Method of images applied to driven solid-state emitters

Dale Scerri, Ted S. Santana, Brian D. Gerardot, and Erik M. Gauger

SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, EH14 4AS, United Kingdom.
(Dated: November 16, 2018)

Increasing the collection efficiency from solid-state emitters is an important step towards achieving robust single photon sources, as well as optically connecting different nodes of quantum hardware. A metallic substrate may be the most basic method of improving the collection of photons from quantum dots, with predicted collection efficiency increases of up to 50%. The established ‘method-of-images’ approach models the effects of a reflective surface for atomic and molecular emitters by replacing the metal surface with a second fictitious emitter which ensures appropriate electromagnetic boundary conditions. Here, we extend the approach to the case of driven solid-state emitters, where exciton-phonon interactions play a key role in determining the optical properties of the system. We derive an intuitive polaron master equation and demonstrate its agreement with the complementary half-sided cavity formulation of the same problem. Our extended image approach offers a straightforward route towards studying the dynamics of multiple solid-state emitters near a metallic surface.

I. Introduction

The problem of a dipole emitter placed close to a reflective surface has received much interest over the last few decades: seminal work by Drexhage in 1970 first demonstrated that a reflective interface modifies the intrinsic properties of the emitter, influencing both the emission frequency and the emitter’s excited lifetime. Recently, a sound analogue of Drexhage’s experiment has been performed to study the acoustic frequency shifts of a gong struck near a hard wall.

Mirrors have widespread use for directing light from sources that emit across a extended solid angle, for example in the form parabolic reflectors in everyday light sources. On the nanoscale, precise guiding of photons into particular optical modes is of paramount importance for quantum information processing and communication, where on demand single photons are required. Although micron-sized spherical mirrors for open access microcavities have recently enabled the investigation of quantum dot–cavity systems in the strong coupling regime, the use of sophisticated mirrors remains a challenge for solid-state quantum emitters that are often embedded in heterogenous layers of substrates with varying refractive indices. This motivates the more straightforward alternative of increasing the photon collection efficiency by placing the emitter above a planar mirroring interface. Interestingly, the presence of even such a simple mirror also affects the physical properties of the emitter, as discussed above.

In recent years, progress in the synthesis and control of solid-state emitters has enabled experimental investigation of these modified properties of condensed-state emitters including quantum dots (QDs) as well as perovskite and transition metal dichalcogenide monolayers deposited on reflective surfaces. Circuit QED analogues of an atom and a variable mirror have also been successfully implemented; these offer the advantage of increased control over the artificial atom’s interaction with the mirror. With improved atom-mirror coupling, Hoi et al. managed to collect over 99% of the radiation by coupling a transmon microwave emitter to a 1D superconducting waveguide.

Several theoretical investigations have shown that an atomic two-level system (TLS) near a reflective surface can be modelled as a pair of emitters: the real one as well as an identical emitter that is placed equidistant from, but on the opposite side of, the interface (see Figs. 1 and 2). The basic idea follows that of the electostat-
ics concept of an image charge to capture the surface charge distribution that ensures meeting the electric field boundary conditions. In the optical case, the ‘method of images’ relies on considering the emission from the combined dipole-image system. This yields the same expression for the modified spontaneous emission (SE) rate which one obtains from a full QED treatment (employing surface-dependent response functions to arrive at the modifications to the emitter’s lifetime and transition frequency). The image dipole treatment has also been applied to model the surface-induced modifications of more complex structures such as molecules, multiple dipole emitters and solid state-emitters. To date, however, the latter have largely ignored the vibrational solid state environment and the continuous wave (cw) laser driving typical of a resonance fluorescence (RF) setting.

Motivated by these successes, we here present a full image dipole polaron master equation (ME) treatment of a driven TLS (such as, e.g., a quantum dot) in the proximity of a metal surface (see Fig. 1). Our calculations extend previous image dipole studies as follows: (i) we consider driven systems, showing how to incorporate a laser driving term into the dipole and image Hamiltonian; (ii) we discuss the need for introducing an additional ‘selection rule’ to prevent unphysical double excitation; (iii) we demonstrate how a solid-state phonon environment can be accounted for – via a single bosonic bath that is perfectly correlated across the real emitter and its image.

We will show that the resulting master equation model remains highly intuitive and possesses appealing simplicity. We establish the correctness of this model by comparing its results to those obtained from an alternative calculation which does not involve fictitious entities or rely on ad-hoc assumptions: the half-sided cavity model. This agreement gives us confidence that the model could also be extended to the case of multiple solid-state emitters near a reflective surface, laying the groundwork for the investigation of collective effects in this setting, where we believe that an image approach will be easier to deploy than both the Green’s function and the half-sided cavity approach.

This Article is organised as follows: We will start by briefly summarising the results from the established Green’s function method for calculating the SE rate of a ‘bare’ dipole emitter. Next, we shall derive a ME for the emitter by treating the metal surface as a half-sided Fabry–Pérot cavity, providing the benchmark model for a single TLS near the metal surface (see Fig. 2). Finally, we formulate the ME using the method of images (see Fig. 2). We show that, with suitable alterations, the two-body ME reduces to an effective two level system with rates and energy shifts agreeing with the cavity model. Finally, we put our model to use to obtain the RF spectrum of the modified system, featuring a phonon sideband, the Mollow triplet, and the ratio of coherently to incoherently scattered light.

II. Green’s function approach: Brief summary

We begin by summing up the main results of the Green’s function approach for modelling the optical environment of a dipole emitter. This can be applied to obtain the SE rate of an emitter in free space, as well as in the presence of a metallic surface. Whilst this approach gives a closed analytical solution for the case of a single dipole, a numerical route has to be taken to model a system comprised of a larger number of emitters, even in the absence of a driving field and phonon-environments. Therefore, we here limit the discussion to a single ‘bare’ emitter as an independent reference point for the SE rate (and energy shift) in that idealised configuration.

Let the dipole be situated at position \(\mathbf{r}_d \), where \(\mathbf{r}_d \) is perpendicular to a metal surface containing the origin of the coordinate system. In the Green’s function approach, the emitter is usually modelled as a classical dipole oscillating harmonically with amplitude \(x \) at frequency \(\omega_0 \) about \(\mathbf{r}_d \). In vacuum, the SE rate can be calculated as

\[
\gamma_0^{\text{pt}}(\omega_0) = \frac{4\omega_0^2}{\pi \epsilon_0 \hbar c^2} \left[\mathbf{d} \cdot \text{Im} \{ \mathbf{G}(\mathbf{r}_d, \mathbf{r}_d; \omega_0) \} \cdot \mathbf{d} \right],
\]

where \(\epsilon_0 \) is the electric permittivity of vacuum, \(c \) is the speed of light, \(\mathbf{d} \) is a unit vector indicating the direction of the emitter’s dipole moment, and \(\mathbf{G}(\mathbf{r}_d, \mathbf{r}_d; \omega_0) \) is the Fourier transform of the dyadic Green’s function at the emitter’s position. In Ref. Choquette et al. studied the collective decay rate of \(N \) such classical emitters near a planar interface, arriving at a diagonal Green’s function matrix, so that Eq. (1) allows one to find the SE rate for arbitrary dipole orientations.

