Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Nano-based approach to combat emerging viral (NIPAH virus) infection

Rout George Kerry, MSc^a, Santosh Malik, MSc^b, Yisehak Tsegaye Redda, MSc^c, Sabuj Sahoo, PhD^a, Jayanta Kumar Patra, PhD^d,⁎, Sanatan Majhi, PhD^a,**

^aPost Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
^bDepartment of Life Science, National Institute of Technology, Rourkela, Odisha, India
^cCollege of Veterinary Medicine, Mekelle University, Ethiopia
^dResearch Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea

Revised 19 February 2019

Abstract

Emergence of new virus and their heterogeneity are growing at an alarming rate. Sudden outburst of Nipah virus (NiV) has raised serious question about their instant management using conventional medication and diagnostic measures. A coherent strategy with versatility and comprehensive perspective to confront the rising distress could perhaps be effectuated by implementation of nanotechnology. But in concurrent to resourceful and precise execution of nano-based medication, there is an ultimate need of concrete understanding of the NiV pathogenesis. Moreover, to amplify the effectiveness of nano-based approach in a conquest against NiV, a list of developed nanosystem with antiviral activity is also a prerequisite. Therefore the present review provides a meticulous cognizance of cellular and molecular pathogenesis of NiV. Conventional as well several nano-based diagnosis experimentations against viruses have been discussed. Lastly, potential efficacy of different forms of nano-based systems as convenient means to shield mankind against NiV has also been introduced.

© 2019 Elsevier Inc. All rights reserved.

Key words: Nanomedicine; Diagnostics; Nipah virus; Antiviral; Virucide

In view of the adaptable nanotechnological achievements in the past decade, it is certain that, nanoscience is consistently intensifying its horizon across the globe in present and will be in centuries to come. Despite the expendability and plasticity in nanotechnological application, there is a wide gap in intrigue experimental biomedical application and their substantial commercialization. Moreover, their application in biomedical science is still lurking, and should be prioritized in order to bridge the gap. Additionally, the efficacy of conventional therapies is gradually fading away specifically in case of viral infections due to the development of resistance,1 which could be certainly due to accelerated adaptation in peripheral protein sequence resulting in newfangled viral strain. Van Woensel et al for instance have stated that viruses are the ubiquitous causes of lower respiratory tract disease in babies and youngsters. Later a variation of coronavirus associated with severe acute respiratory syndrome and human metapneumovirus, lately recognized as a new respiratory pathogen over the entire age range has emerged.2

And presently Nipah virus (NiV) another respiratory tract infecting virus with an estimated case fatality rate ranging from 40% to 75% is causing serious issue throughout the world.3 As indicated by WHO fact-sheet report, lower respiratory infection is ranked 1st and 6th leading cause of mortalities in low income countries and high income countries, respectively, and 4th leading cause of mortalities worldwide.4 The BSL-4 virus with this high rate of morbidity and mortality, up to some extent has strangled the virologist since past 10 years or so for the exigency for a novel therapeutics.5 Moreover, the conventional unidirectional serological diagnosis and therapeutics orchestrate numeral shortcomings such as cost deficit, sophisticated preparation procedures, efficient only on post-exposure prophylaxis and reduced amount of the product in consistent with human population and livestock to be vaccinated.5,6

Majority of the therapeutics developed basically includes monoclonal antibodies targeting viral surface proteins such as F, G or M proteins.7-9 Further a number of broad spectrum antiviral agents
such as nucleoside analogues namely rebavirin, GS-441524, GS-5734 (remdesivir), R1479 (balapiravir) and most recent drug favipiravir (T-705; 6-flouro-3-hydroxy-2-pyrazinecarboxamine) which is an inhibitor of viral RNA-dependent RNA polymerase have shown certain degree of efficiency against this virus. But lack of target specific action and probability of host cell toxicity are the major limitations of these synthetic drugs. Taking into consideration, the severity of the infection and imperative necessity for a novel multidirectional, target specific and, non-toxic nature; the tunable nanotechnology based approaches seems to be a promising alternative. This technology harbors certain fascinating properties such as superparamagnetism, high surface plasmon resonance, luminescence, photon upconversion, bioavailability, biocompatibility, immunocompatibility/tolerability and biodegradability. The capacity to channelize through translucently breachable blood–brain barrier (BBB) and blood–air barrier (BAB), tunability and targeted control discharge are chief exclusive points which qualify them to be novel candidate for their utilization in biomedical therapy (antiviral). The focal point of present review paper includes cellular molecular pathogenesis of NiV infection. Heterogeneous forms of nano-based approaches used as a means of therapy or diagnostic against other viruses, and finally, provoked the future possibilities for nanotechnology in concern with the NiV detection and inhibition.

Cellular and molecular changes in NiV infection

In humans, severe acute respiratory sickness and/or encephalitis can be provoked by a bat-borne zoonotic, paramyxoviral pathogen NiV. This negative-sense single-stranded RNA virus belongs to the family Paramyxoviridae, genus Henipavirus and is closely related to Hendra viruses. Like Hendra virus, NiV may also cause fatal pneumonia or an acute respiratory-distress-like syndrome. It has been hypothesized that the respiratory disease transmission and pathogenesis are linked to infection of epithelial cells by the NiV at lower respiratory tract at the primary phase. Recently Escareille et al have described two types of infection in association to NiV, namely NiV-M and NiV-B of human respiratory tract based on differentiated epithelial models of trachea and small airways due to their close anatomical resemblance with epithelial cells of human lower respiratory tract. According to the epidemiological reports NiV-M and NiV-B infections vary greatly in multiple aspects. For instance the percentage of respiratory disease and case fatality rate of NiV-B infections is much higher than NiV-M infection, whereas in NiV-M infection studies show that both human and hamster develop similar pathological changes such as presence of vasculitis, necrosis and inflammation. And certain neuronal changes such as antigen positive neurons, microvascular vasculitis and necrosis in hamster which in case of human progresses to encephalitis.

An extracellular pleomorphic bilayer envelope spiked with two glycoproteins namely trimeric fusion protein (F) and tetrameric attachment protein (G) at the exterior surface and matrix proteins (M) at the interior surface, encapsulates NiV virion. Further, the negative-sense single-stranded RNA, along with three other critically vital proteins namely nucleocapsid proteins (N), phosphoproteins (P) and large polymerase proteins (L) is contained within the virion made up of linear ribonucleoprotein (RNP). Binding of viral G to the conserved receptors ephrin-B2 and ephrin-B3 marks the beginning of host cell and viral membrane fusion mediated by prior complex formation of viral G and F protein.

From an evolutionary point of view it could be assumed that, during initial epidemic period of NiV, it has developed a specific mechanism to evade innate immune action of Pterous bat. The evolutionary conservation of this particular immune mechanism within all mammals has made NiV a broad spectrum virus against them. The virus blocks the elicitation of innate and adaptive immune response by inhibiting synthesis of cytokines, interferon type I (IFN α/β). The IFN α/β in case of viral infection, activate pathways within the viral infected cell which degrades viral mRNA and inhibits viral protein synthesis, hence hindering the rate of viral replication inside the infected cell and subsequently lowering viral load. Song et al describe that IFN α/β can act as both autocrine and paracrine signaling molecule, where IFN α and IFN β are producers. Therefore it could be said that inhibition of IFN α/β synthesis may severely affect both autocrine and paracrine activity, which may further lead to impaired immune response (Barth et al 2016). The cellular and molecular changes during and post NiV infection starting right from NiV attachment and invasive pathogenesis leading to multiple organ failure have been explained in the Figures 1, 2, and 3. Understanding these changes will significantly improve present knowledge essential for developing and evaluating therapeutics against NiV.

Cellular changes in detail

NiV infection in the primary stage is restricted within the epithelial cells of host’s upper and lower respiratory tract. And NiV-F and G necessary for its fusion with the bipolar epithelial cell are at the epical side during initial infection period. Here, G protein induced virus-cell fusion begins with the interaction between tetrameric G-protein head region and Ephrin B2/B3 on the epithelial cell. Simultaneously C-terminus region of G interacts with NiV-F protein, whose two hydrophobic N-terminal alpha helical heptad repeat domains (HR-1, HR-2) form a six-helical bundle structure that transverses through cell membrane of the host initiating pH independent class I type membrane fusion (Figure 2). After the viral entrance through apical region, it replicates within the cell, sorting of proteins such as F and G on infected cell surface, is further destined for infection could also be regarded as markers. Unlike G, precursor form of F protein, Fα get lodged within the membrane and activated through endocytosis followed by cathepsin L mediated endosomal degradation to form mature F1/2 (Cifuentes-Muñoz et al 2017).

The local infection starts with the lateral spreading of virus occurred by basolaterally expressed protein (G, F) mediated cell–cell merging that gives rise to a consequential configuration of syncytia which are pathological hallmarks for NiV infection of epithelial cells. This has been seen at 14 h of post infection (p.i) which is the earliest time needed for protein detection in in vivo study. The cell–cell fusion can be between epithelial cell and...
stromal cell, heterologous fusion or between two epithelial cells, homologous fusion (Figure 2). After disrupting monolayer epithelial cells the newly formed virus buds out from the apical side of the multinucleated epithelial cells. This vectorial release of virus is confirmed by the preferential localization of viral F, G and necessary for budding, M protein on the apical side (88%, 86%, 95% of total G, F and M respectively), which can be seen after 24 h p.i. The released virus can either infect the immune cells of secondary lymphoid organs (Mucosal Associated Lymphoid Tissues [MALT], Gut Associated Lymphoid Tissues [GALT]) which are present just under the layer of mucosal epithelia cells. They might also contribute towards impairing antiviral activity by inhibiting synthesis of IFNα/β and reducing expression of cytokines involved in inflammatory process like CCL4, CCL5 and TNF-α. Again IFN induced antiviral genes such as MxA, ISG54 and repression of viral antigen presenting class-I MHC molecules might be another output (Figure 3, D). In case of NiV, viral P gene encoded post-transcriptionally modified phosphoproteins antagonize the secretion of IFNα/β and elicit antiviral activity at both cytoplasm and nucleolus. The various proteins encoded by P genes are P, V, W and C with 407 amino acid length similarity at their N terminal end. V and W mRNAs are frame shift mutates P mRNA at a particular conservation site, with insertion of one and two G nucleotide respectively whereas the C mRNA is nested within each P, V, W mRNA. The degree of immune response inhibition by each proteins P, V, W varies with P being less than V and W with highest inhibitory activity. The elevated inhibition by W protein might be because of its nuclear localization ability. This allows it to suppress expression of IFNα/β and antiviral gene at gene expression level.

Molecular changes in detail

With mortality rate of 40%-75% and an outrageous range of host, this atrocious human pathogen also infects neurons apart from endothelial cells. In general, paramyxoviruses evade host immune system either by suppressing its detection through lowering the expression of pattern recognition receptors (PRRS) or by impeding the secretion of antiviral signaling molecules. The various proteins encoded by P genes are P, V, W and C with 407 amino acid length similarity at their N terminal end. V and W mRNAs are frame shift mutates P mRNA at a particular conservation site, with insertion of one and two G nucleotide respectively whereas the C mRNA is nested within each P, V, W mRNA. The degree of immune response inhibition by each proteins P, V, W varies with P being less than V and W with highest inhibitory activity. The elevated inhibition by W protein might be because of its nuclear localization ability. This allows it to suppress expression of IFNα/β and antiviral gene at gene expression level.

