The Effect of Independent Parameter on Accuracy of Direct Block Method

Iskandar Shah Mohd Zawawi¹*, Zarina Bibi Ibrahim², Khairil Iskandar Othman¹

¹Centre of Mathematics Studies, Faculty of Computer and Mathematical Sciences, Kompleks Al-Khawarizmi, Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor, Malaysia
²Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received March 27, 2021; Revised May 6, 2021; Accepted June 15, 2021

Abstract Block methods that approximate the solution at several points in block form are commonly used to solve higher order differential equations. Inspired by the literature and ongoing research in this field, this paper intends to explore a new derivation of block backward differentiation formula that employs independent parameter to provide sufficient accuracy when solving second order ordinary differential equations directly. The use of three backward steps and five independent parameters are considered adequately in generating the variable coefficients of the formulas. To ascertain only one parameter exists in the derived formula, the order of the method is determined. Such independent parameter retains the favorable convergence properties although the values of parameter will affect the zero stability and truncation error. An ability of the method to compute the approximated solutions at two points concurrently is undeniable. Another advantage of the method is being able to solve the second order problems directly without recourse to the technique of reducing it to a system of first order. The essential of the error analysis is to observe the effect of independent parameter on the accuracy, in the sense that with certain appropriate values of parameter, the accuracy is improved. The performance of the method is tested with some initial value problems and the numerical results confirm that the maximum error and average error obtained by the proposed method are smaller at certain step size compared to the other conventional direct methods.

Keywords Block Method, Parameter, Convergence, Ordinary Differential Equations

1. Introduction

The mathematical problems in the physical world such as chemical kinetics, vibrations and electrical circuits can be found in the second order ordinary differential equations (ODEs) of the following form:

\[y'' = f(x, y, y') \] \hspace{1cm} (1)

where \(y(a) = y_0, \ y'(a) = y'_0 \) are initial conditions with the interval \(x \in [a, b] \). Equation (1) can be associated with an equivalent system of first order ODEs as follows:

\[y'_1 = f(x, y_2), \quad y'_2 = f(x, y_1, y_2). \] \hspace{1cm} (2)

Equations (2) can be solved numerically using any first order ODEs solver such as backward differentiation formula (BDF) as introduced by [1] and block backward differentiation formulas (BBDF), which was proposed by [2]. However, this approach is cumbersome, consume a lot of human effort and increase the computational time. It will be more efficient if (1) can be solved directly without reducing it to a system of (2). The capability of the numerical methods in solving higher order ODEs directly...
has been studied dramatically by several researchers in the literature. Among the earliest work was proposed by [3] with 3-point explicit-implicit block method for solving special second order ODEs and continuous sixth order explicit method for direct solution of un-damped, linear, nonlinear and system of second order ODEs by [4]. Then, [5] modified the existing block method based on the collocation and interpolation of the power series for the direct solution of second order ODEs. In the recent year, [6] presented a generalized form of the modified Taylor series (MTS) through the modification of the conventional Taylor series approach that produces any k-step block method for solving second order ODEs.

Other famous direct methods were presented by [7] with backward difference formulas for solving higher order ODEs, Runge-Kutta method of order 4 by [8] and fifth order block backward differentiation formulas (5-DBBDF) by [9]. The advantages of direct block method are consistent, convergent, zero stable and ability to approximate the solutions at several points concurrently.

From the literature review, many improvements in numerical methods have been made and it is rationale to say that most of the modified versions tend to affect the accuracy and efficiency of the methods. Our attention here is to propose the direct block backward differentiation formulas (BBDF) with independent parameter which is an improvement on the work of [9]. Contrary to the conventional BBDF method, the proposed method is derived using three backward steps and five independent parameters by adopting the technique presented by [10]–[13] for solving (1) directly without reducing it to (2). This is the idea underlying the derivation of the new version of numerical method, where the value of parameter can be adjusted accordingly to improve the approximation of initial value problems (IVPs). The strategy to derive the method is presented in the following section.

2. Methodology

2.1. Formulation of the Method

The preliminary step to formulate the method requires the derivation of 2-point block method using constant step size, h where the interval [a,b] is divided into a series of block. The solutions at the previous points, \(x_{n-2}, x_{n-1} \) and \(x_n \) are consumed to compute two numerical solutions, \(y_{n-1} \) and \(y_{n+2} \) at two points, \(x_{n+1} \) and \(x_{n+2} \) concurrently. The following equation is the Lagrange interpolation polynomial on \(P_k(x) \) of degree \(k = 4 \) that has been used as the basis functions:

\[
P_k(x) = \sum_{j=0}^{k} L_{k,j}(x) y(x_{n+2-j}),
\]

where

\[
L_{k,j}(x) = \prod_{i=0, i \neq j}^{k} \frac{(x-x_{n+2-i})}{(x_{n+2-j}-x_{n+2-i})},
\]

for each \(j = 0, 1, \ldots, k \) and \(n \) is the grid index.

