Is Perpendicular Magnetic Anisotropy Essential to All-optical Ultrafast Spin Reversal in Ferromagnets?

Thomas George
University of Missouri-St. Louis, tfgeorge@umsl.edu

Y. Bai
Indiana State University

G.P. Zhang
Indiana State University

Follow this and additional works at: https://irl.umsl.edu/chemistry-faculty

Recommended Citation
George, Thomas; Bai, Y.; and Zhang, G.P., "Is Perpendicular Magnetic Anisotropy Essential to All-optical Ultrafast Spin Reversal in Ferromagnets?" (2017). *Chemistry & Biochemistry Faculty Works*. 5.
Available at: https://irl.umsl.edu/chemistry-faculty/5
Is perpendicular magnetic anisotropy essential to all-optical ultrafast spin reversal in ferromagnets?

To cite this article: G P Zhang et al 2017 J. Phys.: Condens. Matter 29 425801

View the article online for updates and enhancements.

Related content
- Switching ferromagnetic spins by an ultrafast laser pulse: Emergence of giant optical spin-orbit torque
 G P Zhang, Y H Bai and Thomas F George

- A new and simple model for magneto-optics uncovers an unexpected spin switching
 G P Zhang, Y H Bai and Thomas F George

- Ultrafast reduction in exchange interaction by a laser pulse: alternative path to femomagnetism
 G P Zhang, Mingqiang Gu and X S Wu

Recent citations
- Demagnetizing fields in all-optical switching
 F Hoveyda et al

- Manifestation of intra-atomic 5d5s-4f exchange coupling in photoexcited gadolinium
 G P Zhang et al
1. Introduction

Laser-controlled spin dynamics in ferromagnets started with the pioneering work by Beaurepaire and coworkers [1], who found that an ultrafast laser pulse is capable of demagnetizing a nickel thin film within 1 ps. This opens a new frontier in magnetism that has never been seen before. Earlier studies heavily concentrated on how such an ultrashort demagnetization occurs, a still hotly debated topic even today [2–7]. Technological implications of this discovery were recognized in the beginning, and soon investigations of the exchange-coupled structure [8], a prime example in spintronics, started. The results were very interesting, but not surprising.

A decade earlier, Gau [9] reviewed several important materials used in magneto-optical recording (MO) and laid out the ideal structure-property relationship for technological applications. Amorphous rare-earth transition metals were first reported in 1973 by the IBM group [10], where \((\text{Tb},\text{Gd})_{x}(\text{Fe},\text{Co})_{1-x}\) ferrimagnetic thin films with \(0.2 \leq x \leq 0.3\) represent the archetype material for MO. These films have a perpendicular magnetic anisotropy (PMA) and...
two spin sublattices. The sublattices allow the compensation temperature, where two sublattice spins cancel each other, to be tuned toward room temperature [9]. The writing is done through an AlGaAs semiconductor laser and a magnetic field.

In 2007, using GdFeCo, Stanciu et al [11] reported that the writing is possible even with a single laser pulse but without a magnetic field. The helicity determines how the spin is reversed [12, 13]. Left-circularly polarized light switches spins from down to up, while right-circularly polarized light does the opposite. This is commonly called all-optical helicity-dependent spin switching, or AOHDS. A group of new materials has emerged lately [14, 15]. Of particular interest are ferromagnetic CoPt ultrathin films. They only have a single spin lattice since Pt sites have a much weaker spin moment. The films have only 1-2 monolayers, and thicker ones do not show AOHDS. What is surprising is that these samples also do not show PMA. This is not limited to CoPt. John and coworkers discovered that in FePt nanoparticles with PMA, magnetization switching is possible [16]. Different from CoPt and FePt, iron nanoparticles have an in-plane magnetic anisotropy (IMA). Recently, Ren and coworkers [17] found that upon ultrafast laser excitation, in-plane spins in iron nanoparticles only cant out of the plane of their sample and are not switched over. This indicates that the initial spin configuration is likely to have an important impact on how spins react to laser excitation, a theme also revealed in dysprosium [18]. Is PMA essential to all-optical spin switching (AOS)? To answer this, we believe that a theoretical investigation is imperative.

