О компактности классов решений задачи Дирихле с ограничениями интегрального типа

Про компактнiсть класiв розв'язкiв задачi Дiрiхле з обмеженнями інтегрального типу

On compactness of classes of solutions of the Dirichlet problem with restrictions of the integral type

Доказаны теоремы о компактных классах гомеоморфизмов с гидродинамической нормировкой, являющихся решениями уравнения Бельтрами, характеристики которых имеют компактный носитель и удовлетворяют определённым ограничениям интегрального характера. В качестве следствий, получены результаты о компактных классах решений соответствующих задач Дирихле, рассматриваемых в некоторой жордановой области.

Доведено теореми про компактнi класи гомеоморфiзмiв з гiдродинамiчним нормуванням, якi є розв'язками рiвняння Бельтрамi, характеристики яких мають компактний носiй i задовольняють певнi обмеження інтегрального характеру. Як наслiдок, отримано результати про компактнi класи розв'язкiв вiдповiдних задач Дiрiхле, якi розглядаються в деякiй жордановi областi.

We have proved theorems on compact classes of homeomorphisms with hydrodynamic normalization that are solutions of the Beltrami equation, whose characteristics are compactly supported and satisfy certain constraints of an integral type. As a consequence, we obtained results on compact classes of solutions of corresponding Dirichlet problems considered in some Jordan domain.
1. Вступ. Добре відомо, що компактні класи відображень гарантують наявність екстримальних визначених на них неперервних функціоналів. Зокрема, теореми компактності мають застосування при розв'язанні різних екстримальних задач (див., напр., [1]). Дану статтю присвячену отриманню результатів щодо компактності деяких класів плохих відображень, зокрема, гомеоморфізмів комплексної площини з гідродинамічним нормуванням, а також відкритих дискретних розв'язків задачі Діріхле для рівняння Бельтрамі. Зауважимо, що проблеми збіжності і компактності площних соболєвських гомеоморфізмів з умовами нормування $f(0) = 0$, $f(1) = 1$ і $f(\infty) = \infty$ розглядалися в роботах [2] і [3]. У даній статті переважно йдеться про інтегральні умови на характеристики відображень (див., напр., [1] і [2]). Інші типи умов, зокрема, умови теоретико-множинного типу, будуть розглянуті окремо.

Скрізь далі відображення $f : D \to \mathbb{C}$ області $D \subset \mathbb{C}$ вважається таким, що зберігає орієнтацію, зокрема, якщо f – гомеоморфізм і $z \in D$ – якщо не будь його точка диференційованості, то якобіан цього відображення в точці z додатній. Для комплексноозначеної функції $f : D \to \mathbb{C}$, заданої в області $D \subset \mathbb{C}$, що має частинні похідні по x і y при майже всіх $z = x + iy$, покладемо $f_z = (f_x + if_y)/2$ і $f_{\bar{z}} = (f_x - if_y)/2$. Комплексною дилатацією відображення f в точці z називається функція $\mu : D \to \mathbb{C}$, визначена рівністю $\mu(z) = \mu_f(z) = f_{\bar{z}}/f_z$, при $f_{\bar{z}} \neq 0$ і $\mu(z) = 0$ в іншому випадку. Максимальною дилатацією відображення f в точці z називається наступна функція:

$$K_\mu(z) = K_{\mu_f}(z) = \frac{1 + |\mu(z)|}{1 - |\mu(z)|}. \quad (1)$$

Якщо задана вимірна за Лебегом функція $\mu : D \to \mathbb{D}$, $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, то не прив'язуючи до якого-небудь відображення f будемо називати величину, що рахується за допомогою рівності (1), максимальною дилатацією відповідної функції μ. Зауважимо, що якобіан відображення f в точці $z \in D$ можна порахувати за допомогою рівності

$$J(z, f) = |f_z|^2 - |f_{\bar{z}}|^2,$$

що можна перевірити пряними обчисленнями. Неважко бачити, що $K_\mu(z) = |f_z| + |f_{\bar{z}}|/|f_z| - |f_{\bar{z}}|$ у всіх точках $z \in D$ відображення f, що має частинні похідні в точці z, де якобіан $J(z, f)$ не дорівнює нулю. Рівнянням Бельтрамі будемо називати диференціальне рівняння виду

$$f_{\bar{z}} = \mu(z) \cdot f_z, \quad (2)$$

в якому $\mu = \mu(z)$ – задана невідома функція. Регулярним розв'язком рівняння (2) в області $D \subset \mathbb{C}$ не будемо називати гомеоморфізм $f : D \to \mathbb{C}$ класу $W^{1,1}_{\text{loc}}(D)$ такий, що $J(z, f) \neq 0$ при майже всіх $z \in D$. У подальшому, в розширеному просторі $\mathbb{R}^n = \mathbb{R}^n \cup \{\infty\}, n \geq 2$, використовується сферина (хордальна) метрика $h(x, y) = |\pi(x) - \pi(y)|$, де π – стереографічна проекція \mathbb{R}^n на сферу $S^n(\frac{1}{2}, 1) \subset \mathbb{R}^{n+1}$, а саме,

$$h(x, \infty) = \frac{1}{\sqrt{1 + |x|^2}},$$

$$h(x, y) = \frac{|x - y|}{\sqrt{1 + |x|^2} \sqrt{1 + |y|^2}}, \quad x \neq \infty \neq y \quad (3)$$
(див., напр., [6, оznачення 12.1]). У подальшому

\[h(E) = \sup_{x,y \in E} h(x,y) \]

(4)

— хордальний діаметр множини \(E \subset \mathbb{R}^n \). Як звичай, сім’я \(\mathfrak{F} \) відображень \(f : D \to \mathbb{C} \) буде називатися

нормальною, якщо з кожної послідовності \(f_n \), \(n = 1, 2, \ldots \), можна виділити підпослідовність \(f_{n_k} \), \(k = 1, 2, \ldots \), яка збігається локально рівномірно
до деякого відображення \(f : D \to \mathbb{C} \) в метриці \(h \). Якщо додатково \(f \in \mathfrak{F} \), сім’я \(\mathfrak{F} \) називається

компактною.

Нехай \(K \) – компакт в \(\mathbb{C} \), \(M(\Omega) \) – функція відкритої множини \(\Omega \), а \(\Phi : \mathbb{R}^+ \to \mathbb{R}^+ \) –

неспадна функція. Позначимо через \(\mathfrak{F}_\Phi^M(K) \) клас усіх регулярних розв’язків \(f : \mathbb{C} \to \mathbb{C} \) рівняння (2) з комплексними коефіцієнтами \(\mu \), рівними нулю зовні \(K \) такими, що

\[f(z) = z + o(1) \quad \text{під} \quad z \to \infty , \]

(5)

при цьому

\[\int_{\Omega} \Phi(K_{\mu}(z)) \cdot \frac{dm(z)}{(1 + |z|^2)^2} \leq M(\Omega) \]

(6)

для кожної відкритої множини \(\Omega \subset \mathbb{C} \). Одним з основних результатів статті є наступне

твердження.

Теорема 1. Нехай \(\Phi : \mathbb{R}^+ \to \mathbb{R}^+ \) – непрерывна зростаюча опукла функція, яка при

деякому \(\delta > \Phi(0) \) задовольняє умову

\[\int_{\delta}^{\infty} \frac{d\tau}{\tau \Phi^{-1}(\tau)} = \infty , \]

(7)

а функція \(M \) є обмеженою. Тоді сім’я відображень \(\mathfrak{F}_\Phi^M(K) \) є компактною в \(\mathbb{C} \).

2. Кільцеві гомеоморфізми з обмеженнями інтегрального типу. Нехай \(D \) – область в \(\mathbb{R}^n \), \(n \geq 2 \), \(M(\Gamma) \) – конформний модуль сім’ї кривих \(\Gamma \) в \(\mathbb{R}^n \) (див., напр., [3, гл. 6]). Покладемо

\[S(x_0, r) = \{ x \in \mathbb{R}^n : |x - x_0| = r \} , B(x_0, r) = \{ x \in \mathbb{R}^n : |x - x_0| < r \} , \]

\[\mathbb{B}^n := B(0,1) , \quad \Omega_n = m(\mathbb{B}^n) . \]

Якщо \(n = 2 \), покладемо \(\mathbb{D} := B(0,1) \). Нехай, крім того,

\[A = A(x_0, r_1, r_2) = \{ x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2 \} . \]

Відображення \(f : D \to \mathbb{R}^n \) називається кільцевим \(Q \)-відображенням у точці \(x_0 \in \mathbb{D} \), якщо співвідношення

\[M(f(\Gamma(S(x_0, r_1), S(x_0, r_2), A \cap D))) \leq \int_{A \cap D} Q(x) \cdot \eta^n(|x - x_0|) \, dm(x) \]

(8)
виоконано для будь-якого кільця \(A = A(x_0, r_1, r_2), 0 < r_1 < r_2 < r_0, \) і кожної вимірної за Лебегом функції \(\eta : (r_1, r_2) \rightarrow [0, \infty) \) такої, що

\[
\int_{r_1}^{r_2} \eta(r) \, dr \geq 1.
\]
(9)

Доведемо наступну важливу лему, яка в випадку відповідних фіксованих функцій \(Q = Q_m(x), m = 1, 2, \ldots, \) доведена раніше в [10] теорема 4.4].

Лема 1. Нехай \(D \) – область в \(\mathbb{R}^n, n \geq 2, \) і нехай \(f_k, k = 1, 2, \ldots \) – послідовність гомеоморфізмів області \(D \) в \(\mathbb{R}^n, \) яка збігається локально рівномірно в \(D \) до деякого відображення \(f : D \rightarrow \mathbb{R}^n \) по хордальній метриці \(h. \) Нехай, крім того, \(\Phi : [0, \infty] \rightarrow [0, \infty] \) – строго зростаюча опукла функція. Припустимо, що кожне відображення \(f_k, k = 1, 2, \ldots \) задовольняє співвідношення (9) в кожній точці \(x_0 \in D \) з деякою функцією \(Q = Q_k(x) \) такою, що

\[
\int_D \Phi(Q_k(x)) \left(1 + |x|^2 \right)^m \, dm(x) \leq M < \infty, \quad k = 1, 2, \ldots.
\]
(10)

Якщо для деякого \(\delta > \tau_0 := \Phi(0) \)

\[
\int_{\delta}^{\infty} \frac{d\tau}{\tau \left[\Phi^{-1}(\tau)\right]^{n+1}} = \infty,
\]
(11)

то відображення \(f \) або гомеоморфізмом \(f : D \rightarrow \mathbb{R}^n, \) або сталою \(c \in \mathbb{R}^n. \)

Доведення. Скористаємося лемою 4.1 в [10] (див. також оцінки інтегралів, використані при доведенні теореми теореми 2.1.4.2 в [11] та теореми 1 у [12]). Як і вище, покладемо \(A = A(x_0, r, \hat{R}) = \{x \in \mathbb{R}^n : r < |x - x_0| < \hat{R}\}. \) Для застосування [10] лема 4.1 треба встановити існування послідовностей \(0 < r_m < \hat{R} < \infty, m = 1, 2, \ldots, \) таких що

\[
M(f_k(\Gamma(S(x_0, r_m), S(x_0, R_m), A(x_0, r_m, R_m)))) \rightarrow 0
\]
(12)

при \(m \rightarrow \infty \) рівномірно по \(k = 1, 2, \ldots, \) де \(M(\Gamma) \) – конформний модуль сім’ї кривих \(\Gamma \) в \(\mathbb{C} \) (див., напр., [6, гл. 6]). Оберемо довільну нескінченно малу послідовність \(R_m > 0, m = 1, 2, \ldots, \) і зафіксуємо число \(m \in \mathbb{N}. \) За [13] лема 7.3

\[
M(f_k(\Gamma(S(x_0, r_m), S(x_0, R_m), A(x_0, r_m, R_m)))) \leq \frac{\omega_{n-1}}{I^{n-1}},
\]
(13)

de

\[
I = \int_{R_m}^{R_m} \frac{dt}{tq_k(t)}, \quad q_{k_{x_0}}(t) = \frac{1}{\omega_{n-1} r^{n-1}} \int_{S(x_0, t)} Q_k(x) \, dS.
\]
(14)

