Efficacy and safety of ruxolitinib in steroid-refractory graft-versus-host disease: A meta-analysis

Shuang Fan1†, Wen-Xuan Huo1†, Yang Yang1†, Meng-Zhu Shen1* and Xiao-Dong Mo1,2*

1Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China, 2Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China

Ruxolitinib is an important treatment for steroid refractory graft-versus-host disease (SR-GVHD). Therefore, we reported the updated results of a systematic review and meta-analysis of ruxolitinib as treatment for SR-GVHD. In addition, we wanted to compare the efficacy and safety between children and adults with SR-GVHD. Overall response rate (ORR) after ruxolitinib treatment was chosen as the primary end point. Complete response rate (CRR), infection, myelosuppression, and overall survival (OS) were chosen as secondary end points. A total of 37 studies were included in this meta-analysis, and 1,580 patients were enrolled. ORR at any time after ruxolitinib treatment was 0.77 [95% confidence interval (CI): 0.68–0.84] and 0.78 (95% CI: 0.74–0.81), respectively, for SR-aGVHD and SR-cGVHD. CRR at any time after ruxolitinib treatment was 0.49 (95% CI: 0.40–0.57) and 0.15 (95% CI: 0.10–0.23), respectively, for SR-aGVHD and SR-cGVHD. The ORRs at any time after treatment was highest in mouth SR-cGVHD, followed by skin, gut, joints and fascia, liver, eyes, esophagus, and lung SR-cGVHD. The incidence rate of infections after ruxolitinib treatment was 0.61 (95% CI: 0.45–0.76) and 0.47 (95% CI: 0.31–0.63), respectively, for SR-aGVHD and SR-cGVHD. The incidence rates of overall (grades I–IV) and severe (grades III–IV) cytopenia were 53.2% (95% CI: 16.0%–90.4%) and 31.0% (95% CI: 0.0–100.0%), respectively, for SR-aGVHD, and were 28.8% (95% CI: 13.0%–44.6%) and 10.4% (95% CI: 0.0–27.9%), respectively, for SR-cGVHD. The probability rate of OS at 6 months after treatment was 63.9% (95% CI: 52.5%–75.2%) for SR-aGVHD. The probability rates of OS at 6 months, 1 year, and 2 years after treatment were 95% (95% CI: 79.5%–100.0%), 78.7% (95% CI: 67.2%–90.1%), and 75.3% (95% CI: 68.0%–82.7%), respectively, for SR-cGVHD. The ORR, CRR, infection events, and myelosuppression were all comparable between children and adults with SR-GVHD. In summary, this study suggests that ruxolitinib is an effective and safe treatment for SR-GVHD, and both children and adults with SR-GVHD could benefit from ruxolitinib treatment.
Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is one of the most important treatments for patients with hematological malignancies and non-malignant disease (1). However, graft-versus-host disease (GVHD) is still a common complication. It can severely influence the quality of life (2–5) and is an important cause of transplant-related mortality (6, 7). Corticosteroid is the first-line treatment for GVHD, but the response rate was approximate 50% (8), and a significant number of patients will experience steroid-refractory GVHD (SR-GVHD) (9). Thus far, there is no effective treatment for patients with SR-GVHD (10), and their survival rate is poor (11).

Ruxolitinib is a potent and selective oral inhibitor of Janus kinase (JAK) 1 and JAK2 and is an important treatment for myeloproliferative neoplasms (12). In addition, JAKs are well positioned to regulate GVHD. A variety of cytokines, which signal through the JAK/STAT pathways, play a critical role in regulation of the proliferation and activation on immune cell types that are important for GVHD pathogenesis (13). Recently, ruxolitinib is under investigation for the treatment of SR-GVHD, and it has been reported to be an important treatment for SR-GVHD (14–16). Ruxolitinib has been approved for the treatment of SR acute GVHD (aGVHD) and chronic GVHD (cGVHD) by the Unite States Food and Drug Administration in 2019 and 2021, respectively (17, 18).

Thus far, there are many clinical studies focused on ruxolitinib for SR-GVHD treatment, and Li et al. (19) had conducted a meta-analysis for ruxolitinib as the treatment for SR-GVHD in adults; however, only studies published before January 2019 were enrolled. Since 2019, many important research studies for ruxolitinib in SR-GVHD have been published (15, 16, 20–28). In addition, this meta-analysis did not include children, whereas several studies focused on ruxolitinib for treatment of SR-GVHD in children have been published since 2019 (29–32). No systematic review was designed to compare the efficacy of ruxolitinib for SR-GVHD treatment between children and adults.

Therefore, we reported the updated results of a systematic review and meta-analysis of ruxolitinib as treatment for SR-GVHD. In addition, we wanted to compare the efficacy and safety between children and adults with SR-GVHD.

Methods

Inclusion criteria

The inclusion criteria were as follows: (1) patients of any race, any sex, and all ages; (2) those diagnosed with SR-GVHD (i.e., aGVHD or cGVHD) after HSCT; and (3) those using ruxolitinib as the treatment for SR-GVHD. Reviews, duplicates, and conference abstracts were excluded. While assessing multiple reports from the same study, we selected the report containing more information or with a longer follow-up.

