COMODULES FOR SOME SIMPLE \mathcal{O}-FORMS OF G_m

N. E. CSIMA AND R. E. KOTTWITZ

Abstract. This paper gives a rather concrete description of the category Rep(G) for certain flat commutative affine group schemes G over a discrete valuation ring such that the general fiber of G is the multiplicative group.

Tannakian theory allows one to understand an affine group scheme G over a commutative base ring A in terms of the category Rep(G) of G-modules, by which is meant comodules for the Hopf algebra corresponding to G. The theory is especially well-developed [Sa] in the case that A is a field, and some parts of the theory still work well over more general rings A, say discrete valuation rings (see [Sa, We]).

When A is a field of characteristic zero and G is connected reductive, the category Rep(G) is very well understood. However, with the exception of groups as simple as the multiplicative and additive groups, little seems to be known about what Rep(G) looks like concretely when A is no longer assumed to be a field, even in the most favorable case in which A is a discrete valuation ring and G is a flat affine group scheme over A with connected reductive general fiber.

The modest goal of this paper is to give a concrete description of Rep(G) for certain flat group schemes G over a discrete valuation ring \mathcal{O} such that the general fiber of G is G_m.

Choose a generator π of the maximal ideal of \mathcal{O} and write F for the field of fractions of \mathcal{O}. For any non-negative integer k, the construction of 1.1, when applied to $f = \pi^k$, yields a commutative flat affine group scheme G_k over \mathcal{O} whose general fiber is G_m. The \mathcal{O}-points of G_k are given by

$$G_k(\mathcal{O}) = \{ t \in \mathcal{O}^\times : t \equiv 1 \mod \pi^k \}.$$

These form a projective system

$$\cdots \to G_2 \to G_1 \to G_0 = G_m$$

in an obvious way, and we may form the projective limit $G_\infty := \text{proj lim} G_k$. The Hopf algebra S_k corresponding to G_k can be described explicitly (see 1.1 and 1.2). The Hopf algebra S_∞ corresponding to G_∞ is

$$\text{inj lim } S_k = \{ \sum_{i \in \mathbb{Z}} x_i T^i \in F[T, T^{-1}] : \sum_{i \in \mathbb{Z}} x_i \in \mathcal{O} \}.$$

The categories Rep(G_∞) and Rep(G_k) can be described very concretely. Indeed, Rep(G_∞) consists of the category of \mathcal{O}-modules M equipped with a \mathbb{Z}-grading on $F \otimes_{\mathcal{O}} M$ (see 2.2, where a much more general result is proved). As for Rep(G_k), we proceed in two steps.

First, the full subcategory of Rep(G_k) consisting of those G_k-modules that are flat as \mathcal{O}-modules is equivalent (see Theorem 1.3.1) to the category of pairs (V, M).
consisting of a \mathbb{Z}-graded F-vector space V and an \textit{admissible} O-submodule M of V, where admissible means that the canonical map $F \otimes_O M \rightarrow V$ is an isomorphism and $C_n M \subset M$ for all $n \geq 0$, where $C_n : V \rightarrow V$ is the graded linear map given by multiplication by $\pi^n (t)$ on the i-th graded piece of V. The G_k-module corresponding to (V, M) is M, equipped with the obvious comultiplication.

Second, any G_k-module (see [1.4]) is obtained as the cokernel of some injective homomorphism $M_1 \rightarrow M_0$ coming from a morphism $(V_1, M_1) \rightarrow (V_0, M_0)$ of pairs of the type just described.

When O is a algebra, the situation is even simpler: M is an admissible O-submodule of the graded vector space if and only if $C_1 M \subset M$ and $F \otimes_O M \cong V$.

Moreover, in case O is the formal power series ring $\mathbb{C}[[\varepsilon]]$, there is an interesting connection with affine Springer fibers (see [1.5]).

