A k nearest neighbours classifiers ensemble based on extended neighbourhood rule and features subsets

Amjad Alia, Muhammad Hamraza, Naz Gula, Dost Muhammad Khana, Zardad Khana*, Saeed Aldahmanib

aDepartment of Statistics, Abdul Wali Khan University Mardan, Pakistan
bDepartment of Analytics in the Digital Era, United Arab Emirates University, UAE

Abstract

kNN based ensemble methods minimise the effect of outliers by identifying a set of data points in the given feature space that are nearest to an unseen observation in order to predict its response by using majority voting. The ordinary ensembles based on kNN find out the k nearest observations in a region (bounded by a sphere) based on a predefined value of k. This scenario, however, might not work in situations when the test observation follows the pattern of the closest data points with the same class that lie on a certain path not contained in the given sphere. This paper proposes a k nearest neighbour ensemble where the neighbours are determined in k steps. Starting from the first nearest observation of the test point, the algorithm identifies a single observation that is closest to the observation at the previous step. At each base learner in the ensemble, this search is extended to k steps on a random bootstrap sample with a random subset of features selected from the feature space. The final predicted class of the test point is determined by using a majority vote in the predicted classes given by all base models. This new ensemble method is applied on 17 benchmark datasets and compared with other classical methods, including kNN based models, in terms of classification accuracy, kappa and Brier score as performance metrics. Boxplots are also utilised to illustrate the difference in the results given by the proposed and other state-of-the-art methods. The proposed method outperformed the rest of the classical methods in the majority of cases. The paper gives a detailed simulation study for further assessment.

Keywords: Features subset, Nearest Neighbours Rule, kNN Ensemble, Classification.

1. Introduction

Classification is a supervised learning problem dealing with distributing samples into different classes based on various features. There are several machine
learning procedures used for classification, the most popular of which is the nearest neighbour (NN) method \[1\]. It classifies an unseen observation based on its neighbourhood in the feature space. Nearest neighbour is an efficient method, but has the problem of over-fitting. To overcome this problem, the \(k\) nearest neighbour (kNN) classifier was proposed which extends the nearest neighbourhood to more than one training observation \[2,3,4\], using the majority vote to classify an unseen instance. This method is simple, easy to understand and provides efficient results when the dataset is sufficiently large \[5,6,7\]. Despite being computationally simple, the \(k\)NN model gives optimal results in many cases and even trounces other complex and composite classifiers. However, \(k\)NN procedures suffer from many data related issues, such as noise and contrived features in the dataset.

\(k\)NN ensemble-based learners, in conjunction with randomization procedures, have demonstrated efficient prediction performance. Randomization is usually incorporated by taking random bootstrap samples from training observations and/or random subsets from the total number of features to construct the base \(k\)NN models. This decreases the chance of repeating the same error and makes the base models more flexible and diverse \[8,9,10,11\]. Several \(k\)NN based ensembles have been proposed in the literature, e.g. random \(k\)-NN \[12\], ensemble of random subspace \(k\)NN \[13\], ensemble of subset of \(k\)NN \[14\], bootstrap aggregated \(k\)-NN \[15\], weighted heterogeneous distance Metric \[16\], etc. These methods use majority voting based on the class labels of sample points in the neighbourhood of a given test observation determined by each primary learner. Final prediction is calculated by using a second round of majority voting based on the results given by all the base \(k\)NN models. However, this type of prediction, based on the nearest neighbourhood rule, might be effected when an unseen observation follows a pattern that goes beyond the sphere containing the nearest observations. Therefore, in such situations, it is desired to devise a new neighbourhood rule which allows for identifying patterns on the far side of the conventional sphere.

Following the above notion, this work proposes a new extended neighbourhood rule (ExNRule) for \(k\)NN ensemble, where each base \(k\)NN model is constructed on a random bootstrap sample drawn from training observations in conjunction with a randomly selected subset of features. The ExNRule searches for similar patterns on extended paths i.e. it determines the nearest point \(X_1^{1\times p'}\) to the test point \(X_0^{0\times p'}\), then it finds the nearest point \(X_2^{2\times p'}\) to the previously identified point \(X_1^{1\times p'}\), and so on. This process continues until the desired \(k\) observations are identified whose class labels are used to predict the target class of the test point \(X_1^{0\times p}\) using majority voting. Final estimated class of \(X_1^{0\times p}\) is obtained by majority voting based on the results given by base models. For assessing the performance of the proposed ensemble, 17 benchmark datasets are used, and the resulting performance metrics of accuracy, Kappa and Brier score (BS) are compared with those of \(k\)NN, weighted \(k\) nearest neighbours classifier (W\(k\)NN), random \(k\) nearest neighbour (R\(k\)NN), random forest (RF), optimal trees ensemble (OTE) and support vector machine (SVM). For further illus-
tration, boxplots have also been obtained to demonstrate the difference in the performance of the proposed ExNRule and other classical procedures.

The remainder of this paper is organized as follows. Related work is summarized in Section 2. Section 3 presents a discussion of the proposed method and the associated mathematical descriptions and algorithm. Experiments and results are given in Section 4. Finally, a conclusion of the analyses conducted in this paper are given in Section 5.

2. Related Work

Extensive research has been carried out to improve the performance of classical kNN classifier. Due to the fact that the classical kNN procedure gives equal weights to all k neighbours of a new observation, Bailey et al. [17] suggested a weighted kNN procedure to improve the standard kNN method. In this case, weights are assigned to the neighbours based on their distances from a query point. This procedure is global in that it uses all training instances; therefore, it takes more execution time. Alpaydin [18], Angiulli [19] and Chidananda et al. [20] proposed the condensed nearest neighbour (CNN) to reduce data size and to boost up the running time by removing identical samples that do not provide extra information. However, CNN depends on the data order, which may lead to ignoring observations lying on the boundary (extreme observations). Gyeoffrey et al. [21] proposed a similar procedure known as the reduced nearest neighbour (RNN) algorithm by removing samples from training data which do not affect classification performance. In this procedure, templates are removed and training data are reduced. However, like CNN, RNN is also computationally complex.

