Moringa leaf extract and green algae improve the growth and physiological attributes of Mentha species under salt stress

Wafa’a A. Al-Taisan1,2, Nadiyah M. Alabdallah1,2,3,4 & Lolwah Almuqadam1,2

Climate change, food scarcity, salt stress, and a rapidly growing population are just a few of the major global challenges. The current study examined into whether Moringa oleifera (L.) leaf extract and green algae (Ulva intestinalis) could help improve salt tolerance in Mentha species (Mentha piperita; Mentha longifolia). Moringa leaf extract (MLE) and green algae (GA) were applied to Mentha seedlings under three different salt treatments: 0 mM, 20 mM, 40 mM, 60 mM, and 90 mM, respectively. For each treatment, three biological replicates were conducted, with each replicate containing at least three plants. Mentha species were negatively affected by salt stress in terms of shoot length, fresh and dry weight, photosynthetic pigments, and antioxidant enzyme activities. However, the use of MLE and GA significantly improved the development and physiology of Mentha species under salt stress conditions. The MLE and GA treatments dramatically (p ≤ 0.001) increased SOD activity by 7% and 10%, CAT activity by 16% and 30%, APX activity by 34% and 56%, GPX activity by 12% and 47%, respectively, in Mentha piperita seedlings, which in turn strikingly increased superoxide dismutase (SOD) activity by 6% and 9%, catalase (CAT) activity by 15%, 28% and 44%, 27%, ascorbate peroxidase (APX) activity by 39% and 60%, glutathione peroxidase (GPX) activity by 23% and 58%, respectively, in Mentha longifolia seedlings, relative to the control. Aiming to answer questions about the relationship between plant extraction and traditional agricultural methods, this research greatly advances the goal of sustainable development for improving plant productivity by providing a much safer and more environmentally friendly adaptability.

The effects of climate change are having a negative impact on agricultural production all around the world. Salinization of the soil due to climate change is causing yield loss worldwide. Salt stress is one of the most important abiotic stresses limiting plant development and productivity, especially in arid and semi-arid regions around the world. It has become a significant concern in areas covering around 1125 million hectares worldwide, of which 76 million hectares are directly affected by human activities, resulting in a 1.5-million-hectare annual loss of arable land due to salinization. Exposure to salt stress has dramatically influenced physiological responses such as altered plasma membrane integrity, increased reactive oxygen species (ROS) generation, decreased photosynthetic efficiency, decreased stomatal aperture size, and insufficient accessibility to antioxidant enzymes. Furthermore, ROS buildup generates oxidative bursts in cellular compartments, causing proteins, DNA, and lipids to change.

Different techniques have been proposed to mitigate the negative effects of salt stress. These approaches include the use of salt-tolerant varieties, stress signaling molecules, osmoprotectants, green algae and plant extracts. Plant and green algae extract, which are both physiologically safe and economically sustainable, have demonstrated a great deal of promise for crop enhancement in moderate-stress conditions in recent years. Water extracts from a variety of cultivated plants have been noted that enhance plant growth and yield in both normal and stressful conditions by altering phytohormone metabolism, photosynthetic activity, and antioxidant defense systems. Moringa oleifera (L.) has received much interest from researchers because its leaves contain more minerals, growth hormones, vitamins, and antioxidants. MLE applied to plant leaves has been demonstrated to promote seedling establishment, seedling growth, and eventually production in abiotically stressed field conditions.

1Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 1982, Dammam 31441, Saudi Arabia. 2Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia. *email: nmalabdallah@iau.edu.sa
crops. Ulva intestinalis L. is a marine green alga in the Ulvaceae family with a tubular frond and unbranched thalli. It is a rich source of physiologically active molecules such as essential fatty acids, vitamins, amino acids, minerals, and growth stimulating substances; they have also been found to boost plant growth performance, antioxidant activities, and tolerance to abiotic stress.

