Letter

Circularly polarized molecular high harmonic generation using a bicircular laser

F Mauger1,2, A D Bandrauk1 and T Uzer3

1 Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
2 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001, USA
3 School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430, USA

E-mail: fmauger@phys.lsu.edu

Received 3 December 2015, revised 26 February 2016
Accepted for publication 3 March 2016
Published 5 May 2016

Abstract
We investigate the process of circularly polarized high harmonic generation in molecules using a bicircular laser field. In this context, we show that molecules offer a very robust framework for the production of circularly polarized harmonics, provided their symmetry is compatible with that of the laser field. Using a discrete time-dependent symmetry analysis, we show how all the features (harmonic order and polarization) of spectra can be explained and predicted. The symmetry analysis is generic and can easily be applied to other target and/or field configurations.

Keywords: molecular high harmonic generation, circularly polarized harmonics, bicircular laser field, discrete symmetry analysis

(Some figures may appear in colour only in the online journal)

In the past few decades, strong-field physics which studies the interaction between strong and ultra-short laser pulses and atoms and molecules has drawn an increasing level of interest for the perspectives it offers to probe the organization of matter \cite{1–5}, at the scale of the electronic dynamics in this systems, thus giving birth to attosecond science \cite{6}. An efficient means of obtaining such ultra-fast pulses relies on the production and manipulation of high-harmonic generation (HHG) emission. For atomic targets, our understanding of HHG relies on the conversion of a large number of laser photons, previously absorbed by an ionized electron, into a single harmonic photon upon recollision \cite{7–9}. Beyond atoms, similar HHG have been reported and studied for molecular targets where one can take advantage of the more complex geometry \cite{10, 11} compared with the atomic counterpart.

Numerical investigations of molecular circularly polarized (CP) HHG have been reported for specific geometrical (stretched molecules) and/or laser field (combination of elliptic/CP and static laser fields, carrier envelope phase…) configurations \cite{11}. Recently, the interest in CP harmonics have been revived by experimental work using an atomic target and a counter rotating bicircular laser \cite{12}, opening the way for dichroism studies. Using electric dipole selection rules (EDSR)—dipole (approximation) for both absorption and emission—the properties of such circular atomic spectra have been explained in a photon picture \cite{13–15}. Here we investigate the process of molecular HHG with bicircular laser fields. For molecular systems the stakes are high given that the aforementioned EDSR do not apply (because of the absence of rotational symmetry) while the more complex geometry offers perspectives for richer features compared to atoms \cite{10, 11}. We use discrete time-dependent symmetry (DTDS) \cite{16} analysis and show that molecular CP HHG can be obtained in generic configurations of symmetric molecules, as shown in figure 1.

From the theoretical and numerical points of view, most HHG models disregard the photon quantum nature of light...
and compute spectra from the dipole (acceleration) of the electronic wavefunction [17]
\[
\mathbf{R}_{\text{HGG}} = \mathcal{F}[\mathbf{d}(t) \vert \nu] = \mathcal{F}[\langle \psi(t) \vert \hat{a}(t) \vert \psi(t) \rangle] \vert \nu, \quad (1)
\]
where \(\mathcal{F}\) denotes the Fourier transform and we use the bracket notation. Here \(\langle \psi(t) \rangle\) is the numerical solution of the time-dependent Schrödinger equation (TDSE) for an isolated single active electron (SAE) model taken in the dipole approximation. In the length gauge and using atomic units (unless otherwise specified), the corresponding Hamiltonian operator reads
\[
\hat{H}(\mathbf{x}, t) = -\frac{\Delta}{2} + V(\mathbf{x}) + \mathbf{E}(t) \cdot \mathbf{x},
\]
where \(\hat{H}_0\) is the free-field molecular Hamiltonian, \(V\) is the effective (SAE) potential (see footnote 4) and \(\mathbf{E}\) is the laser electric field.

