Biosynthesis of Ag nanoparticles by associated root rot disease fungi of sugar beet and its biocontrol by Trichoderma hamatum fungus

Gamal A Farahat

Agricultural Research Center, Plant Pathology Research Institute, Sakha Research Station, Kafr El-Sheikh 33717, Egypt.

Received: 05 December 2020 Accepted: 20 February 2021 Published: 28 February 2021

ABSTRACT

Rhizoctonia solani, Sclerotium rolfsii, Fusarium oxysporum and other fungi were positive in extra than intracellular production of Ag NPs with different in ability. The tested fungi could be reduced silver salt to Ag NPs and confirmed stable brown color visually in mixture solution. Consequently, UV-Vis spectral analysis to reaction mixture of cells filtrates and silver nitrate salt were showed strong absorbance at peak 420 nm which was specific for the silver NPs performance. In addition to, Fourier transform infrared (FTIR) of dried powder samples of AgNPs from R. solani, Sc. rolfsii, F. oxysporum mycelium showed the presence of nine bands at cm⁻¹. Moreover, Energy Dispersive X-ray (EDX) spectroscopy analysis for AgNPs conformation showed presence of elemental silver by sharpening signals at optical absorption band peak exactly at (3 keV) to the three fungi. As size of AgNPs, Scanning Electron Microscopy (SEM) showed synthesis of polydisperse spherical ranged of 47-62 nm to R. solani, ranged from 84-134 nm to Sc.rolfsii and 31-47 nm to F. oxysporum and rose like (pentagons). Mycelium of tested fungi contained Ag NPs of 5.36, 9.82 and 10.38% of mass, respectively. F. oxysporum was the most producer one but R. solani and Sc. rolfsii exhibited a new source to Ag NPs. In vitro, Trichoderma hamatum have mycoparasitism ability of Sc.rolfsii and R.solani fungi mycelium. Trichoderma inoculum at 4,2g/hill were superior to 60 and 120g/plot as soil drench, in the revers, Trichoderma (1cm disk) / hill grown on PDA was the lowest one in controlling of root rot disease in sugar beet. F. oxysporum followed by Sc.rolfsii were more effective than R.solani by Trichoderma application. At all, Trichoderma led to reduce damping off by 3.22-82.71%; root rot disease severity by 9.36-43.07%; disease index by 51.82-85.79% ; sucrose and total soluble sugar enhanced by 2.37-36.24%.

Keywords: R. solani, Sc. rolfsii and F. oxysporum, Ag NPs, trichoderma parasitism, sugar beet.

1. Introduction

In Egypt, sugar-beet is attacked by several root-rot pathogens mainly Rhizoctonia solani Kuhn, perfect stage (Thanatophorus cucumeries), Sclerotium rolfsii (Sacc), perfect stage (Athelia rolfsii) and Fusarium oxysporum (Schlech), the most aggressive pathogens to cause root rot infection at both pre- and post-emergence stage (Aly and Hussein 2009). Sclerotium root-rot is a serious disease of sugar beet in the irrigated region and disease incidence varied from traces to 50% (Abo El-Yazied, 2019). R. solani, causes one of the most damaging sugar beet diseases more than 24% and incidence of this disease seems to be increasing (Bartholomau et al., 2017).

Biosynthesis of nanoparticles by soil microorganisms constitute one of the vast and strong natural factories and harness beneficial effects through biotechnology (Khan 2007) and nanotechnology (Gurunathan et al. 2009). Synthesize silver nanoparticles (AgNPs) extracellularly by many numbers of fungal strains are capable to among which F. oxysporum (Ahmad et al. 2003), Aspergillus fumigatus (Bhainsa and D’Souza, 2006), A. niger, (Gade et al.2008), F. semitectum (Basavaraja et al. 2008), Penicillium brevicompactum (Shaligram et al. 2009), Cladosporium cladosporioides (Balaji et al.2009).
and A. clavatus (Verma et al. 2010) have been previously described. El-Rafie et al. (2012) used fungus F. solani for biosynthesis of silver while Raida (2013) used T. longibrashiatum. Moreover, Magdy et al. (2014) added that, F. oxysporum, Alternaria solani and A. flavus were common ones in biosynthesis of silver NPs. Noshad et al. (2020) studied the synthesize AgNPs green chemistry route using mycellial aqueous extract of Pythium oligandrum.

Biocontrol ensembles of plant diseases were approaches, ie. Trichoderma (sexual teleomorphic stages Hypocrea spp., Seidl et al. 2009) biocontrol in mechanisms, via competition for space and nutrients, antibiosis and stimulation of plant defense mechanisms or direct mycoparasitism or combination of both, Lorito et al. (2010). T. hamatum, T. harzianum, T. polysporum and T. viride used to reduce the mycelial growth of the Macrophomina phaseolina. T. harzianum was the most effective inhibition and recorded the least root-rot incidence of 5 % under field conditions (Ramezani, 2008). T. viride suppressed disease severity of the sugar beet root rot in presence of F. solani and R. solani. (Aly and Hussein 2009). Yadav (2012) stated that T. viride and T. harzianum completely colonized F. oxysporum. Nawar (2013) mentioned that the maximum reduction radial growth against Sc. rolfsii was observed in the T. albium followed by T. viride responsible for 44.66 % and 29.08 % inhibition with significant difference. T. harzianum, T. hamatum showed maximum growth inhibition of R. solani and Sc. rolfsii whereas T. viridens was most aggressive against R. bataticola, Divya et al. (2015). T. harzianum and T. viridens isolates have reduced the severity of the disease in greenhouse conditions against R. solani that show high inhibition rate (Durak, 2016). Singh et al. (2013), Ahmed and Ahmed (2015) observed that T. harzianum reduced disease severity of Sc. rolfsii of tomato and Allium white rot caused by Sc. cepivorum, respectively. El-Tarabily (2003) recorded that, T. asahii was capable of colonize sugar beet roots and protecting seedlings and mature plans from R. solani disease. Most of the Trichoderma isolates showed a strong antagonistic activity, thigh lights the possibility of using T. harzianum in IPM programs as an effective biological agent against R. solani, P. ultimum, A. solani, Mazrou et al. (2020). Moreover, T. hamatum recorded 81.80% antagonist of F. oxysporum, Mao et al. (2020). Information related to biosynthesis of Ag nanoparticles by root rot fungi pathogens of Fusarium oxysporum, Sclerotium rolfsii, Rhizoctonia solani and other pathogens for the best of our Knowledge, lacking in the literature, therefore, investigate the aim of this study and achieve Trichoderma biocontrol of root rot disease management.

