İki tekerlekli ve tek kollu robotik platformun kayan kipli denetimi ve parametre optimizasyonu

Sertaç Emre KARA *
Fırat Üniversitesi, Makine Mühendisliği Bölümü, Elazığ
sekara@firat.edu.tr ORCID: 0000-0001-7463-5867, Tel: (424) 237 00 00 (5338)

Kutluk Bilge ARIKAN
TED Üniversitesi, Makine Mühendisliği Bölümü, Ankara
kutluk.arikan@tedu.edu.tr ORCID: 0000-0003-2093-1577, Tel: (312) 585 0236

Geliş: 24.04.2018, Kabul Tarihi: 12.06.2018

Öz

Bu çalışmadada, tek bir basit kol ile desteklenmiş iki tekerlekli robotik bir platformun denetim sistemi tasarımı için Kayan Kipli Denetim (KKD) önerilmiştir. En iyi KKD parametreleri doğrusal model temel alınarak Kaos Optimizasyon Algoritması (KO) kullanılarak elde edilmiştir. Elde edilen bu değerler, Çok-Girişli-Çok-Çıkışlı (ÇGÇÇ) doğrusal olmayan dinamik bir model ile ifade edilen sistem yardımıyla benzetim yapılarak test edilmiştir. Belirli başlangıç şartları altında, referans giriş ve bozucu giriş ile benzetim çalışmaları tekrarlanmıştır. Doğrusal model ile elde edilen parametrelerin doğrusal olmayan modelde belirli frekans aralıklarında kullanılabildiği gözlemlenmiştir. Bu tip platformlar medikal alanında ve insanın yardımına ihtiyaç duyan alanlarda kullanılabilecektir. Özellikle rehabilitasyon, yardımcı robotlar ve benzeri platformlar üzerinde basit kol ve manipülatör eklenerek belirli işleri gerçekleştirmesi beklenmektedir. Elde edilen sonuçların bilisal robotik alanında yapılacak çalışmalarla kullanılması hedeflenmektedir.

Anahtar Kelimeler: Kayan kipli denetim; Kaos optimizasyon algoritması; Yardımcı robotlar; Rehabilitasyon robotları

* Yazışmaların yapılacağı yazar

DOI: 10.24012/dumf.418228
Giriş

Ters sarkaç sistemi ile ilgili gerçekleştirilen çalışmalar, yürüyen robotlar ve kendini dengelenen sistemler üzerinde yapılan çalışmalarla destekleyici bilgiler vermektedir (Grasser vd., 2002). Bu tür iki tekerlekli mobil tashitlar robotik sistemler olarak da geliştirilmektedir (Nguyen vd., 2004; Linn vd., 2011). Dolaysıyla, dengemeye yardımcı olmak veya farklı işlevleri (tutma, destek alma, eğilme vb.) yapmak için üzerinde bir veya birden fazla eyleyici veya robotik manipülatör eklenebilmektedir. Böylece bu tür robotlar sanayi robotlarının yapabileceği türden işleri yürütmeye yeteneğine kavuşmaktadır. Son yıllarda robotik manipülatörlerle ilgili çalışmalar ivme kazanmaktadır (Stilman vd., 2010). Bu tür manipülatörlerin gelecekte asistan robot olarak insanlığın hizmetine sunulması öngörülmektedir.

Ters sarkaç platformlarında PID, Yapay Sinir Ağları, Kayan Kipli Denetim (KDD), Bulanık Mantık, Uyarlamalı Denetim Metotları ve bu denetim metotlarının birlikte kullanılan hibrid denetim yaplarının oluşturulduğu çalışmaları mevcuttur. Gövdeye eklenen fazladan serbestlik derecesiyle sistem doğrusal olmayan bir yapı oluşturacaktadır. Bu tür sistemlerin denetim parametrelerini en iyisinin seçilmesi, yerel uç noktalara takılmamasına bağlıdır. Bu sorunların çözümü için sezgisel veya olasılıksal optimizasyon (en iyileme) yöntemleri kullanılmaktadır (Liu ve Hou, 2002; Tavazoei ve Haeri, 2006).

