Meta-Analysis of Combination Therapy of Chinese Herbs Plus Interferon and Ribavirin in Patients with Chronic Hepatitis C

ACF Jianjun Wang
BCF Shaojie Xin
ACF Xueyuan Jin
CDF Yongqian Cheng
BCF Tao Yan
BCD Song Qing
CE Ning Ding
ACE Ping Zhao

Corresponding Author: Ping Zhao, e-mail: zhaopin9262@sina.com
Source of support: Departmental sources

Background: We aimed to evaluate the combination therapy of Chinese herbs plus interferon and ribavirin in treatment of patients with chronic hepatitis C (CHC).

Material/Methods: Related databases were searched to identify randomized controlled trials (RCTs) that evaluated biochemical response, virological response, histological response, and/or adverse reactions to combination therapy of interferon and ribavirin with and without Chinese herbs. The RR (relative risk) with a 95% confidence interval (CI) was calculated. Sensitivity analysis was conducted by omitting one study at a time. Publication bias among the eligible studies was evaluated by Egger's test.

Results: A total of 17 RCTs matched the selection criteria. Overall, combination therapies of Chinese herbs plus interferon and ribavirin achieved significantly higher ALT (alanine transaminase) and ETVR (the end-of-treatment viral response), and significantly lower levels of HA (hyaluronic acid), LN (laminin), PC III (procollagen iii peptide), IV-C (type IV collagen), decreased LC (decreasing leukocyte count), ATF (abnormal thyroid function), psychosis, and anemia in CHC patients compared with those treated without Chinese herbs. Sensitivity analysis showed no changes and no potential publication bias was found.

Conclusions: The current evidence suggests that combination therapy of Chinese herb plus interferon and ribavirin yields better outcome and fewer adverse events in CHC patients than that of interferon plus ribavirin therapy.

MeSH Keywords: Hepatitis, Chronic • Interferon-alpha • Ribavirin

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/895647
META-ANALYSIS

Background

It is estimated that about 180 million people are chronically infected with hepatitis C virus (HCV) worldwide [1]; about 75% have no distinctive symptoms when they first acquire HCV infection. Over time, patients with chronic hepatitis C (CHC) may begin to experience persistent inflammation, become easily fatigued, and lose appetite [2]. Even worse, chronic HCV infection may progress to liver failure and hepatocellular carcinoma [3]. Unfortunately, there is still no effective and suitable HCV treatment for persons at the greatest risk for HCV infection [4].

Presently, combination antiviral therapy with interferon and ribavirin has been used as the standard treatment for CHC [5–8]. However, this regimen has some limitations in its ability to control CHC. Combination therapy of interferon and ribavirin for CHC is reported to produce a number of adverse effects, including fatigue, influenza-like symptoms, and gastrointestinal disturbances, and some adverse effects are severe and potentially life-threatening [9]. Some of these adverse effects can be overcome and reduced. Appropriate recognition of these adverse effects will both improve response to therapy and avoid unnecessary morbidity and mortality [10–12]. Complementary and alternative medicine (CAM) is defined as diagnosis, treatment, and prevention that complements mainstream medicine and is very popular in the West [13,14]. Recently, increasing number of clinicians has focused on CAM, and CAM has been applied in the treatment of chronic diseases [15,16]. Chinese herbs, as one of the main components of CAM, have rare and negligible adverse effects compared to common pharmaceutical drugs. Therefore, Chinese herbs have been widely utilized in medical systems, especially in China [17,18].

Research indicates that the treatment combined with Chinese herbs has achieved better safety and effectiveness in the treatment of CHC [19]. Nevertheless, the results of these individual studies related to Chinese herbs are often insufficient. Meta-analysis was proposed as an approach for contrasting and combining results from different studies [20–22]. The aim of this study was to assess the evidence from these randomized clinical trials (RCTs) for the efficacy and safety of Chinese herbs combined with interferon plus ribavirin in comparison with only interferon plus ribavirin therapies.

Material and Methods

Search strategy

A systematic search was performed through PubMed, EMBASE, Cochrane library, China National Knowledge Infrastructure, Wanfang Database, and China Biomedical Database for searching relevant articles up to July 2015. The key words used in the search were "chronic hepatitis C", "TCM", "Chinese herbs", and "treatment and trial". The search strategy is listed in Table 1.

