Antiproliferative activities of Amaryllidaceae alkaloids from *Lycoris radiata* targeting DNA topoisomerase I

Gui-Lin Chen¹,², Yong-Qiang Tian¹,², Jian-Lin Wu³, Na Li³ & Ming-Quan Guo¹,⁴

Crude Amaryllidaceae alkaloids (AAs) extracted from *Lycoris radiata* are reported to exhibit significant anti-cancer activity. However, the specific alkaloids responsible for the pharmacodynamic activity and their targets still remain elusive. In this context, we strived to combine affinity ultrafiltration with topoisomerase I (Top I) as a target enzyme aiming to fish out specific bioactive AAs from *Lycoris radiata*. 11 AAs from *Lycoris radiata* were thus screened out, among which hippeastrine (peak 5) with the highest Enrichment factor (EF) against Top I exhibited good dose-dependent inhibition with IC₅₀ at 7.25 ± 0.20 μg/mL comparable to camptothecin (positive control) at 6.72 ± 0.23 μg/mL. The molecular docking simulation further indicated the inhibitory mechanism between Top I and hippeastrine. The *in vitro* antiproliferation assays finally revealed that hippeastrine strongly inhibited the proliferation of HT-29 and Hep G2 cells in an intuitive dose-dependent manner with the IC₅₀ values at 3.98 ± 0.29 μg/mL and 11.85 ± 0.20 μg/mL, respectively, and also induced significant cellular morphological changes, which further validated our screening method and the potent antineoplastic effects. Collectively, these results suggested that hippeastrine could be a very promising anticancer candidate for the therapy of cancer in the near future.

Statistically, more than 500 different kinds of Amaryllidaceae alkaloids (AAs) have been isolated from the medicinal plants of the family Amaryllidaceae¹–³. Owing to the diverse pharmacological activities, such as anticancer, antimalaria, antifungal, neuroprotective effects, acetylcholinesterase and butyrylcholinesterase-inhibitory activity⁴–⁷, these alkaloids have attracted a great deal of attentions in modern medical societies. Furthermore, some AAs exhibited significant anticancer effects and were very promising in the treatment of various cancers⁸–¹⁰.

The AAs from *Lycoris radiata*, which has been used as a traditional Chinese medicine since long time ago, have recently drawn growing attentions since crude AAs extracts showed significant antineoplastic activities¹⁰. However, most of the current researches of antineoplastic activities mainly focused on either the crude total AAs or some pure compounds, the ultimately responsible bioactive components in this plant remain unclear. Recent studies showed that nearly half of the small molecule drugs are enzyme inhibitors up to now, this indicates that those small molecule drugs take effects through interacting with the target enzymes or other key biological macromolecules¹¹,¹². In addition, in the pharmaceutical industry, the binding affinity between small molecule candidates and the biomolecular targets is considered as one of the primary determinants at the early drug-discovery stage¹³.

DNA topoisomerases are nuclear enzymes and ubiquitous in prokaryotic and eukaryotic cells. By catalyzing the interconversion of topological isomers of DNA molecules in cancer cells during DNA synthesis, topoisomerases play a key part in the consecutive breakage and reunion of DNA strand¹⁴. Hence, topoisomerases are very attractive targets for the development of potential cancer chemotherapeutics. There usually exist two classes of DNA topoisomerases: topoisomerase I (Top I) and topoisomerase II (Top II), depending on whether they cleave the single or double strands of DNA¹⁵. Unlike the Top II acting on the both strands of DNA, Top I acts as the
of colorectal, lung and ovarian cancers nowadays 21, such as camptothecin (CPT) families, particularly the two
thesis and malignant cell proliferation during many pivotal cellular processes such as transcriptions, replication,
chromosome condensation, and are considered as important antineoplastic chemotherapeutic agents with the
mechanism of DNA interaction19,20. In clinic, Top I inhibitors have been successfully applied for the treatment of
colorectal, lung and ovarian cancers nowadays21, such as camptothecin (CPT) families, particularly the two
CPT derivatives topotecan (TPT) and irinotecan (IFL), the only two Top I inhibitors approved by the FDA for the
treatments of ovarian, colorectal and lung cancer, have displayed significant anticancer effects19,22,23.

