Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a Key Regulator of Cell Protrusions

Highlights
- Local translation is a key regulator of protein localization to cell protrusions
- Localization of mRNAs alone, however, does not determine local protein expression
- Specific UTR elements and RBPs are associated with local translation in protrusions
- Inhibition of local translation destabilizes protrusions

Authors
Faraz K. Mardakheh, Angela Paul, Sandra Kümper, ..., Afshan Mccarthy, Yinyin Yuan, Christopher J. Marshall

Correspondence
mardakheh@icr.ac.uk

In Brief
Establishment of front-back cell polarity is the first step in any form of active cell migration. Mardakheh et al. show that in mesenchymal-like cells, front-back asymmetry at the proteome level is maintained by differential local synthesis of cellular proteins.
Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a Key Regulator of Cell Protrusions

Faraz K. Mardakheh,1,2 Angela Paul,1 Sandra Kümpér,1 Amine Sadok,1 Hugh Paterson,1 Afshan Mccarthy,1 Yinyin Yuan,2 and Christopher J. Marshall1,3
1Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
2Division of Molecular Pathology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
3Deceased
*Correspondence: mardakheh@icr.ac.uk
http://dx.doi.org/10.1016/j.devcel.2015.10.005
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

SUMMARY
Polarization of cells into a protrusive front and a retraction cell body is the hallmark of mesenchymal-like cell migration. Many mRNAs are localized to protrusions, but it is unclear to what degree mRNA localization contributes toward protrusion formation. We performed global quantitative analysis of the distributions of mRNAs, proteins, and translation rates between protrusions and the cell body by RNA sequencing (RNA-seq) and quantitative proteomics. Our results reveal local translation as a key determinant of protein localization to protrusions. Accordingly, inhibition of local translation destabilizes protrusions and inhibits mesenchymal-like morphology. Interestingly, many mRNAs localized to protrusions are translationally repressed. Specific cis-regulatory elements within mRNA UTRs define whether mRNAs are locally translated or repressed. Finally, RNAi screening of RNA-binding proteins (RBPs) enriched in protrusions revealed trans-regulators of localized translation that are functionally important for protrusions. We propose that by deciphering the localized mRNA UTR code, these proteins regulate protrusion stability and mesenchymal-like morphology.

INTRODUCTION
A pre-requisite of cell migration is the establishment of front-back cell polarity (Etienne-Manneville, 2008). In mesenchymal-like cells, the front is protrusive, characterized by a network of newly generated actin filaments, while the back is retractive, pulling up the body of the cell toward the direction of migration (Sahai and Marshall, 2003). This asymmetry in morphology and function between the front and back has been shown to be associated with differential localization of proteins to protrusions and the cell body, many of which are associated with actin cytoskeleton (Small and Resch, 2005). Actin is polymerized at the leading edge by actin nucleating factors such as the ARP2/3 complex and formins. Other actin binding proteins, such as capping, bundling, and severing proteins, further regulate actin cytoskeleton organization by affecting the dynamics of existing filaments. In the cell body, myosin II association with actin filaments generates contractile force, which is crucial for adhesion maturation and tail retraction (Ridley, 2011). The signaling that initiates protrusions is relayed by a wide variety of signaling molecules. These include lipid second messengers such as phosphatidylinositol-phosphates, as well as members of the Rho family of small GTPases, in particular RHO, RAC, and CDC42, which trigger and coordinate front-back polarization and spatial organization of the actin cytoskeleton (Cain and Ridley, 2009; Ridley, 2011).

While much is known about the mechanisms that trigger protrusion formation, little is known about how front-back cell asymmetry is maintained in migrating cells. In addition to differential distribution of proteins, mRNAs are also differentially distributed between the front and back of the cells (Condeelis and Singer, 2005; Mili et al., 2008; Mingle et al., 2005). Cellular mRNAs are known to be transported via microtubule or actin filaments (St Johnston, 2005). Once localized, mRNAs could be subject to local translation (Halstead et al., 2015; Hüttemaier et al., 2005; Yasuda et al., 2013), which would result in increased local concentration of their corresponding proteins. Importantly, the mechanisms that regulate mRNA targeting and translation in protrusions are poorly defined. Moreover, to what extent mRNA localization and local translation define front-back asymmetry and protrusion formation remains to be determined.

Here, we assessed how mRNA localization and local translation contribute toward front-back asymmetry at the proteome level. We used a proteomics approach, quantifying the distribution of cellular proteins between protrusions and the cell body by stable isotope labeling of amino acids in culture (SILAC) (Ong et al., 2002). Using a pulse labeling variation of the SILAC strategy known as pulsed-SILAC (Selbach et al., 2008), we also determined the relative translation rates of proteins between protrusions and the cell body. Finally, we quantified the relative distribution of mRNAs between protrusions and the cell body by RNA sequencing (RNA-seq). Comparison of relative protein distributions with mRNA distributions showed little correlation between the two, suggesting that mRNA localization alone does not determine protein localization to protrusions. However, relative translation rates between protrusions and the cell body exhibited a significant correlation with protein distributions,
suggesting that localized translation is a significant determinant of front-back cell asymmetry. Accordingly, we show that local protein translation in protrusion is crucial for stabilizing protrusions and maintaining a mesenchymal-like polarized morphology. Analysis of mRNA UTR elements revealed several conserved motifs that were enriched in locally translated mRNAs, suggesting that their absence or presence can control local translation rates. To reveal trans-regulators of local translation that were functionally important for protrusions, we screened RBP categories enriched in protrusions by RNAi. We found several RBPs that significantly regulated protrusions and mesenchymal-like migration. These included many known but also a number of novel regulators of mRNA localization and local translation including the exosome core complex (Lykke-Andersen et al., 2009). We demonstrate that the exosome core, but not its catalytic subunits, is highly enriched in protrusions and is essential for protrusion stability but not initiation. Our work establishes local translation as a key regulator of asymmetric distribution of the proteome between protrusions and the cell body, describes cis-regulatory UTR motifs that are associated with localized translation in protrusions, and highlights trans-acting RBPs that are involved in regulation of protrusions and mesenchymal-like migration.

