FORMULATION AND DEVELOPMENT OF SUSTAINED RELEASE MATRIX TABLETS OF LORNOXICAM

D. M. Patil*, P. A. Pawar, R. Y. Pagar, R. S. Ghule, V. A. Bairagi

KBHSS Trust’s Institute of Pharmacy, Malegaon, Nashik, MS, India

ABSTRACT

The aim of the present study was to prepare sustained release matrix tablets of lornoxicam to make drug in sustained form so as to prolong its elimination time for the effective treatment of rheumatoid arthritis, and also in the management of ankylosing spondylitis, acute sciatica and low back pain. The present investigation demonstrates that, use of hydrophilic and hydrophobic polymers could be successfully employed for formulating sustained release matrix tablets of Lornoxicam. Optimized formulation containing HPMC K100M and Ethyl cellulose at optimum ratio had successfully sustained the drug release for 24 h. Matrix tablets of optimized batch had in vitro drug release. It was observed that the optimized matrix tablets of optimized batch shows better flow property by studying various pre-compression parameters. Thus, sustained release matrix tablets of Lornoxicam using biocompatible polymers were successfully formulated, evaluated and found to be suitable candidates in extending the release of the drug from the matrix tablets.

Keywords: Lornoxicam, HPMC, Sustained release, matrix tablets

INTRODUCTION

A sustained-release dosage form is defined as “any drug or dosage form modification that prolongs the therapeutic activity of the drug” [1]. Development of oral sustained release (SR) tablets of highly water soluble drugs or bioactives has always been a challenge and therefore, opportunity for formulation scientist. Most of these drugs if not formulated properly, may be released at a faster rate resulting in exceeding the maximum therapeutic levels and hence will lead to toxic side effects. Sustained delivery of such drugs ensures improved drug delivery and patient compliance, greater safety and efficacy, desired release kinetics and helps in maintaining the plasma drug concentration within the therapeutic window for extended period of time [2,3].

Several techniques including melt granulation [4], melt pelletization [5], hot melt coating [6], Wet granulation [7,8,9], hot melt extrusion [10] and direct compression [11,12] have been used to obtain sustained release matrix dosage forms.

The tablet can be developed with the combination of HPMC K 100M and Ethyl Cellulose as a matrix former. Lornoxicam is NSAID that has numerous functions in the body. It can be absorbed rapidly and completely from gastrointestinal track after the oral administration. Absolute bioavailability of Lornoxicam is 90-100%. No first pass effect is observed. It is found in the plasma in the unchanged form and as its hydroxylated metabolite. The hydroxylated metabolite exhibits no pharmacological activity. CYP2C3 has been shown to be the primary enzyme responsible for the biotransformation of Lornoxicam. Approximately 2/3 part of Lornoxicam is eliminated via the liver and 1/3 via the kidneys as inactive substance. Lornoxicam inhibits the production of prostaglandins by inhibiting
of the action of cyclooxygenase, which regulates the conversion of Arachidonic Acid to Prostaglandins. Lornoxicam mainly prescribed in the treatment of osteoarthritis and rheumatoid arthritis, and also in the management of ankylosing spondylitis, acute sciatica and low back pain.13-16.

The main objectives of present investigation are to confirm the drug by various analytical techniques, to study the drug excipients compatibility, to avoid the dose as well as the frequency of the dosage form and to perform the stability.13,14,15,16.

**MATERIALS AND METHODS**

**Chemicals:** Lornoxicam, HPMC K 100M, Ethyl Cellulose, PVP K-30, Microcrystalline Cellulose, Lactose, Talc, Magnesium Stearate, Potassium Dihydrogen Phosphate, Potassium Chloride, Potassium Bromide

**Instruments:** Electronic Balance, Hot Air Oven, UV Spectrophotometer, FTIR Spectrophotometer, DSC, Sonicator, Stability Chamber, Tablet Dissolution Testing Apparatus, Rimek Mini Tablet Press 2, Monsanto Hardness Tester, Rotatory Flask Shaker

**Table 1: Composition for sustained release matrix tablet of Lornoxicam formulation design**

| Ingredients (in mg) | F1  | F2  | F3  | F4  | F5  | F6  | F7  | F8  | F9  |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Lornoxicam         | 16  | 16  | 16  | 16  | 16  | 16  | 16  | 16  | 16  |
| HPMC K100M         | 16  | 32  | 48  | -   | -   | -   | 24  | 16  | 08  |
| Ethyl cellulose    | -   | -   | -   | 16  | 32  | 48  | 08  | 16  | 24  |
| PVP K 30           | 10  | 10  | 10  | 10  | 10  | 10  | 10  | 10  | 10  |
| Lactose            | 40  | 28  | 16  | 56  | 24  | 16  | 32  | 40  | 24  |
| Micro crystalline cellulose | 16  | 12  | 08  | -   | 16  | 08  | 08  | -   | 16  |
| Magnesium stearate | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| Talc               | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| Total              | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |

**Evaluation of compressed tablets**

The tablets prepared were evaluated for weight variation, disintegration test, dissolution test, thickness, hardness of individual dose and friability.