In this paper, we present a theoretical investigation to establish the intricate connection between the spin configurations (PMA and IMA) and switchability of the spins on the shortest possible time scale. We employ our newly developed model to directly compute the spin evolution in the time domain. We demonstrate theoretically that PMA has an unparalleled advantage over IMA to switch spins. Its switching window is much broader, and the spin precedes orderly. The switching is robust. By contrast, the switching in IMA systems is often subject to chaotic spin precession. If the laser pulse is too short, the spin reversal does not occur. Only when we increase the laser pulse duration to 120 fs do we find a narrow region in which the spin does reverse. The key player is the spin–orbit torque. At the optimal laser field amplitude, the in-plane torque (for IMA) is larger than those along the other directions, so switching occurs. If we mix PMA with IMA, we find that there is no switching, but quite surprisingly, the spins in each layer, after the laser excitation, proceed in harmony, a prediction that can be verified in experiments. Our results clarify the role of spin configuration in spin reversal and should have some important implications for the future research in AOS.

The rest of the paper is arranged as follows. In section 2 we present our spin reversal theory. Section 3 is devoted to our main results and discussions. We start with the perpendicular magnetic anisotropy and then move on to the in-plane magnetic anisotropy, followed by two investigations in the mixed spin configuration. Finally, we conclude this paper in section 4.

2. Spin reversal theory

Femtomagnetism [19] is not a traditional topic in magnetism. The traditional spin wave theory only describes spin dynamics under a magnetic or thermal field [20], not a laser field. Since the beginning of AOS, enormous efforts have been made to develop a reasonably simple theory to explain AOS, and over ten theories have been proposed [11, 21–31, 32].

Recently, when we investigated the magneto-optical Kerr effect [33, 34], we unexpectedly found a rather simple method. This method only captures the initial steps of the spin reversal, thus complementing other methods [11, 21–29] very well. While the details of our method have been published [31], here we briefly review some basic ideas behind our theory. Our method starts from the traditional model, very popular in optics and nonlinear optics, where the electron is placed in a harmonic potential $\frac{m\Omega^2 \mathbf{r}^2}{2}$ with frequency Ω and interacts with the laser field through the dipole term, $-\mathbf{e} \mathbf{E}(t) \cdot \mathbf{r}$, where $-\mathbf{e}$ is the electron charge, $\mathbf{E}(t)$ is the electric field of the laser pulse, and \mathbf{r} is the position of the electron. However, the traditional model has no spin, so the interaction between the laser and spin is missing. To overcome this deficiency, the magneto-optical theory includes a magnetic field, \mathbf{B}_{ext}, besides the electric field. The effect on the magnetic property of the system comes from the Lorentz interaction, but spin is still missing. A major breakthrough came when we realized that we can amend the spin–orbit coupling (SOC) $\lambda \mathbf{L} \cdot \mathbf{S}$ to the original Hamiltonian, where λ is the spin–orbit coupling, \mathbf{L} is the orbital angular momentum, and \mathbf{S} is the spin angular momentum. The electron experiences an additional force from SOC. The orbital angular momentum is computed from the position and momentum of the electron, i.e. $\mathbf{r} \times \mathbf{p}$. Then the Hamiltonian for a single electron at site i is [30, 33]

$$
H_i(t) = \frac{\mathbf{p}_i^2}{2m} + \frac{1}{2} m \Omega^2 \mathbf{r}_i^2 + \lambda \mathbf{L}_i \cdot \mathbf{S}_i - \mathbf{e} \mathbf{E}(t) \cdot \mathbf{r}_i,
$$

