Google Crowdsourced Speech Corpora and Related Open-Source Resources for Low-Resource Languages and Dialects: An Overview

Alena Butryna, Shan-Hui Cathy Chu, Işın Demirşahin, Alexander Gutkin, Linne Ha†, Fei He, Martin Jansche†, Cibu Johny, Anna Katanova, Oddur Kjartansson, Chenfang Li†, Tatiana Merkulova, Yin May Oo†, Knot Pipatsrisawat, Clara Rivera, Supheakmungkol Sarin, Pasindu de Silva, Keshan Sodimana†, Richard Sproat, Theeraphol Wattanavekin, Jaka Aris Eko Wibawa†

Google Research, Singapore, United States and United Kingdom

{alenab,oddur,rivera,mungkol}@google.com

Abstract

This paper presents an overview of a program designed to address the growing need for developing freely available speech resources for under-represented languages. At present we have released 38 datasets for building text-to-speech and automatic speech recognition applications for languages and dialects of South and Southeast Asia, Africa, Europe and South America. The paper describes the methodology used for developing such corpora and presents some of our findings that could benefit under-represented language communities.

1. Introduction

Historically speech and language technology research has focused on a few major Indo-European languages, along with Mandarin and Japanese. The past decade, however, has seen an increased focus by the speech and language research community and technological companies on addressing the plight of low resource and especially the endangered languages. According to various sources, such as Ethnologue [2019], roughly 40% of 5,000 to 7,000 languages spoken today are classified as endangered. The shift of focus is partly due to the awareness of the importance of preserving and documenting the languages which are at risk of losing its last native speakers due to the shift to other dominant languages or disappearance of the communities altogether. In addition to the critically endangered languages, there are hundreds of languages with large native speaker populations which are classified as low-resource (sometimes low-density) due to the lack of linguistic resources necessary for advancing research and technological innovation. Furthermore, the Internet is creating a large and growing divide between languages that are represented in technology and those that are not: it is estimated that only 5% of the world’s languages are accessible on the Internet.

In this paper we offer a brief overview of a linguistic program which aims to provide free speech resources in regions with fast growing Internet communities but few publicly available linguistic resources. So far the efforts have mostly focused on statutory national or provincial languages, with the overall goal of investigating the methods to scale our approach to many smaller regional languages in the locales of interest. One of the primary goals of the program is to develop an accessible and replicable methodology that any local community of technologists can use with available open-source solutions to build custom applications utilizing our released resources or to construct their own resources for a new language. At the same time, it is important to make sure that the quality of the resulting solutions built using this methodology are on par with the systems for better-resourced languages.

Another component of this program deals with the construction of corpora for low-resource dialects of well-resourced languages. More often than not, the assumption exists that a local community is adequately served by providing the speech technology built using the dominant dialect, despite the dialects significantly diverging to the point of being mutually unintelligible (e.g., High German vs. Swiss German). An interesting part of this process is investigating the optimal strategies for constructing local dialect-specific resources that build upon the existing well-resourced language resources in a way that adequately serves the local community.

The program focuses on developing the resources for two types of applications: automatic speech recognition (ASR) and text-to-speech (TTS), both of which are crucial components of modern technological ecosystems for any given language. These applications have different resource requirements: the modern ASR systems typically require more data from as many speakers as possible, while the TTS systems ideally need higher-quality recordings from fewer speakers but with well articulated speech. Additional resources, such as text normalization grammars for converting non-standard word tokens to natural language words and models of phonology are often needed as well. These are highly language-specific and require considerable linguistic expertise to develop.

