ON GRADED K-THEORY, ELLIPTIC OPERATORS
AND THE FUNCTIONAL CALCULUS

JODY TROUT

ABSTRACT. Let A be a graded C^*-algebra. We characterize Kasparov’s K-theory group $\hat{K}_0(A)$ in terms of graded $*$-homomorphisms by proving a general converse to the functional calculus theorem for self-adjoint regular operators on graded Hilbert modules. An application to the index theory of elliptic differential operators on smooth closed manifolds and asymptotic morphisms is discussed.

1. Introduction.

Let A be a graded σ-unital C^*-algebra with grading automorphism α. We characterize Kasparov’s K-group in the category of graded C^*-algebras, $\hat{K}_0(A) = KK(\mathbb{C}, A)$, as the group of graded homotopy classes of graded $*$-homomorphisms from $C_0(\mathbb{R})$, the C^*-algebra of continuous functions on the real line with the even-odd function grading, to the graded tensor product $A \hat{\otimes} K$, where $K \cong M_2(\mathcal{K})$ is the C^*-algebra of compact operators graded into diagonal and off-diagonal matrices. Addition is given by direct sum.

The isomorphism is established in Section 3 by proving a general converse to the functional calculus theorem [1] for self-adjoint regular operators on graded Hilbert modules in Section 2. We will indicate in Section 4 how this characterization is useful in simplifying calculations with asymptotic morphisms of C^*-algebras and elliptic differential operators D with coefficients in a trivially graded C^*-algebra A over a smooth closed manifold M. The functional calculus will give an explicit formulation as (nontrivial) compatible graded $*$-homomorphisms of the generalized Fredholm index $\text{Index}_A(D) \in K_0(A)$ and the symbol class $[\sigma(D)] \in K_0^0(T^*M)$ (the topological K-theory of vector A-bundles of the cotangent bundle T^*M) in a form which is suitable for composing directly with asymptotic morphisms, with no rescaling or suspensions as in the general theory. Since the product in E-theory is given by composition, this approach to index theory is simpler than using the Kasparov product in KK-theory [10], which can be very technical.

We should note that Kasparov’s graded K-theory is unrelated to van Daele’s version, except when A is trivially graded [19]. This paper represents work that partially began in the author’s thesis [17], although the material in Section 2 is new. The author would like to thank his advisers Nigel Higson and Paul Baum for their invaluable help and encouragement and also Erik Guentner for helpful suggestions.

Research of the author is partially supported by NSF grant DMS-9706767
2. Graded C^*-algebras and Hilbert modules.

In this section we collect some definitions and results on graded C^*-algebras and Hilbert modules and fix notation. For a complete discussion, see the books [3,9].

Let A be a C^*-algebra. Recall that A is graded if there is a \ast-automorphism $\alpha : A \to A$ such that $\alpha^2 = \text{id}_A$. Equivalently, there is a decomposition of A as a direct sum $A = A_0 \oplus A_1$, where A_0 and A_1 are self-adjoint closed linear subspaces with the property that if $x \in A_m$ and $y \in A_n$ then $xy \in A_{m+n}$ (mod 2). In fact, $A_n = \{x \in A : \alpha(x) = (-1)^n x\}$. We write $\partial x = n$ if $x \in A_n$. If there is a self-adjoint unitary ϵ (called the grading operator) in the multiplier algebra $M(A)$ such that $\alpha(x) = \epsilon x \epsilon^*$, then A is said to be evenly graded. A \ast-homomorphism $\phi : A \to B$ of graded C^*-algebras is graded if $\phi(A_n) \subset B_n$ for $n = 0, 1$.

Example 2.1. The following are the main examples we will be concerned with.

a.) Every C^*-algebra A can be trivially graded by setting $A_0 = A$ and $A_1 = \{0\}$. This is an even grading with grading operator $\epsilon = 1$. The complex numbers \mathbb{C} are always assumed to be trivially graded.

b.) The C^*-algebra $C_0(\mathbb{R})$ of continuous complex-valued functions on \mathbb{R} vanishing at infinity is graded into the even and odd functions by defining $\alpha(f)(t) = f(-t)$ for all functions $f \in C_0(\mathbb{R})$ and $t \in \mathbb{R}$.

c.) Let \mathcal{H} be an infinite-dimensional separable Hilbert space. By choosing an isomorphism $\mathcal{H} \cong \mathcal{H} \oplus \mathcal{H}$ we obtain the standard even grading on the C^*-algebra of compact operators $\mathcal{K} = \mathcal{K}(\mathcal{H}) \cong M_2(\mathcal{K})$, with grading operator

$$\epsilon = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

which is determined uniquely up to conjugation by a unitary homotopic to the identity.

Let A and B be graded C^*-algebras. Define a graded product and graded involution on the vector space tensor product $A \otimes B$ by the formulas

$$(a \hat{\otimes} b)(a' \hat{\otimes} b') = (-1)^{\partial b \partial a'} (aa' \hat{\otimes} bb')$$

$$(a \hat{\otimes} b)^* = (-1)^{\partial a \partial b} (a^* \hat{\otimes} b^*).$$

The resulting \ast-algebra is denoted $A \hat{\otimes} B$. A grading on $A \hat{\otimes} B$ is defined by setting

$$\partial(a \hat{\otimes} b) = \partial a + \partial b \pmod{2}.$$

Now faithfully represent A and B by ρ_1 and ρ_2 on graded Hilbert spaces H_1 and H_2 with grading operators ϵ_1 and ϵ_2, respectively. Then $A \hat{\otimes} B$ is faithfully represented on $H_1 \otimes H_2$ (graded by $\epsilon_1 \otimes \epsilon_2$) via the formula

$$\rho(a \hat{\otimes} b) = \rho_1(a) \epsilon_1^{\partial a} \otimes \rho_2(b).$$

The C^*-algebra completion is denoted $A \hat{\otimes} B$ and is called the (minimal) graded tensor product. It does not depend on the choice of representations. (There is also a maximal graded tensor product [3] but it will not be needed for our purposes since one of the factors will always be nuclear.)
Lemma 2.2. (Proposition 15.5.1 [3]) If B is evenly graded, then $A \hat{\otimes} B \cong A \otimes B$. If A is also evenly graded, then under this isomorphism $A \otimes B$ is also evenly graded.

