Multifaceted roles of RNA polymerase IV in plant growth and development

Shuai Zhang†, Xiao-Qing Wu†, Hui-Ting Xie, Shan-Shan Zhao, and Jian-Guo Wu*,†

Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

† These authors contributed equally to this work.
* Correspondence: wujianguo81@126.com

RNA-directed DNA methylation (RdDM) is a small RNA-mediated epigenetic process in plants. The biogenesis of small RNAs and initiation of RdDM rely on complex transcriptional machineries, including two plant-specific RNA polymerases (Pol IV and Pol V) and other auxiliary proteins. Pol IV is known to play a critical role in generating 24-nt siRNAs in the RdDM pathway, and is involved in Capsella pollen development, rice tillering, and rice resistance to viruses. Here, we discuss the most recent findings on the functions of Pol IV in plant growth and development and consider other possible functions that need further investigation.

Apart from DCL3, other DCLs are also capable of generating distinct small RNA species. Among them, DCL1 is known to be responsible for the maturation of 21-nt microRNAs (miRNAs) or siRNAs processed from hairpin-structured precursors. DCL2 acts mainly in the biogenesis of 22-nt viral siRNAs (vsiRNAs), while DCL4 generates mainly 21-nt trans-acting siRNAs (ta-siRNAs). Furthermore, DCL2, DCL3, and DCL4 are known to function partially redundantly in the establishment and maintenance of DNA methylation as well as the biogenesis of Pol IV-generated RNA transcripts. In addition, there is a unique and DCL-independent class of siRNAs (sidRNAs) of the order of 20 to 60 nt in length (Yang et al., 2016; Ye et al., 2016). The precursor RNA transcripts of sidRNAs are associated with AGO4 and are subsequently trimmed by 3′–5′ exonuclease to produce mature sidRNAs to initiate de novo DNA methylation (Ye et al., 2016). Because the RdDM pathway has been found in both vegetative and reproductive organs of plants, it is likely to have prominent roles in the whole life cycle.

Multifaceted roles of Pol IV in plant growth and development

Very recently, two articles have shed new light on the functions of Pol IV in rice (Oryza sativa). Zhang et al. (2020) have reported that the stable expression of rice grassy stunt virus (RGSV)-encoded P3 protein in rice plants can cause a
dwarfing and excessive tillering phenotype similar to the disease symptoms caused by RGSV infection. The authors conclude that stable expression of P3 protein or RGSV infection in rice plants can lead to an enhancement of ubiquitination and the ubiquitin proteasome system (UPS)–dependent degradation of rice NUCLEAR RNA POLYMERASE D1a (OsNRPD1a), one of the two orthologs of the largest subunit of plant–specific Pol IV holoenzyme. This degradation mechanism is accomplished mainly by recruiting P3IP1, a P3-inducible U-box type E3 ubiquitin ligase, to ubiquitinate and degrade OsNRPD1a by the UPS-dependent pathway. This report also revealed that RGSV can target host Pol IV for UPS–dependent degradation and RdDM core protein can serve as a potential target for the UPS, a novel virulence mechanism underlying plant–virus interactions (Zhang et al., 2020).

The other study, by Xu et al. (2020), revealed that RdDM inhibits rice tillering by regulating the expression of three agriculturally important genes, OsMIR156d, OsMIR156j, and DWARF14 (D14). Reduced expression of rice OsNRPD1a and OsNRPD1b results in a pronounced loss of genome-wide 24–nt siRNAs, a remarkable reduction of DNA methylation in the miniature inverted–repeat transposable element (MITE) regions, especially CHH methylation, and the subsequent control of the expression of key genes associated with rice tillering. Mechanistically, RdDM targets two MITEs in the promoter regions of OsMIR156d and OsMIR156j and significantly inhibits the transcription of these two miRNAs, which controls the expression of key genes related to rice tillering. Rice tillering determines the plant structure and grain yield, and Ideal Plant Architecture 1 (IPA1) is an important factor that has been identified to regulate rice tillering. Three MITEs were found in the promoter of IPA1. However, the degree of methylation of these MITEs was not significantly different between wild-type plants and osnrpd1-1 mutants. To a certain extent, the possibility of RdDM involvement in the regulation of rice tillering by directly controlling the transcription of IPA1 was ruled out. Studies have found that the expression of IPA1 can be inhibited by OsmiR156 at the shoot tip (Jiao et al., 2010; Miura et al., 2010). OsmiR156a–j transcripts accumulated excessively in osnrpd1-1/2 and osnrpd1ab double knockout lines, and the expression of the target IPA1 was down-regulated, highlighting that RdDM regulates rice tillering through the OsmiR156–IPA1 module. In contrast, the expression of D14, which encodes a strigolactone receptor and can repress the outgrowth of rice tillers, is activated by CHH methylation in a MITE region located at its downstream. In the osnrpd1-1/2 mutant, MITE#1 in the downstream region of D14 was hypomethylated, resulting in the down-regulation of D14 and enhanced protein stability of D53. Furthermore, D53 inhibits the transcriptional activation ability of IPA1 (Song et al., 2017), leading to an increase in rice tillering, indicating that RdDM also controls rice tillering through the strigolactone signaling pathway. This finding indicates an important RdDM–dependent mechanism controlling rice tillering and provides potential targets for the improvement of agronomic traits through epigenome editing.