Another model based kNN procedure is proposed in Guo et al. [22] to improve the prediction performance and reduce the size of training data. However, this procedure fails in the case of class imbalance and when marginal data out of the identified region is not taken into account. Authors in [23] proposed a clustered kNN approach to overcome the problem of uneven distribution of training observations, which is a more robust method in nature as compared to the other procedures suffering from class imbalance. However, this method has several deficiencies, the most important of which lies in the difficulty of finding the selection threshold used for distances among a cluster. Moreover, the criteria used to determine k values for different clusters are also unknown. In [24], a modified kNN algorithm is suggested to use the weights and validity of the training data observations to classify a test observation. The author in [25] divided the total training dataset in half to develop the k-d tree nearest neighbour and used it for the formation of multi-dimensional observations. This method is fast, simple, and easy to understand, and it produces a perfectly balanced tree. However, the k-d tree nearest neighbour needs intensive search, is computationally complex and misses the data pattern because it blindly slices training sample points into half. A hybrid method is therefore proposed in [26] based on SVM and kNN, which deals naturally with multi-class problems and
gives better performance. Further developments of the kNN based methods can be found in \cite{27, 28, 29, 30, 31}.

In addition to the above literature, there are several ensemble procedures based on kNN models that aim to further improve the performance of the base kNN and its modified versions. Bao et al. \cite{32} have used different metrics for distance calculation, such as perturbations parameters, to introduce diversity in the ensemble. The authors in \cite{33} have suggested to combine different base kNN learners using various distance function weights acquired by a genetic algorithm. Ho \cite{34} proposed a component kNN algorithm using various random subspaces, where each base kNN model is constructed on a subset of features randomly taken from the total feature space. Bootstrap sampling and attribute filtering with random configuration distance functions are used for ensemble kNN models in Zhou and Yu \cite{35}, where simultaneous perturbations are applied on attribute space, learning parameters and training data. A genetic algorithm is used by Altınçay \cite{30} to develop an evidentiary kNN ensemble procedure presenting multimodal perturbation. In this method, each chromosome statute a complete ensemble. An efficient perturbation multimodal procedure based on particle swarm optimization is proposed in Nanni and Lumini \cite{36}, where a random subspace method is employed to perturb the feature space and perturbation multimodal procedure.

One of the top ranked ensemble procedures is bootstrap aggregation (bagging) \cite{37}, which attempts to find the exact bootstrap expectation of the model \cite{38, 39, 35}. This procedure is the building block for several state-of-the-art ensembles. In this method, hundreds of base learners are built each on a random bootstrap sample drawn from the training observations. The class label for a test point is estimated by majority voting based on the results given by all base models \cite{37}. In \cite{15}, the author modified the exact bagging idea to bootstrap sub-sampling with and without replacement schemes. Several ensemble procedures are constructed that use bagging with a random subset of features for fitting base kNN learners \cite{12, 14, 40}. Many authors proposed several techniques to optimize the k value in the base kNN classifiers for ensemble methods \cite{41, 42}. Boosting kNN, which is proposed in \cite{11}, uses two strategies; first, it selects a subspace from the full space, and, second, the inputs are transformed using non-linear projections of the feature space. Further improvements on the boosting methods can be seen in \cite{43, 44, 45, 46, 47}.

Furthermore, there are several ensembles based on kNN using different approaches for accurately predicting test data. The optimal kNN ensemble given in \cite{48} fits a step-wise regression model on k nearest observations in each base kNN for a test point. Tang and Haibo \cite{49} have proposed a method which estimates test data class labels according to the maximum gain of intra-class coherence. Another method similar to the proposed method in this paper is the extended nearest neighbour (ENN) that predicts the target class of a test observation in a two-way communication manner. ENN does not rely only on the observations in the neighbourhood of the new point, but also takes into consideration the spheres containing the new observation as one of their nearest neighbour \cite{49}.
The proposed algorithm in this paper is a \(k \) nearest neighbour based ensemble where the \(k \) neighbours are determined in a stepping manner. Starting from the first nearest observation of the test point, the algorithm identifies a single observation that is closest to the instance identified at the previous step. In all primary learners in the ensemble, this search is extended to \(k \) steps on bootstrap samples each with a random subset of the total feature space. Selecting a feature subset for each base model is done to avoid over-fitting and add diversity to the ensemble in addition to that added by bootstrapping. The final predicted class of the test point is determined by using majority voting based on the predicted classes given by all the primary learners. The proposed procedure improves the estimation in the following ways:

1. Each base \(k \)NN is constructed on a bootstrap sample drawn from the training samples with a random subset of features taken from the total feature space, making the method diverse and preventing the problem of repeating the same errors.

2. \(k \) nearest observations are selected in a step-wise manner to find the true pattern of the test point.

3. The extended neighbourhood rule (ExNRule) for \(k \)NN ensemble

Consider \(\mathcal{L} = (X, Y)_{n \times (p+1)} \) to be a training set of data, where \(X_{n \times p} \) is a matrix with \(p \) features and \(n \) sample points and \(Y \) is a binary categorical response. Let \(X^i_{1 \times p'} \) be a test/unseen sample point with \(p \) values and it is needed to predict the output class i.e. \(\hat{Y} \) for \(X^i_{1 \times p'} \). Suppose \(B \) bootstrap samples are drawn from the training data \(\mathcal{L} = (X, Y)_{n \times (p+1)} \), each with a random subset of \(p' \leq p \) features, i.e., \(S^b_{n \times (p'+1)} \), where, \(b = 1, 2, 3, \ldots, B \) and \(X^0_{1 \times p'} \) is a subset of \(p' \) corresponding values from \(X^i_{1 \times p'} \). Find the the nearest observation \(X^i_{1 \times p'} \) to \(X^{i-1}_{1 \times p'} \), where \(i = 1, 2, 3, \ldots, k \), by using a distance formula in all \(B \) bootstrap samples. Note the corresponding response values of the selected observations, i.e., \(y^1, y^2, y^3, \ldots, y^k \) of \(X^1_{1 \times p'}, X^2_{1 \times p'}, \ldots, X^k_{1 \times p'} \). To get the estimated class of \(X^0_{1 \times p'} \), majority voting will be used, i.e., \(\hat{Y}^b \) is the majority vote of \(y^1, y^2, y^3, \ldots, y^k \), where, \(b = 1, 2, 3, \ldots, B \). The final predicted class of the test point \(X^0_{1 \times p} \) is a second round majority vote of \(\hat{Y}^1, \hat{Y}^2, \hat{Y}^3, \ldots, \hat{Y}^B \) i.e. \(\hat{Y} \).

