Fractional optimal control in transmission dynamics of West Nile virus model with state and control time delay: a numerical approach

N.H. Sweilam1*, O.M. Saad2 and D.G. Mohamed2

Abstract
In this paper, an optimal control for a novel fractional West Nile virus model with time delay is presented. The proposed model is governed by a system of fractional delay differential equations, where the fractional derivative is defined in the Grünwald–Letnikov sense. Stability analysis of fixed points is studied. Corresponding fractional optimal control problem, with time delays in both state and control variables, is formulated and studied. Two simple numerical methods are used to study the nonlinear fractional delay optimal control problem. The methods are standard finite difference method and nonstandard finite difference method. Comparative studies are implemented, it is found that the nonstandard finite difference method is better than the standard finite difference method.

MSC: 49J15; 37N25; 26A33; 93C15; 65L12

Keywords: West Nile virus mathematical model; Delay differential equations; Nonstandard finite difference method; Grünwald–Letnikov’s definition; Fractional optimal control problem

1 Introduction
Time delays play an important role in the modeling of real-life phenomena in different fields of applications, for example, engineering, chemical, and biological systems that are modeled by differential equations. Many methodologies have been proposed to deal with the control and optimal control problems of systems with time delay [1–9]. In [10], an introduction to time-delay control problems is given. In [11], Kharatishvili established a maximum principle for optimal control problems with a constant state delay. Similar results for control problems with pure control delays are presented in [12]. In [13], Halanay proved a maximum principle for optimal control problems with multiple constant delays in state and control variables. Soliman and Ray obtained the similar results in [14]. A simple method for obtaining necessary conditions for control problems with a constant delay in the state variable is introduced in [15]. A maximum principle for control systems with a time-dependent delay in the state variable is derived in [16]. The theory of necessary conditions for optimization problems in functional spaces is applied on a unified approach to control problems with delays in the state variable in [17]. Optimal control for a time-delay...
multi-strain tuberculosis fractional model is introduced in [18]. Recently, many interesting studies were presented in nonlinear and time-delay optimal control problems, see [19–21].

Fractional calculus has been the focus of many studies due to its appearance in various sciences [22–30]. The paths of the control variables that maximize or minimize a function of the state and control variables are described by fractional optimal control problems (FOCP). The theory of FOCPs has been under development. The approximation and numerical techniques are used to solve the FOCPs [25, 31]. Since most of the fractional-order differential equations do not have exact analytic solutions, the approximation and numerical techniques must be used [26]. Delayed fractional differential equations (DEDEs) are also used to describe dynamical systems [32], for more details, see [33–35]. Recently, many papers have been devoted to DEDEs (see [36–38], and the references cited therein). Non-standard finite difference method (NSFDM) was firstly developed in 1980s by Mickens and has been applied in many areas of science including biological and epidemic models [39–41]. It is important that the proposed numerical method can preserve the positivity of the solution [42].

In this paper, fractional time-delay optimal control in transmission dynamics of WNV model is presented as an extension of the WNV model given in [26]. Time delays in both state and control variables are formulated and studied. The aim of this paper is to study the fractional time-delay optimal control of this proposed model. We introduced NSFDM and standard finite difference method (SFDM) to study the behavior of this optimal control problem.

West Nile virus (WNV) is an arbovirus and single-standard RNA virus Flavivirus [43]. WNV is transmitted among mosquitoes, birds, humans, and other animals [44]. In 1937, the virus was first isolated in the West Nile district of Uganda [45]. It has spread in Africa, Europe, the Middle East, west and central Asia, Oceania (subtype Kunjin), and North America [46–50]. Owing to the absence of an effective diagnostic test therapeutic treatment against WNV, public health officials have focussed on the use of preventive measures in attempt to halt the spread of WNV in humans [43]. In 2001 [51], the first WNV model was presented by Thomas and Urena. In [52], a single season model with a system of differential equations for WNV transmission in the mosquito-bird population was presented by Wonham et al. They were using local stability results and simulations, showed that while mosquito control decreases WNV outbreak threshold, controlling birds increases it. In [53] Cruz-Pacheco et al. studied a mathematical model for the transmission of WNV infection between mosquito and avian populations, and by using experimental and field data as well as numerical simulations, they found the phenomenon of damped oscillations of the infected bird population. Also, the spatial spread of the virus was established by Lewis et al. in [54]. A comparative study of the discrete-time model in [51] and the continuous-time model in [55] was introduced by Lewis et al. in [56]. Kbenesh et al. determined the cost-effective strategies for combating the spread of WNV in a given population in [57]. Fractional optimal control of WNV model was introduced by using two numerical methods by Sweilam et al. in [26].

This paper is organized as follows. In Sect. 2, preliminaries and notations are presented. In Sect. 3, a mathematical model is formulated. Reproduction number R_0 and stability of the disease-free equilibrium and the endemic equilibrium are studied in Sect. 4 and Sect. 5, respectively. The optimal control problem is formulated in Sect. 6. In Sect. 7, NSFDM
method for fractional time-delay WNV model is presented. A numerical experiment is discussed in Sect. 8. Finally, in Sect. 9, conclusions are presented.

2 Preliminaries and notations

Definition 2.1 ([58]) The left Caputo fractional derivative (LCFD) is defined as follows:

\[{}^c_aD^\alpha_t V(t) = \frac{1}{\Gamma(n-\alpha)} \int_a^t \frac{V^{(n)}(\tau)}{(t-\tau)^{1-n+\alpha}} d\tau, \]

(1)

the right Caputo fractional derivative (RCFD) is defined as follows:

\[{}^rD^\alpha_t V(t) = \frac{(-1)^n}{\Gamma(n-\alpha)} \int_t^b \frac{V^{(n)}(\tau)}{(t-\tau)^{1-n+\alpha}} d\tau, \]

(2)

where \(\Gamma \) is the Euler gamma function.

Definition 2.2 ([58]) The Grünwald–Letnikov approximation of the fractional derivative of order \(\alpha \) of the function \(V(t) \) is defined as follows:

\[D^\alpha V(t) = \lim_{h \to 0} \left[\frac{h}{(n-\alpha)} \sum_{k=0}^{\lfloor t/h \rfloor} \omega^\alpha_k V(t-kh), \right] \]

(3)

where \(\lfloor t \rfloor \) is the integer part of \(t \), \(h \) is the step size, and the Grünwald–Letnikov coefficients are given by

\[\omega^\alpha_k = \left(1 - \alpha + \frac{1}{k} \right) \omega^\alpha_{k-1}, \quad \text{and} \quad \omega^\alpha_0 = (h)^{-\alpha}, \quad k > 1. \]

(4)

Definition 2.3 ([59]) The numerical scheme is called NSFD discretization if at least one of the following conditions is satisfied:

(i) Nonlocal approximation is used [39, 59, 60].

(ii) The discretization of derivative is not traditional and a nonnegative function \(\varphi(\Delta t) = \Delta t + O((\Delta t)^2) \), called a denominator function, is used [41].

The discretization is based on the approximations of temporal derivatives by a generalized forward scheme. If we have \(\varphi(\Delta t) = \Delta t \), then the scheme is defined as finite difference or SFDM. Hence, if \(M(t) \in C^1(\mathbb{R}) \), the first derivative can be defined as follows:

\[\frac{dM(t)}{dt} = \frac{M(t + \Delta t) - M(t)}{\varphi(\Delta t)}. \]

(5)

3 Mathematical model

In this section, a new formulation for the transmission dynamics of WNV model given in [57] is presented. In the following, the transmission dynamics of WNV model is modified to be nonlinear time-delayed fractional differential equations. The WNV introduced in [57] consists of nine nonlinear ODEs which is described by the total mosquito population at time \(t \), denoted by \(N_M(t) \), split into the populations of susceptible \(M_s(t) \) and infected \(M_i(t) \) mosquitoes. Similarly, the total bird population at time \(t \), denoted by \(N_B(t) \), is subdivided into susceptible \(B_s(t) \) and infected \(B_i(t) \) birds. Finally, the total human population
at time t, denoted by $N_{H}(t)$, is split into susceptible $S(t)$, exposed $E(t)$, infectious $I(t)$, hospitalized $H(t)$, and recovered $R(t)$ humans. Thus, $N_{H}(t) = M(t) + I(t)$, $N_{A}(t) = B(t) + E(t)$ and $N_{H}(t) = S(t) + E(t) + I(t) + H(t) + R(t)$ as explained in Table 1. The population of susceptible humans is increased via recruitment of humans (by birth or immigration) into the community at a constant rate λ_{H}. It is decreased infection (acquired via contact with infected mosquitoes) and by natural death (at a rate λ_{H}), where b_{2} is the per capita rate of biting of humans by mosquitoes and β_{3} is the probability of WNV transmission from mosquitoes to humans. Here, it is assumed that new human infections are acquired at a rate that depends on the average number of mosquito bites per unit time and on the transmission probability normalized by total human population $\{43\}$. Let us introduce a discrete time delay in the state variables M, S, and H, denoted by d_{H}, d_{A}, and d_{H}, respectively (where d_{A} represents the time required for the WNV transmission from mosquitoes to humans and d_{H} represents the time required for diagnosis and commencement of treatment of the infection of WNV model). The time-delay system of WNV model of fractional-order derivatives is

