I. INTRODUCTION

At present, the first-row constraint $|V_{ud}|^2 + |V_{us}|^2$ of CKM unitarity. Up until 2002 (and for the 2004 PDG evaluation [1]), the evaluation of $|V_{us}|$ from older K_{33} data gave a 2.3σ hint of unitarity violation in the first-row test. The 2003 measurement of $\text{BR}(K^+\pi^-\gamma\rightarrow\mu^+\nu\mu)$ by BNL E865 [2] gave a value for $|V_{us}|$ consistent with unitarity. In the period 2004–2006, many new measurements of BRs, lifetimes, and form-factor slopes were announced by KLOE, KTeV, ISTRA+, and NA48. All of these new measurements are distinguished from the older measurements in that they are based on much higher statistics, and in that radiative corrections are applied consistently. Late-2005 evaluations of $|V_{us}|$ by the CKM working group on the first row [3] and in the 2006 PDG review [4] include many, but not all, of these important developments. We present an up-to-date evaluation that includes preliminary results presented at this conference.

$|V_{us}|$ is evaluated from K_{33} data using the relation

$$
\Gamma(K_{33(\gamma)}) = \frac{C_K^2 G_F^2 M_K^5}{192\pi^3} S_{\text{EW}} |V_{us}|^2 |f_+(0)|^2 \times I_K(\lambda_{K\ell})(1 + 2\Delta_K^{SU(2)} + 2\Delta_K^{EM}),
$$

where C_K is the Clebsch-Gordan coefficient; M_K is the appropriate kaon mass; $S_{\text{EW}} = 1.0232$ is the universal short-distance electroweak correction; $f_+(0) \equiv f_{K^+\pi^-}(0)$ is the value of the hadronic matrix element (form factor) for the $K^0 \rightarrow \pi^-$ transition at zero momentum transfer to the leptonic system; $I_K(\lambda_{K\ell})$ is the phase-space integral of the normalized form factor, which depends on the values of one or more slope parameters λ; $\Delta_K^{SU(2)}$ and Δ_K^{EM} are $SU(2)$-breaking and long-distance electromagnetic corrections; and the subscripts K and ℓ indicate dependence on the kaon charge and lepton flavor. Our main result is a current average value for $|V_{us}|f_+(0)$. We first review the recent data on K_{33} rates (BRs and lifetimes) and form-factor slopes.

II. K_L DECAY RATE DATA

Numerous measurements of the principal K_L BRs, or of various ratios of these BRs, have been published recently. For the purposes of evaluating $|V_{us}|f_+(0)$, these data can be used in a PDG-like fit to the K_L BRs and lifetime, so all such measurements are interesting. KTeV has measured five ratios of the six main K_L BRs [5]. The six channels involved account for more than 99.9% of the K_L width and KTeV combines the five measured ratios to extract the six BRs. We use the five measured ratios in our analysis: $\text{BR}(K_{\mu3}/K_{e3}) = 0.6640(26)$, $\text{BR}(\pi^+\pi^-\pi^0/K_{e3}) = 0.3078(18)$, $\text{BR}(\pi^+\pi^-/K_{e3}) = 0.004856(28)$, $\text{BR}(3\pi^0/K_{e3}) = 0.4782(55)$, and $\text{BR}(2\pi^0/3\pi^0) = 0.004446(25)$. The errors on these measurements are correlated; this is taken into account in our fit.

NA48 has measured the ratio of the BR for K_{e3} decays to the sum of BRs for all decays to two tracks, giving $\text{BR}(K_{e3})/(1 - \text{BR}(3\pi^0)) = 0.4978(35)$ [6]. From a separate measurement of $\text{BR}(K_L \rightarrow 3\pi^0)/\text{BR}(K_L \rightarrow 2\pi^0)$, NA48 obtains $\text{BR}(3\pi^0)/\tau_{K_L} = 3.795(58)\text{ MHz}$ [7].

