Risk assessment models for venous thromboembolism in hospitalised adult patients: a systematic review

Abdullah Pandor 1, Michael Tonkins 1, Steve Goodacre 1, Katie Sworn 1, Mark Clowes 1, Xavier L Griffin 2, Mark Holland 3, Beverley J Hunt 4, Kerstin de Wit 5, Daniel Horner 6

ABSTRACT

Introduction Hospital-acquired thrombosis accounts for a large proportion of all venous thromboembolism (VTE), with significant morbidity and mortality. This subset of VTE can be reduced through accurate risk assessment and tailored pharmacological thromboprophylaxis. This systematic review aimed to determine the comparative accuracy of risk assessment models (RAMs) for predicting VTE in patients admitted to hospital.

Methods A systematic search was performed across five electronic databases (including MEDLINE, EMBASE and the Cochrane Library) from inception to February 2021. All primary validation studies were eligible if they examined the accuracy of a multivariable RAM (or scoring system) for predicting the risk of developing VTE in hospitalised inpatients. Two or more reviewers independently undertook study selection, data extraction and risk of bias assessments using the PROBAST (Prediction model Risk Of Bias ASsessment Tool) tool. We used narrative synthesis to summarise the findings.

Results Among 6355 records, we included 51 studies, comprising 24 unique validated RAMs. The majority of studies included hospital inpatients who required medical care (21 studies), were undergoing surgery (15 studies) or receiving care for trauma (4 studies). The most widely evaluated RAMs were the Caprini RAM (22 studies), Padua prediction score (16 studies), IMPROVE models (8 studies), the Geneva risk score (4 studies) and the Kucher score (4 studies). C-statistics varied markedly between studies and between models, with no one RAM performing obviously better than other models. Across all models, C-statistics were often weak (<0.7), sometimes good (0.7–0.8) and a few were excellent (>0.8). Similarly, estimates for sensitivity and specificity were highly variable. Sensitivity estimates ranged from 12.0% to 100% and specificity estimates ranged from 7.2% to 100%.

Conclusion Available data suggest that RAMs have generally weak predictive accuracy for VTE. There is insufficient evidence and too much heterogeneity to recommend the use of any particular RAM.

PROSPERO registration number Steve Goodacre, Abdullah Pandor, Katie Sworn, Daniel Homer, Mark Clowes. A systematic review of venous thromboembolism RAMs for hospital inpatients. PROSPERO 2020 CRD42020165778. Available from https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=165778

INTRODUCTION

Venous thromboembolism (VTE) is an important and life-threatening complication of hospitalisation and illness, and is associated with significant morbidity and mortality. Globally, an estimated 10 million VTE episodes are diagnosed each year; over half of these episodes are associated with hospital inpatients and result in significant loss of disability-adjusted life years. Consequently, there has been a substantial and sustained focus on VTE prevention over the last three decades, with good evidence indicating a reduction in morbidity with primary thromboprophylaxis in hospitalised patients. Despite this evidence, thromboprophylaxis remains either underused or inappropriately applied.

Risk assessment models (RAMs) have been developed to help stratify the risk of VTE among hospitalised patients. These models use clinical information from the patient’s history and examination to identify those with an increased risk of developing VTE who are most likely to benefit from pharmacological prophylaxis. Inappropriate use of VTE...
prophylaxis may not reduce VTE rates and may cause unnecessary harm.11 While RAMs could improve the ratio of benefit to risk and benefit to cost, it is unclear which VTE RAM should be applied to guide decision-making for prophylaxis in clinical practice and thereby optimise patient care.

The current review extends and updates three broadly overlapping existing reviews.10 12 13 While these reviews identified the use of various (derived and validated) RAMs for VTE in hospitalised patients, they did not find any evidence to suggest which RAM was superior. The aim of this systematic review was to identify primary validation studies (as derivation studies may give an overoptimistic assessment of model performance measures) and determine the accuracy of individual RAMs for predicting the risk of developing VTE in hospital inpatients.

METHODS
A systematic review was undertaken in accordance with the general principles recommended in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.14 This review was part of a larger project on VTE RAMs for hospital inpatients15 and was registered on the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42020165778).

Eligibility criteria
We sought studies evaluating RAMs which could be applied to a general inpatient population (medical, surgical or trauma) rather than disease-specific models. All primary validation studies that evaluated the accuracy (eg, sensitivity, specificity, C-statistic) of a multivariable RAM (or scoring system) for predicting the risk of developing VTE were eligible for inclusion. We selected studies that included validation of the model in a group of patients that were not involved in model derivation. This involved either splitting the study cohort (internal) or using a new cohort (external). The study could have reported derivation of the model but we only used the validation data to estimate accuracy. The study population consisted of hospital inpatients including those who required medical care, undergoing any surgery (excluding day surgery) or received care following an injury. Studies that primarily focused on children (aged under 16 years), women admitted to hospital for pregnancy-related reasons and any patient admitted to a level 2 or above critical care environment (eg, patients requiring more detailed observation or intervention including support for a single failing organ system or postoperative care and those ‘stepping down’ from higher levels of care) were excluded. These patient groups have VTE risk profiles that differ markedly from the general inpatient population, making the use of a generic model inappropriate.

Data sources and searches
Potentially relevant studies were identified through searches of five electronic databases including MEDLINE (with MEDLINE In-process and Epub Ahead of Print), EMBASE and the Cochrane Library. The search strategy used free text and thesaurus terms and combined synonyms relating to the condition (eg, VTE in medical inpatients) with risk prediction modelling terms. No language restrictions were used. However, as the current review updated three previous systematic reviews,10 12 13 searches were limited by date from 2017 (last search date from earlier reviews)10 to February 2021. Searches were supplemented by hand-searching the reference lists of all relevant studies (including existing systematic reviews); forward citation searching of included studies; contacting key experts in the field; and undertaking targeted searches of the World Wide Web using the Google search engine. Further details on the search strategy can be found in online supplemental appendix S1.

Study selection
All titles were examined for inclusion by one reviewer (KS) and any citations that clearly did not meet the inclusion criteria (eg, non-human, unrelated to VTE inpatients) were excluded. All abstracts and full-text articles were then examined independently by two reviewers (KS and AP). Any disagreements in the selection process were resolved through discussion or if necessary, arbitration by a third reviewer (SG) and included by consensus.

Data extraction and quality assessment
Data relating to study design, methodological quality and outcomes were extracted by one reviewer (KS) into a standardised data extraction form and independently checked by a second (AP or MT). Any discrepancies were resolved through discussion to achieve agreement. Where differences were unresolved, a third reviewer’s opinion was sought (SG). Where multiple publications of the same study were identified, data were extracted and reported as a single study.

The methodological quality of each included study was assessed using PROBAST (Prediction model Risk Of Bias ASsessment Tool).16 17 This instrument evaluates four key domains: patient selection, predictors, outcome and analysis. Each domain is assessed in terms of risk of bias and the concern regarding applicability to the review (first three domains only). To guide the overall domain-level judgement about whether a study is at high, low or an unclear (in the event of insufficient data in the publication to answer the corresponding question) risk of bias, subdomains within each domain include a number of signalling questions to help judge with bias and applicability concerns. An overall risk of bias for each individual study was defined as low risk when all domains were judged as low; and high risk of bias when one or more domains were considered as high. Studies were assigned an unclear risk of bias if one or more domains were unclear and all other domains were low.
Data synthesis and analysis

We were unable to perform meta-analysis due to significant levels of heterogeneity between studies (participants, inclusion criteria, clinical condition) and variable reporting of items. As a result, a prespecified narrative synthesis approach was undertaken, with data being summarised in tables with accompanying narrative summaries that included a description of the included variables, statistical methods and performance measures (e.g., sensitivity, specificity and C-statistic (a value between 0.7 and 0.8 and >0.8 indicated good and excellent discrimination, respectively; and values <0.7 were considered weak), where applicable. All analyses were conducted using Microsoft Excel V.2010 (Microsoft Corporation, Redmond, Washington, USA).

