Dentoskeletal and tooth-size differences between Syrian and Hungarian adolescents with Class II division 1 malocclusion: a retrospective study

Alaa Al Ayoubi*, Alireza Khandan Dezfully and Melinda Madléná*

Abstract

Objectives: Malocclusion features differ across various populations and ethnicities. At this time, no data are available regarding the dentofacial differences between Syrian and European adolescents with Class II division 1 malocclusion, which is one of the most frequently treated pathologies in orthodontic practice. The present combined cephalometric and tooth-size study aimed to compare the dentoskeletal and tooth-size characteristics of Syrian and Hungarian adolescents with Class II division 1 malocclusion.

Results: Class II division 1 malocclusion in Hungarian adolescents was a sagittal discrepancy, while in Syrian adolescents, it was a result of excessive vertical development. Syrian adolescents had a significantly excessive vertical development when compared with Hungarian adolescents, regardless of sex (p < 0.01). Hungarian boys had significantly more protruded maxillae (p < 0.001) and less retruded mandibles (p < 0.01) when compared with Syrian boys, while Hungarian girls had significantly shorter mandibles relative to those of Syrian girls (p < 0.01). Syrian girls had significantly more protrusive lower incisors (p < 0.001), accompanied by significantly larger anterior tooth-size ratios when compared to Hungarian girls (p < 0.001). In conclusion, these findings underscore the importance of considering ethnic differences during orthodontic diagnosis and may have implications for optimizing orthodontic treatments in Syrian and Hungarian adolescents with Class II division 1 malocclusion.

Keywords: Ethnic differences, Dentoskeletal structure, Tooth size, Class II division 1 malocclusion

Introduction

Although several studies have reported ethnic differences in dentoskeletal structure and tooth-size characteristics [1–8], limited studies have investigated these differences in Class II division 1 (Class II/1) malocclusion [9–11]. With prevalences of 16% and 23.5% in Syrian and Hungarian adolescents, respectively [12, 13], this is one of the most frequently seen malocclusions in orthodontic practice.

Various factors cause Class II/1 malocclusion. However, conflicting results, possibly due to ethnic variations, have prevented their general characterization [9–11]. Likewise, tooth-size ratios show ethnic differences [4, 5]. In view of recent migration trends, especially from the Middle-East toward Europe, these findings underscore the need for updated comparisons of dentoskeletal and tooth-size characteristics across ethnicities [14]. Although some research has considered some dentoskeletal and tooth-size characteristics of Syrian populations [15, 16] or Hungarian populations [17, 18], no study has

*Correspondence: alaa.alayoubi@outlook.com; madlenamadlena784@gmail.com
Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 64-66, Szeged 6720, Hungary

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
compared these characteristics between Syrian and European (Hungarian) adolescents. Despite the evaluation of Class II/1 malocclusion in multiple studies, the following factors limit their results:

- The influence of skeletal age variations on results’ reliability has been neglected, since most Class II/1 malocclusion studies grouped patients by their chronological age [9–11, 19–23].
- While most studies selected patients with Class II/1 malocclusion based on their dental relationships (molar and/or incisor relationships) [9, 11, 20, 21, 23–25], these patients might have had either Class I or Class II skeletal pattern; studies on both skeletal and dental Class II/1 malocclusion are lacking [10, 22, 26].
- The dentoskeletal structure of individuals with Class II/1 malocclusion was analyzed during childhood [10, 11], adulthood [26], or by including subjects across a wide age-range—early childhood to adulthood [19–21]. However, most orthodontic patients seek treatment during adolescence, during which all treatment options and techniques are available.
- Limited studies have included cephalometric and tooth-size measurements in the same investigation [1]. This combination could comprehensively diagnose the malocclusion and elucidate the complex relationship between its components.

Objective

This combined cephalometric and tooth-size study aimed to compare the skeletal morphology, dental position, and tooth size of skeletal age- and sex-matched Syrian and Hungarian adolescents with skeletal and dental Class II/1 malocclusion.

