Similarity measures of intuitionistic fuzzy soft sets and their decision making

Naim Çağman, Irfan Deli

Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60250 Tokat, Turkey, naim.cagman@gop.edu.tr (Naim Çağman), Department of Mathematics, Faculty of Arts and Sciences, Kilis 7 Aralık University, 79000 Kilis, Turkey, irfandeli@kilis.edu.tr (Irfan Deli)

Abstract

In this article, we define some types of distances between two intuitionistic fuzzy soft (IFS) sets and proposed similarity measures of two IFS-sets. We then construct a decision method which is applied to a medical diagnosis problem that is based on similarity measures of IFS-sets. Finally we give two simple example to show the possibility of using this method for diagnosis of diseases which could be improved by incorporating clinical results and other competing diagnosis.

Keyword: Soft sets; intuitionistic fuzzy soft sets; Hamming distances; Euclidean distances; similarity measure.

1 Introduction

In 1999, Molodtsov [30] has introduced the concept of soft sets. The soft set theory successfully models the problems which contains uncertainties. In literature, there are theories, such as probability, fuzzy sets [35], intuitionistic fuzzy sets [7], rough sets [33] that are dealing with the uncertain data.

In this work we use soft set theory. The operations (e.g. [3, 15, 27, 31]) and applications (e.g. [3, 11, 13]) on soft set theory have been studied by some researcher. In recent years, many decision making on soft set theory have been expanded by embedding the ideas of fuzzy sets (e.g. [5, 9, 13, 16, 17, 19, 20, 23, 29, 32]), intuitionistic fuzzy sets (e.g. [7, 8, 10, 21, 25, 31]) and rough sets [5, 21].

Majumdar and Samanta [28] give two types of similarity measure between soft sets and have shown an application of this similarity measure of soft sets. Kharal [23] give counterexamples to show that Definition 2.7 and Lemma 3.5...
contain errors in \[28\]. In \[23\], a new measures have been presented and this measures have been applied to the problem of financial diagnosis of firms.

In this paper, we first present the basic definitions and theorem of soft sets, fuzzy sets, intuitionistic fuzzy sets and intuitionistic fuzzy soft sets that are useful for subsequent discussions. We then define distances and similarity measures between two intuitionistic fuzzy soft (IFS) sets. By using the similarity we construct a decision making method. We finally give an application, which shows that the similarity measures can be successfully applied to a medical diagnosis problem that contains uncertainties.

2 Preliminary

In this section, we present the basic definitions of soft set theory \[15, 30\], fuzzy set theory \[35\], intuitionistic fuzzy set theory \[7\] and intuitionistic fuzzy soft set theory \[10\] that are useful for subsequent discussions.

Definition 2.1 \[15\] Let \(U \) be a universe, \(E \) be a set of parameters that are describe the elements of \(U \), and \(A \subseteq E \). Then, a soft set \(F_A \) over \(U \) is a set defined by a set valued function \(f_A \) representing a mapping

\[
f_A : E \rightarrow P(U) \text{ such that } f_A(x) = \emptyset \text{ if } x \in E - A
\]

where \(f_A \) is called approximate function of the soft set \(F_A \). In other words, the soft set is a parametrized family of subsets of the set \(U \), and therefore it can be written a set of ordered pairs

\[
F_A = \{(x, f_A(x)) : x \in E, f_A(x) = \emptyset \text{ if } x \in E - A\}
\]

Definition 2.2 \[35\] Let \(U \) be a universe. Then a fuzzy set \(X \) over \(U \) is a function defined as follows:

\[
X = \{\mu_X(u)/u : u \in U\}
\]

where \(\mu_X : U \rightarrow [0, 1] \)

Here, \(\mu_X \) called membership function of \(X \), and the value \(\mu_X(u) \) is called the grade of membership of \(u \in U \). The value represents the degree of \(u \) belonging to the fuzzy set \(X \).

Definition 2.3 \[7\] Let \(E \) be a universe. An intuitionistic fuzzy set \(A \) on \(E \) can be defined as follows:

\[
A = \{< x, \mu_A(x), \gamma_A(x) > : x \in E\}
\]

where, \(\mu_A : E \rightarrow [0, 1] \) and \(\gamma_A : E \rightarrow [0, 1] \) such that \(0 \leq \mu_A(x) + \gamma_A(x) \leq 1 \) for any \(x \in E \).

Here, \(\mu_A(x) \) and \(\gamma_A(x) \) is the degree of membership and degree of non-membership of the element \(x \), respectively.
If A and B are two intuitionistic fuzzy sets on E, then

1. $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$ for $\forall x \in E$.
2. $A = B$ if and only if $\mu_A(x) = \mu_B(x)$ and $\gamma_A(x) = \gamma_B(x)$ $\forall x \in E$.
3. $A^c = \{< x, \gamma_A(x), \mu_A(x) > : x \in E \}$
4. $A \cup B = \{< x, \max(\mu_A(x), \mu_B(x)), \min(\gamma_A(x), \gamma_B(x)) > : x \in E \}$
5. $A \cap B = \{< x, \min(\mu_A(x), \mu_B(x)), \max(\gamma_A(x), \gamma_B(x)) > : x \in E \}$
6. $A + B = \{< x, \mu_X(x) + \mu_Y(x) - \mu_X(x)\mu_Y(x), \gamma_X(x)\gamma_Y(x) > : x \in E \}$
7. $A \cdot B = \{< x, \mu_A(x)\mu_B(x), \gamma_A(x) + \gamma_B(x) - \gamma_A(x)\gamma_B(x) > : x \in E \}$.

