An in silico target identification using boolean network attractors: avoiding pathological phenotypes
Arnaud Poret, Jean-Pierre Boissel

To cite this version:
Arnaud Poret, Jean-Pierre Boissel. An in silico target identification using boolean network attractors: avoiding pathological phenotypes. Comptes Rendus Biologies, Elsevier Masson, 2014, 337 (12), pp.661-678. 10.1016/j.crvi.2014.10.002. hal-01024788v4

HAL Id: hal-01024788
https://hal.archives-ouvertes.fr/hal-01024788v4
Submitted on 10 Oct 2014 (v4), last revised 7 May 2015 (v5)
An *in silico* target identification using boolean network attractors: avoiding pathological phenotypes

Arnaud Poret1,2, Jean-Pierre Boissel1

November 29, 2013; October 08, 2014

\textcopyright{} 2013-2014 Arnaud Poret, Jean-Pierre Boissel. This document is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit \url{http://creativecommons.org/licenses/by/4.0/}

Arnaud Poret (corresponding author): arnaud.poret@gmail.com
Jean-Pierre Boissel: jean-pierre.boissel@novadiscovery.com

1 Novadiscovery, 60 Avenue Rockefeller, 69008 Lyon, France, \url{http://www.novadiscovery.com}
2 UMR CNRS 5558, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France, \url{https://lbbe.univ-lyon1.fr/}
Abstract

Target identification aims at identifying biomolecules whose function should be therapeutically altered to cure the considered pathology. An algorithm for in silico target identification using boolean network attractors is proposed. It assumes that attractors correspond to phenotypes produced by the modeled biological network. It identifies target combinations which allow disturbed networks to avoid attractors associated with pathological phenotypes. The algorithm is tested on a boolean model of the mammalian cell cycle and its applications are illustrated on a boolean model of Fanconi anemia. Results show that the algorithm returns target combinations able to remove attractors associated with pathological phenotypes and then succeeds in performing the proposed in silico target identification. However, as with any in silico evidence, there is a bridge to cross between theory and practice. Nevertheless, it is expected that the algorithm is of interest for target identification.

Contents

1 Introduction 3

2 Methods 4
 2.1 Basic principles 4
 2.1.1 Biological networks 4
 2.1.2 Boolean networks 5
 2.2 Definitions 5
 2.3 Steps of the algorithm 7
 2.3.1 Step 1: computing A_{physio} 7
 2.3.2 Step 2: generating bullets 9
 2.3.3 Step 3: computing A_{patho} 10
 2.3.4 Step 4: identifying therapeutic bullets 11
 2.3.5 Step 5: assessing therapeutic bullets 11
 2.4 Example network 12
 2.5 Case study 14
 2.6 Implementation 15

3 Results 15
 3.1 Results of step 1 15
 3.2 Results of steps 2 to 5 16
 3.3 Results on the case study 17

4 Conclusion 19

5 Annexes 21
 5.1 Annexe 1 21
 5.2 Annexe 2 23
 5.3 Annexe 3 24
 5.4 Annexe 4 25
 5.5 Annexe 5 30
1 Introduction

Drug discovery, as its name indicates, aims at discovering new drugs against diseases. This process can be segmented into three steps: i) disease model provision, where experimental models are developed, ii) target identification, where therapeutic targets are proposed and iii) target validation, where the proposed therapeutic targets are assessed. The present work focuses on the second step of drug discovery: target identification [1, 2].

Given an organism suffering from a disease, target identification aims at finding where to act among its multitude of biomolecules in order to alleviate, or ultimately cure, the physiological consequences of the disease. These biomolecules on which perturbations should be applied are called targets and are targeted by drugs [3]. This raises two questions: which target should be therapeutically perturbed and what type of perturbation should be applied. Broadly, the functional perturbation of a target by a drug can be either activating or inactivating, regardless the way the drug achieves it.

One solution is to test all, or at least a large number of, biomolecules for activation or inactivation. Knowing that targeting several biomolecules is potentially more effective [4], the number of possibilities is consequently huge. This rather brute-force screening can be refined with knowledge about the pathophysiology by identifying potential targets based on the role they play in it [5]. Even with this knowledge, experimentally assessing the selected potential targets in vitro or in vivo is far from straightforward. Such experiments are costly in time and resources and exhibit a high risk of failure [6]. Fortunately, in silico experiments appear as valuable tools in improving the efficiency of therapeutic research [7] since they are less costly in time and resources than the traditional in vitro and in vivo ones. However, the stumbling block of in silico experiments is that they are built from the available knowledge: not all is known about everything.

Nevertheless, an impressive and ever increasing amount of biological knowledge is already available in the scientific literature, databases and knowledge bases such as, to name a few, DrugBank [8], KEGG [9], PharmGKB [10], Reactome [11] and TTD [12]. In addition to the complexity of integrating an increasing body of knowledge comes the inherent complexity of biological systems themselves [13]: this is where computational tools can help [14]. The interplay between experimental and computational biology is synergistic rather than competitive [15]. Since in vitro and in vivo experiments produce factual results, they are trustworthy sources of knowledge. Once these factual pieces of knowledge are obtained, computational tools can help to integrate them and infer new ones. This computationally obtained knowledge can be subsequently used to direct further in vitro or in vivo experiments, hence mutually potentiating the whole.

The goal of the present work is to propose a computational methodology implemented in an algorithm for target identification using boolean network attractors. It assumes that boolean network attractors correspond to phenotypes produced by the modeled biological network, an assumption successfully applied in several works [16–21] to cite a few. Assuming that a phenotype is an observable and hence a relatively stable state of a biological system and assuming that the state of a biological system results from its dynamics, a phenotype is likely to correspond to an attractor. This assumption can be stated for any dynamical
model but, in the present work, only boolean networks are considered. Reasons
are that, in their most basic form, boolean networks do not require parameter
values \cite{22} and that parameter values are not straightforward to estimate
due to experimental limitations, particularly at the subcellular scale, the scale
where drugs interact with their targets. Moreover, since synchronous boolean
networks are easier to compute than asynchronous ones \cite{23}, only synchronous
boolean networks are considered. This does not exclude the possibility, at a
later stage, to extend the algorithm for both synchronous and asynchronous
updating schemes.

For a biological network involved in a disease, two possible variants are
considered: the physiological variant, exhibited by healthy organisms, which
produces physiological phenotypes, and the pathological variant, exhibited by
ill organisms, which produces pathological phenotypes or which fails to produce
physiological ones. A physiological phenotype does not impair life quantity/
quality while a pathological phenotype does. It should be noted that the loss of
a physiological phenotype is also a pathological condition. The physiological and
pathological variants differ in that the latter results from the occurrence of some
alterations known to be responsible for disorders. With a pathological variant,
there are two non-exclusive pathological scenarios: pathological phenotypes are
gained or physiological phenotypes are lost.

The primary goal of the proposed algorithm is to identify, in a pathological
variant, target combinations together with the perturbations to apply on them,
here called bullets, which render it unable to exhibit pathological phenotypes.
The secondary goal is to classify the obtained bullets according to their ability
at rendering the pathological variant able to exhibit previously lost physiological
phenotypes, if any.

2 Methods

This section briefly introduces some basic principles, namely biological networks
\cite{24,25} and boolean networks \cite{26}, defines some concepts and then describes the
proposed algorithm. An example network to illustrate it plus a case study
to illustrate its intended applications are also described. Finally, some details
about implementation and code availability are mentioned.

2.1 Basic principles

2.1.1 Biological networks

A network can be seen as a digraph $G = (V, E)$ where $V = \{v_1, \ldots, v_n\}$ is the
set of cardinality n containing exactly all the nodes v_i of the network and where
$E = \{(v_{i,1}, v_{j,1}), \ldots, (v_{i,m}, v_{j,m})\} \subseteq V^2$ is the set of cardinality m containing
exactly all the edges (v_i, v_j) of the network \cite{27,28}. In practice, nodes represent
entities and edges represent binary relations $R \subseteq V^2$ involving them: $v_i \, R \, v_j$.

For example, in gene regulatory networks, nodes represent gene products and
edges represent gene expression modulations \cite{29}.
2 METHODS

2.1.2 Boolean networks

A boolean network is a network where nodes are boolean variables \(x_i \) and where edges \((x_i, x_j)\) represent the binary is input of relation: \(x_i \) is input of \(x_j \). Each \(x_i \) has \(b_i \in [0, n] \) inputs \(x_{i,1}, \ldots, x_{i,b_i} \). The variables which are not inputs of \(x_i \) have no direct influence on it. If \(b_i = 0 \) then \(x_i \) is a parameter and does not depend on other variables. At each iteration \(k \in [k_0, k_{end}] \) of the simulation, the value \(x_i(k) \in \{0, 1\} \) of each \(x_i \) is updated to the value \(x_i(k + 1) \) using a boolean function \(f_i \) and the values \(x_{i,1}(k), \ldots, x_{i,b_i}(k) \) of its inputs, as in the following pseudocode:

```plaintext
1 for \( k \in [k_0, k_{end} - 1] \) do
2 \( x_1(k + 1) = f_1(x_{1,1}(k), \ldots, x_{1,b_1}(k)) \)
3 \( \ldots \)
4 \( x_n(k + 1) = f_n(x_{n,1}(k), \ldots, x_{n,b_n}(k)) \)
5 end for
```

which can be written in a more concise form:

```plaintext
1 for \( k \in [k_0, k_{end} - 1] \) do
2 \( x(k + 1) = f(x(k)) \)
3 end for
```

where \(f = (f_1, \ldots, f_n) \) is the boolean transition function and \(x = (x_1, \ldots, x_n) \) is the state vector. In the present work, it is assumed that \(k_0 = 1 \). The value \(x(k) = (x_1(k), \ldots, x_n(k)) \) belongs to the state space \(S = \{0, 1\}^n \) which is the set of cardinality \(2^n \) containing exactly all the possible states. If the values of all the \(x_i \) are updated simultaneously at each \(k \) then the network is synchronous, otherwise it is asynchronous. With synchronous boolean networks, \(x(k) \) has a unique possible successor \(x(k + 1) \): synchronous boolean networks are deterministic.

