Burn-out syndrome in Spanish internists during the COVID-19 outbreak and associated factors: a cross-sectional survey

Cristina Macía-Rodríguez,1,2 Álvaro Alejandro de Oña,2,3 Daniel Martín-Iglesias,2,4 Lucía Barrera-López,2,5 María Teresa Pérez-Sanz,2,3 Javier Moreno-Díaz,2,6 Adriana González-Munera2,3

To cite: Macía-Rodríguez C, Alejandro de Oña A, Martín-Iglesias D, et al. Burn-out syndrome in Spanish internists during the COVID-19 outbreak and associated factors: a cross-sectional survey. BMJ Open 2021;11:e042966. doi:10.1136/bmjopen-2020-042966

ABSTRACT

Objectives The objective of this study is to evaluate the impact of the COVID-19 outbreak on mental health and burn-out syndrome in Spanish internists and the factors that could be related to its appearance.

Design We performed an observational, cross-sectional, descriptive study for which we designed a survey that was distributed in May 2020.

Setting We included internists who worked in Spain during the COVID-19 outbreak.

Participants A total of 1015 internists responded to the survey. Of those 62.9% were women.

Results Of 1015 people, 58.3% presented with high emotional exhaustion, 61.5% had a high level of depersonalisation and 67.6% reported low personal fulfilment. 40.1% presented with the 3 criteria described, and therefore burn-out syndrome.

Burn-out syndrome was independently related to the management of patients with SARS-CoV-2 (HR: 2.26; 95% CI 1.15 to 4.45), the lack of availability of personal protective equipment (HR: 1.41; 95% CI 1.05 to 1.91), increased responsibility (HR: 2.13; 95% CI 1.51 to 3.01), not having received financial compensation for overtime work (HR: 0.43; 95% CI 0.31 to 0.62), not having rested after 24-hour shifts (HR: 1.61; 95% CI 1.09 to 2.38), not having had holidays in the previous 6 months (HR: 1.36; 95% CI 1.01 to 1.84), consumption of sleeping pills (HR: 1.83; 95% CI 1.28 to 2.63) and higher alcohol intake (HR: 1.95; 95% CI 1.39 to 2.73).

Conclusions During the COVID-19 outbreak, 40.1% of Internal Medicine physicians in Spain presented with burn-out syndrome, which was independently related to the assistance of patients with SARS-CoV-2, overworking without any compensation and the fear of being contagious to their relatives. Therefore, it is imperative to initiate programmes to prevent and treat burn-out in frontline physicians during the COVID-19 outbreak.

INTRODUCTION

The current pandemic caused by SARS-CoV-2, a new Betacoronavirus that appeared in December 2019 in Wuhan (China),3 has been a stressful period that has put healthcare systems and their professionals under considerable pressure.2 This illness can present with a range of symptoms, although fever and cough are the most common ones (mimicking SARS-CoV). The commonness of these symptoms, together with the different imaging patterns exhibited by the illness, complicates the diagnosis.3 The first case in Spain was diagnosed on 21 February 2020,4 with a subsequent exponential growth in the number of diagnoses that has affected more than 250 000 people in Spain by May 2020.5

Burn-out is a psychosocial syndrome that has a high prevalence6 7 in health professionals all over the world. It occurs in response to stressful situations during the development of a work activity. The first description of burn-out syndrome was made in 1974 by Freudenberger8 and, later, it has been extensively studied by Maslach.9 Currently, it has become a very common problem in daily clinical practice. Depersonalisation, emotional exhaustion and a sense of reduced personal accomplishment are its main characteristics.9 This syndrome is closely related to work overload, age, poor work environment, lack of leadership, inequity, negative feedback and...
whether someone has received threats.7,10,11 The most validated scale to quantify it is called the Maslach Burnout Inventory.12 A recent publication in Spain has revealed that more than a third of Internal Medicine specialists suffer from burn-out syndrome.16 Moreover, it has been shown that in several other countries more than an a half of the residents suffer from burn-out syndrome.13

A few studies have evaluated stress and burn-out syndrome in health workers during the COVID-19 outbreak, finding an increase in stress levels,14–17 with the exception of a single Chinese analysis that found less burn-out syndrome prevalence in people who worked on the front line compared with people performing usual ward work during the pandemic in Wuhan.18

The objective of this study is to evaluate the impact of the COVID-19 outbreak on mental health and burn-out syndrome in Spanish internists and the factors that could be related to its appearance.

