NEGATIVE CORRELATION BETWEEN MEAN FEMALE AGE AT FIRST BIRTH AND RATES OF MOLECULAR EVOLUTION IN PRIMATES, WITH PREDICTIONS OF THE REPRODUCTIVE AGE IN EARLY HOMININS

PIOTR BAJDEK

Independent researcher; Al. N.M.P. 20/20A, 42-202 Częstochowa, Poland

E-mail address: piotr.bajdek@protonmail.com

ABSTRACT

mtDNA-based phylogenetic trees of the order Primates were constructed by the minimum evolution (ME) and maximum likelihood (ML) methods. Branch lengths were compared with the mean female age at first birth in the taxa studied. Higher reproductive age in females triggers a lower number of generations through time and, on average, at the molecular level smaller evolutionary distances between related taxa. However, this relationship is significant when the phylogeny is resolved by the ME method rather than the ML method. Reliability of the minimum evolution approach is discussed. In contrast to most studies, the ME tree recovers Tarsius bancanus (Tarsiiformes) as a member of the Strepsirrhini, which phylogeny is supported by a strong branch length–reproductive age relationship and which is proposed as a novel heuristic method to test phylogeny. However, branches of certain taxa on the constructed phylogenetic tree show anomalous lengths relative to the mean female age at first birth, such as e.g. the human.
branch. As estimated in this paper, early members of the human lineage have likely reproduced at higher rates than modern humans, some forms possibly giving first birth at the mean age of 10–12 years, which is more comparable to the mean age at first birth in extant gorillas than to that typical of living humans and chimpanzees. Probable early reproduction in human ancestors is also supported by the comparably more evolved mitochondrial DNA in Denisovans than in modern humans, and by a smaller body mass in most fossil hominins, which often triggers fast maturation in primates.

Keywords: primate phylogeny, human evolution, sexual maturity, generation time effect, minimum evolution method

1. INTRODUCTION

The molecular clock concept constitutes one of the principal tools in phylogenetic studies and allows for construction of time-calibrated trees (Bajdek, 2019). However, the rate of molecular evolution vary among lineages (Wu and Li, 1985; Li and Tanimura, 1987; Yi, 2013; Moorjani et al., 2016) which makes assessing divergence dates problematic (Tsantes and Steiper, 2009). Several causes have been proposed to explain variable molecular rates, such as differences in body size and metabolism leading to a higher rate of DNA damage in small-bodied taxa (Martin and Palumbi, 1993; Fontanillas et al., 2007) as well as changes in DNA replication or repair mechanism (Britten, 1986) and sperm competition intensity (Wong, 2014). Notwithstanding, most researchers postulate that the rate of molecular evolution is influenced primarily by the
generation time effect (Wu and Li, 1985; Li and Tanimura, 1987; Elango et al., 2006; Tsantes and
Steiper, 2009; Perry et al., 2011).

The rates of molecular evolution in primates and other lifeforms have been studied by applying rather few methods to resolve the phylogeny and branch length distances. The maximum likelihood principle and its derivatives are currently the most frequently used methods (Tsantes and Steiper, 2009; Moorjani et al., 2016), whereas in most of the early studies on the rates of substitution the neighbor-joining algorithm was used (Elango et al., 2006; Kim et al., 2006; Perry et al., 2011). It is remarkable that virtually all recent studies on the phylogeny of primates are based on the maximum likelihood and Bayesian approaches (Chatterjee et al., 2009; Perelman et al., 2011; Finstermeier et al., 2013; Pozzi et al., 2014; Wu et al., 2017), although the maximum parsimony method was also used (Martín-Peciña et al., 2019).

On the contrary to the current trends in phylogenetics, it is arguable that a distance-based principle for resolving phylogeny can be more suitable in studies on the rates of molecular evolution. In order to test this thesis, primate phylogenetic trees resolved by the maximum likelihood and minimum evolution methods are here analyzed by plotting their total path lengths with the mean female age at first birth in the taxa studied. Possible implications for the phylogeny of primates and in particular the evolutionary history hominines are also discussed.

2. MATERIAL AND METHODS

2.1. Study of the reproductive age in primates
The mean age at reproduction might best correlate with branch lengths on the phylogenetic tree but reliable estimates thereof are unavailable for most primate taxa. Instead, the mean age at first birth for various primate species was retrieved from literature, similarly as done by Tsantes and Steiper (2009). During the selection of taxa for analyses it was necessary to balance between evenly sampling different parts of the primate phylogenetic tree, and including species which reproductive biology is well-studied and corresponding mtDNA sequences are available in the NCBI database. Whenever possible, values correspond to animals studied in the wild. 25 living primate species were selected in total (Table 1).

The mean female age of 15.4 years at first birth used as representative of modern humans (Homo sapiens sapiens) corresponds to the Pumé/Yaruro tribe of primarily hunter-gatherers from the Venezuelan Orinoquia, whose reproduction was studied by Kramer (2008). Although the mean female age at first birth in present-day industrialized nations is notably higher (Mathews et al., 2002), it is often assumed that nonagricultural human populations are more suitable for human–other primates biological comparisons (see Alberts et al., 2013; Willems and van Schaik, 2017).

2.2. Involvement of fossil taxa

Despite the reproductive age in extinct taxa is unknown, one mtDNA sequence belonging to Denisovans was involved in the analyses in aim to study more in detail the human branch. Neanderthal mtDNA was excluded from the analyses due to its high similarity to that of Homo sapiens sapiens. The study of subtle differences in branch lengths may require a reasonable evolutionary distance between taxa in order to obtain a reliable signal. Homo heidelbergensis
was also excluded, whose available mtDNA sequence is slightly incomplete. Lastly, to counter
the node density effect which can distort the branch lengths (Venditti et al., 2006; Hugall and
Lee, 2007), it was important to balance the phylogenetic tree by even sampling (e.g., two human
species vs. two chimpanzee species vs. two gorilla species).

2.3. Phylogenetic analyses

Evolutionary analyses involved 26 mtDNA sequences of primates including 1 fossil and 25
extant taxa (Table 1), which were downloaded from the National Center for Biotechnology
Information, U.S. National Library of Medicine. The analyses were conducted in MEGA X
version 10.1.8 (Kumar et al., 2018) on Fedora 32.

