Impact of the COVID-19 pandemic on initial weight loss in a digital weight management program: A natural experiment

Tiffany Bullard¹, Adam Medcalf¹, Chad Rethorst², & Gary D. Foster¹,³

¹WW International, New York, NY
²Texas A&M Agrilife, Dallas, TX
³Center for Weight and Eating Disorders Program, Perelman School of Medicine, University of Pennsylvania

Keywords: Weight Loss, weight management, weight management program
Running Title: Impact of COVID-19 on weight management program
Contact Info: Gary D. Foster, PhD, WW International, New York, NY, gary.foster@ww.com, 610-256-5855
Word count: 1,443 words
Disclosure: TB, AM, GF are employees of WW International. GF is a shareholder of WW International. CR was an employee and shareholder of WW International during the study.

Study importance

What is already known about this subject? Survey data suggest that COVID-19 has resulted in abrupt changes to daily routines, creating behavioral barriers for effective weight management. Little is known about how the COVID-19 pandemic affects weight loss among those enrolled in a weight management program.

What are the new findings in your manuscript? Over a 30-week enrollment period, COVID-19 significantly decreased initial weight loss but only over a 7-week period (enrollment weeks of March 8
through the enrollment week of April 19). For individuals who joined after that time, weight loss was comparable to the prior non-COVID-19 year.

How might your results change the direction of research or the focus of clinical practice? These data suggest that initial weight loss success was only compromised during the initial period of the pandemic. They also suggest that those participating in evidence-based weight management programs can expect similar levels of initial weight loss as those experienced pre-pandemic.

Abstract

Objective: To assess the impact of the COVID-19 pandemic on initial weight loss during a digital weight management program.

Methods: Participants (n=866,192; 33.6+7.4kg/m²) who joined a digital weight management program (WW) in the first 30-weeks of 2020 (COVID-19 cohort) were compared to participants (n=624,043; 33.1+7.2kg/m²) who joined the same program during the same time period in 2019 (Control cohort). Weight change (%) and self-monitoring over the first 4-weeks of enrollment were compared between the cohorts. Significance was defined as meeting the criteria for a small effect ($d>0.2$)

Results: Over the 30-week enrollment period, the COVID-19 cohort experienced significantly less weight loss than the Control cohort but only for 7-weeks of enrollments. The COVID-19 cohort also had fewer days of food tracking, but only for 3 weeks of enrollments. There were no differences in the self-monitoring of weight and activity at any time between the two cohorts.

Conclusions: Over a 30-week enrollment period, COVID-19 had negative effects on both weight loss and food self-monitoring, but the effects were short-lived. Those participating in evidence-based weight management programs can expect similar levels of initial weight loss as those experienced pre-pandemic.
Introduction

With the onset of the COVID-19 pandemic, several studies have shown changes in health-related behaviors, including dietary behaviors, quality and quantity of sleep, and time spent in physical activity and sedentary behaviors. Individuals with obesity have reported engaging in less exercise time and intensity, and increased stress eating during COVID-19, which could make weight management efforts more difficult. Recent studies have shown that following shelter-in-place orders, people are gaining weight at a rate of 1.5kg per month.

During a time when it is challenging to participate in face-to-face obesity treatment, evidence-based digital treatments have become more frequently used. It is unknown, however, the degree to which the efficacy of these programs is affected by COVID-19. Within the U.S., the COVID-19 pandemic lockdown period has been considered to start around the week of March 23, with restrictions starting to lift around the end of April in some states. In order to address this question, we conducted a natural experiment among those who enrolled in a popular, evidence-based digital weight management program (WW). We examined the effects of the COVID-19 pandemic through the comparison of initial weight change (%), and in-app self-monitoring among participants who joined the digital WW program over a 30-week period in 2020 (during the COVID-19 pandemic) and those who joined during same time the prior year in 2019 (when COVID-19 was not present).

