Radiocarbon chronology of the Neolithic-Eneolithic period in the Karelian Republic (Russia)

Aleksey Tarasov 1, Kerkko Nordqvist 2, Teemu Männönen 2 and Tatyana Khoroshun 1

1 Department of Archaeology, Institute of Linguistics, Literature and History of the Karelian Research Centre, Russian Academy of Sciences, Karelian Republic, Petrozavodsk, RU
taleksej@drevlanka.ru; tattya@list.ru
2 Archaeology, University of Oulu, Oulu, FI
kerkko.nordqvist@gmail.com; teemu.mokkonen@gmail.com

ABSTRACT – This article discusses a radiocarbon-based chronology for the Neolithic–Eneolithic period in the present-day Republic of Karelia (Russian Federation). The main goal is to present all currently available radiocarbon datings, including the previously published dates, as well as the ones recently obtained by the authors. In total, there are 194 dates from 77 sites covering the period from the 6th to the 2nd millennium cal BC. Besides providing an up-to-date list of datings, the article also evaluates their reliability and utility in building a local chronology. Despite several shortcomings, the new AMS-supported chronology enables the study of past cultural dynamics in much greater detail than previously and allows its better integration into the wider north-east European chronological framework.

KEY WORDS – Neolithic; Eneolithic; radiocarbon chronology; pottery; Karelian Republic

IZVLEČEK – V članku razpravljamo o radiokarbonski kronologiji obdobji neolitika-eneolitika v danasni Republiki Kareliji (Ruska federacija). Predstavljamo vse razpoložljive datume, tisto, kar smo jih pridobili avtorji. Skupno je sedaj na voljo 194 dat um iz 77 naših najdišč, ki pokrivajo čas od 6. do 2. tisočletja pr. n. št. Poleg novega seznama vseh radiokarbonskih datumen ocenjujemo v članku tudi zanesljivost in koristnost le-teh za oblikovanje lokalne kronologije. Kljub številnim pomanjkljivostim omogoča nova kronologija, ki temelji na AMS radiokarbonskih datuminih, veliko bolj natančne študije preteklih kulturnih dinamik, kot je bilo to mogoče v preteklosti, ter omogoča boljšo integracijo v kronološke okvirje na širšem območju severovzhodne Evrope.

KLJUČNE BESEDE – neolitik; eneolitik; radiokarbonska kronologija; lončenina; Republika Karelija

Introduction

Aims

This paper presents all radiocarbon dates obtained from the Neolithic and Eneolithic sites (see below) in the present-day Karelian Republic, Russian Federation, and outlines the chronological position of the main groups of archaeological material (i.e. pottery types) known in this territory between the 6th and 2nd millennia cal BC. The current paper is a combination of two articles recently published in Russian: the first one providing a discussion of datings available prior to 2016 (Tarasov, Khoroshun 2016) and the second one presenting an AMS-based chronology.
for the Karelian Neolithic through introduction of 41 new dates (Nordqvist, Mökkönen 2017a; see also Nordqvist, Mökkönen 2016a; 2016b).

Most of the previous discussions of radiocarbon dates from Karelia have been in Russian (Kochkurkina 1991; German 2002; 2012; Kosmenko 2003; Lobanova 2004; Vitenkova 2009; Piezonka 2011; Mel’nikov; German 2013; Khoroshun 2015; but see Kosmenko 2004; Piezonka 2008; 2015; Zhulnikov et al. 2012). An overview of the chronology and periodisation of Karelia published in 1991 comprised a total of 112 conventional radiocarbon determinations from the Mesolithic Stone Age to the Early Middle Ages (Kochkurkina 1991), and a special publication devoted to the Neolithic chronology of eastern Europe discussed Karelia some 10 years later and contained 72 dates listed as Neolithic (Timofeev et al. 2004; see also Kosmenko 2004). These publications are now out of date, since quite a few AMS dates have been produced in recent years (e.g., Lobanova 2004; Piezonka 2008; Nordqvist, Mökkönen 2017a). At the moment, 170 radiocarbon datings with a more or less clear connection to the Neolithic and Eneolithic periods have been ob-

Recently-obtained AMS dates have considerably refined the Neolithic chronology in Karelia. This paper is an attempt to compile all the available data and discuss the present state of affairs. The purpose is not to present the final word on the topic, as the number and quality of dates in many cases is still low and there are many ambiguities and problems, as will be shown below. Even if the main focus is on presenting the Karelian material, the chronology is also compared with corresponding chronologies in neighbouring regions, particularly Finland.

The dates that form the basis of this paper are listed in the tables. Table 1 presents the dates which ge-
nerally correspond with archaeological materials present at the sites. In cases where a sample’s connection with particular archaeological materials is unequivocal (e.g., crusts on pottery shards), only this pottery type is mentioned (column ‘Typological connection’) even if the site contained material from other phases, too. However, if such a clear connection cannot be established, all assemblages present at the site are listed. Table 2 presents dates that do not correspond with any archaeological materials found at these sites. It includes Neolithic/Enolithic dates from sites with no finds from this period or datings from sites with Neolithic/Enolithic material, but with significantly deviatory (younger) ages. The dates given in Table 2 are not included in the discussion below. The geographical locations of the sites are marked on Map 1. All dates have been calibrated with OxCal v. 4.2 (Bronk Ramsey 2009) and the calibration curve IntCal13 (Reimer et al. 2013); in the text, they are given either as median values or with 2σ standard deviation.

Periodisation
The Neolithic finds of Karelia have been traditionally divided into temporal units – archaeological cultures – primarily on the basis of pottery (see Kochkurkina 1991; Kochkurkina, Kosmenko 1996). These types coincide with ceramic types recognised in neighbouring territories, especially Finland, although the periodisation schemes used in these areas are quite different, mainly due to differing research traditions (also Nordqvist 2013; Nordqvist, Mökkönen 2017c). According to the periodisation applied to Karelia, the Early Neolithic is represented by Sperrings and Säräisniemi 1 Wares, the mid-part of the period by Pit-Comb Ware, and the Late Neolithic by Comb-Pit Ware. The subsequent phases with Rhomb-Pit Ware and ceramics with asbestos and organic tempers are traditionally considered to belong already to another period, the Eneolithic, which has been separated because of small-scale exploitation of native copper originating on the western shores of Lake Onega.

The separation of the Eneolithic introduces some inconsistencies into the periodisation. As will be shown later, sites with Comb-Pit and Rhomb-Pit Wares were, in fact, largely coeval and share fairly similar material cultures and cultural images. Nevertheless, only sites with Rhomb-Pit Ware are traditionally regarded as Eneolithic, whereas sites with Comb-Pit Ware are still Neolithic, as no copper items have been found at ‘pure’ Comb-Pit Ware sites in Karelia. However, individual copper objects (predominantly amorphous pieces) have been discovered in Comb-Pit Ware (i.e. Typical Comb Ware) contexts in Finland and northern Sweden (see Nordqvist, Herva 2013). To solve the problem, A. M. Zhul’nikov (1999) has suggested that only sites with asbestos- and organic-tempered pottery should be regarded as Eneolithic, as during this time the thermal treatment of copper (including melting and casting) became known; at sites with Rhomb-Pit Ware (and Typical Comb Ware) only evidence of cold hammering and annealing exists (Zhul’nikov 1999.66; see Ikäheimo, Pääkkönen 2009; Ikäheimo, Nordqvist 2017 for Finland). Still, the total amount of copper items remained small and the metal did not change the general cultural image in any significant way. Therefore, the initial adoption of copper should be seen just as another example of a growing interest in the mineral world in general during the Neolithic, not a sign of a separate period (Nordqvist, Herva 2013.424; Herva et al. 2014; 2017). Because of the controversies associated with the Eneolithic period in Karelia, the dates connected with Rhomb-Pit Ware and asbestos- and organic-tempered pottery are included in this paper as well. In other words, the period covered, from the (later) 6th to the (earlier) 2nd millennia cal BC, is equivalent to the Neolithic and the Eneolithic (or the Neolithic and the earlier part of Early Metal Period) according to traditional Karelian periodisation (Fig. 1).

Overview of Karelian radiocarbon data

Context datings
Most Karelian radiocarbon dates (114) are context dates, mostly processed on charcoal and originating in cultural layers and different features (pits, fireplaces, dwelling constructions) of settlement sites. The reliability of these dates is seriously questioned by the fact that the majority of settlement sites in Karelia are multi-component, non-stratified locations, which contain material from several habitation episodes whose typological dating may span several millennia. This situation is explained by the geological and hydrological settings and the Stone Age and Early Metal Period economy: the groups of fisher-hunter-gatherers preferred to settle near water, which in the Karelian situation meant living mainly on lake shore terraces. As the shorelines of the majority of Karelian lakes remained fairly stable during the Holocene, areas suitable for settling remained almost the same up to the present time. This is characteristic even of such a large lake as Lake Onega, where numerous regressions and transgres-
sions took place, but affected parts of its coasts in different ways (e.g., Devyatova 1986; Saarnisto, Vuorela 2007).

Due to mixed multi-component assemblages, as well as the rough excavation and documentation methods employed, especially earlier, in most cases it is not possible to establish an unequivocal connection between a charcoal sample and particular archaeological materials identified at a site. This is evident in the case of charcoals collected from the cultural layer, but even in the case of samples originating in fireplace-like or other features it is not possible to fully exclude the possibility of forest fires or other post-depositional contamination.

The old-wood effect might also affect dates processed on charcoal from clear structures, such as dwelling remains. Because tree species and the origins (branch, trunk) of dated charcoals have not been determined, further estimating its presence and magnitude is not possible. As the log-based houses were made with stone tools, the timbers used to build them are unlikely to have been dry deadwood or thick live trunks with significant age. However, repairing and reuse may have introduced material of different ages into the houses and, again, later (natural) mixing cannot be ruled out. Thus, even if the dates from burnt constructions (walls) of dwellings are linked to human activities and even if they may be considered as the most reliable charcoal context dates, especially at single-component sites, they may yield widely varying ages. This is well illustrated by dwelling 1 at the Sumozero XV site (Zhul’nikov 2005.85–88): seven samples of charcoal and birch bark were taken from a burnt house construction (Tab. 1), but the determinations spread over half a millennium, at the minimum. All in all, the number of dates from dwellings is not very big: 35 dates in total (21 from burnt walls), most deriving from Late Neolithic/Eneolithic contexts.

Datings of charred residues and burnt bones

The introduction of the AMS technique has revolutionised dating and local chronologies in many fields. However, in Karelia the number of AMS dates has risen only in recent years (see Nordqvist, Mäkkinen 2017a). At the moment, there are 60 AMS determinations related to pottery (44 charred residue/food crust, 14 birchbark tar, one paint-like substance, one unknown) and seven dates of bone (six of them burnt). In addition, 13 dates of charred crusts established by conventional method exist.

The dated samples are clearly of anthropogenic origin, and their archaeological context is usually unquestionable, although in the case of bones, the connection with specific archaeological phenomena may remain uncertain at multi-component sites. Also, sampling and laboratory-related issues, contamination by (younger) organics (which may affect all other types of samples as well), and the influence of the (freshwater) reservoir effect may reduce the accuracy of the dates.