2. Program Overview

2.1. Selection of Languages and Dialects

The languages and dialects selected for the program are broadly based on two selection criteria. The first goal is to increase the availability of open-source speech resources in the regions which were identified as important (in terms of number of speakers, Internet penetration and cultural significance for the region) and yet considered low-resource. The initiatives for constructing linguistic resources for such languages, whether from local or foreign governments or
big technological companies, can effectively tip the balance and cause the language to become well-resourced, as happened with Modern Standard Arabic in the course of the last twenty years. The second criterion involves selection of languages from diverse language families so that the generality of resource collection paradigm can be optimized based on the exposure to different linguistic and operational requirements and the findings shared with the community. The TTS and ASR corpora collected so far consist of over 1,500 hours of speech and are freely available online hosted by Open Speech and Language Resources (2019) under unencumbered license (Creative Commons, 2019).

South Asia The South Asian languages selected for the program include the languages from Indo-Aryan and Dravidian language families. The Indo-Aryan languages selected so far include two dialects of Bengali (India and Bangladesh), Gujarati (India), Marathi (India), Nepali (Nepal) and Sinhala (Sri Lanka). The set of Dravidian languages included by the program include Kannada (India), Malayalam (India), Tamil (India) and Telugu (India). According to various estimates, these languages have a combined population of about 706 million native and second-language speakers. From a research standpoint, these languages are very interesting to work with: they exhibit considerable variation within each language family, but at the same time also have considerable similarities across both language families.

Southeast Asia The set of Southeast Asian languages we selected includes Burmese (Myanmar) from Sino-Tibetan language family, Khmer (Cambodia) from Austroasiatic language family, and Javanese (Indonesia) and Sundanese (Indonesia) from Malayo-Polynesian language family. These languages are natively spoken by about 178 million people across the region. The language families in this set are very diverse and yet exhibit considerable influence from their neighbors from other language families in both South and Southeast Asia.

Africa Four out of eight official languages of South Africa were selected: Sesotho, Setswana, Xhosa (from a Bantu language family) and Afrikaans (Indo-European). These languages have a combined speaker population of native and second-language speakers of about 62.5 million. In addition we selected Nigerian English as one of the largest and yet low-resource dialects of English on the continent.

Europe and South America To increase the coverage of Indo-European language family among the selected languages, a set of three regional languages of Spain with combined population of about 14 million speakers were selected: Galician and Catalan, both of which belong to Ibero-Romance group, and Basque, which is a language isolate. As part of our work towards improving the availability of open-source speech resources for low-resource dialects and regional accents of the better served languages, we also collected speech corpora for six Latin American Spanish dialects (Argentinian, Colombian, Chilean, Peruvian, Puerto Rican and Venezuelan) and various dialects and accents of Irish and British English (Welsh English, Southern English, Midlands English, Northern English and Scottish English).

2.2. Methodology

Local Community and University Outreach It goes without saying that any collaborative corpora collection is greatly helped by the enthusiastic community of native speakers. Throughout the program we tried to enlist the help from local universities, technology and language enthusiasts wherever possible. This approach is illustrated by the data collection process for Javanese and Sundanese for which collaboration with two local universities was established. For Javanese we worked with the Faculty of Computer Science at Universitas Gadjah Mada (UGM) in Yogyakarta, while for Sundanese a collaboration with the Faculty of Language and Literature at Universitas Pendidikan Indonesia (UPI) in Bandung was established. The universities assisted us with finding volunteers to help manage the data collection, as well as with the adequate recording environments. The university staff put us in contact with the student organizations which helped to disseminate the information about corpus collection and call for volunteers. A portion of the recordings was done at the student-run annual Computer Science exhibition event organized by students from the Faculty of Computer Science at Universitas Indonesia (Wibawa et al., 2018). A similar approach was followed in South Africa where we established the collaboration with Multilingual Speech Technologies group from the North-West University to assemble the speech corpora for four South African languages (van Niekerk et al., 2017). In other countries, such as Bangladesh, Cambodia, Myanmar, Nepal and Sri Lanka, we followed the same blueprint involving the participants from local universities in the processes of data collection and curation (Kjartansson et al., 2018). In Latin America, we worked with local Google Developer group representatives.

