LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes *Vitis amurensis* Rupr

Mayya Razgonova 1,2,*, Alexander Zakharenko 1, Konstantin Pikula 3, Yury Manakov 3, Sezai Ercisli 4, Irina Derbush 1, Evgeniy Kislin 1, Ivan Seryodkin 5, Andrey Sabitov 1, Tatiana Kalenik 1 and Kirill Golokhvast 1,2,3,3

Citation: Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T.; et al. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grape *Vitis amurensis* Rupr. *Molecules* 2021, 26, 3650. https://doi.org/10.3390/molecules26123650

Abstract: This work represents a comparative metabolomic study of extracts of wild grapes obtained from six different places in the Primorsky and Khabarovsk territories (Far East Russia) and extracts of grapes obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). The metabolome analysis was performed by liquid chromatography in combination with ion trap mass spectrometry. The results showed the presence of 118 compounds in ethanolic extracts of *V. amurensis* grapes. In addition, several metabolites were newly annotated in *V. amurensis*. The highest diversity of phenolic compounds was identified in the samples of the *V. amurensis* grape collected in the vicinity of Vyazemsky (Khabarovsk Territory) and the floodplain of the Arsenyevka River (Primorsky Territory), compared to the other wild samples and cultivated grapes obtained in the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources.

Keywords: Amur grape; identification; mass spectrometry; metabolites; metabolomics

1. **Introduction**

The appearance of the first representatives of the *Vitaceae* family (genus *Vitis*) dates from the Upper Cretaceous period [1]. Several types of fossil grapes of genus *Vitis* have been found in different parts of North America [2]. In the Eocene, representatives of the genus *Vitis* were widespread in Eurasia and the Far North [2]. In the Paleogene, one of the best-preserved species of fossil grapes *Vitis sachelinensis* Krysh. was found and described in the sediments of the Sakhalin Island, the Russian Far East. These data show that the evolution of the vine in the territory of Russia proceeded from ancient times. Moreover, now wild grapes of the genus *Vitis* grow in many Russian regions [3,4]. At the same time, there is very little information about the culture of East Asian grapes.

Grape berries contain 65–85% water; 10–33% sugar (glucose and fructose); flofaben; gallic acid; quercetin; oenin; the glycosides monodelphinidin and delphinidin; the acids malic, hydrosilic, *ortho*-hydroxybenzoic, phosphoric, tartaric, citric, succinic, formic, pectin, and tannins; salts of potassium; magnesium; calcium; manganese; cobalt; iron vitamins B1, B2, B6, B12, A, C, P, and PP; folic acid; and enzymes. The dominant class of biologically active compounds of fruits and especially grape ridges are flavonoids, in par-
ticular complexes of oligomeric proanthocyanidins (condensed tannins), which are polymeric forms of flavonoids from the group of catechins, and their monomeric units, namely catechins and leucoanthocyanidins [5].

Many studies have been devoted to the biological activity of flavonoids and complexes of oligomeric proanthocyanidins [6,7]. Complexes of oligomeric proanthocyanidins act as traps of free radicals and block the process of lipid peroxidation of biological membranes [8,9]. Their antioxidant activity is many times higher than that of vitamins E and C. They can inhibit the activity of many enzymes (hydrolase, oxidoreductase, kinase, transferase, among others) [10]. Due to the wide spectrum of action, the active compounds of the grapes V. amurensis have a pronounced positive effect on various organs and systems of the body, such as antihypertensive and vasostrengthening effects, as well as antidiabetic, anti-inflammatory, antiallergy, anticarcinogenic, antistress, radioprotective, and antirheumatic effects. Moreover, flavonoids have an anti-Alzheimer’s activity [11–13].

This work presents a detailed comparative study of the metabolomic composition of wild V. amurensis grape berry extracts taken from six different locations of the Russian Far East and four cultural specimens of V. amurensis obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). High-performance liquid chromatography (HPLC) in combination with tandem mass spectrometry was used to identify target analytes in the extracts. Previously, the authors carried out metabolomic studies of Far Eastern plant species, such as Schizandra chinensis, Rhodiola rosea, Rhododendron adamsii, and Panax ginseng [14,15].

2. Results

The metabolome of ten samples of wild and cultural V. amurensis was analyzed and compared. A combination of both ionization modes (positive and negative) in MS full scan mode was applied for the molecular mass determination of the compounds in ethanolic extracts of V. amurensis. Compound identification was performed by comparing the observed m/z values and the fragmentation patterns with the literature. The list of compounds identified in the ethanolic extract of V. amurensis are represented in Table A1. The 118 compounds shown in Table A1 belong to different phenolic families, namely anthocyanins, flavones, flavonols, flavan-3-ols, flavanones, hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, and tannins.

2.1. Anthocyanidins and Anthocyanins

A total of 18 anthocyanin compounds have been identified in the analyzed samples of V. amurensis (Table 1). The anthocyanins pelargonidin-3-O-glucoside, cyanidin-3-O-glucoside, and petunidin-3-(6-O-coumaroyl) glucoside have already been characterized as a component of Far East V. amurensis [16]. The anthocyanins malvidin-3-O-acetylhexo-side, delphinid-3,5-O-diglucoside, malvidin-3-O-rutinoside, malvidin 3-acetyl-5-glucoside, petunidin 3-coumaroylglucoside-5-O-glucoside, and malvidin 3-coumaroylglucoside-5-O-glucoside were only found in the extracts of cultivated V. amurensis (St. Petersburg).

No.	Identified Compound	ARS	ART	KAL	PAK	RIK	VZK	SPB-1	SPB-2	SPB-3	SPB-4
1.	Cyanidin 3,5-O-diglucoside										
2.	Cyanidin-3-O-glucoside										
	[Cyanidin 3-O-beta-D-glucoside]										
3.	Delphinidin 3-O-glucoside										
4.	Delphinidin-3,5-O-diglucoside										
5.	Malvidin 3-(6-O-acetyl) glucoside										
6.	Malvidin 3-(6-O-coumaroyl) glucoside										
7. Malvidin 3-(6′-p-cafeoylglucoside) + + + + + + + + +
8. Malvidin 3,5-diglucoside + + + + + + + + +
9. Malvidin 3-coumaroylglucoside-5-O-glucoside +
10. Malvidin 3-O-acetyl hexoside +
11. Malvidin 3-O-glucoside + + + + + + +
12. Pelargonidin-3-O-glucoside (callistephin) +
13. Peonidin-3,5-O-diglucoside [peonin; peonidin 3-glucoside-5-glucoside] + + + + + +
14. Peonidin-3-O-glucoside + + +
15. Petunidin 3-(6-O-coumaroyl) glucoside +
16. Petunidin 3-coumaroylglucoside-5-O-glucoside +
 Petunidin 3-O-glucoside-5-O-glucoside [Petunidin 3,5-di-O-beta-D-glucoside] + + + + +
18. Petunidin-3-O-glucoside +

Total number	2	10	5	1	3	8	7	8	6	6

ARS, wild V. amurensis sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild V. amurensis sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild V. amurensis sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild V. amurensis sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild V. amurensis sample obtained from Rikord Island (Sea of Japan); VZK, wild V. amurensis sample obtained from the vicinity of Vyazemsky (Khabarovsky Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated V. amurensis provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).

2.2. Other Flavonoid Compounds

A total of 42 flavonoid compounds were identified in analyzed V. amurensis samples (Table 2). The flavonols dihydrokaempferol, kaempferide, mearnsit, kaempferol-3-O-glucoside, dihydrokaempferol glucoside,isorhamnetin 3-O-rhamnside, hyperoside, taxifolin-3-O-glucoside, kaempferol 3,7-di-O-glucoside, and quercetin-O-dihexoside have been already characterized as components of Far East V. amurensis.

