Association between vitamin D serum levels and insulin resistance assessed by HOMA-IR among non-diabetic adults in the United States: Results from NHANES 2007–2014

Xin Yin, Jia-Yu Chen, Xiang-Jie Huang, Jia-Hong Lai, Chang Huang, Wang Yao, Nan-Xi Li, Wei-Chao Huang, and Xu-Guang Guo

Insulin resistance, a pathological response to insulin hormone in insulin-dependent cells, is characterized by the presence of high glucose and insulin concentrations. The homeostasis model of insulin resistance (HOMA-IR) is one of the most used indexes to estimate insulin resistance by assessing the fasting glucose and insulin levels. An association was observed between vitamin D levels and insulin resistance, which varied in different ethnic groups, and there is some evidence that vitamin D supplementation could contribute to the improvement of insulin resistance. This study assessed the association between 25-hydroxyvitamin D (25(OH)D) concentration and HOMA-IR in American adults aged 20 years and older, without diabetes and other chronic diseases that can influence insulin resistance. The data from the National Health and Nutrition Examination Survey (NHANES) 2007–2014 were used by exploiting the free and publicly-accessible web datasets. Linear regression models were performed to evaluate the association between serum 25(OH)D concentration and HOMA-IR, and a negative association was observed, which remained significant following the adjustment for age, gender, race/ethnicity, education, body mass index (BMI), physical activity, the season of examination, current smoking, hypertension, the use of drugs which can influence insulin resistance, serum bicarbonates, triglycerides, and calcium and...
Introduction

Insulin resistance is identified as an underlying and partly modifiable pathogenic factor of type 2 diabetes mellitus (T2DM) and many related conditions (1). Even though hyperinsulinemic-euglycemic clamp is a gold standard for estimating insulin resistance, it is a quite expensive, invasive, and time-consuming method, which requires trained staff, and therefore, the homeostasis model of insulin resistance (HOMA-IR) presents one of the most simple and suitable substitutes to estimate IR, by assessing the fasting glucose and insulin levels (2).

Vitamin D is the collective name for vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol) (3). Surveys from across the globe have shown that vitamin D deficiency was a global health problem that affects people of various ages and nationalities (4, 5). Numerous illnesses, including T2DM (6), obesity (7–9), metabolic syndrome (9, 10), chronic kidney disease (CKD) (11), infective diseases (including COVID-19) (12), autoimmune disorders (13), and infertility (14, 15), have been associated with insufficient vitamin D levels. Many cross-sectional surveys and meta-analyses indicated vitamin D deficiency to be inversely related to HOMA-IR (8, 16), and some meta-analyses (but not all) have shown that supplementation with vitamin D may help control glycemic response and can improve insulin resistance in patients with T2DM (17–19). Additionally, vitamin D receptor (VDR) polymorphisms are associated with insulin resistance and abnormal glucose metabolism, particularly in some ethnic groups (20, 21). Furthermore, a cross-sectional study in the USA, which was performed based on the National Health and Nutrition Examination Survey (NHANES) 2001–2006, found that Non-Hispanic Black people were at a greater risk for insulin resistance compared to White people (22), which may be due to lower serum vitamin D levels.

In this study, we aimed to examine the associations between 25-hydroxyvitamin D (25(OH)D) and HOMA-IR in American adults without diabetes and explore the factors that impact insulin resistance in particular ethnicities, using the available data from NHANES 2007–2014, a large-scale and nationally representative cross-sectional surveys of the U.S. population. We hypothesized that the association between insulin resistance and vitamin D would differ across the ethnic groups.

Materials and methods

Data source

The National Health and Nutrition Examination Survey is an ongoing, health-related survey that assesses the nutritional and health status of the American population. Survey participants were recruited by a stratified multistage probability sampling method to ensure the sample was nationally representative (23).

The original study protocol was available on the website of the ethics review board of the national center for health statistics research (https://www.cdc.gov/nchs/nhanes/irba98.htm), which was further approved by the ethical review committee (protocol # 2005–06; protocol # 2011–17). The current study was based on the existing data retrieved from NHANES, and the details were extracted from the official website (24).

Study population

This study used public data retrieved from four cycles of NHANES (2007–2008, 2009–2010, 2011–2012, and 2013–2014). Adult patients aged 20 or older with available data for HOMA-IR and vitamin D were included. The exclusion criteria were the presence of Type 1 diabetes mellitus (T1DM) and T2DM (since in patients with diabetes, HOMA-IR may not be a representative indicator of insulin resistance due to diminished insulin secretion) (25), CKD, and the use of drugs that can influence insulin sensitivity, including antidiabetic drugs, glucose elevating agents, antineoplastics and anti-retroviral agents, adrenal cortical steroids, selective estrogen receptor

phosphorus levels. Only in non-Hispanic Blacks was this inverse association between vitamin D and HOMA-IR not observed in the fully adjusted model. Further studies are needed to explain the mechanisms of the observed ethnic/racial differences in the association of vitamin D levels with HOMA-IR.

