ABOUT BREZIS-MERLE PROBLEM WITH HOLDERIAN CONDITION: THE CASE OF ONE OR TWO BLOW-UP POINTS.

SAMY SKANDER BAHOURA

ABSTRACT. We consider the following problem on open set Ω of \mathbb{R}^2:

$$\begin{cases}
-\Delta u_i = V_i e^{u_i} & \text{in } \Omega \\
u_i = 0 & \text{on } \partial \Omega.
\end{cases}$$

We give, globally a quantization analysis of the previous problem under the conditions:

$$\int_{\Omega} e^{u_i} \, dy \leq C,$$

and,

$$0 \leq V_i \leq b < +\infty$$

On the other hand, if we assume that

$$\int_{\Omega} V_i e^{u_i} \, dy \leq 4\pi,$$

or, V_i is holderian with $1/2 < s \leq 1$, and,

$$\int_{\Omega} V_i e^{u_i} \, dy \leq 24\pi - \epsilon, \quad \epsilon > 0$$

then we have a compactness result, namely:

$$\sup_{\Omega} u_i \leq c = c(b, C, A, s, \Omega).$$

where A is the holderian constant of V_i.

1. INTRODUCTION AND MAIN RESULTS

We set $\Delta = \partial_{11} + \partial_{22}$ on open set Ω of \mathbb{R}^2 with a smooth boundary.

We consider the following problem on $\Omega \subset \mathbb{R}^2$:

$$(P) \begin{cases}
-\Delta u_i = V_i e^{u_i} & \text{in } \Omega \\
u_i = 0 & \text{on } \partial \Omega.
\end{cases}$$

We assume that,

$$\int_{\Omega} e^{u_i} \, dy \leq C,$$

and,

$$0 \leq V_i \leq b < +\infty$$

The previous equation is called, the Prescribed Scalar Curvature equation, in relation with conformal change of metrics. The function V_i is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem.

Equations of this type were studied by many authors, see [7, 8, 10, 12, 13, 17, 18, 21, 22, 25].

We can see in [8], different results for the solutions of those type of equations with or without boundaries conditions and, with minimal conditions on V, for example we suppose $V_i \geq 0$ and $V_i \in L^p(\Omega)$ or $V_i e^{u_i} \in L^p(\Omega)$ with $p \in [1, +\infty]$.

Among other results, we can see in [8], the following important Theorem,
Theorem A (Brezis-Merle [8]). If \((u_i), (V_i)\) are two sequences of functions relatively to the previous problem \((P)\) with, \(0 < a \leq V_i \leq b < +\infty\), then, for all compact set \(K\) of \(\Omega\),

\[
\sup_K u_i \leq c = c(a, b, m, K, \Omega) \text{ if } \inf_{\Omega} u_i \geq m.
\]

A simple consequence of this theorem is that, if we assume \(u_i = 0\) on \(\partial \Omega\) then, the sequence \((u_i)\) is locally uniformly bounded. We can find in [8] an interior estimate if we assume \(a = 0\), but we need an assumption on the integral of \(e^{u_i}\).

If, we assume \(V\) with more regularity, we can have another type of estimates, \(\sup + \inf\). It was proved, by Shafrir, see [22], that, if \((u_i), (V_i)\) are two sequences of functions solutions of the previous equation without assumption on the boundary and, \(0 < a \leq V_i \leq b < +\infty\), then we have the following interior estimate:

\[
C \left(\frac{a}{b} \right) \sup_{K} u_i + \inf_{\Omega} u_i \leq c = c(a, b, K, \Omega).
\]

We can see in [12], an explicit value of \(C \left(\frac{a}{b} \right) = \sqrt{\frac{a}{b}}\). In his proof, Shafrir has used the Stokes formula and an isoperimetric inequality, see [6]. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose \((V_i)\) uniformly Lipschitzian with \(A\) the Lipschitz constant, then, \(C(a/b) = 1\) and \(c = c(a, b, A, K, \Omega)\), see Brézis-Li-Shafrir [7]. This result was extended for Hölderian sequences \((V_i)\), by Chen-Lin, see [12]. Also, we can see in [17], an extension of the Brezis-Li-Shafrir to compact Riemann surface without boundary. We can see in [18] explicit form, \((8\pi m, m \in \mathbb{N}^* \text{ exactly})\), for the numbers in front of the Dirac masses, when the solutions blow-up. Here, the notion of isolated blow-up point is used. Also, we can see in [13] and [25] refined estimates near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

In the similar way, we have in dimension \(n \geq 3\), with different methods, some a priori estimates of the type \(\sup \times \inf\) for equation of the type:

\[
-\Delta u + \frac{n - 2}{4(n - 1)} R_g(x)u = V(x)u^{(n+2)/(n-2)} \text{ on } M.
\]

where \(R_g\) is the scalar curvature of a riemannian manifold \(M\), and \(V\) is a function. The operator \(\Delta = \nabla^i (\nabla_i)\) is the Laplace-Beltrami operator on \(M\).

When \(V \equiv 1\) and \(M\) compact, the previous equation is the Yamabe equation. T. Aubin and R. Schoen solved the Yamabe problem, see for example [1]. Also, we can have an idea on the Yamabe Problem in [15]. If \(V\) is not a constant function, the previous equation is called a prescribing curvature equation, we have many existence results see also [1].

Now, if we look at the problem of a priori bound for the previous equation, we can see in [2, 3, 4, 5, 11, 16, 20] some results concerning the \(\sup \times \inf\) type of inequalities when the manifold \(M\) is the sphere or more generally a locally conformally flat manifold. For these results, the moving-plane was used, we refer to [9, 14, 19] to have an idea on this method and some applications of this method.

Also, there are similar problems defined on complex manifolds for the Complex Monge-Ampere equation, see [23, 24]. They consider, on compact Kahler manifold \((M, g)\), the following equation:

\[
\begin{cases}
(\omega_g + \partial \bar{\partial} \varphi)^n = e^{f - t \varphi} \omega_g^n, \\
\omega_g + \partial \bar{\partial} \varphi > 0 \text{ on } M
\end{cases}
\]

And, they prove some estimates of type \(\sup_M (\varphi - \psi) + m \inf_M (\varphi - \psi) \leq C(t)\) or \(\sup_M (\varphi - \psi) + n \inf_M (\varphi - \psi) \geq C(t)\) under the positivity of the first Chern class of \(M\).

