Tevatron Constraints on Models of the Higgs Boson with Exotic Spin and Parity
Using Decays to Bottom-Antibottom Quark Pairs

T. Aalteno, V.M. Abazov, B. Abbott, B.S. Acharya, M. Adams, T. Adams, J.P. Agnew, G.D. Aleev, G. Alkhazov, A. Alton, S. Amerio, D. Amidei, A. Anastassov, A. Annoni, J. Antos, G. Apollinari, J.A. Appel, T. Arisawa, A. Artikov, J. Asaadi, W. Ashmanaks, A. Askew, S. Atkins, B. Auerbach, K. Augsten, A. Aurisano, C. Avila, F. Azfar, F. Badaud, W. Badgett, T. Bae, L. Bagby, B. Baldwin, D.V. Bandurin, S. Banerjee, A. Barbaro-Galtieri, E. Barberis, V.E. Barnes, B.A. Barnett, P. Barria, J.F. Bartlett, P. Bartos, U. Bassler, M. Baur, G. Bazterra, A. Bean, F. Bedeschi, M. Begalli, S. Behari, B. Bellantoni, G. Belletti, J. Bellinger, D. Benjamin, A. Beretvas, S.B. Beri, G. Bernardi, R. Bernhard, I. Bertram, M. Besançon, R. Beuelinck, P.C. Bhat, S. Bhatia, V. Bhatnagar, A. Bharti, K.R. Bland, G. Blazej, S. Blessing, K. Bloom, B. Blumenfeld, A. Bocci, A. Bodek, A. Boehlein, D. Boline, E.E. Boos, G. Borissov, D. Bortoletto, M. Borysova, J. Boudreau, A. Boveia, A. Brandt, L. Brigliadori, R. Brock, C. Bromberg, A. Bross, D. Brown, E. Brucken, X.B. Bu, J. Budagov, H.S. Budi, M. Buehler, V. Buescher, V. Buneicov, S. Burdin, K. Burkett, P. Bussey, C.P. Buszello, P. Butti, A. Buzatii, A. Calamba, E. Camacho-Pérez, S. Camarda, M. Campaneli, F. Canelli, B. Carls, D. Carls, M. Carriero, B.C.S. Casarsa, B.C.K. Casey, H. Castillo-Valdez, A. Castro, D. Cauz, F. Cavaliere, A. Cerri, L. Cerrito, S. Chakrabarti, K.M. Chan, A. Chandra, E. Chapon, G. Chen, Y.C. Chen, M. Chertok, G. Chiarelli, G. Chichilizze, K. Cho, S.W. Cho, S. Choi, D. Chokheli, B. Choudhary, S. Cihangir, D. Claes, A. Clark, C. Clarke, J. Chutter, M.E. Convery, J. Conway, M. Cooke, W.E. Cooper, M. Corbo, M. Corcoran, M. Cordelli, F. Coudere, M-C. Cousinot, C.A. Cox, T. D’Alton, J.D.J. Cox, M. Cremonesi, D. Cruz, J. Cuevas, R. Culbertson, D. Cutts, A. Das, N. d’Ascanzo, M. Datta, G. Davies, P. de Barbaro, S.J. de Jong, E. De La Cruz-Burelo, D. Delliott, R. Demina, L. Demortier, M. Deninno, S.P. Denisov, M. D’Errico, S. Desai, C. Deterre, K. DeVaughan, F. Devoto, A. Di Canto, B. Di Ruza, H.T. Diehl, M. Diesburg, P.F. Ding, J.R. Dittmann, A. Dominguez, J. Donati, M. D’Onorio, D. Dorigo, A. Drutti, F. Faccioli, A. Dubey, L.V. Dudko, A. Duperrin, S. Dutt, M. Eads, K. Ebina, R. Edgar, D. Edmunds, E. Elagin, J. Ellison, V.D. Elvira, Y. Enari, R. Erbacher, S. Errede, B. Esham, H. Evans, V.N. Evdokimov, S. Farrington, A. Fauré, L. Feng, T. Ferbel, J.P. Fernandez Ramos, F. Fiedler, R. Field, F. Filthaut, W. Fisher, H.E. Fisk, G. Flanagan, R. Forrest, M. Fortner, H. Fox, M. Franklin, J.C. Freeman, H. Frisch, S. Fuess, Y. Funakoshi, C. Galloni, P.H. Garbincius, A. Garcia-Bellido, J.A. García-González, A.F. Garfinkel, P. Garosi, V. Gavrilov, W. Geng, C.E. Gerber, H. Gerberich, G. Gerchein, Y. Gerstein, S. Giagu, V. Giakoumopoulou, K. Gibson, C.M. Ginsburg, G. Ginther, N. Giokaris, P. Giromini, V. Glagolevo, D. Glazinski, O. Gogota, M. Gold, D. Goldin, A. Golossanov, G. Golovanov, G. Gomez, G. Gomez-Ceballos, M. Goncharov, G. González López, I. Gorelov, A.T. Goshaw, K. Goulianos, E. Gramellini, P.D. Grannis, S. Greder, H. Greenlee, G. Grenier, Ph. Gris, J-F. Grivaz, A. Grohsjean, C. Gross-Pilcher, R.C. Group, S. Grünewald, M.W. Grünewald, T. Guillemin, J. Guimaraes da Costa, G. Gutierrez, P. Gutierrez, S.R. Hahn, J. Haley, J.Y. Han, F. Happacher, K. Hara, K. Harker, M. Hare, A. Harel, R.F. Harr, T. Harrington-Tabber, T. Hatakeyama, J.M. Hauptman, C. Hays, J. Hays, T. Head, T. Hebbeker, D. Hedin, H. Hegab, J. Heinrich, A.P. Heinson, U. Heintz, C. Hensel, I. Heredia-De La Cruz, M. Herndon, K. Herner, G. Hesketh, M.D. Hildreth.
observed a 3.0 standard deviation (s.d.) excess of events
CDF and D0 Collaborations at the Fermilab Tevatron
tent with the expectations for the SM Higgs boson. The
and parity quantum numbers
6], its couplings to other particles [3, 7–11], and its spin
measurements of the Higgs boson's mass and width [3–
troweak symmetry breaking in the standard model (SM)
(LHC) at CERN allows many stringent tests of the elec-
proton-proton collisions at the Large Hadron Collider
The Higgs boson discovered by the ATLAS [1] and
plus a vector boson differ from those predicted for the
standard model Higgs boson, then the exotic bosons are exclu-
deviations and 4.9 standard deviations for the
PACS numbers: 13.85.Rm, 14.80.Bn, 14.80.Ec
Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with
exotic spin J and parity P are presented and compared with results obtained assuming the standard
model value $J^P = 0^+$. Both collaborations analyzed approximately 10 fb$^{-1}$ of proton-antiproton
collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models
predicting exotic Higgs bosons with $J^P = 0^-$ and $J^P = 2^+$ are tested. The kinematic properties of
exotic Higgs boson production in association with a vector boson differ from those predicted for the
standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of
the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate,
are set at 0.36 for both the $J^P = 0^-$ hypothesis and the $J^P = 2^+$ hypothesis. If the production
rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the
standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard
deviations and 4.9 standard deviations for the $J^P = 0^-$ and $J^P = 2^+$ hypotheses, respectively.

