Systematic analysis of the MNS matrix with diagonal reflection symmetries

Masaki J. S. Yang1,2,*

1Department of Physics, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
2Department of Physics, Graduate School of Engineering Science, Yokohama National University, Yokohama, 240-8501, Japan

In this letter, we systematically analyzed the MNS matrix with diagonal reflection symmetries. If the mass matrix of charged leptons m_e is hierarchical, by neglecting the 13 mixing of m_e, the MNS matrix is represented by four parameters and several sign degrees of freedom. By substituting the three observed mixing angles θ_{ij} as input parameters, the Dirac phase δ and the Majorana phases $\alpha_2, 3$ become functions of the 12 mixing of charged leptons s_e. As a result, we obtain a clear correlations between CP-violating phases $|\sin \delta| \simeq 1.6|\sin \alpha_2| \simeq 2.5|\sin \alpha_3|$.

I. INTRODUCTION

The Dirac phase δ, which represents CP violation in the lepton sector, has been measured recently. Although the phase δ is not determined experimentally, a generalized CP symmetry (GCP) \cite{1-22} can fix this CP violating phase. One of a notable example is the $\mu - \tau$ reflection symmetry \cite{23-54} that predicts the maximal Dirac phase $\delta = \pm \pi/2$.

On the other hand, diagonal reflection symmetries \cite{55-58} are GCPs that can predict relatively small δ in a way that can unify quarks and leptons. However, general properties of the symmetries are not yet well understood. Thus, in this letter, we perform a systematic analysis of the DRS.

*Electronic address: yang@krishna.th.phy.saitama-u.ac.jp
II. DIAGONAL REFLECTION SYMMETRIES

In this section, we define the diagonal reflection symmetries (DRS). First, a representation
of the CKM matrix proposed by Fritzsch and Xing is \[59\],

\[
V_{\text{CKM}} = U^\dagger_u U_d = \begin{pmatrix}
 c_u & s_u & 0 \\
 -s_u & c_u & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 e^{-i\phi} & 0 & 0 \\
 0 & c_q & s_q \\
 0 & -s_q & c_q
\end{pmatrix}
\begin{pmatrix}
 c_d & -s_d & 0 \\
 s_d & c_d & 0 \\
 0 & 0 & 1
\end{pmatrix},
\]

(1)

where \(s_\theta \equiv \sin \theta, c_\theta \equiv \cos \theta \). By determining the four parameters \(s_{q,u,d} \) and \(\phi \) from the observ-
ables, \(\phi \) is almost equal to \(\pi/2 \). Thus, if we interpret unitary matrices \(U_{u,d} \) diagonalizing the
mass matrix of quarks \(m_{u,d} \) as

\[
U_u = \begin{pmatrix}
 +i & 0 & 0 \\
 0 & c_t & s_t \\
 0 & -s_t & c_t
\end{pmatrix}, \quad U_d = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & c_b & s_b \\
 0 & -s_b & c_b
\end{pmatrix},
\]

(2)

the mass matrices \(m_{u,d} = U_{u,d} m_{u,d}^{\text{diag}} U_{u,d}^\dagger \) reconstructed from \(U_{u,d} \) have diagonal reflection sym-
metries defined as \[55\]

\[
R m_{u,\nu}^* R = m_{u,\nu}, \quad m_{d,e}^* = m_{d,e} \quad R = \text{diag}(-1, 1, 1).
\]

(3)

Under these symmetries, the mass matrix of charged leptons \(m_e \) is real and the that of neutrinos
\(m_\nu \) has the following form;

\[
m_\nu = \begin{pmatrix}
 m_{11} & im_{12} & im_{13} \\
 im_{12} & m_{22} & m_{23} \\
 im_{13} & m_{23} & m_{33}
\end{pmatrix},
\]

(4)

with \(m_{ij} \in \mathbb{R} \). These remnant symmetries are almost renormalization-invariant and are easily
realized by scalar fields with vacuum expectation values \(\langle \theta_u \rangle = iv_u, \langle \theta_d \rangle = v_d \) that couple to
only the first generation \[56\].

