Metabolic networks of the Nicotiana genus in the spotlight: content, progress and outlook

Hartmut Foerster, James N.D. Battey, Nicolas Sierro, Nikolai V. Ivanov and Lukas A. Mueller

Abstract
Manually curated metabolic databases residing at the Sol Genomics Network comprise two taxon-specific databases for the Solanaceae family, i.e. SolanaCyc and the genus Nicotiana, i.e. NicotianaCyc as well as six species-specific databases for Nicotiana tabacum TN90, N. tabacum K326, Nicotiana benthamiana, N. sylvestris, N. tomentosiformis and N. attenuata. New pathways were created through the extraction, examination and verification of related data from the literature and the aid of external database guided by an expert-led curation process. Here we describe the curation progress that has been achieved in these databases since the first release version 1.0 in 2016, the curation flow and the curation process using the example metabolic pathway for cholesterol in plants. The current content of our databases comprises 266 pathways and 36 superpathways in SolanaCyc and 143 pathways plus 21 superpathways in NicotianaCyc, manually curated and validated specifically for the Solanaceae family and Nicotiana genus, respectively. The curated data have been propagated to the respective Nicotiana-specific databases, which resulted in the enrichment and more accurate presentation of their metabolic networks. The quality and coverage in those databases have been compared with related external databases and discussed in terms of literature support and metabolic content.

Key words: taxon-specific databases; manual curation; data quality; literature coverage; database development

Introduction
High-quality databases that store, manage and make large datasets readily accessible to a broad variety of biological analyses have taken a central place in bioinformatics [1, 2]. The ever-increasing flow of data from Omics, high-throughput and next-generation technologies, and the need to translate those raw data into meaningful biological information require the continuous development of databases, which are up to the task of handling those emerging new challenges [3]. The value of a biological database is defined by its curation status. Manually curated databases maintained by highly trained biocurators represent the gold standard of databases, which stands for high quality and verifiable data, supported by original research publications, easy access, compatibility with other resources and comparability of data that allow deeper insights and new discoveries [4].
A number of metabolic databases have been established addressing this growing need for repositories that host and manage and curate high-quality data published by the scientific community. Such databases provide not only an overview of the latest state in the respective research field, but also offer the tools to supplement experimental findings with bioinformatics analyses. A broad variety of such databases with a different focus and functionality exist. Human metabolic databases such as Reactome [5] and Recon 1 [6] focus on human proteins and their molecular functions [7] and genome-scale metabolic modeling [8, 9] to unravel the human metabolic network. MapMan [10] represents a framework of annotated metabolic, regulatory and signaling processes in plants, designed to overlay metabolic networks with Omics data obtained from multiple resources [11]. However, with regard to the coverage of general metabolism two databases stand out. One is the Kyoto Encyclopedia of Genes and Genomes, which projects biological processes from various organisms onto pathways consolidated in large network schemata [12]. The other one is the database system of the Pathway Tools suite [13, 14], creating Pathway/Genome Databases (PGDBs) that visualize and provide comments on reactions, compounds, enzymes, genes and regulatory aspects in pathways diagrams [15, 16]. The PGDBs provide a repertory of applications aiding functional analyses such as feeding Omics data to individual pathways or the entire metabolic map of the species [17–19], metabolic flux analysis [20], the pathway collage tool for the customized presentation of pathways and their components [21], SmartTable capability [22], and comprehensive search and querying options for exploring metabolic networks [23].

MetaCyc is the principal pathway database, which contains all the reference pathways used for predicting metabolic networks for organisms with annotated genomes [24]. Several thousands of derivative databases have been created since the inception of MetaCyc, but only very few of them are manually curated and maintained at the highest standard of curation, which corresponds to the Tier 1 specification of continually updated and intensively curated databases [15]. Among them is AraCyc, one of the first species-specific PGDBs created for plants [25, 26]. Whereas the overwhelming majority of derivative plant PGDBs is species-specific databases, a few databases represent higher taxonomic ranks. PlantCyc (http://www.plantcyc.org/) is a kingdom-level database, which contains the metabolic information from more than 350 plant species and is used, besides MetaCyc, as a supplementary reference database for the prediction of more plant-specific databases in the Plant Metabolic Network (PMN) [27]. The latest addition to manually curated taxon-specific databases is hosted at the Sol Genomics Network (SGN) (https://solgenomics.net/) [28, 29] on the SolCyc site (https://solgenomics.net/pages/solcyc/) and comprises, among others, the family-specific SolanaCyc database, containing all experimentally verified metabolic data of the Solanaceae family and the genus-specific NicotianaCyc database, which holds the corresponding metabolic information for the Nicotiana genus [30].

Metabolism is fundamentally important for understanding life processes. Numerous enzymatically catalyzed reactions convert a multitude of compounds within a defined network of primary and specialized metabolites that is similar but not identical between plant species. FMsN have evolved over time into a complexity unrivaled among any organisms [31]. Those networks are constantly refined and modified by underlying evolutionary pressures, which still elude our full understanding [32]. A large part of that complexity is due to the production of highly divergent specialized metabolites, which are not ubiquitously found in the plant kingdom, but are often restricted to particular plant families, genera or even species of certain lineages [33–36]. The estimated numbers of plant specialized metabolites range from more than 200 000 [37] up to 1 million different natural products [38]. Of the 1 million metabolites only about 1.4% (~14 000) have been characterized and can be measured. Even taking the more conservative estimate of 200 000 specialized metabolites into account still only amounts to merely 7% of identified compounds in plants [39].

One of the reasons for the huge diversity of specialized metabolites lies in the multi-specificity or even promiscuity of the catalyzing enzymes [40, 41], which has been developed over time [42] and reflects the remarkable adaptability of terrestrial plants conquering new habitats [43]. Enzymes catalyzing specialized metabolites often display broad metabolic activities resulting in an astounding array of natural products [44]. For instance, the gamma-humulene synthase of Abies grandis is able to synthesize 52 sesquiterpene olefins [45], and the gibberellin biosynthetic pathway produces 136 products, of which only a few have an established biological activity [46]. The effort to capture the diversity of plant specialized metabolism is mirrored in the curation efforts of various metabolic databases. The current versions of databases, which only contain curated pathways such as MetaCyc, PlantCyc, SolanaCyc and NicotianaCyc, have a share of specialized metabolite pathways of 30.3, 49.9, 50.0 and 35.7%, respectively. That percentage in relation to all other metabolic pathways makes specialized metabolites the compound category with the most curated entries in those databases.