Bu bildiride, KKD parametrelerinin en iyi değerleri olasılıksal optimizasyon (en iyileme) yöntemleri kullanılmaktadır (Pathak vd., 2005; Chen vd., 1998; Prasad vd., 2011; Park vd. 2009).

Materyal ve Yöntem

Kayan Kipli Denetim Tasarımı

Bu bölümde amaç referans sinyali ve sistem çıkışından elde edilen durum sinyalleri arasında oluşan hatayı sonlu zaman aralığına sifira indirgemektir. Bu tür sistemin kararlılığı garanti edilmiş olacaktır.

Öncelikle izleme hatası $e(t)$ ve kayma yüzeyi fonksiyonu $s(t)$ ve türevi $\dot{s}(t)$ olmak üzere

$$ s = \dot{e} + Ce $$

$$ \dot{s} = \ddot{e} + C\dot{e} $$

olarak ifade edilmektedir. Burada C kaynağı yüzeyinin eğimini ifade etmektedir ve $e_x = x_r - x$ dir. x_r istenen durumu (istenilen x pozisyonunu) ve x ölçülen yanı benzetim sonucu çıkan elde edilen x pozisyonunu ifade etmektedir. Benzer şekilde θ_p, istenen gövde açısı ve θ çizilmiş toplandığında gövde açısı olmak üzere, izleme hatası $e_\theta = \theta_r - \hat{\theta}$ olarak ifade edilebilir. Bu çalışmada x_r için farklı sinyaller uygulanmıştır. Gövde açısının olabildiğince denge noktası etrafında sabit kalması arzu edilmektedir; dolaysıyla $\theta_r = 0$ alınacaktır. Erişime evresinin tamamlanabilmesi için kayma fonksiyonu tanımlayın fonksiyonun

$$ s(x)\dot{s}(x) \leq 0 $$

Sonraki bölümlerde KKD tasarımı, KOA, ele alınan robotik platforma ait matematiksel modelin elde edilişi ve benzetim çalışmaları sırasıyla ele alınacaktır.
ile verilen eşitsizliği sağlaması gerekmektedir. Kayma evresi kayma yüzeyini tanımlayan fonksiyonun (4) ile verilen koşulları sağlamadi durumdur.

\[s(x) = 0 \text{ ve } \dot{s}(x) = 0 \quad (4) \]

Erişme evresine yaklaşım kuralı doğrudan anahtar fonksiyonun dinamiğini belirler. Bu çalışmada, bu kurallardan biri olan sabit değişimli erişme kuralı uygulanacaktır. Bu kontrol kuralı (5) ile ifade edilmiştir.

\[u(t) = -K \text{sign}(s) \quad (5) \]

Sonsuz frekansta anahatlama uygulanabilir bir yöntem değildir. Çatırtı probleminin üstesinden gelmek için en basit ve popüler bir yöntem olan doyma (saturasyon) fonksiyonu ile işaret fonksiyonunun yer değişmesidir. Burada bir sınırlar tabaka tanımlanır. Bu durumda kontrol kuralı (6) ile ifade edilmiştir.

\[u(t) = \begin{cases}
-K \text{sign}(s) & |e| > \varepsilon \\
-s/\beta & |e| \leq \varepsilon
\end{cases} \quad (6) \]

Nihayet, \(e_x \) ve \(e_\theta \) izleme hatalarını bertaraf etmek için sırasıyla, \(u_1(t) \) tekerlek motoru voltağını girisi ve \(u_2(t) \) kol servo motoru torku girisini olmak üzere iki giriş elde edilmiştir. Dolayısıyla \(e_x \) için \(C_1 \) ve \(K_1 \), \(e_\theta \) için \(C_2 \) ve \(K_2 \) katsayları tanımlanmıştır. Bu katsayılara en iyi değerleri elde etmek bir sonraki bölümde KOA ele alınacaktır.

\[y_{n+1} = \lambda y_n (1 - y_n) \quad (7) \]

(7) ile ifade edilen denklemde \(\lambda = 4 \) olduğunda tam bir kaos durumu söz konusudur. \(y_n \) başlangıçta 0-1 arasında oluşturulan rasgele sayı üretici ile meydana getirilmiştir. Sonraki iterasyonlar bir önceki iterasyonuca deger almaktadır. Böylece her iterasyonda koistik serii gölgenlenmişkemektedir. \(x_c \) ise (8) ile ifade edilen birincili taşıyıcı dalga algoritması ile elde edilmiştir.

\[x_c = L + y_{n+1}(U - L) \quad (8) \]

Oluşturulan aday noktalar \(x_c \) vektöründe saklı tutulmakta ve \(f(x_c) \) değerleri elde edilmiştir. Her iterasyonda elde edilen optimum değerler \(f_i \) olarak saklanmaktadır. Iterasyon sonunda veya amaç fonksiyonunun istenilen değerinin altında algoritma sonlandırılmaktadır ve optimum \(f \) değeri elde edilmiştir.

