A Meta Analysis and Hierarchical Classification of HU-Based Atherosclerotic Plaque Characterization Criteria

Wisnumurti Kristanto, Peter M. A. van Ooijen*, Marijke C. Jansen-van der Weide, Rozemarijn Vliegenthart, Matthijs Oudkerk

Department of Radiology, Center for Medical Imaging – North East, Netherlands, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Abstract

Background: Many computed tomography (CT) studies have reported that lipid-rich, presumably rupture-prone atherosclerotic plaques can be characterized according to their Hounsfield Unit (HU) value. However, the published HU-based characterization criteria vary considerably. The present study aims to systematically analyze these values and empirically derive a hierarchical classification of the HU-based criteria which can be referred in clinical situation.

Material and Methods: A systematic search in PubMed and Embase for publications with HU-criteria to characterize lipid-rich and fibrous atherosclerotic plaques resulted in 36 publications, published between 1998 and 2011. The HU-criteria were systematically analyzed based on the characteristics of the reporting study. Significant differences between HU-criteria were checked using Student’s t-test. Subsequently, a hierarchical classification of HU-criteria was developed based on the respective study characteristics.

Results: No correlation was found between HU-criteria and the reported lumen contrast-enhancement. Significant differences were found for HU-criteria when pooled according to the respective study characteristics: examination type, vessel type, CT-vendor, detector-rows, voltage-setting, and collimation-width. The hierarchical classification resulted in 21 and 22 CT attenuation value categories, for lipid-rich and fibrous plaque, respectively. More than 50% of the hierarchically classified HU-criteria were significantly different.

Conclusion: In conclusion, variations in the reported CT attenuation values for lipid-rich and fibrous plaque are so large that generalized values are unreliable for clinical use. The proposed hierarchical classification can be used to determine reference CT attenuation values of lipid-rich and fibrous plaques for the local setting.

Introduction

Multi-detector-row computed tomography (MDCT) is currently the preferred non-invasive modality to assess the extent of coronary artery disease (CAD) [1]. MDCT can reliably exclude the presence of obstructive CAD [2]. Furthermore, contrast-enhanced MDCT shows potential for differentiating types of atherosclerotic plaques, including calcified and non-calcified plaques [3]. MDCT can accurately quantify calcified plaque burden [4–6] and potentially non-calcified plaque volume [3]. However, quantitatively characterizing non-calcified plaque components has been found more challenging [7].

Characterizing the lipid-rich component of non-calcified plaques has become of increasing interest as lipid-rich, thin-capped plaques are considered to have an increased risk of rupture, with the potential sequel of an acute cardiovascular event [8,9]. Early CT studies reported that non-calcified plaque components can be characterized based on their CT attenuation values, expressed in Hounsfield Unit (HU) [10,11]. Since then, a number of studies on this topic has emerged, using new generations of the rapidly evolving MDCT technology [12,13]. However, a reliable and consistent non-calcified plaque characterization based on its HU values is yet to be achieved. The reported plaque-specific HU values vary considerably. Several factors influencing non-calcified plaque HU values have been identified, among others lumen contrast-enhancement and reconstruction kernel [14,15]. However, the fact that each study investigating HU-based non-calcified plaque characterization has different characteristics may also contribute to the considerable variation. Examples of those
Material and Methods

In this study, we systematically searched and collected publications which reported HU-criteria to characterize lipid-rich and fibrous plaques. Subsequently, the HU-criteria were systematically analyzed based on the specific characteristics of each study.

Literature Study

With the guidance of a librarian and using denominator terms for several relevant publications obtained beforehand, a computerized search was performed per April 22nd, 2011 to identify relevant publications in Pubmed, using MeSH terms and free text keywords: ("Ultrasoundography, Interventional"[Mesh] OR "Coronary Artery Disease"[Mesh] OR "Carotid Artery Diseases"[Mesh]) AND plaque* AND "Tomography, X-Ray Computed"[Mesh] NOT "Review"[Publication Type]; and in Embase, using the keywords: (endoscopic echography/exp OR 'coronary artery disease'/exp OR 'carotid artery disease'/exp) AND 'plaque' AND 'computer assisted tomography'/exp NOT 'review'/exp/.

Inclusion criteria for publication selection were: 1) original publication; 2) characterization of non-calcified plaques into lipid-rich and fibrous plaques, and report of their specific HU values; 3) using human derived materials; and 4) using other an imaging modality as plaque composition reference. Publications meeting one or more of the defined exclusion criteria were excluded (Figure 1).

The search yielded 2062 publications. After removing 576 duplicates (either overlaps between Pubmed and Embase results or repetitions in each database results), 1486 individual publications were screened by one reviewer (WK) based initially on the title and abstract, and when inclusion was still unclear, on the full-text of the article. In case of doubt about inclusion of a publication, arbitration was performed in a consensus meeting with a second reviewer (PvO). Finally, 1450 out of the remaining 1486 publications were excluded based on the exclusion criteria. No language or publication date related exclusions were made. In total, 36 publications were included in this study [7,10–13,16–46] (Figure 1, Table 1).

A preliminary check was performed to evaluate whether one study which used two different CT modalities could be regarded as two separate studies [46] and whether another study which used four different kV settings could be regarded as four separate studies [44]. The preliminary check involved pooling all HU-criteria and pooling all HU-criteria minus one of the aforementioned studies, repeated for all six studies in question. As no significant difference in outcome was found when splitting up these studies, the two studies were treated as six studies resulting in total 40 studies for our systematical analysis obtained from the 36 publications.

