Number of a molecule is discrete by its nature. Therefore, when detection sensitivity of analytical methods approaches the single molecule level, one faces the intrinsic discreteness of the measured concentration and number of analytes. An emerging analytical method that employs this intrinsic discreteness is digital counting. When an analyte solution is partitioned into many small reaction compartments, such that each molecule is individually encapsulated into a compartment, the analyte quantification is inevitably digitized; each compartment contains none or one molecule of analyte. When a solution of enzyme or enzyme-conjugated molecule is partitioned into such small reactors with fluorogenic substrate, one can count the number of the molecule as that of fluorescent reactors under an optical microscope. We refer to this strategy as "digital counting". One of the most successful examples of digital counting is digital ELISA, in which target molecules are individually encapsulated in a water-in-oil droplet after bound to enzyme-conjugated antibody. Although the chemistry of digital ELISA; antibody and enzyme is common to conventional ELISA, the detection sensitivity of digital ELISA is higher than that of conventional ELISA by 4 to 6 orders of magnitude. In this review, we introduce recent achievements in digital ELISA and relevant methods.

Digital bioassay / digital biology / single molecule analysis / microchamber / lipid bilayer array
作成し、ガラス基板に吹き付けた。この時、蛍光発生性の基質も一緒に添加する。試薬液を用いて蛍光強度を測定した。なお、発光強度が十分に低く確率的に0もしくは1分子のβ-galしか検出していない条件でも、一部のドレブレットから鮮明な蛍光が確認され、1分子単位の発光アッセイが可能であることが示された。したがって、反応体積が100-1000フェムトリットルの探索の上を要したこと、そしてドレブレット径が十分に均一で定量性が低かったため、この手法を用いたアッセイは長らく利用されてこなかった。

この手法が実用的になったのはマイクロ加工技術によって均一分子かつ微小な溶液チャンバーアレイが利用可能となってからである。2005年、我々はPDMSの表面に直径数ミクロン、体積積数1フィオートリットルの溶液チャンバーアレイを開発し（図1（1A））、これを利用してβ-galの1分子発光アッセイを実施した2）（図1（1B））。得られた蛍光信号は期待通り量子化されており、定量化した発光を決定することに成功した。詳細は、以前の「生物物理」で発表した総説を参照いただきたい2）。

PDMSシートを用いた微小溶液チャンバーアレイ技術を利用すれば1分子酵素アッセイが可能であることが明らかになると、この手法は様々な高感度アッセイに応用される。Tufts大学のWaltらは、β-galをプロープとして用いた1分子DNA検出4）や阻害剤効果の測定5）を発表している。また、Harvard大学のXieらは、細胞内β-gal発現1分子計測6）やDNAシーケンセンスへの応用7）を発表している。我々自身は、初期の目的であったF4-ATPaseの逆回転によるATP合成の1分子計測を達成した後8）（図1（1C））、さらにチャンバーを用いた計測を本格的にに及ばなかった。このようなにも、PDMSのシステムは溶液を封入するため、PDMSシートをガラス基板に機械的に押し付ける必要があり、微小溶液チャンバーアレイを再現性よく大量に作成することが難しかったためである。

3. 第二世代システム：ドレブレットアレイ

PDMS型のチャンバーサイドの弱点を改善するため、簡便な操作で再現性よくチャンバーを作成する手法を開発した8）（図1（2A））。ここでは、溶液を固体で覆うのではなく、オイルによって溶液ドレブレットを分離する手法を選んだ。フィブリルの親水性ポリマーでガラス表面を修飾した後、O2ブلازمでポリマーをアッセイにミクロサイズの穴を空ける。こうすると、親水的なガラス表面が露出したミクロサイズの凹みができる。ここに「溶液→フィブリルオイル」の順に送液すると、凹みにミクロサイズの溶液ドレブレットが形成・保持される。PDMSチャンバーと異なり機械的な圧着操作が無いため、比較的広い面積を均一に操作することができる。また、一度に100万倍以上のドレブレットアレイを再現性よく作成することができるので、プロトタイプである。このチャンバーを用いることで、より簡便にβ-galの1分子酵素アッセイを実施することが可能となり、より実用的な開発が可能となった。このデバイスを用いることで、多耐性バクテリアの1分子検出（図1（2B））をはじめ、以下で紹介するデジタルELISAなど応用範囲が非常に広がった。

