in vitro studies (26, 36, 38). However, at which specific step the inhibitory action of NAC on ER targeting is counteracted by the SRP pathway is unclear.

NAC is evolutionarily conserved from yeast to man and is essential in eukaryotes, except for yeast (23, 30, 39, 40). Knockdown of α-NAC in human HeLa S3 cells also activates ER stress responses and causes mitochondrial dysfunction (42). Thus, the function of NAC as an ER targeting inhibitor appears to be well conserved during evolution, at least from C. elegans to mammals. Recent studies showed that NAC is sequestered by cytosolic aggregates under protein folding stress conditions (38, 42). This raises the question whether proteotoxic stress in the cytoplasm causes dysfunction of NAC, leading to incorrect sorting of proteins to the ER and mitochondria. A link between cytosolic protein aggregation and ER stress is well established (43), and it will be interesting to investigate the role of NAC in this context.

REFERENCES AND NOTES

1. M. Hämäläinen et al., Nature 427, 808–814 (2004).
2. M. Hämäläinen et al., Science 312, 745–747 (2006).
3. Y. Nyathi, B. M. Wilkinson, M. R. Pool, J. Cell Biol. 192, 957–970 (2000).
4. K. U. Kalies, D. Görlich, T. A. Rapoport, EMBO J. 14, 663–666 (1995).
5. S. L. Rea, D. Wu, J. R. Cypser, J. W. Vaupel, T. E. Johnson, Mol. Biol. Cell 15, 653–662 (2004).
6. T. Yoneda et al., J. Biol. Chem. 285, 19679–19687 (2010).
7. T. Schwartz, G. Blobel, Cell 112, 793–803 (2003).
8. N. Borgese, W. Mok, G. Kreibich, D. D. Sabatini, EMBO J. 17, 261–270 (1998).
9. K. U. Kalies, D. Görlich, T. A. Rapoport, J. Cell Biol. 126, 925–934 (1995).
10. K. U. Kalies, D. Görlich, T. A. Rapoport, J. Cell Biol. 141, 1125–1135 (1998).
11. B. Lauring, H. Sakai, G. Kreibich, M. Wiedmann, Mol. Biol. Cell 15, 5415–5426 (2004).
12. T. Yoneda et al., J. Biol. Chem. 285, 19679–19687 (2010).
13. T. Yoneda et al., J. Biol. Chem. 285, 19679–19687 (2010).
14. S. L. Rea, D. Wu, J. R. Cypser, J. W. Vaupel, T. E. Johnson, Mol. Biol. Cell 15, 653–662 (2004).
15. Materials and methods are available as supplementary information. www.sciencemag.org/content/348/6231/201/suppl/DC1

QUANTUM GASES

Experimental observation of a generalized Gibbs ensemble

Tim Langen, Sebastian Erne, Remi Geiger, Bernhard Rauer, Thomas Schweigler, Maximilian Kuhnert, Wolfgang Rohringer, Igor E. Mazets, Thomas Gasenzer, Jörg Schmiedmayer

The description of the non-equilibrium dynamics of isolated quantum many-body systems within the framework of statistical mechanics is a fundamental open question. Conventional thermodynamical ensembles fail to describe the large class of systems that exhibit nontrivial conserved quantities, and generalized ensembles have been predicted to maximize entropy in these systems. We show experimentally that a degenerate one-dimensional Bose gas relaxes to a state that can be described by such a generalized ensemble. This is verified through a detailed study of correlation functions up to 10th order. The applicability of the generalized ensemble description for isolated quantum many-body systems points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution.

In addition, the presence of nontrivial conserved quantities puts constraints on the available phase space of a system, which strongly affects the dynamics (6–9) and inhibits thermalization (10–12). Instead of relaxing to steady states described by the usual thermodynamical ensembles, a generalized Gibbs ensemble (GGE) was proposed to describe the corresponding steady states via the many-body density matrix

\[
\hat{\rho} = \frac{1}{Z} \exp\left(-\sum_m \lambda_m \hat{Z}_m \right)
\]

(1)

where \(\hat{Z}_m\) denotes a set of conserved quantities and \(Z = \text{Tr}(\exp(-\sum_m \lambda_m \hat{Z}_m))\) is the partition function. The Lagrange multipliers \(\lambda_m\) associated with the conserved quantities are obtained by maximizing the entropy under the condition that the expectation values of the conserved quantities are fixed to their initial values. The emergence of such a maximum-entropy state does not contradict a unitary evolution according to quantum mechanics. Rather, it reflects that the true state of the system is indistinguishable from the maximum-entropy ensemble with respect to a set of sufficiently local observables (5).

