In-vivo detection of cyclic-di-AMP in Staphylococcus aureus

Running Title: RNA biosensor based detection of cyclic-di-AMP in S. aureus

Nagaraja Mukkayyan, a,b,# Raymond Poon, a,b,# Philipp N. Sander, c Li-Yin Lai, a,b Zahra Zubair-Nizami, a,b Ming C. Hammond c,d,* and Som S. Chatterjee a,b,e,*

a Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD.
b Institute of Marine and Environmental Technology, Baltimore, MD.
c Department of Chemistry, University of California, Berkeley, CA.
d Department of Chemistry and Henry Eyring Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT.
e University of Maryland Center for Environmental Science, Baltimore, MD.

Equal contributors

* Correspondence: Ming C. Hammond (ming.hammond@utah.edu) and Som S. Chatterjee (schatterjee@umaryland.edu)
ABSTRACT

Cyclic-di-AMP (CDA) is a signaling molecule that controls various cellular functions including antibiotic tolerance and osmoregulation in *Staphylococcus aureus*. In this study, we developed a novel biosensor (*bsuO* P6-4) for *in-vivo* detection of CDA in *S. aureus*. Our study showed that *bsuO* P6-4 could detect a wide concentration range of CDA in both laboratory and clinical strains making it suitable for use in both basic and clinical research applications.

KEYWORDS: Cyclic-di-AMP, biosensors, *Staphylococcus aureus*
Main text

Cyclic-di-AMP (CDA) is a newly discovered second messenger, which is present in bacteria belonging to the phyla firmicutes and actinobacteria (1). Recent studies have demonstrated that CDA plays important roles in regulating vital biological processes such as DNA repair, ion homeostasis, and central carbon metabolism among others (2-5). In addition, CDA has also been implicated in controlling processes that are important for bacterial pathogenesis such as biofilm formation, antibiotic tolerance, and virulence (6-10). CDA mediates its function through binding to its cognate effectors (i.e. proteins and riboswitches) and thereby modifying their function through allosteric changes and/or through altered gene expression. Thus, maintaining the correct concentration of CDA in bacterial cells is critical not only to retaining cellular homeostasis but also to responding to changing environmental needs. This is attained by controlling CDA’s synthesis or degradation machinery(s) that is present in bacterial cells.

In *Staphylococcus aureus*, CDA synthesis and degradation are mediated by DacA (diadenylate cyclase) and GdpP (the primary CDA phosphodiesterase) respectively (1). Recent studies have highlighted that increased CDA concentrations promote tolerance to β-lactam antibiotics and allow cell wall restructuring (8, 11). Furthermore, a growing number of contemporary clinical surveillance studies have identified mutations in *gdpP* among β-lactam resistant or non-susceptible natural isolates of *S. aureus* (12-15). Since many of these mutations have been either shown (8) or are predicted to attenuate the function of GdpP, causing increased CDA concentrations in cells, these findings underscored the clinical importance of CDA and highlighted the importance of accurate determination of its concentrations for both basic and clinical research settings.
Detection and quantification of CDA are typically carried out either through HPLC/MS, indirect ELISA, or dye intercalation assay (16-18). These assays determine CDA’s abundance in a static manner, i.e. in samples containing bacterial cell lysates. Of these, HPLC/MS despite being a gold standard in the quantification of small molecules such as CDA requires expensive technical infrastructure and operational expertise. The operation of ELISA is relatively easy but requires expertise in protein purification. In this study, we present a novel RNA-based CDA biosensor (*bsuO* P6-4), which can determine its concentration in live cells through flow cytometric analysis.