1. A description of $\text{Rep}(G)_f$ for certain group schemes G

Throughout this section we consider a commutative ring A and a nonzerodivisor $f \in A$. Thus the canonical homomorphism $A \rightarrow A_f$ is injective, where A_f denotes the localization of A with respect to the multiplicative subset $\{f^n : n \geq 0\}$. For the rest of this section we denote A_f by B and use the canonical injection $A \rightarrow B$ to identify A with a subring of B.

1.1. The group scheme G over A. We are now going to define a commutative affine group scheme G, flat and finitely presented over A. There will be a canonical homomorphism $G \rightarrow \mathbb{G}_m$ that becomes an isomorphism after extending scalars from A to B.

We begin by specifying the functor of points for G. For any commutative A-algebra R we put

$$G(R) := \{ (t, x) \in R^\times \times R : t - 1 = fx \}$$

$$= \{ x \in R : 1 + fx \in R^\times \}.$$

Then G is represented by the A-algebra

\begin{equation}
S := A[T, T^{-1}, X]/(T - 1 - fX)
= A[X]_{1+fX},
\end{equation}

which is clearly flat and finitely presented.

The multiplication on $G(R)$ is defined as $(t, x)(t', x') = (tt', x + x' + fxx')$. The identity element is $(1, 0)$ and the inverse of (t, x) is $(t^{-1}, -t^{-1}x)$.

There is a canonical homomorphism $\lambda : G \rightarrow \mathbb{G}_m$, given by $(t, x) \mapsto t$. When f is a nonzerodivisor in R, the homomorphism $\lambda : G(R) \rightarrow R^\times$ identifies $G(R)$ with $\ker[R^\times \rightarrow (R/fR)^\times]$, and when f is a unit in R, then $G(R) = R^\times$, showing that the homomorphism $\lambda : G \rightarrow \mathbb{G}_m$ becomes an isomorphism after extending scalars from A to B. Thus there is a canonical isomorphism $B \otimes_A S \cong B[T, T^{-1}]$.

\begin{lemma}
Let M be an A-module on which f is a nonzerodivisor. Let F be any flat A-module. Then f is also a nonzerodivisor on $F \otimes_A M$.
\end{lemma}

\begin{proof}
Tensor the injection $M \rightarrow M$ over A with F.
\end{proof}

\begin{corollary}
The canonical homomorphism $S \rightarrow B \otimes_A S = B[T, T^{-1}]$ is injective, so that we may identify S with a subring of $B[T, T^{-1}]$.
\end{corollary}
Proof. Just note that S is flat over A and f is a nonzerodivisor on A. Therefore f is a nonzerodivisor on $S \otimes_A A = S$, and this means that $S \rightarrow B \otimes_A S$ is injective. □

1.2. Description of S as a subring of $B[T,T^{-1}]$. We have just identified S with a subring of $B[T,T^{-1}]$. It is obvious from (1.1.1) that S is the A-subalgebra of $B[T,T^{-1}]$ generated by $T, T^{-1}, \frac{T}{f}$. However there is a more useful description of S in terms of B-module maps

$$L_n : B[T, T^{-1}] \rightarrow B,$$

one for each non-negative integer n, defined by the formula

$$L_n \left(\sum_{i \in \mathbb{Z}} b_i T^i \right) = \sum_{i \in \mathbb{Z}} \binom{i}{n} b_i.$$

Here $\binom{i}{n}$ is the binomial coefficient $i(i-1) \ldots (i-n+1)/n!$, defined for all $i \in \mathbb{Z}$. When $n = 0$, we have $\binom{i}{0} = 1$ for all $i \in \mathbb{Z}$.

The following remarks may help in understanding the maps L_n. For any non-negative integer n, we have the divided-power differential operator

$$D^{[n]} : B[T, T^{-1}] \rightarrow B[T, T^{-1}]$$

defined by

$$(1.2.1) \quad D^{[n]} \left(\sum_{i \in \mathbb{Z}} b_i T^i \right) = \sum_{i \in \mathbb{Z}} \binom{i}{n} b_i T^{i-n}.$$

The Leibniz formula says that

$$(1.2.2) \quad D^{[n]}(gh) = \sum_{r=0}^{n} D^{[r]}(g)D^{[n-r]}(h).$$

For any $g \in B[T] \subset B[T,T^{-1}]$ the Taylor expansion of g at $T = 1$ reads

$$(1.2.3) \quad g = \sum_{n=0}^{\infty} (D^{[n]}g)(1) \cdot (T-1)^n,$$

the sum having only finitely many non-zero terms.

