GENERALIZED TWISTED COHOM OBJECTS

SERGIO D. GRILLO

Abstract. A generalization of the concept of twisted internal coHom object in the category of conic quantum spaces (c.f. [2]) was outlined in [3]. The aim of this article is to develop in more detail this generalization.

1. Introduction

Given a couple A, B of conic quantum spaces, i.e. $A, B \in \mathcal{C}A$ (the monoidal category of finitely generated graded algebras [4][5][2]), their symmetric twisted tensor products $A \circ \otimes B$ [1] [2] can also be seen as (2nd admissible) cotwist 2-cocycle twisting of the quantum space $\mathcal{C}A \otimes B$. Then, in the same sense as in [2], we can study, instead of the maps $A \rightarrow \mathcal{H} \circ B$ (which define a comma category whose initial objects are the proper internal coHom objects of $\mathcal{C}A$), certain subclasses of arrows $A \rightarrow (\mathcal{H} \circ B)_{\omega}$, where ω is a cotwist 2-cocycle defining a twist transformation on $\mathcal{H} \circ B$. The aim of this paper is to show that, in certain circumstances, these classes give rise for each pair $A, B \in \mathcal{C}A$ to a category $\Omega^{A,B}$ with initial object, namely $hom_{\Omega}^{\omega} [B, A]$, such that the disjoint union $\Omega = \bigcup_{A,B} \Omega^{A,B}$ has a semigroupoid structure together with a related embedding $\Omega \hookrightarrow \mathcal{C}A$ that preserves the involved (partial) products. Consequently, $(B, A) \mapsto hom_{\Omega}^{\omega} [B, A]$ defines an $\mathcal{C}A$-cobased category with an additional notion of evaluation given by arrows

$$A \rightarrow \left(hom_{\Omega}^{\omega} [B, A] \circ B\right)_{\omega}.$$

The categories Ω, obtained in [2], are particular cases of the categories Ω. In this way we generalize the idea of twisted coHom objects in the more general framework of twisting of quantum spaces. This setting enable us, in turn, to a better understanding of the results obtained in the mentioned paper.

This article is based on the contents of [2] and [3] and references therein, thus we shall frequently refer the reader to them. Notation and terminology also follow those papers.

2. The categories Ω

In order to build up the categories $\Omega^{A,B}$, let us first make a couple of observations.

1. Consider on the category $\mathcal{C}Vct$ (of graded vector spaces) the monoid

$$\mathcal{V} \circ \mathcal{W} = \bigoplus_{n \in \mathbb{N}_0} (V_n \otimes W_n),$$

for $\mathcal{V} = \bigoplus_{n \in \mathbb{N}_0} V_n$ and $\mathcal{W} = \bigoplus_{n \in \mathbb{N}_0} W_n$. The arrows $\mathcal{V} \rightarrow \mathcal{W}$ in $\mathcal{C}Vct$ are homogeneous linear maps; i.e. its restrictions to each V_n define maps $V_n \rightarrow W_n$. It is clear that the forgetful functor $\mathcal{F} : \mathcal{C}A \hookrightarrow \mathcal{C}Vct$ turns into a monoidal one, and $\mathcal{F}(A \circ B) = A = \bigoplus_{n \in \mathbb{N}_0} A_n$, holds for every twist transformation $\psi \in \mathbb{S}^2 [A_1].$

2. Let us construct the comma categories $(\mathcal{F}(A) \downarrow \mathcal{F}(\mathcal{C}A \circ \mathcal{B})))$, where the functor $\mathcal{F}(\mathcal{C}A \circ \mathcal{B})$ is the composition of $\mathcal{C}A \circ \mathcal{B}$ and \mathcal{F}. Its objects are pairs (φ, \mathcal{H}) where $\mathcal{H} \in \mathcal{C}A$ and φ is an arrow in $\mathcal{C}Vct$,

$$\varphi : (\mathcal{F}(A) \downarrow \mathcal{F}(\mathcal{C}A \circ \mathcal{B})) = (\mathcal{F}(\mathcal{H}) \circ \mathcal{F}(B)).$$