KEYWORDS

vitamin D, 25-hydroxyvitamin D, insulin resistance, NHANES, cross-sectional
modulators, parathyroid hormone and analogs, antiandrogens, aromatase inhibitors, calcimimetics, antipsychotics, other metabolic agents, bone resorption inhibitors (bisphosphonates, etc.), and niacin. Although some anti-hypertensive drugs, sex hormones (including contraceptives), and statins can influence insulin sensitivity, the subjects who used those medications were not excluded from the study, because a substantial number of the subjects were using these agents ($N = 1,081, N = 269$, and $N = 561$, respectively). Nevertheless, to account for their potential influence on insulin sensitivity, the usage of these drugs was included in covariates in our regression analyses. Participants with any covariates missing were excluded.

Type 2 diabetes mellitus is diagnosed based on plasma glucose levels, including either the fasting plasma glucose value or the 2-h plasma glucose value during a 75 g oral glucose tolerance test or the glycosylated hemoglobin A1c criteria (26). However, either doctor-diagnosed or self-reported diabetes is included for certain. The participants with impaired glucose tolerance or impaired fasting glucose, in case they were not using antidiabetic drugs, were included. CKD was diagnosed based on an increased albumin/creatinine ratio (≥ 30 mg/g) and a decreased estimated glomerular filtration rate (< 60 ml/min/1.73m2) (27). The data on the prescription medications were inquired and collected by trained interviewers.

Measurement

Plasma and serum samples for fasting plasma glucose, serum insulin, 25(OH)D, bicarbonates, total calcium, phosphorus, and triglycerides were obtained and stored in the Mobile Examination Center until shipped to the Centers for Disease Control and Prevention Environmental Health Laboratory (Atlanta, Georgia). The HOMA-IR model was used to evaluate insulin resistance, calculated using the following formula: fasting serum insulin (µU/L) \times fasting plasma glucose (mmol/L)/22.5 (28). Concentrations of 25(OH)D3 and 25(OH)D2 in the serum samples were analyzed using super high-ultra performance liquid chromatography-tandem mass spectrometry. Total 25(OH)D (or vitamin D) was defined as the sum of 25(OH)D3 and 25(OH)D2. In terms of the serum total vitamin D levels, the participants were classified as deficient (<50 nmol/L), suboptimal (50–75 nmol/L), and sufficient (>75 nmol/L), as recommended by the American Endocrine Society (29).

Covariates

We tested all covariates if they were associated with HOMA-IR or vitamin D levels, and the significantly associated covariates were included in the adjusted linear regression models. The eligible covariates included age, gender, race/ethnicity, education, body mass index (BMI), physical activity level (PAL), the season of examination, current smoking, hypertension, the usage of antihypertensive drugs, sex hormones (30, 31), statins (32, 33), serum bicarbonates (34, 35), triglycerides (36, 37), and calcium and phosphorus levels (38–40). The race/ethnicity was divided into five groups: Mexican Americans, Other Hispanics, Non-Hispanic Whites, Non-Hispanic Blacks, and Other races/ethnicities (including Asians and mixes). Education levels were categorized as <9th grade, 9th–11th grade (including 12th grade with no diploma), high school graduate/general educational development (GED) or equivalent, college/associate of arts (AA) degree, college graduate or above, refused, and unknown. The season of examinations was classified into November to April and May to October. The current smokers were separated from the former and never smokers. Participants who reported smoking either some days or every day at the time of the interview were considered current smokers. Participants who smoked more than 100 cigarettes during their lifetime but did not smoke currently were former smokers. Body mass index (BMI, kg/m2) was defined as body weight in kilograms divided by squared body height in meters. Physical activity level (PAL) scores were calculated to assess physical activity based on the different levels of activity, including vigorous (2 points) or moderate (1 point) work-related activity, vigorous (2 points) or moderate (1 point) leisure-time physical activity, and walking or bicycling for transportation (1 point). The minimum PAL score was 0, and the maximum PAL score was 5. Hypertension was defined as having systolic blood pressure ≥ 130 mmHg or diastolic blood pressure ≥ 80 mmHg, which were measured on more than or equal to two occasions to acquire an average (41).

Statistical analysis

Median and interquartile range (IQR) were used to describe a non-normal distribution. The mean and standard deviation (SD) were used to describe a normal distribution. To compare the differences between various vitamin D status categories, the χ^2 test (for nominal data), the one-way analysis of variance (ANOVA) (for continuous variables with normal distribution), and the Kruskal-Wallis’s test (for continuous variables with non-normal distribution) were used. In linear correlation analyses, any continuous variable that was not normally distributed underwent log 10 transformation to ensure its normal distribution (HOMA-IR, triglycerides). Pearson correlation coefficient (r) was used for normally distributed continuous variables, while Spearman correlation coefficient (r_s) was used for non-normally distributed continuous variables or ordered categorical variables. The Point-biserial correlation coefficient (r_{pb}) was used for dichotomous variables.

