Observational Study

Psychological impact of the COVID-19 pandemic on Chinese population: An online survey

Taif Shah, Zahir Shah, Nafeesa Yasmeen, Zhong-Ren Ma

ORCID number: Taif Shah 0000-0002-0217-2215; Zahir Shah 0000-0003-0368-4455; Nafeesa Yasmeen 0000-0002-7194-6026; Zhong-Ren Ma 0000-0002-3249-9083.

Author contributions: All the authors contributed to the concept of this study; Shah T, Shah Z and Ma ZR designed the study; Shah T and Yasmeen N acquired and analyzed data; Shah T, Shah Z and Yasmeen N wrote the manuscript; and all the authors reviewed and approved the final manuscript.

Institutional review board statement: The Institutional Review Ethical Committee of Northwest Minzu University reviewed and approved the protocol used in this study.

Conflict-of-interest statement: There are no conflicts of interest to report.

Data sharing statement: The aggregate data supporting the findings within this manuscript will be shared upon request submitted to the corresponding author.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in

Abstract

BACKGROUND
The ongoing coronavirus disease 2019 (COVID-19) pandemic infiltrates every aspect of our life, including the psychological impact. China has experienced the first wave of this epidemic, and it is now affecting the global population.

AIM
This study aimed to investigate the prevalence and associated factors of post-traumatic stress disorder (PTSD) among the general Chinese population.

METHODS
A detailed questionnaire, comprising of 38 questions designed in both English and Chinese, was developed. The survey was conducted via WeChat, a multi-purpose messaging, social media, and mobile payment app, which is widely used by the Chinese population.

RESULTS
In total, 1082 individuals from 31 provinces, autonomous regions, and municipalities participated in the survey by filling the questionnaires through the WeChat app. 97.8% of the participants had an Impact of Event-Scale-Revised (IES-R) total score above 20, which is an indicator of PTSD. The IES-R total and all the three subscales, including intrusion, avoidance, and hyperarousal, are significantly
INTRODUCTION

Outbreaks of infectious diseases have constantly threatened human beings, affecting many aspects of society. Compared to other diseases, infectious diseases are more prone to causing public panic[1], and long-term exposure to such events bears a high risk of developing post-traumatic stress disorder (PTSD)[2-4]. The ongoing coronavirus disease 2019 (COVID-19) pandemic infiltrates every aspect of our life and threatens the global population. Control measures are universally implemented to mitigate the pandemic, whereas psychological problems emerge in infected patients and the general population[3]. The COVID-19 outbreak was sparked in December 2019 in Wuhan, China[5] and quickly spread to the rest of China and now all over the world. By implementing strict control measures, including city lockdown, travel ban, and within-population quarantine, the epidemic in China was finally under control by March. This epidemic and the implementation of control measures, in particular quarantine, are expected to have adverse effects on the general population’s mental health[7], but primary research in this respect remains limited. Therefore, this study assessed the prevalence and associated factors of PTSD among the general Chinese population who have just experienced the first wave of the COVID-19 epidemic.

MATERIALS AND METHODS

Study population and sample size estimation

Chinese from the general public were invited to participate in this study. The study was conducted from March 26st to March 31st, 2021. The sample size was determined by calculating a representative sample size using the Raosoft website. In 2019, the population of China was estimated to be 1433783686, with a median age of 37. We used a 3% margin of error and a 95% confidence interval to estimate the sample size. Therefore, a total of 1068 participants are needed.
Study design
A detailed questionnaire comprising of 38 questions was designed in both the English and Chinese languages. The survey was conducted via WeChat, a Chinese multi-purpose messaging, social media, and mobile payment app. It is widely used in China, with monthly active users estimated to be one billion. In total, 1082 individuals from 31 provinces, autonomous regions, and municipalities participated in the survey by filling the questionnaires (Supplementary Table 1).

The psychological impact was evaluated using a validated scale, i.e., Impact of Event-Scale-Revised (IES-R)[8,9]. IES is a self-report measure used to assess the frequency of intrusive and avoidant phenomena in response to a specific stressful life event[10]. Thus, IES-R is a measurement tool for PTSD to measure subjective response to traumatic events in response to: (1) Intrusion (intrusive thoughts, nightmares, intrusive feelings and imagery, and re-experiencing); (2) Avoidance (numbing of responsiveness, avoidance of feelings, situations, and ideas); and (3) Hyperarousal (anger, irritability, hypervigilance, difficulty concentrating, heightened startle).

