as an option for the control of avian influenza. Avian Pathol. 2003;32(4):335-43.

510. Bouma A, Chen H, Erasmus B, Jones P, Marangon S, Domenech I [OIE Ad Hoc Group on AI Vaccination Guidelines]. Vaccination: a tool for the control of avian influenza. Proceedings of a meeting. March 20-22, 2007. Verona, Italy. Dev Biol (Basel). 2007;130:3-167. Available at: http://www.oie.int/eng/info_ev/Other%20Files/A_Guidelines%20on%20AI%20vaccination.pdf.* Accessed Dec 3 2010.

511. Villarreal C. Avian influenza in Mexico. Rev Sci Tech. 2009;28(1):261-5.

512. Chen H. Avian influenza vaccination: the experience in China. Rev Sci Tech. 2009;28(1):267-74.

513. Koch G, Steensels M, van den Berg T. Vaccination of birds other than chickens and turkeys against avian influenza. Rev Sci Tech. 2009;28(1):307-18.

514. Maas R, Tacken M, van Zoelen D, Oei H. Dose response effects of avian influenza (H7N7) vaccination of chickens: serology, clinical protection and reduction of virus excretion. Vaccine. 2009;27(27):3592-7.

515. Swayne DE, Lee CW, Spackman E. Inactivated North American and European H5N2 avian influenza virus vaccines protect chickens from Asian H5N1 highly pathogenic avian influenza virus. Avian Pathol. 2006;35(4):249-57.

516. Bouma A, Claassen I, Nathi K, Klinkenberg D, Donnelly CA, Koch G, van Boven M. Estimation of transmission parameters of H5N1 avian influenza virus in chickens. PLoS Pathog. 2009;5(1):e1000281.

517. van der Goot JA, Koch G, de Jong MC, van Boven M. Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens. Proc Natl Acad Sci U S A. 2005;102(50):18141-6.
Highly Pathogenic Avian Influenza

508. Poetri ON, Bouma A, Murtini S, Claassen I, Koch G, Soejoedono RD, Stegeman JA, van Boven M. An inactivated HSN2 vaccine reduces transmission of highly pathogenic H5N1 avian influenza virus among native chickens. Vaccine. 2009;27(21):2864-9.

509. Bublot M, Pritchard N, Cruz JS, Mickle TR, Selleck P, Swayne DE. Efficacy of a fowlpox-vecorred avian influenza H5 vaccine against Asian H5N1 highly pathogenic avian influenza virus challenge. Avian Dis. 2007;51(1 Suppl):498-500.

510. Rudolf M, Poppel M, Frohlich A, Breithaupt A, Teifke J, Blohm U, Mettenleiter CT, Beer M, Harder T. Longitudinal 2 years field study of conventional vaccination against highly pathogenic avian influenza H5N1 in layer hens. Vaccine. 2010;28(42):6832-40.

511. Bae YJ, Lee SB, Min KC, Mo JS, Jeon EO, Koo BS, Kwon HI, Choi YK, Kim JJ, Kim JN, Mo IP. Pathological evaluation of natural cases of a highly pathogenic avian influenza virus, subtype H5N8, in broiler breeders and commercial layers in South Korea. Avian Dis. 2015;59(1):175-82.

512. Lee DH, Kwon JH, Noh JY, Park JK, Yik SS, Erdene-Ochir TO, Lee JB, Park SY, Choi IS, Lee SW, Song CS. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species. Avian Pathol. 2016;1-11.

513. Chen H, Li Y, Li Z, Shi J, Shinya K, Deng G, Qi T, Qian G, Fan S, Zhao H, Sun Y, Kawaoka Y, Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol. 2006;80(12):5976-83.

514. Yuan Z, Zhu W, Chen Y, Zhou P, Cao Z, Xie J, Zhang Q, Wang W, Li S, Yuan L. Serological evidence of H5N1 avian influenza virus infections among pigs in southern China. J Virol. 2015;89(16):8718-25.

515. Sun L, Zhou P, He S, Luo Y, Jia K, Fu C, Sun Y, He H, Tu L, Ning Z, Yuan Z, Wang H, Li S, Yuan L. Sparse serological evidence of H5N1 avian influenza virus infections in domestic cats, northeastern China. Microb Pathog. 2015;82:27-30.

516. Aksterstedt J, Valheim M, Gernundsson A, Moldal T, Lie KL, Falk M, Hungnes O. Pneumonia caused by influenza A H1N1 virus in farmed American mink (Neovison vison). Vet Rec. 2012;170(14):362.
 Highly Pathogenic Avian Influenza

536. Yoon KJ, Schwartz K, Sun D, Zhang J, Hildebrandt H. Naturally occurring influenza A virus subtype H1N2 infection in a Midwest United States mink (Mustela vison) ranch. J Vet Diag Invest. 2012;24(2):388-91.

537. Gao HN, Lu HZ, Cao B, Du B, Shang H, Gan JH et al. Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med. 2013;368(24):2277-85.

538. Virlogeux V, Li M, Tsang TK, Feng L, Fang VJ, Jiang H, Wu P, Zheng J, Lau EH, Cao Y, Qin Y, Liao Q, Yu H, Cowling BJ. Estimating the distribution of the incubation periods of human avian influenza A(H7N9) virus infections. Am J Epidemiol. 2015;182(8):723-9.

539. Liem NT, Tung CV, Hien ND, Hien TT, Chau NQ, Long HT, Hien NT, Mai IQ, Taylor WR, Werthem J, Farrar J, Khang DD, Horby P. Clinical features of human influenza A (H5N1) infection in Vietnam: 2004-2006. Clin Infect Dis. 2009;48(12):1639-46.

540. World Health Organization [WHO]. Avian influenza (“bird flu”) fact sheet [online]. WHO; 2006 Feb. Available at: http://www.who.int/mediacentre/factsheets/avian_influenza/en/index.html#humans.* Accessed 1 Aug 2007.

541. Brooks WA, Alamgir AS, Sultana R, Islam MS, Rahman M, Fry AM et al. Avian influenza virus A (H5N1), detected through routine surveillance, in child, Bangladesh. Emerg Infect Dis. 2009;15(8):1311-3.

542. Flu Trackers. H7N9 case list from Flu Trackers. 2014. Available at: http://www.flutrackers.com/forum/showpost.php?p=489904. Accessed 19 Nov 2015.

543. Ip DK, Liao Q, Wu P, Gao Z, Cao B, Feng L et al. Detection of mild to moderate influenza A/H7N9 infection by China’s national sentinel surveillance system for influenza-like illness: case series. BMJ. 2013;346:f3693.

544. Hu Y, Lu S, Song Z, Wang W, Hao P, Li J et al. Association between adverse clinical outcome in human disease caused by novel influenza A H7N9 virus and sustained viral shedding and emergence of antiviral resistance. Lancet. 2013;381(9885):2273-9.

