Kazhdan’s Theorem on Arithmetic Varieties

J.S. Milne

Abstract. Define an arithmetic variety to be the quotient of a bounded symmetric domain by an arithmetic group. An arithmetic variety is algebraic, and the theorem in question states that when one applies an automorphism of the field of complex numbers to the coefficients of an arithmetic variety the resulting variety is again arithmetic. This article simplifies Kazhdan’s proof. In particular, it avoids recourse to the classification theorems.

It was originally completed on March 28, 1984, and distributed in handwritten form.

Contents

1. Generalities on arithmetic varieties; definition of \tilde{X}^σ and Q 4
2. A criterion to be an arithmetic variety 9
3. The Bergmann metric on \tilde{X}^σ 14
4. Subbundles of $T(\tilde{X})$ 21
5. Completion of the proof 22
References 25

Let X be a nonsingular algebraic variety over \mathbb{C} whose universal covering manifold \tilde{X} is a symmetric Hermitian domain (i.e., a symmetric Hermitian space without Euclidean or compact factors). Then the group $\text{Aut}(\tilde{X})$ of automorphisms of \tilde{X} (as a complex manifold) has only finitely many connected components, and its identity component $\text{Aut}(\tilde{X})^+$ is a real semisimple Lie group with no compact factors. The variety X will be said to be arithmetic if the group Γ of covering transformations of \tilde{X} over X is torsion-free and is an arithmetic subgroup of $\text{Aut}(\tilde{X})$ in the sense that there is a linear algebraic group G over \mathbb{Q} and a surjective homomorphism $f : G(\mathbb{R})^+ \to \text{Aut}(\tilde{X})^+$ with compact kernel carrying $G(\mathbb{Z}) \cap G(\mathbb{R})^+$ into a group commensurable with Γ.

The theorem in question is the following:

Theorem 0.1. If X is an arithmetic variety, then, for all automorphisms σ of \mathbb{C}, σX is also an arithmetic variety.
The result was first stated, with some indications of a proof, by Kazhdan in his talk at the Nice Congress in 1970 (Kazhdan 1971), but, in fact, it is only recently
1 that the proof has been completed.

In the case that \(X \) is compact, a detailed proof of (0.1) was given by Kazhdan in his talk at the Budapest conference in 1971 (Kazhdan 1975). There is now an alternative approach to this case of the theorem: roughly speaking, the first part of Kazhdan’s paper, where the nondegeneracy of the Bergmann metric on the universal covering manifold of \(\sigma X \) is established, can be replaced by an appeal to Yau’s theorem on the existence of Kähler-Einstein metrics; the second, group-theoretic part, of the paper can be replaced by an appeal to the general results of Margulis (see (2.7) below).

Let \(X' \to X \) be a finite étale morphism. If \(X \) is arithmetic, then clearly so also is \(X' \), and the converse assertion is true provided the fundamental group of \(X \) is torsion-free. From this it follows that it suffices to prove (0.1) under the hypothesis:

\[
(0.2) \text{ There exists an almost } \mathbb{Q}\text{-simple, simply connected algebraic group } G \text{ over } \mathbb{Q}, \text{ a surjective homomorphism } f : G(\mathbb{R}) \to \text{Aut}(\tilde{X})^+ \text{ with compact kernel, and a congruence subgroup } \Gamma \subset G(\mathbb{Q}) \text{ such that } X \text{ is equal to } f(\Gamma) \backslash \tilde{X} \text{ with its unique algebraic structure.}
\]

The group \(G \) will then be of the form \(G = \text{Res}_{F/\mathbb{Q}} G' \) with \(G' \) an absolutely almost-simple group over a totally real number field \(F \). The type of \(G_\mathbb{R} \) \((A, B, C, D^\mathbb{R}, D^\mathbb{H}, E_6, E_7; \text{cf. Deligne 1979}) \) will be called the type of \(X \).

If \(X \) is as in (0.2) and of type \(A, B, C, D^\mathbb{R}, \text{ or } D^\mathbb{H} \), then it is a moduli variety for a class of abelian varieties with a family of Hodge cycles and a level structure—see for example (Milne and Shih 1982, §2). (In the case \(D^\mathbb{H} \) one should assume that the image of \(\Gamma \) in \(G^{\text{ad}}(\mathbb{Q}) \) is a congruence subgroup there.) For any automorphism \(\sigma \) of \(\mathbb{C} \), the conjugate variety \(\sigma X \) will be a moduli variety for the conjugate class of abelian varieties with extra structure, and so is again an arithmetic variety. Thus (0.1) is true for arithmetic varieties of these types. (Note that this argument makes use of Deligne’s theorem (Deligne 1982) that a Hodge cycle on an abelian variety is absolutely Hodge.)

Kazhdan (1983) proves the following result:

let \(X \) be as in (0.2), noncompact, and of type \(E_6, E_7, \text{ or mixed type } (D^\mathbb{R}, D^\mathbb{H}); \text{ then, if one assumes a certain result in the theory of group representations (Conjecture 3.17 below), (0.1) is true for } X.\)

1 Added 22.06.01. Recall that the article was written in 1984.
2 Added 22.06.01. For a different proof, see

Nori, M. V.; Raghunathan, M. S., On conjugation of locally symmetric arithmetic varieties. Proceedings of the Indo-French Conference on Geometry (Bombay, 1989), 111–122, Hindustan Book Agency, Delhi, 1993.
A weak form of (3.17), sufficient for the purpose of proving (0.1), has recently been established by L. Clozel. Thus this last result of Kazhdan, together with the proofs for compact varieties and moduli varieties, suffices to prove (0.1).

For his proof in these last cases, Kazhdan shows, case-by-case, that X contains an arithmetic subvariety X' associated with a subgroup G' of G such that

$$\dim X > \dim X' > \dim (X^* \setminus X)$$

where X^* is the canonical (Baily-Borel) compactification of X. Because (0.1) is known for curves (they are all of type A_1), in proving (0.1) for X he can assume by induction on the dimension that it holds for X'.

In these notes, I modify Kazhdan’s arguments to give a uniform proof that (0.1) holds for all X (satisfying (0.2)) such that

1. $\text{codim}(X^* \setminus X) \geq 3$ (i.e., the codimension of the boundary in X^* is at least 3);
2. G' contains a maximal torus T' that splits over an imaginary quadratic extension of F and is such that $T'({\mathbb R})$ is compact.

The proof does not use the classification and avoids treating the compact varieties separately, but it does assume (0.1) for the case of arithmetic varieties of type A_1 (for these varieties it is easily proved using moduli varieties). It also, of course, makes use of Clozel’s result.

Let X satisfy (0.2). A construction of Piatetsky-Shapiro and Borovoi allows one to embed X into an arithmetic variety X' satisfying also (0.3). I do not know whether it is possible to prove directly that (0.1) for X' implies (0.1) for X, but in any case one has the implications:

$$(0.1) \text{ for all arithmetic varieties satisfying (0.2) and (0.3) } \implies \text{ Langlands's conjecture (Langlands 1979, p232–33) for all Shimura varieties }$$

$$\implies (0.1) \text{ for all arithmetic varieties.}$$

See Milne 1983 or Borovoi ...

The first section of these notes contains generalities on arithmetic varieties. Also a group Q is defined that will play the role of $G(\mathbb{Q})/Z(\mathbb{Q})$ for the conjugate variety σX. Criteria are given in §2 for a variety to be arithmetic; in conjunction with Yau’s theorem, they suffice to show that σX is arithmetic in the case that X is compact. In §3 Clozel’s result is used to show that the Bergmann volume form on a certain covering manifold of σX is not identically zero. In the next section, the subbundles of the tangent bundle on \bar{X} are studied and, finally, in §5 the main theorem is proved.
1. Generalities on arithmetic varieties; definition of \tilde{X}^σ and Q

Let G be a simply connected semisimple algebraic group over \mathbb{Q}, and let \tilde{X} be a symmetric Hermitian domain on which $G(\mathbb{R})$ acts in such a way that

$$\tilde{X} \approx G(\mathbb{R})/(\text{maximal compact subgroup}).$$

We always assume that G has no \mathbb{Q}-factor that is anisotropic over \mathbb{R}. For any compact open subgroup K of $G(\mathbb{A}_f)$, $K \cap G(\mathbb{Q})$ is a congruence subgroup of $G(\mathbb{Q})$, and we let $\Gamma = \Gamma(K)$ be its image in $G^{ad}(\mathbb{Q})$. Clearly $\Gamma(K) = \Gamma(K \cdot \mathbb{Z}(\mathbb{Q}))$, where $\mathbb{Z} = \mathbb{Z}(G)$, and so we can always assume that $K \supset \mathbb{Z}(\mathbb{Q})$. Let X_K, or X_Γ, denote $\Gamma(K) \backslash \tilde{X}$ regarded as an algebraic variety. The strong approximation theorem shows that $G(\mathbb{Q})$ is dense in $G(\mathbb{A}_f)$, and it follows that

$$X_K(\mathbb{C}) \overset{df}{=} \Gamma \backslash \tilde{X} \cong G(\mathbb{Q}) \backslash \tilde{X} \times G(\mathbb{A}_f)/K.$$

The actions on the right hand term are

$$q(x, a)k = (qx, qak), \quad q \in G(\mathbb{Q}), \quad x \in \tilde{X}, \quad a \in G(\mathbb{A}_f), \quad k \in K.$$

Let S denote the set of compact open subgroups K of $G(\mathbb{A}_f)$ containing $\mathbb{Z}(\mathbb{Q})$ and such that $\Gamma(K)$ is torsion-free. The groups $\Gamma(K)$, $K \in S$, have the following properties:

- each $\Gamma(K)$ is an arithmetic subgroup;
- $\bigcap_{K \in S} \Gamma(K) = \{1\}$;
- if K_1, \ldots, K_m are in S, then $K = \bigcap K_i$ is in S and $\Gamma(K) = \bigcap \Gamma(K_i)$;
- if $q \in G^{ad}(\mathbb{Q})$ and $K \in S$, $q\Gamma(K)q^{-1} = \Gamma(qKq^{-1})$ with $qKq^{-1} \in S$.

We shall often identify the elements of S with their images in $G(\mathbb{A}_f)/\mathbb{Z}(\mathbb{Q})$.

Consider the projective system $(X_K)_{K \in S}$ of algebraic varieties. There is a left action of $G(\mathbb{A}_f)$ on this system:

$$g: X_K \rightarrow X_{gKg^{-1}}, \quad [x, a] \mapsto [x, ag^{-1}], \quad x \in \tilde{X}, \quad a, g \in G(\mathbb{A}_f).$$

Let $\hat{X} = \varprojlim X_K$ — this is an irreducible scheme over \mathbb{C} (not of finite-type!).

Lemma 1.1. There are natural bijections (of sets)

$$\hat{X}(\mathbb{C}) \cong \varprojlim X_K(\mathbb{C}) \cong G(\mathbb{Q}) \backslash \tilde{X} \times G(\mathbb{A}_f) \cong (G(\mathbb{Q})/\mathbb{Z}(\mathbb{Q})) \backslash \tilde{X} \times (G(\mathbb{A}_f)/\mathbb{Z}(\mathbb{Q})).$$

Proof. Only the middle bijection requires proof. Recall the following result (Bourbaki 1989, III 7.2): consider a projective system (G_α) of topologically groups acting continuously and compatibly on a topological space S; then the canonical map $S/\varprojlim G_\alpha \rightarrow \varprojlim (S/G_\alpha)$ is bijective if

(a) the isotropy group in G_α of each $s \in S$ is compact, and
(b) the orbit $G_\alpha s$ of each $s \in S$ is compact.

