Санкт-Петербургский государственный университет
Направление: Математика
Профиль 10: Теория функций и функциональный анализ

Гордон Иосиф Александрович

Комбинаторика многограниника липшицевых функций
Выпускная квалификационная работа

Научный руководитель:
к.ф.-м.н., доцент Петров Ф. В.

Рецензент:
к.ф.-м.н., старший научный сотрудник Акопян А. В.

Санкт-Петербург
2017
Combinatorics of the Lipschitz polytope
Graduation project

Scientific advisor:
Ph.D., Associate Professor Fedor Petrov

Reviewer:
Ph.D., Senior Researcher Arseniy Akopyan

Saint Petersburg
2017
Оглавление

1 Введение 4
2 Комбинаторное описание граней 6
3 Звёзды и деревья 12
4 Перестройки 14
5 Оценки количества типов 17
6 Унимодулярные триангуляции корневого многогранника 18
1 Введение

Пусть \((X, \rho)\) — конечное метрическое пространство, \(|X| = n+1\). Метрику \(\rho\) будем называть строгой, если \(\rho(x, z) > \rho(x, y) + \rho(y, z)\) при \(y \in X \backslash \{x, z\}\). Введён на пространстве функций из \(X\)

\[
\tilde{F} := \{ f : X \to \mathbb{R} \}
\]

отображение, которое сопоставит каждой функции её константу Липшица:

\[
\|f\| := \max_{x,y \in X} \frac{f(y) - f(x)}{\rho(x, y)}
\]

Это полуnormа, и она станет normой, если отождествлять функции, разность которых есть константа, — или, что то же самое, зафиксировать значение функций в одной из точек:

\[
F := \left\{ f \in \tilde{F} \mid f(x_0) = 0 \right\}, x_0 \in X.
\]

Замкнутый единичный шар введенной нормы \(\| \cdot \|\) на пространстве \(F\) есть выпукльй \(n\)-мерный многогранник, который мы обозначим \(\text{LIP}(X)\). Функцию \(f\) из \(X\) будем называть 1-липшицевой, если \(f \in \text{LIP}(X)\), то есть, \(|f(x) - f(y)| \leq \rho(x, y)\) для всех пар \(x, y \in X\). Двойственное нормированное пространство \(F^*\) будем интерпретировать как пространство зарядов \(\mu\) на метрическом пространстве \((X, \rho)\) с суммарным зарядом 0, спаривание \(\langle \mu, f \rangle\) функции \(f\) и заряда \(\mu\) есть \(\int fd\mu\) (эта величина не меняется, если к \(f\) прибавить константу, так что определена корректно.) Дельта-меру в точке \(x \in X\) будем обозначать \(\delta_x\), тогда заряд \(\mu \in F^*\) имеет вид

\[
\mu = \sum_{x \in X} c_x \delta_x, \sum c_x = 0;
\]

\[
\langle \mu, f \rangle = \sum_{x \in X} c_x f(x), \|\mu\| = \max_{f \in \text{LIP}(X)} \langle \mu, f \rangle.
\]

Норма заряда \(\mu \in F^*\) называется нормой Канторовича — Рубинштейна. Она равна расстоянию между мерами \(\mu_+\) и \(\mu_-\) по Канторовичу, где \(\mu_+ = -\mu_- = \mu\) — разложение Хана заряда \(\mu\).

Двойственным многогранником к \(\text{LIP}(X)\), то есть единичным шаром \(\text{KR}(X)\) пространства Канторовича — Рубинштейна \(F^*\), служит выпуклая
оболочка точек \(e_{x,y} := \frac{\delta(x)-\delta(y)}{\rho(x,y)} \), \(x, y \in X \): в самом деле, норма функции \(f \) по определению равна

\[
\|f\| = \sup_{x,y \in X} \langle e_{x,y}, f \rangle.
\]

А. М. Вершиком был задан вопрос о комбинаторной структуре многоугольников \(KR(X) \) (эквивалентный вопрос — комбинаторная структура \(LIP(X) \)).

Заметим, что то же семейство многоугольников (для несимметричных метрик, но это не является существенным) возникает в тропической математике [12,14] как клетки тропических многоугольников и как тропические многоугольники, выпуклые в обычном смысле; и также как "нишевые многоугольники" [13].

Если \(\rho(x, y) = 1 \) при \(x \neq y \), многоугольник \(KR(X) \) называют многоугольником корней, поскольку его вершины суть корни системы корней \(A_n \). Этот многоугольник и его триангуляции изучались в [4]. Они связаны с линией многогранниками для метрик общего положения, см. раздел [5].

Определение 1. Будем говорить, что метрика \(\rho \) общего положения, если \(\rho \) — строгая метрика и многоугольник \(KR(X) \) — симплексиальный (или, что то же самое, многоугольник \(LIP(X) \) — простой).

Мы вычисляем \(f \)-векторы этих многоугольников \(KR(X) \) для метрики общего положения. Кроме того, мы даём верхние и нижние оценки на количество типов метрик на множестве \(\{1, \ldots, n + 1\} \), классифицируемых комбинаторным типом (естественным образом помеченного) многоугольника \(KR \).

Оказывается, в ситуации общего положения \(f \)-вектор многоугольника \(LIP \) не зависит от метрики:

Теорема 1. Пусть \(X \), \(|X| = n + 1 \), — метрическое пространство с метрикой общего положения \(\rho \). Тогда при \(0 \leq m \leq n \) количество граней размерности \(n - m \) многоугольника \(LIP(X) \) равно \(\binom{n+m}{m,m,n-m} = \frac{(n+m)!}{m!(n-m)!} \).

