Strong time-periodic solutions to the 3D primitive equations subject to arbitrary large forces

Giovanni P Galdi1, Matthias Hieber1,2 and Takahito Kashiwabara3

1 Benedum Engineering Hall, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
2 Department of Mathematics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany
3 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

E-mail: galdi@pitt.edu, hieber@mathematik.tu-darmstadt.de and tkashiwa@ms.u-tokyo.ac.jp

Received 31 August 2016, revised 10 July 2017
Accepted for publication 21 July 2017
Published 18 September 2017

Recommended by Professor Edriss S Titi

Abstract
We show that the three-dimensional primitive equations admit a strong time-periodic solution of period $T > 0$, provided the forcing term $f \in L^2(0, T; L^2(\Omega))$ is a time-periodic function of the same period. No restriction on the magnitude of f is assumed. As a corollary, if, in particular, f is time-independent, the corresponding solution is steady-state.

Keywords: primitive equations, strong periodic solutions, weak-strong uniqueness, stationary solutions

Mathematics Subject Classification numbers: Primary: 35Q35; Secondary: 76D03, 47D06, 86A05

1. Introduction

The investigation of time-periodic, strong solutions to equations arising from the theory of incompressible, viscous fluid flows has a long tradition. In particular, the first results on the existence of such solutions for the Navier–Stokes equations in the case of bounded domains go back to the 1960s with the work of Prodi \[22\] in the 2D case, and, successively, with that of Kaniel and Shinbrot \[10\] who exploited an idea of Serrin \[24\] for the 3D case. Another
approach in this context is due to Kato [11]. Similar results in the case of unbounded domains were obtained first by Maremonti [19], Maremonti and Padula [20] and Yamazaki [27]. More recently, a general approach of periodic, strong solutions to a large class of equations arising in viscous, incompressible flows was provided by Geissert, Hieber and Nguyen [6]. For an updated survey on methods, results and a bibliography on this topic, we refer to the exhaustive article by Galdi and Kyed [4].

In must be emphasized that in all the known approaches, the existence of a strong, periodic solution is guaranteed, though only under a suitable smallness assumption on the forcing term \(f \).

In the present paper, we consider the 3D primitive equations in the isothermal setting and we address the question of whether this set of equations admits a strong, periodic solution for arbitrary large period forcing terms \(f \).

It is the aim of this article to give an affirmative answer to this question. More precisely, we show that the three-dimensional primitive equations admit a strong time-periodic solution of period \(T > 0 \), provided the forcing term \(f \in L^2(0, T; L^2(\Omega)) \) is a time-periodic function of the same period. Note that no restriction on the magnitude of \(f \) is assumed. As a corollary, if, in particular, \(f \) is time-independent, the corresponding solution is steady-state.

We note that the problem of existence and uniquenss of time periodic solutions to the primitive equations was first investigated by Tachim Medjo [25]. There, existence (and uniqueness) of strong solutions is achieved by the classical Galerkin method, under the assumption of ‘small’ forcing terms. More recently, Hsia and Shiue [9] proved a similar result using the classical idea going back to Serrin [24], again under a suitable smallness condition on the forcing term. Furthermore, they showed asymptotic stability of such solutions, provided the initial perturbations are sufficiently small. Notice that, as a corollary, both results in [9, 25] furnish existence of steady-state solutions to the primitive equations for forcing terms of restricted magnitude.

At this point, it must be observed that the smallness assumption on the forcing term (at least for steady-state solutions) in the case of the primitive equations is undesired and appears to be not natural, if one compares this situation with the classical Navier–Stokes theory. There, even though the initial-value problem still lacks a global existence result for strong solutions with initial data of arbitrary size, nevertheless the steady-state boundary-value problem is known to have a smooth solution for (smooth) forcing term of arbitrary magnitude since the fundamental work of Leray.

In order to describe our main result more precisely, note that the primitive equations in the isothermal setting, i.e. assuming that the temperature \(\theta \) equals a constant \(\theta_0 \), are given by the following set of equations:

\[
\begin{align*}
\partial_t v + u \cdot \nabla v - \Delta v + \nabla u \pi &= f \quad \text{in } \Omega \times (0, T), \\
\partial_t \pi &= 0 \quad \text{in } \Omega \times (0, T), \\
\text{div} u &= 0 \quad \text{in } \Omega \times (0, T), \\
v(0) &= a.
\end{align*}
\]

(1.1)

Here \(\Omega = G \times (-h, 0) \), where \(G = (0, 1)^2 \), \(h > 0 \), and \(T > 0 \). The velocity \(u \) of the fluid is given by \(u = (v, w) \) with \(v = (v_1, v_2) \), and where \(v \) and \(w \) denote the horizontal and vertical components of \(u \), respectively. Furthermore, \(\pi \) denotes the pressure of the fluid (more precisely, \(\pi = p + \theta_0 z \)), where \(p \) is the original pressure, \(z \in (-h, 0) \) and \(f \) a given external force. The symbol \(\nabla U = (\partial_1, \partial_2) \) denotes the horizontal gradient, \(\Delta \) the three-dimensional Laplacian and \(\text{div} \) the three dimensional gradient and divergence operators. The above equations take into account, by scale analysis, the hydrostatic approximation of the Navier–Stokes equations; for more details see e.g. [21, 26].
The system is complemented by the set of boundary conditions
\[
\begin{align*}
\partial_t v &= 0, \quad w = 0 & \text{on } \Gamma_u \times (0, T), \\
v &= 0, \quad w = 0 & \text{on } \Gamma_b \times (0, T), \\
u, \pi & \text{ are periodic} & \text{on } \Gamma_l \times (0, T).
\end{align*}
\] (1.2)

Here \(\Gamma_u := G \times \{0\}, \Gamma_b := G \times \{-h\}, \Gamma_l := \partial G \times [-h, 0] \) denote the upper, bottom and lateral parts of the boundary \(\partial \Omega \), respectively.

The full primitive equations were introduced and investigated for the first time by Lions, Temam and Wang in [17, 18]. They proved the existence of a global weak solution for this set of equations for initial data \(a \in L^2 \). The existence of a local, strong solution with data \(a \in H^1 \) was proved first by Guillén-González et al in [7].