The function \(\psi\) is a \(C^2\) function such that:

2
\[\omega_\partial + \partial \bar{\partial} \psi \geq 0 \text{ and } \int_M e^{f - t\psi} \omega_\partial^n = Vol_\partial (M), \]

Our main results are:

Theorem 1.1. Assume \(\Omega = B_1(0) \), and,

\[u_i(x_i) = \sup_{B_1(0)} u_i \to +\infty. \]

There is a finite number of sequences \((x_i^k), (\delta_i^k), 0 \leq k \leq m, \) such that:

\[(x_i^0), (x_i), \delta_i^0 = \delta_i = d(x_i, \partial B_1(0)) \to 0, \]

and each \(\delta_i^k \) is of order \(d(x_i^k, \partial B_1(0)) \).

and,

\[u_i(x_i^k) = \sup_{B_1(0) - \bigcup_{j=0}^{k-1} B(x_j^k, \delta_j)} u_i \to +\infty, \]

\[u_i(x_i^k) + 2 \log \delta_i^k \to +\infty, \]

\[\forall \, \epsilon > 0, \sup_{B_1(0) - \bigcup_{j=0}^{m-k-1} B(x_j^k, \delta_j)} u_i \leq C_\epsilon \]

\[\forall \, \epsilon > 0, \limsup_{i \to +\infty} \int_{B(x_i^k, \delta_i^k)} V_i e^{u_i}dy \geq 4\pi > 0. \]

If we assume:

\[V_i \to V \text{ in } C^0(B_1(0)), \]

then,

\[\forall \, \epsilon > 0, \limsup_{i \to +\infty} \int_{B(x_i^k, \delta_i^k)} V_i e^{u_i}dy = 8\pi m_k, \quad m_k \in \mathbb{N}^*. \]

And, thus, we have the following convergence in the sense of distributions:

\[\int_{B_1(0)} V_i e^{u_i}dy \to \int_{B_1(0)} V e^{u}dy + \sum_{k=0}^{m} 8\pi m_k \delta_{x_0^k}, \quad m_k \in \mathbb{N}^*, \quad x_0^k \in \partial B_1(0). \]

Theorem 1.2. Assume that:

\[\int_{B_1(0)} V_i e^{u_i}dy \leq 4\pi, \]

Then,

\[u_i(x_i) = \sup_{B_1(0)} u_i \leq c = c(b, C), \]

Theorem 1.3. Assume that, \(V_i \) is uniformly \(s \)-holderian with \(1/2 < s \leq 1, \) and,

\[\int_{B_1(0)} V_i e^{u_i}dy \leq 24\pi - \epsilon, \quad \epsilon > 0, \]

then we have:

\[\sup_{\Omega} u_i \leq c = c(b, C, A, s, \Omega). \]

where \(A \) is the holderian constant of \(V_i. \)
Question 1: (a Bartolucci type result; one holderian singularity): with the same technique, assume that:

\[V_i(x) = (1 + x_1^s)W_i(x) \text{ for example and } 0 \in \partial \Omega \]

with \(W_i \) uniformly lipschitzian and, \(0 < s \leq 1 \), can one conclude with the Pohozaev identity that the sequence is compact? Here we extend the case \(0 < s \leq 1/2 \).

Question 2: (the limit case \(s = 1/2 \)) assume that \(V_i \) is uniformly 1/2- holderian with \(A_i \), the holderian constant and suppose that \(A_i \to 0 \), can one conclude with the blow-up technique that the sequence of the solutions \(u_i \) is compact?

2. PROOFS OF THE RESULTS

Proofs of the theorems:

Without loss of generality, we can assume that \(\Omega = B_1(0) \) the unit ball centered on the origin.

Here, \(G \) is the Green function of the Laplacian with Dirichlet condition on \(B_1(0) \). We have (in complex notation):

\[G(x, y) = \frac{1}{2\pi} \log \frac{|1 - \bar{x}y|}{|x - y|}, \]

we can write:

\[u_i(x) = \int_{B_i(0)} G(x, y)V_i(y)e^{u_i(y)} dy, \]

we write,

\[u_i(x_i) = \int_{\Omega} G(x_i, y)V_i(y)e^{u_i(y)} dx = \int_{\Omega - B(x_i, \delta_i)} G(x_i, y)V_i e^{u_i(y)} dy + \int_{B(x_i, \delta_i)} G(x_i, y)V_i e^{u_i(y)} dy \]

According to the maximum principle, the harmonic function \(G(x_i, \cdot) \) on \(\Omega - B(x_i, \delta_i) \) take its maximum on the boundary of \(B(x_i, \delta_i) \), we can compute this maximum:

\[G(x_i, y_i) = \frac{1}{2\pi} \log \frac{|1 - \bar{x}_i y_i|}{|x_i - y_i|} = \frac{1}{2\pi} \log \frac{|1 - \bar{x}_i(x_i + \delta_i \theta_i)|}{|\delta_i|} = \frac{1}{2\pi} \log((1 + |x_i| + \theta_i) < +\infty \]

with \(|\theta_i| = 1 \).

Thus,

\[u_i(x_i) \leq C + \int_{B(x_i, \delta_i)} G(x_i, y)V_i e^{u_i(y)} dy \leq C + e^{u_i(x_i)} \int_{B(x_i, \delta_i)} G(x_i, y) dy \]

Now, we compute \(\int_{B(x_i, \delta_i)} G(x_i, y) dy \)

we set in polar coordinates,

\[y = x_i + \delta_i t \theta \]

we find:

\[\int_{B(x_i, \delta_i)} G(x_i, y) dy = \int_{B(x_i, \delta_i)} \frac{1}{2\pi} \log \frac{|1 - \bar{x}_i y|}{|x_i - y|} = \frac{1}{2\pi} \int_0^{2\pi} \int_0^{\delta_i^2} \delta_i^2 \log \frac{|1 - \bar{x}_i(x_i + \delta_i \theta)|}{\delta_i} |t dtd\theta = \]

\[= \frac{1}{2\pi} \int_0^{2\pi} \int_0^{1} \delta_i^2 (\log(|1 + |x_i| + t\theta|) - \log t) dtd\theta \leq C\delta_i^2. \]

Thus,

\[u_i(x_i) \leq C + C\delta_i^2 e^{u_i(x_i)}, \]

which we can write, because \(u_i(x_i) \to +\infty \),

\[u_i(x_i) \leq C\delta_i^2 e^{u_i(x_i)}, \]
We can conclude that:

\[u_i(x_i) + 2 \log \delta_i \to +\infty. \]

Now, consider the following function:

\[v_i(y) = u_i(x_i + \delta_i y) + 2 \log \delta_i, \quad y \in B(0, 1/2) \]

The function satisfies all conditions of the Brezis-Merle hypothesis, we can conclude that, on each compact set:

\[v_i \to -\infty \]

we can assume, without loss of generality that for \(1/2 > \epsilon > 0 \), we have:

\[v_i \to -\infty, \quad y \in B(0, 2\epsilon) - B(0, \epsilon), \]

Lemma 2.1. For all \(1/4 > \epsilon > 0 \), we have:

\[\sup_{B(x_i, (3/2)\delta_i \epsilon) - B(x_i, \delta_i \epsilon)} u_i \leq C_\epsilon. \]

Proof of the lemma

Let \(t_i' \) and \(t_i \) the points of \(B(x_i, 2\delta_i \epsilon) - B(x_i, (1/2)\delta_i \epsilon) \) and \(B(x_i, (3/2)\delta_i \epsilon) - B(x_i, \delta_i \epsilon) \) respectively where \(u_i \) takes its maximum.

According to the Brezis-Merle work, we have:

\[u_i(t_i') + 2 \log \delta_i \to -\infty \]

We write,

\[u_i(t_i) = \int_{\Omega} G(t_i, y) V_i(y) e^{u_i(y)} \, dx = \int_{\Omega - B(x_i, 2\delta_i \epsilon)} G(t_i, y) V_i e^{u_i(y)} \, dy + \]

\[+ \int_{B(x_i, 2\delta_i \epsilon) - B(x_i, (1/2)\delta_i \epsilon)} G(t_i, y) V_i e^{u_i(y)} \, dy + \]

\[+ \int_{B(x_i, (1/2)\delta_i \epsilon)} G(t_i, y) V_i e^{u_i(y)} \, dy \]

But, in the first and the third integrals, the point \(t_i \) is far from the singularity \(x_i \) and we soon that the Green function is bounded. For the second integrals, after a change of variable, we can see that this integral is bounded by (we take the supremum in the annulus and use Brezis-Merle theorem)

\[\delta_i^2 e^{u_i(t_i')} \times I_j \]

where \(I_j \) is a Jensen integral of the form \(\int_0^1 \int_0^{2\pi} (\log(|1 + |x_i| + t\theta| - \log|\theta_i - t\theta|) \, dt \, d\theta \)

which is bounded.

we conclude the lemma.

