Risk of fracture and pneumonia from acid suppressive drugs

Chun-Sick Eom, Sang-Soo Lee

Chun-Sick Eom, Department of Family Medicine, Institute for Skeletal Aging, Hallym University-Sacred Heart Hospital, Kangwondo 200-704, South Korea
Sang-Soo Lee, Institute for Skeletal Aging and Orthopedic Surgery, Infectious Disease Medical Research Center, Hallym University-Sacred Heart Hospital, Kangwondo 200-704, South Korea
Author contributions: Eom CS and Lee SS contributed equally to this paper.
Supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-000-6208 and 2011-001-4792)
Correspondence to: Sang-Soo Lee, MD, PhD, Professor, Director, Institute for Skeletal Aging and Orthopedic Surgery, Infectious Disease Medical Research Center, Hallym University-Sacred Heart Hospital, 153 Gyodong, Chuncheon City, Kangwondo 200-704, South Korea. totalhip@hallym.ac.kr
Telephone: +82-33-2405197 Fax: +82-33-2520177
Received: August 12, 2011 Revised: September 8, 2011
Accepted: September 19, 2011
Published online: September 26, 2011

Abstract

A recently published systematic review and meta-analysis, incorporating all relevant studies on the association of acid suppressive medications and pneumonia identified up to August 2009, revealed that for every 200 patients, treated with acid suppressive medication, one will develop pneumonia. They showed the overall risk of pneumonia was higher among people using proton pump inhibitors (PPIs) [adjusted odds ratio (OR) = 1.27, 95% CI: 1.11-1.46, I² = 90.5%] and Histamine-2 receptor antagonists (H2RAs) (adjusted OR = 1.22, 95% CI: 1.09-1.66), whereas long-term H2RA use was not significantly associated with fracture risk. Clinicians should carefully consider when deciding to prescribe acid-suppressive drugs, especially for patients who are already at risk for pneumonia and fracture. Since it is unnecessary to achieve an achlorhydric state in order to resolve symptoms, we recommend using the only minimum effective dose of drug required to achieve the desired therapeutic goals.

© 2011 Baishideng. All rights reserved.

Key words: Acid-suppressive drugs; Pneumonia; Fracture

Peer reviewer: Hung-Jen Liu, DVM, PhD, Professor, Institute of Molecular Biology, National Chung Hsing University, 250, Kuo Kuang RD, Taichung 402, Taiwan, China

Eom CS, Lee SS. Risk of fracture and pneumonia from acid suppressive drugs. World J Methodol 2011; 1(1): 15-21 Available from: URL: http://www.wjgnet.com/2222-0682/full/v1/i1/15.htm DOI: http://dx.doi.org/10.5662/wjm.v1.i1.15

INTRODUCTION

Recently, the medical literature has paid considerable attention to unrecognized adverse effects of commonly used medications and their potential public health impact[1-5]. Acid-suppressive drugs (ASDs), represent the second leading category of medication worldwide, with sales totalling US$26.9 billion in 2005[3]. Experts have generally viewed proton pump inhibitors (PPIs) as safe[6]. However, potential complications such as gastrointestinal neoplasia, malabsorption of nutrients and increased susceptibility to infection and fracture have caused concern[7].

H2RAs, when compared with non-use of the respective medications. Long-term use of PPIs increased the risk of any fracture (adjusted OR = 1.30, 95% CI: 1.15-1.48) and of hip fracture risk (adjusted OR = 1.34, 95% CI: 1.09-1.66), whereas long-term H2RA use was not significantly associated with fracture risk. Clinicians should carefully consider when deciding to prescribe acid-suppressive drugs, especially for patients who are already at risk for pneumonia and fracture. Since it is unnecessary to achieve an achlorhydric state in order to resolve symptoms, we recommend using the only minimum effective dose of drug required to achieve the desired therapeutic goals.

© 2011 Baishideng. All rights reserved.

Key words: Acid-suppressive drugs; Pneumonia; Fracture

Peer reviewer: Hung-Jen Liu, DVM, PhD, Professor, Institute of Molecular Biology, National Chung Hsing University, 250, Kuo Kuang RD, Taichung 402, Taiwan, China

Eom CS, Lee SS. Risk of fracture and pneumonia from acid suppressive drugs. World J Methodol 2011; 1(1): 15-21 Available from: URL: http://www.wjgnet.com/2222-0682/full/v1/i1/15.htm DOI: http://dx.doi.org/10.5662/wjm.v1.i1.15
Of special interest is the possibility that ASDs could increase susceptibility to respiratory infections because these drugs increase gastric pH, thus allowing bacterial colonization. Several previous studies have shown that treatment with ASDs might be associated with an increased risk of respiratory tract infections and community-acquired pneumonia in adults and children. Given the widespread use of PPIs and histamine-2 receptor antagonists (H2RAs), clarification of the potential impact of acid-suppressive therapy on the risk of pneumonia is of great importance to public health.

