The Heat Shock Response Is Modulated by and Interferes with Toxic Effects of Scrapie Prion Protein and Amyloid β

Ulrike K. Resenberger†, Veronika Müller‡, Lisa M. Munter§, Michael Baier‖, Gerd Multhaup‡‡, Mark R. Wilson**, Konstanze F. Winklhofer††, and Jörg Tatzelt‡‡‡

From the †Neurobiochemistry, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, D-80336 Munich, Germany, ‡Institut für Chemie und Biochemie, Freie Universität, 14195 Berlin, Germany, the †Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3A0G4, Canada, ‖Robert-Koch-Institut, 13302 Berlin, Germany, the **School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia, and the ‡‡German Center for Neurodegenerative Diseases (DZNE), 80336 Munich, Germany

The heat shock response (HSR) is an evolutionarily conserved pathway designed to maintain proteostasis and to ameliorate toxic effects of aberrant protein folding. We have studied the modulation of the HSR by the scrapie prion protein (PrPSc) and amyloid β peptide (Aβ) and investigated whether an activated HSR or the ectopic expression of individual chaperones can interfere with PrPSc- or Aβ-induced toxicity. First, we observed different effects on the HSR under acute or chronic exposure of cells to PrPSc or Aβ. In chronically exposed cells the threshold to mount a stress response was significantly increased, evidenced by a decreased expression of Hsp72 after stress, whereas an acute exposure lowered the threshold for stress-induced expression of Hsp72. Next, we employed models of PrPSc- and Aβ-induced toxicity to demonstrate that the induction of the HSR ameliorates the toxic effects of both PrPSc and Aβ. Similarly, the ectopic expression of cytosolic Hsp72 or the extracellular chaperone clusterin protected against PrPSc- or Aβ-induced toxicity. However, toxic signaling induced by a pathogenic PrP mutant located at the plasma membrane was prevented by an activated HSR or Hsp72 but not by clusterin, indicating a distinct mode of action of this extracellular chaperone. Our study supports the notion that different pathological protein conformers mediate toxic effects via similar cellular pathways and emphasizes the possibility to exploit the heat shock response therapeutically.

Accumulation of misfolded and aggregated proteins is a hallmark of various neurodegenerative diseases. Prion diseases (for review, see Refs. 1–4) and Alzheimer disease (AD)2 (for review, see Refs. 5 and 6) are characterized by extracellular protein assemblies formed by the scrapie prion protein (PrPSc) or amyloid β (Aβ) peptide, respectively. Whereas prion diseases and AD are clearly distinct disease entities, there appear to be commonalities concerning structural features of the pathogenic protein conformers as well as pathways implicated in their toxic effects (for review, see Refs. 7–10).

The protein deposits found in AD or prion diseases are associated with intra- and extracellular heat shock proteins (Hsps) (11–13), suggesting a role of Hsps in the pathogenic process. Hsps, many of which function as molecular chaperones, comprise a class of proteins that are induced under conditions of cellular stress when the concentration of aggregation-prone folding intermediates are increasing. However, Hsps exert fundamental functions also under physiological conditions as they are vitally engaged in protein folding, trafficking, and regulation of signaling pathways (for review, see Ref. 14). Hsps are found in all cellular compartments and organelles. In addition, clusterin is a secreted chaperone shown to be involved in the extracellular protein quality control system (15). Up-regulation of Hsps after acute or chronic proteotoxic damage is mediated by a highly conserved pathway denoted the heat shock response (HSR). At the molecular level, different stressors are integrated through the activation of a single transcription factor, the heat shock transcription factor 1 (HSF1), which binds to specific heat shock element (HSE) sequences present in the promoter region of inducible Hsp genes (for review, see Refs. 16 and 17). An increase in Hsp levels prevents protein aggregation and facilitates correct folding of non-native proteins after cellular stress. In addition, chaperones participate in anti-apoptotic pathways (for review, see Refs. 18–20). It is, therefore, not surprising that a deregulation of the HSR can contribute to the progression of various diseases. Consequently, the HSR represents a target for therapeutic intervention in a range of diseases.

HSF1, heat shock transcription factor 1; HSE, heat shock element; HD, hydrophobic domain.

**The work was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 596, GRK1123 (to G. M.) and SFB 740 (to L. M. M. and G. M.)) and by the Max Planck Society.

1 To whom correspondence should be addressed: Ludwig-Maximilians-University Munich, Schillerstrasse 44, D-80336 Munich, Germany. Tel: 49-89-2180-75442; Fax: 49-89-2180-75415; E-mail: Joerg.Tatzelt@med.uni-muenchen.de.

2 The abbreviations used are: AD, Alzheimer disease; PrPSc, scrapie prion protein; Aβ, amyloid β; Hsp, heat shock protein; HSR, heat shock response;
Heat Shock Response and Proteotoxicity

(for review, see Refs. 21–26). For example, pharmacological induction of the HSR was shown to ameliorate disease progression and neuropathological alterations in mouse models of neurodegenerative diseases (27–29). Supporting a protective role of the HSR, deletion of HSF1 dramatically shortened the lifespan of scrapie-infected mice (30).

We have previously studied the HSR in scrapie-infected mouse neuroblastoma (ScN2a) cells, which offer a useful model to study certain aspects of prion diseases in cultured cells. Most importantly, ScN2a cells propagate partially protease-resistant PrPSc and infectious prions (31, 32). The stress-induced expression of Hsp72 and Hsp28 is significantly impaired in ScN2a cells, whereas their uninfected counterparts are able to mount a normal stress response (33, 34). Notably, we found that the impaired HSR in ScN2a cells is caused by an accelerated deactivation of HSF1 after stress and can be restored by the Hsp90-binding drug geldanamycin (34).