RESULTS

Local Translation Is a Key Determinant of Protein Localization to Protrusions

To study cell protrusions, we used a micro-porous filter-based method to separate protrusions from cell bodies of highly protrusive MDA-MB231 breast cancer cells (Shankar et al., 2010; Wang et al., 2007). In this method, cells are seeded on top of collagen-I-coated 3-µm transwell filters to enable protrusions to form but to prevent the cell bodies from passing through due to the size of the pores, resulting in separation of protrusions and the cell bodies on opposite sides of the filter (Figures 1A and 1B). As expected (Sanz-Moreno et al., 2008), these protrusions are dependent on Rho-GTPases RAC1 and CDC42 (Figure 1C) and are enriched in known protein markers of protrusive fronts such as VASP (Rottner et al., 1999), PAX (Nobes and Hall, 1995), ZYX (Crawford et al., 1992), as well as F-actin (Figures 1D and 1E). In terms of spatial and temporal dynamics, protrusion formation through transwell pores seems to be a good mimic of protrusion formation in 3D matrices, where cells have to similarly protrude through matrix pores and holes. In fact, the transwell pore size of 3 µm is comparable to the average pore size of pepsinized collagen-I 3D matrices (Wolf et al., 2009), and average diameters of protrusions extended through these transwell pores (∼3 µm wide, ~10–15 µm long, dictated by pore size diameters) are comparable to the diameters of protrusions in 3D collagen-I (Figures 1F and 1G). In addition, the temporal dynamics of protrusions through extended transwell pores are similar to those extended in 3D collagen-I, with protrusions remaining stable for various lengths of time, from minutes to several hours, with a median length of over 2 hr (Figures 1H and 1I; Movies S1 and S2).

Using the transwell-based fractionation method, we first determined the distribution of cellular proteins between protrusions and the cell body by quantitative proteomics (Figure 2A), revealing the relative distribution of 3,334 proteins from two reciprocally labeled SILAC experiments (Data S1A). Overall, the proteome exhibited a normal-like distribution between protrusions and the cell body, with different proteins being enriched or depleted in protrusions to various levels (Figure 2B). Annotation enrichment analysis (Cox and Mann, 2012) revealed multiple protein categories that were significantly enriched or depleted in protrusions (Data S1B). As expected, the majority of the protrusion-enriched proteins belonged to known actin-associated categories (Data S1B). These included upstream regulators of protrusion formation, actin polymerizing factors such as the ARP2/3 complex and its upstream regulator WAVE2, as well as other actin binding and adhesion molecules such as VASP, ENAH, and PXN (Data S1B). On the other hand, the majority of cell body-enriched proteins were those of nucleus, ER, mitochondria, and other organelles (Data S1B). Interestingly, several categories of RNA-binding proteins (RBPs), translation factors, and protein folding chaperones were enriched in protrusions (Data S1B), indicating that a significant level of localized protein synthesis may occur in protrusions.

In order to determine to what level mRNA localization contributes toward protein localization in protrusions, we quantified the distribution of cellular mRNAs between protrusions and the cell body by RNA-seq (Figure S1A; Data S1C). Similar to the proteome distribution, RNA-seq revealed a normal-like distribution, with different mRNAs being enriched or depleted to different degrees between protrusions and the cell body (Figure 2C). Surprisingly, no correlation was detected between mRNA and protein distributions (Figure 2D), suggesting that mRNA localization alone is not a significant predictor of protein localization to protrusions. As a validation of our method, we compared our RNA-seq dataset against a previously published microarray-based protrusion/cell body mRNA localization study in mouse NIH/3T3 fibroblasts (Mili et al., 2008). There was a very strong overlap between the two datasets (Figure S1B), suggesting that mRNA localization at the global level is likely to be conserved across species and cell types, despite a lack of correlation with protein distributions.

Next, we assessed whether local translation contributes toward protein localization to protrusions. We quantified relative translation rates of proteins between protrusions and the cell body during a 2 hr transwell protrusion formation assay by utilizing a variation of the SILAC method called pulsed SILAC (pSILAC) (Selbach et al., 2008) (Figure 2E). We determined the relative translation rates of 1,150 proteins between protrusions and the cell body (Data S1D). The lower coverage compared to the proteome analysis was expected, as the medium and heavy peptides that are used for pSILAC quantification are significantly low in abundance after a short 2 hr labeling. Nevertheless, widespread localized translation was evident, with many cellular proteins displaying higher translation in protrusions than the cell body and vice-versa (Figure 2F). Moreover, we observed a significant correlation between relative translation rate and protein localization (Figure 2G). Pearson’s correlation coefficient between protein and translation rate distributions was 0.30. The actual correlation is likely to be even higher, considering that the Pearson’s correlation coefficients between the two SILAC and pSILAC replicates were 0.72 and 0.66, respectively, presumably due to the inherent errors of the mass
Figure 1. Filter-Based Analysis of Protrusions in MDA-MB231 Cells

(A) Confocal 3D rendering of MDA-MB231 cells forming protrusions through 3-μm transwell filters. Cells were stained with CellTracker-CMFDA (green) 24 hr prior to seeding. The collagen coated filter was stained prior to seeding by CellTrace Far Red DDAO-SE (blue). White arrow, cell body; red arrow, protrusions. Axes scales are in μm.

(B) Transwell separated protrusions are actin-rich, but lack a nucleus. MDA-MB231 cells protruding through 3-μm transwell filters were fixed and stained with phalloidin-Alexa Fluor-488 (green) and Hoechst (red). Confocal images were taken from the top (right image) and bottom (left image) of the filter. The filter was visualized by transmitted light (blue). Scale bar, 10 μm.

(C) Formation of protrusions is dependent on RAC1 and CDC42. Control, RAC1, or CDC42 siRNA transfected MDA-MB231 mKate-CAAX cells (red) were seeded on collagen-coated 3-μm transwell filters and time-lapsed as they formed protrusions through the pores. Confocal images were taken from the bottom of the filter. Collagen coated filters were stained by CellTrace Far Red DDAO-SE (blue) prior to seeding. Scale bar, 10 μm.

