MicroRNA-134 Promotes the Development of Atherosclerosis Via the ANGPTL4/LPL Pathway in Apolipoprotein E Knockout Mice

Qiong Ye1,2,6, Guo-Ping Tian2, Hai-Peng Cheng1, Xin Zhang1, Xiang Ou3, Xiao-Hua Yu1, Ru-Qi Tan2, Feng-Yun Yang2, Duo Gong1, Chong Huang1, Yan-Jun Pan2, Jie Zhang4, Ling-Yan Chen1, Zhen-Wang Zhao1, Wei Xie1, Liang Li1, Min Zhang1, Xiao-Dan Xia1, Xi-Long Zheng5 and Chao-Ke Tang1

Qiong Ye, Guo-Ping Tian and Hai-peng Cheng contributed equally to this work.

Aims: Atherosclerosis is the most common cause of cardiovascular disease, such as myocardial infarction and stroke. Previous study revealed that microRNA (miR)-134 promotes lipid accumulation and proinflammatory cytokine secretion through angiopoietin-like 4 (ANGPTL4)/lipid lipoprotein (LPL) signaling in THP-1 macrophages.

Methods: ApoE KO male mice on a C57BL/6 background were fed a high-fat/high-cholesterol Western diet, from 8 to 16 weeks of age. Mice were divided into four groups, and received a tail vein injection of miR-134 agomir, miR-134 antagomir, or one of the corresponding controls, respectively, once every 2 weeks after starting the Western diet. After 8 weeks we measured aortic atherosclerosis, LPL Activity, mRNA and protein levels of ANGPTL4 and LPL, LPL/ low-density lipoprotein receptor related protein 1 Complex Formation, proinflammatory cytokine secretion and lipid levels.

Results: Despite this finding, the influence of miR-134 on atherosclerosis in vivo remains to be determined. Using the well-characterized mouse atherosclerosis model of apolipoprotein E knockout, we found that systemic delivery of miR-134 agomir markedly enhanced the atherosclerotic lesion size, together with a significant increase in proinflammatory cytokine secretion and peritoneal macrophages lipid contents. Moreover, overexpression of miR-134 decreased ANGPTL4 expression but increased LPL expression and activity in both aortic tissues and peritoneal macrophages, which was accompanied by increased formation of LPL/low-density lipoprotein receptor-related protein 1 complexes in peritoneal macrophages. However, an opposite effect was observed in response to miR-134 antagomir. Conclusions: These findings suggest that miR-134 accelerates atherogenesis by promoting lipid accumulation and proinflammatory cytokine secretion via the ANGPTL4/LPL pathway. Therefore, targeting miR-134 may offer a promising strategy for the prevention and treatment of atherosclerotic cardiovascular disease.