Define \(x = x_{n+1} + sh \) to find the interpolating polynomial of degree 4:

\[
P_4(x_{n+1} + sh) = \frac{-2s - s^2 + 2s^3 + s^4}{24} y_{n-2} + \frac{3s + s^2 - 3s^3 - s^4}{6} y_{n-1} + \frac{-6s + 2s^3 + 4s^3 + s^4}{4} y_n + \frac{6s + 11s^2 + 6s^3 + s^4}{24} y_{n+1}.
\]

Consequently, (4) is differentiated twice with respect to \(s \) at the point \(x = x_{n+1} \) to produce

\[
P''(x_{n+1}) = h^2 y''_{n+1} = -\frac{1}{12} y_{n-2} + \frac{1}{2} y_{n-1} - \frac{3}{2} y_n + \frac{5}{6} y_{n+1} + \frac{1}{4} y_{n+2},
\]

\[
P''(x_{n+1}) = h^2 y''_{n+1} = -\frac{1}{12} y_{n-2} + \frac{1}{3} y_{n-1} + \frac{1}{2} y_n - \frac{5}{3} y_{n+1} + \frac{11}{12} y_{n+2}.
\]
Let \(s = 1 \), produces

\[
P'(x_{n+2}) = hy'_{n+2} = \frac{1}{4} y_{n+2} - \frac{4}{3} y_{n+1} + 3 y_n - 4 y_{n+1} + \frac{25}{12} y_{n+2},
\]

\[
P''(x_{n+2}) = h^2 y''_{n+2} = \frac{11}{12} y_{n+2} - \frac{14}{3} y_{n+1} + \frac{19}{2} y_n - \frac{26}{3} y_{n+1} + \frac{35}{12} y_{n+2}.
\]

(7)

By considering \(y'_{n+1} = f_{n+1} \) and \(y''_{n+2} = f_{n+2} \), the following equations are obtained:

\[
y'_{n+1} = \frac{1}{h} \left(y_{n+2} + \frac{3}{2} y_{n+1} - \frac{5}{6} y_{n-1} + \frac{1}{4} y_{n+2} \right),
\]

\[
y_{n+1} = \frac{9}{20} y_{n+2} + \frac{2}{5} y_{n+1} + \frac{1}{10} y_n + \frac{11}{20} y_{n+1} - \frac{3}{5} h^2 f_{n+1},
\]

\[
y''_{n+2} = \frac{1}{h} \left(y_{n+2} - \frac{4}{3} y_{n+1} + 3 y_n - 4 y_{n+1} + \frac{25}{12} y_{n+2} \right),
\]

\[
y_{n+2} = \frac{11}{35} y_{n+2} + \frac{8}{5} y_{n+1} - \frac{114}{35} y_n + \frac{104}{35} y_{n+1} + \frac{12}{35} h^2 f_{n+2}.
\]

(8)

While the derivation of block method is rather straightforward, the same is not true for the block method with independent parameter. Although (8) has been explored by [9], none this approach presented a formula with independent parameter. The strategy to add parameters in (8) is similar to the one used for BDF with three parameters, \(\alpha, \beta \) and \(\gamma \) as presented in [10]. Therefore, we consider 5 parameters \(\alpha, \beta, \rho, \mu \) and \(\delta \) for a modification of (8) which can be expressed as follows:

\[
-\frac{1}{12} y_{n+2} + \frac{1}{2} ((1 + \delta) y_{n+1} - \delta y_{n+2}) - \frac{3}{2} ((1 + \mu) y_n - \mu y_{n+1}) + \frac{5}{6} ((1 + \rho) y_{n+1} - \rho y_n) + \frac{1}{4} ((1 + \beta) y_{n+2} - \beta y_{n+1})
\]

\[= h ((1 + \alpha) y'_{n+1} - \alpha y'_{n+1}),\]

\[
-\frac{1}{12} y_{n+2} + \frac{1}{3} ((1 + \delta) y_{n+1} - \delta y_{n+2}) + \frac{1}{2} ((1 + \mu) y_n - \mu y_{n+1}) + \frac{5}{3} ((1 + \rho) y_{n+1} - \rho y_n) + \frac{11}{12} ((1 + \beta) y_{n+2} - \beta y_{n+1})
\]

\[= h^2 ((1 + \alpha) f_{n+1} - \alpha f_{n+1}),\]

\[
\frac{1}{3} y_{n+2} - \frac{4}{3} ((1 + \delta) y_{n+1} - \delta y_{n+2}) + \frac{3}{2} ((1 + \mu) y_n - \mu y_{n+1}) - 4 ((1 + \rho) y_{n+1} - \rho y_n) + \frac{25}{12} ((1 + \beta) y_{n+2} - \beta y_{n+1})
\]

