ストック効用仮説による世界鉄源需要予測モデル—予測力の確認と2050年までの需要展望—

小澤 純夫*・月橋 文孝*2

Prediction Model of Global Demand for Iron Source by Utility of Stock Hypothesis—Verification of Prediction Power and Outlook for Demand to 2050—
Sumio KOZAWA and Fumitaka TSUKIHASHI

Synopsis: The Utility of Stock hypothesis, which assumes that an in-use stock of constructional material is a function of GDP, was formulated and a clear correlation between the world steel stock and the world GDP led to the estimation that the world demand for iron ore (primary iron) depends not on the volume of GDP but on the variation of GDP, as already reported. It also became clear that the flow of primary iron has the controlling effect on the world production of crude steel. In this study, the prediction power of the Utility of Stock hypothesis is verified. Based on the verification, the global demand for iron source until 2050 is projected by deciding a world 1-region model.

Key words: iron source; steel; demand; stock; outlook; in-use; economy; simulation; modeling.

1. 緒言

筆者らは、既報1-3)において、使用過程のストック量がGDPの関数となるとのストック効用仮説を提唱し、世界の鋼ストック量とGDPとの関係および鋼生産量と一次鉱石（鉱鉱石）生産量との間に明確な相関関係がある、これよリ、一次鉱石生産量をGDP変化率の関数として、また、鋼生産量を一次鉱石生産量の関数として鉄源必要見通しを行うことが有意との結論を得た。

金属の使用過程のストック量に関する研究は少なくとも70年以上の歴史があり、その70%は2000年以降発表されている4)。この中で、我々の既報の研究1-3)は、使用過程のストック量推定の不確実性を仮定分析によって検討している例、「ストック効用仮説」（使用過程のストック量がGDPの関数となるとの新たな仮説）を用いている例。鋼の世界生産量と一次鉱石との関係を理論的に明確にしていいる点に新規性がある。

本研究においては、この指摘原理から曲線適合法などの技術を用いて鉄源需要の世界1地域モデルを求めモデルの予測力の確認を行うとともに2050年までの鉄源必要見通しのための数学モデルを決定し予測を行った。

2. モデルの予測力の確認

既報1-3)で求めた回帰分析の計算においては、推計期間と推計値を比較する期間が同じである。しかし、この結論から導かれる数学モデルで将来の鉄源需要予測を行う場合、現時点までのデータを用いて将来を予測するため、モデルの推計期間と予測期間は当然、同じではない。

そこで、予測力を確認する方法として、推計に利用できるデータをすべて使わず、部分的に期間の推計結果を使えて、推計に関用をした期間の予測を行うことにより、予測力を確認した。

2・1 モデルの予測力の確認に用いるデータ

推計の開始年は、鉄鋼の大量生産・大量消費時代が本格化した1950年とした。推計の終了年は、鉄鋼生産量の変動直前とし、Case I（推計期間：1950-1973年）では、オイルショック直前まで世界の生産量が急拡大が継続したことから1973年とした。Case II（推計期間：1950-1999年）の推計の終了年は、世界的生産量が7億t前後で約30年間横ばいであった最後の年である1999年とした。

2・2節で述べるように2050年までの鉄源需要見通しに気候変動に関する政府パネル(IPCC)の排出シナリオのGDP値を外生変数として用いたことから、Case Iおよび
Case IIにおいて推計に利用せず予測値と実績値を比較する期間のGDPもIPCCの排出シナリオの手法により求めた。すなわち、1970年、1980年、1990年、2000年、2010年の世界銀行のGDPppp値（2010年は予測値）を用い、その間の年のGDPは3・2節と同様に二次関数の多項式により3点円滑化した年成長率により求めた。

2.2 Case I（推計期間：1950–1973年）

2.2.1 一次流産生産量とGDPの関係推計方法の選択

（1）一次流産生産量（F(t)）とGDPの変化率（X(t)−X(t−1)）の回帰分析

1章で述べたように、世界的な鋼ストック（S）とGDPとの間に明確な相関関係が成立している。それにより、世界的な一次流産生産量はGDPの大きさではなく変化量に依存することが導かれた。そこで直接、一次流産生産量（F(t)）とGDPの変化率（X(t)−X(t−1）の回帰分析を行う推計方法を検討した。