In 2007, Cao and Titi [1] proved a breakthrough result for this set of equations which states, roughly speaking, that there exists a unique, global strong solution to the primitive equations for arbitrary initial data \(a \in H^1 \). Note that the boundary conditions on \(\Gamma_b \cup \Gamma_l \) considered are different from the ones we are imposing in (1.2). Successively, in [13] Kukavica and Ziane considered the primitive equations subject to boundary conditions as in (1.2), and proved global strong well-posedness of the primitive equations with respect to arbitrary \(H^1 \)-data. For different approaches see also Kobelkov [12] and Kukavica et al [14]. Details and much more information on the primitive equations can be found in the recent excellent survey article by Li and Titi [15].

It is worth emphasizing that, while the fundamental problem of global existence and uniqueness for the initial-value problem can be considered to be settled to a great extent, at least in the \(L^2 \) framework, other important issues like existence of strong time-periodic and, in particular, steady-state solutions to the primitive equations appear to be at a stage where further investigation is still required.

The main objective of this article is to prove existence of strong time-periodic solutions to the primitive equations of the form (1.1)\(_{1,2,3} \) for arbitrary time-periodic \(f \in L^2(0, T; L^2(\Omega)) \), without assuming any smallness condition on \(f \). As a byproduct, this result provides an analogous one for steady-state solutions.

As we hinted earlier on, the approach we use differs from ‘standard’ ones, and is based on the following three steps: first, we construct a suitable weak time-periodic solution, \(v, \) to (1.1)\(_{1,2,3} \) corresponding to the given \(f \), by combining standard Galerkin’s method with Brouwer’s fixed point theorem. It must be stressed that, just because of its very little space-time regularity, this solution (unlike that constructed in [25]) is shown to exist for data, \(f, \) of arbitrary ‘size’. This fact is well known even in the case of the classical Navier–Stokes equations and goes back to Prouse [23]; see also [16, theorem 6.1]\(^4\). Secondly, we show the existence of a unique, strong solution \(u \) to the initial-value problem (1.1) for arbitrary \(f \in L^2(0, T; L^2(\Omega)) \), and \(a \in \) a subspace of \(H^1(\Omega) \), by using the arguments of [8]. Finally, we look at \(v \) as a weak solution to the initial-value problem and employ a weak-strong uniqueness result of the type proved by Guillén-Gonzáles, Masmoudi and Rodriguez-Bellido in [7], which then implies \(v \equiv u \). This furnishes the main results of this article stated as theorem 2.4.

\(^4\) Following the comment of one of the reviewers, it is perhaps worth emphasizing that Prouse was the first to recognize that, thanks to ‘good’ a priori estimates, for the existence of a time-periodic solution it is enough to show that the Poincaré map of the finite-dimensional Galerkin approximation has a fixed point, which only requires the validity of Brouwer theorem. This is unlike the previous work of Prodi [22] (and, successively, of Kaniel and Shimbrot [10]) where the fixed point property is shown for solutions to the full initial-boundary value problem, which requires more general fixed-point theorems as well as more complicated arguments. For more details, see [4, sections 3.1–3.3].
The structure of the paper is as follows. In section 2 we make some preliminary considerations and give the statement of our main results in theorem 2.4. In section 3 we then show the existence of a weak time-periodic solution corresponding to forcing terms of arbitrary size. The following section 4 is dedicated to the proof of existence and uniqueness of (an equivalent form of) the initial-value problem (1.1) for arbitrary \(f \) and \(a \) in appropriate function classes. Finally, in section 5, we give the proof of theorem 2.4.

2. Preliminaries and main results

Following Lions, Temam and Wang [17, 18] and Cao and Titi [1], we rewrite the primitive equations given in (1.1) subject to the boundary conditions (1.2) in the following equivalent form. Since the vertical component \(w \) of \(u \) is determined by the incompressibility condition we have

\[
w(x, y, z) = \int_{-h}^{0} \text{div}_H v(x, y, \zeta) \, d\zeta, \quad (x, y) \in G, \quad -h < z < 0,
\]
due to the boundary condition \(w = 0 \) on \(\Gamma_u \). The further boundary condition \(w = 0 \) on \(\Gamma_b \) gives rise to the constraint

\[
\text{div}_H \overline{v} = 0 \quad \text{in } G,
\]
where \(\overline{v} \) stands for the average of \(v \) in the vertical direction, i.e.

\[
\overline{v}(x, y) := \frac{1}{h} \int_{-h}^{0} v(x, y, z) \, dz, \quad (x, y) \in G. \tag{2.1}
\]

Then problem (1.1) and (1.2) is equivalent to finding a function \(v : \Omega \to \mathbb{R}^2 \) and a function \(\pi : G \to \mathbb{R} \) satisfying the set of equations

\[
\begin{align*}
\partial_t v + v \cdot \nabla_H v + w(v) \partial_z v - \Delta v + \nabla_H \pi & = f \quad \text{in } \Omega \times (0, T), \\
w(v) & = \int_{-h}^{0} \text{div}_H v \, d\zeta \quad \text{in } \Omega \times (0, T), \\
\text{div}_H \overline{v} & = 0 \quad \text{in } G \times (0, T), \\
v(0) & = a.
\end{align*}
\tag{2.2}
\]
as well as the boundary conditions

\[
\begin{align*}
\partial_z v & = 0 \quad \text{on } \Gamma_u \times (0, T), \\
v & = 0 \quad \text{on } \Gamma_b \times (0, T), \\
v \text{ and } \pi & \text{ are periodic on } \Gamma_l \times (0, T). \tag{2.3}
\end{align*}
\]

