Effect of Tillage Practices and Supplemental Irrigation Options on Growth, Yield and Soil Biological Properties of Hybrid Maize

M. Saravanan*

Subject Matter Specialist (Agronomy), ICAR-Krishi Vigyan Kendra, Ariyalur District, Tamil Nadu, India
*Corresponding author

Abstract

Field experiment was conducted in two consecutive growing seasons at Agricultural Engineering College and Research Institute, Kumulur, Tamil Nadu to evaluate the tillage practices, crop residue and supplemental irrigation through drip irrigation in maize under rainfed condition. The experiment was laid out in strip plot design with three replications. The main plot treatments were conventional tillage, minimum tillage without crop residue, minimum tillage with crop residue @ 5 t ha⁻¹ and minimum tillage with crop residue @ 10 t ha⁻¹. The sub plot treatments were control (without irrigation), supplemental drip irrigation 4, 6, 8 and 10 times during the cropping period. Tillage practices and crop residue with supplemental drip irrigation practices could potentially lead to significant difference in growth parameters, microbes populations, yield attributes and maximum yield 8345, 8856 kg ha⁻¹ of maize in both the seasons by application of minimum tillage with crop residue 10 t ha⁻¹ + supplemental drip irrigation ten times. Therefore, minimum tillage (one pass of mouldboard plough followed by two passes of disk harrow) with crop residue 10 t ha⁻¹ + supplemental irrigation through drip irrigation ten times was found to be more appropriate and profitable to improving yield of maize under rainfed condition.

Keywords
Crop residue, Maize, Supplemental irrigation, Tillage and microbes.

Introduction

Soil quality (SQ) highly depends on its structure, natural productivity, and human influence. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. Main threats to soil biodiversity occurred by mechanical impacts (soil compaction, soil tillage) and chemical stress (plant protection measures) in agricultural management.

Tillage is one of the major management practices affecting soil physical parameters. The influence of tillage systems on the total soil organic matter (OM) content is detectable only after several years of its application.

Microbial activity may respond to disturbances on a shorter period of time than those based on physical or chemical properties. As a consequence, microbiological properties such as soil enzyme activities have been suggested as potential indicators of SQ (Saviozzi et al., 2001) because of their rapid response to changes in soil management (Kandeler et al., 1999). In many cases, both bacteria and fungi were more abundant under no-tillage than conventional tillage (Helgason et al., 2009).
Tillage systems affect the soil physical and chemical environment in which soil organisms live, thereby affecting soil organisms in different ways (Klavdivko 2001). Numerous studies in temperate regions have shown that decreasing tillage intensity results in higher organic C and N and improved soil quality (SQ) (Soon et al., 2001). Conservation tillage practices (reduced or no-tillage) result in increasing enzyme activities (Acosta-Martinez et al., 2003), microbial biomass (Franzluebbers et al., 1995), and fungal and bacteria dominance under NT (Helgason et al., 2009). Suitable soil management can be practiced through conservation tillage (including zero tillage), high crop residue return and crop rotation. Minimum-tillage (MT) is the most adapted conservation tillage system, which involves minimal disturbance of the surface residue.

Cropping systems that return crop residues to the field significantly increase the activity of a wide range of soil enzymes, compared to unamended soils, due to the stimulation of microbial activity (Frey et al., 1999).

In dry areas mostly shortage of soil moisture occurs during the most sensitive growth stages like flowering and grain filling stage of the crops. As a resulting is poor crop growth and yield. Supplemental irrigation (SI), with limited amount of water, when applied during the critical crop growth stages, can result in substantial improvement in yield and water productivity. Hence SI is an effective method to alleviate the adverse impact of soil moisture stress during dry spells on the yield of rainfed crops (Oweis and Hachum, 2006).

Maize (Zea mays L.) is the third most important cereal next to rice and wheat, in the world as well in India. It may be a substitute over the other dominant cropping system and may fulfill the future demand of human and animal feed. In order to increase production further there is no other option except to increase productivity by using available resources most efficiently.