Inspired by the above success in developing new anticancer drugs from natural inhibitors of Top I, we selected
Top I as one of the drug targets to initiate a new search for new type of natural inhibitors of Top I from Lycoris
radiata based on our previous phytochemical and in vitro activity studies 22,24. Thanks to the recent progress in the
research and application of small molecule ligand–enzyme interaction based strategy for high throughput screening
using either from a combinatorial library or a complex plant extract, a number of methods have been developed to
assess the ligand–enzyme binding affinity between small molecules and biological macromolecules in the last cou-
ple of decades, such as fluorescence monitoring, X-ray crystallography and calorimetric methods, magnetic res-
onance (NMR) and surface Plasmon resonance (SPR) 25. However, these methods either required large amount of
precious samples, or provided no or very little information about the structures of the screened inhibitors. Apart
from those methods mentioned above, not only mass spectrometry (MS)-based approaches could overcome both
these limitations, but also provide qualitative and quantitative information on compounds of interest with high
specificity and sensitivity24. In this work, ultrafiltration coupled with HPLC-MS (UF-HPLC-MS) could thus be
used to screen for Top I inhibitors, which could provide pivotal insights into binding properties of biomolecules
with their corresponding ligands. Furthermore, the UF-HPLC-MS could also be utilized to identify numerous
new bioactive compounds online without prior tedious isolation and purification, which is very powerful for the high
throughput screening (HTS) and identification of bioactive compounds from complex mixtures at early drug
discovery stage23,25. Here, we presented UF-HPLC-MS based strategy to rapidly screen and identify inhibitors of
Top I from the crude extracts of AAs from Lycoris radiata. 11 AAs were detected, and corresponding enrichment
factors were then employed to evaluate the binding affinity between AAs and Top I. In this way, the best inhibitor
of Top I could be fished out, and the Top I inhibition assay was then introduced to verify the potential inhibitory
effectiveness of the candidate inhibitor based on its half maximal inhibitory concentration (IC50). Meanwhile, the
molecular docking assay was carried out to simulate the interaction between Top I and the candidate inhibitor
of interest. At last, antiproliferation assays on human colon carcinoma cells (HT-29) and hepatocellular liver
carcinoma cells (Hep G2) in vitro were conducted to further validate our screening results and the potential anti-
neoplastic effects. For the first time, new Top I inhibitors from Lycoris radiata were systematically screened and
identified, and compound 5 was, first and foremost, reported to exhibit potent antineoplastic activity, which is
comparable with the well known anticancer drug like camptothecin. To some extent, our present work could also
provide very important clues for the future anti-cancer mechanisms of action regarding compound 5 from AAs.

Results and Discussion

Ultrafiltration of compounds bound to Top I. In sharp contrast to the traditional phytochemical study
on medicinal plants, which often requires labor-intensive and time-consuming multiple-step procedures for the
isolation of pure compounds from medicinal plants, and subsequent bioactivity tests, bioaffinity ultrafiltration
method based on the interactions between small molecular ligands and the active sites of enzymes13,26, is much
more effective. Meanwhile, bioaffinity ultrafiltration combining with HPLC-MS could further offer vital insights
into chemical structures of bioactive candidates of interests, and ligand–receptor binding properties13,26. Generally
speaking, the principle of UF-HPLC-MS assay usually involves three steps, including incubation, ultrafiltration
and identification, and the proposed scheme is illustrated in Fig. 1. Briefly, in the assay, after the incubation of
the complex mixtures of compounds from a crude plant extract with potential target enzymes, the bioaffinity ultrafil-
tration separates the ligand–receptor complexes from the unbound compounds, later the bound ligands released
from the complexes could be subsequently identified and quantified by HPLC-MS/MS analysis.

Obviously, the chromatogram of AAs shows distinct differences before and after incubation with Top I as
shown in Fig. 2. 11 components in the AAs exerted specific binding affinity to Top I, and those components in
AAs incubated with Top I gave bigger peak areas than those of the inactivated control group, which were con-
sidered as potential ligands of Top I. Meanwhile, the relative amounts of the 11 peaks from both activated and
inactivated groups were calculated and shown in Table 1. It’s interesting that the relative amount of 11 components
incubated with activated Top I are significantly higher than those with inactivated controls, and the amount of
components 1–9 is barely detected or negligible when incubated with the inactivated Top I.

