Effect of scheduled endoscopic dilatation of dominant strictures on outcome in patients with primary sclerosing cholangitis

Christian Rupp, Th. Hippchen, T. Bruckner, Petra Klöters-Plachky, Anja Schaible, Ronald Koschny, Adolph Stiehl, Daniel Nils Gotthardt, Peter Sauer

ABSTRACT

Objective Scheduled endoscopic dilatation of dominant strictures (DS) in primary sclerosing cholangitis (PSC) might improve outcome relative to endoscopic treatment on demand, but evidence is limited. Since randomisation is difficult in clinical practice, we present a large retrospective study comparing scheduled versus on-demand endoscopic retrograde cholangiopancreatography (ERCP) based on patient preferences.

Design Between 1987 and 2017, all new patients with PSC had been offered scheduled ERCP with dilatation of a DS if diagnosed; the latter was repeated at defined intervals until morphological resolution, independent of clinical symptoms (treatment group). Patients who refused participation were clinically evaluated annually and received endoscopic treatment only on demand (control group). The primary clinical endpoint was transplantation-free survival. Secondary outcomes were overall survival, bacterial cholangitis episodes, hepatic decompensation of liver cirrhosis and endoscopy-related adverse events.

Results The final study included 286 patients, 133 (46.5%) receiving scheduled ERCP and 153 (53.5%) receiving on-demand ERCP. After a mean follow-up of 9.9 years, the rate of transplantation-free survival was higher in patients receiving scheduled ERCP (51% vs 29.3%; p<0.001), as was transplantation-free survival time (median: 17.9 vs 15.2 years; log-rank: p=0.008). However, the benefit of scheduled ERCP was significant only in patients with the initial (17.1%) or later (45.5%) diagnosis of a DS (17.8 vs 11.1 years; log-rank: p<0.001). IBD (p=0.03), DS (p=0.006), higher Mayo Risk Score (p=0.02) and non-adherence to scheduled endoscopy (p=0.005) were independently associated with transplantation-free survival.

Conclusion In our large retrospective study, regular ERCP with endoscopic balloon dilatation significantly benefits patients with PSC with DS, diagnosed both at initial presentation and during surveillance, even if asymptomatic. Further studies have to find out how to best identify stricture patients non-invasively.

INTRODUCTION Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver and biliary tract disease with a variable natural history. Clinical symptoms and complications of the disease result from fibrosis and strictures involving extrahepatic and intrahepatic bile ducts. PSC may have a progressive course, leading to recurrent biliary tract obstruction, recurrent episodes of cholangitis and, ultimately, end-stage liver disease. Biliary obstruction may develop at all levels of the biliary tree, but endoscopic therapy is...
The Mayo Risk Score (MRS) was calculated as follows: $MRS = (0.0295 \times (\text{age in years})) + (0.5373 \times \ln(\text{total bilirubin in mg/dL})) - (0.8389 \times (\text{serum albumin in g/dL})) + (0.5380 \times \ln(\text{AST in IU/L})) + (1.2426 \times (\text{points for variceal bleeding})).$
smaller than 1.0 mm.19 For reasons of practicability, biliary catheters were used during the procedures as references for stenosis size. In disputable (borderline) cases a decision for the intervention was favoured.

In patients in whom DS were identified after passing of a guidewire, stepwise balloon dilations of the strictures starting from 12 F or 18 F were performed. Common bile duct DS were dilated up to 24 F, whereas DS of the hepatic ducts up to 2 cm proximal to the bifurcation were dilated to a maximum of 18 F. Bile duct diameter upstream and downstream of the DS was taken into account when selecting balloon diameter to avoid dilation to more than the duct diameter. In the beginning of the study, in a minority of patients (n=5), a plastic stent (10 F) was placed for 1–2 weeks in addition to dilation, but this approach was stopped thereafter. All patients were kept overnight in the hospital and received antimicrobial prophylaxis according to our internal institutional standard. The peri-interventional antibiotic regimen was identical for all patients. The standard regimen in our institution was intravenous mezlocillin; in the case of known allergy to penicillins, ciprofloxacin was used and individually adapted according to corresponding bile culture if possible.