In the particular case where \(k = k_0 \), \(x(k_0) = x_0 \) is the initial state and, in deterministic dynamical systems, determines entirely the trajectory \(w = (x(k_0), \ldots, x(k_{end})) \). Since it is assumed that \(k_0 = 1 \), \(w \) is a sequence of length \(k_{end} \) resulting from the iterative computation of \(x(k) \) from \(k_0 \) to \(k_{end} \). This iterative computation can be seen as the discretization of a time interval: boolean networks are discrete dynamical systems as they simulate discretely the time course of the state vector.

The set \(A = \{a_1, \ldots, a_p\} \) of cardinality \(p \) containing exactly all the attractors \(a_i \) is called the attractor set. Due to the determinism of synchronous boolean networks, all the attractors are cycles. A cycle is a sequence \((x_1, \ldots, x_q) \) of length \(q \) such that \(\forall j \in [1, q], x_{j+1} = f(x_j) \) and \(x_{q+1} = x_1 \): once the system reaches a state \(x_j \) belonging to a cycle, it successively visits its states \(x_{j+1}, \ldots, x_q, x_1, \ldots, x_j \) for infinity. In the particular case where \(q = 1 \), the cycle is called a point attractor. The set \(B_i \subseteq S \) containing exactly all the \(x \in S \) from which \(a_i \) can be reached is called its basin of attraction. With deterministic dynamical systems, the family of sets \((B_1, \ldots, B_p) \) constitutes a partition of \(S \).

2.2 Definitions

Some concepts used in the present work should be formally defined.

physiological phenotype A phenotype which does not impair life quantity/
quality of the organism which exhibits it.

pathological phenotype A phenotype which impairs life quantity/quality of the organism which exhibits it.

variant (of a biological network) Given a biological network of interest, a variant of it is one of its versions, namely the network plus eventually some modifications. It should be noted that this does not exclude the possibility that a variant can be the network of interest as is.

physiological variant A variant which produces only physiological phenotypes. It is the biological network of interest as it should be, namely the one of healthy organisms.

pathological variant A variant which produces at least one pathological phenotype. It is a dysfunctional version of the biological network of interest, namely a version found in ill organisms.

physiological attractor set The attractor set A_{physio} of the physiological variant.

pathological attractor set The attractor set A_{patho} of the pathological variant.

physiological boolean transition function The boolean transition function f_{physio} of the physiological variant.

pathological boolean transition function The boolean transition function f_{patho} of the pathological variant.

run An iterative computation of $x(k)$ starting from an x_0 until an a_i is reached. It returns $w = (x(k_0), \ldots, x(k_{\text{end}}))$ where k_{end} depends on when a_i is reached and hence on x_0.

physiological attractor An a_i such that $a_i \in A_{\text{physio}}$.

pathological attractor An a_i such that $a_i \notin A_{\text{physio}}$.

modality The functional perturbation moda_i applied on a node $v_j \in V$ of the network, either activating ($\text{moda}_i = 1$) or inactivating ($\text{moda}_i = 0$): at each k, moda_i overwrites $f_j(x(k))$ and hence $x_{j}(k+1) = \text{moda}_i$.

target A node $\text{targ}_i \in V$ of the network on which a moda_i is applied.

bullet A couple $(c_{\text{targ}}, c_{\text{moda}})$ where $c_{\text{targ}} = (\text{targ}_1, \ldots, \text{targ}_r)$ is a combination without repetition of targ, and where $c_{\text{moda}} = (\text{moda}_1, \ldots, \text{moda}_r)$ is an arrangement with repetition of moda_i, $r \in [1, n]$ being the number of targets in the bullet. Here, moda_i is intended to be applied on targ_i.

therapeutic bullet A bullet which makes $A_{\text{patho}} \subseteq A_{\text{physio}}$.

silver bullet A therapeutic bullet which makes $A_{\text{patho}} \subset A_{\text{physio}}$.

golden bullet A therapeutic bullet which makes $A_{\text{patho}} = A_{\text{physio}}$.

The assumed link between phenotypes and attractors is the reason why attractors are qualified as either physiological or pathological according to the phenotype they produce. This is also the reason why, in the present work, target identification aims at manipulating attractor sets of pathological variants.
2.3 Steps of the algorithm

The algorithm has two goals: i) finding therapeutic bullets and ii) classifying them as either golden or silver. A therapeutic bullet makes the pathological variant unable at reaching pathological attractors, that is \(A_{\text{patho}} \subseteq A_{\text{physio}} \). If such a bullet is applied on a pathological variant, the organism bearing it no longer exhibits the associated pathological phenotypes. However, a therapeutic bullet does not necessarily preserve/restore the physiological attractors. If a therapeutic bullet preserves/restores the physiological attractors, namely if \(A_{\text{patho}} = A_{\text{physio}} \), then it is a golden one but if \(A_{\text{patho}} \varsubsetneq A_{\text{physio}} \) then it is a silver one.

Given a physiological and a pathological variant, that is \(f_{\text{physio}} \) and \(f_{\text{patho}} \), the algorithm follows five steps:

1. with \(f_{\text{physio}} \) it computes the control attractor set \(A_{\text{physio}} \)
2. it generates bullets and, for each of them, it performs the three following steps
3. with \(f_{\text{patho}} \) plus the bullet, it computes the variant attractor set \(A_{\text{patho}} \)
4. it assesses the therapeutic potential of the bullet by comparing \(A_{\text{physio}} \) and \(A_{\text{patho}} \) to detect pathological attractors
5. if the bullet is therapeutic then it is classified as either golden or silver by comparing \(A_{\text{physio}} \) and \(A_{\text{patho}} \) for equality

These steps can be written in pseudocode as:

```plaintext
1 w ith \( f_{\text{physio}} \) compute \( A_{\text{physio}} \)
2 generate bullet _set
3 for bullet \( \in \) bullet _set do
4    w ith \( f_{\text{patho}} \) plus bullet compute \( A_{\text{patho}} \)
5      if \( A_{\text{patho}} \subseteq A_{\text{physio}} \) then
6        bullet is therapeutic
7        if \( A_{\text{patho}} = A_{\text{physio}} \) then
8          bullet is golden
9          else
10            bullet is silver
11        end if
12      end if
13 end for
```

The algorithm is described step by step but can be found as one block of pseudocode in [Annexe 1].

2.3.1 Step 1: computing \(A_{\text{physio}} \)

First of all, \(A_{\text{physio}} \) has to be computed since it is the control and, as such, determines what is pathological. To do so, runs are performed with \(f_{\text{physio}} \) and the reached \(a_i \) are stored in \(A_{\text{physio}} \). However, \(x_0 \in S \) and card \(S \) increases exponentially with \(n \). Even for reasonable values of \(n \), card \(S \) explodes: more than 1 000 000 possible \(x_0 \) for \(n = 20 \). One solution ensuring that all the \(a_i \) are reached is to start a run from each of the possible \(x_0 \), that is from each of
the $x \in S$. Practically, this is unfeasible for an arbitrary value of n since the required computational resources can be too demanding. For example, assuming that a run requires 1 millisecond and that $n = 50$, performing a run from each of the 2^{50} $x \in S$ requires nearly 36 000 years.

Given that with deterministic dynamical systems (B_1, \ldots, B_p) is a partition of S, a solution is to select a subset $D \subseteq S$ of a reasonable cardinality containing the x_0 to start from. In the present work, D is selected randomly from a uniform distribution. The stumbling block of this solution is that it does not ensure that at least one x_0 per B_i is selected and then does not ensure that all the a_i are reached. This stumbling block holds only if $\text{card } D < \text{card } S$.

Again given that synchronous boolean networks are deterministic, if a run visits a state already visited in a previous run then its destination, that is the reached attractor, is already found. If so, the run can be stopped and the algorithm can jump to the next one. To implement this, previous trajectories are stored in a set H, the history, and at each k the algorithm checks if $\exists w \in H : x(k) \in w$. If this check is positive then the algorithm jumps to the next run.

Since, with deterministic dynamical systems, attractors are cycles, the algorithm checks at each k if $x(k + 1)$ is an already visited state of the current run, namely if $\exists k' \in [1, k] : x(k + 1) = x(k')$. If this check is positive then $a_i = (x(k'), \ldots, x(k))$.

This step can be written in pseudocode as:

```plaintext
1 prompt card D
2 card D = min(card D, 2^n)
3 generate $D \subseteq S$
4 $H = \{\}$
5 $A_{\text{physio}} = \{\}$
6 for $x_0 \in D$ do
7     $k = 1$
8     $x(1) = x_0$
9     while true do
10        if $\exists w \in H : x(k) \in w$ then
11            break
12        end if
13        $x(k + 1) = f_{\text{physio}}(x(k))$
14        if $\exists k' \in [1, k] : x(k + 1) = x(k')$ then
15            $A_{\text{physio}} = A_{\text{physio}} \cup \{(x(k'), \ldots, x(k))\}$
16            break
17        end if
18        $k = k + 1$
19    end while
20    $H = H \cup \{(x(1), \ldots, x(k))\}$
21 end for
22 return $A_{\text{physio}}$
23 do step 2
```

Line 2 catches the mistake $\text{card } D > \text{card } S$.

