Asymptotics of heights in random trees constructed by aggregation

Bénédicte Haas*

Abstract

To each sequence \((a_n)\) of positive real numbers we associate a growing sequence \((T_n)\) of continuous trees built recursively by gluing at step \(n\) a segment of length \(a_n\) on a uniform point of the pre-existing tree, starting from a segment \(T_1\) of length \(a_1\). Previous works [5, 10] on that model focus on the influence of \((a_n)\) on the compactness and Hausdorff dimension of the limiting tree. Here we consider the cases where the sequence \((a_n)\) is regularly varying with a non-negative index, so that the sequence \((T_n)\) explodes. We determine the asymptotics of the height of \(T_n\) and of the subtrees of \(T_n\) spanned by the root and \(\ell\) points picked uniformly at random and independently in \(T_n\), for all \(\ell \in \mathbb{N}\).

Keywords: random trees; line-breaking; uniform recursive trees.

AMS MSC 2010: 05C05; 60J05.

Submitted to EJP on June 23, 2016, final version accepted on January 26, 2017.

Supersedes arXiv:1606.06536.

1 Introduction

A well-known construction of the Brownian continuum random tree presented by Aldous in the first of his series of papers [2, 3, 4] works as follows. Consider a Poisson point process on \(\mathbb{R}_+\) with intensity \(tdt\) and “break” the half-line \(\mathbb{R}_+\) at each point of the process. This gives an ordered sequence of closed segments with random lengths. Take the first segment and glue on it the second segment at a point chosen uniformly at random (i.e. according to the normalized length measure). Then consider the continuous tree formed by these two first segments and glue on it the third segment at a point chosen uniformly at random. And so on. This gluing procedure, called the line-breaking construction by Aldous [2], gives in the limit a version of the Brownian CRT.

We are interested in a generalization of this construction, starting from any sequence of positive terms

\(\ldots\).

*Université Paris 13, Sorbonne Paris Cité LAGA, CNRS (UMR 7539) 93430 Villetaneuse, France. E-mail: haas@math.univ-paris13.fr
Asymptotics of heights in random trees constructed by aggregation

For each \(n \), we let \(b_n \) denote a closed segment of length \(a_n \). The construction process then holds as above: we start with \(T_1 := b_1 \) and then recursively glue the segment \(b_n \) on a point chosen uniformly on \(T_{n-1} \), for all \(n \geq 1 \). The trees \(T_n \) are viewed as metric spaces, once endowed with their length metrics, which will be noted \(d \) in all cases. This yields in the limit a random real tree obtained as the completion of the increasing union of the trees \(T_n \),

\[
\mathcal{T} := \bigcup_{n \geq 1} T_n
\]

that may be infinite. We let \(d \) denote its metric as well, and decide to root this tree at one of the two extremities of \(b_1 \).

This model has been recently studied by Curien and Haas [10] and Amini et al. [5]. The paper [10] gives necessary conditions and sufficient conditions on the sequence \((a_n)\) for \(\mathcal{T} \) to be compact (equivalently bounded) and studies its Hausdorff dimension. Typically, if

\[
a_n \leq n^{\alpha+o(1)} \quad \text{and} \quad a_1 + \ldots + a_n = n^{1+\alpha+o(1)} \quad \text{for some} \ \alpha < 0,
\]

then almost surely the tree \(\mathcal{T} \) is compact and its set of leaves has Hausdorff dimension \(1/|\alpha| \), which ensures that the tree itself has Hausdorff dimension \(\max(1, 1/|\alpha|) \). This, as an example, retrieves the compactness of the Brownian CRT and that its Hausdorff dimension is 2. On the other hand, the tree \(\mathcal{T} \) is almost surely unbounded as soon as the sequence \((a_n)\) does not converge to 0. The issue of finding an exact condition on \((a_n)\) for \(\mathcal{T} \) to be bounded is still open. However, Amini et al. [5] obtained an exact condition for \(\mathcal{T} \) to be bounded, provided that \((a_n)\) is non–increasing. In that case, almost surely,

\[
\mathcal{T} \ \text{is bounded if and only if} \ \sum_{i \geq 1} i^{-1} a_i < \infty.
\]

Concerning related works, Ross and Wen [19] have recently shown that when the \(a_n, n \geq 1 \) are random lengths obtained by breaking the half-line with a Poisson point process with intensity \(\ell^d \, dt \) for some positive integer \(\ell \), the corresponding trees arise as scaling limits of some growing combinatorial trees constructed inhomogeneously, thus generalizing the convergence of trees constructed via Remy’s algorithm towards the Brownian CRT. There are also related constructions with different gluing rules. Sénizergues [20] studies a generalization of the above \((a_n)\)-model where the segments are replaced by \(d\)-dimensional independent random metric measured spaces \((d \in (0, \infty))\) and the gluing rules depend both on the diameters and the measures of the metric spaces. He shows an unexpected and intriguing Hausdorff dimension. In other directions, Addario-Berry, Broutin and Goldschmidt [1] provide a line–breaking construction of the continuum limit of critical random graphs, extending Aldous’ line–breaking construction to random real trees with vertex identifications; while Goldschmidt and Haas [14] propose a construction of the stable Lévy trees introduced by Duquesne, Le Gall and Le Jan [13, 15] that generalizes Aldous’ line–breaking construction to this class of trees (except in the Brownian case, the stable Lévy trees are not binary and the gluing procedure is then slightly more complex). See also [8], [12] and [18] for other related models.

The aim of the present paper is to examine the cases where the \((a_n)\)-model obviously leads to an unbounded tree and we will almost always assume that

the sequence \((a_n)\) is regularly varying with index \(\alpha \geq 0 \).

We recall that this means that for all \(c > 0 \),

\[
\frac{a_{\lfloor cn \rfloor}}{a_n} \xrightarrow[n \to \infty]{} c^\alpha,
\]
the prototype example being the sequence \((n^\alpha) \). We refer to Bingham et al. [7] for background on that topic. Our goal is to understand how the tree \(T_n \) then grows as \(n \to \infty \). To that end, we will study the asymptotic behavior of the height of a typical point of \(T_n \) and of the height of \(T_n \). We will see that in general these heights do not grow at the same rate. We will also complete the study of the height of a typical point first by providing a functional convergence, and second by studying the behavior of the subtrees of \(T_n \) spanned by the root and \(\ell \) points picked uniformly at random and independently in \(T_n \), for all \(\ell \in \mathbb{N} \).

Height of a typical point and height of \(T_n \). We are interested in the asymptotic behavior of the following quantities:

- \(D_n \): height of a typical point, i.e. given \(T_n \), we pick \(X_n \in T_n \) uniformly at random in \(T_n \) and let
 \[D_n = d(X_n, \text{root}) \]
 be its distance to the root;
- \(H_n \): the height of the tree:
 \[H_n = \max_{v \in T_n} d(v, \text{root}). \]

In the particular case where all the lengths \(a_n \) are identical, the sequence \((T_n) \) can be coupled with a growing sequence of uniform recursive trees with i.i.d. uniform \((0,1)\) lengths on their edges. This is explained in Section 5. The asymptotic behavior of the height of a uniform vertex and the height of a random recursive tree without edge lengths (i.e. endowed with the graph distance) are well-known, [11, 16, 17]. From this and the strong law of large number, we immediately get the asymptotic of \(D_n \). The behavior of \(H_n \) is less obvious. However, Broutin and Devroye [9] develop the material to study the height of random recursive trees with i.i.d. edge lengths, using the underlying branching structure and large deviation techniques. From this, we will deduce that:

Theorem 1.1. If \(a_n = 1 \) for all \(n \geq 1 \),

\[
\frac{D_n}{\ln(n)} \xrightarrow{d} \frac{1}{2} \quad \text{and} \quad \frac{H_n}{\ln(n)} \xrightarrow{P} \frac{e^{\beta^*}}{2\beta^*},
\]

where \(\beta^* \) is the unique solution in \((0,\infty)\) to the equation \(2(e^\beta - 1) = \beta e^\beta \). Approximately, \(\beta^* \sim 1.594 \) and \(e^{\beta^*/2}/\beta^* \sim 1.544 \).

This will be carried out in Section 5. Our main contribution concerns the cases where the index of regular variation \(\alpha \) is strictly positive. In that case we introduce a random variable \(\xi_{(\alpha)} \) characterized by its Laplace transform \(E[\exp(\lambda \xi_{(\alpha)})] = \exp(\phi_{(\alpha)}(\lambda)) \), \(\lambda \in \mathbb{R} \) where

\[
\phi_{(\alpha)}(\lambda) = \frac{\alpha + 1}{\alpha} \int_0^1 \left(\exp(\lambda u) - 1 \right) \frac{1}{u} \frac{1 - u}{u} \, du = \frac{\alpha + 1}{\alpha} \sum_{k \geq 1} \frac{\lambda^k}{(k+1)! k}. \tag{1.1}
\]

The Lévy–Khintchine formula ensures that \(\xi_{(\alpha)} \) is infinitely divisible. Note also that \(\xi_{(\alpha)} \) is stochastically decreasing in \(\alpha \). Our main result is:

Theorem 1.2. Assume that \((a_n) \) is regularly varying with index \(\alpha > 0 \). Then,

(i)

\[
\frac{D_n}{a_n} \xrightarrow{d} \xi_{(\alpha)}
\]

(ii)

\[
\frac{H_n \cdot \ln(\ln(n))}{a_n \ln(n)} \xrightarrow{a.s.} \frac{\ln(\ln(n))}{n \to \infty}.
\]
More precisely, in (i), $E[\exp(\lambda a_n^{-1} D_n)]$ converges to $E[\exp(\lambda \xi(\alpha))]$ for all $\lambda \in \mathbb{R}$, which in particular implies the convergence of all positive moments.

The proof of (i) is undertaken in Section 2.2 and relies on the powerful observation from [10] that D_n can be written as the sum of i.i.d. random variables. The proof of (ii), and in particular of the lower bound, is more intricate. It relies on the second moment method and requires to get the joint distribution of the paths from the root to two points marked independently, uniformly in the tree T_n (established in Section 3.1) as well as precise deviations bounds for the convergence (i) (established in Section 2.2). The core of the proof of (ii) is undertaken in Section 4.

The two previous statements on the asymptotic behavior of D_n can actually be grouped together and slightly generalized as follows:

Proposition 1.3. Assume that (a_n) is regularly varying with index $\alpha \geq 0$. Then,

$$
\frac{D_n}{\sum_{i=1}^{\infty} i^{-1} a_i} \xrightarrow{n \to \infty} \begin{cases}
\alpha \xi(\alpha) & \text{if } \alpha > 0 \quad (\text{convergence in distribution}) \\
\frac{1}{2} & \text{if } \alpha = 0 \text{ and } \sum_{i=1}^{\infty} i^{-1} a_i = \infty \quad (\text{convergence in probability}) \\
D_\infty & \text{if } \alpha = 0 \text{ and } \sum_{i=1}^{\infty} i^{-1} a_i < \infty \quad (\text{convergence in distribution})
\end{cases}
$$

where D_∞ denotes a positive random variable with finite expectation.

This will be explained in the remark around (2.8) in Section 2.2.

Height of the n-th leaf and height of a uniform leaf. In the recursive construction of (T_n), we can label the leaves L_1, L_2, \ldots by order of appearance, so that the leaf L_n belongs to the segment b_n. We then let $L_{n, *} \triangleq$ a leaf chosen uniformly at random amongst the n leaves of T_n. Theorem 1.2 (i) implies that when (a_n) varies regularly with index $\alpha > 0$,

$$
\frac{d(L_{n, \text{root}})}{a_n} \xrightarrow{(d)} \frac{1 + \xi(\alpha)}{\infty} \quad \text{and} \quad \frac{d(L_{n, *})}{a_n} \xrightarrow{(d)} (1 + \xi(\alpha)) U^\alpha, \quad (1.2)
$$

where U is uniform on $(0, 1)$, independent of $\xi(\alpha)$. The first convergence is simply due to the fact that the distance $d(L_{n, \text{root}})$ is distributed as $a_n + D_{n-1}$, since the segment b_n is inserted on a uniform point of T_{n-1}. The second convergence is explained in Section 2.2.

