Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation

Yuuki Obata1, Shota Toyoshima1, Ei Wakamatsu1, Shunichi Suzuki1, Shuhei Ogawa1, Hiroyasu Esumi2,3 & Ryo Abe1

Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit’s kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation.
The Kit proto-oncogene encodes a type III receptor tyrosine kinase (RTK), a class of proteins that includes platelet-derived growth factor receptors (PDGFR), Fms, and Fms-like tyrosine kinase 3 (Flt3). Kit is expressed on mast cells, interstitial cells of Cajal, haematopoietic cells, germ cells and melanocytes. On stimulation with stem cell factor (SCF), Kit triggers many signalling events at the plasma membrane, resulting in cell proliferation, survival and differentiation.

Kit is composed of five N-glycosylated immunoglobulin domains in the N-terminal extracellular portion that bind SCF, as well as a transmembrane domain, and an intracellular C-terminal tyrosine kinase domain. The binding of SCF autophosphorylates Kit on specific tyrosine residues. Kit then binds to other cytoplasmic enzymes containing Src homology-2 (SH2) domain, and this complex phosphorylates other proteins. This process activates the phosphatidylinositol 3-kinase-Akt pathway, the Ras-Raf-Erk cascade and Src kinases, which regulate cell growth, gene expression and cytoskeletal structures.

In many mast cell neoplasms and gastrointestinal stromal tumours, Kit has gain-of-function mutations, causing permanent, ligand-independent activation of the receptor. In human neoplastic mast cell disorders such as mastocytosis and mast cell leukemia, Kit often has an Asp816Val substitution (D816V), in the kinase domain. Similar mutations are also found in rat mast cell leukemia (RBL-2H3; D817Y) and a mouse mastocytoma (P815; D814V). Their permanent activation of the PI3K-Akt pathway causes neoplastic transformation. When mutant Kit phosphorylates signal transduction and activates transcription (STAT) proteins, they move from the cytoplasm to the nucleus and cause transcription of proto-oncogenes such as c-myc.

Cancer-causing mutants of RTKs, such as Met(D1246N) and Flt3-internal tandem duplication (Flt3-ITD), can cause incorrect signalling not just from the PM, but also from intracellular compartments, because their activated kinase domain is always exposed. These mutations also change the trafficking and degradation of the receptors, because they change glycosylation and ubiquitination, and receptors accumulate in the wrong compartments. Signalling by oncogenic RTKs on intracellular compartments has been implicated in their transforming ability, but the mechanism of signalling by mutant Kit is not fully understood.

We recently established two mast cell lines, RCM and R, from mouse splenocytes. RCM cells proliferate without cytokines, generate tumours in vivo and express a mutant Kit, Kit(D814Y). R cells require cytokines to proliferate and express wild-type Kit (Kit(wt)). This scenario allows us to compare Kit(wt) with Kit(D814Y) in an identical cellular background.

To explore how Kit(D814Y) transduces oncogenic signals, we studied what pathways it activates, from various subcellular compartments, using immunofluorescence confocal microscopy, vesicle immunoprecipitation and chemical inhibition of intracellular trafficking.

In mice cells, Kit(D814Y) from the PM accumulates on endolysosomes through clathrin-mediated endocytosis (CME); this occurs in a kinase activity-dependent manner. It then forms a complex with PI3K, and activates Akt, leading to cell proliferation. Also, soon after Kit(D814Y) is synthesized, it appears in the endoplasmic reticulum (ER), where it causes oncogenic activation of STAT5. Two other mast cell lines, HMC-1 and RBL-2H3, from humans and rats, gave similar results. Our findings demonstrate that Kit signalling from subcellular compartments is necessary for the neoplastic proliferation of mast cells.

Results

Kit(D814Y) causes autonomous proliferation of mouse RCM cells.

We recently established two mast cell lines from mouse splenocytes, RCM and R cells, bearing c-Kit and FcεRI. RCM cells grow without cytokines and develop tumours in vivo (Fig. 1a). These cells show constitutively tyrosine-phosphorylated 145- and 160-kDa proteins, identified as the Kit tyrosine kinase (Fig. 1b,c; see also Fig. 4b). Furthermore, Kit’s kinase domain has an Asp814Tyr (D814Y) mutation (Fig. 1d), which keeps the kinase permanently active.

Immunoprecipitation assays confirmed that Kit(wt) in R cells and pt18 cells was activated in a ligand-dependent manner, whereas Kit(D814Y) was phosphorylated and associated with the PI3K p85 subunit without SCF (Fig. 1e; see also Fig. 3i), and thus was permanently active. Glutathione S-transferase-pulldown (GST-pulldown) assays showed that the C-terminal or N-terminal SH2 domains of p85 (SH2c or SH2n) were associated with SCF-stimulated Kit(wt) and Kit(D814Y) (Fig. 1f). Next, we treated RCM cells with PKC412, an inhibitor of tyrosine kinase, which inhibited the phosphorylation of Kit(D814Y) and p85’s association with Kit(D814Y), and also inhibited cell proliferation in a dose-dependent manner (Fig. 1g and Supplementary Fig. 1; see also Fig. 4c). We next performed RNA interference experiments to suppress Kit(D814Y). Western blotting showed 80–85% less Kit(D814Y) protein after transfection with Kit1 and Kit2 small interfering RNAs (siRNAs) for 20h (Fig. 1h, left). Knockdown of Kit(D814Y) also suppressed cell proliferation (Fig. 1h, right). Thus, the kinase activity is required for autonomous proliferation.

Kit(D814Y) localizes to endolysosomes. Kit mutants exogenously expressed in CHO, NIH3T3 or HEK293 cells are found mainly in the Golgi apparatus or ER in an immaturely glycosylated form. To investigate Kit’s glycosylation state, we treated Kit(D814Y) from RCM cells with endoglycosidase H, which digests immature high-mannose forms, but not mature complex-glycosylated forms. Figure 2a shows that most Kit(D814Y), like Kit(wt), was present in a complex-glycosylated form. Kit(wt) and Kit(D814Y) both shifted to a non-glycosylated form in vivo (Fig. 1a).