The reservoir effect has been intensively studied recently on the basis of archaeological and experimental materials (e.g., Fischer, Heinemeier 2003; Olsen et al. 2010; Philippsen, Heinemeier 2013; Kukkova et al. 2015; Philippsen 2015). In Karelia, the existence of the freshwater reservoir effect was hypothesised in connection with Late Neolithic/Eneolithic asbestos- and organic-tempered wares, and it was proposed that the crust dates are mainly affected by the freshwater reservoir effect, as they tend to date somewhat older than charcoal dates (Zhulnikov et al. 2012). However, this tendency remains speculative, as the study contained almost no comparable AMS or conventional datings from the same sites, not to mention the same contexts (see also Nordqvist, Mäkkinen 2017a).

The reservoir effect has been intensively studied recently on the basis of archaeological and experimental materials (e.g., Fischer, Heinemeier 2003; Olsen et al. 2010; Philippsen, Heinemeier 2013; Kukkova et al. 2015; Philippsen 2015). In Karelia, the existence of the freshwater reservoir effect was hypothesised in connection with Late Neolithic/Eneolithic asbestos- and organic-tempered wares, and it was proposed that the crust dates are mainly affected by the freshwater reservoir effect, as they tend to date somewhat older than charcoal dates (Zhulnikov et al. 2012). However, this tendency remains speculative, as the study contained almost no comparable AMS or conventional datings from the same sites, not to mention the same contexts (see also Nordqvist, Mäkkinen 2017a).

The differences between AMS dates and conventional dates connected with the same cultural phases vary from zero up to 500–600 14C-years or even more. It is not possible to say that AMS dates would always be

Fig. 1. Simplified chronology of the leading Neolithic and Eneolithic ceramic types in Karelia (designed by A. Tarasov).
older than context dates – it may also be the other way round – and the results also highlight the inconsistency of context dates at several locations. At many sites, AMS dates are spread over 50–200 14C-years: currently, it is not possible to decide whether this is due to prolonged or recurrent use of the locations, or to limitations in measurement accuracy, the properties of calibration curves, or reservoir effects.

One way to control for the presence of the (freshwater) reservoir effect has been the study of bulk stable isotopes. Even if this provides a rather crude tool compared to the more sophisticated analyses of compound-specific values, they are nevertheless thought to allow some level of estimate of the components included in the dated samples. Unfortunately, isotopic data are scarce, and only δ13C values have been published for the recently-obtained AMS dates: they range between ~24‰ and ~30‰, the average being ~27.5‰ (see Nordqvist, Mäkkönen 2017a). In previous studies the boundary between residues of marine and terrestrial/freshwater origin is often set at ~26‰ (Fischer, Heinemeier 2003, 460). As most Karelian dates have values below this, they could be expected to include terrestrial and/or freshwater components, also hinted at by the sites' location beside lakes and rivers. Still, the values are on average fairly moderate. The only dates with a marine component have been obtained from sites located in the White Sea area, but none of these give obviously divergent results.

The magnitude of the (freshwater) reservoir effect in north-eastern Europe, low on natural limestone, has been considered fairly small (Pesonen et al. 2012, 665), but the topic has not been specifically studied. It was proposed recently that low alkalinity of water does not automatically mean that the freshwater reservoir offset would not be present, as other factors such as the depth of basins, prolonged ice coverage and glacial meltwaters may have contributed to the phenomenon (Philippsen 2015.160). In northern central Europe, southern Scandinavia and south-eastern Baltic, the estimates and measured results of the (freshwater) reservoir offset range from some centuries to thousands of years (e.g., Fischer, Heinemeier 2003.461; Olsen et al. 2010.640; Hartz et al. 2012.1041; Philippsen, Heinemeier 2013.1098; Pilicauskas, Heron 2015.539). Nevertheless, these results cannot be directly applied to Karelian material, as the magnitude is strongly dependent on the geographical location and geological and natural environment, as well as on the period in question (e.g., Keaveney, Reimer 2012.1314; Philippsen 2015.160–162). A possible range of error in Karelia is illustrated by an Early Neolithic (Säräisiemi 1) vessel from the Kalmozero II site (Tab. 1): two dates from samples taken from the outer and inner surfaces of the same shard produced an offset of two to three centuries (Piezonka 2008.69, Abb. 2; also Hartz et al. 2012.1043).

Evaluation

The material available is biased: datings concentrate in certain areas and pottery types. Another major problem is the large share of conventional charcoal dates with poor link with actual archaeological materials. The standard errors of these conventional 14C-dates are generally large and vary from 20 to 150 (even 600) years, with the average between 80–90 years. This causes wide distributions in calibrated ages, at times providing accuracy of a millennium only. Laboratory-related issues are more difficult to assess, but as almost all conventional datings (over 98% of the dates listed in Kochkurkina 1991 and Kosmenko 2003) originate from the same laboratory, i.e. Radiocarbon Laboratory of the Institute of Geology at the University of Tartu (see Liiva et al. 1975), they should be consistent. Nevertheless, the general quality of these datings can be expected to be fairly low by default, although no systematic evaluation of their reliability has been done (see e.g., Kuzmin, Tankerslay 1996; Pettitt et al. 2003; Seitsonen et al. 2012). Similar uncertainties apply to crust dates obtained through the conventional method – re-dating of some shards with AMS showed that the unduly small samples used in the original dates made them unreliable and resulted in too young ages (Nordqvist, German 2017).

AMS-dated samples from clear archaeological contexts and with generally smaller standard errors (30–70 years BP, average 40 years BP) are also not free of problems. The potential reservoir effect is an important topic and no modern or ancient materials are currently available that could be used to reliably verify the offset in different reservoirs in the territory of Karelia. As AMS dates cluster quite nicely in many cases, it may be proposed that they still point towards the most likely use periods of different pottery types, whereas conventional dates have the tendency to disperse over a much wider period. Nevertheless, the current low number of AMS dates alone cannot be expected to provide precise dating for every cultural type and period.

With all this in mind, it can be stated that the chronology presented below operates within a margin
of error of 100–200 years, and in some cases the of-
sset may be even greater. Even if the initial and ter-
minal dates of some pottery types must be consider-
ed tentative, the general tendencies are correct and
the proposed timeframes are also generally accord
with chronologies obtained in neighbouring areas.

Radiocarbon chronology of the Karelian Republic

Sperrings and Säräisniemi 1 Wares

The oldest pottery in the Karelian Republic is Sperr-
ings Ware, known also in Finland (where it is cal-
led older Early Comb Ware, style I, also Sperrings
1) (e.g., German 2011; Pesonen, Leskinen 2011).
The earliest dates – charcoal from Uya III (6770±80
BP, TA-2352) and a burnt bone from Sulgu II (6670±
35 BP, KIA-35900) – may be related to Mesolithic oc-
cupation at the sites and therefore reasonably que-
stioned (Kosmenko 2003.32; German 2011.273–
274; Piezonka 2015.54). The charcoal date from Pe-
grema IX (6510±150 BP, TA-1161) is usually referr-
ed to as the oldest certain date for Sperrings (Viten-
kova 1996.78; German 2002.265, Tab. 1; Kosmenko
2003.32; Vereshchagina 2003.149), but it suffers
from a large standard error. The earliest AMS dating
also derives from Uya III (6225±10 BP, GrA-63566)
(Fig. 2), and is compatible with datings from Finland
and Karelian Isthmus, which place the beginning of
Sperrings Ware there to around 5300–5200 cal BC
(Pesonen et al. 2012.664, Tab. 2; Piezonka 2015.
198–199, Abb. 170; Nordqvist, Mökkönen 2016a.
204).

All the remaining conventional dates for Sperrings
Ware originate in mixed contexts containing also
partly temporally overlapping Pit-Comb Ware (see
below) and date between 5500–4400 cal BC (medi-
ans 5400–4600 cal BC). The majority of crust/tar
dates group around 5200–4500 cal BC (medians
5200–4600 cal BC). The youngest date (5507±50
BP, KIA-35901) derives from a vessel slightly dif-
f ering from the remaining Sperrings material at
Vozhmarikha 26 (see Mel’nikov, German 2013.109).
It is somewhat younger than the dates obtained in
the surrounding areas, placing the end of Sperrings
Ware at around 4400 cal BC (Pesonen et al. 2012.
664, Tab. 2; Seitsonen et al. 2012.110; Piezonka
2015.199, Abb. 170).

Almost coeval with Sperrings is Säräisniemi 1 Ware,
which is characteristic of the northern Karelian Re-
public, Finland and Norway (e.g., Torvinen 2000;
German 2011; Skandfer 2011). At the moment only
three AMS dates exist for this type in Karelia – two
dates of one shard from Kalmzero II (6340±70 BP;
KIA-35899A and 6080±45 BP; KIA-35899B; the for-
mer date may include the reservoir effect, see above)
and one date from Besovy Sledki (5775±40 BP; GrA-
63547) (Fig. 3). All context dates previously connect-
ed with Säräisniemi 1 Ware derive from Yerpin Pu-
das I. They date between c. 5600–4000 cal BC (medi-
ans 5500–4100 cal BC) and may also be connected
with other components present at the site, especial-
ly Pit-Comb Ware.

Dates from Karelia do not differ significantly from
the range given for Säräisniemi 1 Ware in other re-

Fig. 2. Sperrings Ware (designed by T. Mökkönen).
gions, i.e. 5300–4500 cal BC (Pesonen et al. 2012. 664, Tab. 2; Piezonka 2015.208–209, Abb. 174; Nordqvist, Mökkönen 2016a.204).¹ In the light of current dates, it seems plausible that there is no significant temporal difference between Sperrings (Early Comb) and Säräisniemi 1 Wares in the north; in fact, in some areas, Säräisniemi 1 Ware precedes Sperrings Ware (also Pesonen et al. 2012.670). This further corroborates the recently-presented idea that Säräisniemi 1 Ware is not just a late northern variant of Sperrings Ware (see Pesonen 1991.84; Vitenkova 1996.81; Torvinn 2000.16; German 2006.234–236; Pesonen, Leskinen 2011.300), but that these pottery types have different origins and development histories (Piezonka 2015.208–209). Furthermore, a few Finnish dates indicate that in some areas the use of Säräisniemi 1 Ware may have continued as late as the early 4th millennium cal BC (Torvinn 1999.238; Carpelan 2004.29; Piezonka 2015.244; Nordqvist, Mökkönen 2016a.204).

Besides Sperrings and Säräisniemi 1 Wares, a few other pottery types dating to the 5th millennium cal BC have been reported from Karelia: younger Early Comb Ware style I:2 (also Sperrings 2; see German 1998, who calls this pottery ‘Early Comb Ware’) and Kaunissaari Ware (also discussed under the umbrella term of Early Asbestos Ware; see Pesonen 1996.24). Both types have their predominant distribution areas in Finland, where they are considered to be mostly younger than Sperrings Ware and dated between 4500 and 3800 cal BC (Pesonen et al. 2012.664, Tab. 2; Oinonen et al. 2014.4, Tab. 1; Nordqvist, Mökkönen 2016a.204–205). No dates exist for these types in Karelia and, in general, they occur there very rarely.

