Parameter sensitivity analysis of pedestrian head dynamic response and injuries based on coupling simulations

Wenjun Liu¹, Aowen Duan¹, Kui Li¹, Jinlong Qiu¹, Liangfei Fu², Hongchun Jia² and Zhiyong Yin¹
¹Institute for Traffic Medicine, Department 4th, Institute of Surgery Research, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
²College of Vehicle Engineering, Chongqing Institute of Technology, Chongqing, China

Abstract
There are a very limited number of reports studying on the dynamic response and injuries of pedestrian head in the scenarios with head hitting windshield. This study aims to investigate the significant factors that affect the dynamic response and injuries of pedestrian head through finite element–multi-body coupling simulations. Two finite element vehicle models and two multi-body pedestrian human models were used to build the coupling simulations. Orthogonal experimental design and analysis of variance were used for parameter combination and data analysis. This study demonstrated that the dynamic response of pedestrian head and HIC₁₅ were strongly associated with collision speed and pedestrian orientation. Vehicle type had a significant influence on the dynamic response of pedestrian head and HIC₁₅, while there was no significant relationship between the dynamic response of pedestrian head and HIC₁₅ and the size of pedestrian human models. Collision speed, pedestrian orientation, and vehicle type should be prioritized over the other collision parameters in the study of head injury mechanism and reconstruction of vehicle–pedestrian collisions in the scenarios with head hitting windshield.

Keywords
Vehicle–pedestrian collision, coupling simulation, dynamic response, HIC₁₅, parameter sensitivity

Corresponding author:
Zhiyong Yin, Institute for Traffic Medicine, Department 4th, Institute of Surgery Research, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China.
Email: yinzhiyong86@126.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Pedestrians are common victims of traffic accidents in China, and pedestrian fatalities account for nearly a quarter of deaths in traffic accidents. While the number of automobiles is increasing rapidly at present. As a result, the incidence of traffic-related pedestrian deaths also increases every year. So, researches on vehicle–pedestrian crash reconstructions and pedestrian injury biomechanics are still hot topics of concern. Head is the most vulnerable part of pedestrians in a collision, and skull-brain injuries and head-neck injuries are important reason for their death. Researchers found that vehicle type, collision speed, pedestrian gait, and walking speed could affect pedestrian head injuries.6–8 Geometry and material of vehicle front end and pedestrian orientation were also believed to affect pedestrian head injuries as well.6–8 Thus, pedestrian head injuries are most likely to be concerned in vehicle–pedestrian crashes. Meanwhile, the dynamic response of pedestrian head has an important role in studying reconstructions of vehicle–pedestrian crashes and mechanism of pedestrian head injuries. But it should be noted and emphasized that most of the conclusions took scenarios (pedestrian head in contact with bonnet, A pillar, windshield, and windshield frame) into account together at present.2–8 Conclusion was drawn that the head injury risk of head–windshield frame impacts and head–A pillar impacts was significantly higher than that of head–windshield impacts and head–bonnet impacts,9–14 whereas parameter sensitivity on the head dynamic response and injuries of various scenarios above remains unclear. Here, we set out to investigate the scenario with head hitting windshield.

Currently, there are two common solutions for vehicle–pedestrian crash simulations: finite element (FE) method based on LS-DYNA and analytical method of multi-body (MB) system based on the mathematical dynamic model (MADYMO). The FE method can simulate deformations of vehicles and human body structures,15,16 but it is not easy to adjust pedestrian gait and its computing cost is typically high. The MB system analysis technique can play a good numerical stability and computational efficiency of human models.17,18 However, it cannot simulate the pedestrian injuries under large deformations of vehicle front end. In order to investigate the significant factors affecting the dynamic response and injuries of pedestrian head in the scenarios with head hitting windshield, the FE vehicles–MB human models coupled impacts were simulated and analyzed in this study, which combined the merits of both simulation methods at the same time.19–21

Materials and methods

Coupling methods and models

In process of coupling simulation calculation, vehicle models and pedestrian human models were run at LS-DYNA platform and MADYMO platform separately. LS-DYNA solver and MADYMO solver would exchange information such as contact force and contact position in real time. Contact force was transmitted
from the former to the latter, and the latter sent information such as contact position back to the former. Then deformations of vehicle parts at the LS-DYNA platform, Head Injury Criterion (HIC15) and response of pedestrian human models at the MADYMO platform would be calculated separately.