Table 1. Search strategy

Database	Number of Articles
PubMed	15
Embase	1
Cochrane library	7
China Biomedical Database	41
Wanfang Database	35
CNKI	28
PubMed	15
Embase	1
Cochrane library	7
China Biomedical Database	41
Wanfang Database	35
CNKI	28

Excluded duplicates, n=32
Excluded, n=54
- Studies were not about Chinese herb, n=29
- Studies were not related to chronic hepatitis C, n=15
- Non-RCT, n=7
- Reviews, n=3

Articles included in further Meta-analysis, n=17 (English 2; Chinese 15)

Articles screened for full-texts, n=42
- Excluded, n=25
 - 16 were without required outcomes
 - 9 were not about Chinese herb+IFN+RBV vs. IFN+RBV

Articles screened for abstracts, n=96
- Excluded, n=42
- Excluded duplicates, n=32

Articles screened for full-texts, n=42
- Excluded, n=25
 - 16 were without required outcomes
 - 9 were not about Chinese herb+IFN+RBV vs. IFN+RBV

Excluded duplicates, n=32
Excluded, n=54
- Studies were not about Chinese herb, n=29
- Studies were not related to chronic hepatitis C, n=15
- Non-RCT, n=7
- Reviews, n=3

Articles included in further Meta-analysis, n=17 (English 2; Chinese 15)

Flow chart of search strategy.

Figure 1. Flow chart of search strategy.

Inclusion criteria

To be included in this meta-analysis, the article had to fulfill inclusion criteria: 1) The study had to be an RCT that was clearly randomized and clinically controlled. 2) There was completed information, such as clear diagnostic criteria for CHC, sample size, publication date, and research year. 3) The RCT was designed to compare the combination therapy of interferon plus ribavirin combined with and without Chinese herbs. 4) The evaluation index contained biochemical response, such as alanine transaminase (ALT) value; virological response, including Early virological response (EVR), the end-of-treatment viral response (ETVR), sustained virologic response (SVR), non-response (NR), relapse, and rebound; histological responses, including hyaluronic acid (HA), laminin (LN), procollagen iii peptide (PC III), type IV collagen (IV-C), and/or adverse effects including Flu symptoms (FS), decreasing leukocyte count (LC), abnormal thyroid function (ATF), psychosis, alopecia, and anemia.
Quality assessment and data collection

The methodological quality of the included studies was assessed according to the Cochrane Handbook via identifying, appraising, and synthesizing research-based evidence and presenting it in an accessible format [23]. Two investigators independently extracted the following data: 1) general information, including the first author, published date, and documents source; 2) the design of each study; 3) sample size, patient characteristics, and treatment outcomes; and 4) all of the experimental results.

Statistical analysis

In this study, results of the eligible studies were pooled using Stata 12.0 and Revman 5.3. The relative risks (RRs) and mean differences (MDs) with their 95% confidence intervals (CIs) were presented for categorical variables and continuous variables, respectively. Heterogeneity among the included studies

Table 1. characteristics of the trials included in the meta-analysis.

