A view on Connectedness and Compactness in Fuzzy Soft Bitopological Spaces

Abdelhamied Farrag Sayed

Mathematics Department, Al-Lith University College, Umm Al-Qura University
P.O. Box 112, Al-Lith 21961, Makkah Al Mukarramah, Kingdom of Saudi Arabia

Abstract. In the present paper, we introduce the notions of \((1, 2)^*\)-fuzzy soft b-separated sets, \((1, 2)^*\)-fuzzy soft b-connectedness and \((1, 2)^*\)-fuzzy soft b-compactness in fuzzy soft bitopological spaces. Then, some basic topological properties of these notions are investigated. Also, some illustrative examples are given to show the importance of the obtained theorems.

2020 Mathematics Subject Classifications: 54A05, 54A40, 54F99.

Key Words and Phrases: \((1, 2)^*\)-fsb-separated, \((1, 2)^*\)-fsb-connected, \((1, 2)^*\)-fsb-compact

1. Introduction

In 1965, Zadeh [36], introduced the concept of fuzzy set theory and its applications can be found in many branches of mathematical and engineering sciences including management science, control engineering, computer science and artificial intelligence (see, [5, 7]).

In 1999, Russian researcher Molodtsov [16], initiated the concept of soft sets as a new mathematical tool to deal with uncertainties while modeling problems in engineering physics, computer science, economics, social sciences and medical sciences (see, [20, 28]). In 2003, Maji, Biswas and Roy [22], studied the theory of soft sets initiated by Molodtsov. They defined equality of two soft sets, subset and super set of a soft set, complement of a soft set, null soft set and absolute soft set with examples. Soft binary operations like AND, OR and also the operations of union and intersection were also defined. In 2005, D. Chen [6], presented a new definition of soft set parametrization reduction and a comparison of it with attribute reduction in rough set theory.

Recently, on soft sets, soft topological space has been studied increasingly Shabir and Naz [32] defined the theory of soft topological space over an initial universe with a fixed set of parameters. Çağman et al. [18] introduced a topology on a soft set called “soft topology” and presented the foundations of the theory of soft topological spaces. Moreover, many authors studied soft topology and its applications (e.g. [8, 9, 11]). Later Tanay and Kandemir [35] introduced fuzzy soft topological space and established the basic
definitions of fuzzy soft topological space by incorporating the fuzzy topology and soft set. Fuzzy soft topological space was applied in various ways say, game theory, analysis, etc. Fuzzy soft set in topological space further studied by Roy [27]. The authors [13, 19, 33] are successfully applied fuzzy soft topological space in real life.

In 1963, Kelly [14], first initiated the concept of bitopological spaces and other authors have contributed to development and construction of some properties of such spaces (see, [23, 24]) as generalizations of which are in general topology.

In 2014, Ittanagi [12], introduced and studied the concept of soft bitopological spaces and other authors have contributed to development and construction of some properties of such spaces (see, [2, 3, 25, 26]).

The notion of soft bitopological space was introduced using different soft topologies on an initial universe set. On the other hand, the mixed type of soft set theory was given using different soft topologies (see, [1, 4, 10, 21, 34]).

In 2015, Mukherjee and Park [17], first introduced the notion of fuzzy soft bitopological space and they introduced the notions of \(\tau_1\tau_2\)-fuzzy soft open(closed) sets, \(\tau_1\tau_2\)-fuzzy soft interior (resp. closure) and studied some of their basic properties. Also, Sayed ([29–31]) were extension and continuation of studying in this trend by characterizing new concepts in fuzzy soft bitopological spaces. In the present paper, we introduce the notions of

\[(1,2)^*\]-fuzzy soft b-separated sets,

\[(1,2)^*\]-fuzzy soft b-connectedness and

\[(1,2)^*\]-fuzzy soft b-compactness in fuzzy soft bitopological spaces. Then, some basic topological properties of these notions are investigated. Also, some illustrative examples are given to show the importance of the obtained theorems.

2. Preliminaries

In this section we are going to present the basic definitions and results of fuzzy soft set and fuzzy soft bitopological space which will be a central role in our paper. Throughout our discussion, \(X\) refers to an initial universe, \(E\) the set of all parameters for \(X\) and \(P(X)\) denotes the power set of \(X\).

Definition 1. [36] A fuzzy set \(A\) in a non-empty set \(X\) is characterized by a membership function \(\mu_A : X \rightarrow [0,1] = I\) whose value \(\mu_A(x)\) represents the "degree of membership" of \(x\) in \(A\) for every \(x\) in \(X\). Let \(I^X\) denotes the family of all fuzzy sets on \(X\).

Definition 2. [36] The empty fuzzy set on \(X\) denoted by \(\tilde{0}\) is a function which maps each \(x \in X\) to 0. That is, \(\tilde{0}(x) = 0\) for all \(x \in X\).

A universal fuzzy set denoted by \(\tilde{1}\) is a function, which maps each \(x \in X\) to 1. That is, \(\tilde{1}(x) = 1\) for all \(x \in X\).

Definition 3. [16] Let \(A \subseteq E\). A pair \((F,A)\) is called a soft set over \(X\) if \(F\) is a mapping given by \(F : A \rightarrow P(X)\).

Definition 4. [15] Let \(A \subseteq E\). A pair \((f,A)\), denoted by \(f_A\), is called a fuzzy soft set over \(X\), where \(f\) is a mapping given by \(f : A \rightarrow I^X\) defined by \(f_A(e) = \mu_{f_A}^e\) where
Definition 5. [22] A fuzzy soft set \(f_A \in (X, E) \) is said to be:

(a) NULL fuzzy soft set, denoted by \(\tilde{\phi} \), if for all \(e \in A \), \(f_A(e) = \tilde{0} \).

(b) absolute fuzzy soft set, denoted by \(\tilde{1}_E \), if for all \(e \in E \), \(f_A(e) = \tilde{1} \).

Definition 6. [27] The complement of a fuzzy soft set \(f_A \in (X, E) \) is given by

\[
\mu_{f_A}^c = \begin{cases} \tilde{0}, & \text{if } e \notin A; \\ \text{otherwise, } & \text{if } e \in A. \\ \end{cases}
\]

\((X, E)\) denotes the family of all fuzzy soft sets over \((X, E)\).

Definition 7. [27] Let \(f_A, g_B \in (X, E) \). \(f_A \) is fuzzy soft subset of \(g_B \), denoted by \(f_A \subseteq g_B \), if \(A \subseteq B \) and \(\mu_{f_A}^e \leq \mu_{g_B}^e \) for all \(e \in A \), that is, \(\mu_{f_A}^e(x) \leq \mu_{g_B}^e(x) \) for all \(x \in X \) and for all \(e \in A \).

