Review

Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

L Galluzzi1,2,3,126, JM Bravo-San Pedro1,2,4, I Vitale5, SA Aaronson6, JM Abrams7, D Adam8, ES Alnemri9, L Altucci10, D Andrews11, M Annicchiarico-Petruzelli12, EH Baehrecke13, NG Bazan14, MJ Bertrand15,16, K Bianchi17,18, MV Blagosklonny19, K Blomgren20, C Borner21, DE Bredesen22,23, C Brenne24,25,26, M Campanella27, E Candé28, F Cecconi29,30,31, FK Chan32, NS Chandell33, EH Cheng34, JC Chipuk35, JA Cichoniewski36, TM Dawson37,38, VL Dawson39,78, V de Laurencin39, R De Maria40, K-M Debatin41, N Di Daniele42, VM Dijkstra43, BD Dynlacht44, WS El-Deiry45, GM Finia45,46, RA Flavell47, S Fulda48, C Garrido49,50, M-L Gougeon51, DR Green52, H Groneymeyer53, G Hajnoczy54, JM Hardwick55, MO Hengartner56, H Ichijo57, B Joseph58, PJ Joshi59, T Kaufmann60, O Kepp61, DJ Klionsky62, S Kumar65,66, JJ Lemasters67, B Levine68,69, A Linkermann70, SL Lipton71,72,73,74, RA Lockshin75, C López-Otin76, E Lugli77, F Madeddu78, W Malorni79,80, J-C Marine79, SJ Martin81,82, SJ Martinou83, JP Medema85, P Meier86, S Melino87, N Mizushima88, U Molinari89, C Muñoz-Pinedo90, G Nuñez91, A Oberst92, T Panaretakis93, MJ Penny94, ME Peter95, M Piacentini30,46, P Pinton96, JH Prehn97,98, V Puthalakath99, R Rizzuto100, CM Rodrigues101, DC Rubinsztein102, T Rudel103, Y Shi104, H-U Simon105, BR Stockwell106,97,98, G Szabadak107,108, SW Tai109,109, HL Tang110, N Tavernarakis111,112, Y Tsujimoto113, T Vanden Bergh114, P Vandenabeele15,16,113, A Villunger114, EF Wagner115, H Walczak116, E White117, WG Wood118,119, J Yuan120, Z Zakeri121,122, B Zhivotovsky123,124, G Melino125,126 and G Kroemer*,2,3,4,61,125,126

1Gustave Roussey Cancer Center, Villejuif, France; 2Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; 3Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; 4INSERM, U1138, Gustave Roussey, Paris, France; 5Regina Elena National Cancer Institute, Rome, Italy; 6Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 7Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA; 8Institute of Immunology, Christian-Albrechts University, Kiel, Germany; 9Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA; 10Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy; 11Department of Biochemistry and Biological Medical Physics, University of Toronto, Toronto, ON, Canada; 12Biochemistry Laboratory, Istituto Dermoepatico dell’Immacolata – Istituto Rovigo Cura Carattere Scientifico (IDI-IRCCS), Rome, Italy; 13Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA; 14Neuroscience of Excellence, College of Medicine, University of New Orleans, LA, USA; 15VIB Inflammation Research Center, Gent, Belgium; 16Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; 17Barts Cancer Institute, Cancer Research UK Centre of Excellence, London, UK; 18Queen Mary University of London, John Vane Science Centre, London, UK; 19Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA; 20Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden; 21Institute of Molecular Medicine and Spermatogonia School of Biology and Medicine, Albert-Ludwigs University, Freiburg, Germany; 22Buck Institute for Research on Aging, Novato, CA, USA; 23Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA; 24INSERM, UMR5876, Châtenay Malabry, France; 25LabEx LERMIT, Châtenay Malabry, France; 26Université Paris Sud/Paris XI, Orsay, France; 27Department of Comparative Biomedical Sciences and Consortium for Mitochondrial Research, University College London (UCL), London, UK; 28Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy; 29Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy; 30Department of Biology, University of Rome Tor Vergata; Rome, Italy; 31Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark; 32Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA; 33Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; 34Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA; 35Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), North Carolina, NC, USA; 36Tumor and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel; 37Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (ICE), Departments of Neurology, Pharmacology and Molecular Sciences, Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 38Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA; 39Department of Experimental and Clinical Sciences, Gabriele d’Annunzio University, Chieti, Italy; 40Department of Pediatrics and Adolescent Medicine, ULM University Medical Center, Ulm, Germany; 41Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; 42Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA; 43Department of Pathology and Cancer Institute, Smilor Research Center, New York University School of Medicine, New York, NY, USA; 44Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology), Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, USA; 45Department of Biological and Environmental Sciences and Technologies (DISTbA), University of Salento, Lecce, Italy; 46Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani, Istituto Rovigo Cura Carattere Scientifico (IRCCS), Rome, Italy; 47Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; 48Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt, Germany; 49INSERM, U866, Dijon, France; 50Faculty of Medicine, University of Burgundy, Dijon, France and 51Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France

Abbreviations:
ACD, accidental cell death; APAF1, apoptotic peptidase-activating factor 1; BAX, BCL2-associated X protein; Bak1, BCL2-antagonist/killer 1; BCL2, B-cell CLL/Lymphoma 2; BID, BH3-interacting domain death agonist; BIRC, baculoviral IAP repeat containing; casp3, caspase-3; casp8, caspase-8; casp9, caspase-9; CYPD, cyclophilin D; DAMP, damage-associated molecular pattern; FADD, Fas (TNFRSF6)-associated via death domain; GPIX, glutathione peroxidase 4; MLKL, mixed lineage kinase domain-like; MOMP, mitochondrial outer membrane permeabilization; MPT, mitochondrial permeability transition; NCCD, Nomenclature Committee on Cell Death; Nec-1, necrostatin 1; PARP1, poly(ADP-ribose) polymerase 1; PCD, programmed cell death; PPIF, peptidylprolyl isomerase F; PTPC, mitochondrial outer membrane permeability; Q-VD-OPh, 5-(2,6-difluorophenoxy)-3-

Received 23.7.14; accepted 30.7.14; Edited by A Stephanou; published online 19.9.14
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.

Cell Death and Differentiation (2015) 22, 58–73; doi:10.1038/cdd.2014.137; published online 19 September 2014
Defining life and death is more problematic than one would guess. In 1838, the work of several scientists including Matthias Jakob Schleiden, Theodor Schwann and Rudolf Carl Virchow culminated in the so-called ‘cell theory’, postulating that: (1) all living organisms are composed of one or more cells; (2) the cell is the basic unit of life; and (3) all cells arise from pre-existing, living cells.\(^1\) Only a few decades later (in 1885), Walter Flemming described for the first time some of the morphologic features that have been largely (but often inappropriately) used to define apoptosis throughout the past four decades.\(^2–4\)

A corollary of the cell theory is that viruses do not constitute *bona fide* living organisms.\(^5\) However, the discovery that the giant *Acanthamoeba polyphaga* mimivirus can itself be infected by other viral species has casted doubts on this point.\(^6–8\) Thus, the features that underlie the distinction between a living and an inert entity remain a matter of debate. Along similar lines, defining the transition between an organism’s life and death is complex, even when the organism under consideration is the basic unit of life, a cell. From a conceptual standpoint, cell death can obviously be defined as the permanent degeneration of vital cellular functions. Pragmatically speaking, however, the precise boundary between a reversible alteration in homeostasis and an irreversible loss of cellular activities appears to be virtually impossible to identify. To circumvent this issue, the Nomenclature Committee on Cell Death (NCCD) previously proposed three criteria for the identification of dead cells: (1) the permanent loss of the barrier function of the plasma membrane; (2) the breakdown of cells into discrete fragments, which are commonly referred to as apoptotic bodies; or (3) the engulfment of cells by professional phagocytes or other cells endowed with phagocytic activity.\(^9–11\)

However, the fact that a cell is engulfed by another via phagocytosis does not imply that the cell-containing phagosome fuses with a lysosome and that the phagosomal cargo is degraded by lysosomal hydrolases.\(^12–14\) Indeed, it has been reported that engulfed cells can be released from phagosomes as they preserve their viability, at least under some circumstances.\(^15\) Thus, the NCCD recommends here to consider as *dead* only cells that either exhibit irreversible plasma membrane permeabilization or have undergone complete fragmentation. A compendium of techniques that can be used to quantify these two markers of end-stage cell death can be found in several recent articles.\(^16–25\)

