Characterization of the Recombinant UDP:flavonoid 3-O-galactosyltransferase from *Mangifera indica* ‘Irwin’ (MiUFGalT3) involved in Skin Coloring

Ayako Katayama-Ikegami¹, Zion Byun², Suzuka Okada¹, Masahiro Miyashita³, Takane Katayama², Tomoaki Sakamoto¹, Asuka Ichihi³, Kosuke Shimizu⁵ and Shinya Kanzaki⁴*

¹Ishikawa Prefectural University, Nonoichi 921-8836, Japan
²Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
³Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
⁴Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
⁵Experimental Farm, Kindai University, Yuasa, Wakayama 643-0004, Japan

Red mangos (*Mangifera indica* L.) accumulate appreciable amounts of cyanidin-based anthocyanins in the skin, and previous studies showed that these anthocyanins contain galactose as a sugar moiety. To date, two UDP:flavonoid 3-O-glycosyltransferase (UFGT)-like genes named *MiUFGT1* and *MiUFGalT3* (*MiUFGalT3*) have been isolated from mango ‘Irwin’ peel as anthocyanin-related UFGT genes, but the function of the proteins of the genes have not yet been elucidated. In this study, we characterized recombinant *MiUFGT1* and *MiUFGalT3* expressed in *Escherichia coli*. In the presence of quercetin as an acceptor, r*MiUFGT1* showed marginal glucosylation activity, while r*MiUFGalT3* exhibited significant galactosylation activity 20-fold higher than its glucosylation activity. Specificity analysis using purified MiUFGalT3 found that r*MiUFGalT3* almost equally accepts anthocyanidins and flavonols. The anthocyanins extracted from the ‘Irwin’ skins were cyanidin 3-O-galactoside and 7-O-methylcyanidin 3-O-galactoside by instrumental analyses, which is consistent with previous results obtained for other red mango cultivars. The results suggest that MiUFGalT3 is responsible for the red coloration of ‘Irwin’ mango fruit skins.

Key Words: anthocyanin, light-induced coloration, phylogeny, sugar moiety.

Introduction

Anthocyanins, the largest subclass of plant flavonoid, are water-soluble pigments with colors ranging from red to blue and purple. They are the main pigments in flowers and fruits of many plant species and are synthesized from phenylalanine through the flavonoid biosynthetic pathway, which is one of the most well understood pathways among plant secondary metabolisms (Grotewold, 2006; Tanaka et al., 2008). In the final step of this pathway, the anthocyanidin aglycon is glycosylated by a glycosyltransferase, increasing its stability and water solubility, and decreasing its reactivity, while changing its spectral characteristics, and allowing it to be transported into the vacuole (Fukuchi-Mizutani et al., 2003; Prior and Wu, 2006; Vogt and Jones, 2000). Thus, the expression and activity of glycosyltransferases are important factors for anthocyanin accumulation in plant organs. Glycosyltransferases associated with anthocyanin biosynthesis are referred to as UDP:flavonoid glycosyltransferases (UFGTs), and several studies on UFGTs were conducted related to the coloration of flowers or fruits in a number of plant species such as grape (Ford et al., 1998), kiwifruit (Liu et al., 2018; Montefiori et al., 2011), and petunia (Yamazaki et al., 2002). In grapes, *UFGT* gene expression is crucial and appears to be the key regulatory factor for anthocyanin accumulation in the berry skin of red cultivars (Boss et al., 1996a, b; Kobayashi et al., 2001, 2002). Similarly, correlated expression of *UFGT* genes with anthocyanin accumulation was reported in several plant species such as kiwifruit (Liu et al., 2018; Montefiori et al., 2011), petunia (Yamazaki et al., 2002), etc.
2002), lychee (Zhao et al., 2012), apple (Kim et al., 2003), and purple potato (Hu et al., 2011). Thus, up-regulation of UFGT gene expression is important for anthocyanin accumulation and the resulting coloration of plant organs.