From the lemma, we see that far from the singularity the sequence is bounded, thus if we take the supremum on the set \(B_1(0) - B(x_i, \delta_i \epsilon) \) we can see that this supremum is bounded and thus the sequence of functions is uniformly bounded or tends to infinity and we use the same arguments as for \(x_i \) to conclude that around this point and far from the singularity, the sequence is bounded.

The process will be finished, because, according to Brezis-Merle estimate, around each supremum constructed and tending to infinity, we have:

\[\forall \epsilon > 0, \limsup_{i \to +\infty} \int_{B(x_i, \delta_i \epsilon)} V_i e^{u_i} \, dy \geq 4\pi > 0. \]

Finally, with this construction, we have a finite number of "exterior" blow-up points and outside the singularities the sequence is bounded uniformly, for example, in the case of one "exterior" blow-up point, we have:
\[u_i(x_i) \to +\infty \]

\[\forall \epsilon > 0, \sup_{B_i(0) - B(x_i, \delta_i)} u_i \leq C_\epsilon \]

\[\forall \epsilon > 0, \limsup_{i \to +\infty} \int_{B(x_i, \delta_i)} V_i e^{u_i} dy \geq 4\pi > 0. \]

Now, if we suppose that there is another "exterior" blow-up \((t_i)i\), we have, because \((u_i)i\) is uniformly bounded in a neighborhood of \(\partial B(x_i, \delta_i)\), we have:

\[d(t_i, \partial B(x_i, \delta_i)) \geq \delta_i \epsilon \]

If we set,

\[\delta_i' = d(t_i, \partial(B_i(0) - B(x_i, \delta_i))) = \inf\{d(t_i, \partial B(x_i, \delta_i)), d(t_i, \partial(B_i(0)))\} \]

then, \(\delta_i'\) is of order \(d(t_i, \partial B_i(0))\). To see this, we write:

\[d(t_i, \partial B_i(0)) \leq d(t_i, \partial B(x_i, \delta_i)) + d(\partial B(x_i, \delta_i), x_i) + d(x_i, \partial B_i(0)), \]

Thus,

\[\frac{d(t_i, \partial B_i(0))}{d(t_i, \partial B(x_i, \delta_i))} \leq 2 + \frac{1}{\epsilon}, \]

Thus,

\[\delta_i' \leq d(t_i, \partial B_i(0)) \leq \delta_i'(2 + \frac{1}{\epsilon}). \]

1) The sequence \((u_i)i\) is uniformly bounded near the boundary of \(B(x_i, \delta_i)\). We are in the case of the first step, with \((t_i)i\) in place of \((x_i)i\). We can see that the work done with the sequence \((x_i)i\) is similar the one with \((t_i)i\). If we explain more, we can take the Green function \(G_i\) of the domain \(B_i(0) - B(x_i, \delta_i)\), we can see, in this case that, according to the maximum principle that \(0 < G_i(t_i, \cdot) \leq G(t_i, \cdot)\). We can see, here, that \(G(t_i, \cdot)\) is bounded outside a ball centered in \(t_i\) as for \(x_i\), and we can use similar estimates around \(t_i\) as for \(x_i\).

2) or, we do directly the same approach for \(t_i\) as \(x_i\) by using directly the Green function of the unit ball.

Now, if we look to the blow-up points, we can see, with this work that, after finite steps, the sequence will be bounded outside a finite number of balls, because of Brezis-Merle estimate:

\[\forall \epsilon > 0, \limsup_{i \to +\infty} \int_{B(t_i, \delta_i')} V_i e^{u_i} dy \geq 4\pi > 0. \]

Finally, we can say that, there is a finite number of sequences \((x_i^k)i, (\delta_i^k), 0 \leq k \leq m\), such that:

\[(x_i^0)i \equiv (x_i)i, \quad \delta_i^0 = \delta_i = d(x_i, \partial B_i(0)), \]

\[(x_i^1)i \equiv (t_i)i, \quad \delta_i^1 = \delta_i' = d(t_i, \partial(B_i(0) - B(x_i, \delta_i))), \]

and each \(\delta_i^k\) is of order \(d(x_i^k, \partial B_i(0))\).

and,

\[u_i(x_i^k) = \sup_{B_i(0) - \cup_{j=0}^{k-1} B(x_i^j, \delta_i^j)} u_i \to +\infty, \]

\[u_i(x_i^k) + 2 \log \delta_i^k \to +\infty, \]

6
∀ \epsilon > 0, \quad \sup_{B_1(0) - \bigcup_{\epsilon=0}^{m} B(x^i, \delta^i_\epsilon)} u_i \leq C_\epsilon

∀ \epsilon > 0, \quad \limsup_{i \to +\infty} \int_{B(x^i, \delta^i_\epsilon)} V_i e^{u_i} \, dy \geq 4\pi > 0.

The work of YY Li-I-Shafrir

With the previous method, we have a finite number of "exterior" blow-up points (perhaps the same) and the sequences tend to the boundary. With the aid of proposition 1 of the paper of Li-Shafrir, we see that around each exterior blow-up, we have a finite number of "interior" blow-ups. Around each exterior blow-up, we have after rescaling with \delta^i_\epsilon, the same situation as around a fixed ball with positive radius. If we assume:

\[V_i \to V \text{ in } C^0(B_1(0)), \]

then,

\[\forall \epsilon > 0, \quad \limsup_{i \to +\infty} \int_{B(x^i, \delta^i_\epsilon)} V_i e^{u_i} \, dy = 8\pi m_\epsilon, \quad m_\epsilon \in \mathbb{N}^*. \]

And, thus, we have the following convergence in the sense of distributions:

\[\int_{B_1(0)} V_i e^{u_i} \, dy \to \int_{B_1(0)} V e^{u} \, dy + \sum_{k=0}^{m} 8\pi m'_k \delta^i_\epsilon, \quad m'_k \in \mathbb{N}^*, \quad x^k_0 \in \partial B_1(0). \]

Consequence 1: Proof of theorem 2

Assume that:

\[\int_{B_1(0)} V_i e^{u_i} \, dy \leq 4\pi, \]

Then, if the sequence blow-up, there is one and only one blow-up point and we have:

\[u_i(x^i_1) = \sup_{B_1(0)} u_i \to +\infty, \]
\[u_i(x^i_1) + 2 \log \delta_i \to +\infty, \]
\[\forall \epsilon > 0, \quad \sup_{B_1(0) - B(x^i, \delta^i_\epsilon)} u_i \leq C_\epsilon \]

We set,

\[r^i_i = e^{-u_i(x^i_1)/2}, \]

The blow-up function is locally bounded thus,

\[r^2_i e^{u_i} \leq C \text{ on } B(x^i, 2r^i_i). \]

