Annual variation in predation risk is related to the direction of selection for brain size in the wild

Kim Jaatinen1, Anders P. Møller2 & Markus Öst3,4

The direction of predator-mediated selection on brain size is debated. However, the speed and the accuracy of performing a task cannot be simultaneously maximized. Large-brained individuals may be predisposed to accurate but slow decision-making, beneficial under high predation risk, but costly under low risk. This creates the possibility of temporally fluctuating selection on brain size depending on overall predation risk. We test this idea in nesting wild eider females (Somateria mollissima), in which head volume is tightly linked to brain mass ($r^2 = 0.73$). We determined how female relative head volume relates to survival, and characterized the seasonal timing of predation. Previous work suggests that relatively large-brained and small-brained females make slow versus fast nest-site decisions, respectively, and that predation events occur seasonally earlier when predation is severe. Large-brained, late-breeding females may therefore have higher survival during high-predation years, but lower survival during safe years, assuming that predation disproportionately affects late breeders in such years. Relatively large-headed females outsurvived smaller-headed females during dangerous years, whereas the opposite was true in safer years. Predation events occurred relatively later during safe years. Fluctuations in the direction of survival selection on relative brain size may therefore arise due to brain-size dependent breeding phenology.

A common explanation for the evolution of relative brain size is a trade-off between energetic constraints and natural selection for enhanced cognitive abilities1. Under this scenario, predation has been proposed to be a major force shaping cognitive abilities and brain size1. This is because the threat of predation may select for greater investment into neural tissues that help animals evade predators, hence resulting in a positive association between (relative) brain size and predation pressure3.

However, recent studies have challenged the view that predation should select for larger brains, instead finding the opposite pattern4,5, or no relationship at all6. Taken together, these findings suggest that the ecological and behavioural context in which predators and prey interact may largely determine how the brains of prey species evolve in response to predators. They also emphasize the paradox that direct evidence for the action of natural selection on cognitive traits is rare7, despite the alleged benefits of cognitive ability, especially in the context of predator avoidance.

The shortage of evidence for evolutionary change in brain size in the wild, as opposed to laboratory settings6,7, suggests that the selective landscape in natural populations may be more complex than currently appreciated. First, the possibility of temporally fluctuating selection is routinely overlooked when investigating how predators may affect the cognitive evolution of their prey. Temporal fluctuations in the strength and direction of selection may slow down evolution, both over geological and contemporary timescales6,8, although the importance of fluctuating selection for evolutionary dynamics on contemporary timescales remains poorly understood9. Nevertheless, Losos et al.10 demonstrated that a dramatic predation-induced reversal in the direction of natural selection is possible even within a single generation.

Second, evolution of a large brain incurs fitness costs other than physiological ones, which have so far received the bulk of attention11–13. A pervasive constraint on decision-making performance is that the speed and the accuracy of performing a task cannot be simultaneously maximized (‘speed-accuracy trade-off’)14. Animals making

1 Nature and Game Management Trust Finland, Degerbyvägen 176, FI-10160, Degerby, Finland. 2 Ecologie Systématicque Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405, Orsay Cedex, France. 3 Environmental and Marine Biology, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6, FI-20520, Turku, Finland. 4 Novia University of Applied Sciences, Raseborgsvägen 9, FI-10600, Ekenäs, Finland. Correspondence and requests for materials should be addressed to K.J. (email: kim@luontojariista.fi)
in populations subject to high predation risk, such as ours in the northern Baltic Sea. Female eiders peak during the incubation period, resulting in considerably lower survival of adult females than males. This is particularly true if there is a high level of danger, whereas safe years would be characterized by an increase in predation rates towards the end of the breeding season. If found to be present, such seasonal dynamics in predation pressure may expose late-breeding, large-brained females to a higher risk of depredation during safe years.

