Research Article
The Construction and Analysis of a ceRNA Network Related to Salt-Sensitivity Hypertensives

Xiu-Juan Liu1,2, Hong-Lin Yin3, Yan Li2, Hao Hao2, Yang Liu2, and Quan-Lin Zhao2

1First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
2Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
3Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China

Correspondence should be addressed to Yang Liu; 13864018185@163.com and Quan-Lin Zhao; zhaquanlin65@163.com

Received 31 May 2022; Accepted 29 September 2022; Published 14 October 2022

Academic Editor: Christos K. Kontos

Copyright © 2022 Xiu-Juan Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Salt-sensitivity hypertensives (SSH) are an independent risk factor for cardiovascular disease. However, the mechanism of SSH is not clear. This study is aimed at constructing a competing endogenous RNA (ceRNA) network related to SSH.

1. Background
Hypertension, one of the most common diseases in humans, is one of the most well-known major risk factors for cardiovascular disease (CVD) and stroke. Accumulating study confirmed a strong relationship between sodium intake and blood pressure. Studies have confirmed that reducing the intake of salt in the diet can effectively reduce blood pressure. However, individuals have different responses to dietary salt. Some people will significantly increase their blood pressure after increasing their dietary salt intake, whereas another part of the population does not show significant changes in blood pressure. This phenomenon is called salt sensitivity [1]. Salt sensitivity is related to multiple factors, including the physiological environment, genetics, and demographic factors. Common demographic factors usually include sex, race, and age. However, the mechanism of salt-sensitivity hypertensives (SSH) is not clear. The mechanism of SSH has become the focus of many researchers.

SSH can be defined as elevated blood pressure caused by relatively high salt intake [2]. The mechanism behind the rise in blood pressure caused by increased salt intake is complex. Current studies have found that it is related to an increase in blood volume caused by osmotic pressure, impaired endothelial function, and an imbalance in the regulation of nitric oxide and endothelin [3]. Furthermore,
abnormal activation of the renin-angiotensin-aldosterone system, enhanced sympathetic nervous system, insulin resistance, and renal mechanism are also contribute [4]. Genetics, nutritional, and environmental factors are also involved in the development of salt-sensitive hypertension [5]. However, the BP of salt sensitivity differs among individuals. The blood pressure of salt-sensitive people can be divided into SSH and salt-sensitive normotension (SSN). Although both are sensitive to salt, their blood pressure is different. Its internal mechanism has yet to be studied while few people pay attention to their differences.

Herein, we collect hypertension expression data for these three RNAs from the GEO database and construct a competing endogenous RNA (ceRNA) network related to SSH based on the base of DEGs (differentially expressed genes) and DELs (differentially expressed IncRNAs). This is the first study to investigate the ceRNA network related to SSH. After the analysis of DEGs and DELs, we found that some RNAs were tightly related to SSH. The DEGs and pathways predicted in our study may reveal the potential molecular mechanism of SSH. The workflow of this study is shown in Figure 1.

2. Methods

2.1. Data Collection and Processing. First, the GSE135111 microarray data, including 5 SSH blood samples and 5 SSN blood samples, was downloaded from the GEO database [2]. The microarray data were normalized by R software such as probe identification transformation and log2 transformation. Finally, the normalization data were used for further analysis.

2.2. Difference Analysis. In this study, the Limma package [6] was used to identify DEGs (log2 FC ≥ 0.5 and P value < 0.05), DELs (log2 FC ≥ 1 and P value < 0.05), and DECs (log2 FC ≥ 1 and P value < 0.05). Then, DEGs and DELs were used in the next analysis.

2.3. GO and KEGG Pathway Enrichment Analyses of DEGs. Gene ontology (GO) is widely used to annotate genes, gene products, and sequences. KEGG is a comprehensive database for the biological interpretation of genome sequences and other high-throughput data. To represent the characteristics of DEGs, the enrichment analysis of the GO and KEGG pathways of DEGs was performed using a clusterProfiler package with the following criterion: P value < 0.05.

