Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne-RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling

Received for publication, September 13, 2018, and in revised form, December 7, 2018 Published, Papers in Press, December 26, 2018, DOI 10.1074/jbc.R118.005861

© 2019 Kelsall et al. Published by The American Society for Biochemistry and Molecular Biology, Inc.

Ian R. Kelsall, Yosua A. Kristariyanto, Axel Knebel, Nicola T. Wood, Yogesh Kulathu, and Arno F. Alpi

From the MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom

Edited by Henrik G. Dohlman

Cullin-RING E3 ubiquitin ligases (CRLs) are large and diverse multisubunit protein complexes that contribute to about one-fifth of ubiquitin-dependent protein turnover in cells. CRLs are activated by the attachment of the ubiquitin-like protein neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to the cullin subunits. This cullin neddylation is essential for a plethora of CRL-regulated cellular processes and is vital for life. In mammals, neddylation is promoted by the five co-E3 ligases, defective in cullin neddylation 1 domain-containing 1–5 (DCNL1–5); however, their functional regulation within the CRL complex remains elusive. We found here that the ubiquitin-associated (UBA) domain–containing DCNL1 is monoubiquitylated when bound to CRLs and that this monoubiquitylation depends on the CRL-associated Ariadne RBR ligases TRIAD1 (ARIH2) and HHARI (ARIH1) and strictly requires the DCNL1’s UBA domain. Reconstitution of DCNL1 monoubiquitylation in vitro revealed that autoubiquitylated TRIAD1 mediates binding to the UBA domain and subsequently promotes a single ubiquitin attachment to DCNL1 in a mechanism previously dubbed coupled monoubiquitylation. Moreover, we provide evidence that DCNL1 monoubiquitylation is required for efficient CRL activity, most likely by remodeling CRLs and their substrate receptors. Collectively, this work identifies DCNL1 as a critical target of Ariadne RBR ligases and coupled monoubiquitylation of DCNL1 as an integrated mechanism that affects CRL activity and client–substrate ubiquitylation at multiple levels.

This work was supported by RCUK, Medical Research Council, and Max-Planck-Gesellschaft. The authors declare that they have no conflicts of interest with the contents of this article.

© Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license.

The abbreviations used are: CRL, cullin-RING E3 ubiquitin ligase; UBA, ubiquitin-associated; UBD, ubiquitin-binding domain; IP, immunoprecipitate; BisTris, 2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol; GST, glutathione S-transferase; 5′-IAF, 5′-iodoacetamidofluorescein; PONY, potentiating neddylation; CSN, COP9 signalosome; Ub, ubiquitin; SR, substrate–receptor; UBL, ubiquitin-like; RBR, Ring–between–Ring; UIM, ubiquitin interaction motive; MBP, maltose-binding protein.
pressed DCNL1 was monoubiquitylated, and it was further suggested that this monoubiquitylation drives DCNL1 nuclear export (16).

Cullin neddylation is reversed by the eight-subunit COP9 signalosome (CSN), the sole known isopeptidase to specifically deconjugate NEDD8 from cullins (17). The substrate-free CSN enzyme complex is autoinhibited; however, a recent protein structural analysis revealed that CSN binding to the neddylated CRL activates its hydrolysis activity (18). Notably, CSN also exhibits a high affinity for the deconjugated cullin product and maintains the CRL in an inactive state.

Increasing evidence has emerged that alternative regulatory mechanisms exist and are coupled to neddylation/deneddylation. Data from elegant biochemical and cellular studies indicate that the CAND1 protein promotes substrate–receptor (SR) module exchange that depends on the neddylated state of the cognate cullin (19–25). Although SRs are tightly associated with cullin scaffolds, the presence of CAND1 can increase the rate of SR dissociation by several orders of magnitude, allowing the exchange of different SRs (19). This effect was abrogated when the cullin complex was neddylated, which is in agreement with NEDD8’s ability to prevent CAND1 binding to cullins. In contrast, NEDD8 also has the ability to promote binding of CRL-associated proteins, such as UBXN7/p97 and members of the Ariadne Ring–Between–Ring (RBR) E3 ligases (26–28). We have previously reported that the Ariadne RBRs, HHARI and TRIAD1 (also known as ARIH1 and ARIH2, respectively), interact with distinct neddylated CRLs, and this interaction acts to stimulate Ariadne E3 ligase activity by relieving an autoinhibitory effect mediated by the “Ariadne” domain (28, 29). Once activated, HHARI cooperates with cullin–RBX1 activity for CRL client substrate ubiquitylation (30). In particular, HHARI efficiently primes selected substrates with monoubiquitin to promote subsequent polyubiquitylation by cullin–RBX1 ligase activity. It remains to be mechanistically dissected how HHARI and TRIAD1 integrate into the dynamic remodeling of the CRL–SR complex by CAND1 and the CRL neddylation/deneddylation cycle controlled by the DCNL1 family and CSN.

Here, we identified a novel, functional link between Ariadne RBRs and DCNL1. We show that the Ariadne E3 ubiquitin ligase activities of TRIAD1 and HHARI are required for efficient monoubiquitylation of DCNL1 both in vitro and in vivo. We have determined the mechanism by which TRIAD1 promotes ubiquitylation of DCNL1 as coupled monoubiquitylation. Our findings collectively suggest that DCNL1 monoubiquitylation is required for efficient CRL activity, most likely by promoting remodeling of CRLs and their substrate receptors.

Results

TRIAD1 and HHARI are required for cellular DCNL1 monoubiquitylation

To investigate the impact of TRIAD1/NEDD8–CUL5 binding on the overall CUL5 ligase complex assembly and neddylation cycle, we analyzed the association of the NEDD8 conjugation/deconjugation machinery, DCNL1 and CSN. Endogenous CUL5 complexes were first immunoprecipitated from cells stably expressing GFP–TRIAD1 or inactive E3 ligase GFP–TRIAD1 (C310S), and co-precipitated proteins were then determined by immunoblot analyses. GFP–TRIAD1 (C310S)-expressing cells showed reduced levels of CUL5-associated CSN subunits CSN5 and CSN8 (Fig. 1A, lanes 8 and 9), and DCNL1 (Fig. 1B, lanes 5 and 6). We further noted that the slower-migrating form of monoubiquitylated DCNL1 (DCNL1–Ub) was markedly reduced in the GFP–TRIAD1 (C310S) cell lysate (Fig. 1B, input). To our knowledge, endogenous DCNL1–Ub has not been detected previously. Endogenous DCNL1–Ub is enriched in the cytosol, as was described for ectopically expressed DCNL1 (Fig. 1C) (31). We further assessed whether DCNL1 is indeed conjugated with ubiquitin rather than with NEDD8. We treated HA immunoprecipitates of cells expressing HA–DCNL1 with either the pan-ubiquitin–deconjugating enzyme USP2 or the deneddylation enzyme NEDP1 (32). USP2 but not NEDP1 efficiently deconjugated DCNL1, confirming monoubiquitin-modified DCNL1 (Fig. 1D). We next asked whether the ligase activity of HHARI, the Ariadne subfamily member most closely related to TRIAD1, is also required for DCNL1–Ub. We analyzed the abundance of endogenous DCNL1–Ub in cytosolic fractions of cells expressing catalytically inactive Ariadne variants (TRIAD1 (C310S) and HHARI (C357S)), constitutive ligase-active variants containing mutations that relieve autoinhibition (TRIAD1 (R371A, E382A, and E455A) and HHARI (F430A, E431A, and E503A)) (28, 29), and a combination of these mutations. Catalytically dead variants of both Ariadne RBRs (Fig. 1, E and F, lanes 2 and 4) reduced the abundance of DCNL1–Ub in the cytosol, whereas autoinhibition-relieved variants had no significant impact (Fig. 1, E and F, lane 3). Taken together, these data indicate that the E3 ubiquitin ligase activities of TRIAD1 and HHARI are required for efficient DCNL1 monoubiquitylation in cells.

