Circuit Electromechanics with a Non-Metallized Nanobeam

M. Pernpeintner, T. Faust, F. Hocke, J. P. Kotthaus, E. M. Weig, H. Huebl, and R. Gross

1) Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, D-85748 Garching, Germany
2) Nanosystems Initiative Munich, Schellingstraße 4, D-80799 München, Germany
3) Physik-Department, Technische Universität München, D-85748 Garching, Germany
4) Center for NanoScience (CeNS) and Fakultät für Physik, Ludwig-Maximilians-Universität, D-80799 München, Germany
5) Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

(Dated: 29 July 2014)

We have realized a nano-electromechanical hybrid system consisting of a silicon nitride beam dielectrically coupled to a superconducting microwave resonator. We characterize the sample by making use of the Duffing nonlinearity of the strongly driven beam. In particular, we calibrate the amplitude spectrum of the mechanical motion and determine the electromechanical vacuum coupling. A high quality factor of 480,000 at a resonance frequency of 14 MHz is achieved at 0.5 K. The experimentally determined electromechanical vacuum coupling of 11.5 mHz is quantitatively compared with finite element based model calculations.

In the field of cavity optomechanics, micro- or nanoscale mechanical resonators are coupled to an optical cavity allowing to transfer information from the mechanical to the optical domain and vice versa.11–13 For example, such optomechanical systems have recently been used to observe interference effects like optomechanically induced transparency14 or to cool mechanical resonators to their ground state.15 Moreover, they have been e.g. proposed for quantum information processing16 or for the detection of gravitational waves.17 To increase the performance of such systems, high mechanical quality factors and high resonance frequencies are desirable, which are provided e.g. by strongly pre-stressed Si$_3$N$_4$ thin films.18 Analogous to optical cavities, electrical circuits can be coupled to nanomechanical resonators giving rise to the field of cavity nano-electromechanics.19–23 Typically, a metallized mechanical resonator is capacitively coupled to a superconducting microwave resonator enabling e.g. ground state cooling24 or the control of microwave signal.25 In order to enable a further increase of quality factors it is beneficial to avoid any additional dissipation due to the metalization of the mechanical resonator.20–23 To this end, the dielectric coupling of non-metallized Si$_3$N$_4$ nanoresonators has been established as an alternative transduction and control scheme for high-Q nanoelectromechanical systems in recent years.19,24 Here, the displacement is detected dielectrically via a microwave cavity’s resonance frequency which immediately enables cavity electromechanics.24 For the temperature range between 10 and 300 K, conventional copper microstrip cavities have been successfully employed. Millikelvin temperature operation can be achieved by integrating a pure, i.e. non-metallized, nanomechanical beam into a superconducting microwave circuit. This approach is promising for the realization of high quality factors of both the mechanical and the microwave resonator.

In this letter we demonstrate such an integrated nanoelectromechanical system where a pure insulating silicon nitride nanobeam is coupled to a superconducting coplanar waveguide microwave resonator. We calibrate the mechanical amplitude of the beam and use its nonlinear Duffing response to obtain the electromechanical coupling (cf. ref. 25). We find a vacuum coupling of $g_0/2\pi = 11.5$ mHz which is corroborated quantitatively by finite element modelling of the system.

Our nano-electromechanical device consists of a doubly-clamped, highly tensile-stressed Si$_3$N$_4$ nanobeam which is dielectrically coupled to a $\lambda/2$ superconducting niobium microwave resonator. The beam is located between the niobium centerline and ground plane with a gap of 150 nm between beam and electrodes, as shown in Fig. 1a-c. The sample is fabricated on a single-crystalline silicon wafer coated with 400 nm of thermal oxide and 100 nm of highly tensile-stressed LPCVD silicon nitride (Si$_3$N$_4$). First, a $l = 20 \mu$m long and $w = 170$ nm wide nanobeam as well as supporting clamping rectangles are defined using e-beam lithography and covered with aluminum serving as an etch mask. Subsequently, the unprotected silicon nitride and approximately 100 nm of SiO$_2$ are removed by an anisotropic SF$_6$ reactive ion etching (RIE) step. In this way, we align the lower surface of the beam (i.e. the SiO$_2$-Si$_3$N$_4$ interface) approximately with the upper surface of the subsequently deposited niobium film (cf. schematic displayed in Fig. 1a). With a second e-beam lithography step followed by aluminum sputtering, we define a small rectangularly-shaped protective cover for the Si$_3$N$_4$ beam and its vicinity. Then, a 100 nm thick niobium film is deposited by magnetron sputtering. Subsequently, the microwave resonator and its input and output lines are patterned by a third e-beam lithography and a second RIE step. The resist and the aluminum coating are removed with acetone, potassium hydroxide and Piranha (i.e. a mixture of hydrogen peroxide and sulphuric acid). Finally, we release the silicon...
nitride beam using buffered hydrofluoric acid.