545. World Health Organization [WHO]. China–WHO joint mission on human infection with avian influenza A (H7N9) virus. 18–24 April 2013. Mission report. Geneva: WHO. Available at: http://www.who.int/influenza/human/.../influenza_h7n9/ChinaH7N9JointMissionReport2013.pdf. *Accessed 2 May 2014.

546. Lv H, Han J, Zhang P, Lu Y, Wen D, Cai J, Liu S, Sun J, Yu Z, Zhang H, Gong Z, Chen E, Chen Z. Mild illness in avian influenza A(H7N9) virus-infected poultry worker, Huzhou, China. April 2013. Emerg Infect Dis. 2013;19(11):1885-8.

547. Yang S, Chen Y, Cui D, Yao H, Lou J, Hua Z et al. Avian-origin influenza A(H7N9) infection in influenza A(H7N9)-affected areas of China: a serological study. J Infect Dis. 2014;209(2):265-9.

548. Wang X, Fang S, Lu X, Xu C, Cowling BJ, Tang X et al. Seroprevalence to avian influenza A(H7N9) virus among poultry workers and the general population in southern China: A longitudinal study. Clin Infect Dis. 2014;59(6):e76-e83.

549. He F, Chen EF, Li FD, Wang XY, Wang XX, Lin JF. Human infection and environmental contamination with avian influenza A (H7N9) virus in Zhejiang Province, China: risk trend across the three waves of infection. BMC Public Health. 2015;15(1):931.

550. Feng L, Wu JT, Liu X, Yang P, Tsang TK, Jiang H et al. Clinical severity of human infections with avian influenza A(H7N9) virus, China, 2013/14. Euro Surveill. 2014;19(49).

551. Kalthoff D, Bogs J, Harder T, Grund C, Pohlmann A, Beer M, Hoffmann B. Nucleic acid–based detection of influenza A virus subtypes H7 and N9 with a special emphasis on the avian H7N9 virus. Euro Surveill. 2014;19.

552. Hackett H, Bialasiewicz S, Jacob K, Bletchly C, Harrower B, Nimmo GR, Nissen MD, Sloots TP, Whiley DM. Screening for H7N9 influenza A by matrix gene-based real-time reverse-transcription PCR. J Virol Methods. 2014;195:123-5.

553. Marzoratti L, Iannela HA, Gomez VF, Figueroa SB. Recent advances in the diagnosis and treatment of influenza pneumonia. Curr Infect Dis Rep. 2012;14(3):275-83.

554. Kumar S, Henrickson KJ. Update on influenza diagnostics: lessons from the novel H1N1 influenza A pandemic. Clin Microbiol Rev. 2012;25(2):344-61.

555. Centers for Disease Control and Prevention [CDC]. Evaluation of rapid influenza diagnostic tests for influenza A (H3N2) virus and updated case count—United States, 2012. MMWR Morb Mortal Wkly Rep. 2012;61(32):619-21.

556. Erlikh IV, Abraham S, Kondamudi VK. Management of influenza. Am Fam Physician. 2010;82(9):1087-95.

557. St George K. Diagnosis of influenza virus. Methods Mol Biol. 2012;865:53-69.

558. Centers for Disease Control and Prevention [CDC]. Seasonal Influenza. Information for health care professionals [Website online]. CDC; 2015. Available at: http://www.cdc.gov/flu/professionals/index.htm.* Accessed 3 Nov 2015.

559. Klimov A, Balish A, Veggiluia V, Sun H, Schiffer J, Lu X, Katz JM, Hancock K. Influenza virus titration, antigenic characterization, and serological methods for antibody detection. Methods Mol Biol. 2012;865:25-51.

560. Dong L, Bo H, Bai T, Gao R, Dong J, Zhang Y et al. A Combination of serological assays to detect human antibodies to the avian influenza A H7N9 virus. PLoS One. 2014;9(4):e95612.

561. Kumar A. Pandemic H1N1 influenza. J Thorac Dis. 2011;3(4):262-70.

562. Dunning J, Baillie JK, Cao B, Hayden FG. Antiviral combinations for severe influenza. Lancet Infect Dis. 2014;14(12):1259-70.

563. Lamb S, McElroy T. Bronson alerts public to newly emerging canine flu. Florida Department of Agriculture and Consumer Services; 2005 Sept. Available at: http://doacs.state.fl.us/press/2005/09202005.html.* Accessed 27 Sept 2005.

564. National Institute of Allergy and Infectious Diseases 279, National Institutes of Health 279. Flu drugs [online]. NIAID, NIH; 2003 Feb. Available at: http://www.niaid.nih.gov/factsheets/fluDrugs.htm.* Accessed 11 Nov 2006.
Highly Pathogenic Avian Influenza

565. Public Health Agency of Canada. Pathogen Safety Data Sheet – Influenza virus (B and C). Pathogen Regulation Directorate, Public Health Agency of Canada; 2011 Dec. Available at: https://www.canada.ca/en/public-health/services/laboratory-biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment/influenza-virus-b.html. Accessed 16 June 2014.

566. Thorlund K, Awad T, Boivin G, Thabane L. Systematic review of influenza resistance to the neuraminidase inhibitors. BMC Infect Dis. 2011;11:134.

567. Yu H, Hua RH, Zhang Q, Liu TQ, Liu HL, Li GX, Tong GZ. Genetic evolution of swine influenza A (H3N2) viruses in China from 1970 to 2006. J Clin Microbiol. 2008;46(3):1067-75.

568. Kandun IN, Tresnaningsih E, Purba WH, Lee V, Samaan G, Harun S, Soni E, Septiawati C, Setiawati T, Sariwati E, Wandra T. Factors associated with case Fatality of human H5N1 virus infections in Indonesia: a case series. Lancet. 2008;372(9640):744-9.

569. Smith NM, Bresee JS, Shay DK, Uyeki TM, Cox NJ, Kandun IN, Tresnaningsih E, Purba WH, Lee V, Thorlund K, Awad T, Boivin G, Thabane L. Systematic review and control activities in wild bird populations [online]. DOI; 2012 shows need for continued monitoring. Antiviral Res. 2013;98(2):297-304.

570. Orozovic G, Orozovic K, Lennerstrand J, Olsen B. Detection of resistance mutations to antivirals oseltamivir and zanamivir in avian influenza A viruses isolated from wild birds. PLoS One. 2011;6(1):e16028.

571. Department of the Interior [DOI]. Appendix H: Employee health and safety guidance for avian influenza surveillance and control activities in wild bird populations [online]. DOI; 2007. Available at: http://www.doi.gov/emergency/pandemicflu/appendix-h.cfm*. Accessed 16 Jun 2014.

572. Tumpey TM, Suarez DL, Perkins LE, Senne DA, Lee JG, Lee YJ, Mo IP, Sung HW, Swayne DE. Characterization of a highly pathogenic H5N1 avian influenza A virus isolated from duck meat. J Virol. 2002;76(12):6344-55.

