A UNIFIED FRAMEWORK FOR CONTINUOUS/DISCRETE
POSITIVE/BOUNDED REAL STATE-SPACE SYSTEMS

IZCHAK LEWKOWICZ

Abstract. There are four variants of passive, linear time-invariant systems, described
by rational functions: Continuous or Discrete time, Positive or Bounded real. By in-
troducing a quadratic matrix inequality formulation, we present a unifying framework
for state-space characterization (a.k.a. Kalman-Yakubovich-Popov Lemma) of the above
four classes of passive systems.

These four families are matrix-convex as rational functions, and a slightly weaker version
holds for the corresponding balanced, state-space realization arrays.

AMS Classification: 15A60 26C15 47L07 47A56 47N70 93B15

Key words: convex invertible cones, matrix-convex invertible cones, matrix-convex sets,
positive real rational functions, bounded real rational functions, passive linear systems,
state-space realization, K-Y-P Lemma

Contents

1. Introduction
2. Preliminary Background
3. Matrix-convex sets
4. Characterization through State-Space: A Unified Framework
5. Sets of Matrix-convex Realization arrays
References

1. Introduction

In the study of dynamical systems, passivity is a fundamental property. Thus, it has
been extensively addressed in various frameworks. We here focus on finite-dimensional,
linear, time-invariant, passive systems described by matrix-valued real rational functions
of a complex variable z.

We shall use the following notation: \mathbb{C}_L or \mathbb{C}_R is the open Left or Right half
of the complex planes ($\overline{\mathbb{C}_R}$ is the closed right half plane). Let also $\mathbb{D} = \{ z \in \mathbb{C} : 1 > |z| \}$,
$\overline{\mathbb{D}} = \{ z \in \mathbb{C} : 1 \geq |z| \}$, be the open, closed unit disk and $\mathbb{D}^c = \{ z \in \mathbb{C} : |z| > 1 \}$ is
the exterior of the closed unit disk.

For simplicity of exposition we begin with scalar functions terminology:

(a) \mathcal{P}, Positive-Real (continuous-time) analytically mapping \mathbb{C}_R to its closure, $\overline{\mathbb{C}_R}$.

See e.g. [4], Chapter 5], [9] Chapter 7], [10] Subsection 2.7.2], and [15].

1The superscript c stands for “complement”.

1
(β) \mathcal{B}, Bounded-Real, (continuous-time) analytically mapping, \mathbb{C}_R to \mathbb{D}. See [3], [4, Section 7.2], [9, Chapter 7], [10, Subsection 2.7.3], and [15].

(γ) \mathcal{DP}, Discrete-Time-Positive-Real analytically mapping \mathbb{D} to \mathbb{C}_R, the closed right-half plane. See e.g. [21], [33, Lemma 1].

(δ) \mathcal{DB}, Discrete-Time-Bounded-Real analytically mapping \mathbb{D} to \mathbb{D}. See e.g. [24], [26] and [30].

The above families, to be used in the sequel, are common in Engineering circles. For completeness we point out that in mathematical analysis community there are additional sets:

Herglotz or Carathéodory functions analytically map \mathbb{D} to \mathbb{C}_R. See [20]. In other words, if $F(z)$ is a Herglotz function, $F(z^{-1})$ is a \mathcal{DP} function.

Schur functions analytically map \mathbb{D} to its closure $\overline{\mathbb{D}}$. See e.g. [14] and [28]. In other words, if $F(z)$ is a Schur function, $F(z^{-1})$ is a \mathcal{DB} function.

Recall that whenever $F(z)$ is an $p \times m$-valued rational function with no pole at infinity, i.e. $D := \lim_{z \to \infty} F(z)$ is well-defined, one can associate with it a corresponding $(n+m) \times (n+m)$ state-space realization array, R_F i.e.

\[
F(z) = C(zI_n - A)^{-1}B + D \quad R_F = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.
\]

The $(n+p) \times (n+m)$ realization R_F in Eq. (1.1) is called minimal, if n is the McMillan degree of $F(z)$.

In this work we focus on the case $p = m$ and examine characterizations of the above four families of passive systems through the corresponding state-space realizations. This is also known as the Kalman-Yakobovich-Popov Lemma. For a (modest) account of the vast literature on the subject, beyond those mentioned thus far, see e.g. [1], [8], [13], [19] (a survey), [22], [23], [27], [31] and [32]. For infinite-dimensional versions (all study Schur functions in the above terminology) see e.g. [6], [7], [29].

This work is organized as follows. In Section 2 we give the basic background. Matrix-convex sets are introduced the Section 3. The main result given in Section 4, and in Section 5 it is applied to show matrix-convexity of systems in the framework of state-space realizations.

2. PRELIMINARY BACKGROUND

In the sequel we shall denote by (\mathbf{H}_n) $\overline{\mathbf{H}}_n$, the set of $n \times n$ (non-singular) Hermitian matrices. Skew-Hermitian matrices are denoted by, $i\overline{\mathbf{H}}_n$. It is common to take $\overline{\mathbf{H}}$ and $i\overline{\mathbf{H}}$ as the matricial extension of \mathbb{R} and $i\mathbb{R}$, respectively. Then within Hermitian matrices (\mathbf{P}_n) $\overline{\mathbf{P}}_n$ will be the respective subsets of positive (definite) semi-definite matrices. Recall that $\overline{\mathbf{P}}_n$ may be viewed as the closure of the open set \mathbf{P}_n.

