COSMETIC CROSSING CONJECTURE FOR GENUS ONE KNOTS WITH NON-TRIVIAL ALEXANDER POLYNOMIAL

TETSUYA ITO

Abstract. We prove the cosmetic crossing conjecture for genus one knots with non-trivial Alexander polynomial. We also prove the conjecture for genus one knots with trivial Alexander polynomial, under some additional assumptions.

1. Introduction

A cosmetic crossing is a non-nugatory crossing such that the crossing change at the crossing preserves the knot. A cosmetic crossing conjecture [Kir, Problem 1.58] asserts there are no such crossings.

Conjecture 1 (Cosmetic crossing conjecture). An oriented knot K in S^3 does not have cosmetic crossings.

Here a crossing c of a knot diagram D is nugatory if there is a circle C on the projection plane that transverse to the diagram D only at c. Obviously the crossing change at a nugatory crossing always preserves the knot, so the cosmetic crossing conjecture can be rephrased that when a crossing change at a crossing c preserves the knot, then c is nugatory.

In [BFKP] Balm-Friedl-Kalfagianni-Powell proved the following constraints for genus one knots to admit a cosmetic crossing.

Theorem 1.1. [BFKP] Theorem 1.1, Theorem 5.1] Let K be a genus one knot that admits a cosmetic crossing. Then K has the following properties.

- K is algebraically slice.
- For the double branched covering $\Sigma_2(K)$ of K, $H_1(\Sigma_2(K); \mathbb{Z})$ is finite cyclic.
- If K has a unique genus one Seifert surface, $\Delta_K(t) = 1$.

In this paper, by using the 2-loop part of the Kontsevich invariant, we prove the cosmetic crossing conjecture for genus one knot with non-trivial Alexander polynomial.

Theorem 1.2. Let K be a genus one knot. If $\Delta_K(t) \neq 1$, then K satisfies the cosmetic crossing conjecture.

For genus one knot K with $\Delta_K(t) = 1$ we get an additional constraint for K to admit a cosmetic crossing. Let λ be the Casson invariant of integral homology spheres and let $w_3(K) = \frac{1}{36} V''''_K(1) + \frac{1}{12} V'''_K(1)$ be the primitive integer-valued degree 3 finite type invariant of K. Here $V_K(t)$ is the Jones polynomial of K.

Theorem 1.3. Let K be a genus one knot with $\Delta_K(t) = 1$. If $\lambda(\Sigma_2(K)) - 2w_3(K) \not\equiv 0 \pmod{16}$, then K satisfies the cosmetic crossing conjecture.
The cosmetic crossing conjecture has been confirmed for several cases: 2-bridge knots [Tor], fibered knots [Kal], knots whose double branched coverings are L-spaces with square-free 1st homology [LiMo], and some satellite knots [BaKa]. Except the last satellite cases and the unknot, all the knots mentioned so far, including knots treated in Theorem 1.1, has non-trivial Alexander polynomial.

Theorem 1.3 gives examples of non-satellite knots with trivial Alexander polynomial satisfying the cosmetic crossing conjecture. Let \(K = \text{pretzel}(p, q, r) \) be the pretzel knot for odd \(p, q, r \). Obviously, as long as \(K \) is non-trivial, \(g(K) = 1 \). The Alexander polynomial of \(K \) is

\[
\Delta_K(t) = \frac{pq + qr + rp + 1}{4} t + \frac{-2pq - 2qr - 2rp + 1}{2} + \frac{pq + qr + rp + 1}{4} t^{-1}.
\]

Hence, for example, the pretzel knot \(K = \text{pretzel}(4k + 1, 4k + 3, -(2k + 1)) \) has the trivial Alexander polynomial.

Corollary 1.4. If \(k \equiv 1, 2 \pmod{4} \), the pretzel knot \(K = \text{pretzel}(4k + 1, 4k + 3, -(2k + 1)) \) satisfies the cosmetic crossing conjecture.

2. Cosmetic crossing of genus one knot and Seifert surface

We review an argument of [BFKP, Section 2, Section 3] that relates a cosmetic crossing change and Seifert matrix.

A crossing disk \(D \) of an oriented knot \(K \) is an embedded disk having exactly one positive and one negative crossing with \(K \). A crossing change can be seen as \(\varepsilon = \pm 1 \) Dehn surgery on \(\partial D \) for an appropriate crossing disk \(D \), and the crossing is nugatory if and only if \(\partial D \) bounds an embedded disk in \(S^3 \setminus K \).

Assume that \(K \) admits a cosmetic crossing with the crossing disk \(D \). Then as is discussed in [BFKP, Section 2], there is a minimum genus Seifert surface \(S \) of \(K \) such that \(\alpha := D \cap S \) is a properly embedded, essential arc in \(S \).

