Evaluation of Indoxyl Sulfate in Chronic Kidney Disease associated with Left Ventricular Hypertrophy

Abdullah H Drewil¹, Mohammed A Al-Bayati¹, Arif S Malik²

¹Department of Chemistry and Biochemistry, College of Medicine/ Al-Nahrain University, Baghdad 64074, Iraq
²Department of Nephrology, College of Medicine/ Al-Nahrain University, Baghdad 64074, Iraq

ABSTRACT

Chronic kidney disease CKD is widely prevalent globally and Left ventricular hypertrophy (LVH) is very common among CKD patients and contributes to CV mortality which can be monitored by measuring the levels of indoxyl sulfate (IS). Study the correlation of indoxyl sulphate and the degree of left Ventricular hypertrophy in CKD patients. A case control study was done on 90 patients with Chronic kidney disease CKD, 45 of them with who were recruited the Imamian Al-Khadhemian Medical City and Baghdad Hospital, Baghdad, Iraq between January, and September 2020. The levels of indoxyl sulfate and other parameters were measured in the serum of Left ventricular hypertrophy (LVH) and compared with those with a no evidence of LVH who considered as BMI and sex matched control group. Indoxyl sulfate (IS) levels in patients with chronic kidney disease and an evidence of lift ventricular hypertrophy (LVH-CKD) group were significantly (p=0.001) higher than those of patients with chronic kidney disease without an evidence of lift ventricular hypertrophy (NLVH-CKD) and IS levels were associated significantly with the severity of LVH. The possibility to use IS as a marker for early diagnosis of LVH in patients suffered from CKD and it can be used to determine the severity of LVH in those patients.

© International Journal of Research in Pharmaceutical Sciences 3073
Table 1: General characteristics of the study groups.

	LVH-CKD	NLVH-CKD	P value	
Number of cases	N 45	45		
Gender	Male 32	33	0.814	
	Female 13	12		
Diabetes Mellitus (DM)	DM 24	17	0.138	
	Non-DM 21	28		
Hypertension (HTN)	HTN 40	5	<0.001	
	Non-HTN 15	30		
BP	Pulse pressure 66.69±8.1	46.44±5.96	<0.001	
	Systolic 176.16±13.05	134.47±25.01	<0.001	
	Diastolic 103.2±17.63	80.53±28.42	<0.001	
Address	Kerkh 15	16	0.844	
	Resafa 22	23		
	Outskirts 8	6		
Smoking	Chronic 7	0	0.012	
	Current 7	4		
	ex-smoker 18	30		
	Never 13	11		
Causes of CKD	DM 12	10	0.036	
	HTN 20	12		
	History 7	5		
	Other 6	18		
Age (year)	-	37.04±11.47	39.56±12.18	0.317
BMI (Kg/m^2)	-	26.32±3.98	26.29±3.64	0.967
CKD-duration	-	28.23±25.41	22.59±25.68	0.3

Figure 1: Age and BMI levels in all studied groups.

LVH in patients with CKD known also as uremic cardiomyopathy as it occurs even in the absence of anemia, hypertension or other conventional risk factors (Wolf et al., 2000). Furthermore correction of some risk factors like anemia did not result in prevention of LVH (Foley et al., 2000). Indoxyl sulfate is considered as a one of the most important uremic solute that derived from bacterial action on dietary protein specifically tryptophan. In CKD patients, the diminished GFR lead to a reduction in the rate of IS excretion, that causes a gradual elevation in serum IS levels with both pre- and post-dialysis which associated with CVD. It was reported that IS affect CVS by its role in the development of atherosclerosis due to its induction effect vascular endothelial cell that lead to a dysfunction as a consequence of enhancing oxidative stress (Yang et al., 2015).