We present the DTDS analysis for a coplanar bicircular laser field with respective frequencies \(\omega_1\) and \(\omega_2\), which has drawn experimental and theoretical interest in the past [13, 14, 16] but it can easily be generalized to other laser configurations. We take the counter-rotating case as a reference for the laser such that, in the \((x, y)\) polarization plane, the bicircular electric field reads
\[
\mathbf{E}(t) = E_0(f(t) \cos \omega_1 t + \cos \omega_2 t) \sin \omega_1 t - \sin \omega_2 t, \quad (3)
\]
where \(E_0\) and \(f\) are the (common) peak field amplitude and envelope respectively. In most cases, the beating between the two color components induces a periodic vanishing of the laser field (see the light gray curve in the upper part of figure 1) which is naturally associated with recollision and HHG. This becomes obvious in a rotating frame at frequency \(\Delta \omega = (\omega_1 - \omega_2)/2\), which maps Hamiltonian (2) to [18]
\[
\hat{\mathcal{H}}(\mathbf{x}, t) = \hat{\mathcal{H}}_0(\mathbf{x}, t) - \Delta \omega \hat{L}_z + 2E_0 f(t) \cos \pi \Delta \omega, \quad (4)
\]
where tildes stand for rotating frame coordinates, \(\hat{L}_z = -i(\hat{x} \partial_y - \hat{y} \partial_x)\) is the angular momentum operator and \(\bar{\omega} = (\omega_1 + \omega_2)/2\). From the lower part of figure 1 we notice that only some harmonics, with a well defined polarization, are present in the spectrum as we explain in what follows using DTDS analysis.

The role of dynamical symmetries in HHG computations has been identified previously considering eigenstate decomposition of the wavefunction using free-field [19] or Floquet [16, 20] states. For instance, in the formal Floquet framework, symmetries have been used to reduce the time-evolution Floquet Hamiltonian [20, 21]. Applied to our problem of molecular HHG with a bicircular laser field would lead to similar predictions on spectra as we detail below. Here we present a fully non-perturbative analysis of HHG and begin with the laser component of Hamiltonian (2). For the theoretical analysis, and without loss of generality, we assume \(0 < |\omega_1| \leq |\omega_2|\) in equation (3). Finally, in order to impose some periodicity on the system, we assume the two color components locked, i.e., \(\omega_2/\omega_1 = k_2/k_1\) with \(k_1\) and \(k_2\) non-zero integers \((k_2 > 0)\) thus \(k_1 + k_2 \geq 0\) and co-prime (irreducible fractional form), which is not a strong hypothesis since rational numbers are dense in real numbers \(\mathbb{R}\). We illustrate the laser field in counter-rotating \(\omega/2\omega\) \((k_2 = 2k_1)\)
with a light gray curve in the upper part of figure 1. Putting aside the envelope \(f = 1 \) although numerical simulations of the TDSE fully account for it, basic trigonometric algebra shows that the electric field \(\mathbf{E}(t) \) is 2\(\pi k_1 / \omega_1 \)-time periodic and exhibits a \(k_1 + k_2 \)-fold rotational symmetry (for \(k_1 + k_2 = 0 \))

\[
E\left(t + n \frac{\theta}{\omega_1}\right) = \Omega(n\theta)E(t), \quad \theta = 2\pi \frac{k_1}{k_1 + k_2},
\]

where \(\Omega(\alpha) \) is the rotation matrix around the \(z \) axis with angle \(\alpha \), for all integer \(n \). For example, in the counter-rotating \(\omega / 2 \omega \) configuration, this leads to an overall three-fold symmetry (again, see the light gray curve in the upper part of figure 1).

Moving to the molecular part of Hamiltonian (2) we assume that the target is aligned in the polarization plane and has some degree of symmetry which is compatible with the field own symmetry. More specifically, we assume that the SAE (effective) potential presents a \(k \)-fold symmetry \(\hat{\mathcal{H}}_0(x) = \hat{\mathcal{H}}_0(\Omega(-2\pi/k)x) \). Then, the overall system ‘molecule+laser field’ presents a \(k \)-fold symmetry, where \(\hat{k} \) is the greatest common divisor between \(k \) and \(k_1 + k_2 \).

\[
\hat{\mathcal{H}}(x, t + n \frac{\theta}{\omega_1}) = \hat{\mathcal{H}}(\Omega(-n\theta)x, t), \quad \hat{\theta} = 2\pi \frac{k_1}{k},
\]

as deduced from (5), for all integer \(n \). As can be seen in the upper part of figure 1, the combination of the equilateral \(\mathcal{H}^+ \) molecular ion (see footnote 5) and counter-rotating \(\omega / 2 \omega \) laser field is an example of such a compatible symmetry. Experimentally and numerically, HHG corresponds to a range of intensities where ionization is moderate as HHG vanishes for depletion of the ground state. Therefore it is reasonable to assume that the wavefunction repeats itself over time, following a similar symmetry to equation (6)—up to a phase that disappears in the dipole (acceleration) computation—and in turn, so does the dipole (acceleration). We have checked numerically (see footnote 4) the limiting factor of ionization by observing that the properties of HHG spectra described in what follows degrade when entering a (strong) ionization regime, due to the loss of periodicity associated with ground state depletion.