Pit-Comb Ware

The emergence of Pit-Comb Ware in Karelia is traditionally connected with the Lyalovo culture, widespread in central and north-western Russia in the 5th millennium cal BC, and probably especially with its later stage (Smirnov 1991; 1996; Gurina, Kraynov 1996; Vitenkova 2016.128; Smol'yaninov 2013.238). At the moment, the chronology of Pit-Comb Ware is based mainly on context dates, as only four AMS dates exist from Besovy Sledki and Besovy Sledki II in the White Sea region (Fig. 3). Three of these date to the second half of the 5th millennium cal BC, which has often been considered the main use period of this pottery type (Kosmenko 2003.32; Lobanova 2004.254, 259), but the fourth one is younger (see below).

According to Nadežda V. Lobanova (2004.256; 2009.58–59), who sees the first stage of Pit-Comb Ware as synchronous with Sperrings Ware, the oldest date that can be associated with Pit-Comb Ware comes from Chernaya Rechka I (6200±100 BP, TA-1634). In addition, there are also some other early context dates, but the connection between all these dates and Pit-Comb Ware contexts has been challenged (German 2002.264; Filatova 2012; see also Sidorov 1997.103–105). Accepting the early dates would also

¹ Also, older AMS dates have been presented for Säräisniemi 1 Ware from northern Norway (e.g., 6570±60 BP, TUA-3018 and 6350±50 BP, TUA-3021; Skandfer 2011.356, Tab. 12.1), but these are affected by the marine reservoir effect (see Pesonen et al. 2012.667–668; Piezonka 2015.208).
mean that Pit-Comb Ware in Karelia would be contemporaneous with the appearance of Lyalovo culture in the Upper-Volga region, currently dated to the very late 6th millennium or to the turn of the 5th millennium cal BC (Zaretskaya, Kostyleva 2011. 180–182; Hartz et al. 2012.1045).

Context dates connected with Pit-Comb Ware cover almost the whole of the 5th millennium cal BC, but due to the above-mentioned uncertainties, the initial date must be placed only roughly in the first half of the 5th millennium cal BC. Typologically, the final stage of Pit-Comb Ware has been seen to overlap with Comb-Pit and Rhomb-Pit Wares (Lobanova 2004.261; Khoroshun 2013.126–127), and a series of dates obtained from Vorob’i 4 showed that at least in some areas the use of Pit-Comb Ware continued during the first two or three centuries of the 4th millennium cal BC.

In addition, there are dates which seem ‘too young’. These include a crust date from Besovy Sledki II (4785±45 BP, GrA-64331). Typologically, this shard fits the characteristics of Pit-Comb Ware, but such a long continuation of use of this type seems very improbable (see also Nordqvist, Mökkönen 2017a for discussion). A coeval context date of charcoal exists from Chernaya Rechka I (4700±80 BP, TA-1633), but as there are two even much younger dates from the same site (with no corresponding archaeological material) it cannot be given much value. Finally, several crust dates produced by conventional methods from Vorob’i 4 are too young due to insufficient sample sizes (see Nordqvist, German 2017 for discussion).

Comb-Pit and Rhomb-Pit Wares

Comb-Pit Ware, corresponding to Typical Comb Ware of the eastern Baltic and Finland (Yanits 1959; Nordqvist, Mökkönen 2015), and Rhomb-Pit Ware, which finds analogies elsewhere in north-western and central Russia (Smirnov 1991; Smol’yaninov 2009; Vitenkova 2016), followed Pit-Comb Ware in Karelia. Traditionally, they were seen as subsequent types also among themselves, but the introduction of more accurate dating has shown them to be more or less contemporary (Zhul’nikov 2005.25; Khoroshun 2013.117; Vitenkova 2016.118). Currently, their chronology is based on many AMS and context dates, although the latter often originate from sites with mixed complexes of Comb-Pit and Rhomb-Pit Wares and cannot be attributed to only one of them. Based on some dates and stratigraphical observations (site Chernaya Guba III) it has been proposed that the appearance of Comb-Pit Ware would be slightly older, but the available data are too vague to draw such conclusions. In fact, it is not even known if the two assemblages at the same sites indicate the repeated use of these locations by two different groups or if both types were used by the same population (Vitenkova 2016.121).

Based on AMS dating, Comb-Pit Ware in Karelia dates to 4000–3600 cal BC (medians 4000–3700 cal BC) and Rhomb-Pit Ware 3900–3400 cal BC (medians 3800–3500 cal BC) (Figs. 4, 5). Most of the context dates fall between 4000–3100 cal BC (medians 3900–3300 cal BC), within which the main use period of these types belongs. Such dating also fits the results from Finland, where an extensive dating programme has defined the use period of Typical Comb Ware from 3900 up to 3400 cal BC (Pesonen 2004. 90; Oinonen et al. 2014; authors’ unpublished data). Chronology of Rhomb-Pit-related pottery is poorly known outside Karelia, and the only available direct dating (made of ceramic matrix) suggests that it existed between 3600–3100 cal BC (Skorobogatov et al. 2016.247).

However, there are context dates which date slightly older (Pegrema I, 5145±110 BP, TA-541 and Pegrema II, 5070±120 BP, TA-811) or even considerably younger (e.g., Pegrema I, 4200±50 BP, TA-493; Pegrema III, 4240±90 BP, TA-813).2 Even if they are at least partly related to other activities at these sites (e.g., Kosmenko 2003.25; Nordqvist, Mökkönen 2016b.232), it seems probable that, just as in some parts of Finland (Mökkönen 2008.123–124; also Seitsonen et al. 2012.111), Comb Ware tradition continued in Karelia in some form and in some areas until the early 3rd millennium cal BC. Still, for example, the date from Lakshezero II (3920±60 BP, TA-1520), presented also as the final date for Comb-Pit Ware, probably belongs to the later asbestos pottery-related use of this site (Vitenkova 2002.142).

In addition to uncertain context dates, one AMS dating from Chernaya Guba III (6060±40 BP, GrA-

2 The young dates from Pegrema I and Pegrema III are problematic because they have been presented quite differently in different publications. The date of 4200±90 BP has also been given as 4200±90 BP, with index ID TA-813 or with no index ID; the date 4250±50 BP (TA-493) has also been published as 4200±50 BP. Moreover, the date TA-813 has been said to originate from both of these sites (see Zhuravlev 1977; 1979; 1984; 1991; Zhuravlev; Lîca 1980; Kochkurkina 1991; Vitenkova 2002; Timofeev et al. 2004).
63539) is problematic, as it is almost a millennium older than expected. The reservoir effect cannot be ruled out (the δ¹³C value is −27.84‰), and there is always the possibility of typological misinterpretation, even if in this case the dated shard fully fits the characteristics of Comb-Pit Ware. If the date is even tentatively connected with the Pit-Comb Ware, recovered in small amounts at this site (Vitenkova 2002.29), it would also be by far the oldest direct date of Pit-Comb Ware in Karelia. Furthermore, two conventional dates of pottery crust from Vozhmari-kha 21 may date to the end phase of Comb-Pit Ware use, but may also suffer from the same problems discussed in connection with the Pit-Comb Ware dates from Vorobi 4.

Finally, a date measured on birch bark found in a grave at Bukol’nikov 1 (4740±60 BP, LE-9391) has been connected with Comb-Pit Ware (Mel’nikov, German 2013.120), even if no Comb-Pit Ware was found at the site. The grave goods, e.g., amber jewellery and a bifacial flint point, may be seen to support this connection. However, the assemblage from the site includes mostly Pit-Comb Ware and some asbestos-tempered pottery of possibly Voynavolok type – within the temporal limits provided by the date, the burial could also be connected with the latter phase.

Zalavruga, Voynavolok, Orovnavolok and Palayguba Wares

Previously, all asbestos- and organic-tempered pottery in Karelia was discussed under the one heading of Asbestos or Classic Ware (Gurina 1961.161; Kosmenko 1992.131). Such a view does not permit the tracing of cultural dynamics during the 4th–2nd millennia cal BC, and since then four types of pottery have been separated from the material: Zalavruga, Voynavolok, Orovnavolok and Palayguba Wares (Zhul’nikov 1991; 1999; 2005). These types have varying distributions mainly in Karelia and find some parallels in the Finnish types of Kierikki and Pöljä. They have also contemporary analogues in the east, and generally the emergence of asbestos- and organic-tempered pottery in Karelia has been connected with the development of the Volosovo cultural entity in the Volga-Oka region (Zhul’nikov 1999.6–7 and references cited). The starting point of Volosovo in the Upper Volga region is dated to around 3600 cal BC (Kostyleva, Utkin 2010.248–250).

Asbestos- and organic-tempered wares are relatively well dated by AMS and context dates (including numerous dates from burnt dwelling constructions), although the dates are unevenly distributed among the pottery types. There are also many ‘non-fitting’ dates connected to sites with these pottery types or their use periods (see Table 2).

The oldest date connected with asbestos- and organic-tempered pottery in Karelia is a tar date related to Voynavolok Ware (Pervomayskaya I, 4710±35 BP, GRA-63682) (Fig. 6). Generally, AMS dates for this type fall between 3600–2900 cal BC (medians 3500–3000 cal BC) and cluster into two groups between 3600–3400 cal BC and 3400–2900 cal BC. The first cluster corresponds neatly with older ideas of a short use period of
this pottery type, just a few centuries in the mid-4th millennium cal BC (Zhul’nikov 1999.47, 76–78; also Zhul’nikov, Tarasov 2014.262). The second cluster is contemporary with the few available context dates from burnt dwelling constructions (3300–2600 cal BC, medians 3100–2900 cal BC).

In other words, the beginning of Voynavolok Ware may be dated to the mid-4th millennium cal BC. Such dating is also supported by Finnish material, where Kierikki Ware is dated between 3600 and 2900 cal BC (Pesonen 2004.90, 92; Nordqvist, Mökkönen 2017b; Mökkönen, Nordqvist in prep.). Like Voynavolok Ware, Kierikki Ware is seen as a descendant of the Comb Ware tradition, and some of the heterogeneous material classified as Kierikki bears considerable resemblance to Voynavolok Ware (Nordqvist, Mökkönen 2017b; Mökkönen, Nordqvist in prep.). Furthermore, some pottery labelled (erroneously) as Kierikki is actually pure Voynavolok type (pottery from Vuopaja; Zhulnikov et al. 2012.127; this is the oldest AMS-dated Voynavolok shard, 4805±85 BP, Ua-4364; Carpelan 2004).

