The Long Head of the Biceps Myotendinous Junction Is Located 1.14 Centimeters Distal to the Proximal Border of the Pectoralis Major Tendon: An Anatomic Study

Jason E. Meldau, M.D., Hassan Farooq, M.D., Nickolas G. Garbis, M.D., Theodore L. Schoenfeldt, M.D., and Dane H. Salazar, M.D., M.B.A.

Purpose: To describe the proportional anatomic relationship of the long head of the biceps tendon (LHBT) myotendinous junction (MTJ) to pectoralis major tendon (PMT) and to provide an up-to-date review of the current literature. Methods: Ten fresh frozen cadaveric specimens were used. A deltopectoral approach was used for exposure and anatomical location of the MTJ as well as the proximal and distal borders of the PMT were identified by 2 fellowship-trained shoulder and elbow surgeons. The longitudinal length of the PMT, the distance from the long head of the biceps (LHB) MTJ to the proximal border of the PMT (pMTJ), and the distance from the LHB MTJ to the distal border of the PMT (dMTJ) were recorded. The relationship between the pMTJ and the PMT length was then reported as a ratio. Results: The PMT was found to have a length of 5.16 ± 0.64 cm (4.1-6.1 cm). The pMTJ was 1.14 ± 0.52 cm (0.5-1.9 cm), and the dMTJ was 4.02 ± 0.91 cm (2.5-5.3 cm). The pMTJ/PMT ratio was 0.23 ± 0.11 (0.10-0.39). Conclusions: We found the average length of the PMT footprint to be 5.16 cm with the LHB MTJ beginning 1.14 cm distal to its proximal border. Clinical Relevance: It is important to understand the LHBT and its relationship to surgically relevant surrounding anatomy to allow for appropriate tensioning and improved patient outcomes in the treatment of LHBT shoulder pathology.
of the PMT. The same reports found the average length of the PMT to range from 2.8 to 7.7 cm.2,22-26 Given the wide range of reported proximal MTJ locations and PMT lengths, single-value recommendations for this relationship can provide for LHB tension variations, as differences as small as 1.37 cm in tenodesis positioning significantly impact average load to failure.18 Rather, a patient-specific proportional value between the location of the LHB MTJ and PMT length may be beneficial in defining this relationship.

The purpose of this study was to describe the proportional anatomic relationship of the LHB MTJ to PMT and to provide an up-to-date review of the current literature. We hypothesized that the MTJ would consistently be localized to the proximal 50\% of the PMT regardless of length.

Methods

Ten fresh frozen cadaveric specimens were included in this study. All specimens were with attached scapula and extended distally to include the hand. A deltopectoral approach was used to expose the PMT. A tenotomy of PMT was performed with a cuff of tendon left attached to its humeral footprint. Once free, the PMT was reflected, and the LHBT was gently mobilized to allow for localization of MTJ. The location of the most proximal extent of the MTJ as well as the proximal and distal borders of the PMT were agreed upon between 2 fellowship-trained shoulder and elbow specialists. The length of the PMT from its proximal to distal humeral insertion, the distance from the LHB MTJ to the proximal border of the PMT (pMTJ), and the distance from the LHB MTJ to the distal border of the PMT (dMTJ) were recorded (Fig 1). Using previously published methodology, all measurements were collected with the humerus aligned to 40° in relation to the medial border of the scapula.2 The elbow was flexed to 90° and the forearm was held in neutral rotation. All measurements are reported as a mean, standard deviation, and range. The relationship between the pMTJ and the PMT length was then reported as a ratio in which pMTJ was divided by PMT length. A literature review was conducted of all cadaveric and MRI studies documenting the aforementioned parameters. If not explicitly stated, the aforementioned values were calculated if the data were made available.

Results

The PMT was found to have a length of 5.16 ± 0.64 cm (4.1-6.1 cm). The pMTJ was 1.14 ± 0.52 cm (0.5-1.9 cm), and the dMTJ was 4.02 ± 0.91 cm (2.5-5.3 cm). The pMTJ/PMT ratio was 0.23 ± 0.11 (0.10-0.39). Data from a review of the current available literature are summarized on Table 1.

Discussion

We found the LHB MTJ to be positioned 1.14 ± 0.52 cm distal to the proximal border of the PMT and found within the proximal 10\% to 40\% of the PMT longitudinal length. These results are consistent with the previously published literature on this relationship whose sMTJ/PMT ratios were calculated to range from 0.21 to 0.55. There does appear to be variability in these landmarks and using a patient-specific relative relationship may help avoid the over- or undertensioning that may be associated with using a single-value recommendation.