The association between total vitamin D and HOMA-IR was evaluated by employing the enter-type linear regression
Flowchart of participants’ disposition.

Participants completed the interview in NHANES 2007-2014 (n=40617)

Participants aged ≥20 (n=23482)

Participants with Vitamin D and HOMA-IR data (n=9850)

Participants without certain diseases and drugs use (n=6687)

Participants without drugs use which can influence insulin sensitivity or vitamin D metabolism (n=6457)

Exclusion of participants < 20 years old (n=17135)

Exclusion of participants without Vitamin D or HOMA-IR data (n=13632)

Exclusion of participants with diabetes (n=2071), CKD (n=971), use of antivirals (n=50) and antineoplastic drugs (n=71)

Exclusion of participants using other drugs which can influence insulin sensitivity or vitamin D metabolism (n=230)

Exclusion of participants missing any covariate (n=378)

Final population (n=6079)
models. Standardized beta was utilized to compare the relative predictive strength of different covariates in the regression models. The variance inflation factor (VIF) was used to assess the multicollinearity of all covariates in the regression model. In linear regression analyses, HOMA-IR and triglycerides underwent log 10 transformation. Stratified regression analyses were used to account for differences between races. Two-tail \(p < 0.05 \) were considered statistically significant. All analyses were performed using Empower stats (http://www.empowerstats.net/cn/) and SPSS software Version 21.0.

Results

Baseline characteristics of participants

Following the exclusions, this study included a total of 6,079 participants aged 20 years or older (Figure 1). Baseline characteristics of the selected participants were classified according to varying serum vitamin D status categories as provided in Table 1.

The proportion of vitamin D deficiency did not differ between men and women; however, a higher proportion of vitamin D suboptimal and a lower proportion of vitamin D sufficient was found among men. The highest proportion of vitamin D deficiency was among the Non-Hispanic Blacks (63.25%), followed by Mexican Americans, other races/ethnicities (including Asians and mixes), other Hispanics, and finally, the Non-Hispanic Whites (15.25%). Meanwhile, the highest proportion of vitamin D sufficiency was observed among the non-Hispanic Whites (45.56%), while the lowest was among the non-Hispanic Blacks (11.62%).

As expected, a higher prevalence of vitamin D deficiency was observed in samples collected during the winter period (from November to April). With the exception of those who refused to answer or were left unknown about their education levels, the group with the most vitamin D deficiency belonged to the education groups of 9th–11th grade, whereas the group with the most vitamin D sufficiency was the group of college graduates or above. In the present study population, patients with hypertension and current smokers were more vitamin D deficient. Compared with the vitamin D sufficient subgroup, participants in the deficient subgroup were at the highest HOMA-IR.

Serum vitamin D levels were related to age, sex, race, educational level, BMI, PAL score, the season of examination, smoking status, usage of antihypertensive drugs, sex hormones, and statins, serum fasting insulin, triglycerides, bicarbonates, and calcium levels, as well as HOMA-IR. There was no association found between serum vitamin D levels and plasma fasting glucose, serum phosphorus, and hypertension (Table 1).

Relationship between serum 25(OH)D and HOMA-IR

Table 2 shows that all covariates, except age and serum calcium, were linearly related to HOMA-IR. Regarding the stratified racial analysis, insulin resistance was found to be different among various races: Mexican Americans and other Hispanics were more prone to higher HOMA-IR, while the Non-Hispanic Whites and other races/ethnicities (including Asiatic) were less susceptible, while the Non-Hispanic Blacks were in the middle (Table 2).

Linear regression analysis (Table 3) revealed that HOMA-IR was inversely associated with vitamin D levels prior to the adjustments for covariates (Model 1). The unadjusted model described only a small variance in HOMA-IR by using only vitamin D levels (2.8%). Following the adjustments of covariates that included age, gender, specific race/ethnicity, education, BMI, physical activity, the season of examination, current smoking, hypertension, the usage of antihypertensive drugs, sex hormones, and statins, as well as serum bicarbonates, calcium, and phosphorus levels (Model 2), this inverse association between vitamin D and HOMA-IR remained significant, although it decreased. This model explained a much higher variance in HOMA-IR (36.1%). The association of vitamin D with HOMA-IR in the fully adjusted model with added log-transformed triglycerides was even more significant since the standardized regression coefficient for vitamin D increased (Model 3). This model explained the highest percentage of variance in HOMA-IR (41.3%).

In stratified regression analyses (Table 4), only in the Non-Hispanic Blacks, there was no significant inverse association between vitamin D and insulin resistance in the fully adjusted model with serum triglycerides included (Model 3).