For $H \in \mathbf{H}_n$ let us define the following sets satisfying the inclusions of Lyapunov and Stein, respectively

\[
\mathbf{L}_H := \left\{ A \in \mathbb{C}^{n \times n} : \begin{pmatrix} A \\ I_n \end{pmatrix}^* \begin{pmatrix} -H & 0 \\ 0 & H \end{pmatrix} \begin{pmatrix} A \\ I_n \end{pmatrix} \in \overline{\mathbf{P}}_n \right\} \quad \mathbf{S}_H := \left\{ A \in \mathbb{C}^{n \times n} : \begin{pmatrix} A \\ I_n \end{pmatrix}^* \begin{pmatrix} -H & 0 \\ 0 & H \end{pmatrix} \begin{pmatrix} A \\ I_n \end{pmatrix} \in \overline{\mathbf{P}}_n \right\}
\]
\(L_H := \left\{ A \in \mathbb{C}^{n \times n} : \begin{pmatrix} A & 0 \\ I_n & I_n \end{pmatrix} \begin{pmatrix} H & 0 \\ 0 & H \end{pmatrix} \begin{pmatrix} A & 0 \\ I_n & I_n \end{pmatrix} \in \mathbb{P}_n \right\} \quad S_H := \left\{ A \in \mathbb{C}^{n \times n} : \begin{pmatrix} A & 0 \\ I_n & I_n \end{pmatrix} \begin{pmatrix} -H & 0 \\ 0 & H \end{pmatrix} \begin{pmatrix} A & 0 \\ I_n & I_n \end{pmatrix} \in \mathbb{P}_n \right\} \).

The above Quadratic Matrix Inclusion formulation is not the common way to describe the families \(L_H \) and \(S_H \). Yet it enables us to present these sets in a common framework. This approach will be taken a step forward in Theorem 4.2 below.

The sets \(L_H \) and \(S_H \) may be viewed as the closure of the open sets \(L_H \) and \(S_H \), respectively. The sets \(L_H \) and \(S_H \) were introduced and studied in [11]. In [5] Tsuyoshi Ando characterized the set \(S_H \).

We now resort to the classical Cayley transform. Recall that \(C(A) \), the Cayley transform of a matrix \(A \in \mathbb{C}^{n \times n} \), is given by

\[
C(A) := (I_n - A)(I_n + A)^{-1} = -I_n + 2(I_n + A)^{-1}, \quad -1 \notin \text{spect}(A).
\]

Recall also that this transform is involutive, i.e. whenever defined, \(C(C(A)) = A \).

It is well known that for a given \(H \in \mathbb{H}_n \),

\[
C(L_H) = \overline{S_H} \quad C(S_H) = L_H.
\]

When \(-H \in \mathbb{P}_n \), the set \(L_H \) is associated with Hurwitz stability of differential equations of the form \(\dot{x} = Ax \). Similarly, when \(H \in \mathbb{P}_n \), the set \(S_H \) is associated with Schur stability of difference equations of the form \(x(k+1) = Ax(k) \).

In the sequel, we shall focus on the special case where in Eq. (2.1) \(H = I_n \), i.e.

\[
\overline{L}_{I_n} := \left\{ A \in \mathbb{C}^{n \times n} : A + A^* \in \overline{\mathbb{P}}_n \right\} \quad \overline{S}_{I_n} := \left\{ A \in \mathbb{C}^{n \times n} : 1 \geq \|A\|_2 \right\}.
\]

One can now extend the above description of four families of scalar real rational functions to matrix-valued set-up.

Definition 2.1. Consider the following four families of \(m \times m \)-valued real rational function.

- (\(\alpha \)) \(F \in \mathcal{P} \), means that \(\forall z \in \mathbb{C} \) one has that \(F(z) \in \overline{L}_{I_m} \).
- (\(\beta \)) \(F \in \mathcal{B} \), means that \(\forall z \in \mathbb{C} \) one has that \(F(z) \in \overline{L}_{I_m} \).
- (\(\gamma \)) \(F \in \mathcal{DP} \) means that \(\forall z \in \mathbb{D} \) one has that \(F(z) \in \overline{S}_{I_m} \).
- (\(\delta \)) \(F \in \mathcal{DB} \) means that \(\forall z \in \mathbb{D} \) one has that \(F(z) \in \overline{S}_{I_m} \).

For completeness we recall that combining Definition 2.1 along with Eq. (2.3) reveals that these functions sets are related through the Cayley transform,

\[
\mathcal{B} = C(\mathcal{P}) \quad \mathcal{DB} = C(\mathcal{DP})
\]

\[
F(z) \in \mathcal{P} \iff F \left(\frac{1+z}{1-z} \right) \in \mathcal{DP}
\]

\[
F(z) \in \mathcal{B} \iff F \left(\frac{1+z}{1-z} \right) \in \mathcal{DB}.
\]

(In the Mathematical analysis terminology the formulation is more symmetric, e.g. \(F(z) \) belongs to \(\mathcal{P} \) is equivalent to having \(F(c(z)) \) a Herglotz function).
3. MATRIX-CONVEX SETS

We next resort to the notion of a matrix-convex set, see e.g. [16] and more recently, [17], [18], [25].

Definition 3.1. A family \mathbf{A}, of square matrices (of various dimensions) is said to be matrix-convex of level n, if for all $\nu = 1, \ldots, n$:

For all natural k,

$$\sum_{j=1}^{k} v_j^* v_j = I_\nu \quad \forall v_j \in \mathbb{C}^{\nu \times \nu}$$

having A_1, \ldots, A_k (of various dimensions 1×1 through $\nu \times \nu$) within \mathbf{A}, implies that also

$$\sum_{j=1}^{k} v_j^* A_j v_j ,$$

belongs to \mathbf{A}.