Corollary 2.3. Let K have the standard even grading. Then $A \hat{\otimes} K \cong M_2(A \otimes K)$. If A is evenly graded by ϵ, $A \hat{\otimes} K \cong M_2(A \otimes K)$ with standard even grading given by $\eta = \text{diag}(\epsilon \otimes 1, -\epsilon \otimes 1)$.

Let B be another graded C^*-algebra with grading β. Then $B[0,1] = C([0,1], B)$ canonically inherits a grading by the formula $\hat{\beta}(f)(t) = \beta(f(t))$. Two graded $*$-homomorphisms $\phi_0, \phi_1 : A \to B$ are graded homotopic if there is a graded $*$-homomorphism $\Phi : A \to B[0,1]$ such that composition with the evaluation maps $ev_t : B[0,1] \to B$ for $t = 0, 1$ are equal to ϕ_0 and ϕ_1, respectively. We shall denote by $[A,B]$ the set of graded homotopy classes of graded $*$-homomorphisms from A to B. If $\phi : A \to B$ is a graded $*$-homomorphism, then we denote by $[\phi]$ its equivalence class in $[A,B]$.

A Hilbert A-module H is graded if there is a Banach space decomposition $H = H_0 \oplus H_1$ such that $H_n \cdot A_m \subseteq H_{n+m}$ and $\langle H_n, H_m \rangle \subseteq A_{n+m}$ (mod 2). We let $L(H)$ denote the C^*-algebra of all bounded A-linear maps $T : H \to H$ with an adjoint T^* and let $K(H)$ denote the closed two-sided ideal of compact operators. The grading on H induces gradings on $L(H)$ and $K(H)$ via the identities $\partial T = m$ if $T(H_n) \subseteq H_{n+m}$. We let H^{op} denote H with the opposite grading $H_n^{\text{op}} = H_{1-n}$. Note that if A is trivially graded, H is the direct sum of two orthogonal A-modules. If $\phi : B \to L(H)$ is a $*$-homomorphism, a closed submodule E of H is ϕ-invariant if $\phi(b) : E \to E$ for all $b \in B$.

3. The Converse Functional Calculus.

Let H be a (graded) Hilbert A-module. A regular operator on H is a densely defined closed A-linear map $D : \text{Domain}(D) \to H$ such that the adjoint D^* is densely defined and $1 + D^* D$ has dense range.\footnote{If $1 + D^* D$ is not invertible, then D is sometimes called an unbounded multiplier [2, 3].} D has degree one if $\partial(Dx) = \partial x + 1$ for all $x \in \text{Domain}(D)$.

Proposition 3.1. For any graded $*$-homomorphism $\phi : C_0(\mathbb{R}) \to A$, there is a maximal ϕ-invariant closed graded Hilbert A-submodule A_ϕ of A and a self-adjoint regular operator D on A_ϕ of degree one such that for all $f \in C_0(\mathbb{R})$ we have $\phi(f)|_{A_\phi} = f(D)$.

Proof. Given a graded $*$-homomorphism $\phi : C_0(\mathbb{R}) \to A$, define

$$A_\phi = C_0(\mathbb{R}) \hat{\otimes} \phi A = \phi(C_0(\mathbb{R}))A$$

to be the closed right ideal generated by the image of ϕ. This is a closed graded Hilbert submodule of A (see Blackadar [3].) Let $C_c(\mathbb{R})$ denote the dense graded ideal of continuous functions on \mathbb{R} with compact support. Define

$$\text{Domain}(D) = \phi(C_c(\mathbb{R}))A$$

which is a dense graded submodule of A_ϕ. Let d denote the function $d(t) = t$ on \mathbb{R}. Define $D : \text{Domain}(D) \to A_\phi$ by the formula $D\phi(f)x = \phi(df)x$ where $f \in C_c(\mathbb{R})$ (so $df \in C_c(\mathbb{R})$) and extend linearly. Suppose that $\phi(f)x = \phi(g)y$ for some other
Choose a function $d' \in C_c(\mathbb{R})$ such that $d = d'$ on the compact set $\text{supp}(f) \cup \text{supp}(g)$. Then we have

$$D\phi(f)x = \phi(d'f)x = \phi(d')\phi(f)x = \phi(d')\phi(g)y = \phi(d'g)y = D\phi(g)y.$$

It follows that D is well-defined and is clearly A-linear. Also, D is degree one since d is an odd function on \mathbb{R}. The computation

$$\langle D\phi(f)x, \phi(g)y \rangle = x^*\phi(df)^*\phi(g)y = x^*\phi(df)g = x^*\phi(f)^*\phi(g)y = \langle \phi(f)x, D\phi(g)y \rangle$$

shows that D is symmetric on $\text{Domain}(D)$. This implies that D is closeable, so we replace D by its closure \overline{D}. Consequently, $(\overline{D} \pm i)$ are injective and have closed range by Lemma 9.7 [11]. Let $f \in C_c(\mathbb{R})$. For any $x \in A$ we have

$$(1 + D^2)\phi((1 + d^2)^{-1})\phi(f)x = \phi((1 + d^2)(1 + d^2)^{-1}f)x = \phi(f)x.$$

It follows that $\text{Range}(1 + D^2) \supset \text{Domain}(D)$ is dense and so D is regular. We will show D is self-adjoint by using a Cayley transform argument.

Extend ϕ to $\phi^+ : C_0(\mathbb{R})^+ \rightarrow A^+$ by adjoining a unit. Let $z \in C_0(\mathbb{R})^+$ denote the unitary

$$z(t) = \frac{t - i}{t + i} = 1 - 2i\tilde{r}_-(t), \text{ for } t \in \mathbb{R}$$

where $r_-(t) = (t - i)^{-1}$ denotes the resolvent. Let $U_D = \phi^+(z) = 1 - 2i\phi(r_-) \in A^+$.

It is easy to check that for all $x \in \text{Domain}(D)$ we have that the unitary U_D satisfies

$$U_D(D + i)x = (D + i)U_Dx = (D - i)x.$$

By Lemma 9.8 and the discussion following Proposition 10.6 in Lance [11], the closed symmetric regular operator D is self-adjoint and $U_D = (D + i)^{-1}(D - i)$.