Сопоставим заряду \(e_{x,y} \) ориентированное ребро из \(x \) в \(y \). Тем самым любой грани \(\alpha \) (произвольной размерности) многоугольника \(KR(X) \) сопоставляется ориентированный граф \(D(\alpha) \) на множестве вершин \(X \), ребра которого соответствуют зарядам \(e_{x,y} \), принадлежащим грани \(\alpha \). Тот же граф без учета ориентации рёбер обозначим \(\tilde{D}(\alpha) \).
Определение 2. Семейство всех графов вида $D(\alpha)$ будем называть комбинаторной структурой пары двойственных многогранников $\text{LIP}(X)$, $\text{KR}(X)$. Ориентированный (соответственно, неориентированный) граф G на множестве вершин X назовём допустимым, если все его рёбра принадлежат некоторому графу $\tilde{D}(\alpha)$ (соответственно $\tilde{D}(\alpha)$). Две метрики ρ_1, ρ_2 на одном множестве X назовём липшицево эквивалентными, если комбинаторные структуры соответствующих многогранников совпадают.

Пример 1. Рассмотрим случай $\rho = 1$. Тогда $\text{KR}((X, 1)) := \text{Root}(X)$ — корневой многогранник, который является выпуклой оболочкой всех $e_{x,y}$. Грань α многогранника $\text{Root}(X)$ однозначно определяется функцией f из X принадлежащих единичной сфере в $\text{LIP}(X)$, то есть, $\max(f) - \min(f) = 1$. Граф $D(\alpha)$ содержит все ребра из множества $f^{-1}(\max(f))$ в множество $f^{-1}(\min(f))$.

Следующая теорема частично отвечает на вопрос А. М. Вершика ??.

Теорема 2. Пусть $|X| = n + 1$. Количество $V(n)$, $V_g(n)$ типов липшицевой эквивалентности всех метрик на множестве X и, соответственно, метрик общего положения на X, удовлетворяют оценкам

$$c_1 n^2 \leq \log V_g(n) \leq \log V(n) \leq c_2 n^3 \log(n + 1)$$

для некоторых абсолютных положительных констант c_1, c_2.

Стоит отметить, что в ?? был предложен алгоритм для перечисления тропических типов политропов (тропические типы подразбивают комбинаторные типы).

2 Комбинаторное описание граней

Комбинаторные свойства многогранников $\text{KR}(X)$ рассматривались ранее ??, и некоторые результаты этого раздела были там получены. Но этих результатов недостаточно для целей этой работы, поэтому мы здесь формулируем и доказываем всё, что используем.

Грань α есть пересечение многогранника $\text{KR}(X)$ и некоторой опорной гиперплоскости, определяемой уравнением $\langle \mu, f_0 \rangle = 1$ для подходящей функции $f_0 \in \text{LIP}(X)$. Граф $D(\alpha)$ может быть описан в терминах f_0 следующим образом: ребро из x в y существует тогда и только тогда, когда $f_0(x) - f_0(y) = \rho(x, y)$.

6
Лемма 1. Размерность грани α равна $n - c$, где c — количество компонент связности графа $D(\alpha)$.

Доказательство. Пусть $X_1 \subset X$. Тогда заряды $e_{x,y}$, $x, y \in X_1$, порождают линейное пространство размерности $|X_1| - 1$. Кроме того, если G — связный (неориентированный) граф на множестве вершин X_1, то заряды $e_{x,y}$, где $(x, y) \in E(G)$, порождают это линейное пространство (так как $e_{x,z}$ линейно выражается через $e_{x,y}$ и $e_{y,z}$). Таким образом, размерность линейной оболочки множества точек $e_{x,y}$, лежащих в грани α, равна $n + 1 - c$, где c — количество компонент связности в $D(\alpha)$. Размерность аффинной оболочки на 1 меньше, поскольку аффинная оболочка грани, очевидно, не содержит начала координат.

Следующая теорема описывает, когда данное множество зарядов лежит на одной грани многогранника $KR(X)$.

Теорема 3. Пусть $G = (x, E)$ — ориентированный граф на множестве вершин X. Следующие условия равносильны:

(i) Граф G допустим, то есть найдется гиперграничный α многогранника $KR(X)$ такая, что $E \subset D(\alpha)$;

(ii) найдется функция f, липшицева с константой 1, удовлетворяющая равенствам $f(x) - f(y) = \rho(x, y)$ для всех ребер $(x, y) \in E$;

(iii) для любого набора ориентированных ребер $(x_i, y_i) \in E$, $i = 1, \ldots, k$, имеет место неравенство (считаем $y_{k+1} = y_1$)

$$\sum_{i=1}^{k} \rho(x_i, y_i) \leq \sum_{i=1}^{k} \rho(x_i, y_{i+1});$$

(iv) неравенство \([\square]\) имеет место при дополнительном предположении, что точки x_1, x_2, \ldots, x_k различны и все точки y_1, y_2, \ldots, y_k различны.

Доказательство. Опорная гиперплоскость к единичному шару $KR(X)$ пространства F^* задается уравнением $\langle \mu, f \rangle = 1$, где f — функция из единичного шара $LIP(X)$ пространства F. Отсюда сразу получаем, что (i) равносильно (ii). Ясно, что (iii) влечет (iv). Если имеет место (ii), то \([\square]\) следует из цепочки

$$\sum_{i=1}^{k} \rho(x_i, y_i) = \sum_{i=1}^{k} (f(x_i) - f(y_i)) = \sum_{i=1}^{k} (f(x_i) - f(y_{i+1})) \leq \sum_{i=1}^{k} \rho(x_i, y_{i+1}).$$
Осталось доказать (ii), предполагая выполненными (iv).