Patient and public involvement

Patients and the public were not involved in the design or conduct of this systematic review.

RESULTS

Study flow

Figure 1 summarises the process of identifying and selecting relevant literature. Of the 6355 citations identified, 51 studies investigating 24 unique RAMs met the inclusion criteria. The majority of the articles were excluded primarily for not using a RAM for predicting the risk of developing VTE, having no useable or relevant outcome data or an inappropriate study design (e.g., derivation study, reviews, commentaries or editorials). A
Table 1 Study and population characteristics

Author, year	Country	Design	Single/ Multicentre	Sample size	Population	Mean age (years)	Male	VTE prophylaxis	RAMs	Target condition (risk period)	Incidence	Validation methodology
Autar, 2003	UK	RCS	Single	148	Hospitalised patients from orthopaedic, medical and surgical specialties	NR	NR	NR	► Novel (Autar, 2003)	DVT, not defined (90 days)	18.9%	External
Rogers et al, 2007	USA	RCS	Multi	91 308	Hospitalised surgical patients (undergoing vascular and general surgery)	NR	NR	NR	► Novel (Rogers et al, 2007)	VTE (30 days)	0.6%	Internal: split (half)
Abdel-Razeq et al, 2010	Jordan	RCS	Single	606	Hospitalised (>24 hours) cancer patients aged ≥18 years	51	51%	55%	► Caprini (modified)	VTE, symptomatic (60 days)	3.5%	External
Bahl et al, 2010	USA	R,CS	Multi	8216	Hospitalised surgical patients (undergoing general, vascular and urologic surgery)	NR	NR	NR	► Caprini	VTE (30 days)	1.4%	External
Barbar et al, 2010	Italy	RCS	Single	1180	Hospitalised medical patients	NR	47%	16%	► Padua	VTE, symptomatic (90 days)	3.1%	External
Rothberg et al, 2011	USA	R,CS	Multi	48 540	Hospitalised (>3 days) medical patients aged ≥18 years	NR	NR	30%	► Novel (Rothberg et al, 2011)	VTE, hospital associated (NR)	0.5%	Internal: split (20%)
Woller et al, 2011	USA	R,CS	Multi	46 856	Hospitalised medical patients aged ≥18 years	61	46%	NR	► Intermountain Kucher	VTE, defined by ICD-9 codes (90 days)	4.5%	Internal: split (25%)
Pannucci et al, 2012	USA and Canada	R,CS	Multi	5761	Hospitalised (>2 days) patients with a burn injury aged ≥18 years	46	69%	NR	► Novel (Pannucci et al, 2012)	VTE, not defined (NR)	1.0%	Internal: split (25%)
Rogers et al, 2012	USA	R,CS	Multi	234 032	Hospitalised trauma patients	NR	NR	NR	► TESS	VTE (NR)	NR	Internal: split
Bilimoria et al, 2013	USA	R,CS	Multi	88 053	Hospitalised surgical patients (undergoing colorectal surgery)	NR	NR	NR	► ACS NSQIP—Colon specific	DVT, not defined (30 days)	2.3%	External: split (by year)
Hegsted et al, 2013	USA	R,CS	Single	2281	Hospitalised (>2 days) trauma patients aged ≥13 years	45	70%	NR	► RAP	VTE, not defined or PE (NR)	1.5%	External
Vardi et al, 2013	Israel	RCS	Single	1080	Hospitalised (>2 days) sepsis patients aged >18 years	75	52%	18%	► Padua	VTE, hospital associated (NR)	1.3%	External
Ho et al, 2014	Australia	R,CS	Single	357	Hospitalised major trauma patients	NR	75%	NR	► TESS	VTE, symptomatic (NR)	20.7%	External
Liu et al, 2014	China	RCS	Single	287	Hospitalised acute stroke patients aged >18 years	NR	63%	22%	► Post-stroke DVT prediction system	VTE (14±3 days)	10.5%	Internal: split (33%)

Continued
Author, year, Country	Design	Single/Multicentre	Sample size	Population	Mean age (years)	Male	VTE prophylaxis	RAMs	Target condition (risk period)	Incidence	Validation methodology	
Mahan et al., 2014	USA	CC	Multi	417	Hospitalised (≥3 days) medical patients aged ≥18 years	NR	49%	NR	► IMPROVE (7-factor)	VTE, hospital associated (92 days)	NA	External
Nendaz et al., 2014	Switzerland	RCS	Multi	1478	Hospitalised (≥24hours) medical patients aged ≥18 years	65	53%	57%	► Geneva ► Padua	VTE, symptomatic including PE or DVT (90 days)	2.0%	External
Pannucci et al., 2014	USA	RCS	Multi	3576	Hospitalised surgical patients aged ≥18 years	NR	NR	66%	► Novel (Pannucci et al., 2014)	VTE (90 days)	1.4%	Internal: split (35%)
Rosenberg et al., 2014	USA	CC	Multi	19 217	Hospitalised (≥3 days) medical patients aged ≥18 years	NR	47%	43%	► IMPROVE (7-factor)	VTE, defined by ICD-9 codes (90 days)	NA	External
Zhou et al., 2014	China	CC	Single	998	Hospitalised (≥2 days) medical patients aged ≥18 years	NR	58%	15%	► Caprini ► Padua	VTE, defined by ICD-10 codes (NR)	NA	External
Hewes et al., 2015	USA	R,CS	Single	70	Hospitalised cancer patients (undergoing oesophagectomy)	NR	83%	96%	► Caprini (modified)	VTE (60 days)	14.3%	External
de Bastos et al., 2016	Brazil	RCS	Single	11 091	Hospitalised medical patients aged >18 years	50	61%	0%	► Caprini	VTE, symptomatic (NR)	0.3%	External
Grant et al., 2016	USA	R,CS	Multi	63 548	Hospitalised (≥2 days) medical patients aged ≥18 years	66	45%	61%	► Caprini	VTE, hospital associated (90 days)	1.1%	External
Greene et al., 2016	USA	R,CS	Multi	63 548	Acutely ill, hospitalised (≥2 days) medical patients aged ≥18 years	66	45%	61%	► IMPROVE (4-factor) ► Intermountain ► Kucher ► Padua	VTE, hospital associated (90 days)	1.1%	External
Hachey et al., 2016	USA	R,CS	Single	232	Hospitalised surgical patients (undergoing segmentectomy, lobectomy or pneumonectomy for lung cancer)	NR	43%	92%	► Caprini	VTE (60 days)	5.2%	External
Lui et al., 2016	China	CC	Single	640	Hospitalised (≥2 days) medical patients aged ≥18 years	NR	52%	NR	► Caprini ► Padua	VTE (NR)	N/A	External
Lobastov et al., 2016	Russia	R,CS*	Multi	140	Hospitalised high-risk emergency surgery patients (undergoing general and neurosurgery)	69	49%	100%	► Caprini	DVT or PE, new (NR)	27.9%	External
Shaikh et al., 2016	USA	R,CS	Multi	1598	Hospitalised surgical patients (undergoing plastic surgery)	50	19%	34%	► Caprini	VTE, not defined (30 days)	1.5%	External
Author, year	Country	Design	Single/ Multicentre	Sample size	Population	Mean age (years)	Male	VTE prophylaxis	RAMs	Target condition (risk period)	Incidence	Validation methodology
-------------	---------	--------	---------------------	-------------	------------	-----------------	------	-----------------	------	-----------------------------	-----------	-------------------------
Elias et al, 2017	USA	R,CS	Single	30 726	Hospitalised (≥2 days) medical and surgical patients	NR	44%	▶ Padua (automated)	VTE, defined by ICD-9 codes (NR)	0.8%	External	
Frankel et al, 2017 (abstract)	USA	CC	NR	149	Hospitalised surgical patients aged ≥18 years (undergoing robotic-assisted laparoscopic prostatectomy)	NR	NR	▶ Caprini	VTE, not defined (90 days)	NA	External	
Krasnow et al, 2017 (abstract)	USA	R,CS	Multi	1099 093	Hospitalised surgical patients (major urological cancer surgery)	NR	NR	▶ Caprini	VTE, symptomatic (90 days)	1.2%	External	
Patell et al, 2017	USA	R,CS	Single	2780	Hospitalised (≥24 hours) cancer patients aged >18 years	62 (median)	56%	65%	▶ Khorana	VTE, defined by ICD-9 codes (NR)	3.8%	External
Winoker et al, 2017	USA	R,CS	Multi	300	Hospitalised surgical patients (undergoing urological surgery using robot-assisted partial nephrectomy)	61 (median)	62%	NR	▶ ACS NSQIP—Universal	VTE, not defined (NR)	0.3%	External
Blondon et al, 2018	Switzerland	R,CS	Multi	1478	Hospitalised (≥24 hours) medical patients aged ≥18 years	65	53%	59%	▶ IMPROVE (7-factor) ▶ Geneva † ▶ Padua †	VTE, symptomatic including PE or DVT (90 days)	2.0%	External
Chen et al, 2018	China	CC	Single	390	Hospitalised (≥2 days) patients aged ≥18 years with and without DVT	NR	51%	41%	▶ Caprini ▶ Padua	DVT (NR)	NA	External
Dornbus et al, 2018 (abstract)	USA	R,CS	NR	2830	Hospitalised surgical patients (undergoing neurosurgery)	NR	NR	NR	▶ Caprini	VTE, not defined (NR)	NR	External
Vaziri et al, 2018	USA	R,CS	Single	1006	Hospitalised surgical patients (undergoing neurosurgery)	NR	46%	NR	▶ ACS NSQIP—Universal	VTE, not defined (NR)	1.3%	External
Vincentelli et al, 2018	Italy	CC	Multi	1215	Acutely ill, hospitalised medical patients aged ≥18 years	NR	44%	NR	▶ Chopard ▶ Kucher ▶ Padua	VTE (NR)	NA	External
Zhou et al, 2018	China	CC	Single	1804	Hospitalised (≥2 days) medical patients aged ≥18 years	NR	59%	5%	▶ Caprini ▶ Padua	VTE, defined by ICD-10 codes (NR)	NA	External
Blondon et al, 2019a	Italy	R,CS	Single	1180	Hospitalised medical patients	72	47%	20%	▶ Geneva (simplified)	VTE, symptomatic (90 days)	3.1%	External
Blondon et al, 2019b (abstract)	Switzerland	R,CS*	Multi	991	Hospitalised elderly medical patients	75	55%	NR	▶ Geneva (simplified) ▶ IMPROVE (NR) ▶ Padua	VTE, symptomatic (NR)	15.0%	External