The color of a mature mango (Mangifera indica L.) fruit varies depending on the cultivar, ranging from green to yellow, orange, or red. As in other crops, the red coloration of mango fruit skin is due to anthocyanin accumulation. Recently, several molecular studies of anthocyanin biosynthesis in mangoes have been published (Bajpai et al., 2018; Hoang et al., 2015; Kanzaki et al., 2019; Karanjalker et al., 2018a, b). In our previous study, we isolated two UF GT genes, MiUF GT1 and MiUF GT3, from mango fruit skin and showed that the expression of both genes was upregulated by light exposure, which induced anthocyanin accumulation in the fruit skin (Kanzaki et al., 2019). This suggests that these two genes play important regulatory roles in anthocyanin accumulation in mangoes. The amino acid sequences of these genes exhibited high similarity to other plant UF GTs and contained the conserved plant secondary product glycosyltransferase (PSPG) box characteristic of the plant glycosyltransferase family. Although the presence of a glutamine and a histidine residue at the C-terminus end of the PSPG box in MiUF GT1 and MiUF GT3, respectively, implied that MiUF GT1 and MiUF GT3 use glucose and galactose as sugar donors, respectively, the actual function and roles in the biosynthetic pathway was not investigated. As the major anthocyanins in mango skin are 7-O-methylcyanidin 3-O-β-d-galactopyranoside and cyanidin 3-O-galactoside in some cultivars (Berardini et al., 2005a, b; Lopez-Cobo et al., 2017), the expression and activity of UDP-galactose: flavonoid 3-O-galactosyltransferases (UGGTs) are considered essential factors for anthocyanin accumulation in mango fruit.

In this study, we investigated the functional and biochemical characterization of the recombinant protein of the two mango UF GTs, MiUF GT1 and MiUF GT3 to elucidate the role of these enzymes in anthocyanin biosynthesis in mango fruit skin. The rMiUF GT1 protein showed marginal glucosylation and no galactosylation activity, while rMiUF GT3 showed significant galactosylation activity. Thus, MiUF GT3 is a UF GaT (MiUGaT3) and may play a crucial role in anthocyanin accumulation in red mango fruit.

Materials and Methods

Expression of MiUF GT1 and MiUGaT3 in Escherichia coli

The coding sequences of MiUF GT1 (Accession No.: LC474860) and MiUGaT3 (Accession No.: LC474861) were separately PCR amplified, and subcloned into a pColdI expression vector (Takara Bio Inc., Shiga, Japan) fused to a glutathione S-transferase (GST) tag using an In-Fusion HD Cloning Kit (Takara Bio) to generate His- and GST-tagged fusion proteins. The primer pairs of 5′-TTCCAGGGCGGAAATGCTG TACAAAAAGAACC-3′ and 5′-ACCGAGCTCCTAATGCGAGATACTGAAACG-3′ and of 5′-TTCCAGGGCAGGGAATGCTG TACAAAAAGAACC-3′ and 5′-ACCGAGCTCCTAATGCGAGATACTGAAACG-3′ were used to amplify the respective genes. The GST tag sequence was artificially synthesized by a manufacturer (Fasmac Co., Ltd., Atsugi, Japan), and amplified by PCR for application in the In-Fusion reaction. After sequence confirmation, the resulting plasmids pColdI-MiUF GT1 or MiUGaT3 were used to transform *E. coli* Chaperone Competent Cells pGro7/BL21 cells (TaKaRa Bio). The transformants were grown in 40 mL of LB medium containing 50 mg·L⁻¹ ampicillin and 20 mg·L⁻¹ chloramphenicol for 4–5 h with shaking at 37°C at 200 rpm. When the OD₆₀₀ value reached 0.4–0.6, the culture was exposed to 15°C for 30 min, and then isopropyl β-d-thiogalactopyranoside (IPTG) and L-arabinose were added to the culture for protein induction at final concentrations of 0.1 mM and 0.5 mg·mL⁻¹, respectively. The culture was further incubated at 15°C for 24 h with shaking at 200 rpm.

Western blot analysis

Expression of the recombinant MiUF GT1 and MiUGaT3 in *E. coli* was examined by Western blot analysis. The cell-free extracts (20 μg) were subjected to SDS-polyacrylamide gel electrophoresis (PAGE), and the separated proteins transferred to a PVDF membrane (Immobilon-P; MilliporeSigma, MA, USA) as described previously (Asakuma et al., 2011). Anti-penta His mouse IgG (Qiagen, Hilden, Germany) and goat anti-mouse IgG conjugated with horse radish peroxidase (Santa Cruz Biotechnology, Inc., TX, USA) were used as primary and secondary antibodies, respectively, in 5000-fold dilutions. The membrane was incubated with Immobilon Western Chemiluminescent HRP Substrate (MilliporeSigma, MA, USA) and chemiluminescence detected using ImageQuant LAS 4000 mini (GE Healthcare Life Sciences, MA, USA). The image was processed with ImageJ (National Institutes of Health).