In addition to its above-mentioned roles, Pol IV is also critical for basal heat tolerance in Arabidopsis. Transient heat stress can affect the epigenetic program in plants as well as the long-term thermal responses triggered by the depletion of loci silencing within constitutive heterochromatin. Recent findings have indicated that mutant plants defective in NRPD2, which encodes a common (and the second largest) subunit of the Pol IV and PolV complexes, are hypersensitive to heat exposure. All the dysregulated genes in nrdp2 mutants recovering from heat stress are located near the transposon residues or the siRNA–producing clusters, suggesting that these dysregulated thermal-responsive genes are modulated by defective epigenetic regulation near the transposons in plants lacking a functional NRPD2. These results also point toward a certain signal–controlled correlation between the RdDM pathway and plant tolerance to heat stress (Popova et al., 2013).

Recently, Pol IV has been shown to play an important role in pollen development in Arabidopsis. The formation of pollen is strongly affected by the reprogramming of CHH methylation. During meiosis, the global level of CHH methylation is greatly reduced and the accumulation of meiosis–specific small RNAs is dependent on Pol IV (Walker et al., 2018). Although many functions of Pol IV have been documented, its loss of function does not cause an obvious pollen–deficient phenotype in Arabidopsis. Based on the obvious difference in TE contents between Arabidopsis thaliana and Capsella rubella, the loss of function of Pol IV has a greater impact on the latter species, resembling the defects in Brassica rapa (Grover et al., 2018). Recent studies have also demonstrated that the loss of Pol IV function in Capsella can lead to an arrest of microspore development. Small RNA profiling has shown that depletion of Pol IV can block the production of 21–22–nt siRNAs (Wang et al., 2020), suggesting that Pol IV is required for the synthesis of epigenetically activated 21–22–nt siRNAs (easiRNAs) in pollen. The biogenesis of easiRNAs is known to be triggered by certain miRNAs (e.g., miRNA845b) and requires the involvement of DCL2 and/or DCL4.

Pol IV–dependent paternal easiRNA can cause barriers to cross–breeding using plants of different ploidy (Martinez et al., 2018). Seed development is sensitive to parental genome doses, and excessive paternal genomes can cause defective phenotypes, including large endosperm reproduction without cellularization and seed abortion. Paternal loss of Pol IV function can inhibit easiRNA biogenesis, and depletion of easiRNA can overcome thetriploid block to rescue triploid seed formation via the restoration of RdDM on TEs. This restoration will increase paternal ploidy in Arabidopsis. It is noteworthy that easiRNA is not only a quantitative signal for paternal chromosomes, but also a balanced dose required for post–fertilization genome stabilization as well as seed vigor. How easiRNA is generated, and the nature of its downstream reaction mechanisms, are still not fully understood and thus need more in–depth research.

