First demonstration of robust tri-gate β-Ga$_2$O$_3$ nano-membrane field-effect transistors

To cite this article: Hagyoul Bae et al 2022 Nanotechnology 33 125201

View the article online for updates and enhancements.
First demonstration of robust tri-gate β-Ga$_2$O$_3$ nano-membrane field-effect transistors

Hagyoul Bae1,2*, Tae Joon Park3, Jinhyun Noh1,2, Wonil Chung1,2, Mengwei Si4, Shriram Ramanathan3 and Peide D Ye1,2

1Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States of America
2Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States of America
3Materials Engineering, Purdue University, West Lafayette, IN 47907, United States of America
4Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

E-mail: yep@purdue.edu

Received 4 September 2021, revised 12 November 2021
Accepted for publication 1 December 2021
Published 24 December 2021

Abstract

Nano-membrane tri-gate β-gallium oxide (β-Ga$_2$O$_3$) field-effect transistors (FETs) on SiO$_2$/Si substrate fabricated via exfoliation have been demonstrated for the first time. By employing electron beam lithography, the minimum-sized features can be defined with the footprint channel width of 50 nm. For high-quality interface between β-Ga$_2$O$_3$ and gate dielectric, atomic layer-deposited 15 nm thick aluminum oxide (Al$_2$O$_3$) was utilized with tri-methyl-aluminum (TMA) self-cleaning surface treatment. The fabricated devices demonstrate extremely low subthreshold slope (SS) of 61 mV dec$^{-1}$, high drain current (I_{DS}) ON/OFF ratio of 1.5×10^5, and negligible transfer characteristic hysteresis. We also experimentally demonstrated robustness of these devices with current–voltage (I–V) characteristics measured at temperatures up to 400 °C.

Keywords: tri-gate, β-Ga$_2$O$_3$ FETs, exfoliation, wide bandgap, atomic layer deposition, single-channel, multi-channel

(Some figures may appear in colour only in the online journal)

1. Introduction

β-Ga$_2$O$_3$ is one of the promising materials for next-generation power electronics owing to its ultra-wide bandgap of 4.6–4.9 eV, high breakdown electric field of 8 MV cm$^{-1}$, high electron mobility of 100–150 cm2 V$^{-1}$ s$^{-1}$, and sustainability for high-temperature operation and mass production with low-cost fabrication [1–8]. In addition, the β-Ga$_2$O$_3$ material has a higher Baliga’s figure-of-merit (FOM) than that of silicon carbide (SiC) and gallium nitride (GaN) [9, 10]. Owing to these advantages, monolithic β-Ga$_2$O$_3$ transistors could also be considered for high-temperature operation in harsh environments. In particular, stable operation of electronic devices in severe conditions, mainly at high temperatures, is indispensable for many applications in the defense, automotive, nuclear instrumentation, and aerospace fields [11, 12].

Recently, several studies have demonstrated improved electrical performances of β-Ga$_2$O$_3$ FETs by using double-gate [13], multi-channel with wrap-gate [14], vertical channel [15], back-gate [16], and recessed-gate [17, 18] devices. In particular, among these advanced technologies, structure innovation to enhance gate controllability to boost higher current density and suppress interface or short-channel effect becomes critical during device research [19, 20]. There are still opportunities to achieve better switching characteristics, higher integration density, and lower power consumption in β-Ga$_2$O$_3$ materials and device development.

In this study, the fabrication and performance of tri-gate β-Ga$_2$O$_3$ FETs with single and multi channel structures formed from nano-membranes are presented. In the single channel structure, a narrow channel with a width (W_{ch}) of 50 nm is fabricated to exploit the high ON/OFF ratio of I_{DS}...
and superior subthreshold slope, while maintaining reliable performance at temperature from room temperature (RT) to 400 °C.