(D) Protrusions formed through transwell filters are enriched in VASP, PXN, ZYX, and F-actin. Cross-section side views of confocal 3D renderings of MDA-MB231 cells protruding through 3-μm transwell filters. Cells were fixed and immunostained with antibodies against indicated markers (green), or phalloidin for F-actin staining (red). DAPI was used for nuclear staining (blue). Dashed line marks the position of the filter. Protrusions are marked as (P) and the cell-bodies are marked as (B). Scale bar, 10 μm.

(E) Quantification of the protrusion (P)/cell body (B) fluorescent intensities for indicated markers from (D). At least three independent tiled scans, each formed from nine fields of view, were used. All error bars are SD.

(F) Protrusion diameters of MDA-MB231 cells in 3D pepsinized collagen-I are comparable to transwell protrusion diameters. MDA-MB231 mKate-CAAX cells (red) were seeded on 3D collagen-I gels and imaged 2–4 hr after seeding by confocal microscopy. Scale bar, 10 μm.

(G) Protrusion width and length measurements from 92 cells (as in F) are displayed as histograms. A total of 172 individual protrusions were measured. Average protrusion width in 3D collagen-I is 3.1 μm (red line). Average protrusion length in 3D collagen-I is 16.5 μm (red line).

(H) Transwell protrusions are stable for a variety of time-lengths, with a median stability of 2 hr and 5 min. The stability of protrusions was assessed from four time-lapse movies of protrusion formation in 3D collagen-I (see also Movie S1). A total of 136 protrusions from 85 cells were timed over a 5-hr period, and the results are displayed as a histogram. Red line marks the median stability (125 min).

(I) 3D protrusions are stable for a variety of time-lengths, with a median stability of 2 hr and 42 min. The stability of protrusions was assessed from four time-lapse movies of protrusion formation in 3D collagen-I (see also Movie S2). A total of 200 protrusions from 99 cells were timed over a 10-hr period. The results are displayed as a histogram. Red line marks the median stability (125 min).
spectrometry-based measurements (Figures 2B and 2F). These results demonstrate that localized translation is a key determinant of a significant degree of protein localization to protrusions.

Ribosomes and RNA-Binding Proteins Are Not Locally Translated but Are Transported to Protrusions

We next investigated if the contribution of local translation toward protein localization was uniform across all protein categories or whether certain categories of proteins were more reliant on local translation than others for their localization. We performed a 2D annotation enrichment analysis (Cox and Mann, 2012) to determine which categories of proteins show a positive correlation between their protein enrichment levels and their relative translation rates as opposed to those that exhibit a negative correlation (Data S1E). All actin-associated protrusion-enriched categories showed a strong positive correlation, having both high protrusion protein levels and high protrusion translation levels (Figure 2H). These categories included ARP2/3 complex subunits, adhesion-related proteins, ezrin, filamins, alpha-actinin, and other actin-binding protrusion proteins such as actin capping and LIM domain proteins (Data S1E). Most organelle-associated protein categories depleted in protrusions also showed a positive correlation, exhibiting both low protrusion protein and low protrusion translation levels (Figure 2H). Collectively, these results suggest that the localization of these protein categories is likely to be determined by their localized translation, either in protrusions or at the cell body. In contrast, RNA-binding and ribosomal protein categories exhibited a negative correlation, having significantly lower protrusion translation rates compared to their protrusion protein levels (Figure 2H). In fact, removal of ribosomal and RNA-binding proteins from our datasets resulted in a significant increase in the overall correlation from 0.30 to 0.47. CC, Pearson’s correlation coefficient. P value of the correlation is displayed on the graph.

Local Translation Is Needed for Protrusion Stability

Our pSILAC data suggest a significant role for local translation in regulation of the asymmetry between protrusions and the cell body at the proteome level. Thus, we predicted that inhibition of local translation in protrusion should inhibit protrusions. We first confirmed the occurrence of localized translation in protrusions by visualizing nascent protein synthesis in protrusion and cell body fractions, using puromycylation tagging of newly synthesized proteins (Schmidt et al., 2009). Puromycylation analysis of protrusion and cell body fractions confirmed that protein translation was widespread in protrusions, with overall levels comparable to that of the cell body (Figure 3A). High levels of translation in protrusions could also be revealed by immunofluorescence staining of transwell protruding cells using anti-puromycin staining following puromycylation (Figure S2A).

Next, we tested whether protein translation was needed for protrusion formation. Treatment of MDA-MB231 cells with cycloheximide-abrogated protein translation (Figures S2A and S2B). Temporal analysis of protrusion formation revealed that MDA-MB231 cells still initiated protrusions in presence of cycloheximide, but these protrusions were unstable and retracted back (Figures 3B and 3C; Movie S3), suggesting that translation acts to stabilize protrusions rather than to initiate them. Cycloheximide treatment also destabilized protrusions in a 3D collagen-I matrix, resulting in conversion of the cells from a polarized mesenchymal-like morphology to round (Figures 3D and 3E; Movie S4). The rounding observed with cycloheximide treatment was not due to apoptosis (Figure S2C), suggesting that protein translation is needed for protrusion stability.

To show that it is localized translation that is needed for protrusion stability, we devised a strategy to inhibit translation specifically in protrusions. We used emetine, an irreversible inhibitor of RNAbinding and ribosomal proteins do not follow this rule, indicating that these proteins are likely to be transported to protrusions instead.
Figure 3. Local Translation Is Needed for Protrusion Stabilization

(A) Widespread translation occurs in protrusions. MDA-MB231 cells seeded on 3-μm transwells for 2 hr were treated with Puromycin (10 μg/ml) for 10 min to label nascent proteins. Equal amounts of isolated protrusion and cell body fractions were then resolved by SDS-PAGE and blotted for puromycinylation, VASP as a protrusion marker, H2AX as a cell body marker, and GAPDH as loading control.