Importantly, cell death instances can be operationally classified into two broad, mutually exclusive categories: ‘accidental’ and ‘regulated’. Accidental cell death (ACD) is caused by severe insults, including physical (e.g., elevated temperatures or high pressures), chemical (e.g., potent detergents or extreme variations in pH) and mechanical (e.g., shearing) stimuli, is virtually immediate and is insensitive to pharmacologic or genetic interventions of any kind. The NCCD thinks that this reflects the structural disassembly of cells exposed to very harsh physicochemical conditions, which does not involve a specific molecular machinery. Although ACD can occur *in vivo*, for instance as a result of burns or traumatic injuries, it cannot be prevented or modulated and hence does not constitute a direct target for therapeutic interventions.\(^23,26–28\) Nonetheless, cells exposed to extreme physicochemical or mechanical insults die while releasing elevated amounts of damage-associated molecular patterns (DAMPs), that is, endogenous molecules with immunomodulatory (and sometimes cytotoxic) activity. Some DAMPs can indeed propagate an unwarranted cytotoxic response (directly or upon the involvement of innate immune effectors) that promotes the demise of local cells surviving the primary insult.\(^16,19,29–31\) Intercepting DAMPs or blocking DAMP-ignited signaling pathways may mediate beneficial effects in a wide array of diseases involving accidental (as well as regulated) instances of cell death.\(^19,32\)

At odds with its accidental counterpart, regulated cell death (RCD) involves a genetically encoded molecular machinery.\(^9,33\) Thus, the course of RCD can be altered by means of pharmacologic and/or genetic interventions targeting the key components of such a machinery. Moreover, RCD often occurs in a relatively delayed manner and is initiated in the context of adaptive responses that (unsuccessfully) attempt to restore cellular homeostasis.\(^34–38\) Depending on the initiating stimulus, such responses can preferentially involve an organelle, such as the reticular unfolded protein response, or operate at a cell-wide level, such as macroautophagy (hereafter referred to as autophagy).\(^39–44\) Thus, while ACD is completely unpreventable, RCD can be modulated (at least to some extent, see below) not only by inhibiting the transduction of lethal signals but also by improving the capacity of cells to mount adaptive responses to stress.\(^45–50\) Importantly, RCD occurs not only as a consequence of microenvironmental perturbations but also in the context of (post-)embryonic development, tissue homeostasis and immune responses.\(^51–54\)

Such completely physiologic instances of RCD are generally referred to as ‘programmed cell death’ (PCD) (Figure 1).\(^9,33\)

For the purpose of this discussion, it is useful to keep in mind the distinction that is currently made between the initiation of RCD and its execution. The term *execution* is generally used to indicate the ensemble of biochemical processes that truly cause the cellular demise. Conversely, *initiation* is commonly used to refer to the signal transduction events that activate executioner mechanisms. Thus, the activation of caspase-8 (CASP8) in the course of FAS ligand (FASL)-triggered apoptosis is widely considered as an initiator mechanism, whereas the consequent activation of caspase-3 (CASP3) is categorized as an executioner mechanism (see below).\(^51,55–57\)

Here, the NCCD formulates a set of recommendations to discriminate between *essential* and *accessory* aspects of RCD, that is, between those that etiologically mediate its occurrence and those that change its kinetics or morphologic and biochemical manifestations.

Morphologic Aspects of Cell Death

The early classifications of cell death were purely morphologic, owing to obvious technical limitations.\(^18,20\) In 1964, the American biologist Richard A Lockshin was the first to thoroughly describe the demise of intersegmental muscles in developing silk moths, a seminal contribution to the modern understanding of PCD.\(^38\) A few years later, in 1972, the Australian pathologist John F Kerr together with his Scottish...
collaborators Andrew H Wyllie and Alastair R Currie coined the term ‘apoptosis’ (from the ancient Greek ‘ἀπότομος’, meaning ‘falling off’) to indicate a morphologically stereotyped form of cellular demise characterized by cytoplasmic shrinkage, chromatin condensation initiating at the nuclear membrane (marginalization) and then involving the whole nucleus (pyknosis), nuclear fragmentation (karyorrhexis), minimal alterations of other organelles and a peculiar ‘boiling-like’ process (blebbing) culminating in the formation of a few discrete corpses that initially retain plasma membrane integrity (apoptotic bodies). Soon thereafter, the first ‘formal’ classification of cell death differentiated between: (1) type I cell death (apoptosis), manifesting with the morphologic features described above; (2) type II cell death (autophagy), featuring an extensive vacuolization of the cytoplasm; and (3) type III cell death (necrosis), exhibiting neither apoptotic nor autophagic characteristics. Such a ‘visual catalog’ has dominated the field of cell death research for decades. Nonetheless, the NCCD views it as an oversimplification and considers it rather misleading, for several reasons.

First, when this classification was formulated, necrosis (as defined by morphologic features) was considered as a strict equivalent of ACD, whereas apoptosis (as defined by morphologic features) was viewed as the sole programmed subroutine of cell death. Along similar lines, apoptosis was misconceived as an immunologically silent, if not tolerogenic, cell death modality. It is now clear that PCD does not necessarily fail to induce inflammatory or immune responses. These observations indicate that morphologic and functional aspects of cell death are not necessarily linked to each other.

Second, the negative morphologic definition of necrosis as a cell death modality that fails to exhibit apoptotic or autophagic features has been reconsidered. Indeed, necrosis can manifest with a stereotyped panel of features, including a generalized swelling of the cytoplasm, which acquires a translucent aspect, and organelles (oncosis), as well as a peculiar alteration of chromatin (condensation into small and irregular patches) and the nuclear membrane (dilatation). The evolution of the morphologic characterization of necrosis reflects the relatively recent discovery that RCD can also manifest with a necrotic aspect (see below).

Third, the use of the term ‘autophagic cell death’ has been a matter of intense debate. Such an expression was coined based on morphologic considerations (i.e., the appearance of autophagic vacuoles in the course of type II cell death) only, but it soon became misused to imply that the molecular machinery of autophagy would actively contribute to the cellular demise. The NCCD strongly recommends the use of the expression ‘autophagic cell death’ from a functional perspective only, that is, to indicate a cell death subroutine that is limited or delayed by the pharmacologic or genetic inhibition of the autophagic machinery (see below).

Fourth, many instances of RCD present both apoptotic and necrotic traits. Moreover, several pharmacologic agents and genetic interventions designed to inhibit the execution of cell death often fail to do so when administered in a therapeutic (as opposed to prophylactic) manner, at least in the mammalian system, yet efficiently change its morphology. This applies to N-benzylxoycarbonyl-Val-Ala-Asp(O-Me) fluoromethylketone (Z-VD-fmk) and (3S)-(3,5)-(2,6-difluorophenox)-3-[[2-(quinolinylcarbonyl)amino]butyl]amino]-4-oxo-pentanoic acid hydrate (Q-VD-OPh), two broad-spectrum caspase inhibitors that have been widely investigated in the late 1990s as a means to mediate clinically relevant cytoprotection. Z-VD-fmk and Q-VD-OPh prevent the appearance of several morphologic markers of apoptosis, including nuclear pyknosis and blebbing (which rely on caspases), yet fail to limit stimulus-dependent cell death if administered in therapeutic settings (i.e., after the cell death inducer). Thus, caspase inhibition most often results in a shift from an overtly apoptotic to a mixed or necrotic cell death morphology.
and mixed lineage kinase-domain-like (MLKL). Conversely, cells exposed to DNA-alkylating agents in the presence of poly(ADP-ribose) polymerase 1 (PARP1) inhibitors die while manifesting an apoptotic, rather than a necrotic, morphology. Conversely, the introduction of a non-cleavable PARP1 variant appears to convert the apoptotic phenotype of cells succumbing to FAS ligation into a necrotic one. Possibly, this reflects the ability of PARP1, an NAD-dependent enzyme initially characterized for its role in DNA repair and the DNA damage response, to provoke an abrupt decline in intracellular ATP levels (secondary to NAD depletion), hence blocking various morphologic manifestations of apoptosis. Such a morphologic shift, however, does not appear to stem from the inhibition of caspases, because neither the catalytic functions nor the activation of these proteases require ATP (which should not be confounded with deoxy-ATP, see below).

In summary, the morphologic manifestations of cell death can easily be altered in the absence of bona fide cytoprotection, casting doubts on the actual value of morphology-based classifications of cell death.

Biochemical Manifestations of Cell Death

In 2012, the NCCD proposed to abandon the morphologic catalog of cell death instances in favor of a new classification based on quantifiable biochemical parameters. In substitution, the NCCD identified the main molecular events associated with specific cell death subroutines as well as the pharmacologic and/or genetic interventions that may be used to discriminate between various instances of cell death in experimental settings, in vitro and in vivo.

Since then, our comprehension of specific RCD modalities has progressed significantly. Thus, while no paradigm-breaking discoveries have been made on the regulation and execution of caspase-dependent RCD instances (which most often display an apoptotic morphology), profound insights have been obtained into the mechanisms underlying cases of RCD that do not depend on caspases and generally manifest with necrotic features. This notion began to emerge in the late 1980s but became widely accepted only two decades later, owing to the milestone discoveries of Peter Vandenabeele, Jurg Tschopp, and Junying Yuan and to the characterization of the key role played by peptidylprolyl isomerase F (PPIF, best known as cyclophilin D, CYPD) in necrotic instances of RCD. The identification of a genetically encoded machinery that promotes RCD with necrotic features generated an intense wave of investigation that has not yet come to an end.

