ASYMPTOTIC RESULTS FOR THE FIRST AND SECOND MOMENTS AND NUMERICAL COMPUTATIONS IN DISCRETE-TIME BULK-RENEWAL PROCESS

James J. KIM
Royal Canadian Air Force (RCAF), Ottawa ON., Canada
james.kim1@forces.gc.ca

Mohan L. CHAUDHRY
Royal Military College of Canada, Kingston ON., Canada
chaudhry-ml@rmc.ca

Abdalla MANSUR
Abu Dhabi Mens College, Higher Colleges of Technology, Abu Dhabi, United Arab Emirates
amansur@hct.ac.ae

Received: April 2018 / Accepted: October 2018

Abstract: This paper introduces a simplified solution to determine the asymptotic results for the renewal density. It also offers the asymptotic results for the first and second moments of the number of renewals for the discrete-time bulk-renewal process. The methodology adopted makes this study distinguishable compared to those previously published where the constant term in the second moment is generated. In similar studies published in the literature, the constant term is either missing or not clear how it was obtained. The problem was partially solved in the study by Chaudhry and Fisher where they provided a asymptotic results for the non-bulk renewal density and for both the first and second moments using the generating functions. The objective of this work is to extend their results to the bulk-renewal process in discrete-time, including some numerical results, give an elegant derivation of the asymptotic results and derive continuous-time results as a limit of the discrete-time results.

Keywords: Renewal Theory, Discrete-time, Bulk-renewal Process, Generating Function, Asymptotic Results.

MSC: 60K05, 62E20, 60K25.
1. INTRODUCTION

Renewal theory and its applications have a significant role in many different areas such as failure and replacement of equipment, risk-based asset management models and queues [8]. The asymptotic results for the first and second moments for the number of renewals in the non-bulk case are given in recent study by Van der Weide in [7]. This result provides a constant term in the second moment and states that it is not clear from Feller [4] as to how to obtain the constant term using generating functions. The same problem persists in [5] and [6]. Recently, Chaudhry and Fisher [1] have responded to this problem by providing the asymptotic results for the non-bulk renewal density as well as for both the first and second moments using generating functions. The purpose of this note is to extend their results to bulk-renewal process in discrete-time and give an elegant derivation of the asymptotic results. Some easy steps could have been avoided, but are included here for the sake of clarity. Numerical computations of both single-renewal and bulk-renewal processes are provided in order to demonstrate the accuracy of asymptotic results. This is done by comparing the analytic, numeric and asymptotic moments at various renewal times in order to provide readers with better understanding of our findings.