2. Device fabrication

Figure 1(a) lists the key fabrication steps for the tri-gate nanomembrane β-Ga2O3 FETs on the SiO2/Si substrate. For the fabrication of the top-gate devices, thin (100) β-Ga2O3 nanomembranes with a Sn doping concentration of 2.7×10^{18} cm$^{-3}$ was transferred from the bulk β-Ga2O3 substrate onto a p + Si wafer with a 270 nm SiO2 as gate dielectric. The tri-gate active channel region was defined by electron (e)-beam lithography and the dry-etch process. To form narrower β-Ga2O3 with tri-gate structure, we used a BCl$_3$/Ar gas mixture in an inductively coupled plasma-reactive ion etching (ICP-RIE) system (Panasonic E620 Etcher) for 15 min [21]. The etching rate of (100) β-Ga2O3 is about 10 nm min$^{-1}$ under process conditions: RF power of 100 W; BCl$_3$ flow of 15 sccm; Ar flow of 60 sccm; and pressure of 0.6 Pa. Subsequently, the source (S) and drain (D) regions were formed via e-beam lithography patterning, Ti/Al/Au (15/60/50 nm) metallization, and lift-off process. No post-deposition thermal annealing was performed. By employing the atomic layer deposition (ALD) process, high-quality Al$_2$O$_3$ gate dielectric was deposited to minimize gate leakage current and high-quality interface by self-cleaning effect using TMA as the precursor [22, 23]. Subsequently, e-beam lithography was carried out for gate patterning and Ni/Au (50/80 nm) metal gate was deposited via an e-beam evaporator. Figure 1(b) presents the scanning electron microscope (SEM) image showing the etched β-Ga2O3 channel with W_{ch} of 50 nm, a gate length (L_G) of 1 μm, and a channel height (H_{ch}) of 95 nm. As the fabricated device has a 3D tri-gate structure, the total effective channel width (W_{eff}) is approximately 250 nm, which is 5 times wider than the footprint W_{ch} of 50 nm. Figure 1(c) shows the cross-sectional view of the fabricated device along both channel width and length directions. Using atomic force microscopy (AFM), the measured physical thickness of the exfoliated β-Ga2O3 nano-membrane is approximately 95 nm.

3. Experimental results and discussion

Figure 2(a) shows the measured transfer characteristics ($I_{DS}-V_{GS}$) of the fabricated tri-gate β-Ga2O3 FET with W_{eff} of 250 nm and L_G of 1 μm, showing the following excellent electrical performances: (1) $I_{ON} = 350$ mA mm$^{-1}$ normalized with the W_{eff}; (2) $I_{ON}/I_{OFF} = 1.5 \times 10^8$; (3) $SS_{min} = 61$ mV dec$^{-1}$; (4) DIBL = 12 mV V$^{-1}$; (5) $V_{thys} = 30$ mV. The electrical characterizations were performed using a Keysight B1500 semiconductor parameter analyzer, a Keithley 4200-SCS parameter analyzer with a high-temperature measurement system (Micromanipulator H1000 Thermal Chuck System), and a Cascade Summit probe station. Figure 2(b) shows the measured output characteristics ($I_{DS}-V_{DS}$) as a function of V_{GS} from 0 to −20 V. A maximum drain current density (I_{DS_max}) of 350 mA mm$^{-1}$ in the fabricated device on
gradually increase as the temperature increases, our proposed tri-gate \(\beta\)-Ga\(_2\)O\(_3\) FETs have more stable characteristics for temperatures up to 400 °C compared to previous results [6, 13]. The variations in the extracted \(SS \), \(V_T \), field-effect mobility (\(\mu_{FE} \)), and \(I_{ON}/I_{OFF} \), as a function of temperature are plotted in figure 4. The value of \(SS \) increases from 61 mV dec\(^{-1}\) to 710 mV dec\(^{-1}\) and \(V_T \) shifts toward a negative direction due to thermally excited carriers from interface states between the channel and the gate dielectric, as shown in figures 4(a) and (b). The interface trap density (\(D_{it} \) [eV\(^{-1}\) cm\(^{-2}\)]) of the fabricated devices is extracted to 1.0 \times 10^{11} \text{eV}^{-1} \text{cm}^{-2} \text{ at RT. The significant increase of } SS \text{ beyond Boltzmann thermal limit indicates a large amount } D_{it} \text{ of } 1.6 \times 10^{13} \text{eV}^{-1} \text{cm}^{-2} \text{ could be activated at } 400 \, \text{ºC. In addition, } \mu_{FE} \text{ decreases also due to the increased } D_{it} \text{ at the interface and the phonon scattering in channel at high temperatures as shown in figure 4(c) [6, 13, 27]. We should also note that, even at } 400 \, \text{ºC, } I_{ON}/I_{OFF} \text{ was observed to be approximately } 3 \times 10^{5}, \text{ as shown in figure 4(d). The tri-gate } \beta\)-Ga\(_2\)O\(_3\) FETs with ALD Al\(_2\)O\(_3\) as gate dielectric demonstrate robust electrical performances at high temperatures. Furthermore, the measured \(I-V \) characteristics at RT were again obtained after cooling the device from high temperature to RT.

