Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Brief Report

Impact of vaccination and the omicron variant on COVID-19 severity in pregnant women

Haemin Kim MD a, Hyo-Shin Kim MD a, Hyun Mi Kim MD a, Mi Ju Kim MD a, Ki Tae Kwon MD, PhD b, Hyun-Hwa Cha MD, PhD a,b,* , Won Joon Seong MD, PhD a,b,**

a Department of Obstetrics and Gynecology, Kyungpook National University Hospital, Kyungpook National University, School of Medicine, Daegu, Korea
b Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University, School of Medicine, Kyungpook National University Chilgok Hospital, Daegu, Korea
* Corresponding authors.
** Address correspondence to Won Joon SEONG, MD, PhD, Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, 807 Hoguk-ro, Buk-gu 702-720, Daegu, South Korea.
E-mail addresses: ccb9861@knu.ac.kr (H.-H. Cha), wjseong@knu.ac.kr (W.J. Seong).

Since the emergence of coronavirus disease 2019 (COVID-19) in February 2020, the number of pregnant women infected with the virus and delivering by cesarean section has been steadily increasing in South Korea.1 Additionally, pregnancy is considered a high-risk factor for severe COVID-19,2 especially in case of infection with the delta variant of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Despite reports showing a more favorable disease outcome with the omicron variant, little is known about its clinical course in pregnant women.3,4 Moreover, because little is known about the effectiveness of COVID-19 vaccines in pregnant women in Korea, the vaccination rate is low at only 9.8%.5 Herein, we aimed to review the clinical outcomes of pregnancies in women with COVID-19 to evaluate whether the emergence of the omicron variant and vaccination status influence disease severity.

METHODS

We retrospectively reviewed the electronic medical charts of all pregnant women admitted to our institution for COVID-19 infection between November 1, 2020 and March 7, 2022. The study cohort was comprised patients who were admitted to our hospital after January 17, 2022, when omicron became the dominant SARS-CoV-2 strain according to the Korea Disease Control and Prevention Agency. In addition, the groups were classified according to vaccination status to compare the clinical outcomes. Because of the low vaccination rate among pregnant women, the vaccinated group was defined as patients who received at least 1 vaccination dose. Clinical severity was classified as “asymptomatic to mild” or “moderate to serious,” based on the patient's oxygen demand, chest radiograph pneumonia findings, the need for intensive care from infection medical specialists, and intensive care requirement, as per the guidelines of the National Institutes of Health.6 Maternal
morbidities included pneumonia diagnosed on chest radiograph during the admission period, the need for pulmonary expert transfer, intensive care requirement, and preterm delivery (defined as delivery before 37 weeks). Statistical analyses were performed using IBM SPSS version 28.0 (IBM Corp., Armonk, NY) software. The Chi-square test and Fisher’s exact test were used to analyze categorical variables. Continuous variables were analyzed using the Kruskal–Wallis test, Student’s t-test, and Mann–Whitney U. The statistical significance threshold was set at a P-value < .05.

The Institutional Review Board and Ethics Committee of Kyungpook National University Hospital (No. 2022-03-027) approved this study. The board waived the requirement for informed consent.

RESULTS

A total of 224 pregnancies and 82 quarantine deliveries were documented. Table 1 shows the characteristics of the pregnant women before and after omicron emergence. Despite the relatively short period of omicron variant dominance, 42% of patients were classified into the omicron group. The average age of the before-omicron and omicron groups were 32.3±4.9 and 32.1±4.3 years, respectively. In both groups, the proportion of pregnant women in the 3rd trimester was significantly higher than that in any other trimester (53.1% and 73.4%, in the before-omicron and omicron groups, respectively). This could be because many of the patients were admitted for delivery. Interestingly, the vaccination rate was higher in the omicron group (6.9% vs 31.9%, P < .001), which may be reflective of the late start of COVID-19 vaccination uptake among pregnant women in Korea. The rates of “moderate-to-severe” disease and maternal morbidity were reduced after the emergence of the omicron variant (30.0% vs 10.6%, P < .001; 27.7% vs 13.8%, P = .013, respectively). Oxygen demand was also higher in the before-omicron group (20.0% vs 5.3%, P = .002).

We further compared the clinical outcomes according to the vaccination status (Table 2). Among all infected pregnant women, 185 and 39 were non-vaccinated and vaccinated, respectively. The rates of “moderate-to-severe” disease and oxygen therapy requirement were significantly lower in the vaccinated group than in the non-vaccinated group (25.4% vs 4.1%, P = .005; 16.2% vs 2.6%, P = .025, respectively). Notably, only 1 patient in the vaccinated group (who had asthma) required oxygen therapy.

DISCUSSION

This study has several limitations. Firstly, we could not detect the specific strain of SARS-CoV-2 in the infected patients. Considering that omicron accounted for more than half of COVID-19 infections after January 17, 2022, in Korea, we expected that the characteristics of the omicron variant would be reflected in the study population. This interval of time was defined as the omicron period for comparison analysis. Among 9 vaccinated women in the before-omicron group, only 1 who was obese and over 40 years old showed pneumonia on chest X-ray, but did not require oxygen therapy. Nevertheless, our result is insufficient to conclude whether the lower severity in vaccinated women is due to the vaccination or simply a feature of the omicron variant itself. Additionally, the sample size was small because the study was conducted only at a single institution. However, data from a single institution is reliable owing to consistency in treatment guidelines.