Balloon dilation was repeated until success, as assessed by opening of the stricture on repeat cholangiography, at 4-week intervals until 2006. Since 2006, the protocol was slightly modified with repetition of the dilation after 4 weeks, 3 months and 6 months up to morphological resolution. Subsequently, patients underwent diagnostic ERCP at yearly intervals. In case of worsening of cholestasis or clinical symptoms or acute cholangitis, ERCP was performed as soon as possible, independently from the protocol. Morphological resolution was defined as either no more detectable sign of previous stricture on cholangiography (figure 2A), or only a slight narrowing of the bile duct as residuum of the previous stricture (figure 2B), but in all cases an unhindered passage of biliary catheters and unobstructed passage of contrast medium through the balloon-dilated biliary segment were minimum requirements. Recurrence of DS was defined as diagnosis of a biliary stricture after a time interval of more than 3 months after the last intervention. In case of recurrent or newly developed DS, the scheduled protocol was restarted (figure 1). Procedure-related complications were recorded as secondary outcomes including cholangitis, bleeding, perforation and pancreatitis. The criteria to diagnose post-ERCP pancreatitis were according to the 1991 consensus report by Cotton et al.20

All patients were offered participation in this programme. For the retrospectively performed analysis patients were allocated to the scheduled group if they adhered to the scheduled surveillance and interventions until the end of the study period. Of the 133 patients in the treatment group all but 12 patients (9.0%) adhered consequently to our scheduled intervals. The remaining 12 patients prolonged the interval beyond our scheduled intervention during the surveillance period marginally (weeks to months), but returned to frequently endoscopic surveillance thereafter. Patients were allocated to the on-demand group if they or transferring physicians decided to perform endoscopic diagnosis and treatment only on clinical demand, or treatment of DS was terminated after clinical improvement but not completed up to morphological resolution.

Statistical analysis

Calculations were carried out using PASW Statistics V.22 (IBM, Armonk, New York, USA). Frequencies were compared using the χ² test or the Fisher’s exact test, where appropriate. Continuous data were compared using the non-parametric Wilcoxon rank-sum test. Actuarial transplantation-free survival was estimated using a Kaplan-Meier product limit estimator. Differences between the actuarial estimates were tested using the log-rank test. Factors that independently affected the risk of reduced transplantation-free survival were determined using Cox proportional HR models with simultaneous adjustment for gender, age at diagnosis, presence of IBD, presence of DS, presence of PSC with features of autoimmune hepatitis (AIH), MRS at baseline, number of endoscopic interventions and non-adherence to scheduled endoscopy. Statistical significance was set at p<0.05.

Consent

Written informed consent for clinical and laboratory data acquisition and analysis was obtained from each patient at entry into
Patients 286 133 153
Gender (male (%)) 209 (73.1) 94 (70.7) 115 (75.2) 0.4
Age at diagnosis (years) 31.9±0.8 32.2±1.1 31.2±1.1 0.6
Age at entry into the study (years) 33.3±1.0 33.0±1.3 33.9±1.4 0.9
IBD, n (%) 209 (73.1) 96 (72.2) 113 (73.6) 0.5
PSC with features of AIH, n (%) 18 (6.3) 11 (8.3) 7 (4.6) 0.2
DS at first diagnosis, n (%) 49 (17.1) 27 (20.3) 22 (14.4) 0.2
DS overall, n (%) 179 (62.6) 101 (75.9) 78 (51.0) <0.001
Extrahepatic 97 51 (50.5) 46 (59.0) 0.3
Intrahepatic 82 50 (49.5) 32 (41.0) 0.3
Average number of ERCP (range) 6 (1–30) 9 (1–30) 3 (1–19)* <0.001
Follow-up (years) 9.9±0.4 10.1±0.6 9.8±0.5 0.9
Bilirubin (mg/dL) 0.8±0.2 0.8±0.2 0.8±0.4 <1.1 mg/dL 0.9
ALT (IU/L) 103.8±10.9 98.0±15.2 113.2±15.3 <23 IU/L 0.2
AST (IU/L) 75.0±6.6 88.2±11.2 81.9±8.1 <19 IU/L 0.9
AP (IU/L) 277.0±26.3 267.0±27.8 313.0±57.6 70–175 IU/L 0.1
GGT (IU/L) 354.0±30.0 316.0±41.9 392.5±31.2 6–28 IU/L 0.3
Albumin (g/dL) 43.0±0.6 43.0±0.9 43.0±0.8 35–55 g/dL 0.7
MRS −0.3±0.1 −0.4±0.1 −0.1±0.1 0.2

Baseline characteristics of scheduled endoscopy group and on-demand endoscopy group. Despite the number of DS overall and number of endoscopic interventions, no statistically significant differences at entry into the study were identified. All values are n (%) or medians±SEM.