In mice cells, Kit(D814Y) from the PM accumulates on endolysosomes through clathrin-mediated endocytosis (CME); this occurs in a kinase activity-dependent manner. It then forms a complex with PI3K, and activates Akt, leading to cell proliferation. Also, soon after Kit(D814Y) is synthesized, it appears in the endoplasmic reticulum (ER), where it causes oncogenic activation of STAT5. Two other mast cell lines, HMC-1 and RBL-2H3, from humans and rats, gave similar results. Our findings demonstrate that Kit signalling from subcellular compartments is necessary for the neoplastic proliferation of mast cells.
Figure 1 | Kit(D814Y) is essential for autonomous proliferation of mouse RCM cells. (a) RCM and R cells were cultured in the indicated cytokine cocktail for 48h. Proliferation was assessed by [3H]-thymidine incorporation into R (open circles) and RCM cells (filled circles). Results (c.p.m.) are means ± s.d. (n = 3). NB: RCM cells proliferated without the cytokine cocktail. (b,c) Expression of constitutively phosphorylated Kit in RCM cells. Starved R and RCM cells were treated with the cytokine cocktail for 5 min. Lysates were immunoblotted with anti-phosphotyrosine (anti-pTyr), anti-Kit, anti-Kit(pTyr719) and anti-actin. Arrows indicate constitutively tyrosine-phosphorylated protein corresponding to Kit in RCM cells. (d) Schematic representations of normal Kit and Kit(D814Y) showing the extracellular domain (ECD), the transmembrane domain (TM), the kinase domain, Asp814 in the kinase domain (D in black) and the tyrosine mutation at 814 (Y in red). (e) Constitutive activation of Kit(D814Y). Starved pt18, R, and RCM cells were treated with 50 ng ml⁻¹ SCF for 5 min. Kit was immunoprecipitated then immunoblotted. (f,g) GST-pulldown. RCM or R cells were treated with 1 μM PKC412 (Kit kinase inhibitor) for 24 h or 50 ng ml⁻¹ SCF for 5 min, respectively. Kit was pulled down with GST-SH2c or GST-SH2n, and amounts of Kit pulled down was assayed by immunoblotting. GST proteins were visualized by Coomassie staining. (g) Effect of PKC412 on the kinase activity of Kit(D814Y). RCM cells treated with 1 μM PKC412 were cultured for 24h. Anti-Kit immunoprecipitates were immunoblotted. The graph shows the levels of [3H]-thymidine incorporation into RCM cells at the indicated PKC412 concentrations. Results (c.p.m.) are means ± s.d. (n = 3). (h) RCM cells were transfected with control siRNA or Kit siRNAs (Kit1 or Kit2) and cultured for 20 h. Lysates were immunoblotted with anti-Kit and anti-p85. Amounts of Kit(D814Y) are expressed relative to control cell lysate, after normalization with p85. The graph shows the levels of [3H]-thymidine incorporation into RCM cells. Results (c.p.m.) are means ± s.d. (n = 3). Data were subjected to one-way ANOVA with Dunnett’s multiple comparison post-hoc test. ***P < 0.001.

Next, we compared the distribution of Kit(D814Y) and recycling endosomes using cholera toxin subunit B (CTXB; a recycling endosome marker)⁵⁶. Kit’s localization to recycling endosomes was significantly less than that to endolysosomes (Fig. 2f,g), and a second marker of recycling endosomes, Rab11, confirmed this (Supplementary Fig. 2c). These results indicate that Kit(D814Y) traffics to endolysosomes rather than recycling to the PM.
KitD814Y moves to endolysosomes by kinase-mediated endocytosis. In RCM cells treated for 24 h with the kinase inhibitor PKC412, there was more Kit(D814Y) at the PM and less in endolysosomes (Fig. 3a). Treatment did not cause accumulation of Kit(D814Y) on either ER or Golgi. Following removal of inhibitor, Kit(D814Y) moved within 60 min from the PM, via endosomes, to endolysosomes (Supplementary Fig. 3a). These results suggest that Kit’s kinase activity is needed for endocytosis, but not for biosynthetic traffic to the PM. Figure 3b shows that 24-h treatment with an inhibitor of lysosomal proteases (NH4Cl) resulted in retention of Kit(D814Y) inside RCM cells, indicating that endocytedoKit(D814Y) is targeted to lysosomes, and subsequently degraded. In the presence of cycloheximide, an inhibitor of protein synthesis, Kit(D814Y) was degraded within 5 h, whereas transferrin receptor (TfR), which undergoes recycling, was unchanged (Fig. 3c), suggesting that Kit traffices constitutively to lysosomes.

In endocytosis of growth factor receptors, for example, of epidermal growth factor (EGF) and transforming growth factor β (TGFβ), clathrin plays a critical role in their stability37,38. Accordingly, receptor-mediated endocytosis is divided into two major categories: non-clathrin endocytosis (NCE) and CME37–39. To study the role of clathrin in Kit(D814Y) endocytosis, we treated RCM cells with hypertonic sucrose, thereby blocking the formation of clathrin-coated pits40. Within 3 h, this reduced the protein levels of mature Kit(D814Y) and TfR without affecting the cytosolic protein p85 (Fig. 3d,e). Similar results were obtained from RCM cells treated with pitstop2, a selective inhibitor of CME41 (Fig. 3f). To confirm that, with CME blocked, Kit and TfR were being processed by NCE, we treated cells for 3 h with pitstop2 plus filipin, or with sucrose plus filipin, which blocks NCE by disrupting lipid rafts37,42. Kit(D814Y) and TfR were then found at the PM, presumably protected from rapid degradation (Fig. 3g,h and Supplementary Fig. 3b). In cells treated with filipin alone, the protein levels and localization of Kit(D814Y) were unaffected (Fig. 3g,h and Supplementary Fig. 3b,c). Similar to sucrose and pitstop2, knockdown of the assembly polypeptide-2 α subunit (AP2α), which is required for CME39, decreased the protein levels of Kit(D814Y) and TfR (Supplementary Fig. 3d). Thus, the major pathway for Kit(D814Y) endocytosis is CME.

In NCE, ubiquitination of receptors and other endocytic cargo is important for association with the ESCRT (endosomal sorting complexes required for transport) machinery, for rapid incorporation into lysosomes and for degradation39–45. As Kit(D814Y) mainly undergoes CME not NCE, we hypothesized that it may not be fully ubiquitinated. When Kit(wt) was stimulated with SCF, in pt18 and R cells it became fully ubiquitinated, and was degraded within 30 min (Figs 3i and 6g; see also Fig. 3l), consistent with previous reports31–34,45. In sharp contrast, in RCM cells ubiquitation of Kit(D814Y) was much lower, regardless of the presence or absence of SCF. When CME was blocked, Kit(D814Y) became substantially ubiquitinated (Fig. 3j), presumably as it then trafficked via NCE. These results suggest that, in RCM cells, most Kit(D814Y) undergoes CME depending on its kinase activity, and accumulates on the cytoplasmic surface of endolysosomes, but not in a fully ubiquitinated state. In support of this, degradation of Kit(D814Y) was significantly slower than that of activated Kit(wt) in the presence of cycloheximide (Fig. 3k).

Next, to investigate the mechanism of endosome-to-lysosome trafficking of Kit, we knocked down tumour-susceptibility gene 101 (Tsg101), a component of ESCRT33,44,46. Figure 3l shows that in R cells treated with SCF for 30 min, Tsg101 knockdown inhibited the degradation of Kit(wt) but not of TfR (see also Supplementary Fig. 5e). These results suggest that Kit(wt) is incorporated into lysosomes in a manner that is dependent on ESCRT, similar to EGFR39,43,46. By contrast, knockdown decreased Kit(D814Y) in RCM cells (Fig. 3m). As ESCRT-independent transport into lysosomes36, our results indicate that Kit(D814Y) is incorporated into lysosomes in a manner that is independent of ESCRT.

Activation of Akt and STAT5 is necessary for proliferation of RCM cells. Neoplastic transformation of mast cells involves phosphorylation and activation of Akt, STAT proteins, Erk1/2 and JAK4,13,15–21. In RCM cells, Akt and STAT5, but not Erk1/2, STAT3 and JAK2, were constitutively phosphorylated (Supplementary Fig. 4a,b).

To investigate whether it was Kit(D814Y) that had activated Akt and STAT5, we inhibited Kit(D814Y) by PKC412 or siRNA-mediated knockdown. Both treatments inhibited the activation of Akt and STAT5 (Fig. 4a,b). We further found that the PI3K p85 subunit was co-immunoprecipitated with Kit(D814Y), and that PKC412 blocked this association (Fig. 4c; see also Fig. 1f, right). In this cell line, a PI3K inhibitor LY294002 suppressed Akt activation in a dose-dependent manner (Fig. 4d), as reported previously7,19,47. Thus, Kit(D814Y) activates Akt through association with PI3K.

