Search for CP violation in $\Xi_c^+ \rightarrow pK^-\pi^+$ decays using model-independent techniques

LHCb collaboration†

Abstract

A first search for CP violation in the Cabibbo-suppressed $\Xi_c^+ \rightarrow pK^-\pi^+$ decay is performed using both a binned and an unbinned model-independent technique in the Dalitz plot. The studies are based on a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb$^{-1}$, and collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The data are consistent with the hypothesis of no CP violation.

Submitted to Eur. Phys. J. C

© 2020 CERN for the benefit of the LHCb collaboration. [CC BY 4.0 licence]

†Authors are listed at the end of this paper.
1 Introduction

The non-invariance of fundamental interactions under the combination of charge conjugation and parity transformation, known as CP violation (CPV), is a key requirement for the generation of the baryon-antibaryon asymmetry in the early Universe [1,2]. In the Standard Model (SM) of particle physics, CPV is included through the introduction of a single irreducible complex phase in the Cabibbo–Kobayashi–Maskawa (CKM) quark-mixing matrix [3,4]. The amount of CPV predicted by the CKM mechanism is not sufficient to explain a matter-dominated universe [5,6] and other sources of CPV are required. The realization of CPV in nature has been well established in the K- and B-meson systems by several experiments [7–13]. The LHCb experiment has observed for the first time CPV in the charm-meson sector as the difference of the CP asymmetries between the two-body decays $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ [14]. A similar study using $\Lambda_c^+ \rightarrow pK^- \pi^+$ has found no evidence for CPV [15]. Indeed, so far CPV has never been observed in any baryon system. Evidence for CPV in the b baryon sector reported by the LHCb collaboration in [16] has not been confirmed with more data [17]. Further measurements of processes involving the decay of charm hadrons can shed light on the origin and magnitude of CPV mechanisms within the SM and beyond.

In two-body decays of charm hadrons, CPV can manifest itself as an asymmetry between partial decay rates. Multi-body decays offer access to more observables which are sensitive to CP-violating effects. For a three-body baryon decay the kinematics can be characterised by three Euler angles and two squared invariant masses forming the Dalitz plot [18]. The Euler angles are redundant if all initial spin states are integrated over. Interference effects in the Dalitz plot probe CP asymmetries in both the magnitudes and phases of the amplitudes. In three-body decays there can be large local CP asymmetries in the Dalitz plot, even when no significant global CPV exists. A recent example has been measured in the decay $B^+ \rightarrow \pi^+ \pi^- \pi^+$ [19].

In the SM, CPV asymmetries in the charm sector are expected at the order of 10^{-3} or less [20] for singly Cabibbo-suppressed (SCS) decays. New physics (NP) contributions can enhance CP-violating effects up to 10^{-2} [21–29]. Searches for CPV in Ξ_c^+ baryon decays [3] provide a test of the SM and place constraints on NP parameters [30–34]. In contrast to SCS decays, in Cabibbo-favoured (CF) charm-quark transitions, such as $\Lambda_c^+ \rightarrow pK^- \pi^+$ decays, there is only one dominant amplitude in the SM, resulting in no CP-violating effects.

This article describes searches for direct CPV in the SCS decay $\Xi_c^+ \rightarrow pK^- \pi^+$ produced promptly in pp collisions. The $\Lambda_c^+ \rightarrow pK^- \pi^+$ decay is used as a control mode to study on data the level of experimental asymmetries that pollute the measurement. In this paper, the symbol H_c^+ is used to refer to both Ξ_c^+ and Λ_c^+. It is assumed that the polarisation of charm baryons produced in pp collisions is sufficiently small to justify the integration over the Euler angles. This measurement uses pp collision data, corresponding to an integrated luminosity of 3 fb$^{-1}$, recorded by the LHCb detector in Run 1. About 1 fb$^{-1}$ is collected in 2011 at a centre-of-mass energy of 7 TeV and 2 fb$^{-1}$ are collected in 2012 at a centre-of-mass energy of 8 TeV. The magnetic field polarity is reversed regularly during the data taking in order to minimise effects of charged particle and antiparticle detection asymmetries. Approximately half of the data are collected with each polarity.

1Unless stated explicitly, the inclusion of charge-conjugate states is implied throughout.
There is presently no successful method for computing decay amplitudes in multi-body charm decays, which could provide reliable predictions on how the CP asymmetries vary over the phase space of the decay. This situation favours a model-independent approach, which looks for differences between multivariate density distributions for baryons and antibaryons. Therefore, in this article searches for CPV are performed through a direct comparison between the Dalitz plots of \(\Xi^{-} \) and \(\Xi^{+} \) decays using a binned significance \((S_{CP})\) method \cite{35} and an unbinned k-nearest neighbour method (kNN) \cite{36-39}, both of which are model independent.

2 Detector and simulation

The LHCb detector \cite{40,41} is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5 \). It is designed for the study of particles containing \(b \) and \(c \) quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the \(pp \) interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of the momentum, \(p \), of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of \((15 + 29/p_{T})\) \(\mu m \), where \(p_{T} \) is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadron calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers.

Samples of simulated events are used to optimise the signal selection, to derive the angular efficiency and to correct the decay-time efficiency. In the simulation, \(pp \) collisions are generated using PYTHIA \cite{42} with a specific LHCb configuration \cite{43}. Decays of hadronic particles are described by EVTGEN \cite{44}, in which final-state radiation is generated using PHOTOS \cite{45}. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit \cite{46} as described in Ref. \cite{47}.

3 Selection of signal candidates

The online event selection is performed by a trigger consisting of a hardware stage, based on information from the calorimeter and muon systems, followed by two software stages. At the hardware trigger stage, events are required to have either muons with high \(p_{T} \) or hadrons, photons or electrons with a high transverse-energy deposit in the calorimeters. In the first software trigger stage at least one good-quality track with a large \(p_{T} \) is required. In the second software trigger stage, an \(H_{c}^{+} \) candidate is fully reconstructed by the association of three high-quality tracks forming a secondary vertex of the \(H_{c}^{+} \) candidate (SV) which must be well separated from any PV, and the tracks should not pointing to any PV. Requirements are also placed on \(p \) and \(p_{T} \) of the \(H_{c}^{+} \) candidate; on
the scalar sum of p_T for the three tracks; on the particle identification criteria of the tracks; and on the direction vector from the associated PV to the H_c^+ candidate decay vector and the SV, where the associated PV is that with the least IP χ^2 with respect to the H_c^+ candidate.