Apply this with $S = G(\mathbb{Q}) \backslash \tilde{X} \times G(\mathbb{A}_f)$ and $(G_\alpha) = (K)$. Then (a) holds because each isotropy group is $\mathbb{Z}(\mathbb{Q})$, and (b) holds because K is compact. As $\varprojlim K = \cap K = 1$, we have

$$\hat{X}(\mathbb{C}) \cong \varprojlim X_K(\mathbb{C}) \cong G(\mathbb{Q}) \backslash \tilde{X} \times G(\mathbb{A}_f) \cong (G(\mathbb{Q})/\mathbb{Z}(\mathbb{Q})) \backslash \tilde{X} \times (G(\mathbb{A}_f)/\mathbb{Z}(\mathbb{Q})).$$
we have that
\[G(\mathbb{Q}) \backslash \hat{X} \times G(\mathbb{A}_f) \to \lim_{\leftarrow} G(\mathbb{Q}) \backslash \hat{X} \times G(\mathbb{A}_f) / K \]
is bijective, as required.

The action of \(G(\mathbb{A}_f) \) on the system \((X_K)\) defines an action of \(G(\mathbb{A}_f) \) on \(\hat{X} \): for \(g \in G(\mathbb{A}_f) \), \(g: \hat{X} \to \hat{X} \) is \([x, a] \mapsto [x, ag^{-1}]\). The knowledge of \(\hat{X} \) with this action is equivalent to the knowledge of the projective system \((X_K)\) together with the action of \(G(\mathbb{A}_f) \) on it; in particular, \(X_K = K \backslash \hat{X} \). We shall sometimes use \(\hat{X} \) to denote the projective system \((X_K)\) rather than its limit. Note that the action of \(G(\mathbb{A}_f) / Z(\mathbb{Q}) \) on \(\hat{X} \) is effective.

There is an action of \(G^{\text{ad}}(\mathbb{Q})^+ \) on \(\hat{X} \):
\[\alpha[x, a] = [\alpha x, \alpha(a)], \quad \alpha \in G^{\text{ad}}(X)^+, \quad x \in \hat{X}, \quad a \in G(\mathbb{A}_f). \]
The actions of \(G(\mathbb{Q}) \) on \(\hat{X} \) defined by the maps \(G(\mathbb{Q}) \to G^{\text{ad}}(\mathbb{Q}) \) and \(G(\mathbb{Q}) \to G(\mathbb{A}_f) \) are equal:
\[[qx, qa^{-1}] = [x, a^{-1}], \quad q \in G(\mathbb{Q}), \quad x \in \hat{X}, \quad a \in G(\mathbb{A}_f). \]

Let \((X_\alpha)\) be a projective system of smooth complex algebraic varieties such that the transition maps \(X_\beta \to X_\alpha, \beta \geq \alpha, \) are étale. Then \(\hat{X} = \lim_{\leftarrow} X_\alpha \) has a canonical structure as a complex manifold: a basis for the atlas on \(\hat{X} \) is formed by the pairs \((U, \varphi)\) for which there exists an \(\alpha \) such that the projection \(p_\alpha: \hat{X} \to X_\alpha \) is injective on \(U \) and \((p_\alpha(U), \varphi \circ p_\alpha^{-1})\) is an open chart for \(X_\alpha \). We write \(\hat{X}^{\text{an}} \) for \(\hat{X} \) with this structure. Note that the topology on \(\hat{X}^{\text{an}} \) is, in general, strictly finer than the projective limit of the topologies on the \(X_\alpha^{\text{an}} \). (However, the Zariski topology on \(\hat{X} \) is the projective limit of the Zariski topologies on the \(X_\alpha \).)

In the situation considered above, if \(G(\mathbb{A}_f) \) is given the discrete topology, then
\[\hat{X}^{\text{an}} = G(\mathbb{Q}) \backslash \hat{X} \times G(\mathbb{A}_f). \]

Note that the map
\[\tilde{\tilde{\hat{X}}} \to \hat{X}^{\text{an}}, \quad x \mapsto [x, 1] \]
is injective (because \(\cap \Gamma(K) = \{1\} \)), and is an isomorphism of \(\tilde{\tilde{\hat{X}}} \) (as a complex manifold) onto a connected component of \(\hat{X}^{\text{an}} \). We shall use the following notations for the maps:

\[
\begin{array}{c c c c}
\tilde{\tilde{\hat{X}}} & \xleftarrow{p} & \hat{X}^{\text{an}} & \xrightarrow{q} \hat{X} \\
\downarrow p_{K} & & \downarrow q_{K}^{\text{an}} & & \downarrow q_{K} \\
X_K^{\text{an}} & & X_K & & \\
\end{array}
\]

When \(x \in \tilde{\tilde{\hat{X}}} \), we often write \(x_K \) and \(\hat{x} \) for \(p_K(x) \) and \(p(x) \).
Lemma 1.2. Let $g \in G(\mathbb{A}_f)/Z(\mathbb{Q})$; if g stabilizes $\tilde{X} \subset \hat{X}$, then it belongs to $G(\mathbb{Q})/Z(\mathbb{Q})$.

Proof. Let $x \in \tilde{X}$. As g stabilizes \tilde{X}, $[x,g] = [x',1]$ for some $x' \in \tilde{X}$. This means that there exists a $q \in G(\mathbb{Q})/Z(\mathbb{Q})$ such that $(qx',q) = (x,g)$ as elements of $\tilde{X} \times G(\mathbb{A}_f)/Z(\mathbb{Q})$. In particular, $q = g \in G(\mathbb{Q})/Z(\mathbb{Q})$. \qed

Now fix an automorphism σ of \mathbb{C}. The discussion above shows that there is a canonical structure of a complex manifold on $\sigma \tilde{X}$. Choose a connected component \tilde{X}^{σ} of $(\sigma \tilde{X})^{\text{an}}$, and let p^σ and p^σ_K be the inclusion $\tilde{X}^{\sigma} \rightarrow (\sigma \tilde{X})^{\text{an}}$ and the composite $(\sigma q_K)^{\text{an}} \circ p^\sigma$ respectively: thus

\[
\begin{array}{ccc}
\tilde{X}^{\sigma} & \xrightarrow{p^\sigma} & (\sigma \tilde{X})^{\text{an}} \\
\downarrow & & \downarrow \sigma \tilde{X} \\
(\sigma X_K)^{\text{an}} & \xrightarrow{p^\sigma_K} & \sigma X_K
\end{array}
\]

The group $G(\mathbb{A}_f)$ continues to act on $\sigma \tilde{X}$, and this action is compatible with the complex structure on $(\sigma \tilde{X})^{\text{an}}$. Define $Q \subset G(\mathbb{A}_f)/Z(\mathbb{Q})$ to be the stabilizer of \tilde{X}^{σ}. Note that $\tilde{X}^{\sigma} \rightarrow \sigma X_K^{\text{an}}$ is a local isomorphism. Let $x \in \tilde{X}^{\sigma}$, and let M be the universal covering manifold of σX_K^{an}. For any $m \in M$, there is a unique map $M \rightarrow \sigma \hat{X}$ such that m maps to \hat{x} and the composites $M \rightarrow \sigma \hat{X} \rightarrow \sigma X_K^{\text{an}}$ are all analytic. Clearly, $M \rightarrow \sigma \hat{X}$ is analytic, and so its image is contained in \tilde{X}^{σ}. This shows that $\tilde{X}^{\sigma} \rightarrow X^{\text{an}}$ is surjective and that \tilde{X}^{σ} is a covering manifold of X^{an}. In particular, \tilde{X}^{σ} is Zariski dense in $\sigma \hat{X}$, and so the action of Q on \tilde{X}^{σ} is effective.

Lemma 1.3. For any K in \mathcal{S}, the map

\[(k,x) \mapsto kx: K \times \tilde{X}^{\sigma} \rightarrow (\sigma \tilde{X})^{\text{an}}\]

is surjective.

Proof. Let $x \in \sigma \tilde{X}^{\text{an}}$. By what we have just proved, there exists an $\tilde{x} \in \tilde{X}^{\sigma}$ such that \tilde{x} and x have the same image in σX_K^{an}. Let $\hat{x} = p^\sigma(\tilde{x})$. Then $(\sigma q_K)(\tilde{x}) = (\sigma q_K)(x)$, and so $q_K(\sigma^{-1}\tilde{x}) = q_K(\sigma^{-1}x)$ in $X_K^{an} = K\backslash \tilde{X}^{\text{an}}$. Therefore, there exists a $k \in K$ such that $k(\sigma^{-1}\tilde{x}) = \sigma^{-1}x$, and so $k \tilde{x} = x$. \qed

Proposition 1.4. For any K in \mathcal{S}, $KQ = G(\mathbb{A}_f)/Z(\mathbb{Q})$. In particular, Q is dense in $G(\mathbb{A}_f)/Z(\mathbb{Q})$.

Proof. For any $g \in G(\mathbb{A}_f)$, $g\tilde{X}^{\sigma}$ is a connected component of $\sigma \tilde{X}^{\text{an}}$, and so the lemma shows there exists a k in K such that $kg\tilde{X}^{\sigma} = \tilde{X}^{\sigma}$. By definition, $kg \in Q$, and therefore $g \in k^{-1}Q \subset KQ$. \qed

Proposition 1.5. (a) The map

\[[x,g] \mapsto gx: Q\backslash \tilde{X}^{\sigma} \times G(\mathbb{A}_f) \rightarrow \sigma \tilde{X}^{\text{an}}\]

is an isomorphism of complex manifolds $(G(\mathbb{A}_f)$ with the discrete topology).
(b) For every K, the map
$$[x] \mapsto p_K^\sigma(x) : (Q \cap K) \backslash \tilde{X}^\sigma \to \sigma X^\text{an}_K$$
is an isomorphism of complex manifolds.

Proof. (a) The lemma shows that $\tilde{X}^\sigma \times G(\mathbb{A}_f) \to \sigma \tilde{X}^\text{an}$ is surjective, and it is obvious that the fibres of the map are the orbits of Q.

(b) As $\sigma X_K = K \backslash \sigma \tilde{X}$, it follows from (a) that there is an isomorphism
$$Q \backslash \tilde{X}^\sigma \times G(\mathbb{A}_f)/K \to \sigma X^\text{an}_K.$$
The preceding proposition can be used to show that
$$(Q \cap K) \backslash \tilde{X}^\sigma \to Q \backslash \tilde{X}^\sigma \times G(\mathbb{A}_f)/K$$
is an isomorphism.

We write $\Gamma^\sigma(K)$ for $Q \cap K$. Thus, the proposition shows that
$$\Gamma^\sigma(K) \backslash \tilde{X}^\sigma \to \sigma(\Gamma(K) \backslash \tilde{X}).$$

Proposition 1.6. For any $K \in \mathcal{S}$, Q is contained in the commensurability group of $\Gamma^\sigma(K)$.

Proof. Let $g \in Q$; we have to show that $g\Gamma^\sigma(K)g^{-1}$ is commensurable with $\Gamma^\sigma(K)$. Note that $g\Gamma^\sigma(K)g^{-1} = \Gamma^\sigma(gKg^{-1})$. Let $K' = K \cap gKg^{-1}$. The diagram of finite étale maps

$$
\begin{align*}
X_{K'} & \to \tilde{X}^\sigma \\
X_K & \to X_{gKg^{-1}}
\end{align*}
$$
gives rise to a similar diagram

$$
\begin{align*}
\sigma X_{K'} = \Gamma^\sigma(K') \backslash \tilde{X}^\sigma \\
\sigma X_K = \Gamma^\sigma(K) \backslash \tilde{X}^\sigma & \quad \sigma X_{gKg^{-1}} = \Gamma^\sigma(gKg^{-1}) \backslash \tilde{X}^\sigma
\end{align*}
$$
This shows that $\Gamma^\sigma(K')$ has finite index in both $\Gamma^\sigma(K)$ and $\Gamma^\sigma(gKg^{-1}) = g\Gamma^\sigma(K)g^{-1}$.

Remark 1.7. It follows from (1.3) that $G(\mathbb{A}_f)$ acts transitively on the space of connected components of $(\sigma \tilde{X})^\text{an}$. Thus every connected component is of the form $g\tilde{X}^\sigma$, $g \in G(\mathbb{A}_f)$, and has a stabilizer that is conjugate to Q.

Proposition 1.8. Let Z be a nonempty Q-invariant subset of \tilde{X}^σ. Assume that Z is a complex analytic subset of an open submanifold of \tilde{X}^σ and that $p_K^\sigma(Z)$ is an algebraic subvariety of σX_K for some K in \mathcal{S}; then $Z = \tilde{X}^\sigma$.

