Braiding operator via quantum cluster algebra

Kazuhiro Hikami\(^1\) and Rei Inoue\(^2\)

\(^1\)Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan
\(^2\)Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba 263-8522, Japan
E-mail: KHikami@gmail.com and reiiy@math.s.chiba-u.ac.jp

Received 7 April 2014, revised 1 September 2014
Accepted for publication 5 September 2014
Published 11 November 2014

Abstract
We construct a braiding operator in terms of the quantum dilogarithm function based on the quantum cluster algebra. We show that it is a \(q\)-deformation of the \(R\)-operator for which hyperbolic octahedron is assigned. Also shown is that, by taking \(q\) to be a root of unity, our braiding operator reduces to the Kashaev \(R^K\)-matrix up to a simple gauge-transformation.

This article is part of a special issue of *Journal of Physics A: Mathematical and Theoretical* devoted to ‘Cluster algebras in mathematical physics’.

Keywords: quantum cluster algebra, R-operator, quantum dilogarithm function

PACS numbers: 02.10.Kn, 02.10.Hh, 02.20.Uw

(Some figures may appear in colour only in the online journal)

1. Introduction

It is conjectured [27] that the hyperbolic volume of knot complement is given by

\[
\lim_{N \to \infty} \frac{2\pi}{N} \log \left| \langle K \rangle_N \right| = \text{Vol}(S^3 \setminus K),
\]

(1.1)

where \(\langle K \rangle_N\) is the Kashaev invariant of knot \(K\). Kashaev constructed the quantum invariant \(\langle K \rangle_N\) based on the finite-dimensional representation of the quantum dilogarithm [25]. It was later realized that the Kashaev invariant \(\langle K \rangle_N\) coincides with the \(N\)-colored Jones polynomial at the \(N\)th root of unity [32],

\[
\langle K \rangle_N = J_N(K; q = e^{2\pi i/N}),
\]

(1.2)
where the N-colored Jones polynomial is normalized to be J_q (unknot; q) = 1. More precisely it was shown that Kashaev’s braiding matrix R^K as a finite-dimensional representation of the Artin braid group with n strands,

$$R_n = \left\{ \begin{array}{l}
\sigma_1, \sigma_2, \ldots, \sigma_{n-1} \\
\sigma_i \sigma_{i+1} = \sigma_{i+1} \sigma_i, \\
\sigma_i = \sigma_j, \quad \text{for } |i - j| > 1
\end{array} \right\}$$

(1.3)
is gauge-equivalent to the R^I-matrix for the N-colored Jones polynomial at the root of unity. As the colored Jones polynomial is well-understood in the framework of the quantum group $\mathfrak{g}\mathfrak{l}_2(q^2)$ (see, e.g., [30]), the Kashaev invariant $\langle K \rangle_N$ is regarded as an invariant for $\mathfrak{g}\mathfrak{l}_2(q^2)$. In [2, 24, 26] (see also [9]) studied is a relationship between $\langle K \rangle_N$ and the 6j-symbol of $U_q(\mathfrak{sl}_2)$, but the mathematical background of the Kashaev R^K-matrix itself still remains unclear, at least, to us.

Meanwhile, studies on the geometrical content of $\langle K \rangle_N$ have been much developed. It is now recognized that an ideal hyperbolic octahedron is assigned to each R^K-matrix [37], and proposed [8, 41] was a method to construct from a set of such octahedra the Neumann–Zagier potential function [34] which give the complex volume of knot complement. This observation is based on a fact that the hyperbolic volume of ideal tetrahedron is given in terms of the dilogarithm function (see, e.g., [38]), and that the R^K-matrix asymptotically consists of four dilogarithm functions [37].

In our previous paper [23], we constructed the R-operator from the viewpoint of the cluster algebra. We showed that the R-operator is geometrically interpreted as a hyperbolic octahedron which is the same assigned to the Kashaev R^K-matrix. The cluster algebra was originally introduced by Fomin and Zelevinsky [19] to study the total positivity in semi-simple Lie groups, and it is promising to clarify a deep connection with geometry [18] (see also [22, 33]).

The purpose of this article is to quantize the R-operator in [23]. Basic tool is the quantum cluster algebra [6, 16, 17, 31]. We shall construct the R-operator in terms of the quantum dilogarithm function as a conjugation for the quantum R^q-operator, and clarify a relationship with the Kashaev R^K-matrix. We show explicitly that the R-operator reduces to the R^K-matrix up to a gauge-transformation when the quantized parameter q^2 tends to the Nth root of unity.

This paper is organized as follows. In section 2, we briefly review our previous results [22, 23]. We discuss a relationship between the cluster algebra and the hyperbolic geometry, and we recall a definition of the R-operator (2.9) which is illustrated as a hyperbolic octahedron. In section 3 we study a q-deformation of the R-operator. We construct the braiding R^q-operator (3.9) as a conjugation of the R-operator (3.15), which is written in terms of the quantum dilogarithm function. In a limit that q^2 goes to a root of unity, the R-operator reduces to the Kashaev R^K-matrix.

2. Cluster algebra and hyperbolic geometry

2.1. Cluster algebra

We briefly collect a notion of the cluster algebra. See [19] for detail.

Fix a positive integer N. Let (\mathbf{x}, \mathbf{B}) be a cluster seed, where $\mathbf{x} = (x_1, x_2, \ldots, x_N)$ is a cluster variable, and an $N \times N$ skew-symmetric integral matrix $\mathbf{B} = (b_{ij})$ is an exchange matrix. The exchange matrix is depicted as a quiver which has N vertices, by regarding

$$b_{ij} = \# \{ \text{arrows from } i \text{ to } j \} - \# \{ \text{arrows from } j \text{ to } i \}.$$

(2.1)
What is important is an operation on cluster seeds, which is called the mutation. For \(k = 1, \ldots, N \), the mutation \(\mu_k \) of \((x, B)\) is defined by

\[
\mu_k (x, B) = (\tilde{x}, \tilde{B}),
\]

(2.2)

where a cluster variable \(\tilde{x} = (\tilde{x}_1, \ldots, \tilde{x}_N) \) and an exchange matrix \(\tilde{B} = (\tilde{b}_{ij}) \) are respectively given by

\[
\tilde{x}_i = \begin{cases}
 x_i, & \text{for } i \neq k, \\
 \frac{1}{x_k} \left(\prod_{j : b_{ij} > 0} x_j^{b_{ij}} + \prod_{j : b_{ij} < 0} x_j^{-b_{ij}} \right), & \text{for } i = k,
\end{cases}
\]

