Radiomagnetotelluric two-dimensional forward and inverse modelling accounting for displacement currents

Thomas Kalscheuer,1 Laust B. Pedersen1 and Weerachai Siripunvaraporn2

1Department of Earth Sciences, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden. E-mail: Thomas.Kalscheuer@geo.uu.se
2Department of Physics, Faculty of Science, Mahidol University, Rama VI Rd., Rachatawee, Bangkok 10400, Thailand

Accepted 2008 June 30. Received 2008 June 17; in original form 2007 October 30

SUMMARY

Electromagnetic surface measurements with the radiomagnetotelluric (RMT) method in the frequency range between 10 and 300 kHz are typically interpreted in the quasi-static approximation, that is, assuming displacement currents are negligible. In this paper, the dielectric effect of displacement currents on RMT responses over resistive subsurface models is studied with a 2-D forward and inverse scheme that can operate both in the quasi-static approximation and including displacement currents.

Forward computations of simple models exemplify how responses that allow for displacement currents deviate from responses computed in the quasi-static approximation. The differences become most obvious for highly resistive subsurface models of about 3000 Ω m and more and at high frequencies. For such cases, the apparent resistivities and phases of the transverse magnetic (TM) and transverse electric (TE) modes are significantly smaller than in the quasi-static approximation. Along profiles traversing 2-D subsurface models, sign reversals in the real part of the vertical magnetic transfer function (VMT) are often more pronounced than in the quasi-static approximation. On both sides of such sign reversals, the responses computed including displacement currents are larger than typical measurement errors.

The 2-D inversion of synthetic data computed including displacement currents demonstrates that serious misinterpretations in the form of artefacts in inverse models can be made if displacement currents are neglected during the inversion. Hence, the inclusion of the dielectric effect is a crucial improvement over existing quasi-static 2-D inverse schemes. Synthetic data from a 2-D model with constant dielectric permittivity and a conductive block buried in a highly resistive layer, which in turn is underlain by a conductive layer, are inverted. In the quasi-static inverse model, the depth to the conductive structures is overestimated, artefactual resistors appear on both sides of the conductive block and a spurious conductive layer is imaged at the surface.

High-frequency RMT field data from Åvro, Sweden, are re-interpreted using the newly developed 2-D inversion scheme that includes displacement currents. In contrast to previous quasi-static modelling, the new inverse models have electrical resistivity values comparable to a normal-resistivity borehole log and boundaries between resistive and conductive structures, which correlate with the positions of seismic reflectors.

Key words: Numerical solutions; Inverse theory; Electrical properties; Electromagnetic theory; Magnetotelluric.

1 INTRODUCTION

Since many electromagnetic (EM) methods utilize frequencies below 10 kHz, the quasi-static assumption that displacement currents are much smaller than conduction currents (i.e. $\omega \varepsilon \ll \sigma$ with angular frequency $\omega = 2\pi f$, dielectric permittivity $\varepsilon = \varepsilon_r \varepsilon_0$, free air permittivity ε_0, and electrical conductivity σ) is stipulated and displacement currents are neglected during the data interpretation. For the radiomagnetotelluric (RMT) method, which uses EM fields in the VLF (3–30 kHz) and LF (30–300 kHz) frequency ranges, the validity of the quasi-static assumption is questionable. For a typical relative dielectric permittivity $\varepsilon_r = 5$ (e.g. mildly fractured crystalline bedrock), displacement currents are equally strong as conduction currents for, for example, an electrical resistivity $\rho = 1/\sigma = 10000 \Omega$ m and a frequency $f = 360$ kHz. This means that the dielectric effect is non-negligible even at a combination of lower frequencies and/or resistivities. In fact, it can be argued that the...
The dielectric effect should be accounted for as soon as the perturbation it causes is roughly equal to the measurement errors of the data. For a typical error level of, say, 2 per cent on the impedance tensor elements, vertically incident plane waves and a relative dielectric permittivity \(\epsilon_r = 5 \), it is shown in Section 3.1 that the effect of displacement currents on the impedance phase is above the error level at, for example, \(f = 15 \text{ kHz} \) and \(\rho = 10,000 \text{ \Omega m} \) or \(f = 170 \text{ kHz} \) and \(\rho = 1000 \text{ \Omega m} \).

In the following subsections, the existing knowledge of the dielectric effect on plane-wave and controlled-source frequency-domain electromagnetic (FDEM) responses is reviewed. With respect to the RMT method, the plane-wave FDEM responses are of special importance. After that, the resolvability of anomalous dielectric permittivities and previous attempts of quasi-static interpretation of high-frequency RMT data are discussed. In the last part of the introduction, we give an outlook at our 2-D inverse scheme for RMT data that allows for displacement currents and summarize the assumptions we make. Note that for the treatment of the FDEM theory, we choose an \(\exp \pm i \omega t \) time dependence throughout this paper.

1.1 Dielectric effect on frequency-domain EM responses

Several publications describe the effect of displacement currents on plane-wave and controlled-source FDEM responses in the VLF and LF frequency ranges, based on analytic solutions by Wait (1953, 1970) and Wait & Nabulsi (1996) for a 1-D layered Earth.

In plane-wave FDEM methods like the RMT method, EM fields generated by powerful radio transmitters operating in the VLF and LF frequency ranges are used as primary signals. The aerials employed with the remote radio transmitters are vertical electric dipoles. At distances beyond several free-air wavelengths from the transmitter, that is, in the so-called far-field zone, the EM field essentially resembles that of a plane wave, which is obliquely incident on the Earth's surface (McNeill & Labson 1991). An excellent summary of the theory of plane-wave FDEM impedance, VMT and wave tilt measurements that covers both the quasi-static approximation and the general case with displacement currents, as well as the nature of the radio transmitter source field, is given by Crossley (1981).

For plane-wave EM fields, Sinha (1977) investigates the influence of displacement currents on the wave tilt, that is, the ratio of the horizontal to vertical electric field. On the surface of a homogeneous half-space, both amplitude and phase approach the values of the quasi-static approximation at low frequencies, although they become significantly smaller than the quasi-static responses with increasing frequency.

The dielectric effect on apparent resistivities and phases of radion magnetotelluric surface impedances is deduced in Crossley (1981), Zacher (1992) and Persson & Pedersen (2002) from 1-D forward computations. On the surface of a homogeneous half-space, both apparent resistivity and phase are smaller than their constant counterparts in the quasi-static approximation. The differences become stronger with increasing frequency.

Wait (1953), Sinha (1977), Crossley (1981) and Song et al. (2002) emphasize the importance of the angle of incidence for wave tilt, surface impedance and VMT measurements conducted with plane-wave FDEM methods. The EM field is transmitted vertically into the Earth, independent of the angle of incidence, when the quasi-static approximation is valid. In the general case with displacement currents, however, the angles of incidence and transmission are related through Snell's law. As a consequence, the TM- and TE-mode impedances vary with the angle of incidence and differ at oblique incidence, even if measured on the surface of a layered half-space (Song et al. 2002).

For controlled source air-borne FDEM measurements, Fraser et al. (1990), Huang & Fraser (2002) and Yin & Hodges (2005) simulate responses due to a pair of horizontal coplanar transmitting–receiving coils, operating in the frequency range of 0.4 to 100 kHz. The ratio of secondary magnetic field intensity to primary magnetic field intensity is split into an in-phase component (real part) and a quadrature component (imaginary part). According to Fraser et al. (1990) and Huang & Fraser (2002), displacement currents in the Earth lead to a decrease of the in-phase component and an increase of the quadrature component, compared with the quasi-static case for which both components are positive. The influence of displacement currents in the air (an increase of both components) is rather small compared with that in the Earth (Yin & Hodges 2005).

1.2 Resolvability of permittivity anomalies

The resolvability of the relative dielectric permittivity from both plane-wave and controlled-source FDEM measurements is assessed by Nabulsi & Wait (1996), Stewart et al. (1994), Huang & Fraser (2002) and Persson & Pedersen (2002) with 1-D simulations.

Using obliquely incident plane waves in the VHF range (30–300 MHz), Nabulsi & Wait (1996) illustrate that a dielectric layer embedded in a highly resistive host is detectable if its thickness and relative permittivity are sufficiently high.

For a controlled source coil–coil FDEM method which operates in the MF (0.3–3 MHz) and HF (3–30 MHz) frequency ranges, Stewart et al. (1994) show that the anomalous response of both a resistive and conductive thin layer is significantly enlarged by the dielectric effect even if there is no contrast of dielectric permittivity between the layers of the model. Stewart et al. (1994) present two field examples, where tilt angle and ellipticity data of the magnetic field polarization ellipse have been successfully inverted for both electric resistivity and dielectric permittivity, with a 1-D inverse scheme.

At frequencies lower than those employed by Nabulsi & Wait (1996) and Stewart et al. (1994), displacement currents become weaker and the resolvability of permittivity anomalies within a limited range of possible relative permittivity values deteriorates. Huang & Fraser (2002) (see Section 1.1) estimate a single value of relative permittivity at their highest frequency of 100 kHz, as it is a badly resolved parameter at lower frequencies.

© 2008 The Authors, *GJI*, 175, 486–514
Journal compilation © 2008 RAS
Persson & Pedersen (2002) invert RMT data with frequencies up to 250 kHz for dielectric permittivity, using 1-D models. The differences of inverse models are found to be negligible if the relative dielectric permittivities are limited to the range between 4 and 10, typical of bedrock, and if the resistivities are not larger than 20 000 Ω m (Persson & Pedersen 2002). Relative dielectric permittivities larger than 10 are typical of water bearing sedimentary rocks and soils (Reynolds 1997). Due to the high water content, such formations have relatively low resistivities (typically up to about 500 Ω m), which reduce the importance of displacement currents at VLF and LF frequencies. It is therefore sufficient, in many practical cases of RMT data interpretation, to account for displacement currents by selecting a dielectric permittivity representative of high-resistivity structures in the subsurface.

1.3 Quasi-static interpretation of high-frequency RMT data

The difficulties of the interpretation of high-frequency RMT field data in the quasi-static approximation are discussed by Persson & Pedersen (2002) and Linde & Pedersen (2004). For synthetic 1-D RMT impedance responses computed with displacement currents, Persson & Pedersen (2002) compare 1-D inversion results from inverse schemes that utilize both the quasi-static approximation and displacement currents. For a homogeneous half-space model, neglecting displacement currents during the inversion leads to an inverse model with a conductor close to

\[\text{conductive and the underlying unfractured bedrock is modelled more resistive than in the 1-D inversions with displacement currents. The models, due to inversion with displacement currents, are supported by logging data of Gentzschein et al. (1987).} \]

In fact, the work presented by Linde & Pedersen (2004) is a typical example of the interpretation strategies chosen until now, in cases where the dielectric effect in RMT data is to be accounted for. In the absence of a 2-D inversion program that allows for displacement currents, the data interpretation has, so far, been restricted to 1-D inversions with modified analytic forward and Frechet derivative routines, the exclusion of the higher frequency data in 2-D inversions and 3-D forward modelling with the integral equation code X3D by Avdeev et al. (2002).

1.4 2-D inversion of RMT data allowing for displacement currents

For the first time, we take displacement currents in a 2-D forward and inverse modelling scheme for RMT data into account by selecting a value of dielectric permittivity that is typical of the subsurface and assuming vertically incident plane waves. As the EM field from remote VLF transmitters can be expected to be incident at an angle closer to 90° (grazing incidence), it is shown in Section 2.2 that the presence of a moderately resistive surface layer reduces the influence of the angle of incidence considerably. We investigate the effect of displacement currents on 2-D forward responses in the TM-mode, the TE-mode and the VMT and compare our results with the responses computed by the integral equation code X3D by Avdeev et al. (2002), which, at the time of writing, was the only forward code known to us that operates in two or three dimensions and includes displacement currents. Especially, the effect on VMT responses was not considered in the past (cf. Avdeev et al. 2002; Persson & Pedersen 2002). Possible misinterpretations, in the form of artefacts with excessively extreme resistivities in models from quasi-static inverse schemes, are highlighted. The RMT data from Åvrö (Linde & Pedersen 2004) are re-interpreted with the inverse scheme that allows for displacement currents. The resulting inverse models are compared with the borehole data of Gentzschein et al. (1987) and the seismic reflection model of Juhlin & Palm (1999).

We have added our forward and sensitivity routines, which allow for displacement currents, to the popular 2-D magnetotelluric inverse code REBOCC by Siripunvaraporn & Egbert (2000).