573. Swayne DE, Beck JR. Experimental study to determine if low-pathogenicity and high-pathogenicity avian influenza viruses can be present in chicken breast and thigh meat following intranasal virus inoculation. Avian Dis. 2005;49(1):81-5.

574. Brown CC, Olander HJ, Senne DA. A pathogenesis study of highly pathogenic avian influenza virus H5N2 in chickens, using immunohistochemistry. J Comp Pathol. 1992;107(3):341-8.

575. Mo IP, Brugh M, Fletcher OJ, Rowland GN, Swayne DE. Comparative pathology of chickens experimentally inoculated with avian influenza viruses of low and high pathogenicity. Avian Dis. 1997;41(1):125-36.

576. Mase M, Eto M, Tanimura N, Ima K, Tsukamoto K, Horimoto T, Kawaoka Y, Yamaguchi S. Isolation of a genotypically unique H5N1 influenza virus from duck meat imported into Japan from China. Virology. 2005;339:101-9.

577. Hsu JL, Liu KE, Huang MH, Lee HJ. Consumer knowledge and risk perceptions of avian influenza. Poult Sci. 2008;87(8):1526-34.

578. United States Food and Drug Administration 296. FDA approves first U.S. vaccine for humans against the avian influenza virus H5N1. Press release P07-68. FDA; 2007 Apr. Available at: http://www.fda.gov/bbs/topics/NEWS/2007/NEW01611.html. Accessed 31 Jul 2007.

579. Centers for Disease Control and Prevention [CDC]. Questions and answers. 2009 H1N1 flu (“swine flu”). CDC; 2009 Nov. Available at: http://www.cdc.gov/swineflu/.* Accessed 17 Nov 2009.

580. Arafa AS, Naguib MM, Luttermann C, Selim AA, Kilany WH, Hagag N et al. Emergence of a novel cluster of influenza A(H5N1) virus clade 2.2.1.2 with putative human health impact in Egypt, 2014/15. Euro Surveill. 2015;20(13):2-8.

581. Fiebig L, Soyka J, Buda S, Buchholz U, Dehnert M, Haas W. Avian influenza A(H5N1) in humans: new insights from a line list of World Health Organization confirmed cases, September 2006 to August 2010. Euro Surveill. 2011;16(32).

582. Le MT, Wertheim HF, Nguyen HD, Taylor W, Hoang PV, Vuong CD et al. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam. PLoS One. 2008;3(10):e3339.

583. Abdel-Ghafar AN, Chatpitayasunondh T, Gao Z, Hayden FG, Nguyen DH, de Jong MD, Naghdaliyev A, Peiris JS, Shindo N, Soeroso S, Uyeki TM. Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med. 2008;358(3):261-73.

584. Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST, Lim WL, Yuen KY, Guan Y. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet. 2004;363(9409):617-9.

585. Oner AF, Dogan N, Gasimov V, Adisasmito W, Coker R, Chan PK, Lee N, Tsang O, Hanshaoworakul W, Zaman M, Bamgbuye E, Swenson A, Toovey S, Dreyer NA. H5N1 avian influenza in children. Clin Infect Dis. 2012;55(1):26-32.

586. Kandeel A, Manoncourt S, Abd el Kareem E, Mohamed Ahmed AN, El-Refaie S, Essmat H, Tjaden J, de Mattos CC, Earhart KC, Marfin AA, El-Sayed N. Zoonotic transmission of avian influenza virus (H5N1), Egypt, 2009-2009. Emerg Infect Dis. 2010;16(7):1101-7.

587. Wang TT, Parides MK, Palese P. Seroevidence for H5N1 influenza infections in humans: meta-analysis. Science. 2012;335(6075):1463.

588. Kwon D, Lee JY, Choi W, Choi JH, Chung YS, Lee NJ, Cheong HM, Katz JM, Oh HB, Cho H, Kang C. Avian influenza A (H5N1) virus antibodies in poultry cullers, South Korea, 2003-2004. Emerg Infect Dis. 2012;18(6):986-8.

589. Schultz S, Nguyen VD, Hai TT, Do QH, Peiris JS, Lim W et al. Prevalence of antibodies against avian influenza A (H5N1) virus among cullers and poultry workers in Ho Chi Minh City, 2005. PLoS One. 2009;4(11):e7948.

590. To KK, Hung IF, Lui YM, Mok FK, Chan AS, Li PT, Wong TL, Ho DT, Chan JF, Chan KH, Yuen KY. Ongoing transmission of avian influenza A viruses in Hong Kong despite very comprehensive poultry control measures: A prospective seroepidemiology study. J Infect. 2016;72(2):207-13.
Highly Pathogenic Avian Influenza

592. Dung TC, Dinh PN, Nam VS, Tan LM, Hang NK, Thanh IT, Mai IQ. Seroprevalence survey of avian influenza A(H5N1) among live poultry market workers in northern Viet Nam, 2011. Western Pac Surveill Response J. 2014;5(4):21-6.

593. Le MQ, Horby P, Fox A, Nguyen HT, Le Nguyen HK, Hoang PM, Nguyen KC, de Jong MD, Jeeninga RE, Rogier van Doorn H, Farrar J, Wertheim HF. Subclinical avian influenza A(H5N1) virus infection in human, Vietnam. Emerg Infect Dis. 2013;19(10):1674-7.

594. World Health Organization [WHO]. WHO risk assessment. Human infections with avian influenza A(H7N9) virus. WHO; 2014 Feb. Available at: http://www.who.int/influenza/human_animal_interface/influenza_h7n9/en/.* Accessed 20 Jun 2014.

595. He L, Wu Q, Jiang K, Duan Z, Liu J, Xu H, Cui Z, Gu M, Wang A, Deng L, Wu D, Lu X et al. Risk factors for H7 and H9 infection in commercial poultry in northeast China. J Med Virol. 2013;85(7):1216-23.

596. Fan M, Huang B, Wang A, Deng L, Wu D, Lu X et al. Human influenza A(H7N9) virus infection associated with poultry farm, northeastern China. Emerg Infect Dis. 2014;20(11):1902-5.

597. Arima Y, Vong S. Human infections with avian influenza A(H7N9) virus in China: preliminary assessments of the age and sex distribution. Western Pac Surveill Response J. 2013;4(2):1-3.

598. Liu S, Sun J, Cai J, Miao Z, Lu M, Qin S, Wang X, Lv H, Yu Z, Amer S, Chai C. Epidemiological, clinical and viral characteristics of fatal cases of human avian influenza A(H7N9) virus in Zhejiang Province, China. J Infect. 2013;67(6):595-605.

599. Guo L, Zhang X, Ren L, Yu X, Chen L, Zhou H et al. Human antibody responses to avian influenza A(H7N9) virus, 2013. Emerg Infect Dis. 2014;20(2):192-200.

600. Xu W, Lu L, Shen B, Li J, Xu J, Jiang S. Serological investigation of subclinical influenza A(H7H9) infection among healthcare and non-healthcare workers in Zhejiang Province, China. Clin Infect Dis. 2013;57(6):919-21.

