Emerging pathways in treating human epidermal growth factor receptor-2-negative breast cancer

Sotirios G. Stergiopoulos *

Celgene Corporation, Berkeley Heights, 86 Morris Avenue, H233C Summit, NJ, USA

ABSTRACT

Breast cancer remains the leading cause of new cancer cases in women and is responsible for the most cancer-related deaths in women worldwide. The goals of breast cancer treatment are to maintain or improve quality of life, prolong survival, and increase disease-free progression. The majority of breast cancer cases are estrogen receptor (ER)-positive and human epidermal growth factor receptor-2 (HER-2)-negative, and current treatment guidelines recommend multiple lines of endocrine therapy followed by chemotherapy in patients with locally recurrent or metastatic disease. Resistance to current therapies adds to the need for new therapeutic options. Translational research and preclinical data have provided insight into the identification of emerging signaling pathways for novel drug targets, and the development of a growing number of biologic targeted agents is currently underway to identify novel treatments. An alternative approach to improve patient benefit is to boost the efficacy and safety of existing agents by modifying their delivery or pharmacokinetics (ie, adding albumin to paclitaxel) as well as identifying new combination therapies. One combination therapy of interest is the addition of the 130 nm albumin-bound formulation of paclitaxel (nab-paclitaxel) to currently approved therapies or targeted agents in development. This review focuses on a number of key agents that are being investigated for the treatment of HER-2-negative breast cancer and the utilization of these agents as combination therapy to achieve prolonged disease control.

Focal points:

Bedside

- New therapeutic options are necessary for breast cancer patients with HER-2-negative and either hormone receptor positive or negative disease who develop resistance to current therapies. Recent insights into molecular pathways may soon expand the treatment options for all patients with HER-2-negative breast cancer.

Bench

- Several rationally designed combinations of biologic targeted agents and next generation chemotherapeutic agents are currently under investigation to prolong disease control and overcome resistance in patients with HER-2-negative breast cancer.

© 2014 Published by Elsevier Ltd. on behalf of European Society for Translational Medicine.

Abbreviations: ABC, advanced breast cancer; AE, adverse event; AI, aromatase inhibitor; AKT, protein kinase; BC, breast cancer; CDK, cyclin-dependent kinase; CT, chemotherapy; CTLA, cytotoxic T-lymphocyte antigen; ET, endocrine therapy; HDAC, histone deacetylase; HER-2, human epidermal growth factor receptor-2; HR, hormone receptor; HT, hormone therapy; mAb, monoclonal antibody; MBC, metastatic breast cancer; mTOR, mammalian target of rapamyten; nab-PAC, nab-paclitaxel; OS, overall survival; PARP, poly[adenosine diphosphate (ADP)-ribose] polymerase; PD-1, programmed death-1; PD-L1, programmed death ligand-1; PFS, progression-free survival; PI3K, phosphatidylinositol 3-kinase; TNBC, triple-negative breast cancer; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor

* Tel.: +1 908 673 9285.
E-mail address: sstergiopoulos@celgene.com

http://dx.doi.org/10.1016/j.nhtm.2014.11.059
2307-5023/© 2014 Published by Elsevier Ltd. on behalf of European Society for Translational Medicine.
1. Introduction

Breast cancer (BC) is responsible for an estimated 1.67 million new cases of cancer in women worldwide annually, accounting for 25% of the total new cancer cases, making it the most frequently diagnosed cancer in 2012. It is also the leading cause of cancer death in less-developed regions of the world and the second-leading cause of cancer death in more-developed regions [1]. In a review of 15,204 cases of BC, the National Comprehensive Cancer Network noted that 66% of patients were hormone receptor-positive (HR-positive)/human epidermal growth factor receptor-2 (HER-2)-negative, 17% were HER-2-amplified, and the remaining 17% had triple-negative breast cancer (TNBC) [2]. Receptor status is a key covariate as it determines the class/type of systemic therapy provided to BC patients, and this review will focus on HER-2-negative BC, including TNBC.

Although advanced stage/metastatic BC is incurable, it is treatable, and the goals of treatment are to maintain or improve quality of life, prolong survival, and increase disease-free progression. Current treatment guidelines [3–5] recommend the use of endocrine therapy (ET) for all patients with early HR-positive disease, with the choice of agent primarily determined by the patient’s menopausal status. Chemotherapy (CT) is recommended after progression or unacceptable toxicity and no clinical benefit after 3 sequential ET regimens. However, for patients with visceral crisis, CT is the recommended initial treatment [5]. Concomitant ET plus CT has shown no benefit for survival and should only be performed in a clinical trial [3,4]. For TNBC, single-agent CT is preferred, including taxanes and anthracyclines, as there is currently no compelling evidence that combination CT regimens are superior to sequential single agents for these patients [5,6].

A general schematic for current HER-2-negative BC treatment algorithms is presented in Fig. 1 [3–5]. Chemotherapy remains an essential component of systemic intervention in patients with HER-2-negative disease, including patients with advanced HR-positive disease who have progressed after multiple lines of endocrine therapy, patients with TNBC, and patients with symptomatic visceral disease in need of rapid symptomatic control. However, the efficacy of CT options is modest, particularly because second or later lines of therapy and combination CT regimens offer limited efficacy and increases in toxicity [7]. Targeted agents are under investigation for HER-2-negative BC; however, they are less effective in the treatment of advanced disease. Therefore, the combination of CT with a targeted agent is under intense investigation for the treatment of BC, including metastatic disease.

2. Insight from translational research

Traditionally, BC subtypes have been classified based on receptor status; however, the definitions for intrinsic subtypes were recently expanded [8]. Luminal A-like is estrogen receptor (ER)-positive and/or progesterone receptor-positive and HER-2-negative with low expression of Ki-67, a marker for cell proliferation [8,9]. Luminal B is broken down into 2 types: Luminal B-like (HER-2-negative) is ER-positive and HER-2-negative with either high expression of Ki-67 or low/no expression of progesterone receptor, while Luminal B-like (HER-2-positive) is ER-positive with amplified expression of HER-2 [8]. HER-2-positive (non-luminal) BC is classified as having amplified expression of HER-2 and as absent for HR expression. Finally, TNBC (dual) is negative for expression of all 3 receptors [8]. The differentiation of traditional clinical subsets into additional categories with varying prognoses suggests that the current treatment paradigm is suboptimal. Furthermore, systemic treatments often impose the selection of resistant phenotypes. In a recent study on the inference of tumor evolution during chemotherapy for BC treatment, phenotypic diversity had been altered before and after treatment, while a pathologic complete response was associated with lower pretreatment genetic diversity [10].

Resistance to treatment is an important aspect of BC therapy, as up to 50% of HR-positive BC patients are refractory to primary treatment, while the remainder will acquire resistance [11]. For example, resistance to tamoxifen can be due to a number of mechanisms including altered tamoxifen metabolism, and modification of ERα activity due to increased phosphorylation, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling, aberrant expression of ERα target genes, and even expression of a dominant-negative ERα isoform [12]. Furthermore, it has been demonstrated that ER and HER-2 status can change over time in patients with metastatic BC (MBC), and there is a growing need for repeat tumor biopsies to determine whether a change in
therapy is required [13]. Patients with TNBC can experience resistance to chemotherapeutics mainly due to increased efflux of drugs through ABCB1 transporters, thereby lowering the effective intracellular drug concentrations [14]. Many of these resistance pathways have become targets for BC treatment.