FE vehicle models of a sedan and a minivan were taken in this research, and both models had been verified by collision tests and numerical simulations. For better understanding and detailed analysis, we selected vehicle model structures that may be touched by pedestrian human models as the remained parts and that may be deformed as the coupled parts. By comparing head impactor accelerations during impact tests versus simulations, in terms of the force response, the vehicle models simplified were close to the real ones (see Table 1 and Figure 1). The 5% and 50% ellipsoid pedestrian human models developed by the Netherlands Organisation for Applied Science Research (TNO) were selected as pedestrian human models in this research. Keywords (CONTROL_COUPLING and CONTACT_COUPLING) were used to unify units and set vehicle–pedestrian contacts. Contact algorithms CONTACT_FORCE_CHAR and CONTACT_AUTOMATIC_SURFACE_TO_SURFACE were applied to vehicle–pedestrian contacts and tires–ground contacts in simulations separately. Collision speed (vehicle velocity) was loaded into the forward direction of vehicle models. The coefficient of friction between pedestrian human models and vehicle models was set at 0.3, and the coefficient of friction between pedestrian human models and ground models was set at 0.6. Both the vehicle models and pedestrian human models were loaded with gravity. The coupling simulation time was set to 200 ms. The diagrams of coupling simulation models constructed by the vehicle models and pedestrian human models are shown in Figure 2.

Table 1. Main model parameters and settings of impact tests and simulations.

Property (*SECTION_SHELL): Thickness	Sedan	Minivan
Number of shells	150	7946
Windshield Hood	4938	4568
Material (*MAT_PIECEWISE_LINEAR_PLASTICITY):		
Density	2800 kg m$^{-3}$	2500 kg m$^{-3}$
Elastic modulus	80.0 GPa	70.0 GPa
Poisson’s ratio	0.25	0.22
Location and angle of impact	The lower right corner 40°	The lower right corner 45°
Speed of head impactor	35 km h$^{-1}$	
Weight of head impactor	3.5 kg	

Liu et al. 3
Parameter design of simulations

According to the literature materials and research needs, impact area of bonnet (A_B), collision speed (S_V), walking speed of pedestrian (S_P), pedestrian gait (G_P), and pedestrian orientation (O_P) were chosen as the simulation parameters. Orthogonal experimental design was used to analyze the influence of multiple factors on the peak value of head linear velocity (H_Vp), peak value of head linear acceleration (H_Lacp), peak value of head angular velocity (H_Ap), peak value of head angular acceleration (H_Accp), and HIC15. Each parameter contained four levels and the values are shown in Table 2. The orthogonal table $L_{16}(4^5)$ was

![Comparison of head impactor accelerations during impact tests versus simulations: (a) windshield (sedan), (b) hood (sedan), (c) windshield (minivan), and (d) hood (minivan).](image)

Figure 1. Comparison of head impactor accelerations during impact tests versus simulations: (a) windshield (sedan), (b) hood (sedan), (c) windshield (minivan), and (d) hood (minivan).
selected in this study without considering interaction between factors. The calculation files of coupling simulations were adjusted according to the simulation parameters above and the values are shown in Table 3.

Analysis of variance

The data extracted from coupling simulation results were tested for normality and homogeneity of variance first. If the data obeyed normal distribution with the same variance, it would be analyzed using one-factor or multi-factor one-way analysis of variance. Otherwise, the Kruskal–Wallis nonparametric test would be performed on it. In this study, all statistical analyses were performed using MATLAB2014a, and p values <0.05 were considered statistically significant.
Collision analysis for vehicle models–pedestrian human models

For situations where two vehicle models impacted two human models separately, the postures of human models and locations of head in contact with the sedan under various parameter levels are shown in Figures 3 and 4. Animation results showed that the lower and middle parts of windshield were the main parts where the head of the 5% human model hit the sedan. The middle and upper parts of windshield were the main parts where the head of the 50% human model hit the sedan. The middle part of windshield was the main part where the head of the 5% human model hit the minivan. The upper part of windshield was the main part where the head of the 50% human model hit the minivan.

