Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: Implications for molecular diagnostics

Sara M. Erickson
University of Wisconsin - Madison

Kerstin Fischer
Washington University School of Medicine in St. Louis

Gary J. Weil
Washington University School of Medicine in St. Louis

Bruce M. Christensen
University of Wisconsin - Madison

Peter U. Fischer
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

Recommended Citation

Erickson, Sara M.; Fischer, Kerstin; Weil, Gary J.; Christensen, Bruce M.; and Fischer, Peter U., "Distribution of Brugia malayi larvae and DNA in vector and non-vector mosquitoes: Implications for molecular diagnostics." *Parasites & Vectors*. 2:. 56. (2009).
https://digitalcommons.wustl.edu/open_access_pubs/287

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Distribution of *Brugia malayi* larvae and DNA in vector and non-vector mosquitoes: implications for molecular diagnostics
Sara M Erickson¹, Kerstin Fischer², Gary J Weil², Bruce M Christensen¹ and Peter U Fischer*²

Address: ¹Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA and ²Department of Internal Medicine, Infectious Diseases Division, Washington University School of Medicine, St Louis, Missouri, USA

Email: Sara M Erickson - smerickson@wisc.edu; Kerstin Fischer - kerstinfischer@sbcglobal.net; Gary J Weil - gweil@DOM.wustl.edu; Bruce M Christensen - Christensen@svm.vetmed.wisc.edu; Peter U Fischer* - Pufische@DOM.wustl.edu

* Corresponding author

Abstract

Background: The purpose of this study was to extend prior studies of molecular detection of *Brugia malayi* DNA in vector (*Aedes aegypti*-Liverpool) and non-vector (*Culex pipiens*) mosquitoes at different times after ingestion of infected blood.

Results: Parasite DNA was detected over a two week time course in 96% of pooled thoraces of vector mosquitoes. In contrast, parasite DNA was detected in only 24% of thorax pools from non-vectors; parasite DNA was detected in 56% of midgut pools and 47% of abdomen pools from non-vectors. Parasite DNA was detected in vectors in the head immediately after the blood meal and after 14 days. Parasite DNA was also detected in feces and excreta of the vector and non-vector mosquitoes which could potentially confound results obtained with field samples. However, co-housing experiments failed to demonstrate transfer of parasite DNA from infected to non-infected mosquitoes. Parasites were also visualized in mosquito tissues by immunohistochemistry using an antibody to the recombinant filarial antigen Bm14. Parasite larvae were detected consistently after mf ingestion in *Ae. aegypti*-Liverpool. Infectious L3s were seen in the head, thorax and abdomen of vector mosquitoes 14 days after Mf ingestion. In contrast, parasites were only detected by histology shortly after the blood meal in *Cx. pipiens*, and these were not labeled by the antibody.

Conclusion: This study provides new information on the distribution of filarial parasites and parasite DNA in vector and non-vector mosquitoes. This information should be useful for those involved in designing and interpreting molecular xenomonitoring studies.

Background
Human lymphatic filariasis (LF) is caused by the mosquito-borne filarial nematodes *Wuchereria bancrofti*, *Brugia malayi*, and *B. timori*. These parasites are currently targeted for elimination by the Global Program for the Elimination of Lymphatic Filariasis (GPELF), and workers in this program have reported both achievements and future challenges to eliminating parasite transmission in endemic areas [1-3]. One important component of the elimination program is the ability to estimate infection prevalence and transmission rates, especially during mass drug administration (MDA), in order to accurately evalu-
ate the progress towards the goal of LF transmission interruption [4]. Molecular detection assays provide sensitive and specific tools for identifying and distinguishing parasites in host populations. Molecular techniques commonly used to study LF infection, or exposure, in humans include the detection of parasite DNA, circulating filarial antigen, and filarial antibodies in blood samples [5]. Molecular techniques also have been applied to the detection of filarial worms in mosquitoes, and these primarily target parasite DNA [6-9].