Main text

Materials and methods

Subjects

The sample size assumed a bilateral two-sample t test for assessment. According to previous similar dentoskeletal and tooth-size studies [5, 27], effect sizes were estimated from the SNGoMe angle 5.80° (± 5.78°) [27], and the upper central-incisor width 0.54 (± 0.52) mm [5], respectively. With a significance level alpha = 0.05 (two-sided) and 80% power, the required sample size was calculated to detect standardized effect sizes of 1.00 (5.80/5.78°) and 1.03 (0.54/0.52 mm) for dentoskeletal and tooth-size comparisons, respectively. Sample size calculation showed that 17 patients were required for each sex subgroup in each ethnic group [28]; lateral cephalograms and dental casts of 86 untreated patients with skeletal and dental Class II/1 malocclusion were thus included in this study. The study sample comprised two groups based on ethnicity—group 1, 43 Syrian patients selected from a private orthodontic office in Damascus, Syria; and group 2, 43 Hungarian patients selected from the Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Hungary. Both groups included 24 girls and 19 boys. Each patient in group 1 was matched with a patient in group 2 by sex and skeletal age. To eradicate bias caused by growth variation, skeletal age was assessed from lateral cephalograms according to the method developed by Baccetti et al. [29]. Age and sex distributions of the study sample are summarized in Table 1.

The inclusion criteria were as follows:

- Age, 12–17 years.
- Syrian ethnicity for group 1; Hungarian ethnicity for group 2.
- Overjet > 4 mm without upper incisor retroclination (U1/NA angle ≥ 22°).
- Half-unit or greater bilateral distal occlusion with permanent dentition.
- ANB angle > 4° with a convex facial profile.
- No extractions, interproximal restorations, or conditions affecting the mesio-distal teeth diameter.

The exclusion criteria were patients with history of orthodontic treatment, trauma, or craniofacial syndromes. The Human Investigation Review Board at the University of Szeged (151/2018-SZTE) approved this

Boys		Girls		Total	
Mean age ± S.D (y)	Age range (y)	Sample size (n)	Mean age ± S.D (y)	Age range (y)	Sample size (n)
14.1 ± 1.7	11.7–17.3	19	14.6 ± 1.4	11.9–17.1	24
14.0 ± 2.0	11.4–17.6	19	14.6 ± 1.8	11.3–17.7	24
Total	38		48	86	
retrospective cross-sectional study. The participants or their parent/legal guardian provided written informed consent to participate in this study.

Cephalometric measurements
Pretreatment lateral cephalograms were obtained for each patient in both ethnic groups using the same protocol (head in natural position and teeth in maximal intercuspation). Magnification was corrected to 1:1 since the cephalograms were acquired with two different machines. The cephalometric measurements used herein were derived from the analyses developed by Jara-bak, Steiner, and the University of Bonn [30–32]. Definitions of the cephalometric measurements are presented in Additional file 1: Table S1. Landmarks and reference lines are shown in Additional file 2: Figure S1. A special orthodontic software (OnyxCeph3™, Image Instruments GmbH, Chemnitz, Germany) was used by one investigator to digitize and analyze all lateral cephalograms.

Dental-cast measurements
The teeth in both arches—from the right first permanent molar to the left first permanent molar—were measured at the largest mesio-distal dimension [33], to the nearest 0.01-mm, by one investigator using a universal digital caliper (MIB Messzeuge GmbH, Spangenberg, Germany). Bolton's overall ratio (\sumwidths of the mandibular 6–6/ \sumwidths of the maxillary 6–6 × 100) [34] and Bolton's anterior ratio (\sumwidths of the mandibular 3–3/ \sumwidths of the maxillary 3–3 × 100) [34] were calculated and used in statistical analyses.

Method error
To establish intra-examiner reliability, measurements of 20 randomly selected cephalograms and casts were replicated several weeks later by the same investigator. Dahlberg’s formula [35] showed random errors ≤ 0.40 mm and $\leq 0.44^\circ$ for linear and angular cephalometric variables, respectively, and ≤ 0.17 mm for tooth-size measurements. Paired sample t-tests showed no systematic error ($p > 0.05$). Intraclass correlation coefficients were > 0.95.

To establish inter-examiner reliability, measurements of 20 randomly selected cephalograms and casts were replicated again by another investigator. Random errors were ≤ 0.46 mm and $\leq 0.48^\circ$ for linear and angular cephalometric variables, respectively, and ≤ 0.33 mm for tooth-size measurements. Systematic error was absent ($p > 0.05$). Intraclass correlation coefficients were > 0.93.