PACS numbers: 13.85.Rm, 14.80.Bn, 14.80.Ec

The Higgs boson discovered by the ATLAS [1] and
CMS [2] Collaborations in 2012 using data produced in
proton-proton collisions at the Large Hadron Collider
(LHC) at CERN allows many stringent tests of the elec-
tron weak symmetry breaking in the standard model (SM)
and extensions to the SM to be performed. To date,
measurements of the Higgs boson's mass and width $3–
0$, its couplings to other particles $3, 7–11$, and its spin
and parity quantum numbers J and P [10, 11] are consistent
with the expectations for the SM Higgs boson. The
CDF and D0 Collaborations at the Fermilab Tevatron
observed a 3.0 standard deviation (s.d.) excess of events
consistent with a Higgs boson signal, largely driven by
those channels sensitive to the decay of the Higgs boson
to bottom quarks ($H \to b\bar{b}$) [17, 18]. The Tevatron data
are also consistent with the predictions for the properties
of the SM Higgs boson [18, 22].

Ref. [23] proposed to use the Tevatron data to test
models for the Higgs boson with exotic spin and parity,
using events in which the exotic Higgs boson X is pro-
duced in association with a W or a Z boson and decays to
a bottom-antibottom quark pair, $X \to b\bar{b}$. This proposal
used two of the spin and parity models in Ref. [23], one
with a pseudoscalar $J^P = 0^-$ state and the other with
a graviton-like $J^P = 2^+$ state. For the SM Higgs boson, which has $J^P = 0^+$, the differential production rate near threshold is linear in β, where $\beta = 2p/\sqrt{s}$, p is the momentum of the X boson in the VX ($V = W$ or Z) reference frame, and \sqrt{s} is the total energy of the VX system in its rest frame. For the pseudoscalar model, the dependence is proportional to β^3. For the graviton-like model, the dependence is proportional to β^2; however, not all $J^P = 2^+$ models share this β^2 factor \cite{23}. These powers of β alter the kinematic distributions of the observable decay products of the vector boson and the Higgs-like boson X, most notably the invariant mass of the VX system, which has a higher average value in the $J^P = 0^+$ hypothesis than in the SM 0^+ case, and higher still in the $J^P = 2^+$ hypothesis. These models predict neither the production rates nor the decay branching fractions of the X particles.