Mentha species are members of the Lamiaceae family, which possesses medicinal and fragrant properties. Since this particular species displays significant biological activities, it has been utilized as a treatment for a variety of respiratory conditions, including bronchitis, sinusitis, and even the common cold. Moreover, it has the potential to be employed in the pharmaceutical and food industries as an efficient and cost-effective source of natural commercial antioxidants. However, no research has been undertaken to our knowledge on the influence of MLE and GA extracts on the growth and physiology of Mentha species under salt stress conditions. Thus, the primary goal of this study is to investigate into the potential effects of MLE and GA on the growth and physiological attributes of Mentha species grown under salt stress conditions. The findings of this study will aid in improving Mentha species productivity in salt-stressed conditions.

Materials and methods

Experimental particulars. The Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (26.3928° N, 50.1926° E) undertook this study to investigate the effect of MLE and GA on the growth and physiology of Mentha species (Mentha piperita L. and Mentha longifolia L.) identified by Sarić-Kundalić et al., and growing under salt stress. Cultivated (Ulva intestinalis L.) identified based on Budd techniques, and collected from Az Zakhunniyah is an island located on the western coast of the Arabian Gulf (N 25° 54’ 72.94”, E 50° 32’ 53.31”) and Moringa (Moringa oleifera L.) leaves were collected from Al-Ahsa city market (Voucher number-IAU:104598). On the other hand, Mentha seeds were collected from the local market in Dammam, Saudi Arabia. The experiment used a completely randomised design with split plot layouts. Pots (40 cm in height and 25 cm diameter) were filled with compost, sand (45.29%), silt (36.22%), and clay (21.14%), with pH and EC of 7.6 and 2.52 dS m−1, respectively. Soil pH was measured by pH meter (Divinext 3), whereas the EC was measured by EC meter (HI98331). In each of the pots, three seeds of each Mentha species were sowed. This study was performed with the local (Saudi Arabia) regulations implemented for studying towards the plants.

Salt stress treatments and preparation of extracts. Treatments were prepared based on the methods of Gholamnia et al. During the experiment, different doses of NaCl (0, 20, 40, 60, and 90 mM) were added to the experimental pots to produce salt stress. Moringa leaves that were mature and healthy were harvested and cleaned with tap water before being stored in the refrigerator overnight. An assembled machine was used for the extraction procedure. Distilled water was used to dilute the extracts to a concentration of 3%. To eliminate pollutants, tap water and distilled water were used to rinse Ulva intestinalis. It was homogenized in distilled water (1:1 by volume) at room temperature and stored under refrigeration until further use was needed. 100% of the liquid extract was consumed. The final extract yielded a 2% solution in distilled water.

Determination of growth parameters. Plant lengths determined by using a metric scale and expressed in centimeter (cm). The plant materials were split into shoots and roots after being cleaned with double distilled water to eliminate sand particles. The fresh weights (FW) and dry weights (DW) were measured with an analytical balance (HR-200) and expressed in grams (g).

Photosynthetic pigment determination. Arnon approach was used to extract photosynthetic pigments. At room temperature, a 0.25 g leaf sample was taken and ground with 5 ml of 80% acetone. After that, the extract was centrifuged at 3000 rpm for 10 min at 4 °C. The absorbance of the supernatant at 663 and 645 nm was used to determine the chlorophyll a and b concentrations.

Proline determination. The Bates et al. method was used to estimate proline concentration. 10 mL of aqueous sulfoalicylic acid and 0.5 g of newly plucked leaves (3%). After that, the mixture was filtered through a Whatman No. 40 filter paper. The mixture was placed in test tubes, and 2 mL of ninhydrin solution and 2 mL of glacial acetic acid were added. The mixture was then heated at 95 °C for over an hour before being placed in an ice bath to cool. The mixture was then extracted with 10 mL of toluene as a chromophore, and the reaction mixture was constantly circulated via an air stream for 1–2 min to separate the aqueous phase from the chromophore, which contained toluene. Finally, the separated colored phase was allowed to dry at room temperature for 2–3 min before its absorbance was measured with a spectrophotometer to be 520 nm.

