Dark Matter, Dark Energy and the Chaplygin Gas

Neven Bilić†, Gary B. Tupper, and Raoul D. Viollier‡
Institute of Theoretical Physics and Astrophysics,
Department of Physics, University of Cape Town,
Private Bag, Rondebosch 7701, South Africa

March 25, 2019

Abstract
We formulate a Zel’dovich-like approximation for the Chaplygin gas equation of state $P = -A/\rho$, and sketch how this model unifies dark matter with dark energy in a geometric setting reminiscent of M-theory.

1 Introduction

In the last few years improved observations [1] have forced a shift in our cosmological paradigm: the $\Omega_M = 1$ dust model has been swept aside and, in its place, we are faced with the problem of understanding a universe with an equation of state $\bar{W} = \bar{P}/\bar{\rho} < -1/3$. That is to say, on average, pressure is comparable with density and, moreover, negative.

Of course, parametrically, this is readily accommodated by a cosmological constant Λ [2] with $\Omega_\Lambda \simeq 0.7$ and $\Omega_{DM} = 1 - \Omega_\Lambda \simeq 0.3$ (throughout the paper we neglect the small baryonic contribution). The well-known difficulty with Λ is that a priori it seems an incredible accident that $\Omega_\Lambda \simeq \Omega_{DM}$ since

†Permanent address: Rudjer Bošković Institute, P.O. Box 180, 10002 Zagreb, Croatia; Email: bilic@thphys.irb.hr
‡Email: viollier@physci.uct.ac.za
\[\rho_\Lambda / \rho_{DM} \sim a^3, \ a \text{ being the scale factor.} \] Hence, much attention has been devoted to quintessence \cite{3}, involving a real scalar field which tracks \cite{4} the background component until recently becoming dominant. However, simple tracking quintessence does not work \cite{5} and spintessence \cite{6}, where the scalar field is complex, suffers instabilities against the decay of dark energy into dark matter \cite{7}.

It is natural to conjecture that some of the aforementioned problems derive from treating dark matter and dark energy as separate issues. As an example, Barr and Seckel \cite{8} have pointed out that in axion dark matter models quantum gravity effects break the Pecci-Quinn symmetry leading to a universe trapped in a false vacuum with an effective \(\Lambda \) of the correct magnitude. In another approach, Wetterich \cite{9} has suggested that traditional WIMP dark matter should be replaced by quintessence lumps, thus unifying dark matter and dark energy. However, the radiation-matter transition and structure formation remain open questions in this scenario.

Herein we present a dark matter-energy unification model suggested by the observation of Kamenshchik et al. \cite{10} that a perfect fluid obeying the Chaplygin gas equation of state

\[P = -\frac{A}{\rho} \] (1)

should lead to a homogenous cosmology with

\[\bar{\rho}(a) = \sqrt{A + \frac{B}{a^6}}, \] (2)

with \(B \) being an integration constant, thus interpolating between dark matter, \(\bar{\rho}(a \to 0) \simeq \sqrt{B}/a^3 \) and dark energy \(\bar{\rho}(a \to \infty) \simeq \sqrt{A} \). Before doing so, we must first show why Eq. (1), aside from its interesting mathematical features \[\square\], might describe reality.

2 Brane New World

One of the most profound recent developments in fundamental physics has been the recognition that all of the extra dimensions required by string/M-theory do not have to be of the Planck length size: one (or more) could be as large as 0.1 mm provided that all standard-model fields except gravity are
confined to a 3-dimensional hypersurface or ‘brane’ in the higher dimensional
bulk (for a review see [12]). In this context, Kamenshchik et al. [13] obtained
Eq. (1) from the stabilization of branes in black hole bulks.

A simple way to see the connection between the Chaplygin gas and the
brane world is to follow Sundrum’s [14] effective field theory for the 3-
brane. The gauge fixed embedding of a 3+1 brane in a 4+1 bulk is described by
\(Y_M = (x^\mu, Y^4) \). With some nominal assumptions on the bulk metric
\(G_{MN} \), the induced metric on the 3-brane is
\[
\tilde{g}_{\mu\nu} = g_{\mu\nu} - \theta_{,\mu} \theta_{,\nu},
\]
with \(0 \leq \theta \leq \ell_5 \), and the action for the brane reads
\[
S_{\text{brane}} = \int d^4x \sqrt{-\tilde{g}} \left[-f^4 + \cdots \right] = \int d^4x \sqrt{-\tilde{g}} \sqrt{1 - g_{\mu\nu} \theta_{,\mu} \theta_{,\nu}} \left[-f^4 - \cdots \right],
\]

where \(f^4 \) is the brane tension and the ellipsis includes standard-model fields
as well as higher-order terms in power counting. One estimates \(f \sim \ell_5^{-1} \sim \text{meV} \).