$$
\begin{align*}
\frac{c}{a} D^{\alpha}_{t} M(t) &= \lambda_{M}^{\alpha} - \frac{b_{2} \beta_{1}^{\alpha} M(t) B(t)}{N_{B}(t)} - \mu_{M}^{\alpha} M(t), \\
\frac{c}{a} D^{\alpha}_{t} B(t) &= \lambda_{B}^{\alpha} - \frac{b_{2} \beta_{3}^{\alpha} M(t) B(t)}{N_{B}(t)} - \mu_{B}^{\alpha} B(t), \\
\frac{c}{a} D^{\alpha}_{t} S(t) &= \lambda_{H}^{\alpha} - \frac{b_{2} \beta_{3}^{\alpha} M(t - d_{A}) S(t - d_{A})}{N_{H}(t)} - \mu_{H}^{\alpha} S(t), \\
\frac{c}{a} D^{\alpha}_{t} E(t) &= \alpha_{w}^{\alpha} E(t) - \left(\gamma^{\alpha} + d_{t}^{\alpha} + r^{\alpha} + \mu_{H}^{\alpha}\right) E(t), \\
\frac{c}{a} D^{\alpha}_{t} I(t) &= \gamma^{\alpha} I(t) - \left(d_{t}^{\alpha} + \mu_{H}^{\alpha}\right) I(t), \\
\frac{c}{a} D^{\alpha}_{t} H(t) &= \gamma^{\alpha} I(t) - \left(d_{t}^{\alpha} + \mu_{H}^{\alpha}\right) H(t) - \tau^{\alpha} H(t - d_{H}), \\
\frac{c}{a} D^{\alpha}_{t} R(t) &= \tau^{\alpha} H(t - d_{H}) + r^{\alpha} I(t) - \mu_{H}^{\alpha} R(t),
\end{align*}
$$

Table 1 All variables in system (6) and their definitions

Variable	Definition
$M(t)$	The population of susceptible mosquitoes
$I(t)$	The population of infected mosquitoes
$N_{H}(t)$	The total population of mosquitoes $N_{H}(t) = M(t) + I(t)$
$B(t)$	The population of susceptible birds
$E(t)$	The population of exposed humans
$H(t)$	The population of infected humans
$R(t)$	The population of recovered humans
d_{H}	The time delay of WNV transmission from mosquitoes to humans

...
Table 2 All parameters in system (6) and their interpretation

Parameter	Interpretation
λα_M	The recruitment rate of mosquitoes (assumed susceptible)
μα_M	The natural death rate of mosquitoes
λα_B	The recruitment rate of birds (assumed susceptible)
μα_B	The natural death rate of birds
κ_B	The migration rate of birds
d_I	The WNV-induced death rate of birds
λα_H	The recruitment rate of humans (assumed susceptible)
μα_H	The natural death rate of humans
ψα_B	The WNV-induced death rate of humans
d_H	The death rate of hospitalized humans
p_B	The probability of WNV transmission from an infected bird to a susceptible mosquito
p_M	The probability of WNV transmission from an infected mosquito to a susceptible bird
p_I	The probability of WNV transmission from mosquitoes to humans
bα₁	The per capita biting rate of mosquitoes on the primary host (birds) and b_α¹ = (b_α_{NB} + b_α_{NH})¹
bα₂	The per capita biting rate of mosquitoes on the humans and b_α² = (b_α_{NB} + b_α_{NH})²
bα	The average biting rate of mosquitoes
αω_{αω}	The rate of development of clinical symptoms of WNV
rα	The natural recovery rate
τα	The treatment-induced recovery rate
γα	The hospitalized rate of infectious humans

Table 3 Parameter values used in system (6)

Parameter	Value	Parameter	Value
μα_M	(3.91 x 10⁻⁵α - 0.005α)	d_I	(5 x 10⁻⁵α - 0.0015α)
μα_B	(0.0001α - 0.003α)	d_α	(0.06α - 0.2α)
μα_H	(0.016α - 0.002α)	λα_B	(5.1 x 10⁻³α)
λα_D	2.1α	λ_H	5 x 10⁻²α
λα_E	(d_H + 10⁻⁵α)	ψα_B	(5.2 x 10⁻²α)
β_α	0.4α	βα₂	0.1α
β_α	(10⁻⁵α)	rα	3^α
α_{αω}	0.1α	γα	0^α
τα	0.05α	rα	0^α

with the following initial conditions:

\[
\begin{align*}
M_s(η) &= ζ₁(η), & M_i(η) &= ζ₂(η), & B_s(η) &= ζ₃(η), \\
B_i(η) &= ζ₄(η), & S(η) &= ζ₅(η), & E(η) &= ζ₆(η), \\
I(η) &= ζ₇(η), & H(η) &= ζ₈(η), & R(η) &= ζ₉(η), \\
\end{align*}
\tag{7}
\]

where \(ζ αD^α_1 \) is the Caputo fractional-order derivative. Let us consider that \(d_d = d_H = d \).

Since \(ζ ∈ [-d, 0] \), where \(ζ = (ζ₁, ζ₂, ..., ζ₉)^T ∈ \mathbb{C} \), and \(\mathbb{C} \) is the Banach space \(\mathbb{C}([0, d], \mathbb{R}^9) \). The variables in system (6) are defined in Table 1. The list of parameter values and their interpretation are introduced in Tables 2 and 3; for more details, see [57].

4 Reproduction number \(R_0 \) and stability of the disease-free equilibrium

In this section, we compute the reproduction number \(R_0 \). The basic reproduction number is the expected number of secondary cases produced, in a completely susceptible population, by a typical infective individual [32]. Method in [32] is applied to derive \(R_0 \). The
order of infected variables is
\[\zeta = (M_i, B_i, E, I, H, R)' . \] (9)

The new infections into the infected classes \(\zeta \) are defined by the vector \(F \), and the other flows within and out of the infected classes \(\zeta \) are defined by the vector \(V \), where these vectors are given by

\[
F = \begin{pmatrix}
\frac{b^\alpha M_i B_i}{N_B} & \frac{\mu^\alpha M_i}{N_B} & \frac{\mu^\alpha M_i S}{N_B} & 0 & 0 & 0 \\
\frac{b^\alpha M_i B_i}{N_B} & \frac{\mu^\alpha M_i}{N_B} & \frac{\mu^\alpha M_i S}{N_B} & 0 & 0 & 0 \\
\frac{b^\alpha M_i B_i}{N_B} & \frac{\mu^\alpha M_i}{N_B} & \frac{\mu^\alpha M_i S}{N_B} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
V = \begin{pmatrix}
-\mu^\beta M_i \\
-(d^\beta B + \Psi^\beta B + \mu^\beta B_i)B_i \\
-\mu^\beta B E \\
\gamma^\beta I - (d^\beta H + \tau^\beta + \mu^\beta H)H \\
\tau^\beta H + \gamma^\beta I - \mu^\beta R
\end{pmatrix} .
\]

Let us differentiate the above matrices \(F \) and \(V \) with respect to the infected variables \(\zeta \) and evaluate at the disease-free equilibrium

\[
F = \begin{pmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4
\end{pmatrix},
\]

\[
V = \begin{pmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{pmatrix} ,
\]

where

\[
f_1 = \begin{pmatrix}
0 & \frac{b^\alpha M_i B_i}{N_B} & \frac{b^\alpha M_i S}{N_B} & 0 & 0 & 0 \\
0 & \frac{b^\alpha M_i B_i}{N_B} & \frac{b^\alpha M_i S}{N_B} & 0 & 0 & 0 \\
0 & \frac{b^\alpha M_i B_i}{N_B} & \frac{b^\alpha M_i S}{N_B} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
f_2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
f_3 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
v_1 = \begin{pmatrix}
\mu^\alpha & 0 & 0 & 0 & 0 & 0 \\
0 & \mu^\gamma + \Psi^\gamma B + d^\gamma B_i & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
v_2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
v_3 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
v_4 = \begin{pmatrix}
\mu^\alpha H + \alpha^\omega & 0 & 0 & 0 & 0 & 0 \\
0 & \mu^\alpha H + \Psi^\alpha B + d^\alpha B_i & 0 & 0 & 0 & 0 \\
0 & 0 & \mu^\alpha H + \Psi^\alpha B + d^\alpha B_i & 0 & 0 & 0 \\
0 & 0 & 0 & \mu^\alpha H + \Psi^\alpha B + d^\alpha B_i & 0 & 0 \\
0 & 0 & 0 & 0 & \mu^\alpha H + \Psi^\alpha B + d^\alpha B_i & 0 \\
0 & 0 & 0 & 0 & 0 & \mu^\alpha H + \Psi^\alpha B + d^\alpha B_i
\end{pmatrix}.
\]

then the basic reproduction number \(R_0 \) for system (6) with spectral radius \(\rho \) is defined by

\[
R_0 = \rho (FV^{-1}) = \frac{b^\alpha \sqrt{\mu^\alpha M_i (\mu^\beta B_e + \Psi^\beta B + d^\beta B_i) \mu^\gamma M_i B_i}}{\mu^\alpha M_i (\mu^\beta B_e + \Psi^\beta B + d^\beta B_i) (B_e + S)} .
\]