Total sugar content determination. The method described by Du Bois et al. was used to calculate the total soluble sugar content (1956). To extract 0.5 g of fresh leaves, 10 mL of ethanol (80%) was employed. After centrifugation, the supernatant was combined with 2.5 mL of 5% phenol solution (v/v) and 0.5 mL of sulfuric acid. To heat the combination, it was immersed in a water bath for 20 min. A standard curve was used to calculate the total soluble sugar concentration, and the absorbance at 490 nm was calculated.

Extraction and measurement of antioxidant enzyme activity. The antioxidant enzymes were extracted using the Mukherjee and Choudhuri approach. In 10 mL of phosphate buffer, 0.5 g of fresh leaves were extracted (pH 7). After that, the homogenate was centrifuged at 15,000 rpm for 10 min at 4 °C. The supernatant was then maintained at 20 °C to assess antioxidant enzyme activity.
Superoxide dismutase (SOD) activity determination. The nitro-blue-tetrazolium (NBT) reduction procedure was used to measure SOD activity. The reaction mixture (3 mL) includes 50 enzyme extract, 150 riboflavin (13 M), 2.5 mL methionine (13 M), 250 NBT (63 M), and 50 phosphate buffers (50 mM, pH 7.8). The absorbance at 560 nm was measured using a spectrophotometer (LKB-Biochrom 4050).

Catalase (CAT) activity determination. The Aebi approach was used to measure CAT activity. The enzyme extract (40 mL) was combined with 0.016 mL of H2O2 (30%) and a 10 mM phosphate buffer solution (pH 7.0). Finally, the absorbance at 240 nm was evaluated using a spectrophotometer (LKB-Biochrom 4050).

Ascorbate peroxidase (APX) activity determination. The APX activity was evaluated using the Nakano and Asada approach. The reaction mixture contained 0.1 M potassium phosphate buffer (pH 7.0), 0.5 mM ascorbate, 0.1 mM EDTA, 1.0 mM H2O2, and 20 µL enzyme extract (2.22 mL). The enzyme coefficient of 2.8 mM−1 cm−1 was used to calculate APX activity.

Guaiacol peroxidase (GPX) activity determination. The GPX activity was measured at 25 °C using the Elia et al. technique. The reaction mixture includes 0.2 mM enzyme extract, 10 mM sodium phosphate buffer (pH 7.0), 1 mL H2O2 (30%), 1 mL guaiacol (0.05 M), and 2 mL distilled water. Guaiacol oxidation was determined by measuring the rise in absorbance at 470 nm over a one-minute period. One unit of POD is the amount of enzyme required to catalyse the reduction of 1 M of H2O2, using guaiacol as the hydrogen donor, per minute under certain conditions, and was calculated using the enzyme coefficient 26.6 mM−1 cm−1.

Statistical evaluation. The MINITAB-17 statistical software was used to perform analysis of variance (ANOVA) on the data, and the results were displayed as treatment mean ± SE (n = 3). The LSD test reveals that bars with the same letter are not statistically different at the p < 0.05 level.

Results

Growth conditions. To analyze the beneficial effects of MLE and GA on Mentha species, we looked at a variety of morphological traits, including shoot length, shoot fresh and dry weight, and root fresh and dry weight. Shoot length, fresh and dry weight, and root fresh and dry weight were all reduced significantly (p ≤ 0.001) when the Mentha species were subjected to varied doses of NaCl (20, 40, 60, and 90 mM) compared to control (Table 1). The salt treatments (20, 40, 60, 90 mM) dramatically (p ≤ 0.001) decreased shoot length by 5%, 20%, 29%, 39%, root length by 8%, 20%, 29%, 39%, shoot fresh weight by 32%, 45%, 70%, shoot dry weight by 7%, 27%, 49%, 64%, root fresh weight by 20%, 37%, 61%, 69%, respectively, which in turn strikingly decreased the root dry weight by 33%, 63%, 73%, 93% in Mentha piperita seedlings, relative to the control. Conversely, salt treatments reduced shoot length, fresh and dry weight, and root fresh and dry weight of Mentha longifolia. Nonetheless, exogenous MLE and GA treatment significantly improved these parameters in both Mentha species when exposed to salt.