Some findings have raised the possibility that PPIs may prevent osteoporosis and fractures. Several in vitro and animal studies have suggested that PPIs may decrease bone resorption by inhibiting osteoclastic vacuolar hydrogen potassium adenosine triphosphatase (H+/K+ ATPase) activity. Osteoclasts possess proton pumps, which are used during the excretion of H+ ions for bone resorption. Osteoclast-selective PPIs may therefore be used as antiresorptive agents with the potential of preventing fractures. Administration of a selective inhibitor of the osteoclastic vacuolar H+/K+ ATPase prevents bone loss in ovariectomized rats, an animal model representative of postmenopausal osteoporosis. However, as bone resorption is necessary for the development of normal bone microstructure, one may speculate that PPI-induced blockade of the osteoclast-associated vacuolar proton pump may actually increase fracture risk.

USE OF ACID-SUPPRESSIVE DRUGS AND RISK OF PNEUMONIA

A recently published systematic review and meta-analysis, which incorporated all relevant studies on the association of acid-suppressive medications and pneumonia that could be identified to August 2009, showed that of every 200 inpatients treated with acid suppressive medication one will develop pneumonia. From a total of 2377 articles identified in the initial search for observational studies, the authors reviewed 60 abstracts and 18 full articles, including 8 of these articles in their final analysis. They identified 8513 randomized controlled trials, and reviewed 914 abstracts and 35 full articles, including 23 of articles and 2 bibliographies of relevant articles in the study. In summary, they included five case-control studies, three cohort studies, and 23 randomized controlled trials in the final analysis.

Main pooled analyses

Meta-analyses on observational studies with the two types of ASD showed significant positive associations between use of PPI and risk of pneumonia (adjusted odds ratio (OR) = 1.27, 95% CI: 1.11-1.46, I² = 90.5%) and between use of H2RA and risk of pneumonia (adjusted OR = 1.22, 95% CI: 1.09-1.36, I² = 0.0%). Meta-analysis of randomized controlled trials examining risk of hospital-acquired pneumonia in association with use of H2RA confirmed the findings of the observational studies (relative risk: 1.22, 95% CI: 1.01-1.48, I² = 30.6%).

Subgroup meta-analyses

In subgroup analyses by type of pneumonia, a significant positive association was observed between use of PPIs and community-acquired pneumonia (adjusted OR = 1.34, 95% CI: 1.14-1.57, I² = 93.6%) and between use of H2RAs and hospital-acquired pneumonia (adjusted OR = 1.24, 95% CI: 1.05-1.47, I² = 0.0%). Subgroup analyses by dose indicated a dose-response relationship. A higher dose of PPIs was more strongly associated with pneumonia (adjusted OR = 1.52, 95% CI: 1.31-1.76, I² = 27.5%) than the usual dose (adjusted OR = 1.37, 95% CI: 1.08-1.74, I² = 86.5%).

Subgroup analyses by duration of exposure showed that the strength of the association between use of PPIs and risk of pneumonia decreased with longer duration of therapy before the index date (date of diagnosis of pneumonia). There were significant positive associations between risk of pneumonia and use of PPIs within 7 days before the index date (adjusted OR = 3.95, 95% CI: 2.86-5.45, I² = 0.0%), within 30 days before the index date (adjusted OR = 1.61, 95% CI: 1.46-1.78, I² = 30.6%) and from 30 to 180 days before the index date (adjusted OR = 1.36, 95% CI: 1.05-1.78, I² = 84.3%).

The risk of pneumonia was greater with the use of H2RAs within 7 days before the index date (adjusted OR = 5.21, 95% CI: 4.00-6.80, I² not available). This risk also appeared greater with the use of these drugs within 30 days before the index date (adjusted OR = 1.49, 95% CI: 0.82-2.72, I² = 80.4%) and from 30 to 180 days (adjusted OR = 1.21, 95% CI: 0.94-1.56, I² = 27.6%), although these associations were not statistically significant.

Subgroup analyses of the 23 randomized controlled trials by comparators showed a significant positive association between use of H2RAs and risk of pneumonia in studies that employed sucralfate as a control (relative risk: 1.33, 95% CI: 1.04-1.69, I² = 24.7%). Placebo-controlled studies also indicated an overall increase in the risk of pneumonia with these drugs, but this increase was not statistically significant (relative risk: 1.09, 95% CI: 0.80-1.48, I² = 37.9%).

The authors conducted subgroup meta-analyses of the observational studies and randomized controlled trials according to methodological quality. Among the observational studies, they observed a significant positive association for both high-quality studies (adjusted OR = 1.29, 95% CI: 1.17-1.42, I² = 0.0%) and low-quality studies (adjusted OR = 1.15, 95% CI: 1.00-1.32, I² = 82.1%). Among the randomized controlled trials, the risk of pneumonia appeared greater in low-quality studies (relative risk: 1.35, 95% CI: 1.10-1.67, I² = 12.5%), whereas there was no effect among the high-quality studies (relative risk: 0.96, 95% CI: 0.65-1.43, I² = 47.0%).