(2.3)

\[
\tilde{b}_{ij} = \begin{cases}
 -b_{ij}, & \text{for } i = k \text{ or } j = k, \\
 b_{ij} + \frac{|b_{ik}| b_{kj} + b_{ik} |b_{kj}|}{2}, & \text{otherwise}.
\end{cases}
\]

(2.4)

In this article, for each seed \((x, B)\) we define the \(y \)-variable \(y = (y_1, \ldots, y_N) \) as

\[
y_j = \prod_k x_k^{b_{ij}}.
\]

(2.5)

The mutation of the cluster seed induces the mutation of the \(y \)-variable,

\[
\mu_k (y, B) = (\tilde{y}, \tilde{B}),
\]

(2.6)

where the exchange matrix \(\tilde{B} \) is (2.4), and \(\tilde{y} = \prod_k \tilde{x}_k^{\tilde{b}_{ij}} \) is given by

\[
\tilde{y}_i = \begin{cases}
 y_k^{-1}, & \text{for } i = k, \\
 y (1 + y_k^{-1})^{-b_{ki}}, & \text{for } i \neq k, \ b_{ki} \geq 0, \\
 y (1 + y_k)^{-b_{ki}}, & \text{for } i \neq k, \ b_{ki} \leq 0.
\end{cases}
\]

(2.7)

2.2. Braiding operator

To study the braid group \(B_n \) (1.3), we set the exchange matrix \(B \) to be a \((3n + 1) \times (3n + 1)\) skew-symmetric matrix [23]

\[
B = \begin{pmatrix}
0 & 1 & -1 & 0 & 0 & \cdots & \cdots & \cdots & 0 \\
-1 & 0 & 0 & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
1 & 0 & 0 & -1 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & -1 & 1 & 0 & 1 & \cdots & \cdots & \cdots & 0 \\
0 & 0 & 0 & -1 & 0 & \cdots & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & 1 & 0 & -1 \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 1 & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 1 & 0 \\
0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 1 & 0
\end{pmatrix}
\]

(2.8)
See figure 1 for the associated quiver. We remark that the quiver gives rise to a triangulation of a punctured disk, whose edges correspond to the vertices in the quiver. See figure 2. We define the R-operator acting on a cluster seed (x, B) by

$$R^i = s_{3i, 3i+2} s_{3i-1, 3i+2} s_{3i, 3i+3} \mu_{3i+1} \mu_{3i-1} \mu_{3i+3} \mu_{3i+1},$$

for $i = 1, \ldots, n - 1$, where s_{ij} is the permutation of subscripts, e.g.,

$$s_{ij}(..., x_i, ..., x_j, ...) = (...x_j, ..., x_i, ...).$$

As the exchange matrix B is invariant under R, we write $R^i(x, B)$ for $R^i(x, B)$ with

$$R^i(x) = (x_1, ..., x_{3i-3}, R^i(x_{3i-2}, ..., x_{3i+4}), x_{3i+5}, ..., x_{3n+1}),$$

where we have from (2.3)

$$R^i(x_1, x_2, ..., x_7) = \left(\begin{array}{c} x_1, x_2, x_3 x_5 + x_3 x_4 x_5 + x_1 x_2 x_6, \\
 x_2 x_4, x_1 x_3 x_5 + x_3 x_4 x_5 + x_1 x_3 x_4 x_5 + x_3 x_4 x_5 x_7 + x_1 x_2 x_6 x_7, \\
 x_2 x_4 x_6, x_3 x_4 x_5 + x_3 x_4 x_7 + x_2 x_6 x_7, \\
 x_4 x_6, x_3, x_7 \end{array}\right).$$

See figure 1 for the associated quiver. We remark that the quiver gives rise to a triangulation of a punctured disk, whose edges correspond to the vertices in the quiver. See figure 2. We define the R-operator acting on a cluster seed (x, B) by

$$R^i = s_{3i, 3i+2} s_{3i-1, 3i+2} s_{3i, 3i+3} \mu_{3i+1} \mu_{3i-1} \mu_{3i+3} \mu_{3i+1},$$

for $i = 1, \ldots, n - 1$, where s_{ij} is the permutation of subscripts, e.g.,

$$s_{ij}(..., x_i, ..., x_j, ...) = (...x_j, ..., x_i, ...).$$

As the exchange matrix B is invariant under R, we write $R^i(x, B)$ for $R^i(x, B)$ with

$$R^i(x) = (x_1, ..., x_{3i-3}, R^i(x_{3i-2}, ..., x_{3i+4}), x_{3i+5}, ..., x_{3n+1}),$$

where we have from (2.3)

$$R^i(x_1, x_2, ..., x_7) = \left(\begin{array}{c} x_1, x_2, x_3 x_5 + x_3 x_4 x_5 + x_1 x_2 x_6, \\
 x_2 x_4, x_1 x_3 x_5 + x_3 x_4 x_5 + x_1 x_3 x_4 x_5 + x_3 x_4 x_5 x_7 + x_1 x_2 x_6 x_7, \\
 x_2 x_4 x_6, x_3 x_4 x_5 + x_3 x_4 x_7 + x_2 x_6 x_7, \\
 x_4 x_6, x_3, x_7 \end{array}\right).$$
By definition (2.5), the action on the \(y \)-variable \(y \) is induced as
\[
R(y) = \left(y_1, \ldots, y_{3l-3}, R_y(y_{3l-2}, \ldots, y_{3l+4}), y_{3l+5}, \ldots, y_{3n+1} \right),
\]
where (2.6) gives
\[
R_y(y_1, y_2, \ldots, y_7) = \left(y_1 \left(1 + y_2 + y_2 y_6 \right), \frac{y_2 y_3 y_5 y_6}{1 + y_2 + y_6 + y_2 y_4 y_6}, \frac{y_4}{1 + y_2 + y_6 + y_2 y_4 y_6}, \frac{y_2 y_3 y_4 y_6}{1 + y_2 + y_6 + y_2 y_4 y_6}, \frac{y_4 y_6}{1 + y_2 + y_6 + y_2 y_4 y_6}, \left(1 + y_6 + y_2 y_6 \right) y_7 \right).
\]
(2.13)

We use \(R \) in both (2.10) and (2.12) without confusion.