2. RENEWAL THEORY BASICS

A discrete-renewal process is a process \(\{N_m, m \geq 1\} \) for which the state space belongs to a denumerable set \{0, 1, 2, \ldots\}. \(N_m \) can count the number of renewals within a time period \((0, m]\), and the time intervals between renewals are called renewal periods. Renewals occur at instants of time \(s_1, s_2, s_3, \ldots,\) and renewal intervals \(T_n = s_n - s_{n-1}, n \geq 1,\) and \(s_0 = 0\) are independent identically distributed random variables (i.i.d.r.v.s) distributed as \(T\) with probability mass function (p.m.f) \(f_k = P(T = k), k \geq 1, f_0 = 0.\) This p.m.f. has a probability generating function (p.g.f) \(f(z) = \sum_{k=1}^\infty f_k z^k, |z| < 1\) with \(\mu_1 = E[T] < \infty,\) \(\sigma^2 = E[T^2] - E[T]^2 < \infty,\) \(a_n = \frac{d^n}{dz^n} f(z) |_{z=1}, n \geq 1\) and \(\mu_n = E[T^n], n \geq 1.\) If \(W_n\) is the total waiting time until the \(n\)-th renewal occurs, then \(W_n = \sum_{r=1}^n T_r\) with \(W_0 = 0.\) The renewal equation is defined as \(m_k = f_k + \sum_{r=1}^k m_{k-r} f_r,\) where \(m_k = P(\text{renewal at time } k)\) with \(m_1 = f_1\) and \(m_0 = 0\) (implying no renewal at time 0). The left-hand side of the renewal equation is the probability of a renewal taking place at time \(k\) while the right-hand side is either a first renewal occurring at time \(k\) or a renewal occurring at time \(j \geq 1\) with probability \(f_j\) and a subsequent renewal at time \((k-j)\) with probability \(m_{k-j} \). The generating function (gf) for the renewal density is \(m(z) = \sum_{k=1}^\infty m_k z^k = \frac{f(z)}{1-f(z)}, (|z| < 1).\) The mean value of the discrete-time renewal process \(\{N_m\}\) is referred to as the renewal function and is defined as \(M_m \equiv E[N_m], (m \geq 1).\) A great portion of renewal theory is concerned with properties of the renewal function, and it is for this reason that its asymptotic results are of such great interest.
Assume that the group of renewals occurs at time \(s_1, s_2, \ldots \) with group size \(X_i \), where \(X_i \) are independent and identically distributed random variables (i.i.d.r.v’s) distributed as \(X \) with \(P_X(z) = E[z^X] = \sum_{n=1}^{\infty} b_n z^n \), \(\mu_X = P'_X(1) \) and \(P''_X(1) = \frac{d^2}{dz^2} P_X(z) \bigg|_{z=1} \). If \(N_m \) is the number of groups arriving in the time interval \([0, m]\), then the total number of renewals is \(Y_{N_m} = \sum_{i=1}^{N_m} X_i \) with pmf \(B_n (m) = P(Y_{N_m} = n) \), \(n = 0, 1, 2, \ldots \). Since \(Y_{N_m} \) is a random variable based on two parameters \((n, m)\), we first take a gf with respect to \(n \), such that \(P(z, m) = E[z^{Y_{N_m}}] = E \left[E \left[z^{\sum_{i=1}^{n} X_i} \big| N_m \right] \right] = \sum_{n=0}^{\infty} E \left[z^{\sum_{i=1}^{n} X_i} \big| N_m = n \right] P_n (m) \)

\[
= \sum_{n=0}^{\infty} (P_X(z))^n P_n(m), \quad (\lfloor z \rfloor < 1, m \geq 1)
\]

Equation (1) reduces to a single-renewal process if \(P_X(z) = z \), where \(Y_{N_m} \) becomes \(N_m \). Given (1), the generating function (gf) of \(P(z, m) \) with respect to \(m \) is given by \(P(z, v) = \sum_{m=1}^{\infty} P(z, m) v^m = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} (P_X(z))^n P_n(m) v^m = \sum_{n=0}^{\infty} (P_X(z))^n P_n(m) \sum_{m=1}^{\infty} v^m = \sum_{n=0}^{\infty} (P_X(z))^n \frac{1}{1-v} = \frac{1}{1-v} (P_X(z) f(v))^n \)

\[
= \frac{1}{1-v} (P_X(z) f(v))^n, \quad (\lfloor z \rfloor < 1, |v| < 1)
\]

where we have used \(\sum_{m=1}^{\infty} P_n(m) v^m = \frac{f^n(v)}{1-v} \) (see [5]) for further details.

4. FIRST MOMENT OF \(Y_{N_m} \)

If \(M_m = E[Y_{N_m}] \), then the generating function (gf) of the first moment is given by

\[
M(v) = \sum_{m=1}^{\infty} E[Y_{N_m}] v^m = \sum_{m=1}^{\infty} M_m v^m = \frac{d}{dz} P(z, v) \bigg|_{z=1} = \frac{f(v)}{1-v(1-f(v))} \mu_X, \quad (|v| < 1)
\]

Assuming that the renewal event is aperiodic recurrent with \(\sigma < \infty \) and \(\mu_X < \infty \), we now want to show that \(M_m = \left(\frac{m}{\mu} \right) \mu_x + \mu_x \left(\frac{\sigma^2 + \mu^2 + \mu}{2\mu^2} \right) + o(1) \) is true, where \(o(1) \to 0 \) as \(m \to \infty \).