2 THEORY

2.1 Electromagnetic equations

Assuming a volume of conductivity \(\sigma \), dielectric permittivity \(\epsilon \) and vacuum permeability \(\mu_0 \), Maxwell’s equations are written in the frequency domain as

\[
\nabla \times \mathbf{E} = -(i\omega \mu_0) \mathbf{H} = -\mathbf{\mathcal{H}} \quad \text{Faraday’s law} \tag{1}
\]

\[
\nabla \times \mathbf{H} = (\sigma + i\omega \epsilon) \mathbf{E} = \mathbf{\mathcal{E}} \quad \text{Ampere’s law} \tag{2}
\]

\[
\nabla \cdot (\epsilon \mathbf{E}) = q \quad \text{Gauss’ law} \tag{3}
\]

\[
\nabla \cdot \mathbf{H} = 0
\]

where \(\mathbf{E} \) and \(\mathbf{H} \) are the electric and magnetic field vectors, varying in time \(t \), with angular frequency \(\omega \) (e.g. Ward & Hohmann 1987) and \(q \) is the charge density. On the right-hand sides of eqs (1) and (2), the definitions of the impedance \(\mathcal{Z} = i\omega \mu_0 \) and admittance \(\mathcal{Y} = \sigma + i\omega \epsilon \) are used. The quantities \(\mathbf{j}_{\text{cond}} = \sigma \mathbf{E} \), \(\mathbf{j}_{\text{disp}} = i\omega \epsilon \mathbf{E} \), and \(\mathbf{j} = \mathbf{\mathcal{E}} \) are the conduction, displacement and total current densities, respectively. The
displacement current density \(i_0 \varepsilon \mathbf{E}\) describes the dielectric effect due to electronic, atomic, molecular and space charge derived polarization of matter with dielectric permittivity \(\varepsilon\) in the presence of a time-varying electric field (Keller 1987). In the case that conduction currents dominate over displacement currents (i.e. \(\sigma \gg \omega \varepsilon\)), displacement currents may be neglected in eq. (2). This simplification is known as the quasi-static approximation.

In the following, it is assumed that plane waves are obliquely incident on the Earth’s surface in the \(y\)-\(z\) plane and that the \(x\)-direction is the geo-electrical strike direction. Therefore, the admittivity \(\hat{y}\) and the EM field components vary only in \(y\) and \(z\) direction. This choice leads to the definition of the transverse electric (TE) and transverse magnetic (TM) modes for which the vertical electrical and vertical magnetic field components, respectively, vanish. The sets of equations for the TE- and TM-modes are

\[
\begin{align*}
(1) \quad & \text{TE-mode:} \\
& \frac{\partial H_y}{\partial y} - \frac{\partial H_z}{\partial z} = \hat{y} E_y, \\
& \frac{\partial E_z}{\partial z} = -\hat{z} H_y, \\
& \frac{\partial E_y}{\partial y} = \hat{y} H_z, \\
& \frac{\partial H_z}{\partial z} = \hat{y} E_y, \\
& \frac{\partial H_y}{\partial y} = -\hat{y} E_z.
\end{align*}
\]

(2) \quad TM-mode:
\[
\begin{align*}
& \frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial z} = -\hat{y} H_x, \\
& \frac{\partial H_x}{\partial z} = \hat{y} E_y, \\
& \frac{\partial H_y}{\partial y} = -\hat{y} E_z.
\end{align*}
\]

An illustration of the EM field components of the TM-mode and a 2-D subsurface with a cylindrical structure of anomalous electrical properties and infinite extension along the \(x\)-axis, that is, the strike direction, is given in Fig. 1. The EM field is obliquely incident at an angle \(\theta_0\), thereby having a wavenumber vector \(k_0 = (0, k_y, k_z)\). According to the definition of the TM-mode, the incident, reflected and transmitted magnetic fields \(\mathbf{H}_i = (H_{ix}, 0, 0), \mathbf{H}_r = (H_{rx}, 0, 0), \text{ and } \mathbf{H}_t = (H_{tx}, 0, 0), \text{ respectively, are all directed along the strike direction whereas the incident, reflected and transmitted electric fields } \mathbf{E}_i = (0, E_{iy}, E_{iz}), \mathbf{E}_r = (0, E_{ry}, E_{rz}), \text{ and } \mathbf{E}_t = (0, E_{ty}, E_{tz}), \text{ respectively, are all directed perpendicularly to the strike direction.}

In the quasi-static approximation of the TM-mode, \(j = (0, \sigma E_y, \sigma E_z)\) vanishes in the air half-space (Brewitt-Taylor & Weaver 1976) where \(\sigma_{\text{air}} = 0\) is assumed. As a consequence of eqs (9) and (10), \(H_x\) is then constant in the air half-space, and an inclusion of the air half-space in the modelling domain can be omitted. If displacement currents are accounted for, the magnetic field in the air is no longer independent of the resistivity distribution in the Earth, as the vertical component of the current density is continuous at the air–Earth interface.

Figure 1. EM field components of the TM-mode on a 2-D earth model. The model consists of a structure with anomalous electrical properties that has its strike direction parallel to the \(x\)-axis. The EM field is obliquely incident at an angle \(\theta_0\), thereby having a wavenumber vector \(k_0 = (0, k_y, k_z) = (0, k_0 \sin \theta_0, k_0 \cos \theta_0)\). The incident, reflected and transmitted magnetic fields \(\mathbf{H}_i = (H_{ix}, 0, 0), \mathbf{H}_r = (H_{rx}, 0, 0)\) and \(\mathbf{H}_t = (H_{tx}, 0, 0)\), respectively, are all directed along the strike direction. The incident, reflected and transmitted electric fields \(\mathbf{E}_i = (0, E_{iy}, E_{iz}), \mathbf{E}_r = (0, E_{ry}, E_{rz})\), and \(\mathbf{E}_t = (0, E_{ty}, E_{tz})\), respectively, are all directed perpendicularly to the strike direction. On top of a conductive subsurface, the electromagnetic field is refracted towards the normal, that is, \(\theta_t < \theta_0\).
and in the air,
\[j_y = \hat{y} E_y = \imath \omega \epsilon_0 \sigma E_y = -\frac{\partial H_y}{\partial z}, \]
(11)
\[j_z = \hat{z} E_z = \imath \omega \epsilon_0 \sigma E_z = -\frac{\partial H_z}{\partial y}. \]
(12)
differ from zero (cf. eqs 9 and 10). Hence, the air half-space must be included in the simulation of the TM-mode.

The electric and magnetic field components \(E_x \) and \(H_x \) of the TE- and TM-modes, respectively, fulfil the Helmholtz equations (cf. eqs 1 and 2)
\[- (\nabla \times \nabla \times \mathbf{E})_x = - [\nabla (\nabla \cdot \mathbf{E})]_x + (\nabla^2 \mathbf{E})_x = \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} = \hat{z} \hat{y} E_x \]
(13)
and
\[- (\nabla \times \nabla \times \mathbf{H})_x = - \left(\frac{1}{\hat{y}} [\nabla (\nabla \cdot \mathbf{H})]_x + \frac{1}{\hat{y}} \nabla^2 H_x - \left[\left(\frac{1}{\hat{y}} \right) \nabla \times \mathbf{H} \right]_x \right) \]
\[= \frac{1}{\hat{y}} \left(\frac{\partial^2 H_x}{\partial y^2} + \frac{\partial^2 H_x}{\partial z^2} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\hat{y}} \right) \cdot \frac{\partial H_x}{\partial y} + \frac{\partial}{\partial z} \left(\frac{1}{\hat{y}} \right) \cdot \frac{\partial H_x}{\partial z} = \hat{z} \frac{\partial}{\partial x} H_x. \]
(14)
where the 2-D assumption \(\partial / \partial x = 0 \) and eq. (4) were used.

In a homogeneous volume, for instance, the general solution of the scalar Helmholtz equations (eqs 13 and 14) is given by
\[\{ E, H \}_x = \left(\{ E, H \}_0^+ e^{-\imath k_x x - \imath k_z z} \right) + \left(\{ E, H \}_0^- e^{\imath k_x x + \imath k_z z} \right) \]
(15)
Here, \(k_x \) and \(k_z \) are the horizontal and vertical components of the wavenumber vector \(k \) (see above). The substitution of eq. (15) into eq. (13) yields
\[k^2 = k_x^2 + k_z^2 = -\hat{z} \hat{y} \]
(16)
where \(k_x = k \sin \theta \) and \(k_z = k \cos \theta \). The complex wavenumber can be split as \(k = \alpha - \imath \beta \) where the real numbers \(\alpha \) and \(\beta \) represent propagation and attenuation, respectively, and
\[\alpha = \omega \frac{\mu_0 \epsilon_0}{2} \sqrt{1 + \frac{\sigma^2}{\epsilon^2 \omega^2} - 1}. \]
(17)
\[\beta = \omega \frac{\mu_0 \epsilon_0}{2} \sqrt{1 + \frac{\sigma^2}{\epsilon^2 \omega^2} - 1}. \]
(18)
The inverse of the imaginary part gives the skin depth \(\delta = \frac{1}{\beta} \) over which the amplitude of the EM field is reduced by a factor 1/e. In the quasi-static approximation, the real and imaginary parts are equal, that is, \(\alpha = \beta = \sqrt{\frac{\mu_0 \epsilon_0}{\delta}} \).

The reflection and refraction of plane EM waves at the Earth’s surface are governed by Snell’s law and the Fresnel equations (Ward & Hohmann 1987). Hence, the EM field measured on the Earth’s surface depends on the angle of incidence (see Fig. 1). Three cases of the angle of incidence \(\theta_0 \) are distinguished. The cases \(\theta_0 = 0^\circ \) and \(\theta_0 = \pm 90^\circ \) are known as normal (or vertical) incidence and grazing (or parallel) incidence, respectively. The cases \(90^\circ > \theta_0 > 0^\circ \) and \(0^\circ > \theta_0 > -90^\circ \) are called oblique incidence. The refraction of obliquely incident EM waves into the subsurface is conveniently demonstrated for a layered half-space. As a consequence of the boundary conditions for the EM field components at layer interfaces, the horizontal component of the wavenumber vector is constant (Ward & Hohmann 1987), that is,
\[k_{x,j} = k_0 \sin \theta_0 = k_j \sin \theta_j. \]
(19)
Here, \(k_0 = \sqrt{\mu_0 \epsilon_0} \) is the wavenumber of the air and \(\theta_0 \) is the angle of incidence. Similarly, \(k_j \) and \(\theta_j \) are the wavenumber and angle of transmission of the \(j \)th layer, respectively. According to eqs (16) and (19) the vertical wavenumber of the \(j \)th layer has the form
\[k_{z,j} = k_j \cos \theta_j = k_j \sqrt{1 - \sin^2 \theta_j} = k_j \sqrt{1 - \frac{k_0^2}{k_j^2} \sin^2 \theta_0}. \]
(20)
At sufficiently low frequencies, that is, when the quasi-static approximation is valid, \(k_z^2 / k_j^2 = \omega^2 \mu_0 \sigma / (\omega^2 \mu_0 \sigma_j - i \omega \mu_0 \sigma_j) \to 0 \) as \(\omega \to 0 \) and \(k_z = k_j \). Hence, it is only in the quasi-static approximation or at vertical incidence that the EM field is transmitted vertically into the Earth. At high frequencies and oblique incidence, the angle of transmission generally deviates from 0°.

After solving the Helmholtz equations (eqs 13 and 14) for \(E_x \) or \(H_z \) of a 2-D conductivity distribution, the auxiliary fields \(H_y \) and \(H_z \) or \(E_x \) and \(E_y \) can be computed with eqs (6) and (7) or eqs (9) and (10), respectively.

The off-diagonal elements of the complex 2-D impedance tensor relate the horizontal magnetic fields to the horizontal electric fields of the TE- and TM-mode as

\[
\begin{bmatrix}
E_x \\
E_y \\
H_x \\
H_y
\end{bmatrix} = \begin{bmatrix}
0 & Z_{xy} & 0 & 0 \\
Z_{yx} & 0 & 0 & 0 \\
H_x & 0 & 0 & 0 \\
H_y & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
H_x \\
H_y \\
E_x \\
E_y
\end{bmatrix}
\]

(21)

and yield the responses commonly used in radiomagnetotellurics, that is, the apparent resistivities

\[
\rho_{yx} = \frac{1}{\omega \mu_0} |Z_{yx}|^2 \quad \text{and} \quad \rho_{xy} = \frac{1}{\omega \mu_0} |Z_{xy}|^2
\]

(22)

and phases

\[
\phi_{yx} = \arg(Z_{yx}) \quad \text{and} \quad \phi_{xy} = \arg(Z_{xy}).
\]

(23)

Ward et al. (1968) establish a more direct link to the electrical properties of the subsurface, in the general case with displacement currents, by defining an apparent conductivity and an apparent dielectric permittivity.

Due to the dependence of the EM field on the angle of incidence, the amplitude and phase of the impedances of the TM- and TE-mode differ even if measured on the surface of a layered Earth. Only if the quasi-static approximation is valid or if the EM field is vertically incident, the TE- and TM-mode impedances of a layered half-space satisfy the relationship \(Z_{xy} = -Z_{yx} \).