In conclusion, the clinical course of COVID-19 was more favorable in pregnant women in the omicron group than in the before-omicron group. Additionally, disease severity was lower in pregnant women who had received at least 1 vaccination dose. In fact, more favorable clinical outcomes were observed after the omicron variant dominance. However, more pregnant women were also vaccinated during this period. Further studies are required to identify whether the outcomes

Characteristics	Before omicron(N=130)	After omicron(N=94)	P
Age	32.3 ± 4.9	32.1 ± 4.3	.754
Nulliparity (%)	66 (51.6)	47 (50.0)	.818
GA at admission			
1st trimester, n (%)	19 (14.6)	13 (13.8)	.002
2nd trimester, n (%)	42 (32.3)	12 (12.8)	
3rd trimester, n (%)	69 (53.1)	69 (73.4)	
Number of Vaccine doses (%)			
None	121 (93.1)	64 (58.1)	<.001
First	3 (2.3)	6 (6.4)	
Second	6 (4.6)	21 (22.3)	
Boosted	-	3 (3.2)	
Co-morbidity (%)			
Obesity	14 (10.8)	12 (12.8)	.645
DM	10 (7.7)	9 (9.6)	.618
HTN	4 (3.1)	3 (3.2)	1.000
Asthma	3 (2.3)	1 (1.1)	.641
Clinical severity during admission (%)			
Asymptomatic or Mild	91 (70.0)	84 (89.4)	<.001
Moderate or Serious	39 (30.0)	10 (10.6)	
Oxygen support requirement (%)	26 (20.0)	5 (5.3)	.002
Nasal or Mask	20 (15.4)	5 (5.3)	.001
High frequency	5 (3.8)	-	
Invasive Mechanical	1 (0.8)	-	
Maternal Morbidity (%)	36 (27.7)	13 (13.8)	.013
Pneumonia	32 (24.6)	5 (5.3)	.004
Transfer to Medical specialist	20 (15.4)	5 (5.3)	.018
ICU care	4 (3.1)	0 (0.0)	.141
PTB	5 (12.5)	3 (7.1)	.477

GA, gestational age; DM, diabetes mellitus; HTN, hypertension; ICU, intensive care unit; PTB, preterm birth.
*n = 222.
*18 *n=82 (before omicron: 40, after omicron: 42).
improved due to the decreased severity of the disease caused by the omicron variant or the protective effects of vaccination.

Acknowledgments

We would like to thank all the staff of the quarantine ward and emergency department at the Kyungpook National University Hospital and Kyungpook National University Chilgok Hospital for their work in the management of pregnancies in women with COVID-19.

References

1. Yang S, Jang J, Park SY, et al. COVID-19 outbreak report from January 20, 2020 to January 19, 2022 in the Republic of Korea. Public Health Weekly Reports. 2022;15:796–805.

2. Kim SH, Choi Y, Lee D, et al. Impact of COVID-19 on pregnant women in South Korea: focusing on prevalence, severity, and clinical outcomes. J Infect Public Health. 2022;15:270–276.

3. Wang L, Berger NA, Kaelber DC, Davis PB, Volkow ND, Xu R. COVID infection rates, clinical outcomes, and racial/ethnic and gender disparities before and after Omicron emerged in the US. medRxiv [Preprint]. 2022 2022.02.21.22271300.https://doi.org/10.1101/2022.02.21.22271300.

4. Iuliano AD, Brunkard JM, Boehmer TK, et al. Trends in disease severity and health care utilization during the early omicron variant period compared with previous SARS-CoV-2 high transmission periods — United States, december 2020—January 2022. MMWR Morb Mortal Wkly Rep. 2022;71:146–152.

5. National Health Insurance Service. 9 out of 10 pregnant women who were vaccinated against COVID-19 were not vaccinated. Accessed April 1, 2022. http://www.fttoday.co.kr/news/articleView.html?idxno=231340.

6. COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. Natl Inst Health. Accessed May 16, 2022. https://www.covid19treatmentguidelines.nih.gov/.

Table 2
Comparison of clinical outcomes according to vaccination status

Characteristics	Non-vaccinated (N=185)	Vaccinated (N=39)	P
Clinical severity during admission (%)			
Asymptomatic or Mild	138 (74.6)	37 (94.9)	.005
Moderate or Serious	47 (25.4)	2 (4.1)	
Oxygen support requirement (%)	30 (16.2)	1 (2.6)	.025
Nasal or Mask	24 (13.0)	1 (2.6)	.032
High frequency	5 (2.2)	-	
Invasive Mechanical	1 (0.5)	-	
Maternal Morbidity (%)	47 (25.4)	2 (5.1)	.005
Pneumonia	40 (21.6)	1 (2.6)	.005
Transfer to Medical specialist	24 (13.0)	1 (2.6)	.089
ICU care	4 (2.2)	-	1.000
PTB*	8 (10.4)	-	1.000

ICU, intensive care unit; PTB, preterm birth.

*n=82 (non-vaccinated: 77, vaccinated: 5).