In the general population or ethnic subgroups, BMI contributed the most to HOMA-IR, as shown in Supplementary Tables S1, S2. The influence of vitamin D on HOMA-IR was the strongest among other races/ethnicities (including Asiatic) compared to Mexicans and other Hispanics and the Non-Hispanic Whites, while the association was not observed in the Non-Hispanic Blacks (Supplementary Table S2).

Discussion

The present study confirmed the inverse association between vitamin D and insulin resistance in accordance with many studies in different countries (42–45). However, the direct effect of vitamin D on insulin sensitivity is still controversial, since some meta-analyses indicated that vitamin D supplementation did not have the expected beneficial effects, which could be attributed to suboptimal dosing and short duration of follow-up (46, 47).
TABLE 1 Baseline characteristics of participants and distribution across different vitamin D categories.

	Total (N = 6,079)	Baseline serum vitamin D, nmol/L	ANOVA, Kruskal-Wallis’s test or χ² test	
		<50 (N = 1,968)	50-75 (N = 2,335)	>75 (N = 1,776)
Age, Median (IQR)	43.00 (31.00–56.00)	38.00 (29.00–51.00)	40.00 (31.00–55.00)	48.00 (35.00–60.00)
Serum vitamin D (nmol/L), Mean ± SD	63.08 ± 25.88	36.43 ± 9.18	62.27 ± 6.93	93.68 ± 20.29
HOMA-IR, Median (IQR)	2.22 (1.40–3.66)	2.57 (1.56–4.23)	2.25 (1.44–3.66)	1.87 (1.20–3.01)
Plasma fasting glucose (mmol/L), Mean ± SD	5.42 ± 0.54	5.42 ± 0.54	5.43 ± 0.53	5.39 ± 0.54
Serum fasting insulin (μU/L), Median (IQR)	9.28 (6.04–14.80)	10.78 (6.66–14.66)	9.45 (6.20–14.66)	7.88 (5.16–12.32)
Age, Median (IQR)	43.00 (31.00–56.00)	38.00 (29.00–51.00)	40.00 (31.00–55.00)	48.00 (35.00–60.00)
Serum vitamin D (nmol/L), Mean ± SD	63.08 ± 25.88	36.43 ± 9.18	62.27 ± 6.93	93.68 ± 20.29
HOMA-IR, Median (IQR)	2.22 (1.40–3.66)	2.57 (1.56–4.23)	2.25 (1.44–3.66)	1.87 (1.20–3.01)
Plasma fasting glucose (mmol/L), Mean ± SD	5.42 ± 0.54	5.42 ± 0.54	5.43 ± 0.53	5.39 ± 0.54
Serum fasting insulin (μU/L), Median (IQR)	9.28 (6.04–14.80)	10.78 (6.66–14.66)	9.45 (6.20–14.66)	7.88 (5.16–12.32)
Gender (N, %)				
Men	3,037 (49.96)	962 (31.68)	1,285 (42.31)	790 (26.01)
Women	3,042 (50.04)	1,006 (33.07)	1,050 (34.52)	986 (32.41)
Race/Ethnicity (N, %)				
Mexican American	947 (15.58)	394 (41.61)	416 (43.93)	137 (14.47)
Other Hispanics	667 (10.97)	193 (28.94)	349 (52.32)	125 (18.74)
Non-Hispanic Whites	2,702 (44.45)	412 (15.25)	1,059 (39.19)	1,231 (45.56)
Non-Hispanic Blacks	1,102 (18.13)	697 (63.25)	277 (25.14)	128 (11.62)
Other races	661 (10.87)	272 (41.15)	234 (35.40)	155 (23.45)
Season of examination (N, %)				
November to April	2,828 (46.52)	1,174 (41.51)	1,061 (37.52)	593 (20.97)
May to October	3,251 (53.48)	794 (24.42)	1,274 (39.19)	1,183 (36.39)
Education (N, %)				
<9th grade	514 (8.46)	180 (35.02)	236 (45.91)	98 (19.07)
9–11th grade	878 (14.44)	328 (37.36)	338 (38.50)	212 (24.15)
High school graduate/GED or equivalent	1,309 (21.53)	466 (35.60)	485 (37.05)	358 (27.35)
College/AA degree	1,782 (29.31)	597 (33.50)	664 (37.26)	521 (29.24)
College graduate or above	1,589 (26.14)	393 (24.73)	610 (38.39)	586 (36.88)
Refused or unknown	7 (1.12)	4 (57.14)	2 (28.57)	1 (14.29)
Hypertension (N, %)				
Yes	1,592 (26.19)	541 (33.98)	602 (37.81)	449 (28.20)
No	4,487 (73.81)	1,427 (31.80)	1,733 (38.62)	1,327 (29.57)
Current smoking (N, %)				
Yes	1,328 (21.85)	490 (36.90)	487 (36.67)	351 (26.43)
No	4,751 (78.15)	1,478 (31.11)	1,848 (38.90)	1,425 (29.99)
Sex hormones (N, %)				
Yes	269 (4.43)	41 (15.24)	69 (25.65)	159 (59.11)
No	5,810 (95.57)	1,927 (34.92)	2,266 (40.07)	1,617 (39.90)
Statins (N, %)				
Yes	561 (9.23)	103 (18.36)	203 (36.19)	255 (45.45)
No	5,518 (90.77)	1,856 (33.64)	2,128 (38.56)	1,534 (27.80)
Antihypertensive drugs (N, %)				
Yes	1,081 (17.78)	275 (25.44)	398 (36.82)	408 (37.74)
No	4,998 (82.22)	1,684 (33.69)	1,933 (38.68)	1,381 (27.63)