Figure 1. General representation of Nipah virus infection and pathological features.
and confirms lower probability of eliciting antiviral activity, than as happens in case of cytoplasmic inhibition by V proteins. The cytoplasmic inhibitory activity of V proteins is achieved by its binding with dsRNA responding RLR receptor MAD5 hence down regulating the activation of TBK1 and IKKe which activates IFNα/β gene transcription factor IRF3 and IRF7 (Figure 3, D.1). This suppression of IFN β gene expression can be overcome by another TLR3 mediated alternative pathway by producing more amount of adaptor protein IRF1 which activates TBK1 (Figure 3, B.1).37

Further, attenuation of IFNs responded antiviral activity of an infected cell can be discussed considering the JACK/STAT signaling pathway necessary for transcriptional level activation of antiviral genes.37,46,47 Responding to IFN α/β and γ, the interactions between phosphorylated STAT1 and STAT2 form their hetero or homodimer (by STAT1 only) respectively (Figure 3, D.2). These dimmers are precursor molecule of IFN α/β gene transcription factor.48,49 Hence inhibitions of STAT1 and STAT2 interaction result in the absence of antiviral activity. Protein P, V and W interact with STAT1 with their amino terminal domain while only protein V can interact with STAT2.37 Re-localization of non-phosphorylated STAT1 from its typically cytoplasmic location by protein W also makes its unavailability for STAT dimer formation and hence inhibition of IFN α/β gene transcription factor formation (Figure 3, D.3).37 The viral C protein which is predominantly localized in cytoplasm and partly in nucleus is responsible for enveloped viral budding and release by recruiting host ESCRT pathway.50,51 The C terminal domain of NiV-C, as it possesses homology in its sequence with host protein Vps28 could interact directly with TSG 101, an adaptor molecule between ESCRT I and ESCRT II. However, the reciprocal action among ESCRT I–NiV C and ESCRT II is not fully understood.50 But it has been speculated that viral C protein interacts with M protein present in the inner leaflet of plasma membrane and thereby direct vectorial release of virus particles (Figure 3, B.2).50,52

Therapeutics against NiV

Guillaume et al developed a potent Vaccinia virus (VV) mediated VV-NiV-F and VV-NiV-G recombinant vaccines in a hamster model.53 They found immunized organism shows complete immunity against NiV induced fatal encephalitis by producing neutralizing antibodies whereas it occurs within 7 to 10 days after intraperitoneal inoculation of NiV isolates. The low neutralizing ability of the produced antibodies as confirmed by the increasing level of serum antibodies gives an idea of studying effect of passive immunization against NiV. Intraperitoneal injection of polyclonal as well as monoclonal (mAb) anti-F and anti-G, separately shows that anti-F and anti-G mAb are more efficient in neutralizing NiV viral infection as compared to polyclonal Ab, with anti-F mAb having high degree of antiviral activity than anti-G mAb.54 A recent hit on broad-spectrum small molecule antiviral purine analogue previously mentioned Favipiravir (T-705) which inhibits NiV and HeV replication in vitro with a minimal cytotoxic effect of highest concentration tested, having a CC50 value of >1000 μL (as observed in Hamster model) has provided a way to fight against the cytopathic effect of deadly NiV, HeV like paramyxoviruses.6
It is not late when one day due to the consistent change in their genome these pathogens would get resistance to the conventional drugs which are unidirectional and have no specific targeted. These limitations could be ameliorated by finding a novel therapy with multiple pathways and biomarkers for the target oriented action. For example in NiV depletion of NiV-C recruited ESCRT pathway mechanism and deposition of other viral proteins (N, M, F, G and L) results in cytoplasmic budding and impaired release of virus from the infected cell.50,51 There are numerous intermediate molecules associated with ESCRT pathway; targeting conserved intermediate molecules or their precursor might be a novel strategy to eliminate the virus. Further the ligands or receptors with a binding efficiency with viral intermediate molecules could be further enhanced by their amalgamation with nanotechnology.1

Nano-based antiviral therapy

The versatile mode of viral inhibition primarily depends on the type and form of NPs used. Therefore to understand the antiviral activity of NPs a general overview about different types and forms of NPs/ nano-based systems is a necessity. Nano-based antiviral agents extend from simple inorganic NPs to complex organic and hybrid nanosystems. Metallic NPs (MNPs) and NCs in the form of nanospheres, nanocapsule and nanocage could be categorized under inorganic NPs (INPs). Organic NPs (ONPs) include nanocapsule as in the form of NCs, primarily differentiated based on chemical composition. Hybrid nanosystems are standardized amalgamation of inorganic–organic, inorganic–inorganic (nanocomposites), and organic–organic nanoparticulated systems (lipid–polymer hybrid NPs) engineered based on specific requirement or use at targeted site.55

Inorganic nanoparticles

The other properties such as luminescence, tunable size, shape, composition and large surface-to volume ratio have invigorated the importance of INPs in biomedical field for multifarious application. Among these applications the ability of these INPs to expose their multiple surface binding sites as well as control their \textit{in vivo} behavioral properties is widely explored.12 This phenomenon of multiple interactions at a specific site with the targeted molecule further contributes towards the utilization of these NPs in active targeted imaging for diagnostics, hyperthermia therapy and medication.56 The most common iNPs are MNPs such as silver (Ag), gold (Au), iron oxide (FeO) and NCs of silica, titanium, carbon etc.

\textit{Silver nanoparticles (AgNPs)}

Silver nanoparticles (AgNPs) are most keenly researched nano-based approach to treat viral infection or their detection. Numerous evaluations of the NPs to develop a novel strategy to either annihilate or ameliorate the severity of infection had already been carried out. To date the efficiency of AgNPs as an antiviral has been checked in Human immunodeficiency virus (HIV)-1, Herpes simplex virus (HSV)-1, 2, 3, Feline Calicivirus, Poliovirus type-1, Peste des petits ruminants virus (PPRV), Murine norovirus-1, Avian
Nanoparticles	Virus Model Organism	Mechanism of Antiviral Action	Purpose	References
Silver (Ag)	HeLa-CD4-LTR-β-gal cells, MT-2 cells, human PBMC	Interaction with gp120 in order to prohibits CD4-based virion binding, blending, and pathogenesis	Viral entry inhibition and as virucidal agent	Lara et al (2010)
AgNPs	Human immunodeficiency virus (HIV)-1			
	HeLa-CD4-LTR-B-			
	gal cell			
	Vero cells			
	Fusion inhibition between virus and cells		Viral entry inhibition	Salem et al (2012)
	Coxsackie virus B3 Nancy strain			
	Vero cells			
	Herpes Simplex Virus (HSV)-1, 2, 3			
	Vero cells			
	HSV-2			
	Vero cells			
	Peste des petits ruminants (PPR) virus			
	Vero cells			
	Avian influenza A virus, subtype H7N3			
	Vero cells			
	Viral entry inhibition and as virucidal agent			
	Influenza A and Feline Calicivirus			
	Poliovirus type-1			
	Human Rhabdomysosarcoma			
	Murine norovirus-1			
	Feline calicivirus			
	Infectious Bursal Disease (IBD) virus			
	S. cerevisiae dsRNA viruses			
	HeLa cells, NIH/3 T3 cells			
	Interaction with viral envelope		Impaired viral envelope resulting in viral inhibition	Seino et al (2016)
	Infection with viral genome and inhibition of viral replication		Virucidal agent	Castro-Mayorgaa et al (2017)
	Titanium (Ti)			
	TiO$_2$ NPs			
	MS2, PRD1, ΦX174, Fr			
	Interaction with viral capsid protein (alanine, glycine, and proline residues)		Photocatalytic inactivation of phages	Gerrity et al (2008)
	TiO$_2$ NPs			
	H3N2			
	Direct contact with virus		Virucidal agent	Mazarikova et al (2010)
	TiO$_2$ particles			
	MS2, ΦX174, PR772			
	Interaction with viral capsid/ surface proteins		Photocatalytic inactivation of phages	Misstear and Gill (2012)
	TiO$_2$-DNA nanocomposites			
	DNA			
	H1N1, H5N1, and H3N2			
	MDCK cells			
	Targeted binding to conservative regions in the viral genome and inhibition of viral reproduction		Viral inhibition	Levina et al (2015)
	TiO$_2$ NPs			
	MS2			
	Interaction with viral surface proteins		Inactivation of phages	Syngouna and Chrysikopoulos (2017)
	Gold NPs			
	HIV-1			
	HeLa-CD4-LTR-B-gal cell			
	BHK-21			
	Binding with viral gp120 and prevent CD4 attachment		Inhibition of viral entry	Vijayakumar and Ganesan (2012)
	Foot- and- mouth diseases			
	BHK-21			
	Arrests viral replication along		Virucidal agent	Hafashjani et al (2016)

(continued on next page)
Nanoparticles	Virus	Model Organism	Mechanism of Antiviral Action	Purpose	References
Au NPs	-	-	with transcription	Viral detection	Ahmed et al (2016)
Gold NPs (AuNPs)	Synthetic peptide resembling FMDV protein	FMDV	Peroxidase-mimic enzymatic reaction	Size dependent immunization	Chen et al (2010)
AuNPs	DNAzyme (DDZ)	*Aedes albopictus*	DDZ activation mediated salt-induced aggregation of AuNP	Viral detection	Carter et al (2013)
AuNPs	Anti-A/Udorn/307/1972 antibody	H3N2	Nanodot deposition on the periphery of viral surface	Viral detection	Gopinath et al (2013)
AuNPs	Small interfering RNA	DENV	Inhibiting viral replication and infectious virion release	Efficient delivery and viral inhibition	Paul et al (2014)
AuNPs	Viral matrix 2 protein (M2e)	H1N1	Antibody mediated CpG (cytosine-guanine rich oligonucleotide) immunity	Influenza vaccine	Tao et al (2014)
AuNPs	Monoclonal anti-hemagglutinin antibody (mAb)	H3N2	Viral surface deposition of NPs- mAb	Colorimetric immunosensor viral detection	Liu et al (2015)
AuNPs	Recombinant trimetric A/Aichi/68 (H3N2), Hemagglutinin (HA) and TLR5 agonist flagellin (FlIIc)	H3N2	Antigen-specific T cell-mediated immunity	Improved immunization	Wang et al (2017)
Unmodified AuNPs	Charge-neutral peptide nucleic acids (PNA)	Bovine Viral Diarrhea virus (BVDV)	BVDV-RNA based PNA induced aggregation of the AuNPs	Colorimetric based viral detection assay	Askaravi et al (2017)
AuNPs	Viral consensus matrix 2 peptide (M2e)	H1N1, H3N2, H5N1	Strong humoral and cellular response	Universal influenza A vaccine	Tao et al (2017)
AuNPs	Recombinant viral Hemagglutinin (HA)	H3N2	Higher level of viral specific IgA and IgG, promotion of antigen-specific interferon-γ (IFN-γ)-secretion, CD4⁺ cell proliferation and induced activation of strong effector CD8⁺ T cell	Enhanced mucosal cellular immunity	Wang et al (2018)
Iron (Fe)	Fe₂O₃ NPs	Antibodies against viral HA protein, capped with methoxy-terminated ethylene glycol	-	Rapid and specific viral detection	Chou et al (2011)
Iron Oxide NPs	Bacteriophage MS2	-	-	Virus removal	Park et al (2014)
Iron Oxide NPs	Aaptamers specific for binding to the E1E2 glycoprotein of HCV	HCV	Apatamer targeted viral envelope protein binding	Efficient removal of viral particles	Delaviz et al (2015)
Silica (Si) based NPs	Anti-zika envelope protein (ZENV) antibody, AXL receptor, HSP70 receptor, TIM-1 receptor	Zika virus	AXL has the highest affinity for virus; HSP70, TIM-1, and phosphatidylinerine might also play active roles in viral tropism	Timely and sensitive analysis of host pathogen interaction	Shelby et al (2017)
SiNPs	Biotin derivative dCTP bases	Human Papilloma Virus	Nucleic acid hybridization	Viral detection	Enriche et al (2010)
Hollow Mesoporous SiNPs	Porcine circovirus type 2-ORF2 protein	Porcine circovirus	Stimulate antibody and cell-mediated immune responses	Immunization against the virus	Guo et al (2012)
Nanoparticle Type	Organism / Protein	Cell Type	Effect / Mechanism		
-------------------	-------------------	----------	--------------------		
SiNPs	Hepatitis B virus core (HBc) protein	Hepatitis B virus	BALB/c mice	Activates antibody and cell-mediated immune responses against the virus	Skrastina et al (2014)
Mesoporous SiNPs	Glycosaminoglycans	HSV-1, 2	Vero cells	Inhibition of viral attachment to the host cell	Lee et al (2016)
Mesoporous SiNPs	Alkoxy silane (Hydrophobic, Hydrophilic)	GFP lentiviral vector harboring a vesicular stomatitis virus G glycoprotein, GFP lentivirus harboring an HIV-gp120 derived envelope	HEK293T cells	Attachment with the viral envelope protein resulting in inhibition of viral entry	de Souza et al (2016)
Europium doped fluorescent SiNPs	Streptavidin	HIV (HIV-1 p24 antigen)	-	Binding to HIV-1 p24 antigen	Chunduri et al (2017)

