Mechanical and Thermal Properties of Graphene based Hybrid Polymer Nanocomposites – A Review

Mohd. Rehan Haider¹*, Pradeep Kumar Singh²

¹²Department of Mechanical Engineering, GLA University, Mathura, India-
¹²E-mail address- mohd.haider_phd19@gla.ac.in

Abstract. Graphene-based materials are platelets of one or several layers that can be supplied by substance techniques in mass quantities. Therefore we present a report on polymer nanocomposites, including late work using graphite nanoplatelet fillers, using graphite-based fillers. In addition to techniques for the dispersion of these materials in various polymer grids, various courses used to manufacture graphemic materials are discussed. In addition, the mechanical and thermal characteristics of these composites are examined and The characteristics of graphene-based materials and their dispersion condition in the grid will be studied. A diagram of possible uses for these composites and existing challenges in the field is geared to the future and is aimed at enhancing the materials that are promising. In this review, the analysis of a few decent articles focused on half and half of the composites of graphene and The adaptive impact of graphene with the other nanoparticles in order to calculate its effects on the composite mechanical properties.

1. Introduction
Carbon nanofillers have been disclosed and investigated as an enticing area that was of interest to most composite experts. These particles have been identified with the characteristics and preparation of the fortifying components as fundamental parts of the promotion and commercialization for the development of nano-composite innovation. The scientists have worked tirelessly to sort materials productively based on their precise steps. In its work on assembling 1D nanoribbons from 2D precious stones various analysts have zeroed, “following the divulgence of complex and carbon nanotube (CNT), a different zero and di-monthly carbon nanofillers as depicted. Graphene, a monolayer of sp2-hybridized carbon particles orchestrated in a two-dimensional cross section, has pulled in huge consideration as of late attributable to its extraordinary thermal, mechanical, and electrical properties” [1-3]. The polymer nano composites, the net of polymer composites that fuse nano-scale fillers, are among the most encouraging applications of this material. Nanocomposites have been studied as late as 1950 with peeled layered silicate fillers. [4], Even so, substantial scholastic and modern premiums were obtained nearly forty years after an upgrade of enormous mechanical property using as filler in a network of Nylon 6, according to scientists from Toyota Motor Corporation. [5]. Polymer nano-composites demonstrate significantly improved properties with loads much lower than polymer composites with conventional micron-scale fillers (for example, carbon fibres or glass fibres). [6]; Moreover,
improvement of nanocomposites to the multifunctional property will generate new uses of polymers [7].

Figure 1 Graphene’s are 2D materials, wrapped in 0D buckyball, b-rolled into 1D nanotubes and c stacked in 3D graphite for the entire carbon structure All other dimensionalities [1].

Because of the continuing growth of the use, in composites and different applications, of graphite-based (GO) materials [8], this audit basically covers nanocomposites with GO-based materials. This audit will be performed in particular on polymers. Accentuation of structural property links will be organized, as will models in the improvement of these composites’ properties, and correlations will be formed where necessary with other nanofillers. A few characteristics that are usually taken from graphite intercalation compounds (GICs) from the writing on the polymer composites are also added and used to give a special setting for what have been called the graphite nanoplatelet (GNP) fillers. Although a survey on Go-inferred polymer nanocomposites was late shown[9], See reflects on working with GNP fillers and offers a registered view of preparatory strategies and management with greater focus.

2. Mechanical Properties of Graphene/Modified Graphene-Reinforced Composites

“As already stated, graphene and graphene modified have outstanding mechanical featuring high elastic module, high tensile strength, tightness of the fracture, etc. These exceptional graphene properties have led to the low cost and high quality production of nanocomposites. The majority of research carried out on graphic epoxy nanocomposites is intended to take advantage of the extraordinary mechanical strength.”

