Identifying Phenogroups in Patients with Subclinical Diastolic Dysfunction Using Unsupervised Statistical Learning

CURRENT STATUS: UNDER REVIEW

BMC Cardiovascular Disorders ▪ BMC Series

Jennifer Strande
Medical College of Wisconsin
jstrande@mcw.edu Corresponding Author
ORCiD: https://orcid.org/0000-0002-5918-230X

Yvonne E. Kaptein
Medical College of Wisconsin

Ilya Karagodin
UChicago Medicine

Hongquan Zuo
University of Wisconsin Milwaukee

Yu Lu
University of Wisconsin Milwaukee

Jun Zhang
University of Wisconsin Milwaukee

John S. Kaptein
Retired

DOI: 10.21203/rs.2.17236/v1

SUBJECT AREAS
 Cardiac & Cardiovascular Systems Cardiothoracic Surgery

KEYWORDS
 Diastolic dysfunction, Heart failure with preserved ejection fraction, Unsupervised Machine Learning, Hierarchical Clustering
Abstract
Subclinical diastolic dysfunction is a precursor for developing heart failure with preserved ejection fraction (HFP EF); yet not all patients progress to HFP EF. Our objective was to evaluate clinical and echocardiographic variables to identify patients who develop HFP EF. Methods and Results Clinical, laboratory, and echocardiographic data were retrospectively collected for 81 patients without HF and 81 matched patients with HFP EF at the time of first documentation of subclinical diastolic dysfunction. Unsupervised clustering identified 3 subgroups which differed in gender composition, severity of cardiac hypertrophy and aortic stenosis, NT-proBNP, percentage of patients who progressed to HFP EF, and timing of disease progression from diastolic dysfunction to HFP EF to death. Clusters that had higher percentages of women had progressively milder cardiac hypertrophy, less severe aortic stenosis, lower NT-proBNP, were diagnosed at an older age with HFP EF, and survived to an older age. Independent predictors of HFP EF for the entire cohort included diabetes, chronic kidney disease, atrial fibrillation, and diuretic use, with additional predictive variables found for each cluster. Conclusions Cluster analysis can identify phenotypically distinct subgroups of patients with diastolic dysfunction. Clusters differ in HFP EF and mortality outcome. In addition, the variables that correlate with and predict HFP EF outcome differ among clusters.

Introduction
Left ventricular (LV) diastolic dysfunction is characterized by alterations in LV diastolic filling, and is a strong predictor of cardiovascular events including heart failure and its subtype heart failure with preserved ejection fraction (HFP EF) (1). The prevalence of HFP EF has increased over the past decades but the death rate has not changed substantially (1). Several risk factors including age, obesity, hypertension, diabetes mellitus, chronic kidney disease, and coronary artery disease are implicated in the development of diastolic dysfunction as well as HFP EF (1-3). Importantly, asymptomatic diastolic dysfunction precedes the development of HFP EF; yet, not all patients with diastolic dysfunction will progress to clinical or symptomatic HFP EF, possibly due to the phenotypic heterogeneity of this population. HFP EF is also a heterogeneous disease with similar predisposing risk factors and associated comorbidities (2). HFP EF suffers from lack of any standardized therapies
that effectively reduce mortality (2, 4-6) and therefore, the prevention of HFpEF remains a goal. This highlights the importance of understanding the risk factors associated with progression from diastolic dysfunction to HFpEF, as a path towards improving prognostication of the disease, personalizing therapy, and ultimately improving clinical outcomes, namely progression to clinical HFpEF or overall mortality.

Machine learning can be used to apply computer analysis to large data sets to identify patterns and trends. The goal of unsupervised machine learning, or cluster analysis is to learn the relationships between variables and uncover a hidden structure in the data set. It relies on clustering and dimensionality reduction. Due to the complexity of the data and heterogeneity of patients in medicine, intuitively identifying groups with similar phenotypes can be difficult and therefore the ability to identify these groups using machine learning methods may allow for more targeted diagnostics, therapeutic strategies and prognostication. For example, unsupervised machine learning has been previously used in research to divide large heterogeneous populations of patients into smaller unique phenogroups, including patients with HFpEF (7, 8), patients with primary hypertension (HTN) without heart failure (9), and mixed patient groups with HFrEF and HFpEF combined (10, 11).

In general, machine learning is a process that uses statistical algorithms to allow computers to learn relationships between objects or in these examples, patients, based on degree of similarities or differences among any number of categorical or quantitative variables, allowing the learning algorithm to find structure or hidden patterns in uncategorized data (12). To our knowledge, unsupervised learning has not previously been described in the literature to analyze patients with asymptomatic diastolic dysfunction.

Here we describe the use of unsupervised machine learning and hierarchical clustering to identify subgroups of patients with asymptomatic diastolic dysfunction who have similar phenotypes. We identified the features of each cluster and determined those which are independently predictive of developing HFpEF. We also evaluated the differences in phenotypes among clusters, along with the differences between patients within each cluster who were known to progress or not progress to clinical HFpEF. Lastly, we used survival curve analysis to identify differences in disease progression
and mortality outcomes among clusters.

Methods

Study design and patient data collection

This was an Institutional Review Board approved study conducted at the Medical College of Wisconsin and at Froedtert Memorial Lutheran Hospital in Milwaukee, WI. No informed consent was required. This is a matched retrospective case-control study; subject screening and selection was described in detail elsewhere (13). In brief, patients were first identified by screening transthoracic echocardiograms (TTEs) obtained between 7/1/2003 and 7/1/2013 reporting diastolic dysfunction and preserved ejection fraction (EF > 50%). Patients were excluded if they had systolic dysfunction (EF < 50%), valve abnormalities including severe aortic stenosis, severe mitral regurgitation, annuloplasty, and/or bioprosthetic valves, a heart transplant or non-diagnostic echocardiograms. The remaining patients were further sub-divided into two groups: (1) those who had clinical heart failure during the study period, and (2) those who remained in asymptomatic diastolic dysfunction. Patients with clinical heart failure were identified if their electronic health record contained an ICD-9 diagnosis of congestive heart failure along with clinical documentation of at least one of the following signs or symptoms of heart failure: shortness of breath, orthopnea, paroxysmal nocturnal dyspnea, weight gain, or lower extremity edema. Patients in Group 1 diagnosed with HFpEF were optimally matched for age, gender, race, and body surface area (BSA) with Group 2 patients who remained in asymptomatic diastolic dysfunction. This ultimately yielded 77 matched pairs which were included in our study. Later, an additional screen added 8 patients with diastolic dysfunction (half of which were known to develop HFpEF) to the study population.