Using microwave transmission spectroscopy, we find a fundamental frequency of the superconducting microwave cavity of $\omega_c/2\pi = 5.67$ GHz and a linewidth of $\kappa/2\pi = 749$ kHz, as shown in Fig. 1.[c]

To experimentally characterize the nanomechanical hybrid system, we employ the homodyne measurement setup depicted in Fig. 2. The microwave resonator is driven by a microwave source at its resonance frequency $\omega_c/2\pi$ with an estimated microwave power of 2.5 nW at the device input. The output microwave signal is amplified with a cold HEMT amplifier and a broadband low-noise amplifier (LNA). The sample is mounted on a piezoelectric actuator driven by the output of a vector network analyzer (VNA). This allows us to excite the fundamental flexural mode of the nanobeam to a high amplitude state. For phase sensitive detection with the VNA, the microwave signal is downconverted using an I-Q-demodulator. A phase sensitive detection with the VNA, the microwave drive tone with frequency ω_{drive} is modulated by the beam’s motion, resulting in sidebands at $\omega_{\text{drive}} \pm \Omega_m$. The corresponding fluctuation amplitude is given by $\delta \omega = G x_0$, where G is the electromechanical coupling and x_0 the mechanical amplitude. In the homodyne setup employed here, this frequency fluctuation $\delta \omega$ translates into the measured down-converted signal $|S_{21}|$.

\[
|S_{21}|(\text{dB}) = \frac{20}{\pi} \log_{10}\left(\frac{P_{\text{out}}}{P_{\text{in}}}
ight) = -60 \text{ dB}
\]

with the oscillation frequency of the beam Ω and the transfer function $K(\Omega)$.

Figure 1 shows the down-converted spectroscopy signal of the silicon nitride nanobeam when excited in the linear (weak driving) regime. Here, the nanobeam follows the behavior expected for a harmonic oscillator. At $T \approx 550$ mK, we find an eigenfrequency $\Omega_m/2\pi = 13.95225$ MHz of the nanobeam with a linewidth of $\Gamma_m/2\pi = 29$ Hz corresponding to a quality factor of $Q = 480,000$. This quality factor exceeds those of comparable nanobeams with Nb metallization by more than a factor of three. From the geometry of the beam, we estimate the effective mass $m_{\text{eff}} = 0.43$ pg (ref. 28).

Upon increasing the drive power, nonlinear effects modify the dynamics of the beam[31]. In particular, the restoring force has to be modified by a cubic term leading to the Duffing equation of motion with the oscillating driving force $F \cos(\omega t)$.

\[
\ddot{x}(t) + \Gamma_m \dot{x}(t) + \Omega_m^2 x(t) + \alpha x^3(t) = \frac{F}{m_{\text{eff}}} \cos(\omega t) \tag{2}
\]

with the oscillating driving force $F \cos(\omega t)$. In case of a highly pre-stressed nanobeam, the Duffing nonlinearity α is given by[31]

\[
\alpha = \frac{\pi^4 E + \frac{3}{2} \sigma}{4 l^2 \rho} \tag{3}
\]

Here, E, σ and ρ are the Young’s modulus, the tensile stress and the mass density of the silicon nitride beam, respectively.

The resulting amplitude spectrum of the Duffing oscil-
Hereby, we can relate the power of the homodyne signal to the detected power of the homodyne signal. As shown in Fig. 3c (highlighted in gray), we calibrate this response with a known frequency response of the superconducting microwave cavity. To this end, we determine the coupling between the microwave resonator and the nanobeam, as illustrated in Fig. 3a. This dependence is described in the main text.

Thus, for increasing drive power the maximum of the amplitude spectrum, $x_{0,\text{max}}$, shifts to higher frequencies Ω_{eff}, as illustrated in Fig. 3b. This dependence is described by the backbone curve20

\[x_{0,\text{max}}^2 = \frac{8}{3} \frac{\alpha}{\Omega_{\text{mod}}} \left(\Omega_{\text{mod}} - \Omega_{m} \right). \]

As a consequence, we can relate the amplitude x_0 of the beam to spectral information, which is straightforwardly accessible.