2.4. Construction of the PPI Network and Screening of Hub Genes. To select hub genes related to SSH herein, the DEGs were mapped into PPIs (protein-protein interaction) by the STRING database, and a combined score of >0.4 was set as a threshold value. In addition, nodes with higher degrees of interaction from the PPI network were considered as hub nodes. As everyone knows, cytoHubba [7] is a tool for screening hub genes in the Cytoscape software [8]. Therefore, in this study, the hub gene modules (top 50 genes) were screened out by all 12 methods in Cytoscape software. Only the remaining overlapping genes in all 12 methods were selected as hub genes related to SSH.

Figure 1: Workflow of this study. Notes: workflow of the study.
Figure 2: Continued.
Group
- Down-regulated
- Not-significant
- Up-regulated

Figure 2: Continued.
Figure 2: Difference analysis of mRNAs and lncRNAs. Notes: (a) expression of mRNAs between two sets of samples (SSH vs. SSN). Blue represents the downregulated genes and red represents the upregulated genes, and the names of the 10 genes with the lowest P value have been indicated. (b) Expression of lncRNAs between two sets of samples (SSH vs. SSN). Blue represents the downregulated lncRNAs and red represents the upregulated lncRNAs, and the names of the 10 lncRNAs with the lowest P value have been indicated. (c) Hierarchical clustering heat map of DEGs (top 57), DELs (65), and DECs (4). Firebrick indicates that the relative expression of mRNAs/lncRNAs/circRNAs were upregulated, navy indicates that the relative expression of mRNAs/lncRNAs/circRNAs were downregulated.
2.5. Construction of lncRNA-miRNA-mRNA Pairs. As we know, lncRNA-miRNA pairs and miRNA-mRNA pairs can form lncRNA-miRNA-mRNA pairs. miRNA can bind to targeted mRNA to promote the degradation of mRNA, while lncRNA can bind to targeted miRNA to inhibit the degradation of mRNA. Herein, we used ggalluvial R package [9] to construct lncRNA-miRNA-mRNA pairs through miRcode (version 11; http://www.mircode.org/mircode/), miRDB (version 7.0; http://mirdb.org/), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/index.html), and TargetScan (version 7.2; http://targetscan.org/vert_72/) on the base of DEGs and DELs. miRcode provides “whole transcriptome” human microRNA target predictions based on the comprehensive GENCODE gene annotation, including > 10,000 long noncoding RNA genes. Coding genes are also covered, including atypical regions such as 5’UTRs and CDS. miRDB is an online database for miRNA target prediction and functional annotations. All miRDB targets were predicted by a bioinformatics tool, MirTarget, which was developed by analyzing thousands of miRNA-target interactions from high-throughput sequencing experiments. miRTarBase is a database of experimentally validated microRNA targets. TargetScan predicts biological targets of miRNAs by searching for the presence of conserved 8mer, 7mer, and 6mer sites that match the seed region of each miRNA. Firstly, we predicted the lncRNA-miRNA pairs through the miRcode database on the base of DELs. The target genes for these miRNA signatures were then obtained using the miRDB, miRTarBase, and TargetScan databases. Genes present in all three databases were regarded as the target genes for these miRNAs. Comparing predicted target genes with DEGs, only the remaining overlapping genes and their interaction pairs were used for constructing the lncRNA-miRNA-mRNA pairs.

2.6. Construction of the ceRNA Network. In this study, the overlapping genes of hub genes and lncRNA-miRNA-mRNA pairs were used as potential key genes related to SSH. In addition, we construct a ceRNA network on hub genes and lncRNA-miRNA-mRNA pairs.

3. Results

3.1. Identification of DEGs and DELs. After preprocessing and data integration, 163 DEGs (86 upregulated and 77 downregulated), 65 DELs (34 upregulated and 31 downregulated), and 4 DECs (1 upregulated and 3 downregulated) were screened (Figures 2(a) and 2(b)). Herein, the heat map of the lncRNAs, circRNAs, and mRNAs showed that the SSH clustered separately from the paired SSN (Figure 2(c)).