2. Material and Methods

The present work was carried out at Sakha Agric. Res. Station during 2019/2020 and 2020/2021 growing seasons.

2.1. Microbial synthesis of Ag-NPs

Three isolates of F. oxysporum, isolate of R. solani isolated from sugar beet, cv pelatos (kafr elShiekh location) isolate of T. hamatum iso2 and T. harzianum and one from Sc. rolfsii isolated from sugar beet, cv maximose (El-Ryad location); F. semitectum, F. verticillioides and Aspergillus niger were isolated from maize, cv. balady and four isolates of Alternaria alternate were isolated from forage sorghum, cv. Sudan grass (kafr el-Shiekh location) were used for the synthesis of Ag-Nps. The fungi were subjected to Ag-NPs as methods adopted by Gajbhiye et al. (2009) with some modification, which BD broth medium and cell filtrate were challenged with AgNO3 aqueous solution (0.078 g / 100 ml) as El-Rafie et al. (2012) and biomass challenged with 100 ml of AgNO3 / 10 g biomass and incubated at room temperature until appearing visual observation stable dens color up to 3 days as follows - : light pink (AgNO3); +: dens pink; ++: dark red color; +++: dark brown .

2.2. Ag NPs characteristics:

The mixture solutions from cells filtrate of all tested fungi separately and AgNO3 aqueous were subjected to optical measurements, which were carried out by using a UV- Vis spectrophotometer (Model spectronic 21) and scanning the spectra between 300 to 600 nm at the solutions, the purified solution yielded maximum absorbance peak at 420nm, Gajbhiye et al. (2009). In Fourier transform infrared (FTIR) analysis, the FTIR spectrum of dried mycelium of R. solani, Sc. rolfsii and F. oxysporum fungi was recorded on PerkinElmer 1600 instrument in the rang 400-4500 cm⁻¹ at a resolution of 4 cm⁻¹. Energy dispersive x-ray (EDX)spectroscopy analysis for conformation of detection
elemental silver was carried out. A scanning electron microscopy (JEOL JSM-IT100, Tokyo, Japan) was used to take micrograph images of synthesized AgNPs to know the shape and size.

2.3. Biological control of root rot pathogens:

2.3.1. In vitro:

Two isolates of T. hamatum and one of T. harzianum were isolated from soil surrounded of sugar beet of cv. maximore (El- Ryad location). Antagonism procedure between these isolates and major causal of sugar beet root fungi, i.e. F. oxysporum, R. solani and Sc. rolfsii was done as Ferreireta et al. (1991) and examined microscopically at 10 and 40X magnification (Optika, B-193 Germany) with helping computer unit with Toup view 3.7 program after complete contact the two tested fungi (2-3 days) and take a photo. Growth of pathogenic fungi was estimated /cm after 7 days, four replicates were used for each treatment. Percentage of growth inhibition (PI) as efficiency of bio-control agent for antagonist the causal organism was determined using the equation adopted by Rewal and Thooty (1995) as follows:

\[PI = \left(\frac{\text{Control} - \text{Treatment}}{\text{Control}} \right) \times 100 \]

Sclerotia and/or like/plat for R. solani and Sc. rolfsii were counted and sporulation of F. oxysporum /plat were estimated microscopically at 40x magnification by helping of hymacytometer plate as Mandeel and Baker (1991).

2.3.2. In vivo (green house):

T. hamatum iso 2 was selected which have antagonism by parasitism in vitro, grown in autoclaved moistened wheat bran medium for two weeks at 25 °C. Trichoderma inoculum added with planting as follows: disk/hill(1cm) grown in PDA; 2 , 4 g / hill (60, 120g / micro plot) and 60 , 120g / micro plot added as soil drench over row. F. oxysporum, R. solani and Sc. rolfsii fungi were grown in autoclaved moistened corn meal sand medium for two weeks and used at rate of 5g/hill separately, added with planting. Control treatment was every pathogenic fungus alone. Complete randomize design with three replicates was used. Sugar beet, cv. pelato was planted in microplots (2x1.8m) in wire house in rows 60cm apart and 5 seeds / hill. All cultural practices were done at proper time. Seedlings were counted after 25 and 45 days from planting to calculate of pre-post emergence damping off percentages. Plants were uprooted and roots were checked for root-rotting. Disease severity recorded as rating 0-4 grades as follows: 0 = no disease, 1 = less than 25% of vascular element necrotic or localized lesions on root, 2 = 26-50% vascular necrosis or less than 10% of taproot rotted, 3 = over 50% necrosis vascular elements and 10-25% of taproot rotted, and 4 = more than 25% taproot rotted after harvesting directly at 180 days of sowing date and disease index (DI) were calculated from root disease rating as of Harveson and Rush (1994) using equation : DI = (DR1x1 + DR2x2 + DR3x3 + DR4x4)/(EDR0-4), where DR0 = number of roots rated 0, DR1 = number of roots rated 1, etc. Sucrose and total soluble solids (TSS) were determined in fresh roots using Sacarometer and Refractometer according to AOAC (2005) and McGinnis (1982).

2.4. Statistical analysis

Data were analyzed statistically using the analysis of variance and the means were further tested using the least significant difference test (LSD) and the means were further tested using DMART test as outlined by Steel and Torrie (1980).

