Age-Related Macular Degeneration: A Scientometric Analysis

Shahrokh Ramin ¹, Masoud Soheilian ¹, Gholamreza Habibi ², Roghayeh Ghazavi ², Reza Gharebaghi ³, Fatemeh Heidary ³

¹ Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
² Farzan Scientometric Group, Farzan Clinical Research Institute, Tehran, Iran
³ Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

ABSTRACT

Age-related macular degeneration (ARMD) is a major cause of central blindness among working aged adults across the world. Systematic research planning on any subject, including ARMD is in need of solid data regarding previous efforts in this field and to identify the gaps in the research. This study aimed to elucidate the most important trends, directions, and gap in this subject.

The data extracted from the Institute for Scientific Information were used to perform a bibliometric analysis of the scientific productions (1993–2013) about ARMD. Specific parameters related to ARMD were analyzed to obtain a view of the topic’s structure, history, and document relationships. Additionally, the trends and authors in the most influential publications were analyzed.

The number of articles in this field was found constantly increasing. Most highly cited articles addressed genetic epidemiology and clinical research topics in this field. During the past 3 years, there has been a trend toward biomarker research.

Through performing the first scientometric survey on ARMD research, we analyzed the characteristics of papers and the trends in scientific production. We also identified some of the critical gaps in the current research efforts that would help in large-scale research strategic planning.

KEY WORDS

Age-related Macular Degeneration, Bibliometrics, Historiography, Scientometrics, Citation Analysis

INTRODUCTION

Age-related macular degeneration (ARMD) is one of the top four causes of blindness in elderly people. ARMD, described more than 80 years ago, is a progressive disease of the central area in the ocular posterior segment (the macula lutea), which leads to a gradual deterioration in central vision and causes severe disability to affected individuals. In North America, Europe, and Australia, ARMD accounts for up to half of all cases of central blindness, affecting approximately 3% of the general adult population. In the United States, about 12%–15% of people older than 80 years of age were estimated to have ARMD in 2000, and this number is expected to be more than 2.95 million in 2020. People with ARMD have been found to experience reduced
quality of life, depression, and difficulty with the activities of daily living, which pose serious financial burden on their family in terms of high medical and societal costs that are due to increased risk of falling, need for vision enhancing equipment, depression/anxiety treatment, and assistance with activities of daily living (1, 2).

Visual loss in late ARMD can be caused by either of the following two processes that cause photoreceptor dysfunction: geographic atrophy (GA) or choroidal neovascularization. GA refers to the confluent atrophy of the choriocapillaris and associated retinal pigment epithelium (RPE). The RPE is the outermost layer of the retina, which is involved in phagocytosis of the photoreceptor outer segments and biologic maintenance. In choroidal neovascularization, an ingrowth of new vessels occurs from the choriocapillaris invading the retina. These new vessels leak serous fluids beneath and into the neural retina causing fibrous scarring, which defines the late stage of ARMD (exudative, or neovascular) (3). Non-exudative (dry) ARMD is often marked by the formation of drusen, pigmentary changes in the RPE, and atrophy of the RPE. Dry ARMD is more common; in one series of autopsy eyes, ARMD was found in 33% of patients older than 65 years (4, 5).

The incidence of the disease increases with age. Through major breakthrough discoveries made in the last decade in treating the wet form of ARMD, the chance of stabilizing or increasing vision has been increased to 90%. Nonetheless, this improvement is associated with a significant price tag of monthly intravitreal injections (with the ever-present phantom of endophthalmitis and other injection-related adverse events) and uncertainty regarding the duration of treatment (6).

A scientometrics method is one that measures and analyzes scientific publications related to a specific topic regarding the trends in citations, most important content, authors, and journals. A widespread use of scientometric method goes back to 1960s when Eugene Garfield finalized the construction of Science (7). In this article, we performed the first scientometric analysis of the ARMD field to elucidate the most important trends and directions of this subject.

MATERIAL AND METHODS

A bibliometric study was performed on the articles related to “Age-Related Macular Degeneration” published between 1993 and 2013. The Institute for Scientific Information (ISI) web of science available at http://www.isiknowledge.com was our main source. Two mesh terms—“Age-Related Macular Degeneration” and “ARMD”—already checked in Pubmed mesh database were used to conduct the search.

Only original articles were selected for further evaluation. These articles were evaluated regarding citation characteristics, contributing role of each author, country, funding agency, institution, journal, and language of published articles. Articles were also evaluated regarding the trend of publication and citation during a selected time and also subject areas covered. Articles that were published in 10 countries with the greatest number of publications on the topic were analyzed separately.

Articles published by each country were evaluated regarding subject areas and publishing journals. Special attention was paid to total citations with and without self-citation, citation per year, and citation per item for journals of each country. Articles that were cited more than 100 times were evaluated regarding year of publication, country of affiliation of the first author, and publishing journal. Number, country, and year of collaborative studies were also considered. All three resources available in the ISI web of science were used for this purpose (Science Citation Index Expanded, Social Sciences Citation Index, The Arts & Humanities Citation Index). For the citation analysis, two parameters were calculated: Local Citation Score (LCS) and Global Citation Score (GCS). LCS listed all papers sorted by citation frequency within the local (the starting bibliography) collection; however, GCS counted citations in the whole collection. For the citation burst analysis, first, 100 key words that generated the citation bursts were extracted, and then non-specific and general key words were omitted.

RESULTS

Annual Publication Number During 1993-2013
A total of 3235 research articles were available on ARMD in the ISI Web of Science during 1993-2013. These papers were drafted by 10,706 authors, 2332 institutions, and 67 countries and were published in 388 journals in 9 languages. Figure 1 demonstrates the growth rate of publications in this field (14.46% per year). The H-index of this subject was 125.