Key words: MiR-134, ANGPTL4, LPL, Atherosclerosis

Introduction

Atherosclerosis, a chronic disease of arterial walls, is a major cause of mortality and morbidity worldwide). Both lipid accumulation and the inflammatory response play key roles in the occurrence and develop-
LPL in both macrophages and apolipoprotein E knock-
sility lipoprotein receptor-related protein (LRP1) to form
a functional protein complex, which contributes to lipo-
by complementary base pairing between the seed sequ-
secretion4-6). MiRNAs are a class of post-transcriptional
ment of atherosclerosis 2). As a glycoprotein, lipopro-
sion13). Moreover, overexpression of ANGPTL4 dra-
induction of macrophage ANGPTL4 can suppress
THP-1 macrophages, leading to increased lipid accu-
directly binding to the 3´UTR of ANGPTL4 in
found that miR-134 upregulates LPL expression by
ApoE3-Leiden transgenic mice14, 15). MiR-134, a poly-
matically reduces lesion area in atherosclerosis-prone
Animal Models
ApoE KO male mice (8 weeks old) on a C57BL/6
background were obtained from Beijing University of
Medicine Laboratory, China. All experimental proce-
dures were approved by the institutional animal care
committee (University of South China, Hunan,
China). These mice were randomly divided into four
groups: miR-134 agomir negative control (AG-NC),
miR-134 agomir (AG), miR-134 antagonir negative
control (AN-NC), and miR-134 antagonir (AN). The
agomir (2´OME + 5´chol modified) and antagonir
(2´OME + 5´chol modified) of miR-134 are locked
nucleic acids, purchased from RiboBio (Guangzhou,
China). All sequences are as follows: miR-134 agomir:
UGUGACUGGUUGACAGAGGGG, miR-134
antagomir: CUCCUGGGGCCGCACUCUCGC,
mir-134 agomir negative control: UUUGACUCUCUAGAAAAGAGUGA,
and miR-134 antagonir negative:
UUUGACUCACAAAGACUG,
Each group included 10 animals. Each mouse received
a tail vein injection of miR-134 agomir, miR-134
antagomir, or one of the corresponding controls, respec-
tively, at a dose of 80 mg/kg wt in 0.2 ml saline once
every 2 weeks after starting the high-fat/high-choles-
terol Western diet (15% fat wt/wt, 0.25% cholesterol
wt/wt). After 8 weeks on the Western diet, and after
fastering for 12–14 h, mice were euthanized. The blood
was collected and assayed for plasma lipids and inflam-
atory cytokine expression using commercially avail-
able enzymatic methods and enzyme-linked immuno-
sorbent assay (ELISA) kits (y-y (Shanghai) Chemical
Reagent Co., Ltd, Shanghai, China), respectively. The
expression of LPL mRNA and protein in the aorta
and peritoneal macrophages was detected by real-time
polymerase chain reaction (RT-PCR) and Western
blot analysis, respectively. Images of lesions in aortic
sinuses were obtained by performing hematoxylin and
eosin (HE) staining, Oil red O staining, and Masson’s
trichrome staining.

Atherosclerosis Analysis
The mice were perfused by cardiac puncture with
4% (w/v) paraformaldehyde to wash out blood from
the heart and all vessels after euthanasia. The sur-
rrounding fat and connective tissues were removed
carefully from the aorta and heart, followed by obser-
vation under a stereomicroscope. Tissues, including
hearts and aortas, abdominal cavity macrophages, and
blood samples were collected for further analyses and
measurements. For en face analysis, the whole aorta
was excised from the aortic arch to the common iliac
artery and stained with Oil red O. To analyze the ath-
erosclerotic lesions in the aortic root, 8 µm frozen sections of the aortic root were prepared and also stained with hematoxylin-eosin (HE) and Oil red O. Images of the sections were obtained with a microscope. Lesion areas were quantified using IMAGEPRO PLUS software.

LPL Activity
The activities of LPL in peritoneal macrophages and aortic tissues isolated from apoE KO mice were determined using the LPL activity assay kit as described previously18). Briefly, 0.5 U/ml heparin was added to the medium at the end of the incubation period. LPL activity was normalized to total cell proteins. In the reaction system, production of 1 µmol FFA per mg of protein per hour in the reaction system is expressed as one active unit.

RT-PCR Analyses
Total RNA was isolated by TRIzol reagent (Invitrogen) in accordance with the manufacturer’s instructions. Relative quantitative RT-PCR (qPCR) with the use of SYBR Green detection chemistry was performed with a LightCycler Run 5.32 Real-Time PCR System (Roche). The melting curve analyses of all RT-PCR products were conducted and shown to produce a single DNA duplex. The DDCt method was used to determine quantitative measurements. In the experiments, β-actin was used as the internal control. The sequences of the RT-PCR primers were as follows: LPL, forward: 5’-GGGAGTTTGGCTCCAGAGTTT-3’ and reverse: 5’-TGTTGCTTTAGGGGTCCCTTTAGTAG-3’; ANGPTL4, forward: 5’-GGGATCTTACACGCTGCACT-3’ and reverse 5’-CTTGGCCACCTTTTGAAAGAGG-3’; GAPDH, forward: 5’-AAGGTTCACAGCCTGCA-3’ and reverse 5’-AAGGTTCACAGCCTGCA-3’.

Western Blot Analysis
Aortic tissues and peritoneal macrophages were lysed for protein extraction using RIPA buffer containing proteinase inhibitor cocktails (Sigma). The expression of LPL protein was examined using Western blot assay. In brief, 20 µg protein from each lysate from isolated aortic tissues was loaded into a separate lane for analysis. The resulting blots were probed with primary antibodies against LPL or β-actin (1:1000, Sigma) and antibodies against ANGPTL4 or β-actin (1:1000, Sigma), followed by incubation with the appropriate secondary antibodies (1:2000, Sigma). Protein signals were visualized by chemiluminescence and quantified by densitometry.