where the first and second terms are the kinetic and potential energy terms, respectively, and the last term is the interaction between the laser electric field $\mathbf{E}(t)$ and the system. This Hamiltonian is not different from those used in nonlinear optics [34], except for the spin–orbit term. This Hamiltonian is also similar to the $t-J$ model [35], so the itinerant nature of the electron is captured. But the $t-J$ model can not be used to simulate AOS, since it has no orbital angular momentum, at least in the original Hamiltonian where the orbital character is hidden. What we did here is to essentially expand the spatial dimension of the model into the spin space. This builds a crucial link between the laser and the spin system [33]. Despite this complication, being able to treat both spin and spatial spaces opens a new path to simulate the spin dynamics in a real time domain and permits us to attack the most difficult issue at the hard core of AOS.

If we fix the spin \mathbf{S}_i, then we recover the previous magneto-optical results [33]. If we allow the spin to change, a source term, namely a spin–orbit torque, appears

$$
\frac{d\mathbf{S}_i}{dt}_{\text{soc}} = \lambda(\mathbf{L}_i \times \mathbf{S}_i),
$$

(2)
which describes how the spin changes at site i. Our previous work demonstrated varieties of possible switching within this single-site model. We avoid electron and spin temperatures on a time scale and an effective magnetic field [21]. This presents a more consistent formalism for spin reversal at the shortest possible time scale. For spin dynamics on a long time scale, one may refer to prior studies [21–29].

Another important contribution is from the exchange interaction. Ramsay et al [36] showed that in GaMnAsP photocarrier spin exerts a spin-transfer torque on the magnetization via the exchange interaction. To take into account the magnetic interaction and go beyond a single-site approximation, we include the Heisenberg exchange interaction term for site i

$$H_{\text{ex}}^i = -\sum_j J_{ij} S_i \cdot S_j,$$

(3)

where the summation is over the nearest-neighbor site j of spin S_i. J_{ij} is the exchange interaction between sites i and j, and can be changed to simulate either ferromagnetic or antiferromagnetic ordering. This term induces an exchange torque,

$$\left(\frac{dS_i}{dr} \right)_{\text{ex}} = \sum_{j(i)} J_{ij} S_i \times S_j.$$

(4)

We also consider adding a magnetic anisotropy term $H_{\text{anis}}^i = -d(S_i^z)^2$, where d is the anisotropy constant. We find that for $J_{ij} = 1 \text{ eV}$, if d is on the order of 10^{-5} eV, there is no major effect on our results within a few hundred femtoseconds. But if d is too strong, 10^{-3}–10^{-2} eV, the transverse components (S_i^x and S_i^y) start to interfere with the longitudinal component (S_i^z), so the spin switching becomes difficult. This happens to the in-plane anisotropy case as well. In our calculation, we do not include the dipolar interaction since it is rather weak and only acts on a much longer time scale. Our final Hamiltonian contains the Heisenberg exchange term and the single site Hamiltonian [37, 38]

$$H = \sum_i (H_i(t) + H_{\text{ex}}^i),$$

(5)

where the summation is over all the sites in the system. To compute the spin dynamics, we numerically solve the Heisenberg equation of motion for the spin operator \hat{S} [30], $i\hbar \frac{d\hat{S}}{dt} = [\hat{S}, H]$, where \hat{S} is an operator and H is the total Hamiltonian of the system (equation 5). We employ the variable-order and variable steps Adams method [39] to solve the differential equation. The tolerance of calculation is set at 5×10^{-13} for over 6000 differential equations.

