Large interlayer spacing Nb₄C₃Tₓ (MXene) promotes the ultrasensitive electrochemical detection of Pb²⁺ on glassy carbon electrode

P Abdul Rasheedᵃ, Ravi P Pandeyᵃ, Tricia Gomezᵃ, Michael Naguibᵇ, Khaled A Mahmoudᵃ*
ᵃQatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
bDepartment of Physics and engineering physics, Tulane University, New Orleans, LA, USA

* To whom all correspondence should be addressed:
E-mail: kmahmoud@hbku.edu.qa, Fax: +974 445441528, Phone: +974 44541694

Supporting Information
1. Synthesis of Nb$_2$AlC and Nb$_4$AlC$_3$ MAX phases

Powders of niobium (Alfa Aesar, 99.98%, -325 mesh), aluminum (Alfa Aesar, 99.9%, -325 mesh), and graphite C (Alfa Aesar, 99%, 7-11 micron) were mixed in ratios of 2Nb:1.3Al:1C for Nb$_2$AlC and 4Nb:1.5Al:2.7C for Nb$_4$AlC$_3$ were mixed for 3h at 56 rpm in a Turbula T2F mixer with yttria-stabilized zirconia balls as mixing media. After mixing, the Nb$_2$AlC powder was furnaced for 4 h at 1600°C with a 10 °C heating rate in a tube furnace under flowing argon. For Nb$_4$AlC$_3$, powders were pressed into ~10 g pellets and furnaced at 1700 °C for 1 h with a 10°C heating rate in a tube furnace under flowing argon. After furnacing, the products were ground to -400 mesh before etching. 1,2
Fig. S1. EDX data for (a) DL-Nb$_2$CT$_x$ and (b) DL-Nb$_4$C$_3$T$_x$.
2. Calculation of the electrochemical active surface area using Randles–Sevcik equation

The Randles–Sevcik equation is \(i_p = 2.69 \times 10^5 n^{3/2} A D^{1/2} C^{1/2} \nu^{1/2} \)

Where \(i_p \) = current maximum in amps, \(n \) = number of electrons transferred in the redox event (usually 1), \(A \) = electrode area in cm\(^2\), \(D \) = diffusion coefficient in cm\(^2\)/s, \(C \) = concentration in mol/cm\(^3\) and \(\nu \) = scan rate in V/s.

The \(n^{3/2} \) of 10mM of K\(_3\)[Fe(CN)\(_6\)] is 1 and Diffusion coefficient, \(D \) is 7.6 \times 10^{-6} \text{ cm}s\(^{-1}\). The electrochemical surface area was calculated from the anodic peak current at the scan rate 100mV/s\(^{-1}\).

From the above equation, the electrochemical active surface area was calculated as \(0.574 \times 10^{-3} \) cm\(^2\) and \(0.621 \times 10^{-3} \) cm\(^2\) for Nb\(_2\)CT\(_x\) and Nb\(_4\)C\(_3\)T\(_x\) respectively. \(^3\)
References

1. J. Yang, M. Naguib, M. Ghidiu, L.-M. Pan, J. Gu, J. Nanda, J. Halim, Y. Gogotsi and M. W. Barsoum, *Journal of the American Ceramic Society*, 2016, 99, 660-666.
2. M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi and M. W. Barsoum, *Journal of the American Chemical Society*, 2013, 135, 15966-15969.
3. P. V. Sarma, C. S. Tiwary, S. Radhakrishnan, P. M. Ajayan and M. M. Shaijumon, *Nanoscale*, 2018, 10, 9516-9524.