Citation Profile of Articles

The total LCS citations were 29,924 in number and GCS citations were 91,840 in number. The average citation per paper (C/P) was 28.39

Table 1 shows the articles that were cited 100 or more times. Figure 2 shows the trend of citations during the period. Appendix 1 shows the highly cited articles in this field. Figure 1 shows the histogram map of 20 years of research in this field.

Figure 3 shows the key words generating the highest citation bursts and the time periods associated with them. The key words associated with the highest citation bursts included: drusen, choroidal neovascular membranes, neovascularization, subretinal neovascularization, blindness, fluorescein angiography, retinal pigment epithelium, choroidal perfusion abnormality, indocyanine green angiography, dystrophy, Beaver dam eye, Bruch membrane change, angiography, neovascular membranes, radiation therapy, photocoagulation, videoangiography, indocyanine green videoangiography, occult choroidal neovascularization, choriocapillaris, teletherapy, retinitis pigmentosa, Stargardt disease, mutations, apolipoprotein E, subfoveal choroidal neovascularization, laser photocoagulation, genome-wide scan, susceptibility loci, verteporfin therapy, c-reactive protein, avastin, pegaptanib, ranibizumab, polypoidal choroidal vasculopathy, complement factor H, bevacizumab, optical coherence tomography, polymorphism, endothelial growth factor, and vascular endothelial growth factor.

Subject Analysis of the Most Highly Cited Documents

The most common topics of the top 10 highly cited papers were genetic epidemiology research (40%), clinical study (surgical or pharmaceutical treatment) (50%), and epidemiologic study (10%) (Table 1).

Languages, Journal Subjects, and Author Profiles of Publications

Most ARMD articles were in English (3068), followed by German (105) and French (47). In total, the articles were written in nine languages (English, German, French, Portuguese, Hungarian, Spanish, Polish, Serbian, and Slovene). Dr R. Klein, with 80 articles, had the largest number of publications in the field of ARMD research (Table 2). When analyzed based on the number of papers in ARMD, 8 out of top 10 journals were general medical journals (such as the New England Journal of Medicine) and the remaining were ophthalmology journals. But when the same calculation was made based on the citation number (TLCS), seven journals were general medical journals and three were ophthalmology journals. When analyzed based on TGCS, highly cited papers were mostly published in general medical journals (80%), and the remaining 20% were published in Ophthalmology journals (Tables 3). No correlation was found between the impact factor of the most highly influential journals in this field and the total citations they had received for their papers in the field of ARMD.

A majority of the top 10 universities and institutions in the list are from the United States and Australia. The first two of them are the Johns Hopkins University and University of Melbourne in terms of number of documents and Harvard University and University of Wisconsin in terms of number of citations (Table 4).

Geographical Distribution

In general, 67 countries contributed to the promotion of the field of ARMD by publishing articles. The United States, Germany, and the UK had the highest number of documents but they had the highest number of citations to their research papers in the field of ARMD (Table 5).
Table 1. Articles With Highest Number of Citations

#	Author/ Title / Journal	CITATION
1	Klein Rj, Zeiss C, Chew Ey, Tsai Jy, Sackler Rs, Et Al. Complement Factor H Polymorphism in Age-Related Macular Degeneration Science. 2005 Apr 15; 308 (5720): 385-389	1814
2	Rosenfeld Pj, Brown Dm, Heier Js, Boyer Ds, KaiserPk, Et Al. Ranibizumab For Neovascular Age-Related Macular Degeneration New England Journal Of Medicine. 2006 Oct 5; 355 (14): 1419-1431	1662
3	Edwards Ao, Ritter R, Abel Kj, Manning A, Panhuysen C, Et Al. Complement Factor H Polymorphism And Age-Related Macular Degeneration Science. 2005 Apr 15; 308 (5720): 421-424	1173
4	Brown Dm, KaiserPk, Michels M, Soubrane G, Heier Js, Et Al. Ranibizumab Versus Verteporfin For Neovascular Age-Related Macular Degeneration New England Journal Of Medicine. 2006 Oct 5; 355 (14): 1432-1444	1161
5	Haines JI, Hauser Ma, Schmidt S, Scott Wk, Olson Lm, Et Al. Complement Factor H Variant Increases The Risk Of Age-Related Macular Degeneration Science. 2005 Apr 15; 308 (5720): 419-421	1148
6	Gragoudas Es, Adamis Ap, Cunningham Et, Feinsod M, Guyer Dr Pegaptanib For Neovascular Age-Related Macular Degeneration New England Journal Of Medicine. 2004 Dec 30; 351 (27): 2805-2816	1146
7	Kasoff A, Kasoff J, Buehler J, Eglow M, Kaufman F, Et Al. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation With Vitamins C And E, Beta Carotene, And Zinc For Age-Related Macular Degeneration And Vision Loss - Areds Report No. 8 Archives Of Ophthalmology. 2001 Oct; 119 (10): 1417-1436	1081
8	Bressler Nm Photodynamic Therapy Of Subfoveal Choroidal Neovascularization In Age-Related Macular Degeneration With Verteporfin - One-Year Results Of 2 Randomized Clinical Trials - Tap Report 1 Archives Of Ophthalmology. 1999 Oct; 117 (10): 1329-1345	1021
9	Friedman Ds, O'colmain B, Tomany Sc, Mccarty C, De Jong Ptvm, Et Al. Prevalence Of Age-Related Macular Degeneration In The United States Archives Of Ophthalmology. 2004 Apr; 122 (4): 564-572	970
10	Hageman Gs, Anderson Dh, Johnson Lv, Hancox Ls, Taiber Aj, Et Al. A Common Haplotype In The Complement Regulatory Gene Factor H (Hf1/Cfh) Predisposes Individuals To Age-Related Macular Degeneration Proceedings Of The National Academy Of Sciences Of The United States Of America. 2005 May 17; 102 (20): 7227-7232	929
Table 2. Most Active Authors in the Field of ARMD Research