Coinciding with Arabidopsis, the maize (Zea mays) Pol IV–mediated RdDM pathway also plays an extensive role in
Proteins	Gene ID	Description	Reference
AtNRP1a	At1G63020	One of the two alternative largest subunits of Pol IV	(Luo and Hall, 2007)
AtNRP1b/	At2G40030	Unique largest subunit of Pol V	(Wendte et al., 2017)
AtNRP2a	At3G23170	Related to the second largest catalytic subunit of Pol IV	(Herr et al., 2005)
AtNRP4a	At4G15960	Non-catalytic subunit of Pol IV and Pol V	(He et al., 2009a)
AtNRP4b	At3G28230	Non-catalytic subunit of Pol V	(Eun et al., 2012)
AtNRP5a	At3G57080	Assisting Pol V	(Tan et al., 2012)
AIRDR2	At4G11130	RNA-dependent RNA polymerase acting together with Pol IV	(Haag and Pikaard, 2011)
AIRDR6	At3g49500	RNA-dependent RNA polymerase acting together with Pol II	(Nuthikuttu et al., 2013)
AtDCL1	At1g01040	Dicer endonuclease that generates 21/22 nt miRNAs	(Zhang et al., 2018)
AtDCL2	At3g03300	Dicer endonuclease that generates 22 nt siRNAs	(Stroud et al., 2013)
AtDCL3	At3g4920	Dicer endonuclease that generates 24 nt siRNAs	(Wei et al., 2014)
AtDCL4	At4g20320	Dicer endonuclease that generates 21 nt ta siRNAs	(Stroud et al., 2013)
AtHFN1	At4g20910	RNA methyltransferase	(Baranau et al., 2015)
AAGO1	At1G48410	Initiates de novo DNA methylation through the RDR6–RdDM pathway	(Kenesi et al., 2017)
AAGO4	At2g27040	Argonaute protein in AGO4 clade, specialized for RdDM pathway	(Pikaard et al., 2012)
AAGO6	At2g32940	Argonaute protein in AGO4 clade, specialized for RdDM pathway	(Bologna and Voinnet, 2014)
AAGO7	At1G69440	Involved in the regulation of developmental timing	(Qu et al., 2008)
AAGO9	At5g21150	Argonaute protein in AGO4 clade, role in RdDM uncertain	(Bologna and Voinnet, 2014)
ADMS3	At1g31250	Facilitates RNA1-mediated epigenetic modification, involves secondary siRNA	(Law et al., 2010)
ARDM1	At3g21680	AGO4- and Pol II-interacting protein	(Law et al., 2010)
ARMS4/	At2g30280	Putative nuclear import factor for Pol II, Pol IV, and Pol V	(He et al., 2009b)
AIRD4	At5g04290	Contains an AGO hook motif, involved in Pol V transcription	(Hartzog and Fu, 2013)
AtND2	At3g04670	dsRNA-binding protein in the Pol V pathway	(Ausin et al., 2009)
AtDP1	At1G15910	Forms a complex with IDN2	(Zhang et al., 2012)
AtDP2	At4g30380	Forms a complex with IDN2	(Zhang et al., 2012)
AtSWI3B	At2g33010	Subunit of the SWI/SNF chromatin-remodeling complex	(Liu et al., 2020)
AtDRM2	At5g14620	DNA methyltransferase	(Henderson et al., 2010)
AtSUH2	At2g33290	SRA domain protein that binds to methylated DNA and recruits Pol V	(Kuhlmann and Mette, 2012)
AtSUH4	At5g13960	SRA domain protein that binds to methylated DNA and recruits Pol V	(Kuhlmann and Mette, 2012)
AtSUH9	At4g13460	SRA domain protein that binds to methylated DNA and recruits Pol V	(Kuhlmann and Mette, 2012)
AtSHH1	At1G15215	An atypical RNA-directed DNA methylation component	(Law et al., 2013)
AtHDA6	At2g33110	Histone deacetylase	(Auffray et al., 2002)
AtHMJ14	At1G20400	Histone demethylase	(Searle et al., 2010)
AtUBP26	At3g49800	Histone H2B deubiquitinase	(Sridhar et al., 2007)
AtNERD	At2g16485	Involved in the non-canonical RdDM pathway	(Pontier et al., 2012)
AtICMT2	At4g19020	DNA methyltransferase specific for CHH	(Zemach et al., 2013)
AtCMT3	At1g69770	DNA methyltransferase specific for CHG	(Cao et al., 2003)
AtMET1	At5g49160	DNA methyltransferase specific for CG	(Pikaard and Scheid, 2014)
AtDDM1	At5g66750	Snt2 chromatin remodeler acting in siRNA-independent DNA methylation	(Zemach et al., 2013)
AtDRD1	At1g16390	Putative Snt2 chromatin remodeling factor, part of the DDR complex	(Kanno et al., 2004)
AtCLSY1	At3g42670	Putative Snt2 chromatin remodeling factor, involved in the Pol IV pathway	(Smith et al., 2007)
Table 1. Continued

Protein components involved in the RdDM pathway and DNA methylation in Arabidopsis