Table 1に示すように、Case I（推計期間：1950–1973年）について、一次流産生産量（F(t)）とGDPの変化率（X(t)−X(t−1）との相関関係は、t検定により統計学的に有意であるとの結果となっている。また、ダービン-ワートン統計量が1.31と、既報①で示した鋼ストック量とGDPの相関関係の値0.054に比べて誤差項の系列相関問題が改善されている。しかし、相関係数は、R=0.865 と既報①のR=0.996より小さい。

（2）鋼ストック量（S(t)）とGDP（X(t)）の近似曲線による回帰分析

次に、鋼ストック量（S(t)）とGDP（X(t)）の相関関係について近似曲線を用いて回帰分析を行う推計方法を検討した。

既報①で述べたように、鋼ストック量の世界合計とGDPとの相関関係は、線形近似するのがGDPに関するt検定により統計学的に有意であるとの結果となっている。しかし、世界GDPと鋼ストック量の関係が厳密には直線でなく緩やかな弧状の曲線となり、鋼ストックの所得弾力性が年次推移とともに緩やかな低下傾向にあることからダーシュプトソノ計画が0に近くなっている。そこで、近似曲線で回帰分析を行う推計方法を検討した。

Case I（推計期間：1950–1973年）について、鋼ストック量（S(t)）とGDP（X(t)）の相関関係について、線形近似、対数近似、多項式近似、指数近似を行った結果をFig. 1～5に示す。Fig. 1の線形近似およびFig. 3の多項式近似

Table 1. Regression analysis of relationship between X(t)–X(t−1) and F(t) (Iron input), 1950–1973.

Regression Statistics	Durbin-Watson statistics
Multiple R	0.865
R Square	0.748
Adjusted R Square	0.737
Standard Error	58.1
Observations	24

ANOVA	SS	MS	F	Significance F
Regression	2.21×10^7	2.21×10^7	65.4	4.96×10^-7
Residual	7.43×10^5	3.38×10^5		
Total	2.98×10^7	2.98×10^7		

Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	41.8	31.31	1.34	0.019	-23.1	1.07×10^-12
X(t)−X(t−1)	0.427	5.29×10^-2	8.98×10^-12	0.318	0.537	

† GDPpppは購買力平価ベースの国内総生産。購買力平価換算は二国間の通貨の長期的均衡換算比率の一種で、購買力が等しくなるように計算して求められる。1920年にクルツ・カッセルによって開発された。購買力平価換算は政府によって法定通貨が入為的に操作されている場合に特に有用である。
似が良い近似関係を示している。

(3) 推計方法の選択
推計方法の比較をTable 2に示す。
一次鋼鉄生産量(F₁(t))とGDPの変化量(ΔX(t)−ΔX(t−1))の線形近似については、決定係数R²=0.748であり、そのほかの方法と比較して小さい。

鋼ストック量(S(t))とGDP (X(t))の近似曲線による回帰分析の決定係数はいずれも相対的に大きいが、線形近似および多項式近似が、ともに決定係数R²=0.999で大きく、また、Fig. 1−5を比較しても適切な近似曲線となっている。しかし、多項式近似については、R²の係数が正の値であり、鋼ストックの所得弹性が次年推移とともに緩やかな低下傾向にあることと一致していない。したがって、鋼ストック量(S(t))とGDP (X(t))の線形近似である(1)式から求められる(2)式が一次鋼鉄生産量(F₁(t))の見通しのための数学モデルとして最適である。

S(t)=0.520X(t)+834(1)
F₁(t)=0.520(X(t)−X(t−1))(2)

粗鋼生産量(F₂(t))は、既報11で示したように、一次鋼鉄生産量(F₁(t))を用いた回帰分析により求められる。Case 1 (推計期間：1950−1973年) についての回帰分析から、粗鋼生産量と一次鋼鉄生産量の相関関係として(3)式が得られた。