Sequence alignment was performed by the MUSCLE algorithm (Edgar, 2004). Constructing the phylogenetic trees all positions containing gaps and missing data were
eliminated (complete deletion option) and there was a total of 15095 positions in the final
datasets. Two distinct methods were used:

(a) The Minimum Evolution (ME) method (Rzhetsky and Nei, 1992). The Neighbor-
joining algorithm (Saitou and Nei, 1987) was used to generate the initial tree. The evolutionary
distances were computed using the Maximum Composite Likelihood method (Tamura et al.,
2004) and are in the units of the number of base substitutions per site. The ME tree was searched
using the Close-Neighbor-Interchange (CNI) algorithm (Nei and Kumar, 2000) at a search level
of 1. The optimal tree with the sum of branch length = 2.26173061 is shown (Fig. 1A; Fig. 3).
The phylogeny was tested by 10000 bootstrap replicates (Felsenstein, 1985).
The Maximum Likelihood (ML) method and Tamura-Nei model (Tamura and Nei, 1993). Initial trees for the heuristic search were obtained automatically by applying Neighbor-Join (Saitou and Nei, 1987) and BioNJ (Gascuel, 1997) algorithms to a matrix of pairwise distances estimated using the Tamura-Nei model, and then selecting the topology with superior log likelihood value. The tree with the highest log likelihood (-176040.91) is shown (Fig. 1B). The phylogeny was tested by 1000 bootstrap replicates (Felsenstein, 1985).

3. RESULTS AND DISCUSSION

3.1. Comparison of the ME and ML methods

The phylogenetic trees of the order Primates constructed by the use of the minimum evolution (ME) and maximum likelihood (ML) methods are compared in Fig. 1. The topologies of the trees are mostly the same, although the phylogenies of the Lemuriformes and Platyrrhini were resolved differently. The tree constructed via the ME approach has higher bootstrap test results (Fig. 1).

Total path lengths to the last common ancestor of crown-group primates were calculated for both trees (Table 1) and plotted with the mean female age at first birth (Fig. 2). When the phylogeny is resolved by the ME method, the reproductive age negatively correlates with the distances: Pearson's $r = -0.582$, Spearman's $\rho = -0.589$ (Fig. 2A, C). On the contrary, there is no clear correlation when the ML method is applied: Pearson's $r = 0.178$, Spearman's $\rho = 0.059$ (Fig. 2B, D). Calculated correlation coefficients are provided in Table 2.
The minimum evolution (ME) method is based on the assumption that the tree with the smallest sum of branch length estimates is most likely to be the true one (Rzhetsky and Nei, 1992, 1993). First, the neighbor-joining (NJ) tree is obtained by the Saitou and Nei’s (1987) method and then the tree with the minimum value of the total sum of branch lengths is searched by examining all trees that are closely related to the NJ tree (Rzhetsky and Nei, 1992, 1993). Results of the experiment in this study corroborate this method as an effective approach for assessing the “true” branch lengths. Higher mean age at first birth triggers smaller evolutionary distances between related taxa, as most easily explained by a lower number of generations, but this relationship is better visible through the ME than the ML method (Fig. 2; Table 2).

3.2. Phylogenetic position of the Tarsiiformes

The phylogenetic position of tarsiers (Tarsiiformes) is contentious (Yoder, 2003) since molecular studies support their placement as a sister group to either the suborder Strepsirrhini (e.g., Murphy et al., 2001; Waddell et al., 2001; Eizirik et al., 2004; Chatterjee et al., 2009; Huang, 2012) or the Haplorhini (e.g., Ziętkiewicz et al., 1999; Perelman et al., 2011; Springer et al., 2012; Finstermeier et al., 2013; Hartig et al., 2013; Pozzi et al., 2014). Their placement within the Haplorhini appears to be the currently prevailing viewpoint (see López-Torres, 2018) and is supported by the lack of the ability to synthesise the vitamin C in *Tarsius bancanus* which is shared with simians (Pollock and Mullin, 1987), and also other putative haplorhine synapomorphies (Yoder, 2003).

On the other hand, mtDNA analyses in this study recover Tarsiiformes as a sister group to Strepsirrhini by the use of both the ME and ML methods (Fig. 1). It should be noted that *Tarsius*
bancanus is more deeply placed on the strepsirrhine branch by the ME method (Fig. 1A), whereas the primate phylogeny in most of the mtDNA-based previous studies was resolved by applying the ML and Bayesian algorithms (Finstermeier et al., 2013; Pozzi et al., 2014). Notwithstanding, Chatterjee et al. (2009) recovered *Tarsius* within the suborder Strepsirrhini on the basis of mitochondrial and nuclear genes and Bayesian phylogenetic methods.

Most importantly, when the ME approach is applied, the total path length of *Tarsius bancanus* appears to correlate with members of the Strepsirrhini (Fig. 3). Correlation coefficient between the total path lengths and the mean female age at first birth for Strepsirrhini, including *T. bancanus*, is as high as Pearson's $r = -0.737$ and Spearman's $\rho = -0.786$ (Table 2). For example, the total path on *T. bancanus* is slightly shorter than the paths of *Microcebus murinus* and *Loris tardigradus* which give first birth earlier, and slightly longer than the total paths of *Propithecus verreauxi*, *Lemur catta* and *Daubentonia madagascariensis* which on average give first birth at a higher age (Fig. 3).

In contrast, placing *Tarsius bancanus* as a sister taxon to the suborder Haplorhini requires its branch to be more than 0.01268 substitutions per site or 8.89% longer than it is, if this total path length–reproductive age relationship is kept. Arguably, the most parsimonious approach for the study of phylogeny is to seek a scenario requiring the lowest possible amount of evolutionary changes.

3.3 The human lineage

3.3.1. Comparison with gorillas and chimpanzees

The present study corroborates the hominoid slowdown hypothesis (Goodman, 1985; Li and Tanimura, 1987; Steiper et al., 2004) as the paths of the families Hominidae and Hylobatidae are fairly short relative to other groups of the Primates, which is more evident resolving the phylogeny by the ME method (Fig. 3). However, in contrast to early results (Li and Tanimura, 1987; Elango et al., 2006) and in accordance with recent studies (Perelman et al., 2011; Finstermeier et al., 2013; Pozzi et al., 2014), the path of *Homo* is strikingly long compared with the paths of *Gorilla* and *Pan*, and the concomitant reproductive age in living humans (Fig. 3). *G. beringei*, *G. gorilla*, *P. troglodytes*, and *P. paniscus* are characterized by a high negative correlation coefficient between their total path lengths and the mean female age at first birth: Pearson's $r = -0.986$; Spearman's $\rho = -0.8$ (Table 2; ME approach). Based on these four species this linear regression equation can be formulated: $y = -690,077 \times x + 121,557$, where $y =$ mean female age at first birth and $x =$ the total path length. If $x = 0.15830$, being the total path length of *H. s. sapiens* (Table 1), then $y = 12.3178109$.

