CO2 MMP determination on L Reservoir by using CMG simulation and correlations

M Ginting*, P Wijayanti and R A Cindra
Petroleum Engineering Department, Faculty of Earth Science and Energy, Universitas Trisakti, Indonesia

*mgintingtrisakti.ac.id

Abstract. CO2 minimum miscibility pressure (MMP) is an important parameter in CO2 enhanced oil recovery (CO2-EOR) process. The CO2 injection must be conducted at the pressure equal or greater than MMP. The aim of this study is to determine CO2 MMP by using one-dimensional CMG simulation model and CO2 MMP correlations on L reservoir. To make an accurate simulation model and to choose the most satisfying correlation, it is necessary to validate by comparing the obtained CO2 MMP with experiments in the laboratory on eight type oil from various fields. The result showed that Zhang’s correlation is the best correlation which have 13.9% average percentage of errors while using the CMG simulation model shows the average percentage errors approximately 6.5%. Using Zhang’s correlation, CO2 MMP on L reservoir is about 3166 psia and from CMG simulation, CO2 MMP equals to 3219 psia.

1. Introduction

In the primary stage, oil flows to the surface due to existing reservoir pressure. During primary recovery, typically only 10 – 20 percent of original oil in place is produced. As reservoir pressure depletes, water or natural gas is injected to reservoir to increase reservoir pressure and displace oil to production well and this stage is usually called the secondary stage. In this stage, incremental recovery ranges from 15 % to 25 %. At the end of secondary recovery, a significant amount of residual oil still remains in the reservoir and becomes the target of Enhanced Oil Recovery (EOR) process.

One of the most important EOR processes is Carbon Dioxide (CO2) flooding [1,2]. Currently, about 130 commercial CO2 EOR operations have been conducted around the world. In designing Carbon Dioxide (CO2) flooding, Minimum Miscibility Pressure (MMP) is key parameter to recover all the oil within the porous medium and also to obtain the maximum displacement efficiency [3-6]. MMP is the lowest pressure at which the injected gas can achieve dynamic miscibility with the oil in the reservoir. MMP can be measured accurately with experimental methods in laboratory [7-9]. However, these experimental methods are very costly and time-consuming.

E.M. Mansour et al., Ginting, M., Lai Fengpeng et al., and Metcalfe, R. S., presented a study of the effect of carbon dioxide (CO2) injection on miscible flooding performance and focuses on designing and constructing a new miscibility lab with low cost by setup a favorable system for carbon dioxide (CO2) injection [10-13]. Olawale Adekunle et al., Lee, J. I., and Orr Jr.et al., reported from their study provide MMP data for a range of injection fluids that can be used in planning pilot tests for miscible gas injection by using an equation of state phase-behavior program has shown similar results with the RBA MMP results [14-16].
The other methods to predict MMP not only by using empirical correlations among other developed by Alston R.B. and Yuan et al. [17,18] but also numerical simulation model by Shokir and Vulin D. [19,20]. Various empirical correlations for the estimation of MMP are available in literatures. The aim of this study is to predict CO₂ MMP of L reservoir, by using one-dimensional CMG simulation model and the best CO₂ MMP correlations on L reservoir.

2. Method
This study used two techniques in order to determine CO₂ MMP from L Reservoir, which are simulation with Computer Modelling Group (CMG) and calculation using several correlations. The correlations that are used, are correlations: Yellig-Metcalfe, Holm–Josendal, Cronquist, Lee, Orr-Jensen, Alston, Yuan, Chen and Zhang correlations [6-8, 15-18,21,22].

To validate the fittest correlation for L Reservoir, we calculate MMP of eight oil samples from various literatures. After that, the results from all of this correlation are cross-checked with the real results from the laboratory. Finally, correlation technique with the smallest percentage of errors with laboratory test are used.

In second technique, CO₂ MMP simulation on L reservoir was conducted using CMG. After that, the result from this simulation was validated with the eight oil samples.

2.1. L reservoir fluid composition
L reservoir is located at a depth of 1608.5-1610.5 ft with temperature 278.5ºF. The composition reservoir fluid can be seen in the Table 1.

Component	Mole Percent	Weight Percent	
Hydrogen Sulfide	H₂S	0.0000	0.0000
Carbon Dioxide	CO₂	11.0672	3.9889
Nitrogen	N₂	0.1809	0.0415
Methane	C₁	16.0882	2.1138
Ethane	C₂	3.3207	0.8178
Propane	C₃	7.4013	2.6729
Iso-Butane	i-C₄	3.1615	1.5049
n-Butane	n-C₄	2.4822	1.1815
Iso-Pentane	i-C₅	2.3275	1.3753
n-Pentane	n-C₅	1.2917	0.7632
Hexanes	C₆	3.8313	2.7040
Heptanes Plus	C₇⁺	48.8475	82.8362

| Total | 100.0000 | 100.0000 |

2.2. Correlation analysis
Test fluid data was taken randomly from published papers. The compositions, MMP, and temperatures of experiment of the eight fluids (A to H) can be seen in Table 2. From composition and temperature known in Table 2, the MMP of each sample oil is calculated by Yellig-Metcalfe, Holm–Josendal, Cronquist, Lee, Orr-Jensen, Alston, Yuan, Chen and Zhang correlations [6-8, 15-18,21,22].