Our study population therefore contained 162 patients, all of whom had TTE evidence of diastolic dysfunction and normal EF, but only half of whom progressed to develop clinical HFpEF. TTE reports were retrospectively screened to find the earliest documentation of diastolic dysfunction prior to any diagnosis of HFpEF. Numerical data from this earliest TTE were utilized, including systolic and diastolic blood pressure (SBP/DBP), and several measured and calculated echocardiographic parameters including degree of diastolic dysfunction. In addition, numerous other qualitative and
quantitative demographic and clinical data points were collected for each patient for use in the unsupervised learning cluster analysis. **Supplemental Table 1** contains the list of variables used for clustering analysis and all authors have full access to this data and take responsibility for its integrity and the data analysis.

For subsequent analysis of mortality and survival outcomes in all 162 patients, the cutoff date of 5/5/2018 was used to determine which patients were alive or deceased at the time of data analysis. Patients were considered “deceased” if it was indicated in the chart that the patient had died, if there was a date of death listed, or if the most recent notes in the electronic health record indicated a date of confirmed death. Otherwise, the most recent notes were scanned for mention of a face-to-face encounter with the patient, or a telephone conversation with the patient or family member discussing further plans of care, and this date was used as a “last known alive” date for survival analysis.

Unsupervised hierarchical clustering of patients

One patient with HFpEF was excluded from clustering analysis due to significant outliers (left ventricular outflow tract (LVOT) velocity max, LVOT velocity mean, LVOT max gradient, and LVOT mean gradient) which were 8 standard deviations larger than the mean. We used hierarchical clustering to group patients based on 65 total variables including 19 categorical and 46 numerical variables (**Supplemental Table 1**). Heart failure and survival data were excluded from the clustering analysis. Each categorical variable was converted into a numerical one through one-hot encoding. If the categorical data contained multiple categories (i.e. Chronic kidney disease stage 1-5 and degree of diastolic dysfunction: mild, moderate or severe) then these were treated as dichotomous data (yes or no) and then converted into numerical data using one-hot encoding. Missing data points were estimated and imputed using a singular value decomposition (SVD) technique for data analysis (14). The squared Euclidean distances between each pair of patients were calculated and put into a distance matrix, which served as the input into the hierarchical clustering algorithm. Two-, three-, four-, and five-cluster determinations were achieved with each patient being assigned to one of the clusters. To determine the optimal number of clusters or phenogroups we performed a chi-
square analysis to look for significant differences between clusters in each row. The resultant clusters were then statistically analyzed for any differences in their variable composition or phenotype, and heart failure and mortality outcomes. The purity of the clustering distribution was calculated by determining the percentage of total patients whose HFpEF outcome agreed with the majority of patients in the cluster to which the patient was assigned. Purity was calculated as: (see Formula 1 in the Supplementary Files)

where N is the total number of patients, k represents the kth cluster, n_k is the number patients in the kth cluster that has the majority status in terms of presence or absence of heart failure (15).

Statistical analysis of data

Before clustering, logistic regression analysis was conducted on the entire population to distinguish which variables were predictors of HFpEF outcome.

Once clusters were identified, we examined the phenotypic variables within each group. Continuous data were presented as mean +/- 95% confidence interval. Categorical variables were presented as a count or percentage. We compared differences between groups using chi-square test for categorical variables and analysis of variance (ANOVA) for continuous variables. Likewise, the percentage of patients who remained asymptomatic vs. those who developed HFpEF were also compared among groups using chi-square test. If ANOVA showed statistically significant differences in one variable among several groups, then the Newman-Keuls multiple comparisons test or Duncan’s multiple comparisons test was used when appropriate to find which cluster contained the variable that was significantly different.

Each cluster contained patients that remained asymptomatic or developed HFpEF. We compared differences between these two subgroups within each cluster by using chi-square test for categorical variables and ANOVA for continuous variables. Logistic regression was used to analyze the data for independent predictors of HFpEF for each cluster.

Key prognostic factors such as age of diastolic dysfunction diagnosis, time interval between diagnosis of diastolic dysfunction and HFpEF, age of HFpEF diagnosis, time interval between diagnosis of HFpEF
until death due to all causes, and age at death were analyzed by Kaplan-Meier survival curves to identify differences in disease progression within and among clusters. For survival analysis, actual date of an event or last known date without the event occurring were recorded (right censored data) using the cutoff date of 5/5/2018.

Statistics were performed using Microsoft Office Excel 2010 or Epistat version 5.3 (Epistat Services, Richardson TX) and graphs were generated using SigmaPlot version 13, Systat Software Inc, San Jose, CA.

Results
Characteristics of the Subclinical Diastolic Dysfunction Study Population
We retrospectively enrolled 162 patients for our phenogrouping analysis. The patients were matched given that half the patients were known to progress to HFpEF. The goal was to identify phenogroups of patients with subclinical diastolic dysfunction and to determine distinguishing characteristics that are predictive of progression to HFpEF.

Demographic characteristics of the study cohort are shown in Table 1, which compares patients who remained in asymptomatic diastolic dysfunction to those patients who progressed to HFpEF within the time period of the study. Overall, patients were diagnosed with subclinical diastolic dysfunction at age 70 ± 10 years and of these, those patients who were known to develop HFpEF were diagnosed at age 74 ± 10 years. The cohort contained 67.9% female, and 77.8% white patients. Patients who progressed to HFpEF were more likely to have a history of diabetes mellitus (DM), chronic kidney disease (CKD), and atrial fibrillation (Afib), as well as the use of digoxin and diuretics. In contrast, the use of aldosterone antagonists was more prevalent in the patient cohort who remained in asymptomatic diastolic dysfunction. The N-terminal pro hormone BNP (NT-proBNP) levels and degree of diastolic dysfunction severity also differed between the cohort who remained in asymptomatic diastolic dysfunction and the cohort who progressed to HFpEF; the cohort who progressed to HFpEF had a higher average NT-proBNP but contained more patients with mild diastolic dysfunction.

Risk predictors of developing HFpEF in patients with subclinical diastolic dysfunction
For the entire 162 patient cohort, four categorical variables (history of DM, CKD, AFib, and diuretic use) were found to be independent and statistically significant (p<0.05) positive predictors of development of clinical HFrEF while adjusting for other factors. Using logistic regression, the probability (P) of a patient in our population developing heart failure, based on the presence or absence of these four factors while adjusting for other factors is: (see Formula 2 in the Supplementary Files)

Coefficients for category variables are interpreted as 0 if the patient has a negative history, or the indicated value in the above equation if the patient has a positive history. We have complete data for these four variables in 151 patients and these patients have an incidence of HFrEF of 53.0%.

Therefore, a prediction probability (P) greater than 53.0% predicts the development of HFrEF, and a P less than this predicts the patients will remain asymptomatic. The sensitivity and specificity for this prediction was 74% and 79%, respectively. The presence of any one of these four variables increased the odds of developing HFrEF by 3-4-fold, and the presence of all four variables increased the odds of developing HFrEF by 154-fold relative to the absence of all these factors in patients with underlying diastolic dysfunction. Therefore, if an individual patient in our population had 2 or more of these factors, then P would be >53% and this patient would be predicted to be in the group that progressed to heart failure.

