The role of NMR in leveraging dynamics and entropy in drug design

Abhinav Dubey1,4 · Koh Takeuchi2 · Mikhail Reibarkh3 · Haribabu Arthanari1,4

Received: 21 April 2020 / Accepted: 11 July 2020 / Published online: 27 July 2020
© Springer Nature B.V. 2020

Abstract
Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein–ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.

Keywords NMR · Therapeutics · Drug discovery · Thermodynamics · Entropy · Enthalpy · Free energy · Protein–ligand interactions

Introduction
Much like a sculptor transforms a stone into a masterpiece using her artistic tools, a medicinal chemist transforms a molecule in the laboratory setting to a drug in the clinical setting guided by the laws of thermodynamics. Thermodynamic parameters are an important measure used to improve the specificity and affinity of a molecule to given target. Medicinal chemists use a host of biophysical techniques to derive these parameters at different stages of the drug discovery process. Solution state NMR spectroscopy is used in various stages including fragment-based drug discovery (FBDD), evolution of fragments for high affinity binders, lead optimization and structure-based drug developments (SBDD) (Carneiro et al. 2017; Shimada et al. 2019; Ziarek et al. 2018). NMR is used to determine structure of protein–ligand complex, establish binding status, determine the binding mode (ligand and protein atoms involved in direct or indirect binding), ascertain binding specificity, and quantifying the binding affinity (Renaud 2016; Nitsche and Otting 2018; Takeuchi and Wagner 2006). A large repertoire of
existing and continuously advancing NMR experiments provide quantitative details on the molecular structure, interaction and dynamics at atomic resolution in near physiological conditions (Sekhar and Kay 2019; Kovermann et al. 2016; Oxenoid and Chou 2016; Tokunaga et al. 2020). NMR can uniquely measure dynamics of the protein upon engaging with a ligand, both from the perspective of the protein and ligand. Furthermore, NMR can provide information about dissociation of bound water molecules, which plays a critical role in the energetics of protein–ligand interactions (Fox et al. 2018; Nucci et al. 2011; Otting and Liepinsh 1995). While most of the efforts in drug design focus on improving the enthalpic contribution, NMR can be used as a probe of conformational entropy, which could be utilized to aid drug discovery. In this perspective, we explore the role of NMR in leveraging entropy in the process of drug discovery.

Looking under the hood—the energetics of complex formation

The formation of protein–ligand complex can have several mechanistic steps but can often be abstracted in a simple chemical equation,

\[P + L \leftrightarrow PL \]

(1)

where \(P \) is the free protein, \(L \) is the free ligand and \(PL \) is the protein–ligand complex. The parameter used to describe the binding strength at equilibrium is dissociation constant \(K_d \), inverse of association constant \(K_a \).

\[K_d = \frac{[P][L]}{[PL]} \]

(2)

where \([P]\), \([L]\), and \([PL]\) are the molar concentration of free protein, free ligand, and protein–ligand complex, respectively. Lower the value of \(K_d \), higher the affinity of ligand for the protein. For example, a \(K_d \) of 10 nM implies that, at 10 nM concentration of free ligand, half the protein is in bound form with the ligand in ligand excess condition. Typical, potential drug molecules with optimized structures are known to bind to the target protein with \(K_d \) of 10 nM or less. However the binding constants of the initial hits derived from primary screens are typically in the micromolar (high-throughput screening) to millimolar (fragment-based screening) range. Though different types of molecular interactions and motions dictate the \(K_d \) values, it is not evident through the above Eq. (2). Another thermodynamic parameter that quantitates the strength of binding, the Gibbs free energy, can bridge this gap.

\[\Delta G_0 = RT \ln \left(\frac{K_d}{c_0} \right) \]

(3)

where \(\Delta G^0 \) is change in Gibbs free energy upon protein–ligand complex formation at chemical equilibrium (J/mol), \(R \) is gas constant (J/K/mol), \(T \) is temperature (K) at which \(\Delta G^0 \) is measured, \(K_d \) is dissociation constant (mol/L) and \(c_0 \) is set to 1 mol/L to balance the dimensions (Janin 1995). The standard pressure (1 bar) is assumed here. A favorable direction of chemical equilibrium is the one which gives negative change in free energy. A lower \(K_d \) signifies negative free energy change in the forward direction (protein–ligand complex formation) in Eq. (1). A \(K_d \) of 10 nM would correspond to a change in free energy of \(-51\) kJ/mol at 298 K. Though this free energy is the sole indicator of how tight the ligand engages the target, it is a cumulative sum of various contributions.

This change in free energy can be further partitioned to contributions from change in enthalpy (\(\Delta H \)) and change in entropy (\(\Delta S \)) as denoted in Eq. (4).

\[\Delta G = \Delta H - T \Delta S \]

(4)

where \(\Delta H \) is change in enthalpy (J/mol) and \(\Delta S \) is change in entropy (J/K/mol). Enthalpy is a convenient term to describe the cumulative effect of internal energy and potential energy, such as energetic gains from hydrogen bond formation, salt bridges, van der Waals interactions and energetic losses from costs of electrostatic repulsion (Pauli repulsion). In statistical thermodynamics change in enthalpy is defined as change in quantity \(U + pV \) where \(U \) is internal energy, \(p \) is pressure and \(V \) is molar volume of system. However, in biological context changes in \(p \) and \(V \) are negligible and change in enthalpy captures change in the internal energy. Entropy is a measure of disorder in the system, which is connected to the change in number of independent microstates as denoted in Eq. (5) (Dill et al. 2011).

\[S = R \ln(N) \]

(5)

where \(N \) is the number of distinct microscopic states available to the system. The Eqs. (3) and (4) taken together provide a blueprint for designing a high-affinity binder. However, in practice these two equations are the holy grail of drug discovery, partly due to the inseparable tango between the two contributions often referred to as enthalpy-entropy compensation. A number of quasi-independent contributions dictate the energetics of protein–ligand complex formation, which can either contribute towards enthalpy and/or entropy changes (Fig. 1). A brief discussion of these contributions is presented here.
Key players that dictate the energetics of protein–ligand interaction

The hydration shell around protein and ligand changes upon the complex formation and a new hydration shell envelops the protein–ligand complex. Commonly, the number of water molecules needed to solvate the free protein and ligand individually is larger than the number of water molecules needed to solvate the complex. Thus, the complex formation liberates water molecules, which contributes favorably to the entropic component of the free energy equation. In case of protein–ligand interactions, the major contribution to entropy stems from desolvation of the ligand upon binding, especially in case of ligands harboring hydrophobic groups (Kawasaki and Freire 2011; Freire 2008); however, this would largely depend on the biophysical nature of the interaction surfaces. In some cases, dissociation of water molecules that were involved in a hydrogen bond to free protein or ligand, will result in an enthalpically unfavorable contribution to the free energy. Concurrently, the protein and ligand can form additional hydrogen bonds, ionic interactions, and van der Waal interactions in complex, which will contribute favorably towards the change in enthalpy. Freitas et al. performed statistical analysis on ~11,000 structures of protein–ligand complexes and ranked non-covalent interactions based on the frequency of occurrence as follows: (i) hydrophobic interactions, (ii) hydrogen bonding, (iii) π stacking, (iv) weak hydrogen bonding, (v) salt bridges, (vi) amide stacking and (vii) cation–π interactions (Ferreira de Freitas and Schapira 2017). However, to get a complete picture of the role that each interaction plays in free energy, one needs to take into account the strength of each individual interactions. The change in protein and/or ligand structure and dynamics, upon the complex formation, will also contribute to change in enthalpy and entropy, respectively. Several cases are reported where ligand-induced change in protein dynamics at a distal site dictates the mechanism of action. In summary, change in free energy, which defines the binding affinity, is the net result of an intricate ballet between multiple factors, some contributing favorably to the binding event, and others opposing the binding.

Challenges in obtaining individual estimates of the factors that contribute to the binding free energy

Experimentally, ΔG is relatively easy to estimate from binding isotherms and Eq. (3). However, parsing the contribution from enthalpy and entropy terms is usually not straightforward. The total entropic contribution is usually measured indirectly through free energy and enthalpy measurements. Traditionally the van’t Hoff equation has been utilized to derive enthalpy and entropy from free energy. However, in the case of protein–ligand interactions, the linearity of the van’t Hoff equation needs to be carefully assessed to account for the instability of proteins across range of temperatures. Alternatively, isothermal titration calorimetry (ITC) can directly measure both free energy change (ΔG) and enthalpy change (ΔH) upon the complex formation, from the concentration dependent generation and absorption of heat. With
Eq. (4), the entropic contribution can be calculated at a given temperature. However, calculated entropy does not reflect a single phenomenon. As discussed above, ΔS contains contributions from desolvation, protein/ligand conformational changes, ligand translational entropy, and rotational entropy etc. There are empirical methods to estimate desolvation entropy, however, direct measurements remain a challenge (Luque and Freire 2002). A substantial part of the effort in drug discovery is dedicated to reengineering the drug, using the playbook of thermodynamics, to obtain a more favorable binding free energy. The challenges of parsing out the individual contributions in the binding free energy creates a blind spot in the drug discovery and optimization process. We acknowledge that a large body of work has been conducted in the 1970s–1990s and after, to attempt to partition the free energy changes associated with binding. Despite these efforts, this problem is not easily solvable even now (Fersht 1984, 1985; Page 1991; Jencks 1975; Williams 1981).