Based on the variations of the peak areas before and after incubation with Top I, the enrichment factor is
defined as the degree of affinity binding between the ligands and the enzyme. The enrichment factor (EF) was
calculated as follows: \(EF = \frac{A_T - A_0}{A_0} \times 100\% \), where \(A_T, A_0, A_T \) represent the peak areas obtained in the exper-
iment involving incubation with activated, inactivated and without Top I in Fig. 2, respectively. Among those
chemical constituents from AAs, the unique EF is used to assess specific and nonspecific binding of each com-
ponent to Top I, and the characteristic bioactivities such as antineoplastic activity in this study could thus be
implied. It showed clearly in Table 1 that peak 5 possess the greatest degree of binding affinity (49.3%), followed
by 7 (24.2%), 4 (12.7%) and 6 (11.1%). As expected, the EFs for each compound were different from each other.
It is noteworthy that even those components with much higher abundances, like peaks 1, 3, and 4 in Fig. 2 exerted a relative lower binding affinity to Top I, and the discrepant EFs may indicate that the distinguished competitive relationships among these bioactive components bound to Top I exist.

Identification of Top I inhibitors from crude AAs. After incubation with Top I and ultrafiltration affinity screening, 11 components in the AAs in Fig. 2 exerted specific bindings. The ESI-MS/MS analysis of these 11 peaks was conducted in the positive ion mode, and their retention times (Rt), calculated molecular masses, and MS/MS data are shown in Table 1, respectively.

Based on the comparisons of MS/MS data with the reported literatures, peaks 1, 2 and 3 were identified as lycorine, lycoramine and galanthamine, respectively. In regard to peak 4 ([M + H]+ at m/z 332), the fragment at m/z 300, 282 and 264 were obtained by the corresponding neutral loss of CH4O, H2O and CH6O2, respectively. Due to the RDA (retro Diels-Alder reaction) cleavage, fragments at m/z 213 and 225 were derived from the loss of the furan ring.
The IC50 value of the hippeastrine was evaluated in a concentration range of 0.03–100 μg/mL. Camptothecin, the first small molecule targetting Top I for the treatment of advanced digestive carcinoma in clinical23,31, which was served as the positive control. As shown in Fig. 3, hippeastrine and camptothecin exhibited inhibitory activity on Top I in a similar dose-dependent manner with the IC50 values at 8.71 μg/mL35 or 8.53 μg/mL36, which could further prove our finding in this work. Hence, our result confirmed that hippeastrine could be a potential Top I inhibitor as a very promising anticancer drug candidate, which is in good consistent with the enrichment factors based on UF-LC/MS assay and provides a good validation for its effectiveness. Since Top I relaxes supercoils by reversibly nicking duplex DNA to control DNA replication16, hypothesis is that hippeastrine could reversibly block Top I-mediated cleavage of DNA complex, and finally causing the DNA strand breaks and activation of apoptosis11.

The IC50 value of the hippeastrine was found to be comparable with the well known anticancer drug camptothecin in terms of IC50. Other tests on camptothecin against Top I also showed similar inhibitory activity levels with the IC50 values at 8.71 μg/mL35 or 8.53 μg/mL36, which could further prove our finding in this work. Hence, our result confirmed that hippeastrine could be a potential Top I inhibitor as a very promising anticancer drug candidate, which is in good consistent with the enrichment factors based on UF-LC/MS assay and provides a good validation for its effectiveness. Since Top I relaxes supercoils by reversibly nicking duplex DNA to control DNA replication16, hypothesis is that hippeastrine could reversibly block Top I-mediated cleavage of DNA complex, and finally causing the DNA strand breaks and activation of apoptosis11.

Molecular docking

Due to the distinct inhibitory activity of hippeastrine on Top I in vitro, the molecular docking assay was carried out consequently to rationalize its activity on Top I. After the energy minimization by the MMFF94× force field, the ligand (9.9 Å, length) possessing the lowest energy was used for the molecular docking simulation. The crystal structures of Top I (PDB ID: 1T8I) and hippeastrine covalently combined with a 22 bp (base pair) DNA (Fig. 4). It showed the free binding energy of –6.9 kcal/M between the hippeastrine and Top I from AAs. The non-covalent binding has proven to mediate the complexes. It was also conjectured in Fig. 4 that the small molecular ligand (hippeastrine) firstly entered into the active hydrophobic pocket formed between the DNA and Top I due to the hydrophobic effect, and then modulated the receptor protein of Top I.

