The Mediator CDK8-Cyclin C complex modulates vein patterning in Drosophila by stimulating Mad-dependent transcription

Xiao Li¹, Mengmeng Liu¹, Xingjie Ren², Nicolas Loncle³, Qun Wang¹,⁴, Rajitha-Udakara-Sampath Hemba-Waduge¹, Muriel Boube³, Henri-Marc G. Bourbon³, Jian-Quan Ni², and Jun-Yuan Ji¹,∗

¹ Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, United States of America
² School of Medicine, Tsinghua University, Beijing, China
³ Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
⁴ Current address: Femtera Laboratories LLC., Indianapolis, IN 46202, United States of America

∗ Corresponding author: Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843, Email: ji@medicine.tamhsc.edu; Tel: 979-436-0796; Fax: 979-847-9481.

Running title: Interactions between CDK8-CycC and Dpp signaling
Key words: CDK8, dominant modifiers, Mad, Dpp signaling, Drosophila
Abstract
Dysregulations of CDK8 and its regulatory partner CycC, two subunits of the conserved Mediator complex, have been linked to diverse human diseases such as cancer, thus it is essential to understand the regulatory network mobilizing the CDK8-CycC complex in both normal development and tumorigenesis. To identify upstream regulators or downstream effectors of CDK8, we performed a dominant modifier genetic screen in Drosophila based on the defects in vein patterning caused by specific depletion or overexpression of CDK8 or CycC in wing imaginal discs. We identified 26 genomic loci whose haploinsufficiency can modify these CDK8-specific phenotypes. Further analysis of two deficiency lines and mutant alleles led us to identify interactions between CDK8-CycC and the components of the Decapentaplegic (Dpp, the Drosophila homolog of TGFβ) signaling pathway. We observed that CDK8-CycC positively regulates transcription activated by Mad (Mothers against dpp), the primary transcription factor downstream of the Dpp/TGFβ signaling pathway. CDK8 can directly interact with Mad in vitro through the linker region between the DNA-binding MH1 (Mad homology 1) domain and the carboxy terminal MH2 transactivation domain. Besides CDK8 and CycC, further analyses of other subunits of the Mediator complex have revealed six additional Mediator subunits that are required for Mad-dependent transcription in the wing discs, including Med12, Med13, Med15, Med23, Med24, and Med31. Furthermore, CDK9 and Yorkie also positively regulate Mad-dependent gene expression in vivo. These results suggest that the Mediator complex may coordinate with other transcription cofactors in regulating Mad-dependent transcription during the wing vein patterning in Drosophila.

Significance
CDK8 is a conserved subunit of the transcription cofactor Mediator complex that bridges transcription factors with RNA Polymerase II in eukaryotes. Here we explore the role of CDK8 in Drosophila by performing a dominant modifier genetic screen based on vein patterning defects caused by alteration of CDK8-specific activities. We show that components of the Dpp/TGFβ signaling pathway genetically interact with CDK8; CDK8 positively regulates gene expression activated by Mad, the key transcription factor downstream of Dpp/TGFβ signaling, by directly interacting with the linker region of Mad protein. Given the fundamental roles of
Dpp/TGFβ signaling in regulating development and its misregulation in various diseases, understanding how Mad/Smad interacts the Mediator complex may have broad implications in understanding and treating these diseases.

Introduction
Composed of up to 30 conserved subunits, the transcription cofactor Mediator complex plays critical roles in modulating RNA polymerase II (Pol II)-dependent gene expression by functioning as a molecular bridge linking transcriptional activators and the general transcription machinery in almost all eukaryotes (1-5). Biochemical purification of the human Mediator complexes has revealed the CDK8 (Cyclin-Dependent Kinase 8) module, composed of CDK8 (or its parologue CDK19, also known as CDK8L), Cyclin C (CycC), Med12 (or Med12L), and Med13 (or Med13L), and the small Mediator complex, composed of 26 subunits that are divided into the head, middle, and tail modules (6-9). CDK8 is the only Mediator subunit with enzymatic activities. The CDK8 module (also known as CKM, for CDK8 kinase module) has been proposed to function in two modes: it can reversibly bind with the small Mediator complex to form the large Mediator complex, thereby physically blocking the interaction between the small Mediator complex and the general transcription machinery, notably with RNA Pol II itself; and alternatively, CDK8 can function as a kinase that phosphorylates different substrates, particularly transcriptional activators such as E2F1 (10, 11), Notch-ICD (intracellular domain of Notch) (12), p53 (13), Smad proteins (14, 15), SREBP (sterol regulatory element-binding protein) (16), and STAT1 (signal transducer and activator of transcription 1) (17). These characterized functions of CDK8 highlight fundamental roles of CKM in regulating transcription.

Besides its roles in specific developmental and physiological contexts, the CKM subunits are dysregulated in a variety of human diseases, such as cancers (18-21). For example, CDK8 has been reported to act as an oncoprotein in melanoma and colorectal cancers (22, 23). CDK8 and CDK19 are overexpressed in invasive ductal carcinomas, correlating with shorter relapse-free survival in breast cancer (24). Gain or amplification of CDK8 activity is sufficient to drive tumorigenesis in colorectal and pancreatic cancers in human, as well as skin cancer in fish (14, 22, 25-27). Because of these discoveries, there is a heightened interest in developing drugs
targeting the CDK8 kinase for cancer treatment in recent years (28, 29). However, exactly how CDK8 dysregulation contributes to tumorigenesis remains poorly understood. The key is to reveal the function and regulation of CDK8 activity in different developmental and physiological processes.