In the offline analysis, tighter selection requirements are placed on the track-reconstruction quality, the p_T and p of the final-state particles. Additional requirements are also made on the SV fit quality, and the minimum significance of the displacement from the SV to any PV in the event. This reduces the contribution of charm baryons from b-hadron decays to less than 5% of the prompt signal. Fiducial requirements are imposed to exclude kinematic regions characterised by large detection asymmetries between particles and antiparticles. Reconstructed particles are accepted if their momenta are within a region defined by $|p_x| < 0.2p_z$ and $|p_x| > 0.01p_z$, where p_x and p_z are the momentum components along the x and z axes. Large detection asymmetries occur in certain kinematic regions because, for a given magnet polarity, particles of one charge with low p or flying with small polar angles may be deflected outside of the detector acceptance or into the LHC beam pipe, whereas particles of the opposite charge remain within the LHCb detector acceptance. About 25% of the selected charm-baryon candidates are rejected by these fiducial requirements. Differences in reconstruction efficiencies are also observed for candidates where $p < 20$ GeV/c for all charged tracks. These differences do not cancel by simply averaging the data acquired with opposite magnet polarities. To minimise the difference of the reconstruction efficiency for particles and anti-particles, the momentum of all tracks is required to be greater than 20 GeV/c. This requirement rejects about 20% of the selected charm-baryon candidates.

The distributions of the invariant-mass, $M(pK^−\pi^+)$, of selected Λ_c^+ and Ξ_c^+ candidates are presented in Figs. 1 and 2, respectively. The fitted curves are overlaid. The model comprises a sum of two Gaussian functions describing the signal and a second-order Chebyshev polynomial function describing the combinatorial background. No additional source of background is found to contribute significantly.

The final samples used for the CPV search comprise all candidates with $M(pK^−\pi^+)$ within $±3\sigma$ around $m(\Lambda_c^+)$ or $m(\Xi_c^+)$, where σ is the weighted average of the two fitted Gaussian widths and $m(\Lambda_c^+)$ and $m(\Xi_c^+)$ are the masses of the Λ_c^+ and Ξ_c^+ baryons. There are approximately 2.0 million Λ_c^+ candidates (0.4 million in the 2011 and 1.6 million in the 2012 data sample) and 0.25 million Ξ_c^+ candidates (0.05 million in the 2011 and 0.2 million in the 2012 data sample). The purity for Λ_c^+ decays is 94% for 2011 and 98% for 2012 and that for Ξ_c^+ decays is 77% for 2011 and 78% for 2012.

4 Methods

The Dalitz plot for $H_c^+ \rightarrow pK^−\pi^+$ is described by the squares of the invariant masses of two pairs of the decay products: $M^2(K^−\pi^+)$ and $M^2(pK^-)$. Polarisation effects for the H_c^+ baryons are neglected. Comparisons of the Dalitz plots of H_c^+ and $H_c^−$ candidates are performed using the binned S_{CP} and the unbinned kNN methods, described in the following. For both the binned S_{CP} and unbinned kNN methods, a signal of CPV is
established if a p-value lower then 3×10^{-7} is found, corresponding to an exclusion of CP symmetry with a significance of five standard deviations. However, in case that no CPV is found, there is no model-independent mechanism for setting an upper limit on the amount of CPV in the Dalitz plot.
4.1 Binned \(S_{CP} \) method

In the \(S_{CP} \) method the Dalitz plots of particles and antiparticles are divided using an identical binning. The \(S_{CP} \) method [35] has been used before for hypothesis testing in charm and beauty decays [39, 49–52]. This method is used to search for localised asymmetries in the phase space of the decay \(H_+^c \rightarrow pK^--\pi^+ \) and is based on a bin-by-bin comparison between the Dalitz plots of baryons, \(H_+^c \), and antibaryons, \(H_+^c \). For each bin \(i \) of the Dalitz plot, the significance of the difference between the number of \(H_+^c \) (\(n_+^i \)) and \(H_+^c \) (\(n_-^i \)) candidates, \(S_{CP}^i \), is computed as

\[
S_{CP}^i = \frac{n_+^i - \alpha n_-^i}{\sqrt{\alpha(n_+^i + n_-^i)}},
\]

where the factor \(\alpha \) is defined as \(\alpha = \frac{n_+}{n_-} \) and \(n_+ \), \(n_- \) are the total number of \(\Lambda_c^+ \) (\(\Xi_c^+ \)), \(\Lambda_c^- \) (\(\Xi_c^- \)) candidates. This factor accounts for spurious asymmetries arising in the production of \(\Lambda_c^+ \) or \(\Xi_c^+ \) baryons, as well as in the detection of the final-state particles. The production and global detection asymmetries are assumed not to depend on the Dalitz plot position.

A numerical comparison between the Dalitz plots of the \(H_+^c \) and \(H_+^c \) candidates is made using a \(\chi^2 \) test defined as

\[
\chi^2 \equiv \Sigma(S_{CP}^i)^2.
\]

This test is performed using a minimum of 10 \(H_+^c \) and 10 \(H_+^c \) candidates in each bin. A \(p \)-value for the hypothesis of no CPV is obtained considering that the number of degrees of freedom is equal to the total number of bins minus one, due to the constraint on the factor \(\alpha \) of the overall \(H_+^c \) and \(H_+^c \) normalisation.

In the hypothesis of no CPV, the \(S_{CP} \) values are expected to be distributed according to the normal distribution with a mean of zero and a standard deviation of unity. In case of CPV, a deviation from the normal distribution is expected, generating a \(p \)-value close to zero.

4.2 Unbinned kNN method

The kNN method is based on the concept of a set of nearest neighbour candidates (\(n_k \)) in a combined sample of two data sets: baryons and antibaryons. As an unbinned method, the kNN approach is more sensitive to a CPV search in a sample with limited data, compared to that of the binned \(S_{CP} \) method. The kNN method is used here to test whether baryons and antibaryons share the same parent distribution function [36, 38]. To find the \(n_k \) nearest neighbour events of each \(H_+^c \) and \(H_+^c \) candidates, an Euclidean distance between closest points in the Dalitz plot is used. A test statistic \(T \) for the null hypothesis is defined as

\[
T = \frac{1}{n_k(n_+ + n_-)} \sum_{i=1}^{n_+ + n_-} \sum_{k=1}^{n_k} I(i, k),
\]

where \(I(i, k) = 1 \) if the \(i \)th candidate and its \(k \)th nearest neighbour belong to the same sample of \(H_+^c \) or \(H_+^c \) candidates and \(I(i, k) = 0 \) otherwise.

The test statistic \(T \) is the mean fraction of like-charged neighbour pairs in the sample of \(H_+^c \) and \(H_+^c \) decays. The advantage of the kNN method, in comparison with other proposed methods for unbinned analyses [36], is that the calculation of \(T \) is simple and
fast and the expected distribution of T is well known. Under the hypothesis of no CPV, T follows a normal distribution with a mean, μ_T, and a variance, σ_T, where

$$\mu_T = \frac{n_+(n_+ - 1) + n_-(n_- - 1)}{n(n - 1)},$$

$$\lim_{n,n_k,D \to \infty} \sigma_T^2 = \frac{1}{nn_k} \left(\frac{n_+n_-}{n^2} + 4 \frac{n_2^2n_2^2}{n^4} \right),$$

with $n = n_+ + n_-$ and $D = 2$ is the dimensionality of the tested distribution. The convergence of the limit is so fast that it can be used to obtain a good approximation of σ_T even for $D = 2$ for certain values of n_+, n_- and $n_k \geq 36$.