Proteins	Gene ID	Description	Reference
AtCHR34	At2G21450	Putative Snf2 chromatin remodeling factor	(Kanno et al., 2004)
AtCLSY2	At1G59040	Putative Snf2 chromatin remodeling factor, involved in the Pol IV pathway	(Law et al., 2011)
AtCLSY3	At1G05490	Putative Snf2 chromatin remodeling factor, involved in the Pol IV pathway	(Law et al., 2011)
AtCLSY4	At3G24340	Putative Snf2 chromatin remodeling factor, involved in the Pol IV pathway	(Law et al., 2011)
AtMORC1	At4G36290	GHKL-type ATPase	(Moissiard et al., 2012)
AtMORC2	At4G36280	GHKL-type ATPase	(Kang et al., 2012)
AtMORC3	At4G36270	GHKL-type ATPase	(Harris et al., 2016)
AtMORC4	At5G350780	GHKL-type ATPase	(Harris et al., 2016)
AtMORC5	At5G13130	GHKL-type ATPase	(Koch et al., 2017)
AtMORC6	At1G19100	GHKL-type ATPase	(Brabbs et al., 2013)
AtMORC7	At4G24970	GHKL-type ATPase	(Harris et al., 2016)
AtSPT5-1	At2G34210	Transcription elongation factor	(Dür et al., 2014)
AtSPT5-2	At4G08350	Transcription elongation factor	(Dür et al., 2014)
AtNRPB1	At4G35800	Largest subunit of Pol II	(Haag and Pikaard, 2011)
AtNRPB2	At4G21710	Second largest subunit of Pol II	(Onodera et al., 2005)
AtROS1	At2G36490	DNA glycosylase/hyrase acting in active demethylation of DNA	(Zhang and Zhu, 2012)
AtGM1	At5G24280	DNA double-strand break repair	(Böhmderfer et al., 2011)

Protein components involved in the RdDM pathway and DNA methylation in rice

Proteins	Gene ID	Description	Reference
OsNRPD1a	LOC_Os04g48370	One of two orthologs of the largest subunit of Pol IV	(Zhang et al., 2020)
OsNRPD1b	LOC_Os06g39360	One of two orthologs of the largest subunit of Pol IV	(Xu et al., 2020)
OsDCL1a	LOC_Os03g02970	Responsible for the processing of 21/24-nt miRNAs	(Liu et al., 2005)
OsDCL2a	LOC_Os03g04780	Responsible for the processing of 21/24-nt miRNAs	(Kapoor et al., 2008)
OsDCL2b	LOC_Os09g14610	Responsible for the processing of 21/24-nt miRNAs	(Kapoor et al., 2008)
OsDCL3a	LOC_Os10g06120	Responsible for the biogenesis of siRNAs	(Kapoor et al., 2008)
OsDCL3b	LOC_Os10g34430	Responsible for the biogenesis of siRNAs	(Song et al., 2012)
OsDCL4	LOC_Os04g03850	Affects the production of 21nt siRNA in the panicle	(Song et al., 2012)
OsAGO1a	LOC_Os02g45070	Has the ability to bind small RNA and has cleavage activity	(Wu et al., 2009)
OsAGO1b	LOC_Os04g04780	Has the ability to bind small RNA and has cleavage activity	(Wu et al., 2009)
OsAGO1c	LOC_Os02g58490	Has the ability to bind small RNA and has cleavage activity	(Wu et al., 2009)
OsAGO1d	LOC_Os06g51310	Member of RNA-induced silencing complex	(Wu et al., 2009)
OsAGO2	LOC_Os04g52540	Involved in DNA methylation, active oxygen metabolism regulation, tapetum development, and programmed cell death	(Zheng et al., 2019)
OsAGO4a	LOC_Os01g16870	Involved in the biogenesis of small RNAs	(Kapoor et al., 2008)
OsAGO4b	LOC_Os04g06770	Involved in the biogenesis of small RNAs	(Kapoor et al., 2008)
OsMEL1	LOC_Os03g58600	Participates in the regulation of the division of germ cells before meiosis, the correct modification of meiotic chromosomes, and the accurate progress of meiosis through the RdDM pathway	(Nonomura et al., 2007)
OsAGO16	LOC_Os07g16224	Involved in transcriptional gene silencing by guiding DNA methylation	(Wu et al., 2010)
OsSHL1/4	LOC_Os03g31650	Affects the development of leaf polarity	(Itoh et al., 2000)
OsNPH1	LOC_Os03g39640	Regulates apical meristems, vascular bundle development, and leaf formation	(Nishimura et al., 2002)
OsAGO17	LOC_Os02g0330	Has crucial regulatory roles in rice pollen development	(Yao et al., 2018)
OsAGO18	LOC_Os07g28550	Confers broad-spectrum virus resistance in rice	(Wu et al., 2015)
OsSHL2/3	LOC_Os01g30450	Participates in the plant defense responses to viruses, bacteria, and fungi	(Wagh et al., 2016)
OsRDR6	LOC_Os04g39160	Has roles in siRNA-mediated DNA methylation and histone modifications	(Wbisky et al., 2010)
OsRDR4	LOC_Os01g10140	Specifically activated in response to dehydration stress	(Kumar and Singh, 2016)
OsRDR1	LOC_Os02g0330	Involved in the antiviral RNA silencing pathway	(Wang et al., 2016)
OsRDR3	LOC_Os01g10130	Specifically activated in response to dehydration stress	(Kumar and Singh, 2016)
OsCMT3	LOC_Os10g01570	Involved in the epigenetic process affecting genome activity during abiotic stress	(Sharma et al., 2009)
the regulation of genome dominance, subgenome stability, and evolution. Maize RNA Polymerase D1 (RPD1/RMR6) encodes the largest subunit of Pol IV, which is necessary for the generation of siRNAs to maintain the gene expression patterns needed for normal plant development. In-depth and comprehensive analyses of gene expression, TE distribution, small RNA targeting, and DNA methylation levels in rpd1/rmr6 mutant plants have shown that the loss of Pol IV activity can result in an overall increase of RNA transcription from the maize genome. Among the regulated genes, those near the TE insertions are the most affected genes via Pol IV-mediated gene silencing, and the TEs in the inserted genes can affect the expression of adjacent loci. The regulation of the expression of nearby genes by TEs is related to the methylation profiles on the flanking regions of the genes and is strictly dependent on the characteristics of the inserted TEs (Erhard et al., 2013; Forestan et al., 2017).