For any $g \in B[T, T^{-1}]$ we have $L_n(g) = f^n(D^{[n]}g)(1)$. It follows from (1.2.2) that for all $g, h \in B[T, T^{-1}]$

$$(1.2.4) \quad L_n(gh) = \sum_{r=0}^{n} L_r(g)L_{n-r}(h),$$

and for all $h \in B[T] \subset B[T,T^{-1}]$ it follows from (1.2.3) that

$$(1.2.5) \quad h = \sum_{n=0}^{\infty} L_n(h) \left(\frac{T-1}{f} \right)^n.$$

Now we are in a position to prove

Proposition 1.2.1. The subring S of $B[T, T^{-1}]$ is equal to

$$\{ g \in B[T, T^{-1}] : \forall n \geq 0 \quad L_n(g) \in A \}. $$
Proof. Write S' for $\{g \in B[T, T^{-1}] : \forall n \geq 0 \ L_n(g) \in A\}$. Obviously S' is an A-submodule of $B[T, T^{-1}]$, and it follows from (1.2.3) that S' is a subring of $B[T, T^{-1}]$. A simple calculation shows that $T, T^{-1}, (T-1)/f$ lie in S', and as these three elements generate S as A-algebra, we conclude that $S \subset S'$.

Now let $g \in S'$. There exists an integer n large enough that $h := T^{-m}g$ lies in the subring $B[T]$. Note that $h \in S'$. Equation (1.2.5) shows that $h \in S$, since $(T-1)/f \in S$ and $L_n(h) \in A$. Therefore $g = T^{-m}h \in S$. \hfill \Box

Now let M be an A-module on which f is a nonzerodivisor, so that we may use the canonical A-module map $M \to B \otimes_A M$ (sending m to $1 \otimes m$) to identify M with an A-submodule of $N := B \otimes_A M$.

It follows from Lemma 1.1.1 that the canonical A-module map

$$S \otimes_A M \to B \otimes_A (S \otimes_A M) = B[T, T^{-1}] \otimes_B N$$

identifies $S \otimes_A M$ with an A-submodule of $B[T, T^{-1}] \otimes_B N$. We will now derive from the previous proposition a description of $S \otimes_A M$ inside $B[T, T^{-1}] \otimes_B N$. For this we will need the B-module maps $L_n : B[T, T^{-1}] \otimes_B N \to N$ defined by

$$L_n \left(\sum_{i \in \mathbb{Z}} T^i \otimes x_i \right) = \sum_{i \in \mathbb{Z}} f^n \left(\begin{pmatrix} i \\ n \end{pmatrix} \right) x_i.$$

Here $x_i \in N$, all but finitely many being 0.

Lemma 1.2.2. The A-submodule $S \otimes_A M$ of $B[T, T^{-1}] \otimes_B N$ is equal to

$$\{x \in B[T, T^{-1}] \otimes_B N : \forall n \geq 0 \ L_n(x) \in M\}.$$

Proof. From Proposition 1.2.1 we see that there is an exact sequence

$$0 \to S \to B[T, T^{-1}] \xrightarrow{L} \prod_{n \geq 0} B/A,$$

the n-th component of the map L being the composition

$$B[T, T^{-1}] \xrightarrow{L_n} B \to B/A.$$

In fact the map L takes values in $\oplus_{n \geq 0} B/A$. Indeed, for any $g \in B[T, T^{-1}]$ there exists an integer m large enough that $f^m g \in A[T, T^{-1}]$, and then $L_n(g) \in A$ for all $n \geq m$. Moreover L maps $B[T, T^{-1}]$ onto $\oplus_{n \geq 0} B/A$. Indeed, a simple calculation shows that for $b \in B$ and $m \geq 0$

$$L_n(bf^{-m}(T-1)^m) = \begin{cases} b & \text{if } m = n \\ 0 & \text{otherwise}. \end{cases}$$

(First check that $D^{[m]}((T-1)^m) = \binom{m}{n}(T-1)^{m-n}$, say by induction on m; note that this formula is valid even if $n > m$, since $\binom{m}{n} = 0$ when $0 \leq m < n$.)

