Impact of Cigarette Smoking Cessation on High-Density Lipoprotein Functionality
– VN-SEESAW-HDL –
Kohei Takata, MD; Satoshi Imaizumi, MD, PhD; Emi Kawachi, PhD; Yasunori Suematsu, MD; Tomohiko Shimizu, MD, PhD; Satomi Abe, BSc; Yoshino Matsuo, PhD; Hitomi Tsukahara, PhD; Keita Noda, MD, PhD; Eiji Yahiro, MD, PhD; Bo Zhang, PhD; Yoshinari Uehara, MD, PhD; Shin-ichiro Miura, MD, PhD; Keijiro Saku, MD, PhD

Background: Smoking cessation reduces the risk of cardiovascular disease (CVD) and improves clinical outcomes in public health. We studied the effect of smoking cessation on high-density lipoprotein (HDL) functionality.

Methods and Results: We randomly treated 32 smokers with varenicline or a transdermal nicotine patch as part of a 12-week smoking cessation program (The VN-SEESAW Study). The plasma lipid profiles, plasma and HDL malondialdehyde (MDA) levels, HDL subfractions as analyzed by capillary isotachophoresis, cholesterol efflux capacity, and antiinflammatory activity of HDL were measured before and after the anti-smoking intervention. After smoking cessation, HDL-C, apoA-I levels and HDL subfractions were not significantly different from the respective baseline values. However, cholesterol efflux capacity and the HDL inflammatory index (HII) were significantly improved after smoking cessation. The changes in both parameters (%Δ cholesterol efflux capacity and ΔHII) were also significantly improved in the successful smoking cessation group compared with the unsuccessful group. The changes in cholesterol efflux capacity and HII also correlated with those in end-expiratory CO concentration and MDA in HDL, respectively.

Conclusions: Our findings indicate that smoking cessation leads to improved HDL functionality, increased cholesterol efflux capacity and decreased HII, without changing HDL-C or apoA-I levels or HDL subfractions. This may be one of the mechanisms by which smoking cessation improves the risk of CVD. (Circ J 2014; 78: 2955–2962)

Key Words: Cholesterol efflux capacity; High-density lipoprotein (HDL); HDL inflammatory index; Malondialdehyde; Oxidative stress

Various epidemiological studies have revealed that cigarette smoking is positively correlated with the morbidity of cardiovascular diseases (CVD). Cigarette smoking has been recognized as a major cardiovascular risk factor and although the mechanisms by which cigarette smoking promotes arteriosclerotic lesions are not completely understood, they likely include changes in lipoproteins.

With regard to the lipid profile, it is well known that cigarette smoking increases plasma levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and triglycerides (TG), but decreases high-density lipoprotein cholesterol (HDL-C). Although a meta-analysis reported that the level of HDL-C significantly increased after smoking cessation, there were no significant changes in LDL-C, TC, or TG. In another study, the activity of lecithin cholesterol acyltransferase (LCAT) was significantly decreased in smokers. LCAT activity is essential for the maturation of HDL, and affects HDL function.

HDL has several atheroprotective effects. A frequently discussed effect is that HDL promotes the transport of excess cholesterol from macrophage cells in peripheral tissues to the liver (ie, cholesterol efflux capacity). In addition to efflux capacity, HDL has antioxidant, antiinflammatory, antithrombotic or fibrinolytic activities, and improves endothelial function by activating endothelial nitric oxide synthase.

A recent study demonstrated that the efflux capacity of HDL is negatively correlated with both carotid intima-media thick-
ness and coronary artery disease, independent of the HDL-C level. It has also been shown that HDL from patients with endstage renal disease has impaired atheroprotective functions. The HDL inflammatory index (HII), which reflects the ability of HDL to prevent the oxidation of LDL/phospholipids, in patients with acute coronary syndrome was higher (less anti-oxidative) than in control subjects and patients with chronic coronary artery disease. Furthermore, it has been reported that the antiinflammatory and antioxidative capacities of HDL were impaired in patients with diabetes mellitus type 2. It is well known that HDL may be modified and lose its atheroprotective effects under chronic inflammation (ie, it can exhibit functional or dysfunctional properties). It has been reported that markers of functional HDL are apolipoprotein A-I (apoA-I) and paraoxonase1, and those of dysfunctional HDL are apoC-III, serum amyloid A1 and lipoprotein-associated phospholipase A2 (Lp-PLA2). Moreover, the modification of HDL by malondialdehyde (MDA), which is a product of lipid peroxidation, leads to impairment of its atheroprotective effects. Thus, HDL can become dysfunctional under certain conditions.

Cigarette smoking produces an environment similar to that of oxidative stress. However, little is known about the association between cigarette smoking and HDL function. In this study, we hypothesized that smoking cessation could lead to improved HDL function, and therefore we evaluated the cholesterol efflux capacity and HII in participants before and after smoking cessation.