When $a_n = 1$ for all n, $d(L_n, \text{root})$ and $d(L_n, *)$ both divided by $\ln(n)$ converge to $1/2$, almost surely and in probability respectively (see Section 5).

Functional convergence. The convergence of the height of a typical point can actually be improved into a functional convergence when the index of regular variation is strictly positive. As above, let X_n be a point picked uniformly in T_n and for each positive integer $k \leq n$, let $X_n(k)$ denote its projection onto T_k. Let then

$$
D_n(k) := d(X_n(k), \text{root}), \quad 1 \leq k \leq n
$$

be the non-decreasing sequence of distances of these branch-points to the root. If a climber decides to climb from the root to the typical point X_n at speed 1, $D_n(k)$ is the time he will spend in T_k. The proof of Theorem 1.2 (i) can be adapted to get the behavior as $n \to \infty$ of the sequence $(D_n(k), 1 \leq k \leq n)$. To do so, introduce for $\alpha > 0$ the càdlàg Markov process with independent, positive increments defined by

$$
\xi(\alpha)(t) := \sum_{t_i \leq t} \xi, \quad t \geq 0, \quad (1.3)
$$
Asymptotics of heights in random trees constructed by aggregation

where \((t_i, v_i)\) is a Poisson point process with intensity \((\alpha + 1)t^{-\alpha - 1}1_{(v \leq t^{\alpha})}dt dv\) on \((0, \infty)^2\). (We note that \(\xi_1(1)\) is distributed as the r.v. \(\xi_0\) defined via (1.1).) This process is \(\alpha\)-self-similar, in the sense that for all \(\alpha > 0\),

\[
(\xi_0(at), t \geq 0) \overset{(d)}{=} (a^{\alpha} \xi_0(t), t \geq 0)
\]

Proposition 1.4. If \((a_n)\) is regularly varying with index \(\alpha > 0\),

\[
\left(\frac{D_n(\lfloor nt \rfloor)}{a_n}, 0 \leq t \leq 1\right) \overset{(d)}{\rightarrow} \left(\xi_0(t), 0 \leq t \leq 1\right)
\]

for the Skorokhod topology on \(D([0, 1], \mathbb{R}_+)\), the set of càdlàg functions from \([0, 1]\) to \(\mathbb{R}_+\).

This is proved in Section 2.3.

Gromov-Prohorov-type convergence. Last, fix \(\ell\) a positive integer, and given \(T_n\), let \(X_n^{(1)}, \ldots, X_n^{(\ell)}\) be \(\ell\) points picked independently and uniformly at random in \(T_n\). Our goal is to describe the asymptotic behavior of \(T_n(\ell)\), the subtree of \(T_n\) spanned by these \(\ell\) marked points and the root. To that end, for all \(1 \leq i, j \leq \ell\), we denote by \(B_n^{(i,j)}\) the point in \(T_n(\ell)\) at which the paths from the root to \(X_n^{(i)}\) and from the root to \(X_n^{(j)}\) separate, with the convention that \(B_n^{(i,i)} = X_n^{(i)}\) when \(X_n^{(i)}\) belongs to the path from the root to \(X_n^{(j)}\).

For regularly varying sequences of lengths \((a_n)\), the tree \(T_n(\ell)\) appropriately rescaled converges to a “star-tree” with \(\ell\) branches with random i.i.d. lengths. More precisely:

Proposition 1.5. (i) Assume that \((a_n)\) is regularly varying with index \(\alpha > 0\). Then,

\[
\left(\frac{d(X_n^{(i)}, \text{root})}{a_n}, 1 \leq i \leq \ell, \frac{\max_{1 \leq i \neq j \leq \ell} d(B_n^{(i,j)}, \text{root})}{a_n}\right) \overset{(d)}{\rightarrow} \left(\xi^{(i)}_0, 1 \leq i \leq \ell\right), 0
\]

where \(\xi^{(1)}_0, \ldots, \xi^{(\ell)}_0\) are i.i.d. with distribution (1.1).

(ii) Assume that \((a_n)\) is regularly varying with index 0 and that \(\sum_{i=1}^{\infty} i^{-1} a_i = \infty\). Then,

\[
\left(\frac{d(X_n^{(i)}, \text{root})}{\sum_{i=1}^{\infty} i^{-1} a_i}, 1 \leq i \leq \ell, \frac{\max_{1 \leq i \neq j \leq \ell} d(B_n^{(i,j)}, \text{root})}{a_n}\right) \overset{P}{\rightarrow} \left(\frac{1}{2}, \ldots, \frac{1}{2}\right), 0
\]

Notation. Throughout the paper, we use the notation

\[
A_n := \sum_{i=1}^{n} a_i, \quad \text{for all } n \in \mathbb{N}.
\]

2 Height of a typical point

Fix \(n\), and given \(T_n\), let \(X_n\) be a point picked uniformly on \(T_n\). The goal of this section is to establish different results on the distribution of the distance of this marked point to the root, mainly when the sequence \((a_n)\) is regularly varying with a strictly positive index. Our approach entirely relies on the fact that this distance can be written as the sum of independent, non-negative random variables. More precisely, as noticed in [10], the distances \(D_n(k)\) to the root of the projections of \(X_n\) onto \(T_k, k \leq n\) can jointly be written in the following form:

\[
D_n(k) = \sum_{i=1}^{k} a_i V_i 1_{\{U_i \leq n\}}, \quad \forall k \leq n,
\]

\((2.1)\)
Asymptotics of heights in random trees constructed by aggregation

where \(U_i, V_i, 1 \leq i \leq n \) are all uniformly distributed on \((0,1)\) and independent. In particular, the distance \(D_n \) of \(X_n \) to the root writes

\[
D_n = \sum_{i=1}^{n} a_i V_i \mathbb{I}_{\{U_i \leq \frac{a_i}{A_i}\}}.
\]

(2.2)

To see this, we roughly proceed as follows. Consider the projection \(X_n(n-1) \) of \(X_n \) onto \(T_{n-1} \). By construction, it is uniformly distributed on \(T_{n-1} \) given \(T_{n-1} \), and then:

- either \(X_n \in T_{n-1} \) and \(X_n(n-1) = X_n \), which occurs with probability \(A_{n-1}/A_n \),
- or \(X_n \in T_n \setminus T_{n-1} \) and \(d(X_n, X_n(n-1)) = a_n V_n \) with \(V_n \) uniform on \((0,1)\) and independent of \(T_{n-1} \), which occurs with probability \(a_n/A_n \).

Iterating this argument gives (2.1). An obvious consequence is that

\[
\mathbb{E}[D_n] = \frac{1}{2} \sum_{i=1}^{n} \frac{a_i^2}{A_i}.
\]

(2.3)

The rest of this section is organized as follows. In Section 2.1 we start by recalling some classical bounds for regularly varying sequences that will be used throughout the paper. The first part of Section 2.2 concerns the asymptotic behavior of the height \(D_n \), with the proofs of Theorem 1.2 (i) and its corollaries (1.2), as well as Proposition 1.3. The second part of Section 2.2 is devoted to the implementation of bounds (Lemma 2.3) that will be crucial for the proof of Theorem 1.2 (ii) on the behavior of the height of \(T_n \), proof that will be undertaken in Section 4. Last, Section 2.3 contains the proof of Proposition 1.4.

2.1 Bounds for regularly varying sequences

Assume that \((a_n)\) is regularly varying with index \(\alpha \geq 0 \). We recall some classical bounds that will be useful at different places in the paper.

Fix \(\varepsilon > 0 \). From [7, Theorem 1.5.6 and Theorem 1.5.11], there exists an integer \(i_\varepsilon \) such that for all \(n \geq i \geq i_\varepsilon \),

\[
(1 - \varepsilon) \left(\frac{i}{n} \right)^{\alpha + \varepsilon} \leq \frac{a_i}{a_n} \leq (1 + \varepsilon) \left(\frac{i}{n} \right)^{\alpha - \varepsilon}
\]

(2.4)

and

\[
\frac{(1 - \varepsilon)(\alpha + 1)}{i} \leq \frac{a_i}{A_i} \leq \frac{(1 + \varepsilon)(\alpha + 1)}{i}
\]

(2.5)

([7, Theorem 1.5.6] and [7, Theorem 1.5.11] are stated for regularly varying functions, but can be used for regularly varying sequences, using that \(f(x) := a_{|x|} \) is a varying regularly function).

Moreover, still by [7, Theorem 1.5.11],

\[
\frac{a_n}{\sum_{i=1}^{n} i^{-1} a_i} \rightarrow \alpha, \quad n \rightarrow \infty.
\]

(2.6)

2.2 One dimensional convergence and deviations

For \(\alpha > 0 \), recall the definition of the random variable \(\xi_{(\alpha)} \) defined via its Laplace transform

\[
\mathbb{E}[\exp(\lambda \xi_{(\alpha)})] = \exp(\phi_{(\alpha)}(\lambda)), \quad \lambda \in \mathbb{R}
\]

with \(\phi_{(\alpha)} \) given by (1.1). With the expression (2.2), it is easy to find the asymptotic behavior of \((D_n) \) by computing its Laplace transform and then get Theorem 1.2 (i). We more precisely have:
Lemma 2.1. Assume that \((a_n)\) is regularly varying with index \(\alpha > 0\). Then,

(i) For all \(\lambda \in \mathbb{R}\)
\[E \left[\exp \left(\lambda \frac{D_n}{a_n} \right) \right] \xrightarrow{n \to \infty} \exp(\phi(\alpha)(\lambda)).\]

(ii) For all \(c > 1\), there exists \(n_c\) such that for all \(n \geq n_c\) and all \(\lambda \geq 0\),
\[E \left[\exp \left(\lambda \frac{D_n}{a_n} \right) \right] \leq \exp \left(c(1 + \alpha^{-1})\lambda \exp(c\lambda) \right).

Proof. (i) For all \(\lambda \neq 0\), we get from (2.2) that
\[
E \left[\exp \left(\lambda \frac{D_n}{a_n} \right) \right] = \prod_{i=1}^{n} E \left[\exp \left(\lambda \frac{a_i}{a_n} V \mathbb{1}_{\left\{ U \leq \frac{n}{i} \right\}} \right) \right] = \prod_{i=1}^{n} \left(1 - \frac{a_i}{A_i} + \frac{a_i}{A_i} \frac{\exp \left(\lambda \frac{a_i}{a_n} \right) - 1}{\lambda \frac{a_i}{a_n}} \right)
\]
where \(U,V\) are uniform on \((0,1)\) and independent (if \(a_i = 0\) for some \(i\) we use the convention \((\exp(0) - 1)/0 = 1\)). Now assume that \(\lambda > 0\) (the following lines hold similarly for \(\lambda < 0\) by adapting the bounds). Using (2.4), (2.5) together with the fact that \(\ln(1 + x) \sim x\) as \(x \to 0\) and that \(x \mapsto x^{-1}(\exp(x) - 1)\) is increasing on \((0,\infty)\) and converges to 1 as \(x \to 0\), leads to the existence of an integer \(j_c\) such that for \(n \geq j_c\)
\[
c_c(n) + (1 - \varepsilon)^2(\alpha + 1) \sum_{i=j_c}^{n} \frac{1}{i} \left(\frac{\exp \left(\lambda(1 - \varepsilon) \left(\frac{i}{n} \right)^{\alpha + \varepsilon} \right) - 1}{\lambda(1 - \varepsilon) \left(\frac{i}{n} \right)^{\alpha + \varepsilon}} \right) - 1 \leq \ln \left(E \left[\exp \left(\lambda \frac{D_n}{a_n} \right) \right] \right)
\]
\[
\leq c_c(n) + (1 + \varepsilon)^2(\alpha + 1) \sum_{i=j_c}^{n} \frac{1}{i} \left(\frac{\exp \left(\lambda(1 + \varepsilon) \left(\frac{i}{n} \right)^{\alpha - \varepsilon} \right) - 1}{\lambda(1 + \varepsilon) \left(\frac{i}{n} \right)^{\alpha - \varepsilon}} \right) - 1 \tag{2.7}
\]
where
\[
c_c(n) := \sum_{i=1}^{j_c - 1} \ln \left(1 - \frac{a_i}{A_i} + \frac{a_i}{A_i} \frac{\exp \left(\lambda \frac{a_i}{a_n} \right) - 1}{\lambda \frac{a_i}{a_n}} \right) \xrightarrow{n \to \infty} 0
\]
since \(a_n \to \infty\). Writing \(\frac{1}{\varepsilon} = \frac{1}{\varepsilon'} + \frac{a_n}{\varepsilon'}\), we recognize Riemann sums in the lower and upper bounds, which, letting first \(n \uparrow \infty\) and then \(\varepsilon \downarrow 0\) gives
\[
\ln \left(E \left[\exp \left(\lambda \frac{D_n}{a_n} \right) \right] \right) \xrightarrow{n \to \infty} (\alpha + 1) \int \frac{1}{x} \left(\frac{\exp(\lambda x^{\alpha}) - 1}{\lambda x^{\alpha}} \right) \, dx =: \phi(\alpha)(\lambda).
\]
It is easy to see with the change of variables \(y = x^{\alpha}\) in the integral and then the power series expansion of the exponential function that this expression of \(\phi(\alpha)(\lambda)\) indeed corresponds to (1.1).

