Taylor Microscale and Effective Reynolds Number near the Sun from PSP

C. Phillips®, R. Bandyopadhyay¹, and D. J. McComas®
Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA; riddhib@princeton.edu

Received 2022 February 8; revised 2022 May 5; accepted 2022 May 17; published 2022 June 29

Abstract

The Taylor microscale is a fundamental length scale in turbulent fluids, representing the end of fluid properties and onset of dissipative processes. The Taylor microscale can also be used to evaluate the Reynolds number in classical turbulence theory. Although the solar wind is weakly collisional, it approximately behaves as a magnetohydrodynamic (MHD) fluid at scales larger than the kinetic scale. As a result, classical fluid turbulence theory and formalisms are often used to study turbulence in the MHD range. Therefore, a Taylor microscale can be used to estimate an effective Reynolds number in the solar wind. NASA’s Parker Solar Probe (PSP) has reached progressively closer to the Sun than any other spacecraft before. The collected data have revealed many new findings in the near-Sun solar wind. Here, we use the PSP data to estimate the Taylor microscale and effective Reynolds number near the Sun. We find that the Taylor microscale and Reynolds number are small compared to the corresponding near-Earth values, indicating a solar wind that has been less processed by turbulence, with very small-scale dissipative processes near the Sun.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Magnetohydrodynamics (1964); Space plasmas (1544)

1. Introduction

In a turbulent system, energy is distributed over a broad range of length scales. In the classical cascade scenario, the energy is transferred from large scales to small scales by nonlinear processes (Kolmogorov 1941). Eventually this cascade reaches small scales where dissipative processes become dominant and dissipate the fluid motion to random individual particle motions or heat. This generic model holds in hydrodynamic turbulence and magnetohydrodynamics (MHD) turbulence for sufficiently turbulent systems. Broadband fluctuations are observed in solar wind measurements, such as the magnetic field, velocity, and density (Coleman 1968; Matthaeus & Goldstein 1982). Understanding the spatiotemporal structure of solar wind turbulence is important for modeling the transport of electromagnetic energy, mass, and energetic particles (Breech et al. 2008; Tessein et al. 2013; Bandyopadhyay et al. 2020c). Characteristic scales such as the Taylor microscale and correlation scale provide a foundation for this understanding by quantifying the turbulence in the system.

The correlation scale represents the characteristic size of the largest eddies in a turbulent system. The Taylor microscale represents the length of the smallest structures which are dominated by nonlinear dynamics rather than dissipative forces and defines the lower boundary of the inertial range (Frisch 1995). The correlation length and Taylor scale can be used to evaluate the Reynolds number, which measures the level of turbulence. A large Reynolds number indicates that the strength of the nonlinear processes is much greater than the strength of the dissipative processes at large scales. Taylor microscale has been long studied in hydrodynamic simulations and laboratory fluids (e.g., Pearson et al. 2002, 2004). However, in contrast to other characteristic length scales, the Taylor microscale has been rarely explored in space plasma turbulence, mostly due to instrumental limitations. Taylor microscale measurements require high-resolution data, which are often infeasible. In contrast, the correlation scale is easily calculated from low-resolution data, allowing for strict upper limits on the size of eddies in the inertial range. The first measurement of the Taylor scale and effective Reynolds number in the solar wind came from a study by Matthaeus et al. (2005). Subsequently, a series of works (Chuychai et al. 2014; Bandyopadhyay et al. 2020b; Gurgiolo et al. 2013; Matthaeus et al. 2008; Weygand et al. 2009, 2009, 2011) refined the methodology and reported measurements of Taylor microscale and Reynolds number in the solar wind and planetary magnetospheres. Recently, the Taylor microscale and Reynolds number have been measured in laboratory plasmas (Cartagena-Sanchez et al. 2022). The Taylor microscale, correlation scale, and Reynolds number depend on solar wind conditions (Zhou et al. 2020; Zhou & He 2021). Therefore, it is of interest to evaluate these quantities in the previously unexplored regions of the heliosphere near the Sun, where the solar wind originates.