Proof:

In the recurrent case \(f(1) = 1 \), following the procedure similar to the one used in [3] for the continuous-time, we have \(M(v) = \frac{C_{-2}}{(1-v)^2} + \frac{C_{-1}}{(1-v)} + O(1) \) leading to \(M_m = (m+1) C_{-2} + C_{-1} + o(1) \) with \(O(1) \) indicating a function of \(v \) bounded as \(v \to 1^{+} \) and \(o(1) \) indicating a function of \(m \) tending to zero as \(m \to \infty \). From equation (3), we get

\[
C_{-2} = \lim_{v \to 1^{-}} (1-v)^2 M(v) = \lim_{v \to 1^{-}} (1-v)^2 \frac{f(v)}{(1-v)(1-f(v))} \mu_X
\]

\[
P'_X(1) = \frac{P'_X(1)}{P''_X(1)} = \frac{\mu_X}{\mu} \quad \text{and} \quad C_{-1} = \lim_{v \to 1^{-}} \left\{ (1-v) \frac{f(v)P'_X(1)}{(1-v)(1-f(v))} - \frac{P'_X(1)}{P''_X(1)} \right\}
\]

\[
= P'_X(1) \left(\frac{2\mu}{2\mu^2} \right) = \mu_X \left(\frac{\sigma^2 + \mu^2 - 1}{2\mu^2} \right)
\]

Substituting \(C_{-1} \) and \(C_{-2} \) into equation (4) gives

\[
M_m = \left(\frac{m}{\mu} \right) \mu_x + \mu_x \left(\frac{\sigma^2 + \mu^2 + \mu}{2\mu^2} \right) + o(1) \quad \text{where} \quad o(1) \to 0 \quad \text{as} \quad m \to \infty.
\]
In the case of single-arrivals \((P_X(z) = z, \mu_X = 1)\), the above result corresponds to Feller [5] and Hunter [6]. The above result leads to the well-known result, \(\lim_{m \rightarrow \infty} \frac{M_m}{m} = \frac{\Delta}{\bar{v}}\), which gives the arrival rate for the discrete-time bulk-arrival renewal process. Further, it is interesting to see that the first asymptotic moment of continuous-time bulk-renewal process discussed in [2] can also be derived if we let \(\mu = \frac{z}{\Delta}, \sigma^2 = \left(\frac{z}{\Delta}\right)^2\) and \(m = \frac{1}{\Delta}\), and then take the limit of \(M_m\) as \(\Delta \rightarrow 0\), where \(\bar{\mu}, \bar{\sigma}\), and \(t\) are the parameters for the continuous time process. By doing so, \(M_m\) becomes \(M(t) = \left(\frac{z}{\mu}\right) \hat{\mu} + \mu_X \left(\frac{2z^2 - \mu^2}{2\mu^3}\right) + o(1)\) where \(o(1) \rightarrow 0\) as \(t \rightarrow \infty\) and \(t > 0\).

5. SECOND MOMENT OF \(Y_{Nm}\)

If \(M^{(2)}_m = E[Y_{Nm}^2]\), its probability generating function (pgf) \(M^{(2)}(v)\) can be expressed in terms of first and second derivatives of equation (2) at \(z = 1\), in other words \(M^{(2)}(v) \equiv \sum_{m=1}^{\infty} M^{(2)}(v)m \equiv \frac{\partial^2}{\partial z^2} P(z, v) |_{z = 1} + \frac{\partial}{\partial z} P(z, v) |_{z = 1}\)

\(= \frac{f(v)}{(1-v)(1-f(v))} \left(\frac{2f(v)\mu_X + \mu_X f(v)}{1-f(v)} + P_X^{(1)}(1)\right)\)

Assuming that the renewal event is aperiodic recurrent with \(\mu_3 < \infty\) and \(\frac{\partial}{\partial z} P(z, v) |_{z = 1} < \infty\), we now want to show that \(M^{(2)}_m = m^2 \left(\frac{\bar{\mu}}{\mu}\right)^2 + m \left(\frac{\mu_3}{\mu^2} + \frac{\mu_4}{\mu^3} - \frac{2\mu_2}{\mu} + \frac{P_X^{(1)}(1)}{\mu}\right) + \frac{P_X^{(2)}(1)\sigma^2}{2\mu^2} + \frac{4(\sigma \mu_2)^2}{\mu^3} + \frac{3\mu_2^2\sigma^2}{\mu^4} + o(1)\) where \(o(1) \rightarrow 0\) as \(m \rightarrow \infty\).