Table 1 Continued
Author, year	Country	Design	Single/ Multicentre	Sample size	Population	Mean age (years)	Male	VTE prophylaxis	RAMs	Target condition (risk period)	Incidence	Validation methodology
Cobben et al, 2019	Netherlands	CC	Multi	556	Hospitalised (>24 hours) medical patients	NR	52%	NR	► Caprini► Geneva► IMPROVE (4-factor)► IMPROVE (7-factor)► Intermountain► Kucher► Lecumberri► NAVAL► NICE Guideline► Padua► PRETEMED guideline► Zakai et al (model 2)	VTE (NR)	NA	External
Tachino et al, 2019	Japan	R,CS	Multi	859	Hospitalised (>24 hours) trauma patients aged ≥18 years	NR	64%	NR	► RAP► Quick RAP	VTE (NR)	3.0%	External (RAP)/ internal (qRAP)
Tian et al, 2019	China	R,CS	Single	533	Hospitalised surgical patients (undergoing thoracic surgery)	53	53%	0%	► Caprini► Khorana► Padua► Novel (Rogers et al, 2007)	VTE (NR)	8.4%	External
Bo et al, 2020	China	RCS	Multi	24 524	Hospitalised (≥2 days) patients from medical and surgical specialties aged ≥18 years	57	57	NR	► Caprini	DVT (NR)	0.9%	External
Hu et al, 2020	China	CC	Single	442	Hospitalised (≥2 days) cancer patients aged ≥18 years	NR	62	3.8	► Caprini► Khorana	VTE, defined by ICD-10 codes (NR)	NA	External
Mlaver et al, 2020	USA	CC	Single	189	Hospitalised surgical patients (undergoing hepatobiliary, colorectal, endocrine, plastic, transplant or general surgery)	NR	NR	NR	► Caprini► Padua	VTE, not defined (NR)	NA	External
Moumneh et al, 2020	France	R,CS	Multi	14 660	Acutely ill, hospitalised (≥2 days) medical patients aged ≥40 years	73	50	46.1	► Caprini► Padua► IMPROVE (7 factor)	VTE, symptomatic including PE or DVT (90 days)	1.8%	External
Nafee et al, 2020	35 countries	R,CS	Multi	6459	Hospitalised medical patients	76	45	100	► IMPROVE (NR)► Novel (Nafee et al, 2020a)► Novel (Nafee et al, 2020b)	VTE (77 days)	6.3%	External

Note: Table 1 Continued
full list of excluded studies with reasons for exclusion is provided in online supplemental appendix S2.

Study and patient characteristics

The design and participant characteristics of the 51 included studies21−71 are summarised in Table 1. All studies were published between 2003 and 2020 and were undertaken in North America (n=24),23,25,33−40,43,47,48,52−59,65,68,69, Asia (n=1),3,29,30,42,44−46,53−55,58,59,62,63,67,70,71 Europe (n=9),22,24,26−28,31,49,51,66, the Middle-East (n=2),21,64, South America (n=1),32, Australia (n=1)41 and one study was intercontinental.50 Sample sizes ranged from 708 to 1,099,09343 patients in 37 observational cohort studies (11 prospective21,22,24,28,29,32,44,51,52,56,64 (5 of which were multicentre) and 26 retrospective,25,27−29,41−46,49,50,53−55,58,59,62,63,65,68,69 (16 of which were multicentre) in design). Sample sizes in 14 case−control studies30,31,35,42,45,47,48,57,60,61,66,67,70,71 (4 of which were multicentre) ranged from 14861 to 19,21757 patients.

The vast majority of studies evaluated VTE risk assessment in hospital inpatients who required medical care (n=21),24,26−28,31,32,36,37,45,47,49−51,57,58,61,66,67,69−71 were undergoing surgery (n=15)23,25,33,35,38,40,43,46,48,52,56,59,63,65,68, or were a mixed medical and surgical cohort (n=4).22,29,30,34 The remaining studies focused on patients receiving care for trauma (n=4),39,41,55,62 cancer (n=4),21,42,54,60, stroke (n=1),44 burn injuries (n=1)53 and sepsis (n=1).64 The mean age ranged from 45 years39 to 76 years50 (not reported in 29 studies)22−25,30,31,33−35,38,40−45,47,48,52,53−58,61,62,65,66,70,71 and the proportion of female subjects ranged from 17%40 to 81%59 (not reported in 12 studies).22,25,25,33,35,43,48,52,53,56,58,61

VTE definition and case ascertainment

The majority of studies (n=37)21,23,24,26−28,31,32,36−38,40−47,49−52,55−58,62,64,66,67,70,71 defined the VTE endpoint (DVT and or PE) as being objectively confirmed. Of the remainder, 3 studies34,54,69 had no objective confirmation of VTE and 11 studies22,25,33,35,39,48,53,59,61,65,68 did not report the methods for diagnosis confirmation. In terms of VTE risk period, half of the studies (n=23)21,22,25,33,35,38,40,43,46,48,52,53,56,59,63,65,66,68,70,71 used the RAMs to predict the occurrence of VTE within 3 months of the index hospitalisation. The remaining studies did not report the VTE risk period. The reported incidence of VTE ranged widely from 0.3%68 to 27.9%,46 depending on definition, study design and study participants (eg, medical, surgical or trauma).

