Role of Cannabidiol and Tetrahydrocannabivarin on Paclitaxel-Induced Neuropathic Pain in Rodents

Anil Kumar Kaivala
FAMU: Florida Agricultural and Mechanical University

Arvind Bagde
FAMU: Florida Agricultural and Mechanical University

Peggy Arthur
FAMU: Florida Agricultural and Mechanical University

Sunil Kumar Surapaneni
FAMU: Florida Agricultural and Mechanical University

Ramesh Nimma
FAMU: Florida Agricultural and Mechanical University

Aakash Nathani
FAMU: Florida Agricultural and Mechanical University

Mandip Singh (mandip.sachdeva@famu.edu)
Florida A&M University: Florida Agricultural and Mechanical University https://orcid.org/0000-0001-9192-8143

Research Article

Keywords: Tetrahydrocannabivarin, Cannabidiol, Paclitaxel, RNA Sequencing, Mitochondrial function

Posted Date: December 29th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1189466/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The purpose of this study was to investigate the neuroprotective effects of phytocannabinoids, synthetic cannabidiol (CBD) and tetrahydrocannabivarin (THCV) and their combination on taxol induced peripheral neuropathy (PIPN) in mice. Briefly, six groups of C57BL/6J mice (n = 6) were used. PTX (8 mg/kg/day, i.p.) was given to the mice on days 1, 3, 5, and 7 to induce neuropathy. Mice were evaluated for their behavioral parameters and also at the end of the study, DRG collected from the animals were subjected to RNA sequence and westernblot analysis. Further, immunocytochemistry and mitochondrial functional assays were performed on cultured DRGs derived from SD rats. The combination of CBD and THCV improved thermal and mechanical neurobehavioral symptoms in mice by two folds as compared to individual treatments. KEGG (RNA Sequencing) identified P38-MAPK, AMPK, and PI3K-AKT pathways as potential CBD and THCV therapeutic targets. In PTX-treated animals, the expression of p-AMPK, SIRT1, NRF2, HO1, SOD2, and catalase was significantly reduced (p<0.001), whereas the expression of PI3K, p-AKT, p-P38 MAP kinase, BAX, TGF-β, NLRP3 inflammasome, and caspase 3 was significantly increased (p<0.001) when compared to control group. In these protein expressions, combination therapy outperformed single therapies. CBD and THCV treatment increased AMPK, Catalase, and Complex I expression while decreasing mitochondrial superoxides in DRG primary cultures. In mice and DRG primary cultures, WAY100135 and rimonabant inhibited the effects of CBD and THCV by blocking 5 HT1A and CB1 receptors. In conclusion, entourage effect of CBD and THCV combination against PIPN appears to protect neurons in mice by modulating 5HT1A and CB1 receptors, respectively.

Introduction

Peripheral neuropathies are the most frequent type of neurodegeneration affecting millions of people worldwide. Chemotherapeutic drugs such as taxanes, vinca alkaloids, and proteasome inhibitors like bortezomb, aromatase inhibitors (letrozole, anastrozole, exemestane) induce peripheral neuropathy (CIPN) [1]. CIPN is the leading cause of dose reductions, skipping, and limitation during cancer treatment. Treatment of CIPN is a substantial unmet medical need in the United States and significantly impacts clinical outcomes and survival. Paclitaxel (PTX) has been used to treat aggressive and metastatic breast, pancreatic, ovarian, non-small-cell lung cancers and other solid organ malignancies [2]. However, with incidence rates in patients ranging from 11 to 90%, PTX-induced neuropathy (PIPN) is one of the most common clinical issues [3]. It can cause sensory dominant neuropathy, which mostly affects small diameter sensory fibers and manifests clinically as paraesthesias, dysesthesias, numbness, impaired proprioception and loss of dexterity in toes and fingers. These symptoms are dose-dependent and they usually go away after the medication is stopped. Symptoms in some people can linger for up to 3 years after the therapy is stopped, and in other cases, they can last a lifetime [4]. However, existing treatments for PIPN are only partially effective, and the processes underlying the development of PIPN remain unknown. As a result, there is an urgent need to find a therapeutic that maintains anti-tumor efficacy and effectively manages PIPN.

PTX has an uncertain mechanism of action; however, it affects cellular cytoskeleton, DNA synthesis, endoplasmic reticulum and mitochondrial function, [5]. According to recent reports, PTX alters the activity of voltage-gated sodium [6], potassium, and transient receptor potential vanilloid (TRPV) channels, affecting neuronal firing and synchronization [7]. Infiltration of activated microglia by accumulated PTX in DRGs resulted in the release of pro-inflammatory cytokines, which hampered peripheral nerve system synchronization with CNS [8]. PTX also interferes with noradrenaline and 5-HT signaling, exacerbating the consequences of central sensitization [8].

Several studies have demonstrated that cannabinoids effectively alleviate neuropathic, inflammatory and cancer-related pain [9]. CBD and THCV are major phytocannabinoids that have received significant attention as therapeutic agents in various applications (e.g., anxiety, aging, obesity, cancer, pain, and other CNS diseases) [10]. Unlike THC, which is psychoactive and acts as an agonist at both the CB1 and CB2 receptors, THCV is a non-psychoactive, neutral CB1 antagonist/reverse agonist that can behave as a partial agonist or antagonist at the CB2 receptors depending on the dose. The mechanism by which THCV antagonizes the impact of THC is unknown and is thus hypothesized to prevent the psychological effects of THC. In contrast to THC, THCV causes hypoglycina in both fasted and non-fasted mice [11]. However, THCV showed potential beneficial effects on metabolic disturbances associated with obesity, such as hyperglycemia, dyslipidemia, and fatty liver, in dietary-induced obese and genetically obese (ob/ob) mice, suggesting pharmacology distinct from that of CB1 inverse agonists/antagonists [12]. In another study, THCV was observed to alleviate insulin resistance and obesity in diet-induced obese mouse models by interacting with TRPV1 ion channels and modifying metabolic processes [13]. On the contrary, CBD’s therapeutic effect in inflammatory and neuropathic pain models is demonstrated by reduced levels of various mediators such as prostaglandin E2 (PGE2), lipid peroxidation and nitric oxide (NO), constitutive endothelial NO synthase (eNOS), and tumor necrosis factor-alpha (TNF-α) [14]. CBD has been reported to interfere with a range of receptors, including CB1, CB2, 5HT1A receptors, and TRPV1 ion channels, in reducing pain produced by a variety of ailments in several animal models [15].

Currently, no reports have conclusively demonstrated the role of any specific agents against CIPN, which is a potential problem: CBD and THCV work directly or indirectly on transient receptor potential cation channel subfamily V member 1 (TRPV1), cannabinoid (CB 1 & 2), 5-HT1A, and 3-Glycine receptors to reduce thermal, mechanical, and drug-induced pain hypersensitivities. In this study, we have evaluated for the first time, the neuroprotective effects of THCV and its combination with synthetic CBD against PIPN. We extracted DRGs from the treated mice and used RNA sequencing to evaluate the transcriptome changes related to CBD and THCV against PTX-induced neuropathy. Furthermore, to assess the effect of CBD and THCV on these receptors in altering PTX-induced nociception in mice, we utilized CB1, TRPV1, and 5HT1A blockers. The overall hypothesis here is that combination of CBD and THCV will have significant effect against CIPN in vivo.