Proof:

Now we make similar assumptions as we did in the case of first moment in order to find the asymptotic result for the second moment. \(M^{(2)}(v) = \frac{C_{-3}}{(1-v)^2} + \frac{C_{-2}}{(1-v)} + \frac{C_{-1}}{(1-v)} + o(1)\) leading to \(M^{(2)}_m = E[Y_{Nm}^2] = \frac{(m+2)!}{2m!} C_{-3} + (m+1) C_{-2} + C_{-1} + o(1)\). All the constant terms can be found in a manner as we did for the first moment. \(C_{-3} = \lim_{v \rightarrow -1} \left\{ (1-v)^2 M^{(2)}(v) \right\} = \frac{P_X^{(1)}(1)}{\mu} \lim_{v \rightarrow -1} \frac{2(1-v)f(v)(P_X^{(1)}(1)f(v) + f(v)(P_X^{(1)}(1))^2)}{(1-v)(1-f(v))} = \frac{f_1(x)}{\mu}\)

\(\lim_{v \rightarrow -1} \left\{ (1-v)^2 M^{(2)}(v) - \frac{2(P_X^{(1)}(1))^2}{\mu^2(1-v)} \right\} = \lim_{v \rightarrow -1} \left\{ \frac{(1-v)f(v)(P_X^{(1)}(1)f(v) + f(v)(P_X^{(1)}(1))^2)}{(1-v)(1-f(v))^2} + \frac{(1-v)^2 f(v)(P_X^{(1)}(1))^2}{(1-v)(1-f(v))} - \frac{2(P_X^{(1)}(1))^2}{\mu^2(1-v)} \right\}

\(= \lim_{v \rightarrow -1} \frac{f_1(x)(1-v)}{(1-v)(1-f(v))^2(1-v)^2 + f_1(x)(1-v)^2(1-f(v))} + f_1(x) = (1-v)f(v)(P_X^{(1)}(1) - P_X^{(1)}(1)f(v)) + 2f(v)(P_X^{(1)}(1)^2) f(v) - (1-v)(1-f(v))^2 \mu^2(1-v)\)
\[+(1-v)^2 f(v) P_X'(1) (1 - f(v))^2 \mu^2 (1 - v) \]

\[-2P_X'(1)^2 (1 - f(v))^2 (1 - v) (1 - f(v)) \]

by applying L’Hospital’s rule, we have

\[C_2 = \mu^2 \mu^2 - 4\mu^2 \mu^2 + 2\mu^2 a_2 + \mu^2 P_X'(1) \]

and

\[
C_{-1} = \lim_{v \to 1^-} \left\{ (1-v) M^{(2)}(v) - \frac{C_{-3}}{(1-v)^2} - \frac{C_{-2}}{(1-v)} \right\}
\]

\[= \lim_{v \to 1^-} \left\{ \frac{f(v) P_X'(1) - P_X'(1) f(v) + 2f(v) P_X'(1)^2}{(1-v)(1-f(v))^2} \left(\frac{1-f(v)}{v^2} \right) \right\}
\]

\[= \lim_{v \to 1^-} \left\{ \frac{f_2(x) \left(1-v(1-f(v)^2)(1-v(1-f(v))^2 \mu^2 (1-v)^2 (1-f(v))^2 \mu^3 (1-v) \right) \} }{f_2(x) = f(v) P_X'(1) - P_X'(1) f(v) + 2f(v) P_X'(1)^2 (1-v)^4 (1-f(v))^5 \mu^5 + P_X''(1) f(v) (1-f(v))^6 \mu^2 (1-v)^4 \mu^3 - 2(P_X'(1)^2 - f(v) P_X''(1)) (1-v)^2 (1-f(v))^3 \mu^3. \]

