PHANGS–MUSE: The H\textsc{ii} region luminosity function of local star-forming galaxies

Francesco Santorob,⋆, Kathryn Kreckea, Francesco Belfiorea, Brent Grovesa, Enrico Congiua, David A. Thilkera, Guillermo A. Blanca, I-Ting Hua, J. M. Diederik Kuijssena, Sharonde Miaa, Ralf S. Klessena, E. Chevanceb, Ismael Pessab, Patricia Sanchez-Blazquezb,22, Elizabeth J. Watkinsb, and Thomas G. Williamsb

Received August 30, 2021; accepted November 11, 2021

ABSTRACT

We use an unprecedented sample of about 23 000 H\textsc{ii} regions detected at an average physical resolution of 67 pc in the PHANGS–MUSE sample to study the extragalactic H\textsc{ii} region H\textsc{ii} luminosity function (LF). Our observations probe the star-forming disk of 19 nearby spiral galaxies with low inclination and located close to the star formation main sequence at $z = 0$. The mean LF slope, α, in our sample is ± 1.73 with a σ of 0.15. We find that α decreases with the galaxy’s star formation rate surface density, Σ_{SFR}, and argue that this is driven by an enhanced clustering of young stars at high gas surface densities. Looking at the H\textsc{ii} regions within single galaxies, we find that no significant variations occur between the LF of the inner and outer part of the star-forming disk, whereas the LF in the spiral arm is shallower than in the inter-arm areas for six out of the 13 galaxies with clearly visible spiral arms. We attribute these variations to the spiral arms increasing the molecular clouds’ arm–inter-arm mass contrast and find suggestive evidence that they are more evident for galaxies with stronger spiral arms. Furthermore, we find systematic variations in α between samples of H\textsc{ii} regions with a high and low ionization parameter, q, and argue that they are driven by the aging of H\textsc{ii} regions.

Key words. ISM: H\textsc{ii} regions – ISM: structure – Galaxies: ISM – Galaxies: star formation – Galaxies: evolution – Galaxies: spirals

1. Introduction

H\textsc{ii} emission is one of the most effective tracers of young stars that formed within the last 10 Myr (e.g., Kennicutt & Evans 2012a, Haydon et al. 2020). In star-forming regions, it originates from massive OB-type stars whose energetic (hard UV) radiation is able to heat and ionize the surrounding gas to form an H\textsc{ii} region. This is why H\textsc{ii} regions have long been considered as the optimal probes of massive star formation in galaxies (e.g., Kennicutt et al. 1989, Thilker et al. 2000, Lawton et al. 2010), though we should not forget that star formation currently ongoing within dense, dust-enshrouded cores may remain hidden for about 3 Myr (Kim et al. 2021). Since the H\textsc{ii} luminosity of an H\textsc{ii} region is directly related to the amount of ionizing radiation emitted by the OB stars at its center, the H\textsc{ii} region luminosity function (LF) allows us to constrain the mass function (MF) of young stellar populations.

Similarities between the spatial distribution of stars, stellar associations, and clusters on different physical scales indicate that star formation is a scale-free process (e.g., Efremov & Elmegreen 1998, Bastian et al. 2009, Krumholz 2013, Hopkins 2012, Krumholz 2014, and references therein). For this reason, the mass function and the luminosity function of star-forming regions are expected to follow a power law with slope of about -2 (Elmegreen & Falgarone 1996). Studies probing the H\textsc{ii} region LFs using different tracers largely agree with this expectation, measuring LF slopes close to -2 with minor variations of ± 0.2–0.5 among galaxies (e.g., UV; Cook et al. 2016; H\textalpha; Kennicutt et al. 1989, Par: Liu et al. 2013; infrared and radio: Mascoop et al. 2021). It is worth noticing that the main physical driver behind this is hierarchical growth under the influence of gravity.

The accessibility of the H\textalpha emission line to ground-based observations favored the study of the so-called nebular LF (i.e., built using the H\textalpha luminosity of H\textsc{ii} regions) in numerous extragalactic H\textalpha surveys (e.g., Knapen 1998, Thilker et al. 2002, Kennicutt et al. 2008). Thanks to studies in the Milky Way (MW) and the Local Group, we know that H\textalpha regions can be extremely diverse in their nature, ranging from the least bright and sub-parsec-sized regions (e.g., ultra-compact H\textalpha regions observed within the MW; see, e.g., Hoare 2005) to the most bright and ~400 pc sized superbubbles (e.g., resembling 30 Doradus in the Large Magellanic Cloud; see de Mello et al. 2010). Studies of nebular LFs in nearby external galaxies commonly probe H\textalpha regions ionized by star clusters and associations, but only in a few cases does the sensitivity of the observations allow probing H\textalpha regions ionized by single OB stars (e.g., Zimba et al. 2011).

Variations in the slope of the LF can unveil whether global properties of galaxies, as well as local parameters such as chemical abundance, dust content, and gas dynamics (e.g., spiral arm perturbations), influence the star formation process. Only a handful of studies have attempted to examine the relation between the LF slope and global galaxy parameters, mostly finding weak or statistically insignificant correlations (Kennicutt et al. 1989, Elmegreen & Salzer 1999, Youngblood & Hunter 1999, van Zee 2000, Thilker et al. 2002, Liu et al. 2013, Cook et al. 2021).
2. Observations and data

For a complete and detailed description of the PHANGS–MUSE sample and data we redirect the reader to Emsellem et al. (2021), while in this section we summarize the overall properties of the sample and provide essential details of the data reduction and analysis pipelines. In the last part of this section, we also describe the ancillary data products that we use in this work.

2.1. PHANGS–MUSE sample

The PHANGS–MUSE sample includes 19 nearby ($D < 20$ Mpc) star-forming galaxies (Sa–Sc Hubble morphological type) with relatively low inclination ($i \lesssim 55$ degrees). We summarize their main properties in Table 1. The galaxies are located close to the so-called star formation main sequence and span a stellar mass range of $\log(M_*/M_\odot) = 9.4–11.0$. The galactocentric radii used in this paper have been deprojected according to the inclinations and position angles reported in Table 1 which are taken from Lang et al. (2020) who performed modeling of the CO(2–1) kinematics using the PHANGS–ALMA data. The area covered by the MUSE observations mainly samples the star-forming disk of the galaxies. The mean maximum galactocentric radius covered across the sample is 0.86R$_{25}$; the exact coverage for each galaxy is reported in Table 1.

2.2. PHANGS–MUSE data reduction and analysis

The PHANGS–MUSE data set (Emsellem et al. 2021) is the result of an extensive (~ 170 h) observational campaign (PI E. Schinnerer) with the MUSE IFU (Bacon et al. 2010) mounted on the Unit 4 telescope (UT4) at ESO’s Very Large Telescope (VLT), with the addition of archival observations for NGC0628 and the centers of 5 galaxies in the sample. Each galaxy has been covered by several pointings (from 3 up to 15) to obtain a contiguous mosaic of the star-forming disk. All the observations have been performed in wide-field mode (WFM; with ‘1′x′1′ field of view), either in natural seeing (WFM-noAO, for 11 galaxies) or taking advantage of the GALACSI adaptive optics system (WFM-AO, for eight galaxies).

The data have been reduced using a version of the pymusepipe python package, a wrapper of the isorex MUSE reduction recipes, tailored to the PHANGS–MUSE program (Emsellem et al. 2021). Broad-band images taken with the ESO/MPG 2.2m Wide Field Imager and with the Du Pont Direct CCD camera (Razza et al. in preparation) were used as a reference to astrometrically align and flux calibrate the MUSE data. The complete data reduction provides a sky-subtracted, flux-calibrated, mosaicked data cube for each galaxy with a spaxel size of 0.2′′. The point spread function (PSF) of the observations was determined for each pointing, and for each galaxy the largest value (reported in Table 1) was used to create PSF-homogenized data cubes. We refer to these as the “copt” data cubes to distinguish them from the “native” data cubes, maintaining the native resolution of the observations.

The data analysis of the mosaicked data cubes was performed with a data analysis pipeline (DAP) based on the gsr (Galaxy IFU Spectroscopy Tool, Bittner et al. 2019) software package and tailored to the PHANGS–MUSE program, which provides maps of stellar kinematics, stellar population properties (including stellar ages and mass surface density), and emission line fluxes and kinematics (Emsellem et al. 2021). The DAP employs the penalized pixel fitting method via the pXPF package (Cappellari 2017) to extract information on the stellar population and the ionized gas from the MUSE spectra over the wavelength range 4850–7000 Å taking into account the MUSE spectral resolution as parametrized in Bacon et al. (2017). First, the stellar kinematics and the stellar population information are

\[\text{http://www.phangs.org} \]
extracted in two subsequent steps using binned spectra with a continuum S/N target of 35, and E-MILES simple stellar population models (Vazdekis et al. 2016) generated with a Chabrier (2003) initial mass function (IMF), BaSTI isochrones (Pietrinferni et al. 2004), eight ages (0.15–14 Gyr), and four metallicities ([Z/H] = −1.5, −0.35, 0.06, 0.41). Finally, the ionized gas analysis is performed by leveraging the previous steps and simultaneously fitting the stellar continuum and the emission lines using single spaxel spectra. Emission lines are modeled with a single Gaussian function and emission line flux maps are corrected for foreground Galactic extinction, using the O'Donnell (1993) extinction law and the E(B − V) values from Schlafly & Finkbeiner (2011). We refer the reader to the PHANGS-MUSE survey paper (Emsellem et al. 2021) for further details on the choice of models and the spectral fitting procedure. In this paper we make use of the copt Hα maps to localize H ii regions and the native MUSE mosaicked data cubes to extract their integrated spectra (see Sect. 3).

2.3. Environmental and foreground stars masks

Morphological masks delimiting stellar structures by using Spitzer near-infrared (NIR) 3.6 μm imaging are available for the PHANGS–MUSE galaxies from Querejeta et al. (2021). We used these masks to define galaxy centers, bars, spiral arms, and inter-arms regions. In the work of Querejeta et al. (2021), spiral arms have been defined only when they are dominant features across the galaxy disk (omitting flocculent galaxies) by fitting a log-spiral function to bright regions in the NIR images along each spiral arm. These modeled log-spiral curves are then assigned an empirically determined width based on the overlap with CO(2–1) emission from PHANGS–ALMA data and as a last step the starting and ending azimuth of each spiral segment is adjusted to define the final spiral arm footprint. The outer edges of bars have been defined as ellipses where the bar length, ellipticity, and position angle come from a compilation of measurements from the literature based on NIR imaging (mostly from Herrera-Endoqui et al. 2015).

We make use of the Querejeta et al. (2021) environmental masks to define five environments – namely galaxy center, bar, spiral arm, inter-arm, and disk – according to the criteria described below. Our galaxy “centers” include small bulges, inner star-forming rings or nuclei. We define “bars” in the same way they are defined in the Querejeta et al. (2021) masks. For the galaxies with spiral arms, we define as “spiral arms” the regions flagged as spiral arms with the addition of the bar ends regions (when spiral arms overlap with bar ends). All remaining regions are defined as “inter-arm” for the galaxies with spiral arms and “disk” for the galaxies without spiral arms. These five environments can be visualized for NGC4321 in Fig. 1 and for the remaining galaxies in Appendix A in Fig. 1 we also show a sketch of the different environments to guide the reader.

There are a number of foreground stars across the field of view (FoV) of our observations that need to be excluded from our analysis. Masks of foreground stars for the PHANGS–MUSE galaxies are described in Emsellem et al. (2021). They have been generated by matching the positions of Gaia point sources. To avoid masking compact H ii regions and galactic nuclei, which may be included as point sources in the Gaia catalog, a further check was performed to identify the rest-frame Ca ii triplet absorption features at 8498, 8542, and 8662 Å in the MUSE spectra.