3. Results and Discussion

3.1. Microbial biosynthesis of AgNPs:

After addition of aqueous AgNO3 (0.078 g / 100 ml) to fungal cells filtrate, biomass and PD broth medium according to protocol listed above by Gajbhiye et al. (2009), Ag NPs was synthetized by all tested fungi in Table (1) i.e. F. oxysporum (3 isolates) as reported by Ahmed et al. (2003) and (Magdy et al. 2014); Sc. rolfsii, R. solani ; T. harzianum T. hamatum iso 2 as found with T. longibrashiatum by (Raida 2013); F. semitectum and F. verticillioides, similarly, extracellular biosynthesis of silver NPs was done by F. semitectum, (Basavarja et al. 2008) and, F. solani (El-Rafie et al. 2012); A. niger as which produced by A. niger (Gade et al. 2008) and A. fumigates (Kuber et al. 2006); and A. alternate (4isolate), as biosynthesis by A. alternate (Gajbhiye et al. 2009); A. clavatus (Verma et al. 2010) and
(F. oxysporum, Alternaria solani and A. flavus, Magdy et al. 2014), color changes appeared within 1-3 days in the reaction mixture at lab. temperature indicating the completing of the reaction. The intensity of colors steadily increased along the incubation period. In contrast, silver nitrate solution without fungi filtrate and/or biomass showed negative reaction (no color changes, light pink). AgNPs solutions exhibited dark red to brown color as Fig (1), this due to reduction of aqueous solution by silver ions and formation of AgNPs, Gajbhiye et al. (2009). Silver ions required the NADH – dependent nitrate reductase enzyme for their reduction, Roh et al. (2001) or electron shuttle for F. oxysporum, Jain et al (2011) or both and secreted by the tested fungi in its extracellular. In the most cases, filtrates of fungi recorded dens color more than biomasses, while PD broth was the least color ones, this mean extracellular biosynthesis of AgNPs than intracellular one. F. oxysporum iso3 was the most one in this respect followed by F. semitectum. The vast and strong natural factories to biosynthesis of nanoparticles were constituted by soil microorganisms (Khan 2007) like Fusarium spp. and Aspergillus spp. (Rai and Kratosova 2015); Penicillium brevicaeum (Shaligram et al. 2009), Cladosporium cladosporioides (Balaji et al. 2009). Noshad et al. (2020) synthesized AgNPs using mycelial aqueous extract of Pythium oligandrum, suggesting a strong candidate for industrial scale production of AgNPs.

Table 1: The listed fungi were used to biosynthesis of Ag nanoparticles as nature source.

Fungus	Source	Reaction
F. oxysporum	PD broth	+
F. oxysporum	PD broth	+
F. oxysporum	PD broth	+
Sc. rolfsii	Sugar beet root	+++
R. solani	PD broth	+
T. harzianum	PD broth	+
T. hamatum iso2	PD broth	+
F. semitectum	Maize grains	+
F. verticilloides	PD broth	+
A. niger	PD broth	+

Light pink (AgNO3); +: dens pink; ++: dark red color; +++: dark brown color.

Fig. 1: Dark stable brown color with reaction mixture of F, Fo (F. oxysporum), Rs (R. solani) and Sc (Sc. rolfsii) filtrates and biomass means confirmed of Ag NPS and AgNO3 in the left.

The UV-Vis spectral analysis of reaction mixtures confirmed the synthesis of Ag NPs from filtrates aqueous solutions by the using of wave length scan at 240nm (absorbance peak, Gajbhiye et al., 2009) and showed strong absorbance (Fig. 2 and 3). F. oxysporum iso1 was the most one followed by F. semitectum. Dark red color and/or brown were appeared as shown in Fig (1) in chemical reaction due to reduction of aqueous solutions by Ag NO3 (silver ions) and formation of Ag NPs from fungi filtrates aqueous solutions. The colloidal suspension of Ag NPs are stable for many months, interestingly possible used in many application fields. So, the isolated fungi from rotted infection of sugar beet roots and others exhibited fungi Ag NPs producer and new sources. Presence of NADH –
dependent nitrate reductase enzyme in extracellular cell filtrate of fungi used for the synthesis of Ag NPs had been confirmed, Anilkumar et al. (2007). Ingle et al. (2008) and Magdy et al. (2014) demonstrated that, fungal cell filtrates challenged by silver nitrate solution showed peak around 420 nm with high absorbance indicating synthesis of Ag NPs.

![UV-visible spectral of filterates containing AgNPs of fungi isolated from sugar beet roted root.](image1)

Fig. 2: UV-visible spectral of filterates containing AgNPs of fungi isolated from sugar beet roted root.

![UV-visible spectral of fungi filterates of F. semitectum, F. verticilliodes and A. niger isolated from maize grains and four isolates of A. alternata isolated from surgum seeds containing Ag NPs.](image2)

Fig. 3: UV-visible spectral of fungi filterates of *F. semitectum*, *F. verticilliodes* and *A. niger* isolated from maize grains and four isolates of *A. alternata* isolated from surgum seeds containing Ag NPs.

FTIR measurements of dried powder mycelium of AgNPs of *R. solani*, showed the presence of nine bands at cm\(^{-1}\) as figure (4a), band at 3793, 3567, 2866, 1651, 1556, 1419, 1277, 1067, 631. FTIR measurements of dried powder mycelium of AgNPs of *S. rolfsii*, showed the presence of nine bands at cm\(^{-1}\) as figure (4b), band at 3745, 3436, 2897, 1687, 1524, 1439, 1315, 1038, 745. Present results supported by the finding of, Gajbhiye et al. (2009), who found presence of nine bands with Ag NPs of *A. alternata* and Gole et al. (2001) found that, proteins can band to nanoparticles through free amine or the electrostatic attraction of negatively charged carboxylate groups in enzymes present in cell wall of mycelium and stabilization of AgNPs by protein occurs and secreted by *F. oxysporum* (Ahmed et al. 2003).
Fig. 4: FTIR spectra of powder mycelium of AgNPs synthesized by *R. solani* (a), *Sc. rolfsii* (b) and *F. oxysporum* (c) fungi.

EDX spectroscopy analysis for confirmation of AgNPs was performed and confirmed the presence of elemental silver by sharpening signals as showed in figures (5a,b,c).
Fig. 5: Spectrum of Ag NPs by EDX spectroscopy to *R. solani* (a), *Sc. Rolfsii* (b) and *F. oxysporum* (c) fungi.