In this study we characterized the impact of pathogenic protein conformers on the regulation of HSR by making use of cell culture models of PrPSc- and Aβ-induced toxicity. We demonstrate that PrPSc and Aβ have different effects on the HSR depending on whether they are applied in an acute or chronic manner to cells. Moreover, activation of the HSR or ectopic expression of individual chaperons is protective against PrPSc- and Aβ-induced cell death as well as the toxic activity of a pathogenic PrP mutant.

EXPERIMENTAL PROCEDURES

Plasmids, Antibodies, and Reagents—Expression constructs have been described previously: PrPSc (35); HSE-luc (36); Hsp72 (37); ΔHSF, wtHSF (38); PrPΔHDD (35); pRc/VMV-clusterin (39). Amino acid numbers refer to mouse prion protein sequence (GenBankTM accession number NP 035300). As the transfection marker, the EYFP-C1 vector (Clontech) was used. The following antibodies were used: mouse monoclonal anti-PrP 3F4 antibody (40), rabbit polyclonal anti-PrP antibody A7 (41), mouse monoclonal anti-Hsp72 antibody C92 (42), mouse monoclonal anti-clusterin antibody 41D (43), mouse monoclonal anti-β-actin antibody (Sigma), rabbit polyclonal anti-active caspase-3 antibody (Promega), fluorescent dye-labeled antirabbit IgG antibody Alexa Fluor® 555 (Invitrogen), fluorescent dye-labeled anti-mouse IgG antibody Alexa Fluor® 555 (Invitrogen), horseradish peroxidase-conjugated anti-mouse IgG antibody (Amersham Biosciences, Promega), horseradish peroxidase-conjugated anti-rabbit IgG antibody (Promega), horseradish peroxidase-conjugated anti-rat IgG antibody (Santa Cruz Biotechnology), rat monoclonal anti-Aβ antibody 2D8 (44), rabbit polyclonal anti-Aβ antibody 3552 (45). The following reagents were used: TO-PRO®-3 iodide (642/661) (Invitrogen) and DAPT (N-[[3,5-difluorophenacetyl]-1-allyl]-S-phenylglycine t-butyl ester). The mounting medium Mowiol was supplemented with DAPI (4′,6-diamidino-2-phenylindole; Sigma).

Cell Culture, Transfection, Co-culture—Cells were cultured and transfected as described earlier (35). The human SH-SY5Y cell line (DSMZ number ACC 209) is a sub-line of bone marrow biopsy-derived SK-N-SH cells. Stably transfected Chinese hamster ovary cells (CHO-7PA2) that express the familial AD mutation V717F in the amyloid precursor protein APP751 and secrete Aβ were described earlier (46). Cells cultured in 3.5-cm dishes were transfected with DNA by a liposome-mediated method using LipofectAMINE Plus reagent (Invitrogen) according to the manufacturer’s instructions. For co-culture experiments, SH-SY5Y cells were grown on glass coverslips. 2 h after transfection coverslips were transferred into dishes containing a 90% confluent cell layer of either ScN2a or N2a or CHO-7PA2 or CHO cells (47, 48). After 16 or 24 h of co-culture, either apoptotic cell death or luciferase activity was analyzed (see below). For stable transfection, SH-SY5Y cells were transfected with the plasmid pCEP4 containing the coding sequence for APP695 using Transfectin (Bio-Rad) according to the manufacturer’s instructions. Stably transfected cells were selected with hygromycin (250 μg/ml). The empty vector was used as control (mock-transfected).

Cell Lysis, Immunoprecipitation, and Western Blot Analysis—As described earlier (49), cells were washed twice with cold phosphate-buffered saline (PBS), scraped off the plate, and lysed in cold detergent buffer A (0.5% Triton X-100, 0.5% sodium deoxycholate in PBS). Total lysates or secreted and trichloroacetic acid (TCA)-precipitated proteins were boiled with Laemmli sample buffer and analyzed by Western blotting as described previously (50). For proteolysis experiments, lysates of ScN2a or N2a cells were digested with Proteinase K for 30 min at 37 °C (final concentration 10 μg/ml). Reaction was stopped by the addition of PMSF (final concentration 2 mM), and PrP was analyzed by Western blotting using the polyclonal anti-PrP antibody A7. Aβ in conditioned medium of CHO-7PA2 cells or stably transfected SH-SY5Y cells were analyzed by immunoprecipitation with the polyclonal antibody 3552 followed by Western blotting using the monoclonal antibody 2D8. To block Aβ generation, CHO-7PA2 cells were treated for 24 h with DAPT before immunoprecipitation. To interfere with PrPSc-induced toxicity, transfected cells were pretreated for 1 h with the monoclonal anti-PrP antibody 3F4 (1 μg/ml) before co-culture. The antibody was also present during co-cultivation.

For quantification of Hsp72, total lysates were analyzed by Western blotting using the monoclonal anti-Hsp72 antibody C92. Chemiluminescence was determined using a Fujifilm LAS-4000 ChemiDot imager and the Multi Gauge V3.0 software and normalized to β-actin. Values of CHO-7PA2 cells or SH-SY5Y cells overexpressing wild type APP were compared with either CHO cells or mock-transfected SH-SY5Y cells subjected to the same heat shock. Quantifications were based on at least three independent experiments.