Methods

Participants were WW digital members in the US who joined during the first 30 weeks of 2020 as well as those who joined during the same time period in 2019. Participant characteristics are described in Table 1. Weight change (%) and self-monitoring (in-app tracking of weight, food, and activity) data were assessed during the first 4 weeks of WW membership. Four-week weight loss was chosen as the outcome because weight loss during the first month of a behavioral weight loss program is predictive of long-term weight loss. All data were self-reported as entered into the WW app. Data from weekly cohorts were analyzed independently (i.e., weight loss for members joining in Week 1 of 2020 was compared to weight loss for members joining in Week 1 of 2019). Members who logged their weight during their first week of
their membership and entered a subsequent weight in weeks 3-5 were included in the analysis. Weight from week 4 was used as the follow-up weight, when available. If a member had missing weight data for week 4, weight data from week 5 was used. If neither was available, weight data from week 3 was used. If weight was not reported in weeks 3-5, then the member was excluded from the analysis. The data included in the analyses were normally distributed. Weight loss outliers were identified and removed using thresholds calculated on weight loss percentage: low (25th weight change % percentile - 1.5*IQR) and high (75th weight change % percentile + 1.5*IQR). Using this criteria, only 2.5% of the data were considered weight loss outliers, equating to approximately <-9.3% weight loss and >3.3% weight gain in 4 weeks. We compared the excluded outliers sample to the remaining sample and found some differences, including outlying members on average were 3 years younger than non-outliers (42.5 years old vs. 45.5), more likely to be male (14.5% vs. 11.0%), and had higher start weights and BMIs, likely due to misentering weights (11.9kg heavier at first weigh in and 3.5kg/m² higher BMI).

Due to the large sample sizes, p-values were not calculated. Instead, significant differences were defined as meeting the criteria for Cohen’s convention for a small effect\(^{10}\) \((d>0.2)\).

Results

Over the first 30 weeks of enrollment, the COVID-19 cohort had significantly less weight loss (mean weight change %) than the control cohort during 7 weeks of enrollment (enrollment weeks of March 8 through April 19; Figure 1). During this period, the effect sizes by week were 0.29, 0.51, 0.53, 0.49, 0.43, 0.27, 0.24, respectively and the percentage point differences in weight loss between the groups were 0.67, 1.18, 1.24, 1.14, 0.98, 0.62, 0.54%. There were no significant differences in weight loss between the two cohorts during the other 23 weeks of enrollment (prior to the enrollment week of March 8 and in the enrollment weeks of April 26 and beyond). The COVID-19 cohort had fewer days of food self-monitoring during the first 4 weeks of membership which was limited to 3 weeks of enrollment (enrollment weeks of March 8 through March 22). Effect sizes for those three weeks were 0.20, 0.27, 0.27, respectively. Food tracking prior to and following this period were not significantly different.
between the two cohorts. Days of self-monitoring weight and activity were not significantly different between the cohorts during the study (Figure 2).

Discussion

In this natural experiment of almost 1.5 million enrollees in a digital WW program, we examined the effects of COVID-19 on initial weight loss and self-monitoring behavior during 30 weeks of enrollment in 2020 (COVID-19 cohort) and 2019 (Control cohort). There were several principal findings.

The first was that COVID-19 produced significantly less weight loss but its effects were short-lived. Weight loss was less among the COVID-19 cohort for only 7/30 weeks of enrollment (enrollment weeks of March 8 through April 19). The effects were most pronounced (effect sizes approximating 0.5) for the enrollment weeks of March 15, 22, and 29. After 7-weeks, however, weight loss returned to pre-pandemic levels, with no difference between the cohorts. The precise reasons for the decrease relative to pre-pandemic weight losses are difficult to identify. However, it is likely that the conditions associated with the earlier stages of the COVID-19 outbreak (stress, disruption of routines, more proximal access to food, social isolation, closure of in-person gyms) served as barriers to effective weight management. In support of that hypothesis, recent studies examining changes in weight\(^5,11\) after shelter-in-place orders report that on average, people gained ~1.5kg per month during this time period. The weight loss patterns observed in our study do show that by the end of April, initial weight loss returned to 2019 pre-pandemic levels. These patterns suggest that at the start of the strict stay-at-home order time period, members may have paused their health-related routines and over time, began to adapt to the “new normal”, focusing on their health and weight-related goals again. They also suggest that participants in evidence-based weight management programs can expect similar levels of initial weight loss as those experienced pre-pandemic.

We also examined the effects of COVID-19 on participants' self-monitoring of weight, food, and activity. Research examining the effects of the pandemic on obesity, eating behaviors, and physical activity during the COVID-19 lockdown found a large number of people reporting snacking more frequently and having more difficulties with excess food consumption, compared to before lockdown\(^12\), but little has been reported on the tracking of health behaviors during this period. We found that the

This article is protected by copyright. All rights reserved
COVID-19 cohort had fewer days of food self-monitoring than the Control cohort, but it was limited to 3 weeks of enrollment (enrollment weeks of March 8 through March 22), suggesting that at the start of the COVID-19 pandemic, members were tracking their food less often, but returned to pre-COVID-19 tracking levels after that initial 3-week period. Among those beginning treatment in the end of March and beyond, differences in food tracking between cohorts no longer existed. It is not surprising that periods of decreased weight loss and decreased self-monitoring intake overlapped to some degree, given the strong relationship between dietary self-monitoring and weight13. It was surprising that there were no effects of COVID-19 on weight and activity tracking. It may be because they are, in general, less frequent behaviors than food tracking so the short-term effects did not appear.