It comprises 22 items, each with a Likert rating scale from 0 to 4 (0 not at all; 1 a little bit; 2 moderately; 3 quite a bit; 4 extremely). The maximum score is 88. A higher score indicates a greater concern for PTSD. The IES-R has been translated into Chinese, demonstrated extensive reliability and validity, and is used frequently in trauma research worldwide[11,12].

Statistical analysis
Descriptive and inferential statistics were calculated using SPSS version 20.0 for Windows (SPSS Inc, Chicago IL). Means were calculated to summarize continuous variables. For categorical variables, group proportions were calculated. The one-way analysis of variance (ANOVA) and independent t-test were employed to identify the effect of demographic factors on the psychological outcome measure (IES-R). A total score of IES-R > 20 was used to estimate the prevalence of PTSD symptoms. ANOVA was used for age, level of education, profession, marital status, and monthly income, whilst t-test was used for gender, ethnicity, and residence. All statistical tests were two-sided and a P value < 0.05 was considered statistically significant.

RESULTS

Demographic characteristics
A total of 1082 individuals completed the online survey. Except for 0.3% of overseas Chinese, 99.7% of the respondents are from 31 provinces and autonomous regions and municipalities across China, and they have presumably been placed in quarantine or confined to their homes during the COVID-19 epidemic. Slightly more participants were female (57%). In terms of ethnicity, 67.8% are Hans, and 32.2% are from other ethnicities. 47.6% of the participants are aged younger than 30. 60.9% live in urban areas, and 39.1% are from rural backgrounds. The detailed socio-demographic characteristics of the participants are presented in Table 1.

Furthermore, 103 out of 1082 respondents have reported health problems such as diabetes, cardiovascular diseases, hypertension, chronic respiratory disease, viral hepatitis, or cancer. In addition, 44.4% of respondents are experiencing economic losses, and 6.3% are physically affected due to the COVID-19 epidemic. Only 40.57% of participants reported that they have returned to the normal routine after control of COVID-19 in China (Table 1).

Psychological impacts of the COVID-19 epidemic
The total IES-R scores are significantly correlated with age, level of education, profession, and marital status, but not with gender, ethnicity, residence, and monthly income. Next, we assessed the three subscales of IES-R. The intrusion subscale is significantly correlated with age and marital status. Avoidance is significantly correlated with age, level of education, profession, and marital status. Hyperarousal is correlated with age and level of education (Table 2).

The mean IES-R total score is 42.48 (SD = 12.13). A score of > 20 was used to estimate the prevalence of PTSD. 97.8% of the participants have an IES-R score above 20 (Table 3). The IES-R total scores are significantly associated with age, profession, marital status, and income, but not with gender, ethnicity, residence, or education. The groups with older age (above 50) have significantly higher IES-R scores. The group over 60 years has a mean score of 47.82, followed by the group 50-59 years with a
Characteristics	Frequency	Percentage (%)
Gender		
Male	463	42.80
Female	619	57.20
Age (yr)		
< 30	515	47.60
31-39	262	24.20
40-49	157	14.50
50-59	131	12.10
> 60	17	1.60
Ethnicity		
Han	734	67.80
Others	348	32.20
Residence		
Rural	423	39.10
Urban	659	60.90
Education		
Illiterate	1	0.10
Primary	12	1.1
Middle	169	15.60
Bachelor	675	62.40
Master	120	11.10
PhD	105	9.70
Profession		
Farmer	40	3.70
Teacher	185	17.10
Doctor	78	7.20
Government	84	7.80
Private	28	2.60
Students	408	37.70
Business	20	1.80
Others	239	22.10
Marital Status		
Married	568	52.50
Divorced	25	2.30
Single	489	45.20
Monthly income (RMB)		
< 3000	496	45.80
3001-5000	251	23.20
5001-10000	235	21.70
> 10000	100	9.20

Positive responses to different questions
Table 2 Correlation between Impact of Event-Scale-Revised subscales and demographic characteristics

	Gender	Age	Ethnicity	Residence	Education	Profession	Marital	Income	
IES-R total	Pearson r	-0.02	0.17	-0.02	-0.04	-0.09	-0.09	-0.09	0.02
	Sig (2-tailed)	0.47	0.53	0.17	0.05	0.01	0.01	0.54	
Intrusion	Pearson r	-0.01	0.15	-0.02	-0.05	-0.04	-0.06	-0.10	0.04
	Sig (2-tailed)	0.82	0.50	0.34	0.17	0.06	0.01	0.22	
Avoidance	Pearson r	-0.04	-0.20	0.01	-0.04	-0.10	-0.13	-0.08	0.03
	Sig (2-tailed)	0.23	0.01	0.88	0.16	0.01	0.01	0.01	0.29
Hyperarousal	Pearson r	-0.1	0.10	-0.04	-0.04	-0.08	-0.05	-0.05	-0.03
	Sig (2-tailed)	0.71	0.01	0.17	0.18	0.01	0.09	0.10	0.32

*P < 0.05.