To every $(\varphi, \mathcal{H}) \in (\mathcal{F}(A) \downarrow \mathcal{F}(\mathcal{C}A \circ \mathcal{B}))$, the surjection $\pi^\varphi : B^1_1 \otimes A_1 \rightarrow H^\varphi_1 : b^1 \otimes a_1 \mapsto h^\varphi_1$ can be related, being h^φ_1 the elements of H_1 defining the restriction of φ to A_1, i.e. $\varphi(a_1) = h^\varphi_1 \otimes b_j$. This linear surjection gives rise to a functor

$$\mathfrak{f} : (\mathcal{F}(A) \downarrow \mathcal{F}(\mathcal{C}A \circ \mathcal{B})) \rightarrow \mathcal{C}A,$$

$$\langle \varphi, \mathcal{H} \rangle \mapsto H^\varphi = (H^\varphi_1, H^\varphi) ; \quad \alpha \mapsto \alpha|_{H^\varphi},$$

where H^φ is the subalgebra of H generated by H^φ_1 (an analogous functor is used in [2] to built up the categories $\mathcal{Y}^{A,B}$).

Using last functor we shall construct each $\Omega^{A,B}$ as a full subcategory of the corresponding comma category $(\mathcal{F}(A) \downarrow \mathcal{F}(\mathcal{C}A \circ \mathcal{B}))$. Given a couple of conic quantum spaces A and B, consider a counital element

$$\omega : (|B^1_1 \otimes A_1 \otimes B^1_1| \otimes)^2 \otimes (|B^1_1 \otimes A_1 \otimes B^1_1| \otimes)^2$$

and define the restriction of ω to H^φ by

$$\omega^\varphi : (|B^1_1 \otimes A_1 \otimes B^1_1| \otimes)^2 \otimes (|B^1_1 \otimes A_1 \otimes B^1_1| \otimes)^2$$

for each $(\varphi, \mathcal{H}) \in (\mathcal{F}(A) \downarrow \mathcal{F}(\mathcal{C}A \circ \mathcal{B})))$. Consequently, $(\mathcal{F}(A) \downarrow \mathcal{F}(\mathcal{C}A \circ \mathcal{B})))$ gives rise to a category $\Omega^{A,B}$ with initial object, namely $hom_{\Omega}^{\omega} [B, A]$.
of $3^2[|B_1^1 \otimes A_1 \otimes B_1|]$. Eventually, for $(\varphi, \mathcal{H}) \in \mathcal{H}_\mathcal{F}(A \downarrow \mathcal{F}(CA \circ B))$, we can translate ω to $[H_1^0 \otimes B_1]^\otimes$ through $\pi^\otimes : B_1^1 \otimes A_1 \rightarrow H_1^0$ in such a way that the diagram

$$
\begin{array}{ccc}
B_1 \otimes B_1^1 \otimes A_1 & \rightarrow & B_1 \otimes H_1^0 \\
\downarrow & & \downarrow \\
B_1 \otimes B_1^1 \otimes A_1 & \rightarrow & B_1 \otimes H_1^0
\end{array}
$$

be commutative, defining in this way a counital 2-cochain in $3^2[H_1^0 \otimes B_1]$. Last affirmation lies on the results given in Prop. 4 of [3], applied to the injection $H_1^0 \rightarrow B_1^1 \otimes A_1$. Then, if the resulting automorphism is admissible, we can define with it a twist transformation on $H^\omega \circ \mathcal{B} = \mathcal{F} \langle (\varphi, \mathcal{H}) \rangle \circ \mathcal{B}$.

Definition 1. For every pair $A, B \in \mathcal{C}$ and $\omega \in 3^2[B_1^1 \otimes A_1 \otimes B_1]$, we define $\Omega^{A,B}$ as the full subcategory of $(\mathcal{F}(A) \downarrow \mathcal{F}(CA \circ B))$ formed out by diagrams (φ, \mathcal{H}) such that ω defines a 2-cocycle twisting on $\mathcal{F} \langle (\varphi, \mathcal{H}) \rangle \circ \mathcal{B}$, and the homogeneous linear map φ is a morphism of quantum spaces $A \rightarrow (\mathcal{F} \langle (\varphi, \mathcal{H}) \rangle \circ \mathcal{B})^\omega$.

Given now a collection of cochains $\{\omega_{A,B}\}_{A,B \in \mathcal{C}} \subset 3^2[B_1^1 \otimes A_1 \otimes B_1]$, we name Ω the disjoint union of the categories $\Omega^{A,B}$ just defined. Clearly, CA° (see [2], or §1.2 of [3] for a brief review) is a category Ω with an associated collection given by identity maps.