METHODS

For this study we designed a survey using the Google Forms application. The survey was specifically designed for this study by a group of Spanish internists with representation of all ages and work positions. The first part of the survey has not been previously used or validated. The second part of the survey corresponds to the Maslach Burnout Inventory, a questionnaire that has been validated to identify burn-out in health professionals.12 The survey consisted of the following sections:

- **Demographic variables:** age, sex, marital status, and whether the person had children in their care or lived with older people.
- **Work conditions:** type of contract, type of hospital, type of work performed, compliance with established work hours, commute time to the workplace and means of transportation, vacations in the previous 6 months, rest after night shifts and 24-hour shifts, and 48 hours of rest per week. Additionally, it has been studied whether people had practised sports or other leisure activities during their free time.
- **Change in work and lifestyle conditions due to the COVID-19 outbreak:** assistance to patients with SARS-CoV-2 infection, confirmed personal SARS-CoV-2 infection, access to personal protective equipment (PPE), increased responsibility, increased working hours, financial compensation for overtime work, fear of infecting their families and change of place of residence to avoid it. Moreover, we studied the change in the pattern of tobacco or alcohol consumption, and the need for sleeping pills.
- **Maslach Burnout Inventory: Human Services Survey for Medical Personnel in Spanish.** It consists of 22 questions, 9 of which refer to emotional fatigue, 5 to depersonalisation and 8 to personal fulfilment. Burn-out syndrome was defined as high emotional exhaustion, a high level of depersonalisation and low level of personal accomplishment.12

Participants and public involvement

A group of participants, who represented all ages and work positions, were involved in the design of the first part of the survey.

Participants

The survey was distributed in May 2020 through the mailing list of the members of the Spanish Society of Internal Medicine (SEMI) and through SEMI’s social networks (Facebook, Twitter and Instagram). We only included internists who worked in Spain during the COVID-19 outbreak. We excluded retired people, medical students and internists who worked in a country other than Spain.

The SEMI had 6331 members at the time of the survey. The sample size needed considering a prevalence of burn-out in Spanish internists of 30%,16 a precision of the study of 3%, a confidence level of 95% and a missing rate of 15% is 924 responders. One thousand four hundred and ninety-seven internists accessed the form and 1015 of them filled it in. The distributions of sex and age of the people who replied are comparable to the distributions containing the data of all the members of SEMI. All the autonomous communities in Spain are represented in the data.

Statistical methods

A descriptive analysis was performed by calculating the rates of qualitative variables and the median and IQR for the continuous variables. In order to find the variables associated with burn-out, we performed a \(\chi^2 \) test (or Fisher’s exact test when \(n \leq 5 \)) for the qualitative variables and a Student’s \(t \)-test for the quantitative variables. Following the principle of parsimony, we omitted redundant items in the questionnaire to perform multivariate analysis. We conducted two stepwise binary logistic regressions backwards. The first one included the changes in work and lifestyle conditions that could trigger burn-out. The second one included behaviours and thoughts that may be regarded as consequences of burn-out. We considered \(p<0.05 \) to be statistically significant. The analysis was performed using the SPSS V. 22.0 software package (SPSS, Chicago, Illinois, USA).

Ethics statement

The survey was anonymous, and all participants accepted the use of their responses for publication and scientific studies. We requested the explicit approval of the Gregorio Marañón Hospital’s Ethics Committee. However, they answered that due to the characteristics of the study (anonymous voluntary survey, without confidentiality issues), it was ethical and no explicit approval was needed. They have sent a favourable report that is available as online supplemental file 1. The study followed the criteria of the Helsinki Declaration.
RESULTS
Demographic characteristics
A total of 1497 internists accessed the form and 1015 of them (250 residents, 702 Internal Medicine specialists, 60 heads of department and 2 Chief Medical Officer) filled in the survey, representing all the autonomous communities in Spain. Of those, 62.9% were women. The mean age was 39.9±11.1 years, 77.2% were married or had a stable partner, 47.1% had children and 9.6% lived with older dependent people. Table 1 shows the demographic characteristics and working conditions of the studied population. We do not have the data of the people who accessed the form but did not fill it in, due to the anonymity of the survey.

Change in work and lifestyle conditions due to the COVID-19 outbreak
Of the internists who answered, 92.2% treated patients infected with SARS-CoV-2, 73.2% experienced an increase in their usual responsibilities (only officially recognised in 11.5% of cases) and 81.3% underwent an increase in weekly working hours. Only 27.9% of the internists received financial compensation for overtime. Free time after 24-hour shifts was not respected in 13.9% of cases, and only 36.1% had gone on holidays in the previous 6 months.