The end date of Voynavolok Ware should be placed in the first centuries of the 3rd millennium cal BC, at the latest. However, the youngest dates (Voynavolok XXVII, 4280±80 BP, GrA-63562 and Fofanovo XIII, 4470±60 BP, GrA-62484) derive from shards that also allow typological attribution to Orovnavolok Ware or represent a so-called ‘transitional type’ between these two (see Zhul’nikov, Tarasov 2014.261; Tarasov 2015.250; also Nordqvist, Mökkönen 2017a for discussion). Respectively, the same reason, in addition to a possible freshwater reservoir effect, explains the overlap of Voynavolok type and the oldest dates connected with Orovnavolok Ware (Orovnavolok XVI, 4770±40 BP, Beta-117966; Fofanovo XIII, 4470±60 BP, GrA-62484).
novo XIII, 4585±35 BP, GrA-62059; Tunguda XV, 4570±35 BP, GrA-65583) (Fig. 7). This typological overlap is well-evidenced by material and dates from Fofanovo XIII, where, however, Voynovolok pottery has generally been recovered in lower stratigraphic layers than the Orovnavolok type (Zhul’nikov, Tarasov 2014; Tarasov 2015).

The remaining AMS dates of Orovnavolok Ware fall between 3300–2700 cal BC (medians 3200–2900 cal BC) and are roughly congruent with the majority of context dates from dwelling constructions, 3100–2600 cal BC (medians 2800 cal BC). Still, there are a few dates some centuries younger, although it is highly implausible that at least the youngest date (Voynovolok XXIV, 3560±80 BP, TA-819) would anymore represent the use period of Orovnavolok Ware. In sum, the start of this type should be a bit later than Voynovolok Ware and probably dates to around 3400 cal BC, although the nature of the ‘transitional type’ remains ambivalent. The end date can probably be placed in the first half of the 3rd millennium cal BC, and no later than 2500 cal BC. Thus, in addition to Kierikki and Voynovolok Wares, it belongs to the same chronological horizon as Pöljä Ware of Finland, with which it also shares some typological and stylistic similarities (pure Orovnavolok Ware has been recognised in Finland on some occasions; Nordqvist, Mökkönen 2017b; Mökkönen, Nordqvist in prep.; see also Zhul’nikov 2005.29).

Pöljä Ware is dated by AMS dates to 3500–2500 cal BC, but including context datings, its end has been extended to c. 1900 cal BC (Pesonen 2004.90, 92; authors’ unpublished data).

Zalavruga Ware of the White Sea area has been considered a northern parallel to Voynovolok pottery (Zhul’nikov 2005.27). Its dating is based on a few crust/tar dates only, as all context dates derive from mixed sites and have no definite connection with this pottery (Fig. 8). AMS dates fall between 3500 and 2900 cal BC (medians 3400–2900 cal BC), whereas conventional dates date to 3700–1800 cal BC. In other words, the main use period of Zalavruga Ware is the second half of the 4th millennium cal BC.

Fig. 7. Orovnavolok Ware and Palayguba Ware (bottom row) (designed by T. Mökkönen).

Fig. 8. Zalavruga Ware (designed by T. Mökkönen).
It is largely contemporary with Voynavolok Ware, but also overlaps with Orovnavolok Ware, as also evidenced by coeval datings from the Zalavruga I site. Zalavruga Ware shares some features with Kierikki Ware and the organic-tempered Comb Ware of northern Finland, but their relationships remain unresolved (Zhul’nikov 2007.123; Nordqvist, Mökkönen 2017b; Mökkönen, Nordqvist in prep.).

The youngest type of Neolithic/Eneolithic asbestos- and organic-tempered potteries is Palayguba Ware. Currently, only two AMS datings exist for it (Sheltzero XII, 3815±35 BP, GrA-63585 and 3725±35 BP, GrA-63586) (Fig. 7). In this case, context dates from dwellings suggest a somewhat earlier dating. The oldest derives from Kudomguba VII (+4010±80 BP, TA-1893), but the most dates from clear Palayguba contexts date younger than 2600 cal BC and up to the first centuries of the 2nd millennium cal BC (2900–1700 cal BC, medians 2500–1900 cal BC). Thus, it seems to overlap little with Orovnavolok Ware, to which it has been also genetically connected, as well as with Corded Ware/Fat’yanoovo cultures, which have been seen to influence it too (Zhul’nikov 1999). Temporally, Palayguba Ware is largely coeval also with Päljä Ware, and the end date proposed for the latter, 1900/1800 cal BC, may well apply to most Palayguba pottery.

However, there are even younger dates connected with Palayguba Ware (the youngest date is from Päljä II, 3150±100 BP, TA-1007), although some of these may already belong to the context of subsequent Textile Ware present at some sites. No genetic relationship has been proposed between these two pottery types, and their overlap remains an open question. In Karelia, the oldest context dates connected with Textile Ware date to the turn of the 3rd and 2nd millennia cal BC or the first half of the 2nd millennium cal BC (Kelka III, 3520±80 BP, TA-2269 and 3100±70 BP, TA-2268; Zhul’nikov 1999.77). They are fairly consistent with the earliest AMS dates of Textile Ware from Finland, starting from the early 2nd millennium cal BC onwards (Lavento 2001.102, Fig. 6.11, 106). AMS dates for Textile Ware in Karelia fall between c. 1500–1300 cal BC (Kosmenko 2003).

Final remarks

The data presented in this paper are still limited in temporal and spatial coverage, and do not allow the study of regional and temporal differences in the distribution of various phenomena in detail. In an area as large as the Karelian Republic, it is not reasonable to assume that development (e.g., appearance or disappearance of a pottery type) would have been simultaneous or similar everywhere. Instead, there might have been large differences (for example, some pottery types may have existed for longer periods in certain areas), which can cause inconsistency in the data and ‘deviatory’ initial and terminal dates.

Similarly, the data are too thin to provide reliable evidence of the temporal differences of some pottery types proposed on typological grounds, or to be used in statistical analyses defining certain event sequences. Also, potential sources of error – like the old wood and the (freshwater) reservoir effect – must be studied in the future, as this might also clarify the reason behind the differences between residue-based AMS and conventional charcoal dates.

Despite the numerous problems and unanswered questions, the currently available radiocarbon dates enable the study of chronological sequences in Karelia in much greater detail than was possible even two or three years ago. Nowadays, it is also possible to correlate the Karelian chronology more or less precisely with the general north-east European chronological framework. All this creates a better foundation for understanding the cultural dynamics between the later 6th and the early 2nd millennia cal BC of north-western Russia.

ACKNOWLEDGEMENTS

This paper was partly produced with the support of a state contract within the current research project of the Department of Archaeology of the Institute of Linguistics, Literature and History of the Karelian Research Centre of Russian Academy of Sciences (state registration number #0225-2014-0014) (AT and TKh). The majority of Karelian AMS dates, as well as part of writing this paper (KN and TM), were funded by the project ‘The use of materials and the Neolithisation of North-Eastern Europe (c. 6000–2000 BC)’ (Academy of Finland & University of Oulu, 2013–17, project #269066). One previously unpublished date of burnt bone (Fofanovo XIII site) was obtained through financial support from the Russian Scientific Fund (grant #14-17-00766). The authors also wish to thank K. E. German (Petrozavodsk) for the possibility to include dates from the Vorob’i and Vozhmarikha sites in this article, as well as N. V. Lobanova (Petrozavodsk) for the use of two previously partially published dates from Orovnavolok XVI.
References

Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. *Radiocarbon* 51(1): 337–360. doi: 10.1017/S0033822200035365

Carpelan C. 2004. Environment, archaeology and radiocarbon dates: Notes from the Inari region, northern Finnish Lapland. In M. Lavento (ed.), *Early in the North: Volume 5: The Land*. Iskos 13. The Finnish Antiquarian Society. The Archaeological Society of Finland. Helsinki: 17–45.

Devyatova E. I. 1976. *Geologiya i palinologiya golotsena i khronologiya pamyatnikov pervobytnoy epokhi v yugo-zapadnom Belomor’e*. Nauka. Leningrad. (in Russian)

1986. *Prirodnyaya sreda i ee izmeneniya v golotsene (poberezh’ severa i isenta Onezhskogo ozea)*. Karel’skyi filial Akademii Nauk SSSR. Petrozavodsk. (in Russian)

Filatova V. F. 2012. *Mezoliticheskie pamyatniki Karel’i: Katalog*. Karel’iskiy nauchniy tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk. (in Russian)

Fischer A., Heinemeier J. 2003. Freshwater reservoir effect in 14C dates of food residue on pottery. *Radiocarbon* 45(3): 449–466. doi: 10.1017/S003382220003280X

German K. E. 1998. Rannyaya grebechataya keramika v basseyne Onezhskogo ozea. *Tverskoy archeologicheskiy sbornik* 3: 266–272. (in Russian)

2002. Khronologiya i periodizatsiya kul’tury sperrings v Karelii. *Tverskoy archeologicheskiy sbornik* 5(1): 264–273. (in Russian)

2006. Pamyatniki s keramikoy Syaryaisniemi I v severnoy Karelii. In A. Ya. Martynov (ed.), *Pervobytnaya i srednevekovaya istoriya i kul’tura Evropeyskogo Severa: Problemy izucheniya i nauchnyh konstruktsiy*. Solti. Solovki: 22–24. (in Russian)

2011. Early hunter-gatherer ceramics in Karelia. In P. Jordan, M. Zvelebil (eds.), *Ceramics before Farming: the Dispersal of Pottery among Prehistoric Eurasian Hunter-Gatherers*. Left Coast Press. Walnut Creek: 255–280.

2012. Kul’tura sperrings na territorii Karelii. In S. V. Oshibkina (ed.), *Perovbytnye drevnosti Evrazii*. Institut Arkheologii Rossiyskaya Akademiya Nauk. Moskva: 571–591. (in Russian)

2016. Novye radioglerodnye opredeleniya po nagaru s neo-eneoliticheskyi keramiki Karelii. Presentation held at the Tver archaeological seminar, 25.3.2016. (in Russian)

Gurina N. N. 1961. *Drevnyaya istoriya Severo-Zapada Evropeyskoy chasti SSSR*. Materialy i issledovaniya po arkheologii SSSR 87. Izdatel’stvo Akademii Nauk SSSR. Moskva-Leningrad. (in Russian)

Gurina N. N., Kraynov D. A. 1996. L’yalovskaya kul’tura. In S. V. Oshibkina (ed.), *Neolit Severnoy Etraziya*. Akhrogeologiya. Nauka. Moskva: 173–182. (in Russian)

Hartz S. Kostyleva E., Piezonka H., Terberger T., Tsedenova N. and Zhilin M. G. 2012. Hunter-gatherer pottery and charred residue dating: New results on early ceramics in the north Eurasian forest zone. *Radiocarbon* 54(3–4): 1033–1048. doi: 10.2458/azu_js_rc.v54i3–4.16162

Herva V.-P., Nordqvist K., Lahelma A. and Ikäheimo J. 2014. Cultivation of perception and the emergence of the Neolithic world. *Norwegian Archaeological Review* 47(2): 141–160. doi: 10.1080/00293652.2014.950600

Herva V.-P., Mökkönen T. and Nordqvist K. 2017. A Northern Neolithic? Clay work, cultivation and cultural transformations in the boreal zone of north-eastern Europe, c. 5300–3000 BC. *Oxford Journal of Archaeology* 36(1): 25–41. doi: 10.1111/ojoa.12103

Ikäheimo J., Nordqvist K. 2017. Lost in narration: Rediscovering the Suomussalmi copper adze. *Norwegian Archaeological Review* 50(1): 1–22. doi: 10.1080/00293652.2017.1307268

Ikäheimo J., Pääkkönen M. 2009. Kierikin kupariveitsi: Uusimpia tutkimustuloksia. In J. Ikäheimo, S. Lipponen (eds.), *Ei kiveäkään kääntämättä*. Pentti Koivusen julkaisutoimikunta. Oulu: 161–173.