Materials And Methods

Materials
Paclitaxel (Sigma Aldrich, MO, USA), synthetic Cannabidiol (PurisysTM, Athens, GA), Tetrahydrocannabivarin (Open Book Extracts, Roxboro, NC, USA), WAY100135 (Sigma Aldrich, MO, USA), Rimonabant (Sigma Aldrich, MO, USA), WAY100135 (Sigma Aldrich, MO, USA), AM630 (Sigma Aldrich, MO, USA), HAMS
F12 media (Millipore Sigma, St. Louis, MO, USA), Neurobasal Media, N2 supplements, NGF, MITOSOX Stain, Neurite outgrowth assay kit, TPER, fetal bovine serum (Atlanta biological, MN, USA). Unless specified all the chemicals (GLP/GMP grade) were purchased from Sigma Aldrich, USA.

Invivo

Animals

C57BL/6J mice (4-5 weeks old) and male Sprague Dawley rats (7-8 weeks old) were provided by Envigo (Indianapolis, IN) for the current study on PIPN. FAMU has AAALAC-accredited animal facilities, and following NIH recommendations (Guide for the care and use of laboratory animals), the current protocol was evaluated and approved by Florida Agricultural and Mechanical University’s Institutional Animal Use and Care Committee (protocol numbers: 020-06 & 021-04). The animals were sacrificed using the carbon dioxide (CO2) asphyxiation procedure.

Study design

To establish peripheral neuropathy, C57BL/6J female mice (4-5 weeks old) were given PTX (8 mg/kg, i.p.) every other day for four injections. In first set of experiments, animals were divided into three groups after they had developed neuropathy: a. untreated age-matched normal mice, b. PTX (8 mg/kg, i.p.) every other day for four injections, c. cannabidiol (CBD) group: animals were given 10 mg/kg CBD (i.p.) twice a week for six weeks following the previous PTX injection. d. Tetrahydrocannabinin (THCV) group: animals were given 15 mg/kg of THCV (i.p.) twice a week for a total of six weeks after the last dose of PTX injection, e. Cannabidiol (CBD) + Tetrahydrocannabinin (THCV) group: animals were given 10 mg/kg of CBD and 15 mg/kg of THCV (i.p.) and in the second set of experiments, the effects of CB1, CB2, and 5HT1A blockers on CBD and THCV-induced neurobehavioral changes in PTX-induced neuropathic mice were studied by dividing the animals into six groups, a & b: (PTX+CB1+CBD or THCV): CB1 blocker (CB1B) 3 mg/kg/day, i.p., was given to mice for four weeks and three hours before administering CBD or THCV. c & d: (PTX+5HT1AB+BD or THCV): 5HT1A blocker (5HT1AB), 10 mg/kg/day, i.p., was given to mice for four weeks and three hours before administering CBD or THCV e & f: (PTX+CB2B+BD or THCV): CB2 blocker (CB2B) 1 mg/kg/day, i.p., was given to mice for four weeks and three hours before administering CBD or THCV. The PTX, CBD, THCV AM630, Rimonabant and WAY100655 dosages were determined using existing literature reports [16-21]. After the animals were euthanized using CO2 asphyxiation and dorsal root ganglions (L1-L5) were extracted, biochemical and molecular parameters were examined.

Behavioral studies

Thermal hyperalgesia

Hargreaves Plantar Test: This test was carried out with some modifications [22,23]. Briefly, the animals were housed in 12 plexiglass enclosures kept at a constant temperature (30°C) above a horizontal glass surface. With a cut-off time of the 20s, the time it took a mouse to lift its right or left paw after being exposed to a radiant heat source of infrared irradiation (40 IR units) was measured. The results are reported in seconds as paw withdrawal latency, with a 10-minute time interval between each consecutive reading.

Hot and Cold plate method

Thermal hyperalgesia was measured using the hot and cold plate method, as previously reported [24]. Immediately after acclimatization, the mice were placed on a hot plate (55°C) and a cold plate (10°C) where the time latency for the animal to lick its right/left foot was measured with a cut-off time of 20s and an interval of 10 minutes at each reading, and the results were reported as paw withdrawal latency in seconds.

Mechanical Hyperalgesia

The Vonfrey and Randall Selitto tests were used to assess mechanical hypersensitivity in mice. The mice were poked with standard vonfrey fibres of varying weights (g), and the weight at which they lifted their paws was monitored using a digital electronic readout unit and reported as paw withdrawal threshold (g). The paw withdrawal pressure of mice was measured using Randall sellitto pincture pressure on both paws. Each animal was tested five times, with a 10-15 minute delay between each reading [25].

RNA sequencing

RNA sequencing on DRG homogenates from control, PTX, CBD, and THCV-treated mice was performed by Novogene Corporation Inc (Sacramento, CA). Briefly, messenger RNA was isolated from total RNA using poly-T oligo magnetic beads. This was followed by second strand cDNA synthesis using either dUTP or dTTP depending on the library type. Except in directed library preparation, user enzyme digestion was included after size selection. The library was quantified with Qubit, and the size distribution was detected with a bioanalyzer. Quantified libraries were pooled and sequenced on Illumina platforms. Clustering and sequencing were done following manufacturer’s instructions. After generating clusters and paired-end reads, the library preparations were sequenced on Illumina. Initially, quality control of raw data infastq format was handled using perl programs. Raw reads were cleaned by eliminating adaptor, poly-N, and low quality reads. The cleaned data Q20, Q30, and GC content were calculated and used for downstream analysis. For better mapping results, clean reads were mapped to the reference genomes using Hisat2 v2.0.5, which developed a database of splice junctions based on the gene model annotation file. Feature Counts v 1.5.0-p3 was used to count the reads mapped to each gene. In order to assess gene expression levels, FPKM (fragments per kilobase of exon per million mapped fragments) was calculated. DESeq2 R software was used to analyze differential gene expression (1.20.0). In order to reduce the false discovery rate, Benjamini and Hochberg’s procedure was used. Genes with a P < 0.05 difference across groups were considered differentially expressed. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/) was used to examine the statistical enrichment of differential expression genes in KEGG pathways. The effective genes and critical pathways in regulating neuronal function were predicted using Reactome, disease ontology, and DisGeNET databases.
Western blotting

For this study, separated DRGs were homogenized in TPER (1:100), centrifuged at 20,000 rpm for 20 minutes, and the supernatant was collected and evaluated for total protein content using a bicinchoninic acid test kit. To denature the proteins, the sample was heated to 95°C for 10 minutes with 4X laemmli buffer containing 5% mercapto-ethanol. SDS PAGE gel electrophoresis resolved 40 g protein. Semi-dry transfer of resolved gel containing segregated proteins to PVDF/nitrocellulose membranes (Transblot, Biorad, USA). Incubation with primary antibodies (P-38 MAPK, p-AMPK, PI3K, p-AKT, TFAM, HO-1, Catalase, Nr12, Bax, caspase 3, caspase 1, caspase 9 and TGF-beta of rabbit or mouse origin) at 4°C overnight followed by three washes with PBST. We next probed the membranes for 2 hours at room temperature with HRP conjugated secondary anti-rabbit and anti-mouse antibodies. The ChemiDocTM XRS+ imaging system (BIO-RAD) was used to collect the luminescence signal which was quantified by using Image J software (version 1.48, NIH, USA) [26].

In-vitro DRG Primary Cultures

Primary DRG neuronal cells were generated in vitro using adult rat dorsal root ganglia from the (L1-IS) lumbar region of the spinal cord with slight modifications as earlier reported [27]. Briefly, 9-10 week old rats were slaughtered and DRGs were separated aseptically into HAMS F12 medium with 10% FBS and 5% antibiotic/antimycotic solution. This was followed by centrifugation at 1200 rpm for 2 minutes before adding trypsin (0.25 percent) for 30 minutes and triturating with a glass pipette to dissociate into cells. This cell and tissue suspension was filtered through 70M nylon gauge. The monosuspended DRG cells were centrifuged for 3 minutes at 1200 rpm and resuspended in neurobasal media containing 10% FBS and 0.5 percent antibiotic and anticytomic solution. A 1:50 volume ratio of matrigel matrix to neurobasal media was used to grow the cells. The neurite extensions appeared two-three days after culture and were treated with various treatments at optimal concentrations.