RAMs

The studies included in this review evaluated 24 validated unique RAMs. The most widely evaluated models were the Caprini RAM (22 studies),21,23,25,33,35,38,40,42,43,45,46,48,52,55,63,66,67,70,71 Padua prediction score (16 studies),27,28,30,31,34,37,45,48,49,65,66,67,70,71 IMPROVE models (8 studies),27,28,31,37,49,50,57, the Geneva risk score (4 studies)26−28,33 and the Kucher score (4 studies).31,37,66,69 A summary of their associated characteristics and composite clinical variables is provided in online supplemental appendix S3.
Table 2 Summary of each study’s risk of bias and applicability concern using the PROBAST (Prediction model Risk Of Bias ASsessment Tool) tool—review authors’ judgements

Author, year	Risk of bias	Concern regarding applicability	Overall Risk of bias	Overall Applicability					
	1. Participant selection	2. Predictors	3. Outcome	4. Analysis	1. Participant selection	2. Predictors	3. Outcomes		
Abdel-Razeq et al, 2010	High	High	High	High	High	High	High	High	High
Autar, 2003	High	High	High	High	High	High	High	High	High
Bahl et al, 2010	High	High	High	Unclear	Unclear	Unclear	Unclear	High	Unclear
Barbar et al, 2010	Low	Unclear	Unclear	High	Low	Unclear	Unclear	High	Unclear
Bilimoria et al, 2013	Low	Low	Low	High	Low	Low	Low	High	Low
Blondon et al, 2019a	Low	Unclear	High	High	Low	Low	Low	High	Low
Blondon et al, 2019b (abstract)	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear
Blondon et al, 2018	Low	Unclear	Unclear	High	Unclear	Low	Unclear	High	Unclear
Bo et al, 2020	Low	Unclear	Unclear	Unclear	High	Low	Low	Unclear	High
Chen et al, 2018	High	High	High	Unclear	High	High	High	High	High
Cobben et al, 2019	Unclear	Unclear	High	High	Unclear	Low	Unclear	High	Unclear
de Bastos et al, 2016	High	Low	High	High	Low	Low	High	High	High
Dombus et al, 2018 (abstract)	High	Unclear	High	Unclear	Unclear	Unclear	Unclear	High	Unclear
Elias et al, 2017	High	Unclear	High	High	Low	Low	Low	High	High
Frankel et al, 2017 (abstract)	High	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	High	High
Grant et al, 2016	High	Unclear	Unclear	Unclear	Low	Low	Low	High	Low
Greene et al, 2016	Unclear	Unclear	Unclear	Unclear	Low	Low	Low	Unclear	Low
Hachey et al, 2016	High	Unclear	Unclear	High	Low	High	High	High	High
Author, year	Risk of bias	Concern regarding applicability	Overall	Overall					
-------------	-------------	---------------------------------	---------	---------					
Hegsted et al, 2013	High	Unclear	High	High	High	High			
Hewes et al, 2015	High	Unclear	High	High	Low	Unclear	High	High	
Ho et al, 2014	Unclear	Unclear	High	High	Unclear	Unclear	High	High	
Hu et al, 2020	Unclear	Unclear	Unclear	High	Unclear	Unclear	Unclear	High	
Krasnow et al, 2017 (abstract)	Unclear	Unclear	Unclear	High	Unclear	Unclear	Unclear	High	
Liu et al, 2014	Low	Low	Unclear	High	High	High	Unclear	High	
Liu et al, 2016	High	Unclear	High	High	Low	Low	High	High	
Lobastov et al, 2016	Unclear	Unclear	High	High	Low	High	High	High	
Mahan et al, 2014	Low	Unclear	Unclear	Unclear	High	Low	Unclear	High	
Mlaver et al, 2020	Unclear	Unclear	Unclear	Unclear	High	Unclear	Unclear	High	
Mourneh et al, 2020	High	Unclear	Unclear	Low	High	Low	Low	High	High
Nafee et al, 2020	Unclear	Low	Low	Low	Unclear	Low	Low	Unclear	Unclear
Nendaz et al, 2014	Low	Unclear	Low	Low	Unclear	Low	Unclear	High	Unclear
Pannucci et al, 2012	High	Unclear	Unclear	High	High	High	High	High	
Pannucci et al, 2014	Low	Unclear	High	High	High	Low	Low	High	High
Patell et al, 2017	High	Unclear	Unclear	High	High	Unclear	Unclear	High	High
Rogers et al, 2007	Unclear	Unclear	High	Low	Unclear	Unclear	High	Unclear	
Rogers et al, 2012	High	High	Unclear	High	High	High	High	High	High
Rosenberg et al, 2014	Low	Unclear							

Continued
Author, year	Risk of bias	Concern regarding applicability	Overall Risk of bias	Overall Applicability					
1. Participant selection	2. Predictors	3. Outcome	4. Analysis	1. Participant selection	2. Predictors	3. Outcomes			
Rothberg et al, 2011	High	Unclear	Unclear	High	Low	Unclear	Unclear	High	Unclear
Shaikh et al, 2016	High	Unclear	High	High	High	Unclear	High	High	High
Shang et al, 2020	Low	Unclear	Unclear	Unclear	High	Unclear	Unclear	High	Unclear
Shen et al, 2020	Unclear	High	Unclear	Unclear	High	Unclear	Unclear	High	Unclear
Tachino et al, 2019	High	Unclear	Unclear	High	High	Unclear	Unclear	High	High
Tian et al, 2019	High	Unclear	High						
Vardi et al, 2013	Unclear	Low	Low	High	High	Low	Low	High	High
Vaziri et al, 2018	Unclear	Unclear	Unclear	High	High	Unclear	Unclear	High	High
Vincentelli et al, 2018	High	Low	Unclear	High	High	Low	Unclear	High	High
Wang et al, 2020	Low	Unclear	Unclear	Unclear	High	Unclear	Unclear	High	Unclear
Winoker et al, 2019	High	Unclear	Unclear	High	High	High	High	High	High
Woller et al, 2011	High	High	Unclear	High	Unclear	Unclear	Unclear	High	Unclear
Zhou et al, 2014	Unclear	Unclear	Unclear	High	High	Unclear	Unclear	High	High
Zhou et al, 2018	Low	High	High	High	High	Unclear	Unclear	High	High
Statistical methods
Statistical methods varied significantly between studies. Most studies reported the discrimination of the RAMs using a combination of the C-statistic and sensitivity or specificity. A minority reported calibration measures, such as the Hosmer-Lemeshow test.

Risk of bias and applicability assessment
The overall methodological quality of the 51 included studies is summarised in table 2 and figure 2. The methodological quality of the included studies was variable, with most studies having high or unclear risk of bias in at least one item of the PROBAST tool. The main sources of potential bias were related to the following domains:

1. Patient selection factors, such as retrospective data collection, incomplete patient enrolment or unclear criteria for patients receiving VTE prophylaxis.
2. Predictor and outcome bias arising from inappropriate inclusion of predictors within RAMs, unclear methods of outcome definition, low event rates and missing predictor or outcome data.
3. Analysis factors, such as small sample sizes, inappropriate handling of missing data and failure in reporting relevant performance measures such as calibration.

