1 SUPPLEMENTARY METHODS

1.1 Exhaustive enumeration of words over the IUPAC alphabet

![Generalized Suffix Tree Diagram]

sequence 1: AGATC
sequence 2: GGGAT
sequence 3: GGATC

Fig. 1. Example of a generalized suffix tree representing three sequences (for simplicity, a tree is depicted).

1.1.1 Algorithm

In alignment-free mode, words with a length between k_{min} and k_{max} that occur in a promoter sequence (including its reverse complement) of a gene family are exhaustively spelled in the IUPAC alphabet using a generalized suffix tree (GST). For example, the GST in Fig. 1 represents three sequences. For simplicity, the reverse complement of the sequences is not represented in this example. Each substring contained by any of the sequences is ‘spelled out’ along a path that originates from the root of the tree. A bitvector at each node of the GST represents the sequences that contain the substring implied by the path from the root to that node, e.g., ‘101’ denotes occurrences in sequences 1 and 3 but not in sequence 2.

To enumerate all words that exist in the sequences, we rely on a modified version of the algorithm by Marsan and Sagot (2000), similar to what is used in the Mosdi tool (Marchal and Rahmann, 2009). A depth-first traversal of the GST is performed, examining a single word during each step. For example, assume the word RG is currently being processed (with R being the IUPAC character representing A or G). The algorithm will then have tracked paths AG and GG in the GST (green-colored nodes in Fig. 1). By taking the bitwise OR operation of the bitvectors contained by the respective nodes, i.e., ‘100’ for AG and ‘011’ for GG, it is immediately established that RG is contained by all three sequences. In later steps, longer words that have RG as a prefix are considered. Words of length 3 that will be considered are the words RGA, RGG, RGR and RGN. Note that e.g. RGC is never considered as no such path exists in the GST. Consequently, words that contain RGC as a prefix are also never considered. This branch-and-bound condition significantly reduces the number of words to be considered compared to exhaustively scoring all possible existing words over the IUPAC alphabet.

The search space can be further restricted if a certain word is found to be conserved with a BLS lower than the lowest BLS threshold used. In that case, the word does not need to be extended as such ‘extended’ words will have at most an equal BLS. For example, the word AG occurs only in sequence 1 (BLS = 0%). Therefore, there no need to visit e.g. AGA or AGAT.

Note that the GST can be truncated at a depth of k_{max} and contains only ACGT characters. To limit the memory requirements, words over the IUPAC alphabet are encoded using four bits per character.

1.1.2 Complexity and runtime

Given l_{min}, l_{max} and e_{max}, an upper bound to the number of motifs considered in this algorithm is given by

$$\sum_{k=k_{\text{min}}}^{k_{\text{max}}} \sum_{e=0}^{e_{\text{max}}} \binom{k}{e} 4^{k-e} d^e$$

where d is the number of degenerate characters in the alphabet, i.e., $d = 1$ when using the ACGT-N alphabet, $d = 7$ when using the restricted IUPAC alphabet ACGT+RYSWKM+N and $d = 11$ for the full IUPAC alphabet. In reality, the number of words that is generated is lower because a) not all words exist in the input sequences and b) words with a too low BLS are never considered (see Suppl. Methods 1.1.1). Fig. 2 shows the cumulative number of words for a single gene family as a function of k_{max} and e_{max} for the restricted IUPAC alphabet. Fig. 3 shows that the runtime is largely proportional to the number of words to enumerate. Interactive versions of these graphs are available online1,2.

1 http://bioinformatics.intec.ugent.be/blsspeller/NumberOfMotifs.html
2 http://bioinformatics.intec.ugent.be/blsspeller/MotifDiscoveryTime.html
Table 1. Computational requirements of BLSSpeller using both alignment-free (AF) and alignment-based (AB) discovery on the Monocot dataset.

Computational requirements	AF	AB
Number of nodes (m1.xlarge)	20	20
Intrafamily step (Map phase) (hours)	33	10
Interfamily step (Reduce phase) (hours)	11	2
Map output records ($\times 10^3$)	537	82
Map output size (TByte)	4.8505	4.8505
Permutation groups	3.77	0.53
Reduce output records ($\times 10^3$)	6.6	6.3
Reduce output size (TByte)	0.46	0.41

1.2 Experimentally profiled open chromatin regions and transcription factor DNA binding affinity

DNase I hypersensitive (DH) sites for rice were determined as follows. The reads from DNase-seq were downloaded from the Gene Expression Omnibus, accession number GSE26610 and were aligned to the rice genome (TIGR release 6.1) using BWA (Li and Durbin, 2009). Only the reads that mapped to a unique position of the rice genome were used for further analysis. We used F-seq (Boyle et al., 2008) to identify DNase I hypersensitive (DH) sites with 200 bp bandwidth. To detect the false discovery rate (FDR) of identified DH sites, we randomly generated 10 data sets, each containing the same amount of reads as the data set from DNase-seq. The FDR was calculated as the ratio of the number of DH sites identified from random data sets and the number of DH sites obtained from DNase-seq. We set a cutoff in F-seq to ensure that the FDR < 0.05. The callus and seedling datasets were merged using the BEDTools mergeBed function. This ensured a global picture of chromatin accessibility in the rice genome.