4. デジタル ELISA

β-galをマーカーとする、抗原抗体反応を1分子レベルで実施することができる。そこで、β-galを標識した抗体を用いたサンドイッチ型ELISAを第二世代FLチャンバーで行う1分子デジタルELISAを開発した9）（図1（2C））。ドレブレットを保持するガラス底面に捕捉用の抗体を結合させることもできるが、
デバイス作成の歩留まりを考え、抗原抗体応反自体は試験管内で行う手法を選んだ。通常のELISA法と同様に、まず表面を捕捉抗体で修飾したビーズを用いてターゲット分子を捕捉する。次にβ-galで標識した抗体と反応させ、未反応の標識抗体を洗い流す。その後、β-galの蛻光アッセイ用の基質と一緒にビーズをチャンバー中に閉じる。この時、試料中のターゲット分子数は極めて少ないため、β-galで標識した抗体がターゲット分子と反応し、蛻光を発生する。結果、検出感度は2mAと通常のELISAと比較して10万倍以上の改善した値を示した。なお、その後多くの計測依頼があり、様々な種類のELISAを実施したところ、ある程度適応性を示しながらも、標識抗体の非特異的結合の量が大きく異なるためである。今後、超高感度なデジタルELISAを安定に実行するためには、非特異的な吸着と真の信号を区別する手法が必要である。

5. 第三世代システム：膜チャネルアレイALBiC

第二世代のドロップレットチャンバーは、界面が水と油である。この界面を両親媒性の脂質分子レイヤーで安定化させた後に水溶液を導入すると、新しい水・油界面にも脂質分子レイヤーが形成され、この2つの脂質分子レイヤー同士を接触させれば脂質二重膜が形成されるはずである。このアイデアに基づき、ドロップレットチャンバーに「水→油→水」の順に試験し、油に脂質分子を可溶化させると期待された通り脂質二重膜でfiltersされたチャンバーのアレイが作成された。正確には、結合する分子数はポアソン分布となり、1ビーズ当たりのターゲット分子の平均個数が0.1以下の場合は2個以上結合する確率は1個の場合と比較して、5%以下となり無視できる。

2.5時間の培養時間内にフェルジは指数的に増加し、β-galの活性として検出することを観測した。ATP合成酵素の場合、チャンバー内部に水素イオン感受性の色素を含有させ、ATP駆動水素イオン輸送に伴うチャンバー内部の酸化性をプローブの蛻光を示して検出した。いずれの測定においても活性が確認され、ALBiCの脂質二重膜は膜タンパク質機能を保持したまま再構成できる薄膜であることが確認された。さらに重要なことに、再構成するATP合成酵素の濃度を変化させると、1分子の輸送体がチャンバー当たり1個だけ再構成されるが、それでも輸送活性が観測された点である（図1(3B)）。これは、チャンバー内の試料が微小である効果のほかで、膜輸送体の輸送速度はイオンチャネルと比較しないほど遅いため、1分子単位の電気計測は実質上不可能である。今後、様々な膜輸送体の輸送計測が可能となることが期待される。

6. 微小溶液チャンバーを用いたその他の応用例

ここで、我々の技術を中心に紹介してみて、実用化という意味ではデジタルPCRに言及しなくてはいけない。デジタルPCR法自体は、1999年に開発された手法で、当時は単一DNA溶液を限界検出し、PCR反応の有無から試料中に存在する2種類のDNA量の相対値を求める技術として出発した。この手法が実用化されたのは、試料を大量のチャンバーに分画するデバイス技術が開発されてからである。最近は、マイクロ流体デバイスを用いた均一系のドロップレットを多数用意し、そこに確率的にDNA分子を封入してPCR反応を行う手法も実用化されている。PCR反応は酵素反応のためのフェムトリットル空間ではうまくいかないため、通常は100ミクロン前後の空間で行われているが、大量のドロップレットを生成・解析する手法を用いて温度や定常性に優れた手法を広く用いている。