601. Wang W, Peng H, Zhao P, Qi Z, Zhao X, Wang Y, Wang C, Hang X, Ke J. Cross-reactive antibody responses to the novel avian influenza A(H7N9) virus in Shanghai adults. J Infect. 2014.

602. Zhou P, Zhu W, Gu H, Fu X, Wang L, Zheng Y, He S, Ke C, Wang H, Yuan Z, Ning Z, Qi W, Li S, Zhang G. Avian influenza H9N2 seroprevalence among swine farm residents in China. J Med Virol. 2014;86(4):597-600.

603. Ahad A, Thornton RN, Rabhani M, Yaqub T, Younus M, Muhammad K, Mahmood A, Shabbir MZ, Kashem MA, Islam MZ, Mangtani P, Burgess GW, Tun HM, Hoque MA. Risk factors for H7 and H9 infection in commercial poultry farm workers in provinces within Pakistan. Prev Vet Med. 2014;117(3-4):610-4.

604. Khan SU, Anderson BD, Heil GL, Liang S, Gray GC. A systematic review and meta-analysis of the seroprevalence of influenza A(H9N2) infection among humans. J Infect Dis. 2015;212(4):562-9.

605. Khurelbaatar N, Krueger WS, Heil GL, Darmaa B, Ulziimaa D, TserenNorov D, Batervede A, Anderson BD, Gray GC. Sparse evidence for equine or avian influenza virus infections among Mongolian adults with animal exposures. Influenza Other Respir Viruses. 2013;7(6):1246-50.

606. Puzelli S, Di Trani L, Fabiani C, Campitelli L, De Marco MA, Capua I, Aguilera JF, Zambon M, Donatelli I. Serological analysis of serum samples from humans exposed to avian H7 influenza viruses in Italy between 1999 and 2003. J Infect Dis. 2005;192(8):1318-22.

607. Shafr SC, Fuller T, Smith TB, Rimoin AW. A national study of individuals who handle migratory birds for evidence of avian and swine-origin influenza virus infections. J Clin Virol. 2012;54(4):364-7.

608. Qi W, Su S, Xiao C, Zhou P, Li H, Ke C, Gray GC, Zhang G, Liao M. Antibodies against H10N8 avian influenza virus among animal workers in Guangdong Province before November 30, 2013, when the first human H10N8 case was recognized. BMC Med. 2014;12:205.

609. Abolnik C, Ostmann E, Woods M, Wandrag DR, Grewar J, Roberts L, Olivier AJ. Experimental infection of ostriches with H7N1 low pathogenic and H5N8 clade 2.3.4.4B highly pathogenic influenza A viruses. Vet Microbiol. 2021;263:109251.

610. Balzli C, Lager K, Vincent A, Gauger P, Brockmeier S, Miller L, Richt JA, Ma W, Suarez D, Swayne DE. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses. Influenza Other Respir Viruses. 2016;10(4):346-52.

611. Banyard AC, Lean FXZ, Robinson C, Howie F, Tyler G, et al. Detection of highly pathogenic avian influenza virus H5N1 clade 2.3.4.4B in Great Skuas: a species of conservation concern in Great Britai Viruses. 2022;14(2):212.

612. Bi Y, Tan S, Yang Y, Wong G, Zhao M, et al. Clinical and immunological characteristics of human infections with H5N6 avian influenza virus. Clin Infect Dis. 2019;68(7):1100-9.

613. Bodewes R, Kuiken T. Changing role of wild birds in the epidemiology of avian influenza A viruses. Adv Virus Res. 2018;100:279-307.

614. Caron A, Chiweshe N, Mundava J, Abolnik C, Capobianco Dondona A, Scacchini M, Gaidet N. Avian viral pathogens in swallows, Zimbabwe: infectious diseases in Hirundinidae: a risk to swallow? Ecohealth. 2017;14(4):805-9.

615. Chakrabarty A, Rahman M, Hossain MJ, Khan SU, Haider MS, et al. Mild respiratory illness among young children caused by highly pathogenic avian influenza A (H5N1) virus infection in Dhaka, Bangladesh. 2011. J Infect Dis. 2017;216(suppl_4):S520-8.

616. Chambers TM. Equine influenza. Cold Spring Harbor Perspect Med, 2020 Mar 9;a038331.

617. Chen LL, Huo X, Qi X, Liu C, Huang H, Yu H, Dong Z, Deng F, Peng J, Hang H, Wang S, Fan H, Pang Y, Bao C. A fatal paediatric case infected with reassortant avian influenza A(H5N6) virus in Eastern China. Transbound Emerg Dis. 2020. doi: 10.1111/tbed.13561. Online ahead of print.

618. Chen Q, Wang H, Zhao L, Ma L, Wang R. First documented case of avian influenza (H5N1) virus infection in a lion. Emerg Microbes Infect. 2016;5(12):e125.
Highly Pathogenic Avian Influenza

619. Chen X, Wang W, Wang Y, Lai S, Yang J, Cowling BJ, Horby PW, Uyeki TM, Yu H. Serological evidence of human infections with highly pathogenic avian influenza A(H5N1) virus: a systematic review and meta-analysis. BMC Med. 2020;18(1):377.

620. DeJesus E, Costa-Hurtado M, Smith D, Lee DH, Spackman E, Kapczynski DR, Torchetti MK, Killian ML, Suarez DL, Swaeyne DE, Pantin-Jackwood MJ. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards. Virology. 2016;499:52-64.

621. De Vleeschauwer A, Van Poucke S, Braeckmans D, Van Doorselaere J, Van Reeth K. Efficient transmission of swine-adapted but not wholly avian influenza viruses among pigs and from pigs to ferrets. J Infect Dis. 2009;200(12):1884-92.

622. Duff P, Holmes P, Aegerter J, Man C, Fulllick E, Reid S, Lean F, Núñez A, Hansen R, Tye J, Stephan L, Brown I, Robinson C. Investigations associated with the 2020/21 highly pathogenic avian influenza epizootic in wild birds in Great Britain. Vet Rec. 2021;189(9):356-8.

623. El-Shesheny R, Bagato O, Kandeil A, Mostafa A, Mahmoud SH, Hassanneen HM, Webbey RJ, Ali MA, Kayali G. Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt. Infect Genet Evol. 2016;46:102-9.

624. European Food Safety Authority; European Centre for Disease Prevention and Control; European Union Reference Laboratory for Avian Influenza, Adlhoc C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux E, Staubach C, Terregino C, Aznar I, Guajardo IM, Lima E, Baldinelli F. Avian influenza overview February - May 2021. EFSA J. 2021;19(12):e06991.

625. European Food Safety Authority (EFSA); Gonzales JL, RobertsH, Smietanka K, Baldinelli F, Ortiz-Pelaez A, Verdonck F. Assessment of low pathogenic avian influenza virus transmission via raw poultry meat and raw table eggs. EFSA J. 2018;16(10):e05431.

