Elaboration of EQID tool for digestive cancer predisposition

Souria Aissaoui1,2,*, Stéphane Pinson1, Sophie Giraud1, Marisa Raymond1, Hagay Sobol4 and Alain Calender1

1Service of Molecular and Medical Genetics, Civil Hospices of Lyon, Lyon, France
2AFCG (AFCG (French Association of Genetic Counselors), Marseille, France
3Genetic Counselling Services, Inc., Schenectady, NY, USA
4Department of Genetic Oncology, Prevention and Screening, Paoli-Calmettes Institute, Marseille, France

Abstract

Lynch Syndrome is one of the most common diseases that predispose individuals to colorectal cancers. It is caused by mutations in DNA mismatch repair (MMR) genes. Genetic counselling is imperative to assist patients and their families in making decisions around surveillance, treatment, and care. Multidisciplinary committees (MDC) are organized by health professionals and specialists to optimize this process. The aim of the study is to examine the evaluation and improvement of quality decision-making for families with a genetic predisposition to colorectal cancer: based on gene test validation as well as proband and family care management. We observed practices among geneticists are diverse and discordant and not always consistent with recommendations made by France’s Institute National du Cancer (INCa). We highlight the use of somatic testing via RER and MMR protein immunohistochemistry. We highlight the need of a computerized tool, that was developed and is now widely disseminated to every collaborating partner of our MDC. This tool will enable us to standardize our decision-making and, by comparing decisions through quality criteria, to differentiate and categorize some patients or families groups. As a result, we can achieve a better justification of care management and family prevention.

Introduction

Lynch syndrome, also known as Hereditary Non-Polyposis Colorectal Cancer (HNPPC) syndrome is a commonly inherited disorder that predisposes patients to colorectal cancers. It is suspected through Amsterdam II criteria [1]. In addition to colorectal cancer, cases of endometrial, small intestine, and urinary tract cancers can also present in these families. Lynch syndrome is defined by mutations in the MMR genes. In at-risk patients, a chromo-colonoscopy is recommended, every 2 years, from the age of 20 years. In addition, an annual gynecologic surveillance is recommended in women beginning at 30 years of age. The second most common syndrome predisposing to CRC is the Familial Adenomatous Polyposis (FAP), which is caused mainly by mutations in APC gene. It causes CRC and a high number of polyps [2].

A consultation that includes genetic counselling is mandatory before making a recommendation of genetic testing to an at-risk family. This discussion also should include a surveillance strategy for these patients. Most French genetic centres (76%) organize multidisciplinary committees (MDC) to bring together medical professionals to help optimize decision-making around care management, taking into account advice from relevant experts and specialists [3]. In the Lyon region of France, one MDC is organized every month. Anecdotal evaluations of these MDCs suggested that its management was not standardized. We, therefore, developed a tool to enable us to evaluate and systemize the MDC. The aim the EQID (Assessment and Improvement of Quality Decision-making within digestive cancer MDCs) Study is to evaluate the quality of decision-making for a given family with digestive cancer risk through the MDC in order to improve family management and optimize the quality of care. In French, the EQID study is known as the EQAD COG Colon (Évaluation et Amélioration de la Qualité de Décision en Comité d’Oncogénétique dédié au Colon) Study.

Patients and methods

EQID is based on an analysis of nearly 200 patient cases which were discussed within the Lyon region’s MDC between 2004 to 2012. These cases arose from families who received a genetic consult during that time in one of our clinics. The patients taken into account were those affected by colon cancer with a putative genetic predisposition, according to family history and well-established criteria published among two major consensus conference focusing HNPCC related digestive cancers [4]: Amsterdam criteria and Bethesda guidelines (positive predictive value and sensitivity recognized). Tumour studies, including examination of microsatellite stability through replication error analysis and immunohistochemistry of MMR proteins, were performed and often drove MDC decision-making. DC decision-making.