From a biochemical standpoint, apoptosis is defined as a caspase-dependent variant of RCD. Other events commonly associated with apoptosis, such as the exposure of phosphatidylserine on the outer leaflet of the plasma membrane, are indeed less universal and more context-dependent than previously thought. Apoptosis can be initiated by intracellular (intrinsic) or extracellular (extrinsic) stimuli. Intrinsic apoptosis critically relies on mitochondrial outer membrane permeabilization (MOMP), a process that results in the holocytochrome c (CytC), deoxy-ATP- and apoptotic peptidase-activating factor 1 (APAF1)-dependent activation of caspase-9 (CASP9) and CASP3.

MOMP obligatorily requires either of two Bcl-2 family members, namely, B-cell CLL/lymphoma 2 (BCL2)-associated X protein (BAX) and BCL2-antagonist/killer 1 (BAK1), whose pore-forming activity is inhibited (both directly and via indirect circuits) by other components of the family, including BCL2 itself, BCL2-like 1 (BCL2L1, best known as BCL-XL) and myeloid cell leukemia 1 (MCL1). Importantly, the physical and functional interactions between pro- and antiapoptotic multidomain BCL2-like proteins are under the control of small components of the family known as BH3-only proteins, including (but not limited to) BCL2-associated X protein (BAX) and BCL2-antagonist/killer 1 (BAK1), whose pore-forming activity is inhibited (both directly and via indirect circuits) by other components of the family, including BCL2 itself, BCL2-like 1 (BCL2L1, best known as BCL-XL) and myeloid cell leukemia 1 (MCL1). BCL-XL, MCL1, and mixed lineage kinase domain-like (MLKL). Conversely, the introduction of a non-cleavable PARP1 variant appears to convert the apoptotic phenotype of cells succumbing to FAS ligation into a necrotic one. Possibly, this reflects the ability of PARP1, an NAD-dependent enzyme initially characterized for its role in DNA repair and the DNA damage response, to provoke an abrupt decline in intracellular ATP levels (secondary to NAD depletion), hence blocking various morphologic manifestations of apoptosis. Such a morphologic shift, however, does not appear to stem from the inhibition of caspases, because neither the catalytic functions nor the activation of these proteases require ATP (which should not be confounded with deoxy-ATP, see below).

In summary, the morphologic manifestations of cell death can easily be altered in the absence of bona fide cytoprotection, casting doubts on the actual value of morphology-based classifications of cell death.

Biochemical Manifestations of Cell Death

In 2012, the NCCD proposed to abandon the morphologic catalog of cell death instances in favor of a new classification based on quantifiable biochemical parameters. In substitution, the NCCD identified the main molecular events associated with specific cell death subroutines as well as the pharmacologic and/or genetic interventions that may be used to discriminate between various instances of cell death in experimental settings, in vitro and in vivo.

Since then, our comprehension of specific RCD modalities has progressed significantly. Thus, while no paradigm-breaking discoveries have been made on the regulation and execution of caspase-dependent RCD instances (which most often display an apoptotic morphology), profound insights have been obtained into the mechanisms underlying cases of RCD that do not depend on caspases and generally manifest with necrotic features. This notion began to emerge in the late 1980s but became widely accepted only two decades later, owing to the milestone discoveries of Peter Vandenabeele, Jurg Tschopp, and Junying Yuan and to the characterization of the key role played by peptidylprolyl isomerase F (PPIF, best known as cyclophilin D, CYPD) in necrotic instances of RCD. The identification of a genetically encoded machinery that promotes RCD with necrotic features generated an intense wave of investigation that has not yet come to an end.

From a biochemical standpoint, apoptosis is defined as a caspase-dependent variant of RCD. Other events commonly associated with apoptosis, such as the exposure of phosphatidylserine on the outer leaflet of the plasma membrane, are indeed less universal and more context-dependent than previously thought. Apoptosis can be initiated by intracellular (intrinsic) or extracellular (extrinsic) stimuli. Intrinsic apoptosis critically relies on mitochondrial outer membrane permeabilization (MOMP), a process that results in the holocytochrome c (CytC), deoxy-ATP- and apoptotic peptidase-activating factor 1 (APAF1)-dependent activation of caspase-9 (CASP9) and CASP3.

MOMP obligatorily requires either of two Bcl-2 family members, namely, B-cell CLL/lymphoma 2 (BCL2)-associated X protein (BAX) and BCL2-antagonist/killer 1 (BAK1), whose pore-forming activity is inhibited (both directly and via indirect circuits) by other components of the family, including BCL2 itself, BCL2-like 1 (BCL2L1, best known as BCL-XL) and myeloid cell leukemia 1 (MCL1). Importantly, the physical and functional interactions between pro- and antiapoptotic multidomain BCL2-like proteins are under the control of small components of the family known as BH3-only proteins, including (but not limited to) BCL2-associated X protein (BAX) and BCL2-antagonist/killer 1 (BAK1), whose pore-forming activity is inhibited (both directly and via indirect circuits) by other components of the family, including BCL2 itself, BCL2-like 1 (BCL2L1, best known as BCL-XL) and myeloid cell leukemia 1 (MCL1).
specific phospholipids, resulting in the loss of barrier function.170,171,174,175,188

Recent data argue against an essential role for mitochondria in necroptosis. Indeed, parkin RBR E3 ubiquitin protein ligase (PARK2)-overexpressing cells depleted of the vast majority of mitochondria upon the induction of mitophagy (by means of a mitochondrial uncoupler) become resistant to inducers of MOMP-dependent RCD, but remain sensitive to TNFR1 ligation in the presence of Z-VAD-fmk (a conventional trigger of necroptosis).189 Moreover, contrary to initial beliefs,190 the lethal activity of RIPK3 is not influenced by the absence of phosphoglycerate mutase family member 5 (PGAM5) and dynamin 1 like (DNM1L, best known as dynamin-related protein 1, DRP1).194,172,176 Based on these results, the NCCD proposes here to redefine necroptosis as an RCD modality that critically depends on MLKL and on the kinase activity of RIPK1 (in some settings) and RIPK3. Of note, both RIPK1 and RIPK3 have been shown to regulate caspase activation, at least under some circumstances.194,198–193 Taken together, these observations suggest that the signal transduction cascades responsible for the initiation of apoptosis and necroptosis are highly interconnected.

Necroptosis is actively inhibited by a supramolecular complex containing CASP8, FADD and the long isoform of CASP8 and FADD-like apoptosis regulator (CFLAR, best known as cellular FLICE inhibitor protein, c-FLIP),194–197 three key components of caspase-dependent RCD initiated by death receptors.196–203 Taken together with the notion that the absence of either Ripk3, Casp8 or Fadd fails to rescue Ripk1-/- mice from neonatal lethality,180,185 these results pointed to the existence of a switch mechanism that regulates cell fate upon TNFR1 ligation.204,205 Intriguingly, such switch may not operate in all cell types, as demonstrated by the fact that Ripk1-/- intestinal epithelial cells are fully rescued by the concomitant absence of Casp8 (Peter Vandenabeele, personal communication).

Recent data obtained with genetically engineered RIPK1 and RIPK3 variants indicate that the catalytic pathways activated in response to death receptor ligation depend on the availability of CASP8, FADD and MLKL.206 In comparatively more physiologic conditions, however, the fate of cells exposed to death receptor ligands may be determined by the activation kinetics of mitogen-activated protein kinase kinase kinase 7 (MAP3K7, best known as TGF\textsubscript{b}activated kinase 1, TAK1),192,193,207 which normally initiates a cytoprotective response centered around the transcription factor NF-κB and autophagy,208–212 or by the availability of baculoviral IAP repeat containing (BIRC) family members.192,193 Ubiquitin ligases with a central role in TNFR1 signaling213 in line with this notion, cells treated with a SMAC mimetic (resulting in the depletion of BIRC2 and BIRC3) or a chemical TAK1 inhibitor (NP-009245) reportedly respond to TNFR1 ligation by activating caspases in a RIPK1-dependent manner.192 Taken together, these observations indicate that death receptors generate a lethal stimulus that can be propagated along several signal transduction cascades. Thus, caution should be used in evaluating necroptotic instances of cell death based on their sensitivity to Nec-1 only.

Another variant of RCD that often, although not always, manifests with a necrotic morphotype critically relies on CYPD.214 At present, CYPD is the sole genetically confirmed component of the permeability transition pore complex (PTPC) in the mammalian system.132,133,135,215–217 The term PTPC generally refers to a supramolecular complex operating at the junctions between the inner and outer mitochondrial membrane to cause the so-called ‘mitochondrial permeability transition’ (MPT), an abrupt increase in the permeability of the inner mitochondrial membrane to small solutes triggered by cytosolic Ca2+ overload or oxidative stress.214,218–221 Unlike MOMP,205,222–224 MPT seals the cell fate independently of caspase activation.189 Nonetheless, MPT-driven RCD can manifest with (at least some) morphologic features associated with apoptosis,10,227,238 corroborating the limited informative value of cell death classifications solely based on morphology. The NCCD recommends the use of the term ‘MPT-driven RCD’ for instances of cell death whose course can be influenced with the genetic or pharmacologic inhibition of CYPD or other components of the PTPC. Of note, CYPD surely does not constitute the long-sought pore-forming unit of the PTPC, which most likely involves subunits of the so-called ‘ATP synthasome’, the supramolecular complex that imports ADP and inorganic phosphate into the mitochondrial matrix, catalyzes ATP synthesis and exports ATP back to the mitochondrial intermembrane space (from where it can easily reach the cytosol).229–231 Perhaps, the central role of CYPD in MPT-driven RCD reflects its ability to control the Ca2+ buffering capacity of the mitochondrial network.235,236 This hypothesis has not yet been formally addressed.

