Multivariate quadratic Hawkes processes—part I: theoretical analysis

CÉCILIA AUBRUN †‡, MICHAEL BENZAQUEN †*†‡§ and JEAN-PHILIPPE BOUCHAUD†§¶

†Chair of Econophysics and Complex Systems, École polytechnique, Palaiseau Cedex 91128, France
‡LadHyX UMR CNRS 7646, École polytechnique, Palaiseau Cedex 91128, France
§Capital Fund Management, 23 Rue de l’Université, Paris, 75007, France
¶Académie des Sciences, 23 Quai de Conti, Paris 75006, France

(Received 12 July 2022; accepted 27 January 2023; published online 8 March 2023)

Quadratic Hawkes (QHawkes) processes have proved effective at reproducing the statistics of price changes, capturing many of the stylized facts of financial markets. Motivated by the recently reported strong occurrence of endogenous co-jumps (simultaneous price jumps of several assets) we extend QHawkes to a multivariate framework (MQHawkes), that is, considering several financial assets and their interactions. Assuming that quadratic kernels write as the sum of a time-diagonal component and a rank one (trend) contribution, we investigate endogeneity ratios and the resulting stationarity conditions. We then derive the so-called Yule–Walker equations relating covariances and feedback kernels, which are essential to calibrate the MQHawkes process on empirical data. Finally, we investigate the volatility distribution of the process and find that, as in the univariate case, its tail exhibits power-law behaviour, with an unique exponent that can be exactly computed in some limiting cases.

Keywords: Multivariate QHawkes

1. Introduction

Modelling the volatility of financial assets is a significant challenge for academics, market participants and regulators alike. In fact, models describing the statistics of price changes are widely used for, e.g. risk control and derivative pricing. When not in line with the behaviour of real markets, these models can lead to disappointing outcomes or even major mishaps. Thus, it is important to account for the main stylized facts observed in real price time series, in particular: fat tails of the returns distribution, multi-timescale volatility clustering, price-volatility correlations and time reversal asymmetry.

Among the most widely used models, one can quote stochastic volatility models and GARCH models. However, these models often capture only poorly the above stylized facts. Indeed, the most popular stochastic volatility models lead to thin tails in the returns distribution and to strict time reversal symmetry. Whereas GARCH models do present time reversal asymmetry, such asymmetry is actually stronger than that observed in real markets. Furthermore, GARCH volatility clustering is governed by a single time scale. Some of these problems are elegantly solved by the family of rough volatility models (Gatheral et al. 2018), in particular the multifractal random walk, which is but a special member of that family (Bacry et al. 2001, Wu et al. 2022).

Hawkes processes, on the other hand, provide an interesting alternative to more traditional models, while clearly highlighting the feedback loop at the origin of the stylized facts characterizing financial prices. However, Jaisson and Rosenbaum (2015) have shown that the continuous time limit of a (near-critical) Hawkes process is a fractional CIR Heston process, which is characterized by tails that are too thin to reproduce empirical returns distribution. Furthermore, such a process is again time reversal invariant.

To alleviate these problems, Blanc et al. (2017) introduced the family of ‘Quadratic’ Hawkes (QHawkes) processes, which encodes a feedback between past price trends and future volatility, a clear empirical effect first discovered by Zumbach (2009), see also Chicheportiche and Bouchaud (2014). The quadratic feedback allows one to overcome the limitations of standard (linear) Hawkes processes. QHawkes processes naturally generate fat tail distributions and time reversal asymmetry even in the continuous time limit.
In this paper, we generalize the monovariate QHawkes process of Blanc et al. (2017) to the multivariate case, allowing one to capture how the trend on one asset can impact the volatility of another asset. Like for the univariate case, we expect the multivariate expansion to capture some stylized facts that are not accounted for within a linear Hawkes framework. In order to motivate our study, we illustrate in figure 1 the existence of a cross-asset leverage and Zumbach effects, i.e. the fact that past trends on the S&P500 (resp. treasury) increases volatility of the treasury (resp. S&P500), in a way that is asymmetric between past and future, much as the usual ‘self’ Zumbach effect. Figure 2 reveals high activity episodes across the whole stock market, with the number of simultaneous co-jumps being distributed as a power-law. This suggests the existence of a propagation phenomenon similar to a branching process, which requires a specific non-linear cross-asset interaction of the type considered in this paper.

The outline of the paper is as follows. In section 2, we define the multivariate QHawkes model in full generality. Section 3 establishes generalized Yule–Walker equations that relate 2- and 3-point correlation functions to the various feedback kernels appearing in the definition of the model. These relations are the starting point for the calibration of the model to empirical data, a topic we will explore in a follow-up companion paper (Aubrun et al. In preparation). Section 4 investigates the volatility distribution generated by the model and establishes the power-law nature of the tails, with an exponent that we analytically compute in several special cases. In section 5, we conclude.

Besides, a notation table is provided after the bibliography to ease the reading (See appendix A.1).

2. Model presentation

In this section, we introduce Multivariate Quadratic Hawkes processes (MQHawkes). We start by recalling the definition of Hawkes and Quadratic Hawkes processes in their univariate form. We then define their extension to the multivariate case, with a special focus on the bivariate case. Next we introduce a much-simplified specification, where the quadratic feedback can be factorized into a product of trend indicators—a limit called ZHawkes in Blanc et al. (2017), after Zumbach’s seminal work on the time reversal asymmetry of financial time series. We discuss endogeneity ratios and stationarity conditions for MQHawkes within the ZHawkes framework. Finally, we further generalize the MQHawkes model to take into account the possible intrinsic correlations between the underlying (inhomogeneous) Poisson processes.

2.1. Hawkes and QHawkes processes

Hawkes processes were first introduced to model earthquakes (Koshelev 1981, Zhuang et al. 2012). Their ability to consider past events in the probability of a future event was indeed very useful to reproduce the aftershock phenomenon: an earthquake is in fact more likely to occur after another just took place. This same property appeared to hold in a variety of fields, like biological neural networks (Osorio et al. 2010, Sornette and Osorio 2010), financial markets (Bacry et al. 2015, Fosset et al. 2021), and also crime rates or riot propagation (Mohler et al. 2011, Bonnasse-Gahot et al. 2018).
A Hawkes process \((N_t)_{t \geq 0}\) is an inhomogeneous\(^{†}\) Poisson process with intensity \(\lambda_t\) defined from the past realizations of the process itself, according to:

\[
\lambda_t = \lambda_\infty + \int_{-\infty}^t \phi(t-s) \, dN_u
\]

with

\[
n = \int_{\mathbb{R}} \phi(u) \, du < 1,
\]

where \(\lambda_\infty\) is the baseline intensity, \(\phi\) is the feedback kernel and \(n\) represents the ‘endogeneity ratio’, which needs to be strictly less than unity in order to guarantee that the process reaches a stationary state.

Like Hawkes processes, QHawkes processes are inhomogeneous Poisson processes with an intensity defined from past events. In the context of financial markets, the event process \((N_t)_{t \geq 0}\) represents the sequence of prices changing events, where the price change is defined by \(dP_t = \epsilon_t \psi dN_t\) (Blanc et al. 2017) where \(\epsilon_t = \pm 1\) (random sign), and \(\psi\) is the tick size (the smallest unit of price change) which we set to one henceforth. The intensity self-exciting feedback loop is now defined on the returns \(dP_t\) rather than on the events \(dN_t\).

Hence, the sign of the returns influences the process intensity (Blanc et al. 2017):

\[
\lambda_t = \lambda_\infty + \int_{-\infty}^t L(t-s) \, dP_s + \int_{-\infty}^t K(t-s) \, dP_s \, dP_u,
\]

where \(\lambda_\infty\) is again the baseline intensity, \(L(\cdot)\) is the so-called leverage kernel (capturing the increase of activity following a drop in prices) and \(K(\cdot, \cdot)\) is the quadratic kernel.

Following the empirical findings of Blanc et al. (2017), we simplify the quadratic kernel \(K\) assuming it can be written as a general time-diagonal\(^{‡}\) and a rank one contribution:

\[
K(s,u) = \phi(s) \delta(s-u) + k(s) k(u).
\]

This defines what we shall refer to as the ZHawkes model:

\[
\lambda_t = \lambda_\infty + \int_{-\infty}^t L(t-s) \, dP_s + \int_{-\infty}^t \phi(t-s) \, dN_s + \left(\int_{-\infty}^t k(t-s) \, dP_s \right)^2,
\]

where we have used \((dP_s)^2 = dN_s\). Note that the diagonal term precisely reproduces the standard Hawkes feedback.

\(^{†}\) Here, inhomogenous means that the intensity of the process is time dependent.

\(^{‡}\) Throughout this paper, we define delta as \(\delta(0) = 1\) and \(\delta(x) = 0\) for \(x \neq 0\).
2.2. MQHawkes processes

Let us now consider N financial assets with prices $(P^i_t)_{t \geq 0, t \neq 0, \ldots N}$. We associate such price processes with jump processes $(N^i_t)_{t \geq 0}$, with:

$$dP^i_t = \epsilon_i \gamma_i dN^i_t,$$

where we set henceforth $\gamma_i \equiv 1$, $\forall i$, without loss of generality. Each jump process $(N^i_t)_{t \geq 0}$ is a conditionally independent† Quadratic Hawkes process with intensity $(\lambda_i(t), i \geq 0)$

$$\lambda_{i,t} = \lambda_{i,\infty} + \sum_{j=1}^{N} \int_{-\infty}^{t} L^i_j(t-s) dP^j_s + \sum_{j \neq k} \int_{-\infty}^{t} K^i_{jk}(t-s, t-u) dP^j_s dP^k_u,$$

Note that the superscript in the kernels indicates which asset is affected by the feedback, whereas subscripts indicate which assets are responsible for it.

In the following we shall generically call \mathbb{K}_d the 'diagonal' feedback terms, i.e. the kernels K^i_{jk} with $j = k$. These terms describe the quadratic feedback from two price changes of the same asset j onto the activity of asset i. Similarly, K^i_d describes cross effects, i.e. K^i_{jk} with $j < k$, from two different assets $j \neq k$ onto the activity of asset i. In order to guarantee that intensities $\lambda^i_{i,t}$ remain positive at all times, kernels L, K_d, and K_x need to verify some conditions, which are detailed in appendix A.2.

Although all these terms could, in principle, play a role, in the present paper, we shall restrict to cross terms K^i_{jk} such that either j or k are equal to i. The intuitive meaning of such terms will become clear below in the context of ZHawkes processes; in particular we shall see why terms with $j \neq i$ and $k \neq i$ are not expected to play a large role in practice.

