Towards non-invasive cancer diagnostics and treatment based on electromagnetic fields, optomechanics and microtubules

V. Salari,1 Š. Barzanjeh,2 M. Cifra,3 C. Simon,4,5 F. Scholkmann,6,7 Z. Alirezaei,8 and J. A. Tuszynski9,10

1 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
2 Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
3 Institute of Photonics and Electronics, The Czech Academy of Sciences, Chaberská 57, 182 00 Prague, Czech Republic
4 Department of Physics and Astronomy, University of Calgary, Calgary T2N 1N4, Alberta, Canada
5 Institute for Quantum Science and Technology, University of Calgary, Calgary T2N 1N4, Alberta, Canada
6 Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
7 Research Office for Complex Physical and Biological Systems (ROCoS), CH-8038 Zurich, Switzerland
8 Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran
9 Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 1Z2, Alberta, Canada
10 Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada

(Dated: January 30, 2022)

In this paper, we discuss biological effects of electromagnetic (EM) fields in the context of cancer biology. In particular, we review the nanomechanical properties of microtubules (MTs), the latter being one of the most successful targets for cancer therapy. We propose an investigation on the coupling of electromagnetic radiation to mechanical vibrations of MTs as an important basis for biological and medical applications. In our opinion optomechanical methods can accurately monitor and control the mechanical properties of isolated MTs in a liquid environment. Consequently, studying nanomechanical properties of MTs may give useful information for future applications to diagnostic and therapeutic technologies involving non-invasive externally applied physical fields. For example, electromagnetic fields or high intensity ultrasound can be used therapeutically avoiding harmful side effects of chemotherapeutic agents or classical radiation therapy.

I. INTRODUCTION

In spite of many efforts and important advances in cancer diagnostics and treatment, there are still millions of people dying each year throughout the world due to cancer, and the war on cancer that was declared by the US President Richard Nixon in 1971 is still far from being won 46 years later. Conversely, the cancer incidence will most probably increase further [1, 2] while the progress in cancer treatments has been stagnant for decades [3, 4] with the exception of recent introduction of immunotherapies. We should mention, however, that improvements in diagnostic imaging, especially using magnetic resonance imaging (MRI), and novel surgery approaches have led to progress in the field of oncology with improvements in clinical outcomes accruing gradually over the past few decades. The new surgery techniques for example enable a better delineation of the tumour area and the surrounding structures, allowing the medical oncologists to reduce the tumour margin and hence decrease damage to the normal tissue [5] leading to improved quality of life of the patients. However, truly cutting-edge technologies are still to be discovered and implemented within the arsenal of cancer therapy modalities. In particular, the roles of biochemical signaling pathways, and biophysical aspects (nanomechanical states of the cellular- and subcellular structures, endogenous bioelectric current/potential and electromagnetic field) have not been fully understood and exploited in the field of oncology [6, 7].

The aim of the present review article is to outline why it is worthwhile to focus on biophysical aspects with regard to future diagnosis and treatment approaches for cancer. In particular, we discuss why the bioelectric and mechanical properties of microtubules might play a significant role in cancer, whose better understanding could lead to the development of novel therapies. Bioelectricity is a basic phenomenon associated with cellular and subcellular structures [8–10]. Most of the subcellular biomolecules (e.g. DNA, RNA, tubulin, actin, septin, etc.) are either charged and hence surrounded by counter-ions or endowed with high electric dipole moments that can engage in dipole-dipole interactions and polarize electrically their local environment. Living organisms are replete with both moving and oscillating electric charges and can thus be regarded as complex electrochemical and mechanical systems. Complex patterns of direct current (DC) electric fields present within living organisms are key factors in morphogenesis and contain part of the information needed to produce a three-dimensional organism [11]. These factors, in our opinion, need to be addressed when finding novel methods of cancer diagnosis and treatment.
II. ELECTROMAGNETIC FIELDS AFFECT CANCER CELLS

It has been shown that extremely low-frequency (ELF), pulsed electromagnetic fields (PEMF) and sinusoidal electromagnetic fields (SEMFS) can induce tumor cell apoptosis, inhibit angiogenesis, impede proliferation of neoplastic cells, and cause necrosis non-invasively, whereas human lymphocytes are negligibly affected [12]. Some studies describe the effects of intense (> 0.1 MV/m) nanosecond (10-300 ns) pulsed electric fields on mammalian cell structure and function. As the pulse durations decrease, effects on the plasma membrane decrease and effects on intracellular signal transduction mechanisms increase [13].

Low-power EMF within the range of 0.1-40 MHz may impair the DNA strand and cause inhibition of proliferation of the gallbladder cancer cells, and these effects are related to the frequency of the electromagnetic fields but not in a linear fashion [14]. Kirson et al. [15] have recently demonstrated that 100 KHz to 1 MHz AC fields have significant specific effects on dividing cells. The basis of these effects during cytokinesis was hypothesized to be the unidirectional dielectrophoretic forces induced by the inhomogeneous fields at the cleavage furrow separating the daughter cells that interfere with the orientation of spindle microtubules [16]. A review of other possible mechanisms involved in the interactions of these fields, dubbed TTFields (Tumor Treating Fields) and cancer cells has been recently published [17]. It is worth noting that in addition to microtubules, actin filaments, DNA and even ion channels may be affected by TTFields and investigations into specific molecular mechanisms are ongoing. As an additional electromagnetic mechanism with potential cancer treatment application, a study was undertaken to examine whether millimeter electromagnetic waves (MMWs) irradiation (42.2 GHz) can inhibit tumor metastasis enhanced by cyclophosphamide (CPA), an anticancer drug [18].

Concerning high-power EMF, for example Elson (2009) focused on the potential of strong magnetic fields to play a role in cancer treatment. Results of this study show that pulsed magnetic field (PMF) in combination with ultraviolet C (UVC) have the ability to augment the cell killing effects of UVC radiation. In addition, the effects appear to be greater when PMF and UVC are applied at the same time [19]. Mitochondria are well known to play an important role in apoptosis. Steep pulsed electric fields (SPEF) could induce apoptosis markedly (P-value less than 0.01); SPEF with lower voltage (200V) and longer width (1.3 µs) could induce apoptosis more effectively than SPEF with higher voltage (600V) and shorter width (100ns). These experimental results provide a possible mechanism and parameter selection basis for tumor treatment using SPEF [20]. There are many reports of enhanced transcription and replication in different cell culture systems exposed to electromagnetic fields, and reports of cyto reduction (necrosis and apoptosis) in tumors transplanted into animals exposed to similar, often much stronger electromagnetic fields, but where heating is negligible. Although the mechanism of inducing apoptosis has not been characterized yet, one major candidate for the initiation of such a process is the production of numerous breaks in DNA, and the inhibition of DNA repair processes, leading to the initiation of the apoptotic (programmed cell death) process [19].

Interestingly, electromagnetic frequencies at which cancer cells become sensitive appear to be tumor-specific and hence treatment with tumor-specific frequencies is feasible, well tolerated and may have biological efficacy in patients with advanced cancer. A study that examined a total of 163 patients diagnosed with various types of cancer has identified a total of 1524 distinct frequencies ranging from 0.1 Hz to 114 kHz. Most frequencies (57 to 92 percent) were specific for a single tumor. These observations suggest that electromagnetic fields, which are amplitude-modulated at tumor-specific frequencies, do act solely on tumors and may have wide-ranging effects on tumor-host interactions, e.g., immune modulation [21].

