1 Introduction

In this paper we have analyzed by neutron activation analysis (NAA) a number of 93 items of Neolithic copper from National Museum of History from Bucharest, having the provenance from Moldavia region. In the Table 1 it is shown the list of analyzed objects.

2 Experimental method of analysis

We have applied the NAA, the particular features of the method encountered for ancient copper being also detailed in reference 1.

Sampling. First some corroded parts have been removed from the surface of copper objects, the corroded material having a totally different elemental composition from that of the body of the object. Then samples of 10-50 mg have been cut with a hard vidia knife from the object body and after that washed with different solvents:
acetone, benzene, ether to avoid the impurities from the surface of the item and the protective varnish, added in the museum.

Irradiation of medium periods. Samples have been put in polyethylene foils and irradiated at the rabbit system of the nuclear reactor VVR-S, from NIPNE Magurele, Bucharest at the flux of \(\approx 1.25 \times 10^{12} \) neutrons/cm\(^2\)-sec, for 30 minutes. Copper being in majority it was strongly activated so that the induced radioactivity in the samples could be measured only after 4-5 days. Natural cooper has 2 isotopes: Cu\(^{63}\) and Cu\(^{65}\) which by the reaction \((n, \gamma)\) give the radioisotopes Cu\(^{64}\) \(T_{1/2}=12.74 \) h and Cu\(^{66}\) with \(T_{1/2}=5.10 \) min. After a cooling time of 4-5 days, in the gamma spectra of the samples, the activity coming from the photopeak of 1345.8 keV (0.0048) of Cu\(^{64}\) is small enough and permits to remark other elements, present in the cooper matrix. The samples have been measured 1000 s at a spectrometric chain using a Ge(Li) detector of 135 cm\(^3\) and an analyzer of 4096 channels coupled at a PC. The system gave a resolution of 2.7 keV at 1.33 keV (Co\(^{60}\)). We observed the elements: Au, As, Cu and Sb.

Long time irradiation: The samples of copper have been wrapped in aluminum foil and put it in a quartz phial together with metallic spectroscopic pure standards, copper and nickel and irradiated at the vertical chain of the reactor, at a flux of \(\approx 10^{13} \) neutrons/cm\(^2\)-sec, for a period of time of 40 h. After a cooling time of 2 weeks, we measured the \(\gamma\) activity of the samples at the same spectrometric chain, for 3000 s. We have determined the following elements: Sb, Ag, Co, Cr, Fe, Hg, Ni, Se, Sn.

Cobalt. Cobalt was determined in the copper object using the isotope Co\(^{60}\) got in the reaction: Co\(^{59}\)(n, \(\gamma\))Co\(^{60}\). Co\(^{60}\) is also produced by the reaction: Cu\(^{63}\)(n, \(\alpha\))Co\(^{60}\) which is important enough in this situation, when the element copper is the major element (\(\approx 99\%\)). So that \(C_{Co} = C_{total} - C_{Cu}\), where \(C\) is the concentration. Another correction made in the calculus of the cobalt concentration in the copper samples is that the used cooper standard contains also traces of cobalt. It was
determined that a standard of pure copper has a content of minimum 4 ppm of cobalt. Also in the gamma background of the experimental room it were observed the peaks at the cobalt energies of 1773.2 keV and 1332.5 keV; therefore from the respective photopeaks area it was subtracted the area given by the background, measured for the same period of time as the sample.

Mercury was determined from the γ ray of 279.2 keV and intensity (81.5%) of Hg203 with $T_{1/2}=46.60$ d. This ray is interposed with the γ ray from Se75, of 279.5 keV, and intensity 0.25. Therefore the contribution of the mercury must be extracted from the peak of peak of 279 keV: $N_{Hg^{203}}=N_{total279keV} - N_{Se^{75}}$, where $N_{Hg^{203}}$ is the counting rate in the peak of 279 keV, given by mercury contribution. $N_{total279keV}$ is the total counting rate in the peak of 279 keV $N_{Se^{75}}$ is the counting rate in the peak of 279 keV, due to the selenium presence.