F₂(t)=1.32F₁(t)+27.7(3)

2.2.2 一次鋼鉄生産量および粗鋼生産量の予測力
(2)式、(3)式および2・1節で述べた方法により補正し
たGDP実績を用い、1974年以降2005年までの鋼鉄生産量の予測を行った結果はTable 3およびFig. 6, 7となる。

予測値と実績値を比較すると、予測誤差率12の絶対値は、一次鋼鉄生産量で最大41.4% (2001年)，最小1.8% (1987年)。1974−2005年までの32年間累計値で10.4%。粗鋼生産量で最大33.0% (2001年)。最小3.3% (1982年)、32年間累計値で4.9%となっている。RMSE13は、一次鋼鉄生産量で123.8百万t、粗鋼生産量で151.5百万tとなった。

Fig. 6, 7からわかるように、一次鋼鉄生産量および粗鋼生産量とともに、予測期間の前半は、実績値は予測値より大きくなり、予測期間の後半は、実績値は予測値より小さくなっ
た。例えば、粗鋼生産量は1974−1990年までは、実績値は予測値を上回っているが、1991−2005年までは、実績値は予測値を下回っている。

2.3 Case II (推計期間：1950−1999年)
2.3.1 一次鋼鉄生産量とGDPの関係推計方法の選択

Table 2. Regression formula for primary iron source from GDP, 1950−1973.

Explained variable y (million ton)	Explaining variable x (billion $)	Method of regression approximation	Formula	Coefficient of determination R²	Length of regression 1950−1973
F₁(t) X(t)−X(t−1)	Straight-line	y = 0.427x + 41.8	0.748		
S(t) X(t)	Straight-line	y = 0.520x + 834	0.999		
	Log	y = 58900ln(x) − 47900	0.976		
	Polynomial	y = 1.62×10⁻²x² + 0.485x + 1030	0.999		
	Power	y = 2099.8x²	0.999		
	Exponential	y = 2760x + 0.999x⁵	0.986		

12 予測誤差率=(予測値−実績値)/実績値。
13 RMSE (Root Mean Squared Error): 予測誤差（予測値と実績値の差）を二乗した合計の平均値の平方根で予測力を数値の形で示すもの。
Table 3. Prediction error of regression formula for primary iron and crude steel, 1950–1973.

Year	Actual value (Fe)	Prediction formula F(t)	Predictive value	Error (mm)	Error rate (%)
1974	392.3	392.3	392.3	0	0
1975	397.1	397.1	397.1	0	0
1976	401.4	401.4	401.4	0	0
1977	405.0	405.0	405.0	0	0
1978	408.6	408.6	408.6	0	0
1979	413.4	413.4	413.4	0	0
1980	419.4	419.4	419.4	0	0
1981	425.2	425.2	425.2	0	0
1982	431.0	431.0	431.0	0	0
1983	436.9	436.9	436.9	0	0
1984	443.4	443.4	443.4	0	0
1985	450.5	450.5	450.5	0	0
1986	457.9	457.9	457.9	0	0
1987	465.8	465.8	465.8	0	0
1988	474.4	474.4	474.4	0	0
1989	483.9	483.9	483.9	0	0
1990	494.8	494.8	494.8	0	0
1991	506.8	506.8	506.8	0	0
1992	519.6	519.6	519.6	0	0
1993	534.2	534.2	534.2	0	0
1994	550.5	550.5	550.5	0	0
1995	568.0	568.0	568.0	0	0
1996	588.0	588.0	588.0	0	0
1997	614.5	614.5	614.5	0	0
1998	647.5	647.5	647.5	0	0
1999	686.0	686.0	686.0	0	0

RMSE: Root Mean Squared Error.
Note: Source of world GDP (X(t)) of 1970. 1980, 1990, 2000, 2010, which is used to predict F(t), is World Bank. X(t) in intermediate years (1974, 1975, ...), is obtained by the concept of logarithmic growth rates (three-point curve), which is consistent with the IPCC SPES.