If \(g(S) = 1 \), such an arc \(\alpha \) is non-separating. We take simple closed curves \(a_x, a_y \) of \(S \) so that

- \(a_x \) intersects \(\alpha \) exactly once.
- \(a_x \) and \(a_y \) form a symplectic basis of \(H_1(S; \mathbb{Z}) \).

Then we view \(K = \partial S \) as a neighborhood of \(a_x \cup a_y \) and express \(K \) by a framed 2-tangle \(T \) as depicted in Figure 1.

Figure 1. A spine tangle \(T \) adapted to the cosmetic crossing
We call the framed tangle \(T \) a spine tangle of \(K \) adapted to the cosmetic crossing of a genus one knot \(K \). Let \(M = \begin{pmatrix} n & \ell \\ \ell & m \end{pmatrix} \) be the linking matrix of \(T \), where \(n \) (resp. \(m \)) is the framing of the strand \(x \) (resp. \(y \)) and \(\ell \) is the linking number of two strands of \(T \).

Let \(K' \) be a knot obtained from \(K \) by crossing change along the crossing disk \(D \). Then \(S \) gives rise to a Seifert surface \(S' \) of \(K' \) ([BFKP, Proposition 2.1]). \(K' \) has a spine tangle presentation \(T' \), so that \(T' \) and \(T \) are the same as unframed tangles, and that the linking matrix of \(T' \) is \(M' = \begin{pmatrix} n \pm 1 & \ell \\ \ell & m \end{pmatrix} \).

With respect to the basis \(\{ a_x, a_y \} \), the Seifert matrix \(V \) of \(K \) and the Seifert matrix \(V' \) of \(K' \) are given by
\[
V = \begin{pmatrix} n & \ell \\ \ell & m \end{pmatrix}, \quad V' = \begin{pmatrix} n \pm 1 & \ell \\ \ell \pm 1 & m \end{pmatrix}
\]
respectively. Since \(K \) and \(K' \) are the same knot,
\[
\Delta_K(t) = \det(V - tV^T) = \Delta_K'(t).
\]
By direct computation, this implies that
\[
(2.1) \quad m = 0.
\]
In particular, \(K \) is algebraically slice.

3. 2-LOOP POLYNOMIAL OF GENUS ONE KNOT

Here we quickly review the 2-loop polynomial. For details, see [Oht]. Let \(\mathcal{B} \) be the space of open Jacobi diagram. For a knot \(K \) in \(S^3 \), let \(Z^\sigma(K) \in \mathcal{B} \) be the Kontsevich invariant of \(K \), viewed so that it takes value in \(\mathcal{B} \) by composing the inverse of the Poincaré-Birkhoff-Witt isomorphism \(\sigma : \mathcal{A}(S^1) \to \mathcal{B} \).

A Jacobi diagram whose edge is labeled by a power series \(f(h) = c_0 + c_1 h + c_2 h^2 + c_3 h^3 + \cdots \) represents the Jacobi diagram \(f(h) \). It is known that (the logarithm of) the Kontsevich invariant \(Z^\sigma(K) \) is written in the following form [GaKr, Kri].

\[
\log_\sqcup Z^\sigma(K) = \frac{1}{2} \left(\log \left(\frac{\sinh(\frac{\pi}{2} h)}{\sqrt{\pi} - h} \right) - \frac{1}{2} \log(\Delta_K(h)) \right) + \sum_{i: \text{finite}} \frac{\frac{p_{i,1}(h)/\Delta_K(h)}{p_{ii,1}(h)/\Delta_K(h)}}{p_{i,0}(h)/\Delta_K(h)} + (\ell > 2)\text{-loop parts}.
\]

Here
- \(\Delta_K(t) \) is the Alexander polynomial of \(K \), normalized so that \(\Delta_K(1) = 1 \) and \(\Delta_K(t) = \Delta_K(t^{-1}) \) hold.
- \(\log_\sqcup \) is the logarithm with respect to the disjoint union product \(\sqcup \) of \(\mathcal{B} \), given by
\[
\log_\sqcup(1 + D) = D - \frac{1}{2} D \sqcup D + \frac{1}{3} D \sqcup D \sqcup D + \cdots.
\]
• $p_{i,j}(e^h)$ is a polynomial of e^h.