AA, associate of arts; ANOVA, analysis of variance; BMI, Body Mass Index; GED, general educational development; HOMA-IR, the homeostasis model of insulin resistance; IQR, inter quartile range; N, number of participants; PAL, physical activity level; SD, standard deviation.
TABLE 2 Screening of covariates based on statistically significant association with log-transformed HOMA-IR.

Age	BMI	PAL score	Season of examination	Fasting insulin	Log-transformed HOMA-IR
0.016	0.562**	−0.132**	−0.052**	0.121**	0.047**

TABLE 3 Linear regression relationship for serum vitamin D and log-transformed HOMA-IR in models.

Vitamin D	R²	Adjusted β	Standardized β	Non-standardized β	(95% CI)
Model 1∗	0.028	−0.168	−0.002	(−0.002, −0.002)**	
Model 2∗	0.361	−0.054	−0.001	(−0.001, 0.000)**	
Model 3∗	0.413	−0.056	−0.001	(−0.001, 0.000)**	

®P < 0.01.
*P < 0.05.
**Pearson’s r,
ªSpearman’s rs.
∗Point-Biserial’s t.Ž
AA, associate of arts; BMI, Body Mass Index; GED, general educational development; HOMA-IR, the homeostasis model of insulin resistance.

The mechanisms by which vitamin D can influence insulin sensitivity are various, and some of them are still unknown. Some studies showed that vitamin D by interacting with VDR in insulin-responsive tissues increased the transcription and number of insulin receptors (48, 49). Also, vitamin D can influence the extracellular calcium concentration and influx through the insulin-responsive cell, subsequently activating the glucose transporters, thus enhancing the response to insulin (50). In addition, vitamin D could block the effect of inflammatory cytokines on insulin signaling by modulating the innate immune system and decreasing inflammatory cytokine secretion (52, 53). It is known that reactive oxygen species (ROS) can trigger insulin resistance (54), while vitamin D accelerates ROS catalysis by enhancing the synthesis of antioxidants and anti-inflammatory cytokines (55). Vitamin D can also modulate insulin sensitivity by activating peroxisome proliferator-activated receptors-ß, which reduces free fatty acid-induced insulin resistance (56, 57). Parathyroid hormone (PTH) can mediate insulin resistance by inhibiting insulin signaling and reducing glucose uptake, while vitamin D could exert an insulin-improving effect by reducing PTH levels (58). Moreover, higher PTH and vitamin D insufficiency can be jointly associated with higher HOMA-IR: the effect of PTH on insulin release from islets depends on vitamin D-related calcium and phosphorus (59, 60).

Regarding racial/ethnic differences in the association of vitamin D with HOMA-IR, one population-based investigation showed that the association between circulating 25(OH)D concentrations and insulin resistance did not differ within race (16). Conversely, other studies demonstrated that vitamin D was inversely associated with fasting insulin and insulin resistance in the Non-Hispanic Whites and Mexican Americans, but not in the Non-Hispanic Blacks (61, 62).

The reason for the lack of this association among the Non-Hispanic Blacks is still not clear. Black people have lower levels of vitamin D and higher levels of PTH compared to White people, so the negative association between vitamin D and insulin resistance should be stronger. However, in the Non-Hispanic Blacks, a decreased sensitivity to the effects of decreased vitamin D and elevated PTH was hypothesized (61, 63).

Regarding 25(OH)D clearance, Black people had higher 25(OH)D clearance and lower 25(OH)D levels compared to White people, probably owing to lower levels of vitamin D binding protein (22, 62, 64, 65). The threshold for a sufficient 25(OH)D levels is the lowest among the Non-Hispanic Blacks (44), and the inverse association between 25(OH)D and PTH levels were only observed below a much lower cutoff point for vitamin D in Black people (66–68). As a result, the combined effect of PTH and vitamin D lacks in Black people.

In addition, in one study, it was observed that African Americans had significantly lower triglyceride levels for any given level of insulin sensitivity, compared with other...
TABLE 4 Linear regression relationship for serum vitamin D and log-transformed HOMA-IR in stratification analysis of race/ethnicity.

