Deoxydichlorination of aldehydes catalyzed by Diphenyl sulfoxide

I.A. Gorbunova a, D.A. Shipilovskikh ab, S.A. Shipilovskikh acf

a: Perm State University, 614990, Perm, Russia
b: Perm National Research Polytechnic University, 614990, Perm, Russia
c: ITMO University, 197101, Saint Petersburg, Russia
* Corresponding author: s.shipilovskikh@metalab.ifmo.ru

This short communication (letter) belongs to the MOSM2021 Special Issue.

© 2021, The Authors. This article is published in open access form under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Abstract

The diphenyl sulfoxide-catalyzed conversion of aldehydes to 1,1-dichlorides is reported. The reaction proceeds via a sulfurous (IV)-catalysis manifold in which diphenyl sulfoxide turnover is achieved using oxalyl chloride as a consumable reagent.

Keywords

aldehydes
Lewis base catalysis
organocatalysis
diphenyl sulfoxide

1. Introduction

Nucleophilic substitutions S_N are general chemical transformations, as they allow, for example, strategic building of C–C, C–O, C–N and C–C bonds [1–10]. In addition, geminal dialdehydes, especially dichlorides, are important intermediates in chemical synthesis, and the traditional synthesis protocols are often limited in terms of cost efficiency and waste balance [11, 12]. However, research in this area is at an early stage in the study of such catalytic reaction. Although by now several effective protocols for the preparation of dichlorides from aldehydes catalyzed by a Lewis base have been disclosed [13, 14], all possibilities for studying these reactions have not yet been realized (Scheme 1).

Dichlorides – important class of intermediates in organic synthesis. They were used for alkenylation of carbonyl compounds [15, 16], cyclopropanation and epoxidation [17–19], dimerization [20, 21] and others [22–25]. In addition, geminal dichlorides are encountered as structural motifs in polyhalogenated natural products [26, 27] (Fig. 1).

2. Experimental

Yields are given for isolated products showing one spot on a TLC plate and no impurities detectable in the NMR spectrum. The identity of the products prepared by different methods was checked by comparison of their NMR spectra.

1H and 13C NMR spectra were recorded at 400 MHz for 1H and 100 MHz for 13C NMR at room temperature; the chemical shifts (δ) were measured in ppm with respect to the solvent (CDCl₃, 1H: δ = 7.26 ppm, 13C: δ = 77.16 ppm; [D₆] DMSO, 1H: δ = 2.50 ppm, 13C: δ = 39.52 ppm). Coupling constants (J) are given in Hertz. Splitting patterns of apparent multiplets associated with an averaged coupling constants were designated as s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), m (multiplet), dd (doublet of doublets) and br (broadened). Melting points were determined with a «Stuart SMP 30», the values are uncorrected. Flash chromatography was performed on silica gel Macherey Nagel (40–63 μm).

Reaction progress was monitored by GC/MS analysis and thin layer chromatography (TLC) on aluminum backed plates with Merck Kiesel 60 F254 silica gel. The TLC plates were visualized either by UV radiation at a wavelength of 254 nm, or stained by exposure to a Dragendorff’s reagent or potassium permanganate aqueous solution. All the reactions were carried out using dried and freshly distilled solvent.

2.1. General method for synthesis of dichlorides from aldehyde

Diphenyl sulfoxide (Ph₃SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol.%) and aldehyde 1 (2 mmol, 1 equiv) were dissolved in 15 mL of anhydrous toluene in a 25 mL round bottom flask equipped with a magnetic stirring bar. The resulting solution was treated dropwise with neat oxalyl chloride (0.26 mL, 3 mmol, 1.5 equiv (chlorine source))
using an adjustable volume pipette (0.1–1.0 mL), followed by the temperature increase up to 100 °C; the mixture was stirred for 6 h. The reaction progress was monitored by GC-MS. After the reaction was complete, the solution was filtered and concentrated in vacuum. The crude mixture thus obtained was purified by flash chromatography on silica (petroleum ether/EtO – 19/1).