By applying L’Hospital’s rule, we have \(C_{-1} = 3 \mu^2 \frac{2}{2} - \frac{P_X'(1)}{2} + \mu^2 a_3 + 3a_2 + \mu^2 + \mu \]

\[\frac{2 \mu^2}{2} + \frac{P_X''(1)}{2} + \mu \left(\frac{2 \mu^2}{2} + \frac{2 \mu^2}{2} + \frac{P_X''(1)}{2} \right) \]

\[+ \frac{2 \mu^2}{2} - \mu = P_X'(1) + \mu \left(\frac{2 \mu^2}{2} \right. \left. + \frac{2 \mu^2}{2} + \frac{P_X''(1)}{2} \right) \]

\[+ \frac{P_X''(1)}{2} - \frac{2 \mu^2}{2} + \frac{2 \mu^2}{2} + \frac{3 \mu^2}{2} \mu^2 + o(1) \text{ and by substituting } \mu = a^2 + \mu, \text{ the final expression is } M_2^{(2)} = m^2 \left(\frac{2 \mu^2}{2} \right. \left. + m \left(\frac{2 \mu^2}{2} + \frac{2 \mu^2}{2} + \frac{P_X''(1)}{2} \right) \right) \]

\[+ \frac{2 \mu^2}{2} - \mu = P_X'(1) + \frac{2 \mu^2}{2} + \frac{2 \mu^2}{2} + \frac{3 \mu^2}{2} \mu^2 + o(1) \text{ The first two terms of the above expression correspond to Feller [5] and Hunter [6] when } P_X(z) = z. \]

However, this paper provides extra constant terms in addition to the first two terms. This result matches with that given in [1] if \(P_X(z) = z. \) Similar to the first moment, \(\lim_{m \to \infty} M_2^{(2)} = \left(\frac{2 \mu^2}{2} \right. \left. + \mu \right)^2 \) gives the 2nd moment of the number of renewals in discrete-time bulk-arrivals. Further, the second asymptotic moment of continuous-time bulk-renewal process discussed in [2] can be derived if we let \(\mu = \frac{3}{2}, \sigma^2 = \left(\frac{3}{2} \right), \)
\[\mu_3 = \frac{\delta_3}{\Delta}, \text{ and } m = \frac{1}{\Delta}, \text{ and then take the limit of } M_m^{(2)} \text{ as } \Delta \to 0. \] By doing so,

\[M_m^{(2)} \text{ becomes } M^{(2)}(t) = t^2 \left(\frac{\mu_0}{\mu} \right)^2 + t \left(\frac{\mu_0^2}{\mu^2} - \frac{\delta_2}{\mu} + \frac{2\delta_3}{\mu^2} + \frac{2\delta_4}{\mu^3} \right) + o(1) \text{ where } o(1) \to 0 \text{ as } t \to \infty \text{ and } t > 0. \]

6. NUMERICAL COMPUTATIONS

In Section 6.1, we first compute the distribution of a single-renewal process \(P_n(m) \), which are used in Section 6.2 to compute the distribution of a bulk-renewal process \(B_n(m) \).

6.1. Numerical computations in discrete-time single-renewal process

\(P_n(m) \) is the probability mass function (pmf) of the number of renewals \(N_m \) that occur over the time period \((0, m]\). In computing \(P_n(m) \), we consider various inter-renewal times such as geometric, negative binomial, and Poisson distributions. All computations were done using MAPLE software, calibrated to compute up to ninth decimal place. In presenting our numerical work, all numerical results were rounded to four decimal places in the tables below.

The inter-renewal time \(k \) has a probability mass function (pmf), \(f_k \), which follows a geometric distribution such that \(f_k = pq^{k-1}, (k \geq 1) \) with probability generating function (pgf) \(f(v) = \frac{p}{1-qv}, |v| < 1 \) and \(p = 0.3, q = 0.7 \). \(P_n(m) \) is computed at \(m = 1, 5, 10, 15, 20 \) and \(0 \leq n \leq 6 \).