As shown in figure 5, we also demonstrated the feasibility of the multi-channel tri-gate \(\beta\)-Ga\(_2\)O\(_3\) FETs for a high integration density. The inset shows the SEM image for top view of the fabricated device with 3 channels. In case of multi-channel devices, overall device performances are also comparable to the single-channel devices. To provide clear evidences for advantages of tri-gate \(\beta\)-Ga\(_2\)O\(_3\) FETs, we fabricated three types of devices with different gate structures ((i) tri-gate, (ii) planar-gate, and (iii) bottom-gate) under same process conditions and investigated the impact of the tri-gate \(\beta\)-Ga\(_2\)O\(_3\) FETs via comparison with other devices, as shown in figure 6. Table 1 shows the comparison data of the fabricated devices with different gate structures. It is noteworthy
that the tri-gate β-Ga$_2$O$_3$ FETs have high channel ratio (W_{eff}/perimeter of channel width (W_{peri})) of 0.85 and aspect ratio (AR) of 2 resulting in better electrical performances such as $I_{\text{ON}}/I_{\text{OFF}}$, SS, and D_a [28, 29]. In this regard, minimizing the device degradation caused by interface states and modulating the effective charges from β-Ga$_2$O$_3$ channel in tri-gate β-Ga$_2$O$_3$ FETs can be important since the switching characteristics are very strongly influenced by interface between β-Ga$_2$O$_3$ and bottom SiO$_2$ substrate.

A benchmark of the fabricated tri-gate β-Ga$_2$O$_3$ FETs is summarized in Table 2. The overall electrical performances of the fabricated tri-gate β-Ga$_2$O$_3$ FETs with a single channel are improved over different types of devices reported previously. In particular, our proposed device is highly scalable with an active channel area of 0.05 μm2 by employing an extremely scaled β-Ga$_2$O$_3$ structure. The D_a of the fabricated device shows a high-quality interface compared with previously reported results [30, 31]. In the positive bias stress experiments, we also found accumulation of positive charges at the bottom-interface (or edges) leads to the degradation of SS and negative shift of V_T [32]. Therefore, more comprehensive study is required for the investigation of stress-induced instability considering the device geometry, as a further study.

4. Conclusion

In this study, top-gate tri-gate nano-membrane β-Ga$_2$O$_3$ FETs were successfully demonstrated for the first time. By adopting the single fin-like structure with a W_{ch} of 50 nm, the fabricated devices have improved subthreshold slope and $I_{\text{ON}}/I_{\text{OFF}}$.
resulting from enhanced top gate controllability. Moreover, the fabricated devices demonstrate sustainable reliability under high temperatures of up to 400 °C, validating its use in applications involving harsh environments. Multi-channel devices also represent improved electrical performances comparable to single-channel devices for high integration density. Consequently, we expect that tri-gate β-Ga2O3 FETs have the potential as a low-cost and high-performance power

Figure 6. Schematics of cross-sectional view for the fabricated devices with different gate structures: (i) tri-gate, (ii) planar-gate, (iii) bottom-gate.

Table 1. Comparison data with different gate structures.

Structure	@V_{DS} = 1 V	Sample #1	Sample #2	Sample #3
Gate dielectric	Al2O3	Al2O3	SiO2	
I_{ON}/I_{OFF}	~1.3 × 10^7	~9.5 × 10^6	~1.2 × 10^6	
SS_{min} [mV dec^{-1}]	61	100	250	
Type	Flake	Flake	Flake	
DA [eV^{-1}cm^{-2}]	~1 × 10^{11}	~9 × 10^{11}	~1 × 10^{12}	
W_{eff}	250 nm	1 μm	1.5 μm	
Channel ratio	0.85	0.55	0.45	
(W_{eff}/W_{peri})	0.02			
Aspect ratio (AR)	2	0.12	0.1	

Table 2. Benchmarking for electrical performances of Ga2O3 FETs.

	This work	Reference [13]	Reference [14]	Reference [15]
I_{ON}/I_{OFF} (Max.)	~1.5 × 10^9	~7 × 10^7	~5 × 10^5	~1 × 10^7
SS_{min} [mV dec^{-1}]	61	70	158	200
# of Ch.	Single	—	48	20
Type	Flake	Flake	MOVPE	Epitaxial growth
DA (Max.) [eV^{-1}cm^{-2}]	~1 × 10^{11}	—	~1 × 10^{12}	—
Temp.	RT ~ 400 °C	RT ~ 250 °C	RT	RT
V_{hys}	30 mV	30 mV	700 mV	100 mV
I_{DSS,max}	350 mA mm^{-1}	1 mA mm^{-1}	3 mA mm^{-1}	1 kA cm^{-2}
W_{eff}	250 nm	7 μm	24 μm	50 μm
device technology after the establishment of epitaxy materials.

