A performance study of Quantum ESPRESSO's PWscf code on multi-core and GPU systems

Josh Romero, Everett Phillips, Gregory Ruetsch, Massimiliano Fatica - NVIDIA
Filippo Spiga - University of Cambridge (UK)
Paolo Giannozzi - University of Udine (IT)

PMBS17 Workshop, Supercomputing 17, Denver, CO, November 13 2017
Outline

- Quantum ESPRESSO/PWscf
- GPU implementation in CUDA Fortran
- Benchmarking and Results
- Conclusions
Quantum ESPRESSO/PWscf
Quantum ESPRESSO (QE)

- Integrated suite of open-source software for simulations of materials based on density-functional theory
- Complete distribution contains approximately 520,000 lines of Fortran 95 source code
- Popular package widely used within academia and industry
Plane-Wave Self-Consistent Field (PWscf)

- One of the main programs distributed with QE
- Computes the Kohn-Sham (KS) orbitals and energies of material systems
- Uses an iterative method that seeks self-consistent input and output charge densities
- See Giannozzi et al. J. Phys 2009 Appendix A.2 for details
Plane-Wave Self-Consistent Field (PWscf)

● Each iteration requires:
 ○ Diagonalization of the Hamiltonian operator H_{KS}
 ■ done iteratively using a block Davidson method
 ■ performed for each KS orbital (k-point) across bands
 ○ Computation of output charge density using diagonalization results

● Repeated until self-consistency is obtained within a desired tolerance
Parallelization Options

- PWscf has a number of parallelization options available. Options used in this study:
 - *k*-point parallelization using `-npool`:
 - Distributes k-points into N_k pools of processes.
 - Enables parallel execution of the iterative diagonalizations.
 - Linear algebra parallelization using `-ndiag`:
 - Distributes the dense diagonalization, needed by the block Davidson algorithm, among N_D processes.
 - Enables use of distributed eigensolver like ScaLAPACK
GPU Implementation in CUDA Fortran
CUDA Fortran

- Since baseline CPU code is written in Fortran, natural choice for GPU port is CUDA Fortran.
- *CUDA Fortran for Scientists and Engineers* by Ruetsch and Fatica is a good starting reference.
- Requires PGI compilers, free community editions now available at www.pgroup.com
CUDA Fortran

- Benefits:
 - More control than OpenACC:
 - Explicit GPU kernels written natively in Fortran are supported
 - Full control of host/device data movement
 - Directive-based programming available via CUF kernels
 - Easier to maintain than mixed CUDA C and Fortran approaches
Profiling with NVPROF + NVVP + NVTX

● When porting programs, profiling (and profiling often) is very important:
 ○ Identify and focus efforts on performance-critical sections of the program
 ○ Understand interactions between CPU and GPU:
 ■ Am I getting expected H2D/D2H BW over PCIe or NVLink?
 ■ Can I hide this data movement behind GPU computation?
 ○ Understand library behavior:
 ■ How is my linked MPI library handling communication between GPUs?
 ■ Is the CPU being used in any library computations?
Profiling with NVPROF + NVVP + NVTX

- **NVPROF:**
 - Powerful profiler provided in every CUDA toolkit installation
 - Can be used to gather detailed kernel properties and timing information

- **NVIDIA Visual Profiler (NVVP):**
 - Graphical interface to visualize and analyze NVPROF generated profiles
 - Does not show CPU activity out of the box

- **NVIDIA Tools EXtension (NVTX) markers:**
 - Enables annotation with labeled ranges within program
 - Useful for categorizing parts of profile to put activity into context
 - Can be used to visualize normally hidden CPU activity (e.g. MPI communication)
Sample NVVP segment from AUSURF112 on NVIDIA DGX-1 System
GPU Porting of Key Computational Routines

- The iterative diagonalization and computation of charge density are dominated by three basic operation types:
 - Level-3 BLAS routines, predominantly Z/DGEMM
 - 3D Fast Fourier Transforms (FFT), typically distributed
 - Dense-matrix diagonalization via LAPACK or ScaLAPACK