The ATLAS and CMS Collaborations recently reported strong evidence for Higgs boson decays to fermions \cite{25,30}, with sensitivity dominated by the $H \to \tau^+\tau^-$ decay mode, though they have not yet performed spin and parity tests using fermionic decays. The particle decaying fermionically for which the Tevatron also found evidence might not be the same as the particle discovered through its bosonic decays at the LHC. Tests of the spin and parity \cite{23} with Tevatron data therefore provide unique information on the identity and properties of the new particle or particles. The CDF and D0 Collaborations have re-optimized their SM Higgs boson searches to test the exotic Higgs boson models in the $WH \to \ell\nu b\bar{b}$ \cite{31,32}, $ZH \to \tau^+\tau^- b\bar{b}$ \cite{33,34}, and $WH + ZH \to E_T b\bar{b}$ \cite{33,36} channels, where $\ell = e$ or μ and E_T is the missing transverse energy \cite{37}. In this letter we report a combination of the CDF \cite{21} and D0 \cite{22} studies of the J^P assignments of the state X, with mass $m_X = 125$ GeV/c2, in the $X \to b\bar{b}$ decay.

The CDF and D0 detectors are multipurpose solenoidal spectrometers surrounded by hermetic calorimeters and muon detectors designed to study the products of 1.96 TeV proton-antiproton ($p\bar{p}$) collisions \cite{28,32}. All searches combined here use the complete Tevatron data sample, which, after data quality requirements, corresponds to $9.45 - 9.7$ fb^{-1} of integrated luminosity, depending on the experiment and the search channel.

Standard model Higgs boson signal events are simulated using the leading-order (LO) calculation from PYTHIA \cite{40}, with CTEQ5L (CDF) and CTEQ6L1 (D0) \cite{41} parton distribution functions (PDFs). The $J^P = 0^-$ and $J^P = 2^+$ signal samples are generated using MADGRAPH 5 version 1.4.8.4 \cite{12}, with modifications provided by the authors of Ref. \cite{23}. Subsequent particle showering is modeled by PYTHIA. We normalize the SM Higgs boson rate predictions to the highest-order calculations available. The WH and ZH cross sections are calculated at next-to-next-to-leading-order (NNLO) precision in the strong interaction, and next-to-leading-order (NLO) precision in the electroweak corrections \cite{43,46}. We use the branching fractions for Higgs boson decay from Ref. \cite{17}. These rely on calculations using HDECAY \cite{48} and PROPHECY4F \cite{49}.

The predictions of the dominant background rates and kinematic distributions are treated in the following way. Diboson (WW, WZ, and ZZ) Monte Carlo (MC) samples are normalized using the NLO calculations from MCFM \cite{50}. For $t\bar{t}$, we use a production cross section of 7.04 ± 0.70 pb \cite{51}, which is based on a top quark mass of 173 GeV/c2 \cite{52} and MSTW 2008 NNLO PDFs \cite{53}. The single top quark production cross section is assumed to be 3.15 ± 0.31 pb \cite{54}. For details of the generators used, see Ref. \cite{55}. Data-driven methods are used to normalize the V plus light-flavor and heavy-flavor jet backgrounds \cite{60} using V data events containing no b-tagged jets \cite{61}, which have negligible signal content \cite{62,63}. The MC modeling of the kinematic distributions of the background predictions is described in Refs. \cite{31,36}.

The event selections are similar (CDF), or identical (D0), to those used in their SM counterparts \cite{31,36}. For the $WH \to \ell\nu b\bar{b}$ analyses, events are selected with one identified lepton (e or μ), jets, and large E_T. For the CDF $WH \to \ell\nu b\bar{b}$ analysis, only events with two jets are used. Events are classified into separate categories based on the quality of the identified lepton. Separate categories are used for events with a high-quality muon or central electron candidate, an isolated track, or a forward electron candidate. Within the lepton categories, five exclusive b-tag categories, comprising two single-tag and three double-tag categories, are formed. The multivariate b-tagger used by CDF \cite{64} was trained on SM Higgs boson signal MC events. Few of these events contained jets with with transverse energy $E_T > 200$ GeV and thus the tagger does not perform well for such jets. Hence, only jets with $E_T < 200$ GeV are considered. For the D0 $WH \to \ell\nu b\bar{b}$ analysis, events are selected with two or three jets. The data are split by lepton flavor and jet multiplicity (two or three jet subchannels), and by the output of the b-tagging algorithm applied to all selected jets in the event. This channel, along with the other two D channels, uses a multivariate b-tagging algorithm \cite{65,66}. Four exclusive b-tag categories, one single-tag and three double-tag, are formed. In the SM Higgs boson search, boosted decision trees are used as the final discriminating variables; here they are used to further subdivide the selected data sample into high- and low-purity categories.