We now have a short exact sequence

$$0 \to S \to B[T, T^{-1}] \xrightarrow{L} \bigoplus_{n \geq 0} B/A \to 0$$

of A-modules. Tensoring with the A-module M, we obtain an exact sequence

$$S \otimes_A M \to B[T, T^{-1}] \otimes_A M \xrightarrow{L \otimes \text{id}_M} \bigoplus_{n \geq 0} B/A \otimes_A M \to 0.$$
Now
\[B[T, T^{-1}] \otimes_A M = B[T, T^{-1}] \otimes_B B \otimes_A M = B[T, T^{-1}] \otimes_B N \]
and
\[\left(\bigoplus_{n \geq 0} B/A \right) \otimes_A M = \bigoplus_{n \geq 0} N/M. \]

With these identifications (and recalling that \(S \otimes_A M \to B[T, T^{-1}] \otimes_B N \) is injective), we see that (1.2.3) describes \(S \otimes_A M \) as the subset of \(B[T, T^{-1}] \otimes_B N \) consisting of elements \(x \) such that \(L_n(x) \in M \) for all \(n \geq 0 \), and this completes the proof. \(\square \)

1.3. **Comodules for** \(S \). Since \(G \) is an affine group scheme over \(A \), the \(A \)-algebra \(S \) is actually a commutative Hopf algebra, and we can consider \(\text{Rep}(G) \), the category of \(S \)-comodules. We denote by \(\text{Rep}(G)_f \) the full subcategory of \(\text{Rep}(G) \) consisting of \(S \)-comodules \(M \) such that \(f \) is a nonzerodivisor on the \(A \)-module underlying \(M \). Our next goal is to give a concrete description of \(\text{Rep}(G)_f \).

In order to do so, we need one more construction. Let \(N = \oplus_{i \in \mathbb{Z}} N_i \) be a \(\mathbb{Z} \)-graded \(B \)-module. For each non-negative integer \(n \) we define an endomorphism \(C_n : N \to N \) of the graded \(B \)-module \(N \) by requiring that \(C_n \) be given by multiplication by \(f^n(i) \) on \(N_i \). Thus

\[C_n \left(\sum_{i \in \mathbb{Z}} x_i \right) = \sum_{i \in \mathbb{Z}} f^n(i) x_i. \]

Here \(x_i \in N_i \), all but finitely many being \(0 \).

Let \(C \) be the category whose objects are pairs \((N, M)\), \(N \) being a \(\mathbb{Z} \)-graded \(B \)-module, and \(M \) being an \(A \)-submodule of \(N \) such that the natural map \(B \otimes_A M \to N \) is an isomorphism and such that \(C_n M \subset M \) for all \(n \geq 0 \). A morphism \((N, M) \to (N', M')\) is a homomorphism \(\phi : N \to N' \) of graded \(B \)-modules such that \(\phi M \subset M' \).

We now define a functor \(F : \text{Rep}(G)_f \to C \). Let \(M \) be an object of \(\text{Rep}(G)_f \). Then \(N := B \otimes_A M \) is a comodule for \(B \otimes_A S = B[T, T^{-1}] \). It is known (see [SGA3, Exposé 1]) that the category of \(B[T, T^{-1}] \)-comodules is equivalent to the category of \(\mathbb{Z} \)-graded \(B \)-modules. Thus \(N \) has a \(\mathbb{Z} \)-grading \(N = \oplus_{i \in \mathbb{Z}} N_i \), and the comultiplication \(\Delta_N : N \to B[T, T^{-1}] \otimes_B N \) is given by \(\sum_{i \in \mathbb{Z}} x_i \mapsto \sum_{i \in \mathbb{Z}} T^i \otimes x_i \).