- BLAS routines easily ported using available routines in CUBLAS library

- 3D FFT and dense-matrix diagonalization more involved

- Remaining routines ported to GPU as necessary for performance or to remove redundant host/device data movement
3D Fast Fourier Transforms

- Required in iterative diagonalization and charge computation
- Component 1D FFT computations computed using CUFFT
- Generally distributed among the processes in each k-point pool:
 - requires transposition and data communication across processes using MPI_Alltoall or similar communication pattern
 - Many 3D FFT computations for each k-point, one for each band index
3D Fast Fourier Transforms

- Existing CPU implementation not amenable to a performant GPU port:
 - Individual FFTs for each band too small to saturate GPU resources
 - No attempt to overlap FFT computation with MPI communication:
 - problematic on GPU systems in cases where communication buffers must be staged through the host

- To address these issues, implemented a batched FFT strategy where multiple band FFTs computed together
 - More available concurrent work for better GPU utilization
 - Provides straightforward mechanism for pipelining data movement and computation
 - Requires more memory, but this was not an issue in tested cases
3D Fast Fourier Transforms

- As a further optimization, implemented all-to-all communication using non-blocking MPI_Isend/MPI_Irecv
 - Important on systems which are capable of multiple concurrent peer-to-peer (P2P) transfers between GPUs

- A number of MPI distributions we tried showed suboptimal utilization of available P2P bandwidth on systems with multiple P2P connections
 - For all-to-all, implemented explicit handling of P2P communication using CUDA interprocess communication (IPC), with non-peer transfers handled by linked MPI library
Diagonalization

- The dense-matrix diagonalization, used for the block Davidson method, is another computationally expensive routine.
- Consists of computing eigenvalues and eigenvectors of a modest size system ($N \times N$ with $N \sim O(10^3)$) using a dense eigensolver.
- On CPU, this operation is typically distributed over N_D processes and computed using ScaLAPACK, or similar library.
Diagonalization

- Current GPU port targets serial path \((N_D = 1) \) using a custom developed GPU eigensolver
 - one GPU per k-point pool performs the dense-matrix diagonalization

- Custom solver used in lieu of several existing options for GPU, like MAGMA:
 - Written to reduce dependencies on CPU resources for computation, only reduced tridiagonal solve completed on CPU using LAPACK
 - Beneficial on “fat” nodes, with high GPU to CPU socket ratios, where bottlenecks due to limited CPU resources can arise

- See GTC talk for more info on the solver development
Benchmarking and Results
Testing Details

- Performance results for two benchmark cases were obtained on several GPU systems and a reference CPU system.

- On reference CPU system:
 - Distributed ELPA solver used for diagonalization ($N_D > 1$)
 - MKL for other BLAS/LAPACK routines
 - OpenMP enabled, tried many configurations with best cases reported

- On GPU systems:
 - Custom serial eigensolver used for diagonalization ($N_D = 1$)
 - CUBLAS for BLAS routines on GPU, MKL/ESSL for any BLAS/LAPACK CPU routines
 - GDR features tested on systems with P2P connectivity (CUDA-aware MPI + custom IPC)
 - OpenMP enabled on Intel-based systems
 - OpenMP disabled on IBM system in favor of using multithreaded ESSL
Benchmark Cases

- **AUSURF112:**
 - Gold surface with 112 atoms and 2 k-points
 - Smaller case suitable for workstations and small distributed systems

- **Ta2O5:**
 - Tantalum pentoxide with 96 atoms and 26 k-points.
 - Larger case suitable for scaling from small to large distributed systems

Parameter	AUSURF112	Ta2O5
Number of atomic species	1	2
Number of atoms	112	96
Number of electrons	1,232	544
Number of Kohn-Sham states	739	326
Number of k-points	2	26
Number of plane waves	100,747	477,247
Kinetic energy cutoff	25 Ry	130 Ry
Charge density cutoff	200 Ry	520 Ry
Dimension of dense FFT grid	$\{180, 90, 288\}$	$\{198, 168, 220\}$
AUSURF112: PWscf Time

- Factor of 2-3 speedup using GPU relative to CPU system
- Fixing number of resources per pool gives nearly linear scaling with increased resources
- Increasing number of resources per pool less efficient

