AN X-RAY SURVEY OF WOLF-RAYET STARS IN THE MAGELLANIC CLOUDS. II.
THE ROSAT PSPC AND HRI DATA SETS

MARTIN A. GUERRERO1,2 AND YOU-HUA CHU2

Received 2006 July 31; accepted 2007 August 22

ABSTRACT

Wolf-Rayet (WR) stars in the Magellanic Clouds (MCs) are ideal for studying the production of X-ray emission by their strong fast stellar winds. We have started a systematic survey for X-ray emission from WR stars in the MCs using archival Chandra, ROSAT, and XMM-Newton observations. In Paper I, we reported the detection of X-ray emission from 29 WR stars using Chandra ACIS observations of 70 WR stars in the MCs. In this paper, we report the search and analysis of archival ROSAT PSPC and HRI observations of WR stars. While useful ROSAT observations are available for 117 WR stars in the MCs, X-ray emission is detected from only seven of them. The detection rate of X-ray emission from MCs WR stars in the ROSAT survey is much smaller than in the Chandra ACIS survey, illustrating the necessity of high angular resolution and sensitivity. LMC-WR 101–102 and 116 were detected by both ROSAT and Chandra, but no large long-term variations are evident.

Subject headings: Magellanic Clouds — stars: Wolf-Rayet — surveys — X-rays: stars

1. INTRODUCTION

Wolf-Rayet (WR) stars are characterized by their broad emission lines, indicating copious fast stellar winds. Spectral analyses of WR stars show typical wind terminal velocities of 1000–3000 km s⁻¹ (Prinja et al. 1990) and mass-loss rates of a few times 10⁻⁵ M☉ yr⁻¹ (de Jager et al. 1988). Such powerful stellar winds are expected to generate a variety of X-ray sources. Within the WR wind itself, instability shocks produce regions with high temperatures and densities for X-ray emission (Lucy & White 1980; Gayley & Owocki 1995). Upon leaving the WR star, the wind may encounter a massive companion’s wind, and the colliding winds produce compressed hot gas that emits X-rays. Finally, as the WR wind impinges on the ambient medium, a wind-blown bubble may form, and the shocked WR wind in the bubble interior may emit in X-rays (Weaver et al. 1977; García-Segura et al. 1996b, 1996a). Therefore, X-ray observations of WR stars provide an opportunity to probe the opacity of the stellar wind, study the orbital configuration of an WR+OB binary system, and examine the stellar mechanical energy injection into the interstellar medium.

Previous Einstein and RöntgenSatellit (ROSAT) X-ray surveys of Galactic WR stars have shown that WR stars in binary systems have higher L_X/L_bol than single WR stars or O stars and that single WR stars of the nitrogen sequence (WN) are generally brighter than WR stars of the carbon sequence (WC) stars, although no simple L_X/L_ bol relationship appears to exist among single WN stars (Pollock 1987; Pollock et al. 1995; Wesselowski 1996). While these results reveal the potential of scientific yields from X-ray observations of WR stars, the Galactic sample is plagued by heavy obscuration in the Galactic plane that renders a large fraction of WR stars undetectable. The nearby Large and Small Magellanic Clouds (LMC and SMC) are ideal locations to expand the X-ray observations of WR stars, since the foreground and internal extinctions in these galaxies are small. Furthermore, their lower metallicities allow us to probe abundance effects on the stellar winds, and their known distances allow us to determine L_X with greater certainty.

In the first paper of this series (Guerrero & Chu 2008, hereafter Paper I), we have used the current archive of the Chandra X-ray Observatory to search for X-ray emission from WR stars in the Magellanic Clouds (MCs). This survey included useful Advanced CCD Imaging Spectrometer (ACIS) observations for 70 of the 146 known WR stars in the MCs and resulted in credible detection of X-ray emission from 29 of these WR stars and possibly another four WR stars. Many of the WR stars in the MCs that have not been observed by Chandra have ROSAT X-ray observations available in the archive. In this paper, we have used the entire ROSAT archive of pointed observations to search for and analyze X-ray sources associated with WR stars in the MCs in order to complement our Chandra ACIS X-ray survey for WR stars in the MCs and to investigate long-term X-ray variability. In an upcoming paper (J. Carter et al. 2008, in preparation, hereafter Paper III), the results from the ROSAT and Chandra surveys of WR stars in the MCs will be complemented by an XMM-Newton survey. All three archival studies will be analyzed together in conjunction with a systematic spectroscopic search for binaries for all WR stars in the MCs (Bartzkas et al. 2001; Foellmi et al. 2003a, 2003b; O. Schnurr et al. 2008, in preparation) to determine accurately the origin of X-ray emission from WR stars.

2. ROSAT OBSERVATIONS OF WOLF-RAYET STARS IN THE MAGELLANIC CLOUDS

ROSAT had two types of X-ray detectors onboard: the Position Sensitive Proportional Counter (PSPC) and the High-Resolution Imager (HRI). The PSPC has an on-axis angular resolution of ~30″ and a spectral resolution of ~45% at 1 keV; it is sensitive in the energy range of 0.1–2.4 keV and has a field of view of ~2°. The HRI has a higher angular resolution, ~5″, but does not provide spectral resolution over the operational energy range of 0.1–2.0 keV; its field of view is ~38″. During the ROSAT mission from 1990 to 1999, numerous pointed observations of targets in the MCs were made, and the large field of view serendipitously included many WR stars. These observations can be retrieved from the ROSAT archive3 maintained by the High Energy Astrophysics