Keaveney E. M., Reimer P. J. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a Cautionary tale. *Journal of Archaeological Science* 39(5): 1306–1316. doi: 10.1016/j.jas.2011.12.025

Khoroshun T. A. 2013. *Pamyatniki s yamochno-grebenchatoy i rombo-yamochnoy keramikoy na zapadnom poberezh’e Onezhskogo ozea (konets V – nachalo III tys. do n.e.)*. Unpublished PhD thesis. Kareliyskyi tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk. (in Russian)

2015. K voprosu o khronologii i periodizatsii pamyatnikov s yamochno-grebenchatoy, grebenchato-yamochnoy i romboyamochnoy keramikoy zapadnogo poberezh’ya Onezhskogo ozea. *Tverskoy archeologicheskiy sbornik* 10(1): 34–41. (in Russian)

Kochkurkina S. I. (ed.) 1991. *Khronologiya i periodizatsiya archeologicheskikh pamyatnikov Karelii*. Kareliyskyi tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk. (in Russian)
Radiocarbon chronology of the Neolithic-Eneolithic period in the Karelian Republic (Russia)

Kosmenko M. G. 1992. Mnogosloynye poseleniya yuzhnoy Kareli. Karel'skiy nauchniy tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk. (in Russian)

2003. Problemy datirovaniya i khronologiya pamyatnikov Karelii (kamenniy, bronzoviy, zhelezniy veka). Rossiyskaya Arkheologiya 2003(4): 25–35. (in Russian)

2004. The chronology of the Stone–Iron Ages of the Karelian Republic. In P. Uino (ed.), Fenno-ugri et Slavi 2002: Dating and Chronology. Museoviraston arkeologian osaston julkaisuja 10. National Board of Antiquities. Helsinki: 46–55.

Kosmenko M. G., Kochkurkina S. I. (eds.) 1996. Arkheologiya Karelii. Karel'skiy nauchniy tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk. (in Russian)

2003. Problemy datirovaniya i khronologiya pamyatnikov Karelii (kamenniy, bronzoviy, zhelezniy veka). Rossiyskaya Arkheologiya 2003(4): 25–35. (in Russian)

2004. The chronology of the Stone–Iron Ages of the Karelian Republic. In P. Uino (ed.), Fenno-ugri et Slavi 2002: Dating and Chronology. Museoviraston arkeologian osaston julkaisuja 10. National Board of Antiquities. Helsinki: 46–55.

Kuzmin Y. V., Tankerslay K. B. 1996. The colonization of eastern Siberia: An Evaluation of the Paleolithic Age radiocarbon dates. Journal of Archaeological Science 23(4): 577–585. doi: 10.1006/jasc.1996.0054

Lavento M. 2001. Textile Ceramics in Finland and on the Karelian Isthmus: Nine Variations and a Fugue on a Theme of C. F. Meinander. Suomen Muinaismuistoyhdistyksen Aikakauskirja 109. The Finnish Antiquarian Society. Helsinki.

Liiva A. A., Il'vess E. O. and Punning Ya.-M. K. 1975. Radio-uglerodnye issledovaniya v laboratorii geobiokhimii. Akademiya Nauk ESSR. Tartu. (in Russian)

Lobanova N. V. 1988. Poseleniya s yamochno-grebenchatoy keramikoy. In S. I. Kochkurkina (ed.), Poseleniya drevney Karelii (ot mezolita do srednevekov'ya). Institut istorii material'noy kul'tury Rossiyskaya Akademiya Nauk SSSR. Petrozavodsk: 50–66. (in Russian)

2004. Khronologiya i periodizatsiya pamyatnikov s yamochno-grebenchatoy keramikoy na territorii Karelii. In V. I. Timofeev, G. I. Zyatseva (eds.), Problemy khronologii i etnikokulturnyh vzaymodeystvij v neolite Evrazii. Institut istorii material'nyy kul'tury Rossiyskaya Akademiya Nauk. Sankt-Peterburg: 253–264. (in Russian)

2009. Adaptatsionnye protsessy v kul'ture naselelnia Karelii epokhi neolita. In M. G. Kosmenko (ed.), Adaptatsiya kul'tury naselelnia Karelii k osobennostym mestnym prirodnym srednym periodov mezolita – srednevekov'ya. Karelskiy nauchniy tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk: 44–68. (in Russian)

Melnikov I. V., German K. E. 2013. Dreannie poseleniya yuzhnoy Zaonezh'ya (mezolit – eneolit). Gosudarstvennyy istoriko-arkheitekturnyy i etnograficheskiy muzez-zapovednik 'Kizhi'. Petrozavodsk. (in Russian)

Mökkönen T. 2008. A review of Neolithic multi-room housebuildings from the Meskäärtty site in Virolahti parish, extreme south-eastern Finland. Estonian Journal of Archaeology 12(2): 114–151. doi: 10.3176/arch.2008.2.02

Mökkönen T., Nordqvist K. in prep. The concept of Kierikki Ware and the heterogeneous potteries of the mid-4th and early 3rd millennia cal BC in north-east Europe. Paper submitted.

Nordqvist K. 2013. Periodizatsiya neolita–bronzovo veka v Severo-Vostochnoy Evrope/Of the periodization of Eneolithic–Bronze Age in north-east Europe. In V. S. Bocharev, A. I. Murashkin (eds.), Problemy periodizatsii i khronologii v arkeologii epokhi rannego metallia Vostochnoy Evropy. Sankt-Peterburg gosudarstvennyy universitet. Sankt-Peterburg: 188–199. (in Russian/English)

Nordqvist K., German K. 2017. New remarks on the chronology of Pit-Comb Ware in Karelia (north-west Russia). Fennoscandia Archaeologica XXXIV: in press.

Nordqvist K., Herva V.-P. 2013. Copper use, cultural change and Neolithization in north-eastern Europe (c. 5500–1800 BC). European Journal of Archaeology 16(3): 401–432. doi: 10.1179/1461957113Y.0000000036

Nordqvist K., Mökkönen T. 2015. Äyräpää’s Typical Comb Ware: an Umbrella term for the early 4th millennium BC pottery in northeastern Europe? Fennoscandia Archaeologica XXXII: 151–159. http://www.sarks.fi/fa/faxxxii.html

2016a. New radiocarbon dates for early pottery in north-eastern Europe. In O. V. Lozovskaya, A. N. Mazurkevich and E. V. Dolbunova (eds.), Traditsii i innovatsii v izuchenii drevnevekov'ya. Karelskiy filial Akademi Nauk SSSR. Petrozavodsk: 204–214.
Aleksey Tarasov, Kerikko Nordqvist, Teemu Mikkonen and Tatyana Khoroshun

2016b. A Stone Age strainer from the northern boreal zone: a Find from Pegrema I (Karelian Republic). Fennoscandia Archaeologica XXXIII: 231–236. http://www.sarks.fi/fa/faxxxiii.html

2017a. Novye dannye po arkheologicheskoy khronologii Severo-Zapada Rossii: AMS datirovki neolita-eneolita Karelii. Tverskoy arkheologicheskiy sbornik 11: in press. (in Russian)

2017b. Keramika tipa Kierikki: datirovka i paralleli v severo-vostochnoy Evrope. Tverskoy arkheologicheskiy sbornik 11: in press. (in Russian)

2017c. Periodization of the Neolithic and radiocarbon chronology of the Early Neolithic and the beginning of Middle Neolithic in Finland. Documenta Praehistorica 44:

Oinonen M., Pesonen P., Alenius T., Heyd V., Holmqvist-Saukkonen E., Kivimäki S., Nygrén T., Sundell T. and Onkamo P. 2014. Event reconstruction through Bayesian chronology: Massive mid-Holocene lake-burst triggered large-scale ecological and cultural change. The Holocene 24(11): 1419–1427. doi: 10.1177/0959683614544049

Pankrushev G. A. 1988. Poseleniya s asbestovoy keramikoy. In S. I. Kochkurkina (ed.), Poseleniya drevney Karelii (ot mezolita do srednevekov’ya). Karel’skiy filial Akademii Nauk SSSR. Petrozavodsk: 79–97. (in Russian)

Pesonen P. E. 1988. Poseleniya kul’tury sperrings. In S. I. Kochkurkina (ed.), Poseleniya drevney Karelii (ot mezolita do srednevekov’ya). Karel’skiy filial Akademii Nauk SSSR. Petrozavodsk: 40–49. (in Russian)

1991. Khronologiya i periodizatsiya kul’tury sperrings. In S. I. Kochkurkina (ed.), Khronologiya i periodizatsiya arkheologicheskikh pamyatnikov Karelii. Karels’kiy nauchniy tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk: 65–85. (in Russian)

Pesonen P. 1996. Early Asbestos Ware. In T. Kirkinen (ed.), Pithouses and Potmakers: Reports of the Ancient Lake Saimaa Project. Helsinki Papers in Archaeology 9. University of Helsinki. Helsinki: 9–39.

2004. Neolithic pots and ceramic chronology: AMS-datings of Middle and Late Neolithic ceramics in Finland. In P. Uino (ed.), Fenn-no-agri et Slavi 2002. Dating and Chronology. Museoviraston arkeologian osaston julkaisuja 10. National Board of Antiquities. Helsinki: 87–97.

Pesonen P., Leskinen S. 2011. Pottery of the Stone Age hunter-gatherers in Finland. In P. Jordan, M. Zvelebil (eds.), Ceramics before Farming: the Dispersion of Pottery among Prehistoric Eurasian Hunter-Gatherers. Left Coast Press. Walnut Creek: 299–318.

Pesonen P., Oinonen M., Carpelan C. and Onkamo P. 2012. Early Subneolithic ceramic sequences in eastern Fennoscandia: a Bayesian approach. Radiocarbon 54(3–4): 661–676. doi: 10.2458/azu/js_rc.v54i3-4.16138

Philippsen B. 2015. Hard water and old food: the Freshwater reservoir effect in radiocarbon dating of food residues on pottery. Documenta Praehistorica 42: 159–170. doi: 10.4312/dp.42.10

Philippsen B., Heinemeier J. 2013. Freshwater reservoir effect variability in northern Germany. Radiocarbon 55 (2–3): 1085–1101. DOI: 10.2458/azu_js_rc.55.16065

Piezonna H. 2008. Neue AMS-Daten zur frühneolithischen Keramikentwicklung in der nordosteurpäischen Waldzone. Estonian Journal of Archaeology 12(2): 67–113. doi: 10.3176/arch.2008.2.01

2011. Rannyaya keramika k vostoku ot Baltiyskogo morya: Novye AMS radiouglerodnye daty. Tverskoy arkheologicheskiy sbornik 8(1): 159–174. (in Russian)

2015. Jäger, Fischer, Töpfers: Wildbeutergruppen mit früher Keramik in Nordosteuropa im 6. und 5. Jahrtausend v. Chr. Archäologie in Eurasien 30. Habelt. Bonn.