In vitro effects of electromagnetic fields appear to be related to the type of electromagnetic field applied. It has been shown that human osteoblasts display effects of BEMER (Bio-Electro Magnetic Energy Regulation) type electromagnetic field (BTEMF) on gene regulation. Effects of BTEMF on gene expression in human mesenchymal stem cells and chondrocytes have been analyzed. Results indicate that BTEMF in human mesenchymal stem cells and chondrocytes provide the first indications to understanding therapeutic effects achieved with BTEMF stimulation [22].

Phenotypic changes in human breast cancer cells following low-level magnetic field (MF) exposure previously reported. Proteomic methods were used to investigate the biochemical effect of MF exposure in SF767 human glioma cells. Protein alterations were studied after exposure to 1.2 microTesla (microT) MF [12 milliGauss (mG), 60 Hertz (Hz)]. The results suggest that the analysis of differentially expressed proteins in SF767 cells may be useful as biomarkers for biological changes caused by exposure to magnetic fields [23].

Qutob et al. (2006) showed that there was no evidence that non-thermal RF fields can affect gene expression in cultured U87MG glioblastoma cells relative to the non-irradiated control groups, whereas exposure to heat shock at 43 degrees C for 1 h up-regulated a number of typical stress-responsive genes in the positive control group [24]. Gap junction genes are recognized as tumor suppressors [25,27] and effects on gap junctional communication also provide an appealing model for explaining tumor growth induced by exposure to weak magnetic fields. ELF exposure generally does not transmit nearly enough energy to cause mutagenesis of DNA, but has been shown to affect gap junction states and thus potentially to control proliferation and differentiation [28,30].

In the MHz region, several studies investigated the ef-
flect of the application of electromagnetic field in the MHz for cancer treatment. Normally, the intensity applied was high, inducing thermal effects. That the choice of the specific modulation of the EMF is important was shown by Andocs et al. [31], demonstrating the the application of modulated EMF (13.56 MHz) causes a synergistically anticancer effect due to a thermal and a non-thermal mechanism triggered (modulated electroyperthermia). Subsequent work showed that this treatment causes DNA-fragmentation [32] and up-regulation of heat-shock proteins [33] in the cancer cells. The superiority of using 13.56 MHz modulated electroyperthermia in comparison to only classical hyperthermia to treat cancer was demonstrated recently [34].

In the GHz range, most of the studies used strong GHZ EMF for treating tumors by induce thermal effects [35–37]. However, EMF in the GHz range can also act as a co-cancerogen [38, 39], making the application of GHZ EMF for cancer treatment not as an optimal approach.

Terahertz (THz) radiation occupies a broad band of the EM spectrum between microwave and infrared frequencies, and is therefore non-ionizing. The THz region covers the frequency range from 0.1 to 10 THz and it offers non-invasive diagnostic capabilities that fill the gaps between x-rays, MRI, and the isible range [40]. Applications of THz waves to the diagnosis of melanoma [41], basal cell carcinoma [42], and breast cancer [33, 34] have already been demonstrated. THz technology has led to the development of commercially available diagnostic medical applications such as THz Pulsed Spectroscopy [43] and THz Pulsed Imaging [44, 45], which offer excellent contrast between diseased and healthy tissues. The first clinical trials of THz imaging as an intra-operative tool during cancer surgery are underway [46]. Studies on stem cells suggest that exposure to broad-spectrum THz pulses affects cell differentiation and gene expression [47, 48] at both the transcript and protein levels. The mechanism by which THz radiation interacts with biological systems is fundamentally different to that of conventional ionizing therapies, due to its resonant effects on cell membranes [49], proteins [50] and nucleic acids [51, 52]. It has been recently demonstrated that intense, picosecond THz pulses induce changes in cellular functions [53–55]. Exposure of human tissue to intense THz pulses was found to activate the DNA damage response (DDR), and affect expression levels of many proteins, especially cell-cycle regulatory proteins offering a potential for therapeutic applications of this novel modality. In addition, a combination of this modality can be considered with standard chemotherapy since sub-µs pulsed electric fields applied to tumours through electrodes have been shown to permeabilize tumour cell membranes to cytotoxic agents [56, 57]. Consequently, intense THz pulses may significantly lower the required therapeutic doses of cytotoxic drugs. However, the fundamental mechanisms of interaction of THz radiation with biological systems so far remain elusive.

III. MICROTUBULES

It is well known that MTs, microfilaments and intermediate filaments are the main components of cytoskeleton of eukaryotic cells. MTs are the most rigid protein polymer among the three types of cytoskeletal filaments, which form the architecture of the cell. They exhibit unique physical behaviour and form special structures well suited for their own cellular functions [60]. The structure of MTs is cylindrical, and it typically involves 13 parallel protofilaments, which are connected laterally into hollow tubes. MTs have 25 nm external and 15 nm internal diameters. The length of MTs can vary from tens of nanometers to hundreds of microns [61]. MT biological functions rely on two essential properties. First, they are dynamic polymers that are assembled and dis-assembled rapidly in a fashion coordinated with motile reactions; second, they are relatively rigid structures able to resist the pico-Newton level forces exerted by kinesin and dynein motor proteins, and they provide the required mechanical stiffness for cilia and flagella [62].

Mechanical properties of MTs largely determine their functions. Quantifying the way they resist mechanical deformation by determining their Young’s and shear modulus can lead to a better understanding of all the vital physiological mechanisms in which MTs are involved. For instance, it would be favorable for the stable MTs of the axon to be stiff and straight to support the extended structure required for long-distance axonal transport. Conversely, MTs in a proliferating cell should be dynamic and flexible to enable rapid redistribution during transitions between interphase and mitosis [63].

However, measuring and understanding MTs’ mechanical properties is not a simple task. Two decades of measurements involving different techniques such as optical tweezers [64], hydrodynamic flow [65], atomic force microscope (AFM) [66, 67], and persistence length observations [68], resulted in values of elastic (shear and Young’s) modulus spanning a range of values between 1 MPa and 7 GPa [69]. For instance, experiments involving the MTs with lengths 24-68 nm yielding a value of 2 GPa for MTs assembled from pure bovine-brain tubulin [70]. Short MTs are flexible due to a low value of the shear modulus while longer tubes become more rigid, which is when the Young’s modulus dominates the mechanical behaviour. Measurements on longer MTs would therefore provide better estimates of the Young’s modulus, because neglecting the influence of shearing would introduce a smaller error.

Since microtubules in biological conditions are often subject to a dynamic load, vibration analysis suggests itself as a method to study their dynamic response. Vibration normal modes describe the preferential pattern of structural dynamics of a microtubule, whereby its response to a time-varying force can be represented by a combination of these vibration modes. In addition, there are several hypotheses that ascribe biological relevance to the vibrations themselves. Furthermore, microtubule
vibration mode patterns are reminiscent to buckling pattern, so the underlying mathematical apparatus is similar

There are generally two modeling approaches that have been developed to study microtubule mechanics and vibrations. A continuum mechanics model \([72,79]\) and a discrete model \([80,82]\). The gap between high-precision molecular modeling and continuum modeling can be bridged by an atomistic-continuum model; the first of such models to study the topic herein was presented by Liew et al. \([83,84]\).