To obtain the SE rate in a dielectric environment, we

![FIG. 2: Two equivalent descriptions of an emitter near a perfect metallic mirror. Left: schematic of the Green’s function and half-sided cavity approaches. Right: the emitter supplemented with a fictitious image dipole. The solid (dashed) red arrows indicate emitted (reflected) photons whereas the solid (dashed) red curve indicates the incident (reflected) driving beam.](image-url)
consider the following expression for the normalised dissipipated power:

\[
P \frac{P}{P_0} = 1 + \frac{6 \pi \epsilon_0 \epsilon_r}{|d|^2 k^3} \text{Im}\{d^* \cdot \mathbf{E}_s(r_d)\},
\]

where \(P_0\) is rate of energy dissipation in free space, \(\epsilon_r\) and \(k\) are the relative permittivity and wave vector magnitude in the dielectric surrounding the emitter, respectively, and \(\mathbf{E}_s(r_d)\) is the scattered electric field at the dipole's position (which, for a single dipole near the surface, corresponds to the reflected field). The connection between the Green's function and the decay rate of the dipole emitter is established via the relationship

\[
P \frac{P}{P_0} = \frac{\gamma^{pt}(\omega_0)}{\gamma_0^{pt}(\omega_0)},
\]

Rearranging the above then yields an integral expression for the desired SE rate \(\gamma^{pt}(\omega_0)\).

We note that the Green's function method is not limited to ideal metallic interfaces but can also be applied straightforwardly to reflective dielectric interfaces, simply by substituting appropriate dielectric constants into the above relevant expressions. In this case, one obtains qualitatively very similar results for a dielectric mirror, especially at larger separations. Whilst the method of images fundamentally relies on the assumption of a perfectly conducting interface, it is fair to assume its qualitative predictions will by analogy also carry across to the case of dielectric mirrors.

III. Half-sided Cavity Model

In the previous section, we discussed how to determine the SE rate for an undriven emitter interacting only with a photonic environment. However, in order to fully model a solid-state emitter such as a QD, we need to consider interactions between the emitter and its phonon environment. Now we shall derive the polaron ME for a TLS near a metal surface, by modelling the latter as a half-sided Fabry–Pérot cavity positioned at \(z = 0\) lying in the \(xy\) plane, and the QD positioned at \(z = r_d \geq 0\), where \(r_d = |r_d|\). Our calculation follows the general cavity model from Refs.\(^{[62,63]}\) taking the appropriate limits for the reflectivity and transmittivity of the two mirrors to obtain, effectively, only a single perfectly reflecting surface (see Fig. 3).

A. Hamiltonian

We consider a driven TLS with ground state \(|0\rangle\) and excited state \(|X\rangle\), which is governed by the following Hamiltonian in a rotating frame and after the usual rotating wave approximation (\(\hbar = 1\))

\[
H = H_s + H_{E}^{pt} + H_{ph}^{pt} + H_{ph}^{ann}.
\]

The spatial mode functions \(u_{q\lambda}(r)\) for an ideal half-sided cavity (of perfect reflectivity) are given by

\[
u_{q\lambda}(r) = \sqrt{\frac{\omega_{q\lambda}}{2\epsilon_0 V}} (e_{q\lambda} e^{iq_{r}} - e_{q\lambda} e^{iq_{r}}).
\]
Here, \(\mathbf{q}_- (\mathbf{q}_+) \) is the incident (reflected) wavevector, with corresponding polarisation \(\mathbf{e}_{\mathbf{q}_- \lambda} (\mathbf{e}_{\mathbf{q}_+ \lambda}) \). For simplicity, we have assumed that the dipole moment \(\mathbf{d} \) of the TLS is real.

The interaction with the phonon bath can be generically represented by the Hamiltonian\(^{[22]}\)

\[
H_{IP}^{pn} = |X\rangle \langle X| \sum_{\mathbf{k}} g_{\mathbf{k}} (b_{\mathbf{k}}^\dagger + b_{\mathbf{k}}) ,
\]

where \(g_{\mathbf{k}} \) is the coupling strength of the TLS’s excited electronic configuration with phonon mode \(\mathbf{k} \). We move to the polaron frame by employing the standard Lang–Firsov-type transformation \(U = e^{\delta} \), \(S = |X\rangle \langle X| \sum_{\mathbf{k}} (g_{\mathbf{k}}/\omega_{\mathbf{k}})(b_{\mathbf{k}}^\dagger - b_{\mathbf{k}}) \), obtaining the following transformed system Hamiltonian:

\[
H_{SP} = \delta' |X\rangle \langle X| + \frac{\Omega_{cav}^*}{2} |0\rangle \langle X| B_- \\
+ \frac{\Omega_{cav}}{2} |X\rangle \langle 0| B_+ ,
\]

where \(\delta' = \delta - \sum_{\mathbf{k}} g_{\mathbf{k}}^2/\omega_{\mathbf{k}} \) (becoming \(\delta - \int_0^\infty J_{pn}(\omega)/\omega \) in the continuum limit), and the phonon bath operators \(B_{\pm} \) are defined as \(B_{\pm} = \Pi_{\mathbf{k}} D_{\mathbf{k}}(g_{\mathbf{k}}/\omega_{\mathbf{k}}) \), with \(D_{\mathbf{k}}(\pm \alpha) = \exp[\pm i(\alpha b_{\mathbf{k}}^\dagger - \alpha^* b_{\mathbf{k}})] \) being the \(\mathbf{k} \)th mode displacement operator. For numerical results we shall later use a superohmic exciton-phonon spectral density \(J_{pn}(\omega) \) with exponential cut-off at frequency \(\omega \), that is appropriate for self-assembled III-V quantum dot\(^{[33,34]}\)

\[
J_{pn}(\omega) = \alpha \omega^3 e^{-\frac{\omega}{\epsilon}} .
\]

In the polaron frame the light-matter interaction Hamiltonian Eq.\(^{[5]}\) becomes

\[
H_{IP}^{pt} = i |0\rangle \langle X| B_- \sum_{\mathbf{q},\lambda} \mathbf{d} \cdot \mathbf{u}_{\mathbf{q}\lambda}(r_d) a_{\mathbf{q}\lambda}^\dagger \\
i |X\rangle \langle 0| B_+ \sum_{\mathbf{q},\lambda} \mathbf{d} \cdot \mathbf{u}_{\mathbf{q}\lambda}(r_d) a_{\mathbf{q}\lambda} .
\]

With the definitions \(A_{\pm}^{pt} = |0\rangle \langle X|, A_1^{pt} = A_1^{pt} \), \(B_{1/2} = B_{\mp} \), \(C_1 = i \sum_{\mathbf{q},\lambda} \mathbf{d} \cdot \mathbf{u}_{\mathbf{q}\lambda}(r_d) a_{\mathbf{q}\lambda}^\dagger \), and \(C_2 = C_1 \), we can compactly write the above Hamiltonian as

\[
H_{IP}^{pt} = \sum_{i=1}^{2} A_{\pm}^{pt} \otimes B_{i}^{pt} \otimes C_i ,
\]

Since the second term in Eq.\(^{[12]}\) contains system and environment operators, we identify this as our new exciton-phonon interaction term\(^{[20]}\). This new interaction term possesses a non-zero expectation value with respect to the thermal equilibrium bath state \(\rho_E^n \); tracing out the phonon bath degrees of freedom, we thus obtain

\[
\text{Tr}_E^n \left[\left(\frac{\Omega_{cav}^*}{2} |0\rangle \langle X| B_- + \frac{\Omega_{cav}}{2} |X\rangle \langle 0| B_+ \right) \rho_E^n \right] = \frac{\Omega_{cav}}{2} \langle B \rangle \langle 0| B \rangle + \frac{\Omega_{cav}^*}{2} \langle 0| B \rangle \langle B \rangle ,
\]

where

\[
\langle B \rangle = \exp \left[-\frac{1}{2} \int_0^\infty d\omega \frac{J_{pn}(\omega)}{\omega^2} \coth(\beta \omega/2) \right] .
\]