3. Results and discussions

Our system consists of four monolayers along the z direction. There are 41 lattice sites along the x and y directions, respectively. This forms a simple cubic lattice structure. There are over 6400 spins in our system. We have confirmed that using an even larger number of spins has little effect on our results. Three types of spin configurations are considered: (a) perpendicular magnetic anisotropy, (b) in-plane magnetic anisotropy and (c) mixed anisotropy (see figure 1). A circularly polarized light coming down along the $-z$ axis with a penetration depth of 40 lattice sites. The field itself [31, 33] is

![Figure 1](image-url)
The laser pulse duration is 60 fs. The laser photon energy is 0.06 eV/Å. There is no magnetic field in our simulation. Our exchange interaction is $J = 1 \text{ eV/Å}^2$, and the spin–orbit coupling is $\lambda = 0.06 \text{ eV/Å}^2$, typical for transition metals [20].

$$E(t) = A_0 e^{-t^2/\tau^2} (\mp \sin(\omega t) \hat{x} + \cos(\omega t) \hat{y}), \quad (6)$$

where A_0 is the laser field amplitude, ω is the carrier frequency, τ is the laser pulse duration, and \hat{x} and \hat{y} are the unit vectors along the x and y directions, respectively. \mp in the equation refers to the left- (right-)circularly polarized light. Our exchange interaction is $J = 1 \text{ eV/Å}^2$, and the spin–orbit coupling is $\lambda = 0.06 \text{ eV/Å}^2$, typical for transition metals [20].

3.1. Perpendicular magnetic anisotropy

We align all the spins along the $-z$ axis and couple them ferromagnetically, with the initial value of $-\hbar$. The laser light impinges along the $-z$ axis. Each layer is exposed with a different laser intensity. To start with, we use left-circularly polarized light with duration of 60 fs. The laser photon energy is $h\omega = h\Omega = 1.6 \text{ eV}$. There is no magnetic field in our simulation. Since we have 6400 spins, we decide to compute the layer-averaged spin and also monitor each spin evolution by sampling them individually. Figure 2(a) shows the layer-averaged spin as a function of time upon laser excitation for three components of the spin. The solid line is the z component. We see that it is reversed successfully from $-0.5\hbar$ to 0.5\hbar. Spin oscillation is clearly visible for each component. For this reason, we compute the maximum and minimum for each component after 300 fs (from when the laser peaks at 0 fs). For PMA, the oscillation amplitude is small (compare the solid and dotted lines for S_x, S_y, and S_z). We see that when the laser field amplitude is small, there is no spin reversal. But when the field increases, S_z increases sharply, while S_x decreases to a negative value. This change is typical [31] since the laser-induced spin–orbit torque that is needed to reverse the spin has to be positive along the z axis, so the S_z changes signs. For a field amplitude that is slightly larger than 0.01 V Å^{-1}, the spin cants along the y axis. A transition occurs when the laser field amplitude is close to 0.0165 V Å^{-1}, and when the spin is reversed along $+z$. The subtle crossing between S_x and S_y signals the coming of the optimal reversal field. After this optimal value, the spin cants along the $-x$ axis.

One of our important findings for PMA is that it shows a strong helicity-dependent switching. The lower line at the bottom of figure 2(b) plots the results with right-circularly polarized light. We see that it can not reverse the spin in the entire amplitude region. Here we only show the z component...
of the spins in the first layer, since the other components are too small to show. The huge difference between the left- and right-circularly polarized light is mainly due to the orbital angular momentum difference as noticed before [31].

3.2. In-plane magnetic anisotropy

A naïve guess for the in-plane magnetic anisotropy would be similar to PMA. However, quantum mechanically, IMA has the spin quantization along the x axis. Because the optical selection rule ($\Delta l = \pm 1$, $\Delta m_l = 0, \pm 1$ with l and m_l, respectively, being orbital and magnetic orbital angular momentum quantum numbers) is spatially relative to the spin quantization, the left- and right-circularly polarized light become equivalent to the spin. Such a convoluted relation is difficult to include if one uses a heat pulse in place of a true laser field. Our scheme shows the true power to simulate spin dynamics. In figure 2(c) we present a representative result for the spin precession. The laser field amplitude is chosen to be 0.02 V Å$^{-1}$. We find that regardless of how strong or weak the laser field is, the switching is not observed. For a weak laser pulse, the spin oscillates with a smaller amplitude. For a stronger laser, the oscillation dominates the entire dynamics with a shorter period. Therefore, the maximum and minimum spins differ a lot (see figure 2(d)). To be sure that we do not miss the major portion of the laser parameter space, we extend the laser field amplitude all the way up to 0.08 V Å$^{-1}$, and we do not find a case where the spin is reversed with duration $\tau = 60$ fs. No spin reversal is found, and no helicity dependence is noted.