Calling $\mathcal{H}CA^\circ$ the disjoint union of $(\mathcal{F}(A) \downarrow \mathcal{F}(CA \circ B))$, it follows that every Ω is a full subcategory of $\mathcal{H}CA^\circ$. On the other hand, let us observe that Ω^{CA° has a semigroupoid structure given by the functor

$$(\mathcal{H} \times \mathcal{G}) \mapsto (\langle I_B \circ \chi \rangle \varphi, \mathcal{H} \circ \mathcal{G}) : \alpha \times \beta \mapsto \alpha \circ \beta,$$

and $CA^\circ \subset \mathcal{H}CA^\circ$ is a sub-semigroupoid. In fact, this map is a partial product functor with domain

$$\bigvee_{A,B,C \in \mathcal{C}} \langle \mathcal{H}(A) \downarrow \mathcal{H}(CA \circ C) \rangle \times \langle \mathcal{H}(C) \downarrow \mathcal{H}(CA \circ B) \rangle$$

and codomain $\mathcal{H}CA^\circ$, such that

$$\langle \mathcal{H}(A) \downarrow \mathcal{H}(CA \circ C) \rangle \times \langle \mathcal{H}(C) \downarrow \mathcal{H}(CA \circ B) \rangle \rightarrow \langle \mathcal{H}(A) \downarrow \mathcal{H}(CA \circ B) \rangle$$

Its associativity comes from that of \circ, and the unit elements are given by the diagrams (ℓ_A, K), where ℓ_A is the homogeneous isomorphism $A \simeq \mathbb{K}[c] \otimes A$, such that $a \mapsto e^n \otimes a$ if $a \in A_n$. Nevertheless, for a generic collection $\{\omega_{A,B}\}_{A,B \in \mathcal{C}}$ of cochains, Ω fails to be a semigroupoid. Furthermore, in the generic case, each $\Omega^{A,B}$ fails to have initial objects. To address this problem, we shall consider particular cases.

3. The Semigroupoid Structure of Ω

In what follows, all references to sections and theorems correspond to [3]. Recall the monics (c.f. §2.3.2)

$$(3.1) \quad j : \mathfrak{c}^\bullet[B_1^1] \times \mathfrak{c}^\bullet[A_1] \times \mathfrak{c}^\bullet[B_1] \rightarrow \mathfrak{c}^\bullet[B_1^1 \otimes A_1 \otimes B_1].$$

Definition 2. A collection $\{\omega_{A,B}\}_{A,B \in \mathcal{C}}$ is **factorizable** if there exists another collection

$$\{\psi_A\}_{A \in \mathcal{C}}, \quad \psi_A \in 3^2[A_1],$$

such that $\omega_{A,B} = j \left(\psi_B^i, \psi_A, I^{\otimes 2}\right)$. §

Since Eq. (3.1), such cochains $\omega_{A,B}$ are in $3^2[B_1^1 \otimes A_1 \otimes B_1]$. To give an example, in the TTP case with $\hat{\mathcal{F}}_{A,B} = id \otimes \sigma_B \otimes \sigma_A$, the cochain ψ_A would be given by the assignment

$$(3.2) \quad a_{k_1} \ldots a_{k_r} \otimes a_{k_{r+1}} \ldots a_{k_{r+s}} \mapsto a_{k_1} \ldots a_{k_r} \otimes (\sigma_A^{-1})_{k_{r+1}}^{j_1} \ldots (\sigma_A^{-1})_{k_{r+s}}^{j_s} a_{j_1} \ldots a_{j_s}.$$

From the injection

$$(3.3) \quad 3^2[B_1^1] \times 3^2[A_1] \times 3^2[B_1] \rightarrow 3^2[B_1^1 \otimes A_1] \times 3^2[B_1],$$

we shall also regard $\omega_{A,B}$ as a cochain belonging to the latter set, depending on our convenience.

Theorem 1. If a category Ω is associated to a factorizable collection, then Ω is a sub-semigroupoid of $\mathcal{H}CA^\circ$.

