Table of contents

Table S1. Rate and equilibrium constants for carbamato formation and hydrolysis in water. S2-S3

Table S2. Selected X-ray bond distances (Å) and angles (°) in amidinium/guanidinium CO\(_2\) adducts. S4

Table S3. Selected bond distances (Å) and angles (°) for carbamato ligands in metal complexes. S5-S9

Table S4. NMR and IR data related to the NCO\(_2\) moiety in metal carbamato complexes. S10-S13

References S14-S23
Table S1. Rate (k) and equilibrium (K_{CBM}) constants for the carbamato formation and equilibrium constant (K_{HYD}) for the carbamato hydrolysis at 18 °C in water.

\[
\begin{align*}
\text{CO}_2^{(aq)} + 2 \text{R}_2\text{NH}^{(aq)} & \rightleftharpoons [\text{R}_2\text{NH}_2^+^{(aq)} + [\text{R}_2\text{NCOO}^-]^{(aq)}] \\
[\text{R}_2\text{NCOO}^-]^{(aq)} + \text{H}_2\text{O}^{(l)} & \rightleftharpoons [\text{R}_2\text{NH}_2^+^{(aq)} + \text{HCOO}^-]^{(aq)}
\end{align*}
\]

Amine	pK_i	k (M⁻¹ min⁻¹)	K_{CBM}	K_{HYD}	Ref.
NH₃	4.76	3.8 × 10⁴	2.3 × 10³	4.4 × 10⁻³	[1]
Primary amines					
NH₂Me	3.38	8.3 × 10⁴	4.0 × 10⁶	6.0 × 10⁻³	[1]
NH₂Et	3.19	1.5 × 10⁵	2.0 × 10⁶	1.8 × 10⁻²	[1]
NH₂Pr	3.41	1.6 × 10⁵	1.5 × 10⁶	1.3 × 10⁻²	[1]
NH₂Pr	3.37	6.8 × 10⁴	3.6 × 10⁵	6.3 × 10⁻²	[1]
NH₂Bn	4.74	1.1 × 10⁵	8.5 × 10⁴	1.2 × 10⁻²	[1]
NH₂Ph	9.30	≈10¹	8.1 × 10⁻³	3.6	[1]
NH₃allyl	4.38	1.1 × 10⁵	1.6 × 10⁵	1.5 × 10⁻²	[1]
NH₂Bu	3.24	2.0 × 10⁵	1.1 × 10⁶	1.6 × 10⁻²	[1]
NH₂Bu	3.44	7.1 × 10⁴	3.8 × 10⁶	4.9 × 10⁻²	[1]
NH₂Bu	3.58	1.6 × 10⁵	1.3 × 10⁶	1.0 × 10⁻²	[1]
NH₂Bu	3.55	1.9 × 10⁴	1.1 × 10⁶	1.0 × 10⁻²	[1]
Secondary amines					
NHMe₂	3.22	6.7 × 10⁵	1.6 × 10⁶	2.2 × 10⁻²	[1]
NHEt₂	3.51	2.9 × 10⁵	7.4 × 10⁴	2.4 × 10⁻¹	[1]
NHPp₂	3.09	3.0 × 10⁵	3.0 × 10⁴	1.5 × 10⁻¹	[1]
NHPp₂	3.17	–	None	–	[1]
NHBu₂	2.54	3.1 × 10⁵	4.6 × 10⁵	1.9 × 10⁻¹	[1]
NHBu₂	–	–	None	–	[1]
NFBu₂	3.41	1.3 × 10⁵	1.9 × 10⁵	1.2 × 10⁻¹	[1]
Piperidine	2.95	7.8 × 10⁴	7.9 × 10³	8.1 × 10⁻²	[1]
3-MPD	3.12	–	6.9 × 10⁶	6.2 × 10⁻³	[2]
4-MPD	3.06	–	5.9 × 10⁶	8.3 × 10⁻³	[2]
Pyrrolidine	3.16	3.5 × 10⁶	1.9 × 10⁷	2.0 × 10⁻³	[3,4]
Substituted amines					
MEA	4.42	8.3 × 10⁴	6.0 × 10⁴	1.9 × 10⁻²	[1]
DEA	4.98	1.0 × 10⁵	2.1 × 10³	1.5 × 10⁻¹	[1]
1-AP^[b]	4.75	3.2 × 10⁵	9.6 × 10³	1.1 × 10⁻¹	[3]
2-AP^[b]	4.75	6.0 × 10⁴	4.0 × 10³	2.5 × 10⁻¹	[5]
MPA^[b]	4.18	5.4 × 10⁵	2.5 × 10³	1.5 × 10⁻²	[5]
Compound	pK_b	K_b Value	pK_b Value	K_b Value	Literature References
------------------------------	----------------	---------------------	---------------------	---------------------	-----------------------
AMP^(b)	4.73	–	None	–	[5]
4-PIPDM^(b)	3.71	1.3 × 10⁶	2.7 × 10³	4.1 × 10⁻²	[3,4]
4-PIPDE^(b)	3.65	–	3.0 × 10⁵	4.2 × 10⁻²	[4]
Morpholine^(b)	5.78	1.6 × 10⁵	1.4 × 10³	6.8 × 10⁻²	[3,4]
Thiomorpholine^(b)	5.57	1.9 × 10⁴	9.3 × 10²	1.6 × 10⁻⁴	[3,4]
Piperazine	4.50	–	5.5 × 10⁴	3.2 × 10⁻²	[6]
8.67	–	2.6 × 10⁻¹	4.6 × 10⁻²		
MPIPZ	4.96	–	5.1 × 10³	1.2 × 10⁻³	[3]
4-AMTHP^(b)	4.37	3.6 × 10⁵	1.9 × 10³	1.3 × 10⁻²	[7]
Taurine^{(b)[c]}	5.19	–	7.1 × 10³	5.1 × 10⁻²	[8]

Amino acids

Compound	pK_b	K_b Value	pK_b Value	K_b Value	Literature References
Glycine^(d)	4.49	3.2 × 10⁵	4.4 × 10⁴	4.2 × 10⁻²	[9]
Sarcosine^{(b)[d]}	4.22	1.1 × 10⁶	3.3 × 10⁴	1.0 × 10⁻³	[10]
a-Alanine^(d)	4.40	6.6 × 10⁴	1.8 × 10⁴	1.1 × 10⁻¹	[11]
b-Alanine^(d)	3.86	1.1 × 10⁶	1.9 × 10⁵	3.1 × 10⁻²	[11]
Proline^(e)	3.57	–	5.4 × 10⁶	2.8 × 10⁻³	[12]
Lysine^{(b)[c]}	4.44^(f)	–	1.7 × 10⁶	1.2 × 10⁻¹	[13]
	3.24^(g)	–	6.3 × 10⁴	5.1 × 10⁻¹	

^(a)pK_b values are from ref. [1–9,12,13]. For a list of pK_b see ref. [14,15]. (K_w = 10^{-14.27}); ^(b)Measured at 25°C; ^(c)Potassium salt; ^(d)Sodium Salt; ^(e)Deprotonation of the a-amino group; ^(f)Deprotonation of the amino group on the lateral chain; 3-MPD = 3-methylpiperidine, 4-MPD = 4-methylpiperidine, MEA = monoethanolamine, DEA = diethanolamine, 1-AP = 2-amino-1-propanol, 2-AP = 1-amino-2-propanol, MPA = 3-amino-1-propanol, AMP = 2-amino-2-methyl-1-propanol, 4-PIPDM = 4-piperidine-3-methanol, 4-PIPDE = 4-piperidineethanol, MPIPZ = 1-methylpiperazine, 4-AMTHP = 4-aminomethyltetrahydropyran.
Table S2. Selected X-ray bond distances (Å) and angles (°) in amidinium/guanidinium CO$_2$ adducts.

![Diagram](image)

Compound	N1-C1 (Å)	C1-O1 (Å)	C1-O2 (Å)	N2-C2 (Å)	C2-N2 (Å)	C2-N3 (Å)	O1-C1-O2 (α) (°)	C1-N1-C2-N3 (β) (°)	Ref.
![Image](image)	1.480(3)	1.257(3)	1.229(2)	1.369(3)	1.332(2)	1.338(3)	128.6(2)	4.4(2)	[16]
![Image](image)	1.513(3)	1.233(3)	1.228(3)	1.330(3)	1.322(3)	132.2(2)	9.1(2)	132.2(2)	[17]
![Image](image)	1.439(2)	1.248(1)	1.243(1)	1.373(1)	1.355(1)	1.349(2)	130.6(1)	88.9(2)	[17]
![Image](image)	1.432(1)	1.251(1)	1.243(1)	1.368(1)	1.338(1)	1.392(1)	129.09(9)	68.9(1)	[17]
Table S3. Selected bond distances (Å) and angles (°) for carbamato ligands in metal complexes (2004-2020).