As a result, hippeastrine was observed to interact with the active site residues of Top I, namely, Asp 533, Lys 532, Arg 364, Thr 718 and Asn 722, where Asp 533 and Arg 364 were required for camptothecin to bind Top I, and thereafter reacted on the binding sites of DA10, DA113 and TGP11 in DNA (Fig. 4). Moreover,

Peak No.	Rt (min)	[M + H]+	Relative amount (μg/mL)	EFs (%)	MS/MS data
1	8.5	288	0.15	0	0.4
2	10.2	290	0.14	0	1.3
3	11.1	288	0.78	0	2.3
4	25.4	332	4.96	0	12.7
5	30.3	316	15.93	0	49.3
6	32.8	334	0.28	0	11.1
7	33.9	316	1.62	0	24.2
8	36.3	332	0.08	0	4.1
9	42.7	332	0.05	0	2.6
10	45.5	346	0.28	0.14	8.3
11	46.4	556	0.22	0.10	6.1
the H-bonds (hydrogen bonds) formed between the hydroxyl group of hippeastrine and the residue Asn722 of Top I strengthened the binding ability (Fig. 5), which indicated the formation of H-bonds played a key role in the binding between hippeastrine and Top I. Considering the molecular docking results above, it is assumed that hippeastrine truly reacted on the amino acid residues and further stabilized the Top I-DNA cleavage complex to competitively inhibit the activity of Top I.

Antiproliferation assays and determination of the IC_{50} on human cancer cell lines of HT-29 and Hep G2. According to the previous study, the majority of bioactive alkaloids exhibiting higher potential anti-Hep G2 activity from the *Lycoris radiata* are mainly lycorine, galanthamine and homolycorine types. The bulbs of *Lycoris radiata* have been extensively used as a traditional Chinese folk medicine for thousands of years, and eventually the phytochemical investigations have led to the isolation of various types of alkaloids with diverse biological activities. For example, lycorine could dramatically suppress the growth of RAW 264.7 and leukemia cells. Homolycorine, which also belonged to the lycorine type, showed promising antiproliferative activities against HeLa (human cervical adenocarcinoma), Vero (monkey kidney epithelium) and Jurkat (human T-cell leukemia) cell lines. Galanthamine and lycoramine were also reported to exhibit acetylcholine esterase (ACHE) inhibitory activity and neuroprotective effect for the treatment of Alzheimer’s disease. It is well known that many AAs isolated from Amaryllidaceae plants, such as narciprimine, arolycoricidine and distichamine, are the important secondary metabolites used for the treatment of cancer. Unfortunately, none of such a pure compound has been applied for the clinical trials to date.