The detection of parasite DNA in mosquito samples is a valuable tool for molecular xenomonitoring (MX), but this does not differentiate parasite developmental stages or distinguish whether the DNA is from living or dead parasites [10-12]. Recently, RNA-based assays have been developed to detect *B. malayi* and *W. bancrofti* in mosquitoes [13,14], including the distinction of *B. malayi* infected (a constitutive parasite transcript) and infective mosquitoes (a L3-specific transcript) [14]. However, RNA-based detection assays have not yet been tested in the field or incorporated into LF surveillance programs. Vector-parasite interactions influence the applicability and interpretation of molecular detection assays used in vector surveillance studies. There are several factors that should be carefully considered when using molecular techniques to investigate parasites within the mosquito intermediate host, including the (1) various life cycle stages and their tissue locations, (2) likelihood of parasite development to the infective stage, i.e., vector competence, and (3) limitations of the particular detection assay, i.e., ability to distinguish infection stages and living from dead parasites. The separation of mosquitoes into body regions has been used to circumvent the inability of some assays to distinguish infective-stage parasites. For example, *Anopheles* spp. have been divided into two body regions (head/thorax and abdomen) to provide better estimates of mosquitoes infected with *Plasmodium* sporozoites and/or pre-sporozoite stages [15-17] and the heads of blackflies have been removed (by mass dissection techniques) for the restricted, head-only, PCR assays targeting *Onchocerca* DNA, which is more likely to provide a better estimate of infective-stage parasites because other developmental stages generally reside outside of the head [18,19].

The studies conducted herein follow our previous work, which demonstrated that DNA-based diagnostics are unable to distinguish the developmental stage of LF parasites or whether parasites are living or dead in the mosquito [10]. Despite these limitations, there are benefits to using DNA-based assays over dissection to assess the persistence of filariasis in populations. Because filarial DNA is detectable for two weeks or longer following a microfilaricnic blood meal in both vector and non-vector mosquitoes, all anthropophilic mosquitoes can be included in the screening of mosquitoes for parasite DNA to provide MX data [10]. Herein, we have further examined the persistence of filarial parasites and parasite DNA in mosquitoes; we used a combination of mosquito dissection, immunohistology and PCR assays to determine the location(s) of filarial worms and DNA in mosquitoes that are susceptible or refractory to filarial parasite development. These studies allowed us to assess the potential value of tissue specific assays (e.g., mosquito heads only) to estimate the prevalence of infective-stage larvae in mosquitoes; we also investigated the issue of direct mosquito to mosquito transfer of parasite DNA that could confound MX studies.

Results

Development of *B. malayi* in *Ae. aegypti* and *Cx. pipiens*

Table 1 summarizes the recovery of parasites from dissected mosquitoes. In *Ae. aegypti*-LVP, 73.6% of the recovered *B. malayi* mf at 2 h post ingestion (PI) had successfully penetrated the midgut, with 49.4% located in the thorax. At 14 days post ingestion of microfilaricnic blood (DPI), 80% of *Ae. aegypti* harbored L3s. In contrast,

Time post ingestion	Number of parasites recovered^a	Total worms^a	Percentage of mosquitoes harboring parasites				
	Midgut	Abdomen	Thorax	Head			
Ae. aegypti-LVP	2 h	23	21	43	n.d.	87	93% (6.2 ± 6.1)^b
	7 d	0	0	65	0	65	73% (5.9 ± 5.9)
	14 d	n.d.	7	30	22	59 (20)	80% (3.9 ± 3.2)
Cx. pipiens	2 h	100	4	0	n.d.	104	93% (7.5 ± 7.1)
	7 d	0	4	0	0	4	13% (2.0 ± 1.4)
	14 d	0 (10)	0	0	0	0	0%

^aParasites were observed in mosquito dissections by microscopy at various times after ingestion of microfilaricnic blood. Fifteen mosquitoes were dissected at each time point, except as noted (n.d., 10, or 20).

^bMosquito infection rate (mean intensity ± SD)
from Cx. pipiens only mf were recovered and 93% of them were found in the midgut lumen.

B. malayi DNA detection in pooled mosquito body regions

PCR results are summarized in Figure 1. Parasite DNA was detected in 74% of Ae. aegypti-LVP pooled body region samples (n = 300) and 36% of Cx. pipiens (n = 300) pooled body regions tested. These differences were highly significant (P < 0.0001). In Ae. aegypti-LVP, parasite DNA was detected in all four body regions with 43, 71, 88, and 96% of heads, midguts, abdomens, and thoraces (n = 75 for each) positive by qPCR, respectively. Parasite DNA also was detected in all Cx. pipiens body regions, with 17, 24, 47, and 56% of heads, thoraces, abdomens, and midguts (n = 75 for each) positive, respectively. The differences in the percentage of B. malayi DNA positive samples were significant between mosquito species in all body regions (heads, P = 0.001; thoraces, P < 0.0001; abdomens, P < 0.0001) except the midguts (P = 0.09). The detection of parasite DNA within certain mosquito body regions was positively or negatively correlated with time. Specifically, the detection of B. malayi DNA was negatively correlated with time in ‘whole body’ Cx. pipiens (r² = 0.93, P = 0.0075) and Cx. pipiens midguts (r² = 0.82, P = 0.034), and positively correlated with time in Ae. aegypti-LVP heads (r² = 0.77, P = 0.05).