Cu: copper, Zn: Zinc, PS: potassium; N: nitrogen, O: oxygen; C: carbon; P: phosphorus; S: sulphur, Si, silicon, Cl: color.

The optical absorption band peak in the range of 2-4keV exactly at (3 keV) to *R. solani* (a), at 3 keV to *Sc. rolfsii* (b) and 2-4keV exactly at (3 keV) to *F. oxysporum* (c) as was typical for the absorption of metallic AgNPs crystals as reported by Magudapathy *et al.* (2001). Mycelium of the tested fungi contained of 5.36, 9.82 and 10.38% mass of Ag NPs, respectively, so *F. oxysporum* was the most producer one to Ag NPs but *R. solani* and *Sc. rolfsii* were a new producer to it.
Topology and size of AgNPs was carried out by scanning electron microscopy and showed the synthesis of polydisperse spherical AgNPs in the range of 47-62 nm with average size of 54.5 nm as showed in figure (6a) to R. solani, polydisperse spherical, rose like (pentagons) in the range of 84-134 nm with average size of 109 nm to Sc. rolfsii, figure (6b) and polydisperse spherical AgNPs in the range of 31-47 nm with average size of 39 nm to F. oxysporum, figure (6c) fungi. Many scholars found that, mostly spherical AgNPs in the range of 5-15 nm exposed by F. oxysporum (Ahmed et al. 2003), 10-60 nm exposed by F. semitectum (Basavaraja et al. 2008) and 5-25 nm by A. fumigates (Kuber et al. 2006), 10-100 nm by F. oxysporum with shape hexagons, pentagons, circular, squares and rectangular in both intra and extra production (Mohammadian and Rezaee 2007).

Fig. 6: Scanning electron microscopy of aggregation and spherical of Ag NPs (47-62 nm) to R. solani (a), (84-134 nm) to Sc. rolfsii (b) and (31-47 nm) to F. oxysporum (c) fungi.
3.2. Biological control of sugar beet root rot pathogens:

3.2.1. In vitro:

Data stated in table (2) showed that, three trichoderma isolates were subjected to antagonist test on PDA medium with main causal pathogens of sugar beet root rot, results showed that T. harzianum retarded the growth of F. oxysporum fungus and exhibited the most trichoderma effective one, i.e. 1.93 cm compared to 8.11 cm of control, causing growth inhibition by 76.20% followed by T. hamatum iso2 and 1 which recorded growth inhibition by 73.36 and 69.66%, respectively. These trichoderma isolates led to reduce of sporulation of this fungus wherever T. harzianum, T. hamatum iso1 were superior followed by iso2, recording inhibition of spores production by 71.52, 71.32 and 43.04%, respectively. Trichoderma isolates were reduced R. solani fungus growth with no significant between them compared to control and T. hamatum iso2 was recorded the most growth inhibition followed by T. harzianum and T. hamatum iso1, i.e. 58.77, 57.11 and 55.33%, respectively. Sclerotia and/or like formation was completely stopped as antagonistic effect of this isolates. Mycelial growth of Sc.rolfsii was reduced as in R. solani and T. hamatum iso1 was recorded the most growth inhibition followed by T. harzianum and T. hamatum iso2, ranged from 72.54-77.01%. Sclerotia and/or like formation was significantly reduced especially with T. harzianum and T. hamatum iso1, while T. hamatum iso2 was the least one in this target, ranged from 60.04-96.22%. Many scholars supported this investigation, i.e. Ramezani (2008) reported that T. harzianum, T. hamatum, T. polysporum and T. viride reduced mycelial growth of M. phaseolina T. viride and T. harzianum completely colonized F. oxysporum as stated by Yadav (2012). Nawar (2013) mentioned that, max. radial growth reduction of Sc.rolfsii was observed in the T. albium (44.66 %), while T. viride responsible for 29.08 % inhibition with significant difference with T. harzianum. In vitro, efficacy of three bioagents, T. harzianum was the most effective followed by T. viride and T. viride proved least effective in inhibiting the mycelial growth of A. solani, Ganie et al (2013). Additionally, Divya et al. (2015) found that, T. hamatum showed max growth inhibition of M. phaseolina, i.e. 81.11 %, R. solani (82.59 %) and Sc. rolfsii (76.67 %) whereas T. viride was most one against R. bataticola (68.15 %). T. harzianum has the highest activity in reducing the radial growth of Sc. rolfsii on PDA media and also for glucanase enzyme production. Mostly, the strong antagonistic activity against R. solani, P. ultimum, A. solani was done with Trichoderma isolates showed, possibility of using T. harzianum in IPM programs, Mazroua et al. (2020). Moreover, T. hamatum recorded inhibitory rate by 81.80% of F. oxysporum, Mao et al. (2020).

Table 2: Effect of Trichoderma isolates of growth and sporulation of F. oxysporum, growth and scleroria production of R. solani and Sc. rolfsii fungi in vitro.

Trichoderma isolates	F. oxysporum	R. solani	Sc. rolfsii			
	Growth (cm)	Growth Inhibition %	Growth (cm)	Growth Inhibition %	Growth (cm)	Growth Inhibition %
T. harzianum	1.93c	76.20a	3.86b	57.11b	2.33b	75.11b
T. hamatum iso.1	2.46b	69.66c	4.02b	55.33c	2.06b	77.01a
T. hamatum iso.2	2.16bc	73.36b	3.71b	58.77a	2.46b	72.54c
Control	8.11a	-	9.00a	8.96a	-	
Trichoderma isolates	Spores	Spores	Sclerotia	Sclerotia	Sclerotia	Sclerotia
	x10^6	Inhibition %	No.	Inhibition %	No.	Inhibition %
T. harzianum	1.33c	71.52a	0.00b	100.00a	2.00c	96.22a
T. hamatum iso.1	1.34c	71.32a	0.00b	100.00a	3.33c	93.71b
T. hamatum iso.2	2.66b	43.04b	0.00b	100.00a	21.05b	60.04c
Control	4.67a	-	9.00a	-	53.66a	-

In the same column, means followed by the same letter are not significantly different according to DMRT at 5% level of significance.

