Evaluating the Effect of Supernatant Collected from the Culture of Bifidobacterium bifidum on the Increase of Angiogenesis in Acute Wound Healing

Pegah Moussavi Amin1, Akram Sadat Tabatabaee Bafroee1, Babak Khalili Hadad 2*

1. Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
2. Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran

10.30699/ijmm.15.5.552

ABSTRACT

Background and Aim: Wound healing is the result of interactions between cytokines, growth factors, blood, and extracellular matrix. Facing this challenging issue has become one of the essential concerns in health and medical fields, needing different remedies. One of the newest treatments in wound healing is the application of probiotic bacteria. Therefore, the aim of the current study is to evaluate the effect of Bifidobacterium bifidum probiotic bacteria on acute wound healing and exploring the potential of their supernatant on increasing angiogenesis in female mice in the form of biological dressing.

Materials and Methods: 44 female BALB/c mice were studied into six groups in two phases of 7 and 14 days. After the wounding process, wound sizes were measured by a digital caliper every 48 hours. Mice were dressed and treated. Histological samples were studied, and the results were analyzed statistically.

Results: Bifidobacterium b. probiotic bacteria not only show exciting potential as a therapeutic and effective agent but also our examination proved that application of this probiotic plus Aloe vera hydrogel (experimental group 1) can significantly reduce the wound healing duration and increases angiogenesis (P<0.05).

Conclusion: According to the findings of this study, the designed biological dressing, including Bifidobacterium b. supernatant and Aloe vera hydrogel, can be used in acute wound healing after further studies.

Keywords: Probiotic, Bifidobacterium bifidum, Acute wound healing, Culture supernatant

1. Introduction

The skin is the largest organ and the outer covering of the body of living organisms. Any damage such as wounding to this protective organ exposes the living organism to severe risks. Wounding activates the healing process, which includes different phases regulated by multiple growth factors and cytokines released from the wound site (1,2). Various treatment methods have been proposed to treat wounds, including treatment with natural compounds or chemical drugs. However, the investigation and identification of probiotic bacteria have directed the attention of scientific forums toward probiotic therapy.

Probiotic is derived from the Latin preposition “pro”, meaning for, and the Greek word “biotic”, meaning life (3). This term refers to living organisms with health effects on the host body if consumed in sufficient quantities. Lilly and Stillwell first used the term probiotic in 1965, but Élie Metchnikoff, a Russian immunologist, studied the therapeutic effects of bacteria in his book, 'The Prolongation of Life' in 1907 (4). Since then, extensive research has been
conducted on the therapeutic effects and function of probiotics. In vitro and in vivo experiments in humans and animal models have shown that probiotics can regulate the immune system in infectious, allergic, and inflammatory conditions. The most important and common probiotics belong to the genera Lactobacillus and Bifidobacterium. Valdez et al. pointed to the effective use of probiotic lactobacilli to treat gastrointestinal disorders, indicating their ability to secrete acids, bacteriocins, and other by-products that can neutralize infections resulting from pathogens (5). Satish et al. referred to the anti-pathogenic effects of probiotic bacteria previously described by other researchers and stated that their study was the first characterization of probiotic therapy, consistent with reduced scarring (6). A study by Lolou et al. at the University of Newcastle showed that the use of Lactobacillus and Bifidobacterium could reduce skin inflammation and affect the treatment of atopic dermatitis and allergic contact dermatitis (7). Another study by Walaa Mohammedsaeed (2015) at the University of Manchester investigated the therapeutic effect of probiotic Lactobacillus rhamnosus on skin wounds through in vivo cell culture and in vitro skin culture. Lactobacillus rhamnosus stimulated the re-epithelialization process in both models by activating cell proliferation and migration. According to the results of this study, the therapeutic effect of Lactobacillus rhamnosus on cell migration and keratinocyte proliferation may lead to upregulation of cxcl2/cxcr2 expression. These findings suggest that the cxcl2 gene contributes significantly to the wound healing process by stimulating keratinocyte migration, proliferation, and binding (8). Mirani et al. (2017) developed a multifunctional dressing for wound management in their study at Victoria University. This engineered hydrogel-based dressing called GelDerm kept the wound site moist and prevented the growth of pathogenic microorganisms (9).

Although the therapeutic effects of probiotics, particularly Lactobacillus, on gastric ulcers and skin wounds have been studied at the national and international levels, little research has been conducted on the effect of Bifidobacterium spp., which has both known similarities and differences with Lactobacillus spp., on the healing of skin wounds. Thus, the present study took this novel approach into account and investigated the therapeutic effect of the Bifidobacterium b. probiotic bacterium by the application of bacterial culture supernatant in acute wound healing in female (BALB/c) mice in the form of the novel dressing design. On the other hand, Aloe vera hydrogel was used in this dressing to keep the wound moist, alleviate pain by cooling, and control side effects such as fissures in the wound site, which cause fragility and further damage.

