The spectra and the signless Laplacian spectra of graphs with pockets

Shu-Yu Cuia, Gui-Xian Tianb*

a Xingzhi College, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P.R. China
b College of Mathematics, Physics and Information Engineering,
Zhejiang Normal University, Jinhua, Zhejiang, 321004, P.R. China

Abstract

Let $G[F, V_k, H_v]$ be the graph with k pockets, where F is a simple graph of order $n \geq 1$, $V_k = \{v_1, \ldots, v_k\}$ is a subset of the vertex set of F and H_v is a simple graph of order $m \geq 2$, v is a specified vertex of H_v. Also let $G[F, E_k, H_{uv}]$ be the graph with k edge-pockets, where F is a simple graph of order $n \geq 2$, $E_k = \{e_1, \ldots, e_k\}$ is a subset of the edge set of F and H_{uv} is a simple graph of order $m \geq 3$, uv is a specified edge of H_{uv} such that $H_{uv} - u$ is isomorphic to $H_{uv} - v$. In this paper, we obtain some results describing the signless Laplacian spectra of $G[F, V_k, H_v]$ and $G[F, E_k, H_{uv}]$ in terms of the signless Laplacian spectra of F, H_v and F, H_{uv}, respectively. In addition, we also give some results describing the adjacency spectrum of $G[F, V_k, H_v]$ in terms of the adjacency spectra of F, H_v. Finally, as an application of these results, we construct infinitely many pairs of signless Laplacian (resp. adjacency) cospectral graphs.

AMS classification: 05C50 05C12

Keywords: Adjacency matrix; Signless Laplacian matrix; Spectrum; Pockets; Edge-pockets

1. Introduction

Throughout this paper, we consider only finite simple graphs. Let $G = (V, E)$ be a graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set $E = \{e_1, e_2, \ldots, e_n\}$. The adjacency matrix $A(G)$ of G is a square matrix of order n, whose entry $a_{i,j} = 1$ if v_i and v_j are adjacent in G and 0 otherwise. Let $D(G)$ be the degree

*Corresponding author. E-mail: gxtian@zjnu.cn or guixiantian@gmail.com (G.-X. Tian)
diagonal matrix of G. Then the Laplacian matrix $L(G)$ and signless Laplacian matrix $Q(G)$ are defined as $D(G) - A(G)$ and $D(G) + A(G)$, respectively.

For an $n \times n$ matrix M associated to a graph G, the characteristic polynomial $\det(xI_n - M)$ of M is called the M-characteristic polynomial of G and is denoted by $f_M(x)$. The eigenvalues of M (i.e. the zeros of $\det(xI_n - M)$) and the spectrum of M (which consists of the n eigenvalues) are also called the M-eigenvalues of G and the M-spectrum of G, respectively. In particular, if M is the adjacency matrix $A(G)$ of G, then the A-spectrum of G is denoted by $\sigma(A(G)) = (\lambda_1(G), \lambda_2(G), \ldots, \lambda_n(G))$, where $\lambda_1(G) \leq \lambda_2(G) \leq \ldots \leq \lambda_n(G)$ are the eigenvalues of $A(G)$. If M is the signless Laplacian matrix $Q(G)$ of G, then the Q-spectrum of G is denoted by $\sigma(Q(G)) = (q_1(G), q_2(G), \ldots, q_n(G))$, where $q_1(G) \leq q_2(G) \leq \ldots \leq q_n(G)$ are the eigenvalues of $Q(G)$. Throughout this paper, the A-spectrum, L-spectrum and Q-spectrum denote the adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum of G, respectively. For more review about the A-spectrum, L-spectrum and Q-spectrum of G, readers may refer to [1, 4, 8, 9, 10, 11, 12, 13, 14, 18, 21] and the references therein.

The following two definitions come from [3] and [20], respectively.

Definition 1.1[3] Let F, H_v be graphs of orders n and m, respectively, where $m \geq 2, v$ be a specified vertex of H_v and $V_k = \{v_1, \ldots, v_k\}$ is a subset of the vertex set of F. Let $G = G[F, V_k, H_v]$ be the graph obtained by taking one copy of F and k vertex disjoint copies of H_v, and then attaching the ith copy of H_v to the vertex u_i, $i = 1, \ldots, k$, at the vertex v of H (identify u_i with the vertex v of the ith copy). Then the copies of the graph H_v that are attached to the vertices u_i, $i = 1, \ldots, k$ are referred to as pockets, and G is described as a graph with k pockets.

Definition 1.2[20] Let F and H_{uv} be two graphs of orders n and m, respectively, where $n \geq 2, m \geq 3$, $E_k = \{e_1, \ldots, e_k\}$ is a subset of the edge set of F and H_{uv} has a specified edge uv such that $Q_{uv} = u$ is isomorphic to $H_{uv} - v$. Assume that S_k denote the subgraph of F induced by E_k. Let $G = G[F, E_k, H_{uv}]$ be the graph obtained by taking one copy of F and k vertex disjoint copies of H_{uv}, and then pasting the edge uv in the ith copy of H_{uv} with the edge $e_i \in E_k$, where $i = 1, \ldots, k$. Then the copies of the graph H_{uv} that are pasted to the edges e_i, $i = 1, \ldots, k$ are called as edge-pockets, and G is described as a graph with k edge-pockets.

Barik[3] has described the L-spectrum of $G = G[F, V_n, H_v]$ using the L-spectra of F and H_v, when the specified vertex v is of degree $m - 1$ in H_v. In that case, if a copy of H_v is attached to every vertex of F, each at the vertex v of H_v, that is, if G has n pockets, then the graph $G = G[F, V_n, H_v]$ is nothing but the corona
Then the complete L-spectrum of G is described using the L-spectra of F and H\[2\]; and if H is a regular graph or a complete bipartite graph, then the complete A-spectrum and Q-spectrum of G are also described using the respective A-spectra and Q-spectra of F and H\[2, 5, 6, 19\].