In [23], it was shown that the \(R \)-operator represents the braid group \(B_n \), and that we have,
\[
R^i R^{j+1} R^i = R^i R^{j+1} R^i, \quad R^i R^j = R^j R^i, \quad \text{for } |i - j| > 1.
\]
(2.14)

This can be proved by direct computations using (2.11) and (2.13). We note that the birational Yang–Baxter map in [11] is intrinsically same with (2.11). The braid relation (2.14) could as well be checked from a dual picture as follows. We recall that the mutation is regarded as a ‘flip’ of triangulation of a punctured disk [18]. Here a flip is meant to remove a common edge of two adjacent triangles and to reproduce another different diagonal edge of quadrilateral (see, for example, figure 3). This interpretation explains the action of the \(R \)-operator on a punctured disk as illustrated in figure 4. We find that the \(R \)-operator on the punctured disk is nothing but a half Dehn twist exchanging two punctures counter-clockwise. This clarification of the braid group is well-known (see, e.g., [7]), and the braid relation (2.14) follows immediately.

A geometrical interpretation of the \(R \)-operator is given from the three-dimensional picture of the flip [22]. The mutation in figure 3 acts on the \(y \)-variable as

![Figure 3](image_url)
The flip in figure 3 is interpreted as a gluing of a hyperbolic ideal tetrahedron to a triangulation of punctured disk as in figure 5. Here the ideal hyperbolic tetrahedron has a dihedral angle of edge. Consistency condition gives \(z \tilde{z} = 1 \), and we have \(\tilde{z}_1 = z_1 \tilde{z} \) and so on. This transformation is identified with the mutation of \(y \)-variable in figure 3 [22].

\[
\begin{align*}
\tilde{y}_1 &= y_1 (1 + y_3), \\
\tilde{y}_2 &= y_2 (1 + y_3^{-1})^{-1}, \\
\tilde{y}_3 &= y_3^{-1}, \\
\tilde{y}_4 &= y_4 (1 + y_3^{-1})^{-1}, \\
\tilde{y}_5 &= y_5 (1 + y_3).
\end{align*}
\]

The flip in figure 3 is interpreted as a gluing of a hyperbolic ideal tetrahedron to a triangulation of punctured disk as in figure 5. Here the ideal hyperbolic tetrahedron has a dihedral angle of edge. Consistency condition gives \(z \tilde{z} = 1 \), and we have \(\tilde{z}_1 = z_1 \tilde{z} \) and so on. This transformation is identified with the mutation of \(y \)-variable in figure 3 [22].

\[
\begin{align*}
\tilde{y}_1 &= y_1 (1 + y_3), \\
\tilde{y}_2 &= y_2 (1 + y_3^{-1})^{-1}, \\
\tilde{y}_3 &= y_3^{-1}, \\
\tilde{y}_4 &= y_4 (1 + y_3^{-1})^{-1}, \\
\tilde{y}_5 &= y_5 (1 + y_3).
\end{align*}
\]
shape parameter \(z \), and a dihedral angle of each edge is parameterized by \(z', z'' = (1-z)^{-1} \) as in figure 6 (see, e.g., [38]). Then each dihedral angle on triangulated surface after the gluing is read as

\[
\begin{align*}
\hat{z}_1 &= z_1 z', \\
\hat{z}_2 &= z_2 z'', \\
\hat{z}_3 &= z, \\
\hat{z}_4 &= z_4 z', \\
\hat{z}_5 &= z_5 z',
\end{align*}
\]

with a consistency condition \(z_1 z = 1 \). These two sets of equations indicate a correspondence between the \(y \)-variables and the dihedral angles of triangulated surface, \(z_k = -y_k \), and we conclude that the mutation is regarded as a gluing of an ideal tetrahedron with shape parameter \(z = -y_k \) to punctured surface.

As a consequence, the cluster \(R \)-operator (2.9), which consists of four mutations, can be regarded as an ideal octahedron in figure 7. See that every dihedral angle is written in terms of the \(y \)-variable. Accordingly, the hyperbolic volume of the octahedron for \(\tilde{y} = R(y) \) is given by

\[
D\left(-1/y_{3i+1}\right) + D\left(y_{3i+2}/y_{3i-2}\right) + D\left(-y_{3i+1}\right) + D\left(y_{3i+4}/y_{3i+4}\right),
\]

where \(D(z) \) is the Bloch–Wigner function (see, e.g., [42]),

\[
D(z) = \text{Li}_2(z) + \arg(1 - z) \log |z|.
\]

It should be noted that this type of the hyperbolic octahedron is used not only in studies of the Kashaev \(R^K \)-matrix [37] but in SnapPea algorithm [39]. Note also that the cluster variable \(x \) is identified with Zickert’s edge parameter [43]. See [23] for detail.
3. Quantization

3.1. Quantum cluster algebra

We recall a quantization of the cluster algebra based on [16, 17].

Fix a parameter q. The y-variable is quantized to be a q-commuting generator $Y = (Y_1, \ldots, Y_n)$ satisfying

$$Y_i Y_j = q^{2b_{ij}} Y_j Y_i, \quad (3.1)$$

where $B = (b_{ij})$ is the skew-symmetric exchange matrix used in the classical cluster algebra.

The q-commuting relation (3.1) is realized by

$$Y_i = e^{2\pi i \hat{b}_{ii}}, \quad (3.2)$$

where $q = e^{2\pi i}$ and

$$\left[\hat{Y}_i, \hat{Y}_j \right] = \frac{i}{2\pi} b_{ij}. \quad (3.3)$$

The q-deformation of the mutation (2.6) on the y-variable is defined by

$$\mu_Y^q (Y, B) = (\hat{Y}, \hat{B}), \quad (3.4)$$

where the exchange matrix \hat{B} is (2.4), and

$$\hat{Y}_i = \begin{cases} Y_i^{-1}, & \text{for } i = k, \\ Y_i \prod_{m=1}^{b_{ki}} \left(1 + q^{2m-1} Y_k^{-1} \right)^{-1}, & \text{for } i \neq k, b_{ki} > 0, \\ Y_i \prod_{m=1}^{b_{ki}} \left(1 + q^{2m-1} Y_k \right), & \text{for } i \neq k, b_{ki} \leq 0. \end{cases} \quad (3.5)$$

One sees that this reduces to the classical mutation (2.6) in $q \to 1$.

Figure 7. Octahedron assigned to crossing (center). Four oriented tetrahedra (left) are glued together. A dihedral angle of each edge is given in terms of the y-variable, and we give dihedral angles around central axis (right). Here we assume $\hat{y} = \hat{R}(y)$.

