ON THE CHERN NUMBER OF AN IDEAL

MOUSUMI MANDAL AND J. K. VERMA

(Communicated by Bernd Ulrich)

Abstract. We settle the negativity conjecture of Vasconcelos for the Chern number of an ideal in certain unmixed quotients of regular local rings by explicit calculation of the Hilbert polynomials of all ideals generated by a system of parameters.

INTRODUCTION

Let \(I \) be an \(m \)-primary ideal in a local ring \((R, m) \) of dimension \(d \). Let \(H(I, n) = \lambda(R/I^n) \) denote the Hilbert function of \(I \) where \(\lambda(M) \) denotes the length of an \(R \)-module \(M \). The Hilbert function \(H(I, n) \) is given by a polynomial \(P(I, n) \) of degree \(d \) for large \(n \). It is written in the form

\[
P(I, n) = e_0(I) \binom{n + d - 1}{d} - e_1(I) \binom{n + d - 2}{d - 1} + \cdots + (-1)^d e_d(I).
\]

If \(I \) is generated by a system of parameters, then \(R \) is Cohen-Macaulay if and only if \(e_0(I) = \lambda(R/I) \). Recently it has been observed by Vasconcelos [7] that the signature of the coefficient \(e_1(I) \), called the Chern number of \(I \), can be used to characterize the Cohen-Macaulay property of \(R \) for a large class of rings. In the Yokohama Conference in 2008 Vasconcelos proposed the following:

Negativity Conjecture: Let \((R, m) \) be an unmixed, equidimensional local ring which is a homomorphic image of a Cohen-Macaulay local ring. Then \(R \) is not Cohen-Macaulay if and only if for any ideal \(J \) generated by a system of parameters, \(e_1(J) < 0 \).

Ghezzi, Hong and Vasconcelos [3] settled the conjecture for (1) Noetherian local domains of dimension \(d \geq 2 \) which are homomorphic images of Cohen-Macaulay local rings and (2) universally catenary integral domains containing a field. The Negativity Conjecture has been resolved for all unmixed local rings by S. Goto recently.

In this paper we settle the Negativity Conjecture for certain unmixed quotients of regular local rings, by explicitly finding the Hilbert polynomials of all parameter ideals.
1. THE HILBERT POLYNOMIAL OF PARAMETER IDEALS IN CERTAIN QUOTIENTS OF REGULAR LOCAL RINGS

L. Ghezzi, J. Hong and W. Vasconcelos calculated the Chern number of any parameter ideal in certain quotients of regular local rings of dimension four. We recall their result [3, Example 3.8] first:

Theorem 1. Let \((S, \mathfrak{m})\) be a four-dimensional regular local ring with \(S/\mathfrak{m}\) infinite. Let \(P_1, P_2, \ldots, P_r\) be a family of height two Cohen-Macaulay prime ideals of \(S\) such that for \(i \neq j\), \(P_i + P_j\) is \(\mathfrak{m}\)-primary. Put \(R = S/\bigcap_{i=1}^r P_i\). Let \(J\) be a parameter ideal of \(R\). Let \(L = \left(\bigoplus_{i=1}^r S/P_i\right)/R\). If \(J \subseteq \text{ann} L\), then \(e_1(J) = -\lambda(L)\) and \(e_2(J) = 0\).

In this section we find the Hilbert polynomials of parameter ideals in \(R\) when \(S\) is any regular local ring.

Lemma 2. Let \((S, \mathfrak{n})\) be an \(r\)-dimensional regular local ring. Let \(I\) be an ideal of \(S\). Suppose \(a_1, \ldots, a_d \in S\) such that \((a_1 + I, \ldots, a_d + I)\) is a system of parameters in \(S/I\). Then \(a_1, \ldots, a_d\) is a regular sequence in \(S\).