According to Table 4, as for sedan—5% pedestrian human model impacts, the peak value of head linear acceleration, peak value of head angular velocity, and peak value of head angular acceleration were strongly associated with collision speed, and the peak value of head linear velocity and HIC$_{15}$ were strongly associated with collision speed and pedestrian orientation. As for sedan—50% pedestrian human model impacts, the peak value of head linear acceleration, peak value of head angular velocity, and peak value of head angular acceleration were strongly associated with collision speed; the peak value of head linear velocity was strongly associated with collision speed and pedestrian orientation; and HIC$_{15}$ was strongly associated with collision speed, pedestrian orientation, and impact area of bonnet. As for minivan—5% pedestrian human model impacts, the peak value of head linear velocity and peak value of head linear acceleration were strongly associated with collision speed, the peak value of head angular velocity was strongly

Table 3. Orthogonal table L$_{16}$(4^5).

Number	A_B	S_V	S_P	G_P	O_P
1	0	60	1	Keep feet parallel	Impact left side
2	15	30	3	Left foot behind right foot	Impact left side
3	0	30	2	Raise hand to protect head	Impact right side
4	15	60	0	Right foot behind left foot	Impact right side
5	15	40	2	Keep feet parallel	Impact front
6	0	40	3	Right foot behind left foot	Impact back
7	−30	50	2	Right foot behind left foot	Impact left side
8	45	60	2	Left foot behind right foot	Impact back
9	45	50	3	Keep feet parallel	Impact right side
10	45	40	0	Raise hand to protect head	Impact left side
11	45	30	1	Right foot behind left foot	Impact front
12	−30	40	1	Left foot behind right foot	Impact right side
13	15	50	1	Raise hand to protect head	Impact back
14	0	50	0	Left foot behind right foot	Impact front
15	−30	60	3	Raise hand to protect head	Impact front
16	−30	30	0	Keep feet parallel	Impact back
associated with pedestrian orientation, and the peak value of head angular acceleration and HIC$_{15}$ were strongly associated with collision speed and pedestrian orientation. As for minivan—50% pedestrian human model impacts, the peak

Figure 3. Postures of human models in contact with vehicle models under various parameter levels: (a) sedan—5% pedestrian human model, (b) sedan—50% pedestrian human model, (c) minivan—5% pedestrian human model, and (d) minivan—50% pedestrian human model.

Figure 4. Locations of head in contact with vehicle models under various parameter levels: (a) sedan—5% pedestrian human model, (b) sedan—50% pedestrian human model, (c) minivan—5% pedestrian human model, and (d) minivan—50% pedestrian human model.
value of head linear velocity was strongly associated with collision speed; the peak value of head linear acceleration was strongly associated with the impact area of bonnet, collision speed, and pedestrian orientation; the peak value of head angular velocity was strongly associated with the impact area of bonnet, collision speed, pedestrian gait, and pedestrian orientation; the peak value of head angular acceleration was strongly associated with the impact area of bonnet, collision speed, walking speed of pedestrian, pedestrian gait, and pedestrian orientation; and the peak value of head angular acceleration and HIC$_{15}$ were strongly associated with collision speed and pedestrian orientation.

Effect of human model size on the head dynamic response and HIC$_{15}$

For both the vehicle models, the size of pedestrian human models had no significant effect on the peak value of head linear velocity, peak value of head linear acceleration, peak value of head angular velocity, peak value of head angular acceleration, and HIC$_{15}$ (see Table 5).

Effect of vehicle type on the head dynamic response and HIC$_{15}$

For both the pedestrian human models, the vehicle type had a significant effect on the peak value of head linear acceleration, peak value of head angular velocity, peak value of head angular acceleration, and HIC$_{15}$ (see Table 6).