J. Phys. A: Math. Theor. 47 (2014) 474006 K Hikami and R Inoue
It is known that the quantum mutation μ^q_k (3.4) is decomposed into

$$\mu^q_k = \mu^z_k \circ \mu^i_k.$$ \hspace{1cm} (3.6)

Here μ^i_k is given by

$$Y_i \mapsto \begin{cases}
Y_i^{-1}, & \text{for } i = k, \\
q^{b_{kwi}} Y_i Y_k^{b_{ki}}, & \text{for } i \neq k, \ b_{ki} \geq 0, \\
Y_i, & \text{for } i \neq k, \ b_{ki} \leq 0,
\end{cases} \hspace{1cm} (3.7)$$

and μ^z_k is a conjugation by the quantum dilogarithm function

$$\mu^z_k \equiv \text{Ad} \left(\Phi \left(\frac{\psi_k}{\psi_k} \right) \right) ; \ Y_i \mapsto \Phi \left(\frac{\psi_k}{\psi_k} \right) Y_i \Phi \left(\frac{\psi_k}{\psi_k} \right)^{-1}. \hspace{1cm} (3.8)$$

See appendix A for definition and properties of the quantum dilogarithm function $\Phi(y)$. Note that the quantum mutation μ^q_k is not a conjugation in general.

3.2. Braiding operator

We now consider the quantum cluster algebra for the exchange matrix B (2.8), whose quiver and dual picture as a triangulation are respectively given in figures 1 and 2.

As a natural quantization of the R-operator (2.9), we define a quantum braiding operator acting on (Y, B) by

$$R^q = s_{3,3+2} s_{3-1,3+2} s_{3,3+3} \mu^q_{3+1} \mu^q_{3+1} \mu^q_{3+3} \mu^q_{3+1} \mu^q_{3+1} \mu^q_{3+3} \mu^q_{3+1}. \hspace{1cm} (3.9)$$

Along with the classical case the exchange matrix B (2.8) is invariant under the operator R^q, and (3.5) gives an action on Y as

$$R^q(Y) = (Y_1, \ldots, Y_{3-3}, R^q_3(Y_{3-2}, \ldots, Y_{3+4}), Y_{3+5}, \ldots, Y_{3n+1}). \hspace{1cm} (3.10)$$

where

$$R^q_3(Y_1, \ldots, Y_3) = \begin{pmatrix}
Y_1 \left(1 + q Y_2^* \right) \\
Y_3 \left(1 + q Y_4^{-1} \right)^{-1} \left(1 + q Y_5^{-1} \right)^{-1} \left(1 + q Y_6^{-1} \right)^{-1} \left(1 + q Y_4^{-1} \right)^{-1} \\
Y_2^{-1} \left(1 + q Y_4^* \right) \\
Y_4^{-1} \\
Y_6^{-1} \left(1 + q Y_4^* \right) \\
Y_3 \left(1 + q Y_4^{-1} \right)^{-1} \left(1 + q Y_5^{-1} \right)^{-1} \left(1 + q Y_6^{-1} \right)^{-1} \left(1 + q Y_4^{-1} \right)^{-1} \\
Y_1 \left(1 + q Y_2^* \right)
\end{pmatrix}. \hspace{1cm} (3.11)$$

Here we have used

$$Y_4^* = Y_2 \left(1 + q Y_4 \right), \quad Y_6^* = Y_6 \left(1 + q Y_4 \right), \quad Y_4^* = Y_4^{-1} \left(1 + q Y_2^* \right) \left(1 + q Y_6^* \right). \hspace{1cm} (3.12)$$

Clearly (3.11) reduces to (2.13) when $q \to 1$.

In our noncommutative algebra (3.1) with (2.8), there exist central elements, $Y_{3i} Y_{3i}$ ($i = 1, \ldots, n$) and $Y_1 Y_4 \cdots Y_{3n+1}$. For simplicity we consider a subspace defined by
where $c \in \mathbb{R}$.

In this setting, we find that, in contrast to that μ^q_k (3.4) is not an adjoint operator, the R^q-operator (3.9) is written as a conjugation

$$R^q(Y) = Ad(R)(Y) = R Y R^{-1},$$

where

$$R = \Phi(\hat{\gamma}_{3i+1}^c) \Phi(\hat{\gamma}_{3i-1}^c) \Phi(\hat{\gamma}_{3i+3}^c)^{-1} \theta(c + \hat{\gamma}_{3i+1}).$$

See (A.10) for the definition of $\theta(z)$. We can check (3.14) by a direct computation using (A.5).

See appendix B. Furthermore we find that the R-operator (3.15) fulfills the braid relation

$$R^i R^j R^k R^l = R^l R^k R^j R^i,$$

for $|i - j| > 1$.

See appendix C for the proof. Note that the essentially same solution of the braid relation was studied in [13, 28].

As we have seen in the previous section that the classical R-operator (2.9) on the y-variable is interpreted as an ideal hyperbolic octahedron, the R-operator (3.15) introduced as an adjoint operator for the quantum R^q-operator (3.14) should be regarded as a quantum content of the octahedron. It is convincing since the function $\Phi(z)$ reduces, in a classical limit $b \to 0$, to the dilogarithm function (A.6), which is related to the hyperbolic volume of ideal tetrahedron (2.2).

3.3. Braiding matrix at generic q

We shall give an infinite-dimensional representation of the quantum R-operator (3.15). For this purpose, we set $c = c' + c''$ and

$$\hat{\gamma}_{3i-2} = \hat{\gamma}_{i-1} - \hat{\gamma}_i,$$
$$\hat{\gamma}_{3i-1} = \hat{\rho}_i + c',$$
$$\hat{\gamma}_{3i} = -\hat{\rho}_i + c''$$

where we mean $\hat{\gamma}_0 = \hat{\gamma}_{n+1} = 0$, and $\hat{\gamma}_i$ and $\hat{\rho}_i$ are generators of the Heisenberg algebra,

$$\left[\hat{\gamma}_i, \hat{\gamma}_j \right] = \left[\hat{\rho}_i, \hat{\rho}_j \right] = 0, \quad \left[\hat{\gamma}_i, \hat{\rho}_j \right] = \frac{i}{2\pi} \delta_{ij}.$$

We define bases in coordinate and momentum spaces, $|x\rangle$ and $|p\rangle$, by

$$\hat{\gamma}_i |x\rangle = x_i |x\rangle, \quad \hat{\rho}_i |p\rangle = p_i |p\rangle.$$

