ON THE LOCAL-GLOBAL PRINCIPLE FOR DIVISIBILITY IN THE
COHOMOLOGY OF ELLIPTIC CURVES

BRENDAN CREUTZ

Abstract. For every prime power p^n with $p = 2$ or 3 and $n \geq 2$ we give an example of an elliptic curve over \mathbb{Q} containing a rational point which is locally divisible by p^n but is not divisible by p^n. For these same prime powers we construct examples showing that the analogous local-global principle for divisibility in the Weil-Châtelet group can also fail.

1. Introduction

Let G be a connected commutative algebraic group over a number field k, and let n and r be nonnegative integers. An element ρ in the Galois cohomology group $H^r(k, G) := H^r(\text{Gal}(\overline{k}/k), G(\overline{k}))$ is divisible by n if there exists $\rho' \in H^r(k, G)$ such that $n\rho' = \rho$. We say ρ is locally divisible by n if, for all primes v of k, there exists $\rho'_v \in H^r(k_v, G)$ such that $n\rho'_v = \text{res}_v(\rho)$. It is natural to ask whether every element locally divisible by n is necessarily divisible by n. When the answer is yes, we say the local-global principle for divisibility by n holds.

For $r = 0$ and $G = \mathbb{G}_m$, the answer is given by the Grunwald-Wang theorem (see [NSW08, IX.1]); the local-global principle for divisibility by n holds, except possibly when 8 divides n. The case $r = 1$ and $G = \mathbb{G}_m$ is trivial in light of Hilbert’s theorem 90. For $r \geq 2$ and general G, a result of Tate implies that the local-global principle for divisibility by n always holds (see Theorem 2.1 below).

A study of the problem for $r = 0$ and general G was initiated by Dvornicich and Zannier in [DZ01], with particular focus on elliptic curves in [DZ04, DZ07, PRV12]. For elliptic curves over \mathbb{Q}, their results show that the local-global principle for divisibility by a prime power p^n holds for $n = 1$ or $p \geq 11$, and they have constructed counterexamples for $p^n = 4$ [1]. For $r = 1$ and G an elliptic curve, the question was in effect raised by Cassels [Cas62, Problem 1.3]. In particular, he asked whether elements of $H^1(k, G)$ that are everywhere locally trivial must be divisible. In response, Tate proved the local-global principle for divisibility by a prime p [Cas62b]. Cassels’ question is considered again in [Bas72], and recently by Çiperian and Stix [CS13] who showed that, for elliptic curves over \mathbb{Q}, the local-global principle for divisibility by p^n holds for all prime powers with $p \geq 11$. An example showing that it does not hold in general over \mathbb{Q} for any $p^n = 2^n$ with $n \geq 2$ was constructed in [Cre13].

In this note we produce examples settling these questions for the remaining undecided powers of the primes 2 and 3. We prove the following.

Theorem. Let $n \geq 2$ be an integer, let $p \in \{2, 3\}$ and let $r \in \{0, 1\}$. Then there exists an elliptic curve E over \mathbb{Q} for which the local-global principle for divisibility by p^n fails in $H^r(\mathbb{Q}, E)$.

[1] Paladino et al. have recently announced a proof of the local-global principle for powers of 5 and 7 [PRV].
Acknowledgements. It is a pleasure to thank Jakob Stix for a number of helpful comments, including pointing out case (3) in Theorem 2.1.

Notation. Throughout the paper \(p \) denotes a prime number, \(m \) and \(n \) are a positive integers, and \(r \) is a nonnegative integer. As above, \(G \) is a connected commutative algebraic group defined over a number field \(k \) with a fixed algebraic closure \(\overline{k} \). We will use \(K \) to denote a field containing \(k \) and use \(\overline{K} \) to denote a fixed algebraic closure of \(K \) containing \(\overline{k} \). For a \(\text{Gal}(\overline{k}/k) \)-module \(M \), let \(M^\vee \) denote its Cartier dual and define
\[
\bigwedge^r(k, M) := \ker \left(H^r(k, M) \xrightarrow{\prod \text{res}_v} \prod_v H^r(k_v, M) \right),
\]
the product running over all primes of \(k \).