We combine the symmetry condition (6) with the definition of the Fourier transform (1) over one period of the laser field

\[
R_{\text{HHG}}(\nu) = \frac{\omega_1}{2\pi k_1} \int_0^{2\pi k_1 / \omega_1} \int_0^{\omega_1} \left(\hat{d}_x(t) \right) e^{-i\nu t} dt \, d\phi,
\]

\[
= \frac{\omega_1}{2\pi k_1} \sum_{k=0}^{k-1} \int_0^{2\pi} \left(\hat{d}_x(t) \right) e^{-i\nu t} dt \, d\phi,
\]

\[
= \frac{\omega_1}{2\pi k_1} \sum_{k=0}^{k-1} e^{-i\nu t} \int_0^{2\pi} \left(\hat{d}_x(t + k \frac{\theta}{\omega_1}) \right) e^{-i\nu t} dt \, d\phi,
\]

where \(\hat{d}_x \) and \(\hat{d}_y \) are the dipole components in the polarization plane and we have used simple time translation in each component of the sum in the final equality. Then, using the symmetry condition (6) for the dipole (acceleration) we factorize the spectrum

\[
R_{\text{HHG}} = \frac{1}{k} \sum_{k=0}^{k-1} e^{-i\nu \frac{\theta}{\omega_1}} \left(\sin k\hat{\theta} \cos k\hat{\theta} \right) \left(\cos k\hat{\theta} \sin k\hat{\theta} \right) \left(\int_0^{\omega_1} \frac{\omega_1}{\hat{\theta}} \int_0^{2\pi} \left(\hat{d}_x(t) \right) e^{-i\nu t} dt \right),
\]

where \(\hat{e}_x \) and \(\hat{e}_y \) are the unit vectors in the \(x \) and \(y \)-directions respectively and we notice that the (constant) factors \(R_0^0 \) and \(R_1^0 \) have been factorized out of the previous sum. Then, using the exponential definition of the cosine and sine function, and after factorization, the HHG spectrum summarizes to

\[
R_{\text{HHG}} = \frac{1}{k} \sum_{k=0}^{k-1} e^{-i\nu \frac{\theta}{\omega_1}} \left(\frac{R_0^0 + iR_0^0 e^{-i\phi}(1 - \frac{\theta}{\omega_1})}{2} \right) + \left(\frac{R_0^0 - iR_0^0 e^{-i\phi}(1 + \frac{\theta}{\omega_1})}{2} \right),
\]

and the geometric sums can be computed analytically leading to

\[
\sum_{k=0}^{k-1} e^{-i\nu \phi(1 + \frac{\theta}{\omega_1})} \left(\frac{1 - e^{i2\pi k(1 + \frac{\theta}{\omega_1})}}{1 - e^{i\phi(1 + \frac{\theta}{\omega_1})}} \right) \text{ for } \theta \left(1 \pm \frac{\theta}{\omega_1} \right) \notin 2\pi \mathbb{Z},
\]

\[
\text{otherwise}
\]

where \(\mathbb{Z} \) is the set of integers.

We begin the DTDS analysis with the generic symmetry case \(k > 2 \), e.g., for the \(\mathcal{H}^+ \) molecular ion and counter-rotating \(\omega / 2 \omega \) laser configuration as illustrated in the upper panel of figure 1. Since the two frequencies \(\omega_1 \) and \(\omega_2 \) are mode locked, one can define a common fundamental frequency \(\varpi = \omega_1 / k_1 = k_2 / k_2 \). The harmonics we consider then in the analysis are multiples of the fundamental frequency with \(\nu \in \mathbb{Z} \mathbb{Z} = \cdots, \varpi, 0, \varpi, 2\varpi, 3\varpi, \ldots \). From the overall ‘molecule+laser field’ symmetry order we define the integer \(n \) such that \(k_1 + k_2 = n\hat{k} \). Already, from the trigonometric sums (8) we see that all the harmonics vanish from the spectrum except the \(k\mathbb{Z} \mathbb{Z} \pm \omega_1 = \cdots, -\varpi, \pm\varpi, \pm 2\varpi, \pm 3\varpi, \ldots \) ones. For the non-vanishing harmonics \(k\mathbb{Z} \mathbb{Z} + \omega_1 \) the spectrum (7) is such that \(R_{\text{HHG}} = i \) which is characteristic of left (counter-clockwise) CP emission. Finally, for the other non-vanishing harmonics \(k\mathbb{Z} \mathbb{Z} - \omega_1 \) we have \(R_{\text{HHG}} = -i \) corresponding to right (clockwise) CP. In other words, the HHG spectrum is CP with alternating helicities. Going back to our molecular model \((k = 3 \text{ and } n = 1) \) we predict that \(3\varpi \pm 1) \omega_1 \) and \(3\varpi \pm 2) \omega_1 \) are left and right CP respectively while \(3\varpi) \omega_1 \) harmonics are absent from the spectrum. Looking at the lower part of figure 1, we have a numerical confirmation of these predictions for two (continuous lines) and three (dash) dimensional simulations.