Two forms of RCD other than necroptosis and MPT-driven RCD have recently attracted attention as potential targets for the development of cytoprotective interventions, namely ‘parthanatos’ and ‘ferroptosis’.33 The main molecular features of parthanatos are the hyperactivation of PARP1 and the release of apoptosis-inducing factor, mitochondrion-associated, 1 (AIFM1) from the mitochondria.237–240 Interestingly, although TNFR1-driven necroptosis and parthanatos have been suggested to constitute completely independent RCD subroutines,241 this issue remains a matter of debate.101,242 Possibly, such a controversy originates from the ability of some insults to simultaneously trigger necroptosis and parthanatos, at least in some model systems.243 Ferroptosis has been defined as an iron-dependent form of RCD under the control of glutathione peroxidase 4 (GPX4).244–247 Both the pharmacologic and genetic inhibition of CYPD fail to prevent ferroptosis as triggered by erastin, a small molecule that is selectively lethal for cancer cells expressing oncogenic variants of Harvey rat sarcoma viral oncogene homolog (HRAS).246,248 This suggests that ferroptosis and MPT-driven RCD constitute independent variants of RCD. Of note, erastin inhibits system X\textsubscript{C}, an heterodimeric antiporter of the plasma membrane that normally exchanges intracellular glutamate for extracellular cysteine, resulting in glutathione depletion and iron-dependent accumulation of reactive oxygen species.244 A similar cascade of events contributes to (but is not the sole etiological determinant of) the death of neurons exposed to glutamate. This necrotic instance of RCD has previously been referred to as oxytosis.121,249 Besides inhibiting system X\textsubscript{C}, glutamate can trigger MPT-driven RCD upon the hyperactivation of ionotropic receptors, a neurotoxic process commonly known as excitotoxicity.250,251
Caspase-unrelated variants of RCD include ‘autophagic cell death’, which (among other processes) is biochemically associated with the lipidation of microtubule-associated protein 1 light chain 3 (MAP1LC3, best known as LC3) and the degradation of sequestosome 1 (SQSTM1, best known as p62). The NCCD recommends using this term only for RCD instances that can be influenced by the pharmacologic or genetic interventions targeting at least two distinct components of the molecular machinery for autophagy. While autophagy accompanies RCD in a vast number of pathophysiologic settings, it truly contributes to the cellular demise only in a few of them. Beth Levine’s laboratory has recently discovered a bona fide instance of autophagic cell death that relies on the plasma membrane Na⁺/K⁺-ATPase, and dubbed it ‘autosis’. Of note, autosis occurs not only in vitro, in cells exposed to cell permeant autophagy-inducing peptides, but also in vivo, in the brain of rats subjected to an ischemic insult. It remains to be determined whether all cases of autophagic cell death require the Na⁺/K⁺-ATPase or not. If so, the terms ‘autosis’ and ‘autophagic cell death’ would be synonymous. If not, autosis would constitute a special instance of autophagic cell death. Importantly, a growing body of evidence indicates that the pharmacologic or genetic inhibition of the processes that are commonly considered as essential for cell death execution often does not avoid the demise of mammalian cells, but rather alters its kinetics and biochemical (and morphologic) manifestations. Thus, in many experimental paradigms (in vitro and in vivo), Z-VAD-fmk and more specific CASP3 inhibitors administered as therapeutic (as opposed to prophylactic) interventions fail to significantly limit primary RCD, in spite of the fact that they efficiently limit caspase activation. In some of these scenarios, RCD overtly manifests with alternative biochemical processes, including RIPK1, RIPK3 or PARP1 activation, and (at least in part) can be influenced by agents that interfere with these pathways, including Nec-1, 3-aminobenzamide (a PARP1-targeting agent) and necrosulfonamide (an inhibitor of human BIRC2/BIRC3, RIPK1, RIPK3 or MLKL, and the administration of NP-009245, Nec-1 or geldanamycin (which indirectly destabilizes RIPK1) reportedly changes the kinetics of necroptosis and its biochemical profile, that is, it allows for caspase activation, yet fails to block the cellular demise. Along similar lines, 3-aminobenzamide and 4-amino-1,8-naphthalimide (another PARP1 inhibitor) can convert the cytotoxic response to alkylating DNA damage or TNFR1 ligation from a caspase-independent one to apoptosis, manifesting with caspase activation. These observations indicate that, similar to their morphologic counterparts, the biochemical manifestations of cell death can be altered in the absence of efficient cytoprotection.

RCD and Stress Adaptation

Cells subjected to perturbations of intracellular or extracellular homeostasis almost invariably mount a tightly coordinated response aimed at (1) the removal of the initiating stimulus (when possible), (2) the repair of molecular and/or organellar damage, and (3) eventually, the re-establishment of physiologic conditions. When these objectives cannot be attained, cells generally undergo RCD as a means to preserve the homeostasis of the whole organism (or colony, in the case of yeast cells). Two mutually exclusive models can be put forward to explain how adaptive stress responses promote RCD when unsuccessful. First, a ‘conversion model’ postulates that RCD-inhibitory signals cease at some stage of the adaptive response and are replaced by RCD-promoting ones. Second, a ‘competition model’ hypothesizes that RCD-inhibitory and -promoting signals coexist and counteract with each other starting from the detection of microenvironmental alterations, but at some stage the latter predominate over the former (Figure 2). Although data formally favoring one of these models over the other are lacking, circumstantial evidence suggests that RCD-promoting signals are activated when RCD-inhibitory mechanisms are still operational. Based on this conceptual construction, the NCCD recommends to use the term ‘initiation’ to indicate the RCD-causing events that are reversible, that is, that do not irrevocably commit cells to die as they occur when adaptive responses are still operational. In addition, we encourage the use of the expression ‘execution’ for referring to the processes that irreversibly and causally seal the cell fate, and the term ‘propagation’ to indicate the processes that link primary (stimulus-dependent) RCD to the stimulus-independent initiation of a secondary RCD wave, including the release of DAMPs and the consequent inflammatory response (Figure 3). The blockage of RCD-initiating mechanisms by either pharmacologic or genetic means has been associated with consistent degrees of cytoprotection in rodent models representing various human diseases linked to unwarranted cell death. For instance, this applies to the whole-body ablation of Ppif (the CYPD-coding gene), Ripk3 and Mlkl as well as to the administration of chemical CYPD inhibitors (i.e., cyclosporin A and sanglifehrin A) and Nec-1. Conversely, pharmacologic and genetic interventions expected to interrupt RCD at late steps of the process (when cells are commonly considered as committed to die) generally fail to confer significant long-term cytoprotection in mammalian models, casting doubts on the actual etiological value of these steps for RCD. Thus, Casp3⁻/⁻, Casp9⁻/⁻ and Apaf1⁻/⁻ mice display a consistent hyperplasia of the central nervous system associated with reduced amounts of PCD in specific cerebral areas, resulting in embryonic or perinatal lethality. However, the neuronal phenotype of Casp3⁻/⁻ mice does not develop in all genetic backgrounds, and the penetrance of the perinatal lethality associated with the Apaf1⁻/⁻ genotype is incomplete (as some animals survive through 10 months of age). Moreover, the developmental death of interdigital cells (which generally manifests with biochemical correlates of apoptosis) occurs close to normally (allowing for normal morphogenesis) in mice bearing a homozygous loss-of-function mutation in Apaf1, and in mice exposed to broad-spectrum caspase inhibitors. In these settings, however, the demise of interdigital cells cannot be detected by the terminal-deoxynucleotidyl-mediated dUTP nick end-labeling (TUNEL) assay, measuring caspase-dependent DNA damage or TNFR1 ligation from a caspase-independent one to apoptosis, manifesting with caspase activation. Along similar lines, 3-aminobenzamide and 4-amino-1,8-naphthalimide (another PARP1 inhibitor) can convert the cytotoxic response to alkylating DNA damage or TNFR1 ligation from a caspase-independent one to apoptosis, manifesting with caspase activation. Along similar lines, 3-aminobenzamide and 4-amino-1,8-naphthalimide (another PARP1 inhibitor) can convert the cytotoxic response to alkylating DNA damage or TNFR1 ligation from a caspase-independent one to apoptosis, manifesting with caspase activation.
Conversely, the simultaneous ablation of Bax and Bak or Bcl211 and Bmf (encoding two BH3-only proteins involved in MOMP initiation) truly prevents the programmed demise of several cell types, causing their persistence throughout adult life. These observations are compatible with the hypothesis that the phenotype associated with some defects in the molecular cascades linking MOMP to caspase activation originates from a delay, rather than from \textit{bona fide} inhibition, of PCD. Moreover they suggest that RCD, be it programmed or caused by micro-environmental perturbations, can only be avoided by interventions that target upstream steps of the process.