The following terminology for describing the periodic boundary conditions will be useful. Let \(m \in \{0, 1\} \). We then say that a smooth function \(f : \Omega \to \mathbb{R} \) is space periodic of order \(m \) on \(\Gamma_l \) if

\[
\partial^{\alpha} f(0, y, z) = \partial^{\alpha} f(1, y, z) \quad \text{and} \quad \partial^{\alpha} f(x, 0, z) = \partial^{\alpha} f(x, 1, z),
\]
for all \(\alpha = 0, \ldots, m \). Note that we do not consider any symmetry conditions in the \(z \)-direction. The Sobolev spaces equipped with space-periodic boundary conditions in the horizontal directions are defined by

\[
H_{\text{per}}^m(\Omega) := \{ f \in H^m(\Omega) : f \text{ is space-} \text{periodic of order } m-1 \text{ on } \Gamma_l \}.
\]
\[H^m_\text{per}(\Omega) := \{ v \in L^2_\text{per}(\Omega) : \nabla H v = 0 \} \]
\[H^1_\text{per}(\Omega) := \{ v \in H^1_\text{per}(\Omega) : \nabla H v = 0, v = 0 \text{ on } \Gamma_b \} \]
\[H^2_\text{per}(\Omega) := \{ v \in H^1(\Omega) \cap H^2(\Omega)_{\text{per}} : \partial_v v = 0 \text{ on } \Gamma_a \}. \]

and denote its norms by \(\| \cdot \|_2, \| \cdot \|_{H^1}, \| \cdot \|_{H^2} \), respectively. As usual, \((\cdot, \cdot) \) stands for the usual \(L^2 \) scalar product.

Moreover, given an interval \(I \subset \mathbb{R} \), the space \(C_w(I; H(\Omega)) \) stands for the class of functions \(v : I \to \mathbb{H}(\Omega) \) such that \(t \mapsto (v(t), \psi) \) is continuous for all \(\psi \in \mathbb{H}(\Omega) \).

Finally, we say that a function \(f \in L^1(0, T; L^2(\Omega)) \), all \(T > 0 \), is \(T \)-periodic (\(T > 0 \)) if \(f(t, x) = f(t + T, x) \) for a.a. \((t, x) \in [0, \infty) \times \Omega \).

Definition 2.1. Let \(T > 0 \) and \(f \in L^1(0, T; L^2(\Omega)) \), all \(T > 0 \). A function \(v : [0, \infty) \times \Omega \to \mathbb{R}^2 \) is called weak \(T \)-periodic solution to (2.2)\textsubscript{1,2,3} and (2.3) if

(i) \(v \in C_w([0, T]; H(\Omega)) \cap L^2(0, T; H^1(\Omega)) \) for all \(T > 0 \),

(ii) For all \(T > 0 \) and all \(\varphi \in C([0, T]; H^1(\Omega)) \cap L^2(0, T; H^2(\Omega)) \)

\[
\int_0^T \left\{ (v, \partial_t \varphi) - (\nabla v, \nabla \varphi) + (v \cdot \nabla \varphi + w(v) \varphi, v) \right\} dt = -\int_0^T (f, \varphi) + (v(t), \varphi(t)) - (v(0), \varphi(0)), \quad t \in (0, T),
\]

(iii) For all \(T > 0 \), all \(t \in (0, T] \) and a.a. \(s \in [0, t) \), \(v \) satisfies the strong energy inequality

\[
\|v(t)\|_2^2 + 2 \int_s^t \|\nabla v(\tau)\|_2^2 d\tau \leq \|v(s)\|_2^2 + 2 \int_s^t (f(\tau), v(\tau)) d\tau,
\]

(iv) \(v(t + T, x) = v(t, x) \) for all \(t \geq 0 \) and a.a. \(x \in \Omega \).

A weak \(T \)-periodic solution \(v \) is called a strong if, in addition to (i)-(iv), it holds \(v \in C([0, T]; H^1(\Omega)) \cap L^2(0, T; H^2(\Omega)), \partial_v v \in L^1(0, T; L^2(\Omega)) \), for all \(T > 0 \).

If, in particular, \(f \in \mathbb{H}(\Omega) \) is independent of \(t \geq 0 \), we say that \(v_T \in H^1(\Omega) \) is a weak steady-state solution to (2.2)\textsubscript{1,2,3} \((2.3) \) if \(v_T \) satisfies condition (ii) for all \(\varphi \in H^2(\Omega) \). A weak steady-state solution is called strong if \(v_T \in H^2(\Omega) \).

Remark 2.2. It is worth noticing that every term in (ii) is well defined. This is obvious for all linear terms in \(v \). As for the nonlinear ones, by Hölder’s inequality and Sobolev embeddings we obtain for all \(v_1, v_2 \in H^1(\Omega) \) and all \(v_3 \in H^2(\Omega) \)

\[
\int_0^T (v_1 \cdot \nabla_H v_3, v_2) \leq \int_0^T \|v_1\|_6 \|\nabla_H v_3\|_2 \|v_2\|_6 \leq C \int_0^T \|v_1\|_2^{\frac{1}{2}} \|v_1\|_6^{\frac{1}{2}} \|v_2\|_2 \|\nabla_H v_3\|_2.
\]

(2.4)

Furthermore, using inequality (93) from [1], we show that

\[
\int_0^T \left\| (w(v_1) \partial_v v_3, v_2) \right\| \leq C \int_0^T \|\nabla_H v_1\|_2 \|v_2\|_3^{\frac{1}{2}} \|v_2\|_6^{\frac{1}{2}} \|\partial_v v_3\|_2 \|\partial_v v_3\|_6,
\]

(2.5)
which proves the claim. We note that the proof of the latter does not use boundary conditions for \(v_i, i = 1, 2, 3 \), which in [1] are different than those adopted here.

Remark 2.3. The above definition of a weak time-periodic solution is somewhat different than the one typically found in the literature. However, this formulation is needed when we will compare these solutions with solutions to the initial-value problem; see section 4.

We are now in the position to state the main result of this article.

Theorem 2.4. Let \(T > 0 \) and let \(f \in L^2(0, T; L^2(\Omega)) \), all \(T > 0 \), be \(T \)-periodic. Then problem (2.2)\(_{1,2,3} \)–(2.3) has at least one corresponding strong \(T \)-periodic solution. If in particular, \(f \) is time-independent, this solution is a strong steady-state solution.

We emphasize at this point that, in contrast to previous known results [9, 25], our findings do not require any smallness condition on \(f \).