Neurite outgrowth assay

Three days after DRG primary cultures in 12 well plates were treated with various concentrations of optimized drugs at specified intervals (48 hours), the cells were washed with fresh PBS and neurite outgrowth assay was performed using the manufacturer's kit-based protocol. Five fields were chosen at random and examined using a phase contrast microscope (Nikon ECLIPSE, Ti-U, Japan). The length of neurite outgrowths in 30 cells from each field was measured using Image J software (NIH, USA). The number of neurite outgrowths/axon-like extensions that are twice or more than the diameter of the cell body were counted [28].

Immunocytochemistry

DRG neurons were cultured on glass Coverslips in a 6-well plate at 5000 cells/well seeding density and fixed with 4% paraformaldehyde solution and permeabilized with 0.5 percent Triton-X 100 for 15 minutes at room temperature, as described elsewhere. These cells were blocked for 2 hours at room temperature with a 3 percent BSA solution in PBS. After blocking, the cells were incubated overnight at 4°C with primary antibodies (p-AMPK, Complex I, and TFAM) at 1:200 dilutions in 3 percent BSA solution. The following day, cells were washed with PBST and incubated with secondary anti-rabbit and anti-mouse antibodies conjugated with rhodamine and Alexa488 (Santa Cruz Biotechnology Inc., CA, USA) at room temperature for 2 hours. Finally, the coverslips were adhered to the glass slide with DAPI mounting medium (Sigma Fluoroshield™). A confocal microscope was used to capture the images (Leica TCS SP8 Laser Scanning Spectral Confocal microscope, Germany) [29].

Assay for JC1

DRG primary cultures were stained with JC1 as previously described. Cultured DRG primary cells were incubated for 15 minutes with 5M JC-1 in PBS. The cells were washed with PBS to remove unbound red stain before being examined with a fluorescence microscope (Nikon ECLIPSE, Ti-U, Japan) with red and green filters. The mean red and green fluorescence intensity ratio was calculated using Image J software (NIH, USA), [30,31].

Mitoxox Test

The Mitosox red assay was carried out in DRG primary cultures according to published protocols [32]. Briefly, the cultures were treated with various drug concentrations for 48 hours before being washed with PBS and incubated for 15 minutes at 37°C with 5M Mitosox reagent. The cells were then washed to remove any unbound Mitosox red reagent before being examined with a fluorescence microscope (Nikon ECLIPSE, Ti-U, Japan) with a green filter. Image J software was used to calculate the mean red fluorescence intensity (NIH, USA).

Statistical Analysis

Excel was used to calculate mean, SD, and SEM for each parameter. The results were analyzed with the newest version of graph pad prism program, with one way ANOVA to compare the groups (multiple comparison tests). When one way ANOVA demonstrated statistical significance, Bonferroni’s multiple comparisons test was used for post hoc analysis. Statistical significance was defined as P< 0.05 or less.

Results

CBD, THCV, and their combination on PTX-induced neurobehavioral changes

PTX (8 mg/kg) treatments to the animals significantly (p<0.001) produced mechanical and thermal hyperalgesia in mice, and the neuropathy in animals lasted until the last day of the study (Fig.1). The neuropathic mice were given CBD (10 mg/kg) and THCV (15 mg/kg) twice a week for six weeks which reduced PTX-induced thermal hypersensitivity (p<0.01), as determined Hot and cold plate method (Fig.1). Their combination alleviated neuropathic pain by reducing PTX-induced thermal hyperalgesia. We also evaluated the role of CBD, THCV, and their combination on PTX-induced mechanical hyperalgesia. The
paw withdrawal thresholds and pressures of CBD and THCV treated mice were significantly different from PTX treated animals in Electronic-Vonfrey and Randall-sellito studies (Fig.1). Besides that, administration of 3 mg/kg rimonabant (CB1 blocker, i.p.) and 1 mg/kg AM630 (CB2 blocker) blocked the effect of CBD on mechanical and thermal hypersensitivity in mice. Further, administration of 1 mg/kg AM630 and 10 mg/kg WAY10065 (5HT1A blocker) had no effect on the neurobehavioral changes associated with THCV. However, in PTX-induced neuropathic mice, 10 mg/kg WAY10065 and 3 mg/kg rimonabant significantly (p<0.05 to 0.01) reduced the neurobehavioral effects of CBD and THCV, respectively (Table 1). Further, to investigate the gene regulation of CBD and THCV in DRG homogenates from PTX-treated mice, we used RNA sequencing on isolated DRG neurons from different groups of mice.

RNA seq analysis in DRG homogenates of CBD and THCV treated neuropathic mice

Primary sequencing data produced by RNA-Seq were subjected to quality control and after cleaning, the total reads and mapping ratio reads were calculated as shown in table 2 which denotes the quality of RNA seq data.

Further, we performed cluster analysis and heat map visualizations of gene expression patterns using the heatmap software. A total of 1519 genes were differentially expressed in control and PTX group, 11035 genes in CBD treatment and PTX group and 2527 genes in THCV treatment and PTX group. The number of upregulated and downregulated genes were plotted in volcano graphs as shown in Fig.2. Further, KEGG analysis unraveled several signaling pathways enriched in DRG homogenates of control and treated mice. Among these pathways, AMPK-PGC1 alpha, MAPK signalling, PI3K-AKT and NLRP3 inflammasome pathways especially attracted our attention since they have been implicated in mediating chronic pain (Fig.3). These pathways are important for regulating neuron-glia activation, cytokine production, neuroinflammation, oxidative stress, mitochondrial function, apoptosis and autophagy. Based on RNA seq analysis we further validated this pathways by performing western blotting analysis in DRG homogenates.

Effect of CBD, THCV and their combination on PI3K-AKT, P38 MAPkinase and AMPK pathway

Western blotting analysis in DRG homogenates of PTX treated mice showed increased expression of PI3K (p<0.001), p-AKT (p<0.001), p-P38 MAP kinase (p<0.001), BAX (p<0.001), TGF-β (p<0.001), NLRP3 inflammasome (p<0.001) and caspase 3 (p<0.001) and decreased expression of p-AMPK (p<0.001), SIRT1 (p<0.001), NRF2 (p<0.001), HO1 (p<0.001), SOD2 (p<0.001) and catalase (p<0.001) when compared to normal control group as shown in fig.4. CBD and THCV treatment significantly reversed the expressions of these proteins in DRG homogenates (from PTX treated mice) (Fig.4). However the combination of CBD and THCV treatment to PTX induced mice significantly reversed the expression of these proteins when compared to CBD and THCV alone treatment groups as indicated in Fig.4. These results suggest that the combination of these drugs would be a superior therapeutic strategy in improving neuropathy against PTX induced pain in mice. Further to understand the role of cannabinoid and non cannabinoide receptors in regulating these pathways after CBD and THCV treatment, we isolated DRGs (L1-L5 region) from rats and cultured them in our laboratory and evaluated the neuroprotective and mitoprotective effects of these drugs in presence of CB1 and 5HT1A receptor blockers. Rationality behind the usage of these blockers was based on the previous literature and on our in vivo results.

Effect of CBD, THCV and their combination on neurite outgrowths of PTX insulted DRG primary cultures

We measured the number of neurite outgrowths/ axon like extensions which were double/more than the diameter of cell body. PTX treated DRG cells significantly (p<0.001) reduced the neurite outgrowths and percentage of neurite bearing cells when compared to normal DRG cells (Fig.5).

