Latest results on mixing and $CP$ violation in the charm decays at the $B$-factories

Vishal Bhardwaj

Department of Physical Sciences
Indian Institute of Science Education and Research, Mohali, Punjab INDIA
E-mail: vishstar@gmail.com

In this report, latest results on mixing and $CP$ violation in the charm decays at the $B$-factories are presented.

9th International Workshop on the CKM Unitarity Triangle
28 November - 3 December 2016
Tata Institute for Fundamental Research (TIFR), Mumbai, India

*Speaker.
†On behalf of the Belle Collaboration, supported by the Department of Science and Technology, India.
1. Introduction

Mixing between $D^0$ and $\bar{D}^0$ provides crucial information about electroweak interactions and the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Phenomenon of mixing can be described as decaying two-component quantum states.

Mass eigenstates $(D_1, D_2) \neq$ Flavor eigenstates $(D^0, \bar{D}^0)$.  

The two parameters characterizing $D^0 - \bar{D}^0$ mixing are

\[ x \equiv \frac{\Delta M}{\Gamma}, \quad \Delta M \equiv M_1 - M_2, \tag{1.2} \]

\[ y \equiv \frac{\Delta \Gamma}{2\Gamma}, \quad \Delta \Gamma \equiv \Gamma_1 - \Gamma_2, \tag{1.3} \]

where $M_{1,2}$ ($\Gamma_{1,2}$) are the masses (decay widths) of $D_{1,2}$, and $\Gamma \equiv (\Gamma_1 + \Gamma_2)/2$ is the mean decay width.

Flavor eigenstates can be written as:

\[ |D^0(t)\rangle = \frac{1}{2p}[|D_1(t)\rangle + |D_2(t)\rangle] \quad \text{and} \quad |\bar{D}^0(t)\rangle = \frac{1}{2q}[|D_1(t)\rangle - |D_2(t)\rangle] \tag{1.4} \]

The coefficients $p$ and $q$ are complex coefficients satisfying $|p|^2 + |q|^2 = 1$, and $q/p = |q/p|e^{i\phi}$.

In the Standard Model (SM), $D^0-\bar{D}^0$ mixing is well described by box diagram containing down-type ($d, s, b$) quarks. While both $s$ and $d$ box amplitudes are suppressed by a factor $(m_s^2 - m_d^2)^2/(m_0^2 m_c^2)$ due to the Glashow-Iliopoulos-Maiani mechanism, the contributions from loops involving $b$ quarks is further suppressed by CKM factors $|V_{ub}V_{cb}^\ast|^2/|V_{us}V_{cs}^\ast|^2 = O(10^{-6})$. The short-distance SM predictions are $x = O(10^{-5})$ and $y = O(10^{-7})$. The long-distance contributions can yield $x, y \leq 10^{-3}$. Further, $SU(3)_F$ violation in the final-state phase space could provide enough breaking to generate $y \sim 10^{-2}$ and $x \sim 10^{-3}$. New Physics (NP) can enhance the $D^0-\bar{D}^0$ mixing rate. Currently, $D^0-\bar{D}^0$ mixing has been observed and well established.

1. Due to the uncertainties in both SM and NP, observation at $O(10^{-2})$ does not indicate presence of NP.

$CP$ violation (CPV) can play an important role in search for NP. In $D$ meson decays, it is categorized as:

- **CPV in mixing** occurs when the mixing probability of $D^0$ to $\bar{D}^0$ is different than that of $\bar{D}^0$ to $D^0$. This happens if and only if $|q/p| \neq 1$. Depends only on the mixing parameters and not on the final state of decay.

- **Direct CPV** appears when the amplitude for a decay and its $CP$ conjugate processes have different magnitudes. It occurs only if the differences between $CP$-conserving strong phases and the differences between the $CP$-violating weak phases of the two contributing amplitudes are non-zero.

- **CPV in the interference** between a direct decay $D^0 \rightarrow f$, and decay involving mixing, $D^0 \rightarrow \bar{D}^0 \rightarrow f$.  

The SM predicts $CP$ asymmetries in $D$ meson to be very small, less than $\mathcal{O}(0.01\%)$ \cite{8,9,10,11}. NP scenarios such as supersymmetric gluino-squark loops, yield direct $CP$ asymmetries as large as $\mathcal{O}(1\%)$ \cite{12}.

