KUMMER THEORY OF DIVISION POINTS OVER DRINFELD MODULES OF RANK ONE

WEN-CHEN CHI† AND ANLY LI‡

ABSTRACT. A Kummer theory of division points over rank one Drinfeld $A = \mathbb{F}_q[T]$-modules defined over global function fields was given. The results are in complete analogy with the classical Kummer theory of division points over the multiplicative algebraic group \mathbb{G}_m defined over number fields.

0. INTRODUCTION

Let K be a number field and let \bar{K} be a fixed algebraic closure of K. For any positive integer n, let μ_n be the group of n-th roots of unity in \bar{K}. Let $G(n) = \text{Gal}(K(\mu_n)/K)$. For $K = \mathbb{Q}$, $G(n) \cong (\mathbb{Z}/n\mathbb{Z})^*$, and for any number field K, $G(l) \cong (\mathbb{Z}/l\mathbb{Z})^*$ for almost all prime numbers l.

For a finitely generated multiplicative subgroup Γ of rank r in $\mathbb{G}_m(K) = K^*$, Γ is of finite index in its division group Γ' in K^*. One considers the tower of Kummer extensions $K \subset K(\mu_n) \subset K(\mu_n, \Gamma^\perp)$, where $K(\mu_n, \Gamma^\perp)$ is the Galois extension of K by adjoining the n-th roots of unity and the n-division points of Γ in $\mathbb{G}_m(\bar{K})$.

Let $H_\Gamma(n) = \text{Gal}(K(\mu_n, \Gamma^\perp)/K(\mu_n))$ and $G_\Gamma(l) = \text{Gal}(K(\mu_n, \Gamma^\perp)/K)$.

Classical Kummer theory of division points over the multiplicative algebraic group \mathbb{G}_m over K asserts the following well-known results (see [10, Theorem 4.1]):

(i). For $K = \mathbb{Q}$, if n is prime to $2[\Gamma' : \Gamma]$, then $H_\Gamma(n)$ is isomorphic to the direct product of r copies of the abelian group μ_n.

(ii). For any number field K, $H_\Gamma(l) \cong \mu_l \times \ldots \times \mu_l$ (r-copies) for almost all prime numbers l.

In this paper, we provide an analogous Kummer theory over the additive algebraic group \mathbb{G}_a with additional module structure in the function field setting. More precisely, let $k = \mathbb{F}_q(T)$ be the rational function field over a finite field \mathbb{F}_q and let L be a finite extension of k in a fixed algebraic closure \bar{k} of k. Let $A = \mathbb{F}_q[T]$ and let ϕ be a Drinfeld A-module of rank one defined over L, where L is viewed as an A-field of generic characteristic (see [5, section 4.4], for general definition of Drinfeld modules). In particular, the Carlitz module (see [5, Chapter 3]) is a rank one Drinfeld module defined over k.

For a monic polynomial M in A, let Λ_M^ϕ be the M-torsion points of the Drinfeld module ϕ. Explicitly, $\Lambda_M^\phi = \{ \alpha \in \bar{k} \mid \phi_M(\alpha) = 0 \}$, where $\phi_M(\alpha)$ denotes the action of M on α. It is known that for the Carlitz module, $\text{Gal}(k(\Lambda_M^\phi)/k) \cong (A/MA)^*$, and for any rank one Drinfeld module ϕ defined over an A-field L of generic characteristic, we have $\text{Gal}(L(\Lambda^\phi)/L) \cong (A/lA)^*$ for almost all monic irreducible polynomials l in A (see [5, Theorem 7.7]).
Let Γ be a finitely generated A-submodule of rank r in the additive group $(L, +)$. Let $\frac{1}{L}M = \{\alpha \in \bar{k} | \phi_M(\alpha) \in \Gamma\}$ be the M-division module of Γ in $(\bar{k}, +)$. Then we have the tower of Kummer extensions $L \subset L(\Lambda^1_M) \subset L(\Lambda^r_M, \frac{1}{M} \Gamma)$. Let $H_T(M) = Gal(L(\Lambda^1_M, \frac{1}{M} \Gamma)/L(\Lambda^r_M, \frac{1}{M} \Gamma))$ and $G_T(M) = Gal(L(\Lambda^r_M, \frac{1}{M} \Gamma)/L)$. Analogous to the classical case, we have the following results:

(i). For the Carlitz module, except the case that $q = 2$ and $T|M$ or $T + 1|M$, under some mild condition, we have $H_T(M) \cong \Lambda^r_M \times \Lambda^1_M \times \Lambda^r_M$ (r-copies) as A-modules.

(ii). For any rank one Drinfeld module, we have that for almost all monic irreducible polynomials l, $H_T(l) \cong \Lambda^r_M \times \Lambda^1_M$ (r-copies) as A-modules.

Here, one of the main idea is to show that an A-module structure is naturally equipped on $H_T(M)$ (or particularly, on $H_T(l)$). Then, for the Carlitz module case, a Kummer theory along the line of the classical theory (see [9], Ch.VI, Section 11) can be developed with this A-module structure naturally equipped throughout the whole theory. This establishes the above result (i).

For a general rank one Drinfeld A-module, using the A-module structure of $H_T(l)$ together with the independence property given by L.Denis (see [4], Theorem 5), the above result (ii) can be established easily. Our proof is essentially the same as that of Denis in [4] except the above A-module is naturally equipped throughout the whole theory.

As for more general affine rings \mathbb{A}, the same result as (ii) should follow by the same proof provided a proof of the independence property of Denis was given accordingly for \mathbb{A}. This includes a revised canonical height function and Dirichlet lemma for general affine ring \mathbb{A} (see [4], Section 4).

1. Some basic properties of Drinfeld modules of rank one

Throughout this paper, let $k = \mathbb{F}_q(T)$ be the rational function field of one variable over a finite field \mathbb{F}_q of q elements, where $q = p^m$ for some prime number p. Let $A = \mathbb{F}_q[T]$ be the polynomial ring over \mathbb{F}_q which is the subring of those rational functions regular outside the place ∞ associated to $\frac{1}{T}$. Let \bar{k} be a fixed algebraic closure of k. In this section, we will briefly review some definitions and basic properties of Drinfeld modules of rank one. For a general reference, we should refer to Chapter 3, 4 of [5] and [7].

First, recall that Carlitz makes A act as a ring of endomorphisms on the additive group of \bar{k} as follows:

Let $\tau : \bar{k} \to \bar{k}$ be the Frobenius automorphism defined by $\tau(\alpha) = \alpha^q$ and let μ_T be the map defined by $\mu_T(\alpha) = T\alpha$. The substitution $T \mapsto \tau + \mu_T$ yields a ring homomorphism from A into the \mathbb{F}_q-algebra $End(\bar{k})$ of all \mathbb{F}_q-endomorphisms of the additive group of \bar{k}. This provides \bar{k} with the structure of an A-module which is called the Carlitz module.