微小溶液チャンバーをフェルジの定量に用いた例も報告されている。例えば、M13やT7ファージの感染によってβ-galの活性が発現する酵素を用いて、感染性ファージの粒子数を測定する方法が報告されている。ここでは、ファージ溶液を大腸菌培養液と混ぜドロップレットに封入する。2.5時間の培養時間内にフェルジは指数的に増加し、β-galの活性として検出することが観測される。
ができる。これにより通常の培養法よりもはるかに短時間で、かつ広いレンジでファージの定量測定が可能となった。

7. 今後の展望

微小溶液チャンバーを用いた1分子デジタル計数法は原理が単純であるために、極めて応用性が広い。既にPCRとELISAはデジタル化が確立した。ファージの計数など当初は予想しなかった応用例もある。また、溶液チャンバーのプラットフォームの改良も進んでおり、例えばドロップレットアレイ以外にもSlipChipを用いた系14が報告されている。さらにはALBiCに加えて脂質二重膜を用いた系他グループからも報告されている15。

今後も、チャンバーのプラットフォームの改良と平行して様々なバイオアッセイがデジタル化されることが期待される。我々のグループでも、酵素活性に基づくインフルエンザ粒子の超感度検出に成功し、感染性粒子の割合が予想以上に少ないと考えていた（城所ら未発表データ）。このように、これまであまり定量化が遅れていたバイオアッセイをデジタル化する流れが進むと、見落とされていた重要な発見が見られるだろう。その結果、デジタル計測によって持われる生物学的なDigital Biologyとも呼べる新潮流が生まれることが期待したい。

謝辞

ここでは紹介した成果の多くはJST CREST「ナノシステム」で実施した。曾根総括をはじめ関係者に深く感謝する。また、Droplet型デバイスを開発した柳原博士、デジタルELISAを確立したKim博士、飯野氏、新木氏、岩井氏、ALBiCを確立した渡辺助教と共同研究者の皆博士、藤田博士にも深く感謝する。

文献
1) Roman, B. (1961) Proc. Natl. Acad. Sci. USA 47, 1981-1991.
2) Rondelez, Y. et al. (2005) Nature 433, 773-777. DOI: 10.1038/nature03277.
3) 野地博行(2006)生物物理46, 154-158. DOI: 10.2142/biophys.46.154.
4) Li, Z. et al. (2008) J. Am. Chem. Soc. 130, 12622-12623. DOI: 10.1021/ja0805308.
5) Gorriz, H. et al. (2007) FERS J. 274, 5462-5470. DOI: 10.1111/j.1742-4658.2007.06078.x.
6) Cai, L. et al. (2006) Nature 440, 358-362. DOI: 10.1038/nature04999.
7) Sims, P. A. et al. (2011) Nature Methods 8, 575-580. DOI: 10.1038/nmeth.1629.
8) Sakakihara, S. et al. (2010) Lab Chip 10, 3355-3362. DOI: 10.1039/c00662k.
9) Kim, S. H. et al. (2012) Lab Chip 12, 4986-4991. DOI: 10.1039/C2LC40632B.
10) Watanabe, R. et al. (2014) Nat. Commun. 5, 4519. DOI: 10.1038/ncomms5519.
11) Vogelstein, B., Kinzler, K. W. (1999) Proc. Natl. Acad. Sci. USA 96, 9236-9241. DOI: 10.1073/pnas.96.16.9236.
12) Ortesen, E. A. et al. (2006) Science 314, 1464-1467. DOI: 10.1126/science.1131170.
13) Pekin, D. et al. (2011) Lab Chip 11, 2156-2166. DOI: 10.1039/C1LC20128J.
14) Ge, S. et al. (2014) J. Am. Chem. Soc. 136, 14662-14665. DOI: 10.1021/ja507849b.
15) Tonooka, T. et al. (2014) Small 10, 3275-3282. DOI: 10.1002/smll.201303332.