Assessment of applicability to the review question led to the majority of studies being classed either as high (n=35) or unclear (n=12) risk of inapplicability. These assessments were generally related to patient selection (highly selected study populations, eg, single pathologies, single site settings), predictors (inconsistency in definition, assessment or timing of predictors) and outcome determination.

Predictive performance of VTE RAMs (summary of results)
As there were a reasonable number of studies to compare, a summary of the C-statistics for studies involving medical, surgical and trauma patients respectively is presented in figure 3a–c, with the results grouped by RAM. Results of other hospital inpatients are presented in online supplemental appendix S4. C-statistics varied markedly between these studies and between models, with no RAM performing obviously better than other models. In studies evaluating a single model, C-statistics were sometimes weak (<0.7; 10 studies with 17 data points), often good (0.7–0.8; 17 studies with 20 data points) and a few were excellent (>0.8; 5 studies with 5 data points). There was marked heterogeneity between multiple studies evaluating the same model. Studies evaluating multiple (more than 3) models tended to report weak accuracy across all the models (C-statistic <0.7; 2 studies with 16 data points).

Table 3 shows the sensitivity and specificity at various thresholds for studies involving medical, surgical and trauma patients respectively, with the results grouped by RAM. Interpretation was again limited by marked heterogeneity, which was exacerbated when different thresholds were reported by different studies evaluating the same model. Model accuracy was generally poor, with high sensitivity usually reflecting a threshold effect, as evidenced by corresponding low specificity (and vice versa).

DISCUSSION
Summary of results
In this systematic review of 51 observational studies evaluating RAMs for predicting the risk of developing VTE in hospital inpatients, we found that VTE RAMs have generally weak predictive accuracy. The studies validating these models are heterogeneous and most have a high risk of bias. Lack of methodological clarity was common, leading to difficulty in assessing the applicability of the individual study results.

Interpretation of results
We were unable to undertake meta-analysis or statistical examination of the causes of the observed heterogeneity. Potential sources of heterogeneity include variation in study design, the study population, how RAMs are implemented, outcome definition and measurement, and the use of thromboprophylaxis.
Figure 3 C-statistics by model for studies involving (a) medical, (b) surgical and (c) trauma inpatients. ACS NSQIP, American College of Surgeons National Surgical Quality Improvement Program; CI, confidence interval; DVT, deep vein thrombosis; NR, not reported; PE, pulmonary embolism; RAP, Risk Assessment Profile; TESS, Trauma Embolic Scoring System; VTE, venous thromboembolism.
Table 3 Sensitivity and specificity for studies involving medical, surgical and trauma inpatients

Risk assessment models	Threshold or cut-off	Endpoint	Data source	Sensitivity (95% CI)	Specificity (95% CI)
MEDICAL INPATIENTS					
Caprini (7 studies)	Risk score ≥3	VTE	Lui et al, 2016	70.9% (NR)	73.4% (NR)
Caprini (7 studies)	Risk score ≥3	VTE	Moumneh et al, 2020	98.1% (95.6 to 99.4)	7.5% (7.1 to 8.0)
Caprini (7 studies)	Risk score ≥3	VTE	Zhou et al, 2014	82.3% (NR)	60.4% (NR)
Caprini (7 studies)	Risk score ≥3	VTE	Zhou et al, 2018	84.3% (NR)	66.2% (NR)
Caprini (7 studies)	Risk score ≥5	VTE	Zhou et al, 2018	57.1% (NR)	24.6% (NR)
Caprini (7 studies)	Risk score ≥5	VTE	Grant et al, 2016	69.7% (NR)	50.28% (NR)
Caprini (7 studies)	Risk score ≥7	VTE	Grant et al, 2016	42.69% (NR)	74.71% (NR)
Caprini (7 studies)	Risk score ≥9	VTE	Grant et al, 2016	18.51% (NR)	
Caprini (7 studies)	NR	VTE	de Bastos et al, 2016	86.5% (NR)	47.0% (NR)
Chopard (1 study)	Risk score ≥3	VTE	Vincentelli et al, 2018	64.2% (38.4 to 81.9)	57.7% (63.9 to 79.4)
Geneva models (4 studies)	Risk score ≥3	VTE	Blondon et al, 2018	All patients: 90.0% (73.5 to 97.9)	All patients: 35.3% (32.8 to 37.8)
Geneva models (4 studies)	Risk score ≥3	VTE	Nendaz et al, 2014	All patients: 90.0% (73.5 to 97.9)	All patients: 35.3% (32.8 to 37.8)
Geneva models (4 studies)	Risk score ≥3	VTE	Cobben et al, 2019	75.0% (NR)	34.1% (NR)
Geneva models (4 studies)	Risk score ≥3	VTE	Cobben et al, 2019	95.0% (NR)	44.0% (NR)
Geneva models (4 studies)	Risk score ≥3	VTE	Cobben et al, 2019	86.4% (NR)	NR
IMPROVE models (4 studies)	4-factor model: NR	VTE	Cobben et al, 2019	27.9% (NR)	85.4% (NR)
IMPROVE models (4 studies)	7-factor model: NR	VTE	Cobben et al, 2019	73.8% (68.0 to 79.0)	47.1% (46.3 to 47.9)
IMPROVE models (4 studies)	7-factor model: NR	VTE	Cobben et al, 2019	87% (NR)	NR
IMPROVE models (4 studies)	7-factor model: NR	VTE	Cobben et al, 2019	73% (NR)	NR
IMPROVE models (4 studies)	7-factor model: NR	VTE	Cobben et al, 2019	54% (NR)	NR
IMPROVE models (4 studies)	7-factor model: NR	VTE	Cobben et al, 2019	85.5% (84.9 to 86.1)	NR
IMPROVE models (4 studies)	7-factor model: NR	VTE	Cobben et al, 2019	92.7% (NR)	NR
Intermountain (1 study)	NR	VTE	Cobben et al, 2019	26.4% (NR)	90.2% (NR)
Kucher (2 studies)	Risk Score ≥4	VTE	Vincentelli et al, 2018	25.1% (17.0 to 55.1)	92.9% (81.0 to 95.4)
Lecumberri (1 study)	NR	VTE	Cobben et al, 2019	28.0% (NR)	85.7% (NR)
NAVAL (1 study)	NR	VTE	Cobben et al, 2019	61.6% (NR)	46.3% (NR)
NICE Guidelines (1 study)	NR	VTE	Cobben et al, 2019	19.0% (NR)	92.7% (NR)
Padua (10 studies)	Risk score ≥4	VTE	Barbar et al, 2010	94.6% (NR)	62.0% (NR)