For $n_+ = n_-$ the mean μ_T can be expressed as

$$\mu_{TR} = \frac{1}{2} \left(\frac{n - 2}{n - 1} \right)$$

and is called the reference value, μ_{TR}. For large n, μ_{TR} asymptotically tends to 0.5.

To increase the power of the kNN method, the Dalitz plot is divided into regions defined around the expected resonances. The Dalitz plot is partitioned into six regions for the decays of the Λ_c^+ control mode and eleven regions for signal Ξ_c^+ decays according to the present of resonances of the phase space, as shown in Fig. 3. For Λ_c^+ decays the $K^{*}(892)$, $K^{*}(1430)$, $\Lambda(1232)$, $\Lambda(1520)$, $\Lambda(1670)$, $\Lambda(1690)$ resonances are seen in data, whilst for Ξ_c^+ decays additional resonances are seen, namely $\Lambda(1520)$, $\Lambda(1600)$, $\Lambda(1710)$, $\Lambda(1800)$, $\Lambda(1810)$, $\Lambda(1820)$, $\Lambda(1830)$, $\Lambda(1890)$, $\Delta(1600)$, $\Delta(1620)$ and $\Delta(1700)$. For Λ_c^+ decays there are four independent regions (R1–R4), whilst the region R2 is further split into the high $M^2(pK^-)$ region (R6) and the low $M^2(pK^-)$ region (R5). For Ξ_c^+ there are seven independent regions (R1–R7), whilst the region R2 is split in mass $M^2(pK^-)$ in two regions at larger mass (R9) and smaller mass (R8), R2=R8∪R9, similarly for R10 and R11, where R10=R4∪R5, and R11=R4∪R5∪R6∪R7. Region R0 is the full Dalitz plot. The definitions of the regions are given in Tables 1 and 2 for Λ_c^+ and Ξ_c^+ baryons, respectively.

Region	Definition
R0	Full Dalitz plot
R1	$M^2(K^-\pi^+) < 0.7 \text{ GeV}^2/c^4$
R2	$0.7 \leq M^2(K^-\pi^+) < 0.9 \text{ GeV}^2/c^4$
R3	$M^2(K^-\pi^+) \geq 0.9 \text{ GeV}^2/c^4$, $M^2(pK^-) < 2.8 \text{ GeV}^2/c^4$
R4	$M^2(K^-\pi^+) \geq 0.9 \text{ GeV}^2/c^4$, $M^2(pK^-) \geq 2.8 \text{ GeV}^2/c^4$
R5	$0.7 \leq M^2(K^-\pi^+) < 0.9 \text{ GeV}^2/c^4$, $M^2(pK^-) < 3.2 \text{ GeV}^2/c^4$
R6	$0.7 \leq M^2(K^-\pi^+) < 0.9 \text{ GeV}^2/c^4$, $M^2(pK^-) \geq 3.2 \text{ GeV}^2/c^4$
The measured total raw asymmetry is defined as

$$A_{\text{Raw}} = \frac{n_- - n_+}{n_- + n_+},$$

(7)

Table 2: Definitions of the Dalitz plot regions for $\Xi_c^+ \to pK^+\pi^+$ decays.

Region	Definition
R0	Full Dalitz plot
R1	$M^2(K^-\pi^+) < 0.7 \text{ GeV}^2/c^4$
R2	$0.7 \leq M^2(K^-\pi^+) < 0.9 \text{ GeV}^2/c^4$
R3	$0.9 \leq M^2(K^-\pi^+) < 1.3 \text{ GeV}^2/c^4$
R4	$M^2(K^-\pi^+) \geq 1.3 \text{ GeV}^2/c^4$, $M^2(pK^-) < 2.4 \text{ GeV}^2/c^4$
R5	$M^2(K^-\pi^+) \geq 1.3 \text{ GeV}^2/c^4$, $2.4 \leq M^2(pK^-) < 3.2 \text{ GeV}^2/c^4$
R6	$M^2(K^-\pi^+) \geq 1.3 \text{ GeV}^2/c^4$, $3.2 \leq M^2(pK^-) < 3.8 \text{ GeV}^2/c^4$
R7	$M^2(K^-\pi^+) \geq 1.3 \text{ GeV}^2/c^4$, $M^2(pK^-) \geq 3.8 \text{ GeV}^2/c^4$
R8	$0.7 \leq M^2(K^-\pi^+) < 0.9 \text{ GeV}^2/c^4$, $M^2(pK^-) < 4 \text{ GeV}^2/c^4$
R9	$0.7 \leq M^2(K^-\pi^+) < 0.9 \text{ GeV}^2/c^4$, $M^2(pK^-) \geq 4 \text{ GeV}^2/c^4$
R10	$M^2(K^-\pi^+) \geq 1.3 \text{ GeV}^2/c^4$, $M^2(pK^-) < 3.2 \text{ GeV}^2/c^4$
R11	$M^2(K^-\pi^+) \geq 1.3 \text{ GeV}^2/c^4$

5 Control mode, background and sensitivity studies

The S_{CP} and kNN methods are tested using the $A_c^+ \to pK^+\pi^+$ control mode where the CP asymmetry is expected to be null. The sidebands of $\Xi_c^+ \to pK^+\pi^+$ candidates in the mass regions $2320 < M(pK^-\pi^+) < 2445 \text{ MeV}/c^2$ and $2490 < M(pK^-\pi^+) < 2650 \text{ MeV}/c^2$ are used to check that the background does not introduce spurious asymmetries. The sensitivity of the methods is estimated using pseudoexperiments. Both the S_{CP} and kNN methods are checked to fulfill the following requirements: the method should not indicate the presence of a spurious asymmetry and confirm such a signal if present.

The measured total raw asymmetry is defined as

$$A_{\text{Raw}} = \frac{n_- - n_+}{n_- + n_+},$$

(7)
and it depends on the production asymmetry of H_{c}^{+} baryons and on the detection asymmetries that arise through charge-dependent selection efficiencies due to track reconstruction, trigger selection and particle identification. The measured value of A_{Raw} in each region of the Dalitz plot of $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ decays is presented in Fig. 4. The measured A_{Raw} value integrated over the Dalitz plot equals to -0.0230 ± 0.0016 and -0.0188 ± 0.0008 in the 2011 and 2012 data samples, where the uncertainties are statistical only. Within uncertainties, A_{Raw} in all regions amounts to about -2%. There is no significant difference between the 2011 and 2012 data samples. Since the production and detection asymmetries of Λ_{c}^{+} baryons can depend on the baryon pseudorapidity, η, and p_{T}, the dependence of A_{Raw} in regions of the Dalitz plot is checked in bins of η and p_{T} of the Λ_{c} candidates, but for a given bin of η and p_{T} a constant behaviour of A_{Raw} in regions of the Dalitz plot is obtained.

In the S_{CP} method the production asymmetry and all global effects are considered by introducing the α factor, following the strategy described in Sec. 4.1. The p-values obtained are larger than 58\%, consistent with the absence of localised asymmetries. As an example, Fig. 3 shows the distribution of S_{CP} for $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ decays considering uniform binning, and for two granularities of the Dalitz plot: 28 and 106 bins in the 2012 sample. Alternatively the Dalitz plot is divided into different size bins with the same population size in each bin. Typically, the p-values obtained are larger than 34\%, consistent with the hypothesis of absence of localised asymmetries.