\[= (1 + \alpha) y'_{n+1} - \alpha y'_{n+1},\]

\[
\frac{11}{12} y_{n+2} - \frac{14}{3} ((1 + \delta) y_{n+1} - \delta y_{n+2}) + \frac{19}{2} ((1 + \mu) y_n - \mu y_{n+1}) - 26 ((1 + \rho) y_{n+1} - \rho y_n) + \frac{35}{12} ((1 + \beta) y_{n+2} - \beta y_{n+1})
\]

\[= h^2 ((1 + \alpha) f_{n+2} - \alpha f_{n+1}).\]

(9)

Meanwhile, additional effort is required in transforming (9) into the formula that has only one independent parameter \(\alpha \). This will be discussed in the next section.

2.2. Order of the Method

Formulas (9) correspond to the standard linear multistep method (LMM) in the following form:

\[
\sum_{j=0}^{k} A_j y_{n+j} = h \sum_{j=0}^{k} B_j y'_{n+j} + h^2 \sum_{j=0}^{k} D_j y''_{n+j},
\]

(10)

where \(A_j, B_j \) and \(D_j \) are constant of matrix coefficients subject to the conditions \(A_i \neq 0 \), where \(k = 4 \) and not all \(A_0, B_0 \) and \(D_0 \) are zero. With the LMM (10), the associated linear difference operator, \(L \) is defined as

\[
L[y(x);h] = \sum_{j=0}^{k} \left[A_j y(x + jh) - hB_j y'(x + jh) - h^2 D_j y''(x + jh) \right],
\]

(11)

where \(y(x) \) be any twice differentiable function on \([a,b]\), which may have as many higher derivatives. The order of
accuracy of (10) and (11) can be defined formally without invoking the solution of (1) which may possess only a first derivative [14]. By using the Taylor series to expand the functions \(y(x + jh), y'(x + jh)\) and \(y''(x + jh)\) about \(x + jh\) and collecting terms in (11), gives

\[
L[y(x); h] = C_0 y(x) + C_1 y'(x) + C_2 h y'(x) + \cdots + C_{q-2} h^{q-2} y^{(q-2)}(x).
\]

(12)

Definition: The LMM (10) and linear operator (11) are said to be of order \(q\) if \(C_0 = C_1 = \ldots = C_{q-2} = 0, C_{q-1} = 0, C_{q+2} \neq 0\) where \(C_{q+2}\) is error constant. The constants \(C_0, C_1\) and \(C_{q+2}\) are defined as

\[
C_0 = \sum_{j=0}^{k} A_j, \quad C_1 = \sum_{j=0}^{k} (jA_j - B_j), \quad C_q = \sum_{j=0}^{k} \left(j^q \frac{1}{q!} - j^{q-1} \frac{1}{(q-1)!} B_j - j^{q-2} \frac{1}{(q-2)!} D_j\right), \quad q = 2, 3, 4, \ldots.
\]

To determine the order of the method, the matrix coefficients of (9) which corresponds to (10) can be written as follows:

\[
A_0 = \begin{bmatrix}
\frac{-1}{12} - \frac{1}{2} & \frac{1}{12} & \frac{1}{3} \\
-\frac{1}{3} & \frac{1}{2} + \frac{3}{2} & \frac{1}{2} \\
\frac{1}{12} & \frac{1}{3} & \frac{1}{2}
\end{bmatrix}, \quad A_1 = \begin{bmatrix}
\frac{1}{2} + \frac{3}{2} & \frac{1}{6} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{4} \\
\frac{1}{12} & \frac{1}{3} & \frac{1}{2}
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
\frac{3}{2} & \frac{5}{6} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{4} \\
\frac{1}{12} & \frac{1}{3} & \frac{1}{2}
\end{bmatrix}, \quad A_3 = \begin{bmatrix}
\frac{5}{6} & \frac{5}{6} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{4} \\
\frac{1}{12} & \frac{1}{3} & \frac{1}{2}
\end{bmatrix}, \quad A_4 = \begin{bmatrix}
\frac{5}{6} & \frac{5}{6} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{4} \\
\frac{1}{12} & \frac{1}{3} & \frac{1}{2}
\end{bmatrix}, \quad A_5 = \begin{bmatrix}
\frac{5}{6} & \frac{5}{6} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{6} & \frac{1}{4} \\
\frac{1}{12} & \frac{1}{3} & \frac{1}{2}
\end{bmatrix}
\]

\[
B_0 = \begin{bmatrix}
-\alpha & 0 & 0 \\
0 & 0 & -\alpha \\
0 & 0 & 0
\end{bmatrix}, \quad B_1 = \begin{bmatrix}
1 + \alpha & 0 & 0 \\
0 & 0 & -\alpha \\
0 & 0 & 0
\end{bmatrix}, \quad B_2 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 + \alpha & 0 \\
0 & 0 & 0
\end{bmatrix}, \quad D_2 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & -\alpha \\
0 & 0 & 1 + \alpha
\end{bmatrix}, \quad D_3 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