Photosynthetic pigments. In comparison to control seedlings, salt treatments (20, 40, 60, 90 mM) resulted in significant (p ≤ 0.001) decreases in total chlorophyll a and chlorophyll b content in Mentha piperita of 8%, 15%, 37%, 67% and 5%, 14%, 24%, 64% and in Mentha longifolia of 10%, 16%, 38%, 72% and 9%, 18%, 46%, 71%, respectively. Nonetheless, Mentha species treated with MLE and GA showed significantly greater chlorophyll content (p < 0.001) (Fig. 1).

Proline content. In Mentha piperita and Mentha longifolia, the salt treatments (20, 40, 60, 90 mM) resulted to substantial (p < 0.001) increases in proline content of 9%, 19%, 30%, 42% and 9%, 21%, 32%, 40%, respectively, compared to those in control seedlings. When compared to the salt-stressed Mentha seedlings, the exogenous administration of MLE and GA considerably (p < 0.001) lowered proline content.

Soluble sugar content. Salt treatments of 20, 40, 60, and 90 mg/L raised the soluble sugar content in Mentha piperita by 6%; Mentha longifolia by 4%; Mentha longifolia by 18%; and Mentha longifolia by 32% compared to those in control seedlings. In comparison to untreated Mentha piperita plants (Fig. 3). Correspondingly, the salt treatments (20, 40, 60, and 90 mM) led to significant (p ≤ 0.001) increases in SOD activity by 10%, 15%, 33%, 34%, APX activity by 27%, 30%, 60%, 73%, and 74%, GPX activity by 31%, 44%, 66% and 72%, respectively, relative to with respect to those in untreated Mentha piperita plants (Fig. 3). Correspondingly, the salt treatments (20, 40, 60, and 90 mM) led to significant (p ≤ 0.001) increases in SOD activity by 10%, 25%, 41%, and 53%, CAT activity by 6%, 9%, 26%, and 27%, APX activity by 28%, 62%, 70%, and 71%, GPX activity by 27%, 44%, 63%, and 66%, respectively, with respect to those in control Mentha longifolia seedlings. However, the application of MLE and GA resulted in a considerable improvement in these antioxidant enzyme parameters (Fig. 4). Furthermore, when exposed to high salt concentrations, GA treatment was more effective than MLE treatment in regulating these antioxidant enzymes (SOD, CAT, APX, and GPX).
According to the current report results, salt stress significantly reduced the shoot and root biomass of both *Mentha* seedlings. The decrease in growth caused by salinity could be attributed to decreased nutrient uptake by plants or increased sodium redistribution from roots to shoots. However, the current study found that applying MLE and GA to *Mentha* species increased their growth and physiological greatly. Similar outcome was observed in rice where MLE increased the growth and biomass under drought stress. These findings suggest that MLE and GA promote *Mentha* species growth by altering physiological processes.

In order to determine the level of salt stress, photosynthetic systems can be employed as indicators. Reduced photosynthetic pigments are caused by salt stress and chlorophyll content was reported to be greater in stress-free conditions than in salt-stressed environments. In this present study, salt stress lowered the photosynthetic pigments of *Mentha* species. These findings back up the findings of Ahanger et al., who found that salt stress reduced chlorophyll concentration in wheat. In the current study, exogenous administration of MLE and GA significantly boosted the amount of photosynthetic pigments during salt stress. Moringa leaves are abundant in chlorophyll and carotenoids (xanthin, beta-carotene, alpha-carotene, and lutein), which have antioxidant effects. MLE has also been shown to accelerate the synthesis of cytokinin's, preventing early leaf senescence.

Table 1. Effect of MLE (*Moringa oleifera*) and GA (*Ulva intestinalis*) on growth parameters in the *Mentha* species seedlings under salt stress (0 mM, 20 mM, 40 mM, 60 mM, 90 mM). The data displayed are the means (± SE) of three replicates, and bars of dissimilar letters differ significantly at the p ≤ 0.05 level.