As a matter of fact, for three out of the four potential bioactive AAs of higher EFs are homolycorine type on the basis of the UF-HPLC-MS assay above. At the same time, the inhibitory assay in vitro also showed that the peak 5, which was deduced by its MS/MS, and further confirmed with the standard compound namely hippeastrine (Fig. 2), with the highest EF value of 49.3%, exhibited a good dose-dependent inhibitory effect against Top I with IC_{50} at 7.25 ± 0.20 μg/mL. To further validate our screening method and the antineoplastic effects, the
in vitro antiproliferation activities of hippeastrine on human cancer cell lines of HT-29 and Hep G2 were evaluated at a concentration range of 0.37–30.0 μg/mL in this test. Here, 5-FU was applied as another positive control especially for the HT-29, which has been commonly used for the treatment of colorectal cancer (CRC)42,43. Additionally, 5-FU, associated with several targeted therapies, such as anti-VEGF or anti-EGFR1 monoclonal antibodies, has been the backbone for the treatment of digestive solid cancer patients43,44. The degrees of antiproliferation against human carcinoma cell lines resulting from treatments were evaluated by the MTT assay, and the growth inhibitory rate was expressed as the percentage of the total cells compared with the negative control after 72 hours treatment. Studies showed that a number of Amaryllidaceae alkaloids and their derivatives exhibited remarkable antiproliferative activities8–10,41,45. Our results in Table 2 also displays that hippeastrine, [2] benzopyrano [3,4] indole skeleton based lycorenine-type alkaloids, exhibited distinct dose-dependent antiproliferative activities against HT-29 and Hep G2 cells with the IC50 values at 3.98 ± 0.29 μg/mL and 11.85 ± 0.20 μg/mL, as compared to that of camptothecin at 1.47 ± 0.07 μg/mL and 3.17 ± 0.56 μg/mL, 5-FU at 2.92 ± 0.48 μg/mL, respectively. Notably, hippeastrine is more sensitive against HT-29 with a comparable IC50 to that of 5-FU. It has been known that Top I is highly expressed in colorectal cancers, and repeated exposure of camptothecin to colorectal cancer xenografts could lead to downregulation of Top I levels30,46. As detailed above, the significant antiproliferative effect against HT-29 in the experiment further confirm the hypothesis that the highly expressed Top I could predict response to hippeastrine. Together with the **in vitro** Top I inhibitory assay in this regard, it is proposed that hippeastrine exhibits prominent antiproliferative effects through disrupting topological interconversion of duplex DNA then further blocking DNA synthesis. Accordingly, hippeastrine could be a promising anticancer candidate. In addition, structure-activity relationship analysis revealed that lycorine, the precursor of hippeastrine, displayed antiproliferative activities against six distinct cancer cell lines through the cytochrome c-mediated and caspase-dependent pathway and was considered as a good apoptosis inducer27,39,45. Further study suggested the phenanthridone skeleton, a common minimal structural feature in alkaloids of the Amaryllidaceae family, such as pancrétstatin and their congeners, may be responsible for these cell specific anti-cancer agents47. Consistent with the above results, several alkaloids including hippeastrine from the Narcissus L., another plant in Amaryllidaceae family, showed antiproliferative activities on Hela, Vero and Jurkat cell lines, which induced the nuclear morphological changes associated with the possible mechanism of apoptosis10,39.

After treated with hippeastrine for 72 h, cell populations and morphological changes of HT-29 and Hep G2 were observed with a phase-contrast microscopy. The concentrations of 3.33 μg/mL and 10.0 μg/mL chosen here approximately equal to the 50% inhibitory rates of HT-29 and Hep G2. Significant reduction of viable cells caused by the drug treatment was observed as shown in Fig. 6. At the same time, the numbers of viable cells exerted a distinct dose-dependent manner in the other groups, which were also in accordance with the previous MTT results. Other morphological changes also included cell shrinkage, decreased intercellular adhesion, scattering

![Figure 5. The predicted active binding sites of hippeastrine with Top 1. The dotted line (green) represents the hydrogen-bonding interactions.](image-url)

Table 2. The half-maximal inhibitory concentrations (IC50 values) of hippeastrine (Peak 5) on human cancer cell lines of HT-29 (colon carcinoma) and HepG2 (liver cancer). Camptothecin and 5-FU were served as the positive controls.

Compounds	HT-29 (μg/mL)	HepG2 (μg/mL)
Hippeastrine (Peak 5)	3.98 ± 0.29	11.85 ± 0.20
Camptothecin	1.47 ± 0.07	3.17 ± 0.56
5-FU	2.92 ± 0.48	—

Figure 5. The predicted active binding sites of hippeastrine with Top 1. The dotted line (green) represents the hydrogen-bonding interactions.
and expanded intercellular spaces. Whereas the negative control cells maintained the normal epithelial morphology. In the early stages of apoptosis, many morphological changes of apoptotic features such as cell shrinkage, membrane blebbing and so on occurred commonly in HT-29 cells.48,49 Intervention with hippeastrine, therefore, caused significant pharmacodynamic effects on the cellular morphology of those cancer cells, which were very similar to the results of the previous study.39