bsuO P6-4 is a second-generation CDA biosensor with improved CDA affinity and signal-to-noise ratio than its predecessor, *yuaA* P1-4 (19). This improvement was achieved by fusing the pro-fluorescent dye-binding RNA aptamer (Spinach) to the P6 stem instead of the P1 stem (as in *yuaA* P1-4) of the natural CDA binding riboswitch sequence present in the upstream region of *ydaO/yuaA* genes in *Bacillus subtilis* (20) (Fig.1A). This rational design of *bsuO* P6-4 restored the pseudoknot interaction between the P1 and P8 stems, which acts as a native stabilizer of the *ydaO/yuaA* riboswitch structure (21-23). Additionally, a modified fluorescent dye binding module, coined as cpSpinach2 (24) that was circularly permutized to accept a transducer stem was used for the construction of *bsuO* P6-4 (Fig.1A). Thus, *bsuO* P6-4 consists of two components, the CDA-binding *ydaO/yuaA* module, and the pro-fluorescent, DFHBI-binding cpSpinach2 module. Binding of CDA to *bsuO* P6-4 enabled appropriate folding of the cpSpinach2 module, allowing DFHBI binding and production of a fluorescence signal (Fig.1B) and thereby enabling detection of CDA.
An in-vitro fluorescence assay testing the CDA biosensors revealed a >10-fold higher affinity of bsuO P6-4 compared to its predecessor yuaA P1-4 (Fig.1C). In preparation for in-vivo experiments, a tRNA scaffold was added to flank the 5’ and 3’ ends of the biosensors for increased RNA half-life (Table S1) (25). The resultant biosensors were cloned into a constitutive expression vector and transformed into a wild-type (Wt) S. aureus and its isogenic ΔgdpP strain. While both the biosensors were able to report the higher level of CDA that is characteristic of a ΔgdpP strain (8), bsuO P6-4 showed significantly enhanced fluorescence compared to that of yuaA P1-4. More importantly, bsuO P6-4 compared to yuaA P1-4 displayed a higher dynamic range of signal (3.73X vs 1.55X) between Wt and ΔgdpP strains making it amenable for detection of a wider concentration range of CDA (Fig.1D). The reason why yuaA P1-4 exhibits higher background fluorescence than bsuO P6-4 in vivo is unknown.

Next, we sought to determine whether bsuO P6-4 could report different concentrations of CDA in the cells. For this purpose, isogenic gdpP point mutants were created that displayed varying degrees of GdpP’s loss of function that were identified in our previous study (8). As shown in figure 2, bsuO P6-4 was able to detect differing CDA concentrations in the isogenic strains (Fig.2A), which correlated well (R²=0.9453) with the results independently obtained through ELISA assay among the identical strains (Fig.2B & C). In addition to the isogenic strains, bsuO P6-4 was also able to determine different CDA concentrations in clinical isolates (Fig. S1), which suggested that it could be used in both laboratory and clinical strains. Our results further showed that the Wt and ΔgdpP strains with bsuO P6-4 were also suitable for fluorescent microscopic analysis (Fig. S2).
However, this method was not sensitive enough to differentiate the intermediate concentrations of CDA of the other isogenic strains (data not shown).

In summary, we have developed a novel bsuO P6-4 biosensor that is effective in determining different CDA concentrations in live S. aureus cells through flow cytometry. The plasmid harboring bsuO P6-4 can be transformed into both laboratory and clinical S. aureus isolates for reporting CDA concentration. This biosensor-based approach could be used in flux detection of CDA concentrations in future studies.

ACKNOWLEDGMENTS

This work was supported by NIH grants 2R01AI100291 and startup funds provided by the University of Maryland, Baltimore, and the University of Maryland Center for Environmental Science to SSC and NIH grant R01 GM124589 to MCH. The authors would also like to thank the Charles A. and Lois H. Miller Foundation for their generous gift to purchase the flow cytometer used in this study.

REFERENCES

1. Corrigan RM, Grundling A. 2013. Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11:513-24.
2. Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Grundling A. 2013. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 110:9084-9.
3. Oppenheimer-Shaanan Y, Wexselblatt E, Katzhendler J, Yavin E, Ben-Yehuda S. 2011. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep 12:594-601.

4. Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ. 2014. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158:1389-1401.

5. Witte G, Hartung S, Buttner K, Hopfner KP. 2008. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30:167-78.

6. Fahmi T, Port GC, Cho KH. 2017. c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria. Genes (Basel) 8.

7. Huynh TN, Luo S, Pensinger D, Sauer JD, Tong L, Woodward JJ. 2015. An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc Natl Acad Sci U S A 112:E747-56.

8. Poon R, Basuino L, Satishkumar N, Chatterjee A, Mukkayyan N, Buggeln E, Huang L, Nair V, Argudin MA, Datta SK, Chambers HF, Chatterjee SS. 2022. Loss of GdpP Function in Staphylococcus aureus Leads to beta-Lactam Tolerance and Enhanced Evolution of beta-Lactam Resistance. Antimicrob Agents Chemother 66:e0143121.
9. Witte CE, Whiteley AT, Burke TP, Sauer JD, Portnoy DA, Woodward JJ. 2013. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. mBio 4:e00282-13.