626. Floyd T, Banyard AC, Lean FXZ, Byrne AMP, Fulllick E, et al. Encephalitis and death in wild mammals at a rehabilitation center after infection with highly pathogenic avian influenza (H5N8) virus, United Kingdom. Emerg Infect Dis. 2021;27(11):2856-63.

627. Fournié G, Hég E, Barnett T, Pfeiffer DU, Mangtani P. A systematic review and meta-analysis of practices exposing humans to avian influenza viruses, their prevalence, and rationale. Am J Trop Med Hyg. 2017;97(2):376-88.

628. Froberg T, Cuthbert F, Jennelis CS, Cardona C, Culhane M. Avian influenza prevalence and viral shedding routes in Minnesota Ring-Billed Gulls (Larus delawarensis). Avian Dis. 2019;63(s1):120-5.

629. Fu X, Huang Y, Fang B, Liu Y, Cai M, Zhong R, Huang J, Wenbao Q, Tian Y, Zhang G. Evidence of H10N8 influenza virus infection among swine in southern China and its infectivity and transmissibility in swine. Emerg Microbes Infect. 2020;9(1):88-94.

630. Fukuyama S, Iwatsuki-Horiomoto K, Kiso M, Nakajima N, Gregg RW, Katsura H, Tomita Y, Maemura T, da Silva Lopes TJ, Watanabe T, Shoemaker JE, Hasegawa H, Yamayoshi S, Kawaoka Y. Pathogenesis of influenza A(H7N9) virus in aged nonhuman primates. J Infect Dis. 2020;222(7):1155-64.

631. Gaidet N. Ecology of avian influenza virus in wild birds in tropical Africa. Avian Dis. 2016;60(1 Suppl):296-301.

632. Grear DA, Dusek RJ, Walsh DP, Hall JS. No evidence of infection or exposure to highly pathogenic avian influenza in peridomestic wildlife on an affected poultry facility. J Wildl Dis. 2015;53(1):37-45.

633. Hall JS, Dusek RJ, Nashold SW, TeSlaa JL, Allen RB, Grear DA. Avian influenza virus prevalence in marine birds is dependent on ocean temperatures. Ecol Appl. 2020;30(2);e02040.

634. Hall JS, Russell RE, Franson JC, Soos C, Dusek RJ, Allen RB, Nashold SW, TeSlaa JL, Jönsson JE, Ballard JR, Harms NJ, Brown JD. Avian influenza ecology in North Atlantic sea ducks: not all ducks are created equal. PLoS One. 2015;10(12):e0144524.

635. Harfoot R, Webbey RJ. H5 influenza, a global update. J Microbiol. 2017;55(3):196-203.

636. Hatta M, Zhong G, Gao Y, Nakajima N, Fan S et al. Characterization of a feline influenza A(H7N2) virus. Emerg Infect Dis. 2018;24(1):75-86.

637. Houston DD, Azeem S, Lundy CW, Sato Y, Guo B, Blanchong JA, Gauger PC, Marks DR, Yoon KJ, Adelman JS. Evaluating the role of wild songbirds or rodents in spreading avian influenza virus across an agricultural landscape. PeerJ. 2017;5:e4060.

638. Hoyer BJ, Munster VJ, Huig N, de Vries P, Oosterbeek K, Tijsen W, Klaassen M, Fouchier RA, van Gils JA. Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influenza virus. Integr Comp Biol. 2016;56(2):317-29.

639. Hu T, Zhao H, Zhang Y, Zhang W, Kong Q, Zhang Z, Cui Q, Qiu W, Deng B, Fan Q, Zhang F. Fatal influenza A (H5N1) virus infection in zoo-housed tigers in Yunnan Province, China. Sci Rep. 2016;6:25845.

640. Huo X, Cui LB, Chen C, Wang D, Qi X, et al. Severe human infection with a novel avian-origin influenza A(H7N4) virus. Sci Bull (Beijing). 2018;63(16):1043-50.

641. Jiang H, Wu P, Uyeki TM, He J, Deng Z, et al. Preliminary epidemiologic assessment of human infections with highly pathogenic avian influenza A(H5N6) virus, China. Clin Infect Dis. 2017;65(3):383-8.

642. Jiménez-Bluth P, Karlsson EA, Freiden P, Sharp B, Di Pillo F, Osorio JE, Hamilton-Smith, P, Schultz-Cherry S. Wild birds in Chile harbor diverse avian influenza A viruses. Emerg Microbes Infect. 2018;7(1):44.

643. Kalthoff D, Bogs J, Grund C, Tauscher K, Teifke JP, Starick E, Harder T, Beer M. Avian influenza H7N9/13 and H7N7/13: a comparative virulence study in chickens, pigeons, and ferrets. J Virol. 2014;88:9153-60.

644. Kaplan BS, Torchetti MK, Lager KM, Webbey RJ, Vincent AL. Absence of clinical disease and contact transmission of HPAI H5N6X clade 2.3.4.4 from North America in experimentally infected pigs. Influenza Other Respir Viruses. 2017;11(5):464-70.
Highly Pathogenic Avian Influenza

645. Karamendin K, Kydyrmanov A, Kasymbekov Y, Daulbayeva K, Khan E, Seidalina A, Sayatov M. A highly pathogenic H5N1 influenza A virus isolated from a flamingo on the Caspian Sea shore. Microbiol Resour Announc. 2020;9(39):e00508-20.

646. Kayali G, Kandeel A, El-Shesheny R, Kayed AS, Maatouq AM, Cai Z, McKenzie PP, Webby RJ, El Refaey S, Kandeel A, Ali MA Avian influenza A(H5N1) virus in Egypt. Emerg Infect Dis. 2016;22(3):379-88.

647. Kida H, Ito T, Yasuda J et al Potential for transmission of avian influenza viruses to pigs. J Gen Virol 1994; 75:2183-8.

648. Kim HR, Kwon YK, Lee YJ, Kang HM, Lee EK, Song BM, Jung SC, Lee KH, Lee HK, Baek KH, Bae YC. Ostrich (Struthio camelus) infected with H5N8 highly pathogenic avian influenza virus in South Korea in 2014. Avian Dis. 2016;60(2):535-9.

649. Krone O, Globig A, Ulrich R, Harder T, Schinköthe J, Herrmann C, Gerst S, Comraths FJ, Beer M. White-tailed sea eagle (Haliaeetus albicilla) die-off due to infection with highly pathogenic avian influenza virus, subtype H5N8, in Germany. Viruses. 2018;10(9):478.

650. Kumar M, Murugkar HV, Nagarajan S, Tosh C, Patil S, Nagaraja KH, Rajukumar K, Senthilkumar D, Dubey SC. Experimental infection and pathology of two highly pathogenic avian influenza H5N1 viruses isolated from crow and chicken in house crows (Corvus splendens). Acta Virol. 2020;64(3):325-30.