Table 2. Other flavonoid compounds identified in the ethanolic extracts of V. amurensis.

No.	Identified Compound	ARS	ART	KAL	PAK	RIK	VZK	SPB-1	SPB-2	SPB-3	SPB-4
1.	Quercetin-3-O-glucuronide	+	+	+	+	+	+	+	+	+	+
2.	Kaempferol	+	+	+	+	+					
3.	Quercetin	+	+	+	+	+	+				
4.	Isorhamnetin [isorhamnetol; Quercetin 3′-Methyl ether]	+		+		+					
5.	Isorhamnetin 3-O-glucoside	+	+	+	+						
6.	Myricetin-3-O-galactoside	+		+	+						
7.	Quercetin 3-O-glucoside [isouercitin; Hirsutrin]	+		+	+						
8.	Myricetin	+	+								
9.	Dihydrokaempferol						+				
10.	Dihydroquercetin (Taxifolin; Taxifoliol)						+				
Molecules 2021, 26, 3650	4 of 17										
------------------------	--------										
11. Hyperoside (Quercetin 3-O-galactoside; Hyperin)	+										
12. Kaempferol diglycoside	+										
13. Kaempferol glycoside	+										
14. Dihydrokaempferol glucoside	+										
15. Herbacetin	+										
16. Isohamnetin 3-O-rhamnoside	+										
17. Kaempferide	+										
18. Mearnssetin	+										
19. Quercetin-3-O-dihexoside	+										
20. Rutin (Quercetin 3-O-rutinoside)	+										
21. Taxifolin-3-O-glucoside	+										
Total number:	3 9 2 1 4 8 3 6 2 4										
22. Apigenin	+										
23. Syringetin	+										
24. Luteolin diglycoside	+										
25. Nevadensin	+										
26. Vitexin 2"-O-glucoside [Apigenin 8-C-glucoside 2"-O-glucoside]	+										
27. Luteolin	+										
28. Diosmetin [Luteolin 4'-Methyl Ether; Salinigrifloravonol]	+										
29. Pentahydroxy trimethoxy flavone	+										
30. Apigenin diglycoside	+										
31. Vitexin [Apigenin 8-C-Glucoside]	+										
32. Vitexin glucoside	+										
33. Apigenin glucoside	+										
Total number:	2 3 2 2 1 3 2 4 2 3										
34. Cirsimaretin [Scrophulein; 4',5-dihydroxy-6,7-dimethoxyflavone; 7'-methylcapillarisin]	+										
35. Catechin [D-Catechol]	+										
36. Epicatechin	+										
37. Galloカテchin [+(-)Gallocatechin]	+										
38. Catechin gallate	+										
Total number:	0 2 0 1 2 1 2 1 1										
39. Naringenin [Naringetol; Naringenine]	+										
40. Eriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside]	+										
41. Hesperitin [Hesperetin]	+										
42. Hexahydroxyflavanone hexoside	+										
Total number:	0 1 0 2 1 2 0 0 0 1										

ARS, wild *V. amurensis* sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild *V. amurensis* sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild *V. amurensis* sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild *V. amurensis* sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild *V. amurensis* sample obtained from Rikord Island (Sea of Japan); VZK, wild *V. amurensis* sample obtained from the vicinity of Vyazemsky (Khabarovsk Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated *V. amurensis* provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).
2.3. Phenolic Acids and Other Compounds

In addition, 22 phenolic acids and 37 other compounds were identified in analyzed *V. amurensis* samples (Table 3). It should be noted that the coumarins umbelliferone and fraxin; the sterol fucosterol; and the flavanols taxifolin-3-O-glucoside, kaempferol-3,7-di-O-glucoside; hydroxycinnamic acids 3-p-coumaroyl-4-cafeoylquinic acid, and 5-O-(4'-O- p-coumaroyl glucosyl) quinic acid were identified by mass spectrometry only in samples of wild *V. amurensis* grapes collected from the Pakhtusov Islands and Rikord Island, Peter the Great Bay, Sea of Japan.

Table 3. Phenolic acids and other compounds identified in the ethanolic extracts of *V. amurensis*.

No.	Identified Compound	ARS	ART	KAL	PAK	RIK	VZK	SPB-1	SPB-2	SPB-3	SPB-4
	Hydroxybenzoic acids										
1.	Salvianolic acid D	+	+	+	+	+	+	+	+	+	+
2.	Salvianolic acid G	+			+	+					
3.	Ellagic acid [Benzoic acid; Elagostasine]	+						+	+		
4.	4-Hydroxybenzoic acid										
5.	Protocatechuic acid										
6.	Gallic acid										
7.	Syringic acid [Benzoic acid; Cedar acid]										
8.	Salvianolic acid F							+			
9.	Dihydroxybenzoyl-hexoside										
	Total number:	1	1	0	1	0	6	2	3	1	1
	Hydroxycinnamic acids										
10.	Caftaric acid [cis-caftaric acid; 2-cafeoyl-L-tartaric acid]	+			+	+	+	+	+	+	+
11.	Di-O-cafeoylquinic acid	+						+	+		
12.	Sinapic acid [trans-Sinapic acid]							+	+		
13.	Coutaric acid [Trans-p-Coumaroyltartaric acid]										
14.	Fertaric acid [Fertarate]										
15.	p-Coumaric acid-O-hexoside [Trans-p-Coumaric acid 4-glucoside]	+									
16.	Caffeic acid-O-(sinapoyl-O-hexoside)							+	+		
17.	p-Coumaric acid							+			
18.	Caffeoylmalic acid										
19.	1-Caffeoyl-beta-D-glucose [Caffeic acid-glucoside]										+
20.	5-O-(4'-O-p-coumaroyl glucosyl) quinic acid										
21.	3-p-coumaroyl-4-cafeoylquinic acid										
22.	Coumaric acid derivative										
	Total number:	0	1	0	3	2	2	1	1	0	4
	Other compounds										
23.	Ethyl gallate	+	+	+	+	+	+	+	+	+	+
24.	Malic acid	+	+	+	+	+	+	+	+	+	+
25.	Hexose-hexose-N-acetyl	+	+		+	+	+	+	+	+	+
26.	Citric acid	+	+		+	+	+	+	+	+	+
27.	Quinic acid	+	+	+	+	+	+	+	+	+	+
28. Galloyl glucose [Beta-Glucogallin; 1-O-Galloyl-Beta-D-Glucose]
29. L-Tryptophan [Tryptophan; (S)-Tryptophan]
30. Cyclopasifloric acid glucoside
31. Indole-3-carboxylic acid
32. Myristoleic acid [Cis-9-Tetradecanoic acid]
33. Resveratrol [trans-Resveratrol; Stilbentriol]
34. Protocatechuic acid-O-hexoside
35. Palmitic acid [Berbericinine; Burasaine]
36. Polydatin [Piceid; trans-Piceid]
37. Procyandin A-type dimer
38. Shikimic acid
39. Esculetin [Cichorigenin; Aesculetin]
40. 9-oxo-10E,12Z-octadecanoic acid [9-Oxo-ODE]
41. Gallic acid hexoside
42. Esculetin [Aesculin; Esculoside; Polychrome]
43. 1-O-Sinapoyl-beta-D-glucose
44. Stigmasterol [Stigmasterin; Beta-Stigmasterol]
45. Oleanoic acid
46. Tartaric acid
47. Umbelliferone
48. Dihydroferulic acid
49. Linolenic acid (Alpha-Linolenic acid; Linolenate)
50. Nonadecadienoic acid
51. Bilobalide [(-)-Bilobalide]
52. 3,7-Dimethylevercetin
53. Erucic acid (Cis-13-Docosenoic acid)
54. Fraxin (Fraxetin-8-O-glucoside)
55. Fucosterol [Fucostein; Trans-24-Ethylidenecholesterol]
56. Floridzin: phlorhizin: Phloretin 2'-Glucoside; Phloretin-O-hexoside
57. Ursolic acid
58. Anmunricoic acid
59. Dimethylellagic acid hexose