Since the singular value decomposition of a real matrix is done by a real orthogonal matrix
O_f, the MNS matrix U is

$$U = O_e^T \begin{pmatrix} i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} O_\nu P,$$

(5)

$$O_\nu P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_\nu & s_\nu \\ 0 & -s_\nu & c_\nu \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\phi_1} & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & e^{i\phi_3} \end{pmatrix}. \quad (6)$$

Here, phases $\phi_i = 0$ or $\pi/2$ in the phase matrix P originate from positive or negative singular mass values after a real diagonalization by O_ν.

Under an approximation that the 13 mixing of m_e is negligible, a combination of the 23 mixings of O_ν and O_e yields a representation of the MNS matrix as

$$U = \begin{pmatrix} c_e & s_e & 0 \\ -s_e & c_e & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\phi_1} & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & e^{i\phi_3} \end{pmatrix}. \quad (7)$$

For a hierarchical m_e, the error from this approximation is at most $\sqrt{m_\mu m_e/m_\tau} \simeq 0.004$ and is safely neglected.

Let us consider sign degrees of freedom for these parameters c_{ij} and s_{ij}. First, the sign of the phase i can be fixed to positive because it is absorbed to s_e. Furthermore, the five signs can be made positive by the redefinition of phases. For example, the sign of c_{12} can be changed by multiplying $\text{diag}(-1,-1,1)$ from the right. For the later convenience, we choose the signs of c_{12}, c_{13}, c_{23} and s_{13}, s_{23} to be positive. The other two signs can also be determined from the signs of $\cos \delta$ and $\sin \delta$ for the Dirac phase δ. From the following calculation, we can choose those of s_{12} and $s_e c_e$. However, it is found that the signs of c_e and s_e cannot be determined independently.
III. SYSTEMATIC ANALYSIS OF U_{MNS}

In this section, we analyze the MNS matrix with DRS. By neglecting the phase matrix P and performing the product of the matrices, U is represented as

$$U = \begin{pmatrix}
-s_e c_{23} s_{12} + c_{12} (-s_e s_{13} s_{23} + i c_e c_{13}) & s_e c_{12} c_{23} + s_{12} (-s_e s_{13} s_{23} + i c_e c_{13}) & s_e c_{13} s_{23} + i c_e s_{13} \\
-c_e c_{23} s_{12} + c_{12} (-c_e s_{13} s_{23} - i s_e c_{13}) & c_e c_{12} c_{23} + s_{12} (-c_e s_{13} s_{23} - i s_e c_{13}) & c_e c_{13} s_{23} - i s_e s_{13} \\
s_{12} s_{23} - c_{12} c_{23} s_{13} & c_{12} s_{23} - c_{23} s_{12} s_{13} & c_{13} c_{23}
\end{pmatrix}.$$

(8)

On the other hand, the standard PDG parameterization is $[30]$

$$U^{\text{PDG}} = \begin{pmatrix}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{pmatrix} \times \text{diag}(1, e^{i \alpha_2/2}, e^{i \alpha_3/2}).$$

(9)

In this definition, P and the phases ϕ_i have a potential to set the Majorana phases α_i to $\alpha_i + \pi$ and have no effect on any other physical quantity.

By comparing the absolute values of the third column of Eq. (8) with the PDG parameterization, s_{13} and s_{23} should satisfy

$$|s_e c_{13} s_{23} + i c_e s_{13}|^2 = (s_{13}^{\text{PDG}})^2,$$

(10)

$$|c_e c_{13} s_{23} - i s_e s_{13}|^2 = (s_{23}^{\text{PDG}} c_{13}^{\text{PDG}})^2,$$

(11)

and we obtain the following solutions;

$$s_{23} = \frac{\sqrt{(s_e s_{13}^{\text{PDG}})^2 - (c_e c_{13}^{\text{PDG}} s_{23}^{\text{PDG}})^2}}{\sqrt{-c_e^4 + (c_e s_{13}^{\text{PDG}})^2 - (s_e c_{13}^{\text{PDG}} s_{23}^{\text{PDG}})^2 + s_c^4}}, \quad s_{13} = \frac{\sqrt{(c_e s_{13}^{\text{PDG}})^2 - (s_e c_{13}^{\text{PDG}} s_{23}^{\text{PDG}})^2}}{\sqrt{c_e^4 - s_c^4}}.$$