*Significant difference from the scheduled group (p<0.05).

AIH, autoimmune hepatitis; ALT, alanine transaminase; AP, alkaline phosphatase; AST, aspartate transaminase; DS, dominant stricture; ERCP, endoscopic retrograde cholangiopancreatography; GGT, gamma glutamyl transferase; MRS, Mayo Risk Score; PSC, primary sclerosing cholangitis.

RESULTS

Baseline characteristics

The final study cohort consisted of 286 patients with confirmed PSC. All patients were treated with UDCA (9–21 mg/kg/day). One hundred and thirty-three (46.5%) of them adhered to our proposed protocol (scheduled) and 153 (53.5%) received ERCP if DS was suspected (on demand). Table 1 reports baseline characteristics of the entire study cohort and the subgroups. At entry into the study no clinical or laboratory differences were detectable. The number of patients with DS at first diagnosis was equal between both groups (27 [20.3%] vs 22 [14.4%], p=0.2). Morphology of DS at entry into the study was also equally distributed between both groups (scheduled: extrahepatic 17 [63.0%], intrahepatic 10 [37.0%] vs on demand: extrahepatic 13 [59.1%], intrahepatic 9 [40.9%]; p=0.8) (online supplementary table 1) and we could not detect any significant difference between both groups with regard to histological stage at first presentation (online supplementary table 2).

Endoscopic interventions and success rate

At entry into the study all patients received ERCP for confirmation of PSC diagnosis and balloon dilation if DS was detected. In total, more than 1800 ERCPs with approximately 600 balloon dilations were performed in our cohort. In 179 (62.6%) patients, DS was diagnosed. Forty-nine (17.1%) patients had DS at the first diagnosis; the remaining 130 (45.5%) patients developed DS during the course of disease. Patients in the scheduled group had more diagnostic and therapeutic ERCPs compared with the on-demand group (average number of ERCPs with no DS: scheduled 6 [range: 2–17] vs on demand 1 [range 1–3]; DS at first diagnosis: scheduled 18 [range: 2–23] vs on demand 3 [range 1–8]; DS during course of disease: scheduled 18 [range: 1–27] vs on demand 3 [range 1–11] [online supplementary table 3]). On average, two (range: 1–8) sequential balloon dilations were necessary to resolve DS. Recurrent DS was detected in 76 patients (scheduled: 49 [48.5%] vs on demand: 27 [34.6%]; p=0.07). While frequency of symptomatic DS at first presentation was comparable between both cohorts (scheduled: 17 [12.8%] vs on demand 22 [14.4%]) the detection rate of new DS during the course of disease was higher in the scheduled group compared with the on-demand group (74/133 [55.6%] vs 56/153 [36.6%]; p=0.001). Mean time until first detection of DS was 5.0 years (range: 0.9–23.5 years), mean number of ERCPs until first detection of DS was 3.9 (range: 1–15). In 12 (9.0%) patients in the scheduled group, endoscopic therapy became necessary before the scheduled ERCP due to acute cholangitis. In all cases, a new DS was diagnosed and dilations according to our programme were started again. With exception of the first diagnostic ERCP to confirm the diagnosis of PSC, in the on-demand group, the most common indications for ERCP were acute bacterial cholangitis (54 [35.3%]), jaundice (31 [20.3%]) and pruritus (13 [8.5%]).

Clinical endpoints

At the end of the study period, 117 (40.9%) patients reached a primary clinical endpoint. Fifty-five (19.2%) patients died and 82 (28.9%) underwent liver transplantation. The number of clinical endpoints differed significantly between subgroups. In the scheduled group, 39 (29.3%) patients reached a clinical endpoint.
Adherence to ERC protocol (“Scheduled”)
\[\text{n=133} \]
Outcome:
- OLT: 33 (24.6%)
- Death: 6 (4.5%)
- CCA: 7 (5.3%)
- Lost follow up: 18 (13.5%)

ERC on demand (“On-demand”)
\[\text{n=155} \]
Outcome:
- OLT: 49 (32.0%)
- Death: 29 (18.9%)
- CCA: 15 (9.8%)
- Lost follow up: 23 (15.0%)

Figure 3
Flow chart. CCA, cholangiocarcinoma; DS, dominant stricture; OLT, orthotopic liver transplantation; PSC, primary sclerosing cholangitis.