*Corresponding author. E-mail: schmiedmayer@atomchip.org

\(\text{RESEARCH}\)

\(\text{QUANTUM GASES}\)

\(\text{Experimental observation of a generalized Gibbs ensemble}\)

\(\text{Tim Langen, Sebastian Erne, Remi Geiger, Bernhard Rauer, Thomas Schweigler, Maximilian Kuhnert, Wolfgang Rohringer, Igor E. Mazets, Thomas Gasenzer, Jörg Schmiedmayer}\)
The GGE is a direct generalization of the usual thermodynamical ensembles and is formally capable of describing a wide range of dynamically emerging steady states (15). For example, in the case where only the energy is conserved, the GGE reduces to the standard canonical or Gibbs ensemble, with temperature being the only Lagrange multiplier (4). Moreover, the GGE famously provides a description for the steady states of

Fig. 1. Experimental concept. A non-equilibrium system is prepared by splitting a 1D Bose gas into two halves. After an evolution time \(t \), matter-wave interference is used to extract the local relative phase profile \(\phi(z) \) between the two halves. This is accomplished by measuring the local position of the fluctuating interference fringes. Subsequently, the phase profile is used to calculate the two-point correlation function \(C(z_1, z_2) - \langle \exp(i\phi(z_1) - i\phi(z_2)) \rangle \) as a function of all possible coordinates \(z_1 \) and \(z_2 \) along the length of the measured phase profile. For \(z_1 = z_2 \) (e.g., green triangle on the diagonal), \(C(z_1, z_2) = 1 \). Coordinates with \(z_1 = -z_2 \) (e.g., red point) are located symmetrically around the center of the system and are found on the antidiagonal of the correlation function.

Fig. 2. Two-point phase correlation functions \(C(z_1, z_2) \) for increasing evolution time. (A and B) Different initial states were prepared using two different splitting protocols. Both states show a characteristic maximum on the diagonal and a decay of correlations away from the diagonal. We used a \(\chi^2 \) analysis to quantify the agreement of our theoretical model and the experiments. The steady state and the dynamics in (A) can be well described by a single temperature \(T_{\text{eff}} \). (C) The single-temperature model fails for the steady state and the dynamics in (B), which require more temperatures to explain additional correlations on the antidiagonal (see text). The observation of different temperatures in the same steady state constitutes our observation of a GGE. The center of the system is located at \(z_1 = z_2 = 0 \); color marks the amount of correlations between 0 and 1 and the local \(\chi^2 \) contribution between 0 and 150. The uncertainty of the correlation functions is estimated via bootstrapping over approximately 150 experimental realizations (25).
The experiments started with a phase-fluctuating 1D Bose gas (22) of 85Rb atoms that was prepared and trapped using an atom chip (23). We initialized the non-equilibrium dynamics by transversally splitting this single 1D gas coherently into two nominally identical 1D systems, each containing half of the atoms on average. Information about the total system was extracted using matter-wave interferometry between the two halves (6, 20, 21, 24). This enabled the time-resolved measurement of individual two-point and higher-order N-point phase correlation functions,

$$C(z_1, z_2, \ldots, z_N) = \left\langle \Psi(z_1) \Psi(z_2) \ldots \Psi(z_N) \right
angle$$

where z_1, z_2, \ldots, z_N are N coordinates along the length of the system, and $\Psi(z)$ is the relative phase between the two halves (25). As described below, these correlation functions reveal detailed information about the dynamics and the steady states of the system.

We start with the two-point correlation function $C(z_1, z_2) = \left\langle \exp[i \phi(z_1) - i \phi(z_2)] \right
angle$. Previously, this correlation function was studied in regions where the system is approximately translationally invariant (21, 26), that is, $C(z_1, z_2) \approx C(z_1 - z_2)$. Here, more comprehensive information about generic many-body states is obtained by mapping the full correlation function $C(z_1, z_2)$ for any combination of the coordinates z_1 and z_2 (Fig. 1).