Continued
Table 3

Risk assessment models	Threshold or cut-off	Endpoint Data source	Sensitivity (95% CI)	Specificity (95% CI)
Risk score ≥4	VTE	Blondon et al, 2018¹⁸; Nendaz, 2014¹⁶	73.3% (54.1 to 87.7)	51.9% (49.3 to 54.5)
Risk score ≥4	VTE	Lui et al, 2016¹⁶	23.4% (NR)	85.6% (NR)
Risk score ≥4	VTE	Moumneh et al, 2020	91.6% (87.6 to 94.7)	25.6% (24.9 to 26.3)
Risk score ≥4	VTE	Zhou et al, 2014¹⁴	30.1% (NR)	12.7% (NR)
Risk score ≥4	VTE	Zhou et al, 2018	49.1% (NR)	16.2% (NR)
Risk score ≥4	VTE	Vincentelli et al, 2016	52.4% (38.4 to 81.9)	72.3% (63.9 to 79.4)
Risk score ≥4	VTE	Wang et al, 2020	76.2% (NR)	61.6% (NR)
Risk score ≥4	VTE	Blondon et al, 2019b	72.7% (NR)	NR
Risk score ≥5	VTE	Cobben et al, 2019¹³	61.8% (NR)	48.8% (NR)
Risk score >5	VTE	Hachey et al, 2016¹⁶	100% (100 to 100)	7.2% (4.1 to 11.0)
Risk score >5	VTE	Mlaver et al, 2020¹⁴	88.9% (NR)	32.7% (NR)
Risk score >5	VTE	Shaikh et al, 2016¹⁵	70.8% (48.9 to 87.4)	39.39% (37.0 to 41.9)
Youden index >5.5	VTE	Tian et al, 2019¹⁴	76.0% (NR)	64.0% (NR)
Risk score >6	VTE	Frankel et al, 2017	61.5% (NR)	59.8% (NR)
Risk score >6	VTE	Shaikh et al, 2016¹⁶	58.3% (36.6 to 77.9)	60.1% (57.6 to 62.5)
Risk score >7	VTE	Hachey et al, 2016¹⁶	100% (100 to 100)	31.4% (25 to 37.3)
Risk score >9	VTE	Hachey et al, 2016¹⁶	83.3% (58.3 to 100)	60.5% (54.4 to 67.3)
Risk score >9	VTE	Shaikh et al, 2016¹⁵	16.7% (NR)	93.3% (NR)
Risk score >10	VTE	Hachey et al, 2016¹⁶	75.0% (50 to 100)	69.6% (64.6 to 76.4)
Risk score >10	VTE	Dornbus et al, 2018	78.9% (NR)	60.9% (NR)
Risk score >10.5	VTE or PE	Lobastov et al, 2016	95.0% (NR)	73.0% (NR)
Risk score >15†	VTE	Hewes et al, 2015¹⁷	100% (100 to 100)	66.7% (55.0 to 78.3)
Khorana (1 study)	Youden index >5.5	Tian et al, 2019¹⁴	78.0% (NR)	48.0% (NR)
Padua (2 studies)	Risk score ≥4	Mlaver et al, 2020¹⁴	61.1% (NR)	47.4% (NR)
Youden index >3.5	VTE	Tian et al, 2019¹⁴	36.0% (NR)	93.0% (NR)
Rogers 2007 (1 study)	Youden index >14.5	Tian et al, 2019¹⁴	53.0% (NR)	54.0% (NR)

TRAUMA PATIENTS

RAP (2 studies)	Risk score ≥5	VTE	Tachino et al, 2019³⁸	100% (86.8 to 100)	37.9% (34.6 to 41.3)
RAP (2 studies)	Risk score ≥5	VTE	Hegsted et al, 2013¹⁹	DVT: 82.0% (77 to 87)	PE: 71.0% (55 to 86)
RAP (2 studies)	Risk score ≥5	VTE	Hegsted et al, 2013¹⁹	DVT: 57.0% (55 to 59)	PE: 53.0% (51 to 56)

Continued
The latter point warrants further attention. Thromboprophylaxis was employed in about half (n=25) of the studies, of which 13 studies did not report on thromboprophylaxis use. The use of thromboprophylaxis may lead to underestimation of predictive accuracy if a given RAM were to predict VTE events that were subsequently prevented by thromboprophylaxis. Limited reporting of thromboprophylaxis use precludes further analysis of its impact on the performance of the RAMs.

Comparison to the existing literature

The present review is the largest and most comprehensive systematic review in this field to date. It includes 18 recent studies published since the completion of the previous systematic review. These studies are consistent with the previous literature in that they report modest performance of the assessed RAMs, with limitations in methodology and reporting preventing further analysis. The conclusion of this review therefore concurs with previous systematic reviews: there is insufficient evidence to recommend one RAM over another.

Strengths and limitations

This systematic review has a number of strengths. The review was conducted with robust methodology in accordance with the PRISMA statement and the protocol was registered with the PROSPERO register. Clinical experts were involved throughout as checkers and to assess the validity and applicability of research during the review. We reported descriptive statistics to provide insight into the limited evidence base applicable to the subject matter, and the scientific concerns regarding validity of the data. However, there are a number of potential weaknesses. Decisions on study relevance, information gathering and validity were unblinded and could potentially have been influenced by pre-formed opinions. However, masking is resource intensive with uncertain benefits. The studies of risk prediction were a combination of prospective cohorts and retrospective health database registries. Both have significant limitations. Retrospective studies of health database registries may have large numbers but may be limited by poor data quality and failure to accurately ascertain outcomes. Prospective cohorts may have better quality data but with smaller numbers lack statistical power. The included studies demonstrated high levels of heterogeneity so we were unable to undertake any meta-analysis.

Implications for policy, practice and future research

Guidelines from the American College of Chest Physicians (ACCP) and the UK National Institute for Health and Care Excellence (NICE) suggest using a validated RAM to guide the decision on whether to prescribe thromboprophylaxis. This review identifies all relevant RAMs and their validation studies. The reported results are insufficient to recommend one RAM over another. A RAM with weak predictive accuracy may still be better than no RAM at all but it is unclear whether RAMs predict VTE risk better than unstructured clinical assessment. Further research is clearly needed but routine use of thromboprophylaxis may present an insurmountable barrier to generating accurate and precise estimates of the prognostic accuracy of RAMs. The evidence that thromboprophylaxis is effective means that it is unethical to withhold thromboprophylaxis when a significant risk of VTE is identified. This inevitably reduces the number of VTE events in any study and confounds the association
between risk factors and VTE events. Further studies of RAM accuracy will add little to our review unless they can address this issue.

Alternative approaches therefore need to be considered. Decision-analytic modelling can use existing data to explore the trade-off between the benefits and harms of thromboprophylaxis and identify key uncertainties for future primary research. The data presented in our review show how well RAMs predict VTE, but do not tell us the threshold score on the RAM at which thromboprophylaxis should be given to maximise prevention of VTE and minimise harm from bleeding. This may be a more important determinant of RAM effectiveness than predictive accuracy for VTE. Le et al suggested thromboprophylaxis is beneficial and cost-effective if a patient’s VTE risk exceeds 1%. Further work to improve RAMs to help stratify the risk of VTE in different types of hospitalised patients could focus on using decision-analytic modelling to compare the effects, harms and costs of giving thromboprophylaxis to patients with varying risk of VTE. This would allow determination of the risk threshold at which thromboprophylaxis provides optimal overall benefit.

Findings from decision-analytic modelling would require validation through primary research. The limitations of undertaking accuracy studies in populations where thromboprophylaxis is routinely used mean that future research should focus on research that compares the effectiveness of different risk assessment approaches. Observational studies could draw on variation in practice to compare outcomes between different risk assessment methods. Alternatively, a controlled trial could compare risk assessment methods in low-risk patients where existing evidence (synthesised using decision-analytic modelling) suggests the benefits of thromboprophylaxis are uncertain.

CONCLUSIONS
We identified a number of validated RAMs for potential risk stratification of hospitalised inpatients. The available evidence is insufficient to recommend one over another.

Twitter Xavier L Griffin @xgriffin and Kerstin de Wit @kerstindewit

Acknowledgements The authors would like to thank all additional members of the core project group for NIHR HTA 127454 for input and commentary throughout the work. We are also indebted to Helen Shulver for assistance with logistics and administration.

Contributors AP coordinated the study, SG, DH, AP, XG, MH, BH and KW were responsible for conception, design and obtaining funding for the study. MC developed the search strategy, undertook searches and organised retrieval of papers. AP, KS, MT and SG were responsible for the acquisition, analysis and interpretation of data. SG, MT, DH, XG, MH, BH and KW helped interpret and provided a methodological, policy and clinical perspective on the data. AP, MT and SG were responsible for the drafting of this paper, although all authors provided comments on the drafts, read and approved the final version. AP is the guarantor for the paper.