Piličiauskas G., Heron C. 2015. Aquatic radiocarbon reservoir offsets in the southeastern Baltic. Radiocarbon 57 (4): 539–556. doi: 10.2458/azu_rc.57.18447

Saarnisto M. (ed.) 2003. Karjalan synty: Viipurin läänin historia 1. Karjalan kirjapaino. Lappeenranta.

2003. Karjalan synty: Väipirin läänin historia 1. Karjalan kirjapaino. Lappeenranta.

Saarnisto M., Vuorela I. 2007. Palaeogeography and palynology of Orov Navolok, NE Lake Onega. In L. G. Shakhmetova (ed.), Kol’skiy sbornik. Institut istorii material’noy kul’tury Rossisskaya Akademiya Nauk. Sankt-Peterburg: 82–101. (in Russian)
Savvateev Yu. A., Devyatova E. I. and Liiva A. A. 1974. O datirovke pamyatnikov pervobytnoy epokhi v nizov'yah r. Vyg. In Voprosy sovetskogo finno-ugrovedeniyata: te-small. Karel'skii filial Akademii Nauk SSSR. Petrozavodsk: 31–33. (in Russian)

Seitsonen O., Gerasimov D. V. 2008. Archaeological research in the Kurkijoki area in 2001 and 2003: a Preliminary study of the Stone Age settlement patterns in southern Ladoga Karelia. In M. Lavento, K. Nordqvist (eds.), Karelian Isthmus: Stone Age Studies in 1998–2003. Iskos 16. The Finnish Antiquarian Society. Helsinki: 164–184.

Seitsonen O., Nordqvist K., Gerasimov D. V. and Lisitsyn S. N. 2012. ‘The good, the bad, the weird’: Stone Age and Early Metal Period radiocarbon dates and chronology from the Karelian Isthmus, north-west Russia. DOI: 10.2478/s13386-012-0001-9

Skander M. 2011. ‘All change?’ Exploring the role of technological choice in the Early Northern Comb Ware of Finnmark, Arctic Norway. In P. Jordan, M. Zvelebil (eds.), Ceramics before Farming: the Dispersal of Pottery among Prehistoric Eurasian Hunter-Gatherers. Left Coast Press. Walnut Creek: 347–373.

Skorobogatov A. M., Smol'yaninov R. V., Surkov A. V., Oi-nonen M. and Possnert G. 2016. Chronology of Neolithic-Eneolithic period in the Karelian Republic (Russia). Radiocarbon chronology of the Neolithic-Eneolithic period in the Karelian Republic (Russia). Radiocarbon chronology of the Neolithic-Eneolithic period in the Karelian Republic. Helsinki: 25–180.

Takala H., Shakhnovich M. M., Malinen A. and Tarasov A. Yu. 2016. New Stone Age sites to the north of Lake Ladoga in Karelia, Russia. In P. Uino, K. Nordqvist (eds.), New Sites, New Methods. Iskos 21. The Finnish Antiquarian Society. Helsinki: 24–40.

Tarasov A. Yu. 2008. Novye dannye po pozdnemu i fin-nal'nomu mezolitu severo-zapadnogo Pribelomor'ya. In A. P. Deryvyanko, N. A. Makarov (eds.), Trudy II (XVIII) Ves-rossiyskogo arkeologicheskogo s'ezda v Suzdale 2008 g. Tom 8. Institut Archeologii Rossisskaya Akademiya Nauk. Moskva: 165–166. (in Russian)

2015. Fofanovo XIII: Primer intensivnoy proizvodstven-noy deyatel'nosti epokhi rannego metall v lesnoy zone. In G. A. Khlopachev (ed.), Drevnie kul'tury Vostochnoy Evropy: Etalonnyye pamyatniki i oporny kompleksy v kontekste sovremennykh arkeologicheskih issledovan-y. Zamyatninskii sbornik 4. Muzey antropologii i etnografii im. Petra Velikogo (Kunstkamera) Rossisskaya Akademiya Nauk. Sankt-Peterburg: 307–317. (in Russian)

Tarasov A. Yu., Khoroshun T. A. 2016. Radiouglirodnaya kronologiya perioda neolita i eneolita na territorii Karelii. In A. N. Mazurkevich, M. A. Kulkova and E. V. Dolbunova (eds.), Radiouglirodnaya kronologiya epokhi neolita Vostochnoy Evropy VII–III tysyacheletiya do n.e. Svitok. Smolensk: 368–387. (in Russian)

Timofeev V. I., Zaytseva G. I., Dolukhanov P. M. and Shukurov A. M. 2004. Radiouglirodnaya kronologiya neolita Severnoy Evrazii. Teza. Sankt-Peterburg. (in Russian)

Torvinen M. 1999. Jokkavaara: an Early ceramic settlement site in Rovaniem, North Finland. In M. Huurre (ed.), Dig It All: Papers Dedicated to Ari Siiriäinen. The Finnish Antiquarian Society, The Archaeological Society of Finland. Helsinki: 225–240.

Torvinen M. 2000. Säräisniemi I Ware. Fennoscandia Archaeologica XVII: 3–35. http://www.sarks.fi/fa/faxvii.html

Vereshchagina I. V. 2003. Poselenie Khpe-yarvi v yuzh-nyy deyatel'nosti epokhi rannego metal v Lesnoy zone. In G. A. Khlopachev (ed.), Drevnie kul'tury Vostochnoy Evropy VII–III tysyacheletiya do n.e. Svitok. Smolensk: 244–260. (in Russian)

Vitenkova I. F. 1986. Poselenie Lakshezero II s chistym kompleksom grebenchato-yamochny keramiki. In S. I. Kochkurkina (ed.), Novye dannye ob arkeologicheskih pamyatnikh Karel. Karel'skiy filial Akademii Nauk SSSR. Petrozavodsk: 119–138. (in Russian)
1996. Kul’tura sperrings. In M. G. Kosmenko, S. I. Kochkurkina (eds.), Arkheologiya Karelii. Karel’skii nauchnyi tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk: 65–81. (in Russian)

2002. Pamyatniki pozdnego neolita na territorii Karelii. Karel’skii nauchnyi tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk. (in Russian)

2009. Adaptatsiya naseleniya pozdnego neolita i eneolita k prirodnym usloviyam Karelii. In M. G. Kosmenko (ed.), Adaptatsiya kul’tury naseleniya Karelii k osobennostiam mestnoy prirodnoy sredy periodov mesolita – srednevekov’ya. Karel’skii nauchnyi tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk: 69–97. (in Russian)

2016. Kareliya v nachale epokhi metalla (pamyatniki s rombo-yamochnoy keramikoy). Karel’skii nauchnyi tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk. (in Russian)

Yanits L. Yu. 1959. Poseleniya epokhi neolita i rannego metalla v priust’e r. Emayigi (Estonskaya SSR). Institut istorii Akademii Nauk ESSR. Tallin. (in Russian)

Zaretskaya N. E., Kostyleva, E. L. 2011. Novye dannye po absolyutnoy khronologii l’yakovskoy kul’tury. Tverskoy arkheologicheskiy sbornik 8(1): 175–183. (in Russian)

Zhul’nikov A. M. 1991. Problemy khronologii i periodizatsii pozdnego eneolita Karelii. In S. I. Kochkurkina (ed.), Khronologiya i periodizatsiya arkheologicheskikh pamyatnikov Karelii. Karel’skii nauchnyi tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk: 126–146. (in Russian)

1999. Eneolit Karelii. Karel’skii nauchnyi tsentr Rossiyskaya Akademiya Nauk. Petrozavodsk. (in Russian)

2005. Poseleniya epokhi rannego metalla yugo-zapadnogo Pribelomory’a. Paritet. Petrozavodsk. (in Russian)

2007. Pamyatniki s keramikoy typa Zalavruga I v Pribelomory’e i nekotorye voprosy izucheniya belomorskih petroglyphov. In L. G. Shashkmetova (ed.), Kol’skii sbor-
Tab. 1. Neolithic–Eneolithic radiocarbon dates, which generally correspond with archaeological materials and contexts present at these sites.

No. on	Site	14C date (BP)	Lab. Index	Context/dated item	Calibrated date (cal BC ± σσ σ)	Typological connection	References
1	Uya III	6770±80	TA-2352	Charcoal from fireplace, depth >1m	5837–5538	Mesolithic (?), Sperrings	Kosmenko 2003
		6225±40	GRA-63566	Crust on pottery	5304–5059		Nordqvist, Mökkönen 2016a
		6160±40	GRA-63581	Black paint on pottery	5217–5000		Nordqvist, Mökkönen 2016a
		5970±40	GRA-63546	Birch bark tar on pottery	4956–4729		Nordqvist, Mökkönen 2016a
2	Pegrema IX	6510±150	TA-1161	Charcoal from fireplace, depth 0,6m	5720–5081	Sperrings	Zhuravlev 1984
3	Sulgu II	6670±35	KIA-35900	Calcinated bone, elk or reindeer	5646–5527		
		6085±30	KIA-36724	Birch bark tar of food crust on pottery	5202–4875		
		6015±30	KIA-33925	Birch bark tar on pottery	4995–4810		
4	Yerpin Pydas I	6510±120	TA-344	Charcoal from fireplace	5660–5227	Säräisiemi 1, Pit-Comb, Comb-Pit, asbestos-tempered	Devyatova 1976
		5990±100	TA-799	Charcoal from fireplace	5210–4624		Devyatova 1976
		5860±100	TA-472	Charcoal from fireplace	4896–4493		Devyatova 1976
		5825±80	TA-413	Unkonown	4859–4497		Devyatova 1976
		5610±80	TA-800	Charcoal from fireplace	4859–4497		Devyatova 1976
		5240±50	TA-795	Charcoal from fireplace at the bottom of cultural layer	4321–3965		Devyatova 1976
5	Shetlozero XI	6480±70	TA-1312	Charcoal from cultural layer, depth 0,75–0,93m	5605–5416	Sperrings, Pit-Comb, Voynavolok	Pesonen 1988
		5960±70	TA-1313	Charcoal from cultural layer, depth 0,75–0,8m	5204–4691		Pesonen 1988
6	Shetlozero X	6400±80	TA-1308	Charcoal from pit	5509–5218	Sperrings, Pit-Comb	Kochkurkina 1991
7	Kurtekki 33 (Kylläišen-lahti W-2)	6400±600	LE-6928	Charcoal from pit	6591–4045	Mesolithic, Sperrings, asbestos-tempered	Seissonen, Gerassimov 2008
8	Shettima I	6400±150	TA-1552	Charcoal from fireplace, depth 0,3–0,4m	5628–5024	Sperrings, Pit-Comb, small amount of Voynavolok and Orovnavolok	Pesonen 1988
9	Kalmozero II	6340±70	KIA-3589A	Crust on pottery	5478–5081	Säräisiemi 1	Piezonka 2008
		6080±45	KIA-3589B	Crust on pottery	5207–4848	Säräisiemi 1	Piezonka 2008
10	Koyrinoya 3	6262±40	Hela-2827	Calcinated bone, mammal	5320–4706	Mesolithic, Sperrings	Takala et al. 2016
		6209±43	Hela-2829	Calcinated bone, beaver	5320–4706		Takala et al. 2016
11	Chemaya Rechka I	6200±100	TA-1634	Charcoal from fireplace	5373–4851	Pit-Comb, small amount of Palayguba	Lobanova 1988
		5950±100	TA-1648	Charcoal from fireplace	5201–4555		Lobanova 1988
		5800±100	TA-1550	Charcoal from fireplace	4929–4408		Lobanova 1988
		5500±100	TA-1651	Charcoal from fireplace	4544–4055		Lobanova 1988
		4700±80	TA-1649	Charcoal from fireplace	3652–3196		Lobanova 1988
		4700±80	TA-1652	Charcoal from fireplace	1751–1266		Lobanova 1988
12	Orovnavolok V	5945±40	GrA-63735	Birch bark tar on pottery	4932–4725	Sperrings	Nordqvist, Mökkönen 2016a
		5850±80	TA-2265	Charcoal from fireplace, depth 0,4–0,55m	4931–4519	Sperrings, Pit-Comb	Kosmenko 2003
		5720±60	TA-2266	Charcoal from fireplace, depth 0,5–0,6m	4716–4449		Kosmenko 2003