Of those who filled the survey, 29.6% did not have access to PPE when they needed it, 86.8% were afraid of infecting their families because of their job, and 29.8% decided to change their usual place of residence to be separated from their families. Finally, 176 Internal Medicine physicians (17.4%) presented with SARS-CoV-2 infection confirmed by PCR test. Of these, 15 physicians required hospitalisation and only 1 required admission to an intensive care unit.

Of the participants 21.4% consumed more alcohol or started consuming alcohol during the pandemic, 7.9% smoked more tobacco or started smoking, 18.6% used sleeping pills on a regular basis.

Although 79.0% of the respondents would still choose Internal Medicine as a specialty, 39.1% have considered a change of specialty, 44.7% have considered working abroad and 60.0% have thought of leaving the medical profession.

Burn-out syndrome and related factors
Of those who responded (1015), 58.3% presented with high emotional exhaustion, 61.5% had a high level of depersonalisation and 67.6% reported low personal fulfilment. A total of 407 internists (40.1%) presented with the three previous criteria, and therefore burn-out syndrome. All Maslach Burnout Inventory results are shown in table 2.

Table 3 shows the distribution of the main items of the questionnaire and its distribution among physicians that had a burn-out syndrome according to the Maslach Burnout Inventory.

Table 1 Demographic characteristics and work conditions

Number of responders (1015)	Number or median (IQR)
Age	975 37 (31–47)
Sex	1015
Female	638 (62.9)
Male	377 (37.1)
Civil status	1011
Single	231 (22.9)
Married	446 (44.1)
Stable partner (not married)	334 (33.0)
Partner is healthcare worker	934
No	525 (56.2)
Yes	409 (43.8)
Number of assisted patients	1009
No	534 (52.9)
Yes	475 (47.1)
Living with elderly person	1012
No	915 (90.4)
Yes	97 (9.6)
Assisted patients with COVID-19	1010
No	79 (7.8)
Yes	931 (92.2)
Infected with SARS-CoV-2	1009
No	833 (52.6)
Yes	176 (17.4)
Need of admission in hospitalisation ward	342
No	327 (95.6)
Yes	15 (4.4)
Need of admission in intensive care unit	237
No	236 (99.6)
Yes	1 (0.4)
Access to PPE when needed	1003

Continued
Table 1 Continued

Number of responders (1015)	Number (%) or median (IQR)
No	295 (29.4)
Yes	708 (70.6)

Type of hospital	1014
Public	892 (88.0)
Private	68 (6.7)
Both	54 (5.3)

Hospital size	1006
Regional hospital	257 (25.5)
Secondary hospital	234 (23.3)
Tertiary hospital	510 (5.7)
Research centre/university	5 (0.5)

Commute time (from home to workplace)	1012
Less than 1 hour from home	958 (94.3)
More than 1 hour from home	58 (5.7)

Means of transportation to work	1011
On foot	232 (22.9)
By car	611 (60.4)
Bicycle	22 (2.2)
Motorcycle	13 (1.3)
Public transport	132 (13.1)
Working from home	1 (0.1)

More responsibility at work during pandemic	1011
No	271 (26.8)
Yes	740 (73.2)

Recognition of increased responsibility	737
No	652 (88.5)
Yes	85 (11.5)

Economic compensation for overtime	913
No	658 (72.1)
Yes	255 (27.9)

Rest after 24-hour shifts	997
No	139 (13.9)
Yes	858 (86.1)

Holidays in the last 6 months	1011
No	646 (63.9)
Yes	365 (36.1)

Table 1 Continued

Number of responders (1015)	Number (%) or median (IQR)
Type of work contract	814
Until the end of COVID-19 pandemic	25 (3.1)
Less than a month	13 (1.6)
1 month	22 (2.7)
3 months	27 (3.3)
6 months	42 (5.2)
More than 6 months	170 (20.9)
Permanent	515 (63.3)

Physical activity per week	1013
Never or almost never	508 (50.1)
Once	128 (12.6)
Twice or thrice	267 (26.4)
Everyday	110 (10.9)

Means of transportation to work	1011
Never or almost never	823 (81.4)
Yes	188 (18.6)

More responsibility at work during pandemic	1011
No	271 (26.8)
Yes	740 (73.2)

Recognition of increased responsibility	737
No	652 (88.5)
Yes	85 (11.5)