System	N_K	2	4	8	16	32
Broadwell (CPU)	1	1142.24	642.03	369.66	272.00	266.20
	2	1190.13	586.84	335.00	196.54	**144.07**
Piz Daint	1	286.24	219.91	171.80		
	2		149.21	**115.87**		
DGX-1	1	347.82	271.37	210.67		
	2		184.10	142.15		
DGX-1, GDR	1	270.21	190.12	174.75		
	2		142.43	**100.54**		
Summit Dev	1	321.69	234.32	187.69		
	2		176.50	128.85		
Summit Dev, GDR	1	308.52	227.74	188.39		
	2		169.60	**124.22**		
Wilkes-2	1	395.26	326.71	227.61		
	2		226.89	167.80		
Wilkes-2, GDR	1	300.03	226.13	203.59		
	2		164.63	**116.50**		
Workstation	1	334.23				
Workstation, GDR	1	**279.54**				
AUSURF112: PWscf Time

- Factor of 2-3 speedup using GPU relative to CPU system
- Fixing number of resources per pool gives nearly linear scaling with increased resources
- Increasing number of resources per pool less efficient

System	\(N_K \)	2	4	8	16	32
Broadwell (CPU)	1	1142.24	642.03	369.66	272.00	266.20
	2	1190.13	586.84	335.00	196.54	144.07
Piz Daint	1	286.24	219.91	171.80	—	—
	2	—	149.21	115.87	—	—
DGX-1	1	347.82	271.37	210.67	—	—
	2	—	184.10	142.15	—	—
DGX-1, GDR	1	270.21	190.12	174.75	—	—
	2	—	142.43	100.54	—	—
Summit Dev	1	321.69	234.32	187.69	—	—
	2	—	176.50	128.85	—	—
Summit Dev, GDR	1	308.52	227.74	188.39	—	—
	2	—	169.60	124.22	—	—
Wilkes-2	1	395.26	326.71	227.61	—	—
	2	—	226.89	167.80	—	—
Wilkes-2, GDR	1	300.03	226.13	203.59	—	—
	2	—	164.63	116.50	—	—
Workstation	1	334.23	—	—	—	—
Workstation, GDR	1	279.54	—	—	—	—
AUSURF112: PWscf Time

- Factor of 2-3 speedup using GPU relative to CPU system
- Fixing number of resources per pool gives nearly linear scaling with increased resources
- Increasing number of resources per pool less efficient

System	\(N_K \)	2	4	8	16	32
Broadwell (CPU)	1	1142.24	642.03	369.66	272.00	266.20
	2	1190.13	586.84	335.00	196.54	**144.07**
Piz Daint	1	286.24	219.91	171.80	—	—
	2	—	149.21	**115.87**	—	—
DGX-1	1	347.82	271.37	210.67	—	—
	2	—	184.10	142.15	—	—
DGX-1, GDR	1	270.21	190.12	174.75	—	—
	2	—	142.43	**100.54**	—	—
Summit Dev	1	321.69	234.32	187.69	—	—
	2	—	176.50	128.85	—	—
Summit Dev, GDR	1	308.52	227.74	188.39	—	—
	2	—	169.60	**124.22**	—	—
Wilkes-2	1	395.26	326.71	227.61	—	—
	2	—	226.89	167.80	—	—
Wilkes-2, GDR	1	300.03	226.13	203.59	—	—
	2	—	164.63	**116.50**	—	—
Workstation	1	334.23	—	—	—	—
Workstation, GDR	1	**279.54**	—	—	—	—
AUSURF112: 8 GPU/CPU

- **GPU vs. CPU systems:**
 - Faster performance on GPU systems
 - GPU eigensolver outperforming ELPA

- **GPU systems:**
 - FFT performance improvement with GDR
 - Eigensolver on Summit Dev slower than on Intel systems, more consistent across Intel systems

Results from paper
AUSURF112: 8 GPU/CPU

- **GPU vs. CPU systems:**
 - Faster performance on GPU systems
 - GPU eigensolver outperforming ELPA

- **GPU systems:**
 - FFT performance improvement with GDR
 - Eigensolver on Summit Dev slower than on Intel systems, more consistent across Intel systems