If the above holds for all n, we say that the set \mathbf{A} is matrix-convex.

In the rest of the section we briefly explore the notion of matrix-convexity.

Lemma 3.2. [22]. The following sets are matrix-convex:

(i) H, iH, \mathbb{P}, \mathcal{P}

(ii) $\{ A : \text{Bound} \geq \|A\|_2 \}$ for some Bound > 0.

(iii) The (open) closed set $(L_I) \cap \mathcal{T}_I$, see Eq. (2.4).

Recall that the matrix-convexity condition is quite restrictive, so there are not-too-many, non-trivial sets with this property. For example, the sets (i) Toeplitz matrices, (ii) $\{ A : \text{Bound} \geq \|A\|_1 \}$ for some Bound > 0, (iii) \mathcal{L}_P with $\alpha I \notin \mathcal{P}$, are convex, but not matrix-convex. Furthermore, matrix-convexity implies both classical convexity and being unitarily-invariant, but the combination of these two properties still falls short of characterizing matrix-convexity. Indeed the set of positively scalar matrices, i.e of the form αI, $\alpha > 0$ is unitarily invariant and convex. However, it is not matrix-convex: $A_1 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ belong to the set but not the following combination where

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

$\Upsilon_1^\ast \Upsilon_1 + \Upsilon_2^\ast \Upsilon_2 = I_2$.

Nevertheless, the four families of passive rational functions we focus on, do share this property.

Proposition 3.3. Each of the rational functions sets \mathcal{P}, \mathcal{B}, \mathcal{DP} and \mathcal{DB} is matrix-convex.

Proof: Let $F(z)$ be in \mathcal{P} or in \mathcal{B} and let $F(z_0)$ be the image of a point z_0 which lies in the domain of interest $(\mathbb{C}_R$ and $\overline{\mathbb{D}}^c$ for \mathcal{P} and \mathcal{B}, respectively) From items (α), (β) in Definition 2.1 it follows that as a matrix, $F(z_0)$ is in L_I, see Eq. (2.4), which is matrix-convex by item (iii) of Lemma 3.2.

In a similar way, let $F(z)$ be in \mathcal{DP} or in \mathcal{DB}, and let $F(z_0)$ be the image of a point z_0 which lies in the domain of interest $(\mathbb{C}_R$ and $\overline{\mathbb{D}}^c$ for \mathcal{DP} and \mathcal{DB}, respectively). From
In particular the spectrum of each $F(z)$ is in \mathcal{S}_f, see Eq. (2.4), which is matrix-convex by item (ii) of Lemma 3.2.

In Proposition 5.3 below, we offer a statement analogous to Proposition 3.3, but in the framework of realization arrays.

We end this section by pointing out that one can go beyond Proposition 3.3.

Theorem 3.4. (I) [22] The family \mathcal{P}, of $m \times m$-valued positive real rational functions, is a cone, closed under inversion and a maximal matrix-convex family of functions which is analytic in \mathbb{C}_R.

Conversely, a maximal matrix-convex cone of $m \times m$-valued rational functions, analytic in \mathbb{C}_R, containing the zero degree function $F(s) \equiv I_m$, is the set \mathcal{P}.

(II) [23]. A family of $m \times m$-valued real rational functions $F(z)$ which for all $z \in \mathbb{D}^*$ is:
Analytic, matrix-convex and a maximal set closed under multiplication among its elements, is the set \mathcal{DB}.

The converse is true as well.

4. Characterization through State-Space: A Unified Framework

Let us construct four $2(n+m) \times 2(n+m)$ matrices, all of compatible four blocks dimensions, with $P \in P_n$:

$$W_{n_1} = \frac{1}{2} \begin{pmatrix} I_n & I_n \\ 0 & 0 \\ I_n - I_n & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -P & 0 \\ 0 & 0 \\ 0 & I_n - I_n \\ 0 & 0 \end{pmatrix}^*$$

$$W_{n_2} = \begin{pmatrix} I_n & 0 \\ 0 & 0 \\ 0 & I_n \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -P & 0 \\ 0 & 0 \\ 0 & I_n \\ 0 & 0 \end{pmatrix}^*$$

$$W_{m_1} = \frac{1}{2} \begin{pmatrix} I_m & I_m \\ 0 & 0 \\ -I_m & I_m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -I_m & 0 \\ 0 & I_m \\ 0 & 0 \\ 0 & I_m \end{pmatrix}^*$$

$$W_{m_2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & -I_m \\ 0 & I_m \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ -I_m & 0 \\ I_m \end{pmatrix}^*$$

and from these “building blocks” we obtain these matrices,

$$(4.1)$$

$$W_\alpha = W_{n_1} + W_{m_1} = \begin{pmatrix} 0 & 0 & -P & 0 \\ -P & 0 & 0 & 0 \\ 0 & -P & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$W_\beta = W_{n_1} + W_{m_2} = \begin{pmatrix} 0 & 0 & 0 & -P \\ 0 & 0 & -P & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$W_\gamma = W_{n_2} + W_{m_1} = \begin{pmatrix} 0 & 0 & 0 & I_m \\ 0 & 0 & 0 & I_m \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$W_\delta = W_{n_2} + W_{m_2} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I_m \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$
framework. To this end, we adopt the elegant idea from \cite{15} and \cite{32} to treat the above \((n + m) \times (n + m)\) \(R_F\) as having two faces: (i) of an array and (ii) of a matrix.

