Inhibiting translation elongation can aid genome duplication in Escherichia coli

Mycy, K. K., Hawkins, M., Syeda, A. H., Gupta, M. K., Meharg, C., Dillingham, M. S., ... McGlynn, P. (2017). Inhibiting translation elongation can aid genome duplication in Escherichia coli. *Nucleic Acids Research, 45*(5), 2571-2584. https://doi.org/10.1093/nar/gkw1254

Published in:
Nucleic Acids Research

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
[Link to publication record in Queen's University Belfast Research Portal](https://www.qub.ac.uk/research/)

Publisher rights
Copyright 2016 the authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 10. Mar. 2020
Inhibiting translation elongation can aid genome duplication in *Escherichia coli*

Kamila K. Myka\(^1,\dagger\), Michelle Hawkins\(^1,\dagger\), Aisha H. Syeda\(^1\), Milind K. Gupta\(^2\), Caroline Meharg\(^3\), Mark S. Dillingham\(^4\), Nigel J. Savery\(^4\), Robert G. Lloyd\(^5\) and Peter McGlynn\(^1,\dagger\)

\(^1\)Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK, \(^2\)School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK, \(^3\)Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, UK, \(^4\)DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK and \(^5\)Centre for Genetics and Genomics, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK

Received August 22, 2016; Revised November 28, 2016; Editorial Decision November 29, 2016; Accepted December 01, 2016

ABSTRACT

Conflicts between replication and transcription challenge chromosome duplication. *Escherichia coli* replisome movement along transcribed DNA is promoted by Rep and UvrD accessory helicases with \(\Delta\text{rep} \Delta\text{uvrD}\) cells being inviable under rapid growth conditions. We have discovered that mutations in a tRNA gene, aspT, in an aminoacyl tRNA synthetase, AspRS, and in a translation factor needed for efficient proline–proline bond formation, EF-P, suppress \(\Delta\text{rep} \Delta\text{uvrD}\) lethality. Thus replication-transcription conflicts can be alleviated by the partial sacrifice of a mechanism that reduces replicative barriers, namely translating ribosomes that reduce RNA polymerase backtracking. Suppression depends on RelA-directed synthesis of (p)ppGpp, a signalling molecule that reduces replication-transcription conflicts, with RelA activation requiring ribosomal pausing. Levels of (p)ppGpp in these suppressors also correlate inversely with the need for Rho activity, an RNA translocase that can bind to emerging transcripts and displace transcription complexes. These data illustrate the fine balance between different mechanisms in facilitating gene expression and genome duplication and demonstrate that accessory helicases are a major determinant of this balance. This balance is also critical for other aspects of bacterial survival: the mutations identified here increase persistence indicating that similar mutations could arise in naturally occurring bacterial populations facing antibiotic challenge.

INTRODUCTION

Cell survival from one generation to the next relies on efficient and faithful replication of the genome. However, the template for replication frequently harbours obstacles that have the potential to interfere with the progression of replication complexes, the macromolecular machines responsible for driving genome duplication. Protein–DNA complexes are important sources of such obstacles and those associated with transcription are especially problematic, in part because of their abundance and in part because they present multiple different challenges to replisome movement (1,2). One major challenge is the very high free energy of binding of transcription complexes that creates a need to disrupt many RNA polymerase–nucleic acid interactions as replication proceeds. Transcribing RNA polymerases (RNAPs) also pause frequently either spontaneously or upon encountering DNA template damage (3). Paused RNAPs can also diffuse backwards along the template resulting in displacement of the transcript 3’ end from the RNAP active site. This causes an inability to resume transcription, creating barriers to replication that threaten genome stability (4,5).

Mechanisms exist that reduce the probability of a replication fork encountering paused transcription complexes. Upstream RNAPs on the DNA and ribosomes on the emerging transcript may inhibit backtracking of a paused transcription complex in bacteria (5–7). RNA translocases such as the bacterial Rho hexamer can also translocate along transcripts not coated with ribosomes and displace paused and blocked RNAPs (5,8,9). Rho translocation also disrupts R-loops, structures in which an RNA transcript hybridizes to the DNA template strand (9). Nucleases can also aid genome duplication by promoting the resumption of transcription by backtracked RNAP (5,10). GreA and
GreB bind to E. coli RNAP and stimulate cleavage of backtracked transcripts, creating a new RNA 3’ end that can be used to restart transcription (11). Conversely, the 3’-5’ helicase UvrD can increase rather than decrease backtracking of RNAP and this may increase access of nucleotide excision repair enzymes UvrABC to DNA damage thus helping to clear barriers to RNAP and aid genome duplication (12).

Signalling molecules such as guanosine tetraphosphate and pentaphosphate in bacteria (referred to collectively as (p)ppGpp) can also reprogramme transcription. (p)ppGpp is central to the stringent response in bacteria, identified originally as a response to amino acid starvation in which the presence of uncharged tRNA within the ribosomal A site stimulates ribosome-bound RelA to synthesize (p)ppGpp (13–15). Control of the stringent response also requires a (p)ppGpp-specific pyrophosphohydrolase, SpoT, that also has low (p)ppGpp synthase activity (15). However, the synthase activity of SpoT is induced by other stresses such as depletion of fatty acids (16). Central to the stringent response is binding of (p)ppGpp to RNAP which leads to downregulation of stable RNA production and upregulation of stress response genes (15,17,18). Expression of ribosomal rRNA operons accounts for half of all transcription during rapid growth when (p)ppGpp levels are low and thus provides the majority of transcriptional obstacles to replisomes in vivo when cells are dividing quickly (19–22). Elevated (p)ppGpp therefore reduces conflicts between replication and transcription by decreasing the density of transcribing RNAPs on the genome. (p)ppGpp can also decrease the stability of transcription complexes blocked by template damage in vitro which may decrease the density of blocked RNAP on the genome (10). This destabilization has been questioned, though, and a role for (p)ppGpp in increasing the fidelity of transcription and hence reducing RNAP pausing and backtracking has been proposed (23). Other work implicates (p)ppGpp acting synergistically with UvrD in promoting backtracking of paused RNAP, one function of which could be to facilitate transcription-coupled repair of any pause-inducing DNA damage (24).

Thus, how (p)ppGpp might act on transcription elongation complexes, as opposed to transcription initiation, is still far from clear. Transcription is not the only target of (p)ppGpp, though, since (p)ppGpp also binds multiple other targets. Inhibited targets include DnaG primase (25–28) and the translation elongation factors EF(G and EF-Tu (29), indicating the pleiotropic impact of elevated (p)ppGpp on replication, transcription and elongation. (p)ppGpp also affects other diverse aspects of metabolism such as phospholipid synthesis, oxidative metabolism and resistance to antibiotics (30). These signalling molecules also enhance the ability of E. coli to persist in the presence of antibiotics. Persistence is the non-heritable ability of a small fraction of a bacterial population to survive exposure to an otherwise lethal concentration of antibiotic (31). (p)ppGpp levels vary stochastically in a bacterial population and increased (p)ppGpp activates toxin–antitoxin systems that induce slow growth in a sub-population of cells, leading to antibiotic tolerance (32).