Hierarchical Clustering of Patients with Subclinical Diastolic Dysfunction into Phenogroups

After identifying the characteristics that predict the development of HFrEF in our cohort of patients with asymptomatic diastolic dysfunction, we then used unsupervised hierarchic clustering to subdivide these patients into smaller groups with similar phenotypes. The goal was to examine the relationships between variables that group patients with similar phenotypes and which would then predict risk of developing HFrEF. Using the 65 variables (Supplemental Table 1) 162 patients were subdivided by hierarchical-based clustering analysis into various permutations of 2, 3, 4, and 5 groups, all with varying percentages of patients who developed HFrEF (Figure 1). With an increasing number of defined clusters, the larger clusters were effectively subdivided into smaller groups. Since
there are no definitive criteria for determining the ideal number of clusters, we compared the percentages of patients in each cluster who developed clinical HFpEF, as a method of screening which clusters may have distinct phenotypes. We found the largest intergroup difference in proportion of patients that developed heart failure with the hierarchical 3-cluster grouping, which contained a high frequency HF group (71%), an intermediate frequency HF group (59%), and a low frequency HF group (42%) (p=0.058). This grouping was chosen for further statistical analysis for the following reasons: (1) it contained a high frequency HFpEF group and a low frequency HFpEF group with the fewest number of clusters, (2) subdivision into further groups yielded non-significant differences in HF frequency among the clusters, (3) division into four clusters did not yield groups with higher or lower frequency of HF (only groups with intermediate frequency of HF), and (4) simplicity of analysis: fewer clusters would be more ideal for extracting statistically relevant conclusions due to sample size.

Cluster purity for 3 hierarchical clusters was found to be 59%.

- **Comparison of characteristics among phenogroups**

Hierarchical clustering yielded three groups of patients with distinct phenotypic differences: Cluster A (n=7); Cluster B (n=59); and Cluster C (n=95). The differences between these clusters are shown in Table 2. Variables which showed statistical differences (p<0.05) are shown as well as those which approach significance (p<0.10). When there was a difference among clusters, secondary analysis was used to determine which clusters differed from each other.

Cluster A (n=7) had the highest frequency of patients with subclinical diastolic dysfunction who progressed to HFpEF (71.4%) and the lowest percentage of females (42.9%). This cluster was characterized as having severe cardiac hypertrophy and moderate aortic stenosis. All the patients in this group had some degree of cardiac hypertrophy (mild, moderate, or severe), with significantly more patients having severe cardiac hypertrophy than expected. In addition, Cluster A patients tended to have the highest NT-proBNP and the highest LV systolic function as determined by ejection fraction, fractional shortening, and stroke volumes when compared to the other groups.

Cluster B (n=59) had an intermediate frequency of patients with diastolic dysfunction who progressed
to HFP EF at 59.3%. In this group 52.5% were female, and 47.5% were male. These patients tended to be taller, heavier, and with the largest body surface area (p<0.10 for each). They had mild to moderate cardiac hypertrophy and mild aortic stenosis. 58.9% of patients had some degree of cardiac hypertrophy, with significantly more patients having severe cardiac hypertrophy and fewer patients with no cardiac hypertrophy than expected. This cluster averaged mid-range NT-proBNP levels and had more patients with severe CKD.

Cluster C (n=95) had the lowest frequency of patients with diastolic dysfunction that developed HFP EF (42.1%) and was comprised mostly of females (78.9%) who tended to be physically smaller than those patients in Cluster B based on height, weight, and BSA (p<0.10 for each). This group, on average, had neither cardiac hypertrophy nor aortic stenosis. Of these patients, only 25% had some degree of cardiac hypertrophy, with fewer patients than expected having severe cardiac hypertrophy. NT-proBNP levels were the lowest in this group and patients overall had milder stages of CKD. This group still had preserved LV systolic function but closer to the lower limits of normal based on fractional shortening, LV volumes and stroke volumes.

Intracluster analysis of patients who develop HFP EF vs. those who remain in asymptomatic diastolic dysfunction

Each of the 3 clusters contained patients who developed HFP EF and those who remained asymptomatic. Therefore, we analyzed which variables significantly differed between outcomes within each cluster (Table 3). Some variables distinguish those who remained asymptomatic from those who progressed to HFP EF in only one of the clusters whereas other factors distinguish those who remained asymptomatic from those who progressed in multiple clusters.

Within cluster A, decreased aortic distensibility was seen in the group that progressed to HFP EF. In patients within cluster B, chronic kidney disease, diabetes and use of beta blockers and diuretics were seen in the group that developed HFP EF. These patients also had lower values for LVOT max gradient, and lower velocities and gradients across the aortic valves as well as decreased aortic distensibility. They had increased LV internal dimension, a higher pulse pressure, increased arterial
stiffness, and increased arterial elastance. Patients in cluster B who remained asymptomatic were more likely to be taking aldosterone antagonists. Patients within cluster C who developed HFpEF were more likely to have a history of chronic kidney disease, coronary artery disease, atrial fibrillation, digoxin and diuretics use. They also were more likely to have echocardiographic parameters consistent with increased systolic LV posterior wall thickness (LVPWs) and decreased LV systolic and diastolic volumes (LVESV and ESVI, and LVEDV and EDVI) along with lower diastolic blood pressure.

Within each cluster, logistic regression was used to identify which factors were significant and independent predictors of those who remain in asymptomatic diastolic dysfunction and those who progressed to HFpEF.

There were too few patients in Cluster A to determine variables which were significant predictors of HFpEF via logistic regression. In Cluster B, diabetes, chronic kidney disease, diuretics use, aortic valve (Ao V2) max gradient (in mmHg), and diastolic wall strain (as fraction) were found to be independent predictors of progression to HFpEF while adjusting for other factors, (SN/SP 76.5/71.4%, at cutoff of $P = 61.8\%$ representing HFpEF frequency for the 55 of 59 patients with complete data for these variables). (see Formula 3 in the Supplementary Files)

In Cluster C, independent predictors of progression to HFpEF were found to be chronic kidney disease, diuretics use, age (years), and indexed end-systolic volume (ESVI) while adjusting for other factors; (SN/SP = 80.6/77.3%, at cutoff of $P = 41.3\%$ representing HFpEF frequency for the 75 of 95 patients with complete data for these variables). (see Formula 4 in the Supplementary Files)

Kaplan-Meier Estimates of Events

Kaplan-Meier analysis was performed to compare the clusters for different time to events. When comparing among the three clusters, differences were found and are shown in Figure 2. The small sample size of Cluster A may limit the significance of the findings from this cluster. No significant within-cluster differences were found when stratified by gender, presence or absence of LVH, or for
remaining asymptomatic vs. progression to HFrEF.