For plane waves vertically incident on the surface of a homogeneous half-space with impedivity \(\hat{z} \) and admittivity \(\hat{y} \), the TM-mode impedance has the form \(Z_{yx} = \sqrt{2j} \hat{y} \) (Wait 1970; Ward & Hohmann 1987). In the quasi-static approximation, the latter expression simplifies to \(Z_{yx} = \sqrt{2j \omega \mu_0 / \epsilon_m} \), and only in this case, the apparent resistivities and phases measured on a homogeneous half-space equal the resistivity of the half-space and 45°, respectively.

In the TE-mode, the vertical magnetic field \(H_z \) is related to the horizontal magnetic field \(H_y \) through the complex 2-D VMT \(B \):

\[
H_z = B H_y.
\]

(24)

For plane waves obliquely incident on a layered Earth, the VMT generally differs from zero. However, for vertically incident plane waves or in the quasi-static approximation, a VMT that differs from zero is only observed if the admittivity \(\hat{y} \) varies laterally (see eqs 5–7).

2.2 Normal and oblique incidence

In the case of grazing or oblique incidence, both the incident electric and the incident magnetic fields can have vertical components (see Fig. 1). Already for a 1-D earth model, the TE- and TM-mode are then defined, by demanding that either the electric or the magnetic field be perpendicular to the plane of incidence (Wait 1970; Ward & Hohmann 1987), and the impedance tensor and VMT measured on the Earth's surface depend on the angle of incidence (see Section 2.1). It is therefore important to appraise the error made by assuming vertical incidence during the modelling process. For a layered earth model, the deviations of the TE- and TM-mode impedance amplitudes and phases at an arbitrary angle of incidence from those at normal incidence can be estimated with well-known recurrence formulae (see e.g. Wait 1953, 1970; Crossley 1981; Ward & Hohmann 1987; Song et al. 2002).

For the half-space model shown in Fig. 2(a), consisting of two layers with resistivities of 600 and 30 000 \(\Omega \) m and layer thicknesses of 25 and 75 m, a confining half-space with a resistivity of 600 \(\Omega \) m and a constant relative permittivity \(\epsilon_r = 6 \), the deviations of the amplitude and phase of the TM- and TE-mode impedances from their respective values at normal incidence are shown in Fig. 2. The maximal deviations of 1.5 per cent and 1° for the amplitude and phase, respectively, occurring at parallel incidence, are of the order of typically expected error levels. A similar model that consists of the uppermost layer underlain by a confining half-space of 30 000 \(\Omega \) m and a constant relative permittivity \(\epsilon_r = 6 \) is related to the horizontal magnetic field \(H_y \) through the complex 2-D VMT \(B \):

\[
H_z = B H_y.
\]

(24)

For plane waves obliquely incident on a layered Earth, the VMT generally differs from zero. However, for vertically incident plane waves or in the quasi-static approximation, a VMT that differs from zero is only observed if the admittivity \(\hat{y} \) varies laterally (see eqs 5–7).

2.2 Normal and oblique incidence

In the case of grazing or oblique incidence, both the incident electric and the incident magnetic fields can have vertical components (see Fig. 1). Already for a 1-D earth model, the TE- and TM-mode are then defined, by demanding that either the electric or the magnetic field be perpendicular to the plane of incidence (Wait 1970; Ward & Hohmann 1987), and the impedance tensor and VMT measured on the Earth's surface depend on the angle of incidence (see Section 2.1). It is therefore important to appraise the error made by assuming vertical incidence during the modelling process. For a layered earth model, the deviations of the TE- and TM-mode impedance amplitudes and phases at an arbitrary angle of incidence from those at normal incidence can be estimated with well-known recurrence formulae (see e.g. Wait 1953, 1970; Crossley 1981; Ward & Hohmann 1987; Song et al. 2002).

For the half-space model shown in Fig. 2(a), consisting of two layers with resistivities of 600 and 30 000 \(\Omega \) m and layer thicknesses of 25 and 75 m, a confining half-space with a resistivity of 600 \(\Omega \) m and a constant relative permittivity \(\epsilon_r = 6 \), the deviations of the amplitude and phase of the TM- and TE-mode impedances from their respective values at normal incidence are shown in Fig. 2. The maximal deviations of 1.5 per cent and 1° for the amplitude and phase, respectively, occurring at parallel incidence, are of the order of typically expected error levels. A similar model that consists of the uppermost layer underlain by a confining half-space of 30 000 \(\Omega \) m shows maximal deviations of 1.0 per cent and 0.25°, respectively, indicating that a considerable part of the distortion in the first case is due to the reflection of the EM energy on the top of the confining half-space.

The angle of incidence can be estimated with the scheme by Song et al. (2002), which requires that the horizontal EM field components are measured simultaneously at adjacent receiver sites. In a typical RMT field campaign, however, a single receiver is moved along the profile. The interpretation is further complicated, as the EM fields of different transmitters, with frequencies close to a nominal frequency, are used to estimate the TM- and TE-mode impedances (Bastani & Pedersen 2001). Generally, the transmitters are off the profile or strike direction and have different angles of incidence; but the angle of incidence, normally, is close to 90° (grazing incidence) at the site of investigation (Crossley 1981).

As the aerials employed by the remote radio transmitters, typically, are vertical electric dipoles, the incident EM field is that of a 2-D forward and inverse modelling

\[RMT \]

491

© 2008 The Authors, GJI, 175, 486–514

Journal compilation © 2008 RAS

Downloaded from https://academic.oup.com/gji/article-abstract/175/2/486/618122
by guest
on 28 July 2018
T. Kalscheuer, L. B. Pedersen and W. Siripunvaraporn

\[\rho_1 = 600 \, \Omega \text{m}, \quad \varepsilon_r = 6 \]

\[\rho_2 = 30000 \, \Omega \text{m}, \quad \varepsilon_r = 6 \]

\[\rho_3 = 600 \, \Omega \text{m}, \quad \varepsilon_r = 6 \]

(a) 1D model with three layers

Figure 2. Relative amplitude and phase difference for the TM- and TE-mode impedances with respect to the case of normal incidence for angles of incidence between 0° (normal incidence) and 90° (grazing incidence) and at frequencies between 10 and 300 kHz (panels b–e). The earth is assumed to consist of two layers with resistivities of 600 and 30,000 Ωm and layer thicknesses of 25 and 75 m, respectively, a confining half-space with a resistivity of 600 Ωm and a constant relative permittivity \(\varepsilon_r = 6 \) (panel a). The deviations from the impedance values at normal incidence are largest at grazing incidence.

We consider only vertically incident plane-wave fields. As the above example shows, the presence of a moderately resistive or conductive near-surface layer reduces the importance of the angle of incidence, and deviations of the responses for different angles of incidence are then rather small.

2.3 Computation of forward responses and sensitivities

The forward problem, that is, the computation of responses for a given model, is solved by discretizing the modelling domain with the finite-difference approximation (FDA), following Hohmann (1987) and Aprea et al. (1997). The derivations of the FDAs for the TE- and TM-modes can be found in Appendix A. Both direct and iterative solvers for the system of linear equations, arising from the FDA of the forward problem, are discussed in Appendix B. As we have not yet managed to implement an appropriate iterative solver, we rely on the LU-decomposition (also known as Gaussian elimination) by Anderson et al. (1999).

The sensitivity matrix \(J \in \mathbb{R}^{N \times M} \) describes the perturbations ensuing for \(N \) forward responses \(F[m] \in \mathbb{R}^N \) due to perturbations of \(M \) model parameters \(m \in \mathbb{R}^M \). The entry of the sensitivity matrix for the \(k \)th datum with respect to the \(l \)th model parameter is then calculated as a partial derivative:

\[
J_{kl}(m) = \frac{\partial F[k]}{\partial m_l}.
\]
RMT 2-D forward and inverse modelling

493

Figure 3. Analytic 1-D solutions by Persson & Pedersen (2002) and 2-D FDA solutions of apparent resistivity ρ_a and phase ϕ for the TM-mode on the surface of a homogeneous half-space with $\rho = 10\,000\,\Omega\,m$ and $\epsilon_r = 5$. The responses were computed for frequencies between 10 and 250 kHz and under the assumption of normal incidence. At high frequencies, ρ_a and ϕ are both significantly smaller than their quasi-static values of $10\,000\,\Omega\,m$ and 45°, respectively. With decreasing frequency, ρ_a and ϕ approach their quasi-static values asymptotically.

Figure 4. Simple 2-D model with a conductive block of $\rho = 1000\,\Omega\,m$ in a half-space with a resistivity of $\rho = 10\,000\,\Omega\,m$ and constant relative dielectric permittivity $\epsilon_r = 5$. Receiver positions are indicated by black triangles. The TM-mode, TE-mode and VMT responses of this model are shown in Fig. 5.

The entries of the sensitivity matrix are typically given for the logarithms of the apparent resistivities and the phases of the impedance tensor elements and the real and imaginary parts of the VMT with respect to the logarithms of the cell resistivities. The logarithms are typically chosen relative to the base 10. The sensitivity matrix is computed with the scheme by Rodi (1976) and depends on the FDA of the forward problem. Further information on this algorithm is given in Appendix C. An example of sensitivity matrix entries is given at the end of Section 3.2.

2.4 Mesh design

To obtain accurate modelling results, the total extent of the modelling domain (i.e. the finite-difference mesh) and the sizes of individual cells of the finite-difference mesh need to be well adapted to the settings of the experiment, that is, the length of the profile on which measurements were conducted, the lowest and highest frequencies of the measurements and the distributions of electrical conductivity and dielectric permittivity present in the model.

The horizontal and, below the air–Earth interface, the vertical extents of the finite difference mesh must be larger than those used in the quasi-static approximation, as the skin depth $\delta = \frac{1}{\beta}$ computed with displacement currents (see eq. 18) is larger than its quasi-static counterpart.

Furthermore, the node spacing must be small compared with the scale lengths across which the EM fields vary, that is, the inverse real and imaginary parts of the complex wavenumber k. In the quasi-static approximation, this leads to the well-known requirement that the node spacing must be small compared with the local skin depth (Aprea et al. 1997). In the general case, $1/\alpha < 1/\beta$ and the local node spacing must be considerably smaller than $1/\alpha$.

A small vertical node spacing is essentially important for the air half-space since the vertically incident plane wavefield propagates undamped (assuming $\sigma_{\text{air}} = 0\,\text{S}\,\text{m}^{-1}$). In the air, the largest vertical mesh cell dimension must be smaller than $1/\alpha$ of the highest frequency. This results in the following comparison. In the REBOCC inverse scheme (Siripunvaraporn & Egbert 2000), the conductivity of the air half-space is assumed to be $\sigma_{\text{air}} = 10^{-10}\,\text{S}\,\text{m}^{-1}$, and the quasi-static skin depth at a frequency of 300 kHz is 92 km. In the general case with displacement currents, $\sigma_{\text{air}} = 0\,\text{S}\,\text{m}^{-1}$ and the inverse real part of the wavenumber is $1/\alpha = 159\,\text{m}$ for $f = 300\,\text{kHz}$. In the former case, the
Figure 5. Comparison of 2-D FDA forward responses of the block model shown in Fig. 4 computed with displacement currents (shown as lines in both the left- and right-hand columns) with 2-D FDA solutions computed in the quasi-static approximation (shown as symbols in the left-hand column) and 3-D integral equation solutions computed with displacement currents (shown as symbols in the right-hand column). Panels (a)–(d) show the responses for the TM-mode apparent resistivity and phase, respectively. Panels (e)–(h) show the responses for the TE-mode apparent resistivity and phase, respectively. Panels (i)–(l) show the responses for the real and imaginary part of the VMT, respectively. The TM-mode and TE-mode responses computed with displacement are generally smaller than those computed in the quasi-static approximation, especially to the sides of the conductive block. The real part of the VMT response computed with displacement currents shows distinct sign reversals [marked by labels (2) and (6) in panel i] to the sides of the conductive block. The corresponding maximum and minimum are marked by labels (1) and (7), respectively, in panel (i). The 2-D FDA and integral equation solutions are in good agreement (right-hand column).
skin depth exceeds the size of the modelling domain by far, and it is therefore appropriate to address the primary field of the quasi-static case as a uniform inducing field rather than a plane wave incident on the Earth’s surface.

3 SYNTHETIC EXAMPLES

3.1 Forward modelling examples

We consider a forward modelling example for a homogeneous half-space, with a resistivity of 10 000 \(\Omega \)m and a relative permittivity \(\epsilon_r = 5 \). Assuming vertically incident plane waves, analytic 1-D solutions with the algorithm by Persson & Pedersen (2002) and 2-D FDA solutions were computed for the apparent resistivities and phases of the TM- (Fig. 3) and TE-mode (not shown) at frequencies between 10 and 250 kHz. The comparison of the analytic 1-D solution (marked by a solid line) and the 2-D FDA solution (marked by crosses) shows excellent agreement. At high frequencies, the effect of displacement currents is to decrease the apparent resistivity and phase below the apparent resistivity of 10 000 \(\Omega \)m and phase of 45°, respectively, typical of the quasi-static approximation. For a typical error level of 2 per cent on the impedance, the deviations from the quasi-static values are as large as the given errors at 105 kHz for the apparent resistivity and 15 kHz for the phase.

