Introduction

Cancer is fundamentally characterized by the irregular wild proliferation of abnormal cells with aggressiveness to invade and metastasize. Since cancers are viewed as complex systems wherein a variety of cells are involved, its concurrent early detection and simultaneous therapy are of necessary steps for success of treatment modalities.\(^1\) The malignant cells, in comparison with normal cells, show some important genomic and/or epigenetic alterations (e.g., DNA mutations, DNA methylation status and overexpression of some genes and literally proteins) prior to macroscopic phenotypic changes. Such inadvertent alterations have led classification of various cancer marker molecules (CMMs) such as plasma membrane integrated proteins (the-so-called cell surface receptors) or intracellular biomolecules involved in cell signaling. The nature, specificity and level of expression of CMMs are largely dependent upon type of cancers, wherein their early detection is increasingly becoming important and useful steps in terms of diagnosis and prognosis of malignancies. For instance, the gastric cancer is one of the most devastating malignancies with high mortality rate worldwide, hence the only chance to reach better outcomes largely lays on an early-stage diagnosis and simultaneous therapy.\(^2\) In fact, the treatability of other types of solid tumors (e.g., pancreas, ovarian, bladder, colorectal, thyroid, and breast cancers) are almost similar. While monitoring of the level of the expressed CMMs can result in improvement of treatment strategies and detection of cancer recurrence, they possess intrinsic potential to be exploited as targets for early detection of tumor and simultaneous therapy. As a result, having exploited CMMs, several monoclonal antibodies (mAbs) and their fragments have been developed and translated into clinical applications.\(^3\) Further, there exist compelling evidences that most of the solid tumors are immunogenic tumors, therefore immunotherapy modalities can be pursued for effective therapy of these diseases.\(^4\) Nevertheless, similar to chemotherapy alone, immunotherapy appears not to be effective enough when used alone.\(^5\) Although cancer chemotherapy has been accepted as an effective treatment modality for various malignancies, this approach is often associated with inadvertent intrinsic side effects mainly because of cytotoxic nature of the most anticancer agents. To tackle this problem, multifunctional nanomedicines and theranostics have been engineered to improve pharmacokinetic and pharmacodynamics impacts because they are able (a) to target cancer cells specifically through homing devices, (b) to monitor the disease status through imaging device, ...
and (c) to deliver the anticancer agent(s) actively to the target site. However, engineering of these long circulating smart “bioshuttles” demands several steps of synthesis, formulation and bioconjugation processes. In the current study, we will review the advanced materials used for engineering of surface modified multifunctional nanomedicines and theranostics as well as the commonly used conjugation materials and techniques.

Multifunctional nanomedicines and theranostics
From translational standpoint, it is the treatment strategy (e.g., cancer type, biological architecture at cellular/molecular dimension, and disease/patient conditions) that bestows the directionality and endpoint objectives of the seamless coordinated diagnostics and therapeutics of a single multifunctional nanomedicine (the-so-called “theranostics”). However, of enormous investigations towards development and advancement of multifunctional NSs, a very minor percentile studies represent the medical applications and schematic architectures of different types of multifunctional NSs. Of these NSs, the macromolecules with globular structures (e.g., liposomes, micelles and dendrimers) can entrap/encapsulate the diagnostic and therapeutic agent(s) and improve both the solubility and the blood circulation period, while protecting them from quick elimination and/or biodegradations. As shown in Fig. 1, multimodal NSs may harbor the entrapped anticancer agents such as doxorubicin (DOX) and paclitaxel (PTX), which are also conjugated with homing devices such as antibody (Ab) or aptamer (Ap) and imaging devices such as gold NPs (AuNPs) and quantum dots (QDs). Such bioshuttle can result in increased accumulation of drug in tumor tissue, the so called enhanced permeation and retention (EPR) effect, as a result of the leaky vasculature surrounding rapidly growing neoplasm. To be maximally effective, the surface of NSs need to be modified with hydrophilic materials such as poly(ethylene glycol) (PEG), a process the so-called PEGylation, and conjugated with homing and imaging devices. Fig. 2 represents a simple conjugation scheme for PEGylation and Ab bioconjugation of NPs functionalized with carboxylic groups such as acid terminated poly(lactic-co-glycolic acid) (PLGA) NPs. These NPs can be activated using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (NHS), which can be then PEGylated and conjugated with Ab through a one-/two-step processes.

Impacts of advanced nanomaterials as imaging devices
A prerequisite for simultaneous imaging and therapy of cancerous cells using theranostics is implantation of photo-acoustic nanomaterials with desirable characteristics. So far, anticancer chemotherapies, Abs or Aps conjugated with AuNPs, magnetic nanoparticles (MNPs), QDs and carbon nanotubes (CNTs) have been used for the engineering of multifunctional NSs since simultaneous pinpointing of cancerous cells by such NSs can even impart existence of a single cancerous cell at the course period of treatment. It is clear now that the real time

Fig. 1. Schematic representation of various multifunctional nanosystems (NS) used as theranostics. For engineering multimodal nano-systems, various moieties (e.g., anticancer agent(s), antisense, siRNA, Aptamer, imaging agents, antibody fragments, targeting agents) are generally entrapped, encapsulated or conjugated with different delivery systems such as polymers/lipids. Therapeutics and homing devices can be conjugated to magnetic nanoparticles (MNPs) and quantum dots (QDs) for simultaneous detection and therapy. Note: not drawn to scale and not shown the actual mechanism of conjugation.
optical monitoring of diseased cells at molecular/cellular levels can significantly favor the targeted therapy – an approach that is largely dependent upon the exquisite sensitivity and versatility of optical technologies.

