The Split Anti Fuzzy Domination in Anti Fuzzy Graphs

H J Yousif 1 and A A Omran2

1,2Department of Mathematics, College of Education for Pure Science, University of Babylon, Iraq.

Email:* hayderjasim36@gmail.com and Pure.Ahmed.Omran@uobabylon.edu.iq

Abstract. We will discuss the concept of a split anti-fuzzy dominating set (SAFD) in anti fuzzy graph (GAF) and investigate the relationship of γ_a_f(GAF) (split anti fuzzy domination number) with other known parameters of anti-fuzzy graph. Some bounds and interesting results for this parameter are obtained. The split anti-fuzzy domination on some standard anti-fuzzy graph has been discussed with some suitable graphs.

Keywords: anti fuzzy graph (GAF), Anti fuzzy dominating set (AFD) and Split anti fuzzy Domination number.

1. Introduction
The fuzzy set introduced by L.A. Zadeh [1] to explain vagueness mathematically and tried to resolve problems by giving a particular grade of membership to every member of a given set, which laid the basis of set theory. In (1975) the fuzzy Graph introduced by A. Rosenfeld [2]. The basic idea of fuzzy graph introduced by Kaufmann [3], and fuzzy relation represents the relationship between the objects of the given set. Domination in fuzzy graphs has been introduced by A.Somasundaram and S. Somasundaram [4] and they defined by effective edge. Domination in fuzzy graphs by strong edge it was discussed by A. Nagoorgani and V. T. Chandrasekaran [5] Anti fuzzy structures on graphs has been introduced by Muhammad Akram [6] and discussed the concepts of self-centroid anti fuzzy graphs and constant anti fuzzy graphs and other concepts. on anti fuzzy graph and domination on anti fuzzy graph has been introduced by R. Muthuraj and A. Sasireka [7, 8] Antipodal anti fuzzy graph has been discussed by Seethalakshmi, R.B. Gnanajothi [9]. Split domination in Fuzzy graph has been introduced by Q. M. Mahioub and N.D Soner [10]. In this paper, we introduce the concept of Split anti fuzzy domination on Anti Fuzzy Graph. Some theorems are discussed and suitable examples are given.

2. Basic Definitions:
2.1. Definition [6]: Let η: V→ [0, 1] and ρ: V× V→ [0, 1], then GAF = (η, ρ) is known as anti fuzzy Graph if ρ (u_1, u_2) ≥ η (u_1) ∨ η (u_2) ∀ u_1, u_2 ∈ V and is denoted by GAF = (η, ρ) and ∨ refer to maximum.

2.2. Definition [6]: G_A* = (η*, ρ*) is known as underlying crisp graph of GAF = (η, ρ)
Where \(\eta^* = \{ w \in V / \eta (w) > 0 \} \) and \(\rho^* = \{ (u, w) \in V \times V / \rho (u, w) > 0 \} \).

Note: \(\rho \) is taken into account as reflexive and symmetric. For each example, \(\eta \) is selected suitably. i.e., only undirected \(G_{AF} \) are studied.

2.3. Definition [7]: The size \(S \) and order \(P \) of \(G_{AF} = (\eta, \rho) \) are defined to be
\[
S = \sum_{u \in V} \rho (u, v) \\
P = \sum_{v \in V} \eta (v),
\]
Denoted by \(S(G_{AF}) \) and \(O(G_{AF}) \) respectively.

2.4. Definition [8]: \(G_{AF} \) is complete if \(\rho (u, w) = \max \{ \eta (u), \eta (w) \}, \forall u, w \in \eta^* \) and it is denoted by \(K_{\eta} \).

2.5. Definition [9]: The complement of \(G_{AF} = (\eta, \rho) \) is an anti-fuzzy graph such that: \(\eta = \overline{\eta} \), and
\[
\rho(x, y) = 1 - \rho (u, w) + \max \{ \eta (u), \eta (w) \} \text{ for all } \rho (u, w) \in E.
\]

2.6. Definition [8]: The effective edge \(e = (u, w) \) in \(G_{AF} \) is defined as if \(\rho (u, w) = \max \{ \eta (u), \eta (w) \} \).