The major bottleneck for addressing these critical gaps in our knowledge is the lack of in vivo readouts for CDK8-specific activities in metazoans. We overcame this challenge by generating tissue-specific phenotypes caused by varying CDK8 activities in Drosophila. After validating the specificity of these phenotypes using genetic, molecular, and cell biological approaches, we have performed a dominant modifier genetic screen to identify factors that interact with CDK8 in vivo based on these unique readouts for CDK8-specific activities. From the screen, we identified Dad (Daughters against dpp), encoding an inhibitory Smad in the Dpp (Decapentaplegic)/TGFβ (Transforming Growth Factor β) signaling pathway, as well as additional components of the Dpp signaling pathway, including dpp, tkv (thickveins, encoding the type I receptor for Dpp), Mad (Mothers against dpp) and Medea, encoding the Smad1/5 and Smad4 homologs, respectively, in Drosophila. Consistent to the previous biochemical analyses suggesting that CDK8 can phosphorylate Drosophila Mad or conserved sites in human Smad1 thereby stimulating their transcriptional activities (14, 15, 30), our results suggest that this regulatory mechanism in vivo is conserved in evolution. Furthermore, our analyses have revealed additional Mediator subunits and kinases involved in regulating the Mad/Smad-dependent transcription. These results, together with the previous studies, suggest that concerted recruitment of the Mediator complexes and other cofactors plays a pivotal role in regulating the Mad/Smad-dependent gene expression, a critical process for TGFβ signaling to function in a variety of biological and pathological contexts.

Results

Wing vein patterning phenotypes of altering CDK8 or CycC: To study the function and regulation of CDK8 and CycC in vivo, we have generated transgenic lines to either deplete them by RNA interference (RNAi) or conditionally overexpress the wild-type CDK8 using the Gal4-UAS system (see Materials and Methods for details). Normal Drosophila wings display stereotypical vein patterns, consisting of six longitudinal veins, L1 to L6, and two crossveins, the anterior crossvein and the posterior crossvein (Fig. 1A). Knocking down of CDK8 using the
nubbin-Gal4 line (*nub-Gal4*), which is specifically expressed in the wing pouch area of the wing imaginal discs (31), results in the formation of ectopic veins in the intervein region, especially around L2 and L5 (Fig. 1B). Similar phenotypes were observed with the depletion of CycC (Fig. 1C), or both CDK8 and CycC (Fig. 1D). In contrast, overexpression of wild-type CDK8 (*UAS-Cdk8*+) disrupts the L3 and L4 veins, as well as the crossveins (Fig. 1E), opposite to the phenotypes caused by depleting CDK8, or CycC, or both. However, overexpression of a kinase-dead (KD) CDK8 form (*UAS-Cdk8*KD) using the same approach does not affect the vein patterns (Fig. 1F), suggesting that the effects of CDK8 on vein phenotypes are dependent on the kinase activity of CDK8. These observations show that CDK8 and CycC are involved in regulating the vein patterning in *Drosophila*.

Validation of the depletion or overexpression phenotype specificity: To verify the specificity of these phenotypes, we recombined the *nub-Gal4* line with the CDK8-RNAi, CycC-RNAi, or CDK8-overexpression lines, and then tested whether these vein phenotypes could be dominantly modified by *cdk8*K185, a null allele of *cdk8* (32). As shown in Fig. S1A, reducing CDK8 by half in ‘*cdk8*K185/+’ heterozygous background suppresses the vein defects caused by CDK8 overexpression. However, heterozygosity of *cdk8*K185 does not further enhance the vein phenotype caused by CDK8-RNAi (Fig. S1B), indicating that RNAi of CDK8 may have depleted most of the CDK8 protein pool.

To further validate the specificity of the CDK8-directed phenotypes at the cellular level, we analyzed the protein levels of CDK8 and CycC in wing discs at the third instar wandering stage by immunostaining with CDK8 or CycC specific antibodies. For this, we used the *apterous-Gal4* (*ap-Gal4*) line, which is specifically expressed within the dorsal compartment of the wing discs (Fig. 1G) (33), allowing us to use the ventral compartment of the same discs as the internal control. Normally, both the CDK8 (Fig. 1H) and CycC (Fig. 1I) proteins are uniformly distributed in the nuclei of all wing disc cells. Tissue-specific depletion of CDK8 (Fig. 2J), or CycC (Fig. 2K), or both (Figs. S1C, S1D) using the *ap-Gal4* line led to significantly reduced protein levels for CDK8 or CycC in the dorsal compartment. In contrast, overexpression of either wild-type (Fig. 1L) or kinase-dead (Fig. S1E) CDK8 driven by *ap-Gal4* specifically increased the levels of CDK8 protein in the dorsal compartment. Taken together, these genetic and cell biological analyses validate the specificity of both the antibodies and transgenic lines,
demonstrating that these vein phenotypes are caused by specific gain or reduction of CDK8 activity in vivo.

Identification of deficiency lines that can dominantly modify the vein phenotypes caused by varying CDK8: Based on these CDK8-specific vein phenotypes, we performed a dominant modifier genetic screen to identify gene products that can functionally interact with CDK8 in vivo. This approach has been successfully employed to reveal the regulatory networks for proteins of interest in Drosophila (34). The approach posits that if a protein interacts with CDK8-CycC in vivo in defining the vein patterns, then reducing its level by half may either enhance or suppress the sensitized vein phenotypes caused by specific alteration of the CDK8 activities. Accordingly, we can survey through the fly genome to search for factors that interact with CDK8-CycC by single genetic crosses.

