THE PROBABLE MEDICINAL USAGE OF CASSIA TORA: AN OVERVIEW

Santosh Kumar Shukla, Anand Kumar, Marcelle Terrence, Joshua Yusuf, Vivek Pratap Singh and Manish Mishra

1Department of Biochemistry, University College of Medical Sciences and GTB Hospital Delhi, India
2School of Medicine, All Saints University, Roseau, Dominica, Lira, Uganda
3College of Medicine, All Saints University, Kingstown, St. Vincent and the Grenadines, Lira, Uganda
4Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA

ABSTRACT

Cassia tora (C. tora) is a small shrub budding as weed in Asian and African countries. It is a known edible leafy vegetable taken up by Asians. From time immemorial, different parts of Cassia tora have found application in Indian and Chinese medicine. Its varying useful medicinal effects are well documented in many publications. In this review we have compiled the traditional medicinal usage of Cassia tora which have been confirmed by scientific studies.

Keywords: Antioxidant, Antimicrobial, Hepatoprotective, Antimutagen, Hypolipidemic

1. INTRODUCTION

Cassia tora (C. tora) (sub-family: Caesalpinioideae; Family: Leguminosae/Fabaceae) is a small shrub which grows up in warm moist soil throughout the tropical parts of Asian and African countries. It is known by different names in different places like wise Foetid Cassia tora, Sickle Senna, Wild Senna, Sickle Pod, Coffee Pod, Tovara, Chakvad, Ring-worm Plant. Cassia tora has 10 cm long pinnate leaves, each leaf has three pairs of leaflets that are opposite, ovate, oblong and oblique at the base. The yellow-colored flowers are bearded in the axel of the leaves. The flowers consist of half inch diameter five petals. The seeds of Cassia tora are rhombohedral and brown in color. The Cassia tora gets flowers in the rainy season and the fruits in the winter season. Cassia tora leaves, seeds and roots are utilized as food ingredients since long (Ingle et al., 2012).

In Ayurvedic and Chinese medicine books, different medical usage is depicted (DESCRIBED) for different parts of Cassia tora plant. In traditional Ayurvedic and Chinese Medicine, its usage has been described as an antioxidant, antimicrobial, antihypertofoxic, antidiuretic, antidiarrhoeal and antimutagenic plant. Also, it has been suggested that Cassia tora may lead to an improvement in visual acuity (Yen et al., 1998; Patil et al., 2004; Zhenbao et al., 2007; Zhu et al., 2008). Its beneficial effects are told to be (as glamorized at different commercial websites assessed on 21/12/2012, viz. http://www.aminaherbs.com/product.php?id_product=310; http://www.iloveindia.com/indian-herbs/cassia-tora.html) from skin diseases (like ringworm and itching or body scratch and psoriasis, eczema and dermatomycosis) to fever, bronchial infections, cardio-vascular disease, bowel problems (piles, hemorrhoids), leprosy.

So, we have started our search for authentic scientific experimental publications related to Cassia tora and it appears that not much research has been carried out to illustrate its medicinal importance. So we think to summarize the scientific findings till date available, which will help the other scientists and physicians to have a quick look on the usage of Cassia tora and further they can illustrate scientifically different aspect of this plant and elaborate our knowledge in the light of experimental proof.

1.1. Phytochemicals Isolated From Cassia Tora

The bioactive constituents of Cassia tora are anthraquinones, including 1-desmethylaurantian-obtusin,
1-desmethylchryso-obtusin, aurantio-obtusin, chryso-obtusin, obtusin (Zhu et al., 2008; Meena et al., 2010). The seeds of C. tora contain a variety of bioactive anthraquinones, including chrysophanol, emodin, rhein, which are mainly responsible for their pharmacological action (S) (Yen et al., 1998; Duke, 2001; Wu and Yen, 2004). From the seeds of C. tora, an anthraquinone glucoside was also isolated and characterized as alaternin 2-O-β-D-glucopyranoside (Lee et al., 1998).

