Multiagent-Based Data Presentation Mechanism for Multifaceted Analysis in Network Management Tasks

Kazuto Sasai 1,*, Ryota Fukutani 2, Gen Kitagata 3 and Tetsuo Kinoshita 4

1 Graduate School of Science and Engineering, Ibaraki University, Hitachi 316-8511, Japan
2 Research and Education Faculty, Humanities and Social Science Cluster, Education Unit, Kochi University, Kochi 780-8072, Japan
3 Department of English Language and Culture, Faculty of Humanities, Morioka University, Takizawa 020-0605, Japan
4 Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
* Correspondence: kazuto.sasai.z@vc.ibaraki.ac.jp

Abstract: Although network management tasks are highly automated using big data and artificial intelligence technologies, when an unforeseen cybersecurity problem or fault scenario occurs, administrators sometimes directly analyze system data to make a heuristic decision. However, a wide variety of information is required to address complex cybersecurity risks, whereas current systems are focused on narrowing the candidates of information. In this study, we propose a multiagent-based data presentation mechanism (MADPM) that consists of agents operating data-processing tools that store and analyze network data. Agents in MADPM interact with other agents to form data-processing sequences. In this process, we design not only the composition of the sequence according to requirements, but also a mechanism to expand it to enable multifaceted analysis that supports heuristic reasoning. We tested five case studies in the prototype system implemented in an experimental network. The results indicated that the multifaceted presentation of data can support administrators more than the selected single-faceted optimal presentation. The final outcome of our proposed approach is the provision of a multifaceted and cross-system data presentation for heuristic inference in network management tasks.

Keywords: data analytics; network management; multiagent system; serendipity; information recommendation; data presentation

1. Introduction

As information and communications technology (ICT) has become indispensable in our lives, addressing increasingly complex cybersecurity risks has become a major issue. The sophisticated automation of network equipment has allowed non-experts to become administrators. However, when unexpected events occur, data must be analyzed and heuristic inferences must be made, which is a heavy burden for non-experts and a potential risk to network infrastructure. Therefore, there is a need for more advanced automation and support technology for network administrators. Autonomic network management [1–3] was proposed for the unmanned operation of network infrastructure. The idea is based on autonomic computing [4,5], which defines the components of network systems as autonomously acting and interacting as in biological organization. In recent years, AI researchers have attempted to develop the concept of the autonomic functions of network management by introducing machine learning [6–8]. However, because advanced machine learning has complex internal structures and representations, once unexpected behavior occurs, human administrators cannot know what is occurring in systems [9]. “Explainable AI” is anticipated to be able to provide a solution to the problem [10–12]; however, relevant technologies have not been established yet. Thus, complete automation using AI technology is not available now.
As an alternative approach to the unpredictability of the real world, researchers have introduced cooperation between humans and AI. Human-in-the-loop (HITL) [13,14] is a concept representing highly synthetic systems involving interaction between humans and machines. Humans are expected to provide feedback and introduce creativity to the precise calculations of machines. For large-scale information systems, the concept of human-agent collectives (HAC) [15] has been proposed as a diverse cooperating community of humans and agents. The requirements of HACs assert that agents should have functions of accountability to be trusted by humans. Accountability and creativity provide the communication scheme for HITL and HAC concepts. For example, accountability is supported by providing information from internal systems and humans contribute a novel perspective while understanding the information, for example, annotations for machine learning [16,17]. Therefore, how to provide and present information from the agent (machine) side is a key challenge in HITL and HAC systems.

Recently, data management and analytics have increased their importance in the context of big data and the IoT. Big data has certain problems, not only with the size of databases, but also with the heterogeneity that reflects the multiplicity of formats, storage types, locations, and sensors [18]. Therefore, techniques for appropriately handling various types of data have been investigated [19,20]. The third problem for big data analytics is how to visualize big data [21,22]. Because of the limited space available for visualization, such as by use of laptops and smartphones, developers should select what data to store and how to display it appropriately. Therefore, for more advanced data analysis, it is necessary to fully consider the functions for resolving data diversity and selecting appropriate visualization elements.

For network management tasks, researchers have focused on the collection of security data [23,24] and IoT applications [25,26]. In parallel, several software tools have been used to compose data-processing flows or visualization formats. For instance, Elasticsearch (ELS) [27] and InfluxDB (IDB) [28] provide a flexible database and processing modules for heterogeneous data, for example, logs and time series. Fluentd [29], Logstash [30], and Kibana [31] provide real-time stream processing and visualization for server logs. General network management systems, such as Zabbix (ZBX) [32], provide device and service statues and notify users of these statues. We refer to the range of data-processing software applications for network management as data-processing tools (DPTs). An adequately organized set of DPTs can strongly support network and server administrators. However, because composition and selection require professional knowledge about advanced ICT trends, some difficulties remain for non-professional, casual, and private engineers. Therefore, in this study, we propose an architecture to manage DPTs as autonomous agents that cooperate and self-organize.

Multiagent-based solutions have been applied to reduce complexity using cooperation among agents [33,34]. We have developed a multiagent-based network management system based on the concept of an active information resource (AIR), which is an information resource that autonomously interacts with other AIRs [35]. We extend the system to include data-analytic functions [36]. The idea for this study originated from the concept of AIR. However, existing systems focus on responding precisely to requests and lack extensions to generate ad hoc reasoning. Therefore, it is difficult to take effective measures against unpredictable and unknown scenarios. This is common for other general human-centered [37,38] and context-centered approaches [39,40].

Satisfying requests that concern creativity is called serendipity [41,42]. Technically, theory refers to a balance or trade-off between accuracy and creativity (expansion), similar to the trade-off in the exploration of optimal solutions [43]. A recommendation with expansion may correspond to the awareness of a hidden underlying relationship in the mind of a human. As mentioned above, the management problem in complex ICT systems requires human intelligence heuristics. We adopt the idea of serendipity to address the capability for multifaceted analysis for network management and apply and integrate it into a multiagent-based approach for network data management. Consequently, in this
study, we propose a multiagent-based data-presentation mechanism (MADPM) to integrate heterogeneous DPTs and demonstrate beneficial processing results.

The main contributions of this study are as follows:

- We connect data analytics in network management and the idea of serendipity, which is the notion of an innovative encounter, to solve the complexity of recent cybersecurity problems.
- We propose a multiagent-based mechanism to provide a multifaceted data presentation (MADPM).
- We define the organization process considering accuracy and expansion for user demand. Additionally, we include automated composition of the data presentation process in the organization process.
- We present a design process to encapsulate services and systems as agents (data-processing agents (DPAs)), including data related to network management.
- We conducted several case studies and demonstrated that the multifaceted information provided by the prototype system enabled us to make inferences from new perspectives.
- Finally, we discuss the effectiveness and feasibility of the data and information recommendation, including uncertainty represented by the probabilistic process.

This paper is an extended version of the conference paper [44] and provides details of the algorithms and case studies.

2. Materials and Methods

2.1. Multiagent-Based Data Presentation Mechanism (MADPM)

In this study, we use presentation because the mechanism composes the data-processing flow and recommends the result related to user demand. Figure 1 shows a schematic diagram of the MADPM. First, we create DPAs that include DPTs with the knowledge and functions for handling DPTs. Self-organization means that the interaction between agents establishes the data-processing flow required for providing information according to the request input by users. The design scheme follows the distributed agent system-based hybrid architecture (DASH) framework [45]. The self-organization process proceeds in the agent repository, which is a unique feature of the framework, and the generated organization is activated in the workplace. Finally, data-processing starts.

As shown in Figure 1, we use a user interface (UI) agent (UIA) to serve and manage a UI, which receives the request and returns the results from the active DPAs in the workplace. Thus, the notions of accuracy and expansion are expressed in the organization processes of request-matching and request expansion, respectively.