The $ZH \to \ell^+\ell^- b\bar{b}$ analyses require two isolated leptons and at least two jets. The CDF analysis separates events into one single- and three double-b-tag samples and uses neural networks to select loose dielectron and dimuon candidates. The jet energies are corrected for E_T using a neural network \cite{67}. The CDF analysis uses a multistep discriminant based on neural networks, where two discriminant functions are used to define three sep-
arate regions of the final discriminant function. The D0 $ZH \rightarrow \ell^+ \ell^- b\bar{b}$ analysis separates events into non-overlapping samples of events with either a single or double b-tag. To increase the signal acceptance, the selection criteria for one of the leptons are loosened to include isolated tracks not reconstructed in the muon detector and electron candidates from the intercryostat region of the D0 detector. Combined with the dielectron and dimuon categories, these provide four independent lepton subchannels. A kinematic fit is used to optimize reconstruction. Random forests (RF) of decision trees are used to provide the final variables in the SM Higgs boson search. The first RF is designed to discriminate against $t\bar{t}$ events and divides events into $t\bar{t}$-enriched and $t\bar{t}$-depleted single-tag and double-tag regions. Only events in the $t\bar{t}$-depleted regions are considered in this study. These regions contain approximately 94% of the SM signal.

For the $ZH \rightarrow \ell\nu b\bar{b}$ analyses, the selections used by CDF and D0 are similar to the WH selections, except that all events with isolated leptons are rejected and more stringent techniques are applied to reject the multijet background. In a sizable fraction of $WH \rightarrow \ell\nu b\bar{b}$ signal events, the lepton is undetected. Such events often are selected in the $ZH \rightarrow \nu\nu b\bar{b}$ samples, so these analyses are also referred to as $VH \rightarrow \ell\nu T b\bar{b}$. The CDF analysis uses three non-overlapping b-tag categories (two double- and one single-tag) and two jet categories (two- or three-jet events), giving a total of six subchannels. In the D0 analysis, exactly two jets are required and two exclusive double-tag categories are defined using the sum of the b-tagging outputs for each of the two selected jets.

Both CDF and D0 have a 50% larger acceptance for the $J^P = 0^-$ and $J^P = 2^+$ signals in the $ZH \rightarrow \nu\nu b\bar{b}$ analyses compared with the SM Higgs boson signal, largely due to the fact that the exotic signal events are more likely to pass the trigger thresholds for E_T, a consequence of the larger average VX invariant masses. The other two channels, $WH \rightarrow \ell\nu b\bar{b}$ and $ZH \rightarrow \ell^+ \ell^- b\bar{b}$, do not benefit as much from the additional E_T in these events, as they rely on the lepton triggers, which are more efficient than the E_T triggers in the relevant kinematic regions.

Unlike their SM counterparts, these analyses are optimized to distinguish the $J^P = 0^-$ and the $J^P = 2^+$ hypotheses from the SM 0^+ hypothesis. The exotic particles are considered either in addition to, or replacing, the SM Higgs boson. A mixture of all three states is not considered.

The CDF multivariate analysis (MVA) discriminants were newly trained to separate the exotic Higgs boson signals from the SM backgrounds. In the $WH \rightarrow \ell\nu b\bar{b}$ and $VH \rightarrow E_T T b\bar{b}$ channels, events classified as background-like by the new discriminants are then classified according to the SM-optimized MVA discriminants in order to improve the performance of tests between the SM and exotic hypotheses.

Depending on the channel, D0 uses either the reconstructed dijet mass or the MVA used in the SM Higgs boson search to separate events into high- and low-purity samples. The mass of the VX system is then used to discriminate between the exotic and SM hypotheses. For the $ZH \rightarrow \ell\ell b\bar{b}$ analysis the invariant mass of the two leptons and the two highest p_T jets is used. For the $\ell\nu b\bar{b}$ and $\nu\nu b\bar{b}$ final states the transverse mass M_T is used, where $M_T^2 = (E_T^\ell + E_T^X)^2 - (p_T^\ell + p_T^X)^2$ and the transverse momenta of the Z and W bosons are taken to be $\vec{p}_T^\ell = \vec{E}_T^\ell$ and $\vec{p}_T^X = \vec{E}_T^X + \vec{p}_T^X$, respectively.