Hence, compared with the rates of molecular evolution in *Gorilla* and *Pan*, the mtDNA of *H. s. sapiens* diverged from that of their last common ancestor at a high rate as if human females on average had given first birth at the age of ~ 12.32 years. This is a strikingly lower value than the ~ 15.4 years at first parturition found in extant *H. s. sapiens* and also the age of $\sim 14.2–14.3$ in *Pan* (Table 1). Therefore, it appears that certain members of the human lineage have reproduced on average much earlier than modern humans.

Assuming that ~ 12.32 years represent the mean value between the first birth age at such earlier stages of the human evolution, and the first birth age of ~ 15.4 years in living humans, the former can be estimated as ~ 9.24 years: $12.32 - (15.4 - 12.32) = 9.24$. This calculation is somewhat simplistic because the shift in reproductive age in human ancestors was almost certainly
nonlinear (see chapter 3.3.3.). Nevertheless, this value approximates to the mean age at first birth in gorillas which is estimated as \(\approx 10.05\) years for *G. beringei* (see Watts, 1991) and \(\approx 10.3\) years for *G. gorilla* (see King et al., 2012). It cannot be ruled out that early members of the human lineage have reproduced at a rate more comparable to that encountered in extant gorillas rather than to that typical of living humans or chimpanzees.

3.3.2. Devisovan mtDNA

The Denisova hominin (Krause et al., 2010) has been variously termed as *Homo denisova* (e.g., Waddell et al., 2011; Gunbin et al., 2012), *Homo altaiensis* (e.g., Zubova et al., 2017), *Homo sapiens denisova* (e.g., Gunbin et al., 2015; Dorado et al., 2018), and *Homo sapiens altaiensis* (e.g., Derevianko, 2011). However, molecular studies reveal that Denisovans interbred with both *Homo sapiens sapiens* (see Reich et al., 2010) and *Homo sapiens neanderthalensis* (see Slon et al., 2018) proving that from the biological viewpoint all these forms belonged to the same species, and should be considered as subspecies of *Homo sapiens* (Linnaeus, 1758). In this paper, the Denisova hominin is termed as *Homo sapiens denisova*.

Early reproduction in human ancestors is supported by the comparably more evolved mtDNA in *H. s. denisova* than in *H. s. sapiens*, which is confirmed by both the ME and ML methods (Fig. 1, Table 1). The mtDNA of *H. s. denisova* is 0.00026 substitutions per site more diverged from that of its last ancestor shared with *H. s. sapiens* than it is the mtDNA of living humans (ME method). Thus, despite the analyzed mtDNA of Denisovans comes from a 30.000–50.000-years-old fossil (Krause et al., 2010), it appears that there have been more generations in
the lineage of *H. s. denisova* than in *H. s. sapiens*, which points out that some fossil hominins might have reproduced at a higher rate than living humans.

The path of *G. beringei* is 0.00549 substitutions per nucleotide site longer than that of *P. troglodytes*, which corresponds to the age difference of 4.25 years at first birth (Fig. 3) and also a ~10-million-years-long period of separation of lineages (Pozzi et al., 2014). On the other hand, the lineages of *H. s. sapiens* and *H. s. denisova* were estimated to had diverged only ~1.39 Ma by Pozzi et al. (2014) assuming that *Sahelanthropus tchadensis* (Brunet et al., 2002) was an early member of the human lineage (see Brunet et al., 2005; Parins-Fukuchi et al., 2019). If $0.00549/10\text{Ma}=4.25$ years, and $0.00026/1.39\text{Ma}=x$ years, then $x=\sim 1.45$ years of age difference. This suggests that *H. s. denisova* on average have given first birth ~1.45 years earlier than *H. s. sapiens*, i.e. at the age of ~13.95. Noteworthy, the earliest births recorded for modern humans are at the age of around 14 years, although such early pregnancy is often associated with adverse biological consequences (Garn et al., 1986; Kramer, 2008).

Tentatively, reproductive age in earlier hominin forms could be also predicted. Assuming that the last common ancestor of *H. s. denisova* and *H. s. sapiens* 1.39 Ma have reproduced at a comparable rate giving first birth at the age of ~13.95 years, and also a linear shift in reproductive age through time, by extrapolation the earliest forms of *Australopithecus anamensis* (Leakey et al., 1995) living ~4.15 Ma (White et al., 2006) would have given first birth at the age of ~11.07: $15.4-(4.15\times(1.45/1.39))=\sim 11.07$. By further extrapolation, the reproductive age typical of *Gorilla* (10.05–10.30 years at first birth; Table 1) would be reached ~5 Ma, shortly after the final genetic split of the human and chimpanzee lineages understood as the end of hybridization (see Patterson et al., 2006). This is in accordance with the estimation in the chapter above based on the branch length dinstances in *H. s. sapiens*, *Pan*, and *Gorilla*. Nevertheless,
these extrapolations should be treated as an approximation due to the fact that the evolutionary
body mass change in the human lineage was nonlinear (see chapter 3.3.3.).

3.3.3. Body size in hominins

Body mass in the human lineage increased through time (Grabowski et al., 2015; Will and Stock,
2015; Jungers et al., 2016), whereas in mammals it tends to be positively correlated with the age
of maturity. For example, the siamang (*Symphalangus syndactylus*) is twice the size of other
gibbons (Kappelman, 1996) and, on average, gives first birth at a higher age (Geissmann, 1991).
Accordingly, the siamang’s (*Symphalangus syndactylus*) path is notably shorter than that of the
lar gibbon (*Hylobates lar*), as supported by both the ME and ML methods (Figs 1, 3). Also, the
average female body mass in *P. troglodytes* is ~10 kg lower (~47.4 kg) than it is in *H. s. sapiens*
(57.2 kg) (Kappelman, 1996) and accordingly *P. troglodytes* gives first birth ~1.1 years earlier
than *H. s. sapiens* (Fig. 3; Table 1).