3. Data analysis

3.1. Ionized nebulae identification

To isolate H ii regions across our sample, we make use of the PHANGS–MUSE copt Hα emission line maps provided by the DAP procedure summarized in Sect. 2.2. We chose the copt rather than the native resolution maps to mitigate the effect of PSF spatial variations across the FoV of single targets. Ionized nebulae are identified using an adaptation of the HIIror software (Thilker et al. 2000) with Hα narrowband images. The software first detects what are called “seed regions” and then grows them up to a given contrast (i.e., the termination gradient) that is selected by the user. We set the background level of the Hα maps to the mean Hα flux of the pixels with surface brightness below Σ_{Hα} < 1 × 10^{-17} erg s^{-1} arcsec^{-2} and the detection threshold to 3σ above the background, with σ being the standard deviation of the background pixels. Once the seed regions have been identified, we perform further cleaning based on visual inspection to avoid artifacts due to noise in the Hα map. We consider the total integrated flux of the seed region and impose a S/N cut of 50 (using the Hα emission line error maps to assess the noise) and a Σ_{Hα} cut above 3σ of the background. To avoid the detection of regions with unphysical sizes, we find that the best solution is to limit the spatial smoothing operated by HIIror on the input maps for the iterative search of seed regions to three iterations, each time increasing the starting PSF by 10%.

Once the seed regions have been identified, HIIror starts to grow them. Different methods have been used in the literature to define H ii region boundaries: emission line ratios, Hα equivalent width, Hα spatial gradients, or a combination thereof (see, e.g., Blanc et al. 2009; Thilker et al. 2000; Sánchez et al. 2012; Zhang et al. 2017). In this work, we rely on HIIror, which uses a user-selected termination gradient of the Hα surface brightness in units of emission measure (EM), to stop the growth of seed regions – with a lower termination gradient the seed regions are allowed to grow more and vice versa (see Thilker et al. 2000 for an example). In principle, in the classical scenario of an H ii region represented by a Strömgren sphere, closer galaxies and/or better seeing conditions lead to the detection of steeper gradients and vice versa (see, e.g., Oey et al. 2007). Considering the distances of the galaxies in our sample (D < 20 Mpc) and the seeing of our observations (FWHM_{PSF} ≤ 1.2′), after visual inspection we select a termination gradient of 2.43 × 10^{-16} erg s^{-1} arcsec^{-2} pc^{-1} (i.e., corresponding to 5 EM pc^{-1}) to also ensure coherence with results presented in the literature (see Oey et al. 2007). In general a higher/lower termination gradient results in a steeper/shallower LF. We checked that varying the termination gradient in the interval 1.5–10 EM pc^{-1} gives LF with slopes that are, within the errors, fully compatible with what we discuss in Sect. 4.1 of this paper. Excluding the regions overlapping with foreground stars (see Sect. 2.3), we detect a total number of 31 399 ionized nebulae across the 9 galaxies of the PHANGS–MUSE sample. We use the nebulae spatial masks for each galaxy to extract the nebula integrated spectra from the MUSE native mosaicked data cubes. These spectra are then fitted using the DAP of the PHANGS–MUSE data as described in Sect. 2.2. The only difference at this level is that we fit the MUSE spectra across their entire wavelength range so to include also the modeling of the [S ii] 1969/1909Å emission line. It is worth noting that in this work we do not correct the emission line fluxes for the diffuse background (i.e., the emission of the diffuse ionized gas DIG component permeating star-forming disks; see Haffner...
Table 1. Main properties of the galaxies in the PHANGS–MUSE sample.

Galaxy	RA (°)	Dec (°)	Morph1	Distance2 (Mpc)	PA3 (°)	Log M_\odot	SFR4 (M_\odot yr$^{-1}$)	Δ_s^{FMS}	R_s^{PSF} (″)	FWHM$_6^{\text{PSF}}$ (″)	pc ′′′	r_{max}
IC5332	353.61453	-36.10108	SABc	9.01 ± 26.9	74.4	9.67 ± 0.41	0.01 ± 182.2	0.87	43.6 ± 6.8	6300 Å, Hβ		
NGC0628	24.17355	15.738643	Sc	9.84 ± 8.9	20.7	10.34 ± 1.75	0.18 ± 297.0	0.92	47.6 ± 0.51	6300 Å, Hβ		
NGC1087	61.400492	-0.498717	Sc	15.85 ± 42.9	359.1	9.93 ± 1.31	0.33 ± 89.2	0.92	76.5 ± 1.37	6300 Å, Hβ		
NGC1300	49.920815	-19.411114	Sbc	18.99 ± 31.8	278.0	10.62 ± 1.17	-0.18 ± 178.8	0.89	91.6 ± 0.96	6300 Å, Hβ		
NGC1365	53.40152	-36.140404	Sb	19.57 ± 55.4	201.1	10.99 ± 16.90	0.72 ± 361.1	1.15	94.4 ± 0.73	6300 Å, Hβ		
NGC1385	54.369015	-24.501162	Sc	17.22 ± 44.0	181.3	9.98 ± 2.09	0.50 ± 102.0	0.67	83.1 ± 1.21	6300 Å, Hβ		
NGC1433	55.501695	-47.221943	Sb	18.63 ± 28.6	199.7	10.87 ± 1.13	-0.36 ± 186.9	0.91	89.9 ± 1.05	6300 Å, Hβ		
NGC1512	60.975574	-43.348724	Sa	18.83 ± 42.5	261.9	10.71 ± 1.28	-0.21 ± 253.1	1.25	90.8 ± 0.62	6300 Å, Hβ		
NGC1566	65.00159	-54.93801	SAbb	17.69 ± 29.5	214.7	10.78 ± 4.54	0.29 ± 217.0	0.8	85.3 ± 0.73	6300 Å, Hβ		
NGC1672	59.992757	-59.242975	Sb	19.4 ± 42.6	134.3	10.73 ± 7.60	0.56 ± 185.9	1.09	93.0 ± 1.00	6300 Å, Hβ		
NGC2835	139.474404	-22.35468	Sc	12.22 ± 41.3	1.0	10.00 ± 1.24	0.26 ± 192.2	1.15	59.0 ± 0.69	6300 Å, Hβ		
NGC3351	160.99065	11.703673	Sbc	9.96 ± 45.1	193.2	10.36 ± 1.32	0.05 ± 217.1	1.05	48.2 ± 0.76	6300 Å, Hβ		
NGC3628	170.06252	12.9915	Sb	11.32 ± 57.3	173.1	10.83 ± 3.84	0.19 ± 308.0	1.05	54.7 ± 0.66	6300 Å, Hβ		
NGC3351	160.99065	11.703673	Sbc	9.96 ± 45.1	193.2	10.36 ± 1.32	0.05 ± 217.1	1.05	48.2 ± 0.76	6300 Å, Hβ		
NGC4303	185.47888	4.473744	Sbc	16.99 ± 23.5	312.4	10.52 ± 5.33	0.54 ± 207.0	0.78	82.0 ± 0.66	6300 Å, Hβ		
NGC4321	155.82887	15.822304	SAbb	15.21 ± 38.5	156.2	10.75 ± 3.56	0.21 ± 183.1	1.16	73.4 ± 0.97	6300 Å, Hβ		
NGC4535	188.5846	8.197973	Sc	15.77 ± 44.7	179.7	10.53 ± 2.16	0.14 ± 244.4	0.56	76.1 ± 0.56	6300 Å, Hβ		
NGC5068	199.72807	-21.03874	Sc	5.2 ± 35.7	342.7	9.40 ± 0.28	0.02 ± 224.3	1.04	25.2 ± 0.89	6300 Å, Hβ		
NGC7496	347.44702	-43.42785	Sb	18.72 ± 35.9	193.7	10.00 ± 2.26	0.53 ± 100.0	0.89	90.3 ± 1.06	6300 Å, Hβ		

Notes. The table reports the galaxy name (Col. 1), galaxy center sky coordinates (Cols. 2–3), Hubble morphological type (Col. 4), distance (Col. 5), the β-Hα emission line maps. This cut comprises about 1% of the original nebulae and leave us with a final joined catalog of 23 301 Hα emission line maps (Scheuermann et al. in preparation). This cut comprises about 0.6% of the nebulae. Fourth are nebulae where the distance of the geometric center from the edges of the MUSE mosaic FoV is less than one FWHM$_{PSF}$. This cut comprises about 2% of the nebulae. We note that the S/N of the Hα and Hβ lines is usually high, more specifically, 99% of the region spectra have a S/N ≥ 32 for the Hα line and ≥12 for the Hβ line. All together, the cuts remove about 26% of the original nebulae and leave us with a final joined catalog of 23 301 Hα regions. A discussion on how selection effects may influence our results is presented in Appendix C.

In Fig. 1 we show the spatial masks of the Hα regions found in NGC4321, highlighting also the different galactic environments defined in Sect. 2.3. Analogous figures for the remaining galaxies in our sample are presented in Appendix A. We assumed a screen geometry and used PyNeb (Luridiana et al. 2015) to correct line fluxes for dust extinction via the Hβ/Hα ratio, adopting the O'Donnell (1994) reddening law with $R_V = 3.1$ and a theoretical Hβ/Hα = 2.86. The extinction-corrected emission line luminosities of the Hα regions were then computed using the distances reported in Table 1. For every Hα region in our catalog, we also estimated the gas-phase metallicity and the gas ionization parameter by using extinction-corrected emission line fluxes. The gas-phase metallicity O/H was calculated using the Pilyugin & Grebel (2016) S calibration (Scal

Reference. 1 HyperLeda, Makarov et al. (2014). 2 Anand et al. (2021). 3 Lang et al. (2020). 4 Leroy et al. (2021). 5 Emsellem et al. (2021)
Fig. 1. H\textsc{ii} regions and environments for NGC4321. The figure shows the H\textalpha\ emission in the background, color coded according to the color scheme on the right, overlaid with the borders of the H\textsc{ii} regions in our catalog. The centers of the nebulae that have been discarded by our selection criteria are marked with crosses. In the lower-left corner, the black circle indicates the PSF of the MUSE observations, and the black line marks a physical scale corresponding to 1 kpc. Both the H\textsc{ii} regions and the discarded nebulae are color coded according to our definition of environments as outlined by the color scheme at the bottom and shown in the bottom-right sketch.

hereafter). This calibration relies on three diagnostic line ratios (i.e., [N\textsc{ii}]/H\beta, [S\textsc{ii}]/H\beta, and [O\textsc{iii}]/H\beta) and provides an empirical calibration against H\textsc{ii} regions that have direct constraints on their nebular temperatures and hence their abundances. This calibration is relatively insensitive to changes in gas pressure or ionization parameter, and we adopted it as fiducial approach in this paper (see Kreckel et al. [2019] for a discussion). In addition, for each galaxy we fit the radial metallicity gradient by using an unweighted least-square linear fitting of the trend between $12 + \log(O/H)$ and the deprojected galactocentric radius (see Fig. A.19 in Appendix A). The gas ionization parameter represents the ratio between the ionizing photon flux density and the gas hydrogen density. In this paper, we express the ionization parameter as $q = U \times c = Q(H^\circ)/4\pi R^2 n$, where c is the speed of light, U is the dimensionless ionization parameter, $Q(H^\circ)$ is the number of hydrogen ionizing photons ($E > 13.6$ eV) emitted per second, R is the empty (wind-blown) radius of the H\textsc{ii} region, and n its hydrogen density. The ionization parameter is ultimately defined by the structure of an H\textsc{ii} region (e.g., size, gas density, filling factor) and the properties of its ionizing source. Photoionization models show that it can be extracted via different diagnostic lines (Kewley & Dopita [2002], Dors et al. [2011]). In this paper we use the calibration proposed by Diaz et al. [1991] based on the [S\textsc{iii}](9069+9532)/[S\textsc{ii}](6717+6713) line ratio. As the [S\textsc{iii}]4953Å line falls outside the wavelength range covered by MUSE, we assumed that [S\textsc{iii}]4953Å = 2.47[S\textsc{iii}]9069Å according to default atomic data in pyneb (Luridiana et al. [2015]). It should be noted that for about 3000 H\textsc{ii} regions we are not able to estimate the ionization parameter due to lack of detection of the [S\textsc{iii}]4953Å emission line.