For the sake of the levering, we will mainly focus on the bivariate case $N = 2$, for which the leverage kernel and the diagonal quadratic kernel are 2×2 matrices:

$$L := \begin{pmatrix} L^1_1 & L^1_2 \\ L^2_1 & L^2_2 \end{pmatrix}; \quad \mathbb{K}_d := \begin{pmatrix} K^1_{11} & K^1_{12} \\ K^2_{11} & K^2_{22} \end{pmatrix},$$

whereas the cross-quadratic kernel is a vector

$$K_x := \begin{pmatrix} K^1_{12} \\ K^2_{12} \end{pmatrix}.$$

In the following 2×2 matrices and 2D vectors are, respectively, noted \mathbb{A} and \mathbb{A}, for example $\mathbb{A} := (\lambda_1, \lambda_2)$. We will also need to distinguish the 'time diagonal' of a matrix $\mathbb{A}(\tau_1, \tau_2)$, by which we mean $\Lambda(\tau_1, \tau_2)$, from the 'diagonal' of \mathbb{A}, which refers to the diagonal components in asset space A_{ii}.

2.3. ZHawkes model

The multivariate generalization of the ZHawkes model amounts to assuming that the quadratic kernels \mathbb{K}_d and K_x

† This means that for given intensities $\lambda_{i,t}$, the inhomogeneous Poisson processes dN^i_t are independent. See further down for the case of correlated jump processes.

can be written as arbitrary singular time-diagonal and time-rank-one contributions, to wit:

$$K^i_{jj}(s, u) = (\varphi_{ij})_{ij}(s, u) \delta(s-u) + K^i_{ij}(s, t)$$

$$K^i_{ij}(s, u) = (\varphi_{ij})_{ij}(s, u) \delta(s-u) + K^i_{ij}(s, t) \delta(s-u) (i \neq j).$$

However, as long as we consider independent Poisson processes, we can set $\varphi_{ij} = 0$. This is because the two processes will never jump simultaneously, such that for all u, $dP^u dP^u_s = 0$ when $i \neq j$ (see, however, equation (11) when co-jumps are taken into account). Actually in the so-called Thinning Algorithm (Ogata 1981) for multivariate processes, commonly used to simulate inhomogenous Poisson process, at most one process can be jumping at each time step.

2.4. Endogeneity ratio and stationarity condition

The endogeneity ratios indicate by how much, on average, the feedback loop contributes to the future of the process, and thus, whether the process is stationary or not. To define them for the MQHawkes we use analogies with univariate QHawkes and multivariate linear Hawkes.

2.4.1. Mean intensity. Since price changes are centred and processes are assumed to be independent, we have $E(dP^i) = 0$ and $E(dP^i dP^i_s) = \delta_{ij} \delta_{s,0} K^i_{ii} ds$. Using this, we find that the vector of mean intensities $\bar{\lambda}$, when finite, writes:

$$\bar{\lambda} = \left(\int _{-\infty}^{\infty} \mathbb{K}_d(s, s) ds \right)^{-1} \lambda_{\infty}. \quad (8)$$

This expression must be interpreted with care when $\mathbb{K}_d(s, u)$ contains a singular time-diagonal contribution $\delta_{ij}(s, u)$. In such a case, and throughout this paper, we will interpret $\mathbb{K}_d(s, s)$ as $\mathbb{K}_d(s, s) + \delta_{ij}(s, s)$, where $\mathbb{K}_d(s, s)$ is the regular part of the diagonal quadratic feedback. Equation (8) shows that the mean intensity diverges when the spectral radius‡ of the matrix $\int _{0}^{\infty} \mathbb{K}_d(s, s) ds$ tends to one from below.

2.4.2. Endogeneity ratio. In the multidimensional case, the endogeneity ratio of a standard linear Hawkes process is defined by the spectral radius of the kernel matrix Θ involved in the expression of λ (Bacry et al. 2015). More precisely, introducing

$$\|f\| := \int _0^{\infty} f(s) ds$$

one constructs the matrix $\| (\Theta \| \| \Theta \| ^{1/2}$ and determines its eigenvalue with the largest modulus, which in turn defines the dominant endogeneity ratio n. Thus, $n = \rho_{spectral}(\| \Theta \|)$, where $\rho_{spectral}$ is the spectral radius and $\| \Theta \|$ stands for the matrix $\| (\Theta \| ^{1/2}$.

For a general univariate QHawkes model, one can always decompose the endogeneity ratio n as the sum of the Hawkes
endogeneity ratio \(n_H \) associated with the singular time-diagonal contribution to \(K(\cdot, \cdot) \), and a regular contribution \(n_Q \):
\[
n = \int_0^{+\infty} \phi(s)ds + \int_0^{+\infty} K_{\text{reg}}(s, s)ds := n_H + n_Q. \tag{9}
\]

In the special case of a ZHawkes quadratic kernel, the regular contribution reads:
\[
n_Q = n_Z = \int_0^{+\infty} k^2(s)ds. \tag{10}
\]

For a general MQHawkes, the endogeneity ratio is then defined by the spectral radius of \(\int_0^\infty K_d(s, s)ds \), \(n = \rho_{\text{spectral}}(\|K_d\|) \). However, when decomposing the kernel as a singular time-diagonal contribution and a regular contribution, one must be careful about the fact that the two matrices \(K_{\text{d,reg}}(s, s) \) and \(\Theta_d \) do not commute in general. Hence the spectral radius defining the endogeneity ratio cannot be simply expressed as the sum of a Hawkes contribution \(n_H \) (i.e. the spectral radius of \(\|\Theta_d\| \)) and of a regular or Zumbach contribution (i.e. the spectral radius of \(\|K_{\text{d,reg}}\| \)).

2.4.3. Stationarity condition

For linear Hawkes processes to be stationary, the endogeneity ratio \(n \) needs to be strictly less than one. Hence, only processes with finite mean intensity \(\bar{\lambda} \) can be stationary. In the presence of a quadratic feedback, the situation is more intricate. In a previous communication (Aubrun et al. 2022), we found that for a univariate Z-Hawkes process to be stationary one needs \(n_H < 1 \), but not necessarily \(n = n_H + n_Q < 1 \). When \(n_H < 1 \) and \(n > 1 \) one has a stationary process with an infinite mean. In the present multivariate framework, we conjecture that a similar situation holds, with the following definitions: let \(K_d \) be the spectral radius of \(\|\Theta_d\| \), and \(n = \rho_{\text{spectral}}(\|K_d\|) \), with in general \(n \neq n_H + n_Q \). Then, there exists a value \(n^* \) such that:

- if \(n_H < 1 \) and \(n < n^* \), the process is stationary with finite mean intensity;
- if \(n_H < 1 \) and \(n > n^* \) the process is stationary with infinite mean intensity.
- if \(n_H > 1 \), the process explodes and no stationary state can be reached.

We have performed numerical simulations (not shown) that support this conjecture. The value of the critical point \(n^* \) is, however, difficult to compute in the general case, but in the specific case of a weakly anisotropic two dimensional ZHawkes model, some progress can be made, see section 4.4.2 and equation (36). In particular, in the isotropic case, the univariate result \(n^* = 1 \) is recovered.

2.5. Correlated Poisson processes

One may wonder if the hypothesis of independence of the \(dN_i \) for different \(i = 1, \ldots, N \) is not too strong to faithfully account for events happening in financial markets. In fact, as in Bormetti et al. (2015), we find that co-jumps (i.e. simultaneous jumps in the price of different assets within 1-minute bins) occur fairly frequently, adding a new stylized fact to consider in this multivariate framework. In order to investigate co-jumps empirically, we use a jump detection method (see Marcaccioli et al. 2022) on 295 large cap. US stock prices from January 2015 to December 2020. We then count how many stocks simultaneously display anomalous price jumps in a given minute and represented such counts in figure 2. Co-jumps are clearly seen to occur. On average, there are 4.5 co-jumps per day, and up to 68 co-jumps in one day. Using Marcaccioli et al. (2022) to classify each jump as endogenous or exogenous, we compute the cumulative density function of number of stocks included in endogenous co-jumps which displays a power law of slope \(-1.25\) (see inset in figure 2).

Co-jumps may be due to either a common exogenous shock (like an external piece of news affecting several stocks), or to some endogenous instability triggering a jump for one given stock, which propagates to other stocks. The very interesting question of the exogenous/endogenous nature of co-jumps clearly needs a more refined investigation, in the spirit of Marcaccioli et al. (2022), and is left for future work.

In Bormetti et al. (2015), the authors show that multivariate linear Hawkes models with independent realizations of the Poisson process do not satisfactorily reproduce co-jumps. Here we propose a way to enforce correlations between Poisson processes, and allow one to account for co-jumps within bivariate QHawkes processes.

2.5.1. Bivariate Poisson processes

We focus on the bivariate case \(N = 2 \). The extension to \(N > 2 \) is also possible, although beyond the scope of the present paper. In order to allow for the possibility of co-jumps, i.e. such that \(dP^1 dP^2 \neq 0 \), we consider three independent QHawkes counting processes \((N^1_i, N^2_i)_{i \geq 0} \) with intensities \((\mu_1^1, \mu_2^1, \mu_1^2, \mu_2^2) \) defined from past returns:

\[
\mu_{a,j} = \mu_{a,\infty} + \sum_{j \in \{1,2\}} \int_{-\infty}^t L^j_a(t-s)dP^j_s + \sum_{j \leq k \in \{1,2\}} \int_{-\infty}^t Q^a_{jk}(t-s, t-u)dP^j_s dP^k_u, \tag{11}
\]

with \(a = 1, 2, c \), and we model price moves as:

\[
\begin{align*}
\text{d}P^1_i &= \epsilon^1_i (dN^1_i + dN^c_i) \\
\text{d}P^2_i &= \epsilon^2_i (dN^2_i + dN^c_i), \tag{12}
\end{align*}
\]

where \(\epsilon^j_i = \pm 1 \), with \(\mathbb{E}(\epsilon_i^j) = 0 \) and \(\mathbb{E}(\epsilon_i^j \epsilon^j_i) = \rho_i \). While the sign correlation \(\rho_i \) could indeed be time-dependent, here we will assume that \(\rho_i = \rho \) is independent of time. Thus, price moves have both an idiosyncratic part, represented by \(dN^j_i \), \(i \in \{1,2\} \), and a common part \(dN^c \), which make co-jumps possible (hence the subscript \(c \)). In fact, because \(dN^c_i \in [0,1] \), then \((dN^c_i)^2 = dN^c_i \), one now has:

\[
\text{d}P^1_i \text{d}P^2_i = \epsilon^1_i \epsilon^2_i dN_i^c. \tag{13}
\]

We can then define the total intensities \((\lambda_{1,1}, \lambda_{2,2})_{i \geq 0} \) of the price jumps \((P^1_i, P^2_i)_{i \geq 0} \), according to the definition of Poisson
of the kernels K_d and K_x with:

$$
\xi = \int_0^\infty K_d(s, s) \, ds - \bar{\lambda},
$$

with:

$$
\bar{\mu} = \mu^\infty + \bar{\lambda} \cdot \int_0^\infty Q^\prime(s, s) \, ds.
$$

In the presence of a singular contribution to the K’s, one should again take it into account by substituting all $K(s, s)$ by the corresponding $K_{reg}(s, s) + \phi(s)$, and similarly for Q’s. The stationarity conditions are now that:

1. The spectral radius of the Hawkes kernel $||\theta_d||$ is strictly less than 1
2. The time-diagonal of the co-jump kernel must be such that:

$$
|\rho \int_0^\infty Q_{ij}(s, s) \, ds| < 1.
$$

3. Covariance structure & Yule–Walker equations

Of course, the feedback kernels L and K cannot be directly observed in data. However, as we now show, they can be computed from covariance functions, which can easily be estimated from empirical data. Here we introduce the covariance structures of a multivariate QHawkes process, thereby establishing the matrix Yule–Walker equations (which link covariance structures and QHawkes kernels).