Therefore, the values of \(C_q = \begin{bmatrix} C_{q,1} & C_{q,2} & C_{q,3} & C_{q,4} & \ldots \end{bmatrix}^T, \quad q = 0, \ldots, 5\) are obtained below:

\[
C_0 = \sum_{j=0}^{k} A_j = \begin{bmatrix} 0 \end{bmatrix}, \quad C_1 = \sum_{j=0}^{k} (jA_j - B_j) = \begin{bmatrix}
\frac{1}{2} \delta - \frac{3}{2} \mu + \frac{5}{6} \rho + \frac{1}{4} \\
\frac{1}{3} \delta + \frac{1}{2} \mu - \frac{5}{3} \rho + \frac{11}{12} \\
-\frac{1}{4} \delta + 3 \mu - \frac{25}{12} \beta + \frac{7}{8} \\
-\frac{14}{3} \delta + 19 \mu - \frac{26}{3} \rho + \frac{35}{12} \beta
\end{bmatrix}, \quad C_2 = \sum_{j=0}^{k} \left(\frac{1}{2} j^2 A_j - j B_j - D_j\right) = \begin{bmatrix}
\frac{1}{4} \delta - \frac{9}{4} \mu + \frac{25}{12} \rho + \frac{7}{8} \beta - \alpha \\
\frac{1}{6} \delta + \frac{3}{4} \mu - \frac{25}{6} \rho + \frac{77}{24} \beta \\
\frac{2}{3} \delta + \frac{9}{2} \mu - 10 \rho + \frac{175}{24} \beta - \alpha \\
-\frac{7}{3} \delta + \frac{57}{4} \mu - \frac{65}{3} \rho + \frac{245}{24} \beta
\end{bmatrix}
\]
\[C_4 = \sum_{j=0}^{4} \left(\frac{1}{24} j^2 A_j - \frac{1}{6} j^3 B_j - \frac{1}{2} j^2 D_j \right) = \left[\begin{array}{c} \frac{1}{12} \delta - \frac{7}{4} \mu + \frac{95}{36} \rho + \frac{37}{24} \beta - \frac{5}{2} \alpha \\ \frac{1}{18} \delta + \frac{7}{12} \mu - \frac{95}{407} \rho + \frac{407}{72} \beta - \frac{\alpha}{2} \\ 2 \frac{1}{12} \delta + \frac{7}{38} \mu + \frac{925}{72} \beta - \frac{7}{2} \alpha \\ 7 \frac{1}{9} \delta + 133 \mu - \frac{247}{9} \rho + \frac{1295}{72} \beta - \frac{2}{\alpha} \\ \end{array} \right]. \]

\[C_5 = \sum_{j=0}^{4} \left(\frac{1}{120} j^2 A_j - \frac{1}{24} j^3 B_j - \frac{1}{6} j^2 D_j \right) = \left[\begin{array}{c} \frac{1}{20} \delta - \frac{31}{80} \mu + \frac{211}{144} \rho + \frac{781}{480} \beta - \frac{65}{24} \alpha \\ \frac{1}{12} \delta + \frac{31}{240} \mu - \frac{211}{72} \rho + \frac{859}{1440} \beta - \frac{19}{6} \alpha \\ \frac{1}{5} \delta + \frac{31}{90} \mu - \frac{31}{30} \rho + \frac{595}{288} \beta - \frac{175}{24} \alpha \\ \frac{5}{6} \delta + \frac{7}{240} \mu - \frac{2743}{180} \rho + \frac{5467}{288} \beta - \frac{37}{6} \alpha \\ \end{array} \right]. \]

By solving \(C_q, q = 0, ..., 4 \) simultaneously, the conditions to verify the order of the method are obtained as follows:

\[\mu = \frac{2}{3} \alpha, \quad \beta = \frac{4}{3} \alpha, \quad \rho = \frac{3}{5} \alpha, \quad \delta = \frac{1}{3} \alpha, \quad (13) \]

\[\mu = 2 \alpha, \quad \beta = \frac{12}{11} \alpha, \quad \rho = \frac{6}{5} \alpha, \quad \delta = 0, \quad (14) \]

\[\mu = \frac{1}{2} \alpha, \quad \beta = \frac{22}{25} \alpha, \quad \rho = \frac{3}{4} \alpha, \quad \delta = \frac{1}{4} \alpha, \quad (15) \]

\[\mu = \frac{8}{19} \alpha, \quad \beta = \frac{24}{35} \alpha, \quad \rho = \frac{15}{26} \alpha, \quad \delta = \frac{3}{14} \alpha, \quad (16) \]

