Rigid local systems and potential automorphy: The G_2-case.

Michael Dettweiler

October 18, 2008

Abstract

For $s \in \mathbb{P}^1(\mathbb{Q}) \setminus \{0,1\}$, we study the compatible system of Galois representations

$$\rho_s(3) : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to G_2(\mathbb{Q}_\ell)$$

introduced in [4], where $G_2(\mathbb{Q}_\ell) \leq \text{GL}_7(\mathbb{Q}_\ell)$ is the simple group of type G_2. We prove that, under some mild condition on s, the image of the Tate twisted Galois representation $\rho_s(3)$ coincides with $G_2(\mathbb{Z}_\ell)$ for all ℓ up to a set of primes having density zero, and we show that ρ_s is potentially automorphic for all ℓ. From this, meromorphic continuation and functional equation for the L-function of ρ_s is deduced.

Introduction

Rigid local systems have a rich history, starting with Riemann’s study of Gauss’ hypergeometric differential equations. N. Katz gave a unifying motivic approach to all rigid local systems, using the theory of the middle convolution [11]. Recently, rigid local systems appeared in the work [15] of Harris, Shepherd-Barron and Taylor on the Sato-Tate conjecture. It is the aim of this article to show that one may use other rigid local systems in a similar way to generalize the results of Harris, Shepherd-Barron and Taylor to other Galois representations.

In [6] and [4], we use Katz’ theory of the middle convolution in order to study a certain rigid motivic ℓ-adic lisse sheaf \mathcal{V}_ℓ of rank 7 on $T = \mathbb{P}^1(\mathbb{Z}_p[[t]]) \setminus \{0,1,\infty\}$ of weight 6. The lisse sheaf \mathcal{V}_ℓ corresponds to a continuous representation

$$\rho_\ell : \pi_1(T,\overline{s}) \to \text{GL}_7(\mathbb{Q}_\ell),$$

The author gratefully acknowledges financial support from the DFG Heisenberg Grant DE-1442.
where \bar{s} is a geometric point. It is shown in [6] and [4], that the image of the Tate twisted representation $\rho_\ell(3)$ is Zariski dense in the simple algebraic group $G_2(\mathbb{Q}_\ell)$. If F is a field and if $s \in T(F)$, one may consider the specialization of ρ_ℓ at s, defined as the composition $\rho_\ell^s : \text{Gal}(\bar{F}/F) \longrightarrow \pi_1(s, \bar{s}) \longrightarrow \pi_1(T, \bar{s}) \overset{\rho_\ell}{\longrightarrow} \text{GL}_7(\mathbb{Q}_\ell)$, where \bar{s} is a geometric point extending s, and where the middle map is given by functoriality of the functor π_1.

It is shown [4] that if s is a rational point of T which is contained in a certain infinite subset $T' \subset T(\mathbb{Q})$, then the specialization $\rho_\ell^s(3) : G_\mathbb{Q} \to G_2(\mathbb{Q}_\ell) \leq \text{GL}_7(\mathbb{Q}_\ell)$ has an image which is Zariski dense in the group $G_2(\mathbb{Q}_\ell)$. The set T' is chosen in a way which ensures that locally, at some prime $p > 2$ which is different from ℓ, the restriction $\rho_\ell^s|_{\text{Gal}(\bar{Q}_p/Q_p)}$ corresponds to a representation of Steinberg type under the local Langlands correspondence, i.e., the eigenvalues of the Frobenius are of the form $1, q, q^2, \ldots, q^6$.

It is natural to ask, whether the Galois representations ρ_ℓ^s, $s \in T'$, correspond under the Langlands correspondence to an automorphic representation of $\text{GL}_7(\mathbb{A})$.

Our main result is the following (see Thm 4.2):

0.1 Theorem. For each $s \in T'$ and for each ℓ, the Galois representation ρ_ℓ^s is potentially automorphic, i.e., its restriction to some open subgroup is automorphic. Especially, the L-function of ρ_ℓ^s has a meromorphic continuation to the complex plane and it satisfies the expected functional equation.

The main ingredient of the proof are the automorphic lifting results of Richard Taylor [19] and of Clozel, Harris and Taylor [13], which play a crucial role in the recent work of Harris, Shepherd-Barron and Taylor [15] on the Sato-Tate conjecture. These results work especially well, if at some prime p, the local Galois representation is of Steinberg type. We first apply the above mentioned automorphic lifting results to ℓ'-adic Galois representations $\rho_{\ell'}$ whose reduction modulo-ℓ' is surjective onto an irreducible monomial subgroup H of $G_2(\mathbb{F}_{\ell'})$ which is isomorphic to the semidirect product of \mathbb{F}_8 by \mathbb{F}_8^*, using the results of Arthur and Clozel [1]. Then we consider the moduli space T_W of Galois representations which are modulo $\ell \cdot \ell'$ isomorphic to $\rho_{\ell'}$ and a given ρ_ℓ^s whose residual image is large (the existence of such ρ_ℓ^s is ensured by the results of [4] and a result of Larsen [14]). Using Mestre’s results as in [15], we find totally real points on T_W satisfying certain extra conditions. Then one deduces potential residual automorphy for $\bar{\rho}_\ell^s$ from the automorphy of ρ_ℓ^s by compatibility. By again applying the automorphic lifting results to the residual representation $\bar{\rho}_\ell^s$, we obtain potential modularity of ρ_ℓ^s for one ℓ – and hence for all ℓ, by compatibility of the system $(\rho_\ell^s)_\ell$.

2
In a forthcoming work, we deduce from Thm. 0.1 the potential automorphy of the 6-th symmetric power of elliptic curves whose j-invariant is not an algebraic integer.

The author thanks Nick Katz for several valuable discussions on rigid local systems and for mentioning the possible application of Larsen’s theorem to the problem of generic largeness of the Galois images in the G_2-case.

1 Notation and definitions

Let us first set up some notation and definitions: If k is a field, then we write \bar{k} for an algebraic closure of k and we set $\Gamma_k = \text{Gal}(k^{\text{sep}}/k)$. If F is a number field and ω is a finite prime of F, then the completion of F with respect to ω is denoted by F_ω, and the inertia subgroup of Γ_F_ω is denoted by I_ω. The tame inertia group at ω is denoted by I^{tame}_ω (quotient of I_ω by its ℓ-Sylow subgroup, where ℓ is the characteristic of ω). Remember there is a character $\omega_\ell: I^{\text{tame}}_\omega \to \mathbb{F}_\ell$, obtained by adjoining the $\ell - 1$-th roots of unity of ℓ. Usually, a primitive k-th root of unity in some field is denoted by ζ_k.