The H\textsc{ii} regions catalog containing the host galaxy name, the sky coordinates of the geometrical center, the deprojected galactocentric distance from the host galaxy center, the H\alpha and H\beta observed fluxes, the H\alpha extinction-corrected flux, the ioniza-
tion parameter, and an environmental flag for all the H\textsc{ii} regions discussed in the current paper is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/

4. Results

4.1. The H\textsc{ii} region luminosity function

We make use of the extinction-corrected H\textsc{ii} luminosities of our H\textsc{ii} regions to obtain the nebular LF of each galaxy in our sample. H\textsc{ii} region LFs have long been known to be well described by a power law \citep{Kennicutt1989}. The key parameter of the LF is its slope, \(\alpha\). Several different methods for deriving the slope from the empirical data have been employed. Past studies have often used least-squares linear regression of binned data (i.e., histograms) in log–log space. This method, despite being widespread, can give incorrect results under relatively common conditions, as discussed in \citep{Clauset2009}. In the context of LFs, this is mainly related to the fact that linear regression assumes Gaussian noise in the dependent variable, but the noise of the logarithm of a histogram is not Gaussian. Furthermore, the choice of the binning scheme (e.g., equal-luminosity bins versus equal-number bins) and the definition of the bin center can affect the LF modeling and add uncertainties to \(\alpha\) (see, e.g., \cite{MaizApellaniz2005, Cook2016}).

The slope of the LF is commonly constrained by fitting the bright end of the LF or, more specifically, H\textsc{ii} regions with a luminosity above a given \(L_{\text{min}}\). This is the luminosity below which the LF starts to flatten – it is often referred to as the “turnover point” and, depending on the sensitivity of the observations, can arise due to incompleteness of the data. \(L_{\text{min}}\) is an important parameter for determining the LF slope and in many studies it has been, quite arbitrarily, fixed to the luminosity where the histogram of the LF peaks or, alternatively, where the bin count has been, quite arbitrarily, fixed to the luminosity where the histogram of the LF peaks or, alternatively, where the bin count number steadily decreases (e.g., \cite{Cook2016, Azimlu2011}). As described in \cite{Clauset2009}, by adopting a maximum likelihood estimation (MLE) method, in combination with the Kolmogorov–Smirnov (KS) statistic, it is possible to obtain both \(L_{\text{min}}\) and \(\alpha\) of a given LF in a statistically robust way (see Sect.\[3\] for further discussion).

In this paper, we adopt this method to fit an empirical LF: it does not depend on any binning scheme and, as discussed in \cite{Clauset2009}, provides a statistically robust way to fit data following heavily tailed distributions. \cite{Whitmore2014} compared the performance of this method to classical ones based on histograms by fitting the LF of star clusters observed with \textit{HST} and found an overall good agreement, with MLE fits giving steeper slopes for steeper LFs. To perform the LF fits, we make use of the Python package \textsc{powerlaw} \citep{Alstott2014}, which follows the prescription given in \cite{Clauset2009} and models the probability distribution function (PDF) \(p(L)\) connected to the empirical LF using a power law of the form

\[
p(L) = (\alpha - 1) L^{-\alpha - 1} L^{-\alpha} \quad \text{with} \quad L \geq L_{\text{min}}.
\]

(1)

The algorithm performs an MLE fit by recursively fixing \(L_{\text{min}}\) equal to each empirical data point. For a given \(L_{\text{min}}\), the algorithm tries a range of different slopes and selects as the best fitting slope the one maximizing the likelihood estimator. At this point we have a set of models that includes the best fitting model for each fixed \(L_{\text{min}}\). The KS statistic is then used to compute the maximum distance between this set of models and the empirical cumulative distribution function. The final best fitting model is chosen as the one that minimizes the KS statistic.

We limit the search of \(L_{\text{min}}\) to an interval of \(\pm 1\sigma\) around the median of the distribution (i.e., where, visually, the LFs start to flatten) and the LF slope to the interval of \(\alpha = 1 \pm 3\). The error on \(L_{\text{min}}\) is taken to be the standard deviation of the \(L_{\text{min}}\) values found by rerunning the fitting procedure on 1000 mock LFs extracted via bootstrapping from a given LF, after making sure that the error converges to a stable value as the number of bootstraps approaches 1000. For the error on \(\alpha\), we consider the trend of the likelihood estimator as a function of \(\alpha\) for the models with the best \(L_{\text{min}}\). This trend can be well represented by a Gaussian that peaks at the best \(\alpha\) and we compute the error on \(\alpha\) as the standard deviation of the best fitting Gaussian function modeling the data (similar to what has been done by \cite{Whitmore2014}). We do not run any test to check for the existence of an upper cutoff in the LFs.

The best fitting models of our LF are shown in Fig.\[2\] and reported in Table\[2\]. The slopes we find are in the interval of \(\alpha = 1.5 \pm 2\) with a mean value of 1.73 and a \(\sigma\) of 0.15, in agreement with what has been discussed in the literature for Sa–Sc spiral galaxies (see, e.g., \cite{Kennicutt1989, Elmegreen1999, Whitmore2014}). We note that for our sample, the minimum number of H\textsc{ii} regions used to fit the LF is 300 (i.e., for NGC7496) and that our fits can be considered robust against biases due to low-number statistics (see Sect.\[3\] for further discussion). In Fig.\[2\] we also mark the completeness limit of our LFs that will be discussed in Sect.\[5\]. In Appendix\[C\] we discuss how the results would change if H\textsc{ii} luminosities were not corrected for dust extinction (e.g., in narrowband imaging). We find that neglecting the dust extinction correction causes a slight steepening of the LFs that, within their errors, remain compatible with the slopes we report in this section.

Before discussing further the details of our data analysis, it is worth discussing the overall properties of our LFs. As can be seen in Fig.\[2\] our H\textsc{ii} regions span a luminosity range of \(\log(L_{\text{H}\alpha}[\text{erg s}^{-1}]) \sim 35–40\). H\textsc{ii} regions with luminosities less than a few times \(10^{37}\) erg s\(^{-1}\) are typically ionized by single O- or B-type stars, whereas at higher luminosities and up to about \(10^{39}\) erg s\(^{-1}\) we enter the regime where H\textsc{ii} regions are ionized by stellar associations or clusters containing multiple OB stars. In this regime, the H\textsc{ii} luminosity of an H\textsc{ii} region is expected to be roughly proportional to its number of ionizing stars. H\textsc{ii} regions with luminosities higher than a few \(10^{39}\) erg s\(^{-1}\) are referred to as giant or supergiant H\textsc{ii} regions (e.g., 30 Doradus in the Large Magellanic Cloud) and are typical of late-type galaxies (Sc and Irr Hubble types; see, e.g., \cite{Kennicutt1989, Elmegreen1996}).

The ionizing luminosities corresponding to \(L_{\text{min}}\) in each galaxy of our sample are reported in Table\[2\] in terms of the number of equivalent O7 V-type stars, assuming that the number of ionizing photons per second for an O7 V star along the zero-age main sequence is \(L_{\text{H}\alpha} = \log(Q_{\text{O7V}}[\text{photons s}^{-1}]) = 49.05\) following \cite{Vaucouleurs1994}. The number of equivalent O7 V stars is used here as a first order indicator of the number of ionizing stars in an H\textsc{ii} region and at \(L_{\text{min}}\) it is in the range of 0.05–6 in our sample. This testifies that our LF fits, extending \(\sim 2–3\) orders of magnitude above \(L_{\text{min}}\), are mainly probing H\textsc{ii} regions ionized by star clusters and associations, and only for a few targets (i.e., NGC5068, IC3352 with smaller distances) are we probing the regime of H\textsc{ii} regions ionized by single massive stars.

Different studies in the literature argue that the LF steepens at luminosities higher than \(\log(L_{\text{H}\alpha}[\text{erg s}^{-1}]) = 38.6 \pm 0.1\) (i.e., the so-called LF cutoff or break) and is better reproduced
by a double power law (i.e., type II LF, reported in individual
galaxy studies; e.g., Kennicutt et al. 1989; Rand 1992; Rozas
et al. 1996; Beckman et al. 2000; Thilker et al. 2000; Gutierrez
et al. 2011; Lee et al. 2011). Beckman et al. (2000) also
observed a local sharp peak (adopting their nomenclature, we
refer to this feature as “glitch”) in the LF of their galaxies at
log($L_{\text{H}\alpha}$ [erg s$^{-1}$]) = 38.6 and suggested that it marks the tran-
sition of H$\text{\textsc{ii}}$ regions from ionization bounding (the central star/
star cluster only ionizes the gas within the H$\text{\textsc{ii}}$ region) at low
luminosities to density bounding (a large amount of Lyman con-
tinuum photons from the central ionizing source escapes the H$\text{\textsc{ii}}$
region and ionizes the diffuse surrounding medium) at higher lu-
ninosities.

The number of putative density bounded H$\text{\textsc{ii}}$ regions in our
galaxies (i.e., $L_{\text{H}\alpha} \geq 10^{38.6}$ erg s$^{-1}$) varies from a few up to about
350 and is reported in Table 2. Neither the number of these re-
gions nor their fraction with respect to the total number of H$\text{\textsc{ii}}$
regions correlates with galaxy morphological type (two targets
with Sa morphology have a few tens of these regions while Sb
and Sc galaxies show comparable numbers and scatter) or the
physical resolution of the observations. This suggests that in our
sample the detection of this kind of H$\text{\textsc{ii}}$ region is not purely an
effect of blending due to limited spatial resolution (as suggested
by the study of Lee et al. 2011).

For the nine galaxies in which we detect more than 100 density
bounded H$\text{\textsc{ii}}$ regions, we perform an additional fit of the LF
only at $L_{\text{H}\alpha} \geq 10^{38.5}$ erg s$^{-1}$ and show the results in Fig. 3. We
find that for these galaxies the slope of the upper end is indeed
steeper with respect to the slope measured globally; only for two
of the nine targets (i.e., NGC1365 and NGC4321) the variations
are within the errors. However, looking at the LFs of our sample
in Fig. 2 the steepening at log($L_{\text{H}\alpha}$ [erg s$^{-1}$]) > 38.6 ± 0.1 and
the glitch at log($L_{\text{H}\alpha}$ [erg s$^{-1}$]) = 38.6 ± 0.1 are subtle features,
contrary to what has been shown by Beckman et al. (2000). As-
sessing which LFs are better described by a double power law is
behind the scope of the current paper. Overall, a single power
law fit gives a good representation of the empirical data in our
sample and is thus adopted as our fiducial LF model. In the
following, we take the advantage of this simpler parametrization
of the LF to directly compare the LF slopes of different galaxies
and of H$\text{\textsc{ii}}$ region subsamples within individual galaxies.

4.2. LF variations among galaxies

To look at what may drive galaxy-to-galaxy variations in the LF
slope in our sample, we verified that α does not have any depend-
ence on galaxy inclination reported in Table 1, and then estimate
a few global galaxy parameters, excluding the areas defined as
galaxy centers (see Sect. 2.3), to be in line with the H$\text{\textsc{ii}}$ regions

probed by our LFs. More specifically, we estimate the following four properties.

The first is the gas-phase metallicity at a representative radius, taken to be the median galactocentric radius of the H ii regions detected in each galaxy. The metallicity at this radius is calculated from a linear fit to the radial metallicity gradient (shown in Fig. A.19 of Appendix B).

The second is the total stellar mass (M_\star) extracted by integrating the PHANGS–MUSE stellar mass maps produced by the DAP.

The third is the total SFR extracted by integrating the PHANGS–MUSE Hα maps (not corrected for dust extinction) and applying the calibration reported in Kennicutt & Evans (2012b) taken from the work of Hao et al. (2011) and Murphy et al. (2011), who adopted a Kroupa & Weidner (2003) IMF, with a Salpeter slope ($\alpha = -2.35$) from 1 to 100 M_\odot and $\alpha = -1.3$ for 0.1–1 M_\odot, and solar metallicity.

The fourth is the specific star formation rate (sSFR; sSFR = SFR/M_\star) and the SFR surface density (Σ_{SFR}) obtained by dividing the SFR by M_\star and the area covered by the MUSE FoV, respectively.