Next, we tested whether Akt activation was required for autonomous proliferation. In RCM cells, the inhibitor Akt repressed the activation of Akt without affecting STAT5. It also caused a dose-dependent suppression of cell proliferation (Fig. 4e). Although the PI3K-Akt pathway has a role in RTK trafficking35,48,49, no redistribution was seen here on treatment with either LY294002 or Akti (Fig. 4f). This shows that the PI3K-

Figure 2 | Kit(D814Y) localizes to endolysosomes in mouse RCM cells. (a) Glycosylation of Kit(D814Y). Lysates from pt18, R and RCM cells were treated with peptide N-glycosidase F (PNGase F) or endoglycosidase H (endo H), then immunoblotted with anti-Kit. CG, complex-glycosylated form; DM, deglycosylated form; HM, high mannose form. NB: most Kit(D814Y) was a mature complex-glycosylated form. (b) Localization of normal Kit and Kit(D814Y). RCM, R or pt18 cells were fixed with PFA and stained with anti-Kit. Phase contrast images are shown. Bars, 10 μm. CD63, cluster of differentiation 63; EEA1, early endosome antigen-1; GM130, Golgi network 46. (c) Localization of Kit(D814Y) to endolysosomes. (d) PFA-fixed or (e) methanol-fixed RCM cells were double-stained with anti-Kit (green) in conjunction with the indicated antibody (red). Insets show the magnified images of the boxed area. Representative images of Kit-positive endolysosomes containing cathepsin D are shown. Bars, 5 μm. CD63, cluster of differentiation 63; EEA1, early endosome antigen-1; LAMPI, lysosome-associated membrane protein-1; TGN46, trans-Golgi network 46. (e) Endolysosomal localization of Kit(D814Y)-GFP. RCM cells transfected with Kit(D814Y)-GFP. (Upper panels) Cells were stained with anti-LAMP1 (endolysosome marker; red). (Lower panels) For visualizing endocytic compartments, cells were incubated with 1 mg ml−1 AF647-dextran for 1 h. Expressed protein and dextran were visualized by GFP (green) and AF647 fluorescence (blue). Magnified images of the boxed area are shown. Arrowheads indicate Kit-positive endolysosomes that contain dextran. Bars, 5 μm. NB: Kit(D814Y) surrounded cathepsin D and dextran. (f) For visualizing recycling endosomes, RCM cells were incubated for 1 h with 5 μg ml−1 AF647-cholera toxin subunit B (AF647-CTXB) and stained with anti-Kit (green). The toxin was visualized with AF647 fluorescence (blue). Magnified images of the boxed area are shown. Bar, 5 μm. Pearson’s coefficients (Pearson’s R) were calculated by intensity correlation analysis of Kit(D814Y) versus organelle markers. Results are means ± s.d. (n = 10–20). Data were subjected to one-way ANOVA with Dunnett’s multiple comparison post-hoc test. **P<0.001.
Akt pathway has an essential role in cell proliferation but does not influence Kit(D814Y) trafficking.

We next suppressed STAT5 function by utilizing STAT5 inhibitor (STAT5i) or knockdown. Both treatments inhibited the proliferation of RCM cells (Fig. 4g,h). Knockdown had no effect on the activation of Akt. On the contrary, proliferation was unaffected by Erk1/2 inhibition with U0126 (Supplementary Fig. 4c). Taken together, these results suggest that Kit(D814Y) constitutively activates the PI3K-Akt pathway and STAT5, and that these activations are essential for autonomous proliferation.

Figure Legends:

a Cells: pt18 R RCM

PNGase F:

- Kit(D814Y) EEA1 Merge
- Kit(D814Y) TGN46 Merge
- Kit(D814Y) Calnexin Merge
- Kit(D814Y) LAMP1 Merge

b Cells: pt18 R RCM

Kit(wt) EEA1 Merge

Kit(D814Y) EEA1 Merge

Kit(D814Y) CD63 Merge

Kit(D814Y) Cathepsin D Merge

Kit(D814Y) Cathepsin D Merge

Kit(D814Y) LAMP1 Merge

Kit(D814Y)-GFP Merge

d RCM cells (methanol fixation)

Kit(D814Y) EEA1 Merge

Kit(D814Y) CD63 Merge

Kit(D814Y) Cathepsin D Merge

e RCM cells transfected with Kit(D814Y)-GFP

Kit(D814Y)-GFP LAMP1 Merge

Kit(D814Y)-GFP Dextran Merge

f RCM cells treated with CTXB (PFA fixation)

Kit(D814Y) EEA1 Merge

Kit(D814Y) LAMP1 Merge

g Pearson's R for Kit

Co-staining: LAMP1, Calnexin, TGN46, CTXB

Co-staining: Cathepsin D, EEA1, CD63
Kit_{D814Y} activates Akt through PI3K only on endolysosomes. Activated RTKs, such as EGFR, Met, and PDGFR can transduce signals not only on the cell’s outer membrane, but also on endocytic compartments^{33,49–52}. To examine whether endolysosomes serve as a platform for oncogenic Kit signalling, we purified endolysosomes from RCM cells by immunoprecipitation, using an anti-LAMP1 antibody. Figure 5a shows that Kit(D814Y), Akt and p85, but not STAT5, were found in the endolysosomal fraction. As active Akt is bound to phosphatidylinositol-3,4,5-triphosphate (PI(3,4,5)P₃), which is generated by PI3K, through its pleckstrin homology (PH) domain^{3,53}, it is likely that Akt and Kit(D814Y)-PI3K become associated in endolysomes. To test this hypothesis, we investigated whether PI(3,4,5)P₃ was generated on endolysosomes by expressing a GFP-tagged Akt PH domain (PH-GFP)³⁴. In RCM cells most PH-GFP was on vesicles but not at the PM, whereas PH(R25C)-GFP, a non-PI(3,4,5)P₃-binding mutant, was in the cytoplasm (Fig. 5b). As PH-GFP could not be detected after immunofluorescence, we directly visualized endocytic compartments by fluorescent dextran. Figure 5c shows that they were significantly co-localized with PH-GFP. Furthermore, phosphorylated Akt was found on vesicles where Kit localized (Fig. 5d). These results suggest that Akt is activated by Kit(D814Y) predominantly on endolysosomes.

Next, we investigated whether Kit(D814Y) must localize to endolysosomes to activate Akt. We used bafilomycin A1 (BafA1), which blocks endosomal trafficking without affecting internalization and recycling^{44,55}. After 24 h, Kit(D814Y) was rare in endolysomes (LAMP1-positive), but common in endosomes (EEA1-positive) (Fig. 5e and Supplementary Fig. 5a), indicating that trafficking from endosomes to endolysosomes is blocked. Figure 5f shows that BafA1 treatment also prevented Kit(D814Y) degradation. BafA1 did not affect Kit(D814Y)’s kinase activity (Fig. 5f, left). It reduced activation of Akt but not of STAT5 (Fig. 5f). BafA1 did not suppress the association of Kit(D814Y) with p85 and did not affect Kit phosphorylation at Tyr719 (Fig. 5f, right), suggesting that Kit could no longer locate to endolysosomes on p85’s association with Kit(D814Y). Monensin abolished Akt activation, presumably because Kit could no longer locate to endolysosomes. STAT5 activation was not affected (Fig. 5f, right), suggesting that Kit activates STAT5 on the Golgi and/or ER, not at the PM. Moreover, monensin abolished Akt activation, presumably because Kit could no longer locate to endolysosomes. STAT5 activation was not affected (Fig. 6b, right), suggesting that Kit activates STAT5 on the Golgi and/or ER, not at the PM.

