α cluster states in 44,46,52Ti

M. Fukada,1 M. K. Takimoto,2 K. Ogino,3 S. Ohkubo4
1Kyoto Pharmaceutical University, Kyoto 607-8014, Japan
2Department of Physics, Kyoto University, Kyoto 606-8502, Japan
3Department of Nuclear Engineering, Kyoto University, Kyoto 606-8502, Japan
4Department of Applied Science and Environment, Kochi Women's University, Kochi 780-8515, Japan

α decaying states of 44,46,52-Ti were investigated with angular correlation functions between t and α with the 40,42,48Ca(7Li, α)40,42,48Ca reactions at E = 26.0 MeV. Many α cluster states were newly observed in the 10 - 15 MeV excitation energy of 44Ti and their spin-parities were assigned, in which J = 7− state was found at 11.95 MeV as a candidate for the member of the K = 0− negative parity band. In 46Ti many α cluster states were also found in the 11 - 17 MeV excitation energy with the 42Ca(7Li, α)42Ca reaction, though its strength is weak compared to 44Ti. No α cluster states were detected for the 48Ca(7Li, α)48Ca reaction, in which the number of coincidence events decaying from 48Ca was very small.

PACS numbers: 21.60.Gx, 25.70.-z, 27.40.+z

I. INTRODUCTION

The α cluster model plays an important role in the study of nuclear structure as well as the shell model and the collective model. It is especially important for understanding the structure of light nuclei such as 8Be to 24Mg in the decay threshold energy region [1, 2]. To study α clusters in heavier nuclei many theoretical and experimental investigations have been performed focusing on 40Ca and 44Ti [3, 4]. The negative parity K = 0− band with α cluster structure predicted by theoretical calculations [5, 6], has been discovered using α transfer experiments [7, 8].

Detailed experimental studies have been devoted to 44Ti, which is a typical 4N nucleus in the fp-shell, and the existence of 1−, 3−, 5− states of the K = 0− band has been reconfirmed [9, 10]. It is interesting to explore the negative parity states with J > 5 of the K = 0− band, but it seems that the 40Ca(6Li, d)44Ti reaction is not good at finding α cluster states at excitation energies above 10 MeV. This is because of the continuous spectrum of deuterons produced as a result of the dissociation of 6Li when bombarded against 40Ca is large. On the other hand angle correlation reactions such as (6Li,da) and (7Li,ta) are effective for investigating the α cluster structure in that highly excited region, as we showed in the study of the α cluster states in 38Ar in Ref.11. Artemov et al. [12] also studied the excited energy region above 11 MeV in 44Ti using the angle correlation reaction with the (6Li,da) reaction but negative parity states with J > 5 were not found.

On the other hand it has been shown that extra valence neutrons play an important role in the stabilization of the α cluster structure for non 4N nuclei. 46Ti is an analogue of 10Be and 22Ne for which it has been shown that the α cluster structure persists [13, 14]. In 52Ti a possible α cluster structure was discussed for the ground band from the viewpoint of unified description of structure and scattering of the α-48Ca system [15]. However, few experimental studies have been done in the highly excited energy region.

In the present paper the α cluster structure in 44Ti, 46Ti and 52Ti were investigated with the (7Li, α) reaction.

II. EXPERIMENTAL PROCEDURE AND RESULTS

7Li ions at 26 MeV incident energy from the Pelletron Accelerator at Kyoto University were bombarded against 40,42,48Ca targets. The 40Ca (150 μg/cm²) target was prepared by evaporating natural Ca metal (40Ca component 96.9%) on carbon foil. The 42Ca (310 μg/cm²) target was prepared by chemical vapor deposition from enriched (93.65%) 42CaCO₃ on carbon foil. The 48Ca (2.03 mg/cm²) target was obtained by rolling enriched (97.80%) 48Ca metal in dried pure Ar gas.

Tritons were detected by the detector telescope which consisted of a 150μm thick silicon ΔE detector and a 2mm thick silicon E detector placed at an angle of 7.5° to the horizontal plane of the beam axis. The acceptance angle of the telescope was 1.5° in the scattering plane and its solid angle was 2.0 msr. A 120μm thick Al-foil was placed in front of the ΔE detector to stop the 7Li ions which were elastically scattered by the target. The α particles were detected in coincidence with the tritons by 8 silicon photo-diode detectors placed at 8 angles between +103.2° and +173.2°. The aperture of each photo-diode was 10 mm width and 20 mm height. Its solid angle was 15.1 msr and the depletion layer was 300 μm. A 100μm SSD was used to monitor the variation of the beam intensity and the target thickness.

