The Intracellular HBV DNAs as Novel and Sensitive Biomarkers for the Clinical Diagnosis of Occult HBV Infection in HBeAg Negative Hepatocellular Carcinoma in China

Hui Wang1, Meng Fang1, Xing Gu1, Qiang Ji1, Dongdi Li2, Shu-Qun Cheng3, Feng Shen4, Chun-Fang Gao1*

1 Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, PR China, 2 Research School of Chemistry, The Australian National University, Canberra ACT, Australia, 3 Department of Hepatic Surgery (VI), Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, PR China, 4 Department of Hepatic Surgery (VI), Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, PR China

Abstract

This study aimed to investigate the virological status in liver (both tumor and adjacent non-tumor tissue), the clinical features and the contribution of occult HBV infection (OBI) to postoperative prognosis in HBeAg-negative (−) hepatocellular carcinoma (HCC) patients in China. Using quantitative TaqMan fluorescent real-time PCR assays, HBV covalently closed circular DNA (cccDNA) and total DNA (tDNA) were both quantified in 11 (HBsAg(−)) and 57 (HBsAg-positive(+) pairs of tumor tissue (TT) and adjacent non-tumor tissue (ANTT) obtained from HBeAg(−) HCC patients who received no antiviral treatment and were negative for anti-HCV before surgical treatment. Of 11 HBsAg(−) patients, 36% were with HBsAb(+) HBeAb(+) HBcAb(+). However, only 9% of the HBsAg(−) patients were HBsAb(−) HBeAb(+) HBcAb(+), which accounted for the majority (93%) in the HBsAg(+) group. TT and ANTT HBV tDNAs in 11 HCC patients with HBsAg (−) and HBeAg (−) were all detectable. HBV cccDNA and tDNA were all lower in the HBsAg(−) group than those in the HBsAg(+) group. By Kaplan-Meier analysis, patients with OBI were associated with a lower risk of cirrhosis and better overall survival (OS). The intracellular HBV DNAs, such as HBV cccDNA and tDNA are valuable biological markers for the diagnosis of occult HBV infection in HCC patients. This would assist the clinical implementation of a more personalized therapy for viral re-activation control and improve the survival rate of OBI patients.

Introduction

Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide [1,2]. The major risk factor for the development of HBV infection (HBV) is hepatitis B virus (HBV) infection [3,4]. A peculiar aspect of chronic HBV infection is the persistence of HBV genomes in the absence of serum HBs antigen (HBsAg), so-called ‘occult’ infection. The geographic distribution of occult HBV infection (OBI) is associated with the prevalence of HBV infection and its prevalence is high in HCC populations [5].

OBI can occur not only in individuals with anti-HBs and/or anti-HBc antibodies but also in those who are negative for HBV markers [5,6]. The seronegativity in these OBI patients may be caused by naturally occurring mutants of HBV, which alters either the immunoreactivity of various HBV proteins or the quantity of serum HBsAg [7]. The individuals with OBI usually exhibit lower levels of viremia [8]. A decrease in HBV viral load as well as replication and various relevant mutations have been implicated in the explanation of HBsAg-negative (−) [9]. Several previous studies have reported the existence of HBV DNA in liver tissues of HBsAg-negative patients [10,11,12,13] and the OBI significantly correlated with cirrhosis in chronic hepatitis C virus (HCV) carriers [14,15,16]. OBI is a worldwide diffused entity, evidence showed that this condition might be potentially oncogenetic [5,17]. However, in those HCC patients with HBsAg and HBeAg negative, the virologic status and the clinical features of OBI are still not thoroughly studied.

HBV covalently closed circular DNA (cccDNA) is an important intermediate in the life cycle of HBV, from which the HBV pregenomic RNA and all HBV messenger RNA transcripts originate [13]. Although the level of HBV replication in those HCC patients with HBsAg and HBeAg negative is low, little is known about the level of HBV covalently closed circular DNA (cccDNA) and total DNA (tDNA) in paired tumor tissues (TT) and adjacent non-tumor tissues (ANTT) in chronic Hepatitis B (CHB) endemic areas, such as China.