Theorem 4.2. Let \(R_{F_l}\) be an \((n + m) \times (n + m)\) realization of \(m \times m\)-valued rational function, \(F_l(z)\),

\[
F_l(z) = C_l(zI_n - A_l)^{-1}B_l + D_l \quad \quad R_{F_l} = \begin{pmatrix} A_l & B_l \\ C_l & D_l \end{pmatrix} \quad l = \alpha, \beta, \gamma, \delta.
\]

(I) Consider the relation,

\[
\begin{pmatrix} R_{F_l} \\ I_{n+m} \end{pmatrix}^* W_l \begin{pmatrix} R_{F_l} \\ I_{n+m} \end{pmatrix} = Q_l \in P_{n+m} \text{ with } W_{\alpha}, W_{\beta}, W_{\gamma}, W_{\delta} \text{ from Eq. (4.1)}. \tag{4.2}
\]

Then the following is true:

- (\(\alpha\)) If the condition in Eq. (4.2) is satisfied for \(W_{\alpha}\) then \(F_{\alpha}(z)\) is a Positive-Real function.
- (\(\beta\)) If the condition in Eq. (4.2) is satisfied for \(W_{\beta}\) then \(F_{\beta}(z)\) is a Bounded-Real function.
- (\(\gamma\)) If the condition in Eq. (4.2) is satisfied for \(W_{\gamma}\) then \(F_{\gamma}(z)\) is a Discrete-Time-Positive-Real function.
- (\(\delta\)) If the condition in Eq. (4.2) is satisfied for \(W_{\delta}\) then \(F_{\delta}(z)\) is a Discrete-Time-Bounded-Real function.

(II) In each of the four above cases, if the realization \(R_F\) is minimal, then the converse is true as well.

Proof: Indeed for \(l = \alpha, \beta, \gamma, \delta\) substituting in Eq. (4.2) \(W_l\) matrices from Eq. (4.1), yields the following explicit right-hand side

\[
\begin{align*}
Q_{\alpha} &= \begin{pmatrix} -PA - A^* P & C^* - PB \\ -B^* P - D^* C & D + D^* \end{pmatrix} \\
Q_{\beta} &= \begin{pmatrix} -PA - A^* P - C^* C & -PB - C^* D \\ -B^* P - D^* C & -D^* D \end{pmatrix} \\
Q_{\gamma} &= \begin{pmatrix} P - A^* PA & -A^* PB + C^* \\ -B^* PA + C & D + D^* - B^* PB \end{pmatrix} \\
Q_{\delta} &= \begin{pmatrix} P - A^* PA - C^* C & -A^* PB - C^* D \\ -B^* PA - D^* C & I_m - D^* D \end{pmatrix}.
\end{align*}
\]

Now for:

- \(Q_{\alpha}\) see e.g. \cite{1}, \cite{4, Chapter 5}, \cite{9, Chapter 7}, \cite{10, Subsection 2.7.2}, \cite{15}, and \cite{31, Theorem 3}.
- \(Q_{\beta}\) see e.g. \cite{3}, \cite{4, Section 7.2}, \cite{9, Chapter 7}, \cite{10, Subsection 2.7.3}, and \cite{15}.
- \(Q_{\gamma}\) see e.g. \cite{21}, \cite{33}.
- \(Q_{\delta}\) see e.g. \cite{24}, \cite{26} and \cite{30}. So the claim is established. \(\square\)

Remark 4.3. For completeness we recall in three extensions of Theorem 4.2, which are beyond the scope of this work.

1. If in Eq. (4.1) having \(P \in P_n\) is relaxed to \(H \in H_n\), then Generalized-positivity (boundedness, ...) is obtained. For more details see \cite{1}, \cite{3}, \cite{8, Theorem 10.2} and \cite{15}.
2. If in Eq. (4.2) the right-hand side is restricted to \(P_{n+m}\), then Hyper-positivity (boundedness, ...) is obtained. For further details see \cite{2}.

\(^2\)Like Janus in the Roman mythology
3. In [2] we addressed quantitative subsets of \mathcal{B}, i.e. functions where,

$$\sqrt{\frac{1}{\eta + 1}} \geq \sup_{z \in \mathbb{C}_R} \|G(z)\|_2 \quad \eta \in (1, \infty].$$

Note that \mathcal{B} is recovered when $\eta \to \infty$. A state-space characterization of this family is when W_β in Eq. (4.2) is substituted by $W_\beta(\eta)$ i.e.

$$\begin{pmatrix} R_{F_\beta} \\ I_{n+m} \end{pmatrix} \ast \begin{pmatrix} 0 & 0 & -P & 0 \\ 0 & \frac{\eta + 1}{\eta - 1} & 0 & 0 \\ -P & 0 & 0 & 0 \\ 0 & 0 & 0 & I_m \end{pmatrix} \begin{pmatrix} R_{F_\beta} \\ I_{n+m} \end{pmatrix} \in \overline{\mathcal{P}}_{n+m}.$$ \hfill \Box

We next illustrate an application of the unified framework in Theorem 4.2.

Example 4.4. Let $F(z)$ and R_F be a rational function and a corresponding $(n+m) \times (m+m)$ realization array, as in Eq. (1.1). Assume that as a matrix R_F is non-singular and let $G(z)$ be defined as $R_G = (R_F)^{-1}$. Multiplying Eq. (4.2) by R_G (recall $= (R_F)^{-1}$) from the left and R_{G^*} from the right, yields

$$(4.3) \quad \begin{pmatrix} I_{n+m} \\ R_G \end{pmatrix}^* W_I \begin{pmatrix} I_{n+m} \\ R_G \end{pmatrix} = \begin{pmatrix} R_G \\ I_{n+m} \end{pmatrix}^* \begin{pmatrix} 0 & I_{n+m} \\ I_{n+m} & 0 \end{pmatrix} U^* \begin{pmatrix} I_{n+m} \\ 0 \end{pmatrix} R_G = R_G Q_I R_{G^*} \in Q_I R_{G^*}.$$ \hfill \Box

From Eq. (4.1) it follows that with $U = \begin{pmatrix} 0 & I_{n+m} \\ I_{n+m} & 0 \end{pmatrix}$ one has that $U^* W_\delta U = W_\alpha$ while $U^* W_\delta U = -W_\delta$. In items (a) and (b) below, we examine the system interpretation of this technical observation.