These theoretical treatments of the microtubule structure disclose their vibrational normal modes in a wide frequency range from acoustic to GHz frequencies \([70,72,77,82,85,88]\). For instance, it has been shown that the microtubule length \(L\) in terms of their fundamental bending mechanical resonance frequencies between 100 and 200 kHz in vitro \((20 \, ^\circ \text{C})\) \([87]\). Elastic wave propagation in MTs was analyzed in different works \([72,77,85]\). Dependence of frequency or velocity of propagation on the wave vector was evaluated for isotropic and orthotropic shell models with different parameters. In particular, the resonant condition for a 10 nm long MT corresponding to half of the wavelength at a frequency of about 460 MHz may occur for longitudinal oscillations with Young’s modulus 1.7-2 GPa. These results hold for the orthotropic microtubule axisymmetric \((n=0)\) and nonaxisymmetric \((n=1)\) shell models \([72,77,88]\). Numerical calculations based on recently obtained experimental data for Young’s modulus of MT, show that MT-water system supports interface elastic waves with maximal frequencies in a GHz range. In fact, \([72]\) performed theoretical analysis for elastic vibrations of MT immersed in water and found that this system supports nonradiative elastic waves localized in the vicinity of the MT wall with maximal frequencies of order of tens of GHz. In the long wavelength limit, there exist three axisymmetric acoustic waves with propagation speed of approximately 200-600 m/s and an infinite set of helical waves with a parabolic dispersion law \([72]\).

The role of mechanical vibrations of MT is not known in biology so far \([86]\). The fundamental issue for any biological relevance of MT vibrations or further phenomena assuming MT vibrations is the damping of MT vibrations. It is generally considered that protein and MT normal mode vibrations are overdamped \([89]\). Some works estimate that, depending on the type of the vibration mode and lowered coupling with the MT viscous environment, the quality factor \(Q\) of the vibration modes may be in the range of 0.01-10 \([86]\), hence reaching to underdamped regime. However, there are no solid experimental data on the damping of MT vibrations so far, only extensive theoretical works.

Tubulin, a MT subunit, is a protein which has rather high charge and dipole moment compared to most other proteins \([90]\). Hence, it is natural to suggest that MT vibrations, if underdamped and excited, will be accompanied by an electrical field of the same frequency as was originally proposed by Pokorný et al. \([91]\). Several recent works developed this idea \([92,93]\) including electromechanical vibrational models of whole cell microtubule network \([94,95]\) and multi-mode vibration of single microtubule \([96]\). Charge and dipole moment of MT as well as of tubulin, other proteins and polar nanobodies in general is also a key to coupling external electromagnetic field to vibrations of such objects; the coupling is significant only when vibrations are sufficiently underdamped \([97]\). Single protein normal vibration modes are in the range of cca. 0.03-3 THz \([98,100]\) together with MT vibration band \((kHz - GHz)\) can hypothetically enable interaction with electromagnetic field at frequencies across many orders of magnitude.

It was hypothesized that vibrations of MT cytoskeleton generate coherent electromagnetic field which plays role in organization of processes in living cells and that this field is perturbed in cancer \([101]\). Within this hypothesis it is considered that the damping of MT vibrations is caused by the ambient medium, i.e., by the cytosol water. It is proposed that in cancer the changes in mitochondrial metabolism lead to change of the water structure around MT and to increased damping of Mt vibrations might cause a shift in the resonance frequency of oscillations in cells. Frequency changes in cancer cells were also predicted by Fröhlich \([102]\). A peculiar cancer diagnostic method developed by Vedruccio \([103]\) claimed to exploit frequency selective effects of the interaction of the external electromagnetic field with cancer cells was interpreted using this hypothesis. Hypotheses of Pokorný and Fröhlich also inspired a number of experimental works aiming to directly electronically detect electromagnetic activity of living cells in radiofrequency and microwave bands \([104,106]\). However, solid evidence for such cellular electromagnetic activity remains elusive \([107]\). However, unless the possibility of underdamped MT vibrations and endogenous excitation is proved, these hypotheses of highly coherent biological electromagnetic field remain unrealistic. One important piece of puzzle could be brought by elucidation of one of the crucial assumptions in these hypotheses: low damping of microtubule vibrations. Knowledge of dynamic mechanical properties is also essential to assess effects of ns intense electric pulses which have been demonstrated to affect cytoskeleton \([108]\), thus opening a new avenue how to disrupt cell division with potential cancer applications. However, exact mechanisms of action remains unclear. Thus, to enable new perspective diagnostic and therapeutic methods based on MT monitoring and manipulation, a rigorous experimental analysis of microtubule vibrations and dynamic mechanical properties is needed.
IV. MONITORING MECHANICAL VIBRATIONS OF MICROTUBULES VIA OPTOMECHANICAL COUPLING

The emerging field of optomechanics is concerned with the study of the mechanical effects of light on mesoscopic and macroscopic mechanical oscillators. These phenomena have been realized in optomechanical systems consisting of an optical cavity with a movable end-mirror or with a membrane-in-the-middle. The radiation pressure exerted by the light inside the optical cavity couples the moving mirror or the membrane which acts as a mechanical oscillator to the optical field. This optomechanical coupling has been employed for a wide range of applications such as the cavity cooling of microlevers and nanomechanical resonators to their quantum mechanical ground state [109–113], producing high precision detectors for measuring weak forces and small displacements and also for fundamental studies of the transition between the quantum and the classical world [110, 114–122].

Optomechanical systems can also be applied for the sensitive detection of physical quantities such as spin [123, 124], atomic/molecular mass [125, 127], thermal fluctuations [128, 129], and frequency conversion [130, 131]. Nanomechanical resonators (NMRs) with resonance frequencies in the GHz regime can now be fabricated [132, 133] and are suitable candidates for the study of the quantum behavior at the mesoscopic scale [134, 135]. These GHz NMRs are characterized by reduced dimensions and therefore by very low masses, and at the same time, in this regime the nonlinear behavior of the mechanical systems becomes more relevant, consequently offering interesting theoretical [136, 137] and experimental challenges [138, 139]. These high-frequency resonators operating in the nonlinear regime open up new possibilities for the realization of novel devices and applications of NMR and nanoelectromechanical systems [140, 141].

The optomechanical system can also be employed to observe the vibrations of isolated microtubules [153]. Information about the microtubule mechanical vibrations can be obtained by coupling the microtubule to an optical cavity. In fact, the optomechanical coupling between the microtubule and the optical field of the cavity modifies the response of the cavity field results in appearance of electromagnetically induced transparency peaks in the transmission feature of the optical probe field. The center frequency and linewidth of the transparency peak give the resonance frequency and damping rate of the vibrational mode of the microtubule. By properly selecting the parameters of the system, one can observe up to 1GHz vibration for the microtubule. The dielectric properties of the microtubule, however, raises the possibility to control the vibration of the microtubule by positioning tip electrodes close to surface of the microtubule. Applying voltage on the electrode plates creates an effective external force on the microtubule, modifies the resonance frequency of the microtubule vibration [153].

