A PRELIMINARY CLASSIFICATION SCHEME FOR THE CENTRAL REGIONS OF LATE-TYPE GALAXIES

SIDNEY VAN DEN BERGH*
Dominion Astrophysical Observatory, National Research Council
5071 West Saanich Road, Victoria, B.C., V8X 4M6, Canada
Electronic Mail: vandenbergh@dao.nrc.ca
*Visiting Astronomer, Canada-France-Hawaii Telescope

ABSTRACT

The large-scale prints in The Carnegie Atlas of Galaxies have been used to formulate a classification scheme for the central regions of late-type galaxies. Systems that exhibit small bright central bulges or disks (type CB) are found to be of earlier Hubble type and of higher luminosity than galaxies that do not contain nuclei (type NN). Galaxies containing nuclear bars, or exhibiting central regions that are resolved into individual stars and knots, and galaxies with semi-stellar nuclei, are seen to have characteristics that are intermediate between those of types CB and NN. The presence or absence of a nucleus appears to be a useful criterion for distinguishing between spiral galaxies and Magellanic irregulars.

1. INTRODUCTION

The Palomar Sky Survey was first published 40 years ago. It contained a very large and uniform database of rather small-scale galaxy images. Inspection of these photographs showed that both the degree to which arm structure was developed in spirals, and the mean surface brightness of irregular galaxies, correlated with luminosity (van den Bergh 1960a,b,c) The usefulness of the Palomar Sky Survey was, however, limited by the small scale of its images and by the fact that the central regions of many galaxies were "burned out" on the Survey prints. As a result, the characteristics of the nuclear regions of spirals could not be used as classification criteria. The recent publication of The Carnegie Atlas of Galaxies (Sandage & Bedke 1994), which contains large-scale images of the overwhelming majority of Shapley-Ames galaxies (Sandage & Tammann 1981), now makes it possible to classify significant numbers of galaxies on the basis of the characteristics of their central regions. For previous work on the structure and population content of the central regions of galaxies, the reader is referred to Morgan (1958) and Morgan & Osterbrock (1969).

2. A PRELIMINARY CLASSIFICATION SCHEME

In the present investigation, all images in Volume II (late-type galaxies) of The Carnegie Atlas of Galaxies were inspected in an effort to derive useful classification criteria. A total of 342 central regions of Shapley-Ames galaxies were classified and are listed in Table 1. Also given in this Table are the Hubble types of these galaxies taken from Sandage & Tammann (1981). In cases where these authors list two Hubble types, only the first one is given in the Table. Many images reproduced in the catalog of Sandage & Bedke could not be classified because (1) the central part of the galaxy was overexposed, (2) strong dust absorption made classification difficult or impossible, (3) the galaxy was peculiar because of recent tidal interactions, starbursts, etc., or (4) the galaxy did not fit in a natural way into the preliminary classification scheme that is proposed below.

The following is a brief description of the adopted classification system: (Numbers in square brackets refer to the panel number in the Sandage & Bedke (1994) Atlas.)

NN Galaxy image contains no nucleus. The type example is NGC 2366 [327].

N Image contains a star-like nucleus. Good examples are NGC 991 [245], NGC 5949 [279], NGC 6207 [274] and NGC 6503 [288].

SSN Galaxy has a semi-stellar nucleus. Good examples of this type are NGC 300 [261] and NGC 7793 [321].

CB The galaxy is centred on a small bright central bulge or disk. The type standard is NGC 3726 [181]. Other good examples are NGC 1300 [154], NGC 1433 [158], NGC 2712 [165], NGC 3358 [173], NGC 4999 [159] and NGC 7038 [175]. In some cases (e.g. the Seyfert 1 galaxy NGC 4051 [180]), a semi-stellar nucleus is known to be present, but is not visible in the burned-out bulge of the image published by Sandage & Bedke (1994). In other cases, (e.g. NGC 1097 [201] and NGC 2903 [226]) the bright central region appears to be produced by a disk of HII regions and young OB stars, rather than by a bulge consisting of old or intermediate-age stars. In galaxies of types SBB and SBC, the central bulge may have a
non-circular outline.

NB In galaxies such as NGC 5112 [248], a nuclear bar-like structure is present in the galactic center. Other good examples of this type are NGC 472 [307], NGC 4116 [306] and NGC 5669 [2990].

Tr These are transitional objects that appear intermediate between spirals that have central bulges and objects having central regions that are resolved into stars and knots. Good examples are NGC 1313 [309] and NGC 4647 [278].

In the next section, some correlations between these classification types and other parameters will be examined.

3. LUMINOSITY DEPENDENCE OF CLASSIFICATION TYPES

Figure 1 shows a plot of galaxy magnitude MB (this is of Sandage & Tammann [1981], with Ho = 50 kms⁻¹ Mpc⁻¹ adopted for most distant galaxies) versus Hubble type for galaxies classified as CB. These objects, which have bright central bulges or disks, are seen to be strongly concentrated in the region with Hubble types Sb-Sc and MB < -20. (Galaxies with less certain classification types CB: are observed to have a slightly larger scatter in the magnitude versus Hubble type diagram.)

Figure 2 shows an absolute magnitude versus Hubble type plot for those galaxies in Volume II of the Sandage & Bedke (1994) Atlas which do not appear to have nuclei (types NN and NN:). These objects mostly have MB > -20 and are mainly of Hubble-de Vaucouleurs types in the range Sc-Sd-Im. Intercomparison of Fig. 1 and Fig. 2 shows that galaxies of type CB and NN occupy complimentary regions in the absolute magnitude versus Hubble type diagram. Galaxies without nuclei (type NN) are seen to have lower luminosities and later Hubble types than do galaxies with bright central bulges (type CB). Galaxies classified as being transitional (type Tr), and those with nuclear bars (type NB), have a distribution in MB versus Hubble type that is intermediate between those of CB galaxies on the one hand and objects of type NN on the other.

The difference between the luminosity distributions of galaxies classified CB and CB: and for galaxies of type NN and NN: in Volume II of The Carnegie Atlas of Galaxies is shown in Fig. 3. This Figure shows that CB galaxies, which have central bulges (and presumably nuclei embedded within them) are more luminous than NN galaxies which do not contain nuclei. The only two NN galaxies in the present sample that are more luminous than MB = -19.5 are NGC 4945 [285] in the Centaurus cluster (which is one of the most peculiar galaxies in the sky) and NGC 5490 [288].

4. NUCLEI AND GALAXY LUMINOSITY

Among spheroidal galaxies, the fraction of all objects that contains a nucleus increases dramatically towards higher luminosity (van den Bergh 1986). A similar relationship also appears to hold for disk galaxies. Fig. 4 shows a plot of the frequency distribution of irregular and spiral galaxies in a volume-limited sample of nearby galaxies compiled by Kraan-Korteweg & Tammann (1979). For objects beyond the Local Group, the Sculptor Group and the M81 Group, their distances are based on the Ho = 50 km s⁻¹ Mpc⁻¹. The Figure shows that spirals (which have nuclei) dominate among luminous galaxies with MB < -16, whereas irregulars (which do not contain nuclei) are most common among disk galaxies with MB > -16. The tendency for the brightest galaxies to be nucleated therefore appears to hold for both disk and spheroidal galaxies.

Among nearby disk galaxies, M33 (BT = -19.1), NGC 7793 (MB = -18.8) and NGC 300 (BT = -18.6) have semi-stellar nuclei, whereas the LMC (BT = -18.4), the SMC (BT = -17.0) and NGC 6822 (BT = -15.2) do not. This suggests a transition at BT = -18.5 between disk systems that do, and that do not contain nuclei. The fact that NGC 205 (BT = -15.7) and M32 (BT = -15.5) do have nuclei indicates that the transition between spheroidal galaxies with and without nuclei may, on average, take place at a fainter luminosity in ellipticals than it does in disk galaxies.

There are two well-known galaxies that appear to provide counter examples to the notion that spirals contain nuclei but that irregulars do not. These are the Large Magellanic Cloud and NGC 4449. The classification of these two systems will be discussed in more detail below.

4.1 The Large Magellanic Cloud

The idea that the LMC is a barred spiral was introduced by de Vaucouleurs (1955). Subsequently, de Vaucouleurs & Freeman (1972) showed that the long "spiral arm" that provided the strongest support for the SBm classification of the LMC was, in fact, a Galactic foreground feature. The classification of the Large Cloud as an irregular would be consistent with the observation that this object does not contain a nucleus. It is of interest to note that Magellanic irregular galaxies exhibit the same dichotomy between normal and barred objects that is encountered among spirals. The LMC is , perhaps, the best-known example of a barred irregular, whereas the SMC is a normal irregular. Since SO, spiral and irregular galaxies may occur as both normal and as barred objects, one should probably regard bar formation as a "flavor" that can occur among all disk galaxies. Among the relatively nearby galaxies listed in the Kran-Korteweg & Tammann (1979) catalog, there is no significant difference between the luminosity distributions of barred and of unbarred disk galaxies.

4.2 NGC 4449

Hubble (1926, 1936) defined his morphological classification system for galaxies in terms of giant or supergiant type examples. In particular, he used the
luminous object NGC 4449 [326] as the type-example for irregular galaxies. In some ways, this choice of proto-type may have been unfortunate because NGC 4449, though lacking rotational symmetry, does appear to contain a well-developed (although not dominant) nucleus (see Fig. 5). It has become a source of some confusion that NGC 4449 was classified as Ir by Hubble (1936) in The Realm of the Nebulae and by Sandage (1961) in The Hubble Atlas of Galaxies, but as Sm by Sandage & Tammann (1981) in A Revised Shapley-Ames Catalog of Bright Galaxies. In fact, there appears to be a systematic deviation between the classification types of late-type galaxies assigned by Sandage & Tammann (1981) and those by other authors. Of the 17 Northern Shapley-Ames galaxies which van den Bergh (1960c) assigns to type Ir, only one (6%) are classified as an irregular by Sandage & Tammann (1981). These authors classify the remaining 16 objects as spirals. By the same token, only one (9%) of the 11 galaxies called Ir by Humason, Mayall & Sandage (1956) are classified as irregular by Sandage & Tammann (1981). However, if NGC 4449 is classified as a Magellanic irregular galaxy, then the apparent presence of a nucleus is an anomaly. Possibly, the "nucleus" of this object is, in fact, a more-or-less centrally located enormous HII region and star forming complex similar to that which is observed in the type NN galaxy NGC 4861 [327]. Clearly, it would be very interesting to test this hypothesis by making radial velocity studies of the central region of NGC 4449. Such observations could establish if the bright star forming complex in the galaxy is, or is not, its dynamical nucleus. The referee of this paper (Jay Gallagher) has emphasized the fact that some galaxies are known to have off-center bars and that some galactic nuclei might also be off-center.

5. SUMMARY AND CONCLUSION

Classifications have been made of 345 late-type galaxies in the Carnegie Atlas of Galaxies. Galaxies of type CB (which have small bright nuclear bulges or bright centrally located disks) are found to be both more luminous, and of earlier type, than are galaxies of type NN (which do not contain nuclei). It is suggested that the presence or absence of a nucleus in a late-type galaxy may be used as a criterion to distinguish in an objective fashion between spiral and irregular galaxies. It is also pointed out that galaxies of types (S0, Spiral, Ir) can occur in a normal or in a barred "flavor". The transition between systems with, and without, nuclei may occur at a fainter luminosity level for ellipticals than it does for disk galaxies.

I thank Chris Pritchet for providing me with a tape of our CFHT image of NGC 4449 and David Duncan for his help in producing Fig. 1. I am also indebted to Jay Gallagher for discussions about NGC 4449 and its nucleus, to Gerard de Vaucouleurs for references to early classifications of the LMC, and to Janet Currie for typing the manuscript.
Table 1 - Classifications of late-type galaxies

Galaxy	Hubble Type						
N24	Sc Tr	N895	Sc CB	N1512	SBb CB	N2441	Sc CB
N45	Scd CB	N925	Sb Nb	N1518	Sc Nb	N2500	Sc Nb?
N95	Sc CB	N941	Scd Tr	N1536	Sbcb NB	N2525	Sbcb CB
N151	Sbcb CB	N958	Sbcb CB	I2056	Sc N	N2523	Sbcb CB:
N157	Sc SSN:	N976	Sbcb CB:	N1559	Sbcb Nb	N2537	Sc NN
N255	Sbcb CB	N991	Sc N	N1617	Sb Nb	N2545	Sbcb CB
N247	Sc Tr	N1035	Sc: Tr:	N1659	Sc SSN	N2552	Sc NN
N255	Sbcb CB	N1042	Sc SSN:	N1688	Sbcb NB	N2608	Sbcb SSN:
SMC	Im NN	N1058	Sc CB:	N1744	Sbcb NB	N2642	Sbcb CB
N300	Sc SSN:	N1073	Sbcb NB:	N1796	Sbcb NN	N2712	Sbcb CB
N309	Sc CB	N1079	Sa CB:	N1784	Sbcb CB:	N2742	Sc CB
New 1	Sbcb CB:	N1084	Sc SSN:	N1792	Sc SSN	N2763	Sc CB
N406	Sc SSN:	N1092	Sbcb CB:	H051-1	Sc CB:	N2976	Sc CB
N450	Sc CB	N1097	Sbcb CB	LMC	Sbcb Mn	N2748	Sc Tr
N470	Sbcb SSN	N1156	Sm NN	N2082	Sc Tr	N2835	Sbcb SSN:
N514	Sc CB	N1232	Sc CB	N2188	Scd NN	N2903	Sc CB:
N521	Sbcb CB	N1241	Sbcb CB	N2207	Sc CB	N2942	Sc SSN
N578	Sc CB:	N1300	Sbcb CB	N2223	Sbcb CB	N2997	Sc NB:
N625	Am NN	N1313	Sb Sc	N2339	Sbcb SSN	N2976	Sd NN
N628	Sc CB	N1359	Sc Nb	N2276	Sc SSN	N2998	Sc CB:
N672	Sbcb Nb	N1376	Sc CB:	N2336	Sbcb CB	N3003	Sc: NB:
N685	Sbcb CB:	N1433	Sbcb CB	N2397	Sc N7	N3059	Sbcb NB:
N782	Sbb CB	N1437	Sc CB	N2366	Sbmb NN	N3041	Am CB
N783	Sbcb CB:	N1493	Sbcb Nb	N2427	Sc Nb:	N3052	Sc SSN:
N864	Sbcb SSN	N1564	Scd Tr	N2442	Sbcb CB	N3054	Sbcb CB:

Galaxy	Hubble Type						
N3055	Sc NB:	N3486	Sc CB:	N3938	Sc CB	N4234	Sbcb NB
N3109	Sm NN	N3495	Sc Tr	N3949	Sc CB	N4237	Sc CB
I2537	Sc CB:	N3511	Sc N:	N3953	Sbcb CB	N4242	Sbcb SSN
N3124	Sbcb CB	N3510	Sbcb Nb:	N3956	Sc Nb?	N4294	Sbcb SSN:
N3145	Sbcb CB	N3513	Sbcb Nb	N3963	Sbcb SSN	N4299	Sd NN
N3184	Sc CB	I2627	Sc CB:	N3992	Sbcb CB:	N4303	Sc SSN
N3200	Sb CB	N5494	Sbcb SSN	1749	Sbcb SSN	N4321	Sc CB
N3259	Sb SSN	N3556	Sc Nb?	N4041	Sc CB:	N3253	Sc CB:
N3287	Sbcb Nb	N3596	Sc CB	N4062	Sc SSN	N4389	Sb Nb:
N3294	Sc CB	N3614	Sc CB	N4085	Sc Tr?:	N3485	Sbcb CB
N3318	Sbcb SSN	N3629	Sc CB:	N4088	Sc SSN	N4395	Sd SSN
N3319	Sbcb NB	N3646	Sbcb SSN	12995	Sc Tr	N4414	Sc CB:
N3338	Sbcb CB	N3666	Sbcb CB	N4096	Sc CB:	N4412	Sbcb SSN:
N3344	Sbcb CB	N3664	Sbmb Nb	N4100	Sc CB	N4449	Sm NN
N3436	Sbcb Nb	N3686	Sbcb CB:	N4116	Sbcb Nb	N4535	Sbcb CB
N3531	Sbcb CB	N3687	Sbcb CB:	N4123	Sbcb CB	N4540	Scd Tr
N3367	Sbcb CB:	N3691	S Sc NN	N4136	Sc CB:	N4559	Sc SSN
N3389	Sc CB:	N3720	Sbcb SSN	N4145	Sbcb CB	N4567	Sc CB:
N3423	Sb Sc:	N3726	Sc CB	N4162	Sc CB:	N4571	Sc CB
N3430	Sbcb SSN	N3732	Sc N	N4183	Scd Tr	N4580	Sbcb SSN
N3433	Sc CB	N3738	Sd NN	N4190	Sm NN	N4592	Scd Tr
N3445	Sc Tr	N3735	Sc CB	N4189	Sbcb CB	N4593	Sbcb CB
N3464	Sc CB	N3790	Sc Tr	N4212	Sc CB	N4595	Sc SSN:
N3478	Sc SSN	N3792	Sbmb Nb	N4219	Sbcb CB:	N4596	Sba Nb
N3485	Sbcb CB	N3877	Ss SSN	N4236	Sbmb NN	N4597	Sbcb NN
Galaxy	Hubble Type						
--------	-------------	--------	-------------	--------	-------------	--------	-------------
N4602	Sc CB:	N5068	Sbc NB	N5468	Sc CB	N5907	Sc CB
N4603	Sc CB	N5085	Sc CB	N5494	Sc CB	N5921	Sbbc CB
N4612	Sc Tr	N5088	Sc Tr	N5530	Sc CB	N5949	Sc N
N4639	Sbb CB:	N5112	Sc NB	N5556	Sbc NB	N5936	Sc SSN:
N4647	Sc Tr	N5156	Sbbc CB	N5585	Sd CB	N5985	Sbb CB
N4653	Sc CB	N5161	Sc CB	N5584	Sc SSN:	N5984	Sbbc NB:
N4656	Im Tr:	N5204	Sd Tr	N5597	Sbbc CB:	N5967	Sc CB
N4668	Sbbc NN:	N5236	Sbc CB	N5605	Sbc CB	N6090	Sc CB
N4682	Sc SSN:	N5247	Sc CB:	N5633	Sbc SSN	N6118	Sc CB
N4689	Sc CB:	N5247	Sc CB	N5653	Sc SSN	N6181	Sc: CB
New 3	Sbbc Sd:	N5301	Sc CB:	N5660	Sc SSN	N6217	Sbbc CB:
N4712	Sc SSN:	N5313	S Sc CB:	N5645	Sc NB	N6207	Sc N
N4731	Sbb NB	N5324	Sbc SSN	N5643	Sbc CB	N6239	Sbb Sd:
N4763	Sbb Sd:	N5334	Sb Tr	N5669	Sc NB	N6412	Sbc CB:
N4790	Sd Tr:	N5347	Sbb CB	N5976	Sc CB	14662	Im NN
New 4	Sc SSN:	N5350	Sbb CB	N5985	Sc NN	N6503	Sc N
N4861	Sbbm NN:	N5351	Sbb SSN	N5728	Sbb CB	N6574	Sbc SSN:
N4893	Sbbc CB:	N5362	S CB	N5756	Sc SSN	N6643	Sc SSN:
N4928	Sbc SSN:	N5376	Sbc CB	N5768	Sc SSN	14710	Sbd NN
N4939	Sbc CB:	NA 72	Sc Tr	N5775	Sc Tr:	14721	Sc CB
N4945	Sc NN	N5406	Sc CB:	N5792	Sbb CB:	N6699	Sbc CB:
N4947	Sbbc SSc:	N5398	Sbb SSN:	F 703	Sc CB	N6744	Sbc CB:
N4981	Sbbc CB:	N5426	Sbb CB:	N5885	Sbb CB	N6780	Sbc CB:
N4999	Sbb CB:	N5427	Sbb CB:	N5899	Sc CB	N6808	Sc CB:
N5095	Sbb CB:	N5457	Sc CB:	N5905	Sbb CB	N6814	Sbb CB:
N6822	Im NN	N7171	Sb CB	N7462	Sbb CB:		
N6878	Sc CB	i5152	Smm Tr	N7479	Sbbc CB:		
N6923	Sbbc CB:	i5201	Sbbd NB:	N7496	Sbb CB:		
N6925	Sbc CB	N7300	Sb CB:	N7541	Sc NB:		
N6946	Sc CB	N7307	Sbbc Tr	N7640	Sbb CB:		
N6951	Sb NB:	N7309	Sc CB:	N7689	Sc SSN:		
i5039	Sc NN:	N7314	Sbc SSN	i5332	Sc CB:		
i5052	Sd NN	N7329	Sbbd CB:	N7721	Sbc SSN:		
N6970	Sb NN:	N7361	Sb NN:	N7723	Sbb CB:		
N6984	Sbbc CB:	N7418	Sc CB:	N7741	Sbc NB		
N7038	Sbc CB	N7421	Sbbd CB:	N7755	Sbbc CB:		
N7064	Scd NN	N7424	Sc NB	N7793	Sd SSN:		
N7070	Sbc CB	i5273	Sbc CB:				
N7124	Sbc CB	N7448	Sc CB				
N7137	Sc SSN:	N7456	Sc SSN:				
REFERENCES

de Vaucouleurs, G. & Freeman, K.C. 1972, Vistas in Astr., 14, 163
de Vaucouleurs, G. 1954, Observatory, 74, 23
Hubble, E. 1926, ApJ, 64, 321
Hubble, E. 1936, The Realm of the Nebulae, (New Haven: Yale Univ. Press), 36
Humason, M.L., Mayall, N.U. & Sandage, A. 1956, AJ, 61, 97
Kraan-Korteweg, R.C. & Tammann, G.A. 1979, Astron. Nachr. 300, 181
Morgan, W.W. 1958, PASP, 70, 364
Morgan, W.W. & Osterbrock, D.E. 1969, AJ, 74, 515
Sandage, A. & Tammann, G.A. 1981, A Revised Shapley-Ames Catalog of Bright Galaxies (Washington: Carnegie Institution)
Sandage, A. & Bedke, J. 1994, The Carnegie Atlas of Galaxies (Washington: Carnegie Institution)
vand Bergh, S. 1960a, ApJ, 131, 215
vand Bergh, S. 1960b, ApJ, 131, 558
vand Bergh, S. 1960c, Pub. David Dunlap Obs. 2, 159
vand Bergh, S. 1986, AJ, 91, 271

FIGURE LEGENDS

Fig. 1 Magnitude versus Hubble type diagram for late-type galaxies of type CB, which have bright central bulges. Most of these galaxies are seen to have Hubble types SB-Sc and MB < -20.

Fig. 2 Magnitude versus Hubble type diagram for late-type galaxies of type NN, which do not have nuclei. Most of these objects are seen to have Hubble types Sc-Sd-Sm-Im and MB > -20.

Fig. 3 Luminosity distribution for CB galaxies (left) and for NN galaxies (right). The Figure shows that galaxies with small bright central bulges are more luminous than those that do not have nuclei.

Fig. 4 Luminosity distribution of spiral and irregular galaxies in the Kraan-Korteweg & Tammann (1979) catalog of nearby galaxies. Most spirals are seen to be brighter than MB = -17, whereas the majority of irregulars are fainter than this limit.

Fig. 5 I-band CFHT exposure of NGC 4449 obtained by Pritchet and van den Bergh in 1984. The image was obtained with a 320 x 512 RCA chip having a scale of 0.41 arcsec/pixel. The nucleus is marked by an arrow. Note that this may be a rare example of an irregular galaxy that appears to contain a nucleus.