The number of contributing channels is large, and their sensitivities vary from one to another. To visualize the data in a way that emphasizes the sensitivity to the exotic signals, we follow Ref. [18]. Bins of the final discriminant for all channels are ordered by increasing signal-to-background ratio (s/b) and are shown in comparison with predicted yields from signal and background processes for the $J^P = 0^-$ and $J^P = 2^+$ searches in Fig. 1 separately. The backgrounds are fit to the data in each case, allowing the systematic uncertainties to vary within their a priori constraints. The exotic signals are normalized to the SM cross section times branching ratio multiplied by an exotic-signal scaling factor, μ_{exotic}. They are shown in Fig. 1 with $\mu_{exotic} = 1$. The scaling factor for the SM Higgs boson signal is denoted by μ_{SM}. A value of one for either μ_{SM} or μ_{exotic} corresponds to a cross section times branching ratio as predicted for the SM Higgs boson. Both figures show agreement between the background predictions and the observed data over five orders of magnitude with no evidence for an excess of exotic signal-like candidates.

We follow Ref. [18] and perform both Bayesian and modified frequentist calculations of the upper limits on exotic X boson production with and without SM Higgs production, best-fit cross sections allowing for the simultaneous presence of a SM Higgs boson and an exotic X boson, and hypothesis tests for signals assuming various production rate times branching ratio values for the exotic bosons. Both methods use likelihood calculations based on Poisson probabilities that include SM background processes and signal predictions for the SM Higgs and exotic bosons multiplied by their respective scaling factors, μ_{SM} and μ_{exotic}. Systematic uncertainties on the predicted rates and on the shapes of the distributions and their correlations are treated as described in Ref. [18]. Theoretical uncertainties in cross sections and branching ratios are considered fully correlated between CDF and D0, and between analysis samples. The uncertainties on the measurements of the integrated luminosities, which are used to normalize the expected signal yields and the MC-based background rates, are 6.0% (CDF) and 6.1% (D0). Of these values, 4% arises from the inelastic $p\bar{p}$ cross section, which is fully correlated between CDF and D0. The dominant uncertainties on the backgrounds are constrained by the data in low s/b regions of the discriminant distributions. Different methods were used
by CDF and D0 to estimate V+jets and multijet backgrounds and so their uncertainties are considered uncorrelated. Similarly, the uncertainties on the data-driven estimates of the b-tag efficiencies are considered uncorrelated between CDF and D0, as are the uncertainties on the jet energy scales, the trigger efficiencies, and lepton identification efficiencies. We quote Bayesian upper limits and best-fit cross sections assuming uniform priors for non-negative signal cross sections, and we use the modified frequentist method to perform the hypothesis tests. Systematic uncertainties are parameterized by nuisance parameters with Gaussian priors, truncated so that no predicted yield for any process in any search channel is negative.

For both the $J^P = 0^-$ and $J^P = 2^+$ models, we compute two 95% credibility upper limits on μ_{exotic}, one assuming $\mu_{\text{SM}} = 1$ and the other assuming $\mu_{\text{SM}} = 0$. The expected limits are the median expectations assuming no exotic boson is present. The results are listed in Table I. Two-dimensional credibility regions, which are the smallest regions containing 68% and 95% of the posterior probabilities, are shown in Fig. 2. The points in the $(\mu_{\text{SM}}, \mu_{\text{exotic}})$ planes that maximize the posterior probability densities are shown as the best-fit values. These best-fit values are (1.0, 0) for the search for the $J^P = 0^-$ state, and (1.1, 0) for the search for the $J^P = 2^+$ state. We also derive upper limits on the fraction $f_{\mu} = \mu_{\text{exotic}}/(\mu_{\text{exotic}} + \mu_{\text{SM}})$, as functions of the total $\mu = \mu_{\text{exotic}} + \mu_{\text{SM}}$, assuming a uniform prior probability density in non-negative f_{μ}, extended to include fractions larger than 1.0 in order not to saturate the limits at $f_{\mu} = 0.95$ for $\mu < 0.6$, where the test is weak. The results are shown in Fig. 3.

In the modified frequentist approach [71, 72] we compute p values for the discrete two-hypothesis tests, the SM Higgs boson hypothesis (the “null” hypothesis) ($\mu_{\text{SM}}=1$, $\mu_{\text{exotic}}=0$) and the exotic (“test”) hypothesis ($\mu_{\text{SM}}=0$, $\mu_{\text{exotic}}=1$), both assuming that SM background processes are present. The choice of setting $\mu_{\text{exotic}} = 1$ in the test hypothesis is arbitrary; the sensitivity of the test is reduced if a smaller value is assumed. We use the log-likelihood ratio, LLR, defined to be $-2 \ln(p(\text{data|test})/p(\text{data|null}))$, where the numerator and denominator are maximized over systematic uncertainty variations [18]. The LLR distributions are shown in the supplemental material [73]. We define the p values $p_{\text{null}} = F(\text{LLR} \leq \text{LLR}_{\text{obs|SM}})$ and $p_{\text{test}} = F(\text{LLR} \geq \text{LLR}_{\text{obs|exotic}})$. The median expected p values $p_{\text{null,med}}$ and $p_{\text{test,med}}$ in the test hypothesis and p_{SM} in the SM hypothesis quantify the sensitivities of the two-hypothesis tests for exclusion and discovery, respectively. Table II lists these p values for both exotic models, as well as Cl$_{95}$ = $p_{\text{test}}/(1 - p_{\text{null}})$ [74] for the Tevatron combination. To compute p_{test} and the expected values of p_{null} and p_{test}, Wilks’s theorem is used [74].