Yazdi et al. [10] Studied mechanical characteristics of the spray process prepared for layered graphene/polyoxide nano-composites. “The results show that the addition of graphene to 2.4 wt percent increased the module and traction resistance of Young by respectively 103 and 64 percent. The GO/PI (GO-Store Polyimide(PI)) composites formed with different loadings of GO, in situ
polymerization and mixing methods, with a 3.0 wt% GO loading at a value of 137.8 MPa", were further studied by Ma et al.[11]. This is 75.5% more than the pure PI value. The experiment shows that a superior GO dispersal in the polymer grid is accelerated in the polymerization procedure. Bortz et al. [12] The impact of epoxy-fixing energy was tested by preserving DSC perception of the cross-connector instrument. When a small number of GOs (B 1 wt percent) were applied to the epoxy system a 28–111 percent improvement in crack strength and up to 1580 percent in the uniaxial ductile depletion life was seen. In flexible modules and an elasticity of 0.3 Wt percent, Kashyap and al. [13] carried out progressive tests on RGO-rein-composite nanocomposites and noted an addition of 150% to GO/PVA nano composition. This is due to the homogeneous distribution of fillers and enhanced ability to transfer burden from modifier to grid hydrogen bond. Mo et al. [14] The mechanical GO/PVA nano-composite portrait was played and an elasticity of 280 MPa and Young's modules was found at 13.5 GPa with half modifier stacking. In the development of non-covalent functional graphene oxide (NFrGO) / acetic acid derivatives (CA) nano composites by using the arrangement blending technique [15], an investigation was performed with sulphonated poly(ether-ether-ketone). This was a non-covalent surface modification. “Compared to NFrGO/CA stacking with a 1.5% Watt and non-Adult CA, the Elasticity and Modulation increased by some 102% (106,87 ± 2 MPa) and 143% (1.32 ± 0.3 GPa–3.21 ± 0.2 GPa)”. The wide dispersal of the NFrGO sheets in the CA is a reason for this change. Sainsbury et al.[16] used bisphenol-functionalized nanoparticles (f-GNS) to build nanoparticles based on PBE/GO to facilitate a 26 and 63% increase in Young's module and severe elasticity of 0.25% filler load. The technique used by Vlassiouk et al.[17] for the use of layer by layer is combined with a deliberative movement of layered structures in layer overlayed graphene (type 1) and strands (type 2). The subsequent combined structures show that graphene/PMMMA overlays are twice as heavy as 0.13 percent of the unadulterated PMMA. However, unrefined graphene scrolls (beaches) have fewer mechanical properties (2.2 GPa strength and 0.3 TPa modulus) but give a competitive eye when considering carbon filaments (CFs). Zhang et al. [18] reported an increase in CF/epoxy composite interfacial and ductile properties enhanced via a GO sheet single layer (5.0 wt percent). The effect of GNP size on the properties of epoxy/GNP nano-compounds was assessed by Alexopoulos et al. [19] The results revealed a 15% increase in UTS and 12% rise in crack strength at low filler (0.25% of GNPs), while a 35% and 30% increase in Young's nanocomposite modulus, respectively, was recorded with a 130 and 1200 lm molecule expansion of GO [20] separately. The analysts have also seen a decline in mechanical properties due to the agglomeration of particles, with a greater filler focus (5 Wt% of GNPs). As of late, Chhetri et al. [21] The 0.25%W of GNS dispersed in the epoxy system revealed, enhances its crack toughness, bending power and bending modulus separately, * 91, 46 and 71%, while comparing it with unadulterated epoxy. In the case of PVA nanocomposites contained 1.0 wt percent of GO, however, tractable yield intensity and the modulus from Young have been individually acquired by 66 MPa and 4.92 GPa [22]. Similarly, Lin et al. estimated improved polyaniline (Styrene Sulfonate)/rGO stickability by 39 percent and 127 percent of the UTS and its ductile toughness by 0.5% [23]. In addition, Lin et al. Chen et al[24] arranged the elite polymer composite with a central half-breed standardized coating (SiO2-GO) to allow new fills in the epoxy polymer grid. Ultrathin GO coating surfaces enabled this modernization. Functionalized GO (FGO) in any case showed a uniform scatter of 28,7 and 130 per cent during break-out in nano-composites with high-thickness polyethylene (HDPE), with a fusion of just 0.2 wt percent of
FGO[20]. Consequently, upgrade of GO epoxy nanocomposites by 10.11 and 14.67% with the expansion of 1.0% wt% of GO was observed[26]. Ni et al.[27] manufactured 3D graphene skeleton “3D epoxy-based composites (3DGS) to prevent difficulties with dispersion and direction of graphene sheets. The researchers upgraded the instant blending method, finding that 3DGS/epoxy composites provide mechanical and thermal properties as compared to EG/epoxy composites”.