Conclusion

In this study, a UF-HPLC-MS method was developed to screen Top I inhibitors from crude alkaloids in *Lycoris radiata*. 11 alkaloids showed potential inhibitory activity, 10 of which were identified according to their MS/MS spectra and fragmentation pathways. The enzymatic inhibition assay against Top I \textit{in vitro} was carried out, and the results showed that the compound 5, namely hippeastrine, with the highest EF value of 49.3%, exhibited a good dose-dependent inhibitory effect against Top I with \textit{IC}_{50} at 7.25 ± 0.20 μg/mL, as compared to the positive control (camptothecin) at 6.72 ± 0.23 μg/mL. Furthermore, the molecular docking simulation indicated that hippeastrine interacted with the amino acid residues of Top I through H-bonds and further stabilized the Top I-DNA cleavage complex to competitively inhibit the activity of Top I. Finally, the antiproliferation assay on HT-29 and Hep G2 \textit{in vitro} revealed that hippeastrine strongly inhibited the growth of cancer cell lines in an intuitive dose-dependent manner with the \textit{IC}_{50} values at 3.98 ± 0.29 μg/mL and 11.85 ± 0.20 μg/mL, respectively, which further validated our screening method and the potential antineoplastic effects. Cell populations and morphology of cancer cells also changed dramatically when treated with hippeastrine using a phase-contrast microscopy. To conclude, our results strongly suggested that hippeastrine could be a potential anticancer candidate for future cancer therapeutics. Further studies should focus on the possible antiproliferative molecular mechanisms induced by hippeastrine.

Methods

Materials, chemicals and reagents. DNA topoisomerase I (\textit{E. coli}) was purchased from New England Biolabs (NEB, Ipswich, Massachusetts, USA). The hippeastrine was provided by Accurate Chemical & Scientific Corp. (Westbury, New York, USA). The centrifugal ultrafiltration filters (YM-30, 30 kDa) were provided by Millipore Co. Ltd (Bedford, MA, USA). The HT-29 cell line was purchased from China Center for Type Culture.
specimen (No. 0019) was deposited in the herbarium of the Key Laboratory. Enhancement and Specialty Agriculture (Wuhan Botanical Garden), Chinese Academy of Sciences. A voucher authenticated and identified by the taxonomist (Dr. Guangwan Hu) of Key Laboratory of Plant Germplasm for the MS/MS analysis ranged from 30–45 eV in accordance with the mass of the precursor ion. Nitrogen (N₂) (40 mM ammonium acetate), and solvent B (ACN). The HPLC elution method was as follows: 0–15 min, 5% (B); 15–17 min, 5–10% (B); 17–20 min, 10% (B); 20–30 min, 10–18% (B); 30–55 min, 18–68% (B). The Online UV chromatograms were acquired at the wavelength of 232 nm.

For the ESI-MS/MS analysis, the mass spectrometer operated in the positive ion mode, and the optimized instrument conditions of MS were set as follows: spray voltage, 3.0 kV; capillary temperature, 250°C; vaporizer temperature, 350°C; cone voltage, 40.0 V; Sheath gas pressure, 40 psi; Aux gas pressure, 10 psi. Collision energies for the MS/MS analysis ranged from 30–45 eV in accordance with the mass of the precursor ion. Nitrogen (N₂) was served as the cone and desolation gas, and helium (He) was used as the collision gas. Mass spectrometry data were acquired n full-scan mode for m/z in the range from 200 to 1,000. All data acquisition and analysis was performed in the Thermo Xcalibur ChemStation (Thermo Fisher Scientific, Waltham, MA, USA).

Quantitative and qualitative Analysis of AAs. The relative quantitation of active ingredients screened by ultrafiltration were calculated in accordance with the peak areas from the HPLC chromatography against nuciferine. For further illustration of those chemical structures, the identification and characterization of corresponding peaks was deduced from their MS/MS spectra, and in comparison with the relevant reference standards, and fragment pathways reported previously.

Top I inhibition assay in vitro. DNA Top I inhibition assay was conducted according to the methods described previously with some modifications. The reaction buffer included 50 mM Kac, 20 mM Tris–Ac, 10 mM Mg(Ac)₂, 1 mM dithiothreitol (DTT) and 0.01% bovine serum albumin (BSA). DNA Top I (2.0 U, E. coli) and the test compound at the indicated concentrations of 0.032–31.53 μg/mL (0.1–100 μM) were placed into a 96-well plates in a final volume of 100 μL. The reaction mixtures were incubated at 37°C for 30 min, and then terminated by the addition of 20 μL stop solution (5% SDS and 50 mM EDTA). The absorbance of the reaction mixtures was measured at 510 and 590 nm with a Tecan plate reader (Infinite M1000, Switzerland). Camptothecin, a well known Top I inhibitor, was used as the positive control. Each sample solution was implemented in triplicate, and the results were expressed as means ± SD (standard deviation). IC₅₀ values were executed by nonlinear regression analysis and sigmoidal dose response curves were obtained using SigmaPlot, version 12.5.