To examine whether the inhibition of Akt by BafA1 resulted from apoptosis, we performed immunoblotting for cleaved caspase-3, an apoptosis marker²⁰. Figure 5g shows that BafA1 treatment for 24 h induced cleavage of caspase-3, but treatment for 3 h did not. The treatment for 3 h also inhibited Akt (Fig. 5g), indicating that the effect of BafA1 on Akt activity resulted from inhibition of Kit trafficking, but not from apoptosis.

Partially glycosylated Kit_{D814Y} on the ER activates STAT5. Cytochalasin D, an inhibitor of endocytosis through actin depolymerization^{35,36}, prevented the activation of Akt without influencing Kit(D814Y)’s kinase activity and p85’s association with Kit(D814Y), but the treatment did not affect STAT5 activity (Supplementary Fig. 5b-i). These results suggest that Kit(D814Y) activates STAT5 from a different subcellular compartment. Thus, we determined where in the cell Kit(D814Y) activates STAT5. First, we examined whether exocytic transport of Kit(D814Y) from the Golgi apparatus towards the PM was required. We treated RCM cells with monensin, which inhibits export from the Golgi by blocking intra-Golgi transport³⁶. After 24-h treatment, Kit(D814Y) co-localized with the Golgi marker GM130 (Fig. 6a). Figure 6b shows that monensin treatment resulted in expression of partially glycosylated Kit(D814Y). Monensin had no effect on the autophosphorylation of Kit(D814Y), or on p85’s association with Kit(D814Y) (Fig. 6b, left and Supplementary Fig. 5b). Moreover, monensin inhibited Akt activation, presumably because Kit could no longer locate to endolysosomes. STAT5 activation was not affected (Fig. 6b, right), suggesting that Kit activates STAT5 on the Golgi and/or ER, not at the PM.

Next, we used tunicamycin to inhibit ER export of Kit(D814Y) by blocking protein glycosylation^{56,57}. Tunicamycin suppressed trafficking from ER to Golgi, and Kit(D814Y) accumulated on the ER (Fig. 6c, middle panels). Tunicamycin-treated cells also expressed non-glycosylated Kit(D814Y) (Fig. 6d, top). Like monensin, tunicamycin did not stop the autophosphorylation of Kit(D814Y) or p85’s association with Kit(D814Y), but did
prevent Akt activation (Fig. 6d, top and Supplementary Fig. 5b). STAT5 activation was again enhanced (Fig. 6d, right), indicating that Kit(D814Y) activates STAT5 on the ER.

Brefeldin A (BFA) also inhibits protein export from the ER. On 16-h BFA treatment, as with tunicamycin, partially glycosylated Kit(D814Y) accumulated on the ER and STAT5 became active (Fig. 6c,d). STAT5 was seen in the nucleus and on cytosolic reticular structures, but not at the PM (Fig. 6e, top). BFA treatment significantly enhanced the co-localization of Kit(D814Y) with STAT5 on the reticular structures (Fig. 6e, bottom), further suggesting that Kit(D814Y) activates STAT5 on the ER. Figure 6f shows that the effects of BFA and tunicamycin

Figure 6:

- **a:** RCM cells showing Calnexin and Merge.
- **b:** RCM lysates with NH₄Cl and CHX treatments.
- **c:** RCM lysates with Pitstop2 and Pitstop2 + FRIP treatments.
- **d:** RCM cells with Kit(D814Y) and p85 treatments.
- **e:** RCM cells with Kit(D814Y) and TIR treatments.
- **f:** RCM lysates with Pitstop2 and Pitstop2 + Pitstop2 treatments.
- **g:** RCM lysates with anti-Kit and anti-TIR treatments.
- **h:** RCM cells with Kit(D814Y) and TIR Merge treatments.
- **i:** IP: anti-Kit showing WB: anti-ub, anti-p85, anti-pTyr, anti-Kit and anti-TIR.
- **j:** RCM cells with Kit(D814Y) and TIR Merge treatments.
- **k:** SCF-treated R cells with WB: anti-Kit, anti-TIR, Lysates.
- **l:** R-cell lysates with anti-Kit and anti-Tsg101 treatments.
- **m:** RCM lysates with anti-Kit and anti-Tsg101 treatments.
Lysates

Figure 4 | In mouse RCM cells, Akt and STAT5 must be permanently active for autonomous proliferation. (a,b) Constitutive activation of Akt and STAT5 by Kit(D814Y). (a) RCM cells were treated with 1 μM PKC412 (Kit kinase inhibitor) for 24 h, lysed, then immunoblotted. (b) RCM cells transfected with control siRNA or Kit siRNAs were cultured for 20 h, then immunoblotted. (c) Association of Kit(D814Y) with PI3K. RCM cells were treated with 1 μM PKC412 for 24 h. Anti-Kit immunoprecipitates (left) and lysates (right) were then immunoblotted. NB: Kit(D814Y) was dissociated from p85 by PKC412 treatment. (d) Activation of Akt by PI3K. RCM cells were treated with the PI3K inhibitor LY294002. Lysates were then immunoblotted. (e) Role of Akt in proliferation of RCM cells. RCM cells treated with 10 μM Akti (Akt inhibitor) were cultured for 24 h. (Left) Lysates were then immunoblotted. (Right) [3H]-thymidine incorporation. Results (c.p.m.) represent means ± s.d. (n = 3). (f) Effect of LY294002 and Akti on Kit(D814Y) localization. RCM cells were treated with 20 μM LY294002 or 10 μM Akti for 24 h and stained with anti-Kit. Bars, 10 μm. (g,h) Role of STAT5 in proliferation of RCM cells. (g) [3H]-thymidine incorporation into RCM cells treated with the STAT5 inhibitor STAT5i for 24 h. Results (c.p.m.) represent means ± s.d. (n = 3). (h) RCM cells transfected with control siRNA or STAT5 siRNAs (STAT5-1 and STAT5-2) were cultured for 24 h. (Left) Bar graph shows the levels of [3H]-thymidine incorporation into RCM cells. Results (c.p.m.) are means ± s.d. (n = 11). Data were subjected to one-way ANOVA with Dunnett’s multiple comparison post-hoc test. *P < 0.05; **P < 0.001. (Right) Lysates were immunoblotted. Amounts of STAT5 are expressed relative to control cell lysate after normalization with p85.