(12)

Similarly, from $|U_{12}|^2 = |U_{12}^{\text{PDG}}|^2$, the condition satisfied by s_{12} is

$$|s_e (c_{12} c_{23} - s_{12} s_{13} s_{23}) + i s_{12} c_e c_{13}|^2 = (s_{12}^{\text{PDG}} c_{13}^{\text{PDG}})^2.$$

(13)

Solving s_{12} from Eqs. (12) and (13), we obtain four solutions. However, only two solutions are physically inequivalent, and they differ in the sign of $\cos \delta$. Experiments favor the solution of
$s_{12} < 0$, because the sign of s_{12} and $\cos\delta$ are almost same as a result of drawing the plots (Figure 1). Since the condition (13) depends only on s_e^2 and c_e^2, the solutions of s_{12} is independent of signs of s_e and c_e.

As input values, we use the latest global fit without Super-Kamiokande (SK) in the Normal Hierarchy (NH) [61]:

$$\sin^2 \theta_{12}^{PDG} = 0.304, \quad \sin^2 \theta_{23}^{PDG} = 0.573, \quad \sin^2 \theta_{13}^{PDG} = 0.0222. \quad (14)$$

This is due to the reason that the values of Inverted hierarchy (IH) with or without SK are close to these values. Although the inclusion of the SK data makes s_{23}^{PDG} about 0.1 smaller for NH, the qualitative behavior in the following discussion remains the same.

From this, $\sin\delta$ and $\cos\delta$ can be expressed as functions of s_e and some sign degrees of freedom. The parameter $\cos\delta$ is given by

$$\cos\delta = \frac{|U_{12}^{PDG}|^2 - (s_{12}^{PDG} s_{13}^{PDG} s_{23}^{PDG})^2 - (c_{12}^{PDG} c_{23}^{PDG})^2}{-2 s_{12}^{PDG} s_{13}^{PDG} s_{23}^{PDG} c_{12}^{PDG} c_{23}^{PDG}} \quad (15)$$

$$= \frac{|U_{22}|^2 (1 - |U_{13}|^2)^2 - |U_{12}|^2 |U_{23}|^2 - |U_{11}|^2 |U_{33}|^2}{-2 |U_{13}| |U_{12}| |U_{23}| |U_{11}| |U_{33}|}. \quad (16)$$

Also, $\sin\delta$ can be evaluated from the Jarlskog invariant;

$$J = -\text{Im} \left[U_{\mu 3} U_{\tau 2} U_{\mu 2}^{*} U_{\tau 3}^{*} \right] = \sin\delta s_{12}^{PDG} c_{12}^{PDG} s_{13}^{PDG} (c_{13}^{PDG})^2 s_{23}^{PDG} c_{23}^{PDG} \quad (17)$$

$$= c_{13} c_{23} c_e s_e (c_{12} s_{23} + c_{23} s_{12} s_{13}) (s_{12} s_{23} - c_{12} c_{23} s_{13}). \quad (18)$$

It predicts a proportional relationship between $\sin\delta$ and s_e. When s_{13} is small, the invariant is roughly

$$J \simeq c_{12} c_{23} c_e s_{12}^2 s_{23} s_e, \quad \sin\delta \simeq -\frac{c_e s_e s_{23}}{s_{13}^{PDG} (c_{13}^{PDG})^2} \simeq \pm 5 s_e. \quad (19)$$

Then the sign of $s_e c_e$ and $\sin\delta$ are opposite. The minus sign comes from the choice $s_{12} \simeq -s_{12}^{PDG}$.

Figure 1 shows plots of $\cos\delta$ and $\sin\delta$ expressed as functions of s_e. In the plot of $\cos\delta$, the red and green lines correspond to $s_{12} > 0$ and $s_{12} < 0$. Since the signs are approximately equal ($\text{sign}(\cos\delta) \simeq \text{sign}(s_{12})$) in the parameter regions, experiments favor $s_{12} < 0$. For $\sin\delta$, the color of the lines depend on the sign of c_e. The parameter $|\sin\delta|$ becomes maximal around $|s_e| \simeq 0.2$. In regions where s_e is larger than this, $\sin\delta$ and s_{13} become complex numbers and have no real solution. This is due to the following reasons. In the range $|s_e| \lesssim 0.2$, s_e can be regarded as a
FIG. 1: Plots of $\cos \delta$ and $\sin \delta$ expressed as functions of s_e. The bright green and orange region represent the 1σ regions of NH and IH (without SK).