Proof. Let \(J = (a_1, \ldots, a_d)\). Then \(\lambda(S/I \otimes_S S/J) < \infty\). Hence by Serre’s theorem [3, Theorem 3, Chapter 5],

\[
\dim S/I + \dim S/J \leq \dim S = r.
\]

As \(S\) is regular, it is catenary. Thus \(r - \text{ht } I + r - \text{ht } J \leq d\). Therefore \(d \leq \text{ht } J \leq d\). Hence \(\text{ht } J = d\) and consequently \(a_1, \ldots, a_d\) is an \(S\)-regular sequence. \(\square\)

Lemma 3. Let \(J, I\) and \(S\) be as above. Then for all \(j, n \geq 1\),

\[
\text{Tor}_j^S(S/J^n, S/I) = 0.
\]

Proof. We will apply induction on \(n\). Let \(n = 1\). As \(J\) is a complete intersection, the Koszul complex \(K(\underline{a})\) of the sequence \(\underline{a} = a_1, a_2, \ldots, a_d\),

\[
K(\underline{a}) : 0 \to S \to S^d \to S^{(2)} \to \cdots \to S^d \to S \to S/J \to 0,
\]

gives a free resolution of \(S/J\). Tensoring the above complex with \(R := S/I\) we get

\[
K(\underline{a}, S/I) : 0 \to R \to R^d \to R^{(2)} \to \cdots \to R^d \to R \to R/K \to 0,
\]

which is the Koszul complex of \(JR = K\). As \(K\) is generated by an \(R\)-regular sequence, the above is a free resolution of \(R/K\). Hence \(\text{Tor}_j^R(S/J^n, S/I) = 0\) for all \(j \geq 1\). Since \(J\) is generated by a regular sequence, \(J^n/J^{n+1}\) is a free \(S/J\)-module. Consider the exact sequence

\[
0 \to J^n/J^{n+1} \to S/J^n \to S/J^n \to 0.
\]

This gives rise to the long exact sequence

\[
\cdots \to \text{Tor}_j^S(J^n/J^{n+1}, S/I) \to \text{Tor}_j^S(S/J^{n+1}, S/I) \to \text{Tor}_j^S(S/J^n, S/I) \to \cdots.
\]

By induction on \(n\), it follows that \(\text{Tor}_j^S(S/J^{n+1}, S/I) = 0\) for all \(j \geq 1\). \(\square\)

Lemma 4. Let \(J = (a_1, \ldots, a_d)\) be a complete intersection of height \(d\) in a regular local ring \(R, \mathfrak{m}\). Let \(L\) be an \(R\)-module of finite length. Then \(\mathcal{R}(J) \otimes_R L\) is a finite \(\mathcal{R}(J)\)-module of dimension \(d\) and

\[
\text{Supp}(\mathcal{R}(J) \otimes_R L) = V(\mathfrak{m}\mathcal{R}(J)).
\]
Suppose $P \in \text{Supp}(R(J) \otimes_R L)$ and $p = P \cap R$. Then $(R(J) \otimes_R L)_P = (R(J_P) \otimes_{R_P} L_P)_P \neq 0$. Hence $L_P \neq 0$. As L has finite length, $p = m$. Hence $mR(J) \subseteq P$. Since $R(J)/mR(J) \cong R/[mT_1, T_2, \ldots, T_d]$ is a polynomial ring, $mR(J)$ is a prime ideal of $R(J)$. We will prove the other inclusion by induction on $\lambda(L)$. Let $\lambda(L) = 1$. Then $L \cong R/m$. Therefore $R(J) \otimes_R L = R(J) \otimes_R R/m = R(J)/mR(J)$. Hence $mR(J) \in \text{Supp}(R(J) \otimes_R L)$. Now assume that $\lambda(L) > 1$. Then we have the following exact sequence of R-modules:

$$0 \to R/m \to L \to C \to 0$$

where $C = \text{coker } i$. Tensoring (1) with $R(J)$ we get the exact sequence

$$R(J) \otimes_R L \to R(J) \otimes_R C \to 0.$$

Localize the above sequence at $mR(J)$ to get $mR(J) \in \text{Supp}(R(J) \otimes_R L)$ using induction.