DCNL1 is monoubiquitylated by TRIAD1 and HHARI in vitro

We next tested whether TRIAD1 can directly target DCNL1 for ubiquitylation in an in vitro assay with purified recombinant proteins. In a complete ubiquitylation reaction containing the ubiquitin-activating E1 enzyme UBE1, the cognate E2-conjugating enzyme for Ariadne RBRs UBCH7 (33, 34), DCNL1 as substrate, and neddylated CUL5–RBX2 (N8–CUL5–RBX2), TRIAD1 efficiently monoubiquitylated DCNL1 (Fig. 2A). Consistent with our previous finding in substrate-free assays (28), the presence of N8–CUL5–RBX2 stimulates TRIAD1 ligase activity and DCNL1–Ub conjugation. To further assess N8–CUL5–RBX2 stimulation of TRIAD1 in the context of a substrate, we set up a quantitative ubiquitylation assay with fluorescein-labeled ubiquitin (Ub5–IAF). Monitoring the formation of DCNL1–Ub5–IAF with 100 nM TRIAD1 in the presence of 100 nM N8–CUL5–RBX2 revealed a robust enhancement of TRIAD1 substrate conjugation activity (Fig. 2, B and C). Importantly, DCNL1 monoubiquitylation is strictly dependent on catalytically active TRIAD1. Replacing WT MBP-tagged TRIAD1 (MBP–TRIAD1) with catalytically inactive MBP–TRIAD1 (C310A) completely abolished DCNL1–Ub despite the presence of N8–CUL5–RBX2 (Fig. 2D). We
next tested whether HHARI can also directly target DCNL1 for monoubiquitylation. We used a truncation of HHARI that lacked the autoinhibitory Ariadne domain HHARI (\(H9004\) ARI). This HHARI (\(H9004\) ARI) variant is fully active, even in the absence of neddylated CUL1–RBX1 (28, 29). In a complete ubiquitylation reaction with either UBCH7 or UBCH5c, we observed a robust monoubiquitylation of DCNL1 by HHARI (\(H9004\) ARI) (Fig. 2E). In summary, both TRIAD1 and HHARI are capable of directly monoubiquitylating DCNL1 in vitro.

UBA domain of DCNL1 mediates binding to autoubiquitylated TRIAD1

We next aimed to examine the mechanism of DCNL1 monoubiquitylation by TRIAD1 and initially investigated how TRIAD1 might bind the DCNL1 substrate. Ubiquitin-binding domain (UBD)–containing proteins, including UBA domain–containing proteins, are commonly ubiquitylated by a process that depends on a functional UBD domain (35, 36). We hypothesized that DCNL1’s UBA mediates binding to TRIAD1, a prerequisite to be targeted for ubiquitylation. However, there are
conflicting data regarding whether UBA binds monomeric ubiquitin molecules and/or ubiquitin chains (11, 31). To address this issue, recombinant purified DCNL1, UBA-deleted DCNL1 (PONY), and the isolated UBA domain were used to test their binding capabilities to monomeric ubiquitin or NEDD8 that were coupled to an agarose-based matrix. DCNL1, as well as the isolated UBA domain, had a preference for ubiquitin over NEDD8 (Fig. 3A). Notably, DCNL1 missing the UBA domain failed to bind ubiquitin. Next, we tested DCNL1 binding to a set of ubiquitin tetramers of seven different linkage
Figure 3. Autoubiquitylated TRIAD1 associates with the UBA domain of DCNL1. A, in vitro binding assay to assess binding between DCNL1, UBA-deleted DCNL1 (PONY), and isolated UBA domain and either ubiquitin (Ub)- or NEDD8-agarose beads. Samples of input and beads-bound (Pellet) fraction were analyzed using individual anti-DCNL1 immunoblots. TRIAD1 comprising a Ub-binding-deficient UBA domain (input visualized by Coomassie-stained SDS-PAGE), was incubated with ubiquitin tetramers (Ub4) of seven different linkage types. Bound fractions of ubiquitin tetramers were detected and shown by silver-stained SDS-PAGE. B, Halo-tagged DCNL1 and mutated DCNL1 comprising a Ub-binding-deficient UBA domain (input visualized by Coomassie-stained SDS-PAGE), were incubated with ubiquitin tetramers (Ub4) of different linkage types. Bound fractions of ubiquitin tetramers were detected and shown by silver-stained SDS-PAGE. C and D, cell lysates of mock- or MG132-treated HEK293 cells expressing the indicated GFP-tagged variants of TRIAD1 or HHARI were analyzed by anti-GFP immunoblot analysis. β-Actin served as loading control. E and F, GFP precipitates of HEK293 cells expressing GFP–TRIAD1, GFP–HHARI, or their catalytic Cys to Ser mutant variants were mock-treated and incubated with USP2 or heat-inactivated USP2, followed by anti-TRIAD1 (E) and anti-HHARI (F) immunoblot analysis. G, in vitro MBP-pulldown experiment with mock or autoubiquitylated MBP–TRIAD1 and DCNL1, DCNL1 (PONY), and DAD patch-mutated (DADMUT) DCNL1. DCNL1 input was monitored by Coomassie-stained SDS-PAGE, and MBP-pellet samples were analyzed by immunoblot.
TRIAD1 promotes substrate interaction via DCNL1’s UBA domain (Fig. 4, red arrow), suggesting that ubiquitin ligation might facilitate a functional role other than a target for proteasomal degradation. We next tested whether autoubiquitylation of TRIAD1 promotes efficient binding to DCNL1. In vitro pulldown assays were carried out with mock-treated and autoubiquitylated MBP–TRIAD1 in the presence of DCNL1, DCNL1 (PONY) (comprising amino acids 59–259), and DAD-patch mutated DCNL1 (DADMT) (containing D211A, A235R, D241A amino acid replacements). We observed that DCNL1 but not DCNL1 (PONY) specifically co-precipitated with ubiquitylated MBP–TRIAD1 (compare lane 3 with 5), indicating that TRIAD1 autoubiquitylation was critical for mediating binding to the UBA domain of DCNL1 (Fig. 3G). Notably, the DAD-patch was dispensable for TRIAD1/DCNL1 interaction (Fig. 3G, lane 7).

TRIAD1 targets DCNL1 by coupled monoubiquitylation

Having established the molecular determents of the interaction between TRIAD1 and DCNL1, we next asked whether this interaction is required to support ubiquitin ligation to DCNL1 (Fig. 4A). Our model predicted that DCNL1 monoubiquitylation depends on the UBA domain. Analysis of lysates from cells expressing HA–DCNL1 and HA–DCNL1 (DADMT) showed significant DCNL1 monoubiquitylation, to levels similar to those observed for endogenous DCNL1. However, no monoubiquitylated form of the truncated HA–DCNL1 (PONY) was detected in lysates (Fig. 4B, INPUT) nor in HA-immunoprecipitates (Fig. 4B, IP:HA), indicating that the UBA domain was required for substrate recognition. In agreement, recombinant DCNL1 (PONY) was not efficiently monoubiquitylated by N8–CUL5–RBX2-activated TRIAD1 in vitro (Fig. 4C). To further test the importance of the ubiquitin/UBA interaction for substrate recognition, we compared in our ubiquitylation reaction WT ubiquitin with a ubiquitin mutant of the hydrophobic patch (I44A) that cannot bind UBA domains. Analysis of DCNL1 monoubiquitylation showed that replacing ubiquitin with I44A ubiquitin clearly abolished DCNL1 monoubiquitylation in vitro (compare lane 5 and 6), demonstrating that the Ile-patch was required in the process of DCNL1 ubiquitylation (Fig. 4D). Notably, TRIAD1 autoubiquitylation and hence TRIAD1 ligase activity was not affected by I44A ubiquitin. To further dissect the mechanism of DCNL1 monoubiquitylation, we addressed the role of the E2-conjugation enzyme. Studies by Hoeller et al. (38) demonstrated that several UBA-containing proteins could be directly monoubiquitylated by E2-conjugating enzymes in vitro and bypass E3 ubiquitin ligate activity. To test whether this mechanism applied for DCNL1, we set up DCNL1 ubiquitylation reactions in the absence of TRIAD1 but with either UBCH5c or UBCH7 as E2 enzymes. UBCH5c efficiently formed ubiquitin chains as well as ubiquitin-conjugated DCNL1 (Fig. 4E). Instead, the cognate UBCH7, which was used in all our standard reactions with TRIAD1, was incapable of directly targeting DCNL1 (Fig. 4E) underpinning a critical role of TRIAD1 in ubiquitin ligation onto DCNL1 (Fig. 4D).

