A renewed look at η' in medium

Youngshin Kwon,1,2 Su Hoong Lee,2† Kenji Morita,3§ and György Wolf4‡

1Department of Physics, Soongsil University, Seoul 156-743, Korea
2Department of Physics and Institute of Physics & Applied Physics, Yonsei University, Seoul 120-749, Korea
3Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
4Wigner RCP, RMKI, H-1525 Budapest, POB 49, Hungary

We revisit the question of whether the $U_A(1)$ symmetry is effectively restored in hot and dense medium. In particular, by generalizing the Witten-Veneziano formula to finite temperature, we investigate whether the mass of η'-meson will change in medium due to the restoration of chiral symmetry.

PACS numbers: 14.40.-n, 12.38.-t, 25.75.-q, 11.30.Qc, 11.30.Rd

I. INTRODUCTION

The breaking of the $U_A(1)$ symmetry is an operator relation that remains valid even when the spontaneously broken chiral symmetry is restored. However, whether its effect on the η' mass survives even when chiral symmetry is restored is a phenomenological question that has caught the interest of many researchers. The question has recently been revived as the RHIC data on two pion Bose-Einstein correlation at $\sqrt{s} = 200$ GeV Au+Au collision seems to suggest the quenching of the η' mass in medium. Its partial quenching in nuclear medium is also of great interest as such effects could be probed in finer detail in nuclear target experiments.

The restoration of $U_A(1)$ symmetry will depend on two important ingredients; its relation to chiral symmetry breaking and the effects from topological configurations. How the former and latter contribute to the η' mass in vacuum and generalize it to finite temperature. Al-

II. CORRELATION FUNCTIONS AND THE $U_A(1)$ SYMMETRY

Here, we start with a brief summary of the main result given in ref. [5]. The starting point is the Euclidean partition function of QCD:

$$Z[J] = \int D[A] e^{-S_{YM}} \text{Det}[\mathcal{D} + m_q]$$

$$= \sum_\nu Z[J]_{\nu},$$

(1)

where $S_{YM} = (1/4) F^2$. The second line writes the partition function in terms of topological configurations with the topological charge $\nu = (g^2/32) \int d^4 x F \tilde{F}$. The whole integral in the first line is a positive definite quantity q, which we will denote as dq for later convenience. The topological configurations are always accompanied by $n_+ (n_-)$ number of right-handed (left-handed) fermion zero modes such that $\nu = n_+ - n_-$. In such topologically non-trivial configurations, the fermion determinant comes with special chirality such that partition function with $\nu = 1$ can be written more explicitly as follows:

$$Z[J]_{\nu=1} = \int D[A]_{\nu=1} e^{-S_{YM}} \text{Det}'[\mathcal{D} + m_q]$$

$$\times \text{det} \left(\int d^4 x \bar{\psi}_0(x) m_q \psi_0(x) \right),$$

(2)

where the prime in the fermion determinant means that the chiral zero modes ψ_0 have been explicitly taken out into the second determinant. Therefore, in the chiral limit $m_q = 0$, the topological configuration does not contribute to the partition function as the fermion determinant gives zero. However, these terms do contribute
in the correlations functions and select out the \(\eta' \) from the other pseudo-scalars. Higher topological configurations will contribute at higher point functions when there are sufficiently many external legs to saturate the zero modes.

To see this, consider a two point function of a generic quark bilinear:

\[
\Pi_\Gamma(x) = \langle \bar{q}(x) \Gamma q(x), \bar{q}(0) \Gamma q(0) \rangle \\
= \frac{1}{Z} \int d\mu \left[- \text{Tr}[S_A(x,0) \Gamma S_A(0,x)] \right. \\
+ \text{Tr}[S_A(x,x) \Gamma] \text{Tr}[S_A(0,0) \Gamma] + (\text{zero mode}) \right], \\
\text{(3)}
\]

the first, second and third term being the connected, disconnected terms and possible zero mode contribution respectively. \(S_A \) is the quark propagator in the presence of the gauge field. When \(\Gamma \) contains a flavor matrix, the contributions from the disconnected diagrams are identically zero.

