Oxidative Dehydrogenation of Hydrazobenzenes toward Azo Compounds Catalyzed by tert-Butyl Nitrite in EtOH

Zhi-Qiang Wang,* Jiang-Xi Yu, Shan-Qin Bai, Bang Liu, Cheng-Yong Wang,* and Jin-Heng Li*

ABSTRACT: We describe a tert-butyl nitrite-catalyzed oxidative dehydrogenation of hydrazobenzenes for producing azobenzenes. This method proceeds at ambient temperature and under an atmospheric environment by employing eco-friendly EtOH as the medium, representing a mild, general route to the synthesis of various symmetrical and nonsymmetrical azobenzenes in excellent yields with broad functional group tolerance.

INTRODUCTION

Azo compounds, a class of prominent compounds containing a N=N unsaturated bond, are versatile synthetic building blocks in synthesis as well as pervasive motifs in related bioactive natural products, pharmaceuticals, functional materials (e.g., dyes, pigments, indicators, photochemical switches, chemosensors, food additives, and polymers), and radical-reaction initiators. As a result, considerable efforts have been dedicated to the development of efficient, sustainable methods for azo compound synthesis.

Preparation of prominent compounds in an eco-friendly strategy is of continuous interest in organic synthesis. With this feature in mind and our interest in metal-free synthesis of organic molecules via the oxidative strategy, we sought to develop an efficient and environmentally friendly dehydrogenation reaction of hydrazobenzenes to furnish azo compounds. After a series of trials, it was found that tert-butyl nitrite (TBN) could realize the dehydrogenation of hydrazobenzenes to furnish azo compounds at room temperature. This approach offers a valuable, eco-friendly alternative to azo compounds, which is rapid, mild, general, and easy to operate, does not require additives, and is suitable for large-scale applications.

RESULTS AND DISCUSSION

We first selected 1,2-diphenylhydrazine (1a) as the model substrate to optimize the reaction conditions. First, when 1,2-

Received: September 6, 2020
Accepted: October 7, 2020
Published: October 29, 2020
diphenylhydrazine was treated with several common non-metallic oxidants in radical reaction (2 equiv), such as O2 (balloon), TBHP (70% in water), DTBP, H2O2, benzoic peroxyanhydride (BPO), K2S2O8, and TBN, in MeCN at room temperature, the results represent a significant difference regarding the oxidants (Table 1, entries 1–7). For examples, both BPO and TBN could effectively facilitate this transformation, affording 80% and 86% yield of the product, respectively (entries 5 and 7); however, the others exhibited no reactivity to this reaction (entries 1–4 and 6), and the starting material was recovered from the reaction system after 2 h.

Next, the effect of solvent on product yields was also examined (entries 8–14). The results showed that ethyl acetate, dioxane, DCM, DMSO, and DMF provided similar product yields (entries 9–11, 13, and 14); however, the use of toluene as a solvent reduced the yield to 26% (entry 8). Gratifyingly, an excellent yield (93%) of the product was obtained when EtOH was used as a solvent (entry 12). Finally, the amount of TBN was investigated. The results showed that decreasing the amount of TBN to 100 or 30 mol %, excellent yields of 2a could be obtained (entries 15 and 16); however, a lower yield (43%) was obtained upon decreasing the amount of TBN to 15 mol % (entry 17). Notably, air played a crucial role because <10% yield of 2a was obtained under an Ar atmosphere (entry 18). In addition, the yield of 2a reduced to 16% when 30 mol % TBN was changed to 30 mol % BPO (entry 19).

With optimized conditions in hand, the scope of diverse functionalized azobenzenes synthesis was examined (Scheme 2). As shown in Scheme 2, a wide range of substituents on the aromatic ring were tolerated to produce the corresponding azobenzenes (types I and II). For symmetrical azobenzenes (type I), both electron-donating group (−Me, −OMe) or electron-withdrawing groups (−Cl, −CF3) at the para position of the aromatic ring were compatible with this procedure (2b–e). For unsymmetrical azobenzenes (type II), one of the aromatic ring of hydrazobenzenes bearing substituents, such as methyl (2f and 2g), halide (2h–k), methoxy (2l), methylthio (2m), phenyl (2n), and trifluoromethyl (2o), underwent the transformation well to generate the azobenzenes in excellent yields. Moreover, halogen atoms (F, Cl, Br, and I) were well compatible, allowing for the construction of more complex molecules. In addition, this method exhibited good selectivity when 1-(4-(methylthio)phenyl)-2-phenylhydrazine (2m), a substrate including methylthio that could be oxidized to sulfone, was selected to produce the corresponding azobenzenes. Hydrazobenzenes containing two substituents or one cyclic structure accomplished the transformation well to achieve the azobenzenes in good yields (2p–s).