3 ROSAT archival data can be obtained from the anonymous ftp site ftp://legacy.gsfc.nasa.gov or downloaded from the Web site http://heasarc.gsfc.nasa.gov/W3Browse.
WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)
LMC-WR 3	Brey 3	rp900320	31.3	23	LMC-WR 31	Brey 25	rp400154	6.5	2	LMC-WR 54	Brey 4a	rp180251	20.2	23
LMC-WR 5	Brey 4	rp500258	13.8	34	LMC-WR 32	Brey 26	rp400263	24.1	24	LMC-WR 55	Sk –69 175	rp180251	20.2	23
LMC-WR 6	Brey 5	rp500263	12.7	22	LMC-WR 33	Sk –68 73	rp400154	6.5	5	LMC-WR 5	Sk/C0 68	rp600577	9.0	25
LMC-WR 9	Brey 7	rp600093	6.5	5	LMC-WR 34	Sk/C0 69	rp180179	15.9	23	LMC-WR 6	Sk/C0 66	rp50037	6.8	19
LMC-WR 10	Brey 9	rp600093	6.5	5	LMC-WR 35	Sk/C0 67	rp500140	40.0	23	LMC-WR 7	Sk/C0 65	rp500258	13.8	32
LMC-WR 11	Brey 10	rp500258	13.8	18	LMC-WR 36	Sk –69	rp600577	9.0	21	LMC-WR 8	Sk/C0 67	rp180251	20.2	24
LMC-WR 12	Brey 10a	rp500258	12.7	32	LMC-WR 37	Sk –68 73	rp180179	15.9	23	LMC-WR 9	Sk/C0 68	rp500093	8.7	9
LMC-WR 13	Sk –66 40	rp500093	6.5	5	LMC-WR 38	Sk/C0 68	rp600099	8.8	7	LMC-WR 10	Sk/C0 69	rp180251	20.2	24
LMC-WR 14	Brey 11	rp500258	13.8	19	LMC-WR 39	Sk/C0 68	rp500138	31.6	15	LMC-WR 11	Sk/C0 66	rp500258	13.8	19
LMC-WR 15	Brey 12	rp500060	3.9	33	LMC-WR 40	Sk/C0 67	rp500263	24.1	33	LMC-WR 12	Sk/C0 67	rp500263	24.1	33
LMC-WR 16	Brey 13	rp600093	6.5	5	LMC-WR 41	Sk/C0 68	rp500140	40.0	23	LMC-WR 13	Sk/C0 67	rp500263	24.1	33
LMC-WR 19	Brey 16	rp300129	4.0	18	LMC-WR 42	Sk/C0 68	rp500061	3.8	11	LMC-WR 14	Sk/C0 67	rp500061	3.8	11
LMC-WR 20	Brey 16a	rp300129	4.0	18	LMC-WR 43	Sk/C0 68	rp500161	1.9	32	LMC-WR 15	Sk/C0 67	rp500161	1.9	32
LMC-WR 21	Brey 17	rp500052	12.4	2	LMC-WR 44	Sk/C0 68	rp180033	3.8	11	LMC-WR 16	Sk/C0 67	rp180033	3.8	11
LMC-WR 22	Brey 18	rp180033	3.8	11	LMC-WR 45	Sk/C0 68	rp141507	1.3	33	LMC-WR 17	Sk/C0 67	rp180033	3.8	11
LMC-WR 23	...	rp500052	12.4	4	LMC-WR 46	Sk/C0 68	rp141508	1.3	33	LMC-WR 18	Sk/C0 67	rp180033	3.8	11
LMC-WR 24	Brey 19	rp900398	12.4	20	LMC-WR 47	Sk/C0 68	rp141518	1.3	33	LMC-WR 19	Sk/C0 67	rp180033	3.8	11
LMC-WR 25	Brey 19a	rp500061	3.8	11	LMC-WR 48	Sk/C0 68	rp141519	1.3	33	LMC-WR 20	Sk/C0 67	rp180033	3.8	11
LMC-WR 26	Brey 20	rp500061	3.8	11	LMC-WR 49	Sk/C0 68	rp141520	1.3	33	LMC-WR 21	Sk/C0 67	rp180033	3.8	11
LMC-WR 27	Brey 21	rp500061	3.8	11	LMC-WR 50	Sk/C0 68	rp141521	1.3	33	LMC-WR 22	Sk/C0 67	rp180033	3.8	11
LMC-WR 28	Brey 22	rp141507	1.3	29	LMC-WR 51	Sk/C0 67	rp141530	1.1	30	LMC-WR 23	Sk/C0 67	rp180033	3.8	11
LMC-WR 29	Brey 23	rp500053	8.3	0	LMC-WR 52	Sk/C0 67	rp141531	1.1	30	LMC-WR 24	Sk/C0 67	rp180033	3.8	11

TABLE 1

ROSAT PSPC Observations of Wolf-Rayet Stars in the Magellanic Clouds

- **WR No.** refers to the identification number of each Wolf-Rayet star.
- **WR Name** indicates the name assigned to each star.
- **Obs. ID** is the identification code for the observation.
- **t_{exp} (ks)** denotes the exposure time in thousands of seconds.
- **Offset (arcmin)** is the angular offset from the target location.

This table lists detailed observations of Wolf-Rayet stars in the Magellanic Clouds, providing essential data for astrophysical studies.
WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)
LMC-WR 30.............. Brey 24	rp500053	8.3	21											
LMC-WR 62.............. Brey 51	rp400246	14.5	13											
LMC-WR 63.............. Brey 52	rp900533	1.6	29											
LMC-WR 64.............. Brey 53	rp110167	2.3	22	LMC-WR 69.............. TSWR 4	rp110167	2.3	24							
LMC-WR 76.............. Brey 64	rp180251	20.2	4											
LMC-WR 77.............. Brey 65	rp110168	1.8	11											
WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)										
-------	---------	---------	-----------------	----------------										
rp110167	Brey 58	2.3	24	LMC-WR 75	Brey 59									
rp110173	2.0	32	LMC-WR 90	Brey 74										
rp110174	2.9	26												
rp600100	22.7	8												
LMC-WR 68	Brey 58													
rp110168	1.8	28												
rp110173	2.0	29												
rp110179	2.2	21												
rp180251	20.2	12												
rp500100	26.6	12												
rp500140	40.0	15												
rp500300	9.4	15												
rp600100	22.7	14												
LMC-WR 83	HD 269858													
rp110168	1.8	24												
rp110173	2.0	30												
rp110179	2.2	20												
rp180251	20.2	12												
rp500100	26.6	12												
rp500140	40.0	12												
rp500303	9.4	12												
rp600100	22.7	11												
LMC-WR 85	Brey 67													
rp110168	1.8	9												
rp110179	2.2	27												
rp180251	20.2	8												
rp500100	26.6	8												
rp500140	40.0	8												
rp500303	9.4	8												
rp600100	22.7	8												
LMC-WR 86	Brey 69													
rp110168	1.8	5												
rp110179	2.2	29												
rp180251	20.2	12												
rp500100	26.6	12												
rp500140	40.0	7												
rp500303	9.4	12												
rp600100	22.7	11												
LMC-WR 87	Brey 70													
rp110168	1.8	19												
rp110173	2.0	35												
rp110179	2.2	19												
rp180251	20.2	11												
rp500100	26.6	11												
rp500140	40.0	11												
LMC-WR 88	Brey 70a													
rp110168	1.8	7												
rp110179	2.2	27												
rp180251	20.2	13												

