Chapter 1.3
A Survey on Localization in Wireless Sensor Networks

Ricardo Marcelín-Jiménez
UAM-Iztapalapa, Mexico

Miguel Ángel Ruiz-Sánchez
UAM-Iztapalapa, Mexico

Mauricio López-Villaseñor
UAM-Iztapalapa, Mexico

Victor M. Ramos-Ramos
UAM-Iztapalapa, Mexico

Carlos E. Moreno-Escobar
UAM-Iztapalapa, Mexico

Manuel E. Ruiz-Sandoval
UAM-Azcapotzalco, Mexico

ABSTRACT
Localization is a fundamental challenge of wireless sensor networks in many applications because a set of nodes must be aware of individual positions, based only on their own resources, i.e. without the aid of external agents. This problem has been tackled using different approaches that provide good solutions under specific circumstances. Nevertheless, new conditions, including massive node deployment or irregular topologies, call for further study and development.

INTRODUCTION
A Wireless Sensor Network (WSN) is essentially a large number of small sensing self-powered nodes which gather information and communicate in a wireless fashion, with a common end goal. For a general review of the characteristics, applications and communication protocols in WSNs, see surveys in Akyildiz, Su, Sankarasubramaniam and Cayirci (2002) and Yick, Mukherjee and Ghosal (2008).

Wireless Sensor Networks represent an emerging technology with a wide spectrum of potential applications and, at the same time, they are also a source of challenging problems. One such challenging problem is how to accurately find the location of each sensor node. Node localization is important because it can enable new WSN applications. For example, with node localization capability, monitoring systems can determine the specific source of a critical event. Node localization capability can also be used to enhance the operation of a WSN. For example, a node can forward packets to its final destination, based
solely on the position of the nodes that make up its neighborhood (Marcelín-Jiménez, 2007). This routing strategy fosters local work and limits energy consumption.

To solve the node localization problem, a global positioning system (GPS) may provide a good starting point. Nevertheless, the utilization of a GPS is strongly limited by budgetary constraints and it is not recommended for indoor systems where satellite reception can be poor.

For a small set of nodes, individual positions can be programmed manually. In some other cases, a mobile node exists which is always aware of its position and performs a comprehensive tour across the underlying network in order to inform each node about its particular location. Nevertheless, when nodes are randomly placed, the number of nodes is massive, or a mobile “supervisor” is unfeasible; an automatic procedure is required. Moreover, since node localization is a fundamental operation in WSNs, the solution to the localization problem needs to comply with several attributes including accuracy, efficiency and robustness.

As we will see, obtaining measurements of the distance between each couple of sensor nodes is a necessary condition to find a solution to the node localization problem. Next, we classify solutions to the localization problem into two categories: centralized and distributed. Since measurements have intrinsic noise, we will describe methods that can be used to determine the errors bounds associated to the localization problem. We end this section by reviewing the necessary conditions to find a unique solution to the localization problem. When such conditions are not satisfied, the problem turns to be NP-complete. Section Alternatives gathers the most important results and new trends on the subject. We also point out some of the emerging approaches to solve the localization problem. Finally, in Conclusion we summarize our findings.

THE PROBLEM

Models

Sensors can be deployed on 2D or 3D spaces. For the sake of simplicity, we will limit our exposition to the former case. Nevertheless, we will indicate when a method can be extended to 3D spaces.

A great deal of research has been done on the topic of localization in ad-hoc sensor networks (Ganesan et al., 2002; Hightower & Borriello, 2001). Localization has been addressed using different tools and methods. The initial approaches came from graph theory and optimization theory. In the rest of this section, we will present these complementary views.

From a graph theory viewpoint, a network is modelled by a graph $G=(V,E)$, with an edge between any two nodes that can communicate them directly. Usually, a multi-hop radio network is modelled as a unit disk graph (UDG). In a UDG $G=(V,E)$, there is an edge $\{u,v\} \in E$ if and only if the Euclidean distance between u and v is 1.
Related Content

Efficient Channel Utilization and Prioritization Scheme for Emergency Calls in Cellular Network
K. N. Rama Mohan Babu, K.N. Balasubramanya Murthy, G.V. Pavithra and K.R Mamatha (2014). *International Journal of Wireless Networks and Broadband Technologies* (pp. 56-69).
www.igi-global.com/article/efficient-channel-utilization-and-prioritization-scheme-for-emergency-calls-in-cellular-network/121659?camid=4v1a

Urban Planning 3.0: Impact of Recent Developments of the Web on Urban Planning
Ari-Veikko Anttiroiko and Roger W. Caves (2016). *Mobile Computing and Wireless Networks: Concepts, Methodologies, Tools, and Applications* (pp. 439-460).
www.igi-global.com/chapter/urban-planning-30/138194?camid=4v1a

An Aesthetics of Digital Virtual Environments
Adam Nash (2016). *Mobile Computing and Wireless Networks: Concepts, Methodologies, Tools, and Applications* (pp. 128-149).
www.igi-global.com/chapter/an-aesthetics-of-digital-virtual-environments/138180?camid=4v1a

A Mobile Matchmaker for the Ubiquitous Semantic Web
Floriano Scioscia, Michele Ruta, Giuseppe Loseto, Filippo Gramagna, Saverio Ieva, Agnese Pinto and Eugenio Di Sciascio (2016). *Mobile Computing and Wireless Networks: Concepts, Methodologies, Tools, and Applications* (pp. 994-1017).
www.igi-global.com/chapter/a-mobile-matchmaker-for-the-ubiquitous-semantic-web/138316?camid=4v1a