Component	A	B	C	D	E	F	G	H
H₂S	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CO₂	0.06	0.12	0.06	0.58	0.00	0.00	0.02	0.05
Table 2. Cont.

	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
O₂	0.39	0.65	0.00	0.60	0.00	0.10	0.00	0.42
N₂	13.88	18.50	0.37	2.72	6.41	11.46	6.90	7.09
C₁	1.75	1.79	0.37	2.72	6.41	11.46	6.90	7.09
C₂	4.05	1.87	0.86	4.98	7.82	8.62	6.01	11.48
i-C₄	1.65	0.84	0.96	1.09	0.67	1.00	0.02	0.73
n-C₄	3.06	1.37	1.24	4.91	6.05	2.77	4.29	4.49
i-C₅	1.67	1.64	1.88	2.16	0.98	1.63	0.26	1.55
n-C₅	1.57	0.99	1.54	3.73	1.71	1.42	0.71	1.55
C₆	2.70	2.58	5.46	4.85	5.19	3.81	5.21	3.88
C₇⁺	69.22	69.65	87.26	64.48	54.10	45.04	59.54	53.10
MMPlab (psia)	1680	1700	3160	1190	1550	1800	1300	1535
T (F)	145	156	250	105	109	104	109	120

2.3. Simulation model

The model will be created using parameters in the table 3.

Table 3. Parameters of the slim tube simulation model.

Parameter	Value	Unit
Porosity	0.388	
Permeability	700	mD
Lenght	20	Grid
Grid	2.04	Feet
Injection Rate	0.2	cc/min
Inside Diameter	0.45	Cm
Injected Fluid	100% CO₂	

The model is a 2D model which presents a slim tube device in the laboratory.

3. Results and discussion

3.1. Correlation test result

The equations of correlations that is used to determine Minimum Miscibility Pressure can be seen in reference4. The result of MMP which is calculated from correlation compares with MMP laboratory can be seen in table 4.

Table 4. Correlation analysis result.

Correlations	A	B	C	D	E	F	G	H	Error (%)	
	Range	Average								
Yellig-Metcalfe	1822.5	1957.5	3107.3	1279.1	1201.9	1263.6	1097.9	1297.5	-15.1-29	14.5
Holm-Josendal	1500	1800	-	1600	1800	1600	1700	1100	-34.5-28.3	19.6
Cronquist	1287.4	1481.6	4375.1	1352	1595.5	1595.1	1706.2	1121.8	-38.5-26.9	20.1
Lee	1956.7	2169.5	4600.8	1299.5	1357.3	1285.3	1357.3	1525.1	-45.6-28.6	18.1
From Table 4, it can be seen that the range of error of all correlation is quite high. The Zhang correlation has a smallest average percentage of error, which is equal to 13.9%. The large of percentage of error means that none of correlations accurately to predict Minimum Miscibility Pressure (MMP) as each correlation relates to a unique reservoir and fluid conditions. This makes the Zhang correlation is the best correlation among the eight correlations that have been provided. Later the L well data will use the Zhang correlation to determine the MMP size.

3.2. CMG model simulation result

The CMG simulation model was run several times for the eight test composition fluids data used as composition fluid model. The results of the MMP value and the percentage of errors from this simulation model can be seen in table 5.

Oil Samples	Minimum Miscibility Pressure, psia	CMG Simulation	Laboratory	% Error
A	1718	1680	-2.3	
B	1733	1700	-1.9	
C	2980	3160	5.7	
D	1160	1190	2.5	
E	1450	1550	6.5	
F	1870	1800	-3.9	
G	1370	1300	-5.4	
H	1493	1535	2.7	

Overall MMP prediction is good enough, giving the percentage of error of MMP between -5.4 % to 6.5 %. The least percentage of errors is -1.9 % or calculated MMP is greater 1.9 % than laboratory MMP.

3.3. MMP calculation of L Reservoir

Calculation of MMP of L Reservoir will be carried out using the Zhang correlation and CMG simulation model. Using Zhang’s correlation, the MMP of L reservoir is obtained as 3166 psia.

The CMG simulation model has been made and was run with difference CO₂ injection pressure. The percentage oil recovery calculated at 1.2 PV of CO₂ injected each pressure is plotted as a function of pressure. Oil recovery increases rapidly with increasing pressure then flattens out when MMP is reached as shown in Figure 1.
Figure 1. The plot of the CMG simulation results on L well fluid data.

In figure 1, it can be seen that the MMP plot results show MMP from L reservoir is 3219 psia.

