Ten things to know about ten cardiovascular disease risk factors – 2022

Harold E Bays, Anandita Kulkarni, Charles German, Priyanka Satish, Adedapo Iluyomade, Ramzi Dudum, Aarti Thakkar, Mahmoud Al Rifai, Anurag Mehta, Aneesha Thobani, Yousif Al-Saiegh, Adam J Nelson, Samip Sheth, Peter P. Toth

ARTICLE INFO

Key words:
- Adiposity
- Blood pressure
- Cardiovascular disease risk factors
- Diabetes
- Genetics/familial hypercholesterolemia
- Glucose
- Kidneys
- Lipids
- Obesity
- Nutrition
- Physical activity
- Preventive cardiology
- Sex
- Smoking
- Thrombosis

ABSTRACT

The American Society for Preventive Cardiology (ASPC) “Ten things to know about ten cardiovascular disease risk factors – 2022” is a summary document regarding cardiovascular disease (CVD) risk factors. This 2022 update provides summary tables of ten things to know about 10 CVD risk factors and builds upon the foundation of prior annual versions of “Ten things to know about ten cardiovascular disease risk factors” published since 2020. This 2022 version provides the perspective of ASPC members and includes updated sentinel references (i.e., applicable guidelines and select reviews) for each CVD risk factor section. The ten CVD risk factors include unhealthful dietary intake, physical inactivity, dyslipidemia, pre-diabetes/diabetes, high blood pressure, obesity, considerations of select populations (older age, race/ethnicity, and sex differences), thrombosis (with smoking as a potential contributor to thrombosis), kidney dysfunction and genetics/familial hypercholesterolemia. Other CVD risk factors may be relevant, beyond the CVD risk factors discussed here. However, it is the intent of the ASPC “Ten things to know about ten cardiovascular disease risk factors – 2022” to provide a tabular overview of things to know about ten of the most common CVD risk factors applicable to preventive cardiology and provide ready access to applicable guidelines and sentinel reviews.

1. Introduction

The American Society for Preventive Cardiology (ASPC) “Ten things to know about ten cardiovascular disease risk factors – 2022” is intended to help both primary care clinicians and specialists be informed about the latest advances in cardiovascular disease (CVD) prevention. This 2022 update summarizes ten things to know about ten important CVD risk factors, listed in tabular formats, and reflects updates by ASPC Fellowship in Training or Early Career section authors. These CVD risk factors include unhealthful dietary intake, physical inactivity, dyslipidemia, pre-diabetes/diabetes, high blood pressure, obesity, considerations of select populations, sex differences, and race/ethnicity.
thrombosis (with smoking as a potential contributor to thrombosis), kidney dysfunction, and family history/genetics/familial hypercholesterolemia. The intent is not to create a comprehensive discussion of all aspects of preventive cardiology. Instead, the intent is to focus on fundamental clinical considerations in preventive cardiology. For a more detailed discussion of any of these CVD risk factors, this “Ten things to know about ten cardiovascular disease risk factors – 2022” also provides updated guidelines and other selected references in the applicable tables.

Within the individual, not all CVD risk factors share the same etiology. However, factor analyses and clinical experience supports that in many cases, the clustering of the most common metabolic diseases managed by clinicians is due to an underlying “common soil” causality. [1] The obesity epidemic and its adiposopathic consequences are leading contributors to major CVD risk factors such as type 2 diabetes mellitus, hypertension, and dyslipidemia that increase CVD risk, as well as other effects that directly increase CVD risk. [2, 3] Central adiposity is the only physical exam component of the metabolic syndrome. [4] A scientific statement from the American Heart Association states:

“Obesity contributes directly to incident cardiovascular risk factors, including dyslipidemia, type 2 diabetes, hypertension, and sleep disorders. Obesity also leads to the development of cardiovascular disease and cardiovascular disease mortality independently of other cardiovascular risk factors. More recent data highlight abdominal obesity, as determined by waist circumference, as a cardiovascular disease risk marker that is independent of body mass index.” [469]."

In some countries, increased adiposity has overtaken cigarette smoking as the leading cause of preventable death. [5] The two most common causes of non-accidental and non-infectious preventable deaths are CVD and cancer. It is therefore perhaps not surprising that CVD and cancer share similar modifiable risk factors, with cancer being a potential risk factor for CVD. [6] Recognition and examination of “adiposopathy” has emerged in the cancer literature, due to: “the tremendous growing implication of ‘sick fat’ in the initiation and development of important pathophysiological events in the human body, which result in severe (chronic) diseases and possible early mortality,” including an important role in cancer and (cardio)metabolic diseases. [7] Regarding cardiovascular prevention, cardio-oncology is a subspecialty of cardiology originally created to address adverse cardiac effects of cancer treatments. An important component of global care within cardio-oncology is addressing the multiple risk factors shared by CVD and cancer, such as obesity and tobacco use, and other related risk factors. [8]

A focus on both CVD treatment and prevention is not unique to the cardio-oncologist. Many patients with CVD have multiple CVD risk factors, which requires a multifactorial management approach. Patients with CVD, or who are at risk for CVD, benefit from global CVD risk reduction, with appropriate attention given to all applicable risk factors. It may therefore be helpful for clinicians to have an overview of core principles applicable to the multiple CVD risk factors that often occur within the same patient who has CVD, or who is at risk for CVD. Finally, this version of the “Ten things to know about ten CVD risk factors” includes updates and different perspectives from different authors. Interested readers may elect to review prior versions of ASPC “Ten things to know about ten CVD risk factors” publications for different perspectives on these same topics, and to see how thinking and priorities may have evolved. [9, 10]

1.1. Unhealthy dietary intake

1.1.1. Definition

Healthful nutrition is a cornerstone of CVD prevention; yet it is often among the most challenging of CVD risk factors to manage. Despite these challenges, even small targeted healthful changes in dietary intake have the potential to improve CV health. [11] The primary components of nutritional screening and medical nutrition therapy for CVD prevention include qualitative composition, energy content, and food consumption timing. A healthful nutrition plan is best crafted utilizing evidenced-based dietary patterns and shared decision-making between clinician and patient. [12] Considerations include social background, cultural applicability, cost, availability, and prioritization of nutritional goals as determined by the patient’s health status (Figure 1) and the presence of metabolic diseases and cardiometabolic risk factors (e.g., high blood sugar, high blood pressure, dyslipidemia, and increased body fat), [12] The most healthful dietary strategy incorporates evidence-based nutrition and feeding patterns. [13] Dietary patterns most associated with reduced CVD risk are those that: [6, 7, 8, 9, 10]

- Prioritize:
 - Vegetables, fruits, legumes, nuts, whole grains, seeds, and fish
 - Foods rich in monounsaturated and polyunsaturated fatty acids such as fish, nuts, and non-tropical vegetable oils
 - Soluble fiber

- Limit:
 - Saturated fat, such as tropical oils, as well as ultra-processed meats preserved by smoking, curing, or salting or addition of chemical preservatives, such as bacon, salami, sausages, hot dogs, or processed deli or luncheon meats, which in addition to containing saturated fats, may also have increased sodium, nitrate, and other components which might account for an increase CVD risk compared to unprocessed red meat [14]
 - Excessive sodium
 - Cholesterol, especially in patients at high risk for CVD with known increases in cholesterol blood levels with increased cholesterol intake
 - Ultra-processed carbohydrates
 - Sugar-sweetened beverages
 - Alcoholic beverages [15, 16]
 - Trans fats

Figure 1. Adoption of healthful nutrition is a shared decision process between clinician and patient, with priorities based upon evidence-based dietary patterns, nutrition goals, cultural applicability, cost, and availability. While potentially counterintuitive, patient preference is not consistently associated with improved health outcomes when implementing medical nutrition therapy [17-19]. Healthful food choices made after medical nutrition therapy may differ from “preferred” food choices made before medical nutrition therapy.
1.1.2. Epidemiology

- From 2015–2018, 17.1% of U.S. adults > 20 years of age were on a “special diet” on a given day. More females were on a special diet than males, and more adults aged 40–59 and > 60 years of age were on a special diet than adults aged 20–39. The most common type of special diet reported among all adults was a weight loss or low-calorie diet. From 2007–2008 through 2017–2018, the percentage of adults on any special diet, weight loss or low-calorie diets, and low carbohydrate diets increased, while the percentage of adults on low-fat or low-cholesterol diets decreased.[20]

- Positive caloric balance and increased body fat increase the risk of CVD. [21] Atherosclerotic CVD (ASCVD) is rare among hunter-gatherer populations, whether the nutritional intake is higher or lower in fat, and irrespective of variations in plant vs meat intake. [22, 23, 24] Despite higher levels of physical activity, total energy expenditure among rural hunter-gatherers may be like adults living in European or US cities with high rates of obesity. [23] The reduced rate of CVD among hunter-gatherers may be attributable to lower body fat, with the BMI of hunter-gatherer populations typically being < 20 kg/m², [25] which is substantially below the BMI of many industrialized nations where CVD is the #1 cause of death. The reduced potential for adiposopathic consequences helps explain why hunter-gatherer populations have lower blood pressure, and a total cholesterol level of ~100 mg/dl, compared to a total cholesterol level of ~200 mg/dl in adult Americans. [26] In addition to lower BMI, the reduction in CVD risk factors and reduction in CVD events among hunter-gatherer populations may be partially related to their preferential consumption of whole foods and fiber, as well as their dependence on daylight for feeding and, therefore, eating patterns better aligned with natural circadian rhythms. [25]

1.1.3. Diagnosis and Treatment

Table 1 lists ten things to know about nutrition and CVD prevention.

1. PHYSICAL INACTIVITY

1.2. Definition and Physiology

Physical activity is any bodily movement produced by skeletal muscles that requires energy expenditure. [94, 95] The intensity of physical activity is defined in terms of metabolic equivalent units (METS). One MET is defined as the oxygen consumed while sitting at rest and is equal to 3.5 ml O₂ per kg body weight x minutes. [96] Light activity (e.g., slow walking) is 1.6-2.9 METS, moderate-intensity activity (e.g., moderate speed walking) is 3.0–5.9 METS and vigorous activity (e.g., moderate jogging) is ≥ 6 METS. As a frame of reference, patients who undergo cardiac stress testing and able to achieve ≥ 10 METS (e.g., high moderate to fast jogging) on a treadmill without ST-depression are generally at very-low risk for clinical CVD. [97] Sedentary behavior refers to any waking activity with a low level of energy expenditure while sitting or lying down (1-1.5 METS). [98, 99]

Physical exercise is a subcategory of physical activity that is “planned, structured, repetitive, and aims to improve or maintain one or more components of physical fitness.” [94] Physical activity also includes muscle activity during leisure time, for transportation, and as part of a person’s work – often termed non-exercise activity thermogenesis (NEAT). [94] Among two individuals of similar size, NEAT can be the single greatest inter-individual difference in daily energy expenditure, with variances of up to 2000 kcal per day; [100] the energy expenditure due to NEAT physical activity often exceeds the daily energy expenditure due to physical exercise. [101] Physical inactivity increases the risk of CVD, [102, 103] not unlike other risk factors such as cigarette smoking and dyslipidemia. [104]

Table 1

Ten things to know about nutrition and cardiovascular disease (CVD) prevention.
1. Medical nutrition therapies most effective in reducing CVD are evidence-based, promote healthful qualitative and quantitative/caloric dietary intake, and conducive to long-term patient adherence [27] (Figure 2).
2. Regarding fats, increased intake of fat dietary intakes allow for atherogenesis via increased low-density lipoprotein cholesterol (LDL-C) levels, increased apolipoprotein B levels, increased LDL particle number, increased inflammation, and endothelial dysfunction [28-31]. With isocaloric intake, CVD risk is reduced when saturated fats are replaced by unsaturated fats [32]. Although banned by the US Food and Drug Administration in 2019, trans fats are sometimes still reportedly found in foods such as cakes, pies, cookies, biscuits, microwaveable breakfasts, stick margarines, microwave popcorn, doughnuts, and frozen pizza, especially when their polyunsaturated fat components are artificially hydroygenated into partially hydrogenated oils. Both saturated fats and trans-fats increase LDL-C levels, with trans-fat consumption most associated with increased CVD risk [32,33].
3. Regarding isocaloric carbohydrate intake, CVD risk is reduced when ultra-processed carbohydrates are replaced by fiber rich complex carbohydrates found in healthful whole foods including whole grains, vegetables, and fruits [32,34]. Ultra-processed carbohydrates promote weight gain and increase the risk of post-prandial hyperglycemia, hyperinsulinemia, hypertriglyceridemia, inflammation, endothelial dysfunction, sympathetic hyperactivity, and hypercoagulability, [35] all CVD risk factors [26,37].
4. The “diets” with the best evidence for CVD prevention are the Mediterranean Diet and “Dietary Approaches to Stop Hypertension” (DASH) [38]. Both dietary patterns prioritize vegetables, fruits, whole grains, fat-free or low-fat dairy products, fish, poultry, lean meats, nuts, seeds, legumes, and fiber.
5. Other evidence-based diets include vegetarian and Ornish diets [38]. A vegetarian meal plan includes plant-based foods such as vegetables, fruits, whole grains, legumes, seeds, and nuts. Some “vegetarian diets” allow for eggs and milk; animal meats are discouraged [39]. Higher plant protein intake may be associated with small reductions in risk of overall and CVD mortality [40]. While healthful plant-based diet (whole grains, fruits, vegetables, oils, tea, and coffee) may reduce CVD risk, unhealthful plant-based food intake (juices, sweetened beverages, ultra-refined grains, potatoes, french fries, and sweets) may increase CVD risk [41]. In addition to genetics and other factors, a dietary intake of unhealthful non-meat, plant-based foods may help account for a relatively high rate of CVD among many vegetarians from India [42]. The Ornish Diet is illustrative of a highly fat-restricted nutritional intervention wherein macro and micronutrients are best eaten as natural whole food. The Ornish Diet includes vegetables, fruits, whole grains, legumes, and soy with limited amounts of green tea [43,44].
6. The Ketogenic Diet is a very low carbohydrate diet (e.g., less than 50 grams per day) that discourages unhealthful ultra-processed and refined foods, discourages foods high in glycemic load and insulinogenic load, and increases intake in unsaturated fatty acids [27,45]. Ketogenic diets may promote short term weight loss in patients with pre-obesity or obesity, lower postprandial glucose/insulin levels, lower blood pressure, lower triglyceride levels, and raise high density lipoprotein cholesterol (HDL-C) levels. Especially if the relatively high proportion of dietary fat with the ketogenic diet is composed of saturated fats and dietary cholesterol, then LDL-C levels may increase; which may prompt consideration of replacing saturated fats with monounsaturated and/or polyunsaturated fats and reducing dietary cholesterol intake [27,45-49]. If weight loss in a patient with metabolic disease is suspected to have promoted increased cholesterol intestinal absorption, then reducing dietary cholesterol intake and adding a cholesterol absorption inhibitor (e.g., ezetimibe) and a statin might be considered [27,50]. No long-term prospective clinical trial supports the ketogenic diet as reducing CVD. Just as the types of carbohydrates may help determine the effect of low-fat dietary consumption on CVD risk factors, CVD, and mortality, so it is likely the type of consumed fats may help determine the effect of long-term low carbohydrate diet on CVD risk and mortality [51].
7. A common weight reduction strategy in patients with pre-obesity and/or obesity involves portion control and caloric restriction to obtain a daily energy deficit (i.e., 500 – 750 kcal per day) [52]. This can be achieved by either continuous energy restriction or time-mediated caloric restriction (e.g., intermittent fasting, fasting-mimicking diets, and time restricted eating). Intermittent fasting may involve alternate day fasting or fasting 2 days per week (5:2). A fasting-mimicking diet may involve 5 days per week of low-calorie, low carbohydrate, proportionately higher fat nutritional intake [53]. Overall, intermittent fasting may reduce total caloric intake, facilitate weight loss in patients with obesity, improve cognitive function and improve CVD-related metabolic parameters (e.g. improve insulin sensitivity, blood pressure, lipids, and inflammatory markers) [53-55]. Weightreduction with intermittent fasting may be achieved while preserving resting metabolic rate and lean body mass, [27,56] especially if accompanied by routine physical activity. Time-restricted eating (TRE) may be defined as caloric consumption limited to a 6 – 10 hour period during the active day. In some patients, TRE can improve CVD risk factors such as body weight,

(continued on next page)
sentiment Guidelines and References.

2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association [91].
2020 Dietary Guidelines for Americans 2020 – 2025 [92].
2019 A Clinician’s Guide to Healthy Eating for Cardiovascular Disease Prevention [38].
2019 ACC/AHA Guidelines on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guideline [93].
2018 Clinician’s Guide for Treating Cardiobvascular Nutrition Controversies: Part II [21].