To facilitate this screen approach, we generated three stocks with the following genotypes: “w¹¹¹⁸; nub-Gal4; UAS-Cdk8-RNAi” (designated as “nub>Cdk8-i” for simplicity), “w¹¹¹⁸; nub-Gal4; UAS-CycC-RNAi” (“nub>CycC-i”), and “w¹¹¹⁸; nub-Gal4, UAS-Cdk8⁺/CyO” (“nub>Cdk8⁺⁺”). We then conducted the primary screen by crossing these three lines in parallel with a collection of 490 deficiency (Df) lines (Table S1), which uncovers approximately 98% of the euchromatic genome. The vein patterns of the F1 females were inspected for enhancers and suppressors based on the following criteria: suppressors of the CDK8- or CycC-RNAi phenotypes would display fewer or no ectopic veins (e.g., Figs. 2A, 2C), while enhancers of the CDK8- or CycC-RNAi phenotypes would show extra ectopic veins (e.g., Fig. 2B, 2D). Similarly, the suppressors of the CDK8-overexpression phenotype are expected to have vein patterns similar to those of wild-type wings, particularly the L3/L4 (e.g., Fig. 2E), while enhancers of the CDK8-overexpression phenotype should further disrupt the vein patterns (e.g., Fig. 2F).

From these screens, we identified 57 suppressor and 90 enhancer Df lines for the CDK8-RNAi phenotype, and 62 suppressor and 98 enhancer Df lines for the CycC-RNAi phenotype. In addition, we identified 63 enhancer and 98 suppressor Df lines for the CDK8-overexpression phenotype (Fig. 2G, 2H). The results for all of these Df lines are summarized in Table S1. Of these dominant modifier Df lines, four of them suppressed the CDK8-RNAi and CycC-RNAi phenotypes but enhance the CDK8-overexpression phenotype (Fig. 2G, Table S2), while 22 of them enhance the CDK8-RNAi and CycC-RNAi phenotypes but suppress the CDK8-
overexpression phenotype (Fig. 2H, Table S2). To further validate this genetic approach, we generated a transgenic line that allowed us to deplete both CDK8 and CycC simultaneously (“w^1118; nub-Gal4; UAS-Cdk8-RNAi, CycC-RNAi”, referred to as “nub>Cdk8-i CycC-i”) with nub-Gal4, and observed the identical phenotypes to the ones caused by depleting either Cdk8 or CycC alone (Fig. 1D). With the exception of one Df line, the rest of these 25 Df lines have consistently modified the ectopic vein phenotype caused by depletion of both CDK8 and CycC: four of the Df lines behaved as suppressors and 21 of them as enhancers (Table S2). These results show that the CDK8-specific vein phenotypes are modifiable and can be used to identify factors that functionally interact with CDK8 in vivo.

Identification of Dad as an enhancer of the nub>Cdk8i and nub>CycCi phenotypes but a suppressor of the Cdk8-overexpression phenotype: To identify the specific genes uncovered by these dominant modifier Df lines, we analyzed these 25 genome regions with partial overlapping Df lines (Table S2). Interestingly, two partially overlapping Df lines, Df(3R)BSC748 and Df(3R)Exel6176, enhanced the CDK8-RNAi and CycC-RNAi phenotypes, but suppressed the CDK8-overexpression phenotype (Fig. 3A). The overlapping region uncovers one specific gene, Dad (Daughter against Dpp), encoding the Drosophila homolog of Smad6/7 (Fig. 3A). Thus to test whether Dad is the specific gene that accounts for the modification of the CDK8-specific phenotypes by these two Df lines, we performed similar genetic tests with a mutant allele of Dad, Dad^M104922. Indeed, Dad^M104922 dominantly enhanced the CDK8-RNAi (Fig. 3B), CycC-RNAi (Fig. 3C), or CDK8-RNAi plus CycC-RNAi (Fig. 3D) phenotypes, but suppressed the CDK8-overexpression phenotype (Fig. 3E). These effects on the CDK8-specific vein phenotypes are similar to those observed for Df(3R)BSC748 and Df(3R)Exel6176, suggesting that Dad is the specific gene that genetically interacts with CDK8 in vivo.

Mutants of multiple components of the Dpp signaling pathway genetically interact with CDK8-CycC: The protein Dad functions as an inhibitory Smad in the Dpp/TGFβ signaling pathway, which plays critical roles in regulating cell proliferation and differentiation during the development of metazoans (35-40). During the development of the wing discs, Dpp spreads from the anterior-posterior boundary to the anterior half and posterior halves (35-37). Upon binding of the Dpp ligand to the Tkv-Punt receptor complex on the cell membrane, the TGFβ type II
receptor Punt phosphorylates and activates the type I receptor Tkv. This results in the phosphorylation of Mad by Tkv at its C-terminal SSXS motif, known as the phospho-Mad protein or pMad. Medea, the unique co-Smad protein in Drosophila, associates with pMad in the cytoplasm, and then this heteromeric Smad complex translocates into the nucleus and regulates the expression of its target genes (39, 41-43).