B. malayi DNA detection in individual mosquito body regions

Individual mosquitoes that were separated into body regions for DNA detection assays were compared to results of the pooled mosquito body regions (Fig. 2). Following a microfilaremic blood meal of 191 mf/20 μl blood, there was no difference in DNA detection between pooled and individual Ae. aegypti-LVP body regions (P-values = 0.35-0.61) or between pooled and individual Cx. pipiens body regions (P-values = 0.78-1.0).

Detection of parasite DNA in mosquito excreta and feces

Figure 3 summarizes the detection of B. malayi DNA in individual housed mosquitoes and their voided excreta and feces. All mosquitoes were positive for parasite DNA immediately (2 hr) after ingesting microfilaremic blood. From 1-4 DPI all Ae. aegypti-LVP tested positive for parasite DNA, and three of these (15%) mosquitoes had detectible B. malayi DNA in their feces. In contrast, 60% of Cx. pipiens were DNA negative at 4 DPI, but B. malayi DNA was detected in 100% of Cx. pipiens feces tested at 3-4 DPI. Of the twenty samples of feces collected over the entire observation period of 1-4 DPI from each species, B. malayi DNA was detected in 15 and 65% of Ae. aegypti-LVP and Cx. pipiens fecal samples, respectively (P = 0.003).

Parasite DNA contamination of B. malayi positive and negative mosquitoes

In order to test the possibility that infected mosquitoes contaminate uninfected mosquitoes while they are together in the same trap or sampling tube, we housed uninfected Ae. aegypti-LVP together with Cx. pipiens that had fed on a microfilaremic gerbil. After 7 days, mosquitoes were collected and pooled by species. None of the 17 Ae. aegypti-LVP pools (with 10 mosquitoes per pool) were positive by real-time PCR. In contrast, 17 of the 21 Cx. pipiens pools (with 5 mosquitoes each) were positive. Most of these samples had relatively high Ct values indicating small amounts of B. malayi DNA, but 5 pools had higher Ct values ranging between 29 and 35. Although B. malayi DNA can be detected in feces of infected mosquitoes, feces did not cause false positive DNA signals from uninfected mosquitoes after co-housing.

Detection of Bm14 in mosquito-stage parasites by immunohistology

Immunohistology studies were performed to confirm the dissection results and to better document the fate of B.
In *Ae. aegypti-LVP*, unlabeled mf were detected within the midgut directly after the bloodmeal (Fig. 4A). Strong-labeling was observed with the Bm14 antibody after the larvae reached the thoracic muscles. Thus this antibody can be used to sensitively detect developing filarial larvae in vectors (Fig. 4B-E). Strongly labeled L3s were observed in all body parts of *Ae. aegypti-LVP* at 14 DPI (Fig. 4F-G). L3s were not confined to the head or the thoracic musculature; they were also seen in the abdomen, outside of the midgut (Fig. 4J).

Stretched, intrauterine mf in adult female *B. malayi* are usually labeled by the Bm14 antibody (Fig. 5A), but mf were not labeled in the midgut of *Cx. pipiens* directly after the blood meal. No larvae were detected in histological sections of *Cx. pipiens* at later times points (Fig. 5C, D). Dead and/or dying larvae in the thorax of *Brugia* refractory *Ae. aegypti-RKF* were not labeled by Bm14 (Fig. 5G, I, J). In contrast, developing larvae in *Ae. aegypti-LVP* were always strongly labeled at the same time points (Fig. 5F, H).

These results suggest that the anti-Bm14 antibody specifically detects viable and developing *B. malayi* larvae in vectors.

Discussion

The application of molecular assays to detect parasites within vectors is influenced by the vector-parasite interaction. In these studies, we analyzed the detection of filarial worms in susceptible and refractory mosquitoes by targeting parasite DNA or protein in molecular assays. The three mosquito strains examined have very different interactions with *B. malayi* that were documented in our previous paper on detection of parasite DNA from living and dead parasites within mosquitoes [10]. The follow-up studies discussed herein were designed to investigate: (1) the mosquito body region(s) containing the persistently detected parasite DNA within *Cx. pipiens* (in this mosquito species mf are seldom able to migrate out of the midgut lumen), and (2) the detection of parasite proteins as larvae develop in susceptible and refractory mosquitoes.
studies [20] have shown that L3s are not restricted to the toes contain L3s in other body parts. Our results and prior provide a false negative infectivity signal when mosqui-
approach. Because PCR can detect DNA from live or dead
infectivity rates than DNA detection in whole mosquitoes
(see Fig. 2), we do not advocate separating heads for this pur-
DNA also was not restricted to the midgut in Cx. p. midgut lumen, mf are sometimes detected outside of the midgut by dissection (Table 1 and Erickson and Chris-
tensen, unpublished data). Although these few mf that do
penetrate the midgut epithelium could be the source of parasite DNA outside of the Cx. p. midgut, an alternate-
tion in mosquitoes; several studies have used this
Immunohistochemistry provides an alternative approach
to detecting and studying parasite migration and develop-
ment in mosquitoes; several studies have used this
approach with antibodies to Plasmodium circumsporo-
zoite protein (CSP) [16,29-31]. Most immunodiagnostic
research on filariasis has focused on the parasite stages
that occur within the vertebrate host [32,33], and this
work has produced sensitive and specific diagnostic tests
for Bancroftian and brugian filariasis [5,34,35]. In con-