Figure 1 and Figure 2 show the two dimensional energy spectra of t – α coincidences from the 40Ca target and 42Ca target. In Fig.1 the loci (a) is from the 40Ca(7Li, α)40Ca(g.s.) reaction and the locus (b) is from the 40Ca(7Li, α)40Ca*(3.35 MeV; 2+)}
reaction. In Fig.2 the locus (a) is from the \(^{42}\text{Ca}\to^{7}\text{Li}, \to\alpha\) \(^{40}\text{Ca}\) reaction and the locus (b) is from the \(^{42}\text{Ca}\to^{7}\text{Li}, \to\alpha\) \(^{42}\text{Ca}\) reaction. In the case of the \(^{48}\text{Ca}\to^{7}\text{Li}, \to\alpha\) \(^{48}\text{Ca}\) reaction, the locus of \(t-\alpha\) that came out from \(^{52}\text{Ti}\) could not be discerned buried in the background data, though the thickness of the target was increased to 13.5 times and the beam integration of \(^{7}\text{Li}\) was increased to a factor of 1.5 compared with \(^{40}\text{Ca}\). Figure 3 shows the energy spectrum of the tritons obtained from the \(^{40}\text{Ca}\to^{7}\text{Li}, \to\alpha\) \(^{40}\text{Ca}\) reaction. Figure 4 shows the energy spectra of the tritons from \(^{42}\text{Ca}\to^{7}\text{Li}, \to\alpha\) \(^{42}\text{Ca}\) in the lower part and \(^{42}\text{Ca}\to^{7}\text{Li}, \to\alpha\) \(^{42}\text{Ca}\) in the upper part. The horizontal axes show the excitation energy of \(^{44}\text{Ti}\) in Fig. 3 and \(^{46}\text{Ti}\) in Fig. 4, and the vertical axes show the summed counts of the tritons detected with eight silicon photo-diode detectors. The energy resolution of the triton was within 70 keV in both reactions. The number of \(t-\alpha\) coincidence events decaying from \(^{40}\text{Ca}\) is very small compared to that from \(^{40}\text{Ca}\). In contrast the number of \(t-\alpha\) coincidence events decaying from \(^{42}\text{Ca}\) is larger than that from \(^{40}\text{Ca}\) by a factor of 1.5.

III. ANALYSIS AND DISCUSSION

Figure 5 and Figure 6 show the angular correlation distributions of the levels excited in the \(^{40}\text{Ca}\to^{7}\text{Li}, \to\alpha\) \(^{40}\text{Ca}\) reaction. The experimental data have been fitted with the squares of the Legendre polynomial \(|P_{2}(\cos\Theta)|^{2}\). Figure 7 and Figure 8 show the angular correlation distributions of the levels excited in the \(^{42}\text{Ca}\to^{7}\text{Li}, \to\alpha\) \(^{42}\text{Ca}\) reaction.

In our present correlation experiment the detection angle of the triton was fixed at \(\Theta_{ab} = 7.5^\circ\). When the triton is detected at angles other than \(0^\circ\), it is known that the angular distribution patterns of the \(\alpha\) particle shift from \(180^\circ\) symmetry in the center of mass system in the reaction plane, because the wave function of the triton is distorted in the exit channel of the reaction. The amount of this angle shift tended to decrease with the increase of the excitation energy of the \(\alpha\) emitting nucleus \(^{44}\text{Ti}\). In the present experiment, the shift also decreased linearly from \(+7^\circ\) as the excitation energy of the \(^{44}\text{Ti}\) nuclei got higher. In fitting our experimental data the amount of the shift calculated from that linear relationship was used.