perturbation. From Eq. (12), s_{12} and s_{23} are approximately equal to those of PDG and s_{13} is constrained as

$$s_{23} \simeq s_{23}^{\text{PDG}}, \quad s_{12} \simeq -s_{12}^{\text{PDG}}, \quad s_{13} \simeq \sqrt{(s_{13}^{\text{PDG}})^2 - (s_{{e}s_{23}}^{\text{PDG}})^2}. \quad (20)$$

Since the maximum value of s_e in this range is realized by $s_{13} = 0$,

$$s_e^{\text{max}} \simeq \frac{s_{13}^{\text{PDG}}}{s_{23}^{\text{PDG}}} \simeq 0.196. \quad (21)$$

There exists other solutions with $s_e \simeq \pm 1$. However, since these solutions imply that the eigenstates of the charged leptons e and μ are interchanged by diagonalization, it is excluded from a point of view of the natural mass matrix [12].

A. Majorana phases

A similar analysis is performed for the Majorana phases. These phases can be evaluated from the following quantities [63];

$$I_1 = \text{Im} \left[U_{e2}^2 U_{e1}^* / |U_{e2} U_{e1}|^2 \right] = \sin \alpha_2, \quad (22)$$

$$I_2 = \text{Im} \left[U_{e3}^2 U_{e1}^* / |U_{e3} U_{e1}|^2 \right] = \sin(\alpha_3 - 2\delta). \quad (23)$$

Expansions of $\sin \alpha_{2,3}$ for small s_e is respectively

$$\sin \alpha_2^0 \simeq -\frac{2s_e c_{23}}{c_e c_{12} s_{12}} \simeq +3s_e, \quad \sin \alpha_3^0 \simeq -\frac{2s_e c_e c_{12} c_{23}}{c_{13} s_{12}} \simeq +2s_e c_e. \quad (24)$$
Since these signs depend on \(\text{sign}(c_e s_e) \), we conclude that the signs of \(c_e \) and \(s_e \) cannot be determined independently. Furthermore, \(\sin \alpha_i \) has sign degrees of freedom due to \(\phi_i = 0 \) or \(\pi/2 \) in Eq. (11):\

\[
\alpha_2 = \alpha_2^0 + 2(\phi_2 - \phi_1), \quad \alpha_3 = \alpha_3^0 + 2(\phi_3 - \phi_1).
\]

Therefore, it is difficult to derive general results on the signs of \(\sin \alpha_i \) and \(\cos \alpha_i \) from the mixing matrix only. Plots of \(\sin \alpha_i \) for \(s_e \) are shown in Figure 2. As a result, the CP-violating observables have the following correlations.

\[
\frac{\sin \alpha_2}{\sin \delta} \simeq \frac{2 s_{13} c_{13} c_{23}}{c_2^2 c_{12} s_{12} s_{23}} \simeq 3 \sqrt{2} s_{13} \simeq 0.6, \tag{26}
\]

\[
\frac{\sin \alpha_3}{\sin \delta} \simeq \frac{2 c_{12} c_{23} c_{13} s_{13}}{s_{12} s_{23}} \simeq 2 \sqrt{2} s_{13} \simeq 0.4. \tag{27}
\]

Since \(U \) (8) is CP-symmetric in the limit where \(s_e \) becomes zero, it is a natural consequence that these CP phases have such correlations.

IV. SUMMARY

In this letter, we systematically analyzed the MNS matrix with diagonal reflection symmetries. If the mass matrix of charged leptons \(m_e \) is hierarchical, by neglecting the 13 mixing of \(m_e \), the MNS matrix is represented by four parameters and several sign degrees of freedom. By substituting the three observed mixing angles \(\theta_{ij} \) as input parameters, the Dirac phase \(\delta \) and the Majorana phases \(\alpha_{2,3} \) become functions of the 12 mixing of charged leptons \(s_e \). As a result, we obtain a clear correlations between CP-violating phases \(|\sin \delta| \simeq 1.6|\sin \alpha_2| \simeq 2.5|\sin \alpha_3|\).
Acknowledgment

This study is financially supported by JSPS Grants-in-Aid for Scientific Research No. JP18H01210 and MEXT KAKENHI Grant No. JP18H05543.

