Normalized ground states for Kirchhoff equations in \(\mathbb{R}^3 \) with a critical nonlinearity

Penghui Zhang\(^1\),* Zhiqing Han\(^1\),*

\(^1\)School of Mathematical Sciences, Dalian University of Technology, Dalian 116000, China

Abstract

This paper is concerned with the existence of ground states for a class of Kirchhoff type equation with combined power nonlinearities

\[- \left(a + b \int_{\mathbb{R}^3} |\nabla u(x)|^2 \right) \Delta u = \lambda u + |u|^{p-2}u + u^5 \quad \text{for some } \lambda \in \mathbb{R}, \quad x \in \mathbb{R}^3,\]

with prescribed \(L^2 \)-norm mass

\[\int_{\mathbb{R}^3} u^2 = c^2\]

in Sobolev critical case and proves that the equation has a couple of solutions \((u_c, \lambda_c) \in S(c) \times \mathbb{R}\) for any \(c > 0\), \(a, b > 0\) and \(\frac{14}{3} \leq p < 6\), where \(S(c) = \{ u \in H^1(\mathbb{R}^3) : \int_{\mathbb{R}^3} u^2 = c^2 \}\).

Keywords: Kirchhoff type equation; Critical nonlinearity; Normalized ground states

AMS Subject Classification: 37L05; 35B40; 35B41.

1 Introduction

In this paper, we study the existence of normalized ground states for the following Kirchhoff equation:

\[- \left(a + b \int_{\mathbb{R}^3} |\nabla u(x)|^2 \right) \Delta u = \lambda u + |u|^{p-2}u + u^5 \quad \text{for some } \lambda \in \mathbb{R}, \quad x \in \mathbb{R}^3,\]

with prescribed mass

\[\int_{\mathbb{R}^3} u^2 = c^2,\]

where \(a, b > 0\) are constants and \(\frac{14}{3} \leq p < 6\). The weak solutions for the problem correspond to the critical points for the energy functional

\[E(u) = \frac{a}{2} \int_{\mathbb{R}^3} |\nabla u|^2 + \frac{b}{4} \left(\int_{\mathbb{R}^3} |\nabla u|^2 \right)^2 - \frac{1}{p} \int_{\mathbb{R}^3} |u|^p - \frac{1}{6} \int_{\mathbb{R}^3} |u|^6\]

on the constraint manifold

\[S(c) = \{ u \in H^1(\mathbb{R}^3) : \Psi(u) = \frac{1}{2}c^2 \},\]

*Corresponding author: Email address: zhangpenghui@mail.dlut.edu.cn; hanzhiq@dlut.edu.cn
where $\Psi(u) = \frac{1}{2} \int_{\mathbb{R}^3} u^2$. Equation (1.1) is viewed as being nonlocal because of the appearance of the term $b \int_{\mathbb{R}^3} |\nabla u(x)|^2 \Delta u$, which indicates that equation (1.1) is no longer a pointwise identity. The nonlocal term also results in lack of weak sequential continuity of the energy function associated to (1.1), even we remove the critical term u^5. If \mathbb{R}^3 is replaced by a bounded domain $\Omega \subset \mathbb{R}^3$, then equation (1.1) describes the stationary state of the Kirchhoff type equation of the following type:

$$
\begin{cases}
 u_{tt} - (a + b \int_{\Omega} |\nabla u(x)|^2) \Delta u = f(x, u), & x \in \Omega, \\
 u = 0, & x \in \partial \Omega,
\end{cases}
$$

(1.2)

which is presented by Kirchhoff in [8]. It is an extension of D’Alembert’s wave equation by considering the effects of the length of strings during vibrations.

Problem (1.2) has received much attention after Lions [10] proposed an abstract framework to deal with the problem. We refer the readers to [1,2,3,4,5,6,11] and the work [2] seems to be the first one studying the critical Kirchhoff problem.

More recently, normalized solutions for elliptic equations have attracted considerable attentions, e.g. see [3,4,7,11,12,14-19] and the references therein. The work [7] is the first paper to deal with the existence of normalized solutions for a second order Schrödinger equation with a Sobolev sub-critical and L^2-supercritical nonlinearity and the papers [14-17] deal with the existence of normalized solutions for the problem in bounded domains. When $b = 0$, problem (1.1) becomes

$$
-\Delta u = \lambda u + |u|^{p-2} u + u^5, \quad x \in \mathbb{R}^3,
$$

with prescribed mass

$$
\int_{\mathbb{R}^3} u^2 = c^2,
$$

which was recently investigated by Soave in [18], where in case of $p \in (2,6)$ the author studied the existence and properties of the ground states for the problem.

For Kirchhoff type problems with a prescribed mass, it is shown that $p = \frac{14}{3}$ is the L^2-critical exponent for the minimization problem (1.2). The papers [9,22,23] consider the existence and properties of the L^2-subcritical constrained minimizers. In the case of $p \in (\frac{14}{3},6)$, the corresponding functional is unbounded from below on $S(c)$, [13] proved that there are infinitely many critical points by using a minimax procedure. However, few literature is concerned with normalized solutions for critical Kirchhoff problem. Inspired by [18], in this paper we attempt to study the critical Kirchhoff problem (1.1).

Our main result is the following:

Theorem 1.1. Let $a,b > 0$ and $\frac{14}{3} \leq p < 6$. Then problem (1.1) has a couple of solutions $(u_c, \lambda_c) \in S(c) \times \mathbb{R}$ for any $c > 0$. Moreover,

$$
E(u_c) = \inf_{u \in V(c)} E(u),
$$

(1.3)

where $V(c)$ is the Pohozaev manifold defined in lemma 2.1.
2 Preliminaries

To prove our theorem, we need some notations and useful preliminary results. Throughout this paper, we denote $B_r(z)$ the open ball of radius r with center at z, and $\| \cdot \|_p$ the usual norm of space $L^p(\mathbb{R}^3)$. Let $H = H^1(\mathbb{R}^3)$ with the usual norm of space $H^1(\mathbb{R}^3)$. Generic positive constant is denoted by C, C_1, or C_2..., which may change from line to line. Let $H = H^1(\mathbb{R}^3)$ with the usual norm of space $H^1(\mathbb{R}^3)$. We denote the best constant of $D_{1,2}^1(\mathbb{R}^3) \hookrightarrow L^6(\mathbb{R}^3)$ by $S = \inf_{u \in D_{1,2}^1(\mathbb{R}^3) \setminus \{0\}} \frac{\|\nabla u\|_2^2}{\|u\|_6^2}$.

In [20], we know that S is achieved by $U_\varepsilon(x) = C_{\varepsilon}^{\frac{1}{2}} e^{\frac{3}{2} \varepsilon^2 s^2 u(x)}$.