651. Lai S, Qin Y, Cowling BJ, Ren X, Wardrop NA, et al. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a systematic review of individual case reports. Lancet Infect Dis. 2016;16(7):e108-e118.

652. Lean FZX, Núñez A, Banyard AC, Reid SM, Brown IH, Hansen RDE. Gross pathology associated with highly pathogenic avian influenza H5N8 and H5N1 in naturally infected birds in the UK (2020-2021). Vet Rec. 2022;190(1):e731i.

653. Lee CT, Slavinski S, Schiff C, Merlino M, Daskalakis D, et al. Outbreak of influenza A(H7N2) among cats in an animal shelter with cat-to-human transmission-New York City, 2016. Clin Infect Dis. 2017;65(11):1927-9.

654. Lee DH, Torchetti MK, Killian ML, DeLiberto TJ, Swayne DE. Reoccurrence of avian influenza A(H5N2) virus clade 2.3.4.4 in wild birds, Alaska, USA, 2016. Emerg Infect Dis. 2017;23(2):365-7.

655. Lee K, Lee EK, Lee H, Heo GB, Lee YN, Jung JY, Bae YC, So B, Lee YJ, Choi EJ. Highly pathogenic avian influenza A(H5N6) in domestic cats, South Korea. Emerg Infect Dis. 2018;24(12):2343-7.

656. Lewis NS, Banyard AC, Whittard E, Karibayev T, Al Kafagi T, et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg Microbes Infect. 2021;10(1):148-51.

657. Li C, Chen H. H7N9 influenza virus in China. Cold Spring Harb Perspect Med. 2021;11(8):a038349.

658. Li J, Fang Y, Qiu X, Yu X, Cheng S, Li N, Sun Z, Ni Z, Wang H. Human infection with avian-origin H5N6 influenza a virus after exposure to slaughtered poultry. Emerg Microbes Infect. 2022;11(1):807-10.

659. Li M, Feng S, Lv S, Luo J, Guo J, Sun J, He H. Highly pathogenic H5N6 avian influenza virus outbreak in Pavo cristatus in Jiangxi Province, China. Emerg Microbes Infect. 2019;8(1):377-80.

660. Li YT, Linster M, Mendenhall IH, Su YCF, Smith GJD. Avian influenza viruses in humans: lessons from past outbreaks. Br Med Bull. 2019;132(1):81-95.

661. Liang Y, Nissen JN, Krog JS, Breum SO, Trebbien R, Larsen LE, Hulsager CK. Novel clade 2.3.4.4b highly pathogenic avian influenza A H5N8 and H5N5 viruses in Denmark, 2020. Viruses. 2021;13(5):886.

662. Lin YP, Yang ZF, Liang Y, Li ZT, Bond HS, et al. Seroprevalence of antibody to influenza A(H7N9) virus, Guangzhou, China. BMC Infect Dis. 2016;16(1):632.

663. Liu K, Gao R, Wang X, Han W, Ji Z, Zheng H, Gu M, Hu J, Liu X, Hu S, Chen S, Gao S, Peng D, Jiao XA, Liu X. Pathogenicity and transmissibility of clade 2.3.4.4 highly pathogenic avian influenza virus subtype H5N6 in pigeons. Vet Microbiol. 2020;247:108776.

664. Luceo JM, Prosser DJ, Pantin-Jackwood MJ, Berlin AM, Spackman E. The pathogenesis of a North American H5N2 clade 2.3.4.4 group A highly pathogenic avian influenza virus in two scoters (Melanitta perspicillata). BMC Vet Res. 2020;16(1):351.

665. Ly S, Horwood P, Chan M, Rith S, Sorn S, et al. Seroprevalence and transmission of human influenza A(H5N1) virus before and after virus reassortment, Cambodia, 2006-2014. Emerg Infect Dis. 2017;23(2):300-3.

666. Lyoo KS, Na W, Phan LV, Yoon SW, Yeom M, Song D, Jeong DG. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs. Transbound Emerg Dis. 2017;64(6):1669-75.

667. Molini U, Aikukutu G, Roux JP, Kemper J, NTahunshikira C, Marruchella G, Khaiseb S, Cattoli G, Dundon WG. Avian influenza H5N8 outbreak in African penguins (Spheniscus demersus), Namibia, 2019. J Wildl Dis. 2020;56(1):214-8.

668. Marché S, van den Berg T, Lambrecht B. Domestic canaries (Serinus canaria forma domestica) are susceptible to low pathogenic avian influenza virus infections. Avian Pathol. 2018;47(6):607-15.

669. Nao N, Yamagishi I, Miyamoto H, Igarashi M, Manzoor O, Ohnuma A, Tsuda Y, Furuyama W, Shigeno A, Kaijihara M, Kishida N, Yoshida R, Takada A. Genetic predisposition to acquire a polybasic cleavage site for highly pathogenic avian influenza virus hemagglutinin. mBio. 2017;8(1):e02298-16.

670. Nguyen NM, Sung HW, Yun KJ, Park H, Yeo SJ. Genetic characterization of a novel North American-origin avian influenza A (H6N5) virus isolated from bean goose of South Korea in 2018. Viruses. 2020;12(7):774.

671. Oliver I, Roberts J, Brown CS, Byrne AM, Mellon D, et al. A case of avian influenza A (H5N1) in England, January 2022. Euro Surveill. 2022;27(5):2200061.

672. Peacock THP, James J, Sealy JE, Iqbal M. A global perspective on H9N2 avian influenza virus. Viruses. 2019;11(7):620.

673. Peiris JS, Cowling BJ, Wu JT, Feng L, Guan Y, Hu H, Leung GM. Interventions to reduce zoonotic and pandemic risks from avian influenza in Asia. Lancet Infect Dis. 2016;16(2):252-8.
Highly Pathogenic Avian Influenza

674. Poirot E, Levine MZ, Russell K, Stewart RJ, Pompey JM, et al. Detection of avian influenza A(H7N2) virus infection among animal shelter workers using a novel serological approach—New York City, 2016-2017. J Infect Dis. 2019;219(11):1688-96.

675. Potdar V, Hinge D, Satav A, Simões EAF, Yadav PD, Chadha MS. Laboratory-confirmed avian influenza A(H9N2) virus infection, India, 2019. Emerg Infect Dis. 2019;25(12):3238-30.

676. Postel A, King J, Kaiser FK, Kennedy J, Lombardo MS, et al. Infections with highly pathogenic avian influenza A virus (HPAIV) H5N8 in harbor seals at the German North Sea coast, 2021. Emerg Microbes Infect. 2022;11(1):725-9.

677. Promed Mail. Avian influenza (118): Americas (USA) fox, HPAI H5N1, OIE; May 12 2022. Accessed 20 May 2022.

678. Promed Mail. Avian influenza (181): Avian influenza, human (14): Americas (USA) H5N1; Apr 29 2022. Archive Number: 20220429.8702920. Available at: http://www.promedmail.org. Accessed 20 May 2022.