Mechanisms also exist to increase the probability of continued replisome movement in the event of a collision with an RNAP. Accessory replicative motors provide a supply of additional helicases at the fork to aid protein displacement ahead of the replisome (33–37). In E. coli Rep helicase promotes movement of replisomes along protein-bound DNA in vitro and in vivo (20,34). Rep appears to be the main replisome anti-pausing factor in E. coli (38) and absence of Rep results in at least a two-fold increase in genome duplication time (39,40) and higher dependence on recombination-directed repair of damaged forks (41–44). However, ∆rep cells remain viable since the homologous helicase UvrD can substitute for the absence of Rep at the replication fork (20,34). This substitution is only partial, though, and correlates with a physical and functional interaction between DnaB and Rep but not between DnaB and UvrD (34,45). This partial functional overlap is sufficient for single deletion mutants to be viable during rapid growth whereas ∆rep ∆uvrD cells are not (46). ∆rep ∆uvrD inviability can be suppressed by growth on minimal medium, conditions under which (p)ppGpp levels are high, and also by elevation of (p)ppGpp levels on rich medium via the spoT1 mutation encoding a (p)ppGpp pyrophosphohydrolase-defective SpoT (20,34). Mutations within rpo genes can also suppress ∆rep ∆uvrD rich medium lethality (20,34,47). These mutant RNAPs display different phenotypes suggesting distinct mechanisms of suppression but some seem to pheno-copy elevated (p)ppGpp and/or reduce RNAP backtracking (10,47,48).

The above mechanisms reduce conflicts between replication and transcription but under rapid growth conditions forks are still blocked sufficiently frequently to require replisome reloading enzymes to maintain viability (49,50). Replisome reloading also often requires remodeling of the DNA at the blocked fork by recombination enzymes in order to generate a DNA structure suitable for replisome reloading (51). However, recombinational processing can lead to genome instability and is thus tightly controlled. One control is exerted by UvrD as it can disrupt RecA-ssDNA filaments and this disruption prevents excessive RecFOR-dependent loading of RecA onto ssDNA at blocked forks (52). Such excessive RecA loading contributes to ∆rep ∆uvrD lethality, evinced by the weak suppression of ∆rep ∆uvrD rich medium lethality via mutations in recF, recO or recR (34,53,54).

We have searched for suppressors of ∆rep ∆uvrD rich medium lethality that are not within rpo, spoT, recF, O or R. We identified a spontaneous suppressor in a tRNA gene, aspT[18c], that mutated a highly conserved residue that is structurally important in other tRNA species. Probing the basis of this suppression revealed that defective tRNA aminoacylation or inefficient peptide bond formation within the ribosome also suppressed ∆rep ∆uvrD lethality. In all cases, suppression required RelA-directed (p)ppGpp synthesis indicating that stalling of ribosome translocation by uncharged tRNA in the A site of ribosomes underpinned suppression. Thus, although efficient translation elongation aids genome duplication (5,7), the partial inhibition of ribosome translocation is more effective at mitigating replication-transcription conflicts. These data illustrate the fine balance between the multiple mechanisms that promote simultaneous gene expression and genome duplication and reveal the importance of accessory replicative helicase activity in determining this balance.
MATERIALS AND METHODS

Plasmids and strains

pAM403 (55) and pAM407 (34) are pRC7 derivatives encoding rep and uvrD, respectively. p3LC-TL30-5P and p3LC-TL30-5D contain a cadC–lacZ gene fusion in which five tandem codons present within the linker encode proline or aspartate, respectively (56). Strains were constructed by P1 vir transduction and are listed in Supplementary Table S1.

Genome sequencing and analysis

DNA was extracted from 1 culture each of strain N7153 and N7182 grown in LB broth to stationary phase using Qiagen 100/G genomic tips from 5 ml cultures following the manufacturer’s protocol. Genome sequencing was performed using an Illumina GAIIx instrument with 100 bp paired end reads. Paired reads were trimmed to remove adapters and mapped against the E. coli K12 strain MG1655 NC_000913 genome using bwa (57), duplicates marked using Picard (http://broadinstitute.github.io/picard) and variant analysis performed with SAMtools (58), followed by merging of variant tables using perl. Identified high quality synonymous and non-synonymous single nucleotide polymorphisms were annotated manually using the Integrative Genomics Viewer (59). The Illumina data were submitted in the form of fastq files to the European Nucleotide Archive (ENA) and are available under accession number PRJEB14483 at http://www.ebi.ac.uk/ena/data/view/PRJEB14483.

Growth assays

All steps in plasmid loss assays were carried out except those shown in Figures 2B and 3B in which all steps were conducted at 30 °C or 25 °C as indicated. Colonies were grown in LB broth and agar except the assays in Figure 2B and Supplementary Figures S3B and S4 which were performed with a defined rich medium broth and agar containing 0.2% glycerol (Figure 2B) or 0.2% glucose (Supplementary Figures S3B and S4) as a carbon source (60). The plates used in Supplementary Figures S3B and S4 also had decreasing concentrations of aspartate or phenylalanine, as indicated. Strains carrying derivatives of pRC7 were grown in LB broth or defined rich medium with 100 μg ml⁻¹ of ampicillin overnight, diluted 10-fold into the same type of fresh liquid medium without ampicillin and grown to A₆₅₀ 0.4. Dilutions were then plated onto LB or defined rich medium agar plates containing 120 μg ml⁻¹ X-gal and 1 mM IPTG and incubated for 48 h except those shown in Figure 2B. Plates were then photographed and scored for blue/white colony formation.

For assays to assess colony forming ability, strains were grown in LB broth overnight at 37 °C or, when temperature sensitive strains were involved, at 30 °C. Serial 10-fold dilutions were made with 56/2 salts (61) on ice and then 5 μl of each dilution was spotted onto LB agar plates. Plates were then incubated at 37 °C for 16 h unless otherwise stated. Ampicillin and bicyclomycin were included in LB agar plates where indicated at 100 and 25 μg ml⁻¹, respectively.

For the colony formation assays in Supplementary Figure S3A, strains were grown in defined rich medium broth (60) containing 0.2% glucose, all amino acids and 100 μg ml⁻¹ ampicillin overnight at 37 °C. Tenfold serial dilutions were made in 56/2 salts and then 5 μl of each dilution spotted onto defined rich medium plates containing 0.2% glucose, 100 μg ml⁻¹ ampicillin and with all amino acids or missing either aspartate or phenylalanine. These plates were incubated at 37 °C for 16 h. Minimal medium agar plates (61) were used in Supplementary Figure S3C without and with 100 μg ml⁻¹ ampicillin as indicated and incubated at 37 °C for 72 h.

Colony-forming ability at increasing doses of UV light was assessed as described (62). Mismatch repair capacity was measured as the fraction of cells in a culture that acquired spontaneous mutations leading to rifampicin resistance. Briefly, overnight LB cultures were washed once in 56/2 salts and serially diluted 10-fold. 100 μl of the neat and the 10⁻¹ dilution were spread on LB agar containing 15 μg ml⁻¹ rifampicin. To estimate the total cfu ml⁻¹ in the overnight culture, 10 μl of the 10⁻⁶ dilution was spotted in triplicate on LB agar without rifampicin. Plates were then incubated at 37 °C for 16 h and the colonies then counted.

The liquid growth assays in Figure 2A were performed using a Tecan Infinite M200 Pro plate reader. Overnight LB cultures were diluted to A₆₀₀ 0.005 in LB and 150 μl of each culture was transferred into 20 wells of a 96-well flat bottom plate (Corning). The microplate was incubated at 37 °C for 24 h and A₆₀₀ measurements were performed every 30 min preceded by plate shaking.

