Supporting Information

One pot synthesis of two cobalt(III) Schiff base complexes with chelating pyridyltetrazolate and exploration of their bio-relevant catalytic activities

Kousik Ghosh, Abhisek Banerjee, Antonio Bauzá, Antonio Frontera, and Shouvik Chattopadhyay

a Department of Chemistry, Inorganic Section, Jadavpur University, Kolkata - 700032, India. Tel: +913324572147 e-mail: shouvik.chem@gmail.com
b Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122 Palma (Baleares), Spain. E-mail: toni.frontera@uib.es

Figure S1: Relative contributions to the Hirshfeld surface area for the various intermolecular contacts of complexes 1 and 2. Colour scheme: Blue = 1 and Red = 2.
Figure S2: Experimental and simulated powder XRD patterns of complex 1, confirming the purity of the bulk materials.
Figure S3: Experimental and simulated powder XRD patterns of complex 2, confirming the purity of the bulk materials.
Figure S4: Infrared spectrum of complex 1.
Figure S5: Infrared spectrum of complex 2.
Figure S6: Electronic spectrum of complex 1 in acetonitrile medium.
Figure S7: Electronic spectrum of complex 2 in acetonitrile medium.
Figure S8: Fluorescence spectrum of complex 1 in acetonitrile medium.
Figure S9: Fluorescence spectrum of complex 2 in acetonitrile medium.
Figure S10: Time dependent photoluminescence decay profile of complexes 1 and 2.
Figure S11: Michaelis-Menten plot (a), Lineweaver-Burk plot (b), Hanes plot (c) and Eadie-Hofstee plot (d) of complex 2 for catalytic oxidation of 3,5-DTBC in acetonitrile-methanol (2:1) mixture at room temperature.
Figure S12: Michaelis-Menten plot (a), Lineweaver-Burk plot (b), Hanes plot (c) and Eadie-Hofstee plot (d) of complex 2 for catalytic oxidation of OAPH in acetonitrile-methanol (2:1) mixture at room temperature.
Figure S13: ESI-MS positive spectrum of complex 1 in acetonitrile-methanol (2:1) mixture at room temperature.
Figure S14: ESI-MS positive spectrum of complex 2 in acetonitrile-methanol (2:1) mixture at room temperature.