Discussion

Collision speed and collision angle are the two most common parameters used to study the dynamic response of head in pedestrian crash scenarios. However, linear and angular acceleration information are not paid enough attention in present studies, which are crucial for study on mechanism of pedestrian head injuries.$^{28-32}$ Therefore, in this research, we pay attention not only to the speed information of pedestrian head–vehicle impacts, but also to the acceleration information. On the other hand, most conclusions of the vehicle–pedestrian studies were drawn by taking situations (pedestrian head in contact with bonnet, A pillar, windshield, and windshield frame) into account together, which made it difficult to obtain analysis results as accurately as possible. Considering the characteristic of head–windshield impacts in vehicle–pedestrian collisions is more regular than that of head–bonnet impacts, head–A pillar impacts, and head–windshield frame impacts, this study focuses on the dynamic response and injuries of pedestrian head in the scenarios with head hitting windshield.

That impact speed could affect the severity of pedestrian head injury has been confirmed in many studies.$^{4,33-36}$ However, there are fewer reports concerning the role of pedestrian orientation. Liu et al.37 reported that pedestrian orientation could affect the severity of head injuries in car–pedestrian collisions. Tamura38 and Qi et al.39 reported that pedestrian orientation could affect the severity of head
Table 4. ANOVA tables of collision analysis for vehicle models–pedestrian human models.

	Sedan—5% pedestrian human model	Sedan—50% pedestrian human model	Minivan—5% pedestrian human model	Minivan—50% pedestrian human model																
	\(H_{VP}\)	\(H_{LACP}\)	\(H_{AP}\)	\(H_{ACC}\)	\(HIC_{15}\)	\(H_{VP}\)	\(H_{LACP}\)	\(H_{AP}\)	\(H_{ACC}\)	\(HIC_{15}\)	\(H_{VP}\)	\(H_{LACP}\)	\(H_{AP}\)	\(H_{ACC}\)	\(HIC_{15}\)	\(H_{VP}\)	\(H_{LACP}\)	\(H_{AP}\)	\(H_{ACC}\)	\(HIC_{15}\)
A_B	0.720	0.245	0.370	0.157	0.274	0.509	0.531	0.585	0.725	0.038	0.503	0.099	0.013	0.368	0.182	0.715	0.006	0.008	0.022	0.122
S_V	0.000	0.003	0.000	0.007	0.000	0.000	0.001	0.000	0.046	0.000	0.000	0.003	0.066	0.008	0.003	0.000	0.001	0.024	0.000	0.004
S_P	0.586	0.244	0.916	0.308	0.463	0.260	0.786	0.910	0.918	0.412	0.328	0.580	0.641	0.355	0.301	0.751	0.480	0.975	0.043	0.752
G_P	0.227	0.403	0.523	0.009	0.213	0.166	0.499	0.752	0.227	0.242	0.707	0.910	0.234	0.113	0.102	0.418	0.053	0.027	0.020	0.069
O_P	0.005	0.221	0.692	0.327	0.041	0.009	0.093	0.437	0.008	0.075	0.051	0.000	0.027	0.028	0.162	0.015	0.000	0.016	0.031	

Table 5. Means comparison of head dynamic response and HIC\(_{15}\) with different human model sizes.

	5% human model	50% human model	\(p\)	5% human model	50% human model	\(p\)
\(H_{VP}\) (m s\(^{-1}\))	14.10 ± 3.57	13.51 ± 3.96	0.588	14.57 ± 3.33	13.91 ± 3.06	0.483
\(H_{LACP}\) (m s\(^{-2}\))	2063 ± 652	1998 ± 948	0.577	1063 ± 454	1087 ± 423	0.549
\(H_{AP}\) (rad s\(^{-1}\))	45.81 ± 16.80	42.04 ± 14.45	0.408	35.81 ± 12.20	32.03 ± 11.94	0.283
\(H_{ACC}\) (rad s\(^{-2}\))	10,108 ± 4287	9158 ± 3984	0.430	5258 ± 2057	4860 ± 1386	0.725
\(HIC_{15}\)	2989 ± 2283	2717 ± 2295	0.563	1077 ± 964	990 ± 845	0.804

Table 6. Means comparison of head dynamic response and HIC\(_{15}\) with different vehicle types.