Fig. 3. Runtime (ms) to generate all words in the restricted IUPAC alphabet (y-axis, log-scale) as a function of k_{max} (x-axis) and v_{max} (different curves) for 100 gene families. Runs were performed on a single core of an Intel Core i7-4610M CPU @ 3.00 GHz.

Regions with transcription factor binding sites interred through protein-binding microarrays in rice and maize were delineated as follows. The PWMs for rice and maize were downloaded from the CIS-BP website version 1.01 (Weirauch et al., 2014). Only TFs with a directly obtained PWM or the best inferred PWM were used. The PWMs were mapped to the 2kb upstream region of the rice and maize genome using Matrixscan (Thomas-Chollier et al., 2008) with a p-value cutoff of 1e-5.

The DH sites dataset and predicted transcription factor binding sites were formatted as BED files and the overlap with conserved motifs, also formatted as BED files, was determined using the BEDTools function intersectBed with -u parameter and the -f parameter set to 1. This means that a conserved motif region was considered to be in a DH site if it was completely overlapping with a DH site. The overlap analysis for the set of experimentally predicted transcription factor binding sites was performed in the same way with the exception that we now required that the experimentally predicted binding site was completely overlapping with a conserved motif region. The expected amount of conserved motifs in DH sites or overlapping with predicted transcription factor binding sites was determined by shuffling the conserved motif dataset 1000 times using shuffleBed with the -noOverlapping option enabled across the 2kb upstream regions. The overlap was determined for each shuffled file and the median number of conserved motifs over 1000 shuffled files was used as a measure for the expected presence of conserved motifs in DH sites or overlapping with predicted transcription factor binding sites. This estimation was used to calculate the fold enrichment, defined as the ratio between observed overlap and expected overlap by chance.

2 SUPPLEMENTARY RESULTS

2.1 Exhaustive motif discovery in four monocot species

BLSSpeller was run on this dataset using both the alignment-free (AF) and the alignment-based (AB) discovery mode on the Amazon Web Services (Elastic MapReduce) cloud infrastructure using 20 nodes of the type m1.xlarge. On every node, 7 map tasks and 2 reduce tasks were run in parallel. The computational requirements are listed in Table 1.

2.2 Estimation of the False Discovery Rate (FDR)

2.2.1 Limitations The false discovery rate (FDR) was estimated by the ratio of the number of motifs identified by BLSSpeller in the randomized dataset and a real dataset. However, it should be noted that both in the real and randomized dataset, correlations exist between motifs, i.e., for a given genome-wide conserved motif, many highly similar motifs (e.g., slightly more degenerate) that correspond to the same TF binding site also appear in the output. When assessing the FDR, we assume that the degree of correlation between motifs is comparable in real and randomized datasets.

2.2.2 Randomized datasets using higher-order Markov models Randomized datasets were generated using RSAT (Thomas-Chollier et al., 2008) for a zeroth-, first- and second-order Markov model. Whereas as zeroth-order Markov model preserves only the relative mononucleotide (A, C, G, T) occurrences, a first-order Markov model preserves also relative dinucleotide composition. Similarly,
a third-order Markov models preserves both mono-, di- as well as trinucleotide composition. FDR labels are provided in Fig. 4, 5 and 6. The use of higher-order Markov models results in an increased FDR, especially for relaxed settings of BLS, C and F thresholds. However, for the second-order Markov model, the FDR for the datasets we used in the enrichment analysis is respectively 1.11% and 2.05%, which is still very low. The same remark holds for the motifs in the KNI analysis.

2.2.3 False discovery rate as a function of motif length and degeneracy Additional FDR analysis can be performed as a function of motif length \(k \) and degeneracy \(s \). Here, \(s \) is defined as the total number of exact words that are implied by the degenerate word, i.e., \(s = 2^{d_2} \cdot 4^{d_4} \), where \(d_2 \) and \(d_4 \) denote the number of two-fold and four-fold degenerate characters in a word, respectively.

Fig. 7 shows the number of motifs and FDR for \(C_{\text{thresh}} = 0.7, F_{\text{thresh}} = 20 \) and BLS \(\geq 15\% \) as a function of motif length \(k \) and degeneracy \(s \). This illustrates that the FDR is under control for all lengths and degeneracies. An interactive version of this graph can be explored online.