There are number of cases reported in literature where thermodynamically favorable enthalpic change compensates for the loss in entropy to drive the protein–ligand complex formation or vice versa. The energy associated with hydrogen bonds is highly variable and is estimated to be in the range of 6–30 kJ/mol (Milo et al. 2016; Markovitch and Agmon 2007; Spoel et al. 2006). However, the formation of the hydrogen bonds occurs at an entropic cost, due to the restriction of rotational, translational and conformational motion of a ligand, estimated to be around 15–25 kJ/mol (Milo et al. 2016; Chang et al. 2007). In the context of protein–ligand interactions, formation of a hydrogen bond may not be an isolated event, as it requires breaking hydrogen bonds with water. Though the desolvation may be entropically favored, removing the hydrogen bonded water on the surface of protein and/or ligand can be enthalpically unfavorable. Examples of such a compensatory relationship between enthalpy and entropy is seen in the binding isotherms in the database (Reynolds and Holloway 2011; Gibson 2016) (Fig. 2). Increasing the number of favorable interactions to gain a lower dissociation constant (K_d) is, indeed, very challenging. In addition, the current SBDD often relies on the static structures, where enthalpic contributions are still difficult to estimate with high accuracy and no information about entropic contributions is included. The enthalpic contribution can be obtained from quantum–mechanical calculation such as fragment molecular orbital method (Fedorov et al. 2012; Fedorov and Kitaura 2009; Kitaura et al. 1999). The problem with the entropic term can be circumvented by molecular dynamics simulations, but these estimations harbor errors on the order of ~ 5 kJ/mol (Aldeghi et al. 2018; Öztürk et al. 2018; Thafar et al. 2019), which corresponds to ~10 times difference in K_d values at ambient temperature. Further, some of the dynamics associated with protein–ligand interactions are in high microsecond to millisecond time regime, not accessible to conventional molecular dynamics simulations. Therefore, a strategy, to not only capture a high-resolution snapshot of the static part of the molecular interaction, but also extract quantitative information on dynamic behavior of protein–ligand complex is needed. Especially if there are lowly-populated, yet therapeutically advantageous minor conformers. NMR spectroscopy has the unique strength to access the both desirables, albeit with some limitations. NMR spectroscopy, in combination with molecular dynamics simulations can measure the proxy for entropy in protein and ligand interactions. Here we discuss the role of NMR spectroscopy in determining the

![Fig. 2](image-url) Enthalpy-Entropy compensation in ligand binding. a Relation between ΔG and size of molecule. Larger compounds tend to have high affinity compared to smaller compounds. The data were extracted from Reynolds et al. (Reynolds and Holloway 2011). b Relation between enthalpy (ΔH) vs entropy ($-T\Delta S$). Data for small and large (number of heavy atoms < 20 and > 40, respectively) compounds that corresponding to the colored shadow in (a) are shown. Enthalpy-Entropy compensation is clearly seen by the anti-diagonal distribution of binding isotherms. The tendency is true for both small and large compounds.
individual contributions to the binding free energy, facilitating drug design. For the sake of clarity, we will separate the discussions into two broad sections, energetics from the perspective of the (i) ligand and (ii) protein, though in practice they are intertwined.

Spot-light on change in dynamics upon formation of protein–ligand complex

Designing a ligand that shows high affinity and specificity to a protein of interest is not straightforward. However, NMR analysis of protein–ligand complex provides a unique opportunity to obtain both the structural information that mainly reflect enthalpic change (ΔH) and the dynamics information that reflects entropic change (ΔS). Before we look at dynamics from a ligand perspective, let us discuss the “breathability” and accommodative capacity of the protein that enables ligand dynamics.

The role of NMR in SBDD is evident from many breakthrough medications developed through use of NMR-derived structural information. A hallmark example is the development of venetoclax, ABT-199, a therapeutic for chronic lymphocytic leukemia (CLL). This drug inhibits the activity of B-cell lymphoma-2 (Bcl-2), an anti-apoptotic protein by orthostERICally inhibiting the protein–protein interactions to the partner proteins. The early development of the Bcl-2 inhibitor was done by fragment-based screening using NMR (Petros 2010). The linking of two sub mM affinity fragments based on the NMR-derived structure information successfully improved the affinity of the compound. In addition, a further optimization of ligand based on the structural information led to the development of ABT-199 (FDA approved in 2016), which shows improved specificity to Bcl-2 over the structurally similar protein, Bcl-xL (Souers 2013).

It should be noted that some of these potent inhibitors of Bcl-2 and its family of proteins, including ABT-199, cause the opening of a pocket that is not evident in the unbound structure. These pockets, referred to as “cryptic sites”, offer an additional surface interaction site, induced by binding to the ligand, and are found mostly by serendipity. Without a time-consuming experimental or computational search for such sites in each target protein, these cryptic sites would be challenging to find (Ostrem et al. 2013; Bowman et al. 2015; Bowman and Geissler 2012). In line of this notion, Lee, et al. reported an interesting strategy to identify the cryptic site, which corresponds to a lowly populated minor conformation, by using NMR (Lee 2016). While investigating inhibitors of LpxC, a novel antibiotic target, researchers found that the inhibitor accesses an alternative conformation of the protein (lowly populated/minor-state) in solution in addition to the major conformation observed in crystal structures.

The minor-state conformation utilizes a cryptic interaction site on the protein. They then designed a novel inhibitor that targets the cryptic site to better incorporate the new interaction surface. This strategy led to the development of a potent antibiotic with improved activity, by 2- to 25-fold, relative to the original compound. The results clearly indicate the potential of dynamics information about minor-states accessible by NMR, to improve the efficacy of ligand. Identifying the lowly populated druggable conformations in the target proteins, where binding pocket can be extended, offers great promise.

Utilizing information about ligand dynamics and desolvation for drug development

In drug discovery efforts, the potency of compounds needs to be increased while optimizing and maintaining other physicochemical and pharmacological properties to retain drug-like characteristics. It has been suggested that ligands with more enthalpic contribution in binding should be selected as the starting points for lead optimization (Freire 2008, 2009). However, enthalpies of binding only weakly correlates with binding free energies (Chodera and Mobley 2013), primarily due to enthalpy-entropy compensation (Reynolds and Holloway 2011). Interestingly, the HIV-1 (Human Immunodeficiency Virus-1) protease and aldose reductase appear to have better-than-average correlation between enthalpies and free energies of binding (Reynolds and Holloway 2011), which may explain why rational drug design has had unusually high success in these targets (Ferrari et al. 2007; Holloway 1995; Wlodawer and Vondrasek 1998). This suggests that understanding entropic contributions to the binding is very important for successful rational drug design.

Alteration of ligand conformational space upon binding to the protein is one of the sources of enthalpy-entropy compensation. The conformational ensemble sampled by the free ligand in solution is typically different from a bound bioactive conformer. Since the binding to a protein imparts a thermodynamically favorable enthalpic change, this could compensate for any unfavorable conformational “strain” on the ligand, induced upon binding. The concept of “strain” refers to a high internal energy of the bound ligand compared to the free ligand. Enthalpic penalties from the conformational strain are extensively studied and have an average of 17 kJ/mol, with 10% of the cases exceeding 38 kJ/mol (Perola and Charifson 2004). Since NMR is powerful in determining the solution conformation of wide range of ligands, it can be utilized to optimize the free-state ligand conformation to adopt a conformation similar to the bound-state. Prearrangement, which refers to designing the ligand to mimic the bound conformation, allows avoiding both conformational strain and
conformational entropy loss to improve the binding affinity (Balazs 2019; Wilson 2016). Entropic penalties, however, are more challenging to measure and, thus, are less studied.

The thermodynamics of ligand binding can be experimentally measured through techniques, such as ITC. Some of this data has been archived in the public database, BindingDB (Liu et al. 2007). Enthalpy-entropy compensations are clearly observed as a thermodynamic feature of protein–ligand interactions (Reynolds and Holloway 2011) (Fig. 2). In general, protein–ligand interactions that show more favorable enthalpic change upon the binding display more entropic loss (−7ΔS) and vice versa. This can happen for ligands with similar sizes and interacting with similar surface areas on the protein (Lee et al. 2000), highlighting the important contribution of dynamics in the interaction, despite the conventional wisdom that conformational entropy is a relatively small contributor to binding free energy relative to the displacement of water molecules. However, Chodera and Mobley have critically examined the enthalpy-entropy compensation in their review. They argue that the severe enthalpy-entropy compensation reported in literature could be due to experimental limitations in the ITC measurements. Their primary objection in studying enthalpy-entropy compensation is the cost benefit analysis of such studies (Chodera and Mobley 2013). On the other hand, Fox et al. argue one should study this compensation effects to design ligands which can break the compensation (Fox et al. 2018).