We assume \(\omega_1 > 0 \), otherwise the respective helicities for the \(k\mathbb{Z} \mathbb{Z} + \omega_1 \) have to be inverted.
The symmetry of the molecular system and laser field do not always match and may cancel each other, leading to ̃\(k = 1\). This is the case for the \(H_2^+\) molecular ion with counter-rotating \(\omega/3\omega\) laser field (\(k = 3\) and \(k_1 + k_2 = 4\)—see upper part of figure 2) or \(H_2^+\) with \(\omega/2\omega\) (\(k = 2\) and \(k_1 + k_2 = 3\)—middle panel of the figure). With \(k = 1\), we see that the sums in equation (8) are reduced to a single term and destructive/constructive interference effects are lost. As a consequence, all harmonics are made available to the HHG spectrum with arbitrary polarization. Here again, this is confirmed numerically in the upper and middle right parts of figure 2 where all harmonics are present in the spectra.

Finally, among all symmetry orders, the configuration \(k = 2\) offers an intermediate level of prediction. This minimum symmetry order allows constructive and destructive interferences in the sums (8) leading to only odd harmonics of the common fundamental frequency (2\(\omega\) + 1)\(\pi\) to be allowed in the spectrum. However, compared to the generic symmetry condition discussed previously, the two subsets 2\(\omega\) + \(\omega_1\) and 2\(\omega\) = \(\omega_1\) (left and right CP, respectively) lead to the same harmonics in the overall spectrum which, in general, prevents drawing any conclusions on the polarization of those harmonics. With the \(H_2^+\) molecular ion model, the minimum symmetry configuration is obtained, e.g., with counter-rotating \(\omega/3\omega\) CP fields, as shown in the lower left part of figure 2. Then looking at the associated HHG spectra (lower right part), we have the confirmation that only odd harmonics appear in the spectrum. Note that time-dependent or rotational symmetries are not the only discrete symmetries one can use to draw predictions on the HHG spectrum. For instance, with a linearly polarized laser fields and linear molecules aligned parallel or orthogonal to the laser polarization, the system presents a symmetry by reflection about the polarization axis. In turn, this leads to vanishing dipole moment in that specific direction resulting in linearly polarized harmonics (sharing the same polarization direction as the driving laser).

In conclusion, we have shown that aligned molecular systems irradiated with a bicircular laser field offer a very robust framework for the generation of selected CP harmonics, provided their symmetry order is compatible with that of the laser. Using the non-perturbative DTDS analysis, we have shown how these harmonics, and their polarization, can easily be predicted. Intuitively, if the molecular alignment is rotated away from the polarization plane, one would expect the symmetry condition to be broken, thereby possibly giving rise to all harmonics. On a case-by-case basis, depending on the actual configuration, a more detailed analysis should be performed to see if some lower-order symmetry is preserved and what influence it has on the HHG spectrum. Beyond the scope of the present manuscript, the DTDS is relatively generic and can easily be extended to other target and/or laser configurations. For example, atomic systems can be seen as a molecule with vanishing internuclear distance, i.e., the united atom limit. In this situation, the total symmetry of the "atom + laser field" always matches that of the laser alone because of the rotational symmetry of the atomic target. Then, applying a symmetry analysis almost identical to the one described previously we recover the predictions of the (perturbative) photon picture where only harmonics \((n \pm 1)\omega_1 + n\omega_2\) are allowed in the HHG spectrum [13, 16], with opposite CP helicities, for \(k_1 + k_2 > 2\). Note though that in the case of a single CP field (\(k_1 + k_2 = 0\)) the photon picture forbids the generation of harmonics altogether while the symmetry analysis imposes no restrictions leading to possibly all harmonics, as shown in [22]. Molecular HHG with a bi-circular fields was reported in [26]. In the absence of alignment, the molecular target reacts similarly to a rotationally invariant (atomic) medium, explaining the results—similar to the atomic counterparts—reported in the reference.