2.3 Comparison to Fastcompare

Fastcompare (Elemento and Tavazoie, 2005, 2007) is similar to BLSSpeller in that sense that it scores words (\(k \)-mers) that are conserved in homologous promoter sequences of related species, in an alignment-free and exhaustive manner. As opposed to BLSSpeller, Fastcompare is limited to pairwise comparisons between species and limited to the ACGT alphabet. Words are ranked according to the hypergeometric \(p \)-value given by

\[
P(X \geq i) = \sum_{x=F}^{\min(s_1, s_2)} \frac{\binom{s_1}{x} \binom{N-s_1}{x_2-x}}{\binom{N}{x_2}}
\]

where \(s_1 \) and \(s_2 \) denote the number of gene families in which the word is present in the promoter region in the first and second species, respectively. \(F \) is the number of gene families in which the word is present in both first and second species and \(N \) denotes the total number of gene families. The \(p \)-value reflects the probability of observing conservation in at least \(i \) gene families by chance.

We ran Fastcompare on three pairwise species combinations: Zea mays (zma) vs. Sorghum bicolor (sbi), Zea mays vs. Brachypodium distachyon (bdi) and Zea mays vs. Oryza sativa ssp. indica (osa). Each time, the input consists of all pairs of orthologous promoter sequences from both species, i.e., 26,366 for zma vs. sbi; 26,099 for zma vs. bdi; 24,966 for zma vs. osa. Fastcompare was run with \(k = 12 \) and produces as output a ranked list of motifs from which ga2ox1-like KNI motifs were filtered. Motif variants that are conserved in at least one gene family are listed in Table 2. Only few variants were conserved in more than one gene family, again illustrating the fact that degeneracy in the motif model is essential for a sensitive detection of motifs in diverged species. Most variants were found to be conserved in zma and sbi, the two most closely related species in the dataset. In total, over all species combinations, 36 unique maize genes were identified in which a ga2ox1-like KNI motif was conserved, 10 of which overlap with the experimentally profiled maize genes. Note that no multiple hypothesis correction was applied to the \(p \)-values.

Table 2. List of 25 ga2ox1-like KNI motif variants retrieved by Fastcompare using alignment-free discovery in zma vs. sbi, zma vs. bdi and zma vs. osa. Here, \(F \) denotes the number of gene families in which the motif variant is conserved. \(M_{\text{FC}} \) denotes the number of (unique) maize genes contained in the gene families while \(M_{\text{inters}} \) denotes the intersection \(M_{\text{FC}} \cap M_{\text{CATP}} \) with experimentally profiled maize genes.

KNI motif variant	species	\(F \)	\(p \)-value	rank	\(M_{\text{FC}} \)	\(M_{\text{inters}} \)
TGACTGACTGAC	zma-sbi	6	6.52e-08	78705	5	2
TGATGGATGGAT	zma-sbi	5	4.73e-06	182102	4	2
TGACAGACTGAC	zma-sbi	2	2.98e-05	218551	2	1
TGACGGACTGAC	zma-sbi	2	4.19e-05	233416	2	0
TGATGTAGTAGT	zma-sbi	5	0.00114	284771	5	0
TGATCGACAGAT	zma-sbi	1	0.00303	365985	1	1
TGACCGACAGAT	zma-sbi	1	0.00303	376590	1	0
TGACGACGGAC	zma-sbi	1	0.00379	409007	1	0
TGACGATGGAC	zma-sbi	1	0.00569	468802	1	0
TGATAGACAGAT	zma-sbi	1	0.01012	564663	1	0
TGACTGTAGT	zma-sbi	1	0.0121	597227	1	0
TGACTGGACGC	zma-sbi	1	0.0019	600266	1	1
TGACAGATGGAT	zma-sbi	1	0.00227	707550	1	0
TGACAGATGGAT	zma-sbi	1	0.00273	735887	1	0
TGATGTAGGGAC	zma-sbi	1	0.00545	822388	1	1
TGATGTGGGAC	zma-sbi	1	0.00583	828114	1	0
TGATGGATGGAT	zma-sbi	1	0.00816	856784	1	0
TGATTCAGGAT	zma-sbi	1	0.00907	865156	1	0
TGATCGATGGAT	zma-sbi	1	0.00982	870353	1	0
TGACTGACTGAT	zma-sbi	1	0.0163	897439	1	0
TGATGTAGTAGT	zma-sbi	1	0.0185	902941	1	1
TGACTGACTGAT	zma-bdi	1	0.00855	63787	1	1
TGACTGACTGAT	zma-bdi	1	0.102	77976	1	1
TGATGGATGGAT	zma-osa	2	0.0234	80796	2	1
TGACTGACTGAT	zma-osa	1	0.0615	86683	1	1

Union (all variants) – 39 – – 36 10

REFERENCES

Boyle, A. P., Guinney, J., et al. (2008). F-Seq: a feature density estimator for high-throughput sequence tags. Bioinformatics, 24(21), 2537–2538.