Species	Growth parameters	Treatment	Salt Concentrations					
			0 mM	20 mM	40 mM	60 mM	90 mM	
Mentha piperita								
SL	Control	24.3 ± 2.4a	23.0 ± 2.1b	19.4 ± 1.9c	17.3 ± 1.8d	15.0 ± 1.7e		
	MLE	26.5 ± 1.3a	25.9 ± 1.1b	23.7 ± 0.92c	20.9 ± 0.83d	16.8 ± 0.79e		
	GA	29.5 ± 2.9a	28.0 ± 2.4b	27.8 ± 2.2c	23.4 ± 2d	18.7 ± 1.37e		
RL	Control	22.2 ± 1.2a	20.7 ± 1.1b	18.0 ± 1.1c	16.0 ± 0.92d	13.7 ± 0.81e		
	MLE	24.9 ± 1.52a	22.6 ± 1.4b	21.7 ± 1.32c	18.6 ± 1.13d	16.0 ± 1.11e		
	GA	28.0 ± 1.6a	26 ± 1.42b	25.1 ± 1.21c	21.6 ± 1.12d	18.1 ± 0.98e		
SFW	Control	3.6 ± 0.23a	2.4 ± 0.19b	2.3 ± 0.18b	1.9 ± 0.09c	1.1 ± 0.08d		
	MLE	4.9 ± 0.24a	4.6 ± 0.22b	4.4 ± 0.21c	4.3 ± 0.21c	2.7 ± 0.16d		
	GA	7.2 ± 0.46a	6.6 ± 0.43b	6.2 ± 0.36c	5.8 ± 0.37d	4.0 ± 0.28e		
SDW	Control	2.4 ± 0.18a	1.8 ± 0.15b	1.6 ± 0.14c	1.4 ± 0.12c	0.9 ± 0.08d		
	MLE	4.0 ± 0.28a	3.5 ± 0.23b	2.9 ± 0.2c	2.2 ± 0.18d	1.5 ± 0.17e		
	GA	5.8 ± 0.34a	5.0 ± 0.33b	4.3 ± 0.32c	3.9 ± 0.3d	2.5 ± 0.27c		
RFW	Control	2.8 ± 0.18a	2.3 ± 0.16b	1.8 ± 0.15c	1.1 ± 0.13d	0.9 ± 0.07d		
	MLE	5 ± 0.26a	4.2 ± 0.24b	4.2 ± 0.32b	3.9 ± 0.32c	2.3 ± 0.16d		
	GA	6.9 ± 0.48a	5.8 ± 0.44b	5.3 ± 0.39c	4.9 ± 0.33c	3.8 ± 0.3d		
RDW	Control	1 ± 0.07a	1.2 ± 0.06b	0.6 ± 0.05c	0.5 ± 0.05d	0.1 ± 0.02e		
	MLE	3.5 ± 0.22a	3.0 ± 0.2b	2.9 ± 0.19c	2.2 ± 0.18d	1.4 ± 0.17e		
	GA	4.5 ± 0.48a	4.0 ± 0.42b	3.9 ± 0.38b	2.8 ± 0.37c	1.8 ± 0.24d		
Mentha longifolia								
SL	Control	23.4 ± 2a	22.3 ± 1.8b	21.1 ± 1.7c	16.5 ± 1.4d	10.7 ± 1.2e		
	MLE	25.7 ± 2.1a	23.9 ± 2b	22.1 ± 1.67c	18.1 ± 1.54d	15.5 ± 1.34e		
	GA	29.1 ± 2.6a	27.1 ± 2.4b	25.9 ± 2c	20.2 ± 1.8d	17.8 ± 1.3e		
RL	Control	21.9 ± 1.38a	20.3 ± 1.2b	16.9 ± 1.18c	15.2 ± 1.2d	8.9 ± 1e		
	MLE	23.4 ± 1.42a	22.1 ± 1.3b	19.9 ± 1.3c	16.9 ± 1.27d	15 ± 1.2e		
	GA	27.4 ± 1.8a	26.4 ± 1.5b	23.8 ± 1.4c	19.3 ± 1.2d	16.4 ± 1.1e		
SFW	Control	3.1 ± 0.2a	2.4 ± 0.21b	2.2 ± 0.18c	1.9 ± 0.17d	0.9 ± 0.08e		
	MLE	3.8 ± 0.26a	3.1 ± 0.24b	2.9 ± 0.25b	2.3 ± 0.12c	1.7 ± 0.16d		
	GA	6.1 ± 0.54a	5.4 ± 0.45b	5.1 ± 0.41c	5.0 ± 0.37c	3.3 ± 0.24d		
SDW	Control	2.1 ± 0.16a	1.5 ± 0.18b	1.1 ± 0.09c	0.9 ± 0.08d	0.4 ± 0.07e		
	MLE	3 ± 0.22a	2 ± 0.2b	1.9 ± 0.22b	1.2 ± 0.16c	1.1 ± 0.17d		
	GA	4.7 ± 0.33a	4.2 ± 0.29b	3.7 ± 0.28c	3.1 ± 0.27d	2.2 ± 0.26e		
RFW	Control	2.9 ± 0.29a	2 ± 0.19b	1.5 ± 0.11c	0.8 ± 0.04d	0.5 ± 0.04c		
	MLE	3.4 ± 0.32a	2.9 ± 0.27b	2.2 ± 0.18c	1.6 ± 0.11d	1.2 ± 0.12e		
	GA	5.7 ± 0.53a	4.9 ± 0.41b	4.3 ± 0.39c	3.7 ± 0.32d	3.1 ± 0.27e		
RDW	Control	1.9 ± 0.14a	1.6 ± 0.18b	1.3 ± 0.13c	0.8 ± 0.04d	0.6 ± 0.05e		
	MLE	3.2 ± 0.3a	2.5 ± 0.31b	2 ± 0.29c	1.6 ± 0.26d	1.4 ± 0.18e		
	GA	4.2 ± 0.43a	3.7 ± 0.35b	3 ± 0.3c	2.9 ± 0.29c	2.2 ± 0.16d		
senescence and resulting in a bigger leaf area with higher chlorophyll content. The current study findings are consistent with Khan et al. discovery that MLE application significantly boosted photosynthetic pigments in wheat cultivated under favorable conditions. According to Yaseen et al., foliar application of MLE during the tillering and heading phases increases chlorophyll a and b levels in wheat. The aqueous extract of *Ulva intestinalis* also increased the levels of chlorophyll a and b in parsley seedlings.