HU-criteria were collected for lipid-rich plaques (synonyms used: soft, hypoechoic, lipid, lipid-rich, hypodense, or lipid-rich necrotic core) and for fibrous plaques (synonyms used: intermediate, hyperechoic, fibrous, fibrous-rich, or connective tissue), as has been characterized by each study based on each chosen reference modality. When only the raw or partial data were presented in the publications, the plaque value (mean ± standard deviation [SD]) was calculated [11,20,32,40].

Systematic Analysis of Published HU-criteria

First, all published HU-criteria were pooled. Next, the correlation between published HU-criteria and the reported lumen contrast-enhancement was investigated. Finally, the published HU-criteria were pooled based on similarity of the studies concerning: 1) examination type (in-vivo or ex-vivo), 2) vessel type (coronary or other arteries), 3) CT-system brand, 4) detector-rows, 5) voltage-setting, and 6) collimation-width. Studies using a dual-source CT (DSCT) [26,32,33,43] were grouped with 64-row MDCT studies because of the similarity in number of detector-rows. For the remainder of this article, DSCT was regarded as equal to 64-row MDCT. Pooling was performed by the pooled statistics, using the following formulas:

\[
\text{mean pooled} = \frac{N_1 \text{mean}_1 + N_2 \text{mean}_2 + \ldots + N_k \text{mean}_k}{N_1 + N_2 + \ldots + N_k} \tag{1}
\]

\[
\text{stdev pooled} = \sqrt{\frac{(N_1 - 1) \text{stdev}_1^2 + (N_2 - 1) \text{stdev}_2^2 + \ldots + (N_k - 1) \text{stdev}_k^2}{N_1 + N_2 + \ldots + N_k - k}} \tag{2}
\]

Note:

N \quad \text{amount of plaques region of interests (ROIs), segments, or squares used to make the mean \pm SD}

k \quad \text{number of studies included}

Not all information to compute the pooled statistics was available in 8 studies. Contact information of corresponding authors was used to contact them in 7 of these studies. Of these, one author replied but was not able to provide the requested missing information. Only those studies providing all the necessary information for pooling (table 1) were included in each pooling calculation.

Hierarchical Classification

The analysis was extended by systematically classifying the HU-criteria by the following hierarchy: examination type, vessel type, CT-system brand, detector-rows, voltage-setting, and collimation width. Comparisons were made between criteria at the lowest tree branches. HU-criteria which were not significantly different were pooled.

Statistical Analysis

The correlation between the published HU-criteria and the reported lumen contrast-enhancement was analyzed using linear regression analysis and was expressed as the coefficient of determination (r^2), ranging from 0 to 1 with $r^2 = 1$ indicating...
perfect correlation. Significant differences between the pooled HU-criteria were determined using one way analysis of variance (ANOVA) test when more than 2 groups are compared or unpaired student’s t-test with unequal variances assumed when 2 groups are compared in Prism 6 (GraphPad Software, Inc., USA) at p value < 0.05.

Results

Preliminary analysis on the 40 analyzed studies showed that:

1. Sixteen were ex-vivo studies and 24 in-vivo studies;
2. In 34 coronary arteries were studied and in 6 other arteries (i.e. carotid and popliteal arteries);
3. Eleven studies were performed on General Electric (GE) CT-systems, 4 on Philips systems, 21 on Siemens systems, and 4 on Toshiba systems;
4. One study was performed on a 1 detector-row CT-system, 8 on 4-row MDCT, 15 on a 16-row MDCT, 4 on a 32-row MDCT, and 12 on a 64-row MDCT;
5. Two used the voltage setting <120 kV, 28 studies used 120kV, 6 studies used >120kV, and 2 studies used ...
Table 1. Characteristics of the included publications.