To overcome the many obstacles of drug resistance and disease progression, a number of emerging pathways are under investigation for the treatment of HER-2-negative BC. Furthermore, the field of genomics is currently playing an important role in our understanding of the genetic differences between normal and malignant tissues. For example, The Cancer Genome Atlas has documented the genetic diversity of luminal/ER-positive, HER-2-positive, and TNBC, and these data have provided the rationale for recently approved and emerging treatments [15]. Inhibition of multiple pathways using combination approaches with CT and targeted agents is also under investigation to improve the duration of response to initial treatment and to provide new options to overcome resistance.

3. Agents in development

Inhibition of a number of physiologic pathways by targeted agents is currently under investigation for the treatment of HER-2-negative BC (Fig. 2). These agents include inhibitors of the extracellular receptor tyrosine kinase vascular endothelial growth factor receptor (VEGFR) and its ligand VEGF, the mammalian target of rapamycin (mTOR) and PI3K signaling pathways, cell cycle progression through cyclin-dependent kinase (CDK) 4 and 6, epigenetic regulation through histone deacetylase (HDAC), and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP)-mediated DNA repair. Furthermore, the therapeutic potential of novel targets for modulating immune checkpoint regulation, including cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1), is also being investigated for patients with BC. Many of these agents are being investigated as combination therapies and are a rational means of achieving prolonged disease control.

3.1. Antiangiogenic agents

Studies have demonstrated that BC is angiogenesis-dependent; elevated expression of VEGF is common in BC and associated with a higher incidence of recurrence or death [16]. Therefore, circulating VEGF and VEGFR, along with other receptor tyrosine kinases such as platelet-derived growth factor receptor, have become important targets for the development of therapeutic agents in BC. Bevacizumab is a fully humanized monoclonal antibody (mAb) VEGF-A inhibitor that was approved by the United States Food and Drug Administration in 2008 for first-line treatment of HER-2-negative metastatic BC in combination with paclitaxel based on results from a phase 3 trial [17] (Table 1) [17–47]. Median progression-free survival (PFS) was increased in patients with MBC treated with bevacizumab and paclitaxel compared with paclitaxel alone (11.8 vs 5.9 months; \(P < .001 \)), although there was no significant difference in overall survival (OS) between the 2 groups [17]. Grade 3 or 4 neuropathy, infection, and fatigue were more frequent with bevacizumab combination therapy compared with paclitaxel alone (Table 1) [17]. However, the United States Food and Drug Administration recommended the removal of this indication from its label in 2010 based on its interpretation that safety concerns outweighed the improvement in PFS; the use of bevacizumab for the treatment of BC continues in Europe [48]. A number of ongoing clinical trials are evaluating bevacizumab as

Fig. 2. Emerging targets for the treatment of HER-2-negative breast cancer. Multiple emerging pathways are currently under investigation for the treatment of HER-2-negative breast cancer. Inhibition of these physiologic pathways with targeted agents as combination therapy with chemotherapeutic agents, notably with sub-paclitaxel, is a rational means of prolonged disease control. CDK, cyclin dependent kinase; CTLA-4, cytotoxic T-lymphocyte antigen-4; HDAC, histone deacetylase; HER-2, human epidermal growth factor receptor-2; mTOR, mammalian target of rapamycin; PARP, poly(adenosine diphosphate [ADP]-ribose) polymerase; PD-1, programmed death-1; PDGFR, platelet-derived growth factor receptor; PD-L1, programmed death ligand-1; PI3K, phosphatidylinositol 3-kinase; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
Table 1
Clinical activity of key targeted agents from phase 2 or 3 trials for the treatment of HER-2-negative BC.