References	Treatment	Control	Sample size (M/F)	Duration (week)	Follow-up (week)
Wang JK, 2009	CH + α-IFN + RBV	α-IFN + RBV	84 M/F	48	0
Zhang FS, 2009	CH + PEG-IFN α-2a + RBV	PEG-IFN α-2a + RBV	30 (10/20)	48	0
Wu YN, 2009	Shuganlipi tablets + IFNα-lb + RBV	IFNα-lb + RBV	25 (17/8)	48	24
Chang ZJ, 2009	Supplementing gas nourishing liver + IFN α-2b + RBV	IFN α-2b + RBV	32 (23/7)	NA	NA
Meng SX, 2010	ΔliampiQinghuaRecipe + IFNα-1b + RBV	IFNα-1b + RBV	24 (15/9)	48	24
Cheng J, 2011	CH + IFN α-2b + RBV	IFN α-2b + RBV	30 M/F	48	24
Ji XL, 2012	Hepatitis c granules Peg-IFN α-2a + RBV	Peg-IFN α-2a + RBV	26 (18/8)	12	NA
Qiu RX, 2012	Cacogongrasrootdecocction + Peg-IFN α-2a + RBV	Peg-IFN α-2a + RBV	40 (17/13)	48	24
Nie HM, 2012	Fuzhengliedurecipe + Peg-IFN α-2a + RBV	Peg-IFN α-2a + RBV + Fuzhengliedu placebo	178	24	NA
Wang XM, 2012	Fuzhengliedurecipe + Peg-IFN α-2a + RBV	Peg-IFN α-2a + RBV	17 (9/8)	48	24
Fu MY, 2012	CH + Peg-IFN α-2a + RBV	Peg-IFN α-2a + RBV	32 (24/8)	48	NA
Tian LY, 2013	CH + α-IFN + RBV	α-IFN + RBV	32 (12/20)	48	NA
Wang HM, 2014	Chinese herbal granules + α-IFN +RBV	α-IFN + RBV	36 (17/19)	48	NA
Xia J, 2014	CH + PEG-IFNa2a + RBV	PEG-IFNa2a + RBV	25 (14/11)	48	NA
Motoo Y, 2005	Ninjinyoeito + IFNα2b + RBV	IFNα2b + RBV	10 (9/1)	24	24
Rehan HS, 2015	Qurse-e-istisqua + IFNα2a + RBV	IFNα2a + RBV	30 (24/6)	48	24
Wei X, 2015	CH + PEG-IFN + RBV	IFN + RBV	67 M/F	48	24

RBV – ribavirin; IFN – interferon; CH – Chinese herb; M – male; F – female; NA – data were not shown.
was explored using a chi square test and I^2 statistic, and $p < 0.05$ and $I^2 > 50\%$ was regarded as the presence of heterogeneity, then the random-effects model was used for meta-analysis; otherwise, the fixed-effects model was used. To detect the influence of each study on the overall effect, sensitivity analysis was conducted by omitting one study at a time. Publication bias among the eligible studies was evaluated by Egger’s test [24].

Results

Search results

As shown in the flow chart (Figure 1), a total of 127 potentially relevant articles were finally identified by the initial search strategy (PubMed: 15; Embase: 1; Cochrane library: 7; China Biomedical Database: 41; Wan fang Database: 35; CNKI: 29).
Table 2. Summary of all the outcomes.

Outcomes	Studies	Participants (T/C)	Heterogeneity	Model (F/R)	Pooled results	P	
			P	I²	RR	95% CI	
Biochemical response							
Normalization of ALT	6	276/283	0.14	36%	F	1.17 (1.05, 1.29)	0.003
Virological response							
EVR	8	254/263	0.77	0%	F	1.06 (0.95, 1.18)	0.33
ETVR	12	566/570	0.69	0%	F	1.12 (1.05, 1.21)	0.001
SVR	10	311/321	0.009	54%	R	1.07 (0.95, 1.12)	0.27
NR	5	131/119	0.59	0%	F	0.84 (0.49, 1.42)	0.51
Relapse	254/257	0.94	0%	F		1.00 (0.44, 2.26)	1.00
Rebound	2	49/42	0.36	0%	F	0.85 (0.33, 2.20)	0.74
Histological response							
HA	2	49/42	0.71	0%	F	0.30 (0.12, 0.78)	0.01
LN	2	49/42	0.66	0%	F	0.10 (0.02, 0.54)	0.007
PC III	2	49/42	0.88	0%	F	0.09 (0.01, 0.67)	0.02
IV-C	2	49/42	0.50	0%	F	0.19 (0.06, 0.65)	0.006
Side effects							
FS	7	184/181	<0.01	91%	R	0.70 (0.46, 1.04)	0.08
Decreased LC	9	252/267	<0.01	78%	R	0.46 (0.30, 0.71)	0.005
ATF	8	256/263	0.60	0%	F	0.52 (0.34, 0.80)	0.003
Psychosis	6	166/157	0.15	39%	F	0.38 (0.18, 0.81)	0.01
Alopecia	7	229/239	<0.01	80%	R	0.50 (0.23, 1.09)	0.08
Anemia	4	96/91	0.13	46%	F	0.42 (0.27, 0.67)	0.002

ALT = alanine transaminase; EVR = early virological response; ETVR = the end of treatment viral response; SVR = sustained virologic response; NR = non-response; HA = hyaluronic acid; LN = laminin; PC III = procollagen III peptide; IV-C = type IV collagen; FS = flu symptoms; LC = leukocyte count; ATF = abnormal thyroid function; T = treatment group; C = control group; F = fixed effect model; R = random effect model; RR = risk ratio; CI = confidence interval.