Although ITC and other biochemical/biophysical methods can measure macroscopic thermodynamic parameters, information with greater spatial resolution is required to drive drug design with optimized thermodynamic properties. As NMR is suitable for separately obtaining the dynamics information within different parts of the molecule, the technique can be utilized to optimize a ligand (Fig. 3a). The conformational flexibility and conformational entropy of bound ligands can be determined by Forbidden Coherence Transfer (FCT) analysis (Kay and Prestegard 1987a; Tagarinov et al. 2007; Mizukoshi 2016a). For example, using the interaction between the receptor, p38α (a mitogen-activated protein kinase) and a ligand, a myocyte enhancer factor 2A (MEF2A) docking peptide, as a model system, local ps-ns dynamics of a ligand bound to the receptor were directly measured by the FCT analysis. The analysis indicates that methyl groups in the binding pocket of p38α retain substantial dynamics with the order parameter \(S^2 \) ~ 0.4, even though the MEF2A peptide is not solvent exposed (Fig. 3b). The FCT analysis can also evaluate the remote proton density around the same methyl moiety by varying the deuteration rate of protein (Mizukoshi 2016a). The analysis shows that there is excess space around the Val-7 y2 methyl group of the MEF2A peptide when bound to p38 (Fig. 3c and d), for example. Substituting Val-7 with Ile therefore improves the affinity of the MEF2A peptide to WT p38α by 3.1-fold. The thermodynamic parameter of the mutant peptide binding was substantially improved with more enthalpic contributions to the binding free energy (Fig. 3e). Although the enthalpy-entropy compensation is still present, the strategy potentially enables a ligand to have greater enthalpic gains while not losing the conformational dynamics at the local site (i.e. no conformational entropy loss). It should also be noted that the FCT method is applicable to ligands that are not \(^{13}\)C labeled (Kay and Prestegard 1987b) as well as ligands containing trifluoromethyl moieties (Tokunaga et al. 2017). This example illustrates that FCT experiments that can inform on ps-ns dynamics, in the bound state considering only dipole-induced relaxation, neglecting contributions from CSA (chemical shift anisotropy). This FCT directly provides information on the order parameter \(S^2 \), of bound ligand, which can be used to improve binding affinity.

The uneven distribution of dynamics across interaction surfaces is not only important in dynamics-based ligand optimization but is also critical to understanding the function of proteins, especially those that work as the hub in interactomes. An example of this is the competition between the binding of two unstructured peptides from proteins HIF-1α and CITED2, to bind to a common target protein domain TAZ1, a part of the co-activator CBP/p300. HIF-1α is easily dissociated by the same concentration of CITED2, but not vice versa, even though the binding affinities of these two peptides to TAZ1 are identical. This is explained by the flexibility in neighboring region of the binding motif in the HIF-1α-TAZ1 complex leading to transient and partial dissociation of the dynamic part of HIF-1α, allowing CITED2 to wedge in, and increasing the rate of HIF-1α dissociation (Berlow et al. 2017). This local competition mechanism and dynamics information can be potentially used to improve the efficacy of a ligand to target a weak dynamic spot in protein–protein or protein-substrate interaction interface. Such a spot can be identified by the ligand dynamics information in the complex. However, this concept is just a speculation at this stage and need to be proven with an experimental demonstration.

Harnessing dynamics in the microsecond to millisecond time regime for drug discovery

Measuring dynamics in the μs and ms range using \(^1\)H R1ρ and R2 relaxation dispersion (RD) experiments, respectively, provides important insight into the kinetics of ligand binding. RD experiments provide \(k_{ex} \) values and with the knowledge of the \(K_d \) values one can deduce the kinetic parameters, \(k_{on} \) and \(k_{off} \) (Ferrari et al. 2007). This provides comprehensive understanding of the protein–ligand interaction that is
crucial for drug design and development (Trigo-Mourino et al. 2017; Keighley 2011), as illustrated with several examples below.

The role of thermodynamics versus kinetics in drug discovery

Given the breadth of techniques at hand, it is possible to characterize protein–ligand interactions using thermodynamic or kinetic parameters. While the thermodynamic and kinetic parameters that report on binding are related...
to each other, they measure different characteristics of the binding event, which is critical to drug discovery. Thorough investigation of both thermodynamic and kinetic parameters is necessary to adequately purpose a drug.

For example, the dissociation constant K_d is expressed thermodynamic quantity in Eqs. 4 and 5. K_d can also be derived from kinetic parameters, namely the k_{on} and k_{off}, the on and off rates:

$$K_d = k_{off}/k_{on}$$

Thus, two ligands could have the same K_d, despite having on/off kinetic parameters that are different by orders of magnitude ($5 = 500/100 = 5/1$). Both thermodynamic and kinetic parameters constitute unique implications for a given drug’s application, as described in the following examples.

Slow off-rate is often highly desirable, as it increases the residence time, defined as $1/k_{off}$. The importance of the resident time in ligand optimization is now widely recognized in the field of drug discovery (Copeland et al. 2006; Gabrielson 2009). As an example, let’s consider ipratropium and tiotropium: two muscarinic M3 receptor antagonists, whose K_d values differ by a factor of 2. Despite comparable K_d values, they exhibit a 200-fold difference in the k_{off}, which drastically impacts their pharmacological efficacy (Disse et al. 1999; Noord et al. 2000). Tiotropium, owing to the slow off-rate, exhibits long lasting effects with little variation in bronchodilatation between peak and trough concentrations. Thus, its desirable kinetic parameters rendered it the first once-a-day bronchodilator (Noord et al. 2000).

Kinetics can also help define the selectivity of binding to the target. In general, a faster off-rate from unintended targets and a slow off-rate for the intended target is desired. This concept of harnessing a slower off-rate for selectivity was used in the case of neuropeptide Y (NPY).

Though NYP had comparable K_d for receptors Y2, Y1 and Y5, the slow off-rate upon binding to Y2 imparted selectivity to Y2 receptors relative to Y1 and Y5 receptors (Dautzenberg and Neyesari 2005). This effect is called kinetic selectivity and it is common in drug discovery and lead optimization (Tonge 2018).

A fast on-rate of the drug is pharmacologically desired in many cases such as antithrombosis drugs. Despite a 50,000-fold difference between the K_i values (inhibition constant, which is very similar to the dissociation constant K_d), comparable plasma concentrations of drugs hirudin and melagatran were needed to obtain a 50% antithrombotic effect in vivo (Elg et al. 1997). These differing profiles have been explained by the concentration of thrombin in the thrombus and the rate of attaining an effective inhibitory concentration of antagonist drug (Elg et al. 1997). This study also demonstrates that compounds rapidly reaching critical concentration for efficacy have a better therapeutic index as well (Elg et al. 1997).

On-rates are also indicative of the mode of binding, which is a very important information during the early stages of lead optimization. The diffusion limit of k_{on} values for small molecules is well understood and is on the order of 10^9 M/s (Alberty and Hammes 1958). If the k_{on} of two small molecule ligands are similar, it indicates minimal conformational rearrangements upon binding and that the binding is diffusion controlled. Contrarily, if the k_{on} of a small molecule ligand is three to four orders of magnitude smaller compared to another ligand, it may indicate at the presence cryptic site or other modes of significant and correspondingly slow protein conformational rearrangement upon binding with the ligand with the slower on-rate. For instance, binding of inhibitors to InhA, the enoyl-ACP reductase of Mycobacterium tuberculosis, involves conversion of a disordered loop into an ordered helix at the active site (Pan et al. 2013). This large conformational change appears to impact the rate of inhibitor binding and unbinding significantly, with slow-onset and slow-offset inhibition being associated with the ordered helix (Pan et al. 2013; Luckner et al. 2010). An inhibitor PT70 was specifically designed to interact with the ordered InhA helix and the NAD+ cofactor by the addition of a single methyl group (Luckner et al. 2010). This seemingly small change was found to increase the residence time of PT70 by 4 orders of magnitude compared with triclosan. The crystal structure of the ternary complex between InhA, NAD+, and PT70 demonstrated that slow onset inhibition is indeed coupled to the structural rearrangement of an active site loop of InhA (Luckner et al. 2010).

As demonstrated by the aforementioned examples, both thermodynamics and kinetics of the ligand–protein interaction are important for successful lead optimization and drug development. Thus, kinetics must be considered in concert with thermodynamic properties. Of note is a current lack of systematic approaches for the design of ligands with optimal kinetic properties (Bradshaw 2015). As will be shown below, NMR offers multiple ways to provide kinetic and dynamic characterization. We hope that this review will generate interest in these NMR applications in the drug discovery and development.

Slow/Fast dynamics related with entropy and conformational exchange

A ligand can have slower intrinsic conformational flexibility and change its flexibility upon receptor interaction. Such slow ligand flexibility can be identified by a 13C RD measurements at natural 13C abundance. Since the RD experiment is sensitive enough to detect ligand populations as low as
1%. bound-state information becomes available for NMR signals of ligands that are exchanging between the major free and the minor receptor-bound states to improve the sensitivity (Namanja 2010). The RD observed is result of various sources of 13C chemical shift modulation, including binding and conformational changes in both free and bound states. This strategy was applied to three structurally similar ligands of human Pin1, a peptidyl-prolyl isomerase, which varied in flexibility (Namanja 2010). The ligands include a phosphopeptide substrate, FFpSPR, that can isomerize between the cis–trans conformations at the pSer-Pro (pSP) motif, and two inhibitor analogues that can replace the core pSP motif by alkene isosteres, to conformationally lock the position to cis or trans. The authors successfully identified the site-specific 13C RD to the pSP motif in the FFpSPR peptide, while both of the pSP locked inhibitors did not exhibit conformational changes in the RD experiments. Thus, the strategy would identify the locations and time scales of motion on the peptide in the bound form and how this can be perturbed by ligand structural modifications. In addition, bound-ligand conformation can be constrained via 13C chemical shift information derived from the fitting of the 13C RD data.