High-Performance Liquid Chromatography (HPLC) Assays
The blood samples were collected from apoE KO mice fasted for 12–14 h by retro-orbital venous plexus puncture. Plasma was separated by centrifugation and stored at −20°C. According to the manufacturer’s instructions, total plasma cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and lipids were enzymatically measured with the amplex red cholesterol assay kit (Molecular Probes, Invitrogen). The sterol analyses were performed using an HPLC system (Model 2790, controlled with Empower Pro software, Waters Corporation, PerkinElmer, Milford, MA). Analysis of cholesterol was conducted after elution and detection by absorbance at 210 nm.

Cytokine Expression Analysis by ELISA
The quantitation of secreted proinflammatory cytokines was conducted by ELISA (BioSource). The levels of monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 were analyzed from aliquots of conditioned medium from peritoneal macrophages and plasma according to the manufacturer’s instructions.

Co-Immunoprecipitation and Immunoblotting Analysis
Co-immunoprecipitation was conducted to determine the interaction between LPL and LR1P1. Protein extracts from peritoneal macrophages were first incubated with anti-LRP1 antibody or anti-LPL antibody overnight at 4°C with gentle rotation and subsequently incubated with protein A/G agarose slurry. After washing, the samples were mixed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer. The mixture was then heated for 10 min and centrifuged. The supernatants containing LRP1 or LPL immunoprecipitates were removed and subjected to Western blot analysis. Whole cell extracts were subjected to immunoblot analysis as a control, and polyclonal goat IgG was used as a negative control.

Statistical Analysis
All data are expressed as mean ± standard deviation (SD) of at least three independent experiments. Statistically significant differences among groups were analyzed by one-way analysis of variance (ANOVA) or Student’s t-test using SPSS 18.0 software. A difference with P<0.05 was considered to be statistically significant.
Fig. 1. MiR-134 aggravates atherosclerosis development

Male 8-week-old apoE KO mice (n = 10 mice per group) fed a high-fat diet were given a tail vein injection with miR-134 agomir negative control (AG-NC), miR-134 agomir (AG), miR-134 antagomir negative control (AN-NC), or miR-134 antagomir (AN), respectively. A: MiR-134 accelerated the development of atherosclerotic plaques in apoE KO mice. Plaques in aortic arches of representative apoE KO mice are marked by the blue arrows. B: MiR-134 increased atherosclerotic lesion areas in apoE KO mice. The images show atherosclerotic lesion areas of the whole aorta with Oil red O staining. C: The Oil red O staining of atherosclerotic lesion areas at aortic sinuses. D: The HE staining of cross-sections of the proximal aorta in apoE KO mice. E: Microscopic images of atherosclerotic plaque collagen content in cross-sections of the proximal aorta of apoE KO mice with Masson’s trichrome staining. Original magnification: 10×. All results are expressed as mean ± S.D. *P < 0.05 vs AG-NC group. **P < 0.01 vs AN-NC group.
Fig. 2. Effects of miR-134 on ANGPTL4 and LPL expression in apoE KO mice
MiR-134 regulated ANGPTL4 expression and LPL activity and protein expression. A: ANGPTL4 mRNA and protein levels in aortic tissues and peritoneal macrophages of apoE KO mice were analyzed by qRT-PCR and Western blot analyses, respectively. B: LPL mRNA and protein levels in aortic tissues and peritoneal macrophages of apoE KO mice were analyzed by RT-qPCR and Western blot analyses, respectively. Effects of MiR-134 on LPL activity levels in the aortic tissues and macrophages of apoE KO mice were determined by ELISA. *P<0.05 vs. AG-NC. **P<0.05 vs. AN-NC.
Results