Agent	Phase	Regimen	Patients, N (demographics)	Efficacy	Safety
Bevacizumab [17]	3	BEV + PAC vs PAC alone	722 Initial treatment for MBC with ≥12-mo disease-free interval	Median PFS for BEV + PAC vs PAC alone was 11.8 mo vs 5.9 mo (P < .001); OS rate was consistent in the BEV-containing arms vs the overall population (75.6%)	Most common grade 3/4 AEs for BEV + PAC vs PAC alone were neuropathy (23.6% vs 17.6%), infection (9.3% vs 2.9%), and fatigue (8.5% vs 4.9%)
Bevacizumab [18]	2	BEV + PAC (PB) vs BEV + PAC + SUN (PBS)	46 HER-2-negative MBC	Median PFS was not reached due to premature study termination	Most common grade 3/4 AEs for PBS vs PB were neutropenia (44% vs 9%), leukopenia (30% vs 0), fatigue (26% vs 9%), diarrhea (17% vs 0), and febrile neutropenia (13% vs 4%)
Bevacizumab [19]	3	BEV + DOC vs PBO + DOC	736 First-line treatment of HER-2-negative LRBC or MBC	Median PFS was 8.2 mo for PBO + DOC vs 10.1 mo for BEV (15 mg/kg) + DOC (P = .006)	Most common grade ≥3 AEs for BEV + DOC vs PBO + DOC were neutropenia (19.8% vs 17.3%) and febrile neutropenia (16.2% vs 11.3%)
Bevacizumab [20]	3	BEV + CT vs PBO + CT	1237 First-line treatment of HER-2-negative MBC	Median PFS was significantly longer for each BEV + CT combination vs PBO + CT (P < .001); no statistically significant OS difference between groups	Slightly higher incidence of grade ≥3 AEs in patients treated for ≥12 mo (65.8%) vs the overall population (57.6%)
Bevacizumab [21]	Registry BEV + CT	BEV + CT	2264 First-line treatment for HER-2-negative LRBC or MBC	Median OS was 30.0 mo in patients who continued BEV after discontinuation of CT and 18.4 mo in patients who discontinued BEV before/same time as discontinuation of CT	Most common grade 3/4 AEs were neutropenia (18%), peripheral neuropathy (14%), and leukopenia (7%) with BEV and hand-foot syndrome (16%), hypertension (6%), and diarrhea (5%) with BEV + CAP
Bevacizumab [22]	2	BEV + GEM	52 First-line treatment for LRBC or MBC after neoadjuvant and/or adjuvant taxane therapy with a ≥12-mo disease-free interval	Median PFS was 4.8 mo (95% CI, 3.4–7.6); 1 yr OS rate was 68.7% (95% CI, 54.1–79.9%)	Most common AEs were nausea (51.9%), fatigue (46.2%), decreased appetite (25.0%), and anemia (25.0%); most common grade 3/4 AEs were neutropenia (13.5%), leukopenia (11.5%), and hypertension (7.7%)
Bevacizumab [23]	3	BEV + PAC vs BEV + CAP	533 (per protocol population) HER-2-negative, MBC without previous CT	Median PFS for BEV + PAC vs BEV + CAP was 11.0 mo (95% CI, 10.4–12.9) vs 8.1 mo (95% CI, 7.1–9.2) (P = .0052)	Most common grade 3 AEs were neutropenia (18%), peripheral neuropathy (14%), and leukopenia (7%) with BEV + PAC, and hand-foot syndrome (16%), hypertension (6%), and diarrhea (5%) with BEV + CAP
Sorafenib [24]	2	SOR + BEV	18 MBC with ≥2 prior CT regimens	Median PFS was 2.8 mo; accrual was terminated due to lack of clear efficacy and increased toxicity	50% of patients reported grade 3 toxicity
Sorafenib [25]	2b	SOR + CAP vs PBO + CAP	229 First- or second-line treatment of HER-2-negative, locally advanced BC or MBC with a ≥12-mo disease-free interval	Median PFS for SOR + CAP vs PBO + CAP was 6.4 mo vs 4.1 mo (P = .001); median OS was 22.2 mo vs 20.9 mo (P = .42)	Most common grade 3 AE for SOR + CAP vs PBO + CAP was hand-foot syndrome (44% vs 14%)
Sorafenib [26]	2b	SOR + PAC vs PBO + PAC	237 First-line treatment of HER-2-negative, LRBC or MBC	Median PFS for SOR + PAC vs PBO + PAC was 6.9 mo vs 5.6 mo (P = .0857); median OS was 16.8 mo vs 17.4 mo (P = .904)	Most common grade 3/4 toxicities for SOR + PAC vs PBO + PAC were hand-foot syndrome (31% vs 3%), neutropenia (13% vs 7%), and anemia (11% vs 6%)
Sorafenib [27]	2b	SOR + CT vs PBO + CT	160 Locally advanced BC or HER-2-negative MBC with prior BEV therapy	Median PFS for SOR + CT vs PBO + CT was 3.4 mo vs 2.7 mo (P = .02); median survival was 13.4 mo vs 11.4 mo (P = .95)	Most common grade 3/4 AEs for SOR + CT vs PBO + CT were hand-foot syndrome (35% vs 5%), stomatitis (10% vs 0), and fatigue (18% vs 9%)
Sunitinib [28]	2	SUN	64 MBC after taxane and anthracycline treatment	ORR was 11%; median time to progression was 10 wk; median OS was 38 wk	Most common grade 3 AEs were fatigue (14%), dyspnea (9%), hand-foot syndrome (9%), and nausea (8%)
Sunitinib [29]	2	SUN vs no therapy	36 HER-2-negative, MBC who achieved an objective response with taxane-based therapy	PFS ≥5 mo for SUN vs no therapy was 28% vs 21%; median PFS was 2.8 mo vs 3.1 mo	Grade 3/4 toxicities occurred in 69% with SUN and 11% with no therapy
Sunitinib [30]	2	SUN alone	83 LRBC or MBC	ORR was 8%; median PFS was 3.6 mo; median OS was 15.6 mo	Most common AEs were fatigue (60%), diarrhea (54%), and nausea (49%); most common grade 3/4 AEs were fatigue (17%), neutropenia (16%), and thrombocytopenia (11%)
Sunitinib [31]	2	SUN vs SOC CT	217 Advanced TNBC, relapsed after anthracycline- and taxane-based CT	Median PFS was 2.0 mo for SUN vs 2.7 mo for SOC CT (P = .888); median OS was 9.4 mo vs 10.5 mo (P = .839)	Most common grade 3 AEs for SUN vs SOC CT were neutropenia (20% vs 5%), leukopenia (10% vs 3%), and anemia (10% vs 1%); most common grade 4 AE was neutropenia (1% vs 6%)
Sunitinib [32]	3	SUN + DOC vs DOC alone	593 First-line treatment for HER-2-negative, ABC	Median PFS was 8.6 mo for SUN + DOC vs 8.3 mo for DOC alone (P = .265); median OS was 24.8 mo vs 25.5 mo (P = .904)	Most common grade 3 AEs were neutropenia (17% for SUN + DOC vs 10% for DOC alone), hand-foot syndrome (17% vs 1%), leukopenia (10% vs 13%), and diarrhea (10% vs 4%); most common grade 4 AEs were neutropenia (29% vs 33%), and leukopenia (5% vs 9%)
Agent Anti-angiogenics	Phase	Regimen	Patients, N (demographics)	Efficacy	Safety
------------------------	-------	---------	---------------------------	---------	--------
Suniținib [33]	3	SUN + PAC vs BEV + PAC	485 First-line treatment of HER-2-negative ABC	Median PFS for BEV + PAC vs SUN + PAC was 9.2 mo vs 7.4 mo (P = .999); early termination due to futility of reaching primary endpoint	Most common grade 3 AEs for SUN + PAC vs BEV + PAC were neutropenia (39% vs 15%), fatigue (12% vs 8%), and leukopenia (10% vs 6%); most common grade 4 AE was neutropenia (14% vs 5%)
Suniținib [34]	3	SUN + CAP vs CAP alone	442 MBC after multiple lines of CT	Median PFS for SUN + CAP vs CAP alone was 5.5 mo vs 5.9 mo (P = .941)	Exempt for hand-foot syndrome, toxicity was more severe with SUN + CAP; grade 3 AEs were reported by 50% of SUN + CAP patients vs 47% of CAP-alone patients, and grade 4 AEs were reported by 4% vs 17% Grade 3 AEs were observed in 46% with SUN vs 30% with CAP; most common grade 3 AEs were neutropenia (10% vs 3%) and hand-foot syndrome (8% vs 16%); grade 4 AEs were observed in 7% vs 3%
Suniținib [35]	3	SUN vs CAP	482 HER-2-negative BC that recurred after anthracyline and taxane therapy	Median PFS for SUN vs CAP was 2.8 mo vs 4.2 mo; median OS was 15.3 mo vs 24.6 mo; study was terminated for failure to reach primary endpoint	

PI3K/mTOR inhibitors

Agent	Phase	Regimen	Patients, N (demographics)	Efficacy	Safety
Buparlisib	No published data available that met the inclusion criteria	270 Neoadjuvant treatment of postmenopausal women with ER-positive BC	Response rate by clinician palpation for EVE vs PBO was 68.1% vs 59.1% (P = .0616)	Common grade 3/4 AEs for EVE group included hyperglycemia (5.1%), stomatitis, and pneumonitis (2.2% each), thrombocytopenia, fatigue, increased ALT, and hypokalemia (1.5% each); no significant grade 3/4 AEs were reported for PBO group	
Everolimus [36]	2	EVE vs LET	65 (interim report on 24) Postmenopausal MBC after recurrence or progression on TAM or AI	22% PR, 28% SD, 50% PD	Most common toxicities were mucositis and weight loss; grade 3 bone marrow toxicity was observed in 5% of patients
Everolimus [37]	2	EVE vs TAM	111 Postmenopausal HR-positive/HER-2-negative, AI-resistant MBC	6 mo CBR for EVE vs TAM was 41% vs 42%; TTP was 8.6 mo vs 4.5 mo	Nonhematologic grade 3/4 AEs were similar in EVE vs TAM at the same groups (P = .2)
Everolimus [38]	2	EVE vs FUL	33 Postmenopausal ER-positive BC with disease relapse/progression within 6 mo of AI use	Median TTP is 7.4 mo (4 patients remaining on therapy at the time of publication)	Most common AEs: elevated AST (81%) or ALT (68%), hyperglycemia (61%), anemia (61%), elevated cholesterol (60%), hypokalemia (52%), mucositis (48%), and weight loss (48%)
Everolimus [39]	3	EVE vs PRO	724 HR-positive ABC after recurrence or progression with AI	Median PFS for EVE vs PRO was 6.9 mo vs 2.8 mo (hazard ratio = 4.3; 95% CI, .35–54; P < .001) by investigator assessment (interim analysis)	

