The *Phoebe* genome sheds light on the evolution of magnoliids

Shi-Pin Chen1,2, Wei-Hong Sun1,2, Yuan-Fang Xiong1,2, Yu-Ting Jiang1,2, Xue-Die Liu1,2, Xing-Yu Liao1,2, Di-Yang Zhang1,2, Shu-Zhen Jiang1,2, Yu-Li1,2, Bin Liu1,2, Liang Ma2, Xia Yu2, Li He2, Bao Liu2, Jin-Lin Feng2, Li-Zhen Feng2, Zhi-Wen Wang3, Shuang-Quan Zou1,2, Si-Ren Lan1,2 and Zhong-Jian Liu2,4,5

Abstract

Lauraceae includes the genus *Phoebe*, and the family is linked to the evolution of magnoliids. We sequenced the genome of *Phoebe bournei* Nanmu. The assembled genome size was 989.19 Mb, with a contig N50 value of 2.05 Mb. A total of 28,198 protein-coding genes were annotated in *P. bournei*. Whole-genome duplication (WGD) analysis showed that Lauraceae has experienced two WGD events; the older WGD event occurred just before the divergence of Lauraceae and Magnoliaceae, and the more recent WGD was shared by all lineages of Lauraceae. The phylogenetic tree showed that magnoliids form a sister clade to monocots and eudicots. We also identified 63 MADS-box genes, including *AGL12*-like genes that may be related to the regulation of *P. bournei* roots and *FIN219*-like genes encoding GH3 proteins, which are involved in photomorphogenesis. *SAUR50*-like genes involved in light signal-mediated pedicel or stem development were also identified. Four *ATMYB46*- and three *PtrEPSP*-homologous genes related to lignin biosynthesis were identified. These genes may be associated with the formation of straight trunks in *P. bournei*. Overall, the *P. bournei* reference genome provides insight into the origin, evolution, and diversification of *Phoebe* and other magnoliids.

Introduction

Lauraceae belongs to Laurales, which together with Canellales, Piperales, and Magnoliales, constitute the magnoliids, including 9000 species1-3. The relationships among the magnoliids, eudicots, and monocots remain unclear, even after the publication of four magnolid genomes4-8. The genomes of *Piper* *nigrum*, *Persea americana*, and *Liriodendron chinense* support the magnoliids as a sister clade of monocots and eudicots4-6, while the genome of stout camphor *Cinnamomum kanehirae* supports magnoliids as a sister clade of eudicots1. The conflicts in terms of phylogenetic tree location indicate that additional genomic data are needed to more clearly elucidate the relationships among magnoliids, eudicots, and monocots, especially the species within Lauraceae.

Lauraceae is an important economic and ecological family including 2850 species of herbs, shrubs, and trees, mainly distributed in tropical and subtropical regions of Asia and South America9. The genus *Phoebe* within Lauraceae includes ~100 species of evergreen trees and shrubs10. *Phoebe bournei* (Nanmu) is endemic to China, where it is a protected species10. Wood from *P. bournei*, known as “wood with golden wire”, is used in the production of high-quality furniture and handicrafts due to its vertical wood texture, unique fragrance, resistance to insects and rot, durability, and beauty11,12. In ancient times, *P. bournei* timber was often used in palace construction to produce columns that represented the power and status of the nobles10,13,14. *P. bournei* is often used as a street tree because of its straight trunk and broad crown15. Due to intensive deforestation, poor seed
germination, slow growth, and illegal timber logging, natural populations of *P. bournei* are now fragmented and threatened\(^{11–17}\).

Here, we report a reference genome of *P. bournei* obtained using the PacBio sequencing platform. The results can help to reveal its phylogenetic position within the magnoliids. Analysis of the *P. bournei* genome will provide insights into the demographic history of magnoliids, and data for future conservation efforts and biological research.

Results and discussion

Genome sequencing and assembly

To completely sequence the *P. bournei* genome, a total of 102.05 Gb of raw data were generated from 500 bp-insert libraries by Illumina sequencing (Supplementary Table 1). Survey analysis indicated that the *P. bournei* genome shows a high level of heterozygosity, corresponding to 1.54% of the 1.00 Gb genome sized according to 19 K-mer analysis (Supplementary Fig. 1). For the de novo whole-genome sequencing of *P. bournei*, we obtained 109.83 Gb of raw data using PacBio sequencing (Supplementary Fig. 2 and Supplementary Table 2). The assembled genome was 989.19 Mb, with a contig N50 value of 2.05 Mb (Supplementary Table 3). Benchmarking Universal Single-Copy Orthologs (BUSCO)\(^{18}\) assessment showed that the completeness of the gene set of the assembled genome was 95% (Supplementary Table 3), and the Illumina read alignment rate was 98.87% (Supplementary Table 4), indicating that the *P. bournei* genome assembly was of high quality and could be used for subsequent analysis.