#	Author	Recs	TLCS	TGCS
1	Klein R	80	2405	6370
2	Bressler Nm	76	3639	10146
3	Mitchell P	63	1300	3350
4	Soubrane G	60	1202	3152
5	Seddon Jm	58	2269	6377
6	Schmidt-Erfurth U	56	1511	4504
7	Holz Fg	55	550	2187
8	Guymer Rh	52	310	855
9	Wong Ty	52	422	1004
10	Bressler Sb	48	2546	6735

Figure 1. Annual Number of Published Papers

The growth rate of 14.6% in the article numbers was observed.
Table 3. Journals with Highest Number of Papers in This Field

#	Journal	Records	Citation	2 year IF	5 year IF
1	Ophthalmology	289	12624	5.563	5.777
2	Investigative Ophthalmology & Visual Science	274	7421	3.441	3.730
3	American Journal Of Ophthalmology	232	8043	3.631	4.292
4	Retina-The Journal Of Retinal And Vitreous Diseases	225	3933	2.825	2.761
5	British Journal Of Ophthalmology	198	4462	2.725	3.023
6	Archives Of Ophthalmology	166	13369	3.826	4.160
7	Graefes Archive For Clinical And Experimental Ophthalmology	125	2550	1.932	2.037
8	Eye	97	1015	1.818	1.883
9	Molecular Vision	73	1210	1.987	2.311
10	Acta Ophthalmologica	65	408	2.345	2.428
11	Ophthalmologica	57	503	1.412	1.236
12	Klinische Monatsblatter Fur Augenheilkunde	49	197	0.699	0.473
13	Ophthalmologe	48	295	0.529	0.681
14	European Journal Of Ophthalmology	46	296	0.912	0.963
15	Journal Francais D Ophtalmologie	45	112	0.438	0.443
16	Japanese Journal Of Ophthalmology	43	234	1.274	1.488
17	PLoese One	43	493	3.730	4.244
18	Ophthalmic Surgery Lasers & Imaging	39	634	1.464	0.922
19	Canadian Journal Of Ophthalmology-Journal Canadien D Ophtalmologie	38	398	1.145	1.320
20	Clinical And Experimental Ophthalmology	28	291	1.964	2.047
Table 4. Institutions with Highest Number of Papers

#	Institution	Records	Citations
1	Johns Hopkins Univ	130	7472
2	Univ Melbourne	125	3103
3	Harvard Univ	117	9211
4	Duke Univ	97	4450
5	Univ Wisconsin	97	6462
6	Nei	86	6282
7	Univ Sydney	79	3584
8	Moorfields Eye Hosp	73	2029
9	Univ Penn	73	3241
10	Univ Southern Calif	68	1737
11	Univ Heidelberg	64	1960
12	Univ Miami	57	5242
13	UCL	54	1273
14	Univ Paris 12	53	2140
15	Natl Univ Singapore	51	809
16	Univ Cologne	50	1054
17	Univ Utah	49	2540
18	Univ Iowa	48	3215
19	Univ Iowa	47	1190

Table 5. Countries With Highest Number of Papers in the Field of ARMD

#	Country	Recs	CITATION
1	USA	1338	60915
2	Germany	363	8968
3	UK	340	9990
4	Australia	215	6031
5	Japan	193	3740
6	France	163	4862
7	Peoples R China	144	2486
8	Italy	120	1842
9	Austria	112	3371
10	Unknown	105	2707
11	Canada	97	3205
12	Switzerland	92	2959
13	Netherlands	74	4699
14	Spain	65	1184

DISCUSSION

We analyzed the subject of highly cited papers, dividing them into two broad categories: epidemiology versus clinical research and translational versus basic science research (Appendix 1). Most of the highly cited papers were genetic epidemiology or clinical reports. Although ARMD is a debilitating disease and adversely affects the quality of life and emotional status of subjects, highly cited papers had largely neglected this subject. Highly cited reports also addressed the following subjects more frequently: (1) association of various genotypes with ARMD, (2) chemotherapy for wet ARMD, including the intravitreal treatment, and (3) effect of diet and vitamins on ARMD. Recently, as Appendix 2 shows, there has been a trend toward more applicable genetic epidemiology and translational research (biomarkers). In cluster analysis for the citations, we found the following three major clusters in the citation histogram map (Figure 1): (1) complement H factor polymorphism in the ARMD (nodes 831, 832, 833, and 842 in the index 1), (2) treatment of subfoveal choroidal neovascularization in ARMD (nodes 386, 402, and 428), and (3) ranibizumab treatment for neovascular ARMD (nodes 1116 and 1117).
Proportionally, articles related to medical retina compared to other subspecialties have increased between 2005 and 2009. In an analytical study of the ophthalmology research papers, case–control or cohort studies comprised most study designs used (40.1%), followed by non-analytic studies (28.7%), basic science (24.6%), RCTs (3.3%), review articles (2.6%), and meta-analyses (0.3%) (8). However, the trend was not similar in the ARMD research for the highly cited papers. As Graph 3 shows, in the 1990s, the key words that resulted in the most strong citation bursts were the ones associated with pathophysiology, such as subretinal neovascularization; however, in the past 4 years, there has been a trend toward novel treatments such as ranibizumab in the context of RCTs, which shows the importance of this line of research and also the progression in the field of ARMD. Both the citation burst analysis and the histogram of the most cited papers in the past 3 years showed that genetic epidemiology topics are among the recent hot topics in this field. Interestingly, genetic epidemiology studies also comprised the most highly cited articles in the past 20 years, which implies that this field is still hot and many more studies have a high chance of publication in this field. In our study, the number of citations correlated poorly with the impact factor of the journals. Citation frequency and impact factor both render important information regarding the merit of a paper, but the ranking of research groups on the basis of journal impact factor is shown to have little correlation with the ranking of the same groups on the basis of citation frequency. This can be due to the fact that journals with an advance online publication had higher impact factors compared with those without an advance online publication. Also, researchers might prefer to publish their results in their subspecialty journal, which might not necessarily have a high impact factor. It is suggested that “citation analysis is a good rough indicator of the quality of work as it is perceived by other scientists” (9). Previously, two detailed citation analysis reports have been published, one spanning the period of 1850–1949 (10) and the other 1975–2006 (11). In both reports, ARMD was a major citation classic, especially for ophthalmology journals. The second report surveyed 46 ophthalmology journals and concluded that the 100 most cited articles were published in 13 journals, including the Archives of Ophthalmology, Ophthalmology, and the American Journal of Ophthalmology (11). Epidemiology of ARMD was one of the major topics of 100 most cited articles. Also we found that the H-index of ARMD was 125, which indicates the appreciation of the context of ARMD within vision research. The publications of Dr Klein and several other top researchers in the field of ARMD research are also among the top 100 most cited articles in the field of Ophthalmology, which shows the importance of this field.
Figure 3. Citation Burst Analysis