V. SUMMARY

Microtubules, key structures forming the cellular skeleton, have been among the most successful targets for anticancer therapy. Any interference with their functioning, especially during mitosis, can control the replication of a cancer cell. However, chemotherapeutic techniques to disrupt microtubules have several side effects on healthy cells, making chemotherapy a less than ideal modality to suppress cancer proliferation. It has been predicted that the mechanical properties of microtubules (such as their vibration frequencies) are different in cancer cells compared to healthy cells. Inspired by this, we believe that cancer treatment (and detection) may be possible based on the detection and control of microtubule mechanical vibrations in cells exposed to non-invasive external radiations (e.g. electromagnetic or ultrasound). We have proposed an optomechanical method to control and read out the vibrations of an isolated microtubule. This can help determine which frequencies can cause break-
age in microtubules of cancer cells using resonance effects in microtubules from an external field. Moreover, this method may help to recognize cancer cells based on special frequencies in microtubules. So far, measuring a broad spectrum of mechanical vibrations of microtubules has not been an easy task, and there are only a small number of studies in this context. In order to improve our knowledge about the mechanical vibrations of microtubules, we proposed an optomechanical technique for measurement of microtubule dynamics at room temperature. Our approach is a step forward for monitoring mechanical frequencies of microtubules in a broad spectral range for a potential application in medical diagnosis and treatment. This may help scientists in the future to supplement standard cancer chemo- and radiotherapy approaches with non-ionizing physical fields to be used as therapeutic and possibly even diagnostic methods.

It is a great goal to reach simple and non-invasive methods for diagnosis and treatment of diseases like cancer. We have proposed that an optomechanical setup can help us to monitor the all possible vibrations in a MT in vitro for a potential application in cancer diagnosis and treatment. In fact, if we know what frequency can destruct the MT structure it can be useful for cancer treatment since cancer cells need MTs for cell division and if they are disrupted or destroyed their growth can be stopped or tumor can be vanished. This type of disruption can be done via an external weak EM signal or an ultrasound signal which can be focused on the cancerous cells in situ and their growth can be controlled by these external signals with special frequencies.

VI. ACKNOWLEDGEMENTS

The work of SB has been supported by the European Unions Horizon 2020 research and innovation program under the Marie Sklodowska Curie grant agreement No MSC-IF 707438 SUPEROEM. JAT gratefully acknowledges funding support from NSERC (Canada) for his research. MC acknowledges support from the Czech Science Foundation, projects no. 15-17102S and 17-11898S and he participates in COST Action BM1309, CA15211 and bilateral exchange project between Czech and Slovak Academies of Sciences, no. SAV-15-22.

[1] B. D. Smith, G. L. Smith, A. Hurria, G. N. Hortobagyi, and T. A. Buchholz, “Future of cancer incidence in the united states: burdens upon an aging, changing nation,” Journal of clinical oncology, vol. 27, no. 17, pp. 2758–2765, 2009.
[2] A. Jemal, M. M. Center, C. DeSantis, and E. M. Ward, “Global patterns of cancer incidence and mortality rates and trends,” Cancer Epidemiology and Prevention Biomarkers, vol. 19, no. 8, pp. 1893–1907, 2010.
[3] C. Somenschein and A. M. Soto, “Why is it that despite signed capitulations, the war on cancer is still on?,” Organisms. Journal of Biological Sciences, vol. 1, no. 1, 2017.
[4] D. Hanahan, “Rethinking the war on cancer,” The Lancet, vol. 383, no. 9916, pp. 558–563, 2014.
[5] L. A. Alpuente, A. M. López, and R. Y. Tur, “Glioblastoma: changing expectations?,” Clinical and Translational Oncology, vol. 13, no. 4, p. 240, 2011.
[6] M. Levin, “Bioelectromagnetics in morphogenesis,” Bioelectromagnetics, vol. 24, no. 5, pp. 295–315, 2003.
[7] S. Suresh, “Biomechanics and biology of cancer cells,” Acta Materialia, vol. 55, no. 12, pp. 3989–4014, 2007.
[8] R. H. Funk, “Endogenous electric fields as guiding cue for cell migration,” Frontiers in physiology, vol. 6, 2015.
[9] M. Levin, “Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo,” Molecular biology of the cell, vol. 25, no. 24, pp. 3835–3850, 2014.
[10] M. Levin, “Molecular bioelectricity in developmental biology: new tools and recent discoveries,” Bioessays, vol. 34, no. 3, pp. 205–217, 2012.
[11] H. S. Burr and F. S. C. Northrop, “Evidence for the existence of an electro-dynamic field in living organisms,” Proceedings of the National Academy of Sciences, vol. 25, no. 6, pp. 284–288, 1939.
[12] H. Berg, B. Günter, I. Hilger, M. Radeva, N. Traitecheva, and L. Wollweber, “Bioelectromagnetic field effects on cancer cells and mice tumors,” Electromagnetic biology and medicine, vol. 29, no. 4, pp. 132–143, 2010.
[13] S. J. Beebe, P. F. Blackmore, J. White, R. P. Joshi, and K. H. Schoenbach, “Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms,” Physiological measurement, vol. 25, no. 4, p. 1077, 2004.
[14] P. Chen, Y. Yang, H. Tao, and H. Yang, “Effects of electromagnetic fields of different frequencies on proliferation and dna damage of gallbladder cancer cells,” Nan fang yi ke da xue xue bao = Journal of Southern Medical University, vol. 26, no. 3, pp. 328–330, 2006.
[15] E. D. Kirson, V. Dbalý, F. Továryš, J. Vymazal, J. F. Soutiel, A. Itzhaki, D. Mordechovich, S. Steinberg-Shapira, Z. Gurvich, R. Schneiderman, et al., “Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors,” Proceedings of the National Academy of Sciences, vol. 104, no. 24, pp. 10152–10157, 2007.
[16] E. D. Kirson, Z. Gurvich, R. Schneiderman, E. Dekel, A. Itzhaki, Y. Wasserman, R. Schatzberger, and Y. Palti, “Disruption of cancer cell replication by alternating electric fields,” Cancer research, vol. 64, no. 9, pp. 3288–3295, 2004.
[17] J. A. Tuszynski, C. Wenger, D. E. Friesen, and J. Preto, “An overview of sub-cellular mechanisms involved in the action of tfi fields,” International journal of environmental research and public health, vol. 13, no. 11, p. 1128, 2016.
[18] M. K. Logani, I. Szabo, V. Makar, A. Bhanushali, S. Alekseev, and M. C. Ziskin, “Effect of millimeter wave irradiation on tumor metastasis,” Bioelectromagnetics, vol. 27, no. 4, pp. 258–264, 2006.

[19] E. Elson, “The little explored efficacy of magnetic fields in cancer treatment and postulation of the mechanism of action,” Electromagnetic biology and medicine, vol. 28, no. 3, pp. 275–282, 2009.

[20] Y. Mi, C. Sun, C. Yao, C. Li, D. Mo, L. Tang, and H. Liu, “Effects of steep pulsed electric fields (spef) on mitochondrial transmembrane potential of human liver cancer cell,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pp. 5814–5817, IEEE, 2007.

[21] A. Barbault, F. P. Costa, B. Bottger, R. F. Munden, F. Bomholt, N. Kuster, and B. Pasche, “Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach,” Journal of Experimental & Clinical Cancer Research, vol. 28, no. 1, p. 51, 2009.

[22] M. Walther, F. Mayer, W. Kafka, and N. Schütze, “Effects of weak, low-frequency pulsed electromagnetic fields (bemer type) on gene expression of human mesenchymal stem cells and chondrocytes: an in vitro study,” Electromagnetic biology and medicine, vol. 26, no. 3, pp. 179–190, 2007.