3.2.2. Mycoparasite studies

Microscopical examination to antagonism between T. harzianum and F. oxysporum, R. solani and Sc. rolfsii fungi showed no parasitism phenomena was happened, so it was inhibited the pathogenic fungi by competition on space and may be competition on nutrients. T. hamatum iso.1 and 2 recorded parasitism on hyphae of R. solani and Sc. rolfsii only and the reverse was true in case of F. oxysporum as showed in figures 7,8,9 with T. hamatum iso2. As figure (7): the scanning micrograph of interaction...
between trichoderma and *Sc. rolfsii* showed that, condensed coiling of trichoderma hyphae around a hypha of *Sc. rolfsii* (a,b,c), partial degradation of *Sc. rolfsii* mycelium (d), hock like and penetration by appressorium like of trichoderma hyphae to *Sc. rolfsii* mycelium(e) meaning of parasitism presses by many modes of actions in comparison normal hypha of *Sc. rolfsii* (f).

Fig. 7: a-e, Scanning micrograph of interacting of *T. hamatum*. Iso 2 hyphae with *Sc. rolfsii*. a, b,c: Condensed coiling of *T. hamatum* around a hyphae of *Sc. rolfsii* (10x and 40x,100). d: Partial degradation of host mycelium (40x,100). e: Hock, penetration by appressorium like and coiling of *T. hamatum* to hyphae of *Sc. rolfsii* (40x,100) means parasitism. f: Normal hyphae of *Sc. rolfsii* fungus (40x,100).

Scanning micrograph of interaction between trichoderma and *R. solani* showed that, condensed coiling of trichoderma hyphae around a hypha of *R. solani* as in fig 8 (a-d) hock like and penetration by appressorium like of trichoderma hyphae to mycelium(d) meaning of parasitism process by many modes of actions in comparison normal hypha (d).

Fig. 8: a-d, Scanning micrograph of interacting of *T. hamatum* iso 2 hyphae with *R. solani*. a, b,c: Condensed coiling of *T. hamatum* around a hypha of *R. solani* (10x and 40x,100x). d: Hock, penetration by appressorium like and coiling of *T. hamatum* to hyphae of *R. solani* (40x,100) means parasitism and normal hyphae of *R. solani*.
Scanning micrograph of interacting between both of trichoderma and fusarium as showed in figure (9) recorded normal mycelium and spores of fusarium fungus(a-d) with spores clusters of trichoderma, this means no parasitism action was happened and the effect was done by competition in space and/or nutrients. Mycoparasitism play an important role in biocontrol and divided into two types: necrotrophic that kill the host cells before or just after invasion and use the released nutrients due to the production of antibiotics, toxins, or hydrolytic enzymes (Manocha and Sahai 1993) and biotrophic parasitism, the development of the parasite is favoured by a living rather than a dead host structure, direct attack on a fungal thallus leading to its lysis and inhibition of phytopathogens, Chet et al (1981).

Fig. 9: a-d, Scanning micrograph of interacting of T.hamatum iso. 2 hyphae with condensed normal hyphae and spores of F. oxysporum means competition not parasitism.

3.2.3. In vivo (wire house):

The in vitro screening of the antagonistic potential used in this work allowed a systematic investigation of several trichoderma isolates including specific ecological factors and a selection of one effective isolate, so, T.hamatum iso2 was used which able to parasite of, R.solani and Sc. rolfsii mycelium and inhibited of F. oxysporum growth. Data in (3) stated the using of T.hamatum iso2 as biocontrol to F. oxysporum and results recorded that, damping off was affected by trichoderma wheat bran inoculum used at 4 g/hill(120 g/plot) which recorded the lowest pre-post emergence damping off, i.e. 6.25 and 4.25% compared to 30.91 and 25.21% with control and the most effective one in retarding (efficiency), i.e. 79.78 and 83.14%. Soil drench over rows by 120g/plot and 2g/hill of trichoderma inoculum were the most followed in this respect while treatment by disk (1cm) of PDA growth of trichoderma/ hill was the lowest one, reduction of damping off (efficiency) ranged from 18.60-82.71%. Rot root disease severity rate (DS) and index (DI) were significantly retarded with trichoderma methods application especially treatment of 4g/hill recording the lowest ones and the highest efficiency against the disease, this led to enhance of TSS and sucrose contents in sugar beet roots in comparing of control which recorded the highest disease parameters and the lowest TSS and sugar contents. Other treatments showed satisfactory effect against the disease recording DS and DI ranged from 2.86-3.10 and 4.71-10.69% compared 3.41 and 22.19% of control, respectively, the efficiency ranged 9.09-26.68% (DS), 51.82-80.48% (DI). At all, TSS ranged from 14.03-17.60 compared to 13.66% of control showing enhancement (efficiency) ranged from 2.71-28.84%, sucrose ranged from 11.20-14.08 compared 10.93 of control recording enhancement 2.17 to 28.82%.
Table 3: Effect of *T. hamatum* of pre and post emergence damping off, root rot disease severity and index, total soluble solids and sucrose of sugar beet *cv. pelatos* in infested soil by *F. oxysporum* fungus in wire house.

Trichoderma	Pre*	Post*	DS* rate	DI*%	TSS*%	Sucrose%
Disk (1 cm)/hill	25.16b	20.33b	3.10b	10.69b	14.03c	11.20d
2g/ hill (60g/plot)	8.30d	8.88d	2.86d	4.71e	16.40b	13.12c
4g/ hill (120 g/plot)	6.25e	4.25e	2.50e	4.33f	17.60a	14.08a
Soil drench 60 g/plot	14.58c	12.17c	3.00c	9.25c	16.47b	13.18c
120 g/plot	8.82d	4.36e	3.00c	5.36d	16.80b	13.44b
Control	30.91a	25.21a	3.41a	22.19a	13.66c	10.93e

Efficiency percentage

Treatments	Pre*	Post*	DS* rate	DI*%	TSS*%	Sucrose%
disk(1 cm)/hill	18.60e	19.35e	9.09d	51.82e	2.71e	2.47e
2g/ hill (60g/plot)	73.15b	64.77c	16.12b	78.77b	20.06d	20.04d
4g/ hill (120 g/plot)	79.78a	83.14a	26.68a	80.48a	28.84a	28.82a
Soil drench 60 g/plot	52.83d	51.73d	12.02c	58.31d	20.57c	20.58c
120 g/plot	71.47c	82.71b	12.03c	75.84c	22.98b	22.96b

In the same column, means followed by the same letter are not significantly different according to DMRT at 5% level of significance. DS*: disease severity, DI*: disease index, TSS*: total soluble solids.