3.2. Enrichment Analysis of DEGs. As shown in Table 1 and Figure 3(a). GO and KEGG pathway enrichment analyses of DEGs were mainly enriched in metabolism (e.g., insulin secretion and cellular response to glucagon stimulus and peptidyl-tyrosine dephosphorylation) and plasma membrane signaling (e.g., cell adhesion and chemical synaptic transmission and integral component of membrane).

3.3. PPI Network Construction and Screening of Hub Genes. In this study, these DEGs demonstrated significant interactions. A total of 59 nodes of the 163 DEGs were mapped in the PPI network (Figure 3(b)). Four genes (7 ≥Degree ≥4), including ADCY2, TAS2R38, TNFSF11, and ADCY6, were located in the center of the PPI network. Additionally, 31 hub genes were selected, including EGLN3, TNFSF11, and DPPA4, and were screened (Table 2 and Figure 4(a)). Furthermore, the top 10 hub genes (radiality method) are shown in Figure 4(b).

Category	Term	Count/10	-log10 (P value)
BP	Cell adhesion	0.9	1.613392753
	Chemical synaptic transmission	0.6	1.434237533
	Cellular response to glucagon stimulus	0.3	1.428932795
	Peptidyl-tyrosine dephosphorylation	0.4	1.39799905
	Adenylate cyclase-inhibiting G-protein coupled receptor signaling pathway	0.3	1.30207393
BP	Plasma membrane	4.4	1.791142931
	Intrinsic component of plasma membrane	0.3	1.711353914
	Collagen trimer	0.4	1.469118021
	Integral component of membrane	5.1	1.467740938
	Transport vesicle membrane	0.3	1.463466518
	Integral component of plasma membrane	1.8	1.359780188
CC	Transmembrane receptor protein tyrosine phosphatase activity	0.3	2.104180723
	Protein tyrosine phosphatase activity	0.4	1.343534176
MF	Glutamatergic synapse	0.5	1.867759405
	Insulin secretion	0.4	1.500852037
	Tight junction	0.4	1.475102357
Table 1: GO and KEGG Pathway Enrichment Analyses of DEGs

GO Term	P-Value	Count
Adenylate cyclase		
Inhibiting G-protein coupled receptor signaling pathway		
Protein tyrosine phosphatase activity		
Peptidyl-tyrosine diphosphorylation		
Cellular response to glucagon stimulus		
Chemical synaptic transmission		
Transport vesicle membrane		
Integral component of membrane		
Intrinsic component of plasma membrane		
Collagen trimer		
Tight junction		
Insulin secretion		
Cell adhesion		
Integral component of plasma membrane		
Plasma membrane		
Glutamatergic synapse		
Transmembrane receptor protein tyrosine phosphatase activity		

Figure 3: Enrichment analysis of DEGs and PPI network construction

Notes: (a) GO and KEGG pathway enrichment analyses of DEGs. (b) PPI network. Red represents upregulated DEGs. Navy blue represents downregulated DEGs, and yellow represents other genes associated with DEGs.
Table 2: The first 50 hub genes provided by MCC method.