**Weight variation**

The weight variation was performed by weighing 20 tablets individually, then individual weight of tablet is compared with average weight of 20 tablets.

**Hardness**

The hardness of each batch of tablet was checked by using Monsanto hardness tester. The hardness was measured in terms of kg/cm².

**Friability**

The friability was determined by first weighing 10 tablets before placing in friability tester (Roche friabilator), which was rotated for 4 min at 25 rpm. After dusting, the remaining weight of tablet was determined.

**Thickness**

The thickness of tablet was determined by vernier caliper.

**Disintegration**17,18

The test was performed by introducing one tablet in each tube and adds a disc to each tube. Suspend the assembly in the beaker containing purified water and operate the apparatus until the tablet completely disintegrates.

**In Vitro Dissolution test**17,18

In-vitro dissolution studies were carried out using USP XXIII dissolution apparatus type II at 50 rpm. Dissolution test was carried out for a total period of 24 hr using 0.1N HCl (pH 1.2) solution (900 ml) as a dissolution medium at 37 ± 0.5°C for first 2 hr and phosphate buffer (pH 6.8) solution (900 ml) solution for the rest of the period.5 ml of sample was withdrawn at predetermined time interval of 1 hr up to 24 hr and replaced with same volume of fresh dissolution medium. The withdrawn samples were filtered and analyzed by UV spectrophotometer at 376 nm using pH 6.8 as a blank. Percentage cumulative drug release was calculated.
RESULTS AND DISCUSSION

Pre-compression parameters

Table 2: Evaluation parameters of powder blend

| Parameters                        | F1       | F2       | F3       | F4       | F5       | F6       | F7       | F8       | F9       |
|----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Loose bulk density (LBD) g/ml    | 0.400    | 0.385    | 0.324    | 0.331    | 0.338    | 0.254    | 0.305    | 0.317    | 0.302    |
| Tapped density (TBD) g/ml        | 0.465    | 0.451    | 0.371    | 0.383    | 0.399    | 0.284    | 0.365    | 0.379    | 0.348    |
| Consolidation index              | 13.97    | 14.63    | 12.66    | 13.57    | 15.28    | 10.56    | 14.43    | 16.35    | 13.21    |
| Hausner ratio                    | 1.16     | 1.17     | 1.14     | 1.15     | 1.18     | 1.11     | 1.19     | 1.19     | 1.16     |
| Angle of repose (Ø)              | 25.54    | 25.25    | 25.18    | 25.22    | 24.87    | 24.85    | 24.28    | 26.95    | 26.11    |

Post-compression parameters

Table 3: Evaluation of sustain release matrix tablets

| Parameters                        | F1       | F2       | F3       | F4       | F5       | F6       | F7       | F8       | F9       |
|----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Thickness ±S.D. mm(n=10)          | 2.44±0.02| 2.50±0.04| 2.55±0.03| 2.52±0.02| 2.45±0.05| 2.56±0.03| 2.61±0.02| 2.62±0.03| 2.40±0.04|
| Hardness S.D. (kg/cm²)            | 6.8±0.3  | 7.1±0.5  | 7.2±0.2  | 5.48±0.2 | 5.48±0.2 | 5.7±0.3  | 5.1±0.5  | 5.75±0.5 | 5.64±0.2 |
| Average Weight variation (n=20 mg)| 101.4±1.51| 102.63±1.69| 101.50±1.41| 100.39±1.35| 101.26±1.58| 102.23±1.60| 100.41±1.80| 102.47±1.20| 101.51±1.40|
| Drug Content (%)                 | 100.65±1.20| 98.50±1.46| 97.25±1.56| 98.70±0.92| 99.65±2.12| 98.80±0.55| 99.50±0.92| 97.21±0.83| 101.25±1.31|
| Friability (% w/w)               | 0.38±0.04| 0.42±0.06| 0.35±0.02| 0.45±0.04| 0.38±0.08| 0.29±0.03| 0.36±0.06| 0.29±0.09| 0.33±0.03|

**In-vitro dissolution studies**

In-vitro dissolution studies were carried out using USP XXIII dissolution apparatus type II at 50 rpm. Dissolution test was carried out for a total period of 24 hr using 0.1N HCl (pH 1.2) solution (900 ml) as a dissolution medium at 37 ± 0. 5°C for first 2 hr and phosphate buffer (pH 6.8) solution (900 ml) solution for the rest of the period. 5 ml of sample was withdrawn at predetermined time interval of 1 hr up to 24 hr and replaced with same volume of fresh dissolution medium. The withdrawn samples were filtered and analyzed by UV spectrophotometer at 376 nm using pH 6.8 as a blank. Percentage cumulative drug release was calculated.