3. Weak time-periodic solutions

Objective of this section is to show that the class of weak \(T \)-periodic solutions to (2.2)\(_{1,2,3} \)–(2.3) is not empty under suitable assumptions on \(f \). Precisely, we have the following.

Proposition 3.1. Let \(T > 0 \), and let \(f \in L^2(0, T; L^2(\Omega)) \), all \(T > 0 \), be \(T \)-periodic. Then, there exists at least one weak \(T \)-periodic solution, \(v \), to (2.2)\(_{1,2,3} \)–(2.3). If, in particular, \(f \) does not depend on \(t \), then \(v \) is a weak steady-state solution.

Proof. Even though our definition of a weak time-periodic solution is somewhat different than the one usually given in the literature, the proof of its existence, based on the Faedo–Galerkin method, is quite standard; see, e.g. [23], [16, chapter 4], [5, 2]. For this reason, we shall only give the main arguments, referring the reader to the above papers for further details.

Let \(\{\psi_k\} \subset H^2(\Omega) \) be an orthonormal basis of \(H(\Omega) \) dense in \(H^1(\Omega) \) and \(H^2(\Omega) \). For example, we may take the eigenvectors of the hydrostatic Stokes operator in the \(L^2 \) setting (see [8, section 4]). Let

\[
v_m := \sum_{k=1}^m c_{mk}(t) \psi_k(x)
\]

where, for all \(r = 1, \ldots, m \),

\[
\frac{d}{dt}(v_m, \psi_r) = (v_m \cdot \nabla_H \psi_r, v_m) + (w(v_m) \partial_z \psi_r, v_m) - (\nabla v_m, \nabla \psi_r) + (f, \psi_r).
\]

(3.1)

We now show a uniform bound in time on the functions \(c_{mk}(t) \) for \(k = 1, \ldots, m \), which implies that the system (3.1) has a solution \(c(t) := (c_{m1}(t), \ldots, c_{mm}(t)) \) for all \(t \geq 0 \) and all \(m \geq 1 \). In fact, multiplying both sides of (3.1) by \(c_{mr}(t) \), summing over \(r \), and taking into account that by (2.2)\(_{2,3,4} \)

\[
(v_m \cdot \nabla_H v_m, v_m) + (w(v_m) \partial_z v_m, v_m) = 0,
\]

we get

\[
\frac{d}{dt} \|v_m\|_2^2 + 2 \|\nabla v_m(t)\|_2^2 = 2(f, v_m).
\]

(3.2)
Since \(v_m = 0 \) at \(x_3 = -h \), we have
\[
\|v_m\|^2_2 \leq h^2 \|\partial_3 v_m\|^2_2,
\]
so that by Schwartz’s inequality and (3.2) we infer
\[
\frac{d}{dt}\|v_m\|^2_2 + \frac{2}{R^2} \|v_m\|^2_2 \leq 2 \|f\|^2_2.
\]
Integrating the latter from \(t = 0 \) to arbitrary \(t > 0 \) we get
\[
e^{2t/R^2} \|v_m(t)\|^2_2 \leq \|v_m(0)\|^2_2 + 2 \int_0^t e^{2\tau/R^2} \|f(\tau)\|^2_2 d\tau,
\]
thus deducing the claimed uniform bound for \(c(t) \), once we observe that, by the orthonormality property of \(\{\psi_n\}, |c(t)| = \|v_m(t)\|^2_2 \).

Next, choose \(R > 0 \) such that \(R(e^{2\tau/R^2} - 1) \geq 2 \int_0^T e^{2\tau/R^2} \|f(\tau)\|^2_2 d\tau \) and let \(B_R^m \) the ball in \(\mathbb{R}^m \) centered at the origin with radius \(R \). It follows from (3.4) that \(|c(T)| = \|v_m(T)\|^2_2 \leq R \) provided \(|c(0)| = \|v_m(0)\|^2_2 \leq R \). Thus the map
\[
S : \mathbb{R}^m \ni c(0) \mapsto c(T) \in \mathbb{R}^M
\]
maps \(B_R^m \) into itself. Since it is also continuous, we conclude by Brouwer’s theorem that for each \(m \geq 1 \) there exists \(v_m(0) \) such that \(v_m(0) = v_m(T) \). We may then extend \(v_m(t) \) to the half-line \([0, \infty)\) to a periodic function of period \(T \). Clearly, by (3.4),
\[
\|v_m(t)\|^2_2 \leq R + 2 \int_0^t e^{2\tau/R^2} \|f(\tau)\|^2_2 d\tau, \quad t \geq 0.
\]
Moreover, from (3.2) and (3.3) and the time-periodicity of \(v_m(t) \) we see that
\[
\int_0^t \|\nabla v_m(\tau)\|^2_2 d\tau \leq h^4 \int_0^T \|f(\tau)\|^2_2 d\tau, \quad t \in (0, \ell T), \ell > 0.
\]
Furthermore, integrating both sides of (3.1) between \(0 \) and \(t \) and using (2.4), (2.5), (3.5) and (3.6) we show that, for each fixed \(r \), the sequence of functions \(\{(v_m(\tau), \psi_r)\} \) is uniformly continuous and uniformly bounded. Combining this information with (3.1), (3.5) and (3.6), using (2.4) and (2.5), and following the classical procedure (see, e.g. [2, pp 18–20]) we show the existence of a function \(v \in L^\infty(0, T; \mathbb{H}(\Omega)) \cap L^2(0, T; \mathbb{H}^1(\Omega)) \) for all \(T > 0 \) and a subsequence \(\{v_m'\} \) such that for all \(T > 0 \)
\[
\begin{align*}
v_m' &\to v \quad \text{weakly in } L^2(0, T; \mathbb{H}^1(\Omega)), \\
v_m'(t) &\to v(t) \quad \text{weakly in } \mathbb{H}(\Omega) \text{ for all } t \in [0, T], \\
v_m' &\to v \quad \text{strongly in } L^2(0, T; \mathbb{H}(\Omega)).
\end{align*}
\]
Recalling that \(v_m(t + T) = v_m(T) \) for all \(t \geq 0 \), the second relation in (3.7) implies that \(v \) satisfies both properties (i) and (iv) of weak solutions. Furthermore, again by (3.7) and (3.2), we see that \(v \) satisfies also property (iii). Finally, we integrate (3.1) over \((0, t)\) and then pass to the limit \((m') \to \infty \). Using (3.7) and (2.4) and (2.5) we see that
\[(v(t) - v(0), \psi_r) = \int_0^t (v \cdot \nabla H \psi_r, v) + (w(v) \partial_z \psi_r, v) - (\nabla v, \nabla \psi_r) + (f, \psi_r),\]

for all \(r \geq 1\). From this equation, taking into account the mentioned properties of \(\{\psi_n\}\), again by classical arguments (e.g. [2, section 2]) we prove that \(v\) satisfies also property (ii), which concludes the proof when \(f\) depends on \(t\).