Recently, Nath and Paul\[20\] has described the L-spectrum of $G = G[F, E_k, H_{uv}]$ using the L-spectra of F and H_{uv}, when the specified vertices u and v are of degree $m - 1$, and the subgraph E_k of F induced by E_k is regular. Similarly, they also describe the A-spectrum, when $H_{uv} - \{u, v\}$ is regular. In that case, if a copy of H_{uv} is pasted to every edge of F, each at the edge uv of H_{uv}, that is, if G has n edge-pockets, then the graph $G = G[F, E_n, H_{uv}]$ is nothing but the edge-corona $F \circ H$, where $H = H_{uv} - \{u, v\}$. Then the complete L-spectrum of G is described using the L-spectra of F and H when F is regular\[16\]; and if F is a regular graph and H is also a regular graph or a complete bipartite graph, then the complete A-spectrum and Q-spectrum of G are described using the respective A-spectra and Q-spectra of F and H\[5, 6, 16\].

Motivated by these researches, we discuss the Q-spectrum of $G = G[F, V_k, H_v]$ and $G[F, E_k, H_{uv}]$. We also consider the A-spectrum of $G = G[F, V_k, H_v]$ when $H = H_v - v$ is regular. The rest of this paper is organized as follows. In Section 2, we present some preliminary results, which will be needed to prove our main results. In Section 3, we give the A-characteristic polynomials and Q-characteristic polynomials of $G = G[F, V_k, H_v]$. Using these results, we describe, except $n + k$ A-eigenvalues, all the other A-eigenvalues of $G[F, V_k, H_v]$ in terms of the A-eigenvalues of H_v. We also show that the remaining $n + k$ A-eigenvalues of $G[F, V_k, H_v]$ are independent of the graph H_v. For the Q-eigenvalues of $G[F, V_k, H_v]$, we also obtain the similar results. In Section 4, we give the Q-characteristic polynomials of $G[F, E_k, H_{uv}]$ when E_k be an r-regular subgraph of F induced by E_k in Definition 1.2. Using this result, we describe, except $n + k$ Q-eigenvalues, all the other Q-eigenvalues of $G[F, E_k, H_{uv}]$ in terms of the Q-eigenvalues of H_{uv}. We also show that the remaining $n + k$ Q-eigenvalues of $G[F, E_k, H_{uv}]$ are independent of the graph H_{uv}. In addition, we give a complete description of the Q-spectrum of $G[F, E_k, H_{uv}]$ in some particular cases. At the same time, as an application of these results, we also consider to construct infinitely many pairs of A-cospectral and Q-cospectral graphs, respectively.

2. Preliminaries

In this section, we present some preliminary results which will be needed to prove our main results. In \[6\], Cui and Tian introduced a new invariant, the M-coronal \[\Gamma_M(x)\] of a matrix M of order n (also see \[19\]). It is defined to be the sum of the
entries of the matrix \((xI_n - M)^{-1}\), that is,

\[
\Gamma_M(x) = 1_n^T (xI_n - M)^{-1} 1_n,
\]

where \(1_n\) denotes the column vector of size \(n\) with all the entries equal one and \(I_n\) is the identity matrix of order \(n\). It is proved\(^6\) that if \(M\) is a matrix of order \(n\) with each row sum equal to a constant \(t\), then \(\Gamma_M(x) = \frac{n}{x-t}\).

Let \(A = (a_{ij})\) and \(B = (b_{ij})\) be \(m \times n\) and \(p \times q\) matrices, respectively. Then the Kronecker product of \(A\) and \(B\) is defined to the \(mp \times nq\) partition matrix \(A \otimes B\) and is denoted by \(A \otimes B\). For some properties of the Kronecker product of matrices, see \(^{17}\).

Let \(G_1\) and \(G_2\) be two graphs with disjoint vertex sets \(V(G_1), V(G_2)\) and edge sets \(E(G_1), E(G_2)\), respectively. The join \(G_1 \vee G_2\) of \(G_1\) and \(G_2\) is the graph union \(G_1 \cup G_2\) together with all the edges joining \(V(G_1)\) and \(V(G_2)\).

Theorem 2.1\(^{12}\) Let \(G_i\) be an \(r_i\) regular graph with \(n_i\) vertices, where \(i = 1, 2\). Then

\[
f_{A(G_1 \vee G_2)}(x) = \frac{f_{A(G_1)}(x)f_{A(G_2)}(x)}{(x - r_1)(x - r_2)} ((x - r_1)(x - r_2) - n_1 n_2).\]

Theorem 2.2\(^7\) Let \(G_i\) be an \(r_i\) regular graph with \(n_i\) vertices, where \(i = 1, 2\). Then

\[
f_{Q(G_1 \vee G_2)}(x) = \left(1 - \frac{n_1 n_2}{(x - n_1 - 2r_2)(x - n_2 - 2r_1)}\right) f_{Q(G_1)}(x-n_2)f_{Q(G_2)}(x-n_1).\]

Throughout this paper, assume that \(F\) is a simple graph of order \(n\), \(H_v\) and \(H_{uv}\) two simple graphs of order \(m\), unless mentioned otherwise. We also assume the specified vertex \(v\) in \(H_v\) is of degree \(m - 1\) and the specified vertices \(u\) and \(v\) in \(H_{uv}\) are all of degree \(m - 1\). Let \(H_1 = H_v - v, H_2 = H_{uv} - \{u, v\}\). Then \(H_v = \{v\} \vee H_1\) and \(H_{uv} = (\{u, v\}, \{uv\}) \vee H_2\).