Mean female body mass and mean age at first birth in *H. s. sapiens* (57.2 kg, 15.4 years)
and *P. troglodytes* (47.4 kg, 14.3 years) can be tentatively extrapolated on fossil hominins by this
regression equation: $y = 0.112 * x + 8.98$, where $y =$ age at first birth (years), and $x =$ body mass
(kg). Grabowski et al. (2015) estimated the mean female body mass for several species of fossil
hominins. For example, female *H. erectus* weighted ~46.3 kg, which suggests the age at first
birth = 14.1656 and, interestingly, matches the value of ~13.95 years estimated herein for *H. s.
denisova* based on its mtDNA. Furthermore, the body mass of ~27.3 kg in female *H. habilis*
(Leakey et al., 1964) corresponds to the mean age of ~12.04 years at first birth.
This all suggests that the relatively small-bodied members of the human lineage have probably reached sexual maturity faster than living humans, which confirms inferences from the branch lengths. Overall, female australopiths weighted around a half of the body mass of female modern humans (Grabowski et al., 2015). However, the evolutionary change in body size in hominins was nonlinear (Jungers et al., 2016). For example, *Homo habilis* was apparently smaller than the some older in geologic age *Australopithecus afarensis* (see Jungers et al., 2016), although their estimated body mass difference is more significant in males than females (Grabowski et al., 2015). Therefore, the evolutionary change in maturity age in the human lineage was almost certainly nonlinear as well.

Irrespectively, gorillas give first birth 4–5 years earlier than humans and chimpanzees but have a much higher body mass. Also, gorillas differ from humans and chimpanzees in having a strong body mass sexual dimorphism (Kappelman, 1996; McHenry, 1996). It has been widely proposed that early members of the human lineage were characterized by such a strong sexual dimorphism and also that this would point out a gorilla-like social and reproductive behavior (Leutenegger and Shell, 1987; Kappelman, 1996; McHenry, 1996). In particular, strong body mass and canine size sexual dimorphism has been suggested for *Australopithecus afarensis* (see Leutenegger and Shell, 1987; Richmond and Jungers, 1995; Plavcan et al., 2005; Gordon et al., 2008; Grabowski et al., 2015), although a few researchers disagreed with these interpretations (Reno et al., 2003, 2010).

4. CONCLUSIONS
In spite of the growing popularity of sophisticated approaches for resolving phylogeny, complex methods are not necessarily superior to simple ones. The minimum evolution method has solid theoretical foundations grounded in the Ockham’s razor as it assumes that the most probable phylogeny is that one with the smallest sum of branch lengths. The present study demonstrates a significantly higher negative correlation between the total path lengths and the mean female age at first birth when the mtDNA-based phylogeny of the Primates is resolved by the ME method than the ML method. This calls attention to the ME approach as potentially useful in the studies on the rates of molecular evolution.

Furthermore, assuming that the negative correlation between the total path lengths and the mean age at first birth is not casual but caused by the generation time effect, it is possible that under some circumstances such relationship or lack thereof can be used as a heuristic test of phylogeny. Tree showing a high negative correlation coefficient between these two values is more likely to be the true one than an alternative tree missing it.

Lastly, the study of branch length anomalies allows making evolutionary inferences. For example, branch length distances among living and fossil hominins studied herein suggest that the rate of reproduction in the human lineage has been on average much higher than it is modern humans. It appears that certain members of the human lineage have given first birth at age more comparable to that encountered in gorillas than to that typical of living humans and chimpanzees.

REFERENCES

Alberts, S.C., Altmann, J., Brockman, D.K., Cords, M., Fedigan, L.M., Pusey, A., Stoinski, T.S., Strier, K.B., Morris, W.F., Bronikowski, A.M., 2013. Reproductive aging patterns in primates
reveal that humans are distinct. Proc. Natl. Acad. Sci. USA 110, 13440–13445.

https://doi.org/10.1073/pnas.1311857110

Alley, C.E., 2018. The influence of body mass, diet, and phylogeny on lemur gestation length, age-at-first-birth, and interbirth interval length. The Human Voyage 2, 11.

http://studentjournals.anu.edu.au/index.php/hv/article/view/72

Bajdek, P., 2019. Divergence rates of subviral pathogens of angiosperms abruptly decreased at the Cretaceous-Paleogene boundary. Rethinking Ecology 4, 89–101.

https://doi.org/10.3897/rethinkingecology.4.33014

Bezanson, M., 2009. Life history and locomotion in *Cebus capucinus* and *Alouatta palliata*. Am. J. Phys. Anthropol. 140, 508–517. https://doi.org/10.1002/ajpa.21099

Britten, R.J., 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231, 1393–1398. https://doi.org/10.1126/science.3082006

Brunet, M., Guy, F., Pilbeam, D., Mackaye, H.T.,Likius, A., Ahounta, D., Beauvilain, A., Blondel, C., Bocherens, H., Boisserie, J.-R.,De Bonis, L., Coppens, Y., Dejax, J., Denys, C., Duringer, P., Eisenmann, V., Fanone, G., Fronty, P., Geraads, D., Lehmann, T., Lihoreau, F., Louchart, A., Mahamat, A., Merceron, G., Mouchelin, G., Otero, O., Campomanes, P.P., De Leon, M.P., Rage, J.-C., Sapanet, M., Schuster, M., Sudre, J., Tassy, P., Valentin, X., Vignaud, P,
Viriot, L., Zazzo, A., Zollikofer, C., 2002. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418, 145–151. https://doi.org/10.1038/nature00879

Brunet, M., Guy, F., Pilbeam, D., Lieberman, D.E., Likius, A., Mackaye, H.T., Ponce de Leon, M.S., Zollikofer, C.P.E., Vignaud, P., 2005. New material of the earliest hominid from the Upper Miocene of Chad. Nature 434, 752–755. https://doi.org/10.1038/nature03392

Chatterjee, H.J., Ho, S.Y., Barnes, I., Groves, C., 2009. Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC. Evol. Biol. 9, 259. https://doi.org/10.1186/1471-2148-9-259

Derevianko, A.P., 2011. The origin of anatomically modern humans and their behavior in Africa and Eurasia. Archeol. Etnogr. Antropol. Eurasia 39, 2–31. https://doi.org/10.1016/j.aeae.2011.09.001

Dirks, W., Bowman, J.E., 2007. Life history theory and dental development in four species of catarrhine primates. J. Hum. Evol. 53, 309–320. https://doi.org/10.1016/j.jhevol.2007.04.007