Скориставшись заміною змінних \(t = r/R_m, \) при довільному \(\varepsilon \in (0, R_m) \) отримаємо, що

\[
\int_{\varepsilon}^{R_m} \frac{dr}{r q_{k_{x_0}}(r)} = \int_{\varepsilon/R_m}^{1} \frac{dt}{t q_{k_{x_0}}(t R_m)} = \int_{\varepsilon/R_m}^{1} \frac{dt}{t q_{k_{x_0}}(t)}.
\]
(15)
де \(\tilde{q}_0(t) \) – середнє інтегральне значення функції \(\tilde{Q}(x) := Q_k(R_m x + x_0) \) над сферою \(|x| = t\), див. співвідношення (14). Тоді згідно [9, лема 3.1]

\[
\int_{\varepsilon/R_m}^{r_0} \frac{dt}{\tilde{q}_0^{-1}(t)} \geq \frac{M_+ (\varepsilon/R_m) R_m^2}{1 - \varepsilon/R_m} \int_{\varepsilon/R_m,1} \frac{d\tau}{\tau (\Phi^{-1}(\tau))^{-\frac{1}{n-1}}},
\]

де

\[
M_+ (\varepsilon/R_m) = \frac{1}{\Omega_n (1 - (\varepsilon/R_m)^n)} \int \Phi(Q_k(R_m x + x_0)) \, dm(x) = \\
= \frac{1}{\Omega_n (R_m^n - \varepsilon^n)} \int \Phi(Q_k(x)) \, dm(x).
\]

Зауважимо, що при всіх \(x \in A(x_0, \varepsilon, R_m) \) виконано нерівність \(|x| \leq |x - x_0| + |x_0| \leq R_m + |x_0|\). Отже,

\[
M_+ (\varepsilon/R_m) \leq \frac{\beta_m(x_0)}{\Omega_n (R_m^n - \varepsilon^n)} \int \Phi(Q_k(z)) \, dm(x) \frac{dm(x)}{(1 + |x|^2)^n},
\]

де \(\beta_m(x_0) = (1 + (R_m + |x_0|)^2)^n \). Отже, при \(\varepsilon \leq R_m/\sqrt{2} \)

\[
M_+ (\varepsilon/R_m) \leq 2\beta_m(x_0) \frac{M}{\Omega_n R_m^n M},
\]

де \(M \) – стала зі співвідношення (35). Крім того, зауважимо, що

\[
M_+ (\varepsilon/R_m) > \Phi(0) > 0.
\]

Тоді зі співвідношень (15) і (16) ми отримаємо, що

\[
\int_{\varepsilon}^{R_m} \frac{dr}{rq^{n-1}_k(r)} \geq \frac{1}{n} \frac{\Phi(0) R_m^n}{2\beta_m(x_0) \Omega_n R_m^n} \int_{\varepsilon}^{R_m} \frac{d\tau}{\tau (\Phi^{-1}(\tau))^{-\frac{1}{n-1}}},
\]

З умов (14) і (17) випливає наявність числа \(0 < r_m < R_m \) такого, що

\[
\int_{r_m}^{R_m} \frac{dr}{rq^{n-1}_k(r)} \geq 2^m.
\]

Остаточно, з (13) і (18) випливає існування нескінченно малих додатних послідовностей \(r_m \) и \(R_m \) з умовою (12). Тоді за [10, лема 4.1] відображення \(f \) є або гомеоморфізмом в \(\mathbb{R}^n \), або сталою в \(\mathbb{R}^n \), що і треба було довести. \(\square \)

Згідно з [28], область \(D \) в \(\mathbb{R}^n \) називається областю квазіекстремальної довжини, скор. QED-областью, якщо знайдеться число \(A \geq 1 \) таке, що для всіх континуумів \(E \) і \(F \) у \(D \) виконується нерівність

\[
M(\Gamma(E, F, \mathbb{R}^n)) \leq A \cdot M(\Gamma(E, F, D)).
\]
Лема 2. Нехай D, D' – області в \mathbb{R}^n, $n \geq 2$, $b_0 \in D$, $b_0' \in D'$, і нехай $f_k : D \to \mathbb{R}^n$, $k = 1, 2, \ldots$, – сім’я гомеоморфізмів області D на D' з умовою нормування $f_k(b_0) = b_0'$, $k = 1, 2, \ldots$. Припустимо, що кожне відображення f_k, $k = 1, 2, \ldots$ задовольняє співвідношення (8) в довільній точці $x_0 \in \partial D$ і деякою функцією $Q = Q_k(x) \geq 1$ такою, що

$$
\int_D \Phi(Q_k(x)) \frac{dm(x)}{(1 + |x|^2)^n} \leq M < \infty, \quad k = 1, 2, \ldots \tag{20}
$$

Нехай область D є локально зв’язною на своїй межі, а D' є QED-областю, яка містить не менше одного скінченного межового точки. Якщо для деякого $\delta_0 > \tau_0 := \Phi(0)$

$$
\int_{\delta_0}^{\infty} \frac{d\tau}{\tau \left[\Phi^{-1}(\tau) \right]^{\frac{1}{n-1}}} = \infty \tag{21}
$$

то кожне відображення f_k, $k = 1, 2, \ldots$, продовжується по неперервності до відображення $f_k : \overline{D} \to \overline{D'}$ і, крім того, сім’я продовжених відображень f_k, $k = 1, 2, \ldots$, є одностайно неперервною в \overline{D}.

Доведення. Одностайна неперервність сім’ї відображень $\{f_k\}_{k=1}^\infty$ у внутрішніх точках області D є результатом [9, теорема 4.1]. Отже, треба довести лише можливість неперервного продовження на межу кожного f_k, $k = 1, 2, \ldots$, а також одностайну неперервність в межових точках продовжених відображень f_k. Будемо вважати, що всі функції $Q_k(x)$, $k = 1, 2, \ldots$, продовжені тонковою однією зовні області D. Зафіксовуємо точку $x_0 \in \partial D$, і при кожних $\varepsilon_0 < \delta(x_0) := \sup_{x \in D} |x - x_0|$, $\varepsilon < \varepsilon_0$ розглянемо функцію

$$
I_k(\varepsilon, \varepsilon_0) = \int_{\varepsilon}^{\varepsilon_0} \psi_k(t) \, dt, \quad \psi_k(t) = \begin{cases} 1/[q_{k,\varepsilon_0}^{-n}(t)], & t \in (\varepsilon, \varepsilon_0), \\ 0, & t \notin (\varepsilon, \varepsilon_0), \end{cases} \tag{22}
$$

крім того, $q_{k,\varepsilon}$ визначено по формулі (14). Зауважимо, що $I_k(\varepsilon, \varepsilon_0) < \infty$ при всіх $\varepsilon \in (0, \varepsilon_0)$. Міркуючи аналогічно доведенню співвідношення (17), можна показати, що для всіх $0 < b < \varepsilon_0$ і достатньо малого $0 < a < b$

$$
\int_a^b \frac{dr}{r q_{k,\varepsilon_0}^{-n}(r)} \geq \frac{1}{n} \int B_{\beta(x_0)\varepsilon_0} \frac{\Phi(\varepsilon_0)\varepsilon_0^n}{\tau \left[\Phi^{-1}(\tau) \right]^{\frac{1}{n-1}}}, \tag{23}
$$

de $\beta(x_0) = (1 + (b + |x_0|^2))^n$. Зі співвідношення (23) і з огляду на співвідношення (21) випливає, що $I_k(\varepsilon, \varepsilon_0) > 0$ при $\varepsilon \in (0, \varepsilon_0)$ і деякому $0 < \varepsilon_0' < \varepsilon_0$. За допомогою прямих обчислень і теореми Фубіні (див. також [13, лема 7.4]) ми отримаємо, що

$$
\int_{\varepsilon|x-x_0|<\varepsilon_0} Q_k(x) \cdot \psi^n(|x - x_0|) \, dm(x) = \omega_{n-1} \cdot I_k(\varepsilon, \varepsilon_0). \tag{24}
$$

Тоді за [29, лема 3.1] знайдеться число $\tilde{\varepsilon}_0 = \tilde{\varepsilon}_0(x_0) \in (0, \varepsilon_0)$ таке, що при кожному $\sigma \in (0, \tilde{\varepsilon}_0)$ і будь-якого континуума $E_1 \subset B(x_0, \sigma) \cap D$ виконано нерівність

$$
h(f_k(E_1)) \leq \frac{\alpha_0}{\delta} \exp \left\{ -\beta I_k(\sigma, \varepsilon_0) \cdot (\alpha(\sigma))^{-1/(n-1)} \right\}, \quad k = 1, 2, \ldots, \tag{24}
$$
де величина \(h(f_k(E_1)) \) у лівій частині \([24]\) визначена в \([1]\),

\[
\alpha(\sigma) = \left(1 + \frac{\int_{\sigma}^{\sigma_0} \psi_k(t) \, dt}{n} \right)^n, \quad (25)
\]

\[
\delta = \frac{1}{2} \cdot h(b'_0, \partial D'), \quad \alpha_n \text{ — деяка стала, що залежить тільки від } n, A \text{ — стала з означення } QED\text{-області } D' \text{ (див. \([19]\)) і } \beta = \left(\frac{1}{A} \right)^{n-1}. \text{ Тоді з } \([23]\) \text{i } \([24]\) випливає, що

\[
h(f_k(E_1)) \leq \frac{\alpha_n}{\delta} \exp \left\{ -\beta \frac{1}{n} \int_{2\beta_1(\varepsilon_0)Me}^{\Phi(0)/\varepsilon_0} \frac{d\tau}{\tau \Phi^{-1}(\tau)^{n-1}} \cdot (\alpha_1(\sigma))^{-1/(n-1)} \right\}, \quad k = 1, 2, \ldots, (26)
\]

\[
\alpha_1(\sigma) = \left(1 + \frac{\int_{2\beta_1(\varepsilon_0)Me}^{\Phi(0)/\varepsilon_0} \frac{d\tau}{\tau \Phi^{-1}(\tau)^{n-1}} \left(\frac{\int_{2\beta_1(\varepsilon_0)Me}^{\Phi(0)/\varepsilon_0} \frac{d\tau}{\tau \Phi^{-1}(\tau)^{n-1}} \right)^{-1} \right)^n. \quad (27)
\]

Можна показати, що в \([26]\) \text{i } \([27]\) виконані нерівності \(\frac{2\beta_1(\varepsilon_0)Me}{\varepsilon_0} \geq 0, \frac{2\beta_2(\varepsilon_0)Me}{\varepsilon_0} \geq \Phi(0) \) і \(\frac{2\beta_3(\varepsilon_0)Me^2}{\varepsilon_0^2} > \Phi(0) \). Тоді, з огляду на умову \([21]\), з \([26]\) випливає існування невід’ємної функції \(\Delta = \Delta(\sigma) \), такої що

\[
h(f_k(E_1)) \leq \Delta(\sigma) \rightarrow 0, \quad \sigma \rightarrow 0, \quad k = 1, 2, \ldots, (28)
\]

Зауважимо, що \(QED\)\text{-області мають так звану сильно досяжну межу (див., напр., \([13]\) зауваження 13.10)). Подальше міркування проводяться аналогічно доведенню леми 3.2 в \([20]\). А саме, можливість продовження \(f_k \) до неперервного відображення \(\overline{f}_k : \overline{D} \rightarrow D' \) є результатом \([30]\) теореми 2], а одностайні неперервність \(\{\overline{f}_k\}_{k=1}^{\infty} \) всередині \(D' \) – твердженням теореми 4.1 в \([9]\). Доведемо одностайну неперервність сім’ї \(\{\overline{f}_k\}_{k=1}^{\infty} \) в точках \(\partial D \). Припустимо супротивне, а саме, що сім’я відображень \(\{\overline{f}_k\}_{k=1}^{\infty} \) не є одностайно неперервою в точці \(x_0 \in \partial D \). Можна вважати \(x_0 \neq \infty \). Тоді знайдеться число \(a > 0 \) таке, що для кожного \(m = 1, 2, \ldots \) існує точка \(x_m \in \overline{D} \) і елемент \(\overline{f}_k \) такий, що \(|x_0 - x_m| < 1/m \) і

\[
h(\overline{f}_k(x_m), \overline{f}_k(x_0)) > a. \quad (29)
\]