Binding dynamics in the millisecond range often lead to an intermediate exchange regime with a consequent undesirable line-broadening. In the drug discovery process, it is characteristic for initial hits or first-generation compounds to have dissociation constants in the mid-micromolar range, resulting in line broadening of the NMR spectra. However, exchange in the intermediate regime is not the only contributor to line broadening, as increased ligand dynamics in the bound state (due to an exchange between multiple binding modes) can cause a similar effect. It is important for subsequent structure-based compound optimization to incorporate an understanding of the genesis of line broadening. An NMR method for distinguishing between intermediate exchange versus conformational heterogeneity, been developed and demonstrated on 13C ILV-labeled Bcl-xL (Reibarkh et al. 2006a), by observing methyl resonances of the protein. Two homologous small molecule ligands of Bcl-xL with mid-micromolar dissociation constants causing severe line broadening of interface residues upon binding were chosen. For the compound that exhibited a single-mode binding, the broadening was solely attributed to the dissociation kinetics in the intermediate exchange regime. Here, the line broadening can be overcome with high molar excess of the ligand. For the other compound, line broadening was due to both dissociation kinetics and an exchange between multiple bound conformations. In this case, the broadening could not be overcome with excess ligand.

As we discussed here, utilizing information about ligand dynamics is quite important to understand the thermodynamic and kinetic nature of ligand and to obtain a ligand with higher affinity, preferable thermodynamic profile, specificity, and resident times for drug development. A suite of NMR experiments that define the dynamic of ligand with wide range of time scale with the moiety-specific resolution is of importance to experimentally quantify and evaluate the dynamics-activity and dynamics-function relationship of ligands.

Dynamics and conformational exchange of cyclic peptides as ligands in the context of drug design

Macrocyclic peptides represent a special therapeutic modality that has a potential to combine the best properties of small molecule ligands (synthetic accessibility, cell permeability) and antibodies (high specificity, ability to target shallow or flat protein surfaces traditionally considered “undruggable”) (Vinogradov et al. 2019; Wells and McClendon 2007). Significant development in recent years is evidenced by steadily increasing numbers of primary and secondary publications (Vinogradov et al. 2019), as well as a number of cyclic peptides entering clinical trials (Morrison 2018). Conformational behavior of cyclic peptides is quite complex by itself with many degrees of freedoms in their structure, and there are still open challenges in the field with understanding and predicting conformation, activity, especially the permeability of cyclic peptides (Valeur 2017).

Understanding conformational flexibility and corresponding conformational entropy for drug design is even more important for cyclic peptides than for small molecule ligands, and NMR is widely utilized in this space. Macrocyclization imparts a degree of conformational restriction and structural preorganization, which is thermodynamically favorable because this reduces entropic losses—compared to linear peptides—due to binding (Vinogradov et al. 2019). The constrained nature of cyclic peptides creates a challenge when a relatively small structural modification results in significant conformational reorganizations of remote regions of a macrocycle (Appavoo et al. 2019). One the other hand, cyclic peptides can access vast conformational space with some non-canonical conformations (Otero-Ramirez et al. 2018; Malde et al. 2019). The conformational strain tolerated by therapeutically-relevant macrocyclic peptides upon target protein binding is postulated to be two to three times higher than that of small molecule ligands discussed above (Brueckner, unpublished). Apart from stapled peptides with rigid structures mimicking the protein–protein interaction (Phillips 2011), it is believed that a typical macrocyclic peptide will access complex conformational space in solution and adopt a significantly different conformation in the bound state (Goldbach 2019; Wahyudi et al. 2014; Kranz 2006; Horne et al. 2009; Chung et al. 2016; Nikiforovich et al. 2000; Cicero et al. 1995). In a study that jointly utilized NMR, crystallographic and computational approaches, the importance of conformational dynamics for understanding
and optimizing binding to the target protein is exhibited. Conformational complexity of cyclic peptides presents a challenge for computational methods as well, since near-exhaustive conformational search is needed, but difficult to achieve with desired precision. Several recent reports demonstrate the utility of NMR parameters such as chemical shifts (Nguyen et al. 2018), coupling constants and sparse NOEs (Jain 2019) to augment computational protocols either as explicit restraints (NOEs and coupling constants) or to provide an orthogonal validation (chemical shifts, residual dipolar couplings).

Conformational dynamics of cyclic peptides have additional implications for another key determinant of drug uptake, passive cell permeability. Unlike small molecule drugs, cell permeability is not easily achieved, yet critical, for therapeutic macrocyclic peptides with intracellular targets. A classic example is the natural product cyclosporine A, a cyclic undecapeptide immunosuppressant that is passively permeable, leading to high oral bioavailability (Schreiber and Crabtree 1992). Passive permeability of the cyclosporine A is attributed to a dynamic conformational interplay between an aqueous conformation, a membrane-preferred conformation and a protein-bound conformation (Witek 2016, 2017). Similar mechanisms have been described for cyclic peptides of natural product (Ahlbach 2015) and synthetic (Ono 2019) origin. Behavior of cyclosporin A is often used to rationalize membrane permeability differences for a series of related peptides (Witek 2019). However, it is still not clear whether this mechanism of permeability is typical or not for cyclic peptides in general. It should be noted that non-peptidic macromolecules are also pharmaceutically important molecules (Bom et al. 2009) with complex conformational dynamics. Recently, 1H and 13C RD has been shown to characterize conformational dynamics (on- and off- rates and transition barrier) of an α-cyclodextrin (Stoffel et al. 2020).

However, rational engineering of passive permeability remains a sizeable challenge in the field and we envision that NMR, with its ability to study conformations and dynamics of cyclic peptides in both aqueous and in lipophilic environments, will contribute to addressing this challenge.

Importance of fast protein fluctuation: source of conformational entropy

In addition to the conformational entropy of the ligand, the contribution of receptor conformational entropy has been shown to be important. Changes in protein conformational entropy upon binding can be estimated from experimentally determined order parameters (Akke et al. 1993; Akke 2012; Wand 2001, 2012; Igumenova et al. 2006; Wand and Sharp 2018; Frederick et al. 2007). Empirically, the changes in the fast dynamics of methyl-bearing amino acids can be used as the “entropy meter” to estimate the changes in conformational entropy of the protein systems upon the binding to ligands (Caro 2017; Kasinath et al. 2013). In the case of calmodulin-peptide interactions, it has been shown that the conformational entropy of calmodulin, estimated from the changes in fast methyl dynamics, explain the variety in entropic contribution of the interactions. The contribution of the conformational entropy to the interactions are estimated to be of the order of ~ 30 kcal/mol (Frederick et al. 2007; Marlow et al. 2010). In case of the carbohydrate recognition domain of galectin-3, the gain in conformational entropy is comparable in magnitude to the binding enthalpy of a ligand (Diehl 2010). It has also been shown that a large conformational entropy gain makes a mutant of the catabolite activator protein (CAP) bind DNA, although the protein resides mostly in an inactive conformation and needs to confer larger enthalpic energy penalties to adopt the DNA bound conformation (Tzeng and Kalodimos 2009). The enhancement of dynamics upon the binding to compounds is considered to contribute to the promiscuous interaction of a multidrug-binding transcription factor, LmrR (Takeuchi et al. 2014) where the promiscuity is a part of the function (Fig. 4a). We have shown that compounds binding to LmrR resulted in a notable increase in the amplitude of ps–ns dynamics at the hydrophobic core of the protein, which is allosteric to the compound-binding interface but connected to a ligand binding helix, C-helix (Fig. 4b). It should be noted that the compound-induced change in the C-helix conformational equilibrium correlated with the amount of the conformational entropy gain upon the binding to the compound (Fig. 4a). This implies that displacement of the C-helix caused by compound binding loosens the hydrophobic core beneath the helix (Fig. 4b). The conformational entropy associated with the enhancement of dynamics corresponds to 2–3 kcal/mol, which favorably contributes to its function as a promiscuous sensor for toxic compounds. It should be noted that an increase in conformational entropy is not a common occurrence. In general, a decrease or no significant change in conformational entropy of the binding partners is observed. However, the examples discussed here indicate that conformational entropy should not be neglected in the understanding the thermodynamics of interactions.

Importance of slower protein conformational dynamics in ligand specificity and kinetics

Though the development of highly selective inhibitors is desired in most cases, the process of achieving this has been challenging. This is especially true among a family of proteins that can bind to the same endogenous substrate. Protein kinases are one such major drug targets. Due to the similarity of their active sites, the development of an inhibitor specific for a single kinase is considerably difficult.
Nevertheless, there are inhibitors that are more specific than others. Kern et al. suggested that specific binding pair of protein and ligand show higher affinity due to the ability to change conformation after binding (Agafonov et al. 2014). A representative example of this is the kinase inhibitor Gleevec. Although the crystal structure of Gleevec in complex with a potent and specific target, Abl kinase, is identical to how Gleevec engages the Src kinase, the compound shows affinity to Abl that is three orders of magnitude stronger than the affinity to Src kinase. Using NMR chemical shift perturbation and stopped flow experiments, the authors showed that Gleevec has a fast binding followed by a slow conformational change. The latter phase was not observed in the binding to Src kinase. The presence of induced-fit mechanism after binding to the specific ligand were also true for Aurora A kinase inhibitors (Pitsawong et al. 2018). These examples clearly indicate that the dynamics in the bound state might be a critical factor to define affinity, specificity and resident time of a ligand.

The importance of protein dynamics is also evident in drug resistance mutations. Saleh et al. showed that the allosteric drug resistance mutations found in the Abl regulatory module (RM) and far from the drug-binding site alter the population of inhibited and activated states in the Abl kinase. These mutations increase the activated-state population and overall kinase activity that compromise the inhibitory activity of imatinib, without interfering directly with imatinib binding (Saleh et al. 2017), representing a dynamic mechanism of development of drug resistance.