For the simple 2-D model with a block of \(\rho = 1000 \Omega \)m in a half-space, with a resistivity of \(\rho = 10 000 \Omega \)m and \(\epsilon_r = 5 \) throughout, shown in Fig. 4, 2-D FDA forward responses with displacement currents are compared with both 2-D FDA forward responses for the quasi-static approximation and the 3-D integral equation solution by Avdeev et al. (2002). Responses were computed for the TM-mode impedance, the TE-mode impedance and the VMT. Fig. 5 shows the 2-D FDA forward responses, computed with displacement currents, in the left-hand column, and the comparison of 2-D FDA forward responses, computed with displacement currents, and 3-D integral equation solutions, in the right-hand column. The latter comparison indicates that the finite-difference forward scheme is rather accurate. For the given mesh discretization, the relative deviations between the impedance responses of the FDA and integral equation solutions are below 3.0 per cent. The absolute deviations between the VMT responses of the FDA and integral equation solutions are below 0.003. As errors in the computation of two field components might cancel when taking their ratio, a further comparison was done for the 2-D FDA and 3-D integral equation solutions of individual field components (not shown). After an appropriate normalization, the scaled complex field components of the TE-mode deviate by less than 0.7 per cent, whereas the field components of the TM-mode differ by as much as 3.0 per cent. As we do not have insight into the code by Avdeev et al. (2002), it is difficult to give an explanation for the discordance in the latter case.

For the lowest frequency of about 10 kHz, the responses computed with (dotted lines in left-hand column of Fig. 5) and without displacement currents (diamond symbols in left-hand column of Fig. 5) are very similar. At 100 kHz (dashed lines and filled circle symbols)
Figure 6. The TE-mode impedance \(Z_{TE} \) and the VMT \(B \) for the model shown in Fig. 4 at \(f = 250 \) kHz, in the general case with displacement currents (panels a and b) and the quasi-static case (panels c and d). The VMT and the TE-mode impedance roughly follow the relations \(\Re(\frac{\partial Z_{xy}}{\partial y}) \propto \Im(\frac{\partial Z_{xy}}{\partial y}) \) and \(\Im(\frac{\partial Z_{xy}}{\partial y}) \propto -\Re(\frac{\partial Z_{xy}}{\partial y}). \) Hence, for instance, zero transitions of the real part of the VMT are observed at approximately the same positions where the imaginary part of the impedance has minima or maxima. The labels (2) and (6) mark two such pairs of zero transitions in the real part of the VMT and maxima of the imaginary part of the impedance.

and 250 kHz (solid lines and star symbols), the influence of displacement currents is considerable, given the chosen resistivity distribution and relative dielectric permittivity.

For stations located on the sides of the conductive block, the effect of displacement currents on TE- and TM-mode impedances is most obvious. Towards the left- and right-hand edges of the mesh, the apparent resistivities and phases approach those of the corresponding homogeneous half-space (see Fig. 3). Also at sites above the conductive block, apparent resistivity and phase are generally smaller than in the quasi-static approximation.

An important effect of displacement currents on the real and imaginary parts of the VMT at high frequencies is the occurrence of lateral sign reversals, located symmetrically around the conductive block. For \(f = 250 \) kHz, lateral sign reversals are shown at 260 and 540 m along the profile in the real part of the VMT [marked by labels (2) and (6), respectively, on the solid line in Fig. 5i] and at 75 and 725 m along...
Figure 7. Real (upper row) and imaginary (lower row) parts of the normalized current density j_x/E_x at $f = 250$ kHz of the TE-mode for the general case with displacement currents (left-hand column) and the quasi-static case (right-hand column) for the model shown in Fig. 4. Normalized current densities, which are close to $0 \text{ A V}^{-1} \text{m}^{-1}$, are plotted in white. Different colourescales were used for the real and imaginary parts. In the general case with displacement currents, the current system penetrates deeper into the subsurface than in the quasi-static case.

the profile in the imaginary part of the VMT (solid line in Fig. 5k). In addition to the lateral sign reversals, the real part of the VMT has a maximum at $y = 180$ m [marked by label (1) in Fig. 5i] and a minimum at $y = 620$ m [marked by label (7) in Fig. 5i]. The responses at the maximum and minimum are $|\Re(e(B))| = 0.05$. Sign reversals to the sides of the conductive block can also be observed in the real part of the quasi-static response at $y = 150$ m and $y = 650$ m (star symbols in Fig. 5i). However, the quasi-static response is comparatively small at sites further away from the block (no larger than $|\Re(e(B))| = 0.006$) and would most likely be masked by noise effects (a typical absolute error is e.g. $\Delta \Re(e(B)) \approx 0.01$) if measured in the field. In the general case with displacement currents, the deduction of the horizontal centre of conductive structures from the positions of zero transitions of the VMT B becomes intricate in more complex geological settings. Artefacts might be introduced to inverse models in a quasi-static interpretation.

It is instructive to relate the lateral sign reversals of the VMT to the gradient of the TE-mode impedance Z_{xy} by considering eqs (7) and (21):

$$\frac{\partial E_x}{\partial y} = \frac{\partial}{\partial y} (Z_{xy} H_y).$$

For small deviations of H_y from its normal field component H_n, that is, the H_y-component of the corresponding 1-D model without the conductive block, this yields

$$\frac{H_x}{H_y} \approx \frac{1}{2} \frac{\partial Z_{xy}}{\partial y} = -\frac{i}{\omega \mu_0} \frac{\partial Z_{xy}}{\partial y},$$

which corresponds to the following relationships for the real and imaginary parts of the VMT

$$\Re\left(\frac{H_x}{H_y}\right) \propto -\Re\left(\frac{\partial Z_{xy}}{\partial y}\right),$$

$$\Im\left(\frac{H_x}{H_y}\right) \propto -\Im\left(\frac{\partial Z_{xy}}{\partial y}\right).$$

In the synthetic example for $f = 250$ kHz, the variation of H_x away from its approximate 1-D values at the beginning and end of the profile is less than 22 per cent in the quasi-static case (not shown) and less than 12 per cent in the general case (not shown). The real and imaginary parts of the VMT are in good agreement with the expected variation with the lateral derivative of the TE-mode impedance Z_{xy} for the quasi-static (Figs 6c and d) and general cases (Figs 6a and b). For the general case, the positions of the lateral sign reversals in the real part of the VMT and the corresponding maxima in the imaginary part of the impedance are marked with the labels (2) and (6) in Figs 6(b) and (a), respectively. The zero transitions of the VMT are somewhat shifted from their predicted positions, where impedance maxima are less distinct. This disagreement is related to the fact that the assumption of small deviations of H_y from its normal component is slightly violated.
Hence, the real part of the VMT can be approximated as

\[\Re(\mathbf{VMT}) = \Re(\mathbf{H}) - \pi \mathbf{J}_{x} \times \hat{\mathbf{y}} \]

with the conductive block. To the sides of the block at \(y \) (Fig. 8a) that describes the real part of the current system in the subsurface and the emerging magnetic field. The real part of the magnetic field \(\mathbf{H} \) are directly related to the real and imaginary parts of the current density \(\mathbf{J}_{x} \), respectively. Similarly, for the quasi-static case, the real and imaginary parts of the normalized current density at this problem, the electric field is scaled by its surface value at the left-hand edge of the mesh.

Spacings were chosen in the air half-space for the quasi-static and general cases, according to the considerations in Section 2.4. To circumvent the problem, the electric field is scaled by at least a factor 4.4 at all positions along the profile (not shown). Hence, the real part of the VMT can be approximated as \(\Re(B) \approx \Re(H_{0})/\Re(H_{a}) \) and is mostly determined by \(\Re(J_{x}) \) in Fig. 7(a). We illustrate the sign reversals in the real part of the VMT for the general case with a sketch (Fig. 8a) that describes the real part of the current system in the subsurface and the emerging magnetic field. The real part of the magnetic

Figure 8. A sketch of the real part of the current density \(j_{x} \) in the subsurface with the emerging real part of the magnetic field \(\mathbf{H} \) (panel a) and the real part of the VMT response for the model shown in Fig. 4, at \(f = 250 \text{kHz} \) in the general case with displacement currents (panel b). At positions (1) and (7), the magnetic field \(\mathbf{H}_{0} \) due to currents in the resistive host is larger than the magnetic field \(\mathbf{H}_{b} \) due to currents in the conductive block, leading to a maximum and a minimum of the real part of the VMT at (1) and (7), respectively. In the vicinity of the conductive block, the magnetic field is dominated by \(\mathbf{H}_{b} \) resulting in a minimum and a maximum of the real part of the VMT at (3) and (5), respectively. At positions (2) and (6), the vertical components of \(\mathbf{H}_{0} \) and \(\mathbf{H}_{b} \) are equal in magnitude but opposite in direction and, hence, the VMT \(B \) is zero. The lateral position of the sign reversal at (4) coincides with the centre of the conductive block.

A more quantitative explanation for the lateral zero transitions can be arrived at by investigating eq. (5). As the curl operator treats the real and imaginary parts of \(\mathbf{H} \) separately,

\[
\frac{\partial \Re(H_{x})}{\partial y} - \frac{\partial \Re(H_{y})}{\partial z} = \Re(j_{x}) \quad \text{and} \quad \frac{\partial \Im(H_{x})}{\partial y} - \frac{\partial \Im(H_{y})}{\partial z} = \Im(j_{x})
\]

are directly related to the real and imaginary parts of the current density \(j_{x} = j_{y} \) of the TE-mode. However, the current densities of the quasi-static and general cases in the subsurface are not directly comparable. As the propagation of the electric field in the air is modelled differently (i.e. through conduction currents in the quasi-static approximation with a conductivity \(\sigma_{\text{air}} = 10^{-10} \text{Sm}^{-1} \) and through displacement currents in the general case), there is a large difference in the scale lengths over which the electric field varies in the air (see Section 2.4). This leads to different phases and amplitudes of the electric fields of the two cases at the air–Earth interface, even if equal amplitudes and phases of the electric field are chosen as boundary conditions on the upper edge of the finite-difference mesh. In addition, different vertical node spacings were chosen in the air half-space for the quasi-static and general cases, according to the considerations in Section 2.4. To circumvent this problem, the electric field is scaled by its surface value at the left-hand edge of the mesh.

For the general case, the real and imaginary parts of the normalized current density at \(f = 250 \text{kHz} \) are shown in Figs 7(a) and (c), respectively. Similarly, for the quasi-static case, the real and imaginary parts of the normalized current density at \(f = 250 \text{kHz} \) are shown in Figs 7(b) and (d), respectively. The area of the highest normalized current density amplitude (up to \(5.7 \times 10^{-4} \text{A V}^{-1} \text{m}^{-1} \)) coincides with the conductive block. To the sides of the block at \(y < 340 \text{m} \) and \(y > 460 \text{m} \), the normalized current density amplitude reaches \(1.8 \times 10^{-4} \text{A V}^{-1} \text{m}^{-1} \), with only small lateral changes of the real and imaginary parts at the beginning and end of the profile.

An important simplification ensues for the real part of the VMT of the general case, as \(\Re(E_{x}) > 3 \pi \mathbf{J}_{x} \times \hat{\mathbf{y}} \) by at least a factor 4.4 at all positions along the profile (not shown). Hence, the real part of the VMT can be approximated as \(\Re(B) \approx \Re(H_{0})/\Re(H_{a}) \) and is mostly determined by \(\Re(J_{x}) \) in Fig. 7(a). We illustrate the sign reversals in the real part of the VMT for the general case with a sketch (Fig. 8a) that describes the real part of the current system in the subsurface and the emerging magnetic field. The real part of the magnetic
Figure 9. Simple 2-D model with a buried elongated block of a resistivity of 1000 Ω m in a resistive layer of 10 000 Ω m and underlain by a half-space of 500 Ω m. The relative dielectric permittivity is assumed to be $\epsilon_r = 5$. Receiver positions are indicated by black triangles.