Following the strategy described in Sec. 4.2, the results of the kNN method in regions of the Dalitz plot for the $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ control mode are presented in Fig. 6 for $n_{k} = 50$. The pulls, $(\mu - \mu_{T})/\Delta(\mu - \mu_{T})$, where $\Delta(\mu - \mu_{T})$ is the uncertainty on the difference $(\mu - \mu_{T})$, are different from zero in all regions. The largest effect is observed when integrated over the full Dalitz plot. This asymmetry is an effect of a nonzero production asymmetry that is presented in Fig. 4 and discussed above. Pulls of the test statistic T, (T_{T}/σ_{T}), vary within -3 and $+3$, consistent with the hypothesis of absence of localised asymmetries in any region. The difference among data-taking years are consistent with statistical fluctuations. The signal yield in 2012 is twice than that in 2011. Figure 6
Figure 5: Distributions of S^i_{CP} and corresponding one-dimensional distributions for $\Lambda_c^+ \to pK^−\pi^+$ decays for the data collected in the 2012 data sample: (top row) 28 same-size bins and (bottom row) 106 same-size bins of the Dalitz plot. The number of analysed bins, nbins, and the p-values are given.

illustrates how the larger 2012 data sample improves the power of the kNN method. In Run 2 (years of data taking 2016, 2017 and 2018) the yield is expected to be about three times larger than that from Run 1.

The interaction cross-section of charged hadrons with matter depends on the charged hadron momentum. As such, the detection asymmetries of the proton and kaon-pion systems are momentum dependent. Pseudoexperiments are performed to check whether the detection asymmetries related to particles reconstructed in the final state are or not generating a spurious CP asymmetry. The proton detection asymmetry varies from about 5% at low momentum to 1% at 100 GeV/c and is estimated using simulations. The kaon-pion detection asymmetry and its dependence on the kaon momentum is measured to vary from -1.4% at low momentum to -0.7% at 60 GeV/c [53]. The combined effect of the two asymmetries is found to cancel approximately and does not generate a spurious asymmetry.

These studies are repeated using the candidates in the sideband of the $\Xi_c^+ \to pK^−\pi^+$ mass distribution. No spurious CP asymmetry is found for both methods. For further cross-checks, the control samples are divided according to the polarity of the magnetic
Figure 6: (Top left) pulls, \((\mu_T - \mu_{TR})/\Delta (\mu_T - \mu_{TR})\), and (top right) the corresponding \(p\)-values, (bottom left) pull values of the test statistic \(T\) and (bottom right) the corresponding \(p\)-values in a given region for control \(\Lambda_c^+ \rightarrow pK^-\pi^+\) candidate decays obtained using the kNN method with \(n_k = 50\) for data collecting in 2011 (stars) and 2012 (dots). The horizontal lines in the left figures represent -3 and +3 pull values. R0 corresponds to full Dalitz plot and R2 is separated into R5 and R6, and these regions are correlated and separated by dashed lines.

The expected statistical power of both methods is obtained by performing pseudoexperiments. A total one hundred samples of \(\Xi_c^+ \rightarrow pK^-\pi^+\) decays are generated each with a yield and purity equivalent to that observed in the combined 2011 and 2012 data samples, resulting in 200 000 \(\Xi_c^+\) decays generated in each pseudoexperiment. In this model, the two-dimensional Dalitz plots are generated assuming that the \(\Xi_c^+\) baryons are produced unpolarised. The model for \(\Xi_c^+ \rightarrow pK^-\pi^+\) decays is built by including the resonances observed in the data, using the same software as in Ref. [54]. The same resonances as described in Sec. 4.2 are included. The statistical powers of the two methods are found to be comparable. Both methods are sensitive to a 5\% \(CP\) asymmetry in the \(K^+(892)\) and \(\Delta(1232)\) resonance regions, and signals with 3 and 5 sigma significances would be observed in 69\% and 10\% of the cases for the kNN method and 17\% and 10\% of the cases for the \(S_{CP}\) method, respectively.
\begin{align*}
M(pK^-) \text{[GeV/c]} & = 2 \text{GeV/c}^2 \\
M^2(K\pi^+) \text{[GeV/c]} & = 2 \text{GeV/c}^2
\end{align*}

Figure 7: Distributions of S_{CP} and corresponding one-dimensional distributions for $\Xi_c^+ \rightarrow pK^-\pi^+$ decays for the combined data collected 2011 and 2012: (top row) 29 uniform bins and (bottom row) 111 uniform bins of the Dalitz plot. The number of analysed bins and the p-values are given.

6 Results

6.1 Binned S_{CP} method

The binned S_{CP} method is applied to look for local CP asymmetries in $\Xi_c^+ \rightarrow pK^-\pi^+$ decays following the strategy described in Sec. 4.1. The measured p-values as well as the S_{CP} distributions are shown in Fig. 7 for the combined 2011 and 2012 data samples. Two binning schemes are tested: 29 and 111 uniform bins. The normalization factor α, defined in Eq. 1, is determined to be 1.029 ± 0.004. The measured p-values using a χ^2 test are larger than 32%, consistent with no evidence for CPV. The obtained S_{CP} distributions agree with a normal distribution. It is also checked that the results in the 2011 and 2012 data samples are consistent with each other.
6.2 Unbinned kNN method

The unbinned kNN method is applied to look for CP asymmetry in $\Xi^+_c \rightarrow pK^-\pi^+$ decays, following the strategy described in Sec. 4.2. The results are presented in Fig. 8 for $n_k = 50$ for the merged 2011 and 2012 data samples. The measured pull values, $((\mu_T - \mu_{TR})/\Delta(\mu_T - \mu_{TR}))$, are different from zero. The largest effect is observed integrated over the full Dalitz plot. This is due to the expected nonzero production and detector asymmetries, that is presented in Fig. 9. The measured A_{Raw} is constant within uncertainties in all regions.

The pulls of the test statistic T, $((T - \mu_T)/\sigma_T)$, shown in Fig. 8 vary within -3 and $+3$, consistent with the hypothesis of absence of localised asymmetries. To check for any systematic effects the kNN test is repeated for the individual 2011 and 2012 data samples as well as for samples separated according to the polarity of the magnetic field. All obtained results are compatible within uncertainties and no systematic effects are observed.

Since the sensitivity of the method can depend on the n_k parameter, the analysis is repeated with different values of n_k from 10 up to 3000. Only T and σ_T depend on n_k. Pulls of statistic T are shown in Fig. 10. All results show no significant deviation from the hypothesis of CP symmetry.

