Diffraction - Theory & Data Collection

Lewis & Clark Workshop
Macromolecular Crystallography
© Michael S. Chapman

X-RAYS

Why X-rays?
- Atoms scatter X-rays in all directions.
- Phase change is exactly π rad.
- Measure sum of scattering.
- Path length through 2nd atom differs.
 \[\phi_{\text{atom } 1} \neq \phi_{\text{atom } 2} \rightarrow \text{interference.} \]

The optimal wavelength
- Make much longer
 \[\lambda \sim \text{interatomic distances.} \]
- Choose 0.7 Å ≤ \(\lambda \) ≤ 1.8 Å
- Commonly \(\lambda \sim 1.5 \) Å ~ C–C bond.

X-rays have wavelengths close to optimal
- Max. interference: path length difference = \(\lambda \).
- \(\lambda \sim \text{interatomic distances.} \)

Electromagnetic waves.
- Amplitude (A) varies as cosine of distance from origin (O). |F|
- Wavelength = \(\lambda \), split into 360° or 2\(\pi \) radians.
- Phase (\(\phi \) or \(\alpha \))
 - Measured:
 * angle from +x-axis (anticlockwise)

Definitions.
- Electromagnetic waves.
- Amplitude (A) varies as cosine of distance from origin (O). |F|
- Wavelength = \(\lambda \), split into 360° or 2\(\pi \) radians.
- Phase (\(\phi \) or \(\alpha \))
 - Measured:
 * angle from +x-axis (anticlockwise)
Why Diffraction? -
Crystallography in a nutshell
- X-ray refractive indices close to 1.0.
- No refraction or reflection → No lenses.
- Uncharged → No electrostatic lenses like E.M.
- Left with diffraction!
- X-rays scattered & reconstructed computationally.

Atoms or Electron Density
- What is scattering the X-rays?
- Atoms → Not exactly – electron clouds
- Image is electron density
 - Atomic Structure is an interpretation...
 - Nuclear positions consistent with electron density.
 - Exp. error in density can → difficult interpretation.

Crystallography in a nutshell
- Microscopy without the lens...
- Lens would physically "sum" scattered waves.
- Crystallographers have to "sum" waves computationally.
- Measure intensity in each direction.
- Amplitudes not enough
 - Phases – synchronization of waves
 - How they line up, how far peaks lag behind each other.
 - Can't be measured directly - "Phase Problem" Challenge.

Conventional sources of radiation
- e− acceleration → X-rays.
- Fire electrons into target.
- High voltage filament
- Be window
- Copper target
- Water cooling
- X-rays

Synchrotrons
- e− accelerated in circular path
 - Relativistic speeds
- Energy (X-rays) tangential
- High intensity
 - More data before damage spreads
- Tunable wavelength
- Phasing
- Shared multi-user facilities

Preparation of X-rays
- Fine parallel beam
 - Collimator
 - Focusing mirrors
- Monochromatic (single wavelength)
 - 1.51 Å or 0.91 Å or adjusted 0.7 – 2.0 Å
- Monochromator
- Focusing mirrors
Interaction of X-rays with samples
- Absorption (fluorescence)
 - Mostly minor annoyances
- Scattering
 - Important - because no lenses for imaging
 - Need understanding of how atomic structure affects the scattering of materials
- Elastic (Coherent aka Thompson) scattering
 - No loss of energy (λ unchanged; $\Delta \phi \approx \pi$)
 - Dominates diffraction.
- Inelastic (Incoherent aka Compton) scattering
 - Collision w/ e⁻ (energy transfer)...
 - Background scattering

Electromagnetic waves.
$$E = E_0 e^{i \omega t - k_0 \cdot r}$$
- E_0 is field @ time t, position, x from origin O.
- $\omega \cdot \mathbf{r}$ represents a complex vector.
- Only amplitude observed, but complex form allows addition of waves.
- By de Moivre’s theorem ($e^{i \theta} = \cos \theta + i \sin \theta$):
 - Field accelerates a charged particle with frequency ν.
 - Max. acceleration as particle passes node @ max E_i.
 - Thus (electron) particle displacement $\pi/2$ from E_i.
 - The accelerating orbital electron initiates a second electromagnetic wave with a 2nd phase change of $\pi/2$.