To determine the coupling between the microwave cavity and the nanobeam, we analyze the quadrature response of the superconducting microwave cavity. To this end, we calibrate this response with a known frequency modulation Ω_{mod} of the microwave carrier frequency ω_d (refs.19,26) as shown in Fig. 3a: (highlighted in gray). Hereby, we can relate the detected power of the homodyne signal P_{hom} to the well-known frequency modulation depth, or in other words, we can determine the transfer function $K(\Omega_{\text{mod}})$. We choose $\Omega_{\text{mod}} = \Omega_m$ and therefore assume $K(\Omega_{\text{mod}}) \approx K(\Omega_m)$19,26

Using Eq. (1), the backbone curve Eq. (5) reads

\[P_{\text{hom,max}} = \frac{8}{3} \frac{\alpha}{\Omega_{\text{mod}}} \frac{G^2}{\Omega_m^2} \left(\Omega_{\text{eff}} - \Omega_m \right). \]

where $P_{\text{hom,max}} \equiv P_{\text{hom}}(\Omega_{\text{eff}})$ denotes the down-converted signal power at the effective resonance frequency Ω_{eff}, that is, at the maximum of the $P_{\text{hom}}(\Omega)$ curve. Thus, measuring the homodyne power spectrum of the beam as a function of the external driving force imposed by the piezoactuator and plotting $P_{\text{hom,max}}$ versus Ω_{eff}, as shown in Fig. 3b, allows us to determine the coupling g_0.

\[g_0/2\pi = 11.5 \text{ mHz (ref. 26)} \]

with the zero-point fluctuation of the beam $x_{\text{pf}} = \sqrt{\hbar/2m_{\text{eff}}\Omega_m} = 8 \text{ fm (ref. 33)}$. Compared to similar nano-electromechnical hybrid systems with metallized beams (see e.g. ref.19), the coupling is about two orders of magnitude smaller, as it solely relies on the dielectric interaction between nanobeam and niobium electrodes.

To understand the electro-mechanical coupling mechanism in more detail and to estimate the coupling constant a priori, we use a COMSOL 2D model representing the cross-sectional sample area perpendicular to the longitudinal nanobeam direction (see Fig. 4a, cf. ref.12). Hereby, we calculate the capacitance per length, c_y, between center line and ground plane for various drive displacements x_0 of the nanobeam. The result is plotted in Fig. 4b. We find a capacitance change per displacement of $\partial c_y/\partial x_0 = 2.4 \text{ (F/m)/nm}$. Due to the vibrating nanobeam the total capacitance C of the microwave resonator has two contributions: a static part C_0 and a displacement-dependent oscillating part $C_\chi(x_0) = c_y(x_0)l_{\text{eff}}$, where $l_{\text{eff}} = 0.613 l$ is the effective length of the
The resonance frequency of a superconducting $\lambda/2$ coplanar waveguide resonator is given by $\omega_c = 1/\sqrt{LC}$, where L denotes the inductance of the resonator.\cite{Note1} Thus, assuming $C_g/C_0 \ll 1$, the resonance frequency can be rewritten as

$$\omega_c(x_0) \approx \omega_0 \left(1 - \frac{C_g(x_0)}{2C_0}\right), \quad (7)$$

where we have introduced the resonance frequency of the microwave cavity for an undisplaced beam, $\omega_0 = 1/\sqrt{L C_0}$. With the line impedance Z_0, we obtain the coupling constant

$$G = -\frac{\partial \omega_c}{\partial x_0} = \frac{Z_0 \omega_0^2}{\pi} \frac{\partial C_g}{\partial x_0}. \quad (8)$$

Using the numerically obtained value $\partial c_g/\partial x_0 = 2.4 (\text{fF/m})/\text{nm}$, the measured resonance frequency of the microwave cavity $\omega_0/2\pi = 5.67 \text{GHz}$ and its designed impedance value $Z_0 = 70 \Omega$, we obtain $G/2\pi = 132 \text{Hz/nm}$ or $g_0/2\pi = 4.8 \text{mHz}$. Although the simulation uses only an approximation of the real sample geometry, this is in good agreement with the experimentally determined value, demonstrating that the applied modeling is useful for an a-priori estimation of the nanoelectromechanical coupling of a given sample geometry.

In conclusion, we have fabricated and characterized a nano-electromechanical hybrid system consisting of a superconducting microwave resonator and a non-metalized nanomechanical beam. On decreasing the temperature, for a beam with a resonance frequency of about 14 MHz we observe an increase of the mechanical quality factor from 40,000 at room temperature\cite{Note2} to 480,000 at 550 mK. For strong external driving forces we observe the transition from the linear to the Duffing regime and use this to quantify the mechanical displacement amplitude of the beam. Fitting the peak values of the measured homodyne power spectra allows us to precisely determine the mechanical amplitude. This method is complementary to the usually employed calibration via thermal motion\cite{Note3} and especially useful for systems where the Brownian motion is not straightforwardly detectable. Moreover, the precise knowledge of the motional amplitude allows us to derive the electromechanical coupling g_0. For our device, we find $g_0/2\pi = 11.5 \text{mHz}$, which is corroborated by numerical modeling of the device.