If, however, \(f\) is time-independent, we have that the (unknown) coefficients \(c_{mk}\) of the ‘approximating solutions’ \(v_m\), are independent of time as well and must solve (3.1) with \(d/dt \equiv 0\), namely

\[(v_m \cdot \nabla H \psi_r, v_m) + (w(v_m) \partial_z \psi_r, v_m) + (\nabla v_m, \nabla \psi_r) + (f, \psi_r) = 0 \quad (3.8)\]

Proceeding as in the proof of (3.2) and using (3.3), we then show in this case that \(v_m\) obeys the following uniform estimate

\[\|v_m\|_2^2 + \|
abla v_m\|_2^2 \leq h^2 \|f\|_2^2\]

By classical results, the latter ensures, on the one hand, that the nonlinear algebraic system (3.8) has at least one solution (see, e.g. [3, lemma IX.3.1]), and, on the other hand, that there exist \(v \in H^1(\Omega)\) and a subsequence \(\{v_m'\}\) such that

\[v_m' \to v \text{ weakly in } H^1(\Omega),\]

\[v_m' \to v \text{ strongly in } H(\Omega).\]

Now, following the classical argument employed above when \(f\) is time-independent, one shows also in the case at hand that \(v\) obeys property (ii) as well as the energy inequality in (iii). The proof is complete. □

4. Existence of global strong solutions to the initial-value problem: inhomogeneous case

As mentioned earlier on, the basic idea for the proof of theorem 2.4 is to compare the weak \(T\)-periodic solution of proposition 3.1 with a strong global solution \((u, p)\) to the inhomogeneous initial-value problem (2.2) and (2.3), for an appropriate choice of the initial data \(a\). As customary, see e.g. [1, 7], by ‘strong’ we mean \(u \in C([0, T]; H^1(\Omega)) \cap L^2(0, T; H^2(\Omega))\) with \(\partial_t u \in L^1(0, T; H^1(\Omega))\) and \(p \in L^1(0, T; H^1(\Omega))\) with \(T > 0\). In [8], existence of such solutions has been established when \(f \equiv 0\). In the following proposition, we shall suitably adapt the arguments of [8] to prove existence of global strong solutions to (2.2) and (2.3), when \(f \not\equiv 0\) is prescribed in a proper function class.

Proposition 4.1. Let \(T > 0\) arbitrary, \(a \in H^1(\Omega)\) and \(f \in L^2(0, T; L^2(\Omega))\). Then, problem (2.2) and (2.3) has a unique strong solution in the interval \((0, T)\).

Proof. The existence of a unique strong local solution was already proved in [7, theorem 1.2]. Hence, in order to prove the assertion, it suffices to show that the velocity field \(u\), of a given local, strong solution to the above problem, admits an a priori bound in the space \(C([0, T]; H^1(\Omega)) \cap L^2(0, T; H^2(\Omega))\). Observe that this will also imply the stated properties on \(\partial_t u\) and \(p\), since from (2.2) we first readily infer
\[\|\partial_t u\|_2 \leq \|u\|_\infty \|\nabla u\|_2 + \|\nabla u\|_2^2 + \|\Delta u\|_2, \quad \|\nabla \tilde{u}p\|_2 \leq \|\partial_t u\|_2 + \|u\|_\infty \|\nabla u\|_2 + \|\nabla u\|_2^2 + \|\Delta u\|_2, \]

and then use the embedding \(H^2(\Omega) \subset W^{1,4}(\Omega) \subset L^\infty(\Omega). \)

Noticing that \(\|u\|_H^2 \leq C \|\Delta u\|_2 \), in order to show the above bound, it suffices to prove that

\[\|u(t)\|_H^2 + \int_0^t \|\Delta u(\tau)\|_2^2 \, d\tau \leq B(\|u\|_{L^2(\Omega)}, \|\tilde{u}\|_{L^2(\Omega)}, T), \quad t \in [0, T], \tag{4.1} \]

where \(\|f\|_{L^2_2(\Omega)} : = \left(\int_0^T \|f(\tau)\|_2^2 \, d\tau \right)^{1/2} \) and \(B \) is a continuous function. Here and hereafter, \(C \) denotes a generic constant.

In what follows, we shall closely employ the strategy of [8] and show how the main estimates obtained there in (6.5), (6.7), (6.9) and (6.10) modify if \(f \not\equiv 0 \) satisfies the stated assumptions. This will be achieved in \(\text{Steps 1--4 below, which will then lead to the proof of (4.1) in Step 5.} \) We begin to observe that multiplying both sides of (2.1) (written for (4.1) in Step 5 below, which will then lead to the proof of Step 1) by \(u \), integrating by parts and using Schwartz inequality and Poincaré inequality (3.3) we show

\[\|u(t)\|_H^2 + \int_0^t \|\nabla u(\tau)\|_2^2 \, d\tau \leq \|u\|_2^2 + h^2 \|\tilde{u}\|_{L^2_2(\Omega)}^2, \quad t \in [0, T]. \tag{4.2} \]