Lemma 4.1 ([61]) The disease-free equilibrium point \(\varepsilon_{eq} \) is locally asymptotically stable iff all eigenvalues \(\lambda_i \) satisfy \(|\arg \lambda_i| > \frac{\alpha \pi}{2} \).
Proof: To analyze the stability of the disease-free equilibrium (DFE) point, let us have that \[62\]

\[
\begin{align*}
\frac{\partial}{\partial t} X_i &= 0, \\
\frac{\partial}{\partial t} Y_i &= 0, \\
\frac{\partial}{\partial t} Z_i &= 0, \\
\frac{\partial}{\partial t} T_i &= 0, \\
\frac{\partial}{\partial t} E_i &= 0, \\
\frac{\partial}{\partial t} I_i &= 0, \\
\frac{\partial}{\partial t} R_i &= 0.
\end{align*}
\]

Let us consider the coordinate transformation \[62\]

\[
\begin{align*}
\textbf{w} = (s, i, e, r, h, \cdots) = (S, I, E, R, \cdots). \\
\textbf{v} = (s, i, e, r, h, \cdots) = (S, I, E, R, \cdots).
\end{align*}
\]

When \(\beta_H = 0, \beta_I = 0, \) and \(\beta = 0, \) then the DFE point is \[62\]

\[
(\lambda + \mu_H) \begin{pmatrix}
\lambda + \mu_H \\
\lambda + \alpha_I \\
\lambda + \alpha_S \\
\lambda + \alpha_E \\
\lambda + \alpha_R \\
\lambda + \alpha_H
\end{pmatrix} \begin{pmatrix}
\lambda + \alpha_I \\
\lambda + \alpha_S \\
\lambda + \alpha_E \\
\lambda + \alpha_R \\
\lambda + \alpha_H
\end{pmatrix} = 0.
\]

If we have \(d = 0, \) then the eigenvalues of the Jacobian matrix \(J_{eq} \) at the DFE point \(\epsilon_0 \) are \[63\]

\[
\begin{align*}
\lambda_{1,2} &= -\mu_H, \\
\lambda_{3,4} &= -\mu_M, \\
\lambda_5 &= -(\alpha_I + \mu_H), \\
\lambda_6 &= -(\alpha_S + \mu_H), \\
\lambda_7 &= -(\alpha_E + \mu_H), \\
\lambda_8 &= -(\alpha_R + \mu_H), \\
\lambda_9 &= -(\alpha_H + \mu_H + \tau^d).
\end{align*}
\]

According to the Routh–Hurwitz theorem [35], these roots are negative or have negative real parts and the eigenvalues satisfy Matignon's conditions [63] defined by \[63\]

\[
|\arg \lambda_i| > \frac{\alpha}{2}.
\]

Thus, the DFE point \(\epsilon_{eq} \) is asymptotically stable. If we consider \(d > 0, \) then \(\lambda + \mu_H + \alpha_H + \tau^d \) has no pure imaginary roots for any value of the delay \(d. \) Hence, all roots of the characteristic equation have negative real parts, and the DFE point \(\epsilon_{eq} \) is locally asymptotically stable according to Matignon's conditions [63] defined by \[63\]

\[
|\arg \lambda_i| > \frac{\alpha}{2}.
\]

5 Stability analysis of the endemic equilibrium

In this section, the stability analysis of the endemic equilibrium point is introduced. If at least one of the infected variables is not zero, then system (6) has an endemic equilibrium. The endemic equilibrium point is \(\epsilon_{eq} = (0.5908, 2398.7049, 3.6028, 36.7141, 0.4071, 0.5679, 573.7086, 10.2296, 39.7060). \) The list of parameter values is introduced in Table 3.
The basic reproduction number is $R_0 > 1$. According to the linearized system of (6), we have the following form:

$$
\frac{d}{dt} \Phi = \Delta_1 \Phi + \Delta_2 \Phi_d,
$$

(13)

where

$$
\Phi = \left(m_s(t), m_i(t), b_s(t), b_i(t), s(t), e(t), i(t), h(t), r(t) \right)^T,
$$

$$
\Phi_d = \left(m_s(t-d), m_i(t-d), b_s(t-d), b_i(t-d), s(t-d), e(t-d), i(t-d), h(t-d), r(t-d) \right)^T,
$$

$$
\begin{align*}
\Delta_1 &= \begin{pmatrix}
-0.0823 & 0 & 0 & -0.0011 & 0 & 0 & 0 & 0 & 0 \\
0.0663 & -0.0160 & 0 & 0.0011 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.0016 & -1.1343 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.0016 & 1.0822 & -0.1121 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.1050 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.1000 & -0.0061 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.0009 & -0.0050 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.0002 & 0 & -0.0050
\end{pmatrix},
\end{align*}
$$

$$
\Delta_2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}.
$$

Corresponding to these matrices, the characteristic equation $|\lambda I - \Delta_1 - e^{-\lambda d} \Delta_2| = 0$ is written as follows:

$$
\begin{align*}
\lambda^9 &+ (1.4708 + 0.1582e^{-\lambda d}) \lambda^8 + (0.4229 + 0.2139e^{-\lambda d} + 0.0054e^{-2\lambda d}) \lambda^7 \\
&+ (0.0490 + 0.0658e^{-\lambda d} + 0.0079e^{-2\lambda d}) \lambda^6 \\
&+ (0.0026 + 0.0074e^{-\lambda d} + 0.0022e^{-2\lambda d}) \lambda^5 \\
&+ (5.9414 \times 10^{-5} + 3.6988 \times 10^{-4} e^{-\lambda d} + 2.4288 \times 10^{-4} e^{-2\lambda d}) \lambda^4 \\
&+ (6.7012 \times 10^{-7} + 7.5511 \times 10^{-6} e^{-\lambda d} + 1.1435 \times 10^{-5} e^{-2\lambda d}) \lambda^3 \\
&+ (3.9229 \times 10^{-9} + 6.8272 \times 10^{-8} e^{-\lambda d} + 2.0107 \times 10^{-7} e^{-2\lambda d}) \lambda^2 \\
&+ (1.1512 \times 10^{-11} + 2.7933 \times 10^{-10} e^{-\lambda d} + 1.3295 \times 10^{-9} e^{-2\lambda d}) \lambda \\
&+ (1.3423 \times 10^{-14} + 4.2476 \times 10^{-13} e^{-\lambda d} + 2.9051 \times 10^{-12} e^{-2\lambda d}) = 0.
\end{align*}
$$

(14)
If we have \(d = 0 \), then the characteristic equation is written in the following form:

\[
\begin{align*}
\lambda^9 + 1.6290\lambda^8 &+ 0.6602\lambda^7 + 0.1227\lambda^6 + 0.0122\lambda^5 + 6.7217 \times 10^{-4}\lambda^4 \\
+ 1.9656 \times 10^{-5}\lambda^3 &+ 2.7326 \times 10^{-7}\lambda^2 + 1.6203 \times 10^{-9}\lambda \\
+ 3.3433 \times 10^{-12} & = 0.
\end{align*}
\]

The roots of the above equation are \(\lambda_1 = -0.0160, \lambda_2 = -0.1121, \lambda_3 = -0.1132, \lambda_4 = -0.1050, \lambda_5 = -0.0823, \lambda_6 = -1.1343, \lambda_7 = -0.0050, \lambda_8 = -0.0061, \lambda_9 = -0.0550 \). These roots are negative or have negative real parts and the eigenvalues satisfy Matignon’s conditions [63] defined by \(|\arg \lambda_i| > \frac{\alpha \pi}{4}\). Thus, the endemic equilibrium point \(\bar{e}_{\text{end}} \) is asymptotically stable. If we consider \(d > 0 \), then these roots of the characteristic equation have no pure imaginary roots for any value of the delay \(d \). Thus, all roots of the characteristic equation have negative real parts according to Matignon’s conditions [63] defined by \(|\arg \lambda_i| > \frac{\alpha \pi}{4}\). Therefore, the endemic equilibrium is locally asymptotically stable.