These are orthonormal bases satisfying

3 We thank Rinat Kashaev for kindly informing us.
\[
\langle x|\mathbf{r}\rangle = \prod_{i=1}^{n} \delta(x_i - x'_i), \quad \langle p|\mathbf{p}'\rangle = \prod_{i=1}^{n} \delta(p_i - p'_i),
\]
\[
\langle x|p\rangle = \langle p|x\rangle = e^{2\pi i \sum_{i=1}^{n} x_i p_i},
\]
\[
\int_{\mathbb{R}^n} \langle x|d\mathbf{r}\rangle = \int_{\mathbb{R}^n} \langle p|dp\rangle = 1.
\]

A matrix element \(\langle \mathbf{r}|\mathbf{R}|\mathbf{r}'\rangle\) of the \(\mathbf{R}\)-operator (3.15) is computed as follows. Using (3.17) we get
\[
\langle x_1, x_2 | \mathbf{R} | x_1', x_2' \rangle = \int_{\mathbb{R}^2} dp \Phi(x_1 - x_2) \Phi(p_i + c') \langle p|\mathbf{R}(-p_2 + c') \rangle \Phi(x_1' - x_2') \langle p|\mathbf{R}(-p_2 + c') \rangle \times \int_{\mathbb{R}^2} dp \Phi(p_1 + c') e^{2\pi i (x_1 - x_1')} \cdot \int_{\mathbb{R}^2} dp \Phi(-p_2 + c') e^{2\pi i (x_2 - x_2')}.
\]

Applying (A.9) and (A.10), we obtain
\[
\langle x_1, x_2 | \mathbf{R} | x_1', x_2' \rangle = \frac{\Phi(x_1 - x_2) \Phi(x_1' - x_1) \Phi(x_2' - x_1 + c_0) \Phi(x_2' - x_2 + c_0)}{\Phi(x_1 - x_1' + c_0) \Phi(x_1' - x_2 + c_0) \Phi(x_1' + c_0)} \times e^{2\pi i \left(c_1 (x_1' - x_1', c_2 (x_2' - x_1') + c_2' (x_2' - x_2') + c_2' (x_1 - x_2) + \frac{1}{2} (1 - 4 c_2^2) - c_2') \right)}.
\]

3.4. Braiding matrix at root of unity \(q^{2N} = 1\)

In our preceding construction, we have used the quantum dilogarithm function \(\Phi(z)\) (A.1) introduced by Faddeev [12]. It is well known that, due to that \(e^{2\pi i j} \) commute with \(e^{2\pi i k}\) for arbitrary \(j\) and \(k\), we can replace \(\Phi(z)\) by \(\Phi(\epsilon) e^{2\pi i c} q^{2N}\), i.e., we can drop a \(q\)-dependence in (A.3). For simplicity, we set \(c = 0\) further, and we pay attention to a finite-dimensional representation of the \(\mathbf{R}\)-operator
\[
\mathbf{R} = \frac{1}{\left(-q Y_4; q^2 \right) \infty} \cdot \frac{1}{\left(-q Y_2; q^3 \right) \infty} \cdot \frac{1}{\left(-q Y_2; q^3 \right) \infty} \cdot \frac{1}{\left(-q Y_4^{-1}; q^3 \right) \infty},
\]
where we have used the \(q\)-Pochhammer symbol (A.4).

We rely on a method of [5] to construct explicitly a finite-dimensional representation of the \(\mathbf{R}\)-operator (3.20). We set
\[
q = e^{-\frac{2\pi i}{N} \zeta},
\]
and study a limit \(q^2 \to \zeta\) by \(\epsilon \to 0\). Here \(\zeta\) is the \(N\)th root of unity,
\[
\zeta = e^{-\frac{2\pi i}{N}}, \quad \zeta^\frac{3}{2} = e^{-\frac{2\pi i}{N}}.
\]
In a limit $\epsilon \to 0$, an asymptotics of the q-infinite product is given by [5]

$$
(\chi; q^2)_\infty = e^{-\frac{\ln(q)}{1 - x^N}} \prod_{k=1}^{N-1} (1 - \zeta x^k)^{-\frac{1}{q}} + O(\epsilon),
$$

(3.23)

where $|x| < 1$, and we have used the Euler–Maclaurin formula. We then obtain

$$
(-qY; q^2)_\infty = e^{-\frac{\ln(q)}{1 - x^N}} d(\zeta^Y) + O(\epsilon),
$$

(3.24)

where $d(x)$ is defined by

$$
d(x) = (1 - x^N)^{-\frac{\ln(q)}{1 - x^N}} \prod_{k=1}^{N-1} (1 - \zeta x^k)^{-\frac{1}{q}}.
$$

(3.25)

We recall that for $\hat{u} \hat{v} = \zeta \hat{v} \hat{u}$ we have [5]

$$
e^{-\ln\hat{u}(Y)} \ast \hat{v} = \hat{v} (1 - \hat{u}^N)^{-1/N},
$$

$$
e^{-\ln\hat{u}(Y)} \ast \hat{u} = \hat{u} (1 - \hat{v}^N)^{-1/N},
$$

(3.26)

where we mean

$$
e^{\hat{a} \ast \hat{b}} = \lim_{\epsilon \to 0} \epsilon^{\hat{a} / \epsilon} \hat{b} e^{-\hat{a} / \epsilon}.
$$

(3.27)

Substituting (3.24) for (3.20), we have an asymptotic behavior in $\epsilon \to 0$

$$
\frac{1}{\mathbf{R}} \approx e^{-\frac{\ln(q)}{1 - x^N}} \prod_{k=1}^{N-1} (1 - \zeta x^k)^{-\frac{1}{q}}
\times \left(e^{-\text{Li}_2(-Y_4^N)} e^{-\text{Li}_2(-Y_6^N)} e^{-\text{Li}_2(-Y_4^N)} \ast \frac{1}{d(\zeta^2 Y_4)} \right)
\times \left(e^{-\text{Li}_2(-Y_4^N)} \ast \frac{1}{d(\zeta^2 Y_4)} \right) \cdot \frac{1}{d(\zeta^2 Y_6)} \cdot \frac{1}{d(\zeta^2 Y_4)}. \quad (3.28)
$$

With a help of (3.26), we find

$$
\frac{1}{\mathbf{R}} \approx e^{-\frac{\ln(q)}{1 - x^N}} \prod_{k=1}^{N-1} (1 - \zeta x^k)^{-\frac{1}{q}} \mathbf{R}.
$$

(3.29)

Here we obtain the dilogarithm factors in the right-hand side as a dominating term in a limit $\epsilon \to 0$, and \mathbf{R} denotes the second dominating term given by

$$
\mathbf{R} = \frac{1}{d(\zeta^2 Y_4(1 + Y_4^N(1 + Y_6^N(1 + Y_4^N)))^2)} \cdot \frac{1}{d(\zeta^2 Y_4(1 + Y_6^N)))^2} \cdot \frac{1}{d(\zeta^2 Y_4)}.
$$

(3.30)

We note that we have $q^2 \to \zeta$ as $\epsilon \to 0$, and that the quantum Y-operator in the above \mathbf{R}-matrix fulfills
\[Y_i \ Y_j = \zeta^{b_i j} Y_j \ Y_i, \tag{3.31} \]

with the root of unity \(\zeta \) (3.22).