(ii) Fix \(c > 1\). Using the upper bound (2.7) and the fact that
\[
\frac{\exp(x) - 1}{x} = 1 \leq x \exp(x) \quad \text{for all } x > 0
\]
we see that for all \(0 < \eta < \alpha\) and then for all \(n\) large enough
\[
\ln \left(E \left[\exp \left(\lambda \frac{D_n}{a_n} \right) \right] \right) \leq c_\eta(n) + (1 + \eta)^3(\alpha + 1)\lambda \exp(\lambda(1 + \eta)) \sum_{i=j_\eta}^{n} \frac{1}{i} \left(\frac{i}{n} \right)^{\alpha - \eta}.
\]
Asymptotics of heights in random trees constructed by aggregation

Note also, using \(\ln(1 + x) \leq x\), that

\[
c_n(n) \leq \sum_{i=1}^{n-1} \frac{a_i}{A_i} a_n \exp \left(\frac{\lambda a_i}{a_n} \right)
\]

which, clearly, is smaller than \(\eta \lambda \exp(\eta \lambda)\) for \(n\) large enough and all \(\lambda \geq 0\). Gathering this together, we get that for all \(n\) large enough (depending on \(\eta\)) and all \(\lambda \geq 0\),

\[
\ln \left(\mathbb{E} \left[\exp \left(\frac{D_n}{a_n} \right) \right] \right) \leq (\eta + (1 + \eta)^4) \frac{1 + \alpha}{\alpha - \eta} \exp (\lambda(1 + \eta)).
\]

Taking \(\eta\) small enough so that \((\eta + (1 + \eta)^4) \alpha \leq c(\alpha - \eta)\) gives the expected upper bound. \(\square\)

Remark (height of a uniform leaf). We keep the notation of the introduction and let \(L_{n,\star}\) denote a leaf chosen uniformly at random amongst the \(n\) leaves of \(T_n\). Then the previous result implies that when \((a_n)\) is regularly varying with index \(\alpha > 0\),

\[
\frac{d(L_{n,\star}, \text{root})}{a_n} \xrightarrow{\text{d}}_{n \to \infty} (1 + \xi(\alpha)) U^\alpha
\]

with \(U\) uniformly distributed on \((0, 1)\) and independent of \(\xi(\alpha)\). To see this, one could use that the distribution of \((1 + \xi(\alpha)) U^\alpha\) is characterized by its positive moments (since it has exponential moments, since \(\xi(\alpha)\) has), together with the fact that for each \(p \geq 0\), the \(p\)-th moment \(\mathbb{E}[(d(L_{n,\star}, \text{root})/a_n)^p]\) converges to \(\mathbb{E}[(1 + \xi(\alpha)) U^\alpha]^p\). To prove this last convergence, note that

\[
\mathbb{E} \left[\left(\frac{d(L_{n,\star}, \text{root})}{a_n} \right)^p \right] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[\left(\frac{d(L_i, \text{root})}{a_i} \right)^p \right] \left(\frac{a_i}{a_n} \right)^p.
\]

Since \(d(L_i, \text{root}) - a_i\) is uniformly distributed on \(T_{i-1}\) (by construction) we know from the previous lemma that, divided by \(a_i\), it converges in distribution to \(\xi(\alpha)\), and that more precisely there is convergence of all positive and exponential moments. Together with (2.4), this leads to the convergence of \(\mathbb{E}[(d(L_{n,\star}, \text{root})/a_n)^p]\) to \(\mathbb{E}[(1 + \xi(\alpha)) U^\alpha]^p\)/\((\alpha + 1)\), as expected.

Remark (other sequences \((a_n)\)). It is easy to adapt Part (i) of the proof to get that for a general sequence \((a_n)\) of positive terms such that \((\sum_{i=1}^{n} A_i^{-1} a_i^2)^{-1} \max_{1 \leq i \leq n} a_i \to 0\) as \(n \to \infty\),

\[
\frac{D_n}{\sum_{i=1}^{n} i^{-1} a_i} \xrightarrow{\text{d}}_{n \to \infty} \frac{1}{2}.
\]

(2.8)

It is easy to check that the above condition on \((a_n)\) holds if \((a_n)\) is regularly varying with index 0 and \(\sum_{i=1}^{n} i^{-1} a_i = \infty\) (recall (2.5),(2.6)), leading in that case to

\[
\frac{D_n}{\sum_{i=1}^{n} i^{-1} a_i} \xrightarrow{\text{d}}_{n \to \infty} \frac{1}{2}.
\]

In particular this recovers the first part of Theorem 1.1. To illustrate with other 0-regularly varying sequences, consider \(a_n = (\ln(n))^\gamma, \gamma \in \mathbb{R}\). Then:

\[
\begin{aligned}
\frac{D_n}{(\ln(n))^\gamma+1} &\xrightarrow{\text{d}} \frac{1}{2(\gamma + 1)} & \text{when } \gamma > -1 \\
\frac{D_n}{\ln(\ln(n))} &\xrightarrow{\text{d}} \frac{1}{2} & \text{when } \gamma = -1 \\
\frac{D_n}{a_n} &\xrightarrow{\text{d}} D_\infty & \text{when } \gamma < -1,
\end{aligned}
\]
Asymptotics of heights in random trees constructed by aggregation

where the last line is due to the fact that \((D_n) \) is stochastically increasing (by (2.2)) and that \(\lim_{n} E[D_n] \) is finite when \(\gamma < -1 \) (by (2.3),(2.5)), which implies that \((D_n) \) converges in distribution to a r.v. \(D_\infty \) with finite expectation. Note that this last argument actually holds for any sequence \((a_n) \) such that \(\sum_{i=1}^{\infty} i^{-1} a_i^2 < \infty \) (which is equivalent to \(\sum_{i=1}^{\infty} a_i < \infty \) when \((a_n) \) is regularly varying, necessarily with index 0). All these remarks lead to Proposition 1.3, using again (2.6) when \(\alpha > 0 \).

We come back to the case where \(\alpha > 0 \) and note the following behavior of the maximum of \(n \) i.i.d. copies of \(\xi(\alpha) \).

Proposition 2.2. Let \(\xi(\alpha,1), \ldots, \xi(\alpha,n) \) be i.i.d. copies of \(\xi(\alpha) \). Then,
\[
\frac{\max \{ \xi(\alpha,1), \ldots, \xi(\alpha,n) \} \times \ln(\ln(n))}{\ln(n)} \xrightarrow{P} 1.
\]

Proof. From (1.1), we know that the random variable \(\xi(\alpha) \) is infinitely divisible and the support of its Lévy measure is \([0,1]\). By [7, Theorem 8.2.3], this implies that
\[
\exp (\lambda x \ln(x)) \mathbb{P}(\xi(\alpha) > x) \xrightarrow{x \to \infty} 0 \quad \text{when} \quad \lambda < 1
\]
and
\[
\exp (\lambda x \ln(x)) \mathbb{P}(\xi(\alpha) > x) \xrightarrow{x \to \infty} \infty \quad \text{when} \quad \lambda > 1.
\]
Besides, the independence of the \(\xi(\alpha,i), 1 \leq i \leq n \) leads to
\[
\ln \left(\mathbb{P} \left(\max \{ \xi(\alpha,1), \ldots, \xi(\alpha,n) \} \leq u \frac{\ln(n)}{\ln(\ln(n))} \right) \right) \sim n \mathbb{P} \left(\xi(\alpha) > u \frac{\ln(n)}{\ln(\ln(n))} \right),
\]
for all \(u > 0 \). With the above estimates, it is straightforward that the right–hand side converges to 0 when \(u > 1 \) and to \(-\infty \) when \(u < 1 \). \(\square \)

We will not directly use this result later in the paper, but this may be seen as a hint that the height \(H_n \) may be asymptotically proportional to \(\frac{n^{\alpha} \ln(n)}{\ln(\ln(n))} \). To prove this rigorously, we will actually use the following estimates.

Lemma 2.3. Assume that \((a_n) \) is regularly varying with index \(\alpha > 0 \) and fix \(\gamma > 0 \).

(i) Then for all \(\gamma' < \gamma \),
\[
n^{\gamma'} \mathbb{P} \left(\frac{D_n}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \xrightarrow{n \to \infty} 0
\]
whereas for all \(\gamma' > \gamma \),
\[
n^{\gamma'} \mathbb{P} \left(\frac{D_n}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \xrightarrow{n \to \infty} \infty.
\]

(ii) Fix \(c \in (0,1) \). Then for all \(\gamma' < \gamma \),
\[
n^{\gamma'} \mathbb{P} \left(\frac{D_n - D_n([nc])}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \xrightarrow{n \to \infty} 0
\]
whereas for all \(\gamma' > \gamma \),
\[
n^{\gamma'} \mathbb{P} \left(\frac{D_n - D_n([nc])}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \xrightarrow{n \to \infty} \infty.
\]
Asymptotics of heights in random trees constructed by aggregation

Proof. Of course, since $D_n - D_n(\lfloor nc \rfloor) \leq D_n$, we only need to prove the convergence to 0 in (i) for $\gamma' < \gamma$ and the convergence to ∞ in (ii) for $\gamma' > \gamma$.

(i) Let $\gamma' < \gamma$ and take a, d such that $a > \gamma'/\gamma, d > 1$ and $ad < 1$. From the upper bound of Lemma 2.1 (ii), we see that for n large enough

$$n^{\gamma'} P \left(\frac{D_n}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right)$$

$$= n^{\gamma'} P \left(a \ln(\ln(n)) \frac{D_n}{a_n} > a \gamma \ln(n) \right)$$

$$\leq \exp(\gamma' \ln(n)) \cdot E \left[\exp \left(a \ln(\ln(n)) \frac{D_n}{a_n} \right) \right] \cdot \exp(-a \gamma \ln(n))$$

$$\leq \exp \left(\ln(n) \times (\gamma' - a \gamma) + (1 + \alpha^{-1}) ad \ln(\ln(n)) \ln(n)^{ad} \right)$$

and this converges to 0 since $ad < 1$ and $a \gamma > \gamma'$.