CBD and THCV at 12 μM concentration significantly (p<0.01) improved the neurite outgrowth and percentage of neurite bearing cells when compared to PTX treated primary DRG cells. Interestingly, CBD and THCV combination improved the neurite outgrowths in PTX treated primary DRG cells two folds better than the CBD and THCV alone treatment (Fig.5). However, two hours before CBD and THCV treatment, CB1 receptors and 5HT1A receptors were blocked with WAY100135 (1 μM) (5HT1A antagonist), Rimonabant (1 μM) (CB1 antagonist). CBD and THCV failed to improve neurite outgrowths after blocking 5HT1A receptors and CB1 receptors respectively as shown in Fig.5. These results suggest that the neuroprotective effects of CBD and THCV depend upon 5HT1A receptors and CB1 receptors respectively.

Immunoexpression of p-AMPK, Complex I and catalase in treated DRG primary cultures

After confirming neuroprotective effects of CBD and THCV in presence of 5HT1A and CB1 blockers, we sought to study the molecular effects of these drugs by blocking the same receptors. In line with the invivo study, PTX induced toxicity in DRG neuronal cells, reduced the immunoexpression of p-AMPK, complex I and Catalase as shown in Fig.6. Nevertheless, CBD and THCV treatment significantly increased the expression of these proteins and their combination significantly reversed these protein expression in PTX treated DRG neuronal cells as shown in Fig.6. However, CBD and THCV failed to increase the expression of these proteins after blocking with 5HT1A and CB1 receptors respectively. These results signify the importance of CBD and THCV combination in attenuating neuropathic pain and also suggest the mechanism of CBD and THCV in mitigating neuropathic pain against PTX induced toxicity in DRG neurons. Further, we sought to study the mitoprotective effects of these compounds in presence of same blockers.

Effect of CBD, THCV and their combination on mitochondrial membrane potentials and mitochondrial superoxide production in PTX exposed DRG cells

JC1 assay explains about the mitochondrial transmembrane potentials (ΔΨ) which directly correlates the integrity and health of the mitochondria. Mitosox staining assay quantifies the mitochondrial superoxide production in cultured cells. Fluorescence imaging assay carried out in cultured DRG primary cells isolated from Rat (L1-L5 region) using mitoProbe JC1 assay kit and Mitosox staining, demonstrated mitochondrial membrane repolarization effects and reduced mitochondrial superoxides with CBD and THCV treatment respectively as shown by concentration dependent formation of red/green fluorescent JC1 aggregates and decreased Mitosox red fluorescence in PTX treated DRG cells (Fig 7). However, CBD and THCV combination therapy have significantly (p<0.001) improved mitochondrial membrane potentials and reduced mitochondrial superoxides which is demonstrated by increased JC1 dimers formation (red fluorescent JC1 aggregates) and decreased Mitosox red fluorescence respectively against PTX induced toxicity in DRG primary neuronal cells as shown in
we observed that CBD and THCV treatment elevated p-AMPK expression, and that their combination was superior in this effect, suggesting that combination phytocannabinoids can boost AMPK activation through a variety of signaling pathways, which can help with appetite and heart function.

Previous studies, current study revealed that AMPK was significantly downregulated in PTX-treated DRGs when compared to the normal control group. Despite CBD’s importance in the treatment of neuropathic pain, THCV has also been shown to have similar effects. For example, in mice, THCV reduced the thermal and mechanical hyperalgesia generated by formalin and carrageenan [37]. In line with earlier studies, current study also demonstrated that synthetic CBD and THCV treatment reduced thermal and mechanical hyperalgesia against PTX-induced neuropathic mice. Interestingly, combining these two drugs proved to be more effective in providing neuroprotection against PTX-induced neuropathy in mice (P<0.01).

PTX has been shown to damage peripheral sensory neurons, including dorsal root ganglions, and dorsal root ganglions axons, as shown by a number of studies in PTX-induced peripheral neuropathy [38, 39]. In the current study, PTX treatment induced damage in isolated DRGs from mice, as demonstrated by decreased neurite outgrowths and the quantity of neurites carrying cells, as well as a change in neuron morphology. On the other hand, CBD and THCV therapy restored all of the PTX-induced alterations in the neurons with higher efficacy when used together.

RNA sequencing (KEGG analysis) in DRG homogenates of neuropathic mice treated with CBD and THCV revealed differences in gene expression levels, indicating the involvement of p38 MAPkinase, AMPK, PI3-AKT, autophagy, oxidative phosphorylation, retrograde endocannabinoid signaling, GABAergic, glutamergic and dopaminergic synapse, axon guidance and inflammatory pathways. These pathways are linked to mitochondrial biogenesis and function, oxidative stress, autophagy, apoptosis, ER stress, and neuroinflammation [40, 41]. Although similar transcriptome findings with PTX injury in DRG neurons have previously been published [42], the RNA seq data with CBD and THCV therapy in neuropathic mice is unique and is being reported for the first time.

The modulation of nociceptive information induced by PTX exposure in DRGs is well established to involve MAPK activation pathways [43]. MAPKs are a family of serine/threonine protein kinases that have been implicated in different aspects of cell communication and gene expression in the peripheral nervous system [44, 45]. Inflammation-induced pain hyperalgesia is considered to be modulated by MAPKs in DRGs and the spinal cord. P38 MAPK is activated, and expression levels in the spinal dorsal horns are increased following peripheral nerve damage [46]. P38 MAPK has been shown to stimulate several inflammatory pathways, including the generation of inflammasomes, and initiate apoptosis in the cellular milieu by activating Bax and caspases [47]. In the current study, we observed an increase in p-p38 MAPkinase expression, NLRP3 inflammasome formation, TGF beta expression, and BAX expression following PTX assault, which is consistent with earlier results. Surprisingly, CBD and THCV therapy lowered the expressions of these proteins, but the reduction in protein expressions with their combination was two times greater than with each treatment alone. In another study, CBD delivery intranasally and intravenously reduced type 1 diabetic neuropathic pain and suppressed microglial density and phosphorylation of p38 mitogen-activated protein kinases [48], thus corroborating our findings. Moreover, THCV has been shown to diminish inflammation caused by formalin and carrageenan in rodents, and a number of studies have observed that p-p38 MAPkinase is important in regulating inflammation caused by formalin and carrageenan in rats [49]. These studies and our findings suggest that phytocannabinoids’ suppression of p-p38 MAPkinase is important in reducing PTX-induced neuropathic pain in mice.

On the other hand, we observed an increase in PI3K and AKT protein expression in PTX-treated DRGs isolated from rodents, which has been previously documented [50]. These protein expressions were reduced in CBD and THCV-treated mice, and the decrease was even greater (<0.001) in their combined treatment. According to a growing body of evidence, blocking the PI3K/Akt signaling pathway has been shown to be analgesic in neuropathic pain models [51]. According to the findings, activation of PI3K and PI3K/Akt appears to be implicated in the progression of PTX-induced neuropathic pain. Previous research has also documented that the PI3K and PI3K/Akt signaling pathways are critical in modulating the actions of inflammatory markers, including NLRP3 inflammasome, IL-1, and TNF-α, which are significant in neuropathic pain [52]. Similarly, the current study observed increased NLRP3 inflammasome production in DRG homogenates of PTX-treated mice, which was reduced by CBD, THCV, and their combination treatment; however the combination showed higher efficacy. With these findings, we can deduce that PTX-induced activation of the P-38 MAPkinase, PI3K, and PI3K/Akt signaling pathways may cause changes in inflammatory markers and contribute to the development of neuropathic pain, while CBD, THCV, and their combination treatments reduce neuropathic pain by regulating these signaling pathways (Fig. 8).