2. Mixing results from $B$-factories

2.1 Wrong sign decay $D^0 \to K^+\pi^-$

In wrong sign (WS) $D^0$ decay $D^0 \to K^+\pi^-$, the final state is reached either through direct doubly Cabibbo suppressed (DCS) decay, or via mixing where $D^0 \to \bar{D}^0$ and then $\bar{D}^0 \to K^+\pi^-$ through Cabibbo favored (CF) right sign (RS) decay. Interference between the two amplitudes occurs. One can normalize the WS to the RS rate to obtain

$$R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D} y' \Gamma R + \frac{x'^2 + y'^2}{4} (\Gamma R)^2,$$

where $R_D = |A_{DCS}/A_{CF}|^2$, and the $x'$ and $y'$ are related to the mixing parameters ($x$ and $y$) through a rotation by the strong phase, $\delta_{K\pi}$:

$$x' \equiv x \cos \delta_{K\pi} + y \sin \delta_{K\pi},$$

$$y' \equiv y \cos \delta_{K\pi} - x \sin \delta_{K\pi}.$$

Table 1: Mixing parameters measured by different experiments. The quoted uncertainties include both statistical and systematic.

| Experiment | $R_D, \times 10^{-3}$ | $y', \times 10^{-3}$ | $x'^2, \times 10^{-3}$ |
|------------|-----------------------|----------------------|-----------------------|
| Belle [13] | 3.53 ± 0.13           | 4.6 ± 3.4            | 0.09 ± 0.22           |
| BaBar [14] | 3.03 ± 0.19           | 9.7 ± 5.4            | −0.22 ± 0.37          |
| CDF [15]   | 3.51 ± 0.35           | 4.3 ± 4.3            | 0.08 ± 0.18           |
| LHCb [16]  | 3.533 ± 0.054         | 5.23 ± 0.84          | 3.6 ± 4.3             |

The relative WS decay rate at $B$-factories allows a determination of $x'^2$, $y'$ and $R_D$, but not the strong phase $\delta_{K\pi}$.

$B$-factories use slow pion $\pi^+$ of the strong decay $D^{*+} \to D^0\pi^+$ to determine (‘tag’) the charm flavor. The charge of $\pi^+$ and the charge of kaon from decay products of $D$ is used to identify the WS and RS. The values of $x'^2$ and $y'$ are extracted by a fit to the time-dependent ratio of WS to RS decay. Belle [13], (BaBar [14]) excluded non-mixing hypothesis at 5.1 $\sigma$ (3.9 $\sigma$). Table I summarizes the mixing parameters by different experiments. Belle observed the mixing using WS $D$ decay.

2.2 Decays to $CP$ eigenstates $D^0 \to K^+K^- / \pi^+\pi^-$

Mixing in $D^0$ decays to $CP$ eigenstates, gives rise to an effective lifetime $\tau$ that differs from that in the decays to flavor eigenstates such as $D^0 \to K^-\pi^+$. The mixing parameter $y$ can thus...
be measured by comparing the rate of $D^0$ decays to $CP$ eigenstates with decays to non-$CP$ eigenstates. If decays to $CP$ eigenstates have a shorter effective lifetime than those decaying to non-$CP$ eigenstates, then $\gamma$ would be positive \cite{4}. Belle \cite{17} has measure:

$$y_{CP} = [+1.11 \pm 0.22 \pm 0.09\%] \text{ and } A_\Gamma = [-0.03 \pm 0.20 \pm 0.07\%]$$ (2.4)

using 976 $fb^{-1}$ data, while BaBar \cite{18} used 468 $fb^{-1}$ to measured:

$$y_{CP} = [+0.72 \pm 0.18 \pm 0.12\%] \text{ and } A_\Gamma = [-0.18 \pm 0.52 \pm 0.12\%].$$ (2.5)

The first uncertainty is statistical and the second systematic. The $y_{CP}$ results from Belle (BaBar \cite{18}) exclude the null mixing hypothesis at 4.7 $\sigma$ (3.3 $\sigma$) significance.

### 2.3 Time-dependent analysis of three-body decay modes

Using amplitude analyses of multi-body $D^0$ decay modes, one can measure mixing without the ambiguity of an unknown strong phase. Interferences between intermediate resonances provide sensitivity to both magnitude and sign of the mixing parameters. Belle and BaBar have performed mixing studies using $D^0$ decay to $K^0_S\pi^+\pi^-$ and $K^0_SK^+K^-$ final states.

