Role of Cellular Na\(^+\) Accumulation in Acetylcholine-Induced Desensitization of Guinea Pig Ileal Longitudinal Muscle

Shuhei Horio and Hideki Moritoki
Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi, Tokushima 770, Japan

Received February 26, 1997 Accepted May 13, 1997

ABSTRACT—The role of cellular Na\(^+\) accumulation in acetylcholine-induced desensitization was investigated in guinea pig ileal longitudinal muscle. Desensitization was induced by the pretreatment with acetylcholine (10\(^{-4}\) M, 30 min) and was expressed by the rightward shift in the concentration-response curve for acetylcholine after the treatment. The same treatment with acetylcholine caused accumulation of cellular Na\(^+\) that amounted to about 3.5-fold of the control level. To study the relationship between the gain of cellular Na\(^+\) and the development of desensitization, we treated the muscle strips with acetylcholine under the condition in which the external Na\(^+\) concentration ranged from zero to 149.2 mM. The result showed that cellular Na\(^+\) content is closely related to the extent of desensitization; that is, desensitization was at the lowest level when acetylcholine induced no increase in cellular Na\(^+\), while desensitization developed in proportion to the increase in cellular Na\(^+\) content. However, when cellular Na\(^+\) was increased by another method (by the treatment with ouabain), the inhibition of the acetylcholine response was far less than that observed in the case of desensitization. We concluded that both muscarinic stimulation and the accompanying accumulation of cellular Na\(^+\) are required for desensitization to occur in full. This desensitization could be the result of a muscarinic stimulated and cellular Na\(^+\)-dependent mechanism.

Keywords: Ileum (guinea pig), Desensitization, Acetylcholine, Ca\(^{2+}\) channel, Cellular Na\(^+\)

Prolonged treatment of smooth muscles with high concentrations of agonists leads to desensitization; that is, cellular responses to the agents become reduced. Desensitization can be classified into two types, specific and nonspecific ones. The former is characterized by diminished responses only to a given agonist, probably reflecting alterations at the receptor level (1, 2). On the other hand, in the latter case, the responses to multiple agonists are affected, probably due to a change in some common process distally from the receptor. It has been well-established that treatment with muscarinic agonist leads to nonspecific desensitization in guinea pig ileum (3–6). Muscarinic stimulation opens nonselective cation channels in smooth muscle cells (7), and the cells thereby gain Na\(^+\). This increase in cellular Na\(^+\) has been suggested to be responsible for this type of desensitization (8–10). Probably, increased cellular Na\(^+\) stimulates the electrogenic Na\(^+\) pump, hyperpolarizes the plasma membrane and leads to reduced responsiveness (9, 11). However, there is evidence showing that increased cellular Na\(^+\) inhibits contractions without any change in membrane potential (12, 13). Moreover, Himpens et al. (14) reported that desensitization could be the result of a G-protein-mediated inactivation of voltage-gated Ca\(^{2+}\) currents rather than the membrane hyperpolarization.

Thus in the present study, we examined in detail the relationship between cellular Na\(^+\) accumulation and occurrence of desensitization in guinea pig ileal longitudinal muscle and verified the involvement of Na\(^+\) in the desensitization process.

MATERIALS AND METHODS

Preparations
Male guinea pigs, weighing 250–450 g, were killed by a blow on the head and cutting the major blood vessels in the throat. Strips of longitudinal muscle from the ileum were obtained by the method of Rang (15) and immersed in Tyrode solution.

Solutions
The Tyrode solution had the following composition: 136.9 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl\(_2\), 1.05 mM MgCl\(_2\), 0.42 mM NaH\(_2\)PO\(_4\), 11.9 mM NaHCO\(_3\) and 5.6 mM
glucose. Low-Na\(^+\) (0–120 mM) solutions were prepared by replacing NaCl with isomolar tris(hydroxymethyl) aminomethane (Tris) chloride and contained: 0–120 mM NaCl, 2.7 mM KCl, 1.8 mM CaCl\(_2\), 1.05 mM MgCl\(_2\), 5.6 mM glucose and 29.2–149.2 mM Tris-HCl, pH 7.4.