Retaining only the leading term in Eq. (4) and renaming \(f^4 = \sqrt{A} \), one
sees that its content is equivalent to
\[
\mathcal{L} = \frac{\phi^2}{2} g_{\mu\nu} \theta_{,\mu} \theta_{,\nu} - V \left(\frac{\phi^2}{2} \right),
\]
\[
V = \frac{1}{2} \left(\phi^2 + \frac{A}{\phi^2} \right)
\]
since \(\phi \) can be eliminated through its field equation
\[
g^{\mu\nu} \theta_{,\mu} \theta_{,\nu} = V'.
\]

We observe that \(\mathcal{L} \) corresponds to the Lagrangian for a complex field \(\Phi = \phi e^{-im\theta}/\sqrt{2m} \) in the ‘Thomas-Fermi’ approximation. The Thomas-Fermi ap-
proximation amounts to neglecting \(\phi_{,\mu}/m\phi \) compared to \(\sqrt{V'/\phi^2} \), i.e., the
scale of variation of \(\phi \) is large compared to the Compton wavelength. It is
also worth noting that dividing \(\mathcal{L} \) by \(\sqrt{A} \), the first term is the periodic Gauss-
ian model with coupling \(R = A^{1/4}/\phi \). The potential \(F = (R^2 + R^{-2})/2 \),
which is self-dual, can be interpreted as the mean field free-energy for ‘brane
cells’ filling a system of size R, in analogy to Rama’s [15] ‘string bit’ analysis of black holes.

To complete the connection to the Chaplygin gas, we point out a field-fluid duality: for $V’ > 0$, Eq. (7) defines a fluid 4-velocity $U_{\mu}U^\mu = 1$,

$$U^\mu = g^\mu\nu\theta_{,\nu}/\sqrt{V’}$$ \hspace{1cm} (8)

and then the energy-momentum tensor derived from \mathcal{L} takes the perfect fluid form with

$$\rho = \frac{\phi^2}{2}V’ + V, \quad P = \frac{\phi^2}{2}V’ - V.$$ \hspace{1cm} (9)

In particular, for V of Eq. (6), the equation of state (1) follows, and the energy density ρ is given by

$$\rho = \phi^2 = \frac{\sqrt{A}}{\sqrt{1 - g^\mu\nu\theta_{,\mu}\theta_{,\nu}}},$$ \hspace{1cm} (10)

which is to say that matter corresponds to a wrinkled brane.

Finally, it must be said that the procedure can be reversed [16]. The equations

$$d\ln(\phi^2) = \frac{d\rho - dP}{\rho + P}, \quad V = \frac{1}{2}(\rho - P),$$ \hspace{1cm} (11)

obtained from Eq. (9), allow one to construct ϕ^2 and V given the equation of state. As an example, starting from $0 \geq W = P/\rho \geq -1$ and $0 \leq c_s^2 = dP/d\rho \leq 1$, with the relativistic limits coinciding, Eqs. (1), (6), and (4) follow.

3 The Inhomogeneous Chaplygin Gas

As yet, we have not dealt with the θ field equation; in the fluid language, it reads

$$\left(\sqrt{-g}\phi^2(\rho + P)U_{\mu}\right)_{,\mu} = 0.$$ \hspace{1cm} (12)

In comoving coordinates, $U_{\mu} = (1/\sqrt{g_{00}}, 0)$, the solution for the Chaplygin gas is [16]

$$\rho = \sqrt{A + \frac{B}{\gamma}}.$$ \hspace{1cm} (13)
Here $\gamma = -g/g_{00}$ is the determinant of the induced metric $\gamma_{ij} = g_{00}g_{ij}/g_{00} - g_{ij}$ which measures physical distances, and $B = B(\vec{x})$ can be taken as constant on the scales of interest.