Our study had several strengths including leveraging a natural experiment, a sample of almost 1.5 million participants, examining outcomes in a digital weight management program and the use of real world data outside of a clinical trial setting. The study also had limitations, such as the use of self-reported weight data and the inclusion of only those who had baseline and follow-up weights at 3-5 weeks, but those limitations were consistent across both cohorts likely minimizing any bias in the between-cohorts comparison. The generalizability of our findings may be limited as we provide data only on WW members in the U.S., where the lockdown procedures have varied greatly from the rest of the world.

Conclusion

Among a large sample of those in a digital weight management program over 30 weeks of enrollments, the COVID-19 cohort experienced significantly less weight loss than the Control cohort but only for 7 weeks of enrollments. The COVID-19 cohort also had fewer days of food tracking, but only for 3 weeks of enrollments. There were no differences in the self-monitoring of weight and activity between the two cohorts. These data suggest that COVID-19 had negative effects on both weight loss and food self-monitoring, but the effects were short-lived. These data also suggest that those participating in evidence-based digital weight management programs can expect similar levels of initial weight loss as those experienced pre-pandemic.
Table 1: Baseline Demographics

Cohort	COVID-19	Control
Year	2020	2019
n	866,192	624,043
Age (years), M (SD)	45.7 (13.6)	45.3 (13.4)
Sex (F/M), %	89.7% / 10.3%	88.1% / 11.9%
Weight (kg), M (SD)	92.6 (22.5)	91.5 (22.2)
BMI (kg/m²), M (SD)	33.6 (7.4)	33.1 (7.2)
References

1. Flanagan EW, Beyl RA, Fearnbach SN, Altazan AD, Martin CK, Redman LM. The impact of COVID-19 stay-at-home orders on health behaviors in adults. *Obesity*. 2020 Oct 11.

2. Arora, T, Grey, I. Health behavior changes during COVID-19 and the potential consequences: A mini-review. *Journal of Health Psychology*. 2020 Jun 18: 1155-1163.

3. Almendoz JP, Xie L, Schellinger JN, et al. Impact of COVID-19 stay-at-home orders on weight-related behaviors among patients with obesity. *Clinical Obesity*. 2020 Jun 9:e12386.

4. Zeigler Z, Forbes B, Lopez B, et al. Self-quarantine and weight gain related risk factors during the COVID-19 pandemic. *Obesity Research & Clinical Practice*. 2020 May 21.

5. Lin AL, Vittinghoff E, Olgin JE, Pletcher MJ, Marcus GM. Body weight changes during pandemic-related shelter-in-place in a longitudinal cohort study. JAMA Network Open. 2021 Mar 1;4(3):e212536.

6. Unick JL, Pellegrini CA, Demos KE, Dorfman L. Initial weight loss response as an indicator for providing early rescue efforts to improve long-term treatment outcomes. *Curr Diab Rep*. 2017;17(9):69. doi:10.1007/s11892-017-0904-1

7. Waring ME, Schneider KL, Appelhans BM, et al. Early-treatment weight loss predicts 6-month weight loss in women with obesity and depression: implications for stepped care. *J Psychosom Res*. 2014;76(5):394-399. doi:10.1016/j.jpsychores.2014.03.004

8. Unick JL, Hogan PE, Neiberg RH, et al. Evaluation of early weight loss thresholds for identifying nonresponders to an intensive lifestyle intervention. *Obesity (Silver Spring)*. 2014;22(7):1608-1616. doi:10.1002/oby.20777

9. Tronieri JS, Wadden TA, Chao AM, Pearl RL, Alamuddin N, Berkowitz RI. Early weight loss in behavioral treatment predicts later rate of weight loss and response to pharmacotherapy. *Ann Behav Med*. 2019;53(3):290-295. doi:10.1093/abm/kay036

10. Cohen J. A power primer. *Psychological Bulletin*. 1992 Jul;112(1):155.

11. Pellegrini M, Ponzo V, Rosato R, et al. Changes in weight and nutritional habits in adults with obesity during the “lockdown” period caused by the COVID-19 virus emergency. *Nutrients*. 2020 Jul;12(7):2016.

12. Robinson E, Boyland E, Chisholm A, et al. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. *Appetite*. 2020 Oct 7:104853.

13. Burke LE, Wang J, Sevick MA. Self-monitoring in weight loss: a systematic review of the literature. *Journal of the American Dietetic Association*. 2011 Jan 1;111(1):92-102.
Figure 1

Mean % weight change

Week enrolled

-3
-2
-1
0

COVID-19
Control

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Jan Feb Mar Apr May Jun Jul