Field due to currents in the resistive host is designated as H_h and the part due to currents in the conductive block is designated as H_b (Fig. 8a). To facilitate a simpler comparison, the real part of the VMT for the general case (solid line in Fig. 5i) is plotted in Fig. 8(b). At the beginning and end of the profile [i.e. to the left-hand side of position (1) and to the right-hand side of position (7) in Fig. 8], the lateral homogeneity of the current system generates a magnetic field with a very small H_z-component. At positions (1) and (7), that is, at $y = 180$ and 620 m, the magnetic field H_h due to the resistive host is larger than the magnetic field H_b due to the conductive block, leading to a maximum and a minimum of the real part of the VMT at (1) and (7), respectively. At positions (2) and (6) to the sides of the block, that is, at $y = 260$ and 540 m, the H_z-components of H_h and H_b are equal in amplitude but point in opposite directions, leading to zero-transitions of the real part of the VMT. The minimum, zero transition and maximum of the real VMT response at positions (3), (4) and (5), respectively, are similar in both the quasi-static and general cases (see Fig. 5i). Though in magnitude smaller than the current system in the block, the lateral current system is strong enough to generate a commensurable maximum and minimum of the real part of the VMT at $y = 180$ and 620 m, respectively (Fig. 8b). Hence, the main effect of displacement currents on the real part of the VMT is to increase the response at the edges of the conductor. As noted before, there are no such distinct maxima or minima associated with the lateral sign reversals in the quasi-static VMT response at $f = 250$ kHz (star symbols in Fig. 5i). The reason is most likely that the vertical extent of the current systems and the total current strengths to the sides of the block (Figs 7b and d) are smaller than in the general case with displacement currents (Figs 7a and c), whereas the current within the conductive block has a comparable amplitude in both cases. It should also be noted that the imaginary part of the VMT increases quite strongly in amplitude if displacement currents are included (Fig. 5k). An explanation with regard to the imaginary part of the current density (shown in Fig. 7c) does not appear to be possible as the imaginary part of H_z and the real part of H_y are involved.

3.2 Inverse modelling examples

Synthetic responses of a simple 2-D model (Fig. 9), with constant relative dielectric permittivity $\epsilon_r = 5$ and an elongated block with a resistivity of 1000 Ω m that is buried in a resistive layer of 10 000 Ω m and underlain by a half-space of 500 Ω m, were computed for the TM- and the TE-mode. The responses were computed at 20 receiver sites for 15 frequencies, ranging from 10 to 250 kHz giving a total of 600 data points. Gaussian white noise, corresponding to 2.5 per cent of the modulus of the computed impedances, was added to the forward responses.

After that, two inversions of the synthetic data set were performed with the REBOCC inverse scheme (Siripunvaraporn & Egbert 2000). During the first inversion, displacement currents were allowed for, whereas they were neglected during the second inversion. In both inversions, the error floor was assumed to correspond to 2.5 per cent of the modulus of the computed impedances, was added to the forward responses of both polarizations.

After that, two inversions of the synthetic data set were performed with the REBOCC inverse scheme (Siripunvaraporn & Egbert 2000). During the first inversion, displacement currents were allowed for, whereas they were neglected during the second inversion. In both inversions, the error floor was assumed to correspond to 2.5 per cent of the modulus of the computed impedances, and the starting model was a homogeneous half-space of 10 000 Ω m.

After six iterations with the inversion that allows for displacement currents, a model was obtained (Fig. 10), which fits the data to a rms misfit of 1.04. Additional iterations with REBOCC did not decrease the rms misfit further. The inverse model reproduces the edges of the block and the resistivities of the block and layered half-space rather accurately. The transition from the lower edge of the conductor into the resistive layer is, however, smeared out.

© 2008 The Authors, *GJI*, 175, 486–514
Journal compilation © 2008 RAS
Figure 10. 2-D REBOCC inversion result of synthetic data from the 2-D block model in Fig. 9. Displacement currents were allowed for during the inversion. After six iterations, a rms misfit of 1.04 was reached. The inverse process has reconstructed the edges of the conductive block and the resistivities of the block and layered half-space rather accurately. The lower edge of the conductor is smeared out due to the damping of the electromagnetic field in the block.

Figure 11. 2-D REBOCC inversion result of synthetic data from the 2-D block model in Fig. 9. Displacement currents were not allowed for during the inversion. After four iterations, the lowest rms misfit of 1.95 was reached. Artefactual structures in the form of a conductive near-surface layer, two resistors at the sides of the conductive block, a distorted shape of the block and a too large depth to the top of the confining half-space are consequences of the omission of displacement currents during the inversion.

Neglecting displacement currents results in convergence problems and an inverse model with many artefactual structures (Fig. 11). The lowest rms misfit of 1.95 was obtained after four iterations. Clearly, an artefactual thin conductive layer is visible at the surface (a similar conductive layer is also observed by Persson & Pedersen (2002) in 1-D inverse models, computed in the quasi-static approximation, for synthetic data of a homogeneous half-space). The lateral extent of the conductive block and the top of the central parts of the block are grossly in error. Two artefactual resistors with resistivities close to 100 000 Ω m appear to the left- and right-hand side of the block. The depth to the top of the underlying conductive layer is shifted from 105 to 130 m. If the synthetic data were generated from a model without the underlying conductive layer, the artefactual resistors would be observed, both to the sides of and below the conductive block (not shown).

A comparison of the relative errors, that is, the differences between the synthetic data and the forward responses scaled by the data errors, generated by the two inverse schemes, is shown in Fig. 12. The relative errors from the inversion that accounts for displacement currents...
Figure 12. Relative errors obtained from the inversions of the synthetic data of the model shown in Fig. 9. The relative errors from inversions that account for displacement currents and that neglect displacement currents are shown in the left- and right-hand columns, respectively. The relative errors of $\log_{10} \rho_a$ and ϕ for the TM-mode are shown in panels (a)–(d), whereas the relative errors of $\log_{10} \rho_a$ and ϕ for the TE-mode are shown in panels (e)–(h). Systematic deviations from the synthetic data are mostly observed at high frequencies and stations to the sides of the conductive block for the model from the inverse scheme that does not allow for displacement currents (Fig. 11).
The most severe effects of displacement currents originate from the false assumption that displacement currents can be neglected during the inversion. As expected, the misfit is most severe at high frequencies and receiver sites to the sides of the conductive block.

As an example, the row of the sensitivity matrix for the block model in Fig. 9 and the TE-mode apparent resistivity at $f = 250$ kHz and a receiver site at $y = 90$ m (to the left-hand side of the conductive block) is shown in Fig. 13. Model parameters with sensitivities close to zero (shown in white colours in Fig. 13) have little influence on the considered data item. As expected, sensitivities, which were computed for the general case (Fig. 13a), encompass a larger volume with non-zero values than those computed in the quasi-static approximation (Fig. 13b). Especially, the depth extend for the non-zero sensitivities of the general case is larger. This larger depth range is equivalent to a larger depth of investigation for the general case as already indicated in Section 2.4.

4 A FIELD DATA EXAMPLE

Linde & Pedersen (2004) investigate highly resistive granitic bedrock on the small island Avrø, Sweden, with tensor RMT, in the frequency range of 14–226 kHz. RMT data were acquired on an east–west profile, with a total length of 960 m and a station spacing of 10 m. On Avrø, the typical soil thickness is between 0 and 1 m. The bedrock consists mostly of granite. In some locations, aplitic and pegmatitic dykes are encountered (Gentzschein et al. 1987). Previous geophysical studies include borehole measurements by Gentzschein et al. (1987) and a seismic reflection study on the same profile by Juhlin & Palm (1999). A normal-resistivity log and a fracture frequency log of borehole KAV01, located in the central part of the profile, reveal an upper weathered layer, with a thickness of up to 30 m and a resistivity of about 600 Ω m, followed by almost intact and highly resistive bedrock down to a depth of 200 m and with a resistivity between 32 000 and 40 000 Ω m (Gentzschein et al. 1987). Between 200 and 400 m depth, the resistivity slowly decreases to 10 000 Ω m. At greater depth, the bedrock is more fractured and saline pore fluids decrease the electrical resistivity to a few thousand Ω m. Juhlin & Palm (1999) describe two major seismic reflectors (see Fig. 14d) for the depth range down to 400 m. Reflector C is located beneath the western part of the profile, at a depth between 100 and 320 m and dips approximately 60° to the east. Reflector D is located beneath the central part of the profile at a depth between 150 and 200 m and dips approximately 20° to the west.

To mitigate the effects of displacement currents, Linde & Pedersen (2004) restrict the data set used in quasi-static 2-D inversions with the REBOCC scheme (Siripunvaraporn & Egbert 2000) to frequencies up to 56 kHz. Linde & Pedersen (2004) perform inversions for the TE-mode, TM-mode, TE- and TM-modes together and the determinant of the impedance tensor. By computing synthetic TE-mode, TM-mode and determinant data for a 3-D model and comparing the corresponding 2-D inversions, Pedersen & Engels (2005) show that the inversion of determinant data is less prone to introducing artefacts from 3-D structures off the profile to 2-D inverse models. Furthermore, the inverse model of the determinant data, presented by Pedersen & Engels (2005) has a better data fit than their other models. For the inversion of the RMT data from Avrø, this leads us to concentrate on the inversion of determinant data, as the data at both ends of the profile show a high degree of three-dimensionality (Linde & Pedersen 2004). At a few stations, the determinant data of the highest frequencies (160 and 226 kHz) have very small negative phases, which can be indicative of displacement currents (Song et al. 2002). As the rather irregular behaviour of the apparent resistivities at the same stations and frequencies hints at problems with measurement accuracy, we excluded such data points from the inversion.

In the following, we examine the effect of displacement currents, by first considering the inversion of the restricted set of frequencies and then for the full set of frequencies. For each data set, inversions were carried out in both the quasi-static approximation and with displacement currents.

![Figure 13. Sensitivity matrix entries for the block model in Fig. 9 and the TE-mode apparent resistivity at $f = 250$ kHz and a receiver site at $y = 90$ m (to the left-hand side of the conductive block).](https://academic.oup.com/gji/article-abstract/175/2/486/618122)
Figure 14. Models of the inversion of determinant data from Årø for (a) the low-frequency data set in the quasi-static approximation (model QL), (b) the low-frequency data set allowing for displacement currents (model DL), (c) the full set of frequencies in the quasi-static approximation (model QF) and (d) the full set of frequencies allowing for displacement currents (model DF). The lines marked by C and D indicate seismic reflectors from Juhlin & Palm (1999) (their fig. 8). The resistivity values of borehole KAV01 are taken from the normal-resistivity log presented in Gentzschein et al. (1987). In contrast to models QL and QF, models DL and DF have a more realistic range of resistivities if compared in terms of the range observed in the normal-resistivity log. Furthermore, the resistivity–depth section of model DF at borehole KAV01 is in good agreement with the normal-resistivity log down to a depth of 230 m, and the positions of the seismic reflectors are in good agreement with resistivity contrasts in model DF.
boundary between the central resistor and the western conductors is less steep than in the model QL (Fig. 14a). The rms misfit of model DL is 2.03.

The quasi-static inversion for the full set of frequencies (model QF in Fig. 14c) leads to a transition into the top of the central resistor that is sharper than in model QL (Fig. 14a). The resistivity of the central resistor is as high as 5×10^6 Ω m. The positions of the conductors at profile metres 50 and 850 is very similar to the positions in model QL. The rms misfit of model QF is 3.16.

In comparison to the quasi-static inversions, the inversion with displacement currents for all frequencies gives a model [model DF in Fig. 14(d) with an rms error of 2.60] that shows a less extreme range of resistivities, both at depth and close to the surface. The depth to the conductors at both ends of the profile is about 50 m larger than in the quasi-static models QL and QF in Figs 14(a) and (c), respectively. The model is also in better agreement with the positions of the seismic reflectors. The position of seismic reflector C conforms to an expected boundary between an unfractured resistive granite body and water saturated fractured bedrock. Therefore, we would expect reflector C to represent a boundary of rock units, with different grades of fracturing, rather than a 150 m wide fracture zone, as proposed by Linde & Pedersen (2004). Similarly, reflector D appears to coincide with a subhorizontal boundary of rock units. Furthermore, the model in Fig. 14(d) is in very good agreement with the resistivities of the normal-resistivity log of borehole KAV01 (Gentschein et al. 1987), down to a depth of 230 m. At greater depth, the model might be more influenced by the smoothness constraint imposed during the inversion than the data. Compared with model DF, model DL (Fig. 14b) deviates from the normal-resistivity log at shallow depth down to 100 m and the positions of
Figure 15. Models of the inversion of (a) TE-mode data (model TEDF) and (b) TM-mode data (model TMDF) from Avrø for the full set of frequencies allowing for displacement currents. The lines marked by C and D indicate seismic reflectors from Juhlin & Palm (1999). The resistivity values of borehole KAV01 are taken from the normal-resistivity log presented in Gentzschtein et al. (1987). The resistivities of the central resistor in model TEDF are as high as 300 000 $\Omega \cdot m$. Compared with model DF (Fig. 14d), neither model TEDF nor model TMDF shows similarly good agreement with the positions of the seismic reflectors C and D or the normal-resistivity log.