The conditions (13) – (16) are substituted into \(C_{q,1}, C_{q,2}, C_{q,3} \) and \(C_{q,4} \) respectively to obtain

\[C_1 = C_2 = C_3 = C_4 = [0 \quad 0 \quad 0 \quad 0]^T \quad \text{and} \quad C_5 = \left[\begin{array}{c} \frac{1}{20} \delta + \frac{1}{12} \mu + \frac{1}{12} \mu - \frac{1}{20} \rho - \frac{31}{30} \alpha \quad \frac{67}{60} \alpha \end{array} \right]^T, \]

where \(C_q \) is the error constant. Since \(C_1 = C_2 = C_3 = C_4 = 0 \) and \(C_5 \neq 0 \), it can be concluded that the derived formula is order 3. By substituting the conditions (13) – (16) into (9), the desired formula that has one independent parameter \(\alpha \) is obtained as follows:

\[(1 + \alpha) y_{n+1} = \left(\frac{5}{6} + \frac{1}{6} \alpha \right) y_{n+1} + \left(\frac{1}{4} + \frac{1}{3} \alpha \right) y_{n+2} + \left(\frac{3}{2} - \frac{3}{2} \alpha \right) y_n + \left(\frac{1}{2} + \frac{7}{6} \alpha \right) y_{n-1} + \left(-\frac{1}{12} - \frac{1}{6} \alpha \right) y_{n-2} + \alpha y_n, \]

\[(1 + \alpha) y_{n+2} = \left(-\frac{4}{2} - \frac{29}{6} \alpha \right) y_{n+1} + \left(\frac{25}{12} + \frac{11}{6} \alpha \right) y_{n+2} + \left(3 + \frac{9}{2} \alpha \right) y_n + \left(-\frac{4}{3} + \frac{11}{6} \alpha \right) y_{n-1} + \left(\frac{1}{4} + \frac{3}{3} \alpha \right) y_{n-2} + \alpha y_{n+1}, \]

\[\left(\frac{5}{3} - \frac{3}{2} \alpha \right) y_{n+1} = \left(-\frac{11}{12} - \frac{1}{2} \alpha \right) y_{n+1} + \left(-\frac{1}{2} - 3 \alpha \right) y_n + \left(-\frac{1}{2} + \alpha \right) y_{n-1} + \left(1 + \alpha \right) y_{n-2} + \alpha h^2 f_{n+1} - \alpha h^2 f_n, \]

\[\left(\frac{35}{12} \right) y_{n+2} = \left(\frac{26}{3} + 7 \alpha \right) y_{n+1} + \left(-\frac{19}{2} - 9 \alpha \right) y_n + \left(5 \alpha + \frac{14}{3} \right) y_{n-1} + \left(\frac{11}{12} - \alpha \right) y_{n-2} + \alpha h^2 f_{n+2} - \alpha h^2 f_{n+1}. \quad (17) \]

Since \(\alpha \) is the only parameter that represents all parameters, this formula (17) is called BBDF2-\(\alpha \). It has to be noted that the existence of \(\alpha \) in the error constant, \(C_5 \) will affect the magnitude of the truncation error. This means the error might grow if we increase the value of \(\alpha \). Therefore, it is advisable to choose an appropriate value of parameter \(\alpha \). In this study, we choose \(\alpha = -0.3, 0.3 \) to implement the method.
2.3. Convergence Properties

A practical criterion for the method to be useful is that it satisfies the convergence properties. In this section, the convergence is verified by showing the consistency and zero stability of the BBDF2-α.

2.3.1. Consistency

Formula (17) is written in the form of (10) to produce the following matrix coefficients:

\[A_0 = \begin{bmatrix} -\alpha & 0 & 0 & 0 \\ 1 & -\alpha & 0 & 0 \\ 0 & 1 & -\alpha & 0 \\ 0 & 0 & 1 & -\alpha \end{bmatrix}, \quad A_1 = \begin{bmatrix} -\frac{1}{2} - \frac{3\alpha}{2} & -3\alpha & 0 & 0 \\ -\frac{1}{2} + \frac{3\alpha}{2} & -3\alpha & 0 & 0 \\ -\frac{3\alpha}{2} & -3\alpha & 0 & 0 \\ -\frac{3\alpha}{2} & -3\alpha & 0 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -\frac{1}{4} - \frac{3\alpha}{2} & -\frac{1}{2} - \frac{3\alpha}{2} & 0 & 0 \\ -\frac{1}{4} + \frac{3\alpha}{2} & -\frac{1}{2} + \frac{3\alpha}{2} & 0 & 0 \\ -\frac{3\alpha}{2} & -\frac{1}{2} - \frac{3\alpha}{2} & 0 & 0 \\ -\frac{3\alpha}{2} & -\frac{1}{2} + \frac{3\alpha}{2} & 0 & 0 \end{bmatrix}, \quad A_3 = \begin{bmatrix} -\frac{1}{12} - \frac{1}{6} + \frac{\alpha}{3} & -\frac{1}{3} - \frac{2\alpha}{3} & 0 & 0 \\ -\frac{1}{4} + \frac{1}{3} - \frac{\alpha}{3} & -\frac{1}{3} + \frac{2\alpha}{3} & 0 & 0 \\ -\frac{1}{6} + \frac{1}{3} & -\frac{1}{3} & 0 & 0 \\ -\frac{1}{12} + \frac{1}{3} & -\frac{1}{3} & 0 & 0 \end{bmatrix}, \quad A_4 = \begin{bmatrix} -\frac{1}{12} + \frac{1}{3} & -\frac{1}{3} & 0 & 0 \\ -\frac{1}{6} + \frac{1}{3} & -\frac{1}{3} & 0 & 0 \\ -\frac{1}{12} + \frac{1}{3} & -\frac{1}{3} & 0 & 0 \\ -\frac{1}{12} + \frac{1}{3} & -\frac{1}{3} & 0 & 0 \end{bmatrix} \]

Formula (17) is said to be consistent if the following conditions are satisfied:

\[\sum_{j=0}^{4} A_j = A_0 + A_1 + A_2 + A_3 + A_4 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \sum_{j=0}^{4} jA_j = 0(A_0) + 1(A_1) + 2(A_2) + 3(A_3) + 4(A_4) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \]

Since \(\sum_{j=0}^{4} A_j = 0 \) and \(\sum_{j=0}^{4} jA_j = \sum_{j=0}^{4} B_j \), the BBDF2-α is consistent.

2.3.2. Zero Stability

The zero stability of the BBDF2-α is investigated to meet the requirement of convergence properties. The stability polynomial associated with formula (17) is accomplished by invoking the standard linear test equation:

\[f = y^* = \theta y^* + \mu y. \] (18)

Firstly, we substitute (18) into (17). Then, the equations are written in the matrix form. By assuming \(H1 = h^2 \mu \) and \(H2 = h\theta \), the stability polynomial, \(p(t) \) associated with BBDF2-α is given by \(p(t) = \left|Ar^2 - Br - C\right| = 0 \). To determine the zero stability of the method, let \(H1 = H2 = 0 \) and gives

\[
p(t) = -t^4 \left\{ \frac{222 + 660\alpha + 72\alpha^3 + 72\alpha^2 + 360\alpha^3}{2(1 + \alpha)^2(5 + 9\alpha)(35 + 24\alpha)} - \frac{t^7 \left(-450 - 1404\alpha - 288\alpha^4 - 1896\alpha^2 - 1152\alpha^3\right)}{2(1 + \alpha)^2(5 + 9\alpha)(35 + 24\alpha)} \right. \\
- \frac{t^6 \left(234 + 828\alpha + 432\alpha^3 + 1620\alpha^2 + 1296\alpha^3\right)}{2(1 + \alpha)^2(5 + 9\alpha)(35 + 24\alpha)} - \frac{t^5 \left(-6 - 84\alpha - 456\alpha^2 - 288\alpha^3 - 576\alpha^4\right)}{2(1 + \alpha)^2(5 + 9\alpha)(35 + 24\alpha)} \\
- \frac{t^4 \left(72\alpha^2 + 6\alpha^2 + 72\alpha^2\right)}{2(1 + \alpha)^2(5 + 9\alpha)(35 + 24\alpha)}.
\] (19)

Solve (19) to obtain the roots of stability, \(t \) as follows:
Since the roots of zero stability, \(t_7 \) and \(t_8 \) possess \(\alpha \), the graphs of \(t_7 \) and \(t_8 \) versus \(\alpha \) are illustrated in Figure 1. Graph of \(t_7 \) versus \(\alpha \) and Figure 2 respectively. In figure 1, Graph of \(t_7 \) versus, it can be observed that the values of \(t_7 \) is less than 1 when \(\alpha \in [-0.46, \infty) \). Figure 2 shows that \(t_8 < 1 \) when \(\alpha \in [-1.43, \infty) \). Therefore, it can be concluded that the method is zero-stable by considering the values of \(\alpha \) in the range \(\alpha \in [-0.46, \infty) \).
3. Numerical Results

The C programming language is developed to implement the derived method and Newton’s iteration procedures. A significant advantage of using Newton’s iteration is the ease of estimation of error. To test the performance of the method, two IVPs of second order ODEs taken from [9] are considered. For each step size, \(h \), the performance of the BBDF2-\(\alpha \), third order backward differentiation formulas (BDF) [1], fifth order of Gear’s method (5-GEAR) [15], third order block backward differentiation formulas (BBDF) [16], third order direct block backward differentiation formulas (DBBDF) [17] and fifth order direct block backward differentiation formulas (5-DBBDF) [9] are compared in terms of total number of steps (TS), maximum error (MAXE) and average error (AVER).