We study a finite-dimensional matrix representation of the second dominating term \(R \) in (3.29). We use
\[\omega = \zeta^{-1} = e^{2\pi i/N}, \tag{3.32} \]
and we define \(w(x, y|n) \) for \(n \in \mathbb{Z}_{\geq 0} \) and \(x, y \in \mathbb{C} \) satisfying \(x^N + y^N = 1 \) by
\[w(x, y|0) = y^{\frac{1}{N}} \prod_{j=1}^{N-1} \frac{1 - \omega^{-j} x^j}{1 - \omega^{-j} x}. \]
\[\frac{w(x, y|n)}{w(x, y|0)} = \prod_{j=1}^{n} \frac{y}{1 - \omega^{j} x}. \tag{3.33} \]

Following a convention [4] we also use a multi-valued function of \(x \) by
\[w(x, n) = w(x, \Delta(x)|n), \tag{3.34} \]
where \(\Delta(x) \) is defined by
\[\Delta(x) = (1 - x^N)^{1/N}. \tag{3.35} \]

Note that
\[w(x, y|n + N) = w(x, y|n), \tag{3.36} \]
and that the function \(w(x, n) \) is related to the function \(d(x) \) defined in (3.25)
\[w(x, 0) = \frac{1}{d(x)}. \tag{3.37} \]

The function \(w(x, y|n) \) is often used in studies of integrable models in statistical mechanics, and known are the following identities,
\[w(x, y|n) = w(\omega^n x, y|0), \quad \prod_{k=0}^{N-1} w(x, y|k) = 1. \tag{3.38} \]

Furthermore we have
\[\sum_{k=0}^{N-1} w(x, y|k) \omega^{nk} = N \frac{(x/y)^{\frac{N-1}{N}}}{\Delta(y, x)} \frac{1}{w(y, x|n - 1)}. \tag{3.39} \]

See appendix \(D \) for a definition of \(\Delta(y, x) \) (see also [3–5, 36]).

We introduce an \(N^2 \times N^2 \) matrix representation of (3.31),
\[Y_2 = \omega^\frac{1}{2} \kappa_2 \ X \otimes \mathbf{1}, \]
\[Y_4 = \omega^\frac{1}{2} \kappa_4 \ Z \otimes Z^{-1}, \]
\[Y_6 = \omega^\frac{1}{2} \kappa_6 \mathbf{1} \otimes X^{-1}. \tag{3.40} \]

Here \(\kappa_i \in \mathbb{C}, |\kappa_i| < 1 \), and \(N \times N \) matrices \(Z \) and \(X \), satisfying \(Z \ X = \omega^{-1} \ X \ Z \), are defined by
\[(Z)_{j,k} = \omega^j \delta_{j,k}, \quad (X)_{j,k} = \delta_{j,k-1}. \tag{3.41} \]
where the Kronecker delta has a period N. By substituting (3.40) for (3.30), we have

$$
R_{ij,kl} = \left[\frac{1}{d(k_i^\prime \Delta(k_i^\prime) Z \otimes Z^{-1})} \right]_{ij,kl} \times \left[\frac{1}{d(k_i^\prime 1 \otimes X^{-1})} \right]_{kl,ij},
$$

(3.42)

where we have used $\kappa_i^\prime = \kappa_1 \Delta(k_1^\prime)$ and $\kappa_i = \kappa_0 \Delta(k_0^\prime)$. By use of (3.37) and (3.39), we get

$$
R_{ij,kl} = \frac{(\kappa_i^\prime / \Delta(k_i^\prime))^{n_i}}{\lambda (\Delta(k_i^\prime), \kappa_i^\prime)} \frac{(\kappa_i^\prime / \Delta(k_i^\prime))^{n_i}}{\lambda (\Delta(k_i^\prime), \kappa_i^\prime)} \times \frac{w(\kappa_i^\prime)}{w(\Delta(k_i^\prime), i-j)} \frac{w(\omega_1^{-1} k_i^\prime, \ell-k)}{11 k_i^\prime},
$$

(3.43)

We set $\kappa_1 = 1 - \delta N$, $0 < \delta \ll 1$, and $\kappa_2, \kappa_0 > 0$. In a limit $\delta \to 0$, we find with a help of (3.33) that a dominating term behaves as

$$
R_{ij,kl} \propto \frac{(\omega)_{i-j} (\omega)_{k-l}}{\omega_1^{-1} k_i^\prime} \omega^{N-1+|i-j|+|k-l|-|i-j|-|k-l|}.
$$

(3.44)

Here $[n] = n \bmod N$ satisfying $0 \leq [n] < N$, and we mean $(\omega)_{[n]} = (\omega; \omega)_{[n]}$. The origin of $\omega^{[l-k]}$ is subtle. It is due to that the function $w(x, n) = w(x, \Delta(x)n)$ is a multi-valued function, $w(x, n) \propto w^n$, and that $w(\omega_1^{-1} k_i^\prime, \ell-k)$ which originates from $d(\omega_1^{-1} k_i^\prime 1 \otimes Z)$ in (3.42) crosses a branch-cut in getting $\Delta(\omega_1^{-1} k_i^\prime)$. In (3.44), we see that

$$
\theta_{i,j}^{\omega,\theta,\omega,\omega} \to \begin{cases} 1, & \text{when } [i-j] + [j-\ell] + [\ell-k-l] + [k-i] = N-1, \\ 0, & \text{otherwise}. \end{cases}
$$

As a result, we get

$$
R_{ij,kl} \delta \to \rho \frac{(\omega)_{i-j} (\omega)_{k-l}}{\omega_{i-j} (\omega)_{k-l}} \frac{\omega^{N-1+|i-j|+|k-l|-|i-j|-|k-l|}}{(\omega)_{[i-j]}},
$$

