Comparative study of water quality of rivers used for raw water supply & ex-mining lakes in Perak, Malaysia

K U Orji*, N Sapari, K W Yusof, R Asadpour, and E Olisa
Department of Civil Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
E-mail: suunyboy2008@yahoo.com

Abstract. Ex-mining lakes are seldom used as sources of raw water for the treatment of public water supply due to the general view that they are highly polluted. This study examined the water quality of these lakes, compared and contrasted them to the water quality of the rivers used for Perak drinking water supply. Ten water samples were analyzed from different ex-mining lakes. Two water samples were from Kinta and Perak rivers. They were analyzed for physico-chemical properties such as temperature, pH, EC, TDS, SO\textsubscript{4}2-, COD, Cl-, Na+, Fe, As, and Pb. The results showed that temperature varied from 28.1°C to 34.1°C, pH 6.2 to 9.0, EC 55 to 400 µs/cm, turbidity 5.6 to 74.2 NTU, TDS 36.8 to 268mg/l, Cl- 0.483 to 3.339mg/l, SO\textsubscript{4}2- 0.051 to 15.307mg/l, Na 0.669 to 3.668mg/l, Fe 0 to 0.14mg/l, As 0 to 0.004mg/l, and Pb 0.019 to 0.075mg/l. All the samples were highly turbid, had slightly high concentration of Pb, and had common water quality problem. The ex-mining lakes can also be used to supply water after treatment since these rivers are already being used by the Metropolitan Utilities Corporation for water treatment. The ex-mining pools can be used as alternative sources of drinking water supply to the people of Perak.

1. Introduction
Malaysia is facing an ever growing need for the management of her water resources due to rapid socio-economic development [1]. For the future water needs to be met, the government must make every effort to develop, conserve, utilize and manage all the available potential water sources.

River is the major source of raw water supply. Due to the increase in river pollution, it becomes pertinent that the other water sources be developed and tapped in order to either augment or serve as alternative sources of water supply. Shah Alam and Sandakan have introduced rainwater harvesting in new housing developments [2]. Kelatan, Perlis, Pahang, Selangor, and Terengganu States have also been combining surface water with groundwater for their integrated water resources management [3].

Ex-mining pools have basically been used for irrigation, recreational activities, and retention ponds except for drinking due to the view that they are highly polluted. Study has shown that ex-tin mining lakes located in Bestari Jaya area, Selangor, are highly polluted with heavy metals [4]. More lakes have to be analyzed in other parts of Malaysia in order to assess their suitability for public water supply. The objectives of this study were to examine the water quality of ex-mining lakes in Perak; and to compare and contrast them to the water quality of the rivers used for Perak drinking water supply.
2. Materials and Methods

2.1. Sample locations

Twelve water samples, ten from ex-mining lakes and two from rivers, were collected for analyses on water quality. Details of the sampling sites are shown in Table 1. The sample collection was done on the 29th of July and 2nd of August, 2012. River Perak and River Kinta are currently used by the Metropolitan Utilities Corporation Sdn Bhd (MUC) as intake points for water supply in the State of Perak.

Table 1. Sampling information with sampling sites descriptions

No	Date / Time	Site/Source	Site Description	Coordinates	Elevation (m)
S1	29/7/12 11:30am	Lalua Tronoh Mines/Ex – Mining Pool	Inactive mining site that is partly surrounded by residential buildings and forests. The vicinity of the other part is used for cattle grazing.	4°25’47.4”N 100°58’53”E	30.79
S2	29/7/12 12:01pm	Coop. Sec. of State, Tronoh/Ex – Mining Pool	It has the same future as in S1.	4°25’05.9”N 101°00’59”E	27.13
S3	29/7/12 6:31pm	Bumban 1, Batu Gajah/Ex – Mining Pool	A lake with muddy shore & surrounded by forests. It is located near the roadside and a construction site.	4°28’05.9”N 101°00’59”E	42.07
S4	30/7/12 4:16pm	Bumban 2, Batu Gajah/Ex – Mining Pool	A mangrove area. Sewage is discharge into it through a drainage busy road. Some restaurants and stores in the vicinity.	4°28’08.4”N 101°01’31”E	40.85
S5	31/7/12 4:31pm	Train Station, Batu Gajah/Ex – Mining Pool	It is located adjacent to a busy road and train station. It is almost fully surrounded by forests and used for fishing by the villagers.	4°27’44.7”N 101°03’04”E	20.12
S6	30/7/12 6:17pm	Taman Bumban, Batu Gajah/Ex – Mining Pool	It lies by the side of road, agricultural area and residential buildings. Wreckages of building materials deposited close to shoreline of it.	4°27’57.0”N 101°00’56”E	42.38
S7	31/7/12 7:05pm	Kampung Bumban G.G.1, Batu Gajah/Ex – Mining Pool	It lies by the side of forests, agricultural area and residential buildings. It is basically used as irrigation water.	4°27’52.0”N 101°00’54”E	42.99
S8	31/7/12 6:10pm	Kampung Bumban G.G.2, Batu Gajah/Ex – Mining Pool	It has the same future as in S7.	4°27’48.2”N 101°00’53”E	41.46
S9	02/8/12 7:05pm	Taman Taufik Putra, Opp. ESSO Mobil/Ex – Mining Pool	It is located opposite a filling station and surrounded by forests.	4°23’56.9”N 100°59’09”E	18.90
R10	31/7/12 5:34pm	Kepayan Bay, Bota/Sungai Perak	A river with fishing site. Turtle breeding center, market, restaurants and abattoir are located within the vicinity.	4°21’18.1”N 100°52’25”E	18.29
R11	02/8/12 6:00pm	Batu Gajah/ Sungai Kinta	The river cuts across residential area. The bank faces erosion. Mills, restaurants, and busy rods are within its vicinity.	4°28’25.9”N 101°03’08”E	25.00
S12	02/8/12 6:30pm	Universiti Teknologi Petronas, Tronoh/Ex – Mining Pool	This is an open mining lake that is surrounded by few trees, and close to a filling station and hostels.	4°23’04.0”N 100°58’43”E	18.60