2. Material and Methods

2.1 Chemicals and Reagents

All the chemical reagents for preparing hydrogel and MRS (de Man, Rogosa, and Sharpe) culture to prepare supernatant are purchased from (Merck KgA, Darmstadt, Germany). Ketamine and Xylazine (Alfasan Diergeneesmiddelen B.V., Netherland) were used to anesthetize mice. Live culture of Bifidobacterium b. (PTCC: 1644) was obtained from the Iranian Research Organization for Science and Technology (IROST), Tehran, Iran, in 2020.

2.2 Preparation of Bifidobacterium b. Supernatant

Live culture of B. bifidum was plated in MRS broth (pH value 5.5), co-cultured at 37°C for 72 h, under microaerophilic condition to reach microbial suspension (3×10^8 CFU.mL^-1) (10). Prepared suspension incubated at 4°C for 15 min, and centrifuged at 1700 × g. The supernatant was separated and filtered through a 0.2μm microfilter.

2.3 Preparation of Hydrogel

0.1 gr of Methyl Paraben and 100 mL of double-distilled water with Aloe Vera gel were placed in Bain-marie at 50-60°C for 20-30 min. The mixture was passed through the Whatman Filter Paper. 100 mL of water and 10 gr of Carbopol were added, and the mixture was completely homogeneous. Finally, 4 gr of Glycerol was added and stored in the refrigerator for 24 h.

2.4 Induction of Skin Wound on Mice and treatment with drug formulation

In this study, 44 Female BALB/c mice (6-8 week-old) weighting (approximately 18-23 gr) were obtained from the Pasteur Institute, Tehran, Iran. In order to adapt to the new environment, mice were housed for one week in the Animal laboratory of the Islamic Azad University, Central Tehran Branch, in separate and sterile cages. During the study, the temperature was 22±4°C , 12 h day and night cycle with full access to water and food were considered. All the principles of keeping laboratory animals were in accordance with the ethical guidelines of the university (IR.IAU.SRB.REC.1398.118). These animals were then randomly divided into experimental, sham, controls, and healthy groups. To induce injury, mice were anesthetized by intraperitoneal injection of the Ketamine 10 mg/kg and Xylazine 20 mg/kg.

After shaving the dorsal surface, 8 mm acute wound was made using biopsy punches (Kai, Japan) (11). Then the whole skin injury site was excised, and the surgery day was considered as the 0 day. Through the phases, the ethical principles were respected and prevented from any physical harm. Mice were divided into five groups considered as experimental 1, experimental 2, sham, negative and positive controls. There were five...
mice in experimental 1 and 2, positive and negative control groups, and there were three mice in the sham group. Also, three mice were grouped as the healthy group. Every 48 h treatments were administrated for each mouse; 50 ml of 72 h bacterial culture supernatant with 8 mL of hydrogel prepared as a drug base for experimental group1 and Eucerin for experimental 2 were placed on sterile gas and dressed. The negative control group was untreated. Positive control only dressed with Eucerin. In the sham group, hydrogel was used for dressing. After all, wound sizes were measured by caliper every 48 hours (12).

2.5 Histological Studies
Mice were euthanized on days 7 and 14; biopsy sites were excised, fixed in 10% formalin, and processed for routine histology. The section was stained with haematoxylin – eosin (measuring the wound diameter and counting the blood vessels) photographed with a bright-field microscope (Olympus, Tokyo, Japan) (13-15).

2.6 Statistical Analysis
The results were analyzed using SPSS software version 26 (SPSS Inc., Chicago, IL., USA) by one-way (ANOVA) and (Tukey) test. Values were given as the mean standard error of the mean. The P-values are shown as P-value< 0.05.

3. Results

Histological Studies

3.1 Measuring Wound Diameter in the Study Groups
As can be seen in figure 1, wound diameters in all groups showed a significant decrease on days 7 and 14 of the study compared to day 0 (8000 µm). On the 7th day of this study, wound diameter was found in the negative control group 4111.10± 82.72 and in the positive control and sham were found 3306.48±34.79 and 3024.77±60.70 µm, respectively. The wound diameters in experimental groups 1 and 2, on day 7th were measured 870.67±75.30 and 2132.99±78.57, respectively. The results of the 14th day were obtained from the negative, positive and sham equivalent to 2159.97±146.09, 1373.69±85.53, and 935.50±72.17. In the case of experimental groups, wound diameters were measured *124.23±56.2 and *415.08±33.04 (P<0.05).

![Wound diameter](image)

Figure 1. Wound diameter changes in different groups during the treatment period. Results are expressed as mean ± standard error of the mean. The P-values were considered significant at *P< 0.05 levels.
3.2 Counting blood vessels (Angiogenesis indicator)

Figure 3 shows the rate of angiogenesis indicator (in 500 µm²) during the wound healing process in different groups on the study days. The obtained results in this study show that the rate of angiogenesis on the 7th day of the study was 2.41±0.08, 4.25±0.72, and 9.33±0.30 micrometers in the negative control, positive control, and sham groups, respectively. On 14th day of study, they changed to 4.75±0.90, 5.83±0.36, and 6.91±0.36, respectively. In case of experimental groups 1 and 2, compared to 0 day, the rate of angiogenesis on the 7th day of the study increased from 11.33±0.46 to 14.33±0.33; Also angiogenesis decreased to 11.50±0.38 and 9.08±0.33 on 14th day of the study (P<0.05).