Discussion

Several lines of evidence point to the biological plausi-
bility of these observations. Firstly, ASDs may increase the risk of pneumonia by inhibiting the secretion of gastric acid, thus allowing bacterial overgrowth and colonization in the upper alimentary tract with subsequent translocation to the lungs by aspiration\(^6,7,49\). Secondly, H\(^+\)/K\(^+\) ATPase is present not only in the parietal cells of the stomach, but also in the respiratory tract\(^50,51\). It is conceivable that use of a PPI could alter the pH of the seromucinous secretions by inhibiting this enzyme, thereby encouraging bacterial growth in the respiratory tract, which could in turn lead to increased risk of pneumonia\(^51\). Thirdly, in vitro studies have shown that ASDs may impair the function of neutrophils and the activity of natural killer cells\(^52,53\).

Interestingly, the most striking increase in the risk of pneumonia in association with PPI use was observed in the first week of use. The risk of pneumonia associated with use of PPIs was attenuated, but still significant, between 30 and 180 d. Recipients of H\(^+\)RAs between 30 and 180 d before the index date appeared to have an increased risk of pneumonia, although the association was not statistically significant. These findings might reflect tolerance\(^51\). Tolerance to H\(^+\)RAs generally develops within 2 wk with repeated administration, resulting in a decline in acid suppression\(^59\). Another reason may be that those who are more susceptible to pneumonia become ill with this disease soon after starting ASDs, leaving fewer susceptible individuals among those using these drugs for longer periods. That is, patients who remain on the drug are those who can tolerate it, whereas those who are susceptible select themselves out of the population at risk. This depletion of susceptibility effect has been considered in other pharmacoepidemiologic studies of adverse events\(^60\).

USE OF ACID-SUPPRESSIVE DRUGS AND RISK OF FRACTURE

A recently published meta-analysis found possible evidence linking PPI use to an increased risk of fracture, but no association between H\(^+\)RA use and fracture risk. The widespread use of PPIs means that the potential risk of fracture is of great importance to public health. The authors excluded 170 duplicate articles and an additional 1621 articles that did not meet the selection criteria. They reviewed the full texts of the remaining 18 articles, eventually excluding 7 of them. The remaining 11 studies were included in the final analysis\(^60-67\).

Main pooled analyses

The overall use of PPIs was associated with a significantly increased risk of any fracture in a random-effects model meta-analysis of 4 case-control studies, 3 nested case-control studies, and 3 cohort studies (adjusted OR = 1.29, 95% CI: 1.18-1.41, \(I^2 = 69.8\%\)). However, use of H\(^+\)RAs was not associated with an increased fracture risk (adjusted OR = 1.10, 95% CI: 0.99-1.23, \(I^2 = 86.3\%\)).

Subgroup meta-analyses

A positive association between the use of PPIs and fracture risk was observed in all types, but a positive association between the use of H\(^+\)RAs and fracture risk was found only when nested case-control studies were combined (adjusted OR = 1.20, 95% CI: 1.13-1.28, \(I^2 = 0.0\%\)) or when cohort studies were combined (adjusted OR = 1.08, 95% CI: 1.02-1.13, \(I^2 = 0.0\%\)). In contrast, no significant association was observed in case-control studies (adjusted OR = 1.11, 95% CI: 0.81-1.51, \(I^2 = 85.6\%\)).

Grouping of studies according to methodological quality showed a significantly increased fracture risk with PPI use in both high-quality studies (adjusted OR = 1.32, 95% CI: 1.18-1.47, \(I^2 = 63.7\%\)) and low-quality studies (adjusted OR = 1.25, 95% CI: 1.06-1.48, \(I^2 = 78.7\%\)). There was also a significant positive association between H\(^+\)RA use and fracture risk in high-quality studies (adjusted OR = 1.13, 95% CI: 1.05-1.21, \(I^2 = 40.3\%\) but not in low-quality ones (adjusted OR = 1.09, 95% CI: 0.87-1.38, \(I^2 = 90.6\%\)).

Grouping studies by the number of patients showed marginally no association between PPI use and fracture risk (adjusted OR = 1.16, 95% CI: 0.98-1.38, \(I^2 = 66.5\%\)), but no significant association between H\(^+\)RA use and fracture risk (adjusted OR = 1.11, 95% CI: 0.81-1.51, \(I^2 = 85.6\%\)).

When studies were grouped by fracture outcome, the authors found a significant positive association between PPI use and hip fracture risk (adjusted OR = 1.31, 95% CI: 1.11-1.54, \(I^2 = 88.4\%\)) and vertebral fracture risk (adjusted OR = 1.56, 95% CI: 1.31-1.85, \(I^2 = 63\%\)), whereas there was no significant association between PPI use and the risk of other fractures, or between H\(^+\)RA use and risk hip or any other fracture.