Lemma 5. Let S be a local ring, let a_1, \ldots, a_d be a regular sequence and let $J = (a_1, \ldots, a_d)$. Let L be an S-module of finite length. If $J \subseteq \text{ann } L$, then

$$\lambda(\text{Tor}_1(L, S/J^n)) = \binom{n + d - 1}{d - 1} \lambda(L).$$

Proof. By [5] Example 10], for any $n > 0$, J^n is generated by the maximal minors of the $n \times (n + d - 1)$ matrix A where

$$A = \begin{pmatrix}
a_1 & a_2 & a_3 & \cdots & a_d & 0 & 0 & \cdots & 0 \\
0 & a_1 & a_2 & \cdots & a_{d-1} & a_d & 0 & \cdots & 0 \\
0 & 0 & a_1 & \cdots & a_{d-2} & a_{d-1} & a_d & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a_1 & a_2 & a_3 & \cdots & a_d
\end{pmatrix}.$$

By Eagon-Northcott [2] Theorem 2], the minimal free resolution of S/J^n is given by

$$0 \to S^B_d \to S_{d-1}^B \to \cdots \to S^B_1 \to S \to S/J^n \to 0$$

where the Betti numbers of S/J^n are given by

$$\beta_i^S(S/J^n) = \binom{n + d - 1}{d - i} \binom{n + i - 2}{i - 1}, \quad 1 \leq i \leq d.$$

Taking the tensor product of (3) with L we get the complex

$$0 \to L^\beta_d \to L^\beta_{d-1} \to \cdots \to L^\beta_1 \to L \to L/J^n L \to 0.$$

Since $J \subseteq \text{ann } L$, the maps in the above complex are zero. Hence

$$\lambda(\text{Tor}_1(L, S/J^n)) = \beta_1 \lambda(L) = \binom{n + d - 1}{d - 1} \lambda(L).$$

Theorem 6. Let (S, n) be a regular local ring of dimension r and I_1, \ldots, I_d be Cohen-Macaulay ideals of the same height which satisfy the condition that $I_i + I_j$ is n-primary for $i \neq j$. Let $R = S/I_1 \cap \ldots \cap I_d$ and $d = \dim R \geq 2$. Let $a_1, \ldots, a_d \in S$ such that their images in R form a system of parameters. Let $J = (a_1, \ldots, a_d)$, $L = \bigoplus_{i=1}^r S/I_i^r / R$ and $K = JR$. Put $H_J(L, n) = \lambda(J^n \otimes_R L)$ and let $P_J(L, n)$ be the corresponding Hilbert polynomial. Then:
(1) \(P_f(L, n) = -e_1(K)\left(\frac{n+d-2}{d-1}\right) + e_2(K)\left(\frac{n+d-3}{d-2}\right) - \cdots + (-1)^de_d(K) + \lambda(L) \).

(2) If \(J \subseteq \text{ann} L \), then

\[P(K, n) = e_0(K)\left(\frac{n+d-1}{d}\right) + \lambda(L)\left(\frac{n+d-2}{d-1}\right) + \lambda(L)\left(\frac{n+d-3}{d-2}\right) + \cdots + n\lambda(L). \]

Proof. First we show that \(\lambda(L) < \infty \). Consider the exact sequence

\[0 \to \frac{S}{I_1 \cap \cdots \cap I_g} \to N = \frac{S}{I_1} \oplus \cdots \oplus \frac{S}{I_g} \to L \to 0. \]

Let \(P \) be a non-maximal prime ideal of \(S \) not containing any \(I_1, \ldots, I_g \). Then \(L_P = 0 \). If there is an \(i \) such that \(I_i \subseteq P \), then for \(j \neq i \), \(I_j \not\subseteq P \). Hence

\[(S/I_1 \cap \cdots \cap I_g)_P = (S/I_1 \oplus \cdots \oplus S/I_g)_P = (S/I_1)_P. \]

Thus \(L_P = 0 \). Hence \(\text{Supp} L = \{n\} \). Thus \(\lambda(L) < \infty \).

By the depth lemma, depth \(R = 1 \). Thus \(R \) is not Cohen-Macaulay. Tensoring (4) with \(S/J^n \) we get the exact sequence

\[\rightarrow \text{Tor}_1^S(R, S/J^n) \to \bigoplus_{i=1}^g \text{Tor}_1^S(S/I_i, S/J^n) \to \text{Tor}_1^S(L, S/J^n) \]

\[\to R/K^n \to \bigoplus_{i=1}^g S/(I_i, J^n) \to L/J^n L \to 0. \]

By Lemma 3, \(\text{Tor}_1^S(S/I_i, S/J^n) = 0 \) for all \(i, n \). For large \(n \), \(J^n L = 0 \) as \(\lambda(L) < \infty \).