This work opens the path for further experimental studies of mechanical losses in silicon nitride at millikelvin temperatures, extending previous work on the damping mechanisms in Si$_3$N$_4$ nanomechanical beams.\cite{Note4} Moreover, the concept of dielectrically coupling a pure Si$_3$N$_4$ nanobeam to a high-Q microwave resonator is promising especially for sensing devices, e.g. for the detection of single molecules, which require high frequency resolution and thus low damping constants.

Financial support by the Deutsche Forschungsgemeinschaft via Project No. Ko 416/18 is gratefully acknowledged.
Supplemental Material: Circuit Electromechanics with a Non-Metallized Nanobeam

A. EFFECTIVE MASS OF THE BEAM

According to the Supplementary Information of ref. S1, the total energy of the oscillating beam is given by

\[U = \frac{1}{2} \rho wt \Omega_m^2 \int_{-l/2}^{l/2} dz x_0^2(z), \] (S1)

where \(x_0(z) \) is the \(z \)-dependent displacement of the beam, \(\rho \) and \(\Omega_m \) are the density of the beam resp. its resonance frequency, and \(w, t \) and \(l \) denote width, thickness and length of the beam.

Following Euler-Bernoulli beam theory S2,S3, the displacement \(x_0(z) \) of the fundamental mode of the presented tensile-stressed doubly-clamped beam is given by

\[x_0(z) = a_1 e^{\alpha z} + a_2 e^{-\alpha z} + a_3 \sin(\beta z) + a_4 \cos(\beta z) \] (S2)

with the numerically calculated coefficients \(\alpha = 2.50 \times 10^6 \text{ m}^{-1}, \beta = 1.63 \times 10^5 \text{ m}^{-1}, a_1 = a_2 = 9.04 \times 10^{-13} a_4 \) and \(a_3 = -3.30 \times 10^{-13} a_4 \).

With that, the integral in (S1) can be solved numerically:

\[\int_{-l/2}^{l/2} dz x_0^2(z) = 0.480 l a_4^2 \]

We define the effective mass \(m_{\text{eff}} \) of the beam by

\[U = \frac{1}{2} m_{\text{eff}} \Omega_m^2 x_{0,c}^2 \] (S3)

where \(x_{0,c} := x_0(z = 0) \) is the displacement of the center of the beam.

Comparing Eqs. (S1) and (S3), we get

\[m_{\text{eff}} = \frac{\rho wt}{x_{0,c}^2} \int_{-l/2}^{l/2} dz x_0^2(z) = 0.480 \rho wt l = 0.43 \text{ pg} \]

B. EFFECTIVE LENGTH OF THE NANOBEAM

As described in the main text, a static 2D COMSOL model is employed to calculate the effect of the beam displacement on the capacitance between center line and ground plane of the microwave resonator. Considering that the displacement \(x_0(z) \) is a function of the position \(z \) along the beam, the capacitance variation \(\delta C_g \) induced by a displacement \(x_0(z) \) is given by

\[\delta C_g = \frac{\partial C_g}{\partial x} \int_{-l/2}^{l/2} dz x_0(z) \]
In linear approximation, we write

\[\frac{\partial C_g}{\partial x} \approx \frac{\delta C_g}{x_{0,c}} = \frac{\partial c_g}{\partial x} \int_{-l/2}^{l/2} dz \frac{x_0(z)}{x_{0,c}} \]

As above, the integral can be solved numerically using (S2):

\[\int_{-l/2}^{l/2} dz \frac{x_0(z)}{x_{0,c}} = 0.613 l \]

Thus, we have

\[\frac{\partial C_g}{\partial x} = \frac{\partial c_g}{\partial x} \cdot l_{\text{eff}} \]

where \(l_{\text{eff}} = 0.613 l \) is the effective length of the beam.

ADDITIONAL REFERENCES

[S1] Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, Physical Review Letters 105, 027205 (2010).
[S2] F. Hocke, M. Pernpeintner, X. Zhou, A. Schliesser, T. J. Kippenberg, H. Huebl, and R. Gross, arXiv:1407.6867 [cond-mat.mes-hall].
[S3] S. Timoshenko, Vibration Problems in Engineering (D. Van Nostrand Company, Inc., 1937).