(B) Protrusions initiate but retract in translation-inhibited cells. MDA-MB231 mKate-CAAX cells were seeded on 3-μm transwells in presence or absence of cycloheximide (10 μg/ml), fixed at indicated times, and analyzed by confocal microscopy. Images show protrusions at the bottom of transwell filters. Red, cell membranes; blue, filter. Scale bar, 50 μm. See also Movie S3.

(C) Quantification of protrusions from (B) (n = 4). The significant p values are stated above the bar graph. Error bars are SD.

(D) Translation inhibition switches cell morphology from protrusive to round in 3D. MDA-MB231 cells were seeded on top of 3D collagen-I gels for 4 hr and treated with cycloheximide (10 μg/ml) for indicated times before being fixed and imaged. Scale bar, 50 μm. See also Movie S4.

(E) Quantification of protrusive versus round morphologies from (D) (n = 3). Significant p values are stated above each bar graph. Error bars are SD.

(F) Local inhibition of translation in protrusions. MDA-MB231 cells were seeded on 3-μm transwells for 2 hr. Emetine (1 μg/ml) was then added to the bottom chamber for 5 min as in Figure S2F. Transwells were then washed and treated with Puromycin (10 μg/ml) for 10 min to label nascent proteins before lysis. Equal amounts of isolated protrusion and cell body fractions were then resolved by SDS-PAGE and blotted for puromycinylation, VASP (protrusion marker), H2AX (cell body marker), and GAPDH (loading control). The emetine treatment specifically inhibits translation in protrusions.
protein translation. Emetine concentrations as low as 1 μg/ml, and treatment times as short as 5 min could strongly abrogate translation in MDA-MB231 cells (Figures S2D and S2E). To locally inhibit translation in protrusions, a low dose of 1 μg/ml emetine was added to the bottom of transwell filters for 5 min. In order to limit emetine diffusion upward, a positive hydrostatic pressure was generated to push liquid down from the top to the bottom of the filter (Figures S2F and S2G), allowing inhibition of translation in protrusions while leaving the cell-bodies unaffected (Figures 3F and S2H). Importantly, this local inhibition of translation also destabilized protrusions (Figures 3G and 3H; Movie S5), demonstrating that local translation is critical for the stability of protrusions.

Specific 3’ UTR Motifs Are Associated with Local Translation

Despite the presence of mRNA in protrusions being a logical prerequisite for any localized translation, our results showed little correlation between mRNA and protein distributions. We hypothesized that this might be due to some protrusion-localized mRNAs remaining translationally inactive in protrusions. In support of this, mRNA and relative translation rate distributions between protrusions and the cell body negatively correlate with each other (Figure 4A). Furthermore, 2D annotation enrichment analysis revealed that most protein categories also show a negative correlation between their mRNA and translation distributions (Figure 4B), with actin cytoskeleton-associated protein categories having relatively high protrusion translation levels but low mRNA enrichments, while mitochondrial, as well as RNA-binding and ribosomal proteins have high relative protrusion mRNA levels but low relative translation in protrusions (Figure 4B; Data S2A). Collectively, these results suggest that for certain categories of mRNAs, targeting to protrusion may serve as a mechanism for translation repression, while for others, low-level mRNA presence in protrusion maybe enough to support robust local translation.

As mRNA enrichment in protrusions does not define local translation rates, we next set out to reveal the properties in mRNA sequence that may be governing whether an mRNA is locally translated or repressed in protrusions. Cis-regulatory elements in the 5’ and 3’ UTRs of mRNAs play a pivotal role in regulation of translation (Grillo et al., 2010). Thus, we investigated whether presence or absence of specific UTR motifs could be associated with differences local translation rates. We focused on 58 well-known 5’ and 3’ UTR regulatory elements (Grillo et al., 2010; Data S2B) and asked whether presence or absence of any of these elements was associated with local translation in protrusions. We found six elements that were significantly-associated with higher local translation in protrusions (Figure 4C). The best characterized of these elements is Musashi binding element (MBE), the binding element for MSI1, which can act as both activator and inhibitor of translation depending on the context (Charlesworth et al., 2006). Interestingly, MSI1 has recently been demonstrated to bind to and regulate ARP2/3 subunits mRNAs in neuronal cells (Hadziselimovic et al., 2014), a role in agreement with its involvement in protrusions. Existence of an association between specific UTR motifs and local translation rates suggests that such motifs are likely to be locally controlling translation in protrusions.

KH, PH, and Sm Domain-Containing RBPs Modulate Protrusions

As translation is mainly governed by different RBPs and translation factors that act upon an mRNA, RBPs that are localized to protrusions are likely to be crucial for local regulation of translation. Thus, to reveal RBPs that are functionally important for protrusions, we performed an RNAi screen for protrusion-enriched RBPs. Category enrichment analysis revealed three families of RBPs that were significantly enriched in protrusions (Data S1B). These were Sm, KH, and RNase PH domain-containing proteins (Figures 5A–5C). As enrichment of multiple structurally related proteins can be indicative of a conserved function, we focused on the members of these categories, depleting each protein by RNAi and assessing the ability of depleted cells to form stable protrusions through transwell filters. Out of a total of 38 RBPs screened, knockdown of 17 significantly impacted on protrusions (Figure 5D). Interestingly, while the majority of knockdowns inhibited protrusions, some enhanced them (Figure 5D), suggesting that different protrusion localized RBPs function in opposite manners to fine-tune protrusion dynamics.

To further validate the role of these RBPs in mesenchymal-like migration, we assessed the invasion of MDA-MB231 cells through a 3D collagen-I matrix, where they preferentially migrate as mesenchymal-like cells, following siRNA depletion. Strikingly, knockdown of 16 out of the 17 RBP hits significantly impaired the invasive potential of MDA-MB231 cells (Figure 5D), suggesting that most of these RBPs are likely to play a role in regulation of mesenchymal-like cell migration in 3D. Interestingly, RBP knockdown of both negative as well as positive regulators of protrusions had a negative impact on the invasive potential of the cells (Figure 5D), suggesting that a precise fine tuning of protrusion formation is crucial for optimal migration in 3D.