1.2.2. Epidemiology

- Only 50% of adults get sufficient physical activity to reduce the risk of many chronic diseases such as CVD [105].
- Roughly $117 billion in US healthcare costs yearly and 10% of premature mortality is associated with inadequate physical activity [105].
- Only 26% of US adult males and 19% of adult females obtain guideline-directed activity levels according to federal physical activity monitoring data. [106]
- Worldwide, approximately 3.9 million premature deaths annually might be prevented with adequate physical activity. [107]

1.2.3. Diagnosis and Treatment

One example of clinically implementing physical activity is a physical exercise prescription that includes frequency, intensity, time spent, type, and enjoyment (FITTE). [108, 27, 109] Table 2 lists ten things to know about the diagnosis and treatment of physical inactivity and CVD prevention.

1.3. DYSLIPIDEMIA

1.3.1. Definition and Physiology

Lipids include fats, steroids, phospholipids, steroids, triglycerides, and cholesterol that are important cellular components of body tissues and organs. Lipids are carried in the blood by lipoproteins. Except for cholesterol carried by HDL particles (and in some cases, possibly chylomicrons), other lipoproteins that carry cholesterol are atherogenic. Increased cholesterol blood levels reflect the presence of increased atherogenic lipoproteins that may become entrapped within the subendothelial space, where they may undergo oxidation and scavenge by arterial macrophages, resulting in endothelial dysfunction, foam cells, fatty streaks, and atherosclerotic plaque formation. [129] Progressive enlargement of the atherosclerotic plaque may produce chronic hemodynamically significant narrowing of the artery resulting in angina or claudication; acute plaque rupture may cause myocardial infarction and/or stroke.

Atherogenesis is promoted by increased numbers of atherogenic lipoproteins. Apolipoprotein B (apoB) levels and non-high density lipoprotein cholesterol (non-HDL-C) are predictors of ASCVD risk and superior to measuring the cholesterol carried by atherogenic lipoproteins low density lipoprotein (LDL-C) in predicting atherosclerotic CVD risk. [130] One molecule of apolipoprotein (apo) B is found on each atherogenic lipoprotein. The collection of all cholesterol carried by atherogenic lipoproteins (i.e., except HDL cholesterol) is termed non-HDL cholesterol (calculation of non-HDL cholesterol = total cholesterol – HDL cholesterol). [131] Because apo B and non-HDL cholesterol better reflect ASCVD risk (compared to LDL-C alone), measurement of these biomarkers may provide additional useful information regarding risk for CVD events and are sometimes included in lipid management guidelines and societal recommendations. [132, 133] This is especially true when atherogenic lipoprotein particle numbers are discordant with atherogenic lipoprotein cholesterol levels, [131] as may occur with diabetes mellitus or adiposopathic dyslipidemia. [27, 134]

Largely because of convention, and because CVD outcomes trials of lipid-altering drugs have specified LDL-C as the primary lipid efficacy parameter, LDL-C remains the primary lipid treatment target in most dyslipidemia management guidelines. While LDL-C can be measured directly, it is often reported as a calculated value according to the Friedewald formula (LDL-C = total cholesterol – HDL-C – triglyceride/5). The Friedewald calculation is less accurate when triglycerides are elevated (i.e., ≥ 400 mg/dL) or LDL-C levels are low (i.e., < 70 mg/dL), and in these cases, LDL-C levels may be more accurately calculated using the Martin Hopkins equation. [135]

Remnant lipoproteins are formed in the circulation via triglyceride-rich lipoproteins that undergo lipolysis by various lipases, such as chylomicrons and very-low-density lipoproteins (VLDL), leading to small VLDL and intermediate density lipoproteins (IDL). Lipoprotein remnant cholesterol is the cholesterol carried by lipoprotein remnants and is a marker of ASCVD risk. Remnant cholesterol is sometimes defined as blood cholesterol not contained in LDL and HDL particles. The methodology of measuring and reporting lipoprotein remnants vary, often do not correlate well with one another. [136] Measurement of remnant
Table 2 (continued)

Condition	Lipoprotein Cholesterol Level	Management
Familial Hypercholesterolemia	Low	Lipid-lowering therapies
Hypertriglyceridemia	High	Lipid-lowering therapies
Reduced HDL-C	Low	Lipid-lowering therapies

lipoprotein cholesterol is not included in most major lipid management guidelines.

“Advanced lipid testing” may provide additional information regarding how circulating lipids and lipoproteins may impact ASCVD risk. As with apoB (a measure of atherogenic lipoprotein particle number), an increase in LDL particle number increases the risk for ASCVD. Smaller, more dense LDL particles are also associated with increased ASCVD risk; however, sole reliance on LDL particle size may be misleading. [137] and LDL particle size analyses are not recommended for ASCVD risk estimation. [131, 138, 139]

Regarding definitions, lipid treatment “targets” are often defined as the lipid parameter being treated (e.g., LDL-C), lipid “goals” are the desired lipid parameter level, and lipid “threshold” being the level by which if exceeded, may prompt the addition or intensification of lipid-lowering therapy. [31] While some prior lipid guidelines were interpreted as suggesting lipid “goals” were no longer clinically justified, [140, 141, 142], many current inter-societal and international lipid guidelines have reaffirmed goals or thresholds in the management of patients with dyslipidemia. [31, 139] For example, the 2018 ACC/AHA Lipid Guidelines recommend additional lipid-altering therapies when LDL-C ≥ 70 mg/dL for patients at very high ASCVD risk and ≥100 mg/dL for patients at high ASCVD risk. [31] The 2018 ESC/EAS guideline recommends an LDL-C goal of <70 mg/dL for patients at high ASCVD risk, <55 mg/dL in patients at very high ASCVD risk, and <40 mg/dL in patients with second CVD event within 2 years. [139] Patients with Familial Hypercholesterolemia have marked elevations in cholesterol levels and represent a uniquely challenging patient population discussed in Section “10 Familial Hypercholesterolemia.” No treatment goals exist for most other lipid parameters, such as high-density lipoprotein cholesterol and lipoprotein (a), with lipoprotein (a) discussed in sections “3 Dyslipidemia,” “7 Selected Populations,” and Section “10 Familial Hypercholesterolemia.”

1.3.2. Epidemiology

According to the US Centers for Disease Control. [143]
1.4. PRE-DIABETES/DIABETES

1.4.1. Definition and Physiology

Diabetes mellitus is a pathologic condition characterized by high blood glucose. Type 1 diabetes results from an absolute deficiency of insulin secretion. The early stages of T2DM are often characterized by insulin resistance, that when accompanied by an inadequate insulin secretory response, results in hyperglycemia leading to pre-diabetes or type 2 diabetes mellitus. Among patients with T2DM, the degree of insulin resistance and insulin secretion can substantially vary. [179]

Diabetes mellitus can be diagnosed [180] with one of the following measurements:

- Hemoglobin A1c level ≥ 6.5%
- Fasting (at least 8 hours) plasma glucose ≥ 126 mg/dL on two successive measurements
- Random glucose level of ≥ 200 mg/dL in a patient with symptoms of hyperglycemia
- Oral glucose tolerance test (75 grams glucose in water) with 2-hour glucose value ≥ 200 mg/dL.

Diabetes mellitus contributes to both microvascular disease (e.g., retinopathy, nephropathy, neuropathy) and macrovascular disease (e.g., cardiovascular disease and cardiovascular events). Hyperglycemia may contribute to atherosclerosis via direct and indirect mechanisms. Direct adverse effects of elevated circulating glucose levels include endothelial dysfunction, oxidative stress, heightened systemic inflammation, activation of receptors of advanced glycosylated end products, increased LDL oxidation, and endothelial nitric oxide synthase (eNOS) dysfunction. Indirect adverse effects of elevated glucose levels include platelet hyperactivity. While insulin resistance (i.e., as might be mediated by mechanisms involving adiposopathic responses associated with obesity) often leads to hyperglycemia, hyperglycemia may conversely contribute to insulin resistance via glucotoxicity. [181]

Similarly, hyperinsulinemia may be both the consequence and driver of insulin resistance. [182] Normalizing hyperglycemia and reducing glucotoxicity (without promoting insulin release) is one proposed mechanism how sodium glucose co-transporter 2 inhibitors (SGLT2 inhibitors) may increase peripheral insulin sensitivity. [183] Insulin resistance may increase non-esterified circulating free fatty acids and worsen dyslipidemia, (e.g., increased very low-density lipoprotein hepatic secretion, reduced HDL-C levels, and increased small, dense LDL particles). [184]

Females with a prior history of gestational diabetes are at increased risk for the development of T2DM. [185] Many risk factors for CVD are also risk factors for gestational diabetes (e.g., increased body fat, physical inactivity, increased age, nonwhite race, hypertension, reduced HDL-C, triglycerides ≥ 250 mg/dL). A history of gestational diabetes mellitus also doubles the risk for CVD. [186] Diagnosis of gestational diabetes mellitus (GDM) includes a 75-gram oral glucose tolerance test (OGTT) performed at 24 – 28 weeks of gestation. GDM is diagnosed when fasting glucose levels are ≥ 92 mg/dL, or 2-hour glucose levels ≥ 153 mg/dL. The diagnosis of GDM is also made when during an OGTT,
8. PCSK9 inhibitors are injectable agents that lower LDL-C ≥ 50% and reduce ASCVD risk when added to high intensity or maximally tolerated statins. [31, 139] Evolocumab [169] and alirocumab [170] are injectable fully humanized monoclonal antibodies that bind and inhibit PCSK9 and are administered every 2 – 4 weeks.� ..
9. Hypertensive pregnancy (≥ 150 mg/dL) generally increases the risk for ASCVD (i.e., high triglycerides are part of the diagnostic criteria for the metabolic syndrome) [21] and especially increases ASCVD risk if the elevated triglyceride (TG) levels represent an increase in atherogenic triglyceride-rich lipoproteins (e.g., very-low-density lipoproteins, intermediate density lipoproteins, remnant lipoproteins) [172] and their remnants. [136] In Europe, the risk for hypertensive pregnancy-induced pancreatitis is thought clinically significant at a severely elevated triglyceride level of 10 mmol/L (880 mg/dL). [139] In the US, very high triglyceride levels are typically defined as ≥ 500 mg/dL [31] and represent levels that may not only increase ASCVD risk, but also increase the risk of hypertriglyceride-induced pancreatitis – sometimes resulting in recurrent bouts of hypertriglyceride-induced pancreatitis. [173, 174]

10. Nutritional, physical activity, and pharmacotherapeutic interventions can reduce triglyceride levels. [175] Omega-3 fatty acids lower triglycerides and non-HDL-C. Prescriptionicosapent ethyl is an eicosapentaenoic acid, ethyl ester agent that reduces the risk of multiple CVD endpoints in patients at high ASCVD risk having triglyceride levels ≥ 150 mg/dL. [78] Fibrates are used to lower triglyceride levels. However, no CVD outcome study has yet shown that fibrates reduce CVD risk in patients with high triglycerides. Post hoc analyses support that fibrates may reduce ASCVD events in patients with high triglycerides (and low HDL-C levels). [176] A CVD outcome study of a selective peroxisome proliferator-activated receptor alpha modulator (pemafibrate) in patients with diabetes mellitus having hypertriglyceridemia and low HDL-C levels [177, 178] was discontinued in 2022 for futility.

Sentinel Guidelines and References
- 2021 ACC Expert Consensus Decision Pathway on the Management of ASCVD Risk Reduction in Patients With Persistent Hypertriglyceridemia [175]
- 2020 Consensus Statement By The American Association Of Clinical Endocrinologists And American College Of Endocrinology On The Management Of Dyslipidemia And Prevention Of Cardiovascular Disease [147]
- 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [93]
- 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. [139]
- 2018 AHA/ACC/ACCF/AAPA/ABC/ACP/ADA/AGS/APA/ASP/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology. [31]
Table 4 (continued)

Cardiac dysrhythmias and increase the risk of sudden death. [201] In patients with CVD, or at risk for CVD, sulfonylureas are among the last anti-diabetes mellitus agents to consider, except perhaps when cost is a major barrier to use of other anti-diabetes agents for glucose control.
9. Regarding other oral anti-diabetes mellitus agents, in patients with CVD, pioglitazone has some data to support reduction in ischemic CVD; however, pioglitazone increases body weight and increases the risk of congestive cardiomyopathy. [202] Dipeptidyl peptidase-4 inhibitors have a neutral effect on body weight and atherosclerotic CVD; saxagliptin may increase the risk of hospitalization for heart failure.
10. Regarding other injectables (beyond GLP-1 receptor agonists), insulin promotes weight gain and increases the risk of hypoglycemia. Some studies suggest that in patients with stable coronary heart disease, insulin use may increase the risk of incident or recurrent major adverse cardiac events, and may also increase the risk of major adverse cardiac events in patients with acute coronary syndrome. [203] That said, the American Diabetes Association Standards of Care suggests that insulin has a neutral effect on atherosclerotic CVD and heart failure. [193]

1.5. HIGH BLOOD PRESSURE

1.5.1. Definition and Physiology

Hypertension (HTN) can be defined as arterial blood pressure (BP) readings that, when persistently elevated above ranges established by medical organizations, adversely affect patient health. African Americans have a higher prevalence of HTN than White individuals, helping to account for a higher rate myocardial infarction, stroke, chronic and end-stage kidney disease (ESKD), and congestive heart failure among African Americans. [206, 207]

A challenge with diagnosis of HTN is ensuring accurate BP measurement: [208, 209]

- Patients should avoid caffeine, physical exercise, stress, and/or smoking for 30 minutes prior to BP measurement.
- Patients should have an empty bladder, have clothing removed from the arm, be seated with feet flat on the floor, relaxed and quiet for 5 minutes prior to BP measurement.
- BP should be obtained by properly validated and calibrated BP measurement device, with proper cuff size, and taken by trained medical personnel.
- On first measurement date, BP should be measured in both arms by repeated values separated by at least one minute, with a record of the values and respective arms (left and right).
- Longitudinally, future BP measurement should be on the same arm previously recorded as having the highest BP measurement.

1.5.2. Epidemiology

According to the US Centers for Disease Control: [210]

- Uncontrolled HTN rates are rising in the US, with nearly half of adults in the US (108 million, or 45%) having HTN defined as a systolic BP ≥ 130 mm Hg or a diastolic BP ≥ 80 mm Hg or are taking medication for hypertension.
- Approximately 1 in 4 adults (24%) with HTN have their BP under control.

- At least half of adults (30 million) with BP ≥140/90 mm Hg who should be taking medication to control their BP are not prescribed or are not taking medication.

1.5.3. Diagnosis and Treatment

Diagnosing HTN requires accurate assessment and measurement. In a medical office setting, BP should be obtained by properly validated and calibrated BP measurement devices, with proper cuff size, and taken by trained medical personnel. [93, 211] Regarding BP self-monitoring outside of a medical office setting (e.g., home, workplace), validated BP measuring devices can be found at the US BP Validated Listing (VDL) at https://www.validatebp.org, which is an American Medical Association web-based independent review initiative that determines which BP measuring devices available in the U.S. meet the Validated Device Listing Criteria. Most guidelines and scientific statements do not recommend the routine use of finger devices and wrist cuffs because of higher likelihood of incorrect positioning. [211]

Ambulatory BP monitoring (ABPM) is often performed out of the office setting via a BP cuff device that records BP readings every 15 – 30 minute intervals, typically for 24 to 48 hours. Because of repeated BP measurements over an extended time, ABPM is superior to a single office BP measurement in the overall assessment of BP, with implications regarding assessment of target organ damage and CVD risk. Some believe ABPM is the gold standard measurement for any patient with high BP. Selected patients who may especially benefit from ABPM include patients with otherwise variable BP readings or patients with suspected “white coat” or “masked” hypertension. [212]

Lowering BP reduces CVD risk, reduces the progression of kidney disease, and reduces overall mortality among a range of patients otherwise at risk for CVD. [213, 214, 215, 213, 214, 216, 217, 208] Table 5 lists ten things to know about the diagnosis and treatment of HTN and CVD prevention.

