Gravitational-wave and X-ray probes of the neutron star equation of state

Nicolás Yunes1✉, M. Coleman Miller2✉ and Kent Yagi3✉

Abstract | The physics of neutron stars is a remarkable combination of Einstein’s theory of general relativity and nuclear physics. Their interiors harbour extreme matter that cannot be probed in the laboratory. At such high densities and pressures, their cores may consist predominantly of exotic matter, such as free quarks or hyperons. Observations from the Laser Interferometer Gravitational-Wave Observatory (LIGO) and other gravitational-wave interferometers and X-ray observations from the Neutron Star Interior Composition Explorer (NICER) are beginning to provide information about neutron star cores and, therefore, about the mechanisms that make such objects possible. In this Review, we discuss what has been learned so far about the physics of neutron stars from gravitational-wave and X-ray observations. We focus on what has been observed with certainty and what should be observable in the near future, emphasizing the physical understanding that these new observations will bring.

Neutron stars are remarkable in many ways. With masses comparable with our Sun’s but radii of only approximately 12 km, they are some of the most compact and, thus, gravitationally powerful objects in the Universe. With monstrous magnetic fields up to 10^{16} Gauss (which is a hundred trillion times stronger than that of a refrigerator magnet), they funnel photons into beams that travel astronomical distances. With astounding rotation speeds that can reach up to hundreds of hertz (rivaling professional kitchen blenders), they whip these magnetic fields and beams around, creating astrophysical lighthouses. Every time the beams cross paths with the Earth, radio telescopes record a pulse, and the counting of these pulses can be used for timekeeping. Neutron stars are, in fact, among the most stable and accurate clocks known in the Universe because of their extremely stable rotation rates.

Neutron stars are also unavoidable. A massive star comes to the rescue, one would expect the formation of other baryons with at

1 Illinois Center for Advanced Studies of the Universe, Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA.
2 Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD, USA.
3 Department of Physics, University of Virginia, Charlottesville, VA, USA.
4 e-mail: nyunes@illinois.edu; miller@astro.umd.edu; ky5t@virginia.edu
https://doi.org/10.1038/s42254-022-00420-y
Gravitational-wave observations of binary neutron star mergers are beginning to provide information about the equation of state of supranuclear matter through constraints on the tidal deformability of neutron stars. The X-rays emitted by hotspots on the surface of certain pulsars are starting to provide information about nuclear physics through constraints on the radius of neutron stars. Future observations of gravitational waves and X-rays from LIGO, Virgo, Kamioka Gravitational Wave Detector (KAGRA) and the Neutron Star Interior Composition Explorer will provide unprecedented insights into the physics of neutron stars.

The processes at play inside neutron stars are a combination of general relativity, quantum mechanics, particle physics and nuclear physics effects that cannot be replicated in the lab. Gravitational-wave observations of binary neutron star mergers are beginning to provide information about the equation of state of supranuclear matter through constraints on the tidal deformability of neutron stars. The X-rays emitted by hotspots on the surface of certain pulsars are starting to provide information about nuclear physics through constraints on the radius of neutron stars. Future observations of gravitational waves and X-rays from LIGO, Virgo, Kamioka Gravitational Wave Detector (KAGRA) and the Neutron Star Interior Composition Explorer will provide unprecedented insights into the physics of neutron stars.

Key points

- The processes at play inside neutron stars are a combination of general relativity, quantum mechanics, particle physics and nuclear physics effects that cannot be replicated in the lab.
- Gravitational-wave observations of binary neutron star mergers are beginning to provide information about the equation of state of supranuclear matter through constraints on the tidal deformability of neutron stars.
- The X-rays emitted by hotspots on the surface of certain pulsars are starting to provide information about nuclear physics through constraints on the radius of neutron stars.
- Future observations of gravitational waves and X-rays from LIGO, Virgo, Kamioka Gravitational Wave Detector (KAGRA) and the Neutron Star Interior Composition Explorer will provide unprecedented insights into the physics of neutron stars.

Supranuclear densities

Densities above nuclear saturation: 2.7×10^{14} g cm$^{-3}$.

At least one strange quark, such as hyperons5,6, until eventually, close to the centre of the star, quarks may become deconfined (that is, no longer bound in hadrons)7, creating a degenerate quark–gluon plasma.

Neutron stars are, therefore, cool, but not just because they are physically interesting: they are also 'cold.' Imagine a neutron star composed of an immense number of fermions, which, due to the Pauli exclusion principle, must occupy different energy states. The highest energy state, the Fermi energy, is, therefore, enormous, and one can think of these fermions as forming a kind of 'gas.' In this picture, it is possible to associate an effective temperature to this gas, by dividing the Fermi energy by the Boltzmann constant. This temperature turns out to be very high, on the order of 10^{33} K, about five orders of magnitude higher than the temperature at the centre of the Sun. Therefore, even though isolated neutron stars are actually very hot in terms of their actual temperature, which, at their cores, might typically be 10^8–10^{10} K, they are cold relative to their Fermi temperature. When neutron stars are born, they can be significantly hotter; for example, proto-neutron stars can have core temperatures of 10^{11} K. But such stars cool down very rapidly via neutrino emission, dropping by two orders of magnitude in just a thousand years, which is an extremely short timescale by astronomical standards. Thus, unless one is observing their birth, neutron stars are, for most purposes, cold objects relative to their Fermi temperature.