A. \(^{44}\text{Ti}\)

Figure 9 shows the energy levels of \(^{44}\text{Ti}\) above \(\alpha\) decay threshold that have been observed up to now in \(\alpha\) transfer reactions. Yamaya et al. \(^{6}\text{Li}, \alpha\) \(^{56}\text{Ni}\) reaction with incident energies of 50 MeV \(^{6}\text{Li}\) and 37 MeV \(^{56}\text{Ni}\). Similarly, Guazzoni et al. \(^{6}\text{Li}, \alpha\) \(^{16}\text{O}\) reaction with incident energy of 60.1 MeV. In those experiments no levels could be obtained above 11 MeV. Meanwhile Artemov et al. \(^{6}\text{Li}, \alpha\) \(^{44}\text{Ti}\) \(^{12}\text{C}\) \(^{12}\text{C}\) \(^{12}\text{C}\) reaction.
FIG. 3: Spectrum of $t - \alpha$ coincidences from the 40Ca(7Li, $t\alpha$)40Ca reaction. The counts are the sum of the events from the eight photo-diode detectors. Peaks fitted with $|P_L(cos\theta)|^2$ are indicated by solid arrows. Data below 8.25 MeV in the excitation energy are multiplied by a factor of five.

FIG. 4: Spectra of $t - \alpha$ coincidences from the 42Ca(7Li, $t\alpha$)42Ca reaction. The upper part is from that decaying to the first excited state (1.524 MeV, 2^+_1) of 42Ca. The lower part is from that decaying to the ground state of 42Ca. Both counts are the sum of the events from the eight photo-diode detectors. Peaks fitted with $|P_L(cos\theta)|^2$ are indicated by solid arrows.
correlation experiment with an incident beam of 22 MeV and reported some α cluster states and bands in the excitation energy of 11 MeV to 16 MeV, though they did not mention about the structures below 11 MeV. We have found more than twenty α cluster states with the (7Li, tα) reaction and our results are compared to others' as follows.

7.01 MeV, 7.56 MeV: Because the threshold level of discriminators of the particle detecting system reduced the α yields, we could not obtain angular correlation distributions of these states. However these states show clear peaks as seen in Fig. 3, although there may be some levels scattered around 7.56 MeV. We concluded these states are α cluster states which correspond to the ones found by Yamaya et al. [9, 11] and Guazzoni et al. [12].

8.20 MeV: This is the lowest excited state that could be fitted with the angular correlation function and we assigned its spin-parity as $J^\pi = 1^-$ or 2^+. Yamaya et al. [9, 11] and Guazzoni et al. [12] found $J^\pi = 1^-$ state at 8.17 MeV and 8.18 MeV respectively. We may conclude the present state corresponds to those levels.

8.45 MeV: We could assign its spin-parity to $J^\pi = 3^-$, though we detected a weak peak on the shoulder of this state. Meanwhile Yamaya et al. [9, 11] assigned $J^\pi = 3^-$ to this state and they also found the state with $J^\pi = 2^+$ as follows.
Angular correlation function (arb. units)

Ex (MeV)	L
11.92	1-4
12.40	2-3
13.32	4
13.72	6-7
14.31	2-3
14.74	8-9
14.17	7-8
15.01	6-7
15.41	4-5
15.62	4-5
15.83	1-5

FIG. 8: Angular correlation functions at Ex(46Ti)=16.09, 16.22, 16.34 and 16.55 MeV. Data are from the 42Ca(7Li,2α)42Ti(g.s.) reaction. The solid lines are the best |P_L(cosθ)|^2 fits to the data. The dashed lines show the second best fits in the case it is difficult to obtain unique L-values.

or 3^- at 8.54 MeV. In addition Guazzoni et al. found J^π = 3^- state at 8.38 MeV and 8.54 MeV.

8.95 MeV: This is a strongly activated state as seen in Fig. 3 and we assigned the spin-parity to J^π = 4^+.

Yamaya et al. [9, 11] found the 8.96 MeV state whose spin-parity was assigned to J^π = 4^+, whereas Guazzoni et al. [12] found the 8.95 MeV state with J^π = 4^+.

9.40 MeV: It is also a strongly excited state whose peak width is a little broadened and we assigned its spin-parity as J^π = 5^-.

We could fit it with the L = 5 angular correlation function very well, though it may consist of two levels, indicating that it is the same 5^- level at 9.43 MeV found by Yamaya et al. [9, 11] and Guazzoni et al. [12].

9.58 MeV: This state was well fitted with L = 5 and assigned to be a J^π = 5^- level. This level is in good agreement with Yamaya et al. [9, 11].