Exosome Isolation—Conditioned media of ScN2a or N2a cells were centrifuged for 10 min at 3,000 × g and ultracentrifuged for 30 min at 10,000 × g and for 1 h at 100,000 × g as described earlier (55). Pellets were resuspended in cold detergent buffer A (0.5% Triton X-100, 0.5% sodium deoxycholate in PBS) and digested with Proteinase K for 30 min at 37 °C (final concentration 10 μg/ml). The reaction was stopped by the addition of PMSF (final concentration 2 mM), and PrP was analyzed by Western blotting using the polyclonal anti-PrP antibody A7.
Heat Shock Response and Proteotoxicity

Luciferase Assays—Co-cultivated SH-SY5Y cells or SH-SY5Y cells cultured in 3.5-cm dishes were transiently transfected with firefly luciferase reporter plasmid (HSE-luc) and subjected to the stress treatment indicated. After 8 h of incubation at 37 °C, cells were lysed in Reporter Lysis Buffer (Promega). Luciferase activity was analyzed luminometrically using the luciferase assay system (Promega) and a LB96V or Mithras LB 940 luminometer (Berthold Technologies, Bad Wildbad, Germany) according to the manufacturer’s instruction. The measured values were analyzed using a WinGlow Software (Berthold Technologies). Quantifications were based on at least three independent experiments.

Apoptosis Assay and Immunofluorescence—For quantification of apoptotic cell death, SH-SY5Y cells were fixed on glass coverslips with 3.7% paraformaldehyde for 20 min, washed, and permeabilized with 0.2% Triton X-100 in PBS for 10 min at room temperature. Fixed cells were incubated with an anti-active caspase-3 antibody overnight at 4 °C followed by an incubation with the secondary antibody fluorescently labeled with Alexa Fluor® 555 for 1 h at room temperature. Cells were then mounted onto glass slides and examined by fluorescence microscopy using a Zeiss AxioScope 2 plus microscope (Carl Zeiss). The number of cells positive for activated caspase-3 from at least 1000 transfected cells was determined in a blinded manner. All quantifications were based on at least three independent experiments. For immunofluorescence analysis of the stress-inducible Hsp72 in N2a or ScN2a or CHO or CHO-7PA2 cells, cells were grown on glass coverslips. At day 2 (CHO/CHO-7PA2) or day 4 (N2a/ScN2a) in culture, cells were subjected to the heat shock indicated, returned to 37 °C, and analyzed after an additional 8 or 16 h, respectively. After incubation, cells were fixed, permeabilized, and stained for Hsp72 using the monoclonal anti-Hsp72 antibody C92. Nuclei were stained with Topro. Cells were examined by confocal fluorescence microscopy using a Zeiss Axiowert 200M microscope (Carl Zeiss).

Statistical Analysis—Quantifications were based on at least three independent experiments. Data were shown as the means ± S.E. Statistical analysis was performed using Student’s t test. p values are as follows: *, p < 0.05; **, p < 0.005; ***, p < 0.0005.

RESULTS

The Heat Shock Response Is Impaired in Cell Lines Chronically Exposed to PrPSc or Aβ—We previously showed that the HSR in scrapie-infected mouse neuroblastoma (ScN2a) cells, which propagate proteinase K-resistant PrPSc and infectious prions (Fig. 1A), is significantly impaired (33, 34). The amount of Hsp72, which is expressed at high levels only after heat shock or another forms of metabolic stress (51), is greatly increased in uninfected N2a cells after a heat shock of 10 or 20 min (42 or 44 °C), whereas ScN2a cells do not express Hsp72 after being subjected to the same stress conditions. This phenomenon is illustrated by Western blotting (Fig. 1C) and indirect immunofluorescence (Fig. 2A, left panel). Prompted by these results, we asked whether chronic exposure to another pathogenic protein assembly would also modulate the HSR. To experimentally address this possibility, we made use of a stably transfected Chinese hamster ovary cell line (CHO-7PA2) that expresses the familial AD mutant V717F of the human amyloid precursor protein APP, and secretes Aβ (46) (Fig. 1B, left panel). Importantly, secreted Aβ from CHO-7PA2 cells is neurotoxic, demonstrated by its ability to potently inhibit long term potentiation in vivo and to interfere with neuronal viability (48, 52, 53). In addition, we generated a stably transfected SH-SY5Y cell line expressing wild type human APP. Similarly to the CHO-7PA2 cells, SH-SY5Y-wtAPP cells secreted significantly increased levels of Aβ when compared with the mock-transfected control (Fig. 1B, right panel).

To analyze the HSR, we subjected CHO-7PA2 and SH-SY5Y-wtAPP cells to different heat shock conditions and analyzed expression of Hsp72 after the cells had been cultivated for another 8 h at 37 °C. The Western blot (Fig. 1, D and E) and immunofluorescence analysis (Fig. 2A, right panel) revealed that Aβ-overexpressing CHO-7PA2 and SH-SY5Y-wtAPP are able to mount a stress response; however, the amount of Hsp72 in stressed CHO-7PA2 and SH-SY5Y-wtAPP was lower when compared with CHO or mock transfected SH-SY5Y cells, respectively, subjected to the same stress conditions. These differences were significant under all stress conditions tested for the SH-SY5Y cell lines (Fig. 1E), whereas after more severe stress (42 or 44 °C for 20 min) Hsp72 levels were comparable in CHO and CHO-7PA2 cells (Fig. 1D). Ectopic expression of a mutant of the heat shock transcription factor 1 (ΔHSF), which contains a deletion in the regulatory domain (202–316) and is constitutively active (38), induced the up-regulation of Hsp72 in both ScN2a and CHO-7PA2 cells (Fig. 2B). These findings suggest that the impaired Hsp72 expression after stress is obviously caused by a deregulated HSF1 activation/inactivation pathway and not by mutations in the promoter regions of stress-regulated genes (34). These results demonstrate that cells chronically exposed to Aβ or PrPSc have a higher threshold to mount a HSR.