Figure 3. Changes in the number of blood vessels in different groups during the treatment process. The highest number of blood vessels belonged to experimental group 1. Results are expressed as mean ± standard error of the mean. The P- values were considered significant at *P< 0.05 levels.
4. Discussion

This study aimed to investigate the effect of probiotic bacteria on the duration of acute wound healing. Hence, an experiment was designed to determine the most effective indicator of acute wound healing by measuring various qualitative indicators according to the known mechanisms of wound healing. Regarding numerous studies previously conducted on lactobacilli in healing gastrointestinal ulcers and scarce research on the role of bifidobacteria in healing skin wounds, the study focused on the potential role of *Bifidobacterium b.* probiotic bacteria to reduce the duration of the treatment. Previous studies have employed probiotic bacteria in various forms, such as extracts and cell lysates (8, 16). Given the possible toxic and fatal effects of living probiotic bacteria in the blood, the topical application of supernatant resulting from bacterial cell culturing could be more appropriate in terms of stability at room temperature compared to live cells, making it suitable for *in vitro* and *in vivo* studies (8, 17). This experiment would rather use bacterial culture supernatant instead of living bacteria. A study by Walaa Mohammedsaeed (2015) at the University of Manchester also showed that lysed *Lactobacillus rhamnosus G.G* did not have harmful effects as the live bacteria. Moreover, lysed probiotics are more cost-effective for the treatment of skin infections, as there is no need to preserve living bacteria (8).
The in vitro experiment of the current study examined 44 female BALB/c mice in six groups. The results of this experiment were analyzed concerning the indicators of wound diameter and number of blood vessels, assessed by macroscopic studies and calculated by histological studies along with statistical analysis, respectively. Reduction in the wound size and depth is a determining indicator during the healing period. This important repair response begins in the proliferative phase with the migration of fibroblasts and myofibroblasts to the wound. Proliferation and production of matrix and procollagen proteins 1 and 3 at the end of the first post-injury week and extracellular matrix density later support cell migration and the repair process. Wound contraction occurs with the removal of fibroblasts. In the remodeling phase, collagen is regenerated, wounds are completely consolidated, and collagen fibers are intertwined to reduce the scar thickness (18, 19).

The present study showed that the application of the probiotic Bifidobacterium b. led to the reduction of treatment duration. The data obtained in accordance with cellular and molecular mechanisms of wound healing showed the most significant decrease in the indicator of wound diameter in the experimental groups compared to sham, positive, and negative control groups (P <0.05) (Figure 1). A comparison of the experimental groups 1 and 2 indicated more and faster healing response of wound contraction in experimental group 1 (P<0.05) with the smaller wound size on the seventh day of the treatment. The probiotic agent seemed to shorten the duration of the inflammatory phase, leading to faster onset of fibroblasts migration and proliferation phase. Previous studies have mentioned the role of Toll-like receptors (TLRs) expression in neutrophils, fibroblasts, monocytes, and macrophages in the repair process. Researchers believe that these may be due to probiotic function through TLRs that play a key role in the innate immune system (20).

Angiogenesis and vasculogenesis play a crucial role in wound healing. Neovascularization or angiogenesis is involved in the growth of new capillaries to form granular tissue. Three to five days after tissue damage, the capillaries become visible as granular tissue forms on the wound site, functioning as a network for blood vessel proliferation, fibroblast migration, and new collagen (21,22). Any factor that can accelerate the formation of blood vessels in the wound and establish blood circulation to the tissue area helps to stimulate the wound healing process and prevent the wound deepening. In this study, the culture supernatant of the Bifidobacterium b. showed the potential to increase angiogenesis in the experimental groups. Hence, a comparison of the experimental group 1 and the sham group showed that despite the common hydrogel composition in both dressings and the antibacterial and antiviral properties of the constituents of hydrogels (23,24) in preventing microbial growth and reducing inflammation and pain (8,25), the experimental group 1 has a better performance in the process of wound healing and angiogenesis because of the probiotic agent.

As the results show, experimental groups 1 and 2 had the highest angiogenesis on the 7th day, respectively, compared to the control groups. This result suggests that the increase in angiogenesis is due to the probiotic bacterium Bifidobacterium b. function. It is well known that the rate of angiogenesis in granular tissue reaches its peak around the 7th day of injury, after which the blood vessels are gradually destroyed. In this experiment, the highest rate of angiogenesis occurred on the 7th day of treatments in experimental group 1, which is consistent with previous studies (P<0.05). Given the ascending trend of angiogenesis until the 7th day of the injury, such as what happens in the proliferative phase, and its gradual decline, the quantitative index of blood vessels follows a decreasing trend from the 7th to 14th day of the study in the experimental groups, which is consistent with re-epithelialization phase (Figure 2) (P<0.05). The use of bacterial culture supernatant also seems to act as a stimulant and increase angiogenesis (Figure 2). Previous studies have shown that it is possible to improve angiogenesis by activated macrophages and epidermal tissue. Until recently, acid or basal fibroblast growth factors seemed to be responsible for such activities, but it is now clear that other molecules such as vascular endothelial growth factor (VEGF), angiogenin, and angiopoietin are involved in angiogenic activities (19). Keratinocytes produce VEGF from the early to the final stages of wound healing. Activated fibroblasts, mast cells, and macrophages express VEGF in injured skin. In fact, myeloid cells (monocytes and macrophages) are the major source of VEGF in the post-injury stages. Studies have also shown the effects of both keratinocyte-derived and myeloid cell-derived VEGF on wound healing (26). It also seems that the tissue stimulates macrophages to secrete VEGF in the face of hypoxia (8). Studies on mouse models have shown that a lack of VEGF in myeloid cells and keratinocytes delays wound contraction, decreases blood vessel density, and reduces granular tissue formation. Low levels of oxygen in injured skin activate the Hypoxia Inducible Factor, leading to VEGF gene transcription (26). A study in mice showed that probiotics increased the expression of VEGF and TGF-β (27).