(ii) Let $\gamma' > \gamma$. We will (stochastically) compare the random variable $a_n^{-1} (D_n - D_n(\lfloor nc \rfloor))$ with a binomial $\text{Bin} \left(\lfloor an
floor, b/n \right)$ distribution, with appropriate $a, b > 0$. A simple application of Stirling’s formula will then lead to the expected result. Recall from (2.2) and (2.1) that

$$\frac{D_n - D_n(\lfloor nc \rfloor)}{a_n} = \sum_{i = \lfloor dc \rfloor + 1}^{n} \frac{a_i}{a_n} V_i \mathbb{1}_{ \{ U_i \leq \frac{n}{a} \}}$$

with $U_i, V_i, i \geq 1$ i.i.d. uniform on $(0, 1)$. Then note from (2.4) and (2.5) that for all $\varepsilon, d \in (0, 1)$

$$\sum_{i = \lfloor dc \rfloor + 1}^{n} \frac{a_i}{a_n} V_i \mathbb{1}_{ \{ U_i \leq \frac{n}{a} \}} \geq (1 - \varepsilon)d^{\alpha + \varepsilon} \sum_{i = \lfloor dc \rfloor + 1}^{n} V_i \mathbb{1}_{ \{ U_i \leq \frac{n}{a} \}}$$

provided that n is large enough. Now take $\varepsilon \in (0, 1)$ small enough and $d \in (e, 1)$ large enough so that $\gamma < (1 - \varepsilon)^2 d^{\alpha + \varepsilon} \gamma'$. Setting $N_{n, \varepsilon, d} := \sum_{i = \lfloor dc \rfloor + 1}^{n} \mathbb{1}_{ \{ U_i \geq 1 - \varepsilon \}}$, we have,

$$P \left(\frac{D_n - D_n(\lfloor nc \rfloor)}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right)$$

$$\geq P \left((1 - \varepsilon)d^{\alpha + \varepsilon} \sum_{i = \lfloor dc \rfloor + 1}^{n} V_i \mathbb{1}_{ \{ U_i \leq \frac{n}{a} \}} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right)$$

$$\geq \left(\begin{array}{ll} \varepsilon (1 - d)n/2 \\ \alpha + 1 \\ 2n \end{array} \right) \frac{\gamma \ln(n)}{(1 - \varepsilon)^2 d^{\alpha + \varepsilon} \ln(\ln(n))}$$

$$\geq P \left(\text{Bin} \left(\frac{\varepsilon (1 - d)n}{2}, \frac{\alpha + 1}{2n} \right) > \frac{\gamma \ln(n)}{(1 - \varepsilon)^2 d^{\alpha + \varepsilon} \ln(\ln(n))} \right)$$

(2.9)

One the one hand, the theory of large deviations for the binomial distribution gives

$$P \left(\text{Bin} \left(n - \lfloor dc \rfloor, \varepsilon \right) < \varepsilon (1 - d)n/2 \right) \leq \exp(-hn),$$

with $h > 0$. On the other hand, a simple application of Stirling’s formula implies that

$$P \left(\text{Bin} \left(\frac{\varepsilon (1 - d)n}{2}, \frac{\alpha + 1}{2n} \right) > \frac{\gamma \ln(n)}{(1 - \varepsilon)^2 d^{\alpha + \varepsilon} \ln(\ln(n))} \right) \geq n^{\gamma \ln(n) - (1 - \varepsilon)^2 d^{\alpha + \varepsilon} \ln(\ln(n))} \geq n^{\gamma \frac{\ln(n)}{(1 - \varepsilon)^2 d^{\alpha + \varepsilon} \ln(\ln(n))}} \geq n^{\gamma \frac{\ln(n)}{(1 - \varepsilon)^2 d^{\alpha + \varepsilon} \ln(\ln(n))}}$$

(2.10)
Using Stirling’s formula, the binomial term rewrites
\[
\frac{\ln(\ln(n))}{\ln(\ln(n))} > \gamma \quad \text{for all } \gamma' > 0.
\]
It remains to prove that the process \(P_{a,b,x} \) satisfies the finite–dimensional convergence. We finish with a quick proof of (2.10). More generally, let \(a,b,x > 0 \).

Using Stirling’s formula, the binomial term rewrites
\[
\left(\frac{\lfloor x \ln(n)/\ln(\ln(n)) \rfloor}{\ln(\ln(n))} + 1 \right) = \exp\left(\left(\frac{\lfloor x \ln(n)/\ln(\ln(n)) \rfloor}{\ln(\ln(n))} + 1 \right) \left(\ln(a_n) - \ln \left(\frac{x \ln(n)}{\ln(\ln(n))} \right) + 1 + o(1) \right) \right).
\]

Hence,
\[
P \left(\binom{\lfloor x \ln(n)/\ln(\ln(n)) \rfloor}{\ln(\ln(n))} > \frac{x \ln(n)}{\ln(\ln(n))} \right)
\geq \exp\left(\left(\frac{\lfloor x \ln(n)/\ln(\ln(n)) \rfloor}{\ln(\ln(n))} + 1 \right) \left(\ln(a_n) - \ln \left(\frac{x \ln(n)}{\ln(\ln(n))} \right) + 1 + \ln \left(\frac{b}{n} \right) + o(1) \right) \right)
= \exp \left(- x \ln(n) (1 + o(1)) \right).
\]

2.3 Functional convergence

In this section we prove Proposition 1.4. To lighten notation, we let for all \(n \in \mathbb{N} \)
\[
\xi_n(t) := \frac{D_n([nt])}{a_n} = \frac{\sum_{i=1}^{[nt]} a_i V_i 1_{U_i \leq a_i/A_i}}{a_n}, \quad 0 \leq t \leq 1,
\]
where \(U_i, V_i, 1 \leq i \leq n \) are i.i.d. uniform on \((0,1)\) (recall the construction (2.1)). Our goal is to prove that the process \(\xi_n \) converges to the process \(\xi_{(\alpha)} \) defined by (1.3) for the Skorokhod topology on \(D([0,1], \mathbb{R}_+) \). We start by proving the finite-dimensional convergence, relying on manipulations done in Section 2.2. Then we use Aldous’ tightness criterion to conclude that the convergence holds with respect to the topology of Skorokhod.

Finite-dimensional convergence. The processes \(\xi_n, n \geq 1 \) and \(\xi_{(\alpha)} \) all have independent increments, by construction. It remains to prove that
\[
\xi_n(t) - \xi_n(s) \xrightarrow{n \to \infty} \xi_{(\alpha)}(t) - \xi_{(\alpha)}(s)
\]
for all \(0 \leq s \leq t \leq 1 \). From the proof of Lemma 2.1 (i), we immediately get that for all \(\lambda \geq 0 \)
\[
E \left[\exp \left(\lambda \left(\xi_n(t) - \xi_n(s) \right) \right) \right] = \prod_{i=[ns]+1}^{[nt]} E \left[\exp \left(\lambda a_i V_i 1_{U_i \leq a_i/A_i} \right) \right] \xrightarrow{n \to \infty} \exp \left((\alpha + 1) \int_s^t \frac{1}{x} \left(\left(\frac{\exp(\lambda x^\alpha) - 1}{\lambda x^\alpha} \right) - 1 \right) \, dx \right).
\]

On the other hand, Campbell’s theorem applied to the Poisson point process \((t_i, v_i) \) on \((0,\infty)^2\) with intensity \((\alpha + 1)^{-\alpha-1} 1_{\{v \leq x \}} \, dt \, dv \) implies that for all \(\lambda \geq 0 \)
\[
E \left[\exp \left(\lambda \left(\xi_{(\alpha)}(t) - \xi_{(\alpha)}(s) \right) \right) \right] = \exp \left((\alpha + 1) \int_s^t \int_0^{x^\alpha} \left(\exp(\lambda v) - 1 \right) \, dv \, \frac{dx}{x^{1+\alpha}} \right).
\]
which indeed coincides with the above limit of \(\mathbb{E} \left[\exp \left(\lambda (\xi_n(t) - \xi_n(s)) \right) \right] \).

Tightness. We use Aldous’ tightness criterion ([6, Theorem 16.10]) that ensures that \((\xi_n)\) is tight with respect to the Skorokhod topology on \(D([0,1],R^+)\) if:

- \(\lim_{c \to \infty} \limsup_{n \to \infty} \mathbb{P} (\sup_{t \in [a,b]} |\xi_n(t)| > c) = 0 \)
- and for all \(\varepsilon > 0 \)

\[
\lim_{\varepsilon \to 0} \limsup_{n \to \infty} \sup_{0 \leq \theta \leq \delta} \mathbb{P} \left(|\xi_n((\tau + \theta) \wedge 1) - \xi_n(\tau)| > \varepsilon \right) = 0 \tag{2.11}
\]

where \(S_n \) is the set of stopping times with respect to the filtration generated by the process \(\xi_n \).

The first point is obvious, since the processes \(\xi_n \) are non-decreasing and we already know that \(\xi_n(1) \) converges in distribution. For the second point, note that if \(\tau \in S_n \), then \(|n\tau| \) is a stopping time with respect to the filtration generated by the process \((D_n(k), 0 \leq k \leq n) \). Hence

\[
\sup_{0 \leq \theta \leq \delta} \mathbb{P} \left(|\xi_n((\tau + \theta) \wedge 1) - \xi_n(\tau)| > \varepsilon \right) \\
= \mathbb{P} \left(\xi_n((\tau + \delta) \wedge 1) - \xi_n(\tau) > \varepsilon \right) \\
\leq \sum_{k=0}^{n} \mathbb{P} (|n\tau| = k) \mathbb{P} \left(\sum_{i=k+1}^{k+1+[\delta]} a_i n_i \mathbb{I}_{\{U_i \leq \frac{n}{n+i} \varepsilon \}} > \varepsilon \right).
\]

We may assume that \(\varepsilon < \alpha \). Then, using \(\mathbb{P}(X > \varepsilon) \leq \varepsilon^{-1} \mathbb{E}[X] \) for any non-negative r.v. \(X \), we get

\[
\mathbb{P} \left(\sum_{i=k+1}^{k+1+[\delta]} a_i n_i \mathbb{I}_{\{U_i \leq \frac{n}{n+i} \varepsilon \}} > \varepsilon \right) \\
\leq \frac{1}{2\varepsilon} \sum_{i=k+1}^{k+1+[\delta]} a_i^2 \frac{1}{a_i} \\
\leq \frac{C_{\alpha,\varepsilon}}{n^{\alpha-\varepsilon}} \sum_{i=k+1}^{k+1+[\delta]} i^{\alpha-\varepsilon-1} \\
\leq \frac{C_{\alpha,\varepsilon} \max(\delta^{\alpha-\varepsilon}, \delta)}{n^{\alpha-\varepsilon}}
\]

where \(C_{\alpha,\varepsilon} \) depends only on \(\alpha, \varepsilon \). To get the last line we have used that either \(\alpha - \varepsilon - 1 \geq 0 \) and then (since \(k + 1 \leq 2n \))

\[
\frac{1}{n^{\alpha-\varepsilon}} \sum_{i=k+1}^{k+1+[\delta]} i^{\alpha-\varepsilon-1} \leq \frac{(2 + \varepsilon)n^{\alpha-\varepsilon-1}n\delta}{n^{\alpha-\varepsilon}} = (2 + \delta)^{\alpha-\varepsilon-1} \delta.
\]

Or \(\alpha - \varepsilon - 1 < 0 \) and then

\[
\frac{1}{n^{\alpha-\varepsilon}} \sum_{i=k+1}^{k+1+[\delta]} i^{\alpha-\varepsilon-1} \leq \frac{\min \left((k + 1 + n\delta)^{\alpha-\varepsilon}, (k + 1)^{\alpha-\varepsilon-1}n\delta \right)}{(\alpha - \varepsilon)n^{\alpha-\varepsilon}} \leq \frac{(2\delta)^{\alpha-\varepsilon} \alpha}{\alpha - \varepsilon}
\]

where the last inequality is obtained by considering the first term in the minimum when \(k + 1 \leq n\delta \) and the second term when \(k + 1 > n\delta \).

In conclusion, we have proved that for all \(n \) large enough and all stopping times \(\tau \in S_n \),

\[
\sup_{0 \leq \theta \leq \delta} \mathbb{P} \left(|\xi_n((\tau + \theta) \wedge 1) - \xi_n(\tau)| > \varepsilon \right) \leq C_{\alpha,\varepsilon} \max(\delta^{\alpha-\varepsilon}, \delta).
\]

which gives (2.11).
3 Multiple marking

In order to prove Theorem 1.2 (ii), we need the joint distribution of the paths from the root to two points marked independently, uniformly in the tree T_n. This is studied in Section 3.1. Then in Section 3.2, we turn to ℓ marked points and the proof of Proposition 1.5.