The functions \(\tilde{\eta} = \frac{1}{h} f_{-h}^0 u \, dz \) and \(\tilde{u} := u - \tilde{\eta} \) fulfill the following equations:

\[\begin{align*}
\partial_t \tilde{\eta} - \Delta \tilde{\eta} + \nabla \tilde{u}p &= \tilde{f} - \tilde{\eta} \cdot \nabla \tilde{\eta} + \frac{1}{h} \int_{-h}^0 (\tilde{u} \cdot \nabla \tilde{\eta} + \text{div} \nabla \tilde{\eta}) \, dz - \frac{1}{h} u_c|_{\Gamma_s} \quad \text{in } G, \\
\text{div} \nabla \tilde{\eta} &= 0 \quad \text{in } G. \tag{4.3} \end{align*} \]

with \(u_c := \partial_t u \), as well as

\[\partial_t \tilde{u} - \Delta \tilde{u} + \tilde{u} \cdot \nabla \tilde{u} + u_3 u_c + \tilde{\eta} \cdot \nabla \tilde{u} = \tilde{f} - \tilde{\eta} \cdot \nabla \tilde{\eta} + \frac{1}{h} \int_{-h}^0 (\tilde{u} \cdot \nabla \tilde{\eta} + \text{div} \nabla \tilde{\eta}) \, dz + \frac{1}{h} u_c|_{\Gamma_s} \quad \text{in } \Omega. \tag{4.4} \]

\textbf{Step 1: Equation (4.3) implies}

\[\partial_t \|\nabla \tilde{\eta}(t)\|_{L^2_2(\Omega)}^2 + \|\Delta \tilde{\eta}\|_{L^2_2(\Omega)}^2 + \|\nabla \tilde{u}p\|_{L^2_2(\Omega)}^2 \leq C_1 \left(\|\tilde{\eta}\|_{L^2_2(\Omega)}^2 + \|\nabla \tilde{u}\|_{L^2_2(\Omega)}^2 + \|u_c\|_{L^2(\Gamma_s)}^2 + \|f\|_2^2 \right). \]

\textbf{Step 2:} Multiplying (2.2) by \(-\partial_t u_c \) and integrating by parts leads to

\[\frac{1}{2} \partial_t \|u_c\|_2^2 + \|\nabla u_c\|_{L^2_2(\Omega)}^2 = - \int_G \nabla \tilde{u}p \cdot u_c|_{\Gamma_s} - \int_\Omega \langle u_c \cdot \nabla \tilde{u}\rangle \cdot u_c + \int_\Omega \text{div} \nabla \tilde{u}p \cdot u_c - \int_\Omega f \cdot \partial_t u_c. \]
Therefore, by using a Cauchy–Schwartz inequality in the latter and proceeding as in [8], we obtain that equation (6.7) in [8] generalizes to the following one

\[\partial_t \| u_t \|^2 + \| \nabla u_t \|^2 \leq C \left(\| u \|_{H^1} + \| u \|_{H^1}^2 + \frac{1}{2} \| \nabla H p \|^2_{L^2(\Omega)} + 2C_1 \| \nabla u_t \|^2 + C \left(\| u \|_{H^1}^2 + \| f \|_2^2 \right) \right). \]

Step 3: Equation (4.4) implies

\[\frac{1}{4} \partial_t \| u_t \|^2 + \frac{1}{2} \| \nabla u_t \|^2_{L^2} + \| u_t \| \nabla u_t \|_2^2 = - \int_\Omega (\tilde{u} \cdot \nabla \tilde{u}) \cdot \tilde{u}^2 + \frac{1}{R} \int_0^R (\tilde{u} \cdot \nabla \tilde{u} + \text{div} \tilde{u} \tilde{u}) \, dz \cdot |\tilde{u}|^2 \tilde{u} + \frac{1}{R} \int_{\Omega_t} u_t |x_3 \cdot |\tilde{u}|^2 \tilde{u} + \int_\Omega \tilde{f} \cdot |\tilde{u}|^2 \tilde{u}. \]

The last term on the right-hand side is bounded by \(\| \tilde{f} \|_2 \| \tilde{u} \|_2^3 \). We see moreover that

\[\| \tilde{u} \|_2^3 \leq \left(\| \tilde{u} \|_2^2 \right)^{3/2} \leq C \left(\| \tilde{u} \|_2^2 \right)^{3/2} \leq C \left(\| \nabla |\tilde{u}|^2 \|_2 \right)^{3/4} \]

where we have used the embedding \(W^{1/2,2}(\Omega) \hookrightarrow L^3(\Omega) \) and an interpolation inequality. It then follows that

\[\int_\Omega \tilde{f} \cdot |\tilde{u}|^2 \tilde{u} \leq C \| \tilde{f} \|_2 \| \tilde{u} \|_4^4 + C \| \tilde{f} \|_2 \| \nabla |\tilde{u}|^2 \|_2^{1/4} \]

\[\leq C \left(\| \tilde{f} \|_2 \| \tilde{u} \|_4^4 + C \| \nabla |\tilde{u}|^2 \|_2^{1/4} \right) \]

where\(C_3 := 2(C_1 + 2C_2) \).

Step 4: Combining Steps 1–3, we see that estimate (6.10) in [8] is now being replaced by

\[\partial_t \left(8 \| \nabla u \|_{L^2(\Omega)}^2 \right) + \| u_t \|_2^2 + \frac{C_4}{4} \| u_t \|_4^4 + \frac{1}{2} \left(\| \nabla H p \|^2_{L^2(\Omega)} + \| \nabla u_t \|^2_2 + C_3 \| \tilde{u} \| \nabla \tilde{u} \|_2^2 \right) \]

\[\leq K_1(t) \left(8 \| \nabla u \|_{L^2(\Omega)}^2 + \| u_t \|_2^2 + (C_3/4) \| u_t \|_4^4 \right) + K_2(t), \]

where, thanks to (4.2), the functions \(K_1 \) and \(K_2 \) given by

\[K_1(t) := C \left(1 + \| u \|_2^2 + \| u \|_2^2 + \| u \|_{H^1}^2 + \| u \|_{H^1}^2 + \| f \|_2^2 \right), \]

\[K_2(t) := C \left(1 + \| u \|_2^2 + \| u \|_2^2 \right) \]

3988
are integrable on $[0, T]$. We thus conclude by Gronwall’s inequality that
\[
\|\nabla u(t)\|_{L^2(G)}^2 + \|u(t)\|_2 + \|\bar{u}(t)\|_4 + \int_0^t \left(\|\nabla u(t)\|_{L^2(G)}^2 + \|\nabla u(t)\|_2^2 + \|\bar{u}\| \nabla \bar{u} \|_2^2 \right) \, d\tau
\]
(4.5)
must be bounded by some $B_1(\|a\|_{H^1}, \|f\|_{L^2(G)}), T)$ for all $t \in [0, T]$.