Table 4: Cumulative % drug release

| Time (hrs.) | F1   | F2   | F3   | F4   | F5   | F6   | F7   | F8   | F9   |
|------------|------|------|------|------|------|------|------|------|------|
| 1          | 8.6  | 3.51 | 3.62 | 5.09 | 3.99 | 3.65 | 6.8  | 2.63 | 2.63 |
| 2          | 14.41| 9.63 | 8.01 | 6.91 | 5.41 | 4.57 | 12.46| 8.07 | 5.45 |
| 3          | 20.11| 15.7 | 12.12| 31.75| 13.37| 13.92| 18.16| 20.43| 7.72 |
| 4          | 43.78| 20.89| 15.56| 49.29| 19.57| 17.83| 21.63| 24.04| 10.38|
| 5          | 47.71| 26.45| 19.33| 67.12| 26.37| 21.64| 24.4 | 26.3 | 13.25|
| 6          | 55.72| 31.69| 22.56| 79.98| 36.36| 26.56| 27.68| 30.31| 17.2 |
| 7          | 59.83| 36.61| 26.36| 92.17| 39.03| 31.34| 29.91| 33.6 | 23.29|
| 8          | 65.47| 40.85| 29.51| 94.11| 44.56| 35.87| 37.66| 37.35| 29.91|
| 9          | 70.31| 44.94| 32.79| 96.49| 54.61| 38.95| 39.78| 40.67| 38.01|
| 10         | 74.95| 48.53| 36.9 | 98.47| 61.55| 42.48| 43.87| 44.58| 46.66|
| 24         | 99.81| 96.26| 67.66| 97.36| 96.38| 82.93| 96.97| 97.38| 97.35|
Stability studies
The purpose of stability testing is to provide evidence on how the quality of a drug substance or drug product varies with time under influence of various environmental factors such as temperature, humidity and light, and enables recommended storage conditions, retest periods and self-lives to be established.

ICH specifies the length (duration) of study and storage conditions
Accelerated stability studies are testing at 40 °C ± 2 °C / 75 % RH ± 5 % for a specific time period up to 3 months and long term stability studies are testing at 25 °C ± 2 °C / 60 % RH ± 5 % for a specific time period up to 12 months. Stability studies were carried out at 40 ± 2 °C / 75 % RH for a specific time period up to 90 days.

Table 5: Physicochemical evaluation for stability study

| Parameters      | Drug content (%) | Hardness ± S.D. (kg/cm²) | Friability ± S.D. (% w/w) | Weight variation (N=20) mg | In-vitro drug release |
|-----------------|------------------|--------------------------|---------------------------|----------------------------|----------------------|
|                 |                  |                          |                           |                            | At 10 hr. | At 24 hr. |
| Initial         | 99.50 ± 0.92     | 5.1 ± 0.5                | 0.36 ± 0.06               | 100.41 ± 2.80              | 48.58     | 96.26     |
| After one month | 99.27 ± 0.45     | 5.0 ± 0.6                | 0.36 ± 0.09               | 100.39 ± 1.35              | 48.07     | 96.84     |
| After two months| 99.28 ± 0.42     | 5.0 ± 0.6                | 0.36 ± 0.02               | 100.40 ± 1.12              | 48.00     | 96.43     |
| After three months | 99.29 ± 0.68   | 5.0 ± 0.6                | 0.36 ± 0.04               | 100.38 ± 1.24              | 48.18     | 96.25     |

Table 6: position of main functional group bands after three months stability study

| Sample No. | -NH Stretching | C=O Stretching | N-H Bending | O=S=O Stretching | C-H (Bend) Aromatic | C-Cl Bending |
|------------|----------------|----------------|-------------|------------------|---------------------|--------------|
| After 3 month | 3067.91        | 1647.88        | 1595.93     | 1548.76          | 1144.49            | 1383.21      | 1327.82      | 829.88        | 779.36        |
CONCLUSION

The present investigation demonstrates that, use of hydrophilic and hydrophobic polymers could be successfully employed for formulating sustained release matrix tablets of Lornoxicam. Optimized formulation containing HPMC K100M and Ethyl cellulose at optimum ratio had successfully sustained the drug release for 24 h. Matrix tablets of optimized batch had in vitro drug release. It was observed that the optimized matrix tablets of optimized batch shows better flow property by studying various pre-compression parameters. Thus, sustained release matrix tablets of Lornoxicam using biocompatible polymers were successfully formulated, evaluated and found to be suitable candidates in extending the release of the drug from the matrix tablets.