The genetic interactions between CDK8-CycC and Dad prompted us to test whether mutant alleles of other components of the Dpp signaling pathway could also genetically interact with CDK8 and CycC. For this, we crossed multiple mutant alleles of these components with the CDK8-CycC depletion or overexpression lines. As summarized in Fig. 3F, mutants of multiple components of the Dpp signaling pathway could either dominantly enhance or suppress the CDK8-specific vein phenotypes. For example, dppd6, tkv7, Madk00237, and Medea1 all dominantly suppressed the ectopic vein phenotype caused by depletion of CycC, or both CDK8 and CycC; mutant of dppd6 could also suppress the CDK8-RNAi phenotype; however, tkv7, Madk00237, and Medea1 enhance the CDK8-overexpression phenotype (Fig. 3F). Taken together, these genetic interactions suggest that CDK8-CycC may affect vein patterning by modulating Dpp signaling.

CDK8-CycC positively regulates Mad-dependent transcription: Given that CDK8 and CycC are known subunits of the Mediator complex, which serves as a scaffold complex mediating the interactions between the RNA Pol II basal transcription initiation apparatus and a variety of gene-specific transcription activators (3, 7, 44), the most parsimonious model to explain the genetic interactions between Dpp signaling and CDK8-CycC is that the CDK8-CycC complex may directly regulate the transcriptional activity of Mad in the nucleus. To test this model, we analyzed the effects of CDK8-CycC depletion on the expression of spalt (sal), a well-characterized direct target gene of Mad involved in vein differentiation (45-47). Specifically, the expression of sal-lacZ serves as a reporter for the transcriptional activity of Mad, downstream of the Dpp signaling pathway (48).

Because the expression of sal-lacZ is symmetric along the dorsal-ventral boundary of the wing pouch area of the wing discs (Fig. 4A), we tested whether specific depletion of CDK8 or CycC within the dorsal compartment of the wing discs could affect the transcriptional activity of Mad by detecting the transcription level of sal using an anti-β-galactosidase (anti-β-Gal) antibody. For this, we depleted CDK8, CycC, or both, using the ap-Gal4 driver, and then
compared the β-Gal expression between the dorsal and ventral compartments. Depletion of CDK8 (Fig. 4B), CycC (Fig. 4C), or both (Fig. 4D), the dorsal compartment significantly decreased β-Gal expression level at the dorsal compartment compared with the ventral compartment of the same disc. As expected, depleting Dpp (Fig. S2A), Mad (Fig. S2B), or Medea (Fig. S2C) using the same approach reduced the expression of the sal-lacZ reporter in the dorsal compartment. These observations suggest that the CDK8-CycC complex positively regulates Mad-dependent transcription.

Since Mad phosphorylation at its C-terminus (pMad) by the Tkv-Punt receptor complex marks the activation of Mad (Fig. 4E), we tested whether CDK8 affects the pMad level. For this, we depleted CDK8, CycC, or both, with the ap-Gal4 line, and then detected the levels of the activated Mad with an anti-pMad antibody. In the wing pouch area of the control discs, the pMad protein is symmetrically distributed along the dorsal-ventral boundary (Fig. S3A). However, depletion of CDK8-CycC did not affect pMad levels when comparing the dorsal compartment with the ventral compartment (Figs. S3B′-S3D′), suggesting that CDK8-CycC does not affect the phosphorylation of Mad at its carboxy terminus in the cytoplasm. These results support the idea that the CDK8-CycC complex may directly regulate the transcriptional activity of Mad in the nucleus.

Direct interactions between CDK8 and Mad: R-Smads are characterized with a highly conserved amino-terminal MH1 (Mad homology 1) domain that binds to DNA, a C-terminal MH2 (Mad homology 2) domain that harbors the transactivation activity, separated by a serine- and proline-rich linker region (Fig. 4E) (49). It was previously reported that CDK8 and a few other kinases (see below) may directly phosphorylate Smad proteins both in *Drosophila* and mammalian cells (14, 15, 30, 42, 49), but whether and how CDK8 interacts with Smads remains unknown. To determine whether CDK8 directly interacts with Mad, we performed a GST-pulldown assay. As shown in Fig. 4E, purified GST-CDK8 can directly bind with His-tagged full length Mad (Mad-FL, AA1-455) expressed in *E. coli*. We then further mapped the specific domain of Mad that interacts with CDK8 using His-tagged fragments of the Mad protein (see Materials and Methods for details). We have observed that the “Mad-N2” fragment (AA1-230) and the “Mad-C2” fragment (AA151-455), but not the “Mad-N1” fragment (AA1-150) or the “Mad-C1” fragment (AA231-455), can directly interact with CDK8 (Fig. 4E). We validated the
interaction between CDK8 and the linker region using the yeast two-hybrid (Y2H) assay: the “Mad-N2” fragment, but not the “Mad-N1” fragment, as the bait can interact with full length CDK8 as the prey (Fig. 4F). It is not feasible to use this two-hybrid approach test Mad-FL or Mad-C1/C2 fragments as baits, since they auto-activate as the baits; while using full-length CDK8 as the bait is also able to auto-activate (Fig. S4). Taken together, these results suggest that CDK8 interacts directly with part of the linker region of Mad protein (AA151-230). Implications of these physical interactions are further discussed below.