Definition 2.4 An intuitionistic fuzzy soft set (or namely IFS-set) is defined by the set of ordered pairs

$$\Gamma_A = \{(x, \gamma_A(x)) : x \in E, \gamma_A(x) \in \hat{\mathcal{F}}(U)\}$$

where $\gamma_A : E \to \hat{\mathcal{F}}(U)$ such that $\gamma_A(x) = \emptyset$ if $x \notin A$ and \emptyset is intuitionistic fuzzy empty set. Moreover $\gamma_A(x)$ is an intuitionistic fuzzy set. So it is denoted by

$$\gamma_A(x) = \{(u, \mu_A(u), \nu_A(u)) : u \in U\}$$

for all $x \in E$. Moreover, $\mu_A : U \to [0, 1]$ and $\nu_A : U \to [0, 1]$ with the condition $0 \leq \mu_A(u) + \nu_A(u) \leq 1$, for all $u \in U$. The numbers $\mu_A(u)$ and $\nu_A(u)$ denote the membership degree end non-membership degree of $u \in U$ to the intuitionistic fuzzy set $\gamma_A(x)$, respectively.

Example 2.5 Suppose that there are five car in the universe $U = \{u_1, u_2, u_3, u_4, u_5\}$ under consideration “$x_1 =$large”, “$x_2 =$costly”, “$x_3 =$secure”, “$x_4 =$strong”, “$x_5 =$economic” and”. “$x_6 =$repair”. Therefore parameter set is $E = \{x_1, x_2, x_3, x_4, x_5, x_6\}$. Let $A = \{x_1, x_2, x_3, x_4\}$. Then IFS-set Γ_A is represented the following tabular form:

$$\Gamma_A = \{(x_1, \{(u_1, 0.5, 0.2), (u_2, 0.5, 0.2), (u_3, 0.5, 0.2), (u_4, 0.5, 0.2)\}),
\ (x_2, \{(u_1, 0.6, 0.4), (u_2, 0.9, 0.1), (u_3, 0.5, 0.3), (u_4, 0.1, 0.9)\}),
\ (x_3, \{(u_1, 0.7, 0.2), (u_2, 0.8, 0.1), (u_3, 0.2, 0.16), (u_4, 0.4, 0.5)\}),
\ (x_4, \{(u_1, 0.4, 0.3), (u_2, 0.2, 0.7), (u_3, 0.8, 0.2), (u_4, 0.2, 0.1)\})\}$$

3
3 Similarity Measures of IFS-Sets

In this section, we first present the basic definitions of distances between two intuitionistic fuzzy sets [8] and two soft sets [28] that are useful for subsequent discussions. We then define some distances and similarity measures of IFS-sets.

Definition 3.1 [8] Let $U = \{x_1, x_2, x_3, \ldots, x_n\}$ be a universe and A, B be two intuitionistic fuzzy sets over U with their membership function μ_A, μ_B and non-membership function ν_A, ν_B, respectively. Then the distances of A and B are defined as,

1. **Hamming distance**;

$$d(A, B) = \frac{1}{2} \sum_{i=1}^{n} [|\mu_A(x_i) - \mu_B(x_i)| + |\nu_A(x_i) - \nu_B(x_i)|]$$

2. **Normalized Hamming distance**;

$$l(A, B) = \frac{1}{2n} \sum_{i=1}^{n} [|\mu_A(x_i) - \mu_B(x_i)| + |\nu_A(x_i) - \nu_B(x_i)|]$$

3. **Euclidean distance**;

$$e(A, B) = \sqrt{ \frac{1}{2} \sum_{i=1}^{n} [(\mu_A(x_i) - \mu_B(x_i))^2 + (\nu_A(x_i) - \nu_B(x_i))^2] }$$

4. **Normalized Euclidean distance**;

$$q(A, B) = \sqrt{ \frac{1}{2n} \sum_{i=1}^{n} [(\mu_A(x_i) - \mu_B(x_i))^2 + (\nu_A(x_i) - \nu_B(x_i))^2] }$$

Definition 3.2 [28] Let $U = \{u_1, u_2, u_3, \ldots\}$ be a universe, $E = \{x_1, x_2, x_3, \ldots\}$ be a set of parameters, $A, B \subseteq E$, and F_A and G_B be two soft sets on U with their approximate functions f_A and g_B, respectively.

If $A = B$, then similarity between F_A and G_B is defined by

$$S(F_A, G_B) = \frac{\sum_{i=1}^{n} f_A(x_i) \cdot g_B(x_i)}{\sum_{i=1}^{n} \max[f_A(x_i), g_B(x_i)]^2}$$

where

$$f_A(x_i) = (\chi_{f_A(x_i)}(u_1), \chi_{f_A(x_i)}(u_2), \chi_{f_A(x_i)}(u_3), \ldots)$$

$$g_B(x_i) = (\chi_{g_B(x_i)}(u_1), \chi_{g_B(x_i)}(u_2), \chi_{g_B(x_i)}(u_3), \ldots)$$

and

$$\chi_{f_A(x_i)}(u_j) = \begin{cases} 1, & u_j \in f_A(x_i) \\ 0, & u_j \notin f_A(x_i) \end{cases} \quad \chi_{g_B(x_i)}(u_j) = \begin{cases} 1, & u_j \in g_B(x_i) \\ 0, & u_j \notin g_B(x_i) \end{cases}$$
Note 3.3 If \(A \neq B \) and \(C = A \cap B \neq \emptyset \), then \(f_A(x_i) = 0 \) for \(x_i \in B \setminus C \) and \(g_B(x_i) = 0 \) for \(x_i \in A \setminus C \).