2.1.1. (Dichloromethyl)benzene 4a
Obtained from 1a (212 mg, 2 mmol), diphenyl sulfoxide (Ph₃SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol%), and oxalyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous toluene (15 mL). Colorless oil (242 mg, 75%). ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 7.25 (s, 1H, CH), 7.44 (m, 3H, Hₐ), 7.66 (m, 2H, Hₐ). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 72.0, 126.2, 128.8, 123.0, 140.4.

2.1.2. 1-(Dichloromethyl)-4-methylbenzene 4b
Obtained from 1b (240 mg, 2 mmol), diphenyl sulfoxide (Ph₃SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol%), and oxalyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous toluene (15 mL). Colorless oil (278 mg, 80%). ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 2.40 (s, 3H, CH₃), 6.68 (s, 1H, CH), 7.23 (m, 2H, Hₐ), 7.48 (m, 2H, Hₐ). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 21.7, 71.6, 126.1, 129.3, 137.5, 140.9.

2.1.3. 1-Bromo-4-(dichloromethyl)benzene 4c
Obtained from 1c (370 mg, 2 mmol), diphenyl sulfoxide (Ph₃SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol%), and oxalyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous toluene (15 mL). Colorless oil (345 mg, 72%). ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.68 (s, 1H, CH), 7.46 (m, 2H, Hₐ), 7.55 (m, 2H, Hₐ). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 72.0, 124.3, 128.0, 131.9, 139.4.

2.1.4. 1-(Dichloromethyl)-4-nitrobenzene 4d
Obtained from 1d (302 mg, 2 mmol), diphenyl sulfoxide (Ph₃SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol%), and oxalyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous toluene (15 mL). Colorless oil (259 mg, 63%). ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.78 (s, 1H, CH), 7.78 (m, 2H, Hₐ), 8.29 (m, 2H, Hₐ). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 70.2, 124.5, 127.9, 146.6, 149.2.

2.1.5. (E)-3,3-Dichloroprop-1-en-1-yl)benzene 4e
Obtained from 1e (264 mg, 2 mmol), diphenyl sulfoxide (Ph₃SO) (40 mg, 0.2 mmol, 0.1 equiv, 10 mol%), and oxalyl chloride (0.26 mL, 3 mmol, 1.5 equiv), in anhydrous toluene (15 mL). Colorless oil (286 mg, 77%). ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 6.34 (d, J = 7.6 Hz, 1H, CH), 6.39 (dd, J = 14.7 and 7.6 Hz, 1H, CH), 6.72 (d, J = 14.7 Hz, 1H, CH), 7.41 (m, 5H, Hₐ). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 73.5, 127.0, 128.2, 129.1, 129.3, 132.5, 134.9.

Denton 2013

Huy 2019

This Work

Scheme 1 Deoxydichlorination of aldehydes to 1,1-dichlorides

Fig. 1 Natural products including a fragment of dichlorides
3. Results and discussion

The investigation commenced with establishing the best conditions for the deoxydichlorination of aldehydes, employing benzaldehyde 1a as a model substrate (Scheme 2). First, the role of each reagent was evaluated. Oxalyl chloride on its own did not produce (Dichloromethyl)benzene 4a (Table 1, entry 1). The use of stoichiometric quantities of Ph₂SΟ and (COCl)₂ in acetonitrile resulted in low conversion of 1a into 4a (entry 2). With 10 mol.% Ph₂SΟ and 1 equiv of oxalyl chloride, 4a was formed in 15% conversion (entry 3), which increased to 51% after changing the solvent to toluene (entry 4). The up of the temperature to 100 °C and use 1.5 equiv of oxalyl chloride to give the best results of conversion to 92% (entry 11).

The substrate scope was investigated next. As shown in Scheme 3, the reaction worked well with different types of aromatic aldehydes, including donor and acceptor substituents at the fourth position of the ring. The use of cinnamaldehyde under the reaction conditions also showed good results.

The proposed mechanism is depicted in Scheme 4. We think that the catalytic cycle start with quick formation of the intermediate chlorodiphenylsulfonium chloride (B) upon treatment of diphenyl sulfoxide (A) with (COCl)₂. Previously, a similar process was carried out by Denton with triphenylphosphine oxide as a catalyst [14]. Next, in the catalytic cycle, the intermediate B reacts with the aldehyde 1 via oxygen to form the intermediate C, which then undergoes elimination to furnish the geminal dichloride 4 and regenerate the catalyst A.