3.1. Mathematical Description

The distance formula to be used in \(S^b_{n \times (p'+1)} \), where, \(b = 1, 2, 3, \ldots, B \), to compute a set of closest observations in a sequence is given below

\[
\delta_b(X^{i-1}_{1 \times p'}, X^i_{1 \times p'})_{\min} = \left[\sum_{j=1}^{p'} |x^{i-1}_j - x^i_j|^q \right]^{1/q}, i = 1, 2, \ldots, k. \tag{1}
\]

Is this a standard notation? There is no minimization in the expression on the right of the equal sign.
In each base model, the distance formula given in Equation (1) is used to determine the sequence of distances as

\[\delta_b(X_i^{0}, X_i^{1})_{\text{min}}, \delta_b(X_i^{1}, X_i^{2})_{\text{min}}, \ldots, \delta_b(X_i^{k-1}, X_i^{k})_{\text{min}}. \]

This sequence suggests that, \(X_i^{1}\) is the nearest observation to \(X_i^{-1}\), where, \(i = 1, 2, 3, \ldots, k\). The corresponding response values of \(X_i^{1}, X_i^{2}, \ldots, X_i^{k}\) are \(y^1, y^2, \ldots, y^k\), respectively, and the predicted class of test point \(X_i^{0}\) for the \(b^{th}\) base model is \(\hat{Y}^b = \text{majority vote of } (y^1, y^2, \ldots, y^k)\), where, \(b = 1, 2, 3, \ldots, B\). The final predicted class of the test observation \(X_i^{0}\) is \(\hat{Y} = \text{majority vote of } (\hat{Y}^1, \hat{Y}^2, \ldots, \hat{Y}^B)\).

A graphical illustration of the proposed ExNRule is given in Figure 1 against the standard \(k\)NN model. The figure shows a binary class problem highlighted in grey and green colours. Consider the test observation with true class as green (shown in red circle), whose class label estimate is desired by the models. As can be seen in the figure, the ExNRule has identified observations (shown in green) having the same class as the test point (shown in red circle). The standard \(k\)NN rule is misleading in this example as the class membership probability of the test point is 0.4 for the green class and 0.6 for the grey class, classifying the test point to the grey class. On the other hand, in the case of the ExNRule, the class membership probability estimate of the test point is 1 for the green class and 0 for the grey class, classifying the test point to the green class.

![Figure 1: Comparison of the proposed method with usual kNN](image-url)
Algorithm 1: Pseudocode of the proposed method

1. $X_{n \times p} \leftarrow$ Data matrix with p variables and n observations.
2. $y_n \leftarrow$ Response vector of n values.
3. $X^{0}_{1 \times p} \leftarrow$ A test point with p values.
4. $B \leftarrow$ Total number of random bootstrap samples drawn from training observations.
5. $k \leftarrow$ Total number of nearest steps on extended paths.
6. $p \leftarrow$ Total number of variables included in the data.
7. $p' \leftarrow$ Size of subset of features selected for base models; where $p' \leq p$.
8. for $b \leftarrow 1 : B$ do
9. $S_{n \times p'} \leftarrow$ Bootstrap with $p' \leq p$ features from $X_{n \times p}$.
10. $X^{0}_{1 \times p'} \leftarrow$ Subset of $p' \leq p$ values from test point $X^{0}_{1 \times p}$.
11. for $i \leftarrow 1 : k$ do
12. $X^{i}_{1 \times p'} \leftarrow$ Closest training observation to $X^{i-1}_{1 \times p'}$ in $S_{n \times (i-1)p'}$.
13. $y^i \leftarrow$ The corresponding response value.
14. end for
15. $\hat{Y}^b = \text{majority vote of} \ (y^1, y^2, y^3, \ldots, y^k)$.
16. end for
17. $\hat{Y} = \text{majority vote of} \ (\hat{Y}^1, \hat{Y}^2, \hat{Y}^3, \ldots, \hat{Y}^B)$.

Figure 2: Flowchart of the proposed method

$L = (X, Y)_{n \times p+1}$ be training data and $X^{0}_{1 \times p}$ be a test point

For $b = 1 : B$

Take a bootstrap sample $S_{n \times p'}$ with $p' \leq p$ features and $X^{0}_{1 \times p'}$ be a subset of values from $X^{0}_{1 \times p}$.

For $i = 1 : k$

Find the nearest observation $X^{i}_{1 \times p'}$ to $X^{i-1}_{1 \times p'}$ in $S_{n \times p'}$.

Note the corresponding response (y^i) of $X^{i}_{1 \times p'}$.

$\hat{Y}^b = \text{majority vote of} \ (y^1, y^2, y^3, \ldots, y^k)$.

$\hat{Y} = \text{majority vote of} \ (\hat{Y}^1, \hat{Y}^2, \hat{Y}^3, \ldots, \hat{Y}^B)$.
4. Experiments and Results

The section presents the conducted experiments and their results for assessing the performance of the proposed ExNRule and other state-of-the-art methods.

4.1. Benchmark Datasets

A total of 17 benchmark datasets are considered for the analysis of the proposed method and other well known procedures. These datasets are openly available on different repositories, such as openML, UCI, etc. Table 1 provides the detailed description of the characteristics of these datasets, i.e., the names of datasets, number of variables, number of instances, class distribution (i.e. 0, 1) and the corresponding sources. The number of features ranges from 7 to 86, while that of observations is from 36 to 583.