If \(H_1\) is \(r_1\)-regular, then by Theorems 2.1 and 2.2, we arrive at

\[
\sigma(A(H_v)) = (\sigma(A(H_1)) - \{r_1\}) \cup \{\alpha, \beta\},
\]

where \(\alpha, \beta\) are roots of the equation \(x^2 - r_1 x - m + 1 = 0\), and

\[
\sigma(Q(H_v)) = \{q_j(H_1) + 1|1 \leq j \leq m - 2\} \cup \{\gamma, \delta\},
\]

(1)

(2)
where γ, δ are roots of the equation $(x - 2r_1 - 1)(x - m + 1) - m + 1 = 0.$ Similarly, if H_2 is r_2-regular, then by Theorem 2.2, we obtain

$$\sigma(Q(H_{uw})) = \{q_j(H_2) + 2|1 \leq j \leq m - 3\} \cup \{m - 2, \zeta, \eta\},$$

(3)

where ζ, η are roots of the equation $(x - 2r_2 - 2)(x - m) - 2(m - 2) = 0.$

3. The A-spectrum and Q-spectrum of $G[F, V_k, H_v]$

3.1. The A-spectrum of $G[F, V_k, H_v]$

Proposition 3.1. Let $G = G[F, V_k, H_v]$ and $|V_k| = k$. Then the A-characteristic polynomial of G is

$$f_A(G)(x) = (f_{A(H_1)}(x))^k \det(xI_n - M),$$

(4)

where $M = A(F) + \Gamma_{A(H_1)}(x) \left(\begin{array}{cc} I_k & 0^T \\ 0 & I_k \otimes A(H_1) \end{array} \right).$

Proof. With suitable labeling of the vertices of G, we can write the adjacency matrix of G to

$$A(G) = \left(\begin{array}{cc} A(F) & (I_k \otimes 1_{m-1})^T \\ (I_k \otimes 1_{m-1}) & I_k \otimes A(H_1) \end{array}\right).$$

Then the A-characteristic polynomial of G can be calculated as follows:

$$f_{A(G)}(x) = \det \left(\begin{array}{cc} xI_n - A(F) & \left(\frac{I_k \otimes 1_{m-1}}{0}\right) \\ (-I_k \otimes 1_{m-1}) & I_k \otimes (xI_{m-1} - A(H_1)) \end{array}\right)$$

$$= \det(xI_{m-1} - A(H_1))^k \det(S_1)$$

$$= (f_{A(H_1)}(x))^k \det(S_1),$$

where

$$S_1 = xI_n - A(F) - \left(\frac{I_k \otimes 1_{m-1}}{0}\right) \cdot (I_k \otimes (xI_{m-1} - A(H_1)))^{-1} \cdot (I_k \otimes 1_{m-1})|0)$$

$$= xI_n - A(F) - \Gamma_{A(H_1)}(x) \left(\begin{array}{cc} I_k & 0^T \\ 0 & 0 \end{array} \right)$$

is the Schur complement with respect to $I_k \otimes (xI_{m-1} - A(H_1))$. This implies the required result. □

Let H_1 be an r_1-regular graph and $|V_k| = k$. Then, except $n+k$ A-eigenvalues, we describe all the other A-eigenvalues of $G[F, V_k, H_v]$ in terms of the A-eigenvalues.
of H_v. We also show that the remaining $n + k$ A-eigenvalues of $G[F, V_k, H_v]$ are independent of the graph H_v.

Theorem 3.2. Let H_1 be an r_1-regular graph, where $r_1 \geq 1$. Also let $\lambda \in \sigma(A(H_v)) \setminus \{\alpha, \beta\}$, where α, β is described as [I], and $G = G[F, V_k, H_v]$. If $|V_k| = k$, then $\lambda \in \sigma(A(G))$ with multiplicity k. Moreover, the remaining $n + k$ A-eigenvalues of G are independent of H_v.

Proof. Since H_1 is an r_1-regular graph. Thus $\Gamma_A(H_1)(x) = \frac{m-1}{x-r_1}$ and

$$f_A(H_1)(x) = (x - r_1)^{m-2} \prod_{j=1}^{m-2} (x - \lambda_j(H_1)).$$

Now, from Proposition 3.1, one gets

$$f_A(G)(x) = (x - r_1)^k \prod_{j=1}^{m-2} (x - \lambda_j(H_1))^k \det(xI_n - M), \tag{5}$$

where $M = A(F) + \frac{m-1}{x-r_1} \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix}$. Notice that M depends on the regularity of H_1 only and not on the structure of H_1. From [I] and (5), we obtain the required result. □

As an application of the above results, we may construct many pairs of A-cospectral graphs.

Corollary 3.3. Let H_u and H_v be two disjoint graphs of order m such that $H_u - u$ and $H_v - v$ are r_1-regular, where $m \geq 2$ and $r_1 \geq 1$. If H_u and H_v are A-cospectral, then $G[F, V_k, H_u]$ and $G[F, V_k, H_v]$ are A-cospectral.

Let H_v^* be the H_v graph such that $H_1 = G_{p}^{r_1}$, where $G_{p}^{r_1} = C_p \Box K_{r_1-1}$ is the Cartesian product of the cycle C_p and the complete graph K_{r_1-1}. Notice that $G_{p}^{r_1}$ is r_1-regular. Theorem 3.2 implies the following result.