The particle-antiparticle mixing phenomenon causes an initially produced (at proper time $t = 0$) pure $D^0$ or $\bar{D}^0$ meson state to evolve in time to a linear combination of $D^0$ and $\bar{D}^0$ states. One can describe the decay amplitude for $D^0 (\bar{D}^0)$ into the final state, $\mathcal{A}_s (\bar{\mathcal{A}}_s)$, as a function of Dalitz plot (DP) variables. Time-dependent decay amplitudes for these decays are:

$$\mathcal{A}(m_2^2, m_1^2, t) = \mathcal{A}(m_2^2, m_1^2) \frac{e^{i(t)} + e^{i(t)}}{2} + \frac{q}{p} \mathcal{A}(m_2^2, m_1^2) \frac{e^{i(t)} - e^{i(t)}}{2}$$ (2.6)

$$\bar{\mathcal{A}}(m_2^2, m_1^2, t) = \bar{\mathcal{A}}(m_2^2, m_1^2) \frac{e^{i(t)} + e^{i(t)}}{2} + \frac{p}{q} \bar{\mathcal{A}}(m_2^2, m_1^2) \frac{e^{i(t)} - e^{i(t)}}{2}$$ (2.7)

where $\mathcal{A}$ ($\bar{\mathcal{A}}$) decay amplitude for $D^0 (\bar{D}^0)$, $m_2^2 = m^2(K^0_S\pi^+\pi^-)$ is parameterized with an amplitude $a_\phi$ and a phase $\phi$, $\mathcal{A}(m_2^2, m_1^2) = \sum_a a_a e^{i\phi} \mathcal{A}(m_2^2, m_1^2)$ and $\mathcal{A}(m_2^2, m_1^2) = \sum_a \bar{a}_a e^{i\phi} \bar{\mathcal{A}}(m_2^2, m_1^2)$.

In order to fit the DP distribution as function of time, one needs to assume an amplitude model. These models include a coherent sum of quasi-two-body intermediate resonances (r) plus a nonresonant (nr) component. $P$- and $D$-wave amplitudes are modeled by Breit-Wigner (BW) or Gounaris-Sakurai functional forms, including Blatt-Weisskopf centrifugal barrier factors. For describing $\pi\pi S$-wave dynamics, the $K$-matrix formalism with $P$-vector approximation is used.

Belle \cite{19} obtained 1231731 $\pm$ 1633 signal events for $D^0 \to K^0_S\pi^+\pi^-$ with purity of 95.5% by using 921 $fb^{-1}$. Two observables $M_{K^0\pi^+\pi^-}$ and $Q = M(K^0_S\pi^+\pi^- - \pi S) - M(K^0_S\pi^+\pi^- - m(\pi S))$ are used to identify the signal. Using $CP$ conserved fit, Belle measured $x = (0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09})\%$ and $y = (0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06})\%$. No mixing hypothesis is excluded with significance of 2.5$\sigma$. Also a search for CPV was carried out measuring $|q/p| = 0.90^{+0.16+0.05+0.06}_{-0.15-0.04-0.05}$ and $\arg(q/p) = (-6 \pm 11 \pm 3^{+3}_{-4})^\circ$. The $x$ and $y$ values are consistent with $CP$ conserved fit. The last uncertainty is due to the amplitude model.

BaBar \cite{20} used $M_{D^0}$ and $\Delta M$ to identify the signal and obtained 540800 $\pm$ 800 (79900 $\pm$ 300) signal events in the $D^0 \to K^0_S\pi^+\pi^- (D^0 \to K^0_SK^+K^-)$ decay. Mixing hypothesis is favored with
significance of 1.9σ. Results for the nominal mixing fit, in which both $D^0$ and $\bar{D}^0$ samples from $K^0_s\pi^+\pi^-$ and $K^0_sK^+K^-$ channels are combined, are $x = (1.6 \pm 2.3 \pm 1.2 \pm 0.8) \times 10^{-3}$ and $y = (5.7 \pm 2.0 \pm 1.3 \pm 0.7) \times 10^{-3}$.

BaBar also performed the first measurement of mixing parameters from a time-dependent amplitude analysis of the singly Cabibbo-suppressed (SCS) decay $D^0 \to \pi^+\pi^-\pi^0$ [22]. Signal is identified with the $\Delta M$ variable. Using an isobar model of relativistic BW line shape, they measured $x = (1.5 \pm 1.2 \pm 0.6)\%$ and $y = (0.2 \pm 0.9 \pm 0.5)\%$. Owing to less statistics, no $CP$ violation was attempted.

