Evaluation of heat resistance of carbon fiber reinforced plastics based on organosilicon compounds

K S Panina¹,²*, E A Danilov¹ and A R Gareev¹

¹State Research Institute of Graphite - Based Structural Materials, Moscow, Russian Federation
²Bauman Moscow State Technical University, Moscow, Russian Federation

*kirapaninamgtu@mail.ru

Abstract. The paper presents composite materials based on elastomeric matrices in combination with phenol-formaldehyde resin, reinforced with carbon fiber fabric. Technology of obtaining composites is described. Polymer binder has been modified by introducing inorganic additives (SiC, ZrB₂, glass microspheres). Experimental data of thermogravimetric analysis of the obtained carbon plastics are presented. Comparative tensile strength tests of composite materials have been carried out before and after plasma treatment. Materials described in the paper are intended for use in high-temperature heat shielding.

1. Introduction

At present, there is an increased interest in improving the heat resistance and mechanical properties of airspace elements and structures, accordingly, increasing the requirements for materials used. One of the groups of such materials is heat-shielding polymer composites [1], that must withstand ever higher temperatures.

Polymer composite materials based on organosilicon elastomers are promising materials for use in highly heat-loaded operating conditions as heat-shielding materials. They have small weight and size characteristics, manufacturability, the ability to manufacture thin-walled products of complex shape.

The mechanism of thermal protection of polymeric materials is based on pyrolysis and ablation of materials, accompanied by the absorption of external heat flux [2].

Elastomeric materials based on rubbers (ethylene propylene diene, butadiene nitrile, organosilicon rubbers, etc.) are widely used for thermal protection [2-9]. They are used, for example, as the inner shells of rocket engines [10-12]. The most heat-resistant are organosilicon rubbers. At low and high temperatures, silicones retain their elasticity, unlike traditional diene-based rubbers.

Improving the thermophysical properties of heat-shielding polymeric materials is an urgent task in connection with an increase in operating temperatures.

Silicones have poor coking and sintering properties when undergoing pyrolysis. Various fillers were reported to improve physico-mechanical, thermophysical, and rheological properties [9]. Such fillers include dispersed (refractory particles: ZrB₂, SiO, SiC, ZrO₂; heat-resistant polymers [10, 12-18]), and fibrous fillers (glass, carbon, silica and other fibers and fabrics [2, 3, 19, 20]).

In this report, we consider composite materials based on a mixture of organosilicon polymer and phenol-formaldehyde resin. Modification of matrices with inorganic additives was carried out.
Thermophysical and mechanical properties of the obtained carbon fiber reinforced plastics (CFRP) are investigated.

2. Materials and methods

The investigated materials are multilayer composite materials based on a mixture of organosilicon elastomer with phenol-formaldehyde resin (PFR) with additives.

Polymer elastomeric matrix used in the present study was a mixture of "Yunisil-9728" silicone with "SF-015" phenol-formaldehyde resin in powder form.

Powders of silicon carbide (melting temperature ≈ 2730 ° C), zirconium diboride (melting temperature ≈ 3000 ° C) glass microspheres (melting temperature ≈ 1600 ° C) are used as modifying additives. SEM images of the powders are shown in Figure 1.

![SEM images of powders: glass microspheres (a), ZrB₂ (b), SiC (c) (magnification x1800).](image)

Figure 1. SEM images of powders: glass microspheres (a), ZrB₂ (b), SiC (c) (magnification x1800).

UWB-200-3K-TWILL2 / 2-100 carbon fabric (UMATEX, Russia) was used as a reinforcing component. Samples were made up of five layers of fabric.

The matrices were prepared as follows: component A of silicone was mixed with PFR in a 2:1 ratio (the choice of the optimal ratio is given in [18]) and inorganic additives. Then component B (hardener) was added to the mixture in a ratio of 1:10 mass parts of component A, as recommended by the manufacturer.

Composite materials were made by manual molding of a filler and a matrix: the prepared uncured matrix is evenly applied to the layers of carbon fabric, and then the samples are cured at 120 °C for 1.5 h in a drying oven in air.

The compositions of the experimental samples are shown in Table 1. The viscosity of the matrix was measured with Elcometer 2300 R viscometer and was 75 500 mPa s, which is technologically appropriate for manual molding.

Thermogravimetric analysis of CFRPs was carried out using a simultaneous thermal analyser STA 449 F1 Jupiter.

Scanning electron microscopy (SEM) images were taken on a Hitachi TM3000 microscope at 15 kV accelerating voltage.
Plasma treatment was carried out on an experimental plasmatron in a specially designed fixtures. Tensile tests were carried out on a Zwick / Roell Z250 machine.

Table 1. Compositions of experimental samples.