After excluding 32 duplicates, the remaining articles were reviewed for abstracts and 54 were excluded, including 29 articles not about Chinese herbs, 15 articles not related to CHC, 7 non-RCT studies, and 3 reviews. Subsequently, the remaining 42 articles were further screened for full texts, of which 16 were without required outcomes and 9 were not about Chinese herbs. Thus, 17 articles were finally retrieved for the present meta-analysis (English: 2; Chinese: 15) [25–41].

Study characteristics

As shown in Table 1, all of the eligible studies were published from 2009 to 2015. All of these studies were performed as RCTs, thus Cochrane reviews were used for quality assessment. Figure 2A demonstrates that these studies were all with low risk or unclear risk of bias, including selection bias, performance bias, detection bias, attrition bias, reporting bias, and other bias, except for 3 studies which were found to have high risk of unknown bias and attrition bias [27,34,40]. These results indicated a relatively high level of research selection (Figure 2B).

Comparison of the 2 therapeutic schedules

Table 2 summarizes all of the pooled results for comparison of the 2 therapeutic schedules.

Biochemical response

Biochemical responses were involved in 8 of the eligible studies. No significant heterogeneity was found among these 8 studies ($p=0.14, I^2=36\%$), so the fixed-effects model was used for analysis. The pooled results showed that the ALT normalization rate at the endpoint of therapy was significantly higher in patients taking Chinese herbs than that of patients just taking interferon and ribavirin (RR=1.17, 95% CI: 1.05–1.29, $P=0.003$; Figure 3).
META-ANALYSIS

Comparison of alanine transaminase (ALT) normalization. CH – Chinese herbs; IFN – interferon; RBV – ribavirin; RR – relative risk; CI – confidence interval.

Figure 3

Comparison of virological response. (A) Forest plot for early virological response (EVR), (B) Forest plot for the end-of-treatment viral response (ETVR), (C) Forest plot for sustained virological response (SVR), (D) Forest plot for non-response (NR), (E) Forest plot for relapse, and (F) Forest plot for rebound.

Table 1

Study or subgroup	CH+IFN+RBV Events	CH+IFN Events	Total (95% CI)	RR	Risk ratio	M-H, fixed, 95% CI
CH+IFN+RBV						
Chang, 2009	10	20	30 (26.1, 34.0)	0.5	0.50	0.32 [0.16, 0.66]
Meng, 2010	15	30	45 (40.0, 50.0)	1.5	1.50	1.17 [0.85, 1.59]
Motoy, 2005	20	40	60 (55.0, 65.0)	1.0	1.00	1.00 [0.78, 1.26]
Nie, 2012	25	50	75 (70.0, 80.0)	1.0	1.00	1.00 [0.78, 1.26]
Qiu, 2012	30	60	90 (85.0, 95.0)	1.0	1.00	1.00 [0.78, 1.26]
Tian, 2013	35	70	105 (100.0, 110.0)	1.0	1.00	1.00 [0.78, 1.26]
Wu, 2009	20	40	60 (55.0, 65.0)	1.0	1.00	1.00 [0.78, 1.26]
Zhang, 2015	25	50	75 (70.0, 80.0)	1.0	1.00	1.00 [0.78, 1.26]
Total (95% CI)	256	512	772 (72.0, 82.0)	1.0	1.00	1.00 [0.78, 1.26]
Total events	175		175 (100.0%)			
Heterogeneity: Q=4.10, df=7 (P=0.77), I²=0%	Test for overall effect: Z=0.97 (P=0.33)	FAVOURS (CH+IFN+RBV)	FAVOURS (CH+IFN)	M-H, fixed, 95% CI		

Figure 4

Comparison of virological response. (A) Forest plot for early virological response (EVR), (B) Forest plot for the end-of-treatment viral response (ETVR), (C) Forest plot for sustained virological response (SVR), (D) Forest plot for non-response (NR), (E) Forest plot for relapse, and (F) Forest plot for rebound.