We write:

\[u_i(x^i_1) = \int_{\Omega - B(x^i, \delta^i_\epsilon)} G(x^i, y)V_i e^{u(y)} \, dy + \int_{B(x^i, \delta^i_\epsilon)} G(x^i, y)V_i e^{u(y)} \, dy \leq C + \int_{B(x^i, \delta^i_\epsilon)} G(x^i, y)V_i e^{u(y)} \, dy \]

we have:

\[\int_{B(x^i, \delta^i_\epsilon)} G(x^i, y)V_i e^{u(y)} \, dy = \int_{B(x^i, \delta^i_\epsilon) - B(x, 2r^i_i)} G(x^i, y)V_i e^{u(y)} \, dy + \int_{B(x^i, 2r^i_i)} G(x^i, y)V_i e^{u(y)} \, dy \]

We use the maximum principle on \(B(x^i, \delta^i_\epsilon) - B(x^i, 2r^i_i)\) and the explicit formula of \(G\) to prove that:

\[G(x^i, y) \leq C + \frac{1}{2\pi} \log \frac{\delta^i_i}{r^i_i} = C + \frac{1}{4\pi}(u_i(x^i_1) + 2 \log \delta_i). \]
On $B(x_i, 2r_i)$ we use the fact that:

$$r_i^2 e^{u_i} \leq C$$

and the explicit formula for G to have:

$$\int_{B(x_i, 2r_i)} G(x_i, y)V_i e^{u_i(y)} dy \leq C + \frac{1}{2\pi} \log \frac{\delta_i}{r_i} \int_{B(x_i, 2r_i)} V_i e^{u_i(y)} dy.$$

We conclude that:

$$u_i(x_i) \leq C + \frac{1}{2\pi} \log \frac{\delta_i}{r_i} \int_{B(x_i, \delta_i, 2r_i)} V_i e^{u_i(y)} dy.$$

which we can write as:

$$u_i(x_i) \leq C + \frac{1}{4\pi} (u_i(x_i) + 2 \log \delta_i) \int_{B(x_i, \delta_i, 2r_i)} V_i e^{u_i(y)} dy.$$

Our hypothesis on the integral $\int V_i e^{u_i}$ imply that:

$$\log \delta_i \geq -C,$$

in other words, we have uniformly,

$$d(x_i, \partial B_1(0)) = \delta_i \geq e^{-C} > 0.$$

this contradicts the fact that (x_i) tends to the boundary. The sequence (u_i) is bounded in this case.

We can see that the case:

$$\int_{B_1(0)} V_i e^{u_i} dy \leq 4\pi,$$

is optimal, because Brezis-Merle have proved that, there is a counterexample of blow-up sequence with:

$$\int_{B_1(0)} V_i e^{u_i} dy = 4\pi A > 4\pi.$$

Consequence 2: using a Pohozaev-type identity, proof of theorem 3

By a conformal transformation, we can assume that our domain $\Omega = B^+$ is a half ball centered at the origin, $B^+ = \{x, |x| \leq 1, x_1 \geq 0\}$. In this case the normal at the boundary is $\nu = (-1, 0)$ and $u_i(0, x_2) \equiv 0$. Also, we set x_i the blow-up point and $x_i^2 = (0, x_i^2)$ and $x_i^1 = (x_i^1, 0)$ respectively the second and the first part of x_i. Let ∂B^+ the part of the boundary for which u_i and its derivatives are uniformly bounded and thus converge to the corresponding function.

The case of one blow-up point:

Theorem 2.2. If V_i is s-Holderian with $1/2 < s \leq 1$ and,

$$\int_{\Omega} V_i e^{u_i} dy \leq 16\pi - \epsilon, \ \epsilon > 0,$$

we have :

$$V_i(x_i) \int_{\Omega} e^{u_i} dy - V(0) \int_{\Omega} e^{u} dy = o(1)$$

which means that there is no blow-up points.
The Pohozaev identity gives us the following formula:

\[\int_{\Omega} < (x - x_2^j)|\nabla u_i > (-\Delta u_i)dy = \int_{\Omega} < (x - x_2^j)|\nabla u_i > V_i e^{u_i}dy = A_i \]

\[A_i = \int_{\partial B^+} < (x - x_2^j)|\nabla u_i > < \nu|\nabla u_i > d\sigma + \int_{\partial B^+} < (x - x_2^j)|\nu > |\nabla u_1|^2d\sigma \]

We can write it as:

\[\int_{\Omega} < (x - x_2^j)|\nabla u_i > (V_i - V_i(x_i))e^{u_i}dy = A_i + V_i(x_i) \int_{\Omega} < (x - x_2^j)|\nabla u_i > e^{u_i}dy = \]

\[= A_i + V_i(x_i) \int_{\Omega} < (x - x_2^j)|\nabla (e^{u_i}) > dy \]

And, if we integrate by part the second term, we have (because \(x_1 = 0 \) on the boundary and \(\nu_2 = 0 \)):

\[\int_{\Omega} < (x - x_2^j)|\nabla u_i > (V_i - V_i(x_i))e^{u_i}dy = -2V_i(x_i) \int_{\Omega} e^{u_i}dy + B_i \]

where \(B_i \) is,

\[B_i = V_i(x_i) \int_{\partial B^+} < (x - x_2^j)|\nu > e^{u_i}dy \]

applying the same procedure to \(u \), we can write:

\[-2V_i(x_i) \int_{\Omega} e^{u_i}dy + 2V(0) \int_{\Omega} e^{u_i}dy = \int_{\Omega} < (x - x_2^j)|\nabla u_i > (V_i - V_i(x_i))e^{u_i}dy - \int_{\Omega} < (x - x_2^j)|\nabla u > (V - V(0))e^{u}dy + \]

\[+ (A_i - A) + (B_i - B), \]

where \(A \) and \(B \) are,

\[A = \int_{\partial B^+} < (x - x_2^j)|\nabla u > < \nu|\nabla u > d\sigma + \int_{\partial B^+} < (x - x_2^j)|\nu > |\nabla u|^2d\sigma \]

\[B_i = V_i(x_i) \int_{\partial B^+} < (x - x_2^j)|\nu > e^{u}dy \]

and, because of the uniform convergence of \(u_i \), and its derivatives on \(\partial B^+ \), we have:

\[A_i - A = o(1) \text{ and } B_i - B = o(1) \]

which we can write as:

\[V_i(x_i) \int_{\Omega} e^{u_i}dy - V(0) \int_{\Omega} e^{u_i}dy = \int_{\Omega} < (x - x_2^j)|\nabla (u_i - u) > (V_i - V_i(x_i))e^{u_i}dy + \]

\[+ \int_{\Omega} < (x - x_2^j)|\nabla (u_i - u) > (V_i - V_i(x_i))(e^{u_i} - e^u)dy + \]

\[+ \int_{\Omega} < (x - x_2^j)|\nabla u > (V_i - V_i(x_i) - (V - V(0)))e^{u}dy + o(1) \]

We can write the second term as:

\[\int_{\Omega} < (x - x_2^j)|\nabla u > (V_i - V_i(x_i))(e^{u_i} - e^u)dy = \int_{\Omega - B(0, \epsilon)} < (x - x_2^j)|\nabla u > (V_i - V_i(x_i))(e^{u_i} - e^u)dy + \]

\[+ \int_{B(0, \epsilon)} < (x - x_2^j)|\nabla u > (V_i - V_i(x_i))(e^{u_i} - e^u)dy = o(1), \]
because of the uniform convergence of \(u_i \) to outside a region which contain the blow-up and the uniform convergence of \(V_i \). For the third integral we have the same result:

\[
\int_\Omega < (x - x_i^2) | \nabla u > (V_i - V_i(x_i) - (V - V(0))) e^{u_i} dy = o(1),
\]

because of the uniform convergence of \(V_i \) to \(V \).