In order to expand perturbatively, we therefore define the system-bath interaction with respect to this value. To this end, we add the expectation value by defining \(B_{\pm} = B_{\pm} - \langle B \rangle \) and \(\Omega_{cav}^* = \langle B \rangle \Omega_{cav} \) and regrouping our system and interaction Hamiltonian terms, obtaining:

\[
H_{SP} = \delta' |X\rangle \langle X| + \frac{\Omega_{cav}^*}{2} |0\rangle \langle X| + \frac{\Omega_{cav}^*}{2} |X\rangle \langle 0| ,
\]

\[
H_{IP}^{pn} = \frac{\Omega_{cav}^*}{2} |0\rangle \langle X| B_- + \frac{\Omega_{cav}}{2} |X\rangle \langle 0| B_+ .
\]

As for Eq.\(^{[15]}\), we introduce operator labels \(B_{1/2}^{pn} = B_{\mp} \), \(A_1^{pn} = \Omega_{cav}/2 |0\rangle \langle X| \) and \(A_2^{pn} = A_3^{pn} \) to recast the above interaction Hamiltonian into the compact form

\[
H_{IP}^{pn} = \sum_{i=1}^{2} A_i^{pn} \otimes B_i^{pn}
\]

which will prove useful for the derivation of the master equation.

B. Master Equation

Having obtained our Hamiltonian in the polaron frame and partitioned it into system, interaction and environment parts, we can make use of the generically derived microscopic second-order Born-Markov master equation of Ref.\(^{[21]}\) (Eqn. 3.118). The interaction terms Eqs.\(^{[15]}\)\(^{[20]}\) are of the required form underlying this derivation, and the resultant ME (in the interaction picture) reads:

\[
\frac{d}{dt} \rho_{SP}(t) = \\
\quad -\int_0^\infty d\tau \text{Tr}_E[H_{IP}(t), \rho_{SP}(t\tau) \otimes \rho_E(0)],
\]

where \(H_{IP}(t) = H_{IP}^{pn}(t) + H_{IP}^{pt}(t), \) and \(\text{Tr}_E \) denotes the trace over both environments\(^{[31]}\). It can be easily shown\(^{[20]}\) that the right-handside (RHS) of the above equation can be split into two parts:
\[
\frac{d}{dt} \rho_{SP}(t) = -\int_0^{\infty} d\tau \text{Tr}_E [\rho_{SP}(t - \tau)] \rho_{SP}(t) \otimes \rho_{SP}(0)]
\]

Since we assume that the (initial) environmental state is thermal, \(\rho_E(0)\) factorises: \(\rho_E(0) = \rho_{E}^{\infty}(0) \otimes \rho_{E}^{\infty}(0)\).

1. Phonon bath correlations

We proceed by analysing the first term on the RHS of Eq. (22) which captures the influence of phonons on the TLS dynamics with scattering rates determined by phonon correlation functions.[22,23] In the ME formalism, the rate \(\gamma(\omega)\) of a dissipative process is given by \(\gamma(\omega) = 2\mathcal{R} \int_0^{\infty} dK(s),\) where \(K(s)\) is the relevant correlation function [c.f. Eq. (3.137) in Ref.[31]]. For our phonon dissipator, these functions are given by

\[
C_{i}^{\text{pn}}(\tau) = \text{Tr}_E \left[B_{i}^{\dagger}(\tau) B_{i}(0) \rho_{E}^{\text{pn}}(0) \right] = \langle B_i \rangle^2 (e^{\phi(\tau)} - 1),
\]

\[
C_{i}^{\text{pn}}(\tau) = \text{Tr}_E \left[B_{i}^{\dagger}(\tau) B_{i}(0) \rho_{E}^{\text{pn}}(0) \right] = \langle B_i \rangle^2 (e^{-\phi(\tau)} - 1),
\]

where \(i, j \in \{1, 2\}, i \neq j\). After some algebra, we obtain a phonon dissipator of the form

\[
\gamma^{\text{pn}}(\omega)\mathcal{L}[\sigma_-] + \gamma^{\text{pn}}(-\omega)\mathcal{L}[\sigma_+]
\]

\[
-\gamma^{\text{cd}}(\omega)\mathcal{L}_{\sigma_-} - \gamma^{\text{cd}}(-\omega)\mathcal{L}_{\sigma_+},
\]

where \(\mathcal{L}[C] = C \rho_{SP} C^\dagger - \frac{1}{2} \{C^\dagger C, \rho_{SP}\}\) and \(\mathcal{L}_{\sigma_-}[C] = C \rho_{SP} C - \frac{1}{2} \{C^2, \rho_{SP}\}\). The rates \(\gamma^{\text{pn}}(\pm \omega)\) and \(\gamma^{\text{cd}}\) are

\[
\gamma^{\text{pn}}(\pm \omega) = \frac{|\rho_{pn}|^2}{4} \int_{-\infty}^{\infty} d\tau \ e^{\pm i\omega \tau} (e^{\phi(\tau)} - 1),
\]

\[
\gamma^{\text{cd}}(\omega) = \frac{|\rho_{pn}|^2}{4} \int_{-\infty}^{\infty} d\tau \ \cos(\omega \tau) \left(1 - e^{-\phi(\tau)}\right),
\]

\[
\gamma^{\text{cd}}(-\omega) = \frac{|\rho_{pn}|^2}{4} \int_{-\infty}^{\infty} d\tau \ \cos(\omega \tau) \left(1 - e^{-\phi(\tau)}\right),
\]

where \(\phi(\tau) = \int_{-\infty}^{\infty} d\omega \frac{2|\rho_{pn}|^2}{\omega} \text{coth}(\beta \omega/2) \cos(\omega \tau) - i \sin(\omega \tau)\). Our rates match the ones obtained by Roy-Choudhury et al.[33] in previous work.[15] The rates \(\gamma^{\text{pn}}(\omega)\) and \(\gamma^{\text{pn}}(-\omega)\) correspond to enhanced radiative decay and incoherent excitation of the TLS, respectively, whilst \(\gamma^{\text{cd}}(\pm \omega)\) is associated with cross-dephasing.[15]

2. Electromagnetic bath correlations

Having arrived at a ‘Lindblad-like’ phonon dissipator,[30] we now turn our attention to the second term of the RHS of Eq. (22). This term will yield the modified SE rate of the TLS near the cavity, as well as account for the frequency shift via a unitary renormalisation term. As in the previous section, we begin by explicitly printing the correlation functions obtained from Eq. (22):

\[
\begin{align*}
C_{ij}^{\text{pl}}(\tau) & = \text{Tr}_E \left[\left(B_{i}^{\text{pl}}(\tau) \otimes C_{j}^{\dagger}(\tau) \right) (B_{j}^{\text{pl}}(0) \otimes C_{j}(0)) \rho_{E}(0) \right], \\
& = \text{Tr}_E \left[B_{i}^{\text{pl}}(\tau) B_{j}^{\text{pl}}(0) \rho_{E}^{\infty}(0) \right] \text{Tr}_E \left[C_{j}^{\dagger}(\tau) C_{j}(0) \rho_{E}(0) \right],
\end{align*}
\]

where \(i, j \in \{1, 2\}\). After substituting for the bath operators, we make use of the following relations:[31]

\[
\begin{align*}
\text{Tr}_E \left[a_{\lambda} a_{\lambda}^\dagger \rho_{E}(0) \right] & = \text{Tr}_E \left[a_{\lambda}^\dagger a_{\lambda} \rho_{E}(0) \right] = 0, \\
\text{Tr}_E \left[a_{\lambda} a_{\lambda}^\dagger \rho_{E}(0) \right] & = \delta_{\lambda \lambda'} \delta_{\lambda \lambda'} N(v_q) \approx \delta_{\lambda \lambda'} N(v_q) = 0,
\end{align*}
\]