Table 1: A short description of the datasets used in this research.

Data ID	Data	p	n	Class distribution	Source
D_1	KC1B	86	145	(85, 60)	[link](https://www.openml.org/d/1066)
D_2	TSVM	80	156	(54, 102)	[link](https://www.openml.org/d/41976)
D_3	JEdit	8	369	(165, 204)	[link](https://www.openml.org/d/1048)
D_4	Cleve	13	303	(165, 138)	[link](https://www.openml.org/d/40710)
D_5	Wisc	32	194	(104, 90)	[link](https://www.openml.org/d/753)
D_6	AR5	29	36	(28, 8)	[link](https://www.openml.org/d/1062)
D_7	ILPD	10	583	(415, 167)	[link](https://www.openml.org/d/1480)
D_8	PLRL	13	315	(133, 182)	[link](https://www.openml.org/d/915)
D_9	BTum	9	277	(160, 117)	[link](https://www.openml.org/d/844)
D_{10}	Sleep	7	55	(29, 26)	[link](https://www.openml.org/d/739)
D_{11}	EMon	9	61	(29, 32)	[link](https://www.openml.org/d/944)
D_{12}	MC3	39	161	(109, 52)	[link](https://www.openml.org/d/1054)
D_{13}	Heart	13	303	(204, 99)	[link](https://www.openml.org/d/815)
D_{14}	Sonar	60	208	(111, 97)	[link](https://www.openml.org/d/40)
D_{15}	PRel	12	182	(130, 52)	[link](https://www.openml.org/d/1490)
D_{16}	GDam	8	155	(106, 49)	[link](https://www.openml.org/d/1026)
D_{17}	CVine	8	52	(28, 24)	[link](https://www.openml.org/d/815)

4.2. Synthetic Data

To assess the performance of the proposed method (ExNRule) under different scenarios, six datasets with binary responses are generated, where each scenario has 5 features and 100 observations. Out of 100 samples, 50 are generated from a distribution with some fix parameter values and they are assigned to a class 0.
and the remaining 50 instances, which are generated from the same distribution with different parameter values, are reserved for class 1. A detailed description is given in Table 2, where the first column shows the ID of datasets, while the second and third columns represent features’ distributions of class 0 and class 1, respectively.

Table 2: Description of the synthetic datasets

Scenario ID	Feature’s distribution for class 0	Feature’s distribution for class 1
S1	\(\text{Norm}(\mu = 5, \sigma = 5) \)	\(\text{Norm}(\mu = 10, \sigma = 10) \)
S2	\(\text{Norm}(\mu = 5, \sigma = 5) \)	\(\text{Norm}(\mu = 10, \sigma = 5) \)
S3	\(\text{Norm}(\mu = 5, \sigma = 5) \)	\(\text{Norm}(\mu = 10, \sigma = 4) \)
S4	\(\text{Norm}(\mu = 5, \sigma = 4) \)	\(\text{Norm}(\mu = 10, \sigma = 4) \)
S5	\(\text{Norm}(\mu = 5, \sigma = 5) \)	\(\text{Norm}(\mu = 5, \sigma = 10) \)
S6	\(\text{Norm}(\mu = 3, \sigma = 3) \)	\(\text{Norm}(\mu = 1, \sigma = 3) \)

4.3. Experimental setup

The experimental setup consists of 17 benchmark datasets presented in Section 4.1 and 6 synthetic datasets described in Section 4.2. Each dataset is divided into two mutually exclusive groups, i.e., 70% training and 30% testing parts. The proposed ExNRule is constructed using 500 individual learners, each on a random bootstrap sample taken from the training observations with a subset of attributes; i.e., \(p' = \sqrt{p} \) and \(k \) neighbours are selected in an extended manner. The predictions are given in each base model using majority voting. Final prediction is the model value of the results produced by all 500 base learners. The value of \(k = 3 \) is used to compare the proposed method with the other methods, which include \(kNN, \) \(RKNN, \) \(WKNN, \) \(RF, \) \(OTE \) and \(SVM. \) In addition, the novel ExNRule is also compared for different \(k \) values (i.e., \(k = 3, 5, 7 \)) with the different extensions of \(k \)-nearest neighbour classifier, i.e., \(kNN, \) \(RKNN \) and \(WKNN, \) on five different datasets.

In order to analyse the datasets using the aforementioned methods, various R packages have been utilised. The package caret\(^{51}\) implemented in R is used for \(kNN. \) The R package kknn\(^{52}\) is used for weighted \(kNN, \) while R library rknn\(^{53}\) is used for random \(kNN. \) For random forest, the R library randomForest\(^{54}\) is used, while for OTE, the R package OTE\(^{55}\) is used. The R library kernlab\(^{56}\) is used for SVM model. The R function tune.knn in R package e1071\(^{57}\) is used to fine-tune \(kNN \) for various values of the hyper-parameter \(k, \) i.e., \(k = 1, 2, 3, \ldots, 10 \) in the R package e1071\(^{57}\). Similarly, \(RKNN \) is fine-tuned by using different values of \(k, \) i.e., \(k = 1, 2, 3, \ldots, 10 \) and randomly selecting the number of features in \(\sqrt{p}, p/2, p/3, p/4, p/5. \) The remaining setup is kept as given in the R package rknn\(^{53}\). The R function tune.randomForest in R library e1071\(^{57}\) is used for fine-tuning the hyper-parameters nodesize, ntree and mtry. The same values are used for OTE in package OTE\(^{55}\). The linear kernel is used for SVM in the R library kernlab\(^{56}\) with default values of parameters.
4.4. Results

Table 3 shows the results given by the proposed ExNRule and the other state-of-the-art methods for 17 datasets. The results reveal that the proposed ExNRule outperforms the rest of procedures on the majority of the datasets. ExNRule gives the highest accuracy as compared to the other procedures on 13 datasets (i.e., D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9, D_{11}, D_{12}, D_{13}, D_{16}), kNN and R_kNN gives higher accuracy as compared to others on two dataset (i.e., D_{12}, D_{14}), while W_kNN yields poor performance. Random forest and OTE do not give optimal results on any of the datasets. SVM performs better than the others on 4 datasets (i.e., D_{13}, D_{15}, D_{16}, D_{17}). In terms of Cohen’s kappa the proposed method outperforms its competitors on 10 datasets (i.e., D_1, D_2, D_3, D_4, D_5, D_6, D_8, D_9, D_{11}, D_{13}). kNN and OTE performed poorly on all datasets in terms of kappa. W_kNN and SVM give higher kappa values on 3 2 datasets, respectively, while R_kNN outperforms the others on 1 dataset.