From the roasted seeds of C. tora, a new naphthopyrone glycoside was isolated and characterized as 10-[(β-D-glucopyranosyl-(1>6)-O-β-D-glucopyranosyl)oxy]-5-hydroxy-8-methoxy-2-methyl-4H-l-naphtho [1,2-b] pyran-4-one (isorubrofusarin gentiobioside). Along with isorubrofusarin gentiobioside, alaternin and adenosine were also isolated and identified (Lee et al., 1997; Meena et al., 2010). From the leaves of C. tora, Ononitol monohydrate, which is structurally similar to glycoside, was isolated (Dhanasekaran et al., 2009).

1.2. Pharmacological Use

There are various pharmacological applications, which have been experimentally examined for C. tora (Fig. 1).

1.3. Anti-Oxidant Activity

Several diseases/disorders are associated to oxidative stress caused by free radicals (Gutteridge, 1993; Mukherjee and Gogoi, 2011). Antioxidants behave as a key defense system against free radical mediated toxicity by protecting the damages (Lee et al., 2003). Anti-oxidants can act as free radical scavengers, lipid peroxidation inhibitor and savior to other free radical mediated processes, protecting the human organs against several pathologies such as Parkinson’s disease, atherosclerosis, Alzheimer’s disease and cancer (Mates et al., 1999; Rosenkranz, 2002; Uttara et al., 2009; Rejiya et al., 2009).

Scalbert et al. (2005) was suggested that polyphenols may protect cell ingredients against oxidative damage and, by that mean they limit the risk of various degenerative diseases associated with oxidative stress. The polyphenolic content of C. tora is high (3.7 g kg⁻¹) in dried leaves. Keeping the fact of rich polyphenolic content in dried leaves of C. tora, in mind, Rejiya et al. (2009) evaluated the nitric oxide scavenging activity of methanolic leaves extract of C. tora and reducing power assays using Rutin and BHT (butylhydroxytoluene) as standards. The extract was also studied for its lipid peroxidation inhibition assay using rat liver and brain. Methanolic leaves extract of C. tora showed better nitric oxide scavenging activity when compared to Rutin, so it can be used to minimize or retard the damage from nitric oxide radicals. The methanolic leaves extract of C. tora is very effective in inhibiting lipid peroxidation also (Rejiya et al., 2009).

1.4. Anti-Inflammatory Activity

The Methanolic extract of the leaves of C. tora showed good activity against carrageenan, serotonin, histamine and dextran induced rat hind paw oedema in a dose dependent manner (Maity et al., 1998; Jain and Patil, 2010).

1.5. Anti-Proliferative Activity

Rejiya et al. (2009) explored the anti-proliferative potential of C. tora methanolic extract of leaves with Cisplatin, anticancer drug in human cervical cancer cells (HeLa). This study confirmed that C. tora methanolic extract strongly inhibited the growth of human cervical cancer cells (Rejiya et al., 2009).

1.6. Hypolipidemic Activity

Ethanol extract of seeds of C. tora and its fractions were examined for hypolipidemic activity on triton induced hyperlipidemic profile in Albino rats. Ethanol extract and its ether soluble and water soluble fraction decreased the serum level of total cholesterol, LDL-cholesterol and triglyceride while slightly increased the HDL-cholesterol level (Patil et al., 2004; Meena et al., 2010).

Cho et al. (2005) supplemented, a mixture of C. tora fiber consisting of 2 g, 200 mg of alpha-tocopherol, 500 mg of ascorbic acid and 300 mg of maltodextrin to type II diabetic patients for 2 months. They observed that the level of serum total cholesterol, triglycerides and LDL-cholesterol declined in the C. tora group compared with the age and gender matched placebo group, while the Fasting blood glucose, HbA1c, blood urea, creatinine and activities of serum Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT) were not altered (Cho et al., 2005).