No	Publication	Modality	Scan Settings	Lumen contrast (HU)	Reference	Plaque	Lipid-rich	Fibrous	Modality	Reference	Plaque	Lipid-rich	Fibrous
1	Becker	Siemens 4	120 0.5 250	11 45 (34-87)	Coronary	Pathology	15 47 ± 9	16 104 ± 28	[16]				
2	Brodofel	Siemens 64	120 0.6 NA	13 92 65±7	Coronary	IVUS	NA (-10-66)	NA (67-153)	[17]				
3	Carrascosa	Philips 4	120 1 NA	30 NA NA	Coronary	IVUS	105 75.73 ± 44.3	14 146.61 ± 36.54	[18]				
4	Carrascosa	Philips 4	120 1 NA	40 80 52 (33-86)	Coronary	IVUS	188 71.5 ± 32.1	45 116.3 ± 35.7	[19]				
5	Caussin	Siemens 16	NA NA NA	21 52 58±13 (39-77)	Coronary	IVUS	12 12 ± 38*	4 63.8 ± 18.9	[20]				
6	Chopard	Philips 64	120 0.625 NA	21 NA NA	Coronary	Pathology	20 70 ± 41	42 83 ± 35	[21]				
7	de Weert	Siemens 16	140 0.75 0	21 81 64.7 (41-81)	Coronary	Pathology	35 45 ± 21	28 79 ± 20	[22]				
8	de Weert	Siemens 16	120 0.75 ~400	15 40 70.3 (62-84)	Coronary	Pathology	31 25 ± 19	53 88 ± 18	[23]				
9	Estes	Siemens 1	NA 3 150-300	20 80 74 (57-85)	Coronary	Pathology	39 9 ± 12	NA 90 ± 24	[10]				
10	Ferencik	Siemens 16	120 0.75 250	6 67 77±4	Coronary	OCT	41 29 ± 43	40 101 ± 21	[24]				
11	Galonska	GE 16	120 0.625 308	30 67 61.5±13.4	Coronary	Pathology	33 (26-67) median: 44	21 (37-124) median: 67	[25]				
12	Hur	Siemens 64	120 0.6 NA	39 72 59 (45-74)	Coronary	IVUS	10 54 ± 13	11 82 ± 17	[26]				
13	Iriart	Siemens 16	120 0.75 NA	20 85 53±12 (38-83)	Coronary	IVUS	NA 38 ± 33	NA 94 ± 44	[27]				
14	Jin	Siemens 16	120 NA NA	49 55 NA	Coronary	DUS	NA 8 ± 28	NA 51 ± 19	[28]				
15	Kim	GE 64	120 0.625 NA	42 48 66±9	Coronary	IVUS	28 52.9 ± 24.6	43 98.6 ± 34.9	[29]				
16	Kitagawa	GE 64	120 0.625 ~350	21 76 66±9	Coronary	IVUS	25 18 ± 17	13 67 ± 21	[30]				
17	Kopp	Siemens 4	120 1 NA	6 67 60±8	Coronary	IVUS	2 0.5 ± 7.8*	2 67 ± 22.8*	[11]				
18	Leber	Siemens 16	120 0.75 NA	37 NA NA	Coronary	IVUS	62 49 ± 22	87 91 ± 22	[31]				
19	Leschka	Siemens 64	120 0.6 300	25 72 72±13 (38-85)	Coronary	Pathology	91 40 ± 17*	43 91 ± 16	[32]				
20	Marwan	Siemens 64	120 0.6 NA	40 75 59±10 (52-85)	Coronary	IVUS	15 67 ± 31	40 96 ± 40	[33]				
21	Motyama	Toshiba 16	135 0.5 258±43 (174-384)	37 84 66±12	Coronary	IVUS	18 10.6 ± 11.6	40 78.1 ± 20.8	[34]				
22	Nikolau	Siemens 4	120 0.5 250	17 65 64	Coronary	Pathology	16 45 ± 16	21 97 ± 31	[36]				
23	Nikolau	Siemens 4	120 0.5 242±28	13 62 (34-87)	Coronary	Pathology	10 47 ± 13	11 87 ± 29	[35]				
variable kV settings. In 2 studies, the kV setting was not reported;
6. The collimation width applied in the CT-system in 7 studies was <0.6 mm, 17 studies applied 0.6-0.7 mm, 7 studies applied 0.7-0.8 mm, and 7 studies applied >0.8 mm collimation width. In 2 studies, the collimation width was not reported.
7. Thirty-eight studies reported the plaque HU values in mean ± SD format, 1 study reported plaque median HU value and the range, and 1 study only HU value range.
8. Out of 20 in-vivo studies that examined the coronaries, 19 studies used intra-vascular ultrasound (IVUS) and 1 study used optical coherence tomography (OCT) as plaque composition reference. Out of 4 in-vivo study that examined the carotid arteries, 3 used histopathology and 1 used Doppler ultrasound (DUS) as plaque composition reference.
9. Out of 14 ex-vivo studies that examined coronaries, 13 studies used histopathology and 1 study used OCT as plaque composition reference. One ex-vivo study that

No	First Author Year	Publication	Brand	Modality	Modality Brand	Scan Settings	Collim. - width (mm)	Population	Study Vessel Type	Design Type	Reference Value	Lipid-rich	Fibrous	Ref#
24	Pohle 2007	Siemens	16	120	0.75	NA	32 72 59±8	In-vivo	Coronary	IVUS	84 58±4.3	42 121±34	[12]	
25	Qiu 2006	Philips	64	120-140	0.625	NA	6 67 77.5±9.3	In-vivo	Coronary	IVUS	2 -21.5±38.6	4 85.3±14.3	[37]	
26	Sakakura 2006	Toshiba	16	135	0.5	NA	16 69 63±12 (42-80)	In-vivo	Coronary	IVUS	6 50.0±14.8	4 131±21	[38]	
27	Schroeder 2001	Siemens	4	140	1	NA	15 87 58±10 (44-71)	In-vivo	Coronary	IVUS	12 14±26	5 91±21	[39]	
28	Schroeder 2004	Siemens	4	140	1	182±34	12 NA 63±17	Ex-vivo	Coronary Pathology	IVUS	6 42±22	6 70±21	[41]	
29	Schroeder 2004	Siemens	16	120	0.75	237±17	9 NA NA	Ex-vivo	Popliteal Pathology	NA	13 51±20	18 126±99	[40]	
30	Shen 2010	GE	64	0.6	NA	91 58.2	64.76±9.19 (38-79)	In-vivo	Coronary IVUS	OCT	6 52.5±15.71	36 108.3±43.44	[42]	
31	Soeda 2011	Siemens	64	120	0.6	NA	17 82.4 63.5±8.4	In-vivo	Coronary OCT	IVUS	78 28.9±30.6	42 77.5±25.7	[43]	
32	Sun 2008	Toshiba	64	120-135	0.5	398±74	26 65 56	In-vivo	Coronary IVUS	NA	79±34	30 90±27	[13]	
33	Tanami 2010	GE	32	80	0.625	0	15 73.3 72±9	Ex-vivo	Coronary Pathology	NA	39 20.5±6.5	30 28.1±4.3	[44]	
34	Wintermark 2008	GE	16	120	0.625	8 100	61 (55-69)	In-vivo	Carotid Pathology	NA	32.6±20	46.4±19.9	[7]	
35	Wu 2007	GE	16	120	1.25	NA	30 73 58 (43-75)	In-vivo	Coronary IVUS	OCT	16 23±18	19 69±21	[45]	
36	Xiao 2007	GE	16	120	0.625	25 NA	25 (50-72)	Ex-vivo	Coronary Pathology	NA	13 53±12	10 106±17	[46]	
	Toshiba 64	120	0.5	51±13 110±19										

Notes: 1. Values in the columns Lumen Contrast, Age, and Plaque Values are in means, with the range in brackets.
2. *: Values were self-calculated
3. NA: data were not available

Table 1 (continued).