Interference of Scattered X-rays
- Scatter from O and O' related by vector r.
- Path-difference:
 - $|OA| + |OB| = |r| \cos \theta_O' + |r| \cos \theta_O'$
- s_o unit vector along incident direction.
- s unit vector along scattered direction.
- $\Delta \phi = (2\pi/\lambda) r \cdot (s - s_o)$

William & Lawrence Bragg
- Max von Laue demonstrated wave character of x-rays
 - Diffraction by crystals
- Braggs - father & son
 - 1913 - 1914
 - Realized that x-ray scattering could be imagined as reflection from planes
 - Solved NaCl.
 - Nobel prize 1915
Atomic Structure Factor eqn.

\[F(r^*) = \sum_{j=1}^{N} A_j \exp 2\pi i r^* \cdot r_j \]

where

- \(A_j \) is the atomic scattering factor
- \(r_j \) is the position of the jth atom
- \(r^* = \frac{r}{\lambda} \)
- \(\lambda \) is the wavelength of the X-rays
- \(\rho_j \) is the electron density at \(r_j \)

From last lecture:

- Inverse Fourier transform:
 \[\rho(r) = \frac{1}{V} \mathcal{F}^{-1}[F(r^*)] = \frac{1}{V} \int \ldots \int \mathcal{F}[F(r^*)] \exp -2\pi i r \cdot r^* \, dr^* \]

Diffraction of crystals:

- Only strong diffraction spots
- Insensitive intensity between spots

Tabulated theoretical or experimental values.

Fourier Transforms (1)

- If \(f(x) \) is piecewise integratable, it can be approximated by a Fourier transform (T):
 \[f(x) = \int_{-\infty}^{\infty} F(x^*) \exp -2\pi i x x^* \, dx^* \]
 \[F(x^*) = \int_{-\infty}^{\infty} f(x) \exp 2\pi i x x^* \, dx \]

- **Fourier Transform of a Step Function**
 \[g \cdot x \geq 0 \Rightarrow f(x) = \begin{cases} \exp 2\pi i x x^* & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \]
 \[F(x^*) = \int_{0}^{\infty} \exp 2\pi i x x^* \, dx = \frac{1}{2} \sin 2\pi x x^* \]

- **Scattering by elements of electron density**
 \[F(r^*) = \sum_{j=1}^{N} A_j \exp 2\pi i r^* \cdot r_j \]
 \[\text{Let } r_j \text{ be small element of electron density, } \rho \]
 \[\text{Consider total scattering: } \]
 \[F(r^*) = \int \ldots \int \mathcal{F}[F(r^*)] \exp -2\pi i r \cdot r^* \, dr^* \]

- **Infinite 1-D lattice -- Lessons**
 \[\mathcal{F}[\text{lattice}] = \text{(lattice), in reciprocal space.} \]
 \[\text{Spacing of reciprocal lattice inversely proportional to real lattice.} \]
 \[\text{Diffraction of crystals } \rightarrow \text{relatively strong diffraction spots and insignificant intensity between spots.} \]
 \[\text{Need only use lattice points } \rightarrow \text{discrete transform.} \]
Fourier Series

- \mathcal{F} can approximate any piecewise integrable function.
- Coefficients each have amplitude and phase.
- Effect of truncation

Electron Density Equation

$$\rho(x) = \frac{1}{V} \sum F_h \exp(-2\pi i h \cdot x)$$

- F_h are structure factor amplitudes (measured experimentally).
- ϕ difficult to determine \Rightarrow "The phase problem"

Structure Factor Equation

$$F_h = \frac{1}{V} \sum y(x) \exp(2\pi i h \cdot x)$$

- $F_h = |F| \cos \phi$, $B = |F| \sin \phi$
- F is structure factor amplitude
- Measured in fractional units
- Fraction of unit cell (a,b,c)
- $V = a \cdot b \cdot c$