6 The optimal control problem

In this section, we present the fractional optimal control in transmission dynamics of WNV model (6) with a time delay in the state variables \(M_i(t), S(t), \) and \(H(t) \). Two control functions are considered \(u_1 \) and \(u_2 \). The control \(u_1 \) represents the level of larvacide and adulticide used for mosquito control administered at mosquito breeding sites. The control \(u_2 \) measures the level of successful prevention (personal protection) efforts. Hence, we introduce a time delay \(d_a \) in the control \(u_2 \) that represents the time required for the WNV prevention. The resulting model of WNV is given by the following system of nonlinear ordinary delay fractional-order differential equations:

\[
\begin{align*}
\frac{d^\alpha}{dt^\alpha} M_i(t) & = \lambda^a_{M} N_M(1 - u_1(t)) - b_{M}^\alpha \beta_{1}^\alpha M_i(t) B_i(t) \frac{M_i(t)}{N_B(t)} - \mu_M^a M_i(t) - r_1^a u_1(t) M_i(t), \\
\frac{d^\alpha}{dt^\alpha} B_i(t) & = \lambda^a_{B} N_B B_i(t) - \mu_B^a B_i(t) - r_2^a u_1(t) M_i(t), \\
\frac{d^\alpha}{dt^\alpha} B_i(t) & = \lambda^a_{B} N_B B_i(t) - \mu_B^a B_i(t) - \psi_B^\alpha + \mu_B^a B_i(t), \\
\frac{d^\alpha}{dt^\alpha} B_i(t) & = \frac{b_{M}^\alpha \beta_{2}^\alpha M_i(t) B_i(t)}{N_B(t)} - (d_2^\alpha + \psi_B^\alpha + \mu_B^a) B_i(t), \\
\frac{d^\alpha}{dt^\alpha} S(t) & = \lambda^a_{S} N_S S(t) - b_{M}^\alpha \beta_{2}^\alpha M_i(t - d) S(t - d)(1 - u_2(t - d_a)) - \mu_M^a S(t), \\
\frac{d^\alpha}{dt^\alpha} E(t) & = \frac{b_{M}^\alpha \beta_{2}^\alpha M_i(t - d) S(t - d)(1 - u_2(t - d_a))}{N_H(t)} - (d_1^\alpha + \mu_H^a) E(t), \\
\frac{d^\alpha}{dt^\alpha} I(t) & = a^\alpha \gamma E(t) - (\gamma + d_1^\alpha + \mu_H^a) I(t), \\
\frac{d^\alpha}{dt^\alpha} H(t) & = a^\alpha I(t) - (d_2^\alpha + \mu_H^a) H(t) - a^\alpha H(t - d), \\
\frac{d^\alpha}{dt^\alpha} R(t) & = a^\alpha H(t - d) + a^\alpha I(t) - \mu_H^a R(t).
\end{align*}
\]

We consider that \(d_a = d \). Let us denote the state and control variables of the control system (16) by \(X = (M_i, M_i, B_i, B_i, S, E, I, H, R) \in \mathbb{R}^9 \) and \(U = (u_1, u_2) \in \mathbb{R}^2 \). We consider the
following objective function which is quadratic in the control variable:

$$J^*(\mathbf{x}, \mathbf{u}) = \int_0^{T_f} \left(A_1 E(t) + A_2 I(t) + A_3 N_M(t) + B_1 u_1^2(t) + B_2 u_2^2(t) \right) dt. \quad (17)$$

The optimal control problem is defined by determining a control function \(\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2 \) that minimizes the cost functional \(J^*(\mathbf{x}, \mathbf{u}) \) subject to the constraints \((16) \). To get the necessary optimality conditions of the optimal control problem described by time delay in state and control variables, see [64]. To get the Hamiltonian for the delayed fractional optimal control problem, let us introduce the delayed state variables \(\mathbf{C}_2 = \mathbf{X}_2(t - \mathbf{d}), \mathbf{C}_5 = \mathbf{X}_5(t - \mathbf{d}) = S(t - \mathbf{d}), \mathbf{C}_8 = \mathbf{X}_8(t - \mathbf{d}) = H(t - \mathbf{d}) \) and the delayed control variable \(\mathbf{2}_2 = \Omega_2(t - \mathbf{d}) = u_2(t - \mathbf{d}) \). The Hamiltonian for the objective functional \((17) \) and the control system \((16) \) is given by

$$\mathcal{H}^*(\mathbf{x}, \mathbf{C}_2, \mathbf{C}_5, \mathbf{C}_8, \lambda^*, u_1, \mathbf{2}_2)$$

$$= -(A_1 E + A_2 I + A_3 N_M + B_1 u_1^2 + B_2 u_2^2) + \lambda_1^* \left[\lambda_M^* N_M(1 - u_1) - \frac{b_1^* \beta^* M_B}{N_B} - \mu_M^* M_3 - r_0^* u_1 M_1 \right] + \lambda_2^* \left[\frac{b_1^* \beta^* M_B}{N_B} - \mu_M^* M_1 - r_0^* u_1 M_1 \right] + \lambda_3^* \left[\lambda_B^* + \rho^* N_B - \frac{b_1^* \beta^* M_B}{N_B} - (\psi_B^* + \mu_B^*) \right] B_1 + \lambda_4^* \left[\frac{b_1^* \beta^* M_B}{N_B} - (\psi_B^* + \mu_B^*) \right] B_1 + \lambda_5^* \left[\lambda_H^* + \gamma_H^* N_H = \frac{b_2^* \beta^* \mathbf{C}_2 \mathbf{C}_5 (1 - \mathbf{2}_2)}{N_H} - \mu_H^* S \right] + \lambda_6^* \left[\frac{b_2^* \beta^* \mathbf{C}_2 \mathbf{C}_5 (1 - \mathbf{2}_2)}{N_H} - (\sigma_1^* + \mu_H^*) E \right] + \lambda_7^* \left[\alpha_1^* E \right] - (\alpha_1^* + \mu_H^*) E \right] + \lambda_8^* \left[\gamma^* I - (\alpha_2^* + \mu_H^*) H - \sigma^* \mathbf{C}_8 \right] + \lambda_9^* \left[\mu_1^* R \right] \right) \quad (18)$$

where the adjoint variable is \(\lambda^* = (\lambda_1^*, \lambda_2^*, \lambda_3^*, \lambda_4^*, \lambda_5^*, \lambda_6^*, \lambda_7^*, \lambda_8^*) \in \mathbb{R}^8 \). The adjoint equations are given by

$$\mathcal{D}^\alpha_{T_f} \lambda_1^*(t) = \frac{\partial \mathcal{H}^*(t)}{\partial M_3(t)}, \quad \mathcal{D}^\alpha_{T_f} \lambda_2^*(t) = \frac{\partial \mathcal{H}^*(t)}{\partial M_1(t)} + \chi(0, T_f - d) \frac{\partial \mathcal{H}^*(t + d)}{\partial \mathbf{C}_2}, \quad \mathcal{D}^\alpha_{T_f} \lambda_3^*(t) = \frac{\partial \mathcal{H}^*(t)}{\partial B_1(t)}, \quad \mathcal{D}^\alpha_{T_f} \lambda_4^*(t) = \frac{\partial \mathcal{H}^*(t)}{\partial B_1(t)} \frac{\partial \mathcal{H}^*(t + d)}{\partial \mathbf{C}_2},$$

$$\mathcal{D}^\alpha_{T_f} \lambda_5^*(t) = \frac{\partial \mathcal{H}^*(t)}{\partial S(t)} + \chi(0, T_f - d) \frac{\partial \mathcal{H}^*(t + d)}{\partial \mathbf{C}_5}, \quad \mathcal{D}^\alpha_{T_f} \lambda_6^*(t) = \frac{\partial \mathcal{H}^*(t)}{\partial E(t)}, \quad \mathcal{D}^\alpha_{T_f} \lambda_7^*(t) = \frac{\partial \mathcal{H}^*(t)}{\partial I(t)} \right). \quad (19)$$
\[
\begin{align*}
\lambda_8^\ast(t) &= -\lambda_3^\ast - \lambda_5^\ast + \Psi_{\theta}(t) + \chi_{[0,T_f-\delta]}(t) + \frac{b_3 \lambda_3 S_3(1-NH)}{N_{th}}(t+\delta - \lambda_5^\ast(t+\delta)), \\
\lambda_9^\ast(t) &= -\lambda_3^\ast - \lambda_5^\ast + \Psi_{\theta}(t) + \chi_{[0,T_f-\delta]}(t) + \frac{b_3 \lambda_3 S_3(1-NH)}{N_{th}}(t+\delta - \lambda_5^\ast(t+\delta)),
\end{align*}
\]

where

\[
\chi_{[0,T_f-\delta]} = \begin{cases}
1, & \text{if } t \in [0, T_f - \delta], \\
0, & \text{otherwise}.
\end{cases}
\]