[1] G. Ecker, W. Grimus, and W. Konetschny, Nucl. Phys. B 191, 465 (1981).
[2] G. Ecker, W. Grimus, and H. Neufeld, Nucl. Phys. B 247, 70 (1984).
[3] M. Gronau and R. N. Mohapatra, Phys. Lett. B 168, 248 (1986).
[4] G. Ecker, W. Grimus, and H. Neufeld, J. Phys. A 20, L807 (1987).
[5] H. Neufeld, W. Grimus, and G. Ecker, Int. J. Mod. Phys. A 3, 603 (1988).
[6] P. Ferreira, H. E. Haber, and J. P. Silva, Phys. Rev. D 79, 116004 (2009), arXiv:0902.1537.
[7] F. Feruglio, C. Hagedorn, and R. Ziegler, JHEP 07, 027 (2013), arXiv:1211.5560.
[8] M. Holthausen, M. Lindner, and M. A. Schmidt, JHEP 04, 122 (2013), arXiv:1211.6953.
[9] G.-J. Ding, S. F. King, and A. J. Stuart, JHEP 12, 006 (2013), arXiv:1307.4212.
[10] I. Girardi, A. Meroni, S. Petcov, and M. Spinrath, JHEP 02, 050 (2014), arXiv:1312.1966.
[11] N. Nishi, Phys. Rev. D 88, 033010 (2013), arXiv:1306.0877.
[12] G.-J. Ding, S. F. King, C. Luhn, and A. J. Stuart, JHEP 05, 084 (2013), arXiv:1303.6180.
[13] F. Feruglio, C. Hagedorn, and R. Ziegler, Eur. Phys. J. C 74, 2753 (2014), arXiv:1303.7178.
[14] P. Chen, C.-C. Li, and G.-J. Ding, Phys. Rev. D 91, 033003 (2015), arXiv:1412.8352.
[15] G.-J. Ding, S. F. King, and T. Neder, JHEP 12, 007 (2014), arXiv:1409.8005.
[16] G.-J. Ding and Y.-L. Zhou, JHEP 06, 023 (2014), arXiv:1404.0592.
[17] M.-C. Chen, M. Fallbacher, K. Mahanthappa, M. Ratz, and A. Trautner, Nucl. Phys. B 883, 267 (2014), arXiv:1402.0507.
[18] C.-C. Li and G.-J. Ding, JHEP 05, 100 (2015), arXiv:1503.03711.
[19] J. Turner, Phys. Rev. D 92, 116007 (2015), arXiv:1507.06224.
[20] W. Rodejohann and X.-J. Xu, Phys. Rev. D 96, 055039 (2017), arXiv:1705.02027.
[21] J. Penedo, S. Petcov, and A. Titov, JHEP 12, 022 (2017), arXiv:1705.00309.
[22] N. Nath, R. Srivastava, and J. W. Valle, Phys. Rev. D 99, 075005 (2019), arXiv:1811.07040.
[23] P. F. Harrison and W. G. Scott, Phys. Lett. B547, 219 (2002), arXiv:hep-ph/0210197.
[24] W. Grimus and L. Lavoura, Phys. Lett. B579, 113 (2004), arXiv:hep-ph/0305309.
[25] W. Grimus, S. Kaneko, L. Lavoura, H. Sawanaka, and M. Tanimoto, JHEP 01, 110 (2006), arXiv:hep-ph/0510326.
[26] Y. Farzan and A. Yu. Smirnov, JHEP 01, 059 (2007), arXiv:hep-ph/0610337.
[61] M. C. Gonzalez-Garcia, M. Maltoni, and T. Schwetz, Universe 7, 459 (2021), arXiv:2111.03086.

[62] R. D. Peccei and K. Wang, Phys. Rev. D 53, 2712 (1996), arXiv:hep-ph/9509242.

[63] J. F. Nieves and P. B. Pal, Phys. Rev. D 36, 315 (1987).