Persistence

Single colonies were inoculated into 5 ml LB broth and grown with shaking at 37 °C overnight. 50 μl of overnight culture was then inoculated into 5 ml of LB broth and grown at 37 °C with shaking until 1 - 2 × 10⁸ colony forming units ml⁻¹ reached. 500 μl was then transferred into two 1.5 ml microcentrifuge tubes. The first tube was centrifuged at 6000 rpm for 5 min at room temperature, resuspended in 500 μl 56/2 salts, serially diluted tenfold in 56/2 salts and 10 μl volumes of the 10⁻⁴ and 10⁻³ dilutions spotted onto LB agar plates containing 20 mM MgSO₄ in triplicate. To the second tube 5 μl of 10 μg ml⁻¹ ciprofloxacin was added and the tube was then inserted into a 50 ml Falcon tube and placed in a shaking incubator at 37 °C for 5 h. After the 5 h incubation, this tube was centrifuged at 6000 rpm for 5 min at room temperature, resuspended in 500 μl 56/2 salts, recentrifuged and resuspended in 500 μl 56/2 salts. Colony-forming units were then assayed as for the first tube by serial dilution into 56/2 salts and plating in triplicate onto LB agar containing 20 mM MgSO₄. MgSO₄ was included to inhibit the activity of any traces of ciprofloxacin not removed by washing of the cells (63). All plates were incubated at 37 °C overnight and then the fraction of colony forming units surviving ciprofloxacin exposure calculated.
Flow cytometry

Analysis of chromosome content after completion of all ongoing rounds of replication, so-called run-out conditions, was performed on mid-log phase cultures after treatment with rifampicin and cephalaxin as described (64) using a Becton Coulter CyAn ADP cytometer with 488 nm excitation and a 530/540 nm bandpass filter. Analysis of (p)pGpp-dependent formation of RpoS-mCherry by flow cytometry was performed by growing the indicated strains overnight in LB, transferring 100 μl into 10 ml LB in a 125 ml flask followed by incubation at 37°C for 2h. Then 1 ml of the culture was centrifuged, resuspended in 2 ml of 10% LB in M9 medium and analysed by flow cytometry on a Becton Dickinson LSRFortessa X-20 flow cytometer using 561 nm laser excitation and detection using a 610/620 nm bandpass filter.

Translation assays

β-Galactosidase activity assays monitoring the relative levels of translation of cadC-lacZ fusions were performed in LB broth as described (56).

RESULTS

A tRNA mutation suppresses the requirement for accessory replicative helicases

pRC7 is a very low copy plasmid which encodes β lactamase and can therefore be maintained in E. coli cells by the inclusion of ampicillin in the medium (65). However, the inefficient origin of replication within pRC7 results in rapid loss of the plasmid in the absence of ampicillin. This rapid loss can be detected if the host strain has a chromosomal deletion of lacIZYA since pRC7 encodes the lac operon and hence cells with and without the plasmid appear blue and white, respectively, on plates containing IPTG and X-gal (65). This retention or loss of pRC7 can be used to assess whether a gene is essential for colony formation by cloning of the test gene into pRC7, transformation of a ΔlacIZYA strain with the pRC7 derivative and subsequent deletion of the test gene from the chromosome. Plating of the strain onto medium containing IPTG and X-gal results in formation of only blue colonies if the test gene is not essential (65). Rapid growth of E. coli requires accessory helicase activity and so pRC7 encoding uvrD can be lost rapidly from ΔlacIZYA repΔuvrD+ cells on rich medium but pRC7ΔuvrD cannot be lost from ΔlacIZYA Δrep ΔuvrD+ cells as monitored by blue/white colony colour (34) (see also Figure 1A, compare i and ii). Spontaneous mutations that suppress this requirement for an accessory helicase can be isolated by exploiting the ability of Δrep ΔuvrD cells to grow on minimal medium in the absence of a complementing pRC7 plasmid and subsequent plating of plasmid-less cells onto rich medium (34). Rare survivors on rich medium can then form colonies and the mutation(s) responsible for allowing Δrep ΔuvrD cells to grow under rapid growth conditions can be analysed. We identified one such suppressor, the strain designation of which is N7182 (Supplementary Table S1). Potential linkage of the suppressor mutation to rep was tested by transducing Δrep::cat from the suppressor strain into pRC7ΔuvrD/repΔΔuvrD:dhfr (N6639). Eleven chloramphenicol-resistant transductants were tested for loss of pRC7ΔuvrD on rich medium. Four transductants could not lose pRC7ΔuvrD but seven could, indicating close linkage of the suppressor mutation with Δrep::cat (see also Figure 1A, compare ii and iii).

We sequenced the genome of this suppressor strain and compared it with the genome of N7153, a Δrep ΔuvrD strain that contains a well-characterized suppressor mutation rpoB*35 (5,10,34,66). Use of the Δrep ΔuvrD rpoB*35 strain as a reference genome avoided the need for the reference strain to retain a complementing plasmid for viability. Only one mutation in N7182 that was not present in N7153 was located sufficiently close to Δrep::cat to explain the above linkage (see Supplementary File 1). This mutation resulted in replacement of T with C at position 8 within the aspT gene, one of three identical tRNAAsp genes in E. coli. Sequencing of the aspT gene from the 11 transductants obtained in the above cross revealed that all seven strains able to lose pRC7ΔuvrD contained aspT[t8c] whereas all four that could not lose pRC7ΔuvrD retained a wild type copy of aspT. Suppression of the inviability of Δrep ΔuvrD cells on rich medium was therefore associated with the aspT[t8c] allele, with suppression comparable to that of rpoB*35 in a plasmid loss assay (Figure 1A, compare i and iv).

Δrep uvrDΔ+ cells have a growth defect defect since UvrD can compensate only partially for the absence of Rep accessory helicase activity, resulting in slower movement of replication forks in Δrep cells (39,40). Thus, the median number of copies of oriC in Δrep uvrDΔ+ cells is twice that of repΔ uvrDΔ+ cells in rich medium due to an extended cell cycle in Δrep cells and hence more replication initiation events per cell cycle (38). This doubling in oriC numbers results in a doubling of chromosome content when cells are treated with cephalexin and rifampicin to inhibit cell division and reinitiation of replication, so-called run-out conditions (38) (see also Figure 1B, compare i and iii). aspT[t8c] suppressed the increased chromosome copy number in Δrep uvrDΔ+ cells, reducing the median number of chromosomes from eight to four (Figure 1B, compare iii and iv). These data support the conclusion that this tRNA mutation reduces the need for accessory helicase activity. Furthermore, aspT[t8c] had no detectable impact on other UvrD-mediated processes. Defects in nucleotide excision repair, mismatch repair and control of recombination in repΔ ΔuvrD cells (52,67,68) were not suppressed by aspT[t8c] (Supplementary Figure S1A, B and C, respectively), providing further support for the specific suppression of the accessory helicase defect in Δrep ΔuvrD cells by aspT[t8c].

The requirement for accessory helicase activity is driven primarily by transcriptional barriers to replication (20,34). Backtracking of paused RNA polymerases results in formation of particularly stable replicative barriers and multiple factors have evolved to reduce the numbers of backtracked complexes (5). Cells lacking two homologous anti-backtracking factors, GreA and GreB, display a temperature-sensitive growth defect that is a consequence of more frequent collisions between replisomes and backtracked transcription complexes (5,10,69). aspT[t8c] suppressed the temperature-sensitive phenotype of ΔgreA.
A mutation in an aspartyl tRNA gene suppresses the need for accessory replicative helicases and for anti-backtracking factors. (A) Retention or loss of pRC7uvrD (pAM407) from strains without or with Δrep ΔuvrD deletions as judged by blue/white colony color on LB plates containing X-gal and IPTG. Fractions of white colonies are indicated below each image with actual numbers of white versus total colonies counted in parentheses. (B) DNA content of the indicated strains as monitored by flow cytometry under run out conditions in LB. The number of chromosome equivalents per cell is shown below. (C) The viability of greA+ greB+ versus ΔgreA ΔgreB cells without and with aspT[Δ8c] as monitored by serial dilutions of liquid cultures grown at 30°C and plated subsequently on LB agar at 30°C and 42°C.