In this publication, we describe the progress made in the manual curation of SolCyc databases (https://solgenomics.net/pages/solcyc/). We added one more Nicotiana-specific database for Nicotiana attenuata to the SolCyc database collection, which brings the count of manually supervised databases under the umbrella of SolCyc to two taxon-specific databases, i.e. SolanaCyc and NicotianaCyc, and six Nicotiana-specific databases for N. tabacum TN90, N. tabacum K326, N. sylvestris, N. tomentosiformis, Nicotiana benthamiana and N. attenuata. Using the cholesterol biosynthesis in plants as an example, we illustrate curation progress made on pathways and, consequently, the associated complementation of the inherent metabolic grid, which extends toward related pathways such as the biosynthesis of the steroidal glycoalkaloids solasodine and alpha-tomatine. We also discuss the curation flow and exchange of data with the reference database MetaCyc, look at pathway curation quality and enzyme coverage between in-house and external databases and compare the metabolic networks of the Nicotiana-specific databases. The curation effort in our databases has contributed to a more complete, enriched and accurate representation of their metabolic networks and will continue to enhance the range and pathway predictability of MetaCyc to which all pathways will ultimately be submitted.

Material and methods

Nicotiana genomes reannotation

The assemblies for N. tabacum accession TN90 (GCA_000715135.1), N. sylvestris (GCF_00059655.1) and N. tomentosiformis (GCF_000390325.2) were downloaded from National Center for Biotechnology Information (NCBI) assembly (https://www.ncbi.nlm.nih.gov/assembly) [A. Bombarely, unpublished results, 47, 48]. Previous messenger ribonucleic acid (mRNA) annotations for each of the genomes were downloaded from the SGN
results and discussion

The main curation effort in SolCyc databases is directed toward enriching metabolic pathways with experimentally verified data for genes, enzymes, compounds and reactions. Of the 10 main metabolic categories defined in MetaCyc-derived databases, basic biosynthetic pathways account for close to 60% of the curated data in selected taxon-specific databases. The remainder can be assigned to the other categories, whose contributions are usually in the single-digit percentage range (Supplementary Table S1). These data are consistent with previously reported results [30]. MetaCyc constantly extends the breadth and depth of objects curated in the database [54], which also contains cellular processes such as histone modification and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) metabolism that have been curated for both bacteria and mammals but not for plants. All changes are routinely propagated to our SolCyc databases, reviewed and implemented where they apply.

The curation process in Solanaceae metabolic databases derived from the MetaCyc reference database follows the recommendations outlined in the curator guide for PGDBs [53]. The SolCyc databases are open source databases and as such open to review by the public and scientific community. Biocuration is an important part of managing the process of biological information with the overall objective to share data of value with scientists in respective research areas. The value of data is generally defined by its correctness, integrity, accessibility, scope and ease of use [55]. As researchers increasingly rely on curated data in the transformation of communication and information to the digital era, we strive to make sure to consistently provide data of high quality and dependability. The curation effort is focused on the goal to provide data pertinent to the scope of the database and to make these repositories valuable resources to researchers.

Our main databases for curating pathways are the taxon-specific databases SolanaCyc and NicotianaCyc. In these databases, the creation of new and the revision of existing pathways take place, which subsequently are propagated to the corresponding organism-specific databases for Nicotiana species [30]. The curation process for the creation of a new pathway can generally be divided into four parts and is shown in the flow chart of Figure 1. Phase I focuses on extracting information about target species and the desired metabolic area from the scientific literature. External databases such as NCBI’s PubMed (https://www.ncbi.nlm.nih.gov/pubmed) [56] and Google Scholar (https://scholar.google.com/) are valuable resources for finding peer-reviewed original publications and review articles, which allow the retrieval and aggregation of new data that are then used for the design of a temporary pathway layout. In phase II the study of the more specific literature and tapping into external databases provides information about reactions, enzymes, genes and compounds. For the validation of chemical compound structures various resources such as ChEBI [57], ChemSpider [58, 59] or PubChem [60] are used. In order to maintain the high curation standard for the accuracy of chemical structures and exchangeability of data between PGDBs, all compounds are created in MetaCyc and subsequently exported into the SolCyc databases. Before each new MetaCyc release, all compounds are subjected to rigorous structural checks to ensure consistency and correctness of the chemical structures in the database.

For the final draft of the newly created pathway, MetaCyc is checked for existing reactions, which, if needed, are exported into the databases. New reactions are created in the curation databases SolanaCyc and NicotianaCyc, where also the final assembly of the pathway takes place. Published data for enzymes and genes obtained from the literature are cross-checked with external databases, for example GenBank [61] and UniProt [62], and linked to respective reactions. In phase III the newly created pathways are furnished with the extracted chemical, enzymatic and genetic information. Furthermore, gene ontology terms [63] are used to annotate the molecular function, biological process and sub-cellular location of gene products. Enzymatically catalyzed reactions are associated with full or partial EC numbers according to the guidelines of the Enzyme Nomenclature (NC-IUBMB) [64] to characterize the
Figure 1. Flow chart of the curation process in the manually curated taxon-specific databases SolanaCyc and NicotianaCyc. External resources used for curation have been highlighted and referenced in the text.

Development of taxon-specific databases at SGN

The SolanaCyc database was the first manually curated database created at SGN using the Pathway Tools suite software package [13, 14] and MetaCyc [15, 16] as metabolic reference database. The inception of the family-level SolanaCyc database took place in December 2015, followed by the creation of the second taxon-specific database NicotianaCyc in June 2016. An overview of the growth of the two databases in-depth and breadth from their initiation (version 1.0) up to the current release version 2.6 in October 2019 is given in Table 1. Due to the higher number of pathways available from MetaCyc for all members of the nightshade family, SolanaCyc started out with a better basic coverage of metabolic data than the genus-specific NicotianaCyc. Between version 1.0 and version 2.6, the number of metabolic pathways in SolanaCyc slightly increased by 97 metabolic pathways, which was somewhat lower than the growth in NicotianaCyc with 125 newly added metabolic pathways. Currently, the curation in all our databases focuses on Nicotiana species, which explains the overall higher numbers for the increase of metabolic data accrued in NicotianaCyc. A special effort was made in the curation of transporters responsible for the uptake of heavy metals, nutrients and specialized metabolites and their distribution within plants, which is reflected in the high number of curated transporters. Heavy metals are systemic toxicants and classified as known or probable human carcinogens [65]. Heavy metals affect human health through oxidative stress, DNA damage and the acceleration of cell death, which leads to a higher susceptibility to cancer and cancer-like diseases [66]. Plants are known to accumulate heavy metals, which means that these compounds are often ingested through plant-based foods. On the other hand, this ability of the plants to accumulate is used in the phytoremediation of heavy metals from contaminated soils [67]. Both aspects underline the importance of knowing how heavy metals are absorbed and distributed in plants.