If \(A \cap B = \emptyset \), then \(S(F_A, G_B) = 0 \) and \(S(F_A, F^c_A) = 0 \) as \(f_A(x_i) \cdot f^c_A(x_i) = 0 \) for all \(i \).

Definition 3.4 [28] Let \(F_A \) and \(G_B \) be two soft sets over \(U \). Then, \(F_A \) and \(G_B \) are said to be \(\alpha \)-similar, denoted as \(F_A \approx^\alpha G_B \), if and only if \(S(F_A, G_B) \geq \alpha \) for \(\alpha \in (0, 1) \).

Definition 3.5 [28] Let \(U = \{u_1, u_2, u_3, \ldots\} \) be a universe, \(E = \{x_1, x_2, x_3, \ldots\} \) be a set of parameters, \(A, B \subseteq E \) and \(F_A, G_B \) be two soft sets on \(U \) with their approximate functions \(f_A \) and \(g_B \), respectively. Then, the distances of \(F_A \) and \(G_B \) are defined as,

1. Hamming distance;
 \[
d^h(F_A, G_B) = \frac{1}{m} \left\{ \sum_{i=1}^{m} \sum_{j=1}^{n} |f_A(x_i)(u_j) - g_B(x_i)(u_j)| \right\}
 \]

2. Normalized Hamming distance;
 \[
l^h(F_A, G_B) = \frac{1}{mn} \left\{ \sum_{i=1}^{m} \sum_{j=1}^{n} |f_A(x_i)(u_j) - g_B(x_i)(u_j)| \right\}
 \]

3. Euclidean distance;
 \[
e^h(F_A, G_B) = \sqrt{\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (f_A(x_i)(u_j) - g_B(x_i)(u_j))^2}
 \]

4. Normalized Euclidean distance;
 \[
q^h(F_A, G_B) = \sqrt{\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (f_A(x_i)(u_j) - g_B(x_i)(u_j))^2}
 \]

Definition 3.6 [28] Let \(F_A \) and \(G_B \) be two soft sets over \(U \). Then, by using the Euclidean distance, similarity measure of \(F_A \) and \(G_B \) is defined as,

\[
s'(F_A, G_B) = \frac{1}{1 + e^h(F_A, G_B)}
\]

Another similarity measure of \(F_A \) and \(G_B \) can be defined as,

\[
s''(F_A, G_B) = e^{-\alpha e^h(F_A, G_B)}
\]

where \(\alpha \) is a positive real number called the steepness measure.
Definition 3.7: Let $U = \{u_1, u_2, ..., u_n\}$ be a universe, $E = \{x_1, x_2, ..., x_m\}$ be a set of parameters, $A, B \subseteq E$ and Γ_A, Λ_B be two IFS-sets on U with their intuitionistic fuzzy approximate functions $\gamma_A(x_i) = \{(u, \mu_A(u), \nu_A(u)) : u \in U\}$ and $\lambda_B(x_i) = \{(u, \mu_B(u), \nu_B(u)) : u \in U\}$, respectively.

If $A = B$ and $\mu_A(x_i)(u_j) - \nu_A(x_i)(u_j) \neq 0$ or $\mu_B(x_i)(u_j) - \nu_B(x_i)(u_j) \neq 0$ for at least one $i \in \{1, 2, ..., n\}$ and $j \in \{1, 2, ..., m\}$, then similarity between Γ_A and Λ_B is defined by

$$S_{IFS}(\Gamma_A, \Lambda_B) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} |(\mu_A(x_i)(u_j) - \nu_A(x_i)(u_j)) \cdot (\mu_B(x_i)(u_j) - \nu_B(x_i)(u_j))|}{\sum_{i=1}^{m} \sum_{j=1}^{n} \max\{|\mu_A(x_i)(u_j) - \nu_A(x_i)(u_j)|^2, |\mu_B(x_i)(u_j) - \nu_B(x_i)(u_j)|^2\}}$$

where

- $\mu_A(x_i)(u_j) = (\mu_A(x_i)(u_1), \mu_A(x_i)(u_2), ..., \mu_A(x_i)(u_n))$
- $\nu_A(x_i)(u_j) = (\nu_A(x_i)(u_1), \nu_A(x_i)(u_2), ..., \nu_A(x_i)(u_n))$
- $\mu_B(x_i)(u_j) = (\mu_B(x_i)(u_1), \mu_B(x_i)(u_2), ..., \mu_B(x_i)(u_n))$
- $\nu_B(x_i)(u_j) = (\nu_B(x_i)(u_1), \nu_B(x_i)(u_2), ..., \nu_B(x_i)(u_n))$

If $A = B$ and $\mu_A(x_i)(u_j) - \nu_A(x_i)(u_j) = 0$ and $\mu_B(x_i)(u_j) - \nu_B(x_i)(u_j) = 0$ for all $i \in \{1, 2, ..., n\}$ and $j \in \{1, 2, ..., m\}$, then $S_{IFS}(\Gamma_A, \Lambda_B) = 1$.