HU-Based Plaque Characterization Criteria

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e73460
examined carotid arteries and another that examined popliteal arteries used histopathology as plaque composition reference.

Systematic Analysis of Published HU-criteria

Pooling all published HU-criteria, the values for lipid-rich and fibrous plaques were: 47 ± 29 HU and 86 ± 29 HU, respectively. The published mean HU-criteria showed a low correlation with lumen contrast-enhancement, for lipid-rich ($r^2 = 0.0054$; $p > 0.05$) and fibrous plaques ($r^2 = 0.0304$; $p < 0.05$) (Figure 2).

Results of the pooled HU-criteria based on similar study characteristics are shown in Table 2. The HU-criteria in all study characteristic groups were significantly different, except the HU-criteria for fibrous plaque between coronary and other arteries. Comparison between HU-criteria within one group of study characteristics shows all were significantly different except 12 pair of HU-criteria (see table 2).

Hierarchical classification of the published HU-criteria

Extending the analysis, a hierarchical classification of the published HU-criteria was performed, resulting in 27 distinct HU-criteria groupings (Figures 3 and 4). No further classification based on collimation-width was performed because the studies included in each of these 27 groups had the same collimation-width or did not provide the collimation-width information. The criteria at the lowest tree branches, which were not significantly different, were pooled (boxed groups in Figures 3 and 4), resulting in 21 and 22 distinct HU-criteria groupings for lipid-rich and fibrous plaques, respectively. Comparing the HU-criteria for lipid-rich plaque of each group to each other, 34% (52 out of 153 comparisons) were significantly different, of which 51.9% (27 out of 52 comparisons) were significantly different at $p < 0.001$ (Table 3). For fibrous plaque, 22.2% (38 out of 171 comparisons) of the HU-criteria were significantly different, of which 57.9% (22 out of 38 comparisons) were significantly different at $p < 0.001$ (Table 4). A visual representation of the hierarchically grouped HU-criteria along with their range (+/- 1 standard deviation) is given in Figure 5.

Table 2. Pooled HU-criteria.

Characteristics	Np	Lipid Mean ± st	Sig.	Fibrous Mean ± st	Sig.
Study					
Ex-vivo	15	429	Yes	36±20	Yes
In-vivo	18	701		53±33	
Vessel					
Coronary	30	1051	Yes	47±29	No
Other Arteries	3	79		38±20	
Brands					
GE	9	244	Yes	28±13	Yes
Philips	4	315		72±37	
Siemens	17	534		41±29	
Toshiba	3	37		31±13	
Rows	4	8		354±25	
Voltage					
(kV)	120	23		92±31	
	120	6		116±27	
Collimation	<0.6	6		39±13	Yes
(mm)	0.6-0.7	14		31±25	Yes
width	0.7-0.8	6		46±5	Yes
	>0.8	6		329±36	

Note:1. Np: total amount of studies included in the pooling calculation. There were studies excluded because of incomplete data needed for pooling calculation or unclear characteristics needed for classification.

2. Np : total amount of plaques ROIs, segments, or squares of the studies of similar characteristic used to make the mean±st dev

3. All comparisons between groups’ HU-criteria within one type of characteristics were significantly different (p<0.05) except the 12 pairs marked with the same symbols (*, †, §, ||, #, **, † †, ‡ ‡, § §, ||||, and # #).

Discussion

Plaque rupture has been identified as the most prevalent feature at sudden coronary death cases [9]. A thin fibrous cap (<65µm) and a relatively large lipid-rich content are associated to plaque’s vulnerability to rupture [47]. Also, plaques showing positive remodeling are reported to contain more lipid-rich components [48,49]. It has been suggested that MDCT should be able to measure plaque volume [50], to detect and measure positive remodeling [51] and to even follow the change of plaque characteristics after lipid-lowering therapy [52,53], using a simple HU-based approach. Patients having low attenuation value coronary plaques as detected by MDCT were shown to be at higher risk of an acute coronary syndrome (ACS) [54].

Direct use of HU-criteria to quantify lipid-rich plaque is not trivial as considerable variability exists in the reported HU values of lipid plaque. Over the years, CT technology has advanced rapidly from producing a thick slab image during a rather long scan time to producing submillimeter thin images in subsecond scan time, allowing for accurate coronary imaging. Due to its calibration, HU value of a material or a tissue should be equal irrespective of how or with which CT system it was acquired. However, it is advised to be extra cautious in

![Figure 2. HU criteria for lipid-rich and fibrous plaques versus the reported lumen contrast-enhancement.](doi: 10.1371/journal.pone.0073460.g002)
Figure 3. Hierarchical classification of HU-criteria for lipid-rich plaques.
doi: 10.1371/journal.pone.0073460.g003