Future perspectives

A comprehensive list of components associated with Arabidopsis and rice RdDM pathways, including DCLs, AGOs, and RDRs, is given in Table 1. In addition, we have summarized the
multifaceted role of Pol IV in plants in Fig. 1. Many recent findings have advanced our knowledge on the functions of Pol IV in five main areas: (i) Pol IV governs the expression pattern of genes near TE insertions to maintain the stability and evolution of maize subgenomes. (ii) Pol IV functions in the reproductive development of crucifer plants (e.g. C. ni-bella and B. rapa). (iii) Pol IV functions in monocot plant (e.g. O. sativa) morphogenesis. (iv) Pol IV functions in the barriers that arise during plant cross-breeding. (v) Pol IV participates in the regulation of plant resistance to abiotic and biotic stresses.

Although many studies using Arabidopsis, rice, maize, and other plants have significantly advanced our knowledge on the functions of Pol IV, many fundamental questions are still unanswered. For example, Pol IV is an important component in RdDM, and rice rpd1 mutant plants exhibit a dwarf and excessive tillering phenotype, and maize rpd1 mutants are shorter, with delayed flowering, feminization of male tassels, depolarization of leaf tissue, and tissue outgrowths on their stems (Parkinson et al., 2007, Erhardt et al., 2009). In contrast to these representative monocotyledonous species, Arabidopsis mutants in Pol IV function have no such developmental defects. Perhaps Pol IV controls different regulatory mechanisms in monocotyledonous and dicotyledonous plants. As far as monocotyledonous species are concerned, the loss of Pol IV activity also has different effects on plant development in rice and maize, and its underlying fine mechanisms still need to be urgently elucidated in future research. In addition, it remains unknown how RGSV can target host Pol IV to disrupt the UPS-dependent pathways but not the downstream regulatory networks involved in plant-pathogen interactions. Although OsNRPa1a and OsNRPa1b are the orthologs of the largest subunit in rice Pol IV, do they have functional divergence, especially in the regulation of plant responses to stresses? Can Pol IV play roles in other abiotic stress responses in addition to heat stress?

Future biochemical, functional, and genetic studies are necessary to address these questions. As with other molecular biology studies, the studies on the functions of Pol IV have entered a new phase to explore the function more broadly and in-depth mechanisms in many other plant species. Understanding the mechanisms underlying the functions of Pol IV in other plant species, especially monocotyledonous species, will provide us with opportunities to identify the links between RdDM and other molecular pathways, such as the UPS-dependent pathway. Collectively, the information described above will uncover the multifaceted roles of Pol IV in plant development and reproduction.