R. solani fungus was more pathogenic and more destructive to sugar beet than *F. oxysporum* as shown in table (4) recording damping off 64.58%(pre) and 50.92 %(post) with control treatment and using of disk(1cm) growth on PDA of trichoderma did not record positive results in this respect, efficiency against damping off ranged from 3.22-10.46%. The lowest damping off was recorded with 4.2 g/hill followed by 120 and 60 g/ plot as soil drench recording damping off reduction (efficiency) from 22.50 to 55.66 %.

As to TSS and sucrose , high disease severity led to decrease of its with 14.34% , showing enhancement rang 14.91-36.24%.At all, 4 g/hill was the best treatment.

Table 4: Effect of *T. hamatum* of pre and post emergence damping off, root rot disease severity and index, total soluble solids and sucrose of sugar beet *cv. pelatos* in infested soil by *R.solani* fungus in wire house.

Trichoderma	Pre*	Post*	DS* rate	DI*%	TSS*%	Sucrose%
disk(1 cm)/hill	62.50a	46.55a	3.50b	13.33b	15.13c	12.10c
2g/ hill (60g/plot)	37.5d	26.66c	2.50d	6.83d	17.73a	13.98ab
4g/ hill (120 g/plot)	35.41d	22.58d	2.11f	5.38f	17.93a	14.34a
Soil drench 60 g/plot	50.00b	39.13b	2.88c	11.01c	15.26c	12.21b
120 g/plot	43.75c	31.51c	2.17e	5.71e	16.66b	13.33b
Control	64.58a	50.92a	3.69a	29.89a	13.16d	10.53d

Efficiency percentage

Treatments	Pre*	Post*	DS* rate	DI*%	TSS*%	Sucrose%
disk(1 cm)/hill	3.22e	10.46e	5.14e	55.40e	14.96e	14.91e
2g/ hill (60g/plot)	41.87b	47.64b	32.24c	77.14c	34.72b	32.76b
4g/ hill (120 g/plot)	45.12a	55.66a	42.81a	82.00a	36.24a	36.18a
Soil drench 60 g/plot	22.50d	23.15d	21.95d	63.16d	15.95d	15.69d
120 g/plot	32.19c	38.12c	41.19b	80.90b	26.59c	26.60c

In the same column, means followed by the same letter are not significantly different according to DMRT at 5% level of significance. DS*: disease severity, DI*: disease index, TSS*: total soluble solids.

As to effect of trichoderma biocontrol against *Sc. rolfsii*, data in table (5) showed that ability of trihoderma in suppressing of root rot disease of sugar beet plants was obvious wherever caused reduction in damping off (efficiency) in rang 21.67-80.71, treatments of 4, 2 g/hill followed by 120 and 60g/plot were superior to treatment with disk (1cm) / hill of trichoderma grown in PDA, damping
off ranged from 6.23-30.50 compared to 32.29-39.17% of control. Superior effect longitude to DS and DI showing in range 3.62-26.74 and 55.47-85.79% respectively, in comparing of 3.59 and 26.95% of control. A reduction of DS and DI led to enhancement of TSS and sugar contents from 2.37 to 14.03% under field conditions (Ramezani, 2008). DS*: disease severity, DI*: disease index, TSS*: total soluble solids.

The results showed that post emergence damping off, root rot disease severity and index, total soluble solids and sucrose of sugar beet cv. pelatos in infested soil by Sc. rolfsii fungus in wire house.

Table 5: Effect of T.hamatum of pre and post emergence damping off, root rot disease severity and index, total soluble solids and sucrose of sugar beet cv. pelatos in infested soil by Sc. rolfsii.

Treatments	Pre*	Post*	DS *rate	DI*%	TSS*%	Sucrose%
disk /hill (1 cm)	30.50b	25.29b	3.46b	12.00b	14.03c	11.22d
2g / hill (60g / plot)	10.41e	8.33e	3.00e	4.06e	16.03a	12.82b
4g / hill (120 g / plot)	8.33f	6.23f	2.63f	3.83f	16.20a	12.96a
Soil drench 60 g / plot	19.50c	15.22c	3.17c	4.50c	15.07b	12.06c
120 g / plot	12.99d	13.29d	3.11d	4.25d	16.01a	12.80b
Control	39.17a	32.29a	3.59a	26.95a	13.70d	10.96e

Efficiency percentage	22.13e	21.67e	3.62e	55.47e	2.41d	2.37e
2g / hill (60g / plot)	73.42b	74.21b	16.43b	85.15b	17.01b	16.97b
4g / hill (120 g / plot)	78.73a	80.71a	26.74a	85.79a	18.25a	18.24a
Soil drench 60 g / plot	50.21d	52.86d	11.69d	83.30d	10.01c	10.04d
120 g / plot	66.83c	58.84c	13.37c	84.23c	16.86b	16.79c