Launched on 2018 August 12, NASA’s Parker Solar Probe (PSP), even in its first orbit, reached closer to the Sun than any previous spacecraft (Fox et al. 2016). The initial orbits of PSP have already returned a treasure trove of scientific data revealing new insights into the nature of solar wind close to the Sun (e.g., Kasper et al. 2019; McComas et al. 2019; Bale et al. 2019). Nevertheless, quantitative measurement of the Taylor scale and Reynolds number near the Sun from PSP data have not yet been yet reported (although see Cuesta et al. 2022). In this paper, we use the high-resolution magnetic-field data from PSP to evaluate single-spacecraft measurements of the Taylor scale in the solar wind close to the Sun. The quantitative estimation of the Taylor microscale, in turn, permits an evaluation of an effective magnetic Reynolds
number under the assumption of a standard resistive or ohmic dissipation function.

2. Theory and Technique

Both Taylor microscale and correlation scale are related to the two-point correlation function, here defined for the magnetic field as

\[R(\tau) = \langle b(t) \cdot b(t + \tau) \rangle_T, \]

where \(b \) is the fluctuating magnetic field, and \(\langle ... \rangle_T \) is a time average over the total time span of the data. Using Taylor’s frozen-in hypothesis \((r = V_{SW} \tau) \), the temporal correlation function \(R(\tau) \) can be converted to a spatial correlation function \(R(r) = \langle b(x) \cdot b(x + r) \rangle \). The correlation function at zero lag \((\tau = 0) \) is the variance \((R(0) = \langle b^2 \rangle) \), and we normalize the correlation function by the variance.

The Taylor microscale (Equation (2)) is the measure of the curvature of the correlation function \(R(\tau) \) at zero separation.

\[\lambda_T = \sqrt{ \frac{R(0)}{R''(0)} }. \]

For statistically homogeneous systems, \(R(r) = R(-r) \). Therefore, for small length scales \(r \), the correlation function (Equation (1)) can be expanded in the Taylor series near the origin as

\[R(r) = 1 - \frac{r^2}{2 \lambda_T^2} + ... , \]

where we have assumed isotropy and the higher-order terms are ignored.

The correlation length \((\lambda_C) \) is related to the characteristic size of the energy-containing eddies in a turbulent system (Pope 2000). Here, we compute \(\lambda_C \) from the two-point correlation function (Equation (1)). We use the standard Blackman-Tukey method (Blackman & Tukey 1958; Matthaeus & Goldstein 1982), with subtraction of the local mean, to evaluate the correlation function from Equation (1). We employ the “1/e” definition (e.g., Matthaeus & Goldstein 1982; Smith et al. 2001), namely

\[R(\lambda_C) = \frac{R(0)}{e}. \]

The classical Reynolds number in a turbulent fluid is defined as

\[Re = \frac{v_{rms} \lambda_C}{\nu}, \]

where \(v_{rms} \) is the rms velocity fluctuation and \(\nu \) is the fluid viscosity. Equation (5) can be reformulated as

\[Re = \left(\frac{\lambda_C}{\eta} \right)^{4/3}, \]

where \(\eta = \left(\frac{\nu}{\epsilon} \right)^{1/4} \) is the Kolmogorov length scale, which represents the “dissipation scale” where structures are critically damped, so that nonlinear dynamics are negligible and dissipative processes are dominant. Here \(\epsilon \) is the average rate of dissipation. In the solar wind, however, the viscosity \(\nu \) cannot be determined because the solar wind plasma is very weakly collisional. Some studies have attempted to estimate an effective Reynolds number by evaluating Equation (6) by replacing \(\eta \) with the ion-kinetic scales such as the ion-inertial length \((d_i) \) or the ion gyro radius \((\rho_i) \) (Parashar et al. 2015, 2019). However, in the solar wind, all of the energy is not dissipated at the ion scales (Alexandrova et al. 2009; Sahraoui et al. 2009) and this assumption may not always be accurate. Therefore, we resort to another indirect way of estimating the Reynolds number. From hydrodynamic turbulence theory (Batchelor 1953; Tennekes & Lumley 1972), we can calculate an effective Reynolds number from the measured correlation scale \((\lambda_C) \) and Taylor microscale \((\lambda_T) \).

\[Re = \left(\frac{\lambda_C}{\lambda_T} \right)^{2}. \]

This method of estimating the Reynolds number bypasses the need to identify any specific dissipation scale, and therefore, is more generally applicable.