| Molecules 2021, 26, 3650 | 6 of 17 |

| Total number | 7 | 15 | 7 | 17 | 11 | 11 | 5 | 5 |

ARS, wild *V. amurensis* sample obtained from floodplain of the Arsenyevka River (Primorsky Territory); ART, wild *V. amurensis* sample obtained from the vicinity of Artem (Primorsky Territory); KAL, wild *V. amurensis* sample obtained from the vicinity of Kalinovka (Primorsky Territory); PAK, wild *V. amurensis* sample obtained from the Pakhtusov Islands (Sea of Japan); RIK, wild *V. amurensis* sample obtained from Rikord Island (Sea of Japan); VZK, wild *V. amurensis* sample obtained from the vicinity of Vyazemsky (Khabarovsk Territory); SPB-1, SPB-2, SPB-3, and SPB-4, samples of cultivated *V. amurensis* provided by N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg).
3. Discussion

In general, the diversity of phytochemicals identified in wild and cultural grape V. amurensis resulted in the following descending order (number of metabolites in parenthesis): VZK (52) > ART (46) > SPB-2 (39) > SPB-1 (28) > SPB-4 (27) > PAK (25) > RIK (22) > KAL (20) > SPB-3 (19) > ARS (18). The most diverse metabolome was identified in the grapes collected in the vicinity of Vyazemsky, Khabarovsk Territory, which was rich in flavanols and phenolic acids.

The anthocyanins identified in V. amurensis in this study were previously identified and annotated in the vines [17] Solanum nigrum [18], Gaultheria Antarctica [19], and Vitis vinifera [20] and wheat [21]. Our identification of flavonoid compounds agrees with bibliographic data for Echinops [22], Rhodiola rosea [23], Ocimum [24], Alpinia officinarum [25], Brazilian propolis [26], Vitis vinifera [20], Rubus occidentalis [27], C. edulis [28], and Vaccinium macrocarpon [29].

Although wild grapes tend to be more diverse than cultivated varieties [30], this number of anthocyanins in one form is quite rare and more likely to occur in other berries, such as blueberries [31]. We hypothesize that many different anthocyanins are associated with rather low temperatures in summer and monsoon climates. To respond to adverse conditions, various anthocyanins are produced [32]. In addition, V. amurensis have an increased acidity of the fruit, which is also associated with unfavorable growing conditions [33]. As it is known, anthocyanins and many other phenolic compounds participating in the protective processes of plants are more stable in an acidic environment [34].

4. Materials and Methods

4.1. V. amurensis Samples

Ten samples of wild and cultivated grape V. amurensis were selected for the performance of metabolomics study. Six samples of wild V. amurensis were collected from different places in the Primorsky and Khabarovsk territories, Far Eastern Russia (Table 4, Figure 1). Four samples of cultivated V. amurensis, namely SPB-1, SPB-2, SPB-3, and SPB-4, were obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources, St. Petersburg. The grapes were harvested at the end of August and September 2020. Each sample included 100 g of grape berries.

Code Name of the Sample	Location	Geographical Values	Soil Type
ARS	Floodplain of the Arsenyevka River, Primorsky Territory	N. 44°52'18", E 133°35'12"	brown grey bleached soils
ART	The vicinity of Artem, Primorsky Territory	N 43°21'34", E 132°11'19"	yellow-brown soil
KAL	The vicinity of Kalinovka, Primorsky Territory	N 43°07'27", E 133°12'30"	layered floodplains
PAK	The Pakhtusov Islands, Peter the Great Bay, Sea of Japan	N 42°53'57", E 131°38'45"	yellow-brown soil
RIK	Rikord Island, Peter the Great Bay, Sea of Japan	N 42°52'54", E 131°40'06"	yellow-brown earth soils
VZK	The vicinity of Vyazemsky, Khabarovsk Territory	N 47°32'15", E 134°45'20"	podzolic brown forest heavy loamy soils
Figure 1. Region of wild V. amurensis grape collection.

4.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was purchased from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was obtained with Siemens Ultra-Clear TWF EDI UV UF TM Water Purification System (Siemens, Munich, Germany). All the other chemicals were of analytical grade.

4.3. Fractional Maceration

Fractional maceration with ethyl alcohol was applied to obtain highly concentrated extracts of V. amurensis. Each sample of V. amurensis was divided into three parts and consistently infused. The infusion time of each part of the extractant was seven days.

4.4. Liquid Chromatography

The separation of multicomponent mixtures was performed by a Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) equipped with a UV detector and a Shodex ODP-40 4E reverse-phase column (4.6 × 250 mm, particle size 4 μm). The gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0.01–2 min, 100% B; 2–50 min, 100–0% B; control washing 50–60 min, 0% B. The entire HPLC analysis was done with an SPD-20A detector at wavelengths of 230 and 330 nm; the temperature corresponded to 40 °C. The injection volume was 10 μL.
4.5. Mass Spectrometry

MS analysis was performed on an ion trap amaZon SL (Bruker Daltonics, Bremen, Germany). Four-stage ion separation (MS/MS mode) was implemented. All the chemical profiles of the samples were obtained by the HPLC–ESI–MS/MS method. The working parameters were as follows: ionization source temperature 50 °C, gas flow 4 L/min, nebulizer gas (atomizer) 7.3 psi, capillary voltage 4500 V, endplate bend voltage 1500 V, fragmentation voltage 280 V, and collision energy 60 eV. The ion trap was used in the scan range of 100–1700 m/z for MS and MS/MS. The capture rate was one spectrum/s for MS and two spectrum/s for MS/MS. The mass spectra were recorded in negative and positive ion mode. Data collection was controlled by Hystar DataAnalysys 4.1 software (Bruker Daltonics, Bremen, Germany). All the measurements were performed in triplicate.

Author Contributions: Conceptualization, M.R. and A.Z.; methodology, M.R. and I.D. resources, S.E., E.K., I.S., and A.S.; investigation, M.R.; data curation, K.P.; writing—original draft preparation, M.R.; writing—review and editing, A.Z. and K.P.; supervision, K.G. and T.K.; project administration, Y.M.; funding acquisition, K.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The list of compounds identified in ethanolic extracts of V. amurensis.