Metal center	Carbamate coordination	C-O¹ (Å)	C-O² (Å)	C-N (Å)	O-C-O (°)	Ref.
Al(III)	B/2	1.284(2)	1.282(2)	1.347(2)	120.0(1)	[18]
Al(III)	B/2	1.300(5)	1.282(5)	1.326(5)	122.3(4)	[19]
Al(III)	B/2	1.280(4)	1.280(4)	1.335(4)	120.4(3)	[20]
Bi(III)	M/1	1.295(5)	1.250(6)	1.348(4)	123.9(4)	[21]
Bi(III)	B/2	1.288(4)	1.265(4)	1.360(4)	122.9(3)	
Bi(III)	C/2	1.295(4)	1.274(4)	1.342(4)	120.5(3)	[22]
Ce(III)	C/1	1.28(1)	1.26(2)	1.35(2)	120(1)	
	B/2	1.28(1)	1.26(1)	1.34(1)	121(1)	
Ce(III)	C/2	1.28(1)	1.28(1)	1.35(1)	119(1)	[23]
	B/3	1.34(1)	1.25(1)	1.33(1)	120.6(9)	
	B/4	1.311(9)	1.28(1)	1.34(1)	119.7(8)	
Ce(IV)	M/1	1.26(1)	1.21(1)	1.44(1)	128.4(8)	
	C/2	1.284(9)	1.23(1)	1.39(1)	123.5(7)	
	B/3	1.26(1)	1.23(1)	1.44(1)	128.7(8)	
	M/1	1.29(3)	1.20(3)	1.42(2)	129.0(2)	[24]
Ce(IV)	B/2	1.293(2)	1.201(3)	1.438(3)	128.3(2)	
	C/1	1.269(8)	1.254(7)	1.357(5)	118.3(5)	
	B/2	1.277(4)	1.271(5)	1.362(6)	123.8(4)	[23]
	C/2	1.279(7)	1.270(4)	1.346(7)	119.6(4)	
Cu(II)	M/1	1.30(3)	1.20(3)	1.39(3)	131(2)	[25]
	C/2	1.35(2)	1.25(2)	1.31(2)	118(1)	[26]
Cu(II)	B/2	1.269(6)	1.259(6)	1.375(6)	126.7(4)	[27]
Cu(II)	C/2	1.289(4)	1.238(4)	1.375(4)	123.6(3)	
Cu(II)	M/1	1.281(3)	1.236(3)	1.375(3)	125.9(2)	[28]
	B/2	1.280(3)	1.280(3)	1.367(3)	125.2(2)	
Element	Subshell	1.27(1)	1.28(1)	1.34(1)	119.0(7)	
----------	----------	---------	---------	---------	-----------	
Dy(III)	C/1	1.28(1)	1.28(1)	1.34(1)	122.7(7)	
	B/2	1.293(9)	1.25(1)	1.372(8)	121.3(6)	
	B/3	1.275(8)	1.27(1)	1.36(1)	122.7(7)	
Er(III)	C/1	1.295(8)	1.260(9)	1.369(9)	120.5(6)	
	B/2	1.272(7)	1.263(6)	1.346(8)	123.3(5)	
	B/3	1.305(6)	1.266(7)	1.348(6)	121.0(4)	
Er(III)	D/2	1.333(6)	1.277(6)	1.315(6)	115.6(4)	
Eu(III)	C/1	1.27(1)	1.26(1)	1.37(1)	120.6(8)	
	B/2	1.278(8)	1.254(6)	1.336(7)	123.1(5)	
	B/3	1.300(7)	1.253(6)	1.340(8)	122.2(5)	
Fe(III)	B/2	1.280(5)	1.269(5)	1.346(6)	125.3(4)	
Fe(II)	M/1	1.293(3)	1.204(3)	1.401(4)	128.4(2)	
Ga(III)	B/2	1.283(4)	1.281(5)	1.345(5)	122.2(3)	
	C/1	1.33(1)	1.252(8)	1.39(1)	117.1(7)	
	B/2	1.30(1)	1.30(1)	1.37(1)	122.3(7)	
Hf(IV)	C/1	1.32(2)	1.24(2)	1.36(2)	117(1)	
	B/2	1.29(1)	1.26(2)	1.31(2)	121(1)	
Ir(I)	M/1	1.300(9)	1.23(1)	1.36(1)	125.5(8)	
Ir(III)	M/1	1.254(5)	1.231(7)	1.391(7)	124.0(5)	
Ir(III)	M/1	1.252(7)	1.251(6)	1.401(8)	124.8(5)	
Ir(III)	M/1	1.26(1)	1.22(1)	1.395(8)	124.2(7)	
Ir(III)	M/1	1.275(3)	1.219(2)	1.474(3)	128.7(2)	
Ir(III)	C/1	1.290(5)	1.275(5)	1.334(6)	117.7(4)	
Ir(III)	D/1	1.366(4)	1.237(4)	1.327(4)	120.7	
La(III)	C/1	1.25(1)	1.25(1)	1.39(1)	122.0(9)	
	C/2	1.29(1)	1.262(9)	1.360(9)	120.5(7)	
	C/3	1.28(1)	1.27(1)	1.35(1)	120.1(8)	
Li(I)	B/2	1.261(2)	1.255(2)	1.401(2)	124.3(11)	
	B/2	1.262(4)	1.254(4)	1.391(5)	122.21(3)	
	B/3	1.285(3)	1.245(5)	1.379(4)	121.53(3)	
	B/4	1.273(3)	1.273(4)	1.361(5)	121.0(3)	
Li(I)	B/2	1.264(4)	1.262(4)	1.338(5)	123.1(3)	
	B/3	1.264(2)	1.261(3)	1.355(4)	120.9(2)	
	B/5	1.279(3)	1.272(3)	1.342(3)	120.3(2)	
Element	Coordination	Distance 1	Distance 2	Distance 3	Distance 4	
---------	--------------	------------	------------	------------	------------	
Li(I)	B/3	1.30(1)	1.26(2)	1.33(2)	119(1)	
Lu(III)	B/2	1.30(9)	1.24(1)	1.34(1)	121.6(8)	
Mg(II)	B/2	1.26(2)	1.25(1)	1.36(1)	120.4(9)	
Mg(II)	C/3	1.30(6)	1.29(5)	1.32(5)	115.3(5)	
Mn(II)/Mn(III)	B/2	1.261(9)	1.25(1)	1.348(9)	123.7(6)	
Nb(V)	C/1	1.306(6)	1.295(8)	1.323(9)	115.3(5)	
Nd(III)	C/2	1.307(5)	1.250(6)	1.347(6)	119.1(4)	
Ni(II)	M/1	1.263(8)	1.24(1)	1.37(1)	127.3(6)	
Ni(II)	M/1	1.286(4)	1.242(2)	1.382(5)	125.0(3)	
Ni(II)	M/1	1.280(3)	1.211(4)	1.388(4)	126.5(3)	
Ni(II)	M/1	1.288(2)	1.233(2)	1.387(2)	126.5(1)	
Ni(II)	M/1	1.284(3)	1.239(4)	1.385(4)	124.2(3)	
Pd(II)	M/1	1.326(5)	1.242(2)	1.344(4)	125.0(3)	
Pt(IV)	M/1	1.326(4)	1.235(4)	1.354(4)	125.1(3)	
Pt(IV)	M/1	1.323(3)	1.240(2)	1.346(3)	125.4(2)	
Pt(IV)	M/1	1.335(4)	1.233(4)	1.344(4)	125.0(3)	
Pt(IV)	M/1	1.325(5)	1.219(5)	1.354(6)	126.1(4)	
Pt(IV)	M/1	1.321(3)	1.236(3)	1.340(3)	125.8(2)	
Pt(IV)	M/1	1.310(4)	1.242(5)	1.346(5)	124.6(4)	
Pt(IV)	M/1	1.327(4)	1.249(5)	1.336(6)	125.0(3)	
Re(I)	M/1	1.27(1)	1.25(1)	1.40(1)	125.1(7)	
Element	Site	x 1	y 2	z 3	U 4	
--------	------	-----	-----	-----	-----	
Rh(III)	C/1	1.281(4)	1.263(4)	1.352(4)	119.6(3)	
Ru(II)	C/1	1.28(3)	1.24(3)	1.39(4)	123(3)	
Ru(II)	M/1	1.301(5)	1.229(5)	1.457(6)	127.3(4)	
Ru(II)	M/1	1.281(2)	1.243(2)	1.390(2)	126.5(1)	
Sc(III)	M/1-c	1.318(5)	1.209(5)	1.425(5)	124.3(4)	
Sm(III)	C/1	1.289(6)	1.255(7)	1.364(9)	120.4(5)	
	B/2	1.273(4)	1.270(6)	1.358(6)	123.4(4)	
	B/3	1.304(4)	1.262(4)	1.345(6)	121.6(3)	
Sn(II)	M/1	1.304(3)	1.238(3)	1.366(2)	121.7(2)	
Sn(II)	C/1	1.280(3)	1.272(3)	1.338(3)	118.8(2)	
	B/2	1.295(3)	1.263(3)	1.336(3)	121.8(2)	
Tb(III)	C/1	1.30(2)	1.25(2)	1.36(3)	121.0(2)	
	B/2	1.27(2)	1.26(2)	1.38(2)	124.0(1)	
Ti(III)	B/2	1.281(4)	1.268(4)	1.371(4)	123.7(3)	
Ti(IV)	C/1	1.290(5)	1.277(5)	1.346(6)	116.0(4)	
	D/1	1.340(7)	1.212(7)	1.378(9)	123.4(6)	
	M/1-c	1.308(4)	1.212(4)	1.402(5)	122.9(3)	
Ti(IV)	B/2	1.295(4)	1.280(4)	1.330(6)	122.6(4)	
U(IV)	C/1	1.296(5)	1.268(5)	1.335(6)	119.0(3)	
	M/1	1.287(4)	1.196(5)	1.375(6)	127.0(3)	
U(IV)	C/1	1.279(7)	1.258(6)	1.382(7)	121.1(5)	
U(IV)	M/1-c	1.317(4)	1.229(6)	1.396(6)	121.8(4)	
U(IV)	C/1	1.273(7)	1.263(6)	1.382(7)	120.3(5)	
U(IV)	D/2	1.349(4)	1.285(5)	1.304(5)	115.8(3)	
U(VI)	B/2	1.33(3)	1.25(3)	1.43(3)	123(2)	
W(0)	D/1-n	1.283(3)	1.208(3)	1.513(3)	131.0(2)	
Y(III)	D/2	1.328(8)	1.292(7)	1.313(7)	115.4(5)	
Yb(III)	C/1	1.27(1)	1.26(1)	1.35(1)	119.1(9)	
	B/2	1.27(1)	1.263(9)	1.356(8)	123.4(7)	
	B/3	1.307(7)	1.243(7)	1.357(9)	122.6(6)	
Yb(III)	D/2	1.32(1)	1.28(1)	1.31(1)	115.6(8)	
	C/2	1.308(6)	1.240(6)	1.352(6)	118.6(5)	
Zn(II)	M/1	1.276(5)	1.245(5)	1.357(6)	124.8(4)	
Zn(II)	B/2	1.27(1)	1.24(1)	1.35(1)	125.5(9)	
Zn(II)	B/2	1.268(3)	1.265(4)	1.352(3)	124.4(4)	
Element	Site	Bond Lengths (Å)	Other Angles (°)			
--------------	------	-----------------	-----------------			
Zn(II)	B/3	1.299(3) 1.261(3) 1.343(3) 122.0(2)				
Zn(II)	B/3	1.296(4) 1.273(5) 1.336(5) 122.5(3) [86]				
Zn(II)	B/2	1.272(2) 1.269(2) 1.355(2) 122.3(2)				
Zn(II)	B/2	1.272(8) 1.268(7) 1.359(7) 125.9(6) [87]				
Zn(II)	M/1	1.286(7) 1.225(9) 1.401(8) 124.0(6) [88]				
Zn(II)	M/1	1.290(3) 1.236(3) 1.379(4) 125.9(2) [89]				
Zn(II)	B/2	1.276(3) 1.273(3) 1.360(3) 122.7(2)				
Zn(II)	B/2	126.8(3) 126.8(3) 1.364(5) 125.7(4) [90]				
Zn(II)	B/2	1.257(6) 1.241(6) 1.353(7) 124.3(5) [91]				
Zn(II)	M/1	1.287(6) 1.230(7) 1.404(7) 125.0(5) [92]				
Zn(II)	B/2	1.276(4) 1.264(3) 1.368(3) 123.8(3)				
Zn(II)	M/1	1.287(4) 1.249(5) 1.380(5) 126.2(3) [93]				
Zn(II)	B/2	1.269(3) 1.259(4) 1.372(4) 124.9(3)				
Zn(II)	B/3	1.294(3) 1.253(4) 1.355(4) 123.3(3)				
Zn(II)	B/2	1.276(5) 1.259(4) 1.371(4) 124.2(3) [94]				
Zn(II)	B/2	1.271 1.271 1.444 124.4 [95]				
Zn(II)/Dy(III)	B/2	1.30(2) 1.26(2) 1.32(2) 125.0(1)				
Zn(II)/Tb(III)	B/2	1.28(1) 1.27(1) 1.345(9) 125.6(8) [96]				
Zn(II)/Gd(III)	B/2	1.28(1) 1.27(1) 1.34(1) 125.0(1)				
Zr(IV)	B/2	1.292(5) 1.277(4) 1.332(4) 119.5(3) [97]				
Table S4. NMR and IR data related to the NCO$_2$ moiety in structurally characterized metal carbamato complexes.