2.2. Methods

Temperature, pH, turbidity, and Electrical Conductivity (EC) were measured in the field at each sampling point. The Total Dissolved Solids (TDS) was obtained by multiplying the EC values by a conversion factor of 0.67. Temperature and pH were measured with pH meter (HACH – Sension 4, USA), Turbidity with turbidimeter 2100P (HACH, USA), and EC with EP meter (MYRON, USA). The samples were measured in triplicates and the average value calculated. All analyses were of analytical grades and complied with the standard methods [5]. SO_4^{2-} and Cl^- in the samples were measured using Ion Chromatography (Metrohm) and other cations by Atomic Absorption Spectrophotometer (AAS, AA-6800, SHIMADZU, Japan). Chemical Oxygen Demand (COD) was determined by digestion using DRB 200 and colorimetric method using Spectrophotometer DR 2800 (HACH, USA).
3. Results and Discussion

Physico-chemical parameters from the 12 sampling locations are summarized in Table 2.

No	Temp. p. °C	pH	Turbidity NTU	EC µs/cm	TDS mg/l	COD mg/l	SO₄²⁻ mg/l	Cl⁻ mg/l	Na⁺ mg/l	As mg/l	Fe mg/l	Pb mg/l
S1	30.5	9.0	85	140	93.8	14	0.205	1.014	1.215	ND	ND	0.047
S2	29.8	8.8	39.3	200	134	22	0.051	1.103	1.471	ND	0.14	0.047
S3	34.1	8.8	34	275	184	31	15.31	1.747	0.947	ND	ND	0.047
S4	33.7	7.4	41.3	160	107	10	3.030	3.339	3.071	ND	0.075	
S5	29.1	7.5	28.5	120	80	9	0.336	1.360	0.947	ND	ND	0.070
S6	29.8	7.7	19	344	230	51	0.273	1.550	1.710	0.004	ND	0.056
S7	28.1	7.8	51.4	355	238	20	0.692	2.517	2.738	0.002	ND	0.042
S8	30.6	8.8	69.4	400	268	38	0.176	3.148	2.869	0.005	ND	ND
S9	31.7	7.5	5.6	115	77	11	1.029	2.895	0.669	0.002	ND	ND
R10	29.9	6.2	74.2	55	36.8	40	0.977	0.545	2.230	0.003	ND	0.019
R11	30.8	7.1	11.8	340	228	35	0.956	2.253	3.668	0.004	ND	0.037
S12	30.6	7.4	32.9	100	67	4	2.408	0.483	1.123	0.004	ND	0.019
WHO	-	6.5-8	5	1000	500	10	250	250	200	0.001	0.3	0.01

ND = Not Detected

3.1. Physical Parameters

3.1.1. Temperature

Temperatures of the samples fell within the range (27.8 – 35.3°C). Similar range was reported by Yap et al, 2009 [6].

3.1.2. pH

The pH ranged from 4.96 to 9.81, similar to the one reported by Yap et al, 2009 [6]. R10 was most acidic water. This is in line with the findings by Chau and Jiang, 2002 [7], which argued that natural rivers are always slightly acidic because they normally originate from rain water and incorporate with acid released from the leaves of the forests within the area. S1 had the highest alkaline in its water. This could be due to high algal concentrations in the pool.