Contractile measurements

The longitudinal muscle strips (20–25 mm in length) were suspended in Tyrode solution at 31°C and bubbled with air under a resting tension of about 0.5 g. The strips were allowed to equilibrate for at least 1 hr. Then isotonic contractions were recorded with a lever on a smoked drum. For the measurement of desensitization, cumulative concentration-response curves for acetylcholine were measured 2–3 times on a muscle strip at intervals of about 1 hr. When the last two concentration-response curves were similar for each preparation, the last of these curves was taken as the control response curve. Then, the muscle strip was treated with a desensitizing agent (10^{-4} M of acetylcholine) for 30 min. This desensitizing treatment was done either in Tyrode solution or low-Na\(^+\) solutions (the concentration of Na\(^+\) ranged from 0–120 mM). After the muscle was washed out with Tyrode solution for 5 min, the concentration-response curve for acetylcholine was re-examined. The concentration-response curve shifted almost in parallel to the right after the desensitizing treatment. Then the concentration-ratio for the shifted curves was determined to assess the degree of desensitization (3, 6). Here, the concentration-ratio is the ratio of the concentration of acetylcholine required to elicit 50% of the maximal response after the desensitizing treatment to the concentration needed to elicit the same response in the control experiment. The treatment with each low-Na\(^+\) solution for 30 min, followed by a 5-min washout, had no significant effect on the concentration-response curves for acetylcholine. Effect of ouabain on contractile responses to acetylcholine was examined as follows: After a control concentration-response curve for acetylcholine was obtained on a muscle strip, it was treated with 10^{-5} M ouabain for 30 or 60 min, washed with Tyrode solution for 5 min, and then the concentration-response curve was re-examined. Then the concentration-ratio for the shifted curves was calculated as described above.

Determination of cellular Na\(^+\) content

Cellular Na\(^+\) content was determined by the "Li\(^+\) method" developed by Friedman (16). After incubation of the muscle strips in various test solutions, the strips were washed with Tyrode solution for 1–10 min (usually for 1 min) and then exposed to Li\(^+\) solution at 1°C for 30 min to remove extracellular Na\(^+\). The Li\(^+\) solution had the following composition: 136.9 mM LiCl, 2.7 mM KCl, 1.8 mM CaCl\(_2\), 1.05 mM MgCl\(_2\), 5.6 mM glucose and 11.9 mM Tris-HCl, pH 7.2. The strips were blotted between filter paper and weighed. Each strip was then treated in a teflon tube (Sanai Kagaku Co., Nagoya) with 0.5 ml HNO\(_3\) overnight, dried by heating at 150°C for 1.5 hr, and then added with 0.5 ml HNO\(_3\) and heated at 150°C for 10 min. Na\(^+\) content in the samples was measured by a flame photometer (Type 205; Hitachi, Tokyo) and expressed as mmol/kg wet wt. of the tissue. All determinations were done in duplicate. No significant difference in cellular Na\(^+\) contents was observed when the washout time with Tyrode solution ranged from 1–10 min.

Drugs

Ouabain was obtained from Merck (Darmstadt, FRG). Acetylcholine chloride was from Daiichi Pharmaceutical Co. (Tokyo) All other reagents were of analytical grade.

RESULTS

We previously reported that pretreatment of strips of guinea pig ileal muscle with 10^{-5}–10^{-4} M acetylcholine led to nonspecific desensitization; that is, responses to both acetylcholine and histamine were reduced with the same time course and to the same degree (6). In the present study, to clarify the involvement of cellular Na\(^+\) in the desensitization process, we first examined the change in cellular Na\(^+\) content induced by the treatment
with acetylcholine. As shown in Fig. 1, the cellular Na⁺ content increased rapidly in the first 10 min and then more slowly in the next 20 min. This time course is in accord with that of acetylcholine-induced desensitization that developed rapidly within 10 min and proceeded more slowly in the next 20 min (6).

Next, we examined the relationship between cellular Na⁺ content and the degree of desensitization. To obtain varied cellular Na⁺ content, we treated the muscle strips with acetylcholine (10⁻⁴ M) under the condition in which external Na⁺ concentration ranged from 0 to 149.2 mM. Low-Na⁺ medium would inhibit accumulation of cellular Na⁺, since it is due to influx of Na⁺ through nonselective cation channel opened by muscarinic stimulation (7). Figure 2A shows that acetylcholine did not increase cellular Na⁺ at 0–50 mM external Na⁺. Accumulation of cellular Na⁺ occurred above 50 mM external Na⁺, in proportion to the rise in the concentration of external Na⁺. Figure 2B shows the result of desensitization experiment induced by acetylcholine that was performed under various concentrations of external Na⁺ (0–149.2 mM). The desensitizing treatment with acetylcholine (10⁻⁴ M, 30 min) shifted the concentration-response curve for acetylcholine rightward. Then concentration-ratio was calculated as described in the Materials and Methods to assess the degree of desensitization. Those treatments (0–149.2 mM Na⁺) in the absence of acetylcholine had little effect on the concentration-response curves for acetylcholine. Desensitization developed in accordance with the accumulation of cellular Na⁺; that is, desensitization was minimum at 0–50 mM external Na⁺, while it developed in proportion as the concentration of external Na⁺ rose, just as the cellular Na⁺ content increased. It is to be noted, however, that desensitization occurred to a significant extent under the condition where no Na⁺ accumulation occurred (0–50 mM external Na⁺).