Bu aşamada aday noktalar \((x_{c}) \), KKD katsayları \(C_1 \), \(C_2 \), \(K_1 \) ve \(K_2 \) yi temsil eden etmektedir. Optimizasyonun her iterasyonunda yeni koistik seriler ve aday noktalar belirlenmekte ve sistem dinamik modeli 4. dereceden Runge-Kutta metoduya koşuturlar sistemin çıkış değerleri elde edilmiştir. Optimizasyon için aday nokta sayısı 200 ve iterasyon sayısı, j=100 olarak belirlenmiştir. Amaç fonksiyonu olarak hata sinyallerinin \((e_x \text{ ve } e_\theta)\) kareleri toplamı kullanılmıştır.

\[\sum_{i=1}^{j} e_x^2 + e_\theta^2 \quad (9) \]

Şekil 1’de uygulanan algoritmanda ait akış şeması verilmiştir.

Optimum noktası \((x_{c}) \), aday noktalardan en küçük \(f(x_c) \) yi veren noktadır. Her iterasyonda koistik bir harita kullanılarak yeni bir koistik seri oluşturulmaktadır. Bu çalışmada optimizasyon problemi için KOA koistik harita yöntemlerinden lojistik harita kullanılmıştır (Yıldırım vd., 2016).

\[y_{n+1} = \lambda y_n (1 - y_n) \quad (7) \]
Şekil 1. Kaos optimizasyonu akış şeması

Parametrelerin belirlenmesi için dinamik modelde platformun doğrusal başlangıç konumu 0.1 m ve diğer durum değişkenleri sıfır olarak seçilmiştir. Buna göre x pozisyonunun denge noktası etrafında kararlılık göstermesi beklenmektedir. Kol açısı gövde açısının dengelenmesi için konum değiştirilmiştir.

Elde edilen parametreler referans giriş ve bozucu giriş uygulanarak benzetimde kullanılmıştır. Aynı parametreler daha sonra doğrusal olmayan sistem modeline uygulanmıştır ve sonuçlar grafikler üzerinde karşılaştırılmıştır.

Şekil 2’de amaç fonksiyonunun aldığı değerlerin asimptotik olarak belirli bir değere yakını olduğu görülmektedir.

Şekil 3’de C₁ ve C₂ katsaylarının optimizasyon ile aldığı değerlerin son değerleri en iyi değerler olarak seçilmiştir. Birinci kayma yüzeyi C₁ katsayısının ilerleyen iterasyonlarda aldığı değerlerde kontrol performansında iyileşme yapmadığı tespit edilmiştir.

Şekil 4’de kontrol kuralına ait K₁ ve K₂ katsaylarının değişimi verilmiştir. K₁ katsayısının -5 civarında ve K₂ katsayısının -4 civarında sabitlendiği görülmektedir.
Sistemin Matematiksel Modeli
Şekil 5’de sistemin serbest cisim diyagramı verilmiştir.

Gövdelenin ağırlık merkezin x ve y doğrultusundaki doğrusal yer değişirmesi (10) ve (11) ile verilmiştir.

\[x_b = x + H_1 \sin \theta \] \hspace{1cm} (10)
\[y_b = H_1 \cos \theta \] \hspace{1cm} (11)

Yer değiştirmelerin türevi (12) ve (13) ile verilmiştir.

\[\dot{x}_b = \dot{x} + H_1 \dot{\theta} \cos \theta \] \hspace{1cm} (12)
\[\dot{y}_b = -H_1 \dot{\theta} \sin \theta \] \hspace{1cm} (13)