Существование требуемой функции f равносильно тому, что следующие полупространства имеют непустое пересечение:

$$\{ f \in F : f(x) - f(y) \leq \rho(x, y) \}, (x, y) \in X \times X;$$
$$\{ f \in F : f(x) - f(y) \geq \rho(x, y) \}, (x, y) \in E.$$

Поскольку пространство F n-мерное, по теореме Хелли достаточно доказать, что любое подмножество из не более чем $n+1$ полупространств имеет непустое пересечение. Предположим противное, и выберем наименьший контрпример: во-первых по количеству $n + 1$ точек в X, во-вторых по количеству $m \leq n + 1$ множеств, имеющих пустое пересечение. Каждое из полупространств задается неравенством $f(x) - f(y) \leq \pm \rho(x, y)$, знак минус возможен, если $(y, x) \in E$. Будем называть x начальным, а y концом. Если какая-то точка x не является ни начальной, ни конечной для одного из наших полупространств, то есть контрпример с $X \setminus \{x\}$ вместо X. То же верно, если точка x является только начальной или только кончом: продолжить функцию с $X \setminus \{x\}$ на x с сохранением неравенств, включающих $f(x)$, не составляет в таком случае труда. Таким образом, $m = n + 1$ и каждая точка точки $x \in X$ является ровно для одного полупространства начальной и равно для одного — концом. Отображение, сопоставляющее каждому из $n + 1$ начал соответствующий конец является, таким образом, перестановкой множества X. Она разбивается на циклы. Пусть $z_1 \ldots z_s, z_{s+1} = z_1$ — один из циклов, тогда на множестве его вершин функция f должна удовлетворять неравенствам вида

$$f(z_i) - f(z_{i+1}) \leq \varepsilon_i \rho(z_i, z_{i+1}), \quad i = 1, \ldots, s, \varepsilon_i \in \{-1, +1\}$$

(как обычно, считаем $z_{s+1} = z_1$). Такую функцию можно построить в том и только в том случае когда $\sum \varepsilon_i \rho(z_i, z_{i+1}) \geq 0$. Пусть A — множество тех индексов i, для которых $\varepsilon_i = -1$, B — множество оставшихся индексов. Тогда $(z_i, z_{i+1}) \in E$ при $i \in A$. Пусть $w(i)$, где $i \in A$, — предыдущий за i индекс в цикле, для которого $w(i) \in A$. Функция w определяет циклическую перестановку на множестве A. Тогда условие (iv) гарантирует, что

$$\sum_{i \in A} \rho(z_i, z_{i+1}) \leq \sum_{i \in A} \rho(z_i, z_{w(i)+1}) \leq \sum_{i \in B} \rho(z_i, z_{i+1})$$

(последнее неравенство разбивается на несколько неравенств треугольника). Это и требовалось.

\square
Следствие 1. 1) Каждый ребро $e_{x,y}$ лежит на границе многогранника $KR(X)$.

2) Если граф $G(\alpha)$ содержит ребра (x, y), (y, z), то $\rho(x, z) = \rho(x, y) + \rho(y, z)$. В частности, если метрика ρ — строгая, то в графе $G(\alpha)$ у каждой пары вершин либо входящая, либо исходящая степень равна 0. В этом случае каждый ребро $e_{x,y}$ является вершиной многогранника $KR(X)$.

3) Строгая метрика ρ является метрикой общего положения тогда и только тогда, когда граф $\tilde{D}(\alpha) — лес для любой грани α многогранника $KR(X)$.

4) Если метрика ρ — строгая и для любых попарно различных точек $x_1, \ldots, x_k, y_1, \ldots, y_k, y_{k+1} = x_1$, имеет место неравенство

$$\sum \rho(x_i, y_i) \neq \sum \rho(x_i, y_{i+1}),$$

то ρ — метрика общего положения.

Доказательство. 1) Граф с одним ребром удовлетворяет (iv).

2) Положим в $[1] x_1 = x, x_2 = y_1 = y, y_2 = z$, получим $\rho(x, z) \geq \rho(x, y) + \rho(y, z)$, а значит, имеет место равенство. Если метрика ρ — строгая, то функция $f(z) = (\rho(y, z) - \rho(x, z))/2 \in LIP(X)$ удовлетворяет равенству $f(a) = f(b) + \rho(a, b)$ только при $a = x, b = y$, то есть соответствующая ей опорная плоскость пересекается с $KR(X)$ по единственной точке $e_{x,y}$. Таким образом, $e_{x,y}$ — вершина $KR(X)$.

3) Строгая метрика ρ находится в общем положении тогда и только тогда, когда многогранник $KR(X)$ сиплицищен. То есть, каждая грань α размерности $k = \dim \alpha$ содержит в точности $k + 1$ вершин $KR(X)$. По Лемме [1] имеем $k = n - c$, где c — это количество компонент связности $\tilde{D}(\alpha)$. По п. 2) количество вершин $KR(X)$, принадлежащих α равно числу $\tilde{D}(\alpha)$. Таким образом, в терминах графа $\tilde{D}(\alpha)$ условие следующее: сумма числа $k + 1 = n - c + 1$ рёбер и количества компонент связности c должно быть равно числу вершин $n + 1$. Такие графы в точности являются лесами.

4) Рассмотрим любую гипергрань α многогранника $KR(X)$. Требуется проверить, что в α ровно n вершин, то есть что в графе $D(\alpha)$ ровно n ребер. Граф $\tilde{D}(\alpha)$ связный по лемме [1]. Таким образом, он содержит не менее n ребер. Каждая вершина в графе $D(\alpha)$ имеет входящую или исходящую степень 0, так что если в графе $D(\alpha)$ есть цикл, то он чередующийся: $y_1x_1y_2x_2\ldots y_kx_k, (x_i, y_i), (x_i, y_{i+1}) \in E(D(\alpha))$. Два раза используя
1. Получаем, что $\sum \rho(x_i,y_i) \leq \sum \rho(x_i,y_{i+1})$ и $\sum \rho(x_i,y_{i+1}) \leq \sum \rho(x_i,y_i)$, то есть должно иметь место равенство. Это противоречит нашему предположению. Следовательно, циклов нет, тогда неориентированный граф $\tilde{D}(\alpha)$ — дерево, в нём ровно n ребер, что и требовалось.