Definition 8. [27] Let \(f_A, g_B \in (X, E) \). The union of \(f_A \) and \(g_B \) is also a fuzzy soft set \(h_C \), where \(C = A \cup B \) and for all \(e \in C \), \(h_C(e) = \mu_{h_C}^e = \mu_{f_A}^e \lor \mu_{g_B}^e \). Here we write \(h_C = f_A \cup g_B \).

Definition 9. [27] Let \(f_A, g_B \in (X, E) \). The intersection of \(f_A \) and \(g_B \) is also a fuzzy soft set \(d_C \), where \(C = A \cap B \) and for all \(e \in C \), \(d_C(e) = \mu_{d_C}^e = \mu_{f_A}^e \land \mu_{g_B}^e \). Here we write \(d_C = f_A \cap g_B \).

Definition 10. [27] A fuzzy soft topology \(\tau \) over \((X, E)\) is a family of fuzzy soft sets over \((X, E)\) satisfying the following properties:

(i) \(\tilde{0}_E, \tilde{1}_E \in \tau \),

(ii) if \(f_A, g_B \in \tau \), then \(f_A \cap g_B \in \tau \),

(iii) if \(f_A \in \tau \) for all \(\alpha \in \Delta \) an index set, then \(\bigcup_{\alpha \in \Delta} f_A \in \tau \).

Definition 11. [17] If \(\tau \) is a fuzzy soft topology on \((X, E)\), then the triple \((X, E, \tau)\) is said to be a fuzzy soft topological space. Also each member of \(\tau \) is called a fuzzy soft open set in \((X, E, \tau)\).

The complement of a fuzzy soft open set is a fuzzy soft closed set.

Definition 12. [17] Let \((X, E, \tau_1)\) and \((X, E, \tau_2)\) be two different fuzzy soft topologies on \((X, E)\). Then \((X, E, \tau_1, \tau_2)\) is called a fuzzy soft bitopological space on which no separation axioms are assumed unless explicitly stated.

The members of \(\tau_i(i = 1, 2) \) are called \(\tau_i(i = 1, 2) \)-fuzzy soft open sets and the complement of \(\tau_i(i = 1, 2) \)-fuzzy soft open sets are called \(\tau_i(i = 1, 2) \)-fuzzy soft closed sets.
Definition 13. [17] A fuzzy soft set \(f_E \subseteq (\tilde{X}, \tilde{E}) \) is called \(\tau_1 \tau_2 \)-fuzzy soft open set if \(f_E = g_E \cup h_E \) such that \(g_E \subseteq \tau_1 \) and \(h_E \subseteq \tau_2 \).

The complement of \(\tau_1 \tau_2 \)-fuzzy soft open set is called \(\tau_1 \tau_2 \)-fuzzy soft closed set.

The family of all \(\tau_1 \tau_2 \)-fuzzy soft open (closed) sets in \((X, E, \tau_1, \tau_2)\) is denoted by \(\tau_1 \tau_2 \text{FSO}(X, \tau_1, \tau_2)_E \) (\(\tau_1 \tau_2 \text{FSC}(X, \tau_1, \tau_2)_E \)) respectively.

Definition 14. [17] Let \((X, E, \tau_1, \tau_2)\) be a fuzzy soft bitopological space and \(f_E \subseteq (\tilde{X}, \tilde{E}) \). Then the \(\tau_1 \tau_2 \)-fuzzy soft closure of \(f_E \), denoted by \(\tau_1 \tau_2 \text{cl}(f_E) \), is the intersection of all \(\tau_1 \tau_2 \)-fuzzy soft closed supersets of \(f_E \).

Clearly, \(\tau_1 \tau_2 \text{cl}(f_E) \) is the smallest \(\tau_1 \tau_2 \)-fuzzy soft closed set over \((X, E)\) which contains \(f_E \).

Definition 15. Let \((X, E, \tau_1, \tau_2)\) be a fuzzy soft bitopological space and \(f_E \subseteq (\tilde{X}, \tilde{E}) \). Then \(f_E \) is called \((1, 2)^*\)-fuzzy soft b-open set (briefly, \((1, 2)^*\)-fsb-open) if
\[
\forall \tau_1 \tau_2 \text{int}(f_E) \subseteq \tau_1 \tau_2 \text{cl}(f_E) \bigcup \tau_1 \tau_2 \text{cl}(\tau_1 \tau_2 \text{int}(f_E)).
\]

Definition 16. [30] Let \((X, E, \tau_1, \tau_2)\) be a fuzzy soft bitopological space and \(f_E \subseteq (\tilde{X}, \tilde{E}) \).

(i) \((1, 2)^*\)-fuzzy soft b-closure (briefly \((1, 2)^*\)-fsbcl\((f_E)\)) of a set \(f_E \) in \((X, E, \tau_1, \tau_2)\) defined by
\[
(1, 2)^*\text{fsbcl}(f_E) = \bigcap \{ g_E \subseteq f_E : g_E \text{ is a } (1, 2)^*\text{-fuzzy soft b-closed set in } (X, E, \tau_1, \tau_2) \}.
\]

(ii) \((1, 2)^*\)-fuzzy soft b-interior (briefly \((1, 2)^*\)-fsbint\((f_E)\)) of a set \(f_E \) in \((X, E, \tau_1, \tau_2)\) defined by
\[
(1, 2)^*\text{fsbint}(f_E) = \bigcup \{ g_E \subseteq f_E : g_E \text{ is a } (1, 2)^*\text{-fuzzy soft b-open set in } (X, E, \tau_1, \tau_2) \}.
\]

\((1, 2)^*\)-fsbcl\((f_E)\) is the smallest \((1, 2)^*\)-fuzzy soft b-closed set in \((X, E, \tau_1, \tau_2)\) which contains \(f_E \) and \((1, 2)^*\)-fsbcl\((f_E)\) is the largest \((1, 2)^*\)-fuzzy soft b-closed set in \((X, E, \tau_1, \tau_2)\) which is contained in \(f_E \).

Definition 17. [31] A fuzzy soft mapping \((\varphi, \psi) : (X, E, \tau_1, \tau_2) \rightarrow (Y, K, \sigma_1, \sigma_2)\) is said to be \((1, 2)^*\)-fuzzy soft b-continuous (briefly \((1, 2)^*\)-fsb-continuous) the inverse image of every \(\sigma_1 \sigma_2 \)-fuzzy soft open set in \((Y, K, \sigma_1, \sigma_2)\) a \((1, 2)^*\)-fuzzy soft b-open set in \((X, E, \tau_1, \tau_2)\).