Although it may not seem so from the above description of their complicated structure, there are some ways in which neutron stars are simple. Many macroscopic aspects of neutron stars that have been, or could be, observed using electromagnetic radiation or gravitational waves, including their mass, radius and tidal deformability, depend only on the nature of gravity (here, we assume general relativity) and the equation of state, which determines the pressure given other quantities, such as the energy density, temperature and composition. As argued above, the temperature is too low to make a difference in isolated and 'old' neutron stars, although temperature cannot be neglected in the merger of neutron stars. The composition is usually assumed to be the equilibrium composition, because there is enough free energy to transition to the ground state (unlike at, say, terrestrial densities, where 56Fe is the ground state of matter, but there is insufficient energy to cause fusion to guarantee that matter reaches that state). Other complications are also thought to be ignorable in the description of the equation of state; for example, shear and bulk viscosity are believed to contribute negligibly to the equation of state (although they may be relevant in the dynamics of the merger of neutron stars)9.

Thus, to an excellent approximation, in neutron star cores, the pressure depends only on the energy density, which is to say that the equation of state is barotropic.

The equation of state puzzle

Understanding neutron stars is, therefore, 'simple': solve for the equation of state using many-body quantum mechanics and quantum chromodynamics, and then use this in conjunction with the Einstein equations to predict the observable properties of the equation of state. Unfortunately, this is easier said than done. The Einstein equations part is not the problem. In fact, it is relatively straightforward to compute the observable properties of neutron stars in general relativity, if given an equation of state. The problem is quantum mechanical, and relates to the 'sign problem' present in quantum chromodynamics calculations at non-zero baryon chemical potential. Although this theory has straightforwardly calculable predictions for matter at finite temperature and zero net baryon density (matter with almost equal numbers of baryons and antibaryons), current numerical methods become exponentially more costly when the net baryon density is large. As a result, it is not possible to compute the properties of neutron star core matter using current first principles approaches.

For this reason, an abundance of models for the equation of state of matter at supranuclear densities and effectively zero temperature have been put forth10. One approach is to solve quantum-chromodynamics-motivated models using the best microphysics possible given the constraints of the sign problem11,12. Another

Fig. 1 | Schematic of the structure of a neutron star and its internal structure. The figure illustrates the thin atmosphere, the outer and inner crust, and the outer and inner core, with the respective densities at different depths. Adapted with permission from NASA, NICER Team.
Box 1 | The equation of state and its derivation from astrophysical observations

As indicated in the text, the equation of state represents a mapping between the pressure and other quantities, such as the energy density, temperature and composition. But in neutron stars, it is typically thought that, in the core, the pressure \(p \) depends only on the energy density \(\varepsilon \), so \(p = p(\varepsilon) \). To see how observations of neutron stars can help to constrain the equation of state, note that the equation of hydrostatic equilibrium, for non-rotating (and, thus, spherical) fluid stars in general relativity, is the Tolman–Oppenheimer–Volkoff equation

\[
\frac{d\varepsilon}{dr} = -p(\varepsilon) \left(\frac{1}{r^2} + \frac{4\pi G M}{r^3} \right) - \frac{2G M}{r^2} + \frac{\varepsilon}{r^2}.
\]

(1)

Here, \(r \) is the coordinate distance from the centre of the star, and \(M \) is the gravitational mass inside this radius; \(G \) is Newton's gravitational constant, and \(c \) is the speed of light. The quantity \(\varepsilon \) includes the rest-mass density, so, in the Newtonian limit, where \(p \ll \varepsilon, c \) is dominated by rest-mass energy \(\rho c^2 \). In this same limit, \(2G M/c^2 < r \), so the above equation reduces to the Newtonian hydrostatic equilibrium equation \(dp/dr = -\rho G/m \). Given an equation of state \(p(\varepsilon) \) and a central density \(\varepsilon_c \), one can integrate this equation, combined with the continuity equation \(dm/dr = 4\pi G \rho \), to find the (total) mass \(M \) and radius \(R \) of a star. In the Newtonian limit, larger \(\varepsilon \) guarantees larger \(M \), but, in general relativity, there is a central density \(\varepsilon_c \) beyond which further increase leads to lower \(M \). This corresponds to an instability and means that, in general relativity, a given equation of state has a maximum stable mass. Thus, any measurement or constraint on the mass and radius of a star (or other quantities such as the mass and tidal deformability of a star, or the mass and moment of inertia of a star) can be compared with the predictions of a set of equations of state.