Results

Female survival in relation to relative brain size. The proportional hazards model explained 10.3% of the variation in female survival. Survivorship was related to annual predation risk on females (b = 0.13 ± 0.16 SE), absolute head size (b = 0.14 ± 0.16 SE), and an interaction between annual predation risk and absolute head size (b = −0.32 ± 0.16, z = −2.06, p = 0.0399), whereas the forced covariate structural size (radius-ulna length) was not associated with survivorship (Table 1). This significant interaction arose because female survival showed a positive relationship with head size in dangerous years, while the relationship was negative in safe years (Fig. 1A,B).

Seasonal timing of predation in relation to overall annual predation risk. The logistic GLMM of the annual cumulative proportion of killed females of total kills over the season provided an adequate fit to the data (marginal R² = 0.478, conditional R² = 0.48). This cumulative proportion was explained by annual predation risk (b = 13.37 ± 2.69 SE, z = 4.97, p < 0.001), time relative to the median annual hatch date (b = 0.18 ± 0.92 SE, z = 7.99, p < 0.001), and an interaction between annual predation risk and time relative to the median hatch date (b = 0.61 ± 0.18 SE, z = 3.47, p = 0.0005). The interaction revealed that in years with a higher level of danger, the increase in the cumulative proportion of females being killed was more pronounced during the early breeding season (Fig. 2).

Table 1. Model selection table for a proportional hazards model explaining survival of female eiders. Covariates in bold font constitute the final model.

Variable	b	exp(b)	se(b)	z	p
Relative head volume	0.14	1.15	0.16	0.87	0.39
Radius-ulna length	−0.19	0.83	0.18	−1.04	0.30
Annual predation risk	0.13	1.14	0.16	0.78	0.44
Relative head volume;annual predation risk	−0.32	0.73	0.16	−2.06	<0.04
Condition index	−0.13	0.88	0.19	−0.69	0.49
Relative head volume;condition index	0.30	1.35	0.26	1.17	0.24
Year of death	0.43	1.54	0.50	0.86	0.39
Condition index;annual predation risk	0.20	1.22	0.20	0.98	0.33
Discussion

Our results point at an unacknowledged mechanism that may contribute to explaining the inconsistent relationship between brain size and predation under natural conditions.4,5,26 Thus, brain-size specific breeding phenologies may, in the face of variable predation risk, give rise to temporally fluctuating selection pressure on brain size. While underappreciated in the field of cognitive ecology, the notion that fluctuating selection may maintain animal personality variation in the wild is widely accepted.27 Studies pinpointing the ecological driver of variation in selection are still scarce, however.12,28 Here, we showed that there was a temporal shift towards later occurrence of predation events on nesting females in years characterised by relaxed predation pressure (Fig. 2). This should place large-brained, late-breeding females at a disadvantage during years with low overall predation pressure (‘benign conditions’), an effect that was confirmed by our survival analysis (Fig. 1A). We believe that the seasonal difference in the timing of predation may be strong enough to explain a substantial part of the interactive

Figure 1. Survivorship of female eiders with increasing age is related to both head size and annual risk of predation (killed females per nesting attempt). In benign years with low predation risk (panel A), small-headed females have higher survival, whereas the opposite is true during years of severe predation pressure (panel B). To illuminate the differences, the figures illustrate low and high extremes with respect to observed annual predation risk (see Methods). For head size, extreme values (referred to as ‘small’ and ‘large’ brains) represent the 10% and 90% quantiles, respectively.

Figure 2. The cumulative proportion of killed female eiders of the sum of annual kills is explained by an interaction between adult predation risk (killed females per nesting attempt) and time relative to the annual median hatch date. In more dangerous years, the cumulative proportion of killed females increases more steeply during the early breeding season. The effect of relative timing within the breeding season on the cumulative proportion of kills is shown at high (+1 SD, dotted line), mean (dashed line), and low (−1 SD, solid line) levels of annual predation risk (see Methods).
relationship between relative head volume and annual predation risk on survivorship. Thus, based on mean predicted hatching dates (see Fig. 3 in ref. 20), females having the largest head volumes in our study population breed on average ca 8 days later than their counterparts with the smallest head volumes, a considerable time difference corresponding to ca 30% of the typical 26-day incubation period in the species.