1.7. Anti-Diabetic Activity

The hypoglycemic activity of C. tora has been reported by many scientists. Nam and Choi (2008) studied the effects of C. tora L. seed butanol fraction (CATO) on postprandial glucose control and insulin secretion from the pancreas of the normal and streptozotocin induced diabetic rats. They observed that in normal rats fed with CATO have lower postprandial glucose levels. In diabetic rats, the levels in the CATO fed group have lower postprandial glucose during the 30–180 min.
When CATO was given orally to the diabetic rats for 5 days, the 12 hr fasting serum glucose level was diminished in the diabetic rats. The decrease in 12 hr fasting serum insulin level was less in the diabetic CATO rats than diabetic control rats. The findings of this study indicated that components of *C. tora* L. seeds have favorable effect on postprandial blood glucose control which may be partially mediated by stimulated insulin secretion from the pancreas of the diabetic rats (Nam and Choi, 2008).

1.8. Anti-Microbial Activity

The chloroform, methanol and aqueous extracts of leaves of *C. tora* L. observed to have antimicrobial property, as the extracts displayed activity against some bacteria and fungi which can cause skin infection and gastro-intestinal disorder (0-5000 µg mL⁻¹). Methanolic extracts also showed antifungal activity (0-64 mg mL⁻¹). As per in-vitro study by Das *et al.* (2010) five strains of *Shigella dysenteriae*, four strains of *Staphylococcus aureus* and three strains of *Escherichia coli*, have shown sensitivity against *in vitro* treatment of the methanol extracts (up to 2000 µg mL⁻¹).

1.9. Antinociceptive and Spasmogenic Activity

Antinociceptive activity of the methanolic extracts of leaves of *C. tora* was evaluated in the mice by Chidume *et al.* (2002). The extract reduced the nociceptive response of mice to increased force in a dose-dependent manner. The same extracts of *C. tora* also have spasmogenic effects. The spasmogenic effects of the extract were evaluated on guinea pig ileum, rabbit jejunum and mice intestinal transit. The extract elicited contraction of smooth muscles of guinea pig ileum and rabbit jejunum in a concentration-dependent manner (Chidume *et al.*, 2002).

1.10. Hepatoprotective Activity

Rajan *et al.* (2009) observed that (in-vivo model of rat) *C. tora* leaves methanol extract was effective in protecting liver against Carbon tetrachloride (CCl₄) induced liver damage. Further, Dhanasekaran *et al.* (2009) have carried out in-vivo study (hepatotoxicity induced by carbon tetrachloride in rats) and observed that Ononitol monohydrate (a class of glycoside isolated from *C. tora* leaves) decreases the levels of serum transaminase, lipid peroxidation and Tumor Necrosis Factor-α (TNF-α) while it increases the levels of antioxidant and hepatic glutathione enzyme activities. Histo-pathological findings put forward the hepatoprotective activity of ononitol monohydrate without any adverse effect (Dhanasekaran *et al.*, 2009).

1.11. Antigenotoxic Properties

The water extracts from *C. tora* (unroasted), markedly suppressed the mutagenicity of 2-amino-6-methyldipyrido imidazole (Glu-P-1) and 3-amino-1, 4-dimethyl-5H-pyrido (4,3-β) indole (Trp-P-1). While the roasted *C. tora* have less antigenotoxic potency than the unroasted one and it may be due to the reduction in their anthraquinones during roasting (Wu and Yen, 2004; Yen *et al.*, 1998).

1.12. Immunostimulatory Activities

In a study by Cherng *et al.* (2008) the immunostimulatory activities of four anthraquinones of *C. tora* (aloe-emodin, emodin, chrysophanol and rhein) on human Peripheral Blood Mononuclear Cells (PBMC) were evaluated. The results mentioned that at non-cytotoxic concentrations, the anthraquinones were effective in stimulating the proliferation of resting human PBMC and/or secretion of interferon-γ (IFN-γ). Nevertheless, at the concentration of 10 ng mL⁻¹, rhein significantly stimulated
proliferation of resting human PBMC, but inhibited IFN-γ secretion (Cherng et al., 2008).