Note symmetry with electron density equation

Atomic Structure Factor Equation

$$F_{hkl} = \sum_{j=1}^{N} f_{\text{at},j} \exp(2\pi i (hx + ky + lz))$$

- Summing over atoms instead of grid points
- Computationally less efficient if many atoms
- Structure factor equation can use FFT

Crystalline Lattices

- Previously learned...
 - Diffraction pattern = Molecular transform sampled at reciprocal lattice points.
 - Reciprocal lattice = FT or diffraction pattern from crystalline lattice
- Why understand real-space lattices?
 - Prediction of location of diffraction spots.
 - Interaction of neighboring molecules in crystal lattice
 - (molecular symmetry)
Lattices

- Grid: equally spaced || lines (planes).
- Choice of origin is arbitrary.

Unit Cells

- Axes labeled \((a, b, c)\) by convention.
- Right-handed system
- Specify 3 vectors
 - \(a, b, c\)
- or 6 parameters
 - 3 lengths + 3 angles
 - \(a, b, c\) \(\alpha, \beta, \gamma\)
 - \(\alpha\) = angle between \(b\) and \(c\) axes etc.
- Faces labeled \(A, B, C\)
 - \(A\) intersected by \(a\)-axis etc.

Lattice Planes in 2-D

- Line can be drawn between any 2 grid points.
- Parallel lines pass through every grid point.

Bragg's Law (Real space) 1

- Previously showed scattering like reflection from plane through scatterer.
- Path length same for all points on plane:
- All points scatter in phase.
- Planes containing many identical scatterers have strong scattering (Lattice planes).

Bragg's Law -- Real space 2

- Consider || planes \(P_1, P_2, \ldots, P_j, P_{j+1}, \ldots P_N\).
- Path differences: \(\Delta(P_{j+1} - P_j) = 2d \sin \theta\)
- \(\sum \text{planes scatter much larger when } \text{in phase}.\)
- \(\sum \text{... path difference } = 2d \sin \theta \text{=} n\lambda; \text{ } (n=1)\)

Bragg's Law -- Reciprocal lattice

- Diffraction only at integral path difference = \(2d \sin \theta \text{=} n\lambda\).
- Spots spaced regularly
- Lattice in 3-D
- This reciprocal lattice has spacing inversely proportional to crystal lattice spacing
- Directions of axes depend on crystal
 - Let \(d_{100}\) be unit vector || \(d^{*}_{100}\)
 - \(d^{*}_{100} = b \times c / (b |c| \sin \theta)\)
 - \(d^{*}_{100} = 1 / d_{100}\)
 - \(|d_{100}| = V / (b |c| \sin \theta) = 1 / d^{*}_{100}\)
 - \(a^{*} = b \times c / (d_{100} b |c| \sin \theta) = b \times c / V = a^{*}\)
- (Remember that we are using bold for vectors)
Bragg’s Law – Graphically -- Implications

- For any point, P, on the surface of the sphere, $OP = 2\sin \theta / \lambda$.
- $OP = d^*$ is a solution to Bragg’s law.
- Diffraction only at reciprocal lattice points.
- Scattering || OP when sphere and lattice point superimpose.
- To see more spots, rotate crystal.

Resolution

- Let D_{max} be the distance of furthest spot from the direct beam.
- Let d_{min} be its interplanar spacing.
- $d_{\text{min}} = \lambda / (2 \sin (\theta_{\text{max}}) = \lambda / 2 \sin \left(\frac{1}{2} \tan^{-1}(D_{\text{max}}/l)\right))$
- d_{min} is de facto resolution limit.
- Note d_{min} reflection at max, i.e. farthest from beam.

Bragg’s Law Graphically – Ewald construction

- For given wavelength and crystal orientation...
 - Only those relps on surface of the “sphere of reflection” observed.
 - Diffraction only at reciprocal lattice points.
 - When sphere and lattice point superimpose.
 - Scattering || OP.