Involvement of additional subunits of the Mediator complex in regulating the Mad/Smad-dependent transcription: Interestingly, Med15/ARC105 subunit of the Mediator complex directly interacts with the transactivation MH2 domain of Smad2/3, thereby mediating the Smad2/3-Smad4-dependent transcription in *Xenopus* (50). Med15 has been previously shown to be required for the transcription of Dpp target genes in *Drosophila* (51). However, whether other Mediator subunits are involved in regulating the Mad/Smad-dependent transcription remains unknown. To address this question, we depleted individual subunits of the Mediator complex with *ap-Gal4* and then analyzed the expression of the *sal-lacZ* reporter. Of the 30 Mediator subunits tested (Fig. 5A), we have observed that depletion of six additional Mediator subunits by *ap-Gal4*, including Med12 (Fig. 5B), Med13 (Fig. 5C), Med15 (Fig. 5D), Med23 (Fig. 5E), Med24 (Fig. 5F), and Med31 (Fig. 5G), significantly reduced the expression of *sal-lacZ* in the dorsal cells compared with the cells in the ventral compartment of the same wing discs, similar to depletion of CDK8 or CycC. These results suggest that these Mediator subunits are required for the Mad-activated gene expression. However, RNAi depletion of the remaining 15 Mediator subunits did not significantly affect *sal-lacZ* expression (Fig. 5A), since β-Gal expression remained symmetric along the dorsal-ventral boundary as exemplified for Med1 (Fig. 5H) and Med25 (Fig. 5I). Furthermore, depleting the remaining Mediator subunits, including Med7 (Fig. 5J), Med8 (Fig. S5A), Med14 (Fig. S5B), Med16 (Fig. S5C), Med17 (Fig. S5D), Med21 (Fig. S5E), and Med22 (Fig. S5F) strongly disrupted the morphology of the wing discs, making it difficult to determine whether these subunits affect *sal* transcription. Taken together, these observations suggest that multiple Mediator subunits, but apparently not all of them, are required for Mad-dependent transcription in *Drosophila*.
CDK9 and Yorkie also positively regulate the Mad/Smad-dependent transcription: Besides CDK8, several other kinases, such as CDK7, CDK9, GSK3 (Glycogen synthase kinase 3), and MAPKs (mitogen-activated protein kinases) such as ERK and ERK2 (extracellular signal-regulated kinases), have been implicated to phosphorylate and regulate the transcriptional activity of Smads (14, 15, 49, 52). The four phosphorylation sites (Ser/Thr residues) within the linker region of Smads appear to be conserved from *Drosophila* to mammals (Fig. 6A). The phosphorylation of Smads within the linker region may facilitate the subsequent binding with transcription co-factors, such as YAP (Yes-associated protein) (14). However, it is still unclear whether all of these kinases regulate the Smads activity in vivo, and with the exception of YAP (Yorkie or Yki, in *Drosophila*), it is also unclear whether these regulatory mechanisms are conserved during evolution.

To validate the relevance of these kinases in regulating Mad-dependent gene expression, we depleted the *Drosophila* orthologs of CDK7, CDK9, Shaggy (Sgg, the GSK3 homolog in *Drosophila*), Rolled and dERK2 (MAPK/ERK homologs in *Drosophila*), in the dorsal compartment of wing discs, and then analyzed the expression of *sal-lacZ* in the wing pouch. For this analysis, we used Yki as a positive control (14). Depletion of either Yki (Fig. 6B) or CDK9 (Fig. 6C) in the dorsal cells significantly reduced the expression of *sal-lacZ* compared to the cells in the ventral compartment of the same discs. These observations suggest that both Yki and CDK9 are required for Mad/Smad-dependent transcription in *Drosophila*, which is consistent to the previous reports (14, 30). However, depletion of CDK7 (Fig. 6D) or *Drosophila* MAPK homologs, either Rolled (Fig. 6E) or dERK2 (Fig. 6F), did not affect the expression of *sal-lacZ*. Although depletion of Sgg increased the size of the dorsal compartment, the intensity of anti-β-Gal staining remained similar to the ventral compartment (Fig. 6G). Together with the previous reports (14, 49), our in vivo analyses suggest that the roles of CDK8, CDK9, and Yki/YAP on the Mad/Smad-dependent transcription are conserved between mammals and *Drosophila*.

Discussion

To study the function and regulation of CDK8 in vivo, we have developed a genetic system that yields robust readouts for the CDK8-specific activities in developing *Drosophila* wings. These genetic tools provide a unique opportunity to perform a dominant modifier genetic screen, which
allow us to identify multiple components of the Dpp signaling pathway that can genetically interact with CDK8 and CycC in vivo. Our subsequent genetic and cellular analyses reveal that CDK8, CycC, and six additional subunits of the Mediator complex, as well as CDK9 and Yki are required for the Mad-dependent transcription in the wing imaginal discs. In addition, CDK8 can directly interact with the linker region of Mad. These results have extended the previous biochemical and molecular analyses on how different kinases and transcription cofactors modulate the Mad/Smad-activated gene expression in the nucleus. Further mapping of specific genes uncovered by other deficiency lines may also open up the new directions to advance our understanding about the conserved functions of CDK8-CycC during development.