AMP-activated protein kinase (AMPK) is an energy-sensing kinase that can block mitogen-activated protein kinase (MAPK) signaling, which has been associated to pain enhancement following injury and the development of hyperalgesic priming [53]. Of note, Inyang et al., observed that PTX administration induced mechanical hypersensitivity in both male and female mice, which was counteracted by administering AMPK activators [53]. In agreement with previous studies, current study revealed that AMPK was significantly downregulated in PTX-treated DRGs when compared to the normal control group. Despite this, phytocannabinoids can boost AMPK activation through a variety of signaling pathways, which can help with appetite and heart function [54]. Similarly, we observed that CBD and THCV treatment elevated p-AMPK expression, and that their combination was superior in this effect, suggesting that combination
therapy may provide additive to synergistic neuroprotection against PTX-induced neuropathy in mice which however has to be further investigated. Nrf2 is known to be activated by p-AMPK and plays a key role in regulating endogenous antioxidant defense by regulating the transcription of downstream target genes such as heme oxygenase-1 (HO-1), superoxide dismutase, glutathione reductase, and NAD(P)H: quinone oxidoreductase 1 [55]. As a result, Nrf2 activators reduced PTX-induced neuropathic pain in experimental animals [56]. Moreover, CBD’s antioxidant potential has been established via its effect on the activity of the Nrf2 transcription factor, which is involved in the development of cytoprotective proteins such as antioxidant enzymes [57]. In this work, we also discovered that neuropathic mice with CBD and THCV treatment had elevated expressions of Nrf2, HO1, and catalase in DRGs, and that these protein expressions were considerably higher (p<0.001) in the combination treatment. This data implies that when these phytocannabinoids are combined, their antioxidant capacity increases in reducing the neuropathic pain (Fig. 8).

Further, by activating TFAM, p-AMPK reduced mitochondrial functional deficiencies in various animal and cell culture models of diseases by increasing mitochondrial biogenesis and respiratory capacity [58, 59]. TFAM is a nuclear protein that binds to the mitochondrial genome and controls the transcription of subunits of mitochondrial complexes [60]. Overexpression of TFAM has also been shown to have protective effects in neuropathological disorders such as age related hearing loss, amyotrophic lateral sclerosis, alzheimer disease, and memory loss in animal systems. CBD, THCV, and their combination treatment improved TFAM levels (p<0.01 to 0.001) in DRG homogenates of PTX-induced neuropathic mice in the current investigation [61]. Immunocytochemistry investigations in DRG primary cultures demonstrated a rise in mitochondrial complex I subunits and JC1 labeling suggesting mitochondrial repolarisation or restoration of mitochondrial membrane potentials. These findings imply that CBD and THCV increase mitochondrial function via activating the AMPK-Nrf2-TFAM axis, and that their combination is more effective than either medication alone.

THCV is a non-psychoactive, neutral CB1 antagonist/reverse agonist that can act as an agonist or antagonist at CB2 receptors depending on the dose [18]. When THCV was given to genetically obese mice at doses of 0.1–12.5 mg/kg once daily for 45 days, the total fat content was reduced by 31.1 percent when compared to the obese control group [12]. It was observed that THCV had a high affinity for CB1 receptors and high brain penetration, resulting in metabolically favorable effects that are typical of CB1 receptor inverse agonists. Further, THCV has been demonstrated to improve insulin sensitivity and reduce obesity in diet-induced obese mice models via altering metabolic processes through interacting with TRPV1 ion channels [62]. However, in the current investigation, we discovered that administering a selective CB1 blocker (rimonabant) to PTX-induced neuropathic mice prevented the antinociceptive effects of THCV. Furthermore, we observed that inhibiting CB1 receptors with Rimonabant in DRG primary cultures also prevented THCV-induced increases in AMPK, complex I, and catalase expression. These findings suggest that THCV modulates mitochondrial bioenergetics via the CB1/AMPK/nrf2/TFAM axis and the exact process by which THCV interacts with CB1 receptors still needs more investigations.

Our research also demonstrated that CBD treatment, when combined with a 5HT1A receptor blocker, it had no effect on nociception caused by PTX injection in mice. CBD provided protection against STZ-induced diabetes pain by specifically activating 5HT1A receptors. Pascual et al. observed that the CB1/CB2 dual agonist WIN55,212-2 decreased the thermal hyperalgesia and tactile allodynia elicited by PTX in rats, and that this action was prevented by the CB1 antagonist SR141716, implying that the CB1 receptor is involved [63, 64]. Another study suggested that injecting CBD into the infralimbic cortex of the rat brain reduced fear by activating CB1 receptors, as determined by lower levels of freezing during an extinction test [65]. However, neither CB1 nor CB2 receptors are involved in CBD’s ability to reduce neuropathic pain, according to Segrado et al. and Sara et al [66, 67]. Furthermore, despite its indirect activation of CB1/CB2 receptors via increasing endocannabinoid levels, very few studies have shown that CBD has a lower binding affinity for CB1 or CB2 receptors. In this study, we also observed that CBD’s anti-nociceptive effects are not dependent on CB1 activation, but rather on 5HT1A receptor activation, which is consistent with earlier results. Additionally, 5HT1A receptors have been shown to be important in the phosphorylation of CaMKII, an upstream regulator of the AMPK pathway [68]. As a result of the activation of 5HT1A receptors, CBD may have the capacity to regulate mitochondrial bioenergetics, redox, and inflammatory homeostasis in neuronal cells by regulating AMPK pathway. Because CBD and THCV work in distinct ways, our study demonstrates that combining them results in entourage neuroprotective advantages.

Conclusion

Synthetic CBD and THCV showed neuroprotective benefits in PTX-induced neuropathic mice, as measured by a variety of neurobehavioral characteristics. MAPkinase, PI3K-AKT, AMPK, and inflammasome pathways, along with mitochondrial function-related genes, were observed to be involved in the pathogenesis of PTX-induced neuropathy by transcriptome analysis of DRG homogenates from diverse treatment groups of mice. The neuroprotective effects of CBD and THCV in mouse/rat DRGs are dependent on the modulation of 5HT1A and CB1 receptors, respectively, in reducing PTX-induced neuropathic pain. The combination of CBD and THCV has been shown to provide better neuro and mitoprotection against PTX-induced insult than either treatment alone. Future knock-down/knock-in experiments are needed to fully comprehend the pharmacology of CBD and THCV in the treatment of neuropathic pain.

Declarations

Acknowledgements: The Consortium for Medical Marijuana Clinical Outcomes Research, Grant/Award number: SUB00002097, National Institute on Minority Health and Health Disparities, Grant/Award Number: U54 MD007582, and NSF-CREST Center for Complex Materials Design for Multidimensional Additive Processing (CoManD), Grant/Award Number: 1735968 provided funding for this study.

Author contributions: AKK & AB designed, performed and analyzed the results and wrote the manuscript. PA, SKS, NR, and AN performed part of the experimental work and/or analyzed the results. Prof. MSS conceptualized the study, wrote and revised the manuscript.

Conflicts of Interest: The authors declare that there are no conflicts of interest.

Compliance with Ethical Standards
Consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: The data that support the findings of this study are available on request from corresponding author.