Definition 18. [31] A fuzzy soft mapping \((\varphi, \psi) : (X, E, \tau_1, \tau_2) \rightarrow (Y, K, \sigma_1, \sigma_2)\) is said to be \((1, 2)^*\)-fuzzy soft b-irresolute mapping (briefly \((1, 2)^*\)-fsb-irresolute) \((\varphi, \psi)^{-1}(g_K)\) is \((1, 2)^*\)-fuzzy soft b-closed set in \((X, E, \tau_1, \tau_2)\) for every \((1, 2)^*\)-fuzzy soft b-closed set \(g_K \) in \((Y, K, \sigma_1, \sigma_2)\).

3. \((1, 2)^*\)-Fuzzy Soft b-Connectedness

In this section we introduce the concepts of \((1, 2)^*\)-fuzzy soft b-separated sets and \((1, 2)^*\)-fuzzy soft b-connectedness in fuzzy soft bitopological spaces. Also, some of the main results and properties are studied and discussed.

Definition 19. Two non-empty fuzzy soft subsets \(f_E, g_E \) of \((\tilde{X}, \tilde{E})\) are said to be fuzzy soft disjoint if \(f_E \cap g_E = \tilde{0}_E \).
Definition 20. Let \((X,E,\tau_1,\tau_2)\) be a fuzzy soft bitopological space. Two non-empty fuzzy soft disjoint fuzzy soft subsets \(f_E, g_E\) of \((X,E)\) are called
(i) \((1,2)^*\)-fuzzy soft separated sets over \(X\) if \(\tau_1\tau_2\operatorname{cl}(f_E)\setminus g_E = f_E\setminus \tau_1\tau_2\operatorname{cl}(g_E) = \mathring{0}_E\).
(ii) \((1,2)^*\)-fuzzy soft b-separated ((1,2)^*-fsb-separated) sets over \(X\) if
\((1,2)^*\)-fuzzy soft separated.

Remark 1. From the fact that \((1,2)^*\)-fsbcl \((f_E)\subseteq \tau_1\tau_2\operatorname{cl}(f_E)\), for every fuzzy soft subset \(f_E\) of \((X,E)\), every \((1,2)^*\)-fuzzy soft separated set is \((1,2)^*\)-fuzzy soft b-separated. But the converse may not be true.

Definition 21. A \((1,2)^*\)-fuzzy soft b-separation ((1,2)^*-fsb-separation) of a fuzzy soft bitopological space \((X,E,\tau_1,\tau_2)\) is a pair of \((1,2)^*\)-fuzzy soft b-separated sets \(f_E\) and \(g_E\) whose fuzzy soft union is absolute fuzzy soft set \(1_E\) (that is \(f_E\cap g_E = \mathring{1}_E\)).

Definition 22. Let \((X,E,\tau_1,\tau_2)\) be a fuzzy soft bitopological space. Then \((X,E,\tau_1,\tau_2)\) is called \((1,2)^*\)-fuzzy soft b-connected space if \(1_E\) can not be expressed as the fuzzy soft union of two \((1,2)^*\)-fuzzy soft b-separated sets.

Remark 2. In a fuzzy soft bitopological space \((X,E,\tau_1,\tau_2)\):
(i) A fuzzy soft empty set is trivially \((1,2)^*\)-fuzzy soft b-connected set.
(ii) Every fuzzy soft singleton set is \((1,2)^*\)-fuzzy soft b-connected, since it can not be expressed as a fuzzy soft union of two non-empty \((1,2)^*\)-fuzzy soft b-separated sets.

Theorem 1. Let \((X,E,\tau_1,\tau_2)\) be a fuzzy soft bitopological space. Then the following statements are equivalent:
(i) \((X,E,\tau_1,\tau_2)\) is a \((1,2)^*\)-fuzzy soft b-connected space.
(ii) \(1_E\) and \(\mathring{0}_E\) are the only \((1,2)^*\)-fuzzy soft b-clopen (that is, closed and open) sets in \((X,E,\tau_1,\tau_2)\).
(iii) \(1_E\) can not be expressed as the fuzzy soft union of two fuzzy soft disjoint non-empty \((1,2)^*\)-fuzzy soft b-clopen sets.
(iv) \(1_E\) can not be expressed as the fuzzy soft union of two fuzzy soft disjoint non-empty \((1,2)^*\)-fuzzy soft b-closed sets.

Proof. (i) \(\Rightarrow\) (ii): Let \((X,E,\tau_1,\tau_2)\) be a fuzzy soft bitopological space. Let \(f_E\) be non-empty proper fuzzy soft subset of \((X,E)\) that is \((1,2)^*\)-fuzzy soft b-clopen. Then \(1_E\setminus f_E\) is a non-empty \((1,2)^*\)-fuzzy soft b-clopen set and \(1_E = f_E \cup (1_E \setminus f_E)\). This is a contradiction to \((X,E,\tau_1,\tau_2)\) is a \((1,2)^*\)-fuzzy soft b-connected space. Therefore \(1_E\) and \(\mathring{0}_E\) are the only \((1,2)^*\)-fuzzy soft b-clopen sets in \((X,E,\tau_1,\tau_2)\).

(ii) \(\Rightarrow\) (iii): Assume that \(1_E\) and \(\mathring{0}_E\) are the only \((1,2)^*\)-fuzzy soft b-clopen sets in \((X,E,\tau_1,\tau_2)\). Suppose (iii) is false. Then \(1_E = f_E \cup g_E\) where \(f_E\) and \(g_E\) are fuzzy soft disjoint non-empty \((1,2)^*\)-fuzzy soft b-clopen sets. Then \(g_E = 1_E \setminus f_E\) is \((1,2)^*\)-fuzzy soft b-closed and non-empty. Thus \(g_E\) is a non-empty proper \((1,2)^*\)-fuzzy soft b-clopen set in \((X,E,\tau_1,\tau_2)\), which contradicts (ii).

(iii) \(\Rightarrow\) (iv): Assume \(1_E\) cannot be expressed as the fuzzy soft union of two fuzzy soft disjoint non-empty \((1,2)^*\)-fuzzy soft b-clopen sets. Suppose (iv) false. Then \((1,2)^*\)-fuzzy
soft b-closed sets. Then $f_E = \overline{I}_E \setminus g_E$ and $g_E = \overline{I}_E \setminus f_E$ are fuzzy soft disjoint non-empty $(1,2)^*\text{-fuzzy soft}$ b-open sets in (X, E, τ_1, τ_2). Thus \overline{I}_E is the fuzzy soft union of two fuzzy soft disjoint non-empty $(1,2)^*\text{-fuzzy soft}$ b-open sets. This contradicts (iii).