Several of the identified RBPs such as the fragile X mental retardation protein-1 (FMR1) and its two homologs (FXR1 and FXR2), zipcode-binding proteins (IGF2BP2 and IGF2BP3), heterogeneous nuclear ribonucleoprotein K (HNRPK), and small nuclear ribonucleoprotein core subunits (SNRPD1, SNRPD3, SNRPF, SNRPG), have been reported to regulate mRNA localization or local translation (Boudoukha et al., 2010; Comery et al., 1997; Gu et al., 2012; Liu et al., 2008; Nielsen et al., 2001; Schaeffer et al., 2012; Tanuchi et al., 2014; Vasudevan and Steitz, 2007; Zalfa et al., 2006; Zhang et al., 1995). Others such as vigilin (VGL), partner of NOB1 (PNO1), and ribosomal protein subunit-3 (RPS3), either associate with, or are part of the translation machinery itself (Kim et al., 2010; Kruse et al., 2003; Vanrobaeys et al., 2004). However, a number of the
identified proteins were not previously implicated in regulation of local translation, including three subunits of the exosome core complex (EXOSC7, EXOSC8, and EXOSC9), an RNA degrading complex involved in maturation, quality control, and turnover of many types of cellular RNA (Lykke-Andersen et al., 2009) (Figure 5D), suggesting that they are likely to be novel regulators of local translation in protrusions.

The Exosome Complex Is a Regulator of Cell Protrusions, Morphology, and Migration

To further expand on our results, we validated the role of the exosome core in protrusions, as a potential regulator of local translation and protrusion formation. The exosome core consists of nine subunits that assemble into a two-layered barrel-like structure, with the upper layer forming a cap of three subunits that sit on a ring of six RNase PH domain-containing subunits (Liu et al., 2006). Although only six subunits of the exosome core were initially included in our screen, we found all of the nine exosome core subunits to be present and more abundant in protrusions than the cell body, with eight out of nine showing at least 2-fold enrichment (Figure 6A). Surprisingly, RRP6 and DIS3, the two catalytic subunits of the exosome that were expressed in our cells, were significantly depleted in protrusions (Figure 6A), suggesting that the activity of the exosome core in protrusions might be independent of the catalytic subunits.

First, we confirmed the enrichment of exosome core in protrusions of MDA-MB231 cells by western blotting. In agreement with the proteomics data, western blot analysis of protrusion and cell body fractions with antibodies against exosome core confirmed a high level of enrichment in protrusions, while blotting for the catalytic subunits showed a strong enrichment in the cell body (Figure 6B). Specificity of the antibodies was validated by RNAi (Figure S3A). Accordingly, immunofluorescence analysis showed a fraction of exosome core that was localized to the leading edge, while the two catalytic subunits of the exosome were enriched in the nucleus (Figure 6C). Next, using RNAi, we depleted each exosome core subunit and assessed the ability of depleted cells to form protrusions through 3-mm transwell filters. Efficient depletion of different exosome core subunits was evaluated by qPCR (Figure S3B), and mass spectrometry (Figure S3C). No apoptosis or change in cell proliferation could be detected upon depletion of exosome core subunits over 72 hr (Figures S3D and S3E), suggesting that transient depletion of the exosome core does not impact cell viability. In these settings, knockdown of seven out of nine exosome core subunits significantly inhibited protrusions (Figures 6D and 6E). Depletion of exosome core subunits also inhibited protrusions in HT-1080 fibrosarcoma cells (Figures S3F and S3G), without impacting cell viability (data not shown), suggesting that the role of the exosome in protrusions is not cell type-specific. Importantly,
analysis of protrusion dynamics by time-lapse microscopy revealed that similar to inhibition of local translation, exosome core depletion did not affect protrusion initiation, but resulted in destabilization of already initiated protrusions (Movie S6). Exosome depletion also destabilized protrusions in 3D collagen-I matrix, resulting in conversion of the cells from a polarized mesenchymal-like morphology to round (Figures 6F and 6G; Movie S7). As expected, the invasion of MDA-MB231 cells through 3D collagen-I matrix was also significantly impaired upon depletion of several exosome core subunits (Figures 6H and 6I). Together, these results reveal that the exosome core subunits, but not the catalytic subunits, are enriched in protrusions and are necessary for protrusion stabilization, mesenchymal-like morphology, and migration in 3D.

DISCUSSION

By comparing the differences between protrusions and the cell body in distribution of proteins, mRNAs, and their relative translation rates, we show that localized translation contributes significantly toward protein localization to protrusions (Figures 2G and 2I). In fact, for the majority of actin-related protein categories enriched in protrusions, such as drivers of actin polymerization, adhesion regulators, and most actin-binding proteins, localized translation seems to be a crucial determinant of protein localization to protrusions (Figure 2H; Data S1E). However, unlike actin-related proteins, RBPs and ribosomal proteins exhibit much higher relative protein levels in protrusions compared to their relative local translation rates (Figure 2H; Data S1E), suggesting that their localization to protrusions must be independent of local synthesis and thus defined by transport. In case of the majority of ribosomal proteins, this is not surprising as regardless of where they may be synthesized in the cytoplasm, they would have to be first transported to the nucleus where they associate with rRNAs in order to form the ribosome subunits (Kressler et al., 2010). Mature ribosome subunits then need to be transported to other cellular destinations to carry out translation. By analogy, the fact that RBPs are not locally translated either suggests that they may...
Figure 6. Exosome Core Is Enriched in Protrusions and Is Required for Protrusion Stability, Mesenchymal-like Morphology, and 3D Migration

(A) Exosome core subunits, but not catalytic subunits, are enriched in protrusions. Log2 of SILAC-quantified protein ratios were plotted against each other with exosome core subunits marked in red and catalytic subunits in green. All nine exosome core subunits were present more in protrusions than the cell body with eight showing at least 2-fold enrichment, while both expressed catalytic subunits show a strong enrichment in the cell body.
Figure 7. Two-Step Model for Regulation of Protrusion Formation by Local Translation