Search strategy

A literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement (33). The PubMed and Embase databases were searched, with the search strategy following the Population (patients with steroid refractory GVHD), Intervention (ruxolitinib), Outcomes [overall response rate (ORR), complete response rate (CRR), infection, myelosuppression, and overall survival (OS)], and Study framework (retrospective, prospective non-randomized, and randomized trials) (34): [(Glucocorticoid-Refractory) OR (steroid refractory) OR (steroid-refractory) OR (steroid resistant) OR (steroid-resistant) OR (corticosteroid refractory) OR (corticosteroid-refractory)] AND [(acute graft versus host disease) OR aGVHD OR cGVHD OR (chronic graft versus host disease) OR (graft versus host reaction)] AND [(Ruxolitinib) OR (Janus Kinase Inhibitors) OR (JAK Kinases Inhibitors)] OR (jak kinases Inhibitors)

Data extraction and outcomes

All data were independently extracted by two reviewers (Wen-Xuan Huo and Yang Yang) to ensure accuracy. Information on the following was extracted: study characteristics (e.g., study framework, first author, publish year, and follow-up period), patients (e.g., number, age, gender, and disease characteristics), transplantation (e.g.,
CRR after ruxolitinib treatment

CRR at any time after ruxolitinib treatment was 0.49 (95% CI: 0.40–0.57) (Figure 4A). CRRs at any time were 0.48 (95% CI: 0.38–0.58) and 0.55 (95% CI: 0.46–0.64), respectively, in retrospective studies and prospective unrandomized studies (Figures S3A, B). CRRs at any time were comparable between adults and children (0.48 (95% CI: 0.42–0.54) vs. 0.41 (95% CI: 0.20–0.66), P = 0.601) (Table S1 and Figure 3B).

CRR at day 28 after ruxolitinib treatment was 0.39 (95% CI: 0.26–0.54) (Figure 4B). CRRs at day 28 were 0.32 (95% CI: 0.23–0.43) and 0.50 (95% CI: 0.19–0.81), respectively, in retrospective studies and prospective unrandomized studies (Figures S3C, D). In the RCT, CRR at day 28 was 0.34. CRRs at day 28 were 0.32 (95% CI: 0.24–0.41) and 0.21, respectively, for adults and children.

SR-cGVHD

ORR after ruxolitinib treatment

ORR at any time after ruxolitinib treatment was 0.78 (95% CI: 0.74–0.81) (Figure 2C). ORRs at any time were 0.77 (95% CI: 0.73–0.81) and 0.81, respectively, in retrospective studies and prospective unrandomized studies (Figure S2A). In adults, ORR at any time was 0.81 (95% CI: 0.76–0.85), which was comparable with that in children (0.89 (95% CI: 0.75–0.95), P = 0.222) (Table S1 and Figure 3C).

ORR at week 24 after ruxolitinib treatment was 0.61 (95% CI: 0.50–0.72) (Figure 2D). In retrospective studies, ORR at week 24 was 0.64 (95% CI: 0.51–0.75) (Figure S2B). In the RCT, ORR at week 24 was 0.50.

CRR after ruxolitinib treatment

CRR at any time after ruxolitinib treatment was 0.15 (95% CI: 0.10–0.23) (Figure 4C). CRR at any time was 0.15 (95% CI: 0.09–0.23) and 0.21 (95% CI: 0.12–0.34), respectively, in retrospective studies and prospective unrandomized studies, respectively (Figures S4A, B). In adults, CRR at any time was 0.18 (95% CI: 0.10–0.30), which was compared with that in children (0.11 (95% CI: 0.04–0.26), P = 0.359) (Figure 3D).

CRR at week 24 after ruxolitinib treatment was 0.23 (95% CI: 0.11–0.42) (Figure 4D). In retrospective studies, CRR at week 24 was 0.29 (95% CI: 0.15–0.48) (Figure S4C). In the RCT, CRR at week 24 was 0.07.

Response according to the involved organs after ruxolitinib treatment

SR-aGVHD

The ORRs and CRRs at any time after treatment were showed in Table 7. The ORRs at any time after treatment were highest in skin SR-aGVHD, followed by gut, and liver SR-aGVHD.
SR-cGVHD
The ORRs at any time after treatment were highest in mouth SR-cGVHD, followed by skin and gut SR-cGVHD. The CRRs at any time after treatment was highest in mouth SR-cGVHD, followed by liver and skin SR-cGVHD (Table 7).

Infections after ruxolitinib treatment

SR-aGVHD
The incidence rate of infections after ruxolitinib treatment was 0.61 (95% CI: 0.45–0.76). The frequency rates of infection after ruxolitinib treatment were comparable between children [0.86 (95% CI: 0.64–0.95)] and adults [0.75 (95% CI: 0.66–0.82), \(P = 0.296 \)] (Figures 5A, B). The frequency rates of viral infections were 0.55 (95% CI: 0.49–0.61). The frequency rates of viral infection after ruxolitinib treatment were comparable between children [0.45 (95% CI: 0.31–0.60)] and adults [0.59 (95% CI: 0.59–0.71), \(P = 0.193 \)] (Figures 5C, D).

SR-cGVHD
The incidence rate of infection after ruxolitinib treatment was 0.47 (95% CI: 0.31–0.63) (Figure S5). The frequency rates of infection after ruxolitinib treatment were 0.37 (95% CI: 0.18–0.61) and 0.42, respectively, for adults and children. The frequency rates of viral infection were 0.29 (95% CI: 0.25–0.34) (Figure S6).

TABLE 1 Characteristics of 24 included studies (SR-aGVHD)*.