MATERIALS AND METHODS

This case control study was carried out on a 90 patients age range from 18 to 60 years, consist of patients diagnosed as CKD, all this patient has LVH compare to 45 patient have CKD only as control were enrolled serially in the study. Age, gender and body mass index (BMI) matched control subjects were taken from the same socioeconomic population of cases. All persons in control group were having CKD but not LVH. All patients subjected to the
study were notified and informed about the study goals. All biochemical tests were performed free of charges for all participants and all results obtained were provided to them. All patients were attended from the Imamian Al-Khadhemian Medical City and Baghdad Hospital. Patients and controls were with a comparable age. The practical part of the study was conducted at Department of Chemistry and Biochemistry, College of Medicine and Middle East Clinical Laboratory, Baghdad- Iraq. The study has approved by the Institutional Review Board (IRB) of the College of Medicine, University of Al-Nahrain, Baghdad, Iraq. In addition, an informed written consent for participation in the study was signed by investigated subjects according to the Helsinki principles.

Sample collection and preparation

Samples of seven milliliters of blood were collected from all participants in plain tube and left to clot for 30 min at room temperature then were centrifuged at 4000 rpm (1252 x) g for 10 min, the separated sera were divided into small aliquots and store at (-20°C) until assayed for the evaluation of Indoxyl sulphate (IS). IS levels were estimated by enzyme-linked immunosorbent assays (ELISAs) with kits obtained from Elabscience (USA) according to the manufacturer instructions.

Statistical analysis

Results obtained in the present study were analyzed using the SPSS software 20. Numerical variables were expressed as mean ± SD and all statistical comparisons were made by means of independent t-test and ANOVA test with P ≤0.05 was considered statistically significant. Categorical variables were expressed as numbers and analyzed by cross tabulation to assess the frequency and percentage of each variable among studied groups. The correlation was done between all parameters using Pearson correlation test and Chi square to test the relationships between categorical variables with the measurement of Phi that is considered as a chi-square based measure of association to indicate the strength of the association (given that values ranged from 0–0.5 considered as weak association while values above 0.5 considered as strong association) in addition to p values. The normality of distribution was checked using Shapiro- Wilk and Kolmogorov- Smirnov tests.

RESULTS AND DISCUSSION

In this study, some characteristics of the studied groups summarized in Table 1 and Figure 1 that assessed by analyzing questionnaire answered by a direct interview with all subjects as indicated in appendix 1.

Table 1 showed that the group of patients with chronic kidney disease and an evidence of left ventricular hypertrophy (LVH-CKD) were age, sex, BMI, and address matched to those with chronic kidney disease without an evidence of left ventricular hypertrophy (NLVH-CKD). Moreover, there were non significant differences in a duration of CKD and incidence of DM between the two studied groups whereas significant differences were obtained in the smoking habit, causes of CKD, pulse pressure, systolic and diastolic blood pressure in addition to hypertension incidence between the studied groups. According to results illustrated in Table 2 and Figure 2, Indoxyl sulfate (IS) levels in patients with chronic kidney disease and an evidence of left ventricular hypertrophy (LVH-CKD) group were significantly (p=0.001) higher than those of patients with chronic kidney disease without an evidence of left ventricular hypertrophy (NLVH-CKD). Results postulated in Table 2 also revealed that there were non-significant differences between male and female patients in the levels of Indoxyl sulfate (IS).

On the other hand, Indoxyl sulfate (IS) levels in diabetic group were significantly higher than those of non-diabetic group whereas non-significant differences were obtained between hypertensive and normotensive patients in the levels of Indoxyl sulfate (IS). Furthermore, there were non-significant differences between smoking habit patients groups in the levels of Indoxyl sulfate (IS). Geographical distribution showed non-significant effect on the levels of Indoxyl sulfate (IS).

Results illustrated in Table 3 revealed non significant differences in levels of Indoxyl sulfate among
Table 2: Comparison between all studied groups in the levels of Indoxyl sulfate (IS).