It was used as reference the selenium peak from the energy 264.7 keV of intensity of 0.5658:

$$\epsilon_{264keV} \cdot s_{264keVSe^{75}} \cdot N_{264keVSe^{75}} = \epsilon_{279keV} \cdot s_{279keVSe^{75}} \cdot N_{279keVSe^{75}}$$

where: ϵ_{264keV} is the efficiency of the detector from 264 keV, ϵ_{279keV}, is the efficiency at the energy of 279 keV, $s_{264keVSe^{75}}$, the intensity of the line of 264 keV of Se75, $s_{279keVSe^{75}}$, the intensity of the line of 279 keV of Se75.

Nickel. The concentration of nickel was measured by the isotope Co58 ($T_{1/2}=71.3$ d). Nickel was a exception by the fact that it was determined by the reaction Ni58(n, p)Co58, unlike the other elements determined by the reaction (n, γ).

3 Results of analysis

In the Table 2 are given the results of activation analysis for the Neolithic copper objects, from the National Museum of History from Bucharest. The concentrations are given in ppm, and when an element was determined in a quantity larger than
10000 ppm, its concentrations was expressed in percents, using the notation of %. The measured errors were the statistical errors and were in mean of <10%. In the situations when the signal was dimmed by the background γ Compton the result was given as -, with the significance of under the limit of detection.

The NAA provides the values of the concentrations for the determined elements in the Neolithic copper objects that establish a basis for further characterizations and interpretations together with the considerartion of historic data as culture, dating or style.

Acknowledgement

We thank archaeologist Dragomir Popovici for collaboration.
References

1. Agata Olariu, C. Besliu, M. Belc, I. V. Popescu, T. Badica, Compositional Studies of Ancient Copper from Romanian Territories, Los Alamos e-print Archive, nucl-ex, paper 9907015, and Journal of Radioanalytical and Nuclear Chemistry, 1999
Table 1. List of analyzed Neolithic copper objects, National Museum of History Bucharest