In subgroup meta-analyses by duration of use, long-term use of PPIs increased the risk of any fracture (adjusted OR = 1.30, 95% CI: 1.15-1.48) and the risk of hip fracture (adjusted OR = 1.34, 95% CI: 1.09-1.66). There was no association between long-term use of H\(^+\)RAs and either of these outcomes.

Grouping studies by dose, a significantly increased risk of hip fracture was observed for both high-dose use of PPIs (adjusted OR = 1.53, 95% CI: 1.18-1.97) and usual-dose use of PPIs (adjusted OR = 1.42, 95% CI: 1.31-1.53). In contrast, there was no association with hip fracture for either high-dose or usual-dose use of H\(^+\)RAs.

Subgroup analyses by sex showed no significant association between PPI or H\(^+\)RA use and hip fracture risk in men, or with hip fracture or vertebral fracture risk in women.

Discussion

In this meta-analysis of observational studies, the authors found that the use of PPIs was associated with a moderate increase in the risk of fracture compared with nonuse of PPIs, whereas no significant association was observed between H\(^+\)RA use and this risk. Similarly, long-term PPI
use and any dose of PPIs increased the risk of fracture in a meta-analysis of all the studies reporting duration of use and dose, whereas for H:R:As neither long-term use nor use of any dose was significantly associated with fracture risk.

No significant association was found between use of H:R:As, which are less potent acid inhibitors than PPIs, and fracture risk. On average, H:R:As block only 70% of gastric acid production, whereas PPIs suppress acid production by up to 98%.[68-70] More prolonged exposure to H:R:As may be necessary to observe similar effects on fracture risk, although long-term use of these agents was not found to increase risk. These results suggest that H:R:As and PPIs may have differing effects on bone metabolism.

Some studies suggest that H:R:As may have antiresorptive properties[71,72] and even increase bone mineral density, which could decrease fracture risk.[68] Cimetidine also has been shown to prevent osteoclast differentiation induced by histamine.[73,74] Because of the possible mixed effects of H:R:As on bone health, data regarding long-term use of these drugs and fracture risk, alone or in combination with bone mineral density,[78] have been inconsistent.

In contrast, PPIs have been shown to inhibit gastric proton pumps at physiological concentrations, whereas the inhibition of osteoclast and other tissue H+/K+ ATPase activity, such as osteoclast proton pumps, is much less pronounced.[76] It was, however, noted that the use of H:R:As was associated with a mild increase in fracture risk in studies with high-quality methodology (NOS score > 7) and in studies adjusting for at least 5 variables, but not in studies having low-quality methodology and adjusting for fewer than 5 variables. Further research in this area is needed.

Interestingly, the subgroup meta-analyses by the number of adjustment variables showed a significantly increased risk of fracture for both PPI and H:R:A use when the data were adjusted for at least 5 variables. The results for H:R:As conflict with those of Vestergaard et al.[90], who reported a statistically significant protective effect with use of these drugs for any fracture and for hip fracture. The positive association they found between H:R:A use and fracture risk in studies with a high level of statistical adjustment may also be consistent with the marginal association they observed in high-quality studies (NOS score > 7).

Several potential mechanisms by which PPI therapy may lead to fractures have been identified. Firstly, the small intestine's ability to absorb ingested calcium salts depends on pH.[77,78] Calcium solubility is believed to be important for its absorption,[79] and an acidic environment in the gastrointestinal tract facilitates the release of ionized calcium from insoluble calcium salts.[80] Secondly, impaired calcium absorption might lead to compensatory secondary hyperparathyroidism, which may increase the rate of osteoclastic bone resorption. Thirdly, PPIs may interfere with the resorptive activity of osteoclasts. Without osteoclast activity, old bone cannot be replaced, predisposing patients to fractures.[21,67]. However, further research is required to determine the precise effect of long-term use of PPIs on bone mineral metabolism.[83] Finally, gastric parietal cells appear to have a potent endocrine role in secreting estrogens.[81,82] Atrophy of the gastric mucosa, observed in patients infected with CagA-positive Helicobacter pylori,[83], reduces the number of gastric parietal cells and may decrease local production of estrogens. Estrogens produced in the stomach directly induce expression and production of ghrelin[84,85], which appears to increase bone formation by osteoblasts.[86]

CONCLUSION

Clinicians should carefully consider any decision to prescribe ASDs, especially for patients who are already at risk for pneumonia[86] and fracture.[88-90]. Since it is unnecessary to achieve an achlorhydric state in order to resolve symptoms, we recommend using only the minimum effective dose of the drug required to achieve desired therapeutic goals.