Quantum Dot
The quantum dot semiconductors are the most studied nanocrystals used as an imaging agent in formulation of cancer nanomedicine and theranostics because they display superior fluorescent properties as compared with the conventional chromophores and contrast agents. When excited with laser beam, the QDs can emit fluorescent light based on their size, from the blue region to the red region of the optical spectrum. Of these inorganic fluorophores, semiconductor nanocrystals are typically composed of atoms from groups II-VI elements (e.g., CdSe, CdS, CdTe, ZnSe), III-V (InP and InAs) and IV-VI (PbSe). Among various QDs preparation methods, a common method to produce bulk quantities of QD nanocrystals is to use high-temperature conditions. In a study, the routine method to produce bulk quantities of QD nanocrystals is to use high-temperature conditions. These researchers showed profoundly longer photo-stability of QDs bioconjugates in comparison with Alexa 488 bioconjugates of anti-Her2 IgG-QD, showing superiority of these engineered QD imaging agents for the early diagnosis of epithelial tumors. Antibody-cytotoxic drug conjugate can be used in assays involving fluorescence resonance energy transfer (FRET), or bioluminescence resonance energy transfer (BRET). The most important pitfall of QDs for most biomedical applications, similar to various advanced materials such as cationic lipids and polymers used as DDSs or gene delivery systems (GDSs), is their intrinsic toxicity which is yet to be fully understood. For example, in human umbilical vein

Table 1. Selected examples of multifunctional nanomedicines and theranostics

Nanosystems	Size (nm)	Therapeutic/imaging agents	Application
Liposomal nanoparticles (NPs)	30-300	Maghemite nanocrystals	MR imaging and cancer therapy²⁰
Cisplatin		Cisplatin nanoparticles²¹	
Herceptin		Antibody-labeled PEGylated liposomes¹²	
Micellar NPs	20-200	Anticancer drugs, antibodies, genes	Dendrimeric theranostics nanocomposites¹⁴
Solid lipid NPs	50-500	Small anticancer drugs, antibodies, genes	Increased specificity of gold nanoshells for HER2+ breast cancer²⁰
Dendrimeric NPs	<100	-	Cancer cell imaging and PTT/PDT¹⁴
Gold NPs	<50	-	Cancer cell imaging and PTT/PDT¹⁴
Magnetic NPs (MNPs)	<50	Small anticancer drugs, antibodies, genes	Multifunctional porous silica NPs as DDS^{16,19}
Silica NPs	20-300	Trastuzumab	Immunotargeted nanoshells for NIR photothermal therapy using anti-HER2 antibody²⁰
Nanoshell	<100	Anti-HER2 antibody	-
Fullerenes	<50	Small anticancer drugs, antibodies, genes	Non-invasive cancer imaging and therapy²¹
Carbon nanotubes (CNTs)	<100	Small anticancer drugs and antibodies	Cancer cell targeting and photoacoustic therapy by CNTs as nanobombs²³
Nanorod	<100	Photosensitizer	ZnO nanorods for treatment of single cancer cells²⁴
Quantum dots (QDs)	<10	-	Cancer cells imaging and PTT/PDT²¹
Bioconjugated MNPs	50-200	PAION-Ab	HER2/neu antibody conjugated SPIONs for breast cancer MRI²⁵
Bioconjugated QDs	20-100	Cetuximab	Cetuximab-QDs bioconjugate targeting EGFR positive cancer cells²⁴
Bioconjugated aptamer	50-200	Small anticancer drugs, antibodies, genes	Aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumors²⁷
Trastuzumab and Maytansinoid		Antibody-cytotoxic drug conjugate²⁸	
Bioconjugated antibody	50-200	BRCA1 antibody	BRCA1-NPs for in vivo targeting of gastric cancer²⁹
Anti-EGFR antibodies		Anti-EGFR antibody conjugated gold NPs for cancer diagnostics²⁹	
Bioconjugated CNTs	<200	Small anticancer drugs, antibodies, genes	Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery⁴¹

BioImpacts, 2014, 4(1), 3-14 | 5
ECs (HUVECs), QDs (10µg/mL of CdTe QDs) were shown to elicit significant oxidative stress, mitochondrial network fragmentation as well as disruption of mitochondrial membrane potential, leading to apoptosis through upregulation of Bax, downregulation of Bcl-2, release of mitochondrial cytochrome c and cleavage of caspase-9/caspase-3. However, surface modification is deemed to alter the toxicity of QDs because it has been shown that the QD-capping material, rather than the core metalloid complex, is responsible for the majority of their toxicity and biological activity. Therefore, unlike molecules covered with a toxic agent that display cytotoxicity, the surface-modified QDs conjugated with biomolecules seem to retain the biological effects of the conjugate.

AuNPs

In addition to QDs, other types of inorganic nanomaterials (e.g., AuNPs, gold nanoshells, AuroShell and ferrofluid, silica NPs) have successfully been exploited for sensing and/or therapy of cancers resistant to immunotherapy or chemotherapy. In 2011, Carpin et al. reported successful targeting and ablation of trastuzumab-resistant cells using anti-HER2-conjugated silica-gold nanoshells and a near-infrared laser. As the main concept for enhancing thermal ablation of cancer by AuNPs, bioconjugation of CMMs targeting mAbs/aptamers with AuNPs appears to provide a useful platform for AuNP-
based photothermal therapy (PTT) and imaging of cancer.56 AuNPs can simply be conjugated through ionic interactions, hydrophobic interactions, or dative binding (e.g., thiolation) using an appropriate linker such as N-hydroxysuccinimimidyl (NHS) ester that is mainly used for engineering of immunosensors and bioships. Technically, the electrolyte-mediated coagulation phenomenon is the basis of formation of gold-mAbs bioconjugates, in which if mAbs are present in the colloidal suspension, adsorption of mAbs can occur as the electrolyte concentration (NaCl or buffer salts) is raised to surpass the negative repulsion effects. It should be noted that spontaneous adsorption of protein on the surface of AuNPs happens because of electrostatic, hydrophobic, and Van der Waals interactions between AuNPs and mAbs.