In these neutron star structure equations, however, there is no information about the composition of the core. Any composition that yields a \(p(\varepsilon) \) that is consistent with observations will do. Thus, although observations of neutron star mass, radius, tidal deformability, moment of inertia and so on provide valuable constraints, they cannot, by themselves, inform whether the core is mainly neutrons, or hyperons, or free quarks, or something else. Some additional information can, in principle, be obtained by measurements of the temperatures of neutron stars of a given age and mass (because temperatures depend on transport properties that, in turn, have some dependence on composition) or about the gravitational waves emitted in the (hot) merger of neutron star binaries. However, at this time, temperature and merger information is a bit too uncertain or unavailable to provide strong and reliable constraints.

approach is to assume that the equation of state is known up to some threshold density (which is typically around the nuclear saturation density) and then extrapolate to higher densities using some (often parameterized) 1D function, such as a piecewise polynomial. In this latter approach, the aim is to use nuclear physics experiments and astrophysical observations to constrain this phenomenological function, and then to study what the constraints imply for nuclear physics.

The phenomenological nature of the second approach does not imply that interesting nuclear and particle physics is unimportant. On the contrary, the interactions between nuclei, neutrons and quarks can greatly influence the functional form of the equation of state and, therefore, both approaches attempt to include as much physics as possible. For example, if the matter in the core of neutron stars transitions into deconfined quarks, then, under certain circumstances, it is possible for the speed of sound of the fluid (that is, the square root of the derivative of the pressure with respect to the energy density) to become very small or zero. This is called a first-order phase transition in the quantum chromodynamics phase diagram, which, for old and isolated neutron stars, is 2D (pressure versus density or chemical potential only). The speed of sound also cannot exceed the speed of light (the so-called ‘causal limit’), and, at extremely high energy densities, it is expected to approach square root of one-third the speed of light (the so-called ‘conformal limit’). The latter arises because, at sufficiently high densities, the particles’ energy is dominated by their Fermi momentum, so they can be treated effectively as a relativistic gas. It is not currently known if the conformal limit applies at the densities expected inside the cores of neutron stars or whether other phase transitions may be present.

The equation of state puzzle (what is the equation of state that describes matter at the supranuclear densities and low temperatures present inside neutron stars?) may then be solved through astrophysical observations, since certain quantities that are (directly or indirectly) observable are determined by the equation of state (Box 1). Equations of state are sometimes called ‘stiff’ or ‘hard’ when the slope of the pressure–energy density curve is large, resulting in neutron stars with large maximum masses. However, a ‘soft’ equation of state, for which the pressure increases slowly as the energy density increases, leads to smaller maximum masses. Equations of state that contain first-order phase transitions around nuclear saturation density allow for stars with similar masses but different radii, which have been dubbed mass twins.

A new dawn for nuclear astrophysics

Up until the 2010s, most astrophysical information about neutron stars came from observations of the light they emit. The best known example are the radio pulses emitted by neutron stars in a binary orbit with another compact companion, such as another neutron star or a white dwarf. The timing of these pulses allow the careful reconstruction of the binary orbits, including relativistic effects, a discovery that earned Russell Hulse and Joseph Taylor a Nobel Prize in Physics in 1993. Among the many wonders these binary pulsars have revealed, what is most relevant here is the inference of the masses of the binary components. To date, the heaviest neutron star with a well-measured mass is PSR J0740+6620 (where the numbers represent the location of the source in the sky in astronomical notation) at mass \(m = 2.08 \pm 0.07 M_\odot \). Since high neutron star masses can be compared with the maximum mass predicted using different equations of state, the observation of PSR J0740 and similarly high-mass neutron stars rules out equations of state that are too soft. Indeed, neutron star mass measurements based on radio timing have been, and continue to be, crucial for astronomical constraints on matter beyond nuclear density, because the data, analysis and model inferences are all well understood.
The first direct detection of gravitational waves\(^{23}\) in 2015 opened a new window to the Universe and neutron stars. These waves are perturbations to gravity produced when massive objects accelerate. Because of the weakness of the gravitational force, a huge mass has to accelerate to a tremendous degree to produce observable gravitational waves that originate at cosmological distances from Earth. The GW150914 event (named after its discovery date) was the result of the merger of two black holes with masses roughly 30 times that of our Sun, at velocities close to half the speed of light\(^{24}\). This single event marked the birth of gravitational-wave astrophysics.

Many gravitational-wave discoveries\(^{34}\) have been made since 2015, but the most exciting\(^{35}\) for the topic of this Review was in 2017. Advanced LIGO and Virgo detected gravitational waves, but, this time, the frequency at which the signal peaked was much higher than in 2015. For objects such as black holes and neutron stars, whose radius \(R\) is just a few times \(G M/c^2\), a higher frequency signal is a telltale sign of a much lower mass merger. This is because Kepler’s Third Law dictates that the square of the orbital frequency, which is directly proportional to the square of the gravitational-wave frequency, scales linearly with the total mass of the binary and inversely with the separation \(d\) cubed. Thus, in a merger, when \(d \approx R \approx G M/c^2\), the gravitational-wave frequency is inversely proportional to the binary’s total mass. A detailed analysis of the GW170817 event later revealed that it was likely produced by the coalescence of two neutron stars, with masses of \(\sim 1.3–1.4 M_\odot\) at a mere 40 Mpc (130 million light years) away from Earth\(^{36}\). On a human scale, that is unimaginably far, but in astrophysical terms, it is incredibly close (corresponding to a cosmological redshift of about 0.009). The closer the event, the stronger the signal, so, using this event, it was possible, for the first time, to extract information about the equation of state from gravitational waves.