3.1 Marking two points

The result of this section is available for any sequence (a_n) of positive terms.

Given T_n, let $X_n^{(1)}, X_n^{(2)}$ denote two points taken independently and uniformly in T_n, and $D_n^{(1)}, D_n^{(2)}$ their respective distances to the root. For all $1 \leq k \leq n$, let also $D_n^{(1)}(k)$ (resp. $D_n^{(2)}(k)$) denote the distance to the root of the projection of $X_n^{(1)}$ (resp. $X_n^{(2)}$) onto $T_k \subset T_n$. Our goal is to describe the joint distribution of the paths $((D_n^{(1)}(k), D_n^{(2)}(k)), 1 \leq k \leq n)$ – we recall that the marginals are given by (2.1). To that end, we introduce a sequence $(B^{(i,1)}, B^{(i,2)}), i \geq 1$ of independent pairs of random variables defined by:

$$
\begin{align*}
&\mathbb{P}((B^{(i,1)}, B^{(i,2)}) = (1,1)) = 0, \\
&\mathbb{P}((B^{(i,1)}, B^{(i,2)}) = (1,0)) = \frac{a_i}{A_i + a_i}, \\
&\mathbb{P}((B^{(i,1)}, B^{(i,2)}) = (0,1)) = \frac{a_i}{A_i + a_i}, \\
&\mathbb{P}((B^{(i,1)}, B^{(i,2)}) = (0,0)) = \frac{A_i}{A_i + a_i}.
\end{align*}
$$

(3.1)

Note the following facts (which will be useful later on):

- $B^{(i,1)}$ (resp. $B^{(i,2)}$) is stochastically smaller than a Bernoulli r.v. with success parameter a_i/A_i.
- the distribution of $B^{(i,1)}$ given that $B^{(i,2)} = 0$ (resp. $B^{(i,2)}$ given that $B^{(i,1)} = 0$) is a Bernoulli r.v. with success parameter a_i/A_i.

Lemma 3.1. Let $U_i, V_i, V_i^{(1)}, V_i^{(2)}, i \geq 1$ be independent r.v. uniformly distributed on $(0,1)$, all independent of a sequence $((B^{(i,1)}, B^{(i,2)}), i \geq 1)$ of independent pairs of Bernoulli r.v. distributed as (3.1). Then for all $n \geq 1$ and all bounded continuous functions $f : \mathbb{R}^{2 \times n} \rightarrow \mathbb{R}$,

$$
\mathbb{E} \left[f \left((D_n^{(1)}(k), D_n^{(2)}(k)), 1 \leq k \leq n \right) \right] = \sum_{\kappa=1}^{n} \left(\frac{a_\kappa}{A_\kappa} \right)^2 \left(\prod_{i=\kappa+1}^{n} \left(1 - \left(\frac{a_i}{A_i} \right)^2 \right) \right) \times \mathbb{E} \left[f \left((\Delta_\kappa^{(1)}(k), \Delta_\kappa^{(2)}(k)), 1 \leq k \leq n \right) \right]
$$

(3.2)

where for $j = 1, 2$,

$$
\Delta_\kappa^{(j)}(k) = \sum_{i=1}^{(\kappa-1) \wedge k} a_i V_i \mathbb{1} \left\{ U_i \leq \frac{n}{\kappa} \right\} + a_\kappa V_\kappa^{(j)} \mathbb{1} \{ k \geq \kappa \} + \sum_{i=\kappa+1}^{n} a_i V_i^{(j)} B^{(i,j)}.
$$

(3.3)

This lemma implies in particular that the distribution of the splitting index $S_n(2)$ of the two paths linking respectively $X_n^{(1)}$ and $X_n^{(2)}$ to the root, i.e.

$$
S_n(2) := \inf \left\{ 1 \leq k \leq n : p_k(X_n^{(1)}) \neq p_k(X_n^{(2)}) \right\},
$$

where $p_k(\cdot)$, $i = 1, 2$ denotes the projection of $X_n^{(i)}$ onto T_k, is given by

$$
\mathbb{P} \left(S_n(2) = \kappa \right) = \left(\frac{a_\kappa}{A_\kappa} \right)^2 \prod_{i=\kappa+1}^{n} \left(1 - \left(\frac{a_i}{A_i} \right)^2 \right), \quad 1 \leq \kappa \leq n
$$

(3.4)
Asymptotics of heights in random trees constructed by aggregation

(which is indeed a probability distribution!). Moreover, given $S_n(2) = \kappa$, the dependence of the two paths above the index $\kappa + 1$ is only driven by pairs of random variables $(B^{(1)}, B^{(2)}), i \geq \kappa + 1$, as described in (3.3).

Proof. We proceed by induction on $n \geq 1$. For $n = 1$, the formula of the lemma reduces to

$$\mathbb{E} \left[f(D^{(1)}_1, D^{(2)}_1) \right] = \mathbb{E} \left[f(a_1 V^{(1)}_1, a_1 V^{(2)}_1) \right]$$

which is obviously true since the two marked points are independently and uniformly distributed on a segment of length a_1. Consider now an integer $n \geq 2$ and assume that the formula of the lemma holds for $n - 1$. When marking $X^{(1)}_n, X^{(2)}_n$, four disjoint situations may arise:

- with probability $(a_n/A_n)^2$, the two marked points are on the branch b_n. Conditionally on this event, $D^{(1)}_n(k) = D^{(2)}_n(k), 1 \leq k \leq n - 1$ which corresponds to the path to the root of a point uniformly distributed on T_{n-1}, which is distributed as

$$\sum_{i=1}^k a_i V_i \mathbb{I}\{U_i \leq \frac{a_n}{A_n}\}, \quad 1 \leq k \leq n - 1.$$

Moreover $D^{(1)}_n(n) - D^{(1)}_n(n - 1)$ and $D^{(2)}_n(n) - D^{(1)}_n(n - 1)$ are independent, independent of the path $(D^{(1)}_n(k), k \leq n - 1)$, and uniformly distributed on b_n, which has length a_n. All this leads to the term $\kappa = n$ in the sum (3.2).

- with probability $A_{n-1}a_n/A_n^2$, $X^{(1)}_n \in T_{n-1}$ and $X^{(2)}_n \in b_n$. Conditionally on this event, $D^{(1)}_n(k), 1 \leq k \leq n - 1$ and $D^{(2)}_n(k), 1 \leq k \leq n - 1$ correspond to the respective paths to the root of two points marked independently, uniformly in T_{n-1}. Their joint distribution is therefore given by the induction hypothesis. Moreover $D^{(1)}_n(n) = D^{(1)}_n(n - 1)$ and $D^{(2)}_n(n) - D^{(2)}_n(n - 1)$ is independent of the paths $(D^{(1)}_n(k), D^{(2)}_n(k)), 1 \leq k \leq n - 1$ and is uniformly distributed on b_n. To sum up, setting for $\kappa \leq n - 1$ $\Delta^{(1)}_\kappa(n) := \Delta^{(1)}_\kappa(n - 1)$, $\Delta^{(2)}_\kappa(n) := \Delta^{(2)}_\kappa(n - 1) + a_n V^{(2)}_n$ and $\Delta^{(1)}_\kappa(k), 1 \leq k \leq n,$ we have:

$$\mathbb{E} \left[f \left(\left(D^{(1)}_n(k), D^{(2)}_n(k) \right), 1 \leq k \leq n \right) \mathbb{I}\{X^{(1)}_n \in T_{n-1}, X^{(2)}_n \in b_n\} \right]$$

$$= \frac{A_{n-1}a_n}{A_n^2} \times \sum_{\kappa=1}^{n-1} \left(\frac{a_n}{A_n} \right)^2 \left(\prod_{i=\kappa+1}^{n-1} \left(1 - \left(\frac{a_i}{A_n} \right)^2 \right) \right) \times \mathbb{E} \left[f \left(\left(\Delta^{(1)}_\kappa(k), \Delta^{(2)}_\kappa(k) \right), 1 \leq k \leq n \right) \mathbb{I}\{B^{(n,1)} = 0, B^{(n,2)} = 1\} \right],$$

where we have used for the second equality that

$$\frac{A_{n-1}a_n}{A_n^2} = \left(1 - \left(\frac{a_n}{A_n} \right)^2 \right) \times \mathbb{P}(B^{(n,1)} = 0, B^{(n,2)} = 1).$$

- with probability $A_{n-1}a_n/A_n^2$, $X^{(2)}_n \in T_{n-1}$ and $X^{(1)}_n \in b_n$, which is symmetric to the previous case.
with probability $(A_{n-1}/A_n)^2$ the two marked points are in T_{n-1}. Conditionally on this event, $D^{(1)}_n(n) = D^{(1)}_n(n - 1)$, $D^{(2)}_n(n) = D^{(2)}_n(n - 1)$ and $D^{(2)}_n(k), 1 \leq k \leq n - 1$ and $D^{(2)}_n(k), 1 \leq k \leq n - 1$ correspond to the paths to the root of two points marked independently, uniformly in T_{n-1}. Their joint distribution is therefore given by the induction hypothesis, and setting for $\kappa \leq n - 1$, $\Delta^{(1)}_\kappa(n) := \Delta^{(1)}_\kappa(n - 1)$, $\Delta^{(2)}_\kappa(n) := \Delta^{(2)}_\kappa(n - 1)$ and $\Delta^{(1)}_\kappa(k) := \Delta^{(1)}_\kappa(k)$, $\Delta^{(2)}_\kappa(k) := \Delta^{(2)}_\kappa(k)$ for $k \leq n - 1$, we have:

\[
E \left[f \left((D^{(1)}_n(k), D^{(2)}_n(k)), 1 \leq k \leq n \right) 1_{\{X^{(1)}_n \in T_{n-1}, X^{(2)}_n \in T_{n-1}\}} \right]
= \frac{A_{n-1}^2}{A_n^2} \times \sum_{\kappa=1}^{n-1} \left(\frac{a_\kappa}{A_\kappa} \right)^2 \left(\prod_{\ell=\kappa+1}^{n-1} \left(1 - \left(\frac{a_\ell}{A_\ell} \right)^2 \right) \right)
\times E \left[f \left((\Delta^{(1)}_\kappa(k), \Delta^{(2)}_\kappa(k)), 1 \leq k \leq n \right) 1_{\{B^{(1),n} = 0, B^{(2),n} = 0\}} \right],
\]

where we have used for the second equality that

\[
\frac{A_{n-1}^2}{A_n^2} = \left(1 - \left(\frac{a_n}{A_n} \right)^2 \right) \times P(B^{(1),n} = 0, B^{(2),n} = 0).
\]

Gathering these four situations finally leads to the formula of the lemma for n.

3.2 Marking \(\ell \) points and behavior of \(T_n(\ell) \)

The goal of this section is to prove Proposition 1.5. We start with a few notation. For each n, given T_n, let $X^{(1)}_n, \ldots, X^{(\ell)}_n$ be ℓ points picked independently and uniformly in T_n. Let then $D^{(1)}_n, \ldots, D^{(\ell)}_n$ be their respective distances to the root, and for all $1 \leq k \leq n$, $D^{(1)}_n(k), \ldots, D^{(\ell)}_n(k)$ be the respective distances to the root of the projections of $X^{(1)}_n, \ldots, X^{(\ell)}_n$ onto $T_k \subset T_n$.

In the tree $T_n(\ell)$, the subtree of T_n spanned from the root and $X^{(1)}_n, \ldots, X^{(\ell)}_n$, we let, using the notation of the introduction,

\[
B_n(\ell) := B^{(i,j)}_n \text{ if } d(B^{(i,j)}_n, \text{root}) = \max_{1 \leq i \neq j \leq \ell} (d(B^{(i,j)}_n, \text{root}))
\]

be the point amongst the $B^{(i,j)}_n, 1 \leq i \neq j \leq \ell$ the farthest from the root (note that it is well-defined a.s.). We may and will also see $B_n(\ell)$ as a point of T_n.