As a verification that the 2-D inverse models of determinant data are less biased by 3-D structures off the profile, the inverse models of TE-mode data (model TEDF) and TM-mode data (model TMDF) are shown in Figs 15(a) and (b), respectively. In both inversions, the full set of frequencies was used and displacement currents were accounted for. The rms fits of 4.56 for the TE-mode model (reached after nine iterations) and 3.67 for the TM-mode model (reached after five iterations) are both significantly higher than that of model DF. The worst data fits of models TEDF and TMDF (not shown) are obtained at the western end of the profile, where strong 3-D effects in the VMT are observed by Linde & Pedersen (2004). In model TEDF, resistivities of the central resistor are as high as 300 000 $\Omega \cdot m$. Compared with model...
5 DISCUSSION AND CONCLUSIONS

We demonstrated the effect of displacement currents on 2-D TM-mode, TE-mode and VMT data, measured with the RMT method at frequencies between 10 and 300 kHz. Forward modelling of subsurfaces with resistivities larger than 1000 Ωm confirms that responses computed in the quasi-static approximation, that is, when displacement currents are neglected, become increasingly inaccurate, with rising frequency. For a homogeneous half-space, both apparent resistivity and phase, computed with displacement currents, decrease from their constant values in the quasi-static approximation, with increasing frequency. At high frequencies, the dielectric effect leads to the occurrence of distinct sign reversals in the real part of the VMT, which are not observed in the quasi-static approximation and might lead to artefactual 2-D or 3-D structures in an interpretation, based on the quasi-static approximation.

The interpretation of high-frequency RMT data with an inverse scheme that operates in the quasi-static approximation will inevitably lead to an inverse model with artefactual structures. As can be seen from the quasi-static interpretation of our synthetic data example in Fig. 11, the resistivities found in this inverse model vary over a larger range than those of the true model (Fig. 9). Typical artefactual structures include conductive near-surface layers, regions of excessively high resistivities next to conductors, as well as conductors that deviate strongly from their true shapes and positions. As only the resistivity distribution is inverted in the scheme presented here, a value for the dielectric permittivity must be chosen before the inversion. The relative dielectric permittivity of bedrock is typically in the range of 5 to 9 (e.g. Reynolds 1997, table 12.3), and a variation in this range does not lead to any important differences in the obtained resistivity models.

Typically, the primary EM field from remote radio transmitters has an angle of incidence that is close to grazing incidence at the measurement site. The assumption of vertically incident plane waves in the modelling code is a limitation, which is of minor importance in many practical situations. Often, a conductive surface layer consisting of, for instance, weathered bedrock or glacial till is present in the area of interest and refractions the incident field towards the vertical due to its relatively low resistivity.

For the Åvrö field data, the inversion that allows for displacement currents and includes high-frequency data produces a model that is in very good agreement with the results of other geophysical methods. The seismic reflectors C and D by Juhlin & Palm (1999) coincide with the boundaries between structures of different conductivity (Fig. 14d). The resistivity depth section of the model at borehole KAV01 matches the normal-resistivity log by Gentzschein et al. (1987) very well, down to a depth of 230 m below which the model might be strongly influenced by the smoothness constraint applied during the inversion. The inverse models computed in the quasi-static approximation (Figs 14a and c) contain artefactual structures, with unrealistically large resistivities, even if only the low-frequency data set is inverted (Fig. 14a).

ACKNOWLEDGMENTS

The original 2-D MT code by WS at Mahidol University is supported by a research grant from the Thailand Research Fund (TRF: RMU5080025). Nazli Ismail of Uppsala University computed the 3-D forward responses with the X3D code. Dmitry Avdeev, IZMIRAN, Russian Academy of Sciences, spent a large amount of money on the telephone, from Japan, to correct our X3D input files. A discussion with John Weaver, University of Victoria, clarified a few theoretical aspects. We would also like to thank Ute Weckmann, GFZ Potsdam and an anonymous reviewer for their comments, which helped to improve the manuscript.

REFERENCES

Anderson, E. et al., 1999. LAPACK Users’ Guide, 3rd edn, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
Aprea, C., Booker, J.R. & Smith, J.T., 1997. The forward problem of electromagnetic induction: accurate finite-difference approximations for two-dimensional discrete boundaries with arbitrary geometry, Geophys. J. Int., 129, 29–40.
Avdeev, D.B., Kuwshinov, A.V., Pankratov, O.G. & Newman, G.A., 2002. Three-dimensional induction logging problems, part 1: an integral equation solution and model comparisons, Geophysics, 67(2), 413–426.
Bastani, M. & Pedersen, L.B., 2001. Estimation of magnetotelluric transfer functions from radio transmitters, Geophysics, 66(4), 1038–1051.
Brewitt-Taylor, C.R. & Weaver, J.T., 1976. On the finite difference solution of two-dimensional induction problems, Geophys. J. R. astr. Soc., 47(2), 375–396.
Crossley, D.J., 1981. The theory of EM surface wave impedance measurements, in Geophysical Applications of Surface Wave Impedance Measurements, Paper no. 81-15, pp. 1–17, eds Collet, L.S. & Jensen, O.G., Geological Survey of Canada.
Fraser, D.C., Stodt, J.A. & Ward, S.H., 1990. The effect of displacement currents on the response of a high-frequency helicopter electromagnetic system, in Geotechnical and Environmental Geophysics, Vol. 2, pp. 89–95, ed. Ward, S.H., SEG, Tulsa.
Freund, R.W., 1992. Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices, SIAM J. Sci. Stat. Comput., 13(1), 425–448.
Gentzschein, B., Nilsson, G. & Steinberg, L., 1987. Preliminary investigations of fracture zones at Åvrö - results from investigations performed July 1986 - May 1987, SKB Progress Report 25–87–16, SKB.
Golub, G. & van Loan, C., 1996. Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, 3rd edn, Johns Hopkins University Press, Baltimore and London.
Hohmann, G.W., 1987. Numerical modeling for electromagnetic methods in geophysics, in Electromagnetic Methods in Applied Geophysics, Vol. 1 (Theory), pp. 313–363, ed. Nabiagian, M.N., SEG, Tulsa.
Huang, H.P. & Fraser, D.C., 2002. Dielectric permittivity and resistivity mapping using high-frequency, helicopter-borne EM data, Geophysics, 67(3), 727–738.
Juhlin, C. & Palm, H., 1999. 3-D structure below Åvrö island from high-resolution reflection seismic studies, southeastern Sweden, Geophysics, 64, 662–667.
Keller, G.V., 1987. Rock and mineral properties, in Electromagnetic

© 2008 The Authors, GJI, 175, 486–514
Journal compilation © 2008 RAS
APPENDIX A: FINITE-DIFFERENCE APPROXIMATION

The derivation of the finite-difference approximation (FDA) with the integration method following Hohlmann (1987) and Aprea et al. (1997) is particularly instructive. In a finite-difference mesh, a node \((i, j)\) is a corner point of four finite-difference cells, with admittivities \(\tilde{Y}_{i-1/2,j-1/2}, \tilde{Y}_{i+1/2,j-1/2}, \tilde{Y}_{i-1/2,j+1/2}, \text{ and } \tilde{Y}_{i+1/2,j+1/2}\) (Fig. A1). The cells have widths \(\Delta y_{i-1/2}\) and \(\Delta y_{i+1/2}\) and heights \(\Delta z_{j-1/2}\) and \(\Delta z_{j+1/2}\). The rectangle \(A\) has the centres of the cells as its corner points (Fig. A1). It is assumed that the horizontal electric field component of the TE-mode and the horizontal magnetic field component of the TM-mode at node \((i, j)\) are \(E_{i,j}^{\parallel}\) and \(H_{i,j}^{\perp}\), respectively, and that the magnetic permeability is equal to its vacuum value \(\mu_0\). Nodes along the boundary of the finite-difference mesh are called boundary nodes. All other nodes are called inner nodes. Finite-difference equations for the TM- and TE-mode are obtained by integrating eqs 14 and 13, respectively, over the surface of \(A\) and approximated as

\[
\int_A (\tilde{\mathbf{E}}_s) \cdot \mathbf{n} \, dA \approx \sum_{i,j} (\tilde{\mathbf{E}}_s)_{i,j} \cdot \mathbf{n}_{i,j} \Delta A_{i,j},
\]

where \(\mathbf{n}\) is an outward unit normal vector on the edges of \(A\).

The part of \(A\), for instance, which is entirely situated to the upper left-hand side of node \((i, j)\), contributes to the surface integral in eq. (A1) with

\[
\int_A (\tilde{\mathbf{E}}_s) \cdot \mathbf{n} \, dA \approx \sum_{i,j} (\tilde{\mathbf{E}}_s)_{i,j} \cdot \mathbf{n}_{i,j} \Delta A_{i,j}.
\]

For the upper edge of the rectangle \(A\), for instance, the integral around the perimeter \(\partial A\) can be approximated as

\[
\int_{\partial A} (\tilde{\mathbf{E}}_s) \cdot \mathbf{n} \, dl \approx -\sum_{i,j} (E_{i,j}^{\parallel} - E_{i-1,j}^{\parallel-1}) \frac{\Delta y_{i+1/2} - \Delta y_{i-1/2}}{2}.
\]

where \((\Delta y_{i+1/2} + \Delta y_{i-1/2})/2\) is the length of the perimeter \(\partial A\) on the upper edge of \(A\) and \(\mathbf{n}\), which equals \((0, 0, -1)\) on the upper edge of \(A\), collects the vertical component of \(\mathbf{V} \mathbf{E}_s\), that is, \((\mathbf{V} \mathbf{E}_s)_{i,j} \approx (E_{i,j}^{\parallel} - E_{i-1,j}^{\parallel-1})/\Delta z_{j-1/2},\) multiplied by \(-1\).

In total, this leads to the following approximations (cf. Aprea et al. 1997):

\[
\int_A (\tilde{\mathbf{E}}_s) \cdot \mathbf{n} \, dA \approx \frac{1}{4} \sum_{i,j} (\tilde{\mathbf{E}}_s)_{i,j} \Delta A_{i,j} + O(\Delta^2).
\]
\[\int_A \left(\mathbf{n} \cdot \nabla E_i \right) \, dl \approx \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{2} \left[\frac{E_{i,j+1}^{j+1} - E_{i,j}^{j+1}}{\Delta z_{j+1/2}} - \frac{E_{i-1,j}^{j+1} - E_{i,j}^{j+1}}{\Delta z_{j-1/2}} \right] + \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{2} \left[\frac{E_{i+1,j}^{j+1} - E_{i,j}^{j+1}}{\Delta y_{i+1/2}} - \frac{E_{i,j}^{j+1} - E_{i-1,j}^{j+1}}{\Delta y_{i-1/2}} \right] + O(\Delta^2). \]

where

\[\dot{y}_{i,j}^{int} = \dot{y}_{i-1/2,j-1/2} \Delta y_{i-1/2} \Delta z_{j-1/2} \dot{y}_{i+1/2,j-1/2} \Delta y_{i+1/2} \Delta z_{j-1/2} + \dot{y}_{i-1/2,j+1/2} \Delta y_{i-1/2} \Delta z_{j+1/2} \dot{y}_{i+1/2,j+1/2} \Delta y_{i+1/2} \Delta z_{j+1/2}. \]

(A6)

\[\ddot{y}_{i,j}^{mg} = \frac{1}{\Delta y_{i-1/2} + \Delta y_{i+1/2} \Delta z_{j-1/2} + \Delta y_{i-1/2} \Delta z_{j+1/2} + \Delta y_{i+1/2} \Delta z_{j+1/2}} \dot{y}_{i,j}^{int}. \]

(A7)

and \(O(\Delta^2) \) are terms of second or higher order in \(\Delta y_{i\pm1/2} \) or \(\Delta z_{j\pm1/2} \).