Elemento, O. and Tavazoie, S. (2005). Fast and systematic genome-wide discovery of conserved regulatory elements using a non-alignment based approach. Genome Biology, 6(2), R18+.

Elemento, O. and Tavazoie, S. (2007). Fastcompare: a nonalignment approach for genome-scale discovery of DNA and mRNA regulatory elements using network-level conservation. Methods Mol Biol, 395, 349–366.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics, 25(14), 1754–1760.

Marsan, L. and Sagot, M. F. (2000). Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification. Journal of computational biology, 7(3-4), 345–362.

Marshall, T. and Rahmann, S. (2009). Efficient exact motif discovery. Bioinformatics (Oxford, England), 25(12), 356–364.

Thomas-Chollier, M., Sand, O., et al. (2008). RSAT regulatory sequence analysis tools. Nucleic Acids Research, 36(suppl 2), W119–W127.

Weirauch, M. T., Yang, A., et al. (2014). Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell, 158(6), 1431–1443.

3 http://bioinformatics.intec.ugent.be/blsspeller/AFABHistograms.html
Alignment-free discovery

\(C_{\text{thr}} \)	\(F_{\text{thr}} \)	\(T_1 \)	\(T_2 \)	\(T_3 \)	\(T_4 \)	\(T_5 \)	\(T_6 \) only
\(\geq 1 \)	6.62e9	2.56e9	7.92e8				
\(\geq 5 \)	2.24e9	2.90e8	5.47e7				
\(\geq 0.5 \)	5.34e8	7.58e7	1.57e7				
\(\geq 0.5 \)	2.24e8	3.73e7	8.46e6				

Alignment-based discovery

\(C_{\text{thr}} \)	\(F_{\text{thr}} \)	\(T_1 \)	\(T_2 \)	\(T_3 \)	\(T_4 \)	\(T_5 \)	\(T_6 \) only
\(\geq 1 \)	6.26e9	1.95e9	6.61e8				
\(\geq 5 \)	1.25e9	1.19e8	2.50e7				
\(\geq 0.5 \)	4.34e8	3.68e7	7.23e6				
\(\geq 0.5 \)	3.86e7	3.61e6	6.00e5				

Legend

- \(25\% \leq \text{FDR} \)
- \(10\% < \text{FDR} \leq 25\% \)
- \(5\% < \text{FDR} \leq 10\% \)
- \(1\% < \text{FDR} \leq 5\% \)
- \(\text{FDR} < 1\% \)

Fig. 4. Number of genome-wide conserved motifs for both alignment-based and alignment-free discovery for different values of \(C_{\text{thr}} \) and \(F_{\text{thr}} \) and different subsets of the six BLS thresholds \(T_i \) (\(T_1 = 15\% \), \(T_2 = 50\% \), \(T_3 = 60\% \), \(T_4 = 70\% \), \(T_5 = 90\% \) and \(T_6 = 95\% \)). Top number: real Monocot dataset; bottom number between brackets: random dataset generated using a zeroth-order Markov model (conservation of 1-mer frequencies). The colors represent the false discovery rate (see legend).
Alignment-free discovery

C_{thres}	F_{thres}	T_1 to T_6 used	T_1 to T_6 only
≥ 1		6.26%	6.10%
	(5.15%)	(4.90%)	(5.95%)
≥ 5		2.48%	2.50%
	(2.07%)	(2.06%)	(2.16%)
≥ 0.5	≤ 10	1.08%	1.08%
	(0.59%)	(0.59%)	(0.59%)
≥ 0.6	≥ 10	5.34%	5.14%
	(3.89%)	(3.16%)	(3.16%)
≥ 0.7	≥ 20	2.34%	2.34%
	(1.36%)	(1.36%)	(1.36%)
≥ 0.8	≥ 50	2.34%	2.34%
	(1.36%)	(1.36%)	(1.36%)

Alignment-based discovery

C_{thres}	F_{thres}	T_1 to T_6 used	T_1 to T_6 only
≥ 1		6.26%	6.10%
	(3.90%)	(3.55%)	(1.24%)
≥ 5		1.25%	1.19%
	(1.88%)	(2.77%)	(0.193%)
≥ 0.5	≤ 10	4.34%	3.68%
	(6.40%)	(7.74%)	(0.58%)
≥ 0.6	≥ 20	1.47%	1.33%
	(1.56%)	(1.86%)	(4.55%)
≥ 0.7	≥ 50	3.86%	3.61%
	(3.12%)	(6.84%)	(68%)