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

Index terms: [Current Contents/Clinical Medicine] [ISI Journals Master List] [Index Medicus/MEDLINE] [Chemical Abstracts/CAS] [Index Copernicus] [SCImago Journal & Country Rank] [ISI Expanded] [ISI Alerting System] [EMBASE/Excerpta Medica]
A

Study or subgroup	CH+IFN+RVB	IFN+RVB	Total	Weight	Risk ratio M-H, fixed, 95% CI
Meng SX, 2010	2	8	24	53.4%	0.25 [0.06, 1.06]
Wu YN, 2009	3	6	18	46.6%	0.36 [0.10, 1.25]
Total (95% CI)	49	42	100.0%	0.30 [0.12, 0.78]	
Heterogeneity:					
I² = 0%					
Test for overall					
effect: Z = 2.48					(P = 0.01)

B

Study or subgroup	CH+IFN+RVB	IFN+RVB	Total	Weight	Risk ratio M-H, fixed, 95% CI
Meng SX, 2010	0	7	24	56.3%	0.07 [0.00, 1.11]
Wu YN, 2009	1	5	18	43.7%	0.14 [0.02, 1.13]
Total (95% CI)	49	42	100.0%	0.10 [0.02, 0.54]	
Heterogeneity:					
I² = 0%					
Test for overall					
effect: Z = 2.68					(P = 0.007)

C

Study or subgroup	CH+IFN+RVB	IFN+RVB	Total	Weight	Risk ratio M-H, fixed, 95% CI
Meng SX, 2010	0	6	24	61.6%	0.08 [0.00, 1.29]
Wu YN, 2009	0	3	18	38.4%	0.10 [0.01, 1.90]
Total (95% CI)	49	42	100.0%	0.09 [0.01, 0.67]	
Heterogeneity:					
I² = 0%					
Test for overall					
effect: Z = 2.35					(P = 0.02)

D

Study or subgroup	CH+IFN+RVB	IFN+RVB	Total	Weight	Risk ratio M-H, fixed, 95% CI
Meng SX, 2010	1	8	24	57.9%	0.13 [0.02, 0.92]
Wu YN, 2009	2	5	18	42.1%	0.29 [0.06, 1.32]
Total (95% CI)	49	42	100.0%	0.19 [0.06, 0.65]	
Heterogeneity:					
I² = 0%					
Test for overall					
effect: Z = 2.65					(P = 0.008)

Figure 5. Comparison of histological responses: (A) Forest plot for the percentage of abnormal hyaluronic acid (HA), (B) Forest plot for laminin (LN), (C) Forest plot for procollagen iii peptide (PC III), and (D) Forest plot for type IV collagen (IV-C). CH – Chinese herbs; IFN – interferon; RBV – ribavirin; RR – relative risk; CI – confidence interval.

Virological response

Statistical heterogeneity was only found among studies involving SVR (P=0.009, I²=59%), so the random-effects model was used for analysis of SVR and the fixed-effects model was used for analysis of the other indexes. Combined RR showed that ETVR was significantly higher in patients taking Chinese herbs plus interferon and ribavirin than that in patients treated with interferon and ribavirin (RR=1.12, 95% CI: 1.05–1.21, P=0.001), while no significant difference was found in other index between the 2 groups of patients (P>0.05; Figure 4).

Histological responses

Data on histological response was only available in 2 trials [30,35]. For HA, LN, PC III, and IV-C, there was no statistical heterogeneity (p>0.05, I²=0%) and the fixed-effects model was used to analyze these data. Our results showed that the percentage of abnormal HA (RR=0.30, 95% CI: 0.12–0.78, P=0.01), LN (RR=0.10, 95% CI: 0.02–0.54, P=0.007), PC III (RR=0.09, 95% CI: 0.01–0.67, P=0.02), and IV-C (RR=0.19, 95% CI: 0.06–0.65, P=0.008) were significantly lower in patients treated with Chinese herbs plus interferon and ribavirin compared with that of patients treated without Chinese herbs (Figure 5).
Figure 6. Comparison of adverse effects: (A) Forest plot for the percentage of flu symptoms (FS), (B) Forest plot for decreasing leukocyte count (LC), (C) Forest plot for abnormal thyroid function (ATF), (D) Forest plot for psychosis, (E) Forest plot for alopecia, and (F) Forest plot for anemia. RR, relative risk; CI, confidence interval; inconsistency among results: I² Test for overall effect; Z statistic with p-value. CH – Chinese herbs; IFN – interferon; RBV – ribavirin; RR – relative risk; CI – confidence interval.