2.7. Definition [8]: Let \(w \) be a vertex in \(G_{AF} \), \(N (w) = \{ u : (w, u) \text{ is an effective edge} \} \) is known as The Neighbourhood of \(w \), \(N[w] \cup \{ w \} \) is known as the closed neighbourhood of \(w \).

2.8. Definition [6]: The \(G_{AF} = (\eta, \rho) \) is connected if there exist a fuzzy path between any two vertices of \(G_{AF} \).

2.9. Definition [12]: The \(G_{AF} = (\eta, \rho) \) is a strong anti fuzzy graph if \(\rho (u, w) = \max \{ \eta (u), \eta (w) \}, \forall \rho (u, w) \in \rho^* \).

2.10. Definition [12]: The \(v \)-nodal in \(G_{AF} \) is defined as every vertex has equal fuzzy values. i.e \(\eta (x) = k, \forall x \in V(G_{AF}) \).

2.11. Definition [12]: The \(e \)-nodal in \(G_{AF} \) is defined as every edge has equal fuzzy values. i.e. \(\rho (x, y) = k \forall (x, y) \in E(G_{AF}) \).

2.12. Definition [12]: The uninodal in \(G_{AF} \) is defined as for every vertices and edges in \(G_{AF} \) have equal fuzzy values i.e. \(\eta (x) = k = \rho (x, y) \).

2.13. Definition [13]: Let \(A \subseteq V(G_{AF}) \) is known as an anti-fuzzy vertex cover of \(G_{AF} \) if for each effective edge \(e = (u, w) \), at least (one) of \(u \), \(w \) is in \(A \). The maximum anti-fuzzy cardinality of anti-fuzzy vertex cover is known as anti-fuzzy vertex covering number of \(G_{AF} \) and is represented by \(\alpha_0(G_{AF}) \).

Note: If \(e = (v, w) \) is an effective edge in an anti fuzzy graph \(G_{AF} \), then we say that \(v \) and \(e \) cover each other.

2.14. Definition: A vertex \(w \) is known as an isolated vertex if \(\rho (w, u) > \eta (w) \lor \eta (u) \forall u \in V-\{w\} \).

2.15. Definition: Let \(S \subseteq V(G_{AF}) \) is known as the independent anti-fuzzy set if
\[
\begin{align*}
\rho (w, u) &= 0 \quad \forall u, w \in S \text{ such that } \rho (w, u) \not\in E(G_{AF}) \\
\rho (w, u) &> \eta (w) \lor \eta (u) \forall u, w \in S \text{ such that } \rho (w, u) \in E(G_{AF})
\end{align*}
\]

2.16. Definition: An independent anti – fuzzy set \(S \) of \(G_{AF} \) is called the maximal independent anti-fuzzy set if there is no independent anti- fuzzy set \(S^* \) of \(G_{AF} \) such that \(|S^*| > |S| \).
2.17. Definition: The maximum fuzzy cardinality over all maximal independent anti fuzzy set of G_{AF} is known as the independence number of G_{AF} and is denoted by $\beta_0 (G_{AF})$.

2.18. Definition: Two vertices u_1 and u_2 of G_{AF} dominate each other if $\rho (u_1, u_2) = \max \{\eta (u_1), \eta (u_2)\}$.

2.19. Definition: A vertex subset D of $V(G_{AF})$ is known as anti-fuzzy dominating (AFD) set of G_{AF} if for each vertex $u_1 \in V - D$ there exists a vertex $u_2 \in D$ such that u_2 dominates u_1. The AFD set D of G_{AF} is called minimal AFD set of G_{AF} if no proper subset D' of D is AFD of G_{AF}.

2.20. Definition: The maximum fuzzy cardinality among all minimal AFD set of G_{AF} is called the anti fuzzy domination number and is denoted by $\gamma (G_{AF})$.

3. Split anti fuzzy Domination of G_{AF}.

In this section the SAFD set and split anti fuzzy domination number on G_{AF} are defined, uninodal anti fuzzy graph is discussed, and these concepts are studied on some kinds of simple G_{AF}.