Radiocarbon chronology of the Neolithic–Eneolithic period in the Karelian Republic (Russia)
No. on map	Site	No.	¹⁴C date (BP)	Lab. Index	Context/dated item	Calibrated date (cal BC; 2σ)	Typological connection	References
10	Chemaya Rechka Iia	5	5930±80	TA-2353	Charcoal from cultural layer, depth 0,3–0,4 m	5016–4604 4454–4001	Pit-Comb	Kochkurkina 1991
8	Sheltozero V	5	5870±40	GrA-63587	Charcoal from pit, depth 0,6–0,9 m	4839–4617 3956–3715	Sperrings	Nordqvist, Mökkönen 2016a
10	Kladovets Va	5	5890±80	TA-1450	Charcoal from ‘ritual’ pit in a burial, depth 0,25–0,35 m	4931–4519	Pit-Comb	Lobanova 1988
5	Panozero I	5	5795±35	KIA-33924	Birch bark tar on pottery	4722–4548	Sperrings	Piezonka 2008
11	Besovy Sledki II	5	5775±70	GrA-63547	Charcoal from cultural layer, depth 0,3–0,4 m	4783–4605 4528–4367 4348–4076 3653–3381	Pit-Comb	Nordqvist, Mökkönen 2016a
4	Bukol’nikov 1	5	5600±25	LE-8908	Charcoal from cultural layer, depth 0,3–0,4 m	4740±60	Pit-Comb, asbestos-tempered	Mel’nikov, Geman 2013
4	Vozhmarikha 4	5	5560±45	LE-6604	Charcoal from cultural layer, depth 0,3–0,4 m	4790±120	Pit-Comb, Comb-Pit	Mel’nikov, Geman 2013
11	Besovy Sledki	5	5500±60	GrA-63549	Charcoal from cultural layer, depth 0,3–0,4 m	4790±120	Pit-Comb	Nordqvist, Mökkönen 2016a
4	Vozhmarikha 26	5	5507±50	KIA-35901	Charcoal from cultural layer, depth 0,3–0,4 m	4427–3981	Pit-Comb	Piezonka 2008
4	Vorob’i 4	5	5360±70	GrA-68145	Charcoal from cultural layer, depth 0,3–0,4 m	4327–3981	Pit-Comb	Nordqvist, Geman 2017
4	Vorob’i 4	5	5135±45	GrA-67742	Charcoal from cultural layer, depth 0,3–0,4 m	4238–3666	Pit-Comb	Nordqvist, Geman 2017
10	Kladovets IX	5	5310±80	TA-2288	Charcoal beneath a dwelling	4327–3981	Pit-Comb, small amount of Orovnavolok	Lobanova 2004
9	Vozhmarikha XIII	5	5220±80	SPb-784	Charcoal from cultural layer, depth 0,3–0,4 m	4314–3958	Pit-Comb	Lobanova 2004

References:
- Kochkurkina 1991
- Nordqvist, Mökkönen 2016a
- Nordqvist, Mökkönen 2017a
- Mel’nikov, Geman 2013
- Voynavolok, Orovnavolok
- Nordqvist, Geman 2017
- German 2016
- German 2017
- German 2018
| No. on map | Site | Site of | Context | dated item | date (cal BC ±2σσ) | Typological connection | Lab. Index | References |
|---------|------|--------|---------|------------|----------------|----------------------|-----------|------------|
| 11 | Zolotets VI | 5160±150 | Unknown | Charcoal from cultural layer, depth 0–0.9 m | 4325–3662 | | | |
| 9 | Orovnavolok XVI | 4870±50 | Crust on pottery | Charcoal from a lens close to entrance of a dwelling | 3771–3530 | | | |
| 14 | Voynavolok XXIX | 5080±70 | Birch bark tar on pottery | Charcoal from a dwelling | 3946–3907 | | | |
| 2 | Pegrema I | 4550±90 | Charcoal from dwelling | Charcoal from a dwelling | 3618–2937 | | | |
| 2 | Pegrema I / III | 4800±50 | Birch bark tar on pottery | Charcoal from dwelling | 3774–3597 | | | |
| 9 | Orovnavolok | 4730±35 | Birch bark tar on pottery | Charcoal from dwelling | 3630–3370 | | | |
| 4 | 4730±35 | 4720±35 | 4695±35 | Birch bark tar on pottery | 3630–3370 | | | |
| 5 | 5070±50 | 4900±50 | 4800±50 | Birch bark tar on pottery | 3630–3370 | | | |
| 15 | Fofanovo XII | 4585±35 | Crust on pottery | Charcoal from dwelling | 3501–3112 | | | |
| 5155±35 | 5145±110 | 4985±50 | 4970±35 | Birch bark tar on pottery | 3630–3370 | | | |
| 11 | Zolotets VI | 5160±150 | Unknown | Charcoal from cultural layer, depth 0–0.9 m | 4325–3662 | | | |
| 9 | Orovnavolok XVI | 4870±50 | Crust on pottery | Charcoal from a lens close to entrance of a dwelling | 3771–3530 | | | |
| 14 | Voynavolok XXIX | 5080±70 | Birch bark tar on pottery | Charcoal from a dwelling | 3946–3907 | | | |
| 2 | Pegrema I | 4550±90 | Charcoal from dwelling | Charcoal from a dwelling | 3618–2937 | | | |
| 2 | Pegrema I / III | 4800±50 | Birch bark tar on pottery | Charcoal from dwelling | 3774–3597 | | | |
| 9 | Orovnavolok | 4730±35 | Birch bark tar on pottery | Charcoal from dwelling | 3630–3370 | | | |
| 4 | 4730±35 | 4720±35 | 4695±35 | Birch bark tar on pottery | 3630–3370 | | | |
| 5 | 5070±50 | 4900±50 | 4800±50 | Birch bark tar on pottery | 3630–3370 | | | |
| 15 | Fofanovo XII | 4585±35 | Crust on pottery | Charcoal from dwelling | 3501–3112 | | | |