Acknowledgements

We thank Prof. Xin-Shun Ding (The Samuel Roberts Noble Foundation, USA) for critical reading of and revising the manuscript. This work was supported by the National Natural Science Foundation of China (grant nos 31871934, 31722045, 31772128, and U1905203), the Fok Ying-Tung Education Foundation (no.161024), Education and Research Projects for Young Teachers in Fujian Provincial Department of Education (no. T180112), Outstanding Youth Research Program of Fujian Agriculture and Forestry University (no. JQ201804), and Fujian Province University Leading Talents-Youth Top Talents Project Funding.

Competing interests

The authors declare no competing interests.

Data availability

All data supporting the findings of this viewpoint are available from the corresponding author, Jian-Guo Wu, upon request.

Keywords: Arabidopsis, plant growth and development, Pol IV, rice, RNA-directed DNA methylation, siRNA biogenesis.

References

Aufsatz W, Mette MF, van der Winden J, Matzke M, Matzke AJ. 2002. HDa6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. The EMBO Journal 21, 6832–6841.

Auzin I, Mockler TC, Chory J, Jacobsen SE. 2009. IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nature Structural & Molecular Biology 16, 1325–1327.

Baranauskas S, Mickut M, Piotnikova A, Finke A, Venclovas Č, Klimašauskas S, Vilkašis G. 2015. Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Research 43, 2802–2812.

Böhmdorfer G, Schleifler A, Brunneir M, Ferscha S, Nizhynska V, Kozák J, Angelis KK, Kreil DP, Schweizer D. 2011. GM1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis. The Plant Journal 67, 420–433.

Bologna NG, Voineot O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annual Review of Plant Biology 65, 473–503.

Brabbs TR, He Z, Hogg K, Kamenski A, Li Y, Paszkiewicz KH, Moore KA, O’Toole P, Graham IA, Jones L. 2013. The stochastic silencing phenotype of Arabidopsis morc6 mutants reveals a role in efficient RNA-directed DNA methylation. The Plant Journal 75, 836–846.

Cao X, Aufsatz W, Zilberman D, Mette MF, Huang MS, Matzke M, Jacobsen SE. 2003. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Current Biology 13, 2212–2217.

Dangwal M, Malik G, Kapoor S, Kapoor M. 2013. De novo RNA methylation, OsDRRM2, interacts with the ATP-dependent RNA helicase, OsElf4A, in rice. Journal of Molecular Biology 425, 2853–2866.

Du J, Johnson LM, Groth M, Feng S, Hale CJ, Li S, Vashisht AA, Wohlschlegel JA, Patel DJ, Jacobsen SE. 2014. Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Molecular Cell 55, 495–504.

Dürst S, Lolas IB, Sørensen BB, Schubert V, Houben A, Melzer M, Deutzmann R, Grasser M, Grasser KD. 2014. The transcription elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis. Nucleic Acids Research 42, 4332–4347.

Erhardt KF Jr, Parkinson SE, Gross SM, Barbour JE, Lim JP, Hollick JB. 2013. Maize RNA polymerase IV defines trans-generational epigenetic variation. The Plant Cell 25, 808–819.

Erhardt KF Jr, Stonaker JL, Parkinson SE, Lim JP, Hale CJ, Hollick JB. 2009. RNA polymerase IV functions in paramutation in Zea mays. Science 323, 1201–1205.

Eun C, Lorkovic ZJ, Naumann U, Matzke AJ, Matzke M. 2012. Use of forward genetic screens to identify genes required for RNA-directed DNA methylation in Arabidopsis thaliana. Cold Spring Harbor Symposium on Quantitative Biology 77, 195–204.

Forestan C, Farinati S, Aiese Cigliano R, Lunardon A, Sanseroverino W, Varetto S. 2017. Maize RNA PolIV affects the expression of genes with...
nearby TE insertions and has a genome-wide repressive impact on transcription. BMC Plant Biology 17, 161.

Gallego-Bartolomé J, Liu W, Kuo PH, Feng S, Ghoshal B, Gardiner J, Zhao JM, Park SY, Chory J, Jacobsen SE. 2013. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell 176, 1008–1022.e19.

Grover JW, Kendall T, Baten A, Burgess D, Freeing M, King GJ, Mosher RA. 2018. Maternal components of RNA-directed DNA methylation are required for seed development in Brassica rapa. The Plant Journal 94, 575–582.

Haag JR, Pikaard CS. 2011. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nature Reviews. Molecular Cell Biology 12, 483–492.

Haag JR, Ream TS, Marasco M, Nicora CD, Norbeck AD, Pasa-Tolic L, Pikaard CS. 2012. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Molecular Cell 48, 811–818.