References

1. Ibrahim EY, Ehrlich BE (2020) Prevention of chemotherapy-induced peripheral neuropathy: a review of recent findings. Critical reviews in oncology/hematology 145:102831
2. Klein I, Lehmann HC (2021) Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. Toxics 9 (10):229
3. Zajączewska R, Kocot-Kępka M, Leppert W, Wrozek A, Mika J, Wordliczek J (2019) Mechanisms of chemotherapy-induced peripheral neuropathy. International journal of molecular sciences 20 (6):1451
4. Kober KM, Lee M-C, Olishen A, Conley YP, Sirota M, Keiser M, Hammer MJ, Abrams G, Schumacher M, Levine JD (2020) Differential methylation and expression of genes in the hypoxia-inducible factor 1 signaling pathway are associated with paclitaxel-induced peripheral neuropathy in breast cancer survivors and with preclinical models of chemotherapy-induced neuropathic pain. Molecular pain 16:1744806920936502
5. Zhang M, Xu N, Xu W, Ling G, Zhang P (2021) Potential Therapies and Diagnosis Based on Golgi-targeted Nano Drug Delivery Systems. Pharmacological Research:105861
6. Al KFAES (2019) Modulatory effect of mesenchymal stem cells on pregabalin and lacosamide in paclitaxel-induced neuropathic pain in rats. CU Theses
7. Safat K (2020) Chemotherapy-induced peripheral neuropathy: Part 1—current state of knowledge and perspectives for pharmacotherapy. Pharmacological Reports 72:486-507
8. Vermeer CJ, Hiensch AE, Cleenewerk L, May AM, Eijkelkamp N (2021) Neuro-immune interactions in paclitaxel-induced peripheral neuropathy. Acta Oncologica 60 (10):1369-1382
9. Aviram J, Lewitus GM, Pud D, Proacci S, Berman P, Yellin B, Vysotski Y, Hazan O, Eisenberg E, Meiri D (2021) Specific phytocannabinoid compositions are associated with analgesic response and adverse effects in chronic pain patients treated with medical cannabis. Pharmaceutical Research 169:105651
10. Filipiuc LE, Ababei DC, Alexa-Stratulat T, Pricope CV, Bild V, Stefanescu R, Stanciu GD, Tamba B-I (2021) Major Phytocannabinoids and Their Related Compounds: Should We Only Search for Drugs That Act on Cannabinoid Receptors? Pharmaceutics 13 (11):1823
11. Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL, Stott C, Bell JD, O’Sullivan SE, Tan GD (2016) Efficacy and safety of cannabidiol and tetrahydrocannabinol on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care 39 (10):1777-1786
12. Wargent ET, Zaibi M, Silvestri C, Hislop DC, Stocker C, Stott C, Guy GW, Duncan M, Di Marzo V, Cawthorne M (2013) The cannabinoid Δ9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutrition & diabetes 3 (5):e68-e68
13. Riedel G, Fadda P, McKillop-Smith S, Pertwee RG, Platt B, Robinson L (2009) Synthetic and plant-derived cannabinoid receptor antagonists show hypoglycemic properties in fasted and non-fasted mice. British journal of pharmacology 156 (7):1154-1166
14. Costa B, Trovato AE, Comelli F, Giagnoni G, Colleoni M (2007) The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain. European journal of pharmacology 556 (1-3):75-83
15. Mloost J, Bryk M, Starowicz K (2020) Cannabidiol for pain treatment: focus on pharmacology and mechanism of action. International journal of molecular sciences 21 (22):8870
16. Kaplan JS, Wagner J, Reid K, McGuinness F, Avila S, Brooks M, Stevenson H, Jones J, Risch B, McGillis T (2021) Cannabidiol exposure during the mouse adolescent period is without harmful behavioral effects on locomotor activity, anxiety, and spatial memory. Frontiers in behavioral neuroscience
17. Chahal SK, Sodhi RK, Madan J (2020) Duloxetine hydrochloride loaded film forming dermal gel enriched with methylcobalamin and geranium oil attenuates paclitaxel-induced peripheral neuropathy in rats. Ibro reports 9:85-95
18. Abiyoje A, Ayodele O, Marinkovic A, Patidar R, Akinwekomi A, Sanyaolu A (2020) Δ9-Tetrahydrocannabinol (THCV): a commentary on potential therapeutic benefit for the management of obesity and diabetes. Journal of Cannabis Research 2 (1):1-6
19. Delis F, Polissidis A, Poulla N, Justinova Z, Nomikos GG, Goldberg SR, Antoniou K (2017) Attenuation of cocaine-induced conditioned place preference and motor activity via cannabidiol CB2 receptor agonism and CB1 receptor antagonism in rats. International Journal of Neuropsychopharmacology 20 (3):269-278
20. Mishima K, Hayakawa K, Abe K, Ikeda T, Egashira N, Iwasaki K, Fujiwara M (2005) Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor–dependent mechanism. Stroke 36 (5):1071-1076
21. Mori MA, Meyer E, da Silva FF, Milani H, Guimarães FS, Oliveira RMW (2021) Differential contribution of CB1, CB2, 5-HT1A, and PPAR-γ receptors to cannabidiol effects on ischemia-induced emotional and cognitive impairments. European Journal of Neuroscience 53 (6):1738-1751
22. Kalvala AK, Yerra VG, Sherkhane B, Gundu C, Arruri V, Kumar R, Kumar A (2020) Chronic hyperglycemia impairs mitochondrial unfolded protein response and precipitates proteotoxicity in experimental diabetic neuropathy: focus on LonP1 mediated mitochondrial regulation. Pharmacological Reports 72 (6):1627-1644
23. Cheah M, Fawcett JW, Andrews MR (2017) Assessment of thermal pain sensation in rats and mice using the Hargreaves test. Bio-protocol 7 (16)
24. Yalcin I, Charlet A, Freund-Mercier M-J, Barrot M, Poisbeau P (2009) Differentiating thermal alldynia and hyperalgesia using dynamic hot and cold plate in rodents. The Journal of pain 10 (7):767-773

25. Kalvala AK, Kumar R, Sherkhane B, Gundu C, Arruri VK, Kumar A (2020) Bardoxolone methyl ameliorates hyperglycemia induced mitochondrial dysfunction by activating the keap1-Nrf2-ARE pathway in experimental diabetic neuropathy. Molecular neurobiology 57 (8):3616-3631

26. Patel N, Kommireni N, Surapaneni SK, Kalvala A, YauN X, GebeeyeH A, Arthur P, Duke LC, York SB, Bagde A (2021) Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. International Journal of Pharmaceutics 607:120943

27. Saleh A, Smith DR, Balakrishnan S, Dunn L, Martens C, Tweed CW, Fernyhough P (2011) Tumor necrosis factor-α elevates neurite outgrowth through an NF-κB-dependent pathway in cultured adult sensory neurons: diminished expression in diabetes may contribute to sensory neuropathy. Brain research 1423:87-95

28. Areli A, Komirishetty P, Kalvala AK, Nellaiappan K, Kumar A (2018) Rosmarinic acid mitigates mitochondrial dysfunction and spinal glial activation in oxaliplatin-induced peripheral neuropathy. Molecular neurobiology 55 (9):7463-7475

29. Kalvala AK, Yerra VG, Kumar A (2020) LONP1 induction by SRT1720 attenuates mitochondrial dysfunction against high glucose induced neurotoxicity in PC12 cells. Toxicology in Vitro 62:104695

30. Chow RT, David MA, Armati PJ (2007) 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser. Journal of the Peripheral Nervous System 12 (1):28-39

31. Yerra VG, Kumar A (2017) Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injury in experimental models of diabetic neuropathy: effects on mitochondrial biogenesis, autophagy and neuroinflammation. Molecular neurobiology 54 (3):2301-2312

32. Kirkland RA, Saavedra GM, Franklin JL (2007) Rapid activation of antioxidant defenses by nerve growth factor suppresses reactive oxygen species during neuronal apoptosis: evidence for a role in cytochrome c redistribution. Journal of Neuroscience 27 (42):11315-11326

33. Casey SL, Atwal N, Vaughan CW (2017) Cannabinoid constituent synergy in a mouse neuropathic pain model. Pain 158 (12):2452-2460

34. Abraham AD, Leung EJ, Wong BA, Rivera ZM, Kruse LC, Clark JJ, Land BB (2020) Orally consumed cannabinoids provide long-lasting relief of allodynia in a mouse model of chronic neuropathic pain. Neuropsychopharmacology 45 (7):1105-1114