But how do gravitational waves carry information about the equation of state? When two neutron stars spiral into each other and collide, before the collision takes place, they are tidally perturbed by each other’s gravitational field (Box 2). Akin to the way the Earth acquires a tidal bulge from the Moon, inducing high and low tides in the ocean, when a neutron star gets close to another compact object, it will tidally deform. This tidal deformation requires energy, and, so, the neutron star ‘borrows’ it from the orbital energy, therefore, forcing the binary to spiral in faster than it would have otherwise. A speed-up in the rate of inspiral directly affects how the gravitational-wave frequency changes with time, because, as mentioned before, the orbital and gravitational-wave frequencies are linearly related (Box 3). Therefore, by carefully monitoring the evolution of the gravitational-wave phase, one can, in principle, extract information about how much the objects that produced the wave were tidally deformed on their way to coalescence\(^{36,47}\) (Fig. 3).

This is exactly what the LIGO and Virgo collaborations measured from the GW170817 event\(^{35,38,39}\). The signal-to-noise ratio was large enough that, from the gravitational-wave data alone, a double neutron star merger in which both stars had the same equation of state was somewhat preferred over other options, including two black holes (which was also strongly disfavoured by the subsequent electromagnetic emission) and one neutron star and one black hole. If the event involved a binary neutron star system similar in its spins to those observed in the Milky Way, then the probability distribution of the tidal deformability for both stars peaks at a non-zero value and implies a radius between \(\sim 10.5\) km and \(\sim 13.5\) km for both stars, at 90% credibility\(^{48}\).

Box 2 | Love numbers and tidal deformabilities

The Love numbers are a set of real numbers introduced by Augustus Edward Hough Love in the 1900s to describe the Earth tides caused by the Moon. One can study the tides of any massive body caused by any external perturbation, including the tides of a neutron star due to its binary companion. The Love numbers are proportional to the tidal deformability, which describes how much a star deforms in response to an external perturbation\(^{75–77}\). More precisely, an external perturbation generically induces a redistribution of the isodensity contours inside a massive body, which, in turn, can be described through mass and current multipole moments of the mass distribution. The tidal deformabilities are then formally defined as the constants of proportionality that relate how much of a multipolar deformation is induced in a star \(M_d\) due to an external tidal perturbation \(P_c\), such as the binary partnership:

\[
M_d = \lambda \times P_c.
\]

The external perturbation can be of two classes (even or ‘electric’ and odd or ‘magnetic’ parity), depending on how it transforms under parity. Each class, in turn, can be decomposed into multipole moments, with the leading-order perturbation produced by the electric-type quadrupole tidal tensor \(\varepsilon_{ij}\). Given this, the tidal deformability can also be classified and decomposed in an analogous manner, with the leading-order tidal deformability being the electric-type quadrupole tidal deformability \(\lambda_{\varepsilon_{ij}}\) or just \(\lambda\) for short. This deformability is then defined via the relation \(Q_x = \lambda \times \varepsilon_{ij}\), where \(Q_x\) is the induced mass quadrupole moment. The calculation of any tidal deformability requires the solution to the perturbed Einstein equations for a star that is being deformed by some ‘external universe,’ such as a binary companion sufficiently far away.
Box 3 | Tidal deformabilities and gravitational waves

The tidal deformabilities of the neutron stars in a binary affect the gravitational waves they emit during their inspiral because they modify the orbital energy and the rate of gravitational-wave emission. For an equal-mass binary, the tidal effect on the orbital energies changes the phase by 5.5 times as much as the tidal modification of the gravitational-wave emission rate to the leading post-Newtonian order, irrespective of the equation of state. As described in the main text, the tidal deformations modify the Hamiltonian of the binary system by adding a term of the form \(\delta H \propto U_{12}(\lambda_1m_1^2/m_2)U_{12}^2 + 1 \rightarrow 2 \), where \(U_{12} = Gm_1/r_1 \) is the binary’s Newtonian potential, with \(m \) the total mass and \(r_1 \) the orbital separation, and \(\lambda_i \) is the electric-type, \(\ell = 2 \) tidal deformability of star 1, which scales with its radius to the fifth power. Since a binary system composed of tidally deformed stars has a larger (less negative) binary binding energy, it takes less time for gravitational waves to drain this energy away and for the binary to inspiral. Such a modification in the inspiral orbital dynamics imprints directly on the gravitational waves emitted.