Subsequently, some continuations of our present strategy were carried out to verify the scalability and applicability (Scheme 3). When 1a was treated at a 6 mmol scale, 92% yield

entry	[O] [mol %]	solvent	temp (°C)	yield (%)
1*	air or O2	MeCN	rt	trace
2	TBHP (200)	MeCN	rt	trace
3	DTBP (200)	MeCN	rt	trace
4	H2O2 (200)	MeCN	rt	trace
5	BPO (200)	MeCN	rt	80
6	K2S2O8 (200)	MeCN	rt	trace
7	TBN (200)	MeCN	rt	86
8	TBN (200)	toluene	rt	26 (68%)
9	TBN (200)	ethyl acetate	rt	83
10	TBN (200)	dioxane	rt	86
11	TBN (200)	DCM	rt	88
12	TBN (200)	EtOH	rt	93
13	TBN (200)	DMSO	rt	87
14	TBN (200)	DMF	rt	83
15	TBN (100)	EtOH	rt	97
16	TBN (30)	EtOH	rt	96
17	TBN (15)	EtOH	rt	43 (54%)
18†	TBN (30)	EtOH	rt	<10
19	BPO (30)	EtOH	rt	16 (80%)

*Reaction conditions: 1a (0.5 mmol), [O], solvent (2 mL), air (1 atm), room temperature, and 2 h. *Isolated yield. *Air or O2 (balloon; 1 atm). †In argon. ‡Recovery rate of 1a.

ACS Omega http://pubs.acs.org/journal/acsodf

Article

https://dx.doi.org/10.1021/acsomega.0c04348

ACS Omega 2020, 5, 28856–28862

Scheme 2. Formation of Various Azobenzenes

![Scheme 2](image-url)
of the target product 2a was obtained [Eq (1)]. Additionally, when \(N' \)-phenylacetohydrazide 3a was investigated under the standard conditions, a trace amount of product 4a was detected and 16% yield of the product 4a was separated from the transformation when 200 mol % TBN was utilized; however, the yield of 4a increased to 64% when changing the solvent to MeCN, together with 200 mol % TBN [Eq (2)]. To our surprise, treatment of 4-methylbenzenesulfonohydrazide (5a) with 200 mol % TBN in EtOH afforded 4-methylbenzenesulfonyl azide (6a) in 92% yield [Eq (3)].

To understand the mechanism for this reaction, we performed some control experiments. It was found that the reaction did not proceed when TBN was changed to NaNO2 (with or without HOAc) and gave a very low yield of 2a when changing TBN to AgNO2 or Fe(NO3)3 [Eq (4)]. When a stoichiometric amount of the radical inhibitor was used (3 equiv), including TEMPO and BHT [Eq (5)], the yields of product 2a represented a certain suppression. According to the results, a free radical process should be involved in this dehydrogenation strategy.

On the basis of the above results and the precedent literature, a plausible reaction mechanism was proposed (Scheme 4).\(^{12}\) Initially, \(^{1} BuONO\) would divide into a \(^{1} BuO\) radical and an NO radical, which transform into HNO2 in the presence of H2O. Then, HNO2 is rapidly decomposed into NO2, NO, and H2O. With the aid of NO2, NO, and air (O2), substrate 1a is converted into intermediate A. Finally, product 2a is generated via elimination of an equivalent HNO2 from intermediate A. HNO2 re-participate in the decomposition, thus making the reaction start a new reaction cycle.