Using $\phi \rightarrow K_L K_S$ decays in which the K_S decays to $\pi^+\pi^-$, providing normalization, KLOE has directly measured the BRs for the four main K_L decay channels [8]. The errors on the KLOE BR values are dominated by the uncertainty on the K_L lifetime τ_L; since the dependence of the geometrical efficiency on τ_L is known, KLOE can solve for τ_L by imposing $\sum_{\pi^0} \text{BR}(K_L \rightarrow x) = 1$ (using previous averages for the minor BRs), thereby greatly reducing the uncertainties on the BR values obtained. Our fit makes use of the KLOE BR values before application of this constraint: $\text{BR}(K_{e3}) = 0.4049(21)$, $\text{BR}(K_{\mu3}) = 0.2726(16)$, $\text{BR}(K_{e3}) = 0.2018(24)$, and $\text{BR}(K_{e3}) = 0.1276(15)$. The dependence of these values on τ_L and the correlations between the errors [9] are taken into account.

KLOE has also measured τ_L directly, by fitting the proper decay time distribution for $K_L \rightarrow 3\pi^0$, for which the reconstruction efficiency is high and uniform over a fiducial volume of $\sim 0.4\lambda_{K_L}$. They obtain $\tau_L = 50.92(30)\text{ ns}$ [10].

There are also two recent measurements of $\text{BR}(\pi^+\pi^-/K_{e3})$, in addition to the KTeV measurement of $\text{BR}(\pi^+\pi^-/K_{e3})$ discussed above. KLOE obtains $\text{BR}(\pi^+\pi^-/K_{e3}) = 7.275(68) \times 10^{-3}$ [11], while NA48 obtains $\text{BR}(\pi^+\pi^-/K_{e3}) = 4.826(27) \times 10^{-3}$.
All measurements are fully inclusive of inner bremsstrahlung. The KLOE measurement is fully inclusive of the direct-emission (DE) component, DE contributes negligibly to the KTeV measurement, and a residual DE contribution of 0.19% has been subtracted from the NA48 value to obtain the number quoted above. For consistency, in our fit, a DE contribution of 1.52(7)% is added to the KTeV and NA48 values. Our fit result for BR(π⁺π⁻) is then understood to be DE inclusive.

In addition to the 14 recent measurements listed above, our fit for the seven largest K_L BRs and lifetime uses four of the remaining five inputs to the 2006 PDG fit and the constraint that the seven BRs sum to unity. The results are summarized in Table I.

Our fit gives χ^2/ndf = 20.2/11 (4.3%), while the 2006 PDG fit gives χ^2/ndf = 14.8/10 (14.0%). The differences between the output values from our fit and the 2006 PDG fit are minor. The poorer value of χ^2/ndf for our fit can be traced to contrast between the KLOE value for BR(3π⁰) and the other inputs involving BR(3π⁰) and BR(π⁰π⁰)—in particular, the PDG ETAFIT value for BR(π⁰π⁰/π⁺π⁻). The treatment of the correlated KTeV and KLOE measurements in the 2006 PDG fit gives rise to large scale factors for BR(K_{e3}) and BR(3π⁰); in our fit, the scale factors are more uniform. As a result, our value for BR(K_{e3}) has a significantly smaller uncertainty than the 2006 PDG value.

Table I: Results of fit to K_L BRs and lifetime

Parameter	Value	S
BR(K_{e3})	0.40563(74)	1.1
BR($K_{µ3}$)	0.27047(71)	1.1
BR(3π⁰)	0.19507(86)	1.2
BR(π⁺π⁻π⁰)	0.12542(57)	1.1
BR(π⁺π⁻)	1.9966(67) × 10⁻³	1.1
BR(2π⁰)	8.644(42) × 10⁻⁴	1.3
BR(γγ)	5.470(40) × 10⁻⁴	1.1
τ_L	51.173(200) ns	1.1

Table II: Results of fit to $K^±$ BRs and lifetime

Parameter	Value	S
BR($K_{µ2}$)	63.442(145)%	1.3
BR(π⁺π⁻)	20.701(108)%	1.3
BR(π⁺π⁻)	5.5921(305)%	1.0
BR(K_{e3})	5.121(38)%	1.6
BR($K_{µ3}$)	3.3855(203)%	1.2
BR(π⁰π⁰π⁰)	1.7592(234)%	1.1
$\tau_±$	12.3840(213) ns	1.8

There are several new results providing information on K_{e3} rates. These results are mainly preliminary and have not been included in previous averages.