Methods

Study Design

Tsukahara et al has been reported previously. In short, 32 Japanese adult smokers aged 27–64 years were enrolled for treatment at the Smoking Cessation Clinic of Fukuoka University Hospital. Participants either received varenicline for 12 weeks or wore a transdermal nicotine patch on the chest for 8 weeks. Successful smoking cessation was identified by both a self-assessment report and the end-expiratory carbon monoxide (CO) concentration (<8 ppm). The study protocol was approved by the Independent Review Board (IRB) of Fukuoka University Hospital and measurements of cholesterol efflux capacity and HII were approved by the IRB at Fukuoka University Hospital (no.7-05(08-27)), and all participants gave informed consent. The primary endpoint of the study was the incidence of smoking cessation in both groups at weeks 9–12 and weeks 9–24, and safety and the withdrawal symptoms at week 12. In this assay, we used apolipoprotein B (apoB)-depleted plasma as HDL after precipitation of the apoB-containing lipoproteins by mixing plasma with phosphotungstic acid/MgCl2 (Wako Pure Chemical Industries Co Ltd, Osaka, Japan).

Quantification of HDL Subfractions by cITP

Lipoprotein subfractions in plasma were quantified by cITP using a Beckman P/ACE MDQ system (Beckman-Coulter, Tokyo, Japan) as described previously. cITP divides plasma lipoprotein into subfractions according to their electrophoretic charge. Plasma lipoprotein can be divided into 3 HDL subfractions: fast (f), intermediate (i), and slow (s)-migrating HDL. Levels of cITP-measured lipoprotein subfractions are expressed as the peak area relative to that of the internal marker. The 3 HDL subfractions can be characterized by their components. fHDL is composed of α-HDL and is rich in esterified cholesterol, whereas sHDL is composed of α- and preβ-HDL, and is lipid-poor and rich in apoE, apoA-IV, apoD, and apoJ.

Quantification of Plasma MDA and MDA in HDL

MDA results from lipid peroxidation, which is used as an indicator of oxidative stress in cells and tissues. Cigarette smoke extract contains many oxidants, including free radicals, and is a source of oxidative stress. Therefore, we measured plasma MDA and MDA in HDL in plasma samples obtained from all the participants as analyzed by capillary isotachophoresis (cITP), cholesterol efflux capacity, and HII in participants before and after smoking cessation.

Assessment of Plasma Lipid Profiles and ApoA-I

Blood samples were collected after an overnight fast in 2, 2′, 2′′, 2′′′-(ethane-1,2-diyldinitrilro) tetraacetic acid (EDTA)-containing tubes and centrifuged at 4°C and 3,000 rpm for 20min. To prevent oxidation, collected plasma was frozen with 5 mM/L EDTA, 0.2 mM/L butylated hydroxytoluene and liquid nitrogen immediately after separation and preserved at –80°C under N2 gas. Plasma levels of TG, LDL-C, and HDL-C were measured by enzymatic methods at the Department of Laboratory Medicine, Fukuoka University Hospital. Plasma apoA-I concentrations were measured using a commercially available enzymatic kit (Apo-A1 Auto-N’ Daichii*, Sekisui Medical Co Ltd, Tokyo, Japan).

Assessment of Cholesterol Efflux Capacity

We examined the HDL cholesterol efflux capacity with an ex vivo system that used J774 macrophages and apoB-depleted plasma from the study participants as described previously with some modifications. Briefly, J774 macrophages in 24-well plates were plated, cultured and radiolabeled with 2 µCi/ml of 3H-cholesterol in Dulbecco’s modified Eagle’s medium (DMEM) for 24h. The day after labeling, the cells were washed and incubated in DMEM with 8-Br-cAMP for the upregulation of ATP-binding cassette A1 (ABCA1) transporter. Efflux medium containing apoB-depleted plasma (equivalent to 2% plasma, V/V, in the medium) was added for 4h. For every sample, radiolabeled cholesterol counts were measured for both the cell compartment and media. The cholesterol efflux activity (%)
were calculated by the following formula: fluorescence intensity in subject samples+Ox-PAPC/fluorescence intensity in blank microtiter plates (BD Falcon) for 30 min with rotation. Fluorescence was measured after incubation with a plate reader (TriStar LB941, Berthold Technologies). HII values were calculated as: value after 12 weeks − value at baseline. Differences between values at baseline and after 12 weeks were evaluated with the paired t-test. A P value of less than 0.05 was considered statistically significant. Analyses were performed using SAS software (version 9.3, SAS Institute, Cary, NC, USA).

Statistical Analysis
We registered 32 smokers for comparison of HDL functions before and after smoking cessation. Data are presented as the mean±standard deviation (SD). Changes were defined as and calculated as: value after 12 weeks − value at baseline. Differences between values at baseline and after 12 weeks were evaluated with the paired t-test. The associations of HDL functions with other parameters were assessed in terms of Pearson’s product-moment correlation coefficient or Spearman’s rank correlation coefficient. Differences between the successful and unsuccessful smoking cessation groups were evaluated with the unpaired t-test. A P value of less than 0.05 was considered statistically significant. Analyses were performed using SAS software (version 9.3, SAS Institute, Cary, NC, USA).