MCC	Betweenness	BottleNeck	Closeness	ClusteringCoefficient	Degree	DMNC	Eccentricity	EPC	MNC	Radiality	Stress
ADCY6	PSMC4	TNFSF11	ADCY6	HTR1F	ADCY6	HTR1F	GCG	ADCY6	ADCY6	TNFSF11	PSMC4
ADCY2	TNFSF11	PSMC4	ADCY2	NTPCR	ADCY2	TAS2R38	TNFSF11	ADCY2	ADCY2	PSMC4	TNFSF11
TAS2R38	CSF2	ADCY2	PSMC4	ADCY2	ADCY2	ADCY2	ADCY2	ADCY2	ADCY2	PSMC4	TNFSF11
HTR1F	GTSE1	GRIN2A	ADCY2	TASSR38	TNFSF11	ADCY2	DPPA4	HTR1F	HTR1F	TAS2R38	GTSE1
TNFSF11	ADCY6	KCNT1	CSF2	GCG	KCNT1	GCG	CSF2	GCG	GCG	EGLN3	GTSE1
KCNT1	OBPP2	PTTRB	GTSE1	ADCY6	OBPP2	NTPCR	EGLN3	NTPCR	NTPCR	OTSTAMP	GCG
OBPP2	EGLN3	CSF2	TASSR38	REP15	CSF2	REP15	GTSE1	TNFSF11	REP15	SPIB	OBPP2
CSF2	GCG	ADCY6	GCG	CLDN24	GCG	CLDN24	OTSTAMP	PSMC4	CLDN24	OBPP2	NTSR1
GCG	NTSR1	GCG	OBPP2	CLDN22	HTR1F	NTPCR	GYY1	CYY1	GCG	EGLN3	NTSR1
PTTRB	C7orf72	GTSE1	EGLN3	NTPA	NTPA	NTPA	NTPA	NTPA	NTPA	NTPA	NTPA
PSMC4	KIF14	DPPA4	HTR1F	TNN13	TNN13	TNN13	TNN13	TNN13	TNN13	GASL23	TASSR38
GTSE1	KCNT1	OBPP2	NTPCR	ETV5	ETV5	NTSR1	GYY1	CYY1	GCG	EGLN3	GTSE1
DPPA4	TASSR38	NTSR1	KIF14	FUT1	DPPA4	FUT1	FUT1	ADCY6	KIF14	FUT1	DPPA4
FUT1	PLCX2D	EGLN3	OCSTAMP	RASIP1	FUT1	RASIP1	RASIP1	C4BA	RASIP1	ADCY2	PLCX2D
GRIN2A	ADCY2	FUT1	SPIB	GRIN2A	CYY1	GYY1	CYY1	CYY1	GCG	KIF14	CYY1
C7orf72	GRIN2A	C7orf72	NTSR1	SLC16A4	C7orf72	C7orf72	C7orf72	SLC16A4	C7orf72	FCR1	GRIN2A
NTSR1	PTTRB	SPRY1	C7orf72	ZNRF3	ZNRF3	ZNRF3	ZNRF3	ZNRF3	ZNF577	PTPRR	PTPRR
SPRY1	FUT1	CMTM6	PTTRP	PTTRP	PTTRP	PTTRP	PTTRP	PTTRP	PTTRP	PTPRR	PTPRR
CMTM6	DAO	TASSR38	AKAP5	GRIN2A	GRIN2A	GRIN2A	GRIN2A	GRIN2A	HTR1F	DAO	CMTM6
DAO	CMTM6	KIF14	SDC2	FAMIL124A	FAMIL124A	FAMIL124A	FAMIL124A	FAMIL124A	ARHGAP44	SPRY1	ARHGAP44
KIF14	DPPA4	PLCX2D	EGLN3	FASL23	FASL23	FASL23	FASL23	FASL23	FASL23	PLCX2D	TNN13
PLCX2D	REP15	REP15	TCL1A	C7orf72	C7orf72	C7orf72	C7orf72	C7orf72	C7orf72	FCR1	TCL1A
NTPCR	CLDN24	ZNF577	OBPP2	NTPR	NTPR	NTPR	NTPR	NTPR	NTPR	NTPR	NTPR
REP15	CLDN22	CLDN22	C4BA	FCR1	FCR1	FCR1	FCR1	FCR1	FCR1	FCR1	FCR1
NTPCR	CLDN24	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA
NPPA	CLDN22	CLDN22	C4BA	FCR1	FCR1	FCR1	FCR1	FCR1	FCR1	FCR1	FCR1
NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA
NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA	NPPA
NPPA	ETV5	ETV5	C7orf72	TNN13	TNN13	TNN13	TNN13	TNN13	TNN13	GASL23	C7orf72