The dispersion level could be defined as the proportion of wt% of nano compounds to the absolute wt% of the epoxy system, influencing the exhibition of Nanocomposites directly or by implication. In order to dispense graphene homogeneously in the epoxy reservoir, the streamlining time, power, and temperature also depend on the elements of sonicity [28, 29]. The elasticity and capacity modulus of nanocomposite composites increased individually from 57.2 to 64.4 MPa, with a fusel value of 0.3 wt percent graphene, from 1.66 to 2.16 GPa. “In every event, the nanocomposite Tg estimate grew from 93.37 to 99.08 °C (for 0.3 wt percent of graphene stacking). The results showed that the dispersion state depended on the sonic time and temperature power. In addition, a significant impact on epoxy was observed by graphene”. Furthermore an important contribution to improving the general properties of composites is made to the position of the reinforcement portion in the epoxy grid. Li et al.[30] announced GO drops in nanocomposites in the degree of spatial direction. They saw an increase in the nano-composite module of Young with fully modified graphene and an arbitrary integration of graphene was seen as normal fall by half. Li et al. [31] “investigated the mechanical properties of epoxy-based combinations of dopamine-rGO (pDop-rGO). P Dop — r GO was created by synchronizing GO’s work and by reducing polydopamine. The feasible GO and pDop-rGO modules and strengths in various epoxy compounds”.

Wu et al. [32] The strength of the GNP/epoxy nanocomposites has improved up to 900% in mode I with 0.8% of transiting GNPs. Different external and inherent hardening mechanisms such as adhesive, microcracking, diversion, bursts and pull out of GNPs have been assigned this change. Atif et al.[33] performed a study to increase the mechanical properties to 0.1 wt% of graphene. While the flexor and elasticity of 74–111 MPa were increased by 49% and 43% at 46–65 MPa, separately, the flexural Young modules increased by 23%, at 598.3–732.8 MPa and by 26%, respectively, with 610–766 MPa. The study employed 4'- methylene diphenyl isocyanate (MDI) to adjust graphene, generate the use of epoxy/graphene and alter graphene nanocomposites as a material modifier. The findings showed an expansion of Young's perfect epoxy modulus from 0.675 to 8.0 GPa with a 0.5 wt% changed, 25% more unmodified graphene expand[34], [34]. With an increase of 3.0 wt percent in rGO in the epoxy market, Bora et al. [35] reported that they would boost the elasticity and Young's compound modules of 123 and 87 percent. The GNP/epoxy composites flexural modular, however, extended by 160% when 4.0% wt% of the GNP of 300–1000 point of view is applied to epoxy and 5–17 nm layer [36].
3. Thermal Properties Of Graphene/ Modified Graphene Reinforced Composites

Different temperature property studies for different polymer nanocomposites have only been performed over the last decade. However, tests of nanocomposites have been shown to be generally crucial in terms of temperature relaxation, glass progress temperature, thermal conductivity and thermal developments.