35. Xiong W, Cui T, Cheng K, Yang F, Chen S-R, Willenbring D, Guan Y, Pan H-L, Ren K, Xu Y (2012) Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors. Journal of Experimental Medicine 209 (6):1121-1134

36. Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA (2014) Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT1A receptors without diminishing nervous system function and chemotherapy efficacy. British Journal of Pharmacology 171 (3):636-645

37. Bolognini D, Costa B, Maione S, Comelli F, Marinii P, Di Marzo V, Parolaro D, Ross RA, Gauson LA, Cascio MG (2010) The plant cannabinoid Δ9-tetrahydrocannabinolic acid can decrease signs of inflammation and inflammatory pain in mice. British journal of pharmacology 160 (3):677-687

38. Zhong S, Zhou Z, Lin X, Liu F, Liu C, Liu Z, Deng W, Zhang X, Chang H, Zhao C (2021) Ketogenic diet prevents paclitaxel-induced neuropathic nociception through activation of PPARγ signalling pathway and inhibition of neuroinflammation in rat dorsal root ganglion. European Journal of Neuroscience 54 (4):5341-5356

39. Xiong C, Chua KC, Stage TB, Prrioti J, Kim J, Altman-Merino A, Chan D, Saraf K, Canato Ferracini A, Fattahi F (2021) Human induced pluripotent stem cell derived sensory neurons are sensitive to the neurotoxic effects of paclitaxel. Clinical and translational science 14 (2):568-581

40. Zhang B-f, Jiang H, Chen J, Guo X, Li Y, Hu Q, Yang S (2019) Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PISK/AKT signal pathway. International immunopharmacology 73:98-107

41. Xu Y, Zhang Y, Xu Y, Zhang G, Li B, Xia H, Yuan W (2021) Activation of CD137 signaling promotes macrophage apoptosis dependent on p38 MAPK pathway-mediated mitochondrial fission. The International Journal of Biochemistry & Cell Biology 136:106003

42. Li Y, Yin C, Liu B, Nie H, Wang J, Zeng D, Chen R, He X, Fang J, Du J (2021) Transcriptome profiling of long noncoding RNAs and mRNAs in spinal cord of a rat model of paclitaxel-induced peripheral neuropathy identifies potential mechanisms mediating neuroinflammation and pain. Journal of neuroinflammation 18 (1):1-22

43. Lan Y-Y, Chen Y-H, Liu C, Tung K-L, Wu Y-T, Lin S-C, Wu C-H, Chang H-Y, Chen Y-C, Huang B-M (2021) Role of JNK activation in paclitaxel-induced apotosis in human head and neck squamous cell carcinoma. Oncology Letters 22 (4):1-11

44. Reshkin SJ, Bellizzi A, Cardone RA, Tommasino M, Casavola V, Paradiso A, Casavola V (2003) Paclitaxel induces apoptosis via protein kinase A-and p38 mitogen-activated protein kinase-dependent inhibition of the Na+/H+ exchanger (NHE) NHE isoform 1 in human breast cancer cells. Clinical Cancer Research 9 (6):2366-2373

45. Edelman AM, Blumenthal DK, Krebs EG (1987) Protein serine/threonine kinases. Annual review of biochemistry 56 (1):567-613

46. Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K (2004) Activation of p38 mitogen-activated protein kinase in spinal hyperalgesic microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45 (1):89-95

47. Li D, Ren W, Jiang Z, Zhu L (2018) Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury. Molecular medicine reports 18 (5):4399-4409

48. Thoth CC, Jendrzejewski NM, Ellis CL, Frey WH (2010) Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain. Molecular pain 6:1744-8069-1746-1716

49. Hua XY, Svensson CI, Matsui T, Fitzsimmons B, Yaksh TL, Webb M (2005) Intrathecal minocycline attenuates peripheral inflammation-induced hyperalgesia by inhibiting p38 MAPK in spinal microglia. European Journal of Neuroscience 22 (10):2431-2440
four weeks three hours before receiving CBD or THCV. ***p<0.001 Vs Normal control & ^p<0.05, ^^p<0.01 and ^^^p<0.001 Vs PTX.

mg/kg/day, i.p. for four weeks three hours before receiving CBD or THCV, PTX+CB2B+CBD/THCV: Mice were given a CB2 blocker (CB2B) 1 mg/kg/day, i.p. for

mg/kg/day, i.p. for four weeks three hours before receiving CBD or THCV, PTX+5HT1AB+CBD/THCV: Mice were given a 5HT1A blocker (5HT1AB) 10

PTX: mice received (8mg/kg/day) on alternate days for four injections cumulatively, PTX+CB1B+CBD/THCV: Mice were given a CB1 blocker (CB1B) 3

THCV induced neurobehavioral changes:

Table 1.

Albert PR, Vahid-Ansari F (2019) The 5-HT1A receptor: Signaling to behavior. Biochimie 161:34-45. doi:10.1016/j.biochi.2018.10.015

Sagredo O, Pazos MR, Satta V, Ramos JA, Pertwee RG, Fernández-Ruiz J (2011) Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's disease. Journal of Neuroscience Research 89 (9):1509-1518. doi:https://doi.org/10.1002/jnr.22682

Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA (2014) Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-

Kuhnert S, Meyer C, Koch M (2013) Involvement of cannabinoid receptors in the amygdala and prefrontal cortex of rats in fear learning, consolidation, retrieval and extinction. Behavioural brain research 250:274-284. doi:10.1016/j.bbr.2013.05.002

Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA (2014) Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-

HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol 171 (3):636-645. doi:10.1111/bph.12439

Sagredo O, Pazos MR, Satta V, Ramos JA, Pertwee RG, Fernández-Ruiz J (2011) Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's disease. Journal of Neuroscience Research 89 (9):1509-1518. doi:https://doi.org/10.1002/jnr.22682

Albert PR, Vahid-Ansari F (2019) The 5HT1A receptor: Signaling to behavior. Biochimie 161:34-45. doi:10.1016/j.biochi.2018.10.015

Table 1. Effect of CB1 blocker (Rimonabant-3 mg/kg, i.p), CB2 blocker (AM630, 1 mg/kg/day, i.p), and 5HT1A blocker (WAY100135, 10 mg/kg, i.p) on CBD and THCV induced neurobehavioral changes: The values are expressed as mean standard error of the mean (n=6). , normal control: untreated age matched mice, PTX: mice received (8mg/kg/day) on alternate days for four injections cumulatively, PTX+CB1B+CBD/THCV. Mice were given a CB1 blocker (CB1B) 3 mg/kg/day, i.p. for four weeks three hours before receiving CBD or THCV, PTX+5HT1AB+CBD/THCV. Mice were given a 5HT1A blocker (SHT1AB) 10 mg/kg/day, i.p. for four weeks three hours before receiving CBD or THCV, PTX+CB2B+CBD/THCV. Mice were given a CB2 blocker (CB2B) 1 mg/kg/day, i.p. for four weeks three hours before receiving CBD or THCV. ***p<0.001 Vs Normal control & *p<0.05, **p<0.01 and ***p<0.001 Vs PTX.
Parameter	Normal Control	PTX	PTX+CB1B+CBD	PTX+5HT1B+CBD	PTX+CB2B+CBD	PTX+CB1+THCV	PTX+5HT1AB+THCV	PTX+C
Paw withdrawal latency to hot stimuli (s)	10.2±0.4	4.9±0.2***	6.9±0.3*	5.7±0.4	7.4±0.4**	5.2±0.8	7.8±0.8**	6.8±0.3
Paw withdrawal latency to cold stimuli (s)	12.5±0.6	5.3±0.4***	7.2±0.5**	5.1±0.2	7.3±0.8**	5.3±0.4‡	7.9±0.5**	7.1±0.4
Paw withdrawal latency (s)	9.4±0.2	3.2±0.7***	5.2±0.5*	3.4±0.1	5.0±0.4*	3.7±0.5	5.6±0.1*	6.3±0.3
Paw withdrawal threshold (g)	3.9±0.1	0.9±0.6***	2.9±0.6**	1.3±0.1	2.9±0.7**	1.6±0.8	2.7±0.3**	3.2±0.1
Average Body weight (g)	21.98±1.09	20.87±1.8	23.15±0.99	21.97±1.32	22.13±0.89	23.06±1.56	20.19±0.53	19.78±