The cumulative statistics for each release, for both curated pathways and enzymes in SolanaCyc and NicotianaCyc, are shown in Figure 2. Currently the 143 pathways curated for Nicotiana species account for 53.8% of all the pathways present in the family-specific database SolanaCyc, which is a significant
increase from the 10.7% ascertained in version 1.0. Similarly, the percentage of curated Nicotiana-specific enzymes in SolanaCyc increased from 12.4 to 41.2%. In other words, although in version 1.0 about every 8th curated enzyme was contributed by Nicotiana species, version 2.6 shows that every 2.4th enzyme now belongs to Nicotiana-curated enzymes.

The comparison of curated pathways between 2016 and 2019 (Supplementary Table S2) shows the growing number of curated pathways for the various species contributing metabolic data to SolanaCyc. Not unexpectedly, the highest increase of 91.7% in the number of curated metabolic pathways has been realized for N. tabacum, followed by Solanum lycopersicum pathways with a rise of 59.8%. Also, the increase of curated pathways associated with a number of economically important species gathered in the SolanaCyc database such as S. tuberosum (44.6%), Petunia x hybrida (52%) and Capsicum annuum (50%) is significant. Among the Nicotiana species, 20 new pathways have been added to the species-specific database of N. benthamiana and 13 new pathways to the newly created PGDB of N. attenuata. Moreover, the coverage of species in the two taxon-specific databases has also been significantly improved. Previously, 27 species were covered, which comprised 9 genera in SolanaCyc, and the 8 species recorded in NicotianaCyc in version 1.0 [30]; these numbers have now risen to 42 species of 12 genera in SolanaCyc and 16 species in NicotianaCyc.

The impact of manual curation on the species-specific databases of Nicotiana is demonstrated in Figure 3. With the exception of the PGDB of N. tomentosiformis, a species for which no published pathway could be identified, the remaining 5 Nicotiana-specific databases were extensively curated and can, according to the BioCyc definition of curated databases, be considered as a Tier 1 category database [15]. The course of the curation curve for pathways in Figure 3 shows a significant drop of pathway numbers for the two N. tabacum databases of TN90 and K326 for the version 1.2 and for the remaining Nicotiana databases in version 1.4. This is related to the fact that at those times, a blacklist of metabolic pathways was applied, containing pathways that had been previously found to be invalid for solanaceous species. Although those pathways had been predicted by Pathway Tools using MetaCyc as reference, 156 pathways were invalidated as they have not been reported to occur in N. tabacum and other members of the Solanaceae family [30]. MetaCyc is a multi-specific database that curates pathways from all kingdoms of life and, based on the metabolic information collected, predicts metabolic networks in respective PGDBs. Many of the predicted pathways considered invalid
Figure 3. Curation progress in Nicotiana-specific databases over time. Filled icons represent the number of pathways present at the time of the respective release version. Empty icons mark the release version of the blacklist application referenced in the text. N. tabacum (TN90), N. tabacum (K326), N. benthamiana, N. sylvestris, N. attenuata, N. tomentosiformis.

for solanaceous plants had been identified through in-depth validation and confirmed to be specific for bacteria, fungi or metazoa, whereas others were pathways for specialized metabolites clearly not occurring in the nightshade family.

The recent curation process for the SolCyc databases (version 2.6) includes updating this blacklist of invalid pathways, supplemented by new pathways from MetaCyc that were erroneously imported during the automated prediction process. Out of 27 new pathways, 7 were declared invalid, 5 are specific to bacteria or Mammalia, one produces a specialized metabolite not present in Solanaceae and one lacks a key enzyme that is only found in lower photosynthetic organisms, but not in the highly evolved members of the Solanaceae family.

Figure 3 shows a steady increase of pathway numbers for both N. tabacum TN90 and K326, as well as for N. benthamiana. The progress of adding pathways to the N. attenuata database is not so obvious, due to the fact that N. attenuata specific pathways had already been curated before the creation of the database and deposited in NicotianaCyc. When the genome of N. attenuata became available [51], the corresponding database was created and updated with the curated metabolic pathways stored in NicotianaCyc in advance to the later conducted blacklist check.

Curation progress: an example—plant cholesterol biosynthesis

In contrast to animals, plants generally contain only diminutive amounts of cholesterol of about 1–2% of total sterols. As a consequence, the pathway was well characterized in animals but poorly understood in plants [68]. However, solanaceous plants can accumulate cholesterol to significantly higher levels [69] and may reach up to 12% of total sterols in N. benthamiana [70]. It was not until 2014 that the first committed enzyme involved in the biosynthesis of cholesterol in plants was characterized. This enzyme, the sterol side chain reductase 2 (SSR2) catalyzes a branch point reaction that channels the common precursor cycloartenol toward the cholesterol biosynthetic pathway instead to the formation of C-24 alkylerols [71]. That was the first indication that cholesterol biosynthesis occurs in plants, which in turn also supported studies that implicated the involvement of cholesterol in the biosynthesis of steroidal glycoalkaloids [72, 73]. At this time, the curation of the cholesterol pathway contained the one confirmed reaction as shown in Figure 4A, together with the conversion of another compound accepted by SSR2, i.e. desmosterol, which, however, is an intermediate for cholesterol in animals and does not occur in plants. Revisiting the pathway, after new literature pertinent to the cholesterol biosynthesis was published, allowed for the full elucidation of this pathway in plants. Eventually, the entire set of cholesterol genes was identified and used to decipher the reaction sequence required for the biosynthesis of cholesterol in plants [74, 75]. This is represented in the updated version of the cholesterol biosynthesis pathway (Figure 4B), which can now be freely accessed in both MetaCyc (https://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY18C3-1) and SolCyc databases (http://solcyc.solgenomics.net/SOLANA/NEW-IMAGE?type=PATHWAY&object=PWY18C3-1).
Despite earlier beliefs that cholesterol may not be a plant metabolite, free cholesterol and cholesterol esters have been detected in leaves and organelles of various plants [76], a finding that indicates that cholesterol is more widespread in the plant kingdom than originally thought. The probable occurrence of metabolic pathways in plants is indicated in SolCyc databases by the expected taxonomic range. In accordance with the relevant literature, the distribution of cholesterol biosynthesis was assigned to the taxonomic rank of the Viridiplantae. To our knowledge, with the exception of enzymes and coding genes characterized in S. lycopersicum and N. benthamiana, no reports of enzymes from other plant species involved in the cholesterol biosynthetic pathway have been published. This is not entirely surprising since cholesterol is the starting substrate from which steroidal glycoalkaloid pathways such as the solasodine (http://solcyc.solgenomics.net/SOLANA/NEW-IMAGE?type=PATHWAY&object=PWY18C3-2) and alpha-tomatine (http://solcyc.solgenomics.net/SOLANA/NEW-IMAGE?type=PATHWAY&object=PWY18C3-3) biosynthesis are derived [72, 73] and form compounds that are typically found in members of the Solanaceae family. Further research into cholesterol biosynthesis in plants outside the Solanaceae family is required to assess the general validity of the metabolic pathway in the plant kingdom or the classification of this metabolic pathway as a family or species-specific variant for the Solanaceae.