Studies	Median age/year (range)	HLA matching (n)	SR-aGVHD grade (n)	Median time from SR-aGVHD diagnosis to the application of ruxolitinib/day (range)
		MRD mMRD MUD mMUD	I II III IV	
Zeiser, 2020	52.5 (12–73)	NA NA NA NA	2 50 68 30	NA
Modernmann, 2020	58.5 (21–73)	3 0 9 6	0 0 9 9	87 (35–257)
Lancman, 2018	58 (33–61)	NA NA NA NA	1 3 NA NA	NA
Assouan, 2017	52 (26–65)	5 NA 5 NA	NA NA 6 NA	14
Wei, 2021	30 (11–56)	5 NA NA NA	NA 9 8 6	5 (1–79)
Leung, 2022	38 (19–63)	NA NA NA NA	0 13 4 5	NA
Mosser, 2020	17 (1–67)	2 NA 19 NA	0 11 10 11	16 (5–113)
Jagasia, 2020	58 (18–73)	18 11 27 10	0 23 34 14	NA
Bilinski, 2021	53.5 (22–66)	2 NA 2 NA	NA NA NA 4	NA
Liu, 2021	29 (13–63)	NA NA NA NA	0 7 22 11	NA
Lassoe, 2020	4.3 (0.4–14.5)	NA NA NA NA	0 7 13 9	91 (17–518)
Gonzalez, 2018	11 (3–18)	NA NA NA NA	0 0 4 9	9
Maldonado, 2017	51 (28–56)	1 NA NA NA	NA NA 3 NA	NA
Maldonado, 2021	32 (26–48)	NA NA NA NA	NA NA 2 7	NA
Meng, 2019	23.5 (8–38)	12 NA NA NA	0 6 5 1	NA
Mozo, 2021	8.6 (0.8–18.1)	3 NA 3 NA	NA NA 2 6	NA
Khandelwal, 2017	8.5 (1.6–16.5)	1 NA 12 NA	NA 2 9 2	147 (55–538)
Zeiser, 2015	51 (21–75)	13 NA 15 NA	NA NA NA NA	NA
Abedin, 2019	59 (46–70)	6 2 10 1 NA	3 13 3	21 (3–162)
Dang, 2020	35 (19–55)	8 2 NA NA NA	NA NA 9 NA	NA
Uygun, 2020	NA 4 NA 17 NA	NA 2 4 7	28 (7–231)	
Gomez, 2019	51 (0–73)	33 NA 39 NA	NA 3 20 NA	NA
Toama, 2020	55 (27–72)	7 NA 24 NA	NA NA NA NA	17 (2–280)
Zhao, 2020	29 (14–62)	5 55 4 NA	NA NA 22 42	8 (3–89)

HLA, human leukocyte antigen; mMRD, mismatched related donor; MRD, matched related donor; mMUD, mismatched unrelated donor; MUD, matched unrelated donor; NA, not available; SR-aGVHD, steroid-refractory acute graft-versus-host disease.*Thirteen studies included both SR-aGVHD and SR-cGVHD analysis.
Myelosuppression after ruxolitinib treatment

SR-aGVHD

The incidence rates of overall (grades I–IV) and severe (grades III–IV) cytopenia were 53.2% (95% CI: 16.0%–90.4%) and 31.0% (95% CI: 0.0%–100.0%), respectively. The incidence rate of overall cytopenia was 37.3% (95% CI: 0.0%–82.1%) and 54.0%, respectively, for adults and children. The frequency rates of anemia, leukopenia, and thrombocytopenia were 45.6% (95% CI: 19.8%–71.5%), 44.2% (95% CI: 24.4%–64.0%), and 40.6% (95% CI: 21.4%–59.8%), respectively (Table 8).

SR-cGVHD

The incidence rates of overall and severe cytopenia were 28.8% (95% CI: 13.0%–44.6%) and 10.4% (95% CI: 0.0%–27.9%), respectively.
respectively. The frequency rates of anemia, leukopenia, and thrombocytopenia were 35.1% (95% CI: 13.2%–57.0%), 22.9% (95% CI: 6.2%–39.6%), and 19.2% (95% CI: 6.9%–31.6%), respectively (Table 8).

OS

SR-aGVHD

The probability rate of OS at 6 months after treatment was 63.9% (95% CI: 52.5%–75.2%). The probability rates of OS at 6 months after treatment were 65.6% (95% CI: 49.1%–82.1%) and 59.5% (95% CI: 0.0%–100.0%), respectively, for retrospective studies and prospective unrandomized studies.

SR-cGVHD

The probability rates of OS at 6 months, 1 year, and 2 years after treatment were 95% (95% CI: 79.5%–100.0%), 78.7% (95% CI: 67.2%–90.1%), and 75.3% (95% CI: 68.0%–82.7%), respectively.

Discussion

Many studies have reported that ruxolitinib was effective treatment for patients with SR-GVHD, and we also observed that therapeutic response and survival seemed to be comparable between adults and children. To the best of our knowledge, this study is the most comprehensive systematic review to summarize
the published studies and demonstrated the efficacy and safety of ruxolitinib treatment for SR-GVHD.

