Supplementary Material

Mechanistic inferences from analysis of measurements of protein phase transitions in live cells

Ammon E. Posey1,†, Kiersten M. Ruff1,†, Jared M. Lalmansingh1,2,†, Tejbir S. Kandola3,4, Jeffrey J. Lange3, Randal Halfmann3,5 and Rohit V. Pappu1

1Department of Biomedical Engineering and Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
2Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
3Stowers Institute for Medical Research, Kansas City, MO 64110, USA
4The Open University, Milton Keynes MK7 6AA, United Kingdom
5Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA

†Equal contributions
Figure S1: The sum of two Gaussian fits to the 1D histogram of Ω_{FRET} for each expression level slice and the corresponding fraction assembled profiles extracted from these fits for the five synthetic DAmFRET histograms shown in Figure 2. Displayed are: Panel A (One-State: No Assembly); Panel B (One-State: All Assembled); Panel C (Two-State: Discontinuous); Panel D (Two-State: Continuous); and Panel E (Three-State: Discontinuous). Each column shows the fits to the 1D histogram of Ω_{FRET} for a different expression level slice.
Figure S2: Synthetic DAmFRET histograms sorted by their classification. The five classes are: assembled at all expression levels (black class), no assembly at all expression levels (blue class), two-state discontinuous transition (green class), higher order state transition (magenta class), and two-state continuous transition (red class). The number in the top right-hand corner of each histogram indicates the confidence score of the classification. Each histogram is titled according to Table S3 which describes the parameters used to generate the given synthetic histogram.
Assembled at all expression levels (black) [1 of 4]

Y02LA1	X01HA1	X02LB2	X02LB3	Y02LA2
![Graph](image1.png)	![Graph](image2.png)	![Graph](image3.png)	![Graph](image4.png)	![Graph](image5.png)

X01HA2	X02LB1	X01HA3	Y02LA3	X02HA1
![Graph](image6.png)	![Graph](image7.png)	![Graph](image8.png)	![Graph](image9.png)	![Graph](image10.png)

X02HA2	X02HA3	X02LC2	Y02HA1	X02LC3
![Graph](image11.png)	![Graph](image12.png)	![Graph](image13.png)	![Graph](image14.png)	![Graph](image15.png)

Log_{10}(Expression)
Assembled at all expression levels (black) [3 of 4]
Assembled at all expression levels (black) [4 of 4]
No assembly at all expression levels (blue) [1 of 2]
No assembly at all expression levels (blue)
Two-state discontinuous transition (green) [1 of 9]
Two-state discontinuous transition (green)
Two-state discontinuous transition (green) [6 of 9]

AmFRET vs Log10(Expression) for:
- Y10VC1
- Y08HC2
- Y06HA2
- Y10VC3
- Y06UC1
- Y04LC1
- Y04UA1
- Y10VC2
- Y06LA1
- Y06HA3
- Y08HC1
- Y08UA1
- Y04HB1
- Y10LB1
- Y08LC1

Values shown are:
- Y10VC1: 0.464
- Y08HC2: 0.908
- Y06HA2: 0.540
- Y10VC3: 0.520
- Y06UC1: 0.869
- Y04LC1: 0.373
- Y04UA1: 0.539
- Y10VC2: 0.463
- Y06LA1: 0.520
- Y06HA3: 0.546
- Y08HC1: 0.916
- Y08UA1: 0.530
- Y04HB1: 0.820
- Y10LB1: 0.628
- Y08LC1: 0.919
Two-state discontinuous transition (green) [7 of 9]
Two-state discontinuous transition (green) [9 of 9]
Higher order state transition (magenta) [2 of 9]

Graphs showing the AmFRET values for different samples:

- **X10VC1**: 0.239
- **X10VB2**: 0.051
- **X10VB3**: 0.028
- **X10VB1**: 0.142
- **Z10VC2**: 0.241
- **Z08HB2**: 0.279
- **Z01HC1**: 0.157
- **Z08LB1**: 0.675
- **Z08HB1**: 0.082
- **Z08LB3**: 0.745
- **Z01HC3**: 0.250
- **Z01HC2**: 0.122
- **Z08LB2**: 0.560
- **Z06UC2**: 0.498
- **Z04LC2**: 0.390

The graphs are plotted against Log₁₀(Expression) on the x-axis and AmFRET on the y-axis.
Higher order state transition (magenta) [3 of 9]
Higher order state transition (magenta) [4 of 9]
Higher order state transition (magenta) [5 of 9]

[Graph showing scatter plots with AmFRET values and Log10(Expression) for different samples.

Samples include:
- Z06HA2
- Z01HB2
- Z08UA3
- Z08LC2
- Z04LB2
- Z06UB2
- Z04HC1
- Z02HB1
- Z06UB3
- Z04LB3
- Z04LB1
- Z06UB1
- Z02HB3
- Z04HC3
- Z04HC2]
Higher order state transition (magenta) [7 of 9]
Higher order state transition (magenta) [9 of 9]
Two-state continuous transition (red) [2 of 6]

AmFRET

X04LB2 0.081
X06UB2 0.460
X10VA1 0.224
X08LB2 0.421
X08HA3 0.637

X06HC1 0.051
X08HA2 0.677
X08LB3 0.471
X08LB1 0.466
X06HC3 0.021

X08HA1 0.682
X04UA1 0.549
X06LA1 0.677
X04HA1 0.583
X06UC1 0.101
Two-state continuous transition (red) [3 of 6]

AmFRET vs. Log$_{10}$(Expression) for different samples:

- **X04UA2**: 0.612
- **X06LA2**: 0.676
- **X04HA2**: 0.575
- **X06UC3**: 0.085
- **X04HA3**: 0.624
- **X06UC2**: 0.024
- **X06LA3**: 0.670
- **X04UA3**: 0.623
- **X08LA3**: 0.643
- **X06LA2**: 0.646
- **X08UC2**: 0.198
- **X08HB2**: 0.436
- **X08HB3**: 0.440
- **X08UC3**: 0.157
- **X08LA2**: 0.646
- **X08UC1**: 0.301
Two-state continuous transition (red) [4 of 6]

- **X08HB1**
 - AmFRET: 0.465

- **X08LA1**
 - AmFRET: 0.668

- **X06LB1**
 - AmFRET: 0.396

- **X04UB1**
 - AmFRET: 0.095

- **X04HB1**
 - AmFRET: 0.089

- **X10HA2**
 - AmFRET: 0.249

- **X04HB3**
 - AmFRET: 0.076

- **X04UB3**
 - AmFRET: 0.062

- **X06LB3**
 - AmFRET: 0.397

- **X06LB2**
 - AmFRET: 0.405

- **X04UB2**
 - AmFRET: 0.070

- **X04HB2**
 - AmFRET: 0.064

- **X10HA3**
 - AmFRET: 0.213

- **X10LA2**
 - AmFRET: 0.244

- **X08HC2**
 - AmFRET: 0.235
Two-state continuous transition (red) [5 of 6]

AmFRET vs Log₁₀(Expression) for different proteins:
- **X08UB2**: AmFRET = 0.468
- **X08UB3**: AmFRET = 0.446
- **X08HC3**: AmFRET = 0.215
- **X10LA3**: AmFRET = 0.170
- **X06HA1**: AmFRET = 0.665
- **X06HA3**: AmFRET = 0.701
- **X10LA1**: AmFRET = 0.262
- **X08HC1**: AmFRET = 0.283
- **X08UB1**: AmFRET = 0.447
- **X06HA2**: AmFRET = 0.677
- **X06UA1**: AmFRET = 0.672
- **X04LA1**: AmFRET = 0.588
- **X06LC1**: AmFRET = 0.052
- **X06UA2**: AmFRET = 0.691
- **X04LA2**: AmFRET = 0.579
Two-state continuous transition (red) [6 of 6]

AmFRET

Log_{10}(Expression)

X06LC3

0.028

X06LC2

0.028

X04LA3

0.578

X06UA3

0.677

Z01HA1

0.622

Z02HA1

0.537
Figure S3: Classification of synthetic DAmFRET histograms without shading by confidence score. Each row denotes a different replica. Each column is denoted by the $\log_{10}(c_{50})$ (1.0, 2.0, 4.0, 6.0, 8.0, 10.0, or 12.0), the function (Sigmoid, Step, or 2 Step), and the noise level (Low, Medium, or High) used to generate the synthetic DAmFRET histograms.
Figure S4: DAmFRET histograms for each cPrD sorted by their PAPA score. The border of each histogram is colored by its classification. The following classifications are used: assembled at all expression levels (black); no assembly at all expression levels (blue); continuous two-state transition (red); discontinuous two-state transition (green); higher order state transition (magenta); and infrequent transition (yellow). Also displayed in the inset of each profile is the confidence score of its classification. Although the full profile is plotted, our method utilizes a low cutoff of 1.5 and a high cutoff at 5.0 in log_{10}(Expression) in our analysis pipeline to reduce the noise contributions at the extrema.
The image shows a series of scatter plots for different replicates of gene expression measurements. Each subplot contains a scatter plot with the x-axis labeled as $\log_{10}(\text{Expression})$ and the y-axis labeled as AmF5ET, R, or HplLFDtH. The plots are for different replicates labeled as YCK1, CLA4, NRD1, HRR25, and CAF40. The correlation coefficients for each replicate are indicated, with values ranging from 0.998 to 1.000.
SWI1 replicate 1: 0.130
SWI1 replicate 2: 0.285
SWI1 replicate 3: 0.577
SWI1 replicate 4: 0.284
AIM3 replicate 1: 0.181
AIM3 replicate 2: 0.282
AIM3 replicate 3: 0.285
AIM3 replicate 4: 0.165
PDR1 replicate 1: 0.852
PDR1 replicate 2: 0.706
PDR1 replicate 3: 0.676
PDR1 replicate 4: 0.931
AKL1 replicate 1: 1.000
AKL1 replicate 2: 1.000
AKL1 replicate 3: 1.000
AKL1 replicate 4: 0.853
KSP1 replicate 1: 0.520
KSP1 replicate 2: 0.597
KSP1 replicate 3: 0.055
KSP1 replicate 4: 0.708
Figure S5: Classification of DAmFRET histograms of 84 cPrDs previously examined by Alberti et al. without shading by confidence score. cPrDs are sorted by their PAPA scores shown in parentheses. Each column denotes a different experimental replicate.