We therefore conducted a prospective study. The primary aim was to investigate the virologic status in the liver (both TT and
ANTT) among these HCC patients with HBsAg (−) and HBeAg (−). The second aim was to determine the clinical features and the contribution of occult HBV infection (OBI) to postoperative prognosis for HCC patients with HBsAg (−) and HBeAg (−) in China.

Materials and Methods

Patients and samples

This study included a HBsAg-negative group (n = 11) and a HBsAg-positive (+) group (n = 57) of HCC patients with HBeAg (−) (between March 2007 and May 2009) who received no antiviral treatment and were negative for anti-HCV before surgical resection at the Shanghai Eastern Hepatobiliary Surgery Hospital (EHBH) in Shanghai, China. The study was approved by the Chinese Ethics Committee of Human Resources at the Second Military Medical University. All study participants provided written informed consent.

The inclusion criteria were patients with no evidence of hepatitis C virus (HCV) or hepatitis D virus (HDV) co-infection; no previous antiviral treatment; complete resection of tumor with sufficient safety margin (R0) and histologically proven HCC. 1) The HBsAg-negative group: HBsAg-negative and HBeAg-negative for at least 6 months, undetectable serum HBV DNA. 2) The HBsAg-positive group: HBsAg-positive and HBeAg-negative for at least 6 months.

The exclusion criteria included a history of liver transplantation and other malignancies, tumors of uncertain origin, metastatic liver cancer, autoimmune liver diseases, drug-related liver diseases, alcoholic hepatitis and other causes of chronic liver diseases (such as HCV, HDV, HEV, HIV) diagnosed before enrollment.

Details of patient clinical diagnosis, follow up are included in File S1.

Quantitation of HBV cccDNA and total DNA (tDNA) in tissues

Viral DNAs in frozen tissues were extracted using the QIAamp DNA Mini kit (QIAGEN GmbH, Hilden, Germany). HBV cccDNA and tDNA were detected using real-time polymerase chain reaction (PCR) with TaqMan fluorescent probes (Fosun Diagnostics, Shanghai, China) according to the method described by Bettina et al. with a slight modification [18]. The extracted DNA samples were treated with plasmid DNA-safe ATP-dependent enzyme (Epicentre, Madison, WI). Real-time PCR was performed on an ABI 7500 (Life Technologies Corporation, Foster City, CA) using a 50 μl reaction volume containing 20 ng of DNA (for cccDNA quantification, a volume equivalent to 20 ng prior to DNase treatment), 2.5 mM MgCl2, 0.5 μM of forward and reverse primers, and a 0.4 μM probe. Forward and reverse primers were F1 and R1 for cccDNA amplification, respectively and F2 and R2 for total intrahepatic HBV DNA amplification, respectively. TaqMan probes were TaqP1 for cccDNA quantification and TaqP2 (Table S1) for total intrahepatic HBV DNA quantification. GAPDH, a single copy housekeeping gene present in human was used in the real-time PCR as a control to estimate the number of cells represented in each PCR reaction. Serial dilutions of genomic DNAs were used as standards to quantitate GAPDH DNA from liver tissues. The results of cccDNA and tDNA were normalized to copies/10^6 cells.

Statistical analysis

All statistical analyses were two sided and performed using SPSS 17.0 for Windows (SPSS Inc., Chicago, IL). A P value of <0.05 was considered as statistically significant. Details are included in File S1.

Results

Immunological characteristics of HCC patients

The immunological characteristics of HBeAg(−) HCC patients are summarized in Table 1. There was significant difference between the HBsAg(−) and the HBsAg(+) group (P<0.001). Of 11 patients in the HBsAg(−) group, 36% were with HBsAb (+) HBeAb (+) and 57 patients (98%) in the HBsAg(+) group, there were only 1 patients (2%) with HBsAb(−) HBeAb(+) HBeAb(+) and 56 patients (98%) with HBsAb(−), 54 patients (95%) with HBeAb(+) and 3 patients (5%) with HBeAb(−), and 57 patients (100%) with HBeAb(−).