Proof. The hypotheses imply that $\tilde{Z} = \{ p^*_K(Z) \}_{K \in S}$ is a pro-algebraic subvariety of $\sigma\tilde{X}$ and is Q-invariant. As Q is dense in $G(\mathbb{A}_f)/Z(\mathbb{Q})$, \tilde{Z} is invariant under $G(\mathbb{A}_f)/Z(\mathbb{Q})$, and so $\sigma^{-1}(\tilde{Z})$ is a $G(\mathbb{A}_f)/Z(\mathbb{Q})$-invariant subscheme of \tilde{X}. Let $\tilde{Z} = \tilde{X} \cap \sigma^{-1}(\tilde{Z})$. Then \tilde{Z} is $G(\mathbb{Q})$-invariant and, as $G(\mathbb{Q})$ is dense in $G(\mathbb{R})$ and $G(\mathbb{R})$ acts transitively, this shows that $\tilde{Z} = \tilde{X}$.

For any K in S, let X^*_K be the canonical (Baily-Borel) compactification of X_K. The dimension of $X^*_K \setminus X_K$ is independent of K, and we shall write it $\dim(\partial X)$.

Corollary 1.9. Let Z be a nonempty Q-invariant analytic subset of \tilde{X}^σ such that $\dim Z > \dim(\partial X)$; then $Z = \tilde{X}^\sigma$.

Proof. Let $d = \dim Z$, and let $Z^{(d)}$ be the set of $z \in Z$ such that Z has a component of dimension d at z. Then $Z^{(d)}$ is an analytic subset of Z (Narasimhan 1966, p. 67) and is Q-invariant. Therefore, we can assume that $Z = Z^{(d)}$. The image Z' of Z in X_K (any K) is analytic and such that $Z' = Z^{(d)}$. As $\dim(X^*_K \setminus X_K) < d$, the theorem of Remmert-Stein (loc. cit., p. 123) shows that the closure \overline{Z}' of Z' in X^*_K is analytic, and Chow's theorem (loc. cit., p. 125) shows that \overline{Z}' is algebraic. Therefore $\overline{Z}' \cap X_K = Z'$ is algebraic, and the proposition applies.

A point $\tilde{x} \in \tilde{X}$ is said to be special if there exists a torus $T \subset G$ such that T_C is maximal and $T(\mathbb{R})\tilde{x} = \tilde{x}$.

Proposition 1.10. Let $x \in \tilde{X}$ be special, and let $x^\sigma \in \tilde{X}^\sigma$ be any point such that $\tilde{x}^\sigma = g(\sigma\tilde{x})$ for some $g \in G(\mathbb{A}_f)$. Consider the σ-linear map of tangent spaces $\alpha_T(x) : T_x(\tilde{X}) \to T_{x^\sigma}(\tilde{X}^\sigma)$ defined by

\[
\begin{array}{c}
\begin{array}{ccc}
T_x(\tilde{X}) & \xrightarrow{\sigma} & T_{x^\sigma}(\tilde{X}^\sigma) \\
\downarrow & & \downarrow \\
x & \xrightarrow{\sigma} & x^\sigma
\end{array}
\end{array}
\]

Then there exists a homomorphism $j : T(\mathbb{Q}) \to Q$ such that $j(T(\mathbb{Q}))$ fixes x and α commutes with the actions of $T(\mathbb{Q})$ on the two tangent spaces. The closure of $j(T(\mathbb{Q}))$ in $\text{Aut}(T_{x^\sigma}(\tilde{X}^\sigma))$ for the real topology contains an element inducing multiplication by $\sqrt{-1}$.

Proof. Let $t \in T(\mathbb{Q}) \subset G(\mathbb{A}_f)$; then $t\tilde{x} = \tilde{x}$ and so $t\sigma\tilde{x} = \sigma\tilde{x}$. As $\sigma\tilde{x} = g^{-1}\tilde{x}^\sigma$, this means that $(gtg^{-1})\tilde{x}^\sigma = \tilde{x}^\sigma$. In particular, gtg^{-1} maps one point of X^σ into \tilde{X}^σ and so stabilizes \tilde{X}^σ. Thus $gtg^{-1} \in Q$, and we can define $j(t) = gtg^{-1}$. By construction, $j(t)$ fixes x^σ, and it is routine to check that α carries the action of t on $T_x(\tilde{X})$ into the action of $j(t)$ on $T_{x^\sigma}(\tilde{X}^\sigma)$ ($\alpha = dg \circ (dp_K)^{-1} \circ d\sigma \circ dp_K$; the actions of t on \tilde{X}, X_K, and σX_K commute with p_K, σ, and p_K^*, and the action of t on \tilde{X}^σ is transformed by g: $\tilde{X}^\sigma \to \tilde{X}^\sigma$ into the action of gtg^{-1}). To prove the last assertion of the proposition, we need a lemma.

Lemma 1.11. Let T be a torus over \mathbb{Q}. For each automorphism σ of \mathbb{C}, there is a unique automorphism $t \mapsto t^\sigma$ of $T(\mathbb{C})$ such that $\chi(t^\sigma) = \sigma\chi(t)$, all $t \in T(\mathbb{C})$, $\chi \in X^*(T)$. The map $t \mapsto t^\sigma$ is continuous and, if $T(\mathbb{R})$ is compact, takes $T(\mathbb{R})$ into itself. For $t \in T(\mathbb{Q})$, $\sigma(\chi(t)) = \chi(t^\sigma)$.
PROOF. There is an isomorphism
\[t \mapsto (\chi \mapsto \chi(t)) : T(\mathbb{C}) \to \text{Hom}(X^*(T), \mathbb{C}^\times), \]
and we define \(t \mapsto t^\sigma \) on \(T(\mathbb{C}) \) to correspond to the map on \(\text{Hom}(X^*(T), \mathbb{C}^\times) \) induced by the \(\mathbb{Z} \)-linear map \(\sigma : X^*(T) \to X^*(T) \). Clearly, \(\chi(t^\sigma) = (σχ)(t) \), and \(t \mapsto t^\sigma \) is the unique map with this property. The continuity is obvious. If \(T(\mathbb{R}) \) is compact, it is the unique maximal compact subgroup of \(T(\mathbb{C}) \), and so it is preserved by \(t \mapsto t^\sigma \). For \(t \in T(\mathbb{Q}) \), \(σχ(t) = (σχ)(t) = \chi(t^\sigma) \).

PROOF (OF 1.10 CONTINUED): The \(\sigma \)-linear map \(α : T_x(\tilde{X}) \to T_{x^\sigma}(\tilde{X}^\sigma) \) induces a \(\mathbb{C} \)-linear isomorphism \(\beta : \sigma T_x(\tilde{X}) \to T_{x^\sigma}(\tilde{X}^\sigma) \). Moreover,
\[\beta \circ σ(ρ_x(t)) = ρ_{x^\sigma}(j(t)) \circ β, \quad t \in T(\mathbb{Q}), \]
where \(ρ_x \) and \(ρ_{x^\sigma} \) denote the representations of \(G \) and \(Q \) on the tangent spaces at \(x \) and \(x^\sigma \). Clearly, \((σρ_x)(t) = ρ_x(t^\sigma) \), and so
\[β \circ ρ_x(t^\sigma) \circ β^{-1} = ρ_{x^\sigma}(j(t)), \quad t \in T(\mathbb{Q}). \]
As \(T(\mathbb{Q}) \) is dense in \(T(\mathbb{R}) \), it follows that for any \(γ \in T(\mathbb{R}) \) there exists a \(γ' \) in the closure of \(ρ_{x^\sigma}(j(T(\mathbb{Q}))) \) in \(\text{Aut}(T_{x^\sigma}(\tilde{X}^\sigma)) \) such that \(γ' \) acts as \(β \circ ρ_x(γ^\sigma) \circ β^{-1} \) on \(T_{x^\sigma}(\tilde{X}^\sigma) \). It is known (see, for example, Helgason 1962, VIII 4.5) that there is a \(γ \) in \(T(\mathbb{R}) \) acting as \(\sqrt{-1} \) on \(T_x(\tilde{X}) \); therefore,
\[γ' = β \circ ρ_x(γ^\sigma) \circ β^{-1} = β \circ (\text{multiplication by } \sqrt{-1}) \circ β^{-1} = \text{multiplication by } \sqrt{-1}. \]

2. A criterion to be an arithmetic variety.

Let \((M, g)\) be an oriented Riemannian manifold. There is a unique volume element \(μ \) on \(M \) having value 1 on any orthonormal frame. In local coordinates
\[g = \sum g_{ij} dx^i \otimes dx^j \]
\[μ = \sqrt{\det(g_{ij})} dx^1 \wedge dx^2 \wedge \cdots \wedge dx^m. \]
Let \(\nabla \) be the connection defined by \(g \). The curvature tensor is defined by
\[R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}. \]
In terms of local coordinates,
\[R\left(\frac{∂}{∂x^i}, \frac{∂}{∂x^j} \right) \frac{∂}{∂x^\ell} = \sum_k R^k_{ij\ell} \frac{∂}{∂x^k}. \]
The Ricci tensor \(r(X, Y) \) is determined in local coordinates by
\[r(X, Y) = \sum R_{ij} dx^i \otimes dx^j, \quad R_{ij} = \sum_k R^k_{ij}. \]

\[\text{For a complex vector space } V, σV = V \otimes_{\mathbb{C}, σ} \mathbb{C}. \]
Assume further that M is a complex manifold, with multiplication by $\sqrt{-1}$ being described by the tensor J. Then g is said to be Hermitian if $g(JX, JY) = g(X, Y)$, all X, Y. In this case

$$h(X, Y) = df g(X, Y) + ig(X, JY)$$

is a positive-definite Hermitian form. The form $\Phi(X, Y) = df g(X, JY)$ is skew-symmetric. It is called the fundamental 2-form of the Hermitian metric h, and if it is closed, h is said to be Kählerian.

Lemma 2.1. Let M be a connected complex manifold of dimension n with Kählerian Riemannian structure g. If the associated volume element is described in terms of local coordinates by

$$\mu = k \left(\frac{i}{2} \right)^n dz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_n$$

then the Ricci tensor is described by

$$r = \sum_{1 \leq i, j \leq n} \frac{\partial^2 \log k}{\partial z_i \partial \bar{z}_j} dz_i \otimes d\bar{z}_j \quad (2.1.1)$$

Proof. Helgason 1962, VIII 2.5.

In general, if $\mu = k(\frac{i}{2})^n dz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_n$ is a volume element on a complex manifold, then the tensor defined by (2.1.1) will be called the Ricci tensor, $\text{Ric}(\mu)$, of μ.

Lemma 2.2. Let M be a connected complex manifold on which a group G acts transitively, and let μ be a G-invariant volume element on M such that $g = \text{Ric}(\mu)$ is positive definite (and therefore is a Riemannian metric). Then g is equal to its Ricci tensor (and therefore is an Einstein metric).

Proof. Let μ' be the volume form associated with g. Then $\mu' = f\mu$ for some positive function f on M. As μ is G-invariant, so also are g, μ', and f. Therefore, f is constant, and so the Ricci tensor of g is $\text{Ric}(f\mu) = \text{Ric}(\mu) = g$.

Theorem 2.3. Let M be a connected complex manifold on which a unimodular Lie group G acts effectively and transitively. Assume there is a G-invariant volume element μ on M such that $\text{Ric}(\mu)$ is positive definite. Then M is a Hermitian symmetric domain, and $G \supset \text{Aut}(M)^\circ$.

Proof. This is proved in Koszul 1959, p. 61. Alternatively, one can combine the following results:

A complex homogeneous manifold with an invariant volume form whose Ricci tensor is positive definite is isomorphic to a homogeneous bounded domain (Piatetski-Shapiro 1969, p. 48).

A connected unimodular Lie group acting effectively and transitively on a bounded domain is semisimple (Hano 1957).