Step 5: Following the estimates in Step 5 of [8], we obtain now
\[
\begin{align*}
\partial_t \|u\|_2^2 + \|\Delta u\|_2^2 & \leq C \|u(t)\|_2 \|\nabla u(t)\|_2^2 \|\nabla u\|_2^2 + C(\|\bar{u}\|_{H^1(G)}^2 + \|\bar{u}\|_4^4) \|u\|_{H^1}^2 + C \|f\|_2^2, \\
\end{align*}
\]
where, thanks to (4.2) and to the estimate for (4.5),
\[
C \|u(t)\|_2 \|\nabla u\|_2^2 \quad \text{and} \quad C(\|\bar{u}\|_{H^1(G)}^2 + \|\bar{u}\|_4^4) \|u\|_{H^1}^2 + C \|f\|_2^2
\]
are integrable on $[0, T]$. Thus, Gronwall’s inequality yields the desired estimate (4.1). The proof is complete. \qed

5. Weak-strong uniqueness and proof of the main result

In this final section we give a proof of theorem 2.4 based on a weak-strong uniqueness argument for the initial-value problem. More precisely, given $f \in L^2(0, T; L^2(\Omega))$, let v be a weak T-periodic solution corresponding to proposition 3.1. We assume f to be time-dependent and note that the case where f does not depend on time is treated in entirely analogous way.

By properties (i) and (iii) we infer that there exists $t_0 > 0$ such that $v(t_0) \in H^1(\Omega)$ and
\[
|v(t)|_2^2 + 2 \int_{t_0}^t \|\nabla v(\tau)\|_2^2 \, d\tau \leq |v(t_0)|_2^2 + 2 \int_{t_0}^t (f(\tau), \nabla v(\tau)) \, d\tau, \quad t \geq t_0, \quad (5.1)
\]
while from (ii) we deduce that, for arbitrary $T > 0$, the following relation
\[
\int_{t_0}^t \left\{ (v, \partial_t \varphi) - (\nabla v, \nabla \varphi) - (v, \nabla u) + w(v) \partial_t \varphi, \varphi \right\} = - \int_{t_0}^t (f(\tau), \varphi(\tau)) - (v(t_0), \varphi(t_0)) \quad (5.2)
\]
holds for all $t \in (t_0, T]$ and all $\varphi \in C^1([t_0, T]; H^1(\Omega)) \cap L^2(0, T; H^2(\Omega))$. Note that in (5.2) we have used the identity
\[
(v, \nabla \varphi + w(v) \partial_t \varphi, \varphi) = -(v, \nabla \varphi + w(v) \partial_t \varphi, \varphi), \quad (v, \varphi) \in H^1(\Omega) \times H^2(\Omega), \quad (5.3)
\]
which follows by integration by parts.

We now look at our weak time-periodic solution as a weak solution to the initial-value problem with initial data $a \equiv v(t_0)$. Since $v(t_0) \in H^1(\Omega)$ we may use it also as initial value for the global strong solution determined in proposition 4.1. The assertion of theorem 2.4 follows provided we are able to show that the weak solution coincides with the strong one.

As a matter of fact, such a weak-strong uniqueness result is already known, under slightly different boundary conditions; see [7, theorem 1.3]. The arguments used there would equally apply to the case at hand. Nevertheless, we shall sketch a proof here. To this end, let u be the velocity field of the strong solution determined in proposition 4.1 corresponding to f and initial data $v(t_0)$. Clearly, u satisfies
\int_{t_0}^{t} \left\{ (u, \partial_t \varphi) - (\nabla u, \nabla \varphi) + (u \cdot \nabla \varphi + w(u) \partial_t \varphi, u) \right\} = - \int_{t_0}^{t} (f, \varphi) + (u(t), \varphi(t)) - (v(t_0), \varphi(t_0)), \tag{5.4}

for all \(t \in (t_0, T) \) and all \(\varphi \). In addition, thanks to the regularity properties of \(u \), we see that

\[
\|u(t)\|_2^2 + 2 \int_{t_0}^{t} \|\nabla u(\tau)\|_2^2 d\tau = \|v(t_0)\|_2^2 + 2 \int_{t_0}^{t} (f(\tau), u(\tau)) d\tau, \quad t \geq t_0.
\] \tag{5.5}

Next, let

\[
v_h(t) := \int_{0}^{T} j_h(t-s)v(s) \, ds \quad \text{and} \quad u_h(t) := \int_{0}^{T} j_h(t-s)u(s) \, ds
\]

be the (Friedrichs) time-mollifier of \(v \) and \(u \), respectively, where \(j_h \in C^\infty(-h, h) \), \(0 < h < T \), is even and positive with \(\int_{-h}^{h} j_h(s) \, ds = 1 \). Then, as is well known,

\[
\lim_{h \to 0} \int_{0}^{T} \|v_h(\tau) - v(\tau)\|_{L^2}^2 = 0, \quad \text{ess sup}_{t \in [0,T]} \|v_h(t)\|_2 \leq \text{ess sup}_{t \in [0,T]} \|v(t)\|_2 \text{ and,}
\]

\[
\lim_{h \to 0} \int_{0}^{T} \|u_h(\tau) - u(\tau)\|_{H^1}^2 = 0, \quad \text{ess sup}_{t \in [0,T]} \|u_h(t)\|_{H^1} \leq \text{ess sup}_{t \in [0,T]} \|u(t)\|_{H^1}. \tag{5.6}
\]

Moreover,

\[
\int_{t_0}^{t} (v, \partial_t u_h) = - \int_{t_0}^{t} (u_h, \partial_t v) + (u_h(t), v(t)) - (u_h(t_0), v(t_0)), \tag{5.7}
\]

while the weak continuity of \(v \) and \(u \) implies

\[
\lim_{h \to 0} (u(t), v_h(t)) = \lim_{h \to 0} (u_h(t), v(t)) = (u(t), v(t)), \quad t \geq t_0. \tag{5.8}
\]