In dihydrofolate reductase (DHFR), the binding of two drugs, methotrexate and trimethoprim to the holoenzyme (NADPH complex) has been shown to decouple the protein dynamics in an allosteric manner (Mauldin et al. 2009). Upon the binding to these drugs, the major conformation of the NADPH complex did not change, however, its dynamics change in the presence of ligand. The binding of these drug results in either quenching or slowing down of ms–μs conformational exchange in the functional loops and substrate-binding site, working as the molecular strait-jacket. In addition, drug binding also causes significant changes in ps–ns dynamics, especially in the distal F–G and adenosine binding loops that contain residues implicated in DHFR function. As these residues that experience a change in dynamics are not in contact with drug. Here the mechanism of inhibition by the small-molecule is by modulating the dynamics at an allosteric site, which can be deciphered by NMR.

Hidden allosteric couplings between two functional sites are not unique to DHFR; we also showed functional coupling between allosteric substrate docking sites and ATP binding site in MAPK, p38α (Tokunaga et al. 2014). It should be noted that the protein dynamics in ligand-bound form is considered to be one of the determining factors in determining the dissociation rate of a ligand, nicely depicted by RD NMR experiment (Carroll 2012). Therefore, it is evident that the slower protein conformational dynamics, which is essential for function, is also a good target for therapeutic intervention. Although the specific path to achieve this goal needs to be experimentally explored and could depend on the target and the flavor of dynamics available, this slow protein dynamics can be leveraged to in obtain ligands with better affinity, specificity, and/or favorable binding kinetics. These slow millisecond dynamics can be observed by NMR methods as the major conformational state can be identical and cannot be distinguished by other structural methods.
NMR methods to study structure, dynamics and conformational exchange

The static picture of protein–ligand interactions is obtained through solving the structure of the complex using X-ray crystallography and NMR spectroscopy. Insights on conformational changes can be made by comparing protein structure in both bound and free form. Additionally, NMR can give site-specific exclusive insights for dynamics at multiple time scales and range of binding affinities (Fig. 5).

Measurements of transverse relaxation rate (R_2), longitudinal relaxation rate (R_1) and 2D 15N–1H heteronuclear Overhauser effect (het-NOE) on 15N/13C isotopically labeled protein; coupled with Lipari-Szabo model free analysis can provide dynamics information at picoseCONDS timescales (Palmer 2004; Kleckner and Foster 2011). Wand et al. have proposed Lipari-Szabo squared generalized order parameter of methyl bearing side chains as a dynamical proxy for overall protein conformational entropy and have empirically calibrated the ‘entropy meter’ on 28 protein–ligand complexes with a broad range of binding affinities (Wand and Sharp 2018).

In addition to these strategies, the FCT method has been proposed, to estimate the ps-ns dynamics of methyl groups (Kay and Prestegard 1987a; Sun et al. 2011). In the FCT

Fig. 5 An overview of the different components that contributes binding free energy in typical protein–ligand interaction and the relevant NMR experiments to study these individual contributions. It should be noted that some of methods would not provide absolute measurements of these thermodynamic quantities, rather relative measurements across a panel of lead compounds and their analogs.
experiment, the intensity of the multi quantum methyl proton signal (I_{mqc}) relative to the intensity of the corresponding single quantum methyl proton signal (I_{1qc}) is measured. The evolution of I_{mqc}/I_{1qc} can be described by a formula that consists of methyl order parameter (S^2) and the dipole cross-correlated relaxation rate to external protons, respectively (Sun et al. 2011). The FCT experiment can be combined with the methyl TROSY (transverse relaxation optimized spectroscopy) experiment to quantify the dynamics of large molecular weight systems such as a 360 kDa “half-proteasome” complex (Tugarinov et al. 2007). The applicability of the FCT method to high molecular-weight (M_w) proteins is attractive in structure-based drug developments, as the proteins of interest tend to be large in M_w (> 40 kDa).

Relaxation dispersion experiments can provide insights into motion on the micro-milliseconds timescale to capture domain rearrangements upon ligand binding. The two methods to measure relaxation dispersion are (a) R_2 relaxation dispersion using a CPMG (Carr-Purcell-Meiboom-Gill) pulse train and (b) $R_1\rho$ relaxation dispersion using spinlock (Palmer 2004, 2001; Kleckner and Foster 2011). Both the methods quantify the linewidth broadening due to chemical or conformational exchange between ground and excited states. Along with the assumption of a kinetic model, one can derive structural, kinetic and thermodynamic information of ground and excited states with this class of experiments. Structural information is obtained through the chemical shifts of the two states, kinetic information is calculated as we get the exchange rate between the two states and by measuring relative population of the two states, we get thermodynamic information.

Dark-state exchange saturation transfer (DEST) (Fawzi et al. 2011, 2012) and chemical exchange saturation transfer (CEST) (Vallurupalli et al. 2012, 2017) represent another set of NMR experiments to study lowly populated states, also referred to as ‘invisible’ states. This is accomplished by detecting the NMR signals of visible (detectable) state after perturbing the invisible state. Results from CEST and DEST experiments partly complement data obtained from relaxation dispersion experiments. We can use DEST to study exchange dynamics in timescale of 10 ms to 1 s between bound and free form of protein–ligand complex (Fawzi et al. 2012). The linewidths in bound form (dark-state) is broadened beyond detection limit and is saturated with weak radio-frequency (rf), which leads to intensity reduction in visible state with detectable linewidth. CEST also works on similar principle but it relies on chemical shift difference between the two states rather than difference in linewidths as in case of DEST. With CEST one can readily detect the chemical shift of excited state species with fractional population of excited state is greater than ~0.5% and its lifetime is between 3 and 50 ms (Vallurupalli et al. 2017). Thermodynamic and kinetic information can be extracted from both DEST and CEST experiments using Bloch-McConnell equations to assumed two or three state exchange models. In the context of drug discovery these experiments can be used to detect minor confirmations of the protein including cryptic sites and obtain information about the bound state if the binding results in line broadening beyond detection.

Hydrogen–deuterium (HD) and ZZ exchange experiments are useful to study slow binding events on the timescale of milliseconds to seconds (Kleckner and Foster 2011). In contrast to relaxation dispersion experiments, the requirement of chemical shift difference, for these experiments, between the free and bound form is relatively small. The loss in intensity due to exchange of amide protons (1H) with 2H quantifies the exposure of protein residues to solvent.

Above described NMR experiments covers dynamics spanning wide range of timescales, which can give valuable insights in entropically optimizing the protein-drug affinity.

NMR methods to study desolvation

As noted earlier desolvation, especially desolvation of the ligand is major entropic contributor to the binding free energy. Dunitz estimated a range of 0 to 27 J/mol/K for the entropic cost of transferring a water molecule from solvent to a protein, leading to ~0 to 8 kJ/mol of entropic cost to the free energy (Dunitz 1994). However, there is a large range in the contribution of desolvation to the free energy, which partly depends on how tightly the water molecule was initially bound to the protein. Typically, when a ligand binds to the protein and replaces a bound water molecule, the hydrogen bond between the water and the protein will be replaced by a hydrogen bond between the ligand and the protein, thus compensating for the enthalpic loss. However, the liberated water molecule contributes favorably towards entropic component of the binding free energy. Bound water molecules have various residence times and the tightly bound water molecules are seen in high-resolution X-ray structures. In NMR experiments, bound water and labile protons on the protein surface with lifetimes longer than sub ns can be identified by the NOESY (nuclear Overhauser effect spectroscopy) and ROESY (rotating frame Overhauser effect spectroscopy) experiments (Otting and Wuethrich 1989). For example, four internal water molecules seen in the crystal structures of bovine pancreatic trypsin inhibitor (BPTI) gave NOEs to protein indicating that the waters are an integral part of the solution conformation. The strategy was further corroborated by using a reverse micelle to avoid the artificial effect from bulk water (Jorge et al. 2019).

It should be noted that by performing WaterLOGSY (Water-Ligand Observed via Gradient Spectroscopy) experiments (Dalvit 2000) at increasing concentrations of per-deuterated proteins are used to identify the existence
and location of transitely bound water molecules in protein ligand complexes (Geist 2017). In the experiment, the titration slopes can be used as a measure to the primary candidates for substitution with groups that either displace or address protein-bound water molecules (Geist 2017).

Structure determination of the protein–ligand complex using NMR

The co-structure of the ligand bound to the protein provides vital structural information that drives medicinal chemistry efforts. Though X-ray crystallography plays a significant role in the structure elucidation, not all protein–ligand complexes can be crystallized. In a number of cases, NMR has been used to determine the structure of the complex using distance restraints derived from NOESY and PRE (Para-magnetic Relaxation Enhancement) experiments. It is often a challenge to pare out the intramolecular NOEs from the intermolecular NOEs. Filtered NOEs (Robertson et al. 2009) experiments that distinguish signals from labeled proteins to unlabeled ligands are often used to obtain unambiguous constraints. In addition, anchoring PRE probes, at specific locations on the protein, acts a GPS to triangulate distances (Nitsche and Otting 2017). In the case of intermediate exchange and a corresponding undesired line-broadening, driven NOEs (Reibarkh et al. 2006b) can be used to obtain distance restraints where peaks are too broad for NOESY. For weak binders in the fast exchange regime, transferred NOESY experiments (Balaram et al. 1972; Albrand et al. 1979) can be used to determine the bound conformation of the ligand by analyzing the difference between NOE patterns in the absence and in the presence of the protein. Anisotropic NMR, mainly RDC (residual dipolar coupling) (Tjandra and Bax 1997), is a valuable structural method as it provides orthogonal restraints, which are global in nature as opposed to inherently local restraints from NOEs and PREs.