Statistical analyses
Descriptive statistics of each variable were calculated using SPSS software 24.0 (SPSS Inc., Chicago, USA). Intergroup comparisons were performed using t- or Mann–Whitney U-tests, depending on data normality (according to Shapiro–Wilk’s test). For normally-distributed data, two-sample or Welch’s t-tests were used depending on equality of variance (according to F-test). The level of statistical significance was set at 0.05.

Results
Results for sex-based comparisons between the two ethnic groups are presented in Table 2.

Results for overall comparisons between the two ethnic groups are presented in Additional file 3: Table S2.

Cephalometric comparisons
Sagittal comparisons revealed that Hungarian boys had significantly more protruded maxillae (SNA) than their Syrian counterparts ($p < 0.001$), while Syrian boys had significantly more retracted mandibles (SNB) ($p < 0.01$). Hungarian girls had significantly smaller mandibular lengths (Go-Gn) than their Syrian counterparts ($p < 0.01$) (Fig. 1).

Vertical measurements (ArGoMe, \sumBjork, SN/GoMe, and S-Go:N-Me) showed significant differences ($p < 0.01$) between Syrian and Hungarian adolescents, regardless of sex, indicating a hyperdivergent facial pattern in Syrian ethnicity (Additional file 3: Table S2).

Dental measurement results revealed that Syrian girls had significantly more protruded lower incisors (L1/NB and L1-NB) ($p < 0.001$) than Hungarian girls. These observations did not extend to the male populations (Table 2).

Tooth-size comparisons
Syrian girls had significantly greater anterior tooth-size ratios than Hungarian girls ($p < 0.001$). Syrian and Hungarian boys showed no such difference (Table 2).

Discussion
This study evaluated the effects of ethnic variations on dentoskeletal and tooth-size characteristics of Syrians and Hungarians adolescents with Class II/1 malocclusion. As most dentoskeletal variations can be ascribed to sex, age (maturity stage), and ethnicity [9], and most tooth-size variations can be ascribed to sex and ethnicity [4, 5], this study compared sex- and skeletal age-matched individuals to yield clear conclusions on the impact of ethnicity on dentoskeletal and tooth-size characteristics.

Skeletal comparisons showed that sagittal measurements significantly differed between the two groups—Hungarian boys had more protruded maxillae compared to Syrian boys, while Hungarian girls had significantly shorter mandibles than Syrian girls (Fig. 1). These observations in Hungarian adolescents support those of a previous study [19], which found
Table 2 Sex-based comparison of cephalometric measurements and tooth-size ratios between the two ethnic groups