The results in refs. 4 and 5 can be summarized as follows. When one takes the difference between the two-point functions of chiral partners, the difference vanishes when chiral symmetry is restored. When the difference is taken between those composed of currents that are related by a chiral transformation and an extra \(U_A(1) \) transformation, there will be an extra contribution from the zero modes. As an example, the difference between a pseudo-scalar and \(\eta' \) is given as follows in SU(2):

\[
\Pi_\gamma(x) - \Pi_{\eta'}(x) = \frac{1}{Z} \int d\mu \left[\text{Tr}[S_A(x,x) \gamma_5] \text{Tr}[S_A(0,0) \gamma_5] \right. \\
+ \frac{1}{Z} \int d\mu_{\pm 1} \left[4\bar{\psi}_0(x) \psi_0(x) \bar{\psi}_0(0) \psi_0(0) \right]. \\
\text{(4)}
\]

In ref. 6, it was shown that the first term goes to zero in the chiral limit when chiral symmetry is restored. This result is in fact independent of the number of flavors and also valid when the \(\gamma_5 \) inside the trace is replaced by other gamma matrices such as \(\gamma_\mu \) or \(\gamma_\mu \gamma_5 \).

The zero-mode contributions appearing in the second term of Eq. 4 come from the topological configuration in Eq. 2 and are responsible for the appearance of the \(U_A(1) \) effect. However, when \(N_f > 2 \), the second determinant in Eq. 2 will have \(2N_f \) zero mode lines and hence the zero-mode contributions in Eq. 4 will be proportional to \(O(m_{\eta'}^{-2}) \) and vanish in the chiral limit. Therefore, when chiral symmetry is restored, the \(U_A(1) \) breaking effect will not appear in the two-point functions. However, this does not necessarily mean that the \(\eta' \) mass will become degenerate with the other pseudo scalar mesons because the coupling of the currents to the \(\eta' \) might just go to zero. Therefore, let us look at a relation that directly relates the mass of \(\eta' \) to the chiral order parameters.

III. WITTEN-VENEZIANO FORMULA

A. WV formula at zero temperature

As a first step of this study, we review the derivation of the WV mass formula [14]. We start with the gluonic correlation function defined in a pure glue theory:

\[
U(k) = i \int d^4x e^{ikx} \langle TG\bar{G}(x) G\bar{G}(0) \rangle. \\
\text{(5)}
\]

One should note that, in the large \(N_c \) limit [16], Eq. 5 scales as order \(N_c^2 \). There is also a well known low energy theorem for the correlation function at zero external momentum \(U(k = 0) \neq 0 \), whose value we will come back in the next section.

However, when massless quarks are added to the theory, the low energy theorem leads to the vanishing correlation function \(U_{lq}(k = 0) = 0 \), where the subscript \(lq \) means the presence of light quarks, through the anomaly relation that relates the pseudo-scalar gluon current to axial current \(\sum_q \partial_\mu \bar{q} \gamma_\mu \gamma_5 q \equiv N_f \frac{2}{3} \bar{G} G \), where \(\hat{G}_{\mu\nu} = 1/2\epsilon_{\mu\nu\alpha\beta} G_{\alpha\beta} \). This seems a little odd, because quark effects are suppressed in large \(N_c \), but for the low energy theorem, the leading \(N_c \) effect seems to be canceled by a subleading \(N_c \) effect. The answer to this question led to the WV formula.

In terms of the physical states, the correlation functions looks as follows when light quarks are added.

\[
U_{lq}(k) = - \sum_n \frac{|\langle 0|G\bar{G}|n^{th\text{ glueball}}\rangle|^2}{k^2 - M_n^2} \\
- \sum_n \frac{|\langle 0|G\bar{G}|n^{th\text{ meson}}\rangle|^2}{k^2 - m_n^2} \\
\equiv U_0(k) + U_1(k). \\
\text{(6)}
\]

In the spectral form, Eq. 6, the first term in the right hand side indicates contributions from glueballs, while the second term shows those from the meson composed of light quarks. One can show that the residue of the first term is of order \(N_c^0 \) whereas the quark effects are of order \(N_c^2 \). This seems a little odd, because quark effects are suppressed in large \(N_c \), but for the low energy theorem, the leading \(N_c \) effect seems to be canceled by a subleading \(N_c \) effect. The answer to this question led to the WV formula.

\[
\langle 0|G\bar{G}|n^{th\text{ glueball}}\rangle = N_c a_n, \\
\langle 0|G\bar{G}|n^{th\text{ meson}}\rangle = \sqrt{N_c} c_n. \\
\text{(7)}
\]