After rearranging, one obtains

\[
0 = 2 \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta z_{j+1/2}} E_{i,j+1}^{i,j+1} + 2 \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta z_{j-1/2}} E_{i,j}^{i,j} \\
+ 2 \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{\Delta y_{i+1/2}} E_{i-1,j}^{i-1,j} + 2 \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{\Delta y_{i-1/2}} E_{i,j}^{i-1,j} \\
- \left\{ 2 \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta z_{j+1/2}} + 2 \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta z_{j-1/2}} \right\} E_{i,j}^{i,j}.
\]

(A8)

Similarly, the FDA of the TM mode can be derived. Gauss' Theorem gives

\[\int_A (\dot{\mathbf{H}}_t) \, d\mathbf{A} = \int_A \left(\nabla \cdot \frac{1}{\gamma} \nabla H_t \right) \, d\mathbf{A} = \int_A \left(\mathbf{n} \cdot \frac{1}{\gamma} \nabla H_t \right) \, dl \]

(A9)

and the single terms can be approximated as

\[\int_A (\dot{\mathbf{H}}_t) \, d\mathbf{A} \approx \dot{z} H_t' \left(4 \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2} \Delta z_{j+1/2} + \Delta z_{j-1/2}}{4} + O(\Delta^3) \right). \]

(A10)
\[
\int_{\partial D} \left(\frac{1}{y} \nabla H_s \right) \cdot dy \approx \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{2} \left[\frac{1}{\nu^x_{i,j}} \frac{H_i^{j+1} - H_i^{j-1}}{\Delta z_{j+1/2}} - \frac{1}{\nu^y_{i,j}} \frac{H_s^{i,j} - H_s^{i-1,j}}{\Delta y_{i+1/2}} \right] + \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{2} \left[\frac{1}{\nu^x_{i,j}} \frac{H_i^{j+1} - H_i^{j-1}}{\Delta z_{j+1/2}} - \frac{1}{\nu^y_{i,j}} \frac{H_s^{i,j} - H_s^{i-1,j}}{\Delta y_{i+1/2}} \right] + O(\Delta^2),
\]

where the vertically and horizontally averaged inverse admittivities are given by

\[
\frac{1}{\nu^x_{i,j}} = \frac{1}{y_{i+1/2,j+1/2}} \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta y_{i+1/2} + \Delta y_{i-1/2}},
\]

\[
\frac{1}{\nu^y_{i,j}} = \frac{1}{y_{i+1/2,j-1/2}} \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta y_{i+1/2} + \Delta y_{i-1/2}},
\]

\[
\frac{1}{\nu^z_{i,j}} = \frac{1}{y_{i+1/2,j+1/2}} \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{\Delta z_{j+1/2} + \Delta z_{j-1/2}}.
\]

Again, rearranging gives

\[
0 = 2 \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta z_{j+1/2}} \frac{1}{\nu^x_{i,j}} H_i^{j+1} + 2 \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta z_{j-1/2}} \frac{1}{\nu^x_{i,j}} H_i^{j-1} + 2 \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{\Delta y_{i+1/2}} \frac{1}{\nu^y_{i,j}} H_s^{i,j+1} + 2 \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{\Delta y_{i+1/2}} \frac{1}{\nu^y_{i,j}} H_s^{i,j-1} - \left\{ \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta z_{j+1/2}} \frac{1}{\nu^x_{i,j}} + \frac{\Delta y_{i+1/2} + \Delta y_{i-1/2}}{\Delta z_{j-1/2}} \frac{1}{\nu^x_{i,j}} \right\} H_i^{j+1} + \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{\Delta y_{i+1/2}} \frac{1}{\nu^y_{i,j}} H_s^{i,j+1} + \frac{\Delta z_{j+1/2} + \Delta z_{j-1/2}}{\Delta y_{i+1/2}} \frac{1}{\nu^y_{i,j}} H_s^{i,j-1} + \hat{z} \left(\Delta y_{i+1/2} + \Delta y_{i-1/2} \right) \left(\Delta z_{j+1/2} + \Delta z_{j-1/2} \right) H_i^{j,j}.
\]

If considered at all inner mesh nodes \((i, j)\), eqs (A8) and (A16) form systems of linear equations in the unknown horizontal electric and magnetic field components of the TE-mode and the TM-mode, respectively. Assuming that there are \(N_{ax}\) air cells, \(N_{ae}\) earth cells and a total of \(N_z = N_{az} + N_{ae}\) cells in the vertical direction and \(N_j\) cells in the horizontal direction, the horizontal field components \(E_x\) or \(H_x\) are to be computed at \((N_j - 1) \cdot (N_z - 1)\) inner mesh nodes. Boundary values have to be supplied at the edges of the mesh. Along the upper edge of the air half-space, the incident plane wave is assumed to have unit amplitude and zero phase. At the lower edge of the earth half-space, the electromagnetic (EM) field is assumed to have totally decayed, and along the lateral edges, the horizontal field components \(E_x\) or \(H_x\) are assumed to be that of the corresponding 1-D admittivity section along the particular side. This results in a system of \((N_z - 1) \cdot (N_j - 1)\) linear equations \(Ks = s\) (one equation for each interior node), with the coefficient matrix \(K\), the vector \(s\) of unknown horizontal field components of the TE- or TM-mode and a vector \(s\) of boundary values. If a central node is located next to one or two boundary nodes, the terms in eqs (A8) or (A16), which contain the electric or magnetic boundary field components, are placed in the corresponding row of the right-hand side vector \(s\). If the nodes are arranged such that the vertical index \(j\) varies fastest, the finite-difference eq. (A8) or (A16) of central node \((i, j)\) is contained in row number \((i-2)(N_j-1) + (j-1)\) of \(Ks = s\).

The auxiliary field components \((H_i, H_s)\) of the TE-mode are derived as partial derivatives of \(E_s\) at the air-Earth interface (nodes at \(j = N_{az} + 1\)), by expanding \(E_s\) in a Taylor series of second order, around the considered node \((i, j)\) and substituting eq. (13) for the second-order term as proposed by Weaver et al. (1986). Vertical expansion, both upwards and downwards from the considered node yields a central
difference formula for the horizontal magnetic field component \(H_y \) as

\[
-\check{z} H_y^{i,j} = \left(\frac{\partial E_y}{\partial z} \right)_{i,j} = \Delta z_{j+1/2} \Delta y_{i-1/2} \left\{ \frac{E_y^{i,j+1}}{\Delta z_{j+1/2}} - \frac{E_y^{i,j-1}}{\Delta z_{j-1/2}} \right\} - \left[\frac{1}{\Delta z_{j+1/2}} - \frac{1}{\Delta z_{j-1/2}} + \frac{1}{2} \left(\check{y}_{i,j}^d - \check{y}_{i,j}^u \right) \right] E_y^{i,j}. \tag{A17}
\]

where

\[
\check{y}_{i,j}^d = \frac{\hat{y}_{i+1/2,j+1/2} \Delta y_{i+1/2} + \hat{y}_{i-1/2,j+1/2} \Delta y_{i-1/2}}{\Delta y_{i+1/2} + \Delta y_{i-1/2}}, \tag{A18}
\]

\[
\check{y}_{i,j}^u = \frac{\hat{y}_{i+1/2,j-1/2} \Delta y_{i+1/2} + \hat{y}_{i-1/2,j-1/2} \Delta y_{i-1/2}}{\Delta y_{i+1/2} + \Delta y_{i-1/2}}. \tag{A19}
\]

Similarly, horizontal expansion both to the left- and right-hand side of the considered node yields a central difference formula for the vertical magnetic field component \(H_z \) of the form

\[
\check{z} H_z^{i,j} = \left(\frac{\partial E_z}{\partial y} \right)_{i,j} = \frac{\Delta y_{i+1/2} \Delta y_{i-1/2}}{\Delta y_{i+1/2} + \Delta y_{i-1/2}} \left\{ \frac{E_z^{i+1,j}}{\Delta y_{i+1/2}} - \frac{E_z^{i-1,j}}{\Delta y_{i-1/2}} \right\} - \left[\frac{1}{\Delta y_{i+1/2}} - \frac{1}{\Delta y_{i-1/2}} + \frac{1}{2} \left(\check{y}_{i,j}^r - \check{y}_{i,j}^l \right) \right] E_z^{i,j}. \tag{A20}
\]

where

\[
\check{y}_{i,j}^r = \frac{\hat{y}_{i+1/2,j+1/2} \Delta y_{i+1/2} + \hat{y}_{i-1/2,j+1/2} \Delta y_{i-1/2}}{\Delta y_{i+1/2} + \Delta y_{i-1/2}}, \tag{A21}
\]

\[
\check{y}_{i,j}^l = \frac{\hat{y}_{i+1/2,j-1/2} \Delta y_{i+1/2} + \hat{y}_{i-1/2,j-1/2} \Delta y_{i-1/2}}{\Delta y_{i+1/2} + \Delta y_{i-1/2}}. \tag{A22}
\]

A corresponding derivation of the auxiliary electric field components \(E_{x,r} \) of the TM-mode follows Weaver et al. (1985). The horizontal electric field component \(E_y \) is computed by expanding \(H_z \) in a Taylor series, both upwards and downwards from the considered node \((i,j)\). Hence,

\[
\check{y}_{i,j}^{r,l} = \left(\frac{\partial H_z}{\partial y} \right)_{i,j} = \frac{N_{i,j}}{\Delta y_{j+1/2} + \Delta y_{j-1/2}}, \tag{A23}
\]

where

\[
N_{i,j} = \frac{\Delta z_{j-1/2} H_{x,i,j+1}^{i+1} - \Delta z_{j+1/2} H_{x,i,j-1}^{i-1}}{\Delta z_{j+1/2} + \Delta z_{j-1/2}} - \frac{O_{i,j}}{2} \left(\frac{H_{z,i+1/2,j}^{i+1} - H_{z,i-1/2,j}^{i-1}}{\Delta y_{i+1/2}} \right) \tag{A24}
\]

\[
\check{y}_{i,j}^{r,l} = \frac{\hat{y}_{i+1/2,j+1/2} \Delta y_{i+1/2} + \hat{y}_{i-1/2,j+1/2} \Delta y_{i-1/2}}{\Delta y_{i+1/2} + \Delta y_{i-1/2}} \left[\check{y}_{i,j}^{l}/2 \left(\check{y}_{i,j}^{r} - \check{y}_{i,j}^{l} \right) \right] H_z^{i,j}. \tag{A25}
\]

After obtaining \(\check{y}_{i,j}^{r,l} \) from the above equations, the two one-sided values \(E_{y,r}^{i,j} \) and \(E_{y,l}^{i,j} \) of the electric field component \(E_y \) can be computed. In contrast to eq. (24) in Weaver et al. (1985), the current density \(j_y^{r,l} \) must be divided by the left- and right-hand side vertically averaged admittivities (eqs A22 and A21, respectively) to obtain \(E_{y,r}^{i,j} \) and \(E_{y,l}^{i,j} \), respectively, that is,

\[
\check{y}_{i,j}^{r,l} E_{y,r}^{i,j} = \check{y}_{i,j}^{r,l} E_{y,l}^{i,j} = j_y^{r,l}. \tag{A24}
\]

The use of averaged admittivities is motivated by considering the integrated current \(I_y = \int y_{\text{plane}} \ dx \ dz \) through any surface \(y = \text{const.} \)

To assign a unique value to \(E_y^{i,j} \), the current density \(j_y^{i,j} \) is typically divided by the average admittance \(\check{y}_{i,j}^{\text{avg}} \) given in eq. (A7), that is,

\[
\check{y}_{i,j}^{\text{avg}} E_y^{i,j} = j_y^{i,j}. \tag{A25}
\]
APPENDIX B: SOLUTION METHODS FOR LINEAR SYSTEMS

As shown in Appendix A, the FDAs of Helmholtz eqs (13) and (14) result in system matrices that are sparse, complex and symmetric with two subdiagonals and two super-diagonals. For the solution of the FDAs, both direct and iterative solvers are desirable. The solution with a direct method is rewarding, as soon as the same system matrix is used for the solution with multiple right-hand side vectors (Rodi 1976; Siripunvaraporn & Egbert 2000), for example, for multiple pseudo-forward problems arising in the computation of the sensitivity matrix (see Appendix C). As the system matrix is non-Hermitian and, hence, not positive-definite, the LU-decomposition rather than the Cholesky-decomposition has to be used as a direct method (Golub & van Loan 1996). If the system of linear equations is to be solved for a single right-hand side vector, an iterative solver can provide significant computational savings over a direct method. The iterative bi-conjugate gradient method (BiCG), which is used by Siripunvaraporn & Egbert (2000) for quasi-static problems, breaks down if applied to the general forward problem with displacement currents. Therefore, we use the direct LU-method as the sole solver at present.

APPENDIX C: COMPUTATION OF THE SENSITIVITY MATRIX

An efficient scheme for the computation of sensitivity matrices was proposed by Rodi (1976) and Rodi & Mackie (2001). The \(Z^k(m)\) of the \(k\)th impedance or VMT datum for a given model \(m\) is expressed in terms of the horizontal electric or magnetic field component of the TE- or TM-mode, respectively, as

\[
Z^k(m) = \frac{a_k^T(m) \mathbf{x}(m)}{b_k^T(m) \mathbf{x}(m)},
\]

where

\[
\mathbf{x}(m) = \begin{cases} H_x & \text{at inner mesh nodes for TM-mode impedance} \\ E_z & \text{at inner mesh nodes for TE-mode impedance or VMT} \end{cases}
\]

and \(a_k(m)\) and \(b_k(m)\) are coefficient vectors from the central difference computation of the auxiliary fields in the TM-mode impedance, TE-mode impedance and VMT.