Patients in Clusters A, B, and C developed diastolic dysfunction at similar ages (Cluster A: median age 71.6 years, Cluster B: median age 67.9 years, and Cluster C: median age 72.9 years; Cluster B vs. C, p=0.5712). There were no differences in age of diastolic dysfunction diagnosis when stratifying each cluster by gender or by HFrEF outcome (data not shown). The three clusters progressed from diastolic dysfunction to HFrEF at different rates (Fig 2A1). Cluster A progressed to HFrEF the fastest (median 1.7 years), Cluster B progressed at an intermediate rate (median 5.3 years), and Cluster C progressed the slowest (median 9.4 years; Cluster B vs. C, p=0.0035). The same trend was seen when the patients from each cluster were stratified by gender (Fig 2B and C). When the clusters were analyzed according to gender, it was found that the females in Cluster B develop HFrEF in a statistically shorter timeframe than females in Cluster C (Fig 2B1) whereas the males in Cluster B and C show no statistical difference in time interval of developing HFrEF (Fig C1).

All patients in Cluster A had some degree of LVH, thus comparison among the clusters based on the absence or presence of LVH (Fig 2D and E) is applicable only to Clusters B and C. Patients in clusters B developed HFrEF at the same rate whether or not they had LVH. Only those without LVH showed a difference between clusters B and C (Fig 2D1 and E1). When the patients who are known to develop HFrEF are separately analyzed for the time interval of progressing from asymptomatic diastolic dysfunction to HFrEF, there is no significant differences whether they are in Cluster A, B or C (Fig 2, F1 and G1)

Clusters also differed in age of diagnosis of HFrEF (Fig 2, A2). Cluster A developed HFrEF at the youngest age (median age 73.9 years), Cluster B at an intermediate age (median age 78.6 years), and Cluster C the oldest (median age 86.3 years; Cluster B vs. C, p=0.0033). Fig 2B2 shows statistically significant differences between females in Cluster B vs. Cluster C which were not seen in the male cohort (Fig 2, C2). Patients without LVH differed in age of HFrEF diagnosis depending on whether they were in Cluster B or Cluster C. This contrasts with the patients who had LVH (Fig 2, E2) who had a non-significant median difference in age when diagnosed with HFrEF. In general, when considering only those who progress to HFrEF, the age at HFrEF diagnosis does not differ significantly
between the three clusters (Fig 2, F2). None of the patients with diastolic dysfunction who remained asymptomatic throughout the duration of the study developed HFpEF and Fig 2, G2.

The three clusters differed significantly in age at death (Fig 2, A3). Patients in Cluster A died at the youngest age (median age 78.5 years), Cluster B at an intermediate age (median age 84.3 years), and cluster C at the oldest age (median age 88.2 years; Cluster B vs. C, p=0.0524). When stratifying by gender, (Fig 2, B3 and C3), females in Cluster B died at a younger age than females in Cluster C (median age of death 76.7 years vs. 88.4 years, p = 0.0595). Males in Cluster B and Cluster C did not differ and had similar median ages of death when compared to the entire cohort (males + females).

In addition, when stratifying by the absence or presence of LVH (Fig 2 D3 and E3), there was no differences in age at death between patients without LVH. In contrast, those patients with LVH in Cluster B died at a younger age than those in Cluster C (median age of death 81.2 years vs. 89.0 years, p = 0.0137). The time to progress from first being diagnosed with HFpEF to death is only applicable to those patients who developed HFpEF and did not differ among clusters (p=0.3245) (not shown). The time interval between diagnosis of HFpEF and all-cause death did not differ when stratifying the clusters by gender or LVH. This suggests that survival time after diagnosis of HFpEF is independent of any differences in associated comorbidities.

Discussion
In this retrospective study of 162 patients with asymptomatic diastolic dysfunction who were matched by known outcome (remaining asymptomatic vs. developing HFpEF), we used unsupervised machine learning to determine whether patients could be clustered into groups of similar phenotypes which would be predictive of developing HFpEF. In this process, we found (1) patients with asymptomatic diastolic dysfunction were a heterogeneous group with different risk profiles (2) all clusters contained some patients who would progress to develop HFpEF (3) the identified phenogroups had differential outcomes, indicating different risk profiles and clinical trajectories (4) certain co-morbidities were risk factors for developing HFpEF across the entire cohort and other risk factors for developing HFpEF were restricted to specific clusters/phenogroups and (5) the time interval between developing HFpEF...
and death was similar regardless of cluster assignment (data not shown). This study showed that it was feasible to subdivide asymptomatic diastolic dysfunction patients, who have not yet progressed to clinical HFpEF, early in the disease process into smaller more homogeneous phenogroups with well-defined risk factors for progression to HFpEF and different clinical trajectories. This approach may be useful to identify those patients with subclinical diastolic dysfunction who are at higher risk and who may benefit from tailored preventive strategies.

Our population of patients with subclinical diastolic dysfunction has similar demographic features and comorbidities compared to patients with HFpEF (2-6, 16, 17). Compared to the Meta-analysis Global Group in Chronic Heart Failure, our patients were also older when diagnosed with HFpEF (74 vs. 71 years old), are more often female (68% vs. 50%), and have a higher prevalence of multiple systemic pro-inflammatory non-cardiac comorbidities including obesity or metabolic syndrome, HTN, DM, and CKD (16).

To the best of our knowledge, our study is the first analysis to evaluate clinical characteristics through logistic regression in order examine predictors of HFpEF in patients with subclinical diastolic dysfunction. One strength of our study was to use a retrospective data set in which the outcomes of progression to clinical HFpEF were known, but clinical and echocardiographic data prior to this progression were available for analysis and allowed for matching of patients with asymptomatic diastolic dysfunction but different outcomes.

For our entire cohort, a history of diabetes, CKD, atrial fibrillation, and diuretic use were found to be independent positive predictors of progression from subclinical diastolic dysfunction to HFpEF. HTN was the most prevalent co-morbidity in our population of patients with subclinical diastolic dysfunction. Therefore, although HTN is not a discriminating predictor of which patients will develop HFpEF, it is a common risk factor for the development of both diastolic dysfunction and HFpEF. Our study was also unique by using logistic regression to identify variables that were independent positive predictors for the development of HFpEF within each cluster. Once the three clusters were identified, the variables that remained independent positive predictors for development of HFpEF were CKD and diuretic use in Clusters B and C, and diabetes in Cluster B. In patients with subclinical diastolic
dysfunction, early recognition and treatment of diabetes, CKD, and HTN may delay progression to clinical HFPF, and presence of these comorbidities as well as atrial fibrillation and diuretic requirement may be used to prognosticate the risk of disease progression.