If V is a lisse sheaf on a connected scheme X and if \bar{s} is a geometric point of X, then the corresponding monodromy representation is denoted by $\rho_V: \pi_1(X, \bar{s}) \to \text{GL}(V_{\bar{s}})$.

1.1 Definition. Let R be a subring of \mathbb{C}, let t be the standard parameter of $\mathbb{A}_R^1 \subseteq \mathbb{P}_R^1$ and identify $\mathbb{C}((\frac{1}{t}))$ with $\mathcal{O}_{\mathbb{P}_R^1, \infty(t)}$. Then one may identify

$$\pi_1(\text{Spec } \mathbb{C}((\frac{1}{t}))) \cong \lim \frac{\text{Gal}(\mathbb{C}((\frac{1}{T})) \cong \mathbb{C}((\frac{1}{t})))}{\mathbb{Z}_p} \cong \prod_p \mathbb{Z}_p.$$

Then the restriction of the monodromy representation ρ_V of a lisse sheaf V on $\mathbb{A}_R^1 \setminus \{0, 1\} = \mathbb{P}_R^1 \setminus \{0, 1, \infty\}$ to the spectrum of $\mathbb{C}((\frac{1}{t}))$ is called the local monodromy of V at ∞. This notion extends in the obvious way to the notion of local monodromy at $0, 1$. We call the local monodromy of type

$$\text{U}(n_1) \oplus \cdots \oplus \text{U}(n_k)$$

if it decomposes into k indecomposable unipotent representations of lengths n_1, \ldots, n_k (resp.).

Let $x_0, x_1, x_2, x_3, x'_1, x'_2, x'_3$ be a base of \mathbb{Z}^7 and consider the Dickson trilinear form on \mathbb{Z}^7:

$$x_0x_1x'_1 + x_0x_2x'_2 + x_0x_3x'_3 + x_1x_2x'_3 + x'_1x'_2x'_3.$$
The stabilizer of this trilinear form defines the group scheme $\mu_3 \times G_2$ over \mathbb{Z}. It is a subscheme of the group scheme GL_7 in a natural way. Consider the following bilinear form:

\[(2)\quad -2x_0^2 + x_1x_1' + x_2x_2' + x_3x_3'.\]

Then the simple group scheme G_2 may be defined as the stabilizer of both, the Dickson trilinear form (1), and of (2).

2 A lisse sheaf of type G_2 and a family of G_2-motives

Let ℓ be an odd prime, let $R = \mathbb{Z}[\frac{1}{\ell}]$, and let $T := \mathbb{A}^1_R \setminus \{0, 1\} = \text{Spec}(R[x][\frac{1}{x(x-1)}])$. The equation

\[(3)\quad Y^2 = \prod_{i=1}^{7} (X_{i+1} - X_i) \prod_{i=1,3,5,7} X_i \prod_{i=1,2,4,6} (X_i - 1)\]

defines a smooth subscheme Hyp of $G_{m,R} \times (\mathbb{A}^7_{X_1,\ldots,X_7,R} \setminus D)$, where D is the vanishing locus of the right hand side of Equation (3). Let σ denote the involutory automorphism of Hyp, defined by sending Y to $-Y$, and let p be the formal linear combination $\frac{1}{\ell}(1+\sigma)$, viewed as an element in the group ring of $\langle \sigma \rangle$. Let $\pi : \text{Hyp} \to T = \mathbb{A}^7_{X_1,\ldots,X_7,R} \setminus \{0, 1\}$ denote the composition of the projection of Hyp onto \mathbb{A}^7_R followed by the projection onto the 7-th coordinate. By Deligne’s work on the Weil conjectures (Weil II, [3]), the higher direct image with compact supports $R^6\pi_!(\mathbb{Q}_\ell)$ is mixed of weights ≤ 6. Moreover, the element p operates idempotently on $R^6\pi_!(\mathbb{Q}_\ell)$ and therefore cuts out a subsheaf from $R^6\pi_!(\mathbb{Q}_\ell)$, denoted by $p(R^6\pi_!(\mathbb{Q}_\ell))$. As shown in [6], it is a consequence of Katz’ work on rigid local systems ([11], Chap. 8), that the weight-6-quojient $V_\ell := W^6(p(R^6\pi_!(\mathbb{Q}_\ell)))$ of $p(R^6\pi_!(\mathbb{Q}_\ell))$ is lisse on T. Note that then, the Tate twisted sheaf $W^6(p(R^6\pi_!(\mathbb{Q}_\ell)))$ has weight zero. We set $\rho_\ell := \rho_{V_\ell}$. The following result is proved in [6], Theorem 2.4.1:

2.1 Proposition. The lisse sheaf V_ℓ has rank 7 and its restriction to T_C is irreducible with monodromy group Zariski dense in $G_2(\mathbb{Q}_\ell)$. Moreover, the local monodromy of V_ℓ at $0, 1, \infty$ is as follows (resp.):

- involutory, \quad $U(2)^2 \oplus U(3)$, \quad $U(7)$.

Let \(\bar{s} \) be a complex point. Note that there is a natural injection of \(\pi_1(\mathbb{P}^1(\mathbb{C}) \setminus \{0,1,\infty\}, \bar{s}) \) to \(\pi_1(T, \bar{s}) \). It is well known that \(\pi_1(\mathbb{P}^1(\mathbb{C}) \setminus \{0,1,\infty\}, \bar{s}) \) is generated by three elements \(\gamma_0, \gamma_1, \gamma_\infty \), satisfying the product relation \(\gamma_0 \gamma_1 \gamma_\infty = 1 \). The composition
\[
\pi_1(\mathbb{P}^1(\mathbb{C}) \setminus \{0,1,\infty\}, \bar{s}) \to \pi_1(T, \bar{s}) \to G_2(\mathbb{Q}_\ell)
\]
defines a local system \(\mathcal{V}_\ell^\text{an} \) on \(T(\mathbb{C}) \). It follows from the motivic construction of \(\mathcal{V}_\ell \) given in [6], Section 3, and from the comparison between étale and singular cohomology, that there exists a natural number \(N \) and a local \(\mathbb{Z}[\frac{1}{N}] \)-system \(\mathcal{V}_\ell^\text{an} \) such that \(\mathcal{V}_\ell^\text{an} = \mathcal{V}_\ell^\text{et} \otimes \mathbb{Q}_\ell \), i.e., the images \(A_0, A_1, A_\infty \) of \(\gamma_0, \gamma_1, \gamma_\infty \) under the monodromy representation of \(\mathcal{V}_\ell^\text{an} \) can be written simultaneously over \(\mathbb{Z}[\frac{1}{N}] \). It follows that there exists a natural number \(N_1 \) such that for \(\ell > N_1 \), the Jordan forms of the mod-\(\ell \) residual matrices \(A_0, A_1, A_\infty \) are again of the type involution, \(U(2)^2 \oplus U(3), U(7) \) (resp.).