	5% human model	50% human model	\(p\)	5% human model	50% human model	\(p\)
\(H_{VP}\) (m s\(^{-1}\))	14.10 ± 3.57	14.57 ± 3.33	0.643	13.51 ± 3.96	13.91 ± 3.06	0.693
\(H_{LACP}\) (m s\(^{-2}\))	2063 ± 652	1063 ± 454	0.000	1998 ± 948	1087 ± 423	0.000
\(H_{AP}\) (rad s\(^{-1}\))	45.81 ± 16.80	35.81 ± 12.20	0.023	42.04 ± 14.45	32.03 ± 11.94	0.012
\(H_{ACC}\) (rad s\(^{-2}\))	10,108 ± 4287	5258 ± 2057	0.000	9158 ± 3984	4860 ± 1386	0.000
\(HIC_{15}\)	2989 ± 2283	1077 ± 964	0.000	2717 ± 2295	990 ± 845	0.000
injuries in van–pedestrian collisions. Our study was carried out by analyzing collisions between the sedan and the 5% pedestrian human model, collisions between the sedan and the 50% pedestrian human model, collisions between the minivan and the 5% pedestrian human model, and collisions between the minivan and the 50% pedestrian human model. The results showed that collision speed and pedestrian orientation were the two most important parameters affecting the dynamic response of pedestrian head (peak value of head linear velocity, peak value of head linear acceleration, peak value of head angular velocity, peak value of head angular acceleration), and they were the two most important parameters affecting the HIC15 as well. In the course of collisions between vehicles and pedestrians, collision speed would affect the transferred energy from the vehicles to the pedestrians, especially the head, and the effect of pedestrian orientation was mainly achieved through the physical connection which existed force response difference in various directions between head and neck.

Pedestrian size (height and weight) has received more and more attention in pedestrian collision researches. Meanwhile, researchers are mainly focused on the relationship between pedestrian height, weight, and HIC15. Liu et al.40 reported that an increase in the weight and height would result in an increase in the head injuries (HIC15). However, Hui41 pointed out that the short had a higher risk of head injuries than the tall. The study of Zhen42 showed that with increasing height, the severity of pedestrian head injuries (HIC15) decreased. In our research, the effects of pedestrian size on the head dynamic response and HIC15 were found that, as to the sedan and the minivan, pedestrian size had no significant influence on the peak value of head linear velocity, peak value of head linear acceleration, peak value of head angular velocity, and peak value of head angular acceleration. In addition, pedestrian size had no significant influence on HIC15, which was inconsistent with the above findings.40–42 It was worth noting that there were two head–vehicle collision scenarios, head–bonnet contact, and head–windshield contact, analyzed together in these studies.40–42 However, head–windshield contact was the only case of head–vehicle collision scenarios in our research. Therefore, the relationship between pedestrian size and the dynamic response and injuries of pedestrian head under different collision situations and the parametric study that clarifies the effect of pedestrian size and vehicle type on pedestrian head injuries are worthy of further exploration.

That vehicle type would affect the severity of pedestrian head injuries have been widely recognized.12,35,36,43–46 In this research, the effects of the vehicle type on the head dynamic response and HIC15 were found that, as to the 5% pedestrian human model and the 50% pedestrian human model, vehicle type had a significant influence on the HIC15. Furthermore, we observed a significant relationship between vehicle type and the peak value of head linear acceleration, peak value of head angular velocity, and peak value of head angular acceleration. The effects of vehicle type could be caused by the difference in stiffness, shape, and weight between the sedan and minivan. The shape might have a great influence on the head movement distance before contacting the vehicles, and the stiffness and weight might have a
great influence on the transferred energy from the vehicles to the pedestrians, especially the head.

It has to be stated that the conclusions of this study apply for the particular vehicle types and pedestrian sizes used in the coupling simulations. Also, the vehicle was considered with zero acceleration, deceleration, and steering angle. Better windshield and engine hood models should be considered as well.47–51 Consideration of these factors mentioned above might produce more reliable results, which is a very noteworthy content of further research.