Keywords	Strength	Begin	End	1992 - 2014
Drusen	12.2823	1992	1998	
Choroidal neovascular membranes	11.1771	1992	2002	
Subfoveal neovascular membranes	4.9606	1992	2001	
Neovascularization	4.4565	1992	2002	
Subretinal neovascularization	4.4497	1992	2005	
Blindness	4.2906	1992	2004	
Fluorescein angiography	4.0001	1992	2000	
Retinal-pigment epithelium	16.5474	1994	2002	
Choroidal perfusion abnormality	3.746	1994	2002	
Indocyanine green angiography	3.6439	1994	2003	
Dystrophy	9.0779	1995	2002	
Beaver dam eye	8.3643	1995	2001	
Bruch membrane change	6.4945	1995	2004	
Angiography	5.8675	1995	2000	
Neovascular membranes	3.3267	1995	2000	
Radiation-therapy	14.3348	1996	2001	
Photocoagulation	9.7554	1996	2004	
Videoangiography	9.2262	1996	2003	
Indocyanine-green videoangiography	5.4875	1996	2002	
Occult choroidal neovascularization	3.5868	1996	1997	
Choriocapillaris	3.5137	1996	2003	
Teletherapy	7.591	1997	2004	
Retinitis-pigmentosa	9.5991	1998	2003	
Stargardt-disease	8.4595	1999	2004	
Mutations	5.4898	1999	2002	
Apolipoprotein-e	4.587	2001	2005	
Subfoveal choroidal neovascularization	16.8328	2003	2006	
Several lines of research have been previously identified as priorities in ARMD research. These include temporal patterns and changing the prevalence of ARMD; improvements of ocular imaging (eg, high-resolution OCT) to allow better phenotype classification of both early and late ARMD; and epidemiologic studies to determine gene-environment interactions for ARMD to identify early modifiable risk factors to prevent ARMD (12). According to the results of our study, several of these areas do not receive enough attention from the experts in the field, and better research strategies should be implemented.

In conclusion, the result of our report as the first scientometric analysis of the research on ARMD can be used as a guideline for authors, researchers, and policy makers to determine the best ways to allocate their financial and workforce resources.

DISCLOSURE
The authors report no conflicts of interest in this work.

REFERENCES
1. Parmeggiani F, Romano MR, Costagliola C, Semeraro F, Incorvaia C, D’Angelo S, Perri P, De Palma P, De Nadai K, Sebastiani A. Mechanism of inflammation in age-related macular degeneration. Mediators Inflamm. 2012;2012:546786. PMID: 23209345
2. Bennion AE1, Shaw RL, Gibson JM. What do we know about the experience of age related macular degeneration? A systematic review and meta-synthesis of qualitative research. Soc Sci Med. 2012 Sep;75(6):976-85. PMID: 22709445
3. Wong TY, Chakravarthy U, Klein R, Mitchell P, Zlateva G, Buggage R, Fahrbach K, Probst C, Sledge I. The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology. 2008 Jan;115(1):116-26. Epub 2007 Aug 6. PMID: 17675159
4. Schiffelers RM1, van der Vaart TK, Storm G. Neovascular age-related macular degeneration: opportunities for development of first in classbiopharmaceuticals. BioDrugs. 2011 Jun 1;25(3):171-89. PMID: 21627341
5. Telander DG. Inflammation and age-related macular degeneration (AMD). Semin Ophthalmol. 2011 May;26(3):192-7. PMID: 21609232
6. Velez-Montoya R1, Oliver SC, Olson JL, Fine SL, Mandava N, Quiroz-Mercado H. Current knowledge and trends in age-related macular degeneration: today’s and future treatments. Retina. 2013 Sep;33(8):1487-502. PMID: 23222393
AGE-RELATED MACULAR DEGENERATION

7. Garfield E. “Science Citation Index”—a new dimension in indexing. Science. 1964; 144:649–654. PMID: 17806988

8. Kumar A, Cheeseman R, Durnian JM. Subspecialization of the ophthalmic literature: a review of the publishing trends of the top general. Clinical ophthalmic journals. Ophthalmology. 2011 Jun;118(6):1211-4. PMID: 21269704

9. Ogden TL, Bartley DL. The ups and downs of journal impact factors. Ann Occup Hyg. 2008 Mar;52(2):73-82. PMID: 18316351

10. Ohba N, Nakao K. The 101 most frequently cited articles in ophthalmology journals from 1850 to 1949. Arch Ophthalmol. 2010 Dec;128(12):1610-7. doi: 10.1001/archophthalmol.2010.308. PMID: 21149789

11. Ohba N, Nakao K, Isashiki Y, Ohba A. The 100 most frequently cited articles in ophthalmology journals. Arch Ophthalmol. 2007 Jul;125(7):952-60. PMID: 17620577

12. Wong TY, Hyman L. Population-based studies in ophthalmology. Am J Ophthalmol. 2008 Nov;146(5):656-63. doi: 10.1016/j.ajo.2008.07.048. PMID: 18984085.
Appendix-1: Top most cited articles in the past 20 years. The numbers before the article indicate the location of the article on the histogram map.