It was proven by Feit, Fong and Thompson ([8], [20]) that any triple \((g_1, g_2, g_3) \) of elements in \(G_2(\mathbb{F}_\ell) \), which satisfies the product relation \(g_1 g_2 g_3 = 1 \) and whose Jordan forms are of the above type, generates the group \(G_2(\mathbb{F}_\ell) \) if \(\ell > 5 \). Moreover, any triple \((g_1, g_2, g_3) \) in \(\text{GL}_7 \) which satisfies the product relation and whose Jordan canonical forms are of type involution, \(U(2)^2 \oplus U(3), U(7) \) (resp.) is rigid, i.e., determined up to simultaneous conjugation by these properties (cf. [17]). Therefore, we can assume that the matrices \(A_0, A_1, A_\infty \) generate the group \(G_2(\mathbb{F}_\ell) \) if \(\ell > N_1 \). Summarizing we obtain the following result:

2.2 Proposition. The monodromy matrices \(A_0, A_1, A_\infty \) of \(\mathcal{V}_\ell^\text{an} \) can be written as elements in the group \(\text{GL}_7(\mathbb{Z}[\frac{1}{N}]) \) for some \(N \in \mathbb{N} \). There exists a natural number \(N_1 > N \) such that for all \(\ell > N_1 \), the Jordan forms of the reduction \(A_0, A_1, A_\infty \) modulo-\(\ell \) of the monodromy matrices \(A_0, A_1, A_\infty \) (resp.) are the reduction of the respective Jordan forms. Moreover,
\[
\langle A_0, A_1, A_\infty \rangle = G_2(\mathbb{F}_\ell).
\]

2.3 Corollary. For \(\ell > N_1 \), the image of the monodromy representation \(\rho_\ell(3) : \pi_1(T) \to \text{GL}_7(\mathbb{Q}_\ell) \) of the third Tate twist \(\mathcal{V}_\ell(3) \) coincides with the group \(G_2(\mathbb{Z}_\ell) \).

Proof: It is shown in [4] (Thm. 1) that the image of \(\rho_\ell(3) \) is contained in \(G_2(\mathbb{Q}_\ell) \) for \(\ell > 2 \). Since the group \(\pi_1(T, \bar{s}) \) is compact, the image of \(\rho_\ell(3) \) is contained in a maximal compact subgroup of \(G_2(\mathbb{Q}_\ell) \). It follows from Bruhat-Tits theory that there are 3 (=Lie rank of \(G_2 \) plus 1) distinct conjugacy classes of maximal compact subgroups in \(G_2(\mathbb{Q}_\ell) \). One is the group \(G_2(\mathbb{Z}_\ell) \), the others are labeled by the simple roots \(\Delta = \{\alpha, \beta\} \) of \(G_2 \) and denoted by \(G_\alpha(\mathbb{Z}_\ell) \) and \(G_\beta(\mathbb{Z}_\ell) \) in [9]. It is shown in [9], Thm. 1, that for \(\gamma = \alpha, \) or \(\beta, \) the group \(G_\gamma(\mathbb{F}_\ell) \) is the semidirect
product of a reduced semisimple algebraic group \(G^\text{red}_\alpha \) over \(\mathbb{F}_\ell \) by its unipotent radical. Moreover, it is shown there that the set of roots

\[\Phi_\gamma := (\Delta \setminus \{ \gamma \}) \cup \{ -\beta_0 \} \]

is a set of simple roots for \(G^\text{red}_\alpha \), where \(\beta_0 \) denotes the highest root of \(G_2 \). Therefore, we end up with \(G^\text{red}_\alpha \) to be of type \(A_2 \) and with \(G_\beta \) to be of type \(A_1 \cup A_1 \).

Let \(\ell > N_1 \), where \(N_1 \) is as in Prop. 2.2. Then the reduction modulo \(\ell \) of the monodromy matrices generate the group \(G_2(\mathbb{F}_\ell) \) and the residual representation of \(\rho_\ell(3) \) is hence not of type \(A_2 \) or \(A_1 \cup A_1 \). Therefore, the image of \(\rho_\ell(3) \) coincides with \(G_2(\mathbb{Z}_\ell) \).

2.4 Corollary. Let \(N \in \mathbb{N}_{>1} \) be a natural number whose prime divisors are all \(> N_1 \), where \(N_1 \) is as in Prop. 2.2. Let \(\bar{s} \) be a complex point of \(T_{\tilde{R}} \). Then the monodromy representation

\[\rho_{\mathcal{V}[N]}(3) : \pi_1(T_{\tilde{R}}, \bar{s}) \to \text{GL}_7(\mathbb{Z}/N\mathbb{Z}) \simeq \text{GL}(\mathcal{V}[N], \bar{s}) \]

of \(\mathcal{V}[N] \) respects the Dickson trilinear form modulo \(N \) on \(\mathcal{V}[N], \bar{s} \simeq (\mathbb{Z}/N\mathbb{Z})^7 \), and the composition of maps

\[\pi_1(T(\mathbb{C}), \bar{s}) \to \pi_1(T_{\mathbb{C}}, \bar{s}) \to \pi_1(T_{\tilde{R}}, \bar{s}) \xrightarrow{\rho_{\mathcal{V}[N]}(3)} G_2(\mathbb{Z}/N\mathbb{Z}) \]

is surjective.

Proof: It follows from Cor. 2.3 that \(\rho_{\mathcal{V}[N]}(3) \) can be assumed to respect the Dickson trilinear form modulo \(N \). The second claim follows from Prop.2.2, using the Frattini property of the natural map \(G_2(\mathbb{Z}/\ell^k\mathbb{Z}) \to G_2(\mathbb{F}_\ell) \) (which in turn is implied by the above mentioned results of [21]).