Certain proteins, owing to their large size, flexibility and difficulty to crystallize are not amenable for structural studies using solution NMR spectroscopy or X-ray crystallography. Cryoelectron microscopy (cryo-EM) has gained prominence as powerful structure determination technique capable of handling intractable proteins including therapeutically important membrane proteins like GPCRs (Renaud 2018). Recent technological advances in cryo-EM the structures of protein/protein complexes of size ~ 100 kDa or more with resolution of below 3 Å (Renaud 2018; Scapin et al. 2018). Recently a cryo-EM structure of apoferritin was reported at a resolution of 1.25 Å, providing a glimpse of resolution that be routinely obtained in the future (Yip et al. 2020). For SBDD and fragment-based screening using Bgal, a 465 kDa homotetramer protein from *Escherichia coli* and oncogenic PKM2, a 240 kDa homotetramer as examples (Saur 2020). Though cryo-EM currently does not provide detailed information about the dynamics, like NMR, there are efforts to extract such information from the variability in the structural ensembles observed in cryo-EM (Bonomi et al. 2018; Punjani and Fleet 2020). Structural data from cryo-EM and dynamics data form NMR can be synergistically combined to provide a richer picture of structure and dynamics, combining the advantages of both techniques (Vahidi 2020).

Determining the structure of the protein–ligand complex provides a critical aspect of our thermodynamic understanding of ligand engagement, revealing information on the bound state/conformation of the protein/ligand and any associated change in dynamics.

Current challenges: methods for small molecules in the absence of labeling

Isotopically labeling small molecule ligands is typically difficult and expensive. In addition, small molecule drugs are becoming more structurally complex and more proton deficient. The field of small molecule NMR has seen a significant effort in pulse sequence development (Reif 1996; Reibarkh et al. 2013) to measure critical structural and dynamic parameters on 13C and 15N natural abundance. The 2J and especially $^3J_\text{H-H}$, $^3J_\text{H-C}$, $^3J_\text{H-N}$ and $^3J_{\text{C-C}}$ coupling constants are critical for characterizing both conformation and dynamics of the respective sites.

Pulse sequences such as EXSIDE (excitation-sculptured indirect-detection experiment) (Krishnamurthy 1996), IPAP-HSQMBC (in-phase anti-phase heteronuclear single quantum multiple bond correlation) (Gil et al. 2010; Saurí et al. 2013) and J-modulated ADEQUATE (adequate sensitivity double quantum transfer experiment) (Saurí et al. 2017; Kövér and Forgó 2004) are used to measure these coupling constants. Anisotropic NMR methods such as RDC and RCSA (Residual Chemical Shift Anisotropy) have been shown to be useful for structure and stereochemistry elucidation of small molecules (Liu, et al. 2017). They can also be used to assess conformational dynamics of small molecules (Ndukwe 2019). RCSAs are particularly useful for small molecules as they are measured for 13C nuclei and interpreted in conjunction with DFT (density-functional theory) calculations, obviating the need for the presence of 1H nuclei. These are recent developments and we hope that NMR conformational studies of small molecules will become a standard requirement in the drug discovery process.

Advances in medicinal chemistry allow incorporation of fluorine atoms relatively easily (Furuya et al. 2011).
Fluorine is frequently introduced in the lead optimization stage to enhance affinity, bio-availability, and metabolic stability (Gillis et al. 2015). Approximately 25% of therapeutic drugs on the market contain at least one fluorine atom (Wang 2014). As 19F is the 100% naturally abundant 1/2-spin nucleus with the next largest gyromagnetic ratio 1/2-spin nucleus with the next largest gyromagnetic ratio Prosser and Kim (2015).

et al. 2004; Norton et al. 2016; Manglik 2015; Ye et al. 2016; Dalvit et al. 2012). Of note, CF$_3$ moiety has been extensively used in drug-screening procedures as well as the characterization of drug-target proteins due to its high sensitivity and relatively narrow line width (Dalvit et al. 2004; Norton et al. 2016; Manglik 2015; Ye et al. 2016; Prosser and Kim 2015).

Open questions in the field

Though NMR can provide details about dynamics, conformational changes, desolvation and structural information on how a drug engages the ligand, a methodology to leverage/optimally utilize this information to design better binders is not straightforward. What should be optimized, enthalpy or entropy is a key question, which is further complicated by their interdependence. One of the well-travelled paths is to reduce the conformational space of the ligand by making the ligand resemble the bound structure, thus reducing entropic costs. Even for this logical viewpoint, however, there may be the following downside.

A tight fit may not be the best fit

Proteins are inherently dynamic and enthalpy-optimized tight-fitting drugs may not always be the optimal choice. Fernandez et al. makes a compelling case and argues for loosely fitted drugs which allow the target protein to explore the conformational space upon binding (Fernandez et al. 2012). In this case, the polar groups on ligand also explore conformational space on target protein to compensate the thermodynamic cost incurred by losing its hydration shell upon binding. The two anticancer inhibitors sunitinib and sorafenib are the kinase inhibitors for the target proteins C-Kit and p38 mitogen activated protein (MAP) kinase, respectively, which have hydrophobic-polar mismatch at the protein ligand interface (Fernandez et al. 2012). The hydrophobic-polar mismatch is discouraged from enthalpic point of view, while the significant conformational entropy gains explains their observed high affinity. It is therefore advised to keep conformational entropy factor in drug design strategy for highly dynamic protein targets. Avoiding tight fitting binders have been shown to be beneficial to cope with mutation-induced drug resistance developed by pathogens. For example, frequent mutations are reported in Reverse Transcriptase of HIV-1 which confers resistance to nucleoside/nucleotide analogs (NRTI) and non-nucleoside (NNRTI) analogs (Das and Arnold 2013a,b). Usually, mutant proteins evolved with drug resistance are the ones, which create steric hindrance for drugs where the drug used to perfectly bind. This drug resistance mechanism can be thwarted by allowing conformational flexibility on the ligand. With the capability of NMR to access conformational dynamics, we have the ability to pursue an alternative path breaking away from the dogma of designing tight and rigid binders. Flexible ligands that may have greater versatility in some cases.

Choosing the sweet spot between hydrophobicity and solubility

A common approach in optimizing ligands for potency and selectivity is to focus on design principles that increase the enthalpic contribution, especially if high-resolution structure is available. Freire argues that it is much more difficult to optimize a ligand for enthalpy gains, primarily because the gains in enthalpy can be compensated by loss in entropy (Freire 2008). For instance, if we add functionality to the ligand that will enable it to engage the protein with an additional hydrogen, the same polar group of the ligand will be hydrogen bonded to water in the unbound state, which is often stronger. Hence the enthalpic gain is minimized.

On the other hand, a major source of entropic gain is derived from desolvation of the ligand when the ligand binds to the protein and hydrophobicity of the ligand helps (Freire 2008; Snyder 2011). Kauzmann and others have postulated that entropically unfavorable, ordered water molecules are found near hydrophobic groups of the ligand, in what is referred to as the “iceberg model” where water molecules could form clathrate hydrate structures surrounding hydrophobic groups (Kauzmann 1959; Klotz 1959). There are other theories including the “scaled-particle theory” that predicts entropically unfavorable water molecules surrounding the hydrophobic groups (Snyder 2011; Stillinger 1973). These constrained water molecules will be released upon binding to the protein and will contribute significantly to the binding free energy. It has been estimated that transferring a hydrophobic carbon atom from the water to the protein surface contributes ~ 105 J/mol-Å2 to the binding free energy (Freire 2008; Sharp et al. 1991). However, it is not possible to increase the hydrophobicity of the ligand after ‘certain’ limit, since it will affect the solubility. Thus, finding the sweet spot between entropy and enthalpy contributors using hydrophobicity is a critical aspect of drug design and remains an open question in the field. We need better NMR methods to quantify desolvation of the ligand.
Conclusion and future perspectives

As discussed here, NMR has unique strength to provide both static and dynamic views on protein–ligand interactions. NMR experiments are applicable in the drug development stages from initial target validation stage to near clinical lead optimization stages. In addition to the conventional protein small molecule interaction, NMR can handle new modalities such as middle-sized molecules and nucleic acids, which harbors more configurational compared to small molecular ligands. Unlike other available structural strategies, NMR is applicable to a range of conditions. One can expect to apply NMR in cellular conditions to directly monitor the binding of ligands to proteins in cytosol (Luchinat 2020). NMR can also be used to characterize the behavior and interaction in solid–liquid interface including membrane interface (Anthis and Clore 2015; Fang 2018) as well as in membrane less organelle and phase separation that are relevant for certain disease states (Ambadipudi et al. 2019; Kostylev 2018). This unique ability to directly correlate information from structure and dynamics to thermodynamic and kinetic parameters that dictate protein–ligand interaction makes NMR an invaluable asset in the drug discovery tool kit. Synergistically combining NMR with computational docking the methodology (Gorgulla 2020), molecular dynamics simulations and other biophysical and structural methods including X-ray crystallography, cryo-electron microscopy (Merino and Raunser 2015), neutron diffraction harbor the potential to provide a clear picture of protein–ligand interactions.