We note that the above formulae are derived from classical hydrodynamic theory but can be applied to an MHD fluid under the assumption of isotropy. The solar wind plasma is weakly collisional, but many MHD properties are observed at large length scales (e.g., Matthaeus & Goldstein 1982; Sorriso-Valvo et al. 2007). Therefore, often MHD theories and formalisms are applied to characterize solar wind fluctuations.

3. PSP Data

To compute the Taylor microscale, correlation length, and effective Reynolds number we use the SCaM data product of the FIELDS suite (Bale et al. 2016, 2019), which merges fluxgate magnetometer (MAG) and search-coil magnetometer (SCM) measurements (Bowen et al. 2020). The SCaM data set resolves the turbulence ion-length scales well above the noise floor (e.g. see Huang et al. 2021). Due to an SCM anomaly during the first encounter, the full three-dimensional SCaM data are unavailable after 2019 March. Therefore, our analysis is limited to 2018 November 4 and November 7 for a total of about 2 days and 10 hr (\(\approx 58.5 \) hr) of data. We divide the data in this interval into 15 minutes subintervals and calculate the Taylor microscale and Reynolds number in each of them. Radial distance from the Sun varies from a maximum of 38.03 solar radii \((R_s) \) to a minimum of 35.7 \(R_s \) during the data collection period, with an average of 36.3 \(R_s \).

We obtain bulk plasma properties, including proton density \((n_p) \) and velocity from the Solar Probe Cup (SPC) data in the SWEAP instrument suite (Case et al. 2020, 20; Kasper et al. 2016, 2019). The SPC plasma moments are averaged at 15 minute intervals. We use the average plasma measurements to compute plasma variables, such as the Alfvén speed \((V_A) \) and \((\sqrt{\mu_0 m_p n_p}) \) for each interval. The ratio of average solar wind speed \((V_{SW}) \) to the average Alfvén speed \((V_A) \) remains greater than 2 for all the cases, so Taylor’s frozen-in approximation (Taylor 1938) is roughly valid.

We note here that Equations (1)–(7) can be evaluated using velocity field or Elsässer field as well, and indeed such calculations using electron velocities have been conducted in the near-Earth solar wind (Gurgiolo et al. 2013). However, the PSP proton velocity field data are mostly low resolution, reaching the end of the inertial range (e.g., Chen et al. 2020). Even when higher resolution velocity data are available, the high-frequency part is likely affected by noise (Vech et al. 2020).
Therefore, we refrain from using the velocity field and rely solely on the high cadence magnetic-field data.

4. Results

For every 15 minutes period we first calculate the magnetic correlation function from the PSP SCaM data. As an example, Figure 1 shows the correlation function, estimated by the standard deviation between the correlation points near the origin. The correlation function is computed for each 15 minute interval. The resulting Taylor scale values along with their respective uncertainties are shown in Figure 3. The black horizontal line is the average, and the shaded region represents one standard deviation spread.

The Taylor scale value is $\lambda_T = 150 \pm 2$ km, where the uncertainty is the standard deviation given by the fit. We repeat the same procedure for all 15 minute intervals. The resulting Taylor scale values along with their respective uncertainties are shown in Figure 3. The black horizontal line is the average, and the shaded region represents one standard deviation spread.

From Figure 2, at large spatial scales the correlation function exhibits an approximate exponential behavior, and an exponential fitting (see Equation (4)) provides a reasonable estimate of the correlation length (Smith et al. 2001). Here, the estimated value of correlation length is $\lambda_C = 5231 \pm 7$ km, consistent with previous reports (Bandyopadhyay et al. 2020a; Chen et al. 2020; Parashar et al. 2020; Cuesta et al. 2022). The error is estimated by the standard deviation between the fit and the computed correlation function points. Like the Taylor
microscale, we calculate the correlation length for every 15 minute interval. The correlation length estimates are plotted in Figure 4.

To visualize the Taylor microscale and correlation length, we compute the turbulent power spectrum from the magnetic-field data in the 15 minutes period sampled in Figures 1 and 2. Figure 5 plots the magnetic-field power spectrum with the estimated Taylor microscale and correlation scale shown. We also show the ion-inertial length in the same figure.

From Figure 5, the Kolmogorov scaling holds roughly within the range between the correlation scale and the Taylor microscale, indicating an inertial range here. Further, the “break” or “knee” in the spectrum is in an intermediary position between the Taylor microscale and the ion-inertial length, as is expected from hydrodynamic turbulence (Matthaeus et al. 2008).