Let \(F \) be a number field and let \(W \) be a free \(\mathbb{Z}/N\mathbb{Z} \)-module of rank 7 with a continuous action of \(\Gamma_F \) and a compatible trilinear pairing

\[\langle , , \rangle : W \times W \times W \to \mathbb{Z}/N\mathbb{Z} \]

as well as a compatible bilinear pairing

\[\langle , \rangle : W \times W \to \mathbb{Z}/N\mathbb{Z}. \]
One may think of W as a lisse étale sheaf on $\text{Spec}(F)$. Consider the functor from the category of T_F-schemes to sets which maps $X \to T$ to the set of isomorphisms between the pullback of W to X and the pullback of $\mathcal{V}[N]$ to X and which sends the trilinear form $\langle \cdot, \cdot, \cdot \rangle$ to the Dickson form (1) as well as the bilinear form $\langle \cdot, \cdot \rangle$ to the bilinear form (2). By the representability lemma, this functor is represented by a finite étale cover T_W of T_F.

2.5 Proposition. Let $N \in \mathbb{N}_{>1}$ be a natural number whose prime divisors are all $> N_1$, where N_1 is as in Prop. 2.2. Then $T_W(\mathbb{C})$ is connected for any embedding $F \hookrightarrow \mathbb{C}$.

Proof: Let $x \in T(\mathbb{C})$ and let $\alpha : W \to \mathcal{V}[N] \in T_W(\mathbb{C})$. It follows from Prop. 2.4 that the isomorphism α can be transformed to a given isomorphism $\beta \in T_W(\mathbb{C})$ using a suitable parallel transport (since the group $G_2(\mathbb{Z}/N\mathbb{Z})$ is the set of all isomorphisms respecting the Dickson form and the bilinear form induced by Poincaré duality).

The following result is similar to [4], Prop. 4:

2.6 Theorem. Let $\ell > 7$ be a prime, let F be a totally real number field and let $q, q' \neq \ell$ be odd prime numbers which split completely in F. Let ω, ω' denote primes of F, lying over q, q' (resp.). Let $s \in T(\bar{F})$ be a geometric point extending an F-rational point $\bar{s} \in T(F)$ such that $|\frac{1}{s}|_{\omega} < 1$ and $|1 - s|_{\omega'} < 1$. Then the following holds for the specialized Galois representation $\rho^s_3 : \Gamma_F \to \text{GL}_7(\mathbb{Q}_\ell)$.

(i) The restriction of $\rho^s_3(3)$ to the inertia subgroup $I_\omega \leq \Gamma_{F,\omega}$ is unipotent and indecomposable, i.e., of type $U(7)$. If $\ell > N_1$, where N_1 is the constant occurring in Prop. 2.2, then the restriction of $\bar{\rho}^s_3$ to I_ω is also unipotent and indecomposable. Moreover, semisimplification of the $\Gamma_{F,\omega}$-representation $\rho^s_3|_{\Gamma_{F,\omega}}$ (resp. $\bar{\rho}^s_3|_{\Gamma_{F,\omega}}$) is unramified and the eigenvalues of Frob,ω are of the form $q^{-3}, q^{-2}, q^{-1}, 0, q, q^2, q^3$.

(ii) The restriction of $\rho^s_{3}^{\omega'}$ to the inertia subgroup $I_{\omega'} \leq \Gamma_{F,\omega'}$ is of type $U(3) \oplus U(2) \oplus U(2)$. If $\ell > N_1$, then the restriction of $\bar{\rho}^s_3$ to $I_{\omega'}$ is again of type $U(3) \oplus U(2) \oplus U(2)$.

Proof: The proof is analogous to the proof of [15], Lemma 1.15: Let W_q denote the ring of Witt vectors of \mathbb{F}_q and \bar{F} denote its field of fractions (the maximal unramified extension of F_ω). Let t denote the standard parameter of \mathbb{A}_1. It follows
from [7], XIII.5.3, that there is a commutative diagram

$$
\begin{array}{c}
\pi_1(\text{Spec} (\bar{F}_\omega(\frac{1}{\ell}))) \xrightarrow{\sim} \prod_p \mathbb{Z}_p \\
\downarrow \quad \text{left downarrow} \downarrow \\
\pi_1(W_q(\frac{1}{\ell}))) \xrightarrow{\sim} \prod_{p \neq q} \mathbb{Z}_p \\
\uparrow \quad \text{right uparrow} \uparrow \\
\pi_1(\text{Spec}(\tilde{F})) \longrightarrow \prod_{p \neq q} \mathbb{Z}_p,
\end{array}
$$

where the left hand up-arrow is induced by $t \mapsto s$, the right hand downarrow is the natural projection, and the right uparrow is multiplication by $\nu\omega(s)$. The restriction of the sheaves $V_\ell(3)$ and $V_{[\ell]}(3)$ to $\text{Spec} (W_q(\frac{1}{\ell})))$ correspond to representations of $\pi_1(\text{Spec} (\bar{F}_\omega(\frac{1}{\ell}))))$. It follows from Prop. 2.1 and Prop. 2.2 that the pullback of these representations to $\pi_1(\text{Spec}(\bar{F}_\omega(\frac{1}{\ell}))) \simeq \prod_p \mathbb{Z}_p$ along the left downarrow sends 1 to a unipotent matrix with minimal polynomial $(X - 1)^7$ (perhaps enlarging N_1 if $\nu\omega(t)$ is divided by ℓ). Since Frob_ω acts on the inertia via the cyclotomic character and since the weight of the determinant of $\rho_{\ell,s}$ is zero, the eigenvalues of Frob_ω are of the given type, proving the first claim. The second claim follows along the same arguments, using again Prop. 2.1 and Prop. 2.2.

2.7 Lemma. Let F be a number field and let $s \in T(F)$.

(i) The system of specialized Galois representations $(\rho_{\ell,s} : \Gamma_F \rightarrow \text{GL}_7(\mathbb{Q}_\ell))_\ell$ is strictly compatible.

(ii) If ω is a prime of F lying over $\ell > 2$, then the restriction of $\rho_{\ell,s}$ to $\Gamma_{F,\omega}$ is de Rham with Hodge-Tate numbers $0, 1, \ldots, 6$.

(iii) If ℓ is large enough and if ω is a prime of F lying over ℓ, then the restriction of $\rho_{\ell,s}$ to $\Gamma_{F,\omega}$ is crystalline.