2.1.1. Request Matching

As shown in Figure 1, when a user inputs a request for data-processing into the UI, the UIA sends a broadcast message to the request to the agent repository. The request is expressed as a triplet:

\[
R := \{r_i | r_i = \langle \text{target}_i, \text{data}_i, \text{processing}_i \rangle ; i = 1, 2, 3, \cdots, n \},
\]

where \(\text{target}_i \) denotes the name of the target device, \(\text{data}_i \) denotes the name of the data (fields), and \(\text{processing}_i \) denotes the name of the requested type of processing. Using appropriate natural language processing methods, the triple is extracted from request \(r \) described by a natural language expression. For example, when a request to know the current central processing unit (CPU) usage, “Show CPU usage of the mail server”, occurs, the entities of the triple \(r_i \) are extracted, such as \(\text{target}_i = \text{Mail server} \), \(\text{data}_i = \text{CPU usage} \), and \(\text{processing}_i = \text{provide} \). The entities are used to evoke the functions of DPAs.

In the DASH framework, the program that defines the decision-making of the agent’s behavior is called “agent knowledge”. In this paper, the response to the received request is determined by agent knowledge. We design two possible types of agent knowledge: agent
knowledge about data DK and agent knowledge about the processing procedure PK. DK describes what data are stored or measured in the DPA:

$$DK := \{dk_i|dk_i = \langle \text{source}_i, \text{variable}_i, \text{description}_i \rangle; i = 1, 2, \cdots, n\},$$

where source_i is the name of the data source, variable_i is the name of the measured variable observed on the source device, and description_i is the text that explains the data. By contrast, PK indicates agent knowledge about the processing method for the data:

$$PK := \{pk_i|pk_i = \langle \text{processing}_i, \text{keyword}_i, \text{probability}_i \rangle; i = 1, 2, \cdots, n\},$$

where processing_i is the name of the possible processing method, keyword_i is the keyword that triggers the execution of the data processing function, which corresponds to the activation of the DPA, and probability_i is the probability that the DPA is activated.

![Figure 1. Schematic diagram of the multiagent-based data presentation mechanism (MADPM).](image)

The proposed MAPDM mainly consists of the encapsulation of data-processing tools (DPTs) and autonomous composition of multiagent organizations.

A DPA checks the correspondence between the incoming request r_i and its own knowledge dk_i and pk_i, and decides to start working. We introduce a probabilistic decision model to express flexibility in the organizing process. Note that the notion of decision flexibility is not new and is the basis of fuzziness [46,47]. Our probabilistic decision model is defined using the activation probability ap_i defined as

$$ap_i = \begin{cases} 1 & (\text{target}_i \subseteq \text{source}_i) \\ 1 - \frac{\alpha(n_{rd}^i - n_{rkd}^i)}{n_{rd}^i} & (\text{otherwise}) \end{cases},$$

where n_{rd}^i is the number of nouns in $data_i$ of request r_i, and n_{rkd}^i is the number of nouns included in $description_i$ of dk_i and included in $data_i$ of r_i. The DPA is always activated if the target device target_i matches the data source source_i. The term $n_{rd}^i - n_{rkd}^i / n_{rd}^i$ represents the matching rate between a request and the knowledge of a DPA. $\alpha \in [0.0, 1.0]$ is an activation coefficient that can be set directly in the knowledge description. If $\alpha = 0$, then $ap_i = 1$ indicates that the agent is always activated for any request. For example, when
data; = “CPU usage”, and description; = “CPU utilization rate in user space.”. “CPU usage” can be divided into the nouns “CPU” and “usage,” then \(n_i^{rd} = 2 \) and “CPU” is also included in description; therefore, \(n_i^{rd} = 1 \). Finally, if \(\alpha = 0.5 \) and \(ap_i = 0.75 \), then the agent will be activated by 75%. Because the prototypical implementation in this study is for Japanese, we use a morphological analysis tool to extract the words from a request. The coefficient may be replaced with an algorithm to change the value temporally. This remains a topic for future work.

If the DPA does not have \(dk_i \) but has \(pk_i \), this means that the DPA does not store data but can be part of a data-processing flow; then the DPA only responds to requests \(r_i \) for processing. For example, if processing in \(pk_i \) is matched to that in \(r_i \), the DPA is activated by the probability parameter in \(pk_i \). At least one candidate is determined for the processing request, and then the process is completed.

2.1.2. Request Expansion

Mining hidden potential information is the core idea of serendipity [41]. We introduce request expansion to apply the idea in the self-organization process. The MADPM permits DPAs to generate a modified request in chains. Figure 2 shows an example of request expansion. Now, the initial request \(r_0 \) is received as

\[
r_0 = < "Mail server", "CPU usage", "Fourier transform" >,
\]

and then the two agents are activated. A possible example is that an abstract word, “Mail server”, can be concretized to the hostname “hostA” on which mail server applications are installed. The DPA of the wiki (wiki agent), which has the management information shared by administrators, generates a secondary request:

\[
r_1 = < "hostA", "CPU usage", "Fourier transform" >,
\]

and sends the agent repository. Another possible example is that the activated DPA requires subsequent processes, such as plotting. As shown in Figure 2, a DPA of a discrete Fourier transformation (DFT) generates a secondary request \(r_2 \) as

\[
r_2 = < "Mail server", "CPU usage", "Bar plot" > .
\]

Notably, not only the hidden demands of the information, but also the data processing flows, can be composed using the expansion type in Equation (7).

We have defined the matching and expansion processes in this section; the combination provides helpful information for heuristic problem solving in network management. Note that the mechanism should be designed considering the possibility of convergence.

2.2. Data Processing Agent (DPA)

In this section, we define the structure of a DPA. Figure 3 indicates a schematic diagram of a DPA. DPAs are the agents that use DPTs, for example, ELS [27] and ZBX [32]. The ADIPS/DASH [45] framework divides an agent into the two design components of brain and body parts. The brain component describes agent knowledge and actions used to interact with the other agents. For example, when receiving a message from other agents or measuring environmental change, an agent decides what action should be taken for the recognized scenario using installed knowledge. According to the framework, the rule-based inference model describes the knowledge of an ADIPS/DASH agent. The body component is called the “base process”, which is a process that the wrapper for the DPT program uses to provide the actions triggered in the brain component. We describe the details of each component in the following sections.
Figure 2. Example of request expansion. The activated DPAs can generate secondary requests, partially replaced by knowledge of the semantic relation. The mechanism provides a bottom-up expansion of demands in the request.

Figure 3. Conceptual diagram of a DPA. The blue part indicates the entire body of the DPA; the orange part indicates the brain component, which consists of knowledge and the decision rules; and the white part corresponds to the original DPT.

2.2.1. Knowledge and Action Rules

Figure 4 shows the list of entities used to construct agent knowledge for data processing. Agent knowledge is written in object-attribute-value format and divided into four types: “data”, “process”, “next” and “related_word”. “data” is agent knowledge used to obtain data from the particular DPTs that store logs or performance data. “process” stores the possible functions of processing and calculating in the DPT. “next” contains the names or keywords of the processing method that the DPA recommends to perform the next process. For example, if the DPA acquires the time series of network traffic data and wants to plot it on a line graph, we can write the value of attribute “process” as “Line plot”. If the DPA has additional information to provide to the user, it can be defined in the knowledge of “related word”. Using this knowledge, for instance, if “Web server” is
related to “hostA”, which is a particular hostname, we can write the values of the attributes “wordA” and “wordB”.

![Diagram of data-processing knowledge for the DPA](image)

Figure 4. List of data-processing knowledge for the DPA. A dashed square indicates each knowledge element. Each knowledge element is defined as a separate agent knowledge.