TABLE 1—Continued
WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)
rp500100	LMC-WR 95		26.6	13	rp500303		9.4	20		LMC-WR 104	Brey 76		1.8	9
rp50131			16.0	5	rp600100		22.7	12		LMC-WR 89	Brey 71		2.2	26
rp500140			40.0	13	rp500100		26.6	19		LMC-WR 105	Brey 77		2.2	19
rp500303			9.4	13	rp600100		22.7	19		LMC-WR 106,108,110... R 136a		2.2	26	
rp600100			22.7	12	rp500100		22.7	19		LMC-WR 111	R 136b		2.2	26
rp500140			40.0	13	rp500131		16.0	1		LMC-WR 112	R 136c		2.2	19
rp500303			9.4	20	LMC-WR 118	Brey 89		1.8	9	LMC-WR 119	Brey 90		1.8	27
rp600100			22.7	19	LMC-WR 120	Brey 91		1.8	9	LMC-WR 121	Brey 90a		1.8	10
rp500140			40.0	19	LMC-WR 122	Brey 92		1.8	11	LMC-WR 123	Brey 97		1.8	18
WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)
---------	----------	---------	------------------------	-----------------	---------	----------	---------	------------------------	-----------------	---------	----------	---------	------------------------	-----------------
rp500303	11.1	9.4	19		rp110179	2.2	29			rp300335	11.3	29		
rp600100	22.7	19			rp600100	22.7	19			rp600100	22.7	19		
rp110168	1.8	9			rp500100	26.6	24			rp1500044	5.3	23		
rp110179	2.2	27			rp500131	16.0	5			rp400052	8.8	22		
rp180251	20.2	20			rp500140	40.0	24			rp400133	1.8	22		
rp500100	26.6	20			rp500100	26.6	20			LMC-WR 130	Sk – 69 297			
rp500131	16.0	1			rp500131	16.0	5			rp600100	22.7	23		
rp500140	40.0	20			rp500140	40.0	24			LMC-WR 131	Brey 98			
rp500303	9.4	20			rp500100	26.6	39			LMC-WR 132	Brey 99			
rp500303	9.4	20			rp600100	22.7	19			LMC-WR 133	Sk – 67 266			
LMC-WR 117	Brey 88				rp500179	15.9	39			SMC-WR 1	AV 2a			
LMC-WR 117	Brey 88				rp600140	40.0	39			SMC-WR 10	HD 6043			
SMC-WR 2	AV 39a				rp600196	23.5	13			SMC-WR 11	HD 6043			
rp500249	19.2	9			rp600196	23.5	13			SMC-WR 12	HD 6043			
rp500251	2.1	15			rp600196	23.5	13			SMC-WR 13	HD 6043			
rp600196	23.5	10			rp600196	23.5	13			SMC-WR 14	HD 6043			
rp600445	17.6	40			rp600195	26.1	9			SMC-WR 15	HD 6043			
rp600454	18.0	33			rp500182	4.9	6			SMC-WR 16	HD 6043			
SMC-WR 3	AV 60a				rp500142	4.9	3			SMC-WR 17	HD 6043			
rp500249	19.2	17			rp500250	20.8	6			SMC-WR 18	HD 6043			
rp500196	23.5	9			rp500195	23.0	33			SMC-WR 19	HD 6043			
rp600454	18.0	34			rp600196	23.5	33			SMC-WR 20	HD 6043			
SMC-WR 4	Sk 41				rp500249	19.2	23			SMC-WR 21	HD 6043			
WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)
--------	---------	--------	------------------------	----------------	--------	---------	--------	------------------------	----------------	--------	---------	--------	------------------------	----------------
LMC-WR 3 Brey 3 rh400654 2.6 7	LMC-WR 38 Brey 31 rh400353 7.9 13	rh400125 4.9 11												
LMC-WR 9 Brey 7 rh900321 32.2 10	LMC-WR 39 Brey 32 rh400356 3.1 17	rh400658 5.9 11												
LMC-WR 10 Brey 9 rh900321 32.2 0	LMC-WR 40 Brey 33 rh400356 3.1 17	rh500470 28.7 17												
LMC-WR 13 Sk—66 40 rh900321 32.2 8	LMC-WR 41 Brey 34 rh400356 3.1 17	rh500546 22.0 17												
LMC-WR 14 Brey 11 rh400354 3.9 16	LMC-WR 42 Brey 34 rh600646 23.7 9	rh600775 19.7 14												
LMC-WR 19 Brey 16 rh400239 3.1 9	LMC-WR 43 Brey 35 rh600646 23.7 9	rh600776 20.8 5												
LMC-WR 20 Brey 16a rh400239 3.1 8	LMC-WR 44 Brey 35 rh600333 1.7 6	LMC-WR 61 Brey 50 rh110290 1.7 12												
LMC-WR 22 Brey 18 rh400358 4.0 8	LMC-WR 45 Brey 36 rh600333 1.7 0	rh110291 1.7 12												
LMC-WR 24 Brey 19 rh400358 4.0 9	LMC-WR 46 Brey 37 rh400640 23.8 14	rh600775 19.7 16												
LMC-WR 25 Brey 19a rh400359 5.7 13	LMC-WR 47 Brey 37 rh600640 23.8 14	rh600780 23.3 9												
LMC-WR 26 Brey 20 rh400358 4.0 12	LMC-WR 48 Brey 38 rh400640 23.8 14	LMC-WR 62 Brey 51 rh400456 14.2 13												
LMC-WR 27 Brey 21 rh500171 17.3 11	LMC-WR 49 Brey 38 rh600640 23.8 14	rh400457 15.0 13												
LMC-WR 28 Brey 22 rh400657 3.8 9	LMC-WR 50 Brey 38 rh600640 23.8 14	rh400458 3.0 13												
LMC-WR 31 Brey 25 rh600019 18.1 15	LMC-WR 51 Brey 38 rh600640 23.8 14	rh400459 8.5 13												
LMC-WR 32 Brey 26 rh600013 110.6 4	LMC-WR 52 Brey 38 rh600640 23.8 14	rh500173 2.7 13												
LMC-WR 33 Sk—68 73 rh600913 110.6 8	LMC-WR 53 Brey 38 rh600640 23.8 14	rh400644 4.6 8												
LMC-WR 34 Brey 28 rh201848 2.2 13	LMC-WR 54 Brey 39 rh400356 3.1 9	LMC-WR 63 Brey 52 rh110290 1.7 13												
LMC-WR 35 Brey 27 rh400666 21.0 18	LMC-WR 55 Brey 39 rh600640 23.8 15	rh110291 1.7 10												
LMC-WR 37 Brey 30 rh400666 21.0 11	LMC-WR 56 Brey 42 rh400356 3.1 11	rh600650 2.1 8												
LMC-WR 38 Brey 40 rh400640 23.8 14	LMC-WR 57 Brey 42 rh600640 23.8 14	rh600775 19.7 14												
LMC-WR 39 Brey 41 rh400640 23.8 15	LMC-WR 58 Brey 42 rh600640 23.8 14	rh600780 23.3 8												
LMC-WR 40 Brey 41 rh400640 23.8 15	LMC-WR 59 Brey 42 rh600640 23.8 14	rh600650 2.1 8												
LMC-WR 41 Brey 42 rh400356 3.1 11	LMC-WR 60 Brey 42 rh600640 23.8 14	rh600775 19.7 14												
LMC-WR 42 Brey 42 rh400356 3.1 11	LMC-WR 61 Brey 42 rh600640 23.8 14	rh600780 23.3 8												
LMC-WR 43 Brey 42 rh400356 3.1 11	LMC-WR 62 Brey 42 rh600640 23.8 14	rh600650 2.1 8												
LMC-WR 44 Brey 42 rh400356 3.1 11	LMC-WR 63 Brey 42 rh600640 23.8 14	rh600775 19.7 14												
LMC-WR 45 Brey 42 rh400356 3.1 11	LMC-WR 64 Brey 42 rh600640 23.8 14	rh600780 23.3 8												
LMC-WR 46 Brey 42 rh400356 3.1 11	LMC-WR 65 Brey 55 rh400456 23.4 10	LMC-WR 66 Brey 54 rh400644 4.6 12												
LMC-WR 47 Brey 42 rh400356 3.1 11	LMC-WR 67 Brey 56 rh400506 23.4 3	LMC-WR 67 Brey 56 rh400506 23.4 3												
LMC-WR 48 Brey 42 rh400356 3.1 11	LMC-WR 68 Brey 58 rh400056 23.4 3	LMC-WR 67 Brey 56 rh400506 23.4 3												
LMC-WR 49 Brey 42 rh400356 3.1 11	LMC-WR 69 Brey 58 rh400056 23.4 3	LMC-WR 67 Brey 56 rh400506 23.4 3												
LMC-WR 50 Brey 42 rh400356 3.1 11	LMC-WR 70 Brey 58 rh400056 23.4 3	LMC-WR 67 Brey 56 rh400506 23.4 3												
WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)
--------	---------	--------	----------------	----------------	--------	---------	--------	----------------	----------------	--------	---------	--------	----------------	----------------
rh400838	15.7	11	LMC-WR 58......... Brey 47	rh600645	19.0	4	rh500408	20.9	4	LMC-WR 84......... Brey 68	rh400056	23.4	12	
rh400839	10.8	11	LMC-WR 59......... Brey 48	rh400234	6.4	1	rh500468	18.1	4	LMC-WR 85......... Brey 67	rh400056	23.4	8	
rh500172	29.0	15	LMC-WR 60......... Brey 49	rh400056	23.4	17	rh500470	28.7	4	LMC-WR 86......... Brey 69	rh400056	23.4	4	
rh500471	18.7	4		rh600634	23.6	8	rh500471	18.7	5	rh500546	22.0	4		
rh500546	22.0	4		rh400056	23.4	5	rh500546	22.0	4	rh500470	28.7	5		
LMC-WR 69......... TSWR 4	rh400056	23.4	4	rh400779	106.0	11	rh500471	18.7	5	rh500546	22.0	5		
LMC-WR 70......... Brey 62	rh400056	23.4	5		rh400779	106.0	12	rh500546	22.0	5				
LMC-WR 71......... Brey 60	rh400056	23.4	16	rh600228	30.2	15	rh500546	22.0	8					
LMC-WR 72......... Brey 61	rh400056	23.4	17	rh600228	30.2	15	rh500546	22.0	8					
LMC-WR 73......... Brey 63	rh400056	106.0	15	rh600228	106.0	11	rh500546	22.0	8					
LMC-WR 74......... Brey 63a	rh400056	106.0	18	rh600228	106.0	17	rh500546	22.0	8					
LMC-WR 75......... Brey 59	rh400056	23.4	17	rh500407	11.1	5	rh500470	28.7	5	rh500470	28.7	15		
LMC-WR 76......... Brey 64	rh400056	23.4	17	rh500407	11.1	5	rh500470	28.7	5	rh500470	28.7	15		
LMC-WR 77......... Brey 65	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 78......... Brey 65b	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 79......... Brey 57	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 80......... Brey 65c	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 81......... Brey 65a	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 82......... Brey 66	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 83......... Brey 65	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 84......... Brey 68	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 85......... Brey 67	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 86......... Brey 69	rh400056	23.4	5	rh600634	18.1	5	rh500546	22.0	8	rh500470	28.7	5		
LMC-WR 87......... Brey 70	rh150008	18.1	14	rh600634	18.1	5	rh400056	23.4	5	rh500546	22.0	8		
LMC-WR 88......... Brey 71	rh150008	18.1	14	rh600634	18.1	5	rh400056	23.4	5	rh500546	22.0	8		
LMC-WR 89......... Brey 72	rh150008	18.1	14	rh600634	18.1	5	rh400056	23.4	5	rh500546	22.0	8		
LMC-WR 90......... Brey 73	rh150008	18.1	14	rh600634	18.1	5	rh400056	23.4	5	rh500546	22.0	8		
LMC-WR 91......... Brey 74	rh150008	18.1	14	rh600634	18.1	5	rh400056	23.4	5	rh500546	22.0	8		
WR No.	WR Name	Obs. ID	\(t_{\text{exp}} \) (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	\(t_{\text{exp}} \) (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	\(t_{\text{exp}} \) (ks)	Offset (arcmin)
--------	---------	---------	-----------------	----------------	--------	---------	---------	-----------------	----------------	--------	---------	---------	-----------------	----------------
rh500468	18.1	17	rh500546	22.0	11	rh400056	23.4	15	rh400779	22.4	13			
rh500470	20.9	14	rh600228	20.9	13	rh500408	23.4	15	rh500407	22.0	13			
rh500471	18.1	17	rh600228	20.9	13	rh500468	18.1	13	rh600228	20.9	13			
rh50056	22.0	14	rh600228	20.9	13	rh500468	22.0	13	rh600228	20.9	13			
rh600228	30.2	6	rh500471	18.1	17	rh600228	30.2	6	rh600228	20.9	13			
rh500472	22.0	13	LMC-WR 94	18.1	13	rh150008	18.1	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 83	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 84	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 85	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 86	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 87	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 88	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 89	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 90	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 91	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 92	18.1	13	rh600228	20.9	13	rh600228	20.9	13			
rh500546	22.0	16	LMC-WR 93	18.1	13	rh600228	20.9	13	rh600228	20.9	13			