First, patient cases were reviewed based on Lynch Syndrome criteria to establish the validity of recommending genetic testing.

*Correspondence to Souria Aissaoui, Service of Molecular and Medical Genetics, Civil Hospices of Lyon, Lyon, France, E-mail: souria.aissaoui@chu-lyon.fr

Key words: risk assessment, colorectal cancer, genetic diagnosis, multidisciplinary decision-making, familial cancer management

Received: August 09, 2019; Accepted: August 23, 2019; Published: August 25, 2019
expression in 23 cases, of which methylation of \textit{MLH1} gene promotor was studied for only 13 cases (59.09\%) (Table 1a).

NB: methylation of a gene promotor correlates with loss of expression of the corresponding protein and can exclude a diagnosis of Lynch syndrome if no familial history.

\textbf{Genetic tests results}

In 59 cases (30.25\%) a genetic test was performed prior to the MDC. Among these, 34 (57.63\%) were \textit{MMR} gene tests. Thus, within the MDC, in these cases, discussion focused primarily on patient-family care management recommendations. After the MDC, decisions were made regarding additional somatic testing recommendations in relatives prior to rediscussion of the patient case in 24 cases (12.31\%). Gene testing was discussed in 74 cases (47\%, this number is computed by excluding bias due to retrospective request, where only tested patients where sectioned for our study) (Table 1b).

\textbf{MMR gene test results and patients/families care management decisions by MDC, based on somatic tests.}

We organized gene test and care management decision through 3 groups (Table 2):

\textbf{Group 1: RER+/IHC+ cases: 48 cases}

Genetic analysis indication: Among, RER+/IHC+ cases, there were 15 patients that did not meet Amsterdam or Bethesda criteria, but for whom tumour signature was sufficient to validate the recommendation of genetic testing. These criteria offer a very good positive predictive value since more than 50\% (8/15) of tested cases were found to have an MMR gene mutation. However, this value underlines that we are not selective enough.

Among the 33 remaining patient cases presented in the MDC, we discussed 25 genetic testing indications and 4 somatic testing indications (of which 3 included discussions of promotor methylation analysis of the \textit{MLH1} gene).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Representation of diagnosis strategy in our Lyon team. \textit{RER}: Replication Error. \textit{RER}+: microsatellite instability. \textit{RER}-: stability of microsetellites. \textit{CH3}+: promotor methylation. IHC: immunohistochemistry. MDC: multidisciplinary committee. + : mutation identified. - : no mutation}
\end{figure}

Results

In our center, a genetic consult starts with drawing a family pedigree, searching Amsterdam criteria, and performing somatic testing on the most appropriate tumour sample. Based on this evaluation, we determine whether or not genetic testing is warranted and propose a plan for care management. (Figure 1: Flow chart figure). The probands' main tumour type for which patients have been referred to our consultation are essentially colorectal cancers (51\%), endometrial cancers (10\%), polyposis (8\%) and gastric cancers (4\%). We also find ovarian and cutaneous cancers (less than 2\%) (Figure 2).

\textbf{Somatic tests results}

We performed 142 somatic tests in 125 families. Less than half of the tested tumours displayed MSI (microsatellite instability). Less than half of tested tumours showed a loss of one or more MMR proteins in immunohistochemistry. Of note, we found \textit{MLH1} protein loss of
Figure 2. Representation of main tumors of the propositus

Table 1. A) somatic test details. B) Details of somatic/constitutional testings realized before and after MDC

A) Family’s tumours	Tumour 1	Tumour 2	
RER status			
mss	76	63	
msi-l	4	0	
msi	6	1	
msi-h	28	3	
failed or impossible	13	9	
total	114	13	
IHC status			
ihc+	53	48	
ihc-	77	68	
total	116	14	
MLH1 loss	23	21	1
MSH2 loss	24	21	3
MSH6 loss	26	23	3
PMS2 loss	12	11	1
total	76	8	
CH3°+	3	3	0
CH3°-	7	7	0
CH3 failed	3	3	0
CH3 impossible	0	0	0
CH3 not done	13	0	