Acute Exposure of Cells to PrPSc Lowers the Threshold for a Heat Shock Response—ScN2a cells had been established from a population of cells acutely infected with prions. Thus, it might well be that an impaired stress response was a selection advantage to counteract adverse effects of PrPSc on cell viability. We, therefore, wanted to analyze possible acute effects of PrPSc on the HSR by employing a novel cell culture assay, which is based on the co-culture of SH-SY5Y cells with N2a or ScN2a cells (47, 48). In this context it is important to note that scrapie-infected cells release PrPSc and infectious prions into the extracellular environment (Fig. 1A, right panel) (54, 55). Our experimental set-up allows us to study the HSR in SH-SY5Y cells after transient exposure to PrPSc present in the cell culture medium (Fig. 3A). To assess the HSR in a quantitative manner, we used a reporter gene construct (HSE-luc) expressing firefly luciferase under the control of the highly heat-inducible promoter of the human Hsp70B gene (36). After a brief heat shock, transcription of the luciferase gene is induced, and luciferase activity can be determined luminometrically (Fig. 3B). First, we examined whether PrPSc released by ScN2a cells would induce an HSR in co-cultured SH-SY5Y cells. Luciferase activities in SH-SY5Y cells co-cultured with ScN2a cells for 24 h were comparable to...
FIGURE 1. Impaired heat shock response in cell lines chronically exposed to PrPSc or Aβ.

A, chronically scrapie-infected N2a cells (ScN2a) are characterized by the formation of Proteinase K (PK)-resistant scrapie prion protein (PrP). Total cell lysates and isolated exosomes prepared from N2a or ScN2a cells were treated with Proteinase K or left untreated and then analyzed by Western blotting using the polyclonal anti-PrP antibody A7. B, stably transfected CHO cells (CHO-7PA2) or SH-SY5Y cells generate amyloid β (Aβ). Aβ present in conditioned medium of CHO or CHO-7PA2 cells and stably transfected SH-SY5Y cells was analyzed by immunoprecipitation with the polyclonal antibody 3552 followed by Western blotting using the monoclonal antibody 2D8. To block Aβ generation, CHO-7PA2 cells were treated for 24 h with DAPT before immunoprecipitation. C–E, ScN2a, CHO-7PA2, and stably transfected SH-SY5Y cells exhibit an impaired heat shock response.

C, N2a and ScN2a cells were subjected to heat shock conditions as indicated. The stress-inducible heat shock protein Hsp72 was analyzed by Western blotting using the monoclonal anti-Hsp72 antibody C92.

D, CHO and CHO-7PA2 cells were subjected to heat shock conditions as indicated. The stress-inducible heat shock protein Hsp72 was analyzed as described under Fig. 1D. The relative amounts of Hsp72 are represented as the mean ± S.E. of three to four independent experiments. *, p < 0.05.
those in cells co-cultured with N2a cells, indicating that acute exposure to PrPSc did apparently not induce the HSR (Fig. 3C).

Next we tested whether acute exposure to PrPSc modulates the HSR. To this end we co-cultured HSE-luc-expressing SH-SY5Y cells with ScN2a cells and then subjected them to a brief heat shock (Fig. 3D). SH-SY5Y cells co-cultured with ScN2a cells showed significantly higher luciferase activities after a heat shock than cells co-cultured with N2a cells. For example, a 20-min heat shock at 42 °C led to an 8-fold induction of luciferase in SH-SY5Y cells co-cultured with ScN2a cells and then subjected to a heat shock conditions as indicated. Hsp72 was analyzed by indirect immunofluorescence using the monoclonal anti-Hsp72 antibody C92. Expression of a constitutively active mutant of the heat shock transcription factor 1 (ΔHSF) induces expression of Hsp72 in both ScN2a and CHO-7PA2 cells. N2a, ScN2a, CHO, and CHO-7PA2 cells were transiently transfected with wild type HSF (wtHSF) or the constitutively active ΔHSF mutant. 24 h after transfection expression of Hsp72 was analyzed by indirect immunofluorescence as described under Fig. 2A. Nuclei were stained with ToPro. Scale bars, 10 μm.

Induction of the HSR or Increased Expression of Hsp72 or Clusterin Protects against PrPSc- or Aβ-induced Toxicity—To address the possibility that an induction of the HSR can protect cells from the toxic activity of PrPSc or Aβ, we employed a previously established cell culture model (47, 48). As illustrated in Fig. 4A, left panel, PrPSc induces cell death in co-cultured SH-SY5Y cells expressing the cellular prion protein (PrPC). Similarly, expression of PrPC sensitizes the co-culture in the presence of the monoclonal anti-PrP antibody 3F4 (Fig. 4A, right panel). Likewise, co-cultivation with CHO-7PA2 cells pretreated with the γ-secretase inhibitor DAPT did not induce apoptotic cell death in PrPC-expressing SH-SY5Y cells, indicating that the toxic effect of CHO-7PA2 cells was dependent on the generation of Aβ (48).

To induce the HSR without a stress treatment, we expressed the constitutively active ΔHSF mutant, which increases expression of many heat shock proteins, for example of Hsp72 (Fig. 2B). SH-SY5Y cells transiently co-transfected with PrPC and ΔHSF or GFP as a control were co-cultured with ScN2a or CHO-7PA2 cells, and apoptotic cell death was analyzed after 16 h of co-culturing. ScN2a or CHO-7PA2 cells induced cell death in co-cultured SH-SY5Y cells expressing PrPC and GFP, whereas the co-expression of ΔHSF protected the cells from PrPSc- or Aβ-induced cell death (Fig. 4C). In a next step we tested whether it is sufficient to express individual chaperones to block PrPSc- or Aβ-induced toxicity. To analyze chaperones located in different cellular compartments, we chose Hsp72, a cytoplasmic chaperone, and clusterin, an extracellular chaperone that has recently been genetically associated with AD (56, 57). Indeed, expression of either Hsp72 or clusterin was sufficient to inhibit PrPSc- or Aβ-induced cell death (Figs. 4D and 5).