Metal center	Carbamate coordination	13C(H) NMR: δ/ppm a	IR: ν/cm$^{-1}$ b	Ref.		
Ag(I)	C/1	1529, 1478, 1434, 1414, 1368		[1]		
Ag(I)	B/3	1554, 1520, 1466, 1386				
Al(III)	B/2	158.0	1595, 1506	[19]		
Au(I)	M/1	161	1578	[98]		
Au(I)	M/1	1601, 1580, 1569, 1478, 1468, 1435, 1407, 1371	[1]			
Bi(III)	B/2, C/2, C/1	163.6		[22]		
Ce(III)	C/1, B/2, C/2, B/3, B/4	1576, 1558, 1507, 1354, 1260		[23]		
Ce(III)	M/1, C/2, B/3	1725, 1683, 1378, 1347, 1286		[24]		
Ce(IV)	M/1	149.9	1732, 1457, 1336			
Ce(IV)	C/1, B/2, C/2	1562, 1538, 1506, 1350, 1261		[23]		
Co(III)	M/1	165.0		[99]		
Cr(II)	B/2	1578, 1560, 1510, 1498, 1460, 1433, 1378, 1318				
Cr(III)	C/1	1485, 1378, 1337, 1322		[1]		
Cu(II)	M/1	1570, 1496, 1462, 1452, 1408, 1377, 1311				
Cu(II)	B/2	1575, 1550, 1480, 1460, 1420, 1375, 1300				
Dy(III)	M/1	1658, 1597, 1554, 1520, 1456, 1390, 1269	[30]			
Er(III)	C/1, B/2, B/3	1602, 1540, 1490, 1355		[31]		
Eu(III)	C/1, B/2, B/3	1597, 1533, 1488, 1354				
Er(III)	D/2	1607, 1580, 1502, 1260		[32]		
Fe(II)	M/1	156	1636, 1304	[100]		
Fe(II)	M/1	162.2		[34]		
Ga(III)	B/2	165.0	1543, 1452, 1342, 1317	[35]		
Ga(III)	C/1	165.8		[36]		
Ga(III)	B/2	161.3				
Ga(III)	B/2	165.3				
Ga(III)	C/1	168.2				
Element (II)	Charge	Letters	Wavenumbers	References		
-------------	--------	---------	-------------	------------		
Gd(III)	C/1, B/2, B/3	1598, 1537, 1485, 1355	[31]			
Hf(IV)	C/1	170.2				
Hf(IV)	C/1	1540, 1510, 1480, 1350	[1]			
Hf(IV)	C/1	1540, 1510, 1480, 1350				
Ho(III)	C/1, B/2, B/3	1601, 1538, 1489, 1354	[31]			
Ir(III)	M/1	161.7		[40]		
Ir(I)	M/1	163.2		[38]		
Ir(I)	M/1	159.7				
Li(I)	B/2	167.2		[18]		
Li(I)	B/2, B/3, B/5, C/5	1594, 1545, 1360, 1265	[43]			
Li(I)	B/3	155.1	1623, 1261			
Lu(III)	C/1, B/2, B/3	1610, 1530, 1490, 1354	[31]			
Mg(II)	B/2	161.5				
Mg(II)	B/2, C/3	159.8, 159.3		[44]		
Mg(II)	B/2, C/2, B/3, M/2	162.8	1611, 1582, 1515, 1283	[45]		
Mo(II)	B/2	1510, 1435, 1380, 1315		[1]		
Nb(IV)	C/1	1558, 1505, 1483, 1441, 1377, 1348				
Nb(V)	C/1	168.1	1620, 1576, 1558, 1484, 1433	[47]		
Nb(IV)	C/1, M/1	162.3		[1]		
Nd(III)	C/1, B/2, B/3	1593, 1515, 1479, 1354	[31]			
Nd(III)	C/2	1616, 1590, 1538, 1445, 1337	[48]			
Ni(II)	M/1	161.2	1681	[101]		
Ni(II)	B/2	1597		[49]		
Ni(II)	B/2	1564				
Ni(II)	M/1	162.3	1629, 1351	[50]		
Ni(II)	M/1	160.6		[51]		
Ni(II)	D/1	170.5	1617	[52]		
Ni(II)	M/1	157.9	1667, 1624			
Ni(II)	M/1	159.6	1610	[54]		
Ni(II)	M/1	162.9		[102]		
Ni(II)	M/1	157.3		[55]		
Ni(II)	M/1	158.3		[103]		
Ni(II)	M/1	159.7	1625	[56]		
Ni(II)	C/1	160.6	1620	[56]		
Pd(II)	M/1	150.6		[58]		
Element	Form	Mass	Wavenumbers			
----------	--------	------	---------------------------------			
Pd(II)	D/1	165.3	1677			
Pd(II)	M/1		1590, 1555, 1475, 1455, 1410, 1375, 1325			
Pr(III)	C/1, B/2, B/3	1591	1527, 1518, 1353			
Pt(II)	M/1		1632			
Pt(II)	M/1		1586, 1563, 1474, 1458, 1411, 1374, 1326			
Pt(IV)	M/1	162.8	1640, 1629			
Pt(IV)	M/1	163.4	1629			
Pt(IV)	M/1	163.0	1628			
Pt(IV)	M/1	160.7	1654			
Pt(IV)	M/1	165.4				
Pt(IV)	M/1	164.8				
Pt(IV)	M/1	163.9				
Rh(III)	C/1		165.1			
Ru(II)	C/1		164.0			
Ru(II)	M/1	155	1634, 1602			
Ru(II)	M/1	165.03, 163.37	1587			
Ru(II)	C/1		1505, 1465, 1436, 1380			
Sm(III)	C/1, B/2, B/3	1595	1531, 1508, 1353			
Sn(II)	M/1	161.8	1595, 1575, 1552, 1524, 1337			
Sn(II)	M/1	161.6	1624, 1554, 1526, 1517, 1238			
Sn(II)	C/1, B/2	164.5	1539, 1471, 1384, 1259			
Ta(V)	C/1, M/1	161.7				
Tb(III)	C/1, B/2	1584, 1487, 1374, 1313, 1261				
Ti(IV)	C/1	1599, 1512, 1503, 1408, 1266				
Ti(IV)	C/1	168.9	1547, 1501, 1475, 1455, 1346			
Ti(IV)	D/1	175.3	1666, 1514, 1356, 1306			
Ti(IV)	M/1-c	152.8	1657, 1624, 1590, 1558, 1524, 1500, 1407			
Ti(IV)	B/2	160.8	1538, 1473, 1434, 1379, 1299,			
Ti(IV)	C/1	169.9				
Ti(IV)	C/1	169.0				
Ti(IV)	C/1	170.6	1550, 1500, 1460, 1320			
Ti(IV)	C/1	1597, 1575, 1496s, 1410vs				
Element	Form	Position	Wavenumbers	References		
---------	------	----------	--------------------	------------		
U(IV)	C/1		1588, 1509, 1456, 1448, 1421	[76]		
U(IV)	M/1		1654	[77]		
U(IV)	C/1		1492, 1254	[78]		
U(IV)	M/1-c	-134.2	1579, 1648, 1645.	[79]		
U(IV)	C/1		2859, 1451, 1378, 1290	[80]		
W(0)	D/1-n	159.3	1741	[83]		
W(VI)	M/1		1636	[1]		
Y(III)	D/2		1607, 1585, 1502, 1260	[32]		
Yb(III)	C/1, B/2, B/3		1604, 1541, 1491, 1355	[31]		
Yb(III)	D/2		1604, 1584, 1533, 1266	[32]		
Yb(III)	C/2		1617, 1591, 1538, 1446, 1338	[48]		
Zn(II)	B/2		163.9	1538, 1402	[84]	
Zn(II)	B/3		163.50			
Zn(II)	B/3		164.7		[86]	
Zn(II)	B/2		163.2			
Zn(II)	B/2		162.0		[91]	
Zn(II)	M/1		162 [c]	1616, 1596, 1348, 1288	[92]	
Zn(II)	B/2		162.5, 163.1	1606, 1564		[93]
Zn(II)	M/1		161.0	1587, 1549		
Zn(II)	B/2, B/3		162.8	1553, 1485		
Zn(II)	B/2		166.0	1603, 1592		[94]
Zn(II)	B/2		1570, 1510, 1460, 1430, 1380, 1320	[1]		
Zn(II)	B/2		1570, 1504, 1430, 1378, 1326			
Zn(II)/Dy(III)	B/2		1638			
Zn(II)/Tb(III)	B/2		1642			[96]
Zn(II)/Gd(III)	B/2		1640			
Zr(IV)	B/2		162.7	1757		[97]
Zr(IV)	C/1		170.4	1565, 1505, 1450, 1380, 1325	[1]	
Zr(IV)	C/1		170.3	1535, 1500, 1380, 1360		