$(iv) \Rightarrow (i)$: Suppose (X, E, τ_1, τ_2) is not $(1,2)^*\text{-fuzzy soft}$ b-connected space. Then $\overline{I}_E = f_E \cup g_E$ where f_E and g_E are fuzzy soft disjoint non-empty $(1,2)^*\text{-fuzzy soft}$ b-open sets. Then $f_E = \overline{I}_E \setminus g_E$ and $g_E = \overline{I}_E \setminus f_E$ are fuzzy soft disjoint non-empty $(1,2)^*\text{-fuzzy soft}$ b-closed sets in (X, E, τ_1, τ_2). This is a contradiction to (iv).

Proposition 1. Every $(1,2)^*\text{-fuzzy soft}$ b-connected space is $(1,2)^*\text{-fuzzy soft}$ connected.

Proof. Let f_E be a $(1,2)^*\text{-fuzzy soft}$ b-connected set in the fuzzy soft bitopological space (X, E, τ_1, τ_2). Then there does not exist a $(1,2)^*\text{-fuzzy soft b-separation}$ of f_E. Since every $\tau_1\tau_2$-fuzzy soft open set is a $(1,2)^*\text{-fuzzy soft b-open set}$, there does not exist a $(1,2)^*\text{-fuzzy soft separation}$ of f_E. Hence f_E is a $(1,2)^*\text{-fuzzy soft}$ connected set in the fuzzy soft bitopological space (X, E, τ_1, τ_2).

The converse is not true as shown in the following example.

Example 1. $(1,2)^*\text{-fuzzy soft}$ connectedness does not imply $(1,2)^*\text{-fuzzy soft b-connectedness}$. Let (X, E, τ_1, τ_2) be a fuzzy soft bitopological space, where $X = \{ x, y \}, E = \{ e_1, e_2 \}$ and let $\tau_1 = \{ \overline{0}_E, \overline{1}_E, f_1^E, f_2^E, f_3^E \}, \tau_2 = \{ \overline{0}_E, \overline{1}_E, g_1^E, g_2^E \}$, where $f_1^E = \{ f_1(e_1) = \{ x/0.2, y/0.0 \}, f_1(e_2) = \{ x/0.0, y/0.0 \} = \emptyset \}$, $f_2^E = \{ f_2(e_1) = \{ x/0.0, y/0.0 \} \}, f_3^E = \{ f_3(e_1) = \{ x/0.2, y/0.1 \}, f_3(e_2) = \{ x/0.7, y/0.0 \} \}$, $g_1^E = \{ g_1(e_1) = \{ x/0.0, y/0.0 \} = \emptyset, g_1(e_2) = \{ x/0.7, y/0.0 \} \}$ and $g_2^E = \{ g_2(e_1) = \{ x/0.0, y/0.0 \} \}$. Then $\tau_1\tau_2$-fuzzy soft open sets are $\{ \overline{0}_E, \overline{1}_E, f_1^E, f_2^E, f_3^E, g_1^E, g_2^E \}$ and $\tau_1\tau_2$-fuzzy soft closed sets are $\{ \overline{0}_E, \overline{1}_E, f_1^E, f_2^E, f_3^E, g_1^E, g_2^E \}$ where $f_1^E = \{ f_1(e_1) = \{ x/0.0, y/0.1 \}, f_1(e_2) = \{ x/0.7, y/0.4 \} \}$, $f_2^E = \{ f_2(e_1) = \{ x/0.0, y/0.1 \}, f_2(e_2) = \{ x/0.0, y/0.4 \} \}$, $f_3^E = \{ f_3(e_1) = \{ x/0.0, y/0.0 \} \}$. It is clear that (X, E, τ_1, τ_2) is $(1,2)^*\text{-fuzzy soft}$ connected since the only $(1,2)^*\text{-fuzzy soft}$ clopen sets are $\overline{0}_E, \overline{1}_E$. Also $(1,2)^*\text{-fuzzy soft b-open sets}$ are $\{ \overline{0}_E, \overline{1}_E, f_1^E, f_2^E, f_3^E, g_1^E, g_2^E, g_3^E, g_4^E \}$, where $f_1^E, f_2^E, f_3^E, g_1^E$ and g_2^E are defined as above and $f_4^E = \{ f_4(e_1) = \{ x/0.0, y/0.1 \}, f_4(e_2) = \{ x/0.7, y/0.4 \} \}$. And $(1,2)^*\text{-fuzzy soft b-closed sets}$ are $\{ \overline{0}_E, \overline{1}_E, f_1^E, f_2^E, f_3^E, f_4^E, f_5^E, g_1^E, g_2^E, g_3^E, g_4^E \}$, where $f_1^E, f_2^E, f_3^E, f_4^E$ and f_5^E are obtained as above and $f_6^E = \{ f_6(e_1) = \{ x/0.2, y/0.0 \}, f_6(e_2) = \{ x/0.0, y/0.0 \} \}$.

Let $f_E^c = \{f^c(1) = \{x/0.2, y/0.0\}, f^c(2) = \{x/0.7, y/0.0\}\},
g_E^c = \{g^c(1) = \{x/0.0, y/0.0\} \cup g^c(2) = \{x/0.7, y/0.4\}\},\text{ and }
g_E^g = \{g^g(1) = \{x/0.0, y/0.1\}, g^g(2) = \{x/0.7, y/0.4\}\}.

where $1_E = f_{1_E} \cup f_{2_E},$ then $(1, 2)^*-fsbcl(f_{1_E}) = f_E^{c*}$, $(1, 2)^*-fsbcl(f_{2_E}) = g_E^{c*}$, and $(1, 2)^*-fsbcl(f_{1_E}) \cap f_{2_E} = 0_E$. Hence 1_E can be expressed as a fuzzy soft union of two $(1, 2)^*-fuzzy soft b-separated sets f_{1_E}, f_{2_E}. There (X, E, τ_1, τ_2) is not $(1, 2)^*-fuzzy soft b-connected.

Example 2. $(1, 2)^*-fuzzy soft b-connectivity is not hereditary property.

Consider the fuzzy soft bitopological space (X, E, τ_1, τ_2), where $X = \{x, y\}, E = \{e_1, e_2\}$ and let $\tau_1 = \{0_E, 1_E, f_{1_E}, f_{2_E}\}, \tau_2 = \{0_E, 1_E, g_{1_E}\},$ where $f_{1_E} = \{f_1(e_1) = \{x/0.2, y/0.0\}, f_1(e_2) = \{x/0.0, y/0.0\} = \emptyset\},$ $f_{2_E} = \{f_2(e_1) = \{x/0.2, y/0.0\}, f_2(e_2) = \{x/0.7, y/0.0\}\}$ and $g_{1_E} = \{g_1(e_1) = \{x/0.2, y/0.1\}, g_1(e_2) = \{x/0.0, y/0.0\} = \emptyset\}$.