Group	Mean ± SD	P*
LVH-CKD (n=45)	767.98 ± 356.59	0.001
NLVH-CKD (n=45)	551.97 ± 575.35	0.89
Male (n=65)	664.31 ± 511.02	0.01
Female (n=25)	648.7 ± 5368.79	0.715
DM (n=41)	789.86 ± 548.58	0.001
Non-DM (n=49)	543.77 ± 376.29	0.715
HTN (n=55)	674.65 ± 381.27	0.819
Non-HTN (n=35)	636.92 ± 596.58	0.819
Non smoker (n=24)	645.6 ± 403.78	0.629
Ex-smoker (n=48)	679.87 ± 537.42	0.629
Chronic smoker	747.37 ± 386.66	0.629
Kerkh (n=31)	602.03 ± 444.22	0.001
Resafa (n=45)	673.7 ± 513.31	0.001
Outskirts (n=14)	744.18 ± 416.6	0.001
DM (n=22)	1000.99 ± 626.87	0.001
HTN (n=32)	60.18 ± 325.32	0.001
History (n=12)	576.07 ± 296.25	0.001
Other (n=24)	469.06 ± 409.19	0.001

Table 3: Comparison between CKD stages in the levels of Alpha-Klotho (αKlotho), Indoxyl sulfate (IS) and Malondialdehyde (MDA).

Group	mean ± SD	P*
CKD stages		
Stage 2 (n=2)	341.99 ± 132.03	0.106
Stage 3a (n=12)	369.31 ± 227.02	0.028
Stage 3b (n=8)	573.71 ± 415.78	0.028
Stage 4 (n=24)	777.55 ± 637.13	0.028
Stage 5 (n=44)	705.25 ± 407.86	0.028
LHV severity		
Mild (n=35)	706.09 ± 327.98	0.028
Severe (n=10)	984.60 ± 385.05	0.028

patients with different CKD stages while significant elevations were obtained in Indoxyl sulfate levels in CKD patients with severe LVH when compared with those of CKD patients with mild LVH. Results illustrated in Table 4 revealed that the levels of urea, creatinine, uric acid, calcium, potassium, phosphate and fasting blood sugar were significantly elevated in patients with chronic kidney disease with an evidence of left ventricular hypertrophy (LVH-CKD) and those without an evidence of left ventricular hypertrophy (NLVH-CKD). On the other hand, levels of estimated glomerular filtration rate (eGFR) and hemoglobin were reduced significantly in LVH-CKD patients than those of NLVH-CKD. Additionally, sodium and chloride levels showed non-significant difference between the studied groups. Results obtained in Table 5 demonstrated that there were negative significant correlations between the age and BMI whereas all other correlations were non-significant. Data illustrated in Table 6 showed that there were non-significant correlation between both of IS with renal function tests measured. Results illustrated in Table 7 revealed that there were non-significant correlations between Alpha-Klotho (αKlotho), Indoxyl sulfate (IS), Malondialdehyde (MDA) levels and the levels of serum ions (Ca, Na, Cl, PO4). Results postulated in Table 8 showed that the incidence of LVH was associated significantly with the levels of Indoxyl sulfate (IS). IS showed to be significantly associated with DM and
Table 4: Laboratory characteristics in patients with chronic kidney disease and an evidence of left ventricular hypertrophy (LVH-CKD) and patients with non LVH-CKD (NLVH-CKD).

Variable	LVH-CKD (n=45)	NLVH-CKD (n=45)	p-value
Urea	211.62 ± 67.66	115.42 ± 50.46	<0.001
Creatinine	6.80 ± 2.59	2.99 ± 1.92	<0.001
eGFR	11.57 ± 6.68	31.84 ± 16.31	<0.001
UA	9.03 ± 2.13	4.94 ± 1.95	<0.001
Ca	10.92 ± 1.52	9.70 ± 0.84	<0.001
Na	138.88 ± 5.39	140.51 ± 4.18	0.114
K	4.78 ± 0.75	4.18 ± 0.39	<0.001
Cl	101.44 ± 5.25	100.06 ± 4.53	0.186
PO4	5.34 ± 0.83	4.72 ± 0.83	0.001
HB	8.79 ± 1.58	11.74 ± 1.41	<0.001
FBS	161.80 ± 60.14	136.40 ± 47.41	0.029

Table 5: The correlations between Klotho, IS, MDA, hemoglobin (HB) and fasting blood sugar (FBS) levels and age, body mass index (BMI) and the duration of CKD in patients with LVH-CKD.