10. Woodward JJ, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703-5.

11. Corrigan RM, Abbott JC, Burhenne H, Kaever V, Grundling A. 2011. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217.

12. Argudin MA, Dodemont M, Taguemount M, Roisin S, de Mendonca R, Deplano A, Nonhoff C, Denis O. 2017. In vitro activity of ceftaroline against clinical Staphylococcus aureus isolates collected during a national survey conducted in Belgian hospitals. J Antimicrob Chemother 72:56-59.

13. Argudin MA, Roisin S, Nienhaus L, Dodemont M, de Mendonca R, Nonhoff C, Deplano A, Denis O. 2018. Genetic Diversity among Staphylococcus aureus Isolates Showing Oxacillin and/or Cefoxitin Resistance Not Linked to the Presence of mec Genes. Antimicrob Agents Chemother 62.

14. Ba X, Kalmar L, Hadjirin NF, Kerschner H, Apfalter P, Morgan FJ, Paterson GK, Girvan SL, Zhou R, Harrison EM, Holmes MA. 2019. Truncation of GdpP mediates beta-lactam resistance in clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 74:1182-1191.

15. Sommer A, Fuchs S, Layer F, Schaudinn C, Weber RE, Richard H, Erdmann MB, Laue M, Schuster CF, Werner G, Strommenger B. 2021.Mutations in the gdpP
gene are a clinically relevant mechanism for beta-lactam resistance in meticillin-resistant Staphylococcus aureus lacking mec determinants. Microb Genom 7.

16. Burhenne H, Kaever V. 2013. Quantification of cyclic dinucleotides by reversed-phase LC-MS/MS. Methods Mol Biol 1016:27-37.

17. Underwood AJ, Zhang Y, Metzger DW, Bai G. 2014. Detection of cyclic di-AMP using a competitive ELISA with a unique pneumococcal cyclic di-AMP binding protein. J Microbiol Methods 107:58-62.

18. Zhou J, Sayre DA, Zheng Y, Szmacinski H, Sintim HO. 2014. Unexpected complex formation between coralyne and cyclic diadenosine monophosphate providing a simple fluorescent turn-on assay to detect this bacterial second messenger. Anal Chem 86:2412-20.

19. Kellenberger CA, Chen C, Whiteley AT, Portnoy DA, Hammond MC. 2015. RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic di-AMP. J Am Chem Soc 137:6432-5.

20. Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR. 2013. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9:834-9.

21. Gao A, Serganov A. 2014. Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat Chem Biol 10:787-92.

22. Jones CP, Ferre-D’Amare AR. 2014. Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J 33:2692-703.

23. Ren A, Patel DJ. 2014. c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat Chem Biol 10:780-6.
Su Y, Hickey SF, Keyser SG, Hammond MC. 2016. In Vitro and In Vivo Enzyme Activity Screening via RNA-Based Fluorescent Biosensors for S-Adenosyl-l-homocysteine (SAH). J Am Chem Soc 138:7040-7.

Ponchon L, Dardel F. 2007. Recombinant RNA technology: the tRNA scaffold. Nat Methods 4:571-6.

FIGURE LEGENDS

Figure 1: Construction of the cyclic-di-AMP biosensor bsuO P6-4 and its ability to detect cyclic-di-AMP. A) & B) Schematic representation of the creation and function of bsuO P6-4. C) & D) Comparison of in-vitro and in-vivo detection of CDA respectively by bsuO P6-4 and yuaA P1-4.

Figure 2: Ability of bsuO P6-4 in detecting varying concentrations of cyclic-di-AMP in S. aureus. A) & B) Detection of CDA in wild-type and isogenic strains of S. aureus which carried GdpP loss of function mutations using flow cytometry and ELISA assay respectively. C) Correlation of signals obtained in A & B.
Figure 1: Construction of the cyclic-di-AMP biosensor bsuO P6-4 and its ability to detect cyclic-di-AMP. A) & B) Schematic representation of the creation and function of bsuO P6-4. C) & D) Comparison of in-vitro and in-vivo detection of CDA respectively by bsuO P6-4 and yuaA P1-4.

Previous work: P1 Fusion with Spinach
P6 Fusion with cpSpinach
Figure 2: Ability of bsuO P6-4 in detecting varying concentrations of cyclic-di-AMP in *S. aureus*. A) & B) Detection of CDA in wild-type and isogenic strains of *S. aureus* which carried GdpP loss of function mutations using flow cytometry and ELISA assay respectively. C) Correlation of signals obtained in A & B.