Since all the meson masses should have a smooth large \(N_c \) limit \(O(1) \), the terms of quark effects, \(U_1 \), are suppressed in 1/\(N_c \) as expected. The resolution to the seemingly inconsistent result is by noting the existence of \(\eta' \)-meson which mass scales as order 1/\(N_c \). One then recovers the consistent low energy theorem \(U_{lq}(0) = U_0(0) + U_1(0) = 0 \), if the second term is saturated by the \(\eta' \)-meson and scales as \(N_c^2 \). From this condition, one finds,

\[
U(0) = U_0(0) = - \frac{|\langle 0|G\bar{G}|\eta'\rangle|^2}{m_{\eta'}^2} = - \frac{N_c c_{\eta'}^2}{m_{\eta'}^2}. \\
\text{(8)}
\]
By using the $U(1)_A$ anomaly,
\[\langle 0 | \bar{G} G | \eta' \rangle = \frac{4\pi}{\alpha} \frac{1}{N_f} \langle 0 | \partial_{\mu} j^\mu_{f_3} | \eta' \rangle = \frac{4\pi}{\alpha} \frac{1}{N_f} \sqrt{N_f} m_{\eta'}^2 f_\pi, \]
Eq. (8) becomes as follows:
\[U_0(0) = \frac{1}{N_f} m_{\eta'}^2 f_\pi^2 \left(\frac{4\pi}{\alpha} \right)^2, \]
where N_f is the number of light flavors. In Eq. (9), we made use of $f_{\eta'} = f_\pi$ to lowest order in N_c. Eq. (10) is the celebrated WV formula.

B. WV formula at finite temperature

Consider the correction to Eq. (10) at finite temperature. As mentioned before, the correlation function in Eq. (8) is order N_c^2, as can be seen by the two loops representing two gluon lines in Fig. 1(a). At finite temperature, the thermal correction could come from the thermal gluon or quark interactions. Fig. 1(b,c) show the thermal corrections to $U_0(k)$ while Fig. 1(d,e) show those to $U_1(k)$.

The dominant thermal gluonic contribution to $U_0(k)$ comes from Fig. 1(b) and scales as N_c^2 as in the vacuum scaling. The scaling comes as follows,
\[(N_c) \times \left(\frac{1}{\sqrt{N_c}} \right)^2 (N_c)^2 = O(N_c^2). \]
which comes from the internal loop, two coupling and the number of external thermal gluons respectively. The contributions where the gluons couple directly to the currents scale the same as in Fig. 1(b). On the other hand, the contributions from thermal quarks to $U_0(k)$ scales as follows,
\[(N_c) \times \left(\frac{1}{\sqrt{N_c}} \right)^2 (N_c) = O(N_c), \]
where the factors are the same as before except for the last factor, which comes from the number of external quark lines, as can be seen from Fig. 1(c). Therefore, in the large N_c limit, the thermal gluonic effect scales the same as in the leading vacuum scaling and will contribute to modifying $U_0(k)$.

As for the modification in the quark loops $U_1(k)$, the thermal gluonic effects are shown in Fig. 1(d), and the thermal quark effects in Fig. 1(e). Both scale as $O(N_c)$, and can thus be neglected in the leading order correction.

If the system is in the confined state, the hadronic side will be saturated by color singlet glueball, meson and nucleons. Here, the dominant contribution comes from the nucleons. One can show that the contribution from the nucleon to all figures in Fig. 1 scale as $O(N_c)$ because the nucleon contains N_c quarks. On the other hand, the contributions from meson or glueballs are suppressed in $1/N_c$, as the number of constituents are finite. Hence, hadron effects can be neglected until near the phase transition point where the density of states increases, after which one can use the quark and gluon degrees of freedom.

Therefore, same arguments hold as in the vacuum. Namely, the addition of quarks somehow has to cancel the leading N_c behavior at $k = 0$. This cancelation can not be done by collective states, as quark collective states are also suppressed in large N_c limit, and hence has to come from a modified η' contribution. All in all, a similar equation to Eq. (8) will hold at finite temperature, with $\langle 0 | \bar{G} G | \eta' \rangle$ now defined at finite temperature at η' momentum zero. Moreover, it should be noted that the η' mass we are discussing now could be different from that of the pole mass as we are discussing the scalar part of the mass, which survives at $k^\mu \to 0$. A simplified example would be to assume that the small energy and momentum self energy has the following form, with $a(T)$ and $b(T)$ being the small corrections,
\[\Sigma_{\eta'} = a(T) k_0^2 + b(T) \tilde{k}^2 + m^2(T). \]
The pole mass at $\tilde{k} \to 0$ would be $\sqrt{m^2 + m^2(T)}/\sqrt{1 - a(T)}$. But the mass we are talking about is $\sqrt{m^2 + m^2(T)}$.