Many of the identified cholesterol biosynthetic enzymes were shown to behave in a promiscuous way and are equally active in related pathways such as the C-24 alkylerster biosynthesis. Enzyme promiscuity is often a hallmark of the formation of specialized metabolites. The operation of enzymes catalyzing reactions in both cholesterol and C-24 alkylerster pathways agrees with the evolutionary ‘patchwork’ hypothesis, which proposes that duplication and diversification events propel the evolution of ancestral enzymes with low substrate specificity into enzymes of new catalytic properties, which leads to the genesis of new pathways [42, 77, 78].

The pathway diagram of cholesterol biosynthesis provides the visualization of reactions, converting precursor compounds in a designated reaction sequence, associated enzymes and genes, and EC numbers and hyperlinks to related pathways. A ‘zoom-in’ functionality allows more detailed pathway information to be displayed and gives access to the detail pages of the various pathway elements. All of the curated enzymes are furnished with comments and links to external databases used for curation. The pathway summary finally provides a concise description of the salient points of the pathway, such as rate-limiting steps, key enzymes and regulation or stereochemistry of involved compounds, and lists the cited literature with links for access to the full publication (Figure 4B).

Coverage of pathways and enzymes in curated SolCyc databases

The release of MetaCyc (version 22.6) [16] listed 15 263 compounds in the database, which corresponds to about 1.5% of the 1 million metabolites estimated to exist in plants [38]. The arrival of new technologies permitting a much easier interpretation of big data obtained from transcriptomics, metabolomics and genomics experiments [79] opens the door for the discovery of novel reactions and pathways in plants [80]. Despite such new developments, we only possess a very limited knowledge about the underlying biosynthesis, which has been projected to cover about 0.1% of all biochemical pathways [81, 82]. It has been reported that single plant species can synthesize between 5000 and 20 000 primary and specialized metabolites [35]. As a consequence, even the best-curated databases can currently only
provide a glance at the entirety of plant metabolism. However, continued development and improvement of such databases by compiling the shared information from the scientific community will generate more comprehensiveness and is considered as an effective tool toward appreciable progress in understanding plant metabolism [83, 84].

The coverage of curated enzymes shown in Table 2 in Nicotiana-specific databases also reflects this current status. Among the species-specific databases for Nicotiana, proteins, predicted to function as enzymes, accounting for a share of all encoding genes in a range of 17.87% (N. sylvestris) to 32.93% (N. attenuata). Of those predicted enzymes, the percentage of curated proteins ranges between 0.079% (N. sylvestris) and 1.01% (N. tabacum TN90). A much higher percentage of curated enzymes versus predicted enzymes can be found in databases for the model organisms Saccharomyces cerevisiae (32.04%) and Homo sapiens (25.79%). It is important to note that the number of genes in the yeast genome is 5–12 times smaller than in Nicotiana species.
Apart from being much better studied in the literature than any other organism, the human genome, with about 20,000 genes, is also significantly smaller than any of the Nicotiana genomes. A similar picture as seen for the Nicotiana database curation emerges when comparing the coverage of curated enzymes versus predicted proteins of other plant species (Supplementary Table S3). Except for Arabidopsis thaliana, which is by far the best-curated plant species in the plant kingdom, and which accounts for 25.65% of curated proteins in their database, all other species from intensively curated plant databases such as rice, tomato, potato and corn are essentially in the same percentage range as the Nicotiana-specific databases. All of the listed databases in Supplementary Table S3 have been built with Pathway Tools and MetaCyc as reference database. The Gramene database was developed using the data structure of the Human Reactome project [5] and Oryza sativa as reference species. The curated genetic information from this database was used to derive orthology-based projections for other species, including crops and model plant species [85]. Although the Gramene database is structured differently to BioCyc databases and concentrates primarily on collecting information on individual reactions and their catalyzing enzymes, it provides valuable metabolic, genetic and genomic information [86, 87]. Such data enrich their own collection of plant metabolic pathway Cyc’s hosted at Gramene (http://pathway.granme.org/) and complement the efforts of other metabolically oriented databases to get a more complete picture of plant metabolism.

The value of a database depends very much on the quality and reliability of the stored data, which in turn indicate the usefulness of a database equipped with bioinformatics tools that allow querying, visualizing and analyzing tasks [88, 89]. One measure of high-quality data is the extent to which literature, based on experimental results, has been included in the curation process [90]. Table 3 summarizes to what degree pathways are supported by literature across a number of databases. High average numbers of processed literature per pathway have been found in MetaCyc (19.12), SolanaCyc (18.24) and NicotianaCyc (22.21), which corresponds to the high curation levels (99.9–100%) in those databases. Somewhat lower numbers of 9.37 publications per pathway have been determined in PlantCyc, which also reflects a high standard of curation (95.9%). Databases with a lower curation status such as S. tuberosum, S. lycopersicum and most of the Nicotiana-specific databases range an average of about 3–4 publications per pathway. The N. tabacum databases for the TN90 and K326 cultivar score a higher average number of 5–7 publications per pathway and also show a higher number of curated pathways of about 25% in comparison with at most 5% curated pathways in the remaining Nicotiana databases. The percentage of curated pathways refers to the number of paths with experimental evidence for which existence in the metabolic network of this organism is proven. Pathways predicted and propagated from MetaCyc to species-specific databases such as the N. tabacum databases are transferred without enzymes, genes or evidence codes curated in MetaCyc. After validating such pathways, findings from the published literature are used to furnish the pathways with the genes and enzymes of the respective species, which only then justifies marking the pathway as experimentally verified.

The results summarized in Table 3 must consider two factors. First is the observation that the respective databases cover different taxonomic areas. Although MetaCyc includes curated metabolic data from 2980 species across all kingdoms and PlantCyc covers the same for more than 350 plant species, SolanaCyc and NicotianaCyc contain the metabolic content from 42 and 16 species, respectively. It is therefore not unexpected that species-specific databases contain far fewer curated pathways due to the high number of predicted pathways with only marginal literature support. The high percentage of curated pathways in the multi-species MetaCyc reflects the fact that the pathways for one or more of the species in the database have been experimentally verified. This determination still has to be made in species-specific databases, which leads to a lower percentage of curated pathways due to highly specific and therefore more limited information available for this particular species. The second consideration is the period during which these databases were curated. MetaCyc has been in existence for 20 years, whereas PlantCyc was established in 2008. The curation of the first Nicotiana specific database started 2016. It can therefore be concluded that in the comparatively short time, in which the databases of SolCyc have been curated, the approach of utilizing taxonomy-specific databases such as SolanaCyc and NicotianaCyc for the metabolic enrichment of Solanum and Nicotiana specific databases has been successful.

