NOVEL PHASE TRANSITION IN NON-ANTIFERROMAGNETICALLY ORDERED CRYSTALS OF La_2CuO_4

S-W. Cheong, Z. Fisk, J. O. Willis, S. E. Brown, J. D. Thompson, J. P. Remeika, A. S. Cooper, R. M. Aikin, D. Schiferl, and C. Gruner

Los Alamos National Laboratory, Los Alamos, NM 87545
AT&T Bell Laboratories, Murray Hill, NJ 07974
Also at UCLA, Department of Physics and Solid State Science Center, Los Angeles, CA 90024

(Received 6 October 1987 by G. Burns)

We report the discovery of a new phase diagram in the magnetic field-temperature plane for single crystals of La_2CuO_4 that show no sign of antiferromagnetic order. The phase boundary is defined by magnetoresistance and susceptibility measurements. We discuss several possibilities that may lead to the phase diagram observed.

An antiferromagnetic phase transition, indicated by a maximum in the magnetic susceptibility (χ) and anomalies in the electrical resistivity (ρ), has been widely observed in sintered powders and single crystals of La_2CuO_4. Work by Johnston et al. and Freitoft et al. on the variation of the Neel temperature (T_N) of La_2CuO_4 as a function of δ in sintered powders and crystals indicates that T_N approaches zero as δ goes to zero. More recent experiments on single crystals of La_2CuO_4 show the presence of strong 2D spin-$1/2$ antiferromagnetic fluctuations (quantum spin fluid state) in the Cu-O planes above T_N, with three-dimensional ordering setting in at approximately 200 K in the crystal measured. Although the nature of the proposed 2D quantum state is not understood theoretically, its existence is not surprising given the huge anisotropy observed in transport measurements on single crystals of La_2CuO_4, that implies a strongly 2D character in this material. To provide further understanding of the highly unusual physical properties of La_2CuO_4, we have investigated the magnetic, transport, and thermal properties of single crystals in magnetic fields applied in different directions with respect to the Cu-O plane.

Our samples were La_2CuO_4 crystals (~1 x 1 x 0.1 cm3) grown from a PbO-based flux. Lattice constants were determined by the eight-position Hamilton technique using ten reflections with $2\theta < 8 < 37^\circ$. These x-ray measurements indicated the orthorhombically distorted $K_2\text{NiF}_4$ structure at room temperature with lattice constants $a = 5.358 \pm 0.002$ Å, $b = 13.181 \pm 0.007$ Å, and $c = 5.403 \pm 0.002$ Å (volume = 379.26 Å3). Wet chemical analyses gave a composition of $\text{La}_2-x\text{PbO}_{4-x}$, plus ~2 at. % Pb, for the crystals studied. The presence of Pb and excess oxygen may be associated in part with PbO flux at the sample surface; however, this cannot account for all the oxygen excess.

Resistance and magnetoresistance were measured with a standard four probe technique using In pressed contacts on the a-c basal plane. As plotted in Fig. 1, the resistance in zero applied field increases strongly with decreasing temperature, with a non-exponential variation characteristic of dirty semiconductors, and does not show any antiferromagnetic ordering-like resistance anomaly. The inset shows a resistance anomaly characteristic of a single crystal sample which undergoes an antiferromagnetic transition at 240 K.
which orders antiferromagnetically near 240 K. All data shown here, except the inset of Fig. 1, are taken from single crystal samples which do not indicate any antiferromagnetic ordering-like resistance anomaly in zero applied magnetic field.