(iv) Suppose that $\ell > 7$ and that $\ell = 1 \mod 7$. If ω is a prime of F lying over ℓ, then the action of I_ω on Q_{ℓ}^7 under $\rho_{\ell,s}$ factors over I_{ω}^{tame} and the I_{ω}^{tame}-module Q_{ℓ}^7 is isomorphic to

$$
\omega_0^0 \oplus \omega_1^1 \oplus \cdots \oplus \omega_6^6.
$$

Proof: Claim (i) follows from [11], 5.5.4. The second claim follows from the motivic interpretation of $\rho_{\ell,s}^s$ given in [5], Cor. 2.4.2, and the comparison isomorphism. The third claim follows from the motivic interpretation of $\rho_{\ell,s}^s$, because the
The underlying projective algebraic variety is smooth over F_ω if the residue characteristic of ω is large. The proof of the last claim follows from p-adic Hodge theory analogous to [15], Lemma 1.14.

2.8 Theorem. Suppose that $s \in T(\mathbb{Q})$ is such that there exist two different primes $p, q \neq 2$ such that $\nu_p(s) > 0$ and $\nu_q(1 - s) < 0$. Then, for all primes ℓ up to a set of density zero, the image of $\rho^s_{\ell}(3)$ coincides with $G_2(\mathbb{Z}_\ell)$.

Proof: It is shown in [4], Thm. 1, that the image of $\rho^s_{\ell}(3)$ is Zariski dense in $G_2(\mathbb{Q}_\ell)$. By Lemma 2.7(i), the system $(\rho^s_{\ell}(3))$ is compatible. It follows hence from the main result in [14] that for all primes ℓ up to a set of density zero, the image of $\rho^s_{\ell}(3)$ is a maximal compact hyperspecial subgroup of $G_2(\mathbb{Q}_\ell)$ and is hence one of the groups $G_2(\mathbb{Z}_\ell), G_\alpha(\mathbb{Z}_\ell)$ or $G_\beta(\mathbb{Z}_\ell)$ from the proof of Cor. 2.3. This implies the claim since the image of $\rho^s_{\ell}(3)$ is contained in $G_2(\mathbb{Z}_\ell)$ by Cor. 2.3.

3 Modular Lifting Results

The following theorem is the main automorphic lifting theorem of Taylor [19] (Thm. 5.2), building up on, and completing the results of Clozel, Harris and Taylor [13] (Thm. 4.5.3):

3.1 Theorem. Let F be a totally real number field. Let $n \in \mathbb{Z}_{>0}$ and let $\ell > n$ be a prime which is unramified in F. Let

$$r : \Gamma_F \to \text{GL}_n(\overline{\mathbb{Q}}_\ell)$$

be a continuous irreducible representation with the following properties. Let \overline{r} denote the semisimplification of the reduction of r. Suppose that the following conditions hold:

(i) $r^\vee \simeq r^\epsilon n^{-1}$, where ϵ denotes the ℓ-adic cyclotomic character.

(ii) r ramifies at only finitely many primes.

(iii) For all places $\nu|\ell$ of F, $r|_{\Gamma_{F_\nu}}$ is crystalline.

(iv) There is an element $a \in (\mathbb{Z}^n)_{\text{Hom}(F, \overline{\mathbb{Q}}_\ell)}$ such that

- for all $\tau \in \text{Hom}(F, \overline{\mathbb{Q}}_\ell)$ we have

$$\ell - 1 - n + a_{r,n} \geq a_{r,1} \geq \ldots \geq a_{r,n};$$
• for all $\tau \in \text{Hom}(F, \bar{\mathbb{Q}}_\ell)$ above a prime $\nu | \ell$ of F,

$$\dim_{\bar{\mathbb{Q}}_\ell}\text{gr}^i(r \otimes_{\tau,F_\nu} B_{\text{DR}})^{\Gamma_{F_\nu}} = 0$$

unless $i = a_{r,j} + n - j$ for some $j = 1, \ldots, n$ in which case

$$\dim_{\bar{\mathbb{Q}}_\ell}\text{gr}^i(r \otimes_{\tau,F_\nu} B_{\text{DR}})^{\Gamma_{F_\nu}} = 1.$$

(v) There is a finite non-empty set S of places of F not dividing ℓ and for each $\nu \in S$ a square integrable representation ρ_ν of $\text{GL}_n(F_\nu)$ over $\bar{\mathbb{Q}}_\ell$ such that

$$r^{\text{ss}}_{\Gamma_{F_\nu}} = r_\ell(\rho_\nu)^\vee (1-n)^{\text{ss}},$$

where $r_\ell(\rho_\nu) : \Gamma_{F_\nu} \to \text{GL}_n(\bar{\mathbb{Q}}_\ell)$ is the Galois representation which is associated to ρ_ν by the local Langlands correspondence. If $\rho_\nu = \text{Sp}_{m_\nu}(\rho'_\nu)$ then set

$$\tilde{r}_\nu = r_\ell((\rho'_\nu)^\vee | \cdot |^{(n/m_\nu-1)(1-m_\nu)/2}).$$

We assume that \tilde{r}_ν has irreducible reduction $\bar{r}_\nu : \Gamma_F \to \text{GL}_n(\bar{\mathbb{F}}_\ell)$. Finally we suppose that for $j = 1, \ldots, m_\nu$ we have

$$\tilde{r}_\nu \not\cong \bar{r}_\nu e^j.$$

(vi) $(F)^{\ker(\text{ad}\bar{r})}$ does not contain $F(\zeta).$

(vii) Let $\text{ad}\bar{r}$ denote the adjoint representation of \bar{r}, viewed as representation on $\text{End}(\bar{\mathbb{F}}_\ell^n)$. Let $\text{ad}^0\bar{r}$ denote the subspace of trace zero endomorphisms, viewed as subrepresentation of $\text{ad}\bar{r}$. Then $H^i(\text{ad}\bar{r}(\Gamma_{F(\zeta)}), \text{ad}^0\bar{r}) = (0)$ for $i = 0, 1$.