Secondary outcomes
Overall survival was higher in the treatment group compared with the control group (30.2 years vs 22.5 years, p<0.001). While we found comparable laboratory parameters at baseline, cholestasis parameters showed increasing differences during the further course of disease between both groups. As shown in the online supplementary table 4A–C, alkaline phosphatase (AP), gamma glutamyl transferase (GGT) and serum bilirubin values remain almost stable within the first 5 years in the scheduled group, whereas it increased in the on-demand group. With regard to infectious complications associated with PSC, more patients developed recurrent bacterial cholangitis with need for hospitalisation and antibiotic therapy in the on-demand group (scheduled: 23 [17.3%] vs on demand: 53 [34.6%]; p=0.001). Furthermore, hepatic decompensation occurred more often and earlier in the course of disease in the on-demand group during the course of disease with more life-threatening complications, for example, variceal bleedings (scheduled: 13 [9.8%] vs on demand: 34 [22.2%]; p=0.005; online supplementary table 5).

Complications
Complications calculated per patient included post-ERCP pancreatitis (13 occurrences in 11 patients, 3.8%, treated by conservative routine measures), bacterial cholangitis (eight occurrences in five patients; 1.8%) and bile duct perforation (one occurrence in one patient; 0.3%). We could not detect any difference between the scheduled and on-demand groups concerning complication rates. Although there was a trend for higher complication rates during the first ERCP, this effect was not statistically significant (online supplementary table 6). All complications could be managed by conservative treatment. No patient died due to complications associated with endoscopic procedures.
Transplantation-free survival

The median transplantation-free survival in our study cohort was 16.7 years. Patients in the scheduled group had significantly longer transplantation-free survival compared with patients in the on-demand group (5-year survival rate: 84% vs 67%; 10-year survival rate: 69% vs 50%; 20-year survival rate: 40% vs 25%). Analysis of time to event (event defined as transplantation or death) showed significant difference between both groups (17.9 vs 15.2 years; log-rank: p=0.008; figure 4A). Further subgroup analysis revealed superior survival due to scheduled endoscopic intervention only in patients with the presence of DS (17.8 vs 11.1 years; log-rank: p<0.001; figure 4B), whereas in patients without DS, transplantation-free survival was not affected by scheduled endoscopic surveillance (21.0 vs 18.7 years; log-rank: p=0.8; figure 4C). When considering only death as endpoint superior survival was found for the scheduled group in the entire study cohort and the subgroup of patients with DS (entire cohort: 28.3 vs 21.9 years; log-rank: p=0.001; DS at first diagnosis: 28.3 vs 18.2 years; log-rank: p<0.001) (online supplementary figure 1A–C). When handling death as competing risk due to transplantation (online supplementary figure 2A–C), no difference between the scheduled and on-demand groups was seen (online supplementary figure 3A). However, subgroup analysis confirmed superior OLT-free survival due to scheduled endoscopic intervention only in patients with DS (online supplementary figure 3B,C). The subgroup of patients with DS at first diagnosis showed also improved transplantation-free survival for patients with adherence to our proposed protocol (17.8 vs 12.1 years; log-rank: p=0.02) (online supplementary figure 4A). If patients with DS at first diagnosis were excluded from analysis the beneficial effect of scheduled endoscopic intervention persists for the whole study cohort and patients with development of DS during the course of disease (entire cohort: 18.7 vs 16.3 years; log-rank: p=0.03; DS during course of disease: 16.8 vs 9.6 years; log-rank: p<0.001) (online supplementary figure 4B–D). Despite mild adaptations of endoscopic treatment and dosing of UDCA we could confirm the beneficial effect of our scheduled approach during the entire course of the study, although the proportion of patients adhering to our protocol was higher in the last decade of our study (1987–2005: scheduled 57/173 [32.9%] vs 2006–2017: scheduled 76/113 [67.3%]; p=0.001) (online supplementary figure 5A,B).

Univariate and multivariate analysis

To determine the factors that might influence transplantation-free survival, univariate and multivariate analyses were performed for the following baseline factors: gender, age at diagnosis, presence of IBD, presence of DS, presence of PSC with features of AIH, MRS at baseline, number of endoscopic interventions and non-adherence to scheduled endoscopy. In univariate analysis, age at first diagnosis, the presence of DS, MRS and non-adherence to scheduled endoscopy were statistically significantly associated with reduced transplantation-free survival. Multivariate analysis confirmed presence of DS, presence of IBD, MRS and non-adherence to scheduled endoscopy as independent risk factors for poor outcome (table 2).