In Fig. 2 resistances at various fixed temperatures are plotted as a function of magnetic field applied perpendicular to the basal plane. The resistance drops rather sharply at some magnetic field, suggesting the presence of a field-induced phase transition. (The notation “phase transition” is used in the sense of characterizing the anomalies observed as the temperature or magnetic field is varied.) The resistance drop is of the order of 10% at 4 K and the effect diminishes as the temperature is raised, becoming undetectable in our measurements above 120 K. This leads to some uncertainty in determining the high temperature portion of the magnetic field–temperature phase diagram shown in the inset of Fig. 2. Hysteresis, seen clearly in the 4 K-curve in Fig. 2, reduces rapidly as the temperature increases and is unnoticeable above 20 K. The magnetization vs. magnetic field applied in the basal plane at 20 K is displayed in the inset of Fig. 2, where a slope change can be seen clearly in the vicinity of 120 K in a measuring field of 0.3 T; this bump moves rapidly to lower temperatures as the field is increased and disappears in the field of 4 T. [Below ~170 K, the susceptibility measured in a 4 T field can be fit to \(\chi_{\text{mole}} = \chi_0 + C/(T + \theta) \), where \(\chi_0 = 8.2 \times 10^{-5} \text{ emu/mole Cu} \), \(C = 5.3 \times 10^{-3} \text{ emu-K/mole Cu} \), and \(\theta = 37.5 \text{ K} \), implying an effective moment of 0.21 \(\mu_B/\text{Cu} \) if the Curie term is due solely to Cu.] The temperatures at which the peak appears in various fields agree with the phase boundary shown in the inset of Fig. 2, additionally supporting the presence of a phase transition. The magnetization as a function of applied magnetic field perpendicular to the basal plane at 20 K is displayed in the inset of Fig. 3, where a slope change can be seen clearly near 3 T. The jump in magnetization at 3 T and 20 K, defined by the construction shown in the inset, is \(-5.9 \times 10^{-5} \text{ emu} \), which implies an increase of \(1.25 \times 10^{-4} \mu_B \) formula unit. We note that the magnetization curve as a function of magnetic field taken at 2 K shows a large hysteresis which by 20 K becomes smaller than the experimental resolution. It is interesting that magnetization vs. magnetic field applied in the basal plane at various fixed temperatures does not show a similar jump within the sensitivity in our measurement. We also note that for 4 K < T < 350 K the magnetic susceptibility measured with H in the basal plane is nearly three times smaller than that with the magnetic field perpendicular to the basal plane.

Fig. 2. Representative magnetoresistance curves of \(\text{La}_2\text{CuO}_4 \) at various fixed temperatures. The magnetic field is applied perpendicular to the Cu-O plane. The inset displays the phase diagram determined from the mid-point of the magnetoresistance jump.

![Magnetoresistance Curves](image1)

![Phase Diagram](image2)

![Resistance vs. Temperature](image3)

Fig. 3. Magnetization vs. temperature measured with applied field 0.3 T (refer to right vertical scale), 2.5 T, and 4 T (refer to left vertical scale). The magnetization curve at 20 K is plotted in the inset. The total mass of measured crystals was 343.37 mg and the applied field is perpendicular to the basal plane.
Specific heat (C) measurements also were performed on two of these crystals (total mass 39.39 mg) and the results are plotted as C/T vs. \(T^2 \) in Fig. 4. As shown in the inset, an extrapolation of the data to \(T = 0 \) gives a finite intercept of \(1.0 \pm 0.1 \) mJ/mole Cu K\(^2\).\(^{7,13}\) which is unchanged in a 10 T magnetic field, suggesting that the finite value of C/T at \(T = 0 \) may not be related to the phase transition.

Normalized per unit volume, the result \(\gamma = 8.8 \) J/m\(^3\)K\(^2\) is smaller than metallic copper by one order of magnitude but several times larger than typical structural glasses, e.g., vitreous silica. The low temperature upturn in C/T may signal the onset of a nuclear Schottky anomaly; although, an alternative explanation has been proposed\(^7\) that attributes this behavior to the presence of a hyperfine magnetic field at the Cu nucleus produced by itinerant antiferromagnetic order in the Cu-O planes.

We emphasize that our experimental findings are not limited to one crystal but are highly reproducible: the response of the magnetic susceptibility and resistance to temperature and magnetic field reported here has been observed in several crystals from the same preparation batch. Magnetoresistance measurements on \(\text{La}_2\text{CuO}_4 \) crystals prepared in a different batch, but using the same growth procedure, also show a phase transition at similar fields and temperatures. Furthermore, the transition was affected only weakly by doping crystals with Zn impurities and by removing small amounts of oxygen via vacuum annealing with a Zr getter. In the latter case, still no evidence for 3D antiferromagnetic order was found but the magnetoresistance anomaly at 4 K was less pronounced. Analysis of resistivity data on these other crystals results in H-T phase diagrams similar to the one in the inset of Fig. 2. Likewise, the linear term in the specific heat also appears to be intrinsic, being observed in different single crystals as well as in polycrystalline samples of \(\text{La}_2\text{CuO}_4 \).