Taking advantage of the study on the resolved star formation scaling relations at ~100 pc scales carried out by Pessa et al. (2021), we also consider the offset Δ of individual galaxies with respect to the trend of the full sample for the resolved star formation main sequence (rSFRMS; Σ_{SFR}, the Kennicutt–Schmidt relation (rKS; $\Sigma_{H\alpha}$ versus Σ_{SFR}), and the molecular gas main sequence (rMGMS; Σ_{H_2} versus Σ_{SFR}). The offsets ΔSFRMS, ΔrKS, and ΔrMGMS have been estimated taking as a reference the modeled trends for the star formation scaling relations of the whole sample and fitting the same trends for each galaxy. The slope of the individual galaxy trends, for each scaling relation, was set to be the same as the one of the entire sample, and the offset of each galaxy from the global relation was estimated as the difference between the normalization factors of the linear fits (see Pessa et al. 2021 for additional details). It should be noted that these measurements are not available for NGC0628 due to the quality of the MUSE data while, due to the lack of significant CO(2–1) emission, IC3532 does not have measurements of ΔrKS and ΔrMGMS. The ΔSFRMS, ΔrKS, and ΔrMGMS offsets are interesting quantities because, by construction of the star formation scaling relations, they measure the relative variations in the SFR ($\Sigma_{SFR}/\Sigma_{M_\star}$), the gas depletion time ($t_{\text{depl}} = \Sigma_{H_\alpha}/\dot{\Sigma}_{SFR}$), and the molecular gas fraction ($\Sigma_{\text{H}_2}/\Sigma_{M_\star}$) within our sample. We verified that estimating such offsets by excluding galaxy centers has no significant effect on our findings.

Table 2. Properties of the H\(\alpha\) region LF in the PHANGS–MUSE galaxies.

Galaxy	Slope α	$\log L_{\text{min}}$	$\log L_{\text{compl}}$	$\log L_{\text{max}}$	$\log L_{\text{tot}}$	N_{tot}	N_{LFFit}	N_{DB}	FWHM$_{\text{seeing}}$	
NGC5068	1.58±0.09	35.92±0.06	35.86	0.06	39.26	40.38	1465	1206	9	26.18
IC5332	1.82±0.13	36.25±0.19	35.71	0.12	38.62	39.71	612	357	1	37.91
NGC1087	1.71±0.10	37.49±0.10	36.88	2.04	40.01	41.24	891	439	101	70.38
NGC1385	1.52±0.08	37.29±0.17	36.68	1.29	40.11	41.47	914	556	157	55.67
NGC7496	1.69±0.10	37.16±0.09	36.64	0.95	39.70	40.75	547	300	39	80.35
NGC2835	1.76±0.11	37.08±0.10	36.67	0.78	39.56	40.72	819	432	35	67.90
NGC0628	1.71±0.10	36.63±0.08	36.24	0.28	39.34	40.87	2230	1273	42	43.77
NGC3351	1.98±0.16	36.84±0.13	36.06	0.45	38.77	40.14	784	369	5	50.56
NGC4254	1.61±0.08	37.36±0.12	36.77	1.49	39.93	41.62	2536	1430	333	56.32
NGC4303	1.56±0.09	37.26±0.15	36.92	1.18	40.03	41.75	2208	1567	353	63.94
NGC4553	1.63±0.09	36.79±0.09	36.13	0.40	39.87	41.00	1444	934	65	42.63
NGC1300	1.77±0.12	37.08±0.25	36.26	0.79	39.42	40.84	1169	632	49	81.50
NGC1512	2.04±0.17	37.41±0.10	36.48	1.71	39.07	40.43	472	209	15	113.51
NGC1672	1.67±0.10	37.55±0.12	37.03	2.32	40.03	41.40	1051	570	152	89.80
NGC4321	1.95±0.15	37.95±0.27	36.93	5.82	39.78	41.31	1385	382	111	85.17
NGC1566	1.57±0.09	37.14±0.14	36.77	0.91	40.53	41.58	1655	1026	186	68.27
NGC3627	1.57±0.09	37.43±0.23	36.84	1.78	40.10	41.56	1007	657	188	57.44
NGC1433	1.96±0.16	37.32±0.14	36.20	1.37	39.41	40.69	1258	407	28	81.76
NGC1365	1.74±0.11	37.82±0.20	37.04	4.31	40.76	41.44	854	347	119	108.51

Notes. The table reports the galaxy name (Col. 1), the LF slope (Col. 2) and L_{min} (Col. 3), the LF completeness limit (Col. 4), the number of equivalent $O7 V$ stars corresponding to L_{min} (Col. 5), the luminosity of the brightest H\(\alpha\) region (Col. 6), the integrated H\(\alpha\) regions luminosity (Col. 7), the total number of H\(\alpha\) regions (Col. 8), the number of H\(\alpha\) regions used to fit the LF slope (Col. 9), the number of “density bounded” H\(\alpha\) regions with $L_{\text{tot}} > 10^{38.6}$ erg s$^{-1}$ (Col. 10), and the physical resolution of the H\(\alpha\) maps used to detect H\(\alpha\) regions in parsecs (Col. 11).
Fig. 3. Best fitting model of the upper end of the H II region LF for the subsample of nine galaxies with more than 100 density bounded H II regions. Galaxies are ordered by increasing stellar mass from top left to bottom right, and their names are indicated within each panel. The dotted black line indicates the empirical PDF, plotted as $p(L)$, versus the logarithm of the H II regions’ Hα luminosity, expressed in erg s$^{-1}$. The vertical dashed line indicates the estimated completeness limit. The vertical solid black line and the solid red line indicate the best fitting L_{min} and α of the global LF as shown in Fig. 2. The solid orange line marks the best fitting model for the regions with $L_{\text{H} \alpha} \geq 10^{38.5}$ erg s$^{-1}$. The LF slopes of the two best fitting models are indicated in the upper-right corner of each panel, following the same color coding as the models.

methodology on galaxy samples. It should be noted that using different tracers means probing different source ages and, as reported by Oey & Clarke (1998a), older H II regions tend to have steeper LF slopes, mainly due to the short main-sequence lifetimes of the more massive stars constituting the brighter H II regions. This is the reason why, for example, FUV observations, probing H II regions with ages less than 100 Myr, are expected to deliver a steeper LF compared to Hα observations, typically probing H II regions younger than 10 Myr, and our comparison remains qualitative.

We find a weak correlation between α and the galaxy morphology (Fig. 4a), and a negligible correlation with the gas-phase metallicity (Fig. 4b) and the total stellar mass of our galaxies (Fig. 4c). Kennicutt et al. (1989) and Elmegreen & Salzer (1999) found that the LF slope flattens for later-type galaxies where the relative number of giant H II regions is noticeably higher. On the other hand, Cook et al. (2016) found no trend between α and morphology when studying a sample more representative for irregulars, arguing that the trends reported in the literature were relying on few data points in this regime. Due to the selection of the PHANGS–MUSE sample we are only probing typical star-forming galaxies with morphologies in the range Sa–Sb (corresponding roughly to T types between 1 and 6). As noted also by Kennicutt et al. (1989), the scatter between the α of spirals of the same type in their sample is comparable to the magnitude of the trend they report to exist between α and morphology. The lack of a correlation between α and morphology in our sample is thus fully compatible with the results in the literature. The lack of a correlation with the gas-phase metallicity and the total stellar mass of our galaxies, despite the differences extracting these quantities with respect to previous studies, can also be explained by sample selection effects. Our sample mainly comprises galaxies with high metallicities (i.e., $12 + \log(O/H) > 8.3$) and stellar masses (i.e., $\log M_* [M_\odot] > 9$). Cook et al. (2016) found no trend between α and gas-phase metallicity in the range $7.2 < 12 + \log(O/H) < 9.2$ and only a moderate trend between α and M_* in the range $6 < \log M_* [M_\odot] < 11$. The parameter space occupied by our galaxies is compatible with what has been shown by Cook et al. (2016) and we do not expect to find strong correlations.

On the other hand, SFR-related quantities show a better correlations with α (Fig. 4d-e-f). SFR, sSFR, and Σ_{SFR} have a moderate, strong, and very strong correlation with α, respectively. The presence of a tighter correlation with Σ_{SFR} is in line with the findings of Cook et al. (2016), whose best fitting relation is also shown in Fig. 4f. The negative Spearman correlation coeffi-
Fig. 4. Trends of the LF slope, α, with global galaxy properties. From top left to bottom right we show α as a function of the galaxy morphological T class, the Scal metallicity at the median galactocentric radius covered by our observations $12 + \log(O/H)_{\text{med}}$, the total stellar mass (M_*), the total SFR, the sSFR, the SFR surface density (Σ_{SFR}), the offset from the resolved Kennicutt–Schmidt relation (Δr_{KS}), and the offset from the resolved molecular gas main sequence (Δr_{MGMS}). For each panel we report the Spearman correlation coefficient (ρ) and the p value of the plotted quantities. In the middle-right panel the solid red line shows the best fitting relation found by Cook et al. (2016), while the dashed gray and solid back horizontal lines respectively mark the α of the Cook et al. (2016) line at $\Sigma_{\text{SFR}} = -2.6$ and the mean α of the points at $\Sigma_{\text{SFR}} > -2.6$ (see Sect. 6.1 for further details).

4.3. LF variations within galaxies

After having investigated LF slope variations across our sample, in this section, we focus our attention on possible variations within a given galaxy by looking at the LF of Hα region sub-samples. In the following, we use galactic environment (spiral arm and inter-arm areas), galactocentric radius, and ionization parameter to draw, for each galaxy, Hα region subsamples and fit their LFs while keeping L_{min} fixed to the value found in Sect. 4.1 for each parent sample. All the details of the LFs fits performed in this section are reported in Table 4, while the actual fits are shown in Appendix B.

4.3.1. Spiral arm versus inter-arm areas

Differences in the LF slope between spiral arm and inter-arm areas have been reported in the past (Rand 1992; Banfi et al. 1993; Thilker et al. 2000), even though not always significant, with steeper LFs in inter-arm areas. However, this does not appear to be a universal property of spiral galaxies, as numerous cases are known where such variations have not been found (Knapen 1998; Rozas et al. 1996; Azimlu et al. 2011; Gutiérrez et al. 2011). This has to do with the fact that a simple spatial classification of Hα regions as spiral or inter-arm areas does not guarantee to probe the conditions under which star formation happens in the two environments. Part of the Hα region popu-
Table 3. Global properties of the PHANGS–MUSE galaxies

Galaxy	T type	Slope α	$12 + \log(O/H)_{(gal)}$	$\log M_{\ast}$ M_\odot	$\log SFR_{\odot}$ yr^{-1}	$\log sSFR_{\odot}$ yr$^{-1}$	$\log S_{\text{SFR}}$ M_\odot yr$^{-1}$ kpc$^{-2}$	ΔSFMS	ΔKS	ΔMGMS
NGC5068	6.0	1.58±0.09	8.31	9.33	0.14	-10.17	-2.20	0.10	-0.31	0.03
IC5332	6.8	1.82±0.13	8.37	9.49	0.05	-10.76	-2.82	-0.49	-0.25	-0.45
NGC1087	5.2	1.71±0.10	8.40	9.86	0.70	-10.11	-2.25	0.36	0.09	0.39
NGC1385	5.9	1.52±0.08	8.42	9.94	0.98	-9.95	-2.10	0.52	0.24	0.45
NGC7496	3.2	1.69±0.10	8.49	10.01	0.29	-10.52	-2.49	-0.09	-0.03	0.02
NGC2835	5.0	1.76±0.11	8.38	9.87	0.37	-10.28	-2.36	0.11	-0.00	-0.22
NGC0628	5.2	1.71±0.10	8.48	10.15	0.37	-10.50	-2.36			
NGC3351	3.1	1.98±0.16	8.59	10.41	0.11	-11.26	-2.81	-0.86	-0.25	-0.45
NGC4254	5.2	1.61±0.08	8.53	10.37	1.29	-10.19	-2.11	0.38	0.06	0.43
NGC4303	4.0	1.56±0.09	8.56	10.71	2.02	-10.36	-2.02	0.16	0.18	0.11
NGC4535	5.0	1.63±0.09	8.54	10.44	0.42	-10.81	-2.47	-0.21	-0.18	0.04
NGC1300	4.0	1.77±0.12	8.52	10.61	0.40	-10.96	-2.94	-0.45	-0.06	-0.42
NGC1512	1.2	2.04±0.17	8.52	10.66	0.23	-11.21	-3.05	-0.73	-0.17	-0.58
NGC1672	3.3	1.67±0.10	8.52	10.73	1.23	-10.56	-2.30	0.04	0.02	0.11
NGC4321	4.0	1.95±0.15	8.56	10.62	0.80	-10.64	-2.42	-0.01	-0.13	0.15
NGC1566	4.0	1.57±0.09	8.55	10.73	1.46	-10.51	-2.15	-0.04	0.03	0.06
NGC3627	3.1	1.57±0.09	8.55	10.69	0.84	-10.71	-2.00	0.06	0.07	0.18
NGC1433	1.5	1.96±0.16	8.54	10.85	0.38	-11.20	-3.04	-0.85	-0.23	-0.67
NGC1365	3.2	1.74±0.11	8.52	10.99	1.29	-10.77	-2.49	0.03	-0.02	0.07