Data show prospective factors for longer survival until liver transplantation or death. In univariate analysis, age at first diagnosis, presence of DS, MRS and non-adherence to scheduled endoscopy were associated with reduced actuarial transplantation-free survival. In multivariate analysis, presence of DS, presence of IBD, MRS and non-adherence to scheduled endoscopy reached significance (p<0.05).

Figure 4 Kaplan-Meier analysis. Kaplan-Meier estimation confirmed the significant difference in transplantation-free survival between scheduled (red) and on-demand groups (blue) (17.9 vs 15.2 years; log-rank: p=0.008) (A). Further subgroup analysis revealed superior survival due to scheduled endoscopic intervention only in patients with the presence of DS (17.8 vs 11.1 years; log-rank: p<0.001) (B), whereas in patients without DS, transplantation-free survival was not affected by scheduled endoscopic surveillance (21.0 vs 18.7 years; log-rank: p=0.8) (C).
Recurrent biliary tract obstruction without DS is of particular importance. Complications of PSC was better than values reported in our entire cohort was comparable to a recently reported Dutch population:

Table 2 Cox regression analysis

Risk factor	Univariate multivariate	Multivariate		
	HR (95% CI)	P value	HR (95% CI)	P value
Sex	1.1 (0.7 to 1.7)	0.6	1.2 (0.7 to 2.2)	0.5
Age at first diagnosis	1.0 (1.0 to 1.1)	0.04	1.0 (0.9 to 1.0)	0.9
Presence of DS	1.8 (1.2 to 2.8)	0.008	2.7 (1.3 to 5.8)	0.006
Presence of IBD	1.4 (0.9 to 2.2)	0.2	2.1 (1.0 to 4.3)	0.03
PSC with features of AIH	0.6 (0.3 to 1.3)	0.2	0.1 (0.1 to 1.3)	0.1
MRS	1.5 (1.2 to 1.8)	<0.001	1.3 (1.1 to 1.7)	0.02
Number of ERCP	1.0 (0.9 to 1.0)	0.8	0.4 (0.9 to 1.1)	0.4
Non-adherence to scheduled ERCP	1.7 (1.1 to 2.5)	0.009	2.8 (1.4 to 5.6)	0.005

Bold values indicate significant P-values (<0.05).

AIH, autoimmune hepatitis; DS, dominant stricture; ERCP, endoscopic retrograde cholangiopancreatography; MRS, Mayo Risk Score; PSC, primary sclerosing cholangitis

DISCUSSION

In the present study in a large cohort of patients with PSC, we evaluated the outcome of an endoscopic surveillance and treatment programme with a follow-up of almost 30 years. We implemented a strategy for treatment of DS with repeated balloon dilatation until morphological resolution, independent of clinical symptoms. This approach is in disagreement with the recommendations of the American College of Gastroenterology and European Society of Gastrointestinal Endoscopy/European Association for the Study of the Liver, which suggest performing endoscopic treatment of DS only in patients with pruritus and/or cholangitis to relieve symptoms. After therapeutic success, defined as morphological resolution of DS, ERCP for diagnostic purposes was repeated at yearly intervals and the dilatation programme was initiated again if recurrent or newly developed DS occurred, again independent of clinical symptoms or cholestatic enzyme levels. In patients adherent to our proposed schedule endoscopic surveillance and treatment programme, we observed a markedly increased transplantation-free survival compared with that in patients who underwent ERCP only on demand in case of proven or suspected obstructive cholestasis or cholangitis. This effect was especially pronounced in patients with DS, whereas in patients without DS, endoscopic surveillance had no significant impact on survival. The observed survival of our entire cohort was comparable to a recently reported Dutch population and considerably better than values reported in earlier series. The fact that, in our series, systematic endoscopic intervention in patients with DS compensated for the prognostic disadvantage in the survival rate among patients without DS is of particular importance. Complications of PSC are a direct result of fibrosis and strictures affecting intrahepatic and extrahepatic bile ducts. Recurrent biliary tract obstruction and recurrent episodes of cholangitis may accelerate progression of the disease. Thus, earlier detection of DS and treatment before infectious complications occurred might explain the improvement in transplantation-free survival in our study. With regard to this, we found a lower rate of recurrent episodes of cholangitis in patients adhering to our proposed protocol. Whereas all patients in the on-demand group received endoscopic treatment only in case of overt bacterial cholangitis, in the scheduled group less than 10% of patients experienced episodes of bacterial cholangitis between the scheduled endoscopic intervals. This could also explain the significantly lower frequency and later appearance of cirrhosis-related complications.