The temperature of advances in glass (Tg), which is usually characterised by a, is one of the great viscoelastic properties of epoxy and composites. This is the manner in which the polymer moves from smooth to weak to rubbery. The Tg also is much better seen, taking into account the calculation of the free energy the iotas need to get from their particular grid positions to other enormous positions that normally lead to a sparkling, rubbery state. When these molecules have reached the rubbery state of the particle, they become more rigid, fragile and deeply solid. It is therefore completely necessary to measure the Tg either with experiments or with evaluated reproductions. [37]. The polymers are prepared according to the temperature range determined by Tg. For eg, dynamics mechanics (DMA), differential heat exam (DTA), thermo-mechanical investigations (TMA) and differential filtration calorimetric are various experimental techniques for assessing Tg (DSC). “Nonetheless, three basic hypotheses are used to evaluate Tg by MD reproductions, namely (a) an energy-temperature method, (b) medium squared elimination, and (c) the property temperature strategy. Ribeiro et al. [38] continuously investigated the use of DMA-testing epoxy composites, TG of GO, TEPA (tetraethylenepentamine). The evaluation found that in combination with unadulterated polymer, the Tg values for GO are growing continuously from 15 to 20°C for TEPA epoxy composites (0.5wt percent)”. Li et al. [39] GO integrated into the epoxy network to ensure that the Tg of nanocomposites increased by 33.05°C with a filler division of 1.0 wt per cent. For GO/epoxy nanocomposites, in comparison to the smooth tar, Tg has gone from 164.8 to 157.1 °C to a lower temperature range [40]. Pour et al. [41] "stop mined DSC philtre epoxy-reinforced PVI-g-GO Tg. The Tg estimate for perfect epoxy has increased by 0.25 wt% from 101 ± 3.0 to 108 ± 4.1 °C to PVI-g-GO".
Zaman et al. [42] Mixed two kinds of GNP and surface-adjusted GNP enhanced epoxy nanocomposites. The Tg of the perfect epoxy increased from 94.7 to 108.6°C with interface improvements, which reflects a 14.7% rise. “As it turned out the Tg nanocomposites upgraded by approximately 2.5 °C with a joining 0.041 vol% of the graphene sheet (0.1wt%) to polypropylene (PP)[43]. A phenomenal step was acquired at 1.0 and 0.05 percent wt of the F-GNSs[44] in the estimate of Tg to above 40°C in poly(acrylonitrile) and 30°C in PMMA”. The expansion in the Tg of information lost from module information also announced Layek et al.[45]. It was not important. In any case, during tand plot evaluations, it was shown that the damping effect of Tg and 5.0 percent of PMMA-functionalized nanocomposites (PMMA) is enhanced at 21°C. Other than that, the Tg estimate of 153.9oC was demonstrated by the unadulterated epoxy tars (EPs). The Tg extended in an individual way to 167.6 and 168.8 °C by adding thermally decreased GNPs and FG to epoxy[46]. The Tg increase for unadulterated EP was seen in Chen et al [24] at 197 °C, and the temperature decrease was large (194.4 °C) for GO-stacked nanocomposites at 0.1 wt percent. The Tg of the nanocomposites of epoxy-based (81.5°C) was calculated as 87.8 and 90.7°C separately for a consolidation of 1.0 wt percent of GOs in 300 and 1200 lm molecules[20]. After that, following the audit, the Tg estimates for epoxy nano compounds are based on the degree of restoration, cross-related thickness, substance and sort of filler, and the interfacial keeping of the filler and system. [23, 27]

Figure. 3 Composite thermal conductivity depends on a number of considerations in the design of new materials. [47].
4. Conclusion
In the current research, the mechanical and thermal properties of graphene and modified graphene-based nano-composites have been thoroughly investigated. The entire discussion about the properties of graphene has shown that it plays an important role in improving the general characteristics of polymer nanocomposites which are used in different use regions. Various elements, such as pure-level, area, filler contents, cross-connectivity, scattering level, number of layers as well as the point of view proportion and contact between epoxy and filler depend on the nature of the nanocomposites, have been identified. This review offers a simple analysis on the examination of detailed mechanical and thermal properties of graphene and functionalized graphene-based nano-composites despite the properties of graphene-typical half-breed nanocomposites. From now on the effects of a wide range of graphene on the thermomechanical execution of two-stage polymer-based nanocomposites are revealed in this specified study.