Legend

- 25% ≤ FDR
- 10% ≤ FDR < 25%
- 5% ≤ FDR < 10%
- 1% ≤ FDR < 5%
- FDR < 1%

Fig. 5. Number of genome-wide conserved motifs for both alignment-based and alignment-free discovery for different values of C_{thres} and F_{thres} and different subsets of the six BLS thresholds T_i ($T_1 = 15\%$, $T_2 = 50\%$, $T_3 = 60\%$, $T_4 = 70\%$, $T_5 = 90\%$ and $T_6 = 95\%$). Top number: real Monocot dataset; bottom number between brackets: random dataset generated using a first-order Markov model (conservation of 1-mer and 2-mer frequencies). The colors represent the false discovery rate (see legend).
Alignment-free discovery	Alignment-based discovery		
C_{thres}	F_{thres}	T_1, . . . , T_6	T_1, . . . , T_6
-	-	BLS thresholds T_i used	BLS threshold T_i used
≥ 1	6.6269	2.569	7.9288
(4.5110)	(4.8486)	(6.257)	
≥ 5	2.2459	2.9098	5.4747
(8.5093)	(8.8771)	(11.557)	
≥ 0.5	1.0866	1.3969	2.7467
(3.9484)	(4.4995)	(9.0566)	
≥ 10	5.3463	7.5537	1.5767
(1.7563)	(2.9075)	(6.2265)	
≥ 50	2.2438	3.7367	8.4666
(6.877)	(1.5267)	(3.6366)	

C_{thres}	F_{thres}	T_1, . . . , T_6	T_1, . . . , T_6
-	-	BLS thresholds T_i used	BLS threshold T_i used
≥ 1	6.6269	1.9589	6.6188
(3.9484)	(3.6266)	(1.225)	
≥ 5	1.2589	1.196	5.2978
(2.0687)	(2.9965)	(9.473)	
≥ 0.5	4.3496	3.6877	7.2346
(7.0646)	(5.1784)	(1.0193)	
≥ 10	1.4786	1.3387	2.5467
(5.2146)	(4.8714)	(5.305)	
≥ 50	3.9687	3.6186	6.0055
(5.1149)	(1.0154)	(8.2)	

Legend
25% ≤ FDR

Fig. 6. Number of genome-wide conserved motifs for both alignment-based and alignment-free discovery for different values of C_{thres} and F_{thres} and different subsets of the six BLS thresholds T_i ($T_1 = 15\%$, $T_2 = 50\%$, $T_3 = 60\%$, $T_4 = 70\%$, $T_5 = 90\%$ and $T_6 = 95\%$). Top number: real Monocot dataset; bottom number between brackets: random dataset generated using a second-order Markov model (conservation of 1-mer, 2-mer and 3-mer frequencies). The colors represent the false discovery rate (see legend).
Fig. 7. Number of motifs (y-axis, log-scale) as a function of motif length k (x-axis) for both alignment-free (left bar) and alignment-based (right bar) discovery on the Monocot dataset with $C \geq 0.9$, $F \geq 20$, BLS $\geq 15\%$. The colors represents the false discovery rate (FDR).
Fig. 8. Conserved regions in the promoters of the genes in gene family iORTHO00001 corresponding to motif instances with BLS $\geq 15\%$, $F \geq 20$ and $C \geq 0.9$, i.e., high-scoring motifs that are conserved in at least two species. The height of the bars corresponds to the number of distinct motif variants that map to that location. Note that the y-axis has been truncated at 100: certain loci in this gene family are covered with up to 18 418 distinct motif variants.

Fig. 9. Conserved regions in the promoters of the genes in gene family iORTHO00001 corresponding to motifs instances with BLS $\geq 95\%$, $F(95\%) \geq 50$ and $C(95\%) \geq 0.9$, i.e., motifs conserved in all four species. The height of the bars corresponds to the number of distinct motif variants that map to that location. Note that the y-axis has been truncated at 10: certain loci in this gene family are covered with up to 568 distinct motif variants.
Table 3: List of 165 gene families in which the ga2ox1-like KN1 motif was found to be genome-wide conserved by BLSSpeller (alignment-free discovery). For every gene family, genes that contain at least one ga2ox1-like KN1 instance are shown, along with the position(s) and strand(s) of the instance(s) relative to the translation start site. The symbols † and ‡ denote occurrences that are aligned in the multiple sequence alignment of the promoter sequences of the gene family. Most instances are not aligned.