1.6. PRE-OBESITY AND OBESITY

1.6.1. Definition and Physiology

Overweight is defined as a body mass index (BMI) ≥ 25 and < 30 kg/m². Obesity is defined as BMI ≥ 30 kg/m². An increase in BMI is associated with an increase in coronary artery calcium, carotid intimal medial thickness, left ventricular thickness, [236, 237] and increased lifetime CVD risk, [238, 236] all substantially mediated by obesity-promoted CVD risk factors. [239, 27] Obesity can be sub-categorized into different classes, based upon BMI: [240]

- Class I (BMI 30-34.9 kg/m²)
- Class II (BMI 35-39.9 kg/m²)
- Class III (or “severe”; BMI ≥40 kg/m²)

Overall, BMI is an acceptable criterion to assess adiposity for populations and most patients. BMI is often the first step in evaluating the patient with potential increased body fat. However, among individuals, relying upon BMI alone may be misleading. An increase in BMI among patients with increased muscle mass (“body builders”) might erroneously suggest an increase in body fat. Conversely, a “normal” BMI in patients with decreased muscle mass (sarcopenia) might underestimated body fat. [27] Especially in the individual, percent body fat more accurately assesses body fat than BMI.

While percent body fat analysis may provide diagnostic clarity, measures of percent body fat differ in their accuracy and reproducibility. Dual X-ray absorptiometry (DXA) is often considered a “gold standard” for clinical body composition analysis, with other common clinical techniques to measure percent body fat including bioelectrical impedance analysis, air-displacement plethysmography, underwater weighing, and calipers. Other more research-oriented techniques to measure percent body fat include computerized tomography, magnetic resonance imaging, and deuterium dilution hydrometry [241]. Pre-obesity can be...
Ten things to know about hypertension and cardiovascular disease (CVD) prevention.

1. Self-monitoring ambulatory BP measurements can be useful to confirm the diagnosis of HTN, especially in patients with white coat HTN (elevated BP only in the clinician setting/office) and masked HTN (elevated BP only out of the clinic setting/office). [211]

2. The American College of Cardiology / American Heart Association defines HTN as ≥130/80 mmHg, with a treatment goal of <130/80 mmHg. BP lowering medications is recommended for primary prevention in adults with an estimated 10-year atherosclerotic CVD risk of 10% or higher and an average systolic BP ≥140 mm Hg or higher or an average diastolic BP 80 mm Hg or higher. BP lowering medication is similarly recommended for secondary prevention of recurrent CVD events in patients with clinical CVD and an average systolic BP of 130 mm Hg or higher or an average diastolic BP of 80 mm Hg or higher. [208] The International Society of Hypertension recommends the diastolic BP threshold for diagnosis of hypertension be an average of ≥140/90 mm Hg for office diagnosis of hypertension, ≥135/85 mm Hg for daytime ambulatory BP monitoring, and ≥130/80 mm Hg for 24-hour ambulatory BP monitoring. After starting anti-hypertensive medication, the blood pressure goals should be less than 140/90 mm Hg within three months, and after three months, less than 130/80 mm Hg in patients younger than 65 years. [218]

3. As long as the reduction in BP does not result in adverse health experiences (i.e., signs, symptoms, or other evidence of hypotension or hyperperfusion), then lower BPs reduce the risk of CVD. [216] Older individuals should be carefully monitored for signs and symptoms of hypotension (e.g., lightheadedness, potentially worsened by orthostatic changes), paleness to the skin with diaphoresis, syncope, blurred vision, impaired cognition, fatigue, nausea, depression, general felling of ill-health, and myocardial ischemic signs and symptoms suggestive of a potential decrease in myocardial perfusion with reduction in diastolic BP < 70 mmHg. [209]

4. HTN is a risk factor for heart failure, coronary artery disease, stroke, peripheral artery disease chronic renal insufficiency and cardiac dysrhythmies, most commonly being atrial fibrillation. The presence of hypertension warrants more aggressive treatment of concomitant CVD risk factors (e.g., pre-obesity or obesity, diabetes mellitus, dyslipidemia, cigarette smoking). [241]

5. Non-pharmacologic, non-invasive treatment of high BP includes a low-sodium diet (<2300 mg of sodium per day), salt substitute (i.e., 75% sodium chloride and 25% potassium chloride), adequate potassium intake, routine physical activity/exercise, and attaining a healthy body weight. [219, 95, 220] Adult males and females with elevated BP or hypertension who consume alcohol should drink no more than 2 and 1 standard drinks per day, respectively. [208] Invasive non-pharmacologic treatments for resistant hypertension may include renal denervation therapy. [221, 222]

6. Addition of a non-pharmacologic therapy with 2 first-line agents of different classes, either as separate agents or in a fixed-dose combination, is recommended for adults with an average BP more than 20/10 mm Hg above their BP target. [208] Specifically, single pill combination antihypertensive therapy is often recommended for initial therapy (i.e., angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker in combination with a calcium channel blocker or thiazide diuretic in the same pill). [191, 211, 219]

7. Regarding diuretics, chlorothalidone and indapamide are “thiazide-like” diuretics with longer half-lives and achieve a greater BP reduction over 24-hours than the thiazide hydrochlorothiazide. [224] However, recommendations and data supporting chlorothalidone versus hydrochlorothiazide as the preferred thiazide or thiazide-type diuretic varies. [225, 226, 228] Thiazide diuretics are often a first-line therapy for HTN. Loop diuretics (e.g., furosemide, torasemide, bumetanide, and azosemide) may be preferred in patients with heart failure (especially torsadeur) and when estimated glomerular filtration rate is < 30 ml/min. [208, 227, 228] Steroidal mineralocorticoid receptor antagonists (MRA) such as spironolactone are often characterized as potassium sparing; however, especially in the presence of renal disease, spironolactone may cause hyperkalemia. Nonsteroidal MRA are in development for treatment of hypertension, heart failure, and to reduce the progression of renal disease (i.e., diabetes nephropathy) [229]. Finerenone is a nonsteroidal mineralocorticoid receptor antagonist (MRA) approved to reduce risk of estimated glomerular filter decline, end stage kidney disease, CVD death, non-fatal myocardial infarction, and hospitalization for heart failure in adult patients with chronic kidney disease associated with T2DM. [https://labeling.bayerhealthcare.com/html/products/pr/Kerendia_PI.pdf].

8. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) are first line antihypertensive agents. In addition to lowering BP, ACE inhibitors and ARBs are beneficial in treating heart failure and coronary artery disease. Sacubitril/valsartan is illustrative of a combination agent (combining an angiotensin receptor-neprilysin inhibitor (ARNI) with an angiotensin receptor blocker ACE inhibitors) with potential benefits in treating heart failure. [210] ARBs should not be used together and should not be used in combination with direct renin inhibitors (i.e., aliskiren), largely due to questionable added benefits, and potential for hyperkalemia. [208, 231]

9. Calcium channel blocker (CCB)s may help treat angina and cardiac dysrhythmias; however, dihydropyridine CCBs (e.g., amlodipine, nitrendipine) may cause edema and non-dihydropyridine CCBs (e.g., felodipine and nifedipine) may cause bradycardia and heart block and should be avoided in patients with heart failure with reduced left ventricular ejection fraction. CCBs lower BP and are first line anti-hypertensive agents. [208] Beta blockers reduce CVD in patients with reduced ejection fraction, are used to treat angina pectoris and cardiac dysrhythmias, and may reduce the risk of recurrent myocardial infarction after an acute myocardial infarction. However, the BP lowering may be less than with other anti-hypertensive drug treatments. [232, 233]

10. Community based approaches (e.g., churches, barbershops, neighborhood initiatives) and telemonitoring for HTN management may be beneficial for BP control beyond in-office practice alone. [234, 235]

Sentinel Guidelines and References
- 2020 International Society of Hypertension Guideline [218]
- 2020 Self-Measured Blood Pressure Monitoring at Home: A Joint Policy Statement From the American Heart Association and American Heart Association [211]
- 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease [93]
- 2018 ESC/ESH Guidelines for the management of arterial hypertension [209]
- 2017 ACC/AHA/APA/ABC/ACP/AGS/APhA/ASH/ASCPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults [208]

Table 5 (continued)

Condition	Treatment		
Hypercholesterolemia	80 cm	90 cm	100 cm
Waist circumference	≥ 80 cm	≥ 90 cm	≥ 100 cm

Table 5: Waist circumference in men and women
- Waist circumference is ≥80 cm in men and ≥90 cm in women.
- For men, the waist circumference is ≥80 cm if the body mass index (BMI) is ≥30 kg/m². For women, the waist circumference is ≥80 cm if the body mass index (BMI) is ≥25 kg/m².
- If the waist circumference is ≥80 cm, the individual is at increased risk of CVD and should undergo a thorough evaluation for CVD risk factors.

Table 5: Waist circumference in male and female
- Waist circumference is ≥80 cm in males and ≥90 cm in females.
- For males, the waist circumference is ≥80 cm if the body mass index (BMI) is ≥30 kg/m². For females, the waist circumference is ≥90 cm if the body mass index (BMI) is ≥25 kg/m².
- If the waist circumference is ≥80 cm, the individual is at increased risk of CVD and should undergo a thorough evaluation for CVD risk factors.

Table 5: Waist circumference in male
- Waist circumference is ≥80 cm in males.
- For males, the waist circumference is ≥80 cm if the body mass index (BMI) is ≥30 kg/m².
- If the waist circumference is ≥80 cm, the individual is at increased risk of CVD and should undergo a thorough evaluation for CVD risk factors.
adipose tissue (EAT), with EAT considered the visceral fat of the heart. [242] Thus, central obesity is a clinical marker of adiposopathy and increased visceral adiposity is a surrogate marker for global fat dysfunction. [121] Assessment of visceral fat requires that it be measured, in ways beyond waist circumference alone. That is because the correlation of waist circumference with visceral adiposity is highly dependent on factors such as sex and ethnicity. [242, 245] Optimally, visceral fat should be < one pound and android fat < 3 pounds (as assessed by DXA for example). Values greater than these are associated with increased risk of cardiometabolic abnormalities such as increased blood glucose, increased blood pressure, and increased blood lipids. [241]

In short, increased body fat can result in “fat mass disease” and “sick fat disease.” [246] Examples of the adverse biomechanical aspects of obesity (“fat mass disease”) include compromise of cardiac function via pericardial mechanical restraint, impaired left ventricular expansion, impaired left ventricular filling, diastolic heart failure, sleep apnea, and immobility. [27] Additionally, an increase in body fat can also lead to adipocyte and adipose tissue dysfunction (“sick fat”). Adiposopathy is defined as pathogenic disturbance in adipose tissue anatomy and function that is promoted by positive caloric balance in genetically and environmentally susceptible individuals that result in adverse endocrine and immune responses that may directly promote CVD, and may cause or worsen metabolic disease. [2, 246, 241] Beyond the indirect increased CVD risk with obesity (e.g., promotion of metabolic diseases such as type 2 diabetes mellitus, hypertension, and dyslipidemia – all major CVD risk factors), [247, 248, 249] obesity may also result in adiposopathic consequences that directly increase CVD risk. [2] Epididymal and visceral fat share the same mesodermal embryonic origin, both are associated with increased CVD risk, and both are highly correlated with increased coronary calcification. Epididymal adipose tissue can directly contribute to heart failure (e.g., especially heart failure with preserved ejection fraction or HFpEF), atherosclerosis, cardiac dysrhythmias, fatty infiltration of the heart, and increased coronary calcium through the physical increase in fat mass surrounding the heart, as well as pathogenic paracrine and vasocrine signaling and transmission of inflammatory factors, fatty acids, and possibly transport of atherogenic lipoproteins (i.e., “outside to in” model of atherosclerosis) [27].

1.6.2. Epidemiology
According to the US Centers for Disease Control: [250]

• Data from 2015~2016 suggests the prevalence of obesity (body mass index/BMI ≥ 30 kg/m²) was ~ 40% of United States (US) adults. [250] Projections suggest that most of today’s children (~ 60%) will develop obesity at the age of 35 years, and roughly half of the projected prevalence will occur during childhood. [251]

• Positive caloric balance may result in enlargement of adipocytes and adipose tissue, resulting in adiposopathy (i.e., adipose tissue intra-cellular and intercellular stromal dysfunction leading to pathogenic adipose tissue endocrine and immune responses) that contribute to metabolic diseases – most being major risk factors for CVD. [2, 27]

Some of the most common adiposopathic metabolic consequences of obesity are major CVD risk factors such as type 2 diabetes mellitus (T2DM) and hypertension. [27, 252] Over the past decades, along with the obesity epidemic, the rates of T2DM and hypertension have also dramatically increased. [252]

• Concomitant with the increased prevalence of obesity and metabolic CVD risk factors is the intake of energy dense foods with low nutritional value, eating dealignment with circadian rhythms, [253] and consumption of fast foods. [254]

• The prevalence and severity of obesity in US adults has significantly increased from 1999-2000 through 2017-2018 [250]

• In 2017-2018, the age-adjusted prevalence of obesity (BMI ≥ 30 kg/m²) was ~ 40% of US adults [250]

In 2017-2018, non-Hispanic Black adults (49.6%) - especially non-Hispanic Black females (56.9%) - had the highest age-adjusted prevalence of obesity compared with other race and Hispanic-origin groups [250]

• In 2017-2018, the age-adjusted prevalence of severe obesity (BMI ≥ 40 kg/m²) was 9.2% of US adults [250]

• Complications of obesity include heart disease and stroke

• Other CVD-related complications of obesity include adiposopathic alterations in: [27]
 • CVD risk factors (e.g., diabetes mellitus, HTN, dyslipidemia)
 • Cardiovascular hemodynamics and heart function
 • Heart, heart cells, and structure (which can result in electrocardiogram tracing abnormalities)
 • Atherosclerosis and myocardial infarction
 • Adiposopathic immunopathies that promote CVD risk factors and CVD
 • Adiposopathic endocrinopathies that promote CVD risk factors and CVD
 • Thrombosis

While current antiobesity drug treatments can improve CVD risk factors, their clinical use is limited to only ~ 1% of eligible patients. [255] Importantly, no current anti-obesity drug has CVD outcomes data to support the use of anti-obesity drugs to reduce CVD events. However, drugs such as GLP-1 receptor agonists have cardiovascular outcome study findings supporting a reduction in CVD among patients with diabetes mellitus, with most study participants having pre-obesity or obesity. [199] Higher doses of some of these same GLP-1 receptor agonists are approved for treatment of obesity (i.e., liraglutide and semaglutide). Ongoing CVD outcomes trials are ongoing to determine if existing or future anti-obesity drugs will likewise reduce CVD events. [27, 256]

Bariatric surgery continues to evolve as a treatment for obesity. [27] Bariatric surgery not only reduces CVD risk factors (i.e., T2DM, HTN and dyslipidemia [257]), but also reduces the risk of MI, stroke, and all-cause mortality. [258, 259] Similar to anti-obesity drugs, bariatric surgery is performed in less than 1% of appropriate patients for which it is indicated. [260] Among the few medically eligible patients who receive treatment with bariatric surgery, significant disparities exist according to race, income, education level, and insurance type. [261]

1.6.3. Diagnosis and Treatment
Table 6 lists ten things to know about the diagnosis and treatment of increased body fat and CVD prevention.

1.7. CONSIDERATIONS OF SELECTED POPULATIONS (OLDER AGE, RACE/ETHNICITY, SEX DIFFERENCES)

1.7.1. Definition and Physiology

1.7.1.1. Older individuals. Older individuals (i.e., ≥ 75 years of age) vary considerably in their future risk for CVD and life expectancy. This variance in CVD risk and mortality is largely dependent on underlying co-morbidities, genetic predisposition, and degree of frailty. [274] Given the limitation of evidenced-based data among older individuals for the primary prevention of CVD, treatment recommendations are best determined by shared decision-making utilizing a patient-centered approach. [274, 31] Clinicians should tailor discussions to individual CVD risk factors, complexity of concurrent illnesses, considerations of the quality of life, and cost issues related to polypharmacy. [274] (Chart 1)

 Race/Ethnicity

1.7.2. South Asian persons

make up over 20% of the world population. South Asian persons can
Table 6
Ten things to know about increased body fat and cardiovascular disease (CVD) prevention

1. CVD (and cancer) are the most common causes of death among patients with obesity. [262, 263, 264] Obesity directly increases the risk of CVD (e.g., via adipocytokine production of epicardial fat), and indirectly increases the risk of CVD via the adipocytokine production of major CVD risk factors such as diabetes mellitus, hypertension, dyslipidemia, and thrombosis, as well as other conditions associated with increased CVD risk (e.g., sleep apnea, insulin resistance, polycystic ovary disease, gestational diabetes, non-alcoholic fatty liver disease). [27]

2. Weight reduction in patients with obesity attenuates insulin resistance, often improves major CVD risk factors such as abnormalities in glucose, lipids, blood pressure and thrombosis, may have favorable effects on cardiac hemodynamics, and may reduce premature all-cause mortality. [265, 266, 267] Both weight reduction, and weight loss maintenance are often challenging in patients with pre-obesity or obesity. Given obesity is a multifactorial disease, pre-obesity and obesity are best managed utilizing a multifactorial approach including nutrition, physical activity, motivational interviewing, behavior modification, pharmacotherapy, and possibly bariatric surgery. [27, 268]

3. No drug and dose having an indication to treat obesity has yet proven to reduce CVD events. Patients with obesity should undergo multifactorial CVD risk reduction (e.g., healthful nutrition and physical activity, smoking cessation, as well as optimal control of blood sugar, blood pressure, and blood lipids).