Fig. 6. Prediction for primary iron after 1974 from regression formula for 1950–1973.

Fig. 7. Prediction for crude steel after 1974 from regression formula for 1950–1973.

Fig. 8. Relationship between World GDP (X(t)) and World in-use steel stock (initial assumption), 1870–2005.
Table 4. Regression formula for primary iron source from GDP, 1950–1999.

Explained variable	Explaining variable x	Method of regression approximation	Formula	Coefficient of determination \(R^2 \)	Length of regression
\(F(t) \)	\(X(t) \)	Straight-line		\(y = 0.272x + 190 \)	1950–1999
			\(R^2 = 0.515)		
\(F(t) \)	\(X(t) \)	Log		\(y = 10400\log(x) - 89700 \)	1950–1999
		Polynomial		\(y = -1.25 \times 10^3 + 0.619x - 31.1 \)	1950–1999
		Power		\(y = 0.876x \)	1950–1999
		Exponential		\(y = 3860e^{0.186t} \)	1950–1999
		Straight-line		\(y = 0.487x + 3080 \)	1950–1999

* mm: million metric ton (Fe equivalent)
** billion $: constant 2000 international billion $

\(F(t) \): World production of primary iron source by year \(t \)
\(S(t) \): World steel stock in year \(t \) \(S(t) = S(t-1) + F(t) \)
\(X(t) \): World GDP (purchasing power parity) in year \(t \)

Table 5. Prediction error of regression formula for primary iron and crude steel, 1982–1999.

Year	World production of primary iron (\(F(t) \))	World production of crude steel (\(S(t) \))						
	Actual value (mm)	Predicted value \((F(t) + 0.405\times X(t-1)) \)	Actual value (mm)	Predicted value \((S(t) + 0.605\times 3070) \)				
	(\(\% \))	Error*** (\(\% \))	Error*** (%)	Error*** (\(\% \))				
2000	593.9	728.3	146.4	24.7	847.7	1017.1	169.5	20.0
2001	589.7	779.2	189.9	32.1	860.3	1036.9	216.6	25.5
2002	625.8	802.6	198.7	31.4	904.8	1119.6	216.0	23.9
2003	685.0	868.7	191.2	26.8	969.1	1193.9	206.8	21.3
2004	743.8	917.7	173.9	23.4	1068.5	1307.7	189.2	15.9
2005	805.3	969.8	164.5	20.4	1129.3	1399.1	169.8	15.0

RMSE 176.6 270.5

* mm: million metric ton (Fe equivalent)
** \(F(t) = 0.405\times X(t-1) \) from \(S(t) = 0.605\times 3080 \)
*** Error = Predictive value – Actual value
**** Error rate = Predictive value – Actual value / Actual value

Note: Source of world GDP pop \(X(t) \) of 2000 and 2010, which is used to predict \(F(t) \).
In this work, \(X(t) \) in intermediate years (2001, 2002, . . .) are obtained by the concept of logarithmic growth rates (three-point curve), which is consistent with the IPCC SRES.

Fig. 9. Prediction for primary iron after 2000 from regression formula for 1982–1999.

Fig. 10. Prediction for crude steel after 2000 from regression formula for 1982–1999.

3. 2050年までの鉄源需要見通し

3.1 2050年までの鉄源需要見通しのための数学モデル

2章で示したように、一次鉄源生産量見通しのための数学モデルの推計方法としては、鋼ストック量 \(S(t) \) と GDP (\(X(t) \)) の線形近似が最適である。しかし、世界GDPと鋼ストック量の関係が密接ではあるが、線形でなく緩やかな弧状の曲線を描き、鋼ストックの所得弾性率が年次推移とともに緩やかに減少している。使用過程の鋼ストックとGDPの関係は1982年以降において曲線を示していることが分かった（Fig. 8）。推計期間としては1982–2005年とした。

