Identification and integrative analysis of microRNAs in myelodysplastic syndromes based on microRNAs expression profile

Limin Ma | Haiping Yang | Xuewen Yang

Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China

Correspondence
Haiping Yang, Department of Hematology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471023, Henan Province, China.
Email: yfyyanghaipei@163.com

Funding information
Science and Technology Development Project of Luoyang City, Grant/Award Number: 1503007A-4

Abstract
Myelodysplastic syndromes (MDS) are a group of malignant hematological disorders characterized by the abnormal development of hematopoietic stem cells and increased risk of acute myelogenous leukemia. Although the pathogenesis of MDS has not been fully understood, various alterations of microRNAs (miRNAs) have been reported in MDS. This study aimed to explore the molecular mechanisms of MDS by integrative bioinformatics analysis of miRNAs expression profile. The GSE81372 expression profile dataset was downloaded from Gene Expression Omnibus database. The differentially expressed miRNAs (DEMs) between MDS and normal controls were identified and targets of miRNAs were predicted. Subsequently, gene ontology (GO) functional and pathway enrichment analyses of target genes were performed. Finally, pathway relation network and miRNA–GO regulatory network were constructed and analyzed. A total of six upregulated and 35 downregulated DEMs were identified. The results showed that target genes of DEMs mainly participated in the process of signal transduction, blood coagulation, apoptotic process, cell proliferation, transmembrane transport, and angiogenesis. The significantly enriched pathways included MAPK signaling pathway, PI3K-Akt signaling pathway, TGF-beta signaling pathway, Hippo signaling pathway, and P53 signaling pathway. Moreover, miR-195-5p, miR-4505, miR-22-3p, and miR-148a-3p were selected as hub miRNAs in miRNA–GO regulatory network and their aberrant expression might be closely associated with MDS pathogenesis. Our discovery provides a registry of miRNAs and pathways that are disrupted in MDS, which has the potential to be used in clinic for diagnosis and target therapy of MDS in future.

KEYWORDS
bioinformatics, expression profile, miRNAs, myelodysplastic syndromes, signaling pathway

1 | INTRODUCTION

Myelodysplastic syndromes (MDS) are a group of malignant clonal hematological disorders characterized by inefficient hematopoiesis, unilineage or multi-lineage dysplasia, and increased risk to progression to acute myelogenous leukemia (AML).1 Current known risk factors of MDS include aging, chemotherapy or radiation treatment, occupational exposure and some genetic syndromes such as Fanconi’s anemia.2,3 The somatic gene mutations, epigenetic deregulation, microenvironmental and immune changes have been proven to be critical...
MicroRNAs (miRNAs) are short noncoding RNA molecules that repress expression of genes by inhibiting translation or inducing degradation of target mRNA at the posttranscriptional level. miRNAs regulate numerous biological processes such as proliferation, apoptosis, and differentiation. In addition, miRNAs can be either oncogenes or tumor suppressors in the pathogenesis of different cancers, which may be due to the fact that over half of miRNA genes are located in cancer-related genomic regions.

In recent years, increasing studies have shown that miRNAs are implicated in normal hematopoiesis, and dysregulation of miRNA has been found in hematological malignancies including MDS. It is relatively little known about miRNAs in pathogenesis, prognosis, and therapy of MDS. In the present study, we applied an integrative bioinformatics approach to analyze the miRNAs expression profiles of MDS. We aimed to provide a systematic perspective toward understanding molecular mechanisms and exploring new therapeutic targets for MDS.

2 | MATERIALS AND METHODS

2.1 | Microarray data

The microarray expression profile GSE81372 was downloaded from Gene Expression Omnibus database, which was based on the GPL16384 Affymetrix Multispecies miRNA-3 Array platform. The dataset contained the miRNAs expression profiles of bone marrow CD34+ cells from 12 MDS patients and six normal controls, which was deposited by Xu et al.11

2.2 | Differential expression analysis

The raw data were firstly preprocessed using the Affy package, then the probe-level data in CEL files were converted into expression value matrix. Data preprocessing was performed using robust multiarray average algorithm, including background correction, quartile data normalization, and probe summarization. The significance analysis of microarray method was used to identify the differentially expressed miRNAs (DEMs) between MDS patients and normal controls. Only miRNAs with \(p < .05 \) and \(\text{fold-change} > 2 \) were considered as DEMs. Hierarchical cluster analysis was performed and cluster dendrogram was constructed to assess the characterizations of screened DEMs.