Equation (7) produces the Reynolds number from the ratio of the correlation and Taylor scales. We find the uncertainty in the \(Re \) values by propagating forward the uncertainties from the Taylor and correlation scales estimates. For example, the data in Figures 1 and 2 give a Reynolds number of 1211 ± 32. We show the Reynolds number estimates for all the samples in Figure 6. There appears a very weak time variation with early and late intervals having generally lower Reynolds numbers than the central intervals. This may be related to the increase of \(Re \) values at smaller distances. Nevertheless, since the radial distance variation is small here, we do not explore the dependence on radial distance here.

The Reynolds number values are distributed over a wide range, covering more than 3 orders of magnitude, and the logarithm of the \(Re \) values produced a more Gaussian distribution. Therefore, we report the statistics on the logarithm and then convert them back to the parameter (e.g., the logarithmic average of the \(Re \) values is 4.09, which can be converted to 10^{4.09} = 12,241). The average value and standard deviation obtained in this way are \(Re = 10^{4.09±0.52} = 12,241±2750 \), as shown in Figure 6.

Figure 7 shows the distributions of the evaluated Taylor microscales, correlation lengths, and Reynolds numbers from all the data in the 58.5 hr period. As before, the Reynolds number distribution is shown and the statistics are performed on a logarithmic scale, while the other two use a linear scale.

The Taylor microscale can also be used to estimate an effective viscosity/resistivity (or turbulent viscosity/resistivity), using the hydrodynamic turbulence formula

\[
\nu = \frac{\epsilon \lambda_T^2}{2E}
\]

where, we recall that \(\epsilon \) is the average rate of dissipation. \(E \) is the fluctuation energy per unit mass. Using the Politano-Pouquet third-order law, the cascade rate in \(Re \) (first encounter was estimated as \(10^5 \) W kg\(^{-1} \)) (Bandyopadhyay et al. 2020a; Andrés et al. 2021, 2022; Hernández et al. 2021). Including the average Taylor microscale value of 180 km and \(2E = \langle |b|^2 \rangle \sim 10^4 \) km\(^2\) s\(^{-2}\), we obtain \(\nu \sim 100 \) km\(^2\) s\(^{-1}\). This value is similar to the near-Earth estimates of solar wind viscosity (Verma et al. 1995; Verma 1996; Bandyopadhyay et al. 2020b), suggesting that the effective viscosity of the solar wind does not change very much on its journey from \(\sim 36 R_e \) outwards.

5. Discussion and Summary

In this paper we calculate an average Taylor scale value of \(\approx 180 \) km for the “young” solar wind at a heliocentric distance of \(\approx 0.17 \) au (36 \(R_e \)) from \(Re \) data. From the same data set, the average correlation length is found approximately \(\approx 21,000 \) km, which is close to those reported in previous studies using \(Re \) data (Bandyopadhyay et al. 2020a; Chen et al. 2020;
Parashar et al. 2020). Using the estimated Taylor scale and correlation length, we calculate the effective magnetic Reynolds number with an average value of \(\approx 12,000 \). As far as we are aware, this is the first estimation of the Taylor microscale from solar wind data collected near the Sun.

The value of the Taylor scale we obtained from the PSP data in the first solar encounter is much smaller than the previously reported value of \(\approx 2500 \) km at 1 au (e.g., Weygand et al. 2011). This indicates that the onset of dissipative processes occurs at smaller scales in the near-Sun solar wind compared to that near Earth.

The Reynolds number values are also much smaller than the earlier published near-Earth value of \(\sim 230,000 \) (e.g., Matthaeus et al. 2005). In fact, they are considerably smaller than even Helios 1 estimates of \(R_e \) values of \(\sim 10^6 \) at \(\approx 0.3 \) au (Cuesta et al. 2022). Extrapolating from Helios 1 and Voyager data, one would expect the Reynolds number to increase as the instrument approaches the Sun (Cuesta et al. 2022). The Reynolds number instead drops sharply, indicating a transition point between \(\sim 0.17 \) au and \(\sim 0.3 \) au where the turbulence rapidly evolves. Our Reynolds number estimates are close to the ones reported recently by Cuesta et al. 2022, who used a different formalism independent of the Taylor microscale (see Equation (6) and the text below it) to calculate the \(R_e \) values for PSP encounters 1–3. The abrupt decrease in Reynolds number close to the Sun is possibly related to the “aging” of the turbulence (Matthaeus et al. 1998; Ruiz et al. 2011) and may support the driving of turbulence by shear in the region right above the Alfvén zone (Ruffolo et al. 2020; Bandyopadhyay & McComas 2021). However, Ruiz et al. 2011 also showed that correlation scales measured parallel to the mean magnetic field are systematically smaller than those measured perpendicular to the mean magnetic field and that this difference grows stronger closer to the Sun. Since most PSP measurements of correlation scale are parallel to the mean magnetic field, the small correlation scale (and therefore Reynolds number) may be in part due to this systematic selection effect.