Notes. The table reports the galaxy name (Col. 1), morphological T type taken from HyperLEDA (Makarov et al. 2014) (Col. 2), the LF slope (Col. 3), the metallicity at the median Hα regions’ galactocentric radius (Col. 4), the stellar mass (Col. 5), the SFR (Col. 6), the specific SFR (Col. 7), the SFR density (Col. 8), the offset from the rSFMS (Col. 9), the offset from the rKS (Col. 10), and the offset from resolved the rMGMS (Col. 11). All the properties reported inCols. 3-11 have been extracted using the PHANGS-MUSE data.

4.3.2. Inner versus outer disk

There exists evidence that the conditions under which SF happens in the outer disk of spiral galaxies are different from those of the inner disk, as suggested, for example, by an observed steepening of the GMC MF (e.g., Rosolowsky et al. 2007; Colombo et al. 2014; Rice et al. 2016; Faesi et al. 2018; Schruba et al. 2019). In line with this, radial variations in the LF are expected and have been reported in the literature suggesting that the LF is steeper in the outer disk (i.e., extending beyond R_{25}; see, e.g., Lelièvre & Roy 2000) where Hα regions tend to be smaller and fainter (see, e.g., Ferguson et al. 1998; Helmboldt et al. 2005).

To assess the presence of radial trends (which may also be connected with parameters varying radially such as the gas-phase metallicity), we study the LF at small and large galactocentric radii. To mitigate effects due to different subsample sizes, for each galaxy we select the median Hα region galactocentric radius as a demarcation between the inner and the outer star-forming disk and extract two Hα region subsamples of equal sizes. It should be noted that the area covered by our MUSE observations is largely contained within $\sim R_{25}$ of our targets, as can be seen looking at the r_{max} values reported in Table 1. What we define as the outer star-forming disk is still covering the main (i.e., molecular gas dominated) star-forming disk of our spiral galaxies and should not be confused with what is conventionally defined as the outer star-forming disk is still covering the main (i.e., molecular gas dominated) star-forming disk of our spiral galaxies.
called outer (i.e., atomic gas dominated) disk in the literature (typically extending far beyond \(R_{25} \)).

Figure 6 summarizes the results of our fits of the LF slope in the inner and outer star-forming disk (shown in Fig. B.2). The median \(H\alpha \) region galactocentric radii, used to draw the \(H\alpha \) region subsamples, varies between \(-0.2 R_{25}\) and \(0.5 R_{25}\) across our galaxies. Most of our galaxies do not show significant variations between the LF slope of \(H\alpha \) regions located at small and large galactocentric radii. Our results do not change if we adopt a fixed value of \(0.3 R_{25}\) to draw \(H\alpha \) region subsamples (not shown here). Only two out of 19 galaxies (i.e., NGC1385 and NGC1566) show a significant variation, indicating a steeper LF in the outer disk. Our results indicate that within the star-forming disk of spiral galaxies there are no significant radial trends for the LF slope. This suggests that the radial metallicity trends in our galaxies (no more than 0.2dex variations; see Fig. A.19) do not affect the LF slope.

4.3.3. High versus low ionization parameter

Lastly, we investigate variations in the \(H\alpha \) region LF slope connected with the ionization parameter \(q \) of the \(H\alpha \) regions. As for the radial bins, for each galaxy we use the median \(H\alpha \) region \(q \) to draw two subsamples of \(H\alpha \) regions of equal size. The median values that we find are in the range \(log q = 6.4 \pm 0.7 \). We visually inspected the spatial location of the two subsamples of \(H\alpha \) regions for each galaxy and they both appear similarly distributed across the galaxy disks.

Figure 7 summarizes the results of the LF fit for the population of \(H\alpha \) regions with high and low ionization parameter (shown in Fig. 3). It is evident that for 15 out of 19 galaxies the population of \(H\alpha \) regions with high \(q \) has, within the uncertainties, a shallower LF compared to the \(H\alpha \) regions with low \(q \). Also, looking at the shapes of the LFs we see that for a number of targets (e.g., IC5332, NGC0628, NGC2835, NGC3627, and NGC5068) the \(H\alpha \) regions with high and low \(q \) constitute, respectively, the bulk of the bright and faint \(H\alpha \) region population. The interpretation of these results is further discussed in Sect. 6.3.

5. Completeness, blending, and selection effects

Observational studies of LFs suffer from two main limitations. On the one hand, faint \(H\alpha \) regions are more difficult to detect against the diffuse \(H\alpha \) background. On the other hand, the brighter \(H\alpha \) regions, often located in crowded areas such as spiral arms, are more subject to blending effects. This can artificially lower the number of detected faint regions and increase the luminosity of the brightest regions, respectively, with repercussions on the slope of the LF.

The first limitation is related to the sensitivity and the completeness limit of the observations. We estimate the completeness limit of our LFs (shown in Fig. 2) in an empirical way by looking at the distribution of the \(H\alpha \) flux outside the ionized nebula footprints in the \(H\alpha \) emission line maps, which we refer to as the \(H\alpha \) diffuse emission for simplicity. Given the PSF of the MUSE observations for a given galaxy, we estimate the completeness limit as the luminosity of a mock circular \(H\alpha \) region with the size of the PSF and a uniform \(SFR \) equal to the 90th percentile (i.e., slightly larger than \(1 \sigma \) of the distribution) of the \(H\alpha \) diffuse emission distribution. In this way, we take into account the bright tail of the diffuse \(H\alpha \) background against which \(H\alpha \) regions can remain undetected. It is worth noting that tests injecting mock \(H\alpha \) regions are a good way forward to more robustly assess the completeness limit in the future.

As shown in Fig. 2 the completeness limit estimated in this way lies below the best fitting \(L_{\text{min}} \) (i.e., the LF turnover luminosity) suggesting that the presence of a turnover point is not a completeness problem but rather an intrinsic feature of the LFs of our galaxies (see Youngblood & Hunter 1999 and references therein for a discussion). Models have shown that a turnover point is to be expected when considering a constant SFR over time, while different SFH (e.g., a star formation burst in the past) can affect the shape of the LF in a more complex way (see, e.g., M31’s double-peaked LF is attributed to a recent starburst; Az-
Table 4. LF properties of H\n region subsamples in the PHANGS–MUSE galaxies.

Galaxy	α_n	n_i	α_j	n_j	α_{LR}	n_r	α_{LR}	n_q	α_{LR}	$n_{q<}$	α_{LR}	$n_{q<}$
NGC5068	--	--	--	--	1.57±0.09	607	1.60±0.08	598	2.01±0.17	525	1.39±0.00	587
IC5332	--	--	--	--	1.87±0.14	199	1.76±0.11	158	2.39±0.25	134	1.58±0.09	189
NGC1087	--	--	--	--	1.66±0.09	303	1.84±0.13	135	2.31±0.23	170	1.55±0.08	268
NGC1385	1.59±0.08	197	1.49±0.08	359	1.46±0.08	389	1.80±0.12	167	1.85±0.13	224	1.42±0.00	331
NGC2835	1.65±0.09	186	1.87±0.14	229	1.70±0.10	238	1.83±0.13	194	2.86±0.31	119	1.62±0.08	311
NGC6028	1.66±0.09	883	1.85±0.13	389	1.76±0.11	572	1.66±0.09	700	2.17±0.20	510	1.48±0.09	633
NGC3351	--	2.03±0.17	204	1.93±0.15	165	2.07±0.18	158	1.74±0.11	152			
NGC4254	1.58±0.09	792	1.65±0.09	637	1.57±0.09	921	1.72±0.10	508	1.74±0.11	583	1.55±0.08	846
NGC4303	1.49±0.08	864	1.68±0.10	668	1.52±0.08	937	1.65±0.09	630	1.83±0.13	731	1.44±0.00	823
NGC4535	1.54±0.08	341	1.71±0.10	545	1.64±0.09	455	1.62±0.09	479	1.70±0.10	459	1.50±0.08	393
NGC1300	1.67±0.10	397	2.13±0.19	184	1.79±0.12	344	1.75±0.11	289	1.87±0.14	337	1.67±0.10	289
NGC1512	1.96±0.16	125	2.18±0.20	108	1.92±0.15	101	2.83±0.31	78	1.81±0.13	128		
NGC1672	1.57±0.09	145	1.79±0.12	265	1.67±0.10	307	1.67±0.10	263	1.97±0.16	228	1.55±0.08	337
NGC4321	1.84±0.13	217	2.15±0.20	134	1.91±0.14	233	2.02±0.17	150	2.00±0.17	213	1.89±0.14	168
NGC1566	1.47±0.09	586	1.86±0.14	407	1.52±0.08	644	1.71±0.10	383	1.70±0.10	506	1.48±0.09	513
NGC3627	1.48±0.09	320	1.70±0.10	282	1.51±0.08	350	1.65±0.09	307	1.80±0.12	259	1.45±0.08	371
NGC1433	--	--	--	--	2.01±0.17	203	1.92±0.15	204	2.40±0.25	182	1.74±0.11	217
NGC1365	1.60±0.08	111	1.89±0.14	182	1.77±0.12	146	1.71±0.10	200	2.17±0.20	119	1.61±0.08	226

Notes. The table reports the galaxy name (Col. 1) and the LF slope and the number of H\n regions in the LF fit for the H\n region subsamples in spiral arms areas (Cols. 2–3), in inter-arms areas (Cols. 4–5), in the inner star-forming disk (Cols. 6–7), in the outer star-forming disk (Cols. 8–9), with low ionization parameter (Cols. 10–11), and with high ionization parameter (Cols. 12–13).

In Appendix C we also discuss how the selection criteria, we use to select our H\n regions (see Sect. 4.2), have no significant effect on the measurements of the LF slope presented in Sect. 4.1.

6. Discussion: What sets the LF slope?

6.1. The SFR surface density

In Sect. 4.2 we find that in general α correlates better with the global star formation properties of our galaxies and especially with Σ_{SFR}. We do not find any clear trends within the T-type, [O/H], and M, ranges probed by our sample. This indicates that the properties of star-forming regions are more closely connected to the global star formation properties in our sample.