Dorado, G., Luque, F., Pascual, P., Jiménez, I., Sánchez-Cañete, F.J.S., Raya, P., Sáiz, J., Sánchez, A., Rosales, T.E., Vásquez, V.F., Hernández, P., 2018. Evolution from first hominids to modern humans: philosophy, bioarchaeology and biology - Review. Arqueobios 12, 69–82.
Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340

Eizirik, E., Murphy, W.J., Springer, M.S., O’Brien, S.J., 2004. Molecular phylogeny and dating of early primate divergences, in: Ross, C.F., Kay, R.F. (Eds.), Anthropoid Origins. Springer US, Boston, MA, pp. 45–64. https://doi.org/10.1007/978-1-4419-8873-7_2

Elango, N., Thomas, J.W., NISC Comparative Sequencing Program, Yi, S.V., 2006. Variable molecular clocks in hominoids. Proc. Natl. Acad. Sci. USA 103, 1370–1375. https://doi.org/10.1073/pnas.0510716103

Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791. https://doi.org/10.2307/2408678

Fernandez-Duque, E., 2012. Owl monkeys Aotus spp in the wild and in captivity. Int. Zoo Yb. 46, 80–94. https://doi.org/10.1111/j.1748-1090.2011.00156.x

Finstermeier, K., Zinner, D., Brameier, M., Meyer, M., Kreuz, E., Hofreiter, M., Roos, C., 2013. A mitogenomic phylogeny of living primates. PLoS ONE 8, e69504. https://doi.org/10.1371/journal.pone.0069504
Fontanillas, E., Welch, J.J., Thomas, J.A., Bromham, L., 2007. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla. BMC Evol. Biol. 7, 95. https://doi.org/10.1186/1471-2148-7-95

Garn, S.M., Pesick, S.D., Petzold, A.S., 1986. The biology of teenage pregnancy: the mother and the child, in: School-Age Pregnancy and Parenthood: Biosocial Dimensions. Aldine de Gruyter, New York, pp. 77–94.

Geissmann, T., 1991. A reassessment of age of sexual maturity in gibbons (Hylobates spp.). Am. J. Primatol. 23, 11–22. https://doi.org/10.1002/ajp.1350230103

Gordon, A.D., Green, D.J., Richmond, B.G., 2008. Strong postcranial size dimorphism in Australopithecus afarensis: Results from two new resampling methods for multivariate data sets with missing data. Am. J. Phys. Anthropol. 135, 311–328. https://doi.org/10.1002/ajpa.20745

Grabowski, M., Hatala, K.G., Jungers, W.L., Richmond, B.G., 2015. Body mass estimates of hominin fossils and the evolution of human body size. J. Hum. Evol. 85, 75–93. https://doi.org/10.1016/j.jhevol.2015.05.005

Gascuel, O., 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14, 685–695. https://doi.org/10.1093/oxfordjournals.molbev.a025808
Goodman, M., 1985. Rates of molecular evolution: the hominoid slowdown. BioEssays 3, 9–14.
https://doi.org/10.1002/bies.950030104

Gunbin, K.V., Afonnikov, D.A., Kolchanov, N.A., Derevianko, A.P., 2012. The importance of changes to microrna in the evolution of Homo neanderthalensis and Homo denisova. Archeol. Etnogr. Antropol. Eurasia 40, 22–30. https://doi.org/10.1016/j.aeae.2012.11.004

Gunbin, K.V., Afonnikov, D.A., Kolchanov, N.A., Derevianko, A.P., Rogaev, E.I., 2015. The evolution of Homo sapiens denisova and Homo sapiens neanderthalensis miRNA targeting genes in the prenatal and postnatal brain. BMC Genomics 16, S4. https://doi.org/10.1186/1471-2164-16-S13-S4

Harcourt, C., Thornback, J., 1990. Lemurs of Madagascar and the Comoros. IUCN, Gland, Switzerland and Cambridge, U.K.

Hartig, G., Churakov, G., Warren, W.C., Brosius, J., Makałowski, W., Schmitz, J., 2013. Retrophylogenomics place tarsiers on the evolutionary branch of anthropoids. Sci. Rep. 3, 1756. https://doi.org/10.1038/srep01756

Huang, S., 2012. Primate phylogeny: molecular evidence for a pongid clade excluding humans and a prosimian clade containing tarsiers. Sci. China Life Sci. 55, 709–725. https://doi.org/10.1007/s11427-012-4350-7
Hugall, A.F., Lee, M.S.Y., 2007. The likelihood node density effect and consequences for evolutionary studies of molecular rates. Evolution 61, 2293–2307. https://doi.org/10.1111/j.1558-5646.2007.00188.x

Izard, M.K., Rasmussen, D.T., 1985. Reproduction in the slender loris (Loris tardigradus malabaricus). Am. J. Primatol. 8, 153–165. https://doi.org/10.1002/ajp.1350080206

Jungers, W.L., Grabowski, M., Hatala, K.G., Richmond, B.G., 2016. The evolution of body size and shape in the human career. Phil. Trans. R. Soc. B 371, 20150247. https://doi.org/10.1098/rstb.2015.0247

Kappelman, J., 1996. The evolution of body mass and relative brain size in fossil hominids. J. Hum. Evol. 30, 243–276. https://doi.org/10.1006/jhev.1996.0021

Kim, S.-H., Elango, N., Warden, C., Vigoda, E., Yi, S.V., n.d. Heterogeneous genomic molecular clocks in primates. PLoS Genet. 2, e163. https://doi.org/10.1371/journal.pgen.0020163

King, T., Chamberlan, C., Courage, A., 2012. Assessing initial reintroduction success in long-lived primates by quantifying survival, reproduction, and dispersal parameters: western lowland gorillas (Gorilla gorilla gorilla) in Congo and Gabon. Int. J. Primatol. 33, 134–149. https://doi.org/10.1007/s10764-011-9563-2
Kramer, K.L., 2008. Early sexual maturity among Pumé foragers of Venezuela: Fitness implications of teen motherhood. Am. J. Phys. Anthropol. 136, 338–350. https://doi.org/10.1002/ajpa.20817

Krause, J., Fu, Q., Good, J.M., Viola, B., Shunkov, M.V., Derevianko, A.P., Pääbo, S., 2010. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897. https://doi.org/10.1038/nature08976

Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096

Lea, A.J., Learn, N.H., Theus, M.J., Altmann, J., Alberts, S.C., 2014. Complex sources of variance in female dominance rank in a nepotistic society. Anim. Behav. 94, 87–99. https://doi.org/10.1016/j.anbehav.2014.05.019