(a) If in Eq. (4.3) $F(z)$ is positive real, i.e. $l = \alpha$, one has that

$$\begin{pmatrix} R_G \\ I_{n+m} \end{pmatrix}^* \begin{pmatrix} 0 & I_{n+m} \\ I_{n+m} & 0 \end{pmatrix} W_\alpha \begin{pmatrix} 0 & I_{n+m} \\ I_{n+m} & 0 \end{pmatrix} R_G = \tilde{Q}_\alpha \in \overline{\mathcal{P}}_{n+m},$$

namely, $\begin{pmatrix} R_G \\ I_{n+m} \end{pmatrix}^* W_\alpha \begin{pmatrix} R_G \\ I_{n+m} \end{pmatrix} \in \overline{\mathcal{P}}_{n+m}$. One can conclude that also $G(z)$ is positive real.

(b) If in Eq. (4.3) $F \in \mathcal{DB}$, i.e. $l = \delta$, one has that

$$\begin{pmatrix} R_G \\ I_{n+m} \end{pmatrix}^* \begin{pmatrix} 0 & I_{n+m} \\ I_{n+m} & 0 \end{pmatrix} W_\delta \begin{pmatrix} 0 & I_{n+m} \\ I_{n+m} & 0 \end{pmatrix} R_G = \tilde{Q}_\delta,$$

namely, $\begin{pmatrix} R_G \\ I_{n+m} \end{pmatrix}^* (-W_\delta) \begin{pmatrix} R_G \\ I_{n+m} \end{pmatrix} \in \overline{\mathcal{P}}_{n+m}$. Thus, one can say that $G(z)$ is “anti”-\mathcal{DB}: More precisely $(G(z))^{-1}$ is a Schur function, i.e. $1 \geq \sup_{z \in \mathbb{D}} \| (G(z))^{-1} \|_2$. \hfill \Box

Consider the four families \mathcal{R}, \mathcal{B}, \mathcal{DP} and \mathcal{DB}. As already mentioned, as rational functions they are related through the Cayley transform, see Eq. (2.5). Theorem 4.2 suggests an additional inter-relations: Through the corresponding state-space realizations, which is next pursued.
5. Sets of Matrix-convex Realization arrays

In this section we address inter-relations within families of realization arrays associated with rational functions. As a preliminary step we recall in the classical notion of transformation of coordinates: Substituting a given state-space realization \(R_F \) by \(\left(\begin{smallmatrix} T^{-1} & 0 \\ 0 & I_m \end{smallmatrix} \right) R_F \left(\begin{smallmatrix} T & 0 \\ 0 & I_m \end{smallmatrix} \right) \), for some non-singular \(n \times n \) matrix \(T \).

Lemma 5.1. Consider the framework of Theorem 4.2 for some \(l \in \{\alpha, \beta, \gamma, \delta\} \).

Up to a change of coordinates, one can take in Eq. (4.2),

\[
\left(\begin{array}{ccc}
R_F^l & I_{n+m} \\
I_{n+m} & I_{n+m}
\end{array} \right)^* \hat{W}_l \left(\begin{array}{ccc}
R_F^l & I_{n+m} \\
I_{n+m} & I_{n+m}
\end{array} \right) \in \mathbb{P}_{n+m},
\]

where the \(\hat{W} \)'s are associated with balanced realization, i.e.

\[
\hat{W}_\alpha = \left(\begin{array}{cc}
0 & 0 \\
0 & -I_n \\
-I_n & 0 \\
0 & 0
\end{array} \right) \quad \hat{W}_\beta = \left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
-I_n & 0 \\
0 & 0
\end{array} \right) \\
\hat{W}_\gamma = \left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & I_n \\
I_n & 0
\end{array} \right) \quad \hat{W}_\delta = \left(\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & I_n \\
-I_n & 0 \\
0 & 0
\end{array} \right).
\]

A system whose realization satisfies Eq. (5.1) with \(\hat{W}_\alpha \) from Eq. (5.2) is called “internally passive”, see [32, Definition 3].

We also need to resort to following.

Definition 5.2. For all \(k \), let \(v_j \in \mathbb{C}^{(n+m)\times(n+m)} \), \(j = 1, \ldots, k \) be block-diagonal so that

\[
\sum_{j=1}^{k} \begin{bmatrix} v_{j,n} & 0 \\ 0 & v_{j,m} \end{bmatrix}^* \begin{bmatrix} v_{j,n} & 0 \\ 0 & v_{j,m} \end{bmatrix} = \begin{bmatrix} I_n & 0 \\ 0 & I_m \end{bmatrix}.
\]

A set \(R \) of \((n+m) \times (n+m) \) matrices is said to be \(n, m \)-matrix-convex if having \(R_1, \ldots, R_k \) in \(R \), implies that also

\[
R_F := \sum_{j=1}^{k} \begin{bmatrix} v_{j,n} & 0 \\ 0 & v_{j,m} \end{bmatrix}^* \begin{bmatrix} A_j & B_j \\ C_j & D_j \end{bmatrix} \begin{bmatrix} v_{j,n} & 0 \\ 0 & v_{j,m} \end{bmatrix},
\]

belongs to \(R \) for all natural \(k \) and all \(v_j \in \mathbb{C}^{(n+m)\times(n+m)} \).