Our observations after a typical splitting, which is fast relative to the dynamics of the system and therefore realizes a quench (25), are summarized in Fig. 2A. As every point in the system is perfectly correlated with itself, the correlation functions exhibit a maximum on the diagonal $z_1 = z_2$ for all times. Away from the diagonal, the system shows a light cone–like decay of correlations (21) leading to a steady state. From a theoretical point of view, the emergence of this steady state is a consequence of prethermalization (6, 27–31), which in the present case can be described as the dephasing of phononic excitations (29, 31–33). The occupation numbers n_m of these excitations are the conserved quantities of the corresponding integrable model (25).

With a knowledge of the conserved quantities, we can directly calculate the Lagrange multipliers λ_m for the GGE. In terms of the excitation energies e_m, they can be written as $\lambda_m = \beta e_m$, which defines an effective temperature $1/\beta_m$ for every excitation mode.

For the steady state illustrated in Fig. 2A, the proportionality factor β_m can be well described by $\beta_m \approx \beta_{\text{eff}} = 1/(k_B T_{\text{eff}})$ (where k_B is the Boltzmann constant). A fit yields $k_B T_{\text{eff}} = 0.50 (\pm 0.01) \times \mu$, which is independent of m and in very good agreement with theory (6, 33). Here, μ denotes the chemical potential in each half of the system. Although it is a GGE in principle, for our experiment (which observes the relative phase between the two halves of the system) it becomes formally equivalent to the usual Gibbs ensemble with a single temperature T_{eff} (25).

To obtain direct experimental signatures of a genuine GGE, we modified the initial state so that it exhibited different temperatures for different excitation modes. This was accomplished by changing the ramp that splits the initial gas into two halves (25). The results are shown in Fig. 2B. In addition to the maximum of correlations on the diagonal, a pronounced second maximum on the antidiagonal can be seen. This corresponds to enhanced correlations of the points $z_1 = -z_2$, which are located symmetrically around the center of the system. These correlations are a direct consequence of an increased population of quasi-particle modes that are even, and a decreased population of quasi-particle modes that are odd, under a mirror reflection with respect to the longitudinal trap center. Consequently, the observations can be described to a first approximation by the above theoretical model but with different temperatures—that is, with $\beta_{\text{even}} = 1/(k_B T_{\text{even}} + \Delta T)$ for the even modes and $\beta_{\text{odd}} = 1/(k_B T_{\text{odd}} - \Delta T)$ for the odd modes, respectively.

Fitting the experimental data of the steady state with this model, we find $k_B T_{\text{even}} = 0.64 (\pm 0.01) \times \mu$, $\Delta T = 0.48 (\pm 0.01) \times T_{\text{eff}}$, and a reduced $\chi^2 \approx 6$.

More detailed insights and a more accurate description of the experimental data can be gained by fitting the steady state with the individual mode occupations as free parameters. The results yield a reduced χ^2 close to 1 and thus...
a very good description of the experimental data (see Fig. 2B). As expected from our intuitive two-temperature model, the fitting confirms that the occupation of even modes is strongly enhanced, whereas the occupation of odd modes is reduced (see Fig. 3A). Fixing these occupation numbers extracted from the steady state, our theoretical model also describes the complete dynamics very well. This clearly demonstrates that the different populations of the modes were imprinted onto the system by the splitting quench and are conserved during the dynamics. In contrast, a simple model based on a usual Gibbs ensemble with just one temperature for all modes clearly fails to describe the data [best fit: $k_T T_{\text{eff}} = 0.38 \pm 0.01 \times \mu$, reduced $\chi^2 = 25$], as visualized in Fig. 2C.

Notably, our fitting results for the GGE exhibit strong correlations between the different even modes and the different odd modes, respectively. This demonstrates the difficulty in fully and independently determining the parameters of such complex many-body states. In fact, any full tomography of all parameters would require exponentially many measurements. The results thus clearly show the presence of a GGE with at least two, but most likely many more temperatures.

Our work raises the interesting question of how many Lagrange multipliers are needed in general to describe the steady state of a realistic integrable quantum system. In analogy to classical mechanics, where N conserved quantities exist for a generic integrable system with N degrees of freedom, integrability in quantum many-body systems has been proposed to be characterized by the number of independent local conserved quantities scales with the number of particles (N). Here we conjecture that many experimentally obtainable initial states evolve in time into steady states, which can be described to a reasonable precision by far fewer than N Lagrange multipliers ($8, 34$). This would have the appeal of a strong similarity to thermodynamics, where also only a few parameters are needed to describe the properties of a system on macroscopic scales.