A bounded domain admitting a transitive semisimple group of automorphisms is symmetric (Borel 1954; Koszul 1955).
Theorem 2.4. Let \(M \) be a connected complex manifold, and endow \(\text{Aut}(M) \) with the compact-open topology. Let \(\Gamma \subset Q \) be subgroups of \(\text{Aut}(M) \) with \(\Gamma \) discrete and torsion free, and assume that an orbit of \(Q \) in \(M \) is dense. Assume also that there is a \(Q \)-invariant volume form \(\mu \) on \(M \) such that

(a) \(\text{Ric}(\mu) \) is positive definite,
(b) \(\int_{\Gamma \setminus M} \mu < \infty. \)

Then \(M \) is a Hermitian symmetric domain, and the closure \(\bar{Q} \) of \(Q \) in \(\text{Aut}(M) \) is a semisimple Lie group whose identity component is \(\text{Aut}(M)^+ \). If moreover \(Q \) is contained in the commensurability group of \(\Gamma \) in \(\bar{Q} \), then \(\Gamma \) is arithmetic and so \(\Gamma \setminus M \) is an arithmetic variety.

Proof. Let \(g = \text{Ric}(\mu) \). By assumption, \((M, g)\) is a Riemannian manifold, and so the group \(\text{Is}(M, g) \) of its isometries is a Lie group (Kobayashi 1972, II Theorem 1.1). As \(\mu \) is \(Q \)-invariant, \(Q \) is contained in \(\text{Is}(M, g) \), and its closure \(G \) is a Lie subgroup of \(\text{Is}(M, g) \). Clearly, \(G = \bar{Q} \).

Lemma 2.5. Let \((M, g)\) be a Riemannian manifold. Then, for all \(m \in M \), the map \(\text{Is}(M, g) \to M, \alpha \mapsto \alpha m \), is proper.

Proof. Let \(O(M) \) be the bundle of orthonormal frames over \(M \). Every automorphism \(\alpha \) of \(M \) defines a compatible automorphism \(\bar{\alpha} \) of \(O(M) \). Let \(u \in O(M) \) and let \(m \) be its image in \(M \). The mapping \(\alpha \mapsto \bar{\alpha}(u) \) embeds \(\text{Is}(M, g) \) as a closed submanifold of \(O(M) \) (ibid., p. 41). The projection \(O(M) \to M \) is clearly proper, and its restriction to \(\text{Is}(M, g) \) is the map \(\alpha \mapsto \alpha m \).

Proof of 2.4 continued. Let \(m \) be a point of \(M \) such that \(Qm \) is dense in \(M \). Then the lemma shows that \(\bar{G}m \) is closed and so equals \(M \). The orbit under \(G^+ \) of \(m \) contains an open set in \(M \), and so equals \(M \) (Kobayashi and Nomizu 1963, Corollary 4.8, p. 178); thus \(G^+ \) also acts transitively on \(M \). The isotropy group \(K \) at the point \(m \) is compact. Thus the fact that \(M = G^+/K \) carries a \(G^+ \)-invariant measure such that \(\Gamma \setminus M \) has finite volume implies that \(G^+ \) carries a left invariant measure relative to which \(\Gamma \cap G^+ \) has finite volume. Hence \(\Gamma \cap G^+ \) is a lattice in \(G^+ \), and so \(G \) is unimodular (the image of the modulus function \(\Delta_G \) in \(\mathbb{R}_{>0} \) is a subgroup with finite measure, and so is \(\{1\} \) — see Raghunathan 1972, 1.9). The preceding theorem now shows that \(M \) is a Hermitian symmetric domain and \(G^+ = \text{Aut}(M)^+ \).

The final statement of the theorem is a consequence of the following theorem of Margulis (Margulis 1977, Theorem 9):

Let \(G \) be a semisimple connected real Lie group with no compact factors, and let \(\Gamma \) be a lattice in \(G \); if the commensurability group of \(\Gamma \) in \(G \) is dense in \(G \), then \(\Gamma \) is an arithmetic subgroup of \(G \).

Remark. In the statement of the theorem just applied, Margulis assumes that \(\Gamma \) is irreducible, but this is unnecessary. If \(\Gamma \) is reducible, then there exist connected normal subgroups \(G_i \) of \(G \) such that \(G = \prod G_i \) (almost direct product), \(\Gamma = \prod \Gamma_i \) is an irreducible lattice in \(G_i \), and \(\prod \Gamma_i \) is a subgroup of finite index in \(\Gamma \). Clearly, the commensurability group of \(\Gamma \) in \(G \) is the product of the commensurability groups.
of the Γ_i: $\text{Comm}(\Gamma) = \prod \text{Comm}(\Gamma_i)$. Thus, if $\text{Comm}(\Gamma)$ is dense in G, each group $\text{Comm}(\Gamma_i)$ is dense in G_i, and Margulis’s statement can be applied to show that each Γ_i is arithmetic.

Corollary 2.6. Let X be an arithmetic variety as in §1, and suppose that there exists a Q-invariant volume element μ on \tilde{X}^σ satisfying the conditions (2.4a) and (2.4b). Assume that there exists a finite family of arithmetic subvarieties $\sigma_i: X_{\alpha} \hookrightarrow X$ such that for some special point $x \in X$, $x_\alpha = f_i^{-1}(x)$ is special in X_{α}, all α. If each σX_{α} is arithmetic, and the subspace of $T_x(X)$ generated by the $T_x(X_{\alpha})$ has dimension $> \dim(\partial X)$, then σX is arithmetic.

Proof. Let $g = \text{Ric}(\mu)$, and let M be the closure of the orbit $Q\tilde{x}$ for some $\tilde{x} \in \tilde{X}^\sigma$ lifting x. Then (M, g) is a Riemannian manifold, and the closure \bar{Q} of Q in $\text{Is}(M, g)$ acts transitively on M (by 2.5). Since $q \mapsto q\tilde{x}$, $\bar{Q} \to \tilde{X}^\sigma$, is a proper map, it is an embedding and M is a regular closed submanifold of \tilde{X}^σ. By (1.10), M has a \bar{Q}-invariant complex structure — it is therefore a complex analytic subset of \tilde{X}^σ. Since it contains $\sigma \tilde{X}_\alpha$ for each α, it has dimension $> \dim(\partial X)$, and so (1.9) shows that $M = \tilde{X}^\sigma$.

Now (2.4) can be applied. □

Remark 2.7. It is now possible to complete the proof of Theorem 0.1 in the case that X is compact. In this case, $\dim(\partial X) = -1$ and so the map $x \mapsto X$ will serve for the family $(X_{\alpha} \hookrightarrow X)$. Recall the following theorem of Yau (1978) (the Calabi conjecture):

let V be a smooth projective algebraic variety over \mathbb{C} such that K_V is ample (equivalently, $c_1(V^\text{an})$ is negative); then there exists a unique Kähler metric on V^an such that $\text{Ric}(g) = g$.

Apply this to σX and let μ be the inverse image on \tilde{X}^σ of the volume element associated with g. The uniqueness of g shows that μ is invariant under all automorphisms of \tilde{X}^σ. Since $\text{Ric}(\mu) = \tilde{g}$, it satisfies (a), and it satisfies (b) because X is compact. Thus (2.4) applies.

In the remainder of this section, we shall show that the condition (2.4b) is automatically satisfied in the context of (2.6).

A complex manifold M will be said to be compactifiable if it can be embedded as an open dense subset of a compact analytic space \bar{M} in such a way that $\bar{M} \setminus M$ is an analytic subset. Hironaka’s theorem (Hironaka 1964) then shows that \bar{M} can be chosen to be a manifold such that $\bar{M} \setminus M$ is a divisor with normal crossings. Clearly, if $M = V^\text{an}$ with V a quasi-projective algebraic variety, then M is compactifiable (in fact, not even quasi-projectivity is necessary).

Proposition 2.8. Let M be a compactifiable manifold of dimension n, and let μ be a volume form on M such that

$$\text{Ric}(\mu) \text{ is positive-definite and } \text{Ric}(\mu)^n \geq \mu \quad (2.8.1)$$

Then $\int_M \mu < \infty$.

Let
\[D(a) = \{ z \in \mathbb{C} \mid |z| < a \} \]
\[D^*(a) = \{ z \in \mathbb{C} \mid 0 < |z| < a \}. \]

Lemma 2.9. For \(\delta < 1 \),
\[\int_{D(\delta)} \frac{i}{\pi} \frac{dz \wedge d\bar{z}}{(1 - |z|^2)^2} = \frac{2\delta^2}{1 - \delta^2} \]
\[\int_{D^*(\delta)} \frac{i}{\pi} \frac{dz \wedge d\bar{z}}{|z|^2(\log |z|^2)^2} = \frac{-1}{\log \delta}. \]

Proof. Put \(z = te^{i\theta}, \bar{z} = te^{-i\theta} \). Then \(dz \wedge d\bar{z} = 2itd\theta \wedge dt \). Thus,
\[\int_{D(\delta)} \frac{i}{\pi} \frac{dz \wedge d\bar{z}}{(1 - |z|^2)^2} = \int_0^\delta \frac{2it}{(1 - t^2)^2} dt = \frac{2}{1 - t^2} \bigg| _0^\delta = \frac{2\delta^2}{1 - \delta^2} \]
\[\int_{D^*(\delta)} \frac{i}{\pi} \frac{dz \wedge d\bar{z}}{|z|^2(\log |z|^2)^2} = \int_0^\delta \frac{2it}{t^2(\log t^2)^2} dt = -\int \frac{dt}{t(\log t)^2} = \frac{-1}{\log t} \bigg| _0^\delta = \frac{-1}{\log \delta}. \]

Remark 2.10. Let
\[\mu_D = \frac{i}{\pi} \frac{dz \wedge d\bar{z}}{(1 - |z|^2)^2}, \quad \mu_{D^*} = \frac{i}{\pi} \frac{dz \wedge d\bar{z}}{|z|^2(\log |z|^2)^2}. \]

Then \(\mu_D \) is the Poincaré metric on the unit disc, and \(Ric(\mu_D) = \mu_D \). The inverse image of \(\mu_{D^*} \) relative to the covering map \(D \to D^* \) is \(\mu_D \), and so \(Ric(\mu_{D^*}) = \mu_{D^*} \) also. (Cf. Griffiths 1976, p. 47.)

Lemma 2.11. Let \(\mu \) be a volume element on \(D(1)^r \times D^*(1)^{n-r} \) satisfying the estimates (2.8.1). Then
\[\mu \leq \mu_D^r \times \mu_{D^*}^{n-r}. \]

Proof. If \(r = n \), this is precisely Ahlfors’s lemma (Griffiths 1976, 2.21). Consider the covering map
\[D(1)^n \overset{\varphi}{\to} D(1)^r \times D^*(1)^{n-r}. \]
Then \(\varphi^*(\mu) \) satisfies (2.8.1), and so \(\varphi^*(\mu) \leq \mu_D^n = \varphi^*(\mu_D^r \times \mu_{D^*}^{n-r}) \). This implies that \(\mu \leq \mu_D^r \times \mu_{D^*}^{n-r} \).

Lemma 2.12. Let \(U = D(1)^n \) and let \(U' = D(1)^r \times D^*(1)^{n-r} \). Then there exists an open neighbourhood \(V \) of \(U \) in \(U' \) in \(U \) such that \(\int_V \mu_D^r \times \mu_{D^*}^{n-r} \leq \infty \).

Proof. A stronger statement is proved in (3.11) below.