Protein	Confidence Score
MED2	-0.1416
EP1L1	-0.1315
WWM1	-0.1130
SLT2	-0.1121
NAB2	-0.1027
YOK1	-0.1019
CLA4	-0.0947
NRD1	-0.0836
HRR25	-0.0705
CA4F0	-0.0475
SLA2	-0.0445
PIN3	-0.0399
SN3	-0.0389
SCD6	-0.0288
MCM1	-0.0287
POC2	-0.0246
YLR177W	-0.0214
YAH1	-0.0163
SNA2	-0.0120
EP31	-0.0100
GPR1	-0.0062
CYC8	-0.0043
RIM4	-0.0007
PUF4	+0.0000
SDO4	+0.0010
AZF1	+0.0052
NUP42	+0.0063
TIF4632	+0.0100
CCR4	+0.0101
VTS1	+0.0147
SGD1	+0.0160
SGO5	+0.0231
NSF1	+0.0239
NUP57	+0.0250
EN1T	+0.0302
ASG1	+0.0307
POP2	+0.0310
EN2T	+0.0329
SAP30	+0.0359
TAF12	+0.0376
PAN1	+0.0391
SGF73	+0.0396
YAPB201	+0.0411
GAL11	+0.0412
FSP1	+0.0440
PFCF1	+0.0443
RAT1	+0.0457
QST1	+0.0497
NAB3	+0.0525
MCA1	+0.0552
SWM1	+0.0553
AIM3	+0.0564
PDR1	+0.0592
AHP1	+0.0599
KGP1	+0.0615
SNSF5	+0.0620
NUP49	+0.0681
HRP1	+0.0688
SLM1	+0.0705
SKG3	+0.0720
UPC2	+0.0722
PUF2	+0.0768
PUG1	+0.0784
RL1M1	+0.0803
NUP11B	+0.0850
DEF1	+0.0945
SCD5	+0.0946
OLN3	+0.0969
ASM4	+0.0972
YBIL081W	+0.1001
SOK2	+0.1006
CKB1	+0.1028
URE2	+0.1031
NGR1	+0.1045
LSM4	+0.1177
JSM1	+0.1187
MRN1	+0.1285
YBR016W	+0.1375
NEV1	+0.1398
NUP100	+0.1431
NRP1	+0.1478
PUB1	+0.1551
RBS1	+0.1617
CLG1	+0.1777

Legend:
- Assembled at all expression levels
- No assembly at all expression levels
- Two-state continuous transition
- Two-state discontinuous transition
- Higher order state transition
- Infrequent transition
Figure S6: Correlation between amino acid frequency and degree of discontinuity for all 20 amino acids and all 23 cPrDs classified as undergoing a two-state transition. Each point corresponds to an experimental replicate. The color of each point denotes the degree of discontinuity of the transition. Numbers indicate the Pearson r-values used to quantify positive or negative correlations.
Figure S7: Distribution of the number of individual cell measurements collected for the set of 94 cPrDs from the Alberti et al. dataset. Bin widths were set to 5,000.
The Shannon Entropy was used to identify a suitable range of acceptable grid sizes that could be applied across an entire collection of DAmFRET data. To determine an acceptable grid size which could be applied across a majority of replicates for subsequent analysis, we examined the information density quantified by the Shannon Entropy, $S = - \sum_{i=1}^{n_x} \sum_{j=1}^{n_y} p_{ij} \log p_{ij}$, and its change as a function of increasing grid size, on a subset of replicates. We identified 6 replicates with the following cell measurements: 1×10^4, 2×10^4, 5×10^4, 8×10^4, 10×10^4, and 12×10^4 as these adequately sample the range in the number of cell measurements within the extrema. Each grid is generated from a sum-normalized 2D histogram of each replicate along the x-axis (Expression) and y-axis (AmFRET / Expression i.e. Ω_{FRET}), which is binned into the same number of n_x and n_y bins. Asymmetric grid sizes were not chosen.

In (A), as the grid size increases, the Shannon Entropy increases in a logarithmic fashion until it reaches a maximum that is dependent on the dataset size. As this change is non-linear, the turning points along each curve define lower and upper limits for possible grid sizes for replicates with a similar number of cell measurements. The location of the second turning point along the x-axis in which the entropy approaches its maximum defines an upper range in grid size as beyond that limit the information gained is minimized. Similarly, examining the location of the first turning point along each Shannon Entropy curve provides insight into the location of a lower limit of the grid size which can be applied on a given dataset. These insights, while informative, do not substantially narrow the range of possible grid sizes. Instead, by examining the numerical derivative of the Shannon Entropy curves as a function of grid size, we can better identify the grid sizes at which the information density change is maximized. However, as the entropy change can be positive or negative, we instead examine the absolute value of the numerical derivative of the Shannon Entropy curves, $|\Delta S|$. In (B), the peak of each absolute derivative curve $|\Delta S|$, identified by a grey line, indicates the grid size at which the information density gained or lost is maximized or minimized. Contextually, larger values in $|\Delta S|$ correspond to significant changes in sparsity of the grid at a given size. This suggests that beyond the peak, the information density gained or lost by increasing the sparsity of a grid is smaller overall. Hence, grid sizes chosen at or near to this value would be ideal.

For each replicate, the grid size corresponding to the maximum $|\Delta S|$ is different but not necessarily unique. In general, the replicates with lower cell measurements $\leq 8 \times 10^4$ peak at much smaller grid sizes, 46. The replicates with more cell measurements peak at grid sizes of 215 and 464. Thus, these values define an acceptable range of possible grid values which could be applied across all replicates.

However, any grid size chosen is mediated by being able to distinguish features within the grids. Grids generated at the grid size corresponding to the smallest grid size peak (46) produce featureless representations, while grids generated at the larger grid sizes (215 and 464) are more featureful and sparse. As we desire to better distinguish inherent features within the landscapes, values closer to the peak at the largest grid size is more ideal.