[a] Room temperature NMR in CDCl₃ or other solvent; [b] Solid-state IR data; 1800-1300 cm⁻¹ range, weak bands not included. The highest-wavenumber absorption in bold.
References.

1. Dell’Amico, D.B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Converting Carbon Dioxide into Carbamato Derivatives. Chem. Rev. 2003, 103, 3857–3898, doi:10.1021/cr940266m.

2. Coulier, Y.; Lowe, A.R.; Coxam, J.Y.; Ballerat-Busserolles, K. Thermodynamic Modeling and Experimental Study of CO2 Dissolution in New Absorbents for Post-Combustion CO2 Capture Processes. ACS Sustain. Chem. Eng. 2018, 6, 918–926, doi:10.1021/acssuschemeng.7b03280.

3. Fernandes, D.; Conway, W.; Burns, R.; Lawrance, G.; Maeder, M.; Puxty, G. Investigations of primary and secondary amine carbamate stability by 1H NMR spectroscopy for post combustion capture of carbon dioxide. J. Chem. Thermodyn. 2012, 54, 183–191, doi:10.1016/j.jct.2012.03.030.

4. Conway, W.; Wang, X.; Fernandes, D.; Burns, R.; Lawrance, G.; Puxty, G.; Maeder, M. Toward rational design of amine solutions for PCC applications: The kinetics of the reaction of CO2(aq) with cyclic and secondary amines in aqueous solution. Environ. Sci. Technol. 2012, 46, 7422–7429, doi:10.1021/es300541t.

5. Conway, W.; Wang, X.; Fernandes, D.; Burns, R.; Lawrance, G.; Puxty, G.; Maeder, M. Toward the understanding of chemical absorption processes for post-combustion capture of carbon dioxide: Electronic and steric considerations from the kinetics of reactions of CO2(aq) with sterically hindered amines. Environ. Sci. Technol. 2013, 47, 1163–1169, doi:10.1021/es3025885.

6. Ermatchkov, V.; Pérez-Salado Kamps, Á.; Maurer, G. Chemical equilibrium constants for the formation of carbamates in (carbon dioxide + piperazine + water) from 1H-NMR-spectroscopy. J. Chem. Thermodyn. 2003, 35, 1277–1289, doi:10.1016/S0021-9614(03)00076-4.