鋼ストック量 \(S(t) \) とGDP (\(X(t) \)) の1982–2005年の線形近似により (7) 式が求められ、これから一次鉄源生産量 \(F(t) \) 見通しのための数学モデルとして (8) 式が得られる。

\[S(t) = 0.439X(t) + 4500 \] 2010年以降の鋼ストック量は、世界GDPと鋼ストック量の関係が密接ではあるが、線形でなく緩やかな弧状の曲線を描き、鋼ストックの所得弾性率が年次推移とともに緩やかに減少している。使用過程の鋼ストックとGDPの関係は1982年以降において曲線を示していることが分かった（Fig. 8）。推計期間としては1982–2005年とした。

鋼ストック量 (\(S(t) \)) とGDP (\(X(t) \)) の1982–2005年の線形近似 (7) 式が求められ、これから一次鉄源生産量 (\(F(t) \)) 見通しのための数学モデルとして (8) 式が得られる。

\[S(t) = 0.439X(t) + 4500 \]
$F_s(t)=0.439(\lambda(t)-X(t-1))$
(8)

粗鋼生産量$(F_s(t))$に関しては、一次鉄源生産量$(F_1(t))$で説明する回帰分析により(9)式が得られる。

$F_s(t)=1.34F_1(t)+58.9$
(9)

3.2 2050年までの鉄源需要見通しに用いる外生変数

(GDP)データ

(8)式を用いて、一次鉄源生産量見通しを行うためには、2006年～2050年までのGDPを外生変数として与える必要がある。2・1節と同様に、2006年～2050年までのGDPに関して、2010年の世界銀行のGDPppp予測値および2020年、2030年、2040年、2050年、2060年のIPCCの排出シナリオのGDPppp値を用い、その間の年のGDPは二次関数の多項式により3点円滑化した年成長率により求めた。

IPCCの排出シナリオの値については、GDPppp値を算出しているMESSAGE (Model for Energy Supply Strategy Alternatives and their General Environmental Impact) チームの値を用いた。

IPCCの排出シナリオでは「A1」、「A2」、「B1」、「B2」の4つのマーカー・シナリオが選ばれている。4つあるシナリオに分けて発展方向を示し、今より一般的に経済成長した将来世界を描いたものである。

A1シナリオは、「高度経済成長シナリオ」と呼ぶもので、低人口成長のもとでの高度経済成長シナリオである。

A2シナリオは、「多元化社会シナリオ」と呼ぶもので、地域主義の高いシナリオで、人口は最も増大する。

B1シナリオは、「持続発展型社会シナリオ」と呼ぶもので、低い人口成長、高度経済成長はA1シナリオと同様であるが、低資源消費、クリーンエネルギーの開発および利用など、持続可能性のある形で技術選択が行われ、経済水準自体はA1シナリオよりも下がる。

B2シナリオは、「地域共存型社会シナリオ」と呼ぶもので、比較的地域主義が強く、その範囲で経済・社会・環境の持続可能性が追求される中庸なシナリオである。

本研究で2050年までの鉄源需要見通しの外生変数として用いた2006年～2050年までのGDPの値をFig.11に示す。2050年のGDPは、A1、B1、A2、B2の順に大きいことが見て取れる。

3.3 2050年までの鋼ストック量および鉄源需要見通し結果

Fig. 11に示したGDPを外生変数として2050年までの鋼ストック量$(S(t))$を(7)式から求めた結果をFig.12に示す。

2050年までの鋼ストック量$(S(t))$および(10)式から一次鉄源生産量$(F_1(t))$を求めた結果をFig.13に示す。

$S(t)=\sum_{r=1}^{\gamma} F_s(t)$
(10)

その一次鉄源生産量$(F_s(t))$を用いて(9)式から粗鋼生産量
Table 6. Prediction for world primary iron and crude steel, 2005–2050.