Figure 4. Hierarchical classification of HU-criteria for fibrous plaques.
doi: 10.1371/journal.pone.0073460.g004
plaques were significantly higher than those of other arteries more movement during scanning. The specific way in which each CT-vendor processes scan data may cause the partial volume effect from the surrounding fibrous tissue and were found when the HU-criteria were pooled according to the fact that improvements in scanner technology with higher detector rows group, which is explainable because the studies did not use contrast material in the experiment) and the lipid-rich HU-criteria from the largest collimation-widths are significantly higher than the rest. This might be explained by the technique that improves in scanner technology with higher spatial resolution result in less partial volume effect, especially from the lumen contrast-enhancement. Materials’ x-ray attenuation values depend on the x-ray photon energy, a principle behind the material decomposition with dual energy CT [56]. Our results concurred with this fact by showing that the HU-criteria for both lipid-rich and fibrous plaques were significantly higher for studies using 120 kV voltage settings than those using higher voltage settings. The significantly lower HU-criteria for studies using lower than 120 kV voltage settings is caused by the fact that the scan was performed without the influence of movement during scanning. HU-criteria of coronary lipid-rich plaques were significantly higher than those of other arteries (saphenous and popliteal arteries). This may be caused by more partial volume effect from the surrounding fibrous tissue and lumen contrast-enhancement due to smaller plaque size and movement during scanning. The specific way in which each CT-vendor processes scan data may cause the significant differences in HU-criteria for different CT-systems. HU-criteria for lipid-rich plaques decreased as the number of detector-rows increased (except for low HU-value of the 32-detector rows group, which is explainable because the studies did not use contrast material in the experiment) and the lipid-rich HU-criteria from the largest collimation-widths are significantly higher than the rest. This might be explained by the fact that improvements in scanner technology with higher spatial resolution result in less partial volume effect, especially from the lumen contrast-enhancement. Materials’ x-ray attenuation values depend on the x-ray photon energy, a principle behind the material decomposition with dual energy CT [56]. Our results concurred with this fact by showing that the HU-criteria for both lipid-rich and fibrous plaques were significantly higher for studies using 120 kV voltage settings than those using higher voltage settings. The significantly lower HU-criteria for studies using lower than 120 kV voltage settings is caused by the fact that the scan was performed without lumen contrast-enhancement. Lumen contrast-enhancement is one of the most frequently identified influencing sources to the non-calcified plaques’ HU value [15, 57–60]. However, no direct correlation between the reported lumen contrast-enhancements and plaque HU-criteria were found in this study result. Besides the different characteristics of the reporting studies, this lack of association may also be explained by one aspect of the measurement, i.e. the distance of the measurement ROI from the lumen border, which has been reported to affect plaque HU values [15]. Unfortunately, none of the analyzed publications reported this particular information on ROI placement which prohibits further analysis. Potential differences in patient characteristics or in tube current were not analyzed. Patient characteristics may influence the composition of plaque [47,61]. However, it should not have affected the HU value of the plaque as such. The tube current will mainly affect image quality and not the HU value of the plaque.

Table 3. Comparison of HU-criteria for lipid-rich plaque between hierarchical-classified groups.

Group	1	2	3	4	5-6	7	8	9	10	11	12	13	14	15	16-19	20	21-22	23	24	25	26-27
1	*	*	1	*	*	2	*	*	*	NA	NA	NA	*	*	*	NA	NA	*	*	*	*
2	*	-	1	*	*	2	*	*	*	NA	NA	NA	*	*	2	2	*	*	*	*	*
3	1	1	-	2	1	1	1	1	1	NA	NA	NA	1	*	1	*	1	1	1	*	1
4	*	*	2	*	*	*	NA	NA	*	NA	NA	*	*	2	*	*	*	*	*	*	
5-6	*	*	1	*	-	1	*	2	*	NA	NA	NA	*	2	*	1	2	*	*	2	
7	2	2	1	2	1	-	1	*	1	NA	NA	NA	1	*	1	*	2	2	*	*	*
8	*	*	1	*	*	1	-	2	*	NA	NA	NA	*	2	*	1	2	*	*	*	
9	*	*	1	*	2	*	2	*	2	NA	NA	NA	*	1	*	2	*	*	*	*	
10	*	*	1	*	*	1	*	2	NA	NA	NA	NA	*	*	*	1	*	*	*	2	
11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
14	*	*	1	*	*	1	*	*	*	NA	NA	NA	1	*	*	2	NA	1	1	2	
15	*	*	*	*	*	*	2	*	*	NA	NA	NA	*	*	-	2	*	*	*	*	
16-19	*	2	*	1	*	1	*	1	*	NA	NA	NA	*	*	2	-	1	*	2		
20	2	2	*	2	1	*	1	2	1	NA	NA	NA	1	*	1	-	1	2	*		
21-22	*	*	1	*	2	*	2	*	NA	NA	NA	*	*	1	*	-	*	*	*		
23	*	*	1	*	*	2	*	*	*	NA	NA	NA	*	*	*	1	-	*	*	*	
24	*	*	1	*	*	2	*	*	*	NA	NA	NA	*	*	2	2	*	*	*	*	
25	*	*	*	*	*	*	NA	NA	*	NA	NA	NA	*	*	*	*	*	*	*	*	
26-27	*	*	1	*	2	*	2	*	2	NA	NA	NA	*	1	*	*	*	*	*	*	

Note: 1. Significantly different at p < 0.001
2. Significantly Different at p <= 0.05
* Not significantly different
NA Comparison cannot be made due to lack of data, i.e. amount of plaque

PLOS ONE | www.plosone.org 8 September 2013 | Volume 8 | Issue 9 | e73460
Table 4. Comparison of HU-criteria for fibrous plaque between hierarchical-classified groups.