7. Li, L.; Clifford, S.; Puxty, G.; Maeder, M.; Burns, R.; Yu, H.; Conway, W. Kinetic and Equilibrium Reactions of a New Heterocyclic Aqueous 4-Aminomethyltetrahydropyran (4-AMTHP) Absorbent for Post Combustion Carbon Dioxide (CO2) Capture Processes. ACS Sustain. Chem. Eng. 2017, 5, 9200–9206, doi:10.1021/acssuschemeng.7b02149.

8. Kumar, P.S.; Hogendoorn, J.A.; Timmer, S.J.; Feron, P.H.M.; Versteeg, G.F. Equilibrium Solubility of CO 2 in Aqueous Potassium Taurate Solutions: Part 2. Experimental VLE Data and Model. Ind. Eng. Chem. Res. 2003, 42, 2841–2852, doi:10.1021/ie020601u.

9. Jensen, A.; Jensen, J.B.; Faurholt, C.; Finsnes, E.; Sörensen, J.S.; Sörensen, N.A. Studies on Carbamates. VI. The Carbamate of Glycine. Acta Chem. Scand. 1952, 6, 395–397, doi:10.3891/acta.chem.scand.06-0395.

10. Xiang, Q.; Fang, M.; Yu, H.; Maeder, M. Kinetics of the reversible reaction of CO2(aq) and
HCO HCO_3^- with sarcosine salt in aqueous solution. *J. Phys. Chem. A* **2012**, *116*, 10276–10284, doi:10.1021/jp305715q.

11. Jensen, A.; Faurholt, C.; Faurholt, C.; Finsnes, E.; Sörensen, J.S.; Sörensen, N.A. Studies on Carbamates. V. The Carbamates of alpha-Alanine and beta-Alanine. *Acta Chim. Scand.* **1952**, *6*, 385–394, doi:10.3891/acta.chem.scand.06-0385.

12. Majchrowicz, M.E.; Brilman, D.W.F. Solubility of CO$_2$ in aqueous potassium l-prolinate solutions-absorber conditions. *Chem. Eng. Sci.* **2012**, *72*, 35–44, doi:10.1016/j.ces.2011.12.014.

13. Shen, S.; Zhao, Y.; Bian, Y.; Wang, Y.; Guo, H.; Li, H. CO$_2$ absorption using aqueous potassium lysinate solutions: Vapor – liquid equilibrium data and modelling. *J. Chem. Thermodyn.* **2017**, *115*, 209–220, doi:10.1016/j.jct.2017.07.041.

14. Fernandes, D.; Conway, W.; Wang, X.; Burns, R.; Lawrance, G.; Maeder, M.; Puxty, G. Protonation constants and thermodynamic properties of amines for post combustion capture of CO$_2$. *J. Chem. Thermodyn.* **2012**, *51*, 97–102, doi:10.1016/j.jct.2012.02.031.

15. Christensen, J.J.; Izatt, R.M.; Wrathall, D.P.; Hansen, L.D. Thermodynamics of proton ionization in dilute aqueous solution. Part XI. pK, ΔH°, and ΔS° values for proton ionization from protonated amines at 25\(^\circ\). *J. Chem. Soc. A* **1969**, *1212–1223*, doi:10.1039/J19690001212.

16. Villiers, C.; Dognon, J.-P.; Pollet, R.; Thuery, P.; Ephritikhine, M. An Isolated CO2 Adduct of a Nitrogen Base: Crystal and Electronic Structures. *Angew. Chem. Int. Ed.* **2010**, *49*, 3465–3468, doi:10.1002/anie.201001035.

17. Wilm, L.F.B.; Eder, T.; Mück-Lichtenfeld, C.; Mehlmann, P.; Wünsche, M.; Buß, F.; Dielmann, F. Reversible CO$_2$ fixation by N-heterocyclic imines forming water-stable zwitterionic nitrogen-base-CO$_2$ adducts. *Green Chem.* **2019**, *21*, 640–648, doi:10.1039/c8gc02952k.

18. Kennedy, A.R.; Mulvey, R.E.; Oliver, D.E.; Robertson, S.D. Lithium and aluminium carbamato derivatives of the utility amide 2,2,6,6-tetramethylpiperidide. *Dalton Trans.* **2010**, *39*, 6190–6197, doi:10.1039/c0dt00118j.

19. Marchetti, F.; Pampaloni, G.; Patil, Y.; Galletti, A.M.R.; Renili, F.; Zacchini, S. Ethylene Polymerization by Niobium(V) N,N'-Dialkylcarbamates Activated with Aluminum Co-catalysts. *Organometallics* **2011**, *30*, 1682–1688, doi:10.1021/om101187k.

20. Habereder, T.; Nöth, H.; Paine, R.T. Synthesis and Reactivity of New Bis(tetramethylpiperidino)(phosphanyl)alumanes. *Eur. J. Inorg. Chem.* **2007**, *2007*, 4298–4305, doi:10.1002/ ejic.200700415.

21. Yin, S.-F.; Maruyama, J.; Yamashita, T.; Shimada, S. Efficient Fixation of Carbon Dioxide by Hypervalent Organobismuth Oxide, Hydroxide, and Alkoxide. *Angew. Chem. Int. Ed.* **2008**, *47*, 6590–6593, doi:10.1002/anie.200802277.
22. Cosham, S.D.; Hill, M.S.; Horley, G.A.; Johnson, A.L.; Jordan, L.; Molloy, K.C.; Stanton, D.C. Synthesis and materials chemistry of bismuth Tris-(di-i-propylcarbamate): Deposition of photoactive Bi2O3 thin films. *Inorg. Chem.* **2014**, *53*, 503–511, doi:10.1021/ic402499r.

23. Baisch, U.; Dell’Amico, D.B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Vitali, D. Reaction of a tetranuclear N,N-di-iso-propylcarbamato complex of cerium(III) with dioxygen: Synthesis and X-ray characterization of both the oxidation product and its precursor. *J. Mol. Catal. A Chem.* **2003**, *204–205*, 259–265, doi:10.1016/S1381-1169(03)00307-8.

24. Bayer, U.; Werner, D.; Maichle-Mössmer, C.; Anwander, R. Effective and Reversible Carbon Dioxide Insertion into Cerium Pyrazolates. *Angew. Chem. Int. Ed.* **2020**, *59*, 5830–5836, doi:10.1002/anie.201916483.

25. García-España, E.; Gaviña, P.; Latorre, J.; Soriano, C.; Verdejo, B. CO2 Fixation by Copper(II) Complexes of a Terpyridinophane Aza Receptor. *J. Am. Chem. Soc.* **2004**, *126*, 5082–5083, doi:10.1021/ja039577h.

26. Bramsen, F.; Bond, A.D.; McKenzie, C.J.; Hazell, R.G.; Moubaraki, B.; Murray, K.S. Self-Assembly of the Octanuclear Cluster [Cu8(OH)10(NH2(CH2)2CH3)12]6+ and the One-Dimensional N-Propylcarbamate-Linked Coordination Polymer [[Cu(O2CNH(CH2)2CH3)(NH2(CH2)2CH3)3](ClO4)]n. *Chem. -Eur. J.* **2005**, *11*, 825–831, doi:10.1002/chem.200400555.

27. Belli Dell’Amico, D.; Di Giacomo, A.; Falchi, L.; Labella, L.; Marelli, M.; Evangelisti, C.; Lezzerini, M.; Marchetti, F.; Samaritani, S. A convenient preparation of La2CuO4 from molecular precursors. *Polyhedron* **2017**, *123*, 33–38, doi:10.1016/j.poly.2016.11.020.

28. Bedeković, N.; Stilinović, V. Morpholine-N-carboxylate as a ligand in coordination chemistry – Syntheses and structures of three heteroleptic copper(ii) and zinc complexes. *J. Mol. Struct.* **2020**, *1205*, 127627, doi:10.1016/j.molstruc.2019.127627.

29. Pineda, E.M.; Lan, Y.; Fuhr, O.; Wernsdorfer, W.; Ruben, M. Exchange-bias quantum tunnelling in a CO2-based Dy4-single molecule magnet. *Chem. Sci.* **2017**, *8*, 1178–1185, doi:10.1039/c6sc03184f.

30. Zhang, K.; Guo, F.-S.; Wang, Y.-Y. Two [Dy2] single-molecule magnets formed via an in situ reaction by capturing CO2 from atmosphere under ambient conditions. *Dalton Trans.* **2017**, *46*, 1753–1756, doi:10.1039/C6DT04751C.

31. Baisch, U.; Dell’Amico, D.B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Merigo, A. N,N-diarylcarbamato lanthanide complexes, a series of isotypical coordination compounds. *Eur. J. Inorg. Chem.* **2004**, *1219–1224*, doi:10.1002/ ejic.200300649.