ΔgreB cells (Figure 1C), similar to the suppression seen with rpoB*35 (48). We conclude that aspT[Δ8c] reduces the need for GreA/GreB-dependent rescue of backtracked RNA polymerase.

Taken together, these data indicate that aspT[Δ8c] reduces the need for Rep and UvrD to underpin replication and for anti-backtracking factors to resuscitate transcription complexes.

Suppression by aspT[Δ8c] does not occur via growth rate restriction

The uridine encoded at position 8 within the wild type aspT gene is post-transcriptionally modified to 4-thiouridine and this modified nucleotide is conserved across all kingdoms of life (70). This residue is involved in a triple non-Watson-Crick pairing interaction and is important in coordination of magnesium within tRNA (71,72). This central structural role is reflected in the temperature-dependent destabilisation of human mitochondrial tRNA^{Met} structure by the same T to C mutation as found in aspT[Δ8c]. This transition mutation in tRNA^{Met} inhibits aminoacylation and any mutated tRNA^{Met} that is aminoacylated fails to form a stable ternary complex with elongation factor EF-Tu (70).

Given the conservation of tRNA structure, aspT[Δ8c] may result in similar structural destabilisation of the encoded tRNA^{Asp} and consequent inhibition of interactions with aspartyl tRNA synthetase and EF-Tu. However, aspT[Δ8c] did not have a major impact on growth of rep⁺ uvrD⁺ cells in liquid culture (Figure 2A, compare i and ii). This absence of a significant growth defect in aspT[Δ8c] strains may be due to the presence of two other identical tRNA^{Asp} genes in <i>E. coli</i>, aspU and aspV.

Other means of growth restriction did not suppress Δrep ΔuvrD inviability. Growth on defined rich medium containing all 20 amino acids but with a poor carbon source, glyc-
tRNA_{Asp} aminoacylation was therefore tested for suppression of lethality. We could not detect significant defects in translation (Figure 3A, compare i and ii). pRC7_{uvrD} could be lost from Δ^{rep}Δ^{uvrD}Δ^{aspSP555S} at 30°C on low salt medium but not on high salt medium (Figure 3Biii). Suppression of Δ^{rep}Δ^{uvrD} lethality correlates therefore with a defect in aspartyl tRNA synthetase.

We also tested whether an alternative means of inhibiting tRNA^{asp} aminoacylation could suppress Δ^{rep}Δ^{uvrD} viability. A pRC7^{uvrD}/Δ^{rep}Δ^{uvrD} strain defective in aspartate biosynthesis could lose the complementing pRC7^{uvrD} plasmid on defined rich medium upon restriction of aspartate availability (Supplementary Figure S3). Thus a defect in the enzyme needed to synthesize aspartyl tRNA, AspRS, or a limiting concentration of one of the substrates needed for formation of aspartyl tRNA, aspartate, can suppress the need for accessory replicative helicase activity. Moreover, suppression was not specific to aspartate starvation as restriction of availability of phenylalanine also allowed Δ^{rep}Δ^{uvrD} cells to survive in the absence of a complementing plasmid (Supplementary Figure S4). As expected, restricting amino acid availability also resulted in very poor growth (Supplementary Figures S3 and S4) but a restricted growth rate does not by itself provide suppression of Δ^{rep}Δ^{uvrD} lethality (Figure 2B). These data support the conclusion that inhibition of aminoacylation of tRNA^{asp}, and of other tRNAs, reduces the need for accessory helicase activity.

Figure 2. The impact of asp^{T[18c]} on growth and its relevance to Δ^{rep}Δ^{uvrD} viability. (A) Growth of (i) asp^{T⁺} efp⁺ (TB28), (ii) asp^{T[18c]} efp⁺ (KM231) and (iii) asp^{T⁺} Δefp (MH299) in LB at 37°C as monitored by absorbance at 600 nm. (B) Assessment of the ability of pRC7^{uvrD} (pAM407) to be lost from Δ^{rep}Δ^{uvrD} cells by reducing growth rates via culturing at 37°C and 25°C for the indicated times on defined rich medium containing glycerol as a carbon source.

defects in translation in vivo at tandem aspartate codons in asp^{T[18c]} strain (Supplementary Figure S2). Either this allele does not result in translational pausing or such pausing is below the limits of detection using this assay. We therefore used alternative approaches to probe the asp^{T[18c]} suppression mechanism. The same 18^c mutation in human mitochondrial tRNA^{Met} inhibits aminoacylation (70). Inhibition of tRNA^{asp} aminoacylation was therefore tested for suppression of Δ^{rep}Δ^{uvrD} lethality. The <i>E. coli</i> <i>tls-1</i> allele encodes a P555S mutation in aspartyl tRNA synthetase that reduces the thermal stability of the synthetase and causes a severe reduction in growth rate at 42°C under low salt conditions (73,74) (see also Figure 3A). Given that AspRS^{P555S} is less stable than wild type enzyme regardless of the temperature (74), we tested whether asp^{SP555S} suppressed Δ^{rep}Δ^{uvrD} lethality at 30°C on low salt medium, conditions under which viability is similar to wild type (73) (see also Figure 3A, compare i and ii). pRC7^{uvrD} could be lost from Δ^{rep}Δ^{uvrD}Δ^{aspSP555S} at 30°C on low salt medium but not on high salt medium (Figure 3Biii). Suppression of Δ^{rep}Δ^{uvrD} lethality correlates therefore with a defect in aspartyl tRNA synthetase.

We also tested whether an alternative means of inhibiting tRNA^{asp} aminoacylation could suppress Δ^{rep}Δ^{uvrD} viability. A pRC7^{uvrD}/Δ^{rep}Δ^{uvrD} strain defective in aspartate biosynthesis could lose the complementing pRC7^{uvrD} plasmid on defined rich medium upon restriction of aspartate availability (Supplementary Figure S3). Thus a defect in the enzyme needed to synthesize aspartyl tRNA, AspRS, or a limiting concentration of one of the substrates needed for formation of aspartyl tRNA, aspartate, can suppress the need for accessory replicative helicase activity. Moreover, suppression was not specific to aspartate starvation as restriction of availability of phenylalanine also allowed Δ^{rep}Δ^{uvrD} cells to survive in the absence of a complementing plasmid (Supplementary Figure S4). As expected, restricting amino acid availability also resulted in very poor growth (Supplementary Figures S3 and S4) but a restricted growth rate does not by itself provide suppression of Δ^{rep}Δ^{uvrD} lethality (Figure 2B). These data support the conclusion that inhibition of aminoacylation of tRNA^{asp}, and of other tRNAs, reduces the need for accessory helicase activity.

Translational pausing suppresses Δ^{rep}Δ^{uvrD} viability

Suppression of Δ^{rep}Δ^{uvrD} viability via inhibition of tRNA^{asp} or tRNA^{phe} aminoacylation might occur directly via pausing of ribosomes but could also occur via decreased production of one or more specific proteins containing both aspartate and phenylalanine. We tested therefore whether increased translational pausing by a well-defined mechanism that does not rely on decreased tRNA aminoacylation also suppresses the need for accessory helicase activity. Peptide bond formation by ribosomes occurs with low efficiency within polyproline tracts as compared with other amino acids and this low efficiency is compensated for by interaction of elongation factor P (EF-P) with the ribosome (56,75). When EF-P is absent (Δ^{efp}) ribosomes pause for extended periods at tandem proline codons (56,75) (see also Supplementary Figure S2) resulting in reduced growth rates (76) (see also Figure 2A). Despite its negative effect on growth rate, introduction of Δ^{efp} clearly suppressed Δ^{rep}Δ^{uvrD} lethality (Figure 4, compare A and B). <i>yjeA</i> and <i>yjeK</i> encode enzymes needed for post-translational modification of EF-P to form functional enzyme (56,75–78) and deletion of either <i>yjeA</i> or <i>yjeK</i> also resulted in suppression (Figure 4C and D). Enhancement of ribosomal pausing at polyproline sequences can therefore reduce the need for accessory helicase activity.