Molecular docking assay. The molecular docking simulations between Top I and hippeastrine was carried out using the Genetic Algorithm of AutoDock 4.2 software. Briefly, the 3D structure of hippeastrine was established with MOE Molecule Builder tool, and then its energy minimization was executed by the MMFF94 force field. The water molecules were removed, and after that the hydrogen atoms were added. The centroid coordinate (the red circle, Fig. 4) of the receptor-drug crystal conjugate was served as the docking site. Docking calculations were manipulated using 2.5 × 10⁶ energy evaluations and the default parameters (runs 30). Meanwhile, the rotatable bonds of hippeastrine were specified with the AutoDock Tools. Finally, a grid map of 60 × 60 × 60 nearby the docking site was constructed to calculate the energy scoring using the Autogrid.
Antiproliferation assays and determination of IC50 on HT-29 and Hep G2 cells. The in vitro antiproliferation activities of hippeastrine on HT-29 and Hep G2 were evaluated by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay in a concentration range of 0.37–30.0 μg/mL. In brief, 3 × 10^4 cells per well were seeded into 96-well plate of DMEM (Dulbecco’s Modified Eagle Medium), supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin and incubated in a humidified atmosphere containing 5% CO2 at 37 °C for 24 h. The hippeastrine was dissolved in dimethyl sulfoxide (DMSO), which was conducted as the blank control, and then diluted into the relevant final concentrations with the medium. After 72 hours of drug treatment, 20 μL of MTT solution (5 mg/mL) was added into each well and the plate was incubated for another 4 h. The optical density (OD) value of each well was measured at 490 nm using a Tecan plate reader. Camptothecin and 5-FU served as the positive controls. The IC50 value was defined as the concentration that caused a 50% reduction of absorbance at 490 nm in treated cells compared with the untreated controls. Each sample solution was carried out in triplicate, and the results were expressed as means ± SD.