Adverse effects

Data on adverse effects were available in 7 studies and heterogeneity was only found among studies involving FS (I²=91%), decreasing LC (I²=78%), and alopecia (I²=80%), so the random-effects model was used for meta-analysis of these indexes. Pooled results showed significant differences in decreased LC (RR=0.46, 95% CI: 0.30, 0.71, P=0.005), ATF (RR=0.52, 95% CI: 0.34, 0.80, P=0.003), psychosis (RR=0.38, 95% CI: 0.18, 0.81, P=0.01), and anemia (RR=0.42, 95% CI: 0.27, 0.67, P=0.002) between patients treated with combined Chinese herbs therapy and those treated without Chinese herbs (Figure 6).

Sensitivity analysis

Sensitivity analysis showed no change in any of the pooled results when removing any of the included studies, which indicated that the obtained results in this meta-analysis were relatively stable.

Discussion

This meta-analysis included 17 studies. We assessed effects of combination therapy of Chinese herbs plus interferon and ribavirin in CHC patients on biochemical response, virological response, histological response, and adverse reaction. Our results suggest that combination therapy of Chinese herbs plus interferon and ribavirin is better for CHC patients because...
patients underwent this combined therapy showed higher ALT and ETVR; significantly lower levels of HA, LN, PC III, and IV-C; and decreased LC, ATF, psychosis, and anemia in CHC patients compared with those treated without Chinese herbs.

The combined therapeutic effect of Chinese herbs plus interferon and ribavirin may be consistent with the effect of Chinese herbs, such as anti-fibrotic and anti-inflammatory activities [42,43]. It also should be noted that patients receiving combined Chinese herbal therapy had fewer adverse effects, including decreased LC, ATF, alopecia, and anemia, than those without Chinese herbal therapy. In addition, sensitivity analysis showed no change when omitting each of the eligible studies, and potential publication bias was not found in the present study, which indicates that the pooled results of our study are relatively stable. Therefore, we believe that adding appropriate Chinese herbs to therapy may be a good choice for CHC patients who were administrated interferon and ribavirin.

It is important to mention that there were some weaknesses in the present meta-analysis. First, most of the included studies (15/17) were published in Chinese, which may be difficult to understand for non-Chinese-speaking scientists. Second, there were different kinds of Chinese herbs used in the selected studies, which may be the main course of heterogeneity for certain indexes. Third, the treatment cycle and follow-up time were different in the 17 trials and some studies did not include follow-up time. Finally, we did not specify individual herbs that are effective in treatment of HCV because Traditional Chinese Medicine (TCM) treatment is characterized by integrated application of different sets of Chinese herbs (a few or many different kinds), and because some studies included in the present meta-analysis did not specify the Chinese herbs in their TCM treatment in detail.

Conclusions

Despite the above limitations, our data indicate that combination therapy of Chinese herbs plus interferon and ribavirin may be more efficacious and does not result in any additional safety problems when compared with interferon plus ribavirin therapy without Chinese herbs. The combination with Chinese herbs may therefore be indicated as initial therapy in patients with CHC.

Conflict of interest

None.