	HB	Age	BMI	FBS	How long have CKD (months)
IS	r 0.117	0.004	0.061	0.169	0.002
	p 0.445	0.979	0.689	0.267	0.990
HB	r -	0.144	-0.124	-0.055	0.017
	p -	0.346	0.416	0.719	0.911
Age	r -	-	-0.446	0.011	0.118
	p -	-	0.002	0.945	0.441
BMI	r -	-	-	-0.031	-0.045
	p -	-	-	0.838	0.768
FBS	r -	-	-	-	-0.149
	p -	-	-	-	0.329

non-significantly associated with the stages of CKD and HTN. Indoxyl sulfate is considered as one of the most important uremic solute that derived from bacterial action on dietary protein specifically tryptophan. In CKD patients, the diminished GFR lead to a reduction in the rate of IS excretion, that causes a gradual elevation in serum IS levels with both pre and post dialysis which associated with CVD. It was reported that IS affect CVS by its role in the development of atherosclerosis due to its induction effect vascular endothelial cell that lead to a dysfunction as a consequence of enhancing oxidative stress (Yang et al., 2015) which is consistent with the results obtained in the present study that showed significant elevation in their levels in LVH-CKD patients in a comparison with those of NLVH-CKD. Several studies demonstrated that IS levels elevated significantly in CKD patients and the increment is always parallel to the severity of the disease and related to the complications occur such as the cardiovascular complication.

In addition to involvement in the progression of CKD, a several clinical researches supports the idea that indoxyl sulfate may also contribute to CVD in the CKD patients and proposed that IS levels can be considered as a valuable marker in predicting cardiovascular events in patients with advanced CKD (Lin et al., 2012; Hung et al., 2017). There are a growing number of clinical studies that supports the idea that IS regarded as a crucial factor which contributes to CVD in the CKD, and can be considered as the main link between these diseases (Kamiński et al., 2017; Hung et al., 2017). IS plays a major role...
Table 6: The correlations between Alpha-Klotho (αKlotho), Indoxyl sulfate (IS), Malondialdehyde (MDA) and renal function tests (urea, creatinine, uric acid and estimated GFR) inpatients with LVH-CKD.

	Urea	Creatinine	eGFR	UA
IS	0.862	0.042	-0.098	0.119
p	0.000	0.783	0.521	0.437
Urea	-0.022	-0.751	0.000	
p	0.888	0.000		
Creatinine	-	-0.840		
p	0.000			
eGFR	-0.119			
p	0.437			

Table 7: The correlations between Alpha-Klotho (αKlotho), Indoxyl sulfate (IS), Malondialdehyde (MDA) and Serum ions (Ca, Na, Cl, PO4).

	MDA	IS	Ca	Na	K	Cl	PO4
αKlotho	-0.415	-0.336	-0.263	0.159	-0.216	-0.086	0.031
p	0.005	0.024	0.081	0.298	0.154	0.573	0.840
MDA	-0.328						
p	0.028						
IS	-0.022						
p	0.002						
Ca	0.328						
p	0.084						
Na	-0.084						
p	0.583						
K	-0.501						
p	0.059						
Cl	-0.008						
p	0.059						
PO4	0.785**						
p	0.000						

Table 8: Association of Alpha-Klotho (αKlotho), Indoxyl sulfate (IS) and Malondialdehyde (MDA) with the Incidence of LVH, Stages of CKD, DM and HTN.

Parameter	Incidence of LVH	Stages of CKD	DM	HTN
IS	0.03	0.077	0.01	0.715
Eta²	0.053	0.093	0.073	0.002

in renal-induced systemic inflammation, immune system alteration, and oxidative stress generation in various tissues of the body (Karbowska et al., 2018).

Indoxyl sulfate showed non-significant differences in their levels between different genders and also showed that their levels were not affected by hypertension, cigarette smoking and geographic distribution of patients.

