DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories

Adnan Siraj Rakin*¹, Md Hafizul Islam Chowdhuryy*², Fan Yao², Deliang Fan¹

*Joint First Authors

¹Arizona State University (asrakin@asu.edu, dfan@asu.edu)
Website: https://dfan.engineering.asu.edu/

²University of Central Florida (reyad@knights.ucf.edu, Fan.Yao@ucf.edu)
Website: https://casrl.ece.ucf.edu
Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion
Machine Learning (ML) Applications

- Machine Learning Applications:
 - Robotics
 - Medical Applications
 - Self-Driving Cars

- Machine Learning Cloud Services:
 - Amazon AWS AI
 - Google AI
 - Microsoft Azure ML
Adversarial Threats in ML:

Model Tampering (Security)
- External Threat (Input perturbation)
 - Adversarial Examples (Madry et al. ICLR-18)
- Internal Threat (Weight perturbation)
 - DeepHammer (Yao et al. USENIX SEC-20)
- Both (Trojan/Backdoor Attack)
 - Trojan NN (Liu et al. NDSS-18)

Model Leakage (Privacy)
- Model Inversion Attack
 - Recover Data (Fredrikson et al. CCS-15)
- Membership Inference Attack
 - Leak Training Data (Shokri et al. S&P-17)
- Model Extraction Attack Recover Model Architecture/Weights
 - DeepSniffer (Hu et al. ASPLOS-20)

![Diagram of Adversarial Threats in ML](image-url)

- **User** → **Adversarial Input Attack** → **Computer running Neural Network** → **Attacker** → **Attacking weights** → **Gibbon**
 - [Rakin et al. USENIX SEC-21]

- **Input** → **Deep Learning Model** → **Output**
 - Stealing Data/Features → **Stealing Architecture or weights**
Model Extraction Attack Objective:

1. Create a substitute model to *mimic the functionality* of the target model with *limited dataset* (less than 10%).

2. The substitute model should have a *high accuracy and fidelity*.

3. The substitute model can generate *strong transferable adversarial examples* to attack the target model.
Remote Side channel Attack on ML Model

Primary Goal of Prior Works:
Recover model architecture (i.e., no. of layers/connections)

Example:
Cache telepathy [USENIX Security’20], *DeepSniffer* [ASPLOS’20]

Opportunities:
1. None of the existing remote side-channel works have successfully recovered fine-grained weight information.

2. Exfiltration of weight information can potentially be even more dangerous than leakage of architecture information.
Can we recover fine-grained weight information through the remote side channels?
How to utilize partial weight information to perform advanced model extraction?
Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion
Threat Model

• Attacker *knows* the DNN model architecture.
• Attacker *does not know* gradient or model parameter information.
• Attacker *cannot query* the target model to get output scores.
• Attacker can run *userspace process* on the victim machine.
• System software are *benign and properly protected.*
DeepSteal Overview

Attacker’s Knowledge Of W_1

Initial stage

HammerLeak Bit Stealing

Mean Clustering

Substitute Model
Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion
Data Leakage through RowHammer

Bitflips are *data dependent*

DRAM Bank
0
1

RowHammer-based fault injection

Vulnerable cell

Aggressor (Attacker)

Target (Victim)

Aggressor (Attacker)
Data Leakage through RowHammer

RowHammer-based fault injection

Bitflips are data dependent
Data Leakage through RowHammer

RowHammer-based fault injection

Bit flip

Vulnerable cell

Aggressor (Attacker)

Target (Victim)

DRAM Bank

RowHammer-based information leakage (S -> Secret)

Aggressor bit can be leaked based on the existence of bitflip (*RAMbleed, S&P’20*)
Challenges:

C1: RowHammer information leakage from generic victim application.

C2: Bulk data stealing from victim with large-scale memory footprint.
Generic RowHammering For Bit Leakage

1. **Bit flip** = \(S \rightarrow 1 \)
 - Attacker
 - S
 - 0
 - 1
 - DRAM Bank

2. **No Bit flip** = \(S \rightarrow 0 \)
 - Attacker
 - S
 - 0
 - 1
 - DRAM Bank
Generic RowHammering For Bit Leakage

1. DRAM Bank

2. DRAM Bank

3. DRAM Bank

4. DRAM Bank

Bit flip = S \rightarrow 1

No Bit flip = S \rightarrow 0
HammerLeak Framework: Detailed

Anonymous Page Swapping

Free Page Victim Page Attacker Page Vulnerable cell

DRAM Bank

Swap space
HammerLeak Framework: Detailed

Anonymous Page Swapping

Free Page | Victim Page | Attacker Page | Vulnerable cell
HammerLeak Framework: Detailed

Anonymous Page Swapping

Bitflip-aware Page Release

Pageset (LIFO)

DRAM Bank

Swap space

Free Page Victim Page Attacker Page Vulnerable cell
HammerLeak Framework: Detailed

Anonymous Page Swapping → Bitflip-aware Page Release → Deterministic Victim Relocation

Pageset (LIFO)

DRAM Bank

Swap space

Free Page
Victim Page
Attacker Page
Vulnerable cell
HammerLeak Framework: Detailed

- Anonymous Page Swapping
- Bitflip-aware Page Release
- Deterministic Victim Relocation
- Rowhammer-based Bit Recovery

Diagram showing the process:
- DRAM Bank
- P1, P2, P3 as pages
- Free Page, Victim Page, Attacker Page, Vulnerable cell

Steps:
1. Anonymous Page Swapping
2. Bitflip-aware Page Release
3. Deterministic Victim Relocation
4. Rowhammer-based Bit Recovery
HammerLeak: Batched Page Release

Use smaller batch size: macro-anchor to further divide victim execution

Bulk data-stealing from application with large memory-footprint
HammerLeak: Leaking PyTorch Model Weights

Victim execution:

Attacker: Populate pageset
Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion
Why do we still need training?