CONCLUSIONS

In conclusion, we herein have developed an efficient and practical dehydrogenation approach of hydrazobenzenes to furnish azobenzenes with the aid of catalytic TBN and air. The
reaction proceeds under mild conditions and using a green solvent (EtOH) without any additives. Various symmetrical and unsymmetrical azobenzenes could be successfully constructed in excellent yields (up to 98%) with broad functional group tolerance.

EXPERIMENTAL SECTION

General Information. 1H NMR, 13C(1H) NMR spectra were recorded on a Bruker 400 MHz advance spectrometer at room temperature in CDCl$_3$ with tetramethylsilane as an internal standard. Chemical shifts (δ) are reported in ppm, and coupling constants (J) are in hertz (Hz). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Reactions were monitored by thin-layer chromatography. Column chromatography (petroleum ether/ethyl acetate) was performed on silica gel (300−400 mesh). Analytical grade solvents and commercially available reagents were purchased from commercial sources and used directly without further purification unless otherwise stated.

Typical Experimental Procedure for the Scale Magnification Experiments. To a 10 mL tube was added substrate (0.5 mmol) followed by EtOH (5 mL) and TBN (30 mol %). The content of the tube was stirred at room temperature under an atmospheric environment for 2 h. Then, the reaction mixture was concentrated under reduced pressure. Purification by column chromatography (Hexanes/EtOAc: 100/1) afforded corresponding azo compounds.

Typical Experimental Procedure for the Scale Magnification Experiments. To a 10 mL tube was added substrate (1a (6 mmol) followed by EtOH (5 mL) and TBN (30 mol %). The content of the tube was stirred at room temperature under an atmospheric environment for 2 h. The reaction mixture was concentrated under reduced pressure. Purification by column chromatography (Hexanes/EtOAc: 50/1−100/1) afforded corresponding azo compounds.

(E)-1,2-Di-p-tolyldiazene (2b). 94.1 mg, 92%), prepared according to the typical procedure (petroleum ether/ethyl acetate = 100:1) as a yellow solid. 1H NMR (400 MHz, CDCl$_3$ δ ppm) 7.96−7.89 (m, 4H), 7.53−7.45 (m, 3H), 7.19 (t, J = 8.0 Hz, 2H), 1H NMR (100 MHz, CDCl$_3$ δ ppm) 164.3 (d, J = 100 Hz, 1C), 152.4, 149.1 (d, J = 1 Hz, 1C), 138.9, 131.8, 130.9, 129.0, 128.9, 122.8, 120.5, 21.4.

(E)-1-(4-Fluorophenyl)-2-phenyldiazene (2h). 91.4 mg, 93%), prepared according to the typical procedure (petroleum ether/ethyl acetate = 100:1) as a yellow solid. 1H NMR (400 MHz, CDCl$_3$ δ ppm) 7.92−7.90 (m, 2H), 7.74−7.73 (m, 2H), 7.52−7.49 (m, 2H), 7.47−7.44 (m, 1H), 7.39 (t, J = 8.0 Hz, 2H), 2.28 (s, 3H). 13C(1H) NMR (100 MHz, CDCl$_3$ δ ppm) 152.7 (2C), 138.9, 131.8, 130.9, 129.0, 128.9, 122.8, 120.5, 21.4.

(E)-1-(4-Chlorophenyl)-2-phenyldiazene (2i). 96.3 mg, 97%), prepared according to the typical procedure (petroleum ether/ethyl acetate = 100:1) as a yellow solid. 1H NMR (400 MHz, CDCl$_3$ δ ppm) 7.86−7.92 (m, 4H), 7.47−7.52 (m, 5H). 13C(1H) NMR (100 MHz, CDCl$_3$ δ ppm) 152.3, 150.9, 136.8, 131.3, 129.1, 124.1, 122.9.

(E)-1-(4-Bromophenyl)-2-phenyldiazene (2j). 91.4 mg, 93%), prepared according to the typical procedure (petroleum ether/ethyl acetate = 100:1) as a yellow solid. 1H NMR (400 MHz, CDCl$_3$ δ ppm) 7.91 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.50−7.52 (m, 3H). 13C(1H) NMR (100 MHz, CDCl$_3$ δ ppm) 152.3, 151.2, 132.3, 131.3, 129.1, 125.3, 124.3, 122.9.