#	Author / Title / Journal	Citation
1	Complement factor H polymorphism in age-related macular degeneration	1814
2	Ranibizumab for neovascular age-related macular degeneration	1662
3	Complement factor H polymorphism and age-related macular degeneration	1173
4	Ranibizumab versus verteporfin for neovascular age-related macular degeneration	1161
5	Pegaptanib for neovascular age-related macular degeneration	1148
6	Pegaptanib for neovascular age-related macular degeneration	1146
7	Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration - One-year results of 2 randomized clinical trials - TAP report 1	1021
8	Prevalence of age-related macular degeneration in the United States	970
9	A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration	929
10	Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration - Two-year results of 2 randomized clinical trials - TAP report 2	737
11	Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration	654
12	Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration - Two-year results of 2 randomized clinical trials - TAP report 2	570
13	Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration	521
14	Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration - Two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization-verteporfin in photodynamic therapy report 2	512

Med Hypothesis Discov Innov Ophthalmol. 2015; 4(2)
Page	Reference	Description	Year
17	875 Rosenfeld PJ, Moshefeghi AA, Puliafito CA	Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin) (R) for neovascular age-related macular degeneration	2005
18	545 Crabb JW, Miyagi M, Gu XR, Shadrach K, West KA, et al.	Drusen proteome analysis: An approach to the etiology of age-related macular degeneration	2002
19	103 Kvanta A, Algvere PV, Berglin L, Seregard S	Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor	1996
20	1137 Dewan A, Liu MG, Hartman S, Zhang SM, Liu DTI, et al.	HTRA1 promoter polymorphism in wet age-related macular degeneration	2006
21	917 Rivera A, Fisher SA, Fritsche LG, Keilhauer CN, Lichtner P, et al.	Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk	2005
22	23 GREEN WR, ENGER C	AGE-RELATED MACULAR DEGENERATION HISTOPATHOLOGIC STUDIES - THE 1992 ZIMMERMAN, LORENZ, LECTURE	1993
23	400 Smith CW, Assink J, Klein R, Mitchell P, Klaver CCW, et al.	Risk factors for age related macular degeneration - Pooled findings from three continents	2001
24	83 SNOODERLY DM	EVIDENCE FOR PROTECTION AGAINST AGE-RELATED MACULAR DEGENERATION BY CAROTENOIDS AND ANTIOXIDANT VITAMINS	1995
25	1009 Spaide RF, Laud K, Fine HF, Klanckn JM, Meyerle CB, et al.	Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration	2006
26	1239 Fung AE, Lalwani GA, Rosenfeld PJ, Dubovy SR, Michels S, et al.	An optical coherence tomography-guided, variable dosing regimen with intravitreal ranibizumab (lucentis) for neovascular age-related macular degeneration	2007
27	2406 Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, et al.	Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration The CATT Research Group	2011
28	1138 Yang ZL, Camp NJ, Sun H, Tong ZZ, Gibbs D, et al.	A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration	2006
29	1341 Yates JRW, Sepp T, Matharu BK, Khan JC, Thurby DA, et al.	Complement C3 variant and the risk of age-related macular degeneration	2007
30	857 Michels S, Rosenfeld PJ, Pulliafito CA, Marcus EN, Venkatraman AS	Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration - Twelve-week results of an uncontrolled open-label clinical study	2005
31	644 Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, et al.	An animal model of age-related macular degeneration in senescent Ccl-2-or Ccr-2-deficient mice	2003
32	1090 Maller J, George S, Purcell S, Fagerness J, Altschuler D, et al.	Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration	2006
33	1470 Regillo CD, Brown DM, Abraham P, Yue HB, Ianchulev T, et al.	Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER study year 1	2008
34	295 Danis RP, Ciulla TA, Pratt LM, Anliker W	Intravitreal triamcinolone acetonide in exudative age-related macular degeneration	2000
Page	Citation		
------	----------		
35	Anand R, Bressler SB, Davis MD, Ferris FL, Klein R, et al. Risk factors associated with age-related macular degeneration - A case-control study in the Age-Related Eye Disease Study: Age-Related Eye Disease Study report number 3. *Ophthalmology*. 2000 Dec; 107 (12): 2224-2232		
36	Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, et al. Ranibizumab versus Verteporfin Photodynamic Therapy for Neovascular Age-Related Macular Degeneration: Two-Year Results of the ANCHOR Study. *Ophthalmology*. 2009 Jan; 116 (1): 57-65		
37	Hawkins BS, Fine SL Laser photocoagulation of subfoveal neovascular lesions of age-related macular degeneration - Updated findings from 2 clinical-trials. *Archives of Ophthalmology*. 1993 Sep; 111 (9): 1200-1209		