MiR-134 Aggravates Atherosclerosis in ApoE KO Mice

The formation of plaques is the hallmark of atherosclerosis. Our results show that administration of miR-134 agomir elevated the number and size of plaques in the aortic arch, thoracic aorta region, and whole aorta, whereas an opposite effect appeared in the presence of miR-134 antagonim (Fig. 1A and B). We then examined atherosclerotic plaque development of aortic root lesions by HE staining and observed that the agomir group developed significantly more lesion areas than the agomir negative control group (Fig. 1C). To further investigate the effects of miR-134 on lipid deposition, quantification of lipid accumulation in aortic sinus lesions by Oil red O staining was conducted. We found a significant increase of lipid accumulation in miR-134 agomir-treated mice but a significant decrease of lipid accumulation in miR-134 antagonim-treated mice, when compared with their respective control mice (Fig. 1D). Finally, we determined atherosclerotic plaque collagen content in cross-sections of the proximal aorta of apoE KO mice with Masson’s trichrome staining. Treatment with miR-134 agomir significantly increased necrotic core areas when compared with those in control mice. In contrast, the necrotic core area was significantly decreased when mice were treated with miR-134 antagonim (Fig. 1E). Taken together, these results indicate that overexpression of miR-134 accelerates atherosclerosis development.

MiR-134 Decreases ANGPTL4 Expression but Elevates LPL Expression and Activity

Our previous experiments identified ANGPTL4 as a target gene of miR-134 [17]. We thus explored the effects of miR-134 on ANGPTL4 expression in vivo. As expected, in both peritoneal macrophages and the aortas of apoE KO mice, miR-134 agomir decreased, but miR-134 antagonim increased, the mRNA and protein levels of ANGPTL4 (Fig. 2A). Given the fact that absence of ANGPTL4 results in accumulation of the mature glycosylated form of LPL and increases LPL secretion [19], we next investigated whether miR-134 could impact LPL expression and activity in the above-mentioned peritoneal macrophages and aortas. As shown in Fig. 2B, overexpression of miR-134 markedly raised LPL expression and activity; however, knockdown of miR-134 inhibited its expression and activity.

MiR-134 Promotes LPL/LRP1 Complex Formation in Peritoneal Macrophages

LRP1 is enriched at the lipid rafts on the surface of macrophages and usually forms a complex with its ligand protein, LPL [10, 20, 21]. Thus, a co-immunoprecipitation assay was used to explore the effects of miR-134 on LPL/LRP1 complex formation in peritoneal macrophages isolated from apoE KO mice. As demonstrated in Fig. 3, administration of miR-134 agomir markedly facilitated LPL/LRP1 complex production, whereas miR-134 antagonim inhibited complex production.
subsequently measured the effects of miR-134 on the contents of lipids and proinflammatory cytokines using ELISA. Increased total cholesterol (TC), cholesterol ester (CE), TNF-α, IL-6, IL-1β, and MCP-1 contents, but decreased free cholesterol (FC) content, were

| Table 1. Effect of miR-134 on lipid accumulation in the peritoneal macrophages of apoE KO mice |
|-----------------|-----|-----|-----|-----|
| | TC | FC | CE | CE/TC (%) |
| AG-NC | 518 ± 30.1 | 185 ± 24.8 | 318 ± 21.6 | 61.4 |
| AG | 620 ± 28.8* | 230 ± 30.2 | 391 ± 28.9* | 63.1 |
| AN-NC | 503 ± 22.6 | 189 ± 21.7 | 331 ± 26.8 | 65.8 |
| AN | 405 ± 22.6* | 150 ± 17.6 | 267 ± 23.6* | 65.9 |

Each group contained 10 mice. Unit: (mg/g protein). TC: total cholesterol; FC: free cholesterol; CE: cholesterol ester. All the results are expressed as mean ± S.D. *p < 0.05, vs AG-NC, #p < 0.05, vs AN-NC.

MiR-134 Facilitates Lipid Accumulation and the Inflammatory Response

Upon binding of LPL to LRP1, LPL can promote abnormal lipid metabolism and the inflammatory response, two key events in atherogenesis⁵⁻⁶. We subsequently measured the effects of miR-134 on the contents of lipids and proinflammatory cytokines using ELISA. Increased total cholesterol (TC), cholesterol ester (CE), TNF-α, IL-6, IL-1β, and MCP-1 contents, but decreased free cholesterol (FC) content, were
observed in peritoneal macrophages from mice dosed with miR-134 agomir (Table 1 and Fig. 4). Similarly, the plasma levels of TC, LDL-C, TNF-α, IL-6, IL-1β, and MCP-1 were raised, but plasma TG and HDL-C levels were reduced, in response to treatment with miR-134 agomir (Table 2 and Fig. 4). Notably, an opposite effect was observed in the presence of miR-134 antagonist. All these results suggest that overexpression of miR-134 enhances lipid accumulation and the inflammatory response in apoE KO mice, which may be responsible for the proatherosclerotic action of miR-134.