To show $\phi(f)|_{A_\phi} = f(D)$, it suffices to show this for the resolvents $r_\pm(t) = (d \pm i)^{-1}(t)$. Let $\{f_n\}_{n=1}^\infty$ be an approximate unit for $C_0(\mathbb{R})$ consisting of compactly supported functions. Let $x \in A_\phi$ be given. Then $\phi(f_n)x \in \text{Domain}(D)$ for all n and $\phi(f_n)x \rightarrow x$ as $n \rightarrow \infty$. We have that as $n \rightarrow \infty$,

$$(D \pm i)\phi((d \pm i)^{-1}f_n)x = \phi((d \pm i)(d \pm i)^{-1}f_n)x = \phi(f_n)x \rightarrow x.$$

Now since $\phi((d \pm i)^{-1}f_n)x = \phi((d \pm i)^{-1})\phi(f_n)x \rightarrow \phi((d \pm i)^{-1})x$ as $n \rightarrow \infty$ and $(D \pm i)$ is closed, we conclude that $\phi((d \pm i)^{-1})x = (D \pm i)^{-1}x$. Since $x \in A_\phi$ was arbitrary, we are done. \hfill \square

Let B be a C^*-algebra. If \mathcal{H} is a Hilbert B-module, a $*$-homomorphism $\phi : A \rightarrow \mathcal{L}(\mathcal{H})$ is called nondegenerate if $\phi(A)\mathcal{H}$ is dense in \mathcal{H}. It is called strict if $\{\phi(u_n)\}$ is Cauchy in the strict topology of $\mathcal{L}(\mathcal{H})$ for some approximate unit $\{u_n\}$ in A. Nondegeneracy implies strictness [11]. The following result may be considered the converse to the functional calculus for self-adjoint regular operators [2,4,11].

Theorem 3.2. (Converse Functional Calculus) Let $\phi : C_0(\mathbb{R}) \rightarrow \mathcal{L}(\mathcal{H})$ be graded. There is a closed graded ϕ-invariant Hilbert submodule \mathcal{H}_ϕ of \mathcal{H} and a self-adjoint regular operator D on \mathcal{H}_ϕ of degree one such that for all $f \in C_0(\mathbb{R})$ we have $\phi(f)x = f(D)x$ for all $x \in \mathcal{H}_\phi$. Moreover, if ϕ is strict then \mathcal{H}_ϕ is complemented.
and $\phi(f) = f(D) \in \mathcal{L}(\mathcal{H}_\phi) \subseteq \mathcal{L}(\mathcal{H})$. If ϕ is nondegenerate then $\mathcal{H} = \mathcal{H}_\phi$. And if $\phi(C_0(\mathbb{R})) \subseteq \mathcal{K}(\mathcal{H})$ then D has compact resolvents.

Proof. Let $A = \mathcal{L}(\mathcal{H})$. Let $D' : \text{Domain}(D') \to A_\phi$ be the self-adjoint regular operator on $A_\phi = C_0(\mathbb{R}) \hat{\otimes}_\phi A$ from the previous proposition such that $\phi(f) = f(D')$. Let $i : A \to \mathcal{L}(\mathcal{H})$ be the identity. Define $\mathcal{H}_\phi = \overline{\phi(C_0(\mathbb{R}))\mathcal{H}} = A_\phi \hat{\otimes}_i \mathcal{H}$ which is a closed Hilbert submodule of \mathcal{H}. Define $D = D' \hat{\otimes}_i 1$ on

$$\text{Domain}(D) = \text{Domain}(D') \hat{\otimes}_i \mathcal{H} \supseteq \phi(C_c(\mathbb{R}))\mathcal{H}.$$

By Proposition 10.7 [11], D extends to a self-adjoint regular operator on \mathcal{H}_ϕ. ($D = i_*(D')$ in the notation of [11].) If $x \in \mathcal{H}_\phi$, we compute that

$$f(D)x = f(D' \hat{\otimes}_i 1)x = (f(D') \hat{\otimes}_i 1)x = f(D' \hat{\otimes}_i 1)x = \phi(f)x.$$

If ϕ is strict then \mathcal{H}_ϕ is a complemented submodule of \mathcal{H} by Proposition 5.8 [11] and so $\mathcal{L}(\mathcal{H}_\phi)$ includes as a graded subalgebra of $\mathcal{L}(\mathcal{H})$. The result now easily follows. □

Note that if ϕ is the zero homomorphism then $\mathcal{H}_\phi = \{0\}$ and $D = 0$, so $f(D) = 0 = \phi(f)$.

4. Graded K-theory.

Standing Assumptions. Throughout this section A will denote a complex σ-unital graded C^*-algebra and $C_0(\mathbb{R})$ and K will have the gradings as in Example 2.1.

Let H_A denote the Hilbert A-module of all sequences $\{a_n\}_{1}^{\infty} \subseteq A$ such that $\{\sum_{1}^{n} a^*_n a_n\}_{1}^{\infty}$ converges in A. It has a natural grading into sequences of even and odd elements. Let $\hat{H}_A = H_A \oplus H^*_A$, where H^*_A denotes H_A with the opposite grading. This is the standard graded Hilbert module for A. We have the following very important result of Kasparov in the theory of graded Hilbert modules.

Stabilization Theorem. (Kasparov [10]) If \mathcal{H} is a countably generated graded Hilbert A-module then $\mathcal{H} \oplus \hat{H}_A \cong \hat{H}_A$.

It is a standard result that $A \hat{\otimes} K$ is graded $*$-isomorphic to $K(\hat{H}_A)$, the C^*-algebra of compact operators on \hat{H}_A (with the induced grading) (See 14.7.1 [3]). For the remainder of this section, we will identify $A \hat{\otimes} K = K(\hat{H}_A)$. From stabilization, conjugation by the graded isomorphism $\hat{H}_A \cong H_A \oplus \hat{H}_A$ determines a unitary in $\mathcal{L}(\hat{H}_A) = M(A \hat{\otimes} K)$ of degree zero.

Lemma 4.1. Let $u \in M(A \hat{\otimes} K)$ be a unitary of degree zero. There is a strictly continuous path of degree zero unitaries $\{U_t\}_{t \in [0,1]} \subset M(A \hat{\otimes} K)$ such that $U_1 = u$ and $U_0 = 1$.