REFERENCES

1 Eom CS, Jeon CY, Lim JW, Cho EG, Park SM, Lee KS. Use of acid-suppressive drugs and risk of pneumonia: a systematic review and meta-analysis. CMAJ 2011; 183: 310-319
2 Eom CS, Park SM, Myung SK, Yun JM, Ahn JS. Use of acid-suppressive drugs and risk of fracture: a meta-analysis of observational studies. Ann Fam Med 2011; 9: 257-267
3 Roughhead EE, Ramsay EN, Pratt NL, Ryan P, Gilbert AL. Proton-pump inhibitors and the risk of antibiotic use and hospitalisation for pneumonia. Med J Aust 2009; 190: 114-116
4 Vanderhoff BT, Tahboub RM. Proton pump inhibitors: an update. Am Fam Physician 2002; 66: 273-280
5 Savarino V, Di Mario F, Scarpignato C. Proton pump inhibitors in GORD: An overview of their pharmacology, efficacy and safety. Pharmacol Res 2009; 59: 135-153
6 Gulmez SE, Holm A, Frederiksen H, Jensen TG, Pedersen C, Hallas J. Use of proton pump inhibitors and the risk of community-acquired pneumonia: a population-based case-control study. Arch Intern Med 2007; 167: 950-955
7 Laeheij RJ, Sturkenboom MC, Hassing RJ, Dieleman J, Stricker BH, Jansen JB. Risk of community-acquired pneumonia and use of gastric acid-suppressive drugs. JAMA 2004; 292: 1955-1960
8 Laeheij RJ, Van Ijzendoorn MC, Janssen MJ, Jansen JB. Gastrointestinal drug therapy and the risk for community-acquired pneumonia. Ann Intern Med 2008; 149: 391-398
9 Canani RB, Cirillo P, Roggero P, Romano C, Malamisura B, Terrin G, Passariello A, Manguolo F, Morelli L, Guarino A. Therapy with gastric acid inhibiting inhibitors increases the risk of acute gastroenteritis and community-acquired pneumonia in children. Pediatrics 2006; 117: e817-e820
10 Sarkar M, Hennessy S, Yang YX. Proton-pump inhibitor use and the risk for community-acquired pneumonia. Ann Intern Med 2008; 149: 391-398
11 Sahara T, Itoh K, Dehari K, Sasaki T. Specific biological functions of vasoactive-type H(+)-ATPase and lysosomal cysteine proteinase, cathepsin K, in osteoclasts. Anat Rec A Discov Mol Cell Evol Biol 2003; 270: 152-161
12 Sasaki T. Recent advances in the ultrastructural assessment of osteoclastic resorptive functions. Microsc Res Tech 1996; 33: 182-191
Shibata T, Amano H, Yamada S, Ohya K. Mechanisms of proton transport in isolated rat osteoclasts attached to bone. J Med Dent Sci 2000; 47: 177-185

Toukkanen J, Väinänen HK. Omeprazole, a specific inhibitor of H+/K+-ATPase, inhibits bone resorption in vitro. Calcif Tissue Int 1986; 38: 123-125

Zaidi M. Modularity of osteoclast behaviour and "mode-specific" inhibition of osteoclast function. Biosci Rep 1990; 10: 547-556

Gagliardi S, Nadler G, Consolandi E, Parini C, Morvan M, Legave MN, Belfiore P, Zocchetti A, Clarke GD, James I, Nambi P, Gowen M, Farina C. 5-(5,6-Dichloro-2-indolyl)-2-methoxy-2,4-pentadienamides: novel and selective inhibitors of the vacuolar H+-ATPase of osteoclasts with bone antiresorptive activity. J Med Chem 1998; 41: 1568-1573

Rzeszutek K, Sarraf F, Davies JE. Proton pump inhibitors control osteoclastic resorption of calcium phosphate implants and stimulate increased local reparative bone growth. J Craniofac Surg 2003; 14: 301-307

Sundquist K, Lakakorpi P, Wallmark B, Väinänen K. Inhibition of osteoclast proton transport by bafilomycin A1 abolishes bone resorption. Biochem Biophys Res Commun 1990; 168: 309-313

Visentin L, Dodds RA, Valente M, Misiano P, Bradbeer JN, Oneta S, Liang X, Gowen M, Farina C. A selective inhibitor of the osteoclastic V-H(+)ATPase prevents bone loss in both thyroparathyroidectomized and ovariectomized rats. J Clin Invest 2000; 106: 309-318

Xu J, Feng HT, Wang C, Yip KH, Pavlos N, Papadimitriou JM, Wood D, Zheng MH. Effects of Bafilomycin A1: an inhibitor of vacuolar H(+)ATPases on endocytosis and apoptosis in RAW cells and RAW cell-derived osteoclasts. J Cell Biochem 2003; 88: 1256-1264

Mizunazhi K, Furukawa Y, Katano K, Abe K. Effect of omeprazole, an inhibitor of H+/K(+)-ATPase, on bone resorption in humans. Calcif Tissue Int 1993; 53: 21-25