Results

System	$N_K = 1$	$N_K = 2$	Wall Time [s]	Improvement
Broadwell			369.66	
DGX-1	201.13 s	133.03 s		-5%
DGX-1, GDR	155.58 s	87.93 s		-11%
Piz Daint	150.13 s	103.98 s		-13%
Summit Dev	173.49 s	112.20 s		-8%
Summit Dev, GDR	171.14 s	108.96 s		-9%
Wilkes-2	208.86 s	151.22 s		-8%
Wilkes-2, GDR	182.42 s	99.64 s		-14%

Updated results using V1.0
Ta2O5:
PWscf Time

- Similar performance trends to AUSURF112 case
- Larger number of available k-points allows for scaling out further

System	N_K	8	Number of CPUs or GPUs used			
		26	52	104	208	
Broadwell (CPU)	13	—	1374.26	809.36	540.64	
	26	—	3055.46	1566.95	682.05	**378.73**
Piz Daint	1	5273.93	—	—	—	
	2	3602.07	—	—	—	
	13	—	617.58	419.39	330.85	
	26	—	—	315.60	**217.29**	
DGX-1	1	7253.06	—	—	—	
	2	5008.94	—	—	—	
DGX-1, GDR	1	4139.18	—	—	—	
	2	2701.00	—	—	—	
Summit Dev	1	4122.03	—	—	—	
	2	3236.12	—	—	—	
	13	—	581.15	394.62	289.30	
	26	—	—	305.66	216.95	
Summit Dev, GDR	1	3994.21	—	—	—	
	2	2959.70	—	—	—	
	13	—	544.83	398.91	292.87	
	26	—	—	284.90	**207.37**	
Wilkes-2	1	7394.40	—	—	—	
	2	6103.55	—	—	—	
	13	—	1035.20	656.85	—	
	26	—	—	515.78	—	
Wilkes-2, GDR	1	5032.00	—	—	—	
	2	3264.26	—	—	—	
	13	—	572.43	460.16	—	
	26	—	—	—	**273.86**	
Ta2O5: PWscf Time

- Similar performance trends to AUSURF112 case
- Larger number of available k-points allows for scaling out further

System	N_K	8	26	52	104	208
Broadwell (CPU)	13	—	—	—	—	—
	26	—	3055.46	1566.95	682.05	540.64
Piz Daint	1	5273.93	—	—	—	—
	2	3602.07	—	—	—	—
	13	—	—	617.58	419.39	330.85
	26	—	—	—	315.60	217.29
DGX-1	1	7253.06	—	—	—	—
	2	5008.94	—	—	—	—
DGX-1, GDR	1	4139.18	—	—	—	—
	2	2701.00	—	—	—	—
Summit Dev	1	4122.03	—	—	—	—
	2	3236.12	—	—	—	—
	13	—	—	581.15	394.62	289.30
	26	—	—	—	305.66	216.95
Summit Dev, GDR	1	3994.21	—	—	—	—
	2	2959.70	—	—	—	—
	13	—	—	544.83	398.91	292.87
	26	—	—	—	284.90	207.37
Wilkes-2	1	7394.40	—	—	—	—
	2	6103.55	—	—	—	—
	13	—	—	1035.20	656.85	—
	26	—	—	—	515.78	—
Wilkes-2, GDR	1	5032.00	—	—	—	—
	2	3264.26	—	—	—	—
	13	—	—	572.43	460.16	—
	26	—	—	—	273.86	—
Ta2O5: PWscf Time

- Similar performance trends to AUSURF112 case
- Larger number of available k-points allows for scaling out further