Finally, setting \(\sigma := v - u \), by integrating by parts we get

\[
(\sigma \cdot \nabla u + w(\sigma) \partial_t u, u) = 0, \quad \sigma \in H^1(\Omega). \tag{5.9}
\]

We now replace \(\varphi \) in (5.2) by \(u_h \), then use (5.3) with \(v = u \) and \(\phi \equiv \varphi \) in (5.4) and replace in the latter \(\varphi \) by \(v_h \). Summing side by side the resulting equations and employing (2.4), (2.5), (5.6), (5.8) and (5.9) we show that

\[
\int_{t_0}^{t} \left\{ -2(\nabla v, \nabla u) - (\sigma \cdot \nabla u \sigma + w(\sigma) \partial_t \sigma, u) \right\} \, d\tau = - \int_{t_0}^{t} f \cdot (u + v) \, d\tau + \int_{t_0}^{t} \left[(v(t), u(t)) - \|v(t_0)\|_2^2 \right] \, d\tau. \tag{5.10}
\]

Adding twice (5.10) to (5.1) and (5.5) we infer

\[
\|\sigma(t)\|_2^2 + 2 \int_{t_0}^{t} \|\nabla \sigma(\tau)\|_2^2 \, d\tau \leq 2 \int_{t_0}^{t} \left\{ (\sigma(\tau) \cdot \nabla u(\tau) + w(\sigma) \partial_t \sigma(\tau), u(\tau)) \right\} \, d\tau.
\]

In order to estimate the above right-hand side we use (5.3) and (2.4), (2.5) with \(v_1 = v_2 \equiv \sigma \) and \(v_3 \equiv u \), respectively, and Poincaré’s and Young’s inequalities to deduce

\[
\|\sigma(t)\|_2^2 + 2 \int_{t_0}^{t} \|\nabla \sigma(\tau)\|_2^2 \, d\tau \leq C \int_{t_0}^{t} \{ \|\sigma(\tau)\|_2^2 \|\nabla u(\tau)\|_2 + \|\partial_t u(\tau)\|_2 \|\partial_t \sigma(\tau)\|_2 \} \, d\tau
\]

\[
\leq C \int_{t_0}^{t} \|\sigma(\tau)\|_2^2 \, d\tau + \int_{t_0}^{t} \|\nabla \sigma(\tau)\|_2^2 \, d\tau.
\]
where \(g(\tau) := \|\nabla H u(\tau)\|_2^4 + \|\partial_z u(\tau)\|_2^4 \|\partial_t u(\tau)\|_n^4 \). By the regularity properties of \(u \) it follows that \(g \in L^1(t_0, t) \) for arbitrary \(t > t_0 \), so that by Grönwall’s lemma we conclude that

\[
\sigma \equiv v - u = 0 \text{ a.e. in } \Omega \times (t_0, t) \text{ for all } t > t_0.
\]

By the time-periodicity of \(v \) this proves the desired regularity for \(v \). The proof of the theorem 2.4 is complete.

Acknowledgments

The work of G P Galdi was partially supported by NSF DMS Grant 1614011, and a DFG-Mercator Professorship at the Department of Mathematics TU Darmstadt.

References

[1] Cao C and Titi E S 2007 Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics *Ann. Math.* 166 245–67

[2] Galdi G P 2000 An introduction to the Navier–Stokes initial-boundary value problem *Fundamental Directions in Mathematical Fluid Mechanics (Advances in Mathematical Fluid Mechanics)* (Basel: Birkhäuser) pp 1–70

[3] Galdi G P 2011 *An Introduction to the Mathematical Theory of Navier–Stokes Equations: Steady- State Problems* (Berlin: Springer)

[4] Galdi G P and Kyed M 2016 Time periodic solutions to the Navier–Stokes equations *Handbook of Mathematics Analysis in Mechanics of Viscous Fluids* (Berlin: Springer)

[5] Hieber M and Kashiwabara T 2016 Global strong well-posedness of the three dimensional primitive equations in \(L^p \)-spaces *Arch. Ration. Mech. Anal.* 221 1077–115

[6] Kukavica I, Pei Y, Rusin W and Ziane M 2014 Primitive equations with continuous intial data *Nonlinearity* 27 1135–55

[7] Li J and Titi E 2016 Recent advances concerning certain class of geophysical flows preprint (arXiv:1604.01695)

[8] Lions J L 1969 *Quelques Methodes de Résolution des Problèmes aux Limites Non Linéaires* (Paris: Dunod)

[9] Lions J L, Temam R and Wang S 1995 Mathematical theory of the coupled atmosphere-ocean model *J. Math. Pures Appl.* 74 105–63

[10] Maremonti P 1991 Existence and stability of time periodic solutions to the Navier–Stokes equations in the whole space *Nonlinearity* 4 503–29
[20] Maremonti P and Padula M 1999 Existence, uniqueness, and attainability of periodic solutions of the Navier–Stokes equations in exterior domains J. Math. Sci. 93 719–46

[21] Petcu M, Temam R and Ziane M 2009 Some mathematical problems in geophysical fluid dynamics Handbook of Numerical Analysis vol 14 pp 577–750 (Berlin: Springer)

[22] Prodi G 1960 Qualche risultato riguardo alle equazioni di Navier–Stokes nel caso bidimensionale Rend. Sem. Univ. Padova 30 1–15

[23] Prouse G 1963 Soluzioni periodiche delle equazioni di Navier–Stokes Rend. Atti. Accad. Naz. Lincei 35 403–9

[24] Serrin J 1959 A note on the existence of periodic solutions of the Navier–Stokes equations Arch. Ration. Mech. Anal. 3 120–2

[25] Tachim Medjo T 2010 Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean Discrete Contin. Dyn. Syst. 26 1491–508

[26] Vallis K G 2006 Atmospheric and Oceanic Fluid Dynamics (Cambridge: Cambridge University Press)

[27] Yamazaki M 2000 The Navier–Stokes equations in the weak-L^p space with time-dependent external force Math. Ann. 317 635–75