Proof. Consider the quantum spaces A, B and C, and diagrams $(\varphi, \mathcal{H}) \in \Omega^{A,B}$ and $(\psi, \mathcal{G}) \in \Omega^{B,C}$, with associated linear spaces (via the functor \mathcal{F})

$$H_1^\varphi = \text{span} \left[h^{n,m}_{i,j=1} \right] \quad \text{and} \quad G_1^\psi = \text{span} \left[g^{m,p}_{i,j=1} \right].$$
We are denoting by \(\dim A_1 = n \), \(\dim B_1 = m \) and \(\dim C_1 = p \) the dimensions of the generator spaces defining \(\mathcal{A}, \mathcal{B}, \) and \(\mathcal{C}, \) respectively. We must show that \(\langle (I_H \circ \chi) \varphi, \mathcal{H} \circ \mathcal{G} \rangle \) (see Eq. (2.3)) is an object of \(\Omega^{A,C} \), and that the objects \(\langle \ell_A, \mathcal{K} \rangle \) are in \(\Omega^c \). That means the quantum space \(\mathfrak{S} \langle (I_H \circ \chi) \varphi, \mathcal{H} \circ \mathcal{G} \rangle \), generated by

\[
\text{span} \left[\sum_{j=1}^{n} h^j_i \otimes g^j_k \right]_{i,k=1}^{n,p} \subset \mathcal{H}^i \otimes \mathcal{G}^i \subset \mathcal{H}^p \otimes \mathcal{G}^p,
\]

is such that \((I_H \circ \chi) \varphi \) defines an arrow \(\mathcal{A} \to \langle \mathfrak{S} \langle (I_H \circ \chi) \varphi, \mathcal{H} \circ \mathcal{G} \rangle \rangle \) in \(\mathcal{C} \). To this end, let us introduce some notation.

Denote by \(h \) and \(g \) the matrices with entries \(h^j_i \in \mathcal{H}_1 \) and \(g^j_i \in \mathcal{G}_1 \), and by \(a, b \) and \(c \) the vectors whose components are \(a_i \in A_1, b_i \in B_1 \) and \(c_i \in C_1 \). Since \(\langle \varphi, \mathcal{H} \rangle \) and \(\langle \psi, \mathcal{G} \rangle \) are elements of \(\Omega^c \), \(\omega_{AB} \) and \(\omega_{BC} \) defines cochains in \(3^2 \mathcal{H}_1 \times 3^2 \mathcal{B}_1 \) and \(3^2 \mathcal{G}_1 \times 3^2 \mathcal{C}_1 \) (see Eq. (3.3), respectively. The latter are given by

(3.4)
\[
\omega_{AB} (h)_{r,s} \otimes (b)_{r,s} = [\psi_A]_{r,s} \cdot (h)_{r,s} \cdot [\psi_B^{-1}]_{r,s} \otimes (b)_{r,s}
\]

and

(3.5)
\[
\omega_{BC} (g)_{r,s} \otimes (c)_{r,s} = [\psi_B]_{r,s} \cdot (g)_{r,s} \cdot [\psi_C^{-1}]_{r,s} \otimes (c)_{r,s}
\]

where the symbols \(h_{r,s} = h^r \otimes h^s \) and \([\psi_A]_{r,s} \cdot (h)_{r,s} \cdot [\psi_B^{-1}]_{r,s} \otimes (b)_{r,s} \) denote elements of the form

\[
h^i_1 \cdots h^i_r \otimes h^l_1 \cdots h^l_s \in (\mathcal{H}^i)^{\otimes r} \otimes (\mathcal{H}^l)^{\otimes s}
\]

and

\[
(\psi_A)_{m_1 \cdots m_r, r_1 \cdots r_s, k_1 \cdots k_s} h^i_1 \cdots h^i_r \otimes h^l_1 \cdots h^l_s \in (\mathcal{H}^i)^{p_1 \cdots p_r} \otimes (\mathcal{H}^l)^{q_1 \cdots q_s}
\]

respectively. Now, \(\langle (I_H \circ \chi) \varphi, \mathcal{H} \circ \mathcal{G} \rangle \) in \(\Omega^{A,C} \) if and only if \((I_H \circ \chi) \varphi \) defines the mentioned arrow in \(\mathcal{C} \), with \(\omega \) given by

\[
\omega_{AC} \left((h \otimes g)_{r,s} \otimes (c)_{r,s} \right) = \omega_{A} \left((h \otimes g)_{r,s} \otimes (c)_{r,s} \right)
\]