It should be noted that the purpose of the present work is not to propose an algorithm for finding boolean network attractors since advanced algorithms for such tasks are already published [30, 31]. The purpose is to introduce a
methodology exploiting boolean network attractors for target identification, a methodology which requires de facto these attractors to be found.

2.3.2 Step 2: generating bullets

Bullets are candidate perturbations to apply on the pathological variant to make it unable at reaching pathological attractors and hence unable at producing pathological phenotypes. Generating a bullet requires a choice of $targ_i \in V$ and associated $moda_i \in \{0, 1\}$. In the present work, there is no time sequencing in target engagement nor in modality application. This means that, given a bullet and during a run, all the $targ_i$ are engaged simultaneously and constantly and the $moda_i$ do not change. As a consequence, for a given bullet, choosing the same $targ_i$ more than once is senseless, while it is possible to choose the same $moda_i$ for more than one $targ_i$. Therefore, a bullet is a combination c_{targ} without repetition of $targ_i$ together with an arrangement c_{moda} with repetition of $moda_i$.

If bullets containing r targets have to be generated then there are $n!/\left(r! \cdot (n-r)!\right)$ possible c_{targ} and, for each of them, there are 2^r possible c_{moda}. This raises the same difficulty than with state space explosion since there are $\left(n! \cdot 2^r\right)/\left(r! \cdot (n-r)!\right)$ possible bullets. For example, with $n = 50$ and $r = 3$ there are more than 150 000 possible bullets. Knowing that the algorithm, as explained below, computes one attractor set per bullet, the computation time becomes practically unfeasible.

To overcome this barrier, the algorithm asks for r as an interval $[r_{min}, r_{max}]$, asks for a maximum number max_{targ} of c_{targ} to generate and asks for a maximum number max_{moda} of c_{moda} to test for each c_{targ}. The algorithm then generates a set C_{targ} of c_{targ} with $\text{card} C_{targ} \leq max_{targ}$ by randomly selecting, from a uniform distribution and without repetition, nodes in the network. In the same way, the algorithm generates a set C_{moda} of c_{moda} with $\text{card} C_{moda} \leq max_{moda}$ by randomly choosing, from a uniform distribution and with repetition, modalities as either activating ($= 1$) or inactivating ($= 0$). The result is the bullets: per $r \in [r_{min}, r_{max}]$, a C_{targ} together with a C_{moda}. As with state space explosion, the stumbling block of this method is that it does not ensure that all the possible c_{targ} together with all the possible c_{moda} are tested. This stumbling block holds only if $max_{targ} < n!/\left(r! \cdot (n-r)!\right)$ or $max_{moda} < 2^r$.

This step can be written in pseudocode as:

```plaintext
1 prompt $r_{min}, r_{max}, max_{targ}, max_{moda}$
2 $r_{max} = \min(r_{max}, n)$
3 golden_set = {}  
4 silver_set = {}
5 for $r \in [r_{min}, r_{max}]$ do
6   $max_{targ} = \min(max_{targ}, n!/\left(r! \cdot (n-r)!\right))$
7   $max_{moda} = \min(max_{moda}, 2^r)$
8   $C_{targ} = {}$
9   $C_{moda} = {}$
10  while $\text{card} C_{targ} < max_{targ}$ do
11     generate $c_{targ} \notin C_{targ}$
12     $C_{targ} = C_{targ} \cup \{c_{targ}\}$
13  end while
```
2 METHODS

while card $C_{moda} < maxr_{moda}$ do
 generate $c_{moda} \notin C_{moda}$
 $C_{moda} = C_{moda} \cup \{c_{moda}\}$
end while

do steps 3 to 5
end for
return golden_set, silver_set

Line 2 catches the mistake $r > n$. Lines 3 and 4 create sets in which therapeutic bullets found in step 4 are classified as either golden or silver in step 5. Lines 6 and 7 catch the mistake where max_{targ} or max_{moda} is greater than its maximum, which depends on r, hence the creation of max'_{targ} and max'_{moda} to preserve the initially supplied value. Lines 11 and 15 ensure that only new c_{targ} and c_{moda} are generated.

2.3.3 Step 3: computing A_{patho}

Having the control attractor set A_{physio} and a bullet $(c_{targ}, c_{moda}) \in C_{targ} \times C_{moda}$, the algorithm computes the variant attractor set A_{patho} under the bullet by almost the same way A_{physio} is computed in step 1. However, f_{patho} is used instead of f_{physio} and the bullet is applied: at each k, $f_j(x(k))$ is overwritten by $moda_i \in c_{moda}$, that is $x_j(k+1) = moda_i$, provided that $v_j = targ_i \in c_{targ}$.

In order to apply all the generated bullets, the algorithm uses two nested for loops. For each $c_{targ} \in C_{targ}$ it uses successively all the $c_{moda} \in C_{moda}$. For each (c_{targ}, c_{moda}), the algorithm computes the corresponding A_{patho} and does steps 4 and 5.

This step can be written in pseudocode as:

for $c_{targ} \in C_{targ}$ do
 for $c_{moda} \in C_{moda}$ do
 $H = \{\}$
 $A_{patho} = \{\}$
 for $x_0 \in D$ do
 $k = 1$
 $x(k) = x_0$
 while true do
 if $\exists w \in H : x(k) \in w$ then
 break
 end if
 $x(k+1) = f_{patho}(x(k))$
 for $targ_i \in c_{targ}$ do
 for $v_j \in V$ do
 if $v_j = targ_i$ then
 $x_j(k+1) = moda_i$
 end if
 end for
 end for
 end while
 if $\exists k' \in [1, k] : x(k+1) = x(k')$ then
 $A_{patho} = A_{patho} \cup \{(x(k'), \ldots, x(k))\}$
 end if
 end for
 end for
end for

if $\exists k' \in [1, k] : x(k+1) = x(k')$ then
 $A_{patho} = A_{patho} \cup \{(x(k'), \ldots, x(k))\}$
end if
$k = k + 1$
2 METHODS

2.3.4 Step 4: identifying therapeutic bullets

To identify therapeutic bullets among the generated ones, for each \((c_{\text{targ}}, c_{\text{mode}})\) tested in step 3 and once the corresponding \(A_{\text{patho}}\) is obtained, the algorithm compares it with \(A_{\text{physio}}\) to check if \(A_{\text{patho}} \subseteq A_{\text{physio}}\). This check ensures that, under the bullet, all the pathological attractors are removed and if new attractors appear then they are physiological ones. If this check is positive then the bullet is therapeutic and the algorithm pursues with step 5.

This step can be written in pseudocode as:

```python
1 if \(A_{\text{patho}} \subseteq A_{\text{physio}}\) then
  2 do step 5
2 end if
```

2.3.5 Step 5: assessing therapeutic bullets

Therapeutic bullets are qualified as either golden or silver according to their ability at making the pathological variant reaching the physiological attractors. All therapeutic bullets, being golden or silver, remove the pathological attractors without creating new ones, that is \(A_{\text{patho}} \subseteq A_{\text{physio}}\). However, this does not imply that therapeutic bullets preserve/restore the physiological attractors. A golden bullet preserves/restores the physiological attractors: \(A_{\text{patho}} = A_{\text{physio}}\) while a silver bullet does not: \(A_{\text{patho}} \not\subseteq A_{\text{physio}}\).

In this setting, golden bullets are perfect therapies while silver bullets are not. However, since precious things are rare and just as gold is rarer than silver, finding golden bullets is less likely than finding silver ones. Indeed, given that more constraints are required for a therapeutic bullet to be a golden one, it is more likely that the found therapeutic bullets are silver ones, except in one case: \(\text{card } A_{\text{physio}} = 1\).

Theorem 1. If \(\text{card } A_{\text{physio}} = 1\) then all therapeutic bullets are golden.
2 METHODS

Proof.

\[(\text{therapeutic bullet}) \Rightarrow (A_{\text{patho}} \subseteq A_{\text{physio}})\] \quad (1)

\[(1) \Rightarrow (A_{\text{patho}} \in \mathcal{P}(A_{\text{physio}})) \] \quad (2)

\[\text{(card } A_{\text{physio}} = 1) \Rightarrow (A_{\text{physio}} = \{a\})\] \quad (3)

\[(3) \Rightarrow (\mathcal{P}(A_{\text{physio}}) = \{\emptyset, \{a\}\}) \] \quad (4)

\[((2) \land (4)) \Rightarrow ((A_{\text{patho}} = \{a\}) \lor (A_{\text{patho}} = \emptyset))\] \quad (5)

\[(\text{deterministic dynamical systems}) \Rightarrow (A \neq \emptyset) \] \quad (6)

\[(6) \Rightarrow (A_{\text{patho}} \neq \emptyset) \] \quad (7)

\[((5) \land (7)) \Rightarrow (A_{\text{patho}} = \{a\}) \] \quad (8)

\[(8) \Rightarrow (A_{\text{patho}} = A_{\text{physio}}) \] \quad (9)

\[(9) \Rightarrow (\text{therapeutic bullet is golden}) \] \quad (10)

Practically, in the present setting, an organism bearing a pathological variant treated with a therapeutic bullet no longer exhibits the associated pathological phenotypes. Moreover, if the therapeutic bullet is golden then the organism exhibits the same phenotypes than its healthy counterpart. However, if the therapeutic bullet is silver then the organism fails to exhibit at least one physiological phenotype. With a silver bullet this is a matter of choice: what is the less detrimental between a silver bullet and no therapeutic bullet at all.