Nevertheless, U_0 has a nontrivial correction at finite temperature as we will see in the following sections.

IV. η' MASS AT FINITE TEMPERATURE

A. Low energy theorem

Now, $U_0(0)$ can be obtained from the low energy theorem. Here we use the derivation using the heavy quark expansion [13]. For technical reasons, we start from a slightly different definition of the correlation function.
\[P(k) = i \int d^4x \, e^{ikx} \left(T \left[\frac{3\alpha}{4\pi} G\bar{G}(x), \frac{3\alpha}{4\pi} G\bar{G}(0) \right] \right) \]
\[\Sigma_{\eta'} = a(T) k_0^2 + b(T) \tilde{k}^2 + m^2(T). \]
The pole mass at $\tilde{k} \to 0$ would be $\sqrt{m^2 + m^2(T)}/\sqrt{1 - a(T)}$. But the mass we are talking about is $\sqrt{m^2 + m^2(T)}$. Nevertheless, U_0 has a nontrivial correction at finite temperature as we will see in the following sections.
It can be shown\(^{18}\) that

\[
P(k = 0) = -\frac{2}{32\pi^2} \frac{d}{d(-1/4g^2)} \left\langle \frac{\alpha}{\pi} G^2 \right\rangle. \tag{15}
\]

Now, any matrix element with canonical dimension \(d\) should be proportional to the \(d\)th power of the scale

\[
\Lambda = M_0 \exp \left(-\frac{8\pi^2}{b}\right) \tag{16}
\]

with \(b = 11 - \frac{2}{3} N_f\). Hence, the gluon condensate at finite temperature and density should be of the following form.

\[
\left\langle \frac{\alpha}{\pi} G^2 \right\rangle_{T,\mu} = \Lambda^d f \left(\frac{T}{\Lambda}, \frac{\mu}{\Lambda} \right), \tag{17}
\]

where \(d = 4\) and \(f\) is a generic function specifying the temperature and density dependence of the gluon condensate. Then Eq. (15) becomes,

\[
P(k = 0) = -\frac{2}{b} \left(d - T \frac{\partial}{\partial T} - \mu \frac{\partial}{\partial \mu} \right) \left\langle \frac{\alpha}{\pi} G^2 \right\rangle_{T,\mu}. \tag{18}
\]

Now, combining Eq. (8) and Eq. (18), one finds,

\[
\left(\frac{3\alpha}{4\pi}\right)^2 \frac{\left\langle 0\left| G\tilde{G}\right|\eta'\right\rangle^2}{m_{\eta'}^2} = \frac{2}{b} \left(d - T \frac{\partial}{\partial T} - \mu \frac{\partial}{\partial \mu}\right) \left\langle \frac{\alpha}{\pi} G^2 \right\rangle_{T,\mu}. \tag{19}
\]

But now since we can make the identification of the left and right hand side only in the large \(N_c\) limit, the right hand side should be calculated in the quenched approximation. This means that one should just read off the temperature dependence of the gluon condensate from the lattice calculation for pure gauge theory, and also take \(b = 11\). Thus, the \(\eta'\) mass is given by

\[
m_{\eta'}^2 = \left(\frac{3\alpha}{4\pi}\right)^2 \frac{\left\langle 0\left| G\tilde{G}\right|\eta'\right\rangle^2}{\left\langle \frac{\alpha}{\pi} G^2 \right\rangle_{T\text{, pure gauge}}}. \tag{20}
\]

\[\text{FIG. 2: } T\text{-dependence of gluon condensate and its derivative fitted to Wuppertal-Budapest lattice data in full QCD.}\]

\[\text{FIG. 2: } T\text{-dependence of gluon condensate and its derivative fitted to Wuppertal-Budapest lattice data in full QCD.}\]

B. Gluonic part

In order to evaluate the in-medium \(\eta'\) mass from Eq. (20), all we need are the temperature-dependence of the gluon condensate and the coupling of \(G\tilde{G}\) to \(\eta'\). First let us consider the denominator of Eq. (20). It has been known for a long time, that the gluon condensate has contribution from the perturbative and non-perturbative contribution. Moreover, it was also known that at the critical temperature, the non-perturbative contribution changes abruptly, but does not vanish completely, and retains more than half of its non-perturbative value\(^{19-21}\).