Software and Hardware Equipment For ASR data collections, we required recording applications capable of running on low-end smartphone devices. While initially we relied on a proprietary application, we later teamed up with University of Reykjavik in Iceland and migrated our ASR collections to use their open-source software (Petursson et al., 2016). Since TTS corpora requires higher speech quality, we went through several careful iterations to settle on a hardware combination that was lightweight and portable while providing the best possible quality for our purposes. Additionally, we made sure that the equipment in question was affordable to local communities. One of the configurations that was found to work well for us and that we recommend to others includes an ASUS Zenbook UX305CA fanless laptop, Neumann KM 184 microphone, a Blue Icicle XLR-USB A/D converter and a portable acoustic booth. The overall cost of this configuration, especially when reused for multiple data collections, is well below the cost of renting a professional recording studio.

Development of Recording Materials Open sourcing low-resource language speech corpora was of high priority since the inception of the program. Therefore, during the recording script development we made sure we use publicly available sources. For both ASR and TTS corpora Wikipedia text was used in the form of short sentences extracted at random (when available in the language of interest, otherwise crowdsourced translations thereof). In addition,
for TTS recording scripts further combination of three types of materials was prepared: (1) Handcrafted text to ensure a broad phonetic coverage of the language, filling in any gaps from Wikipedia, (2) template sentences including common named entities and numeric expressions in each language. These were obtained in collaboration with communities and partners and include celebrity names, geographical names, telephone numbers, time expressions and so on, (3) domain specific real-world sentences that could be used in product applications, usually covering navigation, sports or weather.

Recording and Quality Control Procedures The ASR corpora are collected using standard consumer smartphones. No specialized or additional hardware is used for the data collection. The collections are overseen by the volunteer field workers who are trained to guide the volunteer speakers. During the recording the audio is first saved to local storage on the device and then uploaded to a server once a connection to the Internet is established. This feature of the recording software is important because limited Internet connectivity potentially poses serious operational problems to the field workers, especially in remote areas.

Recording of TTS corpora poses different challenges because the goal is to collect high-quality and well-articulated speech samples in a portable recording studio. A short introduction is given to participants so that they can confidently operate the software during the recording session, alongside with the guidelines on the relative position of the volunteer speaker to the microphone to ensure consistency between different recording sessions.

Since none of the speakers recorded for TTS are professional voice talents, their recordings often contain problematic artifacts such as unexpected pauses, spurious sounds (like coughing) and breathy speech. All recordings go through a quality control process performed by the trained native speakers to ensure that each utterance matches the corresponding transcription, has consistent volume, is noise-free and consists of fluent speech without unnatural pauses.

Other Types of Linguistic Resources Building competitive ASR and TTS applications for low-resource languages typically requires the development of further linguistic resources in addition to corpora and our program takes this requirement into account. The necessary components required for building robust speech ecosystem for any given language typically include carefully designed phonological representation upon which the pronunciation lexicons can be based, the algorithms for generating pronunciations for words missing from the lexicon and a system for converting between non-standard word (NSW) tokens, such as numbers, and the corresponding natural language words. The development of these components typically requires native knowledge of the language and considerable linguistic expertise. Therefore we are making sure that any additional linguistic artifacts developed by the program are well documented and freely accessible (Google, 2016). Examples of such artifacts include phonological representation for Lao, pronunciation guidelines for Burmese and text normalization grammars for languages of South and Southeast Asia (Sodimana et al., 2018).