Thus, we chose a grid size of 300×300 as it can be applied to replicates with at least 5×10^4 cell measurements and is more featureful. Most of the replicates contain cell measurements above that
number. Given that replicates at lower counts tend to experience significant $|\Delta S|$ loss at the 300×300 grid size, any subsequent analysis may be impaired. Hence, we excluded cPrDs with replicates $<2\times10^4$ cell measurements from our analysis. The cPrDs that fell below this threshold are: PEX13, TIF4631, NPL3, RGT1, PSP2, YAP1802, SLA1, MOT3, DDR48, and SFP1.
Table S1: Synthetic Data Classifications. Noise 1 implies low noise, Noise 2 implies medium noise, and Noise 3 implies high noise. Saturation denotes how points were added to the dataset and Confidence-Score denotes how confident we are in the classification. These variables are described in the Materials and Methods.
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score	
1	3 State	1	High	Noise 1	Higher order state transition (magenta)	0.621546	
1	3 State	2	High	Noise 1	Higher order state transition (magenta)	0.302117	
1	3 State	3	High	Noise 1	Higher order state transition (magenta)	0.384786	
1	3 State	1	High	Noise 2	Higher order state transition (magenta)	0.274063	
1	3 State	2	High	Noise 2	Higher order state transition (magenta)	0.108933	
1	3 State	3	High	Noise 2	Higher order state transition (magenta)	0.236509	
1	3 State	1	High	Noise 3	Higher order state transition (magenta)	0.157181	
1	3 State	2	High	Noise 3	Higher order state transition (magenta)	0.121959	
1	3 State	3	High	Noise 3	Higher order state transition (magenta)	0.250389	
2	3 State	1	High	Noise 1	Higher order state transition (magenta)	0.536798	
2	3 State	2	High	Noise 1	Higher order state transition (magenta)	0.49149	
2	3 State	3	High	Noise 1	Higher order state transition (magenta)	0.655625	
2	3 State	1	High	Noise 2	Higher order state transition (magenta)	0.623963	
2	3 State	2	High	Noise 2	Higher order state transition (magenta)	0.5088	
2	3 State	3	High	Noise 2	Higher order state transition (magenta)	0.427051	
2	3 State	1	High	Noise 3	Higher order state transition (magenta)	0.215512	
2	3 State	2	High	Noise 3	Higher order state transition (magenta)	0.153058	
2	3 State	3	High	Noise 3	Higher order state transition (magenta)	0.0699569	
4	3 State	1	High	Noise 1	Higher order state transition (magenta)	0.622594	
4	3 State	2	High	Noise 1	Higher order state transition (magenta)	0.702502	
4	3 State	3	High	Noise 1	Higher order state transition (magenta)	0.702645	
4	3 State	1	High	Noise 2	Higher order state transition (magenta)	0.617313	
4	3 State	2	High	Noise 2	Higher order state transition (magenta)	0.493173	
4	3 State	3	High	Noise 2	Higher order state transition (magenta)	0.604476	
4	3 State	1	High	Noise 3	Higher order state transition (magenta)	0.320242	
4	3 State	2	High	Noise 3	Higher order state transition (magenta)	0.301434	
4	3 State	3	High	Noise 3	Higher order state transition (magenta)	0.10474	
4	3 State	1	Low	Noise 1	Higher order state transition (magenta)	0.642313	
4	3 State	2	Low	Noise 1	Higher order state transition (magenta)	0.658769	
4	3 State	3	Low	Noise 1	Higher order state transition (magenta)	0.698815	
4	3 State	1	Low	Noise 2	Higher order state transition (magenta)	0.577048	
4	3 State	2	Low	Noise 2	Higher order state transition (magenta)	0.619435	
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score	
-----------	---------------------	-----------	------------	---------------	----------------	------------------	
4	3 State	3	Low	Noise 2	Higher order state transition (magenta)	0.619054	
4	3 State	1	Low	Noise 3	Higher order state transition (magenta)	0.303053	
4	3 State	2	Low	Noise 3	Higher order state transition (magenta)	0.389778	
4	3 State	3	Low	Noise 3	Higher order state transition (magenta)	0.346246	
4	3 State	1	Uniform 1	Noise 1	Higher order state transition (magenta)	0.653063	
4	3 State	2	Uniform 1	Noise 1	Higher order state transition (magenta)	0.638787	
4	3 State	3	Uniform 1	Noise 1	Higher order state transition (magenta)	0.700642	
4	3 State	1	Uniform 1	Noise 2	Higher order state transition (magenta)	0.638101	
4	3 State	2	Uniform 1	Noise 2	Higher order state transition (magenta)	0.648085	
4	3 State	3	Uniform 1	Noise 2	Higher order state transition (magenta)	0.606547	
4	3 State	1	Uniform 1	Noise 3	Higher order state transition (magenta)	0.320728	
4	3 State	2	Uniform 1	Noise 3	Higher order state transition (magenta)	0.309023	
4	3 State	3	Uniform 1	Noise 3	Higher order state transition (magenta)	0.299869	
6	3 State	1	High	Noise 1	Higher order state transition (magenta)	0.671944	
6	3 State	2	High	Noise 1	Higher order state transition (magenta)	0.681096	
6	3 State	3	High	Noise 1	Higher order state transition (magenta)	0.655612	
6	3 State	1	High	Noise 2	Higher order state transition (magenta)	0.731309	
6	3 State	2	High	Noise 2	Higher order state transition (magenta)	0.626682	
6	3 State	3	High	Noise 2	Higher order state transition (magenta)	0.656763	
6	3 State	1	High	Noise 3	Higher order state transition (magenta)	0.480278	
6	3 State	2	High	Noise 3	Higher order state transition (magenta)	0.45685	
6	3 State	3	High	Noise 3	Higher order state transition (magenta)	0.535074	
6	3 State	1	Low	Noise 1	Higher order state transition (magenta)	0.666124	
6	3 State	2	Low	Noise 1	Higher order state transition (magenta)	0.679163	
6	3 State	3	Low	Noise 1	Higher order state transition (magenta)	0.635655	
6	3 State	1	Low	Noise 2	Higher order state transition (magenta)	0.695505	
6	3 State	2	Low	Noise 2	Higher order state transition (magenta)	0.737014	
6	3 State	3	Low	Noise 2	Higher order state transition (magenta)	0.489918	
6	3 State	1	Low	Noise 3	Higher order state transition (magenta)	0.458197	
6	3 State	2	Low	Noise 3	Higher order state transition (magenta)	0.4259	
6	3 State	3	Low	Noise 3	Higher order state transition (magenta)	0.391514	
6	3 State	1	Uniform 1	Noise 1	Higher order state transition (magenta)	0.693316	
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score	
-----------	---------------------	-----------	------------	---------------	----------------	-----------------	
6	3 State	2	Uniform 1	Noise 1	Higher order state transition (magenta)	0.653983	
6	3 State	3	Uniform 1	Noise 1	Higher order state transition (magenta)	0.677854	
6	3 State	1	Uniform 1	Noise 2	Higher order state transition (magenta)	0.715761	
6	3 State	2	Uniform 1	Noise 2	Higher order state transition (magenta)	0.700392	
6	3 State	3	Uniform 1	Noise 2	Higher order state transition (magenta)	0.564828	
6	3 State	1	Uniform 1	Noise 3	Higher order state transition (magenta)	0.479303	
6	3 State	2	Uniform 1	Noise 3	Higher order state transition (magenta)	0.497872	
6	3 State	3	Uniform 1	Noise 3	Higher order state transition (magenta)	0.44843	
8	3 State	1	High	Noise 1	Higher order state transition (magenta)	0.132153	
8	3 State	2	High	Noise 1	Higher order state transition (magenta)	0.330193	
8	3 State	3	High	Noise 1	Higher order state transition (magenta)	0.0295417	
8	3 State	1	High	Noise 2	Higher order state transition (magenta)	0.081692	
8	3 State	2	High	Noise 2	Two-state discontinuous transition (green)	0.278568	
8	3 State	3	High	Noise 2	Two-state discontinuous transition (green)	0.0117776	
8	3 State	1	High	Noise 3	Higher order state transition (magenta)	0.459571	
8	3 State	2	High	Noise 3	Higher order state transition (magenta)	0.269888	
8	3 State	3	High	Noise 3	Higher order state transition (magenta)	0.190652	
8	3 State	1	Low	Noise 1	Higher order state transition (magenta)	0.132774	
8	3 State	2	Low	Noise 1	Higher order state transition (magenta)	0.0294251	
8	3 State	3	Low	Noise 1	Higher order state transition (magenta)	0.248775	
8	3 State	1	Low	Noise 2	Higher order state transition (magenta)	0.675253	
8	3 State	2	Low	Noise 2	Higher order state transition (magenta)	0.560303	
8	3 State	3	Low	Noise 2	Higher order state transition (magenta)	0.744742	
8	3 State	1	Low	Noise 3	Higher order state transition (magenta)	0.515401	
8	3 State	2	Low	Noise 3	Higher order state transition (magenta)	0.61651	
8	3 State	3	Low	Noise 3	Higher order state transition (magenta)	0.416882	
8	3 State	1	Uniform 1	Noise 1	Higher order state transition (magenta)	0.243616	
8	3 State	2	Uniform 1	Noise 1	Higher order state transition (magenta)	0.327942	
8	3 State	3	Uniform 1	Noise 1	Higher order state transition (magenta)	0.109243	
8	3 State	1	Uniform 1	Noise 2	Higher order state transition (magenta)	0.172307	
8	3 State	2	Uniform 1	Noise 2	Higher order state transition (magenta)	0.452379	
8	3 State	3	Uniform 1	Noise 2	Higher order state transition (magenta)	0.606731	
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score	
-----------	---------------------	-----------	------------	---------------	--	-----------------	
8	3 State	1	Uniform 1	Noise 3	Higher order state transition (magenta)	0.412813	
8	3 State	2	Uniform 1	Noise 3	Higher order state transition (magenta)	0.292569	
8	3 State	3	Uniform 1	Noise 3	Higher order state transition (magenta)	0.341973	
10	3 State	1	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.160875	
10	3 State	2	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.41912	
10	3 State	3	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.458148	
10	3 State	1	Uniform 2	Noise 2	Higher order state transition (magenta)	0.558226	
10	3 State	2	Uniform 2	Noise 2	Higher order state transition (magenta)	0.0509299	
10	3 State	3	Uniform 2	Noise 2	Higher order state transition (magenta)	0.518843	
10	3 State	1	Uniform 2	Noise 3	Two-state discontinuous transition (green)	0.100431	
10	3 State	2	Uniform 2	Noise 3	Two-state discontinuous transition (green)	0.240856	
10	3 State	3	Uniform 2	Noise 3	Two-state discontinuous transition (green)	0.120229	
12	3 State	1	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.530231	
12	3 State	2	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.649674	
12	3 State	3	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.503427	
12	3 State	1	Uniform 2	Noise 2	Higher order state transition (magenta)	0.343287	
12	3 State	2	Uniform 2	Noise 2	Two-state discontinuous transition (green)	0.142396	
12	3 State	3	Uniform 2	Noise 2	Higher order state transition (magenta)	0.246489	
12	3 State	1	Uniform 2	Noise 3	Two-state discontinuous transition (green)	0.119629	
12	3 State	2	Uniform 2	Noise 3	Two-state discontinuous transition (green)	0.203664	
12	3 State	3	Uniform 2	Noise 3	Two-state discontinuous transition (green)	0.203691	
1	Sigmoid	1	High	Noise 1	Assembled at all expression levels (black)	0.999998	
1	Sigmoid	2	High	Noise 1	Assembled at all expression levels (black)	0.999997	
1	Sigmoid	3	High	Noise 1	Assembled at all expression levels (black)	0.999679	
1	Sigmoid	1	High	Noise 2	Assembled at all expression levels (black)	0.997261	
1	Sigmoid	2	High	Noise 2	Assembled at all expression levels (black)	0.994899	