Условие (iv) Теоремы [3] может быть ещё ослаблено в случае гипергранией. Именно, имеет место

Теорема 4. Пусть T — дерево на множестве вершин X. Ориентируем T так, чтобы у каждой вершины входящая или исходящая степень была равна 0 (есть два способа это сделать). Тогда полученный ориентированный граф T_d содержится в графе $D(\alpha)$ для некоторой гиперграни α многограника $KR(X)$ тогда и только тогда когда неравенство (1) имеет место для любого простого пути $y_1x_1y_2x_2...y_kx_k$ в неориентированном дереве T.

Доказательство. Необходимость следует из Теоремы [3]. Докажем достаточность. Существует единственная (с точностью до аддитивной константы) функция f на X, для которой $f(x) - f(y) = \rho(x,y)$ для каждого из n ориентированных ребер (x,y) графа T_d. Докажем, что она удовлетворяет условию $f(y) - f(x) \leq \rho(x,y)$ для любых вершин $x,y \in X$. Индукция по длине (количеству ребер) пути P из y в x в дереве T. Для путей из одного ребра утверждение следует из определения функции f. Пусть для путей меньшей длины, чем между x и y, оно доказано. Тогда $f(x) = f(z) \pm \rho(x,z)$, где z — предшествующая y вершина пути P. С другой стороны, $f(y) - f(z) \leq f(y,z)$ по индукционному предположению. Таким образом,

$$f(y) - f(x) = f(y) - f(z) - (f(x) - f(z)) \leq \rho(y,z) \mp \rho(x,z) \quad (2)$$

Поскольку $\rho(y,z) - \rho(x,z) \leq \rho(x,y)$ по неравенству треугольника, в случае отрицательного знака в (2) требуемое неравенство $f(y) - f(x) \leq \rho(x,z)$ установлено. Итак, осталось рассмотреть случай $f(x) = f(z) - \rho(x,z)$. Аналогично $f(y) = f(x_1) + \rho(y,x_1)$, где x_1 — следующая за y вершина пути P. Таким образом, в P четное число вершин, $P = y_1x_1...y_kx_k$, $y = y_1$, $x = x_{2k}$,

$$f(y) - f(x) = \sum_{i=1}^{k} \rho(x_i,y_i) - \sum_{i=1}^{k-1} \rho(x_i,y_{i+1}) \leq \rho(x_k,y_1) = \rho(x,y)$$

в силу (1).
Опишем теперь критерий того, что строгая метрика ρ — общего положения.

Теорема 5. 1) Для любых различных точек x_1, \ldots, x_k и различных точек y_1, \ldots, y_k в X допустимость набора ориентированных рёбер (x_i, y_i), $1 \leq i \leq k$, равносильна тому, что

$$
\sum_{i=1}^{k} \rho(x_i, y_i) = \min_{\pi} \sum_{i=1}^{k} \rho(x_i, y_{\pi(i)}),
$$

где минимум берется по перестановкам π множества $\{1, \ldots, k\}$.

2) Строгая метрика ρ — общего положения в том и только в том случае, когда для любых $2k$ различных точек $x_1, \ldots, x_k, y_1, \ldots, y_k$ в X минимум суммы в правой части (3) достигается для единственной перестановки π.

Доказательство. 1) Пусть C_1, C_2, \ldots — непересекающиеся подмножества в $\{1, \ldots, k\}$, каждое из которых перестановка π переставляет циклически. Если набор рёбер (x_i, y_i) допустим, то для каждого C_j имеет место неравенство

$$
\sum_{i \in C_j} \rho(x_i, y_i) \leq \sum_{i \in C_j} \rho(x_i, y_{\pi(i)})
$$

в силу (1) с подходящими переобозначениями. Суммируя получаем

$$
\sum_{i=1}^{k} \rho(x_i, y_i) \leq \sum_{i=1}^{k} \rho(x_i, y_{\pi(i)}),
$$

что в силу произвольности перестановки π влечёт [3]. Обратно, если набор рёбер (x_i, y_i) не является допустимым, условие (iv) Теоремы 3 означает, что есть циклическая перестановка некоторого множества $C \subset \{1, \ldots, k\}$, уменьшающая правую часть [3] по сравнению с тождественной.

2) Если строгая метрика ρ не общего положения, то некоторый допустимый граф $D(\alpha)$ содержит цикл. В ориентированном графе $D(\alpha)$ у каждой вершины входящая или исходящая степень равна 0 по п.2 следствия [1], так что вершины этого цикла чередуются, он может быть обозначен $y_1x_1 \ldots y_kx_ky_1$, $(x_i, y_i), (x_i, y_{i+1}) \in D(\alpha)$. Получается, что минимум в [3] достигается как для тождественной перестановки, так и для перестановки $\pi(i) = i + 1$ (mod k).
Предположим теперь, что метрика ρ — общего положения, но минимум в (3) достигается для двух разных перестановок. Вводя переобозначения и переходя к подмножеству, на котором одна перестановка есть циклический сдвиг другой, можно считать, что одна перестановка тождественная, а другая есть циклический сдвиг $\pi(i) = i + 1 \pmod{k}$. Покажем, что объединение рёбер цикла $y_1x_1 \ldots y_kx_ky_1$ есть допустимый граф — в силу следствия из леммы это противоречит тому, что ρ — метрика общего положения. Проверим условие (iv), выбрав из цикла несколько непересекающихся рёбер. Они все принадлежат хотя бы одному из деревьев, получающихся из цикла удалением одного ребра. Так что достаточно проверять допустимость такого дерева. Это, в свою очередь, проверяем по Теореме 1. Несложно видеть, что её условие для любого пути следует из минимальности либо одной, либо другой перестановки.