Silica NPs

Mesoporous silica nanoparticles (MSNPs) have great potential to be used as multimodal drug delivery system (DDS). The mesoporous structures of these biodegradable ceramic based matrices appear to provide a shelter for incorporation of various agents (e.g., drugs, proteins, imaging agents, photosensitizers), while the outer surface can simply be modified and functionalized.61 For example, multimodal silica NPs (7 nm), which have recently been approved for clinical trial, were used as imaging agents.57 The MSNPs displayed high potential for dye-encapsulating, surface functionalization with cyclic arginine-glycine-aspartic acid peptide ligands and radiodioxide as well as safe kidney clearance. In fact, the high binding affinity of these NSs makes them tumor-selective NPs as reported in serial in vivo positron emission tomography (PET) imaging of tumor-selective targeting and nodal mapping through multi-scale near infrared (NIR) optical fluorescence imaging.57 Further, to circumvent the P-gp mediated efflux, endosomal pH-sensitive MSNPs have successfully been used to control the release of DOX in vitro and in vivo, which resulted in profound induction of apoptosis through upregulation of caspase-3.58 Silica NPs (SNPs) show ability to entrap a large number of fluorescent dye molecules and the resultant fluorescence SNPs (FSNPs) with bright optical properties can be further modified for specific targeting of CMMs.60

Carbon nanotubes

As another advanced DDSs, CNTs have been shown to display high potential of photothermal (PT) and photoacoustic (PA) properties, which make them very suitable NSs for imaging and treating tumors.7,52,63 CNTs are able to absorb NIR radiation (700 and 1100 nm), in which body tissues are most transparent, and transform the adsorbed NIR energy into PT and/or PA signals. As a result, they can be used as an imaging agent more deeply within tissues than other optical modalities can offer, resulting in an efficient heating within the surrounding environment.53 In addition to being highly mechanically flexible, the small size and high surface area make CNTs very attractive nanomaterials for development of seamless multifunctional NSs for simultaneous diagnosis and therapy of cancer.60 CNTs can be functionalized with targeting device (e.g., Abs, Fabs, scFvs, Aps), magnetic nanoparticles (MNPs) and also cytotoxic agent (e.g., DOX, PTX) mainly via molecular adsorption or chemical conjugation methods (e.g., cleavable ester bond, amide bond).64 It has been reported that the growth head and neck squamous carcinoma cells, which overexpress the epidermal growth factor receptor (EGFR), can significantly be inhibited by CNTs loaded with cisplatin (CP) and armed with EGF (CNT-CP-EGF). These NSs were shown to be highly selectively taken up by cancerous cells and hence result in profound inhibition of malignancies.7 The distribution and clearance study of PEGylated CNTs carrying CP molecules (PEG-CNT-CP) in mice have revealed that the PEG-CNT-CP were highly dispersed in aqueous medium, and upon conjugation with EGF, they were able to efficiently inhibit the growth of squamous cell tumors, in large part due to better cellular internalization.8 Besides, single walled CNTs (SWCNTs) were shown to be heated up under a radiofrequency (RF) field—a de novo safe method for selective elimination of malignant cells. Hence, application of 13.56-megahertz RF field had a heating impacts on injected functionalized SWCNTs in the hepatic VX2 tumors in rabbits, so that at 48 hours, all treated tumors displayed complete necrosis.75 Taken all, it seems that such promising PT and PA properties of CNTs can be used for selective destruction of cancer cells and may change the directionality of the cancer diagnosis and therapy in the near future.

Magnetic nanoparticles

The other important group of inorganic NSs are MNPs and superparamagnetic iron oxide NPs (SPIONs), which are deemed to provide a robust platform for cancer targeting and imaging. These NPs may be categorized as (a) ultra-small superparamagnetic iron oxide (IO) NPs (USPIONs) with 10-50 nm in diameter, (b) small superparamagnetic IO NPs (SPIONs) with 50-150 nm in diameter, and (c) monocrystalline IO NPs (MI-ONs) with 100-200 nm in diameter.74 They are superior to traditional gadolinium-based magnetic resonance (MR) contrast agents mainly because of lower toxicity and stronger enhancement of proton relaxation resultant in lower detection limit.75 MNPs have increasingly been used for clinical applications such as magnetic resonance imaging (MRI), drug delivery and magnetic fluid hyperthermia. The MNPs-based thermal therapy has been examined in prostate cancer, showing good tolerability.7,72 Further, SPIONs-enhanced MRI (Ferumoxtran-10) has successfully been used for diagnosis of nodal staging in patients with head and neck cancer. From a total of 63 nodes studied (36 nonmetastatic, 25 metastatic, and 2 inflammatory), SPIONs-enhanced MRI resulted in diagnosis of 24 metastatic and 30 nonmetastatic nodes, i.e. yielding a sensitivity of 96%, a specificity of 78.9%, a positive predictive value of 75%, and a negative predictive value of 96.8%, while the overall accuracy of the technique was about 85.7%.75 SPIONs with diameter around 30 nm are currently under clinical trials for prostate cancer imaging and thermal therapy.7,75 Functionalized MNPs have also shown great potential as theranostics.76 For example, using selected surface modification methods, we have recently engineered PEGylated MNPs functionalized with folic acid (FA) and loaded with either mitoxantrone (MTX) or tamoxifen (TMX) to target the folate receptor (FR) overexpressing cancer cells for specific delivery of the anticancer agents.77,79 Based on our findings, we proposed both MTX- and TMX-loaded FA-armed PEGylated MNPs as novel multifunctional theranostics for concurrent targeting, imaging and therapy of the FR-positive cancer cells, which can be translated into clinical applications with high efficacy and safety. In a study, MNPs were coated with oleic acid (OA) and PEG to form water-dispersible NSs which were then exploited to adsorb DOX onto the OA layer. Such coated MNPs conjugated to anti-HER2 mAb (~184 nm diameter with ~8 nm iron-oxide core) were successfully
used for active targeting of the human MCF-7 breast cancer cells.77 Taken all, although the MNPs need further characterization and optimization prior to their applications in clinic to ensure upon their early/late biologic impacts, they provide promising platform for advancement of multimodal NSs.

Biocompatibility of polymers and lipids for development of multifunctional NSs

A large variety of natural, semisynthetic (modified natural polymers), synthetic polymers (linear, branched and dendritic architectures) and lipids have so far been examined for their safety and potential as DDSs or gene delivery systems (GDSs). However, unfortunately, very few polymers have successfully been translated into clinical applications. In fact, many of these materials (e.g., cationic polymers, dendrimers and lipids) were shown to elicit intrinsic cytotoxicity and toxicogenomics.44-53,80

There exist several important biodegradable and natural polymers that possess promising characteristics and suitability for further development towards clinical uses. Issues relating to the suitability of polymers and/or their conjugates for development towards clinical uses have previously been well reviewed.46-50 Pivotal parameters for an ideal polymer/lipid based DDSs/GDSs for clinical applications include (a) maximal drug delivery capacity, (b) minimal toxicity following acute or chronic uses by the NS or its metabolite(s), (c) reproducibility in manufacturing, (d) appropriateness for pharmaceutical formulation, (e) acceptable stability (both physicochemical and biological), (f) suitable *in vitro* (cellular) and *in vivo* (whole body) pharmacokinetics properties, and (g) the cost-effectiveness for the large scale production.41

Surface modification and bioconjugation paradigms

Technically, the development of NSs demands surface modification and conjugation steps to some extent. In fact, in the most cases, there exists a need for alteration of the native structure of a biomacromolecule to provide functional groups on their surface.44 For example, a simple polymeric NS may have a tripartite structure including (a) the backbone polymer, (b) the linker molecule and (c) the payload molecule(s) such as small drugs, peptides, or proteins. In the case of multimodal theranostics, some other moieties such as targeting and/or imaging agents are also linked to the NSs using cross-linking agents. In the following section, we will briefly provide an overview on different types of cross-linkers.