Gravitational-wave detectors are more sensitive to the phase of the wave than its amplitude when one carries out parameter estimation by matched filtering the data with a template model. Because the covariance matrix of the noise is diagonal in the Fourier domain, one typically carries out matched-filtered parameter estimation in frequency space. The Fourier transform of the waveform for inspiralling neutron stars contains the term \(\delta \Psi(f) \propto f[\eta(f) + g_0(f)]^{5/3} \), where \(f_0(f) \) and \(g_0(f) \) are functions of the symmetric mass ratio \(\eta = m_1/m_2 \), while \(\lambda_{1,2} = \lambda_1 \pm \lambda_2 \) are the non-dimensional, symmetric and asymmetric combinations of the tidal deformabilities, with \(\lambda_s = \lambda_1 m_1^2 \) representing the dimensionless tidal deformability for bodies A \(= (1,2) \). Extracting both combinations \(\lambda_s \) and \(\lambda_a \) from the data from this single term \(\delta \Psi(f) \) in the Fourier phase seems impossible due to degeneracies among them, but there are two ways out\(^{45-47} \).

One option is to choose an equation of state model to compute \(\lambda_{s,a} \) as a function of the mass of the stars and determine the posteriors for the parameters of the equation of state model and the central densities by comparing to the data. Another option is to use equation of state insensitive relations. In the latter approach, one may then use the binary Love relations\(^{46,47} \) to prescribe \(\lambda_s \) in terms of \(\lambda_1 \) and \(\lambda_2 \) analytically, thus, making \(\delta \Psi(f) \) a function of only \(\lambda_s \) and \(\eta \). One can then carry out parameter estimation to extract both \(\lambda_s \) and \(\eta \) (because the symmetric mass ratio also appears in other terms of the Fourier phase, independent of the tidal deformabilities). Once \(\lambda_s \) has been extracted, one can then use the binary Love relations again to extract \(\lambda_a \) and, from knowledge of both of these combinations, one can trivially extract both \(\lambda_1 \) and \(\lambda_2 \), without ever choosing an equation of state model.

Primary stable branch
First stable range of masses and radii in the mass–radius diagram of neutron stars where the mass increases as the central density increases.

Essentially two approaches have been pursued to do so.

The standard approach is to adopt some model for the equation of state\(^{48-50} \) and then carry out Bayesian parameter estimation. In general, all equation of state models contain some low-density part, which is then extrapolated in some specific mathematical way to higher densities beyond some threshold density (which has been typically taken to be between half and twice the nuclear saturation density). One then uses standard Bayesian inference: for a given drawn of the equation of state model and two draws of the central densities, one predicts the masses of the binary companions and their tidal deformabilities, and, from this, the gravitational-wave model that one compares to the gravitational-wave data. Based on the relative likelihoods of the various draws in the exploration of the likelihood surface, one can then obtain posterior distributions for the pressure versus energy density, the mass versus radius or other quantities.

The main caveat of this approach stems from the need to prescribe an equation of state model. Any given model will place greater prior weight on some portions of the equation of state parameter space than on others. For example, some models may exclude the possibility of first-order phase transitions, whereas others might strongly emphasize them. Some models may exclude wiggles, kinks and other crossover-type structure in the speed of sound, while others might focus on them. A reasonable approach then is to use a few distinct models in the hope (which, fortunately, is becoming more and more the reality) that the data are informative enough that distinct, yet, reasonable, models lead to similar posteriors on the mass, radius and other observables.

Another complementary approach relies on relations (often called ‘universal relations’) between neutron star properties that are insensitive to the equation of state\(^{51} \). Particularly tight relations of this type include the so-called I-Love-Q relations\(^{45,52} \) between the moment of inertia (\(I \)), the tidal deformability or Love number (Love) (Box 2) and the quadrupole moment (Q). For the purpose of inferring the radius of neutron stars from gravitational-wave data, the most important universal relation is the ‘binary Love’ one\(^{46-48} \), which relates the antisymmetric combination of the tidal deformabilities to their symmetric combination and the mass ratio of the binary, and the ‘Love-C’ one\(^{49,50} \), which relates the tidal deformability of a star to its compactness. The binary Love relations can be used to effectively reduce the number of independent parameters needed to describe the gravitational waveform, and, thus, improve the precision with which the tidal deformabilities can be measured\(^{48,49,50} \). With a posterior on the deformabilities, the Love-C relation then provides the compactness of each star, which, when combined with the gravitational-wave measurement of the binary component masses, yields the radius of each star.

A caveat of this approach is that, for the binary Love relation to apply, the two neutron stars in a binary must both be on the primary stable branch; for example, the relation is inapplicable for twin stars if one star is on one stable branch and the other is on a different, higher-density stable branch\(^{12,42} \). Similarly, care also needs to be applied when using the binary Love relation to place lower bounds on the tidal deformability, because these lower bounds can be below what is realistic for neutron stars and, therefore, may be outside the region in which the binary Love relations are valid\(^{53} \).

Both approaches have been applied\(^{54} \) by the LIGO and Virgo collaborations on GW170817, and the posteriors of the mass and radius\(^{55} \) are shown in Fig. 4. Unsurprisingly, both approaches lead to consistent posteriors in the mass–radius plane in the sense that the 50% credible regions overlap between the two analyses, suggesting that, indeed, the data are more informative than any systematic error incurred in the modelling.