NMR is an indispensable biophysical technique to study conformational ensembles of intrinsically disordered proteins and disordered regions in structured proteins, collectively known as intrinsically disordered regions, IDRs. The disordered regions are prevalent in signaling proteins and transcription factors of eukaryotic cells. The IDRs play a critical role in regulating key cellular processes and are directly implicated in many human diseases, including cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Given their central role, mutations in the IDR account for one-fifth of all disease-causing mutations (Vacic 2012). NMR can be useful in designing drugs targeting disordered proteins (Joshi and Vendruscolo 2015; Ban et al. 2017). There a number of examples of IDRs interacting with structured proteins and the IDRs adopt a structure upon complex formation. In some of these cases the IDRs remain dynamic and adopt multiple conformations in the bound state, referred to as a “fuzzy complex” (Tompa and Fuxreiter 2008). The fuzzy complexes are examples from nature on how to design a ligand with flexibility and dynamics, in the bound state.

Identifying a lead candidate and optimizing a drug is an arduous endeavor in which a medicinal chemist has to traverse a labyrinth of thermodynamics and kinetic paths to sculpt the ideal molecule. Though we have experimental methods that guide us through this labyrinth, there are still intangibles that we do not fully comprehend. As discussed in this manuscript, solution NMR methods facilitate a wealth of information on the various facets of protein–ligand interactions that help us tease apart the various thermodynamic and kinetic contributions to the binding free energy. Nevertheless, there are blind spots that demand new methods. Even with exquisite details of the energetic landscape, optimizing a molecule is not straightforward and requires an artistic touch. A chemist with a firm grasp of the thermodynamic parameters that dictate the binding event holds a significant advantage and that can make all the difference.

Acknowledgements We thank Dr. Shriya S. Srinivasan for the discussions and critical comments on this manuscript. This work is also supported by JSPS-ISF Joint Research Program and JSPS KAKENHI Grant-in-Aid for Challenging Research (Exploratory) 20H03378 and 20H04722 to KT. HA acknowledges funding from NIH (GM136859) and the Claudia Adams Barr Program for Innovative Cancer Research.

References

Agafonov RV, Wilson C, Otten R, Buosi V, Kern D (2014) Energetic dissection of Gleevec’s selectivity toward human tyrosine kinases. Nat Struct Mol Biol 21:848–853

Ahlbach CL et al (2015) Beyond cyclosporine A: conformation-dependent passive membrane permeabilities of cyclic peptide natural products. Future Med Chem 7:2121–2130

Akke M (2012) Conformational dynamics and thermodynamics of protein-ligand binding studied by NMR relaxation. Biochem Soc Trans 40:419–423

Akke M, Brueschweiler R, Palmer AG (1993) NMR order parameters and free energy: an analytical approach and its application to cooperative calcium(2+) binding by calbindin D9k. J Am Chem Soc 115:9832–9833

Alberty RA, Hammes GG (1958) Application of the theory of diffusion-controlled reactions to enzyme kinetics. J Phys Chem 62:154–159

Albrand JP, Birdsal B, Feeney J, Roberts GCK, Burgen ASV (1979) The use of transferred nuclear Overhauser effects in the study of the conformations of small molecules bound to proteins. Int J Biol Macromol 1:37–41

Aldeghi M, Gapsys V, de Groot BL (2018) Accurate estimation of ligand binding affinity changes upon protein mutation. ACS Cent Sci 4:1708–1718

Ambadipudi S, Reddy GJ, Biernat J, Mandelkow E, Zweckstetter M (2019) Residue-specific identification of phase separation hot spots of Alzheimer’s-related protein tau. Chem Soc 115:9832–9833

Anthis NJ, Clore GM (2015) Visualizing transient dark states by NMR spectroscopy. Q Rev Biol Phys 48:25–116

Appavoo SD, Huh S, Diaz DB, Yudin AK (2019) Conformational control of macrocycles by remote structural modification. Chem Rev 119:9724–9752

Balaram P, Bothner-By AA, Dadok J (1972) Negative nuclear Overhauser effects as probes of macromolecular structure. J Am Chem Soc 94:4015–4017

Springer
Balazs AYS et al (2019) Free ligand 1D NMR conformational signatures to enhance structure based drug design of a Mcl-1 inhibitor (AZD5991) and other synthetic macrocycles. J Med Chem 62:9418–9437
Ban D, Iconaru LI, Ramanathan A, Zuo J, Kriwacki RW (2017) A small molecule causes a population shift in the conformational landscape of an intrinsically disordered protein. J Am Chem Soc 139:13692–13700
Berlow RB, Dyson HJ, Wright PE (2017) Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature 543:447
Bom A, Hope F, Rutherford S, Thomson K (2009) Preclinical pharmacology of sugammadex. J Crit Care 24:29–35
Bonomi M, Pellarin R, Vendruscolo M (2018) Simultaneous determination of protein structure and dynamics using cryo-electron microscopy. Biophys J 114:1604–1613
Bowman GR, Geissler PL (2012) Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc Natl Acad Sci 109:11681
Bowman GR, Bolin ER, Hart KM, Maguire BC, Marqusee S (2015) Discovery of multiple hidden allosteric sites by combining Markov state models and experiments. Proc Natl Acad Sci 112:2734
Bradhaw JM et al (2015) Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol 11:525–531
Carneiro MG, Ab E, Theisgen S, Siegel G (2017) NMR in structure-based drug design. Essays Biochem 61:485–493
Caro JA et al (2017) Entropy in molecular recognition by proteins. Proc Natl Acad Sci USA 114:6563–6568
Carroll MJ et al (2012) Evidence for dynamics in proteins as a mechanism for ligand dissociation. Nat Chem Biol 8:246–252
Chang CE, Chen W, Gilson MK (2007) Ligand configurational entropy and protein binding. Proc Natl Acad Sci USA 104:1534–1539
Chodera JD, Mobley DL (2013) Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annu Rev Biophys 42:121–142
Chung BKW, White CJ, Scully CCG, Yudin AK (2016) The reactivity and conformational control of cyclic tetrapeptides derived from aziridine-containing amino acids. Chem Sci 7:6662–6668
Cicero DO, Barbato G, Bazzo R (1995) NMR analysis of molecular origin of enthalpy/entropy compensation in biomolecular recognition by protein engineering. Angew Chem Int Ed Engl 23:467–473
Ciferri AM, DeGillesposti G, Gribbon R, Rastelli G (2007) Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Bioorg Med Chem 15:7865–7877
Ferreira de Freitas R, Schapira M (2017) A systematic analysis of atomic protein-ligand interactions in the PDB. Medchemcomm 8:1970–1981
Fersht AR et al (1984) Analysis of enzyme structure and activity by protein engineering. Angew Chem Int Ed Eng 23:467–473
Fersht AR et al (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314:235–238
Fox JM, Zhao M, Fink MJ, Kang K, Whitesides GM (2007) The molecular origin of enthalpy/entropy compensation in biomolecular recognition. Annu Rev Biophys 44:325–329
Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–329
Freire E (2008) Do enthalpy and entropy distinguish first in class from best in class? Drug Discov Today 13:869–874
Freire E (2009) A thermodynamic approach to the affinity optimization of drug candidates. Chem Biol Drug Des 74:468–472
Furyu T, Kamlet AS, Ritter T (2011) Catalysis for fluorination and trifluoromethylation. Nature 473:470–477
Gabrielsson J et al (2009) Early integration of pharmacokinetic and dynamic reasoning is essential for optimal development of lead compounds: strategic considerations. Drug Discov Today 14:358–372
Geist L et al (2017) Direct NMR probing of hydration shells of protein ligand interfaces and its application to drug design. J Med Chem 60:8708–8715
Gil S, Espinosa JF, Parello T (2010) JAP–HSQMB: measurement of long-range heteronuclear coupling constants from spin-state selective multiple. J Magn Reson 207:312–321
Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58:8315–8359
Gilson MK et al (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053
Goldbach L et al (2019) Folding then binding vs folding through binding in macrocyclic peptide inhibitors of human pancreatic alpha-amylase. ACS Chem Biol 14:1751–1759

Gorgulla C et al (2020) An open-source drug discovery platform enables ultra-large virtual screens. Nature 580:663–668

Holloway MK et al (1995) A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active site. J Med Chem 38:305–317

Horne WS, Olsen CA, Beierle JM, Montero A, Ghadiri MR (2009) Probing the bioactive conformation of an archetypal natural product HDAC inhibitor with conformationally homogeneous triazole-modified cyclic tetrapeptides. Angew Chem Int Ed 48:4718–4724

Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106:1672–1699

Jain AN et al (2019) Complex macrocycle exploration: parallel, heuristic, and constraint-based conformer generation using ForceGen. J Comput Aided Mol Des 33:531–558

Jin J (1995) Protein–protein recognition. Prog Biophys Mol Biol 64:145–166

Jencks WP (1975) Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol 43:219–410

Jorge C, Marques BS, Valentine KG, Wand AJ (2019) Characterizing protein hydration dynamics using solution NMR spectroscopy. In: Wand AJ (ed) Methods in enzymology, vol 615. Academic Press, Cambridge, pp 77–101

Joshi P, Vendruscolo M (2015) Druggability of intrinsically disordered proteins. Adv Exp Med Biol 870:383–400