Write α^M for the action of $M \in A$ on $\alpha \in \bar{k}$, then we have $\alpha^M = M(\tau + \mu_T)(\alpha)$. In particular, for $a \in \mathbb{F}_q$, $a \alpha = a\alpha$ for all $\alpha \in \bar{k}$. If $d = deg M$, then $\alpha^M = \sum_{i=0}^d [M]_i \alpha^i$, where each $[M]_i$ is a polynomial in A of degree $(d-i)q^i$ such that $[M]_0 = M$ and $[M]_d$ is the leading coefficient of M. In [3, Equation 1.6], Carlitz gives an explicit formula for these polynomials.
For $M \neq 0$ in A, let $\Lambda_M = \{ \alpha \in \bar{k} \mid \alpha^M = 0 \}$. Then Λ_M is an A-submodule of \bar{k} which is called the module of M-torsion points of the Carlitz module. One has the following properties:

1. Λ_M is a vector space over \mathbb{F}_q of dimension d, where $d = \deg M$.
2. Λ_M is a cyclic A-module with $\Phi(M)$ generators, where $\Phi(M)$ is the order of the group of units of $A/(M)$.

In fact, if λ is a given generator and $B \in A$, then λ^B is a generator if and only if B and M are relatively prime. Moreover, (M) is equal to the annihilator of Λ_M. Hence Λ_M is an A-isomorphic to $A/(M)$.

1.3) The M-torsion points Λ_M generate a finite abelian extension, namely, the M-th cyclotomic function field $k(\Lambda_M)$ over k such that $\text{Gal}(k(\Lambda_M)/k) \cong (A/(M))^\ast$. The isomorphism was given by $\sigma_B \mapsto B$, where $\sigma_B(\lambda) = \lambda^B$ for a given generator λ of Λ_M over A. In particular, $J = \{ \sigma_a \mid a \in \mathbb{F}_q^\ast \}$ is a subgroup of $\text{Gal}(k(\Lambda_M)/k)$ which is known to be the inertia group of any infinite prime of $k(\Lambda_M)$ (see also [6, Proposition 1.3]).

Remark: Since the A-action is given by a polynomial over k, the action of $\text{Gal}(k(\Lambda_M)/k)$ on Λ_M commutes with the A-action. So, $\sigma_B(\lambda) = \lambda^B$, for all $\lambda \in \Lambda_M$.

A field L is said to be an A-field if there is a ring homomorphism $\iota : A \rightarrow L$. An A-field L is said to be of generic characteristic if the kernel of ι is zero; otherwise, L is said to be of finite characteristic φ, where $\varphi = \text{ker}(\iota)$. Let L be a finite extension of k which is viewed as an A-field of generic characteristic. Then ϕ is said to be a rank one Drinfeld A-module defined over L if ϕ is a ring homomorphism from A to $\text{End}(\bar{L})$ with $\phi_\tau(X) = TX + aX^q$, for $a \neq 0, a \in L$. For example, the Carlitz module is a rank one Drinfeld module over k.

Let $\phi : A \rightarrow L\{\tau\}$ be a Drinfeld A-module of rank one defined over a finite extension L of k, where L is viewed as an A-field of generic characteristic. Denote $\phi_m(\alpha)$ to be the action of $m \in A$ on $\alpha \in \bar{k}$. For $m \neq 0$ in A, let $\Lambda_m^\phi = \{ \alpha \in \bar{k} \mid \phi_m(\alpha) = 0 \}$. Then Λ_m^ϕ is an A-submodule of \bar{k} which was called the module of m-torsion points of the Drinfeld module ϕ. One has the following properties:

1. Λ_m^ϕ is a vector space over \mathbb{F}_q of dimension d, where $d = \deg m$.

1.5) Λ_m^ϕ is an A-module which is isomorphic to $\frac{A}{(\lambda^m)}$.

1.6) For every monic irreducible polynomial l in A which satisfies the following conditions:

(a) ϕ has good reduction at the primes of L lying over l.

(b) l is unramified in L_σ/k, where L_σ/k is the maximal separable subextension of L/k.

One have that $L(\Lambda_m^\phi)/L$ is a finite abelian extension such that $\text{Gal}(L(\Lambda_m^\phi)/L) \cong (A/\lambda^m)^\ast$ (see [5, Theorem 7.7.1]).

Remarks:

1. Since the A-action is given by a polynomial over L, the action of $\text{Gal}(L(\Lambda_m^\phi)/L)$ on Λ_m^ϕ commutes with the A-action.

2. Let ϕ be a Drinfeld module of rank one over an A-field L of generic characteristic. For monic irreducible polynomial l in A which satisfies the above conditions in (1.6), $\text{Gal}(L(\Lambda_m^\phi)/L)$ consists of elements of the form: $\sigma = \sigma_{\lambda} : \lambda \mapsto \phi_\alpha(\lambda)$, where λ is a generator of Λ_m^ϕ over A and $a \in A$ runs over a set of representatives of $(A/\lambda^m)^\ast$.

KUMMER THEORY OVER DRINFELD MODULES OF RANK ONE 3
2. The Kummer theory over the Carlitz module

In this section, let Γ be a finitely generated A-submodule of the additive group $(k,+)$. For a nonconstant polynomial M in A, let $\frac{1}{M}\Gamma = \{\alpha \in \bar{k}|\alpha^M \in \Gamma\}$ be the M-division module of Γ. Denote by $K = k(\Lambda_M)$ and $k_{M,\Gamma} = k(\Lambda_M, \frac{1}{M}\Gamma)$. Analogous to the classical Kummer theory over \mathbb{Q}, we are interested in the following tower of Kummer extensions $k \subset K \subset k_{M,\Gamma}$ with associated Galois groups:

$$
\begin{align*}
 &k_{M,\Gamma} \\
 &H_\Gamma(M) \\
 &K \ G_\Gamma(M) \\
 &G_\Gamma(M)/H_\Gamma(M) \simeq G(M) \\
 &k
\end{align*}
$$

By (1.3), the Galois group $G(M)$ is isomorphic to $(A/(M))^\ast$. The main goal is to show that under some mild conditions, $H_\Gamma(M)$ is as large as possible.

Given $z \in k$ and let $f_z(u) = u^M - z$, where $u^M = \sum_{i \geq 0}[M]u^i$ is the polynomial in u which gives the Carlitz A-action on \bar{k} as we have defined in Section 1. Then $f_z(u) \in k[u]$ and it is easy to see that $f_z(u)$ is a separable polynomial of degree q^d.

The following properties are well-known (see [5], [7]):

(2.1) $W = \{\alpha + \lambda | \lambda \in \Lambda_M\}$, where α is any fixed root of $f_z(u)$ in \bar{k}, form the complete set of all roots of $f_z(u)$ in \bar{k}.

(2.2) The splitting field $k_{M,z}$ of $f_z(u)$ over k, is a finite abelian extension of K such that $H_{M,z} = Gal(k_{M,z}/K)$ is naturally embedded into Λ_M by $\psi \mapsto \lambda(\psi)$ if $\psi(\alpha) = \alpha + \lambda(\psi)$. More generally, for any given finitely generated A-submodule Γ of $(k, +)$, the composite of all $k_{M,z}, z \in \Gamma, k_{M,\Gamma}$, is also an abelian extension of K.

For any given $z \in k$, by (2.2), the Galois group $H_{M,z}$ is isomorphic to a subgroup H_M of Λ_M. Considering the tower of Galois extensions $k \subset K \subset k_{M,z}$, the Galois group $Gal(K/k)$ acts naturally on $H_{M,z} = Gal(k_{M,z}/K)$ by conjugation. Keeping the notations in (1.3) and (2.2), we may identify the Galois group $Gal(K/k)$ with $(A/(M))^\ast$. Then this action is explicitly given as follows:

Proposition 2.1. $\sigma_B \cdot \psi_\lambda = \psi_\lambda \circ \sigma$, for all $B \in (A/(M))^\ast, \psi_\lambda \in H_{M,z}$; where σ_B and ψ_λ are given by $\sigma_B(\lambda) = \lambda^B$ and $\psi_\lambda(\alpha) = \alpha + \lambda$.