B) Before MDC (performed)	After MDC (to perform)		
bio (RER/IHC)	72,82%	12,31%	
CH3*	59,09%	/	
Gene	30,25%	46,54%**	
MMR	57,63%	23,73%	51,35%
APC	16,95%	3,39%	10,81%
MYH	22,03%	1,69%	36,49%
Other	15,25%	3,76%	

*Search for methylation of MLH1 gene promoter when there is a loss of expression in immuno-histochemistry. **(74/159): The bias is related to the removed retrospective data (only the tested cases are selected). In some cases, if research of MMR gene defects is negative, APC gene analysis is proposed by MDC. MDC: multidisciplinary committee. CH3: research of methylation. +: presence of mutation, -: absence of mutation.
Table 2. Group 1, Group 2, Group 3 cases analysis

Group 1: Indication, RER+/IHC+ cases: 48 cases
Amsterdam II
MMR +
MMR -
Not tested
To test
TOTAL

Group 1: Care management decision
MMR+ (8/15)
No of cases
Colonoscopy
Gastroscopy
Vaginal echography

MMR- (7/15)	5 women	2 men	
No of cases	Rhythm	Age at the beginning	Remark
Colonoscopy	1	type Lynch	23 y before isolated kc at 43 y
Gastroscopy	0	/3 y	*
Vaginal echography	0		1 endometrial cancer!
nothing	4		2 healthy, 1 study inclusion, 2 isolated cancers
other	1		Renal echography at 30y. (patient adenomatous colorectal polyp, mother 2 crc<50y, 1 third degree relative: urothelial cancer +tobacco?)
colonoscopy	2	As Lynch	running test
gastroscopy	0		running test
Vaginal echography	0		running test

Group 2: analysis Indication, RER+/IHC- Cases: 8 family cases
Amsterdam II
MMR +
MMR -
Not tested
To test
TOTAL

Group 2: Care management decision
MMR+ (4/5)
Nb of cases
Colonoscopy
gastroscopy
Vaginal echography

MMR- (1/5)	1 woman		
Nb of cases	Rhythm	Age at the beginning	Remark
Colonoscopy	1	as Lynch	20-25
gastroscopy	0		isolated kc at 45 y

Group 3: analysis Indication, RER-/IHC- cases: 59 family cases
Amsterdam II
MMR +
MMR -
Not tested
To test
TOTAL
Aissaoui S (2019) Elaboration of EQID tool for digestive cancer predisposition

Volume 1: 5-10
Cancer Arch, 2019 doi: 10.15761/JCA.1000107

*1 isolated case at 54y
1 healthy with father TPM since 50y
1 adenomatous colorectal polyp, with one 2nd degree relative with ccc

Group 3: care management decision
nb cases

Colonoscopy
2
4
2
3
gastroscopy
0
Vaginal echography
2

Not tested: no analysis indication (37/59)
26 women 11 men

nb cases	rhythm	Age at the beginning	remark
Colonoscopy			
12	/5 y	20...45	Between 2 and 14 y before the youngest cancer. 2 duodena 1 indigo1Amsterdam)
11	/3-5y	35...45	Between 7 et 18 y before the youngest cancer. 4 Amsterdam, 6 in the research protocol DOCC
1	/3y	40	10 y before the youngest cancer.
3	1 control		2 indigo, 1 duodeno
gastroscopy			
2	1 control		1 cancer at 38 y and, one gastric cancer in 1st and 2nd degree relative (>60 y)
Vaginal echography			
1			4 study inclusion in the research protocol DOCC
nothing			
6			other

2 proband: endometrial cancer at 55 and 69 y, 1 1st degree relative at 48 y: no recommendation

5 cases: stomach, 1st degree relative (78 y), 2nd/3rd y, 3rd (age?): no recommendation

Care management decision: For all 8 of the 15 cases described above as not meeting criteria but found to carry an MMR gene mutation, surveillance following the Lynch syndrome protocol was recommended for the 1st degree relatives (colonoscopy every 2 years for all beginning at age 20 years old and vaginal echography in women every year beginning as age 30 years old). For 2 carrier cases, a gastric exploration with gastroscopy was recommended every 2 years. No gastric cancer cases were observed in these families.