2. The obstruction to the local-global principle for divisibility.

Because \(K \) has characteristic 0, multiplication by \(n \) is a finite étale endomorphism of \(G \). Hence, for any \(r \geq 0 \), the short exact sequence of \(\text{Gal}(\overline{K}/K) \)-modules
\[
0 \to G[n] \xrightarrow{\iota} G \xrightarrow{n} G \to 0
\]
gives rise to an exact sequence,
\[
H^r(K, G[n]) \xrightarrow{\iota^*} H^r(K, G) \xrightarrow{n^*} H^r(K, G)[n] \xrightarrow{\delta_n} H^{r+1}(K, G[n]) \xrightarrow{\iota^*} H^{r+1}(K, G).
\]

From this one easily sees that an element \(\rho \in H^r(k, G) \) is locally divisible by \(n \) if and only if \(\delta_n(\rho) \in \bigwedge^{r+1}(k, G[n]) \), and that \(\rho \) is divisible by \(n \) if and only if \(\delta_n(\rho) = 0 \). In particular, the local-global principle for divisibility by \(n \) in \(H^r(k, G) \) holds whenever \(\bigwedge^{r+1}(k, G[n]) = 0 \). Combining this observation with Tate’s duality theorems yields the following.

Theorem 2.1. Assume any of the following:

(1) \(r = 0 \) and \(\bigwedge^1(k, G[n]) = 0 \);
(2) \(r = 1 \) and \(\bigwedge^1(k, G[n]^\vee) = 0 \); or
(3) \(r \geq 2 \).

Then the local-global principle for divisibility by \(n \) in \(H^r(k, G) \) holds.

Proof. As noted above, in each case it suffices to show that \(\bigwedge^{r+1}(k, G[n]) = 0 \). Case (1) is trivial, and cases (2) and (3) follow immediately from [Tat63, Theorem 3.1]. \(\square \)

The following proposition shows that when \(G \) is a principally polarized abelian variety, the conditions in the theorem are necessary, at least conjecturally.

Proposition 2.2. Suppose \(G \) is an abelian variety with dual \(G^\vee \). Then for every \(\xi \in \bigwedge^1(k, G[n]) \), exactly one of the following hold:

(1) \(\xi = 0 \);
(2) \(\xi = \delta_n(\rho) \) for some \(\rho \in G(k) \) that is locally divisible by \(n \), but is not divisible by \(n \); or
(3) \(\iota_n(\xi) \neq 0 \), in which case there either exists \(\rho \in \bigwedge^1(k, G^\vee) \) such that \(\rho \) is not divisible by \(n \), or \(\iota_n(\xi) \) is divisible in \(\bigwedge^1(k, G) \) by all powers of \(n \).

If \(G \) is a principally polarized abelian variety and \(\bigwedge^1(k, G) \) is finite, then the local-global principle for divisibility by \(n \) holds in \(H^r(k, G) \) for every \(r \geq 0 \) if and only if \(\bigwedge^1(k, G[n]) = 0 \).
Proof. Exactness of (2.1) implies that the cases in the first statement of the proposition are exhaustive and mutually exclusive. For the claim in case (3) we may apply [Cre13] Thm 3, which states that \(\text{III}^1(k, G') \subset n \text{H}^1(k, G') \) if and only if the image of \(\iota_* : \text{III}^1(k, G[n]) \to \text{III}^1(k, G) \) is contained in the maximal divisible subgroup of \(\text{III}^1(k, G) \).

Now suppose \(G \) is a principally polarized and that \(\text{III}^1(k, G) \) is finite. We must prove the equivalence in the second statement. One direction follows from Theorem 2.1 since \(G[n] = G[n]' \). The other direction follows from the first statement in the proposition, since finiteness of \(\text{III}^1(k, G) \) implies that it contains no nontrivial divisible elements as in case (3). \(\square \)

The next lemma formalizes a method for constructing elements of \(\text{III}^1(k, G[mn]) \), for some \(m \geq 1 \).