Funding This study was funded by the United Kingdom National Institute for Health Research Health Technology Assessment Programme (project number 127454). The views expressed in this report are those of the authors and not necessarily those of the NIHR HTA Programme. Any errors are the responsibility of the authors. The funders had no role in the study design, in the collection, analysis and interpretation of data; in the writing of the manuscript; and in the decision to submit the manuscript for publication.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (but including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Abdullah Pandor http://orcid.org/0000-0003-2552-5260
Steve Goodacre http://orcid.org/0000-0003-8033-8444
Xavier L Griffin http://orcid.org/0000-0003-2976-7523
Kerstin de Wit http://orcid.org/0000-0003-2763-6474
Daniel Horner http://orcid.org/0000-0002-0400-2017

REFERENCES
1 Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International cooperative pulmonary embolism registry (ICOPER). Lancet 1999;352:1386–9.
2 Prandoni P, Lensing AW, Cogo A, et al. The long-term clinical course of acute deep venous thrombosis. Ann Intern Med 1996;125:1–7.
3 ISTH Steering Committee for world thrombosis day. Thrombosis: a major contributor to the global disease burden. J Thromb Haemost 2014;12.
4 Jha AK, Larizgoitia I, Audera-Lopez C, et al. The global burden of unsafe medical care: Analytic modelling of observational studies. BMJ Qual Saf 2013;22:809–15.
5 Alikhan R, Bedenis R, Cohen AT. Heparin for the prevention of venous thromboembolism in acutely ill medical patients (excluding stroke and myocardial infarction). Cochrane Database Syst Rev 2014;2014:Cd003747.
6 Dentali F, Douketis JD, Gianni M, et al. Meta-Analysis: anticoagulant prophylaxis to prevent symptomatic venous thromboembolism in hospitalized medical patients. Ann Intern Med 2007;146:278–88.
7 Kahn SR, Diendere G, Morrison DR, et al. Effectiveness of interventions for the implementation of thromboprophylaxis in hospitalised patients at risk of venous thromboembolism: an updated abridged Cochrane systematic review and meta-analysis of randomised controlled trials. BMJ Open 2019;9:e024444.
8 Lloyd NS, Douketis JD, Moinuddin I, et al. Anticoagulant prophylaxis to prevent asymptomatic deep vein thrombosis in hospitalised medical patients: a systematic review and meta-analysis. J Thromb Haemost 2008;6:405–14.
9 Henke PK, Kahn SR, Pannucci CJ, et al. Call to action to prevent venous thromboembolism in hospitalized patients: a policy statement from the American heart association. Circulation 2020;141:e914–31.
10 Noble. Venous thromboembolism in over 16s:reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism. London, UK: National Institute for Health and Care Excellence, 2018. https://www.nice.org.uk/guidance/NGS8
11 Chan NC, Gross PL, Weitz JL. Addressing the burden of hospital-related venous thromboembolism: the role of extended anticoagulant prophylaxis. J Thromb Haemost 2018;16:413–7.
12 Huang W, Anderson FA, Spencer FA, et al. Risk-assessment models for predicting venous thromboembolism among hospitalized nonsurgical patients: a systematic review. J Thromb Thrombolysis 2013;35:67–80.
13 Stuck AK, Spirk D, Schaadt J, et al. Risk assessment models for venous thromboembolism in acutely ill medical patients. A systematic review. *Thromb Haemost* 2017;117:801–8.
14 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Ann Intern Med* 2009;151:564–9. w64.
15 Goodacre S, Hogg K, Griffin X, et al. The cost-effectiveness of venous thromboembolism risk assessment tools for hospital inpatients. UK: National Institute of Health Research UK, 2019.
16 Moons KGM, Woll RF, Riley RD, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. *Ann Intern Med* 2019;170:W1–33.
17 Wolf RF, Moons KGM, Riley RD, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. *Ann Intern Med* 2019;170:616–7.
18 Centre for Reviews and Dissemination. Systematic reviews: CRD’s guidance for undertaking reviews in health care. York, 2009.
19 McKenzie JE, Brennan SE, Ryan RE. Chapter 9: Summarizing study characteristics and preparing for synthesis. In: Cochrane Handbook for systematic reviews of interventions version 6.2 updated February 2021. Cochrane, 2021.
20 Hosmer DW, Lemeshow S. Applied logistic regression. 2 edn. New York: John Wiley & Sons, 2000.
21 Abdel-Raeeq HK, Kucher N, Jallad SG, et al. Venous thromboembolism risk stratification in medically-ill hospitalized cancer patients. A comprehensive cancer center experience. *J Thromb Thrombolysis* 2010;30:286–93.
22 Aurar T. The management of deep vein thrombosis: the Ahtar DVT assessment model for hospital patients at risk for venous thromboembolism: the Padua prediction score. *J Thromb Haemost* 2010;8:2450–7.
23 Bilimoria KY, Liu Y, Paruch JL, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculation: a decision aid and informed consent tool for patients and surgeons. *J Am Coll Surg* 2013;217:833–42.
24 Blomdorn M, Righini M, Nendaz D. External validation of the simplified Geneva risk assessment model for hospital-associated venous thromboembolism in the Padua cohort. *J Thromb Haemost* 2020;18:676–80.
25 Blomdorn M, Limacher A, Righini M, et al. Adequacy of hospital thromboprophylaxis and risk assessment models in the SWITCO65+ cohort. *Res Pract Thromb Haemost* 2019;3:760.
26 Blomdorn M, Spirk D, Kucher N, et al. Comparative performance of clinical risk assessment models for hospital-acquired venous thromboembolism in medical patients. *Thromb Haemost* 2018;118:82–9.
27 Bo H, Li Y, Liu G, et al. Assessing the risk for development of deep vein thrombosis in Chinese patients using the 2010 Caprini risk assessment model: a prospective multicenter study. *J Thromb Thrombolysis* 2020;27:801–8.
28 Chen X, Pan L, Deng H, et al. Risk assessment in Chinese hospitalized patients comparing the Padua and Caprini scoring algorithms. *Clin Appl Thromb Hemost* 2018;24:1275–35.
29 Cobben MRR, Nemeth B, Lijfering WM, et al. Validation of risk assessment models for venous thrombosis in hospitalized medical patients. *Res Pract Thromb Haemost* 2019;3:217–25.
30 de Bastos M, Barreto SM, Calais JS, et al. Derivation of a risk assessment model for hospital-acquired venous thrombosis: the naval score. *J Thromb Thrombolysis* 2016;41:628–35.
31 Dornbos DL, Shah V, Priddy B. Predicting venous thromboembolic complications following neurological surgery procedures. *J Neurosurg* 2018;129:55.
32 Eliaos P, Khanna R, Dudley A, et al. Automating venous thromboembolism risk calculation using electronic health record data upon hospital admission: the automated Padua prediction score. *J Hosp Med* 2017;12:231–7.
33 Friesen MD JK, Kucher N, TORTA BA J, et al. MP4-17 CAPRINI score predicts venous thromboembolic events in patients undergoing robotic assisted prostatectomy. *J Urol* 2017;197:e635.
34 Grant PJ, Greene MT, Chopra V, et al. Assessing the Caprini score for risk assessment of venous thromboembolism in hospitalized medical patients results presented at the Society of hospital medicine annual meeting, March 26, 2014, Las Vegas, Nevada. *Am J Med* 2016;129:528–35.
35 Greene MT, Spyropoulos AC, Chopra V, et al. Validation of risk assessment models of venous thromboembolism in hospitalized medical patients. *Am J Med* 2016;129:1001.e9–1001.e18.
36 Hachey KJ, Hewes PD, Porter LP, et al. Caprini venous thromboembolism risk assessment permits selection for postdischarge prophylactic anticoagulation in patients with resectable lung cancer. *J Thorac Cardiovasc Surg* 2016;151:37–44.
37 Heggstad D, Gritsiouk Y, Schlesinger P, et al. Utility of the risk assessment profile for risk stratification of venous thrombotic events for trauma patients. *Am J Surg* 2013;205:517–20.
38 Hewes PD, Hachey KJ, Zhang XW, et al. Evaluation of the Caprini model for Venothromboembolism in esophagectomy patients. *Ann Thorac Surg* 2015;100:2072–8.
39 Ho KM, Rao S, Rittenhouse KJ, et al. Use of the trauma embolic scoring system (Tess) to predict symptomatic deep vein thrombosis and fatal and non-fatal pulmonary embolism in severely injured patients. *Anaesth Intensive Care* 2014;42:709–14.
40 Hu Y, Li X, Zhou H, et al. Comparison between the Khonara prediction score and Caprini risk assessment models for assessing the risk of venous thromboembolism in medical patients with cancer: a retrospective case control study. *Interact Cardiovasc Thorac Surg* 2020;31:454–60.
41 Krasnow R, Preston M, Chung B. Validation of venous thromboembolism risk assessment score in major urologic cancer surgery: a population based study. *J Urol* 2017;197:et1126.
42 Liu L-P, Zheng H-G, Wang DZ, et al. Risk assessment of deep-vein thrombosis after acute stroke: a prospective study using clinical factors. *CNS Neurosci Ther* 2014;20:403–10.
43 Liu X, Liu C, Chen X, et al. Comparison between Caprini and Padua risk assessment models for hospital patients at risk for venous thromboembolism: a retrospective study. *Interact Cardiovasc Thorac Surg* 2016;23:538–43.
44 Lobaskov K, Barinov V, Schastlivtsev I, et al. Validation of the Caprini risk assessment model for venous thromboembolism in high-risk surgical patients in the background of standard prophylaxis. *J Vasc Surg Venous LymphatDisord* 2016;14:153–60.
45 Mahan CE, Liu Y, Turple AG, et al. External validation of a risk assessment model for venous thromboembolism in the hospitalised acutely-ill medical patient (VTE-VALUORR). *Thorac Haemost* 2014;12:692–9.
46 Melville E, Lynde GC, Gallion C, et al. Development of a novel preoperative venous thromboembolism risk assessment model. *Am Surg* 2020;86:1098–105.
47 Moumneh T, Riou J, Douillet D, et al. Validation of risk assessment models predicting venous thromboembolism in acutely ill medical patients: a cohort study. *J Thromb Haemost* 2020;18:1398–407.
48 Nafee T, Gibson CM, Travis R, et al. Machine learning to predict venous thrombosis in acutely ill medical patients. *Res Pract Thromb Haemost* 2020;4:230–7.
49 Nendaz M, Spirk D, Kucher N, et al. Multicentre validation of the Geneva risk score for hospitalised medical patients at risk of venous thromboembolism. explicit assessment of thromboembolic risk and prophylaxis for medical patients in Switzerland (estimate). *Thorac Haemost* 2014;11:51–8.
50 Pannucci CJ, Laird S, Dimick JB, et al. A validated risk model to predict 90-day VTE events in postsurgical patients. *Chest* 2014;145:567–73.
51 Pannucci CJ, Osborne NH, Wahl WL. Creation and validation of a simple venous thromboembolism risk scoring tool for thermally injured patients: analysis of the National burn Repository. *J Burn Care Res* 2012;33:20–5.
52 Patell R, Rybicki L, McCrae KR, et al. Predicting risk of venous thromboembolism in hospitalized cancer patients: utility of a risk assessment tool. *Am J Hematol* 2017;92:179–83.
53 Rogers FB, Shackford SR, Horst MA, et al. Determining venous thromboembolic risk assessment for patients with trauma: the trauma embolic scoring system. *J Trauma Acute Care Surg* 2012;73:511–5.
54 Rossers SO, Kilaru RK, Hosokawa P, et al. Multivariable predictors of postoperative venous thromboembolic events after general and vascular surgery: results from the patient safety in surgery study. *J Am Coll Surg* 2007;204:1211–21.
55 Rosenberg D, Eichorn A, Alarcon M, et al. External validation of the risk assessment model of the International medical prevention registry on venous thromboembolism (improve) for medical patients in a tertiary health system. *J Am Heart Assoc* 2014;3:e001152.
56 Rothberg MB, Lindenauner PK, Lahti M, et al. Risk factor model to predict venous thromboembolism in hospitalized medical patients. *J Hosp Med* 2011;6:202–9.
57 Shaikh M-A, Jeong HS, Mastro A, et al. Analysis of the American Society of Anesthesiologists physical status classification
system and Caprini risk assessment model in predicting venous thromboembolic outcomes in plastic surgery patients. *Aesthet Surg J* 2016;36:497–505.