Table 1: Geometric arrival pattern

\(m \)	\(P_0(m) \)	\(P_1(m) \)	\(P_2(m) \)	\(P_3(m) \)	\(P_4(m) \)	\(P_5(m) \)	\(P_6(m) \)	\ldots	\(E[Nm] \)	\(E[Nm^2] \)
1	0.7000	0.3000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.1081	0.3602	0.3378	0.1353	0.0284	0.0024	0.0000	0.0000	0.0000	0.0000
10	0.0263	0.1211	0.2335	0.2668	0.2001	0.1029	0.0368	0.0000	0.0000	0.0000
15	0.0038	0.0305	0.0916	0.1700	0.2186	0.2001	0.1472	0.0000	0.0000	0.0000
20	0.0008	0.0068	0.0279	0.0716	0.1304	0.1709	0.1916	0.0000	0.0000	0.0000

The inter-renewal time \(k \) has a probability mass function (pmf), \(f_k \), which follows a negative binomial distribution such that \(f_k = (k + r - 2k - 1)p^r q^{k-1}, (k \geq 1) \) with probability generating function (pgf) \(f(v) = v \left(\frac{p}{1-qv} \right)^r, |v| < 1 \) and \(p = 0.75, q = 0.25 \) and \(r = 13 \). \(P_n(m) \) is computed at \(m = 1, 10, 20, 30 \) and \(0 \leq n \leq 6 \).

Table 2: Negative binomial arrival pattern

\(m \)	\(P_0(m) \)	\(P_1(m) \)	\(P_2(m) \)	\(P_3(m) \)	\(P_4(m) \)	\(P_5(m) \)	\(P_6(m) \)	\ldots	\(E[Nm] \)	\(E[Nm^2] \)	
1	0.9762	0.0238	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
10	0.0089	0.4571	0.4311	0.0772	0.0045	0.0001	0.0001	1.4277	10^10	1.3763	2.9356
20	0.0014	0.9064	0.1394	0.4056	0.3342	0.1094	0.0014	0.0014	0.0014	0.0014	
30	0.0279	0.0279	0.0279	0.0279	0.0279	0.0279	0.0279	0.0279	0.0279	0.0279	

The inter-renewal time \(k \) follows a negative binomial distribution such that \(f_k = \frac{x(1-x)^{k-1}}{k-1} \text{ or } f_k = (k+1)q^{k-1} \text{ or } f_k = \frac{x(x-1)^{k-1}}{k-1} \).
The inter-renewal time \(k \) has a probability mass function (pmf), \(f_k \), which follows a Poisson distribution such that \(f_k = \frac{\alpha^{k-1}}{(k-1)!} e^{-\alpha} \), \((k \geq 1) \) with probability generating function (pgf) \(f(v) = ve^{-\alpha(v-1)}, |v| < 1 \), where \(\alpha = 2 \). \(P_n(m) \) is computed at \(m = 1, 5, 10, 15 \) and \(n = 0, 1, 2, 3, 4 \).

Table 3: Poisson arrival pattern

\(m \)	\(P_0(m) \)	\(P_1(m) \)	\(P_2(m) \)	\(P_3(m) \)	\(P_4(m) \)	\(\ldots \)	\(E[N_m] \)	\(E[N_m^2] \)
1	0.8647	0.1353	0.0000	0.0000	0.0000	\ldots	0.1353	0.1353
5	0.0527	0.3139	0.3715	0.0000	0.0000	\ldots	1.4459	2.5791
10	1.6498e+10 \(^{-4}\)	0.02	0.2347	0.4306	0.2463	\ldots	3.1111	10.5432
15	4.2900e+10 \(^{-4}\)	7.6325e+10 \(^{-5}\)	0.0088	0.1931	0.3050	\ldots	4.7779	24.0617