From the huge oscillation in the spin in figure 2(d), we notice something unusual. The maximum spin can reach 0.5 \hbar for the field amplitude below 0.05 V Å$^{-1}$, but its minimum is just too negative. Considering the laser peak around 0 fs, the spin appears to overshoot (see figure 2(c)). This is always the case with an ultrashort pulse, where the coherence lasts very long [40]. We wonder whether a longer pulse can suppress such a rapid oscillation. We increase the pulse duration to 120 fs. To our surprise, although the entire amplitude dependence does not change much, a window of opportunity appears. If one compares figures 3(a) with 2(d), the minimum spin does not change much, a window of opportunity appears. Around 0.015 V Å$^{-1}$, the first optimal condition appears. Figure 3(b) shows the layer-averaged spin precession as a function of time. In the beginning, the spin is along the $-x$ axis, and upon laser excitation, it tilts within the xy plane. The y component is comparable to the x component of about 0.7 \hbar. In the middle of the lower panel of figure 3, we sketch the initial and final spins to show how the spin reversal is partially accomplished.

To understand how the switching occurs, we need to look at the spin–orbit torque upon laser excitation for each component of the spin. Figure 3(c) shows that in general the spin–orbit torque τ_{soc} for each component is similar, but with one crucial exception: τ_x and τ_z peak much earlier. This explains why S_y and S_z rise earlier and more quickly. This is fully expected, since in the beginning the spins are zero along these two directions, and the torque is a product of the spin along the other direction with the orbital angular momentum. The challenge
to understand the spin reversal is that these three components obey the mutual permutation relation $[S_x, S_y] = i\hbar S_z$ [37]. If one of these components is zero and stays at zero, the spin reversal is not possible. Thus, normally the linear spin reversal proposed by Stanciu et al [11] does not occur. This is reflected in our simulation. Once S_x and S_y are different from zero, S_z can be switched. Since the torques from the laser and the exchange interaction are weak in the ferromagnetic configuration [31], the key driver to reverse S_z is the spin–orbit torque. Figure 3(c) further shows that τ_x (solid line) is smaller than τ_y (dotted line) and τ_z (dashed line), except around 0 fs when the laser peaks. Its magnitude surpasses both τ_x and τ_y. It is in this narrow temporal window that S_z reverses its direction, after which τ_z decreases. Such a decrease is necessary, since otherwise the switched spin would undergo a strong oscillation.

In PMA, the helicitiy dependence is very strong, but in IMA the helicity dependence is absent due to the selection rule discussed above. This is also confirmed numerically. In summary, we assert that AOS in IMA is much harder to obtain than PMA. This explains the crucial experimental observation as to why most AOS ferromagnets have a perpendicular magnetic anisotropy.

3.3. Laser-guided spin mode rectification

So far, our spin configurations are very pure—either perpendicular magnetic anisotropy or in-plane magnetic anisotropy. Magnetic orderings can be a mix of several different configurations and may contain different domains. Without considering all the possible spin configurations and without changing the system size, we examine what happens to the spin switching if the first layer of spins has PMA but the rest are in-plane; on the right, the spins in the first two layers point along the $-z$ axis, and the rest are in-plane; on the right, the spins in the first two layers point along the $-z$ axis, and the rest are in-plane.