Gene prediction and annotation

We annotated 28,198 protein-coding genes from the assembled *P. bournei* genome, 95.44% of which were supported by de novo and transcriptome data (Supplementary Fig. 3 and Supplementary Table 5). The proteome of the protein-coding genes of *P. bournei* was estimated to be 81.1% complete based on BUSCO analysis (Supplementary Table 6)\(^{18}\). We also identified 145 microRNAs, 813 transfer RNAs, 2417 ribosomal RNAs, and 519 small nuclear RNAs (Supplementary Table 7).

Through a combination of homology-based searches and de novo prediction, we estimated that 68.51% of the *P. bournei* genome consisted of repetitive sequences, with LTR/Gypsy sequences accounting for 25.22% of the genome and LTR/Copia sequences accounting for 13.67% (Supplementary Figs. 4, 5 and Supplementary Tables 8, 9). The *C. kanehirae* genome showed 20.5% fewer repeat sequences than the *P. bournei* genome, while the abundance of LTR/Gypsy and LTR/Copia sequences was 15.53% and 10.21% greater, respectively, than in *P. bournei*\(^2\). The insertion time of the LTR, Copia, and Gypsy elements in *P. bournei* was ~0.2 million years ago (Supplementary Fig. 6). We identified 27,011 genes that were annotated in seven functional databases. Among these genes, 19,417 (68.86%) were annotated with KOG terms, 19,649 (69.68%) were annotated with KEGG Ortholog terms, and 15,470 (54.86%) were annotated with Gene Ontology terms (Supplementary Table 10).

Evolution of gene families

Laurales belongs to the magnoliids, and the evolutionary position of magnoliids is still unclear\(^{4–8,19,20}\). We constructed a high-confidence phylogenetic tree based on 292 single-copy gene families extracted from the genomes of 18 species (Supplementary Fig. 7 and Supplementary Table 11). The phylogenetic trees were constructed using the phase 1 loci of orthologous genes, with the branch lengths representing evolutionary rates. The phylogenetic tree showed that magnoliids, including *C. kanehirae*, *P. bournei*, *Persea americana*, *Litsea cubeba*, *P. nigrum*, and *L. chinense*, formed a sister group to the monocot–eudicot clade (Fig. 1a) based on the Bayesian method. This is consistent with the phylogenetic trees of magnoliids based on the *L. chinense*\(^5\) genome and the *P. americana*\(^6\) genome. To further determine the positional relationships of magnoliids, monocots, and eudicots, we constructed concatenated and ASTRAL trees based on protein and nucleotide sequences. The phylogenetic trees constructed via the ASTRAL and concatenated methods based on amino acids also showed that the magnolid clade was sister to the monocot–eudicot clade (Fig. 1b; Supplementary Fig. 8). However, the phylogenetic trees constructed via the ASTRAL and concatenated methods based on nucleotides provided support for a recent common ancestor of magnoliids and monocots, which formed a clade sister to the eudicot clade (Fig. 1c).

Incomplete lineage sorting is better understood as a problem of ancestral polymorphism that does not sort according to the species tree, and this polymorphism is represented in terms of haplotypes or alleles. Copy number variations can also help define haplotypic or allelic states, and copy number variants (e.g., tandem duplicates) can contribute to incomplete lineage sorting. Thus, genealogies based on orthology remain difficult to differentiate from those based on orthology plus paralogy. Therefore, we favored a phylogenetic tree based on the Bayesian method. In addition, using the MCMC tree with fossil calibration, we estimated that the Lauraceae divergence time was 127.56 Mya, and the divergence time between *P. bournei* and *P. americana* was 14.05 Mya (Supplementary Fig. 9).

The expansion and contraction of orthologous gene families were determined based on a probabilistic graphical model (Fig. 2). A total of 1075 gene families were expanded in the lineage leading to Laurales, and 547
families were contracted. A total of 745 gene families were expanded in *P. bournei*, compared with 1198 and 910 in *P. americana* and *C. kanehirae*, respectively. At the same time, 1785 gene families were contracted in *P. bournei*, compared with 1626 and 1044 in *P. americana* and *C. kanehirae*, respectively.