We will need the following random variables. For all $i \geq 1$, let $(B^{(i,1)}, \ldots, B^{(i,\ell)})$ be an exchangeable ℓ-uplet with distribution

\[
\begin{align*}
\mathbb{P} \left((B^{(i,1)}, \ldots, B^{(i,\ell)}) = (u_1, \ldots, u_\ell) \right) &= 0 \text{ for all } (u_i) \in \{0, 1\}^\ell \text{ with at least two } 1 \quad \text{for all } i \geq 1, \\
\mathbb{P} \left((B^{(i,1)}, \ldots, B^{(i,\ell)}) = (1, 0, \ldots, 0) \right) &= \frac{a_{i-1} \times A_{i-1}}{A_{i-1} \times A_{i-1}}, \\
\mathbb{P} \left((B^{(i,1)}, \ldots, B^{(i,\ell)}) = (0, 0, \ldots, 0) \right) &= \frac{A_{i-1}}{A_{i-1} \times A_{i-1}}.
\end{align*}
\]

In order to study the asymptotic behavior of $(T_n(\ell))$, we set up the following lemma, which is similar to Lemma 3.1, although less explicit.
Asymptotics of heights in random trees constructed by aggregation

Lemma 3.2. For all \(k \in \mathbb{N} \) and all \(n \in \mathbb{N} \), \(n > k \), the distribution of

\[
(D^{(1)}_n - D^{(1)}_{k+1}, \ldots, D^{(\ell)}_n - D^{(\ell)}_{k+1}) \text{ given that } B_n(\ell) \in T_k
\]

is the same as that of

\[
\left(\sum_{i=k+2}^n a_i V^{(1)}_i B^{i,1}, \ldots, \sum_{i=k+2}^n a_i V^{(\ell)}_i B^{i,\ell} \right),
\]

where the random variables \(V^{(j)}_i, i \geq 1, 1 \leq j \leq \ell \) are i.i.d. uniform on \((0,1)\), the \(\ell \)-uplets \((B^{i,1}, \ldots, B^{i,\ell})\) are distributed via (3.5), \(\forall i \geq 1 \), independently of each other and independently of \((V^{(j)}_i, i \geq 1, 1 \leq j \leq \ell)\).

Proof. The proof is similar to that of Lemma 3.1 and holds by induction on \(n > k \). We sketch it briefly. For \(n = k + 1 \) the statement is obvious since both \(\ell \)-uplets are then equal to \((0, \ldots, 0)\). Assume now that the statement holds for some \(n > k \). Then observe what happens for \(n + 1 \): given that \(B_{n+1}(\ell) \in T_k \), two situations may occur:

- either none of the marked points belongs to the segment \(b_{n+1} \). This occurs with a probability proportional to \((A_n)^{\ell-1}\) and then

 \[
 (D^{(1)}_{n+1} - D^{(1)}_{k+1}, \ldots, D^{(\ell)}_{n+1} - D^{(\ell)}_{k+1}) \text{ given that } B_{n+1}(\ell) \in T_k
 \]

 is distributed as

 \[
 (D^{(1)}_n - D^{(1)}_{k+1}, \ldots, D^{(\ell)}_n - D^{(\ell)}_{k+1}) \text{ given that } B_n(\ell) \in T_k.
 \]

- or a unique marked point belongs to the segment \(b_{n+1} \). The probability that \(X_{n+1}^{(\ell)} \) belongs to \(b_{n+1} \) (and not the other \(\ell - 1 \) marked points) is proportional to \(a_{n+1}(A_n)^{\ell-1} \) and in that case,

 \[
 (D^{(1)}_{n+1} - D^{(1)}_{k+1}, \ldots, D^{(\ell)}_{n+1} - D^{(\ell)}_{k+1}) \text{ given that } B_{n+1}(\ell) \in T_k
 \]

 is distributed as

 \[
 (D^{(1)}_n + a_{n+1} V - D^{(1)}_{k+1}, \ldots, D^{(\ell)}_n - D^{(\ell)}_{k+1}) \text{ given that } B_n(\ell) \in T_k,
 \]

 where \(V \) is uniform on \((0,1)\) and independent of \(D^{(\ell)}_n - D^{(\ell)}_{k+1}, 1 \leq i \leq \ell, B_n(\ell) \).

This leads to the statement for \(n + 1 \). \(\square \)

Proof of Proposition 1.5. Throughout this proof it is assumed that \((a_n)\) is regularly varying with index \(\alpha > 0 \) (the proof is identical under the assumptions (ii) of Proposition 1.5). With the notation of this section, our goal is to prove that

\[
\left(\frac{D^{(i)}_n}{a_n}, 1 \leq i \leq \ell, \frac{d(B_n(\ell), \text{root})}{a_n} \right) \xrightarrow{(d)} \left(\xi^{(i)}_{(\alpha)}, 1 \leq i \leq \ell \right), 0
\]

where \(\xi^{(i)}_{(\alpha)}, \ldots, \xi^{(\ell)}_{(\alpha)} \) are i.i.d. with distribution (1.1). We first claim that

\[
\frac{d(B_n(\ell), \text{root})}{a_n} \xrightarrow{p} 0, \quad n \to \infty
\]

EJP 22 (2017), paper 21. http://www.imstat.org/ejp/
Asymptotics of heights in random trees constructed by aggregation

since \(a_n \to \infty \) and \(d(B_n(\ell), \text{root}) \leq \sum_{1 \leq i \neq j \leq \ell} d(B_n^{i,j}, \text{root}) \), which is stochastically bounded since the splitting index \(S_n(2) \) of the paths of two marked points converges in distribution, by (3.4). By Slutsky’s Theorem, it remains to prove that

\[
\left(\frac{D_n^{(i)}}{a_n}, 1 \leq i \leq \ell \right) \xrightarrow{d} \left(\xi_{(\alpha)}^{(i)}, 1 \leq i \leq \ell \right).
\]

We start by observing that for all \(k \geq 1 \),

\[
\left(\frac{D_n^{(i)} - D_{k+1}^{(i)}}{a_n}, 1 \leq i \leq \ell \right) \quad \text{given that } B_n(\ell) \in T_k \xrightarrow{d} \left(\xi_{(\alpha)}^{(i)}, 1 \leq i \leq \ell \right),
\]

which obviously leads to (since \(a_n \to \infty \))

\[
\left(\frac{D_n^{(i)}}{a_n}, 1 \leq i \leq \ell \right) \quad \text{given that } B_n(\ell) \in T_k \xrightarrow{d} \left(\xi_{(\alpha)}^{(i)}, 1 \leq i \leq \ell \right).
\]

The above observation relies on the following consequence of Lemma 3.2: for all \(\ell \geq 1 \),

\[
\ln \left(E \left[\exp \left(\sum_{i=1}^{\ell} \lambda_i \frac{\lambda_i^{n+1}}{a_n} \right) \right] \right) \quad \text{given that } B_n(\ell) \in T_K \xrightarrow{d} \left(\xi_{(\alpha)}^{(i)}, 1 \leq i \leq \ell \right),
\]

(with the usual convention \(x^{-1}(\exp(x) - 1) = 1 \) when \(x = 0 \)). A slight modification of the proof of Lemma 2.1 implies that this logarithm converges to \(\sum_{i=1}^{\ell} \phi(\alpha)(\lambda_i) \), which then leads to the expected convergences in distribution. The end of the proof is then easy. Let \(V_n = (a_n^{-1}D_n^{(i)}, 1 \leq i \leq \ell) \) and \(f : R^{\ell} \to R \) be a continuous, bounded function. Fix \(\varepsilon > 0 \). There exists \(k_\varepsilon \in N \) such that \(P(B_n(\ell) \notin T_{k_\varepsilon}) \leq \varepsilon \) for all \(n \) since, as already mentioned, the splitting index of the paths of two marked points converges in distribution, by (3.4). Then, writing

\[
E[f(V_n)] = E[f(V_n) | B_n(\ell) \in T_{k_\varepsilon}] P(B_n(\ell) \in T_{k_\varepsilon}) + E[f(V_n) \mathbb{1}_{\{B_n(\ell) \notin T_{k_\varepsilon}\}}] \]

we get that

\[
E \left[f(\xi_{(\alpha)}^{(i)}, 1 \leq i \leq \ell) \right] (1 - \varepsilon) - \sup_{x \in R^{\ell}} |f(x)| \varepsilon
\]

\[
\leq \liminf_{n \to \infty} E[f(V_n)]
\]

\[
\leq \limsup_{n \to \infty} E[f(V_n)] \leq E \left[f(\xi_{(\alpha)}^{(i)}, 1 \leq i \leq \ell) \right] + \sup_{x \in R^{\ell}} |f(x)| \varepsilon.
\]

Letting \(\varepsilon \to 0 \) gives the result. \(\Box \)

4 Height of \(T_n \) when \(\alpha > 0 \)

Throughout this section we assume that \((a_n) \) is regularly varying with index \(\alpha > 0 \). Our goal is to prove that

\[
\frac{H_n \cdot \ln(\ln(n))}{a_n \ln(n)} \xrightarrow{a.s.} 1 \quad \text{as } n \to \infty.
\]
Asymptotics of heights in random trees constructed by aggregation

(Theorem 1.2 (ii)). We split the proof into two parts, starting with the fact that

\[
\limsup_{n \to \infty} \frac{H_n \cdot \ln(\ln(n))}{a_n \ln(n)} \leq 1 \text{ a.s.,}
\]

(4.1)

which is an easy consequence of Borel–Cantelli’s lemma and Lemma 2.3 (i). We will then show that

\[
\liminf_{n \to \infty} \frac{H_n \cdot \ln(\ln(n))}{a_n \ln(n)} \geq 1 \text{ a.s.,}
\]

(4.2)

using the second moment method and, again, Borel–Cantelli’s lemma. To carry this out, we will use Lemma 3.1 on the two marked points, as well as the estimates of Lemma 2.3 (ii).

4.1 Proof of the limsup (4.1)

In the infinite tree \(\bigcup_{n \geq 1} T_n \), label the leaves by order of appearance: for each \(i \geq 1 \), the leaf \(L_i \) is the one that belongs to the branch \(b_i \). Then consider for \(i \geq 2 \) the projection of \(L_i \) onto \(T_{i-1} \) and denote by \(D_{i-1} \) the distance of this projection to the root, which is distributed as \(D_{i-1} \).

Let \(D_0 = 0 \) and note that \(H_n = \max_{1 \leq i \leq n} \{d(L_i, \text{root})\} = \max_{1 \leq i \leq n} \{D_{i-1} + a_i\} \).

Now, let \(c_1 > c_2 > 1 \). By Lemma 2.3 (i),

\[
\sum_{i \geq 1} P \left(D_{i-1} \geq c_2 \frac{a_{i-1} \ln(i-1)}{\ln(\ln(i-1))} \right) < \infty.
\]

Hence by Borel–Cantelli’s lemma, almost surely

\[
D_{i-1} < c_2 \frac{a_{i-1} \ln(i-1)}{\ln(\ln(i-1))}
\]

for all \(i \) large enough. This leads, together with the fact that \((a_i) \) is regularly varying – see in particular (2.4) – to the almost sure existence of a (random) \(i_0 \) such that

\[
D_{i-1} + a_i < c_1 \frac{a_n \ln(n)}{\ln(\ln(n))}
\]

for all \(n \geq i \geq i_0 \). Hence,

\[
\limsup_{n \to \infty} \frac{H_n \cdot \ln(\ln(n))}{a_n \ln(n)} \leq c_1 \text{ a.s.}
\]

This holds for all \(c_1 > 1 \), hence (4.1).

4.2 Proof of the liminf (4.2)

Let \(X_n^{(i)}, 1 \leq i \leq n \) be \(n \) points marked independently and uniformly in \(T_n \). Then let \(D_n^{(i)}, 1 \leq i \leq n \) denote their respective distances to the root, and for all \(k < n \), \(D_n^{(i)}(k), 1 \leq i \leq n \) denote the distances to the root of their respective projections onto \(T_k \).