3.1. Definition: AFD set D of G_{AF} is known as SAFD set of G_{AF} if the induced anti fuzzy subgraph $< V - D >$ is disconnected.

3.2. Definition: The SAFD set D of G_{AF} is known as minimal SAFD set of G_{AF} if no proper subset D' of D is SAFD set of G_{AF}.

3.3. Definition: The maximum fuzzy cardinality among all minimal SAFD set of G_{AF} is known as the split anti fuzzy domination number of G_{AF} and is denoted by $\gamma (G_{AF})$.

3.4. Example: Consider G_{AF} in Figure 1. Such that $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}\}$ and $\rho (u, v) = \eta (u) \vee \eta (v) \forall (u, v) \in E (G_{AF})$

We see that the vertex subset $D_1 = \{v_2, v_3, v_4, v_5\}, D_2 = \{v_1, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}\}$, $D_3 = \{v_4, v_5, v_{10}, v_{11}, v_{12}, v_{13}\}$ and $D_4 = \{v_2, v_3, v_6, v_7, v_8, v_9\}$ are minimal SAFD Set of G_{AF} and hence, $\gamma (G_{AF}) = \max \{|D_1|, |D_2|, |D_3|, |D_4|\} = \max \{1, 4.3, 2.8, 2.3\} = 4.3$

Observation 3.1: A minimal SAFD set of G_{AF} with $|D| = \gamma (G_{AF})$ is denoted by $\gamma^{-1} (G_{AF})$.

3.5. Preposition: Let anti fuzzy graph $G_{AF} = K_\eta$ then SAFD set does not exist.

3.6. Preposition: Let $G_{AF} = K_{2, \eta}$ a star anti fuzzy graph then $\gamma (K_{1, \eta}) = \eta (v)$, v is a root vertex.

3.7. Preposition: Let $G_{AF} = K_{n1,n2}$ be a complete anti fuzzy bipartite graph where $|V_1| = m$ and $|V_2| = n$ where $m = \sum \eta (v), v \in V_1$ and $n = \sum \eta (v), v \in V_2$ then $\gamma (K_{n1,n2}) = \max \{m, n\}$.

Figure 1
3.8 Theorem: Let D be a (SAFD) set of G_{AF} be a minimal SAFD set of G_{AF} if and only if for every vertex $u_2 \in D$ one of the next situations holds:

(a) There exists a vertex $u_1 \in V - D$ such that $N(u_1) \cap D = \{u_2\}$;
(b) u_2 is an isolated in D;
(c) $<V - D>\cup\{u_2\}$ is connected.

Proof: Consider D is a minimal SAFD of GAF and $u_2 \in D$ such that u_2 does not satisfy any one of the three situations, Then by (a) and (b) $D^* = D - \{u_2\}$ is AFD set of GAF and by condition (c) $<V - D^*$ > is disconnected. This implies that D^* is a minimal SAFD set of G_{AF}; this is a contradiction with minimalist D. Therefore, for every vertex $u_2 \in D$ satisfies one of the above conditions.

Conversely, assume that for every vertex $u_2 \in D$ one of the above situations holds. Further, if D is not minimal, then there exists a vertex $u_2 \in D$ such that $D - \{u_2\}$ is SAFD set of G_{AF} and there exists a vertex $u_1 \in D - \{u_2\}$ such that u_1 dominates u_2. That is $u_1 \in N(u_2)$. Therefore, u_2 does not satisfy the conditions (b) and (c), thus it must satisfy the condition (a). Then there exists $u_1 \in V - D$ such that $N(u_1) \cap D = \{u_2\}$. Since $D - \{u_2\}$ is a SAFD set of G_{AF}, then there exists $h \in D - \{u_2\}$ such that $h \in N(u_1)$. Therefore, $h \in N(u_1) \cap D$, $h \neq u_2$, is a contradiction with $N(u_1) \cap D = \{u_2\}$. Clearly, D is a minimal SFD set for G_{AF}.