Keeping this in view, the present investigation was undertaken to study the combined effect of tillage, crop residue incorporation and supplemental irrigation methods on the growth, biological population and yield of maize in Tamil Nadu.

Materials and Methods

A field experiment was carried out for two consecutive growing seasons at Agricultural Engineering College and Research Institute, Kumulur, Tamil Nadu. The experimental site is geographically situated at 10.56° North latitude and 78.49° East longitudes and at an altitude of 78 m above MSL. The soil was sandy loam in texture with pH 7.71. The fertility status of the soil was low, medium and high in the available N, P₂O₅, and K₂O, with the values of 212, 20 and 575 kg ha⁻¹ respectively. The main plot treatments were conventional tillage, minimum tillage without crop residue, minimum tillage with crop residue @ 5 t ha⁻¹ and minimum tillage with crop residue @ 10 t ha⁻¹. The sub plot treatments were (without irrigation) control, supplemental drip irrigation 4, 6, 8 and 10 times during the cropping period. The experiment was laid out in a strip plot design with three replications.

Conventional tillage included one pass of mouldboard plough to a depth of 15 cm and was followed by two passes of disk harrowing. Minimum tillage included only one pass of disk harrowing. The treatments were carried out on the same plots in the growing seasons. In both growing seasons, one of the most commercial maize NK6240 was sowing manually on paired row spacing of 60 + 30 x 20 cm (totally there were two rows per plot). Before sowing a uniform fertilizer schedule was followed at the rate of 135:62.5:50 kg of N, P₂O₅ and K₂O ha⁻¹.
Nitrogen was applied in three splits as 25: 50: 25 per cent as basal, at 25 and 50 DAS, respectively. The entire dose of phosphorus was applied basally. The potassium was applied in two equal split doses viz., basal and at 50 DAS.

Atrazine @ 0.5 kg a.i ha\(^{-1}\) was also applied for weed control after sowing of maize seed. During the growing season, the insecticides and fungicides were applied according to recommendations by the state agricultural university (SAU). All other necessary operations except those under study were kept normal and uniform for all the treatments.

The supplemental irrigation was given to the crop at the time of moisture stress period, which was determined based on the visual symptom (Wilting of plants). In study period four, six, eight and ten supplemental irrigations were given at various time period. The water was pumped by motor from farm pond and supplied to crops through drip irrigation system at a depth of 3 cm.

Observations on growth characters such as plant height and dry matter production were recorded at 30, 60, 90 DAS and at harvest from five randomly selected plants in each plot.

The samples were collected from sampling rows in each plot for dry matter production and were used for the estimation of DMP. The population density of bacteria, fungi and actinomycetes were enumerated using serial dilution plate technique. The data on yield parameters and yield were also recorded.

Results and Discussion

Effect of treatments on plant height

Growth and development in plants are a consequence of excellent coordination of several processes operating at different growth stages of plant. The growth of maize influenced by various tillage treatments has been elucidated through the positive response on plant height.

The growth parameters of maize were significantly influenced by tillage and crop residue with supplemental irrigation through drip irrigation. The growth parameters were not influenced by treatments at 30 DAS. Among tillage and crop residue treatments, minimum tillage with crop residue 10 t ha\(^{-1}\) recorded significantly higher plant height (Table 1) (164, 198 cm and 159, 191 cm at 60 DAS and at harvest during 2012 and 2013, respectively). Regarding irrigation practices, supplemental irrigation at 10 times was recorded higher plant height than without supplemental irrigation plot.

With regard to interaction effect, in a given tillage with crop residue treatment and supplemental drip irrigation, minimum tillage with crop residue 10 t ha\(^{-1}\) + supplemental drip irrigation 10 times registered distinctly higher plant height at 60 DAS and at harvest during both the years.