Multiple subunits of the Mediator complex are required for Mad/Smad-dependent transcription: The Mediator complexes function as scaffolds physically bridging gene-specific transcription factors to the RNA Pol II general transcription apparatus, and diverse transactivators have been shown to interact directly with distinct Mediator subunits (4, 6-9, 53). However, it is unclear whether all Mediator subunits are required by different transactivators to regulate gene expression, or whether Mediator complexes composed of fewer and different combinations of Mediator subunits exist in differentiated tissues or developmental stages. Gene-specific combinations of the Mediator subunits may be required in different transcription processes, as not all Mediator subunits are simultaneously required for all transactivation process (54). For example, ELK1 target gene transcription requires Med23, but lacking Med23 does not functionally affect some other ETS transcription factors, e.g. Ets1 and Ets2 (55). Similarly, Med15 is required for the expression of Dpp target genes, but does not appear to affect the expression of EGFR and Wg targets in *Drosophila* (51).

It has been previously reported that the Med15 subunit is required for the Smad2/3-Smad4 dependent transcription, as its removal from the Mediator complex abolishes the expression of Smad-target genes and disrupts Smad2/3-regulated dorsal-ventral axis formation in *Xenopus* embryos (50). Further biochemical analyses showed that increased Med15 enhances, while its depletion decreases, the transcription of Smad2/3 target genes, and that the Med15 subunit can directly bind to the MH2 domain of Smad2 or Smad3 (50). In *Drosophila*, loss or reduction of Med15 reduced the expression of Dpp targets, resulting in smaller wings and disrupted vein patterning (mainly L2) (51). We also observed that depletion of Med15 or CDK8
reduces the expression of a Mad-target gene. These observations support the idea that CDK8 and Med15 play a conserved and positive role in regulating Mad/Smad-activated gene expression.

Aside from Med15 and CDK8, it remained unclear whether other Mediator subunits are also involved in Mad/Smad-dependent transcription. We identified six additional Mediator subunits that are required for the Mad-dependent transcription, including CycC, Med12, Med13, Med23, Med24, and Med31 (Fig. 5A). Interestingly, except Med15, counterparts of the other seven subunits are not essential for cell viability in the budding yeast (5). The similar effects of the four CKM subunits on Mad-activity suggest that they may function together to stimulate the Mad-dependent transcription. We note that depletion of seven Mediator subunits, e.g. Med7, Med8, Med14, Med16, Med17, Med21, and Med22, severely disrupted the morphology of the wing discs (Fig. 5A), making it difficult to assay their effects on the transcriptional activity of Mad in vivo. Except Med16, all corresponding subunits are critical for cell viability in the budding yeast (5). In contrast, reducing expression of the 15 remaining subunits of the Drosophila Mediator complex did not significantly alter the expression of a Mad-dependent reporter (Table S3). Med1 and Med25 are loosely associated to the small Mediator complex in human cell lines (5). A caveat for these negative results is that the RNAi lines may not be effective enough to affect sal-lacZ expression, even though the transgenic RNAi lines for majority of these subunits can generate phenotypes in the eye, wing or both (Table S3). Therefore, these results indicate that not all Mediator subunits are required for the Mad-dependent gene expression in the developing wing discs.

Role of Yki/YAP and different kinases in regulating Mad/Smad-dependent transcription:
Interestingly, Yki/YAP, which can function as a transcriptional co-factor for Mad/Smad, was also reported to associate with several subunits of the Mediator complex to drive transcription. For example, Med12, Med14, Med23, and Med24 were identified from a YAP IP-mass spectrometry sample from HuCCT1 cells (56). Med23 was also reported to regulate Yki-dependent transcription of Diap1 in the Drosophila wing discs (57). In this work, we found that Yki, Med12, Med23, and Med24 were also required for the Mad-dependent transcription of sal-lacZ. Although the exact molecular mechanisms of how Yki interacts with certain Mediator subunits remain unclear, it is plausible that Yki may further strengthen the binding between Mad and Med15 through interactions with other subunits such as Med12, Med23, and Med24.
Based on biochemical analyses of the Smad1 phosphomutants and cell biological analyses using cultured human epidermal keratinocytes (HaCaT cells), several kinases including CDK8, CDK9, and ERK2 were shown to phosphorylate serine residues (S) within the linker region of pSmad1 at S186, S195, S206, and S214, or the equivalent sites in pSmad2/3/5. These modifications were proposed to positively regulate the Smad1-dependent transcriptional activity (14). Of these sites, S206 and S214 are both conserved from Drosophila to humans (Fig. S6). In addition, studies using Xenopus embryos and cultured L cells suggest that MAPKs may phosphorylate the linker region of Smad1 (including S214) and lead to its degradation (52).

Nevertheless, analyses with Drosophila embryos or wing discs indicate that S212 (equivalent to human pSmad1 S214) is phosphorylated by CDK8, and S204 (unique in Drosophila) or S208 (equivalent to human pSmad1 S210) are phosphorylated by Sgg/GSK3 (15). These studies suggest the following model to explain how Smads activate the expression of their target genes and how this process is turned off (Figs. 6A, 6H): after Smads are phosphorylated at their C-termini and translocate into the nucleus, CDK8 and CDK9 (potentially alsoMAPKs) act as the priming kinases to further phosphorylate pSmads in the linker region at S206 and S214, which may facilitate the interaction between pSmads and transcription cofactors such as YAP, thereby stimulating the expression of Smads target genes. Subsequently, pSmads are further phosphorylated by GSK3 within the linker region at T202 and S210, which may facilitate Smad1/5 binding to E3 ligases such as Smurf1 and Nedd4L, thereby causing the degradation of Smads through the ubiquitin-proteasome pathway (14, 15, 30, 42, 49).