For the other 7 non carrier cases, Lynch-like surveillance was recommended for 1 case (colon cancer at 43 years old for the index case but no other cancer history reported in the family), beginning at age 20 years old. For 1 case, a colonoscopy every 3 years was recommended. For 1 case, a renal echography at 30 years old was recommended (urothelial cancer observed in a third degree relative). No additional surveillance protocols were recommended in the 4 remaining cases.

For the 33 cases for whom genetic testing was not recommended, Lynch-like surveillance was recommended in 2 cases, 1 exploration by colonoscopy in 4 cases, and no additional surveillance for the remaining cases. Concerning gastric surveillance, there is no clear and written consensus among professionals. Furthermore, we are also not aware of studies which confirm the benefits of urinary tract surveillance. The decisions regarding these forms of management are best supported by referrals to gastroenterology specialists.

Group 2: RER+/IHC- Cases: 8 family cases

Care management decision: For 4 of these 5 cases, an MMR mutation was identified. Members of these families were recommended to follow Lynch-like surveillance as previously described. The remaining non-carrier case was also recommended a Lynch-like surveillance protocol.
because the RER+ phenotype conferred elevated risk. Concerning gastroscopy, the current professional consensus is undetermined and will probably merit a specific debate.

Group 3: RER-/IHC- cases: 59 family cases

Genetic analysis indication: Only 11 of the 59 cases received genetic testing and no MMR mutations were identified in any of these. Among them, 8 met Bethesda criteria. The 3 remaining family cases did not meet either Bethesda or Amsterdam criteria (there were: 1 isolated case at 54 years / 1 healthy case whose father has multiple primitive tumour at age 50 years / and 1 case with adenomatous colorectal polyps and one 2nd degree relative with colorectal cancer).

For 11 cases, we recommended gene test (2 met Amsterdam criteria, 6 met Bethesda criteria, and 3 met no criteria). For the remaining 37 family cases, the recommendation of gene testing was not indicated. Care management was defined. Among these cases, 6 met Amsterdam criteria and 23 met Bethesda criteria. The remaining cases met neither criteria. Further discussion on the 6 cases was held to understand why genetic testing was not proposed and to confirm care management.

Care management decision: For the 11 non-carrier family cases, familial surveillance recommended was colonoscopy every 2 years beginning at age 20 years (N=2); every 3 years from age 20-30 years old (N=4); every 3-5 years from 30-40 years old (N=2); and every 5 years beginning at 30 years old (N=3). In these cases, surveillance for 1st degree relatives do not depend on the age of the youngest cancer in the family. We also observed 2 cases in which a recommendation of vaginal echography was made despite not seeing a history of uterine cancer in the family.

For the 37 cases not receiving genetic testing, surveillance recommended to relatives was variable: colonoscopy every 5 years from 20–45y (N=13); every 3-5 years from 35-45 years old (N=11); and every year from 40 years old (N=1); single baseline colonoscopy (N=3). No additional surveillance was recommended for the remaining cases. In general, the surveillance was recommended to begin starting between 2 and 18y before the youngest colorectal cancer case in the family.

Uterine echography recommendations were similarly variable. The procedure was recommended in 1 case in which the family did not show endometrial cancer, however it was not recommended in 2 cases in which the proband presented with endometrial cancer (at 55 and 69 years old, respectively) and in an additional case where a 1st degree relative was observed to have endometrial cancer at 48 years of age. In 2 cases, control by gastroscopy was proposed.