The total soluble sugars and proline content were determined to understand more about MLE and GA effects on salt stressed seedlings. Total soluble sugars are well-known as one of the essential organic solutes that maintain cell homeostasis, and proline aids in cell osmotic adjustment in the presence of salt stress. According to our findings, total soluble sugars and proline levels increased in the *Mentha* species under salt stress when compared to the control condition. A similar study in chickpea found that salt stress boosted the synthesis of total soluble sugars and proline levels in wheat. MLE and GA combined application reduced total soluble sugars and proline levels under salt stress. Seedlings of *Mentha* may be able to tolerate salt stress by lowering endogenous proline production. Similarly, when exposed to salt stress alone, MLE reduced the proline concentration in *Brassica napus* leaves. Ibrahim et al. reported that ascorbic acid, betaine, glutathione, and proline are some of the bioactive components found in *Ulva lactuca* extract. These components, along with others, have the potential to alleviate the negative effects of salt stress.

Antioxidant defenses are essential in determining a plant’s tolerance for stressful conditions. With the beginning of salt stress, the activities of enzymatic antioxidants were found to be increased in the *Mentha* seedlings. Hanafy found a significant increase in the activities of enzyme antioxidants (GR, SOD, APX, and GPX) in rice that had been exposed to salt stress. The use of MLE and GA increased the antioxidant activity of enzymatic antioxidants in *Mentha* species, which was especially noticeable under salt stress. Increased SOD,
Figure 3. Effect of MLE (Moringa oleifera) and GA (Ulva intestinalis) on the antioxidant enzymes (A SOD; B CAT; C APX and D GPX) in the Mentha species under salt stress (0 mM, 20 mM, 40 mM, 60 mM, 90 mM). The data displayed are the means (± SE) of three replicates, and bars of dissimilar letters differ significantly at the p ≤ 0.05 level.