In order to fully characterize the kernels K_d and K_x, we need covariance structures containing information on both the diagonal part of the kernels ($\tau_1 = \tau_2$) and their non-diagonal part $\tau_1 \neq \tau_2$. When time is discretized on a grid up to lag q, the number of unknowns is, for N assets, $q(q + q(q - 1)/2) \times N^2$ for K_d and $q(q - 1) \times N(N - 1)$ unknowns for K_x (with $i = j$ or $i = k$ as considered in this paper and without explicit co-jumps).

Now, equation (20) below on two-point correlations can only provide $q \times N(N + 1)/2$ equations; three-point correlations are thus also needed to fully determine these kernels (see Chicheportiche and Bouchaud 2014, Blanc et al. 2017 for the corresponding univariate case).

3.1. Two- and three-point covariances

The first quantity of interest is the covariance of the activities of the process. For all $\tau \neq 0$:

$$
C_0(\tau) := \mathbb{E} \left(\frac{dN^i}{dt} \frac{dN^{i, \tau}}{dt} - \bar{\lambda}_i \bar{\lambda}_j \right).
$$

As for the univariate QHawkes, C is even, and its extension to $\tau = 0$ can be worked out following (Hawkes 1971a). Thus, for $i = j$, the extension will be the same as in Blanc et al. (2017), with $C_0(\tau) := C_0(\tau) + \delta_{i, 0} \bar{\lambda}_i$. (Note indeed that $\mathbb{E}(\{dN\}^2) = \mathbb{E}(dN) = \bar{\lambda}_i dt$, if we consider that events cannot overlap). For $i \neq j$, the extension must account for co-jumps and now reads $C_0(\tau) := C_0(\tau) + \delta_{i, 0} \nu_i$. Without co-jumps, one has $C_0(\tau) := C_0(\tau)$ for $i \neq j$.

We also define a relevant three-point correlation structure D as the following tensor:

$$
D_{ik}(\tau_1, \tau_2) = \mathbb{E} \left[\frac{dN^i}{dt} \frac{dP^j_{\tau_1}}{dt} \frac{dP^k_{\tau_2}}{dt} - \bar{\lambda}_i \right].
$$

Since price returns are assumed to be of martingales, $D_{ik}(\tau_1, \tau_2)$ is only nonzero when $\tau_1 > 0$ and $\tau_2 > 0$. Note that when $\tau_1 = \tau_2$ and $j = k$, one has $D_{ij}(\tau, \tau) = C_0(\tau)$.

In the bivariate case, D defines again two types of 2×2 matrices: ‘diagonal’ ($j = k$) and ‘cross’ ($j \neq k$). We shall consistently use the following notations to distinguish them:

$$
D_d(\tau_1, \tau_2) := \begin{pmatrix}
D_{11}(\tau_1, \tau_2) & D_{12}(\tau_1, \tau_2) \\
D_{21}(\tau_1, \tau_2) & D_{22}(\tau_1, \tau_2)
\end{pmatrix},
$$

and

$$
D_x(\tau_1, \tau_2) := \begin{pmatrix}
D_{11}(\tau_1, \tau_2) & D_{12}(\tau_1, \tau_2) \\
D_{21}(\tau_1, \tau_2) & D_{22}(\tau_1, \tau_2)
\end{pmatrix}.
$$

3.2. Two-point Yule–Walker equations

In order to deduce kernels from empirical correlations, direct relations must be determined. The method we use to find such relations is very similar to that used in appendix 1 of Blanc et al. (2017). Assuming that prices are martingales,† and without

† This assumption is often violated at high frequencies, and some amendments will need to be introduced when calibrating the model on actual HF data—see our Part II companion paper (Aubrun et al. In preparation).
considering co-jumps, we find the following matrix equation for C:

$$C(\tau) = K_d(\tau) \bar{X} + \int_{0^+}^{+\infty} K_d(u, u) C(\tau - u) du + 2 \int_{0^+}^{+\infty} \int_{u^+}^{+\infty} K_d(\tau + u, \tau + r) \bar{D}_d(u, r) dr du$$

$$+ \int_{0^+}^{+\infty} K_d(\tau + u, \tau + \nu)(D_\nu)^\top(\nu) d\nu$$

where \bar{X} is a 2×2 matrix defined as

$$\bar{X} := \begin{pmatrix} \bar{\lambda}_1 & 0 \\ 0 & \bar{\lambda}_2 \end{pmatrix},$$

and where

$$D_\nu := \begin{pmatrix} D_{11\nu} \\ D_{21\nu} \end{pmatrix}$$

This Yule–Walker equation boils down to equation (8) of Blanc et al. (2017) in the univariate case.

The Yule–Walker equation for C accounting for co-jumps can be found in appendix A.4.

3.3. Three-point Yule–Walker equations

The full three-point Yule–Walker equations for the tensor D are quite intricate. In order to give a simplified version of these equations we restrict here to the case with no co-jumps, i.e. $\mu^c \equiv 0$. We find that, for $\tau_1 > \tau_2 > 0$:

$$D_d(\tau_1, \tau_2) = 2K_d(\tau_1, \tau_2)C_d(\tau_2 - \tau_1)$$

$$+ \int_{\tau_1}^{+\infty} K_d(u, \tau_2)D_d^0(u, \tau_2 - \tau_1) du$$

$$+ 2 \int_{\tau_1}^{+\infty} \int_{\tau_1}^{+\infty} K_d(u, \tau_1)D_d^0(u, \tau_2 - \tau_1) du$$

$$+ \int_{\tau_1}^{+\infty} K_d(\tau_1, u)(D_\nu)^\top(\nu) d\nu$$

$$+ \int_{\tau_1}^{+\infty} K_d(\tau_1, u)(D_\nu)^\top(\nu) d\nu,$$

where we have introduced the two following diagonal matrices:

$$C_d(\tau) := \begin{pmatrix} \bar{\lambda}_1^2 + (\bar{\lambda}_1) \tau_1 & 0 \\ 0 & \bar{\lambda}_2^2 + (\bar{\lambda}_2) \tau_2 \end{pmatrix},$$

$$D_d^0(\tau_1, \tau_2) := \begin{pmatrix} D_{11}(\tau_1, \tau_2) & 0 \\ 0 & D_{22}(\tau_1, \tau_2) \end{pmatrix}.$$

as well as the notation D_ν for the 2-vectors:

$$D_{\nu} := \begin{pmatrix} D_{11\nu} \\ D_{21\nu} \end{pmatrix}. $$

For the corresponding Yule–Walker equation for D_ν, see appendix A.4.

3.4. Asymptotic behaviour with power law kernels

An interesting special case for which the Yule–Walker equations can be asymptotically solved is when kernels are decaying as power-laws, as considered in Blanc et al. (2017). Of special interest is the relationships between exponents governing the correlation functions and the kernel exponents when $\tau \to +\infty$.

The general analysis is quite cumbersome and is relegated to appendix A.5.1. In the non-critical case ($n < 1$), the calculations are not particularly difficult and generalize the results of Blanc et al. (2017) to the multivariate case.

The critical case ($n = 1$), on the other hand, is much more subtle, in particular for the QHawkes processes.† In order to treat this case, we have generalized the method introduced by Hawkes (1971b), which combines the Yule–Walker equations in the Fourier domain with Liouville’s Theorem to find a direct relationship between exponents. This method is recalled in appendix A.5.2, from which the value of the exponents in the critical case can be derived, see tables in appendix A.6. Some of the exponent values reported in Blanc et al. (2017) turn out to be incorrect; the correct values can be inferred from our new results. Note that in the critical case the decay of the correlation functions cannot be faster than τ^{-1}, as in the case of linear Hawkes models without ancestors (see the work of Brémaud and Massoulié (2001)).

4. Power-law tails of the volatility distribution

Here we investigate the distribution of volatility of a MQHawkes process. We adapt the methodology of Blanc et al. (2017) to the multivariate setting, restricting for simplicity to the two assets case. Our main goal is to establish that MQHawkes lead to fat (power-law) tails for the empirical intensity distribution, which translates into fat tails in the distribution of returns (Blanc et al. 2017). We limit our study to the ZHawkes specification with exponentially decaying kernels, that allow one to construct a tractable continuous time limit.