CDK4/6 inhibitors

Agent	Phase	Regimen	Patients, N (demographics)	Efficacy	Safety
Palbociclib [41]	2	PAL alone	36 (interim report on 28) 18 [64%] HR-positive/HER-2-negative ABC; 2 [7%] HR-positive/HER-2-positive ABC; 8 [29%] TNBC	Clinical benefit (PR + SD > 6 mo) observed in 6 (21%) patients total (4 [23%] of HR-positive/HER-2-negative and 1 [13%] TNBC patients)	Grade 3/4 toxicities were transient neutropenia (50%) and thrombocytopenia (21%)
Palbociclib [42]	2	PAL vs LET alone	165 Front-line therapy for ER-positive/HER-2-negative MBC	PFS for PAL + LET vs LET alone was 20.2 mo vs 10.2 mo (hazard ratio = .488; 95% CI, .319–.748; P = .0004)	Most common AEs with PAL + LET were neutropenia, leukopenia, fatigue, and anemia

Agent	Phase	Regimen	Patients, N (demographics)	Efficacy	Safety
Abemaciclib [43]	No published data available that met the inclusion criteria				
HDAC inhibitors [44]	2	ENT vs PRO	130 Postmenopausal with ER-positive ABC after progression on a nonsteroidal AI	Median PFS for ENT vs PRO was 4.3 mo vs 2.3 mo (P = .055); median OS was 28.1 mo vs 19.8 mo (P = .036)	Most common grade 3/4 AEs for ENT + EXE vs PRO + EXE were neutropenia (14% vs 0) and fatigue (13% vs 3%) Therapy was well tolerated; few grade 3/4 AEs were observed Most common grade 3/4 AEs were leukopenia and neutropenia (23%)
Entinostat [45]	2	ENT + 5-AZA	27 Hormone-resistant ABC	Median PFS was 1.8 mo and median OS was 11.5 mo at a median FU of 6.3 mo	
Entinostat [46]	2	ENT + 5-AZA	13 Advanced TNBC		
Vorinostat [47]	No published data available that met the inclusion criteria				

PARP inhibitors

Agent	Phase	Regimen	Patients, N (demographics)	Efficacy	Safety
Velparib [48]	2	VEL + RUC	41 MBC with BRCA1 or BRCA2 mutations (50% are HR-positive)	PR (> 4 cycles of FU); 2/12 (17%) for BRCA1 and 3/13 (23%) for BRCA2	3 patients withdrew due to grade 2 seizures, grade 3 thrombocytopenia, or grade 2 thrombocytopenia and neutropenia Toxicity required cisplatin dose reduction (20%) or delay (~43%) in both arms; RUC dose reduction was uncommon (6%)
Rucaparib [49]	2	Cisplatin + CABB	128 TNBC or known BRCA mutations with invasive disease after anthracyline or taxane neoadjuvant therapy	1 yr DFS was similar (~76%) in both treatment groups	
combination therapy for HER-2-negative BC (Table 2). Several small-molecule, multi-targeted tyrosine kinase inhibitors that block VEGFR and platelet-derived growth factor receptor signaling have also been investigated for first- or second-line treatment of HER-2-negative MBC, including sorafenib and sunitinib. Sorafenib has been evaluated in a handful of phase 2 studies, mostly in combination with chemotherapeutic agents, and has demonstrated efficacy in first- or second-line treatment of MBC (Table 1). Of note, increased incidence of grade 3 or 4 hand-foot syndrome is common in most studies of sorafenib (Table 1). Sunitinib has failed to show significant efficacy either alone or in combination with CT for the treatment of HER-2-negative BC, including TNBC, and two of four phase 3 studies have been terminated for futility (Table 1). Sorafenib is currently being evaluated in a number of ongoing phase 2 trials, and one phase 3 trial as combination therapy for first- or second-line treatment of HER-2-negative MBC, while sunitinib is currently being investigated in combination with CT for neoadjuvant treatment of TNBC in a phase 1/2 trial (Table 2).

3.2. PI3K and mTOR inhibitors

Hyperactivation of the PI3K/AKT/mTOR pathway is frequently observed in BC, leading to cancer pathogenesis, progression, and resistance to endocrine treatment [49]. Therefore, the addition of PI3K and mTOR inhibitors to ET or CT may enhance efficacy in patients with recurrence or progression following nonsteroidal AI therapy. Median PFS was 7.8 months in the EVE group and 3.2 months in the PBO group (P < .0001) by independent review [52], and the most common grade 3 or 4 adverse events (AEs) were stomatitis (8% for EVE vs 1% for PBO), anemia (6% vs < 1%), dyspnea (4% vs 1%), hyperglycemia (4% vs < 1%), fatigue (4% vs 1%), and pneumonitis (3% vs 0%) (Table 1) [40]. Everolimus is also currently being investigated in a number of clinical trials for HER-2-negative BC or TNBC, often as combination therapy with another targeted therapy (Table 2).

3.3. CDK4/6 inhibitors

Dysregulated cell cycle progression due to uncontrolled cellular growth is another hallmark of cancer, and disruption of cell cycle progression through inhibition of CDKs is a therapeutic strategy undergoing intense evaluation in multiple cancers [53]. Cyclin-dependent kinase 4 is a key regulator of the transition from G1 to S phase of the cell cycle, which, when inhibited, causes cell cycle arrest and apoptosis of dividing cells. Furthermore, resistance to ET is often caused by upregulation of signaling pathways that modify cell cycle control [54]. A number of selective CDK4/6 inhibitors are under investigation in HER-2-negative BC, including palbociclib, abemaciclib, and LEE011. Palbociclib has been investigated as single-agent treatment for HR-positive/HER-2-negative ABC, HR-positive/HER-2-positive ABC, and advanced TNBC, and in combination with letrozole as first-line therapy for ER-positive/HER-2-negative MBC. In a phase 2 study in 165 women with ER-positive/HER-2-negative MBC who were treated with first-line palbociclib plus letrozole (LET) or LET alone, median PFS with palbociclib treatment was 20.2 months vs 10.2 months with LET alone (P = .0004) (Table 1) [42]. The most common AEs in the palbociclib treatment group were neutropenia, leukopenia, fatigue, and anemia (Table 1). A phase 3 study in the same population is ongoing (NCT01740427; Table 2). Another CDK4/6 inhibitor, LEE011, is also under investigation in a number of ongoing clinical trials as combination therapy for HER-2-negative BC (Table 2).

3.4. HDAC inhibitors

The recent discovery that alterations in histone proteins and DNA can lead to tumorigenesis has led to the evaluation of HDAC inhibitors in solid tumors [55]. Histone deacetylases catalyze the deacetylation of histones, leading to the coiling of chromatin and...
Table 2

Ongoing trials of key targeted agents from phase 2 or 3 Trials for the treatment of HER-2-negative BC.