Intrahepatic HBV DNAs in 11 HCC patients with HBsAg (−) and HBeAg (−) were all detectable

The paired TT/ANTT of HCC patients with HBsAg (−) were stratified into different group (A–E) according to the immunological characteristics, and examined for intracellular HBV cccDNA and tDNA levels (Table 2). Interestingly, in the HBsAg(+) group, all HBV tDNAs were detectable, and 3 TT and 5 ANTT cccDNAs were undetectable. Among the HBsAg(+) group,
Table 2. Quantification of intrahepatic HBV DNAs in HCC patients.

Characteristic	Group	HBsAb	HBeAb	HBCAb	No. of patients (%)	TT (log₁₀ copies/10⁶ cells)	ANTT (log₁₀ copies/10⁶ cells)	TT ratio (%)	ANTT ratio (%)
						cccDNA	HBV tDNA		
						HBV tDNA	cccDNA		
HBsAg (−) and HBeAg (−)	A	+	+	+	4 (36%)	3.05 ± 0.53	4.78 ± 1.65	3.29 ± 0.66	4.83 ± 2.03
	B	+	−	+	2 (18%)	2.33 ± 0.01	5.62 ± 0.16	2.67 ± 0.56	6.07 ± 0.55
	C	−	+	+	1 (9%)	1.45	5.59	undetectable	1.64
	D	−	−	+	2 (18%)	6.07*	5.22 ± 5.06	undetectable	2.54 ± 0.15
	E	−	−	−	2 (18%)	undetectable	2.65 ± 0.01	4.86*	4.81 ± 2.95
Total					11 (100%)				
HBsAg (+) and HBeAg (−)	A	+	+	+	1 (2%)	3.82	5.17	3.75	6.83
	B	+	−	+	0				
	C	−	+	+	53 (93%)	4.57 ± 1.67	6.62 ± 1.42	4.86 ± 1.16	6.95 ± 0.88
	D	−	−	+	3 (5%)	6.99 ± 0.07*	6.43 ± 3.54	4.70 ± 1.43	6.61 ± 0.61
	E	−	−	−	0				
Total					57 (100%)				

Abbreviations: HBV, hepatitis B virus; cccDNA, covalently closed circular DNA; tDNA, total DNA; TT, tumor tissue; ANTT, adjacent non-tumor tissue.

* indicate the concentration of one sample was undetectable.

doi:10.1371/journal.pone.0107162.t002
In Figure 1. The HBV cccDNA was significantly lower in the HBsAg group, other than those patients with HBsAb (−) group, than those in the HBsAg(+) group, other than those patients with HBsAb (+) and HBeAb (+). The difference in TT/ANTT HBV cccDNA and tDNA between the HBsAg(−) group and the HBsAg(+) one were shown in Figure 1. The HBV cccDNA was significantly lower in the HBsAg(−) group than in the HBsAg(+) group (TT: 3.05 ± 1.39 log10 copies/10⁶ cells, P = 0.013; ANTT: 3.35 ± 0.94 vs. 4.83 ± 1.16 log10 copies/10⁶ cells, P = 0.004). Similarly, the HBV tDNA was also significantly lower in the HBsAg(−) group than in the HBsAg(+) group (TT: 4.70 ± 2.13 vs. 6.59 ± 1.53 log10 copies/10⁶ cells, P = 0.001; ANTT: 4.34 ± 2.06 vs. 6.93 ± 0.86 log10 copies/10⁶ cells, P = 0.002). However, no statistical significant difference in TT/ANTT ratios was observed between the HBsAg(−) and the HBsAg(+) group (TT: 6.02 ± 1.287 vs. 2.83 ± 4.40%, P = 0.509; ANTT: 0.45 ± 0.55 vs. 1.98 ± 2.75%, P = 0.180).