Proof. For any given $\sigma_B \in Gal(K/k)$, let $\sigma \in Gal(k_{M,z}/k)$ be an extension of σ_B. Then, for any given $\psi_\lambda \in Gal(k_{M,z}/K)$, we have $\sigma_B \cdot \psi_\lambda = \sigma \circ \psi_\lambda \circ \sigma^{-1}$. Note that $\sigma^{-1}(\alpha) = \alpha + \lambda'$ for some $\lambda' \in \Lambda_M$. Consequently,

$$
\begin{align*}
 (\sigma_B \cdot \psi_\lambda)(\alpha) &= (\sigma \circ \psi_\lambda \circ \sigma^{-1})(\alpha) \\
 &= (\sigma \circ \psi_\lambda)(\alpha + \lambda') \\
 &= \sigma(\alpha + \lambda' + \lambda) \\
 &= \alpha + \lambda^B \\
 &= \psi_\lambda^B(\alpha).
\end{align*}
$$

This completes the proof. \qed

Now we extend the preceding natural action of $(A/(M))^\ast$ on $Gal(k_{M,z}/K)$ to an action of $A/(M)$ on $Gal(k_{M,z}/K)$ as follows:
Given \(f \in A \), in the case \(q \neq 2 \) or \(q = 2 \) but \(T(T + 1) \nmid M \), we can write \(f \pmod{M} \) as a finite sum \(\sum f_i \pmod{M} \) such that \((f_i, M) = 1 \) for all \(i \). This can be done by Chinese Remainder Theorem as follows:

Proposition 2.2. Let \(M \) be a fixed nonzero element in \(A = \mathbb{F}_q[T] \). In the case that \(q \neq 2 \) or \(q = 2 \) with \(T(T + 1) \nmid M \), for any \(f \in A \), \(f \pmod{M} \) can be written as a finite sum \(\sum f_i \pmod{M} \) with \((f_i, M) = 1 \) for all \(i \). On the other hand, if \(q = 2 \) and \(T(T + 1)|M \), then such a decomposition for \(f \pmod{M} \) does not always exist.

Proof. First, we assume that \(q \neq 2 \) or \(q = 2 \) with \(T(T + 1) \nmid M \). Let \(M = P_1^{n_1} \ldots P_t^{n_t} \), where \(P_i; i = 1, 2, \ldots, t \); are distinct irreducible polynomials in \(A \). In particular, \((P_i, P_j) = 1 \) whenever \(i \neq j \). The assertion is trivial when \((f, M) = 1 \). If \(M|f \), then \(f = (f - 1) + 1 \) gives a desired finite sum for \(f \pmod{M} \). So, we may assume that \((f, M) \neq 1 \) and \(M \nmid f \).

Consider \(f \pmod{P_i^{n_i}} \) for each \(i = 1, 2, \ldots, t \). Let \(I \subseteq \{1, \ldots, t\} \) be the set of indices \(i \) such that \(f \equiv a_i \pmod{P_i^{n_i}} \) with \(a_i \neq 0 \pmod{P_i^{n_i}} \) and let \(J = \{j | 1 \leq j \leq t \text{ and } P_j \text{ divides } f\} = \{1, \ldots, t\} \setminus I \).

If \(2 \nmid q \), then by Chinese Remainder Theorem, there exist \(f_1 \) and \(f_2 \) in \(A \) such that

\[
\begin{align*}
f_1 &\equiv \begin{cases}
a_i/2 \pmod{P_i^{n_i}}, & \text{for } i \in I \text{ with } P_i \nmid a_i, \\
a_i - 1 \pmod{P_i^{n_i}}, & \text{for } i \in I \text{ with } P_i | a_i, \\
1 \pmod{P_j^{n_j}}, & \text{for } j \in J,
\end{cases} \\
f_2 &\equiv \begin{cases}
a_i/2 \pmod{P_i^{n_i}}, & \text{for } i \in I \text{ with } P_i \nmid a_i, \\
1 \pmod{P_i^{n_i}}, & \text{for } i \in I \text{ and } P_i | a_i, \\
-1 \pmod{P_j^{n_j}}, & \text{for } j \in J.
\end{cases}
\end{align*}
\]

Then \(f \equiv f_1 + f_2 \pmod{M} \) with \((f_1, M) = (f_2, M) = 1 \).

For \(2|q \), we discuss the two possible cases as follows:

Case(i): \(q = 2^s \), where \(s \geq 2 \).

For \(i \in I \) with \(P_i \nmid a_i, a_i \pmod{P_i} \) is a nonzero element of the finite field \(A/P_i \) which has at least two distinct nonzero elements. So we can choose a polynomial \(b_i \in A \) with \((b_i, P_i) = 1 \) such that \(a_i + b_i \not\equiv 0 \pmod{P_i} \). For \(i \in I \) with \(P_i | a_i \), it’s obvious that \((a_i + 1, P_i) = 1 \). Thus, for each \(i \in I \), there always exists \(b_i \in A \) with \((b_i, P_i) = 1 \) such that \((a_i + b_i, P_i) = 1 \). Apply Chinese Remainder Theorem, there exist \(f_1 \) and \(f_2 \) such that

\[
\begin{align*}
f_1 &\equiv \begin{cases}
a_i + b_i \pmod{P_i^{n_i}}, & \text{for } i \in I, \\
1 \pmod{P_j^{n_j}}, & \text{for } j \in J,
\end{cases} \\
f_2 &\equiv \begin{cases}
-b_i \pmod{P_i^{n_i}}, & \text{for } i \in I, \\
-1 \pmod{P_j^{n_j}}, & \text{for } j \in J.
\end{cases}
\end{align*}
\]

Then \(f \equiv f_1 + f_2 \pmod{M} \), where \((f_1, M) = (f_2, M) = 1 \).

Case(ii): \(q = 2 \) with \(T(T + 1) \nmid M \).

In this situation, \(\deg P_i \geq 2 \) for all \(i \in I \). In particular, the finite field \(A/P_i \) has at least two distinct nonzero elements. The same argument as in Case(i) would give a desired decomposition for \(f \pmod{M} \).

Finally, assume that \(q = 2 \) and \(T(T + 1)|M \). Take an \(f \in A \) such that \(T|f \) and \(T + 1 \nmid f \). Suppose \(f \equiv f_1 + \ldots + f_n \pmod{M} \) with \((f_i, M) = 1 \) for all \(i \), \(1 \leq i \leq n \).
Then $f(0) = f(1) = n$. But $T | f$ implies that $f(0) = 0$ and $T + 1 \nmid f$ implies that $f(1) = 1$, which is a contradiction. Similarly, for $f \in A$ with $T \mid f$ and $T + 1 | f$, $f \mod M$ cannot have the decomposition. This completes the proof.