Proof of 2.8. Embed \(M \) in a compact manifold \(\tilde{M} \) in such a way that \(N = M \) is a divisor with normal crossings. Then there is a finite family of open subsets \(U_i \) of \(\tilde{M} \) such that \(N \subseteq \bigcup U_i \) and, for each \(i \), the pair \((U_i, U_i \cap M) \) is isomorphic to \((D(1)^n, D(1)^r \times D^*(1)^{n-r}) \). For each \(i \), choose \(V_i \subseteq U_i \) to correspond to an open
subset of \(D(1)^n \) satisfying the conditions of (2.12). Then the complement \(C \) of \(\cup V_i \) in \(M \) is compact, and it is contained in \(M \). Thus
\[
\int_M \mu \leq \int_C \mu + \sum_{V_i \cap M} \mu \leq \int_C \mu + \sum_{V_i \cap M} \mu^r \times \mu^{n-r} < \infty.
\]

Corollary 2.13. Let \(X \) be an arithmetic variety (as in §1), and let \(U \) be an open dense \(Q \)-invariant submanifold of \(\tilde{X}^\sigma \) such that \(\tilde{X}^\sigma \setminus U \) is an analytic subset of \(\tilde{X}^\sigma \). Assume that there is a \(Q \)-invariant volume element \(\mu \) on \(U \) such that \(\text{Ric}(\mu) > 0 \). Suppose further that there exists a finite family of arithmetic subvarieties \(i_\alpha : X_\alpha \hookrightarrow X \) such that \(\tilde{X}^\sigma \setminus U \) is the image of \(U \rightarrow \sigma X \), \(i_\alpha^{-1}(x) \) is special in \(X_\alpha \) for all \(\alpha \). If each \(\sigma X_\alpha \) is arithmetic, and the subspaces \(T_x(X_\alpha) \) of \(T_x(X) \) generate it, then \(\sigma X \) is arithmetic.

Proof. Let \(\tilde{x} \in U \) map to \(\sigma x \in \sigma X \), and let \(g = \text{Ric}(\mu) \) — it is a Riemannian metric on \(U \). Define \(M \) to be the closure in \(U \) of the orbit \(Q \tilde{x} \). As in the proof of (2.6), \(M = \overline{Q \tilde{x}} \), where \(\overline{Q} \) is the closure of \(Q \) in \(\text{Is}(M, g) \), and it is a complex analytic subset of \(U \). As it contains the \(X_\alpha \) for each \(\alpha \), it also open in \(U \), and so \(M = U \).

We know \(\mu \) on \(M \) satisfies condition (2.4a), and we now check that it satisfies (2.4b). Suppose \(\text{Ric}(\mu)^n = c\mu \) at some point of \(\tilde{X}^\sigma \). Then \(c > 0 \), and because \(\overline{Q} \) acts transitively on \(M \) and \(\mu \) is \(\overline{Q} \)-invariant, we must have \(\text{Ric}(\mu)^n = c\mu \) holding on all of \(M \). Since \(\text{Ric}(c\mu) = \text{Ric}(\mu) \), this shows that \(c\mu \) satisfies the estimates (2.8.1). Therefore, so also does the volume element induced by \(c\mu \) on \(\Gamma \sigma \setminus M \), and so Proposition 2.8 implies that \(\int_{\Gamma \sigma \setminus M} c\mu < \infty \).

We can now apply (2.4) to \(M, Q, \Gamma \), and we find that \(\Gamma \setminus M \) is an arithmetic variety. In particular, it is an open algebraic subvariety of \(\sigma X \), and so (1.8) implies that \(M = \tilde{X}^\sigma \). We conclude that \(\sigma X = \Gamma \setminus M \), and so it is an arithmetic variety.

3. The Bergmann metric on \(\tilde{X}^\sigma \)

Let \(M \) be a complex manifold of dimension \(n \), and let
\[
\mathcal{H}(M) = \{ w \in \Gamma(M, \Omega_M^n) \mid \left| \int_M \omega \wedge \overline{\omega} \right| < \infty \}
\]
Then \(\mathcal{H}(M) \) is a separable Hilbert space with inner product
\[
(\omega_1|\omega_2) = i^n \int_M \omega_1 \wedge \overline{\omega}_2.
\]
Let \(\omega_0, \omega_1, \ldots \) be an orthonormal basis for \(\mathcal{H}(M) \), and let\(^6\)
\[
\mu_M = \sum \omega_i \wedge \overline{\omega}_i.
\]
\(^6\)Added 11.07.01: For the convergence of \(\sum \omega_i \wedge \overline{\omega}_i \), see, for example, Weil, A., Introduction à l’étude des variétés kählériennes, Hermann, Paris, 1958, Chapter III, Thm 1, p. 60.
This is a nonnegative C^∞ $2n$-form on M, called the Bergmann volume form. When it has no zeros it is a volume element. Note that

$$\int_M \mu_M = \dim \mathcal{H}(M).$$

Proposition 3.1. (a) Let $m \in M$; then

$$\mu_M(m) = \sup_{\omega \in \mathcal{H}(M)} (\omega \wedge \overline{\omega})(m).$$

(b) All automorphisms of M leave μ_M invariant.

(c) If M' is a connected open submanifold of M, then $\mu_M|_{M'} = c\mu_{M'}$ where c is a function on M', $0 \leq c \leq 1$; moreover, if $M \setminus M'$ is a complex analytic subvariety of dimension $\leq n - 1$, then $\mathcal{H}(M) \to \mathcal{H}(M')$ is bijective and so $\mu_M|_{M'} = \mu_{M'}$.

(d) If M_1 and M_2 are complex manifolds of dimensions n_1 and n_2, then

$$\mu_{M_1 \times M_2} = (-1)^{n_1 n_2} \mu_{M_1} \wedge \mu_{M_2}.$$

Proof. Kobayashi 1959, 2.1, 2.2, 2.3, 2.4, 2.5.

Consider the condition:

(3.2) for every $m \in M$, there exists an $\omega \in \mathcal{H}(M)$ such that $\omega(m) \neq 0$.

When this condition holds, μ_M is a volume element, and we let $h_M = \text{Ric}(\mu_M)$ be the associated Hermitian tensor.

Consider the condition:

(3.3) for all $m \in M$ and $Z \in T_m(M)$, there exists an $\omega = f dz_1 \wedge \cdots \wedge dz_m$

in $\mathcal{H}(M)$ such that $f(m) = 0$, $Z(f) \neq 0$.

Proposition 3.4. The form h_M is invariant under all automorphisms of M and is positive semi-definite. It is positive definite if and only if (3.3) holds.

Proof. Ibid. 3.1.

Remark 3.5. Let $\mathbb{P}(\mathcal{H}(M)^\vee)$ be the (possibly infinite dimensional) projective space of lines in the dual Hilbert space to $\mathcal{H}(M)$, and assume that M satisfies (3.2). Then there is a canonical map $j: M \to \mathbb{P}(\mathcal{H}(M)^\vee)$ such that, if ω_0 is nowhere zero on $U \subset M$, then $j(m), m \in U$, is the class of the map $\omega \mapsto (\omega/\omega_0)(m)$. It is possible to regard $\mathbb{P}(\mathcal{H}(M)^\vee)$ as an infinite-dimensional complex manifold, and the usual construction in the finite-dimensional case generalizes to give a complete Kähler metric on $\mathbb{P}(\mathcal{H}(M)^\vee)$. The Bergmann Hermitian form h_M on M is the inverse image under j of the canonical metric on $\mathbb{P}(\mathcal{H}(M)^\vee)$. The map j is an immersion, and h_M is a metric, if and only if (3.3) holds. (See Kobayashi 1959, §7.8 for this.)

Remark 3.6. Let X be an arithmetic variety, and assume that there exists a family $(X_0 \to X)$ as in (2.6). Then it follows from (2.6) and (2.12) that σX is an arithmetic variety if the Bergmann Hermitian form on \tilde{X}^σ is a metric; conversely, if σX is an arithmetic variety, then \tilde{X}^σ is a bounded domain and so Bergmann’s original theorem says that it has a nondegenerate Bergmann metric.
The main result of this section is a first step toward proving that $\tilde{\mathcal{X}}^\sigma$ has a nondegenerate Bergmann metric.

Theorem 3.7. With the notations of §1, $\mathcal{H}(\tilde{\mathcal{X}}^\sigma) \neq 0$.

Proposition 3.8. Let M be a compactifiable complex manifold. For all $\varepsilon > 0$, there exists an open subset U_ε in M with compact complement such that, for any étale covering $\varphi: N \to M$,

$$\left| \int_{\varphi^{-1}(U_\varepsilon)} \mu_N \right| < \varepsilon \deg \varphi$$

where μ_N is the Bergmann volume form on N.

The proof is based on the following elementary result.

Lemma 3.9. Let $\varphi_m: D^\ast(1) \to D^\ast(1)$ be the map $z \mapsto z^m$. For all $\varepsilon > 0$, there exists a δ such that

$$\left| \int_{\varphi_m^{-1}(D^\ast(\delta))} \mu_{D^\ast(1)} \right| < \varepsilon m, \quad \text{all } m.$$

Proof. The Bergmann metric on $D(1)$ is the Poincaré metric, and so from (3.1c) and (2.9) we find that

$$\int_{\varphi_m^{-1}(D^\ast(\delta))} \mu_{D^\ast(1)} = \int_{D^\ast(\delta^{1/m})} \frac{i}{\pi} \frac{dz \wedge d\bar{z}}{(1 - |z|^2)^2} = \frac{2}{(1/\delta)^{2/m} - 1}.$$

As $x - 1 > \log x$ for all $x > 1$, we see that

$$\frac{2}{(1/\delta)^{2/m} - 1} < \frac{2}{\log(1/\delta)^{2/m}} = \frac{m}{\log(1/\delta)}$$

from which the lemma is obvious. \qed

Remark 3.10. Note that the notation in this section conflicts with that in (2.10) — $\frac{dz \wedge d\bar{z}}{\pi |z|^2(\log |z|^2)^2}$ is not the Bergmann volume element on $D^\ast(1)$. Denote $\frac{dz \wedge d\bar{z}}{\pi |z|^2(\log |z|^2)^2}$ by $\nu_{D^\ast(1)}$. Then Ahlfors’s lemma applied on the covering space $D(1)$ of $D^\ast(1)$ shows that $\nu_{D^\ast(1)} \geq \mu_{D^\ast(1)}$ (cf. 2.11). Thus, we find again that

$$\int_{D^\ast(\delta^{1/m})} \mu_{D^\ast(1)} \leq \int_{D^\ast(\delta^{1/m})} \nu_{D^\ast(1)} = \frac{1}{\log(1/\delta)^m} = \frac{m}{\log(1/\delta)}.$$

Lemma 3.11. Let $U = D(1)^m$ and $U' = D(1)^r \times D^\ast(1)^{n-r}$. For all $\varepsilon > 0$, there exists an open neighbourhood V of $U \setminus U'$ on U such that for any étale covering $\varphi: N \to U'$, $|\int_{\varphi^{-1}(V)} \mu_N| < \varepsilon \deg \varphi$.

Proof. The fundamental group of U' is \mathbb{Z}^{n-r}, and so every étale covering of it is of the form

$$N = D(1)^r \times D^\ast(1)^{n-r} \to D(1)^r \times D^\ast(1)^{n-r}, \quad (z_1, \ldots) \mapsto (z_1, \ldots, z_r, z_{r+1}^{m_1}, \ldots).$$

\footnote{That is, a finite étale covering.}
The proof is too messy\footnote{Added 11.07.01: Chai suggested (in 1988) that “a short proof of the lemma seems possible.”} to write out in detail. Consider for example the case $n = 2$, $U' = D^*(1)^2$. Then

\[\text{[Picture omitted]} \]

(a) Look at $V \cap D(\delta) \times D(\delta) —$ apply (3.9).

(b) Each other connected component V_0 of V is simply connected. Thus

\[\varphi^{-1}(V_0) = \text{disjoint union of } \deg \varphi \text{ copies of } V_0. \]

Hence

\[\int_{\varphi^{-1}(V_0)} \mu_N \leq \int_{\varphi^{-1}(V_0)} \mu_{\varphi^{-1}(V_0)} = \deg(\varphi) \int_{V_0} \mu_{V_0}, \]

and so one only has to arrange things so that

\[\int_{V_0} \mu_{V_0} < \frac{\varepsilon}{100} \]

\[\square \]

\textbf{Proof of 3.8.} Embed M in a compact manifold \tilde{M} in such a way that $\tilde{M} \setminus M$ is a divisor with normal crossings. Then there is a finite family of open subsets $(U_i)_{1 \leq i \leq s}$ of M such that $\tilde{M} \setminus M \subset \cup U_i$ and, for each i, the pair $(U_i, U_i \cap M)$ is isomorphic to $(D(1)^n, D(1)^r \times D^*(1)^{n-r})$. For each i, choose a neighbourhood V_i of $U_i \setminus U_i \cap M$, as in the sublemma, for ε/s. Then the complement of $U = \cup_1^n V_i$ on \tilde{M} is compact, and it is contained in M. Moreover, for any étale covering $\varphi: \tilde{N} \to M$,

\[\left| \int_{\varphi^{-1}(U)} \mu_N \right| \leq \sum_{i=1}^{s} \left| \int_{\varphi^{-1}(V_i)} \mu_N \right| < s \left(\frac{\varepsilon}{s} \deg(\varphi) \right) = \varepsilon \deg(\varphi). \]

\[\square \]

The next result gives a criterion for showing $\mathcal{H}(\tilde{M})$ is nonzero.