Corollary 3.4. Let H_1 be an r_1-regular graph and $m - 1 = p(r_1 - 1)$ for some integer p, where $p \geq 3$ and $r_1 \geq 2$. Let $G = G[F, V_k, H_v]$ and $G^* = G[F, V_k, H_v^*]$. If $|V_k| = k$, then $\sigma(A(G^*))$ consists of the eigenvalues

(a) λ with multiplicity k, for each $\lambda \in \sigma(A(H_v)) \setminus \{\alpha, \beta\}$, where α, β is described as [I];

(b) $\theta \in \sigma(A(G^*)) \setminus \{\lambda_1(G_{p}^{r_1}), \ldots, \lambda_{k}(G_{p}^{r_1}), \lambda_2(G_{p}^{r_1}), \ldots, \lambda_{2k}(G_{p}^{r_1}), \ldots, \lambda_{m-2k}(G_{p}^{r_1}), \ldots, \lambda_{m-2k}(G_{p}^{r_1}), \ldots, \lambda_{m-2k}(G_{p}^{r_1}).$
Proof. With suitable labeling of the vertices of G^*, we can write the adjacency matrix of G^* to

$$A(G^*) = \begin{pmatrix} A(F) & (I_k \otimes 1_{m-1}|0) \\ (I_k \otimes 1_{m-1}|0) & I_k \otimes A(G_p^r) \end{pmatrix}.$$

Thus, from the proofs of Proposition 3.1 and Theorem 3.2, one obtains

$$f_{A(G^*)}(x) = (x-r)^k \prod_{j=1}^{m-2} (x - \lambda_j(G_p^{r_1}))^k \det(xI_n - M), \quad (6)$$

where $M = A(F) + \frac{m-1}{x-r_1} \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$. It follows from (5) and (6) that

$$f_{A(G)}(x) = \prod_{j=1}^{m-2} (x - \lambda_j(H_1))^k \frac{f_{A(G^*)}(x)}{\prod_{j=1}^{m-2} (x - \lambda_j(G_p^{r_1}))^k}. \quad (7)$$

From (1) and (7), we get $\lambda \in \sigma(A(G))$ with multiplicity k, for each $\lambda \in \sigma(A(H_v)) \setminus \{\alpha, \beta\}$. Next we only need to prove $\lambda_j(G_p^{r_1}) \in \sigma(A(G^*))$ with multiplicity k, for each $j = 1, \ldots, m - 2$.

Let the eigenvalues $\lambda_1(C_p), \ldots, \lambda_p(C_p) = 2$ of $A(C_p)$ are afforded by the eigenvectors $X_1, \ldots, X_p = 1_p$, respectively. Also let the eigenvalues $\lambda_{r_1-1}(K_{r_1-1}), \ldots, \lambda_{r_1-1}(K_{r_1-1}) = r_1 - 2$ of $A(K_{r_1-1})$ are afforded by the eigenvectors $Y_1, \ldots, Y_{r_1-1} = 1_{r_1-1}$, respectively. Since $A(G_p^{r_1}) = A(C_p) \otimes I_{r_1-1} + I_p \otimes A(K_{r_1-1})$. Then $X_s \otimes Y_t$ is an eigenvector of $A(G_p^{r_1})$ corresponding to the eigenvalue $\lambda_s(C_p) + \lambda_t(K_{r_1-1})$, where $s = 1, \ldots, p$ and $t = 1, \ldots, r_1 - 1$. Now, for fixed s and t, it is easy to verify that

$$\left(e_1 \otimes X_s \otimes Y_t \right), \left(e_2 \otimes X_s \otimes Y_t \right), \ldots, \left(e_k \otimes X_s \otimes Y_t \right)$$

are k linearly independent eigenvectors of $A(G^*)$ corresponding to the eigenvalue $\lambda_s(C_p) + \lambda_t(K_{r_1-1})$, where $X_s \otimes Y_t \neq X_p \otimes Y_{r_1-1}$ and e_i denotes the column vector of size k with the i-th entry equals one and 0 otherwise. The proof is completed.

\blacksquare
3.2. The Q-spectrum of $G[F, V_k, H_v]$

Proposition 3.5. Let $G = G[F, V_k, H_v]$ and $|V_k| = k$. Then the Q-characteristic polynomial of G is

$$f_{Q(G)}(x) = (f_{Q(H_1)}(x - 1))^k \det(xI_n - M),$$

where $M = Q(F) + (m - 1 + \Gamma_{Q(H_1)})(x - 1)) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix}.$

Proof. With suitable labeling of the vertices of G, we can write the signless Laplacian matrix of G

$$Q(G) = \begin{pmatrix} Q(F) + (m - 1) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} I_k \otimes 1_m^{T-1} \\ 0 \end{pmatrix} \\ (I_k \otimes 1_m) & I_k \otimes (Q(H_1) + I_{m-1}) \end{pmatrix}.$$

Then the Q-characteristic polynomial of G can be calculated as follows:

$$f_{Q(G)}(x) = \det\left(xI_n - Q(F) - (m - 1) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} I_k \otimes 1_m^{T-1} \\ 0 \end{pmatrix} I_k \otimes ((x - 1)I_{m-1} - Q(H_1)) \right)$$

$$= \det((x - 1)I_{m-1} - Q(H_1))^k \det(S_1)$$

$$= (f_{Q(H_1)}(x - 1))^k \det(S_1)$$

where

$$S_1 = xI_n - Q(F) - (m - 1) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix} - \frac{I_k \otimes 1_m^{T-1}}{0_m} (I_k \otimes ((x - 1)I_{m-1} - Q(H_1))^{-1}(I_k \otimes 1_m)$$

$$= xI_n - Q(F) - (m - 1) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix} - \Gamma_{Q(H_1)}(x - 1) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix}$$

is the Schur complement with respect to $I_k \otimes ((x - 1)I_{m-1} - Q(H_1))$. Hence, the result follows. \(\Box\)

Let H_1 be a r_1-regular graph. If $|V_k| = k$, then except $n + k$ Q-eigenvalues, we describe all the other Q-eigenvalues of $G[F, V_k, H_v]$ using the Q-eigenvalues of H_v. We also show that the remaining $n + k$ Q-eigenvalues of $G[F, V_k, H_v]$ are independent of the graph H_v.