Carbon (C) based NPs

Fullerene Derivative	Organism / Protein	Cell Type	Effect / Mechanism		
Glycofullerenes	Carbohydrate moieties (Mannose)	Pseudotyped viral particles (Ebola virus)	Jurkat cells	Blocking the dendritic cell–specific intercellular adhesion molecule-3–grabbing non-integrin receptor (DC-SIGN) leading to inhibited viral entry	Luczkowiak et al (2013)
Fullerenes	Maximin H5 peptide	Bacteriophage λ	-	Attachment with viral capsid or envelope and inhibiting viral entry / disruption of viral lipid layer lyses if of virion / inhibition of viral replication	Dostalova et al (2016)
Fullerene derivatives 1, 2, 3 and 4	HIV-1 (Wild type)	SupT1 cells	Inhibition of Gag processing through a protease-independent mechanism	Blocks viral maturation	Martinez et al (2016)
	HIV-1 (Resistant virus)	SupT1 cells	Impairing viral polyprotein processing through a protease-independent mechanism		
Globoal multivalent glycofullerenes (Tridecafullerene)	Carbohydrate moieties (Mannose, Galactose)	Pseudotyped viral particles (Ebola virus)	Jurkat cells	Blocking of DC-SIGN	Muñoz et al (2016)
Glycodendrofullerenes	Carbohydrate moieties (Mannose, Galactose)	Pseudotyped viral particles (Ebola virus glycoprotein)	Jurkat cells	Blocking of DC-SIGN	Muñoz et al (2017)

Carbon nano-tubes

Organic / Carbon nanotubes	Organism / Protein	Cell Type	Effect / Mechanism		
Acid-functionalized multi-walled carbon nanotubes (MWNTs)	Protoporphyrin IX (PPIX)	H3N2	NCIH292	Photoactivated PPIX mediated interaction with viral envelope and its destabilization	Banerjee et al (2012)

(continued on next page)
Nanoparticles	Virus	Model Organism	Mechanism of Antiviral Action	Purpose	References
Functionalized single-walled carbon nanotubes (SWCNTs)	Recombinant VP7 subunit vaccine	Grass carp	VP7 subunit vaccine mediated immunity against virus	Immunization	Zhu et al (2014) 89
Ammonium-functionalized SWCNT	pEGFP-3p3 vaccine	GCRV	Activation of pro-inflammatory factors (IL-1β, TNF-α) and DNA vaccine mediated immunity against virus	Immunization	Wang et al (2015) 163
SWCNT	Ribavirin	GCRV	Affects viral transcription	Viral inhibition	Zhu et al (2015) 135
SWCNT	pcDNA-VP7	GCRV	Activation of pro-inflammatory factors (IL-1β, TNF-α) and DNA vaccine mediated immunity against virus	Immunization	Zhu et al (2015) 165
Carbon nanohorns	T7 tag antibody	T7 bacteriophage	Attachment to the viral surface and photo-exothermic destruction	Viral elimination	Miyako et al (2008) 166
Graphene oxide (GO)	Cationic polymer PDDA, nonionic PVP	Pseudorabies, porcine epidemic diarrhea virus	Negatively charged GO interacts with viruses prior to viral entry resulting in virus damage due to its single-layer structure and sharp edge	Viral inhibition	Ye et al (2015) 167
β-cyclodextrin (CD) functionalized-GO	Curcumin	Respiratory syncytial virus (RSV)	The NP mimics heparin sulfate on the host cell surface and inhibits viral attachment	Viral inhibition	Yang et al (2017) 191
Quantum dots	Streptavidin	RSV	Streptavidin interact with G-protein in virus	Viral detection	Bentzen et al (2005) 168
Carbon dots	Pseudorabies virus, porcine reproductive and respiratory syndrome virus	MARC-145 cells, PK-15 cells	Inhibits viral replication by inducing type I interferon production	Viral inhibition	Du et al (2016) 169
Carbon dots	Human NoV GI.1 virus-like-particles (VLPs), GI.4 VLPs		Inhibits viral attachment to histo-blood group antigens (HBGA) receptors of host cell	Viral inhibition	Dong et al (2017) 170
Table 2
Organic Nano-Based Approach for Viral Diagnosis and Inhibition.

Nanoparticles	Bioactive Compound	Virus	Model Organism	Mechanistic Mode of Action	Purpose	References
Polymeric NPs						
Poly (D,L-lactide-co-glycolide) NPs	Hemagglutinin (HA)	H1N1	-	Unaltered molecular weight and antigenicity	Future viral detection and immunization	Lemoine and Préat (1998)
	p-HA	H1N1	Female Balb/c mice	Enhanced antigen particulate hydrophobicity	Immunization	Lemoine et al (1999)
N-Trimethyl chitosan (TMC) NPs	Monovalent influenza (H3N2) subunit vaccine	H3N2	Female C57BL/6 (B6) mice	Enhanced systemic and local immune responses	Effective carrier for nasal delivery of influenza antigens	Amidi et al (2007)
Polystyrene NPs	Mannose-specific lectin concanavalin A	HIV-1	-	Mannose-specific lectin concanavalin A and viral gp120 antigen binding	Vaccine adjuvant	Wang et al (2007)
Poly (ε-caprolactone) (PCL) NPs coated with poly(ethylene oxide) (PEO)	Dapivirine	HIV-1	CaSk, Caco-2, VK2/E6E7, TZM-bl cells, pig tissue models of vaginal and rectal mucosa	NPs differently modulated permeability and monolayer/tissue retention kinetics of dapivirine	Vaccine	das Neves et al (2013)
Chitosan-PEG NPs	Rabies whole attenuated viral antigen	Rabies virus	-	Effective and sustained elicitor of immune system with negligible toxicity	Immunization	Nivedh et al (2016)
Poly (D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol) NPs	Nonnucleoside reverse transcriptase inhibitor (NNRTI) DAAN-14f (14f), surface-conjugated with HIV-1 fusion inhibitor T1144	laboratory adapted HIV-1 strains, primary HIV-1 isolates, NNRTI resistant	Sprague-Dawley rats	Viral entry inhibition by inhibition viral attachment, if compromised breach then inhibition of transcriptase	Viral inhibition	Li et al (2016)
Methoxy-poly (ethylene glycol) 3000-poly (lactic acid) 34,000 (MePEG-PLA) NPs	Poly(aniline-co-pyrrole) polymerized nanoregulators (PASomes)	Influenza A virus (H1N1, H3N2, and H9N2)	MDCK cells	ROS mediated viral replication inhibition and cell death	Antiviral agent	Kim et al (2017)
Maleimide-poly (ethylene glycol) 3400-poly (lactic acid) (Mal-PEG–PLA) NPs	Zidovudine	HIV	C6 glioma cells, neuro 2a cell lines	Inhibition of viral transcriptase	Effective antiviral delivery	Joshy et al (2017)
Amide functionalised alginate NPs	Double-layered protein (Core Matrix protein 2 [M2e] coated with headless Hemagglutinin [HA]) NPs	Influenza A virus	BALB/c mice	Viral inhibition by antibody-dependent cell-mediated cytotoxicity or Antibody-dependent cellular phagocytosis and	Universal influenza vaccine with long lasting immunity	Deng et al (2018)
Double-layered poly peptide (nucleoprotein epitopes at core coated with matrix protein 2 ectodomain epitopes) NPs	Influenza A virus	BALB/c strain	CD8+ T cells involved protection against virus	NPs-vaccine	Deng et al (2018)	
Liposome						
Nano-liposomes	Acyclovir	-	-	-	Intravenous drug delivery and release	Mukherjee et al (2007)
Solid lipid NPs	shRNA (Targeting internal)	Hepatitis C virus	Huh-7 cells	Silencing of hepatitis C virus	Viral inhibition	Torrecilla et al