Synteny analysis and whole-genome duplications (WGD)

The distribution of *Ks* values in the *P. bournei*, *C. kanehirae*, *P. americana*, and *L. cubeba* genomes showed two clear peaks, one at *Ks*1 = 0.5–0.6 and the other at *Ks*2 = 0.85–0.95 (Fig. 3a). These two *Ks* peaks were greater than the *Ks* values of the differentiation peaks of *P. bournei*–*C. kanehirae*, *P. bournei*–*L. cubeba*, and *P. bournei*–*P. americana* (*Ks* < 0.1). This result indicated that the common ancestor of Lauraceae (*P. bournei*, *C. kanehirae*, *L. cubeba*, and *P. americana*) underwent two polyploidization events before the groups diverged. Collinearity analysis confirmed that these two polyploidization events of *P. bournei* were WGD events (Fig. 3b). *C.
Lauraceae has experienced two WGD events: an ancient WGD event, which may have occurred just before the divergence of Magnoliales and Lauraceae, and a recent WGD, occurring before the differentiation of Lauraceae (Fig. 3c).

MADS-box gene family analysis

The MADS-box gene family participates in many plant processes, including floral development, flowering time determination, and fruit ripening. A total of 63 MADS-box genes were identified in the *P. bournei* genome, which were classified into type I and type II MADS-box genes based on phylogenetic analysis. Thirty type I MADS-box genes were subdivided into three subfamilies: Mα, Mβ, and Mγ (Table 1; Supplementary Table 12). There were three and four members in Mγ and Mβ, respectively. The orthologs of Mα have been duplicated (23 members). Type I genes have been associated with the development of the female gametophyte, embryo, and central cell and endosperm. Their specific roles in *P. bournei* are unknown.

Type II MADS-box genes were divided into 27 MIKC-type and six MIKC*-type MADS-box genes (Fig. 4; Supplementary Table 12). MIKC* regulation affects pollen gene expression. There were fewer genes from the SOC1-class (three members), A class (two members), and AGL6 clade (one member) than in *A. thaliana*. The AGL12 and ANR1 genes are involved in root development. *P. bournei* and *A. thaliana* both contain four ANR1 clade genes. *P. bournei* exhibits more AGL12 genes (four members) than *A. thaliana*. *P. bournei* exhibits more genes related to root development, possibly because it requires strong roots to support its growth. However, we did not observe FLC subfamily genes, indicating that this family may be absent in *P. bournei*, possibly because *P. bournei* does not require vernalization for flowering, similar to rice. *Bs*-class genes are usually involved in seed pigmentation and endothelium development. However, there are no genes related to the *Bs* class in *P. bournei*. This difference might be related to the different fruit- and seed-development processes among species.

GH3 and SAUR gene family analysis

Auxin regulates plant growth and development by altering the expression of multiple genes. Auxin-responsive genes can be divided into three classes: auxin/indoleacetic acid protein (Aux/IAA), small auxin-up RNA (SAUR), and glycoside hydrolase 3 (GH3) genes. The GH3 gene family belongs to the auxin-responsive gene family. GH3 genes encode a class of acylamide synthetases that bind amino acids to indole-3-acetic acid (IAA), jasmonic acid (JA), and salicylic acid (SA). This changes the concentration of their bioactive forms in cells and regulates plant growth, development,
and defense responses. GH3 proteins are classified into three groups: group I, with JA and/or SA-amido synthetase activity; group II, with IAA-amido synthetase activity; and group III, with unknown synthetase activity. We identified 17 and 14 GH3-class genes in *P. bournei* and *C. kanehirae*, respectively, and divided them into the three groups based on phylogenetic information (Fig. 5a). There were eight genes in groups I and II in *P. bournei*. There were seven genes in group I, and six genes in group II in *C. kanehirae*. *P. bournei* and *C. kanehirae* each exhibited one gene in group III.

ATGH3.5, ATGH3.6, and *ATGH3.1* encode IAA-amido synthetases, which help to maintain auxin homeostasis by conjugating IAA to amino acids. *ATGH3.9*-orthologous genes (*Pb42207* and *Pb52834*) of *ATGH3.5, ATGH3.6,* and *ATGH3.1* are expressed in the heartwood and cortex (Fig. 5b). We also found one *ATGH3.9*-orthologous gene, *Pb48914*, showing high expression in the heartwood and cortex (Fig. 5b). *ATGH3.9* controls auxin activity through amino acid conjugation and promotes primary root growth. The *ATGH3.9*-orthologous gene in *P. bournei* shows the same function in the heartwood and cortex, thus promoting stem growth. In addition, *FIN219* (*ATGH3.11*), a phytochrome A signaling component, plays a crucial role in photomorphogenesis. We identified five *FIN219*-orthologous genes in *P. bournei* and four *FIN219*-orthologous genes in *C. kanehirae* (Fig. 5a). Expression analysis showed that three *FIN219*-orthologous genes (*Pb06967, Pb41896,* and *Pb16041*) in *P. bournei* were expressed in the heartwood, cortex, and leaves, while one *FIN219*-orthologous (*Pb16231*) gene was expressed only in the heartwood and leaves (Fig. 5b).