Discussion

Atherosclerosis has been regarded as the most common cause of heart attack, stroke, and peripheral vascular disease. MiR-134, which is located in chromosome region 14q32.31, was initially identified by cloning research on rats. Recently, several lines of evidence have demonstrated that miR-134 is closely related to the risk of heart failure and might act as a potential biomarker of myocardial infarction. However, the role of miR-134 in atherosclerosis development is still largely unknown. Here we found that overexpression of miR-134 promoted the formation of atherosclerotic lesions in apoE KO mice, whereas its downregulation produced an opposite effect. These results suggest that overexpression of miR-134 contributes to atherogenesis.

The major pathogenic events of atherosclerosis are foam cell formation and an excessive inflammatory response. More recently, our group reported that overexpression of miR-134 significantly promotes intracellular lipid accumulation and the secretion of proinflammatory cytokines including TNF-α, IL-6, and MCP-1 in THP-1 macrophages. Similar to the *in vitro* experimental results, apoE KO mice overexpressing miR-134 showed a significant increase in plasma levels of LDL-C, TC, CE, TNF-α, IL-6, IL-1β, and MCP-1. Our results show that knockdown of ANGPTL4 by miR-134 AG increased plasma TC levels. However, mice lacking Angptl4 exhibited a significant decrease in plasma TC levels. This discrepancy may be attributed to the differences in the degree of Angptl4 inhibition and the experimental protocols. Further studies will be required to explain the opposite effects. The LPL/LRP1 complex is primarily localized to the cell surface of macrophages. It has already been reported that treatment of THP-1 macrophages with either miR-134 mimic or miR-155 inhibitor markedly increases intracellular lipid contents and proinflammatory cytokine generation by promotion of the formation of this complex. In the current study, we found that the formation of the LPL/LRP1 complex was significantly increased in peritoneal macrophages from apoE KO mice treated with miR-134 agomir. All of these results suggest that miR-134 promotes LPL/LRP1 complex production and then increases lipid accumulation and proinflammatory cytokine secretion, which may be the main mechanism for miR-134-induced atherosclerosis.

LPL, a protein containing 448 amino acids, is encoded by the gene located in chromosome region 8p22. LPL is primarily synthesized in the heart, skeletal muscle, and adipose tissue. Other tissues with measurable LPL activity include lungs, brain, lactating mammary glands, brain, and kidney, and macrophages also exhibit LPL activity. In all tissues, LPL is found to line the capillary endothelial lumen, and its main function is to hydrolyze the core triglycerides in the TG-rich lipoproteins, such as the chylomicrons and the very-low-density lipoproteins, into glycerol and FFAs for uptake by tissues. Macrophage LPL contributes to the formation of foam cells via a “molecular bridge” between lipoproteins and receptors on peritoneal macrophages surface. The nonenzymatic activity of LPL is essential to maintain normal plasma lipid levels in the face of excessive fat intake or dysregulated lipid metabolism. In addition, macro-

Table 2. The Effects of miR-134 on body weight and plasma lipid profile in apoE KO mice

	AG-NC	AG	AN-NC	ANG
BW (g)	27.62±2.33	29.33±3.99	28.62±2.67	29.13±2.56
TG (mmol/L)	2.56±0.49	1.89±0.46*	2.45±0.52	3.38±0.59*
TC (mmol/L)	15.65±3.04	19.98±3.54*	14.98±2.89	12.15±2.34*
HDL-C (mmol/L)	3.52±0.95	2.25±0.98*	3.51±1.15	5.12±0.98*
LDL-C (mmol/L)	11.98±1.07	14.34±1.23*	12.13±1.22	10.15±1.02*

Each group contained 10 mice. AG-NC: miR-134 agomir negative control, AG: miR-134 agomir, AN-NC: miR-134 antagonim negative control, AN: miR-134 antagonim, BW: body weight, TG: triglyceride, TC: total cholesterol, HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol. HPLC method was used for determination of blood lipid levels. The data are the means±SEM from the indicated numbers of male apoE KO mice in each group. *p<0.05, vs AG-NC. **p<0.05, vs AN-NC.
In summary, on the basis of in vitro experiments, our studies further suggest that overexpression of miR-134 facilitates lipid accumulation and the inflammatory response, leading to increased atherosclerotic lesions in apoE KO mice. Mechanistically, miR-134 upregulation enhances the LPL level by targeting ANGPTL4, which accelerates the formation of the LPL/LRP1 protein complex (Fig. 5). Thus, inhibition of miR-134 may become a novel and promising strategy for the prevention and treatment of atherosclerotic cardiovascular disease.