2.3 | Target genes prediction of miRNAs

Interactions between miRNA and mRNA were predicted based on the TargetScan and miRanda databases. The intersections recognized by two main algorithms were considered as candidate target genes of DEMs.

2.4 | Functional enrichment analysis

Gene ontology (GO) analysis was applied to explore the main functions of target genes of DEMs identified in this study. Specifically, two-side Fisher's exact test was used to classify GO category and the false discovery rate (FDR) was calculated using Benjamini–Hochberg method to correct the \(p \) value. FDR < 0.05 was set as the threshold value to select significant GO categories. Besides, the enrichment score was calculated to access the enrichment level for each GO category.

2.5 | Pathway enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) knowledge database was used for the classification of correlative gene sets into their respective pathways. The Fisher's exact test was used to calculate the significance \(p \) value and Benjamini–Hochberg procedure was used to calculate FDR. FDR < 0.05 was used as the cutoff criteria to identify the significant pathways. The enrichment score was also calculated to access the enrichment level for each pathway.

2.6 | Pathway network analysis

The network of the significantly enriched pathways was built according to the interaction between pathways among the KEGG database. Each pathway in the network was measured by counting the number of upstream and downstream pathways, which were shown as in-degree or out-degree, respectively.

2.7 | miRNA–GO network analysis

The relation between significant GO items and target genes can be got via GO enrichment analysis, then we can get the relevance between miRNAs and significant GO items based on the fact that miRNA can combine with 3’-UTR of target mRNA. The adjacent relation matrix of GO items and miRNAs was built, and we evaluated the degrees of miRNAs and GO items in the network using the methods of graph theory. Those who had the highest degree were the core miRNAs or GO items.

3 | RESULTS

3.1 | DEMs identification

After data processing, a total of 41 miRNAs, six upregulated and 35 downregulated, were identified to be differentially expressed in MDS patients compared with normal controls (Table 1). The
hierarchical cluster analysis showed that the 12 MDS samples distributed in MDS cluster and six normal samples in control cluster, and no overlap was found between them (Figure 1). This observation showed that separation of the miRNAs expression profiles between MDS and normal controls.

3.2 Targets prediction of miRNAs

In present study, targets of these DEMs were identified based on sequence complementarities and free energy of the predicted RNA duplex using TargetScan and miRanda. In total, 71,767 target mRNAs