Change in smoking habits during pandemic	816
Same	741 (90.8)
Less	11 (1.4)
More	46 (5.7)
Start smoking	18 (2.2)

Change in alcohol consumption during pandemic	979
Same	662 (67.6)
Less	108 (11.0)
More	180 (18.4)
Start taking alcohol	29 (3.0)

Use of recreational drugs	1008
No	993 (98.5)
Yes	15 (1.5)

Choosing internal medicine again	1008
No	212 (21.0)
Yes	796 (79.0)
The demographic and work conditions regarded as trigger factors related to burn-out syndrome and its multivariate analysis are shown in table 4. Burn-out syndrome was independently related to the management of patients with SARS-CoV-2 (HR: 2.26; 95% CI 1.15 to 4.45), the lack of availability of PPE (HR: 1.41; 95% CI 1.05 to 1.91), increased responsibility (HR: 2.13; 95% CI 1.51 to 3.01), not having received financial compensation for overtime work (HR: 0.43; 95% CI 0.31 to 0.62), not having rested after shifts (HR: 1.61; 95% CI 1.09 to 2.38), not having had holidays in the previous 6 months (HR: 1.36; 95% CI 1.01 to 1.84) and having used public transport to commute (HR: 1.96; 95% CI 1.30 to 2.95).

Moreover, we present in table 5 the multivariate analysis of habits and thoughts that can be considered consequences of burn-out syndrome. Physicians with burn-out syndrome were independently associated with consumption of sleeping pills (HR: 1.83; 95% CI 1.28 to 2.63), higher alcohol intake (HR: 1.95; 95% CI 1.39 to 2.73), increased desire to change medical specialty (HR: 1.87; 95% CI 1.38 to 2.54) and a greater desire to quit the medical profession (HR: 1.87; 95% CI 1.38 to 2.56).

DISCUSSION

More than 90% of the Spanish internists treated patients with SARS-CoV-2, and most of them experienced changes in their work and personal life caused by the outbreak. Excessive work and fear of being contagious to their relatives increased stress and resulted in burn-out.

More than 90 000 people in Spain were hospitalised from February to May 2020 due to SARS-CoV-2 infection and more than 7000 had to be admitted to intensive care units. Spanish hospitals were overcrowded, without enough beds or ventilators for all the patients who needed...
Table 3 Distribution of different included characteristics in the survey according to burn-out