Conflict of Interest

We have no actual or potential conflict of interest.

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Sciences Foundation of China (81570408, and 81370377), the Natural Science Foundation of Hunan Province (2015JJ2120), the construct program of the key discipline in Hunan province (Basic Medicine Sciences in University of South China, Xiangjiaofa NO. [2011]76), Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study (0223-0002-0002000-41, 0223-0002-0002000-42) and Science and Technology Plan Project of Changsha City (KQ1602028) and the Natural Science Foundation of Hunan Province (2017JJ2286)

References

1) Liu B, Li Y, Luo J, Dai L, Zhao J, Li H, Jie Q, Wang D, Huang X, Wei Y. Low protein Z plasma level is a risk factor for acute myocardial infarction in coronary atherosclerosis disease patients. Thrombosis research. 2016; 148: 25-31
2) Lundqvist A, Magnusson LU, Ullstrom C, Krasilnikova J, Telysheva G, Dizhbite T, Hulten LM. Oregonin reduces lipid accumulation and proinflammatory responses in primary human macrophages. Biochemical and biophysical research communications. 2015; 458: 693-699
3) Frayn KN, Arner P, Yki-Jarvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays in biochemistry. 2006; 42: 89-103
4) Laudati E, Gilder AS, Lam MS, Misasi R, Sorice M, Goniais SL, Mantuano E. The activities of LDL Receptor-related Protein-1 (LRP1) compartmentalize into distinct plasma membrane microdomains. Molecular and cellular neurosciences. 2016; 76: 42-51
5) Mantuano E, Brifault C, Lam MS, Azmoon P, Gilder AS, Goniais SL. LDL receptor-related protein-1 regulates NFkappaB and microRNA-155 in macrophages to control the
inflammatory response. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113: 1369-1374

6) Lillis AP, Muratoglu SC, Au DT, Migliorini M, Lee MJ, Fried SK, Mikhailenko I, Strickland DK. Correction: LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. PloS one. 2016; 11: e0147457

7) Deng L, Bradshaw AC, Baker AH. Role of noncoding RNA in vascular remodelling. Current opinion in lipidology. 2016; 27: 439-448

8) Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. International journal of molecular sciences. 2016; 17

9) Tian GP, Chen WJ, He PP, Tang SL, Zhao GJ, Lv YC, Ouyang XP, Yin K, Wang PP, Cheng H, Chen Y, Huang SL, Fu Y, Zhang DW, Yin WD, Tang CK. MicroRNA-467b targets LPL gene in RAW 264.7 macrophages and attenuates lipid accumulation and proinflammatory cytokine secretion. Biochimie. 2012; 94: 2749-2755

10) He PP, Ouyang XP, Tang YY, Liao L, Wang ZB, Lv YC, Tian GP, Zhao GJ, Huang L, Yao F, Xie W, Tang YL, Chen WJ, Zhang M, Li Y, Wu JE, Peng J, Liu XY, Zheng XL, Yin WD, Tang CK. MicroRNA-590 attenuates lipid accumulation and pro-inflammatory cytokine secretion by targeting lipoprotein lipase gene in human THP-1 macrophages. Biochimie. 2014; 106: 81-90

11) Tian GP, Tang YY, He PP, Lv YC, Ouyang XP, Zhao GJ, Tang SL, Wu JF, Wang JL, Peng J, Zhang M, Li Y, Cayabyab FS, Zheng XL, Zhang DW, Yin WD, Tang CK. The effects of miR-467b on lipoprotein lipase (LPL) expression, pro-inflammatory cytokine, lipid levels and atherosclerotic lesions in apolipoprotein E knockout mice. Biochemical and biophysical research communications. 2014; 443: 428-434