Separation of mosquitoes into body regions (head, tho-
remnants of ingested mf (especially in mosquitoes with
fectivity rates at that time point. Although DNA detec-
tion in mosquito heads might provide a better estimate of infectivity rates than DNA detection in whole mosquitoes
Fig. 2), we do not advocate separating heads for this pur-
purpose in field studies, because false positive and false neg-
active infectivity signals are likely to be high with this approach. Because PCR can detect DNA from live or dead parasites from any developmental stage, heads could be falsely positive (without L3s being present) because of remnants of ingested mf (especially in mosquitoes with armed cibarial and/or pharyngeal pumps). Heads could provide a false negative infectivity signal when mosqui-
to contain L3s in other body parts. Our results and prior studies [20] have shown that L3s are not restricted to the head.

However, to prevent cross-contamination, the following steps are recommended for processing wild-caught mos-
quitoes: (1) Immediately kill mosquitoes to limit mos-
quitos that cross-contamination is probably uncommon.

Immunohistochemistry provides an alternative approach
to detecting and studying parasite migration and develop-
ment in mosquitoes; several studies have used this
approach with antibodies to Plasmodium circumsporo-
zoite protein (CSP) [16,29-31]. Most immunodiagnostic
research on filariasis has focused on the parasite stages
that occur within the vertebrate host [32,33], and this
work has produced sensitive and specific diagnostic tests
for Bancroftian and brugian filariasis [5,34,35]. In con-

Figure 3
Detection of B. malayi DNA in mosquito feces. A
Prevalence of parasite DNA in individually housed Ae. aegypti-LVP and their feces. B Prevalence of parasite DNA in individ-
ually housed Cx. p. and their feces. Sample number is indicated above each bar.

B. malayi DNA also was not restricted to the midgut in Cx. p. midgut lumen, mf are sometimes detected outside of the midgut by dissection (Table 1 and Erickson and Chris-
tensen, unpublished data). Although these few mf that do
penetrate the midgut epithelium could be the source of parasite DNA outside of the Cx. p. midgut, an alternate-
tion in mosquitoes; several studies have used this
Immunohistochemistry provides an alternative approach
to detecting and studying parasite migration and develop-
ment in mosquitoes; several studies have used this
approach with antibodies to Plasmodium circumsporo-
zoite protein (CSP) [16,29-31]. Most immunodiagnostic
research on filariasis has focused on the parasite stages
that occur within the vertebrate host [32,33], and this
work has produced sensitive and specific diagnostic tests
for Bancroftian and brugian filariasis [5,34,35]. In con-

Separation of mosquitoes into body regions (head, tho-
remnants of ingested mf (especially in mosquitoes with
fectivity rates at that time point. Although DNA detec-
tion in mosquito heads might provide a better estimate of infectivity rates than DNA detection in whole mosquitoes
Fig. 2), we do not advocate separating heads for this pur-
purpose in field studies, because false positive and false neg-
active infectivity signals are likely to be high with this approach. Because PCR can detect DNA from live or dead parasites from any developmental stage, heads could be falsely positive (without L3s being present) because of remnants of ingested mf (especially in mosquitoes with armed cibarial and/or pharyngeal pumps). Heads could provide a false negative infectivity signal when mosqui-
to contain L3s in other body parts. Our results and prior studies [20] have shown that L3s are not restricted to the head.

However, to prevent cross-contamination, the following steps are recommended for processing wild-caught mos-
quitoes: (1) Immediately kill mosquitoes to limit mos-
quitos that cross-contamination is probably uncommon.