1	Sigmoid	3	High	Noise 2	Assembled at all expression levels (black)	0.997667	
1	Sigmoid	1	High	Noise 3	Assembled at all expression levels (black)	0.97836	
1	Sigmoid	2	High	Noise 3	Assembled at all expression levels (black)	0.956675	
1	Sigmoid	3	High	Noise 3	Assembled at all expression levels (black)	0.92511	
2	Sigmoid	1	High	Noise 1	Assembled at all expression levels (black)	0.99999	
2	Sigmoid	2	High	Noise 1	Assembled at all expression levels (black)	1	
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score	
------------	---------------------	-----------	------------	---------------	----------------	------------------	
2	Sigmoid	3	High	Noise 1	Assembled at all expression levels (black)	0.999979	
2	Sigmoid	1	High	Noise 2	Assembled at all expression levels (black)	0.999996	
2	Sigmoid	2	High	Noise 2	Assembled at all expression levels (black)	0.993101	
2	Sigmoid	3	High	Noise 2	Assembled at all expression levels (black)	0.989398	
2	Sigmoid	1	High	Noise 3	Assembled at all expression levels (black)	0.96026	
2	Sigmoid	2	High	Noise 3	Assembled at all expression levels (black)	0.958562	
2	Sigmoid	3	High	Noise 3	Assembled at all expression levels (black)	0.917499	
2	Sigmoid	1	Low	Noise 1	Assembled at all expression levels (black)	0.999997	
2	Sigmoid	2	Low	Noise 1	Assembled at all expression levels (black)	0.999999	
2	Sigmoid	3	Low	Noise 1	Assembled at all expression levels (black)	0.995477	
2	Sigmoid	1	Low	Noise 2	Assembled at all expression levels (black)	0.996187	
2	Sigmoid	2	Low	Noise 2	Assembled at all expression levels (black)	0.986597	
2	Sigmoid	3	Low	Noise 2	Assembled at all expression levels (black)	0.940585	
2	Sigmoid	1	Low	Noise 3	Assembled at all expression levels (black)	0.976755	
2	Sigmoid	2	Low	Noise 3	Assembled at all expression levels (black)	0.965287	
4	Sigmoid	1	High	Noise 1	Two-state continuous transition (red)	0.582868	
4	Sigmoid	2	High	Noise 1	Two-state continuous transition (red)	0.57489	
4	Sigmoid	3	High	Noise 1	Two-state continuous transition (red)	0.623844	
4	Sigmoid	1	High	Noise 2	Two-state continuous transition (red)	0.088625	
4	Sigmoid	2	High	Noise 2	Two-state continuous transition (red)	0.063604	
4	Sigmoid	3	High	Noise 2	Two-state continuous transition (red)	0.0758606	
4	Sigmoid	1	High	Noise 3	Two-state discontinuous transition (green)	0.328957	
4	Sigmoid	2	High	Noise 3	Two-state discontinuous transition (green)	0.31025	
4	Sigmoid	3	High	Noise 3	Two-state discontinuous transition (green)	0.348495	
4	Sigmoid	1	Low	Noise 1	Two-state continuous transition (red)	0.587799	
4	Sigmoid	2	Low	Noise 1	Two-state continuous transition (red)	0.579076	
4	Sigmoid	3	Low	Noise 1	Two-state continuous transition (red)	0.578276	
4	Sigmoid	1	Low	Noise 2	Two-state continuous transition (red)	0.0663032	
4	Sigmoid	2	Low	Noise 2	Two-state continuous transition (red)	0.0814072	
4	Sigmoid	3	Low	Noise 2	Two-state continuous transition (red)	0.0222756	
4	Sigmoid	1	Low	Noise 3	Two-state discontinuous transition (green)	0.400209	
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score	
------------	---------------------	-----------	------------	---------------	----------------	-----------------	
4	Sigmoid	2	Low	Noise 3	Two-state discontinuous transition (green)	0.320155	
4	Sigmoid	3	Low	Noise 3	Two-state discontinuous transition (green)	0.368697	
4	Sigmoid	1	Uniform 1	Noise 1	Two-state continuous transition (red)	0.549374	
4	Sigmoid	2	Uniform 1	Noise 1	Two-state continuous transition (red)	0.611786	
4	Sigmoid	3	Uniform 1	Noise 1	Two-state continuous transition (red)	0.62269	
4	Sigmoid	1	Uniform 1	Noise 2	Two-state continuous transition (red)	0.095308	
4	Sigmoid	2	Uniform 1	Noise 2	Two-state continuous transition (red)	0.069509	
4	Sigmoid	3	Uniform 1	Noise 2	Two-state continuous transition (red)	0.062330	
4	Sigmoid	1	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.373954	
4	Sigmoid	2	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.31774	
4	Sigmoid	3	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.349601	
6	Sigmoid	1	High	Noise 1	Two-state continuous transition (red)	0.665029	
6	Sigmoid	2	High	Noise 1	Two-state continuous transition (red)	0.677324	
6	Sigmoid	3	High	Noise 1	Two-state continuous transition (red)	0.700741	
6	Sigmoid	1	High	Noise 2	Two-state continuous transition (red)	0.36453	
6	Sigmoid	2	High	Noise 2	Two-state continuous transition (red)	0.35235	
6	Sigmoid	3	High	Noise 2	Two-state continuous transition (red)	0.415738	
6	Sigmoid	1	High	Noise 3	Two-state continuous transition (red)	0.051451	
6	Sigmoid	2	High	Noise 3	Two-state discontinuous transition (green)	0.016909	
6	Sigmoid	3	High	Noise 3	Two-state discontinuous transition (red)	0.021138	
6	Sigmoid	1	Low	Noise 1	Two-state continuous transition (red)	0.676762	
6	Sigmoid	2	Low	Noise 1	Two-state continuous transition (red)	0.675855	
6	Sigmoid	3	Low	Noise 1	Two-state continuous transition (red)	0.669753	
6	Sigmoid	1	Low	Noise 2	Two-state continuous transition (red)	0.39621	
6	Sigmoid	2	Low	Noise 2	Two-state continuous transition (red)	0.405384	
6	Sigmoid	3	Low	Noise 2	Two-state continuous transition (red)	0.397039	
6	Sigmoid	1	Low	Noise 3	Two-state continuous transition (red)	0.052246	
6	Sigmoid	2	Low	Noise 3	Two-state continuous transition (red)	0.028192	
6	Sigmoid	3	Low	Noise 3	Two-state continuous transition (red)	0.027993	
6	Sigmoid	1	Uniform 1	Noise 1	Two-state continuous transition (red)	0.671927	
6	Sigmoid	2	Uniform 1	Noise 1	Two-state continuous transition (red)	0.690882	
6	Sigmoid	3	Uniform 1	Noise 1	Two-state continuous transition (red)	0.676993	
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score	
------------	---------------------	-----------	------------	---------------	----------------	------------------	
6	Sigmoid	1	Uniform	1	Noise 2	Two-state continuous transition (red)	0.382539
6	Sigmoid	2	Uniform	1	Noise 2	Two-state continuous transition (red)	0.460024
6	Sigmoid	3	Uniform	1	Noise 2	Two-state continuous transition (red)	0.382118
6	Sigmoid	1	Uniform	1	Noise 3	Two-state continuous transition (red)	0.100853
6	Sigmoid	2	Uniform	1	Noise 3	Two-state continuous transition (red)	0.0236738
6	Sigmoid	3	Uniform	1	Noise 3	Two-state continuous transition (red)	0.0845262
8	Sigmoid	1	High	1	Noise 1	Two-state continuous transition (red)	0.682486
8	Sigmoid	2	High	1	Noise 1	Two-state continuous transition (red)	0.677143
8	Sigmoid	3	High	1	Noise 1	Two-state continuous transition (red)	0.637041
8	Sigmoid	1	High	2	Noise 2	Two-state continuous transition (red)	0.465439
8	Sigmoid	2	High	2	Noise 2	Two-state continuous transition (red)	0.436313
8	Sigmoid	3	High	2	Noise 2	Two-state continuous transition (red)	0.440201
8	Sigmoid	1	High	3	Noise 3	Two-state continuous transition (red)	0.283482
8	Sigmoid	2	High	3	Noise 3	Two-state continuous transition (red)	0.234956
8	Sigmoid	3	High	3	Noise 3	Two-state continuous transition (red)	0.214676
8	Sigmoid	1	Low	1	Noise 1	Two-state continuous transition (red)	0.668071
8	Sigmoid	2	Low	1	Noise 1	Two-state continuous transition (red)	0.646335
8	Sigmoid	3	Low	1	Noise 1	Two-state continuous transition (red)	0.643409
8	Sigmoid	1	Low	2	Noise 2	Two-state continuous transition (red)	0.466111
8	Sigmoid	2	Low	2	Noise 2	Two-state continuous transition (red)	0.411876
8	Sigmoid	3	Low	2	Noise 2	Two-state continuous transition (red)	0.471386
8	Sigmoid	1	Low	3	Noise 3	Two-state continuous transition (red)	0.223226
8	Sigmoid	2	Low	3	Noise 3	Two-state continuous transition (red)	0.169346
8	Sigmoid	3	Low	3	Noise 3	Two-state continuous transition (red)	0.188756
8	Sigmoid	1	Uniform	1	Noise 1	Two-state continuous transition (red)	0.640101
8	Sigmoid	2	Uniform	1	Noise 1	Two-state continuous transition (red)	0.64232
8	Sigmoid	3	Uniform	1	Noise 1	Two-state continuous transition (red)	0.646699
8	Sigmoid	1	Uniform	1	Noise 2	Two-state continuous transition (red)	0.446686
8	Sigmoid	2	Uniform	1	Noise 2	Two-state continuous transition (red)	0.468282
8	Sigmoid	3	Uniform	1	Noise 2	Two-state continuous transition (red)	0.446119
8	Sigmoid	1	Uniform	1	Noise 3	Two-state continuous transition (red)	0.300605
8	Sigmoid	2	Uniform	1	Noise 3	Two-state continuous transition (red)	0.197703
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score	
-----------	---------------------	-----------	------------	---------------	----------------	-----------------	
8	Sigmoid	3	Uniform 1	Noise 3	Two-state continuous transition (red)	0.156698	
10	Sigmoid	1	High	Noise 1	Higher order state transition (magenta)	0.065959	
10	Sigmoid	2	High	Noise 1	Higher order state transition (magenta)	0.248574	
10	Sigmoid	3	High	Noise 1	Two-state continuous transition (red)	0.21258	
10	Sigmoid	1	High	Noise 2	Higher order state transition (magenta)	0.028059	
10	Sigmoid	2	High	Noise 2	Higher order state transition (magenta)	0.235942	
10	Sigmoid	3	High	Noise 2	Higher order state transition (magenta)	0.127148	
10	Sigmoid	1	High	Noise 3	Higher order state transition (magenta)	0.23705	
10	Sigmoid	2	High	Noise 3	Two-state discontinuous transition (green)	0.10443	
10	Sigmoid	3	High	Noise 3	Higher order state transition (magenta)	0.0217016	
10	Sigmoid	1	Low	Noise 1	Two-state continuous transition (red)	0.261796	
10	Sigmoid	2	Low	Noise 1	Two-state continuous transition (red)	0.243962	
10	Sigmoid	3	Low	Noise 1	Two-state continuous transition (red)	0.170127	
10	Sigmoid	1	Low	Noise 2	Higher order state transition (magenta)	0.104578	
10	Sigmoid	2	Low	Noise 2	Higher order state transition (magenta)	0.00848424	
10	Sigmoid	3	Low	Noise 2	Higher order state transition (magenta)	0.0558006	
10	Sigmoid	1	Low	Noise 3	Higher order state transition (magenta)	0.223217	
10	Sigmoid	2	Low	Noise 3	Higher order state transition (magenta)	0.0550116	
10	Sigmoid	3	Low	Noise 3	Higher order state transition (magenta)	0.0093684	
10	Sigmoid	1	Uniform 2	Noise 1	Two-state continuous transition (red)	0.223953	
10	Sigmoid	2	Uniform 2	Noise 1	Two-state continuous transition (red)	0.244822	
10	Sigmoid	3	Uniform 2	Noise 1	Two-state continuous transition (red)	0.283781	
10	Sigmoid	1	Uniform 2	Noise 2	Higher order state transition (magenta)	0.14233	
10	Sigmoid	2	Uniform 2	Noise 2	Higher order state transition (magenta)	0.0513458	
10	Sigmoid	3	Uniform 2	Noise 2	Higher order state transition (magenta)	0.0281355	
10	Sigmoid	1	Uniform 2	Noise 3	Higher order state transition (magenta)	0.238799	
10	Sigmoid	2	Uniform 2	Noise 3	Higher order state transition (magenta)	0.116542	
10	Sigmoid	3	Uniform 2	Noise 3	Higher order state transition (magenta)	0.105537	
12	Sigmoid	1	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.0304707	
12	Sigmoid	2	Uniform 2	Noise 1	No assembly at all expression levels (blue)	0.999637	
12	Sigmoid	3	Uniform 2	Noise 1	No assembly at all expression levels (blue)	0.03979	
12	Sigmoid	1	Uniform 2	Noise 2	No assembly at all expression levels (blue)	0.999942	
Synthetic Datasets Classifications