The power of coincidence

The double neutron star coalescence GW170817, which occurred just 40 Mpc away, had counterparts over the entire electromagnetic spectrum\(^{11} \). Gamma-rays indicative of a γ-ray burst observed ~20°–30° off-axis were seen just ~1.7 s after the peak of the gravitational-wave event. This was followed by ultraviolet through infrared emission over hours to weeks, with X-rays first detected 9 days after the initial event and radio waves still visible now.

The overall picture is consistent with predictions made prior to the event, in which the energy released...
by the coalescence of the neutron stars emerges in multiple forms: first, gravitational waves, second, a short γ-ray burst (in which the γ-rays are produced by a blast wave moving with a Lorentz factor of at least hundreds) and third, far more prolonged emission produced by the quasi-spherical, and much slower outflow (with velocities \(v/c\sim 0.01-0.1\), where \(c\) is the speed of light) of unbound matter that was in the neutron stars (where the radiated energy comes from the decay of heavy radioactive nuclei). The latter component, which might have had \(-0.01-0.1\, M_\odot\) in total mass, has been dubbed a ‘kilonova’ or ‘macronova’\(^{65}\). The highly neutron-rich outflow is thought to produce heavy elements, such as lanthanides and actinides, with high efficiency; thus, double neutron star mergers, and possibly mergers between black holes and neutron stars, could produce most of the heavy elements in the Universe.

GW170817 and events like it provide an upper limit on the maximum mass \(M_{\text{max}}\) of a non-rotating neutron star, albeit with astrophysical caveats\(^{56–59}\). The argument is that, if after the merger of two neutron stars, the remnant is a long-lived and rapidly rotating neutron star, then, if the process of merger generated a strong magnetic field, the star would slow down rapidly by magnetic braking. This would then inject a large fraction of the ~10\(^{52}\) erg rotational energy into the afterglow and kilonova. This excess energy was not observed in GW170817, which suggests that, instead, the merger remnant rapidly collapsed to a black hole. As a result, the total mass of the binary had to be larger than what can be supported by a rigidly rotating neutron star, and, thus, the maximum mass is bounded from above. The caveats are that there is no direct evidence for the formation of a black hole (as there would be if the gravitational-wave data were many times more precise than they were) and the production of magnetic fields to slow the star’s rotation is highly uncertain.

Nonetheless, under these assumptions, the estimated total mass of the double neutron star binary and the assumption that the remnant collapsed imply that \(M_{\text{max}}\) for a non-rotating neutron star is less than ~2.2\,M_\odot; note that this relies on a fairly well understood translation between the maximum mass of a rotating neutron star, such as is formed in the merger, and the maximum mass of a non-rotating star. Detailed numerical models of the outflow as inferred from electromagnetic observations yield similar answers, with implied values for \(M_{\text{max}}\) in the range ~2.2–2.3\,M_\odot\ (REF\(^{60–62}\)).

If these upper limits are reliable, then, in concert with the existence of a few ~2\,M_\odot neutron stars\(^{30}\), they provide a remarkably tight constraint on \(M_{\text{max}}\): just ~2–2.3\,M_\odot to be conservative. This would eliminate both soft equations of state (which have \(M_{\text{max}}<2\,M_\odot\)) and hard equations of state (which have \(M_{\text{max}}>2.3\,M_\odot\)), therefore, cutting down considerably on viable descriptions of the dense matter inside neutron stars. The most important addition to this information is independent, reliable and precise measurements of neutron star radii, which we discuss below.

A NICER way to nuclear astrophysics

Precise neutron star radii have long been coveted by nuclear physicists, because they would arguably discriminate between different equation of state models better than any other single measurement. As a result, numerous radii have been reported over the years, usually focused on X-ray observations of spectra integrated over many neutron star rotation periods. It has, however, become evident that this method is susceptible to potentially serious systematic errors. For example, the X-ray emission from a typical cooling neutron star without pulsations can be fit equally well using a pure hydrogen atmosphere, a pure helium atmosphere and even a black-body spectrum (although neutron stars do not emit as black bodies)\(^{63–65}\). Despite the equally good fits, the inferred radii differ dramatically depending on the assumptions; for example, hydrogen and helium atmospheres can give radii that differ by as much as 50%\(^{63–65}\). Thus, even if the formal statistical precision of the radius measurement is excellent, the reliability may not be.

NICER adds a new dimension to the X-ray observations. In addition to its other observing tasks, NICER has been pointed at a small set of non-accreting pulsars for more than a million seconds each. These pulsars have X-ray-emitting ‘hotspots’ rotating with the star on the stellar surface that are believed to be produced by the impact of high-Lorentz-factor electrons and positrons on the surface, which are generated as part of the process that produces radio pulsar emission. NICER records the arrival time of each photon to better than 100-ns accuracy, which is much shorter than the few-millisecond rotational periods of these pulsars. The data can, therefore, be considered as spectra as a function of rotational phase, which is why it is sometimes referred to as time-resolved X-ray spectroscopy. Although more studies need to be performed, existing work suggests that, when rotational phase information as well as spectra are obtained, then if the fit to the data is statistically good, the inferred radius and mass will not be significantly biased\(^{66–67}\). For example, although the models of the shape and temperature distribution of hotspots...
cannot be entirely correct, the use of such models will either: produce a statistically poor fit, which then motivates the development of better models prior to radius inference, or produce a statistically good fit, in which case the inferred radius and mass can provisionally be accepted to be reliable as well as precise.