Effect of treatments on dry matter production

Tillage and crop residue with supplemental irrigation through drip irrigation significantly influenced the dry matter production (Tables 2 and 3). Among tillage and crop residue treatments, minimum tillage with crop residue 10 t ha\(^{-1}\) recorded significantly higher dry matter production (8185, 10634 kg ha\(^{-1}\) and 8166, 10504 kg ha\(^{-1}\)) at 60 DAS and at harvest during 2012 and 2013, respectively. Among irrigation practices, supplemental irrigation at 10 times was recorded higher dry matter production in respective stages during both the seasons and it was comparable with supplemental irrigation at 8 times was recorded higher dry matter production than that in without supplemental irrigation plot.
Table 1 Effect of tillage, crop residue and supplemental drip irrigation on plant height (cm) of maize

Treatment	2012		2013		2012		2013	
	60 DAS	At harvest	60 DAS	At harvest				
S1	M1 133	160	M1 134	139	M1 137	142	M1 140	144
	M2 136	165	M2 139	169	M2 144	149	M2 146	159
	M3 139	175	M3 144	175	M3 159	174	M3 162	174
	M4 143	175	M4 148	175	M4 164	175	M4 168	175
	Mean 138	167	Mean 137	142	Mean 140	149	Mean 143	150
S2	M1 138	170	M1 139	189	M1 142	150	M1 146	165
	M2 142	173	M2 139	185	M2 149	165	M2 149	174
	M3 144	185	M3 146	185	M3 157	174	M3 172	174
	M4 155	185	M4 149	185	M4 174	184	M4 177	177
	Mean 145	179	Mean 142	150	Mean 149	157	Mean 156	187
S3	M1 141	173	M1 139	200	M1 149	165	M1 163	174
	M2 149	181	M2 143	192	M2 155	174	M2 170	174
	M3 155	192	M3 143	192	M3 157	174	M3 180	174
	M4 164	192	M4 155	192	M4 174	184	M4 185	185
	Mean 152	186	Mean 149	166	Mean 156	174	Mean 159	191
S4	M1 146	181	M1 139	204	M1 148	163	M1 165	174
	M2 156	187	M2 149	204	M2 149	165	M2 172	174
	M3 160	204	M3 149	204	M3 157	174	M3 192	184
	M4 173	204	M4 157	204	M4 174	184	M4 203	184
	Mean 159	193	Mean 156	174	Mean 159	191	Mean 159	191
S5	M1 152	187	M1 139	235	M1 156	170	M1 180	174
	M2 166	195	M2 143	235	M2 157	170	M2 180	174
	M3 171	235	M3 157	235	M3 170	180	M3 203	182
	M4 182	235	M4 170	235	M4 182	180	M4 226	187
	Mean 168	208	Mean 166	174	Mean 166	182	Mean 171	191

S Ed	CD (P=0.05)					
M	5.1	6.9	3.7	9.1	5.5	13.4
S	4.4	6.9	4.2	9.8	6.7	15.1
M at S	6.2	8.4	4.3	10.1	7.0	16.4
S at M	5.6	8.4	4.7	10.9	7.8	17.9

M1 - Conventional tillage
M2 - Minimum tillage without crop residue
M3 - Minimum tillage with crop residue @ 5 tons ha\(^{-1}\)
M4 - Minimum tillage with crop residue @ 10 tons ha\(^{-1}\)
S1 - Control
S2 - Supplemental drip irrigation four times
S3 - Supplemental drip irrigation six times
S4 - Supplemental drip irrigation eight times
S5 - Supplemental drip irrigation ten times
Table 2 Effect of tillage, crop residue and supplemental drip irrigation on dry matter production (kg ha\(^{-1}\)) of maize 2012