Data downloads and portability

Downloading, transportability and programmatic access to data in databases created with Pathway Tools are provided via Application Programming Interfaces (APIs), including web-based analysis tools. Many of those tools are available in desktop and/or web server modes and Pathway Tools maintains a webpage of those services (https://biocyc.org/web-services.shtml). Downloads of BioCyc databases of interest are available but require the purchase of a license (https://biocyc.org/download.shtml).
Programmatic interfaces for the Pathway Tools software at the SGN can be found here (https://solgenomics.net/downloads/index.pl). Data in all databases created by Pathway Tools, such as the SolCyc databases, can be accessed via a variety of search and analysis options. A comprehensive description of these tools has been published [13] and is updated regularly [14]. Many of the data obtained by search and analysis can be stored in a Smart-Table [22] and accessed in JSON, XML or tab-delimited format. Pathway graphs or the metabolic overview with highlighted data can be exported to the Pathway collage tool [21] and saved in PNG format. Pathways accessed via web service can also be saved in BioPAX format for further analysis and display. Some of those tools and applications in Nicotiana-specific databases have been discussed previously [91].

Current status of metabolic networks at SGN

The complexity of metabolic networks originates in the many thousands of enzymes, specifically functioning within the confines of the metabolic range that exists in individual plant species in a time and space dependent manner. A quantitative analysis of the proteome of pollen from tomato alone resulted in more than 1200 proteins [92], whereas 500–600 proteins were detected in the various ripening stages for tomato fruits containing of the metabolic range that exists in individual plant species. The metabolic composition of networks of Nicotiana species has already been reported to be in good agreement with each other [30]. However, the comparison of the pathways contained in each individual metabolic network (Figure 5) also accentuates the differences between the various Nicotiana species. The Venn diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/) for the entirety of pathways in N. tabacum K326, N. attenuata, N. benthamiana, N. sylvestris and N. tomentosiformis highlights areas of shared metabolism and a number of pathways that are specific for each Nicotiana species. The intersection for the metabolic pathways of N. tabacum K326 and its parental species N. tomentosiformis and N. sylvestris is 59.3%, which further drops with the addition of N. benthamiana and N. attenuata pathways to 35.1%. The comparison of N. tabacum K326 pathways with the metabolic networks of N. benthamiana and N. attenuata shows an overlap that is about 20% lower than the one observed with the parents of N. tabacum. That indicates the greater evolutionary distance of those species to N. tabacum K326. The number of unique pathways not shared with any of the studied species is highest in N. tabacum (64), followed by N. benthamiana (34), N. attenuata (18), N. tomentosiformis (5) and N. sylvestris (1). A closer look at the nature of the pathways (results not shown) revealed that the majority of those pathways (34) belong to specialized metabolites. To a large extent, this also includes newly created pathways (23), which probably are valid for other Nicotiana species as well, but for which only enzymes from N. tabacum have been published. The existing gap in shared pathways will get smaller when metabolic information from the remaining Nicotiana species become available. However, a certain amount of divergence for some metabolic categories in domesticated and wild tobacco species is to be expected. The genus Nicotiana is known for its high molecular diversity due to the polymorphic variability of its species, often resulting in either gaining or losing biosynthetic flexibility [96].

Conclusions and prospect for curated taxon-specific databases

Databases of all types have been widely accepted as efficient tools to aid researchers with bioinformatics analyses and visualization of stored and annotated data. The value of data directly depends on their overall quality, best achieved by the ‘gold standard’ manual curation by trained biocurators with the ability

Table 3. Number of publications used for curating pathways in manually curated metabolic databases covering either multi-species (MetaCyc, PlantCyc, SolanaCyc, NicotianaCyc) or single-species (Nicotiana- and Solanum-specific Cycs) PGDBs
Database (version)
MetaCyc (22.6)
PlantCyc (13.0)
SolanaCyc (2.6)
NicotianaCyc (2.6)
N. attenuata (2.6)
N. benthamiana (2.6)
N. sylvestris (2.6)
N. tabacum TN90 (2.6)
N. tabacum K326 (2.6)
N. tomentosiformis (2.6)
S. lycopersicum (3.3.2.2)
S. tuberosum (2.2.2)

The number of species in PlantCyc (*) has been calculated from release version 11.0. The percentages of curated pathways marked with (*) belong to databases which have not yet been updated with curated data stored in SolanaCyc.
Metabolic networks of the Nicotiana genus

Figure 5. Nicotiana-specific pathway network Venn diagram. Crossover of pathway networks between N. tabacum (K326), N. sylvestris, N. tomentosiformis, N. benthamiana and N. attenuata. The numbers for shared and unique pathways are shown in each intersection.

to distill the published literature to meaningful data through critical assessment [97]. Biocurators are also the professionals that transform data into database-compliant information that can be easily extracted and used with the database’s various bioinformatics tools [4]. For instance, the improvement in accuracy of prediction models for drug discovery trained with manually curated data [98] or the curation of genetic variants employing curated biomedical literature [99] as well as the detection of misannotated enzymes through curation [100] has proven the value of manually curated data. However, manual curation of databases is not undisputed. In comparison with the immense increase in the amount of data published in journals or online, the proportion of curated data is getting smaller and smaller, urging proposals for the advancement of automated text mining [101]. Nevertheless, studies showed that manually curated databases are much less prone to contain errors than databases employing automated or semi-automated text mining tools [97]. For instance, the Escherichia coli (EcoCyc) database and the Candida Genome Database, both manually curated, had individual error rates of 1.4 and 1.8%, respectively, [102] compared with the 14–42 times higher error rates in databases utilizing information-extraction programs [97]. When too many errors were found through the automated prediction of metabolic pathways for the functional genomic database of the Malaria parasite Plasmodium falciparum, manual validation was essential to accept or reject predicted pathways for correctly reconstructing the metabolic network of this species [103]. Manual curation performed by biocurators was critical to the accuracy and completeness of the Saccharomyces genome database [104]. Saccharomyces cerevisiae was also the subject of a study that manually curated the growth and cell cycle interaction network and provided detailed insights into the relationships between these developmental processes [105].