where we have assumed that \(\omega > 0\), the Planck distribution \(N(\omega) \approx \frac{\omega}{2\pi c} \text{c}^3\). This means that we only have a single non-vanishing correlation function \(C_{11}^{\text{pl}}(\tau)\). Following Ref.[15], we consider well-separated photon and phonon correlation times (appropriate for an unstructured photonic environment), so that \(C_{11}^{\text{pl}}(\tau)\) reduces to the photon bath correlation function in the absence of a phonon bath. The latter is given by

\[
C_{11}^{\text{pl}}(\tau) = \frac{|d|^2}{6\pi^2 c^3} \int_0^{\infty} dv_q \nu_q^3 [1 + F_{\text{cav}}(q \nu_d)],
\]

where the term

\[
F_{\text{cav}}(x) = 3 \left(-\sin(2x) - \frac{\cos(2x)}{(2x)^2} + \frac{\sin(2x)}{(2x)^3} \right),
\]

describes the influence of the metal surface. The SE rate then evaluates to

\[
\gamma_{\text{cav}}^{\text{pl}}(\omega) = (1 + F_{\text{cav}}(q \nu_d)) \gamma_{0}^{\text{pl}}(\omega),
\]

where \(\gamma_{0}^{\text{pl}}(\omega)\) is the bare SE rate for an isolated TLS, and is given by \(\gamma_{0}^{\text{pl}}(\omega) = |d|^2 \omega^3 / 3\pi c^3\). The imaginary part of the correlation tensor has two components: the first term is the usual Lamb shift (whose expression is divergent unless one adopts a full QED approach based on a relativistic Hamiltonian and appropriate renormalisation).[35] The second term is the additional
energy shift term and takes the form \[V_{\text{cav}} = \frac{1}{2} G_{\text{cav}}(q_0r_d) \gamma_0^c(\omega') , \] (29)

where the function \(G_{\text{cav}} \) is given by

\[G_{\text{cav}}(x) = \frac{3}{2} \left(-\frac{\sin(2x)}{(2x)^2} - \frac{\cos(2x)}{(2x)^3} - \frac{\cos(2x)}{2x} \right) . \] (30)

Overall, the transition frequency for the TLS in the polaron frame is now given by

\[\omega' = \omega' + V_{\text{cav}} \] (31)

and the final polaron frame ME takes the following form in the Schrödinger picture:

\[
\frac{d}{dt} \rho_{SP} = -\frac{i}{\hbar} \left[H_{SP}', \rho_{SP}(t) \right] + D_{pn}(\rho_{SP}) + D_{pt}(\rho_{SP}) ,
\] (32)

where \(D_{pn}(\rho_{SP}) = \gamma_{pn}(\omega') \mathcal{L}[\sigma_-] + \gamma_{pn}(-\omega') \mathcal{L}[\sigma_+] - \gamma_{pn}(\omega') \mathcal{L}[\sigma_+] - \gamma_{pn}(-\omega') \mathcal{L}[\sigma_-] \) and \(D_{pt}(\rho_{SP}) = \gamma_{pt}^c(\omega') \mathcal{L}[\sigma_-] \). \(H_{SP}' \) is the system Hamiltonian in the polaron frame including the energy shift from Eq. (29).

In summary, Eqs. (28) and (29) capture how the presence of a metal surface (here treated as a perfect reflector) alters the SE rate and the transition frequency of the TLS, respectively. Considering our results in the absence of phonons, we find full analytical agreement with the prior literature on the image dipole approach \cite{29}, and except for very small separations, we also have excellent numerical agreement with the full QED approach \cite{29}. We show this agreement in Fig. 4 as a function of the distance of the emitter to the surface. The dashed vertical lines at multiples of \(1/8n \) (where \(n \) is the refractive index of the host material, taken to be GaAs in our case), taken from Eqs. (28) and (29), serve as a guide to the eye for the approximate frequency of oscillation, and demonstrate that multiple periods occur within a wavelength’s separation of emitter to surface. In the limiting case \(r_d \to \infty \), we have \(V_{\text{cav}} \to 0 \) and \(\gamma_{\text{cav}}^c(\omega') \to \gamma_0^c(\omega') \), i.e. we recover the case of an isolated QD as required.

IV. Image Emitter Approach

Models involving emission from a combination of two identical TLS have been used extensively to study the modifications to the SE rate of an emitter in the proximity of a dielectric or metal surface. After setting up the appropriate Hamiltonian, we shall once more derive a polaron frame ME. We then show that this ME is identical to the one derived using the half-sided cavity approach, provided we disregard certain terms in order to constrain the dynamics of our two emitter model to the ‘right’ subspace.

A. Setup

We focus on the case where the dipole is oriented parallel to the surface \cite{30} (as is appropriate for a typical self-assembled QD emitter), implying that the image dipole will be antiparallel \cite{31,32}. In what follows, we shall once again take the real emitter to be situated at a distance \(r_d > 0 \) along the positive \(z \)-axis, with the dipole vector oriented in the positive \(x \)-direction. Hence, the corresponding image dipole is positioned at \(z = -r_d \), with its dipole vector being parallel to the negative \(x \)-
axis.

B. Hamiltonian

The Hamiltonian of the two driven TLS in a frame rotating with frequency ω_I is given by

$$H_S = \sum_{j=1}^{2} \delta |X_j\rangle \langle X_j| + \frac{\Omega^s_i}{2} |0_j\rangle \langle 0_j| + \frac{\Omega}{2} |X_j\rangle \langle 0_j| ,$$

(33)

where the subscript $j = 1,2$ denotes the real and image TLS, respectively. In order to match the boundary conditions required for reflection, we model the classical driving field as two counter-propagating beams, with the secondary ‘reflected’ beam having a π phase shift with respect to the original beam. For simplicity, we model these as plane waves propagating along the z-axis and polarised in the x-direction. In phasor notation, these two waves can be written as

$$E_1(r) = E_{\text{incident}}(r) = E_0 e^{i\Omega q \cdot r} \hat{x} ,$$

$$E_2(r) = E_{\text{reflected}}(r) = -E_0 e^{-i\Omega q \cdot r} \hat{x} ,$$

(34)

giving rise to the following Rabi frequencies at the positions $r_{1,2}$ of the two emitters:

$$\Omega_1 = 2d_1 \cdot (E_1(r_1) + E_2(r_1)) ,$$

$$\Omega_2 = 2d_2 \cdot (E_1(r_2) + E_2(r_2)) .$$

(35)

Since $r_2 = -r_1$ and $d_2 = -d_1$, we have $\Omega := \Omega_1 = \Omega_2$.