Since \(f \) is a nonzerodivisor on \(M \), the canonical map \(M \to B \otimes_A M = N \) identifies \(M \) with an \(A \)-submodule of \(N \).

We define our functor \(F : \text{Rep}(G)_f \to C \). For this to make sense we must check that \(C_n M \subset M \) for all \(n \geq 0 \). Let \(m \in M \), and write \(m = \sum_{i \in \mathbb{Z}} x_i \) in \(\oplus_{i \in \mathbb{Z}} N_i = N \). Since the comodule \(N \) was obtained from \(M \) by extension of scalars, the element \(x = \Delta_N m = \sum_{i \in \mathbb{Z}} T^i \otimes x_i \in B[T, T^{-1}] \otimes_B N \) lies in the image of \(S \otimes_A M \to B[T, T^{-1}] \otimes_B N \). Lemma [1.2.2] then implies that \(L_n(x) = \sum_{i \in \mathbb{Z}} f^n(i) x_i = C_n(m) \) lies in \(M \), as desired.

Theorem 1.3.1. The functor \(F : \text{Rep}(G)_f \to C \) is an equivalence of categories.

Proof. Let us first show that \(F \) is essentially surjective. Let \((N, M)\) be an object in \(C \). We are going to use the comultiplication \(\Delta_N : N \to B[T, T^{-1}] \otimes_B N \) to turn \(M \) into an \(S \)-comodule.

Since \(M \) is an \(A \)-submodule of \(N \), it is clear that \(f \) is a nonzerodivisor on \(M \). As we have seen before, it follows that \(f \) is a nonzerodivisor on \(S \otimes_A M \) and hence that the natural map \(S \otimes_A M \to B \otimes_A (S \otimes_A M) = B[T, T^{-1}] \otimes_B N \) identifies \(S \otimes_A M \) with an \(A \)-submodule of \(B[T, T^{-1}] \otimes_B N \).
Using Lemma 1.2.2, we see that our assumption that \(C_n M \subset M \) for all \(n \geq 0 \) is simply the statement that \(\Delta_N M \subset S \otimes_A M \). In other words there exists a unique \(A \)-module map \(\Delta_M : M \to S \otimes_A M \) such that \(\Delta_M \) yields \(\Delta_N \) after extending scalars from \(A \) to \(B \).

We claim that \(\Delta_M \) makes \(M \) into an \(S \)-comodule. For this we must check the commutativity of two diagrams, and this follows from the commutativity of these diagrams after extending scalars from \(A \) to \(B \), once one notes that for any two \(A \)-modules \(M_1, M_2 \) on which \(f \) is a nonzerodivisor
\[
\text{Hom}_A(M_1, M_2) = \{ \phi \in \text{Hom}_B(B \otimes_A M_1, B \otimes_A M_2) : \phi(M_1) \subset M_2 \}.
\]
Here of course we are identifying \(M_1, M_2 \) with \(A \)-submodules of \(B \otimes_A M_1, B \otimes_A M_2 \) respectively. (At one point we need that \(f \) is a nonzerodivisor on \(S \otimes_A S \otimes_A M \), which is true since \(S \otimes_A S \) is flat over \(A \).)

As \(F \) takes \(M \) to \((N, M) \), we are done with essential surjectivity. It is easy to see that \(F \) is fully faithful; this too uses (1.3.1). \(\square \)

1.4. **Principal ideal domains** \(A \). One defect of the theorem we just proved is that it only describes those \(G \)-modules on which \(f \) is a nonzerodivisor. When \(A \) is a principal ideal domain, as we assume for the rest of this subsection, we can do better. Now \(f \) is simply any non-zero element of \(A \). As a consequence of our theorem we obtain an equivalence of categories between the category \(\text{Rep}(G)_{\text{flat}} \) of \(G \)-modules \(M \) such that \(M \) is flat as \(A \)-module and the full subcategory of \(\mathcal{C} \) consisting of pairs \((N, M)\) for which \(M \) is a flat \(A \)-module (in which case \(N \cong B \otimes_A M \) is necessarily a flat \(B \)-module).