References
[1] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Adv Mater 2010; 22:3906e24.
[2] Geim AK, Novoselov KS. Nat Mater 2007;6:183e91.
[3] Compton OC, Nguyen SBT. Small 2010;6:711e23.
[4] Carter LW, Hendricks JG, Boley DS. 2531396, National Lead Company; 1950.
[5] Usuki A, Kojima Y, Kawasaki M, Okada A, Fukushima Y, Kurauchi T, et al. J Mater Res 1993;8:1179e84.
[6] Winey KI, Vaia RA. MRS Bull 2007;32:314e9.
[7] Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Nat Nanotechnol 2008;3:327e31.
[8] Dreyer DR, Park S, Bielawski CW, Ruoff RS. Chem Soc Rev 2010;39:228e40.
[9] Kim H, Abdala AA, Macosko CW. Macromolecules 2010;43:6515e30.
[10] Asadollahi-yazdi H, Shariati M, Imam A, Ghatge M (2017) Investigating the mechanical properties of layered graphene/polyoxymethylene nanocomposites prepared by the spray method. J Compos
[11] Ma L, Wang G, Dai J (2017) Preparation and properties of graphene oxide/polyimide composites by in situ polymerization and thermal imidization process. High Perform Polym 29(2):187–196
[12] Bortz DR, Heras EG, Martin-Gullon I (2011) Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules 45(1):238–245
[13] Kashyap S, Pratihar SK, Behera SK (2016) Strong and ductile graphene oxide reinforced PVA nanocomposites. J Alloys Compd 684:254–260
[14] Mo S, Peng L, Yuan C, Zhao C, Tang W, Ma C et al (2015) Enhanced properties of poly (vinyl alcohol) composite films with functionalized graphene. RSC Adv 5(18):97738–97745
[15] Uddin ME, Layek RK, Kim HY, Kim NH, Hui D, Lee JH (2016) Preparation and enhanced mechanical properties of non-covalently-functionalized graphene oxide/cellulose acetate nanocomposites. Compos Part B Eng 90:223–231
[16] Sainsbury T, Gniahia S, Spencer SJ, Mignuzzi S, Belsey NA, Paton KR et al (2017) Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization. Carbon 114:367–376
[17] Vlassiok I, Polizos G, Cooper R, Ivanov I, Keum JK, Paulauskas F et al (2015) Strong and electrically conductive graphene-based composite fibers and laminates. ACS Appl Mater Interfaces 7(20):10702–10709
[18] Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X et al (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4(3):1543–1552
[19] Alexopoulos ND, Paragkamian Z, Poulin P, Kourkoulis SK (2017) Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites. Compos Sci Technol 150:194–204
[20] Huskic’ M, Brolka S, Vesel A, Mozetic’ M, Anzˇlovar A, Vizintin A et al (2018) One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide/epoxy matrix nanocomposites. Eur Polym J 101:211–217
[21] Chhetri S, Adak NC, Samanta P, Murmu NC, Hui D, Kuila T et al (2018) Investigation of the mechanical and thermal properties of l-glutathione modified graphene/epoxy composites. Compos Part B Eng 143:105–112
[22] Goumri M, Poilane C, Ruterana P, Doudou BB, We´ry J, Bakour A et al (2017) Synthesis and characterization of nanocomposites films with graphene oxide and reduced graphene oxide nanosheets. Chin J Phys 55(2):412–422
[23] Lin Y-T, Don T-M, Wong C-J, Meng F-C, Lin Y-J, Lee S-Y et al (2018) Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyamine/graphene composite. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2018.01.050
[24] Chen L, Chai S, Liu K, Ning N, Gao J, Liu Q et al (2012) Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl Mater Interfaces 4(8):4398–4404
[25] Li H, Xie X-M (2018) Polyolefin-functionalized graphene oxide and its GO/HDPE nanocomposite with excellent mechanical properties. Chin Chem Lett 29(1):161–165
[26] Liu Q, Zhou X, Fan X, Zhu C, Yao X, Liu Z (2012) Mechanical and thermal properties of epoxy resin nanocomposites reinforced with graphene oxide. Polym Plast Technol Eng 51(3):251–256
[27] Ni Y, Chen L, Teng K, Shi J, Qian X, Xu Z et al (2015) Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Appl Mater Interfaces 7(21):11583–11591
[28] Pizzutto CE, Suave J, Berthold J, Pezzin SH, Coelho LAF, Amico SC (2011) Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Mater Res 14(2):256–263
[29] Wei J, Atif R, Vo T, Inam F (2015) Graphene nanoplatelets in epoxy system: dispersion, reaggregation, and mechanical properties of nanocomposites. J Nanomater 16(1):374
[30] Li Z, Young RJ, Wilson NR, Kinloch IA, Valle’s C, Li Z (2016) Effect of the orientation of graphene-based nano-platelets upon the Young’s modulus of nanocomposites. Compos Sci Technol 123:125–133