	Boys		Girls					
	Syrians (n = 19)	Hungarians (n = 19)	ty	Australians (n = 24)	Hungarians (n = 24)			
	Mean ± S.D	Mean ± S.D	p-value	Mean ± S.D	Mean ± S.D	p-value		
			95% CI of Mean difference		95% CI of Mean difference			
	L	U	L	U	L	U		
Skeletal values								
SNA (°)	79.70 ± 2.72	83.43 ± 2.79	−5.54 ± 1.91	<0.001	81.06 ± 2.50	80.69 ± 3.49	−1.40 ± 2.13	0.679
SNB (°)	73.81 ± 2.93	76.73 ± 2.82	−4.81 ± 1.03	0.003	74.05 ± 2.85	74.24 ± 3.62	−2.09 ± 1.70	0.840
ANB (°)	5.89 ± 1.46	6.70 ± 1.19	−1.69 ± 0.66	0.068	7.01 ± 1.75	6.45 ± 1.56	−0.41 ± 1.52	0.249
ANS-PNS (mm)	56.44 ± 4.95	56.68 ± 3.12	−0.297 ± 0.27	0.859	55.00 ± 4.04	53.39 ± 3.15	−0.50 ± 3.71	0.132
Go-Gn (mm)	73.13 ± 6.18	71.38 ± 5.05	−1.96 ± 0.54	0.345	71.93 ± 4.58	67.77 ± 4.50	1.52 ± 6.79	0.003
Vertical values								
ArGoMe (°)	124.08 ± 7.88	119.11 ± 6.25	0.30 ± 0.96	0.038	125.29 ± 9.62	120.18 ± 6.67	0.30 ± 9.32	0.038
Bjork (°)	393.3 ± 5.75	392.16 ± 5.85	2.35 ± 0.99	0.002	400.14 ± 6.43	394.53 ± 6.75	1.78 ± 9.44	0.005
Ar-Go (mm)	41.56 ± 5.11	44.48 ± 4.70	−6.15 ± 0.30	0.074	42.01 ± 4.81	39.98 ± 4.17	−0.58 ± 4.66	0.124
SN/GoMe (°)	38.33 ± 5.76	32.16 ± 5.65	2.35 ± 1.09	0.002	40.14 ± 6.43	34.53 ± 6.75	1.78 ± 9.44	0.005
S-Go-N-Me (%)	61.64 ± 4.09	66.71 ± 4.51	−7.90 ± 0.24	0.001	60.62 ± 4.69	64.47 ± 5.42	−6.80 ± 0.90	0.012
Dental measurements								
U1/NA (°)	26.97 ± 4.18	26.98 ± 3.71	−0.26 ± 0.58	0.898	26.44 ± 2.60	28.16 ± 4.32	−3.81 ± 0.36	0.102
L1/NB (°)	29.37 ± 5.56	28.80 ± 5.23	−0.99 ± 0.41	0.750	35.45 ± 4.34	27.50 ± 6.05	4.89 ± 11.01	<0.001
U1-NA (mm)	5.86 ± 2.06	4.90 ± 2.11	−0.42 ± 0.23	0.166	6.21 ± 2.15	5.39 ± 2.29	−0.47 ± 2.11	0.208
L1-NB (mm)	8.22 ± 2.03	6.88 ± 2.08	−0.01 ± 0.26	0.052	9.73 ± 1.96	5.52 ± 1.88	3.09 ± 5.32	<0.001
Tooth-size ratios								
Anterior ratio (%)	80.55 ± 2.95	79.42 ± 2.08	−0.57 ± 0.28	0.166	80.81 ± 2.60	77.89 ± 2.42	1.46 ± 4.38	<0.001
Overall ratio (%)	92.74 ± 1.80	92.79 ± 2.33	−1.42 ± 1.32	0.941	92.92 ± 1.65	91.87 ± 1.98	0.00 ± 2.11	0.051

Italic values indicate significance of p value (p < 0.05)

95% CI Standard deviation, CI Confidence interval

The involvement of different ethnicities across various studies may explain the inconsistent findings. Many authors have recognized the importance of excessive vertical development in the determination of mandibular position [10, 20, 26]. Thus, retruded mandibles of Syrian adolescents in this study can be explained with respect to the vertical plane: Syrian adolescents, in comparison to Hungarian adolescents, regardless of sex, had hyperdivergent facial patterns (Fig. 1). This finding agrees with those of other studies that compared non-Caucasian and Caucasian Class II1 patients [9, 10, 27].

The position of dentition, relative to the skeletal structure, is another important aspect of Class II/1 malocclusion. The only significant difference in the dental position found in this study was related to the lower incisors and was evident among girls. Syrian girls had more protrusive lower incisors than Hungarian girls. Status on the position of lower incisors in patients with Class II/1 malocclusion remains unclear. Most non-Caucasian studies
have reported protruded lower incisors [20–22, 26], and two comparative studies [9, 10] support ethnic variations in lower incisor position between non-Caucasian and Caucasian populations. Since a tooth-size excess with space limitation might cause incisor protrusion, the larger anterior tooth-size ratios of Syrian girls relative to Hungarian girls might further account for their lower incisor protrusion. This is because the large anterior tooth-size ratios of Syrian girls reflect a relative tooth-size excess in the lower anterior region. The significant difference in anterior tooth-size ratio between Syrian and Hungarian girls can be attributed to ethnic variations [4, 5].

Clinical implications
First, because Class II/1 malocclusion in Hungarian adolescents represents sagittal discrepancy (protruded maxillae in boys; short mandibles in girls), treatment strategies should aim to inhibit maxillary growth using extra-oral forces in Hungarian boys and enhance mandibular growth using functional appliances in Hungarian girls. Second, since Syrian adolescents had considerable vertical tendencies and most orthodontic treatment mechanics tend to open the bite, greater care should be exercised to control the vertical dimension when treating Syrian adolescents compared with Hungarian adolescents. Treatment strategies for Class II/1 Syrian adolescents should aim to alter the extent and direction of vertical facial growth and prevent posterior mandibular rotation. Finally, Class II/1 Syrian girls exhibited more protrusive lower incisors with relative tooth-size excess in the lower anterior segment, which affects treatment objectives regarding the optimal final position of these teeth. Therefore, a more interproximal reduction might be a better indication for Syrian girls than Hungarian girls, if the treatment decision is to decrease protrusion. Contrarily, protruded lower incisors, more than the standard levels, might be acceptable outcomes in Syrian girls.