Accession	Transcript ID	Fold change	p value	miRNA feature
MIMAT0015055	hsa-miR-3178	−8.28	.003	Down
MIMAT0000074	hsa-miR-19b-3p	2.96	.004	Up
MIMAT0000243	hsa-miR-148a-3p	−3.11	.004	Down
MIMAT000437	hsa-miR-145-5p	−3.28	.005	Down
MIMAT0004614	hsa-miR-193a-5p	−2.39	.008	Down
MIMAT0019044	hsa-miR-4507	−2.33	.008	Down
MIMAT015086	hsa-miR-3201	−4.41	.009	Down
MIMAT0019739	hsa-miR-4665-5p	−2.93	.011	Down
MIMAT0019069	hsa-miR-4530	−2.59	.011	Down
MIMAT0019045	hsa-miR-4508	−2.47	.012	Down
MIMAT0000077	hsa-miR-22-3p	−2.49	.013	Down
MIMAT0000073	hsa-miR-19a-3p	4.38	.013	Up
MIMAT0004611	hsa-miR-195-5p	3.44	.016	Up
MIMAT0003326	hsa-miR-663a	−3.18	.016	Down
MIMAT0017994	hsa-miR-3615	−2.30	.016	Down
MIMAT0019077	hsa-miR-1587	−2.31	.017	Down
MIMAT0019032	hsa-miR-4497	−2.12	.018	Down
MIMAT0004774	hsa-miR-501-3p	−2.65	.019	Down
MIMAT0002888	hsa-miR-532-5p	−2.58	.019	Down
MIMAT0015079	hsa-miR-3195	−2.38	.020	Down
MIMAT0019041	hsa-miR-4505	−3.85	.021	Down
MIMAT0018961	hsa-miR-4443	−3.37	.021	Down
MIMAT0000617	hsa-miR-200c-3p	−2.89	.025	Down
MIMAT0019878	hsa-miR-4745-5p	−2.27	.025	Down
MIMAT0004792	hsa-miR-92b-5p	−2.71	.026	Down
MIMAT0018985	hsa-miR-3135b	−3.41	.026	Down
MIMAT0019019	hsa-miR-4485	−8.07	.026	Down
MIMAT0000071	hsa-miR-17-3p	2.51	.028	Up
MIMAT0003339	hsa-miR-421	−2.81	.029	Down
MIMAT0004559	hsa-miR-181c-3p	2.48	.031	Up
MIMAT0004775	hsa-miR-502-3p	−2.18	.031	Down
MIMAT0002871	hsa-miR-500a-3p	−2.03	.037	Down
MIMAT0000424	hsa-miR-128-3p	−2.86	.037	Down
MIMAT0004568	hsa-miR-221-5p	2.20	.038	Up
MIMAT0019745	hsa-miR-4668-5p	−2.44	.040	Down
MIMAT0016915	hsa-miR-4284	−2.52	.041	Down
MIMAT0000705	hsa-miR-362-5p	−2.49	.041	Down
MIMAT0005951	hsa-miR-1307-3p	−2.95	.045	Down
MIMAT0001339	hsa-miR-422a	−3.19	.046	Down
MIMAT0002872	hsa-miR-501-5p	−2.12	.048	Down
MIMAT0000762	hsa-miR-324-3p	−2.65	.048	Down

Abbreviations: MDS, myelodysplastic syndromes; miRNAs, microRNAs.
were obtained by miRanda, and 26,301 target mRNAs were obtained by TargetScan; a total of 56,411 target mRNAs overlapped between two datasets (Table S1).

3.3 Functional enrichment analysis

In order to functionally annotate the target genes, we performed GO enrichment analysis. The result revealed that a total of 754 GO terms for biological processes were significantly impacted by target genes under the threshold of FDR < 0.05. The top 20 significant GO categories were shown in Figure 2. We identified GO terms significantly enriched in regulation of transcription, signal transduction, protein phosphorylation, axon guidance, blood coagulation, apoptotic process, cell proliferation, transmembrane transport, transforming growth factor (TGF) beta receptor pathway, and angiogenesis. For molecular functions, the enriched GO terms were protein binding, DNA binding, transcription factor activity, protein kinase activity, protein dimerization activity, signal transducer activity, and ubiquitin ligase activity (Table S2).

3.4 Pathway enrichment analysis

As shown in the results, the target genes were enriched in a total of 126 significant pathways under the threshold of FDR < 0.05. The top 20 significant pathways were shown in Figure 3. The significantly enriched pathways included pathways in cancer, MAPK signaling pathway, PI3K-Akt signaling pathway, TGF-beta signaling pathway, Hippo signaling pathway, Insulin signaling pathway, focal adhesion, and P53 signaling pathway (Table S3).