The next lemma is a variant of [Sc Prop. 3].

Lemma 1.4.1. Let \(A \) be a principal ideal domain, let \(C \) be a flat \(A \)-coalgebra, and let \(E \) be a \(C \)-comodule. Then there exists a short exact sequence of \(C \)-comodules
\[
0 \to F_1 \to F_0 \to E \to 0
\]
in which \(F_0, F_1 \) are flat as \(A \)-modules.

Proof. We imitate Serre’s proof. Recall (see 1.2 in loc. cit.) that for any \(A \)-module \(M \) the map \(\Delta \otimes id_M : C \otimes_A M \to C \otimes_A C \otimes_A M \) (\(\Delta \) being the comultiplication for \(C \)) gives \(C \otimes_A M \) the structure of \(C \)-comodule, and that (see 1.4 in loc. cit.) the comultiplication map \(\Delta_E : E \to C \otimes_A E \) is an injective comodule map when \(C \otimes_A E \) is given the comodule structure just described. We use \(\Delta_E \) to identify \(E \) with a subcomodule of \(C \otimes_A E \).

Now choose a surjective \(A \)-linear map \(p : F \to E \), where \(F \) is a free \(A \)-module. Let \(F_0 \) denote the preimage of \(E \) under the surjective comodule map \(id \otimes p : C \otimes_A F \to C \otimes_A E \). Since \(F_0 \) is the kernel of
\[
C \otimes_A F \to C \otimes_A E \to (C \otimes_A E)/E,
\]
it is a subcomodule of \(C \otimes_A F \), and \(id \otimes p \) restricts to a surjective comodule map \(F_0 \to E \), whose kernel we denote by \(F_1 \). Since \(C \) and \(F \) are flat, so too are \(C \otimes_A F \), \(F_0 \), and \(F_1 \), and we are done. We used that for principal ideal domains, a module is flat if and only if it is torsion-free, and being torsion-free is a property that is inherited by submodules. \(\square \)

Returning to our Hopf algebra \(S \), we see that any \(G \)-module \(E \) has a resolution \(0 \to F_1 \to F_0 \to E \to 0 \) in which \(F_1, F_0 \) are objects of \(\text{Rep}(G)_{\text{flat}} \) and hence are described by our theorem. We conclude that \(E \) has the following form. There exist an
injective homomorphism $\phi : N \to N'$ of graded B-modules and flat A-submodules M, M' of N, N' respectively such that $\phi M \subset M'$ and $(N, M), (N', M') \in \mathcal{C}$, having the property that E is isomorphic to $M'/\phi M$ as G-module.

1.5. A special case. When A is a \mathbb{Q}-algebra, the category \mathcal{C} is very simple. Indeed, there is a polynomial $P_n \in \mathbb{Q}[U]$ of degree n such that $\binom{n}{i} = P_n(i)$, and therefore

$$C_n = Q_n(C),$$

where $C = C_1$ and $Q_n := f^n P_n(f^{-1}U) \in A[U]$. Therefore \mathcal{C} is the category of pairs (N, M) consisting of a \mathbb{Z}-graded B-module N and an A-submodule M of N such that the natural map $B \otimes_A M \to N$ is an isomorphism and such that $CM \subset M$, where C is the endomorphism of the graded module $N = \oplus_{i\in\mathbb{Z}} N_i$ given by multiplication by f^i on N_i.