3. Direct $CP$ asymmetry measurement

$D^0$ candidates are selected from the decay $D^{*+} \to D^0\pi^+_s$, where $\pi^+_s$ reveals the flavor content of neutral $D$ meson. The $D^{*+}$ momentum calculated in the $e^+e^-$ center-of-mass frame is used to suppress $D^{*+}$ from $B$ decays as well as to reduce the combinatorial background. $D^{*+}$ mesons mostly originate from $e^+e^- \to c\bar{c}$ process via hadronization, where the inclusive yield has a large uncertainty of 12.5% [22]. To avoid this uncertainty, we measure the branching fraction of signal decay with respect to the well measured mode as normalization mode

$$B_{\text{sig}} = B_{\text{norm}} \times \frac{N_{\text{sig}}}{N_{\text{norm}}} \times \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}},$$

(3.1)

where $N$ is the extracted yield, $\varepsilon$ the reconstructed efficiency and $B$ the branching fraction for signal (sig) and normalization (norm) modes. For $B_{\text{norm}}$, the world average values [22] is used. Assuming the total decay width to be same for particles and antiparticles, the time-integrated $A_{CP}$ is:

$$A_{CP} = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to \bar{f})}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to \bar{f})},$$

(3.2)

where, $\Gamma$ represents the partial decay width and $f$ is specific final state. The extracted raw asymmetry is given by:

$$A_{\text{raw}} = \frac{N(D^0 \to f) - N(\bar{D}^0 \to \bar{f})}{N(D^0 \to f) + N(\bar{D}^0 \to \bar{f})} = A_{CP} + A_{FB} + A_{\pi^+}^e.$$

(3.3)

Here, $A_{FB}$ is the forward-backward production asymmetry, and $A_{\pi^+}^e$ is asymmetry due to difference in detection efficiencies for positively and negatively charged pions. Both can be eliminated through a relative measurement of $A_{CP}$ if the charged final-state particles are identical. The $CP$ asymmetry of the signal mode can then be expressed as:

$$A_{CP}(\text{sig}) = A_{\text{raw}}(\text{sig}) - A_{\text{raw}}(\text{norm}) + A_{CP}(\text{norm}).$$

(3.4)

For the $A_{CP}(\text{norm})$, the world average value [22] is used. This way one can also reduce systematic uncertainties as those are common to both the signal and normalization mode get canceled.

3.1 $D^0 \to V\gamma$ study

Radiative charm decays are dominated by non-perturbative long range dynamics, so measurements of their branching fractions can be a useful test for the QCD based theoretical calculations.
Further motivation for a study of $D^0 \to V \gamma$, where $V$ is a vector meson, arises due to the potential sensitivity of these decays to NP via $A_{CP}$ measurement. Some studies predict that $A_{CP}$ can rise to several percent in contrast to $\mathcal{O}(10^{-3})$ SM expectation \cite{23, 24}.

Belle \cite{25} performed the first measurement of $CP$ violation in $D^0 \to V \gamma$ decays using 943 $fb^{-1}$ of data. The signal decays are reconstructed in the sub-decay channels of the vector meson: $\phi \to K^+ K^-$, $K^{*0} \to K^- \pi^+$ and $\rho \to \pi^+ \pi^-$. The corresponding normalization modes are $D^0 \to K^+ K^- (\phi$ mode), $D^0 \to K^- \pi^+ (K^{*0}$ mode) and $D^0 \to \pi^+ \pi^- (\rho^{0}$ mode).

Signal is extracted via a simultaneous two-dimensional fit to the invariant mass $m(D^0)$ and the cosine of the helicity angle ($\cos \theta_H$), which is the angle between $D^0$ and one of the charged hadrons in the rest frame of the $V$ meson. We measure:

$$\mathcal{B}(D^0 \to \phi \gamma) = (2.76 \pm 0.19 \pm 0.10) \times 10^{-5}, \quad A_{CP}(D^0 \to \phi \gamma) = -0.094 \pm 0.066 \pm 0.001,$$

$$\mathcal{B}(D^0 \to K^{*0} \gamma) = (4.66 \pm 0.21 \pm 0.21) \times 10^{-4}, \quad A_{CP}(D^0 \to K^{*0} \gamma) = -0.003 \pm 0.020 \pm 0.000,$$

$$\mathcal{B}(D^0 \to \rho^{0} \gamma) = (1.77 \pm 0.30 \pm 0.07) \times 10^{-5}, \quad A_{CP}(D^0 \to \rho^{0} \gamma) = +0.056 \pm 0.152 \pm 0.006,$$

where the first uncertainty is statistical and the second is systematic. Results are consistent with no $CP$ asymmetry in any of the $D^0 \to V \gamma$ decay modes. Further, the $D^0 \to \rho^{0} \gamma$ decay is observed for the first time.