The result that large-brained females enjoyed a survival advantage under high predation risk is expected under the cognitive buffer hypothesis 29. This is because a greater number of potential attacks and/or a greater diversity of predator species utilizing diverse hunting tactics might demand higher behavioural flexibility 30. However, our results stand out from previous work in one key aspect. In our case, the greater versus lower odds of survival of large-brained females during years of high and low predation, respectively, may be a passive outcome of brain-size specific differences in breeding phenology. Thus, the mechanism presented here may be more parsimonious: it does not rest on the stringent assumption that large-brained individuals possess superior abilities to hide or flee from predators, nor does it require active preference for smaller-brained prey by predators 31. Instead, female eiders may simply place different premiums on ‘fast’ versus ‘slow’ decision-making during nest-site selection depending on their relative brain size, as suggested by our previous work 20, 21. Our present results add further support to the notion that neither cognitive strategy consistently outperforms the other; the outcome is context-dependent. Although negative fitness effects associated with greater sensitivity to perceived predation hazard by large-brained individuals have seldom been reported, our finding is nevertheless not unique. Thus, Cole et al. 32 report a parallel example: problem-solving great tits Parus major, presumably more sensitive to disturbance during breeding, showed an increased rate of nest desertion with detrimental effects on fitness.

Because the patterns of fluctuating selection on brain size observed here may also be the result of selection on correlated traits, we need to evaluate alternative explanations. The design of our statistical analysis ruled out a correlation between brain and body size. Another recently highlighted correlation may be that between brain size and boldness 33,34. In our study population, we have collected long-term data (2008-) on boldness of incubating females, quantified as flight initiation distance (FID), i.e., the distance at which females take flight when approached by a possible predator (here, a researcher) in a standardized fashion 34. FID shows high inter-annual repeatability within females 34, but also depends on nest cover 35. However, any confounding between relative brain size and boldness is unlikely in this case, because there is no relationship between relative head volume and FID, controlling for proportional nest cover (see Supplementary Table 1). Finally, the fact that the recovered female eiders were depredated rather than scavenged post mortem makes it less likely that energetic trade-offs between neural investment and other fitness-relevant traits such as immunity would explain the patterns observed here. Nevertheless, the amount of variation explained by our survivorship model was relatively modest ($r^2 = 0.103$). Although small to intermediate effect sizes like those reported here are the most common in biology 28, such effects can be very important across a few generations.

Interestingly, fluctuating selection on phenotypic traits seldom translates into fluctuating evolution on contemporary time scales 41. One common explanation is that fluctuating selection will only act to slow down the rate of adaptive evolution if the direction of selection changes regularly and the mean selection differential equals zero 40, 57. These assumptions are unlikely to hold also in the present case. First, the absolute numbers of killed females is considerably higher in dangerous than in safe years (correlation between annual predation index and absolute number of killed females in 1998–2016: $r = 0.90$, $n = 19$, $p < 0.001$). Hence, the difference between the trait mean (here, relative brain size) of the population before and after an annual bout of selection is likely to differ between safe and dangerous years. Second, the study population is currently facing continuously increasing predation pressure on incubating females 25. ‘Safe’ years, allowing for potential reversals of the positive trend between relative brain size and survival, may therefore occur increasingly rarely. Given the limited annual variation in present-day predation pressure, a longer time frame of research may be helpful. A particularly fruitful avenue of future research may therefore be to contrast the brain-size distribution of the contemporary eider population from the Baltic Sea with that from the period preceding the phase of rapid increase in eagle and mink Mustela vison populations, and here museum specimens of eiders may prove useful.