Lemma 2.3. Let \(m \geq 1 \) and let \(j : G[n] \subset G[mn] \) be the inclusion map. Suppose \(\xi \in \text{H}^1(k, G[n]) \) is such that \(\text{res}_v(\xi) \in \delta_n(G(k_v)[m]) \), for all primes \(v \) of \(k \). Then

1. \(j_* (\xi) \in \text{III}^1(k, G[mn]) \);
2. \(j_* (\xi) = 0 \) if and only if \(\xi \in \delta_n(G(k)[m]) \);
3. if \(\xi = \delta_n(\rho) \) for some \(\rho \in G(k) \), then \(mn \rho \) is locally divisible by \(mn \); and
4. if \(\xi = \delta_n(\rho) \) for some \(\rho \in G(k) \) and \(j_* (\xi) \neq 0 \), then \(mn \rho \) is not divisible by \(mn \).

Proof. The connecting homomorphism \(G(K)[m] \to \text{H}^1(k, G[n]) \) arising from the short exact sequence

\[
0 \to G[n] \xrightarrow{j} G[mn] \xrightarrow{n} G[m] \to 0
\]

is the restriction of the \(\delta_n \) to \(G(K)[m] \). This implies that

\[
\ker (j_* : \text{H}^1(K, G[n]) \to \text{H}^1(K, G[mn])) = \delta_n(G(K)[m]),
\]

from which the first two statements in the proposition easily follow.

The inclusion \(j : G[n] \subset G[mn] \) also induces a commutative diagram

\[
\begin{array}{ccc}
G(K)[n] & \xrightarrow{j} & G(K) \\
\downarrow & & \downarrow \\
G(K)[mn] & \xrightarrow{mn} & G(K)
\end{array}
\]

\[
\begin{array}{ccc}
\text{H}^1(K, G[n]) & \xrightarrow{\delta_n} & \text{H}^1(K, G[n]) \\
\downarrow & & \downarrow \\
\text{H}^1(K, G[mn]) & \xrightarrow{\delta_{mn}} & \text{H}^1(K, G[mn])
\end{array}
\]

where the rows are the exact sequence (2.1) with \(r = 0 \), and the same sequence with \(mn \) in place of \(n \). From this the last two statements can be deduced easily. \(\square \)

3. The examples for \(p = 2 \)

Proposition 3.1. Let \(E \) be the elliptic curve defined by \(y^2 = (x + 2795)(x - 1365)(x - 1430) \) and let \(P = (341 : 59136 : 1) \in E(\mathbb{Q}) \). For every \(n \geq 1 \), the point \(2^{n-1} P \) is locally divisible by \(2^n \), but not divisible by \(2^n \). In particular, the local-global principle for divisibility by \(2^n \) in \(E(\mathbb{Q}) \) fails for every \(n \geq 2 \).

Remark 3.2. This example was constructed by Dvornicich and Zannier who proved the proposition in the case \(n = 2 \) [DZ04 §4]. Using Lemma 2.3 their arguments apply to all \(n \geq 2 \). We include our own proof here since our examples for \(p = 3 \) will be obtained using a similar, though more involved argument.
Proof. Fix the basis \(P_1 = (1365 : 0 : 1), P_2 = (1430 : 0 : 1) \) for \(E[2] \). By [Sil86, Proposition X.1.4] the composition of \(\delta_2 \) with isomorphism \(H^1(K, E[2]) \cong (K^\times/K^{\times 2})^2 \) is given explicitly by

\[
Q = (x_0, y_0) \mapsto \begin{cases}
(x_0 - 1365, x_0 - 1430) & \text{if } Q \neq P_1, P_2 \\
(-1, -65) & \text{if } Q = P_1 \\
(65, 65) & \text{if } Q = P_2 \\
(1, 1) & \text{if } Q = 0
\end{cases}
\]

In particular, \(\delta_2(P) = (-1, -1) \) and \(\delta_2(E(K)[2]) \) is generated by \(\{(-1, -65), (65, 65)\} \). It follows that \(\delta_2(P) \in \delta_2(E(K)[2]) \) if and only if at least one of \(65, -65 \) or \(-1 \) is a square in \(K \). If \(K = \mathbb{Q}_v \) for some \(v \leq \infty \), then one of these is a square. Indeed, \(65 \) is a square in \(\mathbb{R} \) and in \(\mathbb{Q}_2, -1 \) is a square \(\mathbb{Q}_5 \) and for all other primes \(v \) the Legendre symbols satisfy the identity \(\left(\frac{-1}{v} \right) = \left(\frac{65}{v} \right) \). Hence \(\xi := \delta_2(P) \) satisfies the hypothesis of Lemma 2.3 with \((m, n) \) replaced by \((2^{n-1}, 2) \).