Figure 5 | Kit(D814Y) traffics to endolysosomes to activate Akt in mouse cells. (a) Endolysosomes from RCM cells were immunoprecipitated with control or anti-LAMP1, then immunoblotted. (b,c) RCM cells were transfected with PH-GFP or PH(R25C)-GFP. (b) Expressed proteins were visualized by GFP fluorescence. Phase contrast images are shown. Bars, 10 μm. (c) Cells were cultured for 1 h with 1 mg ml⁻¹ AF647-dextran (a marker for endocytic compartments). Bars, 10 μm. The graph shows Pearson’s R correlation coefficient between dextran and expressed proteins. Results are means ± s.d. from 19 to 21 cells. **P < 0.01, Student’s t-test. (d) RCM cells were co-stained for Kit(D814Y) (green) and phosphorylated Akt (pAkt; red). Bar, 5 μm. (e-g) RCM cells were cultured with 100 nM BafA1 (blocks endosomal trafficking) or 20 μM NH₄Cl (blocks proteases) for 24 h. (e) Cells stained with anti-Kit (green) and anti-iLAMPI (endolysosome marker; red). Bars, 10 μm. The graph shows Pearson’s R correlation coefficient between Kit(D814Y) and LAMPI. Results are means ± s.d. (n = 10 ~ 22). Data were subjected to one-way ANOVA with Dunnett’s multiple comparison post-hoc test. ***P < 0.001; NS, not significant. (f) Immunoblots of anti-Kit immunoprecipitates and cell lysates. (g) Immunoblots, RCM cells treated with 100 nM BafA1 for the indicated periods. (h) After 3 h treatment with 100 nM BafA1, R cells were stimulated with 50 ng ml⁻¹ SCF for the indicated periods in the presence of BafA1, then immunoblotted. The graph shows the percentage of pAkt after normalization with control at 5-min stimulation. Results (%) represent means ± s.d. from three independent experiments. BafA1 did not affect pAkt significantly (Student’s t-test). (i) Immunoblots, endolysosomes from R cells treated with 50 ng ml⁻¹ SCF as indicated. (j,k) R cells were stimulated with 50 ng ml⁻¹ SCF for 5 or 60 min. Expressed proteins, Kit(wt) or pAkt are shown. Bars, 10 μm. The graph shows the number of Kit (+) vesicles with pAkt. Results (%) represent means ± s.d. (n = 8 ~ 14). NS, not significant; **P < 0.001, Student’s t-test. ND = not detected.
on Akt and STAT5 resulted from accumulation of Kit(D814Y) at the ER, not from apoptosis. In contrast to Kit(D814Y), in R and pt18 cells, SCF stimulation of Kit(wt) did not activate STAT5 (Fig. 6g), as previously described. Accumulation of Kit(wt) on the ER did not affect STAT5 activation (Fig. 6h and Supplementary Fig. 5g), indicating that STAT5 activation requires ER-localized Kit(D814Y). Taken together, these results suggest that newly synthesized partially glycosylated Kit(D814Y) on the ER activates STAT5 aberrantly.

Treatment with monensin or BafA1 for 3 h inhibited Kit independently of apoptosis, and activated STAT5 transiently (Figs 5g and 6i; Supplementary Fig. 5h). These drugs did not enhance STAT5 activity in R cells (Fig. 6j and Supplementary Fig. 5i). These results indicate that accumulated Kit(D814Y) on the Golgi and endosomes can activate STAT5 activation transiently. Thus, mechanisms of negative regulation for STAT5 may exist on the Golgi and endosomes.

The oncogenic role of Kit and its trafficking in rat and human cells. Next, we investigated whether the oncogenic role of Kit(D814Y) and its trafficking seen in RCM cells occur widely in neoplastic mast cells. The human and rat mast cell leukemia cell lines HMC-1 and RBL-2H3 endogenously express Kit with mutations in the kinase domain, these being Kit(D816V) and Kit(D817Y), respectively (Fig. 7a) [3,15]. In these lines, as with RCM, the kinase inhibitor PKC412 blocked Kit kinase activity and cell proliferation (Fig. 7b,c). Most mutant Kit was present as a complex-glycosylated form (Fig. 7d) that significantly co-localized with endolysosomal markers cathepsin D or LAMP1, rather than calnexin (ER) or GM130 (Golgi) (Fig. 7e,f). In HMC-1 cells, anti-Kit staining shows a pattern similar to that of expressed Kit(D814Y)-GFP but not to Kit(wt)-GFP (Supplementary Fig. 6a), confirming the endolysosomal Kit(D816V) staining.

We next examined Kit trafficking to endolysosomes in these cells. Figure 7g shows that PKC412 inhibited trafficking from the PM to endolysosomes, consistent with our findings on Kit(D814Y). Furthermore, for endocytosis, CME inhibition by sucrose reduced the protein levels of Kit but not of p85; in contrast, NCE inhibition by filipin did not affect the protein levels (Fig. 7h and Supplementary Fig. 6b). This suggests that in HMC-1 and RBL-2H3 cells, as in RCM cells, Kit also undergoes CME. Taken together, these results suggest that, in HMC-1 and RBL-2H3, Kit’s oncogenic role and intracellular trafficking are similar to those in RCM cells.

Kit signalling occurs in distinct compartments in human and rat cells. Next, we examined the subcellular location for signalling in HMC-1 and RBL-2H3. As in RCM, oncogenic activation of Akt and STAT5 was also seen and was prevented by PKC412 (Fig. 8a and Supplementary Fig. 6c). Blockade of Kit trafficking to endolysosomes by BafA1 for 24 h also suppressed the activation of Akt but not of STAT5 (Fig. 8b and Supplementary Fig. 6d), indicating that endolysosomal localization of Kit is essential for Akt activation. Blockade of ER export of Kit by BFA for 16 h suppressed Akt activation, but enhanced STAT5 activation (Fig. 8c). Collectively, these results suggest that in HMC-1 and RBL-2H3 cells, as in RCM cells, partially glycosylated Kit aberrantly activates STAT5 on the ER.

Discussion

In contrast to normal Kit, which signals from the PM, mutant oncogenic Kit signals from intracellular compartments (Fig. 8d). Newly synthesized, incompletely glycosylated mutant Kit initially localizes to the ER then activates STAT5. Subsequently, mutant Kit traffics to the PM through the Golgi along the secretory pathway and then immediately undergoes CME due to its kinase activity. It then accumulates in endolysosomes, but is not fully ubiquitinated. Mutant Kit is constitutively associated with PI3K, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. In addition to previous reports [25,26,30–33], our study shows that the oncogenic signalling from mutant Kit is spatially distinct from normal signalling. By comparing RCM with R cells, we believe that our results show the significance of the unusual Kit localization seen in neoplastic mast cells.

Compartment-dependent oncogenic signalling by constitutively active growth factor receptors has occasionally been reported before. In multiple myeloma cells, deregulated FGF receptor 3 mutants accumulate at the Golgi, and initiate Erk1/2 and STAT1/3 signalling [22,27]. Oncogenic gp130 activates STAT3 not only on the ER but also on endosomes in hepatocytes [59]. In acute myeloid leukemia, the oncogenic Flt3 mutant Flt3-ITD activates STAT5 only on the ER [25–27], as shown here for mutant Kit. Kit(D816V) directly tyrosine-phosphorylates STAT proteins in vitro [21], suggesting that STAT5 might act as a substrate for ER-localized mutant Kit. The Kit-STAT3 complex might escape from negative regulators such as protein tyrosine phosphatases on the ER but not on the Golgi, endosomes or the PM. The signalling platform may depend on the receptor and type of cell. These studies support our model that oncogenic Kit signalling occurs only on specific intracellular compartments in neoplastic mast cells. In leukaemia, mutant Kit participates in the PI3K-Akt pathway, in STAT5 activation, in the RhoA-Rho kinase pathway [47] and in activation of Src-like adaptor protein [60,62], and there is great interest in further understanding the spatial organization of this signalling.

Mutant Kit associates with PI3K throughout its intracellular trafficking, but only activates Akt when on endolysosomes. The PI3K product PI(3,4,5)P3, which is required for Akt activation, is
believed to be generated solely at the PM54,61,62. However, PI(4,5)P\textsubscript{2}, a substrate of PI3K, is generated by phosphatidylinositol-4-phosphate-5-kinase on LAMP1-positive structures for proto-lysozyme homeostasis63,64 and plays a role in endosome-to-lysosome trafficking65. The following observation is also relevant: when SCF binds Kit at the PM, Kit activates inositol-5-phosphatase, which dephosphorylates PI(3,4,5)P\textsubscript{3}, and so terminates Akt signalling66. The significance is that, unlike normal Kit, mutant Kit cannot activate Akt at the PM. Further studies will be required to understand the mechanism by which the Kit-PI3K complex activates Akt selectively on endolysosomes.