Occult HBV infection was associated with a lower risk of cirrhosis and better overall survival

Eleven Patients with occult HBV infection had higher albumin (ALB), well-differentiated tumors (E-S grades I and II) and a lower risk to develop cirrhosis (Table 3). However, the other demographic and clinicopathological characteristics were not significantly different between the two groups.

By Kaplan-Meier analysis, although patients with OBI (did not differ significantly in overall survival (OS) and disease-free survival (DFS)) (P = 0.173 and P = 0.386, Fig. 2A, 2B); patients with OBI showed lower mortality rates at 1-, 2- and 3-years after resection.

Discussion

HCC is one of the most common cancers worldwide, and its incidence appears to be increasing [1,16]. Most cases of hepatocellular carcinoma (80%) arise in eastern Asia and sub-Saharan Africa, where chronic infection with HBV is the dominant risk factor [1]. However, this malignancy is not only mainly related to an overt (HBsAg positive) HBV infection, but also linked with occult HBV infection (HBsAg negative) [5]. The long-lasting persistence of HBV genomes in the liver (with detectable or undetectable HBV DNA in the serum of individuals testing negative for HBsAg) is termed OBI [17]. Our study based on the quantitative TaqMan fluorescent real-time PCR assay provides valuable information on the clinical and virological features of HCC patients with both HBsAg and HBeAg negative.

In our study, HBV tDNAs in 11 HCC patients with HBsAg(−) and HBeAg(−) were all detectable in TT or ANTT at the time of surgical resection. There were approximately half of these patients with HBsAb(+) (54%) and with HBeAb(+) (46%) patients with HBsAb(+) in the HBsAg(−) and HBeAg(−) group. We confirmed that HBV could persist in liver after the disappearance of HBsAg in individuals with previous exposure to the virus, retaining the serological footprint of HBeAb positivity with such a virologic status [19]. But there were 2 cases with all serological markers negative (HBsAg, HBeAg, HBsAb, HBeAb and HBcAb), in which had detectable HBV tDNA in TT/ANTT.

Previous studies have revealed that the HCC patients with OBI who are HBsAg-negative but positive for HBeAb are at risk of HBV reactivation after undergoing chemotherapy or immuno-suppressive therapy [20,21,22]. Thus, it is very important to monitor HBV DNA levels regularly to achieve the early administration of antiviral or antineoplastic drugs before the onset of ALT elevation, however, the optimum testing frequency and noninvasive detection technology of HBV DNA in occult HBV carriers will need additional study.

To clarify the virological characteristics of HBV, we detected the cccDNA levels in cancerous tissues and non-cancerous tissues. cccDNA does not take part in replication directly, because it is maintained as a stable pool inside the hepatocyte nuclei [23]. We found that the levels of cccDNA and tDNA in cancerous tissues and non-cancerous tissues were significantly lower in the HBsAg(−) group than in the HBsAg(+) group. Both TT and ANTT cccDNA made up a smaller portion of the tDNA in the HBsAg-negative group, than other than the tumor tissue ratio in the type of HBsAb (+) HBeAb (+) HBcAb (+). It is likely that OBI reactivates with the development of an immuno-suppressive status.

Although the cause of OBI reactivation is yet to be understood, it is necessary to consider the following factors: the host’s immune surveillance, restored virus, the impact of liver cancer cells and coinfection of other types of HBV. (1) Virus factors: In most cases there is no change in the α determinant that could explain the lack of HBsAg detection [24,25,26]. Although in a few cases (10%) the lack of HBsAg detection is due to infection with mutated viruses unrecognized by available assays (S-escape mutants) [27,28,29], the typical OBI is related to strongly suppressed HBV replication and the cause of HBV suppression is yet to be understood [17]. (2) Host factors: The genetic differences between individuals can lead to different immunological environment. An in vitro study showed that occult viral isolates could fully restore replication, transcription, and protein synthesis abilities once the viruses are taken out of the host liver microenvironment [30]. However, the association between host genomic variation and virus replication suppression needs to be investigated. (3) Coinfection. Because the exclusion criteria in our study included a history of other causes of chronic liver diseases (such as HCV, HDV, HEV, HIV) diagnosed before enrollment, there is no evidence of direct effects of infection and the cause of HBV suppression is yet to be understood [17].
Table 3. Occult HBV infection was associated with the cirrhosis and E-S grade.