TABLE 2—Continued
WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)	WR No.	WR Name	Obs. ID	t_{exp} (ks)	Offset (arcmin)
rh400056	23.4	14	rh500036	8.8	6	LMC-WR 121	Brey 90a	rh600775	19.7	16				
rh400779	106.0	2	rh600228	30.2	0	LMC-WR 122	Brey 92	rh400779	106.0	6				
rh500471	18.7	14	rh600633	21.5	15	LMC-WR	rh50036	8.8	10					
rh600228	30.2	4	rh600929	24.5	13	SMC-WR	rh50036	8.8	10					
rh600349	6.5	14	rh601045	9.5	4	SMC-WR	rh500418	28.8	0					
rh600633	21.5	11	rh600340	5.2	10	SMC-WR	rh900445	49.5	0					
LMC-WR 123	Brey 93	rh400340	5.2	10	LMC-WR 122	Brey 92	rh400779	106.0	8					
rh600638	25.7	13	rh600340	5.2	10	LMC-WR 122	Brey 92	rh400779	106.0	8				
LMC-WR 124	Brey 93a	rh100193	39.7	5	LMC-WR 122	Brey 92	rh400779	106.0	8					
rh600774	22.4	8	rh600419	15.7	13	SMC-WR 6	Sk 108	rh500003	21.9	6				
rh600779	26.2	11	rh600812	28.5	15	SMC-WR 7	AV 336a	rh500003	21.9	6				
LMC-WR 125	Brey 94	rh150008	18.1	4	LMC-WR 122	Brey 92	rh400779	106.0	8					
rh600774	22.4	6	rh400335	3.8	14	LMC-WR 122	Brey 92	rh400779	106.0	8				
LMC-WR 126	Brey 95	rh150008	18.1	4	SMC-WR 10	...	rh400340	5.2	16					
rh600774	22.4	6	rh400340	5.2	10	SMC-WR 11	...	rh180240	5.2	16				
LMC-WR 127	Brey 95a	rh150008	18.1	4	SMC-WR 12	Brey 96	rh500136	12.0	9					
rh600774	22.4	7	rh600811	27.4	17	SMC-WR 12	Brey 96	rh500136	12.0	9				
LMC-WR 128	Brey 96	rh150008	18.1	7	SMC-WR 12	Brey 96	rh500136	12.0	9					
rh600773	15.9	14	rh400335	3.8	9	SMC-WR 12	Brey 96	rh500136	12.0	9				
rh600774	22.4	7	rh600419	15.7	6	SMC-WR 12	Brey 96	rh500136	12.0	9				
LMC-WR 130	Sk−69 297	rh600632	26.7	11	SMC-WR 5	HD 5980	rh400337	5.0	13					
rh600773	15.9	11	SMC-WR 5	HD 5980	rh400337	5.0	13	SMC-WR 5	HD 5980	rh400337	5.0	13		
Wolf-Rayet Stars in the Magellanic Clouds Detected by ROSAT Observations