3 Звёзды и деревья

В этом разделе мы полагаем ρ метрикой общего положения.

Определение 3. Ориентированный граф назовём звездой, если из одной вершины выходит рёбра во все остальные и других рёбер нет. Созвездием называется ориентированный граф, в котором все слабые компоненты связности — звёзды.

Лемма 2. Пусть $V = \{v_1, \ldots, v_k\} \subset X$ — множество из k точек метрического пространства X, p_1, \ldots, p_k — целые неотрицательные числа, и выполнено соотношение

$$k + \sum_{i=1}^{k} p_i = n + 1.$$

Тогда существует единственный допустимый ориентированный граф D^* такой, что исходящие степени вершины v_i равны p_i при $i = 1, \ldots, k$ (а их входящие степени равны 0); входящие степени всех вершин множества $X \setminus V$ равны 1 (а исходящие равны 0). Более того, D^* является созвездием, и на нём достигается минимум функционала

$$F(D) = \sum_{(a,b) \in D} \rho(a,b)$$

среди всех графов с указанными степенями.
Доказательство. Ясно, что любой граф с указанными степенями — со звездое.

Для доказательства существования рассмотрим созвездие D^*, минимизирующий F. Выберем упорядоченный набор рёбер, как в пункте (iv) Теоремы 3. Рёбер вида (x_{i+1}, y_i) в D^* нету, так как степень всех концов равна 1. Значит, $D^* \{ (x_i, y_i) \} \cup \{ (x_{i+1}, y_i) \}$ тоже созвездие с не меньшим значением F. Значит, условие (iv) Теоремы 3 выполнено, и D^* является допустимым.

Теперь предположим, что существует ещё одно допустимое созвездие D' с теми же степенями. Выберем вершины $x_1 \in V, y_1 \in X \setminus V$ так, что $(x_1, y_1) \in D' \setminus D^*$. Так как у y_1 степень 1 в D^* и D', существует какое-то $x_2 \in V$, такое, что $(x_2, y_1) \in D^* \setminus D'$. Далее, так как степень вершины x_2 одинаковая в D^* и D', существует вершина $y_2 \in X \setminus V$, такая что $(x_2, y_2) \in D' \setminus D^*$. Продолжим этот процесс выбора, пока для какого-то m не окажется, что $x_m = x_1$. Получаем цикл (точнее говоря — неориентированный цикл), все чётные рёбра которого принадлежат одному созвездию, а все нечётные другому. Наборы как чётных, так и нечётных рёбер минимизируют сумму в 3 в силу допустимости наших созвездий. Это невозможно для метрики общего положения по Теореме 3.

Непосредственно проверяется следующее

Утверждение 1. Пусть T — дерево на множестве вершин X, вершины которого покрашены в чёрный и белый цвета правильным образом, и $u \in X$ — беляя вершина. Рассмотрим все ребра xu дерева T такие, что вершина x белая и кратчайший путь из u в x в дереве T не проходит по ребру xu. Обозначим через $\Phi_u(T)$ сумму длин $\sum \rho(x, y)$ всех таких рёбер (они образуют некоторое созвездие, которое мы обозначим $H(T, u)$). Пусть $P = y_1x_1y_2x_2 \ldots y_kx_k$ — простоя путь в дереве T, в котором x_i — белые вершины. Обозначим через T' дерево, получаемое заменой ребра x_ky_k на x_ky_1. Также обозначим через w близайшую к u вершину пути P. Тогда

$$\Phi_u(T') - \Phi_u(T) = \begin{cases} \rho(x_k, y_1) - \rho(y_1, x_1) + \rho(x_1, y_2) - \ldots - \rho(y_k, x_k), & \text{если } w = x_k \\ 0, & \text{иначе.} \end{cases}$$

Теорема 6. Пусть $X = \{ v_1, \ldots, v_{n+1} \}$, целые неотрицательные числа p_1, \ldots, p_{n+1} таковы, что $\sum p_i = n$. Тогда существует единственный
допустимый граф, в котором исходящая степень вершины v_i равна p_i при всех $i = 1, \ldots, n + 1$.

Если считать вершины v_i, для которых $p_i > 0$, белыми, а остальные — чёрными, то этот граф есть ориентированное (от белого к чёрному) дерево, минимизирующее для каждой белой вершины и функционалов Φ_u, определённый в утверждении 7.

Доказательство. В силу п.4 Следствия 1 любой допустимый граф является (как-то ориентированным) лесом, а так как в нём ровно n рёбер, то деревом.

Докажем единственность такого допустимого дерева T. Для каждой белой вершины u созвездие $H(T, u)$ допустимо, степени его белых вершин зависят от u, но не от T. В силу леммы 2 он единственен и минимизирует Φ_u. Дерево T является объединением всех таких созвездий, так что оно во всяком случае не более чем единственное.

Осталось доказать существование. Рассмотрим дерево T с данными исходящими степенями белых вершин, для которого сумма функционалов Φ_u (u пробегает множество белых вершин) минимальна возможная. Докажем, что оно допустимо, проверив условия Теоремы 4. В самом деле, согласно утверждению 1 получаем, что если для некоторого пути $y_1 \ldots y_k$, где y_i — белые вершины, оно нарушается, то для дерева T' каждый из функционалов Φ_{v_i} имеет не большее значение, чем T, причём некоторые — строго меньшее. Противоречие с минимальностью.

Theorem 6 implies theorem 1 with $m = n$:

Следствие 2. The number of facets of the polytope $KR(X)$ (or, equivalently, the number of vertices of $LIP(X)$) equals $\left(\frac{2n}{n}\right)$.