Then τ_{12}-fuzzy soft open sets are $\{0_E, 1_E, f_{1_E}, f_{2_E}, g_{1_E}, h_{1_E}\},$ where $h_{1_E} = \{h_1(e_1) = \{x/0.2, y/0.0\}, h_1(e_2) = \{x/0.7, y/0.0\} = \emptyset\}$.

Also, $(1, 2)^*-fuzzy soft b-open sets are $\{0_E, 1_E, f_{1_E}, f_{2_E}, g_{1_E}, h_{1_E}, h_{2_E}, h_{3_E}, h_{4_E}\},$ where $h_{2_E} = \{h_2(e_1) = \{x/0.2, y/0.0\}, h_2(e_2) = \{x/0.0, y/0.4\}\},$ $h_{3_E} = \{h_3(e_1) = \{x/0.2, y/0.0\}, h_3(e_2) = \{x/0.7, y/0.0\}\}$ and $h_{3_E} = \{h_3(e_1) = \{x/0.0, y/0.0\}, h_3(e_2) = \{x/0.7, y/0.0\}\}$. Then $(1, 2)^*-fuzzy soft b-closed sets are $\{0_E, 1_E, f_{1_E}, f_{2_E}, g_{1_E}, h_{1_E}, h_{2_E}, h_{3_E}, h_{4_E}\},$ where $f_{1_E} = \{f_1(e_1) = \{x/0.0, y/0.1\}, f_1(e_2) = \{x/0.7, y/0.4\}\},$ $f_{2_E} = \{f_2(e_1) = \{x/0.0, y/0.1\}, f_2(e_2) = \{x/0.0, y/0.4\}\},$ $g_{1_E} = \{g_1(e_1) = \{x/0.0, y/0.0\} = \emptyset, g_1(e_2) = \{x/0.7, y/0.4\}\},$ $h_{1_E} = \{h_1(e_1) = \{x/0.0, y/0.0\} = \emptyset, h_1(e_2) = \{x/0.0, y/0.4\}\},$ $h_{2_E} = \{h_2(e_1) = \{x/0.0, y/0.0\}, h_2(e_2) = \{x/0.7, y/0.0\}\},$ $h_{3_E} = \{h_3(e_1) = \{x/0.0, y/0.1\}, h_3(e_2) = \{x/0.0, y/0.0\} = \emptyset\}$ and $h_{4_E} = \{h_4(e_1) = \{x/0.0, y/0.1\} = \emptyset, h_4(e_2) = \{x/0.0, y/0.4\}\}.

It is clear that (X, E, τ_1, τ_2) is $(1, 2)^*-fuzzy soft b-connected, since the only $(1, 2)^*-fuzzy soft clopen sets are 0_E and 1_E. Let $Y = \{x\} \subseteq X \text{ and } E = \{e_1, e_2\}$. Let $\sigma_1 = \{0_E, 1_E, f_{1_E}\}, \sigma_2 = \{0_E, 1_E, h_{1_E}\}$. Then $\sigma_1 \sigma_2$-fuzzy soft open sets are $\{0_E, 1_E, f_{1_E}, h_{1_E}\}$. Also $(1, 2)^*-fuzzy soft b-clopen sets are $\{0_E, 1_E, f_{1_E}, h_{1_E}\}$. Clearly $(Y, E, \sigma_1, \sigma_2)$ is not $(1, 2)^*-fuzzy soft b-connected; since f_{1_E} and h_{1_E} are two $(1, 2)^*-fuzzy soft b-clopen sets other than 0_E and 1_E.

Proposition 2. Let f_E be a $(1, 2)^*-fuzzy soft b-connected set, g_E and h_E are $(1, 2)^*-fuzzy soft b-separated sets. If $f_E \subseteq g_E$ or $f_E \subseteq h_E$ then either $f_E \subseteq g_E$ or $f_E \subseteq h_E$.

Proof. Let f_E be a $(1, 2)^*-fuzzy soft b-connected set, g_E and h_E are $(1, 2)^*-fuzzy soft b-separated sets such that $f_E \subseteq g_E \cup h_E$. Let $f_E \subseteq g_E$ and $f_E \subseteq h_E$. Suppose $k_E = g_E \cap f_E \neq 0_E$ and $l_E = h_E \cap f_E \neq 0_E$ then $f_E = k_E \cup l_E$.

Since $k_E \subseteq g_E$, $(1, 2)^*-fsbcl(k_E) \subseteq (1, 2)^*-fsbcl(g_E)$. Also $(1, 2)^*-fsbcl(g_E) \cap h_E = 0_E$ then $(1, 2)^*-fsbcl(k_E) \cap h_E = 0_E$. Since $l_E \subseteq h_E$, $(1, 2)^*-fsbcl(l_E) \subseteq (1, 2)^*-fsbcl(h_E)$. Also $(1, 2)^*-fsbcl(h_E) \cap g_E = 0_E$ then $(1, 2)^*-fsbcl(l_E) \cap k_E = 0_E$. But $f_E = k_E \cup l_E$.
therefore f_E is not $(1,2)^*$-fuzzy soft b-connected set which is not a contradiction. Then either $f_E \subseteq g_E$ or $f_E \subseteq h_E$.

Theorem 2. If f_E is a $(1,2)^*$-fuzzy soft b-connected set and $f_E \subseteq g_E \subseteq ((1,2)^*-fsbcl(f_E))$ then g_E is a $(1,2)^*$-fuzzy soft b-connected.

Proof. Suppose g_E is not $(1,2)^*$-fuzzy soft b-connected then there exists two non-empty fuzzy soft sets f_{1E} and f_{2E} such that $((1,2)^*-fsbcl(f_{1E})) \cap f_{2E} = f_{1E} \cap ((1,2)^*-fsbcl(f_{2E})) = \emptyset_E$ and $f_E = f_{1E} \cup f_{2E}$. Since $f_E \subseteq g_E$ then either $f_E \subseteq f_{1E}$ or $f_E \subseteq f_{2E}$.

Suppose $f_E \subseteq f_{1E}$, then $((1,2)^*-fsbcl(f_E)) \subseteq ((1,2)^*-fsbcl(f_{1E}))$, thus $((1,2)^*-fsbcl(f_E)) \cap f_{2E} = f_E \cap ((1,2)^*-fsbcl(f_{2E})) = \emptyset_E$. But $f_{2E} \subseteq g_E \subseteq ((1,2)^*-fsbcl(f_E))$, thus $((1,2)^*-fsbcl(f_E)) \cap f_{2E} = f_{2E}$. Therefore $f_{2E} = \emptyset_E$, which is a contradiction.