Purification of the recombinant MiUGaT3

The *E. coli* cells expressing the recombinant MiUGaT3 were harvested by centrifugation, resuspended in 4 mL lysis buffer containing 50 mM Tris-HCl, 150 mM NaCl, 1% Triton-X100, and 1 mM DTT, and disrupted by sonication on ice. Cell debris was removed by centrifugation, and the resulting soluble fraction was applied onto a column containing His60 Ni Superflow Resin (Clontech Laboratories, Inc., CA, USA). After eluting the bound protein according to the manufacturer’s instructions, the enzyme was further
purified by Mono Q 5/50 GL column chromatography (GE Healthcare Life Sciences). The elution was performed with a linear gradient of 0–1 M NaCl in 10 mM Tris-HCl buffer (pH 8.0). The purified preparation was dialyzed against HEPES-KOH buffer (pH 7.5) and stored at −30°C in 50% glycerol until use. Protein concentration was determined using a Qubit® protein assay kit (Thermo Fisher Scientific, MA, USA). The purity of the protein was confirmed by SDS-PAGE with Coomassie Brilliant Blue R-250 staining.

Enzyme assay

Quercetin, kaempferol, and quercetin 3-O-glucoside (Q3Glc) were purchased from Sigma (St. Louis, MO, USA), while cyanidin 3-O-galactoside (Cy3Gal) and UDP-glucose (UDP-Glc) were from Fluka (St. Gallen, Switzerland). Petunidin was obtained from Tokiwa Phytochemical Co., Ltd. (Sakura, Japan), and peonidin and quercetin 3-O-galactoside (Q3Gal) were obtained from Extrasynthese (Lyon, France). 7-Methoxyquercetin was purchased from Cayman Chemical (Ann Arbor, MI, USA), and UDP-galactose (UDP-Gal) from Merck (Darmstadt, Germany).

A standard reaction mixture (total volume of 25 μL) contained 100 mM HEPES-KOH (pH 7.5), 75 mM KCl, 100 μM MnCl₂, 1 mM DTT, 10% glycerol, 100 μM of acceptors, 600 μM UDP-sugar donors, and 0.35 μg of purified rMiUFGalT3. The reactions were initiated by mixing the substrate solution with the enzyme solution, both of which were separately pre-incubated for 3 min at 25°C. The mixtures were incubated for short time periods (~13 s) at 25°C to minimize the degradation of anthocyanidins. The reactions were terminated by adding 50 μL of 100% MeOH containing 1% HCl (for anthocyanidins) or 100% MeOH (for flavonols). The mixtures were vortexed and centrifuged at 13,000 rpm for 5 min to precipitate the proteins.

To compare the activity between MiUFGT1 and MiUFGalT3, 100 μM quercetin was incubated with 10 mg of the E. coli cell-free extracts expressing the enzymes in the presence of either UDP-Gal or UDP-Glc. The assay was conducted for 10 min or 60 min. Identities of quercetin 3-O-glycoside were verified by co-elution with the standard samples and the absorption spectra of the peaks obtained in the HPLC analysis (described below).

The optimum pH of the enzymatic activity was determined using 20 μM of cyanidin and 600 μM UDP-Gal, as the substrates. Sodium citrate (pH 4–6), MES-KOH (pH 5–7), HEPES-KOH (pH 7–8), and glycine-NaOH (pH 8.5–9.5) buffers were used at 100 mM. The effect of temperature (35–60°C) on enzymatic activity was determined using a reaction mixture containing 100 mM HEPES-KOH buffer (pH 7.5), 600 μM UDP-Gal, and 40 μM quercetin. Cyanidin was not used in the thermostability assay due to its heat lability.

The initial velocity of the reaction catalyzed by rMiUFGalT3 was determined by varying the concentration of UDP-Gal (0.1–1.2 mM) while using a fixed concentration of cyanidin (25 μM), or varying the concentration of cyanidin (4–16 μM) while using a fixed concentration of UDP-Gal (600 μM). The reactions were carried out at 25°C for 13 s, within the period of a linear reaction rate. The kinetic parameters were calculated by curve-fitting the experimental data to the Hill equation, using KaleidaGraph version 4.0 (HULINKS Inc., Tokyo, Japan). Acceptor specificity was examined using various flavonols and anthocyanidins at a concentrations of 25 μM in the presence of 600 μM UDP-Gal. In this assay, the relative activities for flavonols and anthocyanidins were calculated and expressed as quercetin 3-O-galactoside (Q3Gal) and cyanidin 3-O-galactoside (Cy3Gal) equivalents, respectively.

HPLC analysis of reaction products

The reaction products (20 μL) were analyzed by reverse-phase HPLC using a Prominence LC20A instrument (Shimadzu Corporation., Kyoto, Japan) equipped with a C18 YMC-ODS A analytical column (4.6 × 150 mm inner diameter, particle size 5 μm; YMC Co., Ltd., Kyoto, Japan) protected by a guard column as previously reported (Ikegami et al., 2009). The elution was carried out at 37°C at a flow rate of 1 mL·min⁻¹ using a solvent system of A [2% (v/v) acetic acid] and B (100% MeOH) in which solvent B was increased from 5% to 40% in the first 5 min and then to 70% in the next 15 min. The elution was monitored by a photodiode array detector SPD-M20A (Shimadzu), and Cy3Gal was quantified at a wavelength of 525 nm. When flavonols were used as acceptors, the reaction mixtures were analyzed similarly, except that solvent B was increased from 30% to 100% in the first 13 min and the elution was monitored at 360 nm.