Caution should also be taken in inferring the actual etiological value of caspases in RCD based on the therapeutic administration of Z-VAD-fmk or other broad-spectrum caspase inhibitors. Caspase blockers have indeed been associated with (at least some degree of) cytoprotection in rodent models of various human diseases linked to the excessive loss of parenchymal cells. These pathologies include, but are not limited to, neurodegenerative disorders, traumatic events and ischemia/reperfusion injuries of the central nervous system, heart and kidney. Nonetheless, Z-VAD-fmk and similar compounds inhibit not only several caspases but also a wide panel of non-caspase proteases that participate in the initiation of RCD, such as calpains. Moreover, CASP3, caspase-6 (CASP6) and caspase-7 (CASP7) (i.e., the putative executioners of apoptosis) have been involved in feedforward circuitries that amplify lethal cues leading to MOMP, implying that their inhibition may also counteract the initiation of RCD. Finally, in models of this type it is difficult to discriminate between the primary wave of RCD (promoted by experimental interventions) and the delayed, secondary demise of parenchymal cells caused by DAMPs (directly or upon the establishment of inflammation). The cytoprotective effects that Z-VAD-fmk-like chemicals exert in similar scenarios, which are most reliably evaluated by histological determinations or functional tests, might therefore reflect their ability to block the initiation of DAMP- and inflammation-driven secondary RCD rather than the execution of stimulus-induced, primary RCD. In line with this notion, consistent cytoprotection has also been achieved \textit{in vivo} by means of anti-inflammatory agents, even when these compounds do not directly influence RCD. Taken together, these observations reinforce the notion that caspases may not mediate RCD but simply accelerate its course, at least in the mammalian system.

 Apparently at odds with the role of PARP1 in the execution of parthanatos, both the \textit{Parp1} -/- genotype and the administration of (relatively unselective) PARP inhibitors have been associated with \textit{bona fide} cytoprotection in rodent models of ischemia/reperfusion injury and retinal degeneration. These observations suggest that
PARP1 and/or other members of the PARP family also participate in the initiation of RCD. Alternatively, the inhibition of PARP1 may limit the release of DAMPs or the consequent inflammatory response, at least in some pathophysiologic settings. Further experiments are required to clarify these possibilities.

Concluding Remarks

As discussed above, the processes that until now were thought to mediate RCD most often do not causally underpin the cellular demise but represent biochemical manifestations of it. A growing body of data indicates indeed that the *bona fide* executioners of RCD, that is, the processes that directly drive cells across the boundary between life and death are less characterized, less inhibitable and perhaps more homogeneous than previously thought.

In line with this theoretical construction, here the NCDD proposes to use the term ‘initiation’ to refer to all the steps in the RCD cascade that are reversible, that is, which occur before cells make an irrevocable commitment to die. An attentive reinterpretation of the literature suggests that actual cytoprotection can only be achieved with pharmacologic or genetic interventions that inhibit or outcompete lethal signals at this stage, when adaptive responses to stress are still operational. Interestingly, some cells manifesting biochemical and morphologic features associated with late-stage RCD (including partial MOMP, caspase activation and blebbing) appear to recover (upon removal of the RCD-initiating insult) and replicate, a process that has been dubbed ‘anastasis’ (from the ancient Greek ‘ἀναστασία’, meaning ‘raising to life’). This suggests that the actual point of no return in the signal-transduction cascades leading to RCD may exhibit at least some degree of context dependency.

In the vast majority of scientific reports, RCD is measured *in vitro* 24–96 h after stimulation, whereas the most reliable assessment of RCD *in vivo* is based upon histologic determinations or functional tests performed days, if not weeks or months, after such experimental interventions. In the former

Figure 3 Initiation, execution and propagation of regulated cell death. The term ‘execution’ has largely been used to indicate the processes that (were thought to) mediate regulated cell death (RCD), such as the massive activation of CASP3 in the course of apoptosis. Conversely, the word ‘initiation’ has generally been used to refer to the signal transduction events that trigger executioner mechanisms, such as the activation of CASP8 or CASP9, both of which normally impinge on CASP3. Upon an attentive re-evaluation of the available literature, the NCCD recommends caution in attributing a specific process a *bona fide* causative value in the execution of cell death. In addition, the NCCD proposes to use the term ‘initiation’ with a pragmatic connotation, that is, to indicate the steps in the cascades of events leading to RCD that are truly reversible, and the term ‘propagation’ to indicate the processes that link primary RCD to the insult-independent initiation of a secondary wave of RCD, that is, the release of cytotoxic and proinflammatory factors, including damage-associated molecular patterns (DAMPs), by dying cells and their consequences. Based on this conceptual construction, only pharmacologic and genetic interventions that target the initiation phase exert *bona fide* cytoprotective effects, that is, truly inhibit primary RCD rather than just delaying its course or changing its morphologic or biochemical correlates. Robust cytoprotection can also be achieved *in vivo* by the administration of anti-inflammatory agents and by measures that block DAMPs or their receptors. These maneuvers, however, appear to be efficient as they prevent the propagation of primary RCD or the initiation of secondary RCD.
Compromised redox homeostasis may constitute common causes of cell death in many RCD models. ROS, reactive oxygen species, are a reliable marker of cell death currently available. Along similar lines, variations in the oxidative potential of the intracellular milieu not only inhibit several enzymatic activities, but fail to mediate bona fide long-term cytoprotection. It is therefore difficult to evaluate the actual causes that push cells beyond the point-of-no-return between life and death, especially as it remains to be formally demonstrated where the frontier between reversible alterations of homeostasis and the irreversible degeneration of cellular functions stands. ATP is required for a wide panel of vital activities, including the maintenance of the ionic equilibrium across the plasma membrane, implying that the drop of ATP concentrations below a specific threshold level may irremediably compromise the ability of cells to maintain structural integrity (which is the most reliable marker of cell death currently available). Along similar lines, variations in the oxidative potential of the intracellular milieu not only inhibit several enzymatic activities, but fail to mediate RCD in all its manifestations. Further experiments are required to explore these possibilities.

At odds with mammalian models, Caenorhabditis elegans and D. melanogaster are truly protected by Z-VAD-fmk and by the genetic inhibition of caspase orthologs and other proteins involved in the postmitochondrial phase of apoptosis. This may indicate that the signal transduction cascades underlying RCD are interconnected in a different manner in mammals and non-mammalian organisms. Alternatively, the actual requirement of caspases for (at least some instances of) RCD might have been concealed by the evolutionary expansion of the caspase family. Both the human and murine genome encode indeed 14 distinct caspases, and it seems unlikely that Z-VAD-fmk and other pharmacologic or genetic interventions may simultaneously inhibit all of them in an efficient manner.

Until these uncertainties have been resolved, the NCCD recommends that investigators focus on essential aspects of cell death; first of all its actual occurrence. It appears indeed that measuring the functional status or subcellular localization of RCD-relevant proteins including (but not limited to) caspases, RIPK1, RIPK3, MLKL, CYPD, PARP1 and GPX4, can provide insights into the mechanisms that accompany (and regulate the kinetics of) cellular demise, but not into those that truly push cells beyond the point-of-no-return separating life and death. Precisely defining where this border stands from a bioenergetic and metabolic perspective may facilitate the development of novel and efficient cytoprotective agents for clinical use.

Conflict of Interest
The authors declare no conflict of interest.