3.9. Theorem: The AFD set D of G_{AF} is a (SAFD) set of G_{AF} if and only if there exist $u_1, u_2 \in V - D$ such that every u_1-u_2 path contains a vertex of D.

Proof: Suppose that D is a minimal SAFD set of G_{AF}, then $<V - D>$ is disconnected, take $u_1, u_2 \in V - D$ such that every u_1-u_2 path-joining u_1 and u_2 must contain a vertex of D. Conversely, assume that $u_1, u_2 \in V - D$ such that every u_1-u_2 path contains a vertex of D. Let D be an AFD set of G_{AF}, $<V - D>$ either connected or disconnected. $<V - D>$ is connected, then for any two vertices $u_1, u_2 \in V - D$ there is a u_1-u_2 path joining u_1 and u_2 in $<V - D>$ which does not contain a vertex of D, this impossible with our assumption. Therefore, D is a SAFD set of G_{AF}.

3.10. Preposition: Let $G_{AF} = (\eta, \rho)$ be a strong anti fuzzy graph and D be a $\gamma_{SAF}(G_{AF})$ – set of G_{AF}, then $V - D$ is AFD set of G_{AF}.

Proof: Assume that D is a minimal SAFD set of G_{AF}. If $V - D$ is not AFD set of G_{AF}, then there exists $w \in D$ which does not dominate any vertex of $V - D$. Thus $D^* = D - \{w\}$ is a SAFD set of G_{AF}, this is a contradiction, therefore $V - D$ is AFD set of G_{AF}.

3.8. Preposition: For any strong anti fuzzy graph $G_{AF} = (\eta, \rho)$,

$$\gamma_{AF}(G_{AF}) + \gamma_{SAF}(G_{AF}) \leq |P|.$$

Proof: Let D be a $\gamma_{SAF^{-}}$ set of G_{AF}, thus from Preposition 3.3, $V - D$ is AFD set of G_{AF}. Therefore $\gamma_{AF}(G_{AF}) \leq |V - D| = |P| - \gamma_{SAF}(G_{AF})$. Hence $\gamma_{AF}(G_{AF}) + \gamma_{SAF}(G_{AF}) \leq |P|$. □

3.11. Preposition: Let D be a $\gamma_{SAF^{-}}$ set of G_{AF}, if $<D>$ is disconnected anti fuzzy subgraph of G_{AF}, then $\gamma_{SAF}(G_{AF}) \leq |P|/2$.

Proof: Let D be a $\gamma_{SAF^{-}}$ set of G_{AF}, thus $V - D$ is AFD set of G_{AF}, since $<D>$ is disconnected, then $V - D$ is a SAFD set of G_{AF}. Therefore, $\gamma_{SAF}(G_{AF}) \leq |V - D| = |P| - \gamma_{SAF}(G_{AF})$. Hence $\gamma_{SAF}(G_{AF}) \leq |P|/2$. □

3.12. Preposition: For any anti fuzzy graph $G_{AF} = (\eta, \rho)$, $\gamma_{AF}(G_{AF}) \leq \gamma_{SAF}(G_{AF})$;
Proof: from definitions of $\gamma_{Af}(G_{Af})$ and $\gamma_{SAf}(G_{Af})$. □

3.13. Preposition: $V - A$ is a SAFD set of strong anti fuzzy graph $G_{AF} = (\eta, \rho)$ If A is maximal Independent anti fuzzy set of G_{AF}.

Proof: Since A is maximal independent anti fuzzy set of strong anti-fuzzy graph G_{AF}, then $V - A$ is AFD set of G_{AF}. Further $< A > = < V - (V - A) >$ is disconnected. This implies $V - A$ is a SAFD set. □

3.14. Theorem: A set $S_{i} \subseteq V(G_{AF})$ is independent anti fuzzy set of G_{AF} if and only if $V(G_{AF}) - S_{i}$ is an anti-vertex covering of G_{AF}.