For SR-aGVHD, the ORRs of ruxolitinib at any time and at day 28 were 0.77 and 0.73, respectively. Many other therapeutic modalities were also applied to control SR-aGVHD. Prior data reported that the ORRs of antithymocyte globulin (ATG, [11, 38, 39]), extracorporeal photopheresis (ECP, [40–44]), mycophenolate mofetil (MMF, [45–50]), etanercept (51–55), daclizumab (56), inolimomab (56), and denileukin diftitox (56) were 0.30–0.31, 0.66–0.75, 0.31–0.67, 0.46–0.68, 0.71, 0.54, and 0.56, respectively. In addition, the ORR at day 28 after treatment was 0.54–0.56 for ATG (57, 58), and the ORRs at 1 month after treatment were 0.69, 0.55, and 0.56, respectively, for daclizumab (56), inolimomab (56), and denileukin diftitox (56). Thus, it seems that ruxolitinib has a higher ORR compared with most of the other second-line treatments in SR-aGVHD.

In this study, the CRRs of ruxolitinib at any time and at day 28 were 0.49 and 0.39, respectively, in patients with SR-aGVHD. The available data about the CRRs of ATG (11, 38, 39), ECP (40–44, 59–61), MMF (45, 46, 48, 50), etanercept (51, 52, 54, 55), mesenchymal stem cell (MSC) (62), daclizumab (56), inolimomab (56), and denileukin diftitox (56) were 0.08–0.14, 0.52–0.75, 0–0.31, 0–0.31, 0.09–0.65, 0.42, 0.30, and 0.37, respectively. In addition, the CRR at day 28 after treatment was 0.20–0.36 for ATG (57, 58), and the
FIGURE 1
Selection scheme of studies. SR-GVHD, steroid-refractory graft-versus-host disease.

TABLE 5 The number of studies included in the subgroup analysis.

Subgroup	Studies included, No. (%)	
	SR-aGVHD¹	SR-cGVHD¹
ORR		
At any time	n = 17	n = 16
Retrospective studies	15 (88.2)	15 (93.8)
Prospective unrandomized studies	2 (11.8)	1 (6.2)
RCT	NA	NA
At day 28	n = 5	NA
Retrospective studies	2 (40.0)	NA
Prospective unrandomized studies	2 (40.0)	NA
RCT	1 (20.0)	NA
At week 24	NA	n = 7
Retrospective studies	NA	6 (85.7)
Prospective unrandomized studies	NA	NA
RCT	NA	1 (14.3)
CRR		
At any time	n = 21	n = 18
Retrospective studies	18 (85.7)	16 (88.9)
Prospective unrandomized studies	3 (14.3)	2 (11.1)
RCT	NA	NA
At day 28	n = 7	NA
Retrospective studies	4 (57.1)	NA
Prospective unrandomized studies	2 (28.6)	NA
RCT	1 (14.3)	NA
At week 24	NA	n = 6
Retrospective studies	NA	5 (83.3)
Prospective unrandomized studies	NA	NA
RCT	NA	1 (16.7)
Involved Organ Response		
ORR²	n = 9	n = 13

(Continued)
Subgroup	SR-aGVHD\(^1\)	SR-cGVHD\(^1\)
Skin	8 (88.9)	13 (100.0)
Gut	9 (100.0)	11 (84.6)
Liver	8 (88.9)	9 (69.2)
Mouth	NA	8 (61.5)
Eye	NA	10 (76.9)
Lung	NA	12 (92.3)
Joints and fascia	NA	8 (61.5)
Esophagus	NA	1 (7.7)

CRR, complete response rate; NA, not available; ORR, overall response rate; OS, overall survival; RCT, randomized controlled trials; SR-aGVHD, steroid-refractory acute graft-versus-host disease; SR-cGVHD, steroid-refractory chronic graft-versus-host disease.

\(^1\)Twelve studies included both in the SR-aGVHD and SR-cGVHD analysis.

\(^2\)Twenty-one studies involved multiple organs in the analysis of ORRs.

\(^3\)Eighteen studies involved multiple organs in the analysis of CRRs.

\(^4\)Seventeen studies included both in the analysis of overall (grades I–IV) and severe (grades III–IV) cytopenia.

\(^5\)Fifteen studies included both in the analysis of overall (grades I–IV) and severe (grades III–IV) anemia.

\(^6\)Sixteen studies included both in the analysis of overall (grades I–IV) and severe (grades III–IV) leukopenia.

\(^7\)Seventeen studies included both in the analysis of overall (grades I–IV) and severe (grades III–IV) thrombocytopenia.

\(^8\)Fifteen studies involved in the analysis of multiple types of infection.

\(^9\)Three studies included both in the analysis of 6-month, 1-year, and 2-year OS in SR-cGVHD. The bold values represent the total number of studies included in the analysis.
FIGURE 2
Forest plots of ORRs at any time (A) and day 28 (B) after ruxolitinib treatment in SR-aGVHD and the ORRs at any time (C) and week 24 (D) after ruxolitinib treatment in SR-cGVHD.

TABLE 6 The summary table of comparisons between adults and children.