7 Conclusions

Model-independent searches for CP violation in $\Xi^+_c \rightarrow pK^-\pi^+$ decays are presented using the binned S_{CP} and the unbinned kNN methods. The $\Lambda^+_c \rightarrow pK^-\pi^+$ candidates and the sideband regions of $\Xi^+_c \rightarrow pK^-\pi^+$ candidates are used to ensure that no spurious charge asymmetries affect the methods. Both methods are sensitive to CP asymmetry larger than a 5% in the regions around the $K^*(892)$ and the $\Delta(1232)$. The obtained results are consistent with the absence of CP violation in $\Xi^+_c \rightarrow pK^-\pi^+$ decays.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF
Figure 8: (Top left) pulls, $(\mu_T - \mu_{TR})/\Delta(\mu_T - \mu_{TR})$, and (top right) the corresponding p-values; (bottom left) pull values of the test statistic T and (bottom right) the corresponding p-values for a given region for signal $\Xi_c^+ \rightarrow pK^-\pi^+$ candidate decays obtained using the kNN method with $n_k = 50$ for combined data collected 2011 and 2012. The horizontal lines in the left figures represent -3 and $+3$ pull values. R0 corresponds to full Dalitz plot and R2 is separated into R8 and R9, R10 is separated into R4 and R5, R11 is separated into R4, R5, R6 and R7, and these regions are correlated and separated by dashed lines.

and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (USA).
Figure 9: The measured A_{Raw} in regions in signal $\Xi^+_c \rightarrow pK^-\pi^+$ candidate decays for the combined data collected in 2011 and 2012. R0 corresponds to full Dalitz plot and R2 is separated into R8 and R9, R10 is separated into R4 and R5, R11 is separated into R4, R5, R6 and R7, and these regions are correlated and separated by dashed lines.

Figure 10: (Left) the pull values of the test statistic T and (right) the corresponding p-value dependence on the n_k parameter for the whole Dalitz plot (region R0) for $\Xi^+_c \rightarrow pK^-\pi^+$ candidate decays obtained using the kNN method for the combined data collected in 2011 and 2012. The horizontal lines in the left figures represent -3 and $+3$ pull values. The points are determined with different n_k using same data sample, therefore are correlated.
References

[1] A. D. Sakharov, *Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe*, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32, [Usp. Fiz. Nauk 161 (1991) 61].

[2] M. Dine and A. Kusenko, *The Origin of the matter - antimatter asymmetry*, Rev. Mod. Phys. 76 (2003) 1, [arXiv:hep-ph/0303065].

[3] N. Cabibbo, *Unitary symmetry and leptonic decays*, Phys. Rev. Lett. 10 (1963) 531.

[4] M. Kobayashi and T. Maskawa, *CP-violation in the renormalizable theory of weak interaction*, Prog. Theor. Phys. 49 (1973) 652.

[5] M. B. Gavela, P. Hernandez, J. Orloff, and O. Pène, *Standard model CP violation and baryon asymmetry*, Mod. Phys. Lett. A9 (1994) 795, [arXiv:hep-ph/9312215].

[6] T. Vieu, A. P. Morais, and R. Pasechnik, *Electroweak phase transitions in multi-Higgs models: the case of Trinification-inspired THDSM*, JCAP 1807 (2018) 014, [arXiv:1801.02670].

[7] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, *Evidence for the \(2\pi\) decay of the \(K_0^\pm\) meson*, Phys. Rev. Lett. 13 (1964) 138.

[8] BaBar collaboration, B. Aubert et al., *Observation of CP violation in the \(B^0\) meson system*, Phys. Rev. Lett. 87 (2001) 091801, [arXiv:hep-ex/0107013].

[9] Belle collaboration, K. Abe et al., *Observation of large CP violation in the neutral \(B\) meson system*, Phys. Rev. Lett. 87 (2001) 091802, [arXiv:hep-ex/0107061].

[10] BaBar collaboration, B. Aubert et al., *Observation of direct CP violation in \(B^0 \to K^+\pi^-\) decays*, Phys. Rev. Lett. 93 (2004) 131801, [arXiv:hep-ex/0407057].

[11] Belle collaboration, Y. Chao et al., *Evidence for direct CP violation in \(B^0 \to K^+\pi^-\) decays*, Phys. Rev. Lett. 93 (2004) 191802, [arXiv:hep-ex/0408100].

[12] LHCb collaboration, R. Aaij et al., *First observation of CP violation in the decays of \(B_s^0\) mesons*, Phys. Rev. Lett. 110 (2013) 221601, [arXiv:1304.6173].

[13] LHCb collaboration, R. Aaij et al., *Observation of CP violation in \(B^\pm \to DK^\pm\) decays*, Phys. Lett. B712 (2012) 203, Erratum ibid. B713 (2012) 351, [arXiv:1203.3662].

[14] LHCb collaboration, R. Aaij et al., *Observation of CP violation in charm decays*, Phys. Rev. Lett. 122 (2019) 211803, [arXiv:1903.08726].

[15] LHCb collaboration, R. Aaij et al., *Search for CP violation in \(\Lambda_c \to pK^-K^+\) and \(\Lambda_c \to p\pi^-\pi^+\) decays*, JHEP 03 (2018) 182, [arXiv:1712.07051].

[16] LHCb collaboration, R. Aaij et al., *Measurement of matter-antimatter differences in beauty baryon decays*, Nature Physics 13 (2017) 391, [arXiv:1609.05216].

[17] LHCb collaboration, R. Aaij et al., *Search for CP violation in \(\Lambda_b^0 \to p\pi^-\pi^+\pi^-\) decays*, [arXiv:1912.10741].
[18] C. Zemach, *Three pion decays of unstable particles*, Phys. Rev. **133** (1964) B1201.

[19] LHCb collaboration, R. Aaij *et al.*, *Observation of several sources of CP violation in \(B^+ \to \pi^+\pi^+\pi^- \) decays*, Phys. Rev. Lett. **124** (2020) 031801, arXiv:1909.05211.

[20] S. Bianco, F. L. Fabbri, D. Benson, and I. Bigi, *A Cicerone for the physics of charm*, Riv. Nuovo Cim. **26N7** (2003) 1, arXiv:hep-ex/0309021.

[21] I. Shipsey, *Status of charm flavor physics*, Int. J. Mod. Phys. **A21** (2006) 5381, arXiv:hep-ex/0607070.

[22] M. Artuso, B. Meadows, and A. Petrov, *Charm meson decays*, Ann. Rev. Nucl. Part Sci **58** (2008) 249.

[23] S. Bianco and I. I. Bigi, *2019 Lessons from \(\tau(\Omega^0_c) \) and CP asymmetry in charm decays*, arXiv:2001.06908.

[24] Y. Grossman and S. Schacht, *The emergence of the \(\Delta U = 0 \) rule in charm physics*, JHEP **07** (2019) 020, arXiv:1903.10952.

[25] H.-N. Li, C.-D. L, and F.-S. Yu, *Implications on the first observation of charm CPV at LHCb*, arXiv:1903.10638.

[26] H.-Y. Cheng and C.-W. Chiang, *Revisiting CP violation in \(D \to PP \) and VP decays*, Phys. Rev. D **100** (2019) 093002, arXiv:1909.03063.