[23] M. Kanitz, F. Witzmann, W. Lotz, D. Conover, and R. Savage, “Investigation of protein expression in magnetic field-treated human glioma cells,” Bioelectromagnetics, vol. 28, no. 7, pp. 546–552, 2007.

[24] S. Qutobb, V. Chauhan, P. Bellier, C. Vauk, G. Douglas, L. Berndt, A. Williams, G. Gajda, E. Lemay, A. Thansandote, et al., “Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 ghz pulse-modulated radiofrequency field,” Radiation research, vol. 165, no. 6, pp. 636–644, 2006.

[25] Y. Omori, M. L. Z. Dagli, K. Yamalage, and H. Yasamaki, “Involvement of gap junctions in tumor suppression: analysis of genetically-manipulated mice,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 477, no. 1, pp. 191–196, 2001.

[26] M. Mesnil, V. Krutovskikhh, Y. Omori, and H. Yasamaki, “Role of blocked gap junctional intercellular communication in non-genotoxic carcinogenesis,” Toxicology letters, vol. 82, pp. 701–706, 1995.

[27] H. Yasamaki, V. Krutovskikh, M. Mesnil, T. Tanaka, M. L. Zaidan-Dagli, and Y. Omori, “Role of connexin (gap junction) genes in cell growth control and carcinogenesis,” Comptes Rendus de l’Académie des Sciences-Série III-Sciences de la Vie, vol. 322, no. 2, pp. 151–159, 1999.

[28] G. Hu, H. Chiang, Q. Zeng, and Y. Pu, “Elf magnetic field inhibits gap junctional intercellular communication and induces hyperphosphorylation of connexin-43 in nih3t3 cells,” Bioelectromagnetics, vol. 22, no. 8, pp. 568–573, 2001.

[29] D. T. Yamaguchi, J. Huang, D. Ma, and P. K. Wang, “Inhibition of gap junction intercellular communication by extremely low-frequency electromagnetic fields in osteoblast-like models is dependent on cell differentiation,” Journal of cellular physiology, vol. 190, no. 2, pp. 180–188, 2002.

[30] X. Huang, X. Feng, C. Zorman, M. Mehregany, and M. Roukes, “Vhf, uhf and microwave frequency nanomechanical resonators,” New Journal of Physics, vol. 7, no. 1, p. 247, 2005.

[31] G. Andocs, H. Renner, L. Balogh, L. Fonyad, C. Jakab, and A. Szasz, “Strong synergy of heat and modulated electromagnetic field in tumor cell killing,” Strahlentherapie und Onkologie, vol. 185, no. 2, pp. 120–126, 2009.

[32] N. Meggvesházi, G. Andocs, L. Balogh, P. Balla, G. Kiszner, I. Teleki, A. Jeney, and T. Krenacs, “DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia,” Strahlentherapie und Onkologie, vol. 190, no. 9, pp. 815–822, 2014.

[33] G. Andocs, N. Meggvesházi, L. Balogh, S. Spisak, M. E. Maros, P. Balla, G. Kiszner, I. Teleki, C. Kovago, and T. Krenacs, “Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia,” Cell Stress and Chaperones, vol. 20, no. 1, pp. 37–46, 2015.

[34] G. Andocs, M. Rehman, Q. Zhao, Y. Tabuchi, M. Kanamori, and T. Kondo, “Comparison of biological effects of modulated electro-hyperthermia and conventional heat treatment in human lymphoma u937 cells,” Cell death discovery, vol. 2, 2016.

[35] M. Converse, E. J. Bond, B. Veen, and C. Hagness, “A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment,” IEEE transactions on microwave theory and techniques, vol. 54, no. 5, pp. 2169–2180, 2006.

[36] P. T. Nguyen, A. Abbosh, and S. Crozier, “Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 6, pp. 1335–1344, 2017.

[37] J. Mendecki, E. Friedenthal, C. Botstein, F. Sterzer, R. Paglione, M. Nowogrodzki, and E. Beck, “Microwave-induced hyperthermia in cancer treatment: apparatus and preliminary results,” International Journal of Radiation Oncology*Biology*Physics, vol. 4, no. 11-12, pp. 1095–1103, 1978.

[38] A. Lerchl, M. Klose, K. Grote, A. F. Wilhelm, O. Spathmann, T. Fiedler, J. Streckert, V. Hansen, and M. Clemens, “Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans,” Biochemical and biophysical research communications, vol. 459, no. 4, pp. 585–590, 2015.

[39] L. Hardell and M. Carlberg, “Increasing rates of brain tumours in the swedish national inpatient register and the causes of death register,” International journal of environmental research and public health, vol. 12, no. 4, pp. 3793–3813, 2015.

[40] G. Huang, “10 emerging technologies that will change your world,” Technology Review, vol. 107, no. 1, pp. 32–+, 2004.

[41] A. Fitzgerald, E. Berry, N. Zinovev, G. Walker, M. Smith, and J. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Physics in Medicine and biology, vol. 47, no. 7, p. R67, 2002.

[42] R. M. Woodward, V. P. Wallace, R. J. Pye, B. E. Cole, D. D. Armone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging of ex vivo basal cell carcinoma,” Journal
of Investigative Dermatology, vol. 120, no. 1, pp. 72–78, 2003.

[43] P. C. Ashworth, E. Pickwell-MacPherson, E. Provenzano, S. E. Pinder, A. D. Purushotham, M. Pepper, and V. P. Wallace, “Terahertz pulsed spectroscopy of freshly excised human breast cancer,” Optics express, vol. 17, no. 15, pp. 12444–12454, 2009.

[44] A. J. Fitzgerald, V. P. Wallace, M. Jimenez-Linan, L. Bobrow, R. J. Pye, A. D. Purushotham, and D. D. Aronne, “Terahertz pulsed imaging of human breast tumors,” Radiology, vol. 239, no. 2, pp. 533–540, 2006.

[45] H. Chen, T.-H. Chen, T.-F. Tseng, J.-T. Lu, C.-C. Kuo, S.-C. Fu, W.-J. Lee, Y.-F. Tsai, Y.-Y. Huang, E. Y. Chuang, et al., “High-sensitivity in vivo thz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model,” Optics express, vol. 19, no. 22, pp. 21552–21562, 2011.

[46] G. J. Wilmink and J. E. Grundt, “Invited review article: current state of research on biological effects of terahertz radiation and Terahertz Waves, vol. 32, no. 10, pp. 1074–1122, 2011.

[47] L. V. Titova, A. K. Ayesheshim, A. Golubov, R. Rodriguez-Juarez, A. Kovalchuk, F. A. Hegmann, and O. Kovalchuk, “Intense picosecond thz pulses alter gene expression in human skin tissue,” in SPIE BiOS, pp. 85850Q–85850Q, International Society for Optics and Photonics, 2013.

[48] J. Bock, Y. Fukuyo, S. Kang, M. L. Phipps, L. B. Alexandrov, K. Ø. Rasmussen, A. R. Bishop, E. D. Rosen, J. S. Martinez, H.-T. Chen, et al., “Mammalian stem cells reprogramming in response to terahertz radiation,” Plas one, vol. 5, no. 12, p. e15806, 2010.

[49] B. S. Alexandrov, M. L. Phipps, L. B. Alexandrov, L. G. Booshehri, A. Erat, J. Zabolotny, C. H. Mielke, H.-T. Chen, G. Rodriguez, K. Ø. Rasmussen, et al., “Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells,” Scientific reports, vol. 3, p. 1184, 2013.