Agent (trial name)	Treatment	Trial phase (NCT)	Study population	Primary endpoint
Anti-angiogenics				
Bevacizumab	BEV + nab-PAC + CAR	2 (NCT00618657)	HER-2-negative or HER-2-positive BC	PFS
Bevacizumab	Pre-Op: BEV + CIS Post-Op: BEV + DOX + CYC + PAC	2 (NCT05828333)	TNBC	PCR
Bevacizumab	BEV + DOX + CYC vs DOC + DOX + CYC + PEG vs DOX + CYC	3 (NCT00887556)	Node-positive, high-risk node-negative, HER-2-negative, HR-positive or HR-negative BC	Invasive DFS
Bevacizumab	BEV + AMG386 + PAC vs BEV + PBO + PAC vs AMG386 + PAC	2 (NCT00511459)	HER-2-negative MBC or MBC	PFS
Bevacizumab	BEV + PAC (1st); L-DOX or CAP (2nd)	2 (NCT01935492)	HER-2-negative MBC or LABC	PFS
Bevacizumab	BEV + FLU + EPI + CYC, followed by BEV + DOC (neo), then BEV (adj)	2 (NCT00618657)	HER-2-negative BC, no metastatic disease	CR
Bevacizumab	BEV + FLU + EPI + CYC, followed by BEV + DOC	2 (NCT01985841)	HER-2-negative BC	Biomarker identification
Bevacizumab	BEV + PAC vs PAC	2 (NCT01722968)	HER-2-negative MBC	PFS
Bevacizumab	BEV + ET or CT vs PBO + ET or CT	2 (NCT00773695)	HER-2-negative BC	PCR
Bevacizumab	BEV + PAC vs PLA + PAC	3 (NCT01663272)	HER-2-negative MBC or LRBC	PFS
Bevacizumab	BEV + DOX + CYC + PAC	2 (NCT01959490)	HER-2-negative or HER-2-positive BC	Predicted PCR
Bevacizumab	BEV + CAR + DOX	2 (NCT00609897)	Metastatic TNBC	PFS
Bevacizumab	DOX + CYC + GM-CSF, followed by CAR + nab-PAC + BEV	2 (NCT00254592)	HER-2-negative or HER-2-positive BC	OCM
Bevacizumab	BEV + PAC vs BEV + CYC + CAP	3 (NCT0111195)	Pre- or postmenopausal, HER-2-negative MBC, EBC or LABC	Incidence of grade 3–5 AEs
Bevacizumab	BEV + nab-PAC + CAR	2 (NCT00476467)	Metastatic TNBC	PFS
Bevacizumab	BEV + PAC vs BEV + CAP + VIN	2 (NCT00733408)	Advanced TNBC	PFS
Bevacizumab	BEV + CAR + PAC	2 (NCT00868643)	HER-2-negative MBC or LABC	PFS
Bevacizumab	BEV + ERI	2 (NCT01941407)	Metastatic TNBC	ORR
Bevacizumab	BEV + nab-PAC + CAR, followed by BEV + DOX + CYC, followed by surgery, then BEV	2 (NCT00777673)	TNBC	PFS
Bevacizumab	BEV + PAC or DOC	4 (NCT01094814)	Metastatic TNBC	Safety, Tolerability
Bevacizumab	BEV + ET (LET or FUL) vs ET (LET or FUL)	3 (NCT00545077)	Postmenopausal, HER-2-negative MBC or LABC	PFS
Sorafenib	SOR + IKA	1/2 (NCT00825734)	HER-2-negative MBC	PFS
Sorafenib	SOR + CAP vs PBO + CAP	3 (NCT01234337)	HER-2-negative LABC or MBC	PFS, Safety
Sorafenib	SOR, followed by SOR + CIS, followed by PAC	2 (NCT00194869)	Early-stage TNBC	PFS
Sorafenib	SOR + PAC	2 (NCT00622466)	Pre- or postmenopausal, HER-positive or HR-negative, HER-2-negative MBC	ORR
Sorafenib	SOR + PAC	2 (NCT01320111)	HER-2-negative BC	PFS
Sorafenib	SOR + PAC or PAC	2b (NCT00499525)	Pre- or postmenopausal, HER-2-negative LRBC or MBC	PFS
Sunitinib	SUN + PAC + CAR	1/2 (NCT00887575)	Locally advanced TNBC	MTD (P1) PFS