Protrusions are initiated by the action of actin regulators such as Rho-GTPases, which promote actin polymerization via ARP2/3 complex and formins. Once initiated, ribosomes and RBPs in complex with their target mRNAs are transported to protrusions where they mediate local synthesis of more actin-associated proteins, resulting in protrusion stabilization and growth. Local translation rates in protrusions are defined, not by mRNA enrichment alone, but via specific mRNA cis-regulatory UTR elements and trans-acting RBPs enriched in protrusions.

be pre-associated with their target mRNAs before transport to protrusions. Considering this, and as we show that the role of localized translation is to stabilize already initiated protrusions (Figures 3B–3H; Movies S3, S4, and S5), we propose a two-step model for protrusion formation in which ribosomes and specific RBPs in complex with their associated mRNAs are transported to sites of protrusions following protrusion initiation, where their localized activity increases translation of actin cytoskeletal proteins, resulting in further growth and stabilization of already initiated protrusions (Figure 7).

Importantly, we show that mRNA distributions do not correlate with protein distributions between protrusions and the cell body (Figure 2D). In fact, several categories of locally translated proteins in protrusions do not seem to exhibit any mRNA enrichment (Figure 4B). Conversely, several categories of protrusion-enriched mRNAs have low relative translation rates in protrusions, suggestive of their local repression (Figure 4B). These include mitochondrial as well as RNA-binding and ribosomal protein categories, which show a strong enrichment of their mRNAs in protrusions, but these localized mRNAs seem to be translationally repressed (Figure 4B). Regulated translational repression of localized mRNAs has been shown before (Buxbaum et al., 2014; Hüttelmaier et al., 2005). For instance, zipcode binding protein IGF2BP1, which is crucial for targeting β-actin mRNA, also represses translation, but this translational repression can be relieved with the right signal, which in case of IGF2BP1 is phosphorylation at the leading edge by the tyrosine kinase SRC (Hüttelmaier et al., 2005). A similar model may apply to the categories of locally repressed mRNAs defined in this study, which would mean that their local translation could be switched on, following yet unidentified cellular signals. Alternatively, for certain categories of mRNAs, localization to protrusion could be functioning as a means of global translation suppression by keeping them away from their correct site of translational activity in the cell body.

Nevertheless, the lack of a positive correlation between mRNA localization and local translation (Figures 4A and 4B) suggests that the level of mRNA accumulation may not be a good predictor for local translation. A few copies of certain localized mRNAs may be able to support robust levels of local translation, while high levels of localization for other mRNAs may not lead to significant local translation. Although it is possible that our findings may mostly apply to immortalized, transformed, or malignant cells such as the one that was used here, these findings still have important ramifications for RNA localization studies as they highlight that mRNA localization and local translation are complex and context-dependent processes.
localization alone may not be an indicator for local protein expression by default.

As mRNA translation is chiefly regulated by cis-regulatory elements within 5′ and 3′ UTRs of mRNAs, we investigated the association of different known UTR elements with regulation of local translation in protrusions. Our study reveals that presence of specific 3′ UTR elements is associated with higher local translation rates in protrusions (Figure 4C). The exact functions of these regulatory motifs in control of local translation in protrusions remain to be determined. It also remains to be determined if there are yet unknown UTR elements associated with local translation in protrusions, in addition to the known UTR elements investigated here.

To reveal functionally important RBP regulators of localized translation in protrusion, we performed an RNAi screen, depleting members of RBP categories significantly enriched in protrusions and assessing whether their depletion modulated protrusions. Out of 38 RBPs screened, we identified 17 belonging to different categories that significantly regulated protrusions. Sixteen out of 17 also significantly affected migration in 3D collagen-I matrix (Figure 5D). Many of these RBPs have been reported to regulate RNA localization or local translation. However, a number of proteins we identified, including exosome core subunits, have not been implicated in regulation of RNA targeting or local translation. Previously, the exosome core was shown to be present in both the nucleus and cytosol of eukaryotic cells (Lykke-Andersen et al., 2009), although tagging approaches in Drosophila had also suggested presence of certain exosome subunits in the periphery of the cells (Graham et al., 2006). Our data reveal that, at least in a mesenchymal-like highly invasive cancer cell-line, the exosome core, but not its catalytic subunits, is enriched in protrusions (Figures 6A–6C) and acts to stabilize protrusions and promote 3D invasion (Figures 6D–6I; Movies S6 and S7). As cell migration and invasion are believed to be intimately linked with metastasis, the exosome-mediated regulation of mesenchymal-like cell migration described here may impact cancer metastasis. In support of this view, we found that, in human breast cancers, increased expression of the exosome core subunits correlates with bad prognosis. This was the case with exosome core subunit for which expression data were available (Curtis et al., 2012) (Figures S3H–S3L).

For puromycylation of nascent proteins, cells were treated with 10 μg/ml puromycin for 10 min prior to lysis. For cycloheximide treatments, 10 μg/ml cycloheximide was added to the cells for indicated times. For emetine treatments, indicated dose of emetine was added to the cells for indicated times, followed by a single wash in 10% FBS containing DMEM. For specific inhibition of translation in protrusions, cells were seeded on transwells and allowed to form protrusions for 2 hr. The transwells were transferred to a reservoir dish with 1 μg/ml emetine (or vehicle for control treatment) in 10% FBS containing DMEM. The level of liquid in the reservoir was always significantly lower than on top of the filter, creating a positive hydrostatic pressure that limited emetine diffusion upward. After 5 min, the filters were taken out, washed by dipping the filter in 10% FBS containing DMEM, and transferred back to the original well for downstream analysis.