Extraction of anthocyanins from ‘Irwin’ mango fruit skins and component analysis

The mature fruit skins of ‘Irwin’ mangoes were lyophilized after being frozen in liquid nitrogen. The colored pericarp tissue (approximately 0.1 g) was then scraped off using razor blades and anthocyanins extracted with 200 μL of aqueous acetone [80% (v/v) containing 1% ascorbic acid]. After the organic phase was evaporated in vacuo, the aqueous phase was applied onto a 200 mg C18 YMC Dispo SPE cartridge (YMC). After washing the cartridge with 1.5 mL of 0.01% HCl and ethyl acetate to remove non-anthocyanin substances, anthocyanins were eluted in 0.5 mL of acidified MeOH (0.01% hydrochloric acid) and manually collected as a red fraction. The obtained fraction was then subjected to HPLC with a C18 Inertsil ODS-2 analytical column (5 μm, 250 × 6.0 mm inner diameter; GL Sciences Inc., Tokyo, Japan) for separation, and the major peak fraction collected manually. The elution
conditions were as described above for anthocyanin analysis except that solvent B was increased from 10% to 40% in 50 min. To the collected fraction, 1/5 volume of 11.7 M HCl was added and the mixture incubated at 90°C for 50 min to hydrolyze the sugar linkage. The acid-hydrolyzed products were then subjected to high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) to detect the liberated sugars. HPAEC-PAD was carried out using a Dionex ICS-3000 (Thermo Fisher Scientific) system equipped with a CarboPac PA1 column (2 × 250 mm). The elution was performed at 30°C under constant flow (0.25 mL·min⁻¹) of 13.8 mM NaOH and 5 mM sodium acetate for 20 min. The column was washed with 200 mM NaOH for 10 min before the next run. Known concentrations of glucose (Glc) and galactose (Gal) were used as the standards.

The hydrolyzed samples were also analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) to detect aglycon. LC-ESI-MS analysis was carried out using an LCMS-8030 system (Shimadzu) equipped with an InertSustain C18 HP column (2.1 × 100 mm; GL Sciences). The elution was performed at 30°C under a flow rate of 0.2 mL·min⁻¹ with a linear gradient of 5–60% acetonitrile in 0.1% formic acid. The spectra were obtained in the positive ion mode to scan m/z 200–500.

Results

Heterologous expression of MiUFGT1 and MiUFGalT3 in E. coli

To examine the catalytic activities of MiUFGT1 and MiUFGalT3, we expressed as His- and GST-tagged fusion proteins using the pColdI vector in E. coli cells carrying the chaperon plasmid pGro7. Western blot analysis of the cell-free extracts obtained from the recombinant cells found that both proteins are expressed as soluble forms (calculated, 79 and 80 kDa, respectively) (Fig. 1A). The expression level of rMiUFGalT3 was 3-fold higher than rMiUFGT1. Using the preparations, we first tested for UDP-hexose-dependent flavonoid glycosyltransferase activity. The cell-free extract obtained from rMiUFGT1-expressing cells showed very low glucosyltransferase activity when incubated in the presence of quercetin and UDP-Glc (Fig. 2A). When UDP-Gal was used as an alternative sugar donor, no new peak appeared in the chromatogram (Fig. 2B), even after prolonged incubation of 120 min. In contrast, the cell-free extract obtained from rMiUFGalT3-expressing E. coli cells had the ability to transfer Gal- and Glc moieties of the sugar nucleotides to quercetin (Fig. 2C, D). The elution times and photodiode array spectra of the newly appeared peaks in the chromatograms exactly coincided with those of the authentic quercetin-3-O-galactoside (Q3Gal) and quercetin-3-O-glucoside (Q3Glc), respectively. The glucosyltransferase activity of rMiUFGalT3 appeared to be 20 times higher than glucosyltransferase activity. The glucosyltransferase activity observed for rMiUFGalT3 was estimated to be 4.6 times higher than for rMiUFGT1, as judged by the peak area in the HPLC chromatograms and the band intensities in the Western blot analysis.