Immunohistochemistry provides an alternative approach
to detecting and studying parasite migration and develop-
ment in mosquitoes; several studies have used this
approach with antibodies to Plasmodium circumsporo-
zoite protein (CSP) [16,29-31]. Most immunodiagnostic
research on filariasis has focused on the parasite stages
that occur within the vertebrate host [32,33], and this
work has produced sensitive and specific diagnostic tests
for Bancroftian and brugian filariasis [5,34,35]. In con-
trast, few studies have examined antigen detection as a method for identifying and distinguishing LF parasites in mosquitoes. A monoclonal antibody raised against *B. malayi* L3s (NEB-D1E5) is specific to a *B. malayi* L3 surface antigen and distinguishes *B. malayi* L3s from infective-stage larvae of other filarial worms apart from *B. timori* [36,37]. In the current study, antibodies to recombinant *B. malayi* antigen Bm14 [38,39] were used to detect this protein in filarial larvae in mosquitoes. Bm14 was detected in mf and all other developmental stages of parasites in the competent vector, *Ae. aegypti*-LVP. In contrast, the protein was not detected in parasites present in non-vector *Cx. pipiens* (harboring mf in the midgut), or *Ae. aegypti*-RKF (harboring parasites that developmentally arrest as L1s which then die within mosquito muscle cells). These results suggest that Bm14 may be a specific biomarker for viable filarial parasites in mosquitoes.

Conclusion

Improved methods are needed for assessing changes in mosquito infection and infectivity rates in the context of LF control/elimination programs. As infection rates in humans and vectors decrease following MDA, increased numbers of mosquitoes must be tested to accurately estimate parasite prevalence [40]. This makes dissection impractical, and favors use of molecular detection assays with pooled mosquitoes. This study provides new information on the persistence of filarial worm DNA in non-vectors that has practical implications for MX studies regarding methods for processing field-caught mosquitoes and for interpreting MX data. Additional studies are needed to determine whether the presence of Bm14 antigen is a reliable marker for viable filarial worms in pooled mosquito samples. Although this study focused on *B. malayi*, the findings may be of interest to scientists and
programs that use molecular techniques to detect other pathogens (helminths, viruses, or protozoa) in vectors.

Materials and methods
Mosquito maintenance and parasite exposures
Mosquitoes used for these studies were obtained from colonies of *Aedes aegypti* (black-eyed, Liverpool strain; LVP), *Ae. aegypti* (Rockefeller strain; RKF) and *Culex pipiens pipiens* (Iowa strain) maintained at the University of Wisconsin-Madison, as previously described [21,41]. These mosquitoes differ in their vector competence for *B. malayi*. *Ae. aegypti*-LVP support the development of *B. malayi* from mf to L3s, but parasites do not develop in *Cx. pipiens*, because mf do not penetrate the midgut epithelium. In *Ae. aegypti*-RKF, mf penetrate the mosquito midgut and migrate into thoracic muscles where they fail to develop to L2s. This mosquito strain was only used for comparison in the immunohistology experiments. Four- to seven-day-old mosquitoes were sucrose starved ~14 h prior to blood feeding. Mosquitoes were exposed to *B. malayi* by blood feeding on microfilaremic cat blood in a water-jacketed membrane feeder fitted with a parafilm membrane [42]. Mosquitoes also were blood fed on uninfected gerbils (*Meriones unguiculatus*) to serve as parasite-negative, blood-fed controls. Engorged mosquitoes were sorted and maintained in the laboratory.

Laboratory animals were handled according to guidelines approved by the Animal Care Committee at the University of Wisconsin-Madison. The mf densities of *B. malayi*-infected cat blood obtained from the NIAID Filariasis Research Reagent Repository Center http://www.filariasiscenter.org used in these studies ranged from 24-191 mf/20 μl blood.

Mosquito dissection
Five mosquitoes were dissected at 2 hr, 7 d, and 14 d post ingestion of microfilaremic blood (PI) to estimate the mean intensity of infection, and to record the stage of *B. malayi* development. Individual mosquitoes were sepa-
rated into head, thorax, midgut, and abdomen, and each body region was teased apart and individually examined for parasites by microscopy as previously described [10].

Ae. aegypti-LVP and *Cx. pipiens* were separated into body regions (head, thorax, midgut, and abdomen) and placed, separately or in pools of four, into 2.0 ml microcentrifuge tubes for parasite DNA detection. To create a pooled sample, four mosquitoes were separated into body regions, and the body regions were combined by type into tubes. For example, four mosquitoes were used to produce one pool of four heads, one pool of four thoraces, one pool of four abdomens, and one pool of four midguts. Five pooled samples were prepared at 2 h, 1, 3, 7, and 14 d PI; thus, a total of 20 mosquitoes were collected at each time point for pooled samples. In addition to creating pooled samples, individual mosquitoes were dissected into body regions as described above and then placed individually into tubes. Five individuals were dissected at each time point to create twenty samples: five tubes contained individual heads, five contained a single thorax, five contained an abdomen, and five contained a midgut. These samples were screened for *B. malayi* DNA to compare detection results between individuals and pooled samples. All samples were cataloged to track a given body region samples. All samples were used for negative control, and 100 pg of DNA was extracted using a commercial column method as described previously [10]. Quantitative real-time PCR was performed using an MGB probe to detect a 120 bp fragment of the *Brugia Hha* (page number not for citation purposes) repeat [44]. In all real-time PCR assays, water was used as no-template negative control; DNA extracted from a pool of non-infected mosquitoes acted as extraction negative control, and 100 pg of DNA isolated from adult *B. malayi* was used as positive control.