Radiocarbon chronology of the Neolithic-Eneolithic period in the Karelian Republic (Russia)
No. on map	Site	¹⁴C date (BP)	Lab. Index	Context/dated item	Calibrated date (cal BC; 2σ)	Typological connection	References
12	Vigaynavolok I	4940±30	KIA-33930	Crust on pottery	3777–3654	Rhomb-Pit	Khoroshun 2013
		4725±30	KIA-33931	Birch bark tar on pottery	3654–3377		Khoroshun 2013
4	Vozhmarikha 1	4900±130	LE-848	Charcoal from fireplace in a dwelling	3965–3376	Comb-Pit	Mećnikov & Geman 2013
		4920±60	LE-8933	Unknown	3366–2911		Mećnikov & Geman 2013
9	Chernaya Guba IX	4840±80	TA-2023	Charcoal from fireplace in a dwelling	3793–3377	Pit-Comb, Comb-Pit, Rhomb-Pit	Kochkurkina 1991
		4340±80	TA-2140	Charcoal from the wall of a dwelling	3336–2708	Voynavolok	
13	Sukhaya Vodla I	4810±60	TA-1553	Charcoal from fireplace, depth 0.35–0.4m	3706–3379	Pit-Comb, Rhomb-Pit, small amount of Orovnavolok and Palayguba	Pesonen 1988
11	Zalavruga	4775±70	TA-393	Charcoal from a washed fireplace	3694–3372	Rhomb-Pit, Zalavruga, Orovnavolok, Palayguba	Sawateev et al. 1974
		4580±35	Gra-63559	Crust on pottery	3499–3111		Nordqvist, Mökkönen 2017a
		4570±35	Gra-63551	Crust on pottery	3496–3104		Nordqvist, Mökkönen 2017a
		4495±35	Gra-63555	Crust on pottery	352–3057		Nordqvist, Mökkönen 2017a
		4255±35	Gra-63552	Crust on pottery	3012–2878	Orovnavolok	Nordqvist, Mökkönen 2017a
		4235±35	Gra-63557	Crust on pottery	3013–2873		Nordqvist, Mökkönen 2017a
		4235±40	Gra-63558	Crust on pottery	3007–2694	Rhomb-Pit, Zalavruga, Orovnavolok, Palayguba	Desyatova 1976
		4010±70	GIN-130	Charcoal from fireplace	2861–2104		
24	Pervomayskaya I	4700±120	SPb-1784	Crust on pottery	3709–3096	Comb-Pit	Nordqvist, Mökkönen 2017a
		4487±110	SPb-1776	Crust on pottery	3507–2901		German 2016
4	Vozhmarikha 21	4700±120	Hela-2428	Crust on pottery	362–337	Voynavolok	Nordqvist, Mökkönen 2017a
		4610±150	TA-1748	Crust on pottery	3517–3144		Nordqvist, Mökkönen 2017a
		4365±35	TA-1726	Charcoal from the burnt wall of a dwelling	3265–2620		Nordqvist, Mökkönen 2017a
14	Voynavolok XXVII	4693±35	Gra-63562	Crust on pottery	3629–3370	Voynavolok	Zhul'nikov et al. 2012
		4605±35	Gra-63565	Crust on pottery	3515–3128		Nordqvist, Mökkönen 2017a
		4410±150	TA-1748	Charcoal from the burnt wall of a dwelling	3518–2666		Pankrushev 1988
		4365±35	TA-1726	Charcoal from the burnt wall of a dwelling	3090–2903		Nordqvist, Mökkönen 2017a
		4280±80	TA-1726	Charcoal from the burnt wall of a dwelling	3265–2620		Pankrushev 1988
27	Kurkieki 52 (Kuuppala Kalmistomäki)	4620±60	SU-2651	Charcoal from cultural layer	3629–3106	Sperrings, Pit-Comb, Comb-Pit, Late Comb, asbestos-tempered, Textile	Saamisto 2003
11	Zolotets XX	4610±35	Gra-63550	Birch bark tar on pottery	3516–3136	Zalavruga	Nordqvist, Mökkönen 2017a
16	Berezovo XVII	4600±100	TA-2271	Charcoal from a layer buried under the embankment of a dwelling related to Orovnavolok	3634–3026	Comb-Pit, Rhomb-Pit, Zalavruga, Orovnavolok	Zhul'nikov 1999
9	Chernaya Guba IV	4580±60	TA-2024	Charcoal from fireplace in a dwelling	3517–3097	Pit-Comb, Comb-Pit, Rhomb-Pit	Kochkurkina 1991
No. on map	Site	14C date (BP)	Lab. Index	Context/dated item	Calibrated date (cal BC, 2σ)	Typological connection	References
------------	--------------------	---------------	------------	-----------------------------------	-----------------------------	-----------------------------------	-----------------------------
16	Tunguda XV	4570±35	GrA-63583	Crust on pottery	3496–3104	Orovnavolok	Nordqvist, Mökkönen 2017a
		4515±35	GrA-63582	Crust on pottery	3357–3097		Nordqvist, Mökkönen 2017a
		4435±35	GrA-63584	Crust on pottery	3303–2926		Nordqvist, Mökkönen 2017a
11	Zalavruga IV	4430±80	TA-392	Charcoal from cultural layer	3393–2914	Rhomb-Pit, Zalavruga, Orovnavolok	Savateev et al. 1974
		3810±50	TA-792	Charcoal from cultural layer	2450–2064	Orovnavolok, Palayguba	Devyatova 1976
		3700±100	TA-797	Charcoal from cultural layer	2435–1784		Devyatova 1976
16	Tunguda XVII	4370±60	TA-2289	Charcoal from the burnt wall of a dwelling	3226–2888	Orovnavolok	Zhul'nikov 1999
		3920±60	TA-2290	Charcoal from the burnt wall of a dwelling	2571–2208		Zhul'nikov 1999
16	Tunguda III	4350±100	TA-2270	Charcoal from the burnt wall of a dwelling	3054–2697	Orovnavolok	Zhul'nikov 1999
		4220±60	TA-2200	Charcoal from the burnt wall of a dwelling	2924–2620		Zhul'nikov 1999
16	Tunguda XIV	4430±80	TA-2019	Charcoal from the burnt wall of a dwelling	3336–2708	Orovnavolok	Kochkurkina 1991
		4210±60	TA-2018	Charcoal from the burnt wall of a dwelling	2917–2608		Kochkurkina 1991
4	Vozhmarikha 19	4330±120	SPb-1780	Crust on pottery	3154–2611	Orovnavolok	German 2016
17	Meyeri II	4300±100	TA-1518	Charcoal from fireplace	3112–2624	Comb-Pit	Kochkurkina 1991
14	Vojnyavolok XXIV	4250±70	TA-820	Charcoal from dwelling	3080–2622	Orovnavolok	Zhuravlev 1977
		4200±80	TA-846	Charcoal from dwelling	3009–2500		Zhuravlev 1984
		3560±80	TA-819	Charcoal from the burnt wall of a dwelling	2135–1692		Zhuravlev 1977
18	Kudomguba VII	4010±80	TA-1893	Charcoal from the wall of a dwelling	2865–2266	Palayguba	Kochkurkina 1991
11	Zolotets XI	3990±60	TA-798	Charcoal from cultural layer, depth 0.2–0.4m	2837–2299	Orovnavolok	Devyatova 1976
19	Chelmuzhskaya Kosa XXI	3980±90	TA-1783	Charcoal from the wall of a dwelling	2862–2207	Palayguba	Kochkurkina 1991
		3750±100	TA-1947	Charcoal from the wall of a dwelling	2466–1920		Kochkurkina 1991
		3540±80	TA-1948	Charcoal from the floor of a dwelling	2132–1667		Kochkurkina 1991
25	Sumozero XV	3590±60	Beta-?	Charcoal from the construction of a dwelling	2620–2213	Palayguba	Zhul'nikov 2005
		3935±105	TUA-?	Charcoal from the construction of a dwelling	2860–2136		Zhul'nikov 2005
		3875±55	TUA-?	Charcoal from the construction of a dwelling	2485–2151		Zhul'nikov 2005
		3750±60	Beta-?	Charcoal from the construction of a dwelling	2400–1972		Zhul'nikov 2005
		3690±60	Beta-?	Charcoal from the construction of a dwelling	2279–1916		Zhul'nikov 2005
		3670±65	TUA-?	Charcoal from the construction of a dwelling	2275–1886		Zhul'nikov 2005
		3540±70	Beta-?	Charcoal from the construction of a dwelling	2118–1690		Zhul'nikov 2005
10	Chernaya Rechka XII	3930±80	TA-1784	Charcoal from fireplace, depth 0.25–0.75m	2832–2147	Pit-Comb, small amount of Palayguba	Kochkurkina 1991
3	Lakshezero II	3920±60	TA-1520	Charcoal from fireplace	2571–2208	Small amount of Sperrings, Comb-Pit and asbestos-tempered	Vitenkova 1986
26	Koyrinoya 2	3870±33	Hela-2831	Calcinated bone, mammal	2466–2211	Orovnavolok	Takala et al. 2016
8	Sheltzero XII	3815±35	GrA-63585	Crust on pottery	2452–2140	Palayguba	Nordqvist, Mökkönen 2017a
		3725±35	GrA-63586	Crust on pottery	2275–2024		Nordqvist, Mökkönen 2017a
No. on map	Site	14C date (BP)	Lab. Index	Context/dated item	Calibrated date (cal BC; 2σ)	Typological connection	References
-----------	------------	-------------------	------------	---	-----------------------------	--	-----------------------
3	Kudoma X	3530±80	TA-1258	Charcoal from cultural layer, depth 0.3–0.6m	2126–1661	Sperings, Pit-Comb, Comb-Pit, Rhomb-Pit, Orovnavolok, Textile	Pankrushev 1988
10	Kladovets IV	3400±60	TA-1410	Charcoal from fireplace, depth 1–1.1m	1881–1534	Mesolithic, Sperings (singular fragments), Pit-Comb, Rhomb-Pit, asbestos-tempered (singular fragments)	Pankrushev 1988
12	Vigaynavolok II	3370±110	TA-?	Charcoal from dwelling	1940–1430	Pit-Comb (singular fragments), Comb-Pit and Rhomb-Pit (singular fragments), Palayguba	Zhuravlev 1977
11	Zolotets X	3300±60	TA-390	Unknown	1736–1447	Palayguba, Textile	Savateev et al. 1974
14	Kochnavolok II	3260±70	TA-831	Charcoal from dwelling	1731–1409	Palayguba	Pankrushev 1988
2	Palayguba II	3150±100	TA-1007	Charcoal from fireplace	1657–1128	Palayguba	Zhuravlev 1984
Tab. 2. Radiocarbon dates from Neolithic-Eneolithic contexts with deviatory age, and dates with Neolithic–Eneolithic age, but no correspondence with archaeological materials found at these sites. These dates have been included in many previous works on Karelian chronology, even if their suitability for building a chronology is virtually non-existent.

No. on map	Site	\(^{14}C\) date (BP)	Lab. Index	Context/dated item	Calibrated date [cal BC/AD; \(\sigma\)]	Typological connection	References
18	Kudomguba VII	6720±90	TA-1724	Charcoal from a pit, depth 0,45m	5775–5483	Palayguba	Kochkurkina 1991
4	Vozhmarikha 1	1000±40	TA-1725	Charcoal from cultural layer	AD 975–1155	Palayguba	Kochkurkina 1991
4	Vozhmarikha 1	6410±50	LE-7231	Charcoal from hearth in a dwelling	5476–5312	Mesolithic, Pit-Comb, Rhomb-Pit	Mel’nikov, German 2013
23	Keret’ XXII	6130±50	LE-8047	Charcoal from fireplace	5613–5008	Non-ceramic	Tarasov 2008
9	Myan’gora I	5880±280	TA-1079	Charcoal from cultural layer	4944–4545	Mesolithic	Kochkurkina 1991
22	Suna XII	5160±70	TA-1310	Charcoal from cultural layer and pit, depth 0,3–0,65m	4228–3785	Mesolithic	Kochkurkina 1991
26	Koyrinoya 3	4884±37	Hela-2828	Calcinated bone, ringed seal	3763–3543	Mesolithic, Sperrings	Takala et al. 2016
10	Kladovets (cemetery)	4560±80	TA-1785	Charcoal from a burial, depth 0,3m	3619–3020	Pit-Comb	Kochkurkina 1991
21	Pinguba II	4400±60	TA-1409	Charcoal from fireplace	3522–2902	Medieval	Pesonen 1988
8	Shetlozero X	4300±80	TA-1311	Charcoal from cultural layer, depth 0,4–0,9m	3322–2635	Sperrings, Pit-Comb	Kochkurkina 1991
14	Povenchatka XV	4270±60	TA-1519	Charcoal from fireplace, depth 0,25–0,35m	3084–2669	Mesolithic	Kochkurkina 1991
9	Orovnavolok XI	4210±50	TA-929	Charcoal from cultural layer, depth 0,45m	2910–2632	Mesolithic	Kochkurkina 1991
11	Zolotets XX	3670±80	TA-792	Turf from the site	2293–1781	Pit-Comb, Comb-Pit, Rhomb-Pit, Zalavruga	Kochkurkina 1991
20	Kostomuksha II	3600±80	TA-963	Charcoal from cultural layer, depth 0,4–0,5m	2197–1745	Mesolithic	Kochkurkina 1991
10	Chernaya Rechka II	3430±80	TA-2202	Charcoal from fireplace, depth 0,8–1,15m	1938–1531	Sperrings (singular fragments), Pit-Comb	Kochkurkina 1991
15	Fofanovo XIII	3288±70	SPb-781	Charcoal from fireplace, depth 0,6m	1741–1426	Pit-Comb (singular fragments), Orovnavolok	Tarasov 2015
9	Orovnavolok XVI	3060±70	TA-827	Charcoal from fireplace in a dwelling	1495–1116	Orovnavolok	Pankrushev 1988
2	Palayguba X	2670±120	TA-1444	Charcoal from fireplace	1124–430	Orovnavolok	Zhuralev 1984
10	Chernaya Rechka I	2080±60	TA-1650	Charcoal from fireplace, depth 0,5–0,7m	352 BC–AD 55	Pit-Comb, small amount of Palayguba	Kochkurkina 1991
14	Koshnovolok II	1480±60	TA-831	Charcoal from cultural layer, depth 0,45–0,55m	AD 428–655	Palayguba	Pankrushev 1988
2	Pegrema III	1150±70	TA-1260	Charcoal from cultural layer, depth 0,45m	AD 695–1017	Rhomb-Pit	Kochkurkina 1991