Cross-linking agents

The smallest available reagent systems (the-so-called zero-length cross-linkers) are routinely used for bioconjugation, in which they mediate the conjugation of two molecules through formation of a bond containing no additional atoms. The widely used zero-length cross-linkers are carbodiimides such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide (CMC), dicyclohexyl carbodiimide (DCC), disopropyl carbodiimide (DIC), Woodward's reagent K (N-ethyl-3-phenylisoxazolium-3'-sulfonate), N,N'-carbonyldiimidazole (CDI). Further, both homofunctional and heterofunctional agents have also been successfully utilized as cross-linkers for modification and conjugation of macromolecules.46

Fig. 5 represents molecular structures of some selected zero-length cross-linkers (panel A) and homobifunctional cross-linkers (panel B).

It should be pointed out that, the use of homobifunctional reagents may generate a broad range of undesired conjugates. For example, conjugation of two different scFv Ab fragments may result in formation of scaffolds with the same type of scFvs instead of two different scFvs. However, heterobifunctional systems provide greater control on bioconjugation process, wherein one scFv Ab fragment can be modified through the cross-linker’s most reactive or most labile end and purified from excess reagents (using gel filtration or rapid dialysis) and then conjugated with the second scFv Ab fragment. In fact, most heterobifunctional cross-linkers contain at least one reactive group with good stability in aqueous settings, and hence providing possibility towards extensive purification of the intermediate scaffold prior to conjugation of the second moiety. The NHS ester–maleimide heterobifunctional epitomizes such reactivity through its NHS ester end with the amine groups of excess reagents (using gel filtration or rapid dialysis) and then conjugated with the second scFv Ab fragment. However, heterobifunctional cross-linkers contain at least one reactive group with good stability in aqueous settings, and hence providing possibility towards extensive purification of the intermediate scaffold prior to conjugation of the second moiety. The NHS ester–maleimide heterobifunctional epitomizes such reactivity through its NHS ester end with the amine groups of excess reagents (using gel filtration or rapid dialysis) and then conjugated with the second scFv Ab fragment. In fact, most heterobifunctional cross-linkers contain at least one reactive group with good stability in aqueous settings, and hence providing possibility towards extensive purification of the intermediate scaffold prior to conjugation of the second moiety. The NHS ester–maleimide heterobifunctional epitomizes such reactivity through its NHS ester end with the amine groups of excess reagents (using gel filtration or rapid dialysis) and then conjugated with the second scFv Ab fragment.
also be performed using water-soluble Traut’s reagent (2-iminothiolane), while a versatile reagent for introducing sulfhydryl groups onto target particle (e.g., proteins such as mAbs and NPs) appears to be the heterobifunctional cross-linkers such as N-succinimidyl S-acetylthioacetate (SATA)/sulfo-SMCC (Fig. 6A). Note: not drawn to scale.

Further, similar to SATA (Fig. 7A), SPDP can react with amine-containing molecules through its NHS ester end to form amide bonds. The pyridyl disulfide group then can be cleaved with an excess of hydroxylamine. SATA: N-succinimidyl S-acetylthioacetate; SPDP: N-succinimidyl 3-(2-pyridyldithio)propionate; NHS: N-hydroxysuccinimide (NHS). Note: not drawn to scale.

For detailed information, reader is referred to the textbook of "Bioconjugate Techniques".84 Note: not drawn to scale.

Fig. 6. Molecular structures of heterobifunctional cross-linkers (A) and nanoparticles bioconjugations process by SATA (B). To generate sulfhydryl groups, these researchers conjugated SATA to both mAb and IA by undertaking stepwise reactions using S-acetylthioacetate (ATA)-mAb or ATA-IA for generation of IA-(A-SH) to mAb-(A-SH) and homobifunctional cross-linker, 1,8-bis(maleimido)diethyleneglycol (BM[PEO])

They showed that monomeric mAb-(A-S-S-[PEO]$_2$S-S-A-IA)$_n$(mAb-IA)$_n$ radiolabeled with 111In by 2-(p-isoiodoacetobenzyl)cyclohexyl-DTPA and with 125I by iodogen method showed over 70% bindability to the integrin αvβ3 receptor (0.4 µM). Upon intravenous injection to nude mice with the receptor-positive M21 tumor, the mAb-IA$_n$ radiolabeled with both 111In and 125I accumulated rapidly and retained in the tumor for a period of 44 h, while the radioactivity cleared quickly from the blood, thereby resulted in increased tumor-to-blood ratios over the time. As a proof of concept, the fluorescence microscopic revealed a rapid blood clearance, a short peak tumor uptake time, and a low peak tumor uptake value with prolonged tumor retention for mAb-IA$_n$. It was shown that mAb-IA$_n$ can primarily bind to the integrin αvβ3 receptors on angiogenic vessels, but not on the tumor.85 SATA has also been used for preparation of multimodal proteins, or proteins labeled with both fluorescent and magnetic reporter groups, which can be used in a wide range of in vitro and in vivo imaging such as FACS flow cytometry, fluorescence microscopy, MRI and/or NIR optical imaging as well as fractionation of cells by magnetic cell sorting.86 To avoid problems such as loss of bioactive sites due to modification points during preparation of multimodal proteins, Schellenberger et al. (2004) reported the synthesis of a magneto/optical form of annexin V, which was performed by reacting the amino-CLIO NPs with Cy5.5 and N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) to produce a fluorescent, sulfhydryl reactive NPs. To pursue such aim, these researchers added a single reactive sulfhydryl group to annexin V using SATA cross-linking, by which they were enabled to preserve the protein’s ability to bind apoptotic Jurkat T cells. Then, reacting SATAlabeled annexin V with an SPDP activated NP yielded Anx-CLIO-Cy5.5 (i.e., a magneto/optical form of annexin V). Having showed high specific binding of Anx-CLIO-Cy5.5 to apoptotic Jurkat T, they proposed such conjugate to preserve the strength of the interaction between annexin V and apoptotic cells, with capability to develop NPs including colloidal QDs and AuNPs.85 Further, similar to SATA (Fig. 7A), SPDP can react with amine-containing molecules through its NHS ester end to form amide bonds. The pyridyl disulfide group then can be then coupled to a sulfhydryl-containing molecule to create a cleavable disulfide bond (Fig. 7B). This cross-linker agent is