4.1. ZHawkes model with exponential kernels

We neglect the leverage feedback and set $L = 0$. We also neglect the possible presence of co-jumps, i.e. set $\mu^c \equiv 0$ hereafter. Within the ZHawkes specification, we can rewrite...
4.2. Endogeneity ratios

of the trend feedback kernel. In the monovariate case, one to describe all feedback effects, namely:

\[
\begin{align*}
\lambda_1 &= H_1^1 + H_1^2 + (Z_1^1)^2 + (Z_1^2)^2 + Y_1^2 \\
\lambda_2 &= H_2^1 + H_2^2 + (Z_2^1)^2 + (Z_2^2)^2 + Y_2^2
\end{align*}
\]

with

\[
H_j^i := \int_{-\infty}^{t} \langle \phi_d \rangle_{H}^i (t-s) dN_s^j
\]

and

\[
\begin{align*}
Z_j^i &= \int_{-\infty}^{t} k_j^i(t-s) dP_s^j \\
Y_j^i &= \left(\int_{-\infty}^{t} k_j^i(t-s) dP_s^j \right) \left(\int_{-\infty}^{t} k_j^i(t-u) dP_u^j \right).
\end{align*}
\]

To keep things tractable, we choose all kernels to be exponentials and consider that only four ‘features’ are important to describe all feedback effects, namely:

\[
\begin{align}
\begin{aligned}
&h_1(t) = \beta_1 \int_{-\infty}^{t} e^{-\beta_1(t-s)} dN_s^1 \\
&h_2(t) = \beta_2 \int_{-\infty}^{t} e^{-\beta_2(t-s)} dN_s^2,
\end{aligned}
\end{align}
\]

for activity feedback, and

\[
\begin{align}
\begin{aligned}
&z_1(t) = \omega_1 \int_{-\infty}^{t} e^{-\omega_1(t-s)} dP_s^1 \\
&z_2(t) = \omega_2 \int_{-\infty}^{t} e^{-\omega_2(t-s)} dP_s^2,
\end{aligned}
\end{align}
\]

for trend feedback, with \(\omega_j\)’s and \(\beta_j\)’s positive constants. From such features, we construct the quantities \(H, Z\) and \(Y\) as

\[
\begin{align*}
H_i^1 &= n_{H_i}^1 h_1(t) + n_{H_i}^2 h_2(t) \\
H_i^2 &= n_{H_i}^1 h_1(t) + n_{H_i}^2 h_2(t) \\
Z_i^1 &= a_{Z_i}^1 z_1(t) + a_{Z_i}^2 z_2(t) \\
Z_i^2 &= a_{Z_i}^1 z_1(t) + a_{Z_i}^2 z_2(t) \\
Y_i^1 &= a_{Z_i}^1 z_1(t) z_2(t) \\
Y_i^2 &= a_{Z_i}^2 z_1(t) z_2(t).
\end{align*}
\]

Under such hypotheses, the intensities write:

\[
\begin{align}
\lambda_{1j} &= \lambda_{1,\infty} + n_{H_i}^1 h_1(t) + n_{H_i}^2 h_2(t) + (a_{Z_i}^1 z_1(t))^2 \\
&\quad+ (a_{Z_i}^2 z_2(t))^2 + a_{Z_i}^1 z_1(t) z_2(t) \\
\lambda_{2j} &= \lambda_{2,\infty} + n_{H_i}^1 h_1(t) + n_{H_i}^2 h_2(t) + (a_{Z_i}^1 z_1(t))^2 \\
&\quad+ (a_{Z_i}^2 z_2(t))^2 + a_{Z_i}^1 z_1(t) z_2(t).\tag{28}
\end{align}
\]

4.3. Fokker–Planck equation

As in Blanc et al. (2017), we consider the process on a time scale \(T > 0\), that shall eventually tend to +\(\infty\), and simultaneously take all decay rates \(\beta, \omega \to 0\), but in such a way that \(\omega T\) and \(\beta T\) remain finite. For the Zumbach feedback not to disappear in this limit one needs to simultaneously scale up both \((a_{Z_i}^j)_{j=1,2}\) as \(\omega^{-1/2}\) and \((a_{Z_i}^j)_{j=1,2}\) as \(\omega^{-1}\). In this scaling regime, one can establish the following Fokker–Planck equation for the time-dependent probability density \(p_t\) of \((h_1, h_2, z_1, z_2)\) (see appendix A.7):

\[
\begin{align}
\partial_t p_t &= \beta_1 \partial_{h_1} \left(\lambda_{1,\infty} p_t + \lambda_{1,1} p_t \right) + \beta_2 \partial_{h_2} \left(\lambda_{2,\infty} p_t + \lambda_{1,2} p_t \right) \\
&\quad+ \omega_1 \partial_{z_1} \left(\lambda_{1,\infty} p_t + \lambda_{1,2} p_t \right) + \omega_2 \partial_{z_2} \left(\lambda_{2,\infty} p_t + \lambda_{1,2} p_t \right) \\
&\quad+ \frac{\omega_1^2}{2} \partial_{z_1}^2 \left(\lambda_{1,\infty} p_t + \lambda_{1,2} p_t \right) + \frac{\omega_2^2}{2} \partial_{z_2}^2 \left(\lambda_{2,\infty} p_t + \lambda_{1,2} p_t \right),\tag{31}
\end{align}
\]

where \(p_t\) is a shorthand for \(p_t(h_1, h_2, z_1, z_2)\), \(\lambda_{1,\infty}\) and \(\lambda_{2,\infty}\) are given by equation (28), and where we have disregarded co-jumps and direct correlations between the returns of asset 1 and asset 2, meaning that \(E(dP_t dP_t^2) = 0\). The inclusion of such correlations can be considered and add further cross-derivative terms \(a_{Z_i}^1 a_{Z_i}^2\) in the Fokker–Planck equation.

Solving for the stationary distribution \(p_\infty\) of the Fokker Planck equation allows one to determine the tail behaviour of the distribution of intensities (which translate into volatilities since \(E(dP_t)^2 = 1 = \lambda_t dt\)). In the monovariate case, Blanc et al. (2017) established that \(p_\infty\) decays as a power-law, with an exponent \(\alpha\) that depends on both \(n_{H_i}\) and \(n_{Z}\). The general expression for \(\alpha\) is however not available in closed form, although asymptotic results in various regimes could be worked out, in particular, when \(n_{H_i} \to 0\). The most important conclusion is that \(\alpha \to \infty\) when \(n_{Z} \to 0\), i.e. power-law tails disappear in the absence of a quadratic Zumbach coupling. Interestingly, the coupling between the Hawkes feedback with \(n_{H_i} \sim 1\) and even a small Zumbach effect \((n_{Z} \leq 1)\) was shown to generate an exponent compatible with empirical data.
4.4. ZHawkes without Hawkes (n_H = 0)

To make further analytical progress, we now consider the case in which the Hawkes coupling is absent (n_H = 0), that is when h and z decouple, leading to a tractable two-dimensional Fokker–Planck for z_1 and z_2. In the stationary regime, the Fokker Planck equation (31) becomes:

\[0 = \omega_1 \partial_z \left(z_1 p_\infty(z_1, z_2) \right) + \omega_2 \partial_z \left(z_2 p_\infty(z_1, z_2) \right) + \frac{\alpha_1^2}{2} \partial_{z_1}^2 \left(\alpha_1 p_\infty(z_1, z_2) \right) + \frac{\alpha_2^2}{2} \partial_{z_2}^2 \left(\alpha_2 p_\infty(z_1, z_2) \right). \]

(32)

This equation describes the stationary measure of the stochastic path of the bivariate process (Z_1, Z_2), defined as:

\[
dZ_1 = -\omega_1 Z_1 dt + \omega_1 \sqrt{\lambda_1} dW_1^1 \\
dZ_2 = -\omega_2 Z_2 dt + \omega_2 \sqrt{\lambda_2} dW_2^2,
\]

with

\[
\lambda_{1,2} = \lambda_{1,2} + a_{1,2}^2 Z_1 Z_2 + (a_{1,2}^2 Z_1)^2 + (a_{1,2}^2 Z_2)^2 \\
\lambda_{1,2} = \lambda_{1,2} + a_{1,2}^2 Z_1 Z_2 + (a_{1,2}^2 Z_2)^2 + (a_{1,2}^2 Z_1)^2.
\]

These equations allow one to simulate paths (Z_1, Z_2), numerically, from which an empirical determination of p_\infty(z_1, z_2) can be confronted with our analytical solution of equation (32). Note that the coefficients (a_{1,2}^2)_{i\in\{1,2\}} and (a_{1,2}^2)_{i\in\{1,2\}} must satisfy the following inequalities for \lambda_{1,2} and \lambda_{1,2} to remain positive at all times:

\[4(a_{1,2}^2 a_{2,2}^2)^2 \geq (a_{1,2}^2)^2, \quad i = 1, 2. \]

How can one determine the tail exponent for such a two-dimensional process? We first introduce polar coordinates (r, \theta), such that z_1 = r \cos \theta and z_2 = r \sin \theta. We then surmise that when r^2 \gg max(\lambda_{1,1}, \lambda_{2,2}), the stationary distribution p_\infty(r, \theta) factorizes into an angular component F(\theta) and a power-law contribution, to wit: p_\infty(r, \theta) \approx F(\theta) r^{-\alpha}, where \alpha is the tail exponent. Note that \alpha should be strictly larger than 2 for p_\infty to be normalizable, and strictly larger than 3 for the mean intensity to be non-divergent. Injecting our factorized guess into equation (32) and taking the limit r^2 \gg \lambda^\infty, we find a second order ODE on the function F, where \alpha appears as a parameter (see appendix A.8, equation (A13)).

The value of \alpha is selected by the analogue of energy quantification in quantum mechanics: only for some special values of \alpha can one find a solution F of the above ODE that satisfies the correct boundary conditions compatible with symmetries of the problem. Clearly, F must be everywhere non-negative and, because of the symmetry z_1 \rightarrow -z_1 and z_2 \rightarrow -z_2, one must have F(\theta + \pi) = F(\theta) (see below for explicit examples). In principle, there can be more than one value of \alpha that allows one to find an acceptable solution F. This is the analogue of the energy spectrum in quantum mechanics. The value of \alpha that governs the tail behaviour of p_\infty(r, \theta) is then the smallest of all such acceptable values. Once the asymptotic tail behaviour of p_\infty(r, \theta) is known, it is easy to derive the tail behaviour of the marginals p_\infty(z_1) and p_\infty(z_2), which both behave as z^{-1-\mu} with \mu = \alpha - 2. The volatility distribution then has the same tail behaviour.

In order to illustrate this general procedure on a simple example, we focus in the following on the case where a_{z_1}^2 = \sqrt{2} a_{\alpha_2}^2, \forall i, j = 1, 2, such that the two eigenvalues of \lambda_{1,2} are equal to n_{1,2} (the Zumbach endogeneity ratio) and 0. We also set \alpha_{1,2} = 2 \gamma_{\alpha_2} / a_{\alpha_2}, where \gamma is an arbitrary coefficient \in (0, 2) (such that \lambda_1 and \lambda_2 are always positive). When \omega_1 = \omega_2, equation (A13) considerably simplifies and reads:

\[
\left[(\alpha - 2) (\alpha - \alpha_0) + (\alpha - 2)^2 \gamma \cos(\theta) \sin(\theta) \right] F(\theta) + [(1 + \gamma \cos(\theta) \sin(\theta)) F(\theta)]^\prime = 0,
\]

(34)

where we have defined

\[\alpha_0 := 2 + \frac{1}{n_{1,2}}. \]

Note that for a given value of \alpha this equation is invariant under the simultaneous change \gamma \rightarrow -\gamma, \theta \rightarrow -\theta. Hence the value of \alpha can only depend on |\gamma|.

4.4.1. The isotropic case \gamma = 0. When cross terms a_{z_1}^2 are absent and \omega_1 = \omega_2, the problem becomes isotropic in the sense that the dynamics of r^2 = z_1^2 + z_2^2 decouple from that of \theta. The problem then boils down to the univariate ZHawkes model without Hawkes coupling, for which the value of \alpha is known, and given by \alpha_0.

Furthermore, the evolution of \theta is that of a free Brownian motion on the unit circle, leading to a uniform distribution F(\theta) = F_0, which is indeed a solution of equation (34) in this case. Note that other periodic solutions exist whenever

\[(\alpha - 2) (\alpha - \alpha_0) = 4 \ell^2, \quad \ell = 0, 1, 2, \ldots \]

but lead to larger values of \alpha when \ell > 0.