Designation	Carbon fiber, number of layers	The matrix	Additive	Matrix content, wt. %
Silicone + PFR (2:1)	5	"Yunisil-9728"	-	75
Silicone + PFR (2:1) + 2 % SiC	5	"Yunisil-9728"	SiC, 2 wt. %	74
Silicone + PFR (2:1) + 2 % ZrB$_2$	5	"Yunisil-9728"	ZrB$_2$, 2 wt. %	73
Silicone + PFR (2:1) + 3 % SiC + 3 % ZrB$_2$ + 4 % SiO-spheres	5	"Yunisil-9728"	SiC, 3 wt. %, ZrB$_2$, 3 wt. %; SiO-spheres, 4 wt. %	76
Silicone + PFR (2:1) + 5 % SiC	5	"Yunisil-9728"	SiC, wt. 5%	77
Silicone + PFR (2:1) + 5 % ZrB$_2$	5	"Yunisil-9728"	ZrB$_2$, wt. 5%	75

3. Results and discussion

In order to assess the influence of the introduced modifiers on the thermophysical properties of composite materials, thermogravimetric analysis of CFRPs was carried out at up to 1000 °C at a rate of 10 °C / min in air. The test results of experimental samples are shown in table 2.

Table 2. Thermogravimetric analysis study results.

Designation	Atmosphere	Temperature of the beginning of thermal transformations	Temperature of the end of thermal transformations	Residual mass
Silicone + PFR (2:1)	Air	422.9 °C	546.0 °C	25.53 %
Silicone + PFR (2:1) + 2 % SiC	Air	424.7 °C	563.3 °C	17.99 %
Silicone + PFR (2:1) + 2 % ZrB$_2$	Air	434.8 °C	573.2 °C	18.94 %
Silicone + PFR (2:1) + 3 % SiC + 3 % ZrB$_2$ + 4 % SiO-spheres	Air	433.6 °C	551.1 °C	30.09 %

Under stationary heating, materials have a fairly high thermal stability of ≈ 422 °C - 434 °C, thermal transformations are completed in the range of ≈ 546 °C - 573 °C. The upper boundaries of the intervals are provided by the introduction of 2 wt. % ZrB$_2$. The effect of the introduced modifying additives on the residual mass differs significantly, the most effective being complex modification (residual mass – 30.09%).
Estimation of operating conditions close to real material work requirements was carried out in a series of experiments utilizing a plasmotron. CFRPs were machined into samples for tensile strength testing, then plasma treated at $T \approx 1400 \, ^\circ C$ for 60 s (Figure 2). Samples (Figure 3) were tensile tested before and after exposure (see table 3).

Figure 2. Plasma exposure process.

Figure 3. Images of samples before (a) and after plasma exposure (b).

Comparative analysis of strength shows that after exposure to high-temperature plasma, the strength of the samples decreases by about 50% and averages at approximately 45 MPa. It should be noted that test results show significant error from sample to sample. This phenomenon may be explained by the difficulties in focusing plasma flow exactly on the critical part of the sample.

Table 3. Results of tensile strength testing.

Designation	Tensile strength before influence, MPa	Tensile strength after influence, MPa
Silicone + PFR (2:1)	95.6	63.5
Silicone + PFR (2:1) + 5 % SiC	106.6	43.1
Silicone + PFR (2:1) + 5 % ZrB$_2$	96.6	35.5
Silicone + PFR (2:1) + 3 % SiC + 3 % ZrB$_2$ + 4 % SiO- spheres	85.4	36.9
Pure organosilicon rubbers form a weakly bound amorphous ceramic residue during pyrolysis. Under conditions of high-temperature oxidative action, matrix based on a composition of silicone and phenolic resin promotes the formation of silicon carbides, and the dispersed additives may serve as centers of crystallization of ceramic phases. This combination of components is reflected in the acceleration of sintering and the formation of a monolithic protective surface layer.

4. Conclusions

CFRPs based on a mixture of silicone and phenol-formaldehyde resin reported in the present paper exhibit thermal stability up to 422 °C. The introduction of such modifiers as silicon carbide, zirconium diboride, glass microspheres leads to an increase in the resistance of materials to thermal loads. The greatest effect is demonstrated by the introduction of 2 wt. % ZrB₂ (the stability of the composite up to 434 °C). The residual mass of the samples due to the introduction of a complex of additives (3% SiC, 2% ZrB₂, 4% glass microspheres) into the organosilicon binder increases by 5 wt. %.

A strong protective surface layer is formed on the samples in the area of exposure to a short-term plasma flow (1400 °C, 60 s). Comparative mechanical tests have shown a 50 % reduction in strength after high-temperature exposure to a plasma stream.