Thus in the case that $q \neq 2$ or $q = 2$ but $T(T + 1) \nmid M$, we can define, for $\psi_{\lambda} \in H_{M,z}$ and $\bar{f} \in A/(M)$,

$$\bar{f} \cdot \psi_{\lambda} = \sum_{i} \sigma_{fi} \cdot \psi_{\lambda} = \sum_{i} \psi_{\lambda_{fi}} = \psi_{\sum \lambda_{fi}}.$$

It is easy to check this action is independent of the decomposition $f \equiv \sum f_{i} \mod M$ by noting that $\sum \lambda_{fi} = \lambda \sum f_{i} = \lambda \bar{f}$ which is independent of the choice of the f_{i}.

Therefore, this action is well-defined. Composing with the canonical map from A to $A/(M)$, we have an A-action on $H_{M,z}$.

By the same way, $Gal(K/k)$ acts naturally on $Gal(k_{M,\Gamma}/K)$ by conjugation. In particular, we have an $(A/(M))^{\ast}$-action on $Gal(k_{M,\Gamma}/K)$. Denote this action by $\sigma_{f} \cdot \tau$, for $\sigma_{f} \in Gal(K/k)$ and $\tau \in Gal(k_{M,\Gamma}/K)$. It is easy to check that $(\sigma_{f} \cdot \tau)|_{k_{M,z}} = \sigma_{f} \cdot (\tau|_{k_{M,z}})$ for each $\tau \in \Gamma$. Except for the case $q = 2$ and $T(T + 1)|M$, for each $f \in A/(M)$, write $f \equiv \sum f_{i} \mod M$ with $(f_{i}, M) = 1$. Then we can define $\bar{f} \cdot \tau = \sum \sigma_{fi} \cdot \tau$, and hence $(\bar{f} \cdot \tau)|_{k_{M,z}} = \bar{f} \cdot (\tau('')|_{k_{M,z}})$ for each $\tau \in \Gamma$. This gives an A-action on $Gal(k_{M,\Gamma}/K)$.

Notice that under the natural embedding $\psi_{\lambda} \mapsto \lambda$ by (2.2), $H_{M,z}$ is isomorphic to a subgroup H_{M} of Λ_{M}. The above definition obviously gives that $f \cdot \psi_{\lambda} = \psi_{\lambda_{fi}}$. In particular, if $\lambda \in H_{M}$, then so is $\lambda \bar{f}$ for all $f \in A$. Thus, H_{M} is an A-submodule of Λ_{M}. To summarize the above discussion, we have the following:

Proposition 2.3. Except for the case $q = 2$ and $T(T + 1)|M$, we have:

- (1). The A-action defined as above gives an A-module structure on $H_{M,z}$ and consequently gives an A-module structure on $H_{M,\Gamma}$.
- (2). H_{M} is an A-submodule of Λ_{M} and $H_{M,z}$, $H_{M,\Gamma}$ are isomorphic as A-modules. Consequently, $H_{M,z}$ and $H_{M,\Gamma}$ are A-modules of exponent M.

Proof. First, it is easy to check that $H_{M,z}$ is an A-module under the above well-defined A-action as follows:

(i) $H_{M,z}$ is known to be an abelian group.

(ii) For $f \in A$ and for $\psi_{\lambda_{1}}, \psi_{\lambda_{2}} \in H_{M,z}$ with $\lambda_{1}, \lambda_{2} \in H_{M} \subseteq \Lambda_{M}$, by Proposition 2.1, $f \cdot (\psi_{\lambda_{1}} + \psi_{\lambda_{2}}) = f \cdot \psi_{\lambda_{1} + \lambda_{2}} = \psi_{(\lambda_{1} + \lambda_{2})f} = \psi_{\lambda_{1}f} + \psi_{\lambda_{2}f} = f \cdot \psi_{\lambda_{1}} + f \cdot \psi_{\lambda_{2}}$.

(iii) Let $f, g \in A$ and let $\lambda \in H_{M}$. Write $f \equiv \sum f_{i} \mod M$, $g \equiv \sum g_{j} \mod M$, with $(f_{i}, M) = (g_{j}, M) = 1$ for all i, j. Then

$$(fg) \cdot \psi_{\lambda} = (\sum_{i,j} \sigma_{fi}g_{j}) \cdot \psi_{\lambda} = \sum_{i,j} \psi_{\lambda_{fi}g_{j}} = \psi_{\lambda_{fg}}.$$

On the other hand,

$$f \cdot (g \cdot \psi_{\lambda}) = f \cdot \psi_{\lambda g} = \psi_{\lambda fg} = (fg) \cdot \psi_{\lambda}.$$

Moreover, $(f + g) \cdot \psi_{\lambda} = \psi_{\lambda f + g} = \psi_{\lambda f} + \psi_{\lambda g} = f \cdot \psi_{\lambda} + g \cdot \psi_{\lambda}$.

Finally, by Proposition 2.1, it is clear that $H_{M,z}$ and H_{M} are isomorphic as A-modules. Since H_{M} is of exponent M, so are the Galois groups $H_{M,z}$ and $H_{M,\Gamma}$. This completes the proof.

Remark: \(\text{Gal}(k(\Lambda_M)/k) \) acts on \(H_{M,z} \) by conjugation and acts on \(\Lambda_M \) naturally. By Proposition 2.1, \(\sigma_B \cdot \psi_\lambda = \psi_{\lambda^B} = \psi_{\sigma_\Lambda(\lambda)} \), so \(H_{M,z} \) and \(H_M \) are isomorphic as \(\text{Gal}(k(\Lambda_M)/k) \)-modules as well.

Recall that \(\Lambda_M \) is a cyclic \(A \)-module. Consequently, there exists by normal basis theorem. Consequently, there exists \(\sigma \in \text{Gal}(k(\Lambda_M)/k) \) of exponent \(M \) for all \(\tau \) from \(\Lambda_M \) and hence \(H_{M,z} \) is a cyclic \(A \)-module. This leads to the following general definitions. To fix notations, let \(E, F \) be extensions of \(k \) in \(\bar{k} \).

Definition 2.4.

1. An abelian Galois extension \(E/F \) is said to be \(A \)-abelian if its Galois group has an \(A \)-module structure. Denote it by \((E/F, \cdot_A) \) to specify the \(A \)-module structure.

2. An \(A \)-abelian extension \((E/F, \cdot_A) \) is said to be \(A \)-cyclic if its Galois group is a cyclic \(A \)-module. In this case, if \(\text{Gal}(E/F) \cong A/(M) \), where \(M \) is a monic polynomial, then we say that the \(A \)-cyclic extension \(E/F \) is of order \(M \).

Definition 2.5. An \(A \)-abelian extension \((E/F, \cdot_A) \) is said to be of exponent \(M \) if its Galois group \(G \) is a \(M \)-torsion \(A \)-module, i.e., \(M \cdot_A \sigma = 1 \) for all \(\sigma \in G \).

Example: Let \(K = k(\Lambda_M) \) and \(z \in k - k^M \). With the \(A \)-module structure defined in Proposition 2.3, \(k_{M,z}/K \) is an \(A \)-cyclic extension of order \(N \) dividing \(M \) and \(k_{M,z}/K \) is an \(A \)-abelian extension of exponent \(M \).