Доказательство. Гиперграфом $KR(X)$ соответствуют допустимые деревья в силу леммы 1. По Теореме 6 допустимые деревья находятся во взаимно-однозначном соответствии с наборами (p_1, \ldots, p_{n+1}) неотрицательных целых чисел, дающих в сумме n. Сопоставляя каждому такому набору возрастающую последовательность $(p_1 + 1, p_1 + p_2 + 2, \ldots, p_1 + \cdots + p_n + n)$ чисел от 1 до $2n$ видим, что их имеется ровно $\left(\frac{2n}{n}\right)$.

4 Перестроики

Так же как случай $m = n$ Теоремы 1 следует из Теоремы 6, общий случай вытекает из следующего утверждения.
Teorema 7. Пусть $X = \{v_1, \ldots, v_{n+1}\}$, p_1, \ldots, p_{n+1} — целые неотрицательные числа, сумма которых не превосходит $m \leq n$. Имеется ровно $\binom{n}{m}$ допустимых графов, в которых при всех $i = 1, 2, \ldots, n+1$ исходящая степень вершины v_i равна p_i.

Доказательство. Прежде всего, докажем Теорему \[7\] в специальном случае.

Пусть $X = \{1, \ldots, n+1\}$. Положим

$$\rho(i, j) = 1 + i/j, \quad 1 \leq i < j \leq n+1.$$ Ясно, что для непересекающихся наборов $\{x_1 < \cdots < x_k\} \subset X$, $\{y_1 < \cdots < y_k\} \subset X$ минимум в правой части \[3\] достигается на возрастающей перестановке и только на ней (это утверждение известно как "границевенство"). Таким образом, метрика ρ — общего положения и граф является допустимым если и только он не содержит ни одной пары ориентированных ребер $(x_1, y_1), (x_2, y_2)$ таких, что $x_1 < x_2, y_1 > y_2$. Пусть среди чисел p_1, \ldots, p_{n+1} ровно k положительных, обозначим их r_1, \ldots, r_k в порядке возрастания (как чисел) соответствующих точек. Обозначим через Q, $|Q| = n + 1 - k$, множество остальных точек в X. Утверждение Теоремы \[7\] в рассматриваемом случае свелось к такому:

количество наборов подмножеств A_1, \ldots, A_k в Q таких, что $|A_i| = r_i$ при $i = 1, \ldots, k$ и $\max(A_i) \leq \min(A_{i+1})$ при $i = 1, \ldots, k-1$, равно $\binom{n}{m} = \binom{n}{\sum r_i}$.

Это явно. В самом деле, не умаляя общности можно считать, что $Q = \{1, 2, \ldots, n-k+1\}$, тогда сдвиги $A_1, A_2+1, A_3+2, \ldots, A_k+(k-1)$ множеств A_1, \ldots, A_k не пересекаются и образуют подмножество мощности $k = m$ в $\{1, \ldots, n\}$.

Теперь станем изменять метрику и следить за тем, чтобы количество допустимых графов с данными исходящими степенями не менялось.

Метрики на X рассмотрим как точки фазового пространства PS (размерности $n(n+1)/2$) симметричных функций

$$PS = \{f : X \times X \to \mathbb{R}, \quad f(x, y) = f(y, x), \quad f(x, x) = 0 \text{ при } x, y \in X\}.$$ Для каждого упорядоченного набора попарно различных точек $x_1, y_1, \ldots, x_k, y_k$ в X рассмотрим исключительную плоскость

$$\sum_{i=1}^{k} f(x_i, y_i) = \sum_{i=1}^{k} f(x_i, y_{i+1}), \text{ где } y_{k+1} := y_1$$ (4)
(некоторые исключительные плоскости естественным образом совпадают, из таких мы рассматриваем только одну).

Рассмотрим две метрики общего положения ρ_1, ρ_2. Теорема 5 показывает, что непрерывное изменение метрики общего положения, не задевающее исключительных плоскостей, не меняет семейства допустимых деревьев. По Теореме 3 метрика при этом остаётся в общем положении.

Заменим каждую из метрик ρ_1, ρ_2 на достаточно близкую и соединим новые метрики отрезком. Почти наверное (в любом разумном смысле, например, по мере Лебега) этот отрезок не лежит ни в одной исключительной плоскости, и никакая его точка не лежит сразу в двух исключительных плоскостях. Таким образом, можно считать, что при движении по отрезку между метриками в каждый момент одновременно будет пересекаться не более одной исключительной плоскости. Следовательно, достаточно доказать, что при таком пересечении количество графов из формулировки Теоремы 7 не изменяется. Итак, рассмотрим момент пересечения плоскости 4. Пусть до пересечения левая часть была меньше правой, а после стало наоборот. Покажем, какие перестройки произошли с семейством допустимых графов. Графы, которые не содержали всех k рёбер (x_i, y_i) остались допустимыми (в силу свойства (iv) Теоремы 3). Граф G, содержащий все эти k рёбер, перестал быть допустимым. Соединим ему граф G', который не был допустимым, но стал: для каждого i если граф G не содержал ребра (x_i, y_{i+1}), добавим его и удалим ребро (x_i, y_i). Заметим, что исходящие степени при этом не изменились. Докажем, что новый граф G' допустим. Старый граф G содержался в некотором допустимом дереве. Оно обязано было содержать все рёбра цикла $\gamma = y_1x_1...y_kx_ky_1$, кроме одного — иначе оно осталось бы допустимым по Теореме 4. Изменение этого дерева состоит в замене одного рёбра на другое, и новое дерево T' содержит G', так что достаточно проверить допустимость дерева T'. Обозначим через ρ метрику в момент перестройки. Найдёться функция f, линией с константой 1, удовлетворяющая равенствам $f(x) - f(y) = \rho(x, y)$ для всех рёбер (x, y) рёбра T (условие (ii) Теоремы 3 и предельный переход). Кроме того, то же равенство выполняется для единственного рёбра в $T' \setminus T$ (то есть отсутствующего в дереве T рёбра цикла γ — это как раз уравнение пересекаемой плоскости). Для остальных пар точек имеет место строгое неравенство $|f(x) - f(y)| > \rho(x, y)$. Таким образом, граф $T \cup T'$ является в момент перестройки допустимым. Метрику после перестройки обозначим ρ'. Построим функцию f', полагая $f'(x) - f'(y) = \rho'(x, y)$ для
(x, y) ∈ T'. (x, y) ∉ T Union T' неравенство f(x) − f(y) < ρ(x, y) было строгим, поэтому оно сохранилось после перестройки для функции f'. Для единственного ребра в T' \ T оно также выполнено, поскольку мы пересекли плоскость.