WR No.	WR Name	Instrument	t_{exp} (ks)	Count Rate (counts s$^{-1}$)	Counts	$L_{0.5–7.0 keV}$ (ergs s$^{-1}$)
LMC-WR 10	Brey 9	PSPC	50.8	1.2 x 10$^{-3}$	61 ± 10	(6.7 ± 1.1) x 1033
LMC-WR 38	Brey 31	PSPC	23.1	9.8 x 10$^{-4}$	23 ± 6	(5.4 ± 1.4) x 1033
LMC-WR 39	Brey 32	PSPC	12.4	2.2 x 10$^{-3}$	28 ± 8	(3.2 ± 0.9) x 1034
LMC-WR 42	Brey 34	HRI	31.6	1.0 x 10$^{-3}$	31 ± 9	(5.5 ± 1.8) x 1033
LMC-WR 47	Brey 39	HRI	31.6	1.2 x 10$^{-3}$	37 ± 9	(6.7 ± 1.1) x 1033
LMC-WR 101–103	R140a, b	HRI	26.8	6.0 x 10$^{-4}$	16 ± 8	(8.6 ± 4.3) x 1033
LMC-WR 116	Brey 84	HRI	134.8	2.9 x 10$^{-3}$	390 ± 30	(1.6 ± 0.1) x 1035

3. RESULTS

X-ray images are extracted from the merged PSPC and/or HRI observations of each WR star in the MCs within the full spectral energy range, i.e., 0.1–2.4 keV for the PSPC and 0.1–2.0 keV for the HRI. A pixel size of 5" pixel$^{-1}$ is used for the PSPC images and 2" pixel$^{-1}$ for the HRI images. These images are subsequently smoothed with a Gaussian profile of FWHM of 15" for the PSPC and 3" for the HRI. The smoothed images are used to search for X-ray emission at the location of WR stars. When X-ray emission is detected within 30" from the location of a WR star, we compare the X-ray images of the WR star with an optical image extracted from the Digitized Sky Survey4 (DSS) to search for a point source at the location of the star or diffuse emission from its surrounding bubble, if it exists. To assess the reliability of these detections, we have defined a source region encompassing the X-ray source at the location of the WR star and an appropriate background region without sources and computed the background-subtracted ROSAT PSPC and/or HRI counts within the source region using the IRAF5 PROS task imcents. This has allowed us to confirm the ≥3σ detections of X-ray emission from the seven WR stars in the LMC listed in Table 3. The net count rates and net counts of these WR stars are listed in columns (5) and (6) of Table 3, respectively. No WR stars in the SMC were detected by ROSAT. The correlation between these detections and sources in different ROSAT catalogs is listed in Table 4. The ROSAT PSPC and HRI X-ray and DSS optical images of the WR stars detected in X-rays are presented in Figures 1 and 2. For the central regions of R136 and R140 (Fig. 2), only the HRI images are shown as the angular resolution of the PSPC observations is too poor to resolve these stars.

The WR stars in the MCs that are not detected by ROSAT observations are listed in Table 5. For these WR stars, we use source regions with sizes matching the PSF of ROSAT PSPC and HRI in order to determine their 3σ upper limits using the IRAF PROS task imcents. The radii of these source regions range from 20" to 60" for the PSPC and from 10" to 20" for the HRI, depending on the offsets of the WR stars from the central pointings. The resulting 3σ upper limits are listed in columns (5) and (10) of Table 5. The distribution of these upper limits indicates that most of the nondetections have HRI count rates < 1.0 x 10$^{-4}$ counts s$^{-1}$ and PSPC count rates < 1.5 x 10$^{-4}$ counts s$^{-1}$.

Several WR stars in the MCs are found to be embedded in diffuse X-ray emission or close to bright X-ray sources. The analysis of these sources is neither possible nor necessary, since Chandra observations provide a much clearer view. These include ROSAT PSPC observations of LMC-WR 96–116, all within 70" from R136, and PSPC observations of LMC-WR 31, 81, 82, 84, 85, 88, 89, 91–93, 95, 117–119, 121, and 122, and of HD 5980 in the SMC, as they are embedded in diffuse X-ray emission. Similarly, no analysis was attempted for the ROSAT HRI observations of LMC-WR 99, 100, and 104–115 near R136, the observations of LMC-WR 91 and 93 that are too close to bright X-ray sources, or the observations of LMC-WR 80, 85, 92, and 118 and HD 5980 in the SMC, which are superposed by bright diffuse X-ray emission.