Year	World production of primary iron (Fe) (10^6)	World production of crude steel (Fe) (10^6)						
	(million metric ton)	(Fe equivalent ton)						
	IPCC SRES1 MESSAGE1	IPCC SRES1 MESSAGE1						
2010	A1	A2	B1	B2	A1	A2	B1	B2
2015	1.183	0.907	1.063	1.028	0.174	0.155	0.191	0.171
2020	1.240	1.048	1.070	1.017	0.173	0.154	0.190	0.170
2025	2.170	1.926	1.926	1.846	0.441	0.411	0.441	0.411
2030	2.147	1.101	1.489	1.101	2.927	1.530	2.049	1.408
2035	2.544	1.338	1.674	1.381	3.458	1.844	2.925	1.503
2040	2.479	1.523	1.851	1.732	3.348	2.344	2.728	1.762
2045	2.629	1.711	2.029	1.923	3.567	2.844	2.970	1.966
2050	3.004	1.826	2.059	2.264	3.435	2.947	3.050	2.164

* Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios
** Model for Energy Supply Strategy Alternatives and their General Environmental Impact (MESSAGE)

Note: Prediction formulas: F(t) = 0.4368K(t) – 10.1, F(t) = 1.3369F(t) + 58.55
X(t): World GDP (PPP purchasing power parity) in year t
Source of world GDP (PPP); (X1) of 2000 and 2010 is World Bank. That of 2010, 2020, 2040, 2050 and 2060 is IPCC SRES MESSAGE1 A1, A2, B1, B2.
X(t) in intermediate years (2005, 2007, 2009) are obtained by the concept of logarithmic growth rates (three-point curve).

(F(t))を算出した結果をFig.14に示す。それらの5年ごとの数値をTable 6に示す。

一次鉄資源生産量の見通しは、2030年に10億t（B2シナリオ）～21億t（A1シナリオ）、2050年で13億t（B2シナリオ）～30億t（A1シナリオ）となった。粗鋼生産量の見通しは、2030年で14億t（B2シナリオ）～29億t（A1シナリオ）、2050年で19億t（B2シナリオ）～41億t（A1シナリオ）となった。