To conclude, our study may provide new insights into the conundrum of why exposure to predators does not necessarily result in the evolution of larger brains in the wild. Thus, the direction of selection on relative brain size of eider females fluctuated annually depending on prevailing predation pressure. We argued that brain size-dependent breeding phenology may provide a plausible mechanism for the variable association between relative brain size and survival. Brain size-dependent breeding phenologies may stem from differential emphasis on speed versus accuracy in selecting nest sites 20, 21. Our results suggest that neither fast nor slow decision-making is consistently superior over the other. As a next step, we encourage studies investigating whether brain-size specific breeding phenologies are a general phenomenon, and, if so, the fitness consequences of such divergent nest-site selection strategies should be evaluated under variable predation risk. Elucidating the role of fluctuating selection in maintaining individual variation in brain size will critically depend on the availability of individual-based long-term data.

Material and Methods

Study site and fieldwork methods. Handling of birds was carried out in accordance with the Finnish Act on Animal Experimentation. Handling procedures were approved by the National Animal Experiment Board (Permit numbers HY-85-2003, ESLH-2009-02969/Ym-23, ESAV1/1697/04.10.03/2012, ESAVI/2831/04.10.07/2015) and complied with the regulations of Tvärminne Zoological Station.

This study was conducted at Tvärminne (59°50′N, 23°15′E), western Gulf of Finland, during 1998–2016. We used three data sets. First, our focal data set consisted of dead females for which we had complete breeding data and head volume measurements ($n = 47$). These females were ringed during 1998–2015 and found killed close to their nests during 2012–2016 (head size measurements began in 2012). Second, we determined female body condition for all trapped individuals in 1998–2016 ($n = 3228$, range: 111–249 females annually). Inclusion of female
body condition was motivated by the potential importance of body condition as a predictor of survival in female eiders. Third, we documented annual adult predation risk by recovering all incubating females killed at their nests, regardless of ringing status, and related this number to the total number of nesting attempts annually. These data were also used to determine the cumulative seasonal frequency distribution of dates of recovery of the killed females. The annual adult predation risk and seasonal timing of deaths were determined for the period 2012–2016 (n = 211 killed females, range 16–74 annually) to match the period when the killed females with complete data on head size and other attributes were found (first data set, see above).

Female eiders were captured with hand nets during the end of incubation to minimize nest desertion. Upon capture females were weighed (to the nearest 5 g), measured for structural size (length of the radius-ulna to the nearest 1 mm) and ringed with a standard metal ring. Head width, length and height to the nearest 0.01 mm was measured in 2012–2016. Head volume (cm³) was approximated as an ellipsoid using the following equation:

\[\text{Head Volume} = \frac{4}{3} \pi \left(\text{head length} - \text{beak length} \right) \times \left(\text{head width} \right)^2 \times \left(\text{head height} \right) / 2 \]

Although head volume was measured in 2012–2016, we assume, based on high within-individual repeatability of this measure (0.86), that this estimate of head volume also represents the individual's past head volume. By doing so, we extended the available data set to years from which we have breeding biology data but lack annual head volume data.

Based on incubation stage, we estimated female body condition for all trapped individuals in 1998–2016, provided that they had incubated their eggs for >8 days (egg laying may otherwise still be in progress). This was done by regressing the log-transformed projected weight at hatching against the log-transformed radius-ulna length and using the standardized residuals as a condition index (data from all years were pooled to obtain a global index). The projected weight at hatching was obtained by subtracting the expected weight loss (by calculating the expected number of days before hatching, based on incubation stage) from the body weight measured at capture. We caught females at different incubation stages, which enabled us to quantify average weight loss by regressing the logarithm of body weight against the logarithm of incubation time and projected hatching date. The assumption of continued weight loss after female capture is valid in our study population, and thus our index for estimating body condition is reliable.