A model structure of MiUFGT1 was constructed using the grape VvGT1 as a template (PDB ID: 2C1Z; 51% identical in amino acid sequence) in the SWISS-MODEL server (Offen et al., 2006; Waterhouse et al., 2018). When the two structures were compared, two amino acid residues involved in the recognition of UDP
in VvGT1 were replaced with other amino acids in MiUFGT1 (Supplementary Fig. 1). The two residues were identical in VvGT1 and MiUFGalT3, both of which demonstrated marked glycosyltransferase activity. Accordingly, we constructed single and double replacement mutants of MiUFGT1 (I142T and/or N278T) and expressed them in E. coli cells using the same method as for the wild-type protein. However, neither glucosyltransferase nor galactosyltransferase activity was increased in these mutants as compared with the wild-type enzyme-expressing cells (data not shown). Based on these findings, we decided to focus on MiUFGalT3 in the following experiments.

Purification and characterization of rMiUFGalT3

rMiUFGalT3 was purified to homogeneity by affinity chromatography followed by anion-exchange chromatography (Fig. 1B). When the purified enzyme was incubated with UDP-Gal and cyanidin and the resulting reaction mixture was analyzed by HPLC, a new peak corresponding to Cy3Gal appeared in the chromatogram as shown in Figure 3. The optimum pH of cyanidin galactosyltransferase activity was found to be pH 7.5 (HEPES-KOH buffer), while the optimal temperature of quercetin galactosyltransferase activity was determined to be 55°C (Supplementary Fig. 2). Note that quercetin was used for the thermostability assay due to the heat lability of cyanidin.

Acceptor specificity of rMiUFGalT3 was determined using six anthocyanidins (cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin) and four flavonols (kaempferol, 7-O-methylquercetin, myricetin, and quercetin) (Tables 1 and 2). The activities are expressed as cyanidin 3-O-galactoside and quercetin 3-O-galactoside equivalents by measuring the absorbance of 520 nm and 360 nm, respectively. Previous reports indicated that the absorption coefficients of these compounds differed by 1.1- to 1.25-fold (Jordheim et al., 2007). The specificity analysis suggested that rMiUFGalT3 is relatively tolerable against 3', 4', and 5' modification, but does not accept an anthocyanidin modified with a methoxy group at either the 3' or 5' positions (malvidin). A similar specificity pattern was also observed when flavonols were used as acceptors. The specific activity of the enzyme for cyanidin was 1.2

![HPLC analysis of reaction products catalyzed by rMiUFGalT3.](image)

Fig. 3. HPLC analysis of reaction products catalyzed by rMiUFGalT3. Cyanidin and UDP-Gal were incubated in the absence (upper panel) and presence (lower panel) of the enzyme. The elution was monitored at 520 nm.

Substrate	Structure	Relative activity (%)	Substrate	Structure	Relative activity (%)
Cyanidin	![Cyanidin](image)	100	Pelargonidin	![Pelargonidin](image)	54
Peonidin	![Peonidin](image)	67	Delphinidin	![Delphinidin](image)	99
Petunidin	![Petunidin](image)	69	Malvidin	![Malvidin](image)	nd*

* The acceptor was added at the final concentration of 10 μM.
* Note that activity was calculated as cyanidin-3-O-galactoside (Cy3Gal) equivalents.
* nd, not detected.
times higher than quercetin at the acceptor concentration of 25 μM. Notably, rMiUFGalT3 accepted 7-O-methylquercetin equally to quercetin, which strongly suggests the ability of this enzyme to transfer Gal to 7-O-methylcyanidin (described below). While using quercetin as an acceptor, we found that quercetin inactivated rMiUFGalT3 through an unknown mechanism; therefore, the kinetic parameters were determined using cyanidin as an acceptor. Sigmoidal curves were obtained for both UDP-Gal and cyanidin, and the plots fitted to the Hill equation (Fig. 4). The \(k_{\text{cat}} \) and \(K_{0.5} \) values for UDP-Gal were calculated to be 1.8 s\(^{-1}\) and 240 μM, while those for cyanidin were 1.8 s\(^{-1}\) and 6.9 μM. Hill coefficients were 2 and 6, respectively.