4. Semaglutide and liraglutide are indicated as both anti-diabetes and anti-obesity agents (albeit at different doses depending on the intended use), with metabolic benefits beyond weight loss alone. [269, 270] In patients wherein a GLP-1 receptor agonist is being used to treat T2DM, clinical outcomes studies support liraglutide, semaglutide, and dulaglutide as reducing the risk of CVD events. Anti-obesity agents are being evaluated in CVD outcomes trials. [27]

5. Among patients with obesity, CVD, and without T2DM and without congestive cardiomyopathy, initial treatments to consider include semaglutide and liraglutide, utilizing the dose indicated for treatment of obesity. [27]

6. Metformin and SGLT-2 inhibitors decrease CVD among patients with diabetes mellitus. While they do not have an indication as anti-obesity agents, metformin and SGLT2 inhibitors modestly reduce body weight in patients with and without diabetes mellitus. [270] While no anti-obesity medication has yet demonstrated a reduction in CVD when used to treat obesity, when accompanied by weight loss, many anti-obesity drugs reduce CVD risk factors (i.e., semaglutide, liraglutide, naltrexone/bupropion, phentermine/topiramate, and orlistat are not contraindicated in patients with CVD. [27]

7. Among patients with obesity, CVD and T2DM without congestive cardiomyopathy, initial drug treatments to consider include metformin and GLP-1 receptor agonists (e.g., liraglutide, semaglutide, and dulaglutide), and SGLT-2 inhibitors (e.g., empagliflozin, dapagliflozin, and canagliflozin). [31]

8. Among patients with obesity, CVD, T2DM without congestive cardiomyopathy, initial drug treatments to consider include metformin and SGLT-2 inhibitors. [27]

9. Little evidence supports the use of phentermine & topiramate combination anti-obesity agent as increasing or decreasing CVD risk among patients with obesity. [271]

10. Phentermin is contraindicated in patients with CVD [27]

Sentinel Guidelines and References
2022 Anti-Obesity Medications and Investigational Agents: An Obesity Medicine Association Clinical Practice Statement [470].
2020 Obesity in Adult: A Clinical Practice Guideline [272]
2015 Pharmacological Management of Obesity: An Endocrine Society Clinical Practice Guideline [273]
2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults [240]

Chart 1
Primary CVD prevention recommendations of statin use and diagnostic testing for adults ≥ 75 years of age: [31]

Age Group	LDL-C Goal	Non-HDL-C Goal
75 years or older	If LDL-C < 160 mg/dL, then it may be reasonable to start with a moderate-intensity statin. If patients have demonstrable functional decline, multiturbidity, frailty, or reduced life-expectancy, then it may be reasonable to stop statin therapy in some cases	If LDL-C 70 – 189 mg/dL, then it may be reasonable to measure coronary calcium to potentially reclassify those with CAC of zero to a lower ASCVD risk to potentially avoid statin therapy
75 – 80 years	If LDL-C 70 – 189 mg/dL, then it may be reasonable to measure coronary calcium to potentially reclassify those with CAC of zero to a lower ASCVD risk to potentially avoid statin therapy	

Chart 2
Metrics for cardiovascular disease prevention in South Asian persons* [282, 283]

Metric	Desirable Goal
Hemoglobin A1c	< 6%
Waist circumference	Male: < 35 inches (< 89 cm) Female: < 31 inches (< 80 cm)
Body mass index	< 23 kg/m²
Lipoprotein (a)	< 100 nmol/L
Total cholesterol	< 160 mg/dL
Low density lipoprotein cholesterol	High risk: > 70 mg/dL Very high risk: > 50 mg/dL
High density lipoprotein cholesterol (HDL-C)	High risk: ≤ 40 mg/dL Extreme risk: ≤ 30 mg/dL
Triglycerides	< 50 mg/dL
Non-HDL-C	High risk: > 100 mg/dL

* While the listed metrics are considered “desirable,” the cardiovascular disease benefits of drug therapy may not be as strong as the metrics listed above.
reported as having a lower overall risk of mortality than non-Hispanic Whites and non-Hispanic Black persons (albeit higher risk of mortality than Asian Americans). [286] Nonetheless, CVD is the leading cause of death among Hispanics and the “Hispanic Paradox” may not apply to all Hispanic/Latino subpopulations. [287] Thus, to reduce CVD risk, Hispanic/Latino individuals should undergo diagnosis and treatment of CVD risk factors similar to other ethnicities / races. [288]

1.7.5. Native Americans

are defined as members of indigenous peoples of North, Central, and South America, with American Indians and Alaskan Natives often residing in North America. [289] In 2018, American Indians / Alaska Natives were 50% more likely to be diagnosed with CVD compared to White individuals, which may be related to a higher prevalence of CVD risk factors such as obesity, diabetes mellitus, HTN, and higher rates of cigarette smoking. [289] Pima (A’kinmel O’dhahm or “river people”) Indians are a subset of American Indians located in southern Arizona and northern Mexico. Pima Indians are reported to have a high rate of CVD risk factors (e.g., high prevalence of obesity, insulin resistance, T2DM, higher triglyceride levels, reduced HDL-C levels, and higher prevalence of metabolic syndrome). [290] Older literature suggests incident CVD events among Pima Indians may not be as high as predicted. [291] This is, in part, because in some cases compared to White individuals, untreated LDL-C levels may be lower among Pima males older than 30 and in females older than 25 years of age. [290] Despite a potential lower CVD risk compared to White persons, heart disease remains a major cause of mortality among Pima Indians, especially among those with concomitant renal failure. [292]

1.7.6. Females

with CVD risk factors are at increased risk for CVD events, directionally similar to males. CVD is the leading cause of mortality among females. [293] CVD accounts for up to 4 times as many deaths in females compared to breast cancer. [294] Compared to males, females are at higher risk for bleeding after invasive cardiac procedures, and are more predisposed to autoimmune/inflammatory disease, and fibromuscular dysplasia. This may potentially predispose females to myocardial infarction in the absence of atherosclerotic obstructive coronary arteries - especially among younger females. [295] According to the 2018 American Heart Association, American College of Cardiology Guideline on the Management of Blood Cholesterol, premature menopause and hypertensive disorders of pregnancy (i.e., preeclampsia) are CVD risk enhancers. [31] Gestational diabetes and preterm delivery are also recognized as increasing lifetime CVD risk.

1.7.7. Epidemiology

- Due to insufficient data (many CVD outcomes trials excluded older patients), the treatment recommendations for primary CVD risk reduction in individuals ≥ 75 years old have often less scientific support than treatment recommendations for younger age groups. Also, due to the population makeup of the supporting databases, CVD risk scores are only validated for individuals at or below 65, 75, or 80 years of age, depending upon the CVD risk assessment calculator. For example, the ACC/AHA ASCVD Risk Calculator includes an age range of 40 – 79 years. [296]
- Many CVD risk calculators do not take into full account the influence of race or CVD risk. The ACC/AHA ASCVD Heart Risk Calculator is limited to the races of “Other” and African Americans. [296] Conversely, the Multi-Ethnic Study of Atherosclerosis (MESA) 10-year CHD risk tool includes Caucasians/Whites, Chinese, African Americans, and Hispanics individuals 45–85 years of age as data input, along with coronary artery calcification. [297]
- CVD is the leading cause of death for females and males across most racial and ethnic groups in the US, accounting for ~20% of deaths per year. [298]
- African Americans ages 35-64 years are 50% more likely to have high blood pressure than Whites. African Americans ages 18-49 are 2 times as likely to die from heart disease than Whites. [299]
- Compared to Whites, Hispanic/Latino individuals have 35% less heart disease, but a 50% higher death rate from diabetes, 24% more poorly controlled high blood pressure, and 23% more obesity. [300]
- Compared with US-born Hispanics/Latinos, foreign-born Hispanic/ Latino individuals have about half as much heart disease; 29% less high blood pressure; and 45% more high total cholesterol. [300]
- Compared to White adults, American Indians/Alaska Natives have a higher prevalence of CVD risk factors such as obesity, high blood pressure, and current cigarette smoking. In 2018, American Indians/Alaska Natives had a 50 percent greater risk for coronary heart disease compared to non-Hispanic Whites. [289]
- Heart disease is the leading cause of death for African American and White females in the US. Among American Indian and Alaska Native females, heart disease and cancer cause roughly the same number of deaths each year. [301]
- Age and sex are important risk factors for stroke. One in 5 US females between 55 – 75 years of age will have a stroke in their lifetime. Stroke kills twice as many females as breast cancer. [302] Greater longevity in females helps account for strokes occurring more frequently in females than males; however, females may also have sex-specific stroke risk factors (e.g., exogenous hormones, and pregnancy-related hormone exposures). [303]

1.7.8. Diagnosis and Treatment

Table 7 lists ten things to know about the diagnosis and treatment of patients of older age, different races/ethnicities, and females.

1.8. THROMBOSIS

1.8.1. Definition and Physiology

Thrombosis is the intravascular (arterial or venous) coagulation of blood, resulting in a “blood clot” which may cause local or downstream obstruction of a vessel (i.e., thromboembolism). Atherosclerosis may lead to chronic luminal narrowing that obstructs on-demand blood flow, resulting in angina or claudication. Thromboembolic acute obstruction of a femoral vein may lead to an acute deep vein thrombosis and potential pulmonary embolism. Plaque rupture and acute thrombus formation obstructing a coronary artery may lead to a myocardial infarction; acute obstruction of a carotid artery may lead to a stroke. [322]

Risk factors for thrombosis include cigarette smoking, older age, atrial fibrillation, prosthetic heart valves, blood clotting disorders, trauma/fractures, physical inactivity (including prolonged bed rest / immobility), obesity, diabetes mellitus, HTN, dyslipidemia, certain drug treatments, [323] pregnancy, and cancer. Due to higher hormonal components, older oral contraceptives were associated with increased risk of thrombotic stroke. But even current combination oral contraceptives may somewhat increase the risk of myocardial infarction and stroke, especially oral contraceptives containing > 50 micrograms of estrogens. [324] Similarly, while the risk is small with currently recommended doses, long-term hormone therapy (i.e., estrogen with or without progestins) may mildly increase the risk of thromboembolism. [325] Anabolic androgenic steroid use for athletic “body building” increases the risk of increase of erythrocytes and hemoglobin concentration, thromboembolism, intracardiac thrombosis, stroke, cardiac dysrhythmias, atherosclerosis, concentric left-ventricular myocardial hypertrophy with impaired diastolic function and sudden cardiac death. [326] The data regarding stroke risk with testosterone replacement therapy in hypogonadal males is inconsistent, and thus the relationship of testosterone replacement therapy to stroke is unclear. [327]

One of the most common preventable contributors to thrombosis is tobacco cigarette smoking. [328] which is a well-known, major contributor to overall CVD morbidity and mortality, not just due to...
Table 7

Ten things to know about select populations (older age, race/ethnicity, sex differences) and cardiovascular disease (CVD) prevention.

1. CVD prevention recommendations vary among different guidelines regarding individuals ≥ 75 years of age. CVD treatment decisions for older individuals are best based upon an individualized patient-centered approach.

2. General principles of CVD prevention in older individuals include: (a) the BP goal for the vast majority of older adults is <130 mm Hg, [304], and perhaps lower depending upon the patient’s clinical presentation (e.g., CVD, other CVD risk factors), or perhaps higher among those with poor life expectancy, risk for orthostatic hypotension, falls, and other side effects of lower blood pressure or polypharmacy; (b) Unaccompanied by unacceptable side effects, statin therapy should be continued in older individuals, recommended to older individuals who experience CVD events or who are at high CVD risk, and offered as primary prevention to patients ≥ 75 years of age as part of patient centered, shared decision-making; (c) The degree of glucose control in older individuals should be based upon the underlying health and risks to the patient, with a priority to avoid hypoglycemia and hyperglycemia (i.e., hemoglobin A1c 7.5% or less may be a reasonable goal in some patients with 3 or more chronic illnesses and intact cognition). Less stringent hemoglobin A1c (8.0% or less) may be considered in patients who are frail, with multiple chronic illnesses, advanced cognitive or functional impairments, hypoglycemia or awareness, limited life expectancy, or long-standing diabetes mellitus in whom more aggressive blood sugar control potentially contributes, or has contributed to an unacceptable risk for hypoglycemia. Some have further suggested extending the hemoglobin A1c goal to 8.5 or 9.0% for patients with very complex comorbidities, undergoing long-term assisted care, end-stage chronic illnesses, and advanced cognitive or functional limitations; [274] (d) Older individuals should avoid cigarette smoking which not only increases the risk of cancer, lung disease, and frailty, but also increases the risk of CVD and thrombosis. In patients with CVD treated with aspirin for anti-thrombotic effects, the benefits of continuing aspirin in older patients with CVD often exceed the risk of bleeding. Regarding primary prevention, the risk of bleeding from aspirin in many frail individuals over 80 years of age likely exceeds the potential benefits of preventing the first CVD event; and (e) Appropriate, patient-centered nutritional intervention and physical activity/exercise may not only have CVD benefits, but other CVD risk factor and anti-frailty health benefits in older individuals.[274, 71]

3. Compared to Whites, many Asian Americans are at increased CVD risk, especially those of South Asian descent. Compared with Whites at the same statin dose, Asian individuals may have increased statin bioavailability, similar LDL-C lowering at lower statin doses, and thus the approved statin doses are often lower among Asian individuals.[305]

4. In addition to healthful nutrition and physical activity generally applicable to all races, African Americans may be especially ‘salt sensitive’ with regard to high blood pressure; with general recommendation that in individuals with HTN, the optimal goal is <130/80 mm Hg or <120/80 mm Hg, which may be more important among African Americans. [306] Guidelines for pharmacologic CVD prevention in African Americans are similar to other racial/ethnic groups, except regarding heart failure and HTN. In African Americans, diuretics and calcium channel blockers may be preferred over angiotensin converting enzyme inhibitors and beta-blockers.[285]

5. Recommendations to reduce CVD risk in Hispanics/Latinos is like other races, with ineffective CVD prevention communication being a substantial barrier to non-English speaking Hispanic individuals. [288] Important factors in effective CVD prevention among minorities are sustainable interventions that adequately address communication barriers, and that both acknowledge and address the impact of race/ethnic culture in discussions regarding behavioral and other treatment recommendations. Effective patient communication may [307] or may not [308] be influenced by the race/ethnicity of the clinician. Clinician decision making may be influenced by integrating themes regarding race, patient-level issues, system-level issues, bias and racism, patient values, and comorbidities. [309] On a patient level, practical interventions to potentially improve understanding and adherence to treatment among minorities may include instilling confidence in the minority patient communication abilities, and facilitating the simple asking and answering of clinically applicable questions. [310, 311]

6. Females typically have the same rate of CVD onset 10 years later than males. However, this favorable cardioprotective effect diminishes among females with polycystic ovary syndrome, cigarette smoking and females entering menopause. Females over 60 years of age often have lower rates of controlled HTN and higher prevalence of HTN compared to males. [295] Any cardioprotective effect is more lost among females with T2DM. Females with T2DM have a three-fold increased risk of CVD, with a higher risk of heart failure, stroke, claudication, and CVD mortality compared to males with T2DM. [291] While supporting CVD outcome data are more limited than males, statins appear to be equally effective for secondary CVD prevention in females, although females may have a greater likelihood of developing statin associated diabetes mellitus and myalgias. [293]

7. Chest pain is the most common symptom of acute coronary syndrome among both males and females. However, compared to males, females are more likely to present without chest pain (e.g., weakness, fatigue, nausea, dyspnea, and pain to neck, jaw, and back). [293]