On the other hand, \(65, -65 \) and \(-1 \) are not squares in \(\mathbb{Q}_2 \), and \(E(\mathbb{Q})[2^\infty] = E(\mathbb{Q})[2] \) (the reduction mod 3 is nonsingular, so the 2-primary torsion must inject into the group of \(\mathbb{F}_3 \)-points on the reduced curve. This group has order less than 8 by Hasse’s theorem). So the result follows from Lemma 2.3. \(\square \)

Proposition 3.3. Let \(E \) be the elliptic curve defined by \(y^2 = x(x + 80)(x + 205) \). Then \(\text{III}^1(\mathbb{Q}, E) \nsubseteq 4 \text{H}^1(\mathbb{Q}, E) \). In particular, the local-global principle for divisibility by \(2^n \) in \(\text{H}^1(\mathbb{Q}, E) \) fails for every \(n \geq 2 \).

Proof. This is [Cre13, Theorem 5]; we are content to sketch the proof. Much like the previous proof, one uses the explicit description of the map \(\delta_2 : E(K) \to \text{H}^2(K, E[2]) \cong (K^\times/K^{\times 2})^2 \) to show that there is an element \(\xi \in \text{H}^1(\mathbb{Q}, E[2]) \setminus \delta_2(E(\mathbb{Q})) \) which maps into \(\delta_2(E(\mathbb{Q}_v)) \) everywhere locally. Lemma 2.3 then shows that the image of \(\xi \) in \(\text{H}^1(k, E[4]) \) falls under case 3 of Proposition 2.2. This gives the result, since \(\text{III}^1(\mathbb{Q}, E)[2^\infty] \) is finite (as one can check in multiple ways, with or without the assistance of a computer). \(\square \)

4. DIAGONAL CUBIC CURVES AND 3-COVERINGS

The examples for \(p = 2 \) were constructed using an explicit description of the map

\[
E(K) \xrightarrow{\delta_2} \text{H}^1(K, E[2]) \cong (K^\times/K^{\times 2})^2.
\]

Another way to describe the connecting homomorphism is in the language of \(n \)-coverings. An \(n \)-covering of an elliptic curve \(E \) over \(K \) is a \(K \)-form of the multiplication by \(n \) map on \(E \). In other words, an \(n \)-covering of \(E \) is a morphism \(\pi : C \to E \) such that there exists an isomorphism \(\psi : E_K \to C_K \) of the curves base changed to the algebraic closure \(K \) which satisfies \(\pi \circ \psi = n \). We now summarize how this notion can be used to give an interpretation of the group \(\text{H}^1(K, E[n]) \). Details may be found in [CFO08, §1].

An isomorphism of \(n \)-coverings of \(E \) is, by definition, an isomorphism in the category of \(E \)-schemes. The automorphism group of the \(n \)-covering \(n : E \to E \) can be identified with \(E[n] \) acting by translations. By a standard result in Galois cohomology (the twisting principle) the \(K \)-forms of \(n : E \to E \) are parameterized, up to isomorphism by \(\text{H}^1(K, E[n]) \). Under this identification the connecting homomorphism \(\delta_n \) sends a point \(P \in E(K) \) to the
isomorphism class of the n-covering,

$$\pi_P : E \to E, \quad Q \mapsto nQ + P.$$

In particular, the isomorphism class of an n-covering $\pi : C \to E$ is equal to $\delta_n(P)$ if and only if $P \in \pi(C(K))$.

Our examples for $p = 3$ will come from elliptic curves of the form $E : x^3 + y^3 + dz^3 = 0$ with distinguished point $(1 : −1 : 0)$, where $d \in \mathbb{Q}^\times$. For these curves we can write down some of the 3-coverings quite explicitly. According to Selmer, the following lemma goes back to Euler (see [Sel51, Theorem 1]).