Leakey, L.S.B., Tobias, P.V., Napier, J.R., 1964. A new species of the genus Homo from Olduvai Gorge. Nature 202, 7–9. https://doi.org/10.1038/202007a0

Leakey, M.G., Feibel, C.S., McDougall, I., Walker, A., 1995. New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature 376, 565–571. https://doi.org/10.1038/376565a0
Leutenegger, W., Shell, B., 1987. Variability and sexual dimorphism in canine size of \textit{Australopithecus} and extant hominoids. J. Hum. Evol. 16, 359–367. https://doi.org/10.1016/0047-2484(87)90066-2

Li, W.-H., Tanimura, M., 1987. The molecular clock runs more slowly in man than in apes and monkeys. Nature 326, 93–96. https://doi.org/10.1038/326093a0

Linnaeus, C., 1758. Systema Naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Holmiae: Impensis Direct. Laurentii Salvii, Stockholm. https://doi.org/10.5962/bhl.title.542

López-Torres, S., 2018. Primate evolution and the emergence of humans, in: Vertebrate Life. Oxford University Press, pp. 519–552.

Martin, A.P., Palumbi, S.R., 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA 90, 4087–4091. https://doi.org/10.1073/pnas.90.9.4087

Martín-Peciña, M., Ruiz-Ruano, F.J., Camacho, J.P.M., Dodsworth, S., 2019. Phylogenetic signal of genomic repeat abundances can be distorted by random homoplasy: a case study from hominid primates. Zool. J. Linn. Soc-Lond. 185, 543–554. https://doi.org/10.1093/zoolinnean/zly077
Mathews, T.J., Hamilton, B.E., 2002. Mean age of mother, 1970–2000. Hyattsville, Maryland: National Center for Health Statistics 51, 1–16.

McHenry, H.M., 1996. Sexual dimorphism in fossil hominids and its socioecological implications, in: The Archaeology of Human Ancestry: Power, Sex and Tradition. Routledge, London and New York, pp. 82–99.

Moorjani, P., Amorim, C.E.G., Arndt, P.F., Przeworski, M., 2016. Variation in the molecular clock of primates. Proc. Natl. Acad. Sci. USA 113, 10607–10612. https://doi.org/10.1073/pnas.1600374113

Murphy, W.J., Eizirik, E., Johnson, W.E., Zhang, Y.P., Ryder, O.A., O’Brien, S.J., 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618. https://doi.org/10.1038/35054550

Nakagawa, N., Ohsawa, H., Muroyama, Y., 2003. Life-history parameters of a wild group of West African patas monkeys (Erythrocebus patas patas). Primates 44, 281–290. https://doi.org/10.1007/s10329-003-0042-z

Nei, M., Kumar, S., 2000. Molecular evolution and phylogenetics. Oxford University Press, New York.
Nishimura, A., 2003. Reproductive parameters of wild female *Lagothrix lagotricha*. Int. J. Primatol. 24, 707–722.

Parins-Fukuchi, C., Greiner, E., MacLatchy, L.M., Fisher, D.C., 2019. Phylogeny, ancestors, and anagenesis in the hominin fossil record. Paleobiology 45, 378–393. https://doi.org/10.1017/pab.2019.12

Patterson, N., Richter, D.J., Gnerre, S., Lander, E.S., Reich, D., 2006. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441, 1103–1108. https://doi.org/10.1038/nature04789

Perelman, P., Johnson, W.E., Roos, C., Seuánez, H.N., Horvath, J.E., Moreira, M.A.M., Kessing, B., Pontius, J., Roelke, M., Rumpler, Y., Schneider, M.P.C., Silva, A., O’Brien, S.J., Pecon-Slattery, J., 2011. A molecular phylogeny of living primates. PLoS Genet. 7, e1001342. https://doi.org/10.1371/journal.pgen.1001342

Perry, G.H., Reeves, D., Melsted, P., Ratan, A., Miller, W., Michelini, K., Louis, E.E., Pritchard, J.K., Mason, C.E., Gilad, Y., 2011. A genome sequence resource for the aye-aye (*Daubentonia madagascariensis*), a nocturnal lemur from Madagascar. Genome Biol. Evol. 4, 126–135. https://doi.org/10.1093/gbe/evr132
Plavcan, J.M., Lockwood, C.A., Kimbel, W.H., Lague, M.R., Harmon, E.H., 2005. Sexual dimorphism in *Australopithecus afarensis* revisited: How strong is the case for a human-like pattern of dimorphism? J. Hum. Evol. 48, 313–320. https://doi.org/10.1016/j.jhevol.2004.09.006

Pollock, J.I., Mullin, R.J., 1987. Vitamin C biosynthesis in prosimians: Evidence for the anthropoid affinity of *Tarsius*. Am. J. Phys. Anthropol. 73, 65–70. https://doi.org/10.1002/ajpa.1330730106

Pozzi, L., Hodgson, J.A., Burrell, A.S., Sterner, K.N., Raaum, R.L., Disotell, T.R., 2014. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 75, 165–183. https://doi.org/10.1016/j.ympev.2014.02.023

Reich, D., Green, R.E., Kircher, M., Krause, J., Patterson, N., Durand, E.Y., Viola, B., Briggs, A.W., Stenzel, U., Johnson, P.L.F., Maricic, T., Good, J.M., Marques-Bonet, T., Alkan, C., Fu, Q., Mallick, S., Li, H., Meyer, M., Eichler, E.E., Stoneking, M., Richards, M., Talamo, S., Shunkov, M.V., Derevianko, A.P., Hublin, J.-J., Kelso, J., Slatkin, M., Pääbo, S., 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060. https://doi.org/10.1038/nature09710

Refisch, J., Koné, I., 2005. Impact of commercial hunting on monkey populations in the Taï region, Côte d’Ivoire. Biotropica 37, 136–144. https://doi.org/10.1111/j.1744-7429.2005.03174.x
Reno, P.L., Meindl, R.S., McCollum, M.A., Lovejoy, C.O., 2003. Sexual dimorphism in *Australopithecus afarensis* was similar to that of modern humans. Proc. Natl. Acad. Sci. USA 100, 9404–9409. https://doi.org/10.1073/pnas.1133180100

Reno, P.L., McCollum, M.A., Meindl, R.S., Lovejoy, C.O., 2010. An enlarged postcranial sample confirms *Australopithecus afarensis* dimorphism was similar to modern humans. Phil. Trans. R. Soc. B 365, 3355–3363. https://doi.org/10.1098/rstb.2010.0086