6.2. Numerical computations in discrete-time bulk-renewal process

\(B_n(m) \) is the probability mass function (pmf) of the total number of renewals \((Y_{Nm}) \) that occur over the time period \((0, m] \). In computing \(B_n(m) \), we consider the same inter-renewal time distributions used in Section 6.1., while incorporating different batch size distributions such as binomial and 1-3-6-9 distributions (renewals occur in a group of size 1, 3, 6, and 9 with corresponding probabilities). Moreover, we find the first and second moments of \(Y_{Nm} \) using three different approaches; analytically, asymptotically, and numerically. These are then compared at various values of \(m \). Analytic moments \((M_{\text{analytic}} \) and \(M_{\text{analytic}}^{(2)} \) \) are determined directly from the inversion of the equations \(M(v) = \frac{f(v)}{(1-v)(1-f(v))}\mu_X \), \(M^{(2)}(v) = \frac{f(v)}{(1-v)(1-f(v))} \left(\frac{2f(v)\mu_X^2+\mu_Xf(v)}{1-f(v)} + P_X(1) \right) \) The asymptotic moments \(\left(M_{\text{asymptotic}} \) and \(M_{\text{asymptotic}}^{(2)} \) \) are computed using the derived results in Sections 4 and 5. The numeric moments \((M_{\text{numeric}} \) and \(M_{\text{numeric}}^{(2)} \) \) are computed from \(B_r(m) \) found from the coefficients of Taylor’s series expansion of the expression \(E[z^{Y_m}] = \sum_{n=0}^{\infty} B_n(m) z^n = \sum_{n=0}^{\infty} (P_X(z))^n P_n(m) \) where \(P_n(m) \) are provided in Tables 1, 2, and 3 of Section 6.1.

6.2.1. Binomial group size distribution

The probability mass function (pmf) of the group size \((X) \) follows a binomial distribution \(b_n = (rn-1)p^nq^{n-1}, (1 \leq n \leq 4) \) with probability generating function (pgf) \(P_X(z) = z(q+pz)^r \) where \(p = 0.45, q = 0.55 \) and \(r = 3 \).

6.2.2. 1-3-6-9 group size distribution

The probability mass function (pmf) of the group size \((X) \) is \(b_1 = 0.1, b_2 = 0.25, b_3 = 0.45, b_4 = 0.2 \) with probability generating function (pgf) \(P_X(z) = 0.1z + 0.25z^3 + 0.45z^4 + 0.2z^9 \).
Table 4: Geometric arrival pattern

m	$B_0(m)$	$B_1(m)$	$B_2(m)$	$B_3(m)$	$B_4(m)$	$B_5(m)$	$B_6(m)$...
1	0.7000	0.0499	0.1225	0.1002	0.0273	0.0000	0.0000	...
5	0.1681	0.0599	0.1556	0.1629	0.1231	0.1085	0.0864	...
10	0.0283	0.0201	0.0559	0.0734	0.0851	0.1019	0.1069	...
15	0.0048	0.0051	0.0150	0.0234	0.0342	0.0483	0.0608	...
20	0.0008	0.0011	0.0036	0.0064	0.0109	0.0174	0.0251	...

Table 5: Negative binomial arrival pattern

m	M_{analytic}	$M_{\text{asymptotic}}$	M_{numeric}	$M^{(2)}_{\text{analytic}}$	$M^{(2)}_{\text{asymptotic}}$	$M^{(2)}_{\text{numeric}}$...
1	0.7050	0.7050	0.7050	1.8795	1.8795	1.8796	...
5	3.5250	3.5250	3.5250	19.3380	19.3376	19.3376	...
10	7.0500	7.0500	7.0500	63.5273	63.5273	63.5273	...
15	10.5750	10.5750	10.5750	132.5678	132.5678	132.5678	...
20	14.1000	14.1000	14.1000	226.4595	226.4595	226.4595	...

Table 6: Poisson arrival pattern

m	$B_0(m)$	$B_1(m)$	$B_2(m)$	$B_3(m)$	$B_4(m)$	$B_5(m)$	$B_6(m)$...
1	0.8647	0.0225	0.0553	0.0452	0.0123	0.0000	0.0000	...
5	0.0527	0.0855	0.2201	0.2225	0.1521	0.1192	0.0817	...
10	4.6498x10^{-9}	0.0036	0.0152	0.0410	0.0820	0.1208	0.1433	...
15	4.1957x10^{-9}	1.2699x10^{-9}	0.0003	0.0017	0.0062	0.0164	0.0343	...