In this study, CME stabilized mutant Kit on endolysosomes. This agrees with previous data showing that CME is essential for sustained signalling from Met, TGF\textbetaRI and EGFR44,37–39,59. However, mutant Kit was barely found in recycling endosomes, where the other receptors localize after ligand stimulation, and then recycle back to the PM. As very little SCF-bound normal Kit and mutant Kit recycle back to the PM43,45, CME must lead to at least two different pathways: the endolysosomal pathway leading to receptor destruction and the recycling endosome pathway, leading to receptor recycling. Ubiquitination of mutant Kit is insufficient for its rapid degradation. Defects in the tumour suppressor protein Cbl, an E3-ubiquitin ligase, also slow the degradation of Kit and Flt3, and prolong the activation of Akt, resulting in mastocytosis and myelo-proliferative disease33,65,66.

When the CME pathway was blocked, mutant Kit was sorted into NCE and normally ubiquitinated. Neoplastic transformation might also involve an inappropriate sorting mechanism that recruits mutant Kit predominantly into CME not NCE. At present, we cannot explain why.

After SCF stimulation, Kit(wt) is transported into lysosomes in a manner dependent on ESCRT. This is consistent with previous reports that ESCRT transports ubiquitinated cargos44,65,62. ESCRT inhibition, however, does not cause accumulation of Kit(D814Y). Importantly, a recent study described that under-ubiquitinated cargos are incorporated into lysosomes in a manner independent of ESCRT46. Our results suggest that the mechanism of endosome-lysosome trafficking for mutant Kit is different from that for Kit(wt). Other mutant RTKs, such as EGFR(L858R)23, Met(D1246N)24 and Flt3(D835Y)25, might also escape from ESCRT-dependent trafficking.

Imatinib, a Kit inhibitor used as a drug, is efficacious in most patients with gastrointestinal stromal tumours harbouring Kit mutations in the juxta-membrane region4,11,14. However, imatinib is ineffective for most human mast cell tumours with Kit mutations in the kinase domain20,29,67. Moreover, during imatinib treatment of the gastrointestinal tumours, mutations often develop in the Kit kinase domain34. Imatinib-resistant gastrointestinal tumour cells depend on activation of the PI3K-Akt pathway by Kit mutants for their proliferation, and so resemble mast cells68.

In this study, we showed that, in mast cells, mutant Kit trafficking to endolysosomes is critical for the activation of Akt. When acute myeloid leukaemia cells with constitutively active Flt3 mutants, such as Flt3-ITD and Flt3(D835Y), are treated with statins (HMG-CoA reductase inhibitors), this reduces Akt activation by blocking receptor trafficking towards the PM25. Thus, Kit trafficking could be a new therapeutic target for mast cell tumours, and for imatinib-resistant gastrointestinal tumours. Combined therapy with an antibody and a kinase inhibitor seems attractive. As PKC412 treatment causes mutant Kit to remain at the PM through blocking the Kit kinase activity, it might enhance the activity of anti-Kit antibody69. Lapatinib, an EGFR kinase inhibitor, enhances the cytotoxic activity of trastuzumab, an anti-ErbB2 antibody in vitro70.

In conclusion, we show that compartment-dependent oncogenic Kit signalling is necessary for neoplastic mast cell proliferation. These findings provide new insights into the pathogenic role of Kit in neoplastic mast cell disorders. Improper trafficking and aberrant signalling are frequent features of constitutively active growth factor receptors, for which these data will shed light on the significance of the spatial organization of this oncogenic signalling.

Methods

Cells and stimulation. RCM (R cell, mutant Kit) and R cells were established from splenocytes of DO11.10 mice by repeated stimulation with ovalbumin peptides in vitro. The cell lines exhibited mast cell-like surface phenotype, c-Kit− FcR\textgamma−, and mast cell-like expression profiles of proteases. Moreover, RCM and R cells can secrete biologically active product on stimulation in vitro and in vivo. They do not express SCF. We were unable to find Kit(wt) by cDNA sequencing in RCM cells. For culture of R cells, we used culture supernatants from T-cell lines stimulated with anti-CD3 antibodies. R cells were cultured at 37°C in RPMI1640 medium supplemented with 10% fetal calf serum (FCS), penicillin, streptomycin and 50 μM 2-mercaptoethanol. HMC-1 cells were grown in suspension at 37°C in 2% MEM containing 10% FCS, penicillin and streptomycin. For stimulation, cells were starved for at least 3 h and then treated with 50 ng ml−1 recombinant mouse SCF (Peprotech).

Cell proliferation assay. Cells were cultured with inhibitors or cytokines for at least 16 h and then treated with [3H]-thymidine deoxyribonucleotide (TdR) for 8 h. Cell proliferation was evaluated by incorporation of [3H]-TdR.

Chemicals. PKC412 (Santa Cruz Biotechnology), cytochalasin D (Sigma-Aldrich), tunicamycin (Sigma-Aldrich), cycloheximide (Sigma-Aldrich), filipin (Sigma-Aldrich), Akt inhibitor VIII (Calbiochem), STAT5 inhibitor (Calbiochem), LY294002 (Calbiochem), U0126 (Calbiochem) and pitstop2 (Abcam) were dissolved in dimethyl sulfoxide. Bafilomycin A1 (Sigma-Aldrich), brefeldin A (Sigma-Aldrich) and monensin (Biomol) were dissolved in ethanol.