Richmond, B.G., Jungers, W.L., 1995. Size variation and sexual dimorphism in *Australopithecus afarensis* and living hominoids. J. Hum. Evol. 29, 229–245. https://doi.org/10.1006/jhev.1995.1058

Roberts, M., 1994. Growth, development, and parental care in the western tarsier (*Tarsius bancanus*) in captivity: Evidence for a “slow” life-history and nonmonogamous mating system. Int. J. Primatol. 15, 1–28. https://doi.org/10.1007/BF02735232

Rzhetsky, A., Nei, M., 1992. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9, 945–967. https://doi.org/10.1093/oxfordjournals.molbev.a040771

Rzhetsky, A., Nei, M., 1993. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol. Biol. Evol. 1073–1095. https://doi.org/10.1093/oxfordjournals.molbev.a040056
Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Sales, L.P., Hayward, M.W., Zambaldi, L., Passamani, M., de Melo, F.R., Loyola, R., 2015. Time-lags in primate occupancy: a study case using dynamic models. Natureza & Conservação 13, 139–144. https://doi.org/10.1016/j.ncon.2015.10.003

Schwartz, G.T., 2012. Growth, development, and life history throughout the evolution of Homo. Curr. Anthropol. 53, S395–S408. https://doi.org/10.1086/667591

Slon, V., Mafessoni, F., Vernot, B., de Filippo, C., Grote, S., Viola, B., Hajdinjak, M., Peyrégne, S., Nagel, S., Brown, S., Douka, K., Higham, T., Kozlikin, M.B., Shunkov, M.V., Derevianko, A.P., Kelso, J., Meyer, M., Prüfer, K., Pääbo, S., 2018. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116. https://doi.org/10.1038/s41586-018-0455-x

Springer, M.S., Meredith, R.W., Gatesy, J., Emerling, C.A., Park, J., Rabosky, D.L., Stadler, T., Steiner, C., Ryder, O.A., Janečka, J.E., Fisher, C.A., Murphy, W.J., 2012. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoS ONE 7, e49521. https://doi.org/10.1371/journal.pone.0049521
Steiper, M.E., Young, N.M., Sukarna, T.Y., 2004. Genomic data support the hominoid slowdown and an Early Oligocene estimate for the hominoid-cercopithecoid divergence. Proc. Natl. Acad. Sci. USA 101, 17021–17026. https://doi.org/10.1073/pnas.0407270101

Sussman, R.W., 1991. Demography and social organization of free-ranging *Lemur catta* in the Beza Mahafaly Reserve, Madagascar. Am. J. Phys. Anthropol. 84, 43–58. https://doi.org/10.1002/ajpa.1330840105

Tamura, K., Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023

Tamura, K., Nei, M., Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101, 11030–11035. https://doi.org/10.1073/pnas.0404206101

Tsantes, C., Steiper, M.E., 2009. Age at first reproduction explains rate variation in the strepsirrhine molecular clock. Proc. Natl. Acad. Sci. USA 106, 18165–18170. https://doi.org/10.1073/pnas.0906686106

Venditti, C., Meade, A., Pagel, M., 2006. Detecting the node-density artifact in phylogeny reconstruction. Systematic Biology 55, 637–643. https://doi.org/10.1080/10635150600865567
Waddell, P.J., Kishino, H., Ota, R., 2001. A phylogenetic foundation for comparative mammalian genomics. Genome Inform. 12, 141–154. https://doi.org/10.11234/gi1990.12.141

Waddell, P.J., Ramos, J., Tan, X., 2011. Homo denisova, correspondence spectral analysis, finite sites reticulate hierarchical coalescent models and the Ron Jeremy hypothesis. arXiv 1112.6424. https://arxiv.org/pdf/1112.6424.pdf

Watts, D.P., 1991. Mountain gorilla reproduction and sexual behavior. Am. J. Primatol. 24, 211–225. https://doi.org/10.1002/ajp.1350240307

White, T.D., WoldeGabriel, G., Asfaw, B., Ambrose, S., Beyene, Y., Bernor, R.L., Boisserie, J.-R., Currie, B., Gilbert, H., Haile-Selassie, Y., Hart, W.K., Hlusko, L.J., Howell, F.C., Kono, R.T., Lehmann, T., Louchart, A., Lovejoy, C.O., Renne, P.R., Saegusa, H., Vrba, E.S., Wesselman, H., Suwa, G., 2006. Asa Issie, Aramis and the origin of Australopithecus. Nature 440, 883–889. https://doi.org/10.1038/nature04629

Wich, S.A., Utami-Atmoko, S.S., Setia, T.M., Riksen, H.D., Schürmann, C., van Hooff, J.A.R.A.M., van Schaik, C.P., 2004. Life history of wild Sumatran orangutans (Pongo abelii). J. Hum. Evol. 47, 385–398. https://doi.org/10.1016/j.jhevol.2004.08.006

Will, M., Stock, J.T., 2015. Spatial and temporal variation of body size among early Homo. J. Hum. Evol. 82, 15–33. https://doi.org/10.1016/j.jhevol.2015.02.009
Willems, E.P., van Schaik, C.P., 2017. The social organization of Homo ergaster: Inferences from anti-predator responses in extant primates. J. Hum. Evol. 109, 11–21. https://doi.org/10.1016/j.jhevol.2017.05.003

Wong, A., 2014. Covariance between testes size and substitution rates in primates. Mol. Biol. Evol. 31, 1432–1436. https://doi.org/10.1093/molbev/msu091

Wu, C.-I., Li, W.-H., 1985. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA 82, 1741–1745. https://doi.org/10.1073/pnas.82.6.1741

Wu, J., Yonezawa, T., Kishino, H., 2017. Rates of molecular evolution suggest natural history of life history traits and a post-K-Pg nocturnal bottleneck of placentals. Curr. Biol. 27, 3025–3033. https://doi.org/10.1016/j.cub.2017.08.043

Xia, W., Ren, B., Zhou, H., Feng, H., He, X., Krzton, A., Hu, J., Aouititen, M., Luan, X., Li, D., 2020. Reproductive parameters of wild Rhinopithecus bieti. Folia Primatol. 91, 202–218. https://doi.org/10.1159/000503246