Proof. Write $K = K(H \oplus H)$ where $H = L^2[0,1]$. Then $M(A \hat{\otimes} K)$ contains a copy of $\mathcal{L}(H \oplus H)$. Let $\{v_t\}$ be a strictly continuous path of isometries in $\mathcal{L}(H)$ with $p_t = v_t v^*_t \rightarrow 0$ strongly as $t \rightarrow 0$ as in Proposition 12.2.2 [3]. Set $V_t = v_t \oplus v_t \in \mathcal{L}(H \oplus H)$ and note that each V_t has degree zero. Set $W_t = 1 \hat{\otimes} V_t$ which also has degree zero and let

$$U_t = W_t \circ W^{*}_t \circ (1 - W_t W^{*}_t).$$
for \(t > 0 \) and \(U_0 = 1 \). It is easy to check that this works. \(\square \)

Definition 4.2. Let \(A \) have grading automorphism \(\alpha \). Define

\[
K'(A) = K'(A, \alpha) = [\mathcal{C}_0(\mathbb{R}), A \hat{\otimes} \mathcal{K}].
\]

Define a binary operation on \(K'(A) \) by direct sum \([\phi] + [\psi] = [\phi + \psi]\), where the direct sum is with respect to the graded isomorphism \(\hat{H}_A \cong \hat{H}_A \oplus \hat{H}_A\).

Theorem 4.3. \(K'(A) \) is an abelian group under the direct sum operation and satisfies the relation

\[
-u[\phi] = [u\phi u^*]
\]

where \(u = u^* = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) on \(\hat{H}_A = H_A \oplus H_A\).

Proof. It follows from Lemma 4.1 and the proof of Theorem 3.1 in Rosenberg [15] carried over to the graded case that \(K'(A) \) is an abelian monoid with zero given by the zero (or any null-homotopic) \(*\)-homomorphism. We only need to show inverses.

Let \(\phi : \mathcal{C}_0(\mathbb{R}) \to \mathcal{K}(\hat{H}_A) \) be graded. Let \(D \) be the regular operator on \(\mathcal{H}_\phi \subset \hat{H}_A \) associated to \(\phi \) from the converse functional calculus. Via stabilization \(\mathcal{H}_\phi \oplus \hat{H}_A \cong \hat{H}_A \) and Lemma 4.1, we may assume (up to graded homotopy) that \(\phi \) is strict by Proposition 5.8 [11]. Thus \(\phi(f) = f(D) \) for all \(f \in \mathcal{C}_0(\mathbb{R}) \). Then \(D^{\text{op}} = uDu^* \) on the Hilbert module \(\mathcal{H}_\phi \) is the operator associated to \([u\phi u^*]\) since by the functional calculus

\[
f(D^{\text{op}}) = f(uDu^*) = uf(D)u^* = u\phi(f)u^*.
\]

Let \(\epsilon \) be the grading on \(\hat{H}_A \). For each \(t \geq 0 \), define

\[
\mathbb{D}_t = \begin{pmatrix} D & t\epsilon \\ t\epsilon & D^{\text{op}} \end{pmatrix}
\]

on \(\mathcal{H}_\phi \oplus \mathcal{H}_\phi^{\text{op}} \subset \hat{H}_A \) and let \(\mathbb{D}_t = 0 \) on the complement. Define \(\Phi_t : \mathcal{C}_0(\mathbb{R}) \to \mathcal{K}(\hat{H}_A) \) by

\[
\Phi_t(f) = f(\mathbb{D}_t).
\]

For \(t = 0 \) we have \(\Phi_0(f) = f(\mathbb{D}_0) = \phi \oplus u\phi u^* \). Note that

\[
\mathbb{D}_t^2 = \begin{pmatrix} D & t\epsilon \\ t\epsilon & D^{\text{op}} \end{pmatrix}^2 = \begin{pmatrix} D^2 + t^2 & 0 \\ 0 & D^{\text{op}}^2 + t^2 \end{pmatrix}
\]

and so the spectrum of \(\mathbb{D}_t \) is contained outside the interval \((-t, t)\). Therefore,

\[
||f(\mathbb{D}_t)|| \leq \sup\{|f(x)| : x \in \text{spec}(\mathbb{D}_t)\} \to 0 \text{ as } t \to \infty
\]

for all \(f \in \mathcal{C}_0(\mathbb{R}) \) and the result follows. \(\square \)

Definition 4.4. A \(K \)-cycle for a graded \(\mathcal{C}^*\)-algebra \(A \) is an ordered pair \((\mathcal{H}, T)\), such that \(\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \) is a countably generated graded Hilbert \(A \)-module and \(T \in \mathcal{L}(\mathcal{H}) \), where \(\mathcal{L}(\mathcal{H}) \) is the graded \(\mathcal{C}^*\)-algebra of all bounded \(A \)-linear operators on \(\mathcal{H} \) with adjoint, which satisfies the following conditions:

i.) \(T \) is of degree one;

ii.) \(T - T^* \in \mathcal{K}(\mathcal{H}) \) is compact;

iii.) \(T^2 - 1 \in \mathcal{K}(\mathcal{H}) \) is compact.
The K-cycle is called degenerate if $T^2 = 1$.

By a standard argument we may assume that $T = T^*$ is self-adjoint. There is an obvious notion of unitary equivalence for two K-cycles [3,10]. Two K-cycles (\mathcal{H}_0, T_0) and (\mathcal{H}_1, T_1) are homotopic if there is a K-cycle (\mathcal{H}, T) for $A[0,1]$ such that $(\mathcal{H} \otimes_{ev} A, T \otimes_{ev} 1)$ are unitarily equivalent to (\mathcal{H}_i, T_i) where $\text{ev}_t : A[0,1] \rightarrow A$ are the evaluation maps. A collection $\{(\mathcal{H}, T_t)\}_{t \in [0,1]}$ of K-cycles for A is called an operator homotopy if $t \mapsto T_t$ is norm continuous in t. An operator homotopy induces a homotopy (\mathcal{H}', T) by defining $\mathcal{H}' = C([0,1], \mathcal{H})$ and $T(f)(t) = T_t(f(t))$ for $f : [0,1] \rightarrow \mathcal{H}$.

Proposition 4.5. (Theorem 4.1 [10]) The set $KK(C, A)$ of all equivalence classes of K-cycles for A under the equivalence relation (generated by) homotopy is an abelian group under the relations

\[
(\mathcal{H}_1, T_1) + (\mathcal{H}_2, T_2) = (\mathcal{H}_1 \oplus \mathcal{H}_2, D_1 \oplus D_2) \\
-(\mathcal{H}, T) = (\mathcal{H}^\text{op}, -T).
\]

The class of any degenerate K-cycle is zero in $KK(C, A)$.

Let $u = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ be the degree one unitary with respect to the grading on $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$

Lemma 4.6. $-(\mathcal{H}, T) = (\mathcal{H}, T^\text{op}) \in KK(C, A)$, where $T^\text{op} = uTu^*$.