References:

1. Tatsunami T, Takehara T, Miyagi T et al: Hepatitis C virus-specific CD8+ T cell frequencies are associated with the responses of pegylated interferon-alpha and ribavirin combination therapy in patients with chronic hepatitis C virus infection. Hepatol Res, 2011; 41: 30–38
2. Chen MH, Hsiao LT, Chou Tj et al: High prevalence of occult hepatitis B virus infection in patients with B cell non-Hodgkin’s lymphoma. Ann Hematol, 2008; 87: 475–80
3. Schaefer M, Schmidt F, Folwaczny C et al: Adherence and mental side effects during hepatitis C treatment with interferon alfa and ribavirin in psychiatric risk groups. Hepatology, 2003; 37: 443–51
4. Fusfeld L, Aggarwal J, Dougher C et al: Assessment of motivating factors associated with the initiation and completion of treatment for chronic hepatitis C virus (HCV) infection. BMC Infect Dis, 2013; 13: 234
5. Ascione A, De Luca M, Tartaglione MT et al: Peginterferon alfa-2a plus ribavirin is more effective than peginterferon alfa-2b plus ribavirin for treating chronic hepatitis C virus infection. Gastroenterology, 2010; 138: 116–22
6. Ghany MG, Strader DB, Thomas DL, Seeff LB: Diagnosis, management, and treatment of hepatitis C. An update. Hepatology, 2009; 49: 1335–74
7. Hadziyannis SJ, Sette H Jr, Morgan TR et al: Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med, 2004; 140: 346–55
8. Manns MP, McHutchison JG, Gordon SC et al: Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet, 2001; 358: 958–65
9. Arase Y, Suzuki F, Suzuki Y et al: Side effects of combination therapy of peginterferon and ribavirin for chronic hepatitis-C. Intern Med, 2007; 46: 1827–32
10. Kostic V, Jovanovic M, Radovic J, Vujic S: Side effects of antiviral therapy in patients with chronic hepatitis C infection). Med Pregl, 2012; 65: 108–10 [in Serbian]
11. Larrey D, Couzigou P, Denis J: Chronic hepatitis C: management of side effects of treatment. Gastroenterol Clin Biol, 2007; 31: 4520–28 [in French]
12. Shiffman ML: Side effects of medical therapy for chronic hepatitis C. Ann Hepatol, 2004; 3: 5–10
13. Edwards E: The role of complementary, alternative, and integrative medicine in personalized health care. Neuropsychopharmacology, 2012; 37: 293–95
14. Ekor M, Adeyemi OS, Otuechere CA: Management of anxiety and sleep disorders: role of complementary and alternative medicine and challenges of integration with conventional orthodox care. Chin J Integr Med, 2013; 19: 5–14
15. Mullin GE: The use of complementary and alternative medicine for liver disease: part I. Nutr Clin Pract, 2013; 28: 138–39
16. Posadzki P, Aloizab A, Ernst E: Prevalence of use of complementary and alternative medicine (CAM) by physicians in the UK: a systematic review of surveys. Clin Med, 2012; 12: 505–12
17. Li X, Shen J, Zhong Z, Wen H et al: Paenolinforin: a monomer from traditional Chinese medical herb ameliorates Schistosoma japonicum egg-induced hepatic fibrosis in mice. J Parasitol, 2009; 95: 1520–24
18. Lin JS, Chan CY, Yang C et al: Zhi-fuzi, a cardiotonic Chinese herb, a new medical treatment choice for portal hypertension? Exp Biol Med (Maywood), 2007; 232: 557–64
19. Zaho S, Liu E, Wei K et al: Interferon plus Chinese herbs are associated with higher sustained virological response than interferon alone in chronic Hepatitis C: a meta-analysis of randomised trials. Antiviral Res, 2011; 89: 156–64
20. Fabrizi F, Diox V, Messa P, Martin P: Interferon therapy of acute hepatitis C in dialysis patients: meta-analysis. J Viral Hepat, 2012; 19: 784–91
21. Poynard T, Leroy V, Cohard M et al: Meta-analysis of interferon randomized trials in the treatment of viral hepatitis C: effects of dose and duration. Hepatology, 1996; 24: 778–89
22. Romero-Gomez M, Planas R, Ampuero J et al: Meta-analysis: pegylated interferon-alpha-2a achieves higher early virological responses than alpha-2b in chronic hepatitis C. Aliment Pharmacol Ther, 2013; 37: 1065–73
23. Higgins JP, Green S: Cochrane handbook for systematic reviews of interventions. 2008; Vol. 5, Wiley Online Library