\[\text{The effect of subtracting out the second term in the denominator of Eq. (20) is to get rid of the perturbative correction, or the seemingly scale breaking effect that is not related to scale breaking but due to the introduction of an external scale parameter } T. \text{ The leading perturbative correction to the gluon condensate is proportional to } g_4^2(T) T^4 \text{. Therefore, assuming that the temperature dependence is of the following form,} \]

\[
\left\langle \frac{\alpha}{\pi} G^2 \right\rangle_T = G_0(T) + a g_4^4 T^4, \tag{21}
\]

we find,

\[
\left(d - T \frac{\partial}{\partial T}\right) \left\langle \frac{\alpha}{\pi} G^2 \right\rangle_T = \left(d - T \frac{\partial}{\partial T}\right) G_0(T), \tag{22}
\]

if the temperature dependence of \(g\) is neglected\(^{22}\). The only temperature dependence that survives is \(G_0(T)\), whose scale dependence is coming from dimensional transmutation and not from the external temperature only. It is the non-perturbative part that dominates the behavior of the right hand side of Eq. (20).

In Fig. 2 we show the model fit\(^{24}\) to the Wuppertal-Budapest’s full QCD data\(^{22}\) together with the modified \(T\)-dependent gluon operator as it appears in Eq. (20). In the quenched calculation, the only difference is that the change is taking place more abruptly near the new critical temperature\(^{20}\). One can see that the change in the denominator of Eq. (20) will tend to reduce the \(\eta'\) mass near the critical temperature.

C. Coupling to \(\eta'\)

The final step in obtaining the mass of \(\eta'\) using Eq. (20), when chiral symmetry is restored, is estimating the change of the coupling \(\langle 0|G\tilde{G}|\eta'\rangle\). For that purpose, let us consider \(U_{\eta'}(k)\) in Eq. (15) in the full theory, but rewrite it in terms of the quark axial current using the anomaly relation.

\[
U(k) = i \int d^4 x e^{ikx} \left\langle T G\tilde{G}(x) G\tilde{G}(0) \right\rangle \tag{23}
\]

\[
= k^\mu k'^\nu i \int d^4 x e^{ikx} \left[\frac{4\pi}{\alpha N_f} \right]^2 \left\langle T \bar{q} i\gamma_\mu \gamma_5 q(x) \bar{q} i\gamma_\nu \gamma_5 q(0) \right\rangle - \left\langle T \bar{q} \gamma_\mu q(x) \bar{q} \gamma_\nu q(0) \right\rangle.
\]
where we have subtracted out the contribution from the conserved vector current. Using the previous terminology, when chiral symmetry is restored, the connected piece will cancel, as they are the same as the difference between flavored chiral partners, and only the disconnected pieces will remain. Assuming that the spectral sum starts from the \(\eta' \), we find that the \(\eta' \) mass will become degenerate with the \(\eta' \) mass as expected. Assuming that the pseudo scalar mesons do not change their mass towards the phase transition point, it is this extra \(U_A(1) \) mass of \(\eta' \) that is going to be quenched in the chiral symmetry restored phase.

Few remarks are in order. First, in the quenched approximation, the changes of order parameters take place only near the phase transition point. This suggests that the effect of quenching might only be visible when the hadronization temperature is close to the phase transition point as in the case of RHIC or LHC energies for example. Second, it is hard to make a quantitative estimate on how much of this mass is quenched in the nuclear medium, as the effects of density are subleading in the large \(N_c \) limit. However, assuming Eq. (20) is an exact relation, we can use Eq. (21) to approximate \(\langle 0|G\bar{G}|\eta'\rangle \propto \text{Tr}[\bar{S}_A(x,x)] \) and then use it in Eq. (22) to deduce \(m_{\eta'} \propto \langle \bar{q}q \rangle \), assuming that the change in the gluon condensate is small in nuclear medium. Therefore, if the chiral order parameter reduces by 20% in nuclear medium the \(U_A(1) \) breaking part of the \(\eta' \) mass will also reduce by the same fraction.