Spin reversal	Layer	$S'(h)$	$S''(h)$	$S'(h)$	$S''(h)$
$\downarrow\rightarrow\downarrow\rightarrow\downarrow\rightarrow$	1	$(0, 0, -1)$	$(-0.76, 0.08, -0.20)$	$(0.0, -1)$	$(-0.47, -0.04, -0.53)$
$\downarrow\rightarrow\downarrow\rightarrow\downarrow\rightarrow$	2	$(-1.0, 0)$	$(-0.77, 0.03, -0.22)$	$(0.0, -1)$	$(-0.49, -0.04, -0.52)$
$\downarrow\rightarrow\downarrow\rightarrow\downarrow\rightarrow$	3	$(-1.0, 0)$	$(-0.77, -0.05, -0.23)$	$(-1.0, 0)$	$(-0.52, -0.03, -0.49)$
$\downarrow\rightarrow\downarrow\rightarrow\downarrow\rightarrow$	4	$(-1.0, 0)$	$(-0.75, -0.01, -0.23)$	$(-1.0, 0)$	$(-0.53, -0.04, -0.46)$

interaction J_y and the spin angular momentum, together with the spin–orbit coupling [41]. Figure 4(b) shows the same spin component as figure 4(a) but in the presence of a laser pulse. We see that the fluctuation in the original field-free dynamics is strongly suppressed. The amplitude of the spin oscillation is reduced from 2\hbar to less than 0.25\hbar. The spin is rectified according to the laser field. The laser pulse is shown in the inset of figure 4(b). Since left-circularly polarized light has nonzero x and y components, these components superimpose on top of each other in the inset. The horizontal line represents zero for the laser field. The field has duration of 60 fs, so its nonzero field extends from -300 fs to $+300$ fs.

Such spin rectification is not limited to the first layer. We find that all the layers have this feature. Figure 4(c) shows the x component of the layer-averaged spin in layer 2. On the top is the spin without laser excitation, and the bottom is with laser excitation. The difference is very clear. We also use different laser parameters, and the results are the same. This unexpected result requires an experimental confirmation. Microscopically, we find that the laser acts like a pivot that steers the spin along one particular direction. This is consistent with our earlier finding that the laser-induced spin–orbit torque is significantly larger than the energy barrier to alter the spin configuration [30].

To have some qualitative feeling as to how the spins change across different layers, in table 1 we show the initial and final layer-averaged spins. A pattern emerges. Although the initial spins are not in parallel, upon the laser excitation the spins in different layers congregate into the same orientation to reduce the exchange energy. Since there are three layers ferromagnetically coupled, the first layer with the original PMA bends its spins toward the other layers. Future experiments can test our prediction. Layered materials are popular in spintronics and spin-valve devices, where one essentially has a trilayer structure with a nonmagnetic spacer in between two layers. If the exchange coupling is strong between two ferromagnetic layers, even if the spin orientations at these two end layers are different, upon laser excitation, they can be guided into the same direction. We also test another case where two top layers have spin perpendicular anisotropy. As seen from the same table, the results are similar. This suggests that this laser-induced rectification is quite robust. We plan to investigate the helical configuration in the future. Experimentally, Ju et al [8] in their first experiment did see the impact of the laser pulse on the exchange bias. An extension of their experiment should be able to verify our prediction.
After this work was finished, we noticed that Laliu et al. [42] experimentally investigated the same mechanism in noncollinear magnetic bilayers, where one layer has spin out of plane while the other layer spin is in plane, separated by a spacer layer. They showed that they could absorb or generate spin currents. This is consistent with an earlier study by Huismann et al. [43], where optical generation of spin currents was demonstrated in a 10 nm thick Co film deposited on a 2 nm Pt layer.