PI3K/mTOR inhibitors

Agent (trial name)	Treatment	Trial phase (NCT)	Study population	Primary endpoint	
Buparlisib (BELLE-2)	BKM120 + FUL vs PBO + FUL	3 (NCT01610284)	Postmenopausal, HR-positive/HER-2-negative LABC or MBC; prior treatment with AIs	PFS	
Buparlisib (BELLE-3)	BKM120 + FUL vs PBO + FUL	3 (NCT01633060)	Postmenopausal, HR-positive/HER-2-negative LABC or MBC; prior treatment with AIs and mTOR inhibitors	PFS	
Buparlisib (BELLE-4)	BKM120 + PAG vs PBO + PAC	2/3 (NCT01572727)	HER-2-negative LABC or MBC patients with or without PI3K activation	PFS	
Buparlisib (B-YOND)	BKM120 + TAM + GOS vs BYL719 + TAM + GOS vs PBO + TAM + GOS	2 (NCT02058381)	Premenopausal, HER-positive/HER-2-negative LABC or MBC	PFS	
Buparlisib	BKM120 + PAC	2 (NCT01953445)	Pre- or postmenopausal, stage 2 or 3, ER-positive/HER-2-negative BC	PCR	
Buparlisib	BKM120 + CAP	2 (NCT02008882)	TNBC patients with brain metastases	CBR	
Buparlisib	BKM120	2 (NCT01629615)	Metastatic TNBC	CBR	
Buparlisib	BKM120	2 (NCT01790932)	TNBC	CBR	
Buparlisib	BKM120 + LET vs BYL719 + LET vs PBO + LET	2 (NCT01923168)	Postmenopausal, HER-positive/HER-2-negative BC	PFS	
Buparlisib	BEZ235	2 (NCT01495247)	HER-2-negative LABC or MBC	PFS	
Everolimus (DETEC IV)	EVE + ET	2 (NCT02035831)	Postmenopausal, HR-positive/HER-2-negative MBC; HER-2-negative CTcs	DLT, MTD (P1b)	
Everolimus	EVE + ET vs PBO + ET	3 (NCT01805271)	ER-positive/HER-2-negative BC; received 3 years of AHT	DFS	
Everolimus	EVE + PAC + BEV vs PBO + PAC + BEV	2 (NCT00915603)	HER-2-negative MBC	PFS	
Everolimus	EVE + LET	2 (NCT01698918)	Postmenopausal, ER-positive/HER-2-negative MBC or LABC	PFS	
Everolimus (BOLEO-4)	EVE + LEE011 + EXE vs EVE + EXE vs LEE011 + EXE	1b/2 (NCT01851913)	Postmenopausal, ER-positive/HER-2-negative LABC	DLT/MTD (P1b) PFS (P2)	
Agent (trial name)	Treatment	Trial phase (NCT)	Study population	Primary endpoint	
--------------------	-----------	------------------	------------------	-----------------	
Everolimus (ViCTORIA)	EVE + VIN vs VIN	2 (NCT01520103)	HER-2-negative MBC or LABC	PFS	
Everolimus	EVE + HT vs PBO + HT	3 (NCT01674140)	HR-positive/HER-2-negative BC	Invasive DFS	
Everolimus	EVE + ET vs PBO + ET	3 (NCT01773460)	HR-positive/HER-2-negative MBC patients who showed progression after EVE + EXE therapy	PFS	
Everolimus (PALOMA-2 Trial)	EVE + FUL + ANA vs EVE + FUL + PBO vs PBO + FUL + PBO	3 (NCT02137837)	Postmenopausal, HR-positive/HER-2-negative BC	PFS	
Everolimus	EVE + nab-PAC	1/2 (NCT00934895)	HER-2-negative LABC or MBC	MTD (P1) ORR (P2)	
Everolimus (BOLEO-6)	EVE + GEM + CIS vs GEM + CIS	1b	Metastatic TNBC	RP2D (P1b) PFS (P2)	
Everolimus	EVE vs CAP vs EVE + EXE	2 (NCT01939418)	ER-positive/HER-2-negative LABC or MBC	PFS	
Everolimus (NECTAR)	EVE vs TRA vs EVE + TRA	2 (NCT009512340)	Hormone-refractory, HER-2-negative MBC	ORR	
Abemaciclib	No clinical trial information available that met the inclusion criteria			Invasive DFS	
Abemaciclib (LEED01)	LEE011 + LET vs BYL719 + LET vs LEE011 + BYL719 + LET	1b/2 (NCT017872260)	Postmenopausal, HER-2-negative, high-risk, early BC	ORR	
Abemaciclib (MONTALEESA-1)	LEE011 vs MONTALEESA-1	1b/2 (NCT02086884)	Postmenopausal, HER-2-negative, grade 2 or grade 3, early BC	DLT (P1b) PFS (P2)	
Abemaciclib (MONTALEESA-2)	LEE011 + LET vs PBO + LET	2 (NCT01958021)	Postmenopausal, HER-2-negative LABC	PFS	
HDAC inhibitors	Entinostat	ENT + AZA	2 (NCT01349959)	HR-positive/HER-2-negative or TNBC with LABC or MBC	ORR
HDAC inhibitors	Entinostat (ENCORE 305)	ENT + FUL vs PBO + FUL	2 (NCT02115282)	Postmenopausal, HER-2-negative ABC	PFS, OS
HDAC inhibitors	Vorinostat	VOR + CAR + nab-PAC vs PBO + CAR + nab-PAC	2 (NCT00615967)	Postmenopausal, HER-2-negative ABC	PFS
PARP inhibitors	Veliparib	VEL + CAR + PAC vs PBO + CAR + PAC	3 (NCT02163694)	HER-2-negative LABC or MBC, BRCA-associated BC patients	PFS
PARP inhibitors	Veliparib (Brightness)	VEL + CYC vs PBO + CYC	1/2 (NCT01351909)	HR-positive/HER-2-negative MBC	RP2D (P1) PFS (P2)
PARP inhibitors	Veliparib	VEL + PAC + CAR vs PBO + PAC	2 (NCT01818063)	Stage 2 A/B or Stage 2 A/B/C TNBC patients	PCR
PARP inhibitors	Veliparib	VEL + CAR + PAC, followed by DOX/CYC vs PBO + CAR + PAC, followed by DOX/CYC vs PBO + PLA + PAC, followed by DOX/CYC	3 (NCT02032277)	Early-stage TNBC; BRCA tested	PCR
PARP inhibitors	Rucaparib	RUC + CIS vs CIS	2 (NCT01074970)	TNBC or HR-positive/HER-2-negative BC patients with known BRCA1/2 mutations	DFS
ABC, advanced breast cancer; adj, adjuvant; AE, adverse event; AHT, adjuvant hormone therapy; AI, aromatase inhibitor; ANA, anastrozole; AZA, azacitidine; BC, breast cancer; BEV, bevacizumab; CAP, capcitabine; CAR, carboplatin; CBR, clinical benefit rate; CCRR, cell cycle response rate; CHRR, complete histologic response rate; CIS, cisplatin; CR, complete response; CT, chemotherapy; CTC, circulating tumor cells; CTLA, cytotoxic T-lymphocyte antigen; CYC, cyclophosphamide; DCR, disease control rate; DFS, disease-free survival; DLT, dose limiting toxicity; DOG, docetaxel; DOX, doxorubicin; ENT, entinostat; EPI, epirubicin hydrochloride; ER, estrogen receptor; ERL, erlotinib; ERT, endocrine therapy; EVE, everolimus; EXE, exemestane; FLU, fluorouracil; FUL, fulvestrant; GEM, gemcitabine; GM-CSF, granulocyte-macrophage colony-stimulating factor; GOs, gozalinal; HER-2, human epidermal growth factor receptor-2; HR, hormone receptor; HT, hormone therapy; IKA, ibaprilone; LADC, locally advanced breast cancer; L-DOX, liposomal doxorubicin; LET, letrozole; LBC, locally recurrent breast cancer; MBC, metastatic breast cancer; MTD, maximum tolerated dose; mTOR, mammalian target of rapamycin; nab-PAC, nab-paclitaxel; neo, neoadjuvant; NI, no intervention; OCR, overall clinical response; ORR, overall response rate; OS, overall survival; P1, phase 1; P2, phase 2; PAC, paclitaxel; PAL, palbociclib; PARP, poly(adenosine diphosphate [ADP]-ribose) polymerase; PBO, placebo; PCR, pathologic complete response; PD-1, programmed death-1; PD-L1, programmed death ligand-1; PEG, pegfilgrastim; PFS, progression-free survival; PI3K, phosphatidylinositide 3-kinase; Post-Op, Postoperative; Pre-Op, Preoperative; RBC, recurrent breast cancer; RP2D, recommended phase 2 dose; RUC, rucaparib; SOR, sorafenib; SUN, suniflub; TAM, tamoxifen; TDR, treatment discontinuation rate; TNBC, triple-negative breast cancer; TRA, trastuzumab; VEL, veliparib; VFN, vinorelbine; VOR, vorinostat.

* Clinical trials were limited to phase 2 or 3 in patients with HER-2-negative BC in clinicaltrials.gov.

† Gos administered to premenopausal patients.

§ The HER-2-positive patient subgroup will receive TRA + nab-PAC + CAR therapy.

¶ The HER-2-positive patient subgroup will receive TRA + DOX + CAR therapy.

‖ The HER-2-positive subpopulation will receive DOX + CYC + GM-CSF, followed by CAR + nab-PAC + TRA therapy.