[27] L. Calibbi, T. Li, Y. Li, and B. Zhu, *Simple model for large CP violation in charm decays, B-physics anomalies, muon g-2, and Dark Matter*, arXiv:1912.02676.

[28] M. Chala, A. Lenz, A. V. Rusov, and J. Scholtz, *\(\Delta A_{CP} \) within the Standard Model and beyond*, JHEP **07** (2019) 161, arXiv:1903.10490.

[29] A. Dery and Y. Nir, *Implications of the LHCb discovery of CP violation in charm decays*, JHEP **12** (2019) 104, arXiv:1909.11242.

[30] Y. Grossman, A. L. Kagan, and Y. Nir, *New physics and CP violation in singly Cabibbo suppressed D decays*, Phys. Rev. D **75** (2007) 036008, arXiv:hep-ph/0609178.

[31] I. I. Bigi, *Probing CP Asymmetries in Charm Baryons Decays*, arXiv:1206.4554.

[32] Y. Grossman and S. Schacht, *U-Spin Sum Rules for CP Asymmetries of Three-Body Charmed Baryon Decays*, Phys. Rev. D **99** (2019) 033005, arXiv:1811.11188.

[33] X.-D. Shi *et al.*, *Prospects for CP and P violation in \(\Lambda^+ \) decays at Super Tau Charm Facility*, Phys. Rev. D **100** (2019) 113002, arXiv:1904.12415.

[34] D. Wang, *Sum rules for CP asymmetries of charmed baryon decays in the \(SU(3)_F \) limit*, Eur. Phys. J. C **79** (2019) 429, arXiv:1901.01776.

[35] I. Bediaga *et al.*, *On a CP anisotropy measurement in the Dalitz plot*, Phys. Rev. D **80** (2009) 096006, arXiv:0905.4233.
[36] M. Williams, *How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics*, JINST 5 (2010) P09004, arXiv:1006.3019.

[37] N. Henze, *A multivariate two-sample test based on the number of nearest neighbor type coincidences*, The Annals of Statistics 16 No 2 (1988) 772.

[38] M. F. Schilling, *Multivariate two-sample tests based on nearest neighbors*, J. Am. Stat. Assoc. 81 (1986) 799.

[39] LHCb collaboration, R. Aaij et al., *Search for CP violation in the decay D⁺ → π⁻π⁺π⁺*, Phys. Lett. B728 (2014) 585, arXiv:1310.7953.

[40] LHCb collaboration, A. A. Alves Jr. et al., *The LHCb detector at the LHC*, JINST 3 (2008) S08005.

[41] LHCb collaboration, R. Aaij et al., *LHCb detector performance*, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.

[42] T. Sjöstrand, S. Mrenna, and P. Skands, *A brief introduction to PYTHIA 8.1*, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.

[43] I. Belyaev et al., *Handling of the generation of primary events in Gauss, the LHCb simulation framework*, J. Phys. Conf. Ser. 331 (2011) 032047.

[44] D. J. Lange, *The EvtGen particle decay simulation package*, Nucl. Instrum. Meth. A462 (2001) 152.

[45] P. Golonka and Z. Was, *PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays*, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[46] Geant4 collaboration, J. Allison et al., *Geant4 developments and applications*, IEEE Trans. Nucl. Sci. 53 (2006) 270.

[47] M. Clemencic et al., *The LHCb simulation application, Gauss: Design, evolution and experience*, J. Phys. Conf. Ser. 331 (2011) 032023.

[48] Particle Data Group, M. Tanabashi et al., *Review of particle physics*, Phys. Rev. D98 (2018) 030001.

[49] BaBar collaboration, B. Aubert et al., *A search for CP violation and a measurement of the relative branching fraction in D⁺ → K⁻K⁺π⁺ decays*, Phys. Rev. D71 (2005) 091101, arXiv:hep-ex/0501075.

[50] BaBar collaboration, B. Aubert et al., *Search for CP violation in neutral D meson Cabibbo-suppressed three-body decays*, Phys. Rev. D78 (2008) 051102, arXiv:0802.4035.

[51] LHCb collaboration, R. Aaij et al., *Search for CP violation in D⁺ → K⁻K⁺π⁺ decays*, Phys. Rev. D84 (2011) 112008, arXiv:1110.3970.

[52] LHCb collaboration, R. Aaij et al., *Observation of the Λ_b → J/ψpπ⁻ decay*, JHEP 07 (2014) 103, arXiv:1406.0755.
[53] LHCb collaboration, R. Aaij et al., Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays, JHEP 07 (2014) 041, arXiv:1405.2797.

[54] LHCb collaboration, R. Aaij et al., Study of the $D^0 p$ amplitude in $Λ_b \rightarrow D^0 p\pi^-$ decays, JHEP 05 (2017) 030, arXiv:1701.07873.
LHCb collaboration