Оскільки відображення \(f_k \) мають неперервне продовження на \(\partial D \), ми також можемо вважати, що \(x_m \in D \), \(m = 1, 2, \ldots \). Крім того, з огляду на неперервність \(\overline{f}_k \) в точці \(x_0 \) знайдеться послідовність \(x'_m \in D \) така, що \(h(\overline{f}_k(x'_m), \overline{f}_k(x_0)) \leq a/2 \). Тоді з \([29]\) з огляду на нерівність трикутника випливає, що

\[
h(f_k(x_m), f_k(x'_m)) \geq a/2. \quad (30)
\]

З огляду на локальну зв’язність області \(D \) в точці \(x_0 \), знайдеться послідовність відкритих околів \(V_m \) точки \(x_0 \) така, що множини \(W_m := D \cap V_m \) є зв’язними і \(W_m \subseteq B(x_0, 2^{-m}) \). Переходячи до послідовності, якщо це необхідно, можна вважати, що \(x_m, x'_m \in W_m \). Зафіксуємо \(0 < \varepsilon_0 < \sup_{x \in D} |x - x_0| \). Можна вважати, що \(B(x_0, 2^{-m}) \subseteq B(x_0, \varepsilon_0) \) при всіх
Оскільки \(W_m \) відкрита і зв'язна, вона і лінійно зв'язна (див., напр., [13, пропозиція 13.1]). Отже, точки \(x_m \) і \(x'_m \) можна з'єднати кривою \(\gamma_m \) і \(W_m \). Покладемо \(E_m := |\gamma_m| \), де, як звичайно, для кривої \(\gamma : [a, b] \to \mathbb{R}^n \) позначаємо через \(|\gamma| = \{ x \in \mathbb{R}^n : \exists t \in [a, b] : \gamma(t) = x \} \) носії кривої \(\gamma \). Тоді за співвідношенням (28)

\[
h(f_{km}(E_m)) \leq \Delta(2^{-m}) \to 0, \quad m \to \infty.
\]

Останнє співвідношення суперечить (30), що і завершує доведення. □

3. Компактність розв'язків рівнянь Бельтрamm з гідродинамічним нормуванням. Доведення теореми I. Передусім доведемо, що сім’я \(\mathfrak{F}^M_{\Phi}(K) \) є одноставно неперервною. Зафіксуємо \(f \in \mathfrak{F}^M_{\Phi}(K) \), довільний компакт \(C \subset \mathbb{C} \) і покладемо \(\tilde{f} = \frac{1}{f(1/z)} \). Оскільки \(f(z) = z + o(1) \) при \(z \to \infty \), то \(\lim_{z \to \infty} f(z) = \infty \). Тоді \(\tilde{f}(0) = 0 \). Оскільки \(f(z) = z + o(1) \) при \(z \to \infty \), існує окіл \(U \) початку координат і функція \(\varepsilon : U \to \mathbb{C} \) такі, що \(f(1/z) = 1/z + \varepsilon(1/z) \), де \(z \in U \) і \(\varepsilon(1/z) \to 0 \) при \(z \to 0 \). Отже, при достатньо малому \(\Delta z \in \mathbb{C} \) ми будемо мати, що

\[
\tilde{f}(\Delta z) = \frac{1}{\Delta z} \cdot \frac{1}{1/(\Delta z) + \varepsilon(1/\Delta z)} = \frac{1}{1 + (\Delta z) \cdot \varepsilon(1/\Delta z)} \to 1
\]

при \(z \to 0 \). Сказане доводить, що існує \(\tilde{f}'(0) \), при цьому, \(\tilde{f}'(0) = 1 \). Оскільки зовні \(K \) функція \(\mu \) дорівнює нульо, відображення \(f \) є конформним в деякому окопі \(V := \mathbb{C} \setminus B(0, 1/r_0) \) точки нескінченних, причому, число \(1/r_0 \) залежить тільки від \(K \) і \(K \subset B(0, 1/r_0) \). Без обмеження загальність можна вважати, що також і компакт \(C \) задовольняє умову \(C \subset B(0, 1/r_0) \). В такому випадку, відображення \(\tilde{f} = \frac{1}{f(1/z)} \) є конформним у кулі \(B(0, r_0) \), при цьому відображення \(F(z) := \frac{1}{r_0} \cdot \tilde{f}(r_0 z) \) є гомеоморфізмом одиничного кута у \(\mathbb{C} \) і задовольняє умови \(F(0) = 0, F'(1) = 1 \). За теоремою Кебе про 1/4 (див. напр., [7 теорема, розд. 1.3 гл. 1]) \(F(\mathbb{D}) \supset B(0, 1/4) \); тоді

\[
\tilde{f}(B(0, r_0)) \supset B(0, r_0/4).
\]

Зі співвідношення (31) випливає, що

\[
(1/f)(\mathbb{C} \setminus B(0, 1/r_0)) \supset B(0, r_0/4).
\]

З урахуванням (32) покажемо, що

\[
f(\mathbb{C} \setminus B(0, 1/r_0)) \supset \mathbb{C} \setminus B(0, 4/r_0).
\]

Дійсно, нехай \(y \in \mathbb{C} \setminus B(0, 4/r_0) \), тоді \(\frac{1}{y} \in B(0, r_0/4) \). Зі співвідношенням (32) \(\frac{1}{y} = (1/f)(x) \), \(x \in \mathbb{C} \setminus B(0, 1/r_0) \). Тоді \(y = f(x) \), \(x \in \mathbb{C} \setminus B(0, 1/r_0) \), що і доводить (33).

Оскільки \(f \) – гомеоморфізм у \(\mathbb{C} \setminus B(0, 1/r_0) \), то зі співвідношення (33) випливає, що \(f(B(0, 1/r_0)) \subset \mathbb{C} \setminus B(0, 4/r_0) \). Покладемо \(\Delta := h(\mathbb{C} \setminus B(0, 4/r_0)) \), де \(h(\mathbb{C} \setminus B(0, 4/r_0)) \) – хордальний діаметр множини \(\mathbb{C} \setminus B(0, 4/r_0) \). За [8 теорема 3.1] кожне відображення \(f \) є так званим кільцевим \(Q \)-гомеоморфізмом в \(\mathbb{C} \) при \(Q = K_\mu(z) \), де \(\mu \) визначається зі співвідношення (2), і \(K_\mu \) визначено в (1). В такому випадку, сім’я відображень \(\mathfrak{F}^M_{\Phi}(K) \) є одноставно неперервною в \(B(0, 1/r_0) \) за [9 теорема 4.1]. Нехай тепер \(f_n \in \mathfrak{F}^M_{\Phi}(K) \), \(n = 1, 2, \ldots \).
За теореою Арцела-Асколі (див., напр., [6 теорема 20.4]) існує підпослідовність $f_{n_k}(z)$ послідовності f_n, $k = 1, 2, \ldots$, а також неперервне відображення $f : B(0, 1/r_0) \to \mathbb{C}$ такі, що f_{n_k} локально рівномірно збігається до відображення f у $B(0, 1/r_0)$ при $k \to \infty$. Зокрема, оскільки компакт C належить $B(0, 1/r_0)$, послідовність f_{n_k} збігається до f рівномірно на C. Оскільки компакт C був обраний довільним, ми встановили, що сім'я відображень f_{n_k} збігається до відображення f локально рівномірно.

II. Для завершення доведення теореми [I] залишилось встановити, що $f \in \mathcal{M}_\Phi(K)$. Передусім доведемо, що граничне відображення f задовольняє умову $f(z) = z + o(1)$ при $z \to \infty$. Зауважимо, що сім'я відображень $F_n(z) := \frac{1}{r_0} \cdot \frac{1}{f_{n_k}(z/r_0)}$ є компактною в одиничному кругу (див. [7 теорема 1.2 гл. I]). Без обмеження загальності можна вважати, що сама послідовність F_{n_k} є локально рівномірно збіжною в \mathbb{D}. Тоді функція $F(z) = \frac{1}{r_0} \cdot \frac{1}{f(r_0 z)}$ знову належить до класу S, що складається з конформних відображень F одиничного круга, які задовольняють умови $F(0) = 0$, $F'(0) = 1$. Тоді розклад в ряд Тейлора в околні нуля функції F має вигляд $F(z) = z + o(z)$, $z \to 0$. Тоді з рівності $F(z) = \frac{1}{r_0} \cdot \frac{1}{f(r_0 z)}$ знаходимо, що у деякому околні нескінченностю W

$$f(t) = \frac{1}{r_0} \left(\frac{1}{r_0 t} + o\left(\frac{1}{r_0 t}\right) \right), \quad t \in W. \quad (34)$$

Зі співвідношення $F(z) = \frac{1}{r_0} \cdot \frac{1}{f(r_0 z)}$, випливає, що f також є гомеоморфізмом в деякому околні нескінченності, крім того, з (34) випливає, що

$$f(t) - t = \frac{1}{r_0} \left(\frac{1}{r_0 t} + o\left(\frac{1}{r_0 t}\right) \right) - t = \frac{\varepsilon\left(\frac{1}{r_0 t}\right)}{1 + \varepsilon\left(\frac{1}{r_0 t}\right)} \to 0$$

при $t \to \infty$, де ε – деяка функція, така що $\varepsilon\left(\frac{1}{r_0 t}\right) \to 0$ при $t \to \infty$. Тим самим, $f(z) = z + o(1)$ при $z \to \infty$.

Тепер покажемо, що f – гомеоморфізм комплексної площини. Покладемо $\mu_k := \mu_{g_k}$. За [8 теорема 3.1] кожне відображення g_k є кільцевим Q-гомеоморфізмом в кожній точці $z_0 \in \mathbb{C}$ при $Q = K_{\mu_k}(z)$. За умовою їснує число $M > 0$ таке, що

$$\mathcal{M}(\mathbb{C}) \leq M, \quad (35)$$

de \mathcal{M} – функція зі співвідношення (6). З огляду на лему [I] має місце наступна альтернатива: або f – гомеоморфізм з D у \mathbb{C}, або f – стала в \mathbb{C}. За доведеним на кроці I f є гомеоморфізмом в деякому окольно нескінченності, отже, f – гомеоморфізм всієї комплексної площини, який приймає тільки скінчені комплексні значення.

Тоді за [2 лема 1, теорема 1] $f \in W^{1,1}_{\text{loc}}(\mathbb{C})$, крім того, f є регулярним розв'язком рівняння [2] при деякій функції $\mu : \mathbb{C} \to \mathbb{D}$, причому для відповідної функції K_μ виконується співвідношення виду (6). За теореою Герінга-Лехто відображення f є найже всіду диференційовним (див. [14 теорема III.3.1]). Отже, теоремою 16.1 у [10] $\mu(z) = 0$ при всіх $z \in \mathbb{C} \setminus K$. Отже, $f \in \mathcal{M}_\Phi(K)$. □

4. Одностайнна неперервність сімей відображень з оберненою нерівністю Полецького. В цьому розділі ми маємо справу з відображеннями $f : D \to \mathbb{R}^n$ об'ємі $D \subset \mathbb{R}^n$, $n \geq 2$. Основна мета – дещо узагальнити результати нашої попередньої
статті [15]. Зокрема, це необхідно для доведення ключових теорем компактності класів відображень з наступного розділу.