(E)-1-(4-Iodophenyl)-2-phenyldiazene (2k). 150.0 mg, 95%), prepared according to the typical procedure (petroleum ether/ethyl acetate = 100:1) as a yellow solid. 1H NMR (400 MHz, CDCl$_3$ δ ppm) 7.91 (d, J = 4.0 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.53−7.47 (m, 3H). 13C(1H) NMR (100 MHz, CDCl$_3$ δ ppm) δ152.4, 151.9, 138.3, 131.3, 129.1, 124.5, 123.0, 97.7.

(E)-1-(4-Methoxyphenyl)-2-phenyldiazene (2l). 101.6 mg, 95%), prepared according to the typical procedure (petroleum ether/ethyl acetate = 100:1) as a yellow solid. 1H NMR (400 MHz, CDCl$_3$ δ ppm) 8.03 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H). 13C(1H) NMR (100 MHz, CDCl$_3$ δ ppm) 154.1, 132.9 (q, J = 26.0 Hz, 1C), 126.4 (q, J = 3.0 Hz, 1C), 123.8 (q, J = 210.0 Hz, 1C), 123.3.

(E)-1-(4-Bromonitrophenyl)-2-phenyldiazene (2m). 98.4 mg, 94%), prepared according to the typical procedure (petroleum ether/ethyl acetate = 100:1) as a yellow solid. 1H NMR (400 MHz, CDCl$_3$ δ ppm) 8.03 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H). 13C(1H) NMR (100 MHz, CDCl$_3$ δ ppm) 152.6, 149.9, 142.9, 130.7, 129.0, 125.9, 123.3, 122.7, 15.2.
(E)-1-(1',1'-Biphenyl)-4-yl)-2-phenyldiazene (2n),15 (117.2 mg, 90%), prepared according to the typical procedure (petroleum ether/ethyl acetate = 100:1) as a brown solid. 1H NMR (400 MHz, CDCl₃, δ ppm) 7.99 (d, J = 8.0 Hz, 2H), 7.94 (d, J = 4.0 Hz, 2H), 7.73 (d, J = 4.0 Hz, 2H), 7.64 (d, J = 8.0 Hz, 2H), 7.52−7.43 (m, 5H), 7.38−7.35 (m, 1H). 13C{¹H} NMR (100 MHz, CDCl₃, δ ppm) 152.6, 147.4, 146.4, 143.8, 130.4, 129.0, 122.6, 118.2, 146.2, 135.3, 130.1, 127.3, 21.5.

1H NMR and 13C{¹H} NMR spectra of all products (PDF)

AUTHORS INFORMATION

Corresponding Authors

Jin-Heng Li — Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; Email: jhli@hnu.edu.cn

Zhi-Qiang Wang — Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China; orcid.org/0000-0001-7215-7152; Email: zqwang2008@tom.com

Cheng-Yong Wang — Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China; Email: wang_cy26@163.com

Authors

Jiang-Xi Yu — Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China

Shan-Qin Bai — Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China

Bang Liu — Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c04348

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Z.-Q.W. received funding from the National Natural Science Foundation of China (21302105). Z.-Q.W. and C.-Y.W. received funding from the Hengyang Normal University (18D08 and 17D06), and C.-Y.W. received funding from the Hunan Provincial Natural Science Foundation of China (2019JJ50008).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.0c04348.
Aromatic Azo Compounds using Dioxygen as an Oxidant.

Aerobic Oxidative Reaction of Primary Aromatic Amines.

Cyanation of Disulfides by Azobisisobutyronitrile Leading to 238. (d) Ashutosh, P. N. D.; Mehrotra, J. K. Azo Dyes as and Biochemical Actions of Sulphasalazine.