3.5 Pathway network analysis

To systematically understand the central pathways involved in MDS pathogenesis, we constructed the network of significant pathways according to the relationship provided by KEGG pathway database. As shown in Figure 4, the main pathways implicated in MDS were MAPK signaling pathway, cell cycle, P53 signaling pathway, and Wnt signaling pathway. Degree number of pathways in the network represented their interconnection complexity with other pathways. The degree numbers of top 10 significant pathways were shown in Table 2.
3.6 | miRNA–GO network analysis

In order to clarify the regulatory status of miRNAs and GO items, a miRNA–GO network was built according to interactions between miRNAs and GO items (Figure 5). The network provided us with the key drivers of MDS, including miR-195-5p, miR-4505, miR-22-3p, and miR-148a-3p. It was also noticed that blood coagulation was the core GO items with the highest degree in the network. The top 10 significant DEMs identified by miRNA–GO network were shown in Table 3.

4 | DISCUSSION

miRNAs are essential regulators of the development of hematopoietic stem cells (HSCs). Therefore, alterations of these miRNAs may affect proliferation and differentiation of HSCs, contributing to the pathogenesis of hematological malignancies, including MDS.19,20

Accumulating evidences have strongly suggested that miRNAs are critical in the pathogenesis of MDS, and that dysregulation of miRNAs and other molecular defects cooperate to cause MDS, providing a promising method for the treatment of MDS.21,22
In this study, we focused on investigating the potential miRNAs of MDS by analyzing the miRNAs expression profile between MDS and normal controls. A total of six upregulated and 35 downregulated DEMs were identified and the targets of these DEMs were identified. The GO enrichment analysis showed that target genes of DEMs mainly participated in the process of signal transduction, blood coagulation, apoptotic process, cell proliferation, TGF-beta receptor signaling pathway and angiogenesis. The significantly enriched pathways that target genes participated in included MAPK signaling pathway, PI3K-Akt signaling pathway, TGF-beta signaling pathway, Hippo signaling pathway, and P53 signaling pathway. These results suggested that MDS progression was strongly associated with (1) cell proliferation, apoptosis and angiogenesis, (2) cell adhesion, (3) the imbalance of oncogenes and cancer suppressors as well as (4) the immune dysfunction.

Our results of pathway analysis and pathway network indicated that MAPK signaling pathway was the key pathway involved in MDS carcinogenesis. MAPK is responsible for the control of gene expression programs activated by HSPC-produced cytokines, therefore, its deregulation in MDS exerts a direct effect on hematopoiesis. The use of a P38 MAPK inhibitor in low-risk MDS is strongly supported by the finding that these patients have increased p38 MAPK phosphorylation in hematopoietic progenitor cells of all myeloid lineages and

TABLE 2 The top 10 significant pathways identified by pathway network according to degree number

Pathway ID	Pathway name	Outdegree	Indegree	Degree
04010	MAPK signaling pathway	4	35	39
05200	Pathways in cancer	27	0	27
04110	Cell cycle	2	20	22
04310	Wnt signaling pathway	7	10	17
04520	Adherens junction	6	11	17
04115	P53 signaling pathway	1	15	16
04012	ErbB signaling pathway	8	6	14
04020	Calcium signaling pathway	4	10	14
04510	Focal adhesion	7	7	14
04350	TGF-beta signaling pathway	3	9	12

FIGURE 4 Pathway network analysis of the significant pathways. The circle represents the pathway, and the lines show the interaction between pathways.
that these phosphorylation levels are positively correlated with the rate of intramedullary apoptosis.24,25

In accord with previous studies, Wnt activation may also contribute to the pathogenesis of MDS. Gene expression profiling of hematopoietic cells supports a role for Wnt pathway activation in MDS, AML, and therapy-related myeloid neoplasms.26 Moreover, Wnt activation in HSCs has been directly implicated in self-renewal of leukemia stem cells, and is associated with a poorer outcome in AML patients.27 In addition, we also found VEGF signaling pathway was significantly enriched in MDS, suggesting that angiogenesis was extensively implicated in carcinogenesis. The imbalance of oncogene and cancer suppressor was a crucial mechanism of MDS progression, such as the mutations of TP53 gene have an unfavorable prognosis in MDS.28 Taken together, these pathways and genes involved in tumor cell proliferation, apoptosis, self-renewal and angiogenesis might be taken as diagnostic biomarkers and potential therapeutic targets for MDS.