Here \(\otimes \) is denoting matrix contraction between \(h \) and \(g \). It follows from straightforward calculations that, if \(\omega_{AC} \) is well defined on \(\mathfrak{S} \langle (I_H \circ \chi) \varphi, \mathcal{H} \circ \mathcal{G} \rangle \circ \mathcal{C} \), then \((I_H \circ \chi) \varphi \) is a homogeneous linear map \(A \to \mathcal{H} \otimes \mathcal{G} \otimes \mathcal{C} \) defining the wanted morphism. So, let us first show that. To this end, extend \(\omega_{AC} \) to \(\mathcal{H}^p \circ \mathcal{G}^o \circ \mathcal{C} \) by putting \(\omega_{AC} (h)_{r,s} \otimes (g)_{r,s} \otimes (c)_{r,s} \) equal to

\[
[\psi_A]_{r,s} \cdot (h)_{r,s} \otimes [\psi_B^{-1}]_{r,s} \otimes (c)_{r,s} =
\]

\[
[\psi_A]_{r,s} \cdot (h)_{r,s} \otimes [\psi_B^{-1}]_{r,s} \otimes (g)_{r,s} \otimes (c)_{r,s}.
\]

From the last expression, and recalling that \(\omega_{AB} \) and \(\omega_{BC} \) (given in (3.4) and (3.5)) are admissible, it follows that \(\omega_{AC} \) is admissible for \(\mathcal{H}^p \circ \mathcal{G}^o \circ \mathcal{C} \), and also for the subspace \(\mathfrak{S} \langle (I_H \circ \chi) \varphi, \mathcal{H} \circ \mathcal{G} \rangle \circ \mathcal{C} \). Then, \(\langle (I_H \circ \chi) \varphi, \mathcal{H} \circ \mathcal{G} \rangle \) in \(\Omega^{A,C} \).

Finally, we have to show the units \(\langle \ell_A, \mathcal{K} \rangle \) are objects of the corresponding categories \(\Omega^A \). We know that \(\ell_A \) is a homogeneous linear map such that \(\ell_A (a) = e^a \otimes a \), if \(a \in A_n \). In particular, we can write \(\ell_A (a_i) = e \delta_i^j \otimes a_j \). Then, the cochain \(\omega_{AC} \) for \(\langle \ell_A, \mathcal{K} \rangle \) is given by

\[
\omega_{AC} (k)_{r,s} \otimes (a)_{r,s} = \omega_{A} (k)_{r,s} \cdot (a)_{r,s}
\]

with

\[
k_{r,s} = e^r \delta_{i_1}^{r_1} \otimes \delta_{i_r}^{r_r} \otimes e^s \delta_{k_1}^{l_1} \otimes \delta_{k_s}^{l_s}.
\]

Accordingly \(\omega_{AC} \) for \(\langle \ell_A, \mathcal{K} \rangle \) is the identity map, and \(\mathcal{K} \circ \mathcal{A} \) is \(\mathcal{A} \).

The following result is immediate.

Proposition 1. Let us call \(\circ \Omega \) the partial product associated to above mentioned semigroupoid structure of \(\Omega \). The embedding \(\mathfrak{P}^\Omega : \Omega \to \mathcal{C} : \mathfrak{P} : \mathfrak{P}^\Omega \) preserves the respective (partial) products and units, i.e.

\[
\mathfrak{P}^\Omega \circ \Omega = \mathfrak{P} (\mathfrak{P}^\Omega \times \mathfrak{P}^\Omega) \quad \text{and} \quad \mathfrak{P}^\Omega \langle \ell_A, \mathcal{K} \rangle = \mathcal{K}.
\]
For $\Omega^{A,B}$ to have initial objects we need an additional condition on $\omega_{A,B}$.

Theorem 2. If Ω is associated to a factorizable collection given by $\{\psi_A\}_{A \in CA}$ such that each $i\psi_A = i\psi$ is 2nd A-admissible, then each $\Omega^{A,B}$ have initial object

$$\text{hom}_\Omega^\Omega [B, A] = B_{i\psi} \triangleright A_{i\psi} = (B \triangleright A)_{i(i\psi,i\psi)}.$$

In particular, $\text{hom}_\Omega^\Omega [K, A] = A_{i\psi}$ and $\text{hom}_\Omega^\Omega [K, K] = K$; thus,

$$\text{hom}_\Omega^\Omega [B, A] = \text{hom}_\Omega^\Omega [K, B] \triangleright \text{hom}_\Omega^\Omega [K, A].$$