When A is the formal power series ring $\mathcal{O} := \mathbb{C}[\![\varepsilon]\!])$, and $f = \varepsilon^k$ (for some non-negative integer k) our constructions yield a group scheme G over \mathcal{O} such that $G(\mathcal{O}) = \{t \in \mathcal{O}\times : t \equiv 1 \mod \varepsilon^k\}$, and the category of representations of G on free \mathcal{O}-modules of finite rank is equivalent to the category of pairs (V, M), where V is a finite dimensional graded vector space over $\mathcal{F} := \mathbb{C}((\varepsilon))$ and M is an \mathcal{O}-lattice in V such that $CM \subset M$, where C is given by multiplication by $i\varepsilon^k$ on the i-th graded piece of V. It is amusing to note that for fixed V, the space of all M satisfying $CM \subset M$ is an affine Springer fiber, which, when all the non-zero graded pieces of V are one-dimensional, is actually one of the affine Springer fibers studied at some length in [GKM], where it was shown to be paved by affine spaces. Finally, since \mathcal{O} is a principal ideal domain, the results in [14] give a concrete description of all G-modules.

2. Certain Hopf algebras and their comodules

Throughout this section A is a commutative ring and B is a commutative algebra such that the canonical homomorphism $B \otimes_A B \to B$ (given by $b_1 \otimes b_2 \mapsto b_1 b_2$) is an isomorphism. For example B might be of the form $S^{-1}A/I$ for some multiplicative subset S of A and some ideal I in $S^{-1}A$.

Let N be a B-module. Then the canonical B-module map $B \otimes_A N \to N$ (given by $b \otimes n \mapsto b n$) is an isomorphism. It follows that the canonical A-module homomorphism $N \to B \otimes_A N$ (given by $n \mapsto 1 \otimes n$) is actually an isomorphism of B-modules (since $N \to B \otimes_A N \to N$ is the identity).

Moreover, for any two B-modules N_1, N_2, we have isomorphisms

\begin{equation}
\text{Hom}_B(N_1, N_2) \cong \text{Hom}_A(N_1, N_2)
\end{equation}

and

\begin{equation}
N_1 \otimes_A N_2 \cong N_1 \otimes_B N_2.
\end{equation}

2.1. General remarks on Hopf algebras and their comodules. Let S be a Hopf algebra over A. The composition $A \to S \to A$ of the unit and counit is the identity, and therefore there is a direct sum decomposition $S = A \oplus S_0$ of A-modules, where S_0 is by definition the kernel of the counit $S \to A$. In this subsection all tensor products will be taken over A and the subscript A will be omitted.

We denote by $\Delta : S \to S \otimes S$ the comultiplication for S. The counit axioms imply that Δ takes the form $\Delta(a + s_0) = a + s_0 \otimes 1 + 1 \otimes s_0 + \Delta(s_0)$, when we identify S with $A \oplus S_0$ and $S \otimes S$ with $A \oplus (S_0 \otimes A) \oplus (A \otimes S_0) \oplus (S_0 \otimes S_0)$. Here Δ is a uniquely determined A-module map $S_0 \to S_0 \otimes S_0$.

For any S-comodule M with comultiplication $\Delta_M : M \to S \otimes M$ the counit axiom for M implies that $\Delta_M(m) = 1 \otimes m + \tilde{\Delta}_M(m)$ for a uniquely determined A-module map
$$\tilde{\Delta}_M : M \to S_0 \otimes M.$$In this way we obtain an equivalence of categories between S-comodules and A-modules M equipped with an A-linear map $\tilde{\Delta}_M : M \to S_0 \otimes M$ such that the diagram
$$(2.1.1)$$
\[
\begin{array}{ccc}
M & \xrightarrow{\tilde{\Delta}_M} & S_0 \otimes M \\
\downarrow{\Delta_M} & & \downarrow{\tilde{\Delta} \otimes id} \\
S_0 \otimes M & \xrightarrow{id \otimes \tilde{\Delta}_M} & S_0 \otimes S_0 \otimes M
\end{array}
\]
commutes.

2.2. Hopf algebras for B give Hopf algebras for A. Let S be a Hopf algebra over B. As in the previous subsection we decompose S as $B \oplus S_0$. It is easy to see that there is a unique Hopf algebra structure on $R := A \otimes S_0$ such that the unit and counit for R are the obvious maps $A \to R$ and $R \to A$ and such that the Hopf algebra structure on $\bigotimes B R$ agrees with the given one on S under the natural B-module isomorphism $B \otimes_A R \cong S$. What makes this work is $(2.0.2)$, a consequence of our assumption that $B \otimes_A B \to B$ is an isomorphism, so that, for example, $S_0 \otimes_B S_0 \cong S_0 \otimes_A S_0$.