We documented annual adult predation risk by recovering all incubating females killed at their nests during nest censuses and dividing this number by the total number of nesting attempts in each year. The total number of nesting attempts was the sum of actively incubated, depredated and abandoned nests, as well as nests in which the ducklings had already hatched when the nest was first encountered. The recovery dates of the carcasses were used to construct an annual cumulative frequency distribution of the seasonal timing of predation events on nesting females (2012–2016). Although the carcasses were not always fresh when found, we have no reason to expect systematic bias in our sampling of carcasses related to annual predation risk. Thus, the total length of the nest monitoring season (mean ± SD = 21.6 ± 3.36 days) did not vary significantly depending on annual predation risk, as defined above (r = −0.18, n = 5, p = 0.78). Our nest visits were also done at a phenologically equivalent time with respect to annual predation risk: the time difference between the median date of nest visits and annual median hatching date (mean ± SD = −11.84 ± 1.33 days) was not significantly related to annual predation risk (r = 0.23, n = 5, p = 0.72). Furthermore, the order of visiting the study islands remained roughly the same throughout the study period.

Validating the head size-brain size relationship. We measured head volume for 15 fresh eider females collected in Denmark in 2015. The brains were subsequently extracted from the skull and weighed on a Sartorius precision balance to the nearest 0.001 g. Brain mass could be predicted by head volume according to the following linear regression equation:

\[\text{Brain mass} = 5.37 (\text{SE} = 0.27) + 0.199 (\text{SE} = 0.03) \times \text{Head volume}, \text{F} = 39.21, \text{df} = 1, 13, r^2 = 0.73, p < 0.0001. \]

One individual with an extreme brain mass and head volume had a Cook's D of 0.75, which is still less than the standard criterion of D > 1 for excluding outliers. Log-transformed brain mass and log-transformed head volume produced a model with r² = 0.75.

Statistical analyses. To test the effects of relative brain size on survivorship, we constructed a proportional hazards model. In this model, survival is modelled as a function of an unspecified baseline hazard at time t, which is modified by the explanatory variables (Table 1) included in the model:

\[h(t, \beta_0, \beta_1, \beta_2, \beta_3, \ldots) = h_0(t) \times \exp(\beta_1 \times x_1(t) + \beta_2 \times x_2 + \beta_3 \times x_3 + \ldots) \]

with h₀, the baseline hazard; x₁, a time-dependent explanatory variable; x₂, x₃ explanatory variables; and b₁, b₂, b₃, the corresponding coefficients. In the full model, survivorship was explained by absolute head volume (continuous variable), length of the radius-ulna, annual predation risk (continuous variable), mean body condition index, and year of death. We also included the two-way interactions between head volume and annual predation risk, head volume and mean body condition, and mean body condition and annual predation risk. Using a mean body condition index, i.e., the mean of all observations for each female during 1998–2016, was justified because annual body condition of breeding eider females shows considerable individual repeatability among years.

Within-individual repeatability of body condition was 0.46 in the present data (95% CI: 0.41–0.50, p < 0.001, n = 2208 observations on 704 females), estimated using the rptR package and after eliminating females with only a single observation over time.

The proportional hazards model was reduced by sequential removal of nonsignificant variables (α = 0.05), except for radius-ulna length, which was forced into the final model to assess the effects of relative rather than absolute head size on female survival (larger females may be expected to have larger heads and brains). Variables
were retained in the final model based on the change in deviance between models fitted with and without each term until only significant terms remained. We maintained the hierarchical structure within our models by including both component main effects in case of finding a significant interaction term\(^{46}\). Significant interactions between continuous variables were visualized following the guidelines of Aiken and West\(^{46}\). In this procedure, the slope of the independent variable on the dependent variable is estimated at designated levels of the moderating variable. Because of the limited number of years and killed females included in the proportional hazards survival analysis, we computed regression slopes only for observed extreme values of the variables included in the significant interaction (Fig. 1a,b).