Remark: For any field extension \(E/k \) in \(\bar{k} \) and for any automorphism \(\sigma \) of \(E \) over \(k \), by the formula given by Carlitz, we have

\[
\sigma(\alpha^M) = \sigma\left(\sum_{i=0}^{d} [M]_{1}^{i} \alpha^{q^i}\right)
= \sum_{i=0}^{d} [M]_{1}^{i} \sigma(\alpha)^{q^i}
= \sigma(\alpha)^M \quad \text{for all } M \in A.
\]

In other words, \(\sigma \) is an \(A \)-module automorphism of the \(A \)-module \((E, +) \).

Proposition 2.6. Assume \(\Lambda_M \subseteq F \). If \((E/F, \cdot_A) \) is an \(A \)-cyclic extension of order \(M \), then there exists \(\alpha \in E \) such that \(E = F(\alpha) \) and \(\alpha \) satisfies an equation \(X^M - a = 0 \) for some \(a \in F \).

Proof. By definition, \(G = \text{Gal}(E/F) \) is isomorphic to \(A/(M) \) as \(A \)-modules. On the other hand, \(\Lambda_M \) is isomorphic to \(A/(M) \) as \(A \)-modules. Thus we have an \(A \)-isomorphism \(f : G \rightarrow \Lambda_M \). If \(\sigma \) is a generator of \(G \) over \(A \), then \(\lambda = f(\sigma) \) is a generator of \(\Lambda_M \) over \(A \). Moreover, \(f(B \cdot_A \sigma) = \lambda^B \) for all \(B \in A \).

Consider the map \(f \). Since \(G \) acts trivially on \(\Lambda_M \), we may view \(f \) as a 1-cocycle of \(G \) with values in the additive group \((E, +) \). It is well-known that \(H^1(G, E) = 0 \) by normal basis theorem. Consequently, there exists \(\alpha \in E \) such that \(f(\tau) = \tau \alpha - \alpha \) for all \(\tau \in G \). In particular, \(\sigma \alpha = \alpha + \lambda \), where \(\sigma \) is a fixed generator of \(G \) over \(A \) and \(\lambda = f(\sigma) \). For any \(\tau \in G, \tau = B \cdot_A \sigma \) for some \(B \in A \). Hence we have \(B \cdot_A \sigma(\alpha) = \alpha + \lambda^B \) for all \(B \in A \). We conclude that \(\{\alpha + \lambda \cdot_A \lambda \in \Lambda_M\} \) are distinct conjugates of \(\alpha \) over \(F \). This implies that \(\left|\left[F(\alpha) : F\right]\right| \geq |A/(M)| \). Since \(\left|E : F\right| = |A/(M)| \), we must have \(E = F(\alpha) \). Furthermore, \(\sigma^M(\alpha)_M = (\sigma^M(\alpha))_M = (\alpha + \lambda)_M^M = \alpha^M \) for all \(B \in A, B \cdot_A \sigma(\alpha)_M = (B \cdot_A \sigma(\alpha))_M = (\alpha + \lambda^B)_M^M = \alpha^M \). Thus \(\alpha^M \in F \) and we let \(a = \alpha^M \). This proves the assertion. \(\square \)
Recall that, by (1.3), $J = \{\sigma_a[a \in \mathbb{F}_q]\}$ is a subgroup of $G(M)$, where $\sigma_a(\lambda) = a\lambda$. This gives the following result by a well-known theorem of Sah (see [10, Theorem 5.1]).

Proposition 2.7. Except for the case that $q = 2$ and $T|M$ or $T + 1|M$, we have $H^1(G(M), \Lambda_M) = 0$.

Proof. For $q \neq 2$, there exist elements a and $a - 1 \in \mathbb{F}_q^*$ such that $\lambda \mapsto \sigma_a \lambda - \lambda$ is an automorphism of Λ_M. For $q = 2$ but neither T nor $T + 1$ divides M, $(A/(M))^*$ contains elements f and $f + 1$ such that $\lambda \mapsto \lambda f - \lambda$ is an automorphism of Λ_M. Then by Sah’s theorem, we have $H^1(G(M), \Lambda_M) = 0$.

For the rest of this section, we assume that $q \neq 2$ or $q = 2$ but neither T nor $T + 1$ divides M.

For the finitely generated A-submodule Γ of $(k, +)$, let $\Gamma' = \frac{1}{\mathbb{Z}} \Gamma \cap k$ and define the exponent $e(\Gamma'/\Gamma)$ to be the unique monic polynomial with smallest degree such that $\Gamma'^e(\Gamma'/\Gamma) \subseteq \Gamma$. It is easy to check that $e(\Gamma'/\Gamma)$ is well-defined.

For each $a \in \Gamma$, let $\alpha \in \tilde{k}$ be a root of the polynomial $f_a(X) = X^M - a$. Let $\sigma \in H_{M, \Gamma}$. Then $\sigma \alpha = \alpha + \lambda_\sigma$ for some $\lambda_\sigma \in \Lambda_M$. The map $\sigma \mapsto \lambda_\sigma$ is obviously a homomorphism of $H_{M, \Gamma}$ into Λ_M. Write $\lambda_\sigma = \sigma \alpha - \alpha$. It is easy to see that λ_σ is independent of the choice of the root α of $X^M - a$. We denote λ_σ by $<\sigma, a>$. The map $(\sigma, a) \mapsto <\sigma, a>$ gives us a map $H_{M, \Gamma} \times \Gamma \to \Lambda_M$.

Proposition 2.8. The map $H_{M, \Gamma} \times \Gamma \to \Lambda_M$ given by $(\sigma, a) \mapsto <\sigma, a>$ is A-bilinear, so that the kernel on the left is $\{1\}$ and the kernel on the right is $\Gamma \cap K^M$.

Proof. If $a, b \in \Gamma$ and $\alpha^M = a$, $\beta^M = b$, then $(\alpha + \beta)^M = a + b$ and hence $<\sigma, a + b> = (\alpha + \beta)^M = (\sigma(\alpha + \beta) - (\alpha + \beta) = (\sigma(\alpha) - \alpha) + (\sigma(\beta) - \beta) = <\sigma, a> + <\sigma, b>$ for all $\sigma \in H_{M, \Gamma}$. On the other hand, let $\sigma, \tau \in H_{M, \Gamma}$ and $a \in \Gamma$. If $\alpha^M = a$, then $\sigma \tau(\alpha) = \sigma(\alpha + \lambda_\tau) = \alpha + \lambda_\sigma + \lambda_\tau$. Hence

$$<\sigma \tau, a> = <\sigma, a> + <\tau, a>.$$

Moreover, for each $B \in A$ and for each $\sigma \in H_{M, \Gamma}$, by the definition of A-action on $H_{M, \Gamma}$ (see the discussion above Proposition 2.3), we have $B \cdot \sigma(\alpha) = \alpha + \lambda_B^a$. In other words,

$$<B \cdot \sigma, a> = B \cdot <\sigma, a> = <\sigma, a>.$$

On the other hand, if $\alpha^M = a$, then $(\alpha^B)^M = a^B$. Hence $<\sigma, a^B> = (\sigma^B - \alpha^B = (\sigma(\alpha))^B - \alpha^B = (\alpha + <\sigma, a>)^B - \alpha^B = <\sigma, a>^B$. This proves that the map $(\sigma, a) \mapsto <\sigma, a>$ is an A-module bilinear map from $H_{M, \Gamma} \times \Gamma$ to Λ_M.