We now turn to the wider electromagnetic environment (excluding the coherent driving field discussed above). The electric field operator can be written as in Eq. (3) but with the spatial mode functions now being replaced by the free-space functions

$$u_{q\lambda}(r) = \sqrt{\frac{\omega_{q\lambda}}{2\pi V}} e^{iqr} .$$

(36)

The interaction Hamiltonian of the TLS with the photonic environment is then given by

$$H_I^{pl} = H_I^{pl,1} + H_I^{pl,2}$$

$$= -\sum_{j=1}^{2} d_j \cdot E_j(r_j)(|0_j\rangle \langle X_j| + |X_j\rangle \langle 0_j|) .$$

(37)

For the interaction with vibrational modes, we assume that both real and image TLS see the same phonon bath and possess perfectly correlated coupling constants g_k. This ensures the image system exactly follows the dynamics of real dipole, as is required for matching the boundary condition of a perfectly reflecting interface. Thus, our relevant Hamiltonian reads

$$H_I^{pn} = H_I^{pn,1} + H_I^{pn,2}$$

$$= \sum_{j=1}^{2} \sum_k |X_j\rangle \langle X_j| g_k (b_k^\dagger + b_k) .$$

(38)

Next, we move into the polaron frame with the transformation $e^{S_1+S_2} = e^{S_1}e^{S_2}$, obtaining the transformed Hamiltonians

$$H_{SP} = \sum_{j=1}^{2} \delta' |X_j\rangle \langle X_j| + \frac{\Omega^{pn}}{2} |0_j\rangle \langle 0_j| + H.c. ,$$

(39)

$$H_I^{pl,j} = i |0_j\rangle \langle X_j| B_{-} \sum_{q,\lambda} d_{j} \cdot u_{q\lambda}(r_j) a_{q\lambda}^\dagger$$

$$- i |X_j\rangle \langle 0_j| B_{+} \sum_{q,\lambda} d_{j} \cdot u_{q\lambda}(r_j) a_{q\lambda} ,$$

(40)

$$H_I^{pn,j} = \frac{\Omega^s_i}{2} |0_j\rangle \langle X_j| B_{-} + \frac{\Omega}{2} |0_j\rangle \langle 0_j| B_{+} .$$

As in Sec. [III] the latter two can easily be seen to be of the following generic form (with appropriate identifications for the A, B, C operators) which will enable straightforward use of the ME (3.118) from Ref. [III]

$$H_I^{pn,j} = \sum_{i=1}^{2} A_{i}^{pn,j} \otimes B_{i}^{pn,j} ,$$

(41)

$$H_I^{pl,j} = \sum_{i=1}^{2} A_{i}^{pl,j} \otimes B_{i}^{pl,j} \otimes C_{i}^{j} .$$

(42)

C. Master equation

The ME for our system can, once again, be written as

$$\frac{d}{dt} \rho_{SP}(t) =$$

$$-\int_{0}^{\infty} d\tau Tr_E[H_I^{pn}(t), [H_I^{pn}(t-\tau), \rho_{SP}(t) \otimes \rho_{E}^{pn}(0)]]$$

$$-\int_{0}^{\infty} d\tau Tr_E[H_I^{pl}(t), [H_I^{pl}(t-\tau), \rho_{SP}(t) \otimes \rho_{E}(0)]] ,$$

however, it now features a larger number of correlation functions due to the presence of the image emitter. Following the general procedure in Sec. [III.B] we shall analyse different contributions in turn to arrive at our final ME of the image emitter model.

1. Phonon dissipator

The correlation functions (including cross correlation terms between bath operators of the real and image sys-
tem) result in the following phonon dissipator

\[
D_{np}(\rho_{SP}) =
\sum_{i,j=1}^{2} \gamma_{ij}^{np}(\omega') \left(\sigma_{+}^{i} \rho_{SP}(t) \sigma_{+}^{j} - \frac{1}{2} \{ \sigma_{+}^{j}, \rho_{SP}(t) \} \right)
+ \sum_{i,j=1}^{2} \gamma_{ij}^{np}(-\omega') \left(\sigma_{+}^{j} \rho_{SP}(t) \sigma_{+}^{i} - \frac{1}{2} \{ \sigma_{+}^{i}, \rho_{SP}(t) \} \right)
- \sum_{i,j=1}^{2} \gamma_{cd,ij}^{np}(\omega') \left(\sigma_{+}^{j} \rho_{SP}(t) \sigma_{-}^{i} - \frac{1}{2} \{ \sigma_{+}^{i}, \rho_{SP}(t) \} \right)
- \sum_{i,j=1}^{2} \gamma_{cd,ij}^{np}(-\omega') \left(\sigma_{+}^{j} \rho_{SP}(t) \sigma_{-}^{i} - \frac{1}{2} \{ \sigma_{+}^{i}, \rho_{SP}(t) \} \right),
\]

where the rates \(\gamma_{ij}^{np}(\pm \omega') \) and \(\gamma_{cd,ij}^{np} \) are given by

\[
\gamma_{ij}^{np}(\pm \omega') = \frac{|\Omega_{np}|^2}{4} \int_{-\infty}^{\infty} d\tau \ e^{\pm i\omega'\tau} \left(e^{i\phi(\tau)} - 1 \right),
\]

\[
\gamma_{cd,ij}^{np}(\omega') = \frac{|\Omega_{np}|^2}{4} \int_{-\infty}^{\infty} d\tau \ \cos(\omega'\tau) \left(1 - e^{-i\phi(\tau)} \right),
\]

\[
\gamma_{cd,ij}^{np}(-\omega') = \frac{|\Omega_{np}|^2}{4} \int_{-\infty}^{\infty} d\tau \ \cos(\omega'\tau) \left(1 - e^{-i\phi(\tau)} \right).
\]

We shall return back to the phonon dissipator when discussing the ME equation in the symmetric-antisymmetric basis, which allows us to derive a model agreeing with the half-sided cavity approach.

2. Photon dissipator

We now turn our attention to the photon dissipator term from Eq. (43). After evaluating the correlation and cross-correlation functions, we obtain the usual expression for two emitters in a shared electromagnetic environment,

\[
D_{pt}(\rho_{SP}) =
\sum_{i,j=1}^{2} \gamma_{ij}^{pt} \left(\sigma_{+}^{i} \rho_{SP}(t) \sigma_{+}^{j} - \frac{1}{2} \{ \sigma_{+}^{j}, \rho_{SP}(t) \} \right),
\]

where the diagonal terms \(\gamma_{ij}^{pt}(\omega') = \gamma_{ij}^{pt}(\omega') = \gamma_{0}^{pt}(\omega') \), whilst the off diagonal terms are given by \(\gamma_{12}^{pt}(\omega') = \gamma_{21}^{pt}(\omega') = \mathcal{F}_{12}(q_{0}\Delta r) \gamma_{0}^{pt}(\omega') \) with \(\Delta r = r_{1} - r_{2} = 2r_{d} \), and where

\[
\mathcal{F}_{12}(x) = \frac{3}{2} \left(- \frac{\sin(x)}{x} - \frac{\cos(x)}{x^2} + \frac{\sin(x)}{x^3} \right).
\]

This is the same function obtained for the half-sided cavity approach [c.f. Eq. (27)]. The imaginary part of the correlation function yields the ‘correction’ term to the unitary part of the ME equation; its diagonal contribution represents diagonal Lamb shift terms. Their small energetic shifts can be absorbed into the bare TLS transition frequency. We thus focus on the off-diagonal element which is of the form:

\[
V_{12} = \frac{1}{2} \mathcal{G}_{12}(q_{0}\Delta r) \gamma_{0}^{pt}(\omega') ,
\]

where the function \(\mathcal{G}_{12} \) is

\[
\mathcal{G}_{12}(x) = \frac{3}{2} \left(- \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x^3} + \frac{\sin(x)}{x^5} \right).
\]

Again, this corresponds to the same energy shift term we have previously encountered in Sec. III B 2. After diagonalising the Hamiltonian, the frequency of the symmetric excited to ground state transition (in the polaron frame) is then given by

\[
\omega' = \omega' + V_{12} ,
\]

exactly matching the transition frequency Eq. (31) of the half-sided cavity model.