Entry	Equiv of (COCl)₂	Ph₂SΟ, mol.%	Solvent	T, °C	t, h	Conv., %b
1	1	-	MeCN	50	1	0
2	1	100	MeCN	50	6	15
3	1	10	MeCN	50	6	15
4	1	10	Tol	50	6	53
5	1	10	DCM	40	6	10
6	1	10	DCE	50	6	18
7	1	10	THF	50	6	37
8	1	10	Et₂O	30	6	4
9	1	10	Tol	100	6	85
10	1	10	Tol	100	12	88
11	1.5	10	Tol	100	6	92

Table 1 Optimization of the reaction conditions

*a*General conditions: 1a (0.2 mmol), Ph₂SΟ, dry solvent (1 mL), dropwise addition of neat (COCl)₂. The reactions were carried out for 1–12 h before an aliquot (50 μL) was taken, quenched with aqueous solvent (1 mL), and analyzed by GC.

*b*Conversion to 4a was calculated from GC.

4. Conclusions

We have developed a highly expedient protocol for a catalytic deoxydichlorination of aldehydes under conditions of a catalytic Swern Oxidation catalyzed by diphenyl sulfoxide. The salient features of the method are: (i) operational simplicity, (ii) low catalyst loading (10 mol.%), (iii) medium reaction times and (iv) mild conditions.

Acknowledgments

The authors thank Russian Science Foundation for grant 20-73-00081.
References

1. Huy PH. Lewis base catalysis promoted nucleophilic substitutions – recent advances and future directions. Eur J Org Chem. 2020;(1):10–27. doi:10.1002/ejoc.201901495

2. Beddoe RH, Sneddon HF, Denton RM. The catalytic Mitsunobu reaction: a critical analysis of the current state-of-the-art. Org Biomol Chem. 2018;16(42):7774–7781. doi:10.1039/C8OB01929K

3. Shchipkovskikh SA, Rubtsov AE. Dehydration of oxime to nitriles. AIP Conf Proc. 2019;2063:030019. doi:10.1063/1.5087327

4. Huy PH, Hauch T, Filbrich I. Lewis base catalyzed nucleophilic substitutions of alcohols. Synlett. 2016;27(19):2631–2636. doi:10.1055/s-0036-1588613

5. Kohlmeier C, Schäfer A, Huy PH, Hilt G. Formamide-catalyzed nucleophilic substitutions: mechanistic insight and rationalization of catalytic. ACS Catal. 2020;10(19):11567–11577. doi:10.1021/acscatal.0c03448

6. Shchipkovskikh SA, Vaganov YY, Denisova EI, Rubtsov AE, Malkov AV. Dehydration of amides to nitriles under conditions of a catalytic appel reaction. Org Lett. 2018;20(3):728–731. doi:10.1021/acs.orglett.7b03863

7. Huy PH, Mbouthom C. Formamide catalyzed activation of carboxylic acids – versatile and cost-efficient amidation and esterification. Chem Sci. 2019;10:7399–7406. doi:10.1039/C9SC02126D

8. Motchs S, Schütz C, Huy PH. Systematic evaluation of sulfoxides as catalysts in nucleophilic substitutions of alcohols. Eur J Org Chem. 2018;4541–4547. doi:10.1002/ejoc.201800907

9. Huy PH, Filbrich I. A general catalytic method for highly cost- and atom-efficient nucleophilic substitutions. Chem Eur J. 2018;24:7410. doi:10.1002/chem.201800988

10. Fukazawa Y, Vaganov YY, Shchipkovskikh SA, Rubtsov AE, Malkov AV. Stereoselective synthesis of atropisomeric bipyrindine N,N'-dioxides by oxidative coupling. Org Lett. 2019;21(12):4798–4802. doi:10.1021/acs.orglett.9b01887

11. Takeda T, Endo Y, Reddy ACS, Sasaki R, Fujiwara T. Transformation of ketones into 1-chloro and 1,1-dichloro-1-alkenes by means of a polychloromethane-titanocene(II) system. Tetrahedron. 1999;55:2475. doi:10.1016/S0040-4020(99)00021-6