Subgroup	Adults	Children	P-value		
	Cumulative incidence	95% CI	Cumulative incidence	95% CI	
SR-aGVHD					
ORR					
At any time	0.75	0.62–0.84	0.75	0.51–0.90	0.960
CRR					
At any time	0.48	0.42–0.54	0.41	0.20–0.66	0.601
At day 28	0.32	0.24–0.41	0.21	NA	NA
Infection	0.75	0.66–0.82	0.86	0.64–0.95	0.296
Viral infection	0.59	0.59–0.71	0.45	0.31–0.60	0.193
Cytopenia					
Grades I-IV	37.3	0.0–82.1	53.8	NA	NA
Anemia					
Grades I-IV	24.7	0.0–55.3	25.0	NA	NA
Grades III-IV	26.0	7.0–45.0	25.0	NA	NA
Leukopenia					
Grades I-IV	34.3	0.6–68.1	26.0	0.0–100.0	0.645
Grades III-IV	28.0	14.8–41.2	26.0	0.0–100.0	0.904
Thrombocytopenia					
Grades I-IV	23.7	0.0–56.7	19.8	0.0–41.8	0.722
Grades III-IV	31.0	0.0–73.2	30.5	0.0–100.0	0.975
SR-cGVHD					
ORR					
At any time	0.81	0.76–0.85	0.89	0.75–0.95	0.222

(Continued)
CRRs at 1 month after treatment were 0.37, 0.31, and 0.37, respectively, for daclizumab, inolimomab, and denileukin diftitox (56). Thus, the CRR of ruxolitinib did not seem to be more superior to other second-line treatments, which can be further improved.

For SR-cGVHD, the ORR of ruxolitinib at any time was 0.78. On the basis of data from previous systematic reviews, the ORRs of rituximab (63, 64), MMF (64), imatinib (64), MSC (64), methotrexate (64), ECP (43, 64), pentostatin (64), sirolimus (64),
and thalidomide (64) were 0.66–0.68, 0.65, 0.58, 0.65, 0.70, 0.64–0.68, 0.54, 0.79, and 0.50, respectively. Ruxolitinib showed a higher ORR compared with most of the other second-line treatments in patients with SR-cGVHD.

Four studies reported that ruxolitinib could be used in the treatment for children with SR-GVHD (29–32); however, few studies compared the clinical outcomes of ruxolitinib between children and adults with SR-GVHD. In this study, we first observed that ORR, CRR, infection events, and myelosuppression were all comparable between adult and children, which suggested that ruxolitinib treatment was effective and safe for children with SR-GVHD.

In recently real-world studies, the ORR and CRR of basiliximab at day 28 were 0.66–0.79 and 0.52–0.61, respectively in patients with SR-aGVHD (65, 66). Compared with this study, the efficacy of basiliximab seemed to be compared with ruxolitinib. However, in

TABLE 7 Response at any time according to the involved organs after ruxolitinib treatment.

Subgroup	ORR	CRR		
SR-aGVHD				
Skin	78.3	63.2–93.3	68.6	37.2–99.9
Gut	78.9	66.6–91.2	57.9	37.8–78.1
Liver	60.4	37.2–83.5	49.1	32.8–65.5
SR-cGVHD				
Skin	73.2	58.7–87.7	30.1	18.2–42.0
Gut	69.2	50.9–87.5	25.7	24.8–49.8
Liver	65.7	45.0–86.3	32.7	15.8–49.6
Mouth	76.5	61.9–91.5	34.0	24.7–43.3
Eyes	61.1	38.7–83.5	16.7	24.4–31.0
Lung	47.3	29.8–64.9	11.1	1.2–21.0
Joints and fascia	67.4	46.4–88.3	11.9	0.0–23.8
Esophagus	50.0	NA	0.0	NA

CI, confidence interval; CRR, complete response rate; NA, not available; ORR, overall response rate; SR-aGVHD, steroid-refractory acute graft-versus-host disease; SR-cGVHD, steroid-refractory chronic graft-versus-host disease.
FIGURE 5
Forest plots of frequency rates of infections (A) and the subgroup analysis of adults and children (B) after ruxolitinib treatment in SR-aGVHD; Forest plots of frequency rates of viral infections (C) and the subgroup analysis of adults and children (D) after ruxolitinib treatment in SR-aGVHD.

TABLE 8 Myelosuppression after ruxolitinib treatment.

Subgroup	Total	Adults	Children			
SR-aGVHD						
Cytopenia						
Grades I–IV	53.2	16.0–90.4	37.3	0.0–82.1	53.8	NA
Grades III–IV	31.0	0.0–100.0	16.5	0.0–100.0	NA	NA
Anemia						
Grades I–IV	45.6	19.8–71.5	24.7	0.0–55.3	25.0	NA
Grades III–IV	37.3	18.4–56.3	26.0	7.0–45.0	25.0	NA
Leukopenia						
Grades I–IV	44.2	24.4–64.0	34.3	0.6–68.1	26.0	0.0–100.0
Grades III–IV	36.8	20.7–52.9	28.0	14.8–41.2	26.0	0.0–100.0
Thrombocytopenia						
Grades I–IV	40.6	21.4–59.8	23.7	0.0–56.7	19.8	0.0–41.8
Grades III–IV	42.4	25.0–59.7	31.0	0.0–73.2	30.5	0.0–100.0
SR-cGVHD						
Cytopenia						
Grades I–IV	28.8	13.0–44.6	28.3	4.8–51.7	NA	NA
Grades III–IV	10.4	0.0–27.9	21.0	0.0–100.0	NA	NA
Anemia						
Grades I–IV	35.1	13.2–57.0	20.7	0.0–57.9	8.3	NA
Grades III–IV	11.2	2.1–20.3	5.0	0.0–15.6	0.0	NA
Leukopenia						
Grades I–IV	22.9	6.2–39.6	11.5	2.6–20.4	8.3	NA
Grades III–IV	8.9	4.7–13.1	9.8	2.3–17.3	0.0	NA
Thrombocytopenia						
Grades I–IV	19.2	6.9–31.6	7.0	0.0–17.6	8.3	NA
Grades III–IV	10.2	3.6–16.8	3.8	0.0–8.3	0.0	NA

CI, confidence interval; NA, not available; SR-aGVHD, steroid-refractory acute graft-versus-host disease; SR-cGVHD, steroid-refractory chronic graft-versus-host disease.
the only successful RCT (REACH2 study) for SR-aGVHD, nine second-line treatments except interleukin-2 receptor antagonists were included as the best available treatments. Thus, comparing the safety and efi

cacy between ruxolitinib and basiliximab in SR-aGVHD seems to be an interesting clinical issue.