log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score
12	Sigmoid	2	Uniform 2	Noise 2	No assembly at all expression levels (blue)	0.99986
12	Sigmoid	3	Uniform 2	Noise 2	No assembly at all expression levels (blue)	0.996983
12	Sigmoid	2	Uniform 2	Noise 3	No assembly at all expression levels (blue)	0.999466
1	Step	1	High	Noise 1	Assembled at all expression levels (black)	0.999686
1	Step	2	High	Noise 1	Assembled at all expression levels (black)	0.999982
1	Step	3	High	Noise 1	Assembled at all expression levels (black)	0.999683
1	Step	1	High	Noise 2	Assembled at all expression levels (black)	0.997853
1	Step	2	High	Noise 2	Assembled at all expression levels (black)	0.999997
1	Step	3	High	Noise 2	Assembled at all expression levels (black)	0.999989
1	Step	1	High	Noise 3	Assembled at all expression levels (black)	0.94387
1	Step	2	High	Noise 3	Assembled at all expression levels (black)	0.983098
1	Step	3	High	Noise 3	Assembled at all expression levels (black)	0.993609
2	Step	1	High	Noise 1	Assembled at all expression levels (black)	0.999684
2	Step	2	High	Noise 1	Assembled at all expression levels (black)	0.999685
2	Step	3	High	Noise 1	Assembled at all expression levels (black)	0.999687
2	Step	1	High	Noise 2	Assembled at all expression levels (black)	0.999999
2	Step	2	High	Noise 2	Assembled at all expression levels (black)	0.996139
2	Step	3	High	Noise 2	Assembled at all expression levels (black)	0.99958
2	Step	1	High	Noise 3	Assembled at all expression levels (black)	0.980209
2	Step	2	High	Noise 3	Assembled at all expression levels (black)	0.985168
2	Step	3	High	Noise 3	Assembled at all expression levels (black)	0.977156
2	Step	1	Low	Noise 1	Assembled at all expression levels (black)	0.999686
2	Step	2	Low	Noise 1	Assembled at all expression levels (black)	0.999684
2	Step	3	Low	Noise 1	Assembled at all expression levels (black)	0.999685
2	Step	1	Low	Noise 2	Assembled at all expression levels (black)	0.994105
2	Step	2	Low	Noise 2	Assembled at all expression levels (black)	0.995933
2	Step	3	Low	Noise 2	Assembled at all expression levels (black)	0.999732
2	Step	1	Low	Noise 3	Assembled at all expression levels (black)	0.98579
2	Step	2	Low	Noise 3	Assembled at all expression levels (black)	0.975905
2	Step	3	Low	Noise 3	Assembled at all expression levels (black)	0.988926
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score
------------	---------------------	-----------	------------	---------------	---	------------------
4	Step	1	High	Noise 1	Two-state discontinuous transition (green)	0.527439
4	Step	2	High	Noise 1	Two-state discontinuous transition (green)	0.549141
4	Step	3	High	Noise 1	Two-state discontinuous transition (green)	0.535265
4	Step	1	High	Noise 2	Two-state discontinuous transition (green)	0.819632
4	Step	2	High	Noise 2	Two-state discontinuous transition (green)	0.738042
4	Step	3	High	Noise 2	Two-state discontinuous transition (green)	0.842044
4	Step	1	High	Noise 3	Two-state discontinuous transition (green)	0.639317
4	Step	2	High	Noise 3	Two-state discontinuous transition (green)	0.6174
4	Step	3	High	Noise 3	Two-state discontinuous transition (green)	0.911071
4	Step	1	Low	Noise 1	Two-state discontinuous transition (green)	0.540014
4	Step	2	Low	Noise 1	Two-state discontinuous transition (green)	0.526254
4	Step	3	Low	Noise 1	Two-state discontinuous transition (green)	0.512421
4	Step	1	Low	Noise 2	Two-state discontinuous transition (green)	0.871783
4	Step	2	Low	Noise 2	Two-state discontinuous transition (green)	0.841139
4	Step	3	Low	Noise 2	Two-state discontinuous transition (green)	0.807766
4	Step	1	Low	Noise 3	Two-state discontinuous transition (green)	0.37312
4	Step	2	Low	Noise 3	Two-state discontinuous transition (green)	0.624564
4	Step	3	Low	Noise 3	Two-state discontinuous transition (green)	0.920083
4	Step	1	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.538637
4	Step	2	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.514547
4	Step	3	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.506274
4	Step	1	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.800145
4	Step	2	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.804407
4	Step	3	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.833043
4	Step	1	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.685381
4	Step	2	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.869528
4	Step	3	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.675083
6	Step	1	High	Noise 1	Two-state discontinuous transition (green)	0.49362
6	Step	2	High	Noise 1	Two-state discontinuous transition (green)	0.540372
6	Step	3	High	Noise 1	Two-state discontinuous transition (green)	0.546093
6	Step	1	High	Noise 2	Two-state discontinuous transition (green)	0.836041
6	Step	2	High	Noise 2	Two-state discontinuous transition (green)	0.850862
log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score
-----------	---------------------	-----------	------------	---------------	--	------------------
6	Step	3	High	Noise 2	Two-state discontinuous transition (green)	0.833631
6	Step	1	High	Noise 3	Two-state discontinuous transition (green)	0.940245
6	Step	2	High	Noise 3	Two-state discontinuous transition (green)	0.896513
6	Step	3	High	Noise 3	Two-state discontinuous transition (green)	0.921404
6	Step	1	Low	Noise 1	Two-state discontinuous transition (green)	0.520163
6	Step	2	Low	Noise 1	Two-state discontinuous transition (green)	0.52087
6	Step	3	Low	Noise 1	Two-state discontinuous transition (green)	0.530269
6	Step	1	Low	Noise 2	Two-state discontinuous transition (green)	0.84703
6	Step	2	Low	Noise 2	Two-state discontinuous transition (green)	0.845815
6	Step	3	Low	Noise 3	Two-state discontinuous transition (green)	0.849417
6	Step	1	Low	Noise 3	Two-state discontinuous transition (green)	0.932094
6	Step	2	Low	Noise 3	Two-state discontinuous transition (green)	0.911229
6	Step	3	Low	Noise 3	Two-state discontinuous transition (green)	0.926136
6	Step	1	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.503459
6	Step	2	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.548664
6	Step	3	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.560756
6	Step	1	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.845126
6	Step	2	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.870816
6	Step	3	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.848562
6	Step	1	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.869073
6	Step	2	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.923083
6	Step	3	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.905966
8	Step	1	High	Noise 1	Two-state discontinuous transition (green)	0.552718
8	Step	2	High	Noise 1	Two-state discontinuous transition (green)	0.52334
8	Step	3	High	Noise 1	Two-state discontinuous transition (green)	0.524608
8	Step	1	High	Noise 2	Two-state discontinuous transition (green)	0.825563
8	Step	2	High	Noise 2	Two-state discontinuous transition (green)	0.854495
8	Step	3	High	Noise 2	Two-state discontinuous transition (green)	0.844215
8	Step	1	High	Noise 3	Two-state discontinuous transition (green)	0.916052
8	Step	2	High	Noise 3	Two-state discontinuous transition (green)	0.908063
8	Step	3	High	Noise 3	Two-state discontinuous transition (green)	0.909361
8	Step	1	Low	Noise 1	Two-state discontinuous transition (green)	0.566237
Synthetic Datasets Classifications