Marciniak C, Korozyt AW, Lin E, Roth E, Welty L, Lovell L. Examination of selected clinical factors and medication use as risk factors for pneumonia during stroke rehabilitation: a case-control study. Am J Phys Med Rehabil 2009; 88: 30-38

Myles PR, Hubbard RB, McKeever TM, Pogson Z, Smith CJ, Gibson JE. Risk of community-acquired pneumonia and the use of statins, ace inhibitors and gastric acid suppressants: a case-control study. Pharmacoepidemiol Drug Saf 2009; 18: 269-275

Beaulieu M, Williamson D, Sirois C, Lachaine J. Do proton-pump inhibitors increase the risk for nosocomial pneumonia in a medical intensive care unit? J Crit Care 2008; 23: 513-518

Herzig SJ, Howell MD, Ngo LH, Marcantonio ER. Acid-suppressive medication use and the risk for hospital-acquired pneumonia. JAMA 2009; 301: 2120-2128

Apte NM, Karnad DR, Medhekar TP, Tilve GH, Morye S, Bhave GG. Gastric colonization and pneumonia in intubated critically ill patients receiving stress ulcer prophylaxis: a randomized, controlled trial. Crit Care Med 1992; 20: 590-593

Ben-Menachem T, Fogel R, Patel RV, Touchette M, Zarowitz BJ, Hadzhijahic N, Divine G, Verter J, Bresalier RS. Prophylaxis of stress-related gastric hemorrhage in the medical intensive care unit. A randomized, controlled, single-blind study. Ann Intern Med 1994; 121: 568-575

Cheddle WG, Vitale GC, Mackie CR, Cuschieri A. Prophylactic postoperative nasogastric decompression. A prospective study of its requirement and the influence of cimetidine in 200 patients. Ann Surg 1985; 202: 361-366

Cloud ML, Offen W. Continuous infusions of nizatidine are safe and effective in the treatment of intensive care unit patients at risk for stress gastritis. The Nizatidine Intensive Care Unit Study Group. Scand J Gastroenterol Suppl 1994; 206: 29-34

Cook D, Guyatt G, Marshall J, Leasa D, Fuller H, Hall R, Peters S, Rutledge F, Griffith L, McLellan A, Wood G, Kirby A. A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. N Engl J Med 1998; 338: 791-797

Driks MR, Craven DE, Celli BR, Manning M, Burke RA, Garvin GM, Kunches LM, Farber HW, Wedel SA, McCabe WR. Nosocomial pneumonia in intubated patients given sucralfate as compared with antacids or histamine type 2 blockers. The role of gastric colonization. N Engl J Med 1987; 317: 1376-1382

Eddleston JM, Vohra A, Scott P, Tooth JA, Pearson RC, McCloy RF, Morton AK, Doran BH. A comparison of the frequency of stress ulceration and secondary pneumonia in sucralfate- or ranitidine-treated intensive care unit patients. Crit Care Med 1991; 19: 1491-1496

Hanisch EW, Encke A, Naujoks F, Windolf J. A randomized, double-blind trial for stress ulcer prophylaxis shows no evidence of increased pneumonia. Am J Surg 1998; 176: 453-457

Kantorova I, Svoboda P, Scheer P, Dubek J, Rehorkova D, Bosakova H, Ochmann J. Stress ulcer prophylaxis in critically ill patients: a randomized controlled trial. Hepatogastroenterology 2004; 51: 757-761

Laggner AN, Lenz K, Base W, Druml W, Schneeweiss B, Grimm G. Prevention of upper gastrointestinal bleeding in long-term ventilated patients. Sucralfate versus ranitidine. Am J Med 1989; 86: 81-84

Maier RV, Mitchell D, Gentiliello L. Optimal therapy for stress gastritis. Ann Surg 1994; 220: 533-560; discussion 360-363

Martin LF, Booth DV, Karlstadt RG, Silverstein JH, Jacobs DM, Hampsey J, Bowman SC, D’Ambrosio CA, Rockhold FW. Continuous intravenous cimetidine decreases stress-related upper gastrointestinal hemorrhage without promoting pneumonia. Crit Care Med 1993; 21: 19-30

Metz CA, Livingston DH, Smith JS, Larson GM, Wilson TH. Impact of multiple risk factors and ranitidine prophylaxis on the development of stress-related upper gastrointestinal bleeding: a prospective, multicenter, double-blind, randomized trial. The Ranitidine Head Injury Study Group. Crit Care Med 1995; 23: 1844-1849

Misra UK, Kalita J, Pandey S, Mandal SK, Srivastava M. A randomized placebo controlled trial of ranitidine versus sucralfate in patients with spontaneous intracerebral hemorrhage for prevention of gastric hemorrhage. J Neurol Sci 2005; 239: 5-10