Pathway analysis identified that focal adhesion, adhesion junction and calcium signaling pathway were enriched. Emerging evidence point to bone marrow microenvironment (BMME) abnormalities as central participants in the progression of MDS pathogenesis whereby, (1) BMME abnormalities contribute to the development and expansion of MDS clones, (2) MDS cells further modify the BMME via aberrant production of cytokines, and (3) a dysfunctional BMME further promotes clonal expansion and disease progression.29,30 The presence of aberrant inflammatory signaling in MDS is supported by numerous studies describing altered levels of inflammatory cytokines in MDS bone

TABLE 3 The top 10 significant miRNAs identified by miRNA-GO network according to degree number

Transcript ID	miRNA feature	Degree
hsa-miR-195-5p	Up	433
hsa-miR-4505	Down	379
hsa-miR-22-3p	Down	373
hsa-miR-148a-3p	Down	360
hsa-miR-145-5p	Down	348
hsa-miR-200c-3p	Down	342
hsa-miR-3135b	Down	324
hsa-miR-128-3p	Down	316
hsa-miR-4530	Down	305
hsa-miR-19a-3p	Up	295

Abbreviations: miRNAs, microRNAs; miRNA-GO, microRNA–gene ontology.
Further understanding of the multidirectional relationships between MDS and the diverse cells within the hematopoietic niche is needed to delineate the mechanisms underlying hematopoietic failure.

miR-195-5p, miR-4505, miR-22-3p, and miR-148a-3p were selected as hub miRNAs in miRNA-GO regulatory network and their aberrant expression might be closely associated with MDS pathogenesis. miR-195-5p was upregulated while DLL1 was downregulated in patients with low-grade MDS compared with normal controls. Luciferase assay showed that DLL1 was a direct target of miR-195-5p, and inhibition of Notch signaling pathway by miR-195-5p-DLL1 axis contributes to the excess apoptosis in low-grade MDS.11 Macrophages overexpressing miR-148a-3p increased their ROS production through the PTEN/AKT pathway, likely to defend against bacterial invasion. Moreover, miR-148a-3p also enhanced M1 macrophage polarization and pro-inflammatory responses through PTEN/AKT-mediated upregulation of NF-κB signaling.12

However, there were several limitations of the present study. First, our study was limited to the small amount of data. Therefore, a meta-analysis including larger sample sizes may be performed in future. Second, the results were not verified by biological experiments. Thus, further experimental studies are still needed to confirm the findings of this study.

5 | CONCLUSIONS

In summary, our results provide a comprehensive bioinformatics analysis of miRNAs and pathways which may be involved in the carcinogenesis of MDS. Our findings may be helpful for understanding the complex mechanisms underlying MDS and guiding the development of targeted therapies for patients with MDS.

ACKNOWLEDGMENTS

This study was supported by the Science and Technology Development Project of Luoyang City (grant no. 1503007A-4).

CONFLICT OF INTEREST

The authors have no competing interest to disclose.

AUTHOR CONTRIBUTION

Haiping Yang contributed to the conception of the study and helped perform the analysis with constructive discussions. Limin Ma performed the experiment and performed the data analyses and wrote the manuscript. Xuewen Yang contributed significantly to analysis and manuscript preparation.

ETHICS STATEMENT

This study does not involve medical ethics.