System	N_K	8	26	52	104	208
Broadwell (CPU)	13	—	—	1374.26	809.36	540.64
	26	—	3055.46	1566.95	682.05	—
Piz Daint	1	5273.93	—	—	—	—
	2	3602.07	—	—	—	—
	13	—	617.58	419.39	330.85	—
	26	—	—	315.60	—	—
DGX-1	1	7253.06	—	—	—	—
	2	5008.94	—	—	—	—
DGX-1, GDR	1	4139.18	—	—	—	—
	2	2701.00	—	—	—	—
Summit Dev	1	4122.03	—	—	—	—
	2	3236.12	—	—	—	—
	13	—	581.15	394.62	289.30	—
	26	—	—	305.66	—	216.95
Summit Dev, GDR	1	3994.21	—	—	—	—
	2	2959.70	—	—	—	—
	13	—	544.83	398.91	292.87	—
	26	—	—	284.90	—	207.37
Wilkes-2	1	7394.40	—	—	—	—
	2	6103.55	—	—	—	—
	13	—	1035.20	656.85	—	—
	26	—	—	515.78	—	—
Wilkes-2, GDR	1	5032.00	—	—	—	—
	2	3264.26	—	—	—	—
	13	—	572.43	460.16	—	—
	26	—	—	273.86	—	—
Ta2O5: 104 GPU/CPU

- GPU vs. CPU systems:
 - ELPA faster in this case, but GPU eigensolver remains competitive

- GPU systems:
 - On fat systems, GDR required for high FFT performance
 - Summit Dev has high FFT performance without GDR due to host-device NVLink

Results from paper
Ta2O5: 104 GPU/CPU

- GPU vs. CPU systems:
 - ELPA faster in this case, but GPU eigensolver remains competitive

- GPU systems:
 - On fat systems, GDR required for high FFT performance
 - Summit Dev has high FFT performance without GDR due to host-device NVLink

Updated results using V1.0
Ta2O5: 104 GPU/CPU

- **GPU vs. CPU systems:**
 - ELPA faster in this case, but GPU eigensolver remains competitive

- **GPU systems:**
 - On fat systems, GDR required for high FFT performance
 - Summit Dev has high FFT performance without GDR due to host-device NVLink

System	\(N_K\)	Wall Time [s]	Relative Speed
Broadwell	13	809.36 s	100%
	26	682.05 s	85%
Piz Daint	13	399.81 s	100%
	26	290.86 s	80%
Summit Dev	13	387.51 s	100%
	26	299.50 s	80%
Summit Dev, GDR	13	368.69 s	100%
	26	275.43 s	80%
Wilkes-2	13	639.10 s	100%
	26	464.91 s	73%
Wilkes-2, GDR	13	416.77 s	100%
	26	241.80 s	63%

Saturn V (Volta): \(N_K = 26\)

Wall Time [s]
Si63Ge (vc-relax)

	QE-GPU CSCS	QE CSCS	QE Cineca		
	1 P100	10 P100	20 BW (360c)	1 KNL (60c)	10 KNL (640c)
npool	1	10	10	5	10
init_run	15.92s	7.50s	4.45s	21.61s	10.33s
electrons	668.06s	108.78s	235.58s	1542.72s	292.86s
update_pot	1.37s	1.04s	10.42s	31.95s	7.94s
forces	12.06s	3.03s	13.20s	60.91s	11.93s
stress	74.28s	15.82s	75.69s	260.82s	38.55s
cdiaghg	71.38s	6.89s	15.51s	147.97s	76.15s
PWSCF	**774.49s**	**138.70s**	**342.26s**	**1934.28s**	**400.29s**

Fermi energy	6.5908 ev	6.5908 ev	6.5908 ev	6.5908 ev	6.5908 ev
Total energy	-813.93522903 Ry	-813.93522903 Ry	-813.93522904 Ry	-813.93522904 Ry	-813.93522903 Ry
Total force	0.002992	0.002992	0.002992	0.002992	0.002992
Total stress	0.000000062	0.000000062	0.000000062	0.000000062	0.000000062
Pressure	0.09	0.09	0.09	0.09	0.09

BW/KNL results from https://github.com/electronic-structure/benchmarks
Conclusions
Conclusions

- New GPU implementation can reduce time to solution by a factor of 2 - 3 relative to the reference CPU system.
- Custom serial GPU eigensolver provides competitive performance relative to ScaLAPACK and ELPA with limited sensitivity to host resources. Available on Github at: https://github.com/NVIDIA/Eigensolver_gpu
- Full utilization of P2P resources essential for high performance, especially on systems with large GPU to CPU socket ratios.
- CUDA-accelerated version of QE is open-source and available on Github at: https://github.com/fspiga/qe-gpu