24. Egger M, Smith GD, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997; 315: 629–34
25. Chang ZJ, Li JT: Clinical study on chronic hepatitis C treated with Yiqiyanggan Fang combining IFN α-2b and ribavirin. Chin J Liver Dis (electronic version) Hepatology, 2009; 1: 24–27
26. Chen J, Wei C, Hu X-y: Traditional Chinese medicine combined with small dose interferon in treatment of elderly patients with chronic hepatitis C. Medical Journal of West China, 2011; 12: 015
27. Zhang FS: Traditional Chinese medicine and western medicine combined therapy for 30 cases of chronic hepatitis C. Tradit Chin Med Res 2009; 22: 27–28
28. Fu MY: Clinical observation on 32 Cases with Chronic Hepatitis C Treated by Combination of Chinese Traditional and Western Medicine. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2012; 18: 28–30
29. Ji XL, Fu MY: Clinical study of 26 chronic hepatitis C cases of the treatment combined treatment of traditional Chinese medicine and western medicine. Jiangsu Journal of traditional Chinese Medicine, 2012; 44: 31–32
30. Meng SX ZW, Zhang ZL, et al. The effect of jianpi qinghua prescription in combination with interferon-alpha and ribavirin in the treatment of chronic hepatitis C. Guangming Journal of Chinese Medicine, 2010; 25: 834–36
31. Nie HM, Wang CB et al: A prospective study on Fuzhengjiedu prescription combined with standard treatment program for patients with genotype 1 chronic hepatitis C. Infect Dis Info, 2012; 25: 170–73
32. Qiu RX, He XY et al. Clinical study on treating chronic hepatitis C with the cogongrass rhizome decoction combined with interferon and ribavirin. The Clinical Study of Traditional Chinese Medicine, 2012; 4: 5–8
33. Wang J, Chai Y: Chinese medicine combined with Western medicine for treatment of 246 cases of severe chronic hepatitis C Guang Ming Zhong Yi, 2009; 24: 98–99
34. Wang XM, YA, Zeng F et al: Clinical observation on the treatment of chronic hepatitis C with combination of Chinese traditional and Western Medicine. Journal of Guangxi University of traditional Chinese Medicine, 2012; 15: 7–9
35. Yu-Nan W, Ke-Wei S, Jian-Ping P. Shugan Lipi tablet in combination with interferon-alpha and ribavirin in the treatment of chronic hepatitis C. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2009; 2: 005
36. Motoo Y, Mourl H, Ohtsubo K et al. Herbal medicine Ninjinyoeto ameliorates ribavirin-induced anemia in chronic hepatitis C: A randomized controlled trial. World J Gastroenterol, 2005; 11: 403–17
37. Rehan HS, Chopra D, Yadav M et al: Safety and efficacy of Qurse-e-istisqua in chronic hepatitis C infection: An exploratory study. Indian J Pharmacol, 2015; 47: 72
38. Xia J, Yang XD, Zhang FR: Efficiency and side effects of combination of Chinese traditional and western medicine in patients with chronic hepatitis C: 50 cases. Medical Information, 2014; 27
39. Wei X, Xian LP, Tang P: A randomized controlled trial for combined therapy of Chinese herbs plus polyethylene glycol in patients with chronic hepatitis C. Chinese Journal of Integrated Traditional and Western Medicine on Digestion, 2015; 23: 184–87
40. Tian LY, Wu Z, Deng GY et al: Combination therapy of Chinese herbs plus interferon and ribavirin in treatment of patients with chronic hepatitis C: 32 cases. Chinese Journal of Integrated Traditional and Western Medicine on Liver Diseases, 2013; 23: 247–49
41. Wang HM, Yang L, Cao CY et al: Therapeutic effects of tonifying qi and invigorating spleen in patients with chronic hepatitis C. Clinical Journal of Chinese Medicine, 2014; 26: 578–81
42. Long Y, Lin XT, Zeng KL, Zhang L: Efficacy of intramuscular matrine in the treatment of chronic hepatitis B. Hepatobiliary Pancreat Dis Int, 2004; 3: 69–72
43. Zhou ZH, Li M, Huang LY: [Study of xiaozhang recipe combined with lamivudine in treatment of 84 chronic viral hepatitis B patients with compensated liver cirrhosis]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2011; 31: 1220–23 [in Chinese]