Recent advances and current status of gm-CSF as an adjuvant in DNA vaccines for viral diseases

Abstract

Here, I update the recent advances and current status of Granulocyte macrophage colony-stimulating factor (GM-CSF), since we have reported for the first time that porcine GM-CSF gene in a DNA vaccine formulation exerted immuno-adjuvant and protective effects against Aujeszky’s (Pseudorabies) viral disease to the natural host pigs with a single vaccination. GM-CSF has been broadly used as an adjuvant in preclinical DNA vaccine studies for cancer and viral diseases. Currently, GeoVax Labs, Inc. reported a recombinant HIV vaccine (GEO-D03) that co-expresses the human GM-CSF and non-infectious HIV-1 virus-like particles (VLPs) is being evaluated in HIV infected young adults in several Phase I studies (NCT01571960). In addition, we summarized here the outcomes of the use of GM-CSF in DNA vaccine for other viral diseases. Further, phase 3 studies reported that GM-CSF showed an improvement in patient outcome when applied in combination with suitable anti-tumor vaccines. However, GM-CSF in excessive levels may expand myeloid suppressor cells that were shown to dampen adaptive immune responses.

Keywords: granulocyte macrophage colony-stimulating factor, gm-CSF, genetic adjuvant, DNA vaccine, viral disease, cancer, clinical trial

Abbreviations: GM-CSF, granulocyte macrophage colony-stimulating factor; HIV, human immunodeficiency virus; SIV, simian immunodeficiency virus

Introduction

Here, I update the recent advances and current status of Granulocyte macrophage colony-stimulating factor (GM-CSF), since we have reported for the first time\(^1\) that a DNA vaccine formulation with porcine GM-CSF gene exerted immuno-adjuvant effects and protected the natural host pigs against Aujeszky’s (Pseudorabies) viral disease with single vaccination. The hematopoietic cytokine GM-CSF has been shown as an efficient adjuvant in DNA vaccine preclinical studies for cancer and viral diseases. Xiang Z et al.\(^1\) first reported that GM-CSF is a genetic adjuvant for DNA vaccine.

GM-CSF as a genetic adjuvant for HIV DNA vaccine in human clinical trials

A recombinant HIV vaccine (GEO-D03) that co-expresses the human GM-CSF and non-infectious HIV-1 virus-like particles (VLPs) is being currently evaluated in HIV infected young adults in several Phase I studies (NCT01571960-2015).\(^5\) This trial will determine whether this vaccine will provide excellent protection in humans as in macaques by simian immunodeficiency virus (SIV)-prototype (NCT01909414-2013).\(^3\) Lai et al.\(^7\) 2011 reported that the SIV vaccine co-expressing GM-CSF achieved significantly higher reduction in risk of infection and protected more SIV challenged macaques in preclinical studies. In addition, this vaccine elicited both anti-viral T cells and antibody. The vaccine-induced prevention of infection was shown to increase from 25% to 71% in the presence of GM-CSF.\(^7\) The Outcomes of the use of GM-CSF as genetic adjuvant in DNA vaccine for other viral diseases is given in Table 1.

Use of GM-CSF in cancer

GM-CSF was found the most efficient adjuvant for cancer cell vaccines in early preclinical screens of retroviral-expressed cytokines.\(^8\) Further, the ability of the fused GM-CSF to elicit anti-tumor immune responses and boost vaccine efficiency is found in the first licensed cancer vaccine, Provenge.\(^9\) Despite, a number of studies demonstrating cytokines can act as adjuvants in tumor vaccines, the cost prevent their widespread use, except for the GM-CSF. More recently, GM-CSF has shown improved patient outcome in phase 3 studies when applied in combination with suitable anti-tumor vaccines.\(^9\) In addition, GM-CSF is licensed to use as an adjuvant in a fusion protein for a dendritic cell therapy for prostate cancer and for recovery and replacement of white blood cells following bone marrow transplantation and chemotherapy.\(^9\) However, GM-CSF in excessive levels may expand myeloid suppressor cells that were shown to dampen adaptive immune responses.\(^11\)–\(^15\)