TNN13	RASIP1	RASIP1	PTTRB	C7orf72	C7orf72	C7orf72	C7orf72	C7orf72	C7orf72	ARHGAP44	C7orf72
ET5V	CYRY1	CYRY1	GRIN2A	ARHGAP44	ETV5	ARHGAP44	ARHGAP44	ARHGAP44	ARHGAP44	GRIN2A	CYRY1
RASIP1	SLC16A4	SLC16A4	FUT1	KCNMB3	RASIP1	KCNMB3	CLDN24	ZNF577	KCNMB3	FUT1	SLC16A4
CYRY1	ZNRF3	ZNRF3	FAMIL124A	C4BA	CYRY1	C4BA	C4BA	C4BA	C4BA	C4BA	C4BA
SLC16A4	PTTRK	PTTRK	DAO	APOC1	SLC16A4	APOC1	APOC1	APOC1	APOC1	APOC1	APOC1
ZNRF3	FAMIL124A	FAMIL124A	SPRY1	SLC17A4	SLC17A4	SLC17A4	SLC17A4	APOC1	APOC1	APOC1	FAMIL124A
PTTRK	GTSF1	GTSF1	CMTM6	ZNF577	PTTRK	ZNF577	CYRY1	SIGLEC14	ZNF577	PTTRK	GTSF1
MCC	Betweenness	BtLeck	Closeness	ClusteringCoefficient	Degree	DMNC	EcCentricity	EPC	MNC	Radiality	Stress
----------	-------------	--------	-----------	-----------------------	--------	------	--------------	-----	-----	-----------	--------
FAM124A	TCL1A	TCL1A	DPPA4	SDC2	SDC2	SLC16A14	KCNMB3	SDC2	HOGA1	TCL1A	
GTSF1	FCRL1	FCRL1	KCNMB3	CSF2	CSF2	ZNRF3	FAM124A	CSF2	SPRY1	FCRL1	
TCL1A	PTPRR	PTPRR	SIGLEC14	AKAP5	TCL1A	AKAP5	PTPRK	CDC175 AKAP5	CMTM6	PTPRR	
FCRL1	GAS2L3	GAS2L3	RASIP1	NTSR1	FCR1	NTSR1	FAM124A	SDC2	NTSR1	SIGLEC14	GAS2L3
PTPRR	CCDC175	CCDC175	HOGA1	SPRY1	PTPRR	GTSF1	ET5	SPRY1	REP15	CCDC175	
GAS2L3	ARHGAP44	ARHGAP44	REP15	PTPR5	GAS2L3	PTPR5	TLC1A	REP15	PTPR5	ETV5	ARHGAP44
CCDC175	KCNMB3	KCNMB3	ETV5	SIGLEC14	CCDC175	SIGLEC14	C4BPA	DPPA4	KCNMB3		
ARHGAP44	C4BPA	C4BPA	GTSF1	CMTM6	ARHGAP44	CMTM6	APOC1	DNMT3B	CMTM6	GTSF1	C4BPA
KCNMB3	APOC1	APOC1	TCL1A	TNFSF11	KCNMB3	TNFSF11	SLC17A4	TCL1A	TNFSF11	TCL1A	APOC1
C4BPA	SLC17A4	SLC17A4	DNMT3B	PSMC4	C4BPA	PSMC4	SPRY1	HOGA1	PSMC4	DNMT3B	SLC17A4
APOC1	ZNF577	ZNF577	CLDN24	EGLN3	APOC1	EGLN3	SIGLEC14	AQP6	EGLN3	CLDN24	ZNF577
SLC17A4	SDC2	SDC2	CLDN22	GTSE1	SLC17A4	GTSE1	CMTM6	PVRL3	GTSE1	CLDN22	SDC2
ZNF577	AKAP5	AKAP5	NPPA	HOAG1	ZNF577	HOAG1	RPL22L1	ZNRF3	HOAG1	NPPA	AKAP5
SDC2	HTR1F	HTR1F	TNN13	DAO	SDC2	DAO	MRPL15	PTPRK	DAO	TNN13	HTR1F
AKAP5	SIGLEC14	SIGLEC14	CYR1	RPL22L1	AKAP5	RPL22L1	DNMT3B	CLDN24	RPL22L1	CYR1	SIGLEC14
Figure 4: Continued.
3.4. Construction of lncRNA-miRNA-mRNA Pairs. Herein, lncRNA-miRNA-mRNA pairs based on DEGs and DELs, including 2 mRNAs (EGLN3 and TNFRSF21), 2 miRNAs (hsa-miR-17-5p and hsa-miR-20b-5p), and 1 lncRNA (C1orf143) was constructed. As shown in Figure 5(a).