Suppression by asp^{T[18c]} and Δ^{efp} requires (p)ppGpp synthesis

One consequence of ribosomal pausing is increased synthesis of (p)ppGpp by RelA upon binding of RelA to a ribo-
Figure 3. A mutation in aspartyl tRNA synthetase suppresses Δrep ΔuvrD lethality. (A) The indicated strains were grown overnight in high salt medium at 30 °C and then serial dilutions plated onto low and high salt plates containing 100 µg ml⁻¹ ampicillin and incubated at either 30 °C or 42 °C. (B) Suppression of Δrep ΔuvrD lethality by aspS⁵⁵⁵⁵ on rich medium was analysed by monitoring retention or loss of pRC7uvrD (pAM407) from the indicated strains at 30 °C on either low or high salt LB medium.

Figure 4. Ribosomal pausing decreases the requirement for accessory helicase activity. Retention or loss of pRC7rep (pAM403) was monitored at 37 °C on LB X-gal IPTG plates for the indicated strains.

some containing a non-acylated tRNA in the A site (13,14). Elevated (p)ppGpp is known to suppress Δrep ΔuvrD inviability (34) and so aspT[t8c] and Δefp might both therefore suppress via elevation of (p)ppGpp concentration.

Direct measurement of (p)ppGpp using ³²P cannot be performed on cells grown in rich media (79) which prevents direct assessment of (p)ppGpp levels in aspT[t8c] and Δefp strains under conditions relevant to suppression of Δrep ΔuvrD lethality. An indirect assay was therefore used that employs an RpoS–mCherry translational fusion (32). This reporter provides a fluorescence signal that correlates with intracellular (p)ppGpp concentration due to (p)ppGpp both stimulating rpoS transcription and inhibiting RpoS degradation (32). Fluorescence was assayed by flow cytometry of cells grown to mid-logarithmic phase in rich medium. relA⁺ spoT⁺ cells lacking the RpoS–mCherry fusion and rpoS-mCherry ΔrelA ΔspoT cells which are unable to synthesize (p)ppGpp gave similar levels of background fluorescence (Figure 5Ai and ii). An increase in fluorescence was observed in wild type cells carrying the fusion but this increase was modest (Figure 5A, compare iii with i and ii), consonant with low (p)ppGpp levels in wild type cells growing in nutrient-rich environments (32,80). mCherry fluorescence increased substantially in Δefp cells but not in aspT[t8c] cells with respect to wild type (Figure 5A, compare iv and v with iii). We conclude that absence of EF-P results in elevation of (p)ppGpp concentration. Higher (p)ppGpp concentration in Δefp cells as compared with wild type or aspT[t8c] cells is consistent with the significant retardation of growth of Δefp cells (Figure 2A). In contrast, aspT[t8c] either does not increase (p)ppGpp levels as compared with wild type cells or any increase is
Figure 5. (p)ppGpp synthesis is needed for suppression of Δrep ΔuvrD lethality by aspT[t8c] and Δefp. (A) Flow cytometric detection of in vivo levels of RpoS-mCherry fluorescence in the indicated strains. All strains contain the rpoS-mCherry fusion with the exception of (i) MG1655. (B) Survival after challenge with ciprofloxacin. The strains are (i) TB28, (ii) KM241, (iii) N5777, (iv) KM231 and (v) MH372. (C) Retention and loss of pRC7uvrD(pAM407) on LB X-gal IPTG agar in relA+ and ΔrelA strains.

To address this potential sensitivity problem we employed a second assay to determine whether either Δefp or aspT[t8c] results in elevated (p)ppGpp. Cells with elevated (p)ppGpp display elevated levels of persistence and thus spoT1 enhances whereas ΔrelA ΔspoT alleles reduce persistence (32,82) (see also Figure 5Bi–iii). aspT[t8c] and Δefp both increased persistence with the increase being higher for Δefp (Figure 5Biv and v). The large increase in persistence in Δefp cells correlates with the enhancement of fluorescence in Δefp spoS-mCherry cells. The level of persistence in aspT[t8c] cells is consistent with a smaller increase in
(p)ppGpp levels as compared with Δefp that is below the limits of detection in the mCherry fluorescence assay.

We tested whether increased (p)ppGpp contributed to suppression of Δrep ΔuvrD inviability by aspT[t8c] and Δefp by deleting the gene encoding the primary (p)ppGpp synthase, relA. Deletion of relA prevented loss of pRC7uvrD from Δrep ΔuvrD aspT[t8c] and Δrep ΔuvrD Δefp cells, indicating that RelA was required for suppression by both mutant alleles (Figure 5C, compare iii with iv and v with vi). In contrast, pRC7uvrD could be lost from Δrep ΔuvrD ΔrelA rpoB*35 cells indicating that RelA was not required for the viability of suppressed Δrep ΔuvrD strains under all circumstances (Figure 5C, compare vii and viii). This lack of dependence of Δrep ΔuvrD rpoB*35 on RelA likely reflects the recapitulation by rpoB*35 of many phenotypes associated with elevated (p)ppGpp even in the absence of RelA (48,66).

Taken together, these data indicate that RelA-directed synthesis of (p)ppGpp is important for suppression of Δrep ΔuvrD lethality by both aspT[t8c] and Δefp.

aspT[t8c] and Δefp confer differing requirements for Rho activity

Translocation 5′-3′ by Rho along untranslated and unstructured nascent transcripts can displace transcription complexes thus reducing both RNA polymerase occupancy on the chromosome and R-loop formation (9,83,84). Rep and Rho therefore provide two different mechanisms that reduce the impact of transcription on replication. Consequently, cells need either Rep or wild type levels of Rho activity to maintain genome duplication in the face of transcription barriers (8,85). One manifestation of this requirement is the hypersensitivity of Δrep ΔuvrD+ cells to low concentrations of the Rho-specific inhibitor bicyclomycin (8) (see also Figure 6A and B, compare i and iii).

We assessed whether Δefp or aspT[t8c] could suppress Δrep bicyclomycin hypersensitivity. Neither Δefp nor aspT[t8c] altered bicyclomycin sensitivity in a rep+ background (Figure 6A and B, compare i and ii). In Δrep cells hypersensitivity was suppressed by Δefp but not by aspT[t8c] (Figure 6A and B, compare iii and iv). These data demonstrate that Δefp but not aspT[t8c] can reduce the requirement for Rho activity in the absence of Rep.

We also tested whether this differential need for Rho activity was reflected in cells lacking both rep and uvrD by exploiting rho[A243E] which encodes a partial loss of function enzyme (86). Rho dependency was assessed by the ability of Δrep ΔuvrD strains to lose a complementing pRC7rep rather than pRC7uvrD plasmid, allowing construction of pRC7rep/Δrep ΔuvrD rho[A243E] strains regardless of rep rho double mutant lethality (85). The similar numbers and sizes of white plasmidless colonies formed by Δrep ΔuvrD Δefp rho+ and Δrep ΔuvrD Δefp rho[A243E] cells indicate that wild type Rho function was not required for suppression by Δefp (Figure 6C, compare v and vi). In contrast, Δrep ΔuvrD aspT[t8c] rho[A243E] gave much smaller white plasmidless colonies as compared with the isogenic rho+ strain indicating that wild type Rho function was important for growth of aspT[t8c] Δrep ΔuvrD cells (Figure 6C, compare iii and iv).