Hsp72 and ΔHSF but Not Clusterin Protect against a Neurotoxic PrP Mutant—Several PrP mutants can induce neuronal cell death in the absence of infectious prion propagation (for review, see Ref. 8). PrPSc can acquire a neurotoxic potential by deleting the internal hydrophobic domain (HD) (58, 59). Similar to PrPC, PrPΔHD is glycosylated with complex sugars and linked to the outer leaflet of the plasma membrane via a glycosylphosphatidylinositol anchor (35). To assess whether an activated HSR and the expression of chaperones can also interfere with the toxic effects of a pathogenic PrP mutant located at the plasma membrane, we used a cell culture model previously established in our group (47, 60). Upon ectopic expression of PrPΔHD, apoptotic cell death is induced in SH-SY5Y cells. The toxic effects of PrPΔHD are abrogated by co-expression of PrPC (Fig. 6A). This activity of PrPC has been conclusively documented in various transgenic mouse models and cultured cells;
The HSR is Modulated by Different Pathogenic Protein Assemblies; Distinct Effects of Acute and Chronic Exposure—PrPSc and Aβ form pathogenic protein assemblies within the secretory/endosomal pathway and/or at the plasma membrane. Both protein species are released into the extracellular space where they can form amyloid plaques. To study how chronic exposure of neuronal cells to these aberrantly folded proteins might modulate the HSR, we made use of previously established cell lines generating neurotoxic PrPSc or Aβ. ScN2a cells represent a well characterized cell culture model to study pathomechanistic pathways linked to prion diseases. Notably, proteinase K-resistant PrPSc and infectious prions are released into the cell culture medium. Generation of Aβ is a physiological process; however, it was previously shown that Aβ secreted into the medium of CHO-7PA2 cells is neurotoxic, demonstrated by its ability to potently inhibit long term potentiation \textit{in vivo} and to interfere with neuronal viability (48, 52, 53).

Based on the finding that the HSR response is significantly impaired in ScN2a cells (33, 34), we first compared the HSR of CHO to that of CHO-7PA2 cells by analyzing expression of Hsp72, the stress-inducible Hsp70 variant, after moderate,
non-lethal heat shock conditions. In contrast to ScN2a cells, CHO-7PA2 cells are able to increase expression of Hsp72 in response to heat shock; however, their efficiency to mount a heat shock response is reduced, which is most evident under mild heat shock conditions. To exclude the possibility that the observed effect is specific for CHO-7PA2 cells or the mutant
human APP expressed in this line, we show an impaired HSR also in stably transfected SH-SY5Y cell lines overexpressing human wild type APP. Similarly to what we observed in ScN2a cells, forced expression of a constitutively active mutant of HSF1 (ΔHSF) efficiently induced Hsp72 expression in CHO-7PA2 cells. These data agreed that the reduced levels of Hsp72 in CHO-7PA2 cells are not due to mutations in the promotor region of the Hsp72 gene but rather to a modulation of the activation/deactivation pathway of HSF1. Such a scenario is in line with our previous finding that the impaired HSR in ScN2a cells is caused by an accelerated deactivation of HSF1 after stress (34).

With the help of a co-culture model we were able to study acute effects of pathogenic protein conformers on the HSR. Exposure of SH-SY5Y cells to PrPSc per se did not induce Hsp72 expression but increased Hsp72 expression in response to heat shock conditions. Mechanistically, it is conceivable that the acute exposure of cells to PrPSc sensitizes the HSF1 activation pathway, thereby lowering the threshold for efficient Hsp72 expression in response to additional stress.

HSF activation/deactivation is regulated in the cytoplasmic and nuclear compartment at multiple steps via the interaction with chaperones and by different posttranslational modifications (for review, see Ref. 64). It is difficult to discriminate whether PrPSc or Aβ modulates any of these steps directly by interacting with any of the HSF1 modulators or indirectly via disruption of the proteostasis. Both PrPSc and Aβ have been found in the cytoplasmic compartment where they could interact with either HSF1 or chaperones implicated in HSF1 regulation. On the other hand, it has also been shown that accumulation of PrPSc or Aβ disrupts the proteostasis network. For example, cytosolic PrPSc inhibits proteasomal activity (65), and Aβ interferes with mitochondria function (for review, see Ref. 66).

Activation of the HSR or Expression of Cytosolic Hsp72 Protects against Toxic Effects of Aβ, PrPSc, and a Neurotoxic PrP Mutant—The possibility to harness the stress response therapeutically have been demonstrated in various misfolding disease models previously (22, 26, 64, 67, 68). New in our study are the approaches to study cell ability to mount a HSR under conditions of acute and chronic exposure to PrPSc and Aβ and to analyze three different neurotoxic proteins under comparable experimental conditions. Moreover, we evaluated the protective effect of individual chaperones located in different cellular compartments. Although the exact mechanisms of how PrPSc, Aβ, or other pathogenic protein conformers interfere with neuronal function are largely unknown, there appear to be common features. In particular, there is increasing experimental evidence that different toxic protein assemblies are structurally

![Figure 5. Expression of the extracellular chaperone clusterin protects against PrPSc- and Aβ-induced toxicity.](image)

![Figure 6. Hsp72 and ΔHSF but not clusterin protect against a neurotoxic PrP mutant.](image)
related and can activate similar cellular signaling pathways (6–10, 69, 70). Notably, it has been shown that the cellular prion protein can serve as a cell surface receptor to mediate toxic signaling of both PrPSc and Aβ (47, 48, 71–85). We cannot exclude the possibility that cytosolic chaperones directly interact with PrPSc or Aβ. For example, studies in yeast demonstrated that chaperones can interact with and modulate maintenance and propagation of prions (for review, see Refs. 86–91). Similarly, employing *Caenorhabditis elegans* and yeast as models of polyglutamine-induced toxicity, it was shown that cytosolic chaperones can ameliorate toxic effects of aberrantly folded protein conformers (92–96). However, it is also plausible that the protective activity of ΔHSF and Hsp72 expression is based on a modulation of PrPSc- and Aβ-induced signaling pathways by cytosolic chaperones. A potential candidate for such an intracellular signaling molecule is the stress kinase JNK as Hsp72 can alleviate toxic effects of various stressors by suppression of JNK signaling (for review, see Ref. 97). In support of such a scenario are data showing that a JNK inhibitor suppressed toxic effects of PrPSc (47). A different activity of Hsp72 was recently described in a mouse model of severe muscular dystrophy. This study indicated that Hsp72 can slow progression of disease by interacting with the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) (98). In this context it is important to note that PrPSc can restrict Ca2+-influx into the cell by limiting excessive N-methyl-d-aspartate (NMDA) receptor activity. Notably, this inhibitory activity of PrPSc is lost upon interaction with Aβ (82, 84, 99).