Нехай \(y_0 \in \mathbb{R}^n, \ 0 < r_1 < r_2 < \infty \) і

\[
A = A(y_0, r_1, r_2) = \{ y \in \mathbb{R}^n : r_1 < |y - y_0| < r_2 \}.
\]

Нехай, як і раніше, \(M(\Gamma) \) – конформний модуль сім’ї кривих \(\Gamma \) в \(\mathbb{R}^n \) (див., напр., [6, гл. 6]). Для заданих множин \(E, F \subset \mathbb{R}^n \) і області \(D \subset \mathbb{R}^n \) позначимо через \(\Gamma(E, F; D) \) сім’ю всіх кривих \(\gamma : [a, b] \to \mathbb{R}^n \) таких, що \(\gamma(a) \in E, \gamma(b) \in F \) і \(\gamma(t) \in D \) при \(t \in [a, b] \). Якщо \(f : D \to \mathbb{R}^n \) – задане відображення, \(y_0 \in f(D) \) і \(0 < r_1 < r_2 < d_0 = \sup_{y \in f(D)} |y - y_0| \), то через \(\Gamma_f(y_0, r_1, r_2) \) ми позначимо сім’ю всіх кривих \(\gamma \) в області \(D \) таких, що \(f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(y_0, r_1, r_2)) \). Нехай \(Q : \mathbb{R}^n \to [0, \infty] \) – вимірна за Лебегом функція. Будемо говорити, що \(f \) задовольняє обернену нерівність Полецького в точці \(y_0 \in f(D) \), якщо співвідношення

\[
M(\Gamma_f(y_0, r_1, r_2)) \leq \int_{A(y_0, r_1, r_2) \cap f(D)} Q(y) \cdot \eta^n(|y - y_0|) \ dm(y)
\]

виконується для довільної вимірної за Лебегом функції \(\eta : (r_1, r_2) \to [0, \infty] \) такий, що

\[
\int_{r_1}^{r_2} \eta(r) \ dr \geq 1.
\]

Для чисел \(\delta > 0, M > 0 \), областей \(D, D' \subset \mathbb{R}^n, n \geq 2 \), і континуума \(A \subset D' \) позначимо через \(\mathcal{G}_{\delta, A, M}(D, D') \) сім’ю всіх відкритих дискретних і замкнених відображень \(f \) області \(D \) на \(D' \), для яких знайдеться \(Q = Q_f \in L^1(D') \), таке що \(\int_{D'} Q(y) \ dm(y) \leq M \), причому для кожного \(y_0 \in D' \) виконано умову (37) і, крім того, \(h(f^{-1}(A), \partial D) \geq \delta \). Аналог наступного твердження доведений раніше для випадку фіксованої функції \(Q \) (див. [15 теорема 1.2]).

Теорема 2. Припустимо, що область \(D \) має слабко плоску межу. Якщо \(Q \in L^1(D') \), і область \(D' \) локально зв’язна на своїй межі, то будь-яке \(f \in \mathcal{G}_{\delta, A, M}(D, D') \) неперевно продовжується до відображення \(\overline{f} : \overline{D} \to \overline{D'} \), причому, \(\overline{f}(\overline{D}) = \overline{D'} \) і сім’я \(\mathcal{G}_{\delta, A, M}(\overline{D}, \overline{D'}) \), яка складається з усіх продовжених відображень \(\overline{f} : \overline{D} \to \overline{D'} \), одностайно неперевна в \(\overline{D} \).

Зауваження 1. В теоремі [2] одностайну неперервність треба розуміти відносно хордальної метрики, тобто, для кожного \(\varepsilon > 0 \) знайдеться \(\delta = \delta(\varepsilon, x_0) > 0 \) таке, що з умов \(h(x, x_0) < \delta \) і \(x \in D \) випливає нерівність \(h(\overline{f}(x), \overline{f}(x_0)) < \varepsilon \) при всіх \(\overline{f} \in \mathcal{G}_{\delta, A, M}(\overline{D}, \overline{D'}) \).

Доведення теореми 2 Нехай \(f \in \mathcal{G}_{\delta, A, M}(D, D') \). За [15 теорема 3.1] відображення \(f \) продовжується до неперевного відображення \(\overline{f} : \overline{D} \to \overline{D'} \), причому, \(\overline{f}(\overline{D}) = \overline{D'} \). Одностайна неперервність сім’ї відображень \(\mathcal{G}_{\delta, A, M}(\overline{D}, \overline{D'}) \) в \(D \) є твердженням [15 теорема 1.1]. Залишилось встановити її одностайну неперервність на \(\partial D \).

Проведемо доведення від супротивного. Припустимо, що знайдеться \(x_0 \in \partial D \), число \(\varepsilon_0 > 0 \), послідовність \(x_m \in \overline{D} \), яка збігається до точки \(x_0 \) і відповідні відображення
\[\bar{f}_m \in \mathfrak{S}_{\delta,A,M}(D,D) \] такі, що
\[h(\bar{f}_m(x_m),\bar{f}_m(x_0)) \geq \varepsilon_0, \quad m = 1, 2, \ldots \] (39)

Покладемо \(f_m := \bar{f}_m|_D \). Оскільки \(f_m \) має неперервне продовження на \(\partial D \), можна вважати, що \(x_m \in D \). Отже, \(\bar{f}_m(x_m) = f_m(x_m) \). Крім цього, знайдеться послідовність \(x'_m \in D \) така, що \(x'_m \to x_0 \) при \(m \to \infty \) і \(h(f_m(x'_m),\bar{f}_m(x_0)) \to 0 \) при \(m \to \infty \). Оскільки простір \(\mathbb{R}^n \) компактний, ми можемо вважати, що \(f_m(x_m) \) і \(\bar{f}_m(x_0) \) збігаються при \(m \to \infty \).

Нехай \(f_m(x_m) \to \bar{x}_1 \) і \(\bar{f}_m(x_0) \to \bar{x}_2 \) при \(m \to \infty \). За неперервністю метрики в (39), \(\bar{x}_1 \neq \bar{x}_2 \). Без обмеження загальності можна вважати, що \(\bar{x}_1 \neq \bar{x}_2 \). Оскільки відображення \(f_m \) замкнуте, то вони зберігають межу (див. [16] теорема 3.3), тому \(\bar{x}_2 \in \partial D \).

Нехай \(\bar{x}_1 \) і \(\bar{x}_2 \) різні точки континуума \(A \), жодна з яких не співпадає з \(\bar{x}_1 \). За [17] лема 2.1 (див. також [18] лема 2.1) дві пари точок \(\bar{x}_1, \bar{x}_1 \) і \(\bar{x}_2, \bar{x}_2 \) можна з'єднати кривими
\[\gamma_1 : [0, 1] \to \overline{D} \quad \text{та} \quad \gamma_2 : [0, 1] \to \overline{D} \] такими, що \(|\gamma_1| \cap |\gamma_2| = \emptyset, \quad \gamma_1(t), \gamma_2(t) \in D \) при \(t \in (0, 1) \), \(\gamma_1(0) = \bar{x}_1, \gamma_1(1) = \bar{x}_1 \), \(\gamma_2(0) = \bar{x}_2 \) і \(\gamma_2(1) = \bar{x}_2 \). Оскільки \(D' \) локально зв'язна на \(\partial D' \), знайдуться околи \(U_1 \) і \(U_2 \) точок \(\bar{x}_1 \) і \(\bar{x}_2 \), які замкнення не перетинаються, причому, мно- жини \(W_i := D' \cap U_i \) линійно зв'язні. Без обмеження загальності можна вважати, що \(\bar{x}_1 \subset B(\bar{x}_1, \delta_0) \) і
\[B(\bar{x}_1, \delta_0) \cap |\gamma_2| = \emptyset = \overline{U_2} \cap |\gamma_1| \quad \text{та} \quad B(\bar{x}_1, \delta_0) \cap \overline{U_2} = \emptyset. \] (40)

Можна також вважати, що \(f_m(x_m) \in W_1 \) і \(f_m(x'_m) \in W_2 \) при всіх \(m \in \mathbb{N} \). Нехай \(a_1 \) і \(a_2 \) — дві різні точки, які належать \(|\gamma_1| \cap W_1 \) і \(|\gamma_2| \cap W_2 \), крім того, нехай \(0 < t_1, t_2 < 1 \) такі, що \(\gamma_1(t_1) = a_1 \) і \(\gamma_2(t_2) = a_2 \). З'єднаємо точки \(a_1 \) і \(f_m(x_m) \) кривою \(\alpha_m : [t_1, 1] \to W_1 \) такою, що \(\alpha_m(t_1) = a_1 \) і \(\alpha_m(1) = f_m(x_m) \). Аналогічно, з'єднаємо \(a_2 \) і \(f_m(x'_m) \) кривою \(\beta_m : [t_2, 1] \to W_2 \), такою що \(\beta_m(t_2) = a_2 \) і \(\beta_m(1) = f_m(x'_m) \) (див. малюнок 1). Покладемо
\[C_m^1(t) = \begin{cases} \gamma_1(t), & t \in [0, t_1], \\ \alpha_m(t), & t \in [t_1, 1] \end{cases} \]
\[C_m^2(t) = \begin{cases} \gamma_2(t), & t \in [0, t_2], \\ \beta_m(t), & t \in [t_2, 1] \end{cases} \]

Нехай \(D^1_m \) і \(D^2_m \) — повні підніміття кривих \(|C_m^1| \) і \(|C_m^2| \) з початками в точках \(x_m \) і \(x'_m \), відповідно (такі підніміття існують за [16] лема 3.7). Зокрема, через умову \(h(f_m^{-1}(A), \partial D) > \delta > 0 \), яка приймає участь в визначенні класу \(\mathfrak{S}_{\delta,A,M}(D,D') \), кінці кривих \(D^1_m \) і \(D^2_m \), які в майбутньому будемо позначати \(b^1_m \) і \(b^2_m \), віддалені від межі \(D \) на відстань, не меншу \(\delta \).
Як завжди, позначимо через $|C^1_m|$ і $|C^2_m|$ носії кривих C^1_m і C^2_m, відповідно. Покладемо

$$l_0 = \min\{\text{dist} (|\gamma_1|, |\gamma_2|), \text{dist} (|\gamma_1|, U_2 \setminus \{\infty\})\}$$

і розглянемо покриття $A_0 := \bigcup_{x \in |\gamma_1|} B(x, l_0/4)$ кривої $|\gamma_1|$ за допомогою куль. Оскільки $|\gamma_1|$ – компактна множина, можна вибрати скінченне число індексів $1 \leq N_0 < \infty$ і відповідні точки $z_1, \ldots, z_{N_0} \in |\gamma_1|$ так, що $|\gamma_1| \subset B_0 := \bigcup_{i=1}^{N_0} B(z_i, l_0/4)$. У цьому випадку,

$$|C^1_m| \subset U_1 \cup |\gamma_1| \subset B(x_1, \delta_0) \cup \bigcup_{i=1}^{N_0} B(z_i, l_0/4).$$

Нехай Γ_m – сім’я всіх кривих, які з’єднують $|C^1_m|$ і $|C^2_m|$ в D'. Тоді ми маємо, що

$$\Gamma_m = \bigcup_{i=0}^{N_0} \Gamma_{mi},$$

де Γ_{mi} – сім’я всіх кривих $\gamma : [0, 1] \rightarrow D'$ таким, що $\gamma(0) \in B(z_i, l_0/4) \cap |C^1_m|$ і $\gamma(1) \in |C^2_m|$ при $1 \leq i \leq N_0$. Аналогічно, нехай Γ_{m0} – сім’я кривих $\gamma : [0, 1] \rightarrow D'$ таких, що $\gamma(0) \in B(x_1, \delta_0) \cap |C^1_m|$ і $\gamma(1) \in |C^2_m|$. За (40) знайдеться $\sigma_0 > \delta_0 > 0$ таке, що

$$B(x_1, \sigma_0) \cap |\gamma_1| = \emptyset = U_2 \cap |\gamma_1|, \quad B(x_1, \sigma_0) \cap U_2 = \emptyset.$$

Міркуючи які і при доведенні теореми[1] і використовуючи [19] теорема 1.1.5.46, ми можемо показати, що

$$\Gamma_{m0} > \Gamma(S(x_1, \delta_0), S(x_1, \sigma_0), A(x_1, \delta_0, \sigma_0)), \quad \Gamma_{mi} > \Gamma(S(z_i, l_0/4), S(z_i, l_0/4), A(z_i, l_0/4, l_0/2)),$$