Let

$$\Theta(t_1, t_2, t_3; K) = \sum_{\varepsilon \in \{\pm 1\}} \sum_{\sigma \in S_3} p_{i,1}(t_{\sigma(1)}^\varepsilon)p_{i,2}(t_{\sigma(2)}^\varepsilon)p_{i,3}(t_{\sigma(3)}^\varepsilon).$$

Here S_3 is the symmetric group of degree 3. The 2-loop polynomial $\Theta_K(t_1, t_2) \in \mathbb{Q}[t_1^\pm, t_2^\pm]$ of a knot K is defined by

$$\Theta_K(t_1, t_2) = \Theta(t_1, t_2, t_3; K)|_{t_3 = t_1^{-1}t_2^{-1}}.$$

The reduced 2-loop polynomial is a reduction of the 2-loop polynomial defined by

$$\hat{\Theta}_K(t) = \frac{\Theta_K(t, 1)}{(t_2^+ - t_2^-)^2} \in \mathbb{Q}[t^\pm].$$

In general, although Ohtsuki developed fundamental techniques and machineries that enable us to compute $\Theta_K(t_1, t_2)$, the computation of the 2-loop polynomial is much more complicated than the computation of the 1-loop part (i.e., the Alexander polynomial). Fortunately, when the knot has genus one, Ohtsuki proved a direct formula of $\Theta_K(t_1, t_2)$ [Oht, Theorem 3.1]. Consequently he gave the following formula of the reduced 2-loop polynomial of genus one knots.

Theorem 3.1. [Oht] Corollary 3.5] Let K be a genus one knot expressed by using a framed 2-tangle T as in Figure 7 and let $M = \begin{pmatrix} n & \ell \\ \ell & m \end{pmatrix}$ be the linking matrix of T. Then

$$\hat{\Theta}_K(t) = \left(\frac{(n+m)(d - \frac{nm}{2}) - \ell(\ell + 1)(\ell + 1)}{2} + 12v_3\right)\left(-2 - \frac{2d + 1}{3}(t + t^{-1} - 2)\right)$$

$$- 4\left(mv_2^{xx} + mv_2^{yy} - (\ell + \frac{1}{2})v_2^{xy} + 3v_3\right)\Delta_K(t)$$

Here

• $d = nm - \ell^2 - \ell$. In particular, $\Delta_K(t) = dt + (1 - 2d) + dt^{-1}$.
• v_2^{xx}, v_2^{yy}, v_2^{xy} (resp. v_3) are some integer-valued finite type invariant of T whose degree is 2 (resp. 3), which do not depend on the framing.

4. CONSTRAINT FOR COSMETIC CROSSINGS

We prove the Theorem 1.2 and Theorem 1.3 at the same time.

Theorem 4.1. Let K be a genus one knot. If K admits a cosmetic crossing, then $\Delta_K(t) = 1$ and $\lambda(\Sigma_2(K)) - 2w_3(K) \equiv 0 \pmod{16}$.

Proof. Assume that K is a genus one knot admitting a cosmetic crossing. We express K using a spine tangle T adapted to the cosmetic crossing. Then as we have seen (2.1), the linking matrix of T is $M = \begin{pmatrix} n & \ell \\ \ell & 0 \end{pmatrix}$. Moreover, for the knot K' obtained by the crossing change, K' has a spine tangle T' which is identical with T as an unframed tangle with linking matrix is $M' = \begin{pmatrix} n \pm 1 & \ell \\ \ell & 0 \end{pmatrix}$.
Since the finite type invariants \(v^{xy}_2, v^{yy}_2, v^{yy}_2 \) and \(v_3 \) do not depend on the framing, by Theorem 5.1
\[
0 = \hat{\Theta}_K(t) - \hat{\Theta}_{K'}(t)
\]
\[
= d(-2 - \frac{2d+1}{3}(t + t^{-1} - 2)) - 4v^{yy}_2(dt + (1 - 2d) + dt^{-1})
\]
\[
= d\left(-\frac{2d+1}{3} - 4v^{yy}_2 \right) t + \frac{d(4d-4)}{3} + 4v^{yy}_2(2d-1) + d\left(-\frac{2d+1}{3} - 4v^{yy}_2 \right) t^{-1}.
\]
Therefore
\[
(4.1) \quad d\left(-\frac{2d+1}{3} - 4v^{yy}_2 \right) = \frac{d(4d-4)}{3} + 4v^{yy}_2(2d-1) = 0.
\]

If \(d \neq 0 \), by (4.1) \(d = \frac{2}{3} \). Since \(d \in \mathbb{Z} \), this is a contradiction so we conclude \(d = 0 \) and \(\Delta_k(t) = 1 \).