It has been projected that manual curation cannot achieve functional gene annotation in humans or keep up with the rate of newly sequenced genomes [106]. Such concerns have been raised previously, but at the same time it has been stressed that around 30% of the human genome, which cannot be correctly predicted by automated approaches, requires manual curation and will be invaluable to researchers who work with human metabolism [107]. Indeed, selected aspects of metabolism have been successfully accomplished by manually curation in humans such as targeted curation of a molecular interaction database [108], the curation of human fatty acid metabolism [109] and the manually curation of RNA-binding protein involved in human RNA metabolism [110]. Another example highlighting the value of manual curation is the identification of proteins and corresponding metabolic pathways that caused lead poisoning in humans [111].

New approaches need to be taken to solve the lack of trained biocurators and funding of manual curated databases versus the tremendous data input coming from the literature [112, 113]. On the other hand, authors publishing experimental data that can support the pathways information should be required to provide the metadata in formats that can be automatically read into pathway databases such as MetaCyc. This would help biocurators import much larger sets of experimentally verified data through automatic pipelines so they can focus on quality control.

With the creation of manually curated taxon-specific databases and following an expert-led curation process, databases assembled under the umbrella of SolCyc have been significantly enriched with high-value data. The curation progress in SolanaCyc and NicotianaCyc has improved the completeness and accuracy of the metabolic networks in the six Nicotiana-specific databases. Moreover, it has advanced SolanaCyc and NicotianaCyc to more comprehensive repositories for the biochemistry and molecular biology of the Solanaceae family and the Nicotiana genus. The data in those taxon-specific databases have been curated with a focus on narrower
taxonomic ranges and are therefore more useful for exploring solanaceous metabolic networks and relevant bioinformatics analyses. These achievements can now be leveraged into new approaches, such as multi-species databases containing not only plant host but also their pathogens to more precisely and effectively model the interactions between host and pathogen.

The new emerging field of pan-genome research, first proposed in the genome analysis of pathogenic isolates of Streptococcus agalactiae [114], opens the possibility to study the genetics of selected species or a phylogenetic clade in a comparative way [115, 116]. We plan to expand and transfer the concept of pan-genomics to pan/meta-metabolomics and create a database that contains the metabolic networks of Nicotiana species and disease-causing microorganisms. We expect this MetaTobaccoCyc database to be helpful in exploring the metabolic diversity and commonality between Nicotiana and interacting species by defining metabolic subsets of core and specific pathways and their catalyzing enzymes, which may be indicative for adaptive evolutionary developments in individual metabolomes of Nicotiana species and known pathogens for the genus.

Key Points
- Metabolic databases transform, evaluate and visualize Omics- and high-throughput data into the biological context of species and allow bioinformatics analyses in diverse areas of interest.
- Manually curated metabolic databases increase the accuracy and comprehensiveness of data and substantially lower the rate of misannotations and false-negative results in predicted metabolic networks.
- SolanaCyc and NicotianaCyc are the first manually curated taxon-specific databases for the Solanaceae family and Nicotiana genus, respectively.
- Taxon-specific metabolic databases are valuable and specific repositories for the biochemistry and molecular biology of defined taxonomic ranks.

Supplementary Data

Supplementary data are available online at https://academic.oup.com/bib.

Funding

Philip Morris International.

References

1. Baxevanis AD. The importance of biological databases in biological discovery. *Curr Protoc Bioinformatics* 2009;34:1.1.1–6.
2. Jaiswal P, Usadel B. Plant pathway databases. *Methods Mol Biol* 2016;1374:71–87.
3. Rhee SY, Crosby B. Biological databases for plant research. *Plant Physiol* 2005;138:1–3.
4. Odell SG, Lazo GR, Woodhouse MR, et al. The art of curation at a biological database: principles and application. *Current Plant Biology* 2017;11:12.2:11.
5. Croft D, Mundo AF, Haw R, et al. The Reactome pathway knowledgebase. *Nucleic Acids Res* 2014;42:D472–7.
6. Duarte NC, Becker SA, Jamshidi N, et al. Global reconstruction of the human metabolic network based on genomic and bibiomic data. *Proc Natl Acad Sci U S A* 2007;104(6):1777–82.
7. Jassal B, Matthews L, Viteri G, et al. The Reactome pathway knowledgebase. *Nucleic Acids Res* 2020;48:D498–503.
8. Rolffson O, Palsson BO, Thiele I. The human metabolic reconstruction recon 1 directs hypotheses of novel human metabolic functions. *BMC Syst Biol* 2011;5:155.
9. Ryu JY, Kim HU, Lee SY. Reconstruction of genome-scale human metabolic models using Omics data. *Integr Biol (Camb)* 2015;7(8):859–68.
10. Thimm O, Blasing O, Gibon Y, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. *Plant J* 2004;37:914–39.
11. Schwacke R, Ponce-Soto GY, Krause K, et al. MapMan4: a refined protein classification and annotation framework applicable to multi-Omics data analysis. *Mol Plant* 2019;12(6):879–92.
12. Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. *Nucleic Acids Res* 2016;44:D457–62.
13. Karp PD, Latendresse M, Paley SM, et al. Pathway tools version 23.0 update: software for pathway/genome informatics and systems biology. *Brief Bioinform* 2016;17(5):877–90.
14. Karp PD, Midford PE, Billington R, et al. Pathway tools version 23.0 update: software for pathway/genome informatics and systems biology. *Brief Bioinform* 2019;20(0):1–18.
15. Caspi R, Billington R, Ferrer L, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. *Nucleic Acids Res* 2016;44:D471–80.
16. Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes. *Nucleic Acids Res* 2018;46(D1):D633–9.
17. Paley SM, Karp PD. The pathway tools cellular overview diagram and Omics viewer. *Nucleic Acid Res* 2006;34:3771–8.
18. Paley S, Parker K, Spaulding A, et al. The Omics Dashboard for interactive exploration of gene-expression data. *Nucleic Acids Res* 2017;45(21):12113–24.
19. Latendresse M, Karp PD. Web-based metabolic network visualization with a zooming user interface. *BMC Bioinformatics* 2011;12:176.
20. Toya Y, Kono N, Arakawa K, et al. Metabolic flux analysis and visualization. *JProteome Res* 2011;10:3313–23.
21. Paley S, O’Maille PE, Weaver D, et al. Pathway collages: personalized multi-pathway diagrams. *BMC Bioinformatics* 2016;17:529.
22. Travers M, Paley SM, Shrager J, et al. Groups: knowledge spreadsheets for symbolic biocomputing. *Database* 2013;2013:bat06.
23. Dreher K. Putting the plant metabolic network pathway databases to work: going offline to gain new capabilities. *Methods Mol Biol* 2014;1083:151–71.
24. Dale JM, Popescu L, Karp PD. Machine learning methods for metabolic pathway prediction. *BMC Bioinformatics* 2010;11:15.
25. Mueller LA, Zhang P, Rhee SY. AraCyc: a biochemical pathway database for Arabidopsis. *Plant Physiol* 2003;132:453–60.
26. Zhang P, Foerster H, Tissier CP, et al. MetaCyc and AraCyc: metabolic pathway databases for plant research. *Plant Physiol* 2005;138:27–37.
27. Zhang P, Dreher K, Karthikeyan A, et al. Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol 2010;153:1479–91.