The Pohozaev identity plays an important role in our discussion. We give it in the following lemma; for more details, see [7].
Lemma 2.1. Let \((u, \lambda) \in S(c) \times \mathbb{R}\) be a weak solution of equation (1.1). Then \(u\) belongs to the set
\[
V(c) \triangleq \{ u \in H : P(u) = 0 \}
\]
where
\[
P(u) = a \| \nabla u \|_2^2 + b \| \nabla u \|_4^4 - \beta_p \| u \|_p^p - \| u \|_6^6.
\]
For any \(u \in S(c)\) and \(s \in \mathbb{R}\), we define \(\Phi_u(s) \triangleq I(u, s)\). Then
\[
(\Phi_u)'(s) = a e^{s \frac{1}{2}} \| \nabla u \|_2^2 + b e^{4s \frac{1}{2}} \| \nabla u \|_4^4 - \beta_p e^{p \frac{1}{2}} \| u \|_p^p - e^{6s \frac{1}{2}} \| u \|_6^6
\]
\[
= a \| \nabla H(u, s) \|_2^2 + b \| \nabla H(u, s) \|_4^4 - \beta_p \| H(u, s) \|_p^p - \| H(u, s) \|_6^6.
\]
Therefore, we have
Lemma 2.2. For any \(u \in S(c), s \in \mathbb{R}\) is a critical point for \(\Phi_u(s)\) if and only if \(H(s, u) \in V(c)\).

Remark 2.3. The map \((u, s) \in \mathbb{H} \mapsto H(u, s) \in H\) is continuous; (2.4) see \[4, Lemma3.5\].

Lemma 2.4. \[11, Lemma 3.3\] For \(t, s > 0\), the following system
\[
\begin{align*}
x(t, s) &= t - a S(t + s)^{\frac{1}{2}} = 0 \\
y(t, s) &= s - b S^2 (t + s)^{\frac{3}{2}} = 0
\end{align*}
\]
has a unique solution \((t_0, s_0)\). Moreover, if \(x(t, s) \geq 0\) and \(y(t, s) \geq 0\), then \(t \geq t_0, t \geq t_0\).

3 Characterization of mountain pass level

As in \[7,12\], we firstly prove that \(I(u, s)\) has the mountain pass geometry on \(S(c) \times \mathbb{R}\) in the following lemmas.

Lemma 3.1. Assume that \(a, b > 0\) and \(\frac{14}{3} \leq p < 6\). Let \(u \in S(c)\) be arbitrary fixed. Then
\[
(1) \int_{\mathbb{R}^3} |\nabla H(u, s)|^2 \to 0, \text{ and } I(u, s) \to 0^+, \text{ as } s \to -\infty;
\]
\[
(2) \int_{\mathbb{R}^3} |\nabla H(u, s)|^2 \to +\infty, \text{ and } I(u, s) \to -\infty, \text{ as } s \to +\infty.
\]

Proof. The proof is trivial from the facts
\[
\| \nabla H(s, u) \|_2^2 = e^{2s} \| \nabla u \|_2^2
\]
and
\[
I(u, s) = E(H(u, s)) = \frac{a}{2} e^{2s} \| \nabla u \|_2^2 + \frac{b}{4} e^{4s} \| \nabla u \|_4^4 - \frac{e^{p \frac{1}{2}}}{p} \| u \|_p^p - \frac{e^{6s \frac{1}{2}}}{6} \| u \|_6^6.
\]

\[\square\]
Lemma 3.2. Let $a, b, c > 0$ and $\frac{14}{3} \leq p < 6$. Then there exists $K_c > 0$ such that

$$P(u), E(u) > 0 \text{ for all } u \in A_c, \quad \text{and } \quad 0 < \sup_{u \in A_c} E(u) < \inf_{u \in B_c} E(u)$$

with

$$A_c = \{ u \in S_c : \int_{\mathbb{R}^3} |\nabla u|^2 \leq K_c \}, \quad B_c = \{ u \in S_c : \int_{\mathbb{R}^3} |\nabla u|^2 = 2K_c \}.$$

Proof. Let $K > 0$ be arbitrary fixed and suppose that $u, v \in S(c)$ are such that $\|\nabla u\|^2_2 \leq K$ and $\|\nabla v\|^2_2 = 2K$. Then, for $K > 0$ small enough, using (2.3) and $p\beta \geq 4$, there exist two constants C_1 and C_2 such that

$$P(u) \geq a\|\nabla u\|^2_2 + b\|\nabla u\|^4_2 - C_1\|\nabla u\|^p\beta_2 - C_2\|\nabla u\|^{6}_2,$$

$$E(u) \geq \frac{a}{2}\|\nabla u\|^2_2 + \frac{b}{4}\|\nabla u\|^4_2 - C_1\|\nabla u\|^p\beta_2 - C_2\|\nabla u\|^6_2$$

and

$$E(v) - E(u) \geq E(v) - \frac{a}{2}\|\nabla u\|^2_2 - \frac{b}{4}\|\nabla u\|^4_2$$

$$\geq \frac{aK}{2} + \frac{bK^2}{2} - C_1\|\nabla v\|^p\beta_2 - C_2\|\nabla v\|^6_2$$

$$\geq \frac{aK}{2} + \frac{bK^2}{2} - C_1 K^\frac{p\beta}{2} - C_2 K^3.$$

Therefore, by the above inequalities, it follows that there exists K_c small enough such that

$$P(u), E(u) > 0 \text{ for all } x \in A_c, \quad \text{and } \quad 0 < \sup_{u \in A_c} E(u) < \inf_{u \in B_c} E(u)$$

with

$$A_c = \{ u \in S_c : \int_{\mathbb{R}^3} |\nabla u|^2 \leq K_c \}, \quad B_c = \{ u \in S_c : \int_{\mathbb{R}^3} |\nabla u|^2 = 2K_c \}. \quad \square$$

Next, we give a characterization of mountain pass level for $I(u, s)$ and $E(u)$. E^d denotes the set $\{ u \in S_c : E(u) \leq d \}$.

Proposition 3.3. Under assumptions that $a, b > 0$ and $\frac{14}{3} \leq p < 6$, let

$$\tilde{\gamma}_c = \inf_{\tilde{h} \in \Gamma_c} \max_{t \in [0,1]} I(\tilde{h}(t))$$

where

$$\tilde{\Gamma}_c = \{ \tilde{h} \in C([0,1], S(c) \times \mathbb{R}) : \tilde{h}(0) \in (A_c, 0), \tilde{h}(1) \in (E^0, 0) \},$$

and

$$\tilde{\Gamma}_c = \Gamma_c \cup \{ (\tilde{h}(0), \tilde{h}(1)) : \tilde{h} \in \tilde{\Gamma}_c \}.$$
and
\[\gamma_c = \inf_{h \in \Gamma_c} \max_{t \in [0,1]} E(h(t)) \]
where
\[\Gamma_c = \{ h \in C([0,1], S(c)) : h(0) \in A_c, h(1) \in E^0 \}. \]

Then we have
\[\tilde{\gamma}_c = \gamma_c. \]

Proof. Since \(\Gamma_c \times \{0\} \subseteq \tilde{\Gamma}_c \), we have \(\tilde{\gamma}_c \leq \gamma_c \). So, it remains to prove that \(\tilde{\gamma}_c \geq \gamma_c \). For any \(\tilde{h}(t) = (\tilde{h}_1(t), \tilde{h}_2(t)) \in \tilde{\Gamma}_c \), we set \(h(t) = H(\tilde{h}_1(t), \tilde{h}_2(t)) \). Then \(h(t) \in \Gamma_c \) and
\[\max_{t \in [0,1]} I(h(t)) = \max_{t \in [0,1]} E(H(\tilde{h}_1(t), \tilde{h}_2(t))) = \max_{t \in [0,1]} E(h(t)), \]
which shows that \(\tilde{\gamma}_c \geq \gamma_c \). \(\square \)

In the following proposition, we give the existence of \((PS)_{\tilde{\gamma}_c}\) sequence for \(I(u, s) \). Its proof is by a standard argument using the Ekeland’s Variational principle and constructing pseudo-gradient flow.