log10(c50)	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score
8	Step	2	Low	Noise 1	Two-state discontinuous transition (green)	0.54619
8	Step	3	Low	Noise 1	Two-state discontinuous transition (green)	0.53079
8	Step	1	Low	Noise 2	Two-state discontinuous transition (green)	0.83522
8	Step	2	Low	Noise 2	Two-state discontinuous transition (green)	0.869549
8	Step	3	Low	Noise 2	Two-state discontinuous transition (green)	0.871142
8	Step	1	Low	Noise 3	Two-state discontinuous transition (green)	0.918619
8	Step	2	Low	Noise 3	Two-state discontinuous transition (green)	0.929365
8	Step	3	Low	Noise 3	Two-state discontinuous transition (green)	0.938753
8	Step	1	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.529859
8	Step	2	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.609937
8	Step	3	Uniform 1	Noise 1	Two-state discontinuous transition (green)	0.561395
8	Step	1	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.864244
8	Step	2	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.831551
8	Step	3	Uniform 1	Noise 2	Two-state discontinuous transition (green)	0.853081
8	Step	1	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.884264
8	Step	2	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.900825
8	Step	3	Uniform 1	Noise 3	Two-state discontinuous transition (green)	0.926658
10	Step	1	High	Noise 1	Two-state discontinuous transition (green)	0.493287
10	Step	2	High	Noise 1	Two-state discontinuous transition (green)	0.437141
10	Step	3	High	Noise 1	Two-state discontinuous transition (green)	0.455513
10	Step	1	High	Noise 2	Two-state discontinuous transition (green)	0.60051
10	Step	2	High	Noise 2	Two-state discontinuous transition (green)	0.629702
10	Step	3	High	Noise 2	Two-state discontinuous transition (green)	0.712188
10	Step	1	High	Noise 3	Two-state discontinuous transition (green)	0.407975
10	Step	2	High	Noise 3	Two-state discontinuous transition (green)	0.446893
10	Step	3	High	Noise 3	Two-state discontinuous transition (green)	0.401275
10	Step	1	Low	Noise 1	Two-state discontinuous transition (green)	0.510572
10	Step	2	Low	Noise 1	Two-state discontinuous transition (green)	0.412006
10	Step	3	Low	Noise 1	Two-state discontinuous transition (green)	0.408051
10	Step	1	Low	Noise 2	Two-state discontinuous transition (green)	0.628384
10	Step	2	Low	Noise 2	Two-state discontinuous transition (green)	0.508627
10	Step	3	Low	Noise 2	Two-state discontinuous transition (green)	0.459173
Synthetic Datasets Classifications