Example 3.8: Assume that $U = \{u_1, u_2, u_3, u_4\}$ is a universal set, $E = \{x_1, x_2, x_3, x_4\}$ is a set of parameters, $A = \{x_1, x_2, x_4\}, B = \{x_1, x_2, x_4\}$ are subsets of E. If two IFS-sets Γ_A and Λ_B over U are contracted as follows:

$$\Gamma_A = \left\{ (x_1, \{(u_1, 0.5, 0.5), (u_2, 0.4, 0.5), (u_3, 0.7, 0.2), (u_4, 0.8, 0.1)\}), (x_2, \{(u_1, 0.4, 0.6), (u_2, 0.2, 0.7), (u_3, 0.2, 0.8), (u_4, 0.2, 0.2)\}), (x_3, \{(u_1, 0.2, 0.7), (u_2, 0.1, 0.9), (u_3, 0.5, 0.4), (u_4, 0.7, 0.2)\}) \right\}$$

$$\Lambda_B = \left\{ (u_1, 0.2, 0.7), (u_2, 0.1, 0.9), (u_3, 0.5, 0.4), (u_4, 0.4, 0.4)\}), (x_2, \{(u_1, 0.5, 0.5), (u_2, 0.4, 0.5), (u_3, 0.3, 0.6), (u_4, 0.4, 0.5)\}), (x_3, \{(u_1, 0.4, 0.6), (u_2, 0.2, 0.7), (u_3, 0.2, 0.8), (u_4, 0.2, 0.5)\}) \right\}$$

Then we can obtain

$$\mu_A(x_1)(u_j) = (0.5, 0.4, 0.7, 0.8), \quad \nu_A(x_1)(u_j) = (0.5, 0.5, 0.2, 0.1),$$
$$\mu_A(x_2)(u_j) = (0.4, 0.2, 0.2, 0.2), \quad \nu_A(x_2)(u_j) = (0.6, 0.7, 0.8, 0.2),$$
$$\mu_A(x_3)(u_j) = (0.2, 0.1, 0.5, 0.7), \quad \nu_A(x_3)(u_j) = (0.7, 0.9, 0.4, 0.2),$$
$$\mu_B(x_1)(u_j) = (0.2, 0.1, 0.5, 0.4), \quad \nu_B(x_1)(u_j) = (0.7, 0.9, 0.4, 0.4),$$
$$\mu_B(x_2)(u_j) = (0.5, 0.4, 0.3, 0.4), \quad \nu_B(x_2)(u_j) = (0.5, 0.5, 0.6, 0.5),$$

6
\overline{\mu_B(x_3)(u_j)} = (0.4, 0.2, 0.2, 0.2), \quad \overline{\nu_B(x_3)(u_j)} = (0.6, 0.7, 0.8, 0.5).

and

\begin{align*}
\langle \mu_A(x_1)(u_j) - \nu_A(x_1)(u_j) \rangle &= (0.0, -0.1, 0.5, 0.7), \\
\langle \mu_A(x_2)(u_j) - \nu_A(x_2)(u_j) \rangle &= (-0.2, -0.5, -0.6, 0.0), \\
\langle \mu_A(x_3)(u_j) - \nu_A(x_3)(u_j) \rangle &= (-0.5, -0.8, 0.1, 0.5), \\
\langle \mu_B(x_1)(u_j) - \nu_B(x_1)(u_j) \rangle &= (-0.5, -0.8, 0.1, 0.0), \\
\langle \mu_B(x_2)(u_j) - \nu_B(x_2)(u_j) \rangle &= (0.0, -0.1, -0.3, -0.1), \\
\langle \mu_B(x_3)(u_j) - \nu_B(x_3)(u_j) \rangle &= (-0.2, -0.5, -0.6, -0.3)
\end{align*}

Now the similarity between \(\Gamma_A \) and \(\Lambda_B \) is calculated as

\[S_{IFS}(\Gamma_A, \Lambda_B) = 0.31 \]

Theorem 3.9 Let \(E \) be a parameter set, \(A, B \subseteq E \) and \(\Gamma_A \) and \(\Lambda_B \) be two IFS-sets over \(U \). Then the followings hold;

i. \(S_{IFS}(\Gamma_A, \Lambda_B) = S_{IFS}(\Lambda_B, \Gamma_A) \)

ii. \(0 \leq S_{IFS}(\Gamma_A, \Lambda_B) \leq 1 \)

iii. \(S_{IFS}(\Gamma_A, \Gamma_A) = 1 \)

Proof: Proof easily can be made by using Definition 3.7.

Theorem 3.10 Let \(E \) be a parameter set, \(A, B, C \subseteq E \) and \(\Gamma_A, \Lambda_B \) and \(\Upsilon_C \) be three IFS-sets over \(U \) such that \(\Gamma_A \) is a intuitionistic fuzzy soft subset of \(\Lambda_B \) and \(\Lambda_B \)is a Intuitionistic fuzzy soft subset of \(\Upsilon_C \) then,

\[S_{IFS}(\Gamma_A, \Upsilon_C) \leq S_{IFS}(\Lambda_B, \Upsilon_C) \]

Proof: The proof is straightforward.