[50] A. Doria, G. Gallerano, E. Giovenale, G. Messina, A. Lai, A. Ramundo-Orlando, V. Sposato, M. D’Arienzo, A. Perrotta, M. Romano, et al., “Thz radiation studies on biological systems at the enea fel facility,” Infrared Physics & Technology, vol. 45, no. 5, pp. 339–347, 2004.

[51] R. J. Falconer and A. G. Markelz, “Terahertz spectroscopic analysis of peptides and proteins,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 33, no. 10, pp. 973–988, 2012.

[52] B. Alexandrov, V. Gelev, A. Bishop, A. Usheva, and K. Rasmussen, “DNA breathing dynamics in the presence of a terahertz field,” Physics Letters A, vol. 374, no. 10, pp. 1214–1217, 2010.

[53] B. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of dna components studied by terahertz time-domain spectroscopy,” Physics in medicine and biology, vol. 47, no. 21, p. 3807, 2002.

[54] B. M. Fischer, M. Hoffmann, H. Helm, R. Wilk, F. Rutz, T. Kleine-Ostmann, M. Koch, and P. U. Jepsen, “Terahertz time-domain spectroscopy and imaging of artificial rna,” Optics Express, vol. 13, no. 14, pp. 5205–5215, 2005.

[55] L. V. Titova, A. K. Ayesheshim, A. Golubov, D. Foggen, R. Rodriguez-Juarez, F. A. Hegmann, and O. Kovalchuk, “Intense thz pulses cause h2ax phosphorylation and activate dna damage response in human skin tissue,” Biomedical optics express, vol. 4, no. 4, pp. 559–568, 2013.

[56] L. V. Titova, A. K. Ayesheshim, A. Golubov, R. Rodriguez-Juarez, A. Kovalchuk, F. A. Hegmann, and O. Kovalchuk, “Intense picosecond thz pulses alter gene expression in human skin tissue in vivo,” in SPIE BiOS, pp. 85850Q–85850Q, International Society for Optics and Photonics, 2013.

[57] L. V. Titova, A. K. Ayesheshim, A. Golubov, R. Rodriguez-Juarez, R. Woycicki, F. A. Hegmann, and O. Kovalchuk, “Intense thz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue?” Scientific reports, vol. 3, 2013.

[58] L. V. Titova, A. K. Ayesheshim, D. Purschke, A. Golubov, R. Rodriguez-Juarez, R. Woycicki, F. A. Hegmann, and O. Kovalchuk, “Effect of intense thz pulses on expression of genes associated with skin cancer and inflammatory skin conditions,” in SPIE BiOS, pp. 89411G–89411G, International Society for Optics and Photonics, 2014.

[59] M. L. Lucas and R. Heller, “Il-12 gene therapy using an electrically mediated nonviral approach reduces metastatic growth of melanoma,” DNA and cell biology, vol. 22, no. 12, pp. 755–763, 2003.

[60] Y. Kubota, Y. Tomita, M. Tsukigi, H. Kurachi, T. Motoyama, and L. M. Mir, “A case of perineal malignant melanoma successfully treated with electrochemotherapy,” Melanoma research, vol. 15, no. 2, pp. 133–134, 2005.

[61] A. Gotelf, L. M. Mir, and J. Gehr, “Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation,” Cancer treatment reviews, vol. 29, no. 5, pp. 371–387, 2003.

[62] B. Alberts, “Vesicular traffic in the secretory and endocytic pathways,” Molecular biology of the cell, pp. 599–651, 1994.

[63] O. Civalek and Ç. Demir, “Bending analysis of microtubules using nonlocal euler-bernoulli beam theory,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2053–2067, 2011.

[64] P. Venier, A. C. Maggs, M.-F. Carlier, and D. Pantaloni, “Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations,” Journal of biological chemistry, vol. 269, no. 18, pp. 13353–13360, 1994.

[65] T. L. Hawkins, D. Sept, B. Mogessie, A. Straube, and J. L. Ross, “Mechanical properties of doubly stabilized microtubule filaments,” Biophysical journal, vol. 104, no. 7, pp. 1517–1528, 2013.

[66] M. Kurachi, M. Hoshi, and H. Tashiro, “Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity,” Cytoskeleton, vol. 30, no. 3, pp. 221–228, 1995.

[67] A. Vinckier, C. Dumortier, Y. Engelsborghs, and L. Hellemans, “Dynamical and mechanical study of immobilized microtubules with atomic force microscopy,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 2, pp. 1427–1431, 1996.

[68] A. Kis, S. Kasas, B. Babić, A. Kulik, W. Benoit, G. Briggs, C. Schönberger, S. Catsicas, and L. Forró, “Nanomechanics of microtubules,” Physical review letters, vol. 89, no. 24, p. 248101, 2002.
[69] J. Mizushima-Sugano, T. Maeda, and T. Miki-Noumura, “Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances,” Biochimica et Biophysica Acta (BBA)-General Subjects, vol. 755, no. 2, pp. 257–262, 1983.

[70] J. Tuszyński, T. Luchko, S. Portet, and J. Dixon, “Anisotropic elastic properties of microtubules,” The European Physical Journal E: Soft Matter and Biological Physics, vol. 17, no. 1, pp. 29–35, 2005.

[71] S. Kasas, A. Kis, B. M. Riederer, L. Forró, G. Dieterle, and S. Catsicas, “Mechanical properties of microtubules explored using the finite elements method,” ChemPhysChem, vol. 5, no. 2, pp. 252–257, 2004.

[72] Y. M. Sirenko, M. A. Stroscio, and K. Kim, “Elastic vibrations of microtubules in a fluid,” Physical Review E, vol. 53, no. 1, p. 1003, 1996.

[73] S. Portet, J. Tuszyński, C. Hogue, and J. Dixon, “Elastic vibrations in seamless microtubules,” European Biophysics Journal, vol. 34, no. 7, pp. 912–920, 2005.

[74] A. Farajpour, A. Rastgoo, and M. Mohammadi, “Surface effects on the mechanical characteristics of microtubule networks in living cells,” Mechanics Research Communications, vol. 57, pp. 18–26, 2014.

[75] A. G. Arani, A. Shirali, M. N. Farahani, S. Amir, and A. Loghman, “Nonlinear vibration analysis of protein microtubules in cytosol conveying fluid based on nonlocal elasticity theory using differential quadrature method,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 227, no. 1, pp. 137–145, 2013.

[76] K. B. Mustapha and B. T. Wong, “Torsional frequency analyses of microtubules with end attachments,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 96, no. 7, pp. 824–842, 2016.

[77] C. Wang, C. Li, and S. Adhikari, “Vibration of microtubules as orthotropic elastic shells,” Physica E: Low-dimensional Systems and Nanostructures, vol. 35, no. 1, pp. 48–56, 2006.

[78] C. Wang, C. Li, and S. Adhikari, “Dynamic behaviors of microtubules in cytosol,” Journal of Biomechanics, vol. 42, no. 9, pp. 1270–1274, 2009.

[79] F. Daneshmand and M. Amabili, “Coupled oscillations of a protein microtubule immersed in cytoplasm: an orthotropic elastic shell modeling,” Journal of biological physics, vol. 38, no. 3, pp. 429–448, 2012.