(continued on next page)
Nanoparticles	Bioactive Compound	Virus	Model Organism	Mechanistic Mode of Action	Purpose	References	
Solid lipid NPs	ribosome entry site (IRES)	Lentiviral-based pseudo-HIV-1 particles	Human 293T cells	replication, Inhibition of viral protease	Efficient encapsulation, release and antiviral activity	Javan et al (2016)\(^\text{137}\)	
Solid lipid NPs modified with gelatin	Zidovudine (AZT)	HIV	MCF-7 and neuro 2a brain cells		Appreciable cellular internalization	Favorable loading, controlled discharge, hemocompatibility and nontoxicity	Joshy et al (2017)\(^\text{103}\)
Polyvinylpyrrolidone (PVP)/stearic acid (SA)-polyethylene glycol (PEG) NPs	AZT	HIV	Murine neuro-2a and HeLa Cells		Applicable cellular internalization	Favorable loading, sustained release, hemocompatibility and nontoxicity	Joshy et al (2018)\(^\text{106}\)
Nanostructured nanolipid carriers	Podophyllotoxin (POD)	Human papillomavirus (HPV)	VK2/E6E7	Cell cycle arrest of virally infected cells at G2/M phase	Sustained release, hemocompatibility, nontoxic viral inhibition	Gao et al (2018)\(^\text{107}\)	
Dendrimer	Peptide-derivatized dendrimers	Acyclovir (ACV)	HSV-1,2	Inhibition of viral entry by binding to glycosaminoglycan moiety of cell surface heparan sulfate proteoglycans, *in vitro* viral replication	Antiviral activity	Luganini et al (2011)\(^\text{110}\)	
					mRNA-vaccine	Chahal et al (2016)\(^\text{111}\)	
	mRNA replicons (multiple antigen expressing replicons)	H1N1, Ebola virus	Wild-type female C57BL/6 and BALB/c mice	Activation of both CD8+ T-cell and antibody responses	mRNA-vaccine	Chahal et al (2016)\(^\text{111}\)	
	Venezuelan equine encephalitis virus (VEEV) replicon RNAs	Zika virus	C57BL/6 mice	Activation of both CD8+ T-cell and viral E protein-specific IgG responses	mRNA-vaccine	Chahal et al (2017)\(^\text{113}\)	
Carboxilane dendrimer NA	16-mer oligoribonucleotide (RNA) decoy (genomic RNA of HIV)	HIV	HIV-infected MT4 lymphocytes	RNA decoy	Inhibition of HIV encapsidation	Parboosing et al (2017)\(^\text{114}\)	
Nonlinear globular G2 dendrimer	Citric acid and polyethylene glycol 600 (PEG-600)	Rabies virus	J774A.1 cell line and NMRI mice		Adjuvanticity efficacy	Asgary et al (2018)\(^\text{112}\)	
Niosome	Nano-niosome	Acyclovir	-	-	-	Intravenous drug delivery and release	Mukherjee et al (2007)\(^\text{178}\)
		HSV-1	HeLa cell line	-	-	Drug delivery and anti-viral activity	Monavari et al (2014)\(^\text{119}\)
						Improved drug delivery, release, and anti-viral activity	Javad et al (2014)\(^\text{118}\)
Nanomicelle	Polymeric micelle	Efavirenz (EFV)	HIV	Male Wistar rats	Improved oral bioavailability	Chiappetta et al (2010)\(^\text{121}\)	
	Nanomicelle	Curcumine	Hepatitis C Virus	APC49 Huh7.5 cells	Regulation of viral attachment and entry	Improved bioavailability and anti-viral activity	Mandal et al (2017)\(^\text{122}\)
	Polymeric nanomicelle	Biotinylated lipid prodrug of cyclic cidofovir (B-C12-cCDF)	-	D407, HCE-T cells	-	Efficient anti-viral drug delivery	Mandal et al (2017)\(^\text{125}\)
influenza A virus subtype H7N3, Coxackievirus B3, Infectious bursal disease virus and S. cerevisiae dsRNA viruses (Table 1). The AgNPs based mechanism for viral inhibition or virucidal activity varies virus to virus. For example Lara et al elucidated the antiviral efficacy of commercially available AgNPs against HIV-1 and some resistant strain such as IIIB, Eli, Beni, 96USSN20, Bal, BCF01, AZT_{RV}, NNRT_{RV}, PI_{RV}, 3TC_{RV}, and Saquinavir_{RV} along with NPs mode of action. Normally post-entry stage, associated specifically with transcription within finding later suggested that AuNPs arrested FMDV replication at the mode of antiviral activity of polyethylene glycol encapsulated into cytoplasm. Their findings suggested that AgNPs impedes exposing gp41 which concordantly interacts and releases viral core gp120 interaction with host receptor CD4 and associated co-attachment inhibition or viral replication inhibition have also been antiviral efficacies of AgNPs by these modes of viral entry or reaction assay. Likewise there are other examples where hybridized for H1N1 and H3N2 detection by mimicking peroxidase enzymatic reaction. Ahmed et al described the capability of positively charged AuNPs stabilized with certain biocompatible polymer could act as an effective antiviral agent against HIV-1, H1N1, H3N2, H5N1, dengue virus, bovine viral diarrhea virus and Foot-and-mouth disease virus (FMDB). Vijayakumar and Ganesan et al had speculated that the mode of antiviral activity of polyethylene glycol encapsulated AuNPs against HIV-1, might be by blocking gp120 attachment with CD4, which results in inhibited viral entry. Hafashjami et al in their finding later suggested that AuNPs arrested FMDV replication at post-entry stage, associated specifically with transcription within the host cell. But the exact virucidal mechanism is unclear. The currently used AuNPs in combination with other nano-based formulation are applied for photothermal nanotherapy, bio-sensing, bio-imaging, catalytic activities. The unique property of AuNPs contributing to these applications is different from its bulk form that is, Surface Enhanced Raman Scattering (SERS). For example Ahmed et al described the capability of positively charged AuNPs for H1N1 and H3N2 detection by mimicking peroxidase enzymatic reaction assay. Likewise there are other examples where hybridized AuNPs demonstrated effective antiviral activity (Table 1).

Gold nanoparticles (AuNPs)

Unlike AgNPs though AuNPs could also be synthetized by green synthesis method but their direct use as an antiviral agent is scant. Except in some findings, that too when, AuNPs stabilized with certain biocompatible polymer could act as an effective antiviral agent against HIV-1, H1N1, H3N2, H5N1, dengue virus, bovine viral diarrhea virus and Foot-and-mouth disease virus (FMDB).

Titanium nanoparticles (TiNPs)

Due to its brightness and high refractive index, titanium dioxide (TiO₂) a white pigmented molecule is widely used for a number of purposes. In various sectors of science and industries its nanoform that is TiO₂NPs is more abundantly produced and used specifically because of their high solubility, photocatalytic and anticorrosive properties. Although their application in biomedical sector is marvelous but still than there is a large gap between classic and current research. Out of every possible implementation that could bridge this gap, antiviral application of TiO₂NPs is one of them. Present antiviral evaluation of TiNPs is only limited to influenza virus (H3N2) and certain bacteriophages such as MS2, PRD1, φX174, Fr and many others. Moreover, the existing toxicity evaluations of the NPs though cannot completely eliminate health risks therefore, their biomedical application as an antiviral agent is questionable. But considering beneficial role of TiNPs in biomedical sector, its antiviral activity however, needs to be perfectly conceptualized in animal models too.

Silica nanocarriers (SiNCs)

NPs based on silica due to their unique characteristics like tunable diameter, pore size, convenience in functionalization, biocompatibilities etc. are well appreciated for research all over the globe. Apart from these, there are two other important properties, which display manipulative applicable properties including self-immobilization of ligands onto surface of SiNP and stimuli-responsive gatekeepers. The practical application lies in their capability to control or accelerate release of the drug payloads simultaneously excluding premature release. Currently, exploiting these properties for photodynamic therapy by functionalizing SiNPs with photosensitizers, is one of the fastest emerging research. There are different forms of SiNPs, categorized as porous, mesoporous and non-porous and are utilized for diverse biomedical application.

Magnetic nanoparticles (MNs)

Iron oxide or superparamagnetic iron oxide in the form of either magnetite (Fe₃O₄) or maghemite (Fe₂O₃, γ-Fe₂O₃) NPs is the most imperative component of present day magno responsive nanoparticulated systems. These iron based nanoparticulated systems have created a tremendous impact in biomedical/ clinical diagnostics including magnetic resonance imaging, magnetic particle imaging, magnetic fluid hyperthermia and magnetic labeling and cell separation. Therefore the direct application of MNPs as a therapeutic is limited. Presently the direct use of MNP as an antiviral agent has been evaluated against Bacteriophages such as MS2 and other highly infectious viruses like zika virus, HCV, H5N2 (Table 1). There have been many other findings of exploiting MNPs but their application in hybridized form is much more appreciated, which is described later under Hybrid nanoparticles (Table 3).
Carbon-based nanocarriers

Carbon-based nanocarriers are among the most frequently and widely evaluated nanoparticulated systems in biomedical application. The carbon-based materials such as fullerenes, carbon nanotubes, nanohorons, nanodots, graphene and nanodiamonds etc. that also possess some of the above mentioned inimitable properties such as optical, electronic, mechanical and thermal properties have gained themselves much attention in the past decade. Among various beneficiary roles, biocompatibility, in vivo biodistribution, biodegradation and bio-corona formation etc. are few crucial properties that constantly impress the present scientific community till today.86 Although carbon-based nanomaterials are supported by these spectacular advantageous properties, but still their utilization and evaluation in the field of virology are limited to some viruses (Table 1). Antiviral or virucidal activities of these carbon-based nanomaterials have been evaluated against some viruses such as Ebola virus (pseudotyped viral particles), Bacteriophage λ, HIV-1, H3N2, Grass carp reovirus (GCRV) and Respiratory syncytial virus (RSV).87–91 Various modes of viral inhibition by carbon-based nanomaterials used as carriers are represented in Table 1. Advancement in the evaluation of carbon-based nanosystems against viral infection, though have developed immensely, but their commercialization is a rate-limiting phase and will be resolved with respect to time.86,92

Quantum dots

The nano-sized semiconductor crystals commonly known as quantum dots (QDs) with their exceptional electronic and optical properties are highly appreciated.93,94 Specifically, intensive fluorescence, high quantum yield, size-tunable light emission, appreciable chemical and photo-stability have revolutionized the concept of nano-based sensing or diagnostics. General elemental composition of QDs includes cadmium (Cd), lead (Pb), mercury (Hg) and zinc (Zn). But recently developed ternary I-III-VI QDs contain elements in different form, here “I” represents cupper (Cu) or silver (Ag), “II” represents gadolinium (Ga) or indium (In) and “VI” represents sulfur (S) or selenium (Se).94 Owing to their extremely small size ranging from 2 to 10 nm QDs are well appreciated and used in biomedical sector as they could conveniently cross the BBB in conjugation with a therapeutic molecule.94,95 Mahajan et al. showed that fluorescent quantum rods (QRs) a form of QD in conjugation with transferring, a targeting molecule and HAAT (Highly Active Antiretroviral Therapy) drug Sequinavir could freely cross an in vivo biodistribution model of BBB. They also showed that the nano-formulation showed promising antiviral activity against HIV-1.96 Viral detection by QD based approaches is exceedingly escalating research of virology. Norouzi et al developed a cadmium–tellurium QD in association with a biotin acceptor and NH2-receptor probes with target DNA for recognition of human T-lymphotrophic virus-1 (HTLV-1) in vitro.97 Likewise, there are many other evaluations where QDs have been utilized either as therapeutics or for in vitro diagnosis of viral pathogens.

Organic nanoparticles

If the size of therapeutic compound is very large, then INPs might not prove promising in carrying or delivering the desired compound. In those conditions Organic nanoparticles (ONPs) might prove beneficial in order to efficient carry or deliver the drug load.98 Further the use of ONPs over INPs is well appreciated in biomedical sector specifically due to various safety issues.99 Encapsulation of drugs favors avoiding off-target toxicity which results in enhanced augmentation at targeted site. Again, the mode of delivery of therapeutics could be modulated by selecting specific design features and chemical requirements for the synthesis purpose. Since, sustained release kinetics can directly influence therapeutic competence and toxicity of the nanosystem.98 Multiple forms of ONPs are exploited in field of nanomedicine but only certain specific ONPs are presently being evaluated for their antiviral activity. These include polymeric NPs, lipid based NPs, dendrimers, neosomes and nanomicelles (Table 2).

Polymeric NPs

The exploitation of polymeric NPs for progress in the effectual antiviral treatment has been going on for more than a decade. Various forms of polymers (synthetic and natural) have immensely contributed towards meticulous understanding of definite properties such as biodistribution/ bioavailability, biocompatibility, immunocompatibility etc. in biomedical sector. But their uses either for development or for improvement of an antiviral have been investigated only for some pathogenic viruses like influenza, HIV and rabies virus (Table 2).100–102 Their efficient self-assembly properties, nanosize, shape, and ability to be functionalized based on requirement to either carry the desired therapeutic agent in its core or conjugate the target molecule on its surface are simply magnificent. Recently, Joshy et al have demonstrated that amine functionalized polymeric gelatin NPs loaded with zidovudine against HIV. Simultaneously, they have also conducted hemolysis and aggregation studies to gain deeper understanding of other compatible properties of NPs. From their research they summarized that drug conjugated NPs showed promising biocompatibility and antiviral activity.103 Deng et al on the other hand took a different approach by developing a universal influenza vaccine with double-layered protein NPs composed of tetrameric Matrix protein 2 (M2e) at its core and headless Hemagglutinin (HA) coating at its surface. The protein vaccine could induce substantial and prolonged immunity with complete protection of BALB/c mice against verify influenza A virus challenges.104 With the contemporary improvement made in nanoscience it is certain that these impeccable polymeric NPs in near future will be soon used for the development of a novel antiviral against divergent array of infectious viruses like NiV.