Proof: Let S_{i} be an independent anti-fuzzy set of G_{AF}. By the definition of independent anti fuzzy set, there exist no effective edge between any two vertices in S_{i}, thus no edges of G_{AF} has at least one end in S_{i} Then $V(G_{AF}) - S_{i}$ contains at least one end for every edge, Hence $V(G_{AF}) - S_{i}$ is an anti-vertex covering of G_{AF}. And similarly if S_{C} is anti-vertex covering then it is clear that $V(G_{AF}) - S_{C}$ is independent anti-fuzzy Set. □

3.15 Theorem: If G_{AF} is an anti-fuzzy graph, then $P \leq \alpha_{0} + \beta_{0}$, where α_{0}, β_{0} are anti-fuzzy covering number and independence number respectively.

Proof: Let G_{AF} be an anti-fuzzy graph. Let S_{i} be a maximal anti independent set and S_{C} be an anti-vertex covering of G_{AF}. By theorem 3.3, we get $V(G_{AF}) - S_{C}$ is an anti-independent set of G_{AF}. Hence $|V - S_{C}| \leq |S_{i}| \Rightarrow P - \alpha_{0} \leq \beta_{0} \Rightarrow P \leq \alpha_{0} + \beta_{0}$. □

3.16 Theorem: Let $G_{AF} = (\eta, \rho)$ be a uninodal anti-fuzzy graph then $\gamma_{SAf}(G_{AF}) \leq \alpha_{0}(G_{AF})$, where $\alpha_{0}(G_{AF})$ is a vertex covering number of G_{AF}.

Proof: Let A be a maximal independent anti-fuzzy set of G_{AF}, then it is contains at least two vertices and for each vertex $u \in A$ there exists $w \in V - A$ such that $\rho(u, w) = \eta(u) \lor \eta(w)$. Thus $V - A$ is a SAFD set of G_{AF}. Hence $\gamma_{SAf}(G_{AF}) \leq |V - A| = P - \beta_{0}(G_{AF}) = \alpha_{0}(G_{AF})$. □

3.17. Theorem: Let $G_{AF} = (\eta, \rho)$ be any anti fuzzy graph with end-vertex, $\gamma_{Af}(G_{AF}) = \gamma_{SAf}(G_{AF})$. Furthermore, there exists a SAFD set of G_{AF} containing all vertices adjacent to anti fuzzy end-vertices.

Proof: Suppose that D is AFD set of G_{AF} and v be an end vertex of G_{AF}, then there exists a cut vertex u adjacent to v and $\rho(u, v) = \eta(u) \lor \eta(v)$. Assume that $u \in D$, then D is a SAFD set of G_{AF}, if $u \in V - D$ then $v \in D$ Hence $D - \{v\} \cup \{u\}$ is SAFD set. Repeating this process for all such cut-vertices adjacent to end-vertices, we obtain a SAFD set of G_{AF} containing all cut-vertices adjacent to end-vertices of G_{AF}. □

3.18 Theorem: Let $G_{AF} = (\eta, \rho)$ be any anti fuzzy graph, then $\gamma_{SAf}(G_{AF}) = t$, $t \in [0, 1]$, $t = \eta(w)$, $w \in V(G_{AF})$ if and only if GAF has only one cut vertex $w \in V(G_{AF})$ which has $n - 1$ neighbors of vertices.

Proof: Assume that $D = \{w\}$ is a γ_{SAf} set of G_{AF}, thus $< V - \{w\} >$ is disconnected. Hence v is a cut vertex of G_{AF}, so $N(w) = \{V - \{w\}\}$ then w has $n - 1$ neighbors in G_{AF}. Assume that there exists another cut vertex say u in G_{AF} which has $n - 1$ neighbors in G_{AF}, then u is adjacent to all remaining vertices of G_{AF}. In this case $< V - \{w\} >$ is connected, this is a contradiction. Then w is only the cut vertex of G_{AF} has $n - 1$ neighbors in G_{AF}.
Conversely, assume that \(w \) is only one cut vertex of \(G_{AF} \) has \(n-1 \) neighbors in \(G_{AF} \), then \(w \) is adjacent to all vertices of \(G_{AF} \). Hence there exists \(u \in V - \{w\} \), \(u \neq w \) which it is not adjacent with other vertex of \(V - \{w\} \), the \(<V - \{w\}> \) is disconnected. Thus \(\{w\} \) is SAFD set of \(G_{AF} \) and hence \(\gamma_{SADF}(G_{AF}) = t, t = \eta(w) \).