The SAUR gene family encodes highly unstable mRNA molecules with a very high turnover rate that are induced...
within minutes after auxin application. SAUR proteins promote cell elongation\(^{41}\). We identified 77 SAUR gene family members from *P. bournei* and 76 SAUR gene family members from *C. kanehirae* (Fig. 6). The *Arabidopsis AtSAUR50* gene is involved in light signal-mediated pedicel development\(^{42}\). In sunflower (*Helianthus annuus*), the *SAUR50*-like gene is more highly expressed on the eastern side of stems during the day, leading to sun-tracking movement during the seedling stage\(^{43}\). We also identified two *SAUR50*-like genes in *P. bournei* (*Pb20906* and *Pb54747*) and *C. kanehirae* (Fig. 6). *FIN219*-like genes and *SAUR50*-like genes in *P. bournei* may enable *P. bournei* to intercept more sunlight in dense forests, thus straightening the trunk.

Category	A. thaliana	P. bournei	C. kanehirae
Type II (total)	33	33	37
MIKC\(^c\)	37	27	31
MIKC\(^e\)	6	6	6
Type I (total)	53	30	27
Ma	23	23	22
Mb	18	4	3
My	12	3	2
Total	86	63	64
Fig. 5 Analysis of P. bournei GH3 proteins. a Phylogenetic relationships of P. bournei, C. kanehira, and A. thaliana GH3 proteins. Bootstrap values are indicated at each node. The gene ID numbers begin with “Pb” to represent the gene IDs of P. bournei, “Ck” to represent the gene IDs of C. kanehira, and “AT” to represent the gene IDs of A. thaliana. In the parentheses, the number on the left is the number of GH3 homologs in the genome of P. bournei, and that on the right is the number of GH3 homologs in the genome of C. kanehira. b Expression patterns of GH3 in the cortex, heartwood, and leaf. “Co” represents the cortex, “He” represents heartwood, “Le” represents the leaf. The accession numbers of the GH3 genes of A. thaliana are shown in Supplementary Table 13.
Lignin-formation analysis

The principal components of wood are lignocellulosic polymers, which represent the most abundant biomass produced by terrestrial plants. Lignin biosynthesis evolved from the phenylpropanoid pathway, which promoted the successful colonization of terrestrial environments by plants.\(^{44,45}\) The R2R3-MYB gene family regulates specific processes in plants, including phenylpropanoid biosynthesis.\(^{46}\) \textit{MYB46}-class genes mainly regulate the phenyl propyl pathway and lignin biosynthesis in plants. \textit{A. thaliana} \textit{MYB46} directly targets and activates the expression of multiple lignin biosynthetic genes, such as \textit{MYB58} and \textit{MYB63}.\(^{47}\) There are four homologs of \textit{MYB46} in \textit{Populus trichocarpa} (\textit{PtrMYB002}, \textit{PtrMYB003}, \textit{PtrMYB004}, and \textit{PtrMYB005}).

\textit{A. thaliana} \textit{MYB46} directly targets and activates the expression of multiple lignin biosynthetic genes, such as \textit{MYB58} and \textit{MYB63}.\(^{47}\) There are four homologs of \textit{MYB46} in \textit{Populus trichocarpa} (\textit{PtrMYB002}, \textit{PtrMYB003}, \textit{PtrMYB004}, and \textit{PtrMYB005}).