Experimental Procedures

Transwell Protrusion, 3D Collagen Invasion, and 3D Collagen Morphology Assays

3D collagen invasion assay and 3D collagen morphology assays were done as described before (Sanz-Moreno et al., 2008) with modifications (see also Supplemental Experimental Procedures). Transwell protrusion formation assays were performed on 3-μm pore transwell filters (6.5 mm insert size, 24-well format), coated with 5 μg/ml collagen. A total of 100,000 cells were seeded in 100 μl serum-free DMEM on top of the filter and 600 μl of DMEM with 10% serum was placed in the bottom chamber. Cells were imaged live, or fixed with 4% formaldehyde at indicated time points before imaging. Multiple tile scans, from at least three independent experiments, each composed of 3 x 3 contiguous fields of view, were taken at two z planes (top and bottom of the filter). For quantification of protrusions, fluorescence intensity at the bottom and top of the filter was then measured by ImageJ and bottom to top ratio was calculated.

Translation Inhibition and Puromycylation

For puromycylation of nascent proteins, cells were treated with 10 μg/ml puromycin for 10 min prior to lysis. For cycloheximide treatments, 10 μg/ml cycloheximide was added to the cells for indicated times. For emetine treatments, indicated dose of emetine was added to the cells for indicated times, followed by a single wash in 10% FBS containing DMEM. For specific inhibition of translation in protrusions, cells were seeded on transwells and allowed to form protrusions for 2 hr. The transwells were transferred to a reservoir dish with 1 μg/ml emetine (or vehicle for control treatment) in 10% FBS containing DMEM. The level of liquid in the reservoir was always significantly lower than on top of the filter, creating a positive hydrostatic pressure that limited emetine diffusion upward. After 5 min, the filters were taken out, washed by dipping the filter in 10% FBS containing DMEM, and transferred back to the original well for downstream analysis.

Protrusion Purification

Purification of cell protrusions was performed using 3-μm pore polycarbonate transwell filters (75 mm membrane inserts). Filters were coated with 5 μg/ml collagen before being seeded with 10 million cells in serum-free DMEM on top, with DMEM containing 10% serum added to the bottom. For western blot analysis, a single transwell was used per condition. For proteomics analysis, four transwells were used per condition. After allowing the cells to form protrusions for 2 hr, transwells were washed in PBS, fixed with −20°C methanol for 20 min, washed again with PBS, and the protrusions from the bottom of the filter were shaved off using a glass coverslip, with the coverslip being dipped in 2% SDS sample buffer. The cell body fraction was then prepared by direct addition of sample buffer to the top of the filter. A similar procedure was used for RNA purification from protrusions, but from one transwell per condition, no methanol fixing, and lysing in RLT buffer from QiAGEN’s RNeasy Mini Kit. RNA was purified according to the manufacturer’s instructions, followed by spectrophotometric measurement of the quality and concentrations.

Proteomics/Transcriptomics Analysis

For SILAC labeling, cells were grown for seven doublings in heavy or light SILAC DMEM supplemented with 10% dialyzed FBS and 600 mg/l L-Pro. For pSILAC, light-labeled cells were transiently switched to medium or heavy SILAC DMEM during a 2-hr transwell protrusion formation assay. Reciprocally mixed SILAC or pSILAC samples were resolved by SDS-PAGE, stained with Gel-code blue Coomassie dye (Pierce), and cut into 23 sections before Tryptsin digestion and peptide extraction. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was performed by the Institute of Cancer Research (ICR) proteomics core facility. Mass spectrometry search and quantifications were done by Maxquant software (Cox and Mann, 2008; Cox et al., 2011). For pSILAC quantifications, the L label was ignored and H/M ratios, which measure relative nascent protein levels, were used. For RNA-seq, protrusions and the cell body total RNA preps were generated in duplicates from two biological filter-fractionated replicate experiments. Sample preparations and Illumina sequencings were performed by ICR’s tumor profiling unit. All proteomics/transcriptomics data analyses were performed by Perseus software (Cox and Mann, 2012) (see also Supplemental Experimental Procedures).
Mass spectrometry proteomics raw data and search results were deposited to the ProteomeXchange Consortium (Vizcaino et al., 2014), via the PRIDE partner repository, with the dataset identifiers PRIDE: PXD000914 and PRIDE: PXD0002649. RNA-seq data were deposited to the ArrayExpress database (http://www.ebi.ac.uk/arrayexpress) under the accession number ArrayExpress: E-MTAB-2546.

ACCESSION NUMBERS

The accession numbers for the mass spectrometry proteomics raw data and search results reported in this paper are PRIDE: PXD000914 and PRDIE: PXD0002649. The accession number for the RNA-seq data reported in this paper is ArrayExpress: E-MTAB-2546.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, three figures, seven movies, and two Supplemental Data files and can be found with this article online at http://dx.doi.org/10.1016/j.devcel.2015.10.005.

AUTHOR CONTRIBUTIONS

F.K.M. and C.J.M. designed all experiments and wrote the manuscript. A.P. assisted with mass spectrometry sample preps and LC-MS/MS runs. H.P. generated the MDA-MB31mkate CAAX cell line and assisted with confocal microscopy. A.S. assisted with immunofluorescence. S.K. assisted with 3D live-cell imaging. A.M. assisted with exosome validation experiments. Y.Y. performed the gene expression-based stratification of the breast cancer patient survival data. All other experiments and data analyses were performed by F.K.M.

ACKNOWLEDGMENTS

We would like to thank Annette Self for help with experiments, reagents, and protocols, Andreas Hadjiroycopoulos and James Campbell for help with bioinformatics analysis, Hani Goodarzi for advice on UTR analysis, Graziano Pesole for assistance with UTRdb, ICR’s proteomics core facility for mass spectrometry assistance with UTRdb, ICR’s tumor profiling unit for RNA-seq sample preparations and se- quencings. Ger Pruijn generously provided for EXOSC5 antibody. Finally, we would like to thank C.J.M. lab members for their comments and discussions. This work was funded by Cancer Research UK (C107/A12057, C107/A10433, C107/A16512).