Definition 3.11 Let \(U = \{u_1, u_2, ..., u_n\} \) be a universe, \(E = \{x_1, x_2, ..., x_m\} \) be a set of parameters, \(A, B \subseteq E \) and \(\Gamma_A, \Lambda_B \) be two IFS-sets on \(U \) with their intuitionistic fuzzy approximate functions \(\gamma_A(x_i) = \{(u, \mu_A(u), \nu_A(u)) : u \in U\} \) and \(\lambda_B(x_i) = \{(u, \mu_B(u), \nu_B(u)) : u \in U\} \), respectively. Then the distances of \(\Gamma_A \) and \(\Lambda_B \) are defined as,

1. **Hamming distance**,

\[d^*_{IFS}(\Gamma_A, \Lambda_B) = \]

\[\frac{1}{2m} \left\{ \sum_{i=1}^{m} \sum_{j=1}^{n} |\mu_A(x_i)(u_j) - \mu_B(x_i)(u_j)| + |\nu_A(x_i)(u_j) - \nu_B(x_i)(u_j)| \right\} \]
2. Normalized Hamming distance,
\[
l_{IFS}(\Gamma_A, \Lambda_B) = \frac{1}{2mn} \left\{ \sum_{i=1}^{m} \sum_{j=1}^{n} |\mu_A(x_i)(u_j) - \mu_B(x_i)(u_j)| + |\nu_A(x_i)(u_j) - \nu_B(x_i)(u_j)| \right\}
\]

3. Euclidean distance,
\[
e_{IFS}(\Gamma_A, \Lambda_B) = \left(\frac{1}{2mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[(\mu_A(x_i)(u_j) - \mu_B(x_i)(u_j))^2 + (\nu_A(x_i)(u_j) - \nu_B(x_i)(u_j))^2 \right] \right)^{\frac{1}{2}}
\]

4. Normalized Euclidean distance,
\[
q_{IFS}(\Gamma_A, \Lambda_B) = \left(\frac{1}{2mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[(\mu_A(x_i)(u_j) - \mu_B(x_i)(u_j))^2 + (\nu_A(x_i)(u_j) - \nu_B(x_i)(u_j))^2 \right] \right)^{\frac{1}{2}}
\]

Example 3.12 Let us consider the Example 3.8. Then, the distances of \(\Gamma_A\) and \(\Lambda_B\) are calculated as follows;
\[
\begin{align*}
d_{IFS}(\Gamma_A, \Lambda_B) &= 0.07 \\
l_{IFS}(\Gamma_A, \Lambda_B) &= 0.37 \\
e_{IFS}(\Gamma_A, \Lambda_B) &= 0.28 \\
q_{IFS}(\Gamma_A, \Lambda_B) &= 0.19
\end{align*}
\]

Theorem 3.13 Let \(E\) be a parameter set, \(A, B \subseteq E\) and \(\Gamma_A\) and \(\Lambda_B\) be two IFS-sets over \(U\). Then the followings hold;
\[
\begin{align*}
i. \ d_{IFS}(\Gamma_A, \Lambda_B) &\leq n \\
ii. \ l_{IFS}(\Gamma_A, \Lambda_B) &\leq 1 \\
iii. \ e_{IFS}(\Gamma_A, \Lambda_B) &\leq \sqrt{n} \\
iv. \ q_{IFS}(\Gamma_A, \Lambda_B) &\leq 1
\end{align*}
\]

Proof: Proof easily can be made by using Definition 3.11.

Theorem 3.14 Let \(IFS(U)\) be a set of all IFS-sets over \(U\). Then the distances functions \(d_{IFS}, l_{IFS}, e_{IFS}\) and \(q_{IFS}\), defined from \(IFS(U)\) to the non-negative real number \(R^+\), are metric.

Proof: We give only proof for \(l_{IFS}\). If \(\Gamma_A, \Lambda_B\) and \(\Upsilon_C\) \(\in IFS(U)\), then
for \(\alpha \) Hamming distance, similarity measure of \(\Gamma \) where