Although ERCP has been regarded as the standard of reference in diagnosing PSC, MRI is now recommended as a first-line non-invasive imaging method for patients with suspected PSC that offers comparable accuracy. In addition, MRI may be useful to confirm the symptom-driven indication for endoscopic intervention, to exclude focal parenchymal changes and to enable imaging-based guidance to minimise the risk of ERCP-related complications. On the contrary, for MRI, there is modest agreement regarding surveillance and detection of DS in PSC. This may be explained in part by the fact that the definition of DS derives from ERCP studies, which cannot be readily transferred to cholangiograms obtained using MRI. The most important conclusion of our trial is that only patients with DS had a benefit from scheduled ERCP, but the imaging method for effective DS diagnosis was not the subject of the study. Recent studies suggest an only moderate agreement between ERCP and MRI/MRCP in assessing presence and severity of biliary strictures. In view of this, it is most important that the MRI PSC Working Group of the International PSC study group propose definitions and minimum technical requirements for the detection of DS in MRI, emphasising the need to identify strictures that may require endoscopic intervention. The detection rate of DS in patients with on-demand endoscopy was significantly lower than that in patients with regularly scheduled endoscopy. Thus, in view of the fact that even frequent assessment of clinical status and laboratory parameters does not indicate the presence of DS, the development of reliable, non-invasive methods for detection of DS is all the more important. Especially in patients without the initial diagnosis of DS surveillance with MRCP probably in combination with other non-invasive markers might allow timely detection of new DS during the course of disease.

In the majority of published studies, balloon dilation was the preferred approach for treatment of DS, and stents were inserted only in a minority of patients. With the exception of a very small minority of patients in the beginning of our study, we also applied the dilation method exclusively, due to complications associated with stenting. This approach is supported by an European multicentre randomised trial comparing single-balloon dilation versus short-term stenting. The final analysis of this study showed no difference in outcome, but it did show a higher serious adverse event rate in the stent group.

ERCP in patients with PSC carries an increased risk of complications, especially pancreatitis, cholangitis and extravasation of contrast due to dilation, but not all studies show an increased risk in PSC. The overall complication rate in our trial was within the lower range of that reported in our previous trials, and all adverse events could be managed by conservative treatment. Patients with PSC were only treated by experienced endoscopists and sphincterotomy was performed in all patients, which might have improved cannulation in follow-up ERCPs, consequently reducing the risk for peri-interventional complications. Thus, even our concept of a diagnostic ERCP at yearly intervals for the early detection of DS seems justified, at least until non-invasive MRI methods become more reliable.

Several limitations of our study must be taken into account. Our study was not randomised regarding endoscopic therapy, which is a limitation and might reduce the validity of the results. The lack of randomisation might have caused a selection bias towards more compliant patients in clinically stable condition choosing frequent surveillance at our department. However, as we excluded patients with advanced liver disease due to our exclusion criteria, we could not identify differences in laboratory values or clinical risk factors, such as age at first diagnosis, presence of IBD, presence of DS at first diagnosis, or MRS between

Rupp C, et al. Gut 2019;0:1–9. doi:10.1136/gutjnl-2018-316801
groups at first presentation. Furthermore, frequency and location of DS at first presentation and histological stage was comparable between both groups. In patients with DS at first diagnosis, the beneficial effect of scheduled endoscopic interventions was similar to that in patients with development of DS during the course of disease.

As stated in the Methods section, the dosing of UDCA (administered to all patients) changed during the course of the study period. The favourable effect of adequate UDCA treatment has been reported in several other studies before and might also account for a substantial improvement in long-term survival in our cohort. Different dosing might have also an influence on variable disease progression. With respect to Hawthorne effect we found no differences in the adherence to drug intake, as all our patients received UDCA in both groups. Furthermore, while UDCA dosing was changed over time, we found constant beneficial effect of our endoscopic programme in both time frames.

Indeed we found a significantly higher proportion of patients adhering to our protocol in the last decade of our study with beneficial effect of our endoscopic programme in both time frames.