ORCID

Haiping Yang https://orcid.org/0000-0003-4113-8965

REFERENCES

1. Zeidan AM, Shalis RM, Wang R, Davidoff A, Ma X. Epidemiology of myelodysplastic syndromes: why characterizing the beast is a prerequisite to taming it. Blood Rev. 2019;34:1-15.
2. Avgerinou C, Gannezi I, Theodoropoulou S, et al. Occupational, dietary, and other risk factors for myelodysplastic syndromes in Western Greece. Hematology. 2017;22(7):419-429.
3. Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133(10):1071-1085.
4. Jhanwar SC. Genetic and epigenetic pathways in myelodysplastic syndromes: a brief overview. Adv Biol Regul. 2015;58:28-37.
5. Montes P, Bernal M, Campo LN, et al. Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression. Cancer Immunol Immunother. 2019;68(12):2015-2027.
6. Chung SS, Park CY. MicroRNA dysregulation in the myelodysplastic syndromes. MicroRNA. 2014;2(3):174-186.
7. Ali Syeda Z, Langden SSS, Munkzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723.
8. Schwarzer A, Emmrich S, Schmidt F, et al. The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun. 2017;8(1):218.
9. Kotaki R, Koyama-Nasu R, Yamakawa N, Kotani A. miRNAs in Normal and malignant hematopoiesis. Int J Mol Sci. 2017;18(7):1495.
10. Schneider E, Pochert N, Ruess C, et al. MicroRNA-708 is a novel regulator of the Hoxa9 program in myeloid cells. Leukemia. 2020;34(5):1253-1265.
11. Xu F, Zhu Y, He Q, et al. Identification of microRNA-regulated pathways using an integration of microRNA-mRNA microarray and bioinformatics analysis in CD34+ cells of myelodysplastic syndromes. Sci Rep. 2016;6:32232.
12. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249-264.
13. Shahjaman M, Kumar N, Mollah MMH, et al. Robust significance analysis of microarrays by minimum ewart-divergence method. Biomed Res Int. 2017;2017:5310198.
14. Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics. 2008;24(5):719-720.
15. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
16. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2014;42(D1):D353-D361.
17. Zhang G, Yang P. Bioinformatics genes and pathway analysis for chronic neuropathic pain after spinal cord injury. Biomed Res Int. 2017;2017:6423021.
18. Liu J, Zhu G, Xu S, Liu S, Lu Q, Tang Z. Analysis of miRNA expression profiling in human umbilical vein endothelial cells affected by heat stress. Int J Mol Med. 2017;40(6):1719-1730.
19. Ghafouri-Fard S, Niazi V, Taheri M. Role of miRNAs and IncRNAs in hematopoietic stem cell differentiation. Noncoding RNA Res. 2021;6(1):8-14.
20. Undi RB, Kandi R, Gutti RK. MicroRNAs as haematopoiesis regulators. Adv Hematol. 2013;2013:695754.
21. Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts. 2017;8(5–6):203-212.
22. Stankov K, Stankov S, Katanic J. Genetic and epigenetic drug targets in myelodysplastic syndromes. Curr Pharm des. 2017;23(1):135-169.
23. Navas TA, Mohindru M, Estes M, et al. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood. 2006;108(13):4170-4177.
24. Huang Y, Thoms JAI, Tursky ML, et al. MAPK/ERK2 phosphorylates ERG at serine 283 in leukemic cells and promotes stem cell signatures and cell proliferation. Leukemia. 2016;30(7):1552-1561.
25. Peng H, Wen J, Zhang L, et al. A systematic modeling study on the pathogenic role of p38 MAPK activation in myelodysplastic syndromes. Mol Biosyst. 2012;8(4):1366-1374.

26. Stoddart A, Wang J, Hu C, et al. Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model. Blood. 2017;129(22):2959-2970.

27. Wang Y, Krivtsov AV, Sinha AU, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327(5973):1650-1653.

28. Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia. 2017;31(3):705-711.

29. Balderman SR, Li AJ, Hoffman CM, et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood. 2016;127(5):616-625.

30. Li AJ, Calvi LM. The microenvironment in myelodysplastic syndromes: niche-mediated disease initiation and progression. Exp Hematol. 2017;55:3-18.

31. Sallman DA, List A. The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes. Blood. 2019;133(10):1039-1048.

32. Huang F, Zhao J-L, Wang L, et al. miR-148a-3p mediates notch signaling to promote the differentiation and M1 activation of macrophages. Front Immunol. 2017;8:1327.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Ma L, Yang H, Yang X. Identification and integrative analysis of microRNAs in myelodysplastic syndromes based on microRNAs expression profile. Precision Medical Sciences. 2021;10(4):142-150. doi:10.1002/prm2.12054