3.1. Comparison between the Chandra ACIS and ROSAT Surveys

The Chandra ACIS and ROSAT surveys for X-ray emission from WR stars in the MCs have many stars in common. LMC-WR 19,
WR No.	1RXH	2RXP	1WGA	1RXS						
	HRI Count Rate	Source Name	PSPC Count Rate	Source Name	Count Rate	Source Name	Count Rate	Source Name	Count Rate	
LMC-WR 10	...	J045633.1–662828	8.5 × 10⁻⁴	1.2 × 10⁻³	J045635.7–662815	9.7 × 10⁻³	J0456.5–6628	1.6 × 10⁻³	045635.6–662819	2.8 × 10⁻²
LMC-WR 38	2.2 × 10⁻³	J052605.4–672958	2.9 × 10⁻³	9.8 × 10⁻⁴	J052604.8–673002	3.8 × 10⁻³	J0526.0–6730	1.8 × 10⁻³
LMC-WR 39	1.0 × 10⁻³
LMC-WR 42	6.0 × 10⁻⁴	1.2 × 10⁻³	J052643.4–684950	3.3 × 10⁻³
LMC-WR 101–103	2.9 × 10⁻³	...	5.8 × 10⁻³
LMC-WR 116	4.7 × 10⁻³	...	3.9 × 10⁻³	...	J053844.8–690602	1.3 × 10⁻¹
Fig. 1.—*ROSAT* HRI (*left*) and PSPC (*center*) smoothed X-ray and DSS optical (*right*) images of the WR stars in the MCs with detected X-ray emission. The *ROSAT* HRI and PSPC images are overlaid with their corresponding X-ray contours, while the optical DSS images are overlaid with the PSPC X-ray contours. The X-ray contour levels are 3, 6, 9, 12, 15, 25, 35 σ, . . . , above the background level. The positions of WR stars in the LMC given by Breysacher et al. (1999) are marked with a plus sign.
20, 67, 78, 79, 119, and 125 are detected by Chandra ACIS but not ROSAT. In all these cases, the ROSAT PSPC and HRI count rates expected from their Chandra ACIS count rates are below the 3σ upper limit listed in Table 5. LMC-WR 101, 102, and 116 in the LMC are detected both by Chandra ACIS and by ROSAT HRI. The Chandra ACIS count rates and spectral properties of these two sources (Paper I) correspond to ROSAT HRI count rates of 2.8×10^{-3} counts s$^{-1}$ for LMC-WR 101 and 102 and $(4.5-6.3) \times 10^{-3}$ counts s$^{-1}$ for the X-ray variable LMC-WR 116. These values are fairly consistent with the HRI count rates of these sources listed in Table 3.

3.2. X-Ray Luminosity of the Wolf-Rayet Stars Detected by ROSAT

The ROSAT PSPC detections of WR stars in the MCs have yielded an insufficient numbers of counts for spectral fits, and the ROSAT HRI observations do not provide spectral information. In order to estimate the X-ray luminosities of the WR stars in the MCs detected by ROSAT, we adopt the emission model that describes the integrated spectra of the weakly detected WR stars in the Chandra ACIS survey (Paper I), i.e., a thin plasma with a temperature of $kT = 1.6$ keV absorbed by intervening material with abundances of $0.33 Z_\odot$ and an absorption column density of 3×10^{21} cm$^{-2}$. We have used PIMMS to convert the ROSAT PSPC and HRI count rates to X-ray luminosities in the $0.5-7.0$ keV band and listed them in Table 3.

3.3. Remarks on Individual Objects

LMC-WR 10 (Brey 9) is at the core of the OB association LH 9 in N11, which includes up to 25 stellar components in a field of view $6.4'' \times 6.4''$ (Schertl et al. 1995; Bauer et al. 1996). Therefore, the X-ray emission reported in this paper may have an origin different from LMC-WR 10.

The X-ray emission from LMC-WR 38, 39, and 42 has been previously reported by Dunne et al. (2001). LMC-WR 38 is also identified as source 538 by Haberl & Pietsch (1999). LMC-WR 38 (Brey 31) and 39 (Brey 32) are confirmed binary systems with periods of ~ 3 and ~ 2 days, respectively (Moffat et al. 1990). Similarly, LMC-WR 42 (Brey 34) is a binary system but with a longer period, 30 days (Seggewiss et al. 1991).