Suppose $\sigma \in H_{M, \Gamma}$ such that $<\sigma, a> = 0$ for all $a \in \Gamma$. Then for every generator α of $k_{M, \Gamma}$ such that $\alpha^M = a$, we have $\sigma \alpha = \alpha$. Hence $\sigma = 1$ and the kernel on the left is $\{1\}$.

On the other hand, let $a \in \Gamma$ be such that $<\sigma, a> = 0$ for all $\sigma \in H_{M, \Gamma}$. Let $\alpha \in \tilde{k}$ be such that $\alpha^M = a$. Consider the subfield $k_{M, a} = K(\alpha)$ of $k_{M, \Gamma}$. If $\alpha \notin \tilde{k}$, then there exists an automorphism of $K(\alpha)$ over K which is not the identity. Extend this automorphism to $k_{M, \Gamma}$ and call this extension σ. Then clearly $<\sigma, a> \neq 0$. Thus the kernel on the right is $\Gamma \cap K^M$.

Consequently, we have an A-module homomorphism $\varphi : \Gamma \to Hom_A(H_G(M), \Lambda_M)$. More precisely, for each $\alpha \in \Gamma$, we have an A-module homomorphism

$$\varphi_a : H_G(M) \to \Lambda_M$$

defined by $\varphi_a(\sigma) = \sigma \alpha - \alpha$.

\[\text{Wen-Chen Chi and Anly Li} \]
The order of Λ assertion.

φ \(H \)

the pairing

other hand, Corollary 2.10 implies that

Proof. Let $a \in \varphi$ and $\alpha^M = a$. For each $\sigma \in G_T(M)$, define $\lambda_\sigma = \sigma \alpha - \alpha$. Then

\[
\{ \lambda_\sigma \} \text{ is a 1-cocycle of } G_T(M) \text{ in } \Lambda_M. \quad \text{Since } a \in \varphi, \sigma \alpha = a \text{ for all } \sigma \in H_T(M); \text{ this cocycle depends only on the class of } \sigma \text{ modulo the subgroup } H_T(M) \text{ of } G_T(M).
\]

We may view λ_σ as a 1-cocycle of $G(M)$ in Λ_M. By Proposition 2.7, there exists a $\lambda_0 \in \Lambda_M$ such that $\lambda_\sigma = \sigma \lambda_0 - \lambda_0$ for all $\sigma \in G_T(M)$. Thus $\sigma(\alpha - \lambda_0) = a$ for all $\sigma \in G_T(M)$.

In other words, $a = \alpha - \lambda_0 \in k$. Since both α and λ_0 are in $\frac{1}{M} \Gamma$, we have $a = \alpha - \lambda_0 \in \Gamma'$. This proves that $a = (\alpha - \lambda_0)^M \in (\Gamma')^M$ for all $a \in \varphi$, and hence $\varphi \subseteq (\Gamma')^M$. Since $e_M(\Gamma) = f \cdot e(\Gamma'/\Gamma) + g \cdot M$ for some $f, g \in A$, we have that $\varphi^M(\Gamma) \subseteq (\Gamma')^M \cap M$. This completes the proof. \hspace{1cm} \Box

Corollary 2.10. If $e_M(\Gamma) = 1$, then $\Gamma^M = \Gamma \cap K^M = \Gamma \cap k^M$. In this case, the pairing $H_T(M) \times \Gamma/\Gamma^M \to \Lambda_M$ is nondegenerate. Consequently, we have an A-module (resp. $A/(M)$-module) isomorphism

\[
\varphi : \Gamma/\Gamma^M \to \text{Hom}_A(H_T(M), \Lambda_M)(\text{ resp. } \varphi : \Gamma/\Gamma^M \to \text{Hom}_{A/(M)}(H_T(M), \Lambda_M)).
\]

Proof. By Theorem 2.9, the right kernel of the pairing $H_T(M) \times \Gamma \to \Lambda_M$ is contained in Γ^M. In other words, we have that $(\Gamma \cap K^M) \subseteq \Gamma^M$. On the other hand, $\Gamma^M \subseteq (\Gamma \cap k^M) \subseteq (\Gamma \cap K^M)$. We conclude that $\Gamma^M = \Gamma \cap K^M = \Gamma \cap k^M$. In particular, the pairing $H_T(M) \times \Gamma/\Gamma^M \to \Lambda_M$ is nondegenerate. By duality of A-(resp. $A/(M)$-) modules, we have the isomorphisms as stated. \hspace{1cm} \Box

Corollary 2.11. If $e_M(\Gamma) = 1$ and Γ is free of rank r with basis $\{ a_1, \ldots, a_r \}$, let $\varphi_i = \varphi_{a_i}$, then the map $H_T(M) \to \Lambda_M \times \cdots \times \Lambda_M$ (\(r \)-copies) given by $\sigma \mapsto (\varphi_1(\sigma), \ldots, \varphi_r(\sigma))$ is an A-module (resp. $A/(M)$-module) isomorphism.

Proof. It is easy to see that the map $\sigma \mapsto (\varphi_1(\sigma), \ldots, \varphi_r(\sigma))$ is injective. On the other hand, Corollary 2.10 implies that $H_T(M)$ has order $|A/(M)|^r$, which is also the order of $\Lambda_M \times \cdots \times \Lambda_M$ (\(r \)-copies). Hence it is surjective. This proves the assertion. \hspace{1cm} \Box

Remarks:

(i). Let Γ be a finitely generated A-submodule of $(k,+)$ of rank r. By general theory of modules over principal ideal rings (see [1, Ch.VII, §4]) and Theorem 1 of [11], Γ is isomorphic to a direct sum of the form $A \oplus \cdots \oplus A$ or $A \oplus \cdots \oplus A \oplus A/(N)$, where N is a nonzero polynomial. If $e_M(\Gamma) = 1$, by Corollary 2.11, we have a noncanonical $A/(M)$-module isomorphism between Γ/Γ^M and $H_T(M)$. If in addition $\Gamma \cong A \oplus \cdots \oplus A$, or, $\Gamma \cong A \oplus \cdots \oplus A \oplus A/(N)$ and M is relatively prime to N, then $H_T(M)$ is isomorphic to $\Lambda_M \times \cdots \times \Lambda_M$ (\(r \)-copies).

(ii). If the orders of Λ_M and $G(M)$ are relatively prime, for example,

$M = \prod_{P|\lambda M} P$ is a product of distinct irreducible polynomials P,

then $H^2(G(M), \Lambda_M) = 0$ by Cor.(10.2) in [2]. In this case, the orders of $H_T(M)$ and $G(M)$ are also relatively prime, so $H^2(G(M), H_T(M)) = 1$, where
$G(M)$ acts on $H_\Gamma(M)$ by conjugation. In particular, the exact sequence
$1 \to H_\Gamma(M) \to G_\Gamma(M) \to G(M) \to 1$ is split and $G_\Gamma(M)$ is a semidirect
product of $H_\Gamma(M)$ by $G(M)$ (see [2, CH. IV]).

3. The Kummer theory over rank one Drinfeld $\mathbb{F}_q[T]$-modules

In this section, we will consider general rank one Drinfeld A-modules, and the
following discussion will be similar with that given in the previous section. The
main difference is that the Galois group of the cyclotomic extension can be com-
pletely determined for any nonzero polynomial in the Carlitz module case, while
in general rank one case, it can only be determined under some condition (see [5],
Theorem 7.7.1). For the convenience of the readers, we will also give the sketch of
the proof.