Figure 7 | Oncogenic role and intracellular trafficking of mutant Kit in rat and human cells. (a) Mutant Kit is constitutively active in HMC-1 and RBL-2H3 cells. (Left) Schematic structures of Kit in HMC-1 and RBL-2H3 cells. (Right) Immunoblot of anti-Kit immunoprecipitates from HMC-1 or RBL-2H3 cells treated with 1 μM PKC412 (Kit kinase inhibitor) for 4 or 12 h, respectively. (b, c) The effect of PKC412 on proliferation. (b) [3H]-thymidine incorporation in HMC-1 cells treated with PKC412 for 24 h. Results (c.p.m.) are means ± s.d. (n = 3). (c) Growth of RBL-2H3 cells treated with (filled circles) or without (open circles) 1 μM PKC412. Results are means ± s.d. (n = 3). (d) Glycosylation of Kit(D816V) and Kit(D817V) performed as for Fig. 2a. (f, g) Subcellular localization of Kit. (e) Methanol-fixed HMC-1 or (f) PFA-fixed RBL-2H3 cells were double-stained with anti-Kit (green) and anti-cathepsin D (endolysosome marker; red), anti-LAMP1 (endolysosome marker; red), anti-calnexin (ER marker; red), or anti-GM130 (Golgi marker; blue). Magnified images of the boxed area are shown. Representative images of Kit-positive endolysosomes containing cathepsin D are shown. Bars, 5 μm. The graphs show the correlation coefficient (Pearson’s R) between Kit and organelle markers. Results are means ± s.d. from 15 to 18 cells. Data were subjected to one-way ANOVA with Dunnett’s multiple comparison post hoc test. "+P < 0.01, "+++P < 0.001. (g, h) Endocytosis of mutant Kit in HMC-1 and RBL-2H3 cells. (h) HMC-1 (left) or RBL-2H3 cells (right) treated with 1 μM PKC412 for 4 or 12 h, respectively. Cells were stained with anti-Kit (green) and anti-calnexin (ER marker; red). Insets show boxed areas at higher magnification. Bars, 10 μm. (h) RBL-2H3 cells treated with 1 μg ml−1 filipin or 0.45 M sucrose for 3 h to block endocytosis. Cells were stained with anti-Kit (cyan) and anti-p85 (red). Bars, 10 μm. Immunoblots for Kit, p85 and TfR are shown.
Figure 8 | Oncogenic signalling by mutant Kit on endolysosomes and the ER in rat and human cells. (a) Constitutive activation of Akt and STAT5 by mutant Kit in HMC-1 and RBL-2H3 cells. Immunoblots, HMC-1 (left) or RBL-2H3 cells (right) treated with 1μM PKC412 for 4 or 12 h, respectively. (b) Immunoblots, HMC-1 or RBL-2H3 cells cultured with 100 nM BafA1 for 24 h. (c) Immunoblots, HMC-1 or RBL-2H3 cells cultured with 5 μM BFA for 16 h. CG, complex-glycosylated form; HM, high mannose form. (Middle) Cells stained with anti-Kit(green) and anti-calnexin (ER marker; red). Bars, 10 μm. (Bottom) The graph shows the correlation coefficient (Pearson’s R) between Kit and calnexin. Results are means ± s.d. from 10 to 16 cells. ***P<0.001, Student’s t-test. (d) Trafficking and signalling from normal Kit (left) and mutant Kit (right). Normal Kit-left panel; newly synthesized Kit traffics from ER, through the Golgi apparatus to the PM. After binding to SCF, Kit activates downstream pathways such as PI3K-Akt mainly at the PM. Kit then becomes endocytosed and ubiquitinated, resulting in ESCRT-dependent incorporation into lysosomes and rapid degradation. Mutant Kit-right panel; soon after synthesis, immature Kit is localized on the ER and activates STAT5. It then traffics to the PM along the secretory pathway, similar to normal Kit. After mutant Kit reaches the PM, it immediately undergoes clathrin-mediated endocytosis in a kinase activity-dependent manner. Kit then accumulates to endolysosomes but is not fully ubiquitinated, so is resistant to degradation. Unlike normal Kit, mutant Kit-PI3K activates Akt specifically on endolysosomes. Mutant Kit does not require ESCRT for incorporation into lysosomes.
Antibodies. The following antibodies were purchased: c-KIT (M-14), STAT3 (C-20), STAT5 (C-17), Erk2 (K-22), Jak2 (C-20), cephasin D (H-75), CD63 (H-93), actin (G-14) and CD28 (H-72) from Santa Cruz Biotechnology; Kit-p(Tyr919), Akt, Akt[pSer473], STAT3[pTyr694] (D47E7), cleaved caspase-3 and Erk[Thr202/
Tyr204] (E10) from Cell Signaling Technology; TGN46, EEA1, Rab11, Tsg101 and TIR from Abcam; calcinun and ubiquitin (FK2) from Enzo; GM130 (35) and AP2a (8) from BD Transduction Laboratories; p85 from Millipore and LAMPI from Sigma-Aldrich. Anti-phosphotyrosine antibody (4G10) was kindly provided by Dr Tannoriki Nakayama (Chiba University). Alexa-fluor 488 anti-KIT (AF488-
anti-Ki; 288; Biologend) was used for the experiments in Figs 2b and 3b. The list of antibodies with source and conditions of immunoblotting and immunoo-
fluorescence is given on Supplementary Table 1. All labelled antibodies, anti-rabbit Ig, anti-goat Ig and secondary antibodies were purchased from The Jackson Laboratory. AF488-anti-goat IgF, AF568-anti-rabbit IgF, AF647-anti-goat IgF and AF647-anti-mouse secondary antibodies were obtained from Molecular Probes.

Plasmids. Mouse cDNAs encoding Kit(wt) or Kit(D814Y) were generated by reverse transcription polymerase chain reaction from R or RCM cells, respectively. After deletion of the termination codon, they were fused with GFP from pEGFP-
N1 (Clontech). For protein expression, constructs were subcloned into the Xho I and Not I sites of pBluescript from Dr Hajime Karasuyama (Tokyo Medical and Dental University), PH- GFP or PH(R25C)-GFP subcloned into pEGFP-N1 (ref. 54) were from Dr Tamás Balla (National Institutes of Health) through Addgene. AP2 from Dr Masayuki Oda (Kyoto Prefecture University).

Gene silencing with siRNAs. For silencing Kit(D814Y), STAT3B, AP2a or Tsg101, siRNA duplexes were purchased from Sigma-Aldrich (Kit: 5'-GAAGAAGUUU-
GCAAAACU-3', Kit2: 5'-GACAUGAGCCUGGCUUUT-3', STAT3-1: 5'-GAUUGCGAGCGAAGAAT-3', STAT3-2: 5'-GGAAACAUUUCUGCCATT-3', Tsg1: 5'-GACACACATCAATAACCCC-3', Tsg2: 5'-ACCAGCGCTAGTACGAAGAT-3', AP2a-1: 5'-GGGAAGGCTGTTGAAAGA-3', AP2a-2: 5'-GGTGTAGTGTGCAGGAAACAGT-3'). The control siRNA duplex was purchased from Sigma-Aldrich (Mission negative control SIC-001). No STAT5A was observed in RCM cells.

Transfection. For protein expression or knockdown, cells were transfected by using a Gene Pulser II electroporation system (Bio-Rad Laboratory) and cultured with NIH ImageJ Version 1.48v software. Pearson's correlation coefficients (Pearson's R) were calculated for subsequent Dounce homogenization (20 strokes). The suspension was precleared by centrifuging at 1,000 × g for 10 min at 4 °C. Endosome lysates were immuno-
precipitated with anti-LAMP1-coated protein-G Dynabeads (Orbitas) and sub-
jected to immunoblotting. Rabbit anti-CD28 antibody was used for control IgG.

GST-pulldown assay. GST-fusion proteins were expressed in E. coli BL-21 strain on incubation with 0.5 mM IPTG at 22 °C for 12 h. The bacteria were lysed by sonication in RIPA buffer, pH 7.4, 10% glycerol, 0.1% SDS, 0.25% sodium deoxycholate, 1% NP-40, 4 mM EDTA, 100 mM NaF, 1 μM -
apoptin, 1 μg ml-1 leupeptin, 1 μg ml-1 pepstatin A, 1 μM PMSF, 1 μM Na3VO4). GST-fusion proteins were collected on glutathione-Sepharose beads from RIPA lysates and washed four times with RIPA buffer. Pull-down assays were performed at 4 °C for 5 h in NP-40 lysates prepared from RCM or R cells. Kit from 1 × 106 cells was pulled down in each assay. After extensively washing with NP-40 lysis buffer, the bead pellets were analysed by SDS–PAGE and immunoblotted with an anti-KIT antibody.

Analysis of protein glycosylation. Following the manufacturer’s instructions (New England Biosciol, NP-40 cell lysates were treated with endoglycosidase F or peptide-N-glycosidase F for 1 h at 37 °C. The reactions were stopped with SDS– PAGE sample buffer, proteins were resolved by SDS–PAGE and immunoblotted with an anti-Kit antibody.