IES-R: Impact of Event-Scale-Revised.

mean value of 47.56. The IES-R scores vary tremendously (21-87) among different professions, and farmers, government officers, and people who work in private sectors have higher scores compared to other professions. Government employees have the highest IES-R scores (46.51 ± 12.02; mean ± SD; P = 0.001) (Table 3).

DISCUSSION

This study comprehensively assessed the prevalence and degree of PTSD among the general Chinese population affected by the COVID-19 epidemic by conducting an online survey. We further identified important factors associated with the development of PTSD. Mechanistically, we think both the devastation of the current pandemic and the implementation of stringent control measures significantly impact the general population’s mental health. The negative consequences of the COVID-19 pandemic are penetrating every aspect of society, not only health, but also the economy, education, religion, and politics. These have immediate psychological effects on the general public. On the other hand, the implementation of heavy control measures, although desperately needed, has profound side effects on the population’s physical and mental health. For example, psychological problems such as anxiety, panic disorder, and depression are frequently observed in people under quarantine or confined to their homes[7,13-15].

In this study, an IES-R score higher than 20 was used to estimate the prevalence of PTSD. The prevalence of PTSD is universal among the Chinese population, reaching 97.8%. The IES-R score is significantly higher among the older age groups. This
Table 3 Prevalence of post-traumatic stress symptoms according to participant demographics

Characteristics	Frequency (%) (n = 1082)	mean ± SD	t	P value
Prevalence				
IES-R < 20		24 ± 2.2		
IES-R > 20		1058 ± 97.8		
Gender			0.71	0.48
Male	18-88	42.78 ± 12.48		
Female	18-87	42.25 ± 11.87		
Ethnicity			0.63	0.53
Han	18-88	42.64 ± 11.91		
Others	18-87	42.14 ± 12.59		
Residence			1.37	0.17
Rural	19-87	43.11 ± 12.52		
Urban	18-88	42.08 ± 11.87		
Age (yr)			9.81	0.001*
< 30	18-85	40.70 ± 12.69		
31-39	21-88	43.08 ± 11.99		
40-49	18-87	42.52 ± 11.19		
50-59	20-74	47.56 ± 9.36		
> 60	26-62	47.82 ± 11.78		
Education			2.1	0.06
Illiterate	34-34	34		
Primary	31-62	44.75 ± 8.84		
Middle	20-87	44.59 ± 12.19		
Bachelor	18-88	42.34 ± 12.23		
Master	18-85	42.28 ± 11.86		
PhD	21-84	40.02 ± 11.63		
Profession			4.63	0.001*
Farmer	21-87	46.25 ± 11.83		
Teacher	19-82	44.41 ± 10.68		
Doctor	18-74	40.42 ± 12.92		
Government	22-87	46.51 ± 12.02		
Private	28-87	46.00 ± 12.02		
Student	18-85	40.83 ± 12.62		
Business	18-59	39.00 ± 12.67		
Others	18-88	42.31 ± 11.48		
Marital status			5.25	0.005*
Married	18-88	43.42 ± 11.63		
Divorced	24-63	45.76 ± 11.51		
Single	18-85	41.23 ± 12.62		
Monthly income (RMB)			6.29	0.001*
< 3000	18-88	41.47 ± 12.64		
Shah T et al. Psychological impact of the COVID-19 on Chinese population

3001-5000	19-87	44.26 ± 11.34
5001-10000	20-87	43.99 ± 11.48
> 10000	18-78	39.47 ± 12.04

*P < 0.05.
IES-R: Impact of Event-Scale-Revised.

probably reflects that the Chinese populations are well-aware and have adequate epidemiological and clinical knowledge of COVID-19[16]. Because older people, especially when having comorbidities, are vulnerable and have a high COVID-19 fatality rate[17], government employees also experience significantly higher levels of distress compared to other professions. The Chinese central government has mobilized a strong force to contain the epidemic, and government workers have played essential roles. They are heavily involved in the implementation but are also responsible for the effectiveness and outcome of the control measures. Therefore, they face high risks of encountering COVID-19 and political reckoning, explaining their high degree of distress.