This step can be written in pseudocode as:

1. if \(A_{\text{patho}} = A_{\text{physio}}\) then
2. \(\text{golden}_\text{set} = \text{golden}_\text{set} \cup \{(c_{\text{targ}}, c_{\text{moda}})\}\)
3. else
4. \(\text{silver}_\text{set} = \text{silver}_\text{set} \cup \{(c_{\text{targ}}, c_{\text{moda}})\}\)
5. end if

2.4 Example network

To illustrate the algorithm, it is used on a boolean model of the mammalian cell cycle published by Faure et al [18]. This model is chosen for several reasons: i) synchronous updating is performed: to date, the algorithm focuses on synchronous boolean networks, ii) a mammalian biological system is modeled: the closer to human physiology the model is, the better it illustrates the intended applications, iii) the cell cycle is at the heart of cancer: this gives relevancy to the example network, iv) the network comprises ten nodes: easily computable in face of its state space and v) attractors are already computed: useful to validate the algorithm in finding them.

Below are the boolean functions of the example network where, for the sake of readability, \(x_i\) stands for \(x_i(k)\) and \(x_{i+}\) stands for \(x_i(k + 1)\).
Figure 1: Graphical representation of the example network adapted from [18]. CDKs (cyclin-dependent kinases) are the catalytic partners of cyclins and, in this model, are not explicitly shown since the activity of CDK-cyclin complexes essentially depends on cyclins. Furthermore, inhibition of E2F by Rb is modeled by opposing Rb to the effects of E2F on its targets. The same applies to inhibition of CycE and CycA by p27. For a complete description of the model, please see [18]. CycD: CDK4/6-cyclin D complex, input of the model, initiates the cell cycle, activated by positive signals such as growth factors; CycE: CDK2-cyclin E complex; CycA: CDK2-cyclin A complex; CycB: CDK1-cyclin B complex; Rb: retinoblastoma protein, a tumor suppressor; E2F: a family of transcription factors divided into activator and repressor members, in this model E2F represents activator members; p27: p27/Kip1, a CKI (CDK inhibitor); Cdc20: an APC (Anaphase Promoting Complex, an E3 ubiquitin ligase) activator; Cdh1: an APC activator; UbcH10: an E2 ubiquitin conjugating enzyme.

\[\text{CycD}_+ = \text{CycD} \]
\[\text{Rb}_+ = (\neg \text{CycD} \land \neg \text{CycE} \land \neg \text{CycA} \land \neg \text{CycB}) \lor (\text{p27} \land \neg \text{CycE} \land \neg \text{CycB}) \]
\[\text{E2F}_+ = (\neg \text{Rb} \land \neg \text{CycA} \land \neg \text{CycB}) \lor (\text{p27} \land \neg \text{Rb} \land \neg \text{CycB}) \]
\[\text{CycE}_+ = \text{E2F} \land \neg \text{Rb} \]
\[\text{CycA}_+ = (\text{E2F} \land \neg \text{Rb} \land \neg \text{Cdc20} \land \neg (\text{Cdh1} \land \text{UbcH10})) \lor (\text{CycA} \land \neg \text{Rb} \land \neg \text{Cdc20} \land \neg (\text{Cdh1} \land \text{UbcH10})) \]
\[\text{p27}_+ = (\neg \text{CycD} \land \neg \text{CycE} \land \neg \text{CycA} \land \neg \text{CycB}) \lor (\text{p27} \land \neg (\text{CycE} \land \text{CycA}) \land \neg \text{CycB} \land \neg \text{CycD}) \]
\[\text{Cdc20}_+ = \text{CycB} \]
\[\text{Cdh1}_+ = (\neg \text{CycA} \land \neg \text{CycB}) \lor \text{Cdc20} \lor (\text{p27} \land \neg \text{CycB}) \]
\[\text{UbcH10}_+ = \neg \text{Cdh1} \lor (\text{Cdh1} \land \text{UbcH10}) \land (\text{Cdc20} \lor \text{CycA} \lor \text{CycB}) \]
\[\text{CycB}_+ = \neg \text{Cdc20} \land \neg \text{Cdh1} \]

A graphical representation of the example network is shown in Figure 1.

Having the example network, two variants of it are needed: the physiological one and the pathological one. The physiological variant is the network as is while the pathological variant is the network plus a constitutive activation/inactivation of at least one of its nodes. For simplicity, and given the relatively small number of entities, only one is chosen: the retinoblastoma protein Rb, for which a constitutive inactivation is applied. To implement this, the corresponding \(f_i \) becomes:
\[Rb(k + 1) = 0 \]

in \(f_{\text{patho}} \). \(Rb \) is chosen because its inactivation occurs in many cancers \[32\]. As a consequence, a network bearing a constitutive inactivation of it should be a relevant example of a pathological variant.

2.5 Case study

To illustrate the intended usage of the proposed methodology, the algorithm is used on a boolean model of the Fanconi Anemia/Breast Cancer (FA/BRCA) pathway published by Rodriguez et al \[33\]. This model is chosen for several reasons: i) two pathological conditions are studied: required for a case study of an \textit{in silico} target identification, ii) the physiological and pathological variants are clearly described: required by the algorithm iii) it is nearly three times bigger than the example network: representative of a more comprehensive biological model while remaining computationally tractable, iv) synchronous updating is used: to date, the algorithm focuses on synchronous boolean networks and v) attractors are already interpreted in terms of phenotypes.

The FA/BRCA pathway is dedicated to DNA repair and more precisely to interstrand cross-links (ICLs) removal. As expected with any DNA repair impairment, individuals suffering from FA/BRCA pathway malfunction are subjected to increased risk of cancer, such as in Fanconi anemia, a rare genetic disorder causing bone marrow failure, congenital abnormalities and increased risk of cancer \[34–36\].

Rodriguez et al propose a boolean model comprising the FA/BRCA pathway and three types of DNA damages commonly observed in Fanconi anemia, namely ICLs, double-strand breaks (DSBs) and DNA adducts (ADDs). DSBs and ADDs can be created during ICLs repair before being removed, therefore leaving an undamaged DNA ready for the cell cycle. For a complete description of the model, please see \[33\]. The boolean functions can be found in Annexe 2.

The physiological variant is the FA/BRCA pathway model as is. To it, Rodriguez et al propose two pathological variants, here called \(\text{patho1} \) and \(\text{patho2} \), modeling two mutations involving genes of the FA/BRCA pathway. These mutations are observed in patients suffering from Fanconi anemia \[37\]. The first one involves the FANCA gene, corresponding to the \(F.Acore \) variable, and the second one involves the FANCD1/BRCA2 or FANCN/PALB2 gene, corresponding to the \(F.ANCD1N \) variable. These mutations are of loss-of-function kind: to simulate them the corresponding \(f_i \) becomes

\[F.Acore(k + 1) = 0 \]

for FANCA gene null mutation in \(f_{\text{patho1}} \) and

\[F.ANCD1N(k + 1) = 0 \]

for FANCD1/BRCA2 or FANCN/PALB2 gene null mutation in \(f_{\text{patho2}} \).

2.6 Implementation

The algorithm is implemented in Fortran 95 compiled with GFortran\footnote{https://www.gnu.org/software/gcc/fortran/}. The code is available on GitHub\footnote{https://github.com/arnaudporet/kali-targ} at \url{https://github.com/arnaudporet/kali-targ} under a BSD 3-Clause License\footnote{https://raw.githubusercontent.com/arnaudporet/kali-targ/master/BSD_3-Clause}.

3 Results

This section exposes results produced with the algorithm on the example network to illustrate how it works. Next, results produced with the algorithm on the case study are exposed to illustrate its intended applications in target identification.

3.1 Results of step 1

Owing to the relatively small size of the example network, \textit{card} D is set to \textit{card} $S = 1024$. Since \textit{card} $D = \text{card} S$, all the attractors are found. The algorithm returns the following attractors:

\[
\begin{align*}
a_1 = \\
& \begin{pmatrix}
CycD & 1 & 1 & 1 & 1 & 1 & 1 \\
Rb & 0 & 0 & 0 & 0 & 0 & 0 \\
E2F & 0 & 1 & 1 & 1 & 0 & 0 \\
CycE & 0 & 0 & 1 & 1 & 1 & 0 \\
CycA & 0 & 0 & 0 & 1 & 1 & 1 \\
p27 & 0 & 0 & 0 & 0 & 0 & 0 \\
Cdc20 & 1 & 0 & 0 & 0 & 0 & 0 \\
Cdh1 & 1 & 1 & 1 & 1 & 0 & 0 \\
UbcH10 & 1 & 1 & 0 & 0 & 0 & 1 \\
CycB & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
a_2 = \\
& \begin{pmatrix}
CycD & 0 \\
Rb & 1 \\
E2F & 0 \\
CycE & 0 \\
CycA & 0 \\
p27 & 1 \\
Cdc20 & 0 \\
Cdh1 & 1 \\
UbcH10 & 0 \\
CycB & 0 \\
\end{pmatrix}
\end{align*}
\]

each of them attracting 50% of the $x \in S$ under f_{physio}.