Despite the lower risk of death in HFPF (regardless of age, gender, and etiology of HF) compared to patients with HFrF, those with HFPF still have high absolute mortality, and unfortunately do not benefit from neurohormonal antagonists (i.e. beta blockers, angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), mineralocorticoid receptor antagonists, ARB-neprilysin inhibitors) or intracardiac devices as well as do patients with HFrF (2, 4, 5, 16). Given the lack of standardized and effective therapies for treatment of diastolic dysfunction and HFPF, the subclassification into smaller homogeneous subgroups of patients with diastolic dysfunction at risk for developing HFPF may be the first step to conduct future studies that look at phenotypic differences in response to medical therapy, which could further lead to individualized treatment and improved prognosis of the disease.

Other investigators have used machine learning or cluster analysis to identify subgroups of patients with distinct phenotypes that differ in their risk profiles and survival outcomes (7-11). These researchers have studied heterogeneous populations of patients with primary HTN and the absence of HF (9), HFPF alone (7, 8), and mixed populations of HFrF and HFPF combined (10, 11). However, to our knowledge, ours is the first study to use hierarchical clustering to identify subgroups of patients with subclinical diastolic dysfunction. Clustering of our cohort of patients resulted in three groups with distinct phenotypes and different disease trajectories and prognosis. Cluster A was a smaller (n=7) high-risk group with the highest frequency of HFPF, lowest percentage of females, presence of severe cardiac hypertrophy, moderate AS, and highest NT-proBNP. The group size was not powered to reach statistical significance when comparing survival analysis with other clusters, though based on trends we suspect that this group would have the poorest disease trajectory. Cluster B (n=59) was a moderate-risk group with an intermediate frequency of HFPF, intermediate percentage of females, presence of mild to moderate cardiac hypertrophy, mild AS, mid-range NT-proBNP, and more severe CKD. This cluster did more poorly than cluster C in terms of shorter time to progress from diastolic
dysfunction to HFrEF, younger age at diagnosis of HFrEF, and age of death. Cluster C (n=95) was a low-risk group with the lowest prevalence of HFrEF, highest percentage of females, no cardiac hypertrophy, no AS, lowest NT-proBNP, and milder CKD stages. This cluster had the best prognosis in terms of disease progression. The primary reason for Cluster C having an overall slower progression from diastolic dysfunction to HFrEF and later age at HFrEF diagnosis is due to this group having a larger percentage of patients that never progress to HFrEF; for those patients who do progress in Cluster B and Cluster C, time to progression and age at diagnosis of HFrEF was not different. In general, cluster differences regarding survival curve disease trajectories were likely due to global phenotypic differences between these clusters, rather than any distinguishing variable. Gender did not contribute to rate of disease progression, and the outcome of whether patients developed HFrEF was not related to age at diagnosis of diastolic dysfunction or age at death.

Katz et al. (9) used hierarchical clustering to divide 1273 patients with primary HTN into two clinically distinct subgroups, in order to study the phenotypes of patients who might be at higher risk for developing HFrEF, although this outcome was never followed. Common comorbidities included obesity, diabetes, CAD, and CKD, with several of these being more prevalent in the higher-risk group, which is similar to our findings. On average, both groups had an elevated E/e' ratio suggesting diastolic dysfunction, though diastolic dysfunction was not specifically evaluated and may not have been present in all patients; patients also had zero to mild LVH based on LVMI. This population may be the most similar to our study population of patients with subclinical diastolic dysfunction, although it is difficult to compare their results to ours given different variables used to define phenogroups, and that survival analysis was not conducted.

Shah et al. (7) used hierarchical clustering to subdivide 397 patients with HFrEF into three phenotypically distinct subgroups that differed in risk profiles based on outcomes of cardiovascular or heart failure hospitalization and death. The highest-risk group had the highest prevalence of atrial fibrillation and CKD, and highest NT-proBNP whereas the moderate-risk group had the highest prevalence of diabetes. This is similar to the analysis done by Kao et al. (8) which used latent class analysis to divide 4113 patients with HFrEF enrolled in the I-PRESERVE (Irbesartan in Heart Failure
with Preserved Ejection Fraction) study into 6 phenotypically distinct subgroups differing in all-cause mortality and cardiovascular hospitalization outcomes. The two highest-risk subgroups were characterized by a high prevalence of atrial fibrillation, CKD, diabetes and obesity. In our study of patients with subclinical diastolic dysfunction, the presence of atrial fibrillation, CKD, and diabetes were predictive of progression to HFpEF in the entire cohort regardless of clustering results. We also found that between clusters, NT-proBNP levels were correlated with the frequency of patients who progressed from subclinical diastolic dysfunction to HFpEF. Our study did not look at obesity but matched patients for BSA which would decrease the contribution of BSA to HFpEF progression.

Ahmad et al. (10) and Horiuchi et al. (11) both used K-means clustering to analyze a mixed population of HFrEF and HFpEF. Ahmad et al. (10) subdivided a larger population of 44886 patients from the Swedish Heart Failure Registry into 4 subgroups that differed significantly in terms of 1-year survival and response to medication class (diuretics, ACE-Inhibitors, beta blockers, and nitrates). Their cluster with the largest percentage of patients with preserved EF>50% shared features similar to our population, but in this cluster only 34% of patients had HFpEF. In addition, The Ahmad et al. (10) study grouped the entire population a second time by LVEF values, and those patients with LVEF >50% again shared these features—older age, female predominance, more likely to have a non-ischemic cause of cardiomyopathy, and a high prevalence of comorbidities (HTN, atrial fibrillation, CKD, aortic stenosis, and diabetes). We did not include malignancy, anemia, and COPD in our data sets which were included in the analysis from the Swedish Heart Failure Registry. These patients were least often treated with neurohormonal therapies (beta blockers, ACE-Inhibitors) and implanted device therapies (ICD, cardiac resynchronization therapy-defibrillator). Horiuchi et al. (11) studied a smaller population of 345 consecutively admitted patients with acute heart failure hospitalized in the cardiovascular intensive care unit, with similar findings.

In brief, the previous studies (7-11) subclassified their patient populations into smaller phenotypically distinct groups with unique clinical trajectories in terms of outcomes and response to various treatments. Direct comparison with our results is difficult due to the differences in initial patient population, the variables available and used for clustering, the distinguishing variables that define
each phenogroup, and the variation in outcome measures used to risk-stratify phenogroups and report survival analysis.

Limitations
This is a retrospective study with a relatively small cohort with some data being incomplete. Missing data points had to be imputed using a singular value decomposition technique in order to be able to perform the clustering. Analysis of the clusters however used only the available data. Because of the small study population, we were unable to divide the population into a test cohort and a validation cohort. In this study we determined predictors for progression from diastolic dysfunction to HFP EF based on a population in which 50% of the patients progressed. The coefficients for the logistic regressions would not apply to other populations and would depend on the HFP EF prevalence in the population being studied. Thus, the applicability of cluster analysis to clinical practice is limited at this time. However, the variables which we found to be correlated with, and predictive of HFP EF outcome, are likely to be similar to those that would be found for other populations.