Group	1	2	3	4	5-6	7	8	9	10	11	12	13	14	15	16-19	20	21	22	23	24	25	26-27			
Group																									
1	-	2	1	*	*	*	2	*	*	*	NA	NA	NA	*	*	1	*	*	*	2	*	2	*		
2	2	-	1	*	*	*	2	*	NA	NA	NA	*	1	*	1	2	2	2	1	*	2	*			
3	1	1	-	*	*	2	2	1	1	NA	NA	NA	1	*	1	1	2	2	1	*	2	*			
4	*	*	-	*	*	*	NA	NA	NA	*	*	2	*	*	*	*	*	*	*	*	*	*			
5-6	*	*	*	*	*	*	NA	NA	NA	*	*	2	*	*	*	*	*	*	*	*	*	*			
7	2	*	2	*	*	*	1	*	NA	NA	NA	*	*	1	*	*	*	*	*	*	*	*			
8	*	*	2	*	*	*	NA	NA	NA	*	*	*	*	*	*	*	*	*	*	*	*	*			
9	*	2	1	*	*	1	*	-	NA	NA	NA	*	*	1	*	2	2	*	2	*	2				
10	*	*	1	*	*	*	-	NA	NA	NA	*	*	1	*	*	*	*	*	*	*	*	*			
11	NA																								
12	NA																								
13	NA																								
14	*	*	1	*	*	*	NA	NA	NA	-	*	1	*	*	*	*	*	*	*	*	*	*			
15	*	*	*	*	*	*	NA	NA	NA	*	-	1	*	*	*	*	*	*	*	*	*	*			
16-19	1	1	1	2	2	1	*	1	1	NA	NA	NA	1	1	1	1	1	1	1	1	1				
20	*	*	1	*	*	*	NA	NA	NA	*	1	*	-	1	1	1	1	1	1	1	1	1			
21	*	*	2	*	*	*	2	*	NA	NA	NA	*	*	1	*	-	*	*	*	*	*	*	*		
22	*	*	2	*	*	*	NA	NA	NA	*	*	*	*	-	*	*	*	*	*	*	*	*	*	*	
23	2	*	2	*	*	*	2	*	NA	NA	NA	*	*	1	*	*	*	-	*	*	*	*	*	*	
24	*	*	1	*	*	*	NA	NA	NA	*	*	1	*	*	*	*	*	*	*	*	*	*	*	*	
25	2	*	*	*	*	*	NA	NA	NA	*	*	1	*	*	*	*	*	*	*	*	*	*	*	*	
26-27	*	*	2	*	*	*	2	*	NA	NA	NA	*	*	1	*	*	*	*	*	*	*	*	*		

Note: 1. Significantly different at p < 0.001
2. Significantly different at p <= 0.05
* Not significantly different
NA Comparison cannot be made due to lack of data, i.e. amount of plaque

Figure 5. The hierarchically grouped HU-criteria for lipid-rich and fibrous plaques along with their +/-1 standard deviation. The blue and purple rounded-boxes bound the groups that give non-significant different HU-criteria and therefore pooled, for lipid-rich and fibrous plaque, respectively.
doi: 10.1371/journal.pone.0073460.g005
The investigated HU-criteria in this study were of the lipid-rich and fibrous plaque. However, more complex division of tissues is attributed to non-calcified plaque. The American Heart Association (AHA) has classified the atherosclerotic plaque into 6 types according to its composition, progression, and complexity [62,63]. In several of the included CT studies, non-calcified plaque has been characterized according to the AHA classification [32,35,36,40]. One study managed to characterize one other type of tissue, i.e. hemorrhage, on carotid atherosclerotic plaques [7]. However, due to the limitation of CT in spatial resolution to characterize each individual plaque component, most of the studies characterize non-calcified plaque into two categories only: low and high attenuation value, of which the previous attributed to lipid-rich plaque and the latter to fibrous plaque. Even then, the HU-criteria of lipid-rich and fibrous plaque still overlap largely. Some of the included studies proposed a HU-threshold or -range to characterize different plaque components [7,17,19,22,23,25,29,30,34,39,42]. Receiver operating characteristic (ROC) analysis was used to determine some threshold, showing promising accuracies (sensitivity ranged from 82% to 92%) [19,25,29,30,42].

An HU-based plaque characterization approach was used to quantify non-calcified plaques in patients in a number of studies. Some studies applied the HU-criteria published by their own group and thus with exact study characteristics match [54,64,65]; while another group applying HU-criteria of group other than theirs but with matching study characteristics [66]. However, sometimes, HU-criteria coming from studies with different characteristics than their own were applied, ranging from small differences, e.g. the generation of the CT-system used [67], to larger differences, e.g. the brand and detector-rows [53,68]; the brand and vessel type [69]. The original studies that published the HU-criteria and test them have shown promising accuracies. This is presumably caused by the fact that the used HU-criteria match the study characteristics exactly. As has been shown in the present study, HU-criteria for non-calcified plaque derived from studies with different study characteristics may be significantly different. This could result in considerably different measurements of non-calcified plaque components. Since obtaining the correct amount of lipid-rich plaques is of importance in determining the extent of vulnerable plaque [9], it is theoretically preferable to characterize plaques using criteria which match one’s specific study characteristics.

Some reviews exist on non-calcified plaques based on CT attenuation value are non-uniform, due to differences in examination type, vessels of interest, and CT scanning. Therefore, generalized values are unreliable for clinical use. The proposed hierarchical classification can be used to determine reference CT attenuation value of lipid-rich and fibrous plaques for the local setting.

Conclusions
Criteria to characterize non-calcified plaques based on CT attenuation value are non-uniform, due to differences in examination type, vessels of interest, and CT scanning. Therefore, generalized values are unreliable for clinical use. The proposed hierarchical classification can be used to determine reference CT attenuation value of lipid-rich and fibrous plaques for the local setting.

Supporting Information
Table S1. PRISMA Checklist.
Acknowledgements

The authors acknowledge the contribution of Xue Xueqian and Zhao Yingru in translating publications from Chinese; and Estelle Noach for providing extensive remarks on the manuscript.

References

1. Taylor A, Cerqueira M, Hodgson J, Mark D, Min J et al. (2010) ACCF/SCCT/ACR/AHA/ASNC/NASCI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr 4:407- e1-e33.