12. Takeda T, Sasaki R, Fujiwara T. Carbonyl Olefination by Means of a Geen-Dichloride–Cp2Ti[P(OEt)3]2 system. J Org Chem. 1998;63(21):7286–7288. doi:10.1021/jo980724h

13. Huy PH. Formamide catalysis facilitates the transformation of aldehydes into geminal dichlorides. Synthesis. 2019;51(12):2474–2483. doi:10.1055/s-0039-1617988

14. An J, Tang X, Moore J, Lewis W, Denton RM. Phosphorus(V)-catalyzed dichlorination reactions of aldehydes. Tetrahedron. 2013;69:8769–8776. doi:10.1016/j.tet.2013.07.100

15. Concellón JM, Rodríguez-Solla H, Díaz P, Llavona R. The first sequential reaction promoted by manganese: complete stereoselective synthesis of (E)-α,β-unsaturated esters from 2,2-dichloroesters and aldehydes. J Org Chem. 2007;72:4396. doi:10.1021/jo070204w

16. Concellón JM, Rodríguez-Solla H, de Amo V, Díaz P. Stereoselective olefination reactions promoted by rieke manganese. Synthesis. 2009;15:2634–2645. doi:10.1055/s-0029-1216880

17. Oudeyer S, Leonel E, Paugam JP, Nédélec JY. Formation of epoxides and α-arylationdirines via a simple Mg-Barbier reaction in DMF. Tetrahedron. 2014;70:919–923. doi:10.1016/j.tet.2013.12.016

18. Zhou YY, Uyeda C. Reductive cyclopropanations catalyzed by dinuclear nickel complexes. Angew Chem Int Ed. 2016;55:3171–3175. doi:10.1002/anie.201511271

19. Durán-Peña MJ, Flores-Giulii ME, Botubol-Ares JM, Harwood LM, Collado IG, Maclas-Sánchez AJ, Hernández-Galán R. Chemoselective and stereoselective lithium carbene mediated cyclopropanation of acyclic allylic alcohols. Org Biomol Chem. 2016;14(9):2731–2741. doi:10.1039/c5ob0267b

20. Barrero AF, Herrador MM, Del Moral JFQ, Arteaga P, Akssira M, El Hanbali F, Arteaga JF, Diéguez HR, Sánchez EM. Couplings of benzyl halides mediated by titanocene chloride: Synthesis of dibenzyl derivatives. J Org Chem. 2007;72(6):2251–2254. doi:10.1021/jo062492p

21. Eisch JJ, Qian Y, Rheingold AL. Nickel(II)-carbene intermediates in reactions of geminal dihaloalkanes with nickel(0) reagents and the corresponding carbene capture as the phosphonium ylide. Eur J Inorg Chem. 2007;11:1576–1584. doi:10.1002/ejic.200601106

22. Giannerini M, Fañanas-Mastral M, Feringa BL. Z-Selective Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents. J Am Chem Soc. 2012;134(9):4108–4111. doi:10.1021/ja300743t

23. Li H, Müller D, Guénée L, Alexakis A. Copper-catalyzed enantioselective synthesis of axially chiral alanes. Org Lett 2012;14(23):5880–5883. doi:10.1021/ol302790e

24. Li H, Grassi D, Guénée L, Bürgt T, Alexakis A. Copper-catalyzed propargylic substitution of dichloro substrates: Enantioselective synthesis of trisubstituted allenes and formation of propargylic quaternary stereogenic centers. Chem Eur J. 2014;20(50):16694–16706. doi:10.1002/chem.201404658

25. Brzeškiewicz J, Loska R, Makosza M. α-Chlorobenzylation of nitroarones via vicarious nucleophilic substitution with benzyldiene dichloride: Umpolung of the friedel-crafts reaction. J Org Chem. 2018;83(15):8549–8508. doi:10.1021/acs.joc.8b01991

26. Nielewski C, Carreira EM. Recent advances in the total synthesis of chlorosulfolipids. Eur J Org Chem. 2018;83(15):8549–8508. doi:10.1021/acs.joc.8b01991

27. Chung WJ, Vanderwal CD. Stereoselective halogenation in natural product synthesis. Angew Chem Int Ed. 2016;55:4396–4434.