2.2.2. Base Process

The DPA can control the existing or original DPTs using encapsulation. The encapsulated program is called the base process in the ADIPS/DASH framework. Figure 5 shows the structure of a base process. Encapsulation consists of four modules: the module that the agent calls directly, the data-receiving module, the query module, and the data-sending module. The “data-sending module” directly exchanges data with other agents by establishing the data stream. Note that the agent can configure and control the data stream at the level of agent interaction, which refers to the message exchange using knowledge defined in the previous section. Then, the received data are transferred to the “data-processing module” to process and execute the query in the DPT. The results of DPT-processing or the query are sent to other agents via the data-sending module.

Figure 6 depicts the data exchanged via the data-sending module. Data are delivered as components of variables with metadata in JSON format. The metadata include “title”, “x-axis”, “y-axis”, “unit”, “process” and “data_list”. In this study, because the prototypical implementation defines terminal processing as visualization, the information required to draw a graph is delivered as part of the metadata. “process” defines the type of graph. If “process” is not specified, the graph type is inferred from the description of “unit”. A code example of the base process is included in the Supplementary Materials.

2.2.3. Lifecycle

Figure 7 is a diagram of the lifecycle of a DPA. The DPA in the agent repository waits for request messages from other agents. When it receives a message, the DPA checks whether the request is acceptable by verifying it with the knowledge. If the request is not acceptable, the message is dropped and the state returns to the waiting state. If the requested process can run, the DPA is instantiated in the workplace. The DPAs in the repository support the processing flow. Because the process is recursive, a processing flow that answers the request is organized. Then, the DPA establishes a direct connection between the base processes of the before and after processes of the data processing sequence. After the processing flow is organized, the state becomes “processing” and data processing is run. When the agent has completed the processing task, the state of the agent changes to
“post-processing”. Then, the DPA returns to the repository. The sample codes of DPAs are shown in Appendices A and B.

Figure 5. Structure diagram of a base process in a DPA. The blue part represents the base process. The green boxes are modules that transfer data and process them via DPT functions. The purple box represents methods callable from the agent (brain) part.

Figure 6. Structure of data exchanged between the base processes. Data are delivered as a piece of variables with metadata in JSON format.
2.3. Prototype Implementation

In this section, we implement a prototypical system to demonstrate the MADPM practically and evaluate its advantages. First, we consider a broad set of monitoring tools for a small- or medium-scale network as follows:

- **Log collection tool** collects logs on the servers, such as mail servers, web servers, and firewalls, and displays statistics and time series.
- **Performance management tool** collects performance data, such as CPU usage, memory usage, and the amount of traffic on network interfaces from the servers and networking devices, and provides statistics and visualization.
- **Service management tool** provides the function of service management, which includes monitoring, testing, and providing alerts on the service status.
- **Knowledge tool** stores knowledge for management tasks and provides functions to share among employees.

2.3.1. Experimental Environment

Figure 8 shows a diagram of the experimental environment. We conducted experiments on our laboratory network with the experimental servers, which included the five DPTs listed in Table 1. We executed all the implemented agents on IDEA [45], which is a development and runtime tool for ADIPS/DASH agents. The experimental server included a web server and a mail server process to test the case study described later in this paper. We conducted experiments on a test PC connected to the same subnet. The ELS and IDB tools were used on different ports on the same server for convenience.

Table 1. List of data collection tools deployed in the experimental network.

Name	Description
InfluxDB [28]	a performance management tool
Elasticsearch [27]	a log collection tool
Zabbix [32]	a service management tool
Fess [48] and Wiki	a knowledge tool (Fess provides the search engine for Wiki)
Data visualization	an original tool implemented by Python
Figure 8. Experimental environment for the prototype system. We deployed four physical servers and five DPTs on the servers. The virtual fault scenarios occurred on the “experimental server”, and the experimenter (administrator) demonstrated the case studies using a “User PC” via the “UI server”.

2.3.2. Implemented Agents

Figure 9 shows a screenshot of the runtime environment window of IDEA when the system started (initial state). According to the ADIPS/DASH framework regulations, the runtime environment included the agent workplaces and repository. The agent repository stored agents that were inactive but capable of exchanging messages. We implemented eight DPAs that appeared in the agent repository. We designed each agent according to the MADPM. We provide a brief description of the agents below.

Correlation Coefficient (CRR) Agent

The CRR agent provides the Pearson correlation coefficient for the received time series using the preliminary stored anomaly time series. Simultaneously, the CRR agent sends the anomalous time series to other agents, such as the data visualization agent. When CRR is in the repository, if the received request r_i includes “Correlation analysis”, then CRR is activated by 100%, if r_i includes “Analysis”, then CRR is activated by 80%, otherwise, CRR is activated by 10%. To compare the present time series with the visualized anomaly time series, CRR rewrites $process_i$-entity in r_i as “Line plot” and sends it to the repository.

Discrete Fourier Transform (DFT) Agent

DFT is an original agent that provides the power spectrum calculated from the received time series data. The agent is activated by 100% if the name of $process$ in request r_i is “Fourier transform”, 80% if $process$ is “Analysis”, and 10% otherwise. DFT replaces $process$ with “Bar plot” to visualize the power spectrum.

Descending Sort (DSS) Agent

DSS is also an original agent that sorts the received time series in order of the average value. This agent aims to present important data first. DSS is activated by 100% if $process$ is “Descending sort”, 80% if $process$ is “Analysis”, and 10% otherwise. DSS also rewrites $process$ as “Plot.”
Agent repository stores the live templates of the agents. The templates are also agents which receive messages and check if the requested task can be accepted or not and form an organization consisting of the selected agents.

Agent workplace poses the agents organized in the agent repository.

Implemented agents:
1. Correlation Coefficient (CRR): calculates correlation.
2. Discrete Fourier Transform (DFT): calculates power spectrum.
3. Descending Sort (DSS): provides the sorting function.
4. Elasticsearch (ELS): collects various log data.
5. Fess (FES): provides search engine for internal Wiki pages.
6. InfluxDB (IDB): stores performance data.
7. Plotly (PLT): visualizes data.
8. Zabbix (ZBX): stores server status.

Figure 9. Screenshot of the initial state of the prototype system with descriptions. We implemented eight DPAs and a user interface (UI) agent. The MADPM works among the agents.

Elasticsearch (ELS) Agent

ELS is an agent that encapsulates ELS [27] software for collecting logs from servers. Through the functions on ELS that use query operations, the agent provides a function to retrieve log data, retrieve the count per minute, and construct time series. We define three types of log data on the experiment server with the hostname “tsuga” as the knowledge of the agent part of ELS. Then, ELS is activated by 100% if the target device name target in r_i is “host_A”. The knowledge of data can be improved to extend the function to retrieve monitoring hostnames from the database. As an additional action, if process is “provide”, ELS rewrites process as “Bar plot”.

FESS (FES) Agent

FES encapsulates the search engine FES [48] for local sites. FES can retrieve multiple sites. The FES agent provides search results for the search keyword from local wiki sites or other services in the local network. The agent can respond by 100% to every request. If target is “Web server” or “Core switch,” the agent rewrites target as “host_A” or the IP address of the core switch, respectively. We require that the action rule is constructed from knowledge in the wiki and aim to extract it automatically in the future.

InfluxDB (IDB) Agent

IDB encapsulates the OSS database engine IDB [28]. The agent provides time series by retrieving and calculating the CPU usage, memory usage, and amount of traffic according to the received request r_i. In this study, we implement five entities and ten entities for the experiment server and core switch, respectively. When the agent returns the data, we set the tic of the time series to one minute. IDB is activated by 100% if the target device target is “host_A” or the IP address of the core switch. If process in r_i is “Provide”, then the agent rewrites it as “Line plot”.
Plotly (PLT) Agent

PLT is an agent that encapsulates the data visualization tool PLT [49]. When the agent receives time series data, it returns an HTML file with the corresponding graph. For example, PLT is activated by 100% if process is one of “Line plot”, “Bar plot” or “Plot” and 10% otherwise.