1. Mazzarello P. A unifying concept: the history of cell theory. Nat Cell Biol 1999; 1: E13–E15.
2. Cotter TG. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009; 9: 501–507.
3. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology 1973; 7: 253–266.
4. Vaux DL. Apoptosis timeline. Cell Death Differ 2002; 9: 349–354.
5. Pearson H. ‘Vignophone’ suggests viruses are alive. Nature 2008; 454: 677.
6. La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M et al. A giant virus in amoebae. Science 2003; 299: 2033.
7. La Scola B, Desnues C, Pagneri I, Robert C, Barras L, Fournou G et al. The virophage as a unique parasite of the giant mimivirus. Nature 2008; 455: 100–104.
8. Racot D, Forterre P. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol 2008; 6: 315–319.
9. Galuzo L, Vitale I, Abrams JM, Alenmri ES, Baehrecke EH. Blagoksalony MV et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2012; 19: 107–120.
10. Kroemer G, Galuzo L, Vandenabeele P, Abrams J, Alenmri ES, Baehrecke EH et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16: 3–11.
11. Galuzo L, Mauri MC, Vitale I, Czischka H, Castedo M, Zitvogel L et al. Cell death modalities: implications for pathophysiological implications. Cell Death Differ 2007; 14: 1237–1243.
12. Poon IK, Lucas CD, Ross AG, Avruchandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 2014; 14: 166–180.
13. Hochreiter-Huhndorf A, Avruchandran KS. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 2013; 5: a007648.
14. Underhill DM, Goodridge HS. Information processing during phagocytosis. Nat Rev Immunol 2012; 12: 492–502.
15. Overholtzer M, Maileux AA, Mouenigme G, Normand G, Schmitt S, King RW et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 2007; 131: 986–978.
16. Galuzo L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13: 790–798.
17. Klisomsky DJ, Abdalla FC, Abelevich H, Abraham RT, Acedev-Aronzoro A, Adel K et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8: 445–544.
18. Kepp O, Galuzo L, Lipinski M, Yuan J, Kroemer G. Cell death assays for drug discovery. Nat Rev Drug Discov 2011; 10: 221–237.
19. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16: 1093–1107.
20. Tadsemir E, Galuzo L, Mauri MC, Crito E, Vitale I, Hangen E et al. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol 2008; 445: 29–76.
21. Kroeco D, Vanden Bergh T, D’Heer K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 2008; 44: 205–221.
22. Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight. J Clin Invest 2005; 115: 2610–2617.
23. Vanden Bergh T, Grorots S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 2013; 61: 117–129.
24. Grorots S, Goossens V, Vandenabeele P, Vanden Bergh T. Methods to study cell death and DAMPs in cancer therapy. Semin Cancer Biol 2013; 23: 339–339.
25. Siga GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ, HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28: 367–388.
26. Zhougel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell 2010; 140: 798–804.
27. Galuzo L, Kepp O, Kroutsav S, Kroemer G, Linkemann A. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 2014; doi:10.1016/j.semcdb.2014.02.006.
28. Brachtshayn S, Yu H, M, C, Matoucek J. Arrested growth: snapshots of the proapoptotic action. Nat Rev Mol Cell Biol 2014; 15: 122–133.
29. Fulda S, Gorman AM, Hort O, Samali A. Cellular stress responses: cell survival and cell death. Nat Rev Mol Cell Biol 2010; 11: 214–274.
30. Kroemer G, Martin G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40: 280–293.
31. Richter K, Hasbeck M, Burchner J. The heat shock response: life on the verge of death. Mol Cell 2010; 40: 285–286.
32. Spring KA, Bushell M, Wills AE. Translational regulation of gene expression during conditions of cell stress. Mol Cell 2010; 40: 226–237.
33. Haynes CM, Fiorese CJ, Lin YF. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 2013; 23: 311–318.
75. Kroemer G, Levine B. Autophagic cell death: the story of a minnow. Nat Rev Mol Cell Biol 2008; 9: 1004–1010.

76. Denton D, Nicolson S, Kumar S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 2012; 19: 87–95.

77. Martinou I, Desagher S, Alzueta R, Andritschek E, Vaux DL, Melen K, et al. The release of cyclochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 1999; 144: 883–889.

78. Vandenabeele P, Vanden Berghe T, Festjens N. Caspase inhibitors promote alternative cell death pathways. Sci STKE 2006; 2006: pe44.

79. Scheller G, Kowlessar J, Uhrich A, Pratteagner J, Racker T, Sopper S, et al. Caspase inhibition in apoptotic T cells triggers necrotic cell death depending on the cell type and the proapoptotic stimulus. J Cell Biochem 2006; 97: 1530–1538.

80. Chauat M, Chazal G, Cecconi F, Gruss P, Golstein P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 1999; 9: 967–970.

81. Hsu H, Tarnacki A, Susin SA, Bode U, Zamzami N, Marzo I, et al. The apoptosis-necrosis paradox: Apoptotic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 1997; 17: 1553–1561.

82. Lockshin RA, Zakin Z. Caspase-independent cell death. Curr Opin Cell Biol 2002; 14: 727–733.

83. Matsuzaki AA, Overholtzer M, Schmeltei T, Bollutier P, Strasser AS, Brugga JS. BIM regulates apoptosis during mammalian ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 2007; 12: 221–234.

84. Rashmi R, Pillai SG, Vijayalingam S, Ryerse J, Chinnadurai G. BH3-only protein BIK is a mitochondrial Bax homolog that triggers cell death. J Biol Chem 2003; 278: 12005–12010.

85. Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Exp Med 1995; 182: 1333–1346.

86. Medrano S, Gilmore B, Comportato D, Edwards J, Wei N, Song G, et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death in human breast cancer cells. J Exp Med 1998; 187: 1477–1483.

87. Enzenmuller S, Gonzalez P, Karpel-Massler G, Debatin KM, Fulda S. GDC-0941 activates and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in cell death signaling. Mol Biol Cell 2012; 13: 978–988.

88. Nagasaka A, Kawane K, Yoshida H, Nagata S. Apaf-1-independent programmed cell death. Cell 1999; 97: 763–773.

89. Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Exp Med 1995; 182: 1333–1346.

90. Enzenmuller S, Gonzalez P, Karpel-Massler G, Debatin KM, Fulda S. GDC-0941 activates and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in cell death signaling. Mol Biol Cell 2012; 13: 978–988.

91. Enzenmuller S, Gonzalez P, Karpel-Massler G, Debatin KM, Fulda S. GDC-0941 activates and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in cell death signaling. Mol Biol Cell 2012; 13: 978–988.

92. Mifsud A, Van Herreweghe F, Tanimoto S, Sato Y, Yoshida H, Podlaha I, et al. Activation of caspase-independent cell death following inhibition of caspase-3: implications for the treatment of human cancers. J Exp Med 2004; 201: 1373–1383.

93. Medrano S, Gilmore B, Comportato D, Edwards J, Wei N, Song G, et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death in human breast cancer cells. J Exp Med 1998; 187: 1477–1483.

94. Medrano S, Gilmore B, Comportato D, Edwards J, Wei N, Song G, et al. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death in human breast cancer cells. J Exp Med 1998; 187: 1477–1483.

95. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA. Extra mitochondrial PARP-1 activation. Cell Death Dis 2012; 3: e230.

96. Remijan Q, Gossens V, Grootsjans S, Van den Haute C, Vanlangenakker N, Donneling E, et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis 2014; 5: e1004.

97. Kehe K, Rathi K, Keppel H, Jochem M, Worek F, Thiemann H. Inhibition of poly(ADP-ribose) polymerase (PARP) influences the mode of sulfur mustard (SM)-induced cell death in HaCaT cells. Arch Toxicol 2008; 82: 461–470.

98. Pogribnek A, Schimmieda I, Pelka-Fleischer N, Nuessler V, Hasmann M. Poly ADP-ribose polymerase (PARP) inhibitors transiently protect leukemia cells from alkylating agent induced cell death by three different effects. Eur J Med Res 2003; 8: 438–450.

99. Loose M, Mazzolai M, Ferrari D, Stoppa-Cagnetta A, Stroh C, Renz A, et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in cell death signaling. Mol Biol Cell 2012; 13: 978–988.

100. Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 2012; 13: 411–424.

101. Michels J, Vitalle I, Saparbaev M, Castedo M, Kroemer G, Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene 2013; 33: 3894–3907.

102. Ankaracorona M, Dypunkt JM, Bonfoco E, Zivovitskovsky O, Orrenius S, Lipton SA et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15: 961–973.

103. Rashmi R, Pillai SG, Vijayalingam S, Ryerse J, Chinnadurai G. BH3-only protein BIK is a mitochondrial Bax homolog that triggers cell death. J Biol Chem 2003; 278: 12005–12010.

104. Kroemer G, Levine B. Autophagic cell death: the story of a minnow. Nat Rev Mol Cell Biol 2008; 9: 1004–1010.

105. Remijan Q, Gossens V, Grootsjans S, Van den Haute C, Vanlangenakker N, Donneling E, et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis 2014; 5: e1004.

106. Kehe K, Rathi K, Keppel H, Jochem M, Worek F, Thiemann H. Inhibition of poly(ADP-ribose) polymerase (PARP) influences the mode of sulfur mustard (SM)-induced cell death in HaCaT cells. Arch Toxicol 2008; 82: 461–470.

107. Pogribnek A, Schimmieda I, Pelka-Fleischer N, Nuessler V, Hasmann M. Poly ADP-ribose polymerase (PARP) inhibitors transiently protect leukemia cells from alkylating agent induced cell death by three different effects. Eur J Med Res 2003; 8: 438–450.

108. Loose M, Mazzolai M, Ferrari D, Stoppa-Cagnetta A, Stroh C, Renz A, et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in cell death signaling. Mol Biol Cell 2012; 13: 978–988.

109. Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 2012; 13: 411–424.

110. Michels J, Vitalle I, Saparbaev M, Castedo M, Kroemer G, Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene 2013; 33: 3894–3907.

111. Kroemer G, Levine B. Autophagic cell death: the story of a minnow. Nat Rev Mol Cell Biol 2008; 9: 1004–1010.
134. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434: 652–658.