Diffraction Conditions

- Reminder: Bragg’s Law shows that diffraction only occurs when a reciprocal lattice point lies on the sphere of reflection.

DATA COLLECTION & PROCESSING

SYMMETRY

Topic to be skipped...
No reflections?
- No reflections on sphere of reflections if
 - Truly monochromatic radiation
 - and infinitely thin reciprocal lattice points
- Why do we see any reflections for still crystal?
 - Filters & Monochromators: \(\Delta \lambda \neq 0 \).
 - "Mosaic spread" \(\rightarrow \) finitely large reciprocal lattice points.

Mosaic Spread
- Crystal = a mosaic of sub-micron crystalline blocks
 - separated by fault lines or other defects.
 - The variation of orientation \(0.15^\circ \).
- Filters & Monochromators: \(\Delta \lambda \neq 0 \).
- "Mosaic spread" \(\rightarrow \) finitely large reciprocal lattice points.

Still Photography
- Reciprocal lattice points on lattice planes.
- All diffracting relps at intersection of plane & Ewald sphere.
- Intersection is a circle
- Projected to film at an angle \(\rightarrow \) ellipse
 - If film \(\perp \) incident beam,
 - Reflections on ellipse.

Zones
- Not one, but a set of \(\parallel \) planes.
- \(\rightarrow \) concentric ellipses of reflections.
- Direct beam \(\rightarrow \) reflection F000; layer 0
- Layers \(-1, -2, \ldots \) inside
- Layers \(+1, 2, 3, \ldots \) outside

Zones - example
- Crystal rotated
 - (a little)
- Direct beam \(\rightarrow \) reflection F000; layer 0
- Layers \(-1, -2, \ldots \) inside
- Layers \(+1, 2, 3, \ldots \) outside

Moving the crystal
- Still crystal
 - few spots on each ellipse
- Rotate crystal
 - Red regions pass through Ewald sphere
 - Additional reflections seen
Diffraction of moving crystal
- All spots between ellipses between
 - Start of rotation
 - End
- Regions of reflections = "lunes"

Lunar or spatial overlap
- Wide rotation
- Fat ellipses
- Many reflections from each plane
- Planes project to some part of detector
 - Lunes overlap
 - Spots may overlap

Avoiding Overlap

Oscillation method
- Small rotations
- Overlap more with finely spaced planes
 - Large unit cells
 - Rotations < 0.5°
- Typical unit cells
 - Rotations: 2.5 to 5°
 - Also depends on
 - Resolution
 - Mosaic spread

Precession method
- Metal screen
 - Allows through x-rays of one plane only
- Circular aperture
- Large rotations in all directions
 - ~ All reflections in one plane
- Film rotated to be || to crystal plane
 - Undistorted image of lattice
 - "Precession"

Rotation or Oscillation Photography
- Crystal rotated - small angle, $\Delta \phi$ \perp beam; ...
- 10 fast oscillations better than 1 slow rotation:
 - Averages crystal decay & beam fluctuations
 - during angular sweep.

Rotate the Crystal or the Generator?
- Most prefer to rotate the crystal
 - Diagrams easier if rotate the laboratory
 - Equivalent

Full and Partial Reflections

- Reciprocal lattice points have finite size
 - Mosaic spread
- Whole reflections
 - Crossed completely by Ewald sphere w/in $\Delta \phi$.
- Partial reflections
 - On sphere at start or end of rotation
 - Only part of reflection recorded
 - Fraction recorded = "partiality"
Structure amplitudes from partials
- Measured intensity = F^2/partiality
- Partiality depends on experiment, not structure
- Need to correct
 - Make equivalent to full reflection
 - Partiality = 1
- Two approaches
 1. Series of contiguous oscillations
 - Add intensities from successive images
 - Errors - changing beam intensity etc.
 2. Estimate partiality \(\rightarrow \) mathematical correction
 - Errors - Requires accurate understanding of crystal orientation
- Partial reflections less accurate