4. Conclusion

We have investigated a hitherto open question as to whether perpendicular magnetic anisotropy is essential to all-optical laser-induced spin reversal in ferromagnets. Our finding is affirmative that PMA has a commanding advantage over IMA. AOS emerges, as both the laser field amplitude and the spin angular momentum are large enough. The spin does not show a strong oscillation, which is a big advantage for future applications. However, our finding does not exclude AOS in IMA. For a long laser pulse (120 fs), we find that there is a narrow region where a partial reversal is still possible. We predict that in a mixed spin configuration, a laser pulse can effectively rectify the spin evolution by suppressing spin frustration. We look forward to an experimental confirmation.

Acknowledgments

This work was solely supported by the US Department of Energy under Contract No. DE-FG02-06ER46304. Part of the work was done on Indiana State University’s quantum cluster and high-performance computers (obsidian and spin). The research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

References

[1] Beaurepaire E, Merle J C, Daunois A and Bigot J-Y 1996 Ultrafast spin dynamics in ferromagnetic nickel Phys. Rev. Lett. 76 4250
[2] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M and Aeschlimann M 2010 Explaining the paradoxical diversity of ultrafast laser-induced demagnetization Nat. Mater. 9 259
[3] Mathias S et al 2012 Probing the timescale of the exchange interaction in a ferromagnetic alloy Proc. Natl Acad. Sci. 109 4792
[4] Stamm C et al 2007 Femtosecond modification of electron localization and transfer of angular momentum in nickel Nat. Mater. 6 740
[5] La-O-Vorakiat C et al 2009 Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft x-ray source Phys. Rev. Lett. 103 257402
[6] Turgut E et al 2013 Controlling the competition between optically induced ultrafast spin-flip scattering and spin transport in magnetic multilayers Phys. Rev. Lett. 110 197201
[7] Turgut E et al 2016 Stoner versus Heisenberg: ultrafast exchange reduction and magnon generation during laser-induced demagnetization Phys. Rev. B 94 220408
[8] Ju G, Nurmiikko A V, Farrar R F C, Marks R F, Carey M J and Gurney B A 1999 Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled System Phys. Rev. Lett. 92 3705
[9] Gau J S 1989 Magneto-optical recording materials Mater. Sci. Eng. B 3 371
[10] Chaudhari P, Cuomo J J and Gambino R J 1973 Amorphous metallic films for magnetooptic applications Appl. Phys. Lett. 22 337
[11] Stanciu C D, Hanstein F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A and Rasing T 2007 All-optical magnetic recording with circularly polarized light Phys. Rev. Lett. 99 047601
[12] El Hadri M S et al 2016 Electrical characterization of all-optical helicity-dependent switching in ferromagnetic Hall cross Appl. Phys. Lett. 108 092405
[13] Choi G-M, Schleife A and Cahill D G 2017 Optical-helicity-driven magnetization dynamics in metallic ferromagnets Nat. Commun. 8 15085
[14] Lambert C-H et al 2014 All-optical control of ferromagnetic thin films and nanostructures Science 345 1337
[15] Mangin S et al 2014 Engineered materials for all-optical helicity-dependent magnetic switching Nat. Mater. 13 286
[16] John R et al 2016 Magnetization switching of FePt nanoparticle recording medium by femtosecond laser pulses Sci. Rep. 7 4114
[17] Ren Y H, Lai W, Cevher Z, Gong Y and Zhang G P 2017 Experimental demonstration of 55-fs spin canting in photoexcited iron nanoarrays Appl. Phys. Lett. 110 082404
[18] Thielemann-Kühn N, Schick D, Pontius N, Trabant C, Mitrner R, Holldack K, Zabel H, Föhlsch L and Schüßler-Langeheine C 2017 private communication
[19] Zhang G P, Hübner W, Beaurepaire E and Bigot J-Y 2002 Laser-induced ultrafast demagnetization: Femtosecondmagnetism, a new frontier? Top. Appl. Phys. 83 245
[20] Zhang G P and Hübner W 2000 Laser-induced ultrafast demagnetization in ferromagnetic metal Phys. Rev. Lett. 85 3025
[21] Ostler T A et al 2012 Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet Nat. Commun. 3 666
[22] Schellekens A J and Koopmans B 2013 Microscopic model for ultrafast magnetization dynamics of multisublattice magnets Phys. Rev. B 87 020407
[23] Cornelissen T D, Cordoba R and Koopmans B 2016 Microscopic model for all optical switching in ferromagnets Appl. Phys. Lett. 108 142405
[24] Khorsand A R, Savoini M, Kirilyuk A, Kimel A V, Tsukamoto A, Itoh A and Rasing T 2012 Role of magnetic circular dichroism in all-optical magnetic recording Phys. Rev. Lett. 108 127205
[25] Gridnev V N 2008 Phenomenological theory for coherent magnon generation through impulsive stimulated Raman scattering Phys. Rev. B 77 094426
[26] Mentink J H, Hellsvik J, Afanasiev D V, Ivanov B A, Kirilyuk A, Kimel A V, Eriksson O, Katsnelson M I and Rasing T 2012 Ultrafast spin dynamics in multisublattice magnets Phys. Rev. Lett. 108 057202
[27] Berritta M, Mondal R, Carva K and Oppeneer P M 2016 Ab initio theory of coherent laser-induced magnetization in metals Phys. Rev. Lett. 117 137203
Kurkin M I, Bakulina N B and Pisarev R V 2008 Transient inverse Faraday effect and ultrafast optical switching of magnetization Phys. Rev. B 78 134430