Race/Ethnicity	Model 1 \(^a\)	Model 2 \(^b\)	Model 3 \(^c\)
Mexican American	-0.003 (−0.004, −0.002)***	-0.001 (−0.002, 0.000)**	-0.001 (−0.002, 0.000)**
Other Hispanics	-0.002 (−0.004, −0.001)**	-0.001 (−0.002, 0.000)**	-0.001 (−0.002, 0.000)**
Non-Hispanic Whites	-0.002 (−0.003, −0.002)**	-0.000 (−0.001, 0.000)*	-0.000 (−0.001, 0.000)*
Non-Hispanic Blacks	-0.001 (−0.002, 0.000)***	-0.000 (−0.001, 0.000)**	-0.000 (−0.001, 0.000)**
Other races	-0.002 (−0.003, −0.001)**	-0.001 (−0.002, 0.000)**	-0.001 (−0.002, −0.001)**

\(^a\) \(P < 0.01\).
\(^b\) \(P < 0.05\).
\(^c\) \(P = 0.051\).

\(^a\) Model 1 is not adjusted.
\(^b\) Model 2 adjusted for age, gender, education, BMI, physical activity, season of examination, current smoking, hypertension, the usage of antihypertensive drugs, sex hormones, statins, as well as serum bicarbonates, calcium, and phosphorus levels.
\(^c\) Model 3 adjusted for age, gender, education, BMI, physical activity, season of examination, current smoking, hypertension, the usage of antihypertensive drugs, sex hormones, statins, as well as serum bicarbonates, log-transformed triglycerides, calcium, and phosphorus levels.

\(\beta\), beta (regression coefficients); BMI, Body Mass Index; CI, confidence intervals; HOMA-IR, the homeostasis model of insulin resistance.

Non-Hispanic Blacks are needed to test if they will reveal different results compared with our study.

This study also found that Mexican Americans were more prone to be resistant to insulin, while non-Hispanic Whites were less susceptible. Mexican Americans have higher blood glucose levels and a greater family history of obesity, diabetes, and insulin resistance compared with the Non-Hispanic Whites (82). Mexican Americans with higher insulin levels were more likely to develop T2DM about 3–5 times more than the non-Hispanic Whites (82). A study about the genetics of variation in Mexican Americans demonstrated the importance of identifying HOMA-IR linkage on chromosome 12q24, as this region contained multiple candidate genes associated with obesity and diabetes (83).

This study has some potential limitations. The inherent properties of cross-sectional designs did not allow for verifying the causal relationships between vitamin D and insulin resistance. The study was limited to the non-diabetic population in the US, and the results cannot be extrapolated to the world; hence, larger multicenter analyses included would be more universally applicable. Additionally, HOMA-IR is only a substitute for a gold standard–a hyperinsulinemic-euglycemic clamp. The strengths are that we controlled for possible confounders and that we used a large scale and representative sample with precise super high-ultra performance liquid chromatography-tandem mass spectrometry for measurements of vitamin D serum levels.

In conclusion, race/ethnicity affected the negative association of vitamin D with insulin resistance assessed by HOMA-IR among the USA non-diabetic adults, as the negative association was not seen among the Non-Hispanic Blacks. While additional studies are required to verify the results of this study and explain the racial disparities, monitoring...
Data availability statement

Publicly available datasets were analyzed in this study. This data can be found here: https://wwwn.cdc.gov/nchs/nhanes/Default.aspx.

Ethics statement

The studies involving human participants were reviewed and approved by Ethics Review Board of the National Center for Health Statistics Research (https://www.cdc.gov/nchs/nhanes/IRBA98.htm). The patients/participants provided their written informed consent to participate in this study.

Author contributions

XY: conceptualization, methodology, formal analysis, investigation, and data curation, writing—original draft, writing—review and editing, visualization, supervision, and project administration. J-YC: formal analysis, software, validation, investigation, visualization, and writing—original draft. X-JH: programming, data curation, and writing—review and editing. JH-L, CH, WY, and N-XL: writing—original draft and writing—review and editing. W-CH: conceptualization. X-GG: project design and administration. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2022.883904/full#supplementary-material