$\log_{10}(c50)$	Generating-Function	Replicate	Saturation	Noise-Profile	Classification	Confidence-Score
10	Step	1	Low	Noise 3	Two-state discontinuous transition (green)	0.399977
10	Step	2	Low	Noise 3	Two-state discontinuous transition (green)	0.388248
10	Step	3	Low	Noise 3	Two-state discontinuous transition (green)	0.523575
10	Step	1	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.514575
10	Step	2	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.444036
10	Step	3	Uniform 2	Noise 1	Two-state discontinuous transition (green)	0.331044
10	Step	1	Uniform 2	Noise 2	Two-state discontinuous transition (green)	0.565756
10	Step	2	Uniform 2	Noise 2	Two-state discontinuous transition (green)	0.445484
10	Step	3	Uniform 2	Noise 2	Two-state discontinuous transition (green)	0.77615
12	Step	1	Uniform 2	Noise 1	No assembly at all expression levels (blue)	0.999983
12	Step	2	Uniform 2	Noise 1	No assembly at all expression levels (blue)	1
12	Step	3	Uniform 2	Noise 1	No assembly at all expression levels (blue)	0.999914
12	Step	1	Uniform 2	Noise 2	No assembly at all expression levels (blue)	1
12	Step	2	Uniform 2	Noise 2	No assembly at all expression levels (blue)	0.99994
12	Step	3	Uniform 2	Noise 2	No assembly at all expression levels (blue)	1
12	Step	1	Uniform 2	Noise 3	Higher order state transition (magenta)	0.00449382
12	Step	2	Uniform 2	Noise 3	No assembly at all expression levels (blue)	1
12	Step	3	Uniform 2	Noise 3	No assembly at all expression levels (blue)	1
Table S2: Classifications of the cPrDs. Here, $\log_{10}(c_{50})$ is only calculated for those DAmFRET histograms that show a transition. The “Confidence-Score” denotes how confident we are in each of the classifications as described in the Materials and Methods section.						
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
-------	-----------	------------	--	------------------		
EPL1	1	N/A	No assembly at all concentrations (Blue Class)	1		
EPL1	2	N/A	No assembly at all concentrations (Blue Class)	1		
EPL1	3	N/A	No assembly at all concentrations (Blue Class)	1		
EPL1	4	N/A	No assembly at all concentrations (Blue Class)	1		
NRD1	1	N/A	No assembly at all concentrations (Blue Class)	1		
NRD1	2	N/A	No assembly at all concentrations (Blue Class)	0.5437		
NRD1	3	N/A	No assembly at all concentrations (Blue Class)	0.80726		
NRD1	4	N/A	No assembly at all concentrations (Blue Class)	1		
SLT2	1	N/A	No assembly at all concentrations (Blue Class)	0.99847		
SLT2	2	N/A	No assembly at all concentrations (Blue Class)	1		
SLT2	3	N/A	No assembly at all concentrations (Blue Class)	0.99911		
SLT2	4	N/A	No assembly at all concentrations (Blue Class)	1		
SAP30	1	4.89634	Incomplete Transition (Yellow Class)	0.13802		
SAP30	2	4.45529	Incomplete Transition (Yellow Class)	0.31665		
SAP30	3	4.14964	No assembly at all concentrations (Blue Class)	1		
SAP30	4	4.55432	No assembly at all concentrations (Blue Class)	1		
SCD6	1	N/A	No assembly at all concentrations (Blue Class)	0.99557		
SCD6	2	N/A	No assembly at all concentrations (Blue Class)	1		
SCD6	3	N/A	No assembly at all concentrations (Blue Class)	1		
SCD6	4	N/A	No assembly at all concentrations (Blue Class)	1		
SKG6	1	N/A	No assembly at all concentrations (Blue Class)	1		
SKG6	2	N/A	No assembly at all concentrations (Blue Class)	1		
SKG6	3	N/A	No assembly at all concentrations (Blue Class)	1		
SKG6	4	N/A	No assembly at all concentrations (Blue Class)	1		
PDR1	1	3.9755	Incomplete Transition (Yellow Class)	0.85186		
PDR1	2	3.93765	Incomplete Transition (Yellow Class)	0.70634		
PDR1	3	3.90418	Incomplete Transition (Yellow Class)	0.67611		
PDR1	4	4.04877	Incomplete Transition (Yellow Class)	0.93098		
CLG1	1	3.21112	No assembly at all concentrations (Blue Class)	1		
CLG1	2	2.96033	No assembly at all concentrations (Blue Class)	1		
CLG1	3	3.0682	Incomplete Transition (Yellow Class)	0.99026		
CLG1	4	3.32408	Incomplete Transition (Yellow Class)	0.99539		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
-------	-----------	------------	---	------------------		
TAF12	1	N/A	No assembly at all concentrations (Blue Class)	1		
TAF12	2	N/A	No assembly at all concentrations (Blue Class)	1		
TAF12	3	N/A	No assembly at all concentrations (Blue Class)	1		
TAF12	4	N/A	No assembly at all concentrations (Blue Class)	1		
PIN3	1	N/A	No assembly at all concentrations (Blue Class)	1		
PIN3	2	N/A	No assembly at all concentrations (Blue Class)	1		
PIN3	3	N/A	No assembly at all concentrations (Blue Class)	0.98588		
PIN3	4	N/A	No assembly at all concentrations (Blue Class)	1		
MRN1	1	2.72915	Discontinuous Transition (Green Class)	0.08591		
MRN1	2	2.73075	Continuous Transition (Red Class)	0.05195		
MRN1	3	2.75452	Continuous Transition (Red Class)	0.33956		
MRN1	4	2.78835	Continuous Transition (Red Class)	0.09381		
RLM1	1	3.96469	Incomplete Transition (Yellow Class)	0.92604		
RLM1	2	3.8242	Incomplete Transition (Yellow Class)	0.84133		
RLM1	3	3.59836	Incomplete Transition (Yellow Class)	0.97448		
RLM1	4	3.62472	Incomplete Transition (Yellow Class)	0.97394		
RAT1	1	N/A	No assembly at all concentrations (Blue Class)	1		
RAT1	2	N/A	No assembly at all concentrations (Blue Class)	1		
RAT1	3	3.69647	No assembly at all concentrations (Blue Class)	0.96488		
RAT1	4	N/A	No assembly at all concentrations (Blue Class)	1		
PDC2	1	N/A	No assembly at all concentrations (Blue Class)	0.99987		
PDC2	2	N/A	No assembly at all concentrations (Blue Class)	0.99962		
PDC2	3	N/A	No assembly at all concentrations (Blue Class)	1		
PDC2	4	N/A	No assembly at all concentrations (Blue Class)	1		
GLN3	1	2.67471	Continuous Transition (Red Class)	0.04627		
GLN3	2	2.65183	Continuous Transition (Red Class)	0.05413		
GLN3	3	2.61877	Continuous Transition (Red Class)	0.01888		
GLN3	4	2.68507	Continuous Transition (Red Class)	0.01034		
NEW1	1	2.31905	Discontinuous Transition (Green Class)	0.08652		
NEW1	2	2.18216	Discontinuous Transition (Green Class)	0.02195		
NEW1	3	2.21344	Discontinuous Transition (Green Class)	0.22294		
NEW1	4	2.26084	Discontinuous Transition (Green Class)	0.04384		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
--------	-----------	------------	--	------------------		
ASG1	1	N/A	Assembled at all concentrations (Black Class)	0.99982		
ASG1	2	N/A	No assembly at all concentrations (Blue Class)	1		
ASG1	3	N/A	No assembly at all concentrations (Blue Class)	1		
ASG1	4	N/A	No assembly at all concentrations (Blue Class)	1		
PCF11	1	3.44441	No assembly at all concentrations (Blue Class)	1		
PCF11	2	N/A	No assembly at all concentrations (Blue Class)	1		
PCF11	3	N/A	No assembly at all concentrations (Blue Class)	1		
PCF11	4	N/A	No assembly at all concentrations (Blue Class)	1		
PUF4	1	4.49992	No assembly at all concentrations (Blue Class)	1		
PUF4	2	N/A	No assembly at all concentrations (Blue Class)	0.94218		
PUF4	3	N/A	No assembly at all concentrations (Blue Class)	0.99755		
PUF4	4	N/A	No assembly at all concentrations (Blue Class)	1		
KSP1	1	2.98527	Incomplete Transition (Yellow Class)	0.51979		
KSP1	2	3.22157	Incomplete Transition (Yellow Class)	0.59687		
KSP1	3	2.92111	Discontinuous Transition (Green Class)	0.0548		
KSP1	4	3.08364	Incomplete Transition (Yellow Class)	0.70802		
YAK1	1	N/A	No assembly at all concentrations (Blue Class)	1		
YAK1	2	N/A	No assembly at all concentrations (Blue Class)	1		
YAK1	3	N/A	No assembly at all concentrations (Blue Class)	1		
YAK1	4	N/A	No assembly at all concentrations (Blue Class)	1		
PUB1	1	2.91398	Continuous Transition (Red Class)	0.05802		
PUB1	2	2.75553	Discontinuous Transition (Green Class)	0.14562		
PUB1	3	2.8276	Discontinuous Transition (Green Class)	0.06111		
PUB1	4	2.89928	Continuous Transition (Red Class)	0.01423		
GTS1	1	2.10756	Continuous Transition (Red Class)	0.22661		
GTS1	2	2.21239	Continuous Transition (Red Class)	0.14278		
GTS1	3	2.17367	Continuous Transition (Red Class)	0.04612		
GTS1	4	2.09999	Continuous Transition (Red Class)	0.13173		
MED2	1	N/A	No assembly at all concentrations (Blue Class)	1		
MED2	2	N/A	No assembly at all concentrations (Blue Class)	1		
MED2	3	N/A	No assembly at all concentrations (Blue Class)	1		
MED2	4	N/A	No assembly at all concentrations (Blue Class)	1		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
--------	-----------	-----------	---	------------------		
RIM4	1	3.12192	Incomplete Transition (Yellow Class)	0.64586		
RIM4	2	3.02762	Incomplete Transition (Yellow Class)	0.72864		
RIM4	3	2.9832	Incomplete Transition (Yellow Class)	0.58787		
RIM4	4	3.11439	Incomplete Transition (Yellow Class)	0.88375		
URE2	1	4.33175	Incomplete Transition (Yellow Class)	0.98621		
URE2	2	4.24693	Incomplete Transition (Yellow Class)	0.94034		
URE2	3	4.28272	Incomplete Transition (Yellow Class)	0.99414		
URE2	4	4.21487	Incomplete Transition (Yellow Class)	0.99087		
GAL11	1	N/A	No assembly at all concentrations (Blue Class)	0.99988		
GAL11	2	N/A	No assembly at all concentrations (Blue Class)	0.9626		
GAL11	3	N/A	No assembly at all concentrations (Blue Class)	1		
GAL11	4	N/A	No assembly at all concentrations (Blue Class)	1		
JSN1	1	3.14041	Continuous Transition (Red Class)	0.00444		
JSN1	2	3.06694	Incomplete Transition (Yellow Class)	0.17727		
JSN1	3	3.10638	Incomplete Transition (Yellow Class)	0.26706		
JSN1	4	3.11342	Incomplete Transition (Yellow Class)	0.34124		
SLA2	1	N/A	Assembled at all concentrations (Black Class)	1		
SLA2	2	N/A	Incomplete Transition (Yellow Class)	0.02772		
SLA2	3	1.59391	Continuous Transition (Red Class)	0.06914		
SLA2	4	2.73825	No assembly at all concentrations (Blue Class)	1		
YLR177W	1	N/A	No assembly at all concentrations (Blue Class)	1		
YLR177W	2	N/A	No assembly at all concentrations (Blue Class)	0.80456		
YLR177W	3	N/A	No assembly at all concentrations (Blue Class)	0.99989		
YLR177W	4	N/A	No assembly at all concentrations (Blue Class)	1		
WWM1	1	N/A	No assembly at all concentrations (Blue Class)	1		
WWM1	2	N/A	No assembly at all concentrations (Blue Class)	0.924		
WWM1	3	N/A	No assembly at all concentrations (Blue Class)	1		
WWM1	4	N/A	No assembly at all concentrations (Blue Class)	1		
SIN3	1	3.96607	No assembly at all concentrations (Blue Class)	1		
SIN3	2	N/A	No assembly at all concentrations (Blue Class)	1		
SIN3	3	N/A	No assembly at all concentrations (Blue Class)	0.62964		
SIN3	4	N/A	No assembly at all concentrations (Blue Class)	0.98578		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
--------	-----------	-----------	---	------------------		
CAF40	1	N/A	No assembly at all concentrations (Blue Class)	1		
CAF40	2	N/A	No assembly at all concentrations (Blue Class)	1		
CAF40	3	N/A	No assembly at all concentrations (Blue Class)	0.99927		
CAF40	4	N/A	No assembly at all concentrations (Blue Class)	1		
LSM4	1	2.88497	Continuous Transition (Red Class)	0.16361		
LSM4	2	2.80195	Continuous Transition (Red Class)	0.08323		
LSM4	3	2.87527	Continuous Transition (Red Class)	0.13479		
LSM4	4	2.92284	Continuous Transition (Red Class)	0.15809		
HRR25	1	N/A	No assembly at all concentrations (Blue Class)	1		
HRR25	2	N/A	No assembly at all concentrations (Blue Class)	1		
HRR25	3	N/A	No assembly at all concentrations (Blue Class)	1		
HRR25	4	N/A	No assembly at all concentrations (Blue Class)	1		
NRP1	1	2.7444	Discontinuous Transition (Green Class)	0.26692		
NRP1	2	2.65568	Discontinuous Transition (Green Class)	0.35043		
NRP1	3	2.60782	Discontinuous Transition (Green Class)	0.54497		
NRP1	4	2.69772	Discontinuous Transition (Green Class)	0.23052		
YBR016W	1	4.31839	Incomplete Transition (Yellow Class)	0.97747		
YBR016W	2	4.35962	Incomplete Transition (Yellow Class)	0.88839		
YBR016W	3	4.52583	Incomplete Transition (Yellow Class)	0.97685		
YBR016W	4	4.78696	Incomplete Transition (Yellow Class)	0.60306		
CCR4	1	N/A	No assembly at all concentrations (Blue Class)	0.81097		
CCR4	2	N/A	No assembly at all concentrations (Blue Class)	0.28548		
CCR4	3	N/A	No assembly at all concentrations (Blue Class)	0.95129		
CCR4	4	N/A	No assembly at all concentrations (Blue Class)	0.99248		
GPR1	1	4.15015	Incomplete Transition (Yellow Class)	0.76452		
GPR1	2	4.04825	Incomplete Transition (Yellow Class)	0.78389		
GPR1	3	3.99001	Continuous Transition (Red Class)	0.16833		
GPR1	4	4.08861	Incomplete Transition (Yellow Class)	0.76349		
ASM4	1	2.66528	Discontinuous Transition (Green Class)	0.43844		
ASM4	2	2.66779	Discontinuous Transition (Green Class)	0.32		
ASM4	3	2.56876	Discontinuous Transition (Green Class)	0.12556		
ASM4	4	2.69419	Discontinuous Transition (Green Class)	0.34481		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
-------	-----------	------------	---	------------------		
YCK1	1	N/A	No assembly at all concentrations (Blue Class)	0.99813		
YCK1	2	4.14573	No assembly at all concentrations (Blue Class)	1		
YCK1	3	N/A	No assembly at all concentrations (Blue Class)	1		
YCK1	4	5.56258	No assembly at all concentrations (Blue Class)	1		