\textbf{Proposition 3.12.} Let M be a compactifiable manifold of dimension n, and let $p: \tilde{M} \to M$ be an infinite Galois covering with Galois group Γ. Assume there is a sequence of normal subgroups of finite index in Γ,

\[\Gamma = \Gamma_0 \supset \Gamma_1 \supset \cdots \supset \Gamma_i \supset \cdots \supset \{1\} \]

such that $\cap \Gamma_i = \{1\}$.

Let $M_i = \Gamma_i \setminus \tilde{M}$ and let $h_i = \dim \mathcal{H}(M_i)$. Then

(a) $h_i < \infty$,

(b) $\{h_i/(\Gamma: \Gamma_i)\}$ is bounded,

(c) if the sequence $h_i/(\Gamma: \Gamma_i)$ does not tend to zero, then $\mathcal{H}(\tilde{M}) \neq 0$.

\textbf{Remark 3.13.} In general, if $\varphi: Y \to X$ is an étale covering, one can show that

\[(\deg \varphi) \varphi^*(\mu_X) \geq \mu_Y \geq \left(\frac{1}{\deg \varphi} \right) \varphi^*(\mu_X). \]
Hence

\[(\deg \varphi)^2 \int_X \mu_X \geq \int_Y \mu_Y \geq \int_X \mu_X.\]

For example, if \(Y\) is a disjoint union of copies of \(X\), then \(\mu_Y = \varphi^*(\mu_X)\) and \(\int_Y \mu_Y = \deg \varphi \cdot \int_X \mu_X\).

In the situation of the proposition, one has trivial estimates

\[(\Gamma: \Gamma_i) h_0 \geq \frac{h_i}{(\Gamma: \Gamma_i)} \geq \frac{h_0}{(\Gamma: \Gamma_i)}\]

with \(h_i = (\Gamma: \Gamma_i)\) in the case that \(\tilde{M}\) is a trivial covering of \(M\).

Proof of 3.12. As the Bergmann volume form \(\mu_{M_i}\) on \(M_i\) is \(\Gamma\)-invariant, it induces a form \(\mu_i\) on \(M\) such that \(q_i^* \mu_i = \mu_{M_i}\) where \(q_i\) is the covering map \(M_i \to M\).

Clearly,

\[\int_M \mu_i = \frac{1}{(\Gamma: \Gamma_i)} \int_{M_i} \mu_{M_i} = \frac{h_i}{(\Gamma: \Gamma_i)} \quad (3.12.1)\]

According to (3.8), there exists an open subset \(U = U_1\) with compact complement, \(C = M \setminus U\), such that

\[\left| \int_{\varphi^{-1}(U)} \mu_N \right| < \deg \varphi\]

for any étale covering \(\varphi: N \to M\). Because \(C\) is compact, there exists a finite set \((U_r)_{1 \leq r \leq s}\) of open subsets of \(M\) such that

(a) there exists isomorphisms \(\varphi_r: U_r \cong D(1)^n\) (of complex manifolds);

(b) \(\bigcup_{r=1}^{s} \varphi_r^{-1}(D(\frac{1}{2})^n) \supset C\).

Because \(q_i^{-1}(U_r)\) is a disjoint union of copies of \(U_r\), we have

\[q_i^*(\mu_{U_r}) = \mu_{q_i^{-1}(U_r)} \geq \mu_{M_i}\]

and so \(\mu_{U_r} \geq \mu_i|U_r\). Note that \(\mu_{U_r} = \varphi_r^*(\mu_{D(1)^n})\) (see 3.1d). We conclude that

\[\int_C \mu_i \leq s \int_{D(\frac{1}{2})^n} \mu_{D(1)^n} = s \left(\int_{D(\frac{1}{2})} \mu_{D(1)} \right)^n = B < \infty,\]

and that

\[\frac{h_i}{(\Gamma: \Gamma_i)} \overset{3.12.1}{=} \int_M \mu_i = \int_C \mu_i + \int_U \mu_i \leq B + 1.\]

This proves both (a) and (b).

Now assume that the sequence \(h_i/(\Gamma: \Gamma_i)\) does not tend to zero. By passing to a subsequence, we can in fact assume that for some \(a > 0\), \(h_i/(\Gamma: \Gamma_i) \geq a\) all \(i\). Choose \(U \subset M\) as in (3.8) with \(\varepsilon = a/2\), and let \(C = M \setminus U\); then

\[\int_C \mu_i = \int_M \mu_i - \int_U \mu_i = \frac{h_i}{(\Gamma: \Gamma_i)} - \int_{\varphi^{-1}(U)} \mu_{M_i} \geq a - \frac{a}{2} = \frac{a}{2}.\]
Let $\nu = \sum_{r=1}^{s} \varphi_r^*(\mu_D(1)^{n})$. We showed above that, on U_r,

$$\mu_i \leq \mu_{U_r} = \varphi_r^*(\mu_D(1)^n),$$

and so, on C, $\mu_i \leq \nu$. \hfill \qed

Lemma 3.14. There exists an $x_0 \in C$ such that a subsequence of $(\mu_i/\nu)(x_0)$ converges to some $b > 0$.

Proof. Suppose $\sup_{x \in C} ((\mu_i/\nu)(x)) \to 0$; then $\int_C \mu_i \to 0$, which contradicts the assertion above that $\int_C \mu_i = a/2$. Hence the sequence $\sup((\mu_i/\nu)(x))$ does not tend to zero, and so we can choose a subsequence of i’s for which $\sup_x ((\mu_i/\nu)(x)) \to b > 0$. Choose x_i such that $|((\mu_i/\nu)(x_i) - \sup((\mu_i/\nu)(x))| < 1/i$. Then $(\mu_i/\nu)(x_i) \to b$. Now take a subsequence of the x_i converging to a limit x_0. Then clearly, $(\mu_i/\nu)(x_0) \to b$. \hfill \qed

Lemma 3.15. Let $\bar{x}_0 \in \bar{M}$. Then there exists a sequence of open neighbourhoods

$$\cdots \subset N_i \subset N_{i+1} \subset \cdots$$

of \bar{x}_0 such that $\bar{M} = \bigcup N_i$ and the restriction of $p_i: \bar{M} \to M_i$ to N_i is an isomorphism of N_i with a dense open subset of M_i.

Proof. Choose a Riemannian metric ρ on M, and let $\bar{\rho}$ be the metric it induces on \bar{X}^σ. Define

$$N_i = \{ \bar{x} \in \bar{M} | \bar{\rho}(\bar{x}_0, \bar{x}) < \rho(\bar{x}_0, \bar{x}), \text{ all } \gamma \in \Gamma_i, \gamma \neq 1 \}.$$

Check that these sets have the right property (cf. Kazhdan 1975, p. 167). \hfill \qed

We now prove (c) of the proposition. Let x_0 be as in (3.14), and let $\bar{x}_0 \in \bar{M}$ map to it. Then, from (3.1a) we know that there exists an $\omega_i \in \mathcal{H}(M_i)$ such that $(\omega_i|\omega_i) = 1$ and

$$(\omega_i \wedge \bar{\omega}_i)(p_i(\bar{x}_0)) \geq \frac{1}{2} \mu_M(p_i(\bar{x}_0)). \quad (3.15.1)$$

Lemma 3.16. There exists a compact neighbourhood \tilde{U} of \bar{x}_0 such that for some $c > 0$, $\int_{\tilde{U}} \omega_i \wedge \bar{\omega}_i > c$, all i.

Proof. Obvious from (3.14) and (3.15.1). (Cf. Kazhdan 1983, p. 153.). \hfill \qed

Now let $\hat{\mathcal{H}}$ be the Hilbert space of measurable square-integrable sections η of $\Omega^n_{\bar{M}}$. For each i, define $\eta_i \in \hat{\mathcal{H}}$ by

$$\begin{cases} \eta_i|N_i & = p_i^*(\omega_i) \\ \eta_i|(\bar{M} \setminus N_i) & = 0. \end{cases}$$

As $(\eta_i|\eta_i) = 1$, there exists a weakly convergent subsequence of the η_i tending to $\eta \in \hat{\mathcal{H}}$. Now η is holomorphic on $\cup N_i = \bar{M}$, and $\int_{\tilde{U}} \eta \wedge \bar{\eta} > c/2$, and so $\eta \neq 0$. Thus $\mathcal{H}(\bar{M}) \neq 0$.
Conjecture 3.17. Let \tilde{G} be a semisimple real Lie group, Γ an arithmetic subgroup of \tilde{G}, and

$$\Gamma = \Gamma_0 \supset \Gamma_1 \supset \cdots \supset \Gamma_i \supset \cdots \supset \{1\}$$

a sequence of normal subgroups of Γ of finite index such that $\cap \Gamma_i = \{1\}$. Let W be an irreducible cuspidal representation of \tilde{G} and define $h_i(W) = \dim(\text{Hom}_{\tilde{G}}(W, L^2(\Gamma_i \backslash \tilde{G})))$. Then $h_i(W)/(\Gamma : \Gamma_i)$ does not tend to zero as $i \to \infty$.

In Kazhdan 1983, p. 156, Kazhdan calls this “Theorem A, which we will prove in another paper”. At present the statement still seems to be unproven, but Clozel has recently shown the following weaker result which is sufficient for our purposes:

Let G be a simply connected semisimple algebraic group over \mathbb{Q}, and let p_0 be a prime such that $G(\mathbb{Q}_{p_0})$ has a supercuspidal representation π_{p_0} (e.g., take p_0 to be any prime such that G is split over \mathbb{Q}_{p_0}); let K_{p_0} be a compact open subgroup of $G(\mathbb{Q}_{p_0})$ such that $\mathcal{H}(\pi_{p_0})_{K_{p_0}} \neq 0$ (here \mathcal{H} is the Hecke algebra); let $K_0 \supset K_1 \supset \cdots$ be a sequence of compact open subgroups of $G(\mathbb{A}_f)$ such that

(a) $(K_i)_{p_0} = K_{p_0};$
(b) there exists a finite set S of primes such that $(K_i)_p$ is maximal for $p \notin S;$
(b) $\cap K_i = \{1\}.$

Then, for any irreducible cuspidal representation W of $G(\mathbb{R})$, there exists a constant $a > 0$ such that

$$\frac{h_i(W)}{(\Gamma_0 : \Gamma_i)} \geq a, \quad \Gamma_i = G(\mathbb{Q}) \cap K_i.$$

Now return to the situation in the statement of (3.7). Then $W =_{df} \mathcal{H}(\tilde{X})$ is in a natural way a cuspidal representation of $G(\mathbb{R})$.

Lemma 3.18. There is an isomorphism

$$\text{Hom}_{G(\mathbb{R})}(W, L^2(\Gamma \backslash \tilde{X})) \xrightarrow{\cong} \mathcal{H}(X).$$

Proof. Well known — see Kazhdan 1983, p. 156–157.

Lemma 3.19. The dimensions of $\mathcal{H}(X)$ and $\mathcal{H}(\sigma X)$ are equal.

Proof. Let \tilde{X} be a smooth variety containing X as a dense open subvariety. Then (3.1c) shows that $\mathcal{H}(X) \xrightarrow{\cong} \mathcal{H}(\tilde{X})$, and $\mathcal{H}(\tilde{X}) = \Gamma(\tilde{X}, \Omega^n_{X,\text{alg}})$. The lemma is now obvious.