8. Polycystic ovary syndrome (PCOS) often occurs in premenopausal females with pre-obesity or obesity and is clinically characterized by androgen excess (hirsutism), amenorrhea or oligomenorrhea, infertility, PCOS increases CVD risk, largely because of accompanyingcardiometabolic abnormalities such as insulin resistance, glucose intolerance, diabetes mellitus, HTN, dyslipidemia (increased triglycerides and decreased HDL-C), metabolic syndrome, increased C-reactive protein, increased coronary artery calcium scores, increased carotid intima-media thickness, and endothelial dysfunction.[312] As with other patients at increased CVD risk, females with PCOS should be aggressively treated with healthful nutrition and physical activity. Statin therapy may be indicated in many females with PCOS; however, statins may worsen insulin sensitivity in females with PCOS. [313] Conversely, statin therapy may lower testosterone in females with PCOS, with variable reports regarding effects on menstrual regularity, spontaneous ovulation, hirsutism, or acne. [314, 315] Statin therapy combined with metformin therapy in females with PCOS may not only lower cholesterol, triglyceride, and testosterone levels, but may also improve insulin resistance with improvement in menstrual regularity, hirsutism, acne, and spontaneous ovulation. [316] Because the degree of possible teratogenic effects of statins were unclear, statins were previously contraindicated in females who are pregnant, or who may become pregnant. [317] In 2021, the Food and Drug Administration requested removal of the strongest warning against using statins during pregnancy, but still advised most pregnant patients stop taking statins. [318] In females going through menopause, the loss of estrogens may have systemic effects such as worsening circulating lipids and lipoproteins and reduced central nervous system safety effects of estrogens. [319] Taken together with age-related increase in body fat, females undergoing menopause are at increased risk for insulin resistance, HTN, and dyslipidemia – increasing CVD risk. [320] In some cases, hormone replacement therapy primarily used to treat menopausal symptoms may increase the risk of (thrombotic) CVD among menopausal females. If menopausal hormone therapy is to be used in menopausal females, it should be at the lowest effective dose, administered early (within 5 years) of menopause, and should not be prescribed for the purpose of preventing CVD. [293]

9. Regarding menopause, while premenopausal females may have some ‘protection’ against CVD compared to males, this protection gap narrows after menopause. This increased CVD risk is partially because females entering the menopause are mostly older than premenopausal females. Advancing age is also usually associated with an increase in percent body fat. [318] In females going through menopause, the loss of estrogens may have systemic effects such as worsening circulating lipids and lipoproteins and reduced central nervous system safety effects of estrogens. [319] Taken together with age-related increase in body fat, females undergoing menopause are at increased risk for insulin resistance, HTN, and dyslipidemia – increasing CVD risk. [320] In some cases, hormone replacement therapy primarily used to treat menopausal symptoms may increase the risk of (thrombotic) CVD among menopausal females. If menopausal hormone therapy is to be used in menopausal females, it should be at the lowest effective dose, administered early (within 5 years) of menopause, and should not be prescribed for the purpose of preventing CVD. [293]

10. Obesity, physical inactivity, T2DM, and cigarette smoking may increase the risk of CVD more so in females than in males, indicating the need for aggressive management of multiple CVD risk factors among both females and males. [293]

Sentinel Guidelines and References

2020 The Use of Sex-Specific Factors in the Assessment of Women’s Cardiovascular Risk [301, 31]
2020 US Department of Health and Human Services Office of Minority Health. Minority Population Profiles. [289]
2017 Cardiovascular Health in African Americans: A Scientific Statement From the American Heart Association. [285]
2016 Cardiovascular Disease in Women: Clinical Perspectives [321, 31]
2014 American Heart Association Council on E, Prevention, American Heart Association Council on Clinical C, American Heart Association Council on C, Stroke N. Status of cardiovascular disease and stroke in Hispanics/Latinos in the United States: a science advisory from the American Heart Association [288].
Vaping product use-associated Lung Injury” (EVALI). Nicotine alone has the potential to adversely affect the cardiovascular system via an acute increase in the sympathetic nervous system, increase in blood pressure, decrease in coronary blood flow, increase in myocardial remodeling/fibrosis, promotion of dysrhythmias and promotion of thrombosis, with longer-term adverse effects on endothelial function, inflammation, lipid levels (i.e., reduced high density lipoprotein and increased LDL-C levels), blood pressure, and insulin resistance.[330]

Regarding primary prevention, it is uncertain if the benefits of aspirin exceed its risks. Guidelines recommend low-dose aspirin in select adults 40 – 70 years of age at high ASCVD risk, but not at increased risk of bleeding.[93] Regarding secondary prevention, a prior CVD event increases the risk of a future CVD event, often involving a thromboembolic component. Thus, patients with an acute coronary syndrome benefit from well-managed anti-thrombotic therapy as secondary prevention to reduce the risk of future CVD events. As a component of comprehensive cardiovascular secondary prevention, aspirin 81 – 325 mg per day is often beneficial and indicated for patients with history of CVD, stroke, or peripheral artery disease.[331] In addition to aspirin, a second anti-platelet agent may be warranted (i.e., dual antiplatelet therapy or DAPT). Overriding concepts and recommendations for DAPT cited by the “2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease”[332] include:

- Unless contraindicated or otherwise not tolerated, aspirin therapy should be continued indefinitely in patients with coronary artery disease. Lower daily doses of aspirin, including in patients treated with DAPT, are associated with lower bleeding complications and comparable ischemic protection than higher doses of aspirin. The recommended daily dose of aspirin in patients treated with DAPT is 81 mg (range, 75 mg to 100 mg).
- The addition of a P2Y12 inhibitor to aspirin monotherapy, as well as prolongation of DAPT, necessitates a fundamental tradeoff between decreasing ischemic risk and increasing bleeding risk. Shorter-duration DAPT can be considered for patients at lower ischemic risk with high bleeding risk; longer-duration DAPT may be reasonable for patients at higher ischemic risk with lower bleeding risk. In most clinical settings, DAPT is recommended for at least 6–12 months after a coronary artery event.

1.8.2. Epidemiology

According to the US Centers for Disease Control: [333, 334, 335, 336, 337]

- Stroke is a leading cause of serious long-term disability, reducing mobility in more than half of stroke survivors age 65 and over.
- In the US, stroke is responsible for 1 out of 20 deaths.
- About 90% of all strokes are ischemic strokes.
- The risk of having a first stroke is nearly twice as high for Black as for White persons, and Black patients have the highest rate of death due to stroke.
- Smoking is a leading cause of preventable death, accounting for 480,000 deaths a year.
- In 2018, 13.7% of all adults (34.2 million people) smoked cigarettes: 15.6% of males and 12.0% of females.
- Cigarette smoking has a dose-response relationship with stroke.[338]
- E-cigarettes are the most frequently used tobacco product among youths. Roughly 5% of middle school students and 20% of high school students report using e-cigarettes. [337]

1.8.3. Diagnosis and Treatment

Table 8 lists ten things to know about the diagnosis and treatment of thrombosis and CVD prevention.

Table 8

Ten things to know about thrombosis and cardiovascular disease (CVD) prevention

1. Regarding the use of aspirin for CVD primary prevention, randomized clinical trials suggest the risks of bleeding outweigh the health benefits.[339, 340, 341, 342, 343, 344, 345, 346, 347] The benefits of aspirin for primary prevention in patients with diabetes mellitus may be counterbalanced by higher bleeding risk.[348] Aspirin may be beneficial in primary prevention for select patients at high risk for CVD and who are at low risk for bleeding, but only after a patient-centered evaluation and discussion.[349, 191, 350] Coronary artery calcium (CAC) assessment can help inform the clinical use of aspirin in primary prevention, with those having a CAC score > 610 Agatston Units (AU) having a favorable risk/benefit estimation from the use of aspirin, while those with zero CAC are estimated to have net harm from aspirin.[351, 352, 353]

2. The standard of care for managing thrombotic risk in secondary prevention (i.e., preventing recurrent ischemic events after an acute coronary syndrome and to prevent stent thrombosis after percutaneous coronary intervention) includes DAPT. DAPT is typically defined as aspirin plus the use of a P2Y12 receptor inhibitor (e.g., clopidogrel, ticagrelor, or prasugrel).[354]

3. Aspirin is the first antithrombotic drug of choice in secondary prevention after a myocardial infarction and should be continued indefinitely unless contraindicated or adverse experiences occur.[355] Aspirin-coated preparations may reduce gastrointestinal bleeding. The coated aspirin dose of 100 mg per day may help reduce CVD, death (and cancer), with lower doses being better tolerated (i.e., less bleeding) and higher doses having greater CVD risk reduction.[356] Aspirin dosages of 75 – 100 mg per day may offer the optimal benefit/risk ratio in chronic prevention of recurrent atherothrombosis in patients with an acute coronary syndrome[355] (i.e., 81 mg “baby aspirin”).[331]

4. Acutely, aspirin is beneficial in patients with unstable coronary artery disease, acute myocardial infarction, and unstable angina.[357, 358, 359] Aspirin platelet inhibition is fastest with chewable aspirin, which has a more rapid onset of action than soluble aspirin, which has a more rapid onset of action than whole solid aspirin, which has a more rapid onset of action than enteric-coated aspirin.[360] After calling 9-1-1 for emergency phone help, patients undergoing an acute myocardial infarction are often advised to chew one 325 mg aspirin slowly, preferably within 30 minutes of the onset of symptoms.[361] Chronic administration of aspirin is recommended to prevent recurrent ischemic stroke. Administration of aspirin is NOT recommended for acute stroke, due to the potential of worsening of a hemorrhagic stroke.[361, 362]

5. In patients experiencing an acute coronary syndrome, unless side effects occur or contraindications exist, DAPT should be continued for at least 12 months after the CVD event, regardless of stent implantation. At a patient-centered discussion, DAPT for longer than 12 months may be considered if the net potential benefit if thought to outweigh the potential risk (i.e., bleeding).[363] Conversely, shorter duration DAPT may be reasonable for patients at high bleeding risk. [364, 365]

6. The “5 A’s” framework (adapted for other CVD risk factor management, such as counseling for obesity[366]) can help engage patients in a discussion about smoking cessation. The 5 A’s include: (a) Ask patients about tobacco use; (b) Advise smokers to quit tobacco; (c) Assess a smoker’s readiness to quit; (d) Assist smokers to quit; (e) Arrange follow-up.[366, 367, 368]

7. To reduce the risk of thrombosis, CVD, cancer, and other ill effects of tobacco cigarette smoking, (i.e., less bleeding) and higher doses having greater CVD risk reduction. [356] Conversely, shorter duration DAPT may be reasonable for patients at high bleeding risk. [364, 365]

8. Antismoking pharmacotherapy can act synergistically with behavior therapy and enhance the chances the patient will stop cigarette smoking. FDA approved anti-smoking medications include nicotine patch, lozenges, gum, nasal spray, varenicline, and bupropion. Many of these medications can be used in combination. Clinicians should be aware of the dosing, precautions, and inform the patient of potential side effects of these therapies. [370, 371]

9. The aerosol from e-cigarettes typically does not contain all the contaminants in tobacco smoke. Short-term use of e-cigarettes in healthy individuals may not adversely affect vascular function.[372, 370] However, most e-cigarettes contain nicotine, which is highly addictive and likely increases the long-term risk of CVD. Also, some analyses suggest use of e-cigarettes may not be effective regarding success in stopping smoking, or to prevent relapse of smoking.[372]

10. While potentially safer than traditional tobacco cigarettes, the Centers for Disease Control (CDC) and Food and Drug Administration recommend that tetrahydrocannabinol (THC)-containing and/or nicotine-containing e-cigarettes should not be used by youths and young adults, females who are pregnant, or adults who do not currently use tobacco products.[375] Those choosing to use e-cigarettes as an alternative to cigarettes should completely switch from cigarettes to e-cigarettes, and not use both products concomitantly. [335]
1.9. KIDNEY DYSFUNCTION

1.9.1. Definition and Physiology

According to the “Kidney Disease: Improving Global Outcomes” (KDIGO) guidelines, chronic kidney disease (CKD) is defined as persistently elevated urine albumin excretion (≥30 mg/g (≥3mg/mmol) creatinine), persistently reduced estimated glomerular filtration rate (eGFR) <60 ml/min per 1.73 m², or both, for greater than 3 months. [380]

A bidirectional relationship exists between CVD and CKD, with each worsening the status of the other. Both have similar “traditional” risk factors such as hypertension, diabetes mellitus, obesity, and cigarette smoking. Beyond these shared risk factors, CKD remains an independent risk factor for CVD. This is likely due to the CKD-mediated adverse effects on the cardiovascular system, such as worsened endothelial dysfunction, accelerated atherosclerosis, increased inflammation, vascular calcification and other vasculopathies, left ventricular hypertrophy, anemia, abnormal calcium-phosphate metabolism, and increased systemic toxins such as elevated urate levels (i.e., uremia). [383]

Over 2/3rd of patients over 65 years with CKD have concomitant CVD. [384] Both eGFR < 60 mg/min/1.73 m² and albuminuria are independent predictors of CVD events and CVD mortality. [385] CVD incidence is inversely related to eGFR. Generally, CKD and ESKD are associated with a 5-10 fold higher risk for developing CVD compared to aged matched controls. [386] Specifically, patients with CKD having eGFR 15-60 mg/min/1.73 m² have about two to three times higher risk of CVD mortality compared to patients without CKD. [385, 387] As such, CKD is considered a “risk enhancing factor” that places patients at high risk for CVD. [31]

1.9.2. Epidemiology

According to the US Centers for Disease Control and The Heart Disease and Stroke Statistics 2021 Update from the American Heart Association: [388, 389, 390]

- Generally, more than 1 in 7 (approximately 15% of US adults or 37 million people) are estimated to have CKD. Specifically, the overall prevalence of chronic kidney disease (estimated glomerular filtration rate <60 ml/min – 1.73 m² – 2 or albumin-to-creatinine ratio ≥30 mg/g) was 14.8% in 2013-2016.
- As many as 9 in 10 adults with CKD do not know they have CKD.
- About 2 in 5 adults with severe CKD do not know they have CKD.
- CKD is more common in people aged 65 years or older (38%) than in people aged 45–64 years (12%) or 18–44 years (6%).
- CKD is more common in non-Hispanic Black adults (16%) than in non-Hispanic White adults (13%) or non-Hispanic Asian adults (13%).
- About 14% of Hispanic adults have CKD.
- Incidence of end-stage kidney disease in the United States is projected to increase 11% to 18% through 2030.
- In US adults aged 18 years or older, diabetes mellitus and high blood pressure are the main reported causes of ESKD and the prevalence of CKD is about 37% of adults with diabetes mellitus and 31% among adults with high blood pressure. [204]
- In US children and adolescents younger than 18 years, polycystic kidney disease and glomerulonephritis (inflammation of the kidneys) are the main causes of ESKD.
- CKD may be associated with an increased risk of heart failure. The excess risk of heart failure is especially increased African American and Hispanic individuals. [391]
- Creatinine-based estimated glomerular filtration rate (eGFR) and/or albuminuria (either by semi-quantitative dipstick for proteinuria or albumin-to-creatinine ratio) may improve cardiovascular risk classification. [392]
- CKD is often associated with low rates of standard preventive therapies directed towards CVD risk reduction (e.g., adequate control of glucose, blood pressure, and cholesterol). [393] For example, in an analysis of patients with CKD evaluated from 2003 – 2007, only 50% were taking statins, and 42% who had statins recommended were not taking them. [394] Even when treated with statins, patients with CKD rarely achieve LDL-C treatment goals. [395]

1.9.3. Diagnosis and Treatment

Table 9 lists ten things to know about the diagnosis and treatment of kidney dysfunction and CVD prevention.