Before going to the proof, let us make some remarks. Since $\psi_A \in \mathbb{Z}^2 [A_1]$, there exists a primitive $\theta \in \mathbb{P}^1 [A_1]$ such that $\psi_A = \partial \theta \omega_A$, $\psi_A = \partial \theta \omega_A$ and $\psi_A = \partial \theta \omega_A$ (see §3.2.1, §3.3.1 and §4.2.1, respectively). In addition, if $I = \bigoplus_{n \geq 1} I_n$ is the graded ideal related to A, we have from §3.2.2 that (provided ψ is admissible)

$$I_{i\psi,n} = \theta(I_n), \quad I_{i\psi,n} = \theta(I_n) = \theta^n(I_n).$$

Proof. (of theorem) We shall show $B_{i\psi} \triangleright A_{i\psi}$ defines an object of $\Omega^{A,B}$ and then that is initial.

Let us note that, given $\psi, \varphi \in \mathbb{Z}^2$, with $\psi = \partial \theta$ and $\varphi = \partial \chi$, it follows that

$$j(i\psi, i\varphi) = j((\partial \theta^{-1}), (\partial (\chi^{-1})) = j((\partial \theta^{-1}, \chi^{-1})) =$$

$$= \partial(j((\theta^{-1}, \chi^{-1})) = i(j(\psi, \varphi)).$$

Also recall, if ψ is (2nd) A-admissible, then ψ is (2nd) $A_{i\psi}$-admissible (see Prop. 14 of §3.3.1).

By **Theor. 16** of §4.2.2, using the 2nd A-admissibility of $i\psi_A = i\psi$,

$$(B_{i\psi} \triangleright A_{i\psi}) \circ B = (B \triangleright A)_{i(i\psi,i\psi)} \circ B = (B \triangleright A)_{i(i\psi,i\psi)} \circ B$$

$$= (((B \triangleright A)_{i(i\psi,i\psi)})_\omega) = ((B \triangleright A) \circ B)_{i\omega},$$

because $\omega = \omega_{A,B} = j(\psi_{B,\psi}, \psi_A, I^{\otimes 2})$. Then,

$$((B_{i\psi} \triangleright A_{i\psi}) \circ B)_{i\omega} = (((B \triangleright A) \circ B)_{i\omega})_\omega = (B \triangleright A) \circ B,$$

and consequently the map $\delta : A \to (B \triangleright A) \circ B : a_i \mapsto z_i^I \otimes b_j$ (with $z_i^I = b^I \otimes a_i$), defining the coevaluation of the proper coHom object $\text{hom}_\Omega^\Omega [B, A] = B \triangleright A$, gives also a morphism $\delta : A \to ((B_{i\psi} \triangleright A_{i\psi}) \circ B)_{i\omega}$. Moreover, since the equality $\exists (\delta, B_{i\psi} \triangleright A_{i\psi}) = B_{i\psi} \triangleright A_{i\psi}$, the pair $(\delta, B_{i\psi} \triangleright A_{i\psi})$ is in $\Omega^{A,B}$. Let us show such a pair is an initial object.

Suppose A and B have related dimensions $\dim A_1 = n$ and $\dim B_1 = m$, and ideals I and J, respectively. Let us consider the vector space

$$D_1 = \text{span} \left[z_i^I \right]_{i,j=1}^{n,m}$$

and the linear map $\delta_1 : a_i \mapsto z_i^J \otimes b_j$. Under the identification $b^I \otimes a_i = z_i^I$, the cochain $\omega_{A,B} = \omega$ defines a counital 2-cocycle in $\mathbb{C}^2 [D_1 \otimes B_1]$, and δ_1 can be extended to an algebra homomorphism

$$\delta_1^\otimes : A_1^\otimes \to (D_1^\otimes \otimes B_1^\otimes)_\omega.$$

Analogous calculations that enable us to arrive at Eq. (3.4) of [3], show that

$$\delta_1^\otimes (a_r) = [\theta_A]_r \cdot z_r \cdot \left[\theta_B^{-1} \right]_r \otimes b_r,$$