NA48/2 has recently submitted for publication measurements of the three ratios $BR(K_{e3}/ππ⁰)$, $BR(K_{µ3}/ππ⁰)$, and $BR(K_{e3}/K_{µ3})$ [17, 18]. These measurements are not independent; in our fit, we use the values $BR(K_{e3}/ππ⁰) = 0.2496(10)$ and $BR(K_{µ3}/ππ⁰) = 0.1637(7)$ and take their correlation into account.

ISTRA+ has also updated its preliminary value for $BR(K_{e3}/ππ⁰)$ [19]. They now quote $BR(K_{e3}/ππ⁰) = 0.2449(16)$, as reported at this conference [20].

KLOE has measured the absolute BRs for the K_{e3} and $K_{µ3}$ decays [20]. In $\phi \rightarrow K^+K^-$ events, K^+ decays into $\mu\nu$ or $\pi\pi⁰$ are used to tag a K^- beam, and vice versa. KLOE performs four separate measurements for each K_{e3} BR, corresponding to the different combinations of kaon charge and tagging decay. The final averages are $BR(K_{e3}) = 5.047(92)\%$ and $BR(K_{µ3}) = 3.310(81)\%$. Our fit takes into account the correlation between these values, as well as their dependence on the $K^±$ lifetime [21].

The world average for $\tau_±$ is nominally quite precise; the 2006 PDG quotes $\tau_± = 12.385(25)$ ns. However, the error is scaled by 2.1; the confidence level for the average is 0.2%. It is important to confirm the value of $\tau_±$. A preliminary measurement from KLOE, $\tau_± = 12.367(78)$ ns [22], agrees with the PDG average, although at present the KLOE uncertainty is significantly larger.

Our fit for the six largest $K^±$ BRs and lifetime makes use of the results cited above, plus the data used in the 2006 PDG fit, for a total of 30 measurements. The six BRs are constrained to sum to unity. The results are summarized in Table III.

The fit quality is poor, with χ^2/ndf = 49/24 (0.21%). However, when the five older measurements of $\tau_±$ are replaced by their PDG average with scaled error, χ^2/ndf improves to 31.3/20 (5.1%), with no significant changes in the results. Tension between the new measurements...
involving BR(Ke3) and the older measurements is partly responsible for the poor fit quality (note the scale factor of 1.6 on BR(Ke3) from our fit). Because of uncertainties concerning the treatment of radiative corrections, it would be desirable to eliminate some of the older measurements, as both we and PDG do for the Kl fit. However, for K±, all of the new measurements involve the Ke3 BRs or the ratios BR(Ke3/ππ0). This leads to large correlations between the Ke3 BRs and BR(ππ0), and makes the fit unstable when the older data are excluded. Both the significant evolution of the average values of the Ke3 BRs and the effect of the correlations with BR(ππ0) are evident in Fig. 1.

V. FORM-FACTOR SLOPES

For Ke3 decays, recent measurements of the quadratic slope parameters of the vector form factor (λ′, λ′′) are available from KTeV [21, 22], KLOE [23], ISTRA+ [19, 24], and NA48 [25]. For Ke3 decays, results of fits using the quadratic parameterization for the vector form factor (λ′, λ′′) and the linear parameterization for the scalar form factor (λ0) are available from KTeV [21], ISTRA+ [19, 26], and NA48 [18, 27]. ISTRA+ measures K- decays; the other experiments measure Kl decays.

The Ke3 data are summarized in Fig. 2. The uncertainties on the values of λ′ and λ′′ reported by each experiment are highly correlated. This is an intrinsic property of the quadratic parameterization. The form-factor slopes represent a small modification of the kinematic density of the matrix element for K → π transitions; in addition, sensitivity to λ′′ is poor because the kinematic density of the matrix element drops to zero at large t, where the form factor itself is maximal. Taking the correlations into account, we obtain a good fit to the data in Fig. 2 λ′ = 24.15(0.87) × 10^{-3} and λ′′ = 1.57(0.38) × 10^{-3}, with ρ(λ′, λ′′) = -0.941 and χ^2/ndf = 5.3/6 (51%). The significance of the quadratic term is greater than 4σ. The fit result is shown as the yellow ellipse in Fig. 2.