As shown by Halper et al., Lactobacillus extract stimulates the production of TNF-α and angiogenesis in the inflammatory phase of tissue repair as inflammatory cells such as macrophages, lymphocytes,
and plasma cells support pro-inflammatory processes (28).

According to the intragroup comparison of experimental groups 1 and 2 in the present study, Eucerin did not contribute to wound healing and the increasing number of blood vessels. There are no reports on the antibacterial or antiviral properties of Eucerin, which softens and relieves dry skin. Therefore, a careful comparison of the groups showed that although the bacterial culture supernatant coupled with Eucerin affected the wound healing process, the use of this liquid with hydrogel had the greatest effect on wound healing and angiogenesis ($P<0.05$). No infection was observed in the experimental groups of the present study as probiotics prevented wound infection by antimicrobial mechanisms, including secretion of antimicrobial peptides, inhibition of bacterial invasion, and inhibition of pathogenic bacteria adhesion to epithelial cells (29). On the other hand, the intra-group comparisons of the control groups also showed no significant differences in the wound diameter and the number of blood vessels in the group receiving no treatment (negative control) and the group receiving Eucerin dressing (positive control).

In general, as the results of this study showed, increased angiogenesis and decreased wound diameter was consistent with previous studies (5, 6), while the probiotic bacterium *Bifidobacterium b.* reduced the duration of treatment. It is well known that time plays a crucial role in reducing or increasing the outcomes of wounding (30, 31). Given the significant decrease in the wound diameter and increase in angiogenesis of the experimental groups on the 7th day, it seems that shorter phases of three, five, seven, and nine days (32) may help determine a more accurate interval for these two indicators in future studies. It is also possible to use the bacterial culture supernatant of *Bifidobacterium b.* probiotic bacterium alone and investigate its effects.

5. Conclusion

According to the results of the current study, the probiotic bacterium *Bifidobacterium b.* reduces wound diameter, increases angiogenesis, and decreases the duration of the treatment significantly ($P<0.05$). This study, which is in line with research on the therapeutic effects of probiotics in scientific and academic centers of Iran and other parts of the world (8), indicates the effectiveness and usefulness of this therapeutic method. Besides, this study shows that the bacterial culture supernatant of *Bifidobacterium b.* probiotic bacterium can be an alternative and reliable treatment. Thus, it is possible to use the designed biological dressing containing bacterial culture supernatant of *Bifidobacterium b.* probiotic bacterium and Aloe vera hydrogel to treat acute wounds after further studies.

Acknowledgment

This current research article has been adapted from the dissertation of Ms. Pegah Moussavi Amin with University code number 33262. The ethical instructions were approved by the Vice-Chancellor for Research and Technology of the Islamic Azad University, East Tehran Branch. Also, thanks go to everyone who has helped us to achieve this important goal.

Author Disclosure Statement

The authors have no conflict of interest concerning this manuscript.

Funding

This article is an independent study that was conducted without organizational financial support.

Conflict of Interest

The authors declared no conflict of interest.

References

1. Yousef H, Alhajj M, Sharma S. Anatomy, skin (integument), epidermis. 2017.
2. Jimi S, Jaguparov A, Nurkesh A, Sultankulov B, Saparov A. Sequential delivery of cryogel released growth factors and cytokines accelerates wound healing and improves tissue regeneration. Frontiers in Bioengineering and Biotechnology. 2020;8:345 (DOI:10.3389/fbioe.2020.00345) (PMID) (PMCID)
3. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021. (DOI:10.3390/nu9091021) (PMID) (PMCID)
4. Zommiti M, Feuilloley MG, Connil N. Update of probiotics in human world: a nonstop source of benefactions till the end of time. Microorganisms. 2020;8(12):1907. (DOI:10.3390/microorganisms8121907) (PMID) (PMCID)
5. Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of action of probiotics. Advances in Nutrition. 2019;10(suppl_1):S49-S66.
6. Satish L, Gallo PH, Johnson S, Yates CC, Kathju S. Local probiotic therapy with Lactobacillus plantarum mitigates scar formation in rabbits after burn injury and infection. Surg infections. 2017;18(2):119-27. (DOI:10.1089/sur.2016.090) (PMID) (PMCID)

7. Lolou V, Panayiotidis MI. Functional role of probiotics and prebiotics on skin health and disease. Ferment Technol. 2019;5(2):41. (DOI:10.3390/fermentation5020041)

8. Mohammedaeed W. Characterisation of the potential of probiotics or their extracts as therapy for skin: The University of Manchester (United Kingdom); 2015.