Figure 4. Schematic model figure shows how MLE and GA alleviates salinity stress in Mentha species.
CAT, APX, and GPX activity may be related with the activation of antioxidant responses that protect the plant from oxidative damage, according to our findings. According to Foyer and Noctor\(^8\), the initiation of enzymatic antioxidant activities in plants is a natural response for resisting oxidative stress. Similarly, MLE administration resulted in a significant increase in SOD activity in soybean, which was followed by the application of glutathione reductase (GR) and APX, respectively.

Zaki and Rady\(^9\) found that seed soaking or foliar spray treatment of MLE increased the antioxidant enzyme activities such as SOD, and APX in common bean (Phaseolus vulgaris L.) plants. Microalgae, on the other hand, were found to boost SOD, CAT, APX, and peroxidase (POD) activities in wheat seedlings under salt stress\(^62\). Furthermore, similar studies were conducted on several plants and showed that using Ulva lactuca and marine algae extracts increased the antioxidant enzyme activities. The increase in enzyme activity could be indicative of the presence of antioxidant and osmoprotectant substances.

Conclusion

Salt stress has a deleterious impact on the growth and physiology of the Mentha species. MLE and GA demonstrated the best biostimulant potential in terms of improved growth and physiology of Mentha seedlings grown under normal and salt stress. Foliar application of MLE and GA significantly improved photosynthetic pigments, osmolytes, and antioxidant enzyme activity under normal and salt stress conditions. Overall, these findings suggest that MLE and GA can be used to promote field plant development in both normal and salt-stressed environments. More research is required, however, to determine the effectiveness of MLE and GA in reducing the harmful effects of soil salinization on plants, as well as the optimal dose. Furthermore, the molecular processes underlying MLE and GA-mediated salt tolerance in plants must be understood.