Variable	All (n=1015) Median IQR or number/total (%)	No burn-out (n=609) Median IQR or number/total (%)	Burn-out (n=406) Median IQR or number/total (%)	P value
Demographics				
Age (years)	37 (31–47)	38 (31–48)	36 (30–44)	0.002
Female	638/1015 (62.9%)	371/609 (60.9%)	266/406 (65.5%)	0.138
Stable partner (married or unmarried)	780/1011 (77.2%)	478/608 (78.6%)	302/403 (74.9%)	0.172
Partner is healthcare worker	525/934 (56.2%)	315/558 (56.5%)	209/376 (56.6%)	0.794
Children	474/1009 (47%)	308/605 (50.9%)	166/404 (41.1%)	0.002
Living with elderly person	97/1012 (9.6%)	51/607 (8.4%)	46/407 (11.4%)	0.118
Being forced to separate from your family	302/1014 (29.8%)	168/407 (26.7%)	134/406 (33.1%)	0.061
Afraid of infecting their family	872/1005 (86.8%)	506/601 (84.2%)	366/404 (90.6%)	0.003
Infected with SARS-CoV-2	176/1009 (17.4%)	103/605 (17%)	73/404 (18.1%)	0.668
Work conditions				
Resident doctor	250/1014 (24.7%)	135/609 (22.2%)	115/406 (28.3%)	0.026
Medical specialist	702/1014 (69.2%)	426/609 (70%)	276/406 (68%)	0.026
Service head	60/1014 (5.9%)	46/609 (7.6%)	14/406 (3.5%)	0.026
Medical director	2/1014 (0.2%)	1/609 (0.2%)	1/406 (0.2%)	0.026
Regional hospital	257/1006 (25.5%)	149/609 (24.5%)	108/406 (26.6%)	0.228
Secondary hospital	234/1006 (23.3%)	145/609 (23.8%)	88/406 (21.7%)	0.228
Tertiary hospital	510/1006 (50.3%)	303/609 (49.8%)	208/406 (51.2%)	0.228
Research centre/medical school	5/1006 (0.5%)	4/609 (0.7%)	1/406 (0.2%)	0.228
Time to work >1 hour	58/1012 (5.7%)	25/607 (4.1%)	33/405 (8.1%)	0.007
On foot to work	232/1011 (22.9%)	146/609 (24%)	85/406 (20.9%)	0.009
By car to work	611/1011 (60.4%)	367/609 (60.3%)	244/406 (60.1%)	0.009
Public transport to work	132/1011 (13.1%)	66/609 (10.8%)	67/406 (16.5%)	0.009
Bicycle to work	22/1011 (2.2%)	13/609 (2.1%)	9/406 (2.2%)	0.009
Motorcycle to work	13/1011 (1.3%)	13/609 (2.1%)	0/406 (0%)	0.009
Assisted patients with COVID-19	931/1010 (92.2%)	544/606 (89.8%)	387/404 (95.8%)	<0.001
More responsibility at work during pandemic	740/1011 (73.2%)	406/607 (66.9%)	334/404 (82.7%)	<0.001
Recognition of increased responsibility	85/737 (11.5%)	63/408 (15.4%)	22/329 (6.7%)	<0.001
Number of patients per day	10 (8–12)	10 (8–12)	10 (8–12)	0.345
No access to PPE when needed	295/1003 (29.4%)	151/601 (25.1%)	144/258 (35.8%)	<0.001
Increase in weekly working hours work	821/1010 (81.3%)	475/604 (78.6%)	346/406 (85.2%)	0.009
Guard hours per week	32 (15–52)	30 (14–50)	40 (16.5–56)	0.009
Economical compensation for overtime	257/913 (28.1%)	188/538 (34.9%)	69/375 (18.4%)	<0.001
No rest after 24-hour shift	139/997 (13.9%)	65/594 (10.9%)	74/403 (18.4%)	0.001
Not having 48 hours per week to rest	582/1003 (58%)	318/599 (53.1%)	264/404 (65.3%)	<0.001
Free days in the last month	6 (4–7)	6 (4–7)	5 (3–6)	<0.001
No holiday in the last 6 months	646/1011 (63.9%)	369/606 (60.9%)	276/405 (68.1%)	0.019
Stable contract	514/1015 (50.6%)	328/609 (53.9%)	186/406 (45.8%)	0.012
Habits and thoughts				
Physical or any leisure activity twice a week	559/1015 (55.1%)	356/609 (58.5%)	203/406 (50%)	0.008
More tobacco (increased consumption or started to consume)	64/1015 (6.3%)	31/609 (5.1%)	33/406 (8.1%)	0.051
More alcohol (increased consumption or started to consume)	209/1015 (20.6%)	96/609 (15.8%)	113/406 (27.8%)	<0.001
them. Health workers had to work longer shifts and their responsibility increased. This was especially important in Internal Medicine, the specialty that generally treats infectious diseases in Spain.

This situation caused increased stress and ethical dilemmas when deciding which patients were candidates for intensive care units. Additionally, physicians faced an unknown new infectious disease without enough personal protective material. In fact, 29.6% of the respondents did not have access to PPE when they needed it. In our survey, 17.4% of the respondents presented with SARS-CoV-2 infection confirmed by PCR analysis, and 15 cases reported severe disease.

All these factors increased the number of Internal Medicine physicians who presented with burn-out syndrome. One year ago, the prevalence in Spain was 33.4%, 10 and in the actual survey the prevalence is 40.1%.

Other previous studies14–17 also showed increased stress during the COVID-19 outbreak. Only a single Chinese study18 showed that burn-out syndrome prevalence was lower in professionals who worked on the first line. They discussed that this was possibly related to the fact that these professionals had more knowledge about the disease, more sense of control of the situation and more social recognition. In our study we have found the opposite results. This is probably due to shortage of PPE and low level of social recognition in Spain. In fact, the factors related to burn-out syndrome were those related to fear of contagion (managing patients with SARS-CoV-2, not having access to PPE and using public transport to commute) and those related to overworking without sufficient recognition (increased responsibility, not resting after shifts and not having financial compensation for overtime work).

Moreover, the pandemic hit Europe right after the influenza season, when health workers were already tired and stressed from the overwork of the winter season. In fact, not having had any holidays in the previous 6 months was related to higher burn-out scores.

As previous studies have found,7 19 20 burn-out had important consequences on the health of professionals, such as anxiety, depression, substance abuse or development of psychosomatic symptoms. In fact, we also found that burn-out was related to increased consumption of alcohol and sleeping drugs.