\[
\begin{align*}
\text{Definition 3.15} & \\
\text{Triangle inequality follows easily from the observation that for any three IFS-sets } \Gamma_A, \Lambda_B, \text{ and } \Upsilon_C, \\
\forall i = \{1, 2, \ldots, m\}, j = \{1, 2, \ldots, n\} & \\
& \left| \mu_A(x_i)(u_j) - \mu_B(x_i)(u_j) \right| + \left| \nu_A(x_i)(u_j) - \nu_B(x_i)(u_j) \right| = 0 \\
& \Rightarrow |\mu_A(x_i)(u_j) - \mu_B(x_i)(u_j)| + |\nu_A(x_i)(u_j) - \nu_B(x_i)(u_j)| = 0 \\
& \Rightarrow \Gamma_A = \Lambda_B \\
& \text{Conversely, let} \\
& \Gamma_A = \Lambda_B \\
& \Rightarrow |\mu_A(x_i)(u_j) - \mu_B(x_i)(u_j)| + |\nu_A(x_i)(u_j) - \nu_B(x_i)(u_j)| = 0 \\
& \Rightarrow l_{IFS}^1(\Gamma_A, \Lambda_B) = 0 \\
& \text{Clearly, } l_{IFS}^1(\Gamma_A, \Lambda_B) = l_{IFS}^1(\Lambda_B, \Gamma_A) \\
& \text{Triangle inequality follows easily from the observation that for any three IFS-sets } \Gamma_A, \Lambda_B, \text{ and } \Upsilon_C, \\
\forall i = \{1, 2, \ldots, m\}, j = \{1, 2, \ldots, n\} & \\
& |\mu_A(x_i)(u_j) - \mu_B(x_i)(u_j)| + |\nu_A(x_i)(u_j) - \nu_B(x_i)(u_j)| = |\mu_A(x_i)(u_j) - \mu_C(x_i)(u_j)| + |\nu_A(x_i)(u_j) - \nu_C(x_i)(u_j)| \\
& \Rightarrow |\mu_A(x_i)(u_j) - \mu_B(x_i)(u_j)| + |\nu_A(x_i)(u_j) - \nu_B(x_i)(u_j)| = |\mu_A(x_i)(u_j) - \mu_C(x_i)(u_j)| + |\nu_A(x_i)(u_j) - \nu_C(x_i)(u_j)| \\
& \Rightarrow l_{IFS}^1(\Gamma_A, \Lambda_B) \leq l_{IFS}^1(\Gamma_A, \Upsilon_C) + l_{IFS}^1(\Upsilon_C, \Lambda_B) \\
& \text{The others proofs can made similarly.} \\
\text{Definition 3.15} & \\
& \text{Let } \Gamma_A \text{ and } \Lambda_B \text{ be two IFS-sets over } U. \text{ Then, by using the Hamming distance, similarity measure of } \Gamma_A \text{ and } \Lambda_B \text{ is defined as,} \\
& S_{IFS}^1(\Gamma_A, \Lambda_B) = \frac{1}{1 + d_{IFS}^1(\Gamma_A, \Lambda_B)} \\
& \text{Another similarity measure of } F_A \text{ and } G_B \text{ can be defined as,} \\
& S_{IFS}^\alpha(\Gamma_A, \Lambda_B) = e^{-\alpha d_{IFS}^1(\Gamma_A, \Lambda_B)} \\
& \text{where } \alpha \text{ is a positive real number called the steepness measure.} \\
\text{Definition 3.16} & \\
& \text{Let } \Gamma_A \text{ and } \Lambda_B \text{ be two IFS-sets over } U. \text{ Then, } \Gamma_A \text{ and } \Lambda_B \text{ are said to be } \alpha \text{-similar, denoted as } \Gamma_A \approx^\alpha \Lambda_B, \text{ if and only if } S'(\Gamma_A, \Lambda_B) \geq \alpha \text{ for } \alpha \in (0, 1). \\
& \text{We call the two IFS-sets significantly similar if } S'(\Gamma_A, \Lambda_B) > \frac{1}{2}. \\
\end{align*}
\]
Example 3.17 Let us consider the Example 3.12. Similarity measure of Γ_A and Λ_B is obtained as,

$$S'_{IFS}(\Gamma_A, \Lambda_B) = \frac{1}{1 + d'_{IFS}(\Gamma_A, \Lambda_B)} = 0.73$$

Γ_A and Λ_B is significantly similar because $S'_{IFS}(\Gamma_A, \Lambda_B) = 0.73 > \frac{1}{2}$

Theorem 3.18 Let E be a parameter set, $A, B \subseteq E$ and Γ_A and Λ_B be two IFS-sets over U. Then the followings hold;

i. $0 \leq S'_{IFS}(\Gamma_A, \Lambda_B) \leq 1$

ii. $S'_{IFS}(\Gamma_A, \Lambda_B) = S'_{IFS}(\Lambda_B, \Gamma_A)$

iii. $S'_{IFS}(\Gamma_A, \Lambda_B) = 1 \iff \Gamma_A = \Lambda_B$

Proof: Proof easily can be made by using Definition 3.15.

4 Decision Making Method

In this section, we construct a decision making method that is based on the similarity measure of two IFS-sets. The algorithm of decision making method can be given as;

Step 1. Constructs a IFS-set Γ_A over U based on an expert,

Step 2. Constructs a IFS-set Λ_B over U based on a responsible person for the problem,

Step 3. Calculate the distances of Γ_A and Λ_B,

Step 4. Calculate the similarity measure of Γ_A and Λ_B,

Step 5. Estimate result by using the similarity.

Now, we can give an application for the decision making method. By using the Hamming distance, similarity measure of two IFS-sets can be applied to detect whether an ill person is suffering from a certain disease or not.

5 Application

In this applications, we will try to estimate the possibility that an ill person having certain visible symptoms is suffering from cancer. For this, we first construct a IFS-set for the illness and a IFS-set for the ill person. We then find the similarity measure of these two IFS-sets. If they are significantly similar, then we conclude that the person is possibly suffering from cancer.
Example 5.1 Assume that our universal set contain only two elements cancer and not cancer, i.e. $U = \{u_1, u_2\}$. Here the set of parameters $A = B = E$ is the set of certain visible symptoms, let us say, $E = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9\}$ where $x_1 = \text{jaundice}$, $x_2 = \text{bone pain}$, $x_3 = \text{headache}$, $x_4 = \text{loss of appetite}$, $x_5 = \text{weight loss}$, $x_6 = \text{heat wounds}$, $x_7 = \text{handle and shoulder pain}$, $x_8 = \text{lump}$ anywhere on the body for no reason and $x_9 = \text{chest pain}$.