Our working model proposes that autoubiquitylation of TRIAD1 promotes substrate interaction via DCNL1’s UBA domain (Fig. 4A, red arrow). To determine the requirement of TRIAD1 autoubiquitylation in the process of DCNL1 monoubiquitylation, the ubiquitylation reaction was divided in two steps. In the first step, TRIAD1 was pretreated with WT ubiquitin for 30 min in an autoubiquitylation reaction. In parallel, a mock TRIAD1 autoubiquitylation reaction was carried out (no autoubiquitylation). Subsequently, DCNL1 was added in the second step, and the ubiquitylation reaction was resumed for 30 min to monitor DCNL1 monoubiquitylation. Autoubiquitylated TRIAD1 significantly enhanced DCNL1 monoubiquitylation compared with mock-treated TRIAD1 suggesting that TRIAD1 autoubiquitylation is a prerequisite to promote ubiquitin ligation to DCNL1 (Fig. 4F). Next, we tested whether the enhanced DCNL1 monoubiquitylation is mediated by the ubiquitin/UBA interaction, as already suggested in Fig. 4D. Using a similar two-step assay approach, TRIAD1 autoubiquitylation was either carried out with WT ubiquitin or I44A-mutated ubiquitin, and the reaction was resumed in the presence of DCNL1. In agreement with our model, TRIAD1 autoubiquitylated with I44A ubiquitin failed to enhance DCNL1 monoubiquitylation, due to disrupted interaction between autoubiquitylated TRIAD1 and the UBA domain of DCNL1 (Fig. 4G). Importantly, TRIAD1 autoubiquitylation with I44A was indistinguishable from WT ubiquitin. In conclusion, monoubiquitylation of DCNL1 by TRIAD1 utilizes a mechanism mediated by an interaction between autoubiquitylated TRIAD1 and the DCNL1 UBA domain. A similar mechanism has been described for the monoubiquitylation of other UBA-containing proteins, including Sts2 and Eps15, and was termed “coupled monoubiquitylation” (35, 36).

Monoubiquitylation does not alter DCNL1 co-E3 ligase activity for cullin neddylation in vitro

The functional and physiological role of coupled monoubiquitylation is not defined for the majority of UBD-containing substrates. A mechanism of intramolecular regulation was proposed for UBD-substrates whereby the monoubiquitin moiety interacts with the UBD in “cis” and consequently prevents any interaction with other ubiquitylated proteins in “trans.” Alternatively, the cis interaction induces changes in the structure and/or the functional activity of the protein (39). We set out to test the latter possibility regarding whether monoubiquitylation impacts co-E3 ligase activity of DCNL1 using in vitro cullin neddylation assays. In neddylation assays with recombinant NEDD8 E1-activating enzyme (APPBP1/UBA3), N-terminally acetylated UBE2F as E2, and NEDD8, CUL5–RBX2 was modestly neddylated but significantly enhanced in the presence of DCNL1 or DCNL1 (PONY) as described previously (Fig. 5, A and B) (5, 10, 12). Notably, DCNL1 (DADMT), which cannot bind cullins, was not capable of stimulating CUL5 neddylation. We next affinity-purified monoubiquitylated DCNL1 (DCNL1-UbI44A) from up-scaled in vitro ubiquitylation reactions (see “Experimental procedures” for details) (Fig. S1). Alternatively, to mimic a monoubiquitylated form of DCNL1, we expressed and purified recombinant DCNL1 with a C-terminal fusion of monoubiquitin (DCNL1-UbC). The addition of DCNL1-UbI44A or DCNL1-UbC enhanced CUL5 neddylation to the same levels as DCNL1, arguing against a functional role of monoubiquitin in regulating the co-E3 neddylation activity of DCNL1 (Fig. 5, C and D).
DCNL1 monoubiquitylation influences Cullin RING ligase complex remodeling and activity

The in vitro experiments using the minimal CUL5–RBX2 complex as substrate indicated that neither the UBA domain nor monoubiquitylation affected the co-E3 neddylation activity of DCNL1. To investigate DCNL1 monoubiquitylation in the context of cellular CRL complexes, we generated cell lines stably expressing HA-tagged DCNL1, DCNL1 (PONY), and DCNL1-UbCT (C-terminal ubiquitin fusion). In agreement with published work (14), all tested cullins (CUL1, -2, -3, -4A, -4B, and -5) co-immunoprecipitated with DCNL1; however, we noted that DCNL1 (PONY) and DCNL1-UbCT had a higher preference for associating with the non-neddylated form of cullins (Fig. 6A). We next asked whether monoubiquitylation of...
DCNL1 changes the steady-state composition of CRL complexes with their associated regulatory components CSN and CAND1. HA–DCNL1 and variants were immunoprecipitated and analyzed by immunoblot analysis. CRL complexes associated with DCNL1 (PONY) or DCNL1–UbCT displayed a lower abundance of CSN components such as CSN3, CSN7B, and CSN8 (Fig. 6B), but they had unexpectedly increased levels of CAND1 (Fig. 6C). DCNL1 and CAND1 are apparently not mutually exclusive in binding to CRLs, supporting previous observations (14). In agreement with increased CAND1 binding, we observed reduced binding of the CUL2 and CUL5 substrate receptor/adaptor Elongin-C. These results indicated a potential role of DCNL1 monoubiquitylation in cullin substrate receptor/adaptor engagement. Indeed, recent work described a function for DCNL1 as substrate sensor and activator of CUL2–ElonginB/C–VHL complexes and ubiquitylation-mediated proteasomal degradation of Hif1α (40). Hence, we next focused our studies on CUL2-regulated turnover of Hif1α. The protein level of Hif1α was assessed in lysates from cells overexpressing HA–DCNL1 and HA–DCNL1–UbCT that were either mock-treated or exposed to the proteasomal inhibitor MG132 or the NEDD8 E1–activating enzyme inhibitor MLN4924. As expected, under normoxic conditions Hif1α was rapidly degraded, but accumulated in the presence of MG132, as well as MLN4924, due to the inhibition of the ubiquitin proteasome system and the cullin ligase, respectively (Fig. 6, D and E). Hif1α was further enriched in MG132-treated HA–DCNL1–UbCT–expressing cells (Fig. 6, D and E, lanes 4 and 6) suggesting that the monoubiquitylated form of DCNL1 impeded cullin ligase activity. However, when CRL activities were blocked by MLN4924, HA–DCNL1 and HA–DCNL1–UbCT cells showed the same level of Hif1α accumulation (Fig. 6D). We chose another well-studied CRL-substrate system, the IκBα degradation in NF-κB signaling, to further test the effects of HA–DCNL1–UbCT, HA–DCNL1 and HA–DCNL1–UbCT-expressing cells were stimulated with TNFα, and IκBα degradation as well as NF-κB activation by phospho-p65 was assessed by immunoblotting. HA–DCNL1–UbCT-expressing cells showed a modest defect in IκBα degradation, and this defect resulted in a delay in p65 phosphorylation (P-p65) (Fig. 6, F and G). Cumulatively, the data suggest that monoubiquitylation of DCNL1 has, at least for some CRLs, a regulatory function in substrate receptor/adaptor engagement and substrate targeting.