де $\Gamma(S(x, \delta_0, \sigma_0), A(x, \delta_0, \sigma_0), A(x, \sigma_0, \sigma_0)) >

\Gamma(S(x_1, \delta_0), S(x_1, \sigma_0), A(x_1, \delta_0, \sigma_0)) >

\Gamma(S(x_1, \delta_0), S(x_1, \sigma_0), A(x_1, \delta_0, \sigma_0)).$ (42)

Покладемо

$$\eta(t) = \left\{ \begin{array}{ll}
4/l_0, & t \in [l_0/4, l_0/2], \\
0, & t \notin [l_0/4, l_0/2],
\end{array} \right.$$

$$\eta_0(t) = \left\{ \begin{array}{ll}
1/(\sigma_0 - \delta_0), & t \in [\delta_0, \sigma_0], \\
0, & t \notin [\delta_0, \sigma_0].
\end{array} \right.$$ (43)

Позначимо $\Gamma^* := \Gamma(|D^1_m|, |D^2_m|, D)$. Зауважимо, що $f_m(\Gamma^*_m) \subset \Gamma_m$. Тоді через (11), (42) і (43)

$$\Gamma^*_m > \bigcup_{i=1}^{N_0} \Gamma_{f_m}(z_i, l_0/4, l_0/2) \bigcup \Gamma_{f_m}(x_1, \delta_0, \sigma_0).$$ (44)

Оскільки відображення f_m задовольняють співвідношення (37) при $Q = Q_m$ в D', з (44) отримаємо, що

$$M(\Gamma^*_m) \leq (4^nN_0/l_0^n + (1/(\sigma_0 - \delta_0))^n)\|Q_m\|_1 \leq c < \infty.$$ (45)
Покажемо, что співвідношення (15) суперечить умові слабкої плоскості відображеної області. Справді, за побудовою

\[h(|D_m^1|) \geq h(x_m, b_m^1) \geq (1/2) \cdot h(f_m^{-1}(A), \partial D) > \delta/2, \]
\[h(|D_m^2|) \geq h(x_m', b_m^2) \geq (1/2) \cdot h(f_m^{-1}(A), \partial D) > \delta/2 \]

при всіх \(m \geq M_0 \) і для деякого \(M_0 \in \mathbb{N} \). Покладемо \(U := B_h(x_0, r_0) = \{ y \in \mathbb{R}^n : h(y, x_0) < r_0 \} \), де \(0 < r_0 < \delta/4 \) і число \(\delta \) стосується співвідношення (16). Зауважимо, що \(|D_m^1| \cap U \neq \emptyset \neq |D_m^1| \cap (D \setminus U) \) для кожного \(m \in \mathbb{N} \), оскільки \(h(|D_m^1|) > \delta/2 \) і \(x_m \in |D_m^1| \), \(x_m \to x_0 \) при \(m \to \infty \). Аналогічно, \(|D_m^2| \cap U \neq \emptyset \neq |D_m^2| \cap (D \setminus U) \). Оскільки \(|D_m^1| \) і \(|D_m^2| \) — континууми,

\[|D_m^1| \cap \partial U \neq \emptyset, \quad |D_m^2| \cap \partial U \neq \emptyset, \]

(47) див., напр., [19, теорема 1.1.5.46]. Оскільки \(\partial D \) слабко плоска, то для \(P := c > 0 \), де \(c \) — число зі співвідношення (15), знайдеться окіл \(V \subset U \) точки \(x_0 \) такий, що

\[M(\Gamma(E, F, D)) > c \]

(48) для будь-яких континуумів \(E, F \subset D \) таких, що \(E \cap \partial U \neq \emptyset \neq E \cap \partial V \) і \(F \cap \partial U \neq \emptyset \neq F \cap \partial V \). Покажемо, що для достатньо великих \(m \in \mathbb{N} \)

\[|D_m^1| \cap \partial V \neq \emptyset, \quad |D_m^2| \cap \partial V \neq \emptyset, \]

(49) Справді, \(x_m \in |D_m^1| \) і \(x_m' \in |D_m^2| \), де \(x_m, x_m' \to x_0 \in V \) при \(m \to \infty \). У такому випадку, \(|D_m^1| \cap V \neq \emptyset \neq |D_m^2| \cap V \) для достатньо великих \(m \in \mathbb{N} \). Зауважимо, що \(h(V) \leq h(U) \leq 2r_0 < \delta/2 \). За (16) \(h(|D_m^1|) > \delta/2 \). Отже, \(|D_m^1| \cap (D \setminus V) \neq \emptyset \) і, отже, \(|D_m^1| \cap \partial V \neq \emptyset \) (див., напр., [19, теорема 1.1.5.46]). Аналогічно, \(h(V) \leq h(U) \leq 2r_0 < \delta/2 \). З (16) випливає, що \(h(|D_m^2|) > \delta/2 \), отже, \(|D_m^2| \cap (D \setminus V) \neq \emptyset \). За [19, теорема 1.1.5.46] ми отримаємо, що \(|D_m^2| \cap \partial V \neq \emptyset \). Таким чином, співвідношення (49) встановлене. Повністю співвідношення (17), (48) і (49) ми отримаємо, що \(M(\Gamma_*^m) = M(\Gamma(|D_m^1|, |D_m^2|, D)) > c \). Остання умова суперечить (15), що і доводить теорему. □

Наступна лема також доводилася раніше в децю інших ситуаціях, зокрема, випадку фіксованої функції \(Q \) (див., напр., [18, лема 4.1], [17, лема 4.1] та [15, лема 6.1]).

Лема 3. Нехай \(n \geq 2, D \text{ і } D' \) — області в \(\mathbb{R}^n \), причому, \(D \) має слабко плоску межу, жодна компонента зв'язності якої не вироджується в точку, а область \(D' \) локально зв'язна на своїй межі. Нехай також \(A \) — невироджений континуум в \(D' \) і \(\delta > 0 \). Припустимо, \(f_m \) — послідовність відкритих, дискретних і замкнених відображень області \(D \) на \(D' \) з наступною властивістю: для кожного \(m = 1, 2, \ldots \) знайдеться континуум \(A_m \subset D, m = 1, 2, \ldots \), такий, що \(f_m(A_m) = A \) і \(h(A_m) \geq \delta > 0 \). Якщо для кожного \(m = 1, 2, \ldots \) відображения \(f_m \) задовольняє співвідношення (57) в довільній точці \(y_0 \in D' \), причому, \(Q \in L^1(D') \), то знайдеться \(\delta_1 > 0 \) таке, що

\[h(A_m, \partial D) > \delta_1 > 0 \quad \forall \ m \in \mathbb{N}. \]

Доведення. Через компактність простору \(\mathbb{R}^n \) межа області \(D \) не порожня і є компактом, так що відстань \(h(A_m, \partial D) \) коректно визначена.
Мал. 2: До доведення леми 3

Проведемо доведення від супротивного. Припустимо, що висновок леми не є вірним. Тоді для кожного \(k \in \mathbb{N} \) знайдеться номер \(m = m_k \) такий, що \(h(A_{m_k}, \partial D) < 1/k \). Можна вважати, що послідовність \(m_k \) зростає по \(k \). Оскільки \(A_{m_k} \) – компакт, то знайдеться \(x_k \in A_{m_k} \) і \(y_k \in \partial D \) такі, що \(h(A_{m_k}, \partial D) = h(x_k, y_k) < 1/k \) (див. малюнок 2). Оскільки \(\partial D \) – компактна множина, ми можемо вважати, що \(y_k \to y_0 \in \partial D \) при \(k \to \infty \); тоді також \(x_k \to y_0 \in \partial D \) при \(k \to \infty \). Нехай \(K_0 \) – компонента зв’язності \(\partial D \), яка містить точку \(y_0 \). Очевидно, \(K_0 \) – континуум, за \([13, пропозиція 13.1]\) відображення \(f_{m_k} \) має неперервне продовження \(\overline{f}_{m_k} : \overline{D} \to \overline{D} \). Більш того, відображення \(\overline{f}_{m_k} \) є рівномірно неперервним у \(\overline{D} \) при кожному фіксованому \(k \), оскільки \(\overline{f}_{m_k} \) неперервне на компакті \(\overline{D} \). Тоді для кожного \(\varepsilon > 0 \) знайдеться \(\delta_k = \delta_k(\varepsilon) < 1/k \) таке, що

\[
h(\overline{f}_{m_k}(x), \overline{f}_{m_k}(x_0)) < \varepsilon \quad \forall x, x_0 \in \overline{D}, \quad h(x, x_0) < \delta_k, \quad \delta_k < 1/k.\]

Оберемо \(\varepsilon > 0 \) таким, щоб

\[
\varepsilon < (1/2) \cdot h(\partial D', A). \tag{50}
\]

Позначимо \(B_h(x_0, r) = \{x \in \mathbb{R}^n : h(x, x_0) < r\} \). Для фіксованого \(k \in \mathbb{N} \), покладемо

\[
B_k := \bigcup_{x_0 \in K_0} B_h(x_0, \delta_k), \quad k \in \mathbb{N}.\]

Оскільки \(B_k \) – окіл континуума \(K_0 \), за \([20, лема 2.2]\) знайдеться окіл \(U_k \) множини \(K_0 \), такий, що \(U_k \subset B_k \) і \(U_k \cap D \) зв’язна. Можна вважати, що \(U_k \) – відкрита, так що \(U_k \cap D \) є лінійно зв’язною (див. \([13, пропозиція 13.1]\)). Нехай \(h(K_0) = m_0 \). Тоді знайдуться \(z_0, w_0 \in K_0 \) такі, що \(h(K_0) = h(z_0, w_0) = m_0 \). Отже, знайдуться послідовності \(\overline{y_k} \in U_k \cap D \), \(z_k \in U_k \cap D \) і \(w_k \in U_k \cap D \) такі, що \(z_k \to z_0, \overline{y_k} \to y_0 \) і \(w_k \to w_0 \) при \(k \to \infty \). Можна вважати, що

\[
h(z_k, w_k) > m_0/2 \quad \forall k \in \mathbb{N}. \tag{52}
\]

Оскільки множина \(U_k \cap D \) лінійно зв’язна, ми можемо з’єднати точки \(z_k, \overline{y_k} \) і \(w_k \), використовуючи деяку криву \(\gamma_k \in U_k \cap D \). Як завжди, ми позначаємо через \(|\gamma_k| \) носій (образ) кривої \(\gamma_k \) в області \(D \). Тоді \(f_{m_k}(|\gamma_k|) \) – компактна множина в \(D' \). Якщо \(x \in |\gamma_k| \),
то знайдеться \(x_0 \in K_0 \) таке, що \(x \in B(x_0, \delta_k) \). Зафіксуємо довільне \(\omega \in A \subset D \). Оскільки \(x \in |\gamma_k| \) і, більше того, \(x \) – внутрішня точка \(D \), ми можемо використовувати запис \(f_{m_k}(x) \) замість \(f_{m_k}^2(x) \). Зі співвідношень (50) і (51), а також за нерівністю трикутника, ми отримаємо, що

\[
|h(f_{m_k}(x)), f_{m_k}(x)) - h(f_{m_k}(x), f_{m_k}(x))| \geq h(\partial D', A) - (1/2) \cdot h(\partial D', A) = (1/2) \cdot h(\partial D', A) > \varepsilon \tag{53}
\]

для достатньо великих \(k \in \mathbb{N} \). Переходячи до \(\inf \) в (53) по всіх \(x \in |\gamma_k| \) і \(\omega \in A \), ми отримаємо, що \(h(f_{m_k}(|\gamma_k|), A) > \varepsilon, k = 1, 2, \ldots \). Оскільки \(h(x, y) \leq |x - y| \) для будь-яких \(x, y \in \mathbb{R}^n \), звідси випливає, що

\[
\text{dist} (f_{m_k}(|\gamma_k|), A) > \varepsilon, \quad \forall \ k = 1, 2, \ldots \tag{54}
\]