Lipid based NPs

Currently developed solid-lipid NPs and nanostructured lipid nanocarriers have demonstrated their ability as an exceptional efficient biocompatible vehicle for therapeutics in the field of advanced medicine. Among the multiple possible applications of lipid based NPs, their exploitation to formulate a novel antiviral could be assumed primary concern of ongoing researches. Further their anomalous bio-absorbable and biocompatible properties have granted these nanosystems a unique prospective to be viewed at.105 Despite past limitations, where it seemed difficult for a therapeutic to migrate across BBB, it seems promising now with the introduction of multifunctional lipid based nanocarriers. In a
Nanoparticles	Bioactive Compound	Virus	Model Organism	Mechanistic Mode of Action	Purpose	References
Nano-based viral detection						
Silica (SiO₂) coated magnetic Fe₃O₄ NPs	-	Hepatitis B virus (HBV), Epstein–Barr virus (EBV)		-	Higher sensitivity in PCR-based viral detection	Quy et al (2013)
Au₁₀₂ (paramercaptobenzoic acid)₄₄ clusters	-	Enterovirus, Echovirus 1 and Coxsackie virus B3		Site-specific covalent Conjugation on viral surface protein	Viral targeting	Marjomäki et al (2014)
Gold/Copper Sulfide Core/Shell NPs	-	Human Norovirus Virus-Like Particles		Capsid protein degradation and capsid damage	Viral detection and inactivation	Broglie et al (2015)
AuNPs-carbon nanotubes (CNTs) hybrid	Antibody	H3N2		Peroxidase-like activity of the nanohybrid	Colorimetric viral detection assay	Ahmed et al (2016)
Chiral AuNPs-quantum dot nanocomposites	-	Avian influenza A (H4N6) virus, fowl adenovirus and coronavirus		Chiral plasmon–exciton systems	Viral detection	Ahmed et al (2017)
Graphene-AuNPs nanohybrid	Anti-NoV antibody	Norovirus-like particles		Intrinsic peroxidase-like activity	Colorimetric immunoassays for viral detection	Ahmed et al (2017)
Glycan-functionalized AuNPs (gAuNPs)	-	hRSV, vieH5N1, anhH5N1, guaH5N1, shaH5N1, gauH5N6, hebH5N8, wsnH1N1, shaH1N1, mosH3N2, aicH3N2, leeB, yamB, shaH7N9, anhH7N9	Vero cell	Aggregation of gAuNP probes on the viral surface	Viral detection and differentiation	Zheng et al (2017)
Poly(DL-lactide-co-glycolide) (PLGA) encapsulated superparamagnetic iron oxide NPs		H1N1		Virus targeting and isolation via magnetic extraction	Enhanced viral detection	Chen et al (2017)
Silica-shelled magnetic (Fe₃O₄) nanobeads (MagNBs) and AuNPs	-	H1N1, H3N2		MagNB mediated target separation and signal amplification by the enzyme-like activity of AuNZs	Ultra-sensitive colorimetric assay (magnetic nano(enzyme) - linked immunosorbent assay [MagLISA]) for viral detection	Oh et al (2018)
Gold (Au)/iron-oxide magnetic NP-decorated Carbon nanotubes (CNTs)	Thiol-group-functionalized probe DNA	H1N1, norovirus		DNA hybridization	High sensitivity and selectivity detection of viral DNA	Lee et al (2018)

(continued on next page)
Nanoparticles	Bioactive Compound	Virus	Model Organism	Mechanistic Mode of Action	Purpose	References			
Nano-based viral inhibition									
Silica doped TiO$_2$(P25) NPs		Bacteriophage MS2	-	Hydroxide radical mediated catalytic inactivation	Viral inactivation	Jafry et al (2011)			
Photocatalytic silver doped titanium dioxide (nAg/TiO$_2$) NPs		Bacteriophage MS2	-	Hydroxide radical mediated catalytic inactivation	Viral inactivation	Liga et al (2011)			
Dextran-coated magnetic iron oxide NPs labeled with Cy5.5 fluorescence dye	DNAzyme, cell-penetrating peptide	Hepatitis C virus (HCV)	BALB/c mice, C57BL/6N mice	Silencing of HCV NS3 gene expression resulting in inhibited viral replication	Efficient delivery and viral inhibition	Ryoo et al (2012)			
Fullerene-liposome complex		H1N1	BALB/c mice	Reactive oxygen species regulation	Viral inhibition	Du et al (2012)			
Tannic acid modified AgNPs		HSV-2	C57BL6 mice	Direct inhibition of virus attachment, penetration and post-infection spread	Viral inhibition	Orlowski et al (2014)			
Aminopropyl-functionalized Fe$_3$O$_4$SiO$_2$ core-shell magnetic hybrid colloid (MHC) decorated AgNPs		Bacteriophage ϕX174, Murine norovirus (MNV), Adenovirus serotype 2 (AdV2)	-	Damages viral coat proteins	Viral inhibition	Park et al (2014)			
Silver nanorods conjugated with sodium 2-mercaptoethane sulfonate (Ag-MES)		HIV, HSV-1	-	Inhibition of viral replication	Viral inhibition	Etemadzade et al (2016)			
Oseltamivir modified AgNPs (Ag@OTV)		H1N1	MDCK cells	Inhibits the activity of Neuraminidase (NA) and Hemagglutinin (HA) prevents viral attachment, inhibit the accumulation of reactive oxygen species (ROS) by virus, activates AKT and p53 phosphorylation	Viral inhibition	Li et al (2016)			
Titanium dioxide nanoparticles and polylsine (PL)- containing oligonucleotides (TiO$_2$-PL-DNA) nanocomposite	Polylsine (PL)-containing oligonucleotides	H1N1, H5N1, H3N2	MDCK cells	Targeted binding to conservative regions in the viral genome and inhibition of viral reproduction	Viral inhibition	Levina et al (2016)			
Graphene oxide (GO) sheets		Feline Coronavirus (FCoV)	fcwf-4 cells, DF-1 cells	Association with viral lipid tails leading to aggregation and rupture of the envelope	Viral inhibition	Chen et al (2016)			
		Bursal Disease Virus (IBDV)		Inefficient in binding	Viral release				
Nanoparticles	Bioactive Compound	Virus Model	Organism	Mechanistic Mode of Action	Purpose				
-----------------------------------	--	-------------	----------	----------------------------	--				
GO sheets with silver particles	Feline coronavirus (FCoV)				Association with viral lipid tails leading to aggregation with attachment of AgNPs with –SH group of protein and rupture of the envelop				
_poly(Ag)					Viral inhibition				
Polyethyleneimine (PEI) encapsulated AgNPs	Small interfering RNA (siRNA),	Infectious Bursal Disease Virus (IBDV)	Enterovirus 71 (EV71)	Vero cell	AgNPs mediated interaction with –SH group of viral protein Block EV71 from infecting host cells and prevent DNA fragmentation, chromatin condensation and activation of caspase-3 Synergistic effect	Viral inhibition	Li et al (2017)	189	
OTV decoration of SeNPs (Se@OTV)	H1N1	MDCK cells	HIV		Inhibits the activity of Neuraminidase (NA) and Hemagglutinin (HA) prevents viral attachment, inhibit the accumulation of reactive oxygen species (ROS) by virus, activates AKT and p53 phosphorylation Viral inhibition	Viral inhibition	Li et al (2017)	134	
Alginate (ALG) and stearic acid- poly ethylene glycol (SA-PEG) hybrid NPs	Zidovudine (AZT)	HIV	Glioma Neuro2a, HeLa cells		Efficient drug delivery Joshy et al (2017)	Efficient delivery and viral inhibition Malik et al (2017)	Viral inhibition	Joshy et al (2017)	176
Mannosylated Niosomal system AuNPs and AgNPs	Peptide FluPep	HIV-1	HeLa cells		Viral inhibition Alghrair et al (2018)	Viral inhibition Lysenko et al (2018)	Viral inhibition	Malik et al (2017)	190
AuNPs and AgNPs	AuNPs and Efavirenz (EFV)	H1N1, H3N2, H5N1	MDCK cells		Interaction with viral surface protein leading to coagulation Antiviral and virucidal action	Viral inhibition	Alghrair et al (2018)	191	
AuNPs Covered with SiO2 and SiO2 carrier conjugated with AuNPs	-	Human Adenovirus	MDCK cells			Viral inhibition	Lysenko et al (2018)	192	
Surface decoration of selenium NPs by Amantadine (AM) (Se@AM)	-	H1N1	MDCK cells		Induces apoptosis, inhibits generation of ROS, and activates phosphorylation and AKT pathway Viral inhibition	Viral inhibition	Li et al (2018)	132	
study Joshy et al again had developed zidovudine loaded polyvinylpyrrolidone (PVP)/stearic acid (SA)-polyethylene glycol (PEG) NPs and have determined the in vitro drug loading, controlled discharge, hemocompatibility and non-toxicity in murine neuro-2a and HeLa cells under HIV challenge.106 Similarly, Gao et al designed a nanostructured nanolipid carrier loaded with podophyllotoxin (POD) evaluated drug release parameters hemocompatibility and non-toxic viral inhibition in VK2/E6E7 cell lines challenged with Human papillomavirus (HPV).107 Lipid based NPs in both of its form that is solid-lipid NPs and nanostructured lipid nanocarriers could serve as an exceptional addition to the group of vehicles needed for effective antiviral delivery. The current investigation of lipid-based NPs based antiviral against some viruses such as Hepatitis C virus, HIV and HPV has been documented (Table 2). But certainly in future this marvelous nanosystem could get even better through hybridization, so that it could be used in efficiency of therapy against NiV.

Dendrimers

Dendrimer an organic compound with well-organized, hyperbranched molecule is receiving much attention lately owing to their improving monodispersity, biocompatibility and biodegradability in the field of nanomedicine.108 This molecule is also an extraordinary vehicle for gene, peptide or drugs (natural/ synthetic) delivery at the targeted site within the biological system.109 They are widely used in biomedical science, but their application and utilization for evaluating an antiviral are limited. To date, dendrimers with antiviral activity in conjunction with therapeutic agents have already been documented against some viruses including influenza virus, ebola virus, zika virus, HSV-1, 2 and HIV (Table 2).111–113 The antiviral efficiency of nanosystems was a result of viral entry inhibition, activation of CD8+ T cell and/or antibody mediated response and in some case RNA decoys.111,113,114 Investigations regarding the efficacy of dendrimers as a nanoparticulated system for designing an antiviral therapy have been introduced by some of the pioneering researchers, but their efficiency against NiV is yet to be evaluated.

Niosomes

The non-ionic surfactant-based vesicle in short niosomes structurally similar to liposome is slowly becoming the center of attraction of current investigators. Its physical and chemical properties such as stability, optical activity, biocompatibility, biodegradability, non-immunogenicity, and convenience in functionalization have greatly influenced the scientific community.115,116 Additionally, efficiency to load both lipophilic and hydrophilic drug with superior bioavailability and guarded release at the intended site have granted niosome a unique prospective in the field of nanomedicine.117 Despite their immense significance, the use of niosomes in biomedical sector specifically in formulation of antiviral agents is limited. For example till now antiviral activity against only HSV has been documented (Table 2). Javad et al and Monavari et al have evaluated the efficacy of acyclovir loaded nano-niosome against HSV-1. They found that the niosomes loaded with the drug showed promising antiviral activity with improved delivery and release kinetics.118,119 Further in vivo evaluations are required to display the antiviral efficacy against other broad range of infectious viruses such as NiV.

Nanomicelles

Nanomicelles are supramolecular assembly of a surfactant molecule disseminated in a colloidal liquid giving rise to a globular micelle ranging in nano-size. Efficient encapsulation, biocompatibility, colloidal stability and prolonged circulation time etc. are some of the influential properties of polymeric micelles.120 Moreover, a compound possessing these properties is of huge significance in nanomedicine and drug delivery system (Table 2).220 Specifically to formulate an antiviral agent these polymeric nanomicelles is appreciated. For example Naseri et al formulated a nanomycelle encapsulating a bioactive phytocompound curcumin and verified bioavailability and antiviral activity in vitro. They documented that the nanoformulation displayed better bioavailability and satisfactory antiviral activity.122 Present application of this marvelous compound is somewhat stagnant and needs more contribution from researchers all over the world.