R. Aaij, C. Abellán Beteta, T. Ackernley, B. Adeva, M. Adinolfi, H. Afsharhnia, C.A. Aidala, S. Aiola, Z. Ajaltouni, S. Akaishi, P. Albicocco, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, G. Alkhazov, P. Alvarez Cartelle, A.A. Alves Jr, S. Amato, Y. Anhissi, L. An, L. Andersen, G. Andreassi, M. Andreotti, F. Archilli, J. Arnau Romeu, A. Artamonov, M. Artuso, K. Arzumanyan, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, J.J. Back, S. Baker, V. Balagura, W. Baldini, A. Baranov, R.J. Barlow, S. Barsuk, W. Bartel, M. Bartolini, F. Baryshnikov, J.M. Basels, G. Bassi, V. Batskovszky, B. Batsukh, A. Battig, V. Battista, A. Bay, M. Becker, F. Bedeschi, I. Bediaga, A. Beiter, L.J. Bel, V. Belavin, S. Belin, N. Beliy, V. Beller, K. Belous, I. Belyaev, G. Bencivenni, E. Ben-Haim, S. Benson, S. Beranek, A. Berzhnoy, R. Bernet, D. Berninghoff, H.C. Bernstein, C. Bertella, E. Bertholet, A. Bertolini, C. Betancourt, F. Betti, M.O. Bettler, Ia. Bezhlyiko, S. Bhasin, J. Bhom, M.S. Biekert, S. Bifani, P. Billois, A. Birnkraut, A. Bizzeti, M. Bjorn, M.P. Blaigo, T. Blake, F. Blanc, S. Blusk, D. Bobulská, V. Bocci, O. Boente Garcia, T. Boettcher, A. Boldyrev, A. Bondar, N. Bondar, S. Borghi, M. Borisyak, M. Borsato, J.T. Borsuk, M. Boudibdi, T.J.V. Bowcock, C. Bozzi, M.J. Bradbury, S. Braun, A. Brea Rodriguez, M. Brodzicka, J. Brodzicka, A. Brossa Gonzalo, D. Brundu, E. Buchanan, A. Bückler-Germann, A. Buonaura, C. Burt, A. Bursche, A. Butkevich, J.S. Butter, J. Buylaert, W. Byczynski, S. Caddeo, H. Cali, R. Calabrese, L. Calero Diaz, S. Cali, R. Calladine, M. Calvi, M. Calvo Gomez, P. Camargo Magalhaes, A. Camboni, P. Campana, D.H. Campera Perez, A.F. Campoverde Quezada, L. Capriotti, A. Carboni, G. Carboni, R. Cardinale, A. Cardini, I. Carlí, P. Carniti, K. Carvalho Akiba, A. Casais Vidal, G. Casse, M. Cattaneo, G. Cavalleri, S. Celani, R. Cenci, J. Cerasoli, M.G. Chapman, M. Charles, Ph. Charpentier, G. Chatzikonstantinidis, M. Chefdieville, V. Chekalina, C. Chen, S. Chen, A. Chernov, S.-G. Chitic, V. Chobanova, S. Cholak, M. Chrzaszcz, A. Chubykin, P. Ciambrone, M.F. Ciclai, X. Cid Vidal, G. Ciezarek, F. Cindolo, P.E.L. Clarke, M. Clemencic, H.V. Cliff, J. Closier, J.L. Cobbledick, V. Coco, J.A.B. Coelho, J. Cogan, E. Cogneras, L. Cojocariu, M. Collins, T. Colombo, A. Comerma-Montells, A. Contu, N. Cooke, G. Coombs, S. Coquereau, G. Corti, C.M. Costa Sobral, B. Couturier, G.A. Cowan, D.C. Craik, J. Crkovská, A. Crocombe, M. Cruz Torres, R. Currie, C.L. Da Silva, E. Dall’Occo, J. Dalseno, C. D’Ambroggi, A. Danilina, P. d’Argent, A. Davis, O. De Aguiar Francisco, K. De Bruyn, S. De Capua, M. De Cian, J.M. De Miranda, L. De Paula, M. De Serio, D. De Simone, J.A. de Vries, C.T. Dean, W. Dean, D. Decamp, L. Del Buono, B. Delaney, H.-P. Dembinski, M. Demmer, A. Dendek, V. Denysenko, D. Derkach, O. Deschamps, F. Desesse, F. Dettor, B. Dev, A. Di Canto, P. Di Nezza, S. Didenko, H. Dijkstra, V. Dobishuk, F. Dordet, M. Dorigo, A.C. dos Reis, A. Dosil Suárez, L. Douglas, A. Dovbynia, K. Dreimanis, M.W. Dudek, G. Dujany, P. Durante, J.M. Durham, D. Dutta, R. Dzhelyadin, M. Dworschick, A. Dziala, A. Dzyuba, S. Easo, U. Egede, V. Egorychev, S. Eidelman, S. Eisenhardt, R. Ekelhof, S. Ek-In, L. Eklund, S. Ely, A. Ene, E. Epple, S. Escher, S. Essen, T. Evans, A. Falabella, J. Fan, Y. Fan, N. Farley, S. Farry, D. Fazzini, P. Fedin, M. Féo, P. Fernandez Declara, A. Fernandez Prieto, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, S. Ferreiro, M. Ferrilhó, M. Ferro-Luzzi, S. Filipov, R.A. Fini, M. Fiorini, M. Firlej, K.M. Fischer, C. Fitzpatrick, T. Fiuwowski, F. Fleuriet, M. Fontana, F. Fontanelli, R. Forty, V. Franco Lima, M. Franco Sevilla, M. Frank, C. Frei, D.A. Friday, J. Fu
M. Mulder, D. Müller, J. Müller, K. Müller, V. Müller, C.H. Murphy, D. Murray, P. Muzzetto, P. Naik, T. Nakada, R. Nandakumar, A. Nandi, T. Namit, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, R. Newcombe, T.D. Nguyen, C. Nguyen-Mau, E.M. Niell, S. Nieswand, N. Nikitin, N.S. Nolte, C. Nunez, A. Oblakowska-Mucha, V. Obraztsov, S. Ogilvy, D.P. O’Hanlon, R. Oldeman, C.J.G. Onderwater, J.D. Osborn, A. Ossowska, J.M. Otalora Goicochea, T. Osviannikova, P. Owen, A. Oyanguren, P.R. Pais, T. Pajero, A. Palano, M. Palutan, G. Panshin, A. Papageorgiou, M. Pappagallo, L.L. Pappalardo, W. Parker, C. Parkes, G. Passaleva, A. Pastore, M. Patel, C. Patrignani, A. Pearce, A. Pellengrino, G. Penzo, M. Pepe Altarelli, S. Perazzini, D. Vieira, C.B. Van Hulse, R. Santacesaria, N. Sahoo, G.J. Pomery, M. Poli Lener, C.J.G. Onderwater, P. Spradlin, M.H. Schune, B. Schmidt, S. Richards, F. Reiss, F. Ratnikov, B. Rachwal, M. Petruzzo, B. Pietrzyk, G. Pietrzyk, M. Pikies, M. Pil, D. Pinci, J. Pinzino, F. Pisani, A. Piucci, V. Placinta, S. Player, J. Plews, M. Plo Casasus, F. Polci, M. Poli Lener, M. Poliakova, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, G.J. Pomeroy, P. Sone, D. Popov, S. Poslavskii, K. Prasanth, L. Promberger, C. Prouve, V. Pugatch, A. Puig Navarro, H. Pullen, G. Puzer, W. Qian, J. Qin, R. Quagliani, B. Quintana, N.V. Raab, R.I. Rabdan Trejo, B. Rachwal, J.H. Rademacker, M. Rama, M. Ramos Pernas, M.S. Rangel, F. Ratnikov, G. Ravei, M. Ravonel Salzgeber, M. Reboud, F. Redi, S. Reichert, F. Reiss, C. Remon Alepuz, Z. Ren, V. Renaudin, D. Popov, M. Poliakova, J. Qin, C. Satriano, C. Sanchez Gras, A. Seuthe, A. Schopper, M. Roehrken, S. Sattayavej, A. Satta, M. Saur, D. Savrina, L.G. Scantlebury Smead, S. Schael, M. Schellenberg, M. Schiller, H. Schindler, M. Schmelling, T. Schmelzer, B. Schmidt, O. Schneider, A. Schopper, H.F. Schreiner, M. Schubiger, S. Schulte, M.H. Schune, R. Schwemmer, B. Sciascia, A. Sciuoppa, S. Sellam, A. Semennikov, A. Serg, N. Serra, J. Serrano, A. Senn, J. Serrano, L. Sestini, A. Seute, P.elsey, D.M. Shangase, M. Shapkin, L. Shchutska, T. Shears, L. Shekhtman, V. Shevchenko, E. Shmian, J.D. Shuppler, B.G. Siddi, R. Silva Coutinho, L. Silva de Oliveira, G. Simi, S. Simone, S. Skiba, N. Skidmore, T. Skwarnicki, M.W. Slater, J.G. Smeaton, A. Smetkina, E. Smith, I.T. Smith, M. Smith, A. Snoch, M. Soares Lavra, M.D. Sokoloff, F.J.P. Soler, B. Souza De Paula, B. Spaan, E. Spadaro Norella, P. Spradlin, F. Stagni, M. Stahl, S. Stahl, P. Stefoke, S. Stefoke, O. Steinkamp, S. Stemmle, O. Stenyakin, M. Stepanova, H. Stevens, S. Stone, S. Stracka, M.E. Stramaglia, M. Straticiuc, U. Straumann, S. Strokow, J. Sun, L. Sun, Y. Sun, P. Svilara, K. Slientek, A. Szabelski, T. Szumlak, M. Szmyński, S. Taneja, Z. Tang, T. Tekampe, G. Tellarin, F. Teubert, E. Thomas, K.A. Thomson, M.J. Tilley, V. Tisserand, T. J. T’Jampens, M. Tobin, S. Tolk, L. Tomassetti, D. Tonelli, D. Torres Machado, D.Y. Tou, E. Tourneier, M. Traill, M.T. Tran, E. Trifonova, C. Tripli, A. Trisovic, A. Tsaregorodtsev, G. Tuci, A. Tully, N. Tuning, A. Ukleja, A. Usachov, A. Ustyuzhanin, U. Uwer, A. Vagner, V. Vagnoni, A. Valassi, S. Valat, G. Valent, M. van Beuzekom, H. Van Hecke, E. van Herwijnen, C.B. Van Hulse, J. van Tilburg, M. van Veghel, R. Vazquez Gomez, P. Vazquez Regreiro, C. Vázquez Sierra, S. Vecchi, J.J. Velthuis, M. Velt, A. Venkateswaran, M. Vernet, M. Veronese, M. Vesterinen, J.V. Viana Barbosa, D. Vieira, M. Vieites Diaz, H. Viemann, V. Vilas-Cardona, A. Vitkovskiy.
A. Vollhardt, D. Vom Bruch, B. Voneki, A. Vorobyev, V. Vorobyev, N. Voropaev, R. Walld, J. Walsh, J. Wang, J. Wang, M. Wang, Y. Wang, Z. Wang, D.R. Ward, H.M. Wark, N.K. Watson, D. Websdale, A. Weiden, C. Weisser, B.D.C. Westhenry, D.J. White, M. Whitehead, D. Wiedner, G. Wilkinson, M. Wilkinson, I. Williams, M. Williams, M.R.J. Williams, T. Williams, F.F. Wilson, M. Winn, W. Wislicki, M. Witek, L. Witola, G. Wormser, S.A. Wotton, H. Wu, K. Wyllie, Z. Xiang, D. Xiao, Y. Xie, H. Xing, A. Xu, J. Xu, L. Xu, M. Xu, Q. Xu, Z. Xu, Z. Xun, Z. Yang, Z. Yang, Y. Yao, L.E. Yeomans, H. Yin, J. Yu, X. Yuan, O. Yushchenko, K.A. Zarebski, M. Zavertexi, M. Zeng, D. Zhang, L. Zhang, S. Zhang, W.C. Zhang, Y. Zhang, A. Zhelezov, Y. Zheng, X. Zhou, Y. Zhou, X. Zhu, V. Zhukov, J.B. Zonneveld, S. Zucchielli.