3.5. Construction of the ceRNA Network. In this study, an overlapping gene (EGLN3) between hub genes and lncRNA-miRNA-mRNA pairs was screened out and was identified as a potential key gene related to SSH (Figure 5(b)). Then, based on the potential key genes, a ceRNA network was successfully constructed, including 1 lncRNA (C1orf143), 2 miRNAs (hsa-miR-17-5p and hsa-miR-20b-5p), and 1 mRNA (EGLN3).

4. Discussion

It is generally known that salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. Although they are both sensitive to salt, their blood pressure is different. The blood pressure of salt-sensitive people can be divided into SSH and salt-sensitive normotension (SSN) [10]. As for SSH, salt sensitivity is related to multiple factors, including physiological environment, genetics, and demographic factors. Common demographic factors generally include gender, race, and age [11]. However, the pathogenic mechanisms of SSBP are still uncertain. Therefore, the mechanism of salt-sensitivity hypertensives (SSH) has become the focus of many researchers.

Nowadays, it has become a popular method for evaluating DEGs through gene expression analysis to explore the causes of diseases [12]. These different genome-wide expression profiling techniques make them more valuable on account of complementary results. In this study, we obtained the analysis of the expression of mRNAs and lncRNAs of whole blood samples from patients with SSH and SSN with active disease and explored potential RNAs related to SSH by the bioinformatic analysis. Then, we selected 163 DEGs and 65 DELs as our subsequent research object. Furthermore, an enrichment analysis of the GO, KEGG pathway, and the construction of DEG PPI networks were performed, and we found that these 163 genes may participate in the process of SSH through metabolism (e.g., insulin
Figure 5: Continued.
To change the phosphorylation state of channel proteins and enzymes can act on channel protein synthesis and transport. Some protein contains multiple tyrosine residues [17]. Studies have not yet been reported in the results of our study such as tyrosine dephosphorylation. Tyrosine dephosphorylation remains to be verified by experiments.

In plasma membrane signaling, at present, many types of research are thorough. Such as G-protein coupled receptor signaling pathway and insulin secretion [18]. Note that we constructed an SSH-related ceRNA network, including 1 mRNA (EGLN3), 2 miRNAs (hsa-miR-17-5p and hsa-miR-20b-5p), and 1 lncRNA (C1orf143). Among the ceRNA regulatory network, 1 lncRNA (C1orf143) is associated with two miRNAs (hsa-miR-17-5p and hsa-miR-20b-5p), and we proposed that possible competition for C1orf143 binding to hsa-miR-17-5p and hsa-miR-20b-5p influences the downstream regulation of EGLN3. However, this requires experimental verification.

EGLN3 (also named Proly-hydroxylase 3, PHD3, HPH1, and SM-20) belongs to the EGLN family of prolyl hydroxylases and can catalyze hydroxylation. Studies have shown that EGLN3 is involved in the metabolism and angiogenesis of oxygen from tumor cells, which in turn affects tumor cell proliferation [19]. However, there is no report about EGLN3 participating in SSH. It has been reported that EGLN3 is regulated by miRNA to play a role in different biological processes. However, so far, there has been no research on the EGLN3 ceRNA network in SSH. What is more, lncRNAs play a significant role in the development of the disease according to many studies. In our study, we found that C1orf143 could lncRNAs play important biological roles by regulating gene expression (a ceRNA network) in SSH. It is worth noting that there is no research report on C1orf143. This is a new gene. Our research results indicate that C1orf143 may play an important role in SSH. This gives us great hints. However, whether PTP participates in SSH through the dephosphorylation of K⁺ channel protein remains to be verified by experiments.