Proposition 3.4. Let \(\{g_n\} \subset \tilde{\Gamma}_c \) be such that
\[\max_{t \in [0,1]} I(g_n(t)) \leq \tilde{\gamma}_c + \frac{1}{n}. \]
Then there exists a sequence \(\{(u_n, s_n)\} \subset S(c) \times \mathbb{R} \) such that

(1) \(I(u_n, s_n) \in [\gamma_c - \frac{1}{n}, \gamma_c + \frac{1}{n}] \);

(2) \(\min_{t \in [0,1]} \| (u_n, s_n) - g_n(t) \|_{H} \leq \frac{1}{\sqrt{n}} \);

(3) \(\| I'|_{S(c) \times \mathbb{R}}(u_n, s_n) \| \leq \frac{2}{\sqrt{n}} \) i.e.
\[|\langle I'(u_n, s_n), z \rangle_{H^{-1} \times H} | \leq \frac{2}{\sqrt{n}} \| z \|_H \]
for all \(z \in \tilde{T}_{(u_n, s_n)} \triangleq \{ (z_1, z_2) \in H : \langle u_n, z_1 \rangle_{L^2} = 0 \} \).

Proposition 3.5. Under the assumptions \(a, b > 0 \) and \(\frac{4}{3} \leq p < 6 \), there exists a sequence \(\{v_n\} \subset S(c) \) such that

(1) \(E(v_n) \to \gamma_c \), as \(n \to \infty \);

(2) \(P(v_n) \to 0 \), as \(n \to \infty \);
\((3) \) \(E'|_{S(c)}(v_n) \to 0, \) as \(n \to \infty \) i.e.

\[
\langle E'(v_n), h \rangle_{H^{-1} \times H} \to 0
\]

uniformly for all \(h \) satisfying

\[
\|h\|_H \leq 1 \quad \text{where} \quad h \in T_{v_n} \triangleq \{h \in H : \langle v_n, h \rangle_{L^2} = 0\}.
\]

Proof. By Proposition \[3.3\] \(\tilde{\gamma}_c = \gamma_c \). Pick \(\{g_n = ((g_n)_1, 0)\} \subset \tilde{\Gamma}_c \) such that

\[
\max_{t \in [0,1]} I(g_n(t)) \leq \tilde{\gamma}_c + \frac{1}{n}.
\]

It follows from Proposition \[3.3\] that there exists a sequence \(\{(u_n, s_n)\} \subset S(c) \times \mathbb{R} \) such that, as \(n \to \infty \), one has

\[
\begin{align*}
I(u_n, s_n) &\to \gamma_c, \quad \text{(3.1)} \\
 s_n &\to 0, \quad \text{(3.2)} \\
 \partial_s I(u_n, s_n) &\to 0. \quad \text{(3.3)}
\end{align*}
\]

Let \(v_n = H(u_n, s_n) \). Then \(E(v_n) = I(u_n, s_n) \) and, by (3.1), (1) holds. For the proof of (2), we notice that

\[
\partial_s I(u_n, s_n) = ae^{2s_n} \|\nabla u_n\|_2^2 + be^{4s_n} \|\nabla u_n\|_2^4 - e^{p\beta s_n} \|u_n\|_p^p - e^{6s_n} \|u_n\|_6^6
\]

\[
= a \|\nabla v_n\|_2^2 + b \|\nabla v_n\|_2^4 - \beta \|v_n\|_p^p - \|v_n\|_6^6
\]

\[
= P(v_n),
\]

which implies (2) by (3.3).
For the proof of (3), let \(h_n \in T_{v_n} \). We have

\[
\langle E'(v_n), h_n \rangle_{H^{-1} \times H} = a \int_{\mathbb{R}^3} \nabla v_n(x) \nabla h_n(x) + b \int_{\mathbb{R}^3} |\nabla v_n(x)|^2 \int_{\mathbb{R}^3} \nabla v_n(x) \nabla h_n(x)
\]

\[
- \int_{\mathbb{R}^3} |v_n(x)|^{p-2} v_n(x) h_n(x) - \int_{\mathbb{R}^3} (v_n(x))^5 h_n(x)
\]

\[
= ae^{\frac{5\alpha_n}{2}} \int_{\mathbb{R}^3} \nabla u_n(e^{\alpha_n} x) \nabla h_n(x) - e^{\frac{15\alpha_n}{2}} \int_{\mathbb{R}^3} (u_n(e^{\alpha_n} x))^5 h_n(x)
\]

\[
+ be^{\frac{15\alpha_n}{2}} \int_{\mathbb{R}^3} |\nabla u_n(e^{\alpha_n} x)|^2 \int_{\mathbb{R}^3} \nabla u_n(e^{\alpha_n} x) \nabla h_n(x)
\]

\[
- e^{\frac{3(p-1)\alpha_n}{2}} \int_{\mathbb{R}^3} |u_n(e^{\alpha_n} x)|^{p-2} u_n(e^{\alpha_n} x) h_n(x)
\]

\[
= ae^{2\alpha_n} \int_{\mathbb{R}^3} \nabla u_n(x) e^{-\frac{3\alpha_n}{2}} \nabla h_n(e^{-\alpha_n} x)
\]

\[
+ be^{4\alpha_n} \int_{\mathbb{R}^3} |\nabla u_n(x)|^2 \int_{\mathbb{R}^3} \nabla u_n(x) e^{-\frac{5\alpha_n}{2}} \nabla h_n(e^{-\alpha_n} x)
\]

\[
- e^{p\alpha_n} \int_{\mathbb{R}^3} |u_n(x)|^{p-2} u_n(x) e^{-\frac{3\alpha_n}{2}} h_n(e^{-\alpha_n} x)
\]

\[
- e^{6\alpha_n} \int_{\mathbb{R}^3} (u_n(x))^5 e^{-\frac{3\alpha_n}{2}} h_n(e^{-\alpha_n} x).
\]

Setting \(\hat{h}_n(x) = e^{-\frac{3\alpha_n}{2}} h_n(e^{-\alpha_n} x) \), then

\[
\langle I'(u_n, s_n), (\hat{h}_n, 0) \rangle_{H^{-1} \times H} = \langle E'(v_n), h_n \rangle_{H^{-1} \times H}.
\]