Discussion

Assembly and activity of CRLs are kept in a highly dynamic state to generate CRL complexes on demand for efficient and selective client substrate ubiquitylation (41, 42). This is driven by cullin neddylation/deneddylation on the one hand and CAND1 substrate receptor exchange on the other hand; however, the intricate interplay of these processes is less well understood. Here, we provide detailed mechanistic insight showing that the NEDD8 co-E3 ligase DCNL1 is regulated by coupled

Figure 4. DCNL1 monoubiquitylation depends on UBA domain and is stimulated by autoubiquitylated TRIAD1. A, working model proposing that DCNL1 monoubiquitylation is promoted by an interaction between DCNL1’s UBA and auto ubiquitylated TRIAD1. B, HA immunoprecipitates of HEK293 cells stably expressing HA-tagged DCNL1 (WT), DCNL1 (DADmut), or DCNL1 (PONY) were analyzed by immunoblot analysis as indicated. C, in vitro ubiquitylation reaction with purified recombinant MBP–TRIAD1, N8–CUL5–RBX2, His6-ubiquitin, and UBCH7 comparing DCNL1 and DCNL1(PONY) as substrates, including non-UBCH7 control. Reaction products were separated on SDS-PAGE and detected by Coomassie stain as well as immunoblot analysis as indicated. D, purified recombinant TRIAD1, N8–CUL5–RBX2, UBCH7, with either mock, HA-ubiquitin (WT), or mutant HA-ubiquitin (H44A) and with either DCNL1 or DCNL1 (PONY) as substrates were subjected to an ubiquitylation reaction. Reaction products were separated on reducing SDS-PAGE followed by anti-HA immunoblot analysis or Coomassie staining to verify the presence of DCNL1. F and G, composition of ubiquitylation reactions as in D, but the reaction was split into two steps. F, TRIAD1 was either mock or auto ubiquitylated with HA-ubiquitin (HA-ubWT) before addition of DCNL1. G, TRIAD1 was auto ubiquitylated with either HA-ubiquitin (HA-ubWT) or mutant HA-ubiquitin (HA-ubH44A) before addition of DCNL1.

Figure 5. DCNL1 activity is independent of its UBA domain and not altered by monoubiquitylation. Reconstitution of CUL5–RBX2 neddylation with recombinant purified NEDD8–E1, N-terminally acetylated UB2F, and WT DCNL1 or DCNL1 variants. Side-by-side comparisons of CUL5 neddylation in the absence of DCNL1 (mock) and between DCNL1 and DAD-patch mutant of DCNL1 (A), and DCNL1 (PONY) (B), monoubiquitylated DCNL1–Ub (C), and ubiquitin C-terminally-fused DCNL1–UbCT (D) are shown. CUL5 neddylation was monitored by silver-stained SDS-PAGE and immunoblot analysis with anti-CUL5 antibody. Ratio of N8-CUL5 (in %) was determined from silver-stained SDS-PAGE using ImageJ software. Standard error of the mean is given from at least two independent replications.

Figure 6. DCNL1 monoubiquitylation by Ariadne E3 ligases A–D, PR-PAGE (2019) 294(8) 2651–2664
monoubiquitylation and thereby impacts some CRL assemblies and activities.

Initially, we showed that monoubiquitylated DCNL1 is part of CRL complexes and that the monoubiquitylated form of DCNL1 is strongly reduced in cells expressing E3 ligase-inactive TRIAD1 and HHARI, suggesting that both Ariadne RBR ligases are required to ligate a single ubiquitin molecule onto DCNL1. We were able to reconstitute DCNL1 monoubiquitylation in vitro with recombinant purified proteins (Figs. 2 and 4), which allowed us to further dissect the mechanism and molecular determinants. 1) DCNL1 monoubiquitylation depends on DCNL1’s conserved N-terminal UBA domain. Despite the presence of several lysine residues as potential ubiquitylation sites (Fig. S2), the UBA-truncated form of DCNL1 is only a very poor substrate of N8–CUL5–RBX2-activated TRIAD1. These in vitro data are supported by the observation that UBA-deleted DCNL1 expressed in cells did not show any detectable monoubiquitylation. 2) DCNL1 monoubiquitylation is mediated by a noncovalent ubiquitin/UBA interaction. Ubiquitin’s Ile-44 hydrophobic patch is required for UBA interactions. Hence, replacing WT ubiquitin with UBA binding–deficient ubiquitin (I44A) in ubiquitylation reactions completely abolished DCNL1 monoubiquitylation. 3) Autoubiquitylated TRIAD1 enhances DCNL1 monoubiquitylation by mediating the ubiquitin/UBA interaction with DCNL1. 4) DCNL1 is strictly monoubiquitylated, but this modification is not limited to a specific lysine residue. Indeed, we identified several lysine residues that were ubiquitylated in vitro (Fig. S2), and they matched with ubiquitylation sites described in cellular ubiquitinome data sets (16, 43). Cumulatively, the described data fit all the key features required of an E3-dependent coupled monoubiquitylation. Such a mechanism was initially shown for the HECT-type E3 ligase Nedd4L and the ubiquitin receptor Eps15. Two recent studies are consistent with the presence of several lysine residues as potential ubiquitylation sites (44, 45). 1) DCNL1 monoubiquitylation depends on the C terminus of DCNL1, which was shown to be localized to the plasma membrane, which depends on a lipid modification of its N-terminal domain (44). 2) DCNL1’s conserved N-terminal UBA domain is required for CRL assembly and activities. 3) DCNL1 and DCNL2 possess an N-terminal UBA trimerization domain that is not required for CRL assembly and activities. 4) DCNL1 and DCNL2 possess an N-terminal UBA domain that is not required for CRL assembly and activities. 5) DCNL1 and DCNL2 possess an N-terminal UBA domain that is not required for CRL assembly and activities. 6) DCNL1 and DCNL2 possess an N-terminal UBA domain that is not required for CRL assembly and activities. 7) DCNL1 and DCNL2 possess an N-terminal UBA domain that is not required for CRL assembly and activities. 8) DCNL1 and DCNL2 possess an N-terminal UBA domain that is not required for CRL assembly and activities. 9) DCNL1 and DCNL2 possess an N-terminal UBA domain that is not required for CRL assembly and activities. 10) DCNL1 and DCNL2 possess an N-terminal UBA domain that is not required for CRL assembly and activities.