If $f_E \subseteq f_{2E}$, then by the same way we can prove that $f_{1E} = \emptyset_E$. This is a contradiction. Thus g_E be a $(1,2)^*$-fuzzy soft b-connected.

Theorem 3. If f_E is a $(1,2)^*$-fuzzy soft b-connected set, then $(1,2)^*-fsbcl(f_E)$ is $(1,2)^*$-fuzzy soft b-connected.

Proof. Suppose f_E is $(1,2)^*$-fuzzy soft b-connected and $(1,2)^*-fsbcl(f_E)$ is not $(1,2)^*$-fuzzy soft b-connected. Then there exist two $(1,2)^*$-fuzzy soft b-separated sets f_{1E} and f_{2E} such that $(1,2)^*-fsbcl(f_1E) = f_{1E} \cup f_{2E}$. But $f_E \subseteq (1,2)^*-fsbcl(f_E)$ then $f_E = f_{1E} \cup f_{2E}$ and since f_E is $(1,2)^*$-fuzzy soft b-connected set, then either $f_E \subseteq f_{1E}$ or $f_E \subseteq f_{2E}$.

If $f_E \subseteq f_{1E}$ then $(1,2)^*-fsbcl(f_E) \subseteq (1,2)^*-fsbcl(f_{1E})$. But $(1,2)^*-fsbcl(f_{1E}) \cap f_{2E} = \emptyset_E$, hence $(1,2)^*-fsbcl(f_E) \cap f_{2E} = \emptyset_E$. Since $f_{2E} \subseteq (1,2)^*-fsbcl(f_E)$, then $(1,2)^*-fsbcl(f_E) \cap f_{2E} = f_{2E}$, hence $f_{2E} = \emptyset_E$ which is a contradiction.

If $f_E \subseteq f_{2E}$, then by the same way we can prove that $f_{1E} = \emptyset_E$, which is a contradiction. Therefore $(1,2)^*-fsbcl(f_E)$ is $(1,2)^*$-fuzzy soft b-connected.

Theorem 4. The fuzzy soft union f_E of any family $\{f_iE : i \in I\}$ of $(1,2)^*$-fuzzy soft b-connected sets having a non-empty fuzzy soft intersection is $(1,2)^*$-fuzzy soft b-connected.

Proof. Let f_E be fuzzy soft union of any family of $(1,2)^*$-fuzzy soft b-connected sets having a non-empty fuzzy soft intersection. Suppose that $f_E = f_{1E} \cup f_{2E}$, where f_{1E} and f_{2E} form a $(1,2)^*$-fuzzy soft b-separation of f_E. By hypothesis, we may choose a fuzzy soft point $f_\in\cap_{i \in I} f_iE$. Then $f_\in \in f_{iE}$ for all $i \in I$. If $f_\in \in f_2E$, then either $f_\in \in f_{1E}$ or $f_\in \in f_{2E}$ but not both. Since f_{1E} and f_{2E} are fuzzy soft disjoint, we must have $f_{iE} \subseteq f_{1E}$, since f_{iE} is $(1,2)^*$-fuzzy soft b-connected and it is true for all $i \in I$, and so $f_\in \subseteq f_{1E}$. From this we obtain that $f_{2E} = \emptyset_E$; which is a contradiction. Thus, there does not exist a $(1,2)^*$-fuzzy soft b-separation of f_E. Therefore, f_E is a $(1,2)^*$-fuzzy soft b-connected set.

Theorem 5. (i) If $\psi : (X, E, \tau_1, \tau_2) \rightarrow (Y, E, \sigma_1, \sigma_2)$ is a $(1,2)^*$-fuzzy soft b-continuous surjection and (X, E, τ_1, τ_2) is $(1,2)^*$-fuzzy soft b-connected then $(Y, E, \sigma_1, \sigma_2)$ is $(1,2)^*$-fuzzy soft connected.

(ii) If $\psi : (X, E, \tau_1, \tau_2) \rightarrow (Y, E, \sigma_1, \sigma_2)$ is a $(1,2)^*$-fuzzy soft b-irresolute surjection and (X, E, τ_1, τ_2) is $(1,2)^*$-fuzzy soft b-connected then $(Y, E, \sigma_1, \sigma_2)$ is $(1,2)^*$-fuzzy soft b-connected.
Proof. (i) Suppose \((Y, E, \sigma_1, \sigma_2)\) is not \((1, 2)^*\)-fuzzy soft connected. Let \(Y = f_E \hat{\cup} g_E\), where \(f_E\) and \(g_E\) are fuzzy soft disjoint non-empty \(\sigma_1\sigma_2\)-fuzzy soft open sets in \((Y, E, \sigma_1, \sigma_2)\). Since \(\psi\) is a \((1, 2)^*\)-fuzzy soft b-continuous and onto; \(g_E = \psi^{-1}(f_E) \cup \psi^{-1}(g_E)\), where \(\psi^{-1}(f_E)\) and \(\psi^{-1}(g_E)\) are fuzzy soft disjoint non-empty \((1, 2)^*\)-fuzzy soft open sets in \((X, E, \tau_1, \tau_2)\). This contradicts the fact that \((X, E, \tau_1, \tau_2)\) is \((1, 2)^*\)-fuzzy soft b-connected. Hence \((Y, E, \sigma_1, \sigma_2)\) is \((1, 2)^*\)-fuzzy soft connected.

(ii) Suppose \((Y, E, \sigma_1, \sigma_2)\) is not \((1, 2)^*\)-fuzzy soft b-connected. Let \(Y = f_E \hat{\cup} g_E\), where \(f_E\) and \(g_E\) are fuzzy soft disjoint non-empty \((1, 2)^*\)-fuzzy soft b-open sets in \((Y, E, \sigma_1, \sigma_2)\). Since \(\psi\) is \((1, 2)^*\)-fuzzy soft b-irresolute and onto; then \(g_E = \psi^{-1}(f_E) \cup \psi^{-1}(g_E)\), where \(\psi^{-1}(f_E)\) and \(\psi^{-1}(g_E)\) are fuzzy soft disjoint non-empty \((1, 2)^*\)-fuzzy soft b-open sets in \((X, E, \tau_1, \tau_2)\). This contradicts the fact that \((X, E, \tau_1, \tau_2)\) is \((1, 2)^*\)-fuzzy soft b-connected. Hence \((Y, E, \sigma_1, \sigma_2)\) is \((1, 2)^*\)-fuzzy soft b-connected.

4. \((1, 2)^*\)-Fuzzy Soft b-Compactness

In this section \((1, 2)^*\)-fuzzy soft b-compactness is defined and some of the characterizations are proved.