We are now ready to prove (3.7). Choose a family K_i satisfying the conditions of Clozel’s theorem. Then the theorem and (3.19) show that for some $a > 0$, $\dim \mathcal{H}(X_i)/(\Gamma_0 : \Gamma_i) \geq a$ all i, where $X_i = \Gamma(K_i) \backslash \tilde{X}$. Now (3.20) shows that $\dim \mathcal{H}(\sigma X_i)/(\Gamma_0^\sigma : \Gamma_i^\sigma) \geq a$, where $\Gamma_i^\sigma = \Gamma^\sigma(K_i)$, and (3.12) implies that $\mathcal{H}(\tilde{X}^\sigma) \neq 0.$
4. Subbundles of $T(\tilde{X})$

Let G be a simply connected semisimple algebraic group over \mathbb{Q}, and let \tilde{X} be a symmetric Hermitian domain on which $G(\mathbb{R})$ acts in such a way that

$$\tilde{X} \approx G(\mathbb{R})/\{\text{maximal compact subgroup}\}.$$

Let

$$\tilde{X} = X_1 \times \cdots \times X_s,$$

X_i irreducible symmetric Hermitian domain.

Choose a point $x = (x_1, \ldots, x_s) \in \tilde{X}$. Then

$$G_\mathbb{R} = G_1 \times \cdots \times G_s \times K_0, \quad G_i \text{ noncompact}, \quad K_0 \text{ compact},$$

and

$$G_i(\mathbb{R})x = G_i(\mathbb{R})x_i = X_i.$$

Then

$$X'_i = \{x_1\} \times \cdots \times X_i \times \cdots \times \{x_s\} \subset \tilde{X}.$$

Then $T(X'_i) \subset T(\tilde{X})$, and $T(\tilde{X}) = \oplus_i T(X'_i)$. For $I \subset \{1, \ldots, s\}$, define

$$T^I(\tilde{X}) = \oplus_{i \in I} T(X'_i) = \{(x, v) \in T(\tilde{X}) \mid v \in \oplus T_{x_i}(X_i)\}.$$

Then $T^I(\tilde{X})$ is a subbundle of $T(\tilde{X})$, stable under $G(\mathbb{R})$.

Lemma 4.1. Every $G(\mathbb{Q})$-stable complex subbundle of $T(\tilde{X})$ is of the form $T^I(\tilde{X})$ for some $I \subset \{1, \ldots, s\}$.

Proof. Let W be such a subbundle. As $G(\mathbb{Q})$ is dense in $G(\mathbb{R})$ (real approximation theorem) and $G(\mathbb{R})$ acts transitively on \tilde{X}, it will suffice to show that $W_x = T^I(\tilde{X})_x$, some I, for a fixed $x \in \tilde{X}$. Let K_x be the isotropy group at x. Then W_x is a K_x-stable subspace of $T(\tilde{X})_x = \oplus T(X_i)_x$. With the usual notations, let

$$\text{Lie}(G) = g = \mathfrak{k} + \mathfrak{p}, \quad \mathfrak{k} = \text{Lie}(K_x), \quad \mathfrak{p} = T_x(\tilde{X}),$$

$$\text{Lie}(G_i) = g_i = \mathfrak{k}_i + \mathfrak{p}_i, \quad \mathfrak{p}_i = T_{x_i}(\tilde{X}_i).$$

Then

$$\mathfrak{k} = \text{Lie}(K_0) \oplus \mathfrak{k}_1 \oplus \cdots \oplus \mathfrak{k}_s$$

and

$$\mathfrak{p} = \oplus \mathfrak{p}_i.$$

Note that W_x is a \mathfrak{k}-stable subspace of \mathfrak{p}. Almost by definition of what it means for X_i to be irreducible (Helgason 1962, VIII.5, p. 377), the action of \mathfrak{k}_i on \mathfrak{p}_i is irreducible. Thus $W_x = \oplus_{i \in I} \mathfrak{p}_i$, some I.

Lemma 4.2. Let G be a simply connected, almost simple, algebraic group over a number field F. Let S_∞ be the set of infinite primes of F, and let $v \in S_\infty$ be such that $G(F_v)$ is not compact. Then for any congruence group $\Gamma \subset G(F)$, $G(F_v)\Gamma$ is dense in $\prod_{v \in S_\infty} G(F_v)$.

PROOF. For some compact open subgroup K of $G(\mathbb{A}_{f,F})$, $\Gamma \supset K \cap G(F)$. The strong approximation theorem shows that $G(F)\Gamma$ is dense in

$$G(\mathbb{A}_F) = \prod_{v \in S_\infty} G(F_v) \times G(\mathbb{A}_{f,F})$$

and so, for any open subset U of $\prod_{v \in S_\infty} G(F_v)$, there exist elements $\alpha \in G(F_v)$ and $\beta \in G(F)$ such that $\alpha\beta \in U \times K$. Clearly $\beta \in \Gamma$, and $\alpha\beta \in U$; thus $G(F)\Gamma$ is dense in $\prod_{v \in S_\infty} G(F_v)$. \hfill \Box

Remark 4.3. Let $G' = \text{Res}_{F/Q} G$ with G and F as in the lemma. Then the conclusion of the lemma can be restated as follows: let G'_v be a noncompact factor of the Lie group $G'(\mathbb{R})$, and let Γ be a congruence subgroup of $G'(\mathbb{Q})$; then $G'_v \cdot \Gamma$ is dense in $G'(\mathbb{R})$.

Since $T^I(\tilde{X})$ is stable under Γ, it defines a subbundle $T^I(X)$ of $T(X)$. By construction, $T^I(\tilde{X})$ is involutive, and so $T^I(X)$ is an involutive subbundle of $T(X)$.

PROPOSITION 4.4. Assume G is almost simple over \mathbb{Q}. If the foliation defined by $T^I(X)$ on X has a closed leaf, then $I = \emptyset$ or $I = \{1, \ldots, s\}$.

PROOF. Let Z be the closed leaf, and let $\tilde{Z} = p^{-1}(Z)$. Then \tilde{Z} is a closed submanifold of \tilde{X} stable under Γ and all $G_i(\mathbb{R})$ for $i \in I$. If $I \neq \emptyset$, then (4.3) shows that $\Gamma \cdot \prod G_i(\mathbb{R})$ is dense in $G(\mathbb{R})$, which acts transitively on \tilde{X}. Therefore, $\tilde{Z} = \tilde{X}$ and $Z = X$, whence $T^I(X) = T(X)$. \hfill \Box

5. Completion of the proof.

Let X, \tilde{X}, G, \ldots be as in §1 and assume condition (0.3a), i.e., that $\text{codim}(\partial X) \geq 3$. Recall the notations

$$\tilde{X} \leftarrow p \stackrel{\rho_K}{\rightarrow} (\tilde{X})^{an} \quad \tilde{X} \leftarrow p' \stackrel{\rho_K}{\rightarrow} (\sigma \tilde{X})^{an} \quad \sigma \tilde{X}$$

Let μ be the Bergmann volume form on \tilde{X}^{σ}, and let Z_0 be the set on which μ is zero. As we saw in §3, Z_0 is a proper subset of \tilde{X}^{σ}. Clearly, it is a complex analytic subset and is Q-invariant. The complement \tilde{U}_0 of Z_0 in \tilde{X}^{σ} is also Q-invariant, and (see 3.5) there is a map $\gamma: \tilde{U}_0 \rightarrow \mathbb{P}(\mathcal{H}(\tilde{X}^{\sigma})^\vee)$ such that the Bergmann Hermitian form on \tilde{U}_0 is the inverse image of the canonical metric on $\mathbb{P}(\mathcal{H}(\tilde{X}^{\sigma})^\vee)$. Note that Q acts on $\mathbb{P}(\mathcal{H}(\tilde{X}^{\sigma})^\vee)$ through its action on \tilde{X}^{σ}, and that γ is a Q-equivariant map. \footnote{Should observe also that $d\gamma$ is not identically zero — if it were then ω would be “constant” — could not have $\int \omega \wedge \bar{\omega} < \infty$.}

Define

$$\tilde{Z}_1 = \{ z \in \tilde{U}_0 \mid \text{rank}(d\gamma)_z < \max_x \text{rank}(d\gamma)_x \}$$
and \(\tilde{Z} = \tilde{Z}_0 \cup \tilde{Z}_1 \) — this is again a \(Q \)-invariant complex analytic subset of \(\tilde{X}^\sigma \) not equal to \(\tilde{X}^\sigma \), and so (1.9) shows that \(\text{codim}(\tilde{Z}) \geq \text{codim}(\partial X) \geq 3 \). The complement \(U = \tilde{X}^\sigma \setminus \tilde{Z} \) of \(\tilde{Z} \) is also \(Q \)-invariant. We have a diagram

\[
\begin{array}{ccc}
T(\tilde{U}) & \to & T(\mathbb{P}) \\
\downarrow & & \downarrow \\
\tilde{U} & \xrightarrow{\gamma} & \mathbb{P}
\end{array}
\]

Define

\[\tilde{W} = \text{Ker}(T(\tilde{U}) \to \gamma^*T(\mathbb{P})). \]

Because it has constant rank, \(\tilde{W} \) is a subbundle of \(T(\tilde{U}) \). It is \(Q \)-invariant.

As in §4, let \(\tilde{X} = X_1 \times \cdots \times X_s \), and, for each \(I \subset \{1, \ldots, s\} \) define \(T^I(\tilde{X}) \subset T(\tilde{X}) \) and \(T^I(X) \subset T(X) \). Recall the following result: let \(\tilde{V} \) be a complete algebraic variety over \(\mathbb{C} \), and let \(V \) be a nonsingular subvariety such that \(\tilde{V} \setminus V \) has codimension \(\geq 3 \); then \(F \to F^{an} \) induces an equivalence between the category of coherent locally free algebraic sheaves on \(V \) and that of coherent locally free analytic sheaves on \(V^{an} \) (see, for example, Hartshorne 1970, p. 222-223). Thus \(T^I(X) \) is an algebraic subbundle of \(T(X) \), and \(\sigma T^I(X) \subset \sigma T(X) = T(\sigma X) \) is defined. Set \(T^I(\tilde{X}^\sigma) \) equal to the inverse image of \(\sigma T^I(X) \) on \(\tilde{X}^\sigma \).

Lemma 5.1. For some \(I \subset \{1, 2, \ldots, s\} \), \(\tilde{W} = T^I(\tilde{X}^\sigma) |_{\tilde{U}} \).

Proof. Since both \(\tilde{U} \) and \(\tilde{W} \) are \(Q \)-invariant and \(\Gamma^\sigma \subset Q \), we can pass to the quotient and obtain \(U = \Gamma^\sigma \setminus \tilde{U} \subset \sigma X \) and \(W = \Gamma^\sigma \setminus \tilde{W} \) a subbundle of \(T(U) \). As \(\text{codim}(\sigma X^* \setminus U) \geq 3 \), the result recalled above shows that \(W \) is an algebraic subbundle of \(T(U) \). Let \(j \) be the inclusion \(U \hookrightarrow \sigma X \). Regard \(W \) as a sheaf on \(U \), and form \(j_*W \) — this is a coherent algebraic sheaf on \(\sigma X \). Let \(Y \) be the subset of \(\sigma X \) where \(j_*W \) is not locally free. Then \(Y \) is an algebraic subset of \(\sigma X \) and its inverse image on \(\tilde{X}^\sigma \) is \(Q \)-invariant \(((p^\sigma)^{-1}Y \) is the set where \(\tilde{j}_*\tilde{W} \) is not locally free). Therefore (1.8) shows that \(Y \) is empty, and so \(j_*W \) is locally free. A similar argument applied to the support of the kernel of \(j_*W \to T(\sigma X) \) shows that \(j_*W \) is a locally free subsheaf of \(T(\sigma X) \). The fact recalled above shows that it is algebraic. Similar arguments apply to each variety in the projective system \(\sigma \tilde{X} \), and so we obtain an algebraic subbundle \(\tilde{W} \subset T(\sigma \tilde{X}) \) invariant under \(Q \), and therefore under \(G(\mathbb{A}_f) \). Hence \(\sigma^{-1}\tilde{W} \) is a subbundle of \(T(\tilde{X}) \) invariant under \(G(\mathbb{A}_f) \), and \((\sigma^{-1}\tilde{W})^{an}|\tilde{X} \) is \(G(\mathbb{R}) \)-invariant. Now (4.1) shows that \((\sigma^{-1}\tilde{W})^{an}|\tilde{X} = T^I(\tilde{X}) \) for some \(I \) and, because \(G(\mathbb{A}_f) \) acts transitively on the set of connected components of \(\tilde{X}^{an} \), this implies that \(\sigma^{-1}\tilde{W} = T^I(\tilde{X}) \). \(\square \)

The condition that a subbundle of the tangent bundle to an algebraic variety be involutive is algebraic. Thus \(T^I(\tilde{X}^\sigma) \) is involutive.