It is easy to see that

\[
\langle u_n(x), \hat{h}_n(x) \rangle_{L^2} = \int_{\mathbb{R}^3} u_n(x) e^{\frac{3\alpha_n}{2}} h_n(e^{-\alpha_n} x)
\]

\[
= \int_{\mathbb{R}^3} u_n(e^{\alpha_n} x) e^{\frac{3\alpha_n}{2}} h_n(x)
\]

\[
= \int_{\mathbb{R}^3} v_n(x) h_n(x) = 0.
\]

So, we have that \((\hat{h}_n(x), 0) \in \tilde{T}_{(u_n, s_n)} \). On the other hand,

\[
\|\hat{h}_n(x), 0\|_{H^{-1}}^2 = \|\hat{h}_n(x)\|_H^2
\]

\[
= \|h_n(x)\|_H^2 + e^{-2\alpha_n} \|\nabla h_n(x)\|_2^2
\]

\[
\leq C\|\hat{h}_n(x)\|_H^2,
\]

where the last inequality holds by (3.3). Thus, (3) is proved. \(\square \)

In the following lemma, we give an upper bound estimate for the mountain pass level \(\gamma_c \).
Lemma 3.6. Under assumptions $a, b > 0$ and $\frac{14}{3} \leq p < 6$, then $\gamma_c < \gamma_c^* \triangleq \frac{abS^4}{4} + \frac{b^3S^6}{24} + \frac{(4a + b^2S^2)^2}{24}$, where S is defined in (2.1).

Proof. Let $\varphi(x) \in C_0^\infty(B_2(0))$ be a radial cut-off function such that $0 \leq \varphi(x) \leq 1$ and $\varphi(x) \equiv 1$ on $B_1(0)$. Then we take $u_\varepsilon = \varphi(x)U_\varepsilon$ (U_ε defined in (2.2)) and

$$v_\varepsilon = \frac{u_\varepsilon}{\|u_\varepsilon\|_2} \in S(c) \cap H^1_\varepsilon.$$

We take $\varepsilon = 1$ and define

$$K_1 \triangleq \|\nabla U_1\|_2^2, \quad K_2 \triangleq \|U_1\|_6^6, \quad K_3 \triangleq \|U_1\|_p^p.$$

According to [18 Appendix A], we have

$$\begin{aligned}
K_1/K_2 &= S, \quad \|\nabla u_\varepsilon\|_2^2 = K_1 + O(\varepsilon), \quad \|u_\varepsilon\|_6^2 = K_2 + O(\varepsilon^2), \\
\|u_\varepsilon\|_p^p &= \varepsilon^{3-\frac{p}{2}} (K_3 + O(\varepsilon^{p-3})), \quad \|u_\varepsilon\|_2^2 = O(\varepsilon^2) + \omega \left(\int_0^2 \varphi(r)dr \right) \varepsilon,
\end{aligned} \tag{3.4}$$

where ω is the area of the unit sphere in \mathbb{R}^3. Define

$$\Psi_{v_\varepsilon}(s) \triangleq \frac{a}{2} \varepsilon^{2s}\|\nabla v_\varepsilon\|_2^2 + \frac{b}{4} \varepsilon^{4s}\|\nabla v_\varepsilon\|_2^4 - \frac{e^{6s}}{6}\|v_\varepsilon\|_6^6.$$

Then

$$(\Psi)'_{v_\varepsilon}(s) = ae^{2s}\|\nabla v_\varepsilon\|_2^2 + be^{4s}\|\nabla v_\varepsilon\|_2^4 - e^{6s}\|v_\varepsilon\|_6^6.$$

Step 1: It is easy to see that $\Psi_{v_\varepsilon}(s)$ has a unique critical point s_0, which is a strict maximum point such that

$$e^{2s_0} = \frac{b\|\nabla v_\varepsilon\|_2^4 + \sqrt{b^2\|\nabla v_\varepsilon\|_2^8 + 4a\|\nabla v_\varepsilon\|_2^4\|v_\varepsilon\|_6^6}}{2\|v_\varepsilon\|_6^6} \tag{3.5}$$

and the maximum level of $\Psi_{v_\varepsilon}(s)$ is

$$\begin{aligned}
\Psi_{v_\varepsilon}(s_0) &= \frac{a}{2}\|\nabla v_\varepsilon\|_2^2 \left(\frac{b\|\nabla v_\varepsilon\|_2^4 + \sqrt{b^2\|\nabla v_\varepsilon\|_2^8 + 4a\|\nabla v_\varepsilon\|_2^4\|v_\varepsilon\|_6^6}}{2\|v_\varepsilon\|_6^6} \right) \\
&\quad + \frac{b}{4}\|\nabla v_\varepsilon\|_2^4 \left(\frac{b\|\nabla v_\varepsilon\|_2^4 + \sqrt{b^2\|\nabla v_\varepsilon\|_2^8 + 4a\|\nabla v_\varepsilon\|_2^4\|v_\varepsilon\|_6^6}}{2\|v_\varepsilon\|_6^6} \right)^2 \\
&\quad - \frac{1}{6}\|v_\varepsilon\|^6_6 \left(\frac{b\|\nabla v_\varepsilon\|_2^4 + \sqrt{b^2\|\nabla v_\varepsilon\|_2^8 + 4a\|\nabla v_\varepsilon\|_2^4\|v_\varepsilon\|_6^6}}{2\|v_\varepsilon\|_6^6} \right)^3 \\
&= \frac{ab\|\nabla v_\varepsilon\|_2^6}{4\|v_\varepsilon\|_6^6} + \frac{b^3\|\nabla v_\varepsilon\|_2^{12}}{24\|v_\varepsilon\|_6^{12}} + \frac{(b^2\|\nabla v_\varepsilon\|_2^8 + 4a\|\nabla v_\varepsilon\|_2^4\|v_\varepsilon\|_6^6)^{\frac{3}{2}}}{24\|v_\varepsilon\|_6^{12}}. \tag{3.6}
\end{aligned}$$
By (3.4), we conclude that
\[
\frac{ab \| \nabla v_\varepsilon \|_6^6}{4 \| v_\varepsilon \|_6^6} = \frac{ab \| \nabla u_\varepsilon \|_6^6}{4 \| u_\varepsilon \|_6^6} = \frac{ab}{4} \left(\frac{K_1 + O(\varepsilon)}{K_2 + O(\varepsilon^2)} \right)^3 = \frac{ab}{4} S^3 + O(\varepsilon);
\]
\[
\frac{b^3 \| \nabla v_\varepsilon \|_6^{12}}{24 \| v_\varepsilon \|_6^6} = \frac{b^3 \| \nabla u_\varepsilon \|_6^{12}}{24 \| u_\varepsilon \|_6^6} = \frac{b^3}{24} \left(\frac{K_1 + O(\varepsilon)}{K_2 + O(\varepsilon^2)} \right)^6 = \frac{b^3}{24} S^6 + O(\varepsilon).
\]