Harris CJ, Husmann D, Liu W, et al. 2016. Arabidopsis ATMORC4 and ATMORC7 form nuclear bodies and repress a large number of protein-coding genes. PLoS Genetics 12, e1005998.

Hartzog GA, Fu J. 2013. The Sp4–Sp5 complex: a multifaceted regulator of transcription elongation. Biochimica et Biophysica Acta 1829, 105–115.

He XJ, Hsu YF, Pontes O, Zhu J, Lu J, Bressan RA, Pikaard C, Wang CS, Zhu JK. 2009a. NRPRD4, a protein related to the RPM4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes & Development 23, 318–330.

He XJ, Hsu YF, Zhu S, Liu HL, Pontes O, Zhu J, Cui X, Wang CS, Zhu JK. 2009b. A conserved transcriptional regulator is required for RNA-directed DNA methylation and plant development. Genes & Development 23, 2717–2722.

Henderson IR, Deleris A, Wong W, Zhong X, Chin HG, Horwitz GA, Kelly KA, Pradhan S, Jacobsen SE. 2010. The de novo cytosine methyltransferase DRM2 requires intact UBA domains and a catalytically mutated paralog DRM3 during RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genetics 6, e1001182.

Herr AJ, Jensen MB, Dalmay T, Baulcombe DC. 2005. RNA polymerase IV directs silencing of endogenous DNA. Science 308, 118–120.

Hu L, Li N, Zhang Z, Meng X, Dong Q, Xu C, Gong L, Liu B. 2020. CG hypomethylation leads to complex changes in DNA methylation and transcriptional burst of diverse transposable elements in callus cultures of rice. The Plant Journal 101, 189–203.

Itoh JI, Kitano H, Matsuoka M, Nagato Y. 2000. Shoot organization genes regulate apical meristem organization and the pattern of leaf primordium initiation in rice. The Plant Cell 12, 2161–2174.

Jiao Y, Wang Y, Xue D, et al. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics 42, 541–544.

Jie Y, Yuan L, Yen M, Zheng F, Ji R, Peng T, Gu D, Yang S, Cui Y, Chen P. 2020. SWI3B and HDA6 interact and are required for transposon DNA methylation in Arabidopsis. Molecular Plant 13, 809–822.

Kang HG, Hyong WC, von Einem S, et al. 2012. CRT1 is a nuclear-translocated MOC4 endonuclease that participates in multiple phases of plant immunity. Nature Communications 3, 1297.

Kanno T, Mette MF, Kreil DP, Aufsatz W, Matzke M, Matzke AJ. 2009. Rice cytosine DNA methyltransferases – gene expression profiling during reproductive development and abiotic stress. The FEBS Journal 276, 8301–8311.

Kumar S, Singh A. 2016. Epigenetic regulation of abiotic stress tolerance in plants. Advances in Plants & Agriculture Research 5, 10–15406.
Singh J, Mishra V, Wang F, Huang HY, Pikaard CS. 2019. Reaction mechanisms of Pol IV, RDR2, and DCL3 drive RNA channeling in the siRNA-directed DNA methylation pathway. Molecular Cell 75, 576–589.e5.

Smith LM, Pontes O, Searle I, Yelina N, Yousafzai FK, Herr AJ, Pikaard CS, Baoulcombe DC. 2007. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. The Plant Cell 19, 1507–1521.

Song X, Li P, Zhai J, et al. 2012. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. The Plant Journal 69, 462–474.

Song X, Lu Z, Yu H, et al. 2017. IPA1 functions as a downstream transcription factor repressed by D53 in strioglucine signaling in rice. Cell Research 27, 1128–1141.

Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa PM, Bression RA, Zhu JK. 2007. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447, 735–738.

Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE. 2013. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364.

Tan EH, Blevins T, Ream TS, Pikaard CS. 2012. Functional consequences of subunit diversity in RNA polymerases II and V. Cell Reports 1, 208–214.

Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T. 2009. Bursts of retrotransposition reproduced in Arabidopsis. Nature 461, 423–426.

Vrbsky J, Akimcheva S, Watson JM, Turner TL, Daxinger L, Vyskot B, Aufsatz W, Riha K. 2010. siRNA-mediated methylation of Arabidopsis telomeres. PLoS Genetics 6, e1000986.

Wagh SG, Alam MM, Kobayashi K, Yaeno T, Yamaoka N, Toriba T, Hirano H-Y, Nishiguchi M. 2016. Analysis of rice OsDRR6 gene in response to viral, bacterial and fungal pathogens. Journal of General Plant Pathology 62, 12–17.