V. CONCLUSIONS

It should be noted that the \(\eta' \) mass that is being quenched is the part of the mass that comes from the breaking of the \(U_A(1) \) symmetry. Going back to Eq. (10) and substituting the vacuum value of Eq. (13) one finds,

\[
m_{\eta'} = \sqrt{\frac{8}{33}} \frac{1}{f_\pi} \langle \frac{G^2}{\pi} \rangle^{1/2} \approx 464 \text{ MeV},
\]

where we have used \(f_\pi = 130 \text{ MeV} \) and \(\langle \frac{G^2}{\pi} \rangle = (0.35 \text{GeV})^4 \). This is smaller than the vacuum value of the \(\eta' \) mass as expected. Assuming that the pseudo scalar

\[
U(k) = -\frac{|\langle 0|G\bar{G}|\eta'\rangle|^2}{k^2 - m_{\eta'}^2} - \ldots
\]

is valid for any \(k \), we find that when chiral symmetry is restored.

\[
\text{Tr}[\bar{S}_A(x,x)] \sim \text{Tr}[\bar{S}_A(x,x)\Gamma] \sim O(m_q),
\]

where \(\Gamma \) is a Hermitian gamma matrix. Since Eq. (24) is valid for any \(k \), we find that

\[
\langle 0|G\bar{G}|\eta'\rangle \sim O(m_q),
\]

when chiral symmetry is restored. Therefore, going back to Eq. (20) and making use of the previous discussions, we find that when chiral symmetry is restored,

\[
m_{\eta'}^2 \to 0,
\]

in the chiral limit. One concludes that in the large \(N_c \) limit of QCD, \(\eta' \) mass will become degenerate with the other goldstone bosons.

ACKNOWLEDGEMENTS

This work was supported by Korea national research foundation under grant number KRF-2011-0030621. YK was supported (in part) by the Yonsei University Research Fund of 2010 and by Korea national research foundation under grant number KRF-2011-0015467. KM is supported by the Hungarian OTKA T71989 and T101438.

[1] V. Bernard and U. G. Meissner, Phys. Rev. D 38, 1551 (1988).
[2] E. V. Shuryak, Comments Nucl. Part. Phys. 21, 235 (1994).
[3] J. I. Kapusta, D. Kharzeev and L. D. McLerran, Phys. Rev. D 53, 5028 (1996).
[4] T. D. Cohen, Phys. Rev. D 54, 1867 (1996).
[5] S. H. Lee and T. Hatsuda, Phys. Rev. D 54, 1871 (1996).
[6] N. J. Evans, S. D. H. Hsu and M. Schwetz, Phys. Lett. B 375, 262 (1996).
[7] T. Csorgo, R. Vertesi and J. Sziklai, Phys. Rev. Lett. 105, 182301 (2010).
[8] R. Vertesi, T. Csorgo and J. Sziklai, Phys. Rev. C 83, 054903 (2011).
[9] R. Vertesi, T. Csorgo and J. Sziklai, Nucl. Phys. A 830, 631C (2009).
[10] D. Jido, H. Nagahiro and S. Hirenzaki, Phys. Rev. C 85, 032201 (2012).
[11] H. Nagahiro, S. Hirenzaki, E. Oset and A. Ramos, Phys. Lett. B 709, 87 (2012).
[12] M. Nanova [CBELSA/TAPS Collaboration], “In-medium Properties of η' Meson,” [arXiv:1111.6006] [nucl-ex].
[13] M. C. Birse, T. D. Cohen and J. A. McGovern, Phys. Lett. B 388, 137 (1996).
[14] E. Witten, Nucl. Phys. B 156, 269 (1979).
[15] G. Veneziano, Nucl. Phys. B 159, 213 (1979).
[16] G. ’t Hooft, Nucl. Phys. B 72, 461 (1974).
[17] E. Witten, Nucl. Phys. B 160, 57 (1979).
[18] S. H. Lee and I. Zahed, Phys. Rev. C 63, 045204 (2001).
[19] S. H. Lee, Phys. Rev. D 40, 2484 (1989).
[20] C. Adam, T. Hatsuda and I. Zahed, Phys. Rev. D 43, 921-932 (1991).
[21] G. E. Brown, B. A. Gelman and M. Rho, Phys. Rev. Lett. 96, 132301 (2006).
[22] J. I. Kapusta, Nucl. Phys. B 148, 461-498 (1979).
[23] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lutgemeier and B. Petersson, Nucl. Phys. B 469, 419-444 (1996).
[24] K. Morita and S. H. Lee, “Charmonium mass in hot and dense hadronic matter,” [arXiv:1012.3110] [hep-ph].
[25] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti, K. K. Szabo, JHEP 1011, 077 (2010).
[26] K. Morita and S. H. Lee, Phys. Rev. C 77, 064904 (2008).
[27] At low temperature this may not be true. But since $dg(T)/dT < 0$, the conclusion will not change if we consider this seriously.