Theorem 3.6. Let H_1 be an r_1-regular graph, where $r_1 \geq 1$. Also let $q \in \sigma(Q(H_v)) \setminus \{\gamma, \delta\}$, where γ, δ is described as $[3]$, and $G = G[F, V_k, H_v]$. If $|V_k| = k$, then $q \in \sigma(Q(G))$ with multiplicity k. Moreover, the remaining $n + k$
Q-eigenvalues of G are independent of H_u.

Proof. If H_1 is an r_1-regular graph, then $\Gamma_{Q(H_1)}(x - 1) = \frac{m - 1}{x - 1 - 2r_1}$ and

$$f_{Q(H_1)}(x - 1) = (x - 1 - 2r_1)^{m-2} \prod_{j=1}^{m-2} (x - 1 - q_j(H_1)).$$

Thus, from Proposition 3.5, one gets

$$f_{Q(G)}(x) = (x - 1 - 2r_1)^k \prod_{j=1}^{m-2} (x - 1 - q_j(H_1))^k \det(xI_n - M),$$

where $M = Q(F) + (m - 1 + \frac{m - 1}{x - 1 - 2r_1}) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix}$. Notice that M depends on the regularity of H_1 only and not on the structure of H_1. From (2) and (9), we obtain the required result. \(\square \)

As an application of the above results, we may construct many pairs of Q-cospectral graphs. The following Corollary 3.7 and above Corollary 3.3 show that there exit two graphs $G[F, V_k, H_u]$ and $G[F, V_k, H_v]$ such that they are not only A-cospectral, but also are Q-cospectral.

Corollary 3.7. Let H_u and H_v be two disjoint graphs of order m such that $H_u - u$ and $H_v - v$ are r_1-regular, where $m \geq 2$ and $r_1 \geq 1$. If H_u and H_v are Q-cospectral, then $G[F, V_k, H_u]$ and $G[F, V_k, H_v]$ are Q-cospectral.

Corollary 3.8. Let H_1 be an r_1-regular graph and $m - 1 = p(r_1 - 1)$ for some integer p, where $p \geq 3$ and $r_1 \geq 2$. Let $G = G[F, V_k, H_v]$ and $G^* = G[F, V_k, H_v]$. If $|V_k| = k$, then $\sigma(Q(G))$ consists of the eigenvalues

(a) q with multiplicity k, for each $q \in \sigma(Q(H_v)) \setminus \{\gamma, \delta\}$, where γ, δ is described as (2);

(b) $\theta \in \sigma(Q(G^*)) \setminus \{q_1(G_p^{r_1}) + 1, \ldots, q_1(G_p^{r_1}) + 1, q_2(G_p^{r_1}) + 1, \ldots, q_2(G_p^{r_1}) + 1, \ldots, q_{m-2}(G_p^{r_1}) + 1, \ldots, q_{m-2}(G_p^{r_1}) + 1\}$.

Proof. With suitable labeling of the vertices of G^*, we can write the signless Laplacian matrix of G^* to

$$Q(G^*) = \begin{pmatrix} Q(F) + (m - 1) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix} & \left(I_k \otimes 1_{m-1} \right) \\ \left(I_k \otimes 1_{m-1} \right) & I_k \otimes (Q(G_p^{r_1}) + I_{m-1}) \end{pmatrix}.$$
Thus, from the proofs of Proposition 3.5 and Theorem 3.6, we obtain

\[f_{Q(G^*)}(x) = (x - 1 - 2r_1)^k \prod_{j=1}^{m-2} (x - 1 - q_j(G_p^{r_1}))^k \det(xI_n - M), \tag{10} \]

where \(M = Q(F) + (m - 1 + \frac{m - 1}{x - 1 - 2r_1}) \begin{pmatrix} I_k & 0^T \\ 0 & 0 \end{pmatrix} \). It follows from \(9 \) and \(10 \) that

\[f_{Q(G)}(x) = \prod_{j=1}^{m-2} (x - 1 - q_j(H_1))^k \frac{f_{Q(G^*)}(x)}{\prod_{j=1}^{m-2} (x - 1 - q_j(G_p^{r_1}))^k} \tag{11} \]

From \(2 \) and \(11 \), we get \(q \in \sigma(Q(G)) \) with multiplicity \(k \), for each \(q \in \sigma(Q(H_1)) \setminus \{ \gamma, \delta \} \). Next we only need to prove \(q_j(G_{p}^{r_1}) + 1 \in \sigma(Q(G^*)) \) with multiplicity \(k \), for each \(j = 1, \ldots, m - 2 \).