In [22] it was pointed out that the notion of \(n, m \)-matrix-convexity is intermediate between (the more strict) matrix-convexity, and (weaker) classical convexity.

We now pose the following question: For a natural parameter \(k \), let \(F_1(s) , \ldots, F_k(s) \) be a family of \(m \times m \)-valued rational functions all from the same family, admitting \((n+m) \times (n+m) \) realizations, i.e.

\[
R_{F_j} = \begin{bmatrix} \hat{A}_j & \hat{B}_j \\ \hat{C}_j & \hat{D}_j \end{bmatrix} \quad j = 1, \ldots, k.
\]

Let \(R_F \), a realization of an \(m \times m \)-valued rational function \(F(z) \), be as in Eq. (5.4). We now address the following problem:
Under what conditions having $F_1(z), \ldots, F_k(z)$ in Eq. \eqref{5.5} all in \mathcal{P} (or \mathcal{B} or $\mathcal{D}\mathcal{P}$ or $\mathcal{D}\mathcal{B}$) implies that also the resulting $F(z)$ in Eq. \eqref{5.4} belongs to the same set?

If such a property holds this suggests that out of a small number of “extreme points” of balanced realizations of \mathcal{P} (or \mathcal{B} or $\mathcal{D}\mathcal{P}$ or $\mathcal{D}\mathcal{B}$) rational functions, one can construct a whole “matrix-convex-hull” realizations of functions within the same family. As a sample application, this may enable one to perform a simultaneous balanced truncation model order reduction of a whole family of bounded real functions, in the spirit of \cite{Section 5].

Before addressing this question, a word of caution: For example, $R_1 = \left(\begin{array}{ccc} A & B \\ C & D \end{array} \right)$ and $R_2 = \left(\begin{array}{ccc} -A & B \\ -C & D \end{array} \right)$ are two realizations of the same rational function. Furthermore, R_1 is minimal (balanced) if and only if R_2 if minimal (balanced). However, $R_3 = \frac{1}{2}(R_1 + R_2) = \left(\begin{array}{ccc} A & 0 \\ 0 & D \end{array} \right)$ is only a non-minimal realization of a zero degree rational function $F(s) \equiv D$.

In a similar way, even when the “extreme points” realizations in Eq. \eqref{5.5} are all balanced, the resulting realization R_F in Eq. \eqref{5.4}, may be not minimal.

We now return to the above question,

Proposition 5.3. Consider the framework of Lemma \eqref{5.7} where $l \in \{\alpha, \beta, \gamma, \delta\}$ is prescribed. For a natural parameter k, let $F_{1,l}(z), \ldots, F_{k,l}(z)$ be a family of $m \times m$-valued rational functions, admitting $(n+m) \times (n+m)$ realizations as in Eq. \eqref{5.5}, satisfying all Eq. \eqref{5.1} i.e.

\begin{equation}
(5.6) \quad \begin{pmatrix} R_{F_{j,l}} \\ I_{n+m} \end{pmatrix}^* \begin{pmatrix} \tilde{W} \\ I_{n+m} \end{pmatrix} = Q_{j,l} \in \mathcal{P}_{n+m}, \quad l \in \{\alpha, \beta, \gamma, \delta\} \text{ prescribed} \quad j = 1, \ldots, k.
\end{equation}

Then, R_F in Eq. \eqref{5.4} satisfies the same relation, i.e. each of sets $\mathcal{P}, \mathcal{B}, \mathcal{D}\mathcal{P}$ and $\mathcal{D}\mathcal{B}$ is a realization-m, n-matrix-convex.

Proof: Assume that Eq. \eqref{5.6} holds for $l = \alpha$, i.e.

\[
\begin{pmatrix} A_j & B_j \\ C_j & D_j \end{pmatrix} \begin{pmatrix} 0 & 0 & -I_n & 0 \\ 0 & 0 & 0 & I_m \\ -I_n & 0 & 0 & 0 \\ 0 & I_m & 0 & 0 \end{pmatrix} \begin{pmatrix} A_j & B_j \\ C_j & D_j \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ 0 & I_m \end{pmatrix} Q_j \in \mathcal{P}_{n+m},
\]

and consider matrix-convex combination of realizations as in Eq. \eqref{5.4},

\[
\begin{pmatrix} \sum_{j=1}^{k} v_{j,n}^* A_j v_{j,n} & \sum_{j=1}^{k} v_{j,n}^* B_j v_{j,m} \\ \sum_{j=1}^{k} v_{j,m}^* C_j v_{j,n} & \sum_{j=1}^{k} v_{j,m}^* D_j v_{j,m} \end{pmatrix} \begin{pmatrix} W_\alpha & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^{k} v_{j,n}^* A_j v_{j,n} & \sum_{j=1}^{k} v_{j,n}^* B_j v_{j,m} \\ \sum_{j=1}^{k} v_{j,m}^* C_j v_{j,n} & \sum_{j=1}^{k} v_{j,m}^* D_j v_{j,m} \end{pmatrix} \begin{pmatrix} I_n & 0 \\ 0 & I_m \end{pmatrix}.
\]
Thus the case of \(l = \alpha \) is established.