Acknowledgments

FM and ADB thank S Chelkowski for enlightening discussions; FM thanks M Gaarde and KJ Schafer for enlightening discussions. FM and ADB thank QCCHP and Compute Canada for access to massively parallel computer clusters and the CIPI for financial support in its ultrafast science program. FM and ADB acknowledge financial support from the Centre de Recherches Mathématiques. FM acknowledges financial support from the Merit Scholarship Program for Foreign Student from the MESRS of Quebec. ADB acknowledges financial support from the Canada Research Chair. TU acknowledges funding from the NSF. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915.

References

[1] Becker W, Liu XJ, Ho P J and Eberly J E 2012 Theories of photoelectron correlation in laser-driven multiple atomic ionization Rev. Mod. Phys. 84 1011–43
[2] Vrakking M J V 2014 Attosecond imaging Phys. Chem. Chem. Phys. 16 2775–89
[3] Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Tomographic imaging of molecular orbitals Nature 432 867
[4] Haessler S et al 2010 Attosecond imaging of molecular electronic wavepackets Nat. Phys. 6 200–6
[5] Shao H-C and Starace A 2010 Detecting electron motion in atoms and molecules Phys. Rev. Lett. 105 263201
[6] Krausz F and Ivanov M 2009 Attosecond physics Rev. Mod. Phys. 81 163–234
[7] Corkum P B 1993 Plasma perspective on strong field multiphoton ionization Phys. Rev. Lett. 71 1994–7
[8] Schafer K J, Yang B, DiMauro L F and Kulander K C 1993 Above threshold ionization beyond the high harmonic cutoff Phys. Rev. Lett. 70 1599–602
[9] Kuchiev M Y 1987 Atomic antenna JETP Lett. 45 404–6
[10] Zhou X, Lock R, Wagner N, Li W, Kaptyn H and Murnane M 2009 Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields Phys. Rev. Lett. 102 073902
[11] Yuan K-J and Bandrauk A 2012 Circularly polarized attosecond pulses from molecular high-order harmonic generation by ultrashort intense bichromatic circularly and linearly polarized laser pulses J. Phys. B: At. Mol. Opt. Phys. 45 074001
[12] Fleischer A, Kfir O, Diskin T, Sidorenko P and Cohen O 2014 Spin angular momentum and tunable polarization in high-harmonic generation Nat. Photon. 8 543–9
[13] Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S and McIver J K 1995 Polarization-dependent high-order two-color mixing Phys. Rev. A 51 R3414–7
[14] Milošević D M, Wilhelm B and Richard K 2000 Generation of circularly polarized high-order harmonics by two-color coplanar field mixing Phys. Rev. A 61 063403
[15] Pisanty E, Sukiasyan S and Ivanov M 2014 Spin conservation in high-order-harmonic generation using bicircular fields Phys. Rev. A 90 043829
[16] Ceccherini F, Bauer D and Cornolti F 2001 Dynamical symmetries and harmonic generation J. Phys. B: At. Mol. Opt. Phys. 34 5017–29
[17] Haessler S, Caillat J and Salières P 2011 Self-probing of molecules with high harmonic generation J. Phys. B: At. Mol. Opt. Phys. 44 203001
[18] Zuo T and Bandrauk A D 1995 High-order harmonic generation in intense laser and magnetic fields J. Nonlinear Opt. Phys. Mat. 4 533–46
[19] Nilsen H M, Madsen L B and Hansen J P 2002 On selection rules for atoms in laser fields and high harmonic generation J. Phys. B: At. Mol. Opt. Phys. 35 L403
[20] Alon O E, Averbukh V and Moiseyev N 1998 Selection rules for the high harmonic generation spectra Phys. Rev. Lett. 80 3743–6
[21] Alon O E 2002 Dynamical symmetries of time-periodic Hamiltonians Phys. Rev. A 66 0134114
[22] Mauger F, Bandrauk A D, Kamor A, Uzer T and Chandre C 2014 Quantum-classical correspondence in circularly polarized high harmonic generation J. Phys. B: At. Mol. Opt. Phys. 47 041001
[23] Javanainen J, Eberly J H and Su Q 1988 Numerical simulations of multiphoton ionization and above-threshold electron spectra Phys. Rev. A 38 3430–46
[24] Conroy H 1969 Molecular Schrödinger equation: X. Potential surfaces for ground and excited states of isosceles H$_3^+$ and H$_3^+$ J. Chem. Phys. 51 3979
[25] Blackman R B and Tuckey J W 1958 The Measurement of Power Spectra (New York: Dover)
[26] Kfir O et al 2015 Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics Nat. Photon. 9 99