32. Zhang, C.; Liu, R.; Zhang, J.; Chen, Z.; Zhou, X. Reactivity of lanthanocene hydroxides toward ketene, isocyanate, lanthanocene alkyl, and triscyclopentadienyllanthanide
complexes. *Inorg. Chem.* **2006**, *45*, 5867–5877, doi:10.1021/ic0602998.

33. Neis, C.; Weyhermüller, T.; Bill, E.; Stucky, S.; Hegtschweiler, K. Carbamates of Polyamines – Versatile Building Blocks for the Construction of Polynuclear Metal Complexes. *Eur. J. Inorg. Chem.* **2008**, *1019–1021*, doi:10.1002/ejic.200701320.

34. Jayarathne, U.; Hazari, N.; Bernskoetter, W.H. Selective Iron-Catalyzed N-Formylation of Amines using Dihydrogen and Carbon Dioxide. *ACS Catal.* **2018**, *8*, 1338–1345, doi:10.1021/acscatal.7b03834.

35. Uhl, W.; Willeke, M.; Hepp, A.; Pleschka, D.; Layh, M. A Dimeric Gallium Hydrazide as an Active Lewis Pair - Complexation and Activation of Me 2 GaH and Various Heterocumulenes. *Z. Anorg. Allg. Chem.* **2017**, *643*, 387–397, doi:10.1002/zaac.201600456.

36. Feier-Iova, O.; Linti, G. Synthesis and Structure of a Carbamato-bridged Digallyl-ferrocenophane – Fixation of Carbon Dioxide with Aminogallanes. *Z. Anorg. Allg. Chem.* **2008**, *634*, 559–564, doi:10.1002/zaac.200700464.

37. Bortoluzzi, M.; Bresciani, G.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Synthesis and structural characterization of mixed halide–N,N-diethylcarbamates of group 4 metals, including a case of unusual tetrahydrofuran activation. *New J. Chem.* **2017**, *41*, 1781–1789, doi:10.1039/C6NJ03489F.

38. Truscott, B.J.; Nelson, D.J.; Slawin, A.M.Z.; Nolan, S.P. CO2 fixation employing an iridium(I)-hydroxide complex. *Chem. Commun.* **2014**, *50*, 286–288, doi:10.1039/C3CC46922K.

39. Dobereiner, G.E.; Wu, J.; Manas, M.G.; Schley, N.D.; Takase, M.K.; Crabtree, R.H.; Hazari, N.; Maseras, F.; Nova, A. Mild, Reversible Reaction of Iridium(III) Amido Complexes with Carbon Dioxide. *Inorg. Chem.* **2012**, *51*, 9683–9693, doi:10.1021/ic300923c.

40. Cristóbal, C.; Hernández, Y.A.; López-Serrano, J.; Paneque, M.; Petronilho, A.; Poveda, M.L.; Salazar, V.; Vattier, F.; Álvarez, E.; Maya, C.; et al. Reactivity Studies of Iridium Pyridylidenes [Tp Me2 Ir(C 6 H 5) 2 (C(CH) 3 C(R)NH)] (R=H, Me, Ph). *Chem. -Eur. J.* **2013**, *19*, 4003–4020, doi:10.1002/chem.201203818.

41. Kinauer, M.; Diefenbach, M.; Bamberger, H.; Demeshko, S.; Reijerse, E.J.; Volkmann, C.; Württele, C.; Van Slageren, J.; De Bruin, B.; Holthusen, M.C.; et al. An iridium(iii/iv/v) redox series featuring a terminal imido complex with triplet ground state. *Chem. Sci.* **2018**, *9*, 4325–4332, doi:10.1039/c8sc01113c.

42. Belli Dell’Amico, D.; Biagini, P.; Chiaberge, S.; Falchi, L.; Labella, L.; Lezzerini, M.; Marchetti, F.; Samaritani, S. Partial and exhaustive hydrolysis of lanthanide N,N-dialkylcarbamato complexes. A viable access to lanthanide mixed oxides. *Polyhedron* **2015**, *102*, 452–461, doi:10.1016/j.poly.2015.10.009.

43. Gauld, R.M.; Kennedy, A.R.; McLellan, R.; Barker, J.; Reid, J.; Mulvey, R.E. Diverse outcomes
of CO$_2$ fixation using alkali metal amides including formation of a heterobimetallic lithium-sodium carbamato-anhydride via lithium-sodium bis-hexamethyldisilazide. *Chem. Commun.* **2019**, *55*, 1478–1481, doi:10.1039/c8cc08308h.

44. Caudle, M.T.; Brennessel, W.W.; Young, V.G. Structural variability and dynamics in carboxylato- and carbamatomagnesium bromides. Relationship to the carboxylate shift. *Inorg. Chem.* **2005**, *44*, 3233–3240, doi:10.1021/ic048442p.

45. Dell’Amico, D.B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Martini, M.; Mazzoncini, I. N,N-Dimethylcarbamato derivatives of magnesium starting from the metal oxide. *C. R. Chim.* **2004**, *7*, 877–884, doi:10.1016/j.crci.2004.04.006.

46. Belli Dell’Amico, D.; Labella, L.; Marchetti, F.; Mastrorilli, P.; Samaritani, S.; Todisco, S. Oxidation by dioxygen of manganese(II) and iron(II) complexes. *Polyhedron* **2013**, *65*, 275–281, doi:10.1016/j.poly.2013.08.011.

47. Bortoluzzi, M.; Ghini, F.; Hayatifar, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Oxido- and sulfidoniobium(V) N,N-diethylcarbamates: Synthesis, characterization and DFT study. *Eur. J. Inorg. Chem.* **2013**, *3112–3118*, doi:10.1002/ejic.201300219.

48. Xu, X.P.; Qi, R.P.; Xu, B.; Yao, Y.M.; Nie, K.; Zhang, Y.; Shen, Q. Synthesis, reactivity and structural characterization of lanthanide hydroxides stabilized by a carbon-bridged bis(phenolate) ligand. *Polyhedron* **2009**, *28*, 574–578, doi:10.1016/j.poly.2008.11.031.

49. Lozan, V.; Holldorf, J.; Kersting, B. Preparation and characterization of macrocyclic dinickel complexes coligated by monoalkyl- and dialkylcarbamates. *Inorg. Chim. Acta* **2009**, *362*, 793–798, doi:10.1016/j.ica.2008.03.016.

50. Schmeier, T.J.; Nova, A.; Hazari, N.; Maseras, F. Synthesis of PCP-Supported Nickel Complexes and their Reactivity with Carbon Dioxide. *Chem. -Eur. J.* **2012**, *18*, 6915–6927, doi:10.1002/chem.201103992.

51. Hao, J.; Vabre, B.; Mougang-Soumé, B.; Zargarian, D. Small Molecule Activation by POC sp 3OP-Nickel Complexes. *Chem. -Eur. J.* **2014**, *20*, 12544–12552, doi:10.1002/chem.201402933.

52. Mindiola, D.J.; Waterman, R.; Iluc, V.M.; Cundari, T.R.; Hillhouse, G.L. Carbon–Hydrogen Bond Activation, C–N Bond Coupling, and Cycloaddition Reactivity of a Three-Coordinate Nickel Complex Featuring a Terminal Imido Ligand. *Inorg. Chem.* **2014**, *53*, 13227–13238, doi:10.1021/ic5026153.

53. Mochizuki, K.; Kondou, H.; Ando, K.; Kawasaki, T.; Takahashi, J. Degradation of urea mediated by dinickel(II) complexes with the binucleating ligand N,N’-bis[2-(N,N-dimethyl)aminooethyl]-N,N’-dimethyl-1,3-diamino-2-hydroxypropane (HL). *Inorg. Chim. Acta* **2016**, *441*, 50–56, doi:10.1016/j.ica.2015.10.047.

54. Kim, J.; Park, K.; Lee, Y. Synthesis and characterization of a four-coordinate nickel carbamato
species (MeSiP i Pr 2)Ni(OC(O)NHMes) generated from the reaction of (MeSiP i Pr 2)Ni(NHMes) with CO 2. Inorg. Chim. Acta 2017, 460, 55–62, doi:10.1016/j.ica.2016.08.042.

55. Yao, C.; Chakraborty, P.; Aresu, E.; Li, H.; Guan, C.; Zhou, C.; Liang, L.-C.; Huang, K.-W. Monomeric nickel hydroxide stabilized by a sterically demanding phosphorus–nitrogen PN 3 P-pincer ligand: synthesis, reactivity and catalysis. Dalton Trans. 2018, 47, 16057–16065, doi:10.1039/C8DT03403F.