Table 3. Overview of criteria which allow to validate or not a genetic analysis. MMR: Mismatch Repair genes

Nb of cases	met criteria	Amsterdam II	Bethesda	none
RER+/IHC+	2	4	2	tested MMR +
	1	20	12	tested MMR -
	1	19	5	Not tested (to discuss)
RER+/IHC-	1	1	1	tested MMR +
	3	1	1	tested MMR -
	3	8	3	Not tested
RER-/IHC-	6	23	8	tested MMR +
	2	6	3	Not tested (no indication)

MMR+: mutation in MMR gene. MMR-: no mutation in MMR gene. RER+: unstability of microsatellites. RER-: stability of microsatellites. IHC +: loss of MMR proteins expression. IHC-: no loss of MMR protein expression.
Different chapters:

Field	Options
Provenant	RER, IHC, Hypermethylation promoter
Polyposc	Oui-diffuse, Oui-attenuée, Type majoritaire, âge de début, âge de début, taille max
Polyposes	Adénomes (tub. vill), Nombre, Dysplasie maximum, âge de début, âge de début, taille max
Polypes	RER, IHC, Hypermethylation promoter
Familial	Parenté, âge de début, Type de tumeur, Polyposes, âge de début, Dysplasie maximum, Nombre total
Genetic	Cas index, Gène, Hypermethylation
Surveillance	Qui ? Type de surveillance, Examen, Rythme, âge de début, Chirurgie

In the genetic section, the table includes information on mutations for various genes:

- MLH1 mutation
- MSH2 mutation
- MSH6 mutation
- PMS2 mutation
- APC mutation
- MYH mutation
- no mutation of MMR
- MMR in progress
- MMR to test
- MLH1 variant
- MSH2 variant
- MSH6 variant
- PMS2 variant
- no mutation of APC
- APC mutation
- APC in progress
- APC to test
- no mutation of MYH
- MYH mutation
- MYH in progress
- MYH to test
Proban:

Polyposis:
- Choose yes/no
 - yes diffuse
 - yes attenuated
 - yes ?
 - no

Majority type
- adenomatous
- hyperplastic
- juvenile
- scalloped
- hamartomatous
- other

Polypes:
- max dysplasia
 - High
 - Low
 - Unspecified

Chronicity
- synchronous
- metachronous
- not defined

Duodenal localization
- choose
 - yes
 - no
 - unspecified

Other cancerous tumor
- digestive
- endometrium
- desmoid
- cutaneous
- cerebral
- endometrioid ovary
- other

Non-cancerous lesions?
- Benign skin lesion
- other
- no
- not specified

Family:

Relationship*
- 1(father)
- 1(mother)
- 1(children)
- 1(siblings)
- 2(paternal uncles/aunts)
- 2(maternal uncles/aunts)
- 3(paternal grandparents/1st cousins)
- 3(maternal grandparents/1st cousins)
- 4 and more (maternal grandparents’ hand)
- 4 and more (paternal grandparents’ hand)

Type of tumor
- colorectal cancer
- endometrium cancer
- stomach cancer
- ovarian cancer
- skin cancer
- desmoid tumor
- brain tumor

- benign cutaneous lesion
- other

Polypes
- adenomatous
- hyperplastic
- juvenile
- scalloped
- hamartomatous
- other

Dysplasia if adenomatous
- High
- Low
- Unspecified

*information « i »: 1, 2, 3, 4 correspond to degree of relationship between patient and proban.