Zabbix (ZBX) Agent

ZBX encapsulates the popular NMS, ZBX [32], which monitors and analyzes hosts and switches in the target networks. The agent provides the result from the retrieved health status of the target hosts. The ZBX agent is always activated for any request.

2.3.3. User Interface Agent (UIA)

We implemented the UIA using the Django framework in the Python language. Figure 10 shows screenshots of the UI. The UI contains the request form and the search button for launching analytics. After the MADPM process, the results are displayed below the input form.

![Screenshot of the UI server](image)

Figure 10. Screenshot of the UI server: (a) An initial state. We can input the request for the system in natural language and data processing starts when the user pushes the search button. (b) Example result after processing is complete. The results are ordered and displayed below the input form.

3. Results

3.1. Experiments with the Prototype System

We conducted experiments using the prototype system to evaluate the MADPM. In [44], we tested two cases and demonstrated the advantage of the MADPM. In this paper, we present five more case studies for the prototype system. In each case, all the phenomena are caused manually so that the actual operation of the laboratory is not affected.

3.2. Case 1: Trouble on the Web Server

Human error is a major reason for system failures. In this case, we demonstrate misconfiguration on the web server. The specific procedure for the experiment is as follows:
1. halt the process of “apache2.service” on the “monitored server” (Figure 8)
2. access the UI server and input the test request as “Web server is not running”.
3. check the returned list of information.

Figure 11 shows the output of the prototypical system. Figure 11a shows an alert on the ZBX server. The alert indicates “Apache is not running”, with the hostname of the “monitored server” (displayed hostname is hostA). Figure 11b shows a time series of the system logs; below are the access logs and performance data. The shape of the graph in Figure 11b looks periodic, which implies that the system worked normally before it halted. Figure 11c shows corresponding information on the knowledge management system (wiki) of the experimental (lab.) network. From the output of (c), the administrator can know complementary information about failure detection.

Figure 11. Example result for the prototype system in Case 1. We assert three remarkable results: (a) status of hostA, (b) amount of the system log on hostA, and (c) wiki page including the word “hostA”.

Figure 12 shows a screenshot of the agent repository and workplaces when the output of Figure 11 was displayed. The actual self-organization process executed for the request is presented as follows:

1. The UIA generates the request as
 \[r_1 = < \text{“Web server”}, \text{“NULL”}, \text{“Analysis”} > \]
 (8) and sends it to the agent repository.
2. The FES and ZBX agents appear in the workplace according to the entity “Web server” in \(r_1 \).
3. The FES agent generates another request \(r_2 \) as
 \[r_2 = < \text{“hostA”}, \text{“NULL”}, \text{“Analysis”} > \]
 (9) and sends it to the agent repository.
4. The IDB and ELS agents respond to “hostA” in \(r_2 \) and come into the workplace. The two agents resend \(r_2 \) to the agent repository.
5. The two DSS agents corresponding to the IDB and ELS agents are instantiated with “Descending sort” in r_2.

6. From the relation in the knowledge of the DSS agent, a new request r_3 is created as

$$r_3 = <"host_A", "NULL", "Plot">$$ (10)

and sent to the agent repository.

7. The PLT agent is instantiated with “Plot” in r_3.

8. The processing flow is automatically organized through the IDB, DSS, and PLT agents.

The result confirms the self-organized mechanism to verify that complex user demand works expectedly.

Figure 12. Screenshot of the agent runtime environment (IDEA) when the result of Case 1 was displayed. In this case, six agents were activated from the agent repository and eight active agents organized the three data-processing streams.

3.3. Case 2: Amount of Traffic on the Network Switch

Case 2 presents the reaction to the request for providing performance information over time on network devices, for example, time series of the amount of traffic on Ethernet ports. Performance information over time is a popular monitoring entity for an enterprise-scale system and dedicated workers monitor this 24 hours a day, 7 days a week. However, because it is difficult to cover this type of work for small networks, such as laboratory networks, an administrator checks traffic on demand or when it is troubling. In this case, we test the following process:

1. Input the phrase “Show the amount of traffic on the core switch in descending order”.

2. Check the output information.

Figure 13 shows a screenshot of the output for the above test input. The top of the UI (Figure 13a) displays the upstream (WAN) traffic and that into Room A. There is also knowledge of a device (core switch) with the same IP address. From the input of “the core switch”, the administrator can know not only the amount of traffic on the switch, but also management information to understand the consistency of the IP address, hostname, and role. Because administrators are often not fixed in small networks, inferences that are effective for problem-solving can be made by displaying not only visualized time-series data, but also shared knowledge about the target server within the laboratory.
Figure 13. Example result for the prototype system in Case 2. We assert two remarkable results: (a) the amount of traffic on the host with IP address B, and (b) the wiki page includes the word “core switch”.

The flow for the organization and providing data for the input request is as follows:
1. UIA generates the request triple as
 \[r_1 = \langle "Core switch", "Amount of traffic", "Descending sort" \rangle \] (11)
 and sends r_1 to the agent repository as the broadcasting message, which is sent to all agents in the repository.
2. The FES agent is activated by reacting to the keyword “Core switch” and instantiated in the workplace.
3. Using the stored knowledge, the FES agent newly generates another request:
 \[r_2 = \langle "IP address B", "Amount of amount", "Descending sort" \rangle . \] (12)
4. The IDB and ELS agents respond to “$<IP address B>$” in r_2 and come into the workplace.
5. The DSS agent is instantiated with “Descending sort” in r_2.
6. From the relation in the knowledge of the DSS agent, a new request r_3 is created as
 \[r_3 = \langle "IP address B", "Amount of amount", "Plot" \rangle \] (13)
 and sent to the agent repository.
7. The PLT agent is instantiated with “Plot” in r_3.
8. The processing flow is automatically organized through the IDB, DSS and Plotting agents.

3.4. Case 3: Denial of Service (DoS) Attack
A DoS attack stops the service by sending huge transactions to the server or service network. In this scenario, the administrator should quickly investigate the network and
take sufficient action to stop the damage. In this case, we use the Apache JMeter [50] to obtain the load on the target server. The test procedure consists of the following steps:

1. Generate five transactions from a terminal to “host\textsubscript{A}” per second.
2. After a while, generate 60 transactions from another terminal to “host\textsubscript{A}” per second.
3. Confirm that the website on “host\textsubscript{A}” is down.
4. Access the UI server and input “host\textsubscript{A} is down”.
5. Check the output of the UI server.

Figure 14 shows a screenshot of the output displayed on the UI server. For visibility, we drew a red dashed line to indicate the attack time of Step 2 above. Figure 14a shows the number of system logs on host\textsubscript{A}, which rapidly increased at the attack time. The logs provided notification of the data collection failure from the data collector agent on host\textsubscript{A}. Additionally, the amount of access logs (Figure 14b) and CPU usage (Figure 14c) of host\textsubscript{A} increased simultaneously. From the three results in (a)–(c), the administrator could infer the existence of a DoS attack at that time.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure14.png}
\caption{Example result for the prototype system in Case 3. We assert three remarkable results: (a) the amount of the system log on host\textsubscript{A}, (b) the amount of the access log on host\textsubscript{A}, and (c) central processing unit (CPU) usage on host\textsubscript{A}.}
\end{figure}

In this case, the prototypical system reacted to the test input “host\textsubscript{A} is down.” and organized the agents as follows:

1. The UIA generates the request as
 \[r_1 = < "host\textsubscript{A}", "NULL", "analysis" > \] (14)
 and sends it to the repository.
2. The IDB and ELS agents appear in the workplace according to the entity “host\textsubscript{A}” in \(r_1 \).
3. The two agents resend \(r_1 \) to the repository.
4. The DSS agent is instantiated in the workplace according to “Analysis” in \(r_1 \).
5. The DSS agent generates another request \(r_2 \) as

\[
r_2 = < \text{"host}_A\text{"}, \text{"NULL"}, \text{"Plotting"} >
\]

and sends it to the repository.