Lemma 4.1. Let $E : x^3 + y^3 + dz^3 = 0$ and suppose $a, b, c \in \mathbb{Q}^\times$ are such that $abc = d$. Then the curve $C : aX^3 + bY^3 + cZ^3 = 0$ together with the map $\pi : C \to E$ defined by

\[
\begin{align*}
 x + y &= 9abcX^3Y^3Z^3, \\
 x - y &= (aX^3 - bY^3)(bY^3 - cZ^3)(cZ^3 - aX^3), \\
 z &= 3(abX^3Y^3 + bcY^3Z^3 + caZ^3X^3)XYZ
\end{align*}
\]

is a 3-covering of E.

Proof. A direct computation verifies that these equations define a nonconstant morphism $\pi : C \to E$, which, by virtue of the fact that E and C are smooth genus 1 curves, implies that it is finite and étale. The map $\psi : E_K \to C_K$ defined by

$$x = \sqrt[3]{a}X, \quad y = \sqrt[3]{b}Y, \quad z = \sqrt[3]{c}dZ$$

is clearly an isomorphism. It is quite evident that $E[3]$, which is cut out by $xyz = 0$, is mapped by $\pi \circ \psi$ to the identity $(1 : −1 : 0) \in E_K$. Therefore $\pi \circ \psi$ is an isogeny which factors through multiplication by 3. Since it has degree 9 it must in fact be multiplication by 3, and so π is a 3-covering. \square

Lemma 4.2. Suppose $d = 3d'$ and let $\xi \in H^1(K, E[3])$ be the class corresponding to the 3-covering as in Lemma 4.1 with $C : X^3 + 3Y^3 + dZ^3 = 0$. Then $\xi \in \delta_3(E(K)[3])$ if any of the following hold:

1. $3 \in K^\times$;
2. $d' \in K^\times$;
3. $3d \in K^\times$;
4. $d \in K^\times$ and K contains the 9th roots of unity; or
5. $d \in K^\times$ and K contains a cube root of unity ζ_3 such that $3\zeta_3 \in K^\times$.

Corollary 4.3. Suppose $d = 3d'$ and let $\xi \in H^1(\mathbb{Q}, E[3])$ be the class of the 3-covering in Lemma 4.2. Then $\text{res}_v(\xi) \in \delta_3(E(\mathbb{Q}_v)[3])$, for every prime $v \mid d$.

Proof. Suppose $v \nmid d$ and set $K = \mathbb{Q}_v$. By assumption, $d, d', 3,$ and $3d$ are units and, since $\mathbb{Z}_v^\times/\zeta_3^\times$ is cyclic, one of them must be a cube. Moreover, if \mathbb{Q}_v does not contain a primitive cube root of unity, then they are all cubes (since $\mathbb{Z}_v^\times/\zeta_3^\times$ is trivial in this case). In light of this, and the first three cases in the lemma, we may assume $d \in \mathbb{Q}_v^\times$ and that \mathbb{Z}_v contains a primitive cube root of unity ζ_3. If ζ_3 is a cube, then case 4 of the lemma applies. If ζ_3 is not a cube, then the class of 3 is contained in the subgroup of $\mathbb{Q}_v^\times/\zeta_3^\times$ generated by ζ_3, in which case 5 of the lemma applies. This establishes the corollary. \square
Proof of Lemma 4.2. By the discussion at the beginning of this section, it suffices to show that in each of these cases there is a K-rational point on C which maps to a 3-torsion point on E.

Let ξ be a primitive 9th root of unity and d be a cube root of d. Then
\[(\sqrt[3]{d} : 1 : 0), (-\sqrt[3]{d} : 0 : 1), \text{ and } (0 : -\sqrt[3]{3d} : 3)\]
are defined over K, and the explicit formula for π given in Lemma 4.1 shows that they map to $(1 : -1 : 0) \in E(K)[3]$.