ID	Gene (family) name	Position(s) and strand(s) of the occurrence(s) relative to the TSS
1	iORTHO000066	BD2G000740 -106 (-)
		SB03G008560 -706 (-)
2	iORTHO000132	BD2G01387 -575 (-)
		OS01G02920 -553 (-)
3	iORTHO000360	OS01G05810 -614 (-)
		ZM08G03630 -1871 (+)
4	iORTHO000361	OS01G05810 -614 (-)
		ZM08G03630 -1871 (+)
5	iORTHO000738	BD2G06240 -904 (+)
		OS01G10440 -340 (+)
6	iORTHO000769	BD2G099030 -205 (+)
		ZM04G37150 -330 (+)
7	iORTHO011141	BD2G09300 -645 (-)
		SB03G009900 -373 (-)
		ZM03G08480 -1414 (-)
8	iORTHO011283	OS01G16950 -468 (+), -464 (+)
		SB03G011120 -226 (-)
		ZM03G09610 -503 (+), -958 (-)
9	iORTHO011881	BD2G03437 -218 (-), -214 (-)
		OS01G28474 -793 (+), -789 (+), -785 (+), -296 (+), -260 (+), -256 (+)
10	iORTHO02372	OS01G38610 -169 (-)
		SB03G025570 -1037 (-)
11	iORTHO02426	SB03G025860 -39 (-)
		ZM08G22710 -354 (+)
12	iORTHO02539	SB03G026570 -1894 (-)
		ZM03G38660 -75 (-)
13	iORTHO02680	BD2G43380 -353 (-)
		SB03G027770 -365 (+)
14	iORTHO03303	BD2G47747 -825 (+)
		OS01G51010 -1186 (+)
15	iORTHO03312	OS01G51140 -1195 (+), -1185 (-)†
		SB03G032520 -246 (-)†
		ZM03G33650 -913 (-), -269 (-)†
16	iORTHO03358	SB03G032780 -907 (+)†
		ZM08G26610 -531 (+)†
17	iORTHO04635	SB03G042700 -90 (-)†
		ZM03G24140 -97 (-)†
18	iORTHO04906	BD2G325730 -368 (-)
Gene ID	Description	Expression Value
---------	-------------	------------------
OS01G70790	-241 (+)	
SB03G045000	-124 (-)	
BD2G604971	-1193 (+)	
ZM03G21270	-1202 (-)	
OS01G72990	-1113 (+)	
ZM03G28480	-1443 (+)	
SB03G047060	-803 (-)	
ZM03G20160	-164 (-)	
OS02G01280	-721 (+)	
ZM04G461680	-139 (-)	
OS02G05744	-1568 (-)	
SB04G003690	-60 (+)	
ZM05G19730	-62 (+)	
OS06G46770	-89 (+)	
SB10G26870	-603 (+)	
OS02G07030	-631 (+)	
SB03G045430	-1888 (+), -1884 (+), -1321 (+)	
BD3G09030	-205 (+)	
ZM04G37150	-330 (+)	
BD1G74760	-893 (-)	
OS02G27200	-464 (+)	
OS02G36990	-1474 (+)	
SB04G24060	-745 (+)	
BD2G61340	-1824 (-)	
ZM10G18990	-333 (+), -211 (+)	
BD3G605073	-1113 (+)	
ZM03G26880	-1443 (+)	
BD3G61340	-1824 (-)	
ZM10G18990	-333 (+), -211 (+)	
OS01G72990	-1113 (+)	
ZM03G28480	-1443 (+)	
SB03G047060	-803 (-)	
ZM03G20160	-164 (-)	
BD3G09030	-205 (+)	
ZM04G37150	-330 (+)	
BD1G74760	-893 (-)	
OS02G27200	-464 (+)	
OS02G36990	-1474 (+)	
SB04G24060	-745 (+)	
BD2G61340	-1824 (-)	
ZM10G18990	-333 (+), -211 (+)	
BD3G605073	-1113 (+)	
ZM03G26880	-1443 (+)	
BD3G61340	-1824 (-)	
ZM10G18990	-333 (+), -211 (+)	
BD3G605073	-1113 (+)	
ZM03G26880	-1443 (+)	
BD3G61340	-1824 (-)	
ZM10G18990	-333 (+), -211 (+)	
iORTHO0099368	BD3G56040	-900 (+)
iORTHO0099560	BD1G77840	-331 (-)
iORTHO0099594	SB01G049810	-1729 (+)
iORTHO0098853	BD1G75050	-27 (+)
OS03G05570	-979 (-)	
OS03G08310	-552 (+), -548 (+)	
ZM01G05520	-103 (-)	
SB01G044640	-99 (-)	
ZM01G06190	-75 (-)	
BD1G69747	-667 (-)	
SB01G042730	-1495 (+)	
BD1G66990	-1510 (+), -1148 (+)	
SB03G006370	-1979 (+)	
OS03G17470	-1447 (+)	