Second, we analysed the effect of annual adult predation risk on the seasonal timing of predator-induced mortality events. To this end, we constructed a generalized linear mixed model (GLMM) with binomial error distribution (logit link function) and Laplace parameter estimation, in which the cumulative proportion of females being killed of the sum of annual kills was explained by the adult predation index (continuous variable), time relative to the annual median hatch date, and their two-way interaction. The time difference in days between the focal date and median hatch date (repeated measure), nested within year, was included as a random effect. This random effect allowed us to account for the non-independence of consecutive points on the cumulative frequency curve of killed females over the course of the season. In this analysis, significant interaction terms between continuous variables were graphically illustrated by estimating the slope of the independent variable on the dependent variable at high (+1 SD), mean, and low (−1 SD) levels of the moderator\(^{46}\) (Fig. 2). Marginal and conditional \(R^2\) values were obtained using the function ‘r.squaredGLMM’ provided in the package ‘MuMIn’\(^{47}\).

All analyses were conducted using the software R 3.0.2.\(^{46}\).

Data Availability
All data used for the analyses are available from the corresponding author on reasonable request.

References
1. Isler, K. & van Schaik, C. P. The expensive brain: a framework for explaining evolutionary changes in brain size. J. Hum. Evol. 57, 392–400 (2009).
2. van der Bijl, W. & Kolm, N. Why direct effects of predation complicate the social brain hypothesis. BioEssays 38, 568–577 (2016).
3. Kotschal, A. et al. Brain size affects female but not male survival under predation threat. Ecol. Lett. 18, 646–652 (2015).
4. Walsh, M. R., Broyles, W., Beston, S. M. & Munch, S. P. Predator-driven brain size evolution in natural populations of Trinidadian killifish (\textit{Rivulus hartii}). Proc. R. Soc. B 283, 20161075 (2016).
5. Samuk, K., Xue, J. & Rennision, D. J. Exposure to predators does not lead to the evolution of larger brains in experimental populations of threespine stickleback. Evolution 511, 307–314 (2018).
6. Burns, J. G. & Rodd, F. H. Hastiness, brain size and predation regime affect the performance of wild guppies in a spatial memory task. Anim. Behav. 76, 911–922 (2008).
7. Morand-Ferron, J., Cole, E. F. & Quinn, J. L. Studying the evolutionary ecology of cognition in the wild: A review of practical and conceptual challenges. Biol. Rev. 91, 367–389 (2016).
8. Logan, C. J. et al. Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization. Comp. Cogn. Behav. Rev. 13, 55–90 (2018).
9. Bell, G. Fluctuating selection: the perpetual renewal of adaptation in variable environments. Phil. Trans. R. Soc. B 365, 87–97 (2010).
10. Bonnet, T. & Postma, E. Fluctuating selection and its (elusive) evolutionary consequences in a wild rodent population. J. Evol. Biol. 31, 572–586 (2018).
11. Morrissy, M. B. & Hadfield, J. D. Directional selection in temporally replicated studies is remarkably consistent. Evolution 66, 435–442 (2012).
12. Losos, J. B., Schoener, T. W., Langerhans, R. B. & Spiller, D. A. Rapid temporal reversal in predator-driven natural selection. Science 314, 1111 (2006).
13. Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr. Anthropol. 36, 199–221 (1995).
14. Kotschal, A., Corral-Lopez, A., Szidat, S. & Kolm, N. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth. Evolution 69, 3013–3020 (2015).
15. Kotschal, A., Kolm, N. & Penn, D. J. Selection for brain size impairs innate, but not adaptive immune responses. Proc. R. Soc. B 283, 20152857 (2016).
16. Chittka, L., Skorupski, P. & Raine, N. E. Speed–accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 24, 400–407 (2009).