(3.45)

where ρ is an irrelevant complex number. Here we mean $\rho = (\omega_{[n]} = (\omega; \omega)_{[n]}$, and we have used an identity

$$
(\omega)_{[n]} (\omega)_{[n-1]} = N.
$$

By construction, the R-matrix fulfills the braid relation

$$
(R \otimes 1) (1 \otimes R) (R \otimes 1) = (1 \otimes R) (R \otimes 1) (1 \otimes R). \quad (3.46)
$$
One notices that this is gauge-equivalent with the Kashaev R^K-matrix \[25, 32\]

\[
(R^K)_{i,j}^{k,l} = \frac{N \omega^{-1+i-k} \delta_{i,j}^{k,l}}{(\omega)^{i-l} (\omega)^{j-l} (\omega)^{j-k}}.
\]

To conclude, the Kashaev R^K-matrix corresponds to a finite-dimensional representation of the R-operator (3.15) which is constructed based on the quantum cluster algebra. As we have seen that the classical R-operator (2.9) is regarded as the hyperbolic octahedron in figure 7 and that a conjugation of the R-operator (3.15) is the quantum R^q-operator which reduces to the R-operator in a limit $q \to 1$, it is natural that both R- and R^K-matrices are realized as the octahedron in a limit $N \to \infty$. Correspondingly a matrix element (3.19) is an infinite-dimensional analogue of the Kashaev R^K-matrix.

Acknowledgments

One of the authors (KH) thanks Anatol N Kirillov and H Murakami for communications. RI thanks Y Terashima and M Yamazaki for discussions. The work of KH is supported in part by JSPS KAKENHI Grant Number 23340115, 24654041. The work of RI is partially supported by JSPS KAKENHI Grant Number 22740111.

Appendix A. Quantum dilogarithm

We use the Faddeev quantum dilogarithm $\Phi(z)$ \[12\] defined by

\[
\Phi(z) = \exp\left(-\frac{1}{4} \int_{b+0} e^{-i z w} \frac{e^{-2i z w}}{\sinh(b w) \sinh(b^{-1} w)} \frac{dw}{w}\right).
\]

Here we assume $b \in \mathbb{C}$ with $\Im b > 0$, and we use

\[
q = e^{xb^2}, \quad \bar{q} = e^{-xb^2}, \quad c_b = \frac{i}{2} (b + b^{-1}).
\]

It is well known that we have

\[
\Phi(z) = \left(\frac{-\bar{q} e^{2ibz}; q^2}{-q e^{2ibz}; q^2}\right)_\infty
\]

where we have used the q-Pochhammer symbol

\[
(x; q)_n = \prod_{k=1}^n (1 - x q^{k-1}).
\]

It is easy to see that

\[
\Phi(z \pm i b) \equiv (1 + e^{2ibz} q^2) z 1 \Phi(z).
\]

The classical dilogarithm function is given in a limit $b \to 0$

\[
\Phi\left(\frac{z}{2\pi b}\right) \sim \exp\left(i \frac{z}{2\pi b^2} \text{Li}_2(-e^z)\right).
\]
The most important property of $\Phi(z)$ is the pentagon identity [14] (also [42]),

$$\Phi(\tilde{x}) \Phi(\tilde{p}) = \Phi(\hat{p}) \Phi(\tilde{x} + \hat{p}) \Phi(\tilde{x}),$$

where

$$[\tilde{x}, \tilde{p}] = \frac{1}{2\pi}.$$ \hspace{1cm} (A.7)

See [29] for a recent development on identities of the quantum dilogarithm functions. Notice that the function $\Phi(z)$ is used to construct the quantum invariant in [21] (see also [1, 10]).

Also known is the Fourier transformation formula for $\Phi(z)$

$$\int_{\mathbb{R}} \Phi(z) e^{2\pi i wz} dz = \Phi(-w - c_{b}) e^{i\pi(1 - 4c_{b}^2)/12}$$

$$= \frac{1}{\Phi(w + c_{b})} e^{-2\pi i w x + i(1 - 4c_{b}^2)/12}. \hspace{1cm} (A.9)$$

See [15, 35, 40] for detail.

We define $\theta(z)$ by

$$\theta(z) = \Phi(z) \Phi(-z)$$

$$= e^{-\pi z^2 + i\pi(1 + 2c_{b}^2)/6}. \hspace{1cm} (A.10)$$

We see that we have for \tilde{x} and \tilde{p} satisfying (A.8)

$$\theta(\tilde{p}) e^{2\pi i \tilde{p}} = e^{2\pi i \tilde{p}} \theta(\tilde{p}), \hspace{1cm} (A.11)$$

$$\theta(\tilde{x}) e^{2\pi i \tilde{x}} = e^{2\pi i \tilde{x}} \theta(\tilde{x}). \hspace{1cm} (A.12)$$

Appendix B. Proof of (3.14)

We show that $\hat{R} R \hat{R}^{-1}$ results in (3.11). We only give cases for $i = 2, 3$ explicitly, and the others are obtained in a similar manner. For a sake of simplicity, we write $\Phi_{i} = \Phi(\pm \frac{i}{\sqrt{2}})$, $\Phi_{i \pm j} = \Phi(\pm \frac{j}{\sqrt{2}})$, $\Phi_{i + j} = \Phi(\sqrt{2} \frac{j}{\sqrt{2}})$, and so on. For $i = 2, 3$, we compute as follows:

$$\hat{R} R \hat{R}^{-1}$$

$$= \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \frac{1}{\Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1} \Phi_{4}^{-1} \Phi_{4}^{-1}}$$

$$= \frac{q \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{4}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1}}{q \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{4} \Phi_{4}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1}} \hspace{1cm} \text{by (A.12) and (3.13)}$$

$$= \frac{q \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{4} \Phi_{4}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1}}{q \Phi_{3} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{4} \Phi_{4} \Phi_{4}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1}} \hspace{1cm} \text{by (A.5)}$$

$$= \frac{q \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{4} \Phi_{4}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1}}{q \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{4} \Phi_{4}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1}}$$

$$= \frac{q \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{4} \Phi_{4}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1}}{q \Phi_{2} \Phi_{3} \Phi_{2}^{-1} \Phi_{2} \Phi_{3} \Phi_{4} \Phi_{4} \Phi_{4}^{-1} \Phi_{2}^{-1} \Phi_{2}^{-1}}$$
Here we have used $e^{2abc} = qY_5Y_6$ at the second equality, and Y'_2, Y'_6 and Y''_4 are given by (3.12).