Fig. 7. Schematic representation of functionalization of monoclonal antibody (mAb) and conjugation of single chain fragment variable (scFv) antibody fragments. A) SATA-based conjugation of a model mAb. B) SPDP-based conjugation of amine group with sulfhydryl group in two different scFvs. The modified protein (mAb) with a protected sulfhydryl end using SATA can be stored without degradation and subsequently deprotected with an excess of hydroxylamine. SATA: N-succinimidyl S-acetylthioacetate; SPDP: N-succinimidyl 3-(2-pyridyldithio)propionate; NHS: N-hydroxysuccinimide (NHS). Note: not drawn to scale.
technically extensively used to conjugate proteins such as Ab scaffolds (e.g., mAb, Fab, scFv) to form multispecific systems and also immunotoxin) that can be used for in vivo applications. succinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) is a heterobifunctional reagent with significant utility in crosslinking proteins, particularly in the preparation of Ab – enzyme. For example, for the tumor-specific imaging through targeting EGFR using QD-cetuximab conjugates, Lee et al. (2010) reported three different conjugation strategies. Successful conjugation of cetuximab to QDs was reported upon exploitation of PEG conjugated polymer-coated QDs and two long-chain heterobifunctional linkers (i.e., sulfu-LC-SPDP and sulfu-SMCC) with dissociation constant of the QD-cetuximab conjugates to EGFR of 0.61 +/- 0.28 nM and efficient internalization. Since the cellular imaging experiments using the QD-cetuximab conjugates resulted in a clear endocytosis and colocalization of the QD-cetuximab conjugates with dye-labeled transferrin, the QD-cetuximab conjugates were suggested to be used as an imaging modality for EGFR overexpressing cancer cells. In another study, for the characterization of QDs and their conjugates to biological molecules by capillary electrophoresis coupled with laser-induced fluorescence, non-selective and selective methods were used for preparation of QDs conjugated to some biomolecules. For the non-selective approach, 1-ethyl-3- [3-dimethylaminopropyl] carbo diimide hydrochloride (EDC)/sulfo-NHS was used for the conjugation of BSA and myoglobin to carboxylic acid-functionalized QDs. For the selective approach, heterobifunctional cross-linker sulfo-SMCC was utilized for the conjugation of partially reduced IgG to amine-functionalized QDs and the conjugation of periodate-oxidized IgGs to hydrazide-functionalized QDs. In general, there are different approaches for surface modification and bioconjugation of NPs, including: (a) use of a bifunctional ligand such as mercaptoproic acid, (b) trioc tyolphosphate/trioc tyolphosphate oxide (TOP/TOPO)-capped NPs bound to a modified acrylic acid polymer through hydrophobic forces, (c) NPs solubilization and bioconjugation using a mercaptosilane compound, (d) positively charged biomolecules linked to negatively charged NPs by electrostatic attraction, and (e) incorporation of NPs into microbeads and nanobeads.

For example, immunoQDs (i.e., Ab-QD bio- conjugates) can be produced through different methods, including (a) QDs conjugation to Ab fragments via disulphide reduction and sulphhydryl-amine coupling, (b) covalent coupling between carboxylic acid (-COOH) coated QDs and primary amines (-NH2) on intact Abs using EDC or EDC/NHS chemistry, (c) site-directed conjugation via oxidized carbohydrate groups on the Ab Fc portion and covalent reactions with hydrazide-modified NPs, (d) conjugation of histidine-tagged peptides or Abs to Ni-NTA modified QDs, and (e) noncovalent conjugation of streptavidin-coated QDs to biotinylated Abs.

Fig. 8 exemplifies different bioconjugations processes including thiolation of an amine-containing scFv Ab fragment with methyl 3-mercaptopropionimidate (panel A) and conjugation of two scFv Ab fragments with carboxylic acid group and amine group through 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) (panel B).

It should be also stated that different cross-linkers have been exploited for surface modification of QDs, including (a) bifunctional linkage (via homo/heterobifunctional cross-linkers), (b) hydrophobic attraction (TOPO-capped QDs bound to a modified acrylic acid polymer), (c) silanization, and (d) electrostatic attraction. Technically, most QDs’ surfaces for biological applications contain negatively charged carboxylates for conjugation with amine-containing molecules via a carbodiimide reaction with EDC and sulfo-NHS. The QDs have been also exploited for live cell imaging, nonetheless these NSs showed cytotoxic effects to some extent. Accordingly, recent developments in silicon QDs, non-blinking QDs, and QDs with reduced-size and controlled-valence further make these QDs bioanalytically attractive because of their low toxicity, biocompatibility, high quantum yields, and diverse surface modification flexibility. The potential of multiplexed...
sensing using QDs with different wavelengths of emission is promising for simultaneous detection of multiple biomarkers of disease.97,98 It should be stated that various types of NPs (e.g., polymeric/lipidic NPs, QDs, MNPs and AuNPs) can simply be PEGylated and conjugated using NHS-PEG-maleimide (Fig. 9), which has been widely used for production of multifunctional nanomedicines and theranostics.99-102 For example, in 2013, Chan et al. have exploited NHS-PEG-maleimide for development of PEGylated fluorescent polystyrene NPs conjugated with anti-EGFR M225 Abs, which were successfully used for optical molecular imaging in human epidermoid carcinoma A431 cells and lung squamous cell carcinoma NCI-H520 cells as well as human esophageal tissue.