ZM01G11850	-827 (-)	
ZM09G23450	-218 (-)	
OS03G17520	-33 (-), -29 (-), -25 (-)	
SB01G038850	-217 (-), -213 (-)	
SB01G036630	-630 (+)	
ZM01G14120	-1155 (+)	
ZM09G21840	-564 (-)	
SB01G034990	-1342 (-)	
ZM09G22620	-589 (+)	
SB01G033320	-742 (-)	
ZM01G17480	-657 (-)	
ZM09G19220	-611 (-)	
SB01G014100	-855 (-)	
ZM01G46920	-564 (-)	
SB01G013520	-146 (-)	
ZM01G46450	-713 (-)	
OS03G53110	-106 (-)	
iORTHO	SB01G008500	-1756 (-)
-----------	-------------	-----------
	ZM01G52330	-1663 (+)
59 iORTHO	BD1G07960	-452 (-)
	OS03G55180	-157 (+)
60 iORTHO	SB01G006690	-987 (-)
	ZM01G54560	-188 (+)
61 iORTHO	OS03G55890	-793 (+)
	SB01G004930	-1725 (+)
62 iORTHO	BD1G02790	-816 (+)
	SB01G002510	-1010 (+)
	ZM01G58590	-775 (+)
	†, -771 (+)	
	‡, -998 (+)	
63 iORTHO	SB01G001980	-393 (-)
	ZM01G58990	-1176 (-)
	-1172 (-)	
64 iORTHO	BD1G02160	-863 (-)
	OS03G62500	-1391 (+)
65 iORTHO	SB01G000450	-642 (-)
	ZM05G00190	-1426 (+)
66 iORTHO	OS03G64230	-837 (-)
	SB01G000565	-1181 (-)
	ZM05G00130	-254 (+)
67 iORTHO	BD5G02290	-1971 (-)
	OS04G01490	-1246 (-)
68 iORTHO	BD5G00530	-153 (-)
	SB06G001510	-175 (-)
	ZM10G12690	-189 (-)
	†, -129 (-)	
69 iORTHO	BD4G001740	-976 (+)
	SB01G004110	-838 (+)
70 iORTHO	SB06G014280	-1120 (-)
	ZM02G17290	-1117 (-)
71 iORTHO	SB06G014360	-554 (+)†
	ZM02G17160	-552 (+)†
	-468 (+)	
72 iORTHO	SB06G018800	-122 (-)
	ZM02G13330	-199 (+)
	-130 (-)	
73 iORTHO	BD5G15070	-1386 (+)
	ZM02G07720	-20 (-)
77 iORTHO	BD5G16257	-1616 (-)
	ZM10G20990	-379 (-)†
	†, -371 (-)	
	‡, -409 (-)†	
78 iORTHO	BD5G16397	-1187 (+)
	ZM02G07720	-20 (-)
ID	Accession	Change 1
------------	-----------	-----------
iORTHO016543	OS04G48416	-36 (-)
	ZM10G21960	-33 (-)
iORTHO016716	BD5G20420	-236 (-)
	SB06G027382	-1994 (+)
iORTHO016813	SB06G028270	-11174 (+)
	ZM02G04710	-1168 (+)
iORTHO017121	BD5G24650	-502 (-)
	SB06G031300	-1277 (+)
	ZM02G01880	-1088 (+)
iORTHO017169	SB06G031840	-54 (+), -50 (+)
	ZM10G25780	-54 (+)
iORTHO017267	SB06G032750	-325 (+)
	ZM02G00630	-439 (+)
iORTHO017349	SB06G033540	-1374 (-)
	ZM10G26820	-46 (-)
iORTHO017366	SB06G033740	-506 (+)
	ZM10G26970	-539 (+)
iORTHO017390	SB06G033920	-1649 (-)
	ZM10G27030	-445 (+), -441 (+), -437 (+)
iORTHO017393	BD5G23790	-440 (+)
	SB06G03960	-1052 (-)
iORTHO017512	OS05G02200	-12 (-)
	ZM06G04960	-1864 (-)
iORTHO017570	BD2G37630	-791 (+)
	OS05G02870	-64 (-)
iORTHO017863	BD2G30490	-1595 (-)
	ZM02G22780	-1514 (-)
iORTHO018425	OS05G16300	-399 (+)
	SB09G010410	-438 (+)
	ZM06G21160	-434 (+)
iORTHO018592	BD2G27080	-1869 (-)
	OS05G23260	-182 (-)
iORTHO018619	SB01G048660	-30 (+)
	ZM01G01930	-30 (+)
iORTHO019331	BD2G24880	-1290 (-)
	OS05G35060	-394 (+)
iORTHO019826	BD2G20710	-1872 (-)
	OS05G42190	-1218 (-)
	ZM08G18870	-1872 (-)
iORTHO019970	OS05G44560	-1889 (-)
	ZM08G19950	-427 (+)
iORTHO020108	SB03G032520	-246 (-)
Gene ID	Expression	Description
-------------------	------------	-------------