3.1.3. Electrical Conductivity (EC)

The results showed that the EC of all the water samples were low and met up with the WHO standard [8].

3.1.4. Total Dissolved Solutes (TDS)

The highest range of TDS was found in S8. This could be due to the runoff of agricultural activities in the area and leaching of soil contaminant. However, TDS in all the samples were still within the WHO limit.

3.1.5. Turbidity

All the water samples fell above the WHO standard. Highest turbidity was recorded in S1 and could be caused by the high presence of fine clay, silt particles, and plankton observed in the lake.

3.2. Chemical Parameters

Sulfate, Chloride, Sodium, Arsenic, and Iron in the water samples were found to be within the prescribed limit. The concentrations of Pb ranged from 0.00 to 0.075mg/l. This result was close to the ones obtained by Yap et al, 2009 [6] and Yap et al, 2011 [9], wider than that reported by Shuhaimi et al, 2012, [10], and far wider than the report obtained by Muhammad et al, 2010 [11]. The concentrations of Pb in all the samples except S8 and S9 are slightly above the prescribed limit.
3.3. Organic Pollutant

S6 had the highest COD value. This could be as a result of the indiscriminate discharge of agricultural wastes into the water. Reports have shown that agricultural, industrial, and domestic wastewaters are considerable sources of high COD [12].

4. Conclusions

Analyses showed that the rivers and the mining lakes are highly turbid, have high concentrations of Pb, and have common water quality problem. This implies that water from the ex-mining lakes can also be used for water supply after treatment since the rivers are already used by the MUC for treatment. However, future work should carry out more tests on other water quality parameters and at different seasons.

Acknowledgements

The authors are thankful to the management and authorities of the Universiti Teknologi PETRONAS, especially the Department of Civil Engineering for the facilities provided during this study.

References

[1] Tuncok, I. K., Mays, L. W., and Briscoe, J. Water Resources Management in Developing Countries and the role of World Bank 1999 29th Annual Water Resources Planning and Management Conference, ASCE

[2] Mohd-Shawahid, H. O., Suhaimi, A. R., Rasyikah, M. K., Jamaluddin, S. A., Huang, Y. F., Farah, M. S. Policies and Incentives for Rainwater Harvesting in Malaysia 2007 Rainwater Utilization Colloquium

[3] Azuhan, M. Utilization of Groundwater Resources in Peninsular Malaysia 2012 J. of Groundwater and Geoscience

[4] Muhammad, A. A., Mohd, J. M., Ismail, Y. Study of Water Quality and Heavy Metals in Soils and Water of Ex – Mining Area Bestari Jaya, Peninsular Malaysia 2010 Int. Journal of Basic and Applied Sci., 10 7 – 27

[5] APHA – AWWA Standard Methods for Examination of Water and Wastewater 2005 American Public Health Association/American Water Works Association.

[6] Yap, C. K., Fairuz, M. S., Yeow, K. L., Hatta, M. Y., Ismail, A., Ismail, A. R., and Tan, S. G. Dissolved Heavy Metals and Water Quality in the Surface Waters of Rivers and Drainages of West Peninsular Malaysia 2009 Asian Journal of Water, Environment and Pollution 6 51 – 59

[7] Chau, K. W. and Jiang, Y. W. Three – Dimensional Pollutant Transport Model for the Pearl River Estuary 2002 Journal of Water Research 36 2029 – 2039.

[8] World Health Organization (WHO) Guidelines for Drinking-Water Quality: 4th Edition, WHO Press, Geneva, Switzerland. 2011

[9] Yap, C. K., Chee, M. W., Shamrina, S., Edward, F. B., Chiew, W., and Tan, S. G. Assessment of Surface Water Quality in the Malaysian Coastal Waters by Using Multivariate Analyses 2011 Journal of Sains Malaysiana 40 1053-1064

[10] Shuhaimi-Othman, M., Nadzeifah, Y. and Azmah, M. Metal Concentrations in Sungai Sedii Kecil, Johor, Peninsular Malaysia 2012 Journal of Tropical Marine Ecosystem 1 15-23.

[11] Muhammad, A. A., Mohd., J. M., and Ismail, B. Y. Study of Water Quality and Heavy Metals in Soil and Water of Ex-Mining Area of Jaya, Peninsular Malaysia 2010 Int. Journal of Basic & Applied Sciences 10

[12] Mthembu, M. S., Djarova, T. G. and Basson, A. K. Effect of Agricultural and Industrial Developments on the Quality of Water at UMhlathuze River (Northern Coast of Kwa-Zulu Natal RSA) 2011 African Journal of Microbiology Research 5 5780-5786