Analysis of anthocyanins in ‘Irwin’ fruit skin

Finally, we examined the composition of anthocyanins in the ‘Irwin’ mango skins. Anthocyanins were extracted from the skins and separated from flavonols. As a result, two peaks appeared in the HPLC chromatogram (Fig. 5A). The small peak that eluted earlier likely corresponded to Cy3Gal because the retention time, as well as the absorption spectra obtained in the photodiode array, were the same as those obtained for the authentic compound (Fig. 5B). Note that Cy3Glc was eluted slightly faster than Cy3Gal (data not shown). To investigate the chemical compound corresponding to the larger peak, the latter peak fraction detected in the HPLC chromatogram was manually collected and subjected to acid-hydrolysis (Fig. 6). Sugar content analysis using HPAEC-PAD showed that the hydrolysate contained Gal and Glc at a molar ratio 0.3:1.
Glycosyltransferases (GTs) involved in plant secondary metabolism including flavonoid biosynthesis, were assigned to family 1 (Bowles et al., 2006; Vogt and Jones, 2000). These family 1 GTs recognize UDP-sugars by a motif located close to the C-terminus, which is one of the few regions with significant sequence similarity among members. The so-called PSPG motif is comprised of 44-amino acids residues (Gachon et al., 2005). Comparison of the amino acid sequences of the region and subsequent site-directed mutagenesis studies indicated that donor specificity may in part be determined by the last amino acid residue in the PSPG motif. For example, Glc is specified for UDP-Glc while His is used for UDP-Gal (Kubo et al., 2004). However, the extent to which the residue contributes to donor specificity is controversial (Offen et al., 2006; Ono et al., 2010). The corresponding residues of MiUFGT1 and MiUFGT3 (MiUFGalT3) are Glc and His, respectively (Kanzaki et al., 2019). rMiUFGT1 expressed in E. coli as a GST fusion showed weak glucosyltransferase activity, suggesting that MiUFGT1 may have mutations at the sites associated with its activity. In this study, we examined two amino acid substitutions in MiUFGT1 (I142T and/or N278T), but the exact sites related to the activity were not elucidated. Further investigation will be needed to clarify the factors affecting MiUFGT1’s activity and exact role in mango fruit skin. On the other hand, rMiUFGalT3 showed significant galactosyltransferase activity 20 times higher than its glucosyltransferase activity. Although we have no clear explanation as to the mechanistic basis underlying the sigmoidal substrate saturation curve obtained for the enzyme, the kinetic parameters were comparable with those obtained for grape flavonoid glycosyltransferase ($K_m = 30 \mu M$ and $700 \mu M$ for quercetin and UDP-Glc, respectively; $k_{cat} = 0.1 s^{-1}$; Offen et al., 2006).

Plants often accumulate flavonols and anthocyanins as a form of glycoside in the flowers, seeds, and fruits. VvGT1, which is assumed to be important for grape coloration, glucosylates cyanidin with 50-fold higher efficiency than quercetin, and its galactosyltransferase activity is less than 8% of its glucosyltransferase activity (Ford et al., 1998; Offen et al., 2006). On the other hand, VvGT5 and VvGT6, which share 91% amino acid sequence identity and are located in tandem on a chromosome different from that containing VvGT1, use UDP-glucuronic acid and UDP-Gal/Glc, as sugar donors, respectively, and use flavonols as acceptor substrates (Ono et al., 2010). In the present study, the function and biochemical nature of the two recombinant UFGTs were elucidated, but it is possible that other plant GTs such as MiUFGT4, which was isolated in our previous study (Kanzaki et al., 2019), contribute in part to the glycosylation of the diverse phenolic compounds in the mango peel (Berardini et al., 2005a). Further investigation is required to understand the divergence and division in the roles of glycosyltransferase family mem-

Discussion

The anthocyanins extracted from the red ‘Irwin’ mango skins were found to be cyanidin 3-O-galactoside and 7-O-methylcyanidin 3-O-galactoside, which agrees with previous results obtained for the ‘Tommy Atkins’ red mango (Berardini et al., 2005b) and some other red cultivars (Berardini et al., 2005a; b; Lopez-Cobo et al., 2017). This indicates that the primary sugar moieties of mango anthocyanins is mainly galactose, at least among red cultivars. Therefore, MiUFGalT3, which has galactosyltransferase activity, may be an important enzyme in red mango cultivars for anthocyanin accumulation.

Fig. 6. HPAEC-PAD analysis of acid-hydrolysates of the peak fraction collected from HPLC eluent (RT = 10.4 min, see Fig. 5). The chromatograms between 10 min and 13 min of retention time are enlarged and shown in inset. Gal and Glc were used as standards. The molar ratio of Gal/Glc in the acid-hydrolysates was calculated to be 98.8/1.2.
bers in mangoes. UFGTs that have a His residue at the end of PSPG box and specifically use UDP-Gal as a donor were identified from different origins including *Vigna mungo* (Ishikura and Mato, 1993), *Petunia hybrida* (Miller et al., 1999), *Aralia cordata* (Kubo et al., 2004), *Diospyros kaki* (Ikegami et al., 2009), *Daucus carota* (Xu et al., 2016), *Actinidia chinesis* (Liu et al., 2018), etc. The phylogenetic tree constructed using these plant UFGTs (Supplementary Fig. 3) revealed the occurrence of a small cluster comprised only of galactosyltransferases; however, *MiUFGalT3* and *VmUFGalT* were classified into different clusters together with *LcUFGT* and *GmUFGT*, respectively, which use UDP-Glc as a donor. The above mentioned *VvGT5* and *VvGT6* form a distant cluster with the same ancestral node as several glucosyltransferases and galactosyltransferase (*VmUFGalT*). Considering UFGTs from the same plant origins are scattered in the tree and exhibit different specificities, their phylogeny may represent the divergent evolutionary processes of flavonol and anthocyanin biosynthesis in plants. The evolution of UFGTs may thus concur in each plant not only with special and temporal separation of flavonoid biosynthesis, but also with the biosynthesis of donor substrates, UDP-glycosides.