Attractors are presented as matrices where, for an attractor of length q, lines correspond to the $x_i(k)$, $k \in [1, q]$ and columns to $x(k)$. $A_{\text{physio}} = \{a_1, a_2\}$ which corresponds to results obtained by Faure \textit{et al.} By the way, a_1 and a_2 are the two physiological attractors. In terms of phenotypes, a_1 corresponds to the cell cycle while a_2 corresponds to quiescence.
3.2 Results of steps 2 to 5

Results of steps 2 to 5 are grouped since only therapeutic bullets found in step 4 and classified in step 5 are returned. The algorithm is launched with $r_{\text{min}} = 1$ and $r_{\text{max}} = 2$. Again due to the relatively small size of the example network, max_{targ} and max_{moda} are set to their maximum, namely $\text{max}_{\text{targ}} = 45$ and $\text{max}_{\text{moda}} = 4$. As a consequence, all the possible bullets made of 1 to 2 targets are tested. The algorithm returns the following therapeutic bullets:

$+CycD$ silver
$+CycD -p27$ silver
$-CycD +Rb$ silver
$+CycD -Rb$ silver

where $+$ means therapeutic activation and $-$ therapeutic inactivation. It should be noted that no golden bullets are found, an unsurprising result since they are rarer than silver ones. Given these results, therapeutic activation of Rb alone, which is pathologically inactivated, is not enough to remove the pathological attractors: as seen in the third bullet, therapeutic activation of Rb must be accompanied by therapeutic inactivation of $CycD$.

To better illustrate what is performed to obtain these therapeutic bullets, below is A_{patho} without any bullet:

\[
\begin{array}{l}
CycD | 0 0 0 0 0 0 0 0 \\
Rb | 0 0 0 0 0 0 0 0 \\
E2F | 1 1 1 1 0 0 0 0 \\
CycE | 0 1 1 1 1 0 0 0 \\
CycA | 0 0 1 1 1 1 1 1 \\
p27 | 1 1 1 0 0 0 0 0 \\
Cdc20 | 0 0 0 0 0 0 0 1 \\
Cdh1 | 1 1 1 0 0 0 0 1 \\
UbcH10 | 1 0 0 0 0 0 1 1 \\
CycB | 0 0 0 0 0 1 1 0 \\
\end{array}
\]

\[
\begin{array}{l}
CycD | 1 1 1 1 1 1 1 1 \\
Rb | 0 0 0 0 0 0 0 0 \\
E2F | 1 1 1 0 0 0 0 0 \\
CycE | 0 0 1 1 1 1 1 0 \\
CycA | 0 0 0 1 1 1 0 0 \\
p27 | 0 0 0 0 0 0 0 0 \\
Cdc20 | 0 0 0 0 0 0 1 1 \\
Cdh1 | 1 1 1 0 0 0 0 1 \\
UbcH10 | 1 0 0 0 0 1 1 1 \\
CycB | 0 0 0 0 0 1 1 0 \\
\end{array}
\]

each of these two attractors attracting 50% of the $x \in S$ under f_{patho}.

It should be noted that $a_4 = a_1 \in A_{\text{physio}}$: a_4 is a physiological attractor. It is possible that the pathological variant produces physiological attractors: A_{patho} is not the set containing exactly all the pathological attractors, it is the attractor set of the pathological variant. As a consequence, $A_{\text{physio}} \cap A_{\text{patho}} \neq \emptyset$ is possible. However, $a_3 \notin A_{\text{physio}}$: it is a pathological attractor and is what a therapeutic bullet, being golden or silver, is intended to avoid.
Again to better illustrate what is performed to obtain these therapeutic bullets, below is A_{patho} under the third bullet:

\[
\begin{array}{c|c}
CyCD & 0 \\
Rb & 1 \\
E2F & 0 \\
CyCE & 0 \\
CyCA & 0 \\
p27 & 1 \\
Cdc20 & 0 \\
Cdh1 & 1 \\
UbcH10 & 0 \\
CyCB & 0 \\
\end{array}
\]

which is a_2. As expected for a therapeutic bullet, the pathological attractor a_3 is removed. However, the physiological attractor a_1 is not restored: the third bullet is silver. Consequently, with this bullet no cell cycle occurs and the only reachable phenotype is quiescence. While disabling the cell cycle of cancer cells is beneficial, what about disabling the cell cycle of healthy cells. As mentioned above, with silver bullets this is a matter of choice.

3.3 Results on the case study

With the case study, $card\ S = 2^{28} = 268\ 435\ 456$: computing attractors from all the $x \in S$ becomes too demanding. Indeed, it should be recalled that the algorithm computes one attractor set per bullet, namely A_{patho} under the tested bullet. As a consequence, $card\ D$ is set to a more reasonable value: $card\ D = 10\ 000$. Despite that $card\ D < card\ S$, it seems sufficient for the algorithm to find all the attractors, just as Rodriguez et al whose computation covers the whole state space. Below are the computed attractors:

- $A_{physio} = \{a_1\}$
- $A_{patho1} = \{a_1\}$
- $A_{patho2} = \{a_1, a_2\}$, a_1 and a_2 attracting respectively 29.5% and 70.5% of the $x \in D$ under f_{patho2}

and their biological interpretation:

- a_1: cell cycle progression
- a_2: cell cycle arrest

A detailed expression of these attractors can be found in [Annexe 3](#).

In physiological conditions, in case of damaged DNA, cells repair it before performing the cell cycle, or die if repair fails. Such checkpoints enable cells to ensure genomic integrity by preventing damaged DNA to be replicated and then propagated [33,39]. Otherwise, genetic instability may appears, potentially leading to cancer [40]. Results show that the physiological variant is able to ensure genomic integrity since its unique attractor is a_1, where $ICL = DSB = ADD = 0$: DNA damages are repaired, if any, and the cell cycle can safely
occur. Interestingly, the same physiological phenotype is computed for patho1 where $A_{\text{patho1}} = A_{\text{physio}}$. This suggests that cells bearing FANCA gene null mutation are nonetheless able to repair DNA.

With patho2, a pathological attractor appears: a_2, where $DSB = 1$. This suggests that cells bearing FANCD1/BRCA2 or FANCN/PALB2 gene null mutation are unable to repair DSBs, explaining why a_2 corresponds to cell cycle arrest: DNA remains damaged. It should be noted that $a_1 \in A_{\text{patho2}}$, suggesting that from certain x_0, that is under certain conditions, such cells could be able to repair DNA. However, a_1 attracts only 29.5% of the $x \in D$ under f_{patho2}, indicating that the pathological phenotype associated to a_2 is more likely to occur.

Altogether, according to computed attractors and their phenotypic interpretation, and limited to the scope studied by the model of Rodriguez et al, FANCA gene null mutation may not induce pathological phenotypes. However, with FANCD1/BRCA2 or FANCN/PALB2 gene null mutation, two phenotypes are predicted: a physiological one and a pathological one, the latter being the most likely to be exhibited. As a consequence, the algorithm has to operate on patho2 to find bullets able to remove the pathological attractor a_2.

By comprehensively testing all bullets made of 1 to 3 targets, the algorithm returns the following results:

r	number of all possible bullets	number of therapeutic bullets
1	56	1 (1.786%)
2	1 512	20 (1.323%)
3	26 208	191 (0.729%)

all therapeutic bullets being golden since $\text{card } A_{\text{physio}} = 1$ (see Theorem 1). A list of the computed therapeutic bullets can be found in Annexe 4. Given that in a_1, what the pathological variant is forced to reach by means of therapeutic bullets, almost all variables are valued at 0, it is unsurprising that all targets in the computed therapeutic bullets have to be inhibited, that is set to 0.

Occurrence of each node in the found therapeutic bullets, in percentage of the total number of tested bullets, can be found in Annexe 5. Below is the top five:

- ATM 87.736%
- ICL 22.170%
- $BRCA1$ 18.396%
- DSB 11.792%
- MRN 10.377%

In the present case study, DNA damages such as ICLs and DSBs are the pathological events. Unsurprisingly, the algorithm suggests them to be targeted: this is a logical consequence. However, DNA damages are not biomolecules in themselves and directly targeting them by means of drugs appears senseless. What is relevant are the biomolecules of the FA/BRCA pathway suggested as therapeutic targets. Interestingly, ATM dominates all the other candidates, predicting ATM to be a pivotal therapeutic target for the patho2 condition, namely the FA/BRCA pathway bearing FANCD1/BRCA2 or FANCN/PALB2 gene null mutation, as observed in Fanconi anemia.
4 Conclusion

Under the assumption that dynamical system attractors and biological network phenotypes are linked when the former models the latter, results show that the algorithm succeeds in performing the proposed *in silico* target identification. It returns therapeutic bullets for a pathological variant of the mammalian cell cycle relevant in diseases such as cancer and for a pathological variant modeling Fanconi anemia. Consequently, the algorithm can be used on other synchronous boolean models of biological networks involved in diseases for *in silico* target identification. However, both the physiological and pathological variants have to be known. This can constitute a limit of the proposed methodology since all the pathophysiologies are not known. On the other hand, this can constitute a motivation to unravel pathophysiologies of poorly understood diseases.