9. Mirani B, Pagan E, Currie B, Siddiqui MA, Hosseinazadeh R, Mostafalu P, et al. An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. Adv. Healthc. 2017;6(19):1700718. (DOI:10.1002/adhm.201700718) (PMID) (PMCID)

10. Saberian M, Delshad ES, Habibi M. The Effect of Bifidobacterium Bifidum Supernatant and Cell Mass on the Proliferation Potential of Rat Bone Marrow-Derived Stromal Cells. UMS. 2020;45(4):269.

11. Masson-Meyers DS, Andrade TA, Caetano GF, Guimaraes FR, Leite MN, Leite SN, et al. Experimental models and methods for cutaneous wound healing assessment. Int j Exp Pathol. 2020;101(1-2):21-37. (DOI:10.1111/iep.12346) (PMID) (PMCID)

12. Yasuda K, Ogushi M, Nakashima A, Nakano Y, Suzuki K. Accelerated wound healing on the skin using a film dressing with β-glucan paramylon. In Vivo. 2018;32(4):799-805. (DOI:10.21873/inivo.11310) (PMID) (PMCID)

13. Hesari AK, Shahrooz R, Ahmadi A, Malekinejad H, Saboory E. Crocin prevention of anemia-induced changes in structural and functional parameters of mice testes. J. Appl. Biomed. 2015;13(3):213-23. (DOI:10.1016/j.jab.2015.02.001)

14. Shahrooz R, Agh N, Jafari N, Kalantari A, Jalili R, Karimi A. Effects of fish oil replacement with vegetable oils in rainbow trout (Oncorhynchus mykiss) fingerlings diet on growth performance and foregut histology. Turkish J. Fish. Aquat Sci. 2018;18(6):825-32. (DOI:10.4194/1303-2712-v18_6_09)

15. Gurina TS, Simms L. Histology, Staining. 2020.

16. Farghali H, Canová NK, Zakharri S. Hepatoprotective properties of extensively studied medicinal plant active constituents: possible common mechanisms. Pharm. Biol. 2015;53(6):781-91. (DOI:10.3109/13880209.2014.950387) (PMID) (PMCID)

17. Brandi J, Cheri S, Manfredi M, Di Carlo C, Vanella VV, Federici F, et al. Exploring the wound healing, anti-inflammatory, anti-pathogenic and proteomic effects of lactic acid bacteria on keratinocytes. Scientific reports. 2020;10(1):1-14. (DOI:10.1038/s41598-020-68483-4) (PMID) (PMCID)

18. DiPietro LA. Angiogenesis and wound repair: when enough is enough. J. Leukoc Biol. 2016;100(5):979-84. (DOI:10.1189/jlb.4MR0316-102R) (PMID) (PMCID)

19. Tonnesen MG, Feng X, Clark RA, editors. Angiogenesis in wound healing. JIDSP; 2000: Elsevier. (DOI:10.1046/j.1087-0024.2000.00014.x) (PMID)

20. Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15(12):1377-82. (DOI:10.1038/nm.2062) (PMID) (PMCID)

21. Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev. 2019;146:97-125. (DOI:10.1016/j.addr.2018.09.010) (PMID) (PMCID)

22. Honnegowda TM, Kumar P, Udupa EGP, Kumar S, Kumar U, Rao P. Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Aesthetic Plast Surg. 2015;2:243-9. (DOI:10.4103/2347-9264.165438)

23. Teplicki E, Ma Q, Castillo DE, Zarei M, Hustad AP, Chen J, et al. The Effects of Aloe vera on Wound Healing in Cell Proliferation, Migration, and Viability. Wounds: a compendium of clinical research and practice. 2018;30(9):263-8. (DOI:10.4103/2347-9264.165438)

24. Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological update properties of Aloe vera and its major active constituents. Molecules. 2020;25(6):1324. (DOI:10.3390/molecules25061324) (PMID) (PMCID)
25. Darzi S, Paul K, Leitan S, Werkmeister JA, Mukherjee S. Immunobiology and Application of Aloe vera-Based Scaffolds in Tissue Engineering. Int. J. Mol. 2021;22(4):1708. (DOI:10.3390/ijms22041708) (PMID) (PMCID)

26. Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. wound care. 2014;3(10):647-61. (DOI:10.1089/wound.2013.0517) (PMID) (PMCID)

27. Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, et al. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair and Regen. 2017;25(6):912-22. (DOI:10.1111/wrr.12607) (PMID) (PMCID)

28. Halper J, Leshin L, Lewis S, Li W. Wound healing and angiogenic properties of supernatants from Lactobacillus cultures. Exp. Biol Med. 2003;228(11):1329-37. (DOI:10.1177/153537020322801111) (PMID)

29. Sinha A, Sagar S, Madhumathy M, Osborne WJ. Probiotic Bacteria in Wound Healing; An In-Vivo Study. Iranian Journal of Biotechnology. 2019;17(4):e2188.