The similarity of the limits and p values obtained for the $J^P = 0^-$ and the $J^P = 2^+$ searches is expected since the exotic models predict excesses in similar portions of kinematic space.

In summary, we combine CDF’s and D0’s tests for the presence of a pseudoscalar Higgs boson with $J^P = 0^-$ and a graviton-like boson with $J^P = 2^+$ in the WX $\rightarrow e\nu b\bar{b}$, the ZX $\rightarrow e^+e^- b\bar{b}$, and the $VX \rightarrow E_T b\bar{b}$ search channels using models described in Ref. [22]. The masses of the exotic bosons are assumed to be 125 GeV/c^2. No evidence is seen for either exotic particle, either in place of the SM Higgs boson or produced in a mixture with a $J^P = 0^+$ Higgs boson. In both searches, the best-fit cross section times the decay branching ratio into a bottom-
TABLE I: Observed and median expected Bayesian upper limits at the 95% credibility level on μ_{exotic} for the pseudoscalar ($J^P = 0^-$) and graviton-like ($J^P = 2^+$) boson models, assuming either that the SM Higgs boson is also present ($\mu_{\text{SM}} = 1$) or absent ($\mu_{\text{SM}} = 0$).

Channel	Observed (Limit/σ_{SM})	Median Expected (Limit/σ_{SM})
$J^P = 0^-, \mu_{\text{SM}} = 0$	0.36	0.32
$J^P = 0^-, \mu_{\text{SM}} = 1$	0.29	0.32
$J^P = 2^+, \mu_{\text{SM}} = 0$	0.36	0.33
$J^P = 2^+, \mu_{\text{SM}} = 1$	0.31	0.34

TABLE II: Observed (obs) and median expected (med) LLR values and p values for the combined CDF and D0 searches for the pseudoscalar ($J^P = 0^-$) boson and the graviton-like ($J^P = 2^+$) boson. The p values are listed, and the corresponding significances in units of standard deviations, using a one-sided Gaussian tail calculation, are given in parentheses. The two hypotheses tested are ($\mu_{\text{SM}}, \mu_{\text{exotic}}$) = (1, 0) and (0, 1) for the SM and the exotic models, respectively.

Analysis	$J^P = 0^-$	$J^P = 2^+$
LLR$_{\text{obs}}$	27.1	25.7
LLR$_{\text{SM}}^{\text{med}}$	23.7	21.8
LLR$_{\text{exotic}}^{\text{med}}$	-29.9	-29.6
p_{null}	0.63 (-0.34)	0.66 (-0.41)
$p_{\text{null,med}}^{\text{exotic}}$	1.8×10^{-8} (5.5)	1.9×10^{-8} (5.5)
p_{est}	9.4×10^{-8} (5.2)	1.9×10^{-7} (5.1)
$p_{\text{est,med}}^{\text{SM}}$	4.7×10^{-7} (4.9)	1.2×10^{-6} (4.7)
CL_{a}	2.6×10^{-7} (5.0)	5.6×10^{-7} (4.9)
$\text{CL}_{\text{a,med}}^{\text{SM}}$	9.4×10^{-7} (4.8)	2.3×10^{-6} (4.6)

antibottom quark pair of a $J^P = 0^+$ signal component is consistent with the prediction of the SM Higgs boson. The Bayesian posterior probability densities for the $J^P = 0^-$ and $J^P = 2^+$ searches are shown in Ref. [73].

Upper limits at 95% credibility on the rate of the production of an exotic Higgs boson in the absence of a SM $J^P = 0^+$ signal are set at 0.36 times the SM Higgs production rate for both the $J^P = 0^-$ and the $J^P = 2^+$ hypotheses. If the production rate of the hypothetical exotic particle times its branching ratio to a bottom-antibottom quark pair is the same as that predicted for the SM Higgs boson, then the exotic models are excluded with significances of 5.0 s.d. and 4.9 s.d. for the $J^P = 0^-$ and $J^P = 2^+$ hypotheses, respectively.