Immunohistology

Five mosquitoes of each species were collected at 2 h, 1, 3, 7, and 14 d PI (i.e., the same time points as DNA detection assays) and stored in 80% ethanol at room temperature until embedding. Mosquitoes were embedded in paraffin, and *B. malayi* larvae were stained using the alkaline phosphatase anti-alkaline phosphatase method as described previously [45]. A polyclonal mouse antibody raised against recombinant Bm14 protein was used as the primary antibody for these studies [38].

Statistical Analysis

Data were graphed and analyzed with GraphPad Prism 5.0 http://www.graphpad.com. Fisher's exact tests, with two-tailed P-values, were used to compare parasite development and DNA detection between *Ae. aegypti*-LVP and *Cx. pipiens*. Pearson correlation tests were used to test for trends in parasite DNA detection over time. Statistical results were considered significant at *P* ≤ 0.05.

List of abbreviations

MF: microfilariae; L1, L2, L3: first- to third-stage larva; PI: post ingestion of microfilaremic blood; DPI: days post infection.
ingestion of microfilaremia blood; MX: molecular xenomonitoring.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
SE participated in the conception of the study including its design and organization, performed mosquito exposures and sample collection, data interpretation, statistical analysis, and drafted the manuscript. LF participated in data interpretation and critical manuscript revisions. BC participated in study design, data interpretation, and critical manuscript revisions. PF participated in the conception of the study including its design and organization, data interpretation, and helped draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank the NIAID/NIH Filarialis Research Reagent Repository Center (FR3) for supplying Brugia malayi-infected cat blood. This research was supported in part by the National Institutes of Health grants AI 007414-17 (graduate fellowship to SM Erickson), AI-19769 (BM Christensen), AI-065715 (GJ Weil), and by a Grant from The Barnes Jewish Hospital Foundation (GJ Weil).