Like inference from LIGO data, inference of the radius from NICER data proceeds along standard Bayesian lines: given a model for the time-dependent spectra with parameters and associated priors (the mass, radius, spot shapes, locations and temperatures, and the observer inclination angle), the NICER team determines the likelihood of the data given the model with specific parameter values, and iterates using a sampler until they obtain the posterior. Different parameters affect the phase-dependent spectra in ways that can be partially degenerate. For example, weak modulation could be produced by a very small spot (whose flux might be less than the background flux), or a spot that covers almost the entire star, or a spot nearly centred on the rotational pole, or an observer inclination nearly aligned with the rotational pole. However, with the hundreds of thousands of counts obtained in NICER observations, these degeneracies can be broken.

At present, two independent groups within the NICER team have inferred the mass and radius of two pulsars: PSR J0300+0451 and PSR J0740+6620. The first one is an isolated pulsar (which, being isolated, does not have an independently measured mass) that spins at a frequency of 205.53 Hz. For PSR J0030+0451, the teams reported a mass of $\approx 1.4 M_\odot$ and 68.3% credible regions on the radius of 12.0–14.3 km (REF^{38}) (Fig. 5a) and 11.5–13.9 km (REF^{38}). The teams also found very similar hotspot locations and shapes. These radii are compatible with the 90% credibility radius upper bound of ≈ 13.5 km found from GW170817, which contained two neutron stars that also had masses $\approx 1.3–1.4 M_\odot$.

The second pulsar, PSR J0740+6620, spins at 346.53 Hz and is ≈ 20 times fainter in X-rays than PSR J0300+0451, but it is in a binary system, so there are independent measurements of the mass and observer inclination angle from radio observations. The Green Bank and CHIME radio telescopes have inferred a mass of $M = 2.08 \pm 0.07 M_\odot$ and an observer inclination to the binary orbital axis of $\theta_{\text{in}} \approx 87.5^\circ$. The inclusion of this independent information is crucial to obtain a good measurement of the neutron star radius. In addition, XMM-Newton data for this pulsar produced a more precise estimate of the pulsar X-ray flux than was possible using NICER alone, given the low flux of the pulsar and the comparatively high X-ray background in NICER observations. Combining the NICER, the XMM-Newton and the radio data, the two teams reported 68.3% credible regions on the radius of 12.2–16.3 km (REF^{39}) (Fig. 5b) and 11.4–13.7 km (REF^{39}). The difference in the credible regions is primarily due to the use of different statistical samplers and different assumptions about the cross-calibration between NICER and XMM-Newton 122.

The net result of the NICER measurements is that the radii of $\approx 1.4 M_\odot$ and $\approx 2.1 M_\odot$ neutron stars are not very different from each other (indeed, they are consistent with being the same), with both being on the order of 12–14 km. This implies a relatively hard equation of state, with a maximum mass sufficiently above the $\approx 2.1 M_\odot$ mass of PSR J0740+6620 that the radius has not yet bent towards smaller values (which is characteristic of the mass–radius curve near the maximum mass). The tidal deformability measurement for GW170817 eliminates the hardest equations of state, so, together,
NICER and gravitational-wave measurements have significantly narrowed the plausible list of candidates for the high-density equation of state.

The beauty of future dreams
In the last 6 years, we have gone from a metaphorical data desert, with only a handful of gravitational-wave observations, to a metaphorical data forest, with over 50 observations and counting. Clearly, gravitational-wave astrophysics is here to stay, and we have only begun to explore this forest. The fourth observing (O4) run of the advanced LIGO and Virgo detectors, which is expected to reach design sensitivity, is scheduled to start in 2022, and the fifth observing (O5) run, which is expected to reach even better sensitivities, will start a few years later. The observing range for O4 will be about 50–90% larger than that of O3, and the range for O5 is expected to be three times larger than that of O3. Since at the low redshifts relevant for double neutron star observations the accessible volume scales with the cube of the observing range, one can expect many, many more observations of binary black holes, binary neutron stars and mixed binaries, perhaps even in the hundreds by the time of O5, in just 1 year of data. By the mid-2030s, third-generation, ground-based detectors such as the Einstein Telescope and the Cosmic Explorer will improve sensitivity by an additional factor of 10–20 [Ref. 43, 53].

What will the advent of such an increase in sensitivity signify? As many more events are to be expected, there is a hope for more binary neutron star observations. Because of the low signal-to-noise ratio, binary neutron star events may be too far away to lead to an electromagnetic counterpart, but if some of these mergers occur close to the Milky Way (say, at tens of Mpc), then there is a good chance of a GW170817 repeat. This time, however, since the gravitational-wave sensitivity will be significantly larger, the signal-to-noise ratio for an event at 40 Mpc could be three times larger than that of GW170817, and, thus, close to 100. Such a high signal-to-noise-ratio gravitational-wave event would inaugurate the era of precision gravitational-wave nuclear astrophysics, since it would allow for a much more accurate measurement of the tidal deformabilities and, thus, of the radius of neutron stars. In fact, for such a loud event, not only could one extract nuclear physics information from the inspiral phase of the event but one may also be able to extract information from the merger and post-merger itself, which may be useful to probe, for example, the presence of a quark matter core inside hybrid stars 54, 55.