The data in Figures 5 and 6 indicate that the viability of aspT[t8c] Δrep ΔuuvrD cells requires both the major (p)ppGpp synthase in the cell, RelA, and wild type Rho activity. In contrast, Δefp Δrep ΔuuvrD cells require RelA but not wild type Rho activity. Δefp cells have higher levels of (p)ppGpp as compared with aspT[t8c] (Figure 5A) and these elevated levels might explain the differential requirement for Rho, given the ability of (p)ppGpp to reduce replication/transcription conflicts (10,34,66). Such a model implies that (p)ppGpp synthesis is critical not only for the viability of Δefp Δrep ΔuuvrD cells (Figure 5C) but also for suppression of bicyclomycin sensitivity of Δrep cells (Figure 6A). Absence of the primary (p)ppGpp synthase RelA did not hypersensitize otherwise wild type cells to bicyclomycin (Figure 7A). However, the suppression of Δrep bicyclomycin hypersensitivity by Δefp was abolished upon deletion of relA (Figure 7A, compare vii with vi). Thus RelA-dependent (p)ppGpp synthesis in Δrep Δefp cells is essential for survival with lowered Rho activity, supporting the hypothesis that elevated (p)ppGpp can reduce the need for Rho.

We tested this possible link between (p)ppGpp concentration and requirement for Rho by analysing the impact of other means of increasing (p)ppGpp concentration on Δrep bicyclomycin hypersensitivity. The spoT1 allele suppressed Δrep bicyclomycin hypersensitivity supporting the conclusion that elevated (p)ppGpp can reduce the need for Rho (Figure 7B, compare iv with ii). The data in Figures 5–7 indicate that both aspT[t8c] and Δefp require RelA-directed synthesis of (p)ppGpp to maintain the viability of Δrep ΔuuvrD cells. In contrast, Δefp has a much lower dependence on Rho activity as compared with aspT[t8c]. This differential requirement for Rho activity correlates with higher (p)ppGpp levels in Δefp cells as compared with aspT[t8c]. Resolving conflicts between replication and transcription involves therefore a fine balance between accessory replicative helicases, levels of (p)ppGpp and Rho activity.

DISCUSSION

We have discovered three new types of suppressors of Δrep ΔuuvrD rich medium lethality: mutations in tRNA genes, in aminoacyl-tRNA synthetases and in translation elongation factors. Whilst the mechanistic consequences of the aspT[t8c] mutation are unclear, the inhibition of tRNA aminoacylation by aspSp53S and of translation elongation by Δefp are well-characterized (56,74,75), indicating that partial inhibition of translation can suppress Δrep ΔuuvrD lethality. Previous studies have demonstrated that this lethality is caused primarily by the conflict between replication and transcription (20,34,54). Thus partial inhibition of translation can compensate for the impact of transcription on DNA replication in the absence of Rep and UvrD. Suppression requires RelA-directed synthesis of (p)ppGpp with (p)ppGpp concentration being higher with Δefp than with aspT[t8c] (Figure 5). Wild type levels of Rho activity are also needed in aspT[t8c] Δrep ΔuuvrD but not Δefp Δrep ΔuuvrD cells indicating that the relative importance of (p)ppGpp and Rho function depends upon the nature of the translational mutation (Figure 6).
Figure 6. \(\Delta efp\) but not \(aspT[t8c]\) can bypass the need for wild type Rho activity. (A) and (B) The indicated strains were grown in liquid culture in the absence of bicyclomycin and their ability to continue to divide with reduced Rho activity was assessed after serial dilution onto plates without and with 25 \(\mu\)g ml\(^{-1}\) bicyclomycin. (C) Loss of pH77rep (pAM403) on LB X-gal IPTG agar in rho\(^+\) (i, iii, v) and rho[A243E] (ii, iv, vi) strains.

\(\Delta rep\) \(\Delta uvrD\) cells are inviable on rich medium primarily because of lack of accessory replicative helicase function (20,34,54). Suppression of this growth defect by the above translation mutations (Figures 1A, 3B and 4) therefore suggest that it is the lack of accessory helicase activity in \(\Delta rep\) \(\Delta uvrD\) cells that is being suppressed. Suppression by \(aspT[t8c]\) of the chromosome content defect of \(\Delta rep\) cells, a direct consequence of slower fork movement in the absence of Rep accessory helicase activity (34,38,39), supports this view (Figure 1B). UvrD also inhibits RecFOR-dependent loading of RecA at blocked replication forks (52,68) and absence of this function makes a minor contribution to \(\Delta rep\) \(\Delta uvrD\) lethality. \(aspT[t8c]\) also does not suppress the sensitivity of \(\Delta uvrD\) cells to UV light indicating that \(aspT[t8c]\) does not suppress nucleotide excision repair defects (Supplementary Figure S1A). Furthermore, \(aspT[t8c]\) suppression of the \(\Delta greA\) \(\Delta greB\) growth defect indicates that \(aspT[t8c]\) can suppress the absence of an anti-backtracking activity, making it difficult to explain how \(aspT[t8c]\) could also suppress the absence of a UvrD pro-backtracking function (Figure 1C).
RelA-directed synthesis of (pp)pGpp plays a central role in maintaining \(\Delta rep \Delta uvrD \) viability by \(aspT[8c] \) and by \(\Delta efp \) (Figure 5C). (pp)pGpp dramatically inhibits transcription of \(rrr \) operons (17) which are the primary transcriptional barriers to genome duplication (19,22), together with other highly expressed operons (18). (pp)pGpp may also destabilize stalled RNAP (10) or increase the fidelity of transcription (23), both of which could decrease the impact of transcription on fork movement. \(aspT[8c] \)- and \(\Delta efp \)-directed suppression of \(\Delta rep \Delta uvrD \) lethality via (pp)pGpp is therefore likely to occur by impacting on transcription initiation, stalled RNAP stability and/or decreased pausing due to enhanced fidelity.

RelA is stimulated to synthesize (pp)pGpp when an uncharged cognate tRNA is bound to the ribosomal A site (13,14), \(aspT[8c] \) and \(\Delta efp \) mutations may therefore increase the probability of A site-bound uncharged tRNA either directly or indirectly. The uridine at position 8 is highly conserved in tRNA species and the equivalent uridine at position 8 is therefore likely to occur by impacting on transcription directed suppression of \(\Delta rep \Delta uvrD \) lethality by (pp)pGpp. This difference correlates with the higher concentration of (pp)pGpp in \(\Delta efp \) cells as compared with \(aspT[8c] \) cells (Figures 6 and 7). This difference correlates with the higher concentration of (pp)pGpp in \(\Delta efp \) cells as compared with \(aspT[8c] \) cells (Figure 5). A role for (pp)pGpp in reducing the need for Rho activity is supported by the ability of \(spoT7 \) to suppress \(\Delta rep \) bicyclicycin hypersensitivity (Figure 7B). Suppression of \(\Delta rep \) bicyclicycin hypersensitivity by \(\Delta efp \) also depends on RelA which supports a critical balance between (pp)pGpp concentration and Rho activity in maintaining viability (Figure 7A). Elevated (pp)pGpp can therefore reduce the need for Rho.

The greater dependence of \(aspT[8c] \)-directed suppression on Rho might reflect not just lower (pp)pGpp levels in \(aspT[8c] \) versus \(\Delta efp \) cells but possibly also enhancement of Rho binding on nascent transcripts by (pp)pGpp (18). In other words, suppression via \(aspT[8c] \) might occur at least partly via the increased generation of Rho binding sites on emerging transcripts. Aspartate codons are more frequent than proline codons and hence \(aspT[8c] \) has the potential to impact on ribosomal translocation more frequently than \(\Delta efp \). Enhancement of Rho binding would also be dependent only on ribosomal pausing and not specifically require ribosomal A site occupancy by a non-aminoacylated tRNA (88), in contrast to stimulation of RelA activity (13,14). However, any \(aspT[8c] \)-directed increase of transcription complex displacement by Rho cannot be sufficient by itself to suppress \(\Delta rep \Delta uvrD \) lethality since RelA is also needed (Figure 5C).