Table 7: Lognormal arrival pattern

m	M_{analytic}	$M_{\text{asymptotic}}$	M_{numeric}	$M^{(2)}_{\text{analytic}}$	$M^{(2)}_{\text{asymptotic}}$	$M^{(2)}_{\text{numeric}}$...
1	0.3180	0.2611	0.3181	0.8479	1.2415	0.8481	...
5	3.3978	3.3945	3.3979	15.3169	15.3219	15.3170	...
10	7.3111	7.3111	7.3111	60.5347	60.5349	60.5347	...
15	11.2278	11.2278	11.2278	136.4284	136.4284	136.4284	...
Table 7: Geometric arrival pattern

m	$B_0(m)$	$B_1(m)$	$B_2(m)$	$B_3(m)$	$B_4(m)$	$B_5(m)$	$B_6(m)$...
1	0.7000	0.0300	0.0000	0.0750	0.0000	0.0000	0.1350	...
5	0.1681	0.0360	0.0031	0.0902	0.0154	0.0010	0.1814	...
10	0.0282	0.0121	0.0009	0.0605	0.0117	0.0020	0.0935	...
15	0.0048	0.0031	0.0009	0.0078	0.0046	0.0013	0.0197	...
20	0.0008	0.0007	0.0003	0.0018	0.0014	0.0005	0.0050	...

Table 8: Negative binomial arrival pattern

m	$B_0(m)$	$B_1(m)$	$B_2(m)$	$B_3(m)$	$B_4(m)$	$B_5(m)$	$B_6(m)$...
1	0.9762	0.0024	0.0000	0.0059	0.0000	0.0000	0.0107	...
2	0.9990	0.0100	6.441x10^{-6}	0.0251	2.82x10^{-5}	0.0000	0.0392	...
3	0.7039	0.0323	1.2197x10^{-5}	0.0380	0.0082	1.08x10^{-4}	0.1046	...
4	0.5954	0.0388	0.0002	0.0971	0.0008	1.07x10^{-4}	0.1758	...
5	0.4261	0.0528	0.0005	0.1321	0.0022	5.99x10^{-4}	0.2406	...

Table 9: Poisson arrival pattern

m	M_0	M_1	M_2	M_3	M_4	M_5	M_6	...
1	0.7240	0.0944	0.0720	1.7029	6.6800	4.7029		
5	7.7353	7.7278	7.7352	82.6810	82.7040	82.6808		
10	16.6445	16.6445	16.6445	320.8354	320.8364	320.8354		
15	25.5611	25.5611	25.5611	717.9826	717.9827	717.9826		
7. CONCLUSION

The method of generating function (gf) as illustrated in this paper, provides a shorter and simpler alternative to the usually used method for determining the asymptotic results of the discrete bulk-arrival renewal process. The generating function (gf) of first and second moments are first described as $M(v)$ and $M^{(2)}(v)$ respectively, and then the desired asymptotic results are easily derived. If the first renewal period (T_1) has a different distribution than the other renewal periods, then the first and second moments can be derived along similar lines. Moreover, higher order moments and their corresponding asymptotic results can be found similarly. Numerical examples of various cases have also been presented for the sake of completeness.

REFERENCES

[1] Chaudhry, M.L., Fisher, B., "Simple and elegant derivations for some asymptotic results in the discrete-time renewal process", *Statistics and Probability Letters*, 83 (1) (2012) 315-319.

[2] Chaudhry, M.L., Fisher, B., "Computing the distribution for the number of renewals with bulk arrivals", *INFORMS Journal on Computing*, 26(4)(2013) 885-892.

[3] Cox, D.R., *Renewal Theory*, Spottiswoode Ballantine & Co Ltd, London, 1962.

[4] Feller, W., "Fluctuation theory of recurrent events", *Transactions of the American Mathematical Society*, 67 (1949) 98-119.

[5] Feller, W., *An introduction to probability and its applications*, Vol. 1,2nd ed. Wiley, New York, 1968.

[6] Hunter, J., *Mathematical Techniques of Applied Probability Volume 1: Discrete Time Models: Basic Theory*, Academic Press, New York, 1983.

[7] Van der Weide, J.A.M., Pandey, M.D., Noortwijk, J.M., A conceptual interpretation of the renewal theorem with applications, in: Aven, T., Vinnem, J.E. (eds.), *Risk, Reliability, and Societal Safety*, Taylor & Francis Group, London, 2007, 477-484.

[8] Van Noortwijk, J.M., "Explicit formulas for the variance of discounted life-cycle cost", *Reliability Engineering and System Safety* 80 (2) (2003) 185-195.