We believe there is substantial indirect evidence that the phase transition we observe is not of conventional origin and is a bulk property of \(\text{La}_2\text{CuO}_4 \) crystals which do not order three-dimensionally. (1) The extreme sensitivity of the transition temperature to applied magnetic fields is to be contrasted with observations\(^9\) on the Neel temperature of oxygen deficient polycrystalline samples in which 4.5 T suppresses \(T_N \) by only ~10\%. We find a similar field dependence of \(T_N \) in oxygen deficient single crystals; (2) The temperature dependence of the phase transition field is opposite that expected for a conventional spin-flop transition; (3) The "universality" of results obtained on several different single crystals argues against impurities or defects causing the phase transition; and (4) Rather large changes in the resistivity and magnetization at the transition suggest that it is a bulk effect.

In the absence of detailed microscopic measurements, it is difficult to specify the nature of the phase diagram we have observed. As discussed earlier by others,\(^2\) the small susceptibility for a system such as \(\text{La}_2\text{CuO}_4 \) with a large concentration of \(S = 1/2 \) spins suggests the presence of strong antiferromagnetic fluctuations at room temperature or below. The absence of a well-defined (i.e., sharp in field and temperature) phase transition may be due to either low dimensionality effects, deviation from perfect stoichiometry, quantum fluctuations, or frustrations arising from nearest and next-nearest neighbor interactions. Low dimensionality has been invoked\(^11\) to account for the relatively low 3D antiferromagnetic ordering temperature in oxygen deficient specimens. Our observations, if related to 3D ordering, are of a distinctly different nature because: (1) a magnetic field suppresses the transition temperature much more rapidly than it does \(T_N \) in oxygen deficient samples and (2) the transition is insensitive to partial removal of oxygen. An attractive alternative is the possibility of an unusual transition not involving 3D order, as could be envisioned for a system with anisotropic magnetic interactions sufficiently weak that it could not be described within the framework of either 2D Ising or Heisenberg models. Frustration effects, common to the resonating valence bond model of Anderson,\(^12\) also are distinctly possible explanations for the observed phase transition. Some of these questions may be resolved by additional experiments on single crystals in which both metal atoms and oxygen content are varied systematically.

Acknowledgement - Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science. Work at UCLA was supported in part by National Science Foundation Grant No. DMR 87-8020340.
References

1. D. C. Johnston, J. P. Stokes, D. P. Goshorn, and J. T. Lewandowski (unpublished); T. Freltoft, J. P. Remeika, D. E. Moncton, A. S. Cooper, J. E. Fischer, D. Harshman, G. Shirane, S. K. Sinha, and D. Vaknin, Phys. Rev. B 36, 826 (1987).

2. G. Shirane, Y. Endoh, R. J. Birgeneau, M. A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami (unpublished).

3. S-W. Cheong, Z. Fisk, J. D. Thompson, J. P. Remeika, and G. Gruner (in preparation).

4. W. C. Hamilton, International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, UK, p. 282 (1974).

5. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press (1971).

6. H. C. Montgomery, J. Appl. Phys. 42, 2971 (1971).

7. Similar results have been reported by: H. Maletta, M. W. Shafer, T. Penney, B. L. Olson, A. M. Torressen, and R. L. Greene, Physica B (in press); and N. E. Phillips, R. A. Fisher, S. E. Lacy, C. Marcenat, J. A. Olsen, W. K. Ham, and A. M. Stacy, Jpn. J. Appl. Phys. 26, (Suppl. 26-3), 1115 (1987).

8. The lattice contribution to the specific heat can be estimated from the low temperature slope (β) of C/T vs. T^2. From this slope we obtain a Debye temperature $\theta_D = 320 \pm 10$ K. This value of θ_D may be affected slightly by the presence of a small bump near 25 K observed in a plot of C/T^3 vs. T. The origin of this bump possibly arises from an excess phonon density of states relative to the Debye model [A. Junod et al., Jpn. J. Appl. Phys. 26 (Suppl. 26-3), 1119 (1987)].

9. P. Gutsmedel, K. Andres, E. Amberger, and H. Rietschel, Jpn. J. Appl. Phys. 26 (Suppl. 26-3) 1117 (1987).

10. R. L. Greene, H. Maletta, T. S. Plaskett, J. G. Bednare, and K. A. Muller, Solid State Commun. 63, 379 (1987).

11. Y. J. Uemura, W. J. Kossler, X. H. Yu, J. R. Kempton, H. E. Schone, D. Opie, C. E. Stronach, D. C. Johnston, M. S. Alvarez, and D. P. Goshorn, Phys. Rev. Lett. 58, 1045 (1987).

12. P. W. Anderson, Mat. Res. Bull. 8, 153 (1973); Science 235, 1196 (1987); P. W. Anderson, G. Baskaran, Z. Zou, and T. Hsu, Phys. Rev. Lett. 58, 2790 (1987).