10.70 MeV: We assigned its spin-parity to be J^π = 4^+.

11.04 MeV: It is a newly found level and we assigned its spin-parity to J^π = 4^+.

11.11 MeV, 11.66 MeV: We assigned the spin-parities of these states to J^π = 5^- or 6^+, and J^π = 3^-, respectively.

11.81 MeV: We assigned the spin of this state to J^π = 4^+ or 5^- whereas Artemov et al. [14] assigned it to J^π = 4^-.

11.95 MeV: This newly found state was assigned to be a J^π = 7^- level, because the phase pattern is more reproduced by L = 7, though L = 4 improves the fit in the angles larger than 150°. It seems to correspond to the 7^- state of the K = 0^- band predicted around 12.4 MeV in Ref. [3].
FIG. 9: Energy levels of 44Ti observed in the 40Ca(6Li, d)44Ti reaction by Guazzoni et al. [12] as well as Yamaya et al. [9, 11].
12.11 MeV, 12.58 MeV: These state were well fitted with \(L = 4 \) and assigned to \(J^\pi = 4^+ \).

12.86 MeV: This is guessed to be either \(J^\pi = 3^- \) or \(4^+ \). Artemov et al. [14] found a \(J^\pi = 3^- \) state at 12.86 MeV, and the present state may correspond to that state.

13.24 MeV: This is also guessed to be either \(J^\pi = 3^- \) or \(4^+ \).

13.44 MeV: This state was well fitted with \(L = 5 \) and we assigned its spin-parity to \(J^\pi = 5^- \). Whereas Artemov et al. [14] reported the state of \(J^\pi = 4^+ \) around 13.42 MeV.

13.97 MeV: We assigned the spin-parity of this state to \(J^\pi = 3^- \). This state corresponds well to the \(J^\pi = 3^- \) state of the higher nodal \(K = 0^- \) band with the well-developed \(\alpha + 40\text{Ca} \) cluster structure discussed by Ohkubo et al. [8].

14.27 MeV: We assigned the spin-parity of this state to \(J^\pi = 4^+ \) or \(J^\pi = 5^- \). Because the state has a clear peak and it is apart from the \(J^\pi = 5^- \) state found by Artemov et al. [14], it can not correspond to the state with a wide energy width of 14.5\~14.9 MeV.

14.71 MeV, 14.83 MeV: These states are guessed to be \(J^\pi = 5^- \) or \(6^+ \), and \(J^\pi = 3^- \) or \(4^+ \), respectively. The present levels lie in a broad band centering on the excitation energy of 14.7\~0.2 MeV for which Artemov et al. [14] presumed \(J^\pi = 5^- \).

15.35 MeV, 16.02 MeV: The yields at these states were too small to obtain \(L \)-values from the angular correlation distributions. The \(J^\pi = 6^+ \) band at 15.9\~16.3 MeV denoted by Artemov et al. [14] is the only excited state which has been reported above 15 MeV. The present states with narrow peaks may show that the band \(J^\pi = 6^+ \) state is fragmented in this area if the report by Artemov et al. [14] is correct.

B. \(^{46}\text{Ti} \)

It has been shown that \(\alpha \) clustering persists in neutron rich nuclei, for example, in \(^{10}\text{Be} \) [15, 16] with the two valence nucleons added to the \(\alpha + \alpha \) cluster structure, in the 0p-shell region and in \(^{22}\text{Ne} \) in which two valence nucleons added to the \(\alpha + 16\text{O} \) cluster structure in the \(sd \)-shell region [10, 18–20]. It is very interesting to study to what extent the \(\alpha \) clustering persists in the fp-shell region when the extra valence nucleons are added to the typical nucleus \(^{44}\text{Ti} \) with the \(\alpha + 40\text{Ca} \) cluster structure. \(^{46}\text{Ti} \), for which few experimental and theoretical \(\alpha \) cluster studies have been devoted, is an analog of \(^{22}\text{Ne} \). Although many excited states of \(^{46}\text{Ti} \) have been reported below 10 MeV, the purposes of those experiments were not to investigate whether \(^{46}\text{Ti} \) shows the \(42\text{Ca} + \alpha \) structure. An \(\alpha \) transfer experiment with the \((6\text{Li},d) \) reaction was reported in Ref. [24]. However, only the ground state and the first excited state of \(^{46}\text{Ti} \) were examined.

The present angular correlation experiment is the first to investigate the \(\alpha \) cluster structure of \(^{46}\text{Ti} \). Table I shows the observed \(\alpha \) cluster states in \(^{46}\text{Ti} \) with the spin assignments obtained from the analysis given in Figs. 7 and Fig. 8.