Acknowledgments

We thank the Fermilab staff and technical staffs of the participating institutions for their vital contributions. We acknowledge support from the Department of Energy and the National Science Foundation (United States of America), the Australian Research Council (Australia), the National Council for the Development of Science and Technology and the Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil), the Natural Sciences and Engineering Research Council (Canada), the China Academy of Sciences, the National Natural Science Foundation of China, and the National Science Council of the Republic of China (China), the Administrative Department of Science, Technology and Innovation (Colombia), the Ministry of Education, Youth and Sports (Czech Republic), the Academy of Finland (Finland), the Alternative Energies and Atomic Energy Commission and the National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France), the Bundesministerium für Bildung und Forschung (Federal
At the 95% C.L. on the fraction of exotic boson production

FIG. 3: (color online). Observed and expected upper limits
at the 95% C.L. on the fraction of exotic boson production
for the $J^P = 0^-$ and $J^P = 2^+$ hypotheses.
is defined with respect to the proton beam direction. The missing transverse energy is defined as a sum over calorimeter towers, \(\vec{E}_T = - \sum E_i \sin \theta_i \hat{n}_i \), where \(i \) is the calorimeter tower number, and \(\hat{n}_i \) is a unit vector perpendicular to the beam axis and pointing to the \(i \)th tower. The reconstructed \(\vec{E}_T \) is corrected for contributions from muons which register less energy in the calorimeter, and for jet energy corrections. The scalar magnitude of \(\vec{E}_T \) is denoted \(E_T \).

References:

[19] CDF Collaboration, “Constraints on Models for the Higgs Boson with Exotic Spin and Parity with CDF”, Phys. Rev. Lett. 109, 152003 (2012).

[20] V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 88, 112005 (2013).

[21] D. Acosta, (CDF Collaboration), Phys. Rev. D 71, 032001 (2005); A. Abulencia, et al. (CDF Collaboration), J. Phys. G 34, 2457 (2007).

[22] V. M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods A 565, 463 (2006); M. Abolins et al., Nucl. Instrum. Methods A 584, 75 (2008); R. Angstadt et al., Nucl. Instrum. Methods A 622, 298 (2010).

[23] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026. We use PYTHIA version 6.216 to generate the Higgs boson signal events.

[24] H. L. Lai, J. Huston, S. Kuhlmann, F. I. Olness, J. F. Owens, D. E. Soper, W. K. Tung, and H. Weerts, Phys. Rev D 55, 1280 (1997).

[25] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, J. High Energy Phys. 06 (2011) 128.

[26] J. Baglio and A. Djouadi, J. High Energy Phys. 10 (2010) 064.

[27] G. Ferrera, M. Grazzini, and F. Tramontano, Phys. Rev. Lett. 107, 152003 (2011).

[28] O. Brein, A. Djouadi, and R. Harlander, Phys. Lett. B 579, 149 (2004).

[29] M. L. Ciccioni, S. Dittmaier, and M. Kramer, Phys. Rev. D 68, 073003 (2003).

[30] LHC Higgs Cross Section Working Group, arXiv:1201.3084.

[31] A. Djouadi, J. Kalinowskii, and M. Spira, Comput. Phys. Commun. 108, 56 (1998).

[32] A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber, Phys. Rev. D 74, 013004 (2006) and J. High Energy Phys. 02 (2007) 080; A. Bredenstein, A. Denner, S. Dittmaier, A. Mück, and M. M. Weber.

[33] http://omnibus.uni-freiburg.de/~sd565/programs/propphecy4f/prophecy4f.h (2010).

[34] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).

[35] U. Langenfeld, S. Moch, and P. Uwer, Phys. Rev. D 80, 054009 (2009).

[36] T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 86, 092003 (2012).

[37] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).

[38] N. Kidonakis, Phys. Rev. D 74, 114012 (2006).

[39] In the CDF analyses, backgrounds from SM processes are modeled using PYTHIA [40], ALPGEN [56], mc@nlo [57], and HERWIG [58]. For D0, these backgrounds are modeled using PYTHIA, ALPGEN, and SINGLETOP [59], with PYTHIA providing parton showering and hadronization for all the generators.

[40] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026. We use PYTHIA version 6.216 to generate the Higgs boson signal events.

[41] H. L. Lai, J. Huston, S. Kuhlmann, F. I. Olness, J. F. Owens, D. E. Soper, W. K. Tung, and H. Weerts, Phys. Rev D 55, 1280 (1997).

[42] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, J. High Energy Phys. 06 (2011) 128.

[43] J. Baglio and A. Djouadi, J. High Energy Phys. 10 (2010) 064.

[44] G. Ferrera, M. Grazzini, and F. Tramontano, Phys. Rev. Lett. 107, 152003 (2011).

[45] O. Brein, A. Djouadi, and R. Harlander, Phys. Lett. B 579, 149 (2004).