\[\text{FIG. 5: Energy level diagram for the two emitter system. The symmetric (}|s\rangle\rangle and antisymmetric (}|a\rangle\) levels are shifted up and down by } V_{12}, \text{ respectively. The black arrows indicate the laser driving; the antisymmetric state is decoupled. Blue and red wavy lines indicate photon emission from the antisymmetric and symmetric channel, respectively. As discussed in the text, it is necessary to disable driving on the } |s\rangle \leftrightarrow |e\rangle \text{ transition (black dashed) to recover the effective two level-system } |g\rangle \leftrightarrow |s\rangle. \text{ For environments permitting photon absorption, the dashed wavy transitions also need to be explicitly disabled.}\]
D. Effective TLS in the energy eigenbasis

As stated in the introduction, previous literature treating spontaneous emission from initially excited emitters considered the transition from the symmetrically excited to the ground state, as this choice yields matching results with other methods. We follow this approach and adopt the basis \(\{|e\}, |s\rangle, |a\rangle, |g\rangle \) with \(|s\rangle = (|0\rangle_1 |X_2\rangle + \sqrt{2} |X_1\rangle_2)/2 \) and \(|a\rangle = (|0\rangle_1 |X_2\rangle - |X_1\rangle_2)/2 \), see Fig. 5. In this basis, our full polaron ME reads:

\[
\frac{d}{dt}\rho_{SP}(t) = -\frac{i}{\hbar}[H'_{SP}, \rho_{SP}(t)] + D^a_{pn}(\rho_{SP}) + D^a_{ps}(\rho_{SP}) + D^a_{ps}(\rho_{SP}),
\]

where the dissipator terms are explicitly given in Appendix A. Here, \(H'_{SP} \) denotes the system diagonalised Hamiltonian [including the energy shift term Eq. (47)]. The ME photonic dissipator separates into a symmetric channel \((|g\rangle \leftrightarrow |s\rangle \leftrightarrow |e\rangle) \) and an antisymmetric one \((|g\rangle \leftrightarrow |a\rangle \leftrightarrow |e\rangle) \). Courtesy of the fully correlated phonon bath, phonons also only act in the symmetric channel.

Since \(\Omega_1 = \Omega_2 \), the symmetric channel Rabi frequency becomes \(\Omega_{sg} := (\Omega_1 + \Omega_2)/\sqrt{2} = \sqrt{2}\Omega = \Omega_{as}, \) and hence we obtain the same phonon rates as in the half-sided cavity approach. Furthermore, the antisymmetric channel Rabi frequency \(\Omega_a := (\Omega_1 - \Omega_2)/\sqrt{2} = 0 \), meaning that the laser field is completely decoupled from the antisymmetric state.

Consistency with the Green’s function and half-sided cavity approach demands that we restrict the dynamics of our four-dimensional Hilbert space to the subspace spanned by the states \(\{|g\rangle, |s\rangle\} \), i.e. the larger Hilbert space only served to let us calculate the correct properties of this single transition. Fully decoupling the antisymmetric singly and the doubly excited states from the dynamics is achieved by disabling the laser driving on the \(|s\rangle \leftrightarrow |e\rangle \) transition. For finite temperature photon environments with \(N(\omega) \neq 0 \), we also need to remove dissipative photon absorption channels, by dropping the antisymmetric dissipator term \(D^a_{pn}(\rho_{SP}) \) from the ME and explicitly removing the dissipative \(|s\rangle \leftrightarrow |e\rangle \) operator.

The image approach can thus be reduced to an effective TLS model featuring the same Rabi frequency, SE rate, and transition frequency as the half-sided cavity approach — i.e. displaying full equivalence between the two representations.

In Fig. 6, we summarise the key results from the previous sections: We show the transition frequency and SE rate for the all four cases considered in this Article alongside their schematic depictions. The driving term is not included as it has no direct influence on the properties of the optical dipole transition.

V. Resonance Fluorescence Spectrum

Having included the possibility of laser driving in our model, a natural application is to study the resonance fluorescence (RF) spectrum of a condensed matter TLS near a mirroring surface. We use the ME (50) (after discarding the antisymmetric channel, as argued above) to calculate the spectral function, which is given by the Fourier transform of the (steady-state) first order correlation function \(\lim_{t \to \infty} \langle E_-(\mathbf{R}, t) E^+(\mathbf{R}, t + \tau) \rangle \), where \(E_-(\mathbf{R}, t) \) and \(E^+(\mathbf{R}, t) \) are, respectively, the negative and positive components of the electric field operator.

Phonons: No | No | Yes | Yes

Mirror: No | Yes | No | Yes

\(\gamma_0 = \gamma_{pt}^0(\omega_0) \)
\(\omega = \omega_0 \)
\(\gamma_0 = (1 + F_{12}(q_0 \Delta r)) \gamma_{pt}^0(\omega_0) \)
\(\omega = \omega_0 + V_{12} \)

\(\gamma_0 = \gamma_{pt}^0(\omega') \)
\(\omega = \omega' \)
\(\gamma_0 = (1 + F_{12}(q_0 \Delta r)) \gamma_{pt}^0(\omega') \)
\(\omega = \omega' + V_{12} \)

FIG. 6: Overview of the four scenarios for an optical dipole considered in this work. All cases have a schematic depiction accompanied by the corresponding SE rates \(\gamma_0 \) and transition frequencies \(\omega \). Here, \(\Delta r \) is the separation between the real and image dipole, \(F_{12}(q_0 \Delta r) \) and \(V_{12} \) are given by Eqs. (B1) and (47), respectively, and \(\omega_0 \) and \(\omega' \) are the bare and polaron shifted frequencies, respectively. The blue ‘masses on springs’ (blue circles) denote the phonon bath. Note that the driving field is not shown here, as its presence or absence does not influencing the relevant properties.
evaluated at the position \mathbf{R} of the detector\cite{16}. These operators are related to the system operators $\sigma_- = |0\rangle \langle X|$ and $\sigma_+ = |X\rangle \langle 0|$, and hence, after applying the polaron transformation, the RF spectral function can be written as

$$S(\omega) \propto \int_{-\infty}^{\infty} d\tau e^{-i(\omega-\omega')\tau} \times$$

$$\langle \sigma_+(\tau) B_+(\tau) \sigma_-(0) B_-(0) \rangle_s, \quad (51)$$

where we have exploited the temporal homogeneity of the stationary correlation function, and where the subscript ‘s’ denotes the trace taken with respect the steady-state density matrix\cite{20}. The correlation function appearing in Eq. (51) involves two timescales, the nanosecond timescale associated with the exciton lifetime, and the shorter picosecond phonon bath relaxation timescale, allowing us to separate the correlation function into the product $\langle \sigma_+(\tau) \sigma_-(0) \rangle_s \langle B_+(\tau) B_-(0) \rangle_s$\cite{21}. Substituting the expression for the phonon bath correlation function, we obtain the spectral function

$$S(\omega) \propto \langle B \rangle^2 \int_{-\infty}^{\infty} d\tau e^{-i(\omega-\omega')\tau} \times$$

$$e^{i\Omega \tau} \langle \sigma_+(\tau) \sigma_-(0) \rangle_s. \quad (52)$$

In the left panel of Fig. 7, we show the incoherent part of the emission spectrum of our surface-modified system as well as that of a reference TLS (also subject to the same phonon environment). Following Ref\cite{22}, we take the TLS’s position relative to the surface as $r_d \sim 177$ nm. The reference TLS is driven with ‘free space’ Rabi frequency given by $\Omega^{\text{ref}} = 2\langle B \rangle d \cdot E_0$. As expected, the curves differ in the position of the Mollow sidebands and the width of the three peaks, since the former is determined by the effective Rabi frequency and the later depends on the emission rate, which both undergo a change in the presence of a reflective surface. The two insets in the left panel of Fig. 7 show the much broader phonon sideband, which receives $\sim 16\%$ of the scattered photons for the chosen spectral density at a phonon temperature of $T=10$ K.

