Complete Genome Sequence of GD1696, a Low-Virulence Strain of Human-Associated ST398 Methicillin-Susceptible Staphylococcus aureus

Jo-Ann McClure, Steven M. Shideler, Kunyan Zhang

Centre for Antimicrobial Resistance, Alberta Health Services/Alberta Public Laboratories/University of Calgary, Calgary, Alberta, Canada
Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
Department of Medicine, University of Calgary, Calgary, Alberta, Canada
The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada

ABSTRACT
The emerging livestock-associated Staphylococcus aureus multilocus sequence type 398 (ST398) appears to have augmented virulence in humans. However, it is unclear if all ST398 strains are equally virulent. Here, we present the chromosomal sequence of a low-virulence ST398 methicillin-susceptible S. aureus (MSSA) strain, GD1696, to investigate ST398 sublineage virulence.

An increasing number of severe infections caused by emerging livestock-associated Staphylococcus aureus multilocus sequence type 398 (ST398) strains have been observed. Initial cases were reported in patients working in close contact with farm animals, but the strain has gone on to cause infection in patients lacking contact with livestock (1–10). While there appears to be augmented pathogenicity of ST398 methicillin-susceptible S. aureus (MSSA), specifically in humans, it has not been determined if all ST398 strains are equally virulent. To that end, we used the Caenorhabditis elegans infection model to test a collection of ST398 MSSA strains and found that they could be clustered into high-, moderate-, and low-virulence groups, with mean nematode killing rates of 90%, 67%, and 44%, respectively. Whole-genome sequencing was used to elucidate virulence factors that could be responsible for the various toxicities. In separate reports, we presented the full chromosomal sequence of a high-virulence strain, GD487, as well that of a moderate-virulence strain, GD1108. This report presents the complete genome sequence of a low-virulence ST398 MSSA strain, GD1696.

Strain GD1696 was obtained from an inpatient from a prevalence survey in 2011 in Guangzhou, People’s Republic of China. A single colony was picked from a tryptic soy agar plate and grown overnight in liquid culture at 37°C, at which time genomic DNA was isolated using phenol-chloroform extraction. Library preparation and DNA sequencing were performed at the Genome Quebec Innovation Centre in Montreal, Canada. Sequencing using PacBio RS II technology and a single-molecule real-time (SMRT) cell was done on a sheared large-insert library that was generated with Covaris g-TUBEs and the SMRTbell template prep kit 1.0. An Illumina library was prepared with the Nextera XT library preparation kit, and sequencing, with a 600-cycle MiSeq v3 instrument, was performed at the Nicole Perkins Microbial Communities Core Laboratory at the University of Calgary in Canada. Using default settings for all software, sequence quality was assessed with FastQC v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc), and trimmed Illumina reads (including removal of sequences with a quality score of ~20) were generated with Cutadapt v1.15 (11). Hybrid sequence assembly was performed with the Unicycler v0.4.7 pipeline (SPAdes v3.13.0, minimap, Racon v1.3.2, and Pilon v1.23) (12–16). GC content of the assembled product was determined with

Citation McClure J-A, Shideler SM, Zhang K. 2019. Complete genome sequence of GD1696, a low-virulence strain of human-associated ST398 methicillin-susceptible Staphylococcus aureus. Microbiol Resour Announc 8:e00688-19. https://doi.org/10.1128/MRA.00688-19.

Editor Frank J. Stewart, Georgia Institute of Technology

Copyright © 2019 McClure et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Kunyan Zhang, kzhang@ucalgary.ca.

Received 10 June 2019
Accepted 18 June 2019
Published 11 July 2019
QUAST v4.4 (17). Genes were annotated using the NCBI Prokaryotic Genome Annotation Pipeline using the best-placed reference protein set (GeneMarkS-2+ v4.8) (18).

Hybrid assembly of the trimmed Illumina and filtered PacBio reads produced one contig, representing the chromosome. There were 305,952 Illumina reads, with average read lengths of 226 bp for R1 and 210 bp for R2 and an estimated genome coverage of 24×. There were 98,382 raw PacBio reads covering 897,403,420 sequenced bases, with an average read length of 9,121 bp and an estimated genome coverage of 284×. The resulting chromosome was 2,801,264 bp long with a GC content of 32.94%. Following annotation, 2,819 genes were identified, of which 2,741 were coding sequences (CDS), 78 were RNA genes, and 85 were pseudogenes.

Detailed analysis of the high-, moderate-, and low-virulence genomes is under way to explore potential insights into ST398 sublineage virulence.