Results
Characteristics of the Study Participants
Although 32 smokers were registered (16 for varenicline, 16 for a nicotine patch), 4 dropped out within 12 weeks. Of the remaining 28 participants who were analyzed, 7 did not stop smoking. The proportions of participants who did not successfully stop smoking were not significantly different between the varenicline (4 participants) and nicotine patch (3 participants) groups. At baseline, there were no statistically significant differences in plasma lipid profiles or HDL subfractions between the successful smoking cessation group and the unsuccessful group. Among all the participants who stopped smoking, there were statistically significant differences between baseline and after 12 weeks with respect to body mass index (BMI), pulse rate, SBP and DBP. Differences between values at baseline and after 12 weeks were evaluated with the paired t-test.

Table 1. Characteristics of the Study Group of Japanese Smokers

Characteristic	Overall (n=28)	Successful group (n=21)	Unsuccessful group (n=7)
Age, years, years	46±12	46±12	46±12
Male, n (%)	23 (82)	17 (81)	6 (86)
BMI, kg/m²	23.7±3.4	23.7±3.8	24.5±3.8
PR, bpm	78±9	77±9	70±11
SBP, mmHg	129±18	130±19	124±15
DBP, mmHg	78±10	78±11	76±11
Hb, g/dl	15.0±1.2	15.0±1.2	14.5±1.1
End-expiratory CO, ppm	27±11	23±10	4±2
Hypertension, n (%)	3 (11)	2 (10)	1 (14)
Dyslipidemia, n (%)	2 (7)	1 (5)	1 (14)
Diabetes mellitus, n (%)	0 (0)	0 (0)	0 (0)
Hyperuricemia, n (%)	1 (4)	1 (5)	1 (14)
Varenicline, n (%)	14 (50)	10 (48)	4 (57)
ACEI/ARB, n (%)	1 (3)	1 (5)	0 (0)
CCB, n (%)	3 (11)	2 (10)	1 (14)
β-blocker, n (%)	1 (3)	1 (5)	0 (0)
Statins, n (%)	2 (7)	1 (5)	1 (14)

Values are mean±SD or %. Differences between values at baseline and after 12 weeks were evaluated with the paired t-test.

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; CCB, calcium-channel blocker; CO, carbon monoxide; DBP, diastolic blood pressure; Hb, hemoglobin; PR, pulse rate; SBP, systolic blood pressure.

Assessment of HII
The HII was determined by cell-free assay systems using 2',7'-dichlorofluorescein-diacetate (DCFH-DA) with modification of a previously published method using oxidized PAPC (Ox-PAPC) as the fluorescence-inducing agent. The presence of Ox-PAPC leads to the conversion of normally nonfluorescent DCFH-DA into a fluorescent form of DCFH. After the precipitation of apoB-containing lipoproteins, HDL-containing supernatant was used in the assay. DCFH-DA (Invitrogen Applied Biosystems, Carlsbad, CA, USA) was first dissolved in fresh methanol at 2.0 mg/ml and then incubated in the dark at room temperature for 20 min to release DCFH. Ox-PAPC was prepared from PAPC (Avanti Polar Lipids, Alabaster, AL, USA) as previously described. Next, 25 µl of Ox-PAPC (0.2 mg/ml) and a fixed volume of apoB-depleted plasma (5µl) from the study subjects were incubated at 37°C with phosphate-buffered saline in black, flat-bottom microtiter plates (BD Falcon) for 30 min with rotation. We then added 25 µl of DCFH solution (0.2 mg/ml) to each well and incubated at 37°C for 1 h with rotation. Fluorescence was measured at an excitation wavelength of 485 nm and an emission wavelength of 535 nm was measured after incubation with a plate reader (TriStar LB941, Berthold Technologies). HII values were calculated by the following formula: fluorescence intensity in subject samples+Ox-PAPC/fluorescence intensity in Ox-PAPC alone.

Assessment of the Antioxidative Activity of HDL Using AAPH HDL from the study participants and LDL from a normalipidemic donor were isolated by ultracentrifugation (HDL: 1.063<d<1.21, LDL: 1.019<d<1.063, respectively). LDL (75.4 mg/dl cholesterol) was oxidized with 1 mmol/L 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH) for 24 h at 37°C with HDL (10.1 mg/dl cholesterol). LDL was added to LDL directly before oxidation. The degree of LDL oxidation was measured by a TBARS assay kit according to the manufacturer’s instructions.