The Kl data are summarized in Fig. 3 which also shows the results for λ′ and λ′′ from our Ke3 fit, and the results of our combined fits to Ke3 and Kl data. While the results for λ′ and λ′′ from Kl data are consistent and reasonably agree with those from Ke3 decays (Fig. 3 left panel), the results for λ0 show poor consistency (right panels). The most discrepant measurement is that of NA48. In both the λ′-λ0 and λ′′-λ0 views, a locus of values within the 1σ confidence contours from ISTRA+ and our Ke3 fit lies along the major axis of the KTeV confidence ellipse. As a result, a fit to all data (Ke3 and Kl) excluding only the Kl results from NA48 gives χ^2/ndf = 11.9/9 (21.7%). The results of this fit are indicated by the cyan ellipses in Fig. 3. When the NA48 Kl results are included, χ^2/ndf increases to 52/12, for a probability of less than 10^{-6}. The results are shown as the yellow ellipses in Fig. 3.

Since at the moment there is no a priori reason to exclude the NA48 Kl results, we base our estimate of |Vus|/f_+ on the fit to all data. However, we scale the errors on the slope parameters to reflect the inconsistency in the input data set. We obtain λ′ = 24.84(1.10) × 10^{-3} (S = 1.4), λ′′ = 1.61(0.45) × 10^{-3} (S = 1.3), and λ0 = 13.30(1.35) × 10^{-3} (S = 2.1), with ρ(λ′, λ′′) = -0.944, ρ(λ′, λ0) = +0.314, and ρ(λ′′, λ0) = -0.420. From these results, we calculate the phase-space integrals for use with Eq. 1 to be I(K_{e3}^0) = 0.15452(29), I(K_{e3}^+) = 0.15887(30), I(K_{µ3}^0) = 0.10207(34), and I(K_{µ3}^+) = 0.10501(35).
VI. EVALUATION OF $|V_{us}|f_+(0)$

The strong SU(2)-breaking and EM corrections to $f_+(0)$ used in our evaluation of $|V_{us}|f_+(0)$ are summarized in Table III. For $\Delta^{SU(2)}$, we use the standard value from Ref. [28]. All of the recent K_{e3} BR measurements are fully inclusive of final-state radiation; the values we use for $\Delta^{EM}_{V_{us}}$ were calculated for the fully-inclusive rates. Specifically, for K^0_{e3} and K^\pm_{e3}, the values were obtained from the chiral perturbation theory calculation of Ref. [28], updated using the evaluations of the low-energy constants from Ref. [29]. For $K^0_{\mu3}$, the value is from Ref. [30], and was obtained using a generator implementing a hadronic-model calculation. For $K^\pm_{\mu3}$, we do not know of any complete estimate. Our value is loosely based on Ref. [31] with a very generous error estimate. However, with this treatment, $\Delta^{EM}_{V_{us}}$ gives the largest single contribution to the uncertainty on $|V_{us}|f_+(0)$ from this mode.

We use the results of the fits and averages described in Secs. II–V together with the corrections in Table III to evaluate the quantity $|V_{us}|f_+(0)$ for each of the five K_{e3} decay modes as listed in Table IV. The table also gives the fractional uncertainty for each determination of $|V_{us}|f_+(0)$, as well as the approximate breakdown of the contributions to the uncertainty from the various inputs (these contributions are understood to be added in quadrature). The source of the limiting uncertainty varies from mode to mode.

The average value of $|V_{us}|f_+(0)$ from all modes, as obtained from a fit with correlations taken into account, is $0.21673(46)$. The fit gives $\chi^2/ndf = 4.2/4$ (38%).

Although the value of χ^2/ndf from the fit is satisfactory, one notes that the values of $|V_{us}|f_+(0)$ for the two charged modes seem to be higher than those for the neutral modes. To quantify this, we perform the fit separately for charged and neutral modes, using the results of the overall fit to the form-factor slope data of Sec. VI and the SU(2)-breaking correction from Table III $\Delta^{SU(2)} = 2.31(22)\%$, for the charged modes. We obtain $|V_{us}|f_+(0) = 0.21635(50)$ for neutral modes and $0.21832(94)$ for charged modes, a 1.9σ difference. If we take this as a suggestion that the SU(2)-breaking correction may be underestimated, and perform the fit leaving free the value of $|V_{us}|f_+(0)$ for neutral modes and an empirical value of $\Delta^{SU(2)}$, we obtain $\Delta_{exp}^{SU(2)} = 3.24(43)\%$.