Hybrid nanoparticles

Hybrid NPs are by far the most advanced form of NPs that could be thought of in the present century. INPs such as Ag, Au, magnetic NPs, TiO2, SiO2, CNT, fullerene and graphene oxide and ONPs such as polymeric NPs, lipid NPs and niosomes have been explored in their antiviral activity.123–125 There are a number of viruses against which these NPs in their hybridized state have been evaluated; these include HIV, influenza virus, hepatitis virus, human adenovirus etc. (Table 3).

Hybridized NPs in virology may be categorized according to their utilization that is either diagnostic or therapy. Current investigations, where efforts have been made towards diagnosis or detection of the viruses have been documented by many investigators from different corners of the globe. Starting from the primary application that is detection, Marjomäki et al earlier had reported an accurate and precise enteroviruses labeling procedure and described it at the atomic level. Here they reported water-soluble thiol-stabilized gold cluster or chemically called Au102 (para-mercaptobenzoic acid)14 cluster which by its metal core could covalently bind to cysteine molecule nearer to the surface of the virus. Through the above procedure enteroviruses echovirus 1 and coxsackievirus B3 viruses were precisely detected.126 Ahmed et al have synthesized a multifunctional nanohybrid where AuNPs are first bonded with CNT surface, and then specific antibody (anti-influenza A virus HA H1 antibody) is conjugated to it. The nanohybrid displayed oxidative catalysis of 3′, 5′-tetramethyl-benzidine (TMB) by H2O2 gave rise to a deep blue color, the optical density of which depended on concentration of virus.127 Lately, Oh et al developed an ultrasensitive magnetic nanozyme-linked immunosorbent assay for detection of H1N1 virus. The assay had two major components, the silica-shelled magnetic nanobeads (MagNBs) for binding and preliminary detection of the virus, and a gold nanozyme (AuNZ) an enzyme-like acting molecule for amplification of the preliminary detection signals. Together in combination the nanosystem could even detect virus concentration up to femtogram per milliliter.128 There are a
number of examples where hybridized nano-based systems showed promising results in viral detection; some of them have been listed in Table 3.

Viral inhibition is foremost important after diagnosis which needs to be addressed immediately; thereafter the requirement of a novel antiviral to combat the viral infectivity has become the primary concern. Further, development of an antiviral within a stipulated time is actually a race against time. Under such case formulation of an antiviral that is biocompatible, non-immunogenic and non-toxic is of the critical requirement to which hybridized nanoparticulated systems are an appreciable option. It is because of the promising antiviral activity of these systems that has been portrayed by various scientific investigators. Ryoo et al had reported iron-oxide NP-based delivery of DN Azyme as a therapeutic for treating hepatitis C infection. Here, the magnetic NPs were linked to a cell-penetrating peptide (CPP) and functional DNAzyme which could induce knockdown of HVC gene NS3 (non-structural protein 3) encoding viral helicase and protease.129 Orłowski et al developed tannic acid functionalized AgNPs of specific size range that could reduce HSV-2 infectivity by blocking viral attachment, penetration as well as viral spread; provided a prior direct attachment of the nano-system with the virus is a basic requirement.130 Chen et al compared the antiviral activity of both graphene oxide (GO) and GO conjugated AdNPs against both coronavirus (FCoV) and infectious bursal disease virus (IBDV). Their analyses showed GO in its non-conjugated and conjugated form had different effect on two different taken viruses. Overall they concluded that GO in its conjugated form that is GO-AgNPs could inhibit both the virus that is FCoV and IBDV effectively.131 After diagnosis and therapy the next arising huddle is drug resistance that soon must be focused and acted accordingly. With this intention Li et al, after much evaluations and strategic understanding the drawbacks of conventional and nano-based antiviral, designed nanoparticulated system by decorating amantadine (AM) on surface of selenium NPs (SeNPs). Their designed Se-AM nanosystem could reverse the drug resistance induced by H1N1 virus.132 Similarly, there are many other investigations which orchestrate the experimental efficiencies of hybrid nanoparticulated systems as antivirals listed in Table 3. Despite the heterogeneous research and investigations exploiting multiple ways and means to diagnose, inhibit the virus by a nano-based therapeutic agent or reverse the drug resistance, still there is hardly any sign of these applications concerning NiV.

Possible nano-based approach for NiV diagnosis

The elevated cost and in some case toxicity of conventionally available specific antiviral therapeutics have created an apparent requirement for specific and rapid viral diagnosis. Specific viral diagnosis may be helpful in discontinuation of broad spectrum antibiotic therapy and determination of prognosis, and it is also believed that rapid test result greatly influences case management. Prior to therapy, diagnosis therefore may be considered as an important aspect in viral infection treatment. There are multiple methods in the present era for laboratory based diagnosis of viral infection; these include serology, viral culture, antigen and nucleic acid detection.

The conventional technique of viral detection that is viral culture may be considered as the only technique through which viable isolate could be obtained for future characterization. Additionally, detection of a diverse array of viruses seems promising with this approach, which is also an advantage over antigen detection and nucleic acid detection. In order to preserve medically relevant viruses, maintenance of heterogeneous types of cultured cell is required as a support, which is a major limitation of this technique. Viral recovery through cell culture becomes difficult when the viral growth is slow; antigen detection in such cases is much useful. Rapidity and non-requirement of viral viability render immense plasticity in management and shifting of the specimens, which together may be considered as the major advantages of the technique. Fluorescent Antibody (FA) staining, Immunoperoxidase staining and Enzyme Immuno-assay (EIA) etc. are crucial techniques involved in these methods. But viruses with antigenic heterogeneity and lack of cross-reacting antigens are tedious to be detected even through this technique. Drastic transformation in diagnosis has emerged with the development of analysis based on PCR. This transformation has allowed the detection of specific viral sequence with utmost sensitivity. More specifically, viral RNA could be easily detected only by amalgamating reverse transcriptase with conventional PCR analysis. Real-Time PCR assay runs on highly sophisticated automated instruments; exploiting optical excitation systems and dyes labeled with fluorescent molecules has tremendously reduced time and probable contamination. The versatility of nucleic acid detection is growing day-by-day and will be in future with the progression of scientific innovation. Finally, the efficacy serology the traditional method viral diagnosis cannot be disregarded. The technique is exclusively promising for unambiguous antiviral immunity determination, but when speculated on clinical utility, assessment of acute and convalescent antibody titers, could be one of its limitations.133 In case of NiV detection these mentioned detection techniques may be fruitful.

Upon considering the present encroachment in the field of nanoscience and virology, their intermediated research has initiated a new direction in rapid diagnosis of infectious viruses. Like Au/CuS core/shell NPs developed by Broglie et al for human norovirus-like particle detection and inactivation by capsid protein degradation and damage,124 similarly a hybrid nanosystem could also be designed for binding with NiV virion two spiked glycoproteins F and G as well as RNA, and capsid proteins such as N, P, L contained within the virion (Figure 4).21 A colorimetric viral detection assay exploiting peroxidase-like activity of AuNPs-CNT nanohybrid could also be developed for detection of NiV detection like Ahmed et al, who synthesized and examined the same nanohybrid for the detection of H3N2.127 Likewise there are a number of versatile experimentation (Tables 1, 2, and 3) where diagnoses of a verity of viral infections have been summarized. Contemplating on these possibilities, the probabilities of developing a novel nano-based diagnosis technique for detecting NiV could be achieved.
Possible nano-based approach for NiV inhibition

If NiV detection could be possible, then elimination of the virus through nano-based system is not far or out of reach from the present investigators. The conventional means of viral inhibition or treatment / therapy have been documented under the topic “Therapeutics against NiV”. The nano-based approaches like the use of acid functionalized multi-walled carbon nanotube (MWCTs) made of photoactivated molecules (Protoporphyrin IX) to inactivate H3N2 virus have been demonstrated by Banerjee et al.87 The possible molecular mechanism involved is ROS-based inactivation through which oxidation of viral protein (neuraminidase [NA] and hemagglutinin [HA]) might have taken place; single stranded break in viral genome and protein-RNA crosslinking might have also been a possibility. Similar nano-based approach including pH or photothermal medium accompanied with ROS-based inactivation of NiV could also be evaluated in vitro. Inhibition of viral binding with the host cell surface receptor could also be achieved by preventing viral binding of gp120 and CD4 attachment. In a study, Vijayakumar and Ganesan have demonstrated this mode of inhibition of HIV-1 virus entry using AuNPs in vitro.62 Similarly, NPs with the capacity to interact with NiV surface glycoproteins like G and F could prove to be promising candidates as viral entry inhibitors. Inhibition of virus mediated accumulation of ROS, activation of AKT, and p53 phosphorylation could also be a strategy for inhibiting the entry of infectious viruses. Li et al demonstrated this strategy of H1N1 viral inhibition using oseltamivir (OTV) decorated SeNPs (Se@OTV).134 This strategy could be effectively evaluated in vitro in case of NiV inhibition. Likewise modulation of viral transcription using MWCTs-ribavirin by Zhu et al,135 targeted binding on conservative regions on viral genome using TiO2NPs and polylysine (PL)-containing oligonucleotides nanocomposite by Levina et al.136 and silencing viral replication with the help of solid lipid NPs by Torrecilla et al137 etc. all point in the same direction (Tables 1, 2, and 3). Though the efficiency of NPs as an antiviral agent against NiV is yet to be evaluated; still it could be roughly speculated that these investigations are direct representation of the possibility that NPs holds an enormous potential as an antiviral agent against NiV described in Figure 4.

Figure 4. Speculated role of nanoparticles at different stages of NiV pathogenesis. (A) Inhibition of initial attachment and membrane fusion during viral entry, (B) Inhibition of infected cell NiV-G protein interaction with Ephrin B2/B3 of a healthy cell and activated NiV-G protein's C-terminus region mediated activation of NiV-F, (C) Activation of AKT, (D) Activation of p53 phosphorylation, (E) Inhibition of viral transcription, translation and replication, (F) Modulation of viral transcription.
Conclusion

Nanotechnology holds a tremendous opportunity for both viral disease diagnosis and their therapeutics. It is evidenced that NPs could be used as a measure to revert the antiviral resistance which is a slowly developing problem of conventional therapeutic available. Though it is possible that nano-based approaches are difficult if the NiV pathogenesis is not properly understood. Therefore the present review provides a brief knowledge about NiV pathogenesis at cellular and molecular level, where it would be easy to strategize a novel antiviral target using NPs. A brief introduction of various NPs in inorganic, organic and hybrid forms would be helpful in determining their suitability to be evaluated as diagnostics or therapeutics. Finally the overview of major antiviral approaches that have already been studied is represented in tabular format, which could help to strategize possible novel antiviral approach.

Acknowledgments

Authors are grateful to their respective universities for support.

References

1. Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. *Ther Adv Infect Dis* 2017;4(4):105–31, https://doi.org/10.1177/2049936117713593.

2. Van Waesn JBM, van Aalderen WMC, Kimpen JLL. Viral lower respiratory tract infection in infants and young children. *BMJ* 2003;327(7405):36–40.

3. World Health Organization. Case fatality rate. http://www.who.int/news-room/fact-sheets/detail/nipah-virus 2018.

4. World Health Organization. Listing of the top ten causes of death compiled by the WHO. http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death2018.

5. Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al. A treatment for and vaccine against the deadly Hendra and Nipah viruses. *Science* 2018;362(6413):780-785, https://doi.org/10.1126/science.aap8236.