Biological implications of surface modified nanomedicines

The foremost biological barrier against injected NSs is reticuloendothelial system (RES) that can predominantly limit the clinical efficacy of nanomedicines and theranostics. In general, the anatomy and size of NPs play a key role in terms of RES function, that is, NPs >250 nm can be physically trapped by the fenestrations in the spleen while NPs <70 nm can be accumulated in liver. Thus, NPs in a range of 70–200 nm are able to stay in blood stream for a longer period of time.103 However, these NPs are also subjected to opsonization, which is a process that can lead the foreign particulate invaders to be covered by opsonins and subsequently seen by phagocytic cells that are responsible for sequestration and immune clearance of the invading NPs.104,105 Hence, blocking the electrostatic and hydrophobic interactive surface of NPs by means of surface adsorbed or grafted shielding groups (e.g., long hydrophilic polymer chains and non-ionic surfactants) can help to circumvent the opsonization. Hydrophilic materials (e.g., polysaccharides, polycryliclamide, poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), PEG, and PEG-containing copolymers poloxamers, poloxamines, polysorbates and PEG copolymers) have successfully been exploited.106 Of these, PEGylation is the most widely used method for making stealth NPs. However, regardless of being PEGylated, a 250 nm PEGylated NP can be cleared from the blood stream much quicker than a 70 nm PEGylated NP.

Further, consequences for activation of the complements by NPs may be the reactogenicity functions such as hypersensitivity reactions as reported for liposomal drugs (e.g., Doxil®). To understand the mechanism of such adverse immune reaction, the-so-called C activation-related pseudoallergy (CARPA), Szebeni et al.2011 analyzed the relationship among liposomes’ features, C activation in human serum in vitro, and liposome-induced cardiovascular distress in a pig model for human CARPA. These researchers found that among the structural variables (e.g., surface charge, presence of saturated/unsaturated moieties, PEGylation, and use of CP/DOX in liposomal formulations), high negative surface charge and the presence of DOX were the significant contributors in terms of the reactogenicity both in vitro and in vivo, where the effect of DOX appeared to be indirect perhaps through distorting the morphology of liposomes.107 Doxil® mediated complement opsonic fragments was shown to elicit C3b deposition and degradation (65 and 40/43 kDa fragments) that can reach the plateau within 5 min, followed by generation of high molecular weight C3b- and iC3b-containing complexes (C3-X).107 Complement activation by Doxil® has also been reported in cancer patients through significant elevation of SC5b-9 (the terminal complex activation marker of complement system) levels in plasma within 10–30 min of infusion.108 In addition to reactogenicity, multifunctional NPs may act as immunomodulators, activating immune responses where needed. Recently, polysaccharide-based pH-sensitive NSs have been engineered to target mannose-ligands based cell-surface receptors which was able to enhance internalization and activation of antigen presenting cells (APCs).109 This may lead us towards tunable modulation of immune responses. Cui et al. showed that the mannosylated NPs exhibited enhanced antigen presentation in the context of major histocompatibility complex (MHC) class I molecules in dendritic cells (DCs). Such functionalized pH-sensitive NSs seem to open new avenue for vaccine development, in which the conjugation of cell-surface receptor ligands can deliver antigens to specific intracellular pathways and accordingly provide a tool for better controlling the antigen presentation to T cells, or even produce specific signals to manipulate the cytokine production and activation of APCs. Regarding clinical impacts, specific/nonspecific effects of multifunctional nanomedicines have yet to be fully understood. In general, it seems that the clinical impacts of multifunctional nanomedicines and theranostics, in most of the cases, are largely dependent upon their ability to cross biological membranes and barriers efficiently, to target the desired cells specifically and to interact with/to internalize into the target cells. Upon interaction of nanomedicines with the target CMMs, they are mostly prone to endocytosis through fluid-phase or receptor-mediated endocytosis.31 Various cell surface receptors have so far been reported to be involved in endocytosis phenomenon, including: clathrin coated pits, caveolin proteins, transferrin, EGFR. For example, in ovarian cancer cells, cisplatin (CP) nanocapsules endocytosis and toxicity was shown to be cell-dependent and high cytotoxicity of CP nanocapsules appeared to be largely dependent on expression of caveolin-1 endocytosis followed by release of the drug from a late endosomal/lysosomal compartment and CP-DNA-adduct formation. Thus, cells with higher expression of caveolin-1 (e.g., Igrov-1 cells) shows higher responsiveness to CP nanocapsules compared to those with lower/no expression of caveolin-1 (e.g., Ovcar-3 cells).110 This concept should be taken into account for development of anticancer nanomedicines.

Final remarks

Of various advancements for improved targeted therapy of cancer, seamless multifunctional nanomedicines and theranostics appear to hold great promises. These NSs can be used for simultaneous imagining (optical/non-optical) and therapy of cancerous cells. Ideally, they should represent some important physicochemical and biological features such as (a) long blood circulation time, (b) high tumor-accumulation through passive targeting (EPR effect), (c) specific interaction with cancer cells through active targeting by homing devices, (d) high drug-loading capacity, (e) no/low toxicity, (f) low polydispersity index, and finally (g) simple method of formulation. Formulation of these NSs demand several steps of surface modifications such as PEGylation and conjugation with targeting and imaging devices, which demands integration of several domains for successful engineering of smart and safe seamless NSs. Further, such smart multifunctional NSs must be equipped with suitable stimuli to be able to trigger the liberation of drugs on demand during monitoring of the status of patients with malignancies. Taken all, smart multifunctional

BiolImpacts. 2014, 4(1), 3-14
NSs provide new promising premises for simultaneous diagnosis and therapy of cancer, and to be much more efficient, they need to be designed based on disease condition leading to personalized targeted therapy of cancer.

Ethical issues
The authors declare no ethical issues.

Competing interests
The authors declare no conflict of interests.