One caveat to keep in mind is that the correlation between the LF and the SFR-related properties may be driven by the so-called size-of-sample effect (Larsen 2002; Weidner et al. 2004; Bastian 2008; Cook et al. 2012; Whitmore et al. 2014). This is a statistical effect (i.e., stochastic sampling) due to the fact that galaxies with higher SFRs tend to have more H\n regions and, in turn, the chances of observing a higher number of bright H\n regions increase in these galaxies. This is expected to drive a tight correlation between the total number of detected H\n regions (and subsequently the SFR) and the luminosity of the brightest star-forming region. Intuitively, the resulting effect is a flattening of the LF for galaxies with higher SFRs. To check for this effect in our sample, in Fig. 9 we plot the number of H\n regions (or similarly the number of ionized nebulae) against the maximum H\n region luminosity $L(\text{H}\alpha)_{\text{max}}$ and the global SFR. We find only a weak and a moderate trend, respectively. This indicates that, thanks to the resolution of our observations and the nature of our sample, the flatter slopes we observe for the more star-forming galaxies are not simply due to a statistical effect. In addition, Cook et al. (2016) tested the size-of-sample effect using simulated LFs with $\alpha = -2$ and showed that the stochastic scatter of the LF slope starts to increase symmetrically when the number...
of detected H\textsc{ii} regions drops below 100. This implies that low-
number statistics increases the scatter in the measured LF slope
but does not drive systematic changes of α in a specific direction.
Moreover, our LFs are built with H\textsc{ii} regions sample containing
at least ≈ 500 objects, and the LF fits presented in Sect. 4.3 rely
on at least 200 objects. For this reason, we expect the stochastic
scatter of α to be lower in our sample compared to previous
studies that often relied on smaller H\textsc{ii} region samples.

In agreement with Cook et al. (2016), who studied the LF
in a sample of 258 nearby galaxies using GALEX FUV data, we
find that the LF slope correlates best with Σ_{SFR}. In Fig. 4a, we
show the best fitting relation found by Cook et al. (2016) for a
qualitative comparison. We note that our points mostly lie above
this relation. A direct comparison is, however, not straightforward
because of the different type of observations. In fact, FUV and H\alpha
LFs probe different ages of H\textsc{ii} regions, $\lesssim 100$ Myr and
$\lesssim 10$ Myr, respectively (see, e.g., Haydon et al. 2020, Oey &
Clarke 1998b) predicted that older H\textsc{ii} region populations (e.g.,
derived from FUV) should have steeper slopes than younger
populations (e.g., derived from H\alpha). Overall, the average slope
of the nebular LF ($\approx 2 \pm 0.5$; Kennicutt et al. 1989; Elmegreen &
Salzer 1999), including our study ($\approx 1.73 \pm 0.15$), is compatible
with what has been found in the FUV ($\approx 1.76 \pm 0.3$; Cook et al.
2016).

The observed trend indicates that a shallower LF and, thus,
the formation of higher relative number of massive, luminous
H\textsc{ii} regions is connected with a higher Σ_{SFR}. We know that the
star formation process is fueled by cold gas. We thus expect the
SFR-related properties we measure to be connected with the way
how cold gas reservoir fuels star formation, which in turn is
connected with the sSFR, the Δm, and the molecular gas fraction.

As discussed in Sect. 4.2 the offsets from the resolved star
formation scaling relations can be used as a proxy for these parameters.
We find that the stronger correlation is between the LF slope and ΔmSFR (i.e., a measurement of the sSFR) indicating that, when the mass fraction between young and old stars is higher, galaxies tend to form a higher relative number of luminous H\textsc{ii} regions, in agreement with what we find when estimating the global sSFR directly from the MUSE data (Fig. 4b). A slightly weaker but still significant trend is found between the LF slope and ΔmMGMS (i.e., a measurement of the molecular gas fraction) suggesting that, when in a galaxy the fraction of cold gas that will eventually be converted into stars is higher, the relative number of bright and massive H\textsc{ii} regions produced by ongoing star formation is also higher.

Kruĳssen (2012) formulated a theoretical framework (invoked also by Cook et al. 2016 to explain their results), in which higher SFR and cold gas densities can result in a higher parsec-scale star formation efficiency that, in turn, enhances the cluster formation efficiency, defined as the ratio between the cluster formation rate (CFR) and the SFR ($\Gamma \equiv \text{CFR/SFR}$). This means that, at higher SFR and gas densities, more stars form in (gravitationally bound) star clusters. Observational evidence has indeed been found that Γ correlates well with the SFR surface density (see, e.g., Goddard et al. 2010; Adamo et al. 2011; Cook et al. 2012; Adamo et al. 2015; Johnson et al. 2016; Adamo et al. 2020a). The trend that we find in Fig. 4b between σ and Σ_{SFR} goes in the direction predicted by this scenario. It is worth noting that, with the available PHANGS–HST data (Lee et al. 2021), it will be possible to directly measure Γ and compare it to our measured H\textsc{ii} region LF slopes.

Quantitatively, the slope of the H\textsc{ii} region LF might be expected to be similar to the slope of the GMC MF (historically estimated to lie between 1.6 and 2.0, e.g., Kenneccutt & Evans 2012b), although more recent works find a wider range of slopes; see, e.g., Colombo et al. 2014; Rosolowsky et al. 2021. If star formation within GMCs is self-similar (Efremov & Elmegreen 1998) and the star formation efficiency is independent of the GMC mass at the observable, high-mass end of the mass range, then the slope of the H\textsc{ii} region LF is also expected to be $\alpha = 1.6-2.0$. Steeper slopes may then be the result of incomplete sampling of the stellar IMF, which occurs if the stellar populations born within the parent GMCs have a low mass ($\lesssim 10^4 M_\odot$; Krumholz et al. 2015). Simple analytical models, in which the maximum GMC and stellar population mass scales are regulated by gravitational instability and stellar feedback, predict that the maximum mass increases approximately with the total gas surface density as $\Sigma_\text{g}^{1.8}$ and therefore approximately linearly with Σ_{SFR} (Kruĳssen & Longmore 2014; Reina-Campos & Kruĳssen 2017). This linear relation is indeed observed by Johnson et al. (2017), who found that a maximum mass of $10^6 M_\odot$ is reached at $\Sigma_{\text{SFR}} = 2.6$. Above this SFR surface density, we expect the H\textsc{ii} region LF to be close to the slope of the GMC MF (which in environments of high gas and SFR surface densities is about 1.6, e.g., Colombo et al. 2014; Hughes et al. 2016). Toward lower SFR surface densities, we expect the H\textsc{ii} region LF to steepen. The same behavior, in which α declines with Σ_{SFR} for $\log(\Sigma_{\text{SFR}}) \approx -2.6$ and stays approximately constant (or declines less steeply) for $\log(\Sigma_{\text{SFR}}) \approx -2.6$ was also found by Cook et al. (2016) and is illustrated in (Fig. 4h). Here, as a reference to illustrate this flattening, we marked with horizontal lines the α corresponding to the Cook et al. (2016) best fitting line at $\Sigma_{\text{SFR}} \approx 2.6$ and the mean σ of our samples at $\Sigma_{\text{SFR}} > 2.6$. Both values are remarkably close to $\alpha = 1.6$, the slope of the GMC MF in the high gas and SFR regime. Based on the discussion in this section, we expect this behavior to arise from a combination of increased stellar clustering at birth toward higher gas densities (and therefore pressures; Kruĳssen 2012), as well as of decreased IMF sampling toward low SFR surface densities. Higher-resolution observations may be necessary to assess how blending of adjacent H\textsc{ii} regions may affect these trends.

6.2. The strength of spiral arms

In Sect. 4.3.1 we showed that a flattening of the LF slope in spiral arm areas compared to inter-arm areas is evident for only about half of the galaxies with spiral arms in our sample (i.e., six out of 13 galaxies, namely NGC1300, NGC1365, NGC1566, NGC1672, NGC3627, and NGC4303). The Monte Carlo simulations by Oey & Clarke (1998a) suggested that such variations
can be expected when the H\textsc{ii} regions populating the spiral arm areas trace a current burst of coeval star formation while the inter-arm population is an aged version thereof (i.e., aging effect). However, the same authors noted that, at any given location in a galaxy disk, the timescale between the passage of spiral density waves is on the order of 40 Myr (see, e.g., Rand 1993), much longer than the observed lifetime of H\textsc{ii} regions (in the interval 5–10 Myr; Chevance et al. 2020b). This implies that H\textsc{ii} regions detected in inter-arm areas are, potentially, tracing both a population of aging H\textsc{ii} regions and recent star formation that is genuinely happening in inter-arm areas.

Large-scale dynamical processes shaping the distribution of cold gas that ultimately fuels the star formation can also influence the variation (or not) in the LF slopes between spiral arm and inter-arm areas. We might expect this to depend on the nature of the dynamical perturbation present in the disk (material spiral arms versus density waves) and its strength. Rand (1992), for example, found a significant difference between the LF slopes of spiral arm and inter-arm H\textsc{ii} regions in the grand-design interacting galaxy M51 and attributed it to a shallower GMC’s MF in the spiral arms. In NGC 6814, on the other hand, Knappen et al. (1993) argued that the spiral arms are not strong enough to build up the large cloud masses needed to produce the number of giant H\textsc{ii} regions that make the spiral arm LF shallower than the inter-arm LF.

Strong spiral arms are not only capable of building high gas densities and growing high mass molecular clouds, they can also impact the likelihood of in situ inter-arm star formation, thus influencing the LFs of H\textsc{ii} regions. Indeed, the presence of spiral arms imposes a strong organization on the gas distribution, which acts to concentrate star formation into the spiral arms. Comparing a high-resolution simulation of an M51-like galaxy with a comparable isolated galaxy, Tress et al. (2020, 2021) concluded that strong spiral arms gather molecular gas and clouds without dramatically affecting their properties, yielding similar overall SFRs.

In our case, we might thus expect that variations in cloud MFs and H\textsc{ii} region LF slopes will be weak in systems with more uniformly distributed H\textsc{ii} regions across the disk (weaker spirals) and stronger in systems with strong spiral arms. In line with this, we find that the galaxies that show a significant environmental change in α are those in which the distribution of the H\textsc{ii} regions quite clearly traces the spiral arms and fewer H\textsc{ii} regions are detected in between spiral arms (i.e., less ongoing star formation in the inter-arm areas). The galaxies with more uniformly distributed H\textsc{ii} regions across the disk (e.g., NGC0628, NGC4254, and NGC4321), on the other hand, exhibit comparable α in the two environments.

We quantify this further using the azimuthal contrast in CO brightness across our targets, which serves as a proxy for spiral arm strength (Meidt et al. 2021). For our targets, we measure the CO contrasts in a set of 150-pc wide radial bins, calculating the ratio between the brightness of the 84th percentile of the CO distribution in a given ring and a reference level defined to capture the level of low brightness inter-arm emission in Meidt et al. (2021). We then take the average of the CO contrasts measured across the full area of interest.

As shown in Fig. 10 for the six galaxies showing environmental changes of the CO slope, the magnitude of such variations appears to correlate with the spiral arm contrast. The remaining galaxies with evidently weaker spiral arms, more uniformly distributed H\textsc{ii} regions, and no significant variation in LF slope from arm to inter-arm, do not exhibit a similar trend.

Fig. 10. Change in the LF slope between inter-arm and spiral arm environments, $\Delta L / L_e$ (derived as $\alpha_{\text{inter-arm}} - \alpha_{\text{spiral arm}}$ as reported in Table 4), as a function of the CO (2–1) contrast between the 84th percentile and the reference level defined in Meidt et al. (2021) for six galaxies in our sample.

Overall, these findings suggest that environmental variations in α are sensitive to how spiral arms shape the distribution of the more massive molecular clouds that serve as the birthplace of the brightest H\textsc{ii} regions. A study of environmental variations in GMCs MFs in our sample (e.g., Rosolowsky et al. 2021; Hughes et al. in preparation) will be an important tool for recognizing how much of the change in LF slope from arm to inter-arm is due to the evolution in the distribution of progenitor clouds and how much is due to, for example, aging, as considered in the next section. The morphology of inter-arm gas (in the form of spurs/feathers and non-spiral clump features) may also yield important clues on the nature of inter-arm star formation and the change in H\textsc{ii} region LF slope.

Given the resolution of our observations, we cannot fully exclude that H\textsc{ii} region blending, which affects spiral arms to a greater extent, has an effect on our findings. An additional factor that we are not considering and that can play a role in this context is the SFH of the galaxies. Feinstein (1997) predicted that a past starburst can manifest as an additional peak below the LF turnover luminosity and result in a double-peaked LF as the one observed for M31 by Azimlu et al. (2011). We would need observations that are at least one order of magnitude deeper in terms of $L_{H\alpha}$ to search for such features and, for this reason, we cannot deduce or fold in information on the SFH in our study of the LF.