In summary, in patients with PSC, timely detection and endoscopic therapy for DS up to morphological resolution, even in the absence of laboratory or clinical signs of obstructive cholestasis, seems to prevent chronic liver damage caused by biliary obstruction and infectious complications, leading to a significant improvement in actual survival.

Contributors CR, AS and PS designed the study. Data collection was conducted by CR, TH, PK-P, ASC, RK, AS1, DNG and PS. Data analysis and interpretation was performed by CR, TB, AS1, DNG and PS. CR, TB, AS1 and PS drafted the article. TH, PK-P, ASC, RK and DNG performed critical revision of the article. All authors approved the final version to be published.

Funding The study was supported by a grant from ‘Deutsche Forschungsgemeinschaft (DFG)’ to CR (RU 1936/1-2) and DNG (GO 1971/1-2).

Competing interests None declared.

Patient consent for publication Obtained.

Ethics approval Local ethics committee of Heidelberg University (S-043/2011).

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

1. Weimuller T, Trevedi PI, Bergquist A, et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology 2017;152:1975–84.
2. Alberts R, de Vries EMG, Goode EC, et al. Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis. Gut 2018;67:1517–24.
3. Dyson JK, Beuers U, Jones DEJ, et al. Primary sclerosing cholangitis. Lancet 2018;391:2547–59.
4. Karlsen TH, Folsenas T, Thorburn D, et al. Primary sclerosing cholangitis - a comprehensive review. J Hepatol 2017;67:1298–322.
5. Lazaridis KN, La Russio NF. Primary Sclerosing Cholangitis. N Engl J Med Overseas Ed 2016;375:1161–70.
6. Eaton JE, Talwalkar JA, Lazaridis KN, et al. Pathogenesis of primary sclerosing cholangitis and advances in diagnosis and management. Gastroenterology 2013;145:21–36.
7. Tischendorf J, Krüger M, Trautwein C, et al. Cholangiographic characterization of dominant bile duct stenoses in patients with primary sclerosing cholangitis. Endoscopy 2006;38:665–9.
8. Stiehl A, Rudolph G, Költès-Plichky P, et al. Development of dominant bile duct stenoses in patients with primary sclerosing cholangitis treated with ursodeoxycholic acid: outcome after endoscopic treatment. J Hepatol 2002;36:151–6.
9. Gotthardt D, Stiehl A. Endoscopic retrograde cholangiopancreatography in diagnosis and treatment of primary sclerosing cholangitis. Clin Liver Dis 2010;14:349–58.
10. Björsen S, Lindqvist-Ottosson J, Axtely M, et al. Dominant strictures in patients with primary sclerosing cholangitis. Am J Gastroenterol 2004;99:502–8.
11. Gluck M, Cantone NR, Brandabur JJ, et al. A twenty-year experience with endoscopic therapy for symptomatic primary sclerosing cholangitis. J Clin Gastroenterol 2008;42:1032–9.
12. Balayut AR, Sherman S, Lehman GA, et al. Impact of endoscopic therapy on the survival of patients with primary sclerosing cholangitis. Gastrointest Endosc 2001;53:308–12.
13. Ponsioen CY, Vrouwenraets SM, van Milligen de Wit AW, et al. Value of brush cytology for dominant strictures in primary sclerosing cholangitis. Endoscopy 1999;31:305–9.
14. Kaya M, Petersen BT, Angulo P, et al. Balloon dilatation compared to stenting of dominant strictures in primary sclerosing cholangitis. Am J Gastroenterol 2001;96:1059–66.
15. van Milligen de Wit AW, van Bracht J, Rauws EA, et al. Endoscopic stent therapy for dominant extrahepatic bile duct strictures in primary sclerosing cholangitis. Gastrointest Endosc 1996;44:293–9.
16. Lindor KD, Kowdley KV, Harrison ME. American College of G. ACG Clinical Guideline: Primary Sclerosing Cholangitis. Am J Gastroenterol 2015;110:646–59.
17. Aabakkon I, Karlsen TH, Albert J, et al. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy 2017;49:588–608.
18. Rudolph G, Gotthardt D, Költész-Plichky P, et al. Influence of dominant bile duct stenoses and biliary infections on outcome in primary sclerosing cholangitis. J Hepatol 2009;51:149–55.