The percentage of error of CMG model simulation is smaller than Zhang correlation, which is 13.9 %, hence its recommended to used CMG simulation model to predicted Minimum Miscibility Pressure of L Reservoir. This determination is based on the error percentage between the comparison of the MMP value from the simulation and the laboratory which is 5%.

4. Conclusion

Based on the eight-sample used in this study, the Zhang correlation is better than others correlation. Actually, The CO2 MMP of L reservoir is about 3200 psia. By Zhang correlation obtained the CO2 MMP value of L reservoir is about 3166 psia, while based on CMG model obtained the CO2 MMP value of L reservoir is about 3219 psia. So, the percentage of error of CMG model simulation is smaller than Zhang correlation, which is 13.9 %, hence its recommended to used CMG simulation model is better than Zhang Correlation to predicted Minimum Miscibility Pressure of L Reservoir.

References
[1] S Melzer 2010 Optimization of CO2 Storage in CO2 Enhanced Oil Recovery Projects Advanced Resources International.
[2] J J Taber, F D Martin and R S Seright 1997 EOR Screening Criteria Revisited- Part 1: Introduction to Screening Criteria and Enhanced Recovery Field Projects Society of Petroleum Engineers Journal.
[3] M B D Abdurrahman and A K Permadi 2015 Determination of Minimum Miscibility Pressure at AB-4 and AB-5 Layers of Air.
[4] A Waqar et al. 2016 Experimental Determination of Minimum Miscibility Pressure Procedia Engineering.
[5] G Che et al. 2013 Simulation of CO2-Oil Minimum Miscibility Pressure (MMP) for CO2 Enhanced Oil Recovery (EOR) using Nural Networks Energy Procedia.
[6] L W Holm and V A Josendal 1982 Effect of Oil Composition on Miscible-Type Displacement by Carbon Dioxide Society of Petroleum Engineers Journal.
[7] B Chen, H D Huang and Y Zhang 2013 An Improved Predicting Model for Minimum Miscibility Pressure (MMP) of CO2 and Crude Oil Journal of Oil and Gas Technology.
[8] C Cronquist 1978 Carbon Dioxide Dynamic Miscibility with Light Reservoir Oils Fourth U.S. DOE Symposium Tulsa. USA pp 18-23.
[9] D Graue and E T Zana 1981 Study of Possible CO2 Flood in Rangely Field Journal of Petroleum Technology.
[10] E M Mansour, and A M Al-Sabagh et al. 2016 Experimental Approach of Minimum Miscibility Pressure for CO2 Miscible Flooding: Application to Egyptian Oil Fields International Journal
of New Technology and Research (IJNTR), 2(5), 105-112.

[11] M Ginting 2014 Pengaruh Penambahan Gas Hidrokarbon Ke Dalam CO² Sebagai Fluida Injeksi Terhadap Besamya Tekanan Tercampur Minimum PETRO Jurnal Ilmiah Teknik Perminyakan, 2(17).

[12] L Fengpeng, Z Li and X Hu 2017 Improved Minimum Miscibility Pressure Correlations for CO2 Flooding using Various Oil Components and Their Effects J. Geophys. Eng.

[13] R S Metcalfe 1982 Effects of Impurities on Minimum Miscibility Pressure and Minimum Enrichment Level for CO2 and Rich-Gas Displacement Society of Petroleum Engineers Journal.

[14] O Adekunle and B T Hoffman 2014 Minimum Miscibility Pressure Studies in Bakken Society of Petroleum Engineers Journal.

[15] J I Lee 1979 Effectiveness of Carbon Dioxide Displacement Under Miscible and Immiscible Condition Petroleum Recovery Institute.

[16] F M Orr Jr. and C M Jensen 1984 Interpretation of Pressure-Composition Phase Diagrams for CO2/Crude-Oil System Society of Petroleum Engineers Journal.

[17] R B Alston, G P Kokolis and C F James 1985 CO2 Minimum Miscibility Pressure: A Correlation for Impure CO2 Streams and Live Oil Systems Society of Petroleum Engineers Journal.

[18] H Yuan, R T Johns, A M Egwuenu and B Dindoruk 2004 Improved MMP Correlations for CO2 Floods Using Analytical Gas Flooding Theory Society of Petroleum Engineers.

[19] E M Shokir 2007 CO2-oil minimum miscibility pressure model for impure and pure CO2 streams J. Pet. Sci. Technol. Eng. 58, 173-185.

[20] D Vulin, M Gacina and V Bilicic 2018 Slim-tube Simulation Model for Carbon Dioxide Enhanced Oil Recovery The Mining-Geology-Petroleum Engineering Bulletin.

[21] W F Yellig and R S Metcalfe 1980 Determination and Prediction of CO2 Minimum Miscibility Pressure Journal of Petroleum Technology.

[22] H Zhang, D Hou and K Li 2015 An Improved CO 2 -Crude Oil Minimum Miscibility Pressure Correlation Journal of Chemistry.