30. Nagle SM, Waheed A, Wilbraham SC. Wound Assessment. StatPearls (Internet). 2020.

31. Kuru B. The adventure of axillary treatment in early stage breast cancer. Eur. J. Breast Health. 2020;16(1):1. (DOI:10.5152/ejbh.2019.5157) (PMID) (PMCID)
بررسی تأثیر مایع روپی کشت باکتری‌پرورش‌پذیر پیچیم‌بی‌بی‌بی در افزایش رگ‌زایی در ترمیم زخم حاد

یگاه موسوی امین، ۱، اکرم سادات طالب‌پژوهی ۱. بهبود خلیلی ۲۰۰۰

1. گروه زیست‌شناسی وارد تهران – شرق، دانشگاه آزاد اسلامی، تهران، ایران
2. گروه زیست‌شناسی واحد روده، دانشگاه آزاد اسلامی، روده، ایران

اطلاعات مقاله

تاریخچه مقاله
دریافت: ۱۳۹۹/۱۲/۲۳
پذیرش: ۱۴۰۰/۵/۱۴
انتشار آنلاین: ۱۴۰۰/۶/۳
موضوع: باکتری‌شناسی و ژنتیک

نویسنده مسئول:
باک خلیلی حداد، گروه زیست‌شناسی واحد روده، دانشگاه آزاد اسلامی، روده، ایران
ایمیل: khalilis@riauc.ac.ir

مقدمه
پوست برگزتین عضو بدن است که پوست خارجی بدن موجودات زنده را تشکیل می‌دهد. صمیمیت به این عضو محکم‌الپایداری پس از طور مثال ایجاد خواب یا موجب یک مورد خطرات جدی قرار می‌دهد. در یک ایجاد خواب توان رابطه مطرح می‌گردد که شامل فاکتورهای مختلفی است. این فاکتورها از طریق فاکتورهای ورودی جنگلگی و سایتوکانین‌های آزاد شده از محل زخم نظیر پودکار و واحدهای انسانی در ذخایر انسانی و مطالعه باکتری‌پرورش‌پذیر پیچیم‌بی‌بی‌بی روش درمانی در ترکیبات پایدار و ای درکاری شیمیایی مطرح می‌شود. (۱) برای درمان زخم تاکتیک کمپوزیت شوهوایی متعدد درمان از قبل درمان با ترکیبات طبیعی و با درخت‌های شیمیایی مطرح می‌شود. اما امرورش با باکتری‌پوست‌پذیر و مطالعه باکتری‌پرورش‌پذیر پیچیم‌بی‌بی‌بی روش P. aeruginosa و پروپیونیک درمانی مبتنی بر این مدل به به معنی برای و کلمه پوستی به معنی زنده مشتق شده می‌باشد. (۲) این اصول به Biotic ارگانیسم‌های زنده ای اطلاق می‌شود که در صورت مصرف به میزان کافی، دارای اثرات سالمت‌بخش در بدن می‌باشند. نخستین بار لیلی و استهلوئ هژ پروپیونیک را در ۱۹۶۵ میلادی به مجله میکروب‌شناسی پزشکی ایران Majallah-i mikrub/shinašt-i pishkt-i Iran.
ترکیب درمان‌های باکتری‌کاهن می‌تواند از این دو گروه باشد: 1) کمبود ژن‌هایی که باعث ایجاد درمان‌پذیری شود و 2) ایجاد اثرات درمان‌پذیری توسط مواردی که میزان آن از ژن‌های باکتری‌کاهن بیشتر باشد. از دیگر ترکیبات درمان‌پذیری می‌توان به پلی‌اکسی‌تیول و پلی‌اکسی‌تیول کربنات اشاره کرد.

2.3 آماده‌سازی مایع رویی کشت باکتری

باکتری‌پرپاپیک بایوفیلم‌بندی کمک به ایجاد درمان‌پذیری در حیاتی نقل‌پذیری و بهبود درمان‌پذیری می‌آید.

2.4 ایجاد زخم پوستی در موش‌ها و تیمار با

فرمولاسیون‌های دارویی

در این تحقیق، 44 موش ماده BALB/c (6-8 هفته) ای، با وزن تقریبی 32-36 گرم از مکزیک گدندهای حیوانات آزمایشگاهی استفاده گردیدند. به منظور استقرار آنها در باکتری‌پرپاپیک، یک جفت از این حیوانات به مقدار 4/24 ژن‌هایی برتر انتخاب شدند و در طول مدت تحقیق، دو گروه از این انواع از ژن‌هایی برتر انتخاب شدند.

2.5 تهیه هیدرولز

1/1 گرم مدل 20-18 به مقدار 100 میلی لیتر آب متواضع تهیه گردید.

3.1 تحقیق و زلزله واژ در پنجم ماه بعد، موش‌های مختلف در مدت 3-4 ماه به بررسی درمان‌پذیری در حیاتی و باکتری‌پرپاپیک رفتند. در این مطالعه، درمان‌پذیری به وسیله ژن‌هایی که میزان آن از ژن‌های باکتری‌کاهن بیشتر باشد، ایجاد می‌شود.