The equations for \(\lambda_3^\ast(t), \lambda_5^\ast(t),\) and \(\lambda_6^\ast(t)\) contain the advanced time \(t + \delta\). Therefore, the Lagrange multipliers can be written as follows:

\[
\begin{align*}
\lambda_1^\ast &= -A_3 - \left(\lambda_3^\ast - \lambda_1^\ast\right)b_3 \beta_1 B \xi - \lambda_3^\ast \left[\lambda_3 M(1-u_1) - (\mu_1 + \mu_2 M)\right] \\
&\quad - \mu_2 M - \mu_1 u_1 + \lambda_3^\ast \mu_2 M_i, \\
\lambda_2^\ast &= -A_3 - \lambda_3^\ast \left[\lambda_3 M(1-u_1) - \mu_2 M_i\right] + \lambda_3^\ast \left[\mu_1 + \mu_2 M_i + \mu_2 M_i + \mu_1 u_1\right] \\
&\quad - \lambda_3^\ast b_3 \beta_2 M_i - \lambda_3^\ast \left(\lambda_3^\ast - \lambda_6^\ast\right)b_3 \beta_3 M_i S(1-u_2) \xi \left(\lambda_6^\ast - \lambda_5^\ast\right) \\
&\quad + \chi_{[0,T_f-\delta]}(t+\delta - \lambda_5^\ast(t+\delta)) + \frac{b_3 \beta_3 M_i S(1-NH)}{N_{th}}(t+\delta - \lambda_5^\ast(t+\delta)) + \left(\lambda_3^\ast - \lambda_6^\ast\right)b_3 \beta_3 M_i S(1-u_2) \xi, \\
\lambda_3^\ast &= \left(\lambda_2^\ast - \lambda_1^\ast\right)b_3 \beta_1 M_i \xi - \lambda_3^\ast \left[\rho + b_3 \beta_2 M_i \xi \right] \\
&\quad - \lambda_5^\ast b_3 \beta_2 M_i - \lambda_3^\ast \left(\lambda_3^\ast - \lambda_6^\ast\right)b_3 \beta_3 M_i S(1-u_2) \xi, \\
\lambda_4^\ast &= \left(\lambda_2^\ast - \lambda_1^\ast\right)b_3 \beta_1 M_i \xi - \lambda_3^\ast \left[\rho + b_3 \beta_2 M_i \xi \right] \\
&\quad + \lambda_4^\ast \left(b_3 \beta_3 M_i S(1-u_2) \xi + (d_B + \Psi_{\theta} + \mu_B)\right) - \lambda_4^\ast \left(\lambda_3^\ast + \lambda_6^\ast\right)b_3 \beta_3 M_i S(1-u_2) \xi, \\
\lambda_5^\ast &= \left(\lambda_2^\ast - \lambda_1^\ast\right)b_3 \beta_1 M_i \xi - \lambda_3^\ast \left[\rho + b_3 \beta_2 M_i \xi \right] \\
&\quad - \lambda_5^\ast \left[b_3 \beta_3 M_i S(1-u_2) \xi + \mu_4 E + \mu_3 + \mu_4 \right] \\
&\quad + \chi_{[0,T_f-\delta]}(t+\delta - \lambda_5^\ast(t+\delta)) + \frac{b_3 \beta_3 M_i S(1-NH)}{N_{th}}(t+\delta - \lambda_5^\ast(t+\delta)), \\
\lambda_6^\ast &= -A_1 - \left(\lambda_3^\ast - \lambda_2^\ast\right)b_3 \beta_1 M_i \xi - \lambda_3^\ast \left[\rho + b_3 \beta_2 M_i \xi \right] \\
&\quad - \lambda_5^\ast \left[b_3 \beta_3 M_i S(1-u_2) \xi + \mu_4 E + \mu_3 + \mu_4 \right] \\
&\quad + \chi_{[0,T_f-\delta]}(t+\delta - \lambda_5^\ast(t+\delta)) + \frac{b_3 \beta_3 M_i S(1-NH)}{N_{th}}(t+\delta - \lambda_5^\ast(t+\delta)), \\
\lambda_7^\ast &= -A_2 - \left(\lambda_3^\ast - \lambda_2^\ast\right)b_3 \beta_1 M_i \xi - \lambda_3^\ast \left[\rho + b_3 \beta_2 M_i \xi \right] \\
&\quad - \lambda_5^\ast \left[b_3 \beta_3 M_i S(1-u_2) \xi + \mu_4 E + \mu_3 + \mu_4 \right] \\
&\quad + \chi_{[0,T_f-\delta]}(t+\delta - \lambda_5^\ast(t+\delta)) + \frac{b_3 \beta_3 M_i S(1-NH)}{N_{th}}(t+\delta - \lambda_5^\ast(t+\delta)).
\end{align*}
\]
\[+ \lambda_n^* \mu d + \lambda_n^* [d_H + \tau + \mu_4 N_H + \mu_3 + \mu_4 H] - \lambda_n^* [\tau - \mu_R] \]
\[+ \chi(0, T_f - d) \tau^\alpha (\lambda_n^* (t + d) - \lambda_n^* (t + d)). \]
\[\xi D_{T_f}^\alpha \lambda_n^* = - (\lambda_n^* - \lambda_0^*) b \beta_1 M_s B_1 \xi^2 - (\lambda_n^* - \lambda_0^*) b \beta_2 M_s B_2 \xi^2 \]
\[- \lambda_n^* [\gamma H + \beta_2 M_s (1 - u_2) \xi^2 - \mu_4 S] + \lambda_n^* [b \beta_2 M_s (1 - u_2) \xi^2 + \mu_4 E] \]
\[+ \lambda_n^* \mu d + \lambda_n^* \mu H + \lambda_n^* [\mu_R + \mu_3 + \mu_4 N_H]. \]

Thus, the terminal state is free, the transversality conditions are
\[\lambda_i^*(T_f) = 0, \quad \forall i = 1, 2, \ldots, 9, \] (21)
and the characterization of the control variable \(u_1 \) is
\[\frac{\partial H^*}{\partial u_1(t)} = 0. \] (22)

To characterize the control variable \(u_2 \), we introduce the following switching function:
\[\gamma(t) = \frac{\partial H^*}{\partial u_2(t)} + \chi(0, T_f - d) \frac{\partial H^*(t + d)}{\partial \gamma_2} \]
\[= \begin{cases} \frac{1}{2} B_2 u_2 + \frac{b \beta_2 \beta_1}{N_H} \left(\sum_{i=1}^{n} \xi^2 \right), & \text{for } 0 \leq t \leq T_f - d, \\ \frac{1}{2} B_2 u_2, & \text{for } T_f - d \leq t \leq T_f. \end{cases} \] (23)

Thus, the maximum condition for the control variable \(u_2(t) \) is equivalent to the maximization \(\gamma(t)u_2(t) = \max_{0 \leq u_2(t) \leq \gamma_2(t)} \) \(\gamma_2(t)u_2(t) \).

7 NSFD for fractional time-delay West Nile virus model

In this section, the discretization of fractional delay WNV model is presented. We apply the NSFD method with Grünwald–Letnikov definition, so the discretization can be written as follows:

\[\sum_{i=0}^{n+1} \omega_i^a M_i^{n+1-i} = \lambda_0^a N_H^a (1 - u_1^n) - \frac{b \beta_1^a M_i^{n+1-i} B_1^n}{N_B^a} - \mu_M^a M_i^{n+1-i} - r_0^a u_1^n M_i^{n+1-i}, \]
\[\sum_{i=0}^{n+1} \omega_i^a M_i^{n+1-i} = \frac{b \beta_1^a M_i^{n+1-i} B_1^n}{N_B^a} - \mu_M^a M_i^{n+1-i} - r_0^a u_1^n M_i^{n+1-i}, \]
\[\sum_{i=0}^{n+1} \omega_i^a B_i^{n+1-i} = \lambda_B^a + \mu_B^a N_B^a - \frac{b \beta_2^a M_i^{n+1-i} B_2^n}{N_B^a} - (\Psi_B^a + \mu_B^a) B_i^{n+1-i}, \]
\[\sum_{i=0}^{n+1} \omega_i^a E_i^{n+1-i} = \lambda_H^a + \mu_H^a N_H^a - \frac{b \beta_3^a M_i^{n+1-i} S_i^{n+1-i} (1 - u_2^n)}{N_H^a} - \mu_H^a S_i^{n+1-i} - (\alpha_w^a + \mu_H^a) E_i^{n+1-i}, \] (24)
Figure 1 The approximate solutions of the fractional delay optimal control problem by using NSFD and SFDM. When $0 \leq u_1 \leq 0.8, 0 \leq u_2 \leq 0.5$, with $d = 5$ and $\alpha = 0.90$, and $\Delta t = 0.5$

\[
\sum_{i=0}^{n+1} \omega_i \phi^{n+1-i} = \phi^\alpha E^n - (\nu^\alpha + d^\alpha + r^\alpha + \mu_H^\alpha) I^n,
\]

\[
\sum_{i=0}^{n+1} \omega_i \phi^{n+1-i} = \gamma^\alpha I^n - (d_H^\alpha + \mu_H^\alpha)H^n - \tau^\alpha H^{n-\delta},
\]