To see whether the increase in Na⁺ content obtained by acetylcholine treatment, which amounted to about 30 mmol/kg wet wt. (Fig. 1), is sufficient to account for the decreased response (desensitization), we employed another means to increase cellular Na⁺ and studied the relationship between cellular Na⁺ content and inhibition of the contractile response to acetylcholine. This was done by treating the muscle strip with ouabain (10⁻⁵ M). Figure 3A shows the increase in cellular Na⁺ content after the treatment with ouabain, and Figure 3B shows the decreased responses to acetylcholine after the same treatment. Cellular Na⁺ content comparable to that obtained by the acetylcholine treatment was attained after the treatment with ouabain for 30 min. Such treatment (10⁻⁵ M ouabain, 30 min) suppressed acetylcholine response to some extent as shown in Fig. 3B, but this inhibition was far less than that observed after the desensitizing treatment (Fig. 2B). Namely, the concentration-ratio obtained by the ouabain treatment was 2.1 ±0.3,
while that obtained by the desensitizing treatment was 22.6±1.4. When we performed similar experiments using K+-free solution (simply omitting KCl from the Tyrode solution) to increase cellular Na+, essentially the same result was obtained (data not shown).

DISCUSSION

Nonspecific desensitization induced by acetylcholine in smooth muscles has been suggested to involve a gain of Na+ by the cells (8, 9). However, the role of Na+ in desensitization is yet not well-clarified, nor it is not clear whether this desensitization is solely attributed to the mechanism concerned with cellular Na+.

Thus in the present study, we examined in detail the relationship between the gain of cellular Na+ and the development of desensitization both induced by the same treatment with acetylcholine in guinea pig ileal longitudinal muscle. The result showed that cellular Na+ content is closely related to the extent of desensitization; i.e., desensitization was at the lowest level when acetylcholine induced no increase in cellular Na+, while desensitization developed in proportion as the cellular Na+ content increased (Fig. 2). This data strongly supports the idea that increased cellular Na+ participates in desensitization. The result that the time course of accumulation of cellular Na+ was in accord with that of desensitization induced by acetylcholine (ref. 6 and this study) also supports this idea.

On the other hand, when cellular Na+ was increased by another method (by the treatment with ouabain), the decrease in acetylcholine response was far less (Fig. 3) than that observed after the desensitizing treatment. This result indicates that the increase in cellular Na+ alone is not sufficient, but the treatment with a muscarinic agonist is indispensable for the desensitized response to occur. Thus both muscarinic stimulation and the accompanying accumulation of cellular Na+ are required for desensitization to occur in full.

Acetylcholine-induced increase in cellular Na+ has been suggested to stimulate electrogenic extrusion of Na+ (11), and thus to oppose the depolarizing effect of the cholinergic agent, leading to desensitization (9). However, this seems rather unlikely as pointed out by Himpens et al. (14) because desensitization occurs under conditions that diminish the activity of the Na+,K+-pump, e.g., in low-K+ medium (14) or at reduced temperature (6), and desensitization is inhibited under the conditions that stimulate the pump, e.g., in high-K+ medium (5). Moreover contractile responses to high-K+ in smooth muscles are reduced by the treatments that increase cellular Na+ without any change in membrane potentials (12, 13). Our results give additional evidence against the above idea since accumulated Na+ that may activate the Na+,K+-pump has only a minor role in desensitization if it is not accompanied by muscarinic stimulation. It is probable that accumulated cellular Na+ inhibits Ca2+ influx without affecting membrane potential (13, 17) and thus induces desensitization.
However, this action also may take no significant part in producing desensitization without muscarinic stimulation.

Muscarinic stimulation inhibits voltage-gated Ca\(^{2+}\) channel currents in smooth muscles (18–20). Although the precise mechanism for this inhibition is not well-clarified, Mitsui and Karaki (18) supposed that muscarinic stimulation produces endogenous inhibitory substances of the Ca\(^{2+}\) channels, and Himpens et al. (14) suggested such inactivation of the Ca\(^{2+}\) channel currents is responsible for the desensitization. Putting these and our data together, we can suppose that cellular Na\(^+\) may participate in desensitization either by activating the production of these inhibitory substances or by augmenting the inhibitory action of them.