Acknowledgement

With great pleasure I acknowledge my sincere gratitude to the associate professor of K. B. H. S. S. T’s Institute of Pharmacy, Malegaon; for completion of my Dissertation work.

REFERENCES

1. Gudsoorkar VR, Rambhau D. “Influence variable of process one standard drug release from disintegrating sustained release Ibuprofen beads” Eastern Pharmacist, 1997; 40(2):111-113.
2. Siddique S, Bose A, Khanam J. “Modulation of drug (metoprolol succinate) release by inclusion of hydrophobic polymer in hydrophilic matrix.” Drug Dev Ind Pharm, 2011; 37(9):1016-1025.
3. Deore RK, Kavitha K, Tamizhmani TG. “Preparation and evaluation of sustained release matrix tablets of tramadol hydrochloride using glyceryl palmitostearate.” Trop J Pharm Res, 2010; 9(3):275-281.
4. Patel K, Vyas J, Upadhyay U. Formulation and evaluation of sustained release matrix tablets of nateglinide. Journal of Drug Delivery and Therapeutics, 2013; 5(5):19-25. doi:10.22270/jddt.v5i5.1130
5. Hamdani J, Moos AJ, Amighi K. “Development and evaluation of prolonged release pellets obtained by melt pelletization process.” Int J Pharm, 2002; 245:167-177.
6. Jannin V, Cuppok Y. “Hot-melt coating with lipid excipient.” Int J Pharm, 2013; 457:480-487.
7. Dwivedi C, Rao S, Roy A, Saraf S, Kulsum U, Verma N, Pradhan D. Formulation and characterization of metformin hydrochloride sustained release matrix tablet containing Cassia tora mucilage. Journal of Drug Delivery and Therapeutics, 2017; 7(6):66-75. doi:10.22270/jddt.v7i6.1520
8. Momin S, Khan S, Ghadge D, Yadav A, Wagh A. Formulation and evaluation of bilayer tablets of propranolol hydrochloride. Journal of Drug Delivery and Therapeutics, 2017; 7(2):50-57. doi:10.22270/jddt.v7i2.1399
9. Sahoo C, Rao S, Sudhakar M. Formulation and evaluation of controlled porosity osmotic pump tablets for zidovudine and lamivudine combination using fructose as osmogen. Journal of Drug Delivery and Therapeutics, 2017; 7(4):41-50. doi:10.22270/jddt.v7i4.1465
10. Lloausni NO, Schwartz JB. “The effect of wax on compaction of microcrystalline cellulose beads made by extrusion and spheronization.” Drug Dev Ind Pharm, 1998; 24:37-44.
11. Vinchurkar K, Mane S, Balekar N, Jain D. Formulation and evaluation of tablets containing artemether microspheres and lumeonatrine. Journal of Drug Delivery and Therapeutics, 2017; 7(7):4-7. doi:10.22270/jddt.v7i7.1569
12. Sharma A, Sharma P, Darwehekar G. Formulation and evaluation of bilayer tablet of metronidazole and diclofenac sodium delayed release for treatment of irritable bowel disease. Journal of Drug Delivery and Therapeutics, 2017; 7(7):56-58. doi:10.22270/jddt.v7i7.1586
13. Julia A, Balfour, Andrew Fitto, Lee B, Barradell, Lornoxicam: A Review of its Pharmacology and Therapeutic Potential in the Management of Painful and Inflammatory Conditions, 1916; 51(4):639-657.
14. Indian Pharmacopoeia, Government of India, Ministry of health and family welfare, volume 1, published by The Indian Pharmacopoeia Comission, Gaziabad, 2014: 190.
15. The Merck Index, an encyclopedia of chemicals, drugs and biological, Fourteenth edition, published by Merck Research Laboratories: 5584.
16. Kumar GP, Battu G, Lova R, Kotha NS, Preparation and evaluation of sustained release matrix tablets of Lornoxicam using tamarind seed polysaccharide, Int. J. Pharm. Res. Dev, 2011; 2(12):89-98.
17. Reddy KR, Once daily sustained release matrix tablets of Nicorandil: Formulation and in-vitro evaluation. PharmSciTech, 2003, 4(4): E 61.
18. Yassin El- said Hamza, Mona Hassan Aburahma, Design and in-vitro evaluation of novel sustained release matrix tablets for Lornoxicam based on the combination of hydrophilic matrix formers and basic pH- modifiers, Pharmaceutical Development and Technology, 2009; 15:139-153.
19. Garg A, Gupta MM, Taste masking and formulation development & evaluation of mouth dissolving tablets of levoceptrizine dihydrochloride, Journal of Drug Delivery and Therapeutics; 2013; 3(3):123-130