38	Curcio CA, Medeiros NE, Millican CI. Photoreceptor loss in age-related macular degeneration. *Investigative Ophthalmology & Visual Science*. 1996 Jun; 37 (7): 1236-1249		
39	Yannuzzi LA, Neguo S, lida T, Carvalho C, Rodriguez-Coleman H, et al. Retinal angiomatosus proliferation in age-related macular degeneration. *Retina: The Journal of Retinal and Vitreous Diseases*. 2001; 21 (5): 416-434		
40	Seddon JM, Willett WC, Speizer FE, Hankinson SE. A prospective study of cigarette smoking and age-related macular degeneration in women. *JAMA: Journal of the American Medical Association*. 1996 Oct 9; 176 (14): 1141-1146		
41	Holz FG, Bellman C, Staadt S, Schutt F, Volcker HE. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. *Investigative Ophthalmology & Visual Science*. 2001 Apr; 42 (5): 1051-1056		
42	Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P, et al. Glutathione in human plasma: Decline in association with aging, age-related macular degeneration, and diabetes. *Free Radical Biology and Medicine*. 1998 Mar 15; 24 (5): 699-704		
43	Johnson LV, Leitner WP, Staples MK, Anderson DH. Complement activation and inflammatory processes in drusen formation and age related macular degeneration. *Experimental eye research*. 2001 Dec; 73 (6): 887-896		
44	Cruickshanks KJ, Klein R, Klein BEK. Sunlight and age-related macular degeneration - The Beaver Dam Eye Study. *Archives of Ophthalmology*. 1993 Apr; 111 (4): 514-518		
45	Tomany SC, Wang HJ, van Leeuwen R, Klein R, Mitchell P, et al. Risk factors for incident age-related macular degeneration - Pooled findings from 3 continents. *Ophthalmology*. 2004 Jul; 111 (7): 1280-1287		
46	Speduto RD. Antioxidant status and neovascular age-related macular degeneration. *Archives of Ophthalmology*. 1993 Jan; 111 (1): 104-109		
47	Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation. 2. A surgical approach for age-related macular degeneration. *Graefes Archive for Clinical and Experimental Ophthalmology*. 1993 Nov; 231 (11): 635-641		
48	Klaver CCW, Kliffen M, van Duijn CM, Hofman A, Cruts M, et al. Genetic association of apolipoprotein E with age-related macular degeneration. *American Journal of Human Genetics*. 1998 Jul; 63 (1): 200-206		
49	Hollyfield JG, Bonilha VL, Rayborn ME, Yang XP, Shadrach KG, et al. Oxidative damage-induced inflammation initiates age-related macular degeneration. *Nature Medicine*. 2008 Feb; 14 (2): 194-198		
50	Milton RC, Clemens TE, Kurinij N, Speduto RD. Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS) - AREDS report no.19. *Ophthalmology*. 2005 Apr; 112 (4): 533-539		
51	Beatty S, Murray JJ, Henson DB, Carden D, Koh HH, et al. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. *Investigative Ophthalmology & Visual Science*. 2001 Feb; 42 (2): 439-446		
52	Alguere PV, Bergluin L, Gouras P, Sheng YH. Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. *Graefes Archive for Clinical and Experimental Ophthalmology*. 1994 Dec; 232 (12): 707-716		
Page	Title	Authors	Citations
------	---	--	-----------
53	Optical coherence tomography of age-related macular degeneration and choroidal neovascularization	105 Hee MR, Baumann CR, Puliafito CA, Duker JS, Reichel E, et al.	216
54	Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration	865 Zareparsi S, Bransham KEH, Li MY, Shah S, Klein RJ, et al.	208
55	A Randomized clinical trial of a single dose of intravitreal triamcinolone acetonide for neovascular age-related macular degeneration - One year results	595 Gillies MC, Simpson JM, Luo W, Penfold P, Hunyor ABL, et al.	207
56	Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration - Results of retreatments in a phase 1 and 2 study	261 Schmidt-Erfurth U, Miller JW, Sickenberg M, Laca H, Barbazetto I, et al.	206
57	The role of apoptosis in age-related macular degeneration	44 MAGUIRE MG, FINE SL, FOLK JC, BRESSLER NM, JAVAURNIK NB, et al.	204
58	Association between C-reactive protein and age-related macular degeneration	78 VINELURUNG JR, DIELMANS I, BOTS ML, HOFMAN A, GROBBEE DE, et al.	201
59	CFH haplotypes without the Y402H coding variant show strong association with susceptibility to age-related macular degeneration	538 Dunai JL, Dentschov T, Ying GS, Milam AH	201
60	Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration	678 Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N	198
61	A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration	1089 Li M, Atmaca-Sonmez P, Othman M, Bransham KEH, Khanna R, et al.	197
62	Intravitreal bevacizumab and verteporfin for choroidal neovascularization caused by age-related macular degeneration - Results of a single treatment in a phase 1 and 2 study	1041 Bashshur ZF, Bazarcabhi A, Schakal A, Haddad ZA, El Haili CP, et al.	196
63	A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration	1391 Kanda A, Chen W, Othman M, Bransham KEH, Brooks M, et al.	195
64	A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration	1113 Hughes AE, Orr N, Esfandiari H, Diaz-Torres M, Goodship T, et al.	194