2.3. Emerging Lessons

Operational Lessons Throughout the program’s lifetime we continuously discovered the positive impact the collaboration with local communities had on our data collection projects. This is partly due to local technologists, academics and open-source enthusiasts who understand well how the availability of technology in their local language can positively impact the life of a local community and often enthusiastically endorse initiatives such as ours. In our particular case, setting up the crowd-sourcing mechanisms locally would have not been possible without their support. Furthermore, such collaborations often resulted in important contributions to other Google programs. For example, simultaneously with collecting the speech corpora in Bangladesh, Cambodia, Nepal, Myanmar and Sri Lanka, we hosted a series of media workshops, train-the-trainer sessions and translate-a-thons with universities and community groups, that aimed to educate people about how they can use the new Google Translate Community tool (Google, 2017) to improve the accuracy, understanding and representation of their language on the web. We also actively participated and contributed to various local conferences primarily focused around technology and the web.

Finally, we discovered that using moderately priced recording equipment was enough to collect the corpora of sufficient quality to suit the needs of local community and, at the same time, also be used in real Google products.

Research and Development Findings One of the first findings of this program is that the crowd-sourced TTS corpora works adequately in a single multi-speaker model (Gutkin et al., 2016). While the quality of the resulting model was somewhat below the quality of state-of-the-art commercial systems, at later stages of the program we discovered that the quality of such models can be significantly improved by combining multi-speaker crowdsourced corpora from multiple languages. This finding capitalizes on the notion of “linguistic area” by an eminent American linguist Emeneau (1956), where he defines it (p. 16, fn. 28) as “an area which includes languages belonging to more than one language family but showing traits in common which are found to belong to the other members of (at least) one of the families”. Based on this observation we successfully built multilingual system based on the combined corpus of South Asian Indo-Aryan and Dravidian languages (Demir-sahin et al., 2018) and Malayo-Polynesian multilingual system combining our Javanese and Sundanese corpora with a proprietary corpus of Indonesian (Wibawa et al., 2018). Furthermore, we found that our South Asian multilingual model was good enough for synthesizing the languages for which we had no training data, such as Odia and Punjabi.

Another lesson that emerged from applying the collected speech corpora in practical applications is the importance of freely available typological resources, such as PHOIBLE (Moran et al., 2014). During work on low-resource language technology, more often than not, the required linguistic (and in particular, phonological) expertise is hard to find, even among the native speakers. The availability of typological resources as a reference have significantly boosted our research and development efforts.
Important Challenges While working on this program, we have identified several important areas which need to be addressed in order to scale this work to many more languages and dialects which currently possess even fewer linguistic resources than the languages we have dealt with so far.

When it comes to developing speech corpora and applications, more often than not, the “one size fits all” approach does not work because different language families present very different challenges. Once the speech corpora are collected, the types of language-specific challenges that may block application development include the lack of large amounts of labeled training data for training word segmentation algorithms (e.g., Burmese, Khmer and Lao), lack of morphosyntactic tags for smaller Slavic languages (e.g., Rusyn) required for proper function of text normalization and so on. Streamlining this process is highly non-trivial because currently no universal recipe exists.

Moreover, as we mentioned previously, development of linguistic resources requires considerable linguistic expertise, which is often hard to find. The deep learning end-to-end approaches, which have recently gained popularity (Toshniwal et al., 2018), offer potential workaround. Such systems can be adapted to smaller languages using transfer learning techniques (Chen et al., 2019). At the same time, such systems are notoriously data hungry and further techniques utilizing more data, including lower-quality data found online (Cooper, 2019), may be required. Furthermore, some form of linguistic knowledge is desirable in such systems due to occasional unpredictable errors they are prone to (Zhang et al., 2019).

3. Concluding Remarks

We have presented an overview of the program that helped collect and release 38 datasets for building TTS and ASR applications for languages and dialects of South and Southeast Asia, Africa, Europe and South America. The corpora collected so far consist of over 1,500 hours of speech and are freely available online. Partnering with local universities and communities in the region was crucial to the success of the program as it connected us with a lot of enthusiastic local contributors which in its turn resulted in collecting high quality data. We do hope that the described methodology and the released datasets will be utilized by the local communities to develop custom applications or to collect new datasets going forward.