Kolların ağırlık merkezin x ve y doğrultusundaki yer değiştirmeleri (14) ve 15 ile verilmiştir. \(x \) ve \(y \)’ye ait türevler (16) ve (17) ile verilmiştir.

\[x_a = x + d \sin \theta + H_2 \sin(\alpha - \theta) \] \hspace{1cm} (14)
\[y_a = d \cos \theta - H_2 \cos(\alpha - \theta) \] \hspace{1cm} (15)

\[\dot{x}_a = \dot{x} + d \dot{\theta} \cos \theta + H_2 (\dot{\alpha} - \dot{\theta}) \cos(\alpha - \theta) \] \hspace{1cm} (16)
\[\dot{y}_a = -d \dot{\theta} \sin \theta + H_2 (\dot{\alpha} - \dot{\theta}) \sin(\alpha - \theta) \] \hspace{1cm} (17)

Lagrange Denklemi (18) ile verilmiştir.

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} + \frac{\partial D}{\partial q_i} = F \] \hspace{1cm} (18)
Genelleştirilmiş koordinatlar \(q_1, q_2 \) ve \(q_3 \) sırasıyla \(\beta, \theta \) ve \(\alpha \) olarak belirlenmiştir.

\(b_0, b_1 \) ve \(b_2 \) sırasıyla tekerlek-yer, kol-gövde ve gövde kol arasındaki vízkoz sönm kıatsayılarıdır.

\[K = M_w (\dot{\beta} r) + \frac{1}{2} M_b (\dot{x}_2^2 + \dot{y}_2^2) \]
\[+ \frac{1}{2} M_a (\dot{x}_3^2 + \dot{y}_3^2) \]
\[+ \frac{1}{2} J_a (\ddot{\alpha} - \dot{\theta})^2 + \frac{1}{2} J_b \dot{\theta}^2 + J_w \dot{\beta}^2 \] \hspace{1cm} (19)
\[P = -M_a g ((\dot{d} \cos \theta) - H_2 \cos(\alpha - \theta)) \]
\[- M_b g \dot{H}_1 \cos \theta \] \hspace{1cm} (20)
\[D = b_0 \dot{x}^2 + b_1 (\dot{\beta} - \dot{\theta})^2 + \frac{1}{2} b_2 (\ddot{\alpha} - \dot{\theta})^2 \] \hspace{1cm} (21)

Lagrange fonksiyonu \(L \) (22) ile verilmiştir.

\[L = K - P \] \hspace{1cm} (22)
\[L = M_w (\dot{\beta} r) + \frac{1}{2} M_b (\dot{x}_2^2 + \dot{y}_2^2) \]
\[+ \frac{1}{2} M_a (\dot{x}_3^2 + \dot{y}_3^2) \]
\[+ \frac{1}{2} J_a (\ddot{\alpha} - \dot{\theta})^2 + \frac{1}{2} J_b \dot{\theta}^2 + J_w \dot{\beta}^2 \]
\[- M_a g ((\dot{d} \cos \theta) - H_2 \cos(\alpha - \theta)) \]
\[- M_b g \dot{H}_1 \cos \theta \] \hspace{1cm} (23)

Şekil 6’da DC motor modeli verilmiştir.
Motor torku, \(\tau = f(V) \) olarak ifade edilecek olup motor torku armatür akımı ve voltaj armatür akımı arasındaki ifade (24) ve (25) ile verilmiştir.

\[
\tau_m = K_t i \\
V_a - Ri - L \frac{di}{dt} - V_e = 0
\]

(24)

(25)

Ters elektro motor kuvveti (EMF), \(V_e \) aşağıda ifade edilmiştir.

\[
V_e = K_e \dot{\beta}_m
\]

(26)

\(L \)’nin çok küçük olduğu kabulü ile denklem yeniden düzenlenirse akım aşağıdaki gibi elde edilir.

\[
l = \frac{V_{\text{ref}} - K_e \dot{\beta}_m}{R}
\]

(27)

Denklem yerine koyarak aşağıdaki denklem elde edilir.

\[
\tau_m = K_t \left(\frac{V}{R} - \frac{K_e}{R} \dot{\beta}_m \right)
\]

(28)

İfade edilen \(\dot{\beta}_m \) terimi motor şaftına göre hızı temsil etmektedir. Bu ifadeyi tekerleve ve gövde açısı cinsinden edilerek ifade edilmiştir.