Definition 23. A collection \(\{f_{iE} : i \in \Lambda\}\) of \((1, 2)^*\)-fuzzy soft b-open sets in fuzzy soft bitopological space \((X, E, \tau_1, \tau_2)\) is called a \((1, 2)^*\)-fuzzy soft b-cover of \(f_E\) if \(f_E \hat{\subseteq} \bigcup\{f_{iE} : i \in \Lambda\}\).

Definition 24. A fuzzy soft bitopological space \((X, E, \tau_1, \tau_2)\) is called a \((1, 2)^*\)-fuzzy soft b-compact if every \((1, 2)^*\)-fuzzy soft b-cover of \(1_E\) has a finite subcover.

Definition 25. A fuzzy soft subset \(f_E\) of fuzzy soft bitopological space \((X, E, \tau_1, \tau_2)\) is said to be \((1, 2)^*\)-fuzzy soft b-compact if for every collection \(\{f_{iE} : i \in \Lambda\}\) of \((1, 2)^*\)-fuzzy soft b-open subsets of \((X, E, \tau_1, \tau_2)\) such that \(f_E \subseteq \bigcup\{f_{iE} : i \in \Lambda\}\) there exists a finite subset \(\Lambda_0\) of \(\Lambda\) such that \(f_E \subseteq \bigcup\{f_{iE} : i \in \Lambda_0\}\).

Definition 26. A fuzzy soft subset \(f_E\) of fuzzy soft bitopological space \((X, E, \tau_1, \tau_2)\) is said to be \((1, 2)^*\)-fuzzy soft b-compact if \(f_E\) is \((1, 2)^*\)-fuzzy soft b-compact as a subspace of \((X, E, \tau_1, \tau_2)\).

Theorem 6. Every \((1, 2)^*\)-fuzzy soft closed subset of fuzzy \((1, 2)^*\)-fuzzy soft b-compact space \((X, E, \tau_1, \tau_2)\) is \((1, 2)^*\)-fuzzy soft b-compact relative to \(1_E\).

Proof. Let \(f_E\) be a \((1, 2)^*\)-fuzzy soft closed subset of \((X, E, \tau_1, \tau_2)\). Then \(f_E\) is a \((1, 2)^*\)-fuzzy soft open set in \((X, E, \tau_1, \tau_2)\). Let \(S = \{g_{iE} : i \in \Lambda\}\) be a cover of \(f_E\) by \((1, 2)^*\)-fuzzy soft open subsets in \((X, E, \tau_1, \tau_2)\). Then \(\bigcup f_{iE}\) is a \((1, 2)^*\)-fuzzy soft b-open cover for \(1_E\). Since \((X, E, \tau_1, \tau_2)\) is a \((1, 2)^*\)-fuzzy soft b-compact; it has a finite subcover say \(S = g_{1E} \cup g_{1E} \cup \ldots \cup g_{nE} \cup f_E, g_{iE} \in S, i = 1, 2, \ldots, n\). But \(f_E\) and \(f_E\) are fuzzy soft disjoint. Hence \(f_E \subseteq g_{1E} \cup g_{2E} \cup \ldots \cup g_{nE} \subseteq S\). Thus we have shown that any \((1, 2)^*\)-fuzzy soft b-open cover has a finite subcover. Therefore \(f_E\) is \((1, 2)^*\)-fuzzy soft b-compact relative to \(1_E\).
Theorem 7. A $(1,2)^*\text{-fuzzy soft}$ b-continuous image of a $(1,2)^*\text{-fuzzy soft}$ b-compact space is $(1,2)^*\text{-fuzzy soft}$ compact.

Proof. Consider $\psi : (X, E, \tau_1, \tau_2) \to (Y, E, \sigma_1, \sigma_2)$ be a $(1,2)^*\text{-fuzzy soft}$ b-continuous function. Let $\{f_{i_E} : i \in \Lambda\}$ be a $\sigma_1\sigma_2$-fuzzy soft open cover of 1_E in $(Y, E, \sigma_1, \sigma_2)$. Then $\{\psi^{-1}(f_{i_E}) : i \in \Lambda\}$ is a $(1,2)^*\text{-fuzzy soft}$ b-open cover of 1_E in (X, E, τ_1, τ_2). Since (X, E, τ_1, τ_2) is $(1,2)^*\text{-fuzzy soft}$ b-compact; it has a finite subcover say, $\{\psi^{-1}(f_{1_E}), \psi^{-1}(f_{1_E}), ..., \psi^{-1}(f_{n_E})\}$. Since ψ is onto, $\{f_{1_E}, f_{1_E}, ..., f_{n_E}\}$ is a $\sigma_1\sigma_2$-fuzzy soft open cover of 1_E in $(Y, E, \sigma_1, \sigma_2)$ and hence $(Y, E, \sigma_1, \sigma_2)$ is $(1,2)^*\text{-fuzzy soft}$ compact.

Theorem 8. If a map $\psi : (X, E, \tau_1, \tau_2) \to (Y, E, \sigma_1, \sigma_2)$ is a $(1,2)^*\text{-fuzzy soft}$ b-irresolute and a fuzzy soft subset f_E of (X, E, τ_1, τ_2) is $(1,2)^*\text{-fuzzy soft}$ compact relative to 1_E then the image $\psi(f_E)$ is $(1,2)^*\text{-fuzzy soft}$ compact relative to 1_E in $(Y, E, \sigma_1, \sigma_2)$.

Proof. Let $\{f_{i_E} : i \in \Lambda\}$ be a collection of $(1,2)^*\text{-fuzzy soft}$ b-open sets in $(Y, E, \sigma_1, \sigma_2)$ such that $\psi(f_E) \subseteq \bigcup\{f_{i_E} : i \in \Lambda\}$. Then $f_E \subseteq \bigcup\{\psi^{-1}(f_{i_E}) : i \in \Lambda\}$, where $\psi^{-1}(f_{i_E})$ is $(1,2)^*\text{-fuzzy soft}$ b-open in (X, E, τ_1, τ_2) is $(1,2)^*\text{-fuzzy soft}$ compact relative to 1_E in (X, E, τ_1, τ_2), there exists a finite sub collection $\{f_{1_E}, f_{2_E}, ..., f_{n_E}\}$ such that $f_E \subseteq \bigcup\{\psi^{-1}(f_{i_E}) : i = 1, 2, 3, ..., n\}$ that is, $\psi(f_E) \subseteq \bigcup\{f_{i_E} : i = 1, 2, 3, ..., n\}$. Hence $\psi(f_E)$ is $(1,2)^*\text{-fuzzy soft}$ compact relative to 1_E in $(Y, E, \sigma_1, \sigma_2)$.