References

1. Nolan CJ, Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes. Time for a conceptual framework shift. Diab Vacu Dis Res. (2019) 16:118–27. doi: 10.1177/1479164119827611
2. Rudvik A, Månssson M. Evaluation of surrogate measures of insulin sensitivity - correlation with gold standard is not enough. BMC Med Res Methodol. (2018) 18:64. doi: 10.1186/s12874-018-0521-y
3. Wilson LR, Tripkovic L, Hart KH, Lanham-New SA. Vitamin D deficiency as a public health issue: using vitamin D2 or vitamin D3 in future fortification strategies. Proc Nutr Soc. (2017) 76:392–9. doi: 10.1017/S0032076617000349
4. Holick MF. The vitamin D deficiency pandemic: approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord. (2017) 18:153–65. doi: 10.1007/s11154-017-9424-1
5. Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol. (2014) 144:138–45. doi: 10.1016/j.jsbmb.2013.11.003
6. Lips P, Ekkhoff M, van Schoor N, Oosterwerff M, van Schoor N, Oosterwerff M, de Jongh R, Krul-Poel Y, et al. Vitamin D and type 2 diabetes. J Steroid Biochem Mol Biol. (2017) 173:280–5. doi: 10.1016/j.jsbmb.2016.11.021
7. Rafiq S, Jeppesen PB. Body mass index, vitamin D, and type 2 diabetes: a systematic review and meta-analysis. Nutrients. (2018) 10.1182. doi: 10.3390/nu10091182
8. Rafiq S, Jeppesen PB. Vitamin D deficiency is inversely associated with homeostatic model assessment of insulin resistance. Nutrients. (2021) 13:4358. doi: 10.3390/nu13124358
9. Kauser H, Palakel J, Ali M, Chaudhury P, Chhabra S, Lamichhane S, et al. Factors showing the growing relation between vitamin D, metabolic syndrome, and obesity in the adult population: a systematic review. Cureus. (2022) 14:e27335. doi: 10.7759/cureus.27335
10. Melguizo-Rodríguez L, Costela-Ruiz VJ, García-Reco E, De Luna-Bertos E, Ruiz C, Ilescas-Montes R. Role of vitamin D in the metabolic syndrome. Nutrients. (2021) 13:830. doi: 10.3390/nu13030830
11. Jean G, Souberbielle JC, Chazot C. Vitamin D in chronic kidney disease and dialysis patients. Nutrients. (2017) 9:328. doi: 10.3390/nu9040328
12. Martineau AR, Cantorna MT. Vitamin D for COVID-19: where are we now? Nat Rev Immunol. (2022) 22:529–30. doi: 10.1038/s41577-022-00765-6
13. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. Nutrients. (2020) 12:209. doi: 10.3390/nu12072097
14. Boushou JK, Konstantinidou E, Anagnostis P, Kohlihanakis EM, Goulos DG. Vitamin D and obesity: two interacting players in the field of infertility. Nutrients. (2019) 11:1455. doi: 10.3390/nu11071455
15. Šarac I. The Influence of Metabolic Syndrome on Reproductive Health—The Impact of Low Vitamin D. Reference Module in Food Science: Elsevier. Dutch. Elsevier (2019). doi: 10.1016/B978-0-08-100596-5.22524-9
16. Jackson JL, Judd SE, Parnaz B, Howard VJ, Wadley VG, Jenny NS, et al. Associations of 25-hydroxyvitamin D with markers of inflammation, insulin resistance and obesity in black and white community-dwelling adults. J Clin Endocrinol Metab. (2016) 101:21–5. doi: 10.1161/JCET.2016.06.002
17. Mirhosseini N, Vatanparast H, Mazidi M, Kimball SM. The effect of improved serum 25-hydroxyvitamin D status on glycosylated control in diabetic patients: a meta-analysis. J Clin Endocrinol Metab. (2021) 107:5097–110. doi: 10.1210/jc.2017-01024
18. Li X, Liu Y, Zheng Y, Wang P, Zhang Y. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: a systematic review and meta-analysis. Nutrients. (2018) 10.375. doi: 10.3390/nu100810375
Frontiers in Nutrition
61. Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. *Diabetes Care.* (2004) 27:2813–8. doi: 10.2337/diacare.27.12.2813

62. Christensen MHE, Scragg RK. Consistent ethnic specific differences in diabetes risk and vitamin D status in the National Health and Nutrition Examination Surveys. *J Steroid Biochem Mol Biol.* (2016) 164:4–10. doi: 10.1016/j.jsbmb.2015.09.023

63. Cosman F, Morgan DC, Nieves JW, Shen V, Luckey MM, Dempster DW, et al. Resistance to bone resorbing effects of PTH in black women. *J Bone Miner Res.* (1997) 12:958–66. doi: 10.1359/jbmr.1997.12.6.958

64. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, et al. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. *N Engl J Med.* (2013) 369:1991–2000. doi: 10.1056/NEJMoa1306357

65. Hsu S, Zeilnick LR, Lin YS, Best CM, Kestenbaum B, Thummel KE, et al. Differences in 25-hydroxyvitamin D clearance by eGFR and race: a pharmacokinetic study. *JASN.* (2021) 32:188–98. doi: 10.1681/ASN.2020050625

66. Gutiérrez OM, Farwell WR, Kermah D, Taylor EN. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and Nutrition Examination Survey. *Osteoporos Int.* (2011) 22:1745–53. doi: 10.1007/s00198-010-1838-2