2. CONCLUSION

This review is a mini compendium of the effects of different parts of C. tora in various biological systems. It is also a summary of the potential health benefits of this wonder plant and should help advance research to further explore the useful impact of this plant/extract of differential parts of the plant in various chronic pathological conditions. It appears that literatures are scanty as far as toxicology of the various extracts of this plant concerned. Therefore, it is an urgent need to standardize the toxic properties/medicinal properties of C. tora and qualitative examination of the phytochemicals extracted from it for further use as an alternative therapy.

3. REFERENCES

Cherng, J.M., W. Chiang, J.H. Wang, C.M. Lin and C.M. Shin et al., 2008. Anthraquinones of edible wild vegetable Cassia tora stimulate proliferation of human CD4+ T lymphocytes and secretion of interferon-gamma or interleukin 10. Food Chem., 107: 1576-1580. DOI: 10.1016/j.foodchem.2007.10.005

Chidume, F.C., H.O. Kwanashie, J.O. Adekeye, C. Wambebe and K.S. Gamaniel, 2002. Antinociceptive and smooth muscle contracting activities of the methanolic extract of Cassia tora leaf. J. Ethnopharmacol., 81: 205-209. DOI: 10.1016/S0378-8741(02)00079-X

Cho, S.H., T.H. Kim, N.H. Lee, H.S. Son and I.J. Cho et al., 2005. Effects of Cassia tora fiber supplement on serum lipids in Korean diabetic patients. J. Med. Food, 8: 311-318. PMID: 16176140

Das, G., D. Ojha, B. Bhattacharya, M. Samanta and S. Ghosh et al., 2010. Evaluation of antimicrobial potentialities of leaves extract of the plant Cassia tora Linn. (Leguminosae/Caesalpinioideae). J. Phytol., 2: 64-72.

Dhanasekaran, M., S. Ignacimuthu and P. Agastian, 2009. Potential hepato-protective activity of ononitol monohydrate isolated from Cassia tora L. on carbon tetra chloride induced hepatotoxicity in wistar rats. Phytomedicine, 16: 891-895. DOI: 10.1016/j.phymed.2009.02.006

Duke, J.A., 2001. Handbook of Phytochemical Constituents of GRAS Herbs and other Economic Plants. 1st Edn., CRC Press, Boca Raton, ISBN-10: 0849338654, pp: 654.

Gutteridge, J.M., 1993. Free radicals in disease processes: A compilation of cause and consequence. Free Radic. Res. Commun., 19: 141-158. PMID: 8244084

Ingle, A., P. Ranaware, A. Ladke and M. Damle, 2012. Cassia Tora: Phytochemical and pharmacological activity. Int. J. Pharmaceutical Natural Products, 2: 14-23.

Jain, S. and U.K. Patil, 2010. Phytochemical and pharmacological profile of Cassia tora-an overview. Ind. J. Natural Products Resour., 1: 430-437.

Lee, H.J., J.H. Jung, S.S. Kang and J.S. Choi, 1997. A rubrofusarin gentiobioside isomer from roasted Cassia tora. Arch. Pharm. Res., 20: 513-515. DOI: 10.1007/BF02973951

Lee, H.J., J.S. Choi, J.H. Jung and S.S. Kang, 1998. Alaternin glucoside isomer from Cassia tora. Photochemistry, 49: 1403-1404. DOI: 10.1016/S0031-9422(98)00151-4

Lee, S.E., H.J. Hwang, J.S. Ha, H.S. Jeong and J.H. Kim, 2003. Screening of medicinal plant extracts for antioxidant activity. Life Sci., 73: 167-179. DOI: 10.1016/S0024-3205(03)00259-5