Let ϕ be a Drinfeld A-module of rank one defined over a finite extension L of k,
where L is viewed as an A-field of generic characteristic. For simplicity, we denote
$L(\Lambda^\phi_m)$ by L_m for all $m \neq 0$ in A. By definition, it is clear that the additive group
of L_m is an A-submodule of \bar{k}.

Given $z \in L$ and let $f_z(u) = \phi_m(u) - z$. Then $f_z(u) \in L[u]$ and it is easy to
see that $f_z(u)$ is a separable polynomial of degree $d\phi$, where d is the degree of m.
Similar to the discussions in Section 2, we can consider the splitting field $L_{m,z}$ of
$f_z(u)$ over L, say $L_{m}(\alpha)$, where α is any fixed root of $f_z(u)$ in \bar{k}. And we have
that $L_{m,z}$ is a finite abelian extension of L_m such that $H_{m,z} = Gal(L_{m,z}/L_m)$ is
naturally embedded into Λ^ϕ_m by $\psi \mapsto \lambda(\psi)$ if $\psi(\alpha) = \alpha + \lambda(\psi)$. More generally, for a
given A-submodule Γ of L, let $L_{m,\Gamma}$ be the composite of all $L_{m,z}; z \in \Gamma$. Then $L_{m,\Gamma}$ is also an abelian extension of L_m.

Throughout the rest of this section, l will denote a monic irreducible polynomial
in A satisfying the following conditions:

(a). ϕ has good reduction at the primes of L lying over l.
(b). l is unramified in L_s/k, where L_s/k is the maximal separable subextension of
L/k.

For any given $z \in L$, via the above embedding, the Galois group $H_{l,z}$ is isomor-
phic to a subgroup H_l of Λ^ϕ_l. Considering the tower of Galois extensions
$L \subset L_l \subset L_{l,z}$, the Galois group $Gal(L_l/L)$ acts naturally on $H_{l,z} = Gal(L_{l,z}/L_l)$
by conjugation. By identifying the Galois group $Gal(L_l/L)$ with $(A/lA)^*$, this
action can be explicitly computed as Proposition 2.1, we have
$\sigma_{\bar{a}} \cdot \psi_\lambda = \psi_{\phi_{a}(\lambda)}$, for all $a \in (A/lA)^*, \psi_\lambda \in H_{l,z};$ where $\sigma_{\bar{a}}$ and ψ_λ are given by $\sigma_{\bar{a}}(\lambda) = \phi_{a}(\lambda)$ and
$\psi_\lambda(\alpha) = \alpha + \lambda$.

As in Section 2, we can extend the natural action of $(A/lA)^*$ on $Gal(L_{l,z}/L_l)$ to
an action of A/lA on $Gal(L_{l,z}/L_l)$. This action is well-defined. Composing with
the canonical map from A to A/lA, we have an A-action on $H_{l,z}$ as well as on $H_{l,\Gamma}$.

The above definition obviously gives that $a \cdot \psi_\lambda = \psi_{\phi_{a}(\lambda)}$ for $a \in A$. In particular,
if $\lambda \in H_l$, then so is $\phi_{a}(\lambda)$ for all $a \in A$. Thus, H_{l} is an A-submodule of Λ^ϕ_l. To
summarize the above discussion, we have the following results as in Proposition 2.3:

Proposition 3.1. Let l be a monic irreducible polynomial in A satisfying the above
conditions. We have:

(1). The A-action defined as above gives an A-module structure on $H_{l,z}$ and con-
sequently gives an A-module structure on $H_{l,\Gamma}$.
Proposition 3.2. \(H_1 \) is an \(A \)-submodule of \(\Lambda^\phi_1 \) and \(H_{1,z}, H_l \) are isomorphic as \(A \)-modules. Consequently, \(H_{1,z} \) and \(H_{1,\Gamma} \) are \(A \)-modules of exponent \(l \).

Let \(\Gamma \) be a finitely generated \(A \)-submodule of the additive group \((L, +)\). Let \(\frac{1}{l}\Gamma = \{ \alpha \in \mathbb{k} | \phi_l(\alpha) \in \Gamma \} \) be the \(l \)-division module of \(\Gamma \). Denote by \(L_l = L(\Lambda^\phi_l) \) and \(L_{l,\Gamma} = L(\Lambda^\phi_l, \frac{1}{l}\Gamma) \). Analogous to the classical Kummer theory, we are interested in the following tower of Kummer extensions \(L \subset L_l \subset L_{l,\Gamma} \) with associated Galois groups:

\[
\begin{align*}
L_{l,\Gamma} & \mid H_\Gamma(l) \\
L_l & \mid G_\Gamma(l) \\
G_\Gamma(l)/H_\Gamma(l) & \simeq G(l) \mid L
\end{align*}
\]

Since \(G(l) \cong (A/\mathfrak{a}A)^* \) has order prime to the order of \(\Lambda^\phi_1 \), by a well-known result in [2, Cor. 10.2], we have the following:

Proposition 3.3. The map \(H^1(G(l), \Lambda^\phi_1) = 0 \).

By (1.6), the Galois group \(G(l) \) is isomorphic to \((A/\mathfrak{a}A)^* \). The main goal is to show that under some mild condition, \(H_\Gamma(l) \) is as large as possible.

Let \(\Gamma' = \frac{1}{l}\Gamma \cap L \) and define the exponent \(e(\Gamma'/\Gamma) \) to be the unique monic polynomial with smallest degree such that \(\phi_{\sigma((\Gamma'/\Gamma))} \leq \Gamma \). It is easy to check that \(e(\Gamma'/\Gamma) \) is well-defined.

For each \(a \in \Gamma \), let \(\alpha \in \mathbb{k} \) be a root of the polynomial \(f(X) = \phi_l(X) - a \). Let \(\sigma \in H_{l,\Gamma} \). Then \(\sigma \alpha = \alpha + \lambda_{\sigma} \) for some \(\lambda_{\sigma} \in \Lambda^\phi_l \). The map \(\sigma \mapsto \lambda_{\sigma} \) is obviously a homomorphism of \(H_{l,\Gamma} \) into \(\Lambda^\phi_l \). Write \(\lambda_{\sigma} = \sigma \alpha - \alpha \). It is easy to see that \(\lambda_{\sigma} \) is independent of the choice of the root \(\alpha \) of \(\phi_l(X) - a \). We denote \(\lambda_{\sigma} \) by \(\langle \sigma, a \rangle \).

The map \((\sigma, a) \mapsto \langle \sigma, a \rangle \) gives us a map \(H_{l,\Gamma} \times \Gamma \to \Lambda^\phi_1 \).

Proposition 3.4. The map \(H_{l,\Gamma} \times \Gamma \to \Lambda^\phi_1 \) given by \((\sigma, a) \mapsto \langle \sigma, a \rangle \) is \(A \)-bilinear, so that the kernel on the left is \(\{1\} \) and the kernel on the right is \(\Gamma \cap \phi_l(L_l) \).

Proof. Similar to the proof of Proposition 2.8. \(\square \)

Thus, we have an \(A \)-module homomorphism \(\varphi : \Gamma \to Hom_A(H_\Gamma(l), \Lambda^\phi_1) \). More precisely, for each \(a \in \Gamma \), we have an \(A \)-module homomorphism

\[
\varphi_a : H_\Gamma(l) \to \Lambda^\phi_1 \text{ defined by } \varphi_a(\sigma) = \sigma \alpha - \alpha,
\]

where \(\phi_l(\alpha) = a \).