Sample	Object of copper	Reg. no.	Hoard, provenance
P1	Axe-Pick-axe	170	Central Military Museum
P2	Axe	169	Central Military Museum
P3	Axe	170	Central Military Museum
P4	Axe	36241	Central Military Museum
P5	Copper object	6	Vaslui Museum, Fedesti Cetate
P6	Needle	13444	Vaslui Museum, Dumesti
P7	Needle		Malnas, Cucuteni A
P8	Axe of copper		Fastici, Vaslui county (Import?)
P9	Needle (?)	94	Malnas
P10	Bead frag.		Brad hoard, Bran Museum
P11	Bracket	17579	Brad hoard
P12	Bracket		Brad hoard
P13	Bracket	17578	Brad hoard
P14	Axe		Brad hoard
P15	Bracelet	17577	Brad hoard
P16	Bracelet	17576	Brad hoard
P17	Rite (?) axe	17575	Brad hoard
P18	Axe-Pick-axe	740	Slobozia-Bodoganesti, Museum Complex Iasi
P19	Axe		Erbicieni, Iasi county
P20	Chisel	11145	Rus/81, Rusaesti-Poduri, Piatra Neamt
P21	Needle	11143	Rus/81, Rusaesti-Poduri
P22	Needle (?)	11143	Rusaesti-Poduri
P23	Metallic frag.	11142	Rusaesti-Poduri
P24	Needle	11146	Rusaesti-Poduri
P25	Needle	11148	Rusaesti-Poduri
P26	Metallic sheet	11141	Rusaesti-Poduri
P27	Needle	11147	Rusaesti-Poduri
P28	Needle of copper	11144	Rusaesti-Poduri
P29	Frag. of bead	II 14910-6395	Traian, 1953, Neamt county
P30	Needle	6443	Traian, 1957
Sample	Object of copper	Reg. no.	Hoard, provenance
--------	-------------------------	----------	--
P31	Needle	894	Izvoare 1939, Neamt county
P32	Needle	894	Izvoare 1939
P33	Needle	894	Izvoare 1939
P34	Needle	894	Izvoare 1939
P35	Piece of copper	1615	Izvoare
P36	Metallic frag.	1544	Podei, Tg. Ocna
P37	Small bead	6394	Traian, 1952
P38	Needle	1543	Podei, Tg. Ocna 1943
P39	Needle	6440	Traian, 1950
P40	Needle	6440	Traian, 1957
P41	Needle	6438	Traian 1956
P42	Needle	6439	Traian, 1952
P43	Needle	6445	Traian 1957
P44	Needle of ornament	6370	Tarpesti, Neamt county 1963
P45	Spiral needle for hair	6374	Tarpesti 1963
P46	Wire	6608	Tarpesti 1962
P47	Dagger	1330	Frumusica, Neamt county
P48	Link	15526	Rusaesti/86, cassette A
P49	Needle	6609	Tarpesti, 1963
P50	Needle	6615	Tarpesti, 1965
P51	Frag. of copper	6617	Tarpesti, 1963
P52	Frag. of needle	6590	Tarpesti, 1962
P53	Disk	6593	Tarpesti L11
P54	Frag. of bracelet	6595	Tarpesti, 1964
P55	Frag. of bronze	6597	Tarpesti, 1959
P56	Frag. of needle	6596	Tarpesti, 1963
P57	Frag. angling rod (?)	6599	Tarpesti, 1962
P58	Peack	6600	Tarpesti, 1962
P59	Needle frag.	6601	Tarpesti, 1962 L7
P60	Miniature Axe	6591	Tarpesti, 1962
P61	Brass Needle	6613	Tarpesti, 1968
P62	Wire	7923	Tarpesti, 1968
P63	Small brass hook	6587	Tarpesti, 1968
P64	Sheet	6594	Tarpesti, 1963
Sample	Object of copper	Reg. no.	Hoard, provenance
--------	---------------------------	----------	----------------------------
P65	Needle	6436	Traian, 1954
P66	Frag. bracelet	15527	Poduri-Rusaesti 86
P67	Needle	6437	Traian, 1952
P68	Needle	6444	Traian, 1958
P69	Rolled Sheet	6453	Traian, 1952
P70	Needle for angling rod	6407	Traian, 1957
P71	Spiral	6452	Traian, 1952
P72	Metallic frag.	894	Izvoare, 1939
P73	Wedding ring	6403	Traian, 1958
P74	Needle	15528	Izvoare, 1984 L10
P75	Needle	894	Izvoarele
P76	Idol "en violon"	6451	Traian, 1952
P77	Spiral bracelet	779	Izvoare
P78	Needle(?)		Piatra Neamt
P79	Needle(?)		Piatra Neamt
P80	Needle(?)		Piatra Neam't
P81	Axe	3292	Dragomiresti
P82	Axe passim	4697	Sarata, Piatra Neamt
P83	Axe	4696	Viisoara, Manastirea Bistritei
P84	Needle	5594	Calu 1974, Neamt county
P85	Frag. metallic	2958	Podei, 1956
P86	Axe	965	Floresti, Vaslui county
			Vasile Parvan Museum, Barlad
P87	Axe	964	Floresti, Vaslui county
P88	Axe	7034	Lupesti, Vaslui county
P89	Axe	7984	Falciu, novelty, import(?)
P90	Axe	975	Bacesti, Vaslui county
P91	Needle of copper	8016	Trestiana, Grivita, Vaslui county
P92	Small bead	8543	Falciu, the same complex to P89
P93	Small bead	8543	Falciu
Table 2. Concentrations of analyzed Neolithic copper objects, by NAA