Maity, T.K., S.C. Mandal, P.K. Mukharjee, K. Saha and J. Das et al., 1998. Studies on antiinflammatory effect of Cassia tora leaf extract (fam. Leguminosae). Phytother. Res., 12: 221-223. DOI: 10.1002/(SICI)1099-1573(199805)12:3<221::AID-PTER221>3.0.CO;2-L

Mates, J.M., C. Perez-Gomez and I.N.D. Castro, 1999. Antioxidant enzymes and human diseases. Clin. Biochem., 32: 595-603. DOI: 10.1016/S0009-9120(99)00075-2

Meena, A.K., U.S. Niranjani, A.K. Yadav, B. Singh and A.K. Nagariya et al., 2010. Cassia tora Linn: A review on its ethnombotany, phytochemical and pharmacological profile. J. Pharm. Res., 3: 557-557.

Mukherjee, S. and B. Gogoi, 2011. Free radicals in diseases and potential role of phytoconstituents—a cause with emerging importance. Curr. Chem. Biol., 5: 197-212. DOI: 10.2174/187231311796765030

Nam, J. and H. Choi, 2008. Effect of butanol fraction from Cassia tora L. seeds on glycemic control and insulin secretion in diabetic rats. Nutr. Res. Pract., 2: 240-246. DOI: 10.4162/nrp.2008.2.4.240
Patil, U.K., S. Saraf and V.K. Dixit, 2004. Hypolipidemic activity of seeds of Cassia tora Linn. J. Ethnopharmacol., 90: 249-252. DOI: 10.1016/j.eph.2003.10.007

Rajan, A.V., N. Shanmugavalli, C.G. Sunitha and V. Umashankar, 2009. Hepatoprotective effects of Cassia tora on CCl4 induced liver damage in albino rats. Indian J. Sci. Technol., 2: 41-44.

Rejiya, C.S., T.R. Cibin and A. Abraham, 2009. Leaves of Cassia tora as a novel cancer therapeutic-An in vitro study. Toxicol. Vitro, 23: 1034-1038. DOI: 10.1016/j.tiv.2009.06.010

Rosenkranz, H., 2002. A paradigm for determining the relevance of short term assays: Application to oxidative mutagenesis. Mutat. Res., 508: 21-27. DOI: 10.1016/S0027-5107(02)00144-6

Scalbert, A., C. Manach, C. Morand, C. Remesy and L. Jimenez, 2005. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci., 45: 287-306. DOI: 10.1080/1040869059096

Uttara, B., A.V. Singh, P. Zamboni and R.T. Mahajan, 2009. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropsychopharmacol., 7: 65-74. DOI: 10.2174/157015909787602823

Wu, C.H. and G.C. Yen, 2004. Antigenotoxic properties of Cassia tea (Cassia tora L.): Mechanism of action and the influence of roasting process. Life Sci., 76: 85-101. DOI: 10.1016/j.lfs.2004.07.011

Yen, G.C., H.W. Chen and P.D. Duh, 1998. Extraction and identification of an antioxidative component from Jue Ming Zi (Cassia tora L.). J. Agric. Food Chem., 46: 820-824. DOI: 10.1021/jf970690z

Zhenbao, J., T. Fei, L. Guo, T. Gunjun and D. Xiaolin, 2007. Antioxidant properties of extracts from juemingzi (Cassia tora L.) evaluated in vitro. LWT-Food Sci. Technol., 40: 1072-1077. DOI: 10.1016/j.lwt.2006.05.010

Zhu, L., Y. Shujuan, Z. Xinan, F. Xiong and Z. Mouming, 2008. Preparative separation and purification of five anthraquinones from Cassia tora L. by high-speed counter-current chromatography. Sep. Purif. Technol., 63: 665-669. DOI: 10.1016/j.seppur.2008.07.011