Data availability. The genome sequence was deposited at GenBank under the accession number CP040233 and SRA accession numbers SRX5923213 (Illumina) and SRX5923212 (PacBio).

ACKNOWLEDGMENTS

This work was supported in part by operation grants (ARE-147623 and ARF-151557) from the Canadian Institutes of Health Research, Canada, and in part by an operating fund from the Centre for Antimicrobial Resistance (CAR), Alberta Health Services, Alberta, Canada.

REFERENCES

1. Armand-Lefèvre L, Ruimy R, Andremont A. 2005. Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg Infect Dis 11:711–714. https://doi.org/10.3201/eid1105.040866.

2. Brunel AS, Banuls AL, Marchandin H, Bouzinbi N, Morquin D, Jumas-Bilak E, Corne P. 2014. Methicillin-sensitive Staphylococcus aureus CC398 in intensive care unit, France. Emerg Infect Dis 20:1511–1515. https://doi.org/10.3201/eid2009.130225.

3. Graveland H, Duim B, van Duijkeren E, Heederik D, Wagenaar JA. 2011. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 301:630–634. https://doi.org/10.1016/j.ijmm.2011.09.004.

4. Grisold AJ, Zarfel G, Hoenigl M, Kriwanek K, Feierl G, Masoud L, Leitner E, Wagner-Ebel U, Badura A, Marth E. 2010. Occurrence and genotyping using automated repetitive-sequence-based PCR of methicillin-resistant Staphylococcus aureus ST398 in Southeast Austria. Diagn Microbiol Infect Dis 66:217–221. https://doi.org/10.1016/j.diagmicrobio.2009.09.006.

5. Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck ME, Pluister GN, Voss A, Wannet WJ, de Neeling AJ. 2006. Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob 5:26. https://doi.org/10.1186/1476-0711-5-26.

6. Uhlemann AC, Dumortier C, Hafer C, Taylor BS, Sanchez J, Rodriguez-Taveras C, Leon P, Rojas R, Olive C, Lowy FD. 2012. Molecular characterization of Staphylococcus aureus from outpatients in the Caribbean reveals the presence of pandemic clones. Eur J Clin Microbiol Infect Dis 31:505–511. https://doi.org/10.1007/s10096-011-1339-2.

7. Uhlemann AC, Hafer C, Miko BA, Sovash MG, Sullivan SB, Shu Q, Lowy FD. 2013. Emergence of sequence type 398 as a community- and healthcare-associated methicillin-susceptible Staphylococcus aureus in northern Manhattan. Clin Infect Dis 57:700–703. https://doi.org/10.1093/cid/cit375.

8. van Belkum A, Melles DC, Peeters JK, van Leeuwen WB, van Duijkeren E, Huijsdens XW, Spalburg E, de Neeling AJ, Verbrugh HA, Dutch Working Party on Surveillance Research of MRSA (SOM). 2008. Methicillin-resistant and -susceptible Staphylococcus aureus sequence type 398 in pigs and humans. Emerg Infect Dis 14:479–483. https://doi.org/10.3201/eid1403.070760.

9. van Rijen MM, Van Keulen PH, Kluytmans JA. 2008. Increase in a Dutch hospital of methicillin-resistant Staphylococcus aureus related to animal farming. Clin Infect Dis 46:261–263. https://doi.org/10.1086/524672.

10. Voss A, Loeffen F, Bakker J, Kaasen C, Wulf M. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11:1965–1966. https://doi.org/10.3201/eid1112.050428.

11. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17:10–12. https://doi.org/10.14806/ej.17.1.200.

12. Van Belkum A, Nijk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenco SJ, Pham S, Prijibelski AD, Pyschkin AV, Sirotkin AV, Vyakhii N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

13. Li H. 2016. minimap and miniasm: fast mapping and de novo genome assembly from short and long sequencing reads. PLoS Comput Biol 12:e1004946. https://doi.org/10.1093/bioinformatics/btt766.

14. Vaser R, Sovic I, Nagarajan N, Sikic M. 2017. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27:737–746. https://doi.org/10.1101/gr.214270.116.

15. Walker BJ, Abeel T, Shey T, Priest M, Abouelliel A, Sakhthikumar S, Cuomo CA, Zeng G, Wortman J, Young SK, Earl AM. 2014. Pillow: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. https://doi.org/10.1371/journal.pone.0112963.

16. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.

17. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086.

18. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lesin VM, Nikolenko SJ, Pham S, Prijibelski AD, Sirotkin AV, Vyakhii N, Tesler G, Alekseyev MA, Pevzner PA. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.