By the same way as discussed in Section 2, we can get the following results:

Theorem 3.5. Let \(e_l(\Gamma) = g.c.d.(e(\Gamma'/\Gamma), l) \) and let \(\Gamma_\varphi \) be the kernel of \(\varphi \). Then \(\phi_{\sigma((\Gamma'/\Gamma))} \subseteq \phi_\Gamma(\Gamma) \).

Corollary 3.6. If \(e_l(\Gamma) = 1 \), i.e. \(l \nmid e(\Gamma'/\Gamma) \), then \(\phi_l(\Gamma) = \Gamma \cap \phi_l(L_l) = \Gamma \cap \phi_l(L) \).

In this case, the pairing \(H_\Gamma(l) \times \Gamma/\phi_l(\Gamma) \to \Lambda^\phi_1 \) is nondegenerate. Consequently, we have an \(A \)-module (resp. \(A/\mathfrak{a}A \)-module) isomorphism

\[
\varphi : \Gamma/\phi_l(\Gamma) \to Hom_A(H_\Gamma(l), \Lambda^\phi_1), \text{ (resp. } \varphi : \Gamma/\phi_l(\Gamma) \to Hom_{A/\mathfrak{a}A}(H_\Gamma(l), \Lambda^\phi_1) \).
\]
Corollary 3.6. If $e_l(\Gamma) = 1$ and Γ is free of rank r with basis $\{a_1, \ldots, a_r\}$, let $\varphi_i = \varphi_{a_i}$, then the map $H_1(l) \to \Lambda^\phi_l \times \cdots \times \Lambda^\phi_l$ (r-copies) given by $\sigma \mapsto (\varphi_1(\sigma), \ldots, \varphi_r(\sigma))$ is an A-module (resp. A/IA-module) isomorphism.

Note that it is not clear whether $e_l(\Gamma) = 1$ for almost all monic irreducible polynomials l in A. In order to obtain the result that $H_1(l) \cong \Lambda^\phi_l \times \cdots \times \Lambda^\phi_l$ (r-copies) for almost all primes l in A, we give the proof as follows:

First, recall the following well-known result (see also [12, P.71, Lemma]):

Lemma 3.7. Let R be a product of fields, and let V be a free rank 1 module over R. Suppose that C is an R-submodule of $B = V \times \cdots \times V$ (n times) which is strictly smaller than B. Then there are elements t_1, \ldots, t_n of R, not all 0, such that $\sum t_i v_i = 0$ for all $(v_1, \ldots, v_n) \in C$.

By taking $R = A/IA$, $V = \Lambda^\phi_l$ and $C = H_1(l)$, then it is sufficient to show that there are elements $\varphi_1, \ldots, \varphi_r \in H_1(l)$ which are linearly independent over A/IA.

Let $H_1 = Gal(L^{sep}/L(\Lambda^\phi_l))$. Consider the map $\varphi' : L \to Hom(H_1, \Lambda^\phi_l)$ given by $x \mapsto \varphi'_x$, where $\varphi'_x(\sigma) = \sigma(x) - x$ for $\sigma \in H_1$ and some α with $\phi_l(\alpha) = x$. It is easy to see that the map φ' is A-linear. Consider the map $\delta : L \to H^1(Gal(L^{sep}/L), \Lambda^\phi_l)$, which is obtained by taking cohomology in the short exact sequence $0 \to \Lambda^\phi_l \to L^{sep} \to L^{sep} \to 0$. By definition, it is easy to see that φ' is the composition of δ with the restriction homomorphism $Res. : H^1(Gal(L^{sep}/L), \Lambda^\phi_l) \to H^1(H_1, \Lambda^\phi_l) = Hom(H_1, \Lambda^\phi_l)$. By the restriction-inflation sequence together with the vanishing of $H^1(G(l), \Lambda^\phi_l)$ (given in Proposition 3.2), we have that φ' induces an A/IA-linear injection $L/\phi_l(L) \to Hom(H_1, \Lambda^\phi_l)$. Notice that if we restrict φ' to $\Gamma/\phi_l(\Gamma)$, then each φ'_x in $\varphi'(\Gamma/\phi_l(\Gamma))$ factors through $H_1(l)$. So, we may view the map $\varphi'_x|_{\Gamma/\phi_l(\Gamma)}$ as the natural map $\Gamma/\phi_l(\Gamma) \to Hom(H_1(l), \Lambda^\phi_l)$ given by $a \mapsto \varphi_a$ as defined above Theorem 3.4. By the same arguments as in [4, Theorem 5], we have that for almost all l in A, a_1, \ldots, a_r are linearly independent modulo $\phi_l(L)$. Hence $\varphi_1, \ldots, \varphi_r$ are linearly independent over A/IA.

Remark: Since the orders of Λ^ϕ_l and $G(l)$ are relatively prime, by [2, Cor. 10.2], we have that $H^2(G(l), \Lambda^\phi_l) = 0$. In this case, the orders of $H_1(l)$ and $G(l)$ are also relatively prime, so $H^2(G(l), H_1(l)) = 1$, where $G(l)$ acts on $H_1(l)$ by conjugation. In particular, the exact sequence $1 \to H_1(l) \to G_1(l) \to G(l) \to 1$ is split and $G_1(l)$ is a semidirect product of $H_1(l)$ by $G(l)$ (see [2, Ch.IV]).

Acknowledgements:
The authors wish to thank Professor Chih-Nung Hsu for his helpful discussion. Also, we wish to thank the referee for invaluable comments and suggestions.

References
[1] N. Bourbaki, Algèbre, Chapitres 4 à 7, Masson, Paris, 1981.
[2] K.S.Brown, Cohomology of groups, Springer-Verlag, 1982.
[3] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc. 43 (1938), 167-182.
[4] L. Denis, Géométrie diophantienne sur les modules de Drinfeld, in the Proceedings “The Arithmetic of Function Fields ”, edited by D.Goss, D. Hayes, and M.Rosen; Walter de Gruyter, 1997, 285–302.
[5] D. Goss, book Basic Structures of Function Field Arithmetic, Springer-Verlag, 1996.
[6] S. Galovich and M. Rosen, *Units and Class groups in cyclotomic function fields*, J. Number Theory, **14** (1982), 156–184.

[7] D. Hayes, *Explicit class field theory for rational function fields*, Trans. Amer. Math. Soc., **189** (1974), 77–91.

[8] C.-N. Hsu, *On Artin’s conjecture for the Carlitz module*, Compositio Math., **106** (1997), 247–266.

[9] S. Lang, *Algebra (3rd. Edition)*, Addison-Wesley, 1993.

[10] S. Lang, *Elliptic Curves-Diophantine Analysis*, Springer-Verlag, 1978.

[11] B. Poonen, *Local height functions and Mordell-Weil theorem for Drinfeld modules*, Compositio Math., **97** (1995), 349–368.

[12] K. A. Ribet, *Kummer theory on extensions of abelian varieties by tors*, **46** (1979), Duke Math. J., 745–761.

†Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan, Republic of China.

E-mail address: wchi@math.ntnu.edu.tw

‡Department of Mathematics, Fu-Jen University, Taipei, Taiwan, Republic of China.

E-mail address: anlyli@math.fju.edu.tw