1.10. FAMILY HISTORY, GENETIC ABNORMALITIES, AND FAMILIAL HYPERCHOLESTEROLEMIA

1.10.1. Definition and Physiology

Obtaining a family history of cardiovascular disease helps identify and stratify CVD risk. Beyond atherosclerotic CVD, among the more common inherited causes of other forms of CVD among younger individuals include genetic abnormalities leading to vasculopathies, valvulopathies, aneurysmal disorders, and coagulopathies. [437]

Regarding atherosclerosis, underlying genetic disorders may contribute to atherosclerotic CVD. Heterozygous Familial Hypercholesterolemia (HeFH) is the most common genetic disorder resulting in severe elevations in LDL-C (i.e., typically with LDL-C levels ≥ 190 mg/dL), with a reported U.S. prevalence of 1/200 to 1/500. Patients with FH are at high risk for premature CVD, attributable not only to the degree of elevation in atherogenic lipoprotein cholesterol levels, but also because of the cumulative lifetime exposure to increased LDL-C levels. [438] Management of HeFH includes aggressive cholesterol lowering at an early age, usually involving statin therapy. [439]

Laboratory diagnosis of inherited dyslipidemias may involve sequencing the entire human genome or custom sequencing of one or more genes. In some countries, it is common for patients with marked elevations in LDL-C levels to undergo genetic evaluation for FH to identify pathogenic variants of the LDL receptor (i.e., most common), apolipoprotein B (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9). [440, 441] However, in addition to laboratory genetic testing, the diagnosis of Familial Hypercholesterolemia can also be made clinically. In the US, FH is more commonly assessed via one or more clinical diagnostic criteria for FH such as The American Heart Association, Simon Broome, and/or Dutch Lipid Clinic Network criteria (see tables 10a–b, 10c). [442, 443, 444, 445, 446]

Among patients without FH, an elevated lipoprotein (a) [Lp(a)] level is an independent CVD risk factor [152] and a prominent monogenic cause of atherosclerotic CVD, with 70–90% of interindividual heterogeneity being genetically determined. [447] The worldwide prevalence of elevated Lp(a) levels is estimated at approximately 20%, is independent of nutrition or physical activity (i.e., elevated Lp(a) levels are often described as >50 mg/dL or >125 nmol/L), [448] and remains

Table 8 (continued)

Reasonable use of e-cigarettes as a part of a bridging smoking cessation strategy in certain populations, the data on such an approach remain unclear. [374] The FDA has not approved e-cigarettes as a smoking cessation aid, and more research is needed to better understand the long-term health effects of e-cigarettes and their role in helping smokers to stop tobacco smoking. [375, 380]

Skeletal Guidelines and References

- 2022 Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes [191]
- 2020 Smoking Cessation. A Report from the Surgeon General [376]
- 2016 AHA/ACC Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease [322]
Ten things to know about kidney disease and cardiovascular disease (CVD) prevention

1. An estimated glomerular filtration rate (eGFR) < 60 mg/min/1.73 m² increases the risk of death, CVD events, and hospitalizations [381]. Among patients with coronary heart disease, an eGFR < 30 mg/min/1.73 m² substantially increases the risk of CVD mortality and all-cause mortality. [396] In younger patients without CKD, cancer and CVD are the two most common causes of death. Among patients with CVD, CVD is the most common cause of death, with increasing risk of CVD death inversely related to the eGFR (377,397).

2. Treatment of CKD often includes management of major CVD risk factors (e.g., diabetes mellitus, HTN, cigarette smoking). [381, 396, 399]

3. Anti-diabetes mellitus drugs having the most favorable renal effects include SGLT2 inhibitors and GLP-1 receptor agonists. [400] In patients with T2DM, both SGLT2 inhibitors and GLP-1 receptor agonists reduce CVD events. [401] SGLT2 inhibitors may reduce the progression of renal disease by 45% in those with or without CVD. GLP-1 receptor agonists can reduce urinary albumin excretion, slow kidney disease progression, and reduce CV events. [402, 399] While both reduce the risk of CVD, compared to GLP-1 receptor agonists, SGLT2 inhibitors have a more marked effect on preventing hospitalization for heart failure and reducing kidney disease progression. Cardiologists are 3 times more likely than endocrinologists to see patients with both T2DM and cardiovascular disease.

4. Adults with CKD and HTN should be treated to a blood pressure goal of < 130/80 mmHg, [208] especially in the presence of proteinuria. [405, 406] Preferred antihypertensive agents in patients with CKD (but not dialysis) include: (a) angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs); (b) beta-blockers; (c) dihydropyridine calcium channel blockers; and (d) mineralocorticoid receptor blockers. Preferred antihypertensive agents in patients undergoing dialysis include: (a) beta adrenergic blockers (e.g., atenolol); (b) dihydropyridine calcium channel blockers; and (c) angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers; (d) direct vasodilators. [407] The benefit-risk ratio of ACE inhibitors and ARBs is unclear in patients with eGFR < 30 mg/min/1.73 m². This helps account for why, as a class, ACE inhibitors and ARBs are more commonly discontinued with eGFR < 30 mg/min/1.73 m², compared to patients with higher eGFR. [408] Having said this, discontinuing an ACE inhibitor or ARB after hypertension specification for acute kidney injury may be associated with a higher risk of post discharge mortality. [409, 410] In non-dialysis patients with eGFR < 30 mg/min/1.73 m², loop diuretics are preferred over thiazide diuretics. Torsemide generally has more predictable bioavailability compared to furosemide. [411] Dialysis patients with some urine output may benefit from continued loop diuretics. [412] In patients with renal insufficiency, dihydropyridine calcium channel blockers (amlodipine, felodipine, nicardipine, nifedipine) may be preferred over non dihydropyridine channel blockers (i.e., verapamil, diltiazem) due to potentially less drug interactions with common medications (e.g., statins) and less potential for aortic-ventricular conduction delays and heart block when used together with other blockers. [407] Beta blockers in patients with ESRD may reduce the risk of heart failure, HTN, and cardiac dysrhythmias. [413] Direct vasodilators (hydralazine and minoxidil) are usually one of the last line therapies for HTN and renal failure. [407] Virtually all anti-hypertensive medications have representative drugs that require dosing adjustment, depending upon eGFR. [414] Future study results will better determine if nonsteroidal mineralocorticoid receptor antagonists (e.g., exenatide, apparenone, and KBP-5074) will improve renal outcomes in high-risk individuals. [229, 415] Existing data suggests that finerenone may delay the progression of diabetes nephropathy and reduce cardiovascular morbidity in patients with diabetes nephropathy. [416, 417]

5. Meta-analyses support statin therapy as reducing CVD events in primary prevention among patients with mild to moderate renal insufficiency (not on dialysis). [418] However, the relative risk reduction in major vascular event risk diminishes as eGFR decreases. [419, 420, 421] Similar to eGFR declines, kidney failure, but may modestly reduce proteinuria and rate of eGFR decline. [422] With the exception of atorvastatin, other statins (as well as many other lipid-altering drugs) require dosing adjustment in patients with CKD. [423] Clinical trial evidence supports ezetimibe plus simvastatin combination as reducing the incidence of major atherosclerotic events in patients with a wide range of patients with advanced CKD. [424] Moderate intensity statin (with or without ezetimibe) is recommended in adults with CKD not on dialysis, who have

Table 9
Ten things to know about kidney disease and cardiovascular disease (CVD) prevention

Number	Description
1.	An estimated glomerular filtration rate (eGFR) < 60 mg/min/1.73 m² increases the risk of death, CVD events, and hospitalizations. Among patients with coronary heart disease, an eGFR < 30 mg/min/1.73 m² substantially increases the risk of CVD mortality and all-cause mortality. In younger patients without CKD, cancer and CVD are the two most common causes of death. Among patients with CVD, CVD is the most common cause of death, with increasing risk of CVD death inversely related to the eGFR.
2.	Treatment of CKD often includes management of major CVD risk factors (e.g., diabetes mellitus, HTN, cigarette smoking).
3.	Anti-diabetes mellitus drugs having the most favorable renal effects include SGLT2 inhibitors and GLP-1 receptor agonists. In patients with T2DM, both SGLT2 inhibitors and GLP-1 receptor agonists reduce CVD events. SGLT2 inhibitors may reduce the progression of renal disease by 45% in those with or without CVD. GLP-1 receptor agonists can reduce urinary albumin excretion, slow kidney disease progression, and reduce CV events. While both reduce the risk of CVD, compared to GLP-1 receptor agonists, SGLT2 inhibitors have a more marked effect on preventing hospitalization for heart failure and reducing kidney disease progression. Cardiologists are 3 times more likely than endocrinologists to see patients with both T2DM and cardiovascular disease.
4.	Adults with CKD and HTN should be treated to a blood pressure goal of < 130/80 mmHg, especially in the presence of proteinuria. Preferred antihypertensive agents in patients with CKD (but not dialysis) include: (a) angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs); (b) beta-blockers; (c) dihydropyridine calcium channel blockers; and (d) mineralocorticoid receptor blockers. Preferred antihypertensive agents in patients undergoing dialysis include: (a) beta adrenergic blockers (e.g., atenolol); (b) dihydropyridine calcium channel blockers; and (c) angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers; (d) direct vasodilators. The benefit-risk ratio of ACE inhibitors and ARBs is unclear in patients with eGFR < 30 mg/min/1.73 m². This helps account for why, as a class, ACE inhibitors and ARBs are more commonly discontinued with eGFR < 30 mg/min/1.73 m², compared to patients with higher eGFR. Having said this, discontinuing an ACE inhibitor or ARB after hypertension specification for acute kidney injury may be associated with a higher risk of post discharge mortality. In non-dialysis patients with eGFR < 30 mg/min/1.73 m², loop diuretics are preferred over thiazide diuretics. Torsemide generally has more predictable bioavailability compared to furosemide. Dialysis patients with some urine output may benefit from continued loop diuretics. In patients with renal insufficiency, dihydropyridine calcium channel blockers (amlodipine, felodipine, nicardipine, nifedipine) may be preferred over non dihydropyridine channel blockers (i.e., verapamil, diltiazem) due to potentially less drug interactions with common medications (e.g., statins) and less potential for aortic-ventricular conduction delays and heart block when used together with other blockers. Beta blockers in patients with ESRD may reduce the risk of heart failure, HTN, and cardiac dysrhythmias. Direct vasodilators (hydralazine and minoxidil) are usually one of the last line therapies for HTN and renal failure. Virtually all anti-hypertensive medications have representative drugs that require dosing adjustment, depending upon eGFR. Future study results will better determine if nonsteroidal mineralocorticoid receptor antagonists (e.g., exenatide, apparenone, and KBP-5074) will improve renal outcomes in high-risk individuals. Existing data suggests that finerenone may delay the progression of diabetes nephropathy and reduce cardiovascular morbidity in patients with diabetes nephropathy.
5.	Meta-analyses support statin therapy as reducing CVD events in primary prevention among patients with mild to moderate renal insufficiency (not on dialysis); however, the relative risk reduction in major vascular event risk diminishes as eGFR decreases. Similar to eGFR declines, kidney failure, but may modestly reduce proteinuria and rate of eGFR decline. With the exception of atorvastatin, other statins (as well as many other lipid-altering drugs) require dosing adjustment in patients with CKD. Clinical trial evidence supports ezetimibe plus simvastatin combination as reducing the incidence of major atherosclerotic events in patients with a wide range of patients with advanced CKD. Moderate intensity statin (with or without ezetimibe) is recommended in adults with CKD not on dialysis, who have
Table 10b
Simon Broome diagnostic criteria for Familial Hypercholesterolemia [451, 444]

Definition Familial Hypercholesterolemia:	
Adult with total cholesterol levels ≥ 290 mg/dL (> 7.5 mmol/L) or LDL-C ≥ 190 mg/dL (> 4.9 mmol/L)	
Child < 16 years of age with total cholesterol levels ≥ 260 mg/dL (> 6.7 mmol/L) or LDL-C ≥ 155 mg/dL (> 4.0 mmol/L)	
PLUS EITHER	
Tendon xanthomas in the patient, or tendon xanthomas in a first degree relative (parent, sibling or child) or second degree relative (grandparent, aunt, or uncle)	
Deoxynucleic acid based evidence of an LDL receptor mutation, familial defective apo B-100, or a PCSK9 mutation	

Possible Familial Hypercholesterolemia:

- Adult with total cholesterol levels ≥ 290 mg/dL (> 7.5 mmol/L) or LDL-C ≥ 190 mg/dL (> 4.9 mmol/L)
- Child < 16 years of age with total cholesterol levels ≥ 260 mg/dL (> 6.7 mmol/L) or LDL-C ≥ 155 mg/dL (> 4.0 mmol/L)

PLUS AT LEAST ONE OF THE FOLLOWING:

- Family history of myocardial infarction in first degree relative < age 60 years or second-degree relative < age 50 years
- Family history of an adult first- or second-degree relative with elevated total cholesterol ≥ 290 mg/dL (> 7.5 mmol/L) or a child, brother or sister aged < 16 years with total cholesterol ≥ 260 mg/dL (> 6.7 mmol/L)

Table 10c
Dutch Lipid Clinic Network diagnostic criteria for Familial Hypercholesterolemia [451, 446, 444, 446]

Criteria	Points
Family history	
First-degree relative with known premature* coronary and vascular disease, OR	1
First-degree relative with known LDL-C level above the 95th percentile	
First-degree relative with tendonous xanthomata and/or arcur cornaeals, OR	2
Children aged less than 18 years with LDL-C level above the 95th percentile	
Clinical history	
Patient with premature* coronary artery disease	2
Patient with premature* cerebral or peripheral vascular disease	1
Physical examination	
Tendinous xanthomata	6
Arcur cornaeals prior to age 45 years	4
Untreated Cholesterol levels mg/dL (mmol/liter)	
LDL-C ≥ 330 mg/dL (≥ 8.5)	8
LDL-C 250 – 329 mg/dL (6.5–8.4)	5
LDL-C 190 – 249 mg/dL (5.0–6.4)	3
LDL-C 155 – 189 mg/dL (4.0–4.9)	1
DNA analysis	
Functional mutation in the LDLR, apo B or PCSK9 gene	8
Diagnosis (diagnosis is based on the total number of points obtained)	
Definite Familial Hypercholesterolemia	≥8
Probable Familial Hypercholesterolemia	6–8
Possible Familial Hypercholesterolemia	3–5
Unlikely Familial Hypercholesterolemia	<3

* Premature coronary and vascular disease = < 55 years in males; < 60 years in females

Table 3 summarizes current therapeutic considerations for elevated Lp(a) levels.

Measurement of Lp(a) is superior to genetic testing for an LPA variant, as current genetic testing for this variant is not a reliable predictor of elevated Lp(a) levels in all ethnic groups. In addition to identification of monogenic disorders, genetic testing may allow for the calculation of a “polygenic risk score” to complement clinical risk scores used to predict ASCVD events. [449, 450, 440] However, the role of these “polygenic risk scores” in primary and secondary prevention of CVD is still evolving.

1.10.2. Epidemiology

- The worldwide prevalence of FH is estimated as 1:313 among subjects in the general population, 10-fold higher among those with ischemic heart disease (IHD), 20-fold higher among those with premature IHD, and 25-fold higher among those with severe hypercholesterolemia. [452]
- In the US, heterozygous FH (as defined by the Dutch Lipid Clinic criteria) occurs in approximately 1:250 individuals, [453] with an increased rate among those having Lebanese, South African Africans, South African (Ashkenazi) Jewish, South African Indian, French Canadian, Finnish, Tunisia, and Denmark population backgrounds. [454]
- The risk of premature coronary heart disease (CHD) is increased by 20 fold among untreated FH patients [455] and CHD typically occurs before age 55 and 60 among females and males with FH respectively. [446]
- Myocardial infarction occurs about 20 years earlier among those with FH compared to those without FH, [456] and occurs in up to 1 in 7 of patients having acute coronary syndrome < 45 years of age. [457]

1.10.3. Diagnosis and Treatment

Table 10d lists ten things to know about the diagnosis and treatment of family history/genetics/familial hypercholesterolemia and CVD prevention.