Finally, we note that although the obtained values of the Taylor microscale and Reynolds number are much smaller than those in the near-Earth solar wind, the estimated viscosity values are comparable. This result indicates that the evolving solar wind possibly maintains a fairly constant effective viscosity. Global solar wind models and space weather-predicting models would benefit from these observations.

We are deeply indebted to everyone that helped make the Parker Solar Probe (PSP) mission possible. This work was supported as a part of the PSP mission under contract NNN06AA01C. Parker Solar Probe was designed, built, and is now operated by the Johns Hopkins Applied Physics Laboratory as part of NASA’s Living with a Star (LWS) program (contract NNN06AA01C). Support from the LWS management and technical team has played a critical role in the success of the Parker Solar Probe mission. This research was partially supported by the Parker Solar Probe Plus project through Princeton/IS\&S subcontract SUB0000165 and in part by PSP GI grant 80NSSC21K1767 at Princeton University. The authors thank the FIELDS team (PI: Stuart D. Bale, UC Berkeley) and the SWEAP team (PI: Justin Kasper, BWX Technologies) for help with the PSP data. The authors also thank Sean Oughton and Bill Matthaeus for their helpful discussions. All the data, used in this paper, are publicly available via the NASA Space Physics Data Facility (https://spdf.gsfc.nasa.gov/).

References

Alexandrova, O., Saur, J., Lacombe, C., et al. 2009, PhRvL, 103, 165003

Andrés, N., Sahraoui, F., Hadid, L. Z., et al. 2021, ApJ, 919, 9

Andrés, N., Sahraoui, F., Huang, S., Hadid, L. Z., & Galtier, S. 2022, A&A, 661, A116

Bale, S., Badman, S., Bonnell, J., et al. 2019, Natur, 576, 237

Bale, S. D., Goetz, K., Harvey, P. R., et al. 2016, SSRv, 204, 49

Bandyopadhyay, R., Goldstein, M. L., Maruca, B. A., et al. 2020a, ApJS, 246, 48

Bandyopadhyay, R., Matthaeus, W. H., Chasapis, A., et al. 2020b, ApJ, 899, 63

Bandyopadhyay, R., Matthaeus, W. H., Parashar, T. N., et al. 2020c, ApJS, 246, 61

Bandyopadhyay, R., & McComas, D. J. 2021, ApJ, 923, 193

Batchelor, G. K. 1953, The Theory of Homogeneous Turbulence (Cambridge: Cambridge Univ. Press)

Blackman, R. B., & Tukey, J. W. 1958, BSTJ, 37, 185

Bowen, T. A., Bale, S. D., Bonnell, J. W., et al. 2020, JGRA, 125, e2020JA027813

Breech, B., Matthaeus, W. H., Minnie, J., et al. 2008, JGRA, 113, 8105

Cartagena-Sanchez, C. A., Carlson, J. M., & Schaffner, D. A. 2022, PhP, 29, 032305