6. Dawes BE, Kalveram B, Ikegami T, Juelich T, Smith JK, Zhang L, et al. Nipah virus infection: a neutralizing human monoclonal antibody. *PLoS One* 2014;9(1):e90221, https://doi.org/10.1371/journal.pone.0090221.

7. Bossart KN, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, et al. Nipah virus contamination of hospital surfaces during outbreaks, Bangladesh, 2013–2014. *Emerg Infect Dis* 2018;24(1):15–21, https://doi.org/10.3201/eid2401.161758.

8. Aljofan M, Saubern S, Meyer AG, Marsh G, Meers J, Mungall BA. Characteristics of Nipah virus and Hendra virus replication in different cell-lines and their suitability for anti-viral screening. *Virus Res* 2009;142(1–2):92-9. https://doi.org/10.1016/j.virusres.2009.01.014.

9. Kulkarni DD, Tosh C, Venkatesh G, Senthil Kumar D. Nipah virus infection: current scenario. *Indian J Virol* 2013;24(3):398-408, https://doi.org/10.1007/s13337-013-0171-y.

10. Valbuena G, Halliday H, Borisovich V, Goez Y, Rockx B. A human lung xenograft mouse model of Nipah virus infection. *PLoS Pathog* 2014;10(4):e1004063, https://doi.org/10.1371/journal.ppat.1004063.

11. DeBuysscher BL, de Wit E, Munster VJ, Scott D, Feldmann H, Prescot J. Comparison of the pathogenicity of Nipah virus isolates from Bangladesh and Malaysia in the Syrian Hamster. *PLoS Negl Trop Dis* 2013;7(1):e2024, https://doi.org/10.1371/journal.pntd.0002024.

12. Lo MK, Rota PA. The emergence of Nipah virus, a highly pathogenic paramyxovirus. *J Clin Virol* 2008;43:396-400.

13. Stachowiak B, Weingart HM. Nipah virus infects specific subsets of porcine peripheral blood mononuclear cells. *PLoS One* 2012;7(1):e30855, https://doi.org/10.1371/journal.pone.0030855.

14. Yabukarski F, Lawrence P, Tarbouriech N, Bourhis JM, Delaforge E, Jensen MR, et al. Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. *Nat Struct Mol Biol* 2014;21(9):754-9.

15. Weis M, Maisner A. Nipah virus fusion protein: importance of the cytoplasmic tail for endosomal trafficking and bioactivity. *Eur J Cell Biol* 2015;94(7–9):316-22.

16. Lo Presti A, Cella E, Giovannetti M, Lai A, Angeletti S, Zehender G, et al. Origin and evolution of Nipah virus. *J Med Virol* 2016;88(3):380-8.

17. Angeletti S, Lo Presti A, Cella E, Ciccozzi M. Molecular epidemiology and phylogeny of Nipah virus infection: a mini review. *Asian Pac J Trop Med* 2016;9(7):630-4.

18. Virtue ER, Marsh GA, Baker ML, Wang L-F. Interferon production and clinical outcomes. *J Virol* 2015;89(1):15-21, https://doi.org/10.1128/JVI.02205-06.

19. Lo MK, Rota PA. Nipah virus entry and egress from polarized epithelial cells. *Biochim Biophys Acta)* 2011;1813(9):1057-64, https://doi.org/10.1016/j.bbamcr.2011.07.012.

20. Dawes BE, Kalveram B, Begami T, Juelich T, Smith JK, Zhang L, et al. Favipiravir (T-705) protects against Nipah virus infection in the hamster model. *Sci Rep* 2018;8:7604, https://doi.org/10.1038/s41598-018-25780-3.

21. Bossart KN, Zhu Z, Middleton D, Klippel J, Cramerli G, Bingham J, et al. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute Nipah virus infection. *PLoS Pathog* 2009;5(10):e1000642, https://doi.org/10.1371/journal.ppat.1000642.

22. Geisbert TW, Mire CE, Geisbert JB, Chan YP, Agans KN, Feldmann F, et al. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. *Sci Transl Med* 2014;6(242):242ra82, https://doi.org/10.1126/scitranslmed.3008929.

23. Satterfield BA, Dawes BE, Milligan GN. Status of vaccine research and development of vaccines for Nipah virus. *Vaccine* 2016;34(26):2971-5.

24. Furuta Y, Komono T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. *Proc Jpn Acad Ser B Phys Biol Sci* 2017;93(7):449-63, https://doi.org/10.2183/pjpb.93.027.

25. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, et al. Coronavirus susceptibility to the antiviral remdesivir (GS5734) is mediated by the viral polymerase and the proofreading exoribonuclease. *MBio* 2018;9(2):e00218-18.
and other biomedical applications: from synthesis to first in vivo studies. *PLoS One* 2018;13(1):e0190214, https://doi.org/10.1371/journal.pone.0190214.

69. Chou T-C, Hsu W, Wang C-H, Chen Y-J, Fang J-M. Rapid and specific influenza virus detection by functionalized magnetic nanoparticles and mass spectrometry. *J Nanobiotechnol* 2011;9:52. https://doi.org/10.1186/1743-3155-9-52.

70. Park J-A, Kim S-B, Lee C-G, Lee S-H, Choi J-W. Adsorption of bacteriophage MS2 to magnetic iron oxide nanoparticles in aqueous solutions. *J Environ Sci Health A* 2014;49(10):1116-24.

71. Delaviz N, Gill P, Ajamia A, Aarabic M. Aptamer-conjugated magnetic nanoparticles for the efficient removal of HCV particles from human plasma samples. *RSC Adv* 2015;5:79433.

72. Shelby T, Banerjee T, Zeger I, Santra S. Highly sensitive, engineered magnetic nanosensors to investigate the ambiguous activity of Zika virus and binding receptors. *Sci Rep* 2017;7:7377, https://doi.org/10.1038/s41598-017-07620-y.

73. Shi H, Magaye R, Castranova V, Zhuo J. Titanium dioxide nanoparticles: a review of current toxicological data. *Part Fibre Toxicol* 2013;10:15, https://doi.org/10.1186/1743-8977-10-15.

74. Gerrity D, Ryu H, Crittenden J, Abbaszadegan M. Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. *J Environ Sci Health A Tox Hazard Subst Environ Eng* 2008;43(11):1261-70.

75. Mazurkova NA, Spitsyna YE, Shikina NV, Ismagilov ZR, Zagrebel‘nyi SN, Ryabchikova EI. Interaction of titanium dioxide nanoparticles with influenza virus. *Nanolett Russ* 2010;5(5-6):417-20.

76. Syngouva VI, Chrysikopoulos CV. Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light. *J Collid Interface Sci* 2017;497:117-25.

77. Winkler HC, Notter T, Meyer U, Naegeli H. Critical review of the safety and without ambient light. *Nano Today* 2017;2:51, https://doi.org/10.1016/j.nantod.2013.04.007.

78. Bayir S, Barras A, Boukherroub R, Szunerits S, Raehm L, Richter S, et al. Mesoporous silica micro/nanostructures for therapeutic applications. *Ann Rev Chem Biomol Eng* 2018;9:389-411.

79. Liu J, Liu T, Pan J, Liu S, Lu GQM. Advances in multicompartment mesoporous silica micro/nano materials for theranostic applications. *Chem Biochem* 2013:4:007.

80. de Souza ESJM, Hanchuk TD, Santos MI, Kobarg J, Bajgelman MC, Cardoso MB. Viral inhibition mechanism mediated by surface-modified silica nanoparticles. *ACS Appl Mater Interfaces* 2016;8(26):16564-72.

81. Chunundi LAA, Kundeak A, Haleyurgirisetty MK, Bulagonda EP, Kamisseti V, Hewlett IK. Femtogram level sensitivity achieved by surface engineered silica nanoparticles in the early detection of HIV infection. *Sci Rep* 2017;7:7149.

82. Guo HC, Feng XM, Sun SQ, Wei YQ, Sun DH, Liu XT, et al. Immunization of mice by hollow mesoporous silica nanoparticles as carriers of porcine circovirus type 2 ORF2 protein. *Virology* 2012;419:9-108, https://doi.org/10.1016/j.tvirol.2011.07.031.

83. Enrichi F, Ricco R, Meneghello A, Pierobon R, Canton G, Cretaio E. Enhancing the sensitivity of DNA microarray using dye-doped silica nanoparticles: detection of human papilloma virus. *AIP Conf Proc* 2010;1275:154-7, https://doi.org/10.1063/1.3505067.

84. Bhattacharya K, Mukherjee SP, Gallaud A, Burkert SC, Bistarelli S, Bellucci S, et al. Biological interactions of carbon-based nanomaterials: from coronation to degradation. *Nanomedicine: NBM* 2016;12(2):333-51, https://doi.org/10.1016/j.nano.2015.11.011.

85. V Wilkinson J, Muñoz A, Sánchez-Navarro M, Ribeiro-Viana R, Ginieis A, Illescas BM, et al. Glycofoliferenes inhibit viral infection. *Biomacromolecules* 2013;14(2):341-7.

86. Zhi B, Liu GL, Gong YX, Ling F, Song LS, Wang GX. Single-walled carbon nanotubes as candidate recombiant subunit vaccine carrier for immunization of virus against grass carp reovirus. *Fish Shellfish Immunol* 2014;44(1):279-93.

87. Dostalova S, Motlicka A, Milosavljevic V, Gurau R, Kominkova M, Cihalova K, et al. Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. *Monatsh Chem* 2016;147:905.

88. Yang X, Lu CM, Li YF, Wang J, Huang CZ. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. *Nanoscale* 2017;9:16086-92.

89. Langer R, Weisdeler R. Nanotechnology. *JAMA* 2015;313(2):135-6, https://doi.org/10.1001/jama.2014.16315.

90. Li J, Zhu JJ. Quantum dots for fluorescent biosensing and bio-imaging applications. *Analyst* 2013;138(9):2506-15.

91. Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu I, Hetu S, et al. Quantum dots in imaging, drug delivery and sensor applications. *Int J Nanomedicine* 2017;12:5421-31, https://doi.org/10.2147/IJN.S138624.

92. Xu G, Mahajan S, Roy I, Yong K-T. Theranostic quantum dots for crossing blood–brain barrier in vitro and providing therapy of HIV-associated encephalopathy. *Front Pharmacol* 2013;4:140, https://doi.org/10.3389/fphar.2013.00140.

93. Mahajan SD, Roy I, Xu G, Yong KT, Ding H, Aalinkeel R, et al. Enhancing the delivery of anti retroviral drug “Saquinavir” across the blood brain barrier using nanoparticles. *Curr HIV Res* 2010;8(5):396-404.

94. Norouzi M, Ghodbani MZ, Golmimi M, Mozghani S-H, Ghourchian H, Rezaee SA. Quantum dot-based biosensor for the detection of human T lymphotropic virus-1. *Anal Lett* 2017;50(15):2402-11, https://doi.org/10.1080/00032719.2017.1287714.

95. Mitragotri S, Stayton P. Polymeric nanoparticles as delivery system for influenza virus and binding receptors. *Nanomedicine* 2013;9(1):15-27.

96. Nivedh K, Namasinghay SKR, Nishanth AN. Effect of functionalization of polymeric nanoparticles incorporated with whole attenuated rabies virus antigen on sustained release and efficacy. *Resource-Efficient Technol* 2016;2:525-38.

97. das Neves J, Aratijo F, Andrade F, Michiels J, Ariën KK, Vanham G, et al. *In vitro and ex vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine*. *Mol Pharm* 2013;10(7):2793-807.

98. Joshy KS, Snigdha S, Kalarikkal N, Pothen LA, Thomas S. Gelatin modified lipid nanoparticles for anti-viral drug delivery. *Chem Phys Lipids* 2017;207(Pt A):24-37.