The entry of the sensitivity matrix for the \(k\)th impedance or VMT datum with respect to (w.r.t.) the \(l\)th model parameter is then computed as

\[
J_{kl}^{zl}(m) = \frac{\partial Z^l(m)}{\partial m^l} = \frac{1}{b_k^T m \mathbf{x}} \frac{\partial a_k^T(m) \mathbf{x}}{\partial m^l} - \frac{a_k^T(m) \mathbf{x}}{b_k^T(m) \mathbf{x}} \frac{\partial b_k^T(m) \mathbf{x}}{\partial m^l}
\]

\[
= \left(\frac{1}{b_k^T(m) \mathbf{x}} \frac{\partial a_k^T(m) \mathbf{x}}{\partial m^l} - \frac{a_k^T(m) \mathbf{x}}{(b_k^T(m) \mathbf{x})^2} \frac{\partial b_k^T(m) \mathbf{x}}{\partial m^l} \right)^T \mathbf{x} + \left(\frac{1}{b_k^T(m) \mathbf{x}} a_k^T(m) \mathbf{x} b_k^T(m) \mathbf{x} \right)^T \frac{\partial \mathbf{x}}{\partial m^l}.
\]

The definitions

\[
e_k = \frac{1}{b_k^T(m) \mathbf{x}} a_k^T(m) \mathbf{x} b_k^T(m) \mathbf{x},
\]

\[
d_{kl} = \left(\frac{1}{b_k^T(m) \mathbf{x}} \frac{\partial a_k^T(m) \mathbf{x}}{\partial m^l} - \frac{a_k^T(m) \mathbf{x}}{(b_k^T(m) \mathbf{x})^2} \frac{\partial b_k^T(m) \mathbf{x}}{\partial m^l} \right)
\]

and the relation from the forward problem,

\[
K \frac{\partial \mathbf{x}}{\partial m^l} = -\frac{\partial \mathbf{s}}{\partial m^l} = \frac{\partial \mathbf{x}}{\partial m^l} + \frac{\partial \mathbf{s}}{\partial m^l},
\]

give

\[
J_{kl}^{zl}(m) = d_{kl}^T \mathbf{x} + e_k^T K^{-1} \left(-\frac{\partial K}{\partial m^l} \mathbf{x} + \frac{\partial \mathbf{s}}{\partial m^l} \right)
\]

\[
= d_{kl}^T \mathbf{x} + u_k^T \left(-\frac{\partial K}{\partial m^l} \mathbf{x} + \frac{\partial \mathbf{s}}{\partial m^l} \right).
\]

© 2008 The Authors, GJI, 175, 486–514
Journal compilation © 2008 RAS
where the computation of \(\mathbf{u}_k \) as a solution of the pseudo-forward problem \(\mathbf{K}^T \mathbf{u}_k = \mathbf{c}_k \) exploits the reciprocity of the forward problem (i.e. the symmetry of the forward system matrix \(\mathbf{K} \) and its inverse). The computation of \(\mathbf{u}_k \) for \(k = 1, \ldots, N \) is significantly faster than the computation of \(\mathbf{K}^{-1} (\mathbf{A} + \mathbf{B}) \) for \(l = 1, \ldots, M \) in the case of typical 2-D problems, where the number of model parameters exceeds the number of data, that is, \(M > N \).

A model parameter \(m^l = \rho_{i+1/2,j+1/2} \) is connected to the cell to the lower right-hand side of a node \((i,j)\) through \(l = j - N_{2a} + (i - 1) * N_{2b} \). Similarly, each data index \(k \) is connected to a single surface node \((i_s, j_s) = N_{2a} + 1\) for a given frequency, where \(i_s \) and \(j_s \) indicate the node at which a certain receiver station is located.

\[\mathbf{J}_k = 1 \cdot \frac{\partial \mathbf{a}_k}{\partial m^l}.
\]

The computation of \(\mathbf{d}_{i,j} \) is simplified as \(\mathbf{b}_k \) does not depend on any model parameter. Furthermore, as \(\mathbf{a}_k \) is computed with a five-point-stencil FDA, each \(\mathbf{a}_k \) depends only on the admittivities of the four cells surrounding a node \((i_s, j_s)\), with a receiver, and sensitivities are only computed for the resistivities of two such cells, that is, immediately below the surface. Consequently, the indices of the involved model parameters are \(i_s - 1/2, j_s + 1/2 \) and \(i_s + 1/2, j_s + 1/2 \), respectively. For brevity, the notation \(i = i_s \) and \(j = j_s \) is used. Eqs (A23) and (A25) yield

\[
\frac{\partial \mathbf{a}_k}{\partial \rho_{i+1/2,j+1/2}} = \mathbf{J}_k \frac{\partial \mathbf{a}_k^{\text{avg}}}{\partial \rho_{i+1/2,j+1/2}} + \frac{\chi_{k}}{2} \Delta \mathbf{a}_k^{\text{avg}} + \frac{1}{\Delta} \frac{\partial}{\partial \rho_{i+1/2,j+1/2}} \left[\frac{1}{\Delta} \frac{\partial}{\partial \rho_{i+1/2,j+1/2}} \mathbf{H}_k^{i,j} \right],
\]

where the definitions

\[
\mathbf{H}_k^{i,j} = \frac{\partial}{\partial \rho_{i+1/2,j+1/2}} \left(\frac{1}{\Delta} \mathbf{a}_k^{\text{avg}} \right)
\]

\[
= \frac{\Delta \mathbf{a}_k^{\text{avg}}}{\Delta} + \frac{1}{\Delta} \frac{\partial}{\partial \rho_{i+1/2,j+1/2}} \left[\frac{1}{\Delta} \frac{\partial}{\partial \rho_{i+1/2,j+1/2}} \mathbf{H}_k^{i,j} \right].
\]
\[\frac{\partial y_i}{\partial \rho_{i+1/2,j+1/2}} = \frac{\partial y_i^d}{\partial \rho_{i+1/2,j+1/2}} \]

\[= - \frac{\Delta y_{i+1/2} + \Delta y_{i+1/2}}{\Delta y_{i+1/2,z_j+1/2}} \cdot \frac{\sigma^2_{i+1/2,j+1/2} \gamma_{i+1/2,j+1/2}}{\gamma_{i+1/2,z_j+1/2}} \]

\[\frac{\partial y_i}{\partial \rho_{i+1/2,j+1/2}} \]

\[= - \frac{1}{\Delta y_{i+1/2,z_j+1/2}} \cdot \frac{\Delta y_{i+1/2}}{\Delta y_{i+1/2,z_j+1/2}} \cdot \frac{\sigma^2_{i+1/2,j+1/2} \gamma_{i+1/2,j+1/2}}{\gamma_{i+1/2,z_j+1/2}} \]

\[p_{i,j}^p = \frac{1}{\Delta y_{i+1/2,z_j+1/2}} \cdot \frac{\partial}{\partial \rho_{i+1/2,j+1/2}} \left[\frac{\partial y_i}{\partial \rho_{i+1/2,j+1/2}} \right] \]

\[= \frac{1}{\Delta y_{i+1/2,z_j+1/2}} \cdot \frac{\Delta y_{i+1/2}}{\Delta y_{i+1/2,z_j+1/2}} \cdot \frac{\sigma^2_{i+1/2,j+1/2} \gamma_{i+1/2,j+1/2}}{\gamma_{i+1/2,z_j+1/2}} \]

were used. The quantity \(y_i^d \) is given according to eq. (A7).

The derivative of the system matrix of the forward problem \(K \) w.r.t. a single parameter \(m^i \) in eq. (C7) results in a matrix \(\partial K / \partial m^i \) that has only four rows with non-zero entries. The parameter \(m^i = \rho_{i+1/2,j+1/2} \) enters into the rows of \(K \) that correspond to the central nodes \((i, j), (i, j + 1), (i + 1, j) \) and \((i + 1, j + 1) \) (cf. Fig. A1), that is, into rows number

\[ul = (i - 2)(N_x - 1) + (j - 1) \] \(\text{(C11)} \)

\[dl = (i - 2)(N_x - 1) + j \] \(\text{(C12)} \)

\[ur = (i - 1)(N_x - 1) + (j - 1) \] \(\text{(C13)} \)

\[dr = (i - 1)(N_x - 1) + j \] \(\text{(C14)} \)

The computation of \(\partial K / \partial m^i \) is further simplified by the symmetry of \(K \). For a central node \((i, j)\) the coefficient of the EM field component at its right-hand side node is the same as the coefficient of the EM field component at the left-hand side node of its neighbouring central node \((i + 1, j)\). Similarly, for a central node \((i, j)\) the coefficient of the EM field component at its lower node is the same as the coefficient of the EM field component at the upper node of its neighbouring central node \((i, j + 1)\). Furthermore, as the left- and right-hand coefficients contain vertically averaged inverse admittivities and the lower and upper coefficients contain horizontally averaged inverse admittivities, the derivative of the coefficient of the right-hand node of the central node \((i, j)\) w.r.t. \(\rho_{i+1/2,j+1/2} \) equals the derivative of the coefficient of the right-hand node of its neighbouring central node \((i, j + 1)\) w.r.t. \(\rho_{i+1/2,j+1/2} \). Similar rules are valid for the coefficients of left-hand, upper and lower nodes at correspondingly neighbouring nodes. Hence,

\[\frac{\partial K(iul, iul + (N_x - 1))}{\partial \rho_{i+1/2,j+1/2}} = \frac{\partial K(iul, iul + (N_x - 1))}{\partial \rho_{i+1/2,j+1/2}} \]

\[= \frac{\partial K(iul, iul + (N_x - 1))}{\partial \rho_{i+1/2,j+1/2}} \]

\[= \frac{\partial K(iul, iul + (N_x - 1))}{\partial \rho_{i+1/2,j+1/2}} \]

\[= \frac{\partial K(iul, iul + (N_x - 1))}{\partial \rho_{i+1/2,j+1/2}} \]

\[\text{C2 TE-mode} \]

In the TE-mode, \(H_\alpha \) is expressed through \(b_\alpha \) and \(E_\alpha \) according to eq. (A17) and \(a_\alpha \) is zero except for the \(k \)th entry, which is 1. Hence,

\[a_\alpha^T x = E_\alpha^T \]

\[b_\alpha^T x = H_\alpha^T \]

\(\text{© 2008 The Authors, } GJI, 175, 486–514 \)

\(\text{Journal compilation © 2008 RAS} \)
and

\[c_k = \frac{1}{H_x^2} \left(0, \ldots, 0, \frac{1}{i_{th \text{ entry}}}, 0, \ldots, 0 \right) - \frac{Z_x^2}{H_x} b_k, \]

(C18)

\[d_{kl} = -\frac{Z_x^2}{H_x^2} \frac{\partial b_k}{\partial m^l}. \]

(C19)

as \(a_k \) does not depend on any model parameter.

The derivative in \(d_{kl}^T x \) is computed from eq. (A17) as

\[\frac{\partial b_k^T}{\partial \rho_{i+x/2,j+x/2}} x = \frac{1}{2} \frac{\Delta z_{j+x/2} \Delta z_{j-x/2}}{\Delta z_{j+x/2} + \Delta z_{j-x/2}} \frac{1}{\Delta z_{j+x/2} + z_{j-x/2}} E_{x/j}^T. \]

(C20)

As \(m^l \) only enters into the coefficient of the central node in eq. (A8), the matrix \(\partial \mathbf{K} / \partial m^l \) contains only four non-zero entries, which are all on the diagonal. Hence,

\[\frac{\partial \mathbf{K}(iul, iul)}{\partial \rho_{i+x/2,j+x/2}} = \frac{\partial \mathbf{K}(idr, idr)}{\partial \rho_{i+x/2,j+x/2}} = \frac{\partial \mathbf{K}(iur, iur)}{\partial \rho_{i+x/2,j+x/2}} = \frac{\partial \mathbf{K}(idr, idr)}{\partial \rho_{i+x/2,j+x/2}} = -\frac{1}{2} \left(-\sigma_{i+x/2,j+x/2} \Delta z_{j+x/2} \Delta z_{j-x/2} \right). \]

(C21)

C3 VMT mode

In the VMT mode, \(H_z \) is expressed through \(a_k \) and \(E_z \) according to eq. (A20) and \(H_y \) is expressed through \(b_k \) and \(E_z \) according to eq. (A17). Hence,

\[a_k^T x = H_z^k, \]

\[b_k^T x = H_y^k, \]

and

\[c_k = \frac{1}{H_x^2} a_k - \frac{B_k}{H_x} b_k, \]

(C22)

\[d_{kl} = \frac{1}{H_x^2} \frac{\partial a_k}{\partial m^l} - \frac{B_k}{H_x} \frac{\partial b_k}{\partial m^l}. \]

(C23)

The derivative in the first term of \(d_{kl}^T x \) is computed from eq. (A20) as

\[\frac{\partial a_k^T}{\partial \rho_{i+x/2,j+x/2}} x = \frac{1}{2} \frac{\Delta y_{j+x/2} \Delta y_{j-x/2}}{\Delta y_{j+x/2} + \Delta y_{j-x/2}} \left(\frac{1}{\Delta y_{j+x/2} + z_{j-x/2}} E_{x/j}^T. \right) \]

(C24)

The derivative in the second term of \(d_{kl}^T x \), that is, \((\partial b_k / \partial m^l)^T x \), is already given by eq. (C20).

As the linear system of equations that is solved in the forward problem of the VMT is the one solved in the TE-mode, the entries of the matrix \(\partial \mathbf{K} / \partial m^l \) are given as in eq. (C21).