Table 2. Total reads and mapping ratio in DRG homogenates of normal control, paclitaxel, CBD and THCV treated mice (n=3) by RNA Sequencing

Sample	Raw reads	Raw Bases	Clean reads	Clean bases	Error rate	Q20	Q30	Mapping ratio (%)
Normal control 1	52558934	7.88G	51976984	7.8G	0.02	97.98	94.2	88.9
Normal control 2	47350494	7.1G	46825174	7.02G	0.03	97.44	93.19	89.05
Normal control 3	43345782	6.5G	42842116	6.43G	0.03	97.95	94.18	89.97
PTX 1	40755866	6.11G	40256088	6.04G	0.03	97.86	93.95	90.55
PTX 2	48838682	7.33G	48264496	7.24G	0.03	97.83	93.89	91.5
PTX 3	45696120	6.85G	45249740	6.79G	0.03	97.61	93.53	91.16
PTX+CBD1	49807284	7.47G	48461610	7.27G	0.03	97.48	93.56	83.97
PTX+CBD2	61609912	9.24G	60338254	9.05G	0.02	98.17	95.01	86.79
PTX+CBD3	52513590	7.88G	51467086	7.72G	0.02	98.21	95.12	86.31
PTX+THCV1	46498850	6.97G	46002094	6.9G	0.02	97.99	94.29	91.52
PTX+THCV2	42721422	6.41G	41875364	6.28G	0.03	97.62	93.74	89.7
PTX+THCV3	40949016	6.14G	39903266	5.99G	0.03	97.64	93.79	89.93

Figures
Figure 1

Effects of CBD, THCV, and their combination on the neurobehavioral parameters in PTX-induced neuropathic mice.

(a) The Hargreaves plantar test, (b) the hot plate method, (c) the cold plate method, (d) the Vonfrey test, and (e) the Randall selitto test are all represented by bar graphs. The data is presented as a mean ± standard error of the mean (n=3). ***p<0.001 Vs normal control, *p<0.05, **p<0.01 and ***p<0.001 Vs PTX (8 mg/kg).
Figure 2

RNA-Seq analysis showing expression alterations of differentially expressed mRNAs (DEmRNAs) in dorsal root ganglia collected from paclitaxel-induced neuropathic mice after respective treatments.

a, DEmRNAs in DRGs of PTX group mice vs. control group mice in volcano plots. b, DEmRNAs in DRGs of PTX +CBD group mice vs. PTX group mice in volcano plots. c, DEmRNAs in DRGs of PTX +THCV group mice vs. PTX group mice in volcano plots. Upregulated DEmRNAs are indicated by red points, downregulated DEmRNAs are indicated by blue points, and non-DEmRNAs are indicated by grey patches. d, Heat map representations of hierarchical clustering analysis of DEmRNA in DRGs from control, PTX, PTX+CBD, and PTX+THCV mice.
Figure 3

DEmRNA KEGG pathway analysis.

a. Bubble plots comparing the top 20 significant DEmRNA pathways in DRGs of PTX and control group mice. b. Bubble plots of the top 20 significant DEmRNA pathways in DRGs of PTX +CBD animals vs. PTX group mice. c. In volcano plots, bubble plots depicting the top 20 important DEmRNA pathways in DRGs of PTX +THCV group mice vs. PTX group mice. d. More genes are represented by larger bubbles. The significance and count are shown by the color and size of each bubble.
Figure 4

The effects of CBD, THCV, and its combination on the p38 MAPKinase, AMPK, and PI3-AKT pathways.

(a) Western blots of DRG homogenates from PTX-treated mice demonstrate CBD, THCV, and their combination therapy for six weeks after the final PTX dose.
(b) Western blot quantification is represented by bar graphs. Values are expressed as mean ± SEM (n=3). ***p<0.001 Vs Normal control, ^p<0.05, ^^p<0.01 and ^^^p<0.001 Vs PTX (8 mg/kg)

Figure 5

Effects of CBD, THCV, and their combination on neuritogenesis in cultured DRG cells derived from rats' L1 to L5 spinal regions.

(a) Representative photomicrographs taken with a phase contrast microscope (20X) and a fluorescence microscope (20X) showing neurite extensions emerging from each DRG cell, (b) bar graphs representing the percent of cells bearing neurites, and (c) bar graphs representing image j analysis of neurite length in the untreated and treated groups. ***p<0.001 Vs normal control, *p<0.05, **p<0.01 and ^^^p<0.001 Vs PTX.

Figure 6

Immunoexpression of p-AMPK, complex I, and catalase in primary DRG cells cultured in vitro

(a) Representative confocal microscope images showing i) the first panel enumerates nuclear (DAPI) staining ii) the second panel shows immuno expression of p-AMPK tagged with Alexa488 fluorochrome, iii) the third panel is for immuno expression of mitochondrial complex I labeled with dylight 633 conjugated secondary antibody, and the fourth panel is the merge of all the above three channels (b) Representative confocal microscope images showing the upper panel nuclear (DAPI) staining, middle panel: immuno expression of Catalase tagged with dylight 633 conjugated secondary antibody and lower panel showing the merge of above two channels.
Figure 7

Effect of CBD, THCV and their combination on mitochondrial membrane potential (ΔΨm) and mitochondrial superoxides.

(a) Representative fluorescence microscopic images showing phase contrast images (10X) (first lane), JC-1 aggregates emitting red fluorescence (second lane), JC1 monomers emitting green fluorescence (third lane) and mitochondrial superoxide production by Mitosox staining fluorescence (fourth lane). (b) Respective quantification of red: green fluorescence ratio indicating depolarized mitochondria and (c) respective mitosox staining red fluorescence quantification indicating the mitochondrial superoxides production in different groups (n=3). ***p<0.001 Vs normal control, *p<0.05, **p<0.01 and ***p<0.001 Vs PTX.

Figure 8

Mechanisms by which CBD and THCV may alleviate paclitaxel-induced peripheral neuropathy.

Cannabidiol and Tetrahydrocannabivarin regulate apoptosis, inflammation, oxidative stress, and mitochondrial homeostasis in dorsal root ganglions via interfering with 5HT1A and CB1 receptors, respectively. Apoptosis and inflammation are regulated by the P-38 MAPkinase and the PI3K-AKT pathways, while mitochondrial homeostasis and oxidative stress are regulated by the AMPK-TFAM and AMPK-Nrf2 pathways respectively. AMPK: Adenosine monophosphate kinase, AKT: protein kinase B, BAX: bcl-2-like protein 4, CBD: Cannabidiol, 4EBP1: Eukaryotic translation initiation factor 4E-binding protein 1, NRF1/2: Nuclear respiratory factor 1/2, Nrf2: nuclear erythoid related factor-2, NQO1: NAD(P)H dehydrogenase 1, PGC1 Alpha: Peroxisome proliferator-activated receptor-γ coactivator 1 alpha, PI3K: Phosphoinositide 3-kinases, SIRT1: Sirtuin 1, SOD2: superoxide dismutase 2, TNFα: Tumor necrosis factor alpha, TGFβ: Transforming growth factor beta.