In conclusion, *MiUFGalT3*, which was referred to as *MiUFGT3* in our previous study (Kanzaki et al., 2019), was found to have relatively high galactosyltransferase activity. Considering the expression profile reported previously (Kanzaki et al., 2019) and its functional preference for UDP-galactose as a sugar donor, *MiUFGalT3* rather than *MiUFGT1* plays a crucial role in the light-induced red coloration of the mango fruit skin. Our findings may provide an important clue to elucidate the mechanism of anthocyanin accumulation in mango fruit skin. Further investigation is required to clarify the evolutionary process and key factors determining sugar donor preferences of plant UFGTs.

Acknowledgements

We would like to thank Prof. Hisashi Miyagawa at Kyoto University for providing the LC-MS system.

Literature Cited

Asakuma, S., E. Hatakeyama, T. Urashima, E. Yoshida, T. Katayama, K. Yamamoto, H. Kumagai, H. Ashida, J. Hirose and M. Kitaoka. 2011. Physiotherapy of consumption of human milk oligosaccharides by infant gut-associated *Bifidobacteria*. J. Biol. Chem. 286: 34583–34592.

Bajpai, A., K. Khan, M. Muthukumar, S. Rajan and N. K. Singh. 2018. Molecular analysis of anthocyanin biosynthesis pathway genes and their differential expression in mango peel. Genome 61: 157–166.

Berardini, N., R. Fezer, J. Conrad, U. Beifuss, R. Carle and A. Schieber. 2005a. Screening of mango (*Mangifera indica* L.) cultivars for their contents of flavonol O- and xanthone C-glycosides, anthocyanins, and pectin. J. Agric. Food Chem. 53: 1563–1570.

Berardini, N., A. Schieber, I. Klaiaber, U. Beifuss, R. Carle and J. Conrad. 2005b. *7-O-Methylcyanidin 3-O-β-glucopyranoside*, a novel anthocyanin from mango (*Mangifera indica* L. cv. ‘Tommy Atkins’) peels. Z. Naturforsch. B. 60: 801–804.

Boss, P. K., C. Davies and S. P. Robinson. 1996a. Analysis of the expression of anthocyanin pathway genes in developing *Vitis vinifera* L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111: 1059–1066.

Boss, P. K., C. Davies and S. P. Robinson. 1996b. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 32: 565–569.

Bowles, D., E. K. Lim, B. Poppenberger and F. E. Vaistij. 2006. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 57: 567–597.

Ford, C. M., P. K. Boss and P. B. Hoij. 1998. Cloning and characterization of *Vitis vinifera* UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize *Bronze-I* locus that may primarily serve to glucosylate anthocyanidins *in vivo*. J. Biol. Chem. 273: 9224–9233.

Fukuchi-Mizutani, M., H. Okuhara, Y. Fukui, M. Nakao, Y. Katsumoto, K. Yonekura-Sakabara, T. Kusumi, T. Hase and Y. Tanaka. 2003. Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from Gentian. Plant Physiol. 132: 1652–1663.

Gachon, C. M., M. Langlois-Meurinne and P. Saindrenan. 2005. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10: 542–549.

Groteveld, E. 2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57: 761–780.

Hoang, V. L. T., D. J. Innes, P. N. Shaw, G. R. Monteith, M. J. Gidley and R. G. Dietzgen. 2015. Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties. BMC Genomics 16: 561. DOI: 10.1186/s12864-015-1784-x.

Hu, C., Y. Gong, S. Jin and Q. Zhu. 2011. Molecular analysis of a UDP-glucose: flavonoid 3-O-glucosyltransferase (*UFGT*) gene from purple potato (*Solanum tuberosum*). Mol. Biol. Rep. 38: 561–567.

Ikegami, A., T. Akagi, D. Potter, M. Yamada, A. Sato, K. Yonemori, A. Kitajima and K. Inoue. 2009. Molecular identification of 1-Cys peroxiredoxin and anthocyanidin/flavonol 3-O-galactosyltransferase from proanthocyanidin-rich young fruits of persimmon (*Diospyros kaki* Thunb.). Planta 230: 841–855.