There are still many endangered and low resource languages that we want to focus on in our program. Even though the program already allows to collect data for language resources development efficiently from an operational perspective, there are still challenges that need to be addressed at the development of linguistic resources stage so that the work can continue at scale. As of now, the program established a good foundation, however, there is still work to be done. We hope that these efforts will facilitate future research by the broader scientific community and will encourage others to apply our program methodologies and findings to benefit under-represented language research.

4. Bibliographical References

Chen, Y.-J., Tu, T., Yeh, C.-c., and Lee, H.-Y. (2019). End-to-end Text-to-speech for Low-resource Languages by Cross-Lingual Transfer Learning. Proc. Interspeech 2019, pages 2075–2079.

Cooper, E. L. (2019). Text-to-Speech Synthesis Using Found Data for Low-Resource Languages. Ph.D. thesis, Columbia University, New York.

Creative Commons. (2019). Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). http://creativecommons.org/licenses/by-sa/4.0/deed.en

Demirsahin, I., Jansche, M., and Gutkin, A. (2018). A Unified Phonological Representation of South Asian Languages for Multilingual Text-to-Speech. In Proc. SLTU, pages 80–84, Gurugram, India.

Emeneau, M. (1956). India as a Linguistic Area. Language, 32(1):3–16.

Ethnologue. (2019). Ethnologue, SIL International. https://www.ethnologue.com Accessed: 2019-03-25.

Google. (2016). Google Internationalization Language Resources. https://github.com/google/language-resources

Google. (2017). Google Translate Community. https://translate.google.com/community

Gutkin, A., Ha, L., Jansche, M., Pipatsrisawat, K., and Sproat, R. (2016). TTS for Low Resource Languages: A Bangla Synthesizer. In Proc. LREC, pages 2005–2010, Portorož, Slovenia, May.

Kjartansson, O., Sarin, S., Pipatsrisawat, K., Jansche, M., and Ha, L. (2018). Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali. In Proc. SLTU, pages 52–55, Gurugram, India.

Moran, S., McCloy, D., and Wright, R. (2014). PHOIBLE Online. Max Planck Institute for Evolutionary Anthropology, Leipzig. http://phoible.org/

Open Speech and Language Resources. (2019). Open SLR. http://www.openslr.org/resources.php Accessed: 2019-11-20.

Petursson, M., Klüpfel, S., and Gudnason, J. (2016). Eyra-speech data acquisition system for many languages. Procedia Computer Science, 81:53–60.

Sodimana, K., Silva, P. D., Sproat, R., Theeraphol, A., Li, C. F., Gutkin, A., Sarin, S., and Pipatsrisawat, K. (2018). Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala, and Sundanese TTS Systems. In Proc. SLTU, pages 147–151, Gurugram, India.

Toshniwal, S., Sainath, T. N., Weiss, R. J., Li, B., Moreno, P., Weinstein, E., and Rao, K. (2018). Multilingual speech recognition with a single end-to-end model. In Proc. ICASSP, pages 4904–4908, Calgary, Canada. IEEE.

van Niekerk, D., van Heerden, C., Daval, M., Kleynhans, N., Kjartansson, O., Jansche, M., and Ha, L. (2017). Rapid development of TTS corpora for four South African languages. In Proc. Interspeech 2017, pages 2178–2182, Stockholm, Sweden.

Wibawa, J. A. E., Sarin, S., Li, C. F., Pipatsrisawat, K., Sodimana, K., Kjartansson, O., Gutkin, A., Jansche, M., and Ha, L. (2018). Building Open Javanese and Sundanese Corpora for Multilingual Text-to-Speech. In Proc. LREC, pages 1610–1614, 7-12 May 2018, Miyazaki, Japan.

Zhang, H., Sproat, R., Ng, A. H., Stahlberg, F., Peng, X., Gorman, K., and Roark, B. (2019). Neural models of text normalization for speech applications. Computational Linguistics, 45(2):293–337.