Sample	Au	As	Sb	Se	Hg	Cr	Ag	Ni	Fe	Zn	Co	Sn		
P1	0.1	–	2	13	–	133	14.6	130	7680	426	3.2	–		
P2	0.4	–	3	37	2	219	11	160	1.01%	708	0.9	–		
P3	0.2	14	2	162	3.4	160	17	430	8200	452	29	–		
P4	0.3	–	18	32	2.8	110	23.5	150	4960	257	1.6	–		
P5	0.3	–	1	56	0.3	40	11.5	178	298	6	4.1	–		
P6	24.3	–	3	2	12	29	358	197	–	6.9	5.3	230		
P7	1.4	7.6	100	60	1.4	54	97	–	6	0.6	–	–		
P8	0.2	–	1	551	84	196	50	250	9660	524	3.5	–		
P9	<0.1	29.6	1	–	14	70	6	1.49%	69	1	–	–		
P10.1	13	–	11	309	1.8	518	206	–	–	1.1	–	–		
P10.2	5.1	9.2	27	856	3.4	236	75	201	1080	510	5.4	–		
P10.3	6.4	10.7	4.3	300	1.6	110	885	200	1580	187	1.2	–		
P10.4	–	4.3	11	329	1.7	797	418	150	900	51	0.7	–		
P10.5	–	–	<1	1.5	6.4	20	17	12	–	–	–	–		
P11	15.2	1380	2370	1010	<25	828	2400	–	–	110	3.82%	–		
P12	2.2	5303	835	120	–	182	1.72%	–	–	90	13.2%	–		
P13	80	173	92	35	2.5	153	98	870	7360	270	1.2	330		
P14	1	24	32	24	2	218	134	–	16	1.4	–	–		
P15	2.6	–	5	370	10	270	885	240	1.24%	661	4	400		
P16	5.5	–	5	395	–	150	914	190	–	561	3	–		
P17	2.9	–	0.4	4385	–	360	46	278	7520	504	1.5	620		
P18	–	–	<1	1.5	6.4	20	17	12	–	–	–	–		
P19	5.1	265	260	260	3.4	70	370	760	1.13%	330	2.1	–		
P20	0.7	–	3	180	0.1	22	195	–	25	3.6	–	–		
P21	–	–	1	157	0.7	22	654	1.38%	460	130	–	–		
P22	<0.2	13.8	1	140	2.3	22	512	1.19%	404	110	–	–		
P23	–	1.3	177	3	18.5	936	2.65%	560	150	–	–	–		
P24	4	35.4	49	163	–	839	380	1500	180	4	–	–		
P25	1.6	8.2	5	58	11	485	150	130	1.91%	1500	1	–		
P26	7	–	41	636	3.1	210	85	–	20	1	–	–		
P27	0.1	–	5	24	–	39	90	–	20	1	–	–		
P28	2	–	17	210	–	100	180	–	10	2	–	–		
P29	5.8	–	1	448	–	190	117	60	–	2	–	–		
P30	14	<10	4	96	3.3	34	120	–	10	3	–	–		
Sample	Au	As	Sb	Se	Hg	Cr	Ag	Ni	Fe	Zn	Co	Sn		
--------	----	----	----	----	----	----	----	----	----	----	----	----		
P31			39	774	0.9		120	50		12	2			
P32			1990	910	90		870	890		20		9.57%		
P33			13	235	6.3	240	354	185		<20	6			
P34	2.2	7	52	143	0.7		500	160		20				
P35	92	1025	880	130	<10	4220	765	360		1.84%	3.08%	34	2.5%	
P36			35	100	0.7	<23	79	60		10				
P37		4150	750	1740	8	<160	580		1.27%	744	4			
P38	4	1.25%	45	890	3	<70	115	110						
P39	64	<10	4	6		170	27	74	9040	491	4	260		
P40	318	<20	1	29	3	190	33	100		1.15%	643	4	340	
P41	71	5320	507	315	9.7		1115	2510		1.69%	947	13	3.43%	
P42	<10		0.9		<3	275	5	100		1.55%	880	5		
P43	<13	80	32	120	3	715	75	690		4.396%	2410	10	1240	
P44		3590	2890	130			94	5690			80		28.5%	