99. Deng L, Mohan T, Chang TZ, Gonzalez GX, Wang Y, Kwon Y-M, et al. Double-layered protein nanoparticles induce broad protection against influenza A viruses. *Nat Commun* 2018;9:359.

100. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. *AAPS Pharm Sci Tech* 2011;12(1):62-76, https://doi.org/10.1208/s12249-010-9563-0.
against human norovirus virus-like particles. PLoS One 2015;10(10):e0141050, https://doi.org/10.1371/journal.pone.0141050.

125. Lee J, Morita M, Takemura K, Park EY. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens Bioelectron 2018;102:425-31.

126. Marjomäki V, Lahtinen T, Martikainen M, Koivistio J, Malola S, Salorinne K, et al. Site-specific targeting of enterovirus capsid by functionalized monodisperse gold nanoclusters. Proc Natl Acad Sci U S A 2014;111(4):1277-81, https://doi.org/10.1073/pnas.1310973111.

127. Ahmed SR, Kim J, Suzuki T, Lee J, Park EY. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens Bioelectron 2016;85:503-8.

128. Oh S, Kim J, Tran VT, Lee DK, Ahmed SR, Hong JC, et al. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza virus detection. ACS Appl Mater Interfaces 2018;10(15):12534-43.

129. Ryoo SR, Jang H, Kim KS, Lee B, Kim KB, Kim YK, et al. Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials 2012;33(9):2754-61.

130. Orlowski P, Tomaszewska E, Gniadek M, Baska P, Nowakowska J, Sokolowska J, et al. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One 2014;9(8):e104113, https://doi.org/10.1371/journal.pone.0104113.

131. Chen Y-N, Hseuh Y-H, Hsieh C-T, Tsou D-Y, Chang P-L. Antiviral activity of graphene–silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health 2016;13(4):430, https://doi.org/10.3390/ijerph13040430.

132. Li Y, Lin Z, Guo M, Zhao M, Xia Y, Wang C, et al. Inhibition of H1N1 influenza virus-induced apoptosis by functionalized selenium nanoparticles with amantadine through ROS-mediated AKT signaling pathways. Int J Nanomedicine 2018;13:2005-16.

133. Storch GA. Diagnostic virology. Clin Infect Dis 2000;31(3):739-51.

134. Li Y, Lin Z, Guo M, Xia Y, Zhao M, Wang C, et al. Inhibitory activity of selenium nanoparticles functionalized with oseltamivir on H1N1 influenza virus. Int J Nanomedicine 2017;12:5733-43, https://doi.org/10.2147/IJN.S140939.

135. Zhu B, Liu GL, Ling F, Wang GX. Carbon nanotube-based nanocarrier loaded with ribavirin against grass carp reovirus. Antivir Res 2015;118:29-38.

136. Levina AS, Repkova MN, Bessudnov DA, Filippova EI, Mazarukova NK, Zarytova VF. High antiviral effect of TiO2·PL oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Targeted to conservative regions of (~) RNA and (+) RNA of influenza a virus in cell culture. Beilstein J Nanotechnol 2016;7:1166-73, https://doi.org/10.3762/bjnano.7.108.

137. Torrecilla J, Del Pozo-Rodriguez A, Solinís MÁ, Apaolaza PS, Berzal-Herranz B, Romero-López C, et al. Silencing of hepatitis C virus replication by a viral vector based on solid lipid nanoparticles containing a shRNA targeted to the internal ribosome entry site (IRES). Colloids Surf B Biointerfaces 2016;146:808-17.

138. Salem ANB, Zyed R, Lassoued MA, Nidhal S, Mahjoub A. Plant-derived nanoparticles enhance antiviral activity against Cocksackievirus B3 by acting on virus particles and Vero cells. Dig J Nanomater Biostruct 2012;7(2):737-44.

139. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N, et al. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human para-influenza virus type 3. Int J Nanomedicine 2013;8:4303-14, https://doi.org/10.2147/IJN.S50070.

140. Fatima M, Zaidi NU, Amrza D, Afzal F. In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 influenza a virus. J Microbiol Biotechnol 2016;26(1):151-9.

141. Seino S, Imoto Y, Kosaika T, Nishida T, Nakagawa T, Yamamoto TA. Antiviral activity of silver nanoparticles immobilized onto textile fabrics synthesized by radiochemical process. Nanomater Synth 2016;1(11):705-10.

142. Huy TQ, Thanh NTH, Thy NT, Chung PV, Hung PN, Le AT, et al. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus. J Virol Methods 2017;241:52-7.
143. Castro-Mayorgaa JL, Randazzob W, Fabraa MJ, Lagaronaa JM, Aznarab R, Sánchez G. Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems. LWT - Food Sci Technol 2017;79:503-10.

144. Pangestika R, Ernawatia R, Suwarno. Antiviral activity effect of silver nanoparticles (AgNPs) solution against the growth of infectious bursal disease virus on embryonated chicken eggs with ELISA test. The Veterinary Medicine International Conference 2017. KnE Life Sciences; 2017. p. 536-46. https://doi.org/10.18502/vls.v3i6.1181.

145. Misstearb DB, Gilll LW. The inactivation of phages MS2, ΦX174 and PR772 using UV and solar photocatalysis. J Photochem Photobiol B 2012;107:1-8.

146. Levina AS, Repkovab MN, Zarytovab VF, Mazurkova na. TiO2-DNA nanocomposites as efficient site-specific antiviral agents against influenza A virus in cell culture. Proceedings of the 15th IEEE International Conference on Nanotechnology; 2015. Rome. Italy.

147. Chen YS, Hung YC, Lin WH, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 2010;21(19):195101.

148. Carter JR, Balaraman V, Kucharski CA, Fraser TS, Fraser MJ. A novel dengue virus detection method that couples DNAzyme and gold nanoparticle approaches. Virol J 2013;10:201, https://doi.org/10.1186/1743-422X-10-201.

149. Gopinath SCB, Awaiz K, Fujimaki M, Shimizu K, Shima T. Assay of a novel antiviral agent against dengue virus. PLoS One 2013;8(7):e69121, https://doi.org/10.1371/journal.pone.0069121.

150. Paul AM, Shi Y, Acharya D, Douglas JR, Cooley A, Anderson JF, et al. Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vivo. J Gen Virol 2014;95(Pt8):1712-22, https://doi.org/10.1099/jgv.0.066084-0.

151. Tao W, Ziemer KS, Gill HS. Gold nanonanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond) 2014;9(2):237-51, https://doi.org/10.2217/nmm.13.58.

152. Liu Y, Zhang L, Wei W, Zhao H, Zhou Z, Zhang Y, et al. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles. Analyst 2015;140(12):3989-95.

153. Wang C, Zhu W, Wang B-Z. Dual-linker gold nanoparticles as adjuvant carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. Int J Nanomedicine 2017;12:4747-62, https://doi.org/10.2147/IJN.S137222.

154. Askaravii M, Rezatofighe SI, Rastegarzadeh S, Seifi Abd Shahpour MR. Development of a new method based on unmodified gold nanoparticles and peptide nucleic acids for detecting bovine viral diarrhea virus-RNA. AMB Express 2017;7:137, https://doi.org/10.1186/s13568-017-0432-z.

155. Tao W, Hurst BL, Shakyaa AK, Uddin MJ, Ingroler RS, Hernandez-Sanabria M, et al. Consensus M2e peptide conjugated to gold nanoparticles confers protection against H1N1, H5N2 and H5N1 influenza a viruses. Antivir Res 2017;141:62-72.

156. Wong C, Zhu W, Luo Y, Wang BZ. Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine 2018;14(4):1349-60.

157. Park S, Park HH, Kim SY, Kim SJ, Woo K, Ko G. Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl Environ Microbiol 2014;80(8):2343-50, https://doi.org/10.1128/AEM.03427-13.

158. Skrastina D, Petrovskii I, Lickinha I, Bogusa J, Renhofa R, Ose V, et al. silica nanoparticles as the adjuvant for the immunisation of mice using hepatitis B Core virus-like particles. PLoS One 2014;9(12):e114006.

159. Lee EC, Davis-Poynter N, Nguyen CT, Peters AA, Monteth GR, Strounitia E, et al. GAG mimetic functionalised solid and mesoporous silica nanoparticles as viral entry inhibitors of herpes simplex type 1 and 2 viruses. Nanoscale 2016;8:16192-6.
180. Quy DV, Hieu NM, Tra PT, Nam NH, Hai NH, Son NT, et al. Synthesis of silica-coated magnetic nanoparticles and application in the detection of path. J Nanomater 2013;2013:603940.

181. Ahmed SR, Nagy E, Neethirajan S. Self-assembled star-shaped chiroplasmonic gold nanoparticles for ultrasensitive chiro-immunosensor of viruses. RSC Adv 2017;7:40849-57.

182. Ahmed SR, Takemeura K, Li TC, Kitamoto N, Tanaka T, Suzuki T, et al. Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens Bioelectron 2017;87:558-65.

183. Zheng L, Wei J, Lv X, Bi Y, Wu P, Zhang Z, et al. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens Bioelectron 2017;91:46-52.

184. Chen W, Fang ZS, Chen YT, Chen YI, Yao BY, Cheng JY, et al. Targeting and enrichment of viral pathogen by cell membrane cloaked magnetic nanoparticles for enhanced detection. ACS Appl Mater Interfaces 2017;9(46):39953-61.

185. Liga MV, Bryant EL, Colvin VL, Li Q. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res 2011;45(2):535-44.

186. Du C-X, Xiong H-R, Ji H, Liu Q, Xiao H, Yang Z-Q. The antiviral effect of fullerene-liposome complex against influenza virus (H1N1) in vivo. Sci Res Essays 2012;7(6):706-11.

187. Etemadzade M, Ghamaraypour A, Zabihollahi R, Shabbak G, Shirazi M, Sahebjamee H, et al. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses. Asian Pac J Trop Dis 2016;6(11):854-8.

188. Li Y, Lin Z, Zhao M, Xu T, Wang C, Hua L, et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl Mater Interfaces 2016;8(37):24385-93.

189. Li Y, Lin Z, Xu T, Wang C, Zhao M, Xiao M, et al. Delivery of VPI siRNA to inhibit the EV71 virus using functionalized silver nanoparticles through ROS mediated signaling pathways. RSC Adv 2017;7:1453.

190. Malik T, Chauhan G, Rath G, Kesarkar RN, Chowdhary AS, Goyal AK. Efaverinz and nano-gold-loaded mannosylated niosomes: a host cell-targeted topical HIV-1 prophylaxis via thermogel system. Artif Cells Nanomed Biotechnol 2017;1-12. https://doi.org/10.1080/21691401.2017.1414054.

191. Alghrair ZK, Fernig DG, Ebrahimi B. Enhanced inhibition of influenza virus infection by peptide-noble metal nanoparticle conjugates. bioRxiv 2018324939, https://doi.org/10.1101/324939.

192. Lysenko V, Lozovski V, Lokshyn M, Gomeniuk YV, Dorovskih A, Rusinchuk N, et al. Nanostructures as antiviral agents against adenoviruses. Adv Nat Sci Nanosci Nanotechnol 2018;9:025021.

193. Prescott J, de Wit E, Feldmann H, Munster VJ. The immune response to Nipah virus infection. Arch Virol 2012;157(9):1635-41.

194. de Weerd NA, Nguyen T. The interferons and their receptors—distribution and regulation. Immunol Cell Biol 2012;90(5):483-91.

195. Welsh RM, Bahl K, Marshall HD, Urban SL. Type 1 interferons and antiviral CD8 T-cell responses. PLoS Pathog 2012;8(1):e1002352.