Treatments	60 DAS	At harvest								
	\(M_1\)	\(M_2\)	\(M_3\)	\(M_4\)	Mean	\(M_1\)	\(M_2\)	\(M_3\)	\(M_4\)	Mean
\(S_1\)	5926	5896	6345	6645	6203	7963	7793	8025	8324	8026
\(S_2\)	6745	6458	6942	7014	6789	8623	8124	9125	9624	8874
\(S_3\)	7156	6924	7468	7645	7298	9215	8745	10542	10457	9739
\(S_4\)	7724	7745	8102	8867	8109	9956	9456	11108	11526	10511
\(S_5\)	8541	8456	9023	10754	9193	10845	10245	12125	13242	11614
Mean	7218	7096	7576	8185	9320	8872	10185	10634		

S Ed	CD (P=0.05)			
M	220	539	367	899
S	236	544	449	1038
M at S	310	731	432	1014
S at M	317	731	501	1155

Table 3 Effect of tillage, crop residue and supplemental drip irrigation on dry matter production (kg ha\(^{-1}\)) of maize 2013

Treatments	60 DAS	At harvest								
	\(M_1\)	\(M_2\)	\(M_3\)	\(M_4\)	Mean	\(M_1\)	\(M_2\)	\(M_3\)	\(M_4\)	Mean
\(S_1\)	5533	5568	6089	6458	5912	7563	7725	8023	8567	7970
\(S_2\)	6102	5984	6547	7324	6489	7958	8245	8757	9724	8671
\(S_3\)	6623	6548	7325	8135	7158	8567	8934	9547	10125	9293
\(S_4\)	7026	7102	7925	8935	7747	9001	9567	10167	11348	10021
\(S_5\)	7953	7892	8754	9978	8645	9563	10245	11025	12758	10898
Mean	6648	6619	7328	8166	8531	8943	9504	10504		

S Ed	CD (P=0.05)			
M	211	516	350	857
S	251	578	387	892
M at S	262	615	418	984
S at M	292	674	445	1027
Table 4

Interaction effect of tillage practice with crop residue and supplemental irrigation through drip system on microbial population (cfu g⁻¹ of soil) of maize at 60 DAS during 2012

Treatments	Bacteria x 10⁴ cfu g⁻¹ of soil	Fungi x 10⁴ cfu g⁻¹ of soil	Actinomycetes x 10⁴ cfu g⁻¹ of soil												
	T₁	T₂	T₃	T₄	Mean	T₁	T₂	T₃	T₄	Mean	T₁	T₂	T₃	T₄	Mean
S₁	62.5	65.6	67.1	63.6	22.0	21.0	24.0	24.5	22.9	12.0	14.3	16.4	18.5	15.3	
S₂	64.6	67.5	69.8	66.0	23.6	22.5	25.6	26.2	24.5	13.5	15.6	17.3	21.2	16.9	
S₃	65.6	70.2	71.3	67.9	23.0	23.9	27.5	29.3	25.9	13.6	16.1	18.2	23.5	17.9	
S₄	65.7	71.2	74.5	69.5	24.6	24.8	28.1	30.2	26.9	14.1	16.5	19.0	24.6	18.6	
S₅	66.2	72.4	75.5	69.8	25.1	24.6	27.8	30.8	27.1	14.0	17.1	21.2	26.0	19.6	
Mean	64.9	63.5	69.4	71.6	23.7	23.4	26.6	28.2	13.4	15.9	18.4	22.8			

	SEd	CD (P=0.05)	SEd	CD (P=0.05)	SEd	CD (P=0.05)
T	1.57	3.83	0.62	1.51	0.48	1.18
S	1.73	3.98	0.66	1.51	0.50	1.15
T at S	1.79	4.21	0.80	1.89	0.60	1.41
S at T	1.92	4.42	0.82	1.90	0.60	1.38

Table 5

Interaction effect of tillage practice with crop residue and supplemental irrigation through drip system on microbial population (cfu g⁻¹ of soil) of maize at harvest during 2012