Таким образом, количество допустимых графов с данным набором исходящих степеней не уменьшается, аналогично получаем, что оно не увеличивается. Теорема 7 а вместе с ней Теорема 1 доказаны. □

5 Оценки количества типов

В этом разделе мы доказываем оценки Теоремы 2

К исключительным плоскостям, введённым в предыдущем разделе, добавим те, которые определяются одной, попарно различными точками x₁, . . . , xₖ, y₁, . . . , yₖ (но иксы различны и игреки различны). Обозначим через N количество таких плоскостей. Они разделяют пространство PS на несколько частей (не обязательно открытых, например, две точки разделяют прямую 5 частей: интервал, два луча и сами точки.) Принадлежность двух функций f, g ∈ PS одной части равносильна равенству

\[\text{sign } I(f) = \text{sign } I(g) \]

для всех линейных функционалов I, задающих исключительные плоскости. Наметим, что если две метрики лежат в одной части, то семейства допустимых графов для них совпадают, это сразу следует из условия (ii) Теоремы 3. Графы D(α), где α — гипергрань многогранника KR, суть максимальные по включению допустимые графы. Таким образом, семейства графов гиперграней для метрик ρ₁, ρ₂ совпадают. Тогда совпадают и семейства граней меньшей размерности (грани меньшей размерности — это пересечения гиперграней.) Таким образом, метрики ρ₁, ρ₂ лишились эквивалентны. Следовательно, количество типов лишницеевой эквивалентности не превосходит количества частей определяемых N плоскостями в пространстве размерности n(n + 1)/2.

Нужна приемлемая оценка для числа f(N, d) частей, на которые N гиперплоскостей могут поделить d-мерное Евклидово пространство. К примеру, f(N, d) ≤ (3N)d, что незамедлительно следует из индуктивной оценки f(N + 1, d) ≤ f(N, d) + 2f(N, d − 1). Разумеется, точная формула наподобие аналогичной в [11] для числа открытых частей легком может
быть получена, но негромоздкая оценка нам предпочтительней. Действительно, поскольку, очевидно, $N \leq n^{2n}$, мы получаем верхнюю оценку в Теореме 2.

Перейдем к доказательству нижней оценки. Зафиксируем функцию $f \in PS$, значения $f(x, y)$ которой при $x \neq y$ принадлежат интервалу $(0, 1)$ и линейно независимы над \mathbb{Q}. $\rho(x, y) = 3 \pm f(x, y)$ при $x \neq y$ — для всех выборов знаков. Докажем, что среди рассматриваемых метрик не более чем $2^{n^2/4}$ могут быть попарно линициево эквивалентны (при достаточно большом n). Отсюда сразу следует нижняя оценка на количество классов эквивалентности для метрик общего положения. Оценим сверху количество метрик ρ, лишищцево эквивалентных данной ρ_0. Рассмотрим граф на X, рёбра в котором соответствуют разным знакам для ρ_0 и ρ. Заметим, что если этот граф содержит рёбра $(x_1, y_1), (x_2, y_2), (x_1, y_2), (x_2, y_1)$ некоторого цикла длины 4, то в силу условия (iv) теоремы 3 ровно для одной из метрик ρ, ρ_0 пара рёбер $(x_1, y_1), (x_2, y_2)$ образует допустимый граф. Таким образом, метрики ρ, ρ_0 не лишищцевы эквивалентны. Следовательно, количество метрик ρ в классе лишищцевой эквивалентности метрики ρ_0 не больше, чем количество графов без циклов длины 4 на $n+1$ вершине. Такой граф содержит не более $(n+1)^{3/2}$ рёбер (см., например, [3]), которые могут быть выбраны не более чем $(n^2)^{(n+1)^{3/2}} = 2^o(n^2)$ способами, что и требовалось.

6 Унимодулярные триангуляции корневого многогранника

Пусть дана метрика ρ на множестве X, $|X| = n + 1$. Рассмотрим также метрику $1(x, y) = 1, x \neq y$ на X. Вершины многогранника $KR((X, \rho))$ лежат на лучах, выпущенных из начала координат в вершины многогранника $Root((X) := KR((X, 1))$. По Теореме 3 допустимые графы для метрики 1 есть в точности все двудольные графы (с рёбрами, ориентированными от одной доли к другой). Следовательно, если метрика ρ строгая, то граф, допустимый для ρ также допустим для 1. Если ρ к тому же общего положения, то из любой гиперграни $KR((X, \rho))$ центральной проекцией получаем соответствующий ей симплекс на некоторой гиперграни Root(X). Таким образом центральная проекция границы $KR((X, \rho))$ на границу Root(X) даёт триангуляцию последней (как кле-
точного комплекса). Рассмотрим выпуклые оболочки этих симплексов и начала координат. Мы получим триангуляцию самого Root(X). Заметим два свойства этих триангуляций. Во-первых, они регулярны, в том смысле что симплексы триангуляций являются множествами линейности для выпуклой функции: нормы Канторовича-Рубинштейна, соответствующей метрике ρ. Во-вторых, они унимодулярны: все симплексы в таких триангуляциях имеют равный объём. Действительно, разность δx − δy выражается через аналогичные разности для любого дерева как линейные комбинации с коэффициентами ±1; поэтому линейные отображения, которые переводят симплексы наших триангуляций друг в друга имеют целые коэффициенты, и их определители равны ±1. Известно, что все унимодулярные триангуляции многогранника с вершинами на целой решётке имеют один f-вектор (он может быть определён инвариантно через полином Эрхарта, см. [4]). В свою очередь, f-векторы унимодулярных триангуляций корневого многогранника были посчитаны в [5] (для конкретной триангуляции, как и в настоящей работе), и это даёт ещё одно доказательство Теоремы [1]. Однако мы оставляем здесь комбинаторное доказательство, которое даёт больше информации (Теорема [7]).