Of course, \(H_n = \max_{1 \leq i \leq n} D_n^{(i)} \) and it is sufficient to prove the liminf for this maximum of dependent random variables. To that end, we first establish the following lemma, using the second moment method.
Lemma 4.1. For all \(c \in (0, 1) \) and all \(\gamma < 1 \),
\[
P \left(\max_{1 \leq i \leq n} \frac{(D_n^{(i)} - D_n^{(i)}([nc]))}{a_n} \leq \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \leq n^{\gamma - 1 + o(1)}. \tag{4.3}
\]

Since \(H_n \) is larger than the maximum involved in this probability, this immediately implies that
\[
P \left(\frac{H_n \cdot \ln(\ln(n))}{a_n \ln(n)} \leq \gamma \right) \to 0 \quad \text{as} \quad n \to \infty \quad \text{for all} \quad \gamma < 1.
\]

This is however not sufficient since we want an almost sure bound for the liminf (4.2). We will turn to this conclusion later on. We first prove the lemma.

Proof of Lemma 4.1. We start with standard arguments, in order to use the second moment method. Fix \(\gamma \in (0, 1) \) and introduce
\[
A_n^{(i)} := \left\{ \frac{D_n^{(i)} - D_n^{(i)}([nc])}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right\}, \quad 1 \leq i \leq n,
\]
and
\[
S_n := \sum_{i=1}^{n} \mathbb{I}_{A_n^{(i)}}.
\]

Since the sequence \((D_n^{(i)} - D_n^{(i)}([nc]), 1 \leq i \leq n) \) is exchangeable, we have:
\[
\mathbb{E}[S_n] = n \mathbb{P}(A_n^{(1)})
\]
and
\[
\text{Var}(S_n) = n \mathbb{P}(A_n^{(1)}) + n(n - 1) \mathbb{P}(A_n^{(1)} \cap A_n^{(2)}) - (n \mathbb{P}(A_n^{(1)}))^2.
\]

Note that with this notation, (4.3) rewrites \(\mathbb{P}(S_n = 0) \leq n^{\gamma - 1 + o(1)} \). To prove this upper bound, we use the second moment method:
\[
\mathbb{P}(S_n = 0) \leq \frac{\text{Var}(S_n)}{(\mathbb{E}[S_n])^2}
\leq \frac{1}{n \mathbb{P}(A_n^{(1)})} + \frac{\mathbb{P}(A_n^{(1)} \cap A_n^{(2)})}{(\mathbb{P}(A_n^{(1)}))^2} - 1.
\]

By Lemma 2.3 (ii), we know that \(n \mathbb{P}(A_n^{(1)}) = n^{1 - \gamma + o(1)} \). It remains to show that
\[
\frac{\mathbb{P}(A_n^{(1)} \cap A_n^{(2)})}{(\mathbb{P}(A_n^{(1)}))^2} \leq 1 + n^{\gamma - 1 + o(1)}.
\]

To that end, recall the notation and statement of Lemma 3.1:
\[
\mathbb{P}(A_n^{(1)} \cap A_n^{(2)}) = \sum_{n=1}^{n} p_n \mathbb{P} \left(\frac{\Delta_n^{(j)}(n) - \Delta_n^{(j)}([nc])}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))}, j = 1, 2 \right)
\]
where \(p_n := \left(\frac{a_n}{\Delta_n^{(1)}} \right)^2 \left(\prod_{i=n+1}^{n} \left(1 - \left(\frac{a_n}{\Delta_n^{(1)}} \right)^2 \right) \right) \) for \(1 \leq \kappa \leq n \). We split this sum into two parts:
(i) First, using the notation of Section 3.1 and the remarks just before Lemma 3.1, we see that
\[\sum_{\kappa=1}^{\lfloor \frac{n}{c} \rfloor} p_\kappa P \left(\frac{\Delta^{(j)}(n) - \Delta^{(j)}(\lfloor \frac{n}{c} \rfloor)}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right), \quad j = 1, 2 \]
\[= \sum_{\kappa=1}^{\lfloor \frac{n}{c} \rfloor} p_\kappa E \left[I \{ \frac{\Delta^{(1)}(n) - \Delta^{(1)}(\lfloor \frac{n}{c} \rfloor)}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \} \right] \times P \left(\sum_{i=\lfloor \frac{n}{c} \rfloor + 1}^{n} a_i V_i^{(2)} P^{(i, 2)} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \]
\[\leq P(A^{(1)}_n) \sum_{\kappa=1}^{\lfloor \frac{n}{c} \rfloor} p_\kappa P \left(\frac{\Delta^{(1)}(n) - \Delta^{(1)}(\lfloor \frac{n}{c} \rfloor)}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \]
\[\leq P(A^{(1)}_n)^2. \]

The first inequality is due to the fact that the sum \(\sum_{i=\lfloor \frac{n}{c} \rfloor + 1}^{n} a_i V_i^{(2)} B^{(i, 2)} \) given \(B^{(i, 1)} \), \(V_i^{(1)} \), \(1 \leq i \leq n \) is stochastically smaller than \(D_n^{(1)} - D_n^{(1)}(\lfloor \frac{n}{c} \rfloor) \) since the distribution of \(B^{(i, 2)} \) conditional on \(B^{(i, 1)} = 0 \) is a Bernoulli r.v. with success parameter \(a_i/A_i \), and moreover \(B^{(i, 2)} = 0 \) a.s. when \(B^{(i, 1)} = 1 \). The second inequality follows immediately from Lemma 3.1.

(ii) Second,
\[\sum_{\kappa=\lfloor \frac{n}{c} \rfloor + 1}^{n} p_\kappa P \left(\frac{\Delta^{(j)}(n) - \Delta^{(j)}(\lfloor \frac{n}{c} \rfloor)}{a_n} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right), \quad j = 1, 2 \]
\[\leq \sum_{\kappa=\lfloor \frac{n}{c} \rfloor + 1}^{n} p_\kappa P \left(\sum_{i=\kappa + 1}^{n} a_i V_i^{(1)} B^{(i, 1)} + a_\kappa V_\kappa^{(1)} + \sum_{i=\lfloor \frac{n}{c} \rfloor + 1}^{\kappa - 1} a_i V_i \mathbb{1}_{\{ U_i \leq a_i/A_i \}} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \]
\[\leq n^{-\gamma + o(1)} \sum_{\kappa=\lfloor \frac{n}{c} \rfloor + 1}^{n} p_\kappa = n^{-\gamma - 1 + o(1)}. \]

Indeed, note that
\[\sum_{i=\kappa + 1}^{n} a_i V_i^{(1)} B^{(i, 1)} + a_\kappa V_\kappa^{(1)} + \sum_{i=\lfloor \frac{n}{c} \rfloor + 1}^{\kappa - 1} a_i V_i \mathbb{1}_{\{ U_i \leq a_i/A_i \}} \]
is stochastically dominated by \(a_\kappa + D_{n}^{(1)} - D_{n}^{(1)}(\lfloor \frac{n}{c} \rfloor) \) since \(B^{(i, 1)} \) is dominated by a Bernoulli r.v. with success parameter \(a_i/A_i \), for all \(i \). So by Lemma 2.3 (ii) and the fact that \(a_\kappa \leq 2a_n \) uniformly in \(\kappa \in \{ \lfloor \frac{n}{c} \rfloor, \ldots, n \} \) for \(n \) large enough (see (2.4)), we get that
\[P \left(\sum_{i=\kappa + 1}^{n} a_i V_i^{(1)} B^{(i, 1)} + a_\kappa V_\kappa^{(1)} + \sum_{i=\lfloor \frac{n}{c} \rfloor + 1}^{\kappa - 1} a_i V_i \mathbb{1}_{\{ U_i \leq a_i/A_i \}} > \gamma \frac{\ln(n)}{\ln(\ln(n))} \right) \leq n^{-\gamma + o(1)} \]
with a \(o(1) \) independent of \(\kappa \in \{ \lfloor \frac{n}{c} \rfloor, \ldots, n \} \). Moreover, by (2.5),
\[\sum_{\kappa=\lfloor \frac{n}{c} \rfloor + 1}^{n} p_\kappa \leq \sum_{\kappa=\lfloor \frac{n}{c} \rfloor + 1}^{n} \left(\frac{a_\kappa}{A_\kappa} \right)^2 = n^{-1 + o(1)}. \]

Finally, gathering the two upper bounds established in (i) and (ii) and using again that \(P(A^{(1)}_n) = n^{-\gamma + o(1)} \), we have proved that
\[\frac{P(A^{(1)}_n \cap A^{(2)}_n)}{P(A^{(1)}_n)^2} \leq 1 + \frac{n^{-\gamma - 1 + o(1)}}{n^{-2\gamma + o(1)}} = 1 + n^{\gamma - 1 + o(1)} \]
as wanted.

It remains to deduce (4.2) from Lemma 4.1. To that end, fix $\gamma \in (0, 1)$. A first consequence of Lemma 4.1 is that

$$\mathbb{P}\left(\frac{H_n}{a_n} \leq \gamma \frac{\ln(n)}{\ln(n)}\right) \leq n^{\gamma - 1 + o(1)}.$$

(4.4)

Now let $c \in (0, 1)$ and note that

$$H_n \geq \max\left(H_{[nc]}^{\gamma}, \max_{1 \leq i \leq n} \left(D_n^{(i)} - D_n^{(i)}([nc])\right)\right)$$

with $H_{[nc]}^{\gamma}$ and $\max_{1 \leq i \leq n} \left(D_n^{(i)} - D_n^{(i)}([nc])\right)$ independent. Hence,

$$\mathbb{P}\left(\frac{H_n}{a_n} \leq \gamma \frac{\ln(n)}{\ln(n)}\right) \leq \mathbb{P}\left(\frac{H_{[nc]}^{\gamma}}{a_n} \leq \gamma \frac{\ln(n)}{\ln(n)}\right)$$

$$\times \mathbb{P}\left(\max_{1 \leq i \leq n} \left(D_n^{(i)} - D_n^{(i)}([nc])\right) \leq \gamma \frac{\ln(n)}{\ln(n)}\right)$$

$$\leq n^{\gamma - a - 1 + o(1)} \cdot n^{\gamma - 1 + o(1)}$$

by (4.4) applied to $[nc]$ instead of n (together with the regular variation assumption on (a_n)) and Lemma 4.1. Next, fix an integer k such that $(1 - \gamma)k > 1$. Iterating the previous argument, we get that

$$\mathbb{P}\left(\frac{H_n}{a_n} \leq \gamma \frac{\ln(n)}{\ln(n)}\right) \leq n^{\gamma \sum_{j=0}^{k-1} c^{-aj} - k + o(1)}.$$

We now choose $c \in (0, 1)$ sufficiently close to 1 so that $\gamma \sum_{j=0}^{k-1} c^{-aj} - k < -1$ and conclude with Borel–Cantelli lemma that almost surely

$$\frac{H_n \cdot \ln(n)}{a_n \ln(n)} > \gamma$$

for all n large enough.

This holds for all $\gamma < 1$. Hence (4.2).

5 The case $a_n = 1$

The goal of this section is to prove Theorem 1.1. To that end we start by associating to a sequence (T_n) built recursively from a sequence (a_n) of positive lengths (with no constraints on the a_ns for the moment) a sequence of graph–theoretic trees (R_n) that codes its genealogy as follows:

- R_1 is the tree composed by a unique vertex, labeled \bigcirc.
- if in T_n the branch b_n is glued on the branch b_i, $i < n$, then R_n is obtained from R_{n-1} by grafting a new vertex, labeled \bigodot, to the vertex \bigcirc.

The vertex \bigcirc is considered as the root of R_n, $\forall n \geq 1$. This sequence of genealogical trees has been used by [5] to study the boundedness of $\mathbb{E}_{n \geq 1} T_n$.