Moesgaard F, Jensen LS, Christiansen PM, Thorlacius-Ussing O, Nielsen KT, Rasmussen NR, Bardram L, Nielsen HJ. The effect of ranitidine on postoperative infectious complications following emergency colorectal surgery: a randomized, placebo-controlled, double-blind trial. Inflamm Res 1998; 47: 12-17

Mustafa NA, Aktürk G, Ozen I, Köksal I, Erçives N, Solak M. Acute stress bleeding prophylaxis with sucralfate versus ranitidine and incidence of secondary pneumonia in intensive care unit patients. Intensive Care Med 1995; 21: 287

O’Keeffe GE, Gentiliello LM, Maier RV. Incidence of infectious complications associated with the use of histamine2-receptor antagonists in critically ill trauma patients. Ann Surg 1996; 227: 120-125

Pickworth KK, Falcone RE, Hoogeboom JE, Santanello SA. Occurrence of nosocomial pneumonia in mechanically ventilated patients receiving antacid, ranitidine,
Eom CS et al. Risk of fracture and pneumonia from acid suppressive drugs

or sucralfate as prophylaxis for stress ulcer. A randomized controlled trial. Ann Intern Med 1994; 120: 653-662

Reusser P, Zimmerli W, Scheidegger D, Marbet GA, Buser M, Gyr K. Role of gastric colonization in nosocomial infections and endotoxemia: a prospective study in neurosurgical patients on mechanical ventilation. J Infect Dis 1989; 160: 414-421

Ryan P, Dawson J, Teres D, Celoria G, Navab F. Nosocomial pneumonia during stress ulcer prophylaxis with cimetidine and sucralfate. Arch Surg 1993; 128: 1353-1357

Thomason MH, Paysse ES, Hakenewerth AM, Norton HJ, Mehta B, Reeves TR, Moore-Swartz MW, Robbins PL. Nosocomial pneumonia in ventilated trauma patients during stress ulcer prophylaxis with sucralfate, ranitidine, and ranitidine. J Trauma 1996; 41: 503-508

Yildizdas D, Yapioglu H, Yilmaz HL. Occurrence of ventilator-associated pneumonia in mechanically ventilated pediatriic care patients during stress ulcer prophylaxis with sucralfate, ranitidine, and omeprazole. J Crit Care 2002; 17: 240-245

Nealis TB, Howden CW. Is there a dark side to long-term proton pump inhibitor therapy? Am J Ther 2008; 15: 536-542

Altman KW, Waltonen JD, Hammer ND, Radosevich JA, Haines GK. Proton pump (H+/K+-ATPase) expression in human laryngeal seromucinous glands. Otolaryngol Head Neck Surg 2005; 133: 718-724

Altman KW, Waltonen JD, Tarjan G, Radosevich JA, Haines GK. Human lung mucous glands manifest evidence of the H+/K+-ATPase proton pump. Ann Otol Rhinol Laryngol 2007; 116: 1112-1124

Aybay C, Imir T, Okur H. The effect of omeprazole on human natural killer cell activity. Gen Pharmacol 1995; 26: 1413-1418

Capocasale E, De Bellis F, Pelli MA. Effect of lansoprazole on human leukocyte function. Immunopharmacol Immunotoxicol 1999; 21: 357-377

Mikawa K, Akamatsu H, Nishina K, Shiga M, Maekawa N, Obara H, Niwa Y. The effects of cimetidine, ranitidine, and omeprazole. J Cell Physiol 1999; 180: 408-415

Yoshida N, Yoshikawa T, Terada Y, Fujita N, Kassai K, Adachi Y. Omeprazole treatment diminishes intra- and extracellular neutrophil reactive oxygen production and bactericidal activity. J Clin Pharmacol Ther 2000; 14 Suppl 1: 74-81

Zedtwitz-Liebenstein K, Weischn C, Patruta S, Parschak B, Daxböck F, Graninger W. Omeprazole treatment diminishes intra- and extracellular neutrophil reactive oxygen production and bactericidal activity. Crit Care Med 2002; 30: 1118-1122

Wildner-Smith CH, Merki HS. Tolerance during dosing with H2-receptor antagonists. An overview. Scand J Gastroenterol Suppl 1992; 193: 14-19

Moride Y, Abenhaim L. Evidence of the depletion of susceptibilities effect in non-experimental pharmacoepidemiologic research. J Clin Epidemiol 1994; 47: 731-737

Chiu HF, Huang YW, Chang CC, Yang CY. Use of proton pump inhibitors increased the risk of hip fracture: a population-based case-control study. Pharmacoeconomic Drug Saf 2010; 19: 1131-1136

Corley DA, Kubo A, Zhao W, Quesenberry C. Proton pump inhibitors and histamine-2 receptor antagonists are associated with hip fractures among at-risk patients. Gastroent-1-110