Proof. In the complex world, $(\mathcal{H}, T) = (\mathcal{H}, -T)$ since they are operator homotopic (but not through self-adjoint K-cycles in general.) It follows that

\[
-(\mathcal{H}, T) = (\mathcal{H}^\text{op}, -T) = (\mathcal{H}^\text{op}, T) = (\mathcal{H}, uTu^*) = (\mathcal{H}, T^\text{op})
\]
since $u : \mathcal{H}^\text{op} \rightarrow \mathcal{H}$ implements a unitary equivalence. \qed

Theorem 4.7. $K'(A)$ is isomorphic to $KK(C, A)$.

Proof. Let $G(t) = t(t^2 + 1)^{-1/2}$ which defines a degree one, self-adjoint element in $C_0(\mathbb{R}) = M(C_0(\mathbb{R}))$, the continuous bounded functions on \mathbb{R}. Define a map $K'(A) \rightarrow KK(C, A)$ via

\[
[\phi] \mapsto (\mathcal{H}_\phi, G(D))
\]

where D is the regular operator associated to $\phi : C_0(\mathbb{R}) \rightarrow K(\mathcal{H}_\phi) \subset K(\mathcal{H}_A)$ via the converse functional calculus. (As in Theorem 4.3, we may assume that ϕ is strict.) The operator $G(D)$ is a degree one, self-adjoint element of $M(K(\mathcal{H}_A)) = L(\mathcal{H}_A)$ and $G(D)^2 - 1$ is compact since

\[
G(D)^2 - 1 = (D^2 + 1)^{-1} = \phi(G) \in K(\mathcal{H}_\phi).
\]

This map is easily seen to be well-defined since applying the construction to a graded homotopy $\Phi : C_0(\mathbb{R}) \rightarrow K(\mathcal{H}_A)[0,1]$ yields a homotopy of K-cycles by using the graded isomorphism

\[
K(\mathcal{H}_A)[0,1] \sim (A \hat{\otimes} K)[0,1] \sim A[0,1] \hat{\otimes} K \sim K(\mathcal{H}_A).
\]
It is also distributes over direct sums and maps

\[-\phi = \phi^* \mapsto (\mathcal{H}_\phi, G(D)_{\text{op}}) = -(\mathcal{H}_\phi, G(D))\]

via properties of the functional calculus and Lemma 4.6.

The reverse map is defined using the techniques of Baaj and Julg [2]. Let \((\mathcal{H}, F)\) be a \(K\)-cycle for \(A\). We may assume that \(F = F^*\) and \(\mathcal{H} = \mathcal{H}_A\). Let \(T > 0\) be a strictly positive element of \(\mathcal{K}(\mathcal{H}_A)\) of degree zero which commutes with \(F\). Any two such operators are operator homotopic via the straight line homotopy. Let \(D = FT^{-1}\). Note that \(\text{Domain}(D) = \text{Range}(T)\) is a dense submodule of \(\mathcal{H}_A\). One has that \(D = D^*\) and \((D^2 + 1)^{-1} = (T^2(F^2 + T^2))^{-1}\) is compact. We have the identity \(G(D) = F(F^2 + T^2)^{-1/2}\) and so it also follows that \((\mathcal{H}_A, F)\) and \((\mathcal{H}_A, G(D))\) are operator homotopic. It follows from the identity

\[(D \pm i)^{-1} = D(D^2 + 1)^{-1} \mp i(D^2 + 1)^{-1}\]

that the resolvents are also compact. Define

\[KK(C, A) \to K'(A)\]

by sending \((\mathcal{H}_A, F)\) to the graded homotopy class of the graded \(*\)-homomorphism

\[\phi : f \mapsto f(D) \in \mathcal{K}(\mathcal{H}_A).\]

As above, \(\mathcal{K}(\mathcal{H}_A[0,1]) \cong \mathcal{K}(\mathcal{H}_A)[0,1]\), so a homotopy \((\mathcal{H}_A[0,1], F)\) is mapped to a homotopy \(\Phi : C_0(\mathbb{R}) \to \mathcal{K}(\mathcal{H}_A)[0,1]\). Thus the reverse map is well-defined. One checks easily that these two maps are inverses to each other. \(\square\)

If \(A\) is trivially graded and unital then \(A \hat{\otimes} K \cong M_2(A \otimes K)\) with even grading given by \(\epsilon = \text{diag}(1, -1)\). That is, \(M_2(A \otimes K)\) is graded into diagonal and off-diagonal matrices. It follows from the above that

\[K'(A) = [C_0(\mathbb{R}), A \otimes K] \cong K_0(A).\]

We will describe the isomorphism directly via the more familiar language of projections. It is a standard result that \(K_0(A)\) is the group of formal differences of homotopy classes of projections \(p = p^* = p^2 \in A \otimes K\) with addition given by direct sum \([p] + [q] = [p' + q']\) where \(p \sim_h p', q \sim_h q'\) and \(p' \perp q'\). Let \(u \in M_2(M(A \otimes K))\) be the degree one unitary

\[u = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]

Recall that for any self-adjoint involution \(w\) (i.e., \(w^* = w, w^2 = 1\)) there is an associated projection \(p(w) = \frac{1}{2}(w + 1)\).

Let \(x = \{p\} - \{q\} \in K_0(A)\) where \(p\) and \(q\) are projections in \(A \otimes K\). Define a map

\[\phi_x : C_0(\mathbb{R}) \to M_2(A \otimes K)\]

by the formula

\[\phi_x(f) = \begin{pmatrix} f(0)p & 0 \\ 0 & f(0)q \end{pmatrix}; \quad f \in C_0(\mathbb{R}).\]
This defines a \ast-homomorphism since $p = p^2 = p^*$ (similarly for q) and is graded since $f(0) = 0$ for any odd function. Note that the homotopy class of ϕ_x depends only on the homotopy classes of p and q. Now we define a map $\mu : K_0(A) \to K'(A)$ by mapping

$$x \mapsto [\phi_x].$$

It also follows that

$$\phi_{[p]}(f) \oplus \phi_{[q]}(f) = \left(\begin{array}{cc} f(0) \text{ diag}(p, q) & \text{ diag}(0, 0) \\ \text{ diag}(0, 0) & \text{ diag}(0, 0) \end{array} \right) \sim_h \left(\begin{array}{cc} f(0)(p' + q') & 0 \\ 0 & 0 \end{array} \right) = \phi_{[p' + q']}(f)$$

and so it is additive. For $x = [p] - [q]$ we have $-x = [q] - [p]$ maps to

$$\phi_{-x}(f) = \left(\begin{array}{cc} f(0)q & 0 \\ 0 & f(0)p \end{array} \right) = u\phi_x(f)u^*.$$

Thus, $\mu(-x) = [u\phi_x u^*] = -[\phi_x] = -\mu(x)$. One should note that with the grading present ϕ_x and ϕ_{-x} are not homotopic through graded \ast-homomorphisms since u has degree one and the identity has degree zero.