In metabolism, such as previous studies have demonstrated that single nucleotide polymorphisms (SNPs) of the sodium-bicarbonate cotransporter gene (SLC4A5) are associated with hypertension [13]. Furusho et al. found that mutations of with-no-lysine kinase 1 (WNKI) could lead to abnormally increased salt reabsorption and salt-sensitive hypertension [14]. Based on the epidemiological baseline survey, fasting blood glucose was found to be an independent and dose-dependent related factor of blood pressure salt sensitivity [15]. At the same time, it is well known that the ion channel is closely related to SSH. It has been found that there are many pathways mediated phosphorylation of ion channels in the body, including PKA-mediated phosphorylation, PKC-mediated phosphorylation, PI-3-K/PKB and PI-3-K/SGK3 pathway phosphorylation, MAPKs pathway-mediated phosphorylation, and Src channel regulation. However, there are still some signaling pathways that have not yet been reported in the results of our study such as tyrosine dephosphorylation. Tyrosine dephosphorylation is regulated by protein tyrosine phosphatase (PTP). Studies have found that the PTP gene mainly expresses 112 PTP in the human genome. It is not only an indispensable regulator in cell signal transduction but also a key signal molecule. It plays a key role in the regulation of different physiological events and is related to many diseases such as metabolism, cardiovascular diseases, cancer, and autoimmune diseases [15].

The composition of its catalytic sites determines the sensitivity of dephosphorylation [16]. The same PTP can also be divided into two categories: the receptor tyrosine phosphatase and the nonreceptor tyrosine phosphatase. It is worth noting that the K⁺ channel is closely related to SSH. At the same time, previous articles have reported that K⁺ channels contain multiple tyrosine residues [17]. Some protein enzymes can act on channel protein synthesis and transport to change the phosphorylation state of channel proteins and regulate channel functions. Meanwhile, our results suggest that PTP may be involved in the occurrence of SSH. This gives us great hints. However, whether PTP participates in SSH through the dephosphorylation of K⁺ channel protein remains to be verified by experiments.

On the whole, based on comprehensive bioinformatics analysis of multiple cohort datasets of SSH and SSN patients, 163 DEGs were identified. The enrichment analysis of DEGs involving related molecules or pathways may deepen our understanding of SSH. Additionally, the SSH-related ceRNA

Figure 5: ceRNA network construction.

Notes: (a) Sankey diagram for the lncRNA-miRNA-mRNA pairs. Each rectangle represents a mRNA, miRNA, or IncRNA, and the connection degree of each gene is visualized based on the size of the rectangle. (b) Venn diagram of the hub gens and the IncRNA-miRNA-mRNA pairs. The overlapping genes in both represent the potential key genes related to SSH. (c) A ceRNA network. Red represents IncRNAs. Navy blue represents miRNAs. Violet represents mRNAs.
network, including 1 mRNA (EGLN3), 2 miRNAs (hsa-miR-17-5p and hsa-miR-20b-5p), and 1 lncRNA (C1orf143) was successfully constructed. However, some limitations still existed in this research. The main method of our research was bioinformatics technology, a useful tool to understand interactions, pathways, and networks.

In conclusion, these findings could enrich DEG expression profile between SSH and SSN and provide novel information on the occurrence of SSH. Other scientific researchers are expected to verify this at the genetic level.

Data Availability
The datasets used during the current study are available from the corresponding authors upon reasonable request (GSE135111).

Consent
There is no conflict of interest that exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Conflicts of Interest
The authors have declared that no competing interests exist.

Authors’ Contributions
XJL performed a comparative analysis using bioinformatics tools. HLY and Yan Li participated in the data analysis and discussion. XJL and HH interpreted the results and wrote the manuscript. QLZ and Yang Liu organized and supervised the project. All authors read and approved the final manuscript.

Acknowledgments
This study was supported by the general program of the National Science Foundation of Shandong Province, Grant/ Award (Number: ZR2021MH275), and the China Postdoctoral Science Foundation (2020M670045ZX).