65	Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration - Results of a single treatment in a phase 1 and 2 study	260 Miller JW, Schmidt-Erfurth U, Sickenberg M, Pournaris CJ, Laca H, et al.	191
66	Effect of lesion size, visual acuity, and lesion composition on visual acuity change with and without verteporfin therapy for choroidal neovascularization secondary to age-related macular degeneration: TAP and VIP report no. 1	622 Blind KJ, Bradley S, Bressler NM, Bresler SB, Donati G, et al.	188
67	Variation in complement factor 3 is associated with risk of age-related macular degeneration	1388 Miller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MI, et al.	187
68	GROWTH-FACTOR LOCALIZATION IN CHOROIDAL NEOVASCULAR MEMBRANES OF AGE-RELATED MACULAR DEGENERATION INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE. 1994 JUL; 35 (8): 3178-3188	50 AMIN R, PUKLIN JE, FRANK RN	186
69	Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration	1010 Schmidt S, Hauser MA, Scott WK, Postel EA, Agarwal A, et al.	185
70	Transpupillary thermotherapy of occult subfoveal choroidal neovascularization in patients with age-related macular degeneration	276 Reichel E, Berrocal AM, Ip M, Kroll AJ, Desai V, et al.	184
Page	Reference		
------	-----------		
71	235 Eckardt C, Eckardt U, Conrad HG Macular rotation with and without counter-rotation of the globe in patients with age-related macular degeneration GRAEFS ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY. 1999 APR; 237 (4): 313-325		
72	1206 Klein R, Klein BEK, Knudtson MD, Meuer SM, Swift M, et al. Fifteen-year cumulative incidence of age-related macular degeneration OPHTALMOLOGY. 2007 FEB; 114 (2): 253-262		
73	423 Seddon JM, Rosner B, Sperduto RD, Yannuzzi L, Haller JA, et al. Dietary fat and risk for advanced age-related macular degeneration ARCHIVES OF OPHTHALMOLOGY. 2001 AUG; 119 (8): 1191-1199		
74	85 MARESPERLMAN JA, BRADY WE, KLEIN R, KLEIN BEK, BOWEN P, et al. SERUM ANTIOXIDANTS AND AGE-RELATED MACULAR DEGENERATION IN A POPULATION-BASED CASE-CONTROL STUDY ARCHIVES OF OPHTHALMOLOGY. 1995 DEC; 113 (12): 1518-1523		
75	1059 Despriet DDG, Klaver CCW, Wittman JCM, Bergen AAB, Kardys I, et al. Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION. 2006 JUL 19; 296 (3): 301-309		
76	341 Allikmets R Further evidence for an association of ABCR alleles with age-related macular degeneration AMERICAN JOURNAL OF HUMAN GENETICS. 2000 AUG; 67 (2): 487-491		
77	111 Christen WG, Glynn Ri, Manson JE, Ajani UA, Buring JE A prospective study of cigarette smoking and risk of age-related macular degeneration in men JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION. 1996 OCT 9; 276 (14): 1147-1151		
78	726 Stone EM, Braun TA, Russell SR, Kuehn MH, Lotery AJ, et al. Missense variations in the fibulin 5 gene and age-related macular degeneration NEW ENGLAND JOURNAL OF MEDICINE. 2004 JUL 22; 351 (4): 346-353		
79	277 Yannuzzi LA, Wong DWK, Sforzolini BS, Goldbaum M, Tang KC, et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration ARCHIVES OF OPHTHALMOLOGY. 1999 NOV; 117 (11): 1503-1510		
80	15 FREUND KB, YANNUZZI LA, SORENSEN JA AGE-RELATED MACULAR DEGENERATION AND CHOROIDAL NEOVASCULARIZATION AMERICAN JOURNAL OF OPHTHALMOLOGY. 1993 JUN 15; 115 (6): 786-791		
81	176 Grunwald JE, Harigradus SM, DuPont J, Maguire MG, Fine SL, et al. Foveolar choroidal blood flow in age-related macular degeneration INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE. 1998 FEB; 39 (2): 385-390		
82	1601 Fritsche LG, Loenhartd T, Janssen A, Fisher SA, Rivera A, et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA NATURE GENETICS. 2008 JUL; 40 (7): 892-896		
83	605 Fish G, Haller JA, Ho AC, Klein M, Loewenstein J, et al. Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration - Phase II study results OPHTALMOLOGY. 2003 MAY; 110 (5): 979-986		
84	178 Souied EH, Benlijan P, Amouyel P, Feingold J, Lagarde JP, et al. The epsilon 4 allele of the apolipoprotein E gene as a potential protective factor for exudative age-related macular degeneration AMERICAN JOURNAL OF OPHTHALMOLOGY. 1998 MAR; 125 (3): 353-359		
85	311 Hyman L, Schachat AP, He QM, Leske MC Hypertension, cardiovascular disease, and age-related macular degeneration ARCHIVES OF OPHTHALMOLOGY. 2000 MAR; 118 (3): 351-358		
86	366 Suter M, Reme C, Grimm C, Wenzel A, Jaatella M, et al. Age-related macular degeneration - The lipofuscin component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells JOURNAL OF BIOLOGICAL CHEMISTRY. 2000 DEC 15; 275 (50): 39625-39630		
87	1386 Combadiere C, Feuymi C, Raouf W, Keller N, Rodero M, et al. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration JOURNAL OF CLINICAL INVESTIGATION. 2007 OCT; 117 (10): 2920-2928		
88	430 Brody BL, Gamst AC, Williams RA, Smith AR, Lau PW, et al. Depression, visual acuity, comorbidity, and disability associated with age-related macular degeneration OPHTALMOLOGY. 2001 OCT; 108 (10): 1893-1900		
AGE-RELATED MACULAR DEGENERATION