Problem 1. Consider the IVPs of second order linear ODEs as follows:

\[
y''(x) = -400y(x) - 40y'(x) + 24,
\]

subject to initial condition

\[
y(0) = 0, \quad y'(0) = 0, \quad 0 \leq x \leq 2,
\]

whose exact solutions are

\[
y_1(x) = \frac{8\sqrt{7}}{175} e^{\frac{12x}{7}} \sin \left(\frac{25\sqrt{7}}{2} x \right).
\]

\[
y_2(x) = 4e^{\frac{12x}{7}} \cos \left(\frac{25\sqrt{7}}{2} x \right).
\]

Table 1. Numerical results for Problem 1

\(h \)	Methods	TS	MAXE	AVER
\(10^2 \)	BDF	2E4	2.1696E-01	5.1580E-03
5-GEAR	2E2	5.5727E-03	2.8464E-05	
BBDF	1E2	1.5286E-03	3.9967E-05	
BBDF2-\(\alpha = 0.3 \)	1E2	1.5814E-03	2.9852E-05	
\(10^4 \)	BDF	2E4	2.8332E-03	1.3236E-04
5-GEAR	2E1	3.5666E-05	9.1579E-07	
BBDF	1E1	5.7274E-03	2.6884E-04	
BBDF2-\(\alpha = 0.3 \)	1E1	2.9821E-07	7.4301E-09	
\(10^6 \)	BDF	2E1	1.8758E-07	4.6691E-09
BBDF	1E1	7.7887E-07	4.4463E-09	
BBDF2-\(\alpha = 0.3 \)	1E1	1.9096E-07	4.5187E-09	

Problem 2. The IVPs of second order linear ODEs is given as follows:

\[
y''(x) = -5000y(x) - 125y'(x),
\]

subject to initial condition

\[
y(0) = 0, \quad y'(0) = 4, \quad 0 \leq x \leq 2,
\]

whose exact solutions are

\[
y_1(x) = \frac{8\sqrt{7}}{175} e^{\frac{12x}{7}} \sin \left(\frac{25\sqrt{7}}{2} x \right).
\]

\[
y_2(x) = 4e^{\frac{12x}{7}} \cos \left(\frac{25\sqrt{7}}{2} x \right).
\]

Table 2. Numerical results for Problem 2

\(h \)	Methods	TS	MAXE	AVER
\(10^2 \)	BDF	-	7.8112E-01	1.4632E-02
5-GEAR	2E2	2.5638E-01	1.0332E-02	
BBDF	-	2.0846E+03	1.8448E+02	
5-DBBDF	1E2	8.8759E-04	7.1286E-06	
DBBDF	1E2	4.3346E-03	4.0449E-05	
BBDF2-\(\alpha = 0.3 \)	1E2	4.3675E-03	5.2938E-05	
BBDF2-\(\alpha = 0.3 \)	1E2	4.3263E-03	3.8130E-05	
\(10^4 \)	BDF	2E4	2.9696E-02	3.2387E-04
5-GEAR	2E4	1.1420E-03	7.3623E-06	
BBDF	1E4	4.1638E-02	6.4178E-04	
5-DBBDF	1E4	6.7873E-06	1.2180E-07	
DBBDF	1E4	4.3346E-03	7.7818E-08	
BBDF2-\(\alpha = 0.3 \)	1E4	4.1057E-06	7.3735E-08	
BBDF2-\(\alpha = 0.3 \)	1E4	4.3481E-06	7.4522E-08	
\(10^6 \)	BDF	2E6	2.1189E-04	3.2810E-06
5-GEAR	2E6	1.1902E-07	7.6395E-10	
BBDF	1E6	4.2374E-04	6.5613E-06	
5-DBBDF	1E6	7.0587E-10	1.4152E-11	
DBBDF	1E6	6.6448E-10	1.9575E-11	
BBDF2-\(\alpha = 0.3 \)	1E6	3.8706E-10	5.9961E-12	
BBDF2-\(\alpha = 0.3 \)	1E6	9.8598E-10	2.9594E-11	
on a second order IVPs of ODEs clearly shows its potential for solving second order ODEs directly. Despite the fact that the method is of order 3, it has been compared with those fifth order methods. From the numerical results obtained, the BBDF2-α has shown competitive accuracy when compared to the higher order existing methods and outstanding computational time over the first order ODEs solvers. Therefore, the direct block method with some appropriate values of independent parameter is preferable for solving second order ODEs.