Summary and Conclusion
We have shown that cluster analysis can separate patients with diastolic dysfunction into different phenotypic subgroups which differ in HFP EF and mortality outcomes and have different variables correlated with and predictive of HFP EF outcome. Our findings may be applicable to other populations, as the characteristics of our patients with diastolic dysfunction are similar to those described in the literature for patients with HFP EF. Confirmation of these findings could be done using a validation cohort of patients with diastolic dysfunction who could be sorted into our pre-defined clusters using supervised machine learning, and their characteristics and disease trajectories compared to those of our study population.

Future clinical trials may be designed to evaluate response to therapies in phenotypically different subpopulations of patients with diastolic dysfunction or HFP EF. Additionally, future clinical trials may also be designed to study prevention of development of HFP EF in patients with diastolic dysfunction.
Cluster analysis may be useful to indicate early in the disease process which patients are at highest risk of progressing to clinical heart failure, and may be an important first step in studying which therapy may lead to the best response for a particular phenogroup. Ultimately, we hope that this method will help identify high-risk patients and may help with selecting individualized treatment modalities that are effective in preventing disease progression and improving morbidity and mortality.

List Of Abbreviations

Analysis of variance (ANOVA)

Ao (Aortic)

Atrial fibrillation (AFib)

Chronic kidney disease (CKD)

Diabetes mellitus (DM)

End-diastolic volume index (EDVI)

End-systolic volume index (ESVI)

Ejection fraction (EF)

Heart failure with preserved ejection fraction (HFpEF)

Hypertension (HTN)

International Classification of Diseases, 9th Edition (ICD-9)

Left ventricular (LV)

Left ventricular outflow tract (LVOT)

LV end diastolic volume (LVEDV)

LV end systolic volume (LVESV)

N-terminal pro hormone BNP (NT-proBNP)

Transthoracic echocardiograms (TTEs)

Singular value decomposition (SVD)

Systolic and diastolic blood pressure (SBP/DBP)

Systolic LV posterior wall thickness (LVPWs)
Declarations

Funding

JLS is supported by NIH/NHLBI grant HL134932 and partly supported by funds from the Department of Medicine, Medical College of Wisconsin. The National Institute of Health did not play a role in the design of the study, the collection, the analysis or interpretation of data, nor in the writing of the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ Contributions

YEK and IK acquired the data. YEK and JSK were major contributors to the statistical analysis, interpretation, and writing the manuscript draft. HZ, YL, and JZ performed the clustering analysis. JLS conceived of the idea, interpreted the data, and revised the manuscript. All authors are accountable for their contributions, the accuracy and the integrity of the work. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Consent for Publication

The authors declare that they have no competing interests, financial or otherwise.

Ethics approval and consent to participate

The study was approved by the institutional review board at the Medical College of Wisconsin. The research subjects’ informed consent was waived due to the nature of the retrospective study.

References

1. Borlaug BA. Clinical manifestations and diagnosis of heart failure with preserved ejection fraction. 2019 January 13, 2019. In: UpToDate [Internet]. Alphen aan den Rijn, Netherlands: Wolters Kluwer Health.

2. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al.
Phenotype-Specific Treatment of Heart Failure With Preserved Ejection Fraction: A Multiorgan Roadmap. Circulation. 2016;134(1):73-90.

3. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology. 2013;62(4):263-71.

4. Luo Y, Ahmad FS, Shah SJ. Tensor Factorization for Precision Medicine in Heart Failure with Preserved Ejection Fraction. Journal of cardiovascular translational research. 2017;10(3):305-12.

5. Poppe KK, Doughty RN. Outcomes in patients with heart failure with preserved ejection fraction. Heart failure clinics. 2014;10(3):503-10.

6. Lekavich CL, Barksdale DJ, Neelon V, Wu JR. Heart failure preserved ejection fraction (HFpEF): an integrated and strategic review. Heart failure reviews. 2015;20(6):643-53.

7. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269-79.

8. Kao DP, Lewsey JD, Anand IS, Massie BM, Zile MR, Carson PE, et al. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. European journal of heart failure. 2015;17(9):925-35.

9. Katz DH, Deo RC, Aguilar FG, Selvaraj S, Martinez EE, Beussink-Nelson L, et al. Phenomapping for the Identification of Hypertensive Patients with the Myocardial Substrate for Heart Failure with Preserved Ejection Fraction. Journal of cardiovascular translational research. 2017;10(3):275-84.
10. Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, et al. Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients. Journal of the American Heart Association. 2018;7(8).

11. Horiuchi Y, Tanimoto S, Latif A, Urayama KY, Aoki J, Yahagi K, et al. Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables. International journal of cardiology. 2018;262:57-63.

12. Shalev-Shwartz S, Ben-David S. Understanding machine learning: From theory to algorithms: Cambridge university press; 2014.

13. Karagodin I, Aba-Omer O, Sparapani R, Strande JL. Aortic stiffening precedes onset of heart failure with preserved ejection fraction in patients with asymptomatic diastolic dysfunction. BMC cardiovascular disorders. 2017;17(1):62.

14. Dax A. Imputing missing entries of a data matrix: a review. Journal of Advanced Computing. 2014;3(3):98-222.

15. Evaluation of clustering. 2009. Available from: https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html.

16. MAGGIC. The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. European heart journal. 2012;33(14):1750-7.

17. Hoong CW, Lim CP, Gao F, Chen Q, Kawa LB, Ching CK, et al. Outcomes of heart failure with preserved ejection fraction in a Southeast Asian cohort. Journal of cardiovascular medicine (Hagerstown, Md). 2015;16(9):583-90.