Target identification, whether performed *in silico* or not, is a step belonging to a wider process: drug discovery. Having demonstrated a potential target *in silico*, or even *in vitro*, is far from having a drug. Further work and many years are necessary before obtaining a drug which is effective *in vivo*. For example, and among other characteristics, such a drug has to be absorbed by the organism, has to reach its target and has to be non-toxic at therapeutic dosages. Furthermore, as with any *in silico* evidence, it should be validated *in vitro* and ultimately *in vivo*: there is a bridge to cross between theory and practice. For example, targeting ATM should restore a physiological running of the FA/BRCA pathway bearing FANCD1/BRCA2 or FANCN/PALB2 gene null mutation. However, if ATM operates in other pathways, targeting it may disrupt them, hence creating new pathological conditions. Nevertheless, it is expected that the algorithm is of interest for target identification.

While finding boolean network attractors of biological networks is not the purpose of the present work, it is a necessary step which is in itself a challenging field of computational biology. As a consequence, incorporating advances made in this field could be a relevant improvement. Another possible improvement could be to extend the algorithm for asynchronous boolean networks since such models are likely to more accurately describe dynamics of biological systems. Indeed, in biological systems, events may be subjected to stochasticity, may not occur simultaneously or may not belong to the same time scale, three points that synchronous updating does not take into account. Yet another possible improvement could be to use finer logics, such as multivalued ones. Indeed, one of the main limitations of boolean models is that their variables can take only two values. In reality, things are not necessarily binary and variables should be able to take more possible values. Multivalued logics enable it in a discrete manner where variables can take a finite number of values between 0 (false) and 1 (true). For example, one can state that Rb is partly impaired rather than totally. Such a statement is not implementable with boolean models but is with multivalued ones such as, for example, a three-valued logic where \(\text{true} = 1, \text{moderate} = 0.5\) and \(\text{false} = 0\).

Finally, considering basin cardinalities of pathological attractors could be an interesting extension of the proposed criteria for selecting therapeutic bullets. In that case, therapeutic potential of bullets could be assessed by estimating their ability at reducing the basin of pathological attractors, as performed by Fumia *et al* with their boolean model of cancer pathways [19]. Such a criteria enable to consider the particular case where pathological attractors are removed, that
is where pathological basins are reduced to the empty set, but also the other cases where pathological basins are not necessarily reduced to the empty set. Such a less restrictive selection of therapeutic bullets would enable to consider more possibilities for counteracting diseases.
5 Annexes

5.1 Annexe 1

The algorithm in one block of pseudocode.

```
1 prompt card D
2 card D = min(card D, 2^n)
3 generate D ⊆ S
4 H = {}
5 Aphysio = {}
6 for x0 ∈ D do
7     k = 1
8     x(k) = x0
9     while true do
10        if ∃ w ∈ H : x(k) ∈ w then
11           break
12        end if
13        x(k + 1) = fphysio(x(k))
14        if ∃ k' ∈ [1, k] : x(k + 1) = x(k') then
15            Aphysio = Aphysio ∪ {x(k'...x(k))}
16            break
17        end if
18        k = k + 1
19     end while
20     H = H ∪ {x(1,...,x(k))}
21 end for
22 return Aphysio
23 prompt r_min, r_max, max_targ, max_moda
24 r_max = min(r_max, n)
25 golden_set = {}
26 silver_set = {}
27 for r ∈ [r_min, r_max] do
28     max_targ = min(max_targ, n!/(r! · (n - r)!))
29     max_moda = min(max_moda, 2^r)
30     C_targ = {}
31     C_moda = {}
32     while card C_targ < max_targ do
33         generate c_targ ⊈ C_targ
34         C_targ = C_targ ∪ {c_targ}
35     end while
36     while card C_moda < max_moda do
37         generate c_moda ⊈ C_moda
38         C_moda = C_moda ∪ {c_moda}
39     end while
40     for c_targ ∈ C_targ do
41         for c_moda ∈ C_moda do
42             H = {}
43             Apatho = {}
44             for x0 ∈ D do
45                 k = 1
```
\[x(k) = x_0 \]

while true do
 if \(\exists w \in H : x(k) \in w \) then
 break
 end if
 \[x(k + 1) = f_{\text{patho}}(x(k)) \]
 for \(\text{targ}_i \in c_{\text{targ}} \) do
 for \(v_j \in V \) do
 if \(v_j = \text{targ}_i \) then
 \[x_j(k + 1) = \text{moda}_i \]
 end if
 end for
 end for
 if \(\exists k' \in [1,k] : x(k + 1) = x(k') \) then
 \(A_{\text{patho}} = A_{\text{patho}} \cup \{x(k'), \ldots, x(k)\} \)
 break
 end if
 \[k = k + 1 \]
end while

\[H = H \cup \{x(1), \ldots, x(k)\} \]

end for
if \(A_{\text{patho}} \subseteq A_{\text{physio}} \) then
 if \(A_{\text{patho}} = A_{\text{physio}} \) then
 golden_set = golden_set \cup \{(c_{\text{targ}}, c_{\text{moda}})\}
 else
 silver_set = silver_set \cup \{(c_{\text{targ}}, c_{\text{moda}})\}
 end if
else
 end if
end for
end for
\(\text{return} \ golden_set, silver_set \)
5.2 Annexe 2

Boolean functions of the case study where, for the sake of readability, x_i stands for $x_i(k)$ and x_{i+} stands for $x_i(k + 1)$.

\[
\begin{align*}
ICL_+ &= ICL \land \neg DSB \\
FANCM_+ &= ICL \land \neg CHKREC \\
FAcroe_+ &= \overline{FANCM} \land (ATR \lor ATM) \land \neg CHKREC \\
FANCD2I_+ &= FAcroe \land ((ATM \lor ATR) \lor (H2AX \land DSB)) \land \neg USP_1 \\
MUS81_+ &= ICL \\
FANCJBRCa1_+ &= (ICL \lor ssDNARPA) \land (ATM \lor ATR) \\
XPF_+ &= (MUS81 \land \neg FANCM) \lor (MUS81 \land p53) \\
&\quad\land (\neg FAcroe \land FANCD2I \land FAN1) \\
FAN1_+ &= MUS81 \land FANCD2I \\
ADD_+ &= (ADD \lor (MUS81 \land (FAN1 \lor XPF))) \land \neg PCNATLS \\
DSB_+ &= (DSB \lor FAN1 \lor XPF) \land \neg (NHEJ \lor HRR) \\
PCNATLS_+ &= (ADD \lor (ADD \land FAcroe)) \land \neg (USP_1 \lor FAN1) \\
MRN_+ &= DSB \land ATM \land \neg (DU \lor FANCD2I) \lor RAD51 \lor CHKREC \\
BRCA1_+ &= DSB \land (ATM \lor CHK2 \lor ATR) \land \neg CHKREC \\
ssDNARPA_+ &= DSB \land ((FANCD2I \land FANCJBRCa1) \lor MRN) \land \neg (RAD51 \lor KU) \\
FANCD1N_+ &= (ssDNARPA \land BRCA1) \lor (FANCD2I \land ssDNARPA) \land \neg CHKREC \\
RAD51_+ &= ssDNARPA \land FANCD1N \land \neg CHKREC \\
HRR_+ &= DSB \land RAD51 \land FANCD1N \land BRCA1 \land \neg CHKREC \\
USP1_+ &= ((FANCD1N \land FANCD2I) \lor PCNATLS) \land \neg FANCM \\
KU_+ &= DSB \land \neg (MRN \land FANCD2I \land CHKREC) \\
DNAPK_+ &= (DSB \land KU) \land \neg CHKREC \\
NHEJ_+ &= (DSB \land DNAPK \land XPF \lor ((FANCJBRCa1 \land ssDNARPA) \\
&\quad\lor CHKREC) \lor ((DSB \land DNAPK \land KU) \land \neg (ATM \land ATR)) \\
ATR_+ &= (ssDNARPA \land FANCM \land ATM) \land \neg CHKREC \\
ATM_+ &= (ATR \land DSB) \land \neg CHKREC \\
p53_+ &= ((ATM \land CHK2) \lor (ATR \land CHK1)) \lor DNAPK \land \neg CHKREC \\
CHK1_+ &= (ATM \lor ATR \lor DNAPK) \land \neg CHKREC \\
CHK2_+ &= (ATM \lor ATR \lor DNAPK) \land \neg CHKREC \\
H2AX_+ &= DSB \land (ATM \lor ATR \lor DNAPK) \land \neg CHKREC \\
CHKREC_+ &= ((PCNATLS \land NHEJ \land HRR) \land \neg DSB) \\
&\quad\lor ((\neg ADD) \land (\neg ICL) \land (\neg DSB) \land \neg CHKREC)
\end{align*}
\]
5.3 Annexe 3

Computed attractors for the case study.

\[
a_1 = \begin{array}{c|c|c}
ICL & 0 & 0 \\
FANCM & 0 & 0 \\
FAcore & 0 & 0 \\
FANCD2I & 0 & 0 \\
MUS81 & 0 & 0 \\
FANCJBRCA1 & 0 & 0 \\
XPF & 0 & 0 \\
FAN1 & 0 & 0 \\
ADD & 0 & 0 \\
DSB & 0 & 0 \\
PCNAATLS & 0 & 0 \\
MRN & 0 & 0 \\
BRCA1 & 0 & 0 \\
ssDNARPA & 0 & 0 \\
FANCD1N & 0 & 0 \\
RAD51 & 0 & 0 \\
HRR & 0 & 0 \\
USP1 & 0 & 0 \\
KU & 0 & 0 \\
DNAPK & 0 & 0 \\
NHEJ & 0 & 0 \\
ATR & 0 & 0 \\
ATM & 0 & 0 \\
p53 & 0 & 0 \\
CHK1 & 0 & 0 \\
CHK2 & 0 & 0 \\
H2AX & 0 & 0 \\
CHKREC & 0 & 1 \\
\end{array} \\
\]

\[
a_2 = \begin{array}{c|c|c}
ICL & 0 \\
FANCM & 0 \\
FAcore & 0 \\
FANCD2I & 0 \\
MUS81 & 0 \\
FANCJBRCA1 & 1 \\
XPF & 0 \\
FAN1 & 0 \\
ADD & 0 \\
DSB & 1 \\
PCNAATLS & 0 \\
MRN & 1 \\
BRCA1 & 1 \\
ssDNARPA & 1 \\
FANCD1N & 0 \\
RAD51 & 0 \\
HRR & 0 \\
USP1 & 0 \\
KU & 0 \\
DNAPK & 0 \\
NHEJ & 0 \\
ATR & 1 \\
ATM & 1 \\
p53 & 1 \\
CHK1 & 1 \\
CHK2 & 1 \\
H2AX & 1 \\
CHKREC & 0 \\
\end{array}
\]
5.4 Annexe 4

Therapeutic bullets found for the case study.