The blockade of transcription of affected genes [56]. Histone deacetylases are critical in the regulation of expression of numerous genes involved in cell survival, proliferation, and differentiation [57]. A number of HDAC inhibitors have been investigated in various cancers, and 2 agents (entinostat and vorinostat) are under the blockade of transcription of affected genes [56]. Histone deacetylases are critical in the regulation of expression of numerous genes involved in cell survival, proliferation, and differentiation [57]. A number of HDAC inhibitors have been investigated in various cancers, and 2 agents (entinostat and vorinostat) are under investigation for HER-2-negative BC. Entinostat, a class-specific HDAC inhibitor, has been investigated in combination with EXE in postmenopausal women with ER-positive ABC after they had progressed on a nonsteroidal AI in a phase 2 trial [43]. Entinostat was associated with increased median OS (28.1 months for entinostat plus EXE vs 19.8 months for PBO plus EXE; P = .036) and the most common grade 3 or 4 AEs were neutropenia (14% vs 0) and fatigue (13% vs 3%) (Table 1) [43]. A second phase 2 trial has evaluated entinostat in combination with 5-azacitidine in women with advanced TNBC or hormone-resistant BC. No responses were observed in the first 13 TNBC subjects and this cohort was closed; 27 patients were enrolled in the hormone-resistant cohort, and median PFS was 18 months at a median follow-up of 6.3 months (Table 1) [44,47]. A phase 3 trial is currently underway for entinostat plus EXE in HER-2-negative ABC, while a phase 2 trial is underway for vorinostat, a pan-HDAC inhibitor, in combination with CT for first-line treatment of HER-2-negative BC and TNBC (Table 2).

3.5. PARP inhibitors

There is intense interest in DNA repair pathways in oncology. Dysregulation of homologous recombination can be caused by mutations to BRCA1 or BRCA2, which are responsible for 5–10% of BCs, most notably TNBC [58]. These tumors may be susceptible to lethality if another DNA repair mechanism, such as base excision repair, is also inhibited. Several groups have demonstrated that BRCA-deficient cells are sensitive to inhibition of PARP [59,60], which is involved in a variety of cellular processes, including homologous recombination repair of DNA double-strand breaks (reviewed by Calvert and Azzariti [61] and Shah et al. [62]). The PARP inhibitors veliparib and rucaparib are currently being investigated in TNBC or in BC patients with known BRCA mutations. In phase 2 studies, veliparib [45] has demonstrated modest efficacy in MBC patients with BRCA mutations, while rucaparib [46] was observed to have similar 1-year OS in patients with TNBC or BC with known BRCA mutations receiving rucaparib plus cisplatin compared with cisplatin monotherapy (Table 1). Veliparib is currently being investigated in combination with CT in a number of clinical trials, including 2 phase 3 trials (Table 2).

3.6. Immunotherapies

The immune system plays an important role in cancer, both in the promotion of tumorigenesis through inflammatory pathways and suppression of adaptive immunity, and in the prevention of tumor formation through immune surveillance [63]. Tumor-infiltrating lymphocytes have been associated with improved outcome in BC and were recently shown to be a predictive marker of response to neoadjuvant CT [64]. An immune response is initiated by antigen recognition, but the magnitude and quality of the response is regulated by additional immune checkpoint molecules [65]. These molecules include PD-1, PD-L1, and CTLA-4, and inhibition of these novel targets is actively being investigated in a number of cancers, including non-small cell lung cancer, renal carcinoma, melanoma, ovarian cancer, and others. Nivolumab, pembrolizumab, and pidilizumab are mAb inhibitors of PD-1, and MPDL3280A is a mAb inhibitor of PD-L1; ipilimumab is a CTLA-4 inhibitor. No clinical trial data with these agents in BC have been published to date, and none of these agents has progressed to phase 2 trials for the treatment of HER-2-negative BC.

4. Combination regimens with chemotherapeutic agents

Taxanes, such as paclitaxel, are important chemotherapeutic agents for the treatment of HER-2-negative BC. Paclitaxel is indicated for the treatment of MBC after failure of combination CT for metastatic disease or relapse within 6 months of adjuvant CT, with prior therapy including an anthracycline unless clinically contraindicated [66]. It is also being investigated in numerous clinical trials as combination therapy for HER-2-negative and HER-2-positive BC. Due to the hydrophobicity of taxanes, synthetic solvents are used to enable parenteral administration; polyethylene castor oil and ethanol are used as vehicle for paclitaxel [66]. Recently, a 130 nm albumin-bound formulation of paclitaxel (nab-paclitaxel) has been developed to improve the chemotherapeutic...
effects of paclitaxel while avoiding the toxicities associated with polyethylated castor oil [67]. Albumin is a natural carrier of lipophilic molecules allowing nab-paclitaxel to be safely infused at higher doses, with shorter infusion times, and with no need for pre-medication [68]. A phase 3 trial comparing paclitaxel with nab-paclitaxel in women with MBC demonstrated a significant increase in response rate in the nab-paclitaxel group compared with the paclitaxel group (33% vs 19%; \(P = .001 \)), as well as significantly longer time to tumor progression (23.0 weeks vs 16.9 weeks; \(P = .006 \)) [69]. nab-Paclitaxel was also associated with a lower incidence of grade 4 neutropenia compared with paclitaxel (9% vs 22%; \(P < .001 \)) [69]. Unlike paclitaxel, nab-paclitaxel is being investigated in a limited number of clinical trials in HER-2-negative BC, mostly in combination with bevacizumab. Since their indications are similar [66,67], nab-paclitaxel may replace paclitaxel as combination therapy with targeted agents (bevacizumab, sorafenib, sunitinib, buparlisib, BEZ235, EVE, and veliparib) because of its improved efficacy and safety.

5. Conclusions

Breast cancer is the leading cause of cancer and cancer death in women worldwide. Although MBC is incurable, it is treatable, with prolonged survival as the ultimate goal of therapy. Many patients with BC progress after multiple lines of therapy or become resistant to treatment; therefore, there is a need for additional treatment strategies for this patient population and repeat biopsies to track change in receptor status to determine treatment modifications. Translational research, including The Cancer Genome Atlas, has generated a wealth of data that provides the rationale for the investigation of novel therapeutic targets, such as the identification of commonly mutated genes in BC. Inhibition of these emerging pathways, either alone or as combination therapy, may provide greater control of disease progression even in patients with resistance to ET. Clinical trial data for a number of these agents have demonstrated promising clinical activity, and further research is underway to develop novel treatment combinations for patients with HER-2-negative BC.

Executive summary

- HER-2-negative breast cancer is incurable, but is treatable. New therapeutic options are needed to manage resistance to current therapies.
- Breast cancer patients acquire resistance to therapy, and these pathways have become targets for treatment. The Cancer Genome Atlas has documented the frequency of common gene mutations in breast cancer subtypes, and a number of agents are under investigation to target these cellular pathways.
- A number of targeted biologic therapies are currently under investigation for HER-2-negative breast cancer, and these include inhibitors of VEGF and VEGFR, mTOR and PI3K signaling pathways, CDK4 and 6, HDAC, PARP, CTLA-4, and PD-1 and PD-L1. Extensive descriptions of clinical efficacy and ongoing trials of key targeted agents from phase 2 or 3 trials for the treatment of HER-2-negative breast cancer are included in this review.
- Combination regimens of a chemotherapeutic agent (such as nab–paclitaxel) and a biologic targeted agent are under investigation to achieve prolonged disease control in patients with HER-2-negative breast cancer, including triple-negative breast cancer.
- Continued research is required to demonstrate the efficacy and safety of targeted agents and combination regimens in the treatment of HER-2-negative breast cancer.