\[
\sum_{i=0}^{n+1} \omega_i \phi^{n+1-i} = \tau^\alpha H^{n-\delta} + r^\alpha I^n - \mu_H^\alpha R^n,
\]

where $\omega_i = (\psi(\Delta t))^{\alpha-i}$, $n = 0, 1, \ldots, 0, 1$, and the local approximations are used for the nonlinear terms. We use the denominator function of the form $\psi(\Delta t) = 1 - e^{-\Delta t}$. Thus,
Figure 2 The approximate solutions of the fractional delay optimal control problem by using SFDM. When $0 \leq u_1 \leq 0.8, 0 \leq u_2 \leq 0.5$, with $d = 10$ and $\alpha = 1$, and $\Delta_t = 5$

the discretized system (24) can be written as follows:

\[
M_{s+1} = \left[\frac{\nu^\alpha_0 M_s^n (1 - u_1^n) - \frac{\nu^\alpha_0 M_s^n}{N_B^n} \mu^\alpha_0 M_s^n - t_0^\alpha_0 \mu^\alpha_0 M_s^n - \sum_{i=1}^{n+1} \omega_0^\alpha M_s^{i+1-i} }{\omega_0^\alpha} \right],
\]

\[
M_{i+1} = \left[\frac{\nu^\alpha_0 M_i^n - \frac{\nu^\alpha_0 M_i^n}{N_B^n} \mu^\alpha_0 M_i^n - t_0^\alpha_0 \mu^\alpha_0 M_i^n - \sum_{i=1}^{n+1} \omega_0^\alpha M_i^{i+1-i} }{\omega_0^\alpha} \right],
\]

\[
B_{s+1} = \left[\frac{\nu^\alpha_0 B_s^n + \frac{\nu^\alpha_0 M_s^n}{N_B^n} - (\Psi^\alpha_0 + \mu^\alpha_0) B_s^n - \sum_{i=1}^{n+1} \omega_0^\alpha B_i^{i+1-i} }{\omega_0^\alpha} \right],
\]

\[
B_{i+1} = \left[\frac{\nu^\alpha_0 B_i^n - (d^\alpha_B + \Psi^\alpha_B + \mu^\alpha_B) B_i^n - \sum_{i=1}^{n+1} \omega_0^\alpha B_i^{i+1-i} }{\omega_0^\alpha} \right],
\]

\[
S_{n+1} = \left[\frac{\nu^\alpha_0 S_n^n - \frac{\nu^\alpha_0 M_s^n - \nu^\alpha_0 S_n^n (1 - u_2^n)}{N_H^n} - \mu^\alpha_0 S_n^n - \sum_{i=1}^{n+1} \omega_0^\alpha S_i^{i+1-i} }{\omega_0^\alpha} \right],
\]

\[
E_{n+1} = \left[\frac{\nu^\alpha_0 E_n^n - \frac{\nu^\alpha_0 M_s^n - \nu^\alpha_0 S_n^n (1 - u_2^n)}{N_H^n} - (\alpha^\alpha_H + \mu^\alpha_H) E_n^n - \sum_{i=1}^{n+1} \omega_0^\alpha E_i^{i+1-i} }{\omega_0^\alpha} \right],
\]
Figure 3 The approximate solutions of the fractional delay optimal control problem by using NSFD. When $0 \leq u_1 \leq 0.8$, $0 \leq u_2 \leq 0.5$, with $d = 10$ and $\alpha = 1$, and $\Delta t = 5$

\[
P_{n+1} = \frac{\alpha^n E^n - (\gamma^n + d^n + r^n + \mu^n)I^n - \sum_{i=1}^{n+1} \omega_i^n P_{n+1-i}}{\omega_0^n},
\]

\[
H_{n+1} = \frac{\gamma^n I^n - (d^n + \mu^n)H^n - \tau^n H^{n-\varphi} - \sum_{i=1}^{n+1} \omega_i^n H_{n+1-i}}{\omega_0^n},
\]

\[
R_{n+1} = \frac{\tau^n H^{n-\varphi} + r^n I^n - \mu^n R^n - \sum_{i=1}^{n+1} \omega_i^n R_{n+1-i}}{\omega_0^n},
\]

where

\[
N_{M}^n = M^n_i + M^n_i,
\]
Figure 4 The approximate solutions of the fractional delay WNV model without control (i.e., $u_1 = u_2 = 0$) by using NSFDM. With $d = 1$ at different α, and $\Delta t = 1$.

$$N^n_B = B^n_s + B^n_i,$$

$$N^n_H = S^n + E^n + I^n + H^n + R^n.\quad (26)$$

8 **Numerical experiment**

Throughout this section for simulations, we use NSFDM and SFDM. These simulations are performed with initial conditions $(M_{s0}, M_{i0}, B_{s0}, B_{i0}, S_{0}, E_{0}, I_{0}, R_{0}, H_{0}) = (10,000, 1000, 1000, 0, 1000, 0, 0, 0, 0)$ and transversality conditions $\lambda_i(T_f) = 0, \forall i = 1, 2, \ldots, 9$. For Figs. 1–9, the weights $A_1 = A_2 = 1, A_3 = 10^{-4}$ in the cost functional (17), (i.e., the minimization of the number of exposed and infected humans is given more importance than the reduction of the total number of mosquitoes). Respectively, we use the upper bound of 0.8 and 0.5 on u_1 and u_2. All parameters are collected and given in Table 3. In Table 4, the sum of numerical values of the state variables $E(T_f) + I(T_f)$ at $T_f = 100$ and the objective function $J^*(X, U)$ in two cases, with and without control at different values of time delay d and different values of α with $\Delta t = 0.1$, obtained by NSFD method, are given. According to comparisons that are presented in Table 4, it can be observed that, for example, the cost functional $J^*(X, U)$ with control is 44,507, 56,867 at $d = 1$ and $d = 7$, respectively, in case of integer order and $J^*(X, U)$ without control is 68,771, 71,011 at the same values of d. But in case of fractional order $J^*(X, U)$ with control is 38,732, 49,617 and $J^*(X, U)$ without
The approximate solutions of the fractional delay optimal control problem by using NSFDM. When $0 \leq u_1 \leq 0.8$, $0 \leq u_2 \leq 0.5$, and without control (i.e., $u_1 = u_2 = 0$) with $d = 1$ at $\alpha = 0.90$, and $\Delta t = 1$.

Figure 5

The main goal in this study is to reduce the infected and exposed human populations from the increase due to delay in treatment. Through the results obtained in Table 4, it can be noted that, if the time delay d is increased, the infected and exposed human populations are increased at different values of α. For example, in case of non-delay optimal control problem at $d = 0$, it can be seen that the infected and exposed human populations are increased if the value of α is increased, and the better results occur at $\alpha = 0.70$. While in the case of delay optimal control problem, it can be noted that at $d = 1$, the lowest value of the infected and exposed human populations occurs at $\alpha = 0.70$, similarly for $d = 3, 5, 7$.

In Table 5, comparisons between NSFDM and SFDM at different values of time delay d and different values of α with $\Delta t = 1$ at $T_f = 100$ are presented. It can be seen that the values of the cost function $J^*(\bar{X}, \bar{U})$ are $44,560$, $62,325$ at $d = 3$ and $d = 10$, respectively, using NSFDM, in case of integer order. But it takes the values $45,647$, $62,325$ at the same time delay d using SFDM. In case of fractional order, the values of $J^*(\bar{X}, \bar{U})$ are $40,721$, $27,976$ using NSFDM and $56,813$, $38,610$ using SFDM for $\alpha = 0.98$, $\alpha = 0.90$ at the same time delay d. Thus, the objective function $J^*(\bar{X}, \bar{U})$ obtained using NSFDM is better than that obtained using SFDM. It can be concluded that the numerical treatments for the effec-
Figure 6 The approximate solutions of the fractional delay optimal control problem by using NSFDM. When $0 \leq u_1 \leq 0.8, 0 \leq u_2 \leq 0.5$, with $d = 5$ and different α, and $\Delta t = 0.1$.

tiveness of nonstandard finite difference technique for the fractional time-delay optimal control problem are better than the numerical treatments for the time-delay optimal control.

Also, from Table 5 we see that NSFDM helps us to achieve the goal of this research and to obtain the lowest value of the infected and exposed human populations better than SFDM, where the lowest value of these populations occurs at $\alpha = 0.90$ and $d = 3, 5, 7$.

The numerical simulations of the optimal control problem (16) and (17) using two numerical methods, NSFDM and SFDM, are shown in Figs. 1 and 2. Figure 1 presents the comparison between these proposed methods at $d = 10$ and $\alpha = 1$, and $\Delta t = 1$. It can be observed that the infected human population $I(t)$ is about 280 and 320 for NSFDM and
Figure 7 Numerical comparisons of the approximate solutions at $d = 10$ and $d = 0$ by using NSFDM. The approximate solutions of the fractional delay optimal control problem at $d = 10$ and the fraction non-delay optimal control problem at $d = 0$ when $\alpha = 0.98$, and $\Delta t = 0.1$.