Since \(\hat{W}_{ij}, \hat{W}_j \) and \(\hat{W}_k \) are just permutations of \(\hat{W}_\alpha \), the respective constructions are very similar and thus omitted, and the proof is complete. \(\square \)

Special cases of Proposition 5.3 for \(\mathcal{P} \) and for \(\mathcal{DB} \) were shown in [22] and [23], respectively.

We conclude by illustrating how, by using the above results, one can generate from a single system, a whole collection of them. For simplicity, we address only (a subset of) \(\mathcal{P} \) functions.

Example 5.4. Consider the three following rational functions along with the corresponding balanced realizations, where \(a, b \in \mathbb{R} \) are parameters.

\[
F_1(z) = \frac{1}{az} \begin{pmatrix} \frac{b^2}{a^2} + 1 & z - \frac{b}{a} \\ -(z + \frac{b}{a}) & 1 \end{pmatrix} \quad \text{and} \quad R_{F_1} = \begin{pmatrix} 0 & 0 & \frac{1}{a} & 0 \\ 0 & 0 & 0 & -\frac{1}{a} \\ \frac{1}{a} & -\frac{1}{a^2} & 0 & \frac{1}{a^2} \\ 0 & -\frac{1}{a^2} & 0 & 0 \end{pmatrix}
\]

\[(5.7) \quad F_2(z) = \frac{1}{z^2 + 1} \begin{pmatrix} a^2z & a(bz - a) \\ a(bz + a) & (a^2 + b^2)z \end{pmatrix} \quad \text{and} \quad R_{F_2} = \begin{pmatrix} 0 & 1 & a & b \\ -1 & 0 & 0 & -a \\ a & 0 & 0 & 0 \\ b & -a & 0 & 0 \end{pmatrix}
\]

\[
F_3(z) = \frac{z}{1 + z^2} \begin{pmatrix} 1 & \frac{b}{a} - z \\ \frac{b}{a} + z & \frac{b^2}{a^2} + 1 \end{pmatrix} \quad \text{and} \quad R_{F_3} = \begin{pmatrix} 0 & 1 & 1 & \frac{b}{a} \\ -1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ \frac{b}{a} & 1 & 1 & 0 \end{pmatrix}
\]

Each of these three functions is positive-real-odd (a.k.a Foster or Lossless), i.e.

\[-F(z) \in \mathbf{L}_{\alpha_1} \quad z \in \mathbb{C}_L \quad \text{and/or} \quad (-I_2 \ 0 \ I_2) R_F + R_F^* (-I_2 \ 0 \ I_2) = 0_{4 \times 4} \]
To employ Proposition 3.3 to generate additional rational functions, let now $\upsilon_j \in \mathbb{C}^{2 \times 2}$ be arbitrary so that $\sum_{j=1}^{3} \upsilon_j^* \upsilon_j = I_2$. Then, with $F_j(s)$ from Eq. (5.7), one has that $\sum_{j=1}^{3} \upsilon_j^* F_j(z) \upsilon_j$ is a 2×2-valued positive real odd rational function.

Similarly, to generate additional systems by employing Proposition 5.3 let now $\tilde{\upsilon}_j \in \mathbb{C}^{2 \times 2}$ be arbitrary so that $\sum_{j=1}^{3} \tilde{\upsilon}_j^* \tilde{\upsilon}_j = I_2$ and $\sum_{j=1}^{3} \tilde{\upsilon}_j^* \tilde{\upsilon}_j = I_2$. Then, with R_{F_j} from Eq. (5.7), one has that $\sum_{j=1}^{3} \left(\begin{array}{cc} \tilde{\upsilon}_j & 0 \\ 0 & \tilde{\upsilon}_j^* \end{array} \right)^* R_{F_j} \left(\begin{array}{cc} \upsilon_j & 0 \\ 0 & \upsilon_j^* \end{array} \right)$ is a $(2+2) \times (2+2)$ realization (recall, not necessarily minimal) of a positive real odd rational function.

Finally note that we actually started from a single system F_1. Indeed, F_2 is defined as, $R_{F_2} = (R_{F_1})^{-1}$ (in the sense of inverting a constant 4×4 matrix). Now, $F_3(z) = (F_1(z))^{-1}$ (in the sense of that the product of pair of rational functions, each of degree two, yields a zero degree rational function, i.e. $F_3(z) F_1(z) \equiv I_2$).