4.4.2. The case \gamma \neq 0. In order to make progress, we posit that \alpha and F can be expanded as power series of \gamma, namely

\[\alpha = \alpha_0 + \alpha_1 \gamma + \alpha_2 \gamma^2 + \cdots \]

and

\[F(\theta) = F_0 + F_1(\theta) \gamma + F_2(\theta) \gamma^2 + \cdots \]

where \alpha_0 = 2 + 1/n_{1,2} is the solution for \gamma = 0 and F_0 is the constant solution found above. The coefficient \alpha_1 must be zero for symmetry reasons.

Inserting this expansion in equation (34) and imposing that all F_\ell(\cdot) remain \pi-periodic, the identification of terms of order \gamma^n finally leads to

\[\alpha = \alpha_0 + \gamma^2 \frac{4}{n_{1,2}} \left(\frac{4}{n_{1,2}} - \frac{1}{n_{2}} \right) + O(\gamma^4). \]

(35)

Figure 3 displays the numerical values of \alpha as a function of \gamma for n_{1,2} = 0.4 and n_{2} = 0.6 in with the corresponding theoretical parabolas, see equation (35). Note that the \gamma^2 correction changes sign when n_{2} = 1/2.

In this case (n_{2} = 1/2), finding an exact solution of the associated Schrodinger solution is possible (Xie 2011), and
leads to $\alpha = 4$ for all values of γ. The corresponding solution for F is also known in that case and is a constant independent of θ, as can be directly checked from equation (34).

An expansion around the special point $n_Z = 1/2$ can in fact be performed and leads to first order to

$$
\alpha = 4 + \frac{16}{4 + \gamma^2} \left(\frac{1}{2} - n_Z \right) + o \left(\frac{1}{2} - n_Z \right).
$$

Finally, note that the condition $\alpha > 3$ (ensuring that the mean activity is finite) reads, to first order in γ:

$$
n_Z < n^* \approx 1 + \frac{\gamma^2}{8} + O(\gamma^4). \quad (36)
$$

The isotropic case $\gamma = 0$ boils down to the univariate ZHawkes model, for which $n^* = 1$, see Aubrun et al. (2022).

4.4.3. The case $n_Z \to +\infty$. Equation (34) can be easily analysed when $n_Z \to +\infty$, in which case α tends to the smallest possible value, 2, corresponding to a maximally 'fat' distribution. The only periodic solution to equation (34) in that limit is

$$
F_\infty(\theta) = \frac{C}{2 + \gamma \sin(2\theta)), \quad (37)
$$

where C is a constant. When n_Z is very large but not infinite, we posit that the solution writes

$$
F(\theta) = F_\infty(\theta) + \frac{1}{n_Z^2} G(\theta) + O \left(\frac{1}{n_Z^2} \right), \quad (38)
$$

together with $\alpha = 2 + \xi/n_Z$, with $G(\cdot)$ and ξ to be determined. Inserting equation (38) in the ODE on F equation (34), one obtains the ODE for G:

$$
[(2 + \gamma \sin(2\theta)) G(\theta)]' = -C \frac{2 \xi (\xi - 1) + \gamma \xi^2 \sin(2\theta)}{2 + \gamma \sin(2\theta)}, \quad (39)
$$

recovering $\xi = 1$ when $\gamma = 0$ and the small γ expansion result above, see equation (35). The function $G(\cdot)$ is plotted in figure 4 for $\gamma = 1$.

When comparing the solution above with the histogram of simulated θ for $n_Z = 10$ and $\gamma = 1$, we find an excellent match with F_∞, without need of any correction, see figure 5. This is expected since the correction term $G(\theta)/n_Z^2$ is of the order of 1% in that case. When n_Z decreases, corrections become more pronounced. The numerically computed F is in good agreement with the angular distribution obtained from a direct numerical simulation of the two dimensional stochastic process (equation (33)).

† The other exact solutions found in Xie (2011) unfortunately correspond to sub-dominant, larger values of α.

4.4. The case \(n_Z \to 0 \). When \(n_Z \) tends to zero, we expect that the exponent \(\alpha \) of the power-law tail diverges. Looking again for \(\alpha \) of the form \(\alpha = 2 + \xi/n_Z \), we find that equation (34) reads:

\[
\left(2\xi(\xi - 1) + \xi^2\gamma \sin(2\theta)) F(\theta) + \frac{n_Z^2(2 + \gamma \sin(2\theta))F(\theta)''}{(2 + \gamma \sin(2\theta)}\right)'' = 0. \tag{41}
\]

When \(n_Z \to 0 \), this equation looks self-contradictory because the remaining term can only be zero if \(F(\theta) = 0 \). However, the second derivative term is a singular perturbation, so it must be treated with care. The idea is to look for a solution \(F \) which is zero nearly everywhere, except very close to some special values of \(\theta \) where the second derivative diverges. It turns out that all the action takes place close to \(\theta = \pi/4 \) when \(\gamma > 0 \) and \(\theta = -\pi/4 \) when \(\gamma < 0 \). Choosing \(\gamma > 0 \), \(\theta = \pi/4 + u\sqrt{n_Z} \), and \(n_Z \to 0 \), equation (41) becomes the Schrodinger equation of a harmonic oscillator, up to terms \(O(n_Z^2) \):

\[
\left[-(2 + \gamma) \frac{d^2 \Psi}{du^2} + 2\xi^2\gamma u^2 \Psi\right] = \frac{2\xi(\xi - 1) + \xi^2\gamma}{n_Z} \Psi, \tag{42}
\]

with

\[
\Psi(u) := F\left(\frac{\pi}{4} + u\sqrt{n_Z}\right).
\]

The smallest \(\alpha \) solution (or 'ground state') is

\[
\Psi(u) = C'e^{-\alpha u} + O(n_Z), \quad \alpha = \xi \sqrt{\frac{\gamma}{4 + 2\gamma}}, \tag{43}
\]

where \(C' \) is another constant, together with

\[
\xi = \frac{2}{2 + \gamma} + \sqrt{\frac{2\gamma}{2 + \gamma}} n_Z + O(n_Z^2). \tag{44}
\]

This solution is only accurate in a region of width \(\sim \sqrt{n_Z} \) around \(\pi/4 \), beyond which it quickly goes to zero. This is in perfect agreement with the numerical solution of equation (34) for small \(n_Z \), shown in figure 6. The parabolic shape in a semi-log plot around \(\theta = \pi/4 \) agrees with the predictions of equation (42). Moreover, the value of \(\alpha = 2 + \xi/n_Z \), with \(\xi \) given in equation (43), also perfectly matches the numerical values reported in figure 7. Note that for \(\gamma < 0 \), the same results hold with \(|\gamma| \) replacing \(\gamma \) in the above equations.

4.5. The general case

In the previous section, we have shown how to compute the power-law tail exponent in the case where only the quadratic ‘ZHawkes’ kernel is present. We also restricted to simple cases where the frequencies \(\omega \) and coupling constants \(n_Z \) are symmetric. Although analytically more challenging, the method outlined above can be implemented more generally, and amounts to solving a problem akin to the quantification condition for the Schrödinger equation. Similarly to the monovariate case, the volatility distribution develops a power-law tail for all values of the Hawkes feedback \(n_H \), as long as some amount of Zumbach feedback \(n_Z \) is present. When \(n_H \neq 0 \), the equation setting the tail in the bivariate case is a three-dimensional partial derivative equation generalizing the equation written in the appendix of Blanc et al. (2017). We expect that even a tiny amount of Zumbach feedback coupled to the standard Hawkes effect brings the exponent \(\alpha \) into the empirical range, as found in the monovariate case (Blanc et al. 2017).

5. Conclusion

Let us summarize what we have achieved in this study. Building on the work of Blanc et al. (2017), we extended the Quadratic Hawkes model to a multivariate framework (MQHawkes). We emphasized that in the multivariate case, both idiosyncratic and common jumps must be considered in the general case, leading to a quite complex framework that we only detailed in the bivariate case.

We defined the endogeneity ratio of MQHawkes, as well as the associated conditions for the process to be stationary. Within the ZHawkes approximation—where quadratic kernels write as a sum of a time-diagonal component,
reproducing a linear Hawkes feedback, and a rank one component—we gave a deeper understanding of the roles of the different feedback terms in the stationarity condition. We found that, in particular, the spectral radius of the Hawkes component needs to be strictly below 1, as for the 1D case. The rank one component contains both exciting and inhibiting realizations and is not involved in the condition, although such a contribution can lead to a divergence of the average intensity of the process, see Aubrun et al. (2022).

We further defined the covariance structures for MQHawkes processes and established the associated Yule–Walker equations. The latter allow one to fully determine the quadratic kernels from data, and thereby pave the way for their empirical calibration.

Finally, we studied the volatility distribution of a 2D MQHawkes process. Restricting our study to ZHawkes without Hawkes ($n_H = 0$), with exponential kernels and in symmetric cases, we were able to characterize exactly the tail of the joint probability density function of the ZHawkes intensity terms. We found that it displays a power law behaviour, in line with the observed fat tails of financial returns. Note that, interestingly, the coupling between assets imposes that the exponent α is the same for all assets—a mechanism that may explain the apparent universality of the power-law tail observed in financial markets.

In a forthcoming companion paper (Aubrun et al. In preparation), we shall calibrate the model on empirical data. On the theoretical side, while expected to be quite heavy, it would be interesting to further develop the analysis in the presence of co-jumps and correlations. Note that for the sake of clarity most of our explicit expressions are given in the 2D case. Expanding them further in the N-dimensional case will be necessary in order to calibrate the model on a large number of assets, say a pool of stocks (Aubrun et al. In preparation).

Also, in the present analysis of the volatility distribution, we restricted to symmetric coefficients and exponential kernels. Confirming that our conclusions are qualitatively robust against changes in symmetry and kernel functionals, and studying its quantitative implications would also be of interest. Furthermore, we have focused on the specific case of the quadratic Hawkes model because of its ability to reproduce multiple financial stylized facts, but it would also be interesting to consider the multivariate generalization of other non-linear Hawkes models, following the interesting insights and methods presented in Kanazawa and Sornette (2021).

Acknowledgments

The authors would like to thank Riccardo Marcaccioli for sharing his work and ideas on detection of jumps in financial data, Natascha Hey and Swann Chelly for fruitful discussions and Jérôme Garnier-Brun, Rudy Morel and Samy Lakhal for their insights on numerical simulations.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was conducted within the Econophysics & Complex Systems Research Chair, under the aegis of the Fondation du Risque, the Fondation de l’École polytechnique, the Ecole polytechnique and Capital Fund Management.