A case of $i = 3$ is as follows.

\[
\begin{align*}
R \ Y_3 \ R^{-1} &= \Phi_4 \Phi_2 \Phi_6 \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{-4} \Phi_4 \Phi_6 \Phi_4^{-1} \\
&= q \Phi_2 \Phi_6 \Phi_2^{-1} Y'_2 Y'_4 \Phi_6 \Phi_2^{-1} \Phi_2^{-1} \Phi_4^{-1} \quad \text{by (A.11) and (A.13)} \\
&= \Phi_2 \Phi_6 Y'_2^{-1} \left(1 + qY'_4^{-1}\right) \Phi_6^{-1} \Phi_2^{-1} \Phi_4^{-1} \quad \text{by (A.5)} \\
&= Y'_2^{-1} \left(1 + qY'_4\right) \Phi_4^{-1} \quad \text{by (A.5)},
\end{align*}
\]

where we have used $e^{2abc} = qY'_2^{-1}Y_3^{-1}$ at the second equality.

Appendix C. Proof of Braid relation (3.16)

We shall check (3.16) for $i = 1$. We employ the notations in appendix B.

The proof is straightforward but tedious by use of (A.7), (A.11), and (A.12). We compute as follows;

\[
\begin{align*}
2 R \ Y_1 \ R^{-1} &= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4 \Phi_5 \Phi_4^{-1} \theta_{+4} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.11)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+4} \Phi_7^{-1} \theta_{+4} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.12)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.12)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.12)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.12)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.12)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.12)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.12)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.7)} \\
&= \Phi_7 \Phi_5 \Phi_9 \Phi_7^{-1} \Phi_4 \Phi_5 \Phi_7^{-1} \theta_{+7} \theta_{+7} \Phi_4^{-1} \theta_{+4} \theta_{+4} \theta_{+7} \quad \text{by (A.12)} \
\end{align*}
\]
Thus we get
\[
\sum_{k=0}^{n} (q^{-n}; q)_k (b; q)_k z^k = \frac{(c; q)_n}{(c; q)_n} \left(\frac{b z}{q} \right)^n \sum_{k=0}^{n} \frac{(q^{-n}; q)_k (q/z; q)_k (q^{1-n}/c; q)_k}{(b q^{1-n}/c; q)_k (q; q)_k} q^k,
\]
which reduces, in \(c \to 0 \), to
\[
\sum_{k=0}^{n} \frac{(q^{-n}; q)_k (b; q)_k}{(q; q)_k} z^k = \left(\frac{b z}{q} \right)^n \sum_{k=0}^{n} \frac{(q^{-n}; q)_k (q/z; q)_k}{(q; q)_k} \left(\frac{q}{b} \right)^k.
\]
(D.1)

By setting \(n = N - 1 \) and \(q = \omega \) where \(\omega^{-N} = 1 \), we get
\[
\sum_{k=0}^{N-1} (b; \omega)_k z^k = \left(\frac{b z}{\omega} \right)^{N-1} \sum_{k=0}^{N-1} (\omega/z; \omega)_k \left(\frac{\omega}{b} \right)^k.
\]
(D.2)
Using this identity, we compute as follows.

\[
\sum_{k=0}^{N-1} \omega^{-nk} w(x, y|k) = \frac{1}{w(x, y|0)} \sum_{k=0}^{N-1} (\omega x; \omega) \left(\frac{1}{y \omega^k} \right)^k \\
= \frac{1}{w(x, y|0)} \left(\frac{x}{y} \right)^{N-1} \omega^{n} \sum_{k=0}^{N-1} (y \omega^{n+k}; \omega) \frac{1}{x^k} \quad \text{by (D.2)} \\
= \frac{w(y \omega^n, x|0)}{w(x, y|0)} \left(\frac{x}{y} \right)^{N-1} \omega^n \sum_{k=0}^{N-1} \frac{1}{w(y \omega^k, x|k)}.
\]

Here we note that \(x^N + y^N = 1 \). As a result, we get from (3.36) and (3.38)

\[
\sum_{k=0}^{N-1} \omega^{-nk} w(x, y|k) = \omega^n w(y \omega^n, x|0) \left(\frac{x}{y} \right)^{N-1} \lambda(x, y), \quad \text{(D.3)}
\]

where

\[
\lambda(x, y) = \left(\frac{x}{y} \right)^{(N-1)/2} \sum_{k=0}^{N-1} \frac{1}{w(y, x|k)}.
\]

See that

\[
\lambda(x, \omega y) = \lambda(x, y), \quad \lambda(x, y) \xrightarrow{y \to 1} N \prod_{j=1}^{N-1} (1 - \omega^{-j/N}). \quad \text{(D.5)}
\]

The Fourier transform of (D.3) reduces to

\[
\sum_{k=0}^{N-1} w(y, x|k) \omega^{kn} = N \left(\frac{y/x}{(N-1)/2} \right) \frac{1}{\lambda(x, y)} \frac{1}{w(x, y|0)}.
\]

References

[1] Andersen J E and Kashaev R 2014 A TQFT from quantum Teichmüller theory Commun. Math. Phys. 330 887–934
[2] Baseilhac S and Benedetti R 2005 Classical and quantum dilogarithmic invariants of flat PSL(2, C)-bundles over 3-manifolds Geom. Topol. 9 493–569
[3] Baxter R J 1991 Hyperelliptic function parametrization for the chiral Potts model Proc. Int. Congress of Mathematicians (Kyoto, 1990) (Tokyo: Mathematical Society of Japan) pp 1305–17
[4] Bazhanov V V and Baxter R J 1993 Star-triangle relation for a three-dimensional model J. Stat. Phys. 71 839–64
[5] Bazhanov V V and Reshetikhin N 1995 Remarks on the quantum dilogarithm J. Phys. A: Math. Gen. 28 2217–26
[6] Berenstein A and Zelevinsky A 2005 Quantum cluster algebras Adv. Math. 195 405–55
[7] Birman J S 1974 Braids, Links, and Mapping Class Groups (Annals of Mathematics Studies vol 82) (Princeton, NJ: Princeton University Press)
[8] Cho J, Murakami J and Yokota Y 2009 The complex volumes of twist knots Proc. Am. Math. Soc. 137 3533–41
[9] Costantino F and Murakami J 2013 On the SL(2, C) quantum 6j-symbols and their relation to the hyperbolic volume Quantum Topol. 4 303–51
[41] Yokota Y 2011 On the complex volume of hyperbolic knots J. Knot Theory Ramifications 20 955–76

[42] Zagier D 2007 The dilogarithm function Frontiers in Number Theory, Physics, and Geometry II: On Conformal Field Theories, Discrete Groups and Renormalization ed P Cartier, B Julia, P Moussa and P Vanhove (Berlin: Springer) pp 3–65

[43] Zickert C K 2009 The volume and Chern–Simons invariant of a representation Duke Math. J. 150 489–532