References
1. Barar J, Omidi Y. Dysregulated pH in Tumor Microenvironment Checkmates Cancer Therapy. *Biomics 2013*; 3: 149-62.
2. Cappellani A, Zhang D, Di Vita M, Zanet E, Veroux P, Cacopardo B, et al. Clinical and biomarker studies in gastric cancer: update and perspectives. *Front Biosci (Schol Ed)* 2010; 2: 403-12.
3. Majid J, Barar J, Baradaran B, Abdolaliadeh J, Omidi Y. Target therapy of cancer: implementation of monoclonal antibodies and nanobodies. *Hum Antibodies* 2009; 18: 81-100.
4. Kandalath LE, Powell DJ, Jr., Singh N, Coukos G. Immunotherapy for ovarian cancer: what’s next? *J Clin Oncol* 2010; 29: 925-33.
5. Vafadar-Isfahani B, Laversin SA, Ahmad M, Ball G, Coveney C, Lemetre C, et al. Serum biomarkers which correlate with failure to respond to immunotherapy and tumor progression in a murine colorectal cancer model. *Proteomics Clin Appl* 2010; 4: 682-96.
6. Omidi Y. Smart Multifunctional Theranostics: Simultaneous Diagnosis and Therapy of Cancer. *Biomics 2011* 1: 145-7.
7. Grimm J, Scheinberg DA. Will nanotechnology influence targeted cancer therapy? *Semin Radiat Oncol* 2011; 21: 80-7.
8. Omidi Y, Dolatabadi JEN, Mashinchian O, Ayoubi B, Jamali AA, Mobed A, et al. Optical and electrochemical DNA nanobiosensors. *Trac-Trends in Analytical Chemistry* 2011; 30: 459-72.
9. Dolatabadi JEN, Omidi Y, Losic D. Carbon Nanotubes as an Advanced Drug and Gene Delivery Nanosystem. *Carr Nanosci* 2011; 7: 297-314.
10. Plassat V, Martina MS, Barratt G, Menager C, Leseurre S. Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution. *Int J Pharm* 2007; 344: 118-27.
11. Ramachandran S, Quist AP, Kumar S, Lal R. Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. *Langmuir* 2006; 22: 8156-62.
12. Sofou S, Ennon M, Palm S, Kappel B, Zanconzico P, McDevitt MR, et al. Large anti-HER2/neu liposomes for potential targeted intraperitoneal therapy of micrometastatic cancer. *J Lipoame* 2010; 20: 330-40.
13. Nurunnabi M, Cho KJ, Choi JS, Huh KM, Lee YK. Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. *Biomaterials* 2010; 31: 5436-44.
14. Kang KW, Chun MK, Kim O, Subedi RK, Aha SG, Yoon JL, et al. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. *Nanomedicine* 2010; 6: 210-3.
15. Khan MK, Nigavekar SS, Minc LD, Kariapper MS, Nair BM, Lesniak WG, et al. In vivo biodistribution of dendrimers and dendrimer nanocomposites – implications for cancer imaging and therapy. *Technol Cancer Res Treat* 2005; 4: 603-13.
16. Rosenholm JM, Sahlgren C, Linden M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. *Curr Drug Targets* 2011; 12: 1166-86.
17. Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. *Mol Ther* 2011; 19: 1538-46.
18. Meng H, Liant M, Xia T, Li Z, Ji Z, Zink JJ, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. *ACS Nano* 2010; 4: 4539-40.
19. Cho YS, Yoon TJ, Jang ES, Soo Hong K, Young Lee S, Ran Kim O, et al. Cetuximab-conjugated magnetofluorescent silica nanoparticles for in vivo colon cancer targeting and imaging. *Cancer Lett* 2010; 299: 63-71.
20. Carpin LB, Bickford LR, Agolhah G, Yu TK, Schiff R, Li Y, et al. Immunconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. *Breast Cancer Res Treat* 2011; 125: 27-34.
21. Krishna V, Singh A, Sharma P, Iwakuma N, Wang Q, Zhang Q, et al. Polyhydroxy fullerene for non-invasive cancer imaging and therapy. *Small* 2010; 6: 2236-41.
22. Lay CL, Liu HQ, Tan HR, Liu Y. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics. *Nanotechnology* 2010; 21: 065101.
23. Kang B, Yu D, Dai Y, Chang S, Chen D, Ding Y. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. *Small* 2009; 5: 1292-301.
24. Kishwar S, Asif MH, Nur O, Willander M, Larsson PO. Intracellular ZnO Nanorods Conjugated with Protoporphyrin for Local Mediated Photochemistry and Efficient Treatment of Single Cancer Cell. *Nanoscale Res Lett* 2010; 5: 1669-74.
25. Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG, et al. HER2/neu Antibody Conjugated Poly(amino acid)-Coated Iron Oxide Nanoparticles for Breast Cancer MR Imaging. *Biomacromolecules* 2010; 11: 2866-72.
26. Lee J, Choi Y, Kim K, Hong S, Park HY, Lee T, et al. Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots. *Bioconjug Chem* 2010; 21: 940-6.
27. Ferreira CS, Papamichael K, Guilbault G, Schwarzacher T, Gariepy J, Missailidis S. DNA aptamers against the MUC1 tumour marker: design of aptamer-antibody sandwich ELISA for the early diagnosis of epithelial tumours. *Anal Bioanal Chem* 2008; 390: 1039-50.
28. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DMA1, an antibody-cytotoxic drug conjugate. *Cancer Res* 2008; 68: 9280-90.
29. Wang K, Ruan J, Qian Q, Song H, Bao C, Zhang X, et al. BRCA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. *J Nanobiotechnology* 2011; 9: 23.
30. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. *Nano Lett* 2005; 5: 829-34.
31. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. *ACS Nano* 2009; 3: 307-16.
32. Omidi Y. CNT Nanobombs for Specific Eradication of Cancer Cells: A New Concept in Cancer Theranostics. *Biomics 2011* 1: 199-201.
33. Tan A, Yildirimer L, Rajadas J, De La Pena H, Pastorin G, Seifalian A. Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. *Nanomedicine (Lond)* 2011; 6: 1101-14.
34. Michealet X, Pinaud FF, Bentolila LA, Tsay JM, Dooce S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. *Science* 2009; 307: 538-43.
35. Sukhanova A, Nabiev I. Fluorescent nanocrystal quantum dots
as medical diagnostic tools Explo Med Diagn 2008; 2: 429-47.
36. Murray CB, Norris DJ, Bawendi MG. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J Am Chem Soc 1993; 115: 8706-15.
37. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattouss IH, Ober K, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem 1997; B101: 9463-75.