ORCID

Cécilia Aubrun http://orcid.org/0000-0002-9926-6401
Michael Benzaquen http://orcid.org/0000-0002-9751-7625

References

Aubrun, C., Benzaquen, M. and Bouchaud, J.P., Hawkes processes with infinite mean intensity. Phys. Rev. E, 2022, 105(3), L032101.
Aubrun, C., Hey, N., Benzaquen, M. and Jean-Philippe, B., Multivariate Quadratic Hawkes Processes—Part II: Empirical Analysis. In preparation.
Bacry, E., Delour, J. and Muzy, J.F., Multifractal random walk. Phys. Rev. E, 2001, 64(2), 026103.
Bacry, E., Jaisson, T. and Muzy, J.F., Estimation of slowly decreasing Hawkes kernels: Application to high-frequency order book dynamics. Quant. Finance, 2016, 16(8), 1179–1201.
Bacry, E., Mastromatteo, I. and Muzy, J.F., Hawkes processes in finance. Mark. Microstruct. Liq., 2015, 01(01), 1550005.
Blanc, P., Chicheportiche, R. and Bouchaud, J.P., The fine structure of volatility feedback II: Overnight and intra-day effects. Phys. A Stat. Mech. Appl., 2014, 402, 58–75.
Blanc, P., Donier, J. and Bouchaud, J.P., Quadratic Hawkes processes for financial prices. Quant. Finance, 2017, 17(2), 171–188.
Bonnasse-Gahot, L., Berestycki, H., Depueiset, M.A., Gordon, M.B., Roché, S., Rodriguez, N. and Nadal, J.P., Epidemiological modelling of the 2005 French riots: A spreading wave and the role of contagion. Sci. Rep., 2018, 8(1), 1–20.
Bormetti, G., Calcagnile, L.M., Treccani, M., Corsi, F., Marmi, S. and Lillo, F., Modelling systemic price cojumps with Hawkes factor models. Quant. Finance, 2015, 15(7), 1137–1156.
Brémaud, P. and Massoulié, L., Hawkes branching point processes without ancestors. J. Appl. Probab., 2001, 38, 122–135.
Chicheportiche, R. and Bouchaud, J.P., The fine-structure of volatility feedback I: Multi-scale self-reflexivity. Phys. A Stat. Mech. Appl., 2014, 410, 174–195.
Fosset, A., Bouchaud, J.P. and Benzaquen, M., Non-parametric estimation of quadratic Hawkes processes for order book events. Eur. J. Finance, 2021, 28, 663–678.
Gatheral, J., Jaisson, T. and Rosenbaum, M., Volatility is rough. Quant. Finance, 2018, 18(6), 933–949.
Hawkes, A.G., Spectra of some self-exciting and mutually exciting point processes. Biometrika, 1971a, 58(1), 83–90.
Hawkes, A.G., Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Ser. B (Methodol.), 1971b, 33(3), 438–443.
Jaisson, T. and Rosenbaum, M., Limit theorems for nearly unstable Hawkes processes. Ann. Appl. Probab., 2015, 25(2), 600–631.
Kanazawa, K. and Sornette, D., Ubiquitous power law scaling in nonlinear self-excited Hawkes processes. Phys. Rev. Lett., 2021, 127(18), 188301.
Koshelev, M., Testing earthquake damage prevention methods with simulated fractal earthquakes. Phys. Res., 1981, 2853, 2862.
Marcaccioli, R., Bouchaud, J.P. and Benzaquen, M., Exogenous and endogenous price jumps belong to different dynamical classes. J. Stat. Mech. Theory Exp., 2022, 2022(2), 023403.
Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P. and Tita, G.E., Self-exciting point process modeling of crime. *J. Am. Stat. Assoc.*, 2011, **106**(493), 100–108.

Ogata, Y., On Lewis’ simulation method for point processes. *IEEE Trans. Inf. Theory*, 1981, **27**(1), 23–31.

Osorio, I., Frei, M.G., Sornette, D., Milton, J. and Lai, Y.C., Epileptic seizures: quakes of the brain?. *Phys. Rev. E*, 2010, **82**(2), 021919.

Sornette, D. and Osorio, I., Prediction. Chapter. In *Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Physics and Engineering*, edited by I. Osorio, H.F. Zaveri, M.G. Frei, S. Arthurs, pp. 203–237, 2010 (CRC Press, Taylor & Francis Group: Boca Raton).

Wu, P., Muzy, J.F. and Bacry, E., From Rough to Multifractal Volatility: The Log S-fBM Model, 2022. arXiv preprint arXiv:220109516.

Xie, Q.T., New quasi-exactly solvable periodic potentials. *Quant. Finance* **IEEE**, 2009, **9**(5), 505–515.

Zumbach, G., Time reversal invariance in finance. *Quant. Finance*, 2009, **9**(5), 505–515.

A. Appendix

A.1. Notations

The notations and formulae described on this page will be used throughout the paper.

\[\mathbf{A} \quad \text{Matrix} \]
\[\mathbf{A}^T \quad \text{Matrix transpose} \]
\[\mathbf{A}(\tau, \tau) \quad \text{Matrix time diagonal} \]
\[\mathbf{A}_{ii} \quad \text{Matrix diagonal} \]
\[\mathbf{X} \quad \text{Vector} \]

\[(N^c_i)_{i \geq 0} \quad \text{Quadratic Hawkes process describing the time of the price changes of asset } i \]
\[(N^q_i)_{i \geq 0} \quad \text{Quadratic Hawkes process describing the times of co-jumps for 2 price processes in the correlated case} \]

\[(P^i_{jk})_{i \geq 0} \quad \text{Price process of the asset } i \]
\[\psi \quad \text{Tick size} \]
\[\lambda_{ij} \quad \text{Intensity of the QHawkes process } N^i \text{ at time } t \]
\[\lambda_{i,\infty} \quad \text{Baseline intensity of the QHawkes process } N^i \]
\[\mu_{ij} \quad \text{Intensity of the QHawkes process } N^i \text{ at time } t \text{ in the correlated case} \]
\[\mu_{i,\infty} \quad \text{Baseline intensity of the QHawkes process } N^i \text{ in the correlated case} \]
\[n/n_{hi}/n_{q}/n_{z} \quad \text{Endogeneity ratio of the process/ Hawkes contribution/regular contribution/} \\
\text{Zumbach contribution} \]
\[\epsilon_i \quad \text{Sign of the price change at time } t, \epsilon_i \in \{-1, 1\} \]
\[L^i_j \quad \text{Leverage kernel of intensity } i \text{ reflecting the feedback of the price changes of asset } j \]
\[K^i_{jk} \quad \text{Quadratic kernel of intensity } i \text{ reflecting the feedback of the price changes of assets } j \text{ and } k \]
\[Q^i_{jk} \quad \text{Same as } K^i_{jk} \text{ for the correlated case} \]
\[\rho \quad \text{Correlation of the signs of the price changes } dp^1 \text{ and } dp^2 \text{ in the correlated case} \]
\[\mathbf{K}_{d} \quad \text{Kernel matrix such that } \mathbf{K}_{dij} = K^i_{jk} \]
\[\mathbf{K}_{x} \quad \text{Kernel vector representing cross feedback, composed by } K^i_{jk} \text{ with } j < k \]

\[\dd \quad \text{Mean Intensity} \]
\[\delta \quad \text{Kronecker delta: } \delta_{x,y} = 1, \text{ when } x = y \text{ and } \delta_{x,y} = 0 \text{ otherwise} \]
\[\delta(\cdot) \quad \text{Covariance } \mathbb{C}_{ij}(t) := \mathbb{E}\left(\frac{dN^i}{dt} \cdot \frac{dN^j}{dt}\right) \]
\[\mathbf{D}_{jk} \quad 3 \text{ points correlation structure } \mathbb{D}_{jk}(t_1, t_2) := \mathbb{E}\left(\frac{dN^i}{dt} - \bar{z}_{ij} \cdot \frac{dN^j}{dt}\right) \]
\[\mathbb{D}_x \quad \text{Square } (2 \times 2) \text{ correlation matrix such that } \mathbb{D}_{x,ij} = \mathbb{D}_{ij} \]
\[\mathbb{D}_d \quad \text{Square } (2 \times 2) \text{ correlation matrix such that } \mathbb{D}_{d,ij} = \mathbb{D}_{ij} \text{ with } k \neq j \]
\[\mathbf{r}_{H,j} \quad \text{Time diagonal contribution of } (\mathbf{K}_d^i)_{ij} \]
\[\mathbf{H} \quad \text{Hawkes component of intensity } i \text{ from feedback } j; \mathbf{H}^i_j = n_{H,j} \mathbf{r}_{ij}(t) \]
\[r_{H,j}^i \quad \text{Endogeneity ratio of Hawkes component } H^i_j \]
\[Z^i_j \quad \text{Quadratic component of intensity } i \text{ from feedback } j \]
\[d^i_{Z,j} \quad \text{Amplitude of the quadratic component } Z^i_j; d^i_{Z,j} = \sqrt{\mathbb{D}_{q,q}/\bar{z}_{ij}} \]
\[Y^i_j \quad \text{Cross component of intensity } i; \quad Y^i_j = d^i_{Z,x} \mathbf{r}_{z} \]
\[d^i_{Z,x} \quad \text{Amplitude of the cross component of intensity } i \]
\[\mathbf{r} \quad \text{Anisotropy coefficient } \rho \in (-2, 2), \text{ such that } d^i_{Z,x} = 2y_{nz}/\sqrt{\mathbb{D}_{q,q}} \]
\[\mathbf{r}^\ast \quad \text{Joint pdf of } (z_1, z_2) \text{ in polar coordinates} \]

A.2. Conditions for positive QHawkes intensities

Inspired by the method in Blanc et al. (2014), we detail here sufficient conditions for the intensity of the process to be positive, when considering N assets. We first consider the simple case L ≡ 0. First, considering that the kernels are negligible up to a value q, and using a discrete approximation of the integration, we rewrite the intensity associated with asset i:

\[\lambda_{ij} = \lambda_{i,\infty} + \sum_{j=1}^{N} \int_{t-s}^{t} K^i_{jk}(t - s, t - u) \, dp^j_{u} \, dp^k_{u} \approx \lambda_{i,\infty} \]