6. The PLT agent is instantiated in the workplace by “Plot” of \(r_2 \).
7. The processing flow of the data is automatically constructed.

3.5. Case 4: Brute Force Attack

A brute force attack is a cyberattack that challenges various patterns of passwords for logging into the target host. In this case study, we virtually generate a brute force attack on “\(\text{host}_A \)" and check the output of the prototypical system. The experimental procedure is as follows:

1. Access “\(\text{host}_A \)" from a terminal five times per second.
2. Generate a virtual brute force attack on “\(\text{host}_A \)" ten times per minute.
3. After continuing Step 2 for 2 hours, input “Analyze the logs on \(\text{host}_A \).”
4. Analyze the output from the prototypical system.

Figure 15 shows a screenshot of the output of the above experiment. Figure 15a indicates there were periodic login challenges to the page “/wp-login.php” on “\(\text{host}_A \).” Figure 15b shows the Fourier analysis result for the data in Figure 15a. The graph also indicates the periodic activity of login challenges; the red circled spike represents \(n = 12 \), which equals 10 minutes. By integrating the two results, the administrator could suspect a brute force attack on \(\text{host}_A \).

(a) The bar plot of around the time when the request was queried. The amount of access per minute is displayed.

(b) The power spectrum using DFT on the queried data. The bar plot shows the power of the frequency.

![Figure 15](image)

Figure 15. Example result for the prototype system in Case 4. Two results are as follows: (a) The bar plot of the time when the request was queried. The amount of access per minute is displayed. (b) The power spectrum using DFT on the queried data. The bar plot shows the power of the frequency.

The processing flow in the prototypical system when it receives the request “Analyze the logs on \(\text{host}_A \).” is as follows:
1. The UIA generates request r_1 from the input text as

$$r_1 = <"host_A" , "Logs" , "Analysis">$$ \hspace{1cm} (16)

and sends it to the agent repository.
2. The ELS agent is activated by reacting to the keyword “$host_A$” and instantiated in the workplace.
3. Using the stored knowledge, the ELS agent resends r_1 to the agent repository.
4. The DFA and DSS agents are activated by reacting to the keyword “Analysis” and instantiated in the workplace.
5. Using the stored knowledge, the DFA agent newly generates another request r_2 as

$$r_2 = <"host_A" , "Logs" , "Bar plot">$$ \hspace{1cm} (17)

and sends it to the DPAs in the agent repository.
6. Using the stored knowledge, the DSS agent newly generates another request r_3 as

$$r_3 = <"host_A" , "Logs" , "Plotting">$$ \hspace{1cm} (18)

and sends it to the DPAs in the agent repository.
7. The PLT agent is instantiated with “BarPlotting” in r_2 and “Plot” in r_3.
8. The processing flow is automatically organized through the instantiated agents.

3.6. Case 5: Data Correlation for Anomaly Detection

As a particular use case for the prototypical system, correlation analysis among heterogeneous data on network equipment provides a good demonstration. For instance, a method using the correlation between two different measures of network traffic was proposed for network monitoring [11].

In this case study, we conduct an experimental analysis of the inter-temporal correlation between CPU usage data. The experimental flow is as follows:

1. Generate access to $host_A$ five times per second.
2. Input “Analyze the CPU usage on $host_A$. “ to the UI server.
3. Check the output from the prototypical system.

Figure 16 shows a screenshot of the output for the experiment described above. Figure 16a,c indicate the time series when the request was input and when an anomaly occurred in the past, respectively. Furthermore, Figure 16b shows the correlation value between the data in (a) and (c). Because the correlation value was 0.97 in the case study, the administrator could infer that something wrong occurred on $host_A$.

The processing flow in the prototypical system when it receives the request “Analyze the CPU usage on $HostA$.” is as follows:

1. The UIA generates request r_1 from the input text as

$$r_1 = <"host_A" , "CPU usage" , "Analysis">$$ \hspace{1cm} (19)

and sends it to the agent repository.
2. The ELS and IDB agents are activated by reacting to the keyword “$HostA$” and instantiated in the workplace.
3. Using the stored knowledge, the ELS and IDB agents resend r_1 to the agent repository.
4. The CRR and DSS agents are activated by reacting to the keyword “Analysis” and instantiated in the workplace.
5. Using the stored knowledge, the CRR agent newly generates another request r_2 as

$$r_2 = <"host_A" , "CPU usage" , "Line plot">$$ \hspace{1cm} (20)

and sends it to the DPAs in the agent repository.
6. Using the stored knowledge, the DSS agent newly generates another request r_3 as

$$r_3 = < "host_A", "CPU usage", "Plotting" >$$

and sends it to the DPAs in the agent repository.

7. The PLT agent is instantiated with “Line plot” in r_2 and “Plot” in r_3.

8. The processing flow is automatically organized through the instantiated agents.

![Figure 16. Example result for the prototype system in Case 5. We assert three remarkable results:
(a) CPU usage on host_A, (b) correlation value calculated from (a,c), and (c) CPU usage around the
time of the anomaly occurrence.](image)

4. Discussion

4.1. Effectivity and Heterogeneity

To evaluate the MADPM, we compared the burden on human administrators by counting how many databases are used to create results. We chose this number because the manual process takes the same steps if the human uses different systems to acquire the number of results. Figure 17 shows the counted heterogeneity and number of databases for the presented information. We define the heterogeneity of the data presentation as if the results had been collected from different data analytics systems. For example, the output of Case 1 was collected from three types of DPTs, that is, ZBX, ELS, and FES, as shown in Figure 11. If an administrator performs the same task manually, this generates three times the burden of the prototype system because the administrator has to use at least three systems to collect the same data. The result indicates that the proposed self-organization scheme can efficiently collect and present heterogeneous data using the multiagent cooperation mechanism.

Table 2 shows a comparison of the functional coverage of data presentation between the traditional approach and MADPM. The traditional approach uses tools for respective types of network data. For example, ELS is normally used to collect logs because of its advanced search capability. The remarkable sets of outputs shown in Figures 11 and 13–16 can be provided for each tool individually. However, cross-sectional findings are only
provided by the proposed MADPM. As discussed in the previous section, functionality is realized by the cooperation and autonomy of DPAs.

![Figure 17](image_url)

Figure 17. Comparison of heterogeneity, which is counted using the types of information provided by the prototype system. If the administrators (experimenters) collect the same types of information, they have the burden of accessing and operating the systems.

Table 2. Comparison of function coverage for data presentation.

Traditional tools	Case 1	Case 2	Case 3	Case 4	Case 5
	(a)	(b)	(c)	(a)	(b)
InfluxDB [28]	X	X	X	X	X
Elasticsearch [27]					
Zabbix [32]	X				
Fess [48] and Wiki	X	X			
MADPM	X	X	X	X	X

4.2. Performance and Scalability

Because our MADPM includes the request expansion process, *combinatorial explosion* can occur. For example, in Figure 6 in the original conference paper [44], we measured the processing time by increasing the quantity of data stored in the system. As a result, there was a difference between DPTs: in the case of the FES agent, even if the number of items on the wiki site used as the search source was increased from 20 to 100, there was no significant difference in processing time. This result was caused by the performance of the FES software. By contrast, the processing time increased linearly according to the number of graphs generated by the PLT agent. Considering practical uses, DPAs are designed to exhibit the capability of DPTs. Additionally, we have not investigated the scalability of increasing the number of agents because of the complexity. We have not provided a solution in this paper for processing performance. In many research fields, load-balancing methods for data processing have been studied, for example, edge computing [34], and can be applied to MAPDM.