In case (1) K contains a primitive 9th root of unity ζ_9 and a cube root $\sqrt[3]{d}$ of d. Then
\[\left((2\zeta_9^3 + \zeta_9^4 + \zeta_9^2 + 2\zeta_9)\sqrt[3]{d} : (-\zeta_9^3 + \zeta_9^2 + \zeta_9 - 1)\sqrt[3]{d} : -3\right) \in C(K),\]
and one can check that it maps under π to the point $(0 : -\sqrt[3]{d} : 1)$. In case (5) K contains cube roots $\sqrt[3]{d}$ and $\beta = \sqrt[3]{3\zeta_3}$, where ζ_3 is a cube root of unity. One may check that $(\beta^2 \sqrt[3]{d} : \beta \sqrt[3]{d} : -3) \in C(K)$, and that this point maps under π to the point $(\zeta^2 : -1 : 0)$. \[\square\]

5. The Examples for $p = 3$

Proposition 5.1. Let $E : x^3 + y^3 + 3z^3 = 0$ be the elliptic curve over \mathbb{Q} with distinguished point $P_0 = (1 : -1 : 0)$, and let $P = (1523698559 : -2736572309 : 826803945) \in E(\mathbb{Q})$.

For every $n \geq 2$, $3^{n-1}P$ is locally divisible by 3^n, but not divisible by 3^n. In particular, the local-global principle for divisibility by 3^n in $E(\mathbb{Q})$ fails for every $n \geq 2$.

Proof. Let $C : X^3 + 3Y^3 + 10Z^3$ be the 3-covering of E as in Lemma 4.1 and let $\xi \in \text{H}^1(\mathbb{Q}, E[3])$ be the corresponding cohomology class. One may check that the point $Q = (−11 : 3 : 5) \in C(\mathbb{Q})$ maps to P. Thus $\xi = \delta_3(P)$. By Corollary 4.3 $\text{res}_v(\xi) \in \delta_3(E(\mathbb{Q}_v)[3])$ for all primes $v \nmid 30$. Also, since $10 \in \mathbb{Q}_3^\times$ and 3 is a cube in both \mathbb{Q}_2 and \mathbb{Q}_3 the first two cases of Lemma 4.2 show that $\text{res}_v(\xi) \in \delta_3(E(\mathbb{Q}_v)[3])$ also for $v \mid 30$. On the other hand, $\xi \neq 0$ because $C(\mathbb{Q})$ does not contain a point lying on the subscheme defined by $XYZ = 0$. Since, $E(\mathbb{Q})[3] = 0$ the result follows by applying Lemma 2.3. \[\square\]

Remark 5.2. For any $d \in \{51, 132, 159, 213, 219, 246, 267, 321, 348, 402, 435\}$ the same argument applies, giving more examples where the local-global principle for divisibility by 3^n in $E(\mathbb{Q})$ fails for all $n \geq 2$.

Proposition 5.3. Let $d \in \{138, 165, 300, 354\}$ and let $E : x^3 + y^3 + 3z^3 = 0$ be the elliptic curve over \mathbb{Q} with distinguished point $P_0 = (1 : -1 : 0)$. Then $\text{III}^1(\mathbb{Q}, E) \not\subset 9 \text{H}^1(\mathbb{Q}, E)$. In particular, the local-global principle for divisibility by 3^n in $\text{H}^1(\mathbb{Q}, E)$ fails for every $n \geq 2$.

Proof. Set $d' = d/3$. Let $C : X^3 + 3Y^3 + d'Z^3$ be the 3-covering of E as in Lemma 4.1 and let $\xi \in \text{H}^1(\mathbb{Q}, E'[3])$ be the corresponding cohomology class. In all cases one easily checks that $d' \in \mathbb{Q}_3^\times$ and that $3 \in \mathbb{Q}_v^\times$ for all $v \mid d'$. So using the first two cases of Lemma 4.2 and Corollary 4.3 we see that $\text{res}_v(\xi) \in \delta_3(E(\mathbb{Q}_v)[3])$ for every prime v. Then, by Lemma 2.3 the image of ξ in $\text{H}^1(\mathbb{Q}, E[9])$ lies in $\text{III}^1(\mathbb{Q}, E[9])$.