\[
\beta_m = n\beta - \theta \\
\dot{\beta}_m = n\dot{\beta} - \dot{\theta}
\]

(29)

(30)

İfade edilen motor şaftına etki eden tork ifadesi tekerleve uygulanan tork ifadesi cinsinden aşağıdaki ifade edilmiştir.

\[
\tau_w = n \tau_m
\]

(31)

Denklem düzenlenirse aşağıdaki denklem elde edilir.

\[
\tau_w = \frac{nV K_t}{R} - \frac{nK_e K_t}{R} (n\dot{\beta} - \dot{\theta})
\]

(32)

Lagrange Denklemi çözülüp gerekli işlemler yapılarak doğrusal olmayan denklem (33) ile verilen formda elde edilir.

\[
\tau = M(q) \ddot{q} + H(q, \dot{q}) \dot{q} + g(q)
\]

(33)

Bu denklemler denge noktası etrafında doğrularaştırılırsa aşağıdaki durum uzayı modeli elde edilir.

\[
\dot{x}(t) = A x(t) + B u(t)
\]

(34)

Sisteme ait parametreler Tablo 1’ de verilmiştir.

Tablo 1. Sistem Parametreleri
Parametre

\(M_b \)
\(M_w \)
\(M_a \)
\(H_1 \)
Uygulama ve Başarımlar

Doğrusal Model ile Benzetim Çalışmaları

Önceki bölümdede bahsedilen ve optimizasyonun gerçekten uygulandığı modelde x konumunun başlangıç şartı 0.1 m olarak alındığında elde edilen sonuçlar Şekil 7, 8, 9, 10 ve 11’de verilmiştir.

Şekil 7. Verilen başlangıç koşulları altında durum değişkenlerinin cevabı

Şekil 7’de yatay pozisyon değişkeninin kısa sürede kalıcı duruma ulaştığı gözlemlemiştir.

Şekil 8.Tekerlek motoru giriş u_1 voltaj girişi ve u_2 kol motoru tork girişi

Şekil 8’de tekerlek ve kol tahrik girişlerinin çatırdama sorunu olmadan denetimi sağladığı gözlemlemiştir.

Şekil 9. x referansının hatası e_x ve gövde açı pozisyonunun hatası e_θ

Şekil 9’da kalıcı durum hatalarının bertaraf edildiği gözlemlemiştir. Şekil 10’da kalı ve gövde hareketi görsel olarak verilmiştir.

Şekil 10. Başlangıç şartları altında benzetim görseli

Şekil 11. x durum değişkenine ait faz uzayı eğrisi

Şekil 11’de yatay konum değişkeninin ve hızının faz uzayı eğrisinde kararlı olduğu gözlemlemiştir.

İkinci benzetim çalısmasında platformun x doğrultusundaki referans sinyali $x_{ref} = A\sin(2\pi ft)$ seçilmiş olup $A = 0.2$ m ve $f = 0.25$ Hz seçilmiştir.

Jw	0.0007 kgm2
r	0.1 m
g	9.81 m/s2
B0	0.05
B1	0.005
B2	0.01
L1	0.56 m
H2	0.2 m
n	30
Kx	0.1429 Nm/A
Ke	0.1429 Nm/A
R	8.7 W
\[f = 0.2 \text{ Hz} \] olarak belirlenmiştir. Sistem cevabı Şekil 12, 13, 14 ve 15’de verilmiştir.

Şekil 12. Durum değişkenlerinin cevabı

Şekil 12’de yatay konum değişkeninin referansı takip ettiği gözlemlemiştir.

Şekil 13. Sisteme ait girişler

Şekil 13’de sistem girişlerinin tahrir elemanlarının limitlerini aşmadığı gözlemlemiştir. Şekil 14’de hata sinyallerinin oldukça düşük olduğu görülmüştür.

Şekil 14. Sistemden alınan hata sinyalleri

Şekil 15. Sinüs girişi ile edilen benzetim görseli

 Şekil 15’de yatayda alınan mesafe boyunca gövde açısının düşeyle yaptığı açının düşük olduğu bir görsel ile ifade edilmiştir. Gövde açısının dik durması için kolun sağlam olduğu hareket miktarı izlenebilmiştir.