Покриємо множину \(A \) кулями \(B(x, \varepsilon/4), x \in A \). Оскільки \(A \) компакт, ми можемо вважати, що \(A \subset \bigcup_{i=1}^{M_0} B(x_i, \varepsilon/4), x_i \in A, i = 1, 2, \ldots, M_0, 1 \leq M_0 < \infty \). За означенням, \(M_0 \) залежить тільки від \(A \), зокрема, \(M_0 \) не залежить від \(k \). Покладемо

\[
\Gamma_k := \Gamma(A_{m_k}, |\gamma_k|, D). \tag{55}
\]

Нехай \(\Gamma_{ki} := \Gamma(f_{m_k}(x_i, \varepsilon/4, \varepsilon/2), \infty) \), іншими словами, \(\Gamma_{ki} \) складається з усіх кривих \(\gamma : [0, 1] \rightarrow D \), таких що \(f_{m_k}(\gamma(0)) \in S(x_i, \varepsilon/4), f_{m_k}(\gamma(1)) \in S(x_i, \varepsilon/2) \) і \(\gamma(t) \in A(x_i, \varepsilon/4, \varepsilon/2) \) при \(0 < t < 1 \). Покладемо, що

\[
\Gamma_k > \bigcup_{i=1}^{M_0} \Gamma_{ki}. \tag{56}
\]

Справді, нехай \(\tilde{\gamma} \in \Gamma_k \), іншими словами, \(\tilde{\gamma} : [0, 1] \rightarrow D, \tilde{\gamma}(0) \in A_{m_k}, \tilde{\gamma}(1) \in |\gamma_k| \) і \(\tilde{\gamma}(t) \in D \) при \(0 < t < 1 \). Тоді \(\gamma^* := f_{m_k}(\tilde{\gamma}) \in \Gamma(A(f_{m_k}(|\gamma_k|), D') \). Оскільки куля \(B(x_i, \varepsilon/4), 1 \leq i \leq M_0, \) утворюють покриття компакта \(A \), знаходитьсь \(i \in \mathbb{N} \) таке, що \(\gamma^*(0) \in B(x_i, \varepsilon/4) \) і \(\gamma^*(1) \in f_{m_k}(|\gamma_k|) \). За співвідношенням (54), \(|\gamma^*| \cap B(x_i, \varepsilon/4) \neq \emptyset \neq |\gamma^*| \cap (D' \setminus B(x_i, \varepsilon/4)) \). Отже, за [19] теорема 1.1.5.46 знаходитьсь \(0 < t_1 < 1 \) таке, що \(\gamma^*(t_1) \in S(x_i, \varepsilon/4) \). Можна вважати, що \(\gamma^*(t) \notin B(x_i, \varepsilon/4) \) при \(t > t_1 \). Покладемо \(\gamma_1 := \gamma^*[t_1, 1] \). За [14] випливає, що \(|\gamma_1| \cap B(x_i, \varepsilon/2) \neq \emptyset \neq |\gamma_1| \cap (D \setminus B(x_i, \varepsilon/2)) \). Отже, за [19] теорема 1.1.5.46 знаходитьсь \(t_1 < t_2 < 1 \) таке, що \(\gamma^*(t_2) \in S(x_i, \varepsilon/2) \). Можна вважати, що \(\gamma^*(t) \in B(x_i, \varepsilon/2) \) при всіх \(t < t_2 \). Вважаючи \(\gamma_2 := \gamma^*[t_1, t_2] \), зауважимо, що крива \(\gamma_2 \) є підкривою \(\gamma^* \), яка належить \(\Gamma(S(x_i, \varepsilon/4), S(x_i, \varepsilon/2), A(x_i, \varepsilon/4, \varepsilon/2)) \).

Остаточні, \(\tilde{\gamma} \) має підкриву \(\tilde{\gamma}_2 := \tilde{\gamma}|[t_1, t_2] \), таку, що \(f_{m_k} \circ \tilde{\gamma}_2 = \gamma_2 \), причому, \(\gamma_2 \in \Gamma(S(x_i, \varepsilon/4), S(x_i, \varepsilon/2), A(x_i, \varepsilon/4, \varepsilon/2)) \). Отже, співвідношення (50) встановлене. Покладемо

\[
\eta(t) = \begin{cases}
4/\varepsilon, & t \in [\varepsilon/4, \varepsilon/2], \\
0, & t \notin [\varepsilon/4, \varepsilon/2].
\end{cases}
\]

Зауважимо, що \(\eta \) задовольняє співвідношення (38) при \(r_1 = \varepsilon/4 \) і \(r_2 = \varepsilon/2 \). Оскільки відображення \(f_{m_k} \) задовольняє співвідношення (37) при \(Q = Q_k, k = 1, 2, \ldots, \) то припускаючи тут \(y_0 = x_i \), отримаємо:

\[
M(\Gamma(f_{m_k}(x_i, \varepsilon/4, \varepsilon/2))) \leq (4/\varepsilon)^n \cdot \|Q_k\|_1 \leq (4/\varepsilon)^n M < \infty, \tag{57}
\]
де c — деяка додатна стала і $\|Q_k\|_1 - L_1$-норма функції Q_k в D'. З (56) і (57), враховуючи напіваддитивність модуля сімей кривих, отримаємо:

$$M(\Gamma_k) \leq \frac{4^n M_0}{\varepsilon^n} \int_{D'} Q_k(y) \, dm(y) \leq c < \infty.$$

(58)

Міркуючи так само, як при доведенні співвідношень (16) і використовуючи умову (52), ми отримаємо, що $M(\Gamma_k) \to \infty$ при $k \to \infty$, що суперечить (58). Отримане протиріччя доводить лему.

Для областей $D, D' \subset \mathbb{R}^n$, точок $a \in D, b \in D'$ і числа $M > 0$ позначимо через $\mathfrak{S}_{a,b,M}(D, D')$ сім'ю всіх відкритих, дискретних і замкнених відображень f області D на D', що задовольняють умову (37) з деяким $Q = Q_f, \|Q\|_{L_1(D')} \leq M$, для кожного $y_0 \in f(D)$, таких що $f(a) = b$. Наступне твердження у випадку фіксованої функції Q доведено в [15, теорема 7.1].

Теорема 3. Припустимо, що область D має слабко плоску межу, жодна із зв'язних компонент якої не вироджена. Якщо $Q \in L^1(D')$ і область D' локально зв'язна на своїй межі, то кожне відображення $f \in \mathfrak{S}_{a,b,M}(D, D')$ має неперервне продовження $\overline{f} : \overline{D} \to \overline{D'}$, причому $\overline{f}(D) = \overline{D'}$ і, крім того, сім'я $\mathfrak{S}_{a,b,M}(\overline{D}, \overline{D'})$ усіх продовжених відображень $\overline{f} : \overline{D} \to \overline{D'}$ є одностайно неперервною в \overline{D}.

Доведення. Одностайна неперервність сім'ї $\mathfrak{S}_{a,b,M}(D, D')$, можливість неперервного продовження на межу кожного $f \in \mathfrak{S}_{a,b,M}(D, D')$ і рівність $\overline{f}(D) = \overline{D'}$ випливають з [15, теорема 1.1 і 3.1]. Залишилось встановити одностайну неперервність сім'ї продовжених відображень $\overline{f} : \overline{D} \to \overline{D'}$ в точках межі області D.

Доведемо це твердження від супротивного. Припустимо, що сім'я $\mathfrak{S}_{a,b,M}(\overline{D}, \overline{D'})$ не є одностайно неперервною в деякій точці $x_0 \in \partial D$. Тоді знайдуться точки $x_m \in D$ і відображення $f_m \in \mathfrak{S}_{a,b,M}(\overline{D}, \overline{D'})$, $m = 1, 2, \ldots$, такі що $x_m \to x_0$ при $m \to \infty$ і, причому, при деякому $\varepsilon_0 > 0$

$$h(f_m(x_m), f_m(x_0)) \geq \varepsilon_0, \quad m = 1, 2, \ldots$$

(59)

Оберемо довільним чином точку $y_0 \in D', y_0 \neq b$, і з'єднаємо її з точкою b деякої кривою в D', яку ми позначимо α. Покладемо $A := |\alpha|$. Нехай A_m — повне підняття кривої α при відображенні f_m з початком в точці a (воно існує за [16, лема 3.7]). Зауважимо, що $h(A_m, \partial D) > 0$ за замкненистю відображення f_m. Тепер можливі наступні випадки: або $h(A_m) \to 0$ при $m \to \infty$, або $h(A_m) \geq \delta_0 > 0$ при деякому $\delta_0 > 0$.

У першому з цих випадків, очевидно, $h(A_m, \partial D) \geq \delta > 0$ при деякому $\delta > 0$. Тоді сім'я відображень $\{f_m\}_{m=1}^{\infty}$ одностайно неперервна в точці x_0 за теоремою 2, що суперечить умові (19).

У другому випадку, якщо $h(A_m) \geq \delta_0 > 0$ при $k \to \infty$, ми також маємо, що $h(A_m, \partial D) \geq \delta_1 > 0$ при деякому $\delta_1 > 0$ за лемою 3. Знову ж таки, за теоремою 2 сім'я $\{f_m\}_{k=1}^{\infty}$ є одностайно неперервною в точці x_0, і це суперечить умові (19).

Отже, в обох з двох можливих випадків ми прийшлі до протиріччя з (59), і це вказує на невірність припущення про відсутність одностайної неперервності сім'ї $\mathfrak{S}_{a,b,M}(D, D')$ в \overline{D}. Теорема доведена.
5. Компактність розв’язків задачі Діріхле. Перейдемо тепер до розгляду питання про компактність класів розв’язків задачі Коші для рівняння Бельтрамі. Розглянемо наступну задачу Коші:

\[f_\varphi = \mu(z) \cdot f_z, \] \hspace{1cm} (60)
\[\lim_{\zeta \to z} \text{Re} \, f(\zeta) = \varphi(z) \quad \forall \ z \in D, \] \hspace{1cm} (61)

de \varphi – наперед задана неперервна функція. Надалі вважаємо, що \(D \) – деяка однозв’язна жорданова область у \(\mathbb{C} \). Розв’язок задачі \(\varphi \) будемо вважати регулярним, якщо виконано одно з двох: або \(f(z) = \text{const} \) в \(D \), або \(f \) – відкриті дискретні відображення класу \(W^{1,1}_\text{loc}(D) \), таке що \(J(z, f) \neq 0 \) при майже всіх \(z \in D \).

Зафіксуємо точку \(z_0 \in D \) і функцію \(\varphi \). Нехай \(\mathcal{M}^{\varphi, \zeta}(D) \) позначає клас всіх регулярних розв’язків \(f : D \to \mathbb{C} \) задачі Коші \((60)–(61) \), які задовольняють умову \(\text{Im} \, f(z_0) = 0 \), крім того,

\[\int \Phi(K_\mu(z)) \cdot \frac{dm(z)}{(1 + |z|^2)^2} \leq \mathcal{M}(\Omega) \] \hspace{1cm} (62)

для кожної відкритої множини \(\Omega \subset D \). Наступне твердження узагальнює теорему 2 на випадок однозв’язних жорданових областей.

Теорема 4. Нехай \(D \) – деяка однозв’язна жорданова область у \(\mathbb{C} \), \(\Phi : \mathbb{R}^+ \to \mathbb{R}^+ \) – неперервна зростаюча опукла функція, яка при деякому \(\delta > \Phi(0) \) задовольняє умову \((\delta) \), функція \(\mathcal{M} \) є обмеженою, а функція \(\varphi(z) \) у \((61) \) неперервна. Тоді сім’я відображення \(\mathcal{M}^{\varphi, \zeta}(D) \) є компактною в \(D \).