[80] J. Pokorný, F. Jelinek, V. Trkal, I. Lamprecht, and R. Hölzel, “Vibrations in microtubules,” Journal of Biophysical Physics, vol. 23, pp. 171–179, 1997.

[81] M. A. Deriu, M. Soncini, M. Orsi, M. Patel, J. W. Essex, F. M. Montecvecchi, and A. Redaelli, “Anisotropic elastic network modeling of entire microtubules,” Biophysical journal, vol. 99, no. 7, pp. 2190–2199, 2010.

[82] D. Havelka, M. A. Deriu, M. Cifra, and O. Kucera, “Deformation pattern in vibrating microtubule: Structural mechanics study based on an atomistic approach,” Scientific Reports, vol. 7, 2017.

[83] P. Xiang and K. M. Liew, “Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model,” Computer Methods in Applied Mechanics and Engineering, vol. 223, pp. 123–132, 2012.

[84] K. Liew, P. Xiang, and L. Zhang, “Mechanical properties and characteristics of microtubules: a review,” Composite Structures, vol. 123, pp. 98–108, 2015.

[85] X. Qian, J. Zhang, and C. Ru, “Wave propagation in orthotropic microtubules,” Journal of Applied Physics, vol. 101, no. 8, p. 084702, 2007.

[86] O. Kucera, D. Havelka, and M. Cifra, “Vibrations of microtubules: Physics that has not met biology yet,” Wave Motion, 2016.

[87] G. DUBOST, A. HOLLAND, J. BARE, and F. BELLOSSI, “Morphological transformations of human cancer cells and microtubules caused by frequency specific pulsed electric fields broadcast by an enclosed gas plasma antenna,” in Proceedings-7th International Workshop on Biological Effects of EMF–October, 2012.

[88] J. Pokorný, C. Vedruccio, M., and O. Kucera, “Cancer physics: diagnostics based on damped cellular elastic-electrical vibrations in microtubules,” European Biophysics Journal, vol. 40, no. 6, pp. 747–759, 2011.

[89] J. Howard et al., “Mechanics of motor proteins and the cytoskeleton,” 2001.

[90] J. A. Tuszyński, E. J. Carpenter, J. T. Huzil, W. Malinski, T. Luchko, and R. F. Luduencia, “The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos,” International Journal of Developmental Biology, vol. 50, no. 2-3, pp. 341–358, 2003.

[91] J. Pokorný, F. Jelinek, and V. Trkal, “Electric field around microtubules,” Bioelectrochemistry and Bioenergetics, vol. 45, no. 2, pp. 239–245, 1998.

[92] M. Cifra, J. Pokorn, D. Havelka, and O. Kucera, “Electric field generated by axial longitudinal vibration modes of microtubule,” Biosystems, vol. 100, pp. 122–131, May 2010.

[93] O. Kucera and D. Havelka, “Mechano-electrical vibrations of microtubulesLink to subcellular morphology,” Biosystems, vol. 109, no. 3, pp. 346–355, 2012.

[94] D. Havelka, M. Cifra, O. Kucera, J. Pokorn, and J. Vrba, “High-frequency electric field and radiation characteristics of cellular microtubule network,” Journal of theoretical biology, vol. 286, pp. 31–40, 2011.

[95] D. Havelka, O. Kucera, M. A. Deriu, and M. Cifra, “Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model,” PLoS ONE, vol. 9, p. e86501, Jan. 2014.

[96] D. Havelka, M. Cifra, and O. Kucera, “Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electric pulse moving along a microtubule,” Applied Physics Letters, vol. 104, p. 243702, June 2014.

[97] O. Krivosudský and M. Cifra, “Microwave absorption by nanoresonator vibrations tuned with surface modification,” EPL (Europhysics Letters), vol. 115, no. 4, pp. 44003, 2016.

[98] M. Karplus, J. A. McCammon, and W. L. Peticolas, “The internal dynamics of globular protein,” Critical Reviews in Biochemistry, vol. 5, no. 4, pp. 293–349, 1981.

[99] D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, and K. Wynne, “Terahertz underdamped vibrational motion governs protein-ligand binding in solution,” Nature communications, vol. 5, p. 3999, 2014.

[100] S. Wheaton, R. M. Gelfand, and R. Gordon, “Probing the raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution,” Nature Photonics, vol. 9, no. 1, pp. 68–72, 2015.
[101] J. Pokorný, J. Pokorný, and J. Kobílková, “Postulates on electromagnetic activity in biological systems and cancer,” Integrative Biology, vol. 5, no. 12, pp. 1439–1446, 2013.

[102] H. Frohlich, “Coherent electric vibrations in biological systems and the cancer problem,” IEEE Transactions on Microwave Theory and Techniques, vol. 26, no. 8, pp. 613–618, 1978.

[103] C. Vetrudicio and A. Meessen, “Em cancer detection by means of non-linear resonance interaction,” Proc. and Extended Papers book. PIERS, pp. 28–31, 2004.

[104] R. Hözel, “Electric activity of non-excitable biological cells radio frequencies,” Electro-and magnetobiology, vol. 20, no. 1, pp. 1–13, 2001.

[105] F. Jelinek, J. Saroch, O. Kucera, J. Hasek, J. Pokorny, N. Jaffrezic-Renault, and L. Ponsonnet, “Measurement of electromagnetic activity of yeast cells at 42 ghz,” RA-DIOENGINEERING, vol. 16, no. 1, p. 36, 2009.

[106] F. Jelinek, M. Cifra, J. Pokorn, J. Vani, J. ima, J. Haek, and I. Frdlov, “Measurement of Electrical Oscillations and Mechanical Vibrations of Yeast Cells Membrane Around 1 kHz,” Electromagnetic Biology and Medicine, vol. 28, pp. 223–232, Jan. 2009.

[107] O. Kucera, K. Cervinkova, M. Nerudova, and M. Cifra, “Spectral perspective on the electromagnetic activity of cells.” Current topics in medicinal chemistry, vol. 15, no. 6, pp. 513–522, 2015.

[108] L. Carr, S. M. Bardet, R. C. Burke, D. Arnaud, L. Carr, S. M. Bardet, R. C. Burke, D. Arnaud, and O. Kucera, “Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in u87 human glioblastoma cells,” Scientific reports, vol. 7, 2017.

[109] C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Physical Review A, vol. 77, no. 3, p. 033804, 2008.

[110] J. Teufel, T. Donner, D. Li, J. Harlow, M. Allman, K. Cikac, A. Sirois, J. D. Whittaker, K. Lehner, and R. W. Simmonds, “Sideband cooling micromechanical motion to the quantum ground state,” arXiv preprint arXiv:1103.2144, 2011.

[111] S. De Liberato, N. Lambert, and F. Nori, “Quantum noise in photothermal cooling,” Physical Review A, vol. 83, no. 3, p. 033809, 2011.

[112] C. Metzger, M. Ludwig, C. Neuenhahn, A. Orlieb, I. Favero, K. Karrai, and F. Marquardt, “Self-induced oscillations in an optomechanical system driven by bolometric backaction,” Physical review letters, vol. 101, no. 13, p. 133903, 2008.

[113] S. Barzanjeh, M. Naderi, and M. Soltanolkotabi, “Back-action ground-state cooling of a micromechanical membrane via intensity-dependent interaction,” Physical Review A, vol. 84, no. 2, p. 023803, 2011.