Genetic:

Surveillance:
- 1(father)
- 1(mother)
- 1(children)
- 1(siblings)
- 2(paternal uncles/aunts)
- 2(maternal uncles/aunts)
- 3(paternal grandparents/1st cousins)
- 3(maternal grandparents/1st cousins)
- 4 and more

Who?
- proban
- relatives

Type of surveillance
- type Lynch (i)
- type polyposis (i)

Examination
- coloscopy
- gastroscopy
- H.Pylori
- chromoendoscopy with indigo carmine
- pelvic ultrasound
- duodenoscopy
- gastric cartography

Surgery?
- prophylactic uterus
- ovarian prophylaxis
- right colectomy
- left colectomy
- subtotal colectomy
- gastrectomy
- other
- no surgery

Rhythm
- 1 control
- /1 yr
- /2 yrs
- / 3-5 yrs
- /5 yrs

(i) referential?
- INCA (cancer national institute) 2009 recommendations
- ... to complete when new recommendations 2017

Expression of proteins in IHC:
- persistence
- loss (specify)
- heterogeneous (specify)
- failure
- impossible
- in progress
- to do

Methylation of promoter:
- yes
- no
- failure
- impossible
- In progress
- to do

RER Statut
- MSI (miscrosatellite stability)
- MSI-high
- MSI-low
- failure
- impossible
- in progress
- to do

Date of test
- /..../

Note: The document includes a table with options for various medical conditions and a diagram indicating the relationship between patient and proban.

For full details, refer to the original text for comprehensive medical information.
process, and diffused it to every collaborating partner of our MDC. By comparing how decisions were made among different groups of patient families, we were able to differentiate and categorize surveillance protocol recommendations. It appears indeed paramount to establish homogeneous groups of patients/families through pedigrees in order to judiciously manage and follow-up with care. As a result, we targeted a better rationalization of care management and family prevention. Further studies are necessary to evaluate the quality control of our work by testing the software against fictive pedigrees, discussing them within MDCs, and comparing decisions with those previously given.

The EDIQ system is thus essential and will allow for the formalization and standardization of our MDC’s decision-making process in patient cases. Based on our initial observations, it will be important to perform further studies at a national level to evaluate and improve the quality and consistency of decision-making processes in other MDCs as well.

This should also help us to improve the quality of genetic counselling provided to patients and their families. Somatic testing (RER/IHC) remains an important step prior to the decision by the MDC to recommend genetic testing for colorectal cancer related genes.
We need to prescribe somatic testing more often, even if there is not a familial context of predisposition. In France, these analyses are underused (less than 30% of testing is made for newly diagnosed colorectal cancer, because of old tumour, no availability of medical professional, or maybe ignorance). These tests are not more expensive than a genetic test and this approach could, therefore, avoid genetic testing if the tumour phenotype is not in favour of hereditary predisposition.

We also studied PREMM1.2.6, a software that provides mutation risk calculation for Lynch syndrome. A threshold of 5% validates MMR gene test indication. We highly recommend it [5].

Acknowledgment

We are grateful to all participants for their collaboration and their availability, notably members of MDCs of the Lyon Region. The experiments comply with the current French laws.

References

1. Lipton LR, Johnson V, Cummings C, Fisher S, Risby P, et al. (2004) Refining the Amsterdam Criteria and Bethesda Guidelines: testing algorithms for the prediction of mismatch repair mutation status in the familial cancer clinic. J Clin Oncol 22: 4934-4943. [Crossref]
2. Half E, Bercovich B, Rozen P (2009) Familial adenomatous polyposis. Orphanet J Rare Dis 4: 22. [Crossref]
3. Aissaoui S, Aissaoui H, Giraud S, Pinson S, Calender A (2014) Development of multidisciplinary committees for decision making and care management in hereditary colon cancer: the French state of the art. J Community Genet 5: 185-189. [Crossref]
4. Lynch HT, Riley BD, Weismann S, Kinarsky Y, Lynch JF, et al. (2004) Hereditary nonpolyposis colorectal carcinoma (HNPCC) and HNPCC-like families: Problems in diagnosis, surveillance, and management. Cancer 100: 53-64. [Crossref]
5. Aissaoui S, Cartellier C, Seytier T, Giraud S, Calender A (2017) Genetic mutation risk calculation in Lynch syndrome inheritance: Evaluating the utility of the PREMM1,2,6 Model in Lyon: the first French study. Bull Cancer 104: 288-294. [Crossref]