To illustrate this in our specific case, we investigated how many distinct Lagrange multipliers need to be considered in the GGE to describe our data with multiple temperatures (Fig. 3). Including more and more modes in the fitting of the experimental data, we found that the reduced χ^2 values decrease and settle close to unity for nine included modes, with all higher modes being fitted by one additional Lagrange multiplier. Looking at the P value for the measured χ^2 (35) shows that only a limited number of Lagrange multipliers needs to be specified to describe the observables under study to the precision of the measurement. A simple numerical estimate based on the decreasing contribution of higher modes to the measured correlation functions and the limited imaging resolution leads to approximately 10 Lagrange multipliers, which is in good agreement with our observations (25). Moreover, comparing this result with the single-temperature steady state discussed earlier illustrates that the complexity of the initial state plays an important role for the number of Lagrange multipliers that need to be included in a GGE.

In general, deviations of steady states from the GGE description are expected to manifest first in higher-order correlation functions. To provide further evidence for our theoretical description and the presence of a GGE, Fig. 4 shows examples of measured 4-point, 6-point, and 10-point correlation functions of the steady state. Like the 2-point correlation functions, they are in very good agreement with the theoretical model and clearly reveal the difference between the GGE and the usual Gibbs ensemble. This confirms that the description based on a GGE with the parameters extracted from the 2-point correlation functions also describes many-body observables, at least up to 10th order.

Our results clearly visualize, both experimentally and theoretically, how the unitary evolution of our quantum many-body system connects to a steady state that can be described by a classical statistical ensemble. We expect our measurements of correlation functions to high order to play an

![Fig. 4. Examples of experimental 4-, 6-, and 10-point correlation functions. (A and B) Differences between the steady state described by a single temperature (A) and the steady state described by multiple temperatures (B) are significant and can be captured by the theoretical model. (C) The single-temperature model cannot describe the state with multiple temperatures, which is reflected in high values of the local χ^2. From left to right, we plot $C(z_1, 10, z_2, 10), C(z_1, 10, 10, z_2, 10), C(z_1, 10, 10, 10, 10), C(z_1, -8, z_2, -24, -20), C(z_4, 4, 10, z_2, -8, z_2, -22, -18, 10, -4)$, and $C(z_1, -22, -8, z_2, -22, -26, -22, z_2, -26, -24)$. All coordinates are given in μm and were chosen as representative cases for our high-dimensional data.](image-url)
important role in new tomography techniques for complex quantum many-body states (36). Moreover, the observed tunability of the non-equilibrium states suggests that our splitting process could in the future be used to prepare states tailored for precision metrology (37).