The comultiplications Δ_R, Δ_S on R,S respectively are given by
$$(2.2.1)$$
\[
\Delta_R(a + s_0) = a + s_0 \otimes 1 + 1 \otimes s_0 + \tilde{\Delta}(s_0)
\]
$$(2.2.2)$$
\[
\Delta_S(b + s_0) = b + s_0 \otimes 1 + 1 \otimes s_0 + \tilde{\Delta}(s_0)
\]
and similar considerations apply to the multiplication maps $R \otimes_B R \to R, S \otimes_B S \to S$ and the antipodes $R \to R, S \to S$.

Proposition 2.2.1. The category of R-comodules is equivalent to the category of A-modules M equipped with an S-comodule structure on $N := B \otimes_A M$.

Proof. We have already observed that giving an R-comodule is the same as giving an A-module M equipped with an A-module map $\tilde{\Delta}_M : M \to S_0 \otimes_A M$ such that $\ref{2.1.1}$ commutes. Since S_0 is a B-module and $B \otimes_A B \cong B$, giving $\tilde{\Delta}_M$ such that $\ref{2.1.1}$ commutes is the same as giving a B-module map $\tilde{\Delta}_N : N \to S_0 \otimes_B N$ such that
$$(2.1.1)$$
\[
\begin{array}{ccc}
N & \xrightarrow{\tilde{\Delta}_N} & S_0 \otimes_B N \\
\downarrow{\Delta_N} & & \downarrow{\tilde{\Delta} \otimes id} \\
S_0 \otimes_B N & \xrightarrow{id \otimes \tilde{\Delta}_N} & S_0 \otimes_B S_0 \otimes_B N
\end{array}
\]
commutes, or, in other words, giving an S-comodule structure on N. \qed

2.3. Special case. Let \mathcal{O} be a valuation ring and F its field of fractions. Let G be an affine group scheme over F and let S be the corresponding commutative Hopf algebra over F. Decompose S as $F \oplus S_0$ and define a commutative Hopf algebra R over \mathcal{O} by $R := \mathcal{O} \oplus S_0$. Corresponding to R is an affine group scheme \tilde{G} over \mathcal{O}, and giving a representation of \tilde{G} (that is, an R-comodule) is the same as giving an \mathcal{O}-module M together with an S-comodule structure on $F \otimes_{\mathcal{O}} M$.

For example, when G is the multiplicative group \mathbb{G}_m, the Hopf algebra R is
\[\{ \sum_{i \in \mathbb{Z}} a_i T^i \in F[T, T^{-1}] : \sum_{i \in \mathbb{Z}} a_i \in \mathcal{O} \} \],
which is easily seen to be the union of the Hopf subalgebras S_k discussed in the introduction.

References

[GKM] M. Goresky, R. Kottwitz and R. MacPherson, *Purity of equivalued affine Springer fibers*, Represent. Theory 10 (2006), 130–146.

[Sa] N. Saavedra Rivano, *Catégories Tannakiennes*, Lecture Notes in Mathematics 265, Springer-Verlag, Berlin, 1972.

[Se] J-P. Serre, *Groupes de Grothendieck des schémas en groupes réductifs déployés*, Publ. Math. IHES 34 (1968), 37–52.

[SGA3] M. Demazure and A. Grothendieck, *SGA3, Schémas en Groupes, Tome I*, Lecture Notes in Mathematics 151, Springer-Verlag, Heidelberg, 1970.

[We] T. Wedhorn, *On Tannakian duality over valuation rings*, J. Algebra 282 (2004), 575–609.

N. E. Csima, Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637

E-mail address: ecsima@math.uchicago.edu

Robert E. Kottwitz, Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637

E-mail address: kottwitz@math.uchicago.edu