(where we are using notation of previous theorem), or in coordinates,

$$\delta_1^\otimes (a_{i_1} \ldots a_{i_r}) = [\theta_A]_{j_1 \ldots j_r} \cdot z_{j_1}^I \ldots z_{j_r}^I \cdot \left(\theta_B^{-1} \right)_{k_1 \ldots k_r} \otimes b_{k_1} \ldots b_{k_r}.$$
Now, it is clear that a pair \(\langle \varphi, \mathcal{H} \rangle \in \mathcal{H} \mathcal{CA}^\circ \) is in \(\Omega^{A, B} \) if and only if there exist elements \(h_i^j \in H_1 \subset \mathfrak{g} \langle \varphi, \mathcal{H} \rangle \) satisfying relations (4.2) (replacing \(z_r \) by \(h_r \)). But the elements of (4.2) span precisely the space (from Eq. (1.2))

\[
\theta^B_i (J^\varphi_r) \otimes \theta_A (I^\psi_r) = J^\varphi_r \otimes I^\psi_r,
\]

which generates algebraically the ideal related to \(B_i^\varphi \otimes A_i^\psi \). Then, the function \(z^j_i \mapsto h^j_i \) can be extended to an arrow \(B_i^\varphi \otimes A_i^\psi \to \mathfrak{g} \langle \varphi, \mathcal{H} \rangle \). But this is the unique arrow in \(\Omega^{A, B} \) that can be defined between these objects, that is to say, \((\delta, B_i^\varphi \otimes A_i^\psi) \) is an initial object of \(\Omega^{A, B} \).

Finally, since the cochains of \(C^* \mathbb[k] \) are always (2nd) \(K \)-admissible, in particular the primitive ones \(P^1 \mathbb[k] \), it follows that any twisting of \(K \) is isomorphic to \(K \). Then, the last claim of the theorem follows immediately from the first one.

Note that the 2nd admissibility condition for each \(i^\psi A \) replaces the automorphism property of the related \(\sigma_A \) of the TTP case. Such a condition is immediate in the TTP case, because the properties defining a twisting map imply the related 2-cocycles are anti-bicharacters (c.f. §2.2.2 and §4.1.2).

Now, a couple of immediate corollaries.

Corollary 1. The gauge equivalence (see §3.3) \(\text{hom}^{\Omega} [B, A] \sim \text{hom} [B, A] \) is valid for all conic quantum spaces \(B, A \). \(\blacksquare \)

Corollary 2. In the category of quadratic quantum spaces \(QA \) (and any \(CA^m \)), the initial objects of \(\Omega^{A, B} \) are isomorphic to

\[
\text{hom}^{\Omega} [B, A] = (B^i)^3 \bullet A^\varphi = (B^i)^3 \bullet A_i^\psi = (B^i \bullet A)_i (i^\psi, i^\varphi).
\]

Under the hypothesis mentioned in previous theorem, and from the semigroupoid structure of \(\Omega \) compatible with the monoid in \(CA \), we have the announced result:

Theorem 3. The assignment \((B, A) \mapsto \text{hom}^{\Omega} [B, A] \) define an \(CA \)-cobased category with arrows

\[
\text{hom}^{\Omega} [C, A] \to \text{hom}^{\Omega} [B, A] \circ \text{hom}^{\Omega} [C, B],
\]

the cocomposition, and for \(\text{end}^{\Omega} [A] \) the counit epimorphism

\[
\text{end}^{\Omega} [A] \to \mathcal{K} / z^j_i \mapsto \delta^j_i e,
\]

and the monomorphic comultiplication

\[
\text{end}^{\Omega} [A] \to \text{end}^{\Omega} [A] \circ \text{end}^{\Omega} [A] / z^j_i \mapsto z^k_i \otimes z^j_k.
\]

References

[1] A. Čap, H. Schichl, J. Vanžura, On twisted tensor products of algebras, Comm. in Alg. 23 (1995) 4701-4735.

[2] S. Grillo, H. Montani, Twisted internal coHom objects in the category of quantum spaces, math.QA/0112233.

[3] S. Grillo, Twisting of quantum spaces and twisted coHom objects, math.QA/0202205.

[4] Yu. Manin, Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier 33 (1987) 191-205.

Yu. Manin, Quantum groups and non commutative geometry, CRM, Université de Montréal, 1988.

[5] Yu. Manin, Topics in non commutative geometry, Princeton University Press, 1991.

Centro Atómico Bariloche and Instituto Balseiro, 8400-S. C. de Bariloche, Argentina

E-mail address: sergio@cabtep2.cnea.gov.ar