Performance of Outdoor Lamp Implementation for Visible Light Communication under Ambient Environment

Ronaldo Soritua Sitanggang¹, Denny Darlis¹, Karina Wahyu Noviyanti¹

¹ Diploma of Telecommunication Engineering, School of Applied Science, Telkom University, Bandung, Indonesia

* denny.darlis@tass.telkomuniversity.ac.id

Abstract. Visible Light Communication is an optical wireless communication technology that convey information by modulating visible light over some standard illumination. Interest in the field of VLC has grown rapidly along with the development of LEDs as a source of lighting. The motivation is clear: If the room is lit by an LED, why not use it further for the communication provider, along with the lighting facilities at the same time? At the sending side, VLC technology uses LED lighting lamps which are currently very popular to replace incandescent lamps and TL (Fluorescent Lamp) lamps. Visible light communication has many advantages, including security, speed, and convenience to be applied to users to send various types of information including digital data such as text and images. Several studies have been conducted previously regarding the application of information delivery systems using VLC such as sending voice, digital data, images, and video. However, it has not been clearly stated the influence of various lighting lamps used on the system mentioned above such as electrical and optical power used, the angle of transmission and optimal distance with the influence of environmental conditions that cause information transmission losses. Data that can be sent well use yard lighting with a maximum distance of 130cm with 15lx light intensity, street lighting with a maximum distance of 400cm with 6lx light intensity, and vehicle lights with a maximum distance of 270cm with 12lx light intensity.

1. Introduction

Visible Light Communication or VLC is an optical wireless communication technology that convey information by modulating visible light that cannot perceived by the human eye. Interest in the field of VLC has grown rapidly along with the development of LEDs as a source of lighting. The motivation of this article is to show another functional of the outdoor lighting by LED lamps can also be use further for the communication.

The IEEE 802.15.7 Task Force as part of Short Range Communication standard, has developed the PHY and MAC layer standards for Visible Light Communication in 2009. IEEE 802.15.7 has three different PHYs depending on the application. The PHY I is intended for data rate below 100 kbps. This standard was proposes using on-off keying (OOK) modulation technique [1][2].

The purpose of this research is to determine the characterization of several low-cost LED lamps which we can buy from surrounding market when sending data using VLC. We choose an LED floodlights[3], an LED street lights[4], and an LED motorcycle headlights[5] with some electronic circuit modification to find out how far data can be sent through the lights. The LED lights will be affected under the influence of sunlight and other lighting sources that do not have VLC features.
For the best of our understanding, this article consisted of 5 sections. Section 1 is the introduction parts. Section 2 presents the literature review of some articles related. Section 3 describes the method for system implementation. The discussion is presented in section 4. And the last section 5 is the conclusion of this article.

2. Literature review
To give more description about the performance of the VLC transmitter, this section shows some works from related field. Many researches in VLC are deployed in indoor environment [6]. In [7], authors analyzed that sending digital data in the form of text through VLC using only one LED and uses a USB to TTL converter. In [8] the VLC system can transmit many kind of digital data such as text, image and video over 2 m. And [9] showed the implementation of VLC system to control parking gate prototype. But none of all state clearly the characteristics of LED lamps used. Typically by simulation any type of illumination generated by LED lamps will have a Lambertian distribution [10]. When Line-Of-Sight propagation model implemented, the angular distribution of the radiation intensity pattern is formulated using equation (1) [11].

\[I(\phi) = I_0 \cos(\phi) \]

where \(I_0 \) is the incident ray of LED illumination (\(\phi = 0 \)) in a line-of-sight position to the receiver [5]. With a Point-to-Point channel the transmitter and the receiver are in a permanent position, and modelled as a single mode Gaussian beam stochastic channel \(H_0 \) as on equation (2).

\[H_0 = \frac{2A_\theta e^{-\gamma L}}{\pi \theta^2 L^2} \]

where \(A_\theta \) is the effective area of the photodiode, \(\theta \) is the photodiode field of view, \(L \) is the transmission distance and \(\gamma \) is the intensity attenuation coefficient depends on the outdoor physical phenomena such as fog, and rain [12]. An experiment for outdoor VLC system using filter has been done in [13]. Several application for outdoor visible light communication has also been proposed in [14].

3. Methods
For ease of implementation, the system for outdoor lighting performance measurements are designed and arranged as on Fig.1. The system consists of VLC transmitter block which implemented using 8-bit microcontroller sending RS-232 serial data. It feeds the data to switching circuit using N-Channel MOSFET IRFZ44N which it can holds until 50 V and drive the LED arrays on outdoor lighting fixtures [15].

![Figure 1 Diagram block of VLC Transmitter](image)

More specific, VLC transmitter block consists of an ATMEGA328P microcontroller as data generator and modulator. Because every lamp work with different rating and working voltage as stated on Table 1, a simple switching circuit is needed to convert the voltage level. In this research a typical MOSFET circuits can work to fulfill the target. The LED drivers inherently turn on a series of LED lights, as well as controlling current and voltage automatically. Outdoor lighting lamps used as the VLC sending system are floodlight lamps, street light and motorcycle headlight as shown on Figure 2.
and specified on Table 1. To test a successful data transmission system, a light-to-voltage sensor are used at the receiver side to convert the light intensity to electrical signal and then demodulated by USB-to-TTL converter.