Treatments	Bacteria x 10⁴ cfu g⁻¹ of soil	Fungi x 10⁴ cfu g⁻¹ of soil	Actinomycetes x 10⁴ cfu g⁻¹ of soil												
	T₁	T₂	T₃	T₄	Mean	T₁	T₂	T₃	T₄	Mean	T₁	T₂	T₃	T₄	Mean
S₁	11.9	12.9	15.4	14.1	9.3	10.7	11.8	12.3	11.0	7.5	9.2	11.2	13.3	10.3	
S₂	12.7	14.0	16.0	15.5	10.3	10.8	12.1	12.1	11.3	8.3	9.8	11.6	13.6	10.8	
S₃	13.0	13.9	17.8	16.2	10.7	11.3	12.2	13.1	11.8	8.5	10.3	12.4	13.9	11.3	
S₄	12.7	15.1	19.0	17.0	11.0	11.5	13.2	13.6	12.3	8.9	11.2	14.3	15.4	12.5	
S₅	11.9	15.0	20.0	17.1	11.2	12.1	14.1	15.2	13.2	9.5	12.1	16.5	17.6	13.9	
Mean	12.4	14.2	17.6	19.7	10.5	11.3	12.7	13.3	8.5	10.5	13.2	14.8			

	SEd	CD (P=0.05)	SEd	CD (P=0.05)	SEd	CD (P=0.05)
T	0.46	1.12	0.32	0.79	0.26	0.64
S	0.54	1.25	0.37	0.85	0.37	0.84
T at S	0.56	1.31	0.38	0.89	0.38	0.89
S at T	0.62	1.43	0.42	0.97	0.46	1.05
Table 6: Interaction effect of tillage practice with crop residue and supplemental irrigation through drip system on soil microbial population (cfu g⁻¹ of soil) of maize at 60 DAS during 2013

Treatments	Bacteria x 10⁶ cfu g⁻¹ of soil	Fungi x 10⁶ cfu g⁻¹ of soil	Actinomycetes x 10⁶ cfu g⁻¹ of soil												
	T₁	T₂	T₃	T₄	Mean	T₁	T₂	T₃	T₄	Mean	T₁	T₂	T₃	T₄	Mean
S₁	66.1	69.2	75.3	77.0	71.9	20.0	23.6	25.6	28.4	24.4	10.3	13.8	15.4	17.0	14.1
S₂	69.3	72.6	79.2	82.2	75.8	23.4	26.5	28.6	33.2	27.9	12.1	14.5	16.3	20.3	15.8
S₃	70.2	73.2	81.3	84.6	77.3	24.2	27.5	29.6	36.5	29.5	12.2	15.5	17.2	21.2	16.5
S₄	70.0	75.5	81.0	86.2	78.2	23.2	27.2	30.1	37.5	29.5	13.1	15.2	17.3	23.5	17.3
S₅	74.4	79.2	83.5	87.3	81.1	24.0	27.0	30.5	37.6	29.8	13.4	15.9	17.2	24.5	17.7
Mean	70.0	73.9	80.1	83.5	81.1	23.0	26.4	28.9	34.6	32.2	15.0	16.7	21.3		

	SEd	CD (P=0.05)	SEd	CD (P=0.05)	SEd	CD (P=0.05)
T	1.61	3.93	0.70	1.72	0.36	0.88
S	1.87	4.30	0.79	1.81	0.46	1.06
T at S	1.77	4.17	0.78	1.84	0.48	1.13
S at T	2.00	4.62	0.86	1.97	0.56	1.28

Table 7: Interaction effect of tillage practice with crop residue and supplemental irrigation through drip system on microbial population (cfu g⁻¹ of soil) of maize at harvest during 2013