These findings are not fully agree with previous literature which demonstrated that there was a direct link between hypertension in CKD patients and IS levels as it seems to play modulatory roles in some cellular pathways in hypertensive rats through reducing Klotho expression (Adijiang et al., 2011; Yisireyili et al., 2013) which is consistent with the results discussed above about the role of Klotho in the cardiovascular complications of CKD. So, previous researches demonstrated that IS effect indirectly on blood pressure and the incidence of HTN via Klotho expression reduction expression (Adijiang et al., 2011).
CONCLUSIONS

Inoxyl sulfate can be used as a marker for early diagnosis of LVH in patients suffered from CKD and it can be used to determine the severity of LVH in those patients.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.

REFERENCES

Adijiang, A., et al. 2011. Indoxyl sulfate reduces klotho expression and promotes senescence in the kidneys of hypertensive rats. Journal of Renal Nutrition, 21(1):105–109.

Foley, R. N., et al. 2000. Effect of hemoglobin levels in hemodialysis patients with asymptomatic cardiomyopathy. Kidney International, 58(3):1325–1335.

Grams, M. E., et al. 2013. Lifetime incidence of CKD stages 3-5 in the United States. American Journal of Kidney Diseases, 62(2):245–252.

Hill, N. R., et al. 2016. Global prevalence of chronic kidney disease – A systematic review and meta-analysis. Plos one, 11(7):e0158765.

Hruska, K. A., et al. 2010. Cardiovascular risk in chronic kidney disease (CKD): the CKD-mineral bone disorder (CKD-MBD). Pediatric Nephrology, 25(4):769–778.

Hsu, H. J., Wu, M. S. 2009. Fibroblast growth factor 23: A possible cause of left ventricular hypertrophy in hemodialysis patients. American Journal of the Medical Sciences, 337(2):116–122.

Hung, S.-C., et al. 2017. Indoxyl sulfate: A novel cardiovascular risk factor in chronic kidney disease. Journal of the American Heart Association, 6(2):8.

Kamiński, T. W., et al. 2017. Indoxyl sulfate the uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrology, 18(1).

Karbowska, M., et al. 2018. Indoxyl sulfate promotes arterial thrombosis in rat model via increased levels of complex TF/VII, PAI-1, platelet activation as well as decreased contents of SIRT1 and SIRT3. Frontiers in Physiology, 9.

Lin, C. J., et al. 2012. Indoxyl sulfate predicts cardiovascular disease and renal function deterioration in advanced chronic kidney disease. Archives of Medical Research, 43(6):451–456.

Nitta, K., et al. 2019. Risk factors for increased left ventricular hypertrophy in patients with chronic kidney disease: findings from the CKD-JAC study. Clinical and Experimental Nephrology, 23(1):85–98.

Park, M., et al. 2012. Associations between kidney function and subclinical cardiac abnormalities in CKD. Journal of the American Society of Nephrology, 23(10):1725–1734.

Russo, D., et al. 2015. Effects of phosphorus-restricted diet and phosphate-binding therapy on outcomes in patients with chronic kidney disease. Journal of Nephrology, 28(1):73–80.

Stewart, G. A., et al. 2005. Electrocardiographic abnormalities and uremic cardiomyopathy. Kidney International, 67(1):217–226.

Trinh, E., Chan, C. T. 2016. Intensive home hemodialysis results in regression of left ventricular hypertrophy and better clinical outcomes. American Journal of Nephrology, 44(4):300–307.

Wolf, W. C., et al. 2000. Human tissue kallikrein gene delivery attenuates hypertension, renal injury, and cardiac remodeling in chronic renal failure. Kidney International, 58(2):730–739.

Yang, K., et al. 2015. Klotho protects against indoxyl sulphate induced myocardial hypertrophy. Journal of the American Society of Nephrology, 26(10):2434–2446.

Yisireyili, M., et al. 2013. Indoxyl sulfate promotes cardiac fibrosis with enhanced oxidative stress in hypertensive rats. Life Sciences, 92(24-26):1180–1185.