Bullet	Golden		
−ATM	golden		
−ATM −CHK2	golden		
−HRR −ATM	golden		
−ssDNA −ATM	golden		
−BRCA1 −ATM	golden		
−MRN −ATM	golden		
−FAN1 −ATM	golden		
−ICL −DSB	golden		
−FAc	golden		
−USP1 −ATM	golden		
−ATM −H2AX	golden		
−ADD −ATM	golden		
−RAD51 −ATM	golden		
−XPF −ATM	golden		
−FANCM −ATM	golden		
−FANCD1N −ATM	golden		
−ATM −CHK1	golden		
−ICL −ATM	golden		
−ATM −p53	golden		
−FANC1BRC1A −ATM	golden		
−FANC21 −ATM	golden		
−ICL −FANCD1N −ATM	golden		
−ICL −FAC −DSB	golden		
−BRCA1 −USP1 −ATM	golden		
−BRCA1 −ssDNA −ATM	golden		
−BRCA1 −ATM −CHK1	golden		
−ADD −ATM −H2AX	golden		
−FAN1 −MRN −ATM	golden		
−ATM −CHK2 −H2AX	golden		
−ICL −DSB −MRN	golden		
−XPF −MRN −ATM	golden		
−FAC	golden		
−FANC1 −ATM −CHK2	golden		
−RAD51 −ATM −p53	golden		
−ICL −ssDNA −ATM	golden		
−FANC1 −ATM −ATM	golden		
−ICL −USP1 −ATM	golden		
−FANC1 −MRN −ATM	golden		
−ICL −ATM −p53	golden		
Gene Pair	Effect	Parent Effect	Golden?
-------------------	------------	---------------	---------
MRN – USP1	ATM	ATM	golden
FAN1 – HRR	ATM	ATM	golden
BRCA1 – ATM	H2AX	gold	golden
FANCBRCA1 – ADD	ATM	golden	golden
MRN – ssDNA	ATM	ATM	gold
FAcore – ssDNA	ATM	ATM	golden
FANCD11 – BRCA1	ATM	ATM	golden
ADD – MRN	ATM	ATM	golden
ATM – p53	CHK2	gold	golden
RAD51 – ATM	CHK2	gold	golden
FANCD11 – ATM	H2AX	gold	golden
ADD – PCNAATLS	ATM	gold	golden
FANCBRCA1 – ATM	p53	ATM	golden
FANCM – MRN	ATM	ATM	golden
FANCBRCA1 – ATM	CHK2	gold	golden
FANCD11 – USP1	ATM	ATM	golden
FANCD11 – ATM	CHK2	gold	golden
MRN – HRR	ATM	gold	golden
ICL – DSBR	USP1	gold	golden
FAN1 – FANCD11	ATM	gold	golden
FAN1 – ATM	H2AX	gold	golden
FANCBRCA1 – FAN1	ATM	ATM	golden
ssDNA – ATM	H2AX	gold	golden
FANCD21 – ATM	CHK2	gold	golden
ADD – HRR	ATM	gold	golden
ATM – p53	CHK1	gold	golden
FAcore – ATM	H2AX	gold	golden
FANCD21 – ATM	CHK2	gold	golden
FAN1 – RAD51	ATM	gold	golden
FANCD21 – RAD51	ATM	gold	golden
FANCBRCA1 – XPF	ATM	gold	golden
ICL – FANCBRCA1	DSBR	gold	golden
ssDNA – HRR	ATM	gold	golden
MRN – BRCA1	ATM	gold	golden
FANCM – FAN1	ATM	gold	golden
ssDNA – ATM	p53	gold	golden
FANCD21 – ssDNA	ATM	gold	golden
FANCD21 – FAN1	ATM	gold	golden
XPF – HRR	ATM	gold	golden
FAN1 – BRCA1	ATM	gold	golden
ADD – ATM	CHK1	gold	golden
FAcore – HRR	ATM	gold	golden
XPF – ATM	CHK1	gold	golden
ADD – BRCA1	ATM	gold	golden
ICL – FAN1	DSBR	gold	golden
ADD – ATM	p53	gold	golden
ICL – MUS81	ATM	gold	golden
Action	Target	Effect	Golden
--------	--------	--------	--------
-F Acroc	-RAD51	-ATM	golden
-ATM	-CHK1	-H2AX	golden
-ICL	-MRN	-ATM	golden
-ssDNARPA	-ATM	-CHK2	golden
-XPF	-RAD51	-ATM	golden
-F ANCD	-ATM	-CHK1	golden
-ICL	-DSB	-KU	golden
-ICL	-MRN	-ATR	golden
-ssDNARPA	-RAD51	-ATM	golden
-XP F	-ATM	-p53	golden
-F Acroc	-MRN	-ATM	golden
-HRR	-ATM	-H2AX	golden
-F ANCD	-ATM	-p53	golden
-ICL	-F ANCD1N	-ATM	golden
-F Acroc	-ATM	-CHK2	golden
-ICL	-ATM	-CHK1	golden
-MRN	-F ANCD1N	-ATM	golden
-ADD	-ssDNARPA	-ATM	golden
-MRN	-RAD51	-ATM	golden
-F ANCD1N	-ATM	-p53	golden
-F ANCD	-RAD51	-ATM	golden
-BRCA1	-ATM	-CHK2	golden
-ADD	-RAD51	-ATM	golden
-ICL	-DSB	-F ANCD1N	golden
-ICL	-RAD51	-ATM	golden
-ICL	-ATM	-CHK2	golden
-F ANCD1N	-ATM	-H2AX	golden
-MRN	-ATM	-H2AX	golden
-F Acroc	-F AN1	-ATM	golden
-ICL	-XPF	-ATM	golden
-F ANCD2I	-ADD	-ATM	golden
-F ANCD2I	-ATM	-H2AX	golden
-ICL	-ATR	-ATM	golden
-F ANCM	-HRR	-ATM	golden
-USP1	-ATM	-H2AX	golden
-ICL	-DSB	-RAD51	golden
-ICL	-ATM	-H2AX	golden
-F ANCD1N	-USP1	-ATM	golden
-F ANCM	-F ANCD2I	-ATM	golden
-F ANCD2I	-MRN	-ATM	golden
-F Acroc	-ADD	-ATM	golden
-ICL	-F Acroc	-ATM	golden
-F ANCM	-ssDNARPA	-ATM	golden
-XPF	-ATM	-H2AX	golden
-F Acroc	-USP1	-ATM	golden
-HRR	-ATM	-CHK1	golden
-BRCA1	-RAD51	-ATM	golden
-F AN1	-ADD	-ATM	golden
Element	Action	Location	State
------------------	--------	----------	-------
FANCJBRCAl	MRN	ATM	golden
FANCJBRCa1	USP1	ATM	golden
FANCJBRCa1	ATM	-H2AX	golden
FANCBM	FAcenc	ATM	golden
HRR	USP1	ATM	golden
ICL	FANCm	ATM	golden
ICL	DSB	ssDNARPa	golden
FANCm	FANCJBRCa1	ATM	golden
ssDNARPa	ATM	-CHK1	golden
FANCBM	FANCJBRCa1	ATM	golden
ICL	DSB	ssDNARPa	golden
USP1	ATM	-CHK1	golden
ICL	DSB	-ATM	golden
USP1	ATM	-CHK2	golden
RAD51	ATM	-CHK1	golden
FANCDB1	ATM	-CHK2	golden
RAD51	HRR	-ATM	golden
ICL	ATM	-p53	golden
ICL	DSB	DNAPK	golden
FANCm	FANCDB1	ATM	golden
FANCBM	FANCDB1	ATM	golden
ICL	HRR	-ATM	golden
FANCJBRCa1	HRR	-p53	golden
XPf	ATm	-CHK2	golden
ICL	DSB	-CHK2	golden
ICL	XPf	-DSB	golden
ssDNARPa	FANCDB1	ATM	golden
FANCJBRCa1	RAD51	ATM	golden
ICL	DSB	-ATR	golden
ICL	ATM	-CHK2	golden
ADD	USP1	-ATM	golden
FANCm	RAD51	-ATM	golden
FANCBM	FANCDB1	ATM	golden
FANCm	ATM	-CHK1	golden
XPf	FANCDB1	ATM	golden
FANCm	ATM	-p53	golden
FAcenc	BRCa1	-ATM	golden
ICL	DSB	-NHEJ	golden
BRCa1	ATM	-p53	golden
BRCa1	HRR	-ATM	golden
FANCJBRCa1	USP1	-ATM	golden
ssDNARPa	USP1	-ATM	golden
ICL	DSB	-H2AX	golden
FANCm	BRCa1	-ATM	golden
MRN	ATM	-CHK1	golden