Azo Dyestuffs in Analytical Chemistry. Chemistry, Properties, Applications; García, H. Gold-Catalyzed Synthesis of Aromatic Azo Compounds

Hydrazo Derivatives Promoted by a TiCl3/HBr System. LAishram, R. D.; Li, J.; Zhou, Y.; Xu, D.; More, S.; Dai, Y.; Fan, B. Photocatalysis Enabling Active Nano-Palladium Catalyst for the Preparation of Aromatic Azos under Mild Conditions. Org. Lett. 2011, 13, 5640–5643. (i) Hu, L.; Cao, X.; Chen, L.; Zheng, J.; Lu, J.; Sun, X.; Gu, H. Highly Efficient Synthesis of Aromatic Azos Catalyzed by Unsupported Ultra-Thin Pt Nanowires. Chem. Commun. 2012, 48, 3445–3447. (j) Zhang, Y.-F.; Mellah, M. Convenient Electrocatalytic Synthesis of Azozenbes from Nitroaromatic Derivatives Using SmI2. ACS Catal. 2017, 7, 8480–8486. (k) Smith, M. B.; March, J. March’s Advanced Organic Chemistry Reactions, Mechanisms, and Structure; John Wiley & Sons, Inc.: 2007. (l) Hagheen; K; Tan, E. W. Facile Synthesis of Catechol Azo Dyes. J. Org. Chem. 1998, 63, 4503–4505.

For selected examples, see: (a) Billera, C. F.; Dunn, T. B.; Barry, D. A.; Engel, P. S. Thermolysis of Acylazo O-Trimethylsilyl Cyanoazobenzines: Azoalanes Yielding Captodatively Substituted Radicals. J. Org. Chem. 1998, 63, 9763–9768. (b) Cohen, S. G.; Zand, R. Bicyclic, Cyclic and Azoic Azo Compounds 2,3-Diazabicyclo[2,2,2]-octene, 3,6-Dimethyl-1-tetrahydroxydrazide and Azosipropionate. J. Am. Chem. Soc. 1962, 84, 586–591. (c) LeFevre, G. N.; Crawford, R. J. Intramolecular Steric Factors in the Thermolysis of 4-Alkylidene-1-pyrazolines. J. Am. Chem. Soc. 1986, 108, 1019–1027. (d) Tsubuki, O.; Sillard, R.; Mäser, U. Novel, Efficient and Regiospecific Alkylation/Arylation/Heterolytic of Unsymmetrical Azo Compounds. Synthesis 2006, 2006, 843–846. (e) Kim, S. S. B.; Hommer, R. B.; Cannon, R. D. The Oxidation of Hydrazobenzene Catalyzed by Cobalt Complexes in Nonaqueous Solvents. Bull. Korean Chem. Soc. 2006, 27, 255–265. (f) Donck, S.; Gravel, E.; Li, A.; Prakash, P.; Shah, N.; Leroy, J.; Li, H.; Namboothiri, I. N. N.; Doris, E. Mild and Selective Catalytic Oxidation of Organic Substrates by a Carbon Nanotube-rhodium Nanohybrid. Catal. Sci. Technol. 2015, 5, 4542–4546. (g) Blackadder, D. A.; Hinselwood, C. The Kinetics of the Rearrangement and Oxidation of Hydrazobenzene in Solution. Part II. The Catalysed Oxidation. J. Chem. Soc. 1957, 2904–2906. (h) Gao, W.; He, Z.; Qian, Y.; Zhao, J.; Huang, Y. General Palladium-catalyzed Aerobic Dehydrogenation to Generate Double Bonds. Chem. Sci. 2012, 3, 883–886. (e) Drug, E.; Gozin, M. Catalytic Oxidation of Hydrazo Derivatives Promoted by a TiCl3/HBr System. J. Am. Chem. Soc. 2007, 129, 13784–13785. (f) Kim, M. H.; Kim, J. Aerobic Oxidation of Alkyl 2-Phenyldiazinocarboxylates Catalyzed by CuCl and DMAP. J. Org. Chem. 2018, 83, 1673–1679. (g) Lv, H.; Laishram, R. D.; Yang, Y.; Li, J.; Xu, D.; Zhan, Y.; Luo, Y.; Su, Z.; More, S.; Fan, B. TEMPO Catalyzed Oxidative Dehydrogenation of Hydrazobenzenes to Azobenzene. Org. Biomol. Chem. 2020, 18, 3471–3474. (b) Jo, G.; Kim, M. H.; Kim, J. A Practical Route to Azo Compounds by Metal-free Aerobic Oxidation of Arylhydrazides Using an NOx System. Org. Chem. Front. 2020, 7, 834–839.