Results
Characteristics of the Study Participants
Although 32 smokers were registered (16 for varenicline, 16 for a nicotine patch), 4 dropped out within 12 weeks. Of the remaining 28 participants who were analyzed, 7 did not stop smoking. The proportions of participants who did not successfully stop smoking were not significantly different between the varenicline (4 participants) and nicotine patch (3 participants) groups. At baseline, there were no statistically significant differences in plasma lipid profiles or HDL subfractions between the successful smoking cessation group and the unsuccessful group. Among all the participants who stopped smoking, there were statistically significant differences between baseline and after 12 weeks with respect to body mass index (BMI), pulse...
reported that cigarette smoking reduces the HDL2 fraction. Various methods can be used to assess HDL subfractions, and the analysis of HDL subfractions may be more useful than the HDL-C level as a predictor of CVD. Several studies have reported that cigarette smoking reduces the HDL2 fraction. In terms of the HDL subfractions as determined by cITP in our study, each subfraction (ie, fast-, intermediate-, and slow-migrating HDL) positively correlated with the HDL-C and apoA-I levels (data not shown). On the other hand, there were no statistically significant changes in the HDL subfractions between baseline and after 12 weeks in either the successful or unsuccessful groups (Table 2). Representative cITP data for a participant in the successful smoking cessation group showed no difference between before and after smoking cessation.

Table 2. Lipid-Related Parameters and HDL Subfractions in the Study Group of Japanese Smokers

Overall (n=28)	Successful group (n=21)	Unsuccessful group (n=7)					
	Baseline	After 12 weeks	P value	Baseline	After 12 weeks	P value	
Triglyceride, mg/dl	251±284	198±146	192±196	0.83	410±501	393±346	0.94
LDL-C, mg/dl	109±22	110±19	109±25	0.82	104±30	115±32	0.42
HDL-C, mg/dl	55±14	57±14	57±14	0.50	49±14	44±9	0.15
ApoA-I, mg/dl	116±23	116±21	121±13	0.22	112±31	112±17	0.95
fHDL	1.58±0.49	1.68±0.49	1.66±0.52	0.88	1.29±0.36	1.18±0.21	0.20
iHDL	2.36±0.39	2.43±0.39	2.47±0.65	0.79	2.13±0.30	2.03±0.27	0.41
sHDL	0.33±0.10	0.33±0.08	0.38±0.13	0.15	0.32±0.14	0.39±0.22	0.13

Values are mean±SD. Differences between values at baseline and after 12 weeks were evaluated with the paired t-test.

Figure 1. High-density lipoprotein (HDL) analyzed by capillary isotachophoresis (cITP).

In both the successful and unsuccessful smoking cessation groups, there were no statistically significant differences in the lipid profiles between baseline and after 12 weeks (Table 2). Various methods can be used to assess HDL subfractions, and the analysis of HDL subfractions may be more useful than the HDL-C level as a predictor of CVD.31 Several studies have reported that cigarette smoking reduces the HDL2 fraction.32 In terms of the HDL subfractions as determined by cITP in our study, each subfraction (ie, fast-, intermediate-, and slow-migrating HDL) positively correlated with the HDL-C and apoA-I levels (data not shown). On the other hand, there were no statistically significant changes in the HDL subfractions between baseline and after 12 weeks in either the successful or unsuccessful groups (Table 2). Representative cITP data for a participant in the successful smoking cessation group showed no difference between before and after smoking cessation.
Smoking Cessation and HDL Functionality

(Figures 1A, B). Furthermore, there were also no statistically significant differences in the changes in HDL subfractions between the successful and unsuccessful smoking cessation groups (Figures 1C–E).

Plasma MDA and MDA in HDL
Both the plasma MDA and MDA in HDL levels decreased after successful smoking cessation, but did not significantly decrease after 12 weeks in the unsuccessful group (Table 3). Thus, smoking cessation reduced oxidative stress in HDL as well as plasma. In addition, there was a significant relationship between the amount of change in the plasma MDA level (Aplasma MDA) (∆=value after 12 weeks−value at baseline) and that in the MDA in HDL level (∆MDA in HDL) (r=0.50, P=0.007).

HDL-PAF-AH
There were no significant differences in either HDL-PAF-AH mass (at baseline and after 12 weeks) or AHDL-PAF-AH between the successful and unsuccessful smoking cessation groups (data not shown).

Cholesterol Efflux Capacity of HDL
Cholesterol efflux capacity was significantly improved after 12 weeks in the successful smoking cessation group, but there was no significant increase after 12 weeks in the unsuccessful group (Table 3). In addition, the %change in efflux capacity was improved in the successful group compared with the unsuccessful group (Figure 2A).

On the other hand, the %∆cholesterol efflux capacity correlated with ∆end-expiratory CO (r=−0.45, P=0.02). There was no statistically significant difference between the varenicline and transdermal nicotine patch groups with regard to cholesterol efflux capacity (data not shown).

HII
In the successful smoking cessation group, HII was significantly improved after smoking cessation (Table 3) and ∆HII in the successful cessation group was improved compared with the unsuccessful group (Figure 2B). The correlation between HII and cholesterol efflux capacity, at both baseline and after 12 weeks, was insignificant (data not shown). In addition, there was no significant difference in the antioxidative activity of HDL analyzed by AAPH assay between the successful and unsuccessful smoking cessation groups (Table 3). Thus, these functions of HDL might reflect other properties of HDL. Further, there was no statistically significant difference in HII between the varenicline and transdermal nicotine patch groups (data not shown).