CLA4	1	N/A	No assembly at all concentrations (Blue Class)	1		
CLA4	2	N/A	No assembly at all concentrations (Blue Class)	1		
CLA4	3	N/A	No assembly at all concentrations (Blue Class)	1		
CLA4	4	N/A	No assembly at all concentrations (Blue Class)	0.98662		
TIF4632	1	3.4569	No assembly at all concentrations (Blue Class)	1		
TIF4632	2	3.62353	No assembly at all concentrations (Blue Class)	1		
TIF4632	3	5.41175	No assembly at all concentrations (Blue Class)	1		
TIF4632	4	3.99629	No assembly at all concentrations (Blue Class)	1		
MCA1	1	3.49122	Continuous Transition (Red Class)	0.56947		
MCA1	2	3.24386	Continuous Transition (Red Class)	0.46906		
MCA1	3	3.6103	Continuous Transition (Red Class)	0.33321		
MCA1	4	3.43038	Continuous Transition (Red Class)	0.65242		
POP2	1	N/A	No assembly at all concentrations (Blue Class)	0.98089		
POP2	2	N/A	No assembly at all concentrations (Blue Class)	1		
POP2	3	3.69219	No assembly at all concentrations (Blue Class)	1		
POP2	4	N/A	No assembly at all concentrations (Blue Class)	1		
ENT2	1	4.03786	Incomplete Transition (Yellow Class)	0.98559		
ENT2	2	3.90737	Incomplete Transition (Yellow Class)	0.94646		
ENT2	3	3.92842	Incomplete Transition (Yellow Class)	0.98292		
ENT2	4	4.31815	Incomplete Transition (Yellow Class)	0.75218		
ENT1	1	3.72344	Incomplete Transition (Yellow Class)	0.49747		
ENT1	2	3.65129	Incomplete Transition (Yellow Class)	0.41638		
ENT1	3	3.81596	Incomplete Transition (Yellow Class)	0.71046		
ENT1	4	3.88488	Incomplete Transition (Yellow Class)	0.78601		
PUF2	1	N/A	Assembled at all concentrations (Black Class)	0.81628		
PUF2	2	1.02905	Assembled at all concentrations (Black Class)	1		
PUF2	3	1.73897	Continuous Transition (Red Class)	0.29297		
PUF2	4	N/A	Assembled at all concentrations (Black Class)	1		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
-------	-----------	------------	---	------------------		
NAB2	1	N/A	No assembly at all concentrations (Blue Class)	0.49827		
NAB2	2	N/A	No assembly at all concentrations (Blue Class)	1		
NAB2	3	N/A	No assembly at all concentrations (Blue Class)	0.9986		
NAB2	4	N/A	No assembly at all concentrations (Blue Class)	1		
SKG3	1	N/A	No assembly at all concentrations (Blue Class)	1		
SKG3	2	N/A	No assembly at all concentrations (Blue Class)	1		
SKG3	3	N/A	No assembly at all concentrations (Blue Class)	1		
SKG3	4	N/A	No assembly at all concentrations (Blue Class)	1		
UPC2	1	3.63474	Incomplete Transition (Yellow Class)	0.98373		
UPC2	2	3.52171	Incomplete Transition (Yellow Class)	0.98987		
UPC2	3	2.7294	Continuous Transition (Red Class)	0.01122		
UPC2	4	2.69679	Discontinuous Transition (Green Class)	0.05187		
EPO1	1	N/A	No assembly at all concentrations (Blue Class)	1		
EPO1	2	N/A	No assembly at all concentrations (Blue Class)	0.99271		
EPO1	3	N/A	No assembly at all concentrations (Blue Class)	1		
EPO1	4	N/A	No assembly at all concentrations (Blue Class)	1		
SSD1	1	3.78296	Incomplete Transition (Yellow Class)	0.99272		
SSD1	2	3.78232	No assembly at all concentrations (Blue Class)	1		
SSD1	3	4.13132	No assembly at all concentrations (Blue Class)	1		
SSD1	4	3.98893	No assembly at all concentrations (Blue Class)	1		
NGR1	1	2.75225	Discontinuous Transition (Green Class)	0.09884		
NGR1	2	2.63139	Continuous Transition (Red Class)	0.04355		
NGR1	3	2.58948	Discontinuous Transition (Green Class)	0.13361		
NGR1	4	2.74044	Discontinuous Transition (Green Class)	0.079		
PGD1	1	3.6516	Incomplete Transition (Yellow Class)	0.94968		
PGD1	2	3.6636	Incomplete Transition (Yellow Class)	0.94764		
PGD1	3	3.72017	Incomplete Transition (Yellow Class)	0.97784		
PGD1	4	3.70865	Incomplete Transition (Yellow Class)	0.96308		
SLM1	1	N/A	No assembly at all concentrations (Blue Class)	0.98933		
SLM1	2	N/A	No assembly at all concentrations (Blue Class)	0.92972		
SLM1	3	N/A	No assembly at all concentrations (Blue Class)	0.75374		
SLM1	4	N/A	No assembly at all concentrations (Blue Class)	0.99123		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
-----------	-----------	------------	---	------------------		
SDD4	1	3.16676	Continuous Transition (Red Class)	0.11301		
SDD4	2	3.08165	Continuous Transition (Red Class)	0.0967		
SDD4	3	3.22497	Continuous Transition (Red Class)	0.23309		
SDD4	4	3.22042	Discontinuous Transition (Green Class)	0.01282		
AKL1	1	N/A	No assembly at all concentrations (Blue Class)	0.99983		
AKL1	2	N/A	No assembly at all concentrations (Blue Class)	1		
AKL1	3	N/A	No assembly at all concentrations (Blue Class)	1		
AKL1	4	N/A	No assembly at all concentrations (Blue Class)	0.85309		
RBS1	1	1.82975	Continuous Transition (Red Class)	0.17792		
RBS1	2	2.05539	Continuous Transition (Red Class)	0.72572		
RBS1	3	2.03963	Continuous Transition (Red Class)	0.96385		
RBS1	4	1.91689	Continuous Transition (Red Class)	0.90912		
MCM1	1	5.30619	No assembly at all concentrations (Blue Class)	1		
MCM1	2	N/A	No assembly at all concentrations (Blue Class)	1		
MCM1	3	N/A	No assembly at all concentrations (Blue Class)	0.65426		
MCM1	4	N/A	No assembly at all concentrations (Blue Class)	0.74376		
NSP1	1	2.9803	Discontinuous Transition (Green Class)	0.7901		
NSP1	2	2.94259	Discontinuous Transition (Green Class)	0.72427		
NSP1	3	2.97746	Discontinuous Transition (Green Class)	0.74131		
NSP1	4	2.9443	Discontinuous Transition (Green Class)	0.74389		
VTS1	1	N/A	No assembly at all concentrations (Blue Class)	0.75444		
VTS1	2	N/A	No assembly at all concentrations (Blue Class)	0.74521		
VTS1	3	N/A	No assembly at all concentrations (Blue Class)	0.39748		
VTS1	4	5.27819	No assembly at all concentrations (Blue Class)	1		
YBL081W	1	2.35525	Discontinuous Transition (Green Class)	0.12068		
YBL081W	2	2.2571	Discontinuous Transition (Green Class)	0.19335		
YBL081W	3	2.29278	Discontinuous Transition (Green Class)	0.44009		
YBL081W	4	2.24925	Discontinuous Transition (Green Class)	0.26212		
NUP42	1	N/A	No assembly at all concentrations (Blue Class)	0.97464		
NUP42	2	4.37295	No assembly at all concentrations (Blue Class)	1		
NUP42	3	4.30003	No assembly at all concentrations (Blue Class)	1		
NUP42	4	N/A	No assembly at all concentrations (Blue Class)	0.33485		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
------	-----------	------------	---------------	-----------------		
SNF2	1	N/A	No assembly at all concentrations (Blue Class)	0.99699		
SNF2	2	N/A	No assembly at all concentrations (Blue Class)	1		
SNF2	3	N/A	No assembly at all concentrations (Blue Class)	1		
SNF2	4	N/A	No assembly at all concentrations (Blue Class)	1		
HRP1	1	3.03281	Continuous Transition (Red Class)	0.23741		
HRP1	2	2.93458	Continuous Transition (Red Class)	0.04084		
HRP1	3	2.95435	Continuous Transition (Red Class)	0.22321		
HRP1	4	3.02647	Continuous Transition (Red Class)	0.12591		
SGF73	1	N/A	No assembly at all concentrations (Blue Class)	0.98477		
SGF73	2	4.64626	No assembly at all concentrations (Blue Class)	1		
SGF73	3	4.32142	No assembly at all concentrations (Blue Class)	1		
SGF73	4	N/A	No assembly at all concentrations (Blue Class)	0.9778		
NAB3	1	1.13884	Assembled at all concentrations (Black Class)	1		
NAB3	2	1.19238	Assembled at all concentrations (Black Class)	1		
NAB3	3	N/A	Assembled at all concentrations (Black Class)	0.70136		
NAB3	4	1.07915	Assembled at all concentrations (Black Class)	1		
PAN1	1	2.70573	Continuous Transition (Red Class)	0.00028		
PAN1	2	2.72818	Discontinuous Transition (Green Class)	0.05652		
PAN1	3	2.64859	Discontinuous Transition (Green Class)	0.11667		
PAN1	4	2.74148	Discontinuous Transition (Green Class)	0.00485		
CYC8	1	3.08171	Discontinuous Transition (Green Class)	0.28287		
CYC8	2	3.00557	Discontinuous Transition (Green Class)	0.28361		
CYC8	3	2.96179	Discontinuous Transition (Green Class)	0.42775		
CYC8	4	3.18428	Discontinuous Transition (Green Class)	0.34745		
NUP49	1	3.35552	Incomplete Transition (Yellow Class)	0.60793		
NUP49	2	3.32693	Incomplete Transition (Yellow Class)	0.42966		
NUP49	3	3.36907	Incomplete Transition (Yellow Class)	0.49218		
NUP49	4	3.33511	Incomplete Transition (Yellow Class)	0.48106		
CBK1	1	3.61579	Incomplete Transition (Yellow Class)	0.93827		
CBK1	2	3.94991	No assembly at all concentrations (Blue Class)	1		
CBK1	3	5.39718	No assembly at all concentrations (Blue Class)	1		
CBK1	4	4.24137	No assembly at all concentrations (Blue Class)	1		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
-------	-----------	-----------	---	------------------		
PSP1	1	2.7653	Discontinuous Transition (Green Class)	0.72513		
PSP1	2	2.98055	Continuous Transition (Red Class)	0.00252		
PSP1	3	2.67973	Discontinuous Transition (Green Class)	0.69536		
PSP1	4	2.72202	Discontinuous Transition (Green Class)	0.67023		
AZF1	1	3.80441	Incomplete Transition (Yellow Class)	0.99503		
AZF1	2	3.74481	Incomplete Transition (Yellow Class)	0.99488		
AZF1	3	3.81324	No assembly at all concentrations (Blue Class)	1		
AZF1	4	3.80368	No assembly at all concentrations (Blue Class)	1		
YAP1801	1	2.2158	Discontinuous Transition (Green Class)	0.19507		
YAP1801	2	1.98637	Discontinuous Transition (Green Class)	0.09256		
YAP1801	3	3.63809	No assembly at all concentrations (Blue Class)	1		
YAP1801	4	1.80598	Discontinuous Transition (Green Class)	0.24605		
NUP57	1	3.94703	No assembly at all concentrations (Blue Class)	1		
NUP57	2	3.70453	Incomplete Transition (Yellow Class)	0.99302		
NUP57	3	4.58337	No assembly at all concentrations (Blue Class)	1		
NUP57	4	3.81348	Incomplete Transition (Yellow Class)	0.9975		
SNF5	1	N/A	No assembly at all concentrations (Blue Class)	1		
SNF5	2	N/A	No assembly at all concentrations (Blue Class)	1		
SNF5	3	N/A	No assembly at all concentrations (Blue Class)	0.95201		
SNF5	4	N/A	No assembly at all concentrations (Blue Class)	1		
SOK2	1	2.46392	Continuous Transition (Red Class)	0.19211		
SOK2	2	2.5083	Continuous Transition (Red Class)	0.1593		
SOK2	3	2.48824	Continuous Transition (Red Class)	0.08865		
SOK2	4	2.4494	Continuous Transition (Red Class)	0.15341		
AIM3	1	2.90383	Discontinuous Transition (Green Class)	0.18089		
AIM3	2	2.60868	Discontinuous Transition (Green Class)	0.28213		
AIM3	3	2.82519	Discontinuous Transition (Green Class)	0.28513		
AIM3	4	2.83215	Discontinuous Transition (Green Class)	0.16509		
SCD5	1	2.65369	Continuous Transition (Red Class)	0.02031		
SCD5	2	2.72875	Continuous Transition (Red Class)	0.09531		
SCD5	3	2.65141	Continuous Transition (Red Class)	0.05025		
SCD5	4	2.68091	Continuous Transition (Red Class)	0.15817		
Gene	Replicate	log10(c50)	Classification	Confidence-Score		
---------	-----------	------------	---------------------------------------	------------------		
DEF1	1	2.80259	Continuous Transition (Red Class)	0.26867		
DEF1	2	2.36541	Continuous Transition (Red Class)	0.46392		
DEF1	3	2.28945	Continuous Transition (Red Class)	0.3407		
DEF1	4	2.31908	Continuous Transition (Red Class)	0.4924		
SWI1	1	3.26805	Discontinuous Transition (Green Class)	0.12983		
SWI1	2	3.15395	Discontinuous Transition (Green Class)	0.28509		
SWI1	3	3.16916	Discontinuous Transition (Green Class)	0.577		
SWI1	4	3.27442	Discontinuous Transition (Green Class)	0.28426		
NUP116	1	1	Assembled at all concentrations (Black Class)	1		
NUP116	2	1.89005	Discontinuous Transition (Green Class)	0.40577		
NUP116	3	1.90558	Discontinuous Transition (Green Class)	0.54484		
NUP116	4	1.58415	Higher Order State (Magenta Class)	0.41807		
NUP100	1	N/A	Assembled at all concentrations (Black Class)	0.43223		
NUP100	2	1.42113	Assembled at all concentrations (Black Class)	1		
NUP100	3	1.46024	Assembled at all concentrations (Black Class)	1		
NUP100	4	N/A	Assembled at all concentrations (Black Class)	0.33569		
Table S3: Description of the titles in Figure S2 that are used to explain how each synthetic dataset was generated. Further descriptions of how the datasets were generated are described in the main text and the Materials and Methods section. Noise Profile 1 implies low noise, Noise Profile 2 implies medium noise, and Noise Profile 3 implies high noise.						
Column Number	Column Value	Description				
---------------	--------------	--				
1	X	Data generated using a sigmoidal function.				
1	Y	Data generated using a step function.				
1	Z	3-state data generated with overlapping regions.				
2 - 3	NN	Location of discontinuity in log10(c50) concentration.				
4	L	Low concentration type (points added below the saturation concentration)				
4	H	High concentration type (points added above the saturation concentration)				
4	U	Uniform concentration type (points added uniformly)				
4	V	Uniform Sparse concentration type (fewer points added uniformly)				
5	A	Noise Profile 1				
5	B	Noise Profile 2				
5	C	Noise Profile 3				
6	1	Replicate 1				
6	2	Replicate 2				
6	3	Replicate 3				
Table S4: Plasmid numbers, cell counts, and amino acid sequences of each of the cPrDs studied.