References
1. Jin, Z. Amaryllidaceae and Scelentium alkaloids. Nat. Prod. Rep. 30, 849–868 (2013).
2. Katoch, D., Kumar, S., Kumar, N. & Singh, B. Simultaneous quantification of Amaryllidaceae alkaloids from Zephyranthes grandiflora by UPLC-DAD/ESI-MS/MS. J. Pharmaceut. Biomed. 71, 187–192 (2012).
3. Nair, J. J., Aremu, A. O. & van Staden, J. Isolation of narciprinime from Cyrtanthus contractus (Amaryllidaceae) and evaluation of its acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 137, 1102–1106 (2011).
4. Lamoral-Theyes, D. et al. Lycoris, the main phenanthridine Amaryllidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. J. Nat. Prod. 82, 6244–6256 (2009).
5. Kang, M. R. et al. Methanolic Extract Isolated from Root of Lycoris aurea Inhibits Cancer Cell Growth and Endothelial Cell Tube Formation. In Vitro. Toxicol. Res. 28, 33–38 (2012).
6. Cedron, J. C., Gutierrez, D., Flores, N., Ravelo, A. G. & Estevez-Braun, A. Preparation and antimalarial activity of semisynthetic lycorine derivatives. Eur. J. Med. Chem. 63, 722–730 (2013).
7. Jin, A. et al. Four new compounds from the bulbs of Lycoris aurea with neuroprotective effects against CoCl2 and H2O2-induced SH-SYSY cell injuries. Arch. Pharm. Res. 37, 315–323 (2014).
8. Li, C. Y. et al. Molecular mechanisms of Lycoris aurea agglutinin-induced apoptosis and G2/M cell cycle arrest in human lung adenocarcinoma A549 cells, both in vitro and in vivo. Cell Proliferat. 46, 272–282 (2013).
9. Goistesenov, G. V. et al. Targeting of eEF1A with Amaryllidaceae isocarboxyls as a strategy to combat melanomas. Faseb J. 24, 4575–4584 (2010).
10. Goistesenov, G. V. et al. Narcissamine as well as other Amaryllidaceae isocarboxyls are promising GTP-ase targeting agents against brain cancers. Med. Res. Rev. 33, 439–455 (2013).
11. Yao, C., Na, N., Huang, L., He, D. & Ouyang, J. High-throughput detection of drugs binding to proteins using desorption electrospray ionization mass spectrometry. Anal. Chim. Acta. 794, 60–66 (2013).
12. Zhu, H. et al. Bioactivity fingerprint analysis of cyclooxygenase-2 ligands from radix Aconiti by ultrafiltration-UPLC-MSn. Anal. Bioanal. Chem. 405, 7437–7445 (2013).
13. Qin, S. et al. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening. Anal. Chem. Acta. 886, 98–106 (2015).
14. Chowdhury, A. R. et al. Lateolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem. J. 365, 653–661 (2002).
15. Champoux, J. J. DNA Topoisomerases: Structure, Function, and Mechanism. Annu. Rev. Biochem. 70, 369–413 (2001).
16. Kim, N. et al. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. science 332, 1561–1564 (2011).
17. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer. 6, 789–802 (2006).
18. Puc, J. et al. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160, 367–380 (2015).
19. Chaudhuri, A. R. et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19, 417–423 (2012).
20. Li, T. K. & Liu, L. F. Tumor cell death induced by topoisomerase-targeting drugs. Annu. Rev. Pharmacol. Phar. 41, 53–77 (2001).
21. Holleran, L. J. et al. Liquid chromatography–tandem mass spectrometric assay for the quantitation in human plasma of the novel indenoisoquinoline topoisomerase I inhibitors, NSC 743400 and NSC 725776. J. Pharmaceut. Biome. 52, 714–720 (2010).
22. Schovanek, J. et al. Inhibitory Effect of the Noncamptothecin Topoisomerase I Inhibitor LMP-100 on Female Mice Models and Human Pheochromocytoma Cells. Endocrinology 156, 4094–4104 (2015).
23. Majumdar, P. et al. Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity. Eur. J. Med. Chem. 102, 540–551 (2015).
24. Tian, Y. Q., Zhang, C. Y. & Guo, M. Q. Comparative Analysis of Amaryllidaceae Alkaloids from Three Lycoris Species. Molecules 20, 21854–21869 (2015).
25. Li, S. N., Tang, Y., Liu, C. M. & Zhang, Y. C. Development of a method to screen and isolate potential alpha-glucosidase inhibitors from Panax japonicus C.A. Meyer by ultrafiltration, liquid chromatography, and counter-current chromatography. J. Sep. Sci. 38, 2014–2023 (2015).
26. Zhou, M. et al. Mass Spectrometry of Intact V-Type ATPases Reveals Bound Lipids and the Effects of Nucleotide Binding. Science 334, 380–385 (2011).
27. Liao, N., Ao, M. Z., Zhang, P. & Yu, L. J. Extracts of Lycoris aurea induce apoptosis in murine sarcoma S180 cells. Molecules 17, 3723–3735 (2012).
28. Hao, B., Shen, S. F. & Zhao, Q. J. Cytotoxic and antimalarial amaryllidaceae alkaloids from the bulbs of Lycoris radiata. Molecules 18, 2458–2468 (2013).
29. Li, Z. X. et al. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell. Biochem. Biophys. Res. Co. 464, 548–553 (2015).
30. Gilbert, D. C., Chalmers, A. J. & El-Khamisy, S. F. Topoisomerase I inhibition in colorectal cancer: biomarkers and therapeutic targets. Brit. J. cancer. 106, 18–24 (2012).
31. Lee, Y. C. et al. Targeting of Topoisomerase I for Prognoses and Therapeutics of Camptothecin-Resistant Ovarian Cancer. PloS One 10, e0132579 (2015).
32. Miyata, S. et al. Mechanism of the inhibition of leukemia cell growth and induction of apoptosis through the activation of ATR and PTVN by the topoisomerase inhibitor 3EZ, 20A-ac-ingenol. Leukemia. Res. 39, 927–932 (2015).
33. Su, H. et al. Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against Primary Cancer Cells. Theranostics 6, 1065–1074 (2016).
34. Sharma, K. N. et al. Nitric Oxide Down-Regulates Topoisomerase I and Induces Camptothecin Resistance in Human Breast MCF-7 Tumor Cells. PloS one 10, e0114897 (2015).
Antiproliferative activities of Amaryllidaceae alkaloids from Lycoris radiata targeting DNA topoisomerase I. Sci. Rep. 6, 38284; doi: 10.1038/srep38284 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016