Interestingly, an activated HSR and increased Hsp72 expression also efficiently prevented toxic effects of the pathogenic PrP mutant PrPΔHD. PrPΔHD is located at the plasma membrane and does not form protein assemblies related to PrPSc or Aβ. Different models have been proposed to explain the toxic activity of PrPΔHD, including the interaction with a yet unidentified receptor or a channel-forming activity of PrPΔHD (for review, see Refs. 70 and 100). Irrespective of the exact mechanism, our results indicate that structurally unrelated pathogenic proteins can activate similar cellular pathways and that PrPΔHD toxicity might be related to that of PrPSc and Aβ.

An Extracellular Chaperone Interferes with PrPSc- and Aβ-induced Cell Death but Not with Neurotoxic Signaling of a PrP Mutant—Our study on clusterin revealed interesting activities of this extracellular chaperone. Similarly to Hsp72, clusterin protected against PrPSc- and Aβ-induced toxicity; however, it could not interfere with toxic effects of PrPΔHD expression.

A variety of activities has been reported for clusterin, including modulation of amyloid formation by interacting with prefibrillar structures (101), clearance of extracellular misfolded proteins (102), and sequestration of oligomeric forms of Aβ (103). Thus, we suggest that despite a similar protective activity against PrPSc- and Aβ-induced toxicity, Hsp72 and clusterin exert different modes of action. Although Hsp72 seems to modulate intracellular pathways induced by PrPSc or Aβ (see above), clusterin obviously interferes with PrPSc- and Aβ-induced toxicity by a direct interaction with the toxic protein assemblies, most likely in the extracellular compartment. As a consequence, PrPSc or Aβ no longer interacts with PrP at the plasma membrane, which in our cell culture model is the major cell surface receptor of PrPSc- or Aβ-induced toxicity. The failure of clusterin to interfere with PrPΔHD-induced toxicity indirectly supports such a mode of action, as PrPΔHD-mediated toxicity seems not to be linked to the formation of β-sheet-rich protein assemblies (for review, see Refs. 70 and 100).

Our findings emphasize complex interrelations between the HSR and neurotoxic proteins. For example, toxic oligomers can both sensitize and desensitize the HSR in a time-dependent manner. As a consequence, it might be beneficial to interfere with the HSR at an early phase of the disease, whereas HSR stimulation is a possible strategy at later time points. Indeed, the protective effect of Hsp72 and clusterin supports the concept to use forced expression of individual chaperones or pharmacological induction of the HSR to delay progression of neurodegenerative disease. In addition, a combination of chaperones promises additive or synergistic effects as different chaperones can target distinct steps in neurotoxic signaling pathways.

Acknowledgments—We thank Rick Morimoto for the Hsp72 construct, Richard Voellmy for the wtHSF and ΔHSF constructs, and Christian Haass for the Aβ antibodies.

REFERENCES

1. Collinge, J. (2001) Prion diseases of humans and animals. Their causes and molecular basis. *Annu. Rev. Neurosci.* 24, 519–550
2. Prusiner, S. B., Scott, M. R., DeArmond, S. J., and Cohen, F. E. (1998) Prion protein biology. *Cell* 93, 337–348
3. Weissmann, C., Fischer, M., Raaber, A., Büeler, H., Sailer, A., Shmerling, D., Rülicke, T., Brandner, S., and Aguzzi, A. (1996) The role of PrP in pathogenesis of experimental scrapie. *Cold Spring Harbor Symp. Quant. Biol.* 61, 511–522
4. Chesebro, B. (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. *Br. Med. Bull.* 66, 1–20
5. De Strooper, B. (2010) Proteases and proteolysis in Alzheimer disease. A multifactorial view on the disease process. *Physiol. Rev.* 90, 465–494
6. Huang, Y., and Mucke, L. (2012) Alzheimer mechanisms and therapeutic strategies. *Cell* 148, 1204–1222
7. Eisenberg, D., and Jucker, M. (2012) The amyloid state of proteins in human diseases. *Cell* 148, 1188–1203
8. Winklohofer, K. F., Tatzeit, J., and Haass, C. (2008) The two faces of protein misfolding. Gain- and loss-of-function in neurodegenerative diseases. *EMBO J.* 27, 336–349
9. Ilieva, H., Polymenidou, M., and Cleveland, D. W. (2009) Non-cell autonomous toxicity in neurodegenerative disorders. ALS and beyond. *J. Cell Biol.* 187, 761–772
10. Renesberger, U. K., Winklohofer, K. F., and Tatzeit, J. (2011) Neuroprotective and neurotoxic signaling by the prion protein. *Top. Curr. Chem.* 305, 101–119
11. Kenward, N., Hope, J., Landon, M., and Mayer, R. J. (1994) Expression of polyubiquitin and heat-shock protein 70 genes increases in the later stages of disease progression in scrapie-infected mouse brain. *J. Neurochem.* 62, 1870–1877
12. Freixes, M., Puig, B., Rodríguez, A., Torrejón-Escribano, B., Blanco, R., and Ferrer, I. (2004) Clusterin solubility and aggregation in Creutzfeldt-Jakob disease. *Acta Neuropathol.* 108, 295–301
13. Calero, M., Rostagno, A., Matsubara, E., Zlokovic, B., Frangione, B., and Ghiso, J. (2000) Apolipoprotein J (clusterin) and Alzheimer’s disease. *Microsc. Res. Tech.* 50, 305–315
14. Hartl, F. U., Bracher, A., and Hayer-Hartl, M. (2011) Molecular chaperones in protein folding and proteinostasis. *Nature* 475, 324–332
15. Dabbs, R. A., Wyatt, A. R., Yerbury, J. J., Ecroyd, H., and Wilson, M. R. (2011) Extracellular chaperones. *Top. Curr. Chem.*, in press.
Heat Shock Response and Proteotoxicity

57. Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, G., A., Mount, H. T., Schmitt-Ulms, G., and Westaway, D. (2007) The CNS glycoprotein Shadoo has PrP(C)-like protective properties and displays stress-protective activity between prion protein and Shadoo. J. Biol. Chem. 282, 7259–7263

58. Massignan, T., Stewart, R. S., Biasini, E., Solomon, I. H., Bonetto, V., Owen, M. J., and Williams, J. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 41, 1094–1099

59. Shmerling, D., Hegyi, I., Fischer, M., Blättler, T., Brandner, S., Götz, J., Rülicke, T., Fleischig, E., Cozzio, A., von Mering, C., Hangartner, C., Aguzzi, A., and Weissthall, C. (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93, 203–214

60. Li, A., Christensen, H. M., Stewart, L. R., Roth, K. A., Chiesa, R., and Harris, D. A. (2007) Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105–125. EMBO J. 26, 548–558

61. Sarkhivela, V., Seidel, R. P., Winkholzer, K. F., and Tatzelt, J. (2011) Conserved stress-protective activity between prion protein and Shadoo. J. Biol. Chem. 286, 8901–8908

62. Watts, J. C., Dritsali, B., Ng, V., Yang, J., Strome, B., Horne, P., Sy, M. S., Youong, L., Young, R., Manstrangelo, P., Bergeron, C., Fraser, P. E., Carlson, G. A., Mount, H. T., Schnitt-Ulms, G., and Westaway, D. (2007) The CNS glycoprotein Shadoo has PrP(C)-like protective properties and displays reduced levels in prion infections. EMBO J. 26, 4038–4040

63. Solomon, I. H., Huettner, J. E., and Harris, D. A. (2010) Neurotoxic mutants of the prion protein induce spontaneous ionic currents in cultured cells. J. Biol. Chem. 285, 26719–26726

64. Anckar, J., and Sistonen, L. (2011) Regulation of HSFl function in the heat stress response. Implications in aging and disease. Annu. Rev. Biochem. 80, 1089–1115

65. Kristiansen, M., Deriziotis, P., Dimcheff, D. E., Jackson, G. S., Ovaa, H., Massignan, T., Stewart, R. S., Biasini, E., Solomon, I. H., Bonetto, V., Sakthivelu, V., Seidel, R. P., Winklhofer, K. F., and Tatzelt, J. (2011) Conformational changes in the prion protein: role in the pathogenesis of prion disease. Proc. Natl. Acad. Sci. U.S.A. 109, 1737–1742

66. Caspersen, C., Wang, N., Yao, J., Susonov, A., Chen, X., Lustbader, J. W., Xu, H. W., Stern, D., McKhann, G., and Yan, S. D. (2005) Mitochondrial Aβ. A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 19, 2040–2041

67. Behl, C., and Schubert, D. (1993) Heat shock partially protects rat pheochromocytoma PC12 cells from amyloid β peptide toxicity. Neurosci. Lett. 154, 1–4

68. Neef, D. W., Turski, M. L., and Thiele, D. I. (2010) Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol. 8, e1000291

69. Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., and Glabe, C. G. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489

70. Biasini, E., Turnbaugh, J. A., Unterberger, U., and Harris, D. A. (2012) Prion protein at the crossroads of physiology and disease. Trends Neurosci. 35, 92–103

71. Brandner, S., Isenmann, S., Raether, A., Fischer, M., Sailer, A., Kobayashi, Y., Marino, S., Weissmann, C., and Aguzzi, A. (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343

72. Mallucci, G., Dickinson, A., Linehan, J., Klöhn, P. C., Brandner, S., and Collinge, J. (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874

73. Chesebro, B., Trifilo, M., Race, R., Meade-White, K., Teng, C., LaCasse, R., Raymond, L., Favara, C., Baron, G., Priola, S., Caughey, B., Masi, R., and Oldstone, M. (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308, 1435–1439

74. Kudo, W., Lee, H. P., Zou, W. Q., Wang, X., Perry, G., Zhu, X., Smith, M. A., Petersen, R. B., and Lee, H. G. (2012) Cellular prion protein is essential for oligomeric amyloid-β-induced neuronal cell death. Hum. Mol. Genet. 21, 1138–1144

75. Bate, C., and Williams, A. (2011) Amyloid-β-induced synapse damage is mediated via cross-linkage of cellular prion proteins. J. Biol. Chem. 286, 37955–37963

76. Chung, E., Yi, Y., Sun, Y., Kascak, R. J., Kascak, R. B., Mehta, P. D., Strittmatter, S. M., and Wisniewski, T. (2010) Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer’s disease model mouse. BMC Neurosci. 11, 130

77. Caetano, F. A., Beraldo, F. H., Haji, G. N., Guimaraes, A. L., Jurgens, S., Wasilewksa-Sampaio, A. P., Hirata, P. H., Souza, I., Machado, C. F., Wong, D. Y., De Felice, F. G., Ferreira, S. T., Prado, V. F., Rylett, R. J., Martins, V. R., and Prado, M. A. (2011) Amyloid-β oligomers increase the localization of prion protein at the cell surface. J. Neurochem. 117, 538–551