Kasinath V, Sharp KA, Wand AJ (2013) Microscopic insights into the NMR relaxation-based protein conformational entropy meter. J Am Chem Soc 135:15092–15100

Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

Kawasaki Y, Freire E (2011) Finding a better path to drug selectivity. Drug Discov Today 16:985–990

Kay LE, Prestegard JH (1987a) Methyl group dynamics from relaxation of double quantum filtered NMR signals. Application to deoxycholate. J Am Chem Soc 109:3829–3835

Kay LE, Prestegard JH (1987b) Methyl group dynamics from relaxation of double quantum filtered NMR signals. Application to deoxycholate. J Am Chem Soc 109:3829–3835

Keighley W (2011) The need for high throughput kinetics early in the drug discovery process. Drug Discov World Summer 12:39–45

Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814:942–968

Klotz IM (1959) Protein behavior. Science 129:608

Kostylev MA et al (2018) Liquid and hydrogel phases of PrP(C) linked to conformation shifts and triggered by Alzheimer’s amyloid-beta oligomers. Mol Cell 72:426–443.e12

Kövér KE, Forgó P (2004) J-modulated ADEQUATE (JM-ADEQUATE) experiment for accurate measurement of carbon–carbon coupling constants. J Magn Reson 166:47–52

Kovermann M, Rogne P, Wolf-Watz M (2016) Protein dynamics and function from solution state NMR spectroscopy. Q Rev Biophys 49:45

Kranz M et al (2006) Solution, solid phase and computational structures of apicidin and its backbone-reduced analogs. J Pept Sci 12:383–388

Krishnamurthy VV (1996) Excitation-sculptured indirect-detection experiment (EXSIDE) for long-range CH coupling-constant measurement. J Magn Reson Ser A 121:33–41

Lee C-J et al (2016) Drug design from the cryptic inhibitor envelope. Nat Commun 7:10638

Lee AL, Kinneir SA, Wand AJ (2000) Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nat Struct Biol 7:72–77

Liu Y et al (2017) Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science 356:eaam5349

Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198–D201

Luchinat E et al (2020) Drug screening in human cells by nmr spectroscopy allows the early assessment of drug potency. Angew Chem Int Ed Engl 59:6535–6539

Luckner SR, Liu N, Am Ende CW, Tonge PJ, Kisker C (2010) A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis. J Biol Chem 285:14330–14337

Luque I, Freire E (2002) Structural parameterization of the binding enthalpy of small ligands. Proteins: Struct Funct Genet 49:181–190

Malde AK, Hill TA, Iyer A, Fairlie DP (2019) Crystal structures of protein-bound cyclic peptides. Chem Rev 119:9861–9914

Manglik A et al (2015) Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161:1101–1111

Markovitch O, Agmon N (2007) Structure and energetics of the hydrogen hydration shells. J Phys Chem A 111:2253–2256

Marlow MS, Dogan J, Frederick KK, Valentine KG, Wand AJ (2010) The role of conformational entropy in molecular recognition by calmodulin. Nat Chem Biol 6:352–358

Mauldin RV, Carroll MJ, Lee AL (2009) Dynamic dysfunction in dihydrofolate reductase results from antifolate drug binding: modulation of dynamics within a structural state. Structure 17:386–394

Merino F, Raunser S (2017) Electron cryo-microscopy as a tool for structure-based drug development. Angew Chem Int Ed Engl 56:2846–2860

Milo R, Phillips RB, Orme N, Garland S (2016) Cell biology by the numbers. Garland Science, Taylor & Francis Group, New York, Abingdon

Mizukoshi Y et al (2016a) Improvement of ligand affinity and thermodynamic properties by NMR-based evaluation of local dynamics and surface complementarity in the receptor-bound state. Angew Chem Int Ed 55:14606–14609

Mizukoshi Y et al (2016b) Improvement of ligand affinity and thermodynamic properties by NMR-based evaluation of local dynamics and surface complementarity in the receptor-bound state. Angew Chem Int Ed 55:14606–14609

Morrison C (2018) Constrained peptides’ time to shine? Nat Rev Drug Discov 17:531–533

Namanja AT et al (2010) Toward flexibility-activity relationships by NMR spectroscopy: dynamics of Pin1 ligands. J Am Chem Soc 132:5607–5609

Ndulwe IE et al (2019) 13C NMR-based approaches for solving challenging stereochemical problems. Org Lett 21:4072–4076

Nguyen QNN, Schwochert J, Tantillo DJ, Lokey RS (2018) Using (1)H and (13)C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach. Phys Chem Chem Phys 20:14003–14012

Nikiforovich GV, Kövér KE, Zhang W-J, Marshall GR (2000) Cyclopentapeptides as flexible conformational templates. J Am Chem Soc 122:3262–3273

Nitsche C, Otting G (2017) Pseudocontact shifts in biomolecular NMR spectroscopy. Wiley-VCH, Weinheim

Nitsche C, Otting G (2018) NMR studies of ligand binding. Curr Opin Struct Biol 28:137–144

Nitsche C, Otting G (2019) NMR studies of ligand binding. Curr Opin Struct Biol 28:14330–14337

Nitsche C, Otting G (2020) NMR studies of ligand binding. Curr Opin Struct Biol 49:1–8

Nitsche C, Otting G (2021) NMR studies of ligand binding. Curr Opin Struct Biol 49:172–180

Nitsche C, Otting G (2022) NMR studies of ligand binding. Curr Opin Struct Biol 49:479–498

© Springer
Tokunaga Y, Takeuchi K, Shimada I (2017) Forbidden coherence transfer of 19F nuclei to quantitatively measure the dynamics of a CF3-containing ligand in receptor-bound states. Molecules 22:1492
Tokunaga Y, Viennet T, Arthanari H, Takeuchi K (2020) Spotlight on the ballet of proteins: the structural dynamic properties of proteins illuminated by solution NMR. Int J Mol Sci 21:1829
Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci 33:2–8
Tonge PJ (2018) Drug-target kinetics in drug discovery. ACS Chem Neurosci 9:29–39
Trigo-Mourino P, Griesinger C, Lee D (2017) Label-free NMR-based dissociation kinetics determination. J Biomol NMR 69:229–235
Tugarinov V, Sprangers R, Kay LE (2007) Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy. J Am Chem Soc 129:1743–1750
Tzeng SR, Kalodimos CG (2009) Dynamic activation of an allosteric regulatory protein. Nature 462:368–372
Vacic V et al (2012) Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput Biol 8:e1002709
Vahidi S et al (2020) An allosteric switch regulates Mycobacterium tuberculosis ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Proc Natl Acad Sci 117:5895
Valeur E et al (2017) New modalities for challenging targets in drug discovery. Angew Chem Int Ed Engl 56:10294–10323
Vallurupalli P, Bouvignies G, Kay LE (2012) Studying "invisible" excited protein states in slow exchange with a major state conformation. J Am Chem Soc 134:8148–8161
Vallurupalli P, Sekhar A, Yuwen T, Kay LE (2017) Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer. J Biomol NMR 67:243–271
van der Spoel D, van Maaren PJ, Larsson P, Timneanu N (2006) Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J Phys Chem B 110:4393–4398
van Noord JA, Bantje TA, Eland ME, Korducki L, Cornelissen PJ, The Dutch Tiotropium Study Group (2000) A randomised controlled comparison of tiotropium nd ipratropium in the treatment of chronic obstructive pulmonary disease. Thorax 55:289–294
Vinogradov AA, Yin Y, Suga H (2019) Macrocyclic peptides as drug candidates: recent progress and remaining Challenges. J Am Chem Soc 141:4167–4181
Vulpetti A, Dalvit C (2012) Fluorine local environment: from screening to drug design. Drug Discov Today 17:890–897
Wahyudi H, Tantisantisom W, McAlpine SR (2014) Sanguinamide B analogs: identification of active macrocyclic structures. Tetrahedron Lett 55:2389–2393
Wand AJ (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 8:926–931
Wand AJ (2012) The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation. Curr Opin Struct Biol 23:75–81
Wand AJ, Sharp KA (2018) Measuring entropy in molecular recognition by proteins. Annu Rev Biophys 47:41–61
Wang J et al (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem Rev 114:2432–2506
Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009
Williams RJ (1981) Studies of larger motions within proteins by nuclear magnetic resonance spectroscopy. Biochem Soc Symp 46:57–72
Wilson JE et al (2016) Discovery of novel indoline cholesterol ester transfer protein inhibitors (CETP) through a structure-guided approach. ACS Med Chem Lett 7:261–265
Witek J et al (2016) Kinetic models of cyclosporin A in polar and apolar environments reveal multiple congruent conformational states. J Chem Inf Model 56:1547–1562
Witek J et al (2017) Interconversion rates between conformational states as rationale for the membrane permeability of cyclosporines. ChemPhysChem 18:3309–3314
Witek J et al (2019) Rationalization of the membrane permeability differences in a series of analogue cyclic decapeptides. J Chem Inf Model 59:294–308
Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27:249–284
Ye L, Van Eps N, Zimmer M, Ernst OP, Scott Prosser R (2016) Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533:265
Yip KM, Fischer N, Paknia E, Chari A, Stark H (2020) Breaking the next Cryo-EM resolution barrier—atomic resolution determination of proteins! bioRxiv. https://doi.org/10.1101/2020.05.21.106740
Ziarek JJ, Baptista D, Wagner G (2018) Recent developments in solution nuclear magnetic resonance (NMR)-based molecular biology. J Mol Med (Berl) 96:1–8

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.