From now on it is assumed that $a_n = 1$ for all $n \geq 1$. In that case, for all n, R_n is obtained by grafting the new vertex \bigodot to one vertex chosen uniformly at random amongst the $n - 1$ vertices of R_{n-1}. Hence R_n is a uniform recursive tree with n leaves. Let d_{R_n} denote the graph distance on R_n. It is well–known that

$$\frac{d_{R_n}(\bigodot, \bigcirc)}{\ln(n)} \xrightarrow{n \to \infty} 1$$

and

$$\max_{1 \leq i \leq n} \frac{d_{R_n}(\bigodot, \bigcirc)}{\ln(n)} \xrightarrow{n \to \infty} e,$$

(5.1)
see [11, 16, 17]. Next we add lengths to the edges of the trees \(R_n, n \geq 2 \). By construction, there exists a sequence of i.i.d. uniform r.v. \(U_i, i \geq 1 \) such that in \(\bigcup_{n \geq 1} T_n \),

\[
d(L_i, \text{root}) = \sum_{j=1}^k U_{i_j} + U_i + 1 \quad \text{if} \quad b_1 \rightarrow b_{i_1} \rightarrow \ldots \rightarrow b_{i_k} \rightarrow b_i
\]

where the sequence \(b_1 \rightarrow b_{i_1} \rightarrow \ldots \rightarrow b_{i_k} \rightarrow b_i \) represents the segments involved in the path from the root to \(L_i \) (recall from the introduction that the leaves are labelled by order of insertion). For all \(n \) and all \(2 \leq i \leq n \), we decide to allocate the length \(U_i \) to the edge in \(R_n \) between the vertex \(\bigcirc \) and its parent. We denote by \(R_n \) this new tree with edge-lengths and by \(d_{R_n} \) the corresponding metric, so that finally,

\[
d(L_i, \text{root}) = d_{R_n}(\bigcirc, \bigcirc) + 1, \quad \text{for all leaves} \ L_i \in T_n. \tag{5.2}
\]

See Figure 1 for an illustration.

Height of a typical vertex in \(T_n \), **height of leaf** \(L_n \), **height of a uniform leaf of** \(T_n \). The strong law of large numbers and the convergence on the left of (5.1) then clearly yield that \(d_{R_n}(\bigcirc, \bigcirc)/\ln(n) \) converges a.s. to \(1/2 \). This in turn yields that \(d(L_n, \text{root})/\ln(n) \) converges a.s. to \(1/2 \) and that

\[
\frac{D_n}{\ln(n)} \xrightarrow{p} \frac{1}{2}
\]

since \(b_{n+1} \) is inserted on a uniform point of \(T_n \). (More precisely, if we note, for each \(n \), \(D_n \) the distance to the root of the insertion point of \(b_{n+1} \) on \(T_n \), we obtain versions of the \(D_n \)s that converge almost surely: \(D_n/\ln(n) \rightarrow 1/2 \) a.s.).

Moreover, from the (a.s.) convergence of \(d(L_n, \text{root})/\ln(n) \) to \(1/2 \), it is easy to get the convergence in probability of \(d(L_{n^a}, \text{root})/\ln(n) \) to \(1/2 \), where \(L_{n^a} \) is a uniform leaf of \(T_n \). We let the reader adapt the proof seen in Section 2.2 for regularly varying sequences \((a_n) \) with a strictly positive index.

Height of \(T_n \). From (5.2) it is clear that the height \(H_n \) of \(T_n \) has the same asymptotic behavior as the height of \(R_n \). Using results by Broutin and Devroye [9] on the asymptotic behavior of heights of certain trees with edge-lengths, we obtain:
Asymptotics of heights in random trees constructed by aggregation

Proposition 5.1. As $n \to \infty$,

$$
\max_{1 \leq i \leq n} \frac{d_R(\Theta, \Theta)}{\ln(n)} \overset{p}{\to} \frac{e^{\beta^*}}{2\beta^*},
$$

where β^* is the unique solution in $(0, \infty)$ to the equation $2(e^\beta - 1) = \beta e^\beta$.

Proof. We use several remarks or techniques of [9] and invite the reader to refer to this paper for details. First, according to the paragraph following Theorem 3 in [9], the random recursive trees (R_n) can be coupled with random binary trees with edge–lengths so as to fit the framework of [9, Theorem 1] on the asymptotic of heights of binary trees with edge–lengths. From this theorem, we then know that

$$
\max_{1 \leq i \leq n} \frac{d_R(\Theta, \Theta)}{\ln(n)} \overset{p}{\to} c
$$

where c is defined a few lines below. Let us first introduce some notation.

Let E denote an exponential r.v. with parameter 1 and Z a real–valued r.v. with distribution $(\delta_0(dx) + \mathbb{1}_{[0,1]}(x) dx)/2$, where δ_0 denotes the Dirac measure at 0 and dx the Lebesgue measure on \mathbb{R}. Note that $E[E] = 1$ and $E[Z] = 1/4$. Moreover,

$$
\Lambda_Z(t) := \ln \left(E \left[e^{tZ} \right] \right) = \ln \left(1 + \frac{e^t - 1}{t} \right) - \ln(2), \quad \text{for } t \neq 0
$$

and $\Lambda_Z(0) = 0$. The corresponding Fenchel–Legendre transform $\Lambda_Z^*(t) := \sup_{\lambda \in \mathbb{R}} \{ \lambda t - \Lambda_Z(\lambda) \}$ is then given by

$$
\Lambda_Z^*(t) = t\lambda(t) - \ln(h(\lambda(t))) + \ln(2) \quad \text{for } 0 < t < 1,
$$

and $\Lambda_Z^*(t) = +\infty$ for $t \notin (0, 1)$, where $h(u) = 1 + (e^u - 1)/u$, for $u \in \mathbb{R}$ ($h(0) = 2$), and for $t \in (0, 1)$, $\lambda(t)$ is defined by

$$
\lambda(t) = \frac{h'(-\lambda(t))}{h(-\lambda(t))}
$$

(the function $u \in \mathbb{R} \mapsto h'(u)/h(u) \in (0, 1)$ - with the convention $h'(0)/h(0) = 1/4$ - is bijective, increasing). For the r.v. E, we more simply have

$$
\Lambda_E^*(t) = t - 1 - \ln(t) \quad \text{for } 0 < t < 1
$$

and $\Lambda_E^*(t) = +\infty$ for $t \notin (0, 1)$. According to [9, Theorem 1], the limit c introduced above is defined as the unique maximum of α/ρ along the curve

$$
\left\{ (\alpha, \rho) : \Lambda_Z^*(\alpha) + \Lambda_E^*(\rho) = \ln(2), 0 < \rho < 1, \frac{1}{4} \leq \alpha < 1 \right\}
$$

$$
= \left\{ (\alpha, \rho) : \alpha \lambda(\alpha) - \ln(h(\lambda(\alpha))) + \rho - 1 - \ln(\rho) = 0, 0 < \rho < 1, \frac{1}{4} \leq \alpha < 1 \right\}
$$

(according to [9, Lemma 1], this curve is increasing and concave).

It remains to determine this maximum. We reason like Broutin and Devroye at the end of their proof of [9, Theorem 3]. The slope of the curve is

$$
\frac{d\rho}{d\alpha} = \frac{\lambda(\alpha)}{\frac{1}{\rho} - 1}
$$

and on the other hand, at the maximum

$$
\frac{d\rho}{d\alpha} = \frac{\rho}{\alpha}
$$
Hence, at the maximum
\[\alpha_{\text{max}} \lambda(\alpha_{\text{max}}) = 1 - \rho_{\text{max}}. \]
Plugging this in (5.3) gives \(\rho_{\text{max}} = 1/h(\alpha_{\text{max}}) \), which gives in turn
\[\alpha_{\text{max}} \lambda(\alpha_{\text{max}}) = 1 - \frac{1}{h(\alpha_{\text{max}})}. \]
Setting \(\beta_{\text{max}} = \lambda(\alpha_{\text{max}}) \Leftrightarrow \alpha_{\text{max}} = h'(\beta_{\text{max}})/h(\beta_{\text{max}}) \), this is equivalent to
\[\frac{h'(\beta_{\text{max}})}{h(\beta_{\text{max}})} \beta_{\text{max}} = 1 - \frac{1}{h(\beta_{\text{max}})}. \]
Simple manipulations then give
\[2(e^{\beta_{\text{max}}} - 1) = \beta_{\text{max}} e^{\beta_{\text{max}}}, \]
which then leads to
\[c = \frac{\alpha_{\text{max}}}{\rho_{\text{max}}} = \frac{1}{2} e^{\beta_{\text{max}}}. \]

References

[1] L. Addario-Berry, N. Broutin, and C. Goldschmidt, Critical random graphs: limiting constructions and distributional properties, Electron. J. Probab. 15 (2010), no. 25, 741–775. MR-2650781
[2] D. Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), no. 1, 1–28. MR-1085326
[3] D. Aldous, The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23–70. MR-1166406
[4] D. Aldous, The continuum random tree III, Ann. Probab. 21 (1993), no. 1, 248–289.
[5] O. Amini, L. Devroye, S. Griffiths, and N. Olver, Explosion and linear transit times in infinite trees, To appear in Probab. Theory Related Fields. Preprint – arXiv:1411.4426.
[6] P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999. MR-1700749
[7] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989. MR-1015093
[8] K. A. Borovkov and V. A. Vatutin, On the asymptotic behaviour of random recursive trees in random environments, Adv. in Appl. Probab. 38 (2006), no. 4, 1047–1070. MR-2285693
[9] N. Broutin and L. Devroye, Large deviations for the weighted height of an extended class of trees, Algorithmica 46 (2006), no. 3-4, 271–297. MR-2291957
[10] N. Curien and B. Haas, Random trees constructed by aggregation, To appear in the Annales de l’Institut Fourier. Preprint – arXiv:1411.4255.
[11] L. Devroye, Applications of the theory of records in the study of random trees, Acta Inform. 26 (1988), no. 1-2, 123–130. MR-969872
[12] L. Devroye, O. Fawzi, and N. Fraiman, Depth properties of scaled attachment random recursive trees, Random Structures Algorithms 41 (2012), no. 1, 66–98. MR-2943427
[13] T. Duquesne and J. F. Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque (2002), no. 281, vi+147. MR-MR1954248
[14] C. Goldschmidt and B. Haas, A line-breaking construction of the stable trees, Electron. J. Probab. 20 (2015), no. 16, 1–24.
[15] J. F. Le Gall and Y. Le Jan, Branching processes in Lévy processes: the exploration process, Ann. Probab. 26 (1998), no. 1, 213–252. MR-1617047
Asymptotics of heights in random trees constructed by aggregation

[16] H. M. Mahmoud, *Limiting distributions for path lengths in recursive trees*, Probab. Engrg. Inform. Sci. 5 (1991), no. 1, 53–59. MR-1183165

[17] B. Pittel, *Note on the heights of random recursive trees and random m-ary search trees*, Random Structures Algorithms 5 (1994), no. 2, 337–347. MR-1262983

[18] F. Rembart and M. Winkel, *Recursive construction of continuum random trees*, Preprint – arXiv:1607.05323.

[19] N. Ross and Y. Wen, *Scaling limits for some random trees constructed inhomogeneously*, Preprint – arXiv:1611.01306.

[20] D. Sénizergues, *Random gluing of metric spaces*, In preparation.

Acknowledgments. I warmly thank Louigi Addario-Berry for pointing out the reference [9]. This work is partially supported by the ANR GRAAL ANR–14–CE25–0014.
Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS\(^1\))
- Easy interface (EJMS\(^2\))

Economical model of EJP-ECP

- Non profit, sponsored by IMS\(^3\), BS\(^4\), ProjectEuclid\(^5\)
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund\(^6\) (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

\(^1\)LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
\(^2\)EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
\(^3\)IMS: Institute of Mathematical Statistics http://www.imstat.org/
\(^4\)BS: Bernoulli Society http://www.bernoulli-society.org/
\(^5\)Project Euclid: https://projecteuclid.org/
\(^6\)IMS Open Access Fund: http://www.imstat.org/publications/open.htm