No.	Identified Compound	Molecular Formula	Calculated Mass	Precursor Ion, m/z [M-H]	Fragment Ions, m/z	References
1.	Cyanidin 3,5-O-diglucoside	C27H21O16	611.5335	611	287; 449; 269; 231; 199; 161; 231; 213;	[35,36]
2.	Cyanidin-3-O-glucoside	C27H21O11	449.3848	449	287; 206; 143	[19,20,35,37,38]
3.	Delphinidin 3-O-glucoside	C21H21O12+	465.3905	465	165; 239; 213; 173;	[19–21,39]
4.	Delphinidin-3,5-O-diglucoside	C27H21O17	626.5169	627	465; 303; 257; 153;	[18,40]
5.	Malvidin 3,5-O-diglucoside	C28H23O13	655.5795	655	493; 331; 315; 179; 313	[17,20,21]
6.	Malvidin 3-(6-O-acetyl) glucoside	C28H23O13	535.478	537	331; 299; 261; 243; 211; 154; 111	[20,39]
7.	Malvidin 3-(6-O-coumaroyl) glucosi	C28H23O14	639.5801	639	242; 179; 150; 287; 213	[20,39,40]
8.	Malvidin 3-coumaroylglucoside-5-O-	C28H23O11	801.7192	801	639; 493; 331; 315; 287; 270; 242; 300	[39]
9.	Malvidin 3-O-acetyl hexoside	C27H23O14	535.479	537	331; 305; 261; 207; 185; 255; 229; 211	[17]
10.	Malvidin 3-O-glucoside	C28H21O12	493.4374	493	331; 315; 179	[20,39,40]
	Name	Molecular Formula	Molar Mass	Molar Masses	References	
---	--	-------------------	------------	-------------	-----------------	
11.	Pelargonidin-3-O-glucoside (callistephen)	C_{21}H_{21}O_{10}	433.3854	414; 271; 172; 226; 116	[35,39,41]	
12.	Peonidin-3,5-O-diglucoside [Peonin; Peonidin 3-glucoside-5-glucoside]	C_{28}H_{33}O_{16}	625.5520	301; 463; 286; 258; 214; 121	[21,39,40]	
13.	Peonidin-3-O-glucoside	C_{27}H_{32}O_{11}	463.4114	301; 286; 268; 258; 230; 202; 174; 121	[20,39,41]	
14.	Petunidin 3-(6-O-coumaronyl) glucoside	C_{30}H_{38}O_{14}	625.553	317; 302; 274; 218	[20,39,40]	
15.	Petunidin 3-coumaroylglucoside-5-O-glucoside	C_{32}H_{41}O_{21}	787.6926	625; 479; 317; 301; 246; 302; 274; 228	[39,40]	
16.	Petunidin 3-galactoside	C_{27}H_{32}O_{12}	479.4108	317; 302; 273	[19–21,39]	
17.	Petunidin 3,5-diglucoside	C_{29}H_{34}O_{17}	641.5514	317; 479; 420; 257; 302; 274; 228	[39,40]	