Conversely, given $[\phi] \in K'(A)$, extend ϕ to a graded \ast-homomorphism

$$\phi^+ : C_0(\mathbb{R})^+ \to (A \otimes K)^+$$

by adjoining a unit. Let z denote the unitary given by the “Cayley transform”

$$z(t) = \frac{t + i}{t - i} = 1 + 2ir_-(t)$$

where $r_-(t) = (t - i)^{-1}$ is the resolvent function. Let u_ϕ denote the unitary

$$u_\phi = \phi^+(z) = 1 + 2i\phi(r_-) \in (A \otimes K)^+$$

A simple computation shows that $(\epsilon u_\phi)^2 = 1$ and $(\epsilon u_\phi)^* = \epsilon u_\phi$. We also have that $\epsilon^* = \epsilon$ and $\epsilon^2 = 1$. Consider the associated projections

$$p(\epsilon), \ p(\epsilon u_\phi) \in (A \otimes K)^+.$$

By the definition of u_ϕ above, we see that $p(\epsilon) - p(\epsilon u_\phi) = 2i\phi(r_+) \in A \otimes K$. Also, a homotopy of ϕ induces a homotopy of the unitary u_ϕ and thus of $p(\epsilon u_\phi)$. We define $\nu : K'(A) \to K_0(A)$ by

$$\nu([\phi]) = [p(\epsilon)] - [p(\epsilon u_\phi)] \in K_0(A).$$

A simple computation shows that $\nu \circ \mu = 1$. We only need to show μ is onto. It then follows that $\nu = \mu^{-1}$ is a homomorphism.

Since A is trivially graded $\hat{H}_A = H_A \oplus H_A$ with each factor determining the grading. Again identify $A \hat{\otimes} \mathcal{K} = \mathcal{K}(\hat{H}_A)$. Let $[\phi] \in K'(A)$. Up to graded homotopy we may assume that $\phi : C_0(\mathbb{R}) \to \mathcal{K}(\hat{H}_A)$ is strict (via stabilization). Let

$$D = \begin{pmatrix} 0 & D^*_+ \\ 0 & 0 \end{pmatrix}$$
on \hat{H}_A be the self-adjoint regular operator of degree one with compact resolvents from the converse functional calculus such that $\phi(f) = f(D)$. Let $G(D) = D(D^2 + 1)^{-\frac{1}{2}}$, which is a self-adjoint bounded operator of degree one on \hat{H}_A with $G(D)^2 - 1$ compact. By a graded homotopy, we may assume that $\phi(f) = (f \circ G)(D) = f(G(D))$. (Note that the diffeomorphism $G : \mathbb{R} \to (-1, 1)$ is the homotopy inverse to the inclusion $(-1, 1) \subset \mathbb{R}$.) Thus, we can write

$$G(D) = \begin{pmatrix} 0 & G^*_+ \\ G_+ & 0 \end{pmatrix}$$

on $H_A \oplus H_A$ where $G_+ : H_A \to H_A$ is a generalized Fredholm operator [18]. Up to a compact perturbation of G_+ (which would induce a graded homotopy), we may assume that $\text{Ker}(G(D)) = \text{Ker}(G_+) \oplus \text{Ker}(G^*_+)$ is a finite projective A-module in \hat{H}_A, and is thus complemented. Note that for $x \in \text{Ker}(G(D))$ we have $f(G(D))x = f(0)x$. Since A is trivially graded, $\text{Ker}(G_+)$ and $\text{Ker}(G^*_+)$ are finite projective A-modules. Let $P_+^{(x)} \in \mathcal{K}(H_A)$ be the compact projections onto $\text{Ker}(G^{(x)}_+)$. Let $x = [P_+] - [P^*_+] = \text{Index}_A(G_+) \in K_0(A) [18]$. A graded homotopy connecting ϕ to the graded $*$-homomorphism

$$\phi_x(f) = \begin{pmatrix} f(0)P_+ & 0 \\ 0 & f(0)P^*_+ \end{pmatrix} \in \mathcal{K}(H_A \oplus H_A) = \mathcal{K}(\hat{H}_A)$$

is given by

$$\Phi_t(f) = \begin{cases} f(t^{-1}G(D)), & t > 0 \\ \phi_x(f), & t = 0. \end{cases}$$

Thus, $\mu(x) = [\phi]$ and so μ is onto as was desired.

Corollary 4.8. If A is unital and trivially graded then the maps μ and ν are inverses.

5. Elliptic Operators over C^*-algebras.

In this section, we will show how the previous results and the functional calculus give explicit realizations as graded $*$-homomorphisms of the K-theory symbol class and Fredholm index of an elliptic differential operator with coefficients in a trivially graded C^*-algebra.

Let A be a trivially graded *unital* C^*-algebra and M be a smooth closed Riemannian manifold. Let $E \to M$ and $F \to M$ be smooth vector A-bundles, that is, smooth locally trivial fiber bundles on M whose fibers E_p and F_p are finite projective A-modules for each $p \in M$. Let $C_\infty(E)$ denote the vector space of smooth sections of E, which is a module over A, similarly for $C_\infty(F)$. Let $D : C_\infty(E) \to C_\infty(F)$ be an elliptic differential A-operator of order n on M [13,17]. (If $A = \mathbb{C}$ then D is an ordinary differential operator.) Let $\sigma = \sigma(D) : \pi^*(E) \to \pi^*(F)$ denote the principal symbol of D which is a homomorphism of vector A-bundles, where $\pi : T^*M \to M$ is the cotangent bundle. The condition of ellipticity is the requirement that for each non-zero cotangent vector $\xi \neq 0 \in T_p^*M$ the principal symbol $\sigma_{\xi}(D) : E_p \to F_p$ is an isomorphism of A-modules.

Equipping the fibers E_p (and F_p) with smoothly varying Hilbert A-module structures

$$\langle \cdot, \cdot \rangle : E \times E \to A$$

and $\mathcal{K}(E)$ as the K-theory of the A-module E. Note that $\mathcal{K}(E)$ is a complex algebra which acts on E as A-module algebra. We will show that $\text{Ker}(\pi^*(D))$ is the trivial A-module.