In our review of the literature, the average length of the PMT varied from 2.8 cm to 7.7 cm.2,26 We intended to supplement currently available literature describing the length of the PMT and its relationship to patient specific factors such as sex, age, height, humeral length, or muscle atrophy. These factors may contribute to the variations in the reported tendon length as differences in the subscapularis footprint between male and female patients has been previously described in a cadaveric analysis by Ide et al.27 In their study, the authors also
found the diameter of the humeral head correlated with longitudinal insertional length. Similar relationships may be true of the PMT and humeral length. We found the PMT footprint to be 5.16 cm in length, which is similar to that found by Jarrett et al. and Kovac et al. There also appears to be variation in the reported proximal origin of the LHB MTJ in relation to the proximal border of the PMT. In their MRI review of 45 patients presenting for an evaluation of shoulder pain, Ek et al. found an average pMTJ of 0.59 cm. This is compared with more distal values of 2.2 to 5.7 cm found in cadaveric studies. The authors suggest this difference may be attributed to the younger patient population included in their study compared with cadaveric studies, as increasing age may influence bicep muscle bulk and LHB MTJ positioning relative to the PMT. This was supported by a correlation nearing statistical significance that pMTJ may become more distal with increasing patient age. The wide discrepancies in the location of the pMTJ are of clinical importance, as this is often used as a reference point for location of the biceps tenodesis. Ideally, the location of the MTJ nears its native relationship with the PMT to allow for appropriate tensioning with the goal of improving patient pain and function. Furthermore, differences less than 1.5 cm in LHB tensioning have been shown to change load to failure. Our review of the literature found an average pMTJ difference of over 5 cm between the minimum and maximum reported values. These values would result in variations in tendon tensioning depending on distance used.

PMT length and the location of the proximal origin of the LHB MTJ appear to be patient specific and related to demographics and pathology as these values vary widely in the literature. These differences may lead to clinically significant tensioning variations if a uniform tenodesis location is used for all patients based on pMTJ distance alone. Instead, a ratio pMTJ/PMT provides surgeons the ability to guide LHB tension to individual patients. In our study, we found this value to be 0.23 ± 0.11 and 0.21 to 0.55 when calculated for the previous studies (Table 1). Using this ratio, all studies found the LHB MTJ to be localized proximally relative to the PMT footprint, roughly within 20% to 50% of its longitudinal length. Providers can use preoperative MRI or intraoperative PMT measurements to calculate a patient-specific tenodesis range. Knowing these individualized values will allow for a likely acceptable range of tenodesis localization that can help prevent significant over or under tensioning of the LHB. We believe that this ratio gives a reliable and reproducible intraoperative landmark for surgeons to use during biceps tenodesis surgery. Our literature review demonstrates that great variability exists with absolute landmark measurements, and that if used it could lead to either overtensioning or under-tensioning by affixing the long head of the biceps tenodesis in a nonanatomic site. Based on the findings of our current study and our literature review, we recommend that the long head of the biceps myotendinous junction be placed at the junction of the proximal one-third and distal two-thirds of the PMT.

Limitations

The main limitation for this study was that only 10 cadaveric shoulder specimens were used during the investigation and final analysis.
Conclusions
We found the average length of the PMT footprint to be 5.16 cm with the LHB MTJ beginning 1.14 cm distal to its proximal border.