(viii) For all irreducible $k[\text{ad}\bar{r}(\Gamma_{F(\zeta)})]$-submodules W of $\text{ad}\bar{r} = \text{End}(\bar{\mathbb{F}}_\ell^n)$ we can find $h \in \text{ad}\bar{r}(\Gamma_{F(\zeta)})$ and $\alpha \in k$ with the following properties. The α-generalized eigenspace $V_{h,\alpha}$ of h in \bar{r} is one-dimensional. Let $\pi_{h,\alpha} : \bar{r} \to V_{h,\alpha}$ (resp. $i_{h,\alpha}$) denote the h-equivariant projection of \bar{r} to $V_{h,\alpha}$ (resp. h-equivariant injection of $V_{h,\alpha}$ into \bar{r}). Then $\pi_{h,\alpha} \circ W \circ i_{h,\alpha} = (0)$.

(ix) \bar{r} is irreducible and automorphic of weight a and type $\{\rho_\nu\}_{\nu \in S}$ with $S \neq \emptyset$.

Then r is automorphic of weight a and type $\{\rho_\nu\}_{\nu \in S}$ and level prime to ℓ.

3.2 Definition. A subgroup H of $\text{GL}_n(\bar{\mathbb{F}}_\ell)$ is called big, if for the underlying representation $\bar{r} : H \to \text{GL}_n(\bar{\mathbb{F}}_\ell)$, the group $\text{ad}\bar{r}(H)$ satisfies the conditions (vii) and (viii) of Thm. 3.1 with $\text{ad}\bar{r}(H) = \text{ad}\bar{r}(\Gamma_{F(\zeta)}).$
3.3 Theorem. Let F be a totally real number field and let $s \in T(F)$. Suppose that there exists a finite place ω of F of odd residue characteristic q, such q splits completely in F and such that $|\frac{1}{3}|\omega < 1$. Then the following holds for the system of Galois representations $(\rho_{\ell}^s : \Gamma_F \to \GL_7(\Ql))_{\ell}$:

(a) Suppose $\ell > 7$ is a prime number such that $\ell - 1 \equiv 1$ modulo 7 and that $q^i \not\equiv 1 \mod \ell$, $i = 1, \ldots, 7$, and suppose that the image H of $\bar{\rho}_{\ell}^s|_{\Gamma_F(\zeta_7)}$ is big in the sense of Def. 3.2. Suppose further that $(F^\ker(ad\bar{\rho}_{\ell}^s))$ does not contain $F(\zeta_7)$ and that the residual representation $\bar{\rho}_{\ell}^s$ is absolutely irreducible and automorphic. Then $\rho_{\ell}^s|\Gamma_F$ is automorphic.

(b) Let $s = 1 + \frac{a}{7} \in T(\Q) \subset T(F)$ (where a, b are coprime integers) such that a and b each have at least one odd prime divisor. Let q be an odd prime divisor of b. Then there exists a prime number ℓ with $\ell - 1 \equiv 1$ modulo 7 and $q^i \not\equiv 1 \mod \ell$, $i = 1, \ldots, 7$, such that the image of the residual representation $\bar{\rho}_{\ell}^s|_{\Gamma_F(\zeta_7)}$ is big. If the residual representation $\bar{\rho}_{\ell}^s|_{\Gamma_F}$ is automorphic, then $\rho_{\ell}^s|\Gamma_F$ is automorphic.

Proof: We have to prove that under our assumptions, the conditions (i)–(ix) of Thm. 3.1 hold for ρ_{ℓ}^s in cases (a) and (b).

Case (a): Condition (i) is clear since, by [4], Thm. 1, the representation ρ_{ω_ℓ}, and hence $\rho_{\ell}^s(3)$, takes values in $G_2(\Ql)$ and G_2 is contained in the orthogonal group of the bilinear form in Equation (2) of Section 1. Condition (ii) follows from the cohomological construction of ρ_{ω_ℓ}. Condition (iii) follows from Lemma 2.7(iii). Condition (iv) of Thm. 3.1 follows from Lemma 2.7(ii) with the weight

$$a = ((0, \ldots, 0), \ldots, (0, \ldots, 0)),$$

using that the filtration on $(B_{\text{dR}} \otimes_{\mathcal{O}_F} (\rho_{\ell}^s|_{\Gamma_F}))_{\Gamma_F}$ is opposite to the Hodge-Tate filtration. Let ω be a prime of F lying over q. It follows from Thm. 2.6 that the restriction of ρ_{ℓ}^s to Γ_{F_ω} is of type $\{\Sp_7(1)\}_{\{\omega\}}$, proving Condition (v) with $\{\omega\} = S$. Conditions (vi)–(ix) hold by assumption.

Case (b): By Theorem 2.8, there exists a prime $\ell > 7$ such that $q^i \not\equiv 1 \mod \ell$ and $\ell \equiv 1 \mod 7$, and such that the image of ρ_{ℓ}^s coincides with $G_2(\Zl)$. Note that by choosing ℓ large enough, the field F can be assumed to be linearly independent to the fixed field of $\rho_{\ell}^s(3)$ since the groups $G_2(\F_{\ell}) = \text{im}(\rho_{\ell}^s(3))$ are simple and nonisomorphic for ℓ large enough. Conditions (i)–(v) then already hold by Case (a). The image of the adjoint representation $ad\rho_{\ell}^s$ coincides with $G_2(\F_{\ell})$. Since $G_2(\F_{\ell})$ has no nontrivial abelian factor, Condition (vi) holds for ρ_{ℓ}^s. Condition (ix) follows from the assumption using type $\{\Sp_7(1)\}_{\{\omega\}}$ and the fact that $G_2(\F_{\ell})$ is an absolutely irreducible subgroup of $\GL_7(\F_{\ell})$. Thus we are left to show that the
group $G_2(\mathbb{F}_\ell)$ is big. As remarked in [10], Remark to Def. 3.1, Condition (viii) holds for a group $\Delta \leq \text{GL}_n(\bar{\mathbb{F}}_\ell)$, if it holds for a subgroup of Δ. Condition (viii) was shown in [15], Lemma 3.2, to hold for the image of $\text{SL}_2(\mathbb{F}_\ell)$ in $\text{GL}(\tilde{\rho}^n)$ if $\ell > 2n + 1$ (where $\tilde{\rho}^n$ denotes the n-th symmetric power of the standard representation of $\text{SL}_2(\mathbb{F}_\ell)$). It is well known that under the above assumptions on ℓ, the module $\text{ad} \tilde{\rho}^6$ decomposes into irreducible representations $1 \oplus \tilde{\rho}^2 \oplus \tilde{\rho}^4 \oplus \cdots \oplus \tilde{\rho}^{12}$, where 1 denotes the trivial representation on the scalars (recall that the image of $\text{SL}_2(\mathbb{F}_\ell)$ in $\text{GL}(\tilde{\rho}^6)$ is contained in the group $G_2(\mathbb{F}_\ell)$). Therefore, $H^0(\text{ad}\tilde{\rho}^6_\ell(\Gamma_{F(\zeta_\ell)}), \text{ad}^0\tilde{\rho}^6_\ell) = (0)$ and Condition (viii) also holds for $\tilde{\rho}^6_\ell$ if we choose $\ell > 13$. To any ℓ-restricted weight λ of G_2, there is associated an irreducible representation $L(\lambda)$ of $G_2(\mathbb{F}_\ell)$. By [2], Section 7.5, the cohomology groups $H^1(G_2(\mathbb{F}_\ell), L(\lambda))$ vanish for all ℓ-restricted weights λ, unless λ is of the following form:

$$(p - 5, 0), (3, p - 2), (6, p - 5), (p - 2, 3)$$

(here, a weight (n_1, n_2) denotes the weight $n_1\pi_1 + n_2\pi_2$, where π_1 and π_2 are the fundamental weights). The representation ad^0 decomposes into the direct sum of ℓ-restricted weights $(1, 0), (0, 1), (2, 0)$. Hence, for $\ell > 13$, $H^1(G_2(\mathbb{F}_\ell), L(\lambda)) = 0$ and therefore $H^1(\text{ad}\tilde{\rho}^6_\ell(\Gamma_{F(\zeta_\ell)}), \text{ad}^0\tilde{\rho}^6_\ell) = (0)$, proving Condition (vii).

\section{Potential modularity of G_2-extensions}

The following result can be found in [15], Prop. 2.1:

\textbf{4.1 Proposition.} Let F be a number field and let $S = S_1 \bigsqcup S_2$ be a finite set of places of F such that S_2 contains no infinite place. Suppose that T/F is a smooth, geometrically connected variety. Suppose also that for $\nu \in S_1$, $\Omega_\nu \subseteq T(F_\nu)$ is non-empty open (for the ν-topology) subset and that for $\nu \in S_2$, $\Omega_\nu \subseteq T(F_\nu^{nr})$ is non-empty open $\text{Gal}(F_\nu^{nr}/F_\nu)$-invariant subset. Suppose finally that L/F is a finite extension. Then there is a finite Galois extension F'/F and a point $P \in T(F')$ such that

- F'/F is linearly disjoint from L/F;
- every place ν of S_1 splits completely in F' and if ω is a prime of F' above ν then $P \in \Omega_\nu \subseteq T(F_\omega)$;
every place ν of S_2 is unramified in F' and if ω is a prime of F' above ν then $P \in \Omega_\omega \cap T(F'_\omega)$.

Let F be a number field. Let us call an irreducible Galois representation $\rho_\ell : \Gamma_F \to \GL_n(\mathbb{Q}_\ell)$ potentially automorphic if there exists a finite extension F'/F such that for almost all primes of F', the local L-function of the restriction of ρ_ℓ to $\Gamma_{F'}$ coincides with the local L-functions of a cuspidal automorphic representation of $\GL_n(\mathbb{A}_{F'})$.

4.2 Theorem. Let a, b be coprime integers each possessing at least one odd prime divisor and let $s = 1 + \frac{a}{b}$. Then the Galois representations ρ_ℓ^s are potentially automorphic for all ℓ.

Proof: Let q be the odd prime divisor of b. Note that since the system $(\rho_\ell^s : \Gamma_Q \to G_2(\mathbb{Q}_\ell))_{\ell}$ is compatible by Lemma 2.7 (i), it suffices to prove the claim for one ℓ. We will assume that ℓ is as in Thm. 3.3 (b), so we are left to prove that ρ_ℓ^s is residually potential automorphic. Let ℓ' be an auxiliary prime which is congruent to $1 \mod 7$ so that $F_{\ell'}$ contains a full set $\{\zeta_i^j | i = 1, \ldots, 6\}$ of primitive 7-th roots of unity and such that $q \equiv \ell' \equiv \zeta_7 \equiv F_{\ell'}$. Note also that, by the classification of maximal subgroups of $G_2(F_{\ell'})$ given in [12], the group $G_2(F_{\ell'})$ contains the group $\PSL_2(8)$ which in turn contains the semidirect product $H := F_8 \cdot F_8^*$, where $F_8^* \simeq \mathbb{Z}/7\mathbb{Z}$ acts as multiplicative subgroup on the additive group $F_8 \simeq (\mathbb{Z}/2\mathbb{Z})^3$. Since the group H is solvable, there exists a surjective homomorphism $\alpha : \Gamma_Q \to H$ by the theorem of Shafarevich [16] (or by an easy argument on inducing a quadratic character of F_8). Let $W = (\mathbb{Z}/(\ell' \cdot \ell)\mathbb{Z})^7 \simeq F_{\ell'}^7 \oplus F_7^l$ be the Γ_Q-module where Γ_Q acts on the first summand via α and on the second summand by $\hat{\rho}_\ell^s(3)$, respecting the mod-$\ell'\ell$ Dickson trilinear form (1) and the mod-$\ell'\ell$ bilinear form (2). Let T_W be the étale cover of $T_Q = A_1^3 \setminus \{0, 1\}$, parametrizing isomorphisms between the pullback of W and the pullback of $\mathfrak{V}(\ell'\ell)$ to T-schemes X (see Section 2). Let L/Q denote the Galois extension which is the compositum of $Q(\zeta_{\ell'})$ with the fixed field of the kernel of the module homomorphism $\Gamma_Q \to \text{Aut}(W)$.

By Prop. 4.1, there exists a totally real number field F which is linearly disjoint from L/Q and a point $P \in T_W(F)$ such that q splits completely in F. Moreover, we can assume that if ω is a prime of F above q then P is contained in $\Omega_\omega \subset T_W(F_\omega)$, where Ω_ω is the inverse image of the set $\{t \in T(F_\omega) | \ |t|_\omega < 1\}$.