Üçüncü benzetim çalışmasında ikinci benzetime ek olarak bozucu giriş uygulanmıştır. Bozucu giriş kuralı olarak \(u_1 \) girişine \(d \) bozucu giriş olarak seçilmiştir. Sistem cevapları Şekil 16 ve 17’de verilmiştir.

Şekil 16. Bozucu giriş etkisi altında durum değişkenleri

Şekil 16’da bozucu girişe karşılık gerçek değişkenin referansı takip ettiği izlenmektedir.

Şekil 17. Sisteme ait giriş sinyalleri

Şekil 17’de sistemde uygulanan bozucu giriş ve tahrir elemanlarının bu girişe karşılık davranışını izlenmiştir. Giriş elemanlarının çatırdama sorunu ile karşılaşmadığı ve girişlerin sınırları aşmadığı izlenmiştir.

Doğrusal olmayan model ile benzetim çalışmaları

Doğrusal model kullanılarak optimizasyon sonucu elde edilen parametrelerin doğrusal olmayan modelde aynı sonucu vermesi
beklenmemektedir. Giriş referans sinyalinin frekans aralığı doğrusal ve doğrusal olmayan modelde farklılık göstermektedir. Ancak belirli bölgede kararlı sonuçlar alınmıştır.

Benzetimler, doğrusal ve doğrusal olmayan modelde koşturulmuş ve grafikler karşılaştırmalı olarak verilmiştir. Doğrusal olmayan model ile yapılan ilk benzetimde x doğrultusundaki referans sinyali $x_{ref} = A \sin(2\pi ft)$ olmak üzere $A = 0.3 \text{ m}$ ve $f = 0.05 \text{ Hz}$ olarak seçilmiştir.

Yapılan çalışmalar neticesinde doğrusal model kullanılarak elde edilen en iyi parametrelerin doğrusal olmayan modelde 0-0.05 Hz aralığında başarılı sonuç verdiği Şekil 18 ve 19’da gözlenmiştir.

Şekil 18.Durum değişkenlerine ait cevaplar

Şekil 19.Sisteme ait giriş sinyalleri

$A = 0.3 \text{ m}$ ve $f = 0.05 \text{ Hz}$ olmak üzere $x_{ref} = A \sin(2\pi ft)$ referans sinyali uygulanarak u_1 girişine $d = u_{\text{max}}/2$ bozucu giriş uygulanmış benzetim sonuçları Şekil 20, 21 ve 22’de verilmiştir.

Şekil 20.Durum değişkenlerinin cevabı

Şekil 21.Sisteme ait girişler

Şekil 22. x durum değişkenine ait faz uzay eğrisi

Şekil 20’de yatay pozisyon referansının başarılı bir şekilde takip edildiği ve gövde açısının düşeyle yaptığı açının düşük kaldığı izlenmiştir. Kol açısının düşük değerlerde kaldığı gözlenmiştir. Ayrıca doğrusal ve doğrusal olmayan modele ait değerlerin bu frekans değerleri için örtüştığı tespit edilmiştir.

Şekil 21’de sistem girişlerinin çatırdama sorunu ile karşılaşmadığı ve girişlerin sınırları aşmadığı tespit edilmiştir.

Şekil 22’de yatay pozisyon durum değişkeninin, doğrusal ve doğrusal olmayan model için örtüştiği tespit edilmiştir.
Sonuçlar ve Tartışma

Tek kol ile desteklenmiş sistem üzerinde yapılan çalışmada gövde açısının istenilen doğrultuda denge noktasına etrafında kaldıgı gözlemlenmiştir. Platforma ait benzetimlerde yatay konum durum değişkenine ait referans sinyalleri başarıyla takip ettiği gözlemlenmiştir. Ayrıca sistemin bozucu girişleri bertaraf ettiği açıkça görülmektedir. Doğrusal olmayan modele ait en iyi denetim parametreleri, doğrusal modelde belirli giriş sinyali frekansı için kabul edilebilir düzeydedir. Çünkü doğrusal olmayan model için yapılan optimizasyon algoritması çok yavaş ilerlemektedir. Özellikle ÇGÇÇ sistemlerde giriş sayısının artmasıyla kabul edilebilir frekans ve temel tahrik elemanına uygulan bozucu girişleri yok etmesi bakımından bilişsel robotik uygulamaları önemlidir.