Now, we look to the first integral:

\[
\int_\Omega < (x - x_i^2) | \nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy,
\]

we can write it as:

\[
\int_\Omega < (x - x_i^2) | \nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy = \int_\Omega < (x - x_i) | \nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy + \int_\Omega < x_i^2 | \nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy,
\]

Thus, we have proved by using the Pohozaev identity the following equality:

\[
\int_\Omega < (x - x_i) | \nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy + \int_\Omega < x_i^2 | \nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy =
\]

\[
= 2V_i(x_i) \int_\Omega e^{u_i} dy - 2V(0) \int_\Omega e^y dy + o(1)
\]

We can see, because of the uniform boundedness of \(u_i \) outside \(B(x_i, \delta_i \epsilon) \) and the fact that:

\[
|| \nabla (u_i - u) ||_1 = o(1),
\]

it is sufficient to look to the integral on \(B(x_i, \delta_i \epsilon) \).

Assume that we are in the case of one blow-up, it must be \((x_i) \) and isolated, we can write the following inequality as a consequence of YY.Li-I.Shafrir result:

\[
u_i(x) + 2 \log |x - x_i| \leq C,
\]

We use this fact and the fact that \(V_i \) is s-holderian to have that, on \(B(x_i, \delta_i \epsilon) \),

\[
|<(x - x_i)(V_i - V_i(x_i))e^{u_i}| \leq \frac{C}{|x - x_i|^{1-s}} \in L^{(2-\epsilon)/(1-s)} \forall \epsilon > 0,
\]

and, we use the fact that:

\[
|| \nabla (u_i - u) ||_q = o(1), \forall 1 \leq q < 2
\]

to conclude by the Holder inequality that:

\[
\int_{B(x_i, \delta_i \epsilon)} < (x - x_i^2) | \nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy = o(1),
\]

For the other integral, namely:

\[
\int_{B(x_i, \delta_i \epsilon)} < x_i^2 | \nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy,
\]

We use the fact that, because our domain is a half ball, and the \(\sup + \inf \) inequality to have:

\[
x_i^2 = \delta_i,
\]

\[
u_i(x) + 4 \log \delta_i \leq C
\]

and,

10
\[e^{(s/2)u_i(x)} \leq |x - x_i|^{-s}, \]
\[|V_i - V_i(x_i)| \leq |x - x_i|^*, \]

Finally, we have:
\[\left| \int_{B(x_i, \delta_i, \epsilon)} < x_i^1 |\nabla (u_i - u) > (V_i - V_i(x_i)) e^{u_i} dy \right| \leq C \int_{B(x_i, \delta_i, \epsilon)} |\nabla (u_i - u)| e^{((3/4) - (s/2))u_i}, \]

But in the second member, for \(1/2 < s \leq 1\), we have \(q_s = 1/(3/4 - s/2) > 2\) and thus \(q'_s < 2\) and,
\[e^{((3/4) - (s/2))u_i} \in L^{q'_s}, \]

one conclude that:
\[\||\nabla (u_i - u)||_{q'_s} = o(1), \forall 1 \leq q'_s < 2, \]

the case of two blow-up points:

Theorem 2.3. If \(V_i \) is \(s\)-Holderian with \(1/2 < s \leq 1\) and,
\[\int_{\Omega} V_i e^{u_i} dy \leq 24\pi - \epsilon, \epsilon > 0, \]
we have:
\[V_i(x_i) \int_{\Omega} e^{u_i} dy - V(0) \int_{\Omega} e^{u_i} dy = o(1) \]

which means that there is no blow-up, which is a contradiction.

Finally, for one blow-up point and \(V_i \) is \(s\)-Holderian with \(1/2 < s \leq 1\), the sequence \((u_i)\) is uniformly bounded on \(\Omega\).

Proof of the Theorem

The case of two "interior" blow-up points:

As in the previous case, we assume that \(\Omega = B^+ \) is the half ball. We have two "interior" blow-up points \(x_i \) and \(y_i \):
\[|y_i - x_i| \leq \delta_i \epsilon, \]

We use a Pohozaev type identity:
\[\int_{\Omega} < (x - x_i^2) |\nabla u_i| > (-\Delta u_i) dy = \int_{\Omega} < (x - x_i^2) |\nabla u_i| > V_i e^{u_i} dy = A_i \]

with \(A_i \) the regular part of the identity (on which the uniform convergence holds).
\[A_i = \int_{\partial B^+} < (x - x_i^2) |\nabla u_i| > \nu |\nabla u_i| > d\sigma + \int_{\partial B^+} < (x - x_i^2) |\nu > |\nabla u_i|^2 d\sigma \]

We divide our domain in two domain \(\Omega_i^1\) and \(\Omega_i^2\) such that:
\[\Omega_1^i = \{ x, |x - x_i| \leq |x - y_i| \}, \quad \Omega_2^i = \{ x, |x - x_i| \geq |x - y_i| \}. \]

We set,

\[D_i = \{ x, |x - x_i| = |x - y_i| \}. \]

We write:

\[A_i = \int_{\Omega_1^i} <(x - x_i^i)|\nabla u_i > (V_i - V_i(x_i))e^{u_i} dy + \int_{\Omega_2^i} <(x - x_i^i)|\nabla u_i > (V_i - V_i(y_i))e^{u_i} dy + V_i(x_i) \int_{\Omega_1^i} <(x - x_i^i)|\nabla u_i > e^{u_i} dy + V_i(y_i) \int_{\Omega_2^i} <(x - x_i^i)|\nabla u_i > e^{u_i} dy. \]

As for the case of one blow-up point, it is sufficient to consider terms which contain the difference \(\nabla (u_i - u) \).

We can write the last addition as (after using \(\nabla (u_i - u) \)):

\[
\left(V_i(x_i) \int_{\Omega} <(x - x_i^i)|\nabla u_i > e^{u_i} dy - \int_{\Omega} <(x - x_i^i)|\nabla u > e^{u} dy \right) + \\
(V_i(y_i) - V_i(x_i)) \int_{\Omega_2^i} <(x - x_i^i)|\nabla (u_i - u) > e^{u_i} dy.
\]

First of all, we consider the term (which equal, after integration by part to):

\[
V_i(x_i) \int_{\Omega} <(x - x_i^i)|\nabla u_i > e^{u_i} dy - \int_{\Omega} <(x - x_i^i)|\nabla u > e^{u} dy = \\
= -2V_i(x_i) \int_{\Omega} e^{u_i} dy + 2V(0) \int_{\Omega} e^{u} dy + (B_i - B)
\]

with the same notation for \(B_i \) and \(B \) as for the previous case.

Case 1: suppose that, \(|x_i - y_i| \geq |x_i - y_i|\),

thus

\[
|V_i(x_i) - V_i(y_i)| \leq |x_i - y_i|^s \leq |x_i - y_i|^s
\]

Thus,

\[
|(V_i(y_i) - V_i(x_i)) \int_{\Omega_2^i \cap \{ x, |x - x_i^i| \geq |x - y_i| \}} <(x - x_i^i)|\nabla (u_i - u) > e^{u_i} dy| \leq \int_{\Omega_2^i} |x - y_i|^{1+s} |\nabla (u_i - u)| e^{u_i} dy + \\
|\gamma_2 - x_i^i| \int_{\Omega_2^i} |x - y_i|^s |\nabla (u_i - u)| e^{u_i} dy + |\gamma_1| \int_{\Omega_2^i} |x - y_i|^s |\nabla (u_i - u)| e^{u_i} dy
\]

But,

\[
|y_i - x_i| \leq \delta_i
\]

we use the same method (with the sup + inf inequality) to prove that for \(1 \geq s > 1/2 \) the two integrals converges to 0.