5. References

[1] Kumar V and Kandasubramanian B 2019 Advances in Ablative Composites of Carbon Based Materials: A Review J. Ind. Eng. Chem. Res. 58 22663–701
[2] Natali M, Kenny J and Torre L 2016 Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review J. Progr. in Mat. Sci.. 84 192–275
[3] George K, Panda B, Mohanty S and Sanjay K. 2018 Recent developments in elastomeric heat shielding materials for solid rocket motor casing application for future perspective J Polym. for Advan. Technol. No 1 29 8–21
[4] Zhang Y, Ling X, Li Q and Yong-Lai L 2011 Study on ablative properties and mechanisms of hydrogenated nitrile butadiene rubber (HNBR) composites containing different fillers J. Polym. Degr. and Stab. No 5 96 808–17
[5] Eissa M, Botros S and Moustafa A 2018 Triblock copolymers—modified SBR/EPDM rubber blends J. of Elast. and Plast.. No 2 50 151–61
[6] Botros S, Younan A and Essa M 2000 Effect of fiber reinforcement on thermal stability and swelling behavior of CR/NBR blends J. Polym.-Plast. Techn. and Engin. No 2 39 393–414
[7] Botros S, Moustafa A and Essa M 2010 Properties and morphologies of elastomer blends modified with EPDM-g-poly[2-dimethylamino ethylmethacrylate] J. of Appl. Polym. Sci.. No 5 116 2658–67
[8] Kablov V, Novopol’tseva O, Kochetkov V, and Pudovkin V 2017 Physicomechanical, thermal, and flame-retardant properties of elastomer compounds based on ethylene–propylene–diene rubber and filled with hollow aluminosilicate microspheres. J. Rus. J. of Appl. Chem. 90 257-61
[9] Wu Sh, Zhang Sh and Akram R 2019 EPDM-based heat-shielding materials modified by hybrid elastomers of silicone or polyphosphazene J. High Perf. Polym. No 9-10 31 1112–21
[10] Donskoy A and Baritko N 2003 Kremniyorganicheskiye elastomernyye teplozashchitnyye materialy nizkoy plotnosti J. Kauchuk and Resina 2 35-49
[11] Zhang Y, He J and Yang R 2016 The effects of phosphorus-based flame retardants and octaphenyl polyhedral oligomeric silsesquioxane on the ablative and flame-retardation
Properties of room temperature vulcanized silicone rubber insulating composites. \textit{J. Polym. Degr. and Stab.} \textbf{125} 140–7

[12] Kablov V, Novopoltseva O, Kryukova D, Antonov Yu Kochetkov V 2020 Elastomeric fire and heat-protective materials containing zirconium dioxide \textit{J. of Phys.: Conf. Ser.} \textbf{1614} 012065

[13] Natali M, Kenny J and Torre L 2018 Chapter 15 - \textit{Thermoset Nanocomposites as ablative materials for rocket and military applications} ‘ed Qipeng Guo’ (Elsevier) 477–509

[14] Kablov V, Novopoltseva O, Keibal N, Kochetkov V, Kryukova D and Antonov Yu 2019 Influence of modified microfibers of different nature on the properties of elastomeric composites \textit{J. Izves. VolgSTU} \textbf{12} 94–8

[15] Shahzad A 2019 12 - Investigation into fatigue strength of natural/synthetic fiber-based composite materials \textit{J. Mech. and Ph. Test. of Biocomp., Fibre-Rein. Comp. and Hyb. Comp.} 215–39

[16] Asaro L, Manfredi L, Pellice S, Procaccini R and Rodriguez E 2017 Innovative ablative fire resistant composites based on phenolic resins modified with mesoporous silica particles \textit{J. Polym. Degr. and Stab.} \textbf{144} 7-16

[17] Zahra A, Rouhollah M, Masoud S and Saeed S 2015 Enhanced thermal resistance of GO/C/phenolic nanocomposite by introducing ZrB\textsubscript{2} nanoparticles \textit{J. Comp. Part B: Engin.} \textbf{76} 174-9

[18] Panina K, Danilov E and Kurganova Yu 2020 Increase of the resistance to high-temperature effects of carbon composite materials \textit{IOP Conf. Ser.:Mater. Sci. Eng.} \textbf{934} 012057

[19] Motchenko A and Antonov Yu 2019 J. Nauchno-praktich. issl. No 8-5 \textbf{23} 108–10

[20] Kablov V, Keibal N, Kochetkov V, Motchenko A and Antonov Yu 2018 Research of the Influence of Carbon Microfiber on the Properties of Elastomer Fire-Protective Materials \textit{J. Rus. J. of Appl. Chem.} \textbf{91} 1160-4

Acknowledgments
The authors would like to express special gratitude to the staff JSC ”NIIgrafit” P.V. Gorb, V.I. Sapozhnikov, A.P. Karpo – for thermogravimetric and mechanical measurements, as well as to employee of the FSUE ”RI RPA “LUCH” S.I. Soldatenkov for utilization of plasma treatment unit.

We would also would like to sincerely thank S.A. Kolesnikov for initiation of the thematic, as well as Yu.E. Ahmatov for obtaining of primary experimental results.