Moreover, doctors who had high levels of burn-out were less satisfied with their job and, similarly to previous studies,10 11 we found that they would be more willing to change their medical specialty or abandon the medical profession. Furthermore, there are studies that have found a reduction in the productivity and efficiency of medical care and an increase in medical errors.21 22

Therefore, it is important to initiate programmes to prevent and treat burn-out in front-line physicians during the COVID-19 outbreak.23–25 In general, two different types of stress reduction measures have been previously studied: those that focus on work organisation and those that focus on the individual. The first group includes measures such as reducing the number of shift hours, increasing professional recognition, rotation between different kinds of work and the implementation of equity policies.22 26 27 The second includes measures such as promotion techniques to handle stressful situations, meditation techniques, communication skills and cognitive–behavioral therapy.11 28–30

The main limitation of our study is that it was carried out through a voluntary online survey. It is possible that the most affected doctors were the most interested in answering the survey and, therefore, the prevalence of burn-out could have been overestimated. However, since our results were similar to those of previous studies,7 26 the high number of responders may have mitigated this effect. In addition, according to the design of the study, cause-effect relation of the variables can only be suggested and not categorically established. Moreover, the survey was distributed through SEMI’s social networks and the mailing list of the members of SEMI. The fact that this survey has been carried online and on a voluntary basis could have led to a higher number of answers by young people; nevertheless the distribution of ages of the sample was similar to the distribution of all the internists of the society.

Table 3

Variable	All (n=1015) Median IQR or number/total (%)	No burn-out (n=609) Median IQR or number/total (%)	Burn-out (n=406) Median IQR or number/total (%)	P value
Use of recreational drugs	15/1015 (1.5%)	9/606 (1.5%)	6/402 (1.5%)	0.649
Need for sleeping pills	188/1011 (18.6%)	83/605 (13.7%)	105/405 (25.9%)	<0.001
Use of antidepressant drugs	58/1010 (5.7%)	32/606 (5.3%)	26/404 (6.4%)	0.440
Would not choose internal medicine again	212/1008 (21%)	80/603 (13.3%)	132/404 (32.7%)	<0.001
Having thought of changing specialty	395/1011 (39.1%)	172/607 (28.3%)	223/404 (55.2%)	<0.001
Having thought of working abroad	555/1008 (55.1%)	299/606 (49.3%)	256/402 (63.7%)	<0.001
Having thought of abandoning medicine	604/1009 (59.9%)	302/606 (49.8%)	302/403 (74.9%)	<0.001

All variables in italics are significantly (p<0.05) related to burn-out syndrome. PPE, personal protective equipment.
Table 4 Associated trigger factors for burn-out (demographics, work conditions)

Variable	Univariate HR (CI 95%)	P value	Multivariate initial model HR (CI 95%)	P value	Multivariate final model HR (CI 95%)	P value
Age	0.98 (0.97 to 0.99)	<0.001	0.98 (0.96 to 1.01)	0.173		
Children	0.67 (0.52 to 0.87)	0.002	0.78 (0.452 to 1.17)	0.233		
Being forced to separate from family	1.30 (0.98 to 1.71)	0.061	1.21 (0.88 to 1.67)	0.232		
Resident doctor	1.39 (1.04 to 1.85)	0.026	0.84 (0.53 to 1.32)	0.455		
Assisted patients with COVID-19	2.59 (1.49 to 4.50)	0.001	1.61 (0.78 to 3.32)	0.190	2.26 (1.15 to 4.45)	0.017
No access to PPE when needed	1.66 (1.26 to 2.19)	<0.001	1.33 (0.97 to 1.83)	0.075	1.41 (1.05 to 1.91)	0.024
Time to work >1 hour	2.06 (1.21 to 3.53)	0.008	1.75 (0.94 to 3.27)	0.075		
Public transport to work	1.62 (1.12 to 2.34)	0.009	1.81 (1.18 to 2.79)	0.007	1.96 (1.30 to 2.95)	0.001
More responsibility at work during pandemic	2.36 (1.73 to 3.21)	<0.001	1.91 (1.32 to 2.78)	0.001	2.13 (1.51 to 3.01)	<0.001
Increase in weekly working hours work	1.56 (1.12 to 2.19)	0.009	1.38 (0.90 to 2.12)	0.136		
Economic compensation for overtime	0.42 (0.30 to 0.57)	<0.001	0.42 (0.29 to 0.59)	<0.001	0.43 (0.31 to 0.62)	<0.001
No rest after 24-hour shifts	1.83 (1.27 to 2.63)	0.001	1.33 (0.87 to 2.02)	0.180	1.61 (1.09 to 2.38)	0.016
Not having 48 hours a week to rest	1.66 (1.28 to 2.16)	<0.001	1.21 (0.88 to 1.65)	0.235		
No holidays in the last 6 months	1.37 (1.05 to 1.79)	0.019	1.36 (0.99 to 1.86)	0.055	1.36 (1.01 to 1.84)	0.039
Physical or any leisure activity twice a week	0.71 (0.55 to 0.91)	0.008	0.81 (0.60 to 1.09)	0.176		
Stable contract	0.72 (0.56 to 0.93)	0.012	1.19 (0.78 to 1.81)	0.406		