Figure 6. Monoubiquitylated DCNL1 modulates CRL complex composition. A–C, immunoblot analysis of anti-HA-IP and cell lysates (INPUT) from HEK293 cells expressing mock, HA–DCNL1, HA–DCNL1 (PONY), or HA–DCNL1-UbCΔ was used to monitor co-precipitated cullins (A), CSN subunits (B), as well as CAND1 and CRL substrate receptors (C). D, HEK293 cells expressing HA–DCNL1 or HA–DCNL1-UbCΔ were either mock-treated or pretreated with MG132 or MLN4924 as indicated, and cell lysates were assessed for Hif1α expression by immunoblot analysis. E, quantitation of Hif1α shown in D using ImageJ software. Standard error of the mean is given from three independent experiments. t tests have been performed for indicated data sets. *p ≤ 0.05 statistically significant. F, HEK293 cells expressing HA–DCNL1 or HA–DCNL1-UbCΔ were stimulated with TNFα for indicated times, and cell lysates were prepared and analyzed for the expression of IkBa and phospho-Ser32–Ser36 (P-P65) by immunoblotting. G, quantitation of IkBa shown in F using ImageJ software. Standard error of the mean is given from three independent experiments. t tests have been performed for indicated data sets. *p ≤ 0.05 statistically significant.
and/or mutated in various tumors, including lung and squamous cell carcinomas (hence DCNL1’s alternative name squamous cell carcinoma–related oncogene, SCCRO) (31, 46, 47). Interestingly, some mutations cluster within the UBA domain, and these mutations abolish ubiquitin binding (Fig. 3B) (31). Future studies will determine whether a defect in coupled DCNL1 monoubiquitylation promotes cancer cell proliferation and whether it is the underlying mechanism that drives carcinogenesis. DCNL1’s implication in cancer has initiated numerous efforts to explore it as a cancer drug target. Recent studies described the isolation and development of small compounds that inhibit DCNL1 function by blocking interaction with acetylated UBE2M and its potency in killing certain types of cancer (48, 49). Taken together we provide here a deeper functional insight into DCNL1 as a critical player in CRL biology and envision that this work will widen the scope for exploring DCNL1 as a drug target.

Experimental procedures

Cell culture, cell lines, and transfection

Stably transfected human embryonic kidney (HEK293) cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum, 2 mM L-glutamine, antibiotics (100 units/ml penicillin, 0.1 mg/ml streptomycin), and in the presence of selection with 10% (v/v) fetal bovine serum, 2 mM L-glutamine, and 15 μg/ml blasticidin. Stable HA-tagged CUL5 cells and GFP-tagged TRIAD1 and HHARI cells were described previously (28). All HA-tagged DCNL1 expression vectors were stably transfected into HEK293 using Invitrogen’s Flp-In T-Rex system according to the manufacturer’s instructions. The HA–DCNL1 and HA–DCNL1 (DADMUT) cells have been described before in Scott et al. (48). Protein expression was typically induced overnight using 1 μg/ml tetracycline unless indicated otherwise. Where indicated, cells were treated with MLN4924 (Active Biochem) at a final concentration of 3 μM overnight and 2 or 20 μM MG132 (InvivoGen) overnight.

Plasmids, vectors

All plasmids and vectors were purchased from MRC PPU Reagents and Services.

Protein expression and purification

NEDD8, TRIAD1, UBC7, UBCH5a, APPBP1–UBA3, UBE2F, CUL5–RBX2, and HHARI were purified as described previously (28). GST–USP2b and GST–NEDP1 were expressed in BL21 Escherichia coli cells and purified on GSH-Sepharose. His8-DCNL1 variants and His8-ubiquitinM-2C (ubiquitin modified by inclusion of a nonnative cysteine at the N terminus) were expressed in E. coli and purified by Ni2+-Sepharose chromatography (the His6 tag was subsequently removed from ubiquitinM-2C using tobacco etch virus protease). 5’-Iodoacetamidefluorescein (5’-IAF, ThermoFisher Scientific)–labeled ubiquitin was generated by incubating 250 μM purified ubiquitinM-2C with a 10-fold molar excess of 5’-IAF in a buffer containing 50 mM Tris-HCl, pH 7.5, and 0.5 mM tris(2-carboxyethyl)phosphine for 4 h at 22 °C in the dark. Nonreacted 5’-IAF was removed by dialysis. Halo-DCNL1 and UBA-mutated Halo-DCNL1 (F15A, M16A, F44A, and F45A) were expressed in E. coli as GST–Halo fusion proteins. GST was removed using C3 proteases, and Halo-tagged DCNL1 was coupled to HaloLink resin (Promega).

To obtain pure recombinant monoubiquitylated DCNL1, we modified an in vitro ubiquitylation protocol previously described for proliferating cell nuclear antigen monoubiquitylation (50). Ubiquitylation reaction containing 80 nM E1, 32 μM UBCH5c (S22R) (a gift from Helen Walden, University of Glasgow), 32 μM HA-ubiquitin (UbHA), and 16 μM His6-DCNL1 in reaction buffer (25 mM Tris-HCl, pH 9.0, 50 mM NaCl, 3 mM MgCl2, 2.5 mM ATP, and 0.1 mM DTT) was incubated at 37 °C overnight. The ubiquitylation reaction was diluted 1:10 with 1× PBS supplemented with 10 mM imidazole and incubated with 25 μl of nickel-nitrilotriacetic acid–agarose (Qiagen) at 4 °C for 1.5 h. Beads were washed three times with PBS (adjusted to 1 M NaCl and 20 mM imidazole) and twice with PBS (supplemented with 20 mM imidazole), and His6-DCNL1/DCNL1-UbHA eluted with 400 mM imidazole in PBS. To subsequently isolate His6-DCNL1-UbHA, the eluate was diluted in HA-binding buffer (25 mM Tris-HCl, pH 7.4, 500 mM NaCl, and 0.1% Triton X-100) and incubated with 50 μl anti-HA affinity gel (Sigma) at 4 °C for 2 h. Beads were washed with HA-binding buffer, and His6-DCNL1-UbHA was eluted with 0.2 mg/ml HA peptide (Sigma) in neddylation reaction buffer (50 mM HEPES-NaOH, pH 7.4, 50 mM NaCl, 5 mM MgCl2, 5% glycerol, 0.2 mM EDTA, and 0.02% Triton X-100) at 4 °C for 0.5 h. Protein concentrations were determined by Bradford or Micro BCA™ protein assay kit (ThermoFisher Scientific) according to manufacturer’s protocols, and proteins were aliquotted, flash-frozen, and stored at −80 °C.

Ubiquitylation assays

TRIAD1-catalyzed ubiquitylation reactions were performed as described previously (28). Quantitative analyses of DCNL1 monoubiquitylation were performed using 5’-IAF–labeled ubiquitin to allow the quantitative measurement of fluorescence incorporation during in vitro reactions. These reactions contained 66 nM E1, 366 nM UbC7, 1 μM 5-IAF–Ub, 150 nM TRIAD1, 78 nM neddylated CUL5–RBX2 complex, and varying concentrations of DCNL1 (between 1 and 10 μM) in a PBS buffer containing 5 mM Mg2+–ATP. 12-μl aliquots were removed at various time points from a 80-μl reaction volume, stopped by the addition of SDS sample buffer, and analyzed by gel electrophoresis. Gels were imaged using a FLA-5100 fluorescent image analyzer (FujiFilm) to visualize 5-IAF–labeled ubiquitin. ImageJ software was used to quantify fluorescent gel bands corresponding to monoubiquitylated DCNL1 and by reference to 5-IAF–labeled ubiquitin standards.

Ubiquitylation reaction with HHARI was carried out in Reaction Buffer (25 mM Tris-HCl, pH 7.6, 2.5 mM MgCl2, 2.2 mM ATP, and 20 mM NaCl) with 150 nM E1, 500 nM UBCH7 (or UBCH5c as indicated), 20 μM HA–Ub (Boston Biochem), 400 nM HHARI∆ΔRI (29), and 2 μM DCNL1 at 37 °C for 60 min. Reactions were stopped by adding reducing SDS sample buffer and boiled for 5 min. Reaction products were analyzed by immunoblotting.
DCNL1 monoubiquitylation reactions with ubiquitylated TRIAD1, as described in Fig. 4, F and G, were carried out in two steps. In the first step, 0.33 μg of TRIAD was autoubiquitylated in 30 μl of PBS reaction buffer with 150 μM E1, 500 μM UBC7, 20 μM HA-Ub (or Ub-I44A as indicated), and 5 mM Mg2+·ATP at 37 °C for 30 min. A mock reaction was carried out in the absence of ATP. In the second step, 2 μM DCNL1, 20 μM HA-Ub, and 5 mM Mg2+·ATP were added, and the reaction was continued for further 15 and 30 min before immunoblot analysis.