References

1. Besmer, P. et al. A new active transforming feline retrovirus and retrospective of its oncogenic v-kit with the protein kinase gene family. Nature 320, 415–421 (1986).
2. Yarden, Y. et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBIO 6, 3341–3351 (1987).
3. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).
4. Kitamura, Y. & Hirota, S. Kit as a human oncogenic tyrosine kinase. Cell Mol. Life Sci. 61, 2924–2931 (2004).
5. Rønnstrøm, L. Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol. Life Sci. 61, 2355–2548 (2004).
6. Roskoski, R. Structure and regulation of Kit protein-tyrosine kinase—the stem cell factor receptor. Biochem. Biophys. Res. Commun. 338, 1307–1315 (2005).
7. Blume-Jensen, P., Jannektie, R. & Hunter, T. The Kit receptor promotes cell survival via activation of PI 3-kinase and subsequent Akt-mediated phosphorylation of Bad on Ser136. Carri. Biol. 8, 779–782 (1998).
8. Timokhina, I., Kissel, H., Stella, G. & Besmer, P. Kit signaling through PI 3-
kinase and Src kinase pathways: an essential role for Rac1 and Nrk activation in mast cell proliferation. EMBO J. 17, 6250–6262 (1998).
9. Broudy et al. Signaling via Src family kinases is required for normal internalization of the receptor c-Kit. Blood 94, 1979–1986 (1999).
10. Ma, P. et al. Balanced interactions between Lyn, the p85 subunit of phosphatidylinositol 3-kinase, and SHP-2 are essential for mast cell growth and maturation. Mol. Cell Biol. 31, 4052–4062 (2011).
11. Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998).
12. Furtis, T. et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-
independent activation of c-kit product. J. Clin. Invest. 92, 1736–1744 (1993).
13. Boissain, M., Feger, F., Guilloulot, J. & Arock, M. c-kit and c-kit mutations in mastocytosis and other hematological diseases. J. Leukoc. Biol. 67, 135–148 (2000).
14. Lasota, J. & Miettinen, M. Clinical significance of oncogenic KIT and PDGFRα mutations in gastrointestinal stromal tumors. Histopatology 53, 245–266 (2008).
15. Chian, R. et al. Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-kit mutant. Blood 98, 1365–1373 (2001).
16. Aichberger, K. J. et al. Identification of proapoptotic Bim as a tumor suppressor in neoplastic mast cells: role of Kit D816V and effects of various targeted drugs. Blood 114, 5342–5351 (2009).
17. Jahn, T., Leifheit, E., Gooch, S., Sindhu, S. & Weinberg, K. Lipid rafts are required for Kit survival and proliferation signals. Blood 110, 1739–1747 (2007).
18. Gordon, P. M. & Fisher, D. E. Role for the proapoptotic factor BIM in mediating imatinib-induced apoptosis in a KIT-dependent gastrointestinal stromal tumor cell line. J. Biol. Chem. 285, 14109–14114 (2010).
19. Noguchi, T. Q., Li, J. & Arceci, R. J. Signal transducer and activator of transcription 3 activation is required for Asp816 mutant c-kit-mediated cytokine-independent survival and proliferation in human leukemia cells. Blood 97, 3559–3567 (2001).
21. Chaix, A. Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis: subcellular distribution and role of the transforming oncoprotein KIT D816V. Am. J. Pathol. 175, 2416–2429 (2009).
22. Ronchetti, D. A. Mechanisms of STAT activation by oncogenic KIT mutants in neoplastic mast cells. J. Biol. Chem. 286, 5956–5966 (2009).
23. Ronchetti, D. A. Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): comparative analysis of Y373C, K650E and the novel G348D mutations. Oncogene 20, 3553–3562 (2003).
24. Choudhary, C. Ubiquitin in trafficking: The network at 35. Mercer, J. & Helenius, A. Virus entry by macropinocytosis.
36. Naal, R. M., Holowka, E. P., Baird, B. & Holowka, D. Antigen-stimulated 31. Tabone-Eglinger, S. & Polo, S. Ubiquitin 350. Me´nard, L., Parker, P. J. & Kermorgant, S. Receptor tyrosine kinase c-Met controls the cytoskeleton from different endosomes via different pathways. Nat. Commun. 5, 3907 (2014).
37. Wang, Y., Pennock, S. D., Chen, X., Kazlauskas, A. & Wang, Z. Platelet-derived growth factor receptor-mediated signal transduction from endosomes. J. Biol. Chem. 279, 8038–8046 (2004).
38. Sun, Y., Hedman, A. C., Tan, X., Schill, N. J. & Anderson, R. A. Endosomal type Iy PIP 5-kinase controls EGFR lysosomal sorting. Dev. Cell 25, 144–155 (2013).
39. Kim, M. S., Rödinger, M. & Giffüll, A. M. The multiple roles of phosphoinositide 3-kinase in mast cell biology. Trends Immunol. 29, 493–501 (2008).
40. Värnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 145, 301–310 (1998).
41. Clague, M. J., Urbe, S., Aniento, F. & Gruenberg, J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J. Biol. Chem. 269, 21–24 (1994).
42. Griffiths, G., Quinn, P. & Warren, G. Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki forest virus. J. Cell Biol. 106, 2777–2786 (1987).
43. Helenius, A. & Arbib, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).
44. Klaussner, R. D., Donalson, J. G. & Lippincott-Schwartz, J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080 (1992).
45. Schmidt-Arras, D. et al. Oncogenic deletion mutants of gp130 signal from intracellular compartments. J. Cell Sci. 127, 341–353 (2014).
46. Kazi, J. U., Agarwal, S., Sun, J., Bracco, E. & Rönnstrand, L. Src-like-adapter protein (SLAP) differentially regulates normal and oncogenic c-KIT signaling. J. Cell Sci. 127, 653–662 (2014).
47. Cremoña, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).
48. Shin, H. W. et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol. 170, 607–618 (2005).
49. Rong, Y. et al. Clathrin and phosphatidylinositol-4,5-bisphosphate regulate autophagic lysosome reformation. Nat. Cell Biol. 14, 924–934 (2012).
50. Seidhar, N. & Schinko, I. C. The lipid kinase PIK3C3IP preserves lysosomal identity. EMBO J. 32, 324–333 (2013).
51. Bandi et al. E3 ligase-defective Cbl mutants lead to a generalized mastocytosis and myeloproliferative disease. Blood 114, 4197–4208 (2009).
52. Zeng, S., Xu, Z., Lipkowitz, S. & Longley, J. B. Regulation of stem cell factor receptor signaling by Cbl family proteins (Cbl-b/c-Cbl). Blood 105, 226–232 (2005).
53. Zermati, Y. et al. Effect of tyrosine kinase inhibitor STI571 on the kinase activity of wild-type and various mutated c-kit receptors found in mast cell neoplasms. Oncogene 22, 660–664 (2003).
54. Bauer, S., Duensing, A., Demetri, G. D. & Fletcher, J. A. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 26, 7560–7568 (2007).
55. Ediris et al. Anti-KIT monoclonal antibody inhibits imatinib-resistant gastrointestinal stromal tumor growth. Proc. Natl Acad. Sci. USA 110, 3501–3506 (2013).
56. Seidhar et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28, 803–814 (2009).
Author contributions
Y.O. conceived, designed, performed and analysed data from all experiments, and wrote the paper. S.T. and E.W. characterized R cells as mast-like cells in vivo and in vitro by flow cytometry, histo-cytochemical staining, electron microscopy, proliferation assays and microarray analyses, and edited the manuscript. S.S. and S.O performed immunoblotting, immunoprecipitation assays, in vitro GST-pulldown assays and RNA interference experiments. H.E. advised on the design of the in vitro experiments and edited the manuscript. R.A. conceived and supervised the project, analysed data and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.