Treatments	Bacteria x 10⁶ cfu g⁻¹ of soil	Fungi x 10⁶ cfu g⁻¹ of soil	Actinomycetes x 10⁶ cfu g⁻¹ of soil												
	T₁	T₂	T₃	T₄	Mean	T₁	T₂	T₃	T₄	Mean	T₁	T₂	T₃	T₄	Mean
S₁	18.0	20.1	24.5	26.3	22.2	8.3	10.2	12.2	13.4	11.0	7.0	10.2	11.9	13.9	10.8
S₂	18.6	21.3	25.5	27.3	23.2	8.3	10.0	12.5	14.2	11.3	8.1	11.2	12.5	13.5	11.3
S₃	19.5	21.2	25.6	27.2	23.4	9.6	11.6	12.6	15.6	12.4	8.3	13.2	12.6	14.1	12.1
S₄	20.6	24.2	26.3	27.0	24.5	10.3	11.6	13.5	15.3	12.7	8.5	13.1	13.2	14.6	12.4
S₅	22.2	25.5	27.1	28.7	25.9	11.2	12.1	14.5	15.9	13.4	9.2	13.2	14.1	15.2	12.9
Mean	19.8	22.5	25.8	27.3	9.5	11.1	13.1	14.9	13.4	8.2	12.2	12.9	14.3		

	SEd	CD (P=0.05)	SEd	CD (P=0.05)	SEd	CD (P=0.05)
T	0.61	1.50	0.32	0.78	0.28	0.68
S	0.63	1.45	0.33	0.77	0.28	0.64
T at S	0.84	1.98	0.46	1.08	0.37	0.88
S at T	0.84	1.94	0.46	1.06	0.37	0.85
Table 8: Effect of tillage, crop residue and supplemental drip irrigation on yield attributes and yield of maize 2012

Treatments	Cob length (cm)	Cob weight (g)	Yield (kg ha⁻¹)												
	M₁	M₂	M₃	M₄	Mean	M₁	M₂	M₃	M₄	Mean	M₁	M₂	M₃	M₄	Mean
S₁	16.7	16.9	17.4	17.6	17.2	170	174	179	183	177	5034	5800	6783	6810	6107
S₂	16.6	17.0	17.9	18.1	17.4	174	179	184	190	182	5100	5890	7077	7328	6349
S₃	17.3	17.6	18.0	19.5	18.1	177	183	189	193	186	6103	6857	7350	7465	6944
S₄	17.0	18.2	19.0	19.3	18.4	181	189	200	204	194	6670	6945	7421	7724	7190
S₅	18.2	19.2	20.2	23.2	20.2	188	197	209	221	204	6745	7321	7945	8345	7589
Mean	17.2	17.8	18.5	19.5	179	185	192	199	199	5930	6563	7316	7534		

S Ed	CD (P=0.05)	S Ed	CD (P=0.05)	S Ed	CD (P=0.05)
M	0.54	1.33	4.34	10.63	267
S	0.64	1.47	5.35	12.33	282
M at S	0.72	1.69	5.35	12.55	333
S at M	0.78	1.80	6.14	14.16	341

Table 9: Effect of tillage, crop residue and supplemental drip irrigation on yield attributes and yield of maize 2013

Treatments	Cob length (cm)	Cob weight (g)	Yield (kg ha⁻¹)												
	M₁	M₂	M₃	M₄	Mean	M₁	M₂	M₃	M₄	Mean	M₁	M₂	M₃	M₄	Mean
S₁	15.4	15.9	16.4	17.1	16.2	136	149	150	152	147	5031	5809	5687	5983	5448
S₂	16.3	16.0	17.3	17.9	16.9	141	156	162	175	159	5245	5513	6021	6456	5809
S₃	16.4	16.6	17.9	18.2	17.3	153	172	170	191	172	6136	5987	6521	7215	6465
S₄	17.0	17.3	18.6	18.7	17.9	165	175	177	199	179	6123	6452	7034	8102	6928
S₅	17.3	18.8	20.1	21.8	19.5	176	186	205	214	196	6893	7024	7784	8856	7639
Mean	16.5	16.9	18.1	18.7	155	168	173	187	187	5886	6013	6609	7322		