Kaynaklar

Chen, C.S., Chen, W.L., (1998), Robust Adaptive Sliding-Mode Control Using Fuzzy Modelling for an Inverted-Pendulum System, IEEE Transaction on Industrial Electronics, 45, 2., 297-306.

Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A.C., (2002), JOE: A mobile Inverted Pendulum, IEEE Transactions on Industrial Electronics, 49, 1, 107-114.

Linn, S.C., Tsai, C.C., Huang, H.C., (2011), Adaptive Robust Self-Balancing and Steering of a Two-Wheeled Human Transportation Vehicle, Journal of Intelligent Robotic Systems, 62, 1, 103-123.

Liu, S., Hou, Z., (2002), Weighted Gradient Direction Based Chaos Optimization Algorithm for Nonlinear Programming Problem, Proceedings of the 4th World Congress on Intelligent Control and Automation, 1779-1783.

Nguyen, H.G., Morrell, J., Mullens, K.D., Burmeister, A.B., Miles, S., Farrington, N., Thomas, K.M., Gage, D.W., (2004). Segway Robotic Mobility Platform, Proceedings SPIE 5609 Mobile Robots XVII.

Park B.S., Yoo S.J., Park, J.B., Choi, Y.H., (2009), Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots with Model Uncertainty, IEEE Transaction on Control Systems Technology, 17, 1, 207-214.

Pathak, K., Franch, J., Agrawal, S.K., (2005), Velocity and position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization, IEEE Transactions on Robotics, 21, 3.

Prasad, L.B., Tyagi, B., Gupta, H.O., (2011), Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller & LQR, IEEE International Conference on Control System, pp.540-545.

Stilman, M., Olson, J., Gloss, W., (2010), Golem Krang: Dynamically Stable Humanoid Robot for Mobile Manipulation, IEEE International Conference on Robotics and Automation.

Tavazoei, M.S., Haeri, M., (2006), An Optimization Algorithm Based on Chaotic Behavior and Fractal Nature, Journal of Computational and Applied Mathematics, 206, 2, 1070-1081.

Yıldırım, G., Aydın, G., Alli, H., Tatar, Y., (2014), Hadoop ile Kaos Temelli FCW Optimizasyon Algoritmasonun Analizi, Elektrik-Elektronik-Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 708-712.
Sliding Mode Control and Parameter Optimization of Two-Wheeled and Single-Arm Robotic Platform

Extended abstract

In this study, one-handed and two-wheeled robotic manipulator was simulated with sliding mode control (SMC). In SMC, saturation was applied to overcome the problem of chattering. For the two controlled variables of the robot, there are four unknown parameters in total for the sliding surface and control rule. In finding the best points, gradient-based methods often cannot provide a global solution. In order to overcome this problem, the chaos optimization algorithm (COA) is used.

In COA, different points are formed by chaotic series. In this study, a logistic map was used to construct a chaotic series. The primary carrier wave algorithm is used to update the chaotic series. The aim function is the sum squares of the errors.

A linear mathematical model of the system is used for optimization. The Runge-Kutta method is used for the solution of equations. The optimization solution in the linear model gives very fast results compared to the nonlinear model. The best parameters obtained in the linear model are used in the nonlinear model in the simulation studies. Simulations were made under the same type of input and initial conditions and compared on the same graph.

The sinusoidal position reference of 0.2 Hz and 0.2 m amplitude is applied. It is observed that the reference overlaps with the horizontal position variable. Body angle does not exceed 0.05 degrees and arm angle does not exceed 40 degrees. System input has been examined and no chattering problem has been observed. The system was exposed to disturbance input as much as half of the system input, with the same reference. The phase space curve of the horizontal position is investigated; it is observed that the horizontal positional phases of the linear and nonlinear system overlap.

The results show that the optimum parameters obtained for the linear model can be used with low frequency references in the nonlinear model. In the future, more efficient control algorithms will be implemented. We intensify our efforts to see the effects on the real-time system.

Keywords: Sliding mode control, Chaos optimization algorithm, Service robots, Rehabilitation robots