This study has several limitations. First, we observed that the ORR for ruxolitinib seemed to be superior to other drugs in SR-aGVHD and SR-cGVHD. However, differences existed in the patient selection or publication bias may influence the comparison between ruxolitinib and other drugs. Considering that most studies about SR-GVHD were single-arm–designed, we admitted that the comparison of ruxolitinib and other second-line therapies might be insufficient, and it is premature to conclude that ruxolitinib was superior to other drugs based on the results of our meta-analysis. REACH 2 and REACH 3 trials had observed that ruxolitinib was superior to most of the other second-line drugs in RCTs, and real-world analysis could help to further compare the efficacy and safety between ruxolitinib and other drugs in future. Second, the reducing accuracy of our result might due to heterogeneity of different studies in our analysis. Third, the sample of children was still relatively small, and the comparisons of efficacy and safety between adults and children were insufficient, which should be further identified in future.

Conclusion

In summary, this study suggests that ruxolitinib is an effective and safe treatment for SR-GVHD, and both children and adults with SR-GVHD could benefit from ruxolitinib treatment.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Author contributions

X-DM and M-ZS designed the study. SF, W-XH, and YY conducted data collection. M-ZS, SF, W-XH, and X-DM conducted data analysis and drafted manuscript. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (grant number 81621001), the Program of the National Natural Science Foundation of China (grant number 82170208), CAMS Innovation Fund for Medical Sciences (CIFMS) (grant number 2019-IDM-5-034), the Key Program of the National Natural Science Foundation of China (grant number 81930004), and the Fundamental Research Funds for the Central Universities.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2022.954268/full#supplementary-material

References

1. Zhang XH, Chen J, Han MZ, Huang H, Jiang EL, Jiang M, et al. The consensus from the Chinese society of hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation. 2021 update. J Hematol Oncol (2021) 14(1):145. doi: 10.1186/s13045-021-01159-2

2. Yeshurun M, Weisdorf D, Rowe JM, Tallman MS, Zhang MJ, Wang HL, et al. The impact of the graft-versus-leukemia effect on survival in acute lymphoblastic leukemia. Blood Adv (2019) 3(4):670–80. doi: 10.1182/bloodadvances.2018027003

3. Yu J, Parasuraman S, Shah A, Weisdorf D. Mortality, length of stay and costs associated with acute graft-versus-host disease during hospitalization for allogeneic hematopoietic stem cell transplantation. Curr Med Res Opin (2019) 35(6):983–8. doi: 10.1080/03007995.2018.1551193

4. Modi A, Rybicki L, Majhail NS, Mossad SB. Severity of acute gastrointestinal graft-vs-host disease is associated with incidence of bloodstream infection after adult allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis (2020) 22(1):e13217. doi: 10.1111/tid.13217

5. Shen MZ, Hong SD, Lou R, Chen RZ, Zhang XH, Xu LP, et al. A comprehensive model to predict severe acute graft-versus-host disease in acute leukemia patients after haploidentical hematopoietic stem cell transplantation. Exp Hematol Oncol (2022) 11(1):25. doi: 10.1186/s40164-022-00278-x

6. Gratwohl A, Brand R, Frassoni F, Rocha V, Niederwieser D, Reuss P, et al. Cause of death after allogeneic hematopoietic stem cell transplantation (HSCT) in early leukemias: an EBMT analysis of lethal infectious complications and changes over
17. Barton-Burke M, Dwinnell DM, Kafkas L, Lavallee C, Sands H, Proctor C, et al. Graft-versus-host disease: a complex long-term side effect of hematopoietic stem cell transplantation. Oncol (Williston Park) (2008) 22(11 Suppl Nurse Ed):31–45.

18. Martin PJ, Rizzo JD, Wingard JR, Ballen K, Curtin PT, Cutler C, et al. First- and second-line systemic treatment of acute graft-versus-hospital disease: recommendations of the American society of blood and marrow transplantation. Blood Marrow Transplant (2012) 18(8):1150–63. doi: 10.1038/jamt.2012.004

19. MacMillan ML, DeFor TE, Wissgott DJ. The best endpoint for acute GVHD treatment trials. Blood (2010) 115(2):5412–7. doi: 10.1182/blood-2009-12-285442

20. Penack O, Marchetti M, Ruutu T, Aljurf M, Bascigalupi A, Bonifazi F, et al. Prophylaxis and management of graft versus host disease after stem cell transplantation for haematological malignancies: updated consensus recommendations of the European society for blood and marrow transplantation. Lancet Haematol (2020) 7(2):e157–67. doi: 10.1016/S2352-3026(19)30236-X

21. Arazi S, Margolius J, Zahurak M, Anders V, Vogelsang GB. Poor outcome in steroid refractory graft versus host disease with antithymocyte globulin treatment. Blood Marrow Transplant (2002) 8(1):155–60. doi: 10.1053/bmmt.2002.v8m193605

