Effect of climate and season of calving on genetic parameters of production and somatic cells in Holstein cows

REZA NESHAGARAN HEMMATABADI1, GHOBAD ASGARI JAFARABADI2, NASER EMAM JOME KASHAN3 and MEHDI AMINAFSHAR3

Islamic Azad University, Tehran, Iran

Received: 11 January 2020; Accepted: 11 February 2020

ABSTRACT

Records (111543) of first calving test day milk production with three milking times during the years 1983 to 2016 were used for 62 herds in the Breeding Center data file. The dairy cows under study had 10 test day records. Variables from the herd-year-calving combination as random effect and herd-test-month-age combination at the time of record as fixed effects were created for each animal. Average milk yield in hot and dry climate was higher than hot and wet climate. The average traits of milk fat and milk protein percentage in hot and dry climates were higher than hot and wet climates, but somatic cell traits were higher in hot and wet climates. The phenotypic variance of milk yield was higher in hot and dry regions in all ten test day records. The phenotypic variance of milk fat percent was higher in hot and dry area on the first, second, fifth and sixth test days. The average genetic variance of milk fat percentage in hot and wet region at 9 test day records was higher than in hot and dry region. Phenotypic variance of milk protein percentage in hot and dry area was higher than in hot and wet regions in all test days. In countries where calving occurs throughout the year, mastitis is dependent to the pattern of growth of pathogens in different seasons and years. Changes in animal physiological conditions (calving and changes in breast status) increase the number of somatic cells in milk, which has a physiological effect.

Keywords: Climate and season of calving, Genetic and environment interaction, Somatic cells

Productive traits are important in the selection of dairy cows to increase economic profit (Rekik et al. 2003). Togashi et al. (2008) discussed the crucial importance of animal genetic resources in food health and safety. Breeding of domestic livestock will work best when all strategies are tailored in a specific way (Miller et al. 2004). Generally, the goal of breeding dairy cows is to change yields and increase economic productivity. Most breeding programs are based on increasing production traits, but in increasing production through genetic improvement it is necessary to consider other traits in addition to milk yield. To determine the degree of effectiveness or response to selection, one must examine genetic and environmental changes and evaluate the success of breeding programs over the years with the genetic trend (Strabel and Misztal 1999). Milk production is the most important source of income for livestock farmers and high-yielding cows are more profitable. However, high production is associated with reproductive problems and a decline in animal health (Boichard and Rupp 1997). Genetic selection programs in recent years have led to significant advances in milk production and in turn caused to declining trend in fertility, survival and disease resistance (Veerkamp et al. 1994). Because of the negative genetic correlation between milk yield and mastitis resistance, resistance to mastitis has decreased due to selection for milk production (Boichard and Rupp 1997). Inflammation of the mammary glands causes invasion of somatic cells—predominantly multinuclear neutrophils—leading to an increase in the number of somatic cells in milk. Therefore, the number of somatic cells in the raw milk is an indicator that indicates the probability of microbial infections and mastitis (Faraji et al. 2012). The phenotypic relationship between somatic cells and milk production trait is negative and with increasing milk production the number of somatic cells decreases (Pryce et al. 1999). Increase of different types of somatic cells caused by stresses such as changes in the diet, seasonal changes, the frequency of milking, is the effect of a particular stage of milking or a combination of these. Holstein cows perform better in a given climatic range, because adverse climatic conditions of the breeding environment increase environmental variance and the livestock is affected by adverse environmental conditions and its genetic capacity is not fully apparent (Koc 2008).
Since breeding traits are most important in breeding programs, it is necessary to study the genetic parameters of Holstein cattle due to their different performance in different environmental conditions and their high genetic capacity. Several environmental factors affect the production and composition of milk, including the breeding season. Since climatic and environmental conditions are not the same in all regions of the country in a given season, it is necessary to study the effect of conditions and seasons on production changes and genetic parameters in order to increase production in each region.

Therefore, the purpose of this study was to study the effect of climate and season of calving on genetic parameters of production and somatic cells in Iranian Holstein cows in two hot and wet climates (Mazandaran and Gilan provinces) and hot and dry climate (Isfahan and Tehran provinces).

MATERIALS AND METHODS

In this experiment, in order to study the effect of climate and calving season on genetic parameters of milk production and somatic cells in Holstein cows (or in other words study the interaction of genotype and environment on genetic analysis of milk production and somatic cells using test day records), data collected by the National Livestock Breeding Center were used.

In this research, pedigree files and information from the years 1983 to 2016 were used so that the pedigree file contains columns including animal number, herd code, birth weight, inbreeding percentage, birth date, cancel date and numbers related to their parents. It should be noted that the animal numbers must be larger than the parent numbers. In order to provide pedigree file, all information and registration numbers of the studied animals were used until all registered family relationships are taken into account. In addition to the above information, data file including season and year of birth, record date, age of delivery, milk production record, lactation day, sperm count used, milk protein percentage, milk fat percentage, body cell score, calving period and number of calving separately. Therefore, it is necessary to study the phenotypic performance of at least two genotypes in at least two different environments, and in this study, different male cows were studied as different genetics and differences in animal performance and milk yield, protein percentage and milk fat as different environment.