P45	<40	290	68	125	16	860	480	550		2.89%	1846	20	2.52%	
P46		<5	3.5	24	0.2		15	160			10		2	260
P47	<50	820	100	300	30		5100	430		<100 traces				
P48		20	2.8	3			8	170		traces	2			
P49	0.3	<5	0.3	1040	0.7	352	19	440	<200	10		5		
P50	1.2	13	7.5	10	<2		23	230	<200	75	2	460		
P51	1	13	2	265	2.4		32	270			40		12	
P52	99	3485	830	2910			1590					1		
P53	36	52	853	160	9.4		3250	390				1		
P54	12.5	4350	8517				42	3140	9970	490		70	23.8%	
P55	32.5	1900	430	110			524	780		5.9%	20		7.56%	
P56	25	170	32	4710			1200	2239	549	6.92%	4086	16		
P57	23	<19	10.3	334	2		1544	340			40		1	
P58	21	7150	1.22%				3900	5327			30		7.07%	
P59	2	78	76				1410	20	<470	5.79%	4%	14		
P60	15		5	190		<100	832	135	4220	250		2		
P61	17.5	4370	2440	40			250	5170			220		28.02%	
P62	9	1100	1044	80	<7		600	1690			50		81	21.82%
P63	28.1	297	490	140			1320	1220			1	500		
P64	0.6	20	16	8	<3		73	120		23			2	
Sample	Au	As	Sb	Se	Hg	Cr	Ag	Ni	Fe	Zn	Co	Sn		
--------	------	----	----	----	----	----	----	----	----	----	----	----		
P65	150	–	6	60	17	500	45	224	1.65%	1270	5	–		
P66	<0.6	–	1	20	<4	–	20	90	–	10	1	–		
P67	2	–	2	30	8	345	9	<100	2.04%	1160	6	–		
P68	<0.2	10	3	38	1	128	5	65	6080	350	5	–		
P69	11.2	12	23	495	3.2	–	542	215	–	–	1	–		
P70	8.8	<7	3	45	0.8	620	21	180	7640	596	5	–		
P71	8.5	<5	1.5	350	–	130	210	115	7440	387	7	–		
P72	traces	5	1	518	0.4	–	19	275	–	7	4	–		
P73	1.6	660	137	310	5.2	<40	110	810	5100	340	40	2.89%		
P74	5	<5	12	178	4	77	247	170	4100	230	2	–		
P75	3.9	–	3	190	5	–	355	220	–	–	1	–		
P76	25	–	125	590	255	–	463	180	–	–	1	–		
P77	5.5	<5	1.5	107	0.6	–	11	150	–	6	1	–		
P78	1.6	<6	7	42	–	<40	25	230	<200	17	2	–		
P79	38.7	1420	357	85	3.3	–	310	3950	5080	310	75	27.83%		
P80	11.2	8	32	87	5	150	230	245	7650	456	4	920		
P81	13.2	–	31	7.37%	–	<100	459	118	3400	190	2	–		
P82	<0.2	13	5	804	1.3	72	10	201	2720	154	2	110		
P83	1.1	<4	8	37	0.8	80	75	116	2840	143	2	–		
P84	0.2	6	2	3	<4	70	15	80	–	16	3	–		
P85	4.7	250	676	210	16	–	340	–	4140	1.18%	4	57.91%		
P86	–	46	4	10	<2	177	12	40	5850	460	7	–		
P87	0.4	–	4	18	–	70	18	150	3750	227	2	–		
P88	0.7	15	5	6	<1	30	21	170	2610	130	2	–		
P89	1.8	27	1160	40	–	–	74	340	4800	250	2	–		
P90	83	8240	17	478	0.54	215	265	210	1.025%	580	4	–		
P91	7.7	1600	320	425	0.03	200	210	440	1%	520	2	–		
P92	0.7	3	1	4	1.8	20	5	162	1550	55	2	–		
P93	1.1	<3	1	3	2	30	5	160	1500	50	2	–		

- = under the limit of det.