679. Promed Mail. Avian influenza (181): Avian influenza (97): Americas (USA) wild birds, die-off, susp: Apr 18 2022. Archive Number: 20220418.8702687. Available at: http://www.promedmail.org. Accessed 20 May 2022.

680. Promed Mail. Avian influenza (181): Canada (NL) H5N1, poultry; Dec 24 2021. Archive Number: 20211225.8700481. Available at: http://www.promedmail.org. Accessed 20 May 2022.

681. Pu J, Yin Y, Liu J, Wang X, Zhou Y, et al. Reassortment with dominant chicken H9N2 influenza virus contributed to the fifth H7N9 virus human epidemic. J Virol. 2021;95(11):e01578-20.

682. Pyankova OG, Susloparov IM, Moiseeva AA, Kolosova NP, Onkhonova GS, Danilenko AV, Volkova EV, Shendo GL, Nekeshina NN, Noskova LN, Demina JV, Frolova NV, Gavrilova EV, Maksyutov RA, Ryzhikov AB. Isolation of clade 2.3.4.4b A(H5N8), a highly pathogenic avian influenza virus, from a worker during an outbreak on a poultry farm, Russia, December 2020. Euro Surveill. 2021;26(24):2100439.

683. Qi X, Qiu H, Hao S, Zhu F, Huang Y, et al. Human infection with an avian-origin influenza A (H10N3) virus. N Engl J Med. 2022;386(11):1087-8.

684. Qi Y, Ni HB, Chen X, Li S. Seroprevalence of highly pathogenic avian influenza (H5N1) virus infection among humans in mainland China: A systematic review and meta-analysis. Transbound Emerg Dis. 2020. doi: 10.1111/tbed.13564. Online ahead of print.

685. Quan C, Wang Q, Zhang J, Zhao M, Dai Q, et al. Avian influenza A viruses among occupationally exposed populations, China, 2014-2016. Emerg Infect Dis. 2019;25(12):2215-25.

686. Rijks JM, Hesselink H, Lollinga P, Wesselman R, Prins P, Weesendorp E, Engelsma M, Heutink R, Harders F, Kik M, Rozendaal H, van den Kerkhof H, Beerens N. Highly pathogenic avian influenza A(H5N1) virus in wild red foxes, the Netherlands, 2021. Emerg Infect Dis. 2021;27:2960-2.

687. Root JJ, Bosco-Lauth AM, Bielefeldt-Ohmann H, Bowen RA. Experimental infection of peridomestic mammals with emergent H7N9 (A/Anhui/1/2013) influenza A virus: implications for biosecurity and wet markets. Virology. 2016;487:242-8.

688. Root JJ, Bosco-Lauth AM, Marlenee NL, Bowen RA. Cottontail rabbits shed clade 2.3.4.4 H5 highly pathogenic avian influenza A viruses. Arch Virol. 2018;163(10):2823-7.

689. Root JJ, Shriner SA. Influenza A viruses in peridomestic mammals. Methods Mol Biol. 2020;2123:415-28.

690. Saberi M, Tavakkoli H, Najmaddin A, Rezaei M. Serological prevalence of avian H9N2 influenza virus in dogs by hemagglutination inhibition assay in Kerman, southeast of Iran. Vet Res Forum. 2019;10(3):249-53.

691. Sangkachai N, Thongdee M, Chaiwattanarungprapansa S, Buddhirongawat R, Chamsai T, Poltep K, Wiriyarat W, Paungpin W. Serological evidence of influenza virus infection in captive wild felids, Thailand. J Vet Med Sci. 2019;81(9):1341-7.

692. Seekings AH, Warren CJ, Thomas SS, Mahmood S, James J, Byrne AMP, Watson S, Bianco C, Nunez A, Brown IH, Brookes SM, Smolka MJ. Highly pathogenic avian influenza virus H5N6 (clade 2.3.4.4b) has a preferable host tropism for waterfowl reflected in its inefficient transmission to terrestrial poultry. Virology. 2021;559:74-85.

693. Sengkeopraseuth B, Co KC, Leuangvilay P, Mott JA, Khomgsamphanh B, et al. First human infection of avian influenza A(H5N6) virus reported in Lao People’s Democratic Republic, February-March 2021. Influenza Other Respir Viruses. 2022;16(2):181-5.

694. Sha J, Chen X, Ren Y, Chen H, Wu Z, Ying D, Zhang Z, Liu S. Differences in the epidemiology and virology of mild, severe and fatal human infections with avian influenza A (H7N9) virus. Arch Virol. 2016;161(5):1239-59.

695. Sha J, Dong W, Liu S, Chen X, Zhao N, Luo M, Dong Y, Zhang Z. Differences in the epidemiology of childhood infections with avian influenza A H7N9 and H5N1 viruses. J Clin Microbiol. 2018;56(1):e00169-19.

696. Shearn-Bochsler VI, Knowles S, Ip H. Lethal infection of wild raptors with highly pathogenic avian influenza H5N8 and H5N2 viruses in the USA, 2014-15. J Wildl Dis. 2019;55(1):164-8.

697. Shimizu K, Wulandari L, Poertrando ET, Setyoningrum RA, Yudhawati R, et al. Seroevidence for a high prevalence of subclinical infection with avian influenza A(H5N1) virus among workers in a live-poultry market in Indonesia. J Infect Dis. 2016;214(12):1929-36.

698. Shittu I, Bianco A, Gado D, Mkumpa N, Sulaiman L, et al. First detection of highly pathogenic H5N6 avian influenza virus on the African continent. Emerg Microbes Infect. 2020;9(1):886-8.

699. Shriner SA, Root JJ. A review of avian influenza A virus associations in synanthropic birds. Viruses. 2020;12(11):1209.

700. Smolka MJ, Seekings AH, Mahmood S, Thomas S, Puranik A, Watson S, Byrne AMP, Hicks D, Nunez A, Brown IH, Brookes SM. Unexpected infection outcomes of China-origin H7N9 low pathogenicity avian influenza virus in turkeys. Sci Rep. 2018;8(1):7322.
Highly Pathogenic Avian Influenza

701. Song D, Kang B, Lee C, Jung K, Ha G, Kang D, Park S, Park B, Oh J. Transmission of avian influenza virus (H3N2) to dogs. Emerg Infect Dis. 2008;14:741-6.

702. Spackman E, Pantin-Jackwood MJ, Kapczynski DR, Swayne DE, Suarez DL. H5N2 highly pathogenic avian influenza viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys. BMC Vet Res. 2016;12(1):260.

703. Su S, Xing G, Wang J, Li Z, Gu J, Yan L, Lei J, Ji S, Hu B, Gray GC, Yan Y, Zhou J. Characterization of H7N2 avian influenza virus in wild birds and pikas in Qinghai-Tibet Plateau area. Sci Rep. 2016;6:30974.

704. Thornton AC, Parry-Ford F, Tessier E, Oppilamany N, Zhao H, Dunning J, Pebody R, Dabreira G. Human exposures to H5N6 avian influenza, England, 2018. J Infect Dis. 2019;220:20-2.