### 3.2 $D^0 \to K_S^0 K_S^0$ study

SCS decays such as $D^0 \to K_S^0 K_S^0$ are of special interest as possible interference with NP amplitude could lead to larger non-zero $CP$. SM based calculations estimate that direct $CP$ violation in this decay mode can reach upto 1.1\% (at 95\% confidence level) \cite{26}. Earlier search for $CP$ asymmetry in $D^0 \to K_S^0 K_S^0$ has been performed by the CLEO Collaboration as $(-23 \pm 19)\%$ \cite{27} and LHCb as $(-2.9 \pm 5.2 \pm 2.2)\%$ \cite{28}.

Belle extract signal via a simultaneous fit of the $\Delta M$ variable using the normalization mode $D^0 \to K_S^0 \pi^0$. The signal yield for $D^0 \to K_S^0 K_S^0$ is $5,399 \pm 87$ and for $D^0 \to K_S^0 \pi^0$ as $531,807 \pm 796$ events. A simultaneous fit to the $\Delta M$ distribution of $D^{*+}$ and $D^{*-}$ is used to estimate the asymmetry. The preliminary time-integrated $CP$-violating asymmetry $A_{CP}$ obtained using 921 $fb^{-1}$ in the $D^0 \to K_S^0 K_S^0$ decay is $A_{CP} = (-0.02 \pm 1.53 \pm 0.17)\%$ \cite{29}. The dominant systematic uncertainty comes from the $A_{CP}$ error of the normalization channel. The result is consistent with SM expectation and is a significantly improves over the previous measurements.

### Acknowledgments

I would like to thank KEKB and other members of the Belle Collaboration along with their supporting funding agencies. Further, I would also like to thank the BaBar Collaboration. This work is supported by INSPIRE Faculty Award from the Department of Science and Technology, India.

### References

[1] S.L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).

[2] I.I. Bigi and N.G. Uraltsev, Nucl. Phys. B 592, 92 (2001).

[3] A.F. Falk, Y. Grossman, Z. Ligeti, and A.A. Petrov, Phys. Rev. D 69, 114021 (2004).
[4] C.A. Chavez, R.F. Cowan, and W.S. Lockman, Int. J. Mod. Phys. A 27, 1230019 (2012).
[5] A.F. Falk et al., Phys. Rev. D 65, 054034 (2002).
[6] A.A. Petrov, Int. J. Mod. Phys. A 21, 5686 (2006).
[7] E. Golowich, J. Hewett, S. Pakvasa, and A.A. Petrov, Phys. Rev. D 76, 095009 (2007).
[8] F. Buccella et al., Phys. Rev. D 51, 3478 (1995).
[9] S. Bianco, F.L. Fabbri, D. Benson, and I. Bigi, Riv. Nuovo Cimento 26N7, 1 (2003).
[10] A.A. Petrov, Phys. Rev. D 69, 111901(R) (2004).
[11] M. Bobrowski et al., JHEP 03, 009 (2010).
[12] Y. Grossman, A.L. Kagan and Y. Nir, Phys. Rev. D 75, 036008 (2007).
[13] B.R. Ko et al. (Belle Collaboration), Phys. Rev. Lett. 112, 111801 (2014).
[14] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 98, 211802 (2007).
[15] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 111, 231802 (2013).
[16] R. Aaij et al. (LHCb Collaboration), LHCb-PAPER-2016-033, arXiv:1611.06143 [hep-ex].
[17] M. Staric et al. (Belle Collaboration), Phys. Lett. B 753, 412 (2015).
[18] J.P. Lees et al. (BaBar Collaboration), Phys. Rev. D 87, 012004 (2013).
[19] T. Peng et al. (Belle Collaboration), Phys. Rev. D 89, 091103(R) (2014).
[20] P. del Amo Sanchez et al. (BaBar Collaboration), Phys. Rev. Lett. 105, 081803 (2010).
[21] J.P. Lees et al. (BaBar Collaboration), Phys. Rev. D 93, 112014 (2016).
[22] C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).
[23] G. Isiodri, and J.F. Kamenik, Phys. Rev. Lett. 109, 171801 (2012).
[24] J. Lyon, and R. Zwicky, Edinburgh/12/16. DIAS-2012-24, arXiv:1210.6546 [hep-ph].
[25] T. Nanut et al. (Belle Collaboration), Phys. Rev. Lett. 118, 051801 (2017).
[26] U. Nierste and S. Schacht, Phys. Rev. D 92, 054036 (2015).
[27] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D 63, 071101 (2001).
[28] R. Aaij et al. (LHCb Collaboration), JHEP 10, 055 (2015).
[29] A. Abdesselam et al. (Belle Collaboration), BELLE-CONF-1609, arXiv:1609.06393 [hep-ex].