135. Basso E, Fante L, Fowkes J, Petronilli V, Forte MA, Bernardi P. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 2005; 280: 18558–18561.

136. Mellen MA, de la Rosa EJ, Boya P. Autophagy is not universally required for phosphatidylserine exposure and apoptotic cell engulfment during neural development. Autophagy 2009; 5: 964–972.

137. Mellen MA, de la Rosa EJ, Boya P. The autophagic machinery is necessary for removal of cells from the developing retina neourethelium. Cell Death Differ 2008; 15: 1279–1290.

138. Segawa K, Kurasu S, Yanagahishi Y, Brunemelkamp TR, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flipase for apoptotic phosphatidylserine exposure. Science 2014; 344: 1164–1168.

139. Tzeng H, Zhao Y, Lepetit D, Petrov AD, Dumont EA, Blankenberg FD et al. Annexin A5 uptake in ischemic myocardium: demonstration of reversible phosphatidylserine externalization and feasibility of radiolucine imaging. J Nucl Med 2010; 51: 259–267.

140. Martin SJ, Reutelingsperger CP, McGahan AJ, Rader JA, van Schie RC, LaFaro DM et al. Widespread induction of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 1995; 182: 1545–1556.

141. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al. Regulation of apoptosis by XIAP ubiquitin-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

142. Van Loo G, Demol H, van Gurp M, Hoorebeke B, Schotte P, Beyaert R et al. A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death Differ 2002; 9: 301–308.

143. Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell 2008; 133: 1161–1163.

144. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009; 325: 53–42.

145. Cho YS, Chahla S, Donoghue D, Geng R, Ray TD, Guildford M et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137: 1112–1123.

146. He S, Wang L, Mao L, Wang T, Du F, Zhao L et al. Receptor interacting protein kinase–mediated necrosis determines cellular necrotic response to TNF-alpha. Cell 2009; 137: 1100–1111.

147. Newton K, Dugger DL, Wickiffe KE, Kapoor N, de Almagro MC, Vucic D et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 2014; 343: 1357–1360.

148. Dondelinger Y, Decken W, Montesu S, Roelant R, Goncalves A, Bruggeman I et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 2014; 7: 971–981.

149. Wang H, Sun L, Su L, Rizo J, Lu L, Wang LF et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 2014; 54: 133–146.

150. Moujaides DM, Cook WD, Murphy JM, Vaux DL. Necroptosis induced by RIP3 requires MLKL but not Drp1. Cell Death Dis 2014; 5: e1086.

151. Galluzzi L, Kepp O, Kroemer G. MLKL regulates necrotic plasma membrane permeabilization. Cell 2014; 159: 129–140.

152. Chen X, Li W, Ren J, Huang D, He WT, Song Y et al. Translocation of mixed lineage kinase domain-like protein MLKL requires TNF-induced necroptosis. Nat Cell Biol 2014; 16: 55–66.

153. Murphy JM, Czabotar PE, Hildebrand JD, Lucist S, Zhang JG, Alvarez-Diaz S et al. The pseudokinase MLKL meditates necroptosis via a molecular switch mechanism. Immunity 2013; 39: 443–453.

154. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y et al. Miki knockout mice demonstrate the indispensable role of Miki in necrotic cell death. Cell Res 2013; 23: 994–1006.

155. Zhao J, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J et al. Plasma membrane translocation of truncated MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 2014; 16: 208–211.

156. Moujaides DM, Cook WD, Okamoto T, Murphy J, Lawler KE, Vincen J et al. TNF can activate RIP3 and cause programmed necrosis in the absence of RIP1. Cell Death Dis 2013; 4: e465.

157. Kaiser WJ, Sridharan H, Huang C, Mandali P, Upton JW, Gough PJ et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 2013; 288: 31268–31279.

158. Diton CP, Weirich R, Rodrigue DA, Criggs JP, Quarat O, Gurnung P et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIP3 kinase. Cell 2014; 157: 1189–1202.

159. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Walberg F et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011; 43: 432–448.

160. Rickard JA, O’Donnell JA, Evans JM, Lalaioli N, Por AR, Rogers T et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 2014; 157: 1175–1183.

161. Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB, Huang C et al. RIP1 suppresses innate immune necrosis as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci USA 2014; 111: 7735–7738.

162. Upton JW, Kaiser WJ, Moracski ES, DA/ZBPI/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIFN. Cell Host Microbe 2012; 11: 290–297.

163. Basti F, Cristiano S, Fulda S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomes. Cell Death Differ 2013; 20: 1161–1173.
218. Tait SW, Obrecter A, Quarto G, Milasta S, Haller M, Wang R et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 2013; 5: 878–885.

219. Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 2012; 148: 223–234.

220. Vandenabeele P, Melino G. The flick of a switch: which death program to choose? Cell Death Differ 2003; 10: 865–866.

221. Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grotjans S, Dejardin E et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cell death. Mol Cell 2012; 30: 1381–1392.

222. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in cell death. Cell Death and Differentiation 2009; 16: 1491–1495.

223. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Cell 2007; 129: 1223–1226.

224. Tait SW, Ichim G, Green DR. Die another way – non-apoptotic mechanisms of cell death. J Biol Chem 2014; 289: 23415–23424.

225. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in cell death. Cell Death and Differentiation 2009; 16: 1491–1495.

226. Cook WD, Moujalled DM, Ralph TJ, Lock P, Young SN, Murphy JM et al. Resistance to caspase-independent cell death requires persistence of intact mitochondrial morphology. Mol Cell 2011; 44: 9–16.

227. Weinrich R, Dillon CP, Green DR. Ripped to death. Trends Cell Biol 2011; 21: 630–637.

228. Cook WD, Moujalled DM, Ralph TJ, Lock P, Young SN, Murphy JM et al. Catalytic activity of the caspase-8–FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011; 473: 363–367.

229. Wajant H. The Fas signaling pathway: more than a paradigm. Oncogene 2002; 21: 4744–4756.

230. Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell Rep 2013; 5: 878–885.

231. Wajant H. The Fas signaling pathway: more than a paradigm. Oncogene 2002; 21: 4744–4756.

232. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Cell 2007; 129: 1223–1226.

233. Tait SW, Ichim G, Green DR. Die another way – non-apoptotic mechanisms of cell death. J Biol Chem 2014; 289: 23415–23424.

234. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase functions at the convergence point of multiple necrotic death pathways. Molec Cell 2012; 46: 817–827.

235. Pan X, Liu J, Young SN, Du F, Wang X, Wang X et al. Widespread oxidative lipid damage and cell death in diverse disease models. Cell 2010; 141: 1381–1392.

236. Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149: 1058–1069.

237. Bonora M, Weckowski MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L et al. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial necroptosis. Oncogene 2014; e-pub ahead of print 14 April 2014; doi:10.1038/onc.2014.96.

238. Zivkotovski B, Galluzzi L, Kepp O, Kroemer G. Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ 2008; 15: 1419–1425.

239. Giorgio V, van Stockum S, Antonioli M, Farabos A, Fogolieri F, Forte M et al. Dimers of mitochondrial ATP synthase form the perinuclear localization. Proc Natl Acad Sci USA 2005; 102: 5877–5882.

240. Bonora M, Bononi A, De Marchi E, Giorgi C, Leibedinska M, Marchi S et al. The role of the c-subunit of the FO ATP synthase in mitochondrial necroptosis. Cell Cycle 2013; 12: 674–683.

241. Campaillia M, Parker N, Tan CH, Hall AM, Duchen MR, R1(1): setting the pace of the F1/F0 ATP synthase. Trends Biochem Sci 2009; 34: 343–350.

242. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P et al. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial perinuclear localization. Proc Natl Acad Sci USA 2014; 111: 10579–10585.

243. Pan X, Liu J, Nguyen T, Liu C, Sun J, Yong T et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 2013; 15: 1464–1472.

244. Murphy E, Pan X, Nguyen T, Liu J, Holmstrom KM, Firkel T. Unresolved questions from the analysis of mice lacking MCU expression. Biochim Biophys Acta 2014; 1844: 384–385.

245. Fatokun AA, Dawson VL, Dawson TM. Parthanatosis: mitochondrial-led mechanisms and therapeutic opportunities. Br J Pharmacol 2014; 171: 2000–2006.

246. Wang Y, Kim NS, Haino JF, Kang HC, David KK, Andrabai SA et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inhibiting factor is critical for PAR polymerase-1-dependent cell death (parthanatosis). Biochim Biophys Acta 2011; 1814: 1–10.

247. Yu SW, Andrabai SA, Wang H, Kim NS, Poitras MF, Coombs C et al. Poly(ADP-ribose) (PAR) polymerase-1 dependent cell death. PLoS One 2013; 8: e51384.

248. Yu SW, Andrabai SA, Wang H, Kim NS, Poitras MF, Coombs C et al. Poly(ADP-ribose) (PAR) polymerase-1 dependent cell death. Proc Natl Acad Sci USA 2014; 111: 10579–10585.

249. Park EJ, Min KJ, Lee JY, Yoo HY, Kim YS, Kwon TK. beta-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis 2014; 5: e1230.