19. Stiehl A, Rudolph G, Sauer P, et al. Efficacy of ursodeoxycholic acid treatment and endoscopic dilatation of major duct strictures in primary sclerosing cholangitis. An 8-year prospective study. J Hepatol 1997;26:560–6.
20. Cotton PB, Lehman G, Vennes J, et al. Endoscopic sphincterotomy complications and their management: an attempt at consensus. Gastrointest Endosc 1991;37:383–93.
21. Boonstra K, Weersma RK, van Eppecum K, et al. Population-based epidemiology, malignancy risk, and outcome of primary sclerosing cholangitis. Hepatology 2015;58:2045–55.
22. Wiesner RH, Porayko MK, Dickson ER, et al. Selection and timing of liver transplantation in primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 1992;16:1290–9.
23. Ferrant JM, Haylar KM, Williamson ML, et al. Natural history and prognostic variables in primary sclerosing cholangitis. Gastroenterology 1991;100:1710–7.
24. Broomé U, Olsson R, Löfå L, et al. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis. Gut 1996;38:610–5.
25. Ponsioen CY, Vrouwenraets SM, Prawirdiroti W, et al. Natural history of primary sclerosing cholangitis and prognostic value of cholangiography in a Dutch population. Gut 2002;51:562–6.
26. Hirschfield GM, Karlsen TH, Lindor KD, et al. Primary sclerosing cholangitis. Lancet 2013;382:1587–99.
27. Schramm C, Eaton J, Ringe KJ, et al. Recommendations on the use of magnetic resonance imaging in PSC-A position statement from the International PSC Study Group. Hepatology 2017;66:1675–88.
28. Lunder AK, Hov JR, Bothe R, et al. Prevalence of Sclerosing Cholangitis Detected by Magnetic Resonance Cholangiography in Patients With Long-term Inflammatory Bowel Disease. Gastroenterology 2016;151:1660–9.
29. Weber C, Kuhlencordt R, Grotelueschen R, et al. Magnetic resonance cholangiopancreatography in the diagnosis of primary sclerosing cholangitis. Endoscopy 2008;40:739–45.
30. Moff SL, Karmel IR, Eustace J, et al. Diagnosis of primary sclerosing cholangitis: a blinded comparative study using magnetic resonance cholangiography and endoscopic retrograde cholangiography. Gastrointest Endosc 2006;64:219–23.
31. Berstad AE, Aabakkon L, Smith HJ, et al. Diagnostic accuracy of magnetic resonance and endoscopic retrograde cholangiography in primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2006;4:514–20.
32. Tenca A, Mustonen H, Lind K, et al. The role of magnetic resonance imaging and endoscopic retrograde cholangiography in the evaluation of disease activity and severity in primary sclerosing cholangitis. Liver Int 2018;38:3229–39.
33. Lee JG, Schutz SM, England RE, et al. Endoscopic therapy of sclerosing cholangitis. Hepatology 1995;21:661–7.
34. Enns R, Eloubeidi MA, Mergener K, et al. Predictors of successful clinical and laboratory outcomes in patients with primary sclerosing cholangitis undergoing endoscopic retrograde cholangiopancreatography. Can J Gastroenterol 2003;17:243–8.
35. Ponsioen CY, Armelo U, Bergquist A, et al. No superiority of stents vs balloon dilatation for dominant strictures in patients with primary sclerosing cholangitis. Gastroenterology 2018;155:752–9.
van den Hazel SJ, Wolfhagen EH, van Buuren HR, et al. Prospective risk assessment of endoscopic retrograde cholangiography in patients with primary sclerosing cholangitis. Dutch PSC study group. *Endoscopy* 2000;32:779–82.

Bangarulingam SY, Gossard AA, Petersen BT, et al. Complications of endoscopic retrograde cholangiopancreatography in primary sclerosing cholangitis. *Am J Gastroenterol* 2009;104:855–60.

Alkhatib AA, Hilden K, Adler DG. Comorbidities ADG. Comorbidities, sphincterotomy, and balloon dilation predict post-ERCP adverse events in PSC patients: operator experience is protective. *Dig Dis Sci* 2011;56:3685–8.

Ismail S, Kylänpää L, Mustonen H, et al. Risk factors for complications of ERCP in primary sclerosing cholangitis. *Endoscopy* 2012;44:1133–8.

Navaneethan U, Jegadeesan R, Nayak S, et al. ERCP-related adverse events in patients with primary sclerosing cholangitis. *Gastrointest Endosc* 2015;81:410–9.