Our data indicate that whilst translation helps prevent RNAP backtracking (5,7) the reduction of conflicts between replication and transcription can be achieved more effectively by partial inhibition of translation. Of course, the growth defect in \(\Delta efp \) cells (Figure 2A) indicates why the balance between replication, transcription, translation and (pp)pGpp synthesis is poised as it is in wild type cells. Thus for the maintenance of rapid growth there is a very fine balance to be struck between gene expression and accurate, rapid genome duplication. Furthermore, accessory replicative helicases play a major role in determining this balance. In the absence of both Rep and UvrD the wild type balance between various other mechanisms that reduce the impact of transcription on replication is unable to effectively counter the adverse effects of transcription on completion of genome duplication. There may also be circumstances under which mutations such as those identified here confer a selective advantage even in \(rep^- uvrD^- \) cells. Elevated (pp)pGpp is a key factor in determining bacterial persistence in the face of antibiotic challenge (32) and both \(aspT[8c] \) and \(\Delta efp \) mutations enhance persistence (Figure 5B). It remains possible therefore that mutations such as \(aspT[8c] \) that have only a modest inhibitory effect on
growth could arise in bacterial populations continually exposed to antibiotics, especially given the many mutations known to affect translation (89). Increased persistence in strains lacking EF-P function also imply that EF-P and its unique post-translational modification pathway are poor potential targets for antibiotics.

ACKNOWLEDGEMENTS

We would like to thank Lynne Charlwood for constructing strains LC035 and LC037, Kenn Gerdes, Etienne Maisonneuve and Heath Murray for help with initial experiments using rpoS-mCherry, Akeel Mahdi and Carol Buckman for sequencing the αspT alleles of transductants during initial suppressor mapping and Karen Hogg in the University of York Biosciences Technology Facility for help with flow cytometry. We also thank J. Gowrishankar, Kenn Gerdes, Etienne Maisonneuve and Gilbert Eriani for supplying strains, Kirsten Jung for supplying p3LC-TL30-5P and p3LC-TL30-5D and Robert Washburn and Max Gottesman for supplying bicyclomycin.

REFERENCES

1. McGlynn, P., Savery, N.J. and Dillingham, M.S. (2012) The conflict between DNA replication and transcription. *Mol. Microbiol.*, 85, 12–20.
2. Hamperl,S. and Cimprich,K.A. (2016) Conflict Resolution in the Genome: How Transcription and Replication Make It Work. *Cell*, 167, 1455–1467.
3. Landick,R. (2006) The regulatory roles and mechanism of transcriptional pausing. *Biochim. Soc. Trans.*, 34, 1062–1066.
4. Komissarova,N. and Kashlev,M. (1997) RNA polymerase switches transcriptional pausing. *J. Biol. Chem.*, 272, 15329–15338.
5. Dutta,D., Shatalin,K., Epshtein,V., Gottesman,M.E. and Nucler,E. (2011) Linking RNA polymerase backtrack to genome instability in *E. coli*. *Cell*, 146, 533–543.
6. Epshtein,V. and Nucler,E. (2003) Cooperation between RNA polymerase molecules in transcription elongation. *Science*, 300, 801–805.
7. Proshkin,S., Rahmouni,A.R., Mironov,A. and Nucler,E. (2010) Cooperation between translating ribosomes and RNA polymerase in transcription elongation. *Science*, 328, 504–508.
8. Washburn,R.S. and Gottesman,M.E. (2011) Transcription termination maintains chromosome integrity. *Proc. Natl. Acad. Sci. U.S.A.*, 108, 792–797.
9. Krishna Leela,J., Syeda,A.H., Anupama,K. and Gowrishankar,J. (2013) Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in *Escherichia coli*. *Proc. Natl. Acad. Sci. U.S.A.*, 110, 258–263.
10. Trautinger,B.W., Jaktaji,R.P., Rusakov,E. and Lloyd,R.G. (2005) RNA polymerase modulators and DNA repair activities resolve conflicts between DNA replication and transcription. *Mol. Cell*, 19, 247–258.
11. Orlova,M., Newlands,J., Das,A., Goldfarb,A. and Borukhov,S. (1995) Intrinsic transcript cleavage activity of RNA polymerase. *Proc. Natl. Acad. Sci. U.S.A.*, 92, 4596–4600.
12. Epshtein, V., Kamarthpau, V., McGary, K., Svetlov, Y., Ueberheide, B., Proshkin, S., Mironov, A. and Nucler, E. (2014) UvrD facilitates DNA repair by pulling RNA polymerase backwards. *Nature*, 505, 372–377.
13. Haseltine,W.A. and Block,R. (1973) Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. *Proc. Natl. Acad. Sci. U.S.A.*, 70, 1564–1568.
14. Wendrich,T.M., Blaha,G., Wilson,D.N., Marahiel,M.A. and Nierhaus,K.H. (2002) Dissection of the mechanism for the stringent factor RelA. *Mol. Cell*, 10, 779–788.
15. Potrykus,K. and Cashel,M. (2008) (p)ppGpp: still magical? *Annu. Rev. Microbiol.*, 62, 35–51.
16. Battesti,A. and Bouveret,E. (2006) Acryl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. *Mol. Microbiol.*, 62, 1048–1063.
17. Barker,M.M., Gaal,T., Jossiatis,C.A. and Gourse,R.L. (2001) Mechanism of regulation of transcription initiation by ppGpp. 1. Effects of ppGpp on transcription initiation in vivo and in vitro. *J. Mol. Biol.*, 305, 673–688.
18. Durfee,T., Hansen,A.M., Zhi,H., Blattner,F.R. and Jn,D.J. (2008) Transcription profiling of the stringent response in *Escherichia coli*. *J. Bacteriol.*, 190, 1084–1096.
19. Ton-Hosang,B., Pasternak,C., Signer,P., Guynet,C., Hickman,A.B., Dyda,F., Sommer,S. and Chandler,M. (2010) Single-stranded DNA transposition is coupled to host replication. *Cell*, 142, 398–408.
20. Boubakri,H., de Septenville,A.L., Viguera,E. and Michel,B. (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. *EMBO J.*, 29, 145–157.
21. Srivatsan,A., Tehranchi,A., MacAlpine,D.M. and Wang,J.D. (2010) Co-orientation of replication and transcription preserves genome integrity. *PLoS Genet.*, 6, e1000810.
22. Merrikh,H., Machon,C., Grainger,W.H., Grossman,A.D. and Soulantas,P. (2011) Co-directional replication-transcription conflicts lead to replication restart. *Nature*, 470, 554–557.
23. Roghanian,M., Senkin,N. and Yuzenkova,Y. (2015) Bacterial global regulators DksA/ppGpp increase fidelity of transcription. *Nucleic Acids Res.*, 43, 1529–1536.
24. Kamarthpau,V., Epshtein,V., Benjamin,B., Proshkin,S., Mironov,A., Cashel,M. and Nucler,E. (2016) ppGpp couples transcription to DNA repair in *E. coli*. *Science*, 352, 993–996.
25. Wang,J.D., Sanders,G.M. and Grossman,A.D. (2007) Nutritional control of elongation of DNA replication by (p)ppGpp. *Cell*, 128, 865–875.
26. Maciag,M., Kochanowska,M., Lyzen,R., Wegrzyn,G. and Szaewska-Palasz,A. (2010) ppGpp inhibits the activity of *Escherichia coli* DnaG primase. *Plasmid*, 63, 61–67.
27. Maciag-Dorszynska,M., Szaewska-Palasz,A. and Wegrzyn,G. (2013) Different effects of ppGpp on *Escherichia coli* DNA replication in vivo and in vitro. *FEBS Open Biol.*, 3, 161–164.
28. Denapoli,J., Tehranchi,A.K. and Wang,J.D. (2013) Dose-dependent reduction of replication elongation rate by (p)ppGpp in *Escherichia coli*. *Mol. Microbiol.*, 88, 93–104.
29. Rojas,A.M., Ehrenberg,M., Andersson,S.G. and Kurland,C.G. (1984) ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. *Mol. Gen. Genet.*, 197, 36–45.
30. Kanjee,U., Ogata,K. and Houri,W.A. (2012) Direct binding targets of the stringent response alarmone (p)ppGpp. *Mol. Microbiol.*, 85, 1029–1043.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We would like to thank Lynne Charlwood for constructing strains LC035 and LC037, Kenn Gerdes, Etienne Maisonneuve and Heath Murray for help with initial experiments using rpoS-mCherry, Akeel Mahdi and Carol Buckman for sequencing the αspT alleles of transductants during initial suppressor mapping and Karen Hogg in the University of York Biosciences Technology Facility for help with flow cytometry. We also thank J. Gowrishankar, Kenn Gerdes, Etienne Maisonneuve and Gilbert Eriani for supplying strains, Kirsten Jung for supplying p3LC-TL30-5P and p3LC-TL30-5D and Robert Washburn and Max Gottesman for supplying bicyclomycin.