1.10.4. Conclusion

The American Society of Preventive Cardiology (ASPC) “Ten things to know about ten cardiovascular disease risk factors – 2022” summarizes ten things to know about ten CVD risk factors, accompanied by sentinel references for each section. The ten CVD risk factors include unhealthful dietary intake, physical inactivity, dyslipidemia, pre-diabetes/diabetes, high blood pressure, obesity, considerations of select populations (older age, race/ethnicity, and sex differences), thrombosis (with smoking as a potential contributor to thrombosis), kidney dysfunction and family history/genetics/familial hypercholesterolemia. Primary care clinicians may benefit from a summary of the basics regarding diagnosis and management of CVD risk factors, which is fundamental to preventive cardiology. Specialists may benefit because not all specialists in one area of preventive cardiology will be a specialist in all aspects of preventive cardiology. Finally, the field of preventive cardiology is undergoing rapid growth. Those beginning in preventive cardiology may benefit from an overview of essentials in diagnosis and management of CVD risk factors. The ASPC “Ten things to know about ten cardiovascular disease risk factors – 2022” represents a starting point for those interested in a multifactorial approach CVD prevention, with preventive cardiology best implemented via a team-based approach that depending on the situation, may include clinicians, nurses, dietitians, pharmacists, educators, front-desk personnel, social workers, community health workers, psychologists, exercise physiologists, and other health clinicians.[93]
Ten things to know about family history/genetics/familial hypercholesterolemia and cardiovascular disease (CVD) prevention

1. Genetic dyslipidemia is the most common treatable cause of inherited premature atherosclerotic coronary heart disease. [437] Heterozygous Familial Hypercholesterolemia (HeFH) is most commonly an autosomal dominant genetic metabolic disorder resulting in marked elevations of LDL-C levels (i.e., typically ≥ 190 mg/dL in adults), a 10 – 17 fold increased risk of atherosclerotic CVD in untreated patients, and an 8 – 14 fold increase in patients treated with statins. The residual CVD risk among statin-treated patients suggests under-treatment with statins and other lipid-altering drugs, and/or delayed introduction of lipid-altering drugs. [446]

2. In a patient with a FH phenotype, negative DNA genetic testing [to identify pathogenic variants of LDLR (most common), APOB, or PCSK9] does not exclude a diagnosis of FH. [440] It is likely that patients with phenotypic FH who have negative genetic testing for FH may have an unidentified FH mutation. Thus, many clinicians choose to utilize clinical diagnostic criteria based upon AHA, Simon Broome, and/or Dutch Lipid Clinic Network criteria over genetic testing to diagnose FH (Tables a-c). [458, 443, 444, 446]

3. While tendon xanthomas can rarely be associated with increases in non-cholesterol sterol concentration (i.e., sitosterolemia), [459] tendon xanthomas are the physical exam finding most strongly associated with FH, and a sentinel physical exam finding included in FH diagnostic criteria (see Tables 10-b,c). Aortic stenosis is also often found in patients with FH, potentially detected by heart murmur upon auscultation of the heart, and whose onset and severity are dependent on lifetime exposure to increased LDL-C levels. [460]

4. Cascade (family) screening for FH is recommended in individuals and families with very high LDL-C levels. [461]

5. High intensity statin (atorvastatin 80 mg or 40 mg per day, or rosuvastatin 40 or 20 mg per day) is first-line treatment for patients with FH. [31]

6. Commonly cited lipid goals in patients with HeFH are a LDL-C level of < 100 mg/dL and < 70mg/dL being a goal for HeFH patients having CVD tied/or other CVD risk factors placing them at very high risk. [31] Lipoprotein (a) (a) is an additional lipid parameter that is often assessed in patients with HeFH. [153]

7. Largely due to high baseline LDL-C levels and high rate of atherosclerotic CVD, it is common that patients with FH do not achieve their LDL-C treatment goals with maximally tolerated statins alone. These patients may benefit from adding ezetimibe, PCSK9 inhibitors, bempedoic acid and/or other lipid-altering drugs (e.g., bile acid sequestrants such as colesuvelam HCI). [31, 462, 439, 456, 167, 168, 463]

8. The reduction in atherosclerotic CVD risk is not only dependent upon the degree of LDL-C lowering, but also when lipid treatment is implemented. Earlier statin treatment may reduce the lifetime exposure/burden of elevated LDL-C, with the age for onset of coronary heart disease delayed by earlier administration of statin therapy. Statin treatment should be strongly considered in patients with HeFH beginning at age 8 – 10 years of age. [466]

9. Drug treatment options for patients with homogenous FH include statins, PCSK9 monoclonal antibodies, angiotropin-like 3 monoclonal antibodies, [464, 465] and lipitapide, as well as potentially inclisiran. [466, 467] Ezetimibe, bempedoic acid, and bile acid sequestrants. [467] Lipoprotein apheresis is another treatment option for patients with FH who are unable to achieve LDL-C treatment goals with nutrition, physical activity, and lipid-altering drug therapy alone. [468]

10. Among patients without FH, elevated Lipoprotein (a) [Lp(a)] is a prominent monogenic cause of ASCVD, and should be considered at least once in each adult person’s lifetime to identify those with very high inherited Lp(a) levels. [139, 447] Measuring Lp(a) is superior to genetic testing for an LPA variant, as current genetic testing for this variant is not a reliable predictor of elevated Lp(a) in all ethnic groups. Genetic testing may allow for the calculation of a “polymetric risk score” to complement clinical risk scores used to predict ASCVD events. The role of these “polymetric risk scores” in primary and secondary prevention of CVD is still evolving. [449, 450, 460]

Sentinel Guidelines and References

2020 Genetic Testing in Dyslipidemia: A Scientific Statement from the National Lipid Association [441]

2018 Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel [440]

2018 AHA/ACC/AACVPR/ABC/ACPM/ADA/AGS/APA/ASC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. [31]

2018 Familial hypercholesterolemia treatments: Guidelines and new therapies. [439]

2017 Cascade Screening for Familial Hypercholesterolemia and the Use of Genetic Testing [461]

Transparency

This manuscript was edited and updated from "Ten Things to Know About Ten Cardiovascular Disease Risk Factors – 2021." [10] Beginning in 2020, the American Society of Preventive Cardiology has published this "Ten Things to Know About Ten Cardiovascular Disease Risk Factors¨ via yearly updates from invited authors.

Author Contributions

HEB served as the medical writer and editor for all sections. The following authors primarily updated the following sections: PS (Nutrition), AI (Physical Inactivity), RD (Dyslipidemia), AT (Pre-diabetes/diabetes), MAR (High Blood Pressure), AM (Obesity), AT & YAS (Special Populations), CG (Thrombosis with smoking as a potential contributor to thrombosis), AN (Kidney Dysfunction), AK & SS (Family history/genetics/familial Hypercholeserolemia), PPT reviewed and/or commented on all sections.

Disclosures

In the past 12 months, HEB’s research site received research grants from 89Bio, Allergan, Alon Medtech/Epitomee, Amgen, Anji Pharma, Astrazeneca, Bionime, Boehringer Ingelheim, CinCor, Civi, Eli Lilly, Esperion, Evidera, Gan and Lee, Home Access, Lexicon, Matinas, Merck, Novartis, NovoNordisk, Pfizer, Regeneron, Sanofi, and TIMI. In the past 12 months, HEB has served as a consultant/advisor for 89Bio and Esperion, and speaker for Esperion and Novo Nordisk. PPT has served on the speaker’s bureau of Amarin, Amgen, Esperion, Novo-Nordisk, Organon, and served as a consultant to Amarin, Amgen, Merck, Novartis, Resverlogix, and Theravance. RD reports serving as a consultant for Hims and Hers Health. AK, CG, PS, AI, AT, MAR, AM, AT, YA, AJN, and SS do not report relevant disclosures.

Evidence

The content of the “Ten things to know about ten cardiovascular disease risk factors – 2022” is supported by citations, which are listed in the Reference section of tables and reference list.

Ethics Review

This review submission was not a report of an original investigation of human test subjects or volunteers and therefore did not require review by an Institutional Review Board.

Acknowledgement and Funding

The development of this manuscript received no funding.

REFERENCES

[1] Adiposopathy Bays H. “sick fat,” Ockham’s razor, and resolution of the obesity paradox. Curr Atheroscler Rep 2014;16:409.

[2] Bays HE. Adiposopathy is ‘sick fat’ cardiovascular disease? J Am Coll Cardiol 2011;57:2461–73.

[3] Thomas MC. The clustering of cardiovascular, renal, adipose-metabolic eye and liver disease with type 2 diabetes. Metabolism 2022;128:154961.

[4] Bays HE, Khera A, Blaha MJ, Budoff MJ, Toth PP. Ten things to know about ten imaging studies: a preventive cardiology perspective (ASP.C top ten imaging). Am J Prev Cardiol 2021;6:100176.

[5] Ho FK, Cels-Morales C, Petermann-Rocha F, Parra-Soto SL, Lewrey J, Mackay D, et al. Changes over 15 years in the contribution of adiposity and smoking to deaths in England and Scotland. BMC public health 2021;21:699.

[6] Giza D, Iliescu G, Hassan S, Marmagkiolis K, Iliescu C. Cancer as a risk factor for cardiovascular disease. Curr Oncol Rep 2017;19:50.

[7] Chretite GS, Feve B. Adiposopathy in cancer and (cardio)metabolic diseases: an endocrine approach - part 2. Hormone Mol Biol Clin Invest 2015;21:1–3.

[8] Covelli JS. Cardiovascular and Cancer Risk: The Role Of Cardio-Oncology. J Adv Pract Oncol 2018;9:160–76.
[9] Bays HE. Ten things to know about high cardiovascular disease risk factors (“ASCVD Top Ten –2020”). Am J Prev Cardiol 2020;1;00003.
[10] Bays HE, Taub PR, Dea K, Bailey AL, et al. Ten things to know about cardiovascular disease risk factors. Am J Prev Cardiol 2021;5:100149.
[11] Stylianou KS, Fulgoni VL, Jolliffe O. Publisher Correction: Small targeted changes in diet and lifestyle can yield substantial gains for human health and the environment. Nat Food 2021;2:2743.
[12] Sikand G, Severson T. Top 10 dietary strategies for atherosclerotic cardiovascular risk reduction. Am J Prev Cardiol 2020;4:100106.
[13] Alexander LE, Christensen SM, Richardson L, Ingersoll AB, Burridge, Golden A, et al. Nutrition and physical activity: An Obesity Medicine Association (OMA) Clinical Practice Statement 2022. Obes Pillan 2022;1:100005.
[14] Micha R, Wallace SK, Mozaffarian D. Red and processed meats cause excess calorie intake and weight gain: an inpatient study. J Clin Cardiol 2004;43:2142–8.
[15] O’Keefe, JH, Torres-Acosta N, EL O, O’Keefe, Saeed IM, Lavie CJ, Smith SE, et al. A clinician’s guide to lifestyle intervention for cardiovascular nutrition controversies. Part II. J Am Coll Cardiol 2018;72:553–68.
[16] Walker AR. Are health and illness lessons from hunter-gatherers currently relevant? Am J Clin Nutr 2001;72:353–6.
[17] Pontier H, Raichlen DA, Wood BM, Michaila AZ, Racette SB, Marlowe FW. Hunter-gatherer energetics and human obesity. PLoS One 2012;7:e46053.
[18] Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, et al. Effect of carbohydrate-restricted dietary interventions on LDL particle size and number in adults in the Diet, Physical Activity, and Blood Lipids study: a randomized controlled feeding trial. Am J Clin Nutr 2021.
[19] Falkenhain K, Roach LA, McCreary S, McArthur E, Weiss EJ, Francois ME, et al. Effect of carbohydrate-restricted dietary interventions on LDL particle size and number in adults in the Diet, Physical Activity, and Blood Lipids study: a randomized controlled feeding trial. Am J Clin Nutr 2021.
[20] Cameron JD, Cyr MJ, Doucet E. Increased meal frequency does not promote weight loss and other metabolic parameters in women and men: a randomized controlled trial in adults with obesity. Cell Metab 2020;32:366–72.
[21] Dinu M, Abbate R, Gensini GF, Casini A, Sofi F, Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Nutrients 2017;5:7964–69.
[22] Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Alabanes D. Association between plant and animal protein intake and overall cause-specific mortality. JAMA Intern Med 2020;180:1173–84.
[23] Suh A, Buphathiraj A, Suh LM, Vasan D, Chiive SE, Manson JE, Willett W, et al. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in U.S. adults. J Am Coll Cardiol 2017;70:411–22.
[24] Misra R, Balagopal F, Raj S, Patel TG. Vegetarian diet and cardiometabolic risk factors among Asian Indians in the United States. J Diabetes Res 2018;2018:1675569.
[25] Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merritt TA, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 1998;279:711–9.
[26] Schwingshackl L, Nitschke K, Zahringer J, Bischoff K, Lohner S, Torbahn G, et al. The ketogenic diet: pros and cons. Atherosclerosis 2020;292:119–26.
[27] Flegal KE, Burt VL, Kohl IA, et al. Distribution and trends of the body mass index distribution among US adults: the National Health and Nutrition Examination Surveys, 1960–2002. JAMA 2005;293:186–95.
[28] Kaye S, Middleman AB. The epidemic of obesity: etiology, consequences, and multidisciplinary strategies for prevention. J Clin Lipidol 2019;13:689–701.
[29] Sempos CT, Appleby PN, Sampson UK, et al. Education and other determinants of dietary fat intake: the EPIC-IP Study. Eur J Epidemiol 1999;13:495–503.
[30] Jenkins DJA, Dehghan M, Yusuf S. Glycemic index, glycemic load, and mortality from all causes and cardiovascular disease in亚洲 populations. Arch Intern Med 2008;168:2149–56.
[31] Dinkova-Kostova AT, Hensrud DD, Shafir S, et al. A striking increase in obesity among children and adolescents in the United States: the 1976-2000 National Health and Nutrition Examination Surveys. Obesity (Silver Spring) 2003;11:235–43.
[32] Bays HE, Taub PR, Epstein E, Michos ED, Ferraro RA, Bailey AL, et al. Ten things to know about ten cardiovascular disease risk factors (a brief review). AM Heart J 2020;100149.
[33] Jenkins DJA, Dehghan M, Yusuf S. Glycemic index, glycemic load, and mortality from all causes and cardiovascular disease in亚洲 populations. Arch Intern Med 2008;168:2149–56.
men with overweight and obesity: the TREAT randomized clinical trial. JAMA Intern Med 2020.

[67] Templeman I, Smith HA, Chowdhury E, Chen YC, Carroll H, Johnson-Bomson D, et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021;13;

[68] Mancieux JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med 2019;380:33–44;

[69] Heravi AS, Michos ED. Vitamin D and calcium supplements: helpful, harmful, or neutral for cardiovascular risk? Methodist Debakey Cardiovasc J 2019;15:207–13;

[70] Schwingshackl L, Boeing H, Stelmach-Mardas M, Gottschald M, Dietrich S, Hoffmann G, et al. Vitamin D and calcium supplements and cause-specific death, cardiovascular disease, and cancer: a systematic review and meta-analysis of primary prevention trials. Adv Nutr 2017;8:27–39;

[71] Michos ED, Caiinzos-Achirica M, Heravi AS, Appel LJ. Vitamin D, calcium supplements, and implications for cardiovascular health: JACC focus seminar. J Am Coll Cardiol 2021;77:437–49;

[72] Eilat-Adar S, Sinai T, Yosefy C, Henkin Y. Nutritional recommendations for cardiovascular disease prevention. Nutrients 2013;5:3646–83;

[73] Da Silva MS, Rudkowska I. Dairy nutrients and their effect on inflammatory profile in molecular studies. Mol Nutr Food Res 2015;59:1249–63;

[74] Lordan R, Toupin A, Mitra B, Zabetsakis I. Dairy fats and cardiovascular disease: do we really need to be concerned? Foods 2016;7;

[75] Bhatiafi V, Mazariegos M, Cruz Rodriguez J, Deoker A. Dairy intake and risk of cardiovascular disease.Curr Cardiol Rep 2020;22:11;

[76] Dehghan M, Mente A, Rangarajan S, Sheridan P, Mohan V, Iqbal R, et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet 2018;392:2288–97;

[77] Hirahatake KM, Astrap A, Hill JO, Slavin JL, Allison DB, Maki RC. Potential cardio metabolic health benefits of full-fat dairy: the evidence base. Nutr Rev 2020;78:551–66;

[78] Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. J Am Coll Cardiol 2021;77:437;

[79] Ahn J, Borensztajn J, Sulem P, Hwang J, Qureshi S, et al. The effect of dairy on cardiovascular outcomes: an updated meta-analysis and meta-regression of international trials. Mayo Clin Proc Mayo Clin 2020;

[80] Hu Y, Hu FB, Manson JE. Marine Omega-3 (n-3) fatty acids for cardiovascular health: an update for 2020. Int J Mol Sci 2020;21;

[81] Bernasconi AA, Wiest MM, Lavik CJ, Milani RV, Laukkanen JA. Effect of Omega-3 dosage on cardiovascular outcomes: an updated meta-analysis and meta-regression of international trials. Mayo Clin Proc Mayo Clin 2020;

[82] Innes JK, Calder PC. Marine Omega-3 (N-3) fatty acids for cardiovascular health: an update for 2020. Int J Mol Sci 2020;

[83] Foegeding EA, Willett WC. Dietary fibre and cardiovascular health: an update for 2020. Int J Mol Sci 2020;

[84] Parodi JG, Calbet JA. Physical activity and the microbiome in cardiovascular disease. Front Physiol 2018;9:763;

[85] Harmer CA, Tso J, Farley H, Dyer AR, McLeod I, et al. Steps, moderate-to-vigorous physical activity, and health related quality of life: a systematic review and meta-analysis. Int J Environ Res Public Health 2020;17;

[86] Fitts BM, Kaschula RF, Johnson H, Landsberg JS, et al. Physical activity without weight loss reduces the development of cardiovascular disease risk factors - a prospective cohort study of more than one hundred thousand adults. Prog Cardiovasc Dis 2019;

[87] Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation 2003;107:10;

[88] Reimers AK, Knappe G, Reimers CD. Effects of Exercise on the resting heart rate: a systematic review and meta-analysis of interventional studies. J Clin Med 2018;

[89] Fiucia-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, et al. Exercise benefits in cardiovascular disease: beyond attenuation of risk factors. Open Heart 2019;6;