Demographic or Characteristic	HBsAg (+) and HBeAg (-) (n = 57)	HBsAg (-) and HBeAg (-) (n = 11)	P value		
	No. of patients	%	No. of patients	%	
Sex NS(0.360)	Male	48	84	8	73
	Female	9	16	3	27
Age, years NS(0.179)	Median	51	58	4	
	Range	34–70	36–75	1.4–1210	
AFP, ng/mL NS(0.065)	Median	119	4		
	Range	1.9–1210	1.4–1210		
CEA, ng/mL NS(0.451)	Median	2.6	2		
	Range	0.4–33.7	0.5–7.8		
CA19-9, U/mL NS(0.779)	Median	26	13		
	Range	6–295.5	6.7–259.9		
TBIL, µmol/L NS(0.834)	Median	14	14		
	Range	6.4–64.7	8–80.2		
ALB, g/L 0.041	Median	41	44		
	Range	34.6–49.9	39.4–49.4		
ALT (IU/L) NS(0.058)	Median	44	20		
	Range	12.8–360.5	5.5–48.1		
GGT, U/L NS(0.388)	Median	77	55		
	Range	23–843	10–355		
Platelet, 10^9/L NS(0.913)	Median	151	# #		
	Range	51–382	56–284		
PT (INR) NS(0.473)	Median	1	1		
	Range	0.86–1.9	0.93–1.13		
Creatinine, µmol/L				NS(0.247)	
Demographic or Characteristic	HBsAg (+) and HBeAg (−) (n = 57)	HBsAg (−) and HBeAg (−) (n = 11)	P value		
------------------------------	---------------------------------	---------------------------------	--------		
	No. of patients	%	No. of patients	%	
Median	70	70			
Range	40–94		50–110		
Tumor Size, cm			NS(0.075)		
Median	7.9		5		
Range	2.4–20		1.46–11.3		
Tumor Number			NS(0.568)		
Single	42	74	9	82	
Multiple	15	26	2	18	
Satellite nodules			NS(0.549)		
Yes	15	26	2	18	
No	41	72	9	82	
Liver cirrhosis			0.008		
Yes	47	83	5	46	
No	10	18	6	55	
Tumor capsular invasion			NS(0.272)		
Yes	37	65	9	82	
No	20	35	2	18	
Macrovascular invasion			NS(0.237)		
Yes	14	25	1	9	
No	43	75	10	91	
E-S grade			0.015		
I–II	15	26	7	64	
III–IV	42	74	4	36	
TNM stage					
I–II	30	53	8	73	NS(0.219)
III–IV	27	47	3	27	
Serum HBV DNA (log_{10} IU/mL)			<0.001		
Median	47		undetectable		
Range	3–7.62		undetectable		
Undetectable	4	7	11	100	
detectable	53	93	0	0	

Abbreviations: NS, not significant; AFP, α-fetoprotein; ALB, albumin; CEA, carcinoembryonic antigen; GGT, γ-glutamyltransferase; TBIL, total bilirubin; ALT, alanine aminotransferase; PT, prothrombin time; E-S grade, Edmonson-Steiner grade; HBV, hepatitis B virus; HBsAg, hepatitis B surface antigen; HBeAg, hepatitis B e antigen; HCC, hepatocellular carcinoma.

Serum HBV DNA of 11 patients with HBsAg (−) and HBeAg (−) were all less than 10^3 IU/mL.

doi:10.1371/journal.pone.0107162.t003
mechanisms leading to HCC in occult HBV carriers seem to be similar to those in overt cases.