28. Mueller LA, Solow TH, Taylor N, et al. The SOL genomics network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 2005;138:1310–7.

29. Fernandez-Pozo N, Menda N, Edwards JD, et al. The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Res 2015;43:D1036–41.

30. Foerster H, Bombaraely A, Battey JND, et al. SolCyc: a database hub at the sol genomics network (SGN) for the manual curation of metabolic networks in Solanum and Nicotiana specific databases. Database 2018;2018:1–13.

31. Stitt M, Sulipce R, Keurentjes J. Metabolic networks: how to identify key components in the regulation of metabolism and growth. Plant Physiol 2010;152(2):428–44.

32. Chae L, Lee I, Shin J, et al. Towards understanding how molecular networks evolve in plants. Curr Opin Plant Biol 2012;15(2):177–84.

33. Croteau R, Kutchan TM, Lewis NG. Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds). Biochemistry & Molecular Biology of Plants. Wiley Blackwell, Rockville, MD, 2000, 1250–318.

34. Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 2003;64(1):3–19.

35. Wink M. Introduction: biochemistry, physiology and ecological functions of secondary metabolites. In: Wink M (ed). Annual Plant Reviews, Biochemistry of Plant Secondary Metabolism, Vol. 40. Wiley-Blackwell, Chichester, West Sussex, United Kingdom, 2010, 1–19.

36. Chae L, Kim T, Nilo-Poyanco R, et al. Genomic signatures of specialized metabolism in plants. Science 2014;344(6183):510–3.

37. Dixon RA, Strack D. Phytochemistry meets genome analysis, and beyond. Phytochemistry 2003;62(6):815–6.

38. Afendi FM, Okada T, Yarnazaki M, et al. KNApSacK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 2012;53(2):e11–12.

39. Alseekh S, Fernie AR. Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 2018;94(6):939–42.

40. Kheremonsky O, Tawfik DS. Enzyme promiscuity: a mechanical and evolutionary perspective. Annu Rev Biochem 2010;79:471–505.

41. Weng JK, Noel JP. The remarkable pliability and promiscuity of specialized metabolism. Cold Spring Harb Symp Quant Biol 2012;77:309–20.

42. Moghe GD, Last RL. Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiol 2015;169(3):1512–23.

43. Weng JK, Philippe RN, Noel JP. The rise of chemodiversity in plants. Science 2012;336(6089):1667–70.

44. Austin MB, O’Maille PE, Noel JP. Evolving biosynthetic tangos negotiate mechanistic landscapes. Nat Chem Biol 2008;4(4):217–22.

45. Steele CI, Crock J, Bohlmann J, et al. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 1998;273(4):2078–89.

46. Fischbach MA, Clardy J. One pathway, many products. Nat Chem Biol 2007;3(7):353–5.

47. Sierrro N, Battey JN, Ouadi S, et al. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 2013;14(6):R60. doi: 10.1186/gb-2013-14-6-r60.

48. Sierrro N, Battey JN, Ouadi S, et al. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 2014;5:3833. doi: 10.1038/ncomms4833.

49. Bombaraely A, Edwards KD, Sanchez-Tamburrino J, et al. Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: a phylogenomic perspective. BMC Genomics 2012;13:406.

50. Campbell MS, Law M, Holt C, et al. MAKER-P: a tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol 2014;164:513–24.

51. Xu S, Brockmøller T, Navarro-Quezada A, et al. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proc Natl Acad Sci U S A 2017;114:6133–8.

52. Bombaraely A, Billington R, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 2020;48:D445–53.

53. International Society for Biocuration. Biocuration: distilling data into knowledge. PLoS Biol 2018;16(4):e2002846. doi: 10.1371/journal.pbio.2002846.

54. Caspi R, Billington R, Keseler IM, et al. Metabolic pathways and enzymes - a 2019 update. Nucleic Acids Res 2020;48:D445–53.

55. Fiorini N, Lipman DJ, Lu Z. Towards PubMed 2.0. Elife 2017;6:pii:e28801. doi: 10.7554/elife.28801.

56. Hastings J, Owen G, Dekker A, et al. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 2016;44(D1):D1214–9.

57. Pence HE, Williams A. ChemSpider: an online chemical information resource. J Chem Educ 2010;87(11):1123–4.

58. Kelly R, Kidd R. Editorial: ChemSpider—a tool for natural products research. Nat Prod Rep 2015;32(8):1163–4.

59. Kim S, Chen J, Cheng T, et al. PubChem 2019: updated access to chemical data. Nucleic Acids Res 2019;47(D1):D1002–9.

60. Benson DA, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res 2013;41:D36–42.

61. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019;47(D1):D506–15.

62. The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res 2017;45(D1):D331–8.

63. Liebecq C. IUPAC-IUBMB joint commission on biochemical nomenclature (ICBN) and nomenclature committee of IUBMB (NC-IUBMB). Biochem Mol Biol Int 1997;43(5):1151–6.