6.3. The aging effect and the ionization parameter

According to Charlot & Longhetti (2001, eq. (10)), by assuming that H\textsc{ii} regions are well approximated by Strömgren spheres, the ionization parameter changes with time as $U(t) \propto (Q(t)/n_H)^{1/3}$, where Q is the rate of ionizing photons produced by the central star or cluster and n_H is the hydrogen density. Considering the typical evolution of an H\textsc{ii} region, we can expect the ionization parameter to drop as time passes: as the central ionizing star/cluster evolves its ionizing flux drops while the gas density decreases due to stellar feedback dispersing the H\textsc{ii} region’s gas (see, e.g., Rahner et al. 2017, 2019; Pellegrini et al. 2020).

The LF slope can, in principle, be used to test this expectation by using the ionization parameter to draw subsamples of H\textsc{ii} regions in the way we did in Sect. 4.3.3. If the ionization parameter q is related to the evolutionary stage of an H\textsc{ii} region, it would separate less and more evolved H\textsc{ii} regions and, ultimately, we would expect the aging effect to drive changes in the LF slope (Oey & Clarke 1998a). This is the same effect discussed for en-
environmental variations in the previous section. What we find in Sect. 4.3.3 is indeed a steeper LF for the population of H\textsc{ii} regions with lower \(q \) that, for a number of galaxies, constitutes the bulk of the faint H\textsc{ii} regions. This corroborates the expectations of Charlot & Longhetti (2001) from an empirical point of view, indicating that the ionization parameter can be used as a good proxy for the evolutionary stage of H\textsc{ii} regions.

However, we know that H\textsc{ii} regions are not always well represented by Strömgren spheres; for example, they can be asymmetric or even broken shells (see, e.g., Pellegrini et al. 2012). Also, assuming equal physical conditions for an H\textsc{ii} region, the same ionizing flux (and thus ionization parameter) can be produced by a single very young star or a cluster of slightly older stars. Another parameter that is relevant for the interpretation of our results is the metallicity, and its long-debated degeneracy with age. In fact, an increase in stellar metallicity is also expected to lower the ionization parameter: as stellar atmospheres of O stars become cooler (Massey et al. 2005) and the mechanical energy due to photon scattering increases, dispersing gas more efficiently (Dopita et al. 2006).

Interestingly, using PHANGS–MUSE data, Kreckel et al. (2019) showed that H\textsc{ii} regions with higher $[S\text{\,ii}]/[S\text{\,iii}]$ line ratios (and thus higher ionization parameter) also tend to have higher H\textalpha-to-FUV flux ratios, indicating younger star cluster ages. We note that the PHANGS–HST data set will be an ideal test-bed to actually connect our H\textsc{ii} regions (and their ionization parameters) to the ages of their ionizing star(s)/cluster and shed a light on this topic. The $[S\text{\,ii}]/[S\text{\,iii}]$ line ratio we use to compute the ionization parameter has been found to have only a weak dependence on the gas-phase metallicity for H\textsc{ii} regions located in spiral galaxies (Dors & Copetti 2005; Garnett et al. 1997; Kennicutt & Garnett 1996; Dors et al. 2011). However, the topic is still debated as other works presented contrasting results (see, e.g., Bresolin et al. 1999 for disk galaxies and Dopita et al. 2014 for Luminous Infrared Galaxies) and, above all, in our sample a clear correlation has been found between $[S\text{\,ii}]/[S\text{\,iii}]$ and the gas-phase metallicity (see Fig. 4 in Kreckel et al. 2019). We confirm this by looking at the distribution of the H\textsc{ii} region metallicities for the subsamples with high and low q. However, if the gas-phase metallicity plays a role in setting the slope of the LF, we would see it by defining H\textsc{ii} region subsamples based on their metallicity and looking for variations in α. We conducted this test and do not find such variations. We thus conclude that the variations in the LF slope we observe in Fig. B.3 are mainly driven by aging of the H\textsc{ii} regions rather than their metal content.

By comparing the spatial distribution of the warm ionized gas (i.e., H\textsc{ii} regions) and the cold molecular gas (i.e., GMCs), it is now possible to infer, for example, the lifetime of GMCs t_{CO} and the timescale over which stellar feedback acts t_{fb} (see, e.g., Kruijssen et al. 2019; Chevance et al. 2020a; Kim et al. 2021). Assuming that the aging effect is the main driver behind the LF slope variations we observe between the H\textsc{ii} region subsamples with high and low q, we can reasonably expect the magnitude of such variations Δq to correlate with the timescales that regulate the star formation process (e.g., the lifetime of GMCs serving as the stellar nurseries, the timescales of stellar feedback) in a given galaxy. Following the “uncertainty principle for star formation” method of Kruijssen et al. (2018) and expanding the results of Chevance et al. (2020a), Kim et al. (in preparation) derived t_{CO} and t_{fb} for most of the galaxies in our sample. In that work, H\textsc{ii} regions are traced via the H\textalpha emission in the PHANGS–H\textalpha data (Razza et al. in preparation), while GMCs are traced via the CO(2–1) emission in the PHANGS–ALMA data (Leroy et al. 2021). It should be noted that for IC5332 there is no significant CO(2–1) emission detected to apply this method and the t_{CO} and t_{fb} measurements for NGC0628 and NGC3627 are taken from Chevance et al. (2020a).

As shown in Fig. 11, we find a weak-to-moderate and a moderate anticorrelation between Δq and t_{fb} and t_{CO}, respectively. These trends suggest that when stellar feedback occurs on shorter timescales and the GMC lifetime is shorter (i.e., they get dispersed faster due to stellar feedback) the difference between the LF slope of H\textsc{ii} regions with high and low q increases, as it would be expected if those populations are intrinsically different in terms of their age.

7. Conclusions

In this paper we have studied the nebular LFs (i.e., built using the H\textalpha luminosity of H\textsc{ii} regions) in the star-forming disks of the 19 nearby galaxies that make up the PHANGS–MUSE sample. Thanks to the exquisite spatial resolution (mean PSF$_{FWHM}$ = 67 pc) and sensitivity of the data, we were able to build a catalog of about 31 400 ionized nebulae, from which we extracted an log of about 31 400 ionized nebulae, from which we extracted an

Fig. 11. Change in LF slope between H\textsc{ii} regions with low and high ionization parameters (derived as $\alpha = \alpha_{q}$, as reported in Table 4) as a function of the feedback timescales (upper panel) and the GMC lifetime (lower panel). For each panel we report the Spearman correlation coefficient, ρ, between the plotted quantities.
observations, our LFs mainly probe massive star formation happening in star clusters and associations. We report evidence that the LFs of a number of galaxies steepen at luminosities above $\log(L_{H\alpha} \text{[erg s}^{-1}]) = 38.6$ (i.e., type II LF). However, this appears as a subtle feature compared to what has been shown in past studies (e.g., Beckman et al. 2000). In general, a power law with a single slope offers a good representation of the LFs and allows us to uniformly analyze the LFs across our sample.

We find that the LF slope remains largely unchanged for the inner and outer parts of the star-forming galaxy disks (Sect. 4.3.2). For the galaxies with H II regions more uniformly distributed across the star-forming disk, we do not find any significant difference between the slopes of the spiral arm and inter-arm LFs. On the other hand, we find environmental (i.e., arm versus inter-arm) LF variations for galaxies that show H II regions preferentially located along spiral arms. We attribute these variations to the spiral arms increasing the molecular clouds’ arm–inter-arm mass contrast and find suggestive evidence that they are more pronounced in galaxies with spiral arms that drive stronger dynamical perturbations.

In line with the results of Cook et al. (2016), who studied the LF of star-forming regions as traced by GALEX FUV imaging, we find that galaxies with a higher Σ_{FF} have a flatter LF, meaning that their relative number of bright H II regions is higher compared to galaxies with lower Σ_{FF}. This potentially connects to fundamental changes in the physics regulating star formation in galaxy disks. The trend we observe between α and Σ_{FF} is not driven by low-number statistics and provides further evidence for the prediction that the clustering of young stars is enhanced at high gas surface densities and star formation efficiencies (Kruisjes et al. 2012).

Finally, we find that, within each of our galaxies, H II regions with a high ionization parameter have a shallower LF compared to those with a low ionization parameter. Such variations are compatible with an aging effect, suggesting that H II regions with a high q are the youngest star-forming regions, while the ones with a low q are more evolved. The lack of α trends or variations related to the H II regions’ gas-phase metallicity perturbs us that the main parameter regulating changes in q is age. We also bring some tentative evidence that suggests that α variations between these H II region populations are more evident when stellar feedback acts on shorter timescales and GMC lifetimes are shorter.

8. Future prospects

We note that this work can be expanded in a number of promising directions in the near future, especially thanks to the availability of HST and ALMA data for the entire PHANGS–MUSE sample. The PHANGS–ALMA data will allow us to characterize GMCs and study their MF. Comparing GMC MF slopes with the H II regions’ LF slopes reported in this paper can bring new insights into if and how physical properties of the molecular gas influence the physics of star formation. On the other side, the PHANGS–HST data can be used to estimate the ages and metallicities of the star(s) or cluster ionizing the H II regions and help in disentangling what is the main driver behind changes in the H II regions’ ionization parameter is. Furthermore, by providing a direct estimate of the clustered star formation efficiency (defined as the ratio between the CFR and the SFR; $\Gamma \equiv CFR/SFR$), it will be possible to compare Γ to H II region LF slopes measured in this paper and test whether this is the mechanism behind the flattening of the LF that we observe with increasing Σ_{FF}.

Acknowledgements

This work was carried out as part of the PHANGS collaboration. FS, ES, RME, TS, and TGW acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 694343). ABT would like to acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 726384/Empep). JMDK and MC gratefully acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through an Emmy Noether Research Group (grant number KR4801/1-1), as well as from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907). JMDK, MC, and JK gratefully acknowledge funding from the DFG Sachbeihilfe (grant number KR4801/2-1). ER acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), funding reference number RGPIN-2017-03987. KK gratefully acknowledges funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4598/2-1). EJW acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 138713538 – SFB 881 (“The Milky Way System”), subproject P2. MB gratefully acknowledges support by the ANID BASAL project FB210003 and the FONDECYT regular grant 1211000. Based on observations collected at the European Southern Observatory under ESO programmes 1100.B-0651, 095.C-0473, and 094.C-0623 (PHANGS-MUSE; PI Schinnerer), as well as 094.B-0321 (MAGNUM; PI Marconi), 099.B-0242, 0100.B-0116, 098.B-0551 (MAD; PI Carollo) and 097.B-0640 (TIMER; PI Gadotti).