Table 1 Efficacy and outcomes of GM-CSF as genetic adjuvant in DNA vaccines for viral diseases

Virus	Efficacy/Outcome of GM-CSF	Reference
Porcine Circovirus Type-2	Pigs immunized with Cap-GM-CSF subunit vaccine showed significantly higher levels of PCV2-specific antibodies and neutralizing antibodies and higher average daily weight gain than pigs receiving immunized with the Cap subunit vaccine and a commercial vaccine (Ingelvac CircoFLEX; P<0.05) after wild-type PCV2 challenge.	8

Chandra Somasundaram

University of Houston–Victoria, Texas Biomedical Institute, Missouri City, USA

Correspondence: Chandra Somasundaram, University of Houston–Victoria, Texas Biomedical Institute, Missouri City, Texas, USA, Email SomasundaramC@uhv.edu

Received: May 31, 2015 | Published: June 16, 2015
Recent advances and current status of gm-CSF as an adjuvant in DNA vaccines for viral diseases

Table continued...

Virus	Efficacy/Outcome of GM-CSF	Reference
Flaviviridae Virus	Reported as complex and diverse, ranging from enhancement to suppression, depending on the immunogen of Flaviviridae virus DNA vaccine candidates.	9
Simian ImmunoDeficiency Virus	The co-expressed GM-CSF increased vaccine-induced prevention of infection from 25% to 71% in simian immunodeficiency virus in macaques.	7
HIV/AIDS	GEO-D03, a DNA vaccine that expresses human GM-CSF and non-infectious HIV-1 virus-like particles entered into human trials.	4
Foot and Mouth Disease	A phase I study of the safety and immunogenicity of DNA/MVA immunizations with co-expressed GM-CSF in HIV-1 infected young adults with suppressed viremia on HAART.	5,6
Japanese Encephalitis Virus	Efficacy of the DNA vaccine with GM-CSF was improved further in reducing the clinical disease and virus excretions by electroporation.	10
HIV	Reported no protection	11
HIV/AIDS	Induced long-lived humoral and cell mediated immune memory responses.	12
Dengue Virus	DV1 challenged mice showed long-term IgG response, strong cytotoxic T lymphocyte activity, produced high levels of splenocyte-secreted interferon-γ and interleukin-2 and sufficient protection after immunization with pCAG-DV1-GM-CSF immunization than pCAG-DV1/E alone.	13
Influenza Virus	Induced stronger immunogenicity and protection from virus challenge in Aotus monkeys.	14
Hepatitis B Virus	GM-CSF gene enhanced systemic and mucosal immunogenicity of the HA DNA vaccine in Rhesus macaque.	15
Bronchitis Virus	HBV-S gene fused with GM-CSF strengthened the immune effects of the HBV DNA vaccine in HBV-transgenic mice.	16
Feline Immuno Deficiency Virus	pVAX-chGM-CSF and pVAX-S1 provided more protection against IBV challenge in chickens than pVAX-S1 vaccination alone.	17
Porcine Reproductive and Respiratory Syndrome Virus	Significantly enhanced the humoral and cellular immune responses and protection against PRRSV challenge in pigs	19
Hepatitis C Virus	Reported no change in the Th1/Th2 balance as compared with simultaneous IL-23 administration.	20
Simian-Human Immuno Deficiency Virus	Co-immunization with Flt3-L and GM-CSF shown promise in the development of an effective antiviral HCV vaccine.	21
HIV-1 Gag	Enhanced IgA response was associated with the best protection, but did not achieve significance.	22
Equine Herpes Virus	Demonstrated strong antibody and CTL responses and a protective response against infection with recombinant vaccinia virus expressing HIV-1 Gag.	23
HIV-1 Env	DNA vaccine with GM-CSF formulated in DMRIE-DOPE significantly improved virus neutralizing antibody responses to EHIV-1.	24
Aujeszky’s (Pseudorabies) Viral Disease.	The adjuvant treated group showed significantly better control to the challenge than the non-GMCSF group.	25
	Bicistronic DNA vaccines containing GM-CSF elicited remarkably potent CD4(+) T cell responses.	26
	We demonstrated that the Porcine GM-CSF gene in a DNA vaccine formulation exerted immuno-adjuvant and protective effects with single vaccination in the natural host pigs against Aujeszky’s disease.	1