22. Ajayi S, Becker H, Reinhardt H, Engelhardt M, Zeiser R, von Bubnoff N, et al. Ruxolitinib. Recent Results Cancer Res (2018) 212:189–96. doi: 10.1007/978-3-319-91439-8_6

23. Schroeder MA, Choi J, Stase K, DiPersio JF. The role of janus kinase signaling in graft-versus-Host disease and graft versus leukemia. Biol Blood Marrow Transplant (2018) 24(6):1125–34. doi: 10.1016/j.bbmt.2017.12.797

24. Jagasia M, Perera MA, Schroeder MA, Ali H, Shah NN, Chen YB, et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1): a multicenter, open-label phase 2 trial. Blood (2020) 135(20):1739–49. doi: 10.1182/blood.2020004823

25. Zeiser R, von Bubnoff N, Butler J, Moltby M, Niedervierier D, Or R, et al. Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N Engl J Med (2020) 382(19):1800–10. doi: 10.1056/NEJMoa1917635

26. Zeiser R, Polverelli N, Ram R, Hashmi SK, Chakraverty R, Middelme JM, et al. Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host Disease. N Engl J Med (2021) 385(5):228–38. doi: 10.1056/NEJMoa2031222

27. Przepiorka D, Luo L, Subramaniam S, Qiu J, Gudi R, Cunningham LC, et al. FDA Approval summary: Ruxolitinib for treatment of steroid-refractory acute Graft-versus-Host Disease. Oncologist (2020) 25(2):e328–34. doi: 10.1634/thecomologist.2019-0627

28. Le RQ, Wang X, Zhang X, Li H, Przepiorka D, Vallojo J, et al. FDA Approval summary: Ruxolitinib for treatment of chronic graft-versus-Host Disease after failure of one or two lines of systemic therapy. Oncologist (2022) 27(6):493–500. doi: 10.1093/onc/ocy042

29. Hui L, Qi L, Guo H, Xulang S, Meio T, Ruxolitinib for treatment of steroid-refractory graft-versus-host disease in adults: a systematic review and meta-analysis. Expert Rev Hematol (2020) 13(5):565–75. doi: 10.1080/17474086.2020.1738214

30. Wu H, Shi J, Luo Y, Tan Y, Zhang M, Lai T, et al. Evaluation of ruxolitinib for steroid-refractory chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. JAMA Netw Open (2021) 4(1):e2034750. doi:10.1002/pbc.28190

31. Martin PJ, Schoch G, Fisher L, Byers V, Appelbaum FR, McDonald GB, et al. A retrospective analysis of treatment for acute graft-versus-host disease: secondary analysis. Blood (1991) 77(8):1821–4. doi: 10.1182/blood.V77.8.1821.1821

32. Jagasia M, Greinix H, Robin M, Das-Gupta E, Jacobs R, Savani BN, et al. Extracorporeal photopheresis therapy for multidrug-resistant graft-versus-host disease. JAMA (2004) 291(19):2426–31. doi: 10.1001/jama.291.19.2426

33. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration (2011). Available from www handbook.cochrane.org

34. Balduzzi S, Rucker G, Schwarzer G. How to perform a meta-analysis with r: a practical tutorial. Evid Based Ment Health (2019) 22(4):153–60. doi: 10.1111/ebm.2019-300117

35. Wickham H. ggplot2: elegant graphics for data analysis. Switzerland:Springer (2016).

36. Khoury H, Khashy A, Adkins DR, Brown RA, Miller G, Vij R, et al. Treatment of steroid-refractory acute graft versus-host disease with anti-thymocyte globulin. Bone Marrow Transplant (2001) 27(10):1059–64. doi: 10.1038/bmt.20010302

37. Martin PJ, Schoch G, Fisher L, Byers V, Appelbaum FR, McDonald GB, et al. A retrospective analysis of treatment for acute graft-versus-host disease: secondary analysis. Blood (1991) 77(8):1821–4. doi: 10.1182/blood.V77.8.1821.1821

38. Jagasia M, Greinix H, Robin M, Das-Gupta E, Jacobs R, Savani BN, et al. Extracorporeal photopheresis therapy for multidrug-resistant graft-versus-host disease: a multicenter comparative analysis. Blood Marrow Transplant (2013) 197(9):1129–33. doi: 10.1016/j.bbmt.2013.04.018

39. Greinix HT, Volc-Platzer B, Kalpu P, Fischer G, Rosenmayr A, Keil F, et al. Extracorporeal photopheresis therapy in the treatment of severe steroid-refractory acute graft versus-host disease: a pilot study. Blood (2000) 96(7):2426–31. doi: 10.1182/blood.V96.7.2426

40. Mesina C, Locatelli F, Lanino E, Uderzo C, Zacchello G, Cesaro S, et al. Extracorporeal photopheresis therapy for paediatric patients with graft-versus-host disease after haematopoietic stem cell transplantation. Br J Haematol (2005) 122(1):118–27. doi: 10.1046/j.1365-2141.2003.04401.x

41. Abu-Dalle I, Reljic T, Nishihori T, Antar A, Bazarbachi A, Djulbegovic B, et al. Extracorporeal photopheresis in steroid-refractory acute or chronic graft-versus-host disease: results of a systematic review of prospective studies. Blood Marrow Transplant (2014) 20(11):1677–86. doi: 10.1038/jamt.2014.05.017

42. Zhang H, Chen R, Cheng J, Jin N, Chen B. Systematic review and meta-analysis of prospective studies for ECP treatment in patients with steroid-refractory acute GVHD. Blood (2011) 97(10):3056–63. doi: 10.1182/blood-2010-08-292747