Theorem 5.1. If $E \to M$ is a smooth vector A-bundle and $D : C_\infty(E) \to C_\infty(F)$ is an elliptic A-operator on M, then $\pi^*(D)$ is an isomorphism of A-modules.
defines a pre-Hilbert A-module structure on $C^\infty(E)$ via the formula

$$\langle s, s' \rangle = \int_M \langle s(p), s'(p) \rangle_p \, d\text{vol}_M \in A,$$

for $s, s' \in C^\infty(E)$, where $d\text{vol}_M$ is the Riemannian volume measure on M. (And any two such structures are homotopic via the straight line homotopy.) It follows that an adjoint differential operator $D : C^\infty(F) \to C^\infty(E)$ exists and is of the same order as D. The principal symbol of the adjoint is the adjoint of the principal symbol $\sigma_\xi(D^\dagger) = \sigma_\xi^*(D) \in \mathcal{L}(F_p, E_p)$ for $\xi \in T^*_pM$. Consider the formally self-adjoint differential A-operator of degree one

$$D = \begin{pmatrix} 0 & D^t \\ D & 0 \end{pmatrix} : C^\infty(E) \oplus C^\infty(F) \to C^\infty(E) \oplus C^\infty(F)$$

on the graded pre-Hilbert A-module $C^\infty(E) \oplus C^\infty(F)$. The principal symbol of D is the self-adjoint bundle morphism of degree one

$$\sigma = \sigma(D) = \begin{pmatrix} 0 & \sigma^* \\ \sigma & 0 \end{pmatrix} : \pi^*(E) \oplus \pi^*(F) \to \pi^*(E) \oplus \pi^*(F)$$

on the graded pull-back vector A-bundle $\pi^*(E) \oplus \pi^*(F)$.

Lemma 5.1. The resolvents $(\sigma \pm i)^{-1} : \pi^*(E) \oplus \pi^*(F) \to \pi^*(E) \oplus \pi^*(F)$ are vector A-bundle morphisms which vanish at infinity on T^*M in the operator norm induced by the Hilbert A-module structures on the fibers $E_p \oplus F_p$.

Proof. Follows from homogeneity $\sigma(p, t\xi) = t^n \sigma(p, \xi)$ and ellipticity. □

Form the Cayley transform [14]

$$u = (\sigma + i)(\sigma - i)^{-1} = 1 + 2i(\sigma - i)^{-1}.$$

By complementing the vector A-bundles E and F, e.g. $E \oplus G \cong M \times A^n$, we may embed $\pi^*(E \oplus F)$ in a trivial A-bundle

$$A = T^*M \times (A^n \oplus A^n).$$

Now extend the automorphism u to the A-bundle A by defining it to be equal to the identity on the complement of $\pi^*E \oplus \pi^*F$ in A. From the lemma above, it follows that u extends continuously to the trivial A-bundle on the one-point compactification $(T^*M)^+$ by setting $u(\infty) = I$.

Let $\epsilon = \text{diag}(1, -1)$ be the grading of the trivial A-bundle $(T^*M)^+ \times (A^n \oplus A^n)$. Since $\epsilon \sigma = -\sigma \epsilon$ it follows, as in the previous section, $(u\epsilon)^2 = 1$ and $(u\epsilon)^* = u\epsilon$. (We also have obviously that $\epsilon^* = \epsilon$ and $\epsilon^2 = 1$.)

Therefore, we obtain two projection-valued sections

$$p(\epsilon), p(u\epsilon) : (T^*M)^+ \to \text{End}(A)$$

on $(T^*M)^+$ which are equal at infinity. We can view them as projection-valued functions $(T^*M)^+ \to M_2(M_n(A)) \cong M_{2n}(A)$. Both define elements in $K_0(C(T^*M)^+ \otimes A)$ and so their difference defines an element

$$\Sigma(\epsilon) = [p(\epsilon)], \ [p(u\epsilon)] \in K_0(C(T^*M)^+ \otimes A).$$
This is the symbol class of the elliptic A-operator D as constructed in [7,14,17]. By Corollary 4.8 and stability, it follows that

$$K_0(C_0(T^*M) \otimes A) \cong [C_0(\mathbb{R}), C_0(T^*M) \otimes M_{2n}(A)]$$

and $\Sigma(D)$ is identified with the graded homotopy class of the graded $*$-homomorphism

$$\Phi_\sigma : C_0(\mathbb{R}) \to C_0(T^*M, M_{2n}(A)) \cong M_{2n}(C_0(T^*M) \otimes A)$$

given fiber-wise by the ordinary matrix functional calculus

$$\Phi_\sigma(f)(\xi) = f(\sigma_\xi(\mathbb{D})) \in M_{2n}(A), \text{ for } \xi \in T^*M.$$

The principal symbol $\sigma(D) : \pi^*(E) \to \pi^*(F)$ determines a class $[\sigma(D)] \in K^0_\mathcal{A}(T^*M)$ (the topological K-theory of T^*M defined via vector A-bundles) since it is a bundle morphism that is an isomorphism off the compact zero-section $M \subset T^*M$. By the Mingo-Serre-Swan Theorem [12,16], we have $K^0_\mathcal{A}(T^*M) \cong K_0(C_0(T^*M) \otimes A)$, which is induced via the action of taking sections as for the case $A = \mathbb{C}$. It thus follows from this and the constructions in the previous section that all three of these symbol classes can be identified.

Proposition 5.2. $[\sigma(D)] = \Sigma(D) = [\Phi_\sigma] \in K^0_\mathcal{A}(T^*M) \cong K_0(C_0(T^*M) \otimes A)$.