FUNDING

UK Biotechnology and Biological Sciences Research Council (BBSRC) [BB/J001859/2 and BB/J014826/1 to P.M., BB/I003142/1 to N.J.S. and M.S.D.]; UK Medical Research Council (MRC) [G0800970 to R.G.L.]. Funding for open access charge: University of York.

Conflict of interest statement. None declared.
31. Brauner,A., Fridman,O., Gefen,O. and Balaban,N.Q. (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol., 14, 320–330.

32. Maisonneuve,E., Castro-Camargo,M. and Gerdes,K. (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin–antitoxin activity. Cell, 154, 1140–1150.

33. McDonald,K. R., Guise,A.J., Pourbozorgi-Langroudi,P., Cristea,I.M., Zakian,V.A., Capra,J.A. and Sabouri,N. (2016) Phf1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity. PLoS Genet., 12, e1006238.

34. Guy,C.P., Atkinson,J., Gupta,M.K., Mahdi,A.A., Gwenn,E.J., Rudolph,C.J., Moon,P.B., van Knippenberg,I.C., Cadman,C.J., Dillingham,M.S. et al. (2009) Ruv provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol. Cell, 36, 654–666.

35. Bruning,J.G., Howard,J.L. and McGlynn,P. (2014) Accessory replicative helicases and the replication of protein-bound DNA. J. Biol. Chem., 426, 3917–3928.

36. Iyess,A.S., Lenzmeier,R.A., Bessler,J.B., Goudouzian,L.K., Schnakenberg,S.L. and Zakian,V.A. (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell, 12, 1525–1536.

37. Azvolinsky,A., Dunaway,S., Torres,J.Z., Bessler,J.B. and Zakian,V.A. (2011) Replication fork arrest causes a global functional and mutational repression of all yeast chromosomes. Genes Dev., 20, 3104–3116.

38. Gupta,M.K., Guy,C.P., Yeles,J.T., Atkinson,J., Bell,H., Lloyd,R.G., Marins,K.J. and McGlynn,P. (2013) Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 110, 7252–7257.

39. Lane,H.E. and Denhardt,D.T. (1975) The rep mutation. IV. Slower helicases in facilitating genome duplication. Nucleic Acids Res., 3, 949–957.

40. Uzest,M., Ehrlich,S.D. and Michel,B. (1995) Lethality of the repB mutation and identification of EnvC (YibP) as a periplasmic ring factor in murein hydrolase activity. Mol. Microbiol., 22, 1255–1269.

41. McGlynn,P. and Lloyd,R.G. (2000) Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell, 101, 35–45.

42. Lloyd,R.G., Eiler,S., Dock-Bregeon,A., Moulinier,L. and Moras,D. (2008) A disease-causing point mutation in human mitochondrial DNA polymerase mu at high temperature. Nucleic Acids Res., 36, 6443.

43. Jones,C.N., Jones,C.I., Graham,W.D., Agris,P.F. and Spremulli,L.L. (2016) A disease-causing point mutation in human mitochondrial aspartyl-tRNA synthetase mutant. J. Biol. Chem., 283, 34445–34456.

44. Eiler,S., Dock-Bregeon,A., Moulinier,L., Thierry,J.C. and Moras,D. (1999) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 284, 7–10.

45. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

46. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

47. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

48. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

49. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

50. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

51. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

52. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

53. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.

54. Eiler,S., Dock-Bregeon,A., Moulinier,L., and Moras,D. (2008) Synthesis of aspartyl-tRNA(Asp) in Escherichia coli K12. J. Mol. Biol., 380, 753–766.
76. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C. and Yokoyama, S. (2010) A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P. Nat. Struct. Mol. Biol., 17, 1136–1143.

77. Park, J.H., Johansson, H.E., Aoki, H., Huang, B.X., Kim, H.Y., Ganoza, M.C. and Park, M.H. (2012) Post-translational modification by beta-lysylation is required for activity of Escherichia coli elongation factor P (EF-P). J. Biol. Chem., 287, 2579–2590.

78. Navarre, W.W., Zou, S.B., Roy, H., Xie, J.L., Savchenko, A., Singer, A., Edvokimova, E., Prost, L.R., Kumar, R., Ibba, M. et al. (2010) PoxA, YjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol. Cell, 39, 209–221.

79. Cashel, M. (1994) In: Adolph, KW (ed). Methods in Molecular Genetics. Academic Press, NY, Vol. 3, pp. 341–356.

80. Ryals, J., Little, R. and Bremer, H. (1982) Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. J. Bacteriol., 151, 1261–1268.

81. Laffler, T. and Gallant, J.A. (1974) Stringent control of protein synthesis in E. coli. Cell, 3, 47–49.

82. Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., McKay, G., Siehnel, R., Schafhausier, J., Wang, Y. et al. (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science, 334, 982–986.

83. Gaillard, H. and Aguiera, A. (2016) Transcription as a threat to genome integrity. Annu. Rev. Biochem., 85, 291–317.

84. Peters, J.M., Vangeloff, A.D. and Landick, R. (2011) Bacterial transcription terminators: the RNA 3′-end chronicles. J. Mol. Biol., 412, 793–813.

85. Fassler, J.S., Tessman, I. and Tessman, E.S. (1985) Lethality of the double mutations rho rep and rho ssb in Escherichia coli. J. Bacteriol., 161, 609–614.

86. Harinarayanan, R. and Gowrishankar, J. (2003) Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. J. Mol. Biol., 332, 31–46.

87. Peil, L., Starosta, A.L., Lassak, J., Atkinson, G.C., Virumae, K., Spitzer, M., Tenson, T., Jung, K., Remme, J. and Wilson, D.N. (2013) Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl. Acad. Sci. U.S.A., 110, 15265–15270.

88. Roberts, J.W., Shankar, S. and Filter, J.J. (2008) RNA polymerase elongation factors. Annu. Rev. Microbiol., 62, 211–233.

89. Starosta, A.L., Lassak, J., Jung, K. and Wilson, D.N. (2014) The bacterial translation stress response. FEMS Microbiol. Rev., 38, 1172–1201.