Case 2: suppose that, \(|x_i - y_i| \leq |x_i - y_i|\),

We do integration by parts, we have one part on \(D_i \) and the other one on the circle with center \(y_i \).

\[
(V_i(y_i) - V_i(x_i)) \int_{D_i \cap \{ x, |x - y_i| \leq |x_i - y_i| \}} <(x - x_i^i)|\nabla (e^{u_i}) > dy = \\
= (V_i(y_i) - V_i(x_i)) \int_{D_i \cap \{ x, |x - y_i| \leq |x_i - y_i| \}} <(x - x_i^i)|\nabla (e^{u_i}) > dy + \\
\]

\[
\int_{\Omega_2^i \cap \{ x, |x - y_i| \leq |x_i - y_i| \}} <(x - x_i^i)|\nabla (e^{u_i}) > dy + \\
\int_{\Omega_2^i \cap \{ x, |x - y_i| \leq |x_i - y_i| \}} <(x - x_i^i)|\nabla (e^{u_i}) > dy
\]

\[=0\]
\[+ (V_i(y_i) - V_i(x_i)) \int_{\{x, |x - y_i| = |x - y_i|\} \cap \{x, |x - y_i| \leq |x - x_i|\}} (x - x_i^2) |\nu > e^{u_i} dy + \]
\[+ 2(V_i(y_i) - V_i(x_i)) \int_{\{x, |x - y_i| \leq |x - y_i|\}} e^{u_i} dy \]

We set:

\[I_1 = (V_i(y_i) - V_i(x_i)) \int_{D_i \cap \{x, |x - y_i| \leq |x - y_i|\}} (x - x_i^2) |\nu > e^{u_i} dy, \]
\[I_2 = (V_i(y_i) - V_i(x_i)) \int_{\{x, |x - x_i| = |x - y_i|\} \cap \{x, |x - y_i| \leq |x - x_i|\}} (x - x_i^2) |\nu > e^{u_i} dy \]

Lemma 2.4. We have:

\[I_1 = o(1), \]

and,

\[I_2 = o(1). \]

Proof of the lemma

For \(I_1 \), we have:

\[|V_i(x_i) - V_i(y_i)| \leq 2C|x - y_i|^s, \]

\[|I_1| \leq C \int_{D_i \cap \{x, |x - y_i| \leq |x - y_i|\}} |(x - y_i)| |\nu| |x - y_i|^s e^{u_i} + \]
\[+ |x_i^2 - y_i^2| \int_{D_i \cap \{x, |x - y_i| \leq |x - y_i|\}} |x - y_i|^s e^{u_i} dy + \]
\[+ |y_i^2| \int_{D_i \cap \{x, |x - y_i| \leq |x - y_i|\}} |x - y_i|^s e^{u_i} dy. \]

But,

\[x_i^2 = \delta_i, \]
\[|y_i - x_i| \leq \delta_i \epsilon, \]
\[u_i(x) + 4 \log \delta_i \leq C \]

and,

\[e^{(3/4)u_i(x)} \leq |x - y_i|^{-3/2}, \]

Thus,

\[|I_1| \leq \int_{D_i \cap \{x, |x - y_i| \leq |x - y_i|\}} |x - y_i|^s + \]
\[+ C \int_{D_i \cap \{x, |x - y_i| \leq |x - y_i|\}} |x - y_i|^{(3/2)\varphi + s} dy, \]

If we set \(t_0 = (x_i + y_i)/2 \), we have on one part of \(D_i \):

\[|x - t_0| \leq |x - y_i| = |x - x_i| \leq |x_i - y_i|, \]

by a change of variable \(u = x - t_0 \) on the line \(D_i \), we can compute the two last integrals directly, to have, for \(1 \geq s > 1/2 \):

\[|I_1| \leq C(|x_i - y_i|^s + |x_i - y_i|^{s - (1/2)}) = o(1), \]
For I_2 we have:

$$I_2 = (V_i(y_i) - V_i(x_i)) \int_{\{x,|x-y_i|=|x_i-y_i|\cap \{x,|x-x_i|\leq |x_i-y_i|\}} < (x - x_2^i)|\nu > e^{u_i} dy$$

and,

$$|V_i(x_i) - V_i(y_i)| \leq 2C|x - y_i|^s,$$

$$|I_2| \leq C \int_{\{x,|x-y_i|=|x_i-y_i|\cap \{x,|x-y_i|\leq |x-x_i|\}} |< (x - y_i)|\nu > ||x - y_i|^s e^{u_i} +
+|x_2^i - y_1^2| \int_{\{x,|x-y_i|=|x_i-y_i|\cap \{x,|x-y_i|\leq |x-x_i|\}} |x - y_i|^s e^{u_i} dy +
+|y_1^i| \int_{\{x,|x-y_i|=|x_i-y_i|\cap \{x,|x-x_i|\leq |x-x_i|\}} |x - y_i|^s e^{u_i} dy$$

with the same method as for I_1 we have:

$$|I_2| \leq C \int_{\{x,|x-y_i|=|x_i-y_i|\cap \{x,|x-y_i|\leq |x-x_i|\}} |x - y_i|^{s-1} +
+ \int_{\{x,|x-y_i|=|x_i-y_i|\cap \{x,|x-y_i|\leq |x-x_i|\}} |x - y_i|^{-(3/2)+s} dy,$$

Finally, we have:

$$|I_2| \leq C(|x_i - y_i|^s + |x_i - y_i|^{s-(1/2)}) = o(1),$$

The case of $m > 1$ "interior" blow-up points:

This case follow from the case of two "interior" blow-up points, we divide our domain Ω into m' domain which correspond two the spaces : $\Omega_{ik}^1 = \{x,|x-x_i^1| \leq |x-y_i^k|\}$, $\Omega_{ik}^2 = \{x,|x-x_i^1| \geq |x-y_i^k|\}$.

We use a Pohozaev-type identity and we use integration by part to obtain a principal term of the form:

$$V_i(x_i) \int_{\Omega} < (x - x_2^i)|\nabla u_i > e^{u_i} dy - \int_{\Omega} < (x - x_2^i)|\nabla u > e^{u_i} dy = -2V_i(x_i) \int_{\Omega} e^{u_i} dy + 2V(0) \int_{\Omega} e^{u_i} dy$$

and, we prove, similar to the case of one and two interior blow-up points that:

$$V_i(x_i) \int_{\Omega} e^{u_i} dy = V(0) \int_{\Omega} e^{u_i} dy = o(1)$$

The case of two "exterior" blow-up points:

Let $(x_i)_i$ and $(t_i)_i$ two sequences of "exterior" blow-up points. If $d(x_i, t_i) = O(\delta_i)$ or $d(x_i, t_i) = O(\delta_i^2)$ then we use the same technique as for two interior blow-up with the Pohozaev identity. In this case the $\sup + \inf$ inequality holds, because $d(x_i, t_i)$ is of order δ_i or δ_i^2.