So we can write:

\[\lambda_{ij} = \lambda_{i,\infty} + \mathbf{r}_{i}^\top \mathbf{K}_{d} \mathbf{r}_{i} \]

where

\[
\begin{pmatrix}
K_{11}(1,1) & \ldots & K_{11}(1,q) & \ldots & \frac{1}{2} K_{1N}(1,1) & \ldots & \frac{1}{2} K_{1N}(1,q) \\
\vdots & & \vdots & & \vdots & & \vdots \\
K_{11}(q,1) & \ldots & K_{11}(q,q) & \ldots & \frac{1}{2} K_{1N}(q,1) & \ldots & \frac{1}{2} K_{1N}(q,q) \\
\frac{1}{2} K_{1N}(1,1) & \ldots & \frac{1}{2} K_{1N}(1,q) & \ldots & K_{1N}(1,1) & \ldots & K_{1N}(1,q) \\
\frac{1}{2} K_{1N}(q,1) & \ldots & \frac{1}{2} K_{1N}(q,q) & \ldots & K_{1N}(q,1) & \ldots & K_{1N}(q,q)
\end{pmatrix}
\]

\[\mathbf{K}_{d} = \frac{1}{2} \]

\[\mathbf{K}_{x} \]

\[1 \]

\[\mathbf{r} \]

\[\mathbf{r}^\ast \]

\[\mathbf{r}_{} \]

\[\mathbf{r}^\top \mathbf{K}_{d} \mathbf{r}_{} \]

\[\mathbf{r}_{} \]
So K_i is a symmetric blocks matrix where the bloc j of the diagonal is

$$\text{bloc}_j = \begin{pmatrix} K_{j}^{1}(1,1) & \cdots & K_{j}^{1}(1,q) \\ \vdots & \ddots & \vdots \\ K_{j}^{1}(q,1) & \cdots & K_{j}^{1}(q,q) \end{pmatrix}$$

and the bloc (k,j) when $k < j$ is

$$\text{bloc}_{kj} = \frac{1}{2} \begin{pmatrix} K_{j}^{1}(1,1) & \cdots & K_{j}^{1}(1,q) \\ \vdots & \ddots & \vdots \\ K_{k}^{1}(q,1) & \cdots & K_{k}^{1}(q,q) \end{pmatrix}$$

$\text{(when }j < k\text{ the cross kernels is }K_{ij}^{1})$.

Thus, in this case, where $L \equiv 0$, sufficient condition to keep the intensity positive is to have K_i positive semi-definite.

If we now consider the case where $L \neq 0$, following the same method, we can write:

$$\lambda_{ij} = \lambda_{i,\infty} + L_i r_i + r_i^\top K_i r_i$$

where r_i and K_i are the same as before and L_i is

$$L_i = (L_i^{1}(1) \ldots L_i^{(q)}(1) \ldots L_i^{N}(1) \ldots L_i^{N}(q))^\top$$

Assuming K_i is invertible, one can complete the square by writing:

$$\lambda_{ij} = \lambda_{i,\infty} + L_i r_i + r_i^\top K_i r_i$$

$$= \lambda_{i,\infty} + \left(r_i + \frac{1}{2} K_i^{-1} L_i \right)^\top K_i \left(r_i + \frac{1}{2} K_i^{-1} L_i \right)$$

$$- \frac{1}{4} L_i^\top K_i^{-1} L_i$$

In conclusion, a sufficient condition for intensities to stay positive when $L \neq 0$ is to have all kernels K_i positive definite and

$$\lambda_{i,\infty} \geq \frac{1}{4} L_i^\top K_i^{-1} L_i, \quad \forall i$$

A.3. Stationary condition in bivariate case

In the bivariate case, we no longer have $\mathbb{E}(dP_i^1 dP_i^2) = 0$ when $i \neq j$. Thus, when computing $\mathbb{E}(\lambda_i)$ to find the mean intensity and thus the stationary condition, we need to compute the mean of cross feedback.

We first introduce $m(dt, d\xi^1, d\xi^2)$ the joint Punctual Poisson Measure associated to the jump processes of the prices (P_1^1, P_2^2). So it is a pure jump process with i.i.d. jump sizes (ξ^1, ξ^2) of common law ρ on $(R, \mathcal{B}(R))$. We assume $\int_R \mathbb{E}(\xi^1 \xi^2 \rho)(d\xi^1, d\xi^2) = \psi_1 \psi_2$.

$$\frac{1}{\psi_1 \psi_2} \mathbb{E}\left(\int_{-\infty}^{t} \int_{-\infty}^{s} K_{12}(t-s, t-u) dP_1^1 dP_2^2 \right)$$

$$= \frac{1}{\psi_1 \psi_2} \mathbb{E}\left(\int_{-\infty}^{t} K_{12}(t-u, t-u) dP_1^1 dP_2^2 \right)$$

$$= \frac{1}{\psi_1 \psi_2} \mathbb{E}\left(\int_{R} \int_{-\infty}^{t} K_{12}(t-u, t-u) x_u^{1} x_u^2 \mu_u^2 d\mu_u (d\xi^1, d\xi^2) \right)$$

$$= \frac{1}{\psi_1 \psi_2} \mathbb{E}\left(\int_{R} \int_{-\infty}^{t} K_{12}(t-u, t-u) x_u^{1} x_u^2 \mu_u^2 d\mu_u (d\xi^1, d\xi^2) \right)$$

$$\times \mathbb{E}\left(\int_{R} \int_{-\infty}^{t} \mu_u^2 d\mu_u (d\xi^1, d\xi^2) \right)$$

$$= \int_{-\infty}^{t} K_{12}(t-u, t-u) \mathbb{E}(x_u^{1} x_u^2 \mu_u^2) d\mu_u$$

$$= \rho \mathbb{E}\int_{-\infty}^{t} K_{12}(t-u, t-u) d\mu_u$$

A.4. Yule–Walker equations: complement

We write the Yule–Walker equations for the matrix and one for D_x, the calculations can be made as in appendix 1 of Blanch et al. (2017):

$$D_x(\tau_1, \tau_2) = \int_{t_1}^{+\infty} K_d(u) D_x(\tau_1 - u, \tau_2 - u) du$$

$$+ 2 \int_{t_1}^{+\infty} K_d(u, \tau_1) \left(D_{12}(u - \tau_1, \tau_2 - \tau_1) D_{221}(u - \tau_1, \tau_2 - \tau_1) \right)^\top du$$

$$+ \int_{t_1}^{+\infty} K_x(u, \tau_1) \left(D_{12}(u - \tau_1, \tau_2 - \tau_1) \right)^\top du$$

$$+ \int_{t_1}^{+\infty} K_x(\tau_1, u) \left(D_{12}(u - \tau_1, \tau_2 - \tau_1) \right)^\top du$$

(A1)

In the bivariate case, we need to consider $d\mathcal{N}^c$. Thus, C becomes a 3×3 matrix, and the three-point correlation now also considers the components D_{ij}. With this in mind, we can calculate the Yule–Walker equation for C in the bivariate case:

$$C(\tau) = \lambda Q_0(\tau) + \int_{0}^{+\infty} Q_0(u, \tau) C(\tau - u) du$$

$$+ 2 \int_{0}^{+\infty} \int_{u+}^{+\infty} Q_0(u, \tau + v) \mathbb{E}(D_{12})^\top (u, \tau + v) d\mu(u, v) du$$

$$+ \int_{0}^{+\infty} \int_{u+}^{+\infty} Q_0(u, \tau + v) \mathbb{E}(D_{12})^\top (u, \tau + v) (u, \tau + v) d\mu(u, v) du$$

$$+ \int_{0}^{+\infty} \int_{u+}^{+\infty} Q_0(u, \tau + v) \mathbb{E}(D_{12})^\top (u, \tau + v) (u, \tau + v) d\mu(u, v) du$$

$$+ \rho \int_{0}^{+\infty} \left(\mathcal{C}^{11}_1 \mathcal{C}^{11}_2 \right)^\top (u, \tau + v) (u, \tau + v) d\mu(u, v) du$$

$$+ \int_{0}^{+\infty} \left(\mathcal{C}^{11}_1 \mathcal{C}^{11}_2 \right)^\top (u, \tau + v) (u, \tau + v) d\mu(u, v) du$$

where \mathcal{C} is a 2×2 matrix defined as

$$\mathcal{C} := \left(\begin{array}{cc} \lambda_1 & \bar{\mu}_c \\ \bar{\mu}_c & \lambda_2 \end{array} \right).$$
A.5. Asymptotic behaviour of decaying power law kernels

A.5.1. Asymptotic forms. We consider decaying power law kernels, such that:

\[\mathcal{K}_d(\tau) \sim \tau^{-1-\epsilon_d} \]

\[\mathcal{K}_d(\tau v_1, v_2) \sim \tau^{-2-\epsilon_d} \]

Where \(\mathcal{K}_d(\tau) \) and \(\mathcal{K}_d(\tau v_1, v_2) \) are bounded. Given the Yule–Walker equations of Section 3.2, we expect the correlation structure to have a similar form. So we look for them as decaying power law functions with parameters defined such as:

\[C(\tau) \sim \tau^{-\rho} \]

\[D_d(\tau v_1, v_2) \sim \tau^{-2\rho} \]

As in Blanc et al. (2017), we make the following hypothesis on the exponents: \(\rho_0 > \frac{1}{2}, \rho_0 > \frac{1}{2}, \rho_0 > \frac{1}{2} \), so the first and second moments are finite. Moreover, we focus on the cases:

- Non critical case \((n_H < 1)\), where we assume \(0 < \epsilon_d < 1 \), \(0 < \epsilon_0 < 1 \).
- Critical case \((n_H = 1)\), where we assume \(0 < \epsilon_d < \frac{1}{2} \), \(0 < \epsilon_0 < \frac{1}{2} \).

In the non-critical case \((n < 1)\), the method consists in replacing \(K_d, K, C, D_d \) by their asymptotic expressions presented above in the Yule–Walker equations (equations (20), (23) and (A1)) and study the limit \(\tau \to +\infty \).

In the following, we describe the method to find the relationship between the exponents of the correlation structures and the exponents of the kernels in the critical case. In a next section, we give the resulting relationships for both the critical and non critical case.

A.5.2. Method for the asymptotic study in the critical case of QHawkes processes.

In critical case, when \(n_H = 1 \), the relationship between auto-correlation structures exponents and kernel exponents can not be determined by looking at the limit \(\tau \to +\infty \). Thus, to overcome this difficulty, we use a second method to investigate asymptotic behaviour using Fourier-domain.

This method for the linear Hawkes can be found in Hawkes (1971b). We present it now for the quadratic Hawkes process. For the sake of simplicity we limit ourselves to the 1D case here, the multivariate case can be worked out similarly.

The definitions of the autocorrelation structures in the 1D case can be found in Blanc et al. (2017) and are substantially similar to those used here.