The X-ray detection of LMC-WR 47 (Brey 39) needs to be examined carefully. LMC-WR 47 is located on an area of diffuse X-ray emission, and its number of counts is only $\sim 3.5 \sigma$ over the local background level of X-ray emission. Furthermore, the X-ray...
WR No.	WR Name	Instrument	t_{exp} (ks)	σ Upper Limit (counts s$^{-1}$)	WR No.	WR Name	Instrument	t_{exp} (ks)	σ Upper Limit (counts s$^{-1}$)
LMC-WR 3	Brey 3	PSPC	31.3	6.5×10^{-4}	LMC-WR 50	Brey 41	PSPC	51.8	5.5×10^{-4}
		HRI	2.6	2.7×10^{-3}	LMC-WR 51	Brey 42	PSPC	31.6	7.4×10^{-4}
LMC-WR 5	Brey 4	PSPC	13.8	1.4×10^{-3}	LMC-WR 52	Brey 43	PSPC	10.0	1.0×10^{-3}
LMC-WR 6	Brey 5	PSPC	12.7	1.2×10^{-3}	LMC-WR 53	Brey 44	HRI	4.6	3.9×10^{-3}
LMC-WR 7	Brey 6	PSPC	12.7	9.5×10^{-4}	LMC-WR 54	Brey 44a	PSPC	157.9	2.7×10^{-4}
LMC-WR 9	Brey 7	PSPC	50.8	4.2×10^{-4}	LMC-WR 55	Sk -69 175	HRI	57.8	7.9×10^{-4}
LMC-WR 10	Brey 9	HRI	32.2	6.5×10^{-4}	LMC-WR 56	Brey 46	PSPC	7.9	2.4×10^{-3}
LMC-WR 11	Brey 10	PSPC	13.8	9.7×10^{-4}	LMC-WR 57	Brey 45	PSPC	16.3	1.4×10^{-3}
LMC-WR 12	Brey 10a	PSPC	12.7	1.1×10^{-3}	LMC-WR 58	Brey 47	PSPC	31.6	1.0×10^{-3}
LMC-WR 13	Sk -66 40	PSPC	50.8	4.0×10^{-4}	LMC-WR 59	Brey 48	HRI	19.0	7.2×10^{-4}
LMC-WR 14	Brey 11	HRI	32.2	5.8×10^{-4}	LMC-WR 60	Brey 49	PSPC	126.3	6.3×10^{-4}
LMC-WR 15	Brey 12	PSPC	13.8	1.0×10^{-3}	LMC-WR 61	Brey 50	PSPC	167.7	4.9×10^{-4}
LMC-WR 16	Brey 13	HRI	3.9	3.5×10^{-3}	LMC-WR 62	Brey 51	PSPC	41.5	1.0×10^{-3}
LMC-WR 19	Brey 16	PSPC	3.9	4.1×10^{-3}	LMC-WR 63	Brey 52	PSPC	5.4	4.3×10^{-3}
LMC-WR 20	Brey 16a	PSPC	19.5	1.2×10^{-3}	LMC-WR 64	Brey 53	PSPC	122.6	7.7×10^{-4}
LMC-WR 21	Brey 17	PSPC	10.8	2.3×10^{-3}	LMC-WR 65	Brey 55	PSPC	126.1	5.0×10^{-4}
LMC-WR 22	Brey 18	PSPC	10.8	2.4×10^{-3}	LMC-WR 66	Brey 54	PSPC	11.2	1.8×10^{-3}
LMC-WR 23	Brey 19	PSPC	12.4	2.0×10^{-3}	LMC-WR 67	Brey 56	PSPC	124.9	7.5×10^{-4}
LMC-WR 24	Brey 19	HRI	20.4	8.1×10^{-4}	LMC-WR 68	Brey 58	PSPC	124.9	7.2×10^{-4}
LMC-WR 25	Brey 19a	PSPC	24.1	1.8×10^{-3}	LMC-WR 69	TSWR 4	PSPC	124.9	7.7×10^{-4}
LMC-WR 26	Brey 20	PSPC	12.4	2.7×10^{-3}	LMC-WR 70	Brey 62	PSPC	124.9	7.9×10^{-4}
LMC-WR 27	Brey 21	HRI	20.4	8.3×10^{-4}	LMC-WR 71	Brey 60	PSPC	121.2	5.4×10^{-4}
LMC-WR 28	Brey 22	PSPC	3.8	4.0×10^{-4}	LMC-WR 72	Brey 61	PSPC	121.2	3.3×10^{-4}
LMC-WR 29	Brey 23	HRI	17.3	9.9×10^{-4}	LMC-WR 73	Brey 63	PSPC	121.2	3.3×10^{-4}
LMC-WR 30	Brey 24	PSPC	52.2	3.9×10^{-4}	LMC-WR 74	Brey 63a	PSPC	118.9	4.5×10^{-4}
LMC-WR 31	Brey 25	HRI	21.9	7.5×10^{-4}	LMC-WR 75	Brey 59	PSPC	118.9	4.6×10^{-4}
LMC-WR 32	Brey 26	PSPC	8.3	1.5×10^{-3}	LMC-WR 76	Brey 59	HRI	129.6	2.3×10^{-4}
LMC-WR 33	Sk -68 73	PSPC	33.5	3.5×10^{-4}	LMC-WR 74	Brey 63a	PSPC	118.9	4.6×10^{-4}
LMC-WR 34	Brey 28	PSPC	110.6	3.7×10^{-4}	LMC-WR 75	Brey 59	HRI	129.6	2.6×10^{-4}
LMC-WR 35	Brey 27	HRI	24.1	5.5×10^{-4}	LMC-WR 76	Brey 64	PSPC	118.9	2.9×10^{-4}
LMC-WR 36	Brey 29	HRI	1.5	4.8×10^{-3}	LMC-WR 77	Brey 65	PSPC	124.9	7.6×10^{-4}
LMC-WR 37	Brey 30	PSPC	152.2	1.0×10^{-3}	LMC-WR 78	Brey 65b	PSPC	124.9	7.6×10^{-4}
LMC-WR 39	Brey 32	HRI	110.6	3.2×10^{-4}	LMC-WR 79	Brey 57	HRI	302.6	1.6×10^{-4}
LMC-WR 40	Brey 33	PSPC	24.1	3.4×10^{-4}	LMC-WR 80	Brey 65c	PSPC	124.9	7.6×10^{-4}
LMC-WR 41	Brey 35	PSPC	51.5	6.5×10^{-4}	LMC-WR 81	Brey 65a	HRI	4.6	1.8×10^{-3}
LMC-WR 43	Brey 37	HRI	51.5	4.8×10^{-4}	LMC-WR 82	Brey 66	HRI	279.1	1.8×10^{-4}
LMC-WR 44	Brey 36	PSPC	31.6	3.3×10^{-4}	LMC-WR 83	HD 269858	HRI	185.0	2.4×10^{-4}
LMC-WR 45	Sk -69 142a	HRI	28.2	1.2×10^{-3}	LMC-WR 84	Brey 68	HRI	185.0	2.6×10^{-4}
contours shown in Figure 1 reveal a noticeable offset of $\sim 25''$ between the X-ray peak and the location of this WR star. Therefore, until new X-ray observations with better angular resolution of LMC-WR 47 are acquired, its X-ray detection reported in this paper should be considered tentative.

LMC-WR 101–103 are in the visual multiple system R140 near the core of 30 Doradus, of which LMC-WR 102 (R140a2) is a close spectroscopic binary with a period of ~ 3 days (Moffat et al. 1987). LMC-WR 101–103 were marginally detected by the Einstein High Resolution Imager (Wang & Helfand 1991). ROSAT made a clear detection, being listed as source 299 by Sasaki et al. (2000), but the X-ray emission of the different components was not individually resolved until the Chandra ACIS-I observations of the 30 Doradus nebula offered a sharper view of this region (Portegies Zwart et al. 2002; Townsley et al. 2006; Paper I). Chandra observations show that LMC-WR 101–102 (R140a1 and R140a2) are much brighter than R140b (Portegies Zwart et al. 2002; Townsley et al. 2006 Paper I). The present analyses show that the level of X-ray emission in the ROSAT HRI and Chandra ACIS-I observations are consistent with each other. We note, however, that Wang (1995) reported a higher X-ray flux based on the ROSAT HRI observation rh600228 obtained in 1992 December and 1993 June. We have examined these individual observations, as well as the ROSAT HRI observation rh400779 (1996 August and 1997 April), and find that in all cases the HRI count rates remain at roughly a constant level consistent with the count rate of 2.9×10^{-3} counts s$^{-1}$ reported in Table 3.

LMC-WR 116 (Brey 84) is also a WR star in the 30 Doradus region that was marginally detected by the Einstein High Resolution Imager (Wang & Helfand 1991). Wang (1995) reported a ROSAT HRI count rate of 8.1×10^{-3} counts s$^{-1}$ based on the observation rh600228 obtained in 1992 December and 1993 June. A similar ROSAT HRI count rate of 8.5×10^{-3} counts s$^{-1}$ is reported by Sasaki et al. (2000), who assigned it the source number 301 in their catalog. The ROSAT HRI count rate reported in Table 3 is $\sim 40\%$ lower than the values reported by Wang (1995) and Sasaki et al. (2000) because we used a smaller source aperture to exclude the contribution from LMC-WR 112 (R136c), LMC-WR 99 (Brey 78), and an X-ray bright neighbor near LMC-WR 115 (Brey 83) north of Brey 84 (see Fig. 1d of Paper I). If contributions from these bright neighboring sources are added to our measurement, we recover the ROSAT HRI count rates reported by Wang (1995) and Sasaki et al. (2000). To further investigate possible long-term variations of this source, we have analyzed the individual ROSAT HRI observations rh500036 (1992 February), rh600228 (1992 December), and rh400779 (1996 August and 1997 April) and find HRI count rates of $(5.9 \pm 0.8) \times 10^{-3}$, $(4.3 \pm 0.4) \times 10^{-3}$, $(4.0 \pm 0.4) \times 10^{-3}$, and $(4.9 \pm 0.3) \times 10^{-3}$ counts s$^{-1}$, respectively. These values are consistent with the ROSAT HRI count rate of $(4.5 - 6.3) \times 10^{-3}$ counts s$^{-1}$ expected from the Chandra ACIS observation of Brey 84; thus, there is no evidence for large long-term variations.