Tables
able 1. Population Demographics
Patient Characteristics	Subclinical Diastolic Dysfunction Total Cohort (n=162)	Subclinical Group 1 (n=81)	Outcomes HFpEF Group 2 (n=81)
Age at diagnosis of Diastolic Dysfunction	69.6 ± 10.1	68.8 ± 9.9	70.5 ± 10
Gender (% female)	67.9%	77.7%	77.8%
Race (% White, remainder Black)	67.9%	67.9%	67.9%
Weight (lb)	194.9 ± 59.3	193.5 ± 53.5	196.4 ± 6.6
Height (in)	65.6 ± 4.2	65.6 ± 4.1	65.6 ± 4.0
Body surface area (m²)	1.95 ± 0.28	1.95 ± 0.27	1.95 ± 0.28
Age at diagnosis of HFpEF	N/A	N/A	5.4 ± 2.8
Age at death OR last known alive	76.8 ± 10.3	76.0 ± 9.9	77.6 ± 10.0
Mortality, n (%)	66 (40.1)	26 (32.1)	40 (49.4)
NT-Pro B-type natriuretic peptide (pg/mL) (n)	8178 ± 14346 (72)	2148 ± 3026 (21)	10661 ±
Diastolic Dysfunction Severity (n)	(n=162)	(n=81)	(n=81)
Mild: E/A <1, average e' ≤ 9 cm/s	28 (17.3%)	7 (8.6%)	21 (25.9%)
Moderate: E/A ≥1, average e' ≤ 9 cm/s	125 (77.2%)	68 (84.0%)	57 (70.4%)
Severe: E/A ≥2, average e' ≤ 9 cm/s	9 (5.6%)	6 (7.4%)	3 (3.7%)
Degree of cardiac hypertrophy (n)	(n=152)	(n=77)	(n=75)
None	90 (59.2%)	51 (66.2%)	39 (52.0%)
Mild	26 (17.1%)	15 (19.5%)	11 (14.7%)
Moderate	14 (9.2%)	15 (19.5%)	11 (14.7%)
Severe	22 (14.5%)	4 (5.2%)	10 (13.3%)
Chronic Kidney Disease Stage (n)	(n=147)	(n=70)	(n=77)
Glomerular filtration rate (GFR)	(n=151-157)	(n=76-76)	(n=76-81)
Stage 1-2 GFR≥60 mL/min/1.73m²	63 (42.9%)	34 (48.6%)	29 (37.7%)
Stage 3a (GFR 45-59 mL/min/1.73m²)	32 (21.8%)	18 (25.7%)	14 (18.2%)
Stage 3b (GFR 30-45 mL/min/1.73m²)	26 (17.7%)	8 (11.4%)	18 (23.4%)
Stage 4 (GFR 15-30 mL/min/1.73m²)	11 (7.5%)	6 (8.6%)	5 (6.5%)
Stage 5a (GFR <15, mL/min/1.73m²)	15 (10.2%)	4 (5.7%)	11 (14.3%)
History of co-morbidities, (n)	n=151-157	n=76-76	n=76-81
Hypertension	81.5%	76.3%	66.4%
Diabetes	42.0%	27.6%	55.6%
Chronic kidney disease	44.2%	25%	62.5%
Alcohol use	53.6%	58.7%	48.7%
Tobacco use	56.1%	57.9%	54.4%
Coronary artery disease	51.3%	42.7%	59.3%
Cerebral vertebral accident/transient ischemic attack	18.1%	13.3%	22.5%
Atrial fibrillation	29.3%	19.7%	38.3%
Medication Use by Class (n)	n=154-155	n=73-74	n=81
Beta blockers	68.2%	63%	72.8%
ACE inhibitors	23.4%	17.8%	28.4%
Angiotensin blockers	18.2%	15.1%	21.0%
Diuretics	52.6%	35.6%	67.9%
Aldosterone antagonist	11.7%	19.2%	4.9%

n=total number of patients in each cohort or n=number of patients with available data
* categorical values are presented as counts and percentages; continuous variables are presented as mean±95% confidence interval
↑ indicates higher than expected by chance
↓ indicates lower than expected by chance

Table 2. Phenotypic Comparisons Among Clusters
	Cluster A (n=7)	Cluster B (n=59)	Cluster C (n=95)
HFpEF % (n)	71.4% (7)	59.3% (59)	42.1% (95)
Gender Male/Female (n)	4 / 3 (7)	28 / 31 (59)	20 / 75 (95)
Chronic Kidney Disease (n)		(5)	(91)
Stage 1-2	0 ↑	18	44
Stage 3a	1	8	23
Stage 3b	3 ↑	10	13
Stage 4	1	5	5
Stage 5a	0	9 ↑	6
NT-Pro B-type natriuretic peptide, pg/ml (n)	22211 ± 63387 (3)	13816 ± 7801 (26)	3850 ± 2027 (42)

Echocardiography

Two-Dimensional Measurements

	Cluster A (n=7)	Cluster B (n=59)	Cluster C (n=95)
LV posterior wall in diastole, cm (n)	1.37 ± 0.38 (7)	1.27 ± 0.06 (59)	1.06 ± 0.04 (95)
LV posterior wall in systole, cm (n)	2.00 ± 0.48 (7)	1.91 ± 0.09 (58)	1.61 ± 0.05 (89)
Ventricular septal wall diastole, cm (n)	1.44 ± 0.25 (7)	1.28 ± 0.06 (59)	1.1 ± 0.04 (95)
LV mass, g (n)	187.05 ± 104.71 (7)	236.22 ± 18.15 (56)	162.75 ± 8.21 (89)
LV mass index, g/m² (n)	142.97 ± 44.83 (7)	114.72 ± 8.89 (56)	86.87 ± 4.07 (89)

Cardiac Hypertrophy Severity (n)

	Cluster A (n=7)	Cluster B (n=59)	Cluster C (n=95)
None (count, %)	0	23	67
Mild (count, %)	3	9	14
Moderate (count, %)	1	8	5
Severe (count, %)	3	16	3

	Cluster A (n=7)	Cluster B (n=59)	Cluster C (n=95)
Fractional shortening, % (n)	41.44 ± 11.63 (7)	34.34 ± 2.77 (57)	33.33 ± 1.83 (93)
LV ejection fraction, % (n)	65.6 ± 8.08 (6)	60.23 ± 1.94 (49)	60.68 ± 1.18 (77)
LV end-diastolic volume, mL (n)	133.09 ± 48.09 (6)	97.77 ± 10.17 (50)	75.41 ± 5.19 (81)
End-diastolic volume index, mL/m² (n)	70.35 ± 18.22 (6)	47.26 ± 4.61 (50)	40.23 ± 2.45 (81)
LV end-systolic volume, mL (n)	45.79 ± 23.32 (7)	40 ± 4.46 (49)	29.94 ± 2.14 (79)
End-systolic volume index, mL/m² (n)	23.75 ± 10.06 (7)	19.30 ± 1.94 (49)	15.93 ± 1.14 (79)
Relative Wall thickness (n)	0.60 ± 0.19 (7)	0.55 ± 0.04 (58)	0.49 ± 0.02 (95)
Left atrium linear dimension, cm (n)	4.24 ± 0.9 (7)	4.24 ± 0.16 (59)	3.80 ± 0.11 (94)