4.3. Limitations

In the prototype system, the output variety depends on the probability coefficient α. In Case 4, for the request “Analyze the logs of hostA”, the outputs of (a) and (b) in Figure 15 were presented with a probability of 72%. By contrast, if the request “Analyze the
data of host_A" was input, the same outputs were provided with a probability of 36%. The description in dk, caused the difference because it was written as “The number of access logs for the login page.” in the log acquisition (ESS) agent. The probability a_p was 1 if data in r_j was “Logs”; however, a_p was 0.5 if data was “data”, where $\alpha = 0.5$. Figure 18 shows the output of the unfavorable result. In this case, the request “Analyze the logs of host_A” was input into the system. However, the output was only power spectrums, which are not advisable in this scenario. The current prototype system design and implementation cannot respond sufficiently to a variation in notation. This should be improved in a future version.

Figure 18. Example of the undesirable output. In this case, the request “Analyze the logs on host_A” was input. The system output only the power spectrums of the logs, but it was not a high-priority analysis for the target data.

4.4. Implications

Although advanced network infrastructure management has become possible, cyberattacks and system failures remain unresolved for a long period. Current network management systems quickly provide information on serious scenarios that occur in systems and rapid communication systems also allow users to report any problems they notice quickly. Conventionally, a failure recovery process is defined such that, after an event is detected, the cause is diagnosed and necessary recovery work is performed. However, in unpredictable circumstances, such as a sudden increase in network usage caused by the effect of COVID-19, problems may occur in unexpected places, and recovery may take longer than expected. In such cases, the proposed system can cause the administrator to notice the cause of the problem, which is usually difficult to determine by displaying information from different perspectives in response to a request from the administrator.

We can also address the issue of the education of non-professional administrators. Newly appointed administrators do not yet know the details of the network. The MADPM, which proposes a method to collect related information using a flexible free word search, is an effective mechanism for such administrators because it can simultaneously provide domain knowledge in addition to current data analysis. Although cross-system cooperation must handle a huge amount of relational information, the proposed approach solves this problem by distributing it well and selecting it stochastically using a multiagent mechanism.
5. Conclusions

We proposed a multiagent-based mechanism to present data analytics for network management tasks. We introduced accuracy and expansion into request-matching for the agent organization process by considering creative heuristics in exploratory analysis. We designed agents to encapsulate the DPTs that handle and process network management data. We implemented the prototype system in an experimental network to evaluate the proposed approach. We conducted five case studies on the experimental network using the prototype system. Through the case studies, multifaceted result presentations supported the exploration task for cause detection. Even though AI-based automation technologies are spreading widely, the demand for human creativity will remain while the cause of cybersecurity risks comes from humans. Our proposed approach can contribute to technologies empowering humanity in the use of practical systems. As discussed in Section 4, the limitations of flexibility and parameter-tuning remain to be addressed in future work. The final goal of our proposed approach is to achieve multifaceted and cross-system data presentation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/s22228841/s1, Listing S1: Rule set file of repository; Listing S2: Rule set for workplace; Listing S3: Rule set file of F1; Listing S4: Rule set file of F2; Listing S5: Rule set file of F3; Listing S6: Rule set file of post processing; Listing S7: Class file for base process; Listing S8: Data process module.

Author Contributions: Conceptualization, K.S., G.K. and T.K.; methodology, K.S., R.F. and G.K.; software, K.S. and R.F.; validation, K.S. and R.F.; formal analysis, K.S.; investigation, K.S.; resources, K.S., G.K. and T.K.; data curation, K.S.; writing—original draft preparation, K.S.; writing—review and editing, K.S.; visualization, K.S.; supervision, G.K. and T.K.; project administration, K.S. and T.K.; funding acquisition, K.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP22K12143.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article and supplementary material.

Acknowledgments: We are grateful to Hiroshi Matsumura for collaborating with us in the early stages of this work and providing experimental support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; collection, analysis, or interpretation of data; writing of the manuscript; or the decision to publish the results.

Appendix A. Sample Code of DPA

The source code developed in this study is described according to the DASH framework [45] and built by the interactive design environment for agent system (IDEA) [51]. The readers can execute the codes using IDEA based on the appropriate settings for the user environment. According to the DASH framework, we should prepare two types of files, DASH (.dash) files and base processes written in Java language (.java).

Appendix A.1. DASH File

Listing A1 presents a template that describes the common parts of the DPAs implemented in this paper. The template already contains the default agent workspace name, agent repository name (AGENT_REPOSITORY_NAME), file number (FILE_NUMBER), rule set to read (RULESET_OF_*), and two types of rules (INIT_I, INIT_C). The attribute values of knowledge on lines 5 to 7 of the code are values unique to the data-processing tool, so they should be described by the developer. The described rules are written so that, when the agent is placed in the repository, the repository ruleset is read, and, when the agent is placed in the workplace, the workplace ruleset is loaded.
Listing A1. Template of agents.

```
(agent
  (property
    (workplace :name AGENT_WORKPLACE_NAME)
    (repository :name AGENT_REPOSITORY_NAME)
    (baseprocess :name BASEPROCESS_NAME)
    (target :url URL)
    (base :path PATH)
  )
  (initial_facts
    (startup :number FILE_NUMBER)
  )
  (include :file RULESET_OF_REPOSITORY)
  (include :file RULESET_OF_WORKPLACE)
  (include :file RULESET_OF_F1)
  (include :file RULESET_OF_F2)
  (include :file RULESET_OF_F3)
  (include :file RULESET_OF_POSTPROCESSING)
)

(knowledge
  (rule INIT_C
    (Msg :performative __INIT_C)
    -->
    (inspect nonstop)
    (activate (_default))
  )

  (rule INIT_I
    (Msg :performative __INIT_I)
    -->
    (inspect nonstop)
    (activate (_default))
  )
)
```

Appendix A.2. Example of IDB Agent

Listing A2 is an example code of implemented DPAs. In this case, the DPA is specially built for InfluxDB. Lines 13 to 18 include action rules common to DPAs. The rules for each file are described in the Supplementary Materials. This code is the data-processing agent that controls the data-processing tools (IDB) managing the performance data. The 6th to 8th lines of the code describe the name of the base process to be loaded, the URL of the data processing tool to be controlled and the path of the result output file, respectively. The 10th and 14th lines correspond to knowledge dp and describe the amount of traffic received by HOST_A and the amount of traffic flowing to ROOM_X of the core switch (CORE_SW), respectively. The description on the 17th line describes the processing performed by this data-processing agent. In this example, when the processing p_i to be performed on the data of request r_i is “provide”, the agents that perform line graph drawing described in lines 21 and 22 are called. The rules described below the 47th line execute data processing. Lines 49, 59, and 71 are limited to cases where the knowledge of (state :name “processing”) is retained, and, on line 75, the knowledge is changed (modify) to (state :name “post-processing”).
Listing A2. Sample of InfluxDB agent.

```plaintext
(agent InfluxDB
  (property
    (workplace : name 'w1:HOSTNAME')
    (repository : name 'r1:HOSTNAME')
    (baseprocess : name 'influxdb.BInfluxDBAgentVer2')
    (target : url 'http://IP_ADDRESS_IDB:9200/')
    (base : path 'templates/influxdb_result')
  )
  (initial_facts
    (data : index 'web_server_performance' : field 'bytes_recv'
      : unit 'bps' : hostname HOST_A : description 'traffic amount'
      : flag FALSE : judge FALSE : processing FALSE)

    (data : index 'snmp_network_device' : field 'OutTraffic-ROOM_X'
      : unit 'bps' : hostname CORE_SW
      : description 'traffic amount to ROOM_X'
      : flag FALSE : judge FALSE : processing FALSE)

    (process : type 'provide' : action 'provide' : degree 1)
    (next : process 'linePlotting' : data '''\'':flag FALSE)
    (next : process 'linePlotting' : data 'bps':flag FALSE)
    (startup : number 1)
  )
)

(include : file RepositoryRules.rset)
(include : file WorkplaceRules.rset)
(include : file F1Rules.rset)
(include : file F2Rules.rset)
(include : file F3Rules.rset)
(include : file PostProcessingRules.rset)

(knowledge
  (rule INIT_C
    (Msg : performative __INIT_C)
    -->
    (inspect nonstop)
    (activate (RepositoryRulesVer2 _default))
  )

  (rule INIT_I
    (Msg : performative __INIT_I)
    -->
    (inspect nonstop)
    (activate (WorkplaceRulesVer2 _default))
  )

  (rule search_time_series_data_1
    (state : name 'processing')
    (data : unit ?unit : flag TRUE : processing FALSE) = ?data
    (next : data ?unit : flag TRUE) = ?next
    -->
    (control setProcess( ?data : index ?data : field ?unit ?data : hostname
      ?data : description ?next : process))
    (modify ?data : processing TRUE)
  )

  (rule search_time_series_data_2
    (state : name 'processing')
    (data : unit ?unit : flag TRUE : processing FALSE) = ?data
    (next : data ?unit : flag TRUE) = ?next
    -->
    (control setProcess( ?data : index ?data : field ?unit ?data : hostname
      ?data : description '')
    (modify ?data : processing TRUE)
  )
```