Let $L^2(E)$ denote the completion of the pre-Hilbert A-module $C^\infty(E)$. The differential A-operator \mathbb{D} defines an (essentially) self-adjoint regular operator of degree one on the graded Hilbert A-module $\mathcal{H}_\mathbb{D} = L^2(E) \oplus L^2(F)$. (We replace \mathbb{D} by its closure \mathbb{D} which is self-adjoint.) Since \mathbb{D} is elliptic, the resolvents $(\mathbb{D} \pm i)^{-1}$ are compact. (This follows from the parallel Sobolev theory for differential A-operators [13].) The complementation of the bundles E and F above allows a coherent inclusion (with the previous constructions)

$$\mathcal{H}_\mathbb{D} \subset L^2(A) \cong L^2(M) \otimes A^{2n}$$

which induces a graded inclusion of C^*-algebras $\mathcal{K}(\mathcal{H}_\mathbb{D}) \hookrightarrow M_{2n}(\mathcal{K} \otimes A)$. By the functional calculus for self-adjoint regular operators [11] we obtain a graded $*$-homomorphism

$$\Phi_\mathbb{D} : C_0(\mathbb{R}) \to M_{2n}(\mathcal{K} \otimes A) : f \mapsto f(\mathbb{D})$$

Recall that the usual definition of the generalized Fredholm (analytic) index $\text{Index}_\mathcal{A}(D)$ in terms of kernel and cokernel modules requires compact perturbations for a general C^*-algebra \mathcal{A} [13,18]. This is incorporated in the computations in the proof of Corollary 4.8, so we see that the functional calculus for \mathbb{D} gives this index.

Proposition 5.3. $\text{Index}_\mathcal{A}(D) = [\Phi_\mathbb{D}] \in K_0(A)$.

Naturally associated to M and A is an asymptotic morphism of C^*-algebras

$$\{\Psi_t\}_{t \in [1, \infty]} : C_0(T^*M) \otimes A \to \mathcal{K}(L^2M) \otimes A,$$

which is defined via Fourier transforms and a partition of unity up to asymptotic equivalence. (For complete details on the construction see [5,7,17].) The induced map

$$\Psi_* : K^0_\mathcal{A}(T^*M) \cong K_0(C_0(T^*M) \otimes A) \to K_0(A)$$

on K-theory is useful for doing index-theoretic and K-theoretic calculations with elliptic operators. If $M = \mathbb{R}^n$, the induced map is Bott periodicity $K_0(C_0(\mathbb{R}^{2n}) \otimes A) \cong K_0(A)$ [17]. The following result implies the exact form of the Mishchenko-Fomenko index theorem [13], hence the Atiyah-Singer index theorem [1] when $A = \mathbb{C}$ as proved originally by Higson [7].
Theorem 5.4. (Lemma 4.6 [17]) If D is an elliptic differential A-operator of order one on M then
\[\Psi_*([\sigma(D)]) = \text{Index}_A(D) \in K_0(A). \]

The proof reduces to composing the graded symbol homomorphism
\[\Phi_\sigma : C_0(\mathbb{R}) \to M_{2n}(C_0(T^*M) \otimes A) : f \mapsto f(\sigma) \]
with the matrix inflation of this “fundamental” asymptotic morphism for M and A
\[\{\Psi_t\} : M_{2n}(C_0(T^*M) \otimes A) \to M_{2n}(K \otimes A). \]
and comparing this to the continuous family of graded operator $*$-homomorphisms
\[\{\Phi_D^t\}_{t \in [1, \infty)} : C_0(\mathbb{R}) \to M_{2n}(A \otimes K) : f \mapsto f(t^{-1} \mathbb{D}). \]

One then proves [17] via Fourier analysis and a compactness argument that for any $f \in C_0(\mathbb{R})$,
\[\lim_{t \to \infty} \|\Psi_t(f(\sigma)) - f(t^{-1} \mathbb{D})\| = 0 \]
and so the composition $\{\Psi_t \circ \Phi_\sigma\}$ is asymptotically equivalent to $\{\Phi_D^t\}$. Therefore, by stability and homotopy invariance of the induced map [5,6],
\[\Psi_*[\Phi_\sigma] = [\Phi_D^t] = [\Phi_D] \in K_0(A). \]

The result now follows by Propositions 5.2 and 5.3.

References

1. M. F. Atiyah and I. M. Singer, The index of elliptic operators: I, Annals of Math. 87 (1968), 484–530.
2. S. Baaj and P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les C^*-modules Hilbertiens, Série I, C. R. Acad. Sci. Paris 296 (1983), 876–878.
3. B. Blackadar, K-theory for operator algebras, MSRI Publication Series 5, Springer-Verlag, New York, 1986.
4. A. Connes, An Analogue of the Thom Isomorphism for Crossed Products of a C^*-Algebra by an Action of \mathbb{R}, Advances in Mathematics 31 (1981), no. 1, 31–55.
5. A. Connes and N. Higson, Almost homomorphisms and KK-theory, Unpublished manuscript (1989).
6. E. P. Guentner, Relative E-theory, Quantization and Index Theory, Ph.D Thesis, The Pennsylvania State University, University Park, Pa., 1994.
7. N. Higson, On the K-theory proof of the index theorem, Contemporary Mathematics 148 (1993), 67–86.
8. N. Higson and G. Kasparov and J. Trout, A Bott Periodicity Theorem for Infinite Dimensional Euclidean Space, Advances in Mathematics 135 (1998), no. 1, 1–40.
9. K. J. Jensen and Klaus Thomsen, Elements of KK-theory, Birkhäuser, Boston, 1991.
10. G. G. Kasparov, The operator K-functor and extensions of C^*-algebras, Math. USSR Izvestija 16 (1981), 513–572.
11. E. Christopher Lance, Hilbert C^*-modules: A toolkit for operator algebraists, London Mathematical Society Lecture Note Series No. 210, Cambridge University Press, Cambridge, 1995.
12. J. A. Mingo, K-theory and multipliers of stable C^*-algebras, Ph.d Thesis, Dalhousie University, Halifax, N.S.
13. A. S. Mishchenko and A. T. Fomenko, The index of elliptic operators over C^*-algebras, Math. USSR Izvestija 15 (1980), 87–112.
14. D. Quillen, *Superconnection character forms and the Cayley transform*, Topology **27** (1988), 211–238.
15. J. Rosenberg, *The Role of K-theory in Non-commutative Algebraic Topology*, Contemp. Math. **10** (1982), 155–182.
16. R. G. Swan, *Vector bundles and projective modules*, Trans. Amer. Math. Soc. **105** (1962), 264–277.
17. J. Trout, *Asymptotic Morphisms and Elliptic operators over C*-algebras*, K-theory **18** (1999), 277–315.
18. N. E. Wegge-Olsen, *K-theory and C*-algebras*, Oxford University Press, New York, 1993.
19. A. van Daele, *K-theory for graded Banach algebras I*, Oxford Quarterly Journal of Mathematics **39** (1988), 185–199.

Department of Mathematics
Dartmouth College
Hanover, NH 03755

E-mail address: jody.trout@dartmouth.edu