78. Barry, A. E., Klyubin, I., Mc Donald, J. I., Mahly, A. J., Farrell, M. A., Scott, M., Walsh, D. M., and Rowan, M. J. (2011) Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 31, 7259–7263

79. Freir, D. B., Nicoll, A. J., Klyubin, I., Panico, S., Mei, A. C., Asante, E. A., Farrow, M. A., Sessions, R. B., Saibil, H. R., Clarke, A. R., Rowan, M. J., Walsh, D. M., and Collinge, J. (2011) Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2, 336

80. Laurèn, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., and Strittmatter, S. M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128–1132

81. Aler, K., Ma, L., Yang, J., Westaway, D., and Jhamandas, J. H. (2011) Aβ inhibition of ionic conductance in mouse basal forebrain neurons is dependent upon the cellular prion protein PrPC. J. Neurosci. 31, 16292–16297

82. You, H., Tsutsui, S., Hameed, S., Kannayakal, T. J., Chen, L., Xia, P., Engbers, J. D., Lipton, S. A., Stys, P. K., and Zamponi, G. W. (2012) Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-d-aspartate receptors. Proc. Natl. Acad. Sci. U.S.A. 109, 1737–1742

83. Gimbel, D. A., Nygaard, H. B., Coffey, E. E., Gunther, E. C., Laurèn, J., Gimbel, Z. A., and Strittmatter, S. M. (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci. 30, 6367–6374

84. Um, J. W., Nygaard, H. B., Heiss, J. K., Kostylev, M. A., Stagi, M., Vortmeyer, A., Wisniewski, T., Gunther, E. C., and Strittmatter, S. M. (2012) Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci. 15, 1227–1235

85. Beland, M., Motard, I., Barbarin, A., and Roucou, X. (2012) PrPC homodimerization stimulates the production of PrPC-cleaved fragments
Heat Shock Response and Proteotoxicity

86. Masison, D. C., Kirkland, P. A., and Sharma, D. (2009) Influence of Hsp70s and their regulators on yeast prion propagation. *Prion* 3, 65–73
87. Romanova, N. V., and Chernoff, Y. O. (2009) Hsp104 and prion propagation. *Protein Pept. Lett.* 16, 598–605
88. Tuite, M. F., Marchante, R., and Kushnirov, V. (2011) Fungal prions. Structure, function, and propagation. *Top. Curr. Chem.* 305, 257–298
89. Sweeny, E. A., and Shorter, J. (2008) Prion proteostasis. Hsp104 meets its supporting cast. *Prion* 2, 135–140
90. Halfmann, R., Alberti, S., and Lindquist, S. (2010) Prions, protein homeostasis, and phenotypic diversity. *Trends Cell Biol.* 20, 125–133
91. Liebman, S. W., and Chernoff, Y. O. (2012) Prions in yeast. *Genetics* 191, 1041–1072
92. Krobitsch, S., and Lindquist, S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. *Proc. Natl. Acad. Sci. U.S.A.* 97, 1589–1594
93. Muchowski, P. J., Schaffar, G., Sittler, A., Wanker, E. E., Hayer-Hartl, M. K., and Hartl, F. U. (2000) Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. *Proc. Natl. Acad. Sci. U.S.A.* 97, 7841–7846
94. Gokhale, K. C., Newnam, G. P., Sherman, M. Y., and Chernoff, Y. O. (2005) Modulation of prion-dependent polyglutamine aggregation and toxicity by chaperone proteins in the yeast model. *J. Biol. Chem.* 280, 22809–22818
95. Prahlad, V., and Morimoto, R. I. (2011) Neuronal circuitry regulates the response of *Caenorhabditis elegans* to misfolded proteins. *Proc. Natl. Acad. Sci. U.S.A.* 108, 14204–14209
96. Satyal, S. H., Schmidt, E., Kitagawa, K., Sondheimer, N., Lindquist, S., Kramer, J. M., and Morimoto, R. I. (2000) Polyglutamine aggregates alter protein folding homeostasis in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. U.S.A.* 97, 5750–5755
97. Gabai, V. L., Meriin, A. B., Yaglom, J. A., Volloch, V. Z., and Sherman, M. Y. (1998) Role of Hsp70 in regulation of stress-kinase JNK. Implications in apoptosis and aging. *FEBS Lett.* 438, 1–4
98. Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., Lamon, S., Russell, A. P., Davies, K. E., Febbraio, M. A., and Lynch, G. S. (2012) Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. *Nature* 484, 394–398
99. Khosravani, H., Zhang, Y., Tsutsui, S., Hameed, S., Altier, C., Hamid, J., Chen, L., Villemaire, M., Ali, Z., Jirik, F. R., and Zamponi, G. W. (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. *J. Cell Biol.* 181, 551–565
100. Solomon, I. H., Schepker, J. A., and Harris, D. A. (2010) Prion neurotoxicity. Insights from prion protein mutants. *Curr. Issues Mol. Biol.* 12, 51–61
101. Yerbury, J. J., Poon, S., Meehan, S., Thompson, B., Kumita, J. R., Dobson, C. M., and Wilson, M. R. (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. *FASEB J.* 21, 2312–2322
102. Wyatt, A. R., Yerbury, J. J., Berghofer, P., Greguric, I., Katsifis, A., Dobson, C. M., and Wilson, M. R. (2011) Clusterin facilitates in vivo clearance of extracellular misfolded proteins. *Cell. Mol. Life Sci.* 68, 3919–3931
103. Narayan, P., Orte, A., Clarke, R. W., Bolognesi, B., Hook, S., Ganzinger, K. A., Meehan, S., Wilson, M. R., Dobson, C. M., and Klennerman, D. (2012) The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β(1–40) peptide. *Nat. Struct. Mol. Biol.* 19, 79–83