89 648 Seddon JM, Cote J, Rosner B
 Progression of age-related macular degeneration - Association with dietary fat, transunsaturated fat, nuts, and fish intake
 ARCHIVES OF OPHTHALMOLOGY. 2003 DEC; 121 (12): 1728-1737

90 147 Maguire MG, Bressler SB, Bressler NM, Alexander J, Hiner CJ, et al.
 Risk factors for choroidal neovascularization in the second eye of patients with juxtapfoveal or subfoveal choroidal neovascularization secondary to age-related macular degeneration
 ARCHIVES OF OPHTHALMOLOGY. 1997 JUN; 115 (6): 741-747

91 973 Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, et al.
 Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: Results of a phase I clinical trial
 HUMAN GENE THERAPY. 2006 FEB; 17 (2): 167-176

92 382 Cho E, Hung S, Willett WC, Spiegelman D, Rimm EB, et al.
 Prospective study of dietary fat and the risk of age-related macular degeneration
 AMERICAN JOURNAL OF CLINICAL NUTRITION. 2001 FEB; 73 (2): 209-218

93 584 Jonas JB, Kriessig I, Hugger P, Sauder G, et al.
 Intravitreal triamcinolone acetonide for exudative age-related macular degeneration
 BRITISH JOURNAL OF OPHTHALMOLOGY. 2003 APR; 87 (4): 462-468

94 901 Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BEK, et al.
 The age-related eye disease study severity scale for age-related macular degeneration - AREDS report no. 17
 ARCHIVES OF OPHTHALMOLOGY. 2005 NOV; 123 (11): 1484-1498

95 68 Friedman E, Krupsky S, Lane AM, Oak SS, Friedman ES, et al.
 OCULAR BLOOD-FLOW VELOCITY IN AGE-RELATED MACULAR DEGENERATION
 OPHTHALMOLOGY. 1995 APR; 102 (4): 640-646

96 136 Algire PV, Berglin L, Couras P, Sheng YH, Kopp ED
 Transplantation of RPE in age-related macular degeneration: Observations in disciform lesions and dry RPE atrophy
 GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY. 1997 MAR; 235 (3): 149-158

97 449 Ohno-Matsui K, Morita I, Tombran-Tink J, Mrzek D, Dono M, et al.
 Novel mechanism for age-related macular degeneration: An equilibrium shift between the angiogenesis factors VEGF and PEDF
 JOURNAL OF CELLULAR PHYSIOLOGY. 2001 DEC; 189 (3): 323-333

98 525 Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, et al.
 The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration
 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2002 SEP 3; 99 (18): 11830-11835

99 1307 Maruko I, Iida T, Saito M, Nagayama D, Saito K
 Clinical characteristics of exudative age-related macular degeneration in Japanese patients
 AMERICAN JOURNAL OF OPHTHALMOLOGY. 2007 JUL; 144 (1): 15-22

100 1120 Heier JS, Boyer DS, Ciulla TA, Ferrone PJ, Jumper JM, et al.
 Ranibizumab combined with verteporfin photodynamic therapy in neovascular age-related macular degeneration - Year 1 results of the FOCUS study
 ARCHIVES OF OPHTHALMOLOGY. 2006 NOV; 124 (11): 1532-1542
Appendix-2: Top most cited articles (past 3 years)

#	Date / Author / Journal	Citations
1	Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, et al. Ranibizumab and Bevacizumab for Neovascular Age-Related Macular Degeneration The CATT Research Group NEW ENGLAND JOURNAL OF MEDICINE. 2011 MAY 19; 364 (20): 1897-1908	387
2	Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BI, et al. Dicer1 deficit induces Alu RNA toxicity in age-related macular degeneration NATURE. 2011 MAR 17; 471 (7338): 325+	111
3	Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, et al. Ranibizumab and Bevacizumab for Treatment of Neovascular Age-Related Macular Degeneration OPHTHALMOLOGY. 2012 JUL; 119 (7)	110
4	Klein R, Chou CF, Klein BEK, Zhang XZ, Meuer SM, et al. Prevalence of Age-Related Macular Degeneration in the US Population ARCHIVES OF OPHTHALMOLOGY. 2011 JAN; 129 (1): 75-80	74
5	Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, et al. Ranibizumab versus Bevacizumab to Treat Neovascular Age-related Macular Degeneration OPHTHALMOLOGY. 2012 JUL; 119 (7)	69
6	Holz FG, Amoaku W, Donate J, Guymon RH, Kellner U, et al. Safety and Efficacy of a Flexible Dosing Regimen of Ranibizumab in Neovascular Age-Related Macular Degeneration: The SUSTAIN Study OPHTHALMOLOGY. 2011 APR; 118 (4): 663-671	62
7	Chung SE, Kang SW, Lee JH, Kim YT Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-related Macular Degeneration OPHTHALMOLOGY. 2011; 118 (5): 840-845	62
8	Heier JS, Brown DM, Chong V, Korobelnik JF, Kaiser PK, et al. Intravitreal Aflibercept (VEGF Trap-Eye) in Wet Age-related Macular Degeneration OPHTHALMOLOGY. 2012 DEC; 119 (12): 2537-2548	56
9	Yu V, Bhangale TR, Fagerness J, Ripke S, Thorleifsson G, et al. Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration HUMAN MOLECULAR GENETICS. 2011 SEP 15; 20 (18): 3699-3709	54
10	Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY Age-related macular degeneration LANCET. 2012 MAY 5; 379 (9827): 1728-1738	53
11	Schmidt-Erfurth U, Eldem B, Guymon R, Korobelnik JF, Schlingemann RO, et al. Efficacy and Safety of Monthly versus Quarterly Ranibizumab Treatment in Neovascular Age-related Macular Degeneration: The EXCITE Study OPHTHALMOLOGY. 2011 MAY; 118 (5): 831-839	51
12	Raychaudhuri S, Iartchouk O, Chen K, Tan PL, Tai AK, et al. A rare penetrant mutation in CFH confers high risk of age-related macular degeneration NATURE GENETICS. 2011 DEC; 43 (12): 1232-U91	42
13	Zhang K, Hopkins JJ, Heier JS, Birch DG, Halperin LS, et al. Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2011 APR 12; 108 (15): 6241-6245	41
14	Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY. 2011 AUG; 249 (8): 1123-1128	41
15	Seddon JM, Reynolds R, Yu Y, Daly MJ, Rosner B Risk Models for Progression to Advanced Age-Related Macular Degeneration Using Demographic, Environmental, Genetic, and Ocular Factors OPHTHALMOLOGY. 2011 NOV; 118 (11): 2203-2211	41
16	Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, et al. Dicer1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88	40
	Reference	
---	---	
17	Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, et al. NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. NATURE MEDICINE. 2012 MAY; 18 (5): 791-U191	
18	Ohno-Matsui K Parallel findings in age-related macular degeneration and Alzheimer's disease. PROGRESS IN RETINAL AND EYE RESEARCH. 2011 JUL; 30 (4): 217-238	