43. Faneto D, Kocher T, Brichtova Y, Vorlicek J, Mayer J. Mycophenolate mofetil for the treatment of acute and chronic steroid refractory graft-versus-host disease. Ann Hematol (2005) 84(10):681–5. doi: 10.1007/s00277-005-0370-7
Baudard M, Vincent A, Moreau P, Kergueris MF, Harousseau JL, Milpied N. Mycophenolate mofetil for the management of steroid-refractory acute graft vs host disease. Bone Marrow Transplant (2009) 44(1):739–48. doi:10.1038/bm.2009.76

De Jong CN, Saes I, Klerk CPW, van der Klift M, Corndissen JJ, Brouwer AEC. Etanercept for steroid-refractory acute graft-versus-host disease: A single center experience. PloS One (2017) 12(10):e0187184. doi:10.1371/journal.pone.0187184

Busca A, Locatelli F, Marmoni F, Cerotto C, Falda M. Recombinant human soluble tumor necrosis factor receptor fusion protein as treatment for steroid-refractory acute and chronic GVHD. Bone Marrow Transplant (2007) 82(1):45–52. doi:10.1002/bmt.20752

Faraci M, Caléo MG, Giardino N, Leoni M, Ricci E, Castagnola E, et al. Etanercept as treatment of steroid-refractory acute graft-versus-Host disease in pediatric patients. Biol Blood Marrow Transplant (2019) 25(4):743–8. doi:10.1016/j.bbmt.2018.11.017

Ma CKK, Garcia-Cadenas I, Fox ML, Ai S, Nivison-Smith I, Milliken ST, et al. Poor prognosis in patients with steroid-refractory acute graft versus host disease treated with etanercept: a multi-centre analysis. Bone Marrow Transplant (2018) 53(11):1478–82. doi:10.1038/s41409-018-0215-4

Park JH, Lee HJ, Kim SR, Song GW, Lee SK, Park SY, et al. Etanercept for steroid-refractory acute graft versus host disease following allogeneic hematopoietic stem cell transplantation. Korun J Intern Med (2014) 29(5):430–6. doi:10.3904/kjim.2014.29.5.430

Shen MZ, Li JX, Zhang XH, Xu LP, Wang Y, Liu KY, et al. Meta-analysis of interleukin-2 receptor antagonists as the treatment for steroid-refractory acute graft-versus-Host disease. Front Immunol (2021) 12:749266. doi:10.3389/fimmu.2021.749266

Macmillan ML, Couriel D, Weissdorf DJ, Schwab G, Herrilla N, Fleming TR, et al. A phase 2/3 multicenter randomized clinical trial of ABX-CBL versus ATG as secondary therapy for steroid-resistant acute graft-versus-host disease. Blood (2007) 109(6):2657–62. doi:10.1182/blood-2006-08-013995

Dugan MJ, DeFor TE, Steinbuch M, Filippovich AH, Weissdorf DJ, ATG plus corticosteroid therapy for acute graft-versus-host disease: predictors of response and survival. Ann Hematol (1997) 75(1-2):41–6. doi:10.1007/s002770050310

Pidala J, Anaetui C. Glucocorticoid-refractory acute graft-versus-host disease. Biol Blood Marrow Transplant (2010) 16(11):1504–18. doi:10.1016/j.bbmt.2010.01.007

Shapiro RM, Antin JH. Therapeutic options for steroid-refractory acute and chronic GVHD: an evolving landscape. Expert Rev Hematol (2020) 13(5):519–32. doi:10.1080/17474086.2020.1752175

Perfetti P, Carlier P, Strada P, Gualandi F, Occhini D, Van Liemt MT, et al. Extracorporeal photopheresis for the treatment of steroid refractory acute GVHD. Bone Marrow Transplant (2008) 42(9):609–17. doi:10.1038/bm.2008.221

Elgar S, Kuci Z, Kuci S, Bonig H, Bader P. Clinical use of mesenchymal stromal cells in the treatment of acute graft-versus-Host disease. Transfus Med Hemother (2019) 46(1):27–34. doi:10.1159/000496809

Olivieri J, Manfredi L, Postacchini L, Todesco S, Leoni P, Gabrielli A, et al. Consensus recommendations for improvement of unmet clinical needs–the example of chronic graft-versus-host disease: a systematic review and meta-analysis. Biol Blood Marrow Transplant (2019) 15(9):1005–15. doi:10.1016/j.bbmt.2019.04.003

Oliveira J, Manfredi L, Postacchini L, Todesco S, Leoni P, Gabrielli A, et al. Clinical use of mesenchymal stromal cells in the treatment of acute graft-versus-Host disease. Transfus Med Hemother (2019) 46(1):27–34. doi:10.1159/000496809

Hoffman M, Velasquez K, Brennan A, Wang C, Schmitz N, Stein H, et al. Prognostic factors and long-term follow-up of basiliximab for steroid-refractory acute graft-versus-host disease: Updated experience from a large-scale study. Am J Hematol (2020) 95(8):927–96. doi:10.1002/ajh.20839

Mo XD, Hong SD, Zhao YL, Jiang EL, Chen J, Xu Y, et al. Basiliximab for steroid-refractory acute graft-versus-host disease: a real-world analysis. Am J Hematol (2022) 97(4):458–69. doi:10.1002/ajh.26475