REFERENCES AND NOTES
1. C. E. Shannon, W. Weaver, The Mathematical Theory of Communication (Univ. of Illinois Press, Urbana, IL, 1949).
2. C. E. Shannon, Proc. IEEE 64, 2046 (1967).
3. E. T. Jaynes, Phys. Rev. 106, 620–630 (1957).
4. E. T. Jaynes, Phys. Rev. 108, 171–190 (1957).
5. K. Huang, Statistical Mechanics (Wiley, New York, 1987).
6. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalattore, Rev. Mod. Phys. 83, 863–883 (2011).
7. M. Gring et al., Science 337, 1318–1322 (2012).
8. J. P. Ronzheimer et al., Phys. Rev. Lett. 110, 205301 (2013).
9. J.-S. Caux, F. H. Essler, Phys. Rev. Lett. 110, 257203 (2013).
10. J. Reichel, V. Vuletic, Eds., See supplementary materials on the website.
11. T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, M. Kollar, F. Wolf, M. Eckstein, Phys. Rev. Lett. 96, 050405 (2006).
12. M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, Phys. Rev. Lett. 98, 100403 (2007).
13. J. Berges, T. Gasenzer, Phys. Rev. Lett. 103, 100403 (2009).
14. M. Rigol, Phys. Rev. Lett. 105, 175001 (2012).
15. M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854–858 (2008).
16. M. Kollar, F. Wolf, M. Eckstein, Phys. Rev. B 84, 054301 (2011).
17. R. Vosk, E. Altman, Phys. Rev. Lett. 110, 077203 (2013).
18. E. H. Lieb, W. Liniger, Phys. Rev. 130, 1665–1666 (1963).
19. V. Korepin, N. Bogoliubov, A. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge Univ. Press, Cambridge, 1993).
20. J. Berges, Phys. Rev. Lett. 110, 090405 (2013).
21. T. Langen, R. Geiger, M. Kuhnert, B. Rauer, J. Schmiedmayer, Nat. Phys. 9, 640–643 (2013).
22. D. S. Petrov, G. V. Shlyapnikov, J. T. M. Warken, Phys. Rev. Lett. 85, 3747–3749 (2000).
23. J. L. M. J. V. Vuletic, Eds., See supplementary materials on the website.
24. T. Schumm et al., Nat. Phys. 1, 57–62 (2005).
25. See supplementary materials on Science Online.
26. T. Betz et al., Phys. Rev. Lett. 106, 020407 (2011).
27. J. Berges, S. Borsanyi, C. Wetterich, Phys. Rev. Lett. 93, 140402 (2004).
28. T. Gasenzer, J. Berges, M. G. Schmidt, M. Seco, Phys. Rev. A 75, 033604 (2005).
29. J. Berges, T. Gasenzer, Phys. Rev. A 76, 033604 (2007).
30. M. Eckstein, M. Kollar, P. Werner, Phys. Rev. Lett. 103, 056403 (2009).
31. T. Kitagawa, A. Imambekov, J. Schmiedmayer, E. Demler, New J. Phys. 13, 073018 (2011).
32. R. Bichtrier, E. Altman, Proc. Natl. Acad. Sci. U.S.A. 104, 9995–9999 (2007).
33. T. Kitagawa et al., Phys. Rev. Lett. 104, 255302 (2010).
34. P. Barmettler, C. Kok, http://arxiv.org/abs/1311.0027 (2013).
35. I. G. Hughes, T. Hase, Measurements and Their Uncertainties (Oxford Univ. Press, Oxford, 2010).
36. R. Hübel, A. Mar, J. Iseit, Phys. Rev. Lett. 110, 040401 (2013).
37. T. Berrada et al., Nat. Commun. 4, 2077 (2013).

ACKNOWLEDGMENTS
We acknowledge discussions with E. Demler, E. Dalla Torre, K. Agarwal, J. Berges, M. Karl, V. Kasper, I. Bouchoule, M. Cheneau, and P. Grisins. Supported by the European Union (SIQS and ERC advanced grant QuantumRelax), the Austrian Science Fund (FWF) through the Doctoral Programme CoQuS (W1210) (B.R. and I.E.M.), Deutsche Forschungsgemeinschaft grant GR257/7-8 (T.G.), the University of Heidelberg Center for Quantum Dynamics, Helmholtz Association grant HA205/EMMI, and NSF grant PHY11-25915. T.L., T.G., and J.S., thank the Kavli Institute for Theoretical Physics, Santa Barbara, for its hospitality.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/348/6231/207/suppl/DC1
Materials and Methods
Supplementary Text
References (38–44)
5 June 2014; accepted 2 March 2015
10.1126/science.1257026

BIOANALYSIS
Mass spectrometry imaging with laser-induced postionization

Jens Soltwisch,1 Hans Kettling,1,2 Simeon Vens-Cappell,1,2 Marcel Wiegelnmann,1 Johannes Müthing,1 Klaus Dreisewerd1,2,*

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can simultaneously record the lateral distribution of numerous biomolecules in tissue slices, but its sensitivity is restricted by limited ionization. We used a wavelength-tunable postionization laser to initiate secondary MALDI-like ionization processes in the gas phase. In this way, we could increase the ion yields for numerous lipid classes, liposoluble vitamins, and saccharides, imaged in animal and plant tissue with a 5-micrometer-wide laser spot, by up to two orders of magnitude. Critical parameters for initiation of the secondary ionization processes are pressure of the cooling gas in the ion source, laser wavelength, pulse energy, and delay between the two laser pulses. The technology could enable sensitive MALDI-MSI imaging with a lateral resolution in the low micrometer range.

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is used for the analysis of large nonvolatile biomolecules (1). Typically, the analytes are embedded into crystalline MALDI matrices (often aromatic carboxylic acids). Laser-induced desorption of both constituents into the gas phase is convoluted with concomitant ionization in primary and secondary ionization processes (2–4). MALDI-MSI imaging (MALDI-MSI) visualizes the lateral distribution of numerous biomolecules or that of administered drugs simultaneously by scanning matrix-covered tissue slices with a finely focused laser beam and recording the ion profiles per irradiated pixel (5, 6). For...