Citation: Somasundaram C. Recent advances and current status of gm-CSF as an adjuvant in DNA vaccines for viral diseases. *J Investig Genomics.* 2015;2(3):54–56. DOI: 10.15406/jig.2015.02.00025
Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

1. Somasundaram C, Takamatsu H, Andréoni C, et al. Enhanced protective response and immuno-adjuvant effects of porcine GM-CSF on DNA vaccination of pigs against Aujeszky’s disease virus. *Vet Immunol Immunopathol*. 1999;70(3–4):277–287.

2. Dufour V, Chevallier S, Cariolet R, et al. Induction of Porcine Cytokine mRNA Expression after DNA Immunization and Pseudorabies Virus Infection. *J Interferon Cytokine Res*. 2000;20(10):889–895.

3. Xiang Z, Ertl HC. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. *Immunity*. 1995;2(2):129–135.

4. Hellerstein M, Xu Y, Marino T, et al. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine. *Hum Vaccin Immunother*. 2012;8(11):1654–1658.

5. https://clinicaltrials.gov/ct2/show/NCT01571960

6. https://clinicaltrials.gov/ct2/show/NCT01909414

7. Lai L, Kwa S, Kozlowski PA, et al. Prevention of infection by a granulocyte-macrophage colony-stimulating factor co-expressing DNA/modified vaccinia Ankara simian immunodeficiency virus vaccine. *J Infect Dis*. 2011;204(1):164–173.

8. Zhang H, Qian P, Peng B, et al. A novel subunit vaccine co-expressing GM-CSF and PCV2b Cap protein enhances protective immunity against porcine circovirus type 2 in pigs. *Vaccine*. 2015;33(21):2449–2456.

9. Chen H, Gao N, Wu J, et al. Variable effects of the co-administration of a GM-CSF-expressing plasmid on the immune response to flavivirus DNA vaccines in mice. *Immunol Lett*. 2014;162(1 Pt A):140–148.

10. Fowler V, Robinson L, Bankowski B, et al. A DNA vaccination regimen including protein boost and electropermeation protects cattle against foot-and-mouth disease. *Antiviral Res*. 2012;94(1):25–34.

11. Chen H, Gao N, Fan D, et al. Suppressive effects on the immune response and protective immunity to a JE DNA vaccine by co-administration of a GM-CSF-expressing plasmid in mice. *PLoS One*. 2012;7(4):e34602.

12. Mahdavi M, Ebtetar M, Khorraram Khorshid HR, et al. ELISPOT analysis of a new CTL based DNA vaccine for HIV-1 using GM-CSF in DNA prime/peptide boost strategy: GM-CSF induced long-lived memory responses. *Immunol Lett*. 2011;140(1–2):14–20.

13. Zheng Q, Fan D, Gao N, et al. Evaluation of a DNA vaccine candidate expressing pM-E-NS1 antigens of dengue virus serotype 1 with or without granulocyte-macrophage colony-stimulating factor (GM-CSF) in immunogenicity and protection. *Vaccine*. 2011;29(4):763–771.

14. Raviprakash K, Ewing D, Simmons M, et al. Needle-free Biojector injection of a dengue virus type 1 DNA vaccine with human immunostimulatory sequences and the GM-CSF gene increases immunogenicity and protection from virus challenge in Aotus monkeys. *Virology*. 2003;315(2):345–352.