38. Wu X, Liu H, Liu J, Halely KN, Treadway JA, Larson JP, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 2003; 21: 41-6.
39. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. Biological applications of quantum dots. Biomaterials 2007; 28: 4717-32.
40. Biju V, Ioth T, Anas A, Suith A, Ishikawa M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Annu Bioanal Chem 2008; 391: 2469-85.
41. Obonyo O, Fisher E, Edwards M, Dourroumis D. Quantum dot synthesis and biological applications as imaging and drug delivery systems. Crit Rev Biotechnol 2010; 30: 283-301.
42. Rosenental SJ, Chang JC, Kottun O, McBride JR, Tomlinson ID. Biocompatible quantum dots for biological applications. Chem Biol 2011; 18: 10-24.
43. Dolatabadi JEN, Mashinchiyan O, Ayoubi B, Jamali AA, Bebed A, Losic D, et al. Optical and electrochemical DNA nanosensors. TrAC Trends in Analytical Chemistry 2011; 30: 459-72.
44. Omidi Y, Hollins AJ, Benboubeta M, Drayton R, Benter IF, Akhtar S. Toxigenomics of non-viral vectors for gene therapy: a microarray study of lipofectin- and oligofectamine-induced gene expression changes in human epithelial cells. J Drug Target 2003; 11: 311-23.
45. Omidi Y, Barar J, Akhtar S. Toxicogenomics of cationic lipid-based vectors for gene therapy: impact of microarray technology. Curr Drug Deliv 2005; 2: 429-41.
46. Omidi Y, Hollins AJ, Drayton RM, Akhtar S. Polypropylenimine dendrimer-induced gene expression changes: the effect of complexation with DNA, dendrimer generation and cell type. J Drug Target 2005; 13: 431-43.
47. Hollins AJ, Omidi Y, Benter IF, Akhtar S. Toxicogenomics of drug delivery systems: Exploiting delivery system-induced changes in target gene expression to enhance siRNA activity. J Drug Target 2007; 15: 83-8.
48. Omidi Y, Barar J, Heidari HR, Ahmadian S, Yazdi HA, Akhtar S. Microarray analysis of the toxicogenomics and the genotoxic potential of a cationic lipid-based gene delivery nanosystem in human alveolar epithelial a549 cells. Toxicol Mech Methods 2008; 18: 369-78.
49. Barar J, Hamzeiy H, Mortazavi Tabatabaee SA, Hashemi-Aghdam SE, Omidi Y. Genomic signature and toxicogenomics comparison of polycationic gene delivery nanosystems in human alveolar epithelial A549 cells. Daru 2009; 17: 139-47.
50. Omidi Y, Barar J. Induction of human alveolar epithelial cell growth factor receptors by dendrimeric nanostructures. Int J Toxicol 2009; 28: 113-22.
51. Barar J, Omidi Y. Cellular Trafficking and Subcellular Interactions of Cationic Gene Delivery Nanomaterials. J Pharm Nat Sci 2011; 1; 68-81.
52. Kafil V, Omidi Y. Cytotoxic Impacts of Linear and Branched Polyethyleneimine Nanostructures in A431 Cells. BioImpacts 2011; 1: 23-30.
53. Barar J, Omidi Y. Intrinsic bio-signature of gene delivery nanocarriers may impair gene therapy goals. Bioimpacts 2013; 3: 105-9.
54. Yan M, Zhang Y, Xu K, Fu T, Qin H, Zheng X. An in vitro study of vascular endothelial toxicity of CdTe quantum dots. Toxicology 2011; 282: 94-103.
55. Hoshino A, Hanada S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol 2011; 85: 707-20.
56. Kennedy LG, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 2011; 7: 169-83.
57. Benezra M, Penate-Medina O, Zanxonico PB, Scher D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 2011; 121: 2768-80.
58. Huang JP, Sun SP, Cheng SH, Lee CH, Wu CY, Yang CS, et al. Enhanced chemotheraphy of cancer using pH-sensitive mesoporous silica nanoparticles to antagonize P-glycoprotein-mediated drug resistance. Mol Cancer Ther 2011; 10: 761-9.
59. Santra S. Fluorescent silica nanoparticles for cancer imaging. Methods Mol Biol 2010; 624: 151-62.
60. Thakare VS, Das M, Jain AK, Patil S, Jain S. Carbon nanotubes in cancer theragnosis. Nanomedicine (Lond) 2010; 5: 1277-301.
61. Ibsamis-Tamer S, Yilmaz S, Banoglu E, Degim IT. Carbon nanotubes to deliver drug molecules. J Biomed Nanotechnol 2010; 6: 20-70.
62. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, et al. In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small 2011.
63. Vilela D, Anson-Casas A, Martinez MT, Gonzalez MC, Escarpa A. High NIR-purity index single-walled carbon nanotubes for electrochemical sensing in microfluidic chips. Lab Chip 2012; 12: 2006-14.
64. Levi-Polyachenko NH, Merkel EI, Jones BT, Carroll DL, Stewart JHR. Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol Pharm 2009; 6: 1092-9.
65. Zhou F, Xing D, Ou Z, Wu B, Rasasce DE, Chen WR. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 2009; 14: 021009.
66. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 2008; 68: 6652-60.
67. Bhirde AA, Patel S, Sousa AA, Patel V, Molinolo AA, Ji Y, et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine (Lond) 2010; 5: 1535-46.
68. Gannon CJ, Cherukuri P, Yakobsen BI, Cognet L, Kanzius JS, Kireitl C, et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 2007; 110: 2654-65.
69. Saia HK, East MP, Mao H, Wang YA, Nie S, Yang L. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 2009; 6: 43-51.
70. Petrín-Fink A, Hofmann H. Superparamagnetic iron oxide nanoparticles (SPIIONs): from synthesis to in vivo studies—a summary of the synthesis, characterization, in vitro, and in vivo investigations of SPIIONs with particular focus on surface and colloidal properties. IEEE Trans Nanobioscience 2007; 6: 289-97.
71. Johanssen M, Thiessen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 2010; 26: 790-5.
72. Johanssen M, Gneveckow U, Taymoorian K, Thiesen B, Waldofner N, Scholz R, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperthermia 2007; 23: 315-23.
73. Curvo-Semedo L, Diniz M, Migueis J, Juliao MJ, Martins P, Pinto A, et al. USPIO-enhanced magnetic resonance imaging for nodal staging in patients with head and neck cancer. J Magn