250. Valibhagapurapu S, Karin M. Regulation and function of NF-kappaB-dependent transcription factors in the immune system. Annu Rev Immunol 2009; 27: 693–733.

251. Bertrand MJ, Mutluovic S, Dickson KM, Ho WC, Boudraut A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008; 30: 689–700.

252. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87: 99–163.

253. Galluzzi L, Kroemer G. Mitochondrial apoptosis without VDAC. Nat Cell Biol 2007; 9: 487–489.

254. Baines CP, Kaiser RA, Sheko T, Craigin WJ, Molkentin JD. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 2007; 9: 550–555.

255. Vaseva AV, Marchenko ND, Ji K, Tasika SE, Holzmann S, Moli UM. PS3 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 2012; 149: 1538–1548.

256. Verrier F, Mignotte B, Jan G, Brenner C. Study of PTPC composition during apoptosis for identification of viral protein target. Ann NY Acad Sci 2003; 1010: 126–142.

257. Brenner C, Moulin P. Physiological roles of the permeability transition pore. Curr Opin 2012; 111: 1237–1247.

258. Brenner C, Grimm S. The permeability transition pore complex in cancer cell death. Oncogene 2006; 25: 7474–7475.
250. Noch E, Khalili K. Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol Ther 2009; 8: 1791–1797.
251. Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003; 34: 325–337.
252. Marini G, Niso-Santano M, Baehrlecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014; 15: 81–94.
253. Grand D, Kharrazian P, Eaves LA, Pokrovskaya K, Panaritakis T. Autophagy as the main means of cytotoxicity by glucocorticoids in hematological malignancies. Autophagy 2009; 5: 1198–1200.
254. Laane E, Tamm KP, Buente A, Ito K, Karasuyama H et al. Reduced apoptosis and cytchrome c-mediated caspase activation in mice lacking caspase 9. Cell 1998; 94: 325–337.
255. Liu Y, Shoji-Kawata S, Sumpter Jr RM, Wei Y, Ginet V, Zhang L et al. 5-Fluorouracil-induced autosis promotes autophagic cell death and modulates polyglutamine toxicity. Exp Cell Res 2010; 316: 2036–2047.
256. Varma H, Gangadhar NM, Letso RR, Wolpaw AJ, Srijaramatam R, Stockwell BR. Identification of a small molecule that induces ATG5-and-cathepsin-l-dependent cell death and modulates polyglutamine toxicity. Exp Cell Res 2013; 319: 1799–1813.
257. Cremer MI, Serrano M, Mollgard K, Mark C. Oncogenic Ras-induced expression of Noxa and Bcl-2 promotes autophagic cell death and limits clonogenic survival. Mol Cell 2011; 42: 23–35.
258. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, autophagy and apoptosis: two independent caspase-3/CPP32-dependent pathways and its associated nuclear changes. Genes Dev 1998; 12: 806–819.
259. Laane E, Tamm KP, Buente A, Ito K, Karasuyama H et al. Caspase-3 and RasGAP: a snap-action, variable-delay switch controlling extrinsic cell death. Mol Cell 2004; 195: 194–202.
260. McCarthy NJ, Whyte MK, Gilbert CS, Evan GI. Inhibition of Ced-3/ICE-related proteases by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy. Cell Death Dis 2012; 3: e105.
261. Steinhart L, Belz K, Fulda S. Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by induction of necrosis. Cell Death Differ 2009; 16: 1018–1029.
262. Khalili K. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003; 34: 325–337.
263. Stark GR, Stojilkovic S. Selective, reversible caspase-8 inhibition overcomes resistance to Fas-mediated apoptosis. J Exp Med 2000; 192: 383–391.
264. Dunai ZA, Imre G, Barna G, Korcsmaros T, Petak I, Bauer PI. Caspase-3 and RasGAP: a snap-action, variable-delay switch controlling extrinsic cell death. Mol Cell 2004; 195: 194–202.
265. Puthalakath H, Villunger A, Q O'Reilly LA, Beavon JM, Coutsou S, Cheney RE et al. Bim is required for apoptosis of autoreactive thymocytes. Nature 2002; 416: 822–826.
266. Wechsler-Flam T, Rossi AJ, King A, Zong WX, Ratcliffe JC, Shiels HA et al. The combined functions of proapoptotic Bcl-2 family members bax and bak are essential for normal development of multiple tissues. Mol Cell 2005; 6: 1389–1399.
267. Labi V, Woesen C, Tuzlik S, Eriacher M, Boullier P, Strasser A et al. Deregulated cell death and lymphocyte homeostasis cause premature lethality in mice lacking the Bcl-2-only family member Bim. Mol Cell 2014; 53: 2650–2662.
268. O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 2011; 34: 185–204.
269. D'Azzo M, Sheng M, Cecconi F. Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 2012; 35: 700–709.
270. Breidenstein DE, Rao RV, Muijen P. Cell death in the nervous system. Nature 2006; 443: 796–802.
271. Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X et al. Transient osteopetrosis regulates caspase-dependent neuronal necrosis. Mol Cell 2010; 39: 184–195.
272. Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS et al. Male infertility in mice lacking the BH3-only member Bim is required for apoptosis of autoreactive thymocytes. Nature 2002; 416: 822–826.
273. Labi V, Woesen C, Tuzlik S, Eriacher M, Boullier P, Strasser A et al. Deregulated cell death and lymphocyte homeostasis cause premature lethality in mice lacking the Bcl-2-only family members Bax and Bak. Mol Cell 2014; 53: 2650–2662.
274. den Haas JP, Somsen G, van der Steen JW, Meijer MA, de Vries LA et al. Essential role of caspase-8 in Fas-dependent apoptosis of thymocytes. J Exp Med 2000; 192: 383–391.
275. Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK. Modeling a snap-action, variable-delay switch controlling extrinsic cell death. Mol Cell 2004; 195: 194–202.
276. Ahn HS, Ha SE, Lee EH, Kim KH, Kim HJ, Kim YW et al. Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 2009; 114: 1893–1899.
caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 2000; 7: 556–565.

310. Lakhati SA, Masud A, Kuída K, Porter Jr GA, Booth CJ, Mahal WZ et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 2006; 311: 847–851.

311. Krzyśko O, Love Aaes T, Kypreos E, Vandenabeele P, Krzyśko DV. Many faces of DAMPs in cancer therapy. Cell Death Dis 2013; 4: e631.

312. Kaczmarek A, Vandenabeele P, Krzyśko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 2013; 38: 209–223.

313. Hou W, Zhang Q, Yan Z, Chen R, Zhen Li HJ, Kang R et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis 2013; 4: e666.

314. Knight KR, Zhang B, Morrison WA, Stewart AG. Ischaemia-reperfusion injury in mouse skeletal muscle is reduced by Nomega-nitro-arginine methyl ester and dexamethasone. Eur J Pharmacol 1997; 332: 273–278.

315. Kumar S, Allen DA, Kieswich JE, Patel NS, Harwood S, Mazzon E et al. Dexamethasone pretreatment alleviates ischemia-reperfusion renal mouse model after cold prolonged ischemia. Mol Pharmacol 1999; 55: 2412–2425.

316. Zhang W, Xing J, Liu D, Gan X, Gao W, Hei Z. Dexamethasone pretreatment alleviates intestinal ischemia-reperfusion injury. J Surg Res 2013; 185: 851–860.

317. Kraft P, Gob E, Schuhmann MK, Gobel K, Deppermann C, Theilermann I et al. FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke 2013; 44: 3032–3038.

318. Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 2007; 25: 236–260.

319. del Moral RM, Gómez-Morales M, Hernández-Cortes P, Aguilar D, Caballero T, Aneiros-Fernandez J et al. PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia. Scientific World J 2013; 2013: 466574.

320. Li X, Klaau JA, Zhang J, Xu Z, Kibler KK, Andrabhi SA et al. Contributions of poly (ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia. J Neurochem 2010; 113: 1012–1022.

321. Curtin NJ, Szabó C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 2013; 34: 1217–1256.

322. Vanden Berghe T, Vanlangenakker N, Parthesier E, Deckers W, Devos M, Festjens N et al. Contributions of poly (ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia. J Neurochem 2010; 113: 1012–1022.

323. Martin SJ, Henry CM, Cullen SP. A perspective on mammalian caspases as positive and negative regulators of cell death. Cell Death Differ 2013; 20: 1012–1022.

324. Fraser AG, McCarthy NJ, Evans GI. DrICE is an essential caspase required for apoptotic activity in Drosophila cells. EMBO J 1997; 16: 6192–6199.

325. Song Z, McCull C, Steller H. DCP-1, a Drosophila Apaf-1/ICED-related caspase activator. Mol Cell 1999; 4: 757–769.

326. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75: 641–652.

327. Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 2005; 37: 719–727.

328. Martin SJ, Henry CM, Cullen SP. A perspective on mammalian caspases as positive and negative regulators of cell death. Cell Death Differ 2012; 46: 387–397.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/