Grisso JA, Kelsey JL, O’Brien LA, Miles CG, Sidney S, Maislin G, LaPann K, Moritz D, Peters B. Risk factors for hip fracture in men. Hip Fracture Study Group. Am J Epidemiol 1997; 145: 776-793

Kaye JA, Jick H. Proton pump inhibitor use and risk of hip fractures in patients without major risk factors. Pharmacotherapy 2008; 28: 951-959

Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD. Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ 2008; 179: 319-326

Vestergaard P, Rejnikar M, Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int 2006; 79: 76-83

Yang YX, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA 2006; 296: 2947-2953

Colin-Jones DG. The role and limitations of H2-receptor antagonists in the treatment of gastro-esophageal reflux disease. Aliment Pharmacol Ther 1995; 9 Suppl 1: 9-14

Olbe L, Cederberg C, Lind T, Olausson M. Effect of omepra-zole on gastric acid secretion and plasma gastrin in man. Scand J Gastroenterol Suppl 1989; 166: 27-32, discussion 41-42

Schuler A. Risks versus benefits of long-term proton pump inhibitor therapy in the elderly. Geriatr Nurs 2007; 28: 225-229

Lesclous P, Guez D, Baroukh B, Vignery A, Saflar JL. Histamine participates in the early phase of trabecular bone loss in ovariectomized rats. Bone 2004; 34: 91-99

Lesclous P, Guez D, Saflar JL. Short-term prevention of osteoelastic resorption and osteopenia in ovariectomized rats treated with the H(2) receptor antagonist cimetidine. Bone 2002; 30: 131-136

Dobigny C, Saflar JL H1 and H2 histamine receptors modulate osteoelastic resorption by different pathways: evidence obtained by using receptor antagonists in a rat synchronized resorption model. J Cell Physiol 1997; 173: 10-18

Jacobs NA, Trew DR. Occlusion of the central retinal artery and ocular neovascularisation: an indirect association? Eye (Lond) 1992; 6 (Pt 6): 599-602

Adachi Y, Shiota E, Matsumata T, Iso Y, Yoh R, Kitano S. Bone mineral density in patients taking H2-receptor antagonists. Am J Ther 2006; 13: 175-180

Mattsson JP, Väänänen K, Wallmark B, Lorenzont P. Omeprazole and balfomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Bioclinn Biophy Acta 1991; 1065: 261-268

Bo-Linn GW, Davis GR, Buddrus DJ, Morawski SG, Santa Ana C, Fordtran JS. An evaluation of the importance of gastric acid secretion in the absorption of dietary calcium. J Clin Invest 1984; 73: 640-647

Shangraw RF. Factors to consider in the selection of a calci-um supplement. Public Health Rep 1989; 104 Suppl: 46-50

Nordin BE. Calcium and osteoporosis. Nutrition 1997; 13: 664-686

Wood RJ. Serfati-Lacrosniere C. Gastric acidity, atrophic gastritis, and calcium absorption. Nutr Rev 1992; 50: 33-40

Campbell-Thompson M, Reyher KK, Wilkinson LB. Immunolocalization of estrogen receptor alpha and beta in gastric epithelium and enteric neurons. J Endocrinol 2001; 171: 65-73

Zhang Y, Lai WP, Wu CF, Favus MJ, Leung PC, Wong MS. Ovariectomy worsens secondary hyperparathyroidism in mature rats during low-Ca diet. J Am J Physiol Endocrinol Metab 2007; 292: E723-E731

Sozzi M, Valenti M, Figura N, De Paoli P, Tedeschi RM, Gloghini A, Serraino D, Polleti M, Carbone A. Atrophic gastritis and intestinal metaplasia in Helicobacter pylori infec-1-110

Copyright (c) 2010 WJG Publishing and Distribution Co., Ltd. All rights reserved.
Matsubara M, Sakata I, Wada R, Yamazaki M, Inoue K, Sakai T. Estrogen modulates ghrelin expression in the female rat stomach. *Peptides* 2004; 25: 289-297

Sakata I, Tanaka T, Yamazaki M, Tanizaki T, Zheng Z, Sakai T. Gastric estrogen directly induces ghrelin expression and production in the rat stomach. *J Endocrinol* 2006; 190: 749-757

Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H, Takeda S, Takeuchi Y, Fukumoto S, Kangawa K, Nagata K, Kojima M. Ghrelin directly regulates bone formation. *J Bone Miner Res* 2005; 20: 790-798

Brandt D. Acid suppression and pneumonia. *Am J Nurs* 2005; 105: 21

Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. *Osteoporos Int* 1997; 7: 407-413

Kanis JA. The incidence of hip fracture in Europe. *Osteoporos Int* 1993; 3 Suppl 1: 10-15

O’Connell MB, Madden DM, Murray AM, Heaney RP, Kerzner LJ. Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. *Am J Med* 2005; 118: 778-781

S- Editor Wang JL L- Editor Hughes D E- Editor Zheng XM