This model explains how the transactivation of Smads is coupled to its degradation, similar to other transcriptional activators (58). However, it is rather challenging to determine whether these kinases act redundantly or specifically for different phosphorylation sites, the exact orders of these phosphorylation events, as well as their biological consequences in vivo. Moreover, it remains unexplored whether these regulatory mechanisms are conserved during evolution. The importance of these issues is highlighted by the critical roles of TGFβ signaling in regulating the normal development of metazoans and the dysregulation of this pathway in a wide variety of human diseases such as cancers (40, 59, 60).

The precise spatiotemporal activation of the Dpp signaling pathway in the wings discs is critical for proper formation of the stereotypical vein patterns in Drosophila (45). This model system provides an ideal opportunity to dissect the dynamic regulation of the Mad-activated gene
expression in the nucleus. Indeed, depleting CDK8 in wing discs reduces the expression of the Mad-dependent sal-lacZ reporter, suggesting that CDK8 positively regulates Mad-dependent transcription, which is consistent to the effects of CDK8 on Smad1/5-dependent transcription in mammals (14, 61). Depleting CDK8 does not affect the phosphorylation of Mad at its C-terminus as revealed by pMad immunostaining (Fig. S3), as well as the physical interaction between CDK8 and the linker region of Mad, supporting the idea that CDK8 may only affect the subsequent phosphorylation of Mad.

Besides CDK8, depleting CDK9 also decreased the expression of the sal-lacZ reporter, supporting the notion that CDK8 and CDK9 may play non-redundant roles in further phosphorylating pMad in the nucleus. However, we did not observe any effects of depletion of MAPKs on sal-lacZ expression, suggesting that their role in regulating the transcriptional activity of Smads may not be conserved in Drosophila. Alternatively, the two MAPK/ERK homologs, Rolled and ERK2, may act redundantly in regulating Mad-dependent transcription. Lastly, depleting Sgg/GSK3 in the dorsal compartment of the wing disc increases the size of this compartment, yet the expression level of the sal-lacZ reporter is similar to the ventral compartment. These observations are consistent to the previously report that phosphorylation of Mad in the linker regions by CDK8 and Sgg/GSK3 regulate the level and range of Mad-dependent gene expression (14, 15, 30, 42, 49).

Together with the previous reports (14, 15, 30, 42, 49, 62), our data support that CDK8 or CDK9 may phosphorylate pMad at the linker region, which may facilitate the binding between Yki and Mad. We speculate that this interaction may synergize the recruitment of the Mediator complex, presumably through at least the interaction between its Med15 subunit and the MH2 domain of Mad. Alternatively, Yki may also facilitate the recruitment of the whole Mediator complex through its interactions with Med12, Med23, and Med24. The synergistic interactions among Mad, Yki, the Mediator complex, and RNA Pol II may be required for the optimal transcriptional activation of the Mad-target genes (Fig. 6H).

One of the important future challenges is to illuminate the dynamic interactions between these factors and diverse protein complexes that couple the transactivation effects of Mad/Smads on gene transcription with their subsequent degradation at the molecular level. Smad3 phosphorylation strongly correlates with Med15 levels in breast and lung cancer tissues, together they potentiate metastasis of breast cancer cells (63). Thus it will be important to test whether
similar effects of the additional Mediator subunits that we identified here can be observed in mammalian cells. It will also be interesting to determine whether a partial Mediator complex, composed of a few Mediator subunits, exists and regulates Mad/Smad-dependent gene expression in the future. Furthermore, detailed biochemical analyses may yield mechanistic insights into how CDK8 and Med15 act in concert in stimulating the Mad/Smad-dependent gene expression.

Identification of novel genomic loci that genetically interact with CDK8 in vivo: To understand how dysregulated CDK8 contributes to a variety of human cancers, it is essential to elucidate the function and regulation of CDK8 in vivo. Given that CDK8-CycC and other subunits of the Mediator complex are conserved in almost all eukaryotes (5), Drosophila serves as an ideal model system to identify both the upstream regulators and the downstream effectors of CDK8 in vivo. Our dominant modifier genetic screen is based on the vein phenotypes caused by specific alteration of CDK8 activity in the developing wing disc, which serves as a unique in vivo readout for the CDK8-specific activities in metazoans. This screen led us to identify 26 genomic regions that include genes whose haplo-insufficiency can consistently modify CDK8-CycC depletion or CDK8-overexpression phenotypes. Identification of Dad and genes encoding additional components of the Dpp signaling pathway provides a proof of principle for this approach. Since each of the chromosomal deficiencies uncovers multiple genes, further mapping of the relevant genome regions is expected to identify the specific genetic loci encoding factors that may function either upstream or downstream of CDK8 in vivo. Further analyses of the underlying molecular mechanisms in both Drosophila and mammalian systems will advance our understanding of how dysregulation of CDK8 contributes to human diseases, and may also aid the development of novel therapeutic approaches.

Materials and Methods:
Fly strains. Flies were raised on standard cornmeal, molasses and yeast medium, and all genetic crosses were maintained at 25°C. The $UAS-Cdk8^+$ and $UAS-Cdk8^{KD}$ lines were generated using
the pUAST vector (32). The construct allowing conditional expression of a kinase-dead CDK8 form (D173A; (64)) was generated through site-specific mutagenesis by double PCR, using the overlap extension method. The UAS-Cdk8-RNAi, UAS-CycC-RNAi, and UAS-Cdk8-RNAi CycC-RNAi line was generated using the pVALIUM20 vector (65).