Then by (4.1), \(d = 0 \) implies \(v^{yy}_2 = 0 \). Moreover, since \(d = n(\ell-2)-\ell = -\ell(\ell+1) \), we get \(\ell = 0, -1 \). Thus by Theorem 5.1 the reduced 2-loop polynomial is
\[
\hat{\Theta}_K(t) = 12v_3\left(-2 - \frac{1}{3}(t + t^{-1} - 2)\right) - 4\left(\ell + \frac{1}{2} \right) v^{xy}_2 - 3v_3)
\]
hence
\[
\hat{\Theta}_K(1) = -12v_3 + 4\left(\ell + \frac{1}{2} \right) v^{xy}_2, \quad \hat{\Theta}_K(-1) = 4v_3 + 4\left(\ell + \frac{1}{2} \right) v^{xy}_2.
\]

On the other hand, by [Oht] Proposition 1.1
\[
\hat{\Theta}_K(1) = 2w_3(K), \quad \hat{\Theta}_K(-1) = -\frac{1}{12} V'_K(-1)V_K(-1).
\]

Since \(\Delta_k(-1) = V'_K(-1) = 1 \), by Mullins’ formula of the Casson-Walker invariant \(\lambda_w \) of the double branched coverings [Mull],
\[
\lambda_w(\Sigma_2(K)) = \frac{\frac{V'_K(-1)}{6V_K(-1)} + \frac{\sigma(K)}{4}}{4}
\]
we get
\[
\hat{\Theta}_K(-1) = \frac{1}{2} \lambda_w(\Sigma_2(K)).
\]

For an integral homology sphere, the Casson invariant \(\lambda \) is twice of the Casson-Walker invariant \(\lambda_w \) hence we conclude
\[
\lambda(\Sigma_2(K)) - 2w_3(K) = \hat{\Theta}_K(-1) - \hat{\Theta}_K(1) = 16v_3.
\]

\(\square \)

Proof of Corollary 1.4. The reduced 2-loop polynomial of genus pretzel knots \(P(p, q, r) \) was given in [Oht] Example 3.6. In particular, for \(K = P(4k+1, 4k+3, -(2k+1)) \), \(\hat{\Theta}_K(1) \) and \(\hat{\Theta}_K(-1) \) are given by
\[
\hat{\Theta}_K(1) = -\frac{1}{8}(4k+2)(4k+4)(-2k), \quad \hat{\Theta}_K(-1) = -\frac{1}{24}(4k+2)(4k+4)(-2k)
\]
hence
\[
\lambda(\Sigma_2(K)) - 2w_3(K) = \hat{\Theta}_K(-1) - \hat{\Theta}_K(1) = \frac{1}{12}(4k+2)(4k+4)(-2k)
\]
\[
= -16\frac{(2k+1)(k+1)}{12}.
\]
When \(k \equiv 1, 2 \pmod{4} \), \(\frac{(2k+1)(k+1)}{12} \notin \mathbb{Z} \) hence \(K \) does not admit cosmetic crossing by Theorem 1.3. □

Acknowledgement

The author has been partially supported by JSPS KAKENHI Grant Number 19K03490,16H02145.

References

[BFKP] C. Balm, S. Friedl, E. Kalfagianni, and M. Powell, *Cosmetic crossings and Seifert matrices*, Comm. Anal. Geom. **20** (2012), 235–253.

[BaKa] C. Balm and E. Kalfagianni, *Knots without cosmetic crossings*, Topology Appl. **207** (2016), 33–42.

[GaKr] S. Garoufalidis and A. Kricker, *A rational noncommutative invariant of boundary links*, Geom. Topol. **8** (2004), 115–204.

[Kal] E. Kalfagianni, *Cosmetic crossing changes of fibered knots*, J. reine angew. Math. **669** (2012), 151–164.

[Kir] R. Kirby (ed), *Problems in low-dimensional topology*, Edited by Rob Kirby. AMS/IP Stud. Adv. Math., 2, Geometric topology (Athens, GA, 1993), 3–473, Amer. Math. Soc., Providence, RI, 1997.

[Kri] A. Kricker, *The lines of the Kontsevich integral and Rozansky’s rationality conjecture*, [arXiv:math/0005284](https://arxiv.org/abs/math/0005284).

[LiMo] T. Lidman and A. Moore, *Cosmetic surgery in L-spaces and nugatory crossings*, Trans. Amer. Math. Soc. **369** (2017), 3639–3654.

[Mull] D. Mullins, *The generalized Casson invariant for 2-fold branched covers of \(S^3 \) and the Jones polynomial*, Topology **32** (1993), 419–438.

[Oht] T. Ohtsuki, *On the 2-loop polynomial of knots*, Geom. Topol. **11** (2007), 1357–1475.

[Tor] I. Torisu, *On nugatory crossings for knots*, Topology Appl. **92** (1999), 119–129.