For the last term in (3.6)
\[
\left(\frac{b^2 \| \nabla v_\varepsilon \|_2^2}{24 \| v_\varepsilon \|_6^6} + 4a \| \nabla v_\varepsilon \|_2^2 \| v_\varepsilon \|_6^6 \right)^\frac{3}{2} = \frac{1}{24} \left((b^2 K_1 / K_2 + O(\varepsilon))^4 + 4a (K_1 / K_2 + O(\varepsilon)) \right)^\frac{3}{2}
\]
\[
= \frac{1}{24} \left(4a S + b^2 S^4 + O(\varepsilon) \right)^\frac{3}{2}
\]
\[
= \frac{1}{24} (4a S + b^2 S^4)^\frac{\beta}{2} + O(\varepsilon).
\]

By the above estimates, one has
\[
\Psi_{v_\varepsilon}(s_0) = \frac{ab S^3}{4} + \frac{b^3 S^6}{24} + \frac{4a S + b^2 S^4}{24}^\frac{\beta}{2} + O(\varepsilon).
\]

(3.7)

Step 2: We give an upper bound estimate for \(\Phi_{v_\varepsilon}(s) = I(v_\varepsilon, s) \). Note that
\[
(\Phi_{v_\varepsilon})'(s) = ae^{2s} \| \nabla v_\varepsilon \|_2^2 + be^{4s} \| \nabla v_\varepsilon \|_2^2 \| v_\varepsilon \|_6^6 \beta - \beta_p e^{p\beta \varepsilon s} \| v_\varepsilon \|_p^p - e^{6s} \| v_\varepsilon \|_6^6.
\]

Obviously, \(\Phi_{v_\varepsilon}(s) \) has a unique critical point \(s_1 \) and
\[
e^{2s_1} \leq e^{2s_0} = \frac{b \| \nabla v_\varepsilon \|_2^2 + \sqrt{b^2 \| \nabla v_\varepsilon \|_2^2 + 4a \| \nabla v_\varepsilon \|_2^2 \| v_\varepsilon \|_6^6}}{2 \| v_\varepsilon \|_6^6},
\]

Since
\[
(\Phi_{v_\varepsilon})'(s_1) = e^{2s_1} \| \nabla v_\varepsilon \|_2^2 + e^{4s_1} \| \nabla v_\varepsilon \|_2^2 \| v_\varepsilon \|_6^6 \beta - \beta_p e^{p\beta \varepsilon s_1} \| v_\varepsilon \|_p^p - e^{6s_1} \| v_\varepsilon \|_6^6 = 0,
\]
in view of the definition of \(\beta_p \) with \(p \beta \geq 4 \) and (3.4), we have
\[
e^{2s_1} = \frac{b \| \nabla v_\varepsilon \|_2^2}{\| v_\varepsilon \|_6^6} + e^{-2s_1} a \| \nabla v_\varepsilon \|_2^2 \| v_\varepsilon \|_6^6 - \beta_p e^{2s_1} \| v_\varepsilon \|_p^p \| v_\varepsilon \|_6^6
\]
\[
\geq \frac{b \| \nabla u_\varepsilon \|_2^2}{\| v_\varepsilon \|_6^6} + e^{-2s_1} a \| \nabla v_\varepsilon \|_2^2 \| v_\varepsilon \|_6^6 - \beta_p e^{2s_1} \| v_\varepsilon \|_p^p \| v_\varepsilon \|_6^6
\]
\[
= \frac{b}{c^2} \| \nabla u_\varepsilon \|_2^2 \| u_\varepsilon \|_6^6 \| v_\varepsilon \|_6^6 + \frac{2 \| v_\varepsilon \|_6^6}{\| v_\varepsilon \|_p^p} \left(\frac{b \| \nabla v_\varepsilon \|_2^2 + \sqrt{b^2 \| \nabla v_\varepsilon \|_2^2 + 4a \| \nabla v_\varepsilon \|_2^2 \| v_\varepsilon \|_6^6}}{2 \| v_\varepsilon \|_6^6} \right)^{\frac{(p \beta - 4)}{2}}
\]
\[
= C_1 \varepsilon + O(\varepsilon^2) + C_2 \varepsilon + O(\varepsilon^2) - C_3 (\varepsilon + O(\varepsilon^2)) \frac{\beta}{2} - \frac{4p}{\beta}.
\]

(3.8)
In view of
\[
\Phi_{v_\varepsilon}(s_1) = \Psi_{v_\varepsilon}(s_1) - \frac{e^{p\beta p} \varepsilon}{p} \|v_\varepsilon\|_p^p
\]
\[
\leq \Psi_{v_\varepsilon}(s_0) - \frac{e^{p\beta p} \varepsilon}{p} \|v_\varepsilon\|_p^p
\]
and
\[
\|v_\varepsilon\|_p^p = C_4 \varepsilon^{3-p} + O(1),
\]
letting \(\varepsilon \to 0\), we have
\[
\Phi_{v_\varepsilon}(s_1) \leq \frac{abS^3}{4} + \frac{b^3S^6}{24} + \frac{(4aS + b^2S^4)^{3/2}}{24} + O(\varepsilon) - \frac{e^{p\beta p} \varepsilon}{p} \|v_\varepsilon\|_p^p
\]
\[
\leq \frac{abS^3}{4} + \frac{b^3S^6}{24} + \frac{(4aS + b^2S^4)^{3/2}}{24} + O(\varepsilon) - (e^{2s_1})^{p\beta p} \frac{\|v_\varepsilon\|_p^p}{p}
\]
\[
\leq \frac{abS^3}{4} + \frac{b^3S^6}{24} + \frac{(4aS + b^2S^4)^{3/2}}{24} + O(\varepsilon) - C_5 \varepsilon^{(4-p)/p}
\]
\[
< \frac{abS^3}{4} + \frac{b^3S^6}{24} + \frac{(4aS + b^2S^4)^{3/2}}{24},
\]
by (3.7) and (3.8).

Step 3: Take \(\varepsilon\) small enough such that \(v_\varepsilon\) satisfies the above inequality. By Lemma 3.1 and (2.4), there exist \(s^- \ll -1\) and \(s^+ \gg 1\) such that
\[
h_{v_\varepsilon} : \tau \in [0, 1] \mapsto H(v_\varepsilon, (1 - \tau)s^- + \tau s^+) \in \Gamma.
\]
Therefore,
\[
\gamma_c \leq \max_{\tau \in [0, 1]} E(h_{v_\varepsilon}(\tau)) \leq \Phi_{v_\varepsilon}(s_1) \leq \frac{abS^3}{4} + \frac{b^3S^6}{24} + \frac{(4aS + b^2S^4)^{3/2}}{24}.
\]
By letting \(\gamma_c^* \triangleq \frac{abS^3}{4} + \frac{b^3S^6}{24} + \frac{(4aS + b^2S^4)^{3/2}}{24}\), the conclusion follows from the above inequality.