Conflict of Interest

Source(s) of support (in the form of grants, equipment, drugs, or all of these): the author is employed by Celgene Corporation and received editorial support that was funded by Celgene Corporation.

Ethical approval

None Declared.

Role of the funding source

The author is employed by Celgene Corporation, and funding for medical editorial assistance was provided by Celgene.

Acknowledgments

The author received editorial support in the preparation of this manuscript from Nick Cianciola, Ph.D., ProEd Communications, Inc., funded by Celgene Corporation. The author directed and was fully responsible for all content and editorial decisions for this manuscript, and approved the final version.

References

[1] J. Ferlay, I. Soerjomataram, M. Ervik, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray, GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11, International Agency for Research on Cancer, Lyon, France, 2013.
[2] N.U. Lin, A. Vanderplas, M.E. Hughes, R.L. Theriault, S.B. Edge, Y.N. Wong, D.W. Blayney, J.C. Niland, E.P. Winer, J.C. Weeks, Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network, Cancer 118 (2012) 5463–5472.
[3] F. Cardoso, A. Costa, L. Norton, D. Cameron, T. Cufer, L. Fallowfield, P. Francis, J. Vigorov, S. Kyriakides, N. Lin, O. Paganini, E. Senkus, C. Thomasen, M. Aapro, J. Bergh, A. Di Leo, N. El Saghir, P.A. Ganz, K. Gelmon, A. Goldhirsch, N. Harbeck, N. Houssami, C. Hudis, B. Kaufman, M. Leadbeater, M. Mayer, A. Rodiger, H. Rugo, V. Sacchini, C. Sledge, L. van’t Veer, G. Viale, I. Krop, E. Winer, 1st International consensus guidelines for advanced breast cancer (ABC 1), Breast 21 (2012) 242–252.
[4] E. Senkus, S. Kyriakides, F. Penault-Llorca, P. Poortmans, A. Thompson, S. Zackrisson, F. Cardoso, E.G.W. Group, Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up, Ann. Oncol. 24 (Suppl. 6) (2013) vi7vi23.
[5] National Comprehensive Cancer Network, NCCN Clinical Practice Guidelines in Oncology: Breast Cancer. Version 3.2014. Available at: [http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf], 2014.
[6] R.F. Fear, K. McGeechan, M.C. Jenkins, A. Bairatt, M.H. Tattersall, N. Wilcken, Combination versus sequential single agent chemotherapy for metastatic breast cancer, Cochrane Database Syst. Rev. 12 (2013) CD008792.
[7] H.J. Burstein, Therapeutic Options for Treatment Refractory Breast Cancer: Discussion [Oral Presentation at ASCO]. [http://meetinglibrary.asco.org/content/35642], 2010.
[8] A. Goldhirsch, E.P. Winer, A.S. Coates, R.D. Gelber, M. Piccart-Gebhart, B. Thurlimann, H.J. Senn, Personalizing the treatment of women with early breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013, Ann. Oncol. 24 (2013) 2206–2223.
[9] E. Luporsi, F. Andre, F. Spryatos, P.M. Martin, J. Jacquemier, F. Penault-Llorca, N. Tubiana-Mathieu, B. Sigal-Zafrani, L. Arnsould, A. Gompel, C. Egele, B. Poulet, K.B. Clough, H. Crouet, A. Fourquet, J.P. Lefranc, C. Mathelin, N. Rouyer, D. Serin, M. Spielmann, M. Haugh, M.P. Chenard, E. Brain, P. de Cremoux, J.P. Belluco, Ki-67: level of evidence and methodological considerations for its role in the
safety, efficacy, and surrogate biomarkers of response to 5-azacitidine (5-AZA) and entinostat in advanced breast cancer, J.Clin. Oncol. (32) (abstr 569).

G. Somlo, P.H. Frankel, T.H. Liu, C. Ma, B. Arun, A. Garcia, T. Cigler, L. Cream, H.A. Harvey, J.A. Sparano, R. Nanda, H.K. Chew, T.J. Moynihan, L.T. Vahdat, M.P. Goetz, A. Hurria, J.E. Mortimer, D.R. Gandara, A. Chen, J.N. Weitzel, Phase II trial of single agent PARP inhibitor ABT-888 (veliparib [vel]) followed by postprogression therapy of vel with carboplatin (carb) in patients (pts) with stage BRCA-associated metastatic breast cancer (MBC): California Cancer Consortium trial PHR-96, J. Clin. Oncol. (32) (abstr 1021).

S. Dwadasi, Y. Tong, T. Walsh, M.A. Danso, C.X. Ma, P. Silverman, M.-C. King, G. Somlo, A. Garcia, S. Baylin, N.E. Davidson, V. Stearns, A phase 2 study investigating the safety, efficacy and surrogate biomarkers of response of 5-azacitidine (5-AZA) and entinostat (MS-275) in patients with triple-negative advanced breast cancer, in: presented at 104th Annual Meeting of the American Association of Cancer Research, Washington, DC, April 6–10, 2013, 2013 (abstract 4666).

A.J. Montero, M. Escobar, G. Lopes, S. Gluck, C. Vogel, Bevacizumab in the treatment of metastatic breast cancer: friend or foe, Curr. Oncol. Rep. 14 (2012) 1–11.

R.J. Shaw, L.C. Cantley, Ras, PI(3)K and mTOR signalling controls tumour cell growth, Nature 441 (2006) 424–430.

S.M. Brachmann, J. Kleylein-Sohn, S. Gaul, L. Hauser, B. Hattenberger, C. Scharfenberg, K. Scholz, J. Gall, S. Baylin, S. Burgart, C. Garcia-Echeverria, B. Arun, A. Garcia, T. Cigler, L. Cream, B. Arun, A. Garcia, S. Baylin, N.E. Davidson, V. Stearns, A phase 2 study investigating the safety, efficacy and surrogate biomarkers of response of 5-azacitidine (5-AZA) and entinostat (MS-275) in patients with triple-negative advanced breast cancer, in: presented at 104th Annual Meeting of the American Association of Cancer Research, Washington, DC, April 6–10, 2013, 2013 (abstract 4666).

A.J. Montero, M. Escobar, G. Lopes, S. Gluck, C. Vogel, Bevacizumab in the treatment of metastatic breast cancer: friend or foe, Curr. Oncol. Rep. 14 (2012) 1–11.

R.J. Shaw, L.C. Cantley, Ras, PI(3)K and mTOR signalling controls tumour cell growth, Nature 441 (2006) 424–430.

S.M. Brachmann, J. Kleylein-Sohn, S. Gaul, L. Hauser, B. Hattenberger, C. Scharfenberg, K. Scholz, J. Gall, S. Baylin, S. Burgart, C. Garcia-Echeverria, B. Arun, A. Garcia, T. Cigler, L. Cream, B. Arun, A. Garcia, S. Baylin, N.E. Davidson, V. Stearns, A phase 2 study investigating the safety, efficacy and surrogate biomarkers of response of 5-azacitidine (5-AZA) and entinostat (MS-275) in patients with triple-negative advanced breast cancer, in: presented at 104th Annual Meeting of the American Association of Cancer Research, Washington, DC, April 6–10, 2013, 2013 (abstract 4666).

S.G. Stergiopoulos / New Horizons in Translational Medicine 2 (2015) 27–38