\textbf{Fig. 6 Phylogenetic relationships of \textit{P. bournei}, \textit{C. kanehirae}, and \textit{A. thaliana} SAUR proteins.} The gene ID numbers begin with “\textit{Pb}” to represent the gene IDs of \textit{P. bournei}, “\textit{Ck}” to represent the gene IDs of \textit{C. kanehirae}, and the “\textit{AT}” to represent the gene IDs of \textit{A. thaliana}. SAUR50-like genes of \textit{P. bournei} are indicated in red.
PtrMYB020, and PtrMYB021), and they all activate the promoters of lignin biosynthetic genes.46,48,49 Our phylogenetic tree showed that four MYB46-homologous genes and six MYB46-homologous genes were present in the P. bournei and C. kanehirae genomes, respectively (Fig. 7a; Supplementary Fig. 11). All MYB46 orthologous genes from P. bournei were expressed in the heartwood and at low levels in the cortex, but were not in the leaves (Fig. 7c). Xie et al.50 found that a 5-enolpyruvylshikimate 3-phosphate synthase gene of P. trichocarpa (PtrEPSP) can directly bind to the promoter and repress the expression of a SLEEPER-like transcriptional regulator, which itself specifically binds to the promoter and represses the expression of PtrMYB021, thereby affecting lignin biosynthesis. We identified three PtrEPSP-homologous genes in the P. bournei and C. kanehirae genomes.
related to the formation of straight trunks in MYB46 in the GH3 gene class and 77 members of the SAUR gene class in the lignin biosynthetic genes, and we identified based on a K-mer analysis. In addition, tandem repeats across the genome were predicted using Tandem Repeats Finder v4.0.59 (http://tandem.bu.edu/trf/trf.html). Finally, repeat sequences with identities ≥50% were grouped into the same classes.

Materials and methods

DNA preparation and sequencing

All of the plant materials used in this study were collected from a mature *P. bournei* tree growing in Fujian Agriculture and Forestry University, Fujian Province, China. Total genomic DNA was extracted with a modified cetyltrimethylammonium bromide (CTAB) method for Illumina and de novo sequencing and assembly. Five-hundred bp paired-end libraries were constructed using the Illumina protocol. The transcriptomes of the heartwood, cortex, and leaves were sequenced on the Illumina platform. The transcriptomes of the heartwood, cortex, and leaves were sequenced on the Illumina platform.

Genome assembly

Canu52 was used to correct errors in the original data. Flye v2.4.253 was used to assemble the corrected data. Because of the high error rate of the de novo data, indel and SNP errors still existed in the assembly results. Thus, Arrow (https://github.com/PacificBiosciences/GenomicConsensus) was used to correct the assembly results. We compared the second-generation small fragment data with the assembly results, and further corrected the assembly results with Pilon v1.2250 to eliminate indel and SNP errors. The assembled sequence was larger than the genome size estimated through K-mer analysis, so we used trimDup (Rabbit Genome Assembler: https://github.com/gigascience/rabbit-genome-assembler) to remove redundancy from the assembly results. To confirm the quality of the genome assembly, we performed a BUSCO v4 (https://busco.ezlab.org)18 assessment using single-copy orthologous genes.

Identification of repetitive sequences

Repetitive sequence annotation was mainly based on homologous sequence alignment and de novo assembly. Homologous sequence alignment was based on the RepBase v21.12 database53 (http://www.girinst.org/reptbase), and RepeatMaske v4.0.756 and RepeatProteinMask v4.0.756 were used to identify sequences similar to known repeat sequences. We identified TE in the *P. bournei* genome using RepeatModeler (http://www.repeatmasker.org/RepeatModeler/)57 and LTR_FINDER v1.06 (http://tlife.fudan.edu.cn/ltr_finder/58). In addition, tandem repeats across the genome were predicted using Tandem Repeats Finder v4.0.16 (http://tandem.bu.edu/trf/trf.html). Finally, repeat sequences with identities ≥50% were grouped into the same classes.

Gene prediction and annotation

Two independent methods were used to predict protein-coding genes: homology-based and de novo-based prediction. Homologous proteins from nine known whole-genome sequences of *Amborella trichopoda*, *Aquilegia coerulea*, *Ansellia thaliana*, *C. kanehira*, *Ginkgo biloba*, *L. chinense*, *Picea abies*, *P. trichocarpa*, and *Vitis vinifera* were aligned to the *P. bournei* genome sequence using Exonerate v2.2.0 (https://www.ebi.ac.uk/Tools/psa/genewise/)60 for homology-based prediction. The sequences of these known genomes were downloaded from Phytozone 12 (https://phytozone.jgi.doe.gov/pz/portal.html). Two ab initio prediction software programs, Augustus61 (http://bioinf.uni-greifswald.de/augustus/) and SNAP62 (http://homepage.mac.com/iankorf), were used for de novo gene prediction. Then, the homology-based and ab initio gene structures were merged into a nonredundant gene model using Maker63 (http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/MAKER_Tutorial_for_WGS_Assembly_and_Annotation_Winter_School_2018). We further filtered the annotated results of Maker, with the following genes filtered: (1) protein length < 50 aa and homologous protein support for exon region < 50%; and (2) CDS of the coding region and TE overlap length > 80%.
To obtain gene function information, we used BLAST v2.2.31 to align the annotation results with seven protein databases, including SwissProt (http://www.uniprot.org) 65, TrEMBL (http://www.uniprot.org) 65, KEGG (http://www.genome.jp/kegg) 66, InterPro (https://www.ebi.ac.uk/interpro) 67, NR, KOG, and GO. The tRNAs were predicted using tRNAscan-SE 1.3.1. The rRNAs were predicted using maximum-likelihood modeling of gene gains and losses, we analyzed gene families for signs of expansion or contraction using genome data from 18 species.