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
5 University of Chinese Academy of Sciences, Beijing, China
6 Institute Of High Energy Physics (IHEP), Beijing, China
7 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
9 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
10 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
11 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
12 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
13 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
14 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
15 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
16 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
17 School of Physics, University College Dublin, Dublin, Ireland
18 INFN Sezione di Bari, Bari, Italy
19 INFN Sezione di Bologna, Bologna, Italy
20 INFN Sezione di Ferrara, Ferrara, Italy
21 INFN Sezione di Firenze, Firenze, Italy
22 INFN Laboratori Nazionali di Frascati, Frascati, Italy
23 INFN Sezione di Genova, Genova, Italy
24 INFN Sezione di Milano-Bicocca, Milano, Italy
25 INFN Sezione di Milano, Milano, Italy
26 INFN Sezione di Cagliari, Monserrato, Italy
27 INFN Sezione di Padova, Padova, Italy
28 INFN Sezione di Pisa, Pisa, Italy
29 INFN Sezione di Roma Tor Vergata, Roma, Italy
30 INFN Sezione di Roma La Sapienza, Roma, Italy
31 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
32 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
33 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
34 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35 National Center for Nuclear Research (NCBJ), Warsaw, Poland
36 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
37 Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
38 Institute of Theoretical and Experimental Physics NRC Kurchalov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia
39 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
40 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
41 Yandex School of Data Analysis, Moscow, Russia
42 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
43 Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
44 ICCUB, Universitat de Barcelona, Barcelona, Spain
45 Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
46 Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
47 European Organization for Nuclear Research (CERN), Geneva, Switzerland
48 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
49 Physik-Institut, Universität Zürich, Zürich, Switzerland
50 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
51 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
52 University of Birmingham, Birmingham, United Kingdom
53 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
54 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
55 Department of Physics, University of Warwick, Coventry, United Kingdom
56 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
57 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
58 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
59 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
60 Imperial College London, London, United Kingdom
61 Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
62 Department of Physics, University of Oxford, Oxford, United Kingdom
63 Massachusetts Institute of Technology, Cambridge, MA, United States
64 University of Cincinnati, Cincinnati, OH, United States
65 University of Maryland, College Park, MD, United States
66 Los Alamos National Laboratory (LANL), Los Alamos, United States
67 Syracuse University, Syracuse, NY, United States
68 Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria, associated to
69 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
70 Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to
71 School of Physics and Technology, Wuhan University, Wuhan, China, associated to
72 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia, associated to
73 Institut für Physik, Universität Rostock, Rostock, Germany, associated to
74 Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to
75 National Research Centre Kurchatov Institute, Moscow, Russia, associated to
76 National University of Science and Technology “MISIS”, Moscow, Russia, associated to
77 National Research University Higher School of Economics, Moscow, Russia, associated to
78 National Research Tomsk Polytechnic University, Tomsk, Russia, associated to
79 University of Michigan, Ann Arbor, United States, associated to
80 Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
81 Laboratoire Leprince-Ringuet, Palaiseau, France
82 P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
83 Università di Bari, Bari, Italy
84 Università di Bologna, Bologna, Italy
85 Università di Cagliari, Cagliari, Italy
86 Università di Ferrara, Ferrara, Italy
87 Università di Genova, Genova, Italy
88 Università di Milano Bicocca, Milano, Italy
89 Università di Roma Bocca, Roma, Italy
90 Università di Roma La Sapienza, Roma, Italy
91 AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
m DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain
n Hanoi University of Science, Hanoi, Vietnam
o Università di Padova, Padova, Italy
p Università di Pisa, Pisa, Italy
q Università degli Studi di Milano, Milano, Italy
r Università di Urbino, Urbino, Italy
s Università della Basilicata, Potenza, Italy
t Scuola Normale Superiore, Pisa, Italy
u Università di Modena e Reggio Emilia, Modena, Italy
v Università di Siena, Siena, Italy
w MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
x Novosibirsk State University, Novosibirsk, Russia
y INFN Sezione di Trieste, Trieste, Italy
z Physics and Micro Electronic College, Hunan University, Changsha City, China
† Deceased