Let \(m(c) \triangleq \inf_{u \in V(c)} E(u)\), where \(V(c)\) is the Pohozaev manifold. We have the following relationship between \(\gamma_c\) and \(m(c)\).

Lemma 3.7. Under the assumptions \(a, b > 0\) and \(\frac{14}{3} \leq p < 6\), we have that
\[
m(c) = \gamma_c > 0.
\]

Proof. **Step 1:** We claim that for every \(u \in S(c)\), there exists a unique \(t_u \in \mathbb{R}\) such that \(H(u, t_u) \in V(c)\), where \(t_u\) is a strict maximum point for \(\Phi_u(s)\) at a positive level.
The existence of t_u follows from Lemma 2.2. The uniqueness is from the following reasoning. Noticing that

$$(\Phi u)'(s) = 2ae^2\|\nabla u\|^2_2 + 4be^4\|\nabla u\|^4_2 - p\beta_p^2 e^{p\beta_p s}\|u\|_p^p - 6e^{6s}\|u\|_6^6$$

$$(\Phi u)''(s) = 2a\|\nabla H(u, s)\|^2_2 + 4b\|\nabla H(u, s)\|^4_2 - p\beta_p^2 \|H(u, s)\|_p^p - 6\|H(u, s)\|_6^6,$$

combining with $(\Phi u)'(t_u) = 0$, we have

$$(\Phi u)''(t_u) = -2a\|\nabla H(u, t_u)\|^2_2 - \beta_p(p\beta_p - 4)\|H(u, t_u)\|_p^p - 2\|H(u, t_u)\|_6^6 < 0.$$
The function $\tilde{P}(\tau)$ is continuous by (2.4), and hence we deduce that there exists $\tilde{\tau} \in (0, 1)$ such that $\tilde{P}(\tilde{\tau}) = 0$, which implies that $H(\tilde{h}_1(\tilde{\tau}), \tilde{h}_2(\tilde{\tau})) \in V(c)$ and

$$\max_{\tau \in [0, 1]} I(\tilde{h}(\tau)) = \max_{\tau \in [0, 1]} E(H(\tilde{h}_1(\tau), \tilde{h}_2(\tau))) \geq \inf_{u \in V(c)} E(u).$$

So, we infer that $\tilde{\gamma}_c = \gamma_c \geq m(c)$.

Step 4: At last, we will prove that $\gamma_c > 0$.

If $u \in V(c)$, then $P(u) = 0$ and by GNS inequality (2.3), we deduce that

$$a \|
abla u\|^2_2 + b \|
abla u\|^4_2 \leq C \|
abla u\|^\beta_p + C \|
abla u\|^6_2,$$

which implies that there exists $\delta > 0$ such that $\inf_{V(c)} \|
abla u\|^2_2 \geq \delta$. For any $u \in V(c)$, in view of $p\beta_p \geq 4$, we obtain that

$$E(u) = E(u) - \frac{1}{4} P(u) = \frac{a}{4} \|
abla u\|^2_2 + \left(\frac{\beta_p}{4} - \frac{1}{p}\right) \|u\|^p_p + \frac{1}{12} \|u\|^6_6 \geq \frac{a\delta}{4} > 0.$$

Thus, $\gamma_c > 0$.

4 Proof of Theorem 1.1

Choosing a PS sequence $\{v_n\}$ as in Proposition 3.5 and applying Lagrange multipliers rule to (3) of Proposition 3.5, there exists a sequence $\{\lambda_n\} \subset \mathbb{R}$ such that

$$E'(v_n) - \lambda_n \Psi'(v_n) \rightarrow 0 \quad \text{in} \quad H^{-1}. \tag{4.1}$$

Step 1: We claim that v_n is bounded in H and up to a subsequence, $v_n \rightharpoonup v$ in H. Since $P(v_n) \rightarrow 0$, we have

$$E(v_n) + o_n(1) = E(v_n) - \frac{1}{4} P(v_n) = \frac{a}{4} \|
abla v_n\|^2_2 + \left(\frac{\beta_p}{4} - \frac{1}{p}\right) \|v_n\|^p_p + \frac{1}{12} \|v_n\|^6_6.$$

Then, using the fact $p\beta_p \geq 4$, we deduce that

$$\frac{a}{4} \|
abla v_n\|^2_2 \leq \gamma_c + o_n(1).$$

Thus, v_n is bounded in H. Since the embedding $H^1_1(\mathbb{R}^3) \hookrightarrow L^q(\mathbb{R}^3)$ is compact for $q \in (2, 6)$, we deduce that there exists $v \in H^1_1(\mathbb{R}^3)$ such that, up to a subsequence, $v_n \rightharpoonup v$ in H.

Step 2: We will prove that, up to a subsequence, $\lambda_n \rightarrow \lambda < 0$.

Since v_n is bounded in H, by (1.1), we know that

$$E'(v_n)v_n - \lambda_n \Psi'(v_n)v_n = o_n(1).$$

Therefore,

$$\lambda_n \|v_n\|^2_2 = a \|
abla v_n\|^2_2 + b \|
abla v_n\|^4_2 - \|v_n\|^p_p - \|v_n\|^6_6. \tag{4.2}$$
Using the fact that $\|v_n\|_2^2 = c^2$ and $\{v_n\}$ is bounded in H, we deduce that $\{\lambda_n\}$ is bounded. Hence, up to a subsequence, $\lambda_n \to \lambda \in \mathbb{R}$. Putting $P(v_n) \to 0$ into (4.2), we obtain that

$$
\lambda c^2 = \lim_{n \to \infty} a \|\nabla v_n\|_2^2 + b \|\nabla v_n\|_2^4 - \|v_n\|_p^p - \|v_n\|_6^6 = (\beta_p - 1)\|v\|_p^p \leq 0.
$$

(4.3)

Hence, $\lambda = 0$ if and only if $v \equiv 0$. Therefore, we only need to prove that $v \not\equiv 0$. We assume by contradiction that $v \equiv 0$. Up to a subsequence, let $\|\nabla v_n\|_2^2 \to l \in \mathbb{R}$. Since $P(v_n) \to 0$ and $v_n \to 0$ in $L^p(\mathbb{R}^3)$, we have

$$
\|v_n\|_6^6 \to a l + b l^2.
$$

By (2.1), one has

$$
(al + bl^2) \frac{1}{l} \leq \frac{l}{S}.
$$

So, we have

$$
l = 0 \quad \text{or} \quad l \geq \frac{b S^3}{2} + \sqrt{\frac{b^2 S^6}{4} + a S^3}.
$$