Sensors 2022, 22, 8841

24 of 29
Appendix B. Sample Code of Base Process

Appendix B.1. Templates of Base Process

Listing A3 is a template of the base process for DPTs. The base process in the DASH framework should be written in Java language. We have to define the DATA_RECEIVE, DATA_PROCESS and DATA_SEND to provide callable functions and a communication interface for the other agents, as designed in Section 2.2.2. The first line inherits a class file that describes methods common to the base process. The class file is described in the Supplementary Materials. The setProcess method on the second line is a method that performs necessary settings for the data-processing module (DATA_PROCESS). The Worker class on the 5th line is a class for passing data between the receiving, processing and sending modules. The data-receiving module (DATA_RECEIVE) described in the 6th line is described as "input" when input from other agents is required and described as "new NothingInput()" when not required. The data-receiving module described in line 6 is described as "output" when outputting data to other agents and described as "new NothingOutput()" when not outputting data. The makeResultFile method on the 11th line is prepared as a method for integrating the processing results.

Listing A3. Template of base process.

```java
public class BP_NAME extends SET_OF_METHODS {
    public void setProcess(Object[] obj) {} 
    
    public void process() {
        worker = new Worker(
            DATA_RECEIVE,
            DATA_PROCESS,
            DATA_SEND
        );
    }

    public void makeResultFile() {} 
}
```

Listing A4 is a template for the data-processing module. The process method on the 4th line is a method for executing data processing according to control messages from the agent. The process method on line 7 is a method that is executed when data is received from the data receive module. The received data is "input" in the byte array of the argument.

Listing A4. Template for data processing modules.

```java
public class NAME_OF_MODULE extends METHODS_TO_TRANSFER_DATA implements METHODS_TO_IMPLEMNET {
    @Override
    public void process() {} 

    @Override
    public void process(byte[] input) {} 
}
```
Appendix B.2. Example Codes of Base Process

Listings A5 and A6 show example descriptions of the base process and data-processing module in the IDB agent, respectively. In this example, the class corresponding to the query creation/data-creation module is “SetupInfluxDB”. Since this module acquires time-series data from the database, “new NothingInput()” is written on the 15th line of Listing A3 and no code is written in the process method on the 23rd line of Listing A6. The process method on the 13th line executes the query necessary for data retrieval every second. The add method on line 32 receives the search results from “QueryInfluxDB” and, when all the issued queries are processed, the data is converted to a byte array and passed to the data send module.

Listing A5. Sample of base process (InfluxDB agent).

```java
public class BPInfluxDBAgent extends DataProcessingAgent {
    private SetupInfluxDB setupInfluxDB;

    public BPInfluxDBAgent() {
        setupInfluxDB = new SetupInfluxDB();
    }

    public void setProcess(Object[] obj) {
        String index = String.valueOf(obj[0]),
        field = String.valueOf(obj[1]),
        unit = String.valueOf(obj[2]),
        hostname = String.valueOf(obj[3]),
        desc = String.valueOf(obj[4]),
        process = String.valueOf(obj[5]);
    }

    public void process() {
        worker = new Worker(
            new NothingInput(),
            setupInfluxDB,
            output
        );
        setupInfluxDB.process();
    }

    public void makeResultFile() {
        try {
            PrintWriter result_pr = new PrintWriter(new FileWriter(path));
            String content = "<a href=" + "http://10.10.10.249:3000/" + ""> result of InfluxDB </a>
            + "<ul >
            ";
            for (String path : pathList) {
                BufferedReader content_br = new BufferedReader(
                    new FileReader(path));
                while ((content_line = content_br.readLine()) != null) {
                    content += content_line + "\n";
                }
                content_br.close();
            }
            result_pr.println(content);
            result_pr.println("</ul>");
            pathList.clear();
            result_pr.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public void setProcess(String index, String field, String unit,
        String hostname, String desc, String process) {
        long lte = System.currentTimeMillis();
        long gte = lte - 2 * 60 * 60 * 1000;
        setupInfluxDB.setProcess(index, field, unit, hostname, desc,
            process, gte, lte);
    }
}
```
Listing A6. Sample of data process module of IDB agent.

```java
public class SetupInfluxDB
    extends PostEventRaiser
    implements IEventDataProcess {

    private List<QueryInfluxDB> queryInfluxDBList;
    private List<ExchangeFormat> exchangeFormatList;

    public SetupInfluxDB() {
        queryInfluxDBList = new ArrayList<>();
        exchangeFormatList = new ArrayList<>();
    }

    @Override
    public void process() {
        for (QueryInfluxDB queryInfluxDB : queryInfluxDBList) {
            queryInfluxDB.process();
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    @Override
    public void process(byte[] input) {}

    public void setProcess(String index, String field, String unit,
                            String hostname, String desc, String process,
                            long gte, long lte) {
        queryInfluxDBList.add(new QueryInfluxDB(index, field, unit,
                                               hostname, desc, process, gte, lte, this));
    }

    public void add(ExchangeFormat exchangeFormat) {
        Gson gson = new Gson();
        exchangeFormatList.add(gson.toJson(exchangeFormat));
        if (exchangeFormatList.size() == queryInfluxDBList.size()) {
            ExchangeListFormat exchangeListFormat = new ExchangeListFormat();
            exchangeListFormat.list = exchangeFormatList;
            raisePostEvent(new PostEvent(this, gson.toJson(exchangeListFormat).getBytes()));
        }
    }

    // Remaining methods...
}
```