In the right panel of Fig. 7, we plot the fraction of coherently scattered photons as a function of the renormalised effective Rabi frequency. This ratio is obtained numerically as the (integrated) coherent spectrum divided by the total integrated spectrum. There are two pairs of curves: one with and one without phonons. For the former, the finite area under the phonon sideband means that the coherent fraction does not go to unity even when driving far below saturation. The level at which this fraction plateaus is phonon coupling strength and temperature dependent\cite{23}. By contrast, in the absence of phonons, almost all light is coherently scattered at weak enough driving. The close agreement between the two curves in each pair bears testament to the fact that the surface-modified emitter largely behaves like a bare emitter once the effective Rabi frequency has been corrected for (with the slight remaining discrepancy due to modifications of the natural lifetime). Indeed, plotting this ratio directly as a function of the laser driving field amplitude reveals sizeable horizontal shifts between these two curves in each pair (not shown).

VI. Summary and Discussion

We have extended the method of images – traditionally developed for capturing spontaneous emission in atomic ensembles near reflective interfaces – to the case of a driven solid-state emitter near a metal surface. We have developed two approaches: a half-sided cavity and image dipole, and shown that the latter agrees with the former, but only when additional ‘selection rules’ are introduced to constrain the dynamics to the relevant subspace. Both our approaches agree with a Green’s function treatment
in the absence of a vibrational environment. Through a rigorous derivation, we find that the emitter can indeed still be described as an effective (phonon-dressed) two-level system with appropriately modified properties, even in the presence of a phonon bath and for a driven system. Our calculated RF spectrum corroborates this observation.

We note that image dipole approach not only necessitates a larger Hilbert space but also involved a more cumbersome ME derivation than the half-sided cavity approach. This begs the questions whether such an image approach remains useful. We submit that the method of images can more easily accommodate larger numbers of emitters near a surface (of varying separation to the surface), as the problem then straightforwardly maps onto the case of several optical dipoles in a shared (free space) electromagnetic environment – a problem which has been studied extensively, see, e.g., Ref. Another interesting avenue for future work might be the study of charged quantum dots featuring excited trion states. In addition to the optical dipole, the image approach would then feature a separate permanent dipole. To a first approximation, we would expect this second dipole to be static, meaning it would not radiate and only modify the spectrum via energetic shifts. However, one might speculate whether the Coulomb interaction of the three charges involved in the trion state could slightly ‘wiggle’ this dipole, making some radiative contribution to the overall spectrum conceivable.

Acknowledgements

The authors thank Peter Kirton, Fabio Biancalana, and David Gershoni for valuable suggestions. D.S. thanks SUPA for financial support, T.S. acknowledges studentship funding from EPSRC under grant no EP/G03673X/1, B. D. G. thanks the Royal Society, and E. M. G. acknowledges support from the Royal Society of Edinburgh and the Scottish Government.

Appendix

A. Eigenbasis Dissipators

The dissipators of Sec. [IV] are given by

\[
D^s_{pt}(\rho_{SP}) = 2\gamma \rho_{SP}(t)(S_{ee} + S_{gg}) - \frac{1}{2}\{(S_{ee} + S_{ss}), \rho_{SP}(t)\}
\]

(A1)

\[
+ 2\gamma \rho_{SP}(t)(S_{ee} + S_{gg}) - \frac{1}{2}\{(S_{gg} + S_{ss}), \rho_{SP}(t)\}
\]

\[
- 2\gamma \rho_{SP}(t)(S_{ee} + S_{ss})
\]

(A2)

\[
D^s_{pt}(\rho_{SP}) = 2\gamma \rho_{SP}(t)(S_{ee} + S_{gg}) - \frac{1}{2}\{(S_{gg} + S_{ss}), \rho_{SP}(t)\}
\]

(A3)

with \(S_{ij} = |i\rangle \langle j| ; i, j \in \{g, a, s, e\}; |g\rangle, |a\rangle, |s\rangle\) and \(|e\rangle\) being the ground, antisymmetric, symmetric and doubly excited state of our joint system, respectively.

B. SE rate and cross Lamb shift terms for dipole perpendicular to the surface

In the case of a dipole perpendicular to the surface, expressions for the cross Lamb shift term and SE rate similar to the ones used in section [IV] can be derived.
from first principles as well, arriving at the expressions

\[F_{12}(q\Delta r) = 3 \left(-\frac{\cos(q\Delta r)}{(q\Delta r)^2} + \frac{\sin(q\Delta r)}{(q\Delta r)^3} \right), \quad (B1) \]

and

\[G_{12}(q\Delta r) = -3 \left(\frac{\sin(q\Delta r)}{(q\Delta r)^2} + \frac{\cos(q\Delta r)}{(q\Delta r)^3} \right), \quad (B2) \]

instead of the ones used in section IV.
K.H. Drexhage. Influence of a dielectric interface on fluorescence decay time. *Journal of Luminescence*, 1:693 – 701, 1970.

R. R. Chance, A. Prock, and R. Silbey. Frequency shifts of an electric-dipole transition near a partially reflecting surface. *Phys. Rev. A*, 12:1448–1452, Oct 1975.

H. Morawitz. Self-coupling of a two-level system by a mirror. *Physical Review*, 187(5):1792–1796, 1969.

M. Al-Amri and M. Babiker. Quantum correlations across a metallic screen. *Phys. Rev. A*, 67:043820, Apr 2003.

C.R. Bennett, M. Babiker, and J.B. Kirk. Spontaneous emission and cooperative effects near a thin metallic film. *Journal of Modern Optics*, 49(1-2):269–284, 2002.

M Babiker. Super-radiance near conducting and plasma surfaces. *Journal of Physics A: Mathematical and General*, 9(5):799, 1976.

Z. Ficek and S. Swain. Quantum Interference and Coherence: Theory and Experiments. Springer Series in Optical Sciences. Springer, 2005.

Lutz Langguth, Romain Fleury, Andrea Alì, and A. Flemius Koenderink. Drexhage’s experiment for sound. *Phys. Rev. Lett.*, 116:224301, Jun 2016.

E. Kuill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with linear optics. *Nature*, 409(6816):46–52, Jan 2001.

Wei Qin and Franco Nori. Controllable single-photon transport between remote coupled-cavity arrays. *Phys. Rev. A*, 93:032337, Mar 2016.

Yuw en Wang, Yongyou Zhang, Qingyun Zhang, Bing suo Zou, and Udo Schwingenschlogl. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. *Scientific Reports*, 6:33867 EP –, Sep 2016. Article.

Xiaofei Zang and Chun Jiang. Single-photon transport properties in a one-dimensional resonator waveguide coupled to a whispering-gallery resonator. *Journal of Physics B: Atomic, Molecular and Optical Physics*, 43(21):215501, 2010.

Philip R. Dolan, Gareth M. Hughes, Fabio Grazier, Brian R. Patton, and Jason M. Smith. Femtoliter tunable optical cavity arrays. *Opt. Lett.*, 35(21):3556–3558, Nov 2010.

Lukas Greuter, Sebastian Starosielec, Andreas V. Kuhlmann, and Richard J. Warburton. Towards high-cooperativity strong coupling of a quantum dot in a tunable microwire. *Phys. Rev. B*, 92:045302, Jul 2015.

Javier Miguel-Sánchez, Andreas Reinhard, Emre Togan, Thomas Volz, Atac Imamoglu, Benjamin Besga, Jakob Reichel, and Jérôme Estève. Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity. *New Journal of Physics*, 15(4):045002, 2013.