ZM03G33650	-913 (-), -269 (−)	
OS05G46510	-897 (+)	
ZM06G30000	-135 (-), -131 (−)	
BD2G14420	-1754 (-)	
SB09G030600	-619 (-), -615 (−), -611 (−)	
BD1G50230	-697 (-)	
SB10G001060	-411 (+)	
BD1G72410	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
BD1G50230	-1963 (-)	
SB10G001800	-1515 (-)	
BD1G44170	-14 (+)	
OS06G14420	-1880 (+)	
BD1G35970	-837 (-)	
OS06G41090	-669 (-)	
ID	Gene 1	Gene 2
------------	--------	--------
119	SB07G000990	ZM04G08930
120	OS08G02640	SB02G023310
121	ZM06G01330	SB07G005660
122	SB08G14320	ZM10G08940
123	BD3G19077	OS08G15230
124	BD4G30980	SB07G022100
125	BD3G39070	SB02G027880
126	OS08G38320	ZM01G31480
127	SB08G41390	SB10G012970
128	BD3G42050	SB07G025200
129	BD3G42610	OS08G44020
130	BD3G42610	OS08G44020
131	SB07G024020	ZM01G36160
132	BD4G08340	OS09G02270
133	SB02G020450	ZM07G10780
134	OS09G13570	ZM07G10870
135	SB01G028610	ZM09G17660
136	OS09G21450	ZM07G13170
137	BD4G30840	-975 (-)
ID	Description	Details
---------	--------------	--------------------------------
138	IORTH039959	OS09G26144 -899 (-)†
		OS09G28400 -1182 (-)
		SB02G026610 -1797 (+)
139	IORTH031268	BD4G34490 -744 (-)
		OS09G32740 -770 (-)
140	IORTH031746	BD4G38730 -34 (+)
		OS09G39670 -420 (+)
141	IORTH032329	SB01G020080 -69 (+)†
		ZM01G43160 -60 (+)†
142	IORTH033481	SB01G018180 -188 (+)†
		ZM05G09420 -447 (+)†
143	IORTH033488	SB01G017560 -215 (-)†,-211 (-)†
		ZM01G40560 -265 (-)†,-261 (-)†
144	IORTH033592	OS10G37180 -1566 (-)
		SB08G005210 -659 (+)
145	IORTH033714	BD3G32010 -1328 (+), -1324 (+), -1320 (+), -1316 (+)
		OS10G38970 -752 (-)
146	IORTH034138	BD4G44470 -26 (+)
		SB08G002750 -61 (+)
		ZM10G01470 -1680 (-)
147	IORTH034147	BD4G44427 -387 (+)
		SB05G001070 -973 (-)
148	IORTH034400	BD4G42660 -966 (-)
		ZM04G29680 -1595 (+)
150	IORTH035652	OS11G30500 -851 (-)
		SB05G017940 -1006 (+), -82 (-)†
		ZM02G42380 -105 (-)†
151	IORTH035884	BD4G16650 -1222 (-), -396 (-)
		SB05G021000 -198 (-)†
		ZM04G30220 -316 (-)†
152	IORTH036204	SB05G024160 -296 (-)†
		ZM04G02430 -263 (-)†
153	IORTH036234	BD4G13670 -1831 (+)
		OS11G39990 -337 (+)
154	IORTH036235	BD4G13670 -1831 (+)
		OS11G39990 -337 (+)
155	IORTH036746	BD4G444470 -26 (+)
		SB08G002750 -61 (+)
		ZM10G01470 -1680 (-)
156	IORTH036752	BD4G44427 -387 (+)
		SB05G001070 -973 (-)
157	IORTH036991	BD4G44427 -387 (+)
---	---	---
158	BD2G56000	-794 (-)
	ZM06G05540	-1605 (+)
	BD4G40350	-268 (-)
	ZM03G18620	-272 (-)
159	SB08G015550	-1176 (+)
	ZM10G04160	-623 (+), -943 (-)
160	SB08G016450	-1995 (-)
	ZM03G18130	-129 (-)
161	SB08G019150	-1522 (-), -196 (-)
	ZM03G16680	-1426 (-), -237 (-)
162	BD4G02740	-321 (+)
	OS12G40510	-207 (+), -203 (+)
	SB08G020190	-148 (+), -144 (+), -140 (+)
163	BD4G01250	-1790 (-)
	ZM03G13680	-184 (-)
164	BD4G00900	-71 (-), -67 (-)
	OS12G43640	-1698 (+), -1666 (+)
	SB08G022780	-165 (-)
165	BD4G00775	-144 (+), -140 (+)
	OS12G43880	-406 (+)