2. Korosoglou G, Mueller D, Lehrke S, Steen H, Hoch W et al. (2010) Quantitative assessment of stenosis severity and atherosclerotic plaque composition using 256-slice computed tomography. Eur Radiol 20: 1841-1850. doi:10.1007/s00330-010-1753-3. PubMed: 20306878.

3. Leber AW, Becker A, Knez A, von Ziegler F, Sirol M et al. (2006) Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol 47: 672-677. doi: 10.1016/j.jacc.2005.10.058. PubMed: 16458154.

4. Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J et al. (2007) Diagnostic accuracy of dual-source multi-detector CT coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 28: 2354-2360. doi:10.1093/eurheartj/ehm294. PubMed: 17644815.

5. Miralles M, Merino J, Busto M, Perich X, Barranco C et al. (2006) Quantification and characterization of carotid calcium with multi-detector CT-angiography. Eur J Vasc Endovasc Surg 32: 561-567. doi: 10.1016/j.ejvs.2006.02.019. PubMed: 16979917.

6. Ouderkirk M, Stillman AE, Halliburton SS, Kalender WA, Möhlenkamp S et al. (2006) Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Int J Cardiovasc Imaging 24: 645-671. doi:10.1007/s10554-006-9319-z. PubMed: 16594847.

7. Winkens M, Jawadi SS, Rapp JH, Tihan T, Tong E et al. (2008) High-resolution CT imaging of carotid artery atherosclerotic plaques. AJNR Am J Neuroradiol 29: 875-882. doi:10.3174/ajnr.A0950. PubMed: 16272582.

8. Gao T, Zhang Z, Yu W, Zhang Z, Wang Y (2009) Atherosclerotic carotid vulnerable plaque and subsequent stroke: a high-resolution MRI study. Cerebrovasc Dis 27: 345-352. doi:10.1159/000202011. PubMed: 19218800.

9. Vrmiˇr R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47: 13-18. doi:10.1016/j.jacc.2005.10.058. PubMed: 16458154.

10. Estes JM, Quist WC, Lo GF, Costello P (1998) Noninvasive characterization of plaque morphology using helical computed tomography. J Cardiovasc Surg 39: 527-534. PubMed: 9833706.

11. Kopp AF, Schroeder S, Baumbach A, Kuetner A, Georg C et al. (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intravascular ultrasound. Eur Radiol 11: 1607-1611. doi:10.1007/s003300100850. PubMed: 11511879.

12. Pohle K, Achenbach S, Bilgen I, Boppen D, Ropers D, Achenbach S et al. (2007) Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: Comparison to IVUS. Atherosclerosis 190: 174-180. doi:10.1016/j.atherosclerosis.2006.01.013. PubMed: 16494863.

13. Sun J, Zhang Z, Lu B, Yu W, Yang Y et al. (2008) Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. AJR Am J Roentgenol 190: 748-754. doi:10.2214/AJR.07.2763. PubMed: 18287448.

14. Cademartini F, La Grutta L, Runza G, Palumbo A, Maffei E et al. (2007) Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography.
stenosis and comparison with imaging diagnosis. Chin J Contemp Neuroradiol 6: 389-403.
30. Kim SY, Kim KS, Lee YS, Lee JB, Ryu JK et al. (2009) Assessment of Non-Calculated Coronary Plaques Using 64-Slice Computed Tomography: Comparison With Intravascular Ultrasound. Korean Circ J 39: 95-99. doi: 10.4103/0006-3813.99405.
31. Kitagawa T, Yamamoto H, Ohhashi N, Okimoto T, Horiuchi J et al. (2007) Comprehensive evaluation of noncalcified coronary plaque characteristics detected using 64-slice computed tomography in patients with proven or suspected coronary artery disease. Am Heart J 153: 1191-1198. doi: 10.1016/j.ahj.2007.07.020. PubMed: 17305048.
32. Leber AW, Knez A, Becker A, Becker C, von Ziegler F et al. (2004) Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: A comparative study with intravascular ultrasound. J Am Coll Cardiol 43: 1241-1247. doi:10.1016/j.jacc.2003.10.059. PubMed: 15663437.
33. Leschka S, Seiltun S, Dietmner M, Baumüller S, Stolzmann P et al. (2010) Ex vivo evaluation of coronary atherosclerotic plaques: characterization with dual-source CT in comparison with histopathology. J Cardiovasc Comput Tomogr 4: 301-308. doi:10.1016/j.jcct.2010.05.016. PubMed: 20947041.
34. Marwan M, Taheer MA, El Meniawy K, Awadallah H, Pfederer T et al. (2011) In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: A head to head comparison with IVUS. Atherosclerosis 215: 110-115. doi:10.1016/j.atherosclerosis.2010.12.006. PubMed: 21227449.
35. Motoyama S, Kondo T, Anno H, Sugura A, Ito Y et al. (2007) Atherosclerotic plaque characterization by 0.5-mm-Slice Multislice Computed Tomographic Imaging: Comparison With Intravascular Ultrasound. Circ J 71: 363-366. doi: 10.1253/circj.71.363. PubMed: 17322836.
36. Nikolau K, Becker CR, Murders M, Babaryka G, Scheiderl J et al. (2004) Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis 174: 243-252. doi:10.1016/j.atherosclerosis.2004.01.041. PubMed: 15130054.
37. Nikolau K, Becker CR, Winterberger BJ, Rist C, Trumm C et al. (2004) Evaluierung der Mehrzeilendetektorcomputertomographie zur Darstellung der koronaren Atherosklerose. Radiologie 44: 130-139. doi: 10.1016/s0033-0620(04)772-775. PubMed: 12690304.
38. Oiu JX, Wang JC, Sun XW, Gao L, Qin NS et al. (2006) Detection of coronary atherosclerosis by 64-slice spiral CT: Comparison with intravascular ultrasound. Chin J Med Imaging Technol 22: 1456-1459. doi:10.1007/s00117-006-1004-6. PubMed: 14991131.
39. Sakakura K, Yasu T, Kobayashi Y, Katayama T, Sugawara Y et al. (2006) Noninvasive tissue characterization of coronary arterial plaque by 16-slice computed tomography in acute coronary syndrome. Angiology 57: 155-160. doi:10.1177/000331970605700204. PubMed: 16518522.
40. Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A et al. (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol 37: 1430-1435. doi:10.1016/S0735-1097(01)11115-9. PubMed: 11300457.
41. Schroeder S, Kuettner A, Wojak T, Janzen J, Heuschmid M et al. (2004) Non-invasive evaluation of atherosclerosis with contrast enhanced 16 slice spiral computed tomography: results of ex vivo investigations. Heart Vessels 19: 224-229. doi:10.1007/s00380-003-0712-1. PubMed: 14520493.
42. Johnson TR, Krauss B, Sedlmai M, Grasruck M, Bruder H et al. (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17: 1510-1517. doi:10.1007/s00330-006-0515-7. PubMed: 17151859.
43. Cadernartini F, Mollet NR, Runza G, Bruining N, Hamers R et al. (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15: 1426-1431. doi: 10.1007/s00330-005-2697-x. PubMed: 15750815.
44. Fiex I, Du X, Yang Q, Shen Y, Li P et al. (2008) 64-MDCT Coronary Angiography: Phantom Study of Effects of Vascular Attenuation on Detection of Coronary Stenosis. AJR Am J Roentgenol 191: 43-49. doi: 10.2214/AJR.07.2296. PubMed: 17885074.
45. Soeda T, Umehara S, Morikawa Y, Ishigami K, Okayama S et al. (2011) Diagnostic accuracy of dual-source computed tomography in the characterization of coronary atherosclerotic plaques: Comparison with intravascular optical coherence tomography. Int J Cardiol 148: 313-318.
46. Tsujiyama Y, Ikeda E, Jinnoki K, Nishikawa H, Nishida Y et al. (2010) Computed tomographic attenuation value of coronary atherosclerotic plaques with different tube voltage: an ex vivo study. Q J Comput Assist Tomogr 34: 58-63. doi:10.1097/RCT.0b013e3181b566c41. PubMed: 20118723.
47. Wu WH, Lu B, Jiang SL, Lu JG, Qiao SB et al. (2007) Noninvasive detection and evaluation of coronary atherosclerotic plaques with multi-slice spiral CT: A comparative study with intravascular ultrasonography. Chin J Radiol 41: 1027-1031. doi:10.1007/s12252-007-0003-1. PubMed: 17885074.
63. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S et al. (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 92: 1355-1374. doi: 10.1161/01.CIR.92.5.1355. PubMed: 7648691.