For large \(n \),

\[\lambda(R/K^n) = e_0(K)\left(\frac{n+d-1}{d}\right) - e_1(K)\left(\frac{n+d-2}{d-1}\right) + \cdots + (-1)^de_d(K). \]

By (4) and additivity of \(e_0(J, \cdot) \) we get \(e_0(K) = \sum_{i=1}^g e_0(J, S/I_i) \). Hence

\[\lambda(\text{Tor}_1^S(L, S/J^n)) - \lambda(L) = \sum_{i=1}^d (-1)^i e_i(K)\left(\frac{n+d-1-i}{d-i}\right). \]

From the exact sequence

\[0 \to J^n \to S \to S/J^n \to 0 \]

we get

\[\rightarrow \text{Tor}_1^S(J^n, L) \to \text{Tor}_1^S(S, L) \to \text{Tor}_1^S(S/J^n, L) \]

\[\to J^n \otimes_S L \to S \otimes L \to L/J^n L \to 0. \]

Hence for large \(n \),

\[\lambda(\text{Tor}_1^S(S/J^n, L)) = \lambda(J^n \otimes_S L) = \left[\sum_{i=1}^d (-1)^i e_i(K)\left(\frac{n+d-1-i}{d-i}\right) \right] + \lambda(L). \]

Since \(\dim(R(J) \otimes_R L) = d \) and \(d \geq 2 \), \(e_1(K) < 0 \). If \(J \subseteq \text{ann} L \), then by Lemma 5 we have

\[\lambda(\text{Tor}_1(L, S/J^n)) = \left(\frac{n+d-1}{d-1}\right) \lambda(L). \]
Substituting this in (5) we get
\[
\left(\begin{array}{c} n+d-1 \\ d-1 \end{array}\right) \lambda(L) - \lambda(L) = -e_1(K)\left(\frac{n+d-2}{d-1}\right) + e_2(K)\left(\frac{n+d-3}{d-2}\right) - \cdots + (-1)^d e_d(K).
\]
Using the equation
\[
\left(\begin{array}{c} n+d-1 \\ d-1 \end{array}\right) = 1 + \sum_{i=1}^{d-1} \left(\frac{n+d-i-1}{d-i}\right)
\]
we obtain \(e_i(K) = (-1)^i \lambda(L)\) for \(i = 1, 2, \ldots, d-1\) and \(e_d(K) = 0\).

\textbf{Acknowledgements}

We wish to thank Shiro Goto, A. Simis and V. Srinivas for several useful conversations.

\textbf{References}

[1] W. Bruns and J. Herzog, \textit{Cohen-Macaulay Rings}, Revised Edition, Cambridge University Press, Cambridge, 1998. MR1251956 (95h:13020)
[2] J. A. Eagon and D. G. Northcott, \textit{Ideals defined by matrices and a certain complex associated with them}, Proc. Royal Soc. Ser. A \textbf{269} (1962), 188-204. MR0142592 (26:161)
[3] L. Ghezzi, J. Hong and W. Vasconcelos, \textit{The signature of the Chern coefficients of local rings}, Math. Res. Lett. \textbf{16} (2009), 279–289. MR2496744
[4] S. Goto and K. Nishida, \textit{Hilbert coefficients and Buchsbaumness of associated graded rings}, J. Pure Appl. Algebra \textbf{181} (2003), 61–74. MR1971805 (2004k:13030)
[5] V. Kodiyalam, \textit{Homological invariants of powers of an ideal}, Proc. Amer. Math. Soc. \textbf{118} (1993), 757-764. MR1156471 (93i:13022)
[6] J-P. Serre, \textit{Local Algebra}, Springer-Verlag, Berlin, 2000. MR1771925 (2001b:13001)
[7] W. Vasconcelos, \textit{The Chern coefficients of local rings}, Michigan Math. J. \textbf{57} (2008), 725-743. MR2492478 (2009m:13005)

\textbf{Department of Mathematics, India Institute of Technology Bombay, Mumbai 400 076, India}

\textit{E-mail address:} mousumi@math.iitb.ac.in

\textbf{Department of Mathematics, India Institute of Technology Bombay, Mumbai 400 076, India}

\textit{E-mail address:} jkv@math.iitb.ac.in