Flavonols

	Name	Molecular Formula	Molar Mass	Molar Masses	References					
18.	Dihydrokaempferol	C_{13}H_{16}O_{5}	288.2522	271; 199; 127; 243; 189; 118	[22,42]					
19.	Dihydrokaempferol glucoside	C_{13}H_{20}O_{6}	450.3928	287; 227; 269; 225; 149	[27]					
20.	Dihydroquercetin (taxifolin; taxifoliol)	C_{13}H_{18}O_{5}	304.2516	259; 149; 199; 214; 19; 171	[20,43,44]					
21.	Herbacetin [3,5,7,8-tetrahydroxy-2-(4-hydroxy-xyphenyl)-4H-chromen-4-one]	C_{13}H_{18}O_{7}	302.2357	179; 273; 121; 151	[24,45]					
22.	Hyperoside (quercetin 3-O-galactoside; hyperin)	C_{13}H_{18}O_{2}	464.3763	301; 179; 257; 255; 147	[43,46–48]					
	Isorhamnetin [isorhamnetol; quercetin 3'-methyl ether; 3-methylquercetin]	C_{13}H_{20}O_{7}	316.2623	299; 270; 230; 207; 177; 165; 147; 123; 147; 123; 119	[49,50]					
23.	Isorhamnetin 3-O-galactoside	C_{13}H_{20}O_{7}	478.4029	317; 301; 257; 274; 228; 150	[20,47,51]					
24.	Isorhamnetin 3-O-rhamonoside	C_{13}H_{20}O_{7}	462.4035	315; 152; 219	[28,49]					
25.	Kaempferide	C_{13}H_{20}O_{7}	300.2629	283; 265; 239; 211; 185; 133; 151	[20,24,26]					
26.	Kaempferol	C_{13}H_{18}O_{6}	286.2363	269; 227; 153	[20,24,50]					
27.	Kaempferol diglycoside	C_{27}H_{30}O_{6}	610.5175	449; 287; 229; 165; 213; 111	[52,53]					
28.	Kaempferol glycoside	C_{27}H_{30}O_{6}	448.3769	287; 269; 217; 318; 301; 273; 245; 193; 165; 139; 289; 271; 219; 153; 136; 273; 191; 255; 229; 205; 187; 163; 125; 227	[20,47]					
29.	Mearmetin	C_{13}H_{20}O_{8}	332.2617	333	[49]					
30.	Myricetin	C_{13}H_{18}O_{8}	318.2351	317	[20,28,54]					
31.	Myricetin-3-O-galactoside	C_{13}H_{20}O_{7}	480.3757	299; 153; 271; 243; 171	[47,48,55]					
32.	Quercetin	C_{13}H_{18}O_{7}	302.2357	285; 163; 267; 159; 239	[20,24,37,43]					
33.	Quercetin 3-O-glucoside [Isoqueretin; Hirsutrin]	C_{13}H_{20}O_{7}	464.3763	303; 285; 257; 229; 201; 150; 155	[20,27,47,56]					
34.	Quercetin 3-O-glucuronide	C_{13}H_{18}O_{7}	478.3598	301; 179; 273; 151	[39,47,57]					
35.	Quercetin-O-dihexoside	C_{13}H_{18}O_{7}	626.5179	303; 257; 150; 229	[51,58]					
36.	Rutin (quercetin 3-O-rutinoside)	C_{27}H_{30}O_{8}	610.5175	303; 229; 257	[27,35,37,56]					
No.	Molecule	Formula	MW	M/z	References					
-----	---	-------------	----------	-----------	----------------------------					
38	Taxifolin-3-O-glucoside	C_{21}H_{22}O_{12}	466.3922	467	449; 303; 188; 287; 132; 260	[20]				
	Flavones									
39	Apigenin [5,7-dixydoxy-2-(40hydroxyphenyl)-4H-chromen-4-one]	C_{15}H_{10}O_{5}	270.2369	271	253; 181; 137	[56,59,60]				
40	Luteolin	C_{15}H_{10}O_{5}	286.2633	287	271; 225; 175; 158	[43,56,59,60]				
41	Diosmetin [luteolin 4'-methyl ether; salinigricoflavonol]	C_{15}H_{10}O_{5}	300.2629	301	286; 258; 229; 184; 153; 124	[61–63]				
	Cirsimaritin [scrohulein; 4',5-dihydroxy-6,7-dimethoxyflavone; 7-methylcapillarin]	C_{15}H_{10}O_{5}	314.2895	313	298; 247; 151; 270	[24]				
42	Nevadensin	C_{15}H_{10}O_{5}	344.3154	343	328; 259; 313; 269	[24,63]				
					330; 315; 246; 151; 163	[24,63]				
43	Syringetin	C_{15}H_{10}O_{5}	346.2883	345	287; 271; 203; 183; 163	[28]				
					378; 347; 317; 284; 246; 206; 349; 321; 284; 193; 322; 304; 282; 196; 154	[28]				
44	Pentahydroxy trimethoxy flavone	C_{15}H_{10}O_{10}	392.3136	393	414; 287; 186; 241; 158	[20,56,64,65]				
45	Apigenin diglycoside	C_{15}H_{10}O_{10}	432.3775	433	249; 221; 192	[57,66,67]				
46	Vitexin [apigenin 8-C-glucoside]	C_{15}H_{10}O_{10}	432.3775	431	287; 213; 137; 185	[20,55,56,66,68]				
	Luteolin diglycoside	C_{15}H_{10}O_{11}	448.3769	449	249; 221; 192	[57,66,67]				
47	Isovitexin 6''-O-deoxyhexoside [apigenin 6-C-glucoside 6''-O-deoxyhexoside]	C_{15}H_{10}O_{14}	578.5187	579	415; 297; 177; 397; 344; 362	[66]				
48	Apigenin glucoside	C_{15}H_{10}O_{15}	594.5181	595	415; 353; 283; 265; 176	[66]				
49	Apigenin glucoside	C_{15}H_{10}O_{15}	620.5554	621	561; 547; 461; 533; 461; 433	[66]				
	Flavan-3-ols									
50	Catechin [D-catechol]	C_{15}H_{10}O_{6}	290.2681	289	245; 205; 203; 188	[43,49,55,57]				
					272; 175; 130; 157; 140	[20,49,55]				
51	Epicatechin	C_{15}H_{10}O_{6}	290.2681	291	245; 205; 203; 188	[43,49,55,57]				
					272; 175; 130; 157; 140	[20,49,55]				
52	Gallatechin [(+)-gallocatechin]	C_{15}H_{10}O_{7}	306.2675	305	179; 125	[20,28,43,44]				
53	Catechin gallate	C_{15}H_{10}O_{10}	442.3723	441	289; 169; 245; 205; 203	[20,56]				
						[20,56]				
54	Naringenin [Naringetol; Naringenine]	C_{15}H_{10}O_{5}	272.5228	273	227; 155; 209; 139	[20,43,49]				
55	Hesperitin [Hesperetin]	C_{15}H_{10}O_{5}	302.2788	301	257; 151; 228; 189	[20,43,49]				
56	Eriodictyol-7-O-glucoside [Pyrancthioside; miscanthoside]	C_{15}H_{20}O_{11}	450.3928	449	269; 207; 251; 165	[48,65,68]				
57	Hexahydroxyflavanone hexoside	C_{15}H_{20}O_{13}	482.3916	483	437; 359; 263; 231; 298; 255; 225; 155	[28]				
	Hydroxybenzoic acids									
58	4-hydroxybenzoic acid	C_{6}H_{4}O_{3}	138.1207	139	121	[20,69,70]				
59	Protocatechuic acid	C_{6}H_{4}O_{4}	154.1201	155	127	[20,28,55]				
60	Gallic acid	C_{6}H_{4}O_{5}	170.1195	171	126	[20,54,55]				
61	Syringic acid [benzoic acid; cedar acid]	C_{6}H_{4}O_{5}	198.1727	199	154; 140; 111; 140; 123; 125	[20,55,71]				
No.	Name	Molecular Formula	Molar Mass	Molar Mass	Molar Mass	Ref.				
-----	--	------------------	------------	------------	------------	------				
64	Ellagic acid [benzoic acid; elagostasine]	C₁₄H₁₀O₈	302.1926	303	172; 158; 144; 127; 116	[27,41,44]				
65	Salvianolic acid F	C₁₇H₁₄O₆	314.2895	315	144; 207; 181; 153; 179; 161; 133	[69]				
66	Dihydroxybenzoyl-hexoside	C₁₇H₁₂O₄	316.2607	315	153; 253; 151; 184	[66]				
67	Salvianolic acid G	C₁₈H₁₂O₇	340.2837	341	323; 295; 255; 195; 159; 305	[63,72]				
68	Salvianolic acid D	C₂₈H₃₈O₁₈	418.3509	417	373; 329; 287; 209	[69,73]				
	Hydroxycinnamic acids									
69	*p*-Coumaric acid	C₇H₆O₅	164.16	165	146; 119	[20,46,55,73]				
70	Sinapic acid [trans-sinapic acid]	C₁₇H₁₄O₆	224.2100	225	179; 153; 115; 133; 115	[20,37,55,74]				
71	Caffeoylmalic acid	C₁₇H₁₂O₆	296.2296	295	133; 179; 148; 119;	[28]				
72	Coutaric acid [trans-p-Coumaroyltartaric acid]	C₁₇H₁₄O₆	296.2296	295	163; 119	[20]				
73	Caftaric acid [cis-coumaric acid; 2-coumene-1-ol; 2-coumaroyl-L-tartaric acid; caffeoyl tartaric acid]	C₁₇H₁₄O₆	312.23	311	149; 221; 131	[20,38,64,69]				
74	Ferutaric acid [fertaric acid]	C₁₇H₁₄O₆	326.2556	325	193; 149; 134	[20]				
75	p-Coumaric acid-O-hexoside [trans-p-Coumaroyl-4-glucoside]	C₁₇H₁₄O₆	326.2986	325	193; 163; 119	[28,57,75]				
76	1-Caffeoyl-beta-D-glucose [caffeic acid-glucoside]	C₁₇H₁₂O₆	342.2987	341	179; 161; 135	[20,66]				
77	5-O-(4'-O-p-coumaroyl glucosyl) quinic acid	C₂₈H₃₈O₁₄	500.4499	501	339; 277; 203	[56]				
78	3-p-coumaroyl-4-caffeylquinic acid	C₂₈H₃₈O₁₄	500.4515	501	355; 483; 181; 225; 281; 193; 120; 133	[76]				
79	Coumaric acid derivative	C₁₇H₁₄O₆	502.5550	503	293; 409; 391; 367; 323; 293; 233; 205	[57]				
80	Di-O-cafeoylquinic acid	C₂₈H₃₈O₁₄	516.4509	517	355; 339; 202	[58,66,76]				
81	Caffeic acid-O-(sinapoyl-O-hexoside)	C₂₈H₃₈O₁₄	566.5080	567	405; 520; 249; 234	[57,77]				
	Other compounds									
82	Malic acid	C₄H₆O₅	134.0874	133	115	[57,69,78]				
83	Tartaric acid	C₄H₆O₅	150.0900	149	131	[78,79]				
84	Umbelliferone	C₅H₈O₅	162.1421	161	115	[20,28,54]				
85	Shikimic acid	C₇H₆O₅	174.1513	175	112	[28,78]				
86	Indole-3-carboxylic acid	C₁₄H₁₀O₄	175.1840	176	130	[75]				
87	Esculetin [Cichorigenin; Aesculetin]	C₁₇H₁₄O₈	178.1415	179	133; 115	[20]				
88	Citric acid	C₇H₆O₇	192.1235	191	111; 173; 143; 127	[57,59,79]				
89	Quinic acid	C₇H₆O₇	192.1666	191	111; 173	[20,28,57,59]				
90	Dihydroferulic acid	C₁₇H₁₂O₆	196.1999	195	159; 129; 113; 122	[28,80,81]				
91	Ethyl gallate	C₁₇H₂₁O₅	198.1727	197	169; 125	[45]				
92	L-Tryptophan [tryptophan; (S)-tryptophan]	C₁₇H₁₄N₂O₂	204.2252	205	188; 146; 170; 118	[41,66]				
93	Myristoleic acid [cis-9-tetradecanoic acid]	C₁₈H₃₈O₂	226.3550	227	209; 181; 155; 199; 181; 127	[28]				
94	Resveratrol [trans-resveratrol; stilbenetriol]	C₁₄H₁₂O₃	228.2433	229	142; 184; 114	[28,43]				
No.	Name of Compound	Molecular Formula	Mass 1	Mass 2	Mass 3	Mass 4	Mass 5	Mass 6	Mass 7	References
-----	--	-------------------	--------	--------	--------	--------	--------	--------	--------	------------
95	Linolenic acid (alpha-linolenic acid; linolenate)	C18H30O2	278.4296	279	260; 176; 120	[62,74]				
96	9-oxo-10E,12Z-octadecanoic acid [9-oxo-ODE]	C18H30O3	294.4290	295	249; 165; 220; 125	[62,82]				
97	Nonadecadienoic acid	C19H32O2	294.4721	295	278; 250; 211; 172; 204; 181; 176	[28]				
98	Protocatechuic acid-O-hexoside	C18H26O7	316.2607	315	153; 298; 151	57,69,75				
99	Bilobalide [(-)-Bilobalide]	C18H26O8	326.2986	325	183; 261; 119; 183; 314; 297; 255; 228;	46,50,75				
100	3,7-dimethylquercetin	C13H16O7	330.2889	331	203; 146; 267; 227; 203; 186; 164; 134	[75]				
101	Galloyl glucose [beta-glucogallin; 1-O-galloyl-beta-D-glucose]	C17H20O10	332.2601	333	313; 195; 166	[41]				
102	Gallic acid hexoside	C17H18O10	332.2601	331	271; 169; 125	[83]				
103	Erucic acid (cis-13-docosenoic acid)	C22H36O7	338.5677	339	132; 293	[65]				
104	Esculin [aesculin; esculoside; polychrome]	C17H16O7	340.2821	339	177; 293; 131	20,28,56				
105	Palmatine [berbericine; Burasaine]	C20H28O11	352.4037	353	335; 235; 317; 235; 137	[84]				
106	Hexose-hexose-N-acetyl	C15H20O10	367.3490	366	186; 142	[85]				
107	Fraxin (fraxetin-8-O-glucoside)	C17H20O10	370.3081	371	208; 352; 135	[20]				
108	1-O-sinapoyl-beta-D-glucose	C22H36O7	386.5356	387	205; 130	[20]				
109	Polydatin [piceid; trans-piceid]	C17H20O10	390.3839	389	227; 343; 184; 143; 395; 355; 271; 194;	27,43				
110	Fucosterol [fucosteine; trans-24-ethylidenecolesterol]	C25H41O10	412.6908	413	119; 297; 199; 268; 187	[28]				
111	Stigmasterol [stigmasterin; beta-stigmasterol]	C25H38O10	412.6908	413	301; 259; 189; 171	28,86,87				
112	Phlorizin [phloridzin; phlorizoside; floridzin; phloretin 2'-glucoside; phloretin-O-hexoside]	C21H16O10	436.4093	437	397; 217; 377	[20,27,46,49,57]				
113	Oleanoic acid	C23H36O3	456.7003	457	439; 411; 365; 337; 293; 248; 205; 364; 309; 219; 319; 301; 279; 247; 232	24,76				
114	Ursolic acid	C23H36O3	456.7003	457	411; 393; 365; 337; 279; 247; 292; 247; 219; 205	63,76,86				
115	Anmurcoic acid	C25H40O3	486.6922	487	325; 307; 304; 261; 279	[76]				
116	Dimethylellagic acid hexose	C23H36O3	492.3864	493	331; 299; 270; 242; 179; 150; 225	41				
117	Procyanidin A-type dimer	C20H26O7	576.501	577	245; 181; 245; 218; 189; 123	20,55,57				
118	Cyclopassifloic acid glucoside	C20H26O7	698.8810	699	537; 347; 271; 259; 185	[66]				
References