We may conclude that the present excited states with natural parities have the \(\alpha + 42\text{Ca}(\text{g.s.}) \) or \(\alpha + 42\text{Ca}(2^-) \) structure in \(^{46}\text{Ti} \), although \(\alpha \) strengths are not as strong as in \(^{44}\text{Ti} \). On the other hand the main feature of the present \(42\text{Ca}(7\text{Li},t\alpha)42\text{Ca} \) reaction is that the decay to the \(2^+ \) state of \(^{42}\text{Ca} \) was stronger than to the ground state unlike the \(40\text{Ca}(7\text{Li},t\alpha)40\text{Ca} \) reaction. Because almost the same number of states are excited in \(^{44}\text{Ti} \) and \(^{46}\text{Ti} \) in the relevant energy region, \(\alpha \) cluster structure in \(^{46}\text{Ti} \) may be analogous to \(^{44}\text{Ti} \). Since the core \(^{42}\text{Ca} \) is soft compared with the core \(^{40}\text{Ca} \), the two \(\alpha \) cluster structures with the \(\alpha + 42\text{Ca}(\text{g.s.}) \) and \(\alpha + 42\text{Ca}(2^-) \) configurations may coexist in \(^{46}\text{Ti} \) in the relevant energy region.

C. \(^{52}\text{Ti} \)

The \(^{40}\text{Ca} \sim 48\text{Ca} \) nuclei are isotopes with \(Z=20 \), in which neutrons fill the \(0f_{7/2} \) shell as the mass number increases from \(A=40 \) to 48, until \(^{48}\text{Ca} \) becomes a doubly closed nucleus. The persistency of \(\alpha \) clustering in such nuclei is an interesting theme. Although there are some experiments which have measured the ground band for \(^{52}\text{Ti} \) [24, 26], it is important to explore the cluster state in the higher excited energy region using the correlation method.

TABLE I: Excited states in \(^{46}\text{Ti} \) with adopted \(J^\pi \)

Decay mode	Excited Energy (MeV)	\(J^\pi \)
g.s.	11.92	\(1^+ ,2^+ \)
12.40	\(2^- \)	
13.32	\(4^+ \)	
13.49	\(3^- \)	
13.72	\(6^+ ,7^- \)	
14.03	\(7^- \)	
14.17	\(7^- ,8^+ \)	
14.31	\(2^+ ,3^- \)	
14.74	\(8^+ ,9^- \)	
15.01	\(6^+ ,7^- \)	
15.18	\(1^- ,5^- \)	
15.41	\(4^+ ,5^- \)	
15.62	\(4^+ ,5^- \)	
15.83	\(1^- \)	
16.09	\(1^- ,9^- \)	
16.22	\(5^- ,6^+ \)	
16.34	\(5^- \)	
16.55	\(3^- \)	
\(2^+ \)	13.49	
13.60	\(3^- \)	
13.72	\(3^- \)	
14.03	\(4^+ \)	
14.74	\(7^- \)	
15.01	\(1^- \)	
15.72	\(1^- \)	
16.02	\(1^- \)	
16.22	\(5^- \)	
16.55	\(3^- \)	
TABLE II: Relative ratio of the reaction cross sections

Reaction	$\frac{d\sigma}{dE}$ (arb. unit)	Relative ratio
40Ca(7Li,t)42Ca(g.s.)	3.6 ± 0.04×10$^{-3}$	1.0
42Ca(7Li,t)44Ca(g.s.)	2.02 ± 0.65×10$^{-4}$	0.056
42Ca(7Li,t)42Ca(2$^+_1$)	3.02 ± 0.84×10$^{-4}$	0.084
48Ca(7Li,t)44Ca(g.s.)	≪ 5.2 × 10$^{-6}$	≪ 0.0014

To examine the α cluster structure of 52Ti, we performed the 48Ca(7Li,t)52Ti(α)48Ca reaction experiment using thin 48Ca metal targets deposited onto thin carbon foils. However, any yield was not obtained in spite of a long machine time. In the following experiment a thick 48Ca target made by pressing 48Ca metal was used. Nevertheless, the cross section of the α cluster transfer reaction that produced 52Ti was extremely small and no excited states were obtained. In Table II the variation of the relative cross sections in the (7Li,t) reaction targeting on 40Ca, 42Ca and 48Ca is shown. The cross sections there correspond to the coincidence events between the triton detectors in $\Theta_L = 7.5^\circ$ and the eight α detectors, and not the total cross section. The strengths of 5.6% in the 42Ca(7Li,t)44Ca(g.s.) reaction and 8.4% in the 42Ca(7Li,t)42Ca(2$^+_1$) reaction were obtained when the strength in the 40Ca(7Li,t)40Ca(g.s.) reaction was assumed to be 1.0. In contrast the strength in 48Ca(7Li,t)48Ca reaction was only 0.14% or less. This suggests that the α clustering is the more suppressed in 52Ti nuclei the more extra neutrons are added filling the $0f_{7/2}$ shell.