Let the eigenvalues \(q_1(C_p), \ldots, q_p(C_p) = 4 \) of \(Q(C_p) \) are afforded by the eigenvectors \(X_1, \ldots, X_p = 1_p \), respectively, and the eigenvalues \(q_1(K_{r_1-1}), \ldots, q_{r_1-1}(K_{r_1-1}) = 2(r_1 - 2) \) of \(Q(K_{r_1-1}) \) are afforded by the eigenvectors \(Y_1, \ldots, Y_{r_1-1} = 1_{r_1-1} \), respectively. Since \(Q(G_p^{r_1}) = Q(C_p) \otimes I_{r_1-1} + I_p \otimes Q(K_{r_1-1}) \). Then \(X_s \otimes Y_t \) is an eigenvector of \(Q(G_p^{r_1}) \) corresponding to the eigenvalue \(q_s(C_p) + q_t(K_{r_1-1}) \), where \(s = 1, \ldots, p \) and \(t = 1, \ldots, r_1 - 1 \). Now, for fixed \(s \) and \(t \), then

\[\begin{pmatrix} e_1 \otimes X_s \otimes Y_t \\ 0 \end{pmatrix}, \begin{pmatrix} e_2 \otimes X_s \otimes Y_t \\ 0 \end{pmatrix}, \ldots, \begin{pmatrix} e_k \otimes X_s \otimes Y_t \\ 0 \end{pmatrix} \]

are \(k \) linearly independent eigenvectors of \(Q(G^*) \) corresponding to the eigenvalue \(q_s(C_p) + q_t(K_{r_1-1}) + 1 \), where \(X_s \otimes Y_t \neq X_p \otimes Y_{r_1-1} \). The proof is completed. \(\square \)

4. The \(Q \)-spectrum of \(G[F, E_k, H_{uw}] \)

Proposition 4.1. Let \(\mathcal{E}_k \) be an \(r \)-regular subgraph of \(F \) induced by \(E_k \) in Definition 1.2. Also let \(G = G[F, E_k, H_{uw}] \) and \(|E_k| = k \). Then the \(Q \)-characteristic polynomial of \(G \) is

\[f_{Q(G)}(x) = (f_{Q(H_2)}(x - 2))^k \det(xI_n - M), \tag{12} \]

where \(M = Q(F) + r(m - 2) \begin{pmatrix} I_p & 0^T \\ 0 & 0 \end{pmatrix} + \Gamma_{Q(H_2)} + 2 \begin{pmatrix} Q(\mathcal{E}_k) & 0^T \\ 0 & 0 \end{pmatrix}. \]
Proof. Notice that \mathcal{E}_k has $p = \frac{2k}{r}$ vertices. Let $Q(\mathcal{E}_k)$ be the signless Laplacian matrix of \mathcal{E}_k. With suitable labeling of the vertices of G, we can write the signless Laplacian matrix of G to

$$Q(G) = \left(\begin{array}{ccc} Q(F) + r(m - 2) & I_p & 0^T \\ (R(\mathcal{E}_k)|0) & 0 & 1^T_{m-2} \\ 0^T & 0 & I_k \otimes (Q(H_2) + 2I_{m-2}) \end{array}\right).$$

Then the Q-characteristic polynomial of G can be calculated as follows:

$$f_{Q(G)}(x) = \text{det} \left(xI_n - Q(F) - r(m - 2) \begin{pmatrix} I_p & 0^T \\ 0 & 0 \end{pmatrix} - \left(\frac{R(\mathcal{E}_k)}{0} \right) \otimes 1^T_{m-2} - I_k \otimes ((x - 2)I_{m-2} - Q(H_2)) \right)$$

$$= \text{det}((x - 2)I_{m-2} - Q(H_2))^k \text{det}(S_1)$$

$$= (f_{Q(H_2)}(x - 2))^k \text{det}(S_1),$$

where

$$S_1 = xI_n - Q(F) - r(m - 2) \begin{pmatrix} I_p & 0^T \\ 0 & 0 \end{pmatrix} - \left(\frac{R(\mathcal{E}_k)}{0} \right) \otimes 1^T_{m-2} \cdot (I_k \otimes ((x - 2)I_{m-2} - Q(H_2)))^{-1} \cdot (R(\mathcal{E}_k)|0) \otimes 1_{m-2}$$

is the Schur complement with respect to $I_k \otimes ((x - 2)I_{m-2} - Q(H_2))$. This implies the required result. □

Let H_2 be a r_2-regular graph. If $|E_k| = k$, then except $n + k$ Q-eigenvalues, we describe all the other Q-eigenvalues of $G[F, E_k, H_{uv}]$ in term of the Q-eigenvalues of H_{uv}. We also show that the remaining $n + k$ Q-eigenvalues of $G[F, E_k, H_{uv}]$ are independent of the graph H_{uv}.

Theorem 4.2. Let H_2 be an r_2-regular graph, where $r_2 \geq 2$. Also let $q \in \sigma(Q(H_{uv})) \setminus \{m - 2, \zeta, \eta\}$, where ζ, η is described as [2], and $G[F, E_k, H_{uv}]$. Assume that \mathcal{E}_k is an r-regular subgraph of F induced by E_k. If $|E_k| = k$, then $q \in \sigma(Q(G))$ with multiplicity k. Moreover, the remaining $n + k$ Q-eigenvalues of G are independent of H_{uv}.

Proof. Since H_2 is an r_2-regular graph. Then $\Gamma_{Q(H_2)}(x - 2) = \frac{m - 2}{x - 2 - 2r_2}$ and

$$f_{Q(H_2)}(x - 2) = (x - 2 - 2r_2) \prod_{j=1}^{m-3} (x - 2 - q_j(H_2)).$$
Thus by Proposition 4.1,

$$f_{Q(G)}(x) = (x - 2 - 2r_2)^k \prod_{j=1}^{m-3} (x - 2 - q_j(H_2))^k \det(xI_n - M),$$ \hspace{1cm} (13)

where \(M = Q(F) + (m - 2) \left(rI_p + \frac{Q(\phi_k)}{x-2-2r_2} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right) \). Notice that \(M \) depends on the regularity of \(H_2 \) only and not on the structure of \(H_2 \). From (3) and (13), we obtain the required result. \(\square \)

As an application of the above results, we may construct many pairs of \(Q \)-cospectral graphs.