References

[1] D. Alpay and I. Lewkowicz, “The Positive Real Lemma and Construction of all Realizations of Generalized Positive Rational Functions”, *Systems and Control Letters*, Vol. 60, pp. 985-993, 2011.
[2] D. Alpay and I. Lewkowicz, “Quantitatively Hyper-Positive Real rational functions”, see arXiv 1912-08245.
[3] B.D.O. Anderson and J.B. Moore, “Algebraic Structure of Generalized Positive Real Matrices”, *SIAM J. Contr.*, Vol. 6, pp. 615-624, 1968.
[4] B.D.O. Anderson and S. Vongpanitlerd, *Networks Analysis & Synthesis, A Modern Systems Theory Approach*, Prentice-Hall, New Jersey, 1973.
[5] T. Ando, “Sets of Matrices with Common Stein Solutions and Hcontractions”, *Linear Algebra and its Applications*, Vol. 383, pp. 49-64, 2004.
[6] J.A. Ball, G.J. Groenewald and S. ter Horst, “Standard versus Strict Bounded Real Lemma with Infinite-Dimensional State Space II: The Storage Function Approach”, *The Diversity and Beauty of Applied Operator Theory*, pp. 1-50, Vol. 268, of *Operator Theory Advances and Applications*, Birkhäuser Verlag, Basel; Birkhäuser Verlag, Basel, 2018.
[7] J.A. Ball and O.J. Staffans, “Conservative State-Space Realizations of Dissipative System Behaviors”, *Integral Equations and Operator Theory*, Vol. 54, pp. 151-213, 2005.
[8] H. Bart, I. Gohberg, M.A. Kaashoek and A.C.M. Ran, *A State-Space Approach to Canonical Factorization with Applications*, Vol. 200, of *Operator Theory Advances and Applications*, Birkhäuser Verlag, Basel; Birkhäuser Verlag, Basel, 2010.
[9] V. Belevich, *Classical Network Theory*, Holden Day, San-Francisco, 1968.
[10] S. Boyd, L. El-Ghaoui, E. Ferron and V. Balakrishnan, *Linear Matrix Inequalities in Systems and Control Theory*, SIAM books, 1994.
[11] N. Cohen and I. Lewkowicz, “Convex Invertible Cones and the Lyapunov Equation”, *Linear Algebra and its Applications*, Vol. 250, pp. 265-286, 1997.
[12] N. Cohen and I. Lewkowicz, “Convex Invertible Cones of State Space Systems”, *Mathematics of Control Signals and Systems*, Vol. 10, pp. 265-285, 1997.
[13] N. Cohen and I. Lewkowicz, “Convex Invertible Cones and Positive Real Analytic Functions”, *Linear Algebra and its Applications*, Vol. 425, pp. 797-813, 2007.
[14] L. de Branges and J. Rovnyak, *Square Summable Power Series*, Holt, Reinhart and Wilson, 1966.
[15] B. Dickinson, Ph. Delsarte, Y. Genin and Y. Kamp, “Minimal Realization of Pseudo Positive and Pseudo Bounded Real Rational Matrices”, *IEEE Tran. Circuits and Systems*, Vol. 32, pp. 603-605, 1985.
[16] E.G. Effros and S. Winkler, “Matrix Convexity: Operator Analogues of the Bipolar and Han-Banach Theorems”, *Journal of Functional Analysis*, Vol. 144, pp. 117-152, 1997.
[17] E. Evert, “Matrix Convex Sets Without Absolute Extreme Points”, *Linear Algebra and its Applications*, Vol. 537, pp. 287-301, 2018.

[18] E. Evert, J.W. Helton, I. Klep and S. McCullough, “Extreme Points of Matrix Convex Sets, Free Spectrahedra and Dilation Theory”, *Journal of Geometric Analysis*, Vol. 28, pp. 1373-1408, 2018.

[19] S.V. Gusev and A.L. Likhtarnikov, “Kalman-Yakubovich-Popov Lemma and the S-Procedure: A Historical Essay”, *Automatic and Remote Control*, Vol. 67, pp. 1768-1810, 2006.

[20] G. Herglotz, “Über Potenzenreihen mit Positiven Reelle Teil im Einheitskreis”, *Sitzungsber. Sachs. Akad. Wiss. Leipzig, Math.*, Vol. 63, pp. 501–511, 1911.

[21] L. Hitz and B.D.O. Anderson, “Discrete Positive Real Functions and their Application to System Stability”, *Proceedings of the IEE*, Vol. 116, pp. 153-155, 1969.

[22] I. Lewkowicz, “Passive Linear Continuous-time Systems: Characterization through Structure”, arXiv 1912.08249.

[23] I. Lewkowicz, “Passive Linear Discrete-time Systems: Characterization through Structure”, arXiv 2002.06632.

[24] F. Najson, “On the Kalman-Yakobovich-Popov Lemma for Discrete-Time Positive Linear Systems: A Novel Simple Proof and Some Related Results”, *International Journal of Control*, Vol. 86, pp. 1813-1823, 2013.

[25] B. Passer, O. Shalit and B. Solel, “Minimal and Maximal Matrix Convex Sets”, *Journal of Functional Analysis*, Vol. 274, pp. 3197-3253, 2018.

[26] K. Premaratne and E.I. Jury, “Discrete-Time Positive Real Lemma Revisited: The Discrete-Time Counterpart of the Kalman-Yakubovich Lemma”, *IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications*, Vol. 41, pp. 740-743, 1994.

[27] A. Rantzer, “On the Kalman-Yakubovich-Popov Lemma”, *Systems and Control Letters*, Vol. 28, pp. 7-10, 1996.

[28] “Schur Functions in Complex Function Theory, Encyclopedia of Mathematics”, URL: http://www.encyclopediaofmath.org/index.php/Schur_functions_in_complex_function_theory

[29] O. Staffans, “Passive Linear Discrete Time-Invariant Systems”, *International Congress of Mathematicians, European Mathematical Society, Zurich 2006*, Vol. 3, pp. 1367-1388.

[30] V.V. Vaidyanathan, “The Discrete-Time Bounded Real Lemma in Digital Filtering”, *IEEE Transaction on Circuits and Systems*, Vol. 42, pp. 918-924, 1985.

[31] J.C. Willems, “Dissipative Dynamical Systems Part II: Linear Systems with Quadratic Supply Rate”, *Archive for Rational Mechanics and Analysis*, Vol. 45, pp. 352-393, 1972.

[32] J.C. Willems, “Realization of Systems with Internal Passivity and Symmetry Constraints”, *Journal of the Franklin Institute*, Vol. 301, pp. 605-621, 1976.

[33] C. Xiao and D.J. Hill, “Generalization and New Proof of the Discrete-Time Positive Real Lemma and Bounded Real Lemma”, *IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications*, Vol. 46, pp. 740-743, 1999.

School of Electrical and Computer Engineering Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, 84105, Israel

E-mail address: izchak@bgu.ac.il