SFDM, respectively. It is clear that SFDM is divergent at $\Delta t = 5$, but NSFDM is convergent as explained in Figs. 2 and 3, respectively. The approximate solutions of the proposed optimal control problem are described by Figs. 3–9 at different time delay d and α. In Fig. 4, the approximate solutions of the fractional delay WNV model (6) without control (i.e., $u_1 = u_2 = 0$) with $d = 1$ at different α, and $\Delta t = 1$ by using NSFDM are shown. It can be seen that the infected human population $I(t)$ is about 750, 650, and 400 for $\alpha = 1, \alpha = 0.98$, and $\alpha = 0.90$, respectively. Numerical comparisons between the approximate solutions of the fractional delay optimal control problem (16) and (17) with and without control (i.e., $u_1 = u_2 = 0$) with $d = 1$ at $\alpha = 0.90$, and $\Delta t = 1$ by using NSFDM, are introduced in Fig. 5. It can be shown that the infected human population $I(t)$ is about 250 and 450 in two cases.
Sweilam et al. Advances in Difference Equations (2019) 2019:210 Page 20 of 25

Figure 8 The relationship between the delayed variables and the non-delayed variables by using NSFDM. The delayed variables $M_i(t-d), S(t-d), H(t-d), u_2(t-d)$ and the non-delayed variables $M_i(t), S(t), H(t), u_2(t)$, respectively, with $d = 5$ and different $\alpha, \Delta t = 1$

with and without control, respectively. The behavior of the approximate solutions of the fractional delay optimal control problem (16) and (17) at different time delay d and different α at $\Delta t = 0.1$ is included in Fig. 6. We notice that the delayed infected human population $I(t-d)$ is about 589.057, 507.9876, and 278.5177 for $\alpha = 1$, $\alpha = 0.98$, and $\alpha = 0.90$, respectively, when $d = 5$. Figure 7 shows numerical comparisons between the approximate solutions of the optimal control problem (16) and (17) in two cases, the fractional delay optimal control problem at $d = 5$, and the fraction non-delay optimal control problem at $d = 0$ when $\alpha = 0.98$. The infected human population $I(t)$ is about 650 and 400 in two cases with and without delay, respectively. Figure 8 shows the relationship between state
variables $M_i(t-d)$ and $M_i(t)$, $S(t-d)$ and $S(t)$, $H(t-d)$ and $H(t)$, and the control variable $u_2(t-d)$ and $u_2(t)$ when $d = 1$ for $\alpha = 0.98$. Figure 9 describes the approximate solutions of the fractional delay optimal control problem at the same time delay $d = 1$, $d = 5$, and $d = 10$ in case of fractional order at $\alpha = 0.98$. The infected human population $I(t)$ is about 400, 500, and 650 for $d = 1$, $d = 5$, and $d = 10$, respectively.

9 Conclusions
In this paper, fractional time-delay optimal control in transmission dynamics of WNV model is presented. Time delays in both state and control variables are formulated and studied. NSFDM and SFDM are introduced to study the behavior of the proposed model. According to the results implemented in this paper, it can be observed that the numerical
Table 4 Comparisons between the value of objective function $J^*(X, U)$ with and without control cases and $E(T_f) + 1(I(T_f))$ when $0 \leq u_1 \leq 0.8, 0 \leq u_2 \leq 0.5$, at different time delay d and different α with $\Delta t = 0.1, T_f = 100$ by using NSFDM

d	α	$J^*(X, U)$ with control	$E(T_f) + 1(I(T_f))$	$J^*(X, U)$ without control
0	1	43,256	389.4656	68,650
	0.98	37,592	329.6513	59,318
	0.90	21,107	165.8036	32,751
	0.80	9867.9	66.7680	15,225
	0.70	4376.3	24.9857	6859.5
1	1	44,507	403.6675	68,771
	0.98	38,732	341.7494	59,450
	0.90	21,901	172.1452	32,751
	0.80	10,397	69.6851	15,401
	0.70	4759.8	26.4368	7042.2
3	1	47,716	437.1639	69,281
	0.98	41,612	370.0171	59,951
	0.90	23,752	186.2351	33,360
	0.80	11,465	75.5492	15,767
	0.70	5390.6	28.9362	7320.8
5	1	52,063	478.2057	70,195
	0.98	45,446	404.2531	60,795
	0.90	26,022	202.3538	33,950
	0.80	12,616	81.6707	16,120
	0.70	5981.6	31.2947	7517.1
7	1	56,867	522.7261	71,011
	0.98	49,617	440.9938	61,304
	0.90	28,350	218.8961	34,564
	0.80	13,721	87.6141	16,123
	0.70	6521.5	33.4921	8195.7

Table 5 Comparisons between the value of objective function $J^*(X, U)$ using NSFDM and SFDM when $0 \leq u_1 \leq 0.8, 0 \leq u_2 \leq 0.5$, at different time delay d and different α with $\Delta t = 1, T_f = 100$

d	Method	α	$J^*(X, U)$
3	NSFDM	1	44,560
		0.98	40,721
		0.90	27,976
	SFDM	1	45,647
		0.98	41,616
		0.90	28,328
5	NSFDM	1	46,577
		0.98	42,650
		0.90	29,538
	SFDM	1	49,845
		0.98	45,501
		0.90	31,115
7	NSFDM	1	49,176
		0.98	45,103
		0.90	31,419
	SFDM	1	54,946
		0.98	50,146
		0.90	34,238
10	NSFDM	1	53,826
		0.98	49,412
		0.90	34,499
	SFDM	1	62,325
		0.98	56,813
		0.90	38,610
solutions of the proposed model are different when d and α take different values. From
the comparisons included in Tables 4 and 5, it is found that the values of the objective
functional obtained by NSFDM are better than the results obtained by SFDM, it can be
applied simply and effectively to solve optimal control of fractional delay.

Acknowledgements
We thank Seham Mahyoub AL-Mekhlafi for helpful advice during the writing of this work.

Funding
Not applicable.

Availability of data and materials
The data sets used and/or analysed during the current study are included in these published articles [26] and [57].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally to this paper. All authors read and approved the final manuscript.

Author details
1 Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt. 2 Department of Mathematics, Faculty of Science, Helwan University, Cairo, Egypt.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 September 2018 Accepted: 20 May 2019 Published online: 29 May 2019

References
1. Chen, B.S., Wang, S.S., Lu, H.C.: Stabilization of time-delay systems containing saturating actuators. Int. J. Control 47(3), 867–881 (1988)
2. Chyung, D.H., Lee, E.B.: Linear optimal systems with time-delay. SIAM J. Control 4(3), 548–575 (1966)
3. Lee, T.N., Radovic, U.L.: General decentralized stabilization of large-scale linear continuous and discrete time-delay systems. Int. J. Control 46(5), 2127–2140 (1987)
4. Yang, J.N., Soong, T.T.: Recent advances in active control of civil engineering structures. Probab. Eng. Mech. 3(4), 179–188 (1988)
5. Cai, G.P., Huang, J.Z., Yang, S.X.: An optimal control method for linear systems with time delay. Comput. Struct. 81, 1539–1546 (2003)
6. Wong, K.H., Clements, D.J., Teo, K.L.: Optimal control computation for nonlinear time-lag systems. J. Optim. Theory Appl. 47(1), 91–107 (1985)
7. Teo, K.L., Wong, K.H., Clements, D.J.: Optimal control computation for linear time-lag systems with linear terminal constraints. J. Optim. Theory Appl. 44(3), 509–526 (1984)
8. Dadebo, S., Luus, R.: Optimal control of time-delay systems by dynamic programming. Optim. Control Appl. Methods 13, 29–41 (1992)
9. Luus, R., Zhang, X., Hartig, F., Keil, F.J.: Use of piecewise linear continuous optimal control for time-delay systems. Ind. Eng. Chem. Res. 34, 4136–4139 (1995)
10. Ogurtsovi, M.N.: Time-Lag Control Systems. Academic Press, New York (1966)
11. Kharatishvili, G.L.: A maximum principle in the theory of optimal time-delay processes. Dokl. Akad. Nauk SSSR 136, 39–42 (1961)
12. Kharatishvili, G.L.: A Maximum Principle in External Problems with Delays. Mathematical Theory on Control. Academic Press, New York (1967)
13. Halanay, A.: Optimal controls for systems with time lag. SIAM J. Control 6, 215–234 (1968)
14. Soliman, M.A., Ray, W.H.: On the optimal control of systems having pure time delays and singular arcs. Int. J. Control 16(5), 963–976 (1972)
15. Guinn, T.: Reduction of delayed optimal control problems to nondelayed problems. J. Optim. Theory Appl. 18, 371–377 (1976)
16. Banks, H.T.: Necessary conditions for control problems with variable time lags. SIAM J. Control 8(1), 9–47 (1968)
17. Colonius, F., Hinrichsen, D.: Optimal control of functional differential systems. SIAM J. Control Optim. 16(6), 861–879 (1978)
18. Sweilam, N.H., Al-Mekhlafi, S.M.: Optimal control for a time-delay multi-strain tuberculosis fractional model: a numerical approach. IMA J. Math. Control Inf. 36, 317–340 (2019) https://doi.org/10.1093/imamci/dnx046
19. Jajarmi, A., Pariz, N., Effati, S., Vahidian Kamyad, A.: Solving infinite horizon nonlinear optimal control problems using an extended modal series method. J. Zhejiang Univ.-Sci. C, Comput. Electron. 12(8), 667–677 (2011)
20. Jajarmi, A., Pariz, N., Effati, S., Vahidian Kamyad, A.: Infinite horizon optimal control for nonlinear interconnected large-scale dynamical systems with an application to optimal attitude control. Asian J. Control 14(5), 1239–1250 (2012)
21. Jajarmi, A., Hajipour, M., Mohammadzadeh, E., Baleanu, D.: An efficient recursive shooting method for the optimal control of time-varying systems with state time-delay. Appl. Math. Model. 40(4), 2756–2769 (2016). https://doi.org/10.1016/j.apm.2015.09.072