References

Adamo, A., Hollyhead, K., Messa, M., et al. 2020a, MNRAS, 499, 3267
Adamo, A., Kruisjes, J. M. D., Bastian, N., Silva-Villa, E., & Ryon, J. 2015, MNRAS, 452, 246
Adamo, A., Ostlin, G., & Zackrisson, E. 2011, MNRAS, 417, 1904
Adamo, A., Zeidler, P., Kruisjes, J. M. D., et al. 2020b, Science Rev., 216, 69
Alstott, J., Bullmore, E., & Plenz, D. 2014, PLoS ONE, 9, e85777
Anand, G. S., Lee, J. C., Van Dyk, D. S., et al. 2021, MNRAS, 501, 3621
Azimlu, M., Marcinia, R., & Barnby, P. 2011, AJ, 142, 139
Bacon, R., Accardo, M., Adjali, L., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Ground-based and Airborne Instrumenation for Astronomy III, ed. I. S. McLean, S. K. Ramay, & H. Takami, 773508
Bacon, R., Conseil, S., Mary, D., et al. 2017, A&A, 608, A1
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
Banfi, M., Rampazzo, R., Cincharingi, G., & Henry, R. B. C. 1993, A&A, 280, 373
Bastian, A. T., Longmore, S. N., Dale, J. E., et al. 2020, MNRAS, 498, 4906
Bastian, N. 2008, MNRAS, 390, 759
Bastian, N., Ercolano, B., Gieles, M., et al. 2007, MNRAS, 379, 1302
Bastian, N., Gieles, M., Ercolano, B., & Gutermuth, R. 2009, MNRAS, 392, 688
Beckman, J. E., Rozas, M., Zurita, A., Watson, R. A., & Knapen, J. H. 2000, AJ, 119, 2729
Belfiore, F., Santoro, F., & Groves, B. 2021, A&A submitted
Bittner, A., Falcón-Barroso, J., Nideckel, B., et al. 2019, A&A, 628, A117
Blanc, G. A., Heiderman, A., Gehbhardt, K., Evans, Neal J., & Adams, J. 2009, ApJ, 704, 842
Bresolin, F., Kennicutt, Robert C., & Garnett, D. R. 1999, ApJ, 510, 104
Cappellari, M. 2017, MNRAS, 466, 798
Cepa, J. & Beckman, J. E. 1990, A&AS, 83, 211
Chabrier, G. 2003, PASP, 115, 763
Charlot, S. & Longhetti, M. 2001, MNRAS, 323, 887
Chevance, M., Kruisjes, J. M. D., Hygate, A. P. S., et al. 2020a, MNRAS, 493, 2872
Chevance, M., Kruisjes, J. M. D., Vazquez-Semadeni, E., et al. 2020b, Science Rev., 216, 50
Cluaset, A., Shalizi, C. R., & Newman, M. E. J. 2009, SIAM Review, 51, 661
Colombo, D., Hughes, A., Schinnerer, E., et al. 2014, ApJ, 784, 3
Cook, D. O., Dale, D. A., Lee, J. C., et al. 2016, MNRAS, 462, 3766
Coles, P., Seth, A. C., Dale, D. A., et al. 2012, ApJ, 751, 104
Diaz, A. I., Terlevich, E., Vilchez, J. M., Pagel, B. E. J., & Edmunds, M. G. 1991, MNRAS, 253, 245
Appendix A: Nebula spatial masks and metallicity gradients

In this section, we present the spatial masks of the H\(\text{II}\) regions for 18 galaxies of the PHANGS–MUSE sample (from Fig. A.1 to Fig. A.18) highlighting the H\(\text{II}\) region footprints and the different galaxy environments. At the end of this section in Fig. A.19 we also show the best fitting radial metallicity gradients for all the galaxies in our sample. They provide the measurement of the metallicity at the median galactocentric radius covered by the MUSE observations used in Sect. 4.2.

Appendix B: Variations in the LF within single galaxies

In this section we show the LFs and their fits for the H\(\text{II}\) region subsamples described in the main text in Sect. 4.3. Figure B.1 shows the LFs of the spiral arm and inter-arm areas, six of our 19 galaxies do not show evident spiral arms, for these galaxies we show the LF and best fitting models of the H\(\text{II}\) regions across the entire disk but excluding bars (i.e., this is the reason for slight variations with respect to the fits shown in Fig. 2). Figure B.2 shows the LF of the inner and outer parts of the star-forming disk while Fig. B.3 shows the LFs of H\(\text{II}\) regions with high and low ionization parameter log \(q\).

Appendix C: The effect of dust correction and BPT cuts on the LF slopes

In this section we discuss in more detail the effect that dust extinction and selection criteria might play on the LF slopes presented in our paper. In Sect. 4.1, we discuss LFs built from extinction-corrected H\(\alpha\) luminosities of H\(\text{II}\) regions. The spectroscopic nature of the MUSE data allow us to perform extinction correction via the H\(\alpha\)/H\(\beta\) Balmer decrement; however, in some cases (i.e., when the nebular LF is obtained from narrowband H\(\alpha\) imaging) this is not possible. To understand the effect of dust extinction, we fit the LF built with observed H\(\alpha\) luminosities and in Fig. C.1 and Fig. C.2, we compare the results with what we presented in Sect. 4.1. Overall, we see only a small change in the LF slope if we do not correct for dust extinction. The variations always remain within the uncertainty estimated for the LF slope. The dust-corrected LF slopes are, as one would expect, shallower due to the presence of more luminous H\(\text{II}\) regions after the dust correction is performed. This guarantees that our results can be compared to nebular LF studies – performed with, for example, narrowband H\(\alpha\) observations – that do not correct for the effect of dust extinction. As can be noted in Fig. C.1 another effect of the lack of a dust correction is the lowering of \(L_{\text{min}}\) due to the fact that we detect a higher number of faint H\(\text{II}\) regions. The most significant drop in the number of ionized nebulae entering our H\(\text{II}\) region catalog is due to the cuts on the line ratios applied using semi-empirical demarcation lines in the three classical BPT diagrams (“BPT cuts” hereafter; see Sect. 3.2). It is known that, depending on their gas-phase metallicity and ionization parameter, H\(\text{II}\) regions can lie outside the boundaries that are commonly adopted to have a clean H\(\text{II}\) region sample and avoid nebulae whose gas is ionized by mechanisms other than photoionization from young OB stars (e.g., AGN photoionization/shocks). As shown by Fig. C.3 and Fig. C.4, if we drop the BPT cuts when cleaning our ionized nebula catalogs and re-run the LF fit, we find no significant variation in the measured LF slope. Remarkably, this is true also for NGC1365 for which there is clear evidence of an AGN ionization cone extending further out the central region (Belfiore et al. 2021). As can be seen by comparing the empirical LFs, the regions that are flagged by the BPT cuts tend to populate the fainter end of the LF and thus have negligible effects on the LF shape at the bright end. In addition, we note that the LF \(L_{\text{min}}\) remains substantially unchanged aside from the case of NGC3627, the only strongly interacting galaxy in our sample.

In conclusion, we find that both the dust correction and selection effects do not have a significant impact on the slopes of the LFs that we measure in Sect. 4.
Fig. A.1. H\textsc{ii} regions and environments for IC5332. The figure shows the H\textalpha{} emission in the background, color coded according to the color scheme on the right, overlaid with the borders of the H\textsc{ii} regions in our catalog. The centers of the nebulae that have been discarded by our selection criteria are marked with crosses. In the lower-left corner, the black circle indicates the PSF of the MUSE observations, while the black line marks a physical scale corresponding to 1 kpc. Both the H\textsc{ii} regions and the discarded nebulae are color coded according to our definition of environments as outlined by the color scheme at the bottom.
Fig. A.2. Same as Fig. A.1 but for the Hα regions and environments for NGC0628.
Fig. A.3. Same as Fig. A.1 but for the H ii regions and environments for NGC1087.
Fig. A.4. Same as Fig. A.1 but for the H II regions and environments for NGC1300.
Fig. A.5. Same as Fig. A.1 but for the H II regions and environments for NGC1365.
Fig. A.6. Same as Fig. A.1 but for the H$_\alpha$ regions and environments for NGC1385.
Fig. A.7. Same as Fig. A.1 but for the H\textsc{ii} regions and environments for NGC1433.
Fig. A.8. Same as Fig. A.1 but for the Hα regions and environments for NGC1512.
Fig. A.9. Same as Fig. A.1 but for the H II regions and environments for NGC1566.
Fig. A.10. Same as Fig. A.1 but for the H\textsc{ii} regions and environments for NGC1672.
Fig. A.11. Same as Fig. A.1 but for the H ii regions and environments for NGC2835.
Fig. A.12. Same as Fig. A.1 but for the H\textsubscript{n} regions and environments for NGC3351.
Fig. A.13. Same as Fig. A.1 but for the H ii regions and environments for NGC3627.
NGC4254

Fig. A.14. Same as Fig. A.1 but for the H ii regions and environments for NGC4254.
Fig. A.15. Same as Fig. A.1 but for the H\textsc{ii} regions and environments for NGC4303.
Fig. A.16. Same as Fig. A.1 but for the H II regions and environments for NGC4535.
Fig. A.17. Same as Fig. A.1 but for the H\textsc{ii} regions and environments for NGC5068.
Fig. A.18. Same as Fig. A.1 but for the H\textsubscript{ii} regions and environments for NGC7496.
Fig. A.19. Fit of the radial metallicity gradients for the galaxies in the PHANGS–MUSE sample. Galaxies are ordered according to increasing stellar mass from top left to bottom right, and their name is indicated at the top right of each panel. The H\textsc{ii} region metallicity $12 + \log(O/H)$ is plotted against its deprojected galactocentric radius, r_{gal}, measured in kpc (black points). The best linear unweighted least-square fit relation reported above each panel (red label) is shown using a solid red line. The dashed blue vertical and horizontal lines intercept at the metallicity given by the best fitting model at the mean H\textsc{ii} region galactocentric radius, $\langle r_{gal} \rangle$; this value, met$_{\langle r_{gal} \rangle}$, is reported above each panel (blue label). Verify that your intended meaning has not been changed.
Fig. B.1. LFs for H\textsc{ii} regions in spiral arm and inter-arm areas. Galaxies are ordered according to increasing stellar mass from top left to bottom right, and their names are indicated within each panel. For the 13 galaxies that show evident spiral arms, the LF and the best fitting model are shown in red and blue for H\textsc{ii} regions located in spiral arms and inter-arms areas, respectively. For the remaining galaxies, the LF and the best fitting model refer to the H\textsc{ii} regions located in the entire disk, excluding the areas occupied by the bars, and are drawn in black. The dashed and solid lines indicate the empirical LF and the best fitting model, respectively. The LF slopes are reported in the top-right corner of each panel following the same color scheme.
Fig. B.2. LFs for H\textsc{ii} regions located in the inner (red colors) and outer disk (blue colors) areas. Galaxies are ordered according to increasing stellar mass from top left to bottom right, and their names are indicated within each panel. The dashed and solid lines indicate the empirical LF and the best fitting model, respectively. The LF slopes are reported in the top-right corner of each panel following the same color scheme. The median galactocentric radius, $\langle r_{\text{gal}} \rangle$, of the H\textsc{ii} region parent sample, used to separate inner and outer disks, is indicated below each galaxy name in units of R_{25}.

F_{inner}, F_{outer}
Fig. B.3. Best fitting model of the H\(_\text{II}\) region LF for regions with high (blue colors) and low (red colors) gas ionization parameters, \(q\). Galaxies are ordered according to increasing stellar mass from top left to bottom right, and their names are indicated within each panel. The dashed and solid lines indicate the empirical LF and the best fitting model, respectively. The LF slopes are reported in the top-right corner of each panel following the same color scheme. The median ionization parameter, \(\langle \log q \rangle\), of the H\(_\text{II}\) region parent sample, used to separate young and old H\(_\text{II}\) regions, is indicated below each galaxy name in logarithmic units.
Fig. C.1. Fit of the LF for H\textsc{ii} regions obtained from the dust-corrected (same as in Fig. 2, red colors) and observed (blue colors) H\textalpha{} fluxes. Galaxies are ordered by increasing stellar mass from top left to bottom right, and their names are indicated within each panel. The dashed and solid lines indicate the empirical LF and the best fitting model, respectively. The LF slopes are reported in the top-right corner of each panel following the same color scheme.
Fig. C.2. Slope of the LF for H\textsc{ii} regions obtained from the dust-corrected (same as in Fig. 2, red colors) and observed (blue colors) H\textsc{\alpha} fluxes. Galaxies are ordered by increasing stellar mass from left to right, and their names are indicated along the abscissa.
Fig. C.3. Fit of the LF for H\textsc{ii} regions obtained applying the BPT cut (same as in Fig. 2, red colors) and not applying the BPT cut (blue colors) to our nebula catalogs. Galaxies are ordered according to increasing stellar mass from top left to bottom right, and their names are indicated within each panel. The dashed and solid line respectively indicate the empirical LF and the best fitting model. The models slopes are reported in the top-right corner of each panel following the same color scheme.

Fig. C.4. Slope of the LF for H\textsc{ii} regions obtained applying the BPT cut (same as in Fig. 2, red colors) and not applying the BPT cut (blue colors). Galaxies are ordered according to increasing stellar mass from left to right, and their names are indicated along the abscissa.