64. Motoyama S, Kondo T, Sarai M, Sugiiura A, Harigaya H et al. (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50: 319-326. doi: 10.1016/j.jacc.2007.03.044. PubMed: 17659199.

65. Rozie S, de Weert TT, De Monyé C, Homburg PJ, Tanghe HLJ et al. (2009) Atherosclerotic plaque volume and composition in symptomatic carotid arteries assessed with multidetector CT angiography: relationship with severity of stenosis and cardiovascular risk factors. Eur Radiol 19: 2294-2301. doi:10.1007/s00330-009-1394-6. PubMed: 19384548.

66. Kinohira Y, Akutsu Y, Li HL, Hamazaki Y, Sakurai M et al. (2007) Coronary Arterial Plaque Characterized by Multislice Computed Tomography Predicts Complications Following Coronary Intervention. Int Heart J 48: 25-33. doi:10.1536/ihj.48.25. PubMed: 17379976.

67. Gaudio C, Mirabelli F, Pelliccia F, Francone M, Tanzilli G et al. (2009) Early detection of coronary artery disease by 64-slice multidetector computed tomography in asymptomatic hypertensive high-risk patients. Int J Cardiol 135: 280-286. doi:10.1016/j.ijcard.2008.03.091. PubMed: 18614251.

68. Hammer-Hansen S, Kofod KF, Kelbaek H, Kristensen T, Kühl JT et al. (2009) Volumetric evaluation of coronary plaque in patients presenting with acute myocardial infarction or stable angina pectoris—a multislice computerized tomography study. Am Heart J 157: 481-487. doi: 10.1016/j.ahj.2008.10.011. PubMed: 19249418.

69. Saba L, Montisci R, Sanfilippo R, Mallarini G (2009) Multidetector row CT of the brain and carotid artery: a correlative analysis. Clin Radiol 64: 767-778. doi:10.1016/j.crad.2009.03.009. PubMed: 19589415.

70. Foster G, Shah H, Sarraf G, Ahmadi N, Budoff M (2009) Detection of noncalcified and mixed plaque by multirow detector computed tomography. Expert Rev Cardiovasc Ther 7: 57-64. doi: 10.1586/14779072.7.1.57. PubMed: 19105767.

71. Springer I, Dewey M (2009) Comparison of multislice computed tomography with intravascular ultrasound for detection and characterization of coronary artery plaques: A systematic review. Eur J Radiol 71: 275-282. doi:10.1016/j.ejrad.2008.04.035. PubMed: 18586427.

72. Horiguchi J, Fujoka C, Kiguchi M, Yamamoto H, Shen Y et al. (2011) In vitro measurement of CT density and estimation of stenosis related to coronary soft plaque at 100kV and 120kV on ECG-triggered scan. Eur J Radiol 77: 294-298. doi:10.1016/j.ejrad.2009.03.002. PubMed: 19716249.