Acknowledgements

The publication fee was funded by Geran Penyelidikan Khas UiTM 2020 (600-RMC/GPK 5/3 (272/2020)), Universiti Teknologi MARA Shah Alam. This research was also supported by Universiti Putra Malaysia.

REFERENCES

[1] C. W. Gear, *Numerical initial value problems in ordinary differential equations*. Englewood Cliffs, New Jersey: Prentice-Hall, 1971.

[2] Z. B. Ibrahim, K. I. Othman, and M. Suleiman, “Implicit r-point block backward differentiation formula for solving first-order stiff ODEs,” *Applied Mathematics and Computation*, vol. 186, no. 1, pp. 558–565, 2007, doi: 10.1016/j.amc.2006.07.116.

[3] F. Ismail, Y. L. Ken, and M. Othman, “Explicit and implicit 3-point block methods for solving special second order ordinary differential equations directly,” *International Journal of Mathematical Analysis*, vol. 3, no. 5–8, pp. 239–254, 2009.

[4] F. Oghenerukevwe Obahua and S. Jacob Kayode, “Continuous explicit hybrid method for solving second order ordinary differential equations,” *Pure and Applied Mathematics Journal*, vol. 9, no. 1, p. 26, 2020, doi: 10.11648/j.pamj.20200901.14.

[5] D. O. Awoyemi, E. A. Adelibe, A. O. Adesanya, and T. A. Anake, “Modified order block method for the direct solution second order ordinary differential equations,” *International Journal of Applied Mathematics and Computation*, vol. 3, no. 3, pp. 181–188, 2011.

[6] O. Adeyeye and Z. Omar, “Generalized modified Taylor series approach of developing k-step block methods for solving second order ordinary differential equations,” *Mathematics and Statistics*, vol. 8, no. 6, pp. 773–781, 2020, doi: 10.11689/ms.2020.080618.

[7] M. Suleiman, Z. B. Ibrahim, and A. F. N. Rasedee, “Solution of higher-order ODEs using backward difference method,” *Mathematical Problems in Engineering*, vol. 2011, 2011, doi: 10.1155/2011/810324.

[8] M. S. Mechee and N. Senu, “A new numerical multistep method for solution of second order of ordinary differential
equations,” *Asian Transactions on Science Technology*, vol. 02, no. 02, pp. 18–22, 2012.

[9] N. Zainuddin, Z. B. Ibrahim, K. I. Othman, and M. Suleiman, “Direct fifth order block backward differentiation formulas for solving second order ordinary differential equations,” *Chiang Mai Journal of Science*, vol. 43, no. 5, pp. 1171–1181, 2016.

[10] E. A. Celaya and J. J. Anza, “BDF-α: A Multistep Method with Numerical Damping Control,” *Universal Journal of Computational Mathematics*, vol. 1, no. 3, pp. 96–108, 2013, doi: 10.13189/ujcmj.2013.010305.

[11] I. S. M. Zawawi and Z. B. Ibrahim, “Derivation of BBDF-α for solving ordinary differential equation,” *AIP Conference Proceedings*, vol. 1750, 2016, doi: 10.1063/1.4954531.

[12] I. S. M. Zawawi and Z. B. Ibrahim, “BBDF-α for solving stiff ordinary differential equations with oscillating solutions,” *Tamkang Journal of Mathematics*, vol. 51, no. 2, pp. 123–136, 2020, doi: 10.5556/j.tkjm.51.2020.2964.

[13] Z. B. Ibrahim and I. S. M. Zawawi, “A stable fourth order block backward differentiation formulas (α) for solving stiff initial value problems,” *ASM Science Journal*, vol. 12, no. Special Issue 6, pp. 60–66, 2019.

[14] J. Emmanuel and V. Alexander Okhuese, “Derivation and Implementation of a Linear Multistep Numerical Scheme of Order 12,” *International Journal of Scientific Research in Computer Science, Engineering and Information Technology*, no. July, pp. 1117–1127, 2020, doi: 10.32628/cseit2063220.

[15] C. W. Gear, “Numerical integration of ordinary differential equations,” *Mathematics of Computation*, vol. 21, no. 98, pp. 146–156, 1967.

[16] Z. B. Ibrahim, “Block multistep methods for solving ordinary differential equations,” Universiti Putra Malaysia, 2006.

[17] N. Zainuddin, “2-point block backward differentiation formula for solving higher order ODEs,” Universiti Putra Malaysia, 2011.