3.2 درمان‌پذیری و باکتری‌پرپاپیک

در این مطالعه، درمان‌پذیری در حیاتی و باکتری‌پرپاپیک می‌تواند به وسیله ژن‌هایی که میزان آن از ژن‌های باکتری‌کاهن بیشتر باشد، ایجاد می‌شود.

4.1 میکروفیلم‌های بیشتر گلگیری می‌نماید.

با وجودی که اثرات درمانی برای باکتری‌پرپاپیک و باکتری‌پرپاپیک می‌تواند به وسیله ژن‌هایی که میزان آن از ژن‌های باکتری‌کاهن بیشتر باشد، ایجاد می‌شود.

4.2 در این مطالعه، درمان‌پذیری در حیاتی و باکتری‌پرپاپیک می‌تواند به وسیله ژن‌هایی که میزان آن از ژن‌های باکتری‌کاهن بیشتر باشد، ایجاد می‌شود.
مطالعات بافت‌شناسی

2.1 اندام‌های ناحیه قطع زخم در گروه‌های مورد مطالعه

همانطور که در شکل 1 و 2 مشاهده می‌شود، قطر زخم در تمام گروه‌ها بجز گروه کنترل منفی کاهش معنی‌داری در روزهای مشابه دارد. قطر زخم در هر گروه با پیشرفت زیاد به‌طور تناوبی تقلید می‌شود.

table 1

گروه	قطر زخم (گرمساران)	آماری (P-value)
گروه کنترل منفی	12	<0.05
گروه کنترل مثبت	14	<0.05
گروه تجربی 1	16	<0.05
گروه تجربی 2	18	<0.05

۱. Sham Group

*شکل 1: تغییرات اندازه قطر زخم در گروه‌های مختلف در طول دوره تیمار.

نتایج به صورت میانگین ± انحراف معیار گزارش شدند. معنی‌دار استنادی در نظر گرفته شد.
شکل 1. نمودار میکروسکوپی نمونه‌های زخم تحت تیمارهای مختلف در روزهای 0، 7 و 14 مطالعاتی.

شکل 2. تصاویر میکروسکوپی نمونه‌های زخم تحت تیمارهای مختلف در روزهای 0، 7 و 14 مطالعاتی.

شکل 3. تغییرات تعداد عروق خونی در گروه‌های مختلف در طول دوره تیمار. بیشترین تغییر در روزهای 0 و 7 می‌باشد. نتایج به صورت میانگین ± انحراف معیار گزارش شدند. معیار استاندارد آماری P<0.05 در نظر گرفته شد.

چهاردهم به ترتیب به 19/0 ± 3/0، 14/0 ± 3/0 و 9/0 ± 1/0 میکرومتر میزان رئیسی در روز هفتم مطالعه نسبت به روز صفر از 14/0 ± 3/0 به 38/0 ± 1/0 کاهش یافتند.

شکل 4. نمودار تعداد عروق خونی در روزهای مختلف.

شکل 5. نشان دهنده کاهش گرانشی (در 500 میکرومتر مریع) در طی روند ایجاد زخم در گروه‌های مختلف و در روزهای مورد بررسی نشان می‌دهد. نتایج به دست آمده در این تحقیق، نشان می‌دهد که به ترتیب در گروه‌های کنترل منفی، کنترل مثبت و شم میزان رئیسی در روز هفتم مطالعه به ترتیب 0/0 ± 2/0، 7/0 ± 3/0 و 1/0 ± 0/0 به 36/0 ± 2/0، 35/0 ± 0/0 و 34/0 ± 1/0 کاهش یافتند.
بحث

مطالعه حاضر، با هدف بررسی تأثیر باکتری پروپیونیک بر طول دوره ترمیم زخم حاد انجام شده است. بر این اساس، آزمایش طراحی شد تا با سنجه شاخص‌های کیفی گوناگون در انطباق با

شکل 4. تصویر میکروسکوپی از مقطع زخم در گروه‌های مورد بررسی در طی جهاده روز مطالعه نمونه‌های بالینی با رنگ همانوتکسیلین-آنتیزین رنگ آمیزی شدند و تصاویر با هم در میکروسکوپ Olympus در روزهای 0، 7 و 14 مطالعاتی تهیه گردیدند. فلش‌های زرد درک در گروه‌های عرق خونی را نشان می‌دهند. بیشتر تغییر تعداد عرق خونی در روز 7 در گروه تجربی 1 دیده شد مقیاسی از قسمت‌های مختلف یکی مربوط به گروه تجربی 1 در روز جهاده مطالعاتی در شکل شماره‌گذاری شده است. محل پوست 2. محل زخم 2. ایدرم 3. درم 5. زخم خونی 4. فولیکول مو 7. عدد سال.

مکانیسم شناخته شده فراوانی ترمیم زخم حاد مشخص شود کدام شاخص مؤثرین نیمه‌های داشته است. به این منظور با توجه به تعداد مطالعات پیشین بر روی لکتوپاسیولارها در ترمیم زخم‌های
گروه‌های تجربی، نسبت به گروه‌های شاهد، کاهش می‌باشد و کنترل منفی نشان دادند.