For these values of d, Selmer showed that $E(\mathbb{Q}) = \{(1 : -1 : 0)\}$ and $C(\mathbb{Q}) = \emptyset$. \[\square\]

The points given below were found with the assistance of the Magma computer algebra system described in [BGP97]. A Magma script verifying the claims here can be found in the source file of the arXiv distribution of this article.
nontrivial for every \(n \geq 2 \). Moreover, Selmer’s proof shows that \(3\text{III}^1(\mathbb{Q}, E)[3^{\infty}] = 0 \). In particular \(\text{III}^1(\mathbb{Q}, E)[3^{\infty}] \) contains no nontrivial infinitely divisible elements. Thus we are in case (3) of Proposition 2.2 and conclude that there exists some element of \(\text{III}^1(\mathbb{Q}, E) \) which is not divisible by 9 in \(H^1(\mathbb{Q}, E) \).

\[
\square
\]

Remark 5.4. The argument in the proof above shows that \(C \in \text{III}^1(\mathbb{Q}, E) \), but does not show that \(C \notin 9H^1(\mathbb{Q}, E) \). Rather, the elements of \(\text{III}^1(\mathbb{Q}, E) \) which are proven not to be divisible by 9 in \(H^1(\mathbb{Q}, E) \) are those that are not orthogonal to \(C \) with respect to the Cassels-Tate pairing. See [Cre13, Theorem 4].

References

[Baš72] M. I. Bašmakov, Cohomology of Abelian varieties over a number field, Uspehi Mat. Nauk 27 (1972), no. 6(168), 25–66 (Russian). MR0399110 (53 #2961)

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265, DOI 10.1006/jsco.1996.0125. Computational algebra and number theory (London, 1993). MR1484478

[Cas62a] J. W. S. Cassels, Arithmetic on curves of genus 1. III. The Tate-Šafarevič and Selmer groups, Proc. London Math. Soc. (3) 12 (1962), 259–296. MR0163913 (29 #1212)

[Cas62b] ______, Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95–112. MR0163915 (29 #1214)

[ČS13] Mirela Ciperiani and Jakob Stix, Weil–Châtelet divisible elements in Tate–Shafarevich groups II: On a question of Cassels, J. Reine Angew. Math. (2013). (to appear).

[CFO+08] J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll, Explicit \(n \)-descent on elliptic curves. I. Algebra, J. Reine Angew. Math. 615 (2008), 121–155, DOI 10.1515/CRELLE.2008.012. MR2384334 (2009g:11067)

[Cre13] Brendan Creutz, Locally trivial torsors that are not Weil-Châtelet divisible, Bull. Lond. Math. Soc., posted on 2013, DOI 10.1112/blms/bdt019, (to appear in print).

[DZ01] Roberto Dvornicich and Umberto Zannier, Local-global divisibility of rational points in some commutative algebraic groups, Bull. Soc. Math. France 129 (2001), no. 3, 317–338 (English, with English and French summaries). MR1881198 (2002k:14031)

[DZ04] ______, An analogue for elliptic curves of the Grunwald-Wang example, C. R. Math. Acad. Sci. Paris 338 (2004), no. 1, 47–50, DOI 10.1016/j.crma.2003.10.034 (English, with English and French summaries). MR2038083 (2004k:11088)

[DZ07] ______, On a local-global principle for the divisibility of a rational point by a positive integer, Bull. Lond. Math. Soc. 39 (2007), no. 1, 27–34, DOI 10.1112/blms/bdl002. MR2303515 (2007k:14030)

[NSW08] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehen der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR2392026 (2008m:11223)

[PRV12] Laura Paladino, Gabriele Ranieri, and Evelina Viada, On local-global divisibility by \(p^n \) in elliptic curves, Bull. Lond. Math. Soc. 44 (2012), no. 4, 789–802, DOI 10.1112/blms/bds012. MR2967246

[PRV] ______, On the minimal set for counterexamples to the local-global principle, available at arXiv:1107.3431v1.

[Sel51] Ernst S. Selmer, The Diophantine equation \(ax^3 + by^3 + cz^3 = 0 \), Acta Math. 85 (1951), 203–362 (1 plate). MR0041871 (13,13c)

[Sil86] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR817210 (87g:11070)

[Tat63] John Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288–295. MR0175892 (31 #168)