IV. CONCLUSION

Angular correlation experiments with the (7Li,t) reaction were performed using 40Ca, 42Ca and 48Ca targets to investigate the α cluster states of 44Ti, 46Ti and 52Ti nuclei. For 44Ti twenty-four α cluster states were observed in the excitation energy of 7 MeV to 16 MeV. We could uniquely assign spin-parities to the eight states at 10.70 MeV (4$^+$), 11.04 MeV (4$^+$), 11.66 MeV (3$^-$), 11.95 MeV (7$^-$), 12.11 MeV (4$^+$), 12.58 MeV (4$^+$) 13.44 MeV (5$^-$) and 13.97 MeV (3$^-$) as newly found α cluster levels, in which the state at 11.95 MeV (7$^-$) seems correspond to the $J^* = 7^-$ state of the $K = 0^+$ band predicted in Ref.[8] but not observed in the (6Li,d) α transfer reactions. The seven states at 11.11 MeV (5$^-$, 6$^+$), 11.81 (4$^+$, 5$^-$), 12.86 MeV (3$^-$, 4$^+$), 13.24 MeV (3$^-$, 4$^+$), 14.27 MeV (4$^+$, 5$^-$), 14.71 MeV (5$^-$, 6$^+$), and 14.83 MeV (3$^-$, 4$^+$) are also α cluster levels that had not been discovered in other studies, though some uncertainties remain for the spin assignments in the present study. The state at 8.20 MeV (1$^-$, 2$^+$) may correspond to the (1$^-$) states at 8.17 MeV and 8.18 MeV reported by other experiments[9, 11]. The states at 8.45 MeV ($J^\pi = 3^-$), 8.95 MeV (4$^+$), 9.40 MeV (5$^-$) and 9.58 MeV (5$^-$) are well agreement to the state at 8.45 MeV, 8.96 MeV, 9.43 MeV and 9.58 MeV reported by Yamaya et al.[9, 11]. Spins could not be assigned to the two states at 7.01 MeV, 7.56 MeV in lower excitation energy and the two states at 15.35 MeV, 16.02 MeV in higher excitation energy, because the number of coincidence events was too small to obtain L-values with the angular correlation functions.

For 46Ti many candidates of the α cluster state are found in the excitation energy of 11 MeV to 17 MeV by the reactions that decay to the ground state and the first excited state of 42Ca. Spin-parities of the seven states were uniquely assigned at 12.40 MeV (2$^+$), 13.32 MeV (4$^+$), 13.49 MeV (3$^-$), 14.03 MeV (7$^-$), 15.83 MeV (1$^-$), 16.34 MeV (5$^-$) and 16.55 MeV (3$^-$). We also assigned with some ambiguities to the eleven states at 11.92 MeV (1$^-$, 2$^+$), 13.72 MeV (6$^+$, 7$^-$), 14.17 MeV (7$^-$, 8$^+$), 14.31 MeV (2$^+$, 3$^-$), 14.74 MeV (8$^+$, 9$^+$), 15.01 MeV (6$^+$, 7$^-$), 15.18 MeV (1$^-$, 5$^-$), 15.41 MeV (4$^+$, 5$^+$), 15.62 MeV (4$^+$, 5$^+$), 16.09 MeV (1$^-$, 9$^-$) and 16.22 MeV (5$^-$, 6$^+$).

For 52Ti no peaks could be detected in the energy spectrum of $t - \alpha$ coincidences from the 48Ca(7Li,t)52Ca reaction due to very scarce coincidence events.

The variation of the (7Li, t) reaction cross section with the increase of neutrons in the Ca target was investigated with three Ca isotopes. The relative α strength for 42Ca target was about one-tenth of 40Ca target and in the case of 48Ca its upper limit was 0.14 percent. This shows that the increase of neutrons weakens the structure of the α cluster in 52Ti nuclei.

V. ACKNOWLEDGEMENT

The authors thank Professor K. Imai, Professor H. Sakaguchi and other staff of the Pelletron Accelerator at Kyoto University for their encouragement and assistance in the operation of the accelerator.