67. Xia J, Tu W, Manson JE, Nan H, Shadyab AH, Bea JW, et al. Combined associations of 25-hydroxyvitamin D and parathyroid hormone with diabetes risk and associated comorbidities among U. S white and black women. *Nutr Diabetets.* (2021) 11:29. doi: 10.1038/s41387-021-00171-2

68. Cândido FG, Bressan J. Vitamin D: link between osteoporosis, obesity, and diabetes? *Int J Mol Sci.* (2014) 15:6569–91. doi: 10.3390/ijms1546569

69. Raygor V, Abbasi F, Lazzeroni LC, Kim S, Ingelsson E, Reaven GM, et al. Impact of race/ethnicity on insulin resistance and hypertriglyceridaemia. *Diabetes Vascular Dis Res.* (2019) 26:1745–53. doi: 10.1007/s00198-010-1383-2

70. Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox? *Hepatology* (Baltimore, Md.). (2009) 49:791–801. doi: 10.1002/hep.22726

71. Gong R, Tang X, Jiang Z, Luo G, Dong C, Han X. Serum 25(OH)D levels modify the association between triglyceride and IR: a cross-sectional study. *Int J Endocrinol.* (2022) 2022:5457087. doi: 10.1155/2022/5457087

72. Pramono A, Jocken JWE, Adriaens ME, Horth MF, Astrapu A, Saris WHM, et al. The association between vitamin D receptor polymorphisms and tissue-specific insulin resistance in human obesity. *Int J Obesity* (2005). (2021) 45:818–27. doi: 10.1038/s41366-021-00744-2

73. Jain R, von Hurst PR, Stonehouse W, Love DR, Higgins CM, Coad J. Association of vitamin D receptor gene polymorphisms with insulin resistance and response to vitamin D. *Metabolism.* (2012) 61:293–301. doi: 10.1016/j.metabol.2011.08.018

74. Swamy GK, Garrett ME, Miranda ML, Ashley-Koch AE. Maternal vitamin D receptor genetic variation contributes to infant birthweight among black mothers. *Am J Med Genet* (2011) 155:1264–71. doi: 10.1002/ajmg.a.33583

75. Sarkisyan M, Wu Y, Chen Z, Mishra DK, Sarkisyan S, Giannikopoulos I, et al. Vitamin D receptor FokI gene polymorphisms may be associated with colorectal cancer among African American and Hispanic participants. *Cancer*. (2014) 120:1387–93. doi: 10.1002/cncr.28565

76. Nelson DA, Vande Vord PJ, Wooley PH. Polymorphism in the vitamin D receptor gene and bone mass in African-American and white mothers and children: a preliminary report. *Ann Rheum Dis.* (2000) 59:626–30. doi: 10.1136/ard.59.8.626

77. Meyer V, Saccone DS, Tugizimana I, Asani FF, Jeffery TJ, Bormann L. Methylation of the vitamin d receptor (VDR) gene, together with genetic variation, race, and environment influence the signaling efficacy of the toll-like receptor 2/1-VDR pathway. *Front Immunol.* (2017) 8:1048. doi: 10.3389/fimmu.2017.01048

78. Hoffman RP. Indices of insulin action calculated from fasting glucose and insulin reflect hepatic, not peripheral, insulin sensitivity in African-American and Caucasian adolescents. *Pediatr Diabetes.* (2008) 9:57–61. doi: 10.1111/j.1399-5448.2007.00350.x

79. Ellis AC, Alvarez JA, Granger WM, Ovalle F, Gower BA. Ethnic differences in glucose disposal, hepatic insulin sensitivity, and endogenous glucose production among African American and European American women. *Metabolism.* (2012) 61:634–40. doi: 10.1016/j.metabol.2011.09.011

80. Ludwa M, Bello O, Hakim O, Boselli ML, Shojaee-Moradie F, Umpleby AM, et al. Exploring the determinants of ethnic differences in insulin clearance between men of Black African and White European ethnicity. *Acta Diabetol.* (2022) 59:329–37. doi: 10.1007/s00592-021-01809-4

81. Haffner SM, Howard G, Mayer E, Bergman RN, Savage PJ, Reowers M, et al. Insulin sensitivity and acute insulin response in African-Americans, non-Hispanic whites, and Hispanics with NIDDM: the Insulin Resistance Atherosclerosis Study. *Diabetes.* (1997) 46:63–9. doi: 10.2337/diab.46.1.63

82. Lorenzo C, Hazuda HP, Haffner SM. Insulin resistance and excess risk of diabetes in Mexican-Americans: the San Antonio Heart Study. *J Clin Endocrinol Metab.* (2012) 97:793–9. doi: 10.1210/jc.2011-2272

83. Voruganti VS, Lopez-Alvarenga JC, Nath SD, Rainwater DL, Bauer R, Cole SA, et al. Genetics of variation in HOMA-IR and cardiovascular risk factors in Mexican-Americans. *J Mol Med (Berlin, Germany).* (2008) 86:303–11. doi: 10.1007/s00109-007-0273-3