5. Conclusion

In this paper, we introduced the notions of $(1,2)^*\text{-fuzzy soft}$ b-separated sets, $(1,2)^*\text{-fuzzy soft}$ b-connectedness and $(1,2)^*\text{-fuzzy soft}$ b-compactness in fuzzy soft bitopological spaces. Then, some basic topological properties of these notions were investigated. Also, some illustrative examples were given to show the importance of the obtained theorems. We hope that this paper will be important for researchers to studying many other concepts and also the generalization for some important results in topology.

Acknowledgements

The author is very grateful to the editor and the reviewers for their valuable suggestions.

References

[1] N.A. Taş A. Açıkgöz and T.A. Noiri. A Decomposition of some types of mixed soft continuity in soft topological spaces. *Filomat*, 30(2):379–385, 2016.

[2] S.A. El-Sheikh A. Kandil, O.A.E. Tantawy and S.A. Hazza. Pairwise open (closed) soft sets in soft bitopological spaces. *Annals of Fuzzy Mathematics and Informatics*, 11(4):1–20, 2016.
REFERENCES

[3] S.A. El-Sheikh A. Kandil, O.A.E. Tantawy and S.A. Hazza. Pairwise soft separation axioms in soft bitopological spaces. *Annals of Fuzzy Mathematics and Informatics*, 4(4):571–588, 2016.

[4] A. Açıkgöz and N.A. Taş. Some new mixed soft sets. *Mathematical Sciences And Applications E-Notes*, 2(2):105–118, 2014.

[5] E. Yesil C. Ekşin, M. Güzelkaya and I. Ekşin. Fuzzy logic approach to mimic decision making behaviour of humans in stock management game. *Proceedings of the 2008 System Dynamics Conference*, 2008.

[6] D. Chen. The parametrization reduction of soft sets and its applications. *Computers and Mathematics with Applications*, 49(5-6):757–763, 2005.

[7] C.C. Chou, J.M. Yih, J.F. Ding, T.C. Han, Y.H.Lim, and et al. Application of a fuzzy EOQ model to the stock management in the manufacture system. *Key Engineering Materials*, 499:757–763, 2012.

[8] G. Şenel. A New Approach to Hausdorff Space Theory via the Soft Sets. *Mathematical Problems in Engineering*, 2016:6 pages, 2016.

[9] G. Şenel. Soft Topology Generated by L-Soft Sets. *Journal of New Theory*, 4(24):88–100, 2018.

[10] G. Şenel and N. Çağman. Soft Closed Sets on Soft Bitopological Space. *Journal of New Results in Science*, 3(5):57–66, 2014.

[11] G. Şenel and N. Çağman. Soft topological subspaces. *Annals of Fuzzy Mathematics and Informatics*, 10(4):525–535, 2015.

[12] B.M. Ittanagi. Soft Bitopological Spaces. *International Journal of Computer Applications*, 107(7):1–4, 2014.

[13] F. Karaca and N. Taş. Decision Making Problem for Life and Non Life Insurances. *Journal of Balikesir University Institute of Science and Technology*, 20(1):572–588, 2018.

[14] J.C. Kelly. Bitopological spaces. *Proceedings of the London Mathematical Society*, 13:71–81, 1963.

[15] P.K. Maji, R. Biswas, and A.R. Roy. Fuzzy soft sets. *Journal of Fuzzy Mathematics*, 9(3):589–602, 2001.

[16] D. Molodtsov. Soft set theory-first results. *Comput. Math. Appl.*, 37:19–31, 1999.

[17] P. Mukherjee and C. Park. On fuzzy soft bitopological spaces. *Mathematics and Computer Sciences Journal (MCSJ)*, 10(7):1–8, 2005.
REFERENCES

[18] S. Karataş N. Çağman and S. Enginoğlu. Soft Topology. *Comp. and Math. with App.*, 62(1):351–358, 2011.

[19] N.Y. Özgür N. Taṣ and P. Demir. An Application of Soft Set and Fuzzy Soft Set Theories to Stock Management. *Süleyman Demirel University Journal of Natural and Applied Sciences*, 21(3):791–796, 2017.

[20] N.Y. Özgür and N. Taṣ. A note on “Application of fuzzy soft sets to investment decision making problem”. *Journal of New Theory*, 1(7):1–10, 2015.

[21] T.Y. Öztürk and M. Karademir. Soft pair-wise b-continuity on soft bitopological spaces. *Celal Bayar University Journal of Science*, 13(2):413–422, 2017.

[22] R. Biswas P. Maji and A.R. Roy. Soft set theory. *Computers and Mathematics with Applications*, 45:555–562, 2003.

[23] C.W. Patty. Bitopological spaces. *Duke Mathematical Journal*, 34:387–392, 1967.

[24] I.L. Reilly. On bitopological separation properties. *Nanta Mathematica*, 29:14–25, 1972.

[25] N. Revathi and K. Bageerathi. On Soft B-open sets in soft bitopological space. *International Journal of Applied Research*, 1(11):615–623, 2015.

[26] N. Revathi and K. Bageerathi. (1, 2)*-soft b-continuous and (1, 2)*-soft b-closed map. *Asian Journal of Mathematics and Computer Research*, 17(2):111–122, 2017.

[27] S. Roy and T.K. Samanta. A note on fuzzy soft topological spaces. *Annals of Fuzzy Mathematics and Informatics*, 3(2):305–311, 2012.

[28] G. Yıldızdan S. Yüksel, T. Dizman and U. Sert. Application of soft sets to diagnose the prostate cancer risk. *Journal of Inequalities and Applications*, 2013:2013–229, 2013.

[29] A.F. Sayed. Some separation axioms in fuzzy soft bitopological spaces. *J. Math. Comput. Sci.*, 8(1):28–45, 2018.

[30] A.F. Sayed. On fuzzy soft b-open sets in fuzzy soft bitopological space. *Journal of Mathematics and Computer Science*, 21:31–44, 2020.

[31] A.F. Sayed. On (1, 2)*-Fuzzy Soft b-Continuity in Fuzzy Soft Bitopological Spaces. *Soft computing*, 2021.

[32] M. Shabir and M. Naz. On Soft Topological Spaces. *Comput. Math. Appl.*, 61:1786–1799, 2011.

[33] N. Taṣ. On the Pasting Lemma on a Fuzzy Soft Topological Space with Mixed Structure. *Mathematical Sciences and Applications E-Notes*, 8(2):15–20, 2020.
[34] N. Taş and A. Açıklgoz. Some mixed soft operations and extremally soft disconnect-
edness via two soft topologies. *Applied Mathematical Sciences*, 5:490–500, 2014.

[35] B. Tanay and M.B. Kandemir. Topological structure of fuzzy soft sets. *Computers
and Mathematics with Applications*, 61(10):2952–2957, 2011.

[36] L.A. Zadeh. Fuzzy sets. *Information and Control*, 8:338–353, 1965.