[31] Li W, Shang T, Yang W, Yang H, Lin S, Jia X et al (2016) Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strength-ened interfacial bonding. ACS Appl Mater Interfaces 8(20):13037–13050

[32] Wu S, Ladani RB, Zhang J, Bafekrpour E, Ghorbani K, Mouritz AP et al (2015) Aligning multilayer graphene flakes with an external electric field to improve multi-functional properties of epoxy nanocomposites. Carbon 94:607–618

[33] Atif R, Shyha I, Inam F (2017) Modeling and experimen- tation of multi-layered nanostructured graphene-epoxy nanocomposites for enhanced thermal and mechanical properties. J Compos Mater 51(2):209–220

[34] Berhanuddin N, Zaman I, Rozlan S, Karim M, Manshoor B, Khalid A et al. (2017) Enhancement of mechanical properties of epoxy/graphene nanocomposite. J Phys Conf Ser IOP Pub 012036

[35] Bora C, Bharali P, Baglari S, Dolui SK, Konwar BK (2013) Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity. Compos Sci Technol 87:1–7

[36] Li Y, Zhang H, Porwal H, Huang Z, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in situ exfoliated graphene/epoxy nanocomposites. Compos Part A Appl Sci Manuf 95:229–236

[37] Yadav A, Kumar A, Singh PK, Sharma K (2018) Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr Ferroelectr 186(1):106–114

[38] Ribeiro H, da Silva WM, Neves JC, Calado HDR, Paniago R, Seara LM et al (2015) Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polym Test 43:182–192

[39] Li P, Zheng Y, Li M, Shi T, Li D, Zhang A (2016) Enhanced toughness and glass transition temperature of epoxy nanocomposites filled with solvent-free liquid-like nanocrystal-functionalized graphene oxide. Mater Des 89:653–659

[40] Ferreira F, Brito F, Franceschi W, Simonetti E, Cividanes L, Chipara M et al (2018) Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surf Inter-faces 10:100–109

[41] Pour ZS, Ghaemy M (2016) Polymer grafted graphene oxide: for improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite. Compos Sci Technol 136:145–157

[42] Zaman I, Phan TT, Kuan H-C, Meng Q, La LT B, Luong L et al (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7):1603–1611

[43] Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010

[44] Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera- Alonso M, Piner R et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327

[45] Layek RK, Samanta S, Chatterjee DP, Nandi AK (2010) Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: piezoelectric b polymorph formation. Polymer 51(24):5846–5856

[46] Naebe M, Wang J, Amini A, Khayyam H, Hameed N, Li LH et al (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep 4:4375

[47] Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

[48] Kumar A, Sharma K, Rai A D et al (2019) A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J Mater Sci 54:5992-6026.