Corollary 4.3. Let \(H_{uv} \) and \(H_{xy} \) be two disjoint graphs of order \(m \) such that \(H_{uv} - \{u, v\} \) and \(H_{xy} - \{x, y\} \) are \(r_2 \)-regular, where \(m \geq 3 \) and \(r_2 \geq 2 \). Let \(\mathcal{E}_k \) be an \(r \)-regular subgraph of \(F \) induced by \(E_k \) in Definition 1.2. If \(H_{uv} \) and \(H_{xy} \) are \(Q \)-cospectral, then \(G[F, E_k, H_{uv}] \) and \(G[F, E_k, H_{xy}] \) are \(Q \)-cospectral.

Let \(H_{uv}^* \) be the \(H_{uv} \) graph such that \(H_2 = G_{p_{r_2}} \), where \(G_{r_2} = G_p \square K_{r_2-1} \) is the Cartesian product of the cycle \(C_p \) and the complete graph \(K_{r_2-1} \). Notice that \(G_{r_2} \) is \(r_2 \)-regular. Theorem 4.2 implies the following result.

Corollary 4.4. Let \(H_2 \) be an \(r_2 \)-regular graph and \(m - 2 = p(r_2 - 1) \) for some integer \(p \), where \(p \geq 3 \) and \(r_2 \geq 2 \). Let \(G = G[F, E_k, H_{uv}] \) and \(G^{**} = G[F, E_k, H_{uv}^{**}] \). Assume that \(\mathcal{E}_k \) is an \(r \)-regular subgraph of \(F \) induced by \(E_k \). If \(|E_k| = k \), then \(\sigma(Q(G)) \) consists of the eigenvalues

(a) \(q \) with multiplicity \(k \), for each \(q \in \sigma(Q(H_{uv}^{**})) \setminus \{m-2, \zeta, \eta\} \), where \(\zeta, \eta \) is described as [3];

(b) \(\theta \in \sigma(Q(G^{**})) \setminus \{q_1(G_{p_{r_2}}^{r_2}) + 2, \ldots, q_1(G_{p_{r_2}}^{r_2}) + 2, q_2(G_{p_{r_2}}^{r_2}) + 2, \ldots, q_2(G_{p_{r_2}}^{r_2}) + 2, \ldots, q_{m-3}(G_{p_{r_2}}^{r_2}) + 2 \} \).

Proof. With suitable labeling of the vertices of \(G^{**} \), we can write the signless Laplacian matrix of \(G^{**} \) to

$$Q(G^{**}) = \begin{pmatrix} Q(F) + r(m - 2) \begin{pmatrix} I_p & 0 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} R(\phi_k) \\ 0 \end{pmatrix} \otimes I_{m-2} \right) & \begin{pmatrix} \frac{R(\phi_k)}{0} \otimes I_{m-2} \right) \end{pmatrix} \\ \left(R(\mathcal{E}_k) \right) \otimes I_{m-2} \end{pmatrix} \right) \times I \end{pmatrix} \times I_{m-2} \right).$$
Thus, from the proofs of Proposition 4.1 and Theorem 4.2, we obtain

\[f_{Q(G^{**})}(x) = (x - 2 - 2r_2)^k \prod_{j=1}^{m-3} (x - 2 - q_j(G_p^{r_2}))^k \det(xI_n - M), \tag{14} \]

where \(M = Q(F) + (m - 2) \begin{pmatrix} rI_p + \frac{Q(\mathcal{E}_k)}{x - 2 - 2r_2} & 0^T \\ 0 & 0 \end{pmatrix}. \) It follows from (13) and (14) that

\[f_{Q(G)}(x) = \frac{\prod_{j=1}^{m-3} (x - 2 - q_j(H_2))^k f_{Q(G^{**})}(x)}{\prod_{j=1}^{m-3} (x - 2 - q_j(G_p^{r_2}))^k}, \tag{15} \]

From (3) and (15), we get \(q \in \sigma(Q(G)) \) with multiplicity \(k \), for each \(q \in \sigma(Q(H_{uv})) \setminus \{m - 2, \zeta, \eta\} \). Next, using the similar technique to the proof of Corollary 3.8, we may prove that \(q_j(G_p^{r_2}) + 2 \in \sigma(Q(G^{**})) \) with multiplicity \(k \), for each \(j = 1, \ldots, m - 3 \). The proof is completed. \(\square \)

In the rest of this paper, we consider many special cases. Assume that \(\mathcal{E}_k \) is an \(r \)-regular spanning subgraph of \(F \). From the proof of Proposition 4.1, we easily obtain

Proposition 4.4. Let \(\mathcal{E}_k \) be an \(r \)-regular spanning subgraph of \(F \). Also let \(G = G[F, E_k, H_{uv}] \) and \(|E_k| = k \). Then the \(Q \)-characteristic polynomial of \(G \) is

\[f_{Q(G)}(x) = (f_{Q(H_2)}(x - 2))^k \det(xI_n - M), \tag{16} \]

where \(M = r((m - 2) + \Gamma_{Q(H_2)}(x - 2))I_n + Q(F) + \Gamma_{Q(H_2)}(x - 2)A(\mathcal{E}_k) \).

A \(k \)-matching in \(G \) is a disjoint union of \(k \)-edges. If \(2k \) is the order of \(G \), then a \(k \)-matching of \(G \) is called a **perfect matching** of \(G \) (15).