Baral A and Schneider H C 2015 Magnetic switching dynamics due to ultrafast exchange scattering: a model study Phys. Rev. B 91 100402

Zhang G P, Bai Y H and George T F 2016 Switching ferromagnetic spins by an ultrafast laser pulse: emergence of giant optical spin–orbit torque Europhys. Lett. 115 57003

Zhang G P, Latta T, Babyak Z, Bai Y H and George T F 2016 All-optical spin switching: a new frontier in femt magnetism—a short review and a simple theory Mod. Phys. Lett. B 30 16300052

Chen X-J 2017 Fundamental mechanism for all-optical helicity-dependent switching of magnetization Sci. Rep. 7 41294

Zhang G P, Bai Y H and George T F 2015 A new and simple model for magneto-optics uncovers an unexpected spin switching Europhys. Lett. 112 27001

Boyd R 2008 Nonlinear Optics 3rd edn (New York: Academic)

Chao K A, Spalek J and Oles A M 1978 Canonical perturbation expansion of the Hubbard model Phys. Rev. B 18 3453

Ramsay A J, Roy P E, Haigh J A, Otxo M R M, Irvine A C, Janda T, Campion R P, Gallagher B L and Wunderlich J 2015 Optical spin-transfer-torque-driven domain-wall motion in a ferromagnetic semiconductor Phys. Rev. Lett. 114 067202

Zhang G P 2011 Microscopic theory of ultrafast spin linear reversal J. Phys.: Condens. Matter 23 206005

Zhang G P and George T F 2013 Thermal or nonthermal? That is the question for ultrafast spin switching in GdFeCo J. Phys.: Condens. Matter 25 366002

Hall G and Watt J M 1976 Modern Numerical Methods for Ordinary Differential Equations (Oxford: Clarendon)

Zhang G P, Hübner W, Lefkidis G, Bai Y and George T F 2009 Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism Nature Phys. 5 499

Murakami M, Babyak Z, Giocolo M and Zhang G P 2017 Quantum mechanical interpretation of the ultrafast all optical spin switching J. Phys.: Condens. Matter 29 184002

Lalieu M L M, Helgers P I J and Koopmans B 2017 Absorption and generation of femtosecond laser-pulse excited spin currents in non-collinear magnetic bilayers Phys. Rev. B 96 014417

Huisman T J et al 2016 Femtosecond control of electric currents in metallic ferromagnetic heterostructures Nat. Nanotechnol. 11 455