- Problem: How to use the partial bit information recovered from HammerLeak?

- Solution: We propose a training algorithm to successfully utilize the stolen partial bit information.
Substitute Model Training:

1. Each weight has a projected range.
Substitute Model Training:

1. Each weight has a projected range.
Substitute Model Training:

1. Each weight has a projected range.
Substitute Model Training:

1. Each weight has a projected range.

2. Mean clustering penalty ensures the weights stay well within the projected range during training.

\[
\min_{\{W_l\}_{l=1}^L} \mathbb{E}_x \mathcal{L}(f(x; \{W_l\}_{l=1}^L), y) + \\
\lambda \cdot \sum_{l=1}^L (||W_l - W_{l,\text{mean}}||)
\]

loss penalty for Mean Clustering
Algorithm: Mean Clustering Training

- Weight Set-1: **All 8-bits recovered**
 No Training i.e., set the gradient of the weights to zero.

- Weight Set-2: **Partial bits recovered starting from most significant bits**
 Apply mean clustering penalty only for these set of weights.

- Weight Set-3: **No bit recovered or bit recovered without MSBs**
 Train w/o any clustering penalty.
Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion
Experimental Setup

• Dataset: Popular vision datasets (e.g., CIFAR-10/100, GTSRB).

• Architecture: ResNets and VGG.

• Attacker Data: 8% training data available to train the substitute model.

• Training Platform: PyTorch running on GeForce GTX 1080 Ti GPU platform.

• Attack Platform: Intel Haswell series processor.

• Memory configuration: Dual-channel DDR3.
Evaluation Metrics:

Accuracy (%): Accuracy of the substitute model on test dataset.

Fidelity (%): Percentage of test samples both the target and substitute model agree on their classification result.

Adversarial Example Attack (%): Test accuracy of a target model on the adversarial test samples generated using the recovered substitute model as shown in the left figure.
Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup

• Results & Conclusion
Results: HammerLeak

HammerLeak Analysis:

• Bit leakage accuracy: 95.73% (Standard deviation: 0.74%).
• ResNet-18 weight leakage rate.

Figure: Distribution of weights with MSB recovered across 21-layers
Results: Mean Clustering Training

- Increasing attack round generates effective substitute model with higher accuracy & fidelity.
- At 4000 rounds, we could achieve similar adversarial example attack performance as the white-box attack.

CIFAR-10 (ResNet-18)	Time (Days)	Recovered (MSB) (%)	Accuracy (%)	Fidelity (%)	Adversarial Example Attack (%)
Architecture Only	-	0	73.18	74.29	61.33
1500 Rounds	3.9	60	76.61	77.56	50.4
3000 Rounds	7.8	80	86.93	88.51	8.13
4000 Rounds	**10.4**	**90**	**89.59**	**91.6**	**1.61**
Best-Case (White Box)	-	100	93.16	100.0	0.0
Comparison with Existing Methods:

Recovery Method	Accuracy (%)	Adversarial Example Attack (%)
Architecture only e.g., DeepSniffer (ASPLOS 20)	72.68	62.68
DeepSteal *(Architecture + Partial Weight-Bit Information)*	**90.35**	**1.2**

- DeepSteal shows ~18% improvement in accuracy compared to the existing remote side-channel attacks which only focus on recovering the architecture only information of DNN.

- Fine-grained bit information significantly improves the adversarial attack performance as well.
Comparison with Existing Methods:

Attack Threat Model	Adversarial Example Attack (%)
Black-Box (Transfer Cui et. al.)	20.47
White-Box (PGD Madry et. al.)	0.0
DeepSteal (ours)	1.2

- DeepSteal threat model falls in the gray-box zone (architecture known) between white-box and black-box attack.
- Fine-grained bit information achieves almost similar success rate as the white-box attack.
Conclusion:

• DeepSteal with the exploitation of a remote side channel, for the \textit{first time}, can exfiltrate fine-grained \textit{weight information} in bulk from DNN model.

• DeepSteal can recover substitute model with high accuracy and fidelity ($\sim 90\%$).

• The adversarial examples generated from the substitute model is as \textit{effective as a white-box attack}.

• Our proposed attack opens a practical solution to identical model recovery and urges the community to \textit{invest in future defense solutions}.
Thank You & Questions?

Adnan Siraj Rakin
Email: asrakin@asu.edu

Md Hafizul Islam Chowdhuryy
Email: reyad@knights.ucf.edu

Fan Yao, Ph.D.
Email: Fan.Yao@ucf.edu
Website: https://casrl.ece.ucf.edu

Deliang Fan, Ph.D.
Email: dfan@asu.edu
Website: https://dfan.engineering.asu.edu/

This work is supported in part by the National Science Foundation under Grant No. 2019548, No. 2019536, No. 1931871, and No. 2144751.