Received: April 24, 2015
Revised: August 23, 2015
Accepted: October 8, 2015
Published: November 9, 2015

REFERENCES

Boudoukh, S., Cuvelier, S., and Polesskaya, A. (2010). Role of the RNA-bind- ing protein IMP-2 in muscle cell motility. Mol. Cell. Biol. 30, 5710–5725.
Buxbaum, A.R., Wu, B., and Singer, R.H. (2014). Single-β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343, 419–422.
Cain, R.J., and Ridley, A.J. (2009). Phosphoinositide 3-kinases in cell migra- tion. Biol. Cell. 101, 13–29.
Charlesworth, A., Wilczynska, A., Thampi, P., Cox, L.L., and MacNicoll, A.M. (2006). Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J. 25, 2792–2801.
Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., and Greenough, W.T. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401– 5404.
Condeelis, J., and Singer, R.H. (2005). How and why does beta-actin mRNA target? Biol. Cell 97, 97–110.
Cox, J., and Mann, M. (2007). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide pro- tein quantification. Nat. Biotechnol. 26, 1367–1372.
Cox, J., and Mann, M. (2012). ID and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high- throughput data. BMC Bioinformatics 13 (Suppl 16), S12.
Cox, J., Neuhauser, N., Michalski, A., Schelterna, R.A., Olsen, J.V., and Mann, M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805.
Crawford, A.W., Michelsen, J.W., and Beckerle, M.C. (1992). An interaction between zyxin and alpha-actinin. J. Cell Biol. 116, 1381–1393.
Curtis, C., Shah, S.P., Chin, S.F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., Lynch, A.G., Samaraijiva, S., Yuan, Y., et al.; METABRIC Group (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352.
Etienne-Manneville, S. (2008). Polarity proteins in migration and invasion. Oncogene 27, 6970–6980.
Graham, A.C., Kiss, D.L., and Andrulis, E.D. (2008). Differential distribution of exosome subunits at the nuclear lamina and in cytoplasmic foci. Mol. Biol. Cell 17, 1399–1409.
Grillo, G., Turi, A., Licciulli, F., Mignone, F., Lioni, S., Barfli, S., Gennario, V.A., Horner, D.S., Paveli, G., Picardi, E., and Pesole, G. (2010). UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 38, D75–D80.
Gu, W., Katz, Z., Wu, B., Park, H.Y., Li, D., Lin, S., Wells, A.L., and Singer, R.H. (2012). Regulation of local expression of cell adhesion and motility-related mRNAs in breast cancer cells by IMP1/2B1. J. Cell Sci. 125, 81–91.
Hadjizelimovic, N., Vukojevic, V., Peter, F., Milnik, A., Fastennath, R., Fenyes, B.G., Hieber, P., Demoungin, P., Vogler, C., de Quervain, D.J., et al. (2014). Forgetting is regulated via Musashi-mediated translational control of the Arp2/3 complex. Cell 156, 1153–1166.
Halstead, J.M., Lionnet, T., Wilbertz, J.H., Wippich, F., Ephrussi, A., Singer, R.H., and Chao, J.A. (2015). An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347, 1367–1371.
Hüttelmaier, S., Zenklusen, D., Lederer, M., Dichtenberg, J., Lorenz, M., Meng, X., Bassell, G.J., Condeelis, J., and Singer, R.H. (2005). Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515.
Kim, H.D., Kim, T.S., Shin, H.S., Kim, S.H., Jang, C.Y., Lee, C.E., and Kim, J. (2010). RpS3 translation is repressed by interaction with its own mRNA. J. Cell. Biochem. 110, 294–303.
Kressler, D., Hurt, E., and Bassler, J. (2010). Driving ribosome assembly. Biochim. Biophys. Acta 1803, 673–683.
Krone, C., Willkomm, D., Gebken, J., Schuh, A., Stossberg, H., Vollbrandt, T., and Müller, P.K. (2003). The multi-KH protein vigilin associates with free and membrane-bound ribosomes. Cell. Mol. Life Sci. 60, 2219–2227.
Lai, E.C., Tam, B., and Rubin, G.M. (2005). Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box- and K-box-class microRNAs. Genes Dev. 19, 1067–1080.
Liu, Q., Greimann, J.C., and Lima, C.D. (2006). Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127, 1223–1237.
Liu, Y., Gervasi, C., and Szaro, B.G. (2008). A crucial role for hnRNP K in axon development in Xenopus laevis. Development 135, 3125–3135.
Lijklema-Anderssen, S., Brodersen, D.E., and Jensen, T.H. (2009). Origins and activities of the eukaryotic exosome. J. Cell Sci. 122, 1487–1494.
Mili, S., Moissoglu, K., and Macara, I.G. (2008). Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453, 115–119.
Mingle, L.A., Okuhama, N.N., Shi, J., Singer, R.H., Condeelis, J., and Liu, G. (2005). Localization of all seven messenger RNAs for the actin-polymerization
Nucleator Arp2/3 complex in the protrusions of fibroblasts. J. Cell Sci. 118, 2425–2433.

Nielsen, F.C., Nielsen, J., and Christiansen, J. (2001). A family of IGF-II mRNA binding proteins (IMP) involved in RNA trafficking. Scand. J. Clin. Lab. Invest. Suppl. 234, 93–99.

Nobes, C.D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimeolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.

Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386.

Shankar, J., Messenberg, A., Chan, J., Underhill, T.M., Foster, L.J., and Nabi, I.R. (2010). Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells. Cancer Res. 70, 3780–3790.

Small, J.V., and Resch, G.P. (2005). The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr. Opin. Cell Biol. 17, 517–523.

St Johnston, D. (2005). Moving messages: the intracellular localization of mRNAs. Nat. Rev. Mol. Cell Biol. 6, 363–375.

Taniuchi, K., Furihata, M., Hanazaki, K., Saito, M., and Saibara, T. (2014). IGF2BP3-mediated translation in cell protrusions promotes cell invasiveness and metastasis of pancreatic cancer. Oncotarget 5, 6832–6845.

Vanrobays, E., Gélugne, J.P., Caizergues-Ferrer, M., and Lafontaine, D.L. (2004). Dim2p, a KH-domain protein required for small ribosomal subunit synthesis. RNA 10, 645–656.

Vasudevan, S., and Steltz, J.A. (2007). AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128, 1105–1118.