We define the Fourier transform of a function \(f(\omega) \) such as:

\[\hat{f}(\omega) = \int_{\mathbb{R}} f(t) e^{-i\omega t} dt \]

Step 1: Find the regularity of the Yule–Walker terms:

As for the critical case, we start from the Yule–Walker equation on \(C \) for \(\tau \neq 0 \) (see equation (9) in Blanc et al. (2017)):

\[\mathcal{C}(\tau) = K(\tau)\mathcal{L} + \int_{\tau-\infty}^{\tau+\infty} K(\tau - u)\mathcal{L}(u)du \]

and its extension in 0 in Fourier domain gives:

\[\hat{\mathcal{C}}(\omega) = \hat{K}(\omega) + \hat{\mathcal{L}}(\omega) \]

To use the Fourier transform, we need to extend \(K \) and \(D \) for \(\tau, \tau_1, \tau_2 < 0 \). Thus, we consider the function \(K \) defined on \(\mathbb{R} \) with \(K(\tau) = 0 \) for \(\tau < 0 \) similarly for \(D \). Thus, we expect to have \(\hat{K}(\omega) \) and \(\hat{D}(\omega) \) regular in the half plan \(\text{Im}(\omega) < 0 \).

The 2 first terms of equation (A2) are the same as in the Yule–Walker equation for the linear case. Hence, the regularity arguments are the same as in Hawkes (1971b).

However, we need to study the last term of equation (A2), \(C_3(\tau) = \int_{\tau-\infty}^{\tau+\infty} K(\tau + u, \tau + r)D(u, r)drdu \).

In order to study the regularity we decompose \(\omega \) into \(\omega = \omega_R + i\omega_I \). Then, switching integration order and using Chasles relation we obtain:

\[\hat{C}_3(\omega) = 2 \int_{0}^{+\infty} \int_{-\infty}^{+\infty} e^{-i\omega_I t} e^{i\omega_R t} K \times (\tau + u, \tau + r)D(u, r)drdu \]

\[\hat{C}_3(\omega) = 0 \]

For the second term, we switch integration order, and we obtain:

\[\hat{C}_3(\omega) = 2 \int_{0}^{+\infty} \int_{-\infty}^{+\infty} e^{-i\omega_I t} e^{i\omega_R t} K \times (\tau + u, \tau + r)D(u, r)drdu \]

\[\hat{C}_3(\omega) = 0 \]

In this case, we have \(\tau > -u \), so \(\tau + u \geq 0 \), and \(\tau + u > 0 \) and \(\tau + r > 0 \), so \(\hat{C}_3(\omega) \) is regular in the half plan \(\text{Im}(\omega) < 0 \).

For \(\hat{C}_3(\omega) \), we have \(\tau + u > 0 \) and \(\tau + r > 0 \), so \(K(\tau + u, \tau + r) = 0 \). Since we are only interested in \(\tau \to +\infty \), so \(\hat{C}_3(\omega) \) is regular in the half plan \(\text{Im}(\omega) < 0 \).

\[\hat{C}_3(\omega) = \hat{K}(\omega)D + \hat{\mathcal{L}}(\omega) = \hat{C}_2(\omega) + \hat{C}_3(\omega) \]

\[\hat{B}(\omega) = \hat{K}(\omega)D + \hat{\mathcal{L}}(\omega) = \hat{C}_2(\omega) + \hat{C}_3(\omega) - \hat{C}(\omega) \]

Thus,

\[\hat{C}(\omega) = \hat{K}(\omega)D - \hat{\mathcal{L}}(\omega) = \hat{C}_2(\omega) + \hat{C}_3(\omega) \]

Since \(\mathcal{C} \) is even, we have \(\hat{\mathcal{C}}(\omega) = \hat{\mathcal{C}}(-\omega) \) and equation (A5) becomes:

\[(\hat{K}(\omega)D + \hat{C}_2(\omega) + \hat{C}_3(\omega) - \hat{\mathcal{L}}(\omega))^T (1 - \hat{K}(\omega))^{-1} \]
We now need to consider the term $e^{i \omega t} \hat{K}^T(\omega)$, similarly, we have:

\[
\begin{align*}
\hat{K}(\omega)C_3^T(\omega) - \hat{C}_3^T(\omega)\hat{K}(\omega) &= 2 \int_0^\infty \int_{\tau+}^\infty \int_0^\infty e^{i \omega \tau} K(t+\tau,t+\tau) D(u,r) D(u,r) \\
&\times e^{i \omega \tau} (t+u,r)K(t+\tau,t+\tau) \, dr \, du \\
&\times e^{i \omega \tau} (t+u,r)K(t+\tau,t+\tau) \, dr \, du \\
&= E_1(-\omega) + E_2(-\omega)
\end{align*}
\]

with $E_1(-\omega)$ being regular for $\text{Im}(\omega) < 0$ and $E_2(-\omega)$ for $\text{Im}(\omega) > 0$.

Similarly,

\[
\hat{C}_3^T(\omega) \hat{K}(\omega) = 2 \int_0^\infty \int_{\tau+}^\infty \int_0^\infty e^{i \omega \tau} K(t+\tau,t+\tau) D(u,r) D(u,r) \\
&\times e^{i \omega \tau} (t+u,r)K(t+\tau,t+\tau) \, dr \, du \\
&\times e^{i \omega \tau} (t+u,r)K(t+\tau,t+\tau) \, dr \, du \\
&= E_1(-\omega) + E_2(-\omega)
\]

we have

\[
\begin{align*}
K(t+\tau,t+\tau) &= 0, \\
&\text{because } K(t+\tau,t+\tau) \text{ is null for } t \leq -\tau.
\end{align*}
\]

If we switch the integration order in the second term, (A8), we have

\[
\int_0^\infty \int_{\tau+}^\infty e^{i \omega \tau} K(t+\tau,t+\tau) \, dr \, du \\
= \int_0^\infty \int_{\tau+}^\infty e^{i \omega \tau} K(t+\tau,t+\tau) \, dr \, du
\]

For same reasons as before, first term, (A10), is null, second term, (A11), is regular in half plan $\text{Im}(\omega) > 0$, and last term, (A12), is regular in half plan $\text{Im}(\omega) < 0$.

Wrapping up those results, we have

\[
\hat{K}(\omega)C_3^T(\omega) - \hat{C}_3^T(\omega)\hat{K}(\omega) = 2 \int_0^\infty \int_{\tau+}^\infty \int_0^\infty e^{i \omega \tau} K(t+\tau,t+\tau) D(u,r) D(u,r) \\
&\times e^{i \omega \tau} (t+u,r)K(t+\tau,t+\tau) \, dr \, du \\
&\times e^{i \omega \tau} (t+u,r)K(t+\tau,t+\tau) \, dr \, du \\
&= F_1(\omega) + F_2(\omega)
\]

with $F_1(\omega)$ being regular for $\text{Im}(\omega) < 0$ and $F_2(\omega)$ for $\text{Im}(\omega) > 0$.
Table A1. C exponents for both non critical and critical case, when using the following notations $\epsilon = \min(\epsilon_d, \epsilon_o)$ and $\rho = \frac{1}{2} \min(\delta_d + \rho_d, \delta_o + \rho_o, \delta_d + \rho_d, \delta_o + \rho_d, \delta_x + \rho_x)$.

Non Critical	Critical
β_d	$\beta_d = 1 + \epsilon_d$ if $\frac{4\epsilon_d}{1+\epsilon_d} < \min(\delta_d + \rho_d, \delta_o + \rho_o, \delta_d + \rho_d, \delta_o + \rho_d, \delta_x + \rho_x)$
β_0	$\beta_0 = 1 + \epsilon_o$ if $\frac{4\epsilon_o}{1+\epsilon_o} < \min(\delta_d + \rho_d, \delta_o + \rho_o, \delta_d + \rho_d, \delta_o + \rho_d, \delta_x + \rho_x)$

Table A2. D _x ‘time diagonal’ exponents for both non critical and critical case, when using the following notations $\epsilon = \min(\epsilon_d, \epsilon_o)$ and $\rho = \frac{1}{2} \min(\delta_d + \rho_d, \delta_o + \rho_o, \delta_d + \rho_d, \delta_o + \rho_d, \delta_x + \rho_x)$.

Non Critical	Critical
β_d^x	$\beta_d^x = 2\rho_d - \frac{1}{2}$ if $\rho_d < \frac{2\rho_d}{1+\rho_d}$
β_0^x	$\beta_0^x = 2\rho_x + \rho_o - 1$ if $\rho_o < \frac{2\rho_o}{1+\rho_o}$

Finally, using equation (A3), we obtain for QHawkes in 1D:

$$\hat{C}^*(\omega) = (1 - \hat{K}(\omega))^{-1} \left(D + \hat{C}_3(\omega) + \hat{C}_3(-\omega) - E_1(-\omega) \right)$$

For the multivariate case the matrices we integrate in \hat{C}_3, E_1, E_2, F_1 and F_2, will be a mix of D_d, D_x, \bar{K}_d and K_x.

A.6. Asymptotic study- results tables

Based on the notations in appendix A.5.1, we give in Table A1 the results of the asymptotic behaviour of covariance structures when considering power law decaying kernels.

In both non critical and critical case, we have the same result for the exponent of non time diagonal parts $\rho_x = \rho_o - \frac{1}{2}$ and $\delta_o = \rho_0$. The exponent $\delta_d = \rho_d$ can take 2 values:

1. $\delta_d = \rho_d$ if $\rho < \frac{1}{2}$
2. $\delta_d = 2\rho_d - \frac{1}{2}$ if $\rho_d > \frac{1}{2}$

From empirical observations, we see that it makes sense if the diagonal terms persist longer in time than the non-diagonal terms. Hence, we expect $\delta_d < \delta_o$. Considering this hypothesis, we would only keep the first case, $\delta_d = \rho_d < \rho_o$.

For the time diagonal exponent (ρ_d^x, ρ_o^x, \bar{K}_d^x), we need to make a difference between the non critical case ($\mu_T < 1$), and the critical case ($\mu_T = 1$). We call $\epsilon = \min(\epsilon_d, \epsilon_o)$ and $\rho = \frac{1}{2} \min(\delta_d + \rho_d, \delta_0 + \rho_o, \delta_o + \rho_o, \delta_d + \rho_d, \delta_x + \rho_x)$. If $\mu_T < 1$, $\rho = \frac{1}{2} \min(\rho_d + \rho_o, 2\rho_d, 2\rho_o, 2\rho_2, \delta_x + \rho_x)$.

A.7. Computation of the infinitesimal generator

We consider the processes, introducing a time scale $T = h_T(\omega)$. We eventually diverge, we define the processes $h_T^T(t) = h_1(t)$ and $h_T^T(t) = h_2(t)$.
The intensity of, respectively, the first and second process are given by

\[T^\omega \lambda_1 \delta t_1 + n^\omega_1 T_1 \delta t_1 - \omega_1 T \delta z_1 \]

where \(T \delta t_1 \) is the infinitesimal generator of the continuous process \(T \delta z_1 \) between the Poisson processes driving \(1 \) and \(2 \).

A.8. General ODE for \(F(\theta) \)

We write here the general ODE on \(F(\theta) \) for any parameters \(a_\theta \)'s and \(\omega \):