For papers on other methods, see: (a) Wang, L.; Ishida, A.; Hashidoko, Y.; Hashimoto, M. Dehydrogenation of the NH—NH Bond Triggered by Potassium tert-Butoxide in Liquid Ammonia. Angew. Chem., Int. Ed. 2017, 56, 870–873. (b) Sahoo, M. K.; Saravankumar, K.; Jaiswal, G.; Balaraman, E.; Photocatalysis Enabling Acceptorless Dehydrogenation of Diaryl Hydrazines at Room Temperature. ACS Catal. 2018, 8, 7727–7733. (c) Lv, H.; Laishram, R. D.; Li, J.; Zhou, Y.; Xu, D.; More, S.; Dai, Y.; Fan, B.; Photocatalyzed Oxidative Dehydrogenation of Hydrazobenzenes to Azobenzene. Green Chem. 2019, 21, 4055–4061. (d) Wang, X.; Wang, X.; Xia, C.; Wu, L. Visible-light-promoted Oxidative Dehydrogenation of Hydrazobenzenes and Transfer Hydrogenation of Azobenzene. Green Chem. 2019, 21, 4189–4193. (e) Du, K.; S.; Huang, J.-M. Electrochemical Dehydrogenation of Hydrazobenzenes to Azo Compounds. Green Chem. 2019, 21, 1680–1685.

Acetyl CoA Synthase (EC2.3.1.13) from Escherichia coli (9) (a) Deng, G.-B.; Zhang, J.-L.; Liu, Y.-Y.; Liu, B.; Yang, X.-H.; Li, J.-H. Metal-free Nucleophilic Cyclization of N-Aryl Imines with tert-Butyl Nitrite: Dehydrogenative Access to 3-Nitroindoles. Chem. Commun. 2015, 51, 1886–1888. (b) Hu, M.; Song, R.-J.; Li, J.-H. Metal-Free Radical 5-exo-dig Cyclizations of Phenol-Linked 1,6-Enynes for the Synthesis of Carbonylated Benzo[fd]azulenes. Angew. Chem., Int. Ed. 2015, 54, 608–612. (c) Luo,
M.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Electrochemical Dehydrogenative Cross-Coupling of Two Anilines: Facile Synthesis of Unsymmetrical Barylrs. *Chem. Commun.* 2020, 56, 2707–2710.

(d) Wu, Y.-C.; Jiang, S.-S.; Song, R.-J.; Li, J.-H. A Metal- and Oxidizing-reagent-free Anodic para-Selective Amination of Anilines with Phenothiazines. *Chem. Commun.* 2019, 55, 4371–4374. (e) Wu, Y.-C.; Jiang, S.-S.; Luo, S.-Z.; Song, R.-J.; Li, J.-H. Transition-metal and Oxidant-free Directed Anodic C-H Sulfonylation of N,N-disubstituted Anilines with Sulfonates. *Chem. Commun.* 2019, 55, 8995–8998.