705. Uchida Y, Takemae N, Tanikawa T, Kancheira K, Saito T. Transmission of an H5N8-subtype highly pathogenic avian influenza virus from infected hens to laid eggs. Avian Dis. 2016;60(2):450-3.

706. Um S, Siegers JY, Sar B, Chins S, Patels S, et al. Human infection with avian influenza A(H9N2) virus, Cambodia, February 2021. Emerg Infect Dis. 2021;27(10):2742-5.

707. Usui T, Soda K, Sumi K, Ozaki H, Tomioka Y, Ito H, Murase T, Kawamoto T, Miura M, Komatsu M, Imanishi T, Kurobe M, Ito T, Yamaguchi T. Outbreaks of highly pathogenic avian influenza in zoo birds caused by HA clade 2.3.4.4 H5N6 subtype viruses in Japan in winter 2016. Transbound Emerg Dis. 2020;67(2):686-97.

708. Uyeki TM, Peiris M. Novel avian influenza A virus infections of humans. Infect Dis Clin North Am. 2019;33(4):907-32.

709. van den Brand JM, Wohlsen P, Herfst S, Bodewes R, Pfankuche VM, et al. Influenza A (H10N7) virus causes respiratory tract disease in harbor seals and ferrets. PLoS One. 2016;11(7):e0159625.

710. Velkers FC, Blokhuis SJ, Veldhuis Kroeze EJB, Burt SA. The role of rodents in avian influenza outbreaks in poultry farms: a review. Vet Q. 2017;37(1):182-94.

711. Verhagen JH, Foucheir RAM, Lewis N. Highly pathogenic avian influenza viruses at the wild-domestic bird interface in Europe: future directions for research and surveillance. Viruses. 2021;13(2):212.

712. Wang D, Zhu W, Yang L, Shu Y. The epidemiology, virology, and pathogenicity of human infections with avian influenza viruses. Cold Spring Harb Perspect Med. 2021;11(4):a038620.

713. Wang H, Xiao A, Lu J, Chen Z, Li K, Liu H, Luo L, Wang M, Yang Z. Factors associated with clinical outcome in 25 patients with avian influenza A (H7N9) infection in Guangzhou, China. BMC Infect Dis. 2016;16(1):534.

714. Wang W, Chen X, Wang Y, Lai S, Yang J, Cowling BJ, Horby PW, Uyeki TM, Yu H. Serological evidence of human infection with avian influenza A(H7N9) virus: a systematic review and meta-analysis. J Infect Dis. 2020;jiaa679.

715. Wang X, Jiang H, Wu P, Uyeki TM, Feng L, et al. Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory-confirmed case series. Lancet Infect Dis. 2017;17(8):822-32.

716. Wang X, Wu P, Pei Y, Tsang TK, Gu D, Wang W, Zhang J, Horby PW, Uyeki TM, Cowling BJ, Yu H. Assessment of human-to-human transmissibility of avian influenza A(H7N9) virus across 5 waves by analyzing clusters of case patients in mainland China, 2013-2017. Clin Infect Dis. 2019;68(4):623-31.

717. Wei YR, Yang XY, Li YG, Wei J, Ma WG, Ren ZG, Guo HL, Wang TC, Mi XY, Adili G, Miao SK, Shaha A, Gao YW, Huang J, Xia XZ. Serological survey of avian influenza virus infection in non-avian wildlife in Xinjiang, China. Arch Virol. 2016;161(4):677-82.

718. Wilson HM, Hall JS, Flint PL, Franson JC, Ely CR, Schmutz JA, et al. High seroprevalence of antibodies to avian influenza viruses among wild waterfowl in Alaska: implications for surveillance. PLoS One 2013;8(3): e58308 10.1371/journal.pone.0058308.

719. World Health Organization. Avian influenza weekly update number 841; 22 April 2022. Available at: https://www.who.int/docs/default-source/emergencies-surveillance-aviain-influenza/ai_20220218.pdf. Accessed 20 Apr 2022.

720. Xiang N, Bai T, Kang K, Yuan H, Zhou S, et al. Sero-epidemiologic study of influenza A(H7N9) infection among exposed populations, China 2013-2014. Influenza Other Respir Viruses. 2017;11(2):170-6.

721. Xiao C, Xu J, Lan Y, Huang Z, Zhou L, Guo Y, Li X, Yang L, Gao GF, Wang D, Liu WJ, 730 X, Yang H, Five independent cases of human infection with avian influenza H5N6 - Sichuan Province, China, 2021. China CDC Wkly. 2021;3(6):751-6.

722. Yamamoto Y, Nakamura K, Mase M. Survival of highly pathogenic avian influenza H5N1 virus in tissues derived from experimentally infected chickens. Appl Environ Microbiol. 2017;83(16):5972-8.

723. Yang Y, Dong G, Yang L, Tan S, Li J, et al. Comparison between human infections caused by highly and low pathogenic H7N9 avian influenza viruses in wave five: Clinical and virological findings. J Infect. 2019;78(3):241-8.

724. Yu D, Xiang G, Zhu W, Lei X, Li B, et al. The re-emergence of highly pathogenic avian influenza H7N9 viruses in humans in mainland China, 2019. Euro Surveill. 2019;24(21):1900273.

725. Yu JL, Hou S, Feng YT, Bu G, Chen QQ, et al. Emergence of a young case infected with avian influenza A (H5N6) in Anhui Province, East China during the COVID-19 pandemic. J Med Virol. 2021;93(10):6098-6007.

726. Yuan S, Jiang SC, Zhang ZW, Fu YF, Zhe F, Li ZL, Hu J. Abuse of amantadine in poultry may be associated with higher fatality rate of H5N1 infections in humans. J Med Virol. 2022 Feb 16. [Online ahead of print].

727. Yuk SS, Lee DH, Park JK, Tseren-Ochir EO, Kwon JH, Noh JY, Song CS. Experimental infection of dogs with highly pathogenic avian influenza virus (H5N8). J Vet Sci. 2017;18(S1):381-4.

728. Zhang J, Ye H, Li H, Ma K, Qiu W, Chen Y, Qiu Z, Li B, Jia W, Liang Z, Liao M, Qi W. Evolution and antigenic drift of influenza A (H7N9) viruses, China, 2017-2019. Emerg Infect Dis. 2020;26(8):1906-11.
729. Zhao S, Schuurman N, Tieke M, Quist B, Zwinkels S, van Kuppeveld FJM, de Haan CAM, Egberink H. Serological screening of influenza A virus antibodies in cats and dogs indicates frequent infection with different subtypes. J Clin Microbiol. 2020;58(11):e01689-20.

730. Zhou L, Chen E, Bao C, Xiang N, Wu J, et al. Clusters of human infection and human-to-human transmission of avian influenza A(H7N9) virus, 2013-2017. Emerg Infect Dis. 2018;24(2):397-400.

* Link defunct