Table 1 Outdoor lighting specifications

	LED Floodlight	LED Street Light	LED motorcycle headlamp
Input voltage	220V AC	220V AC	9-18V AC/DC
Driver Output voltage	15V DC	35V DC	10.8V DC
Power rating	10W	12W	HI 35W, LOW 20W
Light Intensity	900lm	1050-1100lm	3500lm

Figure 2 Type of outdoor lamps used (a) Floodlight lamp for garden illumination (b) Streelight for street illumination (c) Motorcycle headlamp for motorcycle front illumination

Figure 3 Schematic of VLC Transmitter

Fig.3 shows the complete VLC transmitter circuitry integrated to the system. The operating voltage as specified on Table-1 are 220VAC for floodlight and streetlight lamps, and 12V DC for motorcycle headlamp. To measure light intensity, a lux meter is used when data transmitted.
4. Discussion

When testing during in the daylight with a sunlight channel, the data can’t be received using light to voltage sensor. It caused by the influence of sunlight which have higher intensity than the LED lamps.

![Figure 4 Intensity versus distance measurements results when data transmitted under ambient light environment](image)

When testing at night with other lighting source without VLC, the data sent can still be received by outdoor lighting. But the data received from each outdoor lighting is not 100% perfect, due to the specifications of the lamp. Floodlight lamp can only transmit data at a distance of 40 cm, with a light intensity of 1-20 lx and with an angle of 0-60. Street lighting lights can transmit data up to 240 cm, with a light intensity of 38-1204 lx and an angle of 0-60. Motorcycle lights can transmit data up to 80 cm. But the data itself can only be received at an angle of 0 because the motor vehicle lights use a reflector, so the lamp has a light intensity of 10,489 lx at 40 cm and 4,504 lx at 80cm.

5. Conclusion

The data transmission system on VLC outdoor lighting lamps can use the IRFZ44N MOSFET as a conversion of dc to dc and load switching which is the transfer of data from Arduino to the LED driver. Sunlight greatly affects the sending and receiving of data on systems that have been implemented. While other sources of lighting that do not transmit data do not significantly affect the transmission and reception systems. The floodlight lamps can only transmit data at a distance of 40 cm, with a light intensity of 1-20 lx and with an angle of 0-60 degree. Street lights lamp can transmit data up to 240 cm, with a light intensity of 38-1204 lx and an angle of 0-60 degree. Motorcycle headlamp can transmit data up to 80 cm. But the data itself can only be received at an angle of 0 because the motor vehicle lights use a reflector, so the lamp has a light intensity of 10,489 lx at 40 cm and 4,504 lx at 80 cm. The power and driver of the LED from the lighting itself can affect the data being sent.
Acknowledgment

We thank Diploma of Telecommunication Engineering, Applied Visible Light Communication Research Group and Laboratory of Telkom University Applied Science School for all support and contributions when conducting this research.

References

[1] K. Tae-Gyu, *Advanced Optical Wireless Communication Systems*, 1st ed. New York: Cambridge University Press, 2012.
[2] S. Rajagopal, R. D. Roberts, and S. K. Lim, “IEEE 802.15.7 visible light communication: Modulation schemes and dimming support,” *IEEE Commun. Mag.*, vol. 50, no. 3, 2012.
[3] T. Akiyama, “Time Synchronization Method Using Visible Light Communication for Smartphone Localization,” no. c, pp. 6–9, 2016.
[4] V. M. Baeza, M. Sánchez-Fernández, A. G. Armada, and A. Royo, “Testbed for a LiFi system integrated in streetlights,” 2015 *Eur. Conf. Networks Commun. EuCNC 2015*, pp. 517–521, 2015.
[5] A. Cailean et al., “Design and implementation of a visible light communications system for vehicle applications,” 2015.
[6] T. Adiono and S. Fuada, “Investigation of Optical Interference Noise Characteristics in Visible Light Communication System,” vol. 126, no. 126, 1990.
[7] D. H. Trihantoro, D. Darlis, and H. Putri, “Implementasi Visible Light Communication (VLC) Untuk Pengiriman Teks,” in *Seminar Nasional Teknologi Terapan*, 2014.
[8] F. B. Aska, D. Darlis, and Hafidudin, “IMPLEMENTASI VISIBLE LIGHT COMMUNICATION (VLC) UNTUK PENGIRIMAN DATA DIGITAL,” in *Proceedings of Applied Science*, 2015, vol. 1, no. 1, pp. 896–905.
[9] A. Ghevaniarwianda, D. Darlis, and S. Aulia, “IMPLEMENTASI PERANGKAT VLC PADA LAMPU KENDARAAN UNTUK SISTEM KENDALI PALANG PINTU OTOMATIS,” Universitas Telkom, 2017.
[10] S. Haruyama, “Visible light communication using sustainable LED lights,” *ITU Kaleidosc. Build. Sustain. Communities (K-2013)*, 2013 *Proc.*, 2013.
[11] A. Ndjiongue and F. HC, “An overview of outdoor visible light communications,” *Trans Emerg. Tel Tech.*, vol. 29, no. 7, 2018.
[12] A. R. Ndjiongue and H. C. Ferreira, “An Overview of Outdoor Visible Light Communications,” *Trans. Emerg. Telecommun. Technol.*, vol. 29, no. 8, pp. 1–13, 2018.
[13] Y. Kim and Y. Chung, “Experimental Outdoor Visible Light Data Communication System Using Differential Decision Threshold with Optical and Color Filters,” *Opt. Eng.*, vol. 54, no. 4, p. 40501, 2015.
[14] M. Falcitelli and P. Pagano, *Visible Light Communication for Cooperative ITS*. Springer, 2016.
[15] H. Y., “ARDUINO-BASED HIGH POWERED SWITCHING LED DRIVERS.” [Online]. Available: https://www.instructables.com/id/Ardino-based-High-Powered-Switching-LED-Drivers/. [Accessed: 15-Jun-2018].