After editing the data, the records of 111,543 Holstein dairy cows (daughters of 472 bull) were used in the first lactation of 142 herds from two regions of six provinces. The Advanced De Martonne method (De Martonne 1926) was used that is done according to the mean annual precipitation and mean annual temperature. According to the information provided by the provinces of the country, the provinces are divided into the following five climatic groups: 1, Desert arid including Khorasan Razavi, Sistan and Baluchistan, Yazd, Qom provinces; 2, Semi-arid including Khorasan Razavi, Tehran, Isfahan, Fars, Hamedan provinces; 3, Mediterranean including Ilam, Qazvin, Kermanshah, Kurdistan provinces; 4, Semi-wet including Mazandaran and Golestan provinces; 5, Wet, including Gilan province. Therefore, the edited data in this study were divided into two groups of hot and wet and hot and dry parts, so that the part of hot and dry including Isfahan, Yazd and Shiraz provinces and hot and wet parts including Golestan, Mazandaran and Guilan provinces. As for the use of test day data, Reaction norm method was used to investigate the interaction between genotype and environment.

RESULTS AND DISCUSSION

Comparison of the mean milk yield in the two studied climates showed that the average milk production of Holstein cows on different lactation days in hot and dry
climates had higher yield than the hot and wet climates. Figure 1 shows that milk production in hot and dry climates increased with increasing lactation days, whereas the increase in milk production in hot and wet climates was negligible.

Figure 2 shows that the amount of milk fat produced in hot and dry climates during all lactation days is higher than in hot and wet climates. It should be noted that, the trend of the amount of milk fat percentage from the early days to the end of lactation was observed with a decreasing mild approximately parallel slope in two different climates.

Fig. 3 shows that the average trend of milk protein percentage in hot and dry climates decreased from day 1 to day 4, increased from day 5 to day 7, and decreased again from day 8 to day 10; but the average milk protein percentage in hot and wet climates increased on the second test day compared to the first test day and then a decreasing trend was observed to the tenth day. As for this trend, the average milk protein percentage was higher in hot and dry climates than in hot and wet climates.

Figure 4 shows that the mean score of milk somatic cells in hot and wet climates was significantly higher than in hot and dry climates. The mean score of milk somatic cells in hot and wet climates had an increasing and decreasing trend during lactation. The mean score of milk somatic cells in hot and dry climates increased from day 1 to day 4 as well as days six, eight and ninth compared to their pre-test days and declined in the rest of test days.

Boalgo et al. (2013), Tijani (2012) and Biasos et al. (2011) stated that milk production increased at the beginning of the period and peaked at day 54 of lactation, and then production declined until the end of the period. Also, Tijani (2012), Boalgo et al. (2013), Kissmas et al. (2012), Khanzadeh et al. (2013), Gurmessa and Molako (2012), Bohmanova et al. (2009) and Moharrary (2011) reported similar results.

Baol et al. (2007) reported that the number of somatic cells decreased from the highest in the early period to the lowest in the middle of the period and then increased to the end of the period. Moharrary (2011) stated that there was a positive correlation between lactation and body cell count. According to the present study, Pakdel et al. (2010) stated that the number of somatic cells in the first month of lactation was lower and gradually increased in subsequent lactation months. The reason for the increase in the number of somatic cells in the higher lactation months can be attributed to the greater willingness of lactating cattle to develop mastitis at older ages and to decrease milk production. Dube et al. (2008) reported an average body cell score in primiparous Holstein cows of South Africa’s of 4.47 and reported that it was higher than in other countries. Zong-yun et al. (2007) reported an average body cell score in Holstein Chinese cows of 2.25. Also, Miller et al. (2004) reported a mean milk cell score in the primiparus cows of the US Dairy Herd Improvement Association of 2.85, which is roughly comparable to the mean of the primiparous Holstein cows in Iran. Lotfi Noghabi and Farhang Far (2007) showed that the effect of season, month, year and herd on body cells of milk tank of Mashhad was significant. They observed three peaks for the number of milk cells in May, August and February. Given the trend in milk cell counts, it is clear that management programs in the herd are mastitis treatment and that mastitis control and identification programs are not performed permanently. Van der Lak et al. (2016) and Tietzi et al. (2017) also reported similar results as obtained in the present study.

Generally, differences in rainfall and climatic conditions in different regions of Iran and even in different years can
lead to different results. In countries where calving occurs throughout the year, mastitis is dependent to the pattern of growth of pathogens in different seasons and years (Baltay 2002). But when seasonal conditions are not conducive to the growth of microorganisms, changes in animal physiological conditions (such as calving and changes in breast status) increase the number of somatic cells in milk, which has a physiological effect.

REFERENCES

Baltay Z. 2002. Influence of time of day the milk and season on the somatic cell count under Hungarian conditions. *Archiv Fur Tierzucht-Archives of Animal* 45(4): 349–57.

Boichard D and Rupp R. 1997. Genetic analysis and genetic evaluation for somatic cell score in French Dairy Cattle. *Station de Genetic Quantitive et Applique*. INRA 54–60.