Доведення. I. Нехай \(f_m, m = 1, 2, \ldots \) – довільна послідовність сім’ї \(\mathcal{M}^{\varphi, \zeta}(D) \). Згідно теореми Стойлова про факторизацію (див., напр., \[22\], п. 5 (III), гл. V) для відображення \(f_m \) справедливо зображення

\[f_m = \varphi \circ g_m, \] \hspace{1cm} (63)

de \(g_m \) – деякий гомеоморфізм, а \(\varphi_m \) – аналітична функція. За лемою 1 в \[23\] відображення \(g_m \) належить класу Соболєва \(W^{1,1}_\text{loc}(D) \) і має скінченне спотворення. Більше того, згідно \[24\], (1), п. C, гл. I для майже всіх \(z \in D \) отримаємо:

\[f_{m_1} = \varphi_m(g_m(z))g_{m_1}, \quad f_{m_2} = \varphi_m(g_m(z))g_{m_2}. \] \hspace{1cm} (64)

Отже, за співвідношенням \((64) \), \(J(z, g_m) \neq 0 \) для майже всіх \(z \in D \), крім того, \(K_{\mu_m}(z) = K_{\mu_m}(z) \).

II. Доведемо, що межа області \(g_m(D) \) містить не менше двох точок. Припустимо супротивне. Тоді \(\mu_m(D) = \mathbb{C} \), або \(g_m(D) = \mathbb{C} \setminus \{a\} \), де \(a \in \mathbb{C} \). Нехай спочатку \(g_m(D) = \mathbb{C} \). Тоді за теоремою Пікара \(\varphi_m(g_m(D)) \) є всюди площинною, за виключенням, можливо, однієї точки \(\omega_0 \in \mathbb{C} \). З іншого боку, при кожному \(m = 1, 2, \ldots \) функція \(u_m(z) := \text{Re} \, f_m(z) = \text{Re} \, (\varphi_m(g_m(z))) \) неперервна на компакті \(\overline{D} \) у вимірі \((61) \) і з огляду на неперервність функції \(\varphi \). Отже, існує \(C_m > 0 \) таке, що \(|\text{Re} \, f_m(z)| \leq C_m \), але це сперечить тому, що \(\varphi_m(g_m(D)) \) містить всі точки комплексної площини крім, можливо, однієї. Нехай тепер \(g_m(D) = \mathbb{C} \setminus \{a\} \), \(a \in \mathbb{C} \). Точка \(a \) є або усувною, або істотною сингулярністю для функції \(\varphi_m \). Якщо \(a \) є усувною синуглярністю для \(\varphi_m \), то \(\varphi_m \) пророгується до голоморфного відображення \(\varphi_m : \mathbb{C} \to \mathbb{C} \). Множина \(\overline{\varphi_m(C)} \) співпадає
з усією комплексною площею за виключенням, можливо, однієї точки, тому і відображення \(\varphi_m \) приймає всі значення в \(\mathbb{C} \) крім, можливо двох. Останнє суперечить умові \(|\text{Re } f_m(z)| \leq C_m \). Нарешті, якщо \(a \) є істотною синулярністю для \(\varphi_m \), це відображення приймає в околі цієї точки всі можливі значення в \(\mathbb{C} \) за виключенням одного з огляду на теорему Пікара. Останнє суперечить умові \(|\text{Re } f_m(z)| \leq C_m \).

Отже, межа області \(g_m(D) \) містить не менше двох точок. Тоді за теоремою Рімана про відображення можна перетворити область \(\widetilde{g_m}(D) \) на одиничний круг \(D \) за допомогою конформного відображення \(\psi_m \). Нехай \(z_0 \in D \) – точка з умови теореми. За застосування допоміжного конформного відображення

\[
\widetilde{\psi}_m(z) = \frac{z - (\psi_m \circ g_m)(z_0)}{1 - z(\psi_m \circ g_m)(z_0)}
\]

одиничного круга на себе можна вважати, що \((\psi_m \circ g_m)(z_0) = 0 \). Тоді з (63) випливає, що

\[
f_m = \varphi_m \circ g_m = \varphi_m \circ \psi_m^{-1} \circ \psi_m \circ g_m = F_m \circ G_m, \quad m = 1, 2, \ldots,
\]

dе \(F_m := \varphi_m \circ \psi_m^{-1}, F_m : D \to \mathbb{C}, \) і \(G_m = \psi_m \circ g_m \). Очевидно, функція \(F_m \) є аналітичною, а \(G_m \) – регулярний гомеоморфізм класу Соболєва в області \(D \). Зокрема, \(\text{Im } F_m(0) = 0 \) для всіх \(m \in \mathbb{N} \).

III. Доведемо, що норми функцій \(K_{\mu G_m}(z) \) в \(L^1(D) \) обмежені зверху деякою універсальною додатною сталою \(C > 0 \) рівномірно по всіх \(m = 1, 2, \ldots \). Справді, з огляду на опуклість функції \(\Phi \) у (62) і за [27, пропозиція 5, I.4.3] нахил \([\Phi(t) - \Phi(0)]/t \) є неспадною функцією. Звідси випливає існування сталих \(t_0 > 0 \) і \(C_1 > 0 \) таких, що

\[
\Phi(t) \geq C_1 \cdot t \quad \forall \ t \in [t_0, \infty).
\]

Зафіксуємо \(m \in \mathbb{N} \). З огляду на (62) і (66), будемо мати:

\[
\int_D K_{\mu G_m}(z) dm(z) = \int_{\{z \in D : K_{\mu G_m}(z) < t_0\}} K_{\mu G_m}(z) dm(z) + \int_{\{z \in D : K_{\mu G_m}(z) \geq t_0\}} K_{\mu G_m}(z) dm(z)
\]

\[
\leq t_0 \cdot m(D) + \frac{1}{C_1} \int_D \Phi(K_{\mu G_m}(z)) dm(z) \leq
\]

\[
\leq t_0 \cdot m(D) + \frac{\sup_{z \in \overline{D}}(1 + |z|^2)^2}{C_1} \int_D \Phi(K_{\mu G_m}(z)) \cdot \frac{1}{(1 + |z|^2)^2} dm(z) \leq
\]

\[
\leq t_0 \cdot m(D) + \frac{\sup_{z \in \overline{D}}(1 + |z|^2)^2}{C_1} \cdot \mathcal{M}(D) < \infty,
\]

оскільки \(\mathcal{M}(D) \) менше нескінченності за умовою теореми.

IV. Доведемо, що кожне відображення \(G_m, m = 1, 2, \ldots, \) має неперервне продовження на \(\partial D \) крім того, сім’я продовжених відображень \(\overline{G_m}, m = 1, 2, \ldots, \) є одностайно неперервною в \(\overline{D} \). Дійсно, за доведеним у пункті III \(K_{\mu G_m} \in L^1(D) \). За огляду на це, за [31 теорема 3] (див. також [8 теорема 3.1]) кожне відображення \(G_m, m = 1, 2, \ldots, \)
є так званим кільцевим Q-гомеоморфізмом в \overline{D} при $Q = K_{\mu c_m}(z)$, де μ визначається зі співвідношення (60), а K_{μ} обчислюється по формулі (1). Тоді бажаний висновок є твердженням леми 2.

V. Доведемо також, що обернені гомеоморфізми G_{m}^{-1}, $m = 1, 2, \ldots$, продовжується по неперервності на $\partial \overline{D}$ і сім’я відображень $\{G_{m}^{-1}\}_{m=1}^{\infty}$ є одностайно неперервою в \overline{D}. Оскільки за доведеним у пункті IV відображения G_{m}, $m = 1, 2, \ldots$, є кільцевими $K_{\mu c_m}(z)$-гомеоморфізмами в D, обернені до них відображення G_{m}^{-1} задовольняють співвідношення (37) (в цьому випадку, D у [35] відповідає одиничному кругу \mathbb{D}, $f \mapsto G_{m}$, $Q \mapsto K_{\mu c_m}(z)$, відповідно, області $f(D)$ у [37] відповідає D). Оскільки $G_{m}^{-1}(0) = z_0$ для всіх $m = 1, 2, \ldots$, неперервне продовження кожного відображення G_{m}^{-1} на $\partial \overline{D}$, а також одностайна неперервність сім’ї відображень $\{G_{m}^{-1}\}_{m=1}^{\infty}$ на \overline{D} є результатом теореми 3.

VI. Оскільки за доведеним сім’я відображень $\{G_{m}^{-1}\}_{m=1}^{\infty}$ є одностайно неперервою в D, за критерієм Арцела-Асколі є зростаюча піднісінність номерів m_k, $k = 1, 2, \ldots$, така що послідовність G_{m_k} збігається локально рівномірно в D при $k \to \infty$ до деякого неперервного відображення $G : D \to \overline{C}$ (див., напр., [6] теорема 20.4)). За лемою 1 має місце альтернатива: або G – гомеоморфізм області D у \mathbb{C}, або G – стала в \mathbb{C}. Доведемо, що другий випадок неможливий. Скористаємося підходом, застосованим при доведенні другої частини теореми 21.9 в [6]. Припустимо супротивне: нехай $G_{m_k}(x) \to c = const$ при $k \to \infty$. Оскільки $G_{m_k}(z_0) = 0$ при всіх $k = 1, 2, \ldots$, маємо: $c = 0$. З огляду на пункт III сім’я відображень G_{m}^{-1}, $m = 1, 2, \ldots$, є одностайно неперервою в D. Тоді $h(z, G_{m_k}^{-1}(0)) = h(G_{m_k}^{-1}(G_{m_k}(z)), G_{k}^{-1}(0)) \to 0$ при $k \to \infty$, що неможливо, бо z – довільна точка області D. Отримана суперечність вказує на те, що $G : D \to \mathbb{C}$ – гомеоморфізм.

VII. За доведеним у пункті V сім’я відображень $\{G_{m}^{-1}\}_{m=1}^{\infty}$ є одностайно неперервою в \overline{D}. Отже, за критерієм Арцела-Асколі (див., напр., [6] теорема 20.4)) ми також можемо вважати, що послідовність $G_{m_k}^{-1}(y)$, $k = 1, 2, \ldots$, збігається рівномірно в \overline{D} до деякого неперервного відображення $\tilde{F} : \mathbb{D} \to \overline{D}$ при $k \to \infty$. Встановимо, що $\tilde{F} = G^{-1}$. Для цього покажемо, що $G(D) = \mathbb{D}$. Зафіксовимо $y \in \mathbb{D}$. Оскільки $G_{m}(D) = \mathbb{D}$ при всіх $k = 1, 2, \ldots$, ми маємо $G_{m_k}(x_k) = y$ при деякому $x_k \in D$. Оскільки область D обмежена, можна вважати, що $x_k \to x_0 \in \overline{D}$ при $k \to \infty$. Далі, використовуючи нерівність трикутника і з огляду на одностайну неперервність $\{G_{m}\}_{m=1}^{\infty}$ на \overline{D} (пункт IV) будемо мати:

$$ |G(x_0) - y| = |G(x_0) - G_{m_k}(x_k)| \leq |G(x_0) - G_{m_k}(x_0)| + |G_{m_k}(x_0) - G_{m_k}(x_k)| \to 0 $$

при $k \to \infty$. Звідси $G(x_0) = y$. Зауважимо, що $x_0 \in D$, оскільки G – гомеоморфізм. В силу довільності точки $y \in \mathbb{D}$ рівність $G(D) = \mathbb{D}$ доведено. В такому випадку, $G_{m_k}^{-1} \to G^{-1}$ локально рівномірно в \overline{D} при $k \to \infty$ (див., напр., [10] лема 3.1). Таким чином, $\tilde{F}(y) = G^{-1}(y)$ при всіх $y \in \mathbb{D}$. Нарешті, оскільки $\tilde{F}(y) = G^{-1}(y)$ при всіх $y \in \mathbb{D}$ і, крім того, відображення \tilde{F} має неперервне продовження на межу області \overline{D}, то в силу єдиності гранич в межових точках маємо також $\tilde{F}(y) = G^{-1}(y)$ при всіх $y \in \overline{D}$. Отже, ми довели, що $G_{m_k}^{-1} \to G^{-1}$ рівномірно в \overline{D} при $k \to \infty$.