Our study has limitations. Firstly, samples were from a single department and the size was limited. In future studies, larger sample size would be preferred in order to validate the findings shown in this study. Besides, studies should continue to functionally characterize viral mutations and the relevant viral genes.

In summary, our findings suggest that the intracellular HBV DNAs, such as HBV cccDNA and tDNA are valuable biological markers for the diagnosis of occult HBV infection in HCC patients. This would assist the clinical implementation of a more personalized therapy for viral re-activation control and improve the survival rate of OBI patients.

Supporting Information

Table S1 Sequences of primers used in the study for cccDNA and tDNA.

References

1. Forner A, Llovet JM, Bruix J (2012) Hepatocellular carcinoma. Lancet 379: 1245–1255.
2. Center MM, Jemal A (2011) International trends in liver cancer incidence rates. Cancer Epidemiol Biomarkers Prev 20: 2362–2368.
3. Pollicino T, Raimondo G (2011) Hepatocellular carcinoma: the point of view of the hepatitis B virus. Carcinogenesis 32: 1112–1132.
4. Nguyen VT, Law MG, Dore GJ (2009) Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J Viral Hepat 16: 453–463.
5. De Miti MS, Cassini R, Bernardi M (2010) Hepatitis B virus-related hepatocarcinogenesis: molecular oncogenic potential of clear or occult infections. Eur J Cancer 46: 2178–2180.
6. Brechot C, Thierry V, Kremsdorf D, Nalpas B, Pol S, et al. (2001) Persistent hepatitis B virus infection in subjects without hepatitis B surface antigen: clinically significant or purely “occult”. Hepatology 34: 194–203.
7. Saito T, Shinzawa H, Uchida T, Kawamata O, Honma S, et al. (1999) Quantitative DNA analysis of low-level hepatitis B virus viremia in two patients with serologically negative chronic hepatitis B. J Med Virol 58: 325–331.
8. Rodriguez-Inguito E, Mariscal L, Bartolome J, Castillo I, Navacerrada C, et al. (2003) Distribution of hepatitis B virus in the liver of chronic hepatitis C patients with occult hepatitis B virus infection. J Med Virol 70: 571–580.
9. Gunther S, Fischer I, Puhl I, Sterneck M, Will H (1999) Naturally occurring variants of hepatitis B virus. Adv Virus Res 52: 25–137.
10. Brechot C, Pourcel G, Louise A, Rain B, Tiellais P (1980) Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature 286: 533–535.
11. Shafritz DA, Shouval D, Sherman HI, Hadziyannis SJ, Kew MC (1981) Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma. Studies in percutaneous liver biopsies and post-mortem tissue specimens. N Engl J Med 305: 1067–1073.
12. Brechot C, Hadchouel M, Scotto J, Fonck M, Poet F, et al. (1983) State of hepatitis B virus DNA in hepatocytes of patients with hepatitis B surface antigen-positive and -negative liver diseases. Proc Natl Acad Sci U S A 78: 3906–3910.
13. Wong DK, Huang FY, Lai CL, Poon RT, Seto VK, et al. (2011) Occult hepatitis B infection and HBV replicative activity in patients with cryptogenic cause of hepatocellular carcinoma. Hepatology 54: 829–836.
14. De Maria N, Colantoni A, Friedlander I, Leandro G, Idhiman R, et al. (2000) The impact of previous HBV infection on the course of chronic hepatitis C. Am J Gastroenterol 95: 5329–5336.
15. Sagnelli E, Coppola N, Scolastico C, Mogavero AR, Filippini P, et al. (2001) HCV genotype and “silent” HBV coinfection: two main risk factors for a more severe liver disease. J Med Virol 64: 350–355.
16. Pollicino T, Squadrito G, Cereuzza G, Cacciola I, Raffa G, et al. (2004) Hepatitis B virus maintains its pro-oncogenic properties in the case of occult HBV infection. Gastroenterology 126: 102–110.
17. Raimondo G, Caccamo G, Filomia R, Pollicino T (2013) Occult HBV infection. Semin Immunopathol 35: 39–52.
18. Werle-Lapostolle B, Bawden S, Locarnini S, Worsthorn K, Petersen J, et al. (2004) Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 126: 1750–1758.
19. Raimondo G, Allain JP, Brunetto MR, Buendia MA, Chen DS, et al. (2008) Statements from the Taormina expert meeting on occult hepatitis B virus infection. J Hepatol 49: 652–657.
20. Hui CK, Cheung WW, Zhang HY, Au WY, Yueng YH, et al. (2006) Kinetics and risk of de novo hepatitis B infection in HBsAg-negative patients undergoing cytotoxic chemotherapy. Gastroenterology 131: 59–66.
21. Derive I, Hober D, Morel P (2001) Acute hepatitis B in a patient with antibodies to hepatitis B surface antigen who was receiving rituximab. N Engl J Med 344: 68–69.