Ahren Hwang, Igor I. Smolyaninov, and Christopher C. Davis. Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces. *Nano Letters*, 10(3):813–820, 2010. PMID: 20112921.

Arup Neogi and Hadis Morkoc. Resonant surface plasmon-induced modification of photoluminescence from GaN/AlN quantum dots. *Nanotechnology*, 15(9):1252, 2004.

Yi Fu, Jian Zhang, and Joseph R. Lakowicz. Silver-enhanced fluorescence emission of single quantum dot nanocomposites. *Chem. Commun.*, pages 313–315, 2009.

Chad Ropp, Zachary Cummins, Sanghee Nah, John T Pourkas, Benjamin Shapiro, and Edo Waks. Nanoscale probing of image dipole interactions in a metallic nanostructure. *Nature Communications*, 6:6558, 2015.

Yong Ma, Peter E. Kremer, and Brian D. Gerardot. Efficient photon extraction from a quantum dot in a broadband planar cavity antenna. *Journal of Applied Physics*, 115(2), 2014.

Wendy Niu, Lindsey A. Ibbotson, David Leipold, Erich Runge, G. Vijaya Prakash, and Jeremy J. Baumberg. Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors. *Phys. Rev. B*, 91:161303, Apr 2015.

Duan Zhang, Ye-Cun Wu, Mei Yang, Xiao Liu, Cormac Colesím, Mourad Abid, Mohamed Abid, Jing-Jing Wang, Igor Shvets, Hongjun Xu, Byong Sun Chun, Huajun Liu, and Han-Chun Wu. Surface enhanced Raman scattering of monolayer MX2 with metallic nano particles. *Scientific Reports*, 6:30320, Jul 2016.

I-C Hoi, AF Kockum, L Tornberg, A Pourkabirian, G Johansson, P Delsing, and CM Wilson. Probing the quantum vacuum with an artificial atom in front of a mirror. *Nature Physics*, 2015.

Kazuaki Koshino and Yasunobu Nakamura. Control of the radiative level shift and linewidth of a superconducting artificial atom through a variable boundary condition. *New Journal of Physics*, 14(4):043005, 2012.

John David Jackson. *Classical electrodynamics*. Wiley, New York, NY, 3rd ed. edition, 1999.

G. S. Agarwal. Quantum electrodynamics in the presence of dielectrics and conductors. iv. general theory for spontaneous emission in finite geometries. *Phys. Rev. A*, 12:1475–1497, Oct 1975.

Stephen M. Barnett, Nadine Harris, and Jeremy J. Baumberg. Molecules in the mirror: how sers backgrounds arise from the quantum method of images. *Phys. Chem. Chem. Phys.*, 16:6544–6549, 2014.

W.L. Barnes. Fluorescence near interfaces: The role of photonic mode density. *Journal of Modern Optics*, 45(4):661–699, 1998.

K. C. Liu and Thomas F. George. Spontaneous emission by two atoms with different resonance frequencies near a metal surface. *Phys. Rev. B*, 32:3622–3633, Sep 1985.

Chun-rong Fu and Chang-de Gong. Resonance fluorescence of two adatoms near a metal surface. *Phys. Rev. A*, 40:206–214, Jul 1989.

J. J. Choquette, Karl Peter Marzlin, and B. C. Sanders. Superradiance, subradiance, and suppressed superradiance of dipoles near a metal interface. *Physical Review A - Atomic, Molecular, and Optical Physics*, 82(2):1–11, 2010.

L. Novotny and B. Hecht. *Principles of Nano-Optics*. Cambridge University Press, 2006.

I. Frigione and S.A. Rice. *Advances in Chemical Physics*. Number v. 74 in Advances in Chemical Physics. Wiley, 2009.

A Krügel, VM Axt, T Kuhn, P Machnikowski, and A Vagov. The role of acoustic phonons for rabi oscillations in semiconductor quantum dots. *Applied Physics B*,
14
P. Machnikowski and L. Jacak. Resonant nature of phonon-induced damping of rabi oscillations in quantum dots. Phys. Rev. B, 69:193302, May 2004.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon. Spontaneous emission in the optical microscopic cavity. Phys. Rev. A, 43:2480–2497, Mar 1991.

G.D. Mahan. Many-Particle Physics. Physics of Solids and Liquids. Springer, 2000.

A. J. Ramsay, Achanta Venu Gopal, E. M. Gauger, A. Nazir, B. W. Lovett, A. M. Fox, and M. S. Skolnick. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys. Rev. Lett., 104:017402, Jan 2010.

A. J. Ramsay, T. M. Godden, S. J. Boyle, E. M. Gauger, A. Nazir, B. W. Lovett, A. M. Fox, and M. S. Skolnick. Phonon-induced rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots. Phys. Rev. Lett., 105:177402, Oct 2010.

Ahsan Nazir and Dara P S McCutcheon. Modelling exciton-phonon interactions in optically driven quantum dots. Journal of Physics: Condensed Matter, 28(10):103002, 2016.

H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. OUP Oxford, 2007.

Ata Ulhaq, Stefanie Weiler, Chiranjeeb Roy, Sven Marcus Ulrich, Michael Jetter, Stephen Hughes, and Peter Michler. Detuning-dependent Mollow triplet of a coherently-driven single quantum dot. Optics Express, 21(4):4382–95, 2013.

Kaudhury and Stephen Hughes. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs. Opt. Lett., 40(8):1838–1841, Apr 2015.

Kaudhury Roy-Choudhury and Stephen Hughes. Quantum theory of the emission spectrum from quantum dots coupled to structured photonic reservoirs and acoustic phonons. Phys. Rev. B, 92:205406, Nov 2015.

Ref. introduces an additional, phenomenological, pure dephasing term, which we have not included in this paper.

Note that we have not performed a secularisation and our ME is therefore not strictly of Lindblad form.

Only (optical) photon modes with energies close to ω_0 are relevant, for which this approximation is typically justified under ambient conditions. However, the generalisation to a finite temperature photon bath is also straightforward.

Dara P S McCutcheon and Ahsan Nazir. Model of the optical emission of a driven semiconductor quantum dot: Phonon-enhanced coherent scattering and off-resonant sideband narrowing. Physical Review Letters, 110(21):1–9, 2013.

Crispin Gardiner and Peter Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, volume 56. Springer Science & Business Media, 2004.

G. S. Agarwal. Quantum Optics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1974.

G. V. Varada and G. S. Agarwal. Two-photon resonance induced by the dipole-dipole interaction. Phys. Rev. A, 45:6721–6729, May 1992.

We discuss modifications for the perpendicular case in the Appendix.

The last equality holds due to the difference in density of modes appearing in the derivation of the Rabi frequency in both models.

J. Iles-Smith, D. P. S. McCutcheon, J. Mork, and A. Nazir. Fundamental Limits to Coherent Scattering and Photon Coalescence from Solid-State Quantum Emitters. ArXiv e-prints, June 2016.

Wildan Abdussalam and Pawe l Machnikowski. Superradiance and enhanced luminescence from ensembles of a few self-assembled quantum dots. Phys. Rev. B, 90:125307, Sep 2014.

K. D. B. Higgins, B. W. Lovett, and E. M. Gauger. Superabsorption of light via quantum engineering. Nature Communications, 5, Aug 2014.

Marlan O. Scully. Single photon subradiance: Quantum control of spontaneous emission and ultrafast readout. Phys. Rev. Lett., 115:243602, Dec 2015.

K. D. B. Higgins, B. W. Lovett, and E. M. Gauger. Quantum-enhanced capture of photons using optical ratchet states. ArXiv e-prints, arxiv:1504.05849, 2015.