For further insights into the results, boxplots of the performance metrics are also constructed. Figure 3, 4 and 5 show the boxplots of classification accuracy, kappa and Brier score, respectively. The boxplots also demonstrates that the proposed method is outperforming the others in majority of the cases.

The results of the proposed ExNRule method and other kNN based procedures for $k = 3, 5, 7$ are given in Table 4 for 5 benchmark datasets. It is clear from the table that the proposed method is not affected by the k parameter as much as the other kNN based methods. The ExNRule gives promising results in majority of the datasets in terms of almost all the performance metrics. Boxplots are constructed for accuracy, kappa and BS in Figures 6, 7 and 8, respectively.

The results of the ExNRule and other kNN based classifiers on synthetic datasets are given in Table 5 which show that the proposed method has outperformed the other competitors in majority of the cases. Particularly, the ExNRule method performs better in a situation where there is more variation in the feature values and where the classes of the observations are not linearly separable. The boxplots for accuracy, kappa and BS are presented in Figure 9. The proposed method did not outperform the other methods in simulation scenarios with small variations in the feature space. This shows that the ExNRule is a recommended method for datasets with diverse patterns.
Table 3: Results of the proposed ExNRule and other state-of-the-art methods on benchmark datasets.

Metrics	Methods	D₁	D₂	D₃	D₄	D₅	D₆	D₇	D₈	D₉	D₁₀	D₁₁	D₁₂	D₁₃	D₁₄	D₁₅	D₁₆	D₁₇	Mean
Accuracy	ExNRule	0.768	0.716	0.683	0.824	0.573	0.836	0.719	0.591	0.592	0.671	0.733	0.716	0.828	0.850	0.709	0.778	0.769	0.727
	kNN	0.742	0.666	0.632	0.776	0.552	0.823	0.678	0.515	0.527	0.680	0.677	0.798	0.820	0.625	0.772	0.782	0.691	
	WkNN	0.709	0.620	0.608	0.745	0.533	0.788	0.682	0.521	0.496	0.661	0.707	0.686	0.750	0.850	0.623	0.720	0.756	0.674
	RF	0.723	0.696	0.676	0.814	0.568	0.825	0.707	0.570	0.550	0.679	0.711	0.712	0.825	0.823	0.681	0.769	0.779	0.712
	OTE	0.716	0.678	0.664	0.801	0.563	0.790	0.703	0.567	0.544	0.652	0.693	0.701	0.808	0.814	0.749	0.763	0.754	0.718
	SVM	0.734	0.641	0.623	0.793	0.568	0.783	0.710	0.580	0.576	0.679	0.698	0.706	0.828	0.740	0.713	0.772	0.786	0.702
Kappa	ExNRule	0.527	0.316	0.360	0.642	0.143	0.542	0.092	0.090	0.132	0.349	0.467	0.222	0.651	0.695	0.008	0.449	0.535	0.366
	kNN	0.465	0.283	0.253	0.550	0.105	0.517	0.186	0.001	0.026	0.363	0.355	0.202	0.591	0.634	-0.026	0.471	0.559	0.326
	WkNN	0.406	0.201	0.211	0.483	0.065	0.430	0.238	0.033	-0.023	0.322	0.412	0.241	0.494	0.695	0.063	0.374	0.504	0.303
	RF	0.723	0.696	0.676	0.814	0.568	0.825	0.707	0.570	0.550	0.679	0.711	0.712	0.825	0.823	0.681	0.769	0.779	0.712
	OTE	0.716	0.678	0.664	0.801	0.563	0.790	0.703	0.567	0.544	0.652	0.693	0.701	0.808	0.814	0.749	0.763	0.754	0.718
	SVM	0.734	0.641	0.623	0.793	0.568	0.783	0.710	0.580	0.576	0.679	0.698	0.706	0.828	0.740	0.713	0.772	0.786	0.702
BS	ExNRule	0.170	0.195	0.205	0.134	0.251	0.116	0.176	0.240	0.239	0.218	0.179	0.196	0.132	0.126	0.222	0.156	0.162	0.183
	kNN	0.186	0.236	0.266	0.172	0.310	0.132	0.218	0.324	0.243	0.227	0.237	0.167	0.131	0.278	0.186	0.151	0.223	
	WkNN	0.291	0.380	0.392	0.255	0.467	0.212	0.318	0.479	0.504	0.339	0.293	0.314	0.314	0.250	0.150	0.377	0.280	0.326
	RF	0.179	0.189	0.211	0.132	0.255	0.124	0.178	0.247	0.274	0.227	0.186	0.196	0.127	0.135	0.238	0.166	0.157	0.189
	OTE	0.187	0.197	0.222	0.138	0.264	0.184	0.183	0.255	0.292	0.258	0.206	0.206	0.133	0.131	0.248	0.181	0.178	0.204
	SVM	0.193	0.217	0.226	0.148	0.249	0.153	0.200	0.245	0.239	0.242	0.221	0.197	0.128	0.178	0.208	0.165	0.165	0.198
Table 4: Results of the proposed ExNRule and kNN based methods for different values of k.