Ishikura, N. and M. Mato. 1993. Partial purification of some pro-petitannates of flavonol 3-O-glycosyltransferases from seedlings of *Vigna mungo*, with special reference to the formation of kaempferol 3-O-galactoside and 3-O-glucoside. Plant Cell Physiol. 34: 329–335.

Jordheim, M., K. Aaby, T. Fossen, G. Skrede and Ø. M. Andersen. 2007. Molar absorptivities and reducing capacity of pyrananthocyanins and other anthocyanins. J. Agric. Food Chem. 55: 10591–10598.

Kanzaki, S., S. Kamikawa, A. Ichiei, Y. Tanaka, K. Shimizu, S. Koeda and N. Utsunomiya. 2019. Isolation of UDP:flavonoid 3-O-glucosyltransferase (*UFGT*)-like genes and expression analysis of genes associated with anthocyanin accumulation in mango ‘Irwin’ skin. Hort. J. 88: 435–443.

Karanjalker, G. R., K. V. Ravishankar, K. S. Shivashankara and M. R. Dinesh. 2018a. Influence of bagging on color, anthocyanin and anthocyanin biosynthetic genes in peel of red...
colored mango cv. ‘Lily’. Erwerbs-Obstbau 60: 281–287.

Karanjalker, G. R., K. V. Ravishankar, K. S. Shivashankara, M. R. Dinesh, T. K. Roy and D. V. S. Rao. 2018b. A study on the expression of genes involved in carotenoids and anthocyanins during ripening in fruit peel of green, yellow, and red colored mango cultivars. Appl. Biochem. Biotechnol. 184: 140–154.

Kim, S.-H., J.-R. Lee, S.-T. Hong, Y.-K. Yoo, G. An and S.-R. Kim. 2003. Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin. Plant Sci. 165: 403–413.

Kobayashi, S., M. Ishimaru, C. K. Ding, H. Yukishiji and N. Goto. 2001. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Sci. 160: 543–550.

Kobayashi, S., M. Ishimaru, K. Hiraoka and C. Honda. 2002. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924–933.

Kubo, A., Y. Arai, S. Nagashima and T. Yoshikawa. 2004. Alteration of sugar donor specificities of plant glycosyltransferases by a single point mutation. Arch. Biochem. Biophys. 429: 198–203.

Liu, Y., B. Zhou, Y. Qi, C. Liu, Z. Liu and X. Ren. 2018. Biochemical and functional characterization of AcUFGT3a a galactosyltransferase involved in anthocyanin biosynthesis in the red-fleshed kiwifruit (Actinidia chinensis). Physiol. Plant. 162: 409–426.

Lopez-Cobo, A., V. Verardo, E. Diaz-de-Cerio, A. Segura-Carretero, A. Fernandez-Gutierrez and A. M. Gomez-Caravaca. 2017. Use of HPLC-and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its by-products. Food Res. Int. 100: 423–434.

Miller, K. D., V. Guyon, J. N. Evans, W. A. Shuttleworth and L. P. Taylor. 1999. Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida. J Biol. Chem. 274: 34011–34019.

Montefiori, M., R. V. Espley, D. Stevenson, J. Cooney, P. M. Datson, A. Saiz, R. G. Atkinson, R. P. Hellens and A. C. Allan. 2011. Identification and characterization of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis). Plant J. 65: 106–118.

Offen, W., C. Martinez-Fleites, M. Yang, E. Kiat-lim, B. G. Davis, C. A. Tarling, C. M. Ford, D. J. Bowles and G. J. Davis. 2006. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25: 1396–1405.

Ono, E., Y. Homma, M. Horikawa, S. Kunikane-Doi, H. Imai, S. Takahashi, Y. Kawai, M. Ishiguro, Y. Fukui and T. Nakayama. 2010. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). Plant Cell 22: 2856–2871.

Prior, R. L. and X. Wu. 2006. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Rad. Res. 40: 1014–1028.

Tanaka, Y., N. Sasaki and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54: 733–749.

Vogt, T. and P. Jones. 2000. Glycosyltransferases in plant natural product synthesis: Characterization of a supergene family. Trends Plant Sci. 5: 380–386.

Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T. A. P. de Beer, C. Remperfer, L. Bordoli, R. Lepore and T. Schwede. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296–W303.

Xu, Z.-S., J. Ma, F. Wang, H.-Y. Ma, Q.-X. Wang and A.-S. Xiong. 2016. Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot (Daucus carota L.) taproots. Scientific Reports 6: 27356.