VIII. За пунктом VII, для $y = e^{i\theta} \in \partial D$ при $k \to \infty$ будемо мати:

$$ \text{Re} F_{m_k}(e^{i\theta}) = \varphi(G_{m_k}^{-1}(e^{i\theta})) \to \varphi(G^{-1}(e^{i\theta})) $$ (68)
рівномірно по \(\theta \in [0, 2\pi) \). Оскільки за побудовою \(\text{Im} F_{m_k}(0) = 0 \) при всіх \(k = 1, 2, \ldots, \) за формулою Шварца (див., напр., [32] § 8, гл. III, частина 3) аналітична функція \(F_{m_k} \) однозначно відновлюється по своїй дійсній частині, а саме,

\[
F_{m_k}(y) = \frac{1}{2\pi i} \int_{S(0, 1)} \varphi(G_{m_k}^{-1}(t)) \frac{t + y}{t - y} \cdot \frac{dt}{t}.
\]

Покладемо

\[
F(y) := \frac{1}{2\pi i} \int_{S(0, 1)} \varphi(G^{-1}(t)) \frac{t + y}{t - y} \cdot \frac{dt}{t}.
\]

Нехай \(K \subset \mathbb{D} \) – довільний компакт. З огляду на співвідношення (69) і (70) ми отримаємо, що

\[
|F_{m_k}(y) - F(y)| \leq \frac{1}{2\pi} \int_{S(0, 1)} |\varphi(G_{m_k}^{-1}(t)) - \varphi(G^{-1}(t))| \frac{|t + y|}{|t - y|} |dt|.
\]

Оскільки \(K \) – компакт, знаходиться \(0 < R_0 = R_0(K) < 0 \) таке, що \(K \subset B(0, R_0) \). Тоді за нерівністю трикутника \(|t + y| \leq 1 + R_0 \) і \(|t - y| \geq |y| - |t| \geq 1 - R_0 \) для всіх \(y \in K \) і всіх \(t \in S^1 \) Тоді

\[
\frac{|t + y|}{|t - y|} \leq \frac{1 + R_0}{1 - R_0} := M = M(K).
\]

Зафіксуємо довільне \(\varepsilon > 0 \). З огляду на умову (69) для числа \(\varepsilon' := \frac{\varepsilon}{M} \) знаходиться номер \(N = N(\varepsilon, K) \in \mathbb{N} \) такого, що \(|\varphi(G_{m_k}^{-1}(t)) - \varphi(G^{-1}(t))| < \varepsilon' \) для всіх \(k \geq N(\varepsilon) \). Тоді з (71) випливає, що

\[
|F_{m_k}(y) - F(y)| < \varepsilon \quad \forall \ k \geq N.
\]

З нерівності (73) випливає, що послідовність \(F_{m_k} \) збігається до функції \(F \) локально рівномірно в одиничному крузі. Зокрема, маємо: \(\text{Im} F(0) = 0 \). Зауважимо, що \(F \) є аналітичною функцією в \(\mathbb{D} \) (див. зауваження, зроблені в кінці параграфу 8 частини III у [32]), причому для \(z = re^{i\psi} \)

\[
\text{Re} F(re^{i\psi}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 - r \cos(\theta - \psi) + r^2} d\theta.
\]

За [32] теорема 2, § 10, гл. III, частина 3)

\[
\lim_{\zeta \to z} \text{Re} F(\zeta) = \varphi(G^{-1}(z)) \quad \forall \ z \in \partial \mathbb{D}.
\]

Зауважимо, що функція \(F \) є або сталою, або відкрита і дискретна (див., напр., [22] гл. V, розд. I, пункт 6 і розд. II, пункт 5)). Отже, послідовність \(f_{m_k} = F_{m_k} \circ G_{m_k} \) збігається локально рівномірно до функції \(f = F \circ G \), яка є відкритою і дискретною, або сталою функцією, причому, з огляду на (74)

\[
\text{Re} f(z) = \text{Re} F(G(z)) = \varphi(G^{-1}(G(z))) = \varphi(z).
\]

IX. Осікільки за доведеним у пункті VI відображення \(G \) є гомеоморфізмом, з огляду на [2] лема 1, теорема 1) \(G \) є регулярним роз'язком рівняння (60) з деякою функцією \(\mu : \mathbb{C} \to \mathbb{D} \). Оскільки множина точок функції \(F \), де її якобіан дорівнює нулю, може складатися тільки з ізольованих точок (див. [22] пункти 5 і 6 (II), гл. V)), у випадку \(F \neq \text{const} \) відображення \(f \) є регулярним. Зауважимо, що для відповідної функції \(K_\mu = K_{\mu_f} \) виконується співвідношення типу (0). Отже, \(f \in \mathfrak{F}_{\varphi, \psi, \mu}(D) \). □
Список литературы

[1] Lomako T., Gutlyanskii V., Ryazanov V. To the theory of variational method for Beltrami equations // Journal of Mathematical Sciences. – 2012. – 182, no. 1. – P. 37–54.

[2] Ломако Т. К теории сходимости и компактности для уравнений Бельтрами // Укр. мат. журнал. – 2011. – 63, № 3. – С. 341–349; англ. переклад Lomako T. On the theory of convergence and compactness for Beltrami equations // Ukrainian Mathematical Journal. – 2011. – 63, no. 3. – P. 393–402.

[3] Ломако Т. К теории сходимости и компактности для уравнений Бельтрами с ограничениями теоретико-множественного типа // Укр. мат. журнал. – 2011. – 63, № 9. – С. 1227–1240; англ. переклад Lomako T. On the theory of convergence and compactness for Beltrami equations with constraints of set-theoretic type // Ukrainian Mathematical Journal. – 2012. – 63, no. 9. – P. 1400–1414.

[4] Рязанов В.И. О замыкании классов квазиконформных отображений с интегральными ограничениями // Укр. мат. журн. – 1991. – 43, № 4. – С. 435–440.

[5] Gutlyanskii V.Ya. and Ryazanov V.I. Quasiconformal mappings with integral constraints on M. A. Lavrent’ev’s characteristic // Siberian Mathematical Journal. – 1990. – 31. – P. 202–215.

[6] Väisälä J. Lectures on n-Dimensional Quasiconformal Mappings. – Lecture Notes in Math. 229, Berlin etc.: Springer–Verlag, 1971.

[7] Гутлянский В.Я. и Рязанов В.И. Геометрическая и топологическая теория функций и отображений. – Киев: Наукова Думка, 2011.

[8] Lomako T., Salimov R., Sevost’yanov E. On equicontinuity of solutions to the Beltrami equations // Ann. Univ. Bucharest (math. series). – 2010. – V. LIX, no. 2. – P. 261–271.

[9] Ryazanov V., Sevost’yanov E. Equicontinuity of mappings quasiconformal in the mean // Ann. Acad. Sci. Fenn. – 2011. – 36. – P. 231–244.

[10] Ryazanov V., Salimov R. and Sevost’yanov E. On Convergence Analysis of Space Homeomorphisms // Siberian Advances in Mathematics. – 2013. – 23, no. 4. – P. 263–293.

[11] Севостьянов Е.А. Исследование пространственных отображений геометрическим методом. – Киев: Наукова думка, 2014.

[12] Севостьянов Е.А. О пространственных отображениях с интегральными ограничениями на характеристику // Алгебра и анализ. – 2012. – 24, № 1. – С. 131–156; англ. переклад Sevost’yanov E.A. On spatial mappings with integral restrictions on the characteristic // St. Petersburg Math. J. – 2013. – 24, no. 1. – P. 99–115.

[13] Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in modern mapping theory. – New York: Springer Science + Business Media, LLC, 2009.

[14] Lehto O., Virtanen K. Quasiconformal Mappings in the Plane. – New York etc.: Springer, 1973.

[15] Севостьянов Е.О., Скворцов С.О., Довгопятый О.П. Про негомеоморфні відображення з оберненою нерівністю Полецького // Укр. мат. вісник, 2020 р. (прийнята до друку).
[16] Vuorinen M. Exceptional sets and boundary behavior of quasiregular mappings in n-space // Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes. – 1976. – 11. – P. 1–44.

[17] Севостьянов Е.А., Скворцов С.А. О локальном поведении одного класса обратных отображений // Укр. мат. вестник. – 2018. – 15, № 3. – С. 399–417; англ. переклад Sevost’yanov E.A., Skvortsov S.A. On the local behavior of a class of inverse mappings // J. Math. Sci. – 2019. – 241, no. 1. – P. 77–89.

[18] Sevost’yanov E.A. and Skvortsov S.A. On mappings whose inverse satisfy the Poletsky inequality // Ann. Acad. Scie. Fenn. Math. – 2020. – 45. – P. 259–277.

[19] Куратовский К. Топология, т. 2. – М.: Мир, 1969.

[20] Herron J. and Koskela P. Quasiextremal distance domains and conformal mappings onto circle domains // Compl. Var. Theor. Appl. – 1990. – 15. – P. 167–179.

[21] Дыбов Ю.П. Компактность классов решений задачи Дирихле для уравнений Бельтрами // Труды ИПММ НАН Украины. – 2009. – 19. – С. 81–89.

[22] Стоилов С. Лекции о топологических принципах теории аналитических функций. – Наука, Москва, 1964.

[23] Севостьянов Е.А. Аналог теоремы Монтеля для отображений класса Соболева с конечным искажением // Укр. матем. ж. – 2015. – Т. 67, № 6. – С. 829–837; англ. переклад Sevost’yanov E.A. Analog of the Montel Theorem for Mappings of the Sobolev Class with Finite Distortion // Ukrainian Math. J. – 2015. – V. 67, no. 6. – P. 938–947.

[24] Альфорс Л. Лекции по квазиконформным отображениям. – Москва: Мир, 1969.

[25] Ryazanov V., Srebro U. and Yakubov E. Integral conditions in the theory of the Beltrami equations // Complex Variables and Elliptic Equations. – 2012. – V. 57, no. 12. – P. 1247–1270.

[26] Спеньер Э. Алгебраическая топология. – Москва: Мир, 1971.

[27] Bourbaki N. Functions of Real Variable. – Berlin: Springer, 2004.

[28] Gehring F.W. and Martio O. Quasiextremal distance domains and extension of quasiconformal mappings // J. d’Anal. Math. – 1985. – V. 24. – P. 181–206.

[29] Севостьянов Е.А. О равностепенной непрерывности гомеоморфизмов с неограниченной характеристикой // Математические труды. – 2012. – Т. 15, № 1. – С. 178–204; англ. переклад Sevost’yanov E.A. Equicontinuity of homeomorphisms with unbounded characteristic // Siberian Advances in Mathematics. – 2013. – V. 23, no. 2. – P. 106–122.

[30] Севостьянов Е.А. О граничном поведении открытых дискретных отображений с неограниченной характеристикой // Укр. матем. ж. – 2012. – Т. 64, № 6. – С. 855–859; англ. переклад Sevost’yanov E.A. On the boundary behavior of open discrete mappings with unbounded characteristic // Ukrainian Math. J. – 2012. – V. 64, no. 6. – P. 979–984.
[31] Kovtonyuk D.A., Petkov I.V., Ryazanov V.I., Salimov R.R. Граничное поведение и задача Дирихле для уравнений Белтрами // Алгебра и анализ. – 2013. – V. 25, № 4. – С. 101-124; англ. переклад Kovtonyuk D.A., Petkov I.V., Ryazanov V.I., Salimov R.R. The boundary behavior and the Dirichlet problem for the Beltrami equations // St. Petersburg Math. J. – 2014. – V. 25, no. 4. – P. 587–603.

[32] Гурвиц А., Курант Р. Теория функций. – Москва: Наука, 1968.

КОНТАКТНА ІНФОРМАЦІЯ

Олександр Петрович Довгопятий
Житомирський державний університет ім. І. Франко
кафедра математичного аналізу, вул. Велика Бердичівська, 40
м. Житомир, Україна, 10 008
e-mail: alexdov1111111@gmail.com

Євген Олександрович Севостьянов
1. Житомирський державний університет ім. І. Франко
кафедра математичного аналізу, вул. Велика Бердичівська, 40
м. Житомир, Україна, 10 008
2. Інститут прикладної математики і механіки НАН України,
вул. Добровольського, 1
м. Слов’янськ, Україна, 84 100
e-mail: eevostyanov2009@gmail.com