Respondents with lower education levels or lower income tend to have more distress. The possible explanation is that this population immediately suffers from economic losses and will face challenges in earning a livelihood. Compared with unmarried participants, the levels of psychological distress are significantly higher among married and divorced participants. Participants with family, especially children, to take care of are likely to worry more about the well-being of their family members.

Of note, this study has some limitations. Firstly, this study used self-reporting instead of diagnostic interviews for assessing psychiatric morbidity. Secondly, the use of online questionnaires has intrinsic limitations as recall, and social desirability biases cannot be excluded. Finally, in addition to PTSD, it would be beneficial to examine depressive disorder, adjustment disorder, psychosomatic disorder, substance use disorder, and antisocial behavior among the psychiatric problems associated with trauma and disasters[18,19].

CONCLUSION

In summary, the COVID-19 epidemic has universally caused PTSD among the general Chinese population. Furthermore, the degree of psychological distress is associated with age, profession, and socio-economic status. Therefore, our results alert the regions struggling with the pandemic to pay attention to the psychological impact and call on the authorities to implement effective interventions to cope with these mental health problems.

ARTICLE HIGHLIGHTS

Research background
The coronavirus disease 2019 (COVID-19) outbreak began in December 2019 in Wuhan, China, and quickly spread to the rest of China and, eventually, the rest of the world. China has been implementing strict control measures such as city lockdowns, travel bans, and within-population quarantine, and the epidemic has been brought under control by March. This epidemic and the implementation of control measures, particularly quarantine, are expected to impact the general population’s mental health, but primary research in this area is limited.

Research motivation
COVID-19 has spread to become a pandemic and may become endemic. Unfortunately, knowledge gaps always exist about disease epidemics, potential risks, and the clinical spectrum.
Research objectives
This survey was designed and conducted to investigate the prevalence and associated risk factors of post-traumatic stress disorder (PTSD) among the general Chinese population.

Research methods
A detailed questionnaire, comprising of 38 questions written in both English and Chinese, was developed. The survey was conducted via WeChat, a multi-purpose messaging, social media, and mobile payment app widely used by the Chinese population. The 1082 people who participated in this survey belonged to 31 provinces, autonomous regions, and municipalities.

Research results
In total, 1082 people from 31 provinces, autonomous regions, and municipalities participated in the survey by filling questionnaires via the WeChat app. 97.8% of the participants had an Impact of Event-Scale-Revised (IES-R) total score above 20, which is the indicator of PTSD. The IES-R total and all three subscales, intrusion, avoidance, and hyperarousal, are significantly correlated with age. In addition, the degree of PTSD symptoms is correlated with age, profession, marital status, and level of education.

Research conclusions
We assessed epidemiological and clinical knowledge of COVID-19 among the general Chinese population and found that the epidemic has widely caused PTSD among the general Chinese population. These results have important implications for regions dealing with the pandemic to implement effective interventions to address these mental health issues.

Research perspectives
We emphasize the importance of launching health promotion programs to educate the general public and healthcare workers about infectious diseases in general to better prepare for future epidemics and pandemics.

ACKNOWLEDGEMENTS
We sincerely thank all the participants who took part in this study.

REFERENCES
1 Pappas G, Kiriaze IJ, Giannakis P, Falagas ME. Psychosocial consequences of infectious diseases. Clin Microbiol Infect 2009; 15: 743-747 [PMID: 19754730 DOI: 10.1111/j.1469-0691.2009.02947.x]
2 Marshall RD, Bryant RA, Amsel L, Suh EJ, Cook JM, Neria Y. The psychology of ongoing threat: relative risk appraisal, the September 11 attacks, and terrorism-related fears. Am Psychol 2007; 62: 304-316 [PMID: 17516775 DOI: 10.1037/0003-066x.62.4.304]
3 Xiao S, Luo D, Xiao Y. Survivors of COVID-19 are at high risk of posttraumatic stress disorder. Glob Health Res Policy 2020; 5: 29 [PMID: 32514428 DOI: 10.1186/s41256-020-00155-2]
4 Roberts T, Miguel Espόndola G, Krupchanka D, Shidhaye R, Patel V, Rathod S. Factors associated with health service utilisation for common mental disorders: a systematic review. BMC Psychiatry 2018; 18: 262 [PMID: 30134869 DOI: 10.1186/s12888-018-1837-1]
5 Xiang YT, Yang Y, Li W, Zhang L, Zhang Q, Cheung T, Ng CH. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry 2020; 7: 228-229 [PMID: 32032543 DOI: 10.1016/S2215-0366(20)30046-8]
6 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382: 727-733 [PMID: 31979045 DOI: 10.1056/NEJMoa2001017]
7 Brooks SK, Webster RK, Smith LE, Woodland L, Wessely S, Greenberg N, Rubin GJ. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 2020; 395: 912-920 [PMID: 3212714 DOI: 10.1016/S0140-6736(20)30460-8]
8 Beck JG, Grant DM, Read JP, Clapp JD, Coffey SF, Miller LM, Paloyo SA. The impact of event scale-revised: psychometric properties in a sample of motor vehicle accident survivors. J Anxiety Disord 2008; 22: 187-198 [PMID: 17369016 DOI: 10.1016/j.janxdis.2007.02.007]
9 Wilson JP, Tang CS-k. Cross-cultural assessment of psychological trauma and PTSD. New York: Springer, 2007: 405 [DOI: 10.1007/978-0-387-70990-1]