Conclusion

Most conclusions of the vehicle–pedestrian studies were drawn by considering multiple situations together, which made it difficult to obtain analysis results as accurately as possible. Our study should be a starting point to explore the parameter sensitivity of pedestrian head dynamic response and injuries in the scenarios with head hitting windshield, adding a new dimension to our understanding of vehicle–pedestrian collisions and assisting the researchers and analysts in studying mechanism of head injuries better. Coupling simulations are carried out to obtain the analysis data, which combines the advantages of the FE method and the MB system analysis technology,52 and orthogonal experimental design and analysis of variance are used to explore the influence factors. This study has found collision speed and pedestrian orientation to be the two most important parameters affecting the dynamic response of pedestrian head (peak value of head linear velocity, peak value of head angular velocity, peak value of head linear acceleration, peak value of head angular acceleration) and HIC\textsubscript{15}. Our results further demonstrate the significant relationship between vehicle type and HIC\textsubscript{15}. In addition, we observed a significant relationship between vehicle type and the peak value of head linear acceleration, peak value of head angular velocity, and peak value of head angular acceleration. The effects of pedestrian size on the head dynamic response and HIC\textsubscript{15} were found that, as to the sedan and the minivan, pedestrian size had no significant influence on the peak value of head linear velocity, peak value of head linear acceleration, peak value of head angular velocity, peak value of head angular acceleration, and HIC\textsubscript{15}. It was pointed out that the relationship between pedestrian size and the dynamic response and injuries of pedestrian head under different collision situations are worthy of further exploration.

Author contributions

W.L. and Z.Y. conceived of and designed the experiments. W.L., A.D., K.L., and J.Q. performed the experiments, collected, and cleaned the data. W.L., L.F., and H.J. analyzed the data, interpreted the findings, and wrote the paper. All authors have read and approved the final manuscript.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was financially supported by the National Key Research and Development Program of China (project number: 2016YFC0800702, 2016YFC0800702-3).

ORCID iDs
Wenjun Liu https://orcid.org/0000-0002-8807-5693
Jinlong Qiu https://orcid.org/0000-0002-4580-3304

References
1. BingYu W, Jikuang Y and Otte D. A study on pedestrian lower extremity injury risk in car-pedestrian collisions. J Vib Shock 2016; 35: 1–5.
2. Simms CK, Wood D and Fredriksson R. Pedestrian injury biomechanics and protection. In: Yoganandan N, Nahum A and Melvin J (eds) Accidental injury. New York: Springer, 2015, pp. 721–753.
3. Maclaughlin TF, Wiechel JF and Guenther DA. Head impact reconstruction—HIC validation and pedestrian injury risk. SAE technical paper 930895, 1993.
4. Elliott JR, Simms CK and Wood DP. Pedestrian head translation, rotation and impact velocity: the influence of vehicle speed, pedestrian speed and pedestrian gait. Accid Anal Prev 2012; 45: 342–353.
5. Tolea B, Radu AI, Beles H, et al. Influence of the geometric parameters of the vehicle frontal profile on the pedestrian’s head accelerations in case of accidents. Int J Auto Technol 2018; 19: 85–98.
6. Jiang Y, Huang HB, Tan ZP, et al. Study on pedestrian-car collision accident reconstruction based on multi-rigid-body dynamics. Sci Tech Eng 2016; 16: 285–289.
7. Peng X, Thanakijkasem P, Zeng X, et al. Optimization design of bonnet inner based on pedestrian head protection and stiffness requirements. Int J Comput Materi Sci Eng 2017; 6: 1750005.
8. Nie J, Li G, Wang X, et al. Influence of geometric parameters of passenger car’s front-end structure on the head dynamic response and injury risk of pedestrian. Qiche Gongcheng/Auto Eng 2014; 36: 1473–1482.
9. Mizuno K and Kajzer J. Head injuries in vehicle-pedestrian impact. SAE Trans 2000; 109: 232–243.
10. Qiang M, Weimin G, Xichan Z, et al. The research on reversible pop-up engine hood for pedestrian protection. Auto Technol 2009; 12: 1–4.
11. Han Y, Yang J, Mizuno K, et al. Effects of vehicle impact velocity on pedestrian fatal injury risk. Chin J Auto Eng 2011; 1: 399–406.
12. Han Y, Yang J, Mizuno K, et al. Effects of vehicle impact velocity, vehicle front-end shapes on pedestrian injury risk. Traffic Inj Prev 2012; 13(5): 507–518.
13. Hu J and Klinich KD. Toward designing pedestrian-friendly vehicles. Int J Veh Safe 2012; 8: 22–54.
14. Zhen Z. Research on pedestrian injury and protection based on accident in-depth study. Harbin, China: Harbin Institute of Technology, 2014.
15. Ghosh P, Mayer C, Deck C, et al. Head injury risk assessment in pedestrian impacts on small electric vehicles using coupled SUFEHM-THUMS human body models running
in different crash codes. In: **IRCOBI conference proceedings**, 2016, https://trid.trb.org/view/1426478

16. Paas R, Davidsson J and Brolin K. Head kinematics and shoulder biomechanics in shoulder impacts similar to pedestrian crashes—a THUMS study. *Traffic Inj Prev* 2015; 16(5): 498–506.