Neddylation assay with DCNL1

DCNL1 co-E3 ligase activity was assessed in an in vitro neddylation assay with CUL5–RBX2 as substrates. Neddylation reactions containing 100 nM of either DCNL1, DCNL1 (PONY), DCNL1-UbCT, or DCNL1 (DAD2-MUT), 25 nM NAE1, 50 nM N-terminal acetylated UBE2F (gift from Brenda Schullman and Danny Scott), 14 μM NEDD8, and 80 nM CUL5–RBX2 in reaction buffer (50 μM HEPES-NaOH, pH 7.4, 50 μM NaCl, 5 μM MgCl2, 5% glycerol, 0.2 mM EDTA, 0.02% Triton X-100, and 5 mM Mg2+·ATP) were incubated at 37 °C and stopped after the indicated time points (0, 2, 5, and 10 min) by adding 4× SDS sample buffer complemented with DTT. 80% of the reaction was separated on 4–12% BisTris SDS-polyacrylamide gel (Invitrogen) for silver staining and 20% was analyzed by immunoblotting using anti-CUL5 antibody. Silver stained gels were scanned, NEDD8–CUL5 and CUL5 bands quantified using ImageJ software.

In vitro assays to assess binding of DCNL1 with ubiquitin, ubiquitin chains, and ubiquitylated TRIAD1

His6-DCNL1 binding to ubiquitin-agarose and NEDD8-agarose was carried out as described elsewhere (11). DCNL1 binding to tetra-ubiquitin chains of different linkage types was performed as described (37). Briefly, 21 nmol of Halo-tagged WT and UBA domain-mutated DCNL1 was coupled to 200 μl of HaloLink resin (Promega) in 1 ml of binding buffer (50 mM Tris-HCl, pH 7.5, 0.05% Nonidet P-40, 1 mM DTT) overnight at 4 °C. 10 μl of the Halo-DCNL1 resins were incubated with 1 μg of tetra-ubiquitin chains (Met-1, Lys-6, Lys-11, Lys-29, Lys-33, Lys-48, and Lys-63; tetra-ubiquitin synthesis and purifications described in Ref. 37) in 500 μl of binding buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Nonidet P-40, 5 mM DTT, and 0.5 mg/ml BSA) at 4 °C. Beads were extensively washed with wash buffer (50 mM Tris-HCl, pH 7.5, 250 mM NaCl, 0.2% Nonidet P-40, 5 mM DTT). Precipitated tetra-ubiquitin chains were separated on 4–12% BisTris SDS-polyacrylamide gel (Invitrogen) and detected by silver staining.

In vitro binding studies with autoubiquitylated TRIAD1 were carried out as follows: 10 μg of MBP-tagged TRIAD1 was ubiquitylated in Reaction Buffer (50 mM Tris-HCl, pH 9, 6 mM MgCl2, 2.2 mM ATP, 0.1 mM DTT, and 50 mM NaCl) with 150 nM E1, 500 nM UBC7, and 20 μM Ub at 37 °C for 120 min. Ubiquitylated and untreated MBP–TRIAD1 was captured with amyllose resin (New England Biolabs). TRIAD1 coupled beads were incubated with 2 μM recombinant DCNL1 variants in binding buffer (50 mM Tris-HCl, pH 8.0, 10 mM ZnCl2, 250 mM NaCl, 10% glycerol, 0.5% Nonidet P-40, 2.5 mM 2-mercaptoethanol) for 2 h at 4 °C. Beads were washed three times with binding buffer, and precipitates were analyzed by immunoblot.

Treatment of HA–DCNL1, GFP–TRIAD1, and GFP–HHARI with USP2 and NEDP1

HA–DCNL1-expressing cells were lysed in the presence of 5 mM 1,10-phenanthroline. 20 μl of anti-HA resin (Sigma) was incubated with 3 mg of cell lysate for 2 h at 4 °C. The beads were washed four times and then resuspended in 30 μl of 50 mM HEPES, pH 7.5, 100 mM NaCl, 2 mM DTT, 1 mM MgCl2, 0.01% Brij-35. GST–USP2 or GST–NEDP1 was added to a final concentration of 1 μM. Heat-inactivated GST–USP2 and GST–NEDP1 were used as control (heated for 15 min at 100 °C). Reactions were incubated at 30 °C for 1 h with shaking and then resuspended to a final volume of 100 μl in reducing SDS sample loading buffer and analyzed by immunoblotting with anti-HA antibody. For the DUB treatment of autoubiquitylated TRIAD1 and HHARI+, GFP–TRIAD1+, GFP–TRIAD1 (C310S)–, GFP–HHARI+, and GFP–HHARI (C357S)-expressing cells were extracted with lysis buffer (40 mM HEPES, pH 7.4, 120 mM NaCl, 1% Triton X-100, 1 mM EDTA, and 5 mM 1,10-phenanthroline (Sigma)), and GFP-tagged proteins isolated by immunoprecipitation using GFP–Trap-agarose beads (Chromotek). GFP-trapped proteins were washed with lysis buffer and twice with wash buffer (50 mM HEPES, pH 7.5, 100 mM NaCl, 2 mM DTT, 1 mM MgCl2, 0.01% Brij-35). USP2 treatment was carried out as described for HA–DCNL1.

Preparation of cell extracts, subcellular fractionation, and immunological techniques

Whole-cell extracts were prepared by incubating cells with lysis buffer (40 mM HEPES, pH 7.4, 120 mM NaCl, 1% Triton X-100, 1 mM EDTA, and 5 mM 1,10-phenanthroline (Sigma)) for 10 min on ice followed by mechanical disruption by passing through a 21-gauge needle. Lysates were clarified by centrifugation.

To subfractionate cells, they were first lysed by mechanical disruption in hypotonic buffer (10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, “Complete” protease inhibitor mixture (Roche Applied Science)) using a Dounce homogenizer. Nuclei were collected by centrifugation (230 × g, 5 min), and the supernatants (consisting of the cytosolic fraction) were further cleared by centrifugation (16,000 × g, 15 min). Nuclei were resuspended in a low-sucrose buffer (250 mM sucrose, 10 mM MgCl2, “Complete” protease inhibitor mixture) and layered over an equal volume of a high-sucrose buffer (880 mM sucrose, 0.5 mM MgCl2, “Complete” protease inhibitor mixture) before centrifugation at 2800 × g for 10 min. The resulting nuclear pellets were resuspended in a high-salt buffer (15 mM Tris-HCl, pH 7.4, 1 mM EDTA, 500 mM NaCl, 1 mM MgCl2, 10% glycerol, 10 mM 2-mercaptoethanol, “Complete” protease inhibitor mixture) and incubated on ice for 30 min to extract nuclear proteins. Salt-extracted pellets were collected by centrifugation (16,000 × g, 30 min), and the supernatant was retained (nuclear salt extract). Pellets were washed twice with nuclease reaction buffer (20 mM Tris–HCl, pH 7.4, 100 mM KCl, 2 mM MgCl2, 1 mM CaCl2, 300 mM sucrose, 0.1% Triton X-100, “Complete” protease inhibitor mixture) and treated with 3 units/μl micro-
coccal nuclease (ThermoFisher Scientific) for 20 min at room temperature in the same buffer. Samples were centrifuged at 2500 × g for 5 min, and the supernatant was recovered (chromat-in-bound fraction). Immunoprecipitations, pulldowns, and immunoblots were performed as described elsewhere (28).

For quantitation described in Fig. 6, E and G, immunoblots from at least three biological repetitions were scanned with an Amersham Biosciences Image 600 (GE Healthcare) and analyzed using ImageJ software.