10 Salsman JM, Schaele BD, Andrykowski MA, Cella D. The impact of events scale: a comparison of frequency versus severity approaches to measuring cancer-specific distress. *Psychooncology* 2015; 24: 1738-1745 [PMID: 25773193 DOI: 10.1002/pon.3784]

11 Chong MY, Wang WC, Hsieh WC, Lee CY, Chiu NM, Yeh WC, Huang OL, Wen JK, Chen CL. Psychological impact of severe acute respiratory syndrome on health workers in a tertiary hospital. *Br J Psychiatry* 2004; 185: 127-133 [PMID: 15286063 DOI: 10.1192/bjp.185.2.127]

12 Hsu CC, Chong MY, Yang P, Yen CF. Posttraumatic stress disorder among adolescent earthquake victims in Taiwan. *J Am Acad Child Adolesc Psychiatry* 2002; 41: 875-881 [PMID: 12108814 DOI: 10.1097/00004583-200207000-00022]

13 Qiu J, Shen B, Zhao M, Wang Z, Xie B, Xu Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: implications and policy recommendations. *Gen Psychiatry* 2020; 33: e100213 [PMID: 32215365 DOI: 10.1136/gpsych-2020-100213]

14 Ma Z, Idris S, Zhang Y, Zewen L, Wali A, Ji Y, Pan Q, Baloch Z. The impact of COVID-19 pandemic outbreak on education and mental health of Chinese children aged 7-15 years: an online survey. *BMC Pediatr* 2021; 21: 95 [PMID: 33627089 DOI: 10.1186/s12887-021-02550-1]

15 Ma ZR, Idris S, Pan QW, Baloch Z. COVID-19 knowledge, risk perception, and information sources among Chinese population. *World J Psychiatry* 2021; 11: 181-200 [PMID: 34046314 DOI: 10.5498/wjp.v11.i5.181]

16 Zhong BL, Luo W, Li HM, Zhang QQ, Liu XG, Li WT, Li Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: a quick online cross-sectional survey. *Int J Biol Sci* 2020; 16: 1745-1752 [PMID: 32226924 DOI: 10.7150/ijbs.45221]

17 Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, Cuomo-Dannenburg G, Thompson H, Walker PGT, Fu H, Dighe A, Griffin JT, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunubá Z, FitzJohn R, Gaythorpe K, Green W, Hamlet A, Hinsley W, Laydon D, Nedjati-Gilani G, Riley S, van Elsland S, Volz E, Wang H, Wang Y, Xi X, Donnelly CA, Ghani AC, Ferguson NM. Estimates of the severity of coronavirus disease 2019: a model-based analysis. *Lancet Infect Dis* 2020; 20: 669-677 [PMID: 32240634 DOI: 10.1016/S1473-3099(20)30243-7]

18 McFarlane AC. Posttraumatic stress disorder: a model of the longitudinal course and the role of risk factors. *J Clin Psychiatry* 2000; 61 Suppl 5: 15-20; discussion 21-23 [PMID: 10761675 DOI: 10.1007/978-981-10-4358-1_10]

19 Streb M, Conway MA, Michael T. Conditioned responses to trauma reminders: How durable are they over time and does memory integration reduce them? *J Behav Ther Exp Psychiatry* 2017; 57: 88-95 [PMID: 28477531 DOI: 10.1016/j.jbtep.2017.04.005]