17. Cao L, Zhao J, Chen Z, et al. Structure improvement of a child seat with Dyna-Madymo coupling method. *J Auto Safe Energ* 2014; 5: 336–342.

18. Vychytil J, Hyncik L, Manas J, et al. Prediction of injury risk in pedestrian accidents using virtual human model VIRTHUMAN: real case and parametric study. SAE technical paper 2016-01-1511, 2016.

19. Setru P, Kral J and Rajeswaran S. IIHS side impact analysis using Dyna-Madymo coupling. In: *Madymo users meeting*, Detroit, MI, October 1st, 2003.

20. Zhao A, Hong SW, Park CK, et al. Child safety analysis for forward-facing child restraint system in frontal impact. *Int J Crashworth* 2009; 14: 151–163.

21. Thorbole C and Deshpande S. A study to address the failure mechanism of the conventional 3-point restraint in protecting the far side occupant in a rollover accident. SAE technical paper 2015-26-0161, 2015.

22. NCAC. https://www.nhtsa.gov/crash-simulation-vehicle-models#ls-dyna-fe-12101 (accessed 1 March 2014).

23. Li K. *An in-depth investigation of minibus collisions and study on injury mechanism*. Chongqing, China: Third Military Medical University, 2015.

24. Fan W. *An in-depth investigation of minibus collisions and study on injury mechanism*. Chongqing, China: Chongqing University of Technology, 2013.

25. Ksimms C and Pwood D. Effects of pre-impact pedestrian position and motion on kinematics and injuries from vehicle and ground contact. *Int J Crashworth* 2006; 11: 345–355.

26. Liu W, Li K, Su S, et al. Car-pedestrian accident reconstruction based on finite element simulation and genetic neural network. *Yiyong Shengwu Lixue/J Med Biomech* 2015; 30: 125–130.

27. Hu L, Dai X, Huang J, et al. A study on parameter sensitivity in accident reconstruction model for car-pedestrian crash. *Auto Eng* 2017; 2: 43–51.

28. Vilenius AT, Ryan GA, Kloeden C, et al. A method of estimating linear and angular accelerations in head impacts to pedestrians. *Accid Anal Prev* 1994; 26(5): 563–570.

29. Post A, Oeur A, Hoshizaki B, et al. Examination of the relationship between peak linear and angular accelerations to brain deformation metrics in hockey helmet impacts. *Comput Meth Biomech Biomed Engin* 2013; 16(5): 511–519.

30. Smith TA, Halstead PD, Mccalley E, et al. Angular head motion with and without head contact: implications for brain injury. *Sports Eng* 2015; 18: 165–175.

31. Glay P, Scattina A and Avalle M. Rotational acceleration measurement for pedestrian head impact. *International J Crashworth* 2015; 20: 560–572.

32. Tamura A, Koide T and Yang KH. Effects of translational and rotational accelerations on traumatic brain injury in a sport utility vehicle-to-pedestrian crash. *Int J Veh Des* 2016; 72: 208–229.