Table 3. MDA-Related Parameters and HDL Functions in the Study Group of Japanese Smokers

Overall (n=28)	Successful group (n=21)	Unsuccessful group (n=7)					
	Baseline	Baseline	After smoking cessation	P value	Baseline	After 12 weeks	P value
Plasma MDA, μmol/L	1.88±1.00	1.73±0.58	1.57±0.50	0.03	2.35±1.75	2.02±0.43	0.63
MDA in HDL, μmol/L	0.56±0.11	0.53±0.08	0.47±0.09	0.003	0.60±0.17	0.50±0.07	0.30
Cholesterol efflux capacity, %	13.89±2.53	14.15±2.46	14.83±2.35	0.01	13.09±2.74	12.56±1.97	0.48
HII	1.15±0.59	1.13±0.31	0.98±0.18	0.01	0.78±0.20	1.00±0.19	0.06
AAPH assay, * %	94.01±15.90	91.57±15.43	97.02±16.48	0.15	100.66±16.40	105.65±5.33	0.51

Values are mean±SD. Differences between values at baseline and after 12 weeks were evaluated with the paired t-test. *Values expressed as % of LDL alone, n=16 for Successful group and n=6 for Unsuccessful group.

HII, HDL inflammatory index; MDA, malondialdehyde. Other abbreviations as in Table 2.

Figure 2. Extent of the changes in high-density lipoprotein (HDL) function. (A) Differences in %∆cholesterol efflux capacity between the successful and unsuccessful smoking cessation groups. (B) Differences in the ∆HDL inflammatory index (∆HII) between the successful and unsuccessful smoking cessation groups. Changes are defined as ∆ and calculated as value after 12 weeks−value at baseline. Differences between the groups were evaluated with the unpaired t-test.
was associated with the MDA in HDL level (\(\Delta \)) and negatively correlated with BMI (\(\Delta \)).

Correlations Between HDL Function and HDL-Related Parameters

In terms of the relationships at baseline, cholesterol efflux capacity was positively correlated with HDL-C and apoA-I levels, and negatively correlated with BMI (Table 4). HII at baseline was associated with the MDA in HDL level (Table 4) and \(\Delta \)MDA in HDL was also associated with \(\Delta \)HII (r=0.43, P=0.02).

Discussion

In our study, there were no changes in HDL-C or apoA-I levels, HDL-PAF-AH mass, or HDL subfractions after a 12-week smoking cessation program. Nevertheless, both cholesterol efflux capacity and HII improved. There was no significant association between the changes in %cholesterol efflux capacity and HII. Our findings indicate that cholesterol efflux capacity and HII might reflect other properties of HDL, and that the improvement in HDL function is independent of any changes in the levels of HDL-C, apoA-I and HDL subfractions. Furthermore, \(\Delta \)CO and \(\Delta \)MDA in HDL were significantly associated with cholesterol efflux capacity and HII, respectively. The end-expiratory CO concentration was associated with the number of cigarettes smoked. In our study, the end-expiratory CO and MDA in HDL concentration both decreased after successful smoking cessation (Tables 1, 4). Taken together, our findings further suggest that smoking cessation itself might be associated with improvement of HDL function through a reduction in the level of MDA in HDL.

Several recent studies have failed to find an association between an increase in the HDL-C level and the CVD risk. HDL is heterogeneous, and consists of various components that affect its properties. These components change according to the conditions, which can result in either functional or dysfunctional HDL. These changes result from loss or modification of proteins, lipids and enzymes. Thus, environmental changes are important factors in determining HDL properties. In particular, oxidative stress, which is brought about by cigarette smoking, can lead to functional impairment of HDL. Our findings also suggest that lipid peroxidation is significantly associated with HDL function. Moreover, our study showed that smoking cessation can improve HDL function within a very short time (ie, only 12 weeks). This finding may contribute to epidemiological data showing that the risk of CVD is reduced to less than half within 1 year of smoking cessation. This is the first study to demonstrate that both cholesterol efflux capacity and HII can improve within a short time after smoking cessation.

It has been reported that elevation of the HDL-C level, which is brought about by smoking cessation, reduces the risk of CVD by 7.4 percentage points, to 9.0% in males and 12.5% in females. As a possible explanation for why the HDL-C level did not increase after smoking cessation in our study, the increased BMI after smoking cessation may have had an effect. In fact, BMI was inversely correlated with the HDL-C level at baseline (HDL-C: r=-0.55, P=0.002). The amount of change in HDL-C in the successful smoking cessation group was significantly greater than that in the unsuccessful group. In addition, \(\Delta \)HDL-C was not significantly correlated with either %\(\Delta \)cholesterol efflux capacity or \(\Delta \)HII (data not shown). These data suggest that the amount of change in HDL-C was not associated with improved HDL functionality in our study.