Comparison of the values of $|V_{us}|f_+(0)$ for K_{e3} and

![Figure 3: Recent measurements of form-factor slopes for K_{e3} decays, with fits.](image-url)
In the chiral expansion, an analytic estimate of the contribution at the first loop arises from meson-loop contributions that are sizeable \(^3\). More recently, a complete \(O(p^6)\) calculation in chiral perturbation theory showed that meson-loop contributions are sizeable \(^3\). Analytic estimates of \(f_+ (0)\) were surveyed by Leutwyler and Roos \(^3\), and lattice evaluations of \(f_+ (0)\) are rapidly improving in precision \(\text{see, e.g. Ref.}\ 33\).

Until a definite consensus emerges on a new reference value for \(f_+ (0)\), however, we use the original estimate of Leutwyler and Roos, \(f_+ (0) = 0.961 (8)\), which is supported by lattice calculations \(^32\). This gives \(|V_{us}| = 0.2255 (19)\).

Using the recent evaluation of \(|V_{ud}|\) from 0\(^+\) to 0\(^+\) nuclear beta decays \(\text{Ref.}\ 33\), one has \(|V_{ud}|^2 + |V_{us}|^2 - 1 = - 0.0009 (10)\), a result compatible with unitarity.

Marciano \(^40\) has observed that \(\Gamma(K_{\mu3})/\Gamma(\pi\mu3)\) can be precisely related to the product \((|V_{us}|^2 - |V_{ud}|^2)^2 (f_K/f_\pi)^2\). The recent measurement \(BR(K^+ \to \mu^+ \nu) = 0.6366 (17)\) from KLOE \(^41\), together with the preliminary lattice result \(f_K/f_\pi = 1.208 (21.2\%, \text{or } 1\sigma)\) from the MILC Collaboration \(^42\), gives \(|V_{us}|/|V_{ud}| = 0.2286 (27\%)\). This ratio can be used in a fit together with the values of \(|V_{us}||V_{ud}|\) from Ref. \(^33\) and \(|V_{us}|\) from \(K_{\mu3}\) decays as above. Using the value for \(|V_{us}|\) obtained with \(f_+ (0) = 0.961 (8)\), the fit gives \(|V_{ud}| = 0.97377 (27)\) and \(|V_{us}| = 0.2245 (16)\), with \(\chi^2/\text{ndf} = 0.77/1 (38\%)\). The unitarity constraint can also be included, in which case the fit gives \(\chi^2/\text{ndf} = 3.10/2 (21.2\%, \text{or } 1.2\sigma)\). Both results are illustrated in Fig. \(3\).

In summary, from \(K_{\mu3}\) data we obtain \(|V_{us}|f_+ (0) = 0.21673 (46)\), where the uncertainty amounts to 0.21\%. The dominant contribution to the uncertainty on \(|V_{us}|\) is from \(f_+ (0)\). Whether \(|V_{us}|\) is evaluated from \(K_{\mu3}\) data alone or with the additional constraint from \(K_{\mu3}\) decays, the first-row unitarity test is satisfied at about the 1\(\sigma\) level.

VII. EVALUATION OF \(|V_{us}|\)

To test CKM unitarity, a value for \(f_+ (0)\) is needed. In the chiral expansion, \(f_+ (0) = 1 + f_{p^4} + f_{p^6} + \cdots\). A finite one-loop contribution gives rise to \(f_{p^4}\); its calculation \(^33\) involves essentially no uncertainty. A quark-model estimate of the contribution at \(O(p^6)\) was originally performed by Leutwyler and Roos \(^33\).

FIG. 4: Results of fits to \(|V_{ud}|\), \(|V_{us}|\), and \(|V_{us}|/|V_{ud}|\).