\[3.1.9. \text{Theorem:} \] Every SAFD set of \(G_{AF} = (\eta, \rho) \) is a split dominating set in crisp graph \(G_{A^*} = (\eta^*, \rho^*) \).

\[\text{Proof:} \] Let \(D \) be a SAFD set of \(G_{AF} = (\eta, \rho) \) then for each vertex \(u \in V - D \) there exist \(w \in D \) such that \(\rho(u, w) = \eta(u) \vee \eta(w) > 0 \), and \(<V - D> \) is disconnected. Thus \(\rho(u, w) \in \mu^* \), hence each vertex in \(V - D \) is dominated by at least one vertex in \(D \) and \(<V - D> \) is disconnected, thus \(D \) is a split dominating set in \(G_{A^*} = (\eta^*, \rho^*) \).

\[\text{Note:} \] The convers theorem 3.8 is not true.

\[3.1.9.1. \text{Example:} \] Let \(G_{A^*} = (\eta^*, \rho^*) \) and \(G_{AF} = (\eta, \rho) \), be a crisp graph of \(GA \) and anti fuzzy graph are considered in figure (2) and figure (3) respectively.

\[\text{Figure.2 crisp graph (} G_{A^*} \text{)} \]

\[\text{Figure.3 anti fuzzy graph (} G_{AF} \text{)} \]

We see that the split dominating set in crisp graph \(G_{A^*} = (\eta^*, \rho^*) \), \(D = \{x, u\} \) which is not a split anti fuzzy dominating set in anti fuzzy graph \(G_{AF} = (\sigma, \mu) \).

\[4. \text{Conclusion} \]

In this work, we studied (SAFD) set and a split anti fuzzy domination number of an anti-fuzzy graph \((G_{AF}) \). For some standard an anti-fuzzy graphs, we found the exact value of \(\gamma_{SADF}(G_{AF}) \). In addition, we got some relationships between split anti-fuzzy domination number and for some parameters.

\[\text{References:} \]

[1] Zadeh L A 1965 Fuzzy sets, Information Sciences. No.8 338-353.
[2] Rosenseld A 1975 Fuzzy graphs, Academic Press, New York 77-95.
[3] Kaufmann A 1973 Introduction to the theory of Fuzzy Subsets, Academic Press, New York.
[4] Somasundaram A and Somasundaram. S 1998 Domination in fuzzy graphs - I, Pattern Recognition Letters, 19 9 787-791.
[5] Nagoor Gani A and Chandrasekaran V T 2006 Domination in Fuzzy Graph, Advances in Fuzzy Sets and Systems*, 1 1 17-26.
[6] Akram M 2012 Anti fuzzy structure on graphs, Middel- East journal of scientific research, 11 12 1641-1648.
[7] Muthuraj R and Sasireka A 2017 On anti fuzzy graphs, Advances in Mathematics 12 5 1123-1135.
[8] Muthuraj R and Sasireka A 2018 Domination on anti fuzzy graph, International Journal. of Mathematical Archive, 9 5 82-92.
[9] Seethalakshmi R., Gnanajothi R B 2017 On antipodal antifuzzy graph, *International Journal of Pure and Applied Mathematics*, 112 5 47-55.

[10] Mahioub Q M. and Soner N D 2008 The split domination number of fuzzy graph, *Far East Journal of Applied Mathematics*, 30 1 125-132.

[11] Ponnappan C Y, Surulinathan P, Basheer S A 2014 The Strong Split Domination Number of Fuzzy Graphs, *International Journal of Computer & Organization Trends*, 8 1 May.

[12] Muthuraj R, Sasireka A 2018 Connected Domination on Anti Fuzzy Graph, *Journal of Applied Science and Computations* 5(8) p19.

[13] Somasundaram A 2005 Domination in fuzzy graphs-II, *Fuzzy Mathematics*, 13 2 281–288.