It has been demonstrated that HDL-PAF-AH has antiatherogenic properties. With regard to cigarette smoking, a previous study demonstrated that both the activity and mass of HDL-PAF-AH in current smokers were lower than in non-current smokers. In contrast, another study reported that there was no significant difference in HDL-PAF-AH activity between current and non-current smokers. Thus, the relationships between cigarette smoking and HDL-PAF-AH activity and mass are still controversial.

The level of \(\text{pre} \beta \)-HDL, which is a component of \(\text{pre} \beta \)-HDL and the primary acceptor of cholesterol effluxed by the ABCA1 transporter, is positively associated with efflux capacity in vitro. Recently, several clinical trials have demonstrated that the level of \(\text{pre} \beta \)-HDL is increased in an atherogenic state, such as coronary artery disease. In our study, there were no differences in the HDL subfractions between baseline and after smoking cessation (Table 2). The 3 HDL subfractions as assessed by cTTP can be characterized according to their components: \(\text{HDL} \) is composed of \(\alpha \)-HDL and is rich in esterified cholesterol, sHDL is composed of \(\beta \)- and \(\text{pre} \beta \)-HDL, and is lipid-poor and rich in apoE, apoA-IV, apoD, and apoJ. It is possible that smoking cessation does not significantly change the HDL subfractions or the \(\text{pre} \beta \)-HDL level.

According to recent reports, the quality of HDL may be more important than its quantity. In the present study, cholesterol efflux capacity and HII were improved compared with baseline, despite a lack of changes in the levels of HDL-C, apoA-I and HDL subfractions. Cholesterol efflux capacity and HII improved in proportion to decreases in end-expiratory CO and MDA in HDL, respectively, after smoking cessation. Furthermore, the choice of therapeutic agent did not influence the improvement in HDL function. Thus, smoking cessation itself, rather than any other effects of the therapeutic agent, is important for restoring the functionality of HDL. Our findings suggest that smoking cessation itself plays a key role in the atheroprotective effects of HDL, which is more important than raising the level of HDL-C. Lipid peroxidation is considered to be a cause of impaired HDL functionality.

With respect to the effect of cigarette smoking on HDL functionality, there have been several reports involving basic medical science. First, cigarette smoking is a major source of oxidative stress. Our data further support the finding that denatured HDL, which was incubated with whole cigarette smoke extract or copper ion, showed reduced efflux capacity in vitro. The formation of lipid peroxidation derivatives is linked to changes in the configuration and properties of HDL. MDA modifies Lys residues in apoA-I, which leads to HDL dysfunction in vivo. The modification of HDL particles by oxidative stress is a major factor contributing to dysfunctional HDL. We can assume that other cigarette components also affect HDL functionality.

Cholesterol ester (CE) is taken up via scavenger receptor type B1 (SR-B1) receptors on hepatocytes, which recognize

| Table 4. Correlations Between HDL Functions and HDL-Related Parameters at Baseline in Study Group of Japanese Smokers |
|-----------------|-----------------|-----------------|-----------------|-----------------|
	Cholesterol efflux capacity (n=28)	HDL inflammatory index (n=28)		
	r	P value	r	P value
BMI	-0.44	0.02	0.25	0.20
HDL-C	0.53	0.004	0.016	0.94
ApoA-I	0.41	0.03	0.07	0.73
MDA in HDL	0.08	0.69	0.37	0.06

At baseline, the associations between HDL functions and other parameters were assessed in terms of Pearson’s product-moment correlation coefficient or Spearman’s rank correlation coefficient. Abbreviations as in Tables 1–3.
apoA-I as a ligand, as a direct pathway of hepatic cholesterol uptake. In addition to attenuating efflux capacity in smokers, cigarette smoking impairs the hepatic uptake of HDL-C.67 As a result of these interactions, the reverse cholesterol transport of HDL may be impaired.

It is well known that cigarette smoking is associated with endothelial dysfunction, which is restored by smoking cessation. Because HDL is closely related to endothelial function, improved HDL functionality, which is brought about by smoking cessation, may help to improve vascular endothelial function. Our findings raise the possibility that smoking cessation may reduce the risk of CVD through improved HDL functionality.

Study Limitations

The sample size was small, which limits generalization of the results. Furthermore, this study assessed HDL functionality only over the short term. The long-term effect of smoking cessation results. Furthermore, this study assessed HDL functionality only over the short term. The long-term effect of smoking cessation may be one of the mechanisms by which smoking cessation improves the risk of CVD.

Conclusions

Our findings indicate that smoking cessation leads to improved HDL functionality, increased cholesterol efflux capacity and decreased HDL subfractions. Moreover, the level of MDA in HDL, which can modify apoA-I and impair its function, decreased after smoking cessation. This may be one of the mechanisms by which smoking cessation improves the risk of CVD.

Acknowledgments

This work was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 24591123, No. 24790089, and No. 25461141), the Central Research Institute of Fukuoka University (2008–2012), the FU-Global program (2008–2010), the AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University (2011–2013), and the Endowed Department of Molecular Cardiovascular Therapeutics, Fukuoka University.