64. Tchounwou PB, Yedjou CG, Patollia AK, et al. Heavy metal toxicity and the environment. Exp Suppl 2012;101:133–64.

65. Kim HS, Kim YJ, Seo YR. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev 2015;20(4):232–40.
67. DalCorso G, Fasani E, Manara A, et al. Heavy metal pollution: state of the art and innovation in phytoremediation. Int J Mol Sci 2019;20(14):3412.
68. Nes WD. Biosynthesis of cholesterol and other sterols. Chem Rev 2011;111(10):6423–51.
69. Whitaker BD. Changes in the steryl lipid content and composition of tomato fruit during ripening. Phytochemistry 1988;27(11):3411–6.
70. Suza WP, Chappell J. Spatial and temporal regulation of sterol biosynthesis in Nicotiana benthamiana. Physiol Plant 2016;157(2):120–34.
71. Sawai S, Ohyama K, Yasumoto S, et al. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. Plant Cell 2014;26(9):3763–74.
72. Ohmura E, Nakamura T, Tian RH. 26-Aminocholesterol derivative, a novel key intermediate of steroidal alkaloids, from Solanum abutiloides. Tetrahedron Lett 1995;36(40):8443–4.
73. Ohyama K, Okawa A, Moriuchi Y. Biosynthesis of steroidal alkaloids in Solanaceae plants: involvement of an aldehyde intermediate during C-26 amination. Phytochemistry 2013;89:26–31.
74. Sonawane PD, Pollier J, Panada S, et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat Plants 2016;3:16205. doi: 10.1038/nplants.2016.205.
75. Cardenas PD, Sonawane PD, Pollier J, et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream iso-prenoids in the plant mevalonate pathway. Nat Commun 2016;7:10654. doi: 10.1038/ncomms10654.
76. Behrmann EJ, Gopalan V. Cholesterol and plants. J Chem Educ 2005;82(12):1791–3.
77. Ycas M. On earlier states of the biochemical system. J Theor Biol 1974;44(1):145–60.
78. Chotia C, Gough J, Vogel C, et al. Evolution of the protein repertoire. Science 2003;300(5626):1701–3.
79. Calderon-Gonzales KG, Hernandez-Monge J, Herrera-Aquirre ME, et al. Bioinformatics tools for proteomics data interpretation. Adv Exp Med Biol 2016;919:281–341.
80. Ke J, Yoshihiki Y. Pathway and gene discovery from natural products and hosts. Methods Mol Biol 2019;1927:1–9.
81. Caspi R, Altman T, Dreher K, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2012;40:D742–53.
82. Schlaper P, Zhang P, Wang C, et al. Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 2017;173(4):2041–59.
83. Sulpice R, McKeown PC. Moving toward a comprehensive map of central plant metabolism. Annu Rev Plant Biol 2015;66:187–210.
84. Perez de Souza L, Naake T, Tohge T, et al. From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. Gigascience 2017;6(7):1–20.
85. Naithani S, Preece J, D’Eustoachio P, et al. Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res 2017;45:D1029–59.
86. Gupta P, Naithani S, Tello-Ruiz MK, et al. Gramene database: navigating plant comparative genomics resources. Curr Plant Biol. 2016;7:8:10–5.
87. Tello-Ruiz MK, Naithani S, Stein JC, et al. Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res 2018;46:D1181–9.
88. Buneman P, Cheney J, Tan W-C, et al. Curated databases. PDS 2008;8:1–12.
89. Karp PD, Paley S, Altman T. Data mining in the MetaCyc family of pathway databases. Methods Mol Biol 2013;939:183–200.
90. Bengtsson-Palme J, Bouluind F, Edstrom R, et al. Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics 2016;16(18):2454–60.
91. Foerster H, Mueller LA. Tobacco resources in the Sol Genomics Network and Nicotiana metabolic databases. In: Ivanov N, Sierro N, Peitsch M (eds). The Tobacco Plant Genome, Compendium of Plant Genomes. Cham, Switzerland: Springer, 2020, 59–72.
92. Lopez-Casado G, Covey PA, Bedinger PA, et al. Enabling proteomic studies with RNA-seq: the proteome of tomato pollen as a test case. Proteomics 2012;12(6):761–74.
93. Ghatak A, Chaturvedi P, Paul P, et al. Proteomics survey of Solanaceae family: current status and challenges ahead. J Proteomics 2017;169:41–57.
94. Schneider M, Lane L, Boutet E, et al. The UniProtKB/Swiss-Prot knowledgebase and its plant proteome annotation program. J Proteomics 2009;72(3):567–73.
95. Jez JM. Revisiting protein structure, function, and evolution in the genomic era. Invertebr Pathol 2017;142:11–5.
96. Siva Raju K, Sheshumadhav M, Murthy TG. Molecular diversity in the genus Nicotiana as revealed by randomly amplified polymorphic DNA. Physiol Mol Biol Plants 2008;14(4):377–82.
97. Karp PD. Can we replace curation with information extraction software? Database 2016;2016:1–4.
98. Esaki T, Watanabe R, Kawashima H, et al. Data curation can improve the prediction accuracy of metabolic intrinsic clearance. Mol Inform 2019;38(1–2):e1800086. doi: 10.1002/minf.201800086.
99. Pandey KR, Maden N, Poudel B, et al. The curation of genetic variants: difficulties and possible solutions. Genomics Proteomics Bioinformatics 2012;10(6):317–25.
100. Naumoff DG, Xu Y, Glansdorff N, et al. Retrieving sequences of enzymes experimentally characterized but erroneously annotated: the case of the putrescine carbamoyltransferase. BMC Genomics 2004;5(1):52.
101. Ceol A, Chatr-Aryamontri A, Licata L, et al. Linking entries in protein interaction database to structured text: the FEBS letters experiment. FEBS Lett 2008;583(8):1171–7.
102. Keseler IM, Skrzypek MS, Weerasinghe D, et al. Curation accuracy of model organism databases. Database 2014;2014:1–6.
103. Ginsburg H. Caveat emptor: limitations of the automated reconstruction of metabolic pathways in plasmidium. Trends Parasitol 2009;25(1):37–43.
104. Skrzypek MS, Nash RS. Bicuration at the saccharomyces genome database. Genesis 2015;53(8):450–7.
105. Alberghina L, Mavelli G, Drovandi G, et al. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein–protein interaction network. Biotechnol Adv 2012;30(1):52–72.
106. Alderson RG, De Ferrari L, Mavridis L, et al. Enzyme informatics. Curr Top Med Chem 2012;12:1911–23.
107. Ashurst JL, Collins JE. Gene annotation: prediction and testing. Annu Rev Genomics Hum Genet 2003;4:69–88.
108. Porras P, Duesbury M, Fabregat A, et al. A visual review of the interactome of LRRK2: using deep-curated molecular interaction data to represent biology. Proteomics 2015;15(8):1390–404.
109. Adriaens ME, Jaillard M, Waagmeester A, et al. The public road to high-quality curated biological pathways. Drug Discov Today 2008;13(19–20):856–62.
110. Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet 2014;15(12):829–45.
111. De Souza ID, De Andrade AS, Dalmolin RJS. Lead-interacting proteins and their implication in lead poisoning. Crit Rev Toxicol 2018;48(5):375–86.
112. Howe D, Costanzo M, Fey P, et al. Big data: the future of biocuration. Nature 2008;455(7209):47–50.
113. Altman RB, Bergman CM, Blake J, et al. Text mining for biology—the way forward: opinions from leading scientists. Genome Biol 2008;9(Suppl. 2):S7.
114. Tettelin H, Masignani V, Cieslewicz MJ, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 2005;102(39):13950–5.
115. Vernikos G, Medini D, Riley DR, et al. Ten years of pan-genome analyses. Curr Opin Microbiol 2015;23:148–54.
116. Xiao J, Zhang Z, Wu J, et al. A brief review of software tools for pangenomics. Genomics Proteomics Bioinformatics 2015;13(1):73–6.