Conclusions
Class II/1 treatment strategies for Hungarian adolescents are not applicable to Syrian adolescents, because.

- Class II/1 malocclusion reflects sagittal discrepancy in Hungarian adolescents (protruded maxillae in boys; short mandibles in girls), while it was caused by excessive vertical growth among Syrian adolescents, regardless of sex.
- Class II/1 Syrian girls have more protrusive lower incisors with a relative tooth-size excess in the lower anterior region compared with Class II/1 Hungarian girls.

Thus, even among patients with the same malocclusion type, dentoskeletal and tooth-size characteristics can vary with ethnicity. Hence, orthodontists should
be aware of this variation to optimize their differential diagnosis and treatment planning.

Limitations
Although sample size estimation showed sufficient sample sizes, they were relatively small. This was the major drawback of the present study; therefore, the results should be interpreted with caution, and additional studies with larger sample sizes are warranted.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13104-020-05115-0.

Abbreviation
Class II/1: Class II division 1.

Acknowledgements
Not applicable.

Authors’ contributions
AA contributed to the planning, data acquisition, analysis of data, interpretation of the results and writing of the manuscript. AK contributed to analysis of data, interpretation of the results and writing of the manuscript. MM contributed to the planning, analysis of data, interpretation of the results and writing of the manuscript. All authors read and approved the final manuscript.

Funding
Open access funding was provided by the University of Szeged (SZTE).

Availability of data and materials
The datasets generated and analyzed during the current study are available from the corresponding authors on reasonable request.

Ethics approval and consent to participate
The present study was approved by the Human Investigation Review Board at the University of Szeged (151/2018-SZTE). Written informed consent to participate in this study was provided by the participants or their parent/legal guardian.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 17 April 2020 Accepted: 26 May 2020 Published online: 03 June 2020