If $l > 0$, then we have

$$
m(c) + o_n(1) = E(v_n) = E(v_n) - \frac{1}{6} P(v_n) + o_n(1)
$$

$$
= \frac{a}{3} \|\nabla v_n\|_2^2 + \frac{b}{12} \|\nabla v_n\|_2^4 + o_n(1)
$$

$$
= \frac{a}{3} l + \frac{b}{12} l^2 + o_n(1).
$$

Hence $m(c) = \frac{a}{6} l + \frac{b}{12} l^2$. On the other hand, by $l \geq \frac{b S^3}{2} + \sqrt{\frac{b^2 S^6}{4} + a S^3}$, we infer that

$$
m(c) = \frac{a}{3} l + \frac{b}{12} l^2 \geq \frac{a}{3} \left(\frac{b S^3}{2} + \sqrt{\frac{b^2 S^6}{4} + a S^3} \right) + \frac{b}{12} \left(\frac{b S^3}{2} + \sqrt{\frac{b^2 S^6}{4} + a S^3} \right)^2
$$

$$
= \frac{a b S^3}{4} + \frac{b^3 S^6}{24} + \frac{(4a S + b^2 S^4)^{\frac{1}{2}}}{24} = \gamma^*.
$$

By Lemma 3.6, this contradicts to $m(c) = \gamma_c < \gamma^*$. If $l = 0$, then we have

$$
\|\nabla v_n\|_2^2 \to 0, \quad \|v_n\|_6^6 \to 0,
$$

implying that $E(v_n) \to 0$, which is a contradiction to $\gamma_c > 0$.

Step 3: Since $\lambda < 0$, we can define an equivalent norm of H

$$
\|u\|^2 = a \int_{\mathbb{R}^3} |\nabla u(x)|^2 dx - \lambda \int_{\mathbb{R}^3} |u(x)|^2 dx.
$$

Up to a subsequence, let $\lim_{n \to \infty} \|\nabla v_n\|_2^2 = A^2 > 0$. Then v satisfies

$$
a \int_{\mathbb{R}^3} \nabla v \nabla \phi + b A^2 \int_{\mathbb{R}^3} \nabla v \nabla \phi - \lambda \int_{\mathbb{R}^3} v \phi - \int_{\mathbb{R}^3} |v|^{p-2} v \phi - \int_{\mathbb{R}^3} v^5 \phi = 0
$$

(4.5)
for any $\phi \in H^1_0(\mathbb{R}^3)$. Let

$$J_{\lambda}(u) = \frac{a}{2} \int_{\mathbb{R}^3} |\nabla u|^2 - \frac{\lambda}{2} \int_{\mathbb{R}^3} |u|^2 + \frac{bA^2}{2} \int_{\mathbb{R}^3} |\nabla u|^2 - \frac{1}{p} \int_{\mathbb{R}^3} |u|^p - \frac{1}{6} \int_{\mathbb{R}^3} |u|^6.$$

Then we have $J'_\lambda(v) = 0$ and $\{v_n\}$ is a PS sequence of $J_\lambda(u)$. The Pohozaev identity associated with (4.3) is

$$P_\lambda(u) = \frac{a}{2} \int_{\mathbb{R}^3} |\nabla u|^2 - \frac{3\lambda}{2} \int_{\mathbb{R}^3} |u|^2 + \frac{bA^2}{2} \int_{\mathbb{R}^3} |\nabla u|^2 - \frac{3}{p} \int_{\mathbb{R}^3} |u|^p - \frac{1}{2} \int_{\mathbb{R}^3} |u|^6.$$

Hence, we have

$$J_\lambda(v) = J_\lambda(v) - \frac{1}{3} P_\lambda(v) = \frac{a + bA^2}{3} \int_{\mathbb{R}^3} |\nabla v|^2$$

$$= \frac{a + bA^2}{4} \int_{\mathbb{R}^3} |\nabla v|^2 + \frac{1}{4} (J_\lambda(v) - P_\lambda(v)). \quad (4.6)$$

Let $w_n = v_n - v$. Then we have $w_n \rightharpoonup 0$ in H and $w_n \to 0$ in $L^q(\mathbb{R}^3)$ for $2 < q < 6$. Using Brezis-Lieb lemma,

$$\begin{cases}
\|w_n\|^2 = \|v_n\|^2 - \|v\|^2 + o_n(1); \\
\|w_n\|^6_6 = \|v_n\|^6 - \|v\|^6_6 + o_n(1); \\
A^2 = \|\nabla v_n\|^2 + o_n(1) = \|\nabla w_n\|_2^2 + \|\nabla v\|_2^2 + o_n(1).
\end{cases} \quad (4.7)$$

Since $\{v_n\}$ is a PS sequence of J_λ, it follows (4.7) that

$$o_n(1) = \langle J'_\lambda(v_n), v_n \rangle$$

$$= \langle J'_\lambda(v), v \rangle + (a + bA^2) \int_{\mathbb{R}^3} |\nabla w_n|^2 - \lambda \int_{\mathbb{R}^3} |w_n|^2 - \int_{\mathbb{R}^3} |w_n|^6 + o_n(1)$$

$$= \|w_n\|^2 + b\|\nabla w_n\|^2 + b \int_{\mathbb{R}^3} |\nabla w_n|^2 \int_{\mathbb{R}^3} |\nabla v|^2 - \|w_n\|^6_6 + o_n(1),$$

which yields

$$\|w_n\|^2 + b\|\nabla w_n\|^2 + b \int_{\mathbb{R}^3} |\nabla w_n|^2 \int_{\mathbb{R}^3} |\nabla v|^2 - \|w_n\|^6_6 = o_n(1). \quad (4.8)$$

Up to a subsequence, we assume that

$$\|w_n\|^2 \to l_1 \geq 0, \quad b\|\nabla w_n\|^2 + b \int_{\mathbb{R}^3} |\nabla w_n|^2 \int_{\mathbb{R}^3} |\nabla v|^2 \to l_2 \geq 0, \quad \|w_n\|^6_6 \to l_3 \geq 0.$$

Then we have $l_1 + l_2 = l_3$. If $l_1 = 0$, we obtain $v_n \to v$ in H, which completes the proof. If $l_1 > 0$, by Sobolev inequality $\|v\| \leq S$, we have

$$l_1 \geq aS(l_1 + l_2)\frac{1}{2} \quad \text{and} \quad l_2 \geq bS^5(l_1 + l_2)^{\frac{5}{2}}. \quad (4.9)$$

By Lemma 2.4 we have

$$l_1 \geq \frac{abS^3 + \sqrt[3]{a^2b^2S^6 + 4aS^4}}{2} \quad \text{and} \quad l_2 \geq \frac{abS^3 + \sqrt[3]{b^3S^6 + b^2S^3\sqrt{b^2S^6 + 4aS^4}}}{2}. \quad (4.9)$$
From (4.7) and (4.8), we deduce that
\[
J_\lambda(v_n) = J_\lambda(v) + \frac{(a + bA^2)}{2} \int_{\mathbb{R}^3} |\nabla w_n|^2 - \frac{\lambda}{2} \int_{\mathbb{R}^3} |w_n|^2 - \frac{1}{6} \int_{\mathbb{R}^3} |w_n|^6 + o_n(1)
\]
\[
= J_\lambda(v) + \frac{1}{2} \|w_n\|^2 + \frac{b}{4} \left(\|\nabla w_n\|^4 + \int_{\mathbb{R}^3} |\nabla w_n|^2 \int_{\mathbb{R}^3} |\nabla v|^2 \right)
\]
\[-\|w_n\|^6 + \frac{bA^2}{4} \int_{\mathbb{R}^3} |\nabla w_n|^2 + o_n(1)
\]
\[
= J_\lambda(v) + \frac{1}{3} \|w_n\|^2 + \frac{b}{12} \left(\|\nabla w_n\|^4 + \int_{\mathbb{R}^3} |\nabla w_n|^2 \int_{\mathbb{R}^3} |\nabla v|^2 \right)
\]
\[+ \frac{bA^2}{4} \int_{\mathbb{R}^3} |\nabla w_n|^2 + o_n(1).
\] (4.10)