Theorem 4.5. Let \(F = K_{2k} \), \(\mathcal{E}_k \) be a perfect matching of \(F \). Also let \(H_2 \) be an \(r_2 \)-regular graph, where \(r_2 \geq 2 \) and \(G = G[F, E_k, H_{uv}] \). Then the \(Q \)-spectrum of \(G \) is given by

(i) \(q \) with multiplicity \(k \), for each \(q \in \sigma(Q(H_{uv})) \setminus \{m - 2, \zeta, \eta\} \), where \(\zeta, \eta \) is described as (3);

(ii) \(m + 2k - 4 \) with multiplicity \(k \);

(iii) two roots of the equation \((x - m - 4k + 4)(x - 2r_2 - 2) - 2(m - 2) = 0 \), each with multiplicity 1;

(iv) two roots of the equation \((x - m - 2k + 4)(x - 2r_2 - 2) - 2(m - 2) = 0 \), each with multiplicity \(k - 1 \).
Proof. From Proposition 4.4, we obtain
\[
f_Q(G)(x) = (x - 2 - 2r_2)^k \prod_{j=1}^{m-3} (x - 2 - q_j(H_2))^k \det(xI_{2k} - M),
\]
where
\[
M = ((m - 2) + \Gamma_{Q(H_2)}(x - 2))I_{2k} + (2k - 2)I_{2k} + J_{2k} + \Gamma_{Q(H_2)}(x - 2)(I_k \otimes A(K_2))
\]
\[
= \left(m - 2 + \frac{m - 2}{x - 2 - 2r_2} + 2k - 2 \right) I_{2k} + \frac{m - 2}{x - 2 - 2r_2} (I_k \otimes A(K_2)) + J_{2k}.
\]

Take \(M_1 = \left(m - 2 + \frac{m - 2}{x - 2 - 2r_2} + 2k - 2 \right) I_{2k} + \frac{m - 2}{x - 2 - 2r_2} (I_k \otimes A(K_2))\). By a simple computation, one gets
\[
det(xI_{2k} - M) = det(xI_{2k} - M_1 - J_{2k})
= det(xI_{2k} - M_1) \cdot (1 - \Gamma_{M_1}(x))
= (x - m - 2k + 4)^k \left(\frac{x - m - 2k + 4(x - 2 - 2r_2 - 2(m - 2))}{x - 2 - 2r_2} \right)^{k-1} \left(\frac{x - m - 2k + 4(x - 2 - 2r_2 - 2(m - 2))}{x - 2 - 2r_2} \right).
\]

From (17) and (18), we obtain the required result. □

Theorem 4.6. Let \(F = K_n\), \(C_n\). Also let \(H_2\) be an \(r_2\)-regular graph, where \(r_2 \geq 2\) and \(G = G[F, E_k, H_{uv}]\). Then the \(Q\)-spectrum of \(G\) is given by

(i) \(q\) with multiplicity \(n\), for each \(q \in \sigma(Q(H_{uv})) \setminus \{m - 2, \zeta, \eta\}\), where \(\zeta, \eta\) is described as (3);

(ii) two roots of the equation \((x - 2m - 2n + 6)(x - 2r_2 - 2) - 4(m - 2) = 0\), each with multiplicity 1;

(iii) two roots of the equation \((x - 2m - n + 6)(x - 2r_2 - 2) - 2(m - 2)(1 + \cos \frac{2\pi l}{n}) = 0\), for each \(l = 1, 2, \ldots, n - 1\).

Proof. The proof is similar to that of Theorem 4.5, omitted. □

References

[1] M. Aouchiche, P. Hansen, A survey of automated conjectures in spectral graph theory, Linear Algebra Appl., 432 (2010) 2293-2322.

[2] S. Barik, S. Pati, B. K. Sarma, The spectrum of the corona of two graphs, SIAM. J. Discrete Math., 24 (2007) 47-56.
[3] S. Barik, On the Laplacian spectra of graphs with pockets, Linear Multilinear Algebra, 56 (2008) 481-490.

[4] V. Brankov, P. Hansen, D. Stevanovic, Automated upper bounds on the largest Laplacian eigenvalue, Linear Algebra Appl., 414 (2006) 407-424.

[5] S-Y. Cui, G-X. Tian, The signless Laplacian spectrum of the (edge) corona of two graphs, Utilitas Math., 88 (2012) 287-297.

[6] S-Y. Cui, G-X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl., 437 (2012) 1692-1703.

[7] S-Y. Cui, G-X. Tian, The Q-generating function for graphs with application, arXiv: 1403.2846.

[8] D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl., 423 (2007) 155-171.

[9] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publ. Inst. Math.(Beogr.), 85 (99) (2009) 19-33.

[10] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra Appl., 432 (2010) 2257-2272.

[11] D. Cvetković, S.K. Simić, Towards a spectral theory of graphs based on the signless Laplacian, III, Applicable Analysis and Discrete Math., 4 (2010) 156-166.

[12] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application, Academic press, New York, 1980.

[13] E. R. Van Dam, W. H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl., 373 (2003) 241-272.

[14] R. Grone, R. Merris, V S. Sunder, The Laplacian Spectral of Graphs, SIAM J. Matrix Anal. Appl., 11 (1990) 218-239.

[15] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[16] Y. Hou, W-C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra., 20 (2010) 586-594.

[17] R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.

[18] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl., 197-198 (1994) 143-176.

[19] C. McLeman, E. McNicholas, Spectra of coronae, Linear Algebra Appl., 435 (2011) 998-1007.
[20] M. Nath, S. Paul, On the spectra of graphs with edge-pockets, Linear Multilinear Algebra, DOI: 10.1080/03081087.2013.877010.

[21] G.-X. Tian, T.-Z. Huang, B. Zhou, A note on sum of powers of the Laplacian eigenvalues of bipartite graphs, Linear Algebra Appl., 430 (2009) 2503-2510.