15. Loudon PT, Yager EJ, Lynch DT, et al. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates. *PLoS One*. 2010;5(6):e10121.

16. Qing Y, Chen M, Zhao J, et al. Construction of an HBV DNA vaccine by fusion of the GM-CSF gene to the HBV-S gene and examination of its immune effects in normal and HBV-transgenic mice. *Vaccine*. 2010;28(26):4301–4307.

17. Tan B, Wang H, Shang L, et al. Coadministration of chicken GM-CSF with a DNA vaccine expressing infectious bronchitis virus (IBV) S1 glycoprotein enhances the specific immune response and protects against IBV infection. *Arch Virology*. 2009;154(7):1117–1124.

18. Makkarrekoel S, Dubie RA, Shen X, et al. Vaccination with Vif-deleted feline immunodeficiency virus provirus, GM-CSF, and TNF-alpha plasmids preserves global CD4 T lymphocyte function after challenge with HIV. *Vaccine*. 2009;27(28):3754–3765.

19. Wang X, Li J, Jiang P, et al. GM-CSF fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus increased the immune responses and protective efficacy against virulent PRRSV challenge. *Virus Res*. 2009;143(1):24–32.

20. Hartoonian C, Ebtetar M, Soleimanjahi H, et al. Effect of immunological adjuvants: GM-CSF (granulocyte-macrophage colony stimulatingfactor) and IL-23 (interleukin-23) on immune responses generated against hepatitis C virus core DNA vaccine. *Cytokine*. 2009;46(1):43–50.

21. Encke J, Bernardin J, Geib J, et al. Genetic vaccination with Flt3-L and GM-CSF as adjuvants: Enhancement of cellular and humoral immune responses that results in protective immunity in a murine model of hepatitis C virus infection. *World J Gastroenterol*. 2006;12(44):7118–7125.

22. Lai L, Voédros D, Kozlowski PA, et al. GM-CSF DNA: an adjuvant for higher avidity IgG, rectal IgA, and increased protection against the acute phase of a SHIV-89.6P challenge by a DNA/MVA immunodeficiency virus vaccine. *Virology*. 2007;369(1):153–167.

23. Qiu JT, Chang TC, Lin CT, et al. Novel codon-optimized GM-CSF gene as an adjuvant to enhance the immunity of a DNA vaccine against HIV-1 Gag Vaccine. *2007;25(2):253–263.

24. Minke JM, Fischer L, Baudu P, et al. Use of DNA and recombinant canarypox viral (ALVAC) vectors for equine herpes virus vaccination. *Vet Immunol Immunopathol*. 2006;111(1–2):47–57.

25. Robinson HL, Montefiori DC, Villinger F, et al. Studies on GM-CSF DNA as an adjuvant for neutralizing Ab elicited by a DNA/MVA immunodeficiency virus vaccine. *Virology*. 2006;352(2):285–294.

26. Barouch DH, Santra S, Tenner-Racz K, et al. Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. *J Immunol*. 2002;168(2):562–568.

27. Drarnoff G, Jaffe F, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. *Proc Natl Acad Sci*. 1993;90:3539–3543.

28. Small EJ, Fratesi P, Reese DM, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. *J Clin Oncol*. 2000;18(23):3894–3903.

29. Kaufman HL, Ruby CE, Hughes T, et al. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. *J Immunother Cancer*. 2014;2:11.

30. Borrello I, Pardoll D. GM-CSF-based cellular vaccines: a review of the clinical experience. *Cytokine Growth Factor Rev*. 2002;13(2):185–193.

31. Serafini P, Carley R, Noonan KA, et al. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. *Cancer Res*. 2004;64:6337–6343.

32. Filippazzi P, Valenti R, Huber V, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulating factor-based antitumor vaccine. *J Clin Oncol*. 2007;25(18):2546–2553.

33. Parmiani G, Castelli C, Pilla L, et al. Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. *Ann Oncol*. 2007;18(2):226–232.