[90] Martinez-Gomez D, Lavie CJ, Hamer M, Cabanas-Sanchez V, Garcia-Esquinas E, Pareja-Galeano H, et al. Physical activity without weight loss reduces the development of cardiovascular disease risk factors - a prospective cohort study of more than one hundred thousand adults. Prog Cardiovasc Dis 2019;

[91] Golightly YM, Allen KD, Ambrose KR, Stiller JL, Evenson KR, Voisin C, et al. Physical activity as a vital sign: a systematic review. Prev Chronic Dis 2017;14:E123;

[92] Orrow G, Kinmonth AL, Sanderson S, Sutton S. Effectiveness of physical activity promotion in the prevention of coronary heart disease: implications for the clinician. Heart 2016;102:904–9;

[93] Pelliccia A, Sharma S, Gati S, Back M, Borjeson M, Caselli S, et al. 2016 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J;

[94] Nyström MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med 2018;5:135;

[95] Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for americans. JAMA 2018;320:2020–8;

[96] Strain T, Brage S, Sharp SJ, Richards J, Tainio M, Ding D, et al. Use of the prevented fraction for the population to determine deaths averted by exerting current prevalence of physical activity: a descriptive study. Lancet Glob Health 2020;8:e920–e29;

[97] Varghese T, Schulz WM, McCue AA, Lambert CT, Sandersa PB, Espin DJ, et al. Physical activity in the prevention of coronary heart disease: implications for the clinician. Heart 2016;102:904–9;

[98] Almeida OP, Barreto R, Ferreira LC, Bessesen DH, Smith KM, et al. Exercise training in persons with heart failure reduces cardiovascular morbidity and mortality: a meta-analysis. JAMA Intern Med 2020;180:2254–61;

[99] Aduo EC, Schroeder JS, Leman DS, Zha MC, et al. Physical activity and death in the elderly: a systematic review and meta-analysis of prospective cohort studies. BMJ 2019;365:5951;

[100] Marques-Vidal P, Raquez-Sauvageau A, Wu Y, et al. Physical activity and all-cause mortality in the elderly: a systematic review and meta-analysis of prospective cohort studies. Eur J Epidemiol 2019;34:1063–81;

[101] Templeman I, Smith HA, Chowdhury E, Chen YC, Carroll H, Johnson-Bomson D, et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021;13;

[102] Templeman I, Smith HA, Chowdhury E, Chen YC, Carroll H, Johnson-Bomson D, et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021;13;

[103] Templeman I, Smith HA, Chowdhury E, Chen YC, Carroll H, Johnson-Bomson D, et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021;13;

[104] Templeman I, Smith HA, Chowdhury E, Chen YC, Carroll H, Johnson-Bomson D, et al. A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults. Sci Transl Med 2021;13;
[233] Argulian E, Bangalore S, Messeri FH. Misconceptions and facts about beta-blockers. Am J Med 2019;132:816–9.
[234] Ferdinand JP, Neufeldt-Schönherr S, Ferdinand KC. Hyperpertension in African Americans: advances in community outreach and public health approaches. Prog Cardiovasc Dis 2020;63:40–5.
[235] Schoenthaler AM, Lancaster KC, Chaplin W, Butler M, Forsyth J, Ogedegbe G. Cluster randomized trial of FAITH (Family-Based Approach to the Treatment of Hypertension) in blacks. Circulart Cardiovas Qual. Outcomes 2018;11:e004691.
[236] Burke GL, Bertoni AG, Shea S, Tracy R, Watson KE, Blumenthal RS, et al. INFUSION Trial Investigators. The impact of obesity on cardiovascular disease risk factors and subclinical vascular disease: the Multi-Ethnic Study of Atherosclerosis. Arch Intern Med 2008;168:928–35.
[237] Reiss JP, Loria CM, Lewis CE, Powell-Wiley TM, Wei GS, Carr JT, et al. Association between duration of overall and abdominal obesity beginning in young adulthood and coronary artery calcification in middle age. JAMA 2013;310:286–8.
[238] Khan SS, Ning H, Wilkins JT, Allen N, Carnefforn M, Berry JD, et al. Association of body mass index with lifetime risk of cardiovascular disease and progression of morbidity. JAMA Cardiol 2018;3:280–7.
[239] Dudina A, Cooney MT, Baczek DR, Backer GD, Ducimetriere P, Jousilaiti P, et al. Relationships between body mass index, cardiovascular mortality, and risk factors: a report from the SCORE investigators. Eur J Cardiovasc Prev Rehabil 2011;18:731–42.
[240] Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart association task force on practice guidelines and the obesity society. J Am Coll Cardiol 2014;63:2985–3023.
[241] Burridge K, Christensen SM, Golden A, Ingersoll AB, Tondoh J, Bays HE. Obesity, history, history, laboratory, body composition, and energy expenditure. An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS). Obesity Pillars 2022;1:100007.
[242] Bays HE. Evaluation and practical management of increased visceral fat: should cardiologists lose sleep over it? J Am Coll Cardiol 2022;79(13):1266–50.
[243] Bays HE, Weinstein B, Law G, Canovitch W. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring, Md). 2014;22:1042–9.
[244] Fitch AK, Bays HE. Obesity definition, diagnosis, bias, standard operating procedures (SOPs), and telehealth: an Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. Obesity Pillars 2022;1:100004.
[245] H.E. Bays et al. Treatment of Hypertension) in blacks. Circulat Cardiovas Qual. Outcomes 2018;22:1042.
[246] Danielsen KK, Svendsen M, Maehlum S, Sundgot-Borgen J. Changes in body composition, cardiovascular disease risk factors, and eating behavior after an intensive lifestyle intervention with high volume of physical activity in severely obese subjects: a prospective clinical controlled trial. J Obes. 2013;2013:325464.
[247] Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med 2019;381:50.
[248] Pusalavidyasagar S, Sert Kuniyoshi FH, Shamsuzzaman AS, Singh P, Maharaj S, Jain A, Puri R, Nair DR. South Asians: why are they at a higher risk for atherosclerotic coronary artery disease: treating “sick fat” through improving fat function with antidiabetes therapies. Am J Cardiol 2012;110. 4B-12B.
[249] Apovian CM, Aronne LJ, Brown J, Deaton A, Grady DJ, Driver JA. Preventing cardiovascular disease in older adults: one size does not fit all. Cleve Clin J Med 2018;85:1242–52.
[250] Jain A, Puri R, Nair DR. South Asians: why are they at a higher risk for cardiovascular disease?Curr Opin Cardiol 2017;32:40–6.
[251] Ptaszynska AG, Ptaszynski P, Rogalski J, Krzysztof DJ, Lesnikowski A, Miszczak PA, et al. Comparison of endothelial function in asian indians versus caucasians. Metabol Syndrome Rel Disord 2016;14:363–7.
[252] Reddy YNV, Obokata M, Leinveber P, et al. Comparison of endothelial function in asian indians versus caucasians. Metabol Syndrome Rel Disord 2016;14:363–7.
[253] Cortes-Bergoderi M, Goel K, Murad MH, Allison T, Somers VK, Erwin PJ, et al. South Asian cardiovascular disease and stroke in Hispanics/Latinos in the United States: a clinical perspective from the National Lipid Association. Circ Cardiovasc Qual. Outcomes 2015;8:9.
[254] Kalkwarf K, Mancini GB, Deeds G, Patel J. Obes Rev. 2020. 21(7):1087–97.
[255] Minnikin R, ter Kuile M, van der Wilt GJ, Brouwer S, Twisk J, Zwinderman AH, et al. The use of social media for health communication: a systematic review and meta-analysis of the Hispanic paradox. J Cardiovasc Dis 2020;63:40.
[256] Imrie CJ, Mair CS, Anderson CD, Wilson KF, Josephson KF, Kamienkowska Z, et al. The effect of added physical activity on weight loss and dietary intake in older adults: a systematic review and meta-analysis. JAMA Intern Med 2017;177:239–50.
[257] Kulkarni A, Mancini GBJ, Deedwania PC, Patel J. South Asian cardiovascular disease in older adults: a consensus statement from the National Lipid Association. Cardiovasc Dis 2020;63:40.
[258] Apovian CM, Aronne LJ, Brown J, Deaton A, Grady DJ, Driver JA. Preventing cardiovascular disease in older adults: one size does not fit all. Cleve Clin J Med 2018;85:1242–52.
[259] Jaffe BM, Grantz KL, Henry JA, Brinklove-Schultz D, Racioppi FM, et al. Cardiologists lose sleep over it? J Am Coll Cardiol 2022;79(13):1266–50.
science advisory from the American Heart Association. Circulation. 2014;130: 595–625.

[289] US Department of health and human services office of minority health. Minority Populat Profiles April 3 2020. https://www.minorityhealth.hhs.gov/omh/briefs/eas/7v2–kE8K2u–26. Accessed April 3 2020.

[290] Howard BV, Davis MP, Pettitt DJ, Knowler WC, Bennett PH. Plasma and lipoprotein cholesterol responses to triglycerides in Pima Indians: distributions differing from those of Caucasians. Circulation 1983;68:714–24.

[291] Nelson RG, Sievers ML, Knowler WC, Svinburn BA, Pettitt DJ, Saad MF, et al. Low incidence of fatal coronary heart disease in Pima Indians despite high prevalence of non-insulin dependent diabetes. Circulation 1990;81:987–95.

[292] Anderson GL, Limacher M, Assaf AR, Bansford T, Beresford SA, Black H, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 2004;291:170–82.

[293] Garcia M, Mulvagh SL, Merz CN, Buring JE, Manson JE. Cardiovascular disease in women: clinical perspectives. Circ Res 2016;118:1273–93.

[294] Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruys-Blokes S, et al. Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation. 2018;137: e30–66.

[295] Keshari J, Precioteo P. Coronary artery disease and acute coronary syndrome in women. Heart 2020.

[296] American College of Cardiology /American Heart Association. Heart Risk Calculator. 2020. http://www.cvriskcalculator.com/. (Accessed February 16, 2020).

[297] McClelland RL, Jorgenson WN, Budoff M, Blaha MJ, Post WS, Kronmal RA, et al. 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the Multi-Ethnic Study of Atherosclerosis with validation in the DEGS (DEAS) (Dallas Heart Study). J Am Coll Cardiol 2015;66:1643–53.

[298] Centers for Disease Control. Heart disease facts. 2020. https://www.cdc.gov/hear tdis ease/facts.htm. (Accessed February 17, 2020).

[299] Centers for Disease Control. Hispanic health. 2020. https://www.cdc.gov/vitalsig ns/hispanic-health/index.html. (Accessed February 17, 2020).

[300] Centers for Disease Control. Women and stroke. 2020. https://www.cdc.gov/stroke/women.htm. (Accessed February 17, 2020).

[301] Centers for Disease Control. Women and heart disease. 2020. https://www.cdc.gov/heartdisease/women.htm. (Accessed February 17, 2020).

[302] Centers for Disease Control. Stroke. 2020. https://www.cdc.gov/stroke/women.htm. (Accessed February 17, 2020).

[303] Demel SL, Kittner S, Ley SH, McIIIeront M, Resko JM. Stroke risk factors unique to women. Stroke 2018;49:518–23.

[304] Bowling CB, Lee A, Williamson JD. Blood pressure control among older adults with hypertension: narrative review and introduction of a framework for improving care. Am J Hypertens 2013;26:285–66.

[305] Liao JK. Safety and efficacy of statins in Asians. Am J Cardiol 2007;99:410–15.

[306] Cotugna N, Wolpert S. Sodium recommendations for special populations and the population at risk. J Gen Intern Med 2010;25:1172–7.

[307] Loo SY, Mulder MM, Pencina MJ, Krijpalani S, Muirn D, et al. Comparative effectiveness of aspirin dosing in cardiovascular disease. N Engl J Med 2011;364:1981–90.

[308] Levin GM, Bates ER, Biren JA, Brindis RG, Fiil SD, Fleisher LA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An Update of the 2011 ACC/AHA Guideline for Percutaneous Coronary Intervention, 2011 ACC/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACC/AHA Guideline for the Management of St-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA guideline on periprocedural cardiovascular evaluation and high management of patients undergoing noncardiac surgery. Circulation. 2016;134:e123–55.

[309] Centers for Disease Control. Stroke statistics. 2020. https://www.cdc.gov/stroke/facts.htm. (Accessed February 18, 2020).

[310] Centers for Disease Control. Smoking & tobacco use. Fast Facts Fact Sheets 2020. https://www.cdc.gov/tobacco/data_statistics/fact_sheets/index.htm. (Accessed February 19, 2020).

[311] Centers for Disease Control. Smoking & tobacco use. Electronic cigarettes. 2020. https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html#key-facts. (Accessed February 19, 2020).

[312] Centers for Disease Control. Quick facts on the risks of E-cigarettes for kids, teens, and young adults. 2020. https://www.cdc.gov/tobacco/basic_information/e-cigaret tes/Quick-Facts-on-the-Risks-of-E-cigarettes-for-Kids-Teens-and-Young-Adults.html. Accessed October 26 2020.

[313] H.E. Bays et al. American Journal of Preventive Cardiology 10 (2022) 100342
Hopkins PN, Toth PP, Ballantyne CM, Rader DJ. National Lipid Association Expert Panel on Familial H. Familial hypercholesterolemias: prevalence, genetics, diagnosis and screening recommendations from the national lipid association expert panel on familial hypercholesterolemia. J Clin Lipidol 2011;5:S9–17.

Alonso R, Perez de Isla L, Muniz-Grijalvo O, Diaz-Diaz JL, Mata P. Familial hypercholesterolaemia Diagnosis and Management. Eur Cardiol 2018;13:14–20.

Kramer AL, Trinder M, Brunham LR. Estimating the prevalence of familial hypercholesterolemia in acute coronary syndrome: a systematic review and Meta-analysis. Can J Cardiol 2019;35:1322–31.

Berberich AJ, Hegele RA. The role of genetic testing in dyslipidaemia. Pathology (Phila) 2019;51:184–92.

Baila-Rueda I, Lamiquiz-Moneo I, Jarauta E, Mateo-Gallego R, Perez-Calahorra S, Marco-Benedi V, et al. Association between non-cholesterol sterol concentrations and Achilles tendon thickness in patients with genetic familial hypercholesterolemia. J Transl Med 2018;16:6.

Marco-Benedi V, Lacaulstra M, Casado-Dominguez JM, Villa-Pobo R, Mateo-Gallego R, Sanchez-Hernandez RM, et al. Aortic valvular disease in elderly subjects with heterozygous familial hypercholesterolemia: impact of lipid-lowering therapy. J Clin Med 2019;8.

Knowles JW, Rader DJ, Khoury MJ. Cascade screening for familial hypercholesterolemia and the use of genetic testing. JAMA 2017;318:381–2.

Warden BA, Fazio S, Shapiro MD. The PCSK9 revolution: current status, controversies, and future directions. Trends Cardiovasc Med 2019.

Goldberg AC, Leiter LA, Stroes ESG, Baum SJ, Hanselman JC, Bloedon LT, et al. Effect of bempedoic acid vs placebo added to maximally tolerated statins on low-density lipoprotein cholesterol in patients at high risk for cardiovascular disease: the CLEAR wisdom randomized clinical trial. JAMA 2019;322:1780–8.

Pirillo A, Catapano AL, Norata GD. Monoclonal antibodies in the management of familial hypercholesterolemia: focus on PCSK9 and ANGPTL3 inhibitors. Curr Atheroscler Rep 2021;23:79.

Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med 2020;383:711–20.

Cesare A, Fimiani F, Gragnano F, Moscarella E, Schiavo A, Vergara A, et al. New frontiers in the treatment of homozygous familial hypercholesterolemia. Heart Fail Clin 2022;18:177–88.

Ito MK, Watts GF. Challenges in the diagnosis and treatment of homozygous familial hypercholesterolemia. Drugs 2015;75:1715–24.

Makino H, Koezuka R, Tamanaha T, Ogura M, Matsuki K, Hosoda K, et al. Familial hypercholesterolemia and lipoprotein apheresis. J Atheroscler Thromb 2019;26:679–87.

Powell-Wiley TM, Poirier P, Burke LE, Després JP, Gordon-Larsen P, Lavié CJ, Lear SA, Núñez CE, Neeland JJ, Sanders P, St-Onge MP. American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021;143(21):e984–1010. https://doi.org/10.1161/CIR.0000000000000973. Epub 2021 Apr 22. PMID: 33882662; PMCID: PMC8493650.

Bays HE, Fitch A, Christensen S, Burridge K, Tondt J. Anti-Obesity Medications and Investigational Agents: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. Obesity Pills 2022;100018. ISSN: 2667-3681. https://doi.org/10.1016/j.obpill.2022.100018.