Metrics	Methods	Datasets	Mean														
		D_1	D_2	D_3	D_4	D_5											
	$k = 3$	$k = 5$	$k = 7$	$k = 3$	$k = 5$	$k = 7$	$k = 3$	$k = 5$	$k = 7$								
Accuracy	ExNRule	0.768	0.709	0.716	0.709	0.694	0.683	0.677	0.681	0.824	0.825	0.825	0.573	0.584	0.588	0.710	
	kNN	0.742	0.757	0.758	0.666	0.657	0.650	0.632	0.641	0.646	0.776	0.761	0.752	0.552	0.575	0.573	0.676
	WkNN	0.709	0.709	0.727	0.620	0.620	0.649	0.608	0.629	0.630	0.745	0.787	0.794	0.533	0.538	0.546	0.656
	RkNN	0.764	0.766	0.764	0.699	0.700	0.690	0.669	0.669	0.671	0.823	0.824	0.827	0.562	0.571	0.576	0.705
Kappa	ExNRule	0.527	0.506	0.474	0.316	0.269	0.308	0.360	0.347	0.357	0.642	0.644	0.644	0.143	0.165	0.174	0.385
	kNN	0.465	0.498	0.501	0.283	0.245	0.205	0.253	0.273	0.287	0.550	0.520	0.500	0.105	0.151	0.148	0.332
	WkNN	0.406	0.406	0.441	0.201	0.201	0.242	0.211	0.252	0.253	0.483	0.571	0.584	0.065	0.076	0.094	0.299
	RkNN	0.521	0.525	0.522	0.282	0.265	0.219	0.329	0.331	0.336	0.640	0.643	0.647	0.121	0.137	0.146	0.378
BS	ExNRule	0.170	0.171	0.173	0.195	0.200	0.204	0.205	0.206	0.207	0.134	0.131	0.130	0.251	0.250	0.249	0.192
	kNN	0.186	0.171	0.169	0.236	0.221	0.219	0.266	0.247	0.238	0.172	0.164	0.165	0.310	0.273	0.256	0.220
	WkNN	0.291	0.291	0.207	0.380	0.380	0.244	0.392	0.292	0.283	0.255	0.157	0.150	0.467	0.462	0.359	0.307
	RkNN	0.172	0.169	0.169	0.195	0.199	0.202	0.215	0.215	0.216	0.148	0.148	0.148	0.253	0.249	0.247	0.196
Table 5: Comparison of the proposed ExNRule with the other classical \(k \)NN and its derivatives based on synthetic datasets

Metrics	Methods	\(S_1 \)	\(S_2 \)	\(S_3 \)	\(S_4 \)	\(S_5 \)	\(S_6 \)
	ExNRule	0.832	0.823	0.852	0.884	**0.742**	0.693
Accuracy	\(k \)NN	0.786	0.811	0.850	0.878	0.682	0.696
	W\(k \)NN	0.789	0.821	0.849	**0.887**	0.680	**0.706**
	R\(k \)NN	0.809	0.798	0.833	0.862	0.730	0.675
	ExNRule	**0.666**	0.644	**0.702**	0.766	**0.493**	0.396
Kappa	\(k \)NN	0.574	0.619	0.696	0.752	0.372	0.393
	W\(k \)NN	0.581	0.640	0.695	**0.772**	0.363	**0.412**
	R\(k \)NN	0.618	0.594	0.664	0.722	0.465	0.358
	ExNRule	0.141	0.142	0.122	0.104	0.183	**0.200**
BS	\(k \)NN	0.169	0.149	0.121	0.099	0.239	0.223
	W\(k \)NN	0.179	**0.136**	**0.120**	**0.093**	0.262	0.208
	R\(k \)NN	0.142	0.147	0.126	0.107	**0.180**	0.204
Figure 3: Accuracy of the proposed and other state-of-the-art methods.
Figure 4: Kappa of the proposed and other state-of-the-art methods
Figure 5: BS of the proposed and other state-of-the-art methods
Methods

Figure 6: Accuracy of the proposed and other kNN based methods for different k values
Figure 7: Kappa of the proposed and other kNN based methods for different k values
Figure 8: BS of the proposed and other kNN based methods for different k values.
Figure 9: Accuracy, kappa and BS of the proposed and other kNN based methods on simulated datasets.
5. Conclusion

This paper presented a \(k \) nearest neighbour based ensemble where the neighbours are determined in \(k \) steps. Starting from the first nearest observation of the test point, the algorithm identifies a single observation that is closest to the observation at the previous step. At each base model in the ensemble, this search is extended to \(k \) steps based on a bootstrap sample with randomly selected subset of the given features. The final predicted class of the test point is determined by using majority vote in the predicted classes given by all the base models. The proposed ensemble is compared with base \(k \)NN, weighted \(k \)NN, random \(k \)NN, random forest, optimal trees ensemble and support vector machine on 17 datasets. Classification accuracy, Cohen’s kappa and Brier score are used as performance measures. It has been observed from the results of the analyses that the proposed method, the ExNRule, outperformed the other procedures in the majority of the cases.

The main intuition behind the prediction accuracy of the proposed method is the selection of nearest neighbours in a stepwise pattern. Models based on the ordinary \(k \)NN might not work well in situations when the test observation follows the pattern of data points with the same class that lie on a certain path not contained in the given sphere. The proposed ensemble fixes this problem. Moreover, the ordinary \(k \)NN based models are affected by the hyper-parameter \(k \), while the proposed method is robust to the choice of \(k \). It is shown that for \(k = 3, 5, 7 \), that neighbours selection of a test point are not affecting performance of the proposed method in majority of the cases. Moreover, the performance of the novel method is also assessed through simulated data and gives optimal results in majority of the cases.

Furthermore, each base learner in the proposed ensemble constructed on a random bootstrap sample drawn from training observations with a randomly selected subset of attributes ensure diversity in the model.

The proposed method consists of a large number of base models i.e. \(B \) and fits \(k \)NN repeatedly, hence it is time consuming and laborious as compared to ordinary \(k \)NN. To overcome this issue, one possibility is to parallelize Steps 8-14 of Algorithm 1, for instance, using the \texttt{parallel} R package. Performance of the proposed method could further be improved by using appropriate distance formula to determine the paths. Another possible way to improve performance of the method is to use the feature selection procedures as given in \[53, 60, 61, 62, 63, 64, 65\]. This could be used for selecting a set of features from the total feature space for model construction.