Antibodies

The following primary antibodies were used for Western blotting: anti-GFP (Roche Applied Science, monoclonal and in-house polyclonal antibody raised against GFP[2–238]); anti-ubiquitin FK2 (Enzo) and anti-HA tag (Cell Signaling and Bethyl Laboratories); anti-His tag (Cell Signaling); anti-DCNL1 ubiquitin FK2 (Enzo) and anti-HA tag (Cell Signaling and Disko, B. A. (2013) Structural conservation of distinct N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21, 42–53 CrossRef Medline

Kurz, T., Ozlü, N., Rudolf, F., O’Rourke, S. M., Luke, B., Hofmann, K., Hyman, A. A., Bowerman, B., and Peter, M. (2005) The conserved protein DCN1-Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature 435, 1257–1261 CrossRef Medline

Kurz, T., Zhou, C. Y., Willems, A. R., Meyer-Schaller, N., Hecht, M. L., Tyers, M., Peter, M., and Sicheri, F. (2008) Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. Mol. Cell 29, 25–35 CrossRef Medline

Yang, X., Zhou, J., Sun, L., Wei, Z., Gao, J., Gong, W., Xu, R. M., Rao, Z., and Liu, Y. (2007) Structural basis for the function of DCN1 in protein neddylation. J. Biol. Chem. 282, 24490–24494 CrossRef Medline

Keuss, M. J., Thomas, Y., Mcarthur, R., Wood, N. T., Knebel, A., and Kurz, T. (2016) Characterization of the mammalian family of DCN-type NEDD8 E3 ligases. J. Cell Sci. 129, 1441–1454 CrossRef Medline

Huang, G., Kaufman, A. J., Ramanathan, Y., and Singh, B. (2011) SCCRO (DCUN1D1) promotes nuclear translocation and assembly of the neddylation E3 complex. J. Biol. Chem. 286, 10297–10304 CrossRef Medline

Wu, K., Yan, H., Fang, L., Wang, X., Pfleger, C., Jiang, X., Huang, L., and Pan, Z. Q. (2011) Mono-ubiquitination drives nuclear export of the human DCN-like protein hDCNL1. J. Biol. Chem. 286, 34060–34070 CrossRef Medline

Cope, G. A., and Deshaies, R. J. (2003) COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114, 663–671 CrossRef Medline

Lingaraju, G. M., Bunker, R. D., Cavadini, S., Hess, D., Hassiepen, U., Renatus, M., Fischer, E. S., and Thomá, N. H. (2014) Crystal structure of the human COP9 signalosome. Nature 512, 161–165 CrossRef Medline

Pierce, N. W., Lee, J. E., Liu, X., Sweredoski, M. J., Graham, R. L., Larimore, E. A., Rome, M., Zheng, N., Clurman, B. E., Hess, S., Shan, S. O., and Deshaies, R. J. (2013) Dcn1 promotes assembly of new SCF complexes through dynamic exchange of F-box proteins. Cell 153, 206–215 CrossRef Medline

Ziemba, A., Hill, S., Sandoval, D., Webb, K., Bennett, E. J., and Kleiger, G. (2013) Multimodal mechanism of action for the Cdc34 acidic loop: a case study for why ubiquitin-conjugating enzymes have loops and tails. J. Biol. Chem. 288, 34882–34896 CrossRef Medline

Wu, S., Zhu, W., Nhan, T., Toth, J. I., Petsko, M. D., and Wolf, D. A. (2013) CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat. Commun. 4, 1642 CrossRef Medline

Goldenberg, S. J., Cascio, T. C., Shumway, S. D., Garbutt, K. C., Liu, J., Xiong, Y., and Zheng, N. (2004) Structure of the CAND1–Cullin1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119, 517–528 CrossRef Medline

Liu, J., Furukawa, M., Matsumoto, T., and Xiong, Y. (2002) NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell 10, 1511–1518 CrossRef Medline

Zheng, J., Yang, X., Harrell, J. M., Ryzhikov, S., Shim, E. H., Lykke-Andersen, K., Wei, N., Sun, H., Kobayashi, R., and Zhang, H. (2002) CAND1 mono-ubiquitination by Ariadne E3 ligases

DCN1 monoubiquitylation by Ariadne E3 ligases

in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157, 1671–1684 CrossRef Medline

Huang, D. T., Ayrault, O., Hunt, H. W., Taherbooy, A. M., Duda, D. M., Scott, D. C., Borg, L. A., Neale, G., Murray, P. J., Roussel, M. F., and Schulman, B. A. (2009) E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol. Cell 33, 483–495 CrossRef Medline

Gong, L., and Yeh, E. T. (1999) Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J. Biol. Chem. 274, 12036–12042 CrossRef Medline

Scott, D. C., Monda, J. K., Bennett, E. J., Harper, J. W., and Schulman, B. A. (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334, 674–678 CrossRef Medline

Monda, J. K., Scott, D. C., Miller, D. J., Lydeard, J., King, D., Harper, J. W., Bennett, E. J., and Schulman, B. A. (2013) Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21, 42–53 CrossRef Medline

Acknowledgments—We gratefully acknowledge the technical support of the MRC Protein Phosphorylation and Ubiquitylation Unit, the Division of Signal Transduction Therapy (DSTT), and the Max-Planck Society. We are grateful to Helen Walden (University of Glasgow), Brenda Schulman (MPI of Biochemistry), and Danny Scott (St. Jude Children’s Research Hospital) for providing invaluable reagents, and Patrick Pedrioli (ETH Zürich) for MS analysis.

Author contributions—I. R. K., Y. A. K., A. K., N. T. W., and A. F. A. resources; I. R. K. and A. F. A. data curation; I. R. K., Y. A. K., and A. F. A. investigation; I. R. K. and A. F. A. writing-original draft; I. R. K. and A. F. A. writing-review and editing; Y. K. and A. F. A. conceptualization; Y. K. and A. F. A. supervision.

References

1. Lydeard, J. R., Schulman, B. A., and Harper, J. W. (2013) Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep. 14, 1050–1061 CrossRef Medline

2. Soucy, T. A., Smith, P. G., Milhollen, M. A., Berger, A. J., Gavi, J. M., Adhikari, S., Brownell, J. E., Burke, K. E., Cardin, D. P., Critchley, S., Cullis, C. A., Doucette, A., Garnsey, I. J., Gaulin, J. L., Gershman, R. E., et al. (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 CrossRef Medline

3. Petroski, M. D., and Deshaies, R. J. (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 CrossRef Medline

4. Deshaies, R. J., Emberley, E. D., and Saha, A. (2010) Control of cullin-ring ubiquitin ligase activity by nedd8. Subcell. Biochem. 54, 41–56 CrossRef Medline

5. Scott, D. C., Monda, J. K., Grace, C. R., Duda, D. M., Kriwacki, R. W., Kurz, T., and Schulman, B. A. (2010) A dual E3 mechanism for Rub1 ligation to Cdc53. Mol. Cell 39, 784–796 CrossRef Medline

6. Scott, D. C., Sviderskiy, V. O., Monda, J. K., Lydeard, J. R., Cho, S. E., Harper, J. W., and Schulman, B. A. (2014) Structure of a RING E3 trapped

J. Biol. Chem. (2019) 294(8) 2651–2664 2663

ASBMB
DCNL1 monoubiquitylation by Ariadne E3 ligases

binds to un nedlated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. *Mol. Cell* 10, 1519–1526 CrossRef Medline

25. Zemla, A., Thomas, Y., Kedziora, S., Knebel, A., Wood, N. T., Rabbat, G., and Kurz, T. (2013) CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. *Nat. Commun.* 4, 1641 CrossRef Medline

26. Bandau, S., Knebel, A., Gage, Z. O., Wood, N. T., and Alexandru, G. (2012) UBXN7 docks on nedlated cullin complexes using its UIM motif and causes HIF1α accumulation. *BMC Biol.* 10, 36 CrossRef Medline