(12) For selected reviews and papers on utilization of TBN in organic synthesis, see refs 10a, b and others as: (a) Chen, F.; Huang, X.; Li, X.; Shen, T.; Zou, M.; Jiao, N. Dehydrogenative N-incorporation: A Direct Approach to Quinoxaline N-oxides Under Mild Conditions. *Angew. Chem., Int. Ed.* 2014, 53, 10495–10499. (b) Liu, Y.; Zhang, J.-L.; Song, R.-J.; Qian, P.-C.; Li, J.-H. Cascade Nitration/Cyclization of 1,7-enynes With 'BuONO and H2O: One-Pot Self-Assembly of Pyrrolo[4,3,2-de]quinolinones. *Angew. Chem., Int. Ed.* 2014, 53, 9017–9020. (c) Lin, Y.; Kong, W.; Song, Q. Palladium-Catalyzed Nitration of Meyer–Schuster Intermediates with 'BuONO as Nitrogen Source at Ambient Temperature. *Org. Lett.* 2016, 18, 3702–3705. (d) Chen, Y.; Ma, Y.; Li, L.; Jiang, H.; Li, Z. Nitration-Peroxidation of Alkenes: A Selective Approach to β-Peroxy Nitroalkanes. *Org. Lett.* 2019, 21, 1480–1483. (e) Feng, K.-W.; Ban, Y.-L.; Yuan, P.-F.; Lei, W.-L.; Liu, Q.; Fang, R. Synthesis of 4-Oxoisoxazoline N-Oxides via Pd-Catalyzed Cyclization of Propargylic Alcohols with tert-Butyl Nitrite. *Org. Lett.* 2019, 21, 3131–3135. (f) He, K.; Zhang, T.; Zhang, S.; Sun, Z.; Zhang, Y.; Yuan, Y.; Jia, X. Tunable Functionalization of Saturated C-C and C-H Bonds of N,N-Diarylipiperazines Enabled by tert-Butyl Nitrite (TBN) and NaNO2 Systems. *Org. Lett.* 2019, 21, 5030–5034. (g) Saú, P.; Rakshit, A.; Alam, T.; Srivastava, H. K.; Patel, B. K. tert-Butyl Nitrite Mediated Synthesis of 1,2,4-Oxadiazol-5(4H)-ones from Terminal Aryl Alkenes. *Org. Lett.* 2019, 21, 4966–4970. (h) Ning, X.-S.; Wang, M.-M.; Yao, C.-Z.; Chen, X.-M.; Kang, Y.-B. tert-Butyl Nitrite: Organic Redox Cocatalyst for Aerobic Aldehyde-Selective Wacker-Tsui Oxidation. *Org. Lett.* 2016, 18, 2700–2703. (i) Dai, P.; Tan, X.; Luo, Q.; Yu, X.; Zhang, S.; Liu, F.; Zhang, W.-H. Synthesis of 3-Acyloisoazoles and Δ'-Isoazolines from Methyl Ketones, Alkynes or Alkenes, and tert-Butyl Nitrite via a Csp²-H Radical Functionalization/Cycloaddition Cascade. *Org. Lett.* 2019, 21, 5096–5100.

(13) The green chemistry metrics for this method were calculated according to the following references: (a) Sheldon, R. A. Atom Efficiency and Catalysis in Organic Synthesis. *Pure Appl. Chem.* 2000, 72, 1233–1246. (b) Sheldon, R. A. The E Factor 25 Years on: The Rise of Green Chemistry and Sustainability. *Green Chem.* 2017, 19, 18–43. (c) Van Aken, K.; Strekowski, L.; Patiny, L. EcoScale, a Semi-quantitative Tool to Select an Organic Preparation Based on Economical and Ecological Parameters. *Beilstein J. Org. Chem.* 2006, 2, 3. (d) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. A Base-free, Ultrasound Accelerated One-pot Synthesis of 2-Sulfonylquinolines in Water. *Green Chem.* 2017, 19, 5642–5646. The green chemistry metrics for this method and previous works were compared in the ESI†.

(14) Rahim, M. A.; Rao, P. P.; Knaus, E. E. Synthesis of 4-Alkyl-1,2-diphenyl-3,5-dioxopyrazolidines Possessing Aryl Methanesulfonyl and Sulfonamide Pharmacophores for Evaluation as Selective Cyclooxygenase-2 (COX-2) Inhibitors. *J. Heterocyclic Chem.* 2002, 39, 1309–1314.

(15) Kim, K.-Y.; Shin, J.-T.; Lee, K.-S.; Cho, C.-G. Cu(II) Mediated One-pot Synthesis of Azobenzenes from Bis-Boc Aryl Hydrazines and Aryl Halides. *Tetrahedron Lett.* 2004, 45, 117–120.

(16) Lian, Y.; Bergman, R. G.; Lavis, L. D.; Ellman, J. A. Rhodium(III)-catalyzed Indazole Synthesis by C-H Bond Functionalization and Cyclative Capture. *J. Am. Chem. Soc.* 2013, 135, 7122–7125.

(17) Hashimoto, T.; Hirose, D.; Taniguchi, T. Catalytic Aerobic Oxidation of Arylhydrazides with Iron Phthalocyanine. *Adv. Synth. Catal.* 2015, 357, 3346–3352.

(18) Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N. Ph₃P/Br₂/n-Bu₄NNO₂ as an Efficient System for the Preparation of N-Nitrosamines and Azides. *Tetrahedron Lett.* 2008, 49, 4242–4244.