Lemma 5.2. The foliation of \(U = \Gamma^\sigma \setminus \tilde{U} \) defined by \(W = \Gamma^\sigma \setminus \tilde{W} \) has a closed leaf.

Proof. The reader is invited to check for himself the proof of Kazhdan (Kazhdan 1983, p. 153–156) — essentially the leaves of the foliation are the equivalence classes for the relation defined in p. 153. Alternatively, it may be possible to give a proof
along the following lines: as we observed above, there is a Q-equivariant map $\gamma: \tilde{U} \to \mathbb{P}(\mathcal{H}(X^\sigma)^\vee)$; if we can pass to the quotient by Γ^σ, we get a map $U = \Gamma^\sigma \backslash \tilde{U} \to \Gamma^\sigma \backslash \mathbb{P}(\mathcal{H}(X^\sigma)^\vee)$ whose fibres are the leaves of the foliation.

We now assume also the conditions (0.3b). Thus $G = \text{Res}_{F/Q} G'$ with G' absolutely simple and F totally real, and for some special point $\tilde{x} \in \tilde{X}$, the maximal torus $T \subset G$ fixing \tilde{x} is of the form $\text{Res}_{F/Q} T'$ where T' splits over a quadratic imaginary extension L of F.

As T'_L is split, we can write

$$g'_L = t'_L \oplus \bigoplus_{\alpha \in R} (g'_L)_\alpha, \quad g'_L = \text{Lie}(G'_L), \quad t'_L = \text{Lie}(T'_L),$$

where R is the set of roots $R(G'_C, T'_C)$. For each $\alpha \in R$, let

$$h'_\alpha = t'_L \oplus (g'_L)_\alpha \oplus (g'_L)_{-\alpha}.$$

It is defined over F, and we let H'_α be the corresponding connected subgroup of G'. Let $H_\alpha = \text{Res}_{F/Q} H'_\alpha$ — it is a reductive group of type A_1 and H'_α is Q-simple.

Let \tilde{X}_α be the orbit of \tilde{x} under the action of $H_\alpha(\mathbb{R})$. Then \tilde{X}_α is a Hermitian symmetric domain (possibly consisting of one element) with

$$\text{Aut}(\tilde{X}_\alpha)^+ = (H_\alpha(\mathbb{R})/\{\text{maximal compact normal subgroup}\})^+.$$

It follows from Deligne 1971, 1.15, that the projective system of arithmetic varieties \tilde{X}_α embeds into \tilde{X}. We assume Theorem 0.1 for the families \tilde{X}_α; in particular, \tilde{X}_α is the family associated with a Q-group H'_α.

Lemma 5.3. The tangent space $T_{\tilde{x}}(\tilde{X})$ is generated by the subspaces $T_{\tilde{x}}(\tilde{X}_\alpha)$. (Note, \tilde{x} is as defined above.)

Proof. Easy. □

Lemma 5.4. Let $\tilde{\sigma}$ be any point of \tilde{X}^σ such that $\tilde{\sigma} = g(\sigma \tilde{x})$ for some $g \in G(\mathbb{A}_f)$, where \tilde{x} is the image of \tilde{x} (see above) in \tilde{X}. Then $\tilde{\sigma}$ is \tilde{U}.

Proof. Otherwise $\tilde{Z} \supset Q\tilde{\sigma} \supset H'_\alpha(\mathbb{Q})\tilde{\sigma}$, and so $\tilde{Z} \supset \tilde{X}_\alpha^\sigma$ for all α. This implies that $\dim \tilde{Z} = \dim \tilde{X}^\sigma$, which contradicts an earlier statement. □

Let

$$J = \{ \tau: F \to \mathbb{R} \mid G'_\tau \text{ is not compact} \},$$

where $G'_\tau = G \otimes_{F, \tau} \mathbb{R}$. Then J indexes the irreducible components of \tilde{X}, and we shall use it for this purpose rather than $\{1, \ldots, s\}$. Thus I is now a subset of J. Let

$$J_\alpha = \{ \tau: F \to \mathbb{R} \mid H'_{\alpha, \tau} \text{ is not compact} \}.$$

Lemma 5.5. Either $J_\alpha \cap I = \emptyset$ or $J_\alpha \subset I$.

Proof. The set $\tilde{Z} \cap \tilde{X}_\alpha^\sigma$ is stable under $Q \cap H_\alpha(A_f) = H_\alpha(Q)/Z_\alpha(Q)$ and so is either empty of all of \tilde{X}_α^σ. The last lemma shows that it is not equal to \tilde{X}_α^σ, and so we have that $\tilde{X}_\alpha^\sigma \subset \tilde{U}$.

From (4.1), (5.2), and (4.4), we know that $W|\sigma X_\alpha$ is 0 or $T(\sigma X_\alpha)$ (recall that we are assuming σX_α is arithmetic). Thus $\sigma^{-1}W$ on X_α is 0 or $T(X_\alpha)$. But (by 5.1), $\sigma^{-1}W = T^I(I)$ for some $I \subset J$. We conclude that $I \supset J_\alpha$ (and $\sigma^{-1}W|X_\alpha = T(X_\alpha)$) or $I \cap J_\alpha = \emptyset$ (and $\sigma^{-1}W|X_\alpha = 0$).

Note that it is not possible for I to contain all J_α, for then $I = J$ and the Bergmann Hermitian form is identically zero (cf. the first page of this section). On the other hand, if $I \cap J_\alpha = \emptyset$, then $I = \emptyset$, $\tilde{W} = 0$, and we can apply (2.13) to complete the proof of (0.1).

Thus it remains to show that the hypothesis that $I \cap J_\alpha = \emptyset$ for some, but not all, α leads to a contradiction.

Lemma 5.6. Let $h'_I = \sum_{\alpha \subset I} h'_{\alpha}$; then h'_I is a sub-Lie-algebra of g'.

Proof. Let $g'_\tau = \mathfrak{k}'_\tau \oplus \mathfrak{p}'_\tau$ as usual. Then

$$J_\alpha \subset I \iff \text{ for all } \tau \notin I, h'_{\alpha,\tau} \subset \mathfrak{t}'_\tau.$$

As \mathfrak{k}'_τ is a subalgebra of g'_τ, the result is now obvious.

Let H'_I be the subgroup of G' corresponding to h'_I. Then:

- for $\tau \notin I$, $H'_{I,\tau}$ is compact (and hence H'_I is reductive),
- for $\tau \in I$, $H'_{I,\tau}(\mathbb{R}) \tilde{x}_\tau \supset (\tilde{X}_\alpha)_\tau$ for all α, and so $H'_{I,\tau}(\mathbb{R}) \tilde{x}_\tau = \tilde{X}_\tau$ (apply Kobayashi and Nomizu, 1963, p. 178, 4.8 if it isn’t obvious).

(We are writing $\tilde{x} = (\ldots, \tilde{x}_\tau, \ldots) \in \cdots \times \tilde{X}_\tau \times \cdots$) This shows that $H'_{I,\tau} = G'_\tau$ (see 2.3), and so $H'_I = G'$. This is the contradiction that proves the theorem.

References

Borel, Armand, Kählerian coset spaces of semisimple Lie groups. Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 1147–1151.

Bourbaki, N., General Topology, Chapters 1–4, Springer, 1989.

Deligne, Pierre, Travaux de Shimura. Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, pp. 123–165. Lecture Notes in Math., Vol. 244, Springer, Berlin, 1971.

Deligne, Pierre, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 247–289, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.

Deligne, Pierre, Hodge cycles on abelian varieties (Notes by J.S. Milne). In Deligne, Pierre; Milne, James S.; Ogus, Arthur; Shih, Kuang-yen, Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, 900. Springer-Verlag, Berlin-New York, 1982, pp. 9–100.

Deligne, Pierre, Motifs et groupe de Taniyama, in Deligne, Pierre; Milne, James S.; Ogus, Arthur; Shih, Kuang-yen, Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, 900. Springer-Verlag, Berlin-New York, 1982, pp. 261–279.
Griffiths, Phillip A., Entire holomorphic mappings in one and several complex variables. The fifth set of Hermann Weyl Lectures, given at the Institute for Advanced Study, Princeton, N. J., October and November 1974. Annals of Mathematics Studies, No. 85. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976.

Hano, Jun-ichi, On Kaehlerian homogeneous spaces of unimodular Lie groups. Amer. J. Math. 79 1957 885–900.

Hartshorne, Robin, Ample subvarieties of algebraic varieties. Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156 Springer-Verlag, Berlin-New York 1970.

Helgason, S., Differential geometry and symmetric spaces. Pure and Applied Mathematics, Vol. XII. Academic Press, New York-London 1962.

Hironaka, Heisuke, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326.

Kazhdan, David, Arithmetic varieties and their fields of quasi-definition. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pp. 321–325. Gauthier-Villars, Paris, 1971.

Kazhdan, David, On arithmetic varieties. Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), pp. 151–217. Halsted, New York, 1975.

Kazhdan, David, On arithmetic varieties. II. Israel J. Math. 44 (1983), no. 2, 139–159.

Kobayashi, Shoshichi, Geometry of bounded domains. Trans. Amer. Math. Soc. 92 (1959) 267–290.

Kobayashi, Shoshichi; Nomizu, Katsumi, Foundations of differential geometry. Vol I. Interscience Publishers, a division of John Wiley, New York-London 1963.

Kobayashi, Shoshichi; Nomizu, Katsumi, Foundations of differential geometry. Vol. II. Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II Interscience Publishers John Wiley Inc., New York-London-Sydney 1969.

Kobayashi, Shoshichi, Transformation groups in differential geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. Springer-Verlag, New York-Heidelberg, 1972.

Koszul, J. L., Sur la forme hermitienne canonique des espaces homogènes complexes. Canad. J. Math. 7 (1955), 562–576.

Koszul, J.-L., Exposés sur les espaces homogènes symétriques. Publicação da Sociedade de Matematica de Sao Paulo, Sao Paulo 1959 71 pp.

Langlands, R. P., Automorphic representations, Shimura varieties, and motives. Ein Märchen. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 205–246, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.

Margulis, G.A., Arithmeticity of irreducible lattices in semisimple groups of rank greater than 1, AMS Transl. 109 (1977), 33-45.

Milne, J.S., and Shih, K-y., Conjugates of Shimura varieties, Deligne, Pierre; Milne, James S.; Ogus, Arthur; Shih, Kuang-yen Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, 900. Springer-Verlag, Berlin-New York, 1982, pp. 280–356.

Milne, J. S., The action of an automorphism of \(\mathbb{C} \) on a Shimura variety and its special points. Arithmetic and geometry, Vol. I, 239–265, Progr. Math., 35, Birkhäuser Boston, Boston, MA, 1983.

Narasimhan, Raghavan, Introduction to the theory of analytic spaces. Lecture Notes in Mathematics, No. 25 Springer-Verlag, Berlin-New York 1966.
Piateski-Shapiro, I. I., Automorphic functions and the geometry of classical domains. Translated from the Russian. Mathematics and Its Applications, Vol. 8 Gordon and Breach Science Publishers, New York-London-Paris 1969

Raghunathan, M. S., Discrete subgroups of Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer-Verlag, New York-Heidelberg, 1972.

Yau, Shing Tung, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411.