56. Kim, J.; Kim, Y.-E.; Park, K.; Lee, Y. A Silyl-Nickel Moiety as a Metal–Ligand Cooperative Site. Inorg. Chem. 2019, 58, 11534–11545, doi:10.1021/acs.inorgchem.9b01388.

57. Goodner, S.J.; Grünwald, A.; Heinemann, F.W.; Munz, D. Carbon Dioxide Activation by a Palladium Terminal Imido Complex. Aust. J. Chem. 2019, 72, 900, doi:10.1071/CH19323.

58. Comanescu, C.C.; Iluc, V.M. E-H (E = N, O) bond activation by a nucleophilic palladium carbene. Polyhedron 2018, 143, 176–183, doi:10.1016/j.poly.2017.10.007.

59. Wilson, J.J.; Lippard, S.J. Synthesis, Characterization, and Cytotoxicity of Platinum(IV) Carbamate Complexes. Inorg. Chem. 2011, 50, 3103–3115, doi:10.1021/ic2000816.

60. Pichler, V.; Mayr, J.; Heffeter, P.; Dömötör, O.; Enyedy, É.A.; Hermann, G.; Groza, D.; Köllensperger, G.; Galanksi, M.; Berger, W.; et al. Maleimide-functionalised platinum(iv) complexes as a synthetic platform for targeted drug delivery. Chem. Commun. 2013, 49, 2249, doi:10.1039/c3cc39258a.

61. Mayr, J.; Heffeter, P.; Groza, D.; Galvez, L.; Koellensperger, G.; Roller, A.; Alte, B.; Haider, M.; Berger, W.; Kowol, C.R.; et al. An albumin-based tumor-targeted oxaliplatin prodrug with distinctly improved anticancer activity in vivo. Chem. Sci. 2017, 8, 2241–2250, doi:10.1039/C6SC03862J.

62. Cuesta, L.; Gerbino, D.C.; Hevia, E.; Morales, D.; Navarro Clemente, M.E.; Pérez, J.; Riera, L.; Riera, V.; Miguel, D.; Del Río, I.; et al. Reactivity of Molybdenum and Rhenium Hydroxo-Carbonyl Complexes toward Organic Electrophiles. Chem. -Eur. J. 2004, 10, 1765–1777, doi:10.1002/chem.200305577.

63. Zhu, Y.; Smith, D.A.; Herbert, D.E.; Gatard, S.; Ozerov, O. V. C–H and C–O oxidative addition in reactions of aryl carboxylates with a PNP pincer-ligated Rh(I) fragment. Chem. Commun. 2012, 48, 218–220, doi:10.1039/C1CC15845G.

64. Dell’Amico, D.B.; Calderazzo, F.; Englert, U.; Labella, L.; Marchetti, F.; Specos, M. New N,N-diisopropylcarbamato complexes of ruthenium(II) as catalytic precursors for olefin hydrogenation. Eur. J. Inorg. Chem. 2004, 3938–3945, doi:10.1002/ejic.200400014.

65. Norris, M.R.; Flowers, S.E.; Mathews, A.M.; Cossairt, B.M. H2 Production Mediated by CO2 via Initial Reduction to Formate. Organometallics 2016, 35, 2778–2781, doi:10.1021/acs.organomet.6b00595.
66. Mathis, C.L.; Geary, J.; Ardon, Y.; Reese, M.S.; Philliber, M.A.; VanderLinden, R.T.; Saouma, C.T. Thermodynamic Analysis of Metal–Ligand Cooperativity of PNP Ru Complexes: Implications for CO2 Hydrogenation to Methanol and Catalyst Inhibition. *J. Am. Chem. Soc.* 2019, 141, 14317–14328, doi:10.1021/jacs.9b06760.

67. Chu, J.; Lu, E.; Liu, Z.; Chen, Y.; Leng, X.; Song, H. Reactivity of a Scandium Terminal Imido Complex Towards Unsaturated Substrates. *Angew. Chem. Int. Ed.* 2011, 50, 7677–7680, doi:10.1002/anie.201102267.

68. Harris, L.A.M.; Coles, M.P.; Fulton, J.R. Synthesis and reactivity of tin amide complexes. *Inorg. Chim. Acta* 2011, 369, 97–102, doi:10.1016/j.ica.2010.12.009.

69. Stewart, C.A.; Dickie, D.A.; Tang, Y.; Kemp, R.A. Insertion reactions of CO2, OCS, and CS2 into the Sn-N bonds of (Me2N)2Sn: NMR and X-ray structural characterization of the products. *Inorg. Chim. Acta* 2011, 376, 73–79, doi:10.1016/j.ica.2011.05.036.

70. Armelao, L.; Belli Dellamico, D.; Biagini, P.; Bottaro, G.; Chiaberge, S.; Falvo, P.; Labella, L.; Marchetti, F.; Samaritani, S. Preparation of N,N-dialkylcarbamato lanthanide complexes by extraction of lanthanide ions from aqueous solution into hydrocarbons. *Inorg. Chem.* 2014, 53, 4861–4871, doi:10.1021/ic402936z.

71. Mendiratta, A.; Cummins, C.C.; Cotton, F.A.; Ibragimov, S.A.; Murillo, C.A.; Villagrán, D. A Diamagnetic Ddititanium(III) Paddlewheel Complex with No Direct Metal–Metal Bond. *Inorg. Chem.* 2006, 45, 4328–4330, doi:10.1021/ic0602650.

72. Forte, C.; Hayatifar, M.; Pampaloni, G.; Galletti, A.M.R.; Renili, F.; Zacchini, S. Ethylene polymerization using novel titanium catalytic precursors bearing N,N-dialkylcarbamato ligands. *J. Polym. Sci. Part A Polym. Chem.* 2011, 49, 3338–3345, doi:10.1002/pola.24770.

73. Hayatifar, M.; Forte, C.; Pampaloni, G.; Kissin, Y. V.; Maria Raspolli Galletti, A.; Zacchini, S. Titanium complexes bearing carbamato ligands as catalytic precursors for propylene polymerization reactions. *J. Polym. Sci. Part A Polym. Chem.* 2013, 51, 4095–4102, doi:10.1002/pola.26816.

74. Boyd, C.L.; Clot, E.; Guiducci, A.E.; Mountford, P. Pendant Arm Functionalized Benzamidinate Titanium Imido Compounds: Experimental and Computational Studies of Their Reactions with CO2. *Organometallics* 2005, 24, 2347–2367, doi:10.1021/om049026f.

75. Guiducci, A.E.; Boyd, C.L.; Clot, E.; Mountford, P. Reactions of cyclopentadienyl-amidinate titanium imido compounds with CO2: cycloaddition-extrusion vs. cycloaddition-insertion. *Dalton Trans.* 2009, 5960, doi:10.1039/b901774g.

76. Higgins Frey, J.A.; Cloke, F.G.N.; Roe, S.M. Synthesis and Reactivity of a Mixed-Sandwich Uranium(IV) Primary Amido Complex. *Organometallics* 2015, 34, 2102–2105, doi:10.1021/om501190x.
77. Bart, S.C.; Anthon, C.; Heinemann, F.W.; Bill, E.; Edelstein, N.M.; Meyer, K. Carbon Dioxide Activation with Sterically Pressured Mid- and High-Valent Uranium Complexes. *J. Am. Chem. Soc.* 2008, 130, 12536–12546, doi:10.1021/ja804263w.

78. Schmidt, A.-C.; Heinemann, F.W.; Maron, L.; Meyer, K. A Series of Uranium (IV, V, VI) Tritylimido Complexes, Their Molecular and Electronic Structures and Reactivity with CO2. *Inorg. Chem.* 2014, 53, 13142–13153, doi:10.1021/ic5023517.

79. Falcone, M.; Chatelain, L.; Mazzanti, M. Nucleophilic Reactivity of a Nitride-Bridged Diuranium(IV) Complex: CO2 and CS2 Functionalization. *Angew. Chem. Int. Ed.* 2016, 55, 4074–4078, doi:10.1002/anie.201600158.

80. Webster, C.L.; Langeslay, R.R.; Ziller, J.W.; Evans, W.J. Synthetic Utility of Tetrabutylammonium Salts in Uranium Metallocene Chemistry. *Organometallics* 2016, 35, 520–527, doi:10.1021/acs.organomet.5b00942.