2

\(P < 0.05 \) (شکل 1) مقایسه بین گروه‌های تجربی 1 و 2 فرضیه حاضر، نشان داد که باعث ترمیم انقباض زخم در گروه تجربی 1 شروع و سپس به ادامه، افزایش کنترل و مهاجرت ضرورت از کلمه آزاد رشد گیرد.

است.

اول تشریح، مهاجرت ضرورت از کلمه آزاد رشد گیرد.

است.

2

TLRs

1

بای تکثیر رگ‌های خونی، مهاجرت فیبرولیس‌ها و کلاژن جدید عمل می‌کند. در زخم ایجاد شده بست انتقال و گرد و خنده ناحیه بافتی را برقرار می‌کند. به‌طور کلی، می‌توان گفت که با تکثیر رگ‌های خونی و فیبرولیس‌ها، توان به علت تغییرات بیولوژیکی در زخم در شرایط مختلف، درآمده و افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ هستند.

با توجه به این نتایج، نشان داده شد که با تکثیر رگ‌های خونی و فیبرولیس‌ها در زخم ایجاد شده می‌توان افزایش در میزان ترجمه داده شده باشد. این نتایج با تکثیر رگ‌های خونی و فیبرولیس‌ها در دست آمده در این تحقیق، مانند تحقیقات دیگر در همین زمینه، هماهنگ H. 1

Toll-like receptors
مجله میکروبشناسی پزشکی ایران، ۱۵ شماره ۵، مهر و آبان ۱۳۹۹

می شوند، در این آزمایش هم بیشترین میزان فشار رگزایی در روز هفتم
تیمار در گروه تختی ۱ رخ داد که با مطالعات بیشتری هم‌مانی دارد
با توجه به روند صعودی شکل عکس خونی تا روز
همان است. این آزمایش که در فاز شکل عکس دیده و سپس نزول
تندیجی آن، شاخص تعداد عروق خونی در گروه هیپوکسیا از روز
یافته با چهارده مطالعه رونده کاملاً را نشان داد که فاز ۳
پس از لیبراسیون دم‌های حیاتی‌دار (شکل ۳) (۰/۵-۱۴)
همچنین به نظر می‌رسد که استفاده از این روبی کشت باکتری,
مانند یک تحقیق کننده عمل کرده و رازگایی را عاملی است
(شکل ۲). مطالعات پیشین نشان داد که فعالیت رگزایی,
می‌تواند از طریق های فعالی‌ها مقصد دهد و همچنین باعث افزای
پس از پاسخگویی در زمان فاز. در روزهای,
فاصله زمانی از روزهای آن، شاخص تعداد عروق خونی
که افزایش رگزایی به طور کلی، نتایج این مطالعه نشان داد که افزایش رگزایی,
و کاهش قطع زخم در اطلاعی با مطالعات پیشین نظر داده است,
و باکتری ژن فعالی‌ها پیش‌بینی کشیده، ابزاری به کاهش طول
دوره درمان میدهد. همان طور که می‌دانیم زمان نشان
کاهش و یا افزایش پیامدهای ناشی از ایجاد زخم دارد. (۲۱)
با توجه به این که ما در روز همین شاهد کاهش
محیط تندیجی قطع زخم و افزایش چندکره رگزایی در گروه هیپوکسیا,
بوده و با نظر رژیسکت که اگر در مطالعات بعدی فازهای کوتاهتری
در روزهای بی‌هغت، یعنی روزهای زمان مورد گرفته شود. (۱۱)
شاید بتوان بازمی‌گردد. اگر رکر یک دیگر باشد و شاخص تعیین
همچنین اگر در این مطالعه از معتبر روی که باکتری پیش‌بینی,
پیش‌بینی کشیده، ابزاری به
نتایج نیز قابل بررسی خواهد بود.

۵۶۷

ب) بررسی‌های هالر و همکاران (Halper et al.)

۱ Hypoxia Inducible Factor
نتیجه‌گیری

نتایج مطالعه حاضر نشان می‌دهد که باکتری پروپیونیک بیفیدو/بیکتریوم بیفیدوم قطر زخم را کاهش می‌دهد و به طور قابل توجهی، سبب افزایش رگزایی و کاهش طول دوره درمان می‌شود. (P<0.05) این پژوهش که در راستای مطالعات صورت گرفته بر تأثیرات درمانی پروپیونیکها در مرکز علمی و دانشگاهی ایران و دیگر نقاط جهان، و بر پایه آنها انجام گردیده است (8)، بر ازگذاری و سودمندی این نوع درمان دلالت می‌کند. همچنین، این پژوهش نشان می‌دهد که مابین رویی کشت باکتری پروپیونیک بیفیدو/بیکتریوم بیفیدوم، می‌تواند به عنوان درمانی جایگزین و قابل اعتماد مطرح باشد. از این رو، پاسخنام بیولوژیک طراحی شده شامل مابین رویی کشت باکتری پروپیونیک بیفیدو/بیکتریوم بیفیدوم و هیدروژل آلوئه و را بعد از مطالعات بیشتر می‌تواند در درمان زخم‌های حاد استفاده شود.