27. den Besten, W., Verma, R., Kleiger, G., Oania, R. S., and Deshaies, R. J. (2012) NEDD8 links cullin-RING ubiquitin ligase function to the p97 pathway. *Nat. Struct. Mol. Biol.* 19, 511–516, S1 CrossRef Medline

28. Kelsall, I. R., Duda, D. M., Olszewski, J. L., Hofmann, K., Knebel, A., Langefin, V., Wood, N., Wightman, M., Schulman, B. A., and Alpi, A. F. (2013) TRIAD1 and HHARI bind to and are activated by distinct nedlated Cullin-RING ligase complexes. *EMBO J.* 32, 2848–2860 CrossRef Medline

29. Duda, D. M., Olszewski, J. L., Schuermann, J. P., Kurinov, I., Miller, D. J., Nourse, A., Alpi, A. F., and Schulman, B. A. (2013) Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an ariadne-family E3 and insights into ligation mechanism. *Structure* 21, 1030–1041 CrossRef Medline

30. Scott, D. C., Rhee, D. Y., Duda, D. M., Kelsall, I. R., Olszewski, J. L., Paulo, J. A., de Jong, A., Ovaa, H., Alpi, A. F., Harper, J. W., and Schulman, B. A. (2016) Two distinct types of E3 ligases work in unison to regulate substrate ubiquitylation. *Cell* 166, 1198–1214.e24 CrossRef Medline

31. Huang, G., Towe, C. W., Choi, L., Yonekawa, Y., Bommeljé, C. C., Bains, S., Rechler, W., Hao, B., Ramanathan, Y., and Singh, B. (2015) The ubiquitin-associated (UBA) domain of SCCRO/DCUN1D1 protein serves as a feed-back regulator of biochemical and oncogenic activity. *J. Biol. Chem.* 290, 296–309 CrossRef Medline

32. Mendoza, H. M., Shen, L. N., Botting, C., Lewis, A., Chen, J., Ink, B., and Hay, R. T. (2003) NEDD1, a highly conserved cysteine protease that deNEDDylates Cullins. *J. Biol. Chem.* 278, 25637–25643 CrossRef Medline

33. Alpi, A. F., Chaugule, V., and Walden, H. (2016) Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. *Biochem. J.* 473, 3401–3419 CrossRef Medline

34. Dove, K. K., Kemp, H. A., Di Bona, K. R., Reiter, K. H., Milburn, L. J., Camacho, D., Fay, D. S., Miller, D. L., and Klevit, R. E. (2017) Two functionally distinct E2/E3 pairs coordinate sequential ubiquitination of a common substrate in *Caenorhabditis elegans* development. *Proc. Natl. Acad. Sci. U.S.A.* 114, E6576–E6584 CrossRef Medline

35. Woelk, T., Oldrini, B., Maspero, E., Confalonieri, S., Cavallaro, E., Di Fiore, P. P., and Polo, S. (2006) Molecular mechanisms of coupled monoubiquitylation. *Nat. Cell Biol.* 8, 1246–1254 CrossRef Medline

36. Hoeller, D., Crosetto, N., Blagoev, B., Raiborg, C., Tikkanen, R., Wagner, S., Kowaneiz, K., Breitling, R., Mann, M., Stemmark, H., and Dikic, I. (2006) Regulation of ubiquitin-binding proteins by monoubiquitynation. *Nat. Cell Biol.* 8, 163–169 CrossRef Medline

37. Kristariyanto, Y. A., Abdul Rehman, S. A., Campbell, D. G., Morrice, N. A., Johnson, C., Toth, R., and Kulathu, Y. (2015) K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. *Mol. Cell* 58, 83–94 CrossRef Medline

38. Hoeller, D., Hecker, C. M., Wagner, S., Rogov, V., Dötsch, V., and Dikic, I. (2007) E3-independent monoubiquitination of ubiquitin-binding proteins. *Mol. Cell* 26, 891–898 CrossRef Medline

39. Hoeller, D., and Dikic, I. (2010) Regulation of ubiquitin receptors by coupled monoubiquitination. *Subcell. Biochem.* 54, 31–40 CrossRef Medline

40. Heir, P., Sufan, R. L., Greer, S. N., Poon, B. P., Lee, J. E., and Ohh, M. (2013) DCNL1 functions as a substrate sensor and activator of cullin 2-RING ligase. *Mol. Cell. Biol.* 33, 1621–1631 CrossRef Medline

41. Reitsma, J. M., Liu, X., Reichermeier, K. M., Moradian, A., Sweedersko, M. J., Hess, S., and Deshaies, R. J. (2017) Composition and regulation of the cellular repertoire of SCF ubiquitin ligases. *Cell* 171, 1326–1339 CrossRef Medline

42. Straube, R., Shah, M., Flockerzi, D., and Wolf, D. A. (2017) Trade-off and flexibility in the dynamic regulation of the cullin-RING ubiquitin ligase repertoire. *PLoS Comput. Biol.* 13, e1005869 CrossRef Medline

43. Kim, W., Bennett, E. J., Huttlin, E. L., Guo, A., Li, J., Possemato, A., Sowa, M. E., Rad, R., Rush, J., Comb, M. J., Harper, J. W., and Gygi, S. P. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. *Cell* 144, 325–340 CrossRef Medline

44. Meyer-Schaller, N., Chou, Y. C., Sing, N. G., and Kurz, T. (2013) CSN- and CAND1-dependent remodelling of the cullin-RING ubiquitin ligase complex. *PLoS ONE* 8, e6576–E6584 CrossRef Medline

45. Broderick, S. R., Golas, B. J., Pham, D., Towe, C. W., Talbot, S. G., Kaufman, A., Bains, S., Huryn, L. A., Yonekawa, Y., Carlson, D., Hambardzumyan, D., Ramanathan, Y., and Singh, B. (2010) SCCRO promotes glioma formation and malignant progression in mice. *Neoplasia* 12, 476–484 CrossRef Medline

46. Sarkaria, I., O-charoenrat, P., Talbot, S. G., Reddy, P. G., Ngai, I., Maghami, E., Patel, K. N., Lee, B., Yonekawa, Y., Dudas, M., Kaufman, A., Ryan, R., Ghoseein, R., Rao, P. H., Stoffel, A., Ramanathan, Y., and Singh, B. (2006) Squamous cell carcinoma related oncogene/DCUN1D1 is highly conserved and activated by amplification in squamous cell carcinomas. *Cancer Res.* 66, 9437–9444 CrossRef Medline

47. Scott, D. C., Hammill, J. T. M., Jie, R., Schinner, M., Sviderskiy, V. O., Bhasin, D., Chen, Y., Ong, S. S., Chai, S. C., Goktug, A. N., Huang, G., Monda, J. K., Low, J., Kim, H. S., et al. (2017) Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. *Nat. Chem. Biol.* 13, 850–857 CrossRef Medline

48. Zhou, H., Lu, J., Liu, L., Bernard, D., Yang, C. Y., Fernandez-Salas, E., Chinnaswamy, K., Layton, S., Stuckey, J., Yu, Q., Zhou, W., Pan, Z., Sun, Y., and Wang, S. (2017) A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. *Nat. Commun.* 8, 1150 CrossRef Medline

49. Hibbert, R. G., and Sixma, T. K. (2012) Intrinsic flexibility of ubiquitin on UBC12 interaction that selectively blocks cullin 3 neddylation. *PLoS ONE* 7, e36

50. Hoeller, D., Hecker, C. M., Wagner, S., Rogov, V., Dötsch, V., and Dikic, I. (2007) E3-independent monoubiquitination of ubiquitin-binding proteins. *Mol. Cell* 26, 891–898 CrossRef Medline