Data in tables (3,4,5) concluded that, T. hamatum iso2 as wheat bran inoculum 4.2 g/ hill (120,60 g/plot) were superior to 120, 60 g / plot as soil drench over rows, while disk(1cm) of PDA growth of trichoderma was the lowest one in controlling of sugar beet root rot disease and F. oxysporum was the most effective followed by Sc. rolfsii and R. solani was the lowest one resulting trichoderma treatments. This results were supported by many scholars and their results, ie. Studholme et al. (2013) stated to T.hamatum strain GD12 biocontrol against pre-and post-emergence of Sc.sclerotiorum soil pathogens. T. harzianum was the most effective inhibition and recorded the least root - rot incidence of 5% under field conditions (Ramezani, 2008). T. viride suppressed disease severity of the sugar beet root rot in presence of F. solani and R. solani (Aly and Hussein 2009). T. harzianum and T. virens isolates reduced the severity of the disease in greenhouse conditions against R. solani that show high inhibition rate (Durak, 2016). Singh et al. (2013), Ahmed and Ahmed (2015) observed that, T. harzianum reduced disease severity of Sc. rolfsii of tomato and Allium white rot caused by S. cepivorum respectively. Consequently in the greenhouse experiments, Chet et al. (1997) applied T. harzianum in the form of wheat bran to R. solani infected soil, effectively controlled damping-off of bean, tomato and eggplant seedlings enhancing the emergence and inhibits plant infection with soil pathogens. A significant reduction in the incidence of root rot caused by R. solani and trichoderma treatment was reported by Jeyaraj and Ramabhadran (1999). Singh et al. (1999) reported that, Trichoderma spp. fungi as microbiological preparation components used for soil amendment is reported in numerous papers which cover protecting germinating seeds and then plant roots from infection with phytopathogens. Moreover, sugar beet root rot infection with S. rolfsii was significantly reduced due to using of T. harzianum, Abo El-Yazied(2019). Additionally, Mao et al.(2020)supported the present results and interpreted that, T.hamatum inhibited pepper fusarium wilt with control effect 60.61% efficiency level,and yield increase in the field.

4. Conclusion
Given these observation, it was hypothesized extra and intra - cellular biosynthesis of silver NPs was done by R.solani ,Sc.rolfsii as anew sources addition to F.oxysporum; causal pathogens of sugar beet root rot disease by measurements of FTIR,EDX, SEM and UV-Vis analysis. Additionally, results showed that safety control by T.hamatum, which could be parasite on Sc.rolfsii and R.solani mycelium.
and reduced damping off, root rot index and severity and do enhancement of total soluble solids and sucrose. Also, adaption of these practice, *T. hamatum* was proposed as a potential biocontrol fungus.

5. Acknowledgement:
We would like to express thanks and gratitude to staff members in Plant Pathology Dept. Sakha Research Station for kind help, faithful effort and advising us during this research.

References

Abo El-Yazied, M.N., 2019. Fermentation technology for optimal production of glucanase enzyme by Egyptian Trichoderma isolates: A new concept for biocontrol of root rot fungi. Thesis Ph.D. (Microbiology) Botany Dept. Faculty of Science, Menoufia Univ., Egypt.

Ahmed, H.A.M. and N.G. Ahmed, 2015. Management of white rot of onion using compost and *Trichoderma harzianum*. Curr. Life Sci.1:2:63-69.

Ahmed, A., P. Mukherjee, S. Senapati, D. Mandal, M.I.Khan, R. Kumar, and M. Saistry, 2003. Extracellular biosynthesis of silver nanoparticles using the fungus *Fusarium oxysporum*. Coll. Surf. B. Biointerface, 28:4:313-318.

Aly, M.H. and M.Y. Hussein, 2009. Vesicular– Arbuscular Mycorrhiza and *Trichoderma viridi* as deterrents against soil–borne root rot disease of sugar beet. Plants Dis. Res. Inst., ARC. Giza, Egypt, 11:387-391.

Anilkumar, S., M.K. Abyaneh, S.W. Gosavi, S.K. Kulkami, R. Pasricha, A. Ahmed, et al., 2007. Nitrate reductase – mediated synthesis of silver nanoparticles from AgNO3. Biotech. Lett., 29:439-445.

AOAC., Association of Official Analytical Chemists, 2005. Official Methods of Analysis of the Association of Official Analytical Chemists. 18th Ed. Washington, DC, USA.

Balaji, D.S., S. Basavaraja, R. Deshpande, D.B. Mahesh, B.K. Prabhakar, and A. Venkataraman, 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporum cladosporioides fungus. Colloids Surf. B. Biointerfaces, 68(1): 88-92.

Bartholomaus, A., S. Mittler, B. Marlander, and M. Varrelmann, 2017. Control of *Rhizoctonia solani* in sugar beet and effect of fungicide application and plant cultivar on inoculum potential in the soil. Plant Disease, 101:941-947.

Basavaraja, S., S.D. Balaji, A. Lagashetty, A.H. Rajasab, and A. Venkataraman, 2008. Extracellular biosynthesis of silver nanoparticles using the fungus *Fusarium semitectum*. Mat. Res. Bull., 43(5):1164-1170.

Bhainsa, K.C., and S.F. D’Souza, 2006. Extracellular biosynthesis of silver nanoparticles using the fungus *Aspergillus fumigatus*. Colloids Surf. B. Biointerfaces, 47(2):160-164.

Chet, I., G.E. Harman, and R. Baker, 1981. *Trichoderma hamatum*: its hyphal interactions with *Rhizoctonia solani* and *Pythium spp*. Microbial Ecology, 7(1): 29–38.

Divya, N., Y.S. Amaresh, M.K. Naik, D.S. Aswathanarayana, and N.M. Shakuntala, 2015. Screening of Trichoderma species against major soilborne fungal pathogens. J. of Bio. Control, 29:3:145-147.

Durak, E.D., 2016. Biological control of *Rhizoctonia solani* on potato by using indigenous *Trichoderma spp*. AIP Con.Pro.1726:1 pp 20020. AIP Publishing.

El-Rafie, M.H., T.I. Shaheen, A.A. Mohamed, and A. Hebeish, 2012. Bio-synthesis and application of silver nanoparticles onto cotton fibres. Cabohyder. Polym.90:941-920.

El-Tarabily, K.A., 2004. Suppression of *Rhizoctonia solani* diseases of sugar beet by antagonistic and plant growth-promoting yeasts, J.of App. Microb.96:69-75.

Ferreira , J.H.S., F.N. Mathee, and A.C. Thomase, 1991. Biological control of Eutypalota on grapevine by an antagonistic strain of *Bacillus subtilis*. Phytopathology, 81:283-287.