S Ed	CD (P=0.05)	S Ed	CD (P=0.05)	S Ed	CD (P=0.05)
M	0.44	1.07	6.09	14.90	227
S	0.57	1.32	7.39	17.03	254
M at S	0.59	1.39	7.35	17.26	297
S at M	0.69	1.59	8.39	19.35	314
With regard to interaction effect, in a given tillage with crop residue treatment and supplemental drip irrigation, minimum tillage with crop residue 10 t ha\(^{-1}\) + supplemental drip irrigation 10 times registered significantly higher dry matter production at 120 DAS and at harvest during both the years of study.

This might be due to the reason that minimum tillage conserved more soil moisture and crop residues have potential to increase of soil organic matter and nutrient levels, moderation of soil temperature and augmented soil biological activity, which provided better growing environment for increased plant height. Minimum tillage indirectly defines the species composition of the soil microbial community by improving retention of soil moisture and modifying soil temperature (Krupinsky \textit{et al.}, 2002).

Microbiological population

Tillage and crop residue with supplemental irrigation through drip irrigation obviously influenced the microbe’s population.

Soil organic matter distribution, nutrient cycling and microbial activity are influenced by the type and the degree of soil tillage (Salinas-Garcia \textit{et al.}, 2002).

The influence of tillage and supplemental irrigation on the soil biological properties was studied through the assessment of soil microbial population.

Practice of different tillage systems and supplemental irrigation significantly energized the soil microbial load at early stages during both the years of experimentation. The fluctuation in the microbial load in the soil is based on the availability of carbon source in the soil and enhanced microbial activity stimulated by crop residues and manures (Hoflich \textit{et al.}, 2000).

Among tillage and crop residue treatments, minimum tillage with crop residue 10 t ha\(^{-1}\) recorded significantly higher population (Tables 4-7) at 80 and 120 DAS during both the years of study.

Among irrigation practices, supplemental irrigation at 10 times was recorded higher number of bacteria, fungal and actinomycetes at 80 and 120 DAS during both the years than that in without supplemental irrigation plot.

With regard to interaction effect, in a given tillage with crop residue treatment and supplemental drip irrigation, minimum tillage with crop residue 10 t ha\(^{-1}\) + supplemental drip irrigation 10 times had higher influence on the population of bacteria, fungal and actinomycetes at 80 and 120 DAS during both the years than others both the years of study.

Effect of treatments on yield attributes and yield

Yield attribute like cob length and cob weight and yield of maize was significantly influenced by tillage, crop residue and supplemental irrigation through drip irrigation.

Among tillage and crop residue treatments, minimum tillage with crop residue 10 t ha\(^{-1}\) recorded significantly higher cob length and cob weight and yield (Tables 8 and 9) (19.5 cm cob length, 199 g cob weight, 7534 kg ha\(^{-1}\) and 18.7 cm cob length, 187 g cob weight, 7322 kg ha\(^{-1}\) during 2012 and 2013, respectively) Regarding irrigation practices, supplemental irrigation at 10 times was recorded higher cob length and cob weight and yield (20.2 cm cob length, 204 g cob weight, 7589 kg ha\(^{-1}\) and 19.5 cm cob length, 196 g cob weight, 7639 kg ha\(^{-1}\) during 2012
and 2013, respectively) than that in without supplemental irrigation plot.

With regard to interaction effect, in a given tillage with crop residue treatment and supplemental drip irrigation, minimum tillage with crop residue 10 t ha$^{-1}$ + supplemental drip irrigation 10 times registered laudably higher cob length and number of bolls per plant and yield during both the years.

This might be due to the reason that the minimum tillage plots had more main stem nodes, numbers of fruiting sites than those on conventional tillage. Consequently, the number of bolls retained was greater under the minimum tillage than under the conventional tillage system. Enhanced boll retention in the minimum tillage treatments could be due to other factors such as less competition from weeds, differences in nutrient supply and conserved soil moisture. Greater boll numbers on the minimum tillage plots contributed to yield improvements compared to the conventional tillage (Blaise. 2011). Tolessa Debele (2011) concluded that minimum tillage with residue retention increased yield particularly when crop faced terminal drought.

From these experiments, it is concluded that practicing of minimum tillage and application of crop residue at 10 t ha$^{-1}$ + supplemental drip irrigation 10 times was found to be the promising agronomic practice for enhancing growth, microbial population and productivity of hybrid maize under rainfed situation.

References

Saviozzi A., Levi-Minzi R., Cardelli R., Riffaldi R. A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil 233, 251, 2001.

Kandeler E., Tscherko D., Spiegel H. Long-term monitoring of microbial biomass, N mineralization and enzyme activities of a Chernozem under different tillage management. Biol. Fertil. Soils 28, 343, 1999.

Helgason B.L., Walley F.L., Germida J. Fungal and bacterial abundance in long-term no-till and intensive till soils of the northern great plains. Soil Sci. Soc. Am. J., 73, (1), 120, 2009.

Klavdivko E. Tillage systems and soil ecology. Soil Till. Res. 61, 61, 2001.

Soon Y.K., Clayton G.W., Rice W.A. Tillage and previous crop effects on dynamics of nitrogen in a wheat–soil system. Agron. J. 93, 842, 2001.

Acosta-Martinez V., Zobeck T., Gill T.E., Kennedy A.C. Enzyme activities and microbial community structure in semiarid agricultural soils. Biol. Fertil. Soils 38, 216, 2003.

Franzluebers A.J., Hons F.M., Zuberer A.D. Tillage and crop effects on seasonal soil carbon and nitrogen dynamics. Soil Sci. Soc. Am. J. 59, (6), 1618, 1995.

Frey, S.D.; Elliott, E.T.; Paustian, K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol. Biochem. 1999, 31, 573–585.

Oweis, T. and Hachum, A. 2006. Water management in rainfed agriculture – investing in supplemental irrigation. In: Agricultural Water Sourcebook: Shaping the Future of Water for Agriculture. The World Bank, Washington, DC, USA, pp. 206–213.

Krupinsky, J.M., Bailey, K.L., McMullen, M.P., Gosser, B.D., Turkington, T.K., 2002. Managing plant disease risk in diversified cropping systems. Agron. J. 94, 198–209.

Salinas-Garcia, J.R., Velazquez-Garcia, J.J., Gallardo-Valdez, M., Diaz-Mederos, P., Caballero-Hernandez, F., Tapia-Vargas,
L.M., Rosales-Robles, E., 2002. Tillage effects on microbial biomass and nutrient distribution in soils under rain-fed corn production in central-western Mexico. Soil Till. Res. 66, 143–152.

Hoflich, G., M. Tauschke, G. Kuhn and J. Rogasik. 2000. Influence of agricultural crops and fertilization on microbial activity and micro-organisms in the rhizosphere. J. Agron. Crop Sci., 184: 49-54.

Blaise, D. 2011. Tillage and green manure effects on Bt transgenic cotton (Gossypium hirsutum L.) hybrid grown on rainfed Vertisols of central India. Soil Tillage Res. 114: 86–96.

Tolessa Debele. 2011. The effect of minimum and conventional tillage systems on maize grain yield and soil fertility in western Ethiopia. 5th World Congress on Conservation Agriculture Incorporating 3rd Farming System Conference, 26-29 September 2011, Brisbane, Australia.

How to cite this article:

Saravanan, M. 2017. Effect of Tillage Practices and Supplemental Irrigation Options on Growth, Yield and Soil Biological Properties of Hybrid Maize. *Int.J.Curr.Microbiol.App.Sci.* 6(8): 2315-2325. doi: https://doi.org/10.20546/ijcmas.2017.608.273