Collinearity analysis and whole-genome duplication

Within collinear segments, genes are conserved in function and sequence, and these genes remain highly conserved during the evolution of species. We used the default parameters of JCVI v0.9.14 (https://pypi.org/project/jcvi) to analyze the protein sequences of P. bournei, P. americana, C. kanehirae, L. cubeba, L. chinense, and P. nigrum, and obtained the gene pairs in the collinear regions. We used Ks distribution analysis to estimate WGD events in the P. bournei, P. americana, C. kanehirae, L. cubeba, L. chinense, and P. nigrum genomes. Diamond was used to conduct self-alignment of the protein sequences of these species genomes and then to extract the mutual optimal alignment in the alignment results. Finally, Codeml in the PAML package was used to calculate Ks values.

Our Ks analysis showed that the genomes of P. bournei presented two Ks peaks (Ks1 ≈ 0.5–0.6 and Ks2 ≈ 0.85–0.95), whereas that of L. chinense only exhibited one Ks (Ks ≈ 0.7), and P. bournei–L. chinense showed one differentiation peak (Ks ~ 0.825) (Fig. 3). Therefore, to determine the differentiation of P. bournei and L. chinense, we constructed a gene tree. For the construction of the gene tree, Blastp (e-value < 1e-5) was first used to align the protein sequences of all pairs of genes in the P. bournei genome equal to the Ks peak of P. bournei itself with those in the L. chinense genome equal to the Ks peak of L. chinense itself. Then, according to the alignment result, the genes meeting one of the following two conditions were selected: gene pairs of the Ks2 peak in the P. bournei genome were aligned to the gene pairs of the Ks peak in the L. chinense genome; the gene pairs of the Ks1 and Ks2 peaks in the P. bournei genome were aligned to the gene pairs of the Ks peak in the L. chinense genome. We selected nine gene pairs that satisfied the first condition and two gene pairs that satisfied the second condition. Finally, the selected gene pairs were employed to construct a gene tree using RaxMLv8 (parameter -m PROTGAMMAJTT), and the outgroup was fixed as evm_27.model. amtr_v1.0_scaffold00106.118 of A. trichopoda.

Gene family analysis

The candidate sequences of the MADS-box and SAUR genes of A. thaliana were downloaded from TAIR (https://www.arabidopsis.org/index.jsp). The HMM profiles of the MADS (PF00319), GH3 auxin-responsive promoter (PF03321), and SAUR (PF02519) gene families were obtained from Pfam (http://pfam.xfam.org/). Each protein of the gene families of P. bournei and C. kanehirae was
separately searched with the HMMER 3.2.1 (with default parameters)82 and BLASTP (E-value of e−5)53 methods in the P. bournei and C. kanehirae genomes. The whole-genome sequence of C. kanehirae was extracted from NCBI (Bioproject: PRJNA477266). The protein sequence set for the MADS-box gene candidates of P. bournei was employed for BLAST analysis against the assembled P. bournei transcripts with the TBLASTN program83. Subsequently, all of the candidate sequences of the MADS-box, GH3, and SAUR genes were subjected to SMART analysis (http://smart.embl-heidelberg.de/88). The candidate MADS-box, GH3, and SAUR gene families were aligned with MEGAS80, and the phylogenetic tree was constructed on the CIPRES website (https://www.phylo.org/portal2/). The MADS-box, CH3, and SAUR phylogenetic trees were visualized using iTOL (https://itol.embl.de).

Acknowledgements
This research was jointly funded by the Project of Forestry Peak Discipline at Fujian Agriculture and Forestry University, China (118/71218007), the Science and Technology Innovation Special Fund at Fujian Agriculture and Forestry University (118/KF2015088), and the 6th Project of Forest Seeding Breaking in Fujian Agriculture and Forestry University, China. This research was jointly funded by the Project of Forestry Peak Discipline at Fujian Agriculture and Forestry University, China. This research was jointly funded by the Project of Forestry Peak Discipline at Fujian Agriculture and Forestry University, China.