Step 1. Constructs a IFS-set Γ_A over U for cancer is given below and this can be prepared with the help of a medical person:

\[
\Gamma_A = \big\{ (x_1, \{(u_1, 0.5, 0.5), (u_2, 0.4, 0.5)\}), (x_2, \{(u_1, 0.7, 0.2), (u_2, 0.8, 0.1)\}), (x_3, \{(u_1, 0.4, 0.6), (u_2, 0.2, 0.7)\}), (x_4, \{(u_1, 0.2, 0.8), (u_2, 0.2, 0.2)\}), (x_5, \{(u_1, 0.2, 0.7), (u_2, 0.1, 0.9)\}), (x_6, \{(u_3, 0.5, 0.4), (u_4, 0.7, 0.2)\}), (x_7, \{(u_1, 0.3, 0.7), (u_2, 0.4, 0.4)\}), (x_8, \{(u_1, 0.5, 0.2), (u_2, 0.7, 0.1)\}), (x_9, \{(u_1, 0.3, 0.4), (u_2, 0.7, 0.1)\}) \big\}
\]

Step 2. Constructs a IFS-set Λ_B over U based on data of ill person:

\[
\Lambda_B = \big\{ (x_1, \{(u_1, 0.9, 0.1), (u_2, 0.9, 0.0)\}), (x_2, \{(u_1, 0.1, 0.9), (u_2, 0.1, 0.8)\}), (x_3, \{(u_1, 0.7, 0.1), (u_2, 0.8, 0.9)\}), (x_4, \{(u_1, 0.9, 0.1), (u_2, 0.9, 0.8)\}), (x_5, \{(u_1, 0.9, 0.1), (u_2, 0.9, 0.2)\}), (x_6, \{(u_3, 0.1, 0.9), (u_4, 0.1, 0.8)\}), (x_7, \{(u_1, 0.9, 0.1), (u_2, 0.7, 0.9)\}), (x_8, \{(u_1, 0.9, 0.9), (u_2, 0.1, 0.9)\}), (x_9, \{(u_1, 0.8, 0.1), (u_2, 0.1)\}) \big\}
\]

Step 3. Calculate Hamming distances of Γ_A and Λ_B,

\[
d_{IFS}(\Gamma_A, \Lambda_B) \cong 1.1
\]

Step 4. Calculate the similarity measure of Γ_A and Λ_B,

\[
S_{IFS}(\Gamma_A, \Lambda_B) = \frac{1}{1 + d_{IFS}(\Gamma_A, \Lambda_B)} \cong 0.48 < \frac{1}{2}
\]

Step 5. Hence the two IFS-sets, i.e. two symptoms Γ_A and Λ_B are not significantly similar. Therefore, we conclude that the person is not possibly suffering from cancer.

Example 5.2 Let us consider Example 5.1 with different ill person.

Step 1. Constructs a IFS-set for cancer Γ_A is in the Example 5.1.
Step 2. A person suffering from the following symptoms whose corresponding IFS-set Υ_C is given below:

$$\Upsilon_C = \left\{ (x_1, \{(u_1, 0.5, 0.4), (u_2, 0.4, 0.4)\}), (x_2, \{(u_1, 0.7, 0.1), (u_2, 0.8, 0.1)\}) \right\},$$

$$\left\{ (x_3, \{(u_1, 0.4, 0.5), (u_2, 0.2, 0.6)\}), (x_4, \{(u_1, 0.2, 0.7), (u_2, 0.2, 0.1)\}) \right\},$$

$$\left\{ (x_5, \{(u_1, 0.2, 0.6), (u_2, 0.1, 0.8)\}), (x_6, \{(u_3, 0.5, 0.3), (u_C, 0.7, 0.1)\}) \right\},$$

$$\left\{ (x_7, \{(u_1, 0.2, 0.6), (u_2, 0.1, 0.8)\}), (x_8, \{(u_1, 0.5, 0.3), (u_2, 0.7, 0.1)\}) \right\},$$

$$\left\{ (x_9, \{(u_1, 0.5, 0.3), (u_2, 0.7, 0.1)\}) \right\}$$

Step 3. Calculate Hamming distances of Γ_A and Λ_B,

$$d^{\text{IFS}}_I(\Gamma_A, \Lambda_B) \approx 0.41$$

Step 4. Find the similarity measure of these two IFS-sets as:

$$S^{\text{IFS}}_I(\Gamma_A, \Upsilon_C) = \frac{1}{1 + d^{\text{IFS}}_I(\Gamma_A, \Upsilon_C)} \approx 0.71 > \frac{1}{2}$$

Step 5. Here the two IFS-sets, i.e. two symptoms Γ_A and Υ_C are significantly similar. Therefore, we conclude that the person is possibly suffering from cancer.

6 Conclusion

Majumdar and Samanta give two types of similarity measure between soft sets and have shown an application of this similarity measure of soft sets. In [23], Kharal give counterexamples to show that Definition 2.7 and Lemma 3.5 contain errors in [28]. In [23], a new measures have been presented and this measures have been applied to the problem of financial diagnosis of firms. In this paper, we have defined four types of distances between two IFS-sets and proposed similarity measures of two IFS-sets. Then, we construct a decision making method based on the similarity measures. Finally, we give two simple examples to show the possibility of using this method by using Hamming distance for diagnosis of diseases. In these example, if we use the other distances, we can obtain similar result.