PPE, personal protective equipment.
Table 5 Habits and career decisions associated with burn-out

Variable	Univariate HR (CI 95%)	P value	Multivariate final model* HR (CI 95%)	P value	Multivariate initial model* HR (CI 95%)	P value
Need for sleeping pills	2.20 (1.83 to 2.63)	<0.001	1.86 (1.30 to 2.67)	<0.001	1.82 (1.34 to 2.47)	<0.001
Would not choose internal medicine again	3.12 (2.39 to 4.05)	<0.001	1.82 (1.34 to 2.47)	<0.001	1.82 (1.34 to 2.47)	<0.001
Having thought of changing specialty	3.01 (2.39 to 3.96)	<0.001	1.65 (1.09 to 2.74)	0.033	1.19 (0.67 to 2.09)	0.545
Having thought of working abroad	1.80 (1.30 to 2.53)	<0.001	1.65 (1.09 to 2.74)	0.033	1.19 (0.67 to 2.09)	0.545
Having thought of abandoning medicine	1.80 (1.30 to 2.53)	<0.001	1.65 (1.09 to 2.74)	0.033	1.19 (0.67 to 2.09)	0.545
More alcohol (increased consumption or started to consume)	2.06 (1.51 to 2.80)	<0.001	1.90 (1.35 to 2.68)	<0.001	1.90 (1.35 to 2.68)	<0.001

*Adjusted by age and gender.

In conclusion, during the COVID-19 outbreak more than 40% of Internal Medicine physicians in Spain presented with burn-out syndrome. The development of burn-out syndrome was independently related to the assistance of patients with SARS-CoV-2, the lack of PPE, greater responsibility during the outbreak, the absence of financial compensation despite working overtime, the absence of rest after 24-hour shifts, not having had holidays in the previous 6 months and the use of public transport to commute.

Acknowledgements The authors thank the Spanish healthcare workers involved in assistance with the SARS-CoV-2 pandemic for their effort and dedication.

Contributors CM-R and AA dó designed the survey, wrote the statistical analysis plan, cleaned and analysed the data, and drafted and revised the paper. CM-R is the guarantor. MTP-S wrote the statistical analysis plan, analysed the data, and drafted and revised the paper. LB-L and MTP-S drafted and revised the paper. JM-D and AG-M revised the paper.

Funding This research was funded by the Spanish Society of Internal Medicine.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. Anyone who wishes to look at the data can contact the authors directly who will provide the database containing all information needed to reproduce the study.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Cristina Macía-Rodríguez http://orcid.org/0000-0001-9032-7127

REFERENCES

1. Wu D, Wu T, Liu Q, et al. The SARS-CoV-2 outbreak: what we know. Int J Infect Dis 2020;94:44–8.
2. Tan BYQ, Chew NWS, Lee GKH, BYQ T, GKH L, et al. Psychological impact of the COVID-19 pandemic on health care workers in Singapore. Ann Intern Med 2020;173:317–20.
3. Guan W J, Ni Z Y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20.
4. Spiteri G, Fiedling J, Diercke M, et al. First cases of coronavirus disease 2019 (COVID-19) in the who European region, 24 January to 21 February 2020. *Euro Surveill* 2020;25:2000178.

5. Instituto Carlos III. [Análisis de los casos de COVID-19 notificados a la RENAVE hasta el 10 de mayo en España Contenido 2020. Available: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublica/RENAVE/EnfermedadesTransmisibles/Documents/INFORMES/informes%20COVID-19%20esp%20informe%20COVID-19%20hasta%20el%2010%20de%20mayo%202020.pdf

6. Rodríguez H, Cobucci R, Oliveira A, et al. Burnout syndrome among medical residents: a systematic review and meta-analysis. *PLoS One* 2018;13:e0206840.