It is to be noted that a significant extent of desensitization developed under the condition in which no increase in cellular Na\(^+\) occurred (Fig. 2). This observation is in accord with that of Mitsui and Karaki (18) showing that muscarinic stimulation under the Na\(^+\)-free condition reduces high-K\(^+\)-induced contractions. There are two explanations for such a component of desensitization that is insensitive to cellular Na\(^+\) change. One possibility is that a slight amount of Na\(^+\) contained in the cell (about 8 mmol/kg wet wt.) is sufficient for inducing this component of desensitization in concert with muscarinic stimulation. The other possibility is that some mechanism independent of the accumulation of Na\(^+\) is responsible for this desensitization. Since there exists several mechanisms that may inhibit voltage-gated Ca\(^{2+}\) channel currents through muscarinic activation (14, 20, 21), some inhibitory mechanisms may depend on cellular Na\(^+\) and others may not, both of them participating in desensitization.

In conclusion, our evidence suggests that both muscarinic stimulation and the accompanying accumulation of cellular Na\(^+\) are required for nonspecific desensitization to occur in full. This desensitization could be the result of a muscarinic stimulated and cellular Na\(^+\)-dependent mechanism.

Acknowledgments

We wish to thank Dr. Kensaku Okamoto and Dr. Hideji Tanaka, Faculty of Pharmaceutical Sciences, University of Tokushima, Japan, for technical guidance.

REFERENCES

1 Horio S, Nakamura S and Ishida Y: Alterations in histamine receptors of guinea-pig ileal smooth muscle produced during agonist-induced desensitization. Br J Pharmacol 101, 587–590 (1990)

2 Lefkowitz RJ: G protein-coupled receptor kinases. Cell 74, 409–412 (1993)

3 Paton WDM: A theory of drug action based on the rate of drug-receptor combination. Proc R Soc B 154, 21–69 (1961)

4 Morgenstern R and Bluth R: Studies on the loss of sensitivity in smooth muscle. Acta Biol Med Germ 35, K69–K75 (1976)

5 Siegel H, Jim K, Bolger GT, Gengo P and Triggle DJ: Specific and non-specific desensitization of guinea-pig ileal smooth muscle. J Auton Pharmacol 4, 109–126 (1984)

6 Horio S, Shima M, Ueda H and Ishida Y: Temperature dependence of desensitization induced by acetylcholine and histamine in guinea-pig ileal longitudinal muscle. Br J Pharmacol 100, 636–640 (1990)

7 Benham CD, Bolton TB and Lang RJ: Acetylcholine activates an inward current in single mammalian smooth muscle cells. Nature 316, 345–347 (1985)

8 Paton WDM and Rothchild AM: The changes in response and in ionic content of smooth muscle produced by acetylcholine action and by calcium deficiency. Br J Pharmacol 24, 437–448 (1965)

9 Joiner PD: Studies on the loss of acetylcholine sensitivity in ileal muscle. J Pharmacol Exp Ther 186, 552–561 (1973)

10 Aboulafia J, Capocci H, Paiva ACM and Paiva TB: Sodium-dependence of the non-specific desensitization of the guinea-pig ileum induced by acetylcholine and histamine. Br J Pharmacol 90, 347–353 (1987)

11 Bolton TB: The role of electrogenic sodium pumping in the response of smooth muscle to acetylcholine. J Physiol (Lond) 228, 713–731 (1973)

12 Axelson J and Holmberg B: The effects of K\(^+\)-free solution on tension development in the smooth muscle taenia coli from the guinea pig. Acta Physiol Scand 82, 322–332 (1971)

13 Kishimoto T, Ozaki H and Urakawa N: A quantitative relationship between cellular Na accumulation and relaxation produced by ouabain in the depolarized smooth muscle of guinea-pig taenia coli. Naunyn Schmiedebergs Arch Pharmacol 312, 199–207 (1980)

14 Himpens B, Droehmans G and Casteels R: Carbachol-induced nonspecific desensitization in guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol 343, 580–587 (1991)

15 Rang HP: Stimulant actions of volatile anesthetics on smooth muscle. Br J Pharmacol 22, 356–365 (1964)

16 Friedman SM: Lithium substitution and the distribution of sodium in the rat tail artery. Circ Res 34, 168–175 (1974)

17 Bose D: Mechanism of mechanical inhibition of smooth muscle by ouabain. Br J Pharmacol 55, 111–116 (1975)

18 Mitsui M and Karaki H: Dual effects of carbachol on cytosolic Ca\(^{2+}\) and contraction in intestinal smooth muscle. Am J Physiol 258, C787–C793 (1990)

19 Russell SN and Aaronson PI: Carbachol inhibits the voltage-gated calcium current in smooth muscle cells isolated from the longitudinal muscle of the rabbit jejunum. J Physiol (Lond) 426, 23P (1990)

20 Unno T, Komori S and Ohashi H: Inhibitory effect of muscarinic receptor activation on Ca\(^{2+}\) channel current in smooth muscle cells of guinea-pig ileum. J Physiol (Lond) 484, 567–581 (1995)

21 Shimada T and Somlyo AP: Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle. J Gen Physiol 100, 27–44 (1992)