−ICL	−FANCB1RCA1	−ATM	golden
−FANCD1N	−ATM	−CHK1	golden
−ICL	−DSB	−BRCA1	golden
−MRN	−ATM	−CHK2	golden
−FANCB1RCA1	−BRCA1	−ATM	golden
−FAN1	−ssDNAARP	−ATM	golden
−MRN	−ATM	−p53	golden
−FANCD1N	−HRR	−ATM	golden
−ICL	−MUS81	−DSB	golden
−XPF	−USP1	−ATM	golden
−XPF	−ADD	−ATM	golden
−ATM	−p53	−H2AX	golden
−ICL	−FANCM	−DSB	golden
−ICL	−DSB	−HRR	golden
−ICL	−BRCA1	−ATM	golden
−RAD51	−USP1	−ATM	golden
−ICL	−FAN1	−ATM	golden
−ICL	−ADD	−ATM	golden
−ICL	−DSB	−CHK1	golden
−ICL	−FANCD2I	−DSB	golden
−ICL	−FANCD2I	−ATM	golden
5.5 Annexe 5

Occurrence of each node in the found therapeutic bullets, in percentage of the total number of tested bullets.

Node	Percentage
ATM	87.736%
ICL	22.170%
BRCA1	18.396%
DSB	11.792%
MRN	10.377%
FANCM	9.906%
ADD	9.906%
FANCJBRCAl	9.434%
ssDNARPA	9.434%
FANCD1N	9.434%
RAD51	9.434%
HRR	9.434%
USP1	9.434%
CHK2	9.434%
H2AX	9.434%
FACore	8.019%
FANCD2I	8.019%
FAN1	8.019%
p53	8.019%
CHK1	8.019%
XPF	7.547%
ATR	2.358%
MUS81	0.943%
PCNATLS	0.472%
KU	0.472%
DNAPK	0.472%
NHEJ	0.472%
CHKREC	0%
References

[1] Mark A Lindsay. Target discovery. *Nature Reviews Drug Discovery*, 2(10):831–838, 2003.

[2] Jonathan Knowles and Gianni Gromo. Target selection in drug discovery. *Nature Reviews Drug Discovery*, 2(1):63–69, 2003.

[3] Peter Imming, Christian Sinning, and Achim Meyer. Drugs, their targets and the nature and number of drug targets. *Nature Reviews Drug Discovery*, 5(10):821–834, 2006.

[4] Grant R Zimmermann, Joseph Lehar, and Curtis T Keith. Multi-target therapeutics: when the whole is greater than the sum of the parts. *Drug Discovery Today*, 12(1):34–42, 2007.

[5] Jackson B Gibbs. Mechanism-based target identification and drug discovery in cancer research. *Science*, 287(5460):1969–1973, 2000.

[6] KI Kaitin. Deconstructing the drug development process: the new face of innovation. *Clinical Pharmacology and Therapeutics*, 87(3):356, 2010.

[7] Denis Noble, Jeremy Levin, and William Scott. Biological simulations in drug discovery. *Drug Discovery Today*, 4(1):10–16, 1999.

[8] David S Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam, and Murtaza Hassanali. Drugbank: a knowledgebase for drugs, drug actions and drug targets. *Nucleic Acids Research*, 36(suppl 1):D901–D906, 2008.

[9] Minoru Kanehisa and Susumu Goto. Kegg: kyoto encyclopedia of genes and genomes. *Nucleic Acids Research*, 28(1):27–30, 2000.

[10] M Whirl-Carrillo, EM McDonagh, JM Hebert, L Gong, K Sangkuhl, CF Thorn, RB Altman, and Teri E Klein. Pharmacogenomics knowledge for personalized medicine. *Clinical Pharmacology & Therapeutics*, 92(4):414–417, 2012.

[11] David Croft, Gavin O’Kelly, Guanming Wu, Robin Haw, Marc Gillespie, Lisa Matthews, Michael Caudy, Phani Garapati, Gopal Gopinath, Bijay Jassal, et al. Reactome: a database of reactions, pathways and biological processes. *Nucleic Acids Research*, page gkq1018, 2010.

[12] Xin Chen, Zhi Liang Ji, and Yu Zong Chen. Ttd: therapeutic target database. *Nucleic Acids Research*, 30(1):412–415, 2002.

[13] Hiroaki Kitano. Systems biology: a brief overview. *Science*, 295(5560):1662–1664, 2002.

[14] Hiroaki Kitano. Computational systems biology. *Nature*, 420(6912):206–210, 2002.

[15] Barbara Di Ventura, Caroline Lemerle, Konstantinos Michalodimitrakis, and Luis Serrano. From in vivo to in silico biology and back. *Nature*, 443(7111):527–533, 2006.
[16] Sui Huang and Donald E Ingber. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. *Experimental Cell Research*, 261(1):91–103, 2000.

[17] Maria I Davidich and Stefan Bornholtz. Boolean network model predicts cell cycle sequence of fission yeast. *PLOS ONE*, 3(2):e1672, 2008.

[18] Adrien Fauré, Aurélien Naldi, Claudine Chaouiya, and Denis Thieffry. Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. *Bioinformatics*, 22(14):e124–e131, 2006.

[19] Herman F Fumiã and Marcelo L Martins. Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes. *PLOS ONE*, 8(7):e69008, 2013.

[20] Pau Creixell, Erwin M Schoof, Janine T Erler, and Rune Linding. Navigating cancer network attractors for tumor-specific therapy. *Nature Biotechnology*, 30(9):842–848, 2012.

[21] Keith Baverstock. A comparison of two cell regulatory models entailing high dimensional attractors representing phenotype. *Progress in Biophysics and Molecular Biology*, 106(2):443–449, 2011.

[22] Michelle L Wynn, Nikita Consul, Sofia D Merajver, and Santiago Schnell. Logic-based models in systems biology: a predictive and parameter-free network analysis method. *Integrative Biology*, 4(11):1323–1337, 2012.

[23] Abhishek Garg, Alessandro Di Cara, Ioannis Xenarios, Luis Mendoza, and Giovanni De Micheli. Synchronous versus asynchronous modeling of gene regulatory networks. *Bioinformatics*, 24(17):1917–1925, 2008.

[24] Xiaowei Zhu, Mark Gerstein, and Michael Snyder. Getting connected: analysis and principles of biological networks. *Genes & Development*, 21(9):1010–1024, 2007.

[25] Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s functional organization. *Nature Reviews Genetics*, 5(2):101–113, 2004.

[26] Stefan Bornholtz. Boolean network models of cellular regulation: prospects and limitations. *Journal of the Royal Society Interface*, 5(Suppl 1):S85–S94, 2008.

[27] Wolfgang Huber, Vincent J Carey, Li Long, Seth Falcon, and Robert Gentleman. Graphs in molecular biology. *BMC Bioinformatics*, 8(Suppl 6):S8, 2007.

[28] Ilia Nikolaevich Bronshtein, Konstantin A Semendyayev, Gerhard Musiol, and Heiner Muehlh. Algorithms of graph theory. In *Handbook of Mathematics*, chapter 5, pages 348–359. Springer, 2007.

[29] Yufei Xiao. A tutorial on analysis and simulation of boolean gene regulatory network models. *Current Genomics*, 10(7):511, 2009.
[30] D Zheng, G Yang, X Li, Z Wang, and WNN Hung. An efficient algorithm for finding attractors in synchronous boolean networks with biochemical applications. Genetics and Molecular Research: GMR, 12(4):4656, 2013.

[31] Elena Dubrova and Maxim Teslenko. A sat-based algorithm for finding attractors in synchronous boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 8(5):1393–1399, 2011.

[32] Charles J Sherr and Frank McCormick. The rb and p53 pathways in cancer. Cancer Cell, 2(2):103–112, 2002.

[33] Alfredo Rodríguez, David Sosa, Leda Torres, Bertha Molina, Sara Frías, and Luis Mendoza. A boolean network model of the fa/brc a pathway. Bioinformatics, 28(6):858–866, 2012.

[34] Johan P de Winter and Hans Joenje. The genetic and molecular basis of fanconi anemia. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 668(1):11–19, 2009.

[35] Arleen D Auerbach. Fanconi anemia and its diagnosis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 668(1):4–10, 2009.

[36] Robert S Schwartz and Alan D D’Andrea. Susceptibility pathways in fanconi’s anemia and breast cancer. New England Journal of Medicine, 362(20):1909–1919, 2010.

[37] Kornelia Neveling, Daniela Endt, Holger Hoehn, and Detlev Schindler. Genotype–phenotype correlations in fanconi anemia. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 668(1):73–91, 2009.

[38] Jiri Bartek and Jiri Lukas. Dna damage checkpoints: from initiation to recovery or adaptation. Current opinion in cell biology, 19(2):238–245, 2007.

[39] Kazuhiro Ishikawa, Hideshi Ishii, and Toshiyuki Saito. Dna damage-dependent cell cycle checkpoints and genomic stability. DNA and cell biology, 25(7):406–411, 2006.

[40] Makoto Nakanishi, Midori Shimada, and Hiroyuki Niida. Genetic instability in cancer cells by impaired cell cycle checkpoints. Cancer science, 97(10):984–989, 2006.