References
[1] Y. Liu, M. Shi, J. Dolan, and J. He, “Sodium sensitivity of blood pressure in Chinese populations,” *Journal of Human Hypertension*, vol. 34, no. 2, pp. 94–107, 2020.
[2] H. Cao, H. Qi, Z. Liu et al., “CeRNA network analysis and weighted enrichment of salt sensitivity of blood pressure by weighted-gene co-expression analysis,” *PeerJ*, vol. 7, article e7534, 2019.
[3] D. Klimczak, K. Jazdzewski, and M. Kuch, “Regulatory mechanisms in arterial hypertension: role of microRNA in pathophysiology and therapy,” *Blood Pressure*, vol. 26, no. 1, pp. 2–8, 2017.
[4] K. Yamuchi, H. Tsuchimoto, A. J. Stone, S. D. Stocker, and M. P. Kaufman, “Increased dietary salt intake enhances the exercise pressor reflex,” *American Journal of Physiology. Heart and Circulatory Physiology*, vol. 306, no. 3, pp. H450–H454, 2014.
[5] D. Hirohama and T. Fujita, “Evaluation of the pathophysiological mechanisms of salt-sensitive hypertension,” *Hypertension Research*, vol. 42, no. 12, pp. 1848–1857, 2019.
[6] M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differential expression analyses for RNA-sequencing and microarray studies,” *Nucleic Acids Research*, vol. 43, no. 7, 2015.
[7] P. Shannon, A. Markiel, O. Ozier et al., “CytoHubba: a software environment for integrated models of biomolecular interaction networks,” *Genome Research*, vol. 13, no. 11, pp. 2498–2504, 2003.
[8] C. H. Chin, S. H. Chen, H. H. Wu, C. W. Ho, M. T. Ko, and C. Y. Lin, “cytoHubba: identifying hub objects and sub-networks from complex interactome,” *BMC Systems Biology*, vol. 8, Supplement 4, 2014.
[9] M. Rosvall and C. T. Bergstrom, “Mapping change in large networks,” *PLoS One*, vol. 5, no. 1, article e6694, 2010.
[10] L. H. Nikam, “Salt taste threshold and its relation to blood pressure in normotensive offspring of hypertensive parents amongst indian adolescents,” *Indian Journal of Physiology and Pharmacology*, vol. 59, no. 1, pp. 34–40, 2015.
[11] P. K. Borah, M. Sharma, H. C. Kalita et al., “Salt-sensitive phenotypes: a community-based exploratory study from northeastern India,” *National Medical Journal of India*, vol. 31, no. 3, pp. 140–145, 2018.
[12] M. A. Baker, F. Wang, Y. Liu et al., “MiR-192-5p in the kidney protects against the development of hypertension,” *Hypertension*, vol. 73, no. 2, pp. 399–406, 2019.
[13] R. M. Carey, C. D. Schoeffel, J. J. Gildea et al., “Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter,” *Hypertension*, vol. 60, no. 5, pp. 1359–1366, 2012.
[14] T. Furusho, S. Uchida, and E. Sohara, “The WNK signaling pathway and salt-sensitive hypertension,” *Hypertension Research*, vol. 43, no. 8, pp. 733–743, 2020.
[15] W. Peng, Y. Xie, H. Cao et al., “Association study of fasting blood glucose and salt sensitivity of blood pressure in community population: the EpiSS study,” *Nutrition, Metabolism, and Cardiovascular Diseases*, vol. 31, no. 8, pp. 2366–2375, 2021.
[16] M. R. Spalinger, M. Schwarzfischer, and M. Scharl, “The role of protein tyrosine phosphatases in inflammasome activation,” *International Journal of Molecular Sciences*, vol. 21, no. 15, p. 5481, 2020.
[17] S. De, C. H. Rinsha, A. Joseph, A. Ben, and V. U. Krishnapriya, “Roles of different amino-acid residues towards binding and selective transport of K+ through KcsA K+-ion channel,” *Physical Chemistry Chemical Physics*, vol. 20, no. 25, pp. 17517–17529, 2018.
[18] L. D’Elia and P. Strazzullo, “Excess body weight, insulin resistance and isolated systolic hypertension: potential pathophysiological links,” *High Blood Pressure & Cardiovascular Prevention*, vol. 25, no. 1, pp. 17–23, 2018.
[19] L. Gesang, L. Gucang, C. Dawa, G. Gesang, and K. Li, “Whole-genome sequencing identifies the Egl nine homologue 3 (egln3/phd3) and protein phosphatase 1 regulatory inhibitor subunit 2 (PP1R2P1) associated with high-altitude polycythemia in Tibetans at high altitude,” *Disease Markers*, vol. 2019, Article ID 5946461, 8 pages, 2019.