4. SUMMARY

We have searched the entire ROSAT archive for pointed observations that serendipitously cover WR stars in the MCs. This search has yielded useful PSPC observations for 90 WR stars in the LMC and 10 WR stars in the SMC, and HRI observations for

TABLE 5—Continued

WR No.	WR Name	Instrument	t_{exp}	3 σ Upper Limit
LMC-WR 49	Brey 40a	PSPC	11.3	5.0×10^{-4}
LMC-WR 87	Brey 70	PSPC	124.9	5.7×10^{-4}
LMC-WR 95	Brey 90	PSPC	139.9	7.0×10^{-4}
LMC-WR 101	Brey 85	PSPC	139.9	5.7×10^{-4}
LMC-WR 95	Brey 80	HRI	166.5	5.7×10^{-4}
LMC-WR 96	Brey 81	HRI	166.5	5.7×10^{-4}
LMC-WR 97	Mk 51	HRI	166.5	5.7×10^{-4}
LMC-WR 98	Brey 79	HRI	166.5	5.7×10^{-4}
LMC-WR 117	Brey 88	HRI	166.5	5.7×10^{-4}
LMC-WR 119	Brey 90	HRI	166.5	5.7×10^{-4}
LMC-WR 120	Brey 91	PSPC	122.9	5.7×10^{-4}
LMC-WR 123	Brey 93a	HRI	166.5	5.7×10^{-4}
LMC-WR 125	Brey 94	HRI	166.5	5.7×10^{-4}
LMC-WR 126	Brey 95	HRI	166.5	5.7×10^{-4}
LMC-WR 127	Brey 95a	HRI	40.5	5.7×10^{-4}
87 WR stars in the LMC and 10 WR stars in the SMC. A total of 117 WR stars in the MCs have useful ROSAT observations. We have examined the ROSAT observations of these 117 WR stars in the MCs and found X-ray emission from seven of them, of which five had been previously reported to exhibit X-ray emission. We find that the X-ray detection of LMC-WR 10 (Brey 9) and LMC-WR 47 (Brey 39) need to be confirmed by X-ray observations at higher angular resolution. The detection rate, ~6%, is much lower than that of the Chandra ACIS survey, 40%–50%. This illustrates that the sensitivity and angular resolution of Chandra is needed to study WR stars in the MCs. Indeed, many WR stars detected by Chandra have X-ray emission at levels below the 3 σ upper limits of the available ROSAT observations, are located near bright X-ray sources, or are superposed on bright diffuse X-ray emission, making it difficult for ROSAT to detect them. Together, the ROSAT and Chandra surveys have detected X-ray emission from 34 WR stars in the MCs.

This work is supported by the Chandra X-ray Observatory grant AR3-4001X. M. A. G. also acknowledges support from the grants AYA 2002-00376 and AYA 2005-01495 of the Spanish MEC (co-funded by FEDER funds) and the Spanish program Ramón y Cajal.

REFERENCES

Bartzokos, P., Moffat, A., & Niemela, V. S. 2001, MNRAS, 324, 18
Bauer, T., Weghorn, H., Grebel, E. K., & Bomans, D. J. 1996, A&A, 305, 135
Breysacher, J., Azzopardi, M., & Testor, G. 1999, A&AS, 137, 117
de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, A&A, 72, 289
Dunne, B. C., Points, S. D., & Chu, Y.-H. 2001, ApJS, 136, 119
Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003a, MNRAS, 338, 360
———. 2003b, MNRAS, 338, 1025
García-Segura, G., Langer, N., & Mac Low, M.-M. 1996a, A&A, 316, 133
García-Segura, G., Mac Low, M.-M., & Langer, N. 1996b, A&A, 305, 229
Gayley, K. G., & Owocki, S. P. 1995, ApJ, 446, 801
Guerrero, M. A., & Chu, Y.-H. 2008, ApJS, 177, 216 (Paper I)
Haberl, F., & Pietsch, W. 1999, A&AS, 139, 277
Lucy, L. B., & White, R. L. 1980, ApJ, 241, 300
Massey, P., Olsen, K. A. G., & Parker, J. W. 2003, PASP, 115, 1265
Moffat, A. F. J., Niemela, V. S., & Marraco, H. G. 1990, ApJ, 348, 232
Moffat, A. F. J., Niemela, V. S., Phillips, M. M., Chu, Y.-H., & Seggewiss, W. 1987, ApJ, 312, 612
Sasaki, M., Haberl, F., & Pietsch, W. 2000, A&AS, 147, 75
Schertl, D., Hoffmann, K.-H., Seggewiss, W., & Weigelt, G. 1995, A&A, 302, 327
Seggewiss, W., Moffat, A. F. J., & Lamontagne, R. 1991, A&AS, 89, 105
Townsley, L. K., Broos, P. S., Feigelson, E. D., Garmire, G. P., & Getman, K. V. 2006, AJ, 131, 2164
Wang, Q. D. 1995, ApJ, 453, 783
Wang, Q. D., & Helfand, D. J. 1991, ApJ, 370, 541
Weaver, R., McCray, R., Castor, J., Shapiro, P., & Moore, R. 1977, ApJ, 218, 377
Wesselowski, U. 1996, in Röntgenstrahlung from the Universe, ed. H. U. Zimmerman & J. E. Trümper (Garching: MPE), 75

Pollock, A. M. T. 1987, ApJ, 320, 283
Pollock, A. M. T., Haberl, F., & Corcoran, M. F. 1995, in IAU Symp. 163, Wolf-Rayet Stars: Binaries, Colliding Winds, Evolution, ed. K. A. van der Hucht & P. M. Williams (Dordrecht: Kluwer), 512
Portegies Zwart, S. F., Posley, D., & Lewin, W. H. G. 2002, ApJ, 574, 762
Prinja, R. K., Barlow, M. J., & Howarth, I. D. 1990, ApJ, 361, 607
Sasaki, M., Haberl, F., & Pietsch, W. 2000, A&AS, 147, 75