Meanwhile, NICER observations will continue, and, in particular, more and more data will be accumulated of the (soon-to-be) three pulsars that have already been observed. In fact, in 2022, the NICER team is expected to publish the measurement of the radius of the third pulsar and to update the estimated radii of PSR J0030+0451 and PSR J0740+6620 using new data and a better characterization of the instrument. These measurements will improve the precision of our knowledge of the sizes of neutron stars over a factor of 1.5 in mass, which will, therefore, yield additional valuable information about the equation of state of matter beyond nuclear density and the existence of quark matter 56 inside neutron star cores. Beyond NICER, there are numerous planned and proposed facilities and missions that will extend our reach greatly: these include radio observatories (the Square Kilometre Array and the next-generation Very Large Array) and numerous X-ray missions (such as Athena, the enhanced X-ray Timing and Polarimetry mission (eXTP) and STROBE-X), which can probe the

[Fig. 5] Posterior distribution of M and R of neutron stars derived from NICER observations. a | Posterior probability density for the mass (M) and radius (R) of the isolated neutron star PSR J0030+0451 using only Neutron Star Interior Composition Explorer (NICER) X-ray data. b | Posterior probability density for M and R of the binary neutron star PSR J0740+6620, using NICER and XMM-Newton X-ray data, as well as Green Bank and CHIME radio data. These results, and the consistent results from the independent analyses of Ref. 35 and Ref. 36, imply that R is roughly constant from ~1.4 M_\odot to ~2.1 M_\odot and, thus, that matter in the core of neutron stars has relatively high pressure. Panel a reprinted with permission from Ref. 35, AAS Panel b reprinted with permission from Ref. 36, AAS.
masses, radii, moments of inertia and cooling properties of neutron stars.

Whatever the future may hold, what is clear is that the combination of information from electromagnetic and gravitational-wave observations is revealing the states of matter that are realized in the cores of neutron stars, at extremely large pressures and densities. In fact, it is not unreasonable to wager that, within the next 10 years, the equation of state of matter at a few times nuclear saturation density will be, for the first time, constrained to better than 10% in the low-temperature neutron star region of the quantum chromodynamics phase space. The challenge now and in the near future will be to find even more creative ways to connect these observations to fundamental nuclear physics. The future is, thus, truly exciting.
70. Miller, M. C. et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett. 918, L28 (2021).
71. Riley, T. E. et al. A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. Astrophys. J. Lett. 918, L27 (2021).
72. Miller, M. C. et al. The radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys. J. Lett. 918, L28 (2021).
73. Bauswein, A. & Blacker, S. Impact of quark deconfinement in neutron star mergers and hybrid star mergers. Eur. Phys. J. Spec. Top. 229, 3595–3604 (2020).
74. Blaschke, D. & Cierniak, M. Studying the onset of deconfinement with multi-messenger astronomy of neutron stars. Astron. Nachr. 342, 227–233 (2021).
75. Tan, H., Dore, T., Dexheimer, V., Noronha-Hostler, J. & Yunes, N. Extreme matter meets extreme gravity: ultra-heavy neutron stars with phase transitions. Phys. Rev. D 105, 023018 (2021).
76. Carson, Z. Probing Fundamental Physics with Gravitational Waves. PhD thesis, Univ. Virginia (2020).
77. Buchdahl, H. A. General relativistic fluid spheres. Phys. Rev. 116, 1027–1034 (1959).
78. Hinderer, T. Tidal Love numbers of neutron stars. Astrophys. J. 677, 1216–1220 (2008).
79. Binnington, T. & Poisson, E. Relativistic theory of tidal Love numbers. Phys. Rev. D 80, 084018 (2009).
80. Damour, T. & Nagar, A. Relativistic tidal properties of neutron stars. Phys. Rev. D 80, 084035 (2009).
81. Racine, E. & Flanagan, E. E. Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies. Phys. Rev. D 71, 044010 (2005); erratum 88, 089903 (2013).

Acknowledgements
The authors thank K. Chatziioannou and J. Noronha-Hostler for carefully reading the manuscript and giving us valuable comments. N.Y. acknowledges support from National Science Foundation (NSF) grant AST award no. 2009268 and the Simons Foundation. M.C.M. acknowledges support from NASA ADAP grant 80NSSC21K0649. N.Y. and M.C.M. performed part of their work on this paper at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611. K.Y. acknowledges support from NSF grant PHY-1806776, NASA grant 80NSSC20K0325, a Sloan Foundation Research Fellowship and the Owens Family Foundation.

Author contributions
The authors contributed equally to all aspects of the article.

Competing interests
The authors declare no competing interests.

Peer review information
Nature Reviews Physics thanks Nanda Rea, Scott Ransom and the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.