References
1. Boileau P, Ahrens PM, Hatzidakis AM. Entrapment of the long head of the biceps tendon: The hourglass biceps—a cause of pain and locking of the shoulder. J Shoulder Elbow Surg 2004;13:249-257.
2. Lafrance R, Madsen W, Yaseen Z, Giordano B, Maloney M, Voloshin I. Relevant anatomic landmarks and measurements for biceps tenodesis. Am J Sports Med 2013;41:1395-1399.
3. Elser F, Braun S, Dewing CB, Giphart JE, Millett PJ. Anatomy, function, injuries, and treatment of the long head of the biceps brachii tendon. Arthroscopy 2011;27:581-592.
4. Murthi AM, Vosburgh CL, Neviaser TJ. The incidence of pathologic changes of the long head of the biceps tendon. J Shoulder Elbow Surg 2000;9:382-385.
5. Kumar VP, Satku K. Tenodesis of the long head of the biceps brachii for chronic bicipital tendinitis. Long-term results. J Bone Joint Surg Am 1990;72:789-790.
6. Kumar VP, Satku K, Balasubramaniam P. The role of the long head of biceps brachii in the stabilization of the head of the humerus. Clin Orthop Relat Res 1989;172-175.
7. Warner JJ, McMahon PJ. The role of the long head of the biceps brachii in superior stability of the glenohumeral joint. J Shoulder Joint Surg Am 1995;77:366-372.
8. Neviser AS, Patterson DC, Cagle PJ, Parsons BO, Flatow EL. Anatomic landmarks for arthroscopic suprapectoral biceps tenodesis: A cadaveric study. J Shoulder Elbow Surg 2018;27:1172-1177.
9. Boileau P, Baque F, Valerio L, Ahrens P, Chuinard C, Trojani C. Isolated arthroscopic biceps tenotomy or tenodesis improves symptoms in patients with massive irreparable rotator cuff tears. J Bone Joint Surg Am 2007;89:747-757.
10. Osbahr DC, Diamond AB, Speer KP. The cosmetic appearance of the biceps muscle after long-head tenotomy versus tenodesis. Arthroscopy 2002;18:483-487.
11. Koh KH, Ahn JH, Kim SM, Yoo JC. Treatment of biceps tendon lesions in the setting of rotator cuff tears: Prospective cohort study of tenotomy versus tenodesis. Am J Sports Med 2010;38:1584-1590.
12. Dekker TJ, Peebles LA, Preuss FR, Goldberg BT, Dornan GJ, Provencher MT. A systematic review and meta-analysis of biceps tenodesis fixation strengths: Fixation type and location are biomechanically equivalent. Arthroscopy 2020;36:3081-3091.
13. van Deurzen DFP, Auw Yang KG, Onstenk R, et al. Long head of biceps tenotomy is not inferior to suprapectoral tenodesis in arthroscopic repair of nontraumatic rotator cuff tears: A multicenter, non-inferiority, randomized, controlled clinical trial. Arthroscopy 2021;37:1767-1776.e1761.
14. Forsythe B, Zuke WA, Agarwalla A, et al. Arthroscopic suprapectoral and open subpectoral biceps tenodeses produce similar outcomes: A randomized prospective analysis. Arthroscopy 2020;36:23-32.
15. Allatooni JO, Meeks BD, Froehle AW, Bonner KF. Biceps tenotomy versus tenodesis: Patient-reported outcomes and satisfaction. J Orthop Surg Res 2020;15:56.
16. Sanders B, Lavery KP, Pennington S, Warner JJ. Clinical success of biceps tenodesis with and without release of the transverse humeral ligament. J Shoulder Elbow Surg 2012;21:66-71.
17. Mazzocca AD, Rios CG, Romeo AA, Arciero RA. Subpectoral biceps tenodesis with interference screw fixation. Arthroscopy 2005;21:896.
18. Werner BC, Lyons ML, Evans CL, et al. Arthroscopic suprapectoral and open subpectoral biceps tenodesis: A comparison of restoration of length-tension and mechanical strength between techniques. Arthroscopy 2015;31:620-627.
19. Mazzocca AD, Cote MP, Arciero CL, Romeo AA, Arciero RA. Clinical outcomes after subpectoral biceps tenodesis with an interference screw. Am J Sports Med 2008;36:1922-1929.
20. Nho SJ, Reiff SN, Verma NN, Slabaugh MA, Mazzocca AD, Romeo AA. Complications associated with subpectoral biceps tenodesis: Low rates of incidence following surgery. J Shoulder Elbow Surg 2010;19:764-768.
21. Lutton DM, Gruson KI, Harrison AK, Gladstone JN, Flatow EL. Where to tenodese the biceps: Proximal or distal? Clin Orthop Relat Res 2011;469:1050-1055.
22. Jarrett CD, McClelland WB Jr, Xerogeanes JW. Minimally invasive proximal biceps tenodesis: An anatomical study for optimal placement and safe surgical technique. J Shoulder Elbow Surg 2011;20:477-480.
23. Denard PJ, Dai X, Hanypsiak BT, Burkhart SS. Anatomy of the biceps tendon: Implications for restoring physiological length-tension relation during biceps tenodesis with interference screw fixation. Arthroscopy 2012;28:1352-1358.
24. Kovack TJ, Idoine JD 3rd, Jacob PB. Proximal biceps tenodesis: An anatomic study and comparison of the accuracy of arthroscopic and open techniques using interference screws. Orthop J Sports Med 2014;2:2325967114522198.
25. Hussain WM, Reddy D, Atanda A, Jones M, Schickendantz M, Terry MA. The longitudinal anatomy of the long head of the biceps tendon and implications on tenodesis. Knee Surg Sports Traumatol Arthrosc 2015;23:1518-1523.
26. Ek ET, Philpott AJ, Flynn JN, et al. Characterization of the proximal long head of biceps tendon anatomy using magnetic resonance imaging: Implications for biceps tenodesis. Am J Sports Med 2021;49:346-352.
27. Ide J, Tokiyoshi A, Hirose J, Mizuta H. An anatomic study of the subscapularis insertion to the humerus: The subscapularis footprint. Arthroscopy 2008;24:749-753.