22. Sweilam, N.H., Al-Mekhlafi, S.M.: Comparative study for multi-strain tuberculosis (TB) model of fractional order. Appl. Math. Inf. Sci. 10(4), 1403–1413 (2016)

23. Sweilam, N.H., Al-Mekhlafi, S.M.: Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. J. Adv. Res. 7(2), 271–283 (2016)

24. Sweilam, N.H., Al-Mekhlafi, S.M.: On the optimal control for fractional multi-strain TB model. Optim. Control Appl. Methods 37(6), 1355–1374 (2016)

25. Jajarmi, A., Hajipour, M., Mohammadzadeh, E., Baleanu, D.: A new approach for the nonlinear fractional optimal control problems with external persistent disturbances. J. Franklin Inst. 355(9), 3938–3967 (2018). https://doi.org/10.1016/j.jfranklin.2018.03.012

26. Sweilam, N.H., Saad, O.M., Mohamed, D.G.: Comparative studies for the fractional optimal control in transmission dynamics of West Nile virus. Int. J. Biomath. 10(7), 1–31 (2017). https://doi.org/10.1142/S1793524517500954

27. Nagy, A.M., Sweilam, N.H.: An efficient method for solving fractional Hodgkin–Huxley model. Phys. Lett. A 378(30–31), 1980–1984 (2014)

28. Sweilam, N.H., Khader, M.M., Mahdy, A.M.S.: Numerical studies for fractional-order logistic differential equation with two different delays. J. Appl. Math. 2012, Article ID 764894 (2012)

29. Sweilam, N.H., Khader, M.M., Adel, M.: On the stability analysis of weighted average finite difference methods for fractional wave equation. Fract. Differ. Calc. 2(1), 17–29 (2012)

30. Sweilam, N.H., Khader, M.M., Nagy, A.M.: Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 235(8), 2832–2841 (2011)

31. Jajarmi, A., Baleanu, D.: Suboptimal control of fractional-order dynamic systems with delay argument. J. Vib. Control 24(12), 2430–2446 (2018)

32. Sweilam, N.H., Al-Mekhlafi, S.M., Assiri, T.A.: Numerical study for time delay multistrain tuberculosis model of fractional order. Complexity 2017, Article ID 1047384 (2017)

33. Rihan, F.A., Hashish, A.H., Al-Maskari, F., Hussein, M.S., Ahmed, E., et al.: Dynamics of tumor-immune system with fractional-order. J. Theor Res. 2, Article 109 (2016)

34. Rihan, F.A., Lakshmanan, S., Hashish, A.H., Rakkiyappan, R., Ahmed, E.: Fractional-order delayed predator–prey systems with Holling type-II functional response. Int. J. Nonlinear Dyn. Chaos Eng. Syst. 80(1–2), 777–789 (2015)

35. Aligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, Berlin (1997)

36. Dafdarar-Gejji, V., Vanden, D.D.: Solving fractional delay differential equations: a new approach. Fract. Differ. Calc. Appl. Anal. 18(2), 400–418 (2015)

37. Wang, Z., Huang, X., Zhou, J.: A numerical method for delayed fractional-order differential equations: based on G–L definition. Appl. Math. Inf. Sci. 7(2), 525–529 (2013)

38. Dafdarar-Gejji, V., Vanden, D.D.: Computational methods for delay parabolic and time-fractional partial differential equations. Numer. Methods Partial Differ. Equ. 26(6), 1566–1571 (2010)

39. Mickens, R.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1994)

40. González-Parr, G., Arenas, A.J., Chen-Charpentier, B.M.: Construction of nonstandard schemes and Richardson’s extrapolation to improve the numerical solution of population models. Math. Comput. Model. 54, 1030–1036 (2010)

41. Mickens, R.E.: Calculation of denominator functions for nonstandard finite difference scheme for differential equations satisfying a positivity condition. Numer. Methods Partial Differ. Equ. 23, 672–691 (2007)

42. Abramson Arenas, J., Gilberto González-Parr, G., Benito Chen-Charpentier, M.: Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order. Math. Comput. Simul. 121, 48–63 (2016)

43. Bowman, C., Gumel, A.B., Van den Driessche, P., Wu, J., Zhu, H.: A mathematical model for assessing control strategies against West Nile virus. Bull. Math. Biol. 67, 1107–1133 (2005)

44. Fan, G., Liu, J., Van den Driessche, P., Wu, J., Zhu, H.: The impact of maturation delay if mosquitoes on the transmission of West Nile virus. Math. Biosci. 228, 119–126 (2010)

45. Smithburn, K.C., Hughes, T.P., Burke, A.W., Paul, J.F.: A neurotropic virus isolated from the blood of native of Uganda. Am. J. Trop. Med. Hyg. 20, 471–492 (1940)

46. Campbell, G.L., Marfin, A.A., Lanciotti, R.S., Gubler, D.J.: West Nile virus: reviews. Lancet Infect. Dis. 2, 519–529 (2002)

47. (2002) Center for Disease Control and Prevention (CDC): West Nile virus history and distribution. http://www.cdc.gov/ncidod/dvbid/westnile/background.html

48. Chowert, M.Y., Lang, R., Nassar, F., et al.: Clinical characteristics of the West Nile fever outbreak, Israel, 2000. Emerg. Infect. Dis. 7, 686–691 (2001)

49. Nash, D., Mostashari, F., Fine, A., et al.: The outbreak of West Nile virus infection in the New York City area in 1999. N. Engl. J. Med. 344, 1807–1814 (2001)

50. Peter, L.R., Marfin, A.A.: West Nile virus: a primer for the clinician. Ann. Intern. Med. 137, 173–179 (2002)

51. Thomas, M., Urena, B.: A model describing the evolution of West Nile-like encephalitis in New York City. Math. Comput. Model. 34, 771–781 (2001)

52. Worhman, M., de-Camino-Beck, T., Lewis, M.: An epidemiological model for West Nile virus: invasion analysis and control applications. Proc. R. Soc. Lond. B, Biol. Sci. 271, 501–507 (2004)

53. Cruz-Pacheco, G., Esteva, L., Montano-Hirose, J., Vargas, D.: Modelling the dynamics of West Nile virus. Bull. Math. Biol. 67, 1157–1172 (2005)

54. Lewis, M., Renclawowicz, J., van den Driessche, P.: Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol. 66, 5–23 (2006)

55. Worhman, M., Lewis, M., Renclawowicz, J., Van den Driessche, P.: Transmission assumptions generate conflicting predictions in hostvector disease models: a case study in West Nile virus. Ecol. Lett. 9, 706–725 (2006)

56. Lewis, M., Renclawowicz, J., van den Driessche, P., Worhman, M.: A comparison of continuous and discrete-time West Nile virus models. Bull. Math. Biol. 68, 491–509 (2006)

57. Kbenesh Blayneh, W., Gumen, A.B., Lenhart, S., Clayton, T.: Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bull. Math. Biol. 72, 1006–1028 (2010)
58. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
59. Anguelov, R., Lubuma, J.M.S.: Nonstandard finite difference method by nonlocal approximation. Math. Comput. Simul. 61(36), 465–475 (2003)
60. Mickens, R.: Application of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2000)
61. Carvalho, A., Pinto, C.M.A.: A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Control 10, 168–186 (2017)
62. El-Saka, H.A.A.: The fractional-order SIR and SIRS epidemic models with variable population. Math. Sci. Lett. 2(3), 195–200 (2013)
63. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application. Multiconference, IMACS, IEEE-SMC, Lille, France 2, pp. 963–968. (1996)
64. Gollmann, L., Maurer, H.: Theory and applications of optimal control problems with multiple time-delays. Special issue on computational methods for optimization and control. J. Ind. Manag. Optim. 10, 413–441 (2014)