33. Sánchez S, Páez FJ, Furones A, et al. Estimation of the head injury severity using the head impact speed based on real pedestrian collisions, 2017, https://trid.trb.org/view/1491086
34. Watanabe R, Miyazaki H, Kitagawa Y, et al. Research of collision speed dependency of pedestrian head and chest injuries using human FE model (THUMS version 4). Acc Reconstruct J 2012; 22: 31–40.
35. Watanabe R, Katsuhara T, Miyazaki H, et al. Research of the Relationship of Pedestrian Injury to Collision Speed, Car-type, Impact Location and Pedestrian Sizes using Human FE model (THUMS Version 4). Stapp Car Crash J 2012; 56: 269–321.
36. Yan W, Xu X, Liu B, et al. A study on the coupling influence of impact speed and vehicle type on the movement and injury of pedestrian. Auto Eng 2015; 37: 276–283.
37. Liu W, Su S, Qiu J, et al. Exploration of pedestrian head injuries—collision parameter relationships through a combination of retrospective analysis and finite element method. Int J Environ Res Public Health 2016; 13(12): 1250.
38. Tamura A. Effects of pre-impact body orientation on traumatic brain injury in a vehicle pedestrian collision. Int J Veh Safe 2008; 3: 351–370.
39. Qi C, Daowen Z and Xin W. A study on movement form and injury of pedestrian in van-pedestrian collision. China Safe Sci J 2015; 25: 133–138.
40. Liu J, Feng Z and Chen H. Simulation research on pedestrian injury severity in traffic accident of human-vehicle collisions. Road Traff Technol 2012; 11: 1–4.
41. Hui Y. Research of velocity and human height effect on the risk of pedestrian injury in vehicle-pedestrian accident. Machinery Design & Manufacture 2016; 2016: 261–264.
42. Zhen L. Study on the method of vehicle speed calculation in pedestrian-vehicle crash. Chengdu, China: Xihua University, 2016.
43. Yang J. Effects of vehicle front design parameters on pedestrian head-brain injury protection, 2003, https://pdfs.semanticscholar.org/148d/43923835f2f116991f12e1c8e3e12dd316c1.pdf
44. Qiao W. Study on human injury and simulation about vehicle-pedestrian collisions in different vehicle types. Trans Chin Soc Agricult Mach 2005; 36: 42–45.
45. Ballesteros MF, Dischinger PC and Langenberg P. Pedestrian injuries and vehicle type in Maryland, 1995–1999. Accid Anal Prev 2004; 36(1): 73–81.
46. Roudsari BS, Mock CN and Kaufman R. An evaluation of the association between vehicle type and the source and severity of pedestrian injuries. Traffic Inj Prev 2005; 6(2): 185–192.
47. Sha Y, Haoyu C, Yaobo W, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood. Comp Struct 2018; 201: 131–140.
48. Li Y, Xiong D, Wang L, et al. Dynamic mechanical behavior and pedestrian safety characteristics of toughened laminated windshield. Comp Part B: Eng 2019; 163: 740–751.
49. Shang S, Zheng Y, Shen M, et al. Numerical investigation on head and brain injuries caused by windshield impact on riders using electric self-balancing scooters. Appl Bionics Biomech 2018; 2018: 5738090.
50. Yu G, Zhen Y, Feng B, et al. Computation modeling of laminated crack glass windshields subjected to headform impact. Comput Struct 2017; 193: 139–154.
51. Yin S, Li J and Xu J. Exploring the mechanisms of vehicle front-end shape on pedestrian head injuries caused by ground impact. Accid Anal Prev 2017; 106: 285–296.
52. Zhang W, Cao J and Xu J. How to quantitatively evaluate safety of driver behavior upon accident? A biomechanical methodology. PLoS ONE 2017; 12(12): e0189455.
Author biographies

Wenjun Liu received his PhD from the Army Medical University in 2018. His research interests are human injury mechanism and in-depth investigation of traffic accidents.

Aowen Duan is PhD Candidate at the Army Military Medical University, and his main research direction is the study of craniocerebral injury mechanism.

Kui Li received his PhD from the Army Medical University in 2015 and now works at the Institute of Transportation Medicine of the Army Medical University. His research interest is in-depth investigation of traffic accidents.

Jinlong Qiu received his master's degree from the Army Medical University in 2017 and now works at the Institute of Transportation Medicine of the Army Medical University. His research direction is the study of driver injury risk.

Liangfei Fu received his master’s degree from the Chongqing Institute of Technology in 2019. His research direction is the study of occupant injury risk.

Hongchun Jia received his master’s degree from the Chongqing Institute of Technology in 2019. His research direction is the study of driver injury risk.

Zhiyong Yin, former Army Military Medical University researcher (PhD), is now China Automotive Engineering Research Institute Co., Ltd. researcher. His research interests are human injury mechanism and protection, in-depth investigation of traffic accidents and vehicle safety assessment.