Assume that:

$$\frac{d(x_i, t_i)}{\delta_i} \rightarrow +\infty \text{ and } \frac{d(x_i, t_i)}{\delta_i^2} \rightarrow +\infty$$

In this case, we assume that we are on the half ball. By a conformal transformation, f, we can assume that our two sequences are on the unit ball. First of all, we use the Pohozaev identity on the half ball as for the previous cases, but our domain change, we have one part is vertical, the second part is a part of the boundary of the unit ball, in which the sequences (u_i) and (∂u_i) are uniformly bounded and converge to the corresponding function, and the third part of boundary, is a regular curve D'_i such that its image by f is the mediatrice D_i of the segment (x_i, t_i). In the Pohozaev identity, we have a terms of type:
\[\int_{D'_i} \langle x - x_i^t \rangle \nabla u_i |\nabla u_i | > \nu |\nabla u_i | \, ds + \int_{D'_i} \langle x - x_i^t \rangle |\nabla |^2 \, ds \]

But if we integrate on the rest of the domain and if we use the Pohozaev identity on this second domain and we replace \(x_i^t \) by \(t_i \), the integral on \(D'_i \) is:

\[- \int_{D'_i} \langle x - x_i^t \rangle \nabla u_i |\nabla u_i | > \nu |\nabla u_i | \, ds - \int_{D'_i} \langle x - x_i^t \rangle |\nabla |^2 \, ds \]

If, we add the two integral, we find:

\[\int_{D'_i} \langle x - x_i^t \rangle \nabla u_i |\nabla u_i | > \nu |\nabla u_i | \, ds \]

We have the same techniques as for the previous cases ("interior" blow-up), except the fact that here, we use the Pohozaev identity on two different domains which the union is our half ball.

To conclude, we must show that this last integral is close to 0 as \(i \) tends to \(+\infty \). By a conformal change of the metric, it is sufficient to prove that the corresponding integral on the unit ball on \(D_i \) tends to 0. Without loss of generality, we can assume here that we work on the unit ball (for this integral).

On the unit ball, with the Dirichlet condition, the Green function is (in complex notation):

\[G(x, y) = \frac{1}{2\pi} \log \frac{|1 - xy|}{|x - y|}, \]

we can write:

\[u_i(x) = \int_{B_i(0)} G(x, y)V_i(y)e^{u_i(y)} \, dy. \]

We can compute (in complex notation) \(\partial_\nu G \) and \(\partial_\nu u_i \):

\[\partial_\nu G(x, y) = \frac{1 - |y|^2}{(x - y)(xy - 1)}, \]

\[\partial_\nu u_i(x) = \int_{B_i(0)} \partial_\nu G(x, y)V_i(y)e^{u_i(y)} \, dy = \int_{B_i(0)} \frac{1 - |y|^2}{(x - y)(xy - 1)}V_i(y)e^{u_i(y)} \, dy \]

Let \(t_i^0 = (x_i + t_i)/2 \). We assume that \(|x - t_i^0| \leq 1 - \epsilon \) and \(|t_i^0| \geq 1 - (\epsilon/2) \).

Proposition 2.5. 1) For \(((1/2) + \tilde{\epsilon})|x_i - t_i| \leq |x - t_i^0| \leq 1 - \epsilon \) we have,

\[|\partial_\nu u_i(x)| \leq C \delta_i |x_i - t_i| |x - t_i^0| = C' \]

2) For \(|x - t_i^0| \leq ((1/2) - \tilde{\epsilon})|x_i - t_i| \) we have,

\[|\partial_\nu u_i(x)| \leq C \delta_i |x_i - t_i| |x - t_i^0| = C' \]

\[\text{with } o(1) \rightarrow 0 \text{ as } i \rightarrow +\infty. \]

3) For \(((1/2) - \tilde{\epsilon})|x_i - t_i^0| \leq |x - t_i^0| \leq ((1/2) + \tilde{\epsilon})|x_i - t_i| \) we have,

\[|x_i - t_i||\nabla u_i|_{L^\infty(D_i \cap ((1/2) - \tilde{\epsilon})|x_i - t_i^0| \leq |x - t_i^0| \leq ((1/2) + \tilde{\epsilon})|x_i - t_i|}) \leq C. \]
Proof of the proposition:

To estimate $\partial_x u_i$ on D_i, we divide the last integral in three parts:

$$\partial_x u_i(x) = \int_{B_i(0) \setminus (B(x_i, \delta_i \epsilon) \cup B(t_i, \delta_i \epsilon'))} \frac{1 - |y|^2}{(x-y)(x-y-1)} V_i(y) e^{u_i(y)} dy +$$

$$+ \int_{B(x, \delta_i \epsilon) \setminus B(t_i, \delta_i \epsilon')} \frac{1 - |y|^2}{(x-y)(x-y-1)} V_i(y) e^{u_i(y)} dy +$$

$$+ \int_{B(t_i, \delta_i \epsilon')} \frac{1 - |y|^2}{(x-y)(x-y-1)} V_i(y) e^{u_i(y)} dy$$

Let us set:

$$I_1 = \int_{B_i(0) \setminus (B(x_i, \delta_i \epsilon) \cup B(t_i, \delta_i \epsilon'))} \frac{1 - |y|^2}{(x-y)(x-y-1)} V_i(y) e^{u_i(y)} dy$$

$$I_2 = \int_{B(x_i, \delta_i \epsilon) \setminus B(t_i, \delta_i \epsilon')} \frac{1 - |y|^2}{(x-y)(x-y-1)} V_i(y) e^{u_i(y)} dy,$$

$$I_3 = \int_{B(t_i, \delta_i \epsilon')} \frac{1 - |y|^2}{(x-y)(x-y-1)} V_i(y) e^{u_i(y)} dy$$

For the first integral, because $u_i \leq C$ on $B_i(0) - (B(x_i, \delta_i \epsilon) \cup B(t_i, \delta_i \epsilon'))$, we have:

$$|I_1| \leq C \int_{B_i(0)} \frac{1 - |y|^2}{|x-y| |x-y-1|} dy,$$

But, $1 \geq |x| = |x - t_i^0 + t_i^0| \geq |t_i^0| - |x - t_i^0| \geq 1 - (\epsilon/2) - (1 - \epsilon) = \epsilon/2$, thus, we can write:

$$|I_1| \leq C \int_{B_i(0)} \frac{1 - |y|^2}{|x-y| |x-y-1/x|} dy,$$

and, we use the fact that:

$$|\bar{y} - 1/x| \geq ||\bar{y} - 1/|x|| \geq |1/|x|| - |y| \geq (1 - |y|),$$

To have:

$$|\partial_x u_i(x)| \leq |I_2| + |I_3| + C \int_{B_i(0)} \frac{1 + |y|}{|x-y|} dy = |I_2| + |I_3| + C',$$

Now, we look to the second and third integrals, it is sufficient to consider the first one :

$$I_2 = \int_{B(x_i, \delta_i \epsilon) \setminus B(t_i, \delta_i \epsilon')} \frac{1 - |y|^2}{(x-y)(x-y-1)} V_i(y) e^{u_i(y)} dy$$

Case 1: $(1/2 + \epsilon)|x_i - t_i^0| < |x - t_i^0| < 1 - \epsilon$.