1. Manchester, S.R.; Kapgate, D.K.; Wen, J. Oldest fruits of the grape family (Vitaceae) from the Late Cretaceous Deccan Cherts of India. *Am. J. Bot.* **2013**, *100*, 1849–1859.

2. Zecca, G.; Abbott, J.R.; Sun, W.-B.; Spada, A.; Sala, F.; Grassi, F. The timing and the mode of evolution of wild grapes (Vitis). *Mol. Phylogenet. Evol.* **2012**, *62*, 736–747.

3. Venuti, S.; Copetti, D.; Foria, S.; Falginella, L.; Hoffmann, S.; Bellin, D.; Cindrič, P.; Kozma, P.; Scalabrini, S.; Morgante, M. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. *PLoS ONE* **2013**, *8*, e61228.

4. Gorbunov, I.; Ilnitskaya, E.; Lukyanov, A.; Mikhailovsky, S.; Makarkina, M.; Pankin, M.; Bykhalova, O. Variety of Wild-Growing Grapes of the Utrish Reserve. In *Proceedings of the IOP Conference Series: Earth and Environmental Science*; IOP Publishing: Philadelphia, PA, USA, 2020; p. 042050.

5. Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and tannin-like compounds—nature, occurrence, dietary intake and effects on nutrition and health. *J. Sci. Food Agric.* **2000**, *80*, 1094–1117.

6. González-Paramás, A.M.; Ayuda-Durán, B.; Martínez, S.; González-Manzano, S.; Santos-Buelga, C. The mechanisms behind the biological activity of flavonoids. *Curr. Med. Chem.* **2019**, *26*, 6976–6990.

7. Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahi, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. *Phytother. Res.* **2019**, *33*, 13–40.

8. Shao, Y.; Hu, Z.; Yu, Y.; Mou, R.; Zhu, Z.; Beta, T. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. *Food Chem.* **2018**, *239*, 733–741.

9. Chai, W.-M.; Ou-Yang, C.; Huang, Q.; Lin, M.-Z.; Wang, Y.-X.; Xu, K.-L.; Huang, W.-Y.; Pang, D.-D. Antityrosinase and antioxidant properties of mung bean seed proanthocyanidins: Novel insights into the inhibitory mechanism. *Food Chem.* **2018**, *260*, 27–36.

10. Alzad, K.I.; Mohamed, M.A. Flavonoids: Chemistry, biochemistry and antioxidant activity. *J. Pharm. Res.* **2012**, *5*, 37.

11. Vauzour, D.; Vafeiadou, K.; Rodriguez-Mateos, A.; Rendeiro, C.; Spencer, J.P. The neuroprotective potential of flavonoids: A multiplicity of effects. *Genes Nutr.* **2008**, *3*, 115–126.

12. Spencer, J.P.; Vafeiadou, K.; Williams, R.J.; Vauzour, D. Neuroinflammation: Modulation by flavonoids and mechanisms of action. *Mol. Asp. Med.* **2012**, *33*, 83–97.

13. Das, S.; Laskar, M.A.;arker, S.D.; Choudhury, M.D.; Choudhury, P.R.; Mitra, A.; Jamil, S.; Lathiff, S.U.; Abdullah, S.A.; Basar, N. Prediction of Anti-Alzheimer’s Activity of Flavonoids Targeting Acetylcholinesterase in silico. *Phytochem. Anal.* **2017**, *28*, 324–331.

14. Razgonova, M.; Zakharenko, A.; Ercisi, S.; Grudev, V.; Golokhvast, K. Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sitchense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI/MS/MS Spectrometry. *Molecules* **2020**, *25*, 3774.

15. Razgonova, M.; Zakharenko, A.; Shin, T.-S.; Chung, G.; Golokhvast, K. Supercritical CO2 Extraction and Identification of Ginsenosides in Russian and North Korean Ginseng by HPLC with Tandem Mass Spectrometry. *Molecules* **2020**, *25*, 1407.

16. Tomaz, I.; Šambuk, P.; Andabaka, Ž.; Preiner, D.; Stupić, D.; Maletic, E.; Karoglan Konići, J.; Ašperger, D. The Polyphenolic Profile of Grapes. In *Grapes Polyphenolic Composition, Antioxidant Characteristics and Health Benefits*; Thomas, S., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2017; pp. 1–70.

17. Pantelíć, M.M.; Zagoracić, D.C.D.; Davidović, S.M.; Todić, S.R.; Bešlić, Z.S.; Gašić, U.M.; Tešić, Ž.L.; Natić, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. *Food Chem.* **2016**, *211*, 243–252.

18. Chhon, S.; Jeon, J.; Kim, J.; Park, S.U. Accumulation of anthocyanins through overexpression of aTAP1 in *Solanum nigrum* lin. (black nightshade). *Biomolecules* **2020**, *10*, 277.