References

1. Khan, M.A.; Peters, S.; Sahinel, D.; Pozo-Pardo, F.D.; Dang, X.-T. Understanding autonomic network management: A look into the past, a solution for the future. *Comput. Commun*. 2018, 122, 93–117. [CrossRef]
2. Arzo, S.T.; Bassoli, R.; Granelli, F.; Fitzek, F.H.P. Multi-agent based autonomic network management architecture. *IEEE Trans. Netw. Serv.* 2021, 18, 3595–3618.
3. Tsagkaris, K.; Nguengang, G.; Galani, A.; Grida Ben Yahia, I.; Ghader, M.; Kaloxyllos, A.; Gruber, M.; Kousaridas, A.; Bouet, M.; Georgoulas, S.; et al. A survey of autonomic networking architectures: Towards a unified management framework. *Int. J. Netw. Manag.* 2013, 23, 402–423. [CrossRef]
4. Kephart, J.O.; Chess, D.M. The vision of autonomic computing. *Computer* 2003, 36, 41–50. [CrossRef]
5. Huebscher, M.C.; McCann, J.A. A survey of autonomic computing—Degrees, models, and applications. *ACM Comput. Surv.* 2008, 40, 1–28. [CrossRef]
6. Chen, X.; Liu, C.-Y.; Proietti, R.; Li, Z.; Yoo, S.J.B. Automating optical network fault management with machine learning. *IEEE Commun. Mag.* 2022, 1–7. [CrossRef]
7. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. *ACM Comput. Surv.* 2022, 54, 1–38. [CrossRef]
8. Selva, D.; Nagaraj, B.; Pelusi, D.; Arunkumar, R.; Nair, A. Intelligent network intrusion prevention feature collection and classification algorithms. Algorithms 2021, 14, 224. [CrossRef]
9. Zhang, T.; Qiu, H.; Mellia, M.; Li, Y.; Li, H.; Xu, K. Interpreting AI for networking: Where we are and where we are going. IEEE Commun. Mag. 2022, 60, 25–31. [CrossRef]
10. Ha, D.T.; Hoang, N.K.; Hoang, N.V.; Du, N.H.; Huong, T.T.; Tran, K.P. Explainable anomaly detection for industrial control system cybersecurity. arXiv 2022, arXiv:2205.01930.
11. Hwang, C.; Lee, T. E-SFD: Explainable sensor fault detection in the ICS anomaly detection system. IEEE Access 2021, 9, 140470–140486. [CrossRef]
12. Sharma, S.; Nag, A.; Cordeiro, L.; Ayoub, O.; Tornatore, M.; Nekovee, M. Towards explainable artificial intelligence for network function virtualization. In Proceedings of the 16th International Conference Emerging Network EXperiments Technologies, Barcelona, Spain, 1–4 December 2020; pp. 558–559.
13. Monarch, R. Human-in-the-Loop Machine Learning: Active Learning and Annotation for Human-Centered AI; Manning: Shelter Island, NY, USA, 2021.
14. Bosse, S.; Engel, U. Real-Time Human-in-the-loop simulation with mobile agents, chat bots, and crowd sensing for smart cities. Sensors 2019, 19, 4356. [CrossRef]
15. Jennings, N.R.; Moreau, L.; Nicholson, D.; Ramchurn, S.; Roberts, S.; Rodden, T.; Rogers, A. Human-agent collectives. Commun ACM 2014, 57, 80–88. [CrossRef]
16. Krishnamurthy, P.; Khorrami, F.; Schmidt, S.; Wright, K. Machine learning for NetFlow anomaly detection with human-readable annotations. IEEE Trans. Netw. Serv. 2021, 18, 1885–1898. [CrossRef]
17. Kang, X.; Song, B.; Sun, F. A deep similarity metric method based on incomplete data for traffic anomaly detection in IoT. Appl. Sci. 2019, 9, 135. [CrossRef]
18. Ahmed, E.; Yaqoob, I.; Hashem, I.A.; Khan, I.; Ahmed, A.I.; Imran, M.; Vasilakos, A.V. The role of big data analytics in Internet of Things. Comput. Netw. 2017 129, 459–471. [CrossRef]
19. Jabbar, S.; Malik, K.R.; Ahmad, M.; Aldabas, O.; Asif, M.; Khalid, S.; Han, K.; Ahmed, S.H. A methodology of real-time data fusion for localized big data analytics. IEEE Access 2018, 6, 24510–24520. [CrossRef]
20. Tsanousa, A.; Bektis, E.; Kyriakopoulos, C.; González, A.G.; Leturiondo, U.; Gialampoukidis, I.; Karakostas, A.; Vrochidis, S.; Kompatzis, I. A review of multisensor data fusion solutions in smart manufacturing: Systems and trends. Sensors 2022, 22, 1734. [CrossRef]
21. Chen, X.; Self, J.Z.; House, L.; Wenskowitch, J.; Sun, M.; Wycoff, N.; Evia, J.R.; North, C. Be the data: Embodied visual analytics. IEEE Trans. Learn. Technol. 2018, 11, 81–95. [CrossRef]
22. Crouser, R.J.; Franklin, L.; Cook, K. Rethinking visual analytics for streaming data applications. IEEE Internet Comput. 2017, 21, 72–76. [CrossRef]
23. Jing, X.; Yan, Z.; Pedrycz, W. Security data collection and data analytics in the Internet: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 586–618. [CrossRef]
24. Shiomoto, K. Applications of big data analytics technologies for traffic and network management data-gaining useful insights from big data of traffic and network management. NTT Tech. Rev. 2013, 11, 1–6.
25. Marjani, M.; Nasaruddin, F.; Gani, A.; Karim, A.; Hashem, I.A.; Siddiqua, A.; Yaqoob, I. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 2017, 5, 5247–5261.
26. Ge, M.; Bangui, H.; Buhnova, B. Big data for Internet of things: A survey. Future Gener. Comp. Syst. 2018, 87, 601–614.
27. Elasticsearch. Available online: https://www.elastic.co/elasticsearch/ (accessed on 5 October 2022).
28. InfluxDB. Available online: https://www.influxdata.com/ (accessed on 5 October 2022).
29. Fluentd. Available online: https://www.fluentd.org/ (accessed on 5 October 2022).
30. Logstash. Available online: https://www.elastic.co/logstash/ (accessed on 5 October 2022).
31. Kibana. Available online: https://www.elastic.co/kibana/ (accessed on 5 October 2022).
32. Zabbix. Available online: https://www.zabbix.com/ (accessed on 5 October 2022).
33. Kalegele, K.; Sasai, K.; Takahashi, H.; Kitagata, G.; Kinoshita, T. Four decades of data mining in network and systems management. Sensors 2022, 22, 8841.
41. Ziarani, R.J.; Ravanmehr, R. Serendipity in recommender systems: A systematic literature review. *J. Comput. Sci. Technol.* 2021, 36, 375–396. [CrossRef]

42. Xu, Y.; Yang, Y.; Wang, E.; Han, J.; Zhuang, F.; Yu, Z.; Xiong, H. Neural serendipity recommendation: Exploring the balance between accuracy and novelty with sparse explicit feedback. *ACM Trans. Knowl. Discov. Data* 2020, 14, 1–25.

43. Nishikawa-Pacher, A. Measuring serendipity with altmetrics and randomness. *J. Libr. Inf. Sci.* 2022, 096100062211243. [CrossRef]

44. Sasai, K.; Matsumura, H.; Fukutani, R.; Kitagata, G.; Kinoshita, T. An agent-based intelligent data presentation mechanism for multifaceted analysis. In *Complex, Intelligent, and Software Intensive Systems. CISIS 2019. Advances in Intelligent Systems and Computing*; Springer: Cham, Switzerland, 2019; pp. 587–595.

45. Uchiya, T.; Kinoshita, T. Design support functions for developing multiagent system on repository-based multiagent framework. In *Proceedings of the 2011 10th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC*), Banff, AB, Canada, 18–20 August 2011*; pp. 240–246.

46. Wang, Y. Fuzzy Semantic models of fuzzy concepts in fuzzy systems. *Int. J. Fuzzy Syst. Adv. Appl.* 2022 9, 57–62. [CrossRef]

47. Lee, C.-S.; Wang, M.-H. A fuzzy expert system for diabetes decision support application. *IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc.* 2010, 41, 139–153.

48. Fess. Available online: https://fess.codelibs.org/index.html (accessed on 7 October 2022).

49. Plotly. Available online: https://plotly.com/python/ (accessed on 7 October 2022).

50. Apache JMeter. Available online: https://jmeter.apache.org/ (accessed on 7 October 2022).

51. IDEA. Available online: https://uchiya.web.nitech.ac.jp/idea/index.html (accessed on 7 November 2022).