On the other hand, since \(E(v_n) \to \gamma_c\), we have
\[
J_\lambda(v_n) = \gamma_c - \frac{\lambda}{2} \|v_n\|^2 + \frac{b}{4} A^2 + o_n(1).
\] (4.11)

In view of (4.6), (4.9), (4.10) and (4.11), we infer that
\[
\gamma_c - \frac{\lambda}{2} \|v_n\|^2 + \frac{b}{4} A^2 = \frac{1}{3} \|w_n\|^2 + \frac{b}{12} \left(\|\nabla w_n\|^4 + \int_{\mathbb{R}^3} |\nabla w_n|^2 \int_{\mathbb{R}^3} |\nabla v|^2 \right)
\]
\[+ \frac{bA^2}{4} \int_{\mathbb{R}^3} |\nabla w_n|^2 + o_n(1)
\]
\[\geq \frac{abS^3}{4} + \frac{b^3S^6}{24} + \frac{(4as + b^2S^4)^3}{24} + J_\lambda(v) + \frac{bA^2}{4} \int_{\mathbb{R}^3} |\nabla w_n|^2 + o_n(1)
\]
\[= \gamma_c^* + \frac{a + bA^2}{4} \int_{\mathbb{R}^3} |\nabla v|^2 + \frac{bA^2}{4} \int_{\mathbb{R}^3} |\nabla w_n|^2
\]
\[+ \frac{\lambda}{4} \|v\|^2 + \frac{1}{2p} \|v\|^p + \frac{1}{12} \|v_n\|^6 + o_n(1)
\]
\[\geq \gamma_c^* + \frac{b}{4} A^2 + \gamma_c^* + \frac{\lambda}{4} \|v\|^2 + \frac{1}{2p} \|v\|^p + o_n(1),
\]
which implies that
\[
\gamma_c \geq \gamma_c^* + \frac{\lambda}{4} \|v\|^2 + \frac{1}{2p} \|v\|^p + \frac{\lambda}{2} \|v_n\|^2 + o_n(1)
\]
\[
\geq \gamma_c^* + \frac{3\lambda}{4} \|v_n\|^2 + \frac{1}{2p} \|v\|^p + o_n(1)
\]
\[= \gamma_c^* + \frac{3\lambda}{4} c^2 + \frac{1}{2p} \|v\|^p
\]
\[= \gamma_c^* + \left(\frac{3}{4}(\beta_p - 1) + \frac{1}{2p} \right) \|v\|^p \geq \gamma_c^*,
\]
where the last inequality is from (4.3) and \(p\beta_p \geq 4\). This is a contradiction to \(\gamma_c < \gamma_c^*\). So we obtain \(v_n \to v\) in \(H\). And \(E(v) = \inf_{u \in V(c)} E(u)\) follows from lemma 3.7. \(\Box\)

16
References

[1] C.O. Alves, G. Figueiredo, Nonlinear perturbations of periodic Kirchhoff equation in \mathbb{R}^N, Nonlinear Anal. 75 (2012) 2750-2759.

[2] C.O. Alves, F.J.S.A. Corra, G.M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl. 2 (2010) 409-417.

[3] T. Bartsch, L. Jeanjean, Normalized solutions for nonlinear Schrödinger systems, Proc. R. Soc. Edinb. 148 (2018) 225-242.

[4] T. Bartsch, N. Soave, Multiple normalized solutions for a competing system of Schrödinger equations, Calc. Var. Partial Differ. Equ. 58 (2019) 22 pp.

[5] G.M. Figueiredo, J.R. Santos Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth, Differential Integral Equations 25 (2012) 853-868.

[6] G.M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013) 706-713.

[7] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28 (1997) 1633-1659.

[8] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[9] G. Li, H. Ye, On the concentration phenomenon of L^2-subcritical constrained minimizers for a class of Kirchhoff equations with potentials, J. Differential Equations 266 (2019) 7101-7123.

[10] J. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proc. Internat. Sympos., Inst. Mat. Univ. Fed., Rio de Janeiro, 1997, in: North-Holl. Math. Stud. 30 (1978) 284-346.

[11] Z. Liu, S. Guo, On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl. 426 (2015) 267-287.

[12] H. Luo, Z. Zhang, Normalized solutions to the fractional Schrödinger equations with combined nonlinearities, Calc. Var. Partial Differential Equations 59 (2020) 35pp.

[13] X. Luo, Q. Wang, Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in \mathbb{R}^3, Nonlinear Anal. RWA 33 (2017) 19-32.

[14] B. Noris, H. Tavares, G. Verzini, Existence and orbital stability of the ground states with prescribed mass for the L^2-critical and supercritical NLS on bounded domains, Anal. PDE 7 (2014) 1807-1838.

[15] B. Noris, H. Tavares, G. Verzini, Stable solitarywaves with prescribed L^2-mass for the cubic Schrödinger system with trapping potentials, Discrete Contin. Dyn. Syst. 35 (2015) 6085-6112.
[16] B. Noris, H. Tavares, G. Verzini, Normalized solutions for nonlinear Schrödinger systems on bounded domains, Nonlinearity 32 (2019) 1044-1072.

[17] D. Pierotti, G. Verzini, Normalized bound states for the nonlinear Schrödinger equation in bounded domains, Calc. Var. Partial Differ. Equ. 56 (2017) 133pp.

[18] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case, J. Funct. Anal. 279 (2020) 43pp.

[19] N. Soave, Normalized ground states for the NLS equation with combined nonlinearities, J. Differential Equations 269 (2020) 6941-6987.

[20] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976) 353-372.

[21] W. Xi, H. Chen, Existence and multiplicity of normalized solutions for the nonlinear Kirchhoff type problems, Comput. Math. Appl. 76 (2018) 579-591.

[22] H. Ye, The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations, Math. Methods Appl. Sci. 38 (2014) 2663-2679.

[23] H. Ye, The mass concentration phenomenon for L^2-critical constrained problems related to Kirchhoff equations, Z. Angew. Math. Phys. 67 (2016) 29pp.

[24] X. Zeng, Y. Zhang, Existence and uniqueness of normalized solutions for the Kirchhoff equation, Appl. Math. Lett. 74 (2017) 52-59.