Received: 24 December 2021; Accepted: 12 August 2022

References

1. Francini, A. & Sebastiani, L. Abiotic stress effects on performance of horticultural crops. *Horticulture* 7, 5 (2019).
2. Qamar, et al. Mitigating water stress on wheat through foliar application of silicon. *Asian J. Agric. Biol.* 8(1), 1–10. [https://doi.org/10.33945/ajab.2019.04.174 (2020)].
3. Batool, et al. Impact of natural and synthetic plant stimulants on *Moringa* seedlings grown under low-temperature conditions. *Int. Lett. Nat. Sci.* 76, 51 (2019).
4. Rehman, M. Z. et al. Comparative effects of different soil conditioners on wheat growth and yield grown in saline-sodic soils. *Sains Malays.* 45, 339–346 (2016).
5. Shareef, H. J. Organic fertilizer modulates AIA and ABA levels and biochemical reactions of date palm Phoenix dactylifera L. Hil-Lawi cultivar under salinity conditions. *Asian J. Agric. Biol.* 8(1), 24–30. [https://doi.org/10.33945/ajab.2019.02.062 (2020)].
6. Hossain, M. S. Present scenario of global salt affected soils, its management and importance of salinity research. *Int. Res. J. Biol. Sci.* 1, 1–3 (2019).
7. Huang, P. et al. Seed priming with sorghum water extract improves the performance of *Camelina* (Camelina sativa (L.) Crantz) under salt stress. *Plants* 10(4), 749. [https://doi.org/10.3390/plants10040749 (2022)].
8. Gholamnia, A. et al. Expression profiling of rosmarinic acid biosynthetic genes and some physiological responses from *Mentha piperita* L. under salinity and heat stress. *Physiol. Mol. Biol. Plants* 28, 545–557 (2022).
9. Li, Z., Yang, H., Wu, X., Guo, K. & Li, J. Some aspects of salinity responses in peppermint (*Mentha piperita*) to NaCl treatment. *Protoplasma* 252(3), 885–899 (2015).
10. Tanveer, M. & Ahmed, H. A. I. ROS signalling in modulating salinity stress tolerance in plants. In *Salt and Drought Stress Tolerance* (eds Hasanuzzaman, M. & Tanveer, M.) 299–314 (Springer, 2020).
11. Jahan, M. S. et al. Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of ABA and GA-mediated pathways. *Front. Plant Sci.* 12, 381 (2021).
12. Khan, S. et al. *Moringa* leaf extract improves biochemical attributes, yield and grain quality of rice (*Oryza sativa* L.) under drought stress. *PLOS One* 16, e0254452 (2021).
13. Khan, S., Basra, M. A., Nawaz, M., Hussain, I. & Foidl, N. Combined application of moringa leaf extract and chemical growth-promoters enhances the plant growth and productivity of wheat crop (*Triticum aestivum* L.). *South Afr. J. Bot.* 129, 74–81 (2020).
14. Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mecha- nisms of allelopathy. *Front. Plant Sci.* 6, 1020 (2015).
15. Hasan, M. M. et al. Effects of magnetized water on phenolic compounds, lipid peroxidation and antioxidant activity of *Moringa* species under drought stress. *J. Anim. Plant Sci.* 28, 803–810 (2018).
16. Hasan, M. M. et al. The effect of magnetized water on the growth and physiological conditions of *Moringa* species under drought stress. *Pol. J. Environ. Stud.* 539, 1145–1155 (2019).
17. Hasan, M. M. et al. Evidence-based assessment of *Moringa oleifera* used for the treatment of human ailments. In *Plant and Human Health* (eds Ozturk, M. & Hakeem, K. R.) 121–137 (Springer, 2019).
18. Batool, et al. Foliar application of *moringa* leaf extract improves the growth of *moringa* seedlings in winter. *South Afr. J. Bot.* 129, 347–353 (2020).
19. Iqbal, et al. Comparative study of water extracts of *Moringa* leaves and roots to improve the growth and yield of sunflower. *South Afr. J. Bot.* 129, 211–224 (2020).
20. Khan, et al. Application of *moringa* leaf extract as a seed priming agent enhances growth and physiological attributes of rice seedlings cultivated under water deficit regime. *Plants* 261, 11. [https://doi.org/10.3390/plants1103261 (2022)].
21. Basra, S. M. A., Iftikhar, M. N. & Afzal, I. Potential of *Moringa oleifera* leaf extract as priming agent for hybrid maize seeds. *Int. J. Agric. Biol.* 13, 1006–1010 (2011).
22. Hasan, M. M. et al. Magnetically water confers drought stress tolerance in *Moringa* biotype via modulation of growth, gas exchange, lipid peroxidation and antioxidant activity. *Pol. J. Environ. Stud.* 1, 29 (2020).
23. Zahra, N. et al. Plant growth promoters mediated quality and yield attributes of milk thistle (*Silybum marianum* L.) ecotypes under salinity stress. *Sci. Rep.* 11(23200), 4 (2021).
24. Irshad, S. et al. Foliar application of potassium and moringa leaf extract improves growth, physiology and productivity of kabuli chickpea grown under varying sowing regimes. *PLOS One* 17(2), e0263323. [https://doi.org/10.1371/journal.pone.0263323 (2022)].
25. Khan, et al. (2021). Impact of natural and synthetic growth enhancers on the productivity and yield of quinoa (*Chenopodium quinoa* wild.) cultivated under normal and late sown circumstances.
26. Sun, S. et al. Preparation and Identification of ACE Inhibitory Peptides from the Marine Macroalga *Ulva intestinalis*. *Mar. Drugs* 17, 179 (2020).
Latef, A. A. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars.

Kim, D. H.

were collected from Al-Ahsa city under permit No.1-11-1-2590.

The authors declare no competing interests.

Competing interests

requests for materials should be addressed to N.M.A.

Scientific Reports | (2022) 12:14205 | https://doi.org/10.1038/s41598-022-18481-5

www.nature.com/scientificreports/