С другой точки зрения, мы можем рассмотреть регулярные триангуляции многогранника Root(X), которые соответствуют метрикам общего положения, и оценить число таких триангуляций снизу, как в разделе 5. Именно, зафиксируем разбиение X = X+ ∪ X−, |X+| = k, |X−| = n+1−k. Ему соответствует двудольный ориентированный граф (ребра идут из X+ в X−). В свою очередь, ему соответствует гипергрань α0 многогранника Root(X), являющаяся декартовым произведением симплексов Δk−1 × Δn−k (см., например, 6.2.2 в [10]).

Теперь действуем, как в Разделе 5. Фиксируем функцию f из X × X такую что её значения f(x, y) при x ≠ y принадлежат (0, 1) и линейно независимы над Q. онять рассмотрим все метрики вида ρ(x, y) = 3 ± f(x, y) for x ≠ y с независимыми выборами знаков для каждой пары. Для любой такой метрики ρ получаем многогранник KR((X, ρ)), ему соответствует регулярная триангуляция многогранника Root(X) и в частности гиперграни α0. Ясно, что эта триангуляция α0 зависит только от выбора знаков для пар (x, y), x ∈ X+, y ∈ X−. Дадим оценку на количество выборов знаков таких что полученная метрика эквивалента исходной метрике ρ0. Рассмотрим двудольный граф с долями (X+, X−), в котором ребра соответствуют различному выбору знак для ρ0 и ρ.
Заметим, что если этот граф содержит 4-цикл, пара противоположных рёбер этого цикла допустима для ровно одной из двух метрик ρ, ρ_0 (по условию (iv) Теоремы [3]. Следовательно, метрики ρ, ρ_0 задают разные триангуляции гиперграни α_0. Поэтому число метрик ρ не превосходит числа остальных подграфов без 4-циклов полного двудольного графа на (X_+, X_-). Число рёбер в таком графе не превосходит $O(k(n - k + 1)/\sqrt{n})$ (это следует из стандартного рассуждения: каждая пара вершин в одной дюле имеет не больше одного общего соседа в другой.) То есть доказана

Теорема 8. Двойчный логарифм количества регулярных триангуляций произведения симплексов $\Delta^{k-1} \times \Delta^{n-k}$ оценивается снизу $k(n - k + 1) - O(k(n - k + 1) \cdot \log(n) \cdot n^{-1/2})$.

Для малых k эта оценка хуже известных [6].

Автор благодарен Ф. Ардиле за подказанную связь с тропической геометрией.

Список литературы

[1] A. M. Vershik. Classification of finite metric spaces and combinatorics of convex polytopes. *Arnold Mathematical Journal* 1 (1) (2015), 75–81.

[2] L. V. Kantorovich and G. S. Rubinshtein, On a space of completely additive functions. *Vestnik Leningrad. Univ.* 13 (7) (1958), 52–59 (Russian, with English summary).

[3] I. Reiman. Über ein Problem von K. Zarankiewicz. *Acta Math. Acad. Sci. Hungar.* 9 (1958), 269-278.

[4] R. Stanley. Decompositions of rational convex polytopes. *Ann. Discr. Math.* 6 (1980), 333–342.

[5] F. Ardila, M. Beck, S. Hoşten, J. Pfeifle, K. Seashore. Root Polytopes and Growth Series of Root Lattices. *SIAM J. Discrete Math.* 25 (1), 360–378.

[6] F. Santos. The Cayley trick and triangulations of products of simplices. In: Integer Points in Polyhedra. Geometry, Number Theory, Algebra, Optimization. AMS, Contemporary Mathematics 374; 2005; 191 pp.
[7] J. Melleray, F. V. Petrov and A. M. Vershik. Linearly rigid metric spaces and the embedding problem, *Fund. Math.*, **199** (2) (2008), 177–194.

[8] P. B. Zatitskiy. On the coincidence of the canonical embeddings of a metric space into a Banach space. *J. of Math. Sci.*, **158** (6) (2009), 853–857.

[9] I. M. Gelfand, M. I. Graev and A. Postnikov. Combinatorics of hypergeometric functions associated with positive roots, in Arnold-Gelfand Mathematical Seminars, Geometry and Singularity Theory, (Eds. V. I. Arnold, I. M. Gelfand, M. Smirnov and V. S. Retakh), Birkhauser, Boston, 1997, 205–221.

[10] J. A. De Loera, J. Rambau and F. Santos. Triangulations: structures for algorithms and applications. Springer, Berlin (2010).

[11] L. Schläfli. Theorie der vielfachen Kontinuität. Denkschriften der Schweizerischen Akademie der Naturwissenschaften, vol. 38, Birkhauser Basel, 1901.

[12] M. Develin, B. Sturmfels. Tropical convexity. *Doc. Math.*, **9**, 1–27 (2004).

[13] Th. Lam, A. Postnikov. Alcoved polytopes. I, *Discrete Comput. Geom.* **38** (3) (2007), 453–478.

[14] M. Joswig, K. Kulas. Tropical and ordinary convexity combined. *Advances in Geometry* **10** (2) (2010), 333–352.

[15] Ngoc Mai Tran. Enumerating polytropes. arXiv:1310.2012