The generalization \(13\) of Eq. \(2\) allows us to implement the geometric version \(17\) of the Zel’dovich approximation \(18\): the transformation from Lagrange to Euler (comoving) coordinates induces γ_{ij} as

$$\gamma_{ij} = \delta_{kl}D_i^kD_j^l,$$

(14)

with D_i^j the deformation tensor, φ the velocity potential. Inserting this ansatz in the 0-0 Einstein equation to first order in φ yields the evolution equation for $b(a)$

$$\frac{2}{3}a^2b'' + a(1 - \bar{w})b' = (1 + \bar{w})(1 - 3\bar{w})b,$$

(15)

$$\bar{w}(a) = -\frac{\Omega_\Lambda a^6}{1 - \Omega_\Lambda + \Omega_\Lambda a^6},$$

(16)

where we match the parameters A, B to the Λ model.

In Fig. 1 we show the evolution of $b(a)$ for the Chaplygin gas and for Λ cold dark matter, the latter following by omitting the $(1 - 3\bar{w})$ factor in Eq. \(15\) and changing a^6 to a^3 in Eq. \(16\). In either case, the growth $b \propto a$ ceases near $a = 1$ and although b remains constant, the perturbative density contrast $\delta_{\text{pert}} = b(1 + \bar{w})\varphi_{,i}^i$ thereafter vanishes as $\delta_{\text{pert}}(a \gg 1) \sim a^{-6}$.

Of course the value of the Zel’dovich approximation is that it offers a means of extrapolation into the nonperturbative regime via Eqs. \(13\) and

$$\sqrt{\gamma} = a^3(1 - \lambda_1b)(1 - \lambda_2b)(1 - \lambda_3b),$$

(17)

where the λ_i are the eigenvalues of $\varphi_{,i}^i$. When one (or more) of the λ’s is positive, a caustic forms on which $\gamma \rightarrow 0$ and $w \rightarrow 0$, i.e., at the locations where structure forms the Chaplygin gas behaves as dark matter. Conversely, when all of the λ’s are negative, a void forms, ρ is driven to its limiting value \sqrt{A}, and the Chaplygin gas behaves as dark energy driving accelerated expansion.

4 Discussion and Conclusions

A shortcoming of the Zel’dovich approximation is that at the caustic matter flows through unimpeded so that structures quickly dissolve \(19\). This may
Figure 1: Evolution of $b(a)/b(a_{eq})$ from $a_{eq} = 1.0 \times 10^{-4}$ for $\Omega_{\Lambda} = 0.7$ and $b'(a_{eq}) = 0$, for the Chaplygin gas (solid line) and ΛCDM (dashed line).

be circumvented via the truncated Zel’dovich approximation [19]. A preferable alternative would be an extension of the adhesion approximation [20] which also allows the extraction of mass functions.

Approximation technicalities aside, the case is made that the Chaplygin gas offers a realistic unified model of dark matter and dark energy. That this is achieved in a geometric (brane world) setting rooted in string/M theory makes this model all the more remarkable.

References
[1] A. Melchiorri, these proceedings.

[2] P.J.E. Peebles, ApJ 284, 439 (1984); J.P. Ostriker and P.J. Steinhardt, Nature 377, 600 (1995).

[3] C. Wetterich, Nucl. Phys. B 302, 668 (1988); P.J.E. Peebles and B. Ratra, ApJ 325, L17 (1988); R.R. Caldwell, R. Dave and P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

[4] I. Zlatev, L. Wang and P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999).

[5] S. Bludman, these proceedings.

[6] L.A. Boyle, R.R. Caldwell and M. Kamionkowski, astro-ph/0105318.

[7] S. Kasuya, astro-ph/0105408.

[8] S.M. Barr and D. Seckel, hep-ph/0106239.

[9] C. Wetterich, hep-ph/0108266, astro-ph/0108411.

[10] A. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. B 511, 265 (2001).

[11] R. Jackiw, physics/0010042, and references therein.

[12] V.A. Rubakov, hep-ph/0104152.

[13] A. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. B 487, 7 (2000).

[14] R. Sundrum, Phys. Rev. D 59, 085009 (1999).

[15] S.K. Rama, Phys. Lett. B 424, 39 (1998).

[16] N. Bilić, G.B. Tupper, and R.D. Viollier, astro-ph/0111325, Phys. Lett. B, in press.

[17] S. Matarrese and D. Terranova, MNRAS 283, 400 (1996).

[18] Ya. B. Zel’dovich, A&A 5, 84 (1970).

[19] J.L. Pauls and A.L. Melott, MNRAS 274, 99 (1995).
[20] S.N. Gurbatov, A.I. Saichev and S.F. Shandarin, MNRAS 236, 385 (1989).