The method can be applied to problems that contain uncertainty such as problems in social, economic systems, pattern recognition, medical diagnosis, game theory, coding theory and so on.

References

[1] U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Computers and Mathematics with Applications, 59 (2010) 3458-3463.
[2] H. Aktaş and N. Çağman, Soft sets and soft groups, Information Sciences, 177 (2007) 2726-2735.

[3] M.I. Ali, F. Feng, X. Liu, W.K. Min and M. Shabir, On some new operations in soft set theory, Computers and Mathematics with Applications, 57 (2009) 1547-1553.

[4] M.I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Applied Soft Computing, 11 (2011) 3329-3332.

[5] M.I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Applied Soft Computing, 11 (2011) 3329-3332.

[6] A.O. Atagün and A. Sezgin, Soft substructures of rings, fields and modules, Computers and Mathematics with Applications, 61 (2011) 592-601.

[7] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.

[8] K. Atanassov, Intuitionistic fuzzy sets, Theory and Applications, Physica-Verlag, Wyrzburg, 1999.

[9] A. Aygünoglu, H. Aygün, Introduction to fuzzy soft groups, Computers and Mathematics with Applications, 58 (2009) 1279-1286.

[10] N. Çağman and S. Karataş, Intuitionistic fuzzy soft set theory and its decision making, Journal of Intelligent and Fuzzy Systems, DOI: 10.3233/IFS-2012-06015-17.

[11] N. Çağman, S. Karataş and S. Enginoğlu, Soft Topology, Computers and Mathematics with Applications, 62 (2011) 351 - 358.

[12] N. Çağman, F. Erdoğan and S. Enginoğlu, FP-soft set theory and its applications, Annals of Fuzzy Mathematics and Informatics, 2/2 (2011) 219-226.

[13] N. Çağman and S. Enginoğlu, Soft matrices and its decision makings, Computers and Mathematics with Applications, 59 (2010) 3308-3314.

[14] N. Çağman, F. Erdoğan and S. Enginoğlu, Fuzzy parameterized fuzzy soft set theory and its applications, Turkish Journal of Fuzzy Systems, 1/1, (2010) 21-35.

[15] N. Çağman and S. Enginoğlu, Soft set theory and uni-int decision making, European Journal of Operational Research, 207 (2010) 848-855.

[16] Çağman, N. Deli, I. Means of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, 41/3 (2012) xxx-xxx (In Press)

[17] Çağman, N. Deli, I. Product of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics 41/3 (2012) 365 374.
[18] Deli, I. Means of Fuzzy Parameterzed Soft Sets and its Applications (In Turkish), Masters Thesis, Gaziosmanpasa University, Graduate School of Natural and Applied Science, 2010.

[19] F. Feng, Y. B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft sets based decision making, Journal of Computational and Applied Mathematics, 234 (2010) 10-20.

[20] F. Feng, C. Li, B. Davvaz, M. Irfan Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Computing 14 (2010) 899–911.

[21] F. Feng, X. Liu, V. L. Fotea, Y. B. Jun, Soft sets and soft rough sets, Information Sciences 181 (2011) 1125–1137.

[22] Y. Jiang, Y. Tang, Q. Chen, An adjustable approach to IFS-sets based decision making, Applied Mathematical Modelling, 35 (2011) 824836.

[23] A. Kharal, Distance and Similarity Measures for Soft Sets, New Math. and Nat. Computation, 06, 321 (2010). DOI: 10.1142/S1793005710001724

[24] P.K. Maji,A.R. Roy, R. Biswas, On Intuitionistic Fuzzy Soft Sets. The Journal of Fuzzy Mathematics, 12(3) (2004) 669-683.

[25] P.K. Maji, R.Biswas A.R. Roy, Intuitionistic Fuzzy Soft Sets. The Journal of Fuzzy Mathematics, 9(3) (2001) 677-692.

[26] P.K. Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, Journal of Fuzzy Mathematics, 9(3) (2001) 589-602.

[27] P.K. Maji, R. Bismas and A.R. Roy, Soft set theory, Computers and Mathematics with Applications, 45 (2003) 555-562.

[28] P. Majumdar and S. K. Samanta, Similarity Measure of soft sets, New Mathematics and Natural Computation, 4(1) (2008) 1-12.

[29] P. Majumdar, S. K. Samanta, Generalised fuzzy soft sets, Computers and Mathematics with Applications, 59 (2010) 1425-1432.

[30] D.A. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37 (1999) 19-31.

[31] A. Mukherjee, S.B. Chakraborty, On intuitionistic fuzzy soft relations. Bulletin of Kerala Mathematics Association, 5 (1) (2008) 35-42.

[32] A.R. Roy, P.K. Maji, A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 203 (2007) 412-418.

[33] Z. Pawlak, Rough sets, International Journal of Information and Computer Sciences, 11 (1982) 341-356.
[34] A. Sezgin and A.O. Atagün, On operations of soft sets, Computers and Mathematics with Applications, 61/5 (2011) 1457-1467.

[35] L.A. Zadeh, Fuzzy Sets, Inform. and Control, 8 (1965) 338-353.