References
1. Vela E, Taylor RW, Campbell PM, Buschang PH. Differences in craniofacial and dental characteristics of adolescent Mexican Americans and European Americans. Am J Orthod Dentofacial Orthop. 2011;140(6):839–47.
2. Abbassy MA, Horiuchi M, Harouny NE, Kanna Z, Ono T. Comparative cephalometric study of Class I malocclusion in Egyptian and Japanese adult females. Orthod Waves. 2012;71(2):59–65.
3. Trivedi K, Singh S, Shivamurthy DM, Doshi J, Shyagali T, Patel B. Analysis of cephalometrics for orthognathic surgery: determination of norms applicable to Rajasthani population. Natl J Maxillofac Surg. 2010;1(2):102–7.
4. Kumar TP, Chitra P. Determination of bolton norms for Indian population sample. Orthod J Nepal. 2017;7(1):33–6.
5. Lavelle CLB. Maxillary and mandibular tooth size in different racial groups and in different occlusal categories. Am J Orthod. 1972;61(1):29–37.
6. Al Taki A, Abuhijleh E, Haider K. Dentofacial cephalometric values for emirati adults with normal occlusion and well-balanced faces. Smile Dent J. 2010;5(4):6–10.
7. Abbassy MA, Abushal A. Differences in dentofacial characteristics of Class I malocclusion between Saudi and Japanese adult females. J Orthod Sci. 2015;43(3):86–91.
8. Affi A, Taha M, Nassar E. Saudian norms of McNamara’s cephalometric analysis. Egypt J Orthod. 2008;33:41–9.
9. Phelan T, Buschang PH, Behrens RG, Wintergerst AM, Ceen RF, Hernandez A. Variation in Class II malocclusion: comparison of Mexican mestizos and American whites. Am J Orthod Dentofacial Orthop. 2004;125(4):418–25.
10. Iishi N, Deguchi T, Hunt NP. Morphological differences in the craniofacial structure between Japanese and Caucasian girls with Class II division 1 malocclusions. Eur J Orthod. 2002;24(1):61–7.
11. Rana N, Qu YY, Wei Y, Liu L. Comparison of cephalometric hard and soft tissues of adolescents with angle Class II division 1 malocclusion between Northern Chinese population and Northern Indian Population. Chin J Dent Res Off J Sci Sect Chin Stomatol Assoc CSA. 2017;20(1):33–42.
12. Alatrich AB, Saleh FK, Osman E. The prevalence of malocclusion and orthodontic treatment need in a sample of Syrian children. Eur Sci J. 2014;10(30):230–47.
13. Gábris K, Márton S, Madléna M. Prevalence of malocclusions in Hungarian adolescents. Eur J Orthod. 2006;28(5):467–70.
14. Abuhijleh E, Al Taki A, Rahhal A. The cephalometric norms of various ethnicities and their significance. Acta Sci Dent Sci. 2019;38(2):1–2.
15. Nouarallah AH, Spleith CH, Schwahn C, Khudaj M. Standardizing interarch tooth-size harmony in a Syrian population. Angle Orthod. 2005;75(6):996–9.
16. Al Sabbagh R. Syrian norms of mcnamara cephalometric analysis. Int Arab J Dent. 2014;392(3561):1–7.
17. Ciski I, Jianu R, Stratul S-I, Vegg A. Are the ricketts norms adequate for middle European adolescents? Timisoara Med J. 2008;58(1):74–7.
18. Gurdan Z, Marada G, Herényi G, Nagy Á. Examining tooth-size discrepancies in regard to treatment, treatment planning and completion. Open J Dent Oral Med. 2014;4(3):43–6.
19. Elsasser WA, Wylie WL. The craniofacial morphology of mandibular retrusion. Am J Phys Anthropol. 1948;6(4):461–74.
20. Isik F, Nabantzgil D, Sayinms K, Arun T. A comparative study of cephalometric and arch width characteristics of Class II division 1 and division 2 malocclusions. Eur J Orthod. 2006;28(2):179–83.
21. Al-Khateeb EA, Al-Khateeb SN. Anteroposterior and vertical component of Class II division 1 and division 2 malocclusion. Angle Orthod. 2015;4(3):86–91.
22. de Freitas IR, dos Santos MAC, de Freitas KMS, Janson G, de Freitas DS. Horizontal and vertical dentofacial relationships in normal and Class II division I malocclusion in girls 11–15 years. Angle Orthod. 1995;55(2):120–37.
23. Rothstein T, Yoon-Tarlie C. Dental and facial skeletal characteristics and growth of males and females with Class II, division 1 malocclusion between the ages of 10 and 14 (revisited)—Part I: characteristics of size, form, and position. Am J Orthod Dentofacial Orthop. 2000;117(3):320–32.
24. Sayen MQ, Türkahraman H. Cephalometric evaluation of nongrowing females with skeletal and dental Class II, division 1 malocclusion. Angle Orthod. 2005;75(4):656–60.
27. Oh E, Ahn S-J, Sonnesen L. Ethnic differences in craniofacial and upper spine morphology in children with skeletal Class II malocclusion. Angle Orthod. 2018;88(3):283–91.
28. Hulley SB, Cummings SR, Browner WS, Grady DG, Newman TB. Designing clinical research. Wolters Kluwer Health; 2013.
29. Baccetti T, Franchi L, McNamara JA Jr. An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. Angle Orthod. 2002;72(4):316–23.
30. Jarabak JR, Fizzell JA. Technique and treatment with light-wire edgewise appliances, ed. 2. St. 1972.
31. Steiner CC. Cephalometrics for you and me. Am J Orthod. 1953;39(10):729–55.
32. Bhatia SN, Leighton BC. Manual of facial growth: a computer analysis of longitudinal cephalometric growth data. Oxford: Oxford University Press, Inc.; 1993.
33. Moorrees CFA, Reed RB. Correlations among crown diameters of human teeth. Arch Oral Biol. 1964;9(6):685–97.
34. Bolton WA. Disharmony in tooth size and its relation to the analysis and treatment of malocclusion. Angle Orthod. 1958;28(3):113–30.
35. Dahlberg G. Statistical methods for medical and biological students. London: George Alien and Unwin Ltd; 1940.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.