Doppler Measurements

	Cluster A (n=7)	Cluster B (n=59)	Cluster C (n=95)
Mitral peak E velocity, cm/s (n)	118.02 ± 17.42 (7)	111.79 ± 8.29 (56)	98.4 ± 4.8 (95)
Mitral peak A velocity, cm/s (n)	102.83 ± 40.87 (6)	89.7 ± 9.51 (55)	78.80 ± 4.58 (94)
Stroke volume LVOT, mL (n)	97.19 ± 35.38 (7)	52.56 ± 20.84 (7)	137.59 ± 37.81 (5)
Stske valve index LVOT, mL/m² (n)	52.56 ± 20.84 (7)	41.61 ± 3.24 (26)	103.51 ± 3.43 (9)
LVOT velocity max, cm/s (n)	95.76 ± 25.68 (7)	8.15 ± 3.83 (7)	364.35 ± 58.11 (7)
LVOT max gradient, mmHg (n)	4.39 ± 1.91 (7)	4.39 ± 0.53 (57)	243.57 ± 48.05 (7)
LVOT mean gradient, mmHg (n)	5.99 ± 18.79 (7)	2.93 ± 0.28 (57)	55.99 ± 18.79 (7)
Aortic valve velocity mean, cm/s (n)	28.18 ± 10.8 (7)	10.9 ± 1.71 (59)	28.18 ± 10.8 (7)
Aortic valve max gradient, mmHg (n)	149.42 ± 12.01 (59)	215.16 ± 16.83 (59)	149.42 ± 12.01 (59)
Aortic valve mean gradient, mmHg (n)	118.26 ± 5.39 (9)	174.47 ± 8.87 (9)	118.26 ± 5.39 (9)

Categorical values are presented as counts and percentages; continuous variables are presented as mean ± 95% confidence interval. LV = left ventricle, LVOT = LV outflow tract.
n=total number of patients in each cohort or n=number of patients with available data
↑ or ↓ indicates higher or lower than expected by chance
* Clusters A & B differ from Cluster C (Newman-Keuls/Duncan’s)
† AllClusters differ from each other (Newman-Keuls)
‡ Only Cluster A differs from Cluster C (Duncan’s)
|| Only Cluster A differs from Cluster B (Duncan’s)
ANOVA is significant but multiple comparisons (Newman-Keuls and Duncan’s) show all clusters overlap each other
** Clusters B & C differ from Cluster A (Newman-Keuls)

Table 3. Differences in variables between the two outcomes of developing HFpEF vs. remaining asymptomatic within each cluster

Cluster A	Subclinical DD (n=2)	HFpEF (n=5)	p value
Aortic distensibility	0.00293 ± 0.00773 (n=2)	0.00103 ± 0.00062 (n=4)	0

Cluster B	Subclinical DD (n=24)	HFpEF (n=35)	p value	
Co-morbidities				
Chronic kidney disease		27% (n=22)	69% (n=35)	0
Diabetes	27% (n=22)	66% (n=35)	0	
Medication Use by Class				
Aldosterone antagonists	29% (n=21)	6% (n=35)	0	
Beta blockers	48% (n=21)	80% (n=35)	0	
Diuretics	29% (n=21)	60% (n=35)	0	
Echocardiographic Parameters				
LV Internal dimension in systolic (cm)	2.84 ± 0.28 (n=23)	3.23 ± 0.23 (n=35)	0	
LV Outflow Tract max gradient (mmHg)	5.8 ± 0.86 (n=23)	5.34 ± 0.69 (n=34)	0	
Aortic Valve velocity max (cm/sec)	235.82 ± 31.84 (n=24)	201 ± 18.04 (n=35)	0	
Aortic Valve velocity mean (cm/sec)	163.64 ± 22.82 (n=24)	139.68 ± 12.89 (n=35)	0	
Aortic Valve max gradient (mmHg)	24.43 ± 5.98 (n=24)	17.24 ± 3.03 (n=35)	0	
Aortic Valve mean gradient (mmHg)	13.22 ± 3.39 (n=24)	9.32 ± 1.67 (n=35)	0	
Vascular parameters				
Pulse pressure (mmHg)	65.57 ± 6.49 (n=14)	82.79 ± 9.87 (n=18)	0	
Arterial stiffness (mmHg/mL/m²)	1.61 ± 0.3 (n=11)	2.24 ± 0.42 (n=14)	0	
Arterial elastance (mmHg/mL)	1.47 ± 0.21 (n=11)	1.87 ± 0.28 (n=14)	0	
Aortic distensibility (1/mmHg)	0.00291 ± 0.00088 (n=14)	0.00189 ± 0.00059 (n=18)	0	
Cluster C

Co-morbidities	Subclinical DD (n=55)	HfPEF (n=40)	p value
Atrial fibrillation	19% (n=52)	45% (n=40)	0
Chronic kidney disease I	25% (n=52)	55% (n=40)	0
Coronary artery disease I	40% (n=52)	65% (n=40)	0
Medication use			
Digoxin	0% (n=51)	13% (n=40)	0
Diuretics I	38% (n=50)	73% (n=40)	0

Echocardiographic Parameters			
LV Posterior Wall in Systole (cm)	1.56 ± 0.06 (n=50)	1.67 ± 0.1 (n=39)	0
LV End-diastolic volume (mL)	80.37 ± 7.41 (n=48)	68.2 ± 6.47 (n=33)	0
End-diastolic volume index (mL/m²)	42.78 ± 3.44 (n=48)	36.52 ± 3.14 (n=33)	0
LV End-systolic volume (mL)	32.12 ± 3.37 (n=48)	26.56 ± 3.08 (n=31)	0
End-systolic volume index (mL/m²)	17.06 ± 1.57 (n=48)	14.19 ± 1.47 (n=31)	0

Vascular parameters			
Diastolic blood pressure (mmHg)	75.85 ± 3.37 (n=33)	68.82 ± 6.34 (n=17)	0

Only variables which differed between the subclinical diastolic dysfunction (DD) group and group that progressed to HfPEF are shown.

Categorical values are presented as counts and percentages; continuous variables are presented as mean ± 95% confidence interval; *p value = asymptomatic vs. HfPEF outcome.

n=total number of patients in each cohort or n=number of patients with available data.

Figures
Figure 1

Diagram illustrating hierarchical clustering into 2, 3, 4 or 5 clusters. The original population of 161 asymptomatic diastolic dysfunction patients was repeatedly subdivided into smaller clusters based on phenotypic similarities with numbers in bold indicating the number of patients assigned to each cluster. Numbers in parentheses indicate the percentage of patients within the clusters who progress from diastolic dysfunction to HFpEF. Chi-squared p values indicate the probability of whether the frequency of HFpEF is the same among the clusters.
Summary of significant differences among Clusters Kaplan-Meier estimates for the (1) time (years) from the initial diagnosis of subclinical diastolic dysfunction (DD) to HFpEF (left column), (2) age of HFpEF diagnosis (middle column) and (3) age of death (right column).
Each graph shows comparisons among the three Clusters A (black line), B (green line), and C (red line). Cluster analysis was performed on the (A) entire cohort, (B) female only cohort, (C) male only cohort, (D) all patients without left ventricular (LV) hypertrophy, (E) all patients with LV hypertrophy, (F) all patients who developed HFpEF, and (G) all patients who remained with subclinical diastolic dysfunction (DD). P-values = Cluster B vs Cluster C.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Formula 3.jpg
Formula 4.jpg
Formula 2.jpg
Formula 1.jpg