17. Sih, A. & Del Guidice, M. Linking behavioural syndromes and cognition: a behavioural ecology perspective. Phil. Trans. R. Soc. B 367, 2762–2772 (2012).
18. Ings, T. C. & Chittka, L. Speed-accuracy tradeoffs and false alarms in bee responses to cryptic predators. Curr. Biol. 18, 1520–1524 (2008).
19. Abbott, K. R. & Sherratt, T. N. Optimal sampling and signal detection: unifying models of attention and speed-accuracy trade-offs. Behav. Ecol. 24, 603–616 (2013).
20. Ost, M. & Jaatinen, K. Smart and safe? Antipredator behavior and breeding success are related to head size in a wild bird. Behav. Ecol. 26, 1371–1378 (2015).
21. Jaatinen, K. & Ost, M. Brain size-related breeding strategies in a seabird. Oecologia 180, 67–76 (2016).
22. Descamps, S., Béty, J., Love, O. P. & Gilchrist, H. G. Individual optimization of reproduction in a long-lived migratory bird: a test of the condition-dependent model of laying date and clutch size. Funct. Ecol. 25, 671–681 (2011).
23. Ramula, S., Ost, M., Lindén, A., Karell, P. & Kilpi, M. Increased male bias in eider ducks can be explained by sex-specific survival of prime-age breeders. PLoS One 13, e0195415 (2018).
24. Brezziński, M., Chibowski, P., Gornia, J., Górczy, G. & Zalewski, A. Spatio-temporal variation in nestling success of colonial waterbirds under the impact of a non-native invasive predator. Oecologia 188, 1037–1047 (2018).
25. Ost, M., Lindén, A., Karell, P., Ramula, S. & Kilpi, M. To breed or not to breed: drivers of intermittent breeding in a seabird under increasing predation risk and male bias. Oecologia 188, 129–138 (2018).
26. Reddon, A. R., Chouinard Thuly, L., Lerais, I. & Reader, S. M. Wild and laboratory exposure to cues of predation risk increases relative brain mass in male guppies. Funct. Ecol. 32, 1847–1856 (2018).
27. Nicolaus, M., Tinbergen, J. M., Uebels, R., Both, C. & Dingemanse, N. J. Density fluctuations represent a key process maintaining personality variation in a wild passerine bird. Ecol. Lett. 19, 478–486 (2016).
28. Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002).
46. Aiken, L. S. & West, S. G.
47. Barton, K. MuMIn: Multi-model inference. R package version 1.15.6. Available at, https://cran.r-project.org/web/packages/MuMIn/
45. Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology.
44. Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Ecol. 8, 1639–1643 (2017).
43. Jaatinen, K. & Öst, M. Experience attracts: the role of age in the formation of cooperative brood-rearing coalitions in eiders. Anim. Behav. 84, 889–896 (2012).
42. Cox, D. R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B 34, 187–220 (1972).
41. Jaatinen, K., Öst, M. & Lehikoinen, A. Adult predation risk drives shifts in parental care strategies: a long-term study. J. Anim. Ecol. 80, 49–56 (2011).
40. Öst, M. & Steele, B. B. Age-specific nest-site preference and success in eiders. Oecologia 162, 59–69 (2010).
39. Öst, M., Wickman, M., Matulionis, E. & Steele, B. B. Habitat-specific clutch size and cost of incubation in eiders reconsidered. Oecologia 158, 205–216 (2008).
38. Ekroos, J., Öst, M., Karell, P., Jaatinen, K. & Kilpi, M. Philopatric predisposition to predation-induced ecological traps: habitat-dependent mortality of breeding eiders. Oecologia 170, 979–986 (2012).
37. Blanckenhorn, W. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75, 385–407 (2000).
36. Møller, A. P. & Jennions, M. D. How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132, 492–500 (2002).
35. Seltmann, M. W., Jaatinen, K., Steele, B. B. & Öst, M. Boldness and stress responsiveness as drivers of nest-site selection in a ground-nesting bird. Ethology 119, 1–13 (2014).