In this case we have:

$$1 - |y|^2 = 1 - |x_i + \delta_i \bar{y}|^2 = \delta_i(2 + o(1)),$$

and,

$$|x-y| = |x - t_i^0 + t_i^0 - y_i - \delta_i \bar{z}| \geq (\epsilon/2)|x_i - t_i|,$$

and,

$$|\bar{y} - 1| = |((x - t_i^0 + t_i^0 - x_i) + x_i)(x_i + \delta_i \bar{z}) - 1| \geq (\epsilon/2)|x - t_i^0|$$

Thus,

$$|\partial_x u_i(x)| \leq C' + C \frac{\delta_i}{|x_i - t_i| |x - t_i^0|} \frac{1}{|x - t_i^0|} = C' + \frac{o(1)}{|x - t_i^0|},$$

with $o(1) \rightarrow 0$ as $i \rightarrow +\infty$.
Case 2: \(|x - t_i^0| < ((1/2) - \bar{\epsilon})|x_i - t_i^0|\):
In this case, we have:
\[1 - |y|^2 = 1 - |x_i + \delta_i z|^2 = \delta_i(2 + o(1)),\]
and,
\[|x - y| = |x - t_i^0 + t_i^0 - y_i - \delta_i z| \geq (\bar{\epsilon}/2)|x_i - t_i^0|,\]
and,
\[|x\bar{y} - 1| = |((x - t_i^0 + t_i^0 - x_i) + x_i)(x_i + \delta_i z) - 1| \geq (\bar{\epsilon}/2)|x_i - t_i^0|,\]
Thus,
\[|\partial_i u_i(x)| \leq C' + C \frac{\delta_i}{|x_i - t_i^0|} \frac{1}{|x_i - t_i^0|} = C' + \frac{o(1)}{|x_i - t_i^0|},\]
with, \(o(1) \to 0\) as \(i \to +\infty\).

Case 3: \(((1/2) - \bar{\epsilon})|x_i - t_i^0| < |x - t_i^0| < ((1/2) + \bar{\epsilon})|x_i - t_i^0|\):
Let \(t_i^0\) the point of \(D_i\) such that \(|t_i^0 - t_i^0| = 1/2(|x_i - t_i^0|)\). We use the fact that the function:
\[u_i(t) = u_i(t_i^0 + (|x_i - t_i^0|/4)t),\]
is uniformly bounded for \(|t| \leq 1\) and is a solution of PDE which is uniformly bounded on \(|t| \leq 1\). By the elliptic estimates we have:
\[|x_i - t_i||\nabla u_i|_{L^\infty(D_i \cap ((1/2) - \bar{\epsilon})|x_i - t_i^0| \leq |x - t_i^0| \leq ((1/2) + \bar{\epsilon})|x_i - t_i^0|)} \leq C.\]
Thus, we use the previous cases to compute the following integral:
\[\int_{D_i} < (x_i^2 - t_i^2)|\nabla u_i| > \nu|\nabla u_i| > d\sigma + \int_{D_i} < (x_i^2 - t_i^2)|\nu > |\nabla u_i|^2d\sigma = o(1)\]
and, thus,
\[\int_{D_i} < (x_i^2 - t_i^2)|\nabla u_i| > \nu|\nabla u_i| > d\sigma + \int_{D_i} < (x_i^2 - t_i^2)|\nu > |\nabla u_i|^2d\sigma = o(1)\]
here, we used the previous estimates with \(i \to +\infty\) and \(\bar{\epsilon} \to 0\) (for the previous case 3).

REFERENCES
[1] T. Aubin. Some Nonlinear Problems in Riemannian Geometry. Springer-Verlag 1998
[2] S.S Bahoura. Majoration du type sup u \(\times\ inf u \leq c\) pour l’équation de la courbure scalaire sur un ouvert de \(\mathbb{R}^n, n \geq 3\). J. Math. Pures. Appl.(9) 83 2004 no. 9, 1109-1150.
[3] S.S Bahoura. Harnack inequalities for Yamabe type equations. Bull. Sci. Math. 133 (2009), no. 8, 875-892
[4] S.S Bahoura. Lower bounds for sup+inf and sup \(\times\ inf\) and an extension of Chen-Lin result in dimension 3. Acta Math. Sci. Ser. B Engl. Ed. 28 (2008), no. 4, 749-758
[5] S.S. Bahoura. Estimations uniformes pour l’équation de Yamabe en dimensions 5 et 6. J. Funct. Anal. 242 (2007), no. 2, 550-562.
[6] C. Bandle. Isoperimetric inequalities and Applications. Pitman. 1980.
[7] H. Brezis, Y.Y. Li , I. Shafrir. A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities. J.Funct.Anal.115 (1993) 344-358.
[8] H.Brezis and F.Merle, Uniform estimates and blow-up behaviour for solutions of \(-\Delta u = V e^u\) in two dimensions, Commum Partial Differential Equations 16 (1991), 1223-1253.
[9] L. Caffarelli, B. Gidas, J. Spruck. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math. 37 (1984) 369-402.
[10] W. Chen, C. Li. A priori Estimates for solutions to Nonlinear Elliptic Equations. Arch. Rational. Mech. Anal. 122 (1993) 145-157.
[11] C.C.Chen, C-S. Lin. Estimates of the conformal scalar curvature equation via the method of moving planes. Comm. Pure Appl. Math. L(1997) 1097-1107.
[12] C-C.Chen, C-S. Lin. A sharp sup+inf inequality for a nonlinear elliptic equation in \(\mathbb{R}^2\). Commun. Anal. Geom. 6, No.1, 1-19 (1998).
[13] C-C. Chen, C-S. Lin. Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Comm. Pure Appl. Math. 55 (2002), no. 6, 728-771
[14] B. Gidas, W-Y. Ni, L. Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), no. 3, 209-243.
[15] J.M. Lee, T.H. Parker. The Yamabe problem. Bull. Amer. Math. Soc. (N.S) 17 (1987), no. 1, 37-91.
[16] YY. Li. Prescribing scalar curvature on \mathbb{S}^n and related Problems. C.R. Acad. Sci. Paris 317 (1993) 159-164. Part I: J. Differ. Equations 120 (1995) 319-410. Part II: Existence and compactness. Comm. Pure Appl. Math. 49 (1996) 541-597.
[17] YY. Li. Harnack Type Inequality: the Method of Moving Planes. Commun. Math. Phys. 200, 421-444 (1999).
[18] YY. Li, I. Shafrir. Blow-up Analysis for Solutions of $-\Delta u = Ve^u$ in Dimension Two. Indiana. Math. J. Vol 3, no 4. (1994). 1255-1270.
[19] YY. Li, L. Zhang. A Harnack type inequality for the Yamabe equation in low dimensions. Calc. Var. Partial Differential Equations 20 (2004), no. 2, 133-151.
[20] YY. Li, M. Zhu. Yamabe Type Equations On Three Dimensional Riemannian Manifolds. Commun. Contem. Mathematics, vol 1. No.1 (1999) 1-50.
[21] L. Ma, J-C. Wei. Convergence for a Liouville equation. Comment. Math. Helv. 76 (2001) 506-514.
[22] I. Shafrir. A sup+inf inequality for the equation $-\Delta u = Ve^u$. C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 2, 159-164.
[23] Y-T. Siu. The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group. Ann. of Math. (2) 127 (1988), no. 3, 585-627
[24] G. Tian. A Harnack inequality for certain complex Monge-Ampre equations. J. Differential Geom. 29 (1989), no. 3, 481-488.
[25] L. Zhang. Blowup solutions of some nonlinear elliptic equations involving exponential nonlinearities. Comm. Math. Phys. 268 (2006), no. 1, 105-133.

E-mail address: samybahours@yahoo.fr