Crystal Alignment
- Some orientations \(\rightarrow \) more efficient collection
 - Approximate alignment OK (not like precession)
 - Determine orientation then re-orient
 - Center zones from still images
 - Computer-auto-indexing (details later)
 - From 1 to 3 still images
- No longer necessary to precisely orient before data collection
- Some use the American Method
 - Shoot first - ask questions later
 - When crystal lifetime in beam is short

Freezing Crystals
- Vitreous ice (glass) OK
- Ice crystals:
 - Destroy protein crystal
 - Add ice diffraction
 - Must be avoided
 - Cryo-protection
 - Antifreeze
 - Glycerol, PEG, MPO...
 - Oil coating
 - Search for one that does no damage
 - Serial transfer
 - Reduce osmotic shock
- Flash freezing - 2 ways:
 - Plunge into liq N\(_2\), propane
 - Then put on x-ray camera
 - Keeping at 100K
 - Place on camera at 20º
 - Quickly start N\(_2\) stream
 - Maintain in cold N\(_2\) gas stream

Crystal Mounting
- Cryo-data collection
 - Drop of frozen mother liquor
 - Held in loop of fiber
 - Scooped up using surface tension
 - Open crystal \(\rightarrow \) better heat conduction to liq N\(_2\)
- Collection at 4 to 30ºC
 - In sealed capillary
 - Maintain humidity
 - Stop crystal drying
 - Capillary made of quartz
 - Minimize x-ray absorption

Data Collection Instrumentation - Synchrotron
Data Collection Instrumentation

Helium path to minimize air-absorption

Motor to rotate crystal

Detector (image plates + automatic scanner)

Crystal here (honestly!)

Thanks to Soma

Motor to rotate crystal

Detector (image plates + automatic scanner)

Crystal here (honestly!)

Generator

Detectors

Type	Advantages	Disadvantages
Scintillation counter	Most precise	One spot at a time (small unit cells)
Film	Spatial resolution + 50 μm	Background, dynamic range, turnaround time
Multiwire	Precise	Spatial resolution, expense
TV detector		Unstable, calibration, expense
Image plate	Size, Medium precision	Scan-time
CCD's	Precise, dynamic range	Large ones very expensive

Data Processing - Overview

- Determine which region contains each reflection
 - "Indexing"
 - Orientational refinement
- Integrate intensity near reflection center
- Subtract background
- Scaling:
 - Correct for factors that don't depend on structure, but
 - Geometry of data collection
 - Shape and absorption of crystal
- Merging - symmetry equivalent measurements
 - Calculate quality statistics

Scaling - Introduction

- Calculate image scale constant
 - Intensities agree w/ symmetry equivalents
- Approx. correction for many factors:
 - Crystal Absorption:
 - Depends on path length
 - Depends on crystal orientation and individual reflection.
 - Other absorption: capillary, solvent -
 - Varies slowly, can be minimized.
 - Volume of crystal in beam:
 - Depends on φ, therefore image #
 - Decay due to radiation damage:
 - Depends on resolution and time (→ Δφ, image #).

Quality of Scaling

- Quality of data is now assessable with a scaling R-factor:
 \[R_i = \frac{\sum_h |\langle I_h \rangle| - K_h \langle I_h \rangle}{\sum_h \langle I_h \rangle} \]
 - Compare this R-factor to the least-squares residual (or corresponding variance):
 - Both depend on magnitude of difference.
 - Residual is squared, so more sensitive to large differences.
 - R-factor is normalized, and expressed as decimal fraction or %.
 - \(R_i (R_{sym}) \) is calculated from intensities.
 - Most other R-factors are calculated from \(|F| = \sqrt{I} \).

Quality of Data

- Ri is used as a measure of data quality:
 - \(R_i \leq 3\%: \) excellent.
 - \(R_i \leq 5\%: \) typical average protein.
 - \(R_i \leq 9\%: \) typical large protein.
 - \(R_i \leq 13\%: \) typical virus capsid.
- Partial reflections are usually excluded
 - Underestimate of error, especially for large molecules (small \(Δφ \), many partials).
 - Inclusion of partials for virus → \(R_i = 18\% \).