Bohmanova J, Misztal I and Cole J B. 2009. Temperature-Wetity indices as indicators of milk production losses due to heat stress. *Journal of Dairy Science* 25: 1242–56.

Dube B, Dzama K and Banga C B. 2008. Genetic analysis of somatic cell score and udder type traits in South African Holstein cows. *South African Journal of Animal Science* 38(1).

Faraj H, Aslaminejad A A, Rokouei M and Nasrabadi M T. 2012. Estimation of Variance—Covariance Component for Somatic Cell Score in Iranian Holstein Cows. Proceedings of the 15th AAAP Animal Science Congress, 26–30 November 2012, Thammasat University, Rangsit Campus, Thailand.

Fazel A Y, Esmailizadeh A, Momen M and Asadi Fozi M. 2019. Importance of genotype by environment interaction on genetic analysis of milk yield in Iranian Holstein cows using a random regression model. *Animal Production Science*. DOI: 10.1071/AN17714

Gurmessa J and Melaku A. 2012. Effect of lactation stage, pregnancy, parity and age on yield and major components of raw milk in bred cross Holstein Friesian cows. *World Journal of Dairy and Food Sciences* 2(2): 146–42.

Khanzadeh H, Ghavi Hossein-Zadeh N and Naserani M. 2013. Estimation of genetic parameters and trends for milk fat and protein percentages in Iranian Holsteins using random regression test day model. *Archiv Tierzucht* 56(42): 412–26.

Koc A. 2008. A study of somatic cell counts in the milk of Holstein-Friesian. *Turkish Journal of Veterinary and Animal Sciences* 32(1): 13–18.

Lotfi Noghahi R, Farhang Far H, Naimipoor Yonesi H and Rashid R. 2007. Estimation of heritability, genetic and phenotypic trends of corrected milk test day records using Legendre function. 2nd Iranian Congress of Animal and Aquatic Sciences. May 26 and 28, *Iran Institute of Animal Science Research, Karaj*, pp. 1298–1301.

Miller R H, Norman H D, Wiggans G R and Wright J R. 2004. Relationship of test day Somatic cell score with test day and lactation milk yields. *Journal of Dairy Science* 87: 2299–2306.

Moharraty A. 2011. The effect of number of parturition on MUN and other milk economical compounds in Holstein cows. Reaserch project, Faculty of Agriculture, University of Shahr Kord, www.jkmt.ir/article/m2/188.pdf

Montaldo H H, Pelcastre-Cruz A, Castillo-Juárez H, Ruiz-López F J and Miglior F. 2017. Genotype × environment interaction for fertility and milk yield traits in Canadian, Mexican and US Holstein cattle. *Spanish Journal of Agricultural Research Volume* 15, Issue 2, e0402. https://doi.org/10.5424/sjar/2017152-10317

Moreira R P, Pinto L F B, Valloto A A and Pedrosa V B. 2019. Evaluation of genotype by environment interactions on milk production traits of Holstein cows in southern Brazil. *Asian Australasian Journal of Animal Science* 32: 459–66.

Pakdel A, Heidari Tabar M and Nejati Javaremi A. 2010. Fitting nonlinear models to describe milk cell score points of different breastfeeding Holstein cows in Iran. *Iranian Journal of Animal Science* 41(2): 185–92.

Pryce J E, Nielson B L, Veerkamp R F and Simm G. 1999. Genotype and feeding system effects and interactions for health and fertility traits in dairy cattle. *Livestock Production Science* 57: 193–201.

Rekik B, Ben Gara A, Ben Hamouda B and Hammami H. 2003. Fitting lactation curves of dairy cattle in different types of herds in Tunisia. *Livestock Production Science* 83: 309–15.

Strabel T and Misztal I. 1999. Genetic parameters for first and second lactation milk yields of Polish Black and White cattle with random regression test-day models. *Journal of Dairy Science* 82: 2805–10.

Tijani A. 2012. Non-genetic influence on test day milk and fat yields data of Moroccan Holstein-Friesian cows. Poster www.eaap.org/Previous_Annual_Meetings/…/Papers /G4_23. Tijani.pdf.

Tiezzi F, de Los Campos G, Gaddis K P and Maltecca C. 2017. Genotype by environment (climate) interaction improves genomic prediction for production traits in US Holstein cattle. *Journal of Dairy Science* 100: 2042–56.

Togashi K, Lin C Y, Atagi Y, Hagiya K, Sato J and Nakanishi T. 2008. Genetic characteristics of Japanese Holstein cows based on multiple-lactation random regression test-day animal models. *Livestock Science* 114: 194–201.

Veerkamp R F, Simm G and Oldham J D. 1994. Effects of interaction between genotype and feeding system on milk production, feed intake, efficiency and body tissue mobilization in dairy cows. *Livestock Production Science* 39: 229–41.

Zong-yun X, Li-juan Z and Jun-wen H. 2007. Effects of Se-Yeast in dairy ration on somatic cell and Anti-oxidation performance. *Chinese Journal of Animal Nutrition* 19(6).