ORCID iDs

C. Phillips @ https://orcid.org/0000-0002-2099-0254

R. Bandyopadhyay @ https://orcid.org/0000-0002-6962-0959

D. J. McComas @ https://orcid.org/0000-0001-6160-1158

Figure 7. Distribution of (from left to right) Taylor scale, correlation length, and effective Reynolds number from PSP data. In each plot, the red vertical line shows the average value. The average value, median, and standard deviation without a logarithm. Note that the Reynolds number histogram is plotted on a logarithmic scale on the x-axis while those for the correlation length and Taylor microscale are plotted on linear scales.
Case, A. W., Kasper, J. C., Stevens, M. L., et al. 2020, ApJS, 246, 43
Chen, C. H. K., Bale, S. D., Bonnell, J. W., et al. 2020, ApJS, 246, 53
Chuychai, P., Weygand, J. M., Matthaeus, W. H., et al. 2014, JGRA, 119, 4256
Coleman, P. J. 1968, ApJ, 153, 371
Cuesta, M. E., Parashar, T. N., Chhiber, R., & Matthaeus, W. H. 2022, ApJS, 259, 23
Fox, N. J., Velli, M. C., Bale, S. D., et al. 2016, SSRv, 204, 7
Franz, M., & Harper, D. 2002, P&SS, 50, 217
Frisch, U. 1995, Turbulence (Cambridge: Cambridge Univ. Press)
Gurgiolo, C., Goldstein, M. L., Matthaeus, W. H., Vilas, A., & Fazakerley, A. N. 2013, AnGeo, 31, 2063
Hernández, C. S., Sorriso-Valvo, L., Bandyopadhyay, R., et al. 2021, ApJL, 922, L11
Huang, S. Y., Sahraoui, F., Andrés, N., et al. 2021, ApJL, 909, L7
Kasper, J., Bale, S., Belcher, J., et al. 2019, Natur, 576, 228
Kasper, J. C., Abiad, R., Austin, G., et al. 2016, SSRv, 204, 131
Kolmogorov, A. N. 1941, DoSSR, 30, 301
Matthaeus, W. H., & Goldstein, M. L. 1982, JGR, 87, 6011
Matthaeus, W. H., Dasso, S., Weygand, J. M., et al. 2005, PhRvL, 95, 231101
Matthaeus, W. H., Smith, C. W., & Oughton, S. 1998, JGR, 103, 6495
Matthaeus, W. H., Weygand, J. M., Chuychai, P., et al. 2008, ApJL, 678, L141
McComas, D., Christian, E., Cohen, C., et al. 2019, Natur, 576, 223
Parashar, T. N., Cuesta, M., & Matthaeus, W. H. 2019, ApJL, 884, L57
Parashar, T. N., Goldstein, M. L., Maruca, B. A., et al. 2020, ApJS, 246, 58
Parashar, T. N., Matthaeus, W. H., Shay, M. A., & Wan, M. 2015, ApJ, 811, 112
Pearson, B. R., Krogstad, P. A., & Water, W. van de 2002, PhFl, 14, 1288
Pearson, B. R., Yousef, T. A., Haugen, N. E. L., Brandenburg, A., & Krogstad, P. 2004, PhRvE, 70, 056301
Pope, S. B. 2000, Turbulent Flows (Cambridge: Cambridge Univ. Press)
Ruffolo, D., Matthaeus, W. H., Chhiber, R., et al. 2020, ApJ, 902, 94
Ruiz, M. E., Dasso, S., Matthaeus, W. H., Marsch, E., & Weygand, J. M. 2011, JGRA, 116, 8102
Sahraoui, F., Goldstein, M. L., Robert, P., & Khotyaintsev, Yu. V. 2009, PhRvL, 102, 231102
Smith, C. W., Matthaeus, W. H., Zank, G. P., et al. 2001, JGR, 106, 8253
Sorriso-Valvo, L., Marino, R., Carbone, V., et al. 2007, PhRvL, 99, 115001
Taylor, G. I. 1938, RPSA, 164, 476
Tennekes, H., & Lumley, J. L. 1972, A First Course in Turbulence (Cambridge, MA: The MIT Press)
Tessein, J. A., Matthaeus, W. H., Wan, M., et al. 2013, ApJL, 776, L8
Vech, D., Kasper, J. C., Klein, K. G., et al. 2020, ApJS, 246, 52
Verma, M. K. 1996, JGR, 101, 27543
Verma, M. K., Roberts, D. A., & Goldstein, M. L. 1995, JGR, 100, 19839
Weygand, J. M., Matthaeus, W. H., Dasso, S., et al. 2009, JGRA, 114, 7213
Weygand, J. M., Matthaeus, W. H., Dasso, S., & Kivelson, M. G. 2011, JGRA, 116, 8102
Zhou, G., He, H.-Q. 2021, ApJL, 911, L2
Zhou, G., He, H.-Q., & Wan, W. 2020, ApJ, 899, 42