References
1. WHO: Global programme to eliminate lymphatic filariasis. Wkly Epidemiol Rec 2007, 82:361-380.
2. Michael E, Malecela MN, Zervos M, Kazura JW: Molecular epidemiology of lymphatic filariasis: the value of chronic disease control in parasite elimination programmes. PLoS ONE 2008, 3:e2936.
3. Kyellem D, Biswas G, Bockarie MJ, Bradley MH, El-Setouhy M, Fischer PU, Henderson RH, Kazura JW, Lammie PJ, Njenga SM, Ottesen EA, Ramahia KD, Rakisa RC, Weil GJ, Williams SA: Determinants of success in national programs to eliminate lymphatic filariasis: a perspective identifying essential elements and research needs. Am J Trop Med Hyg 2008, 79:480-484.
4. Ramzy RM, El Setouhy M, Helmy H, Ahmed ES, Abd Elaziz KM, Farid HA, Shannon WD, Weil GJ: Effect of yearly mass drug administration with diethylcarbamazine and albendazole on bancroftian filariasis in Egypt: a comprehensive assessment. Lancet 2006, 367:992-999.
5. Weil GJ, Ramzy RM: Diagnostic tools for filariasis elimination programs. Trends Parasitol 2007, 23:78-82.
6. Bockarie MJ, Fischer P, Williams SA, Zimmerman PA, Griffin L, Alpers MP, Kazura JW: Application of a polymerase chain reaction-ELISA to detect Wuchereria bancrofti in pools of wild-caught Anopheles punctulatus in a filariasis control area in Papua New Guinea. Am J Trop Med Hyg 2000, 62:363-367.
7. Pedersen EM, Stolk WA, Laney SJ, Michael E: The role of monitoring mosquito infection in the Global Programme to Eliminate Lymphatic Filariasis. Trends Parasitol 2009, 25:319-327.
8. Hosi SL, Vasuki V, Lizotte MW, Patra KP, Ravi G, Vanamail P, Manonmani A, Sabesan S, Krishnamoorthy K, Williams SA: Detection of Brugia malayi in laboratory and wild-caught Mansonioides mosquitoes (Diptera: Culicidae) using Hha I PCR assay. Bull Entomol Res 2001, 91:87-92.
9. Fischer P, Wilbowo H, Pischke S, Ruckert P, Liebau E, Ismail IS, Supali T: PCR-based detection and identification of the filarial parasite Brugia malayi from Alor Island, Indonesia. Ann Trop Med Parasitol 2002, 96:809-821.
10. Fischer P, Erickson SM, Fischer K, Fuchs JF, Rao RU, Christensen BM, Weil GJ: Persistence of Brugia malayi DNA in vector and non-vector mosquitoes: implications for xenomonitoring and transmission monitoring of lymphatic filariasis. Am J Trop Med Hyg 2007, 76:502-507.
11. Williams SA, Laney SJ, Bierwert LA, Saunders LJ, Boakye DA, Fischer P, Goodman D, Helmy H, Hoit SL, Vasuki V, Lammie PJ, Pitchart C, Ramzy RM, Ottesen EA: Development and standardization of a rapid, PCR-based method for the detection of Wuchereria bancrofti in mosquitoes, for xenomonitoring the human prevalence of bancroftian filariasis. Am J Trop Med Parasitol 2002, 96(Suppl 2):S41-46.
12. Farid HA, Morsy ZS, Helmy H, Ramzy RM, El Setouhy M, Weil GJ: A critical appraisal of molecular xenomonitoring as a tool for assessing progress toward elimination of Lymphatic Filariasis. Am J Trop Med Hyg 2007, 77:593-600.
13. Vasuki V, Hoit SL, Patra KP: RT-PCR assay for the detection of infective (L3) larvae of lymphatic filarial parasite, Wuchereria bancrofti, in vector mosquito Culex quinquefasciatus. J Vector Ecol 2008, 33:207-213.
14. Laney SJ, Buttaro CJ, Visconti S, Pilotte N, Ramzy RM, Weil GJ, Williams SA: A Reverse Transcriptase-PCR Assay for Detecting Filarial Infective Larvae in Mosquitoes. PLoS Negl Trop Dis 2008, 2:e251.
15. Lopardo S, Esposito F, Zavala F, Lamazina L, Rossi P, Sabatinielli G, Nussenzieg RS, Coluzzi M: Detection and anatomical localization of Plasmodium falciparum circumsporozoite protein and sporozoites in the afrotropical malaria vector Anopheles gambiae s.l. Am J Trop Med Hyg 1987, 37:491-494.
16. Beier MS, Schwarz MB, Perkins PV, Cavango F, Koros JK, Campbell GH, Andriyiski PM, Brandling-Bennett AD: Identification of malaria species by ELISA in sporozoite and oocyst infected Anopheles from western Kenya. Am J Trop Med Hyg 1998, 39:323-327.
17. da Rocha JA, de Oliveira SB, Povoa MM, Moreira LA, Krettiu AL: Malaria vectors in areas of Plasmodium falciparum epidemic transmission in the Amazon region, Brazil. Am J Trop Med Hyg 2008, 78:872-877.
18. Yameogo L, Toe L, Hougard JM, Boatin BA, Unnasch TR: Pool screen polymerase chain reaction for estimating the prevalence of Onchocerca volvulus infection in Simulium damnosum sensu lato: results of a field trial in an area subject to successful vector control. Am J Trop Med Hyg 1999, 60:124-128.
19. Rodriguez-Hernandez MA, Kabhobi GR, Hassan HK, Unnasch TR: Large-scale entomological assessment of Onchocerca volvulus transmission by poolscreen PCR in Mexico. Am J Trop Med Hyg 2006, 74:1026-1033.
20. Paily KP, Hoit SL, Manonmani AM, Balaraman K: Longevity and migration of Wuchereria bancrofti infective larvae and their distribution pattern in relation to the resting and feeding behaviour of the vector mosquito, Culex quinquefasciatus. Ann Trop Med Parasitol 1995, 89:39-47.