7. Yates M, Samuel V. Burnout in oncologists and associated factors: a systematic literature review and meta-analysis. *Eur J Cancer Care* 2019;28:e13094.

8. Freudenberg NJ. Staff burn-out. *J Soc Issues* 1974;30:159–65.

9. Maslach C, Scheufele W, Leiter MP. Job burnout. *Annu Rev Psychol* 2001;52:397–422.

10. Macia-Rodríguez C, Martín Iglesias D, Moreno Díaz J, et al. Burnout syndrome in internal medicine specialists and factors associated with its onset. *Rev Clin Esp* 2020;220:331-338.

11. Maslach C, Leiter MP. New insights into burnout and health care: strategies for improving civility and alleviating burnout. *Med Teach* 2017;39:160–3.

12. Maslach C, Leiter MP, Schaufeli W. Measuring burnout. Oxford: Oxford University Press, 2008.

13. Low ZK, Yeo KA, Sharma VK, et al. Prevalence of burnout in medical and surgical residents: a meta-analysis. *Int J Environ Res Public Health* 2019;16:1479.

14. Lai X, Wang M, Qin C, et al. Coronavirus disease 2019 (COVID-2019) infection among health care workers and implications for prevention measures in a tertiary hospital in Wuhan, China. *JAMA Netw Open* 2020;3:e209666.

15. Abdessater M, Rouprêt M, Misrai V, et al. COVID19 pandemic impacts on anxiety of French urologists in training: outcomes from a national survey. *Prog Urol* 2020;30:449-55.

16. Civantos AM, Byrnes Y, Chang C, et al. Mental health among otolaryngology resident and attending physicians during the COVID-19 pandemic: national study. *Head Neck* 2020;42:1597–609.

17. Mijiritsky E, Hamama-Raz Y, Liu F, et al. Subjective overload and psychological distress among dentists during COVID-19. *Int J Environ Res Public Health* 2020;17:5074.

18. Wu Y, Wang J, Luo C, et al. A comparison of burnout frequency among oncology physicians and nurses working on the frontline and usual wards during the COVID-19 epidemic in Wuhan, China. *J Pain Symptom Manage* 2020;60:e60–5.

19. Medscape. Medscape global physicians’ burnout and lifestyle comparisons, 2020. Available: https://www.medscape.com/slideshow/2019-global-burnout-comparison-6011180

20. Koutsimani P, Montgomery A, Georganta K. The relationship between burnout, depression, and anxiety: a systematic review and meta-analysis. *Front Psychol* 2019;10:284.

21. Shanafelt TD, Mungo M, Schmitgen J, et al. Longitudinal study evaluating the association between physician burnout and changes in professional work effort. *Mayo Clin Proc* 2016;91:422–31.

22. Bridgeman PJ, Bridgeman MB, Barone J. Burnout syndrome among healthcare professionals. *Am J Heal Pharm* 2018;75:147–52.

23. Blake H, Bermingham F, Johnson G, et al. Mitigating the psychological impact of covid-19 on healthcare workers: a digital learning package. *Int J Environ Res Public Health* 2020;17. doi:10.3390/ijerph17092997. [Epub ahead of print: 26 04 2020].

24. Shah K, Chaudhari G, Kamrai D, et al. How essential is to focus on physician’s health and burnout in coronavirus (COVID-19) pandemic? *Cureus* 2020;12:e7538. doi:10.7759/cureus.7538.

25. Fessell D, Cherniss C. Coronavirus disease 2019 (COVID-19) and beyond: Micropractices for burnout prevention and emotional wellness. *J Am Coll Radiol* 2020;17:746–8. doi:10.1016/j.jacr.2020.03.013.

26. Ripp JA, Bellini L, Fallar R, et al. The impact of duty hours restrictions on job burnout in internal medicine residents: a three-institution comparison study. *Acad Med* 2015;90:494–9.

27. West CP, Dyrbye LN, Erwin PJ, et al. Interventions to prevent and reduce physician burnout: a systematic review and meta-analysis. *Lancet* 2016;388:2272–81.

28. Palamara K, Kauffman C, Stone VE, et al. Promoting success: a professional development coaching program for interns in medicine. *J Grad Med Educ* 2015;7:630–7.

29. The Lancet. Physician burnout: a global crisis. *Lancet* 2019;394:93.

30. Ho CS, Chee CY, Ho RC, CS H, RC H. Mental health strategies to combat the psychological impact of COVID-19 beyond paranoia and panic. *Ann Acad Med Singap* 2020;49:155–60.