Author details
1 College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China. 2 Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at the College of Landscape Architecture, Fujian Agriculture and Forestry University, 350002 Fuzhou, China. 3 PubBio-Tech, 430070 Wuhan, China. 4 Zhejiang Institute of Subtropical Crops, Zhejiang Vegetable and Flowers, Shandong Academy of Agricultural Sciences, 250100 Jinan, China.

Data availability
Genome sequences have been submitted to the National Genomics Data Center (NGDC). The raw whole-genome data of P. bournei have been deposited in BioProject/GSA (https://bigd.big.ac.cn/gsa/)89 under the accession codes PRCA002001/CRA002192, and the assembly and annotation of the whole-genome data have been deposited at BioProject/GWH (https://bigd.big.ac.cn/gwh/)92 under the accession codes PRCA002001/GWH/4000000000.

Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary Information
accompanies this paper at (https://doi.org/10.1038/s41438-020-00568-z).

Received: 16 January 2020 Revised: 4 June 2020 Accepted: 19 June 2020
Published online: 01 September 2020

References
1. Zeng, L. et al. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat Commun 5, 4896 (2014).
2. Sauter, H. & Magallon, S. Key questions and challenges in angiosperm macroevolution. Nat. Phytol. 219, 1170–1187 (2018).
3. Chase, M. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).
4. Hu, L. et al. The chromosome-scale reference genome of black pepper provides insight into pipeline biosynthesis. Nat. Commun. 10, 1–11 (2019).
5. Chen, J. F. et al. Lindenia denosome sheds light on angiosperm phylogeny and species–par differentiation. Nat. Plants 5, 18–25 (2019).
6. Martha, R. A. et al. The avocado genome informs deep angiosperm phylogeny, highlights intrageneric hybridization, and reveals pathogen-influenced gene space adaptation. Proc. Natl Acad. Sci. USA 116, 17081–17089 (2019).
7. Chaw, S. M. et al. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat. Plant 5, 63–73 (2019).
8. Chen, Y. C. et al. The Luzoa genome and the evolution of the laurel family. Nat. Commun. 11, 1675 (2020).
9. Christenhuz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).
10. Li, Y. et al. Complete chloroplast genome sequences of two endangered Phoebe (Laureaceae) species. Bot. Stud. 58, 37–46 (2017).
11. Ding, X. et al. Congruent species delimitation of two controversial gold-thread P. bournei tree species based on morphological and restriction site- associated DNA sequencing data. J. Sys Evol. 57, 234–246 (2019).
12. Ge, Y. J. et al. Fengshui forests conserve genetic diversity: a case study of Phoebe bournei (Hemsly) Yang in southern China. Genet. Mol. Res. 14, 1986–1993 (2015).
13. Ding, Y. et al. Development of EST-SSR markers and analysis of genetic diversity in natural populations of endangered plant Phoebe chokangensis. Biochem. Syst. Ecol. 63, 183–189 (2015).
14. Ding, W. et al. Essential oil extracted from leaf of Phoebe bournei (Hemsly) yang: chemical constituents, antitumor, antibacterial, hypoglycemic activities. Nat. Prod. Res. 32, 316–321 (2018).
15. Ye, Z. H. et al. Propagation, maintenance and landscape application of four ornamental plant species of Phoebe: Guangdong Landsc. Architecture 38, 48–51 (2016).
16. Chen, Z. et al. Effects of elevated ozone levels on photosynthesis, biomass and nonstructural carbohydrates of Phoebe bournei and Phoebe zhennan in subtropical China. Front. Plant Sci. 226, 310–317 (2018).
17. Li, T. & Min, X. Dormancy characteristics and germination requirements of Phoebe bournei seed. Sci. Hortic. 260, 108993 (2019).
18. Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).
19. Massoni, J., Couver, T. L. P. & Saquet, H. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms). BMC Evol. Biol. 15, 49 (2015).
20. Solts, D. E. & Solts, P. S. Nuclear genomes of two magnolids. Nat. Plants 5, 6–7 (2019).
21. Bai, G. et al. Genome-wide identification, gene structure and expression analysis of the MADS-Box gene family indicate their function in the development of tobacco (Nicotiana tabacum L.). Int. J. Mol. Sci. 20, 5043 (2019).
22. Colombo, M. et al. AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J. 54, 1037–1048 (2008).
23. Portereiko, M. F. et al. AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell 18, 1862–1872 (2006).
24. Steffen, J. G. et al. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiol. 148, 259–268 (2008).
25. Adamczyk, B. J. & Fernandez, D. E. MiRClA MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 149, 1713–1723 (2009).
26. Liu, Y. et al. Functional conservation of MiRClA-Type MADS box genes in Arabidopsis and rice pollen maturation. Plant Cell 25, 1288–1303 (2013).
27. Hu, L. & Liu, S. Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55, 245–256 (2012).
28. Liu, H. C. et al. Plant genome sequencing reveals the role of MADS-box gene families in the floral morphology evolution of orchids. Hort. Plant J. 5, 240–246 (2019).