34. Seltmann, M. W., Jaatinen, K., Steele, B. B. & Öst, M. Stress responsiveness, age and body condition interactively affect flight initiation distance in breeding female eiders. Anim. Behav. 84, 889–896 (2012).
33. Møller, A. P. & Erritzøe, J. Predator-prey interactions, flight initiation distance and brain size. J. Evol. Biol. 27, 34–42 (2014).
32. Cole, E. F., Morand-Ferron, J., Hinks, A. & Quinn, J. L. Cognitive ability influences reproductive life history variation in the wild. Curr. Biol. 22, 1808–1812 (2012).
31. Shultz, S. & Dunbar, R. I. M. Chimpanzee and felid diet composition is influenced by prey brain size. Biol. Lett. 2, 505–508 (2006).
30. Kotrschal, A., Deacon, A. E., Magurran, E. A. & Kolm, N. Predation pressure shapes brain anatomy in the wild. Evol. Ecol. 31, 619–633 (2017).
29. Allman, J., McLaughlin, T. & Hakeem, A. Brain-weight and lifespan in primate species. Proc. Natl Acad. Sci. USA 90, 118–122 (1993).
28. R Core Team.
27. Ekerot, J., Öst, M., Karell, P., Jaatinen, K. & Kilpi, M. Philopatric predisposition to predation-induced ecological traps: habitat-dependent mortality of breeding eiders. Oecologia 170, 979–986 (2012).
26. Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Ecol. 8, 1639–1643 (2017).
25. Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 70, 967–971 (2005).
24. Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions. (SAGE, 1991).
23. Barton, K. MuMIn: Multi-model inference. R package version 1.15.6. Available at, https://cran.r-project.org/web/packages/MuMIn/index.html (2016).
22. R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2013).
21. Jaatinen, K. & Öst, M. Experience attracts: the role of age in the formation of cooperative brood-rearing coalitions in eiders. Anim. Behav. 81, 1289–1294 (2011).
20. Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Ecol. 8, 1639–1643 (2017).
19. Cox, D. R. Regression Models and Life-Tables. I. R. Stat. Soc. Ser. B 34, 187–220 (1972).
18. Jaatinen, K. & Öst, M. Experience attracts: the role of age in the formation of cooperative brood-rearing coalitions in eiders. Anim. Behav. 81, 1289–1294 (2011).
17. Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Ecol. 8, 1639–1643 (2017).
16. Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions. (SAGE, 1991).
15. Barton, K. MuMIn: Multi-model inference. R package version 1.15.6. Available at, https://cran.r-project.org/web/packages/MuMIn/index.html (2016).
14. R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2013).
13. Cox, D. R. Regression Models and Life-Tables. I. R. Stat. Soc. Ser. B 34, 187–220 (1972).
12. Jaatinen, K. & Öst, M. Experience attracts: the role of age in the formation of cooperative brood-rearing coalitions in eiders. Anim. Behav. 81, 1289–1294 (2011).
11. Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Ecol. 8, 1639–1643 (2017).
10. Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 70, 967–971 (2005).
9. Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions. (SAGE, 1991).
8. Barton, K. MuMIn: Multi-model inference. R package version 1.15.6. Available at, https://cran.r-project.org/web/packages/MuMIn/index.html (2016).
7. R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2013).

Acknowledgements
We thank numerous people participating in fieldwork. Tvärminne Zoological Station provided excellent facilities. This work was supported by the Swedish Cultural Foundation in Finland (grant numbers 17/3317, 16/1476, 15/3296, 14/2657, 13/2654 and 138139) to M.O.

Author Contributions
K.J. and M.O. conceived of and designed the study, and collected field data. A.P.M. measured the head volume and brain mass of eiders in Denmark and analyzed these data. K.J. analyzed all other data. K.J. and M.O. interpreted results and wrote the manuscript; A.P.M. provided comments.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-48153-w.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019