21. Christensen BM, Sutherland DR: Brugia pahangi: Exsheatheatment and midigut penetration in Aedes aegypti. Transactions of the American Microscopical Society 1984, 103:423-433.
22. Obiamiwe BA: The fate of ingested Brugia pahangi microfilariae in susceptible and refractory strains of Culex pipiens and Aedes aegypti. Ann Trop Med Parasitol 1977, 71:375-377.
23. Omar MS, Ziekele E: Abortive development of Wuchereria bancrofti in a West African strain of Culex pipiens fatigans. Tropenmed Parasitol 1977, 28:68-70.
24. Lowichik A, Lowrie RC Jr: Uptake and development of Wuchereria bancrofti in Aedes aegypti and Haitian Culex quinquefasciatus that were fed on a monkey with low-density microfilaremia. Trop Med Parasitol 1988, 39:272-279.
25. Gwadz RW, Chernin E: Escape of infective larvae of Brugia pahangi from Aedes aegypti into water. Trans R Soc Trop Med Hyg 1973, 67:814-818.
26. Bosworth W, Sullivan JJ, Chernin E: Infective larvae of Brugia: escape from mosquitoes into water and subsequent oral infectivity in jirds. Am J Trop Med Hyg 1976, 25:700-703.
27. Ziekele E: On the escape of infective filarial larvae from the mosquitoes. Tropenmed Parasitol 1977, 28:461-466.
28. Zavala F, Gwadz RW, Collins FH, Nussenzieg RS, Nussenzieg V: Monoclonal antibodies to circumsorozoite proteins identify...
the species of malaria parasite in infected mosquitoes. *Nature* 1982, 299:737-738.
30. Esposito F, Lombardi S, Toure YT, Zavala F, Coluzzi M: Field observations on the use of anti-sporozoite monoclonal antibodies for determination of infection rates in malaria vectors. *Parasitologia* 1986, 28:69-77.
31. Ryan JR, Dave K, Collins KM, Hochberg L, Sattabongkot J, Coleman RE, Dunton RF, Bangs MJ, Mbogo CM, Cooper RD, Schoeler GB, Rubio-Palis Y, Magris M, Romer LI, Padilla N, Quakya IA, Bigoga J, Leke RG, Akinpelu O, Evans B, Walsey M, Patterson P, Wirz RA, Chan AS: Extensive multiple test centre evaluation of the VecTest malaria antigen panel assay. *Med Vet Entomol* 2002, 16:321-327.
32. Nanduri J, Kazura JW: Clinical and laboratory aspects of filariasis. *Clin Microbiol Rev* 1989, 2:339-50.
33. Harnett W, Bradley JE, Garate T: Molecular and immunodiagnosis of human filarial nematode infections. *Parasitology* 1998, 117(Suppl):S59-71.
34. Weil GJ, Lammie PJ, Weiss N: The ICT Filariasis Test: A rapid-format antigen test for diagnosis of bancroftian filariasis. *Parasitol Today* 1997, 13:401-404.
35. Jamail M, Andrew K, Junaidi D, Krishnan AK, Faizal M, Rahmah N: Field validation of sensitivity and specificity of rapid test for detection of *Brugia malayi* infection. *Trop Med Int Health* 2005, 10:99-104.
36. Carlow CK, Franke ED, Lowrie RC Jr, Partono F, Philipp M: Monoclonal antibody to a unique surface epitope of the human filaria *Brugia malayi* identifies infective larvae in mosquito vectors. *Proc Natl Acad Sci USA* 1987, 84:6914-6918.
37. Carlow CK, Perrone J, Spielman A, Philipp M: A developmentally regulated surface epitope expressed by the infective larva of *Brugia malayi* which is rapidly lost after infection. In Molecular paradigms for eradicating helminthic parasites Edited by: Maclinis AJ. New York: Alan R. Liss, Inc 1987:301-310.
38. Chandra Shekar C, Curtis KC, Ramzy RM, Lefis F, Li BW, Weil GJ: Molecular cloning of *Brugia malayi* antigens for diagnosis of lymphatic filariasis. *Mol Biochem Parasitol* 1994, 64:261-271.
39. Lammie PJ, Weil G, Noordin R, Kaliraj P, Steel C, Goodman D, Lakhshmikanthan VB, Ottesen E: Recombinant antigen-based antibody assays for the diagnosis and surveillance of lymphatic filariasis - a multicenter trial. *Filaria J* 2004, 3:9.
40. Katholi CR, Unnasch TR: Important experimental parameters for determining infection rates in arthropod vectors using pool screening approaches. *Am J Trop Med Hyg* 2006, 74:779-785.
41. Bartholomay LC, Farid HA, Ramzy RM, Christensen BM: *Culex pipiens pipiens*: characterization of immune peptides and the influence of immune activation on development of *Wuchereria bancrofti*. *Mol Biochem Parasitol* 2003, 130:43-50.
42. Rutledge LC, Ward RA, Gould DJ: Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. *Mosquito News* 1964, 24:407-419.
43. Clements AN: The biology of mosquitoes 1st edition. New York: Chapman & Hall; 1992.
44. Rao RU, Weil GJ, Fischer K, Supali T, Fischer P: Detection of *Brugia* parasite DNA in human blood by real-time PCR. *J Clin Microbiol* 2006, 44:3887-3893.
45. Rao RU, Huang Y, Fischer K, Fischer PJ, Weil GJ: *Brugia malayi*: Effects of nitazoxanide and tixozanide on adult worms and microfilariae of filarial nematodes. *Exp Parasitol* 2009, 121:38-45.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp