Orofacial Mycoses in Coronavirus Disease-2019 (COVID-19): A Systematic Review

Lakshman P. Samaranayake*a, Kausar S. Fakhruddinb**, Hien C. Ngoc, H.M.N.M. Bandarad, Y.Y. Leung e

a Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong
b Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
c University of Western Australia Dental School, The University of Western Australia, Perth, Western Australia, Australia
d Oral Microbiology, Bristol Dental School, University of Bristol, Bristol, United Kingdom
e Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong

ABSTRACT

Objectives: Studies reviewing orofacial mycoses in coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome 2 (SARS-CoV-2) infection are sparse. Here we review the major oral and maxillofacial mycoses of COVID-19, the associated comorbidities, and the probable precipitating factors.

Methods: English-language manuscripts published between March 2020 and October 2021 were searched using PubMed, OVID, SCOPUS, and Web of Science databases, using appropriate keywords.

Results: We identified 30 articles across 14 countries, which met the inclusion criteria of PRISMA guidelines. These yielded a total of 292 patients with laboratory-confirmed COVID-19, 51.4% (n = 150) of whom presented with oral and maxillofacial fungal infections, mainly comprising candidosis, mucormycosis, and aspergillosis. Candida infections were the most prevalent, present in 64% (n = 96), followed by mucormycosis, and only a single case of aspergillosis was noted. Oral and maxillofacial mycoses were predominantly seen in those with comorbidities, especially in those with diabetes (52.4%). Oral mucormycosis was noted in 8.6% (n = 13) and mainly manifested on the hard palate. An overall event rate of oral/maxillofacial mucormycosis manifestation in patients with COVID-19 with diabetes mellitus type 1/2 was about 94% (49/52; 95% confidence interval, 0.73%-0.89%), implying a very high association between diabetes mellitus and the latter condition. All fungal infections appeared either concurrently with COVID-19 symptoms or during the immediate recovery period.

Conclusions: SARS-CoV-2 infection–related immunosuppression, steroid therapy, as well as comorbidities such as diabetic hyperglycemia appear to be the major predisposing factors for the onset of oral and maxillofacial mycoses in patients with COVID-19 across all age groups.

© 2022 The Authors. Published by Elsevier Inc. on behalf of FDI World Dental Federation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

The coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with a wide range of opportunistic bacterial and fungal coinfections.1 The triad of the most
common secondary oral fungal coinfections seen in COVID-19 comprises candidosis, mucormycosis, and aspergillosis. Candida species are generally found as oral commensals in approximately one-half of the general population. They metamorphose into opportunistic pathogens when adverse conditions supervene, as in SARS-CoV-2 infection, causing both localised and systemic infections. COVID-19 itself and/or the associated contributory factors including corticosteroid therapy, lymphocytopenia, mechanical ventilator support, and other localised factors such as poor oral hygiene, xerostomia, and denture-wearing appear to favour Candida proliferation in the oral cavity.

On the contrary, mucormycosis (previously called zygomycosis) is an uncommon, angio-invasive disease caused by the fungi belonging to the group of molds called mucormycetes. The most common species that cause mucormycosis are Mucor and Rhizopus species. They are rarely isolated in health from the oral cavity, and their usual transmission mode is through inhalation of fungal spores common in air and dust. Recent data suggest a number of possible reasons that facilitate germination of mucorales spores in patients with SARS-CoV-2 infection. These include hypoxic conditions, diabetes-related conditions, and/or steroid-induced hyperglycemia and ketoacidosis, immune suppression, and several other risk mediators such as prolonged hospitalisation and mechanical ventilation. In addition, numerous reports of oral and maxillofacial mucormycosis in patients with COVID-19, particularly from the Indian subcontinent, with devastating outcomes leading to blindness are now available. Recently, Singh et al in a comprehensive review of oral and maxillofacial mucormycoses reported more than 100 such cases in patients with COVID-19.

The last of the COVID-19–associated triad of common oral and maxillofacial mycoses is aspergillosis. Some studies note that as many as 15% of patients with COVID-19 hospitalised in an intensive care unit experience aspergillosis infection. For instance, a German report observed COVID-19–associated invasive pulmonary aspergillosis in 5 of 19 (26.3%) patients with moderate to severe acute respiratory distress syndrome. Despite the relative commonality of oral and maxillofacial mycoses in COVID-19, there are no systematic reviews, to our knowledge, that specifically address the prevalence or aetopathogenesis of these diseases, and there is a need for clinically relevant information. Therefore, the aim of this systematic review was to identify the prevalence, aetopathogenesis, oral and maxillofacial manifestations, and management these infections either directly linked to COVID-19 or secondary to their treatment protocols.

Methods

Data sources

Three reviewers (L.P.S., K.S.F., and H.C.N.) executed an electronic data search using PubMed via OVID, SCOPUS, and Web of Science databases for the English-language manuscripts. Published reports were accessed between March 1, 2020, and October 1, 2021, to identify case series, observational studies, or case reports.

Study selection

Inclusion criteria

a. Study design: Case series, case reports, observational studies
b. Population: Laboratory-confirmed cases with asymptomatic, mild, moderate, or severe SARS-CoV-2 infection
c. Setting: Any healthcare setting (hospitals, dental clinics) that provides consultation or treatment for SARS-CoV-2 infection
d. Date or country enforced no limitations

Exclusion criteria

a. Review articles
b. Reports that present incomplete outcome details
c. Studies evaluating systemic fungal coinfection without data on oral or maxillofacial yeast manifestation
d. Studies that do not meet the set study objectives, grey literature, abstract only

Search terms

A particular search string was set up for each of the databases, which included the following search terms: COVID-19 OR coronavirus 19 OR novel coronavirus disease 19 OR nCoV-19 OR SARS-CoV-2 OR SARS-CoV-2 infection AND oral lesions OR oral manifestations OR oral fungal lesion OR oral yeast presentation OR oral mucormycosis OR oral black fungus OR oral aspergillosis OR orofacial manifestations OR orofacial fungal presentation OR orofacial yeast manifestation OR maxillofacial yeast manifestation AND mucormycosis AND Candida infection OR Candida infection AND aspergillosis.

Summary measure

The intended outcome was to review the prevalence, clinical presentation, temporality, and the likely etiology of oral and maxillofacial fungal coinfections in patients with COVID-19.

Electronic data search and analysis

The present review followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for a systematic and comprehensive approach. During the first stage of the 3-staged electronic data search and analysis, 2 reviewers (L.P.S. and K.S.F.) examined the titles and abstracts of all published relevant reports that were in line with our set inclusion criteria. Next, a full-text review of all the related articles was performed to explore the data comprehensively during stage 2 of the review process. A detailed analysis of the full text of the selected literature ensured that the eligibility standards were met and the reported outcomes were in accordance with the preset outcome measures. In addition, references of the included reports were examined as a backward search. Finally, the reviewers (L.P.S. and K.S.F.) extracted and assessed the data during stage 2.
Upon completion of the full-text review, specific points linked to the characteristics of each individual included study were mapped and recorded. This assisted in classifying the study design, setting, intervention, and reporting jurisdiction. In addition, the sample size, assessment time, evaluation methods, and study conclusions were systematically analysed. Finally, the third reviewer (H.C.N.) cross-checked the data to validate its accuracy. Relevant reports with case presentations of oral and maxillofacial mucormycosis were evaluated. The frequency of occurrence of the mucormycosis manifestation amongst patients with COVID-19 with and without comorbid diabetic conditions was analysed with random-effects meta-analysis using a comprehensive meta-analysis tool (CMA v.3). The identified manuscripts were listed using a bibliographic software tool, Endnote version 20 (Clarivate Analytics). Summarised characteristics of the included reports are provided in Table 1.

Quality and the overall risk of bias assessment of the included reports

During stage 3 of the systematic assessment of the available records, 2 reviewers (L.P.S. and K.S.F.) independently performed the quality valuation of the eligible studies employing the Joanna Briggs Institute Critical Appraisal Checklist for (i) case reports, (ii) case series, and (iii) analytical cross-sectional studies’ critical appraisal checklists. The third and fourth reviewers (Y.Y.L. and M.H.M.N.B.) were referred to in case of any conflict. They evaluated reports were recorded as low-, moderate-, or high-risk, as shown in Table 1. Any case reports or case series with a high risk of bias were omitted from the present review. All the involved reviewers discussed decisions based on the cumulative scores. The report was deemed low-risk when the “yes” score was ≥70%, moderate-risk, when the score was between 50% and 69%, and high-risk when the score was ≤49%.

Results

Of the 108 full texts reviewed, 30 reported cases or case series were included in the present review, and they represented a total of 292 patients with COVID-19, of whom only 150 had fungal manifestations together with or without other comorbidities, such as cardiovascular diseases, renal ailments, and liver diseases. A few other patients exhibited an atopic immune condition. asthama, and mild hypothyroidism.

Overall, 8.7% of patients with asymptomatic/mild COVID-19 and 91.3% with moderate to severe COVID-19 were affected by candidiasis, aspergillosis, or mucormycosis. In addition, none of the patients displayed simultaneous oral coinfection with two different mycoses (Table 1).

In terms of the time of appearance of the fungal infections, 95.8% (92/96) experienced candidosis with their COVID-19 symptoms and 4.2% during the post–COVID-19 recovery period (Table 2). The time span of presentation of candidosis ranged from a few days to 1 month after initial COVID-19 symptom appearance. All patients with candidosis were on either antibiotic, antiviral, and/or steroidal therapy.

As for the sites of candidal manifestations, the tongue was the most common focus of infection, followed by the soft palate, oropharynx, and the buccal/labial mucosa (Figure 2). Finally, all the candidal infections were managed with oral nystatin, miconazole, or systemic fluconazole therapy (Table 2).

As regards oral mucormycosis, we noted 13 cases of the disease predominantly manifesting as pallor or dry palatal mucosa with dry brown secretion to brownish-black ulcerative necrotic lesions, mainly on the hard palate (Table 2). Three patients with mucormycosis presenting with oral lesions were simultaneously diagnosed with COVID-19 symptoms. In addition, a number of other cases were fortuitous, incidental findings when examined for moderate/severe SARS-CoV-2 infection.

Furthermore, all moderate/severe cases of COVID-19 with the maxillofacial manifestation of mucormycosis were in hospitalised patients, mostly with comorbidities, and all were receiving systemic antibiotics, antiviral, and steroidal therapies for SARS-CoV-2 infection (Table 2). A noteworthy commonality amongst all patients with COVID-19 with oral/maxillofacial mucormycosis was their uncontrolled hyperglycemic condition. Thus, the overall event rate of mucormycosis was 94% (49/52; 95% confidence interval, 0.73%-0.89%) amongst patients with known diabetic type 1/2 conditions (Figure 3). The mucormycosis in the reviewed cohort was essentially managed with liposomal amphotericin B and surgical debridement of the necrotic tissue (Table 2). A single patient who had diabetes and mild COVID-19 presented with a painful deep-ulcerated lesion caused by *Rhizopus* species—belonging to the mucorales group. Additionally, only a single patient presented with histopathologically confirmed oral aspergillosis.

Discussion

Orofacial opportunistic mycotic coinfections are reported with increasing frequency at various stages of COVID-19. To our knowledge, the current review is the first report on the prevalence and aetopathogenesis of the major opportunistic, mycotic coinfections specific to the orofacial region in laboratory-confirmed COVID-19 cases. The available data clearly
Study (country)	Number of patients	Age/sex	Comorbid conditions	Fungal test	Oral-maxillofacial manifestation	Oral-maxillofacial manifestationA	Oral-maxillofacial manifestation B	Risk of bias
Asymptomatic/mild COVID-19 cases								
Corchuelo J et al 2020 (Colombia)	1	Female = 40 y	An atopic patient with mostly on analgesics and antibiotics	NM	+	-	-	L
Glavina A et al 2020 (Croatia)	1	Female = 40 y	None	NM	+	-	-	M
Mirabela D et al (2020) (Romania)	3	Neonates (n = 3) Female (n = 1) Male (n = 2)	None	NM	+	-	-	L
Riad A et al (2020) (Czech Republic)	1	Female = 47 y	Mild hypothyroidism and on oral levothyroxine	NM	+	-	-	L
Diwakar J et al (2021) (India)	2	Male = 11 y Female = 13 y	Type 1 diabetes mellitus	Fungal culture showing Rhizopus arrhizus	-	-	+	L
Pauli MA et al (2021) (Brazil)	1	Female = 50 y	Type 2 diabetes	Histopathologic findings confirmed mucormycosis	-	-	+	L
Revannavar SM et al (2021) (India)	1	Female (Middle-aged, age not specified)	Uncontrolled type 2 diabetes without ketosis	Fungal culture-con-firmed Rhizopus species	-	-	+	M
Saldanha M et al (2021) (India)	1	Female = 32 y	Uncontrolled type 2 diabetes	Histopathologic examination	-	-	+	M
Verma V et al (2021) (India)	2	Female = 44 y Male = 35 y	Healthy patients	NM	+	-	-	M
Moderate/severe COVID-19 cases								
Amorim dos Santos et al (2020) (Brazil)	1	Male = 67 y	Type 2 diabetes, hypertensive	Fungal culture	+	-	-	L
Baraboutis IG et al (2020) (Greece)	49 patients, 2 of whom experienced a yeast infection	Female (n = 19) Male (n = 30)	NM	NM	+	-	-	L
Diaz Rodriguez M et al 2020 (Spain)	1	Female = 78 y	NM	There was a burning mouth sensation and pain	+	-	-	M
Salehi et al (2020) (Iran)	53	Sex = NM Age = NM	Cardiovascular diseases (52.83%), and type 2 diabetes (37.7%)	C albicans (70.7%); C glabrata (10.7%); C dublinsiensis (9.2%); C parapsilosis (4.6%); C tropicalis (3%); and C krusei (1.5%)	+	-	-	M
Alekseyev K et al (2021) (US)	1	Male = 41 y	Type 1 diabetes mellitus	Fungal culture shows Rhizopus	-	-	+	L

(continued on next page)
Study (country)	Number of patients	Age/sex	Comorbid conditions	Fungal test	Oral-maxillofacial manifestation	Oral-maxillofacial manifestation	Oral-maxillofacial manifestation	Risk of bias
Ashour MM et al (2021) (Egypt)	Male (n = 5); ages 42-67 y; Female (n = 3); ages 41-65 y	Cases 1-2; 4, 5, 6, and 8: Uncontrolled type 2 diabetes mellitus; Case 3: CRD; Case 7: Uncontrolled diabetes mellitus, hypertension, and dialysis	Case 1: histopathology and culture revealed invasive Aspergillus species; Case 2-8: histopathology and culture shows Rhizopus	+	+			
Bayram N et al (2021) (Turkey)	Female (n = 2); Male (n = 9); Mean age = 73. 1 ± 7.7 y	Type 2 diabetes	Fungal culture shows Rhizopus	NM	+	L		
Dallalzadeh LO et al (2021) (US)	Male = 36 y; Male = 48 y	Uncontrolled type 2 diabetes mellitus	Fungal culture consistent with mucormycosis	NM	+	L		
Favia G et al (Italy)	Female (n = 5); Male (n = 70); Median age 72 y; Male = 53 y	Type 2 diabetes	Fungal culture consistent with mucormycosis	NM	+	L		
Farid HA et al (2021) (Iraq)	Male = 53 y; Uncontrolled type 2 diabetes on oral hypoglycemic Diabetic ketoacidosis at hospital admission	Fungal culture consistent with mucormycosis		+	+			
Karimi-Galougahi M et al (2021) (Iran)	Female = 61 y	No reported comorbidity	Histopathology and culture	NM	+	M		
Mahan KM et al (2021) (US)	Male = 13 y	Type 1 diabetes mellitus	NM	+	M			
Mehta S et al (2020) (India)	Male = 60 y; Diabetic (on oral hypoglycemic)	Uncontrolled insulin-dependent diabetes, asthma, hypertension, hyperlipidaemia	Fungal cultures show Rhizopus species	NM	+	M		
Mekonnen ZK et al (2021) (US)	Male = 60 y	Uncontrolled type 2 diabetes mellitus	Fungal culture consistent with mucormycosis	NM	+	L		
Mishra N et al (2021) (India)	Female (n = 1); Male (n = 9); Age = 55.8 y; (range = 37-78 y)	Case 1-3: type 2 diabetes mellitus; Case 4; CKD; Case 5: diabetes mellitus, hypertension, and IHD; Case 6: diabetes mellitus and CLD; Case 7: diabetes mellitus and hypertension; Case 8: diabetes mellitus, hypertension,	+	+	L			

(continued on next page)
Study (country)	Number of patients	Age/sex	Comorbid conditions	Fungal test	Oral-maxillofacial manifestation	Oral-maxillofacial manifestation A	Oral-maxillofacial manifestation	Risk of bias
Asymptomatic/mild COVID-19 cases								
Mohammadi F et al (2021) (Iran)	1	Male = 59 y	Healthy	PCR test demonstrated *Rhizopus oryzae* NM	+		+	M
Riad A et al (2021a) (Czech Republic)	3	Female (n = 3)	Case 1: 70 y Case 2: 25 y Case 3: 56 y	+				L
Riad A et al (2021b) (Czech Republic)	7	Female (n = 2) Male (n = 5)	Case 2 & 3: healthy Case 1, 2, and 5: diabetes mellitus Case 3, 4, and 6: diabetes mellitus with hypertension, CVD, and vascular disease	RT-PCR				L
Veisi A et al (2021) (Iran)	2	Female (n = 1); age 40 y Male (n = 1); age 54 y	Case 1: no comorbidity Case 2: well-controlled type 2 diabetes mellitus	Histopathology and culture				L
Waizel Haiat S et al (2021) (Mexico)	1	Female = 24 y	Uncontrolled diabetes (severe diabetic ketoacidosis)	Direct exam (Sabouraud media isolating *Lichtenia* (Absidia) spp)				L
Werthman-Ehrenreich A et al (2021) (US)	1	Female = 33 y	Hypertension and asthma	Fungal culture consistent with mucormycosis				L

CKD, chronic kidney disease; CLD, chronic liver disease; CRD, chronic renal disease; CVD, cardiovascular disease; IHD, ischemic heart disease; NM, not mentioned; PCR, polymerase chain reaction; RT-PCR, reverse transcription-polymerase chain reaction.

Joanna Briggs Institute critical appraisal tool for CR (Case Reports): low (L) risk of bias = >70% scores; moderate (M) risk of bias = scores between 50% and 69%; and high (H) risk of bias = scores <49%.宁静
Table 2 – Oral and maxillofacial manifestation of (I) mucormycosis and (II) candidosis and their respective management modalities in the reviewed studies.

Study (No. of patients)	Oral mucormycosis in asymptomatic/mild COVID-19 cases	Maxillofacial mucormycosis in asymptomatic/mild COVID-19 cases	Oral mucormycosis in moderate/severe COVID-19 cases	Maxillofacial mucormycosis in moderate/severe COVID-19 cases		
Pauli MA et al (2021)	Ambulatory COVID-positive patients with hyperglycemia	None	Case 1: Naso-paranasal, orbital apex mucormycosis	Bayram N et al (2021)		
(n = 1)	and diabetic ketoacidosis		(Of n = 11, 1 has palatal mucormycosis involvement)			
Alekseyev K et al (2021)	Hospitalised		VeiSi A et al (2021)			
(n = 1)			(n = 2)			
Ashour MM et al (2021)	Hospitalised		Waizel Haiat S et al (2021)			
(n = 6)	2 weeks to about a month		(n = 1)			
Riad A et al (2021b)	Hospitalised		Werthman-Ehrenreich A et al (2021)			
(Of n = 7, 1 has palatal			(n = 1)			
mucormycosis involvement)			Maxillofacial mucormycosis in moderate/severe COVID-19			
Drohakar J et al (2021)	Ambulatory COVID-positive case with history of type 2	None	Dallalzadeh LO et al (2021)			
(n = 2)	diabetes and diabetic ketoacidosis		(n = 2)			
Revannavar SM et al (2021)	Hospitalised		Farid HA et al (2021)			
(n = 1)			(n = 1)			
Saldanha M et al (2021)	Ambulatory COVID-positive case with uncontrolled	No exposure to systemic steroids or antibiotics	Before hospital admission: Injectable steroids and antibiotics, without medical prescription			
(n = 1)	diabetes		At hospital admission: Favorspravas, anticoagulants, and antibiotics			
Oral mucormycosis in moderate/severe COVID-19 cases	Case 1: and 2: Remdesivir and levofoxacin day 1-6	Pain in the left midface region left lid edema with extension to the upper lip and malar area	Symptom of COVID-19 diagnosis	Rhinofacial-orbital-cerebral mucormycosis	7 rhino-orbital and 3 patients of rhino-orbital-cerebral mucormycosis	IV and retrobulbar liposomal amphoterin B

(continued on next page)
Study (No. of patients)	Ambulatory/hospitalised patient	Length of stay in the hospital	COVID-19 therapies	Symptoms at the time of presentation	Fungal manifestation (time of onset)	Mucormycosis manifestation	Treatment for fungal infection
Karimi-Galugahi M et al (2021) (n = 1)	Hospitalised	2 weeks	Remdesivir, interferon-alpha, and systemic corticosteroid	Symptoms of SARS-CoV-2 infection	Readmitted for fungal infection after 1 week of hospital discharge	Rhino-orbital-cerebral mucormycosis	Insulin (raised blood sugar without ketoacidosis) and systemic antifungals
Mehta S et al (2020) (n = 1)	Hospitalised	10 days	For COVID-19: IV meropenem and oral oseltamivir with parenteral methylprednisolone	Severe breathlessness, pyrexia, tachycynes, and generalised malaise	On the 10th day of hospitalisation, patient developed sinusitis, bilateral lid edema, and right-eye prominence	Rhino-orbitisitis, cerebral mucormycosis	Amphotericin B was added
Mekonnen ZK et al (2021) (n = 1)	Visit 1: Tested negative for SARS-CoV-2 given antibiotics for bronchitis	31 days	Antibiotic for a week on suspicion of bronchitis	After one week, pt. presented with ARDS and hyperglycemia	1 day after hospitalisation	Rhino-orbitalisitis with orbital involvement	Antifungal (liposomal amphotericin B), caspofungin
Mishra N et al (2021) (n = 10)	Hospitalised	NM	Cases 4–9: Steroid treatment Case 10: Both remdesivir and tocilizumab	Nasal blockage, eye, and facial pain	NM	Rhino-orbital-cerebral mucormycosis	IV amphotericin B
Mohammadi F et al (2021) (n = 1)	Visit 1: Hospitalised for SARS-CoV-2 infection	NM	Visit 1: Remdesivir and methylprednisolone	Visit two: Nasal obstruction and left side facial and orbital swelling	After 10 days of hospital discharge after COVID-19 treatment	Rhino-orbital-cerebral mucormycosis	IV liposomal amphotericin B
Riad A et al (2021b) (Of n = 7, 6 cases had rhino-orbital mucormycosis) II Candidosis Study (No. of patients)	Hospitalised	4–6 weeks	Azithromycin, dexamethasone, saline, enoxaparin sodium, zinc	Symptoms of SARS-CoV-2 infection	From a few days to a month of COVID-19 diagnosis/recovery	Rhino-cerebral mucormycosis	Liposomal amphotericin B
Asymptomatic/mild COVID-19 cases Cortchoule J et al 2020 (n = 1)	Ambulatory COVID case	None	Ibufrofen and azithromycin twice for 5 days (1st and 3rd week)	3 weeks post–lab confirmation of COVID-19 infection	Whitish plaque at the back of the tongue and the attached gingiva near the first lower premolar	Nystatin for 2 weeks Use of CHX 0.12%	
Glavina A et al (2020) (n = 1)	Ambulatory COVID case	None	Systemic acyclovir	After a week of COVID-positive symptoms	White lesion on the ventral side of the tongue	Local therapy with nystatin, panthenol, local anesthesia	
Mirabela D et al (2020) (n = 3; neonatal cases)	Case 1 and 2: asymptomatic but hospitalised for care Case 3: symptomatic and hospitalised	2–3 weeks	Case 1: vitamin D Case 2: vitamin A, eye drops, topical cream for erythema Case 3: ampicillin, gentamicin, human immunoglobulin, amphotericin	During hospitalisation	Oral candidosis on the tongue, erythematous lesions	Case 1 and 2: topical nystatin Case 3: IV fluconazole and topical nystatin	
Riad A et al (2020) (n = 1)	Ambulatory COVID case	None	Azithromycin, linezolid, and ceftriaxone	A few days post-SARS-CoV-2 infection	Multiple pseudo-membranous lesions with white plaques over the dorsal surface of the tongue	NM	
Verma V et al (2021) (n = 2)	Case 1 and 2: hospitalised with mild COVID-19 symptoms	A week for fungal infection	Case 1 and 2: antiviral therapy	Presented with dysphagia. Upon investigation, SARS-CoV-2 infection was confirmed	Case 1: whitish patch on the back and lateral surface of the tongue Case 1: whitish patch on	Case 1: oral fluconazole and antiviral Case 2: oral fluconazole and antiviral (remdesivir)	

(continued on next page)
Study/No. of patients	Ambulatory/hospitalised patient	Length of stay in the hospital	COVID-19 therapies	Symptoms at the time of presentation	Fungal manifestation (time of onset)	Mucormycosis manifestation	Treatment for fungal infection
Moderate/Severe COVID-19 cases Amorim dos Santos et al (2020) (n = 1)	Hospitalised	24 days	Initially: hydroxychloroquine, ceftriaxone, and azithromycin. Later: meropenem, sulfamethoxazole, trimethoprim, immunosuppressants, and anticoagulants.	After 24 days of ICU admission, opportunistic fungal infection.	The white plaque on the tongue dorsum.	Mucormycosis manifestation	Systemic fluconazole and oral nystatin
Baraboutis IG et al (2020) (n = 2)	Hospitalised	NM	Azithromycin, teicoplanin, dexamethasone	At 7-10 days of hospital admission, since hospital admission for SARS-CoV-2 symptoms.	Oral candidosis.		NM
Diaz Rodriguez M et al 2020 (n = 3)	Hospitalised	NM	Antiviral, antibacterial, and corticosteroids	During hospital stay for SARS-CoV-2 infection treatment.	Pseudo-membranous candidosis and angular cheilitis.	Oropharyngeal candidosis.	Fluconazole, nystatin, and caspofungin
Salehi et al (2020) (n = 53)	Hospitalised	NM	Antiviral and corticosteroids	During hospital stay for COVID-19 treatment.	Moderate COVID: candidosis (18). Severe COVID: candidosis (4). Critical cases: candidosis (6).		Miconazole nitrate
Favia G et al 2021 (Italy)	Hospitalised	NM					
Riad A et al (2021) (n = 3)	Case 1: hospitalised	2-3 weeks	Case 1: azithromycin, levofloxacin, rivaroxaban, and lactoferrin. Case 2: moxifloxacin, pantoprazole, and multivitamins.	Case 1: 3 days after release from the hospital for COVID-19 treatment. Case 2: 2 weeks. Case 3: After 2 weeks.			Case 1: nystatin and 0.2% CHX. Case 2: topical miconazole. Case 3: systemic fluconazole and topical miconazole.

ARDS, acute respiratory distress syndrome; CRD, chronic renal disease; CHX, chlorhexidine; ICU, intensive care unit; IV, intravenous; NM, not mentioned; NSAIDs, nonsteroidal anti-inflammatory drugs.
indicate that such coinfections in COVID-19 are due to 3 major fungal groups, *Candida* spp, *Aspergillus* spp, and mucorales, a group of common zygomycotic fungi. These infections manifest with a spectrum of clinical presentations, ranging from erythematous and edematous mucosae to pseudo-membranous lesions and, on occasions, to extensive focal tissue necrosis involving the alveolar bone.

Candidosis

Oral candidosis due to several pathogenic candidal species is perhaps the commonest human fungal infections seen in debilitated individuals.43,44 *C albicans*, the most common agent of oral candidosis, as well as several non-albicans *Candida* species have been reported in our cohort of COVID-19 cases, especially in hospital-bound patients.20,23 In general, these manifestations could be explicable in terms of diabetic ketoacidosis that promotes yeast growth and lymphocytopenia, especially the T lymphocytes, due to SARS-CoV-2 infection. Other causative factors include the use of broad-spectrum antibiotics and steroid therapy and neglected and poor oral hygiene.45 It is known that oral candidal infections are common amongst the "very young, the very old, and the very sick,"44 and this aphorism has been, once again, proven to be the case in COVID-19. For instance, candidosis was present in 3 full-term neonatal patients with COVID-19 infection, with no history of receiving antibiotics.15 Characteristically, neonates exhibit immature cellular immune responses, resulting in increased susceptibility to infection,46 and this, together with the SARS-CoV-2 infection, are the likely causes for such manifestations. Nevertheless, more comprehensive studies are needed to better understand the oral mycoses of COVID-19 in the neonatal population.

Aspergillosis

It is now known that bronchopulmonary aspergillosis is the another common opportunistic systemic infection seen in COVID-19.47,48 In general, it is frequently seen in those who are immunosuppressed and may lead to life-threatening complications.59 A solitary case of aspergillosis with maxillary sinus invasion in a patient with uncontrolled diabetes with severe COVID-19 was noted in our review.29.
The disease usually ensues after inhalation of Aspergillus spores, and their subsequent germination and proliferation in the bronchopulmonary system. However, on occasions, the infection may manifest in nasal sinuses, the oral cavity, and the eyes. The most common agent of the disease known to cause invasive oral and maxillofacial lesions is A. flavus. In the absence of a robust immune response, the angioinvasive hyphal elements of Aspergillus species usually cause thrombosis, leading to tissue infarction and necrosis. The other virulence traits of the fungus include the production of hemolysins, proteases, phospholipases, and the toxins, aflatoxin and gliotoxin.

Mucormycosis

Mucorales that cause mucormycosis are common saprophytic fungi found in air, dust, and wet, organic materials. They cause infection predominantly in patients with poorly controlled diabetes mellitus or those who are immunocompromised due to disease or drugs. Hence, it is not surprising that the prevalence of mucormycosis has increased during the COVID-19 pandemic. Oral mucormycosis was reported in 7 reviewed cases of mild to moderate SARS-CoV-2 infection, and most of them involved patients with either controlled or uncontrolled diabetes. Their clinical presentation...
included malaise, facial pain, swelling, irregular black eschar, exudation of pus from the eye and nose, and low-grade fever.

As noted above, mucormycosis is the third most reported opportunistic fungal infection in patients with SARS-CoV-2 infection. It has 4 to 5 categories: rhinocerebral, cutaneous, disseminated, gastrointestinal, or pulmonary, depending on the infected tissues. Of these, rhinocerebral mucormycosis is relevant in the current context as it affects the oral cavity, sinuses, nasal passages, and brain. The infection usually begins in the nasal mucosa or palate and spreads via nearby vessels to the paranasal sinuses, often involving the maxillary and ethmoidal sinuses. Previous literature from the pre–COVID-19 era also indicates that rhinocerebral mucormycosis affects patients with poorly controlled diabetes and immunosuppressed patients. Many of the cases in our review had documented mucor invasion of cranial nerves III, IV, and VI, leading to ptosis, pupillary dilatation, proptosis, and vision loss. In addition, hematogenous spread to the cavernous sinus led to fatal cavernous sinus thrombosis in a few cases.

In cases in which mucormycosis is suspected, prompt diagnosis and treatment are critical because of the angioinvasive nature of the fungus and its rapid systemic dissemination. A number of recent cases, particularly from the Indian subcontinent, report fungal invasion seeded in the maxillary sinus and progressing into maxillary alveolar bony tissues and then the oral cavity as well as the orbits, with eventual blindness of the individual. Late diagnosis of the disease with orbital invasion needs to be managed by radical surgery of the affected regions and removal of the orbital contents.

Apart from the Mucor genus, other disease-causing genera in this group include Rhizopus and Absidia. In the oromaxillofacial region, Mucor and Rhizopus species account for most of the oral and rhinocerebral mucormycosis in COVID-19 cases. In contrast, a single case from Mexico reported isolating Absidia (Lichteimia) spp (belonging to mucorales) from the biopsy of a young female patient with severe diabetic ketoacidosis secondary to steroidal therapy for COVID-19 treatment.

In clinical terms, it should be noted that most oral mycoses in COVID-19 may present as innocuous red patches on the hard palate or the buccal mucosa, as shown by incidental findings in SARS-CoV-2 infection. However, as some of these lesions may lead to impairment of vision and/or even removal of the affected bony tissues and eventual disfigurement, all clinicians examining the oral cavity should maintain a high index of suspicion and be cognisant of the oral and maxillofacial mycoses that may pose a threat to the long-term health and the quality of life of these patients, particularly after recovery from SARS-CoV-2 infection. Indeed, oral and maxillofacial mycoses in COVID-19 could be construed as a little-known silent manifestation of the pandemic.

Study limitations

Our review has a few limitations. First is the disparate and heterogeneous nature of the reported cases emanating from various geographic locales, a significant proportion with limited and incomplete data. For instance, only a few case reports or case series included microbiological or histopathologic data of the fungal lesions confirming the diagnoses, and mere clinical observations were reported. In addition, most reports documenting oral candidosis did not elaborate on the species differentiation of Candida species. Additionally, it should be noted that the majority of fungal infections reported thus far have been diagnosed in hospitalised patients with severe COVID-19, and the data presented cannot be extrapolated for all patients with COVID-19 who mostly have mild symptoms.

Conclusions

Patients with SARS-CoV-2 infection are susceptible to oral fungal superinfections. The most likely reasons for this could be the impaired immune defenses due to the underlying viral infection, immunosuppressive and steroid therapy for COVID-19, ventilator-associated fungal infection, xerostomic conditions, and/or extant diabetes mellitus. Oral and maxillofacial mycoses, when present, appeared either concurrently with COVID-19 symptoms or during the immediate postrecovery period. Attending clinicians must maintain a high degree of suspicion of the possibility of these mycoses, particularly in patients with underlying comorbidities such as diabetes. A full and complete oral examination of patients with COVID-19 leading to early identification and treatment of secondary oral and maxillofacial mycoses can considerably reduce morbidity and improve their long-term health and quality of life.

Author contributions

All authors equally contributed to this work, through data computation and analysis, writing, and editing the manuscript. The final approval for publication was given by all authors after review of the final edited version of the manuscript.

Funding

No funding from any source was received for this research compilation.

Conflict of interest

None disclosed.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.identj.2022.02.010.

REFERENCES

1. Lai C-C, Wang C-Y, Hsueh P-R. Co-infections among patients with COVID-19: The need for combination therapy with non-
19. Verma V, Fakhruddin KS, Bandara N. Oral manifestations of coronavirus disease 2019 (COVID-19): an overview. Dent Updates 2021;48(5):418-22. doi: 10.12968/ deenu.2021.48.5.418.

20. Selarka L, Sharma S, Saini D, et al. Mucormycosis and COVID-19 patients with oral lesions: clinical and histopathological study on 123 cases of the University Hospital Policlinic of Bari with a purpose of a new classification. J Clin Med 2021;10(4). doi: 10.3390/jcm10040757.

21. Amorim Dos Santos J, Normando AGC, Carvalho da Silva RL, et al. Oral mucosal lesions in a COVID-19 patient: new signs or secondary manifestations? Int J Infect Dis 2020;97:326-8. doi: 10.1016/j.ijid.2020.06.012.

22. Díaz Rodríguez M, Jimenez Romera A, Villarroel M. Oral manifestations associated with COVID-19. Oral Dis 2020. doi: 10.1111/odi.13555.

23. Salehi M, Ahmadi-kia K, Mahmoudi S, et al. Oropharyngeal candidiasis in hospitalised COVID-19 patients from Iran: species identification and antifungal susceptibility pattern. Mycoses 2020;63(8):771-8. doi: 10.1111/myc.13137.

24. Pauli MA, Pereira LdM, Monteiro ML, de Camargo AR, Rabelo GD. Painful palatal lesion in a patient with COVID-19. Oral Surg Oral Med Oral Pathol Oral Radiol 2021;131(6):620-5. doi: 10.1016/j.oooo.2021.03.010.

25. Alekseyev K, Didenko L, Chaudhry B. Rhino-cerebral mucormycosis and COVID-19 pneumonia. J Med Cases 2021;12(3):85-9. doi: 10.14740/jmc3637.

26. Werthman-Ehrenreich A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am J Emerg Med 2021;42:264-e5-e8. doi: 10.1016/j.ajem.2020.09.032.

27. Waizel-Haitai S, Guerrero-Paz JA, Sanchez-Hurtado L, Calleja-Alcoran S, Romero-Gutierrez L. A case of fatal rhino-orbital mucormycosis associated with new onset diabetic ketoacidosis and COVID-19. Cureus 2021;13(2):e13163. doi: 10.7759/cureus.13163.

28. Veisi A, Bagheri A, Eshaghi M, Rikhtehgar MH, Rezaei Kanavi M, Farjad R. Rhino-orbital mucormycosis during steroid therapy in COVID-19 patients: a case report. Eur J Ophthalmol 2021. doi: 10.1109/joem.2021.11207621.0009450.

29. Ashour MM, Abdelaziz TT, Ashour DM, Saleh MI, Mahmoud MS. Imaging spectrum of acute invasive fungal rhino-cerebral sinusitis in COVID-19 patients: a case series and a review of literature. J Neuroradiol 2021;48(5):319-24. doi: 10.1016/j.jneurad.2021.05.007.

30. Riad A, Shabaan AA, Issa J, et al. COVID-19-associated mucormycosis (CAM): case-series and global analysis of mortality risk factors. J Fungi (Basel) 2021;7(10):837. doi: 10.3390/jof7100837.

31. Dallalzadeh LO, Ozzello DJ, Liu CY, Kikkawa DO, Korn BS. Secondary infection with rhino-orbital cerebral mucormycosis associated with COVID-19. Orbit 2021. doi: 10.1080/01676830.2021.1903044.

32. Bayram N, Ozsasyglu C, Sav H, et al. Susceptibility of severe COVID-19 patients to rhino-orbital mucormycosis fungal infection in different clinical manifestations. Jpn J Ophthalmol 2021;65(4):515-25. doi: 10.1007/s10384-021-00845-5.

33. Farid HA, Hashim AR, Hasrat NH. Rhinocerebral mucormycosis as a COVID-19-related complication: a case report from Basra City, Southern Iraq. J Glob Sci Res 2021;6(5):1369-74.

34. Karimi-Galougahi M, Arastou S, Haseli S. Fulminant mucormycosis complicating coronavirus disease 2019 (COVID-19). Int Forum Allergy Rhinol 2021;11(6):1029-30. doi: 10.1002/ air.22785.

35. Mahan KM, Molina MF, Coffey ECC, Manchanda ECC. Onset pediatric diabetes complicated by diabetic ketoacidosis and invasive rhinocerebral mucormycosis with internal carotid artery occlusion. J Emerg Med 2022;62(1):95-100. doi: 10.1016/j.emermed.2021.07.024.

36. Mehta S, Pandey A. Rhino-orbital mucormycosis associated with COVID-19. Cureus 2020;12(9):e10726. doi: 10.7759/cureus.10726.

37. Mekonnen ZK, Ashraf DC, Jankowski T, et al. Acute invasive rhino-orbital mucormycosis in a patient with COVID-19-associated acute respiratory distress syndrome. Ophthalmic Plast Reconstr Surg 2021;37(2):e40-80. doi: 10.1097/ OIO.0000000000001889.
38. Mishra N, Mutya VSS, Thomas A, et al. A case series of invasive mucormycosis in patients with COVID-19 infection. Int J Otorhinolaryngol Head Neck Surg 2021;7(5).
39. Mohammadi F, Badri M, Safari S, Hemmat N. A case report of rhino-facial mucormycosis in a non-diabetic patient with COVID-19: a systematic review of literature and current update. BMC Infect Dis 2021;21(1):906. doi: 10.1186/s12879-021-06625-3.
40. Saldanha M, Reddy R, Vincent MJ. Paranasal mucormycosis in COVID-19 patient. Indian J Otolaryngol Head Neck Surg 2021;1–4. doi: 10.1007/s12070-021-02574-0.
41. Revannavar SM, SS P, Samaga L, VKV. COVID-19 triggering mucormycosis in a susceptible patient: a new phenomenon in the developing world? BMJ Case Rep 2021;14(4). doi: 10.1136/bcr-2021-241663.
42. Diwakar J, Samaddar A, Konar SK, et al. First report of COVID-19-associated rhino-orbito-cerebral mucormycosis in pediatric patients with type 1 diabetes mellitus. J Mycol Med 2021;31(4):101203. doi: 10.1016/j.jymed.2021.101203.
43. Akpan A, Morgan R. Oral candidiasis. Postgrad Med J 2002;78(922):455–9. doi: 10.1136/pmj.78.922.455.
44. Samaranayake LP, MacFarlane TW. Oral candidosis. London: Wright; 1990.
45. Ng S. Managing patients with oral candidiasis. J Can Dent Assoc 2013;79:d122.
46. Garcia AM, Fadel SA, Cao S, Sarzotti M. T cell immunity in neonates. Immunol Res 2000;22(2-3):177–90. doi: 10.1385/ir:22:2-3:177.
47. Hartwick RW, Batsakis JG. Sinus aspergillosis and allergic fungal sinusitis. Ann Otol Rhinol Laryngol 1991;100(5, pt 1):427–30 pt 1. doi: 10.1177/000348949110005015.
48. Mitaka H, Kuno T, Takagi H, Patrawalla P. Mortality of COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. Mycoses 2021;64(9):993–1001. doi: 10.1111/myc.13292.
49. Samaranayake LP, Leung WK, Jin L. Oral mucosal fungal infections. Periodontol 2000 2009;49(1):39–59.
50. Dreizen S, Keating MJ, Beran M. Orofacial fungal infections. Nine pathogens that may invade during chemotherapy. Postgrad Med 1992;91(5):349–50, 53–4, 57–60 passim. doi: 10.1080/00325481.1992.1170129.
51. Emmanuelli JL. Infectious granulomatous diseases of the head and neck. Am J Otolaryngol 1993;14(3):155–67. doi: 10.1016/0196-0709(93)90024-2.
52. Denning DW. Invasive aspergillosis. Clin Infect Dis 1998;26(4):781–803; quiz 4–5. doi: 10.1086/513943.
53. Kamei K, Watanabe A. Aspergillus mycotoxins and their effect on the host. Med Mycol 2005;43(suppl 1):S95–9. doi: 10.1080/13693780500051547.
54. Pennerman KK, Yin G, Glenn AE, Bennett JW. Identifying candidate Aspergillus pathogenicity factors by annotation frequency. BMC Microbiol 2020;20(1):342. doi: 10.1186/s12866-020-02031-y.
55. Rabagliati R, Rodriguez N, Nuñez C, Huete A, Bravo S, Garcia P. COVID-19–associated mold infection in critically ill patients. Chile. Emerg Infect Dis 2021;27(5):1454. doi: 10.3201/eid2705.204412.
56. Spellberg B, Edwards J, Ibrahim A. Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev 2005;18(3):556–69. doi: 10.1128/CMR.18.3.556-569.2005.
57. Rapidis AD. Orbitomaxillary mucormycosis (zygomycosis) and the surgical approach to treatment: perspectives from a maxillofacial surgeon. Clin Microbiol Infect 2009;15:98–102. doi: 10.1111/j.1469-0691.2009.02989.x.
58. Sañider S, Carpenter JS, Roberts TD, Bailey N. The “black turbinate” sign: an early MR imaging finding of nasal mucormycosis. Am J Neuroradiol 2010;31(4):771. doi: 10.3174/ajnr.A1808.
59. Chikley A, Ben-Ami R, Kontoyiannis DP. Mucormycosis of the central nervous system. J Fungi 2019;5(3). doi: 10.3390/jof5030059.
60. Sandron J, Hantsch P, Duprez T. Intracranial brain parenchymal spread of mucormycosis through olfactory tract: a diffusion-weighted imaging-based concept. Acta Radiologica Open 2020;9(12). doi: 10.1177/2058460120980999.
61. Galletti B, Gazia F, Galletti C, et al. Rhinocerebral mucormycosis with dissemination to pontine area in a diabetic patient: treatment and management. Clin Case Rep 2019;7(7):1382–7. doi: 10.1002/ccr3.2255.
62. Auluck A. Maxillary necrosis by mucormycosis. a case report and literature review. Med Oral Patol Oral Cir Buca 2007;12(5):E360–4.
63. Walther G, Wagner L, Kurzai O. Updates on the taxonomy of mucorales with an emphasis on clinically important taxa. J Fungi (Basel) 2019;5(4). doi: 10.3390/jof5040106.