81. Falcone, M.; Poon, L.N.; Fadaei Tirani, F.; Mazzanti, M. Reversible Dihydrogen Activation and Hydride Transfer by a Uranium Nitride Complex. *Angew. Chem. Int. Ed.* 2018, 57, 3697–3700, doi:10.1002/anie.201800203.

82. Masci, B.; Thuéry, P. A Tetrahomodioxacalix[6]arene as a Ditopic Ligand for Uranyl Ions with Carbonate or Carbamate Bridges. *Supramol. Chem.* 2003, 15, 101–108, doi:10.1080/1061027021000023113.

83. Chakraborty, S.; Blacque, O.; Berke, H. Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides. *Dalton Trans.* 2015, 44, 6560–6570, doi:10.1039/C5DT00278H.

84. Dell’Amico, D.B.; Calderazzo, F.; Labella, L.; Marchetti, F. A facile synthesis of Zn4(μ4-O)(O2CNMe2)6. *Inorg. Chim. Acta* 2003, 350, 661–664, doi:10.1016/S0020-1693(03)00107-5.

85. McCowan, C.S.; Buss, C.E.; Young, V.G.; McDonnell, R.L.; Caudle, M.T. Chloro(diethylamino)tris(μ-diethylcarbamato)dizinc(II): An example of the generality of the threefold paddlewheel structure in carbamatozinc chemistry. *Acta Crystallogr. Sect. E Struct. Rep. Online* 2004, 60, 285–287, doi:10.1107/S1600536804002193.

86. Tang, Y.; Kassel, W.S.; Zakharov, L.N.; Rheingold, A.L.; Kemp, R.A. Insertion reactions of carbon dioxide into Zn-N bonds: Syntheses and structures of tetrameric and dimeric alkylzinc carbamato complexes. *Inorg. Chem.* 2005, 44, 359–364, doi:10.1021/ic048830r.

87. Malik, M.A.; O’Brien, P.; Motevalli, M.; Abrahams, I. The adoption of the beryllium acetate structural motif in zinc oxy carbamates, oxythiocarbamates and oxythiophosphinates. *Polyhedron* 2006, 25, 241–250, doi:10.1016/j.poly.2005.06.033.

88. Yamaguchi, S.; Takahashi, T.; Wada, A.; Funahashi, Y.; Ozawa, T.; Jitsukawa, K.; Masuda, H. Fixation of CO2 by Hydroxozinc(II) Complex with Pyridylamino Type Ligand. *Chem. Lett.*
89. Neuhäuser, C.; Domide, D.; Mautz, J.; Kaifer, E.; Himmel, H.J. Electron density controlled carbamate ligand binding mode: Towards a better understanding of metalloenzyme activity. *Dalton Trans.* 2008, 4, 1821–1824, doi:10.1039/b800687n.

90. Domide, D.; Kaifer, E.; Mautz, J.; Walter, O.; Behrens, S.; Himmel, H. Synthesis and Characterisation of Some New Zinc Carbamate Complexes Formed by CO₂ Fixation and Their Use as Precursors for ZnO Particles under Mild Conditions. *Eur. J. Inorg. Chem.* 2008, 3177–3185, doi:10.1002/ejic.200701308.

91. Haywood, P.F.; Hill, M.R.; Roberts, N.K.; Craig, D.C.; Russell, J.J.; Lamb, R.N. Synthesis and Isomerisation Reactions of Tetranuclear and Octanuclear (Carbamato)zinc Complexes. *Eur. J. Inorg. Chem.* 2008, 2008, 2024–2032, doi:10.1002/ejic.200700736.

92. Notni, J.; Schenk, S.; Görls, H.; Breitzke, H.; Anders, E. Formation of a Unique Zinc Carbamate by CO₂ Fixation: Implications for the Reactivity of Tetra-Azamacrocycle Ligated Zn(II) Complexes. *Inorg. Chem.* 2008, 47, 1382–1390, doi:10.1021/ic701899u.

93. Domide, D.; Neuhäuser, C.; Kaifer, E.; Wadepohl, H.; Himmel, H.J. Synthesis of trinuclear, dinuclear and mononuclear carbamato-zinc complexes from tetranuclear precursors: A top-down synthetic approach to new carbamates. *Eur. J. Inorg. Chem.* 2009, 2170–0178, doi:10.1002/ejic.200801136.

94. Kahnès, M.; Görls, H.; Westerhausen, M. Synthesis of Dimeric Methylzinc N,N-Bis(2-pyridylmethyl)carbamate via Addition of CO₂ to a Methylzinc Amide. *Z. Anorg. Allg. Chem.* 2011, 637, 397–400, doi:10.1002/zaac.201000397.

95. Rodriguez, M.A.; Sava, D.F.; Nenoff, T.M. catena-Poly[zinc-tris(μ-dimethylcarbamato-κ2 O: O′)-zinc-μ-(2-phenylbenzimidazolido-κ2 N : N′]. *Acta Crystallogr. Sect. E Struct. Rep. Online* 2012, 68, m59–m60, doi:10.1107/S1600536811053177.

96. Yin, C.-L.; Hu, Z.-B.; Long, Q.-Q.; Wang, H.-S.; Li, J.; Song, Y.; Zhang, Z.-C.; Zhang, Y.-Q.; Pan, Z.-Q. Single molecule magnet behaviors of Zn₄Ln₂ (Ln = Dy III , Tb III) complexes with multidentate organic ligands formed by absorption of CO₂ in air through in situ reactions. *Dalton Trans.* 2019, 48, 512–522, doi:10.1039/C8DT03849J.

97. Normand, A.T.; Daniliuc, C.G.; Wibbeling, B.; Kehr, G.; Le Gendre, P.; Erker, G. Phosphido-and Amidozirconocene Cation-Based Frustrated Lewis Pair Chemistry. *J. Am. Chem. Soc.* 2015, 137, 10796–10808, doi:10.1021/jacs.5b06551.

98. Johnson, M.W.; Shevick, S.L.; Toste, F.D.; Bergman, R.G. Preparation and reactivity of terminal gold(<scp>i</scp>) amides and phosphides. *Chem. Sci.* 2013, 4, 1023–1027, doi:10.1039/C2SC21519E.

99. Jackson, W.G.; McKeon, J.A.; Balahura, R.J. N
S23

-Methylmonothiocarbamatopentamminecobalt(III): Restricted C–N Bond Rotation and the Acid-Catalyzed O- to S-Bonded Rearrangement. *Inorg. Chem.* **2004**, *43*, 4889–4896, doi:10.1021/ic040047b.

100. Roth, C.E.; Dibenedetto, A.; Aresta, M. Synthesis and Characterization of Chloro- and Alkyliron Complexes with N-Donor Ligands and Their Reactivity towards CO 2. *Eur. J. Inorg. Chem.* **2015**, *5066–5073*, doi:10.1002/ejic.201500657.

101. Cámpora, J.; Matas, I.; Palma, P.; Álvarez, E.; Graiff, C.; Tiripicchio, A. Monomeric Alkoxo and Amido Methylnickel(II) Complexes. Synthesis and Heterocumulene Insertion Chemistry. *Organometallics* **2007**, *26*, 3840–3849, doi:10.1021/om7002909.

102. Mousa, A.H.; Bendix, J.; Wendt, O.F. Synthesis, Characterization, and Reactivity of PCN Pincer Nickel Complexes. *Organometallics* **2018**, *37*, 2581–2593, doi:10.1021/acs.organomet.8b00333.

103. Martínez-Prieto, L.M.; Palma, P.; Cámpora, J. Monomeric alkoxide and alkylcarbonate complexes of nickel and palladium stabilized with the iPr PCP pincer ligand: a model for the catalytic carboxylation of alcohols to alkyl carbonates. *Dalton Trans.* **2019**, *48*, 1351–1366, doi:10.1039/C8DT04919J.

104. Seul, J.-M.; Park, S. Palladium(II) p-Tolylamide and Reaction with CO 2 to Generate a Carbamato Derivative. *Bull. Korean Chem. Soc.* **2010**, *31*, 3745–3748, doi:10.5012/bkcs.2010.31.12.3745.

105. Baisch, U.; Schnick, W. Synthese und Kristallstruktur von bis-1, 3-Dimethoxyethan-trichloro-samarium(III) und tris-N, N-Diisopropylcarbamato-samarium(III). *Z. Anorg. Allg. Chem.* **2003**, *629*, 2073–2078, doi:10.1002/zaac.200300143.