Disclosures

Research and education grants, consulting, and promotional speaking fees (Y.U., S.M., K.S.) from MSD Co., Pfizer Co Ltd, Novartis, Takeda Pharmaceutical Co Ltd, Bayer, and Eli Lilly Co (clinical research grants), Japan. K.S. and S.M. are Directors of NPO Clinical and Applied Science, Pharmaceutical Co Ltd, Bayer, and Eli Lilly Co (clinical research grants), Japan.

References

1. Yamagishi K, Iso H, Kitamura A, Sankai T, Tanigawa T, Naito Y, et al. Smoking raises the risk of total and ischemic strokes in hypertensive men. Hypertens Res 2003; 26: 209 – 217.

2. Ueshima H, Choudhury SR, Okayama A, Hayakawa T, Kita Y, Kadowaki T, et al. Cigarette smoking as a risk factor for stroke death. Stroke 2003; 34: 1836 – 1841.

3. Shao B, Pennathur S, Pagani I, Oda MN, Witztum JL, Oram JF, et al. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Am Coll Cardiol 2010; 56: 2265 – 2277.

4. Mannami T, Iso H, Baba S, Sasaki S, Okada K, Konishi M, et al. Smoking promotes subclinical atherosclerosis in apparently healthy men: 2-year ultrasonographic follow-up. Circ J 2005; 69: 2848 – 2891.

5. Sanada S, Nishida M, Ishii K, Moriyama T, Komuro I, Yamauchi-Takihara K. Smoking promotes subclinical atherosclerosis in apparently healthy men: The JPHC Study Cohort I. Stroke 2003; 34: 1248 – 1253.

6. Mjos OD. Lipid effects of smoking. Am Heart J 1988; 115: 272 – 275.

7. Criqui MH, Wallach RB, Heiss G, Mishkel M, Schonfeld G, Jones GT. Cigarette smoking and plasma high-density lipoprotein cholesterol: The Lipid Research Clinics Program Prevalence Study. Circulation 1980; 62: IV70 – IV76.

8. Maeda K, Noguchi Y, Fukui T. The effects of cessation from cigarette smoking on the lipid and lipoprotein profiles: A meta-analysis. Prev Med 2003; 37: 275 – 280.

9. Freeman DJ, Caslake MJ, Griffin BA, Hinjee J, Tan CE, Watson TD, et al. The effect of smoking on post-heparin lipoprotein and hepatic lipase, cholesteryl ester transfer protein and lecithin: Cholesterol acyl transferase activities in human plasma. Eur J Clin Invest 1998; 28: 585 – 591.

10. von Eckardstein A, Nofer JR, Assmann G. High density lipoproteins and arteriosclerosis: Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2001; 21: 13 – 27.

11. Saku K, Ahmad M, Glas-Greenwalt P, Kashyap ML. Activation of foamy cells by apolipoproteins of high density lipoproteins in man. Thromb Res 1985; 39: 1 – 8.

12. Khra A, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364: 127 – 135.

13. Yamamoto S, Yancey PG, Bizler TA, Jerome WG, Kaseda R, Cox B, et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol 2012; 60: 2372 – 2379.

14. Patel PJ, Khra A, Jafri K, Winesky RL, Rader DJ. The anti-oxidative capacity of high-density lipoprotein is reduced in acute coronary syndrome but not in stable coronary artery disease. J Am Coll Cardiol 2011; 58: 2068 – 2075.

15. Ansell BJ, Navab M, Hama S, Kamranpour N, Fanarow G, Hough G, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003; 108: 2751 – 2756.

16. Morganti C, Natale A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, et al. Anti-inflammatory and antioxidant properties of HDL are impaired in type 2 diabetes. Diabetes 2011; 60: 2617 – 2623.

17. Zhang B, Kawachi K, Miura S, Uehara Y, Makita Y, Araki K, et al. Therapeutic approaches to the regulation of metabolism of high-density lipoprotein: Novel HDL-directed pharmacological intervention and exercise. Circ J 2013; 77: 2651 – 2663.

18. Anema W, von Eckardstein A. High-density lipoproteins: Multifunctional but vulnerable protections from atherosclerosis. Circ J 2013; 77: 2423 – 2448.

19. Imaizumi S, Navab M, Morganti C, Charles-Schoeman C, Su F, Gao F, et al. Dysfunctional high-density lipoprotein and the potential of apolipoprotein A-1 mimetic peptides to normalize the composition and function of lipoproteins. Circ J 2011; 75: 1533 – 1538.

20. Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, et al. High-density lipoproteins: A consensus statement from the National Lipid Association. J Clin Lipidol 2013; 7: 484 – 525.

21. Shao B, Pennathur S, Pagani I, Oda MN, Witztum JL, Oram JF, et al. Modifying apolipoprotein A-1 by malondialdehyde, but not an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J Biol Chem 2010; 285: 18473 – 18484.

22. Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, et al. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. Methods Mol Biol 1998; 108: 209 – 217.

23. Lackner KJ, et al. Preparative free-solution isotachophoresis for array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J Biol Chem 2010; 285: 18473 – 18484.

24. Zhang B, Kaneshi T, Ohta T, Saku K. Relation between insulin resistance and fast-migrating LDL subfraction as characterized by capillary isothemophoresis. J Lipid Res 2005; 46: 2265 – 2277.

25. Bottcher A, Schlosser J, Kronenberg F, Dieplinger H, Knipping G, Lackner JK, et al. Preparative free-solution isothemophoresis for separation of human plasma lipoproteins: High density lipoprotein composition of HDL subfractions. J Lipid Res 2000; 41: 905 – 915.

26. Yagi K. Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol Biol 1998; 108: 101 – 106.

27. Watson AD, Navab M, Hama SY, Sevanian A, Prescott SM, Stafforini DM, et al. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest 1995; 95: 774 – 782.

28. Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, Fogelman AM. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res 2001; 42: 1308 – 1317.

29. Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol 2003; 23: 1881 – 1888.

30. Mulder DL, de Boer IR, Groot R, de Vries R, Ammer R, Wefランド J, et al. Skin autofluorescence is inversely related to HDL anti-
oxidative capacity in type 2 diabetes mellitus. *Atherosclerosis* 2011; 218: 102–106.
31. Rosenson RS, Brewer HB Jr, Chapman MJ, Fazio S, Hussain MM, Kontush A, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. *Clin Chem* 2011; 57: 392–410.
32. Moffatt RJ, Chelland SA, Pecott DL, Stamford BA. Acute exposure to environmental tobacco smoke reduces HDL-C and HDL2-C. *Prev Med* 2004; 38: 637–641.
33. Cunnington AJ, Hornbrey P. Breath analysis to detect recent exposure to carbon monoxide. *Postgrad Med J* 2002; 78: 233–237.
34. AIM-HIGH Investigators, Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. *N Engl J Med* 2011; 365: 2255–2267.
35. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brunn J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. *N Engl J Med* 2012; 367: 2089–2099.
36. Tellis CC, Tselepis AD. The role of lipoprotein-associated phospholipase A2 in atherosclerosis may depend on its lipoprotein carrier in plasma. *Biochim Biophys Acta* 2009; 1791: 327–338.
37. Tselepis AD, Panagiotakos DB, Pitsavos C, Tellis CC, Chrysohoou C, Stefanadis C. Smoking induces lipoprotein-associated phospholipase A2 in cardiovascular disease free adults: The ATTICA Study. *Atherosclerosis* 2009; 206: 303–308.
38. Okamura K, Miura S, Zhang B, Uehara Y, Matsuo K, Kumagai K, et al. Ratio of LDL- to HDL-associated platelet-activating factor acetylhydrolase may be a marker of inflammation in patients with paroxysmal atrial fibrillation. *Circ J* 2007; 71: 214–219.
39. Kawano M, Miida T, Fielding CJ, Fielding PE. Quantitation of pre-beta-HDL-dependent and nonspecific components of the total efflux of cellular cholesterol and phospholipid. *Biochemistry* 1993; 32: 5025–5028.
40. Kane JP, Malloy MJ. Prebeta-1 HDL and coronary heart disease. *Curr Opin Lipidol* 2012; 23: 367–371.
41. Sethi AA, Sampson M, Warnick R, Muniz N, Vaisman B, Nordestgaard BG, et al. High pre-beta1 HDL concentrations and low lecithin: Cholesterol acyltransferase activities are strong positive risk markers for ischemic heart disease and independent of HDL-cholesterol. *Clin Chem* 2010; 56: 1128–1137.
42. Guey LT, Pullinger CR, Ishida BY, O’Connor PM, Zellner C, Francone OL, et al. Relation of increased prebeta-1 high-density lipoprotein levels to risk of coronary heart disease. *Am J Cardiol* 2011; 108: 360–366.
43. Gielen S, Landmesser U. A new look at HDL in coronary disease: Can we escape natural history? *Heart* 2011; 97: 1899–1901.
44. Nagano Y, Arai H, Kita T. High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. *Proc Natl Acad Sci USA* 1991; 88: 6457–6461.
45. Ueyama K, Yokode M, Arai H, Nagano Y, Xiang L, Cho M, et al. Cholesterol efflux effect of high density lipoprotein is impaired by whole cigarette smoke extracts through lipid peroxidation. *Free Radical Biol Med* 1997; 24: 182–190.
46. Garner B, Waldeck AR, Witting PK, Rye KA, Stocker R. Oxidation of high density lipoproteins. II: Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. *J Biol Chem* 1998; 273: 6088–6095.
47. Mulligan JI, Chduette IE, Kew RR, Stack DJ, Hojnacki JL. Cigarette smoking impairs hepatic uptake of high density lipoproteins. *Biochem Biophys Res Commun* 1983; 112: 843–850.