[1] H. Horiuchi, K. Ikeda, and Y. Suzuki, Prog. Theor. Phys. Suppl. 52, 89 (1972).
[2] Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kato, Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980).
[3] S. Ohkubo, M. Fujiwara, and P. E. Hodgson, Prog. Theor. Phys. Suppl. 132, 1 (1998).
[4] F. Michel, S. Ohkubo, and G. Reidemeister, Prog. Theor. Phys. Suppl. 132, 7 (1998).
[5] T. Yamaya, K. Katori, M. Fujiwara, S, Kato, and S. Ohkubo, Prog. Theor. Phys. Suppl. 132, 73 (1998).
[6] F. Michel, G. Reidemeister, and S. Ohkubo, Phys. Rev.
[7] S. Ohkubo, Phys. Rev. C 38, 2377 (1988).
[8] S. Ohkubo, Y. Hirabayashi, and T. Sakuda, Phys. Rev. C 57, 2760 (1998).
[9] T. Yamaya, S. Oh-ami, M. Fujiwara, T. Itahashi, K. Katori, M. Tosaki, S. Kato, S. Hatori, and S. Ohkubo, Phys. Rev. C 42, 1935 (1990).
[10] T. Yamaya, S. Saitoh, M. Fujiwara, T. Itahashi, K. Katori, T. Suehiro, S. Kato, S. Hatori, and S. Ohkubo, Nucl. Phys. A573, 154 (1994).
[11] T. Yamaya, K. Ishigaki, H. Ishiyama, T. Suehiro, S. Kato, M. Fujiwara, K. Katori, M. H. Tanaka, S. Kubono, V. Guimaraes, and S. Ohkubo, Phys. Rev. C 53, 131 (1996).
[12] P. Guazzoni, M. Jaskola, L. Zetta, C. Y. Kim, T. Udagawa, and G. Bohlen, Prog. Nucl. Phys. A564, 425 (1993).
[13] M. Fukada, M. Ohmura, F. Harima, K. Ogino, K. Takeda, and S. Ohkubo, Phys. Rev. C 71, 067602 (2005).
[14] K. P. Artemov, M. S. Golovkov, V. V. Pankratov, and V. P. Rudakov, Phys. At. Nucl. 58, 177 (1995).
[15] W. von Oertzen, Il Nuovo Cimento A110, 895 (1997).
[16] W. von Oertzen, M. Freer, and Y. Kanada-En’yo, Phys. Rep. 432, 43 (2006).
[17] M. Seya, M. Kohno, and S. Nagata, Prog. Theor. Phys. 65, 204 (1981).
[18] G. V. Rogachev, V. Z. Goldberg, T. Lönneroth, W. H. Trzaska, S. A. Fayans, K.-M. Källman, J. J. Kolata, M. Mutterer, M. V. Rozhkov, and B. B. Skorodumov, Phys. Rev. C. 64, 051302 (2006).
[19] M. Dufour and P. Descouvemont, Nucl. Phys. A 726, 53 (2003).
[20] M. Kimura, Phys. Rev. C. 75, 0343127 (2006).
[21] S. Ohkubo, K. Umehara, and K. Hiraoka, Proc. Int. Symp. on Developments on Nuclear Cluster Dynamics, edited by Y. Akaishi et al. (World Scientific, Singapore, 1988) pp.114-126.
[22] A. Cunsolo, A. Foti, G. Imme, G. Pappalardo, and G. Raciti, Phys. Rev. C 87, 2345 (1980).
[23] K. P. Artemov, R. Wolski, M. S. Golovkov, L. S. Danelyan, M. Madeya, V. V. Pankratov, V. P. Rudakov, I. N. Serikov, V. A. Timofeev, and J. Sneider, Sov. J. Nucl. Phys. 54, 719 (1991).
[24] H. W. Fulbright, C. L. Bennett, R. A. Lindgren, R. G. Markham, S. C. McGuire, G. C. Morrison, U. Strothbusch, and J. Toke, Nucl. Phys. A284, 329 (1977).
[25] E. Mathiak, K. A. Eberhard, J. G. Cramer, H. H. Rossner, J. Stettmeier, and A. Weidinger, Nucl. Phys. A259, 129 (1976).
[26] G. R. Morgan and N. R. Fletcher, Phys. Rev. C. 16, 167 (1977).