References

[1] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE transactions on information theory 13 (1) (1967) 21–27.

[2] P. Cunningham, S. J. Delany, k-nearest neighbour classifiers-a tutorial, ACM Computing Surveys (CSUR) 54 (6) (2021) 1–25.
[3] N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician 46 (3) (1992) 175–185.

[4] T. Hastie, R. Tibshirani, The Elements of Statistical Learning; Data Mining, Inference and Prediction, Springer, New York, 2009.

[5] M. R. Abbasifard, B. Ghahremani, H. Naderi, A survey on nearest neighbor search methods, International Journal of Computer Applications 95 (25) 39–52.

[6] M.-A. Amal, B.-A. A. Riadh, Survey of nearest neighbor condensing techniques, International Journal of Advanced Computer Science and Applications 2 (11) (2011) 59–64.

[7] S. Kulkarni, M. V. Babu, Introspection of various k-nearest neighbor techniques, UACEE International Journal of Advances in Computer Science and Its Applications 3 (2013) 103–6.

[8] S. D. Bay, Nearest neighbor classification from multiple feature subsets, Intelligent data analysis 3 (3) (1999) 191–209.

[9] S. Kaneko, Combining multiple k-neighbor classifiers using feature combinations, IEICE TRANSACTIONS on Information and Systems 2 (3) (2000) 23–31.

[10] C. Domeniconi, B. Yan, Nearest neighbor ensemble, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., Vol. 1, IEEE, 2004, pp. 228–231.

[11] N. García-Pedrajas, D. Ortiz-Boyer, Boosting k-nearest neighbor classifier by means of input space projection, Expert Systems with Applications 36 (7) (2009) 10570–10582.

[12] S. Li, E. J. Harner, D. A. Adjeroh, Random knn, in: 2014 IEEE International Conference on Data Mining Workshop, IEEE, 2014, pp. 629–636.

[13] M. Rashid, M. Mustafa, N. Sulaiman, N. R. H. Abdullah, R. Samad, Random subspace k-nn based ensemble classifier for driver fatigue detection utilizing selected eeg channels., Traitement du Signal 38 (5) 1259–1270.

[14] A. Gul, A. Perperoglou, Z. Khan, O. Mahmoud, M. Miftahuddin, W. Adler, B. Lausen, Ensemble of a subset of k nn classifiers, Advances in data analysis and classification 12 (4) (2018) 827–840.

[15] B. M. Steele, Exact bootstrap k-nearest neighbor learners, Machine Learning 74 (3) (2009) 235–255.

[16] Y. Zhang, G. Cao, B. Wang, X. Li, A novel ensemble method for k-nearest neighbor, Pattern Recognition 85 (2019) 13–25.
[17] T. Bailey, J. AK, et al., A note on distance-weighted k-nearest neighbor rules. 8 (4) (1978) 311–313.

[18] E. Alpaydin, Voting over multiple condensed nearest neighbors, in: Lazy learning, Springer, 1997, pp. 115–132.

[19] F. Angiulli, Fast condensed nearest neighbor rule, in: Proceedings of the 22nd international conference on Machine learning, 2005, pp. 25–32.

[20] K. Gowda, G. Krishna, The condensed nearest neighbor rule using the concept of mutual nearest neighborhood (corresp.), IEEE Transactions on Information Theory 25 (4) (1979) 488–490.

[21] G. Gates, The reduced nearest neighbor rule (corresp.), IEEE transactions on information theory 18 (3) (1972) 431–433.

[22] G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, Knn model-based approach in classification, in: OTM Confederated International Conferences” On the Move to Meaningful Internet Systems”, Springer, 2003, pp. 986–996.

[23] Z. Yong, L. Youwen, X. Shixiong, An improved knn text classification algorithm based on clustering, Journal of computers 4 (3) (2009) 230–237.

[24] H. Parvin, H. Alizadeh, B. Minaei-Bidgoli, Mknn: Modified k-nearest neighbor, in: Proceedings of the world congress on engineering and computer science, Vol. 1, Citeseer, 2008.

[25] R. F. Sproull, Refinements to nearest-neighbor searching in k-dimensional trees, Algorithmica 6 (1) (1991) 579–589.

[26] H. Zhang, A. C. Berg, M. Maire, J. Malik, Svm-knn: Discriminative nearest neighbor classification for visual category recognition, in: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 2, IEEE, 2006, pp. 2126–2136.

[27] M. Chen, L. Li, B. Wang, J. Cheng, L. Pan, X. Chen, Effectively clustering by finding density backbone based-on knn, Pattern Recognition 60 (2016) 486–498.

[28] M. H. Rohban, H. R. Rabiee, Supervised neighborhood graph construction for semi-supervised classification, Pattern Recognition 45 (4) (2012) 1363–1372.

[29] Y. Wu, K. Ianakiev, V. Govindaraju, Improved k-nearest neighbor classification, Pattern recognition 35 (10) (2002) 2311–2318.

[30] H. Altıncay, Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation, Applied Soft Computing 7 (3) (2007) 1072–1083.
[31] M. A. Tahir, A. Bouridane, F. Kurugollu, Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier, Pattern Recognition Letters 28 (4) (2007) 438–446.

[32] Y. Bao, N. Ishii, X. Du, Combining multiple k-nearest neighbor classifiers using different distance functions, in: International Conference on Intelligent Data Engineering and Automated Learning, Springer, 2004, pp. 634–641.

[33] N. Ishii, E. Tsuchiya, Y. Bao, N. Yamaguchi, Combining classification improvements by ensemble processing, in: Third ACIS Int’l Conference on Software Engineering Research, Management and Applications (SERA’05), IEEE, 2005, pp. 240–246.

[34] T. K. Ho, Nearest neighbors in random subspaces, in: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Springer, 1998, pp. 640–648.

[35] Z.-H. Zhou, Y. Yu, Ensembling local learners through multimodal perturbation, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 35 (4) (2005) 725–735.

[36] L. Nanni, A. Lumini, Particle swarm optimization for ensembling generation for evidential k-nearest-neighbour classifier, Neural Computing and Applications 18 (2) (2009) 105–108.