19. Ruiz, A.; Hermosin-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. *Food Res. Int.* **2013**, *51*, 706–713.

20. Goufo, P.; Singh, R.K.; Cortez, I. A Reference list of phenolic compounds (including stilbenes) in grapevine (*Vitis vinifera L.*) roots, woods, canes, stems, and leaves. *Antioxidants 2020*, *9*, 398.

21. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K. Transfer of grain colors to elite wheat cultivars and their characterization. *J. Cereal Sci.* **2016**, *71*, 138–144.

22. Jackson Seukep, A.; Zhang, Y.-L.; Xu, Y.-B.; Guo, M.-Q. In vitro antibacterial and antiproliferative potential of *Echinosps lanceolatus* Mattf. (Asteraceae) and identification of potential bioactive compounds. *Pharmaceuticals* **2020**, *13*, 59.

23. Lee, T.-H.; Hsu, C.-C.; Hsiao, G.; Fang, J.-Y.; Liu, W.-M.; Lee, C.-K. Anti-MMP-2 activity and skin-penetrating capability of the chemical constituents from *Rhodiola rosea*. *Planta Med.* **2016**, *82*, 698–704.

24. Pandey, R.; Kumar, B. HPLC-TOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extract of *Ocimum sanctum* and its interspecies variation. *J. Liq. Chromatogr. Relat. Technol.* **2016**, *39*, 225–238.

25. Zhang, W.-X.; Chao, I.-C.; Hu, D.-J.; Shakerian, F.; Ge, L.; Liang, X.; Wang, Y.; Zhao, J.; Li, S.-P. Comparison of antioxidant activity and main active compounds among different parts of Alpinia officinarum Hance using high-performance thin layer chromatography-bioautography. *J. AOAC Int.* **2019**, *102*, 726–733.

26. Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. *Molecules* **2020**, *25*, 4612.
27. Paudel, L.; Wyzgoski, F.J.; Scheerens, J.C.; Chanon, A.M.; Reese, R.N.; Smiljanic, D.; Wesdemiotis, C.; Blakeslee, J.J.; Riedl, K.M.; Rinaldi, P.L. Nonanthocyanin secondary metabolites of black raspberry (Rubus occidentalis L.) fruits: Identification by HPLC-DAD, NMR, HPLC-ESI-MS, and ESI-MS/MS analyses. J. Agric. Food Chem. 2013, 61, 12032–12043.

28. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS—Bioassay Guided Approach. J. Chromatogr. Sci. 2020, bmaa112, doi:10.1093/chromsci/bmaa112

29. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In vivo consumption of cranberry exerts ex vivo antiadhesive activity against FimH-dominated uropathogenic Escherichia coli: A combined in vivo, ex vivo, and in vitro study of an extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818.

30. Narduzzi, L.; Stanstrup, J.; Mattivi, F. Comparing wild American grapes with Vitis vinifera: A metabolomics study of grape composition. J. Agric. Food Chem. 2015, 63, 6823–6834.

31. Li, D.; Li, B.; Ma, Y.; Sun, X.; Lin, Y.; Meng, X. Polyphenols, anthocyanins, and flavonoids contents and the antioxidant capacity of various cultivars of highbush and half-high blueberries. J. Food Compos. Anal. 2017, 62, 84–93.

32. Gaiotti, F.; Pastore, C.; Filippetti, I.; Lovat, L.; Belfiore, N.; Tomasi, D. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.). Sci. Rep. 2018, 8, 1–13.

33. Kemp, B.; Pedneault, K.; Pickering, G.; Usher, K.; Willwerth, J. Red Winemaking in Cool Climates. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 341–356.

34. Chung, C.; Rojanasasithara, T.; Muttilangi, W.; McClements, D.J. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages. Food Chem. 2017, 218, 277–284.

35. da Silva, L.P.; Pereira, E.; Pires, T.C.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43.

36. Pradhan, P.C.; Saha, S. Anthocyanin profiling of Berberis lyceum Royle berry and its bioactivity evaluation for its nutraceutical potential. J. Food Sci. Technol. 2016, 53, 1205–1213.

37. Sharma, M.; Sandhir, R.; Singh, A.; Kumar, P.; Mishra, A.; Jachak, S.; Singh, S.P.; Singh, J.; Roy, J. Comparative analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chappati (unleavened flat bread) quality. Front. Plant Sci. 2016, 7, 1870.

38. Schoeld, K.; Forneck, A.; Sulyok, M.; Schuhmacher, R. Optimization, in-house validation, and application of a liquid chromatography–tandem mass spectrometry (LC–MS/MS)-based method for the quantification of selected phenolic compounds in leaves of grapevine (Vitis vinifera L.). J. Agric. Food Chem. 2011, 59, 10787–10794.

39. Wang, H.; Race, E.J.; Shrikhande, A.J. Characterization of anthocyanins in grape juices by ion trap liquid chromatography–mass spectrometry. J. Agric. Food Chem. 2003, 51, 1839–1844.

40. Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labruscana) using HPLC–DAD–ESI–MS/MS. J. Agric. Food Chem. 2011, 59, 13136–13146.

41. Sun, J.; Liu, X.; Yang, T.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC–HRMSn. Food Chem. 2014, 146, 289–298.

42. Daikonya, A.; Kitanaka, S. Constituents isolated from the roots of Rhodiola sacra SH Fu. Jpn. J. Food Chem. Saf. 2011, 18, 183–190.

43. Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening non-colored polyphenols in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries. Molecules 2007, 12, 679–693.

44. Yasir, M.; Sultan, B.; Anwar, F. LC–ESI–MS/MS based characterization of phenolic components in fruits of two species of Solanaceae. J. Food Sci. Technol. 2018, 55, 2370–2376.

45. Han, F.; Li, Y.; Ma, L.; Liu, T.; Wu, Y.; Xu, R.; Song, A.; Yin, R. A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration. Talanta 2016, 160, 183–193.

46. Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem. 2020, 318, 126512.

47. De Rosso, M.; Tonidandel, L.; Larcher, R.; Nicolini, G.; Dalla Vedova, A.; De Marchi, F.; Gardiman, M.; Giust, M.; Flaminì, R. Identification of new flavonols in hybrid grapes by combined liquid chromatography–mass spectrometry approaches. Food Chem. 2014, 163, 244–251.

48. Vieira, M.N.; Winterhalter, P.; Jerz, G. Flavonoids from the flowers of Impatiens glandulifera Royle isolated by high performance countercurrent chromatography. Phytochem. Anal. 2016, 27, 116–125.

49. Santos, S.A.; Vilela, C.; Freire, C.S.; Neto, C.P.; Silvestre, A.J. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B 2013, 938, 65–74.

50. Xiao, J.; Wang, T.; Li, P.; Liu, R.; Li, Q.; Bi, K. Development of two step liquid–liquid extraction tandem UHPLC–MS/MS method for the simultaneous determination of Ginkgo flavonoids, terpene lactones and nimodipine in rat plasma: Application to the pharmacokinetic study of the combination of Ginkgo biloba dispersible tablets and Nimodipine tablets. J. Chromatogr. B 2016, 1028, 32–41.

51. Barros, L.; Dueñas, M.; Carvalho, A.M.; Ferreira, I.C.; Santos-Buelga, C. Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol. 2012, 50, 1576–1582.
52. Petsalo, A.; Jalonen, J.; Tolonen, A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1112, 224–231.

53. Le Gall, G.; DuPont, M.S.; Mellon, F.A.; Davis, A.L.; Collins, G.J.; Verhoeven, M.E.; Colquhoun, I.J. Characterization and content of flavonoid glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food Chem. 2003, 51, 2438–2446.

54. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In vitro antioxidant and anti-propionibacterium acne activities of cold water, hot water, and methanol extracts, and their respective ethyl acetate fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001.

55. Abeywickrama, G.; Deb Nath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351.

56. Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC-MSn. Phytochemistry 2014, 108, 252–263.

57. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30.

58. Vallverdú-Queralt, A.; Jáuregui, O.; Medina-Remón, A.; Lamuela-Raventós, R.M. Evaluation of a method to characterize the phenolic profile of organic and conventional tomatoes. J. Agric. Food Chem. 2012, 60, 3373–3380.

59. Marzouk, M.M.; Hussein, S.R.; Elkhatib, A.; El-shabrawy, M.; Abdel-Hameed, E.-S.S.; Kawashy, S.A. Comparative study of Mentha species growing wild in Egypt: LC-ESI-MS analysis and chemosystematic significance. J. Appl. Pharm. Sci. 2018, 8, 116–122.

60. Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) by LC/MS/MS analysis of the target compounds. J. Mass Spectrom. 2013, 48, 329–339.

61. Di Loreto, A.; Bosi, S.; Montero, L.; Bregola, V.; Marotti, I.; Sterrazza, R.E.; Dinelli, G.; Herrero, M.; Cifuentes, A. Determination of phenolic compounds in ancient and modern durum wheat genotypes. Electrophoresis 2018, 39, 2001–2010.

62. Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC-MS/MS determination and pharamcokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japaonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75.

63. Xu, L.-L.; Xu, J.-J.; Zhong, K.-R.; Shang, Z.-P.; Wang, F.; Wang, R.-F.; Zhang, L.; Zhang, J.-Y.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography-high resolution mass spectrometry. Molecules 2017, 22, 1756.

64. Carrazone, C.; Mascherpa, D.; Gazzani, G.; Papetti, A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013, 138, 1062–1071.

65. Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Neophytotoxicity Screening of Main Compound with Organ-on-a-Chip. Front. Pharmacol. 2018, 9, 1067.

66. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Chaves, D.S.A.; Romaníuk, A.; Rybczynska, M.; Gryszczyńska, A.; Sawickowska, A.; Kachlicki, P.; Mikolajczak, P.L. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Rev. Bras. Farmacogn. 2018, 28, 179–191.

67. Taamall, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, J.; Fernández-Gutiérrez, A.; Zarrour, M.; Segura-Carretero, A. LC-MS-based metabolite profiling of melatonin extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330.

68. Bodalska, A.; Kowalczyk, A.; Włodarczyk, M.; Fecka, I. Analysis of Polyphenolic Composition of a Herbal Medicinal Product—Peppermint Tincture. Molecules 2020, 25, 69.

69. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Ast, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007.

70. Sharma, S.; Pandey, A.K.; Singh, K.; Upadhyay, S.K. Molecular characterization and global expression analysis of lectin receptor kinases in bread wheat (Triticum aestivum L.) extract. Molecules 2016, 11, e015925.

71. Blanco-Zubiaguirre, L.; Olivares, M.; Castro, K.; Carrero, J.A.; García-Benito, C.; García-Serrano, J.A.; Pérez-Pérez, J.; Pérez-Arteg/kg, J. Wine markers in archeological potteries: Detection by GC-MS at ultratrace levels. Anal. Bioanal. Chem. 2019, 411, 6711–6722.

72. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.; Woo, K.-S.; Fung, K.-P. Chemistry and biological activities of caffeic acid derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246.

73. Chen, X.; Zhang, S.; Xuan, Z.; Ge, D.; Chen, X.; Zhang, J.; Wang, Q.; Wu, Y.; Liu, B. The phenolic fraction of Mentha Haplocalyx and its constituent linarin ameliorate inflammatory response through inactivation of NF-kB and MAPKs in lipopolysaccharide-induced RAW264.7 cells. Molecules 2017, 22, 811.

74. Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant 2013, 6, 1769–1780.

75. Quifer-Rada, P.; Vallverdú-Queralt, A.; Martinez-Huelamo, M.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R. A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC-ESI-LTQ-Orbitrap-MS). Food Chem. 2015, 169, 336–343.
76. Sun, L.; Tao, S.; Zhang, S. Characterization and quantification of polyphenols and triterpenoids in thinned young fruits of ten pear varieties by UPLC-Q TRAP-MS/MS. *Molecules* **2019**, *24*, 159.

77. Spinola, V.A.R. Nutraceuticals and Functional Foods for Diabetes and Obesity Control. Ph.D. Thesis, University of Madeira, Funchal, Portugal, July 2018.

78. Ivanova-Petropulos, V.; Naceva, Z.; Sándor, V.; Makszin, L.; Deutsch-Nagy, L.; Berkics, B.; Stafilov, T.; Kilár, F. Fast determination of lactic, succinic, malic, tartaric, shikimic, and citric acids in red Vranec wines by CZE-ESI-QTOF-MS. *Electrophoresis* **2018**, *39*, 1597–1605.

79. Wang, S.; Fan, C.Q.; Wang, P. Determination of ultra-trace organic acids in Masson pine (*Pinus massoniana* L.) by accelerated solvent extraction and liquid chromatography–tandem mass spectrometry. *J. Chromatogr. B* **2015**, *981*, 1–8.

80. Farrell, T.; Poquet, L.; Dionisi, F.; Barron, D.; Williamson, G. Characterization of hydroxycinnamic acid glucuronide and sulfate conjugates by HPLC–DAD–MS2: Enhancing chromatographic quantification and application in Caco-2 cell metabolism. *J. Pharm. Biomed. Anal.* **2011**, *55*, 1245–1254.

81. Lang, R.; Dieringer, N.; Beusch, A.; Lee, Y.-M.; Dunkel, A.; Suess, B.; Skurk, T.; Wahl, A.; Hauner, H.; Hofmann, T. Bioappearance and pharmacokinetics of bioactives upon coffee consumption. *Anal. Bioanal. Chem.* **2013**, *405*, 8487–8503.

82. Yang, S.; Wu, X.; Rui, W.; Guo, J.; Feng, Y. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. *Acta Chromatogr.* **2015**, *27*, 711–728.

83. Piccolella, S.; Crescente, G.; Volpe, M.G.; Paolucci, M.; Pacifico, S. UHPLC-HR-MS/MS-Guided recovery of bioactive flavonol compounds from greco di tufo vine leaves. *Molecules* **2019**, *24*, 3630.

84. Cassiano, D.S.A.; Reis, I.M.A.; de Oliveira Estrela, I.; de Freitas, H.F.; da Rocha Pita, S.S.; David, J.M.; Branco, A. Acetylcholinesterase inhibitory activities and bioguided fractionation of the Ocotea percioriae extracts: HPLC-DAD-MS/MS characterization and molecular modeling of their alkaloids in the active fraction. *Comput. Biol. Chem.* **2019**, *83*, 107129.

85. Levandi, T.; Püssa, T.; Vaher, M.; Ingver, A.; Koppel, R.; Kaljurand, M. Principal component analysis of HPLC-MS/MS patterns of wheat (*Triticum aestivum*) varieties. *Proc. Est. Acad. Sci.* **2014**, *63*, 86–92.

86. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of *Hedyotis diffusa* Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. *J. Pharm. Biomed. Anal.* **2018**, *159*, 490–512.

87. Bakır, D.; Akdeniz, M.; Ertas, A.; Yılmaz, M.A.; Yener, I.; Firat, M.; Kolak, U. A GC-MS method validation for quantitative investigation of some chemical markers in Salvia hypargia Fisch. & CA Mey. of Turkey: Enzyme inhibitory potential of ferruginol. *J. Food Biochem.* **2020**, *44*, e13350.