4. 考察

4.1 2050年までの見通しに関する考察

2章でモデルの予測力の確認した結果、経済成長傾向に

は実績が予測を上回る傾向、経済成長傾向には実績が予測を

下回る傾向がある。また、鋼ストックの所得弾力性が年

次推移とともに緩やかに減少するにもかかわらず、鋼スト

ックとGDPの線形近似をモデルとして選択した。しか

って、将来の実績の予測が、中間のB2シナリオと高度経

済成長のA1シナリオの間となる可能性、あるいは、鋼スト

ックの所得弾力性が地球環境問題・資源エネルギー制約

の重要性が将来増加することにより、鋼ストックの所得弾

力性がさらに低下し、B2シナリオ以下となる可能性に

留意する必要がある。

また、モデルの指導原理である「ストック効用仮説」は、

2005年まで調査した範囲の経験的証拠ある生産量など

の統計値にもとづいて検証できたが、これは必ずしも

2006年以降のデータによる反証可能性を否定していない。

すなわち、地球環境問題・資源エネルギー制約を選択意

識しなかった過去のデータで検証できた仮説、それらの

問題・制約の重要性が増大と思われる将来変化を成立す

るとは限らない。さらに、外生変数として与えたIPCCの

排出シナリオのGDPppp値が直近の深刻度を増す「世界金

融危機」と戦後最大の「世界同時不況」以前の予測値であ

ることに留意する必要がある。

したがって、上記の2050年までの鉄源需要見通し結果

は参考値として位置づけることが適当である。

4.2 他に関する研究との比較による考察

マテリアル・フロー分析（MFA）による金属の使用過

程のストック量に関する研究は長い歴史を有するが、その

大部分は先進国の推定である（10–24。この研究においては

世界合計値を用いているが、その取扱として一般に支えが

られる。金属は最終的には自動車等の最終製品となって取引

間接輸出されるとため、国別での使用量について信頼性をも

った推測をすることは困難であるが、世界全体を

ての使用量は推計しより容易なことがある。世界全体を

ての使用量については、国や地域などの境界単位の妥当

性を証明する必要がある。また、国別のモデルでは各種の

パラメータを導入および調整することによって原理として

は正しくない場合でも実データに合うよう調整している懸

念があるが、単純な世界1地域モデルではその懸念が回避

できる。

GDPを利用したMFAとしては、使用強度仮説（一人当

たりあるいはGDP当たりの材料消費量が一人当たりGDP

の関数となるとする仮説）がある。あるいはある地域の

材料需要の将来予測を行う際においても一般的に用いられて

いる理論である（12–22。使用強度仮説は、産業の初期発展段階

では物質の消費量は増加し、その後、成熟した社会では

サービス化が進むことにより物質集積度が減少する、すな

わち、単位GDPあたりの物質消費量が減少するとする仮

説である（13–22。しかし、例えばVarelaら（3）は、使用強度

仮説が世界合計値（＝世界1地域モデル）を適用すること

は有効でないことも指摘している。さらに、使用強度仮説

は有効でないことも指摘している。さらに、使用強度仮説

は有効でないことが国々にとっては効果的だが他国の国々にとってはそれ

程効果的ではない。このことは国や地域といった境界単位の妥

当性についての疑問を引き起こす。本研究および我々の既

報の研究で（3）では、フロントとGDPの関係ではなく、ストッ

クとGDPの関係に着目したストック効用仮説を提案して

いる。これによって、鉄源需要が経済成長の動向と一致し

ていない点について、世界合計値を用いて合理的に説明す

ることを可能としている。本研究では空間規模（spatial

scale）の影響を考慮に入れていないが、Kakuchiら（10）と

同様に、人口密度向に一人当たりの鋼材積蓄量の総和値は異

否定し、GDPを利用して東アジアの地域別の鉄鋼ストッ

ク量の推計を実施している（14）。

メタビル需要予測の既往研究では予測力の確認は行われ

ていないが、本研究では予測力を確認し推計方法を選択して

いる。

4.3 今後の課題

この研究成果にもとづいて、2006年以降の実績データを

用いて、将来、モデルの指導原理である「ストック効用

仮説」が引き続き有効かを検証し、鉄源やそのほかペス

メタールなどの鉱物資源についてのマスエフェクトに関する

数学モデルを、工学的考察により継続的に改善し、産学官
で共有しうる需要見通しを生み出すよう発展させることが今後の課題である。

4．結言

鉄鉱資源見通しの数学モデルの推計方法を決定したうえで予測力の確認を行った。一次鉄鉱生産量見通しのための数学モデルの推計方法としては、鋼ストック量(S(t))とGDP (X(t))の線形近似が最適であるとの結果を得た。

予測力の確認として、推計期間を1950~1973年（第一次オイルショックの変調前）、予測値と実績値を比較する期間を1974~2005年（第一次オイルショックの変調後）とした場合、世界粗鋼生産の予測誤差率の絶対値は最大で33.0%（2001年）、最小で3.3%（1982年）、32年間累計で4.9%。RMSEは151.5百万tとなった。予測期間の内の約25年間（1974~1998年）は、相対的に正確な予測となり、予測誤差率の絶対値は、一次鉄鉱生産量で最大28.6%（1998年）、粗鋼生産量で最大24.4%（1998年）となった。

一次鉄鉱生産量および粗鋼生産量の実績値が、経済成長時には予測値より大きく、経済成長時には予測値より小さいことはCase I（推計期間：1950~1973年）、Case II（推計期間：1950~1999年）ともに共通していた。

IPCCの排出シナリオの4ケースを用いてGDP見通しを外生変数として与え、2050年の粗鋼生産見通しは、19億t（地域共存型社会のB2シナリオ）~41億t（高成長成長のA1シナリオ）という推計値を得た。

本論文執筆に対してご助言をいただいた㈱鉄リサイクリング・リサーチの林誠一氏、新日本製鐵株式の米澤公敏博士、東京大学の足立芳寛教授、松野泰也准教授、安達毅准教授に謝意を表する。