[37] L. Breiman, Bagging predictors, Machine learning 24 (2) (1996) 123–140.

[38] B. Caprile, S. Merler, C. Furlanello, G. Jurman, Exact bagging with k-nearest neighbour classifiers, in: International Workshop on Multiple Classifier Systems, Springer, 2004, pp. 72–81.

[39] Z.-H. Zhou, Y. Yu, Adapt bagging to nearest neighbor classifiers, Journal of Computer Science and Technology 20 (1) (2005) 48–54.

[40] J. Gu, L. Jiao, F. Liu, S. Yang, R. Wang, P. Chen, Y. Cui, J. Xie, Y. Zhang, Random subspace based ensemble sparse representation, Pattern Recognition 74 (2018) 544–555.

[41] S. Grabowski, Voting over multiple k-nn classifiers, in: Modern Problems of Radio Engineering, Telecommunications and Computer Science (IEEE Cat. No. 02EX542), IEEE, 2002, pp. 223–225.

[42] S. Zhang, X. Li, M. Zong, X. Zhu, R. Wang, Efficient knm classification with different numbers of nearest neighbors, IEEE transactions on neural networks and learning systems 29 (5) (2017) 1774–1785.

[43] Y. Freund, R. E. Schapire, et al., Experiments with a new boosting algorithm, in: icml, Vol. 96, Citeseer, 1996, pp. 148–156.
[44] J. O’Sullivan, J. Langford, R. Caruana, A. Blum, Featureboost: A metalearning algorithm that improves model robustness (2000).

[45] Y. Zhang, G. Cao, B. Wang, X. Li, A novel ensemble method for k-nearest neighbor, Pattern Recognition 85 (2019) 13–25.

[46] J. Amores, N. Sebe, P. Radeva, Boosting the distance estimation: Application to the k-nearest neighbor classifier, Pattern Recognition Letters 27 (3) (2006) 201–209.

[47] A.-J. Gallego, J. Calvo-Zaragoza, J. J. Valero-Mas, J. R. Rico-Juan, Clustering-based k-nearest neighbor classification for large-scale data with neural codes representation, Pattern Recognition 74 (2018) 531–543.

[48] A. Ali, M. Hamraz, P. Kumam, D. M. Khan, U. Khalil, M. Sulaiman, Z. Khan, A k-nearest neighbours based ensemble via optimal model selection for regression, IEEE Access 8 (2020) 132095–132105.

[49] B. Tang, H. He, Enn: Extended nearest neighbor method for pattern recognition [research frontier], IEEE Computational intelligence magazine 10 (3) (2015) 52–60.

[50] R. Rahman, “heart attack analysis & prediction dataset.” kaggle, https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset, accessed: 2022-03-09.

[51] M. Kuhn, caret: Classification and Regression Training, r package version 6.0-90 (2021). URL https://CRAN.R-project.org/package=caret

[52] K. Schliep, K. Hechenbichler, kknn: Weighted k-Nearest Neighbors, r package version 1.3.1 (2016). URL https://CRAN.R-project.org/package=kknn

[53] S. Li, rknn: Random KNN Classification and Regression, r package version 1.2-1 (2015). URL https://CRAN.R-project.org/package=rknn

[54] A. Liaw, M. Wiener, Classification and regression by randomforest R News 2 (3) (2002) 18–22. URL https://CRAN.R-project.org/doc/Rnews/

[55] Z. Khan, A. Gul, A. Perperoglou, O. Mahmoud, W. Adler, Miftahuddin, B. Lausen, OTE: Optimal Trees Ensembles for Regression, Classification and Class Membership Probability Estimation, r package version 1.0.1 (2020). URL https://CRAN.R-project.org/package=OTE
[56] A. Karatzoglou, A. Smola, K. Hornik, A. Zeileis,
kernlab – an S4 package for kernel methods in R, Journal of Statistical Software 11 (9) (2004) 1–20.
URL http://www.jstatsoft.org/v11/i09/

[57] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch,
e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), R package version 1.7-9 (2021).
URL https://CRAN.R-project.org/package=e1071

[58] R Core Team, **R: A Language and Environment for Statistical Computing**, R Foundation for Statistical Computing, Vienna, Austria (2021).
URL https://www.R-project.org/

[59] J.-N. Sun, H.-Y. Yang, J. Yao, H. Ding, S.-G. Han, C.-Y. Wu, H. Tang, Prediction of cyclin protein using two-step feature selection technique, IEEE Access 8 (2020) 109535–109542.

[60] Q. Hu, X.-S. Si, A.-S. Qin, Y.-R. Lv, Q.-H. Zhang, Machinery fault diagnosis scheme using redefined dimensionless indicators and mrmr feature selection, IEEE Access 8 (2020) 40313–40326.

[61] Z. Khan, M. Naeem, U. Khalil, D. M. Khan, S. Aldahmani, M. Hamraz, Feature selection for binary classification within functional genomics experiments via interquartile range and clustering, IEEE Access 7 (2019) 78159–78169.

[62] B. Chatterjee, T. Bhattacharyya, K. K. Ghosh, P. K. Singh, Z. W. Geem, R. Sarkar, Late acceptance hill climbing based social ski driver algorithm for feature selection, IEEE Access 8 (2020) 75393–75408.

[63] M. Hamraz, N. Gul, M. Raza, D. M. Khan, U. Khalil, S. Zubair, Z. Khan, Robust proportional overlapping analysis for feature selection in binary classification within functional genomic experiments, PeerJ Computer Science 7 (2021) e562.

[64] A. Mishra, M. Chandra, A. Biswas, S. Sharan, Robust features for connected hindi digits recognition, International Journal of Signal Processing, Image Processing and Pattern Recognition 4 (2) (2011) 79–90.

[65] Z. Li, A. G. Bors, Selection of robust features for the cover source mismatch problem in 3d steganalysis, in: 2016 23rd International Conference on Pattern Recognition (ICPR), IEEE, 2016, pp. 4256–4261.