29. Arora, R. et al. MADS-box gene family in rice genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8, 242 (2007).
30. Nesi, N. et al. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14, 2463–2479 (2002).
31. Jain, M. et al. The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct. Grntegr. Genom. 6, 36–46 (2006).
32. Guayfier, T. J. Auxin-regulated genes and promoters. In Biochemistry and Molecular Biology of Plant Hormones (eds Hooykas, P. J. J., Hall, M. A. & Libbenga, K. R.) 423–459 (Elsevier, Amsterdam, The Netherlands, 1999).
33. Veibla, I. M. Identification and initial characterization of a new subgroup in the GH3 gene family in woody plants. J. Plant Biochem. Biot. 28, 280–290 (2018).
34. Kong, W. et al. Evolutionary analysis of GH3 genes in six Oryza species/subspecies and their expression under salinity stress in Oryza sativa ssp. japonica. Plant Biol. 8, 30 (2019).
35. Park, J. E. et al. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 282, 10036–10046 (2007).
36. Stavwick, P. E. et al. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the fucrose luziferae superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415 (2002).
37. Okrent, R. A., Brooks, M. D. & Wildermuth, M. C. Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoxazoles and is inhibited by salicylate. J. Biol. Chem. 284, 9742–9754 (2009).
38. Stavwick, P. E. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616–627 (2005).
39. Sadaf, K. & Julie, M. S. Arabidopsis thaliana GH3.9 influences primary root growth. Planta 226, 21–34 (2007).
40. Heise, H. L. et al. PRN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of flowering. Gene Dev. 14, 1866–1870 (2000).
41. McCutre, B. A. & Guilfoyle, T. J. Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol. Biol. 9, 611–623 (1987).
42. Sato, A. et al. Light-dependent gravitropism and negative phototropism of phytochrome A and the downstream regulator axr2. J. Plant Physiol. 1660 (2016).
43. He, Y. & Redinbo, M. R. Arabidopsis JAR1 and several related GH3 family proteins encode enzymes that activate jasmonate in Brassica oleracea. Bioinformatics 27, 1660–1666 (2011).
44. Wilkins, C. et al. Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol. 149, 981–993 (2009).
45. Kim, W. C. et al. Identification of direct target of transcription factor MMY46 provides insights into the transcriptional regulation of secondary wall biosynthesis. Plant Cell Physiol. 58, 589–599 (2019).
46. McCarthy, R. L. et al. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol. 51, 1084–1090 (2010).
47. Zhong, R., McCarthy, R. L., Haghighat, M. Y. & Ye, Z. H. The poplar MYB master switches bind to the SWIRE site and activate the secondary wall biosynthetic program during wood formation. PLoS ONE 8, e69219 (2013).
48. Xie, M. et al. 5-Empolypyrrolinoliminate 3-phosphatesynthese functions as a transcriptional repressor in Populus. Plant Cell 30, 1646–1660 (2018).
49. Varture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).
50. Koren, S. et al. Canu scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).
51. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).
52. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
53. Jurka, J. et al. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).
54. Maja, T. G. & Chen, N. Using RepeatMasker to identify repetitive elements in genome drafts. Curr. Protoc. Hum. Genet. Chapter 25, Unit 25.10.1 (2008).
55. Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, 351–358 (2005).
56. Zhao, X. & Hao, W. LTR_FINDER an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).
57. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 7973–7980 (1999).
58. Slater, G. S. et al. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).
59. Stanké, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).
60. Johnson, A. D. et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).
61. Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12, 491–491 (2011).
62. Allarcon, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
63. Boekmann, B. et al. The SWISS-PROT protein knowledgebase and its supplementation. Nucleic Acids Res. 28, 27–30 (2000).
64. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).
65. Koonin, E. V. et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 5, R7 (2004).
66. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
67. Lowe, T. M. & Eddy, S. R. Rfamase-SC: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).
68. Sam, G. J. et al. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33, 121–124 (2005).
69. Nawrocke, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).
70. Li, L. et al. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).
71. Robert, C. E. et al. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
72. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 580 (1999).
73. Zhang, Z. et al. Database resources of the Big data center in 2019. Nucleic Acids Res. 51, i358 (2020).