Acknowledgments

FlaviaNet is a Marie Curie Research Training Network supported by the European Union Sixth Framework Programme under contract MTRN-CT-2006-035482.

\[1\] F. Gilman, K. Kleinknecht, and B. Renk, in Review of Particle Properties, Phys. Lett. B 592, 130 (2004).
\[2\] A. Sher et al., Phys. Rev. Lett. 91, 261802 (2003).
\[3\] E. Blucher et al. (2005), hep-ex/0512039.
\[4\] E. Blucher and W. Marciano, in Review of Particle Properties, J. Phys. G 33, 677 (2006).
\[5\] T. Alexopoulos et al., Phys. Rev. D 70, 092006 (2004).
\[6\] NA48 Collab., A. Lai et al., Phys. Lett. B 602, 41 (2004).
\[7\] L. Litov, for the NA48 Collab., in Proc. 32nd Int. Conf. on High-Energy Physics (ICHEP '04) (Beijing, 2004), p. 817, hep-ex/0501048.
\[8\] KLOE Collab., F. Ambrosino et al., Phys. Lett. B 632, 43 (2006).
\[9\] T. Spadaro, these proceedings.
\[10\] KLOE Collab., F. Ambrosino et al., Phys. Lett. B 626, 15 (2005).
\[11\] KLOE Collab., F. Ambrosino et al., Phys. Lett. B 638, 140 (2006).
\[12\] NA48 Collab., A. Lai et al., Phys. Lett. B 645, 26 (2007).
\[13\] KLOE Collab., F. Ambrosino et al., Phys. Lett. B 636, 173 (2006).
\[14\] KLOE Collab., F. Ambrosino et al., Eur. Phys. J. C 48, 767 (2006).
\[15\] NA48 Collab., A. Lai et al., Phys. Lett. B 537, 28 (2002).
[16] KTeV Collab., A. Alavi-Harati et al., Phys. Rev. D 67, 012005 (2003).
[17] J. Batley et al. (2007), in press, hep-ex/0702015.
[18] M. Veltri, these proceedings.
[19] V. Romanovsky, these proceedings.
[20] B. Sciascia, for the KLOE Collab., in Proc. EPS Int. Europhysics Conf. on High-Energy Physics (HEP-EPS '05) (Lisbon, 2005), hep-ex/0510028.
[21] KTeV Collab., T. Alexopoulos et al., Phys. Rev. D 70, 092007 (2004).
[22] KTeV Collab., E. Abouzaid et al., Phys. Rev. D 74, 097101 (2006).
[23] KLOE Collab., F. Ambrosino et al., Phys. Lett. B 636, 166 (2006).
[24] O. Yushchenko et al., Phys. Lett. B 589, 111 (2004).
[25] NA48 Collab., A. Lai et al., Phys. Lett. B 604, 1 (2004).
[26] O. Yushchenko et al., Phys. Lett. B 581, 31 (2004).
[27] NA48 Collab., A. Lai et al., Phys. Lett. B (2007), in press, hep-ex/0703002.
[28] V. Cirigliano et al., Eur. Phys. J. C 23, 121 (2002).
[29] S. Descotes-Genon and B. Moussallam, Eur. Phys. J. C 42, 403 (2005).
[30] T. Andre (2004), hep-ph/0406006.
[31] E. Ginsberg, Phys. Rev. D 1, 229 (1970).
[32] J. Erler and M. Ramsey-Musolf, Prog. Part. Nucl. Phys. 54, 351 (2005).
[33] H. Leutwyler and M. Roos, Z. Phys. C 25, 91 (1984).
[34] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 517 (1985).
[35] J. Bijnens and P. Talavera, Nucl. Phys. B 669, 341 (2003).
[36] J. Portolés, these proceedings.
[37] J. Zanotti, these proceedings.
[38] W. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006).
[39] J. Hardy, these proceedings.
[40] W. Marciano, Phys. Rev. Lett. 93, 231803 (2004).
[41] KLOE Collab., F. Ambrosino et al., Phys. Lett. B 632, 76 (2006).
[42] C. Bernard, in Proc. 5th Int. Workshop on Chiral Dynamics (Chiral '06) (Chapel Hill NC, USA, 2006), hep-lat/0611024.