[114] C. Bradaschia, R. Del Fabbro, A. Di Virgilio, A. Giazzotto, H. Kautzky, V. Montelatici, D. Passuello, A. Brillet, O. Cregut, P. Hello, et al., “The virgo project: a wide band antenna for gravitational wave detection,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 289, no. 3, pp. 518–525, 1990.

[115] M. LaHaye, O. Bui, B. Camarota, and K. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science, vol. 304, no. 5667, pp. 74–77, 2004.

[116] T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics,” Optics Express, vol. 15, no. 25, pp. 17172–17205, 2007.

[117] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, et al., “Quantum ground state and single-photon control of a mechanical resonator,” Nature, vol. 464, no. 7289, pp. 697–703, 2010.

[118] M. Poot and H. S. van der Zant, “Mechanical systems in the quantum regime,” Physics Reviews, vol. 511, no. 5, pp. 273–335, 2012.

[119] I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. Kim, and C. Brukner, “Probing planck-scale physics with quantum optics,” arXiv preprint arXiv:1111.1979, 2011.

[120] M. Bawaj, C. Biancofiore, M. Bonaldi, F. Bonfigli, A. Borrielli, G. Di Giuseppe, L. Marconi, F. Marino, R. Natali, A. Pontin, et al., “Probing deformed commutators with macroscopic harmonic oscillators,” Nature communications, vol. 6, 2015.

[121] A. Belenchia, D. M. Benincasa, S. Liberati, F. Marin, F. Marino, and A. Ortolan, “Testing quantum gravity induced nonlocality via optomechanical quantum oscillators,” Physical review letters, vol. 116, no. 16, p. 161303, 2016.

[122] S. Barzanjeh, S. Pirandola, and C. Weedbrook, “Continuous-variable dense coding by optomechanical cavities,” Physical Review A, vol. 88, no. 4, p. 042331, 2013.

[123] D. Rugar, J. Sidles, and A. Hero, “Single-spin magnetic resonance force microscopy,” tech. rep., IBM AL-MADEN RESEARCH CENTER SAN JOSE CA, 2005.

[124] R. Burdakian, H. Mamin, and D. Rugar, “Spin manipulation using fast cantilever phase reversals,” Applied physics letters, vol. 89, no. 11, p. 113113, 2006.

[125] Y. Yang, C. Callegari, X. Feng, K. Ekinci, and M. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano letters, vol. 6, no. 4, pp. 583–586, 2006.

[126] M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive nems-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature nanotechnology, vol. 2, no. 2, pp. 114–120, 2007.

[127] K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature nanotechnology, vol. 3, no. 9, pp. 533–537, 2008.

[128] F. Huber, H. Lang, N. Backmann, D. Rimoldi, and C. Gerber, “Direct detection of a braf mutation in total rna from melanoma cells using cantilever arrays,” Nature nanotechnology, vol. 8, no. 2, pp. 125–129, 2013.

[129] R. L. Badzey and P. Mohanty, “Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance,” arXiv preprint cond-mat/0603108, 2006.

[130] M. Paul, M. Clark, and M. Cross, “The stochastic dynamics of micron and nanoscale elastic cantilevers in fluid: fluctuations from dissipation,” Nanotechnology, vol. 17, no. 17, p. 4502, 2006.

[131] J. Tamayo, M. Calleja, D. Ramos, and J. Mertens, “Understanding mechanisms of the self-sustained oscillation of a nanomechanical stochastic resonator in a liquid,” Physical review B, vol. 76, no. 18, p. 180201, 2007.

[132] S. Barzanjeh, D. Vitali, P. Tombesi, and G. Milburn, “Entangling optical and microwave cavity modes by means of a nanomechanical resonator,” Physical Review A, vol. 84, no. 4, p. 042342, 2011.
[133] S. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “Reversible optical-to-microwave quantum interface,” Physical Review Letters, vol. 109, no. 13, p. 130503, 2012.

[134] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” arXiv preprint arXiv:1310.5276, 2013.

[135] S. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali, “Quantum interface between optics and microwaves with optomechanics,” in 2013 Conference on Lasers Electro-Optics Europe International Quantum Electronics Conference CLEO EUROPE/IQEC, pp. 1–1, 2013.

[136] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, “Microwave quantum illumination,” Physical review letters, vol. 114, no. 8, p. 080503, 2015.

[137] H. Peng, C. Chang, S. Aloni, T. Yuzvinsky, and A. Zettl, “Ultrahigh frequency nanotube resonators,” Physical review letters, vol. 97, no. 8, p. 087203, 2006.

[138] J. Chan, T. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” arXiv preprint arXiv:1106.3614, 2011.

[139] S. M. Meenehan, J. D. Cohen, G. S. MacCabe, F. Marsili, M. D. Shaw, and O. Painter, “Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion,” Physical Review X, vol. 5, no. 4, p. 041002, 2015.

[140] R. Lifshitz and M. Cross, “Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays,” Physical Review B, vol. 67, no. 13, p. 134302, 2003.

[141] M. Cross, A. Zumdieck, R. Lifshitz, and J. Rogers, “Synchronization by nonlinear frequency pulling,” Physical review letters, vol. 93, no. 22, p. 224101, 2004.

[142] I. Katz, A. Retzker, R. Straub, and R. Lifshitz, “Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator,” Physical review letters, vol. 99, no. 4, p. 040404, 2007.

[143] S. Barzanjeh, M. Naderi, and M. Soltanolkotabi, “Generation of motional nonlinear coherent states and their superpositions via an intensity-dependent coupling of a cavity field to a micromechanical membrane,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 44, no. 10, p. 105504, 2011.

[144] S. Rips, M. Kiffner, I. Wilson-Rae, and M. J. Hartmann, “Steady-state negative wigner functions of nonlinear nanomechanical oscillators,” New Journal of Physics, vol. 14, no. 2, p. 023042, 2012.

[145] S. Rips, I. Wilson-Rae, and M. Hartmann, “Nonlinear nanomechanical resonators for quantum optoelectromechanics,” Physical Review A, vol. 89, no. 1, p. 013854, 2014.

[146] M.-F. Yu, G. J. Wagner, R. S. Ruoff, and M. J. Dyer, “Realization of parametric resonances in a nanowire mechanical system with nanomanipulation inside a scanning electron microscope,” Physical Review B, vol. 66, no. 7, p. 073406, 2002.

[147] J. Aldridge and A. Cleland, “Noise-enabled precision measurements of a duffing nanomechanical resonator,” Physical review letters, vol. 94, no. 15, p. 156403, 2005.

[148] I. Kozinsky, H. C. Postma, I. Bargatin, and M. Roukes, “Tuning nonlinearity, dynamic range, and frequency of nanomechanical resonators,” Applied Physics Letters, vol. 88, no. 25, p. 253101, 2006.

[149] A. Lupaşcu, E. Driessen, L. Roschier, C. Harmans, and J. Mooij, “High-contrast dispersive readout of a superconducting flux qubit using a nonlinear resonator,” Physical review letters, vol. 96, no. 12, p. 127003, 2006.

[150] M. Woolley, A. Doherty, G. Milburn, and K. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Physical Review A, vol. 78, no. 6, p. 062303, 2008.

[151] S. Barzanjeh, V. Salari, J. Tuszynski, M. Cifra, and C. Simon, “Optomechanical proposal for monitoring microtubule mechanical vibrations,” Physical Review E, vol. 96, no. 1, p. 012404, 2017.