[46] M. L. Ciccioni, S. Dittmaier, and M. Kramer, Phys. Rev. D 68, 073003 (2003).

[47] LHC Higgs Cross Section Working Group, arXiv:1201.3084.

[48] A. Djouadi, J. Kalinowskii, and M. Spira, Comput. Phys. Commun. 108, 56 (1998).

[49] A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber, Phys. Rev. D 74, 013004 (2006) and J. High Energy Phys. 02 (2007) 080; A. Bredenstein, A. Denner, S. Dittmaier, A. Mück, and M. M. Weber.

[50] http://omnibus.uni-freiburg.de/~sd565/programs/propphecy4f/prophecy4f.h (2010).

[51] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60, 113006 (1999).

[52] U. Langenfeld, S. Moch, and P. Uwer, Phys. Rev. D 80, 054009 (2009).

[53] T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 86, 092003 (2012).

[54] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).

[55] N. Kidonakis, Phys. Rev. D 74, 114012 (2006).

[56] In the CDF analyses, backgrounds from SM processes with electroweak gauge bosons or top quarks are modeled using PYTHIA [40], ALPGEN [56], mc@nlo [57], and HERWIG [58]. For D0, these backgrounds are modeled using PYTHIA, ALPGEN, and SINGLETOP [59], with PYTHIA providing parton showering and hadronization for all the generators.
A heavy-flavor jet is a reconstructed cluster of calorimeter energies associated with particles produced in the hadronization and decay of a b or c quark.

A b-tagged jet is a jet identified as being consistent with that expected from the decay products of a b quark based on properties such as the presence of displaced track vertices or soft leptons.

B. R. Webber, J. High Energy Phys. 01 (2001) 010.

E. E. Boos, V. E. Bunichev, L. V. Dudko, V. I. Savrin, and V. V. Sherstnev, Phys. Atom. Nucl. 69, 1317 (2006).

T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 109, 111802 (2012).

V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 109, 121802 (2012).

J. Freeman, T. Junk, M. Kirby, Y. Oksuzian, T. J. Phillips, F. D. Snider, M. Trovato, and J. Vizan et al., Nucl. Instrum. Methods A 697, 64 (2013).

V. M. Abazov et al. (D0 Collaboration), Nucl. Instrum. Methods A 620, 490 (2010).

V. M. Abazov et al., (D0 Collaboration), Nucl. Instrum. Methods A 763, 290 (2014).

T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 105, 251802 (2010).

L. Breiman, Machine Learning 45, 5 (2001).

A. Hocker et al., Proc. Sci., ACAT2007 (2007) 040 [arXiv:physics/0703039].

S. Klimenko, J. Konigsberg, and T. M. Liss, FERMILAB-FN-0741 (2003).

T. Junk, Nucl. Instrum. Methods A 434, 435 (1999); A. L. Read, J. Phys. G 28, 2693 (2002).

W. Fisher, FERMILAB-TM-2386-E (2006).

See Supplemental Material at [http://link.aps.org/ supplemental/xx.xxxx/PhysRevLett.xxx.xxxxxx](http://link.aps.org/supplemental/xx.xxxx/PhysRevLett.xxx.xxxxxx) for additional figures.

ATLAS and CMS Collaborations. ATLAS-PHYS-PUB-2011-011, CMS NOTE-2011/005 (2011).
FIG. 4: Posterior probability density distributions for the combined searches for exotic $J^P = 0^-$ and $J^P = 2^+$ bosons. (a) The posterior probability density as a function of μ_0^- assuming $\mu_{SM} = 1$ and a uniform prior density for non-negative μ_0^-, (b) the posterior probability density as a function of μ_0^- assuming $\mu_{SM} = 0$ and a uniform density for non-negative μ_0^-, and (c) the posterior probability density as a function of the fraction of exotic boson production, $\mu_0^-/(\mu_0^- + \mu_{SM})$, assuming $\mu_0^- + \mu_{SM} = 1$, and a uniform prior density for non-negative values of the fraction. The dashed vertical lines indicate the observed limits. Figures (d), (e), and (f) show the corresponding results for the $J^P = 2^+$ boson searches.

FIG. 5: Distributions of LLR for the combined CDF and D0 searches for (a) the pseudoscalar ($J^P = 0^-$) boson, and (b) the graviton-like ($J^P = 2^+$) boson. The LLR distributions are shown separately assuming that an exotic particle is present with $\mu_{exotic} = 1$ plus SM backgrounds, and if the SM Higgs boson plus SM backgrounds are present. The observed values of LLR are shown with vertical lines. Shaded regions show the 68% and 95% confidence level regions on the distributions assuming the SM Higgs boson is present, centered on the median expectation.