文献
1) S.Kozawa, S.Hayashi and F.Tsukihashi: *ISIJ Int.*, 48 (2008), 1795.
2) S.Kozawa and F.Tsukihashi: *Tetsu-to-Hagané*, 95 (2009), 710.
3) S.Kozawa and F.Tsukihashi: *Tetsu-to-Hagané*, 95 (2009), 704.
4) M.Gerst and T.E.Graedel: *Environ. Sci. Technol.*, 42 (2008), 7038-7044.
5) 岡場信夫、加藤久恵: EVIEWSによる経済予測とシミュレーション入門、日本評論社、東京、(2006), 94.
6) World Bank: Prospects for the Global Economy—Forecast Summary, http://go.worldbank.org/6SNWQOQCBQ (accessed 2009-1-25).
7) S.Kozawa, S.Hayashi and F.Tsukihashi: *ISIJ Int.*, 48 (2008),1801.
8) Intergovernmental Panel on Climate Change: IPCC Special Report on Emissions Scenarios, http://www.ipcc.ch/-iepreports/sres/emission/100.htm (accessed 2009-1-21).
9) 環境省（森田恒幸）: 温室効果ガス排出量削減シナリオ策定調査報告書、http://www.env.go.jp/earth/report/h13-01/h13-01-5.pdf (accessed 2009-5-24).
10) I.Daigo and S.Hashimoto: *Waste Manag. Res.*, 20 (2009), 254.
11) J.N.Rauch and J.M.Pacyna: *Global Biogeochemical Cycle*, 23 (2009), GB2001, 1.
12) J.E.Tilton Ed.: *World Metal Demand, Resources for the Future*, Washington, D.C., (1990), 305.
13) D.Pvan Vuuren, B.J.Strengers and H.J.M.De Vries: *Resour. Policy*, 25 (1999), 239.
14) K.Tokimatsu, T.Ito, T.Shinkuma, K.Furukawa, T.Ogiwara, T.Konugi and T.Nishiyaama: *Shigen-to-Sozai*, 120 (2004), 681.
15) T.Konugi: *Seisakukagaku*, 13 (2006), No. 2, 2.
16) M.Neelis and M.Patel: Long-term Production, Energy Consumption and CO2 Emission Scenarios for the WorldWide Iron and Steel Industry, Report prepared by the Department of Science, Technology and Society/Copernicus Institute at Utrecht University, Utrecht, (2006).
17) I.Hidalgo, L.Szabo, J.C.Ciscar and A.Soria: *Energy*, 30 (2005), 583.
18) VLEEM 2, FINAL REPORT, EC/ DG Research Contract ENG1-CT2002-00645, http://www.vleem.org/ (accessed 2008-2-11).
19) National Institute for Materials Science: Press release on 15 Feb. 2007 (in Japanese)—2050men madeni Sekaitenka Sigenseyaku no Kabe (A Wall of Global Resource Constraint by 2050), Tsukuba, (2007), http://www.nims.go.jp/jp/news/press/press178.html (accessed 2007-5-2).
20) D.B.Muller, T.Wang, B.Duval and T.Graedel: Exploring the Engine of Anthropogenic Iron Cycles, PNAS Early Edition, New Haven, (2006), http://www.pnas.org/cgi/doi/10.1073/pnas.0603375103 (accessed 2006-10-23).
21) D.E.Sullivan: Metal Stocks in Use in the United States, U.S. Geologi cal Survey, Denver, (2005), http://pubs.usgs.gov/fs/2005/3090/2005-3090.pdf (accessed 2006-3-9).
22) R.Geyer, J.Davis, J.Ley, J.He, R.Clift, A.Kwan, M.Sansom and T.Jackson: *Resour. Conserv. Recycl.*, 51 (2007), 101.
23) J.Davis, R.Geyer, J.Ley, J.He, R.Clift, A.Kwan, M.Sansom and T.Jackson: *Resour. Conserv. Recycl.*, 51 (2007), 118.
24) E.Kakuchi, H.Hatakeyama, I.Daigo, Y.Matsuno and Y.Adachi: *Tetsu-to-Hagané*, 95 (2009), 902.