60 Shang M-M, Yan R, Wang X-L, et al. Comparison of 2013 and 2009 versions of Caprini risk assessment models for predicting VTe in Chinese cancer patients: a retrospective study. *J Thromb Thrombolysis* 2020;50:446–51.

61 Shen C, Ge B, Liu X, et al. Predicting the occurrence of venous thromboembolism: construction and verification of risk warning model. *BMC Cardiovasc Disord* 2020;20:249.

62 Tachino J, Yamamoto K, Shimizu K, et al. Quick risk assessment profile (qRAP) is a prediction model for post-traumatic venous thromboembolism. *Injury* 2019;50:1540–4.

63 Tian B, Li H, Cui S, et al. A novel risk assessment model for venous thromboembolism after major thoracic surgery: a Chinese single-center study. *J Thorac Dis* 2019;11:1903–10.

64 Vardi M, Ghanem-Zoubi NO, Zidan R, et al. Venous thromboembolism and the utility of the Padua prediction score in patients with sepsis admitted to internal medicine departments. *J Thromb Haemost* 2013;11:467–73.

65 Vaziri S, Wilson J, Abbatematteo J, et al. Predictive performance of the American College of Surgeons universal risk calculator in neurosurgical patients. *J Neurosurg* 2018;128:942–7.

66 Vincentelli GM, Timpone S, Murdolo G, et al. A new risk assessment model for the stratification of the thromboembolism risk in medical patients: the TEVere score. *Minerva Med* 2018;109:436–42.

67 Wang X, Yang Y-Q, Liu S-H, et al. Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients. *J Eval Clin Pract* 2020;26:26–34.

68 Winoker JS, Paulucci DJ, Anastos H, et al. Predicting Complications Following Robot-Assisted Partial Nephrectomy with the ACS NSQIP® Universal Surgical Risk Calculator. *J Urol* 2017;198:803–9.

69 Woller SC, Stevens SM, Jones JP, et al. Derivation and validation of a simple model to identify venous thromboembolism risk in medical patients. *Am J Med* 2011;124:947–54.

70 Zhou H, Hu Y, Li X, et al. Assessment of the risk of venous thromboembolism in medical inpatients using the Padua prediction score and Caprini risk assessment model. *J Atheroscler Thromb* 2018;25:1091–104.

71 Zhou H, Wang L, Wu X, et al. Validation of a venous thromboembolism risk assessment model in hospitalized Chinese patients: a case-control study. *J Atheroscler Thromb* 2014;21:261–72.

72 Kahn SR, Lim W, Dunn AS, et al. Prevention of VTe in nonsurgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of chest physicians evidence-based clinical practice guidelines. *Chest* 2012;141:e195S–226.

73 Gould MK, Garcia DA, Wren SM, et al. Prevention of VTe in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9th ED: American College of chest physicians evidence-based clinical practice guidelines. *Chest* 2012;141:e227S–77.

74 Le P, Martinez KA, Pappas MA, et al. A decision model to estimate a risk threshold for venous thromboembolism prophylaxis in hospitalized medical patients. *J Thromb Haemost* 2017;15:1132–41.