12) Dijk W, Kersten S. Regulation of lipoprotein lipase by Angptl4. Trends in endocrinology and metabolism: TEM. 2014; 25: 146-155

13) Lichtenstein L, Kersten S. Modulation of plasma TG lipolysis by Angiopoietin-like proteins and GPIHPBP1. Biochimica et biophysica acta. 2010; 1801: 415-420

14) Georgiadi A, Wang Y, Stienstra R, Tjerdema N, Janssen A, Stalenhoef A, van der Vliet JA, de Roos A, Tamsma JT, Smit JW, Tan NS, Muller M, Rensen PC, Kersten S. Overexpression of angiopoietin-like protein 4 protects against atherosclerosis development. Arteriosclerosis, thrombosis, and vascular biology. 2013; 33: 1529-1537

15) Lichtenstein L, Mattijsen F, de Wit NJ, Georgiadi A, Hooiveld GJ, van der Meer R, He Y, Qi L, Koster A, Tamsma JT, Tan NS, Muller M, Rensen PC, Kersten S. Angplt4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell metabolism. 2010; 12: 580-592

16) Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, Aukrust P, van Berkel TJ, Biesen EA. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochemical and biophysical research communications. 2010; 394: 792-797

17) Lan G, Xie W, Li L, Zhang M, Liu D, Tan YL, Cheng HP, Gong D, Huang C, Zheng XL, Yin WD, Tang CK. MicroRNA-134 activates lipoprotein lipase-mediated lipid accumulation and inflammatory response by targeting angiopoietin-like 4 in THP-1 macrophages. Biochemical and biophysical research communications. 2016; 472: 410-417

18) Beauchamp MC, Letendre E, Renier G. Macrophage lipoprotein lipase expression is increased in patients with heterozygous familial hypercholesterolemia. Journal of lipid research. 2002; 43: 215-222

19) Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG, Kersten S. Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes. Journal of lipid research. 2016; 57: 1670-1683

20) Rao X, Zhong J, Maiseyue A, Gopalakrishnan B, Villamena FA, Chen LC, Harkema JR, Sun Q, Rajagopalan S. CD36-dependent 7-ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure. Circulation research. 2014; 115: 770-780

21) Oury C, Servais L, Bouznad N, Hego A, Nchimi A, Lancellotti P. MicroRNAs in Valvular Heart Diseases: Potential Role as Markers and Actors of Valvular and Cardiac Remodeling. International journal of molecular sciences. 2016; 17

22) Liu Y, Zheng L, Wang Q, Hu YW. Emerging roles and mechanisms of long noncoding RNAs in atherosclerosis. International journal of cardiology. 2016; 228: 570-582

23) Haller F, von Heydebreck A, Zhang JD, Gunawan B, Langer C, Ramadori G, Wiemann S, Sahin O. Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. The Journal of pathology. 2010; 220: 71-86

24) Giral H, Kratzer A, Landmesser U. MicroRNAs in lipid metabolism and atherosclerosis. Best practice & research Clinical endocrinology & metabolism. 2016; 30: 665-676

25) Goldenhuy WJ, Lin L, Darvesh AS, Sadana P. Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug discovery today. 2017; 22: 352-365

26) Mahmut A, Boulanger MC, Fournier D, Couture C, Trahan S, Page S, Arsenault B, Despres JP, Pibarot P, Mathieu P. Lipoprotein lipase in aortic valve stenosis is associated with lipid retention and remodelling. European journal of clinical investigation. 2013; 43: 570-578

27) Goldenhuy WJ, Caporoso J, Leeper TC, Lee YK, Lin L, Darvesh AS, Sadana P. Structure-activity and in vivo evaluation of a novel lipoprotein lipase (LPL) activator. Bioorganic & medicinal chemistry letters. 2017; 27: 303-308

28) Miller YI, Shyy JY. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends in endocrinology and metabolism: TEM. 2017, 28: 143-152

29) Koster A, Chao YB, Mosior M, Ford A, Gonzalez-DeWhitt PA, Hale JE, Li D, Qiu Y, Fraser CC, Yang DD, Heuer JG, Jaskunas SR, Eacho P. Transgenic angiopoietin-like (angplt)4 overexpression and targeted disruption of angplt4 and angplt3: regulation of triglyceride metabolism. Endocrinology. 2005; 146: 4943-4950