Table S2 Correlations among HBV DNAs in the HBsAg-positive group.

Table S1 Supplemental Materials and Methods.

Acknowledgments

The authors thank Prof. Fei-guo Zhou for the clinical interpretation and Dr. Zhi-jun Yang for experimental assistance.

Author Contributions

Conceived and designed the experiments: HW MF XG JC DDL SQC FS CFG. Performed the experiments: HW MF SQC FS CFG. Analyzed the data: HW MF SQC FS CFG. Contributed reagents/materials/analysis tools: HW MF QJ SQC FS CFG. Contributed to the writing of the manuscript: HW MF SQC FS CFG.
22. Inuzuka T, Ueda Y, Morimura H, Fujii Y, Uneda M, et al. (2014) Reactivation from Occult HBV Carrier Status is Characterized by Low Genetic Heterogeneity with the Wild-type or G1896A Variant Prevalence. J Hepatol.

23. Wong DK, Yuen MF, Poon RT, Yuen JC, Fung J, et al. (2006) Quantification of hepatitis B virus covalently closed circular DNA in patients with hepatocellular carcinoma. J Hepatol 45: 553–559.

24. Blackberg J, Kidd-Ljunggren K (2000) Occult hepatitis B virus after acute self-limited infection persisting for 30 years without sequence variation. J Hepatol 33: 992–997.

25. Jeantet D, Chemin I, Mandrand B, Tran A, Zoulim F, et al. (2004) Cloning and expression of surface antigens from occult chronic hepatitis B virus infections and their recognition by commercial detection assays. J Med Virol 73: 568–515.

26. Wagner AA, Denis F, Weinbreck P, Loustaud V, Aubinage F, et al. (2004) Serological pattern ‘anti-hepatitis B core alone’ in HIV or hepatitis C virus-infected patients is not fully explained by hepatitis B surface antigen mutants. AIDS 18: 569–571.

27. Chemin I, Alain S, Margeridon S, Mrani S, Kay A, et al. (2006) What is really ongoing during occult HBV reactivation. Hepatology 43: 195–196.

28. Alexopoulos A, Baltayiannis G, Jammeh S, Waters J, Dourakis SP, et al. (2004) Hepatitis B surface antigen variant with multiple mutations in the a determinant in an agammaglobulinemic patient. J Clin Microbiol 42: 2861–2865.

29. Jeantet D, Chemin I, Mandrand B, Zoulim F, Trepo C, et al. (2002) Characterization of two hepatitis B virus populations isolated from a hepatitis B surface antigen-negative patient. Hepatology 35: 1213–1224.

30. Pollicino T, Raffa G, Costantino L, Lisa A, Campello C, et al. (2007) Molecular and functional analysis of occult hepatitis B virus isolates from patients with hepatocellular carcinoma. Hepatology 45: 277–285.

31. Chemin I, Trepo C (2005) Clinical impact of occult HBV infections. J Clin Virol 34 Suppl 1: S13–21.