Acknowledgments

This work was supported in part by the Office of Naval Research’s Naval Enterprise Partnership Teaming with Universities for National Excellence under Grant N00014-15-1-2833 and in part by Applications and Systems-Driven Center for Energy-Efficient Integrated NanoTechnologies (ASCENT), one of six centers in Joint University Microelectronics Program (JUMP), as Semiconductor Research Corporation (SRC) Program sponsored by Defense Advanced Research Projects Agency (DARPA). The work of Taehoon Park and Shimram Ramanathan was supported by Energy Frontier Research Centers (EFRC) funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0019273.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Hagyoul Bae https://orcid.org/0000-0002-2462-4198

References

[1] Higashiwaki M and Jessen G H 2018 Appl. Phys. Lett. 112 060401
[2] Li W, Nomoto K, Hu Z, Nakamura T, Jena D and Xing H G 2019 IEDM Tech. Dig. 270
[3] Xu W et al 2019 IEDM Tech. Dig. 274
[4] Tsao J Y et al 2018 Adv. Electron. Mater. 4 1600501
[5] Higashiwaki M, Sasaki K, Wong M H, Kamimura T, Krishnamurthy D, Kuramata A, Masui T and Yamakoshi S 2013 IEDM Tech. Dig. 707
[6] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001
[7] Pearson S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[8] Si M, Yang L, Zhou H and Ye P D 2017 ACS Omega 2 7136
[9] Kim M, Seo J H, Singisetti U and Ma Z 2017 J. Mater. Chem. C 5 8338
[10] Kim M, Seo J H, Zhao D, Liu S C, Kim K, Lim K, Zhou W, Waks E and Ma Z 2016 J. Mater. Chem. C 5 264
[11] Casady J B and Johnson R W 1996 Solid-State Electron. 39 1409
[12] Neudeck P G, Okoje R S and Chen L Y 2002 Proc. IEEE 90 1065
[13] Ma J and Yoo G 2019 IEEE Electron Device Lett. 40 1317
[14] Chabak K D et al 2016 Appl. Phys. Lett. 109 213501
[15] Hu Z, Nomoto K, Li W, Tanen N, Sasaki K, Kuramata A, Nakamura T, Jena D and Xing H G 2018 IEEE Electron Device Lett. 39 869
[16] Zhou H, Si M, Alghamdi S, Qiu G, Yang L and Ye P D 2017 IEEE Electron Device Lett. 38 103
[17] Chabak K D et al 2018 IEEE Electron Device Lett. 39 67
[18] Dong H et al 2019 IEEE Electron Device Lett. 40 1385
[19] Choi Y K, Lindert N, Xuan P, Tang S, Ha D, Anderson W, King T J, Bokor J and Hu C 2001 IEDM Tech. Dig. 421
[20] Kim S M et al 2004 IEDM Tech. Dig. 639
[21] Zhang L, Verma A, Xing H and Jena D 2017 Japan. J. Appl. Phys. 56 030304
[22] Ye P D et al 2003 Appl. Phys. Lett. 83 180
[23] Hinkle C L et al 2008 Appl. Phys. Lett. 92 071901
[24] Noh J, Alajilouni S, Tadjer M J, Culbertson J C, Bae H, Si M, Zhou H, Bermel R A, Shakouri A and Ye P D 2019 IEEE J. Electron Devices Soc. 7 914
[25] Bae H, Kim S, Bae M, Shin J S, Kong D, Jung H, Jang J, Lee J, Kim D H and Kim D M 2011 IEEE Electron Device Lett. 32 761
[26] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 Appl. Phys. Express 6 086502
[27] Zhang Y et al 2018 Appl. Phys. Lett. 112 173502
[28] Cheng H W and Li Y 2009 Semicond. Sci. Technol. 24 115021
[29] Park S H, Liu Y, Kharche N, Jelodar M S, Klimeck G, Lundstrom M S and Luisher M 2012 IEEE Trans. Electron Devices 59 2107
[30] Zhou H, Alghamdi S, Si M, Qiu G and Ye P D 2016 IEEE Electron Device Lett. 37 1411
[31] Zeng K, Jia Y and Singisetti U 2016 IEEE Electron Device Lett. 37 906
[32] Mativenga M, Seok M and Jang J 2011 Appl. Phys. Lett. 99 122107