Yi, S.V., 2013. Morris Goodman’s hominoid rate slowdown: The importance of being neutral. Mol. Phylogenet. Evol. 66, 569–574. https://doi.org/10.1016/j.ympev.2012.07.031

Yoder, A.D., 2003. The phylogenetic position of genus Tarsius: whose side are you on?, in: Tarsiers: Past, Present, and Future. Rutgers University Press, pp. 161–175.
Ziętkiewicz, E., Richer, C., Labuda, D., 1999. Phylogenetic affinities of tarsier in the context of primate Alu repeats. Mol. Phylogenet. Evol. 11, 77–83. https://doi.org/10.1006/mpev.1998.0564

Zubova, A.V., Chikisheva, T.A., Shunkov, M.V., 2017. The morphology of permanent molars from the Paleolithic layers of Denisova Cave. Archeol. Etnogr. Antropol. Eurasia 45, 121–134. https://doi.org/10.17746/1563-0110.2017.45.1.121-134
Species	NCBI accession number	Mean age at first birth	Minimum evolution method – total path length	Maximum likelihood method – total path length	References to the age at first birth
Aotus azarai azarai	NC_018115.1	5	0.15587	0.24905	Fernandez-Duque (2012)
Cercopithecus diana	NC_023963.1	5.4	0.17261	0.27532	Refisch and Koné (2005)
Cheirogaleus major	NC_035655.1	1.75	0.16769	0.26589	Alley (2018)
Cheracebus lugens	NC_024630.1	3.7	0.16600	0.23379	Sales et al. (2015)
Daubentonia madagascariensis	NC_010299.1	3.5	0.16772	0.21302	Perry et al. (2011)
Erythrocebus patas	NC_021947.1	3	0.18303	0.29526	Nakagawa et al. (2003)
Gorilla beringei	NC_037853.1	10.05	0.16167	0.25869	Watts (1991)
Gorilla gorilla gorilla	NC_011120.1	10.3	0.16098	0.25799	King et al. (2012)
Homo sapiens denisoa	NC_013993.1	?	0.15856	0.26069	
Homo sapiens sapiens	NC_012920.1	15.4	0.15830	0.25987	Kramer (2008)
Hylobates lar	NC_002082.1	6	0.16418	0.24420	Geissmann (1991)
Lagothrix lagotricha	NC_021951.1	9	0.15599	0.23812	Nishimura (2003)
Lemur catta	NC_004025.1	3	0.16535	0.21874	Sussman (1991)
Loris tardigradus	NC_012763.1	1.45	0.17452	0.20096	Izard and Rasmussen (1985)
Microcebus murinus	NC_028718.1	1.5	0.18301	0.29525	Harcourt and Thornback (1990)
Pan paniscus	NC_001644.1	14.2	0.15498	0.26016	Wich et al. (2004)
Pan troglodytes	NC_001643.1	14.3	0.15618	0.26206	Wich et al. (2004), Schwartz (2012)
Papio cynocephalus	NC_020007.2	6.17	0.17666	0.26594	Lea et al. (2014)
Papio hamadryas	NC_001992.1	6.1	0.17798	0.26703	Dirks and Bowman (2007)
Pongo abelii	NC_002083.1	15.4	0.16524	0.25755	Wich et al. (2004)
Pongo pygmaeus	NC_001646.1	15.7	0.16594	0.25793	Wich et al. (2004), Schwartz (2012)
Propithecus verreauxi	NC_028210.1	4	0.16409	0.24113	Bezanson (2009)
Rhinopithecus bieti	NC_015486.1	6.13	0.17446	0.26601	Xia et al. (2020)
Saimiri oerstedii	NC_023211.1	2.5	0.17321	0.29193	Bezanson (2009)
Symphalangus syndactylus	NC_014047.1	8.5	0.15835	0.24036	Geissmann (1991)
Tarsius bancanus	NC_002811.1	2.52	0.16803	0.16472	Roberts (1994)

Table 1

Data analyzed in this study and calculated total path lengths.
Minimum Evolution (ME)

	Pearson’s r	Spearman’s ρ	Linear regression for y = age at first birth	Linear regression for x = branch length
Primates	-0.582	-0.589	y = -335,522 * x + 62,975	x = -0.001 * y + 0.174
Strepsirrhini	-0.737	-0.786	y = -113,362 * x + 21,81	x = -0.005 * y + 0.182
Haplorhini	-0.575	-0.473	y = -299,586 * x + 58,339	x = -0.001 * y + 0.175
G. beringei + G. gorilla + P. paniscus + P. troglodytes	-0.986	-0.8	y = -690,077 * x + 121,557	x = -0.001 * y + 0.176

Maximum Likelihood (ML)

	Pearson’s r	Spearman’s ρ	Linear regression for y = age at first birth	Linear regression for x = branch length
Primates	0.178	0.059	y = 29,072 * x + -0.321	x = 0.001 * y + 0.244
Strepsirrhini	-0.261	-0.036	y = -6,137 * x + 3,934	x = -0.011 * y + 0.257
Haplorhini	-0.245	-0.253	y = -68,215 * x + 26,455	x = -0.001 * y + 0.268
G. beringei + G. gorilla + P. paniscus + P. troglodytes	0.888	0.8	y = 1161,716 * x + -289,514	x = 0.001 * y + 0.251

Table 2

Correlation coefficients between the distances to the last common ancestor of the order Primates and the mean female age at first birth. Note the moderate–high negative correlation when the phylogeny is resolved by the ME method and the general lack of this relationship when the ML method is used.
Fig. 1. Minimum evolution (A) and maximum likelihood (B) mtDNA-based phylogenetic trees of primates. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test are shown in blue (when = 100%) and red (when < 100%). Branch lengths are shown below the branches and are in the units of the number of base substitutions per site.
Fig. 2. Relationship between the mean female age at first birth (red line) and the total path length (blue line) based on the minimum evolution (A, C) and maximum likelihood (B, D) methods. For illustrative purposes the evolutionary distances are algorithmic calculated by the formula: total path length * 100 – 10, based on the Table 1. Note that whereas the ages at first reproduction and evolutionary distances are negatively correlated based on the ME method (Pearson’s r = -0,582; Spearman’s ρ = -0,589), this correlation is missing when the ML method is applied (Pearson’s r = 0,178; Spearman’s ρ = 0,059).
Fig. 3. Minimum evolution tree of the order Primates. Note that the mean female age at first birth (in red; years) is negatively correlated with the total path lengths. NCBI accession numbers are provided in gray and bootstrap test results in blue.