Gade, A.K., P.P. Bonde, A.P. Ingle, P. Marcato, N. Duran, and M.K. Rai, 2008. Exploitation of *Aspergillus niger* for synthesis of silver nanoparticles . J. Biobased Mater Bioenergy, 2:243-247.

Gajbhiye, M.; J.Keshawrani, A. Ingle, A. Gade, and M. Rai, 2009. Fungus – mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combinations with fluconazole . Nanomedicin NBM 5:382-386.
Ganie, S.A., M.Y. Ghani and Q. Nissar, 2013. Bioefficacy of plant extracts and biocontrol agents against Alternaria solani. African Journal of Microbiology Research, 7(34): 4397-4402.

Gole, A., C. Dash, V. Ramakish, S.R. Sainkar, et al., 2001. .Pepsin-gold colloid conjugates :preparation , characterization and enzymatic .Langmuir, 17:1674-1679.

Gurunathan, S., K. Kalishwaralal, R. Vaidyanathan, D. Venkataraman, and S.R.K. Pandian, 2009. Bio-synthesis , purification and characterization of silver nanoparticles using Escherichia coli.Coll. Surf. B. Biointerface74:328-335.

Harveson, R.M. and C.M. Rush, 1994. Evaluation of fumigation and rhizomaia –tolerant cultivars for control of a disease complex of sugar beet. Plant Disease, 78:1197-1202.

Ingle, A., A. Gade, S.P. Sonnichsen and M. Rai, 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity some human pathogenic bacteria . Curr.Nanosci., 4:141-144.

Jain, N., A. Bhargava, S. Majumdar, J. Tarafdar, and J. Panwar, 2011. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective.Nanoscale, 3:2:635-641

Jeyaraj, J. and R. Ramabadra, 1999. Rhizobium – Trichoderma interaction in vivo and in vitro. Indian Phytopath.,52: 190-192.

Khan, M.R., 2007. Prospects of microbial control of root rot nematodes infecting vegetable crops. In: Biotechnology : Plant Health Management , Sharma ,N and Singh,H.B.(Eds).International Book Distg. Co.Lucknow , India, 659-690.

Kuber, C., S.F. Bhoinsa, and D. Souza, 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Coll. Surf. B. Biointerface, 2(47):160-164.

Lorito, M., S.L. Woo, E.H. Gary, and E. Monte, 2010. Translational Research on Trichoderma:from’Omicsto the Field. Annu.Rev.Phytopathol. 48: 395–417.doi:10.1146/annu. rev-phyto-073009-114314.

Magdy, H.M., H.E. Mourad, and M.M. Abd El-Aziz, 2014. Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. Egypt. J. Exp. Biol. Bot., 10(1): 1–12.

McGinnis, R.A., 1982. Beet Sugar Technology. 3 rd Ed. Beet Sugar Development Foundation . Fort Collins, 855.

Mohammadian, A., and M.H. Rezaee, 2007. Fusarium oxysporum mediates photogeneration of silver nanoparticles.Sci.Iran.14:323-326.

Nawar, L.S., 2013. In –vitro efficacy of some fungicides , bioagent and culture filtrates of selected saprophytic fungi against Sclerotium rolfsii. Life Sci., J.10:4.

Noshad, A., M. Iqbal, C. Hetherington, and H. Wahab, 2020. 3Biogenic AgNPs—A Nano Weapon against Bacterial Canker of Tomato (BCT). Advances in Agriculture 2020 ,Article ID 9630785, 10 pages. https://doi.org/10.1155/2020/9630785.

Rai, M. and G. Kratsova, 2015. Management of phytopathogens by application of green nanobiotechnology :Emerging trends and challenges J of Agri. Sci. Debrecen, 6515.

Raida, A., 2013. Biosynthesis and characterization of silver nanoparticles by using fungi and their application .PH.D. Thesis . King Saud Univ. Coll. of Sci. Saudi Arabia.
Ramezani, H., 2008. Biological control of root rot of eggplant caused by Macrophomina phaseolina. American – Eurasian J. Agric.&Envrir.Sci., 4P218-220.

Rewal, H.S., and J.S. Thooty, 1995. Differential response of wheat varieties to systemic fungitoxicants applied to Ustilago tritici (Pers) Rostr. Indian J. Agric. Sci. 55: 548-549.

Roh, Y., J. Bai, R.J. Lauf, A.D. Mcmillan, T.J. Phelps, C.L. Rawn, et al., 2001. Microbial synthesis of metal-substituted magnetites. Solid state Com.118:529-534.

Seidl, V., C. Seibel, C.P. Kubicek, and M. Schmoll, 2009. Sexual development in the industrial workhorse Trichoderma reesei. Proc. Natl. Acad. Sci. USA. 106:13909-13914.

Shaligram, N.S., M. Bule, R. Bhambure, R.S. Singhal, S.K. Singh, G. Szakacs, and A. Pandey, 2009. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Proc. Biochem. 44(8): 939-943.

Singh, S.P., H.B. Singh, and D.K. Singh, 2013. Trichoderma harzianum and Pseudomonas sp. mediated management of Sclerotium rolfsii rot in tomato (Lycopersicum esculentum, Mill). Life Sci., 8:3:801-804.

Singh, P.P., Y.C. Shin, C.S. Park and Y.R. Chung, 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology. 89:92–99.

Steel, R.G. and J.H. Torrie, 1980. Principles and procedures of statistics, 2nd Ed. (pp. 120). McGraw Hill, New York, USA.

Studholme, V.J., B. Harris, K. LeCocq, R. Winsbury, V. Perera, L. Ryder, J.J. Ward, M.H. Beale, C.R. Thornton, and M. Grant, 2013. Investigating the beneficial traits of Trichoderma hamatumGD12 for sustainable agriculture –insights from genomics. Frontiers in Plant Science.4:1-13.

Verma, V.C., R.N. Kharwar, and A.C. Gange, 2010. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine (Lond), 5(1): 33-40.

Yadav, L.S., 2012. Antagonistic activity of Trichoderma sp. and evaluation of various agro wastes for mass production. Indian J. of Plant Sci.1:1:2319-2324.