Let $\tilde{s} \in T(F)$ be the image of P. Since F is linearly disjoint from $Q(\zeta_{\ell'})$ and since the group order $|H| = 56 = 7 \cdot 8$ is prime to ℓ', the fixed field of $\ker \text{ad}(\hat{\rho}_\ell^s)|_{T'}$ does not contain $F(\zeta_{\ell'})$. A computation, using the elementary properties of representations of finite groups, shows that the adjoint H-module $\text{End}(F_{\ell'}^l)$ decomposes into a direct sum of the seven different irreducible 1-dimensional representations.
of H and a 6-fold copy of the absolutely irreducible 7-dimensional representation of H. Since ℓ' is prime to 56, it follows from a restriction argument on group cohomology that H is a big subgroup of $\GL_7(\mathbb{F}_{\ell'})$. Also, the group H acts absolutely irreducible on $\mathbb{F}_{\ell'}^7$.

There is an embedding of H into $\GL_7(\mathbb{Q}_{\ell'})$ such that the embedding of H into $\GL_7(\mathbb{F}_{\ell'})$ is given by the reduction mod ℓ' of the coefficients. By composing the embedding $H \to \GL_7(\mathbb{Q}_{\ell'})$ with the surjection $\Gamma_F \to H$ induced by the surjection $\Gamma_{\mathbb{Q}} \to H$ (L is linearly disjoint from F) we obtain an irreducible Galois representation $\hat{\rho}_{\ell'} : \Gamma_F \to \GL_7(\mathbb{Q}_{\ell'})$

which is cyclically induced from the abelian character $\chi : \mathbb{F}_8 \simeq (\mathbb{Z}/2\mathbb{Z})^3 \to \mathbb{Q}_{\ell'}$ which maps any element $\neq 0$ to -1. It follows then from the results of Arthur and Clozel [1] that $\hat{\rho}_{\ell'}$ is automorphic. Consequently, the reduced representation $\bar{\rho}_{\ell'}|_{\Gamma_F}$ is automorphic. Since $|\frac{1}{2}|\omega < 1$, we can now apply Theorem 3.3 (a) which implies that $\bar{\rho}_{\ell'}|_{\Gamma_F}$ is automorphic. Since the Galois representations $\bar{\rho}_{\ell'}|_{\Gamma_F}$ and $\rho_{\ell'}|_{\Gamma_F}$ are compatible by Lemma 2.7 (i), the residual representation $\bar{\rho}_{\ell'}|_{\Gamma_F}$ is also automorphic. Since $\bar{\rho}_{\ell'}|_{\Gamma_F}$ and $\bar{\rho}_{\ell'}|_{\Gamma_F}$ coincide by construction, this implies that $\bar{\rho}_{\ell'}|_{\Gamma_F}$ is automorphic. We can now apply Theorem 3.3 (b) which implies that $\bar{\rho}_{\ell'}|_{\Gamma_F}$ is automorphic.

\[\hat{\rho}_{\ell'} : \Gamma_F \to \GL_7(\mathbb{Q}_{\ell'}) \]

4.3 Corollary. The L-function of $\rho_{\ell'}$ converges in some half plane $\Re(s) > c$ and has a meromorphic continuation. Moreover, it satisfies the expected functional equation.

Proof: This follows from Brauer’s theorem using the same arguments as in the proof of [18], Cor. 2.2.

References

[1] J. Arthur and L. Clozel. Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, volume 120 of Annals of Math. Studies. Price-ton Univ. Press, 1989.

[2] D. Nakano C. Bendel and C. Pillen. On comparing the cohomology of algebraic groups, finite Chevalley groups, and Frobenius kernels. J. Pure and Appl. Algebra, 163(2): 119–146, 2001.

[3] P. Deligne. La conjecture de Weil II. Publ. Math. IHES, 52: 137–252, 1980.
[4] M. Dettweiler and N.M. Katz. On Galois representations with values in G_2, Appendix to: Rigid local systems and motives of type G_2, by M. Dettweiler and S. Reiter. Preprint, 2007.

[5] M. Dettweiler and S. Reiter. An algorithm of Katz and its application to the inverse Galois problem. J. Symb. Comput., 30: 761–798, 2000.

[6] M. Dettweiler and S. Reiter. Rigid local systems and motives of type G_2, with an Appendix by M. Dettweiler and N. Katz. Preprint, 2007.

[7] A. Grothendieck et al. SGA 1: Revetements étales et groupe fondamental, volume 224 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1971.

[8] W. Feit and P. Fong. Rational rigidity of $G_2(p)$ for any prime $p > 5$. In M. Aschbacher et al., editor, Proceedings of the Rutgers group theory year, 1983–1984, pages 323–326. Cambridge Univ. Press, 1985.

[9] B.H. Gross and G. Nebe. Globally maximal arithmetic groups. Journal of Algebra, 272: 625–642, 2004.

[10] M. Harris. Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications. In Manin Festschrift, page Birkhäuser, In Press.

[11] N.M. Katz. Rigid Local Systems. Annals of Mathematics Studies 139. Princeton University Press, 1996.

[12] P.B. Kleidman. The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups $^2G_2(q)$ and of their automorphism groups. J. Algebra 117, pages 30–71, 1988.

[13] M. Harris L. Clozel and R. Taylor. Automorphy for some ℓ-adic lifts of automorphic mod-ℓ Galois representations. Preprint, available on http://www.math.harvard.edu/~rtaylor, 2006.

[14] M. Larsen. Maximality of Galois actions for compatible systems. Duke Journal of Math., 80:601–630, 1995.

[15] N. Shepherd-Barron M. Harris and R. Taylor. A family of Calabi-Yau varieties and potential automorphy. Preprint, available on http://www.math.harvard.edu/~rtaylor, 2006.

[16] J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2000.
[17] K. Strambach and H. Völklein. On linearly rigid tuples. *J. Reine Angew. Math.*, 510:57–62, 1999.

[18] R. Taylor. Remarks on a conjecture of Fontaine and Mazur. *Journal of the Institute of Mathematics of Jussieu*, 1:1–19, 2002.

[19] R. Taylor. Automorphy for some ℓ-adic lifts of automorphic mod-ℓ Galois representations II. Preprint, available on http://www.math.harvard.edu/~rtaylor, 2006.

[20] J.G. Thompson. Rational rigidity of $G_2(5)$. In M. Aschbacher et al., editor, *Proceedings of the Rutgers group theory year, 1983–1984*, pages 321–322. Cambridge Univ. Press, 1985.

[21] T. Weigel. On a certain class of Frattini extensions of finite Chevalley groups. In W.M. Kantor et al., editor, *Groups of Lie type and their geometries*, volume 207 of *Lond. Math. Soc. Lect. Note Ser.*, pages 281–288. Cambridge University Press, 1995.