Walker J, Gao H, Zhang J, Aldridge B, Vickers M, Higgins JD, Feng X. 2018. Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis. Nature Genetics 50, 130–137.

Wang H, Jiao X, Kong X, Hammer S, Wu Y, Chen X, Fang R, Yan Y. 2016. A signaling cascade from miR444 to RDR1 in rice antiviral RNA silencing pathway. Plant Physiology 170, 2365–2377.

Wang Z, Butel N, Santos-González J, Borges F, Yi J, Martienssen RA, Martinez G, Köhler C. 2020. Polymerase IV plays a crucial role in pollen development in Capsella. The Plant Cell 32, 950–966.

Wei L, Gu L, Song X, Cui X, Lu Z, Zhou M, Wang L, Hu F, Zhai J, Meyers BC. 2014. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proceedings of the National Academy of Sciences 111, 3877–3882.

Wendte JM, Haag JR, Singh J, McKinlay A, Pontes OM, Pikaard CS. 2017. Functional dissection of the Pol V largest subunit CTD in RNA-directed DNA methylation. Cell Reports 19, 2796–2808.

Wierzbicki AT, Haag JR, Pikaard CS. 2008. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135, 635–648.

Wu J, Yang Z, Wang Y, et al. 2015. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4, e05733.

Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y. 2009. Rice microRNA effector complexes and targets. The Plant Cell 21, 3421–3435.

Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y. 2010. DNA methylation mediated by a microRNA pathway. Molecular Cell 38, 465–475.

Xu L, Yuan K, Yuan M, Meng X, Chen M, Wu J, Li J, Qi Y. 2020. Regulation of rice tillering by RNA-directed DNA methylation at miniature inverted-repeat transposable elements. Molecular Plant 13, 851–863.

Yang DL, Zhang G, Tang K, Li J, Yang L, Huang H, Zhang H, Zhu JK. 2016. Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Research 26, 66–82.

Yang DL, Zhang G, Wang L, Li J, Xu D, Di C, Tang K, Yang L, Zeng L, Miki D. 2018. Four putative SWI2/SNF2 chromatin remodelers have dual roles in regulating DNA methylation in Arabidopsis. Cell Discovery 4, 1–14.

Yao M, Ai T-B, Mao Q, Chen F, Li F-S, Tang L. 2018. Downregulation of OsAGO17 by artificial microRNA causes pollen abortion resulting in the reduction of grain yield in rice. Electronic Journal of Biotechnology 35, 2–32.

Ye R, Chen Z, Lian B, Rowley MJ, Xia N, Chai J, Li Y, He XJ, Wierzbicki AT, Qi Y. 2016. A Dicer-independent route for biogenesis of siRNAs that direct DNA methylation in Arabidopsis. Cell 163, 193–205.

Zemach A, Kim MY, Heisch PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D. 2013. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193–205.

Zhai J, Bischof S, Wang H, et al. 2015. A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. Cell 163, 445–455.

Zhang C, Wei Y, Xu L, et al. 2020. A Bunyavirus-inducible ubiquitin ligase targets RNA polymerase IV for degradation during viral pathogenesis in rice. Molecular Plant 13, 836–850.

Zhang CJ, Ning YQ, Zhang SW, Chen Q, Shao CR, Guo YW, Zhou JX, Li L, Chen S, He XJ. 2012. IDN2 and its paralogus form a complex for RNA-directed DNA methylation. PLoS Genetics 8, e1002693.

Zhang H, Zhu JK. 2012. Active DNA demethylation in plants and animals. Cold Spring Harbor Symposium on Quantitative Biology 77, 161–173.

Zhang S, Dou Y, Li S, Ren G, Chevalier D, Zhang C, Yu B. 2018. DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis. Plant Physiology 177, 1142–1151.

Zeng S, Li J, Ma L, Wang H, Zhou H, Ni E, Jiang D, Liu Z, Zhuang C. 2019. OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proceedings of the National Academy of Sciences 116, 7549–7558.

Zhong X, Du J, Hale CJ, Gallego-Bartolome J, Feng S, Vashisht AA, Ghory J, Wohlschlegel JA, Patel DJ, Jacobsen SE. 2014. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell 157, 1050–1060.

Zhou M, Palanca AMS, Law JA. 2018. Locus-specific control of the de novo DNA methylation pathway in Arabidopsis by the CLASSY family. Nature Genetics 50, 865–873.