We obtained the following strains from the Bloomington Drosophila Stock Center: nub-Gal4 (BL-25754), ap-Gal4 (BL-3041), UAS-CDK7-RNAi (BL-57245), UAS-Cdk8-RNAi (BL-67010), UAS-CDK9-RNAi (BL-34982), UAS-CycC-RNAi (BL-33753), UAS-dpp-RNAi (BL-33618), UAS-2xEgfp (BL-6874), UAS-erk-RNAi (BL-34744), UAS-mad-RNAi (BL-43183), UAS-medea-RNAi (BL-43961), UAS-rl-RNAi (BL-34855), sal-lacZ (BL-11340), UAS-sgg-RNAi (BL-38293), and UAS-yki-RNAi (BL-34067). In addition, we tested the following mutant alleles of the Dpp signaling pathway: dpp^{66}/CyO (BL-2062), tkv^{7}/CyO (BL-3242), Mad^{k00237}/CyO (BL-14578), Medea^{1}/TM3 (BL-9033), and Dad^{M104922}/TM3 (BL-37913).

The following RNAi stocks, generated by the Drosophila TRiP project (65), were used to deplete the subunits of the Mediator complex: UAS-Med1-RNAi (BL-34662), UAS-Med4-RNAi (BL-34697), UAS-Med6-RNAi (BL-33743), UAS-Med7-RNAi (BL-34663), UAS-Med8-RNAi (BL-34926), UAS-Med9-RNAi (BL-33678), UAS-Med10-RNAi (BL-34031), UAS-Med11-RNAi (BL-34083), UAS-Med12-RNAi (BL-34588), UAS-Med13-RNAi (BL-34630), UAS-Med14-RNAi (BL-34575), UAS-Med15-RNAi (BL-32517), UAS-Med16-RNAi (BL-34012), UAS-Med17-RNAi (BL-34664), UAS-Med18-RNAi (BL-42634), UAS-Med19-RNAi (BL-33710), UAS-Med20-RNAi (BL-34577), UAS-Med21-RNAi (BL-34731), UAS-Med22-RNAi (BL-34573), UAS-Med23-RNAi (BL-34658), UAS-Med24-RNAi (BL-33755), UAS-Med25-RNAi (BL-42501), UAS-Med26-RNAi (BL-28572), UAS-Med27-RNAi (BL-34576), UAS-Med28-RNAi (BL-32459), UAS-Med29-RNAi (BL-57259), UAS-Med30-RNAi (BL-36711), and UAS-Med31-RNAi (BL-34574).

To facilitate the dominant modifier genetic screen and the subsequent analyses, we generated the following strains using the standard Drosophila genetics: "w^{1118}; nub-Gal4>UAS-Cdk8^{+/CyO}" (i.e., "nub>Cdk8^{+/CyO}" line), "w^{1118}; nub-Gal4; UAS-Cdk8-RNAi" (i.e., "nub>Cdk8-i" line), "w^{1118}; nub-Gal4; UAS-CycC-RNAi" (i.e., "nub>CycC-i" line), "w^{1118}; nub-Gal4; UAS-Cdk8-RNAi CycC-RNAi" (i.e., "nub>Cdk8-i CycC-i" line), and "w^{1118}; ap-Gal4, sal-lacZ/T(2;3)". All deficiency (Df) lines, listed in Table S1 and Table S2, were obtained from the Bloomington Drosophila stock center.
For the Df lines in the X chromosome, we crossed Df female virgins with males of with the “nub>Cdk8+CyO”, “nub>Cdk8-”, “nub>CycC-”, or “nub>Cdk8-i CycC-i” stocks. For the Df lines in the second and third chromosomes, the Df males were crossed with female virgins of the aforedescribed stocks carrying the CDK8-specific phenotypes. The control crosses were performed using w1118 males or female virgins. For all these crosses, the wing vein patterns in all F1 females without any balancer chromosomes were inspected under dissecting microscopes for potential dominant modifications. For example, we crossed Df(1)BSC531, w1118/FM7h female virgins with “w1118/Y; nub>Cdk8+/CyO” males, and then scored F1 females with the following genotype: “Df(1)BSC531, w1118/w1118; nub>Cdk8+/+”. Similarly, we crossed “w1118; nub-Gal4; UAS-Cdk8-RNAi” female virgins with “Df(2R)Exel6064/CyO” males, and then scored F1 females with the following genotype: “w1118/+; nub-Gal4/Df(2R)Exel6064; UAS-Cdk8-RNAi/+”.

Adult Drosophila wing imaging. The wings from adult females were dissected onto slides, briefly washed using isopropanol, and then mounted in 50% Canada balsam in isopropanol. Images were taken under 5X objective of a microscope (Leica DM2500) and then processed by Adobe Photoshop CS6 software.

Immunocytochemistry. Wing discs from third instar larvae at the late wandering stage were dissected and fixed in 5% formaldehyde at room temperature for 30 minutes. After rinsing with PBS-Triton X-100 (0.2%), the samples were blocked in PBS-Triton X-100-NGS-BSA (PBS+0.2% Triton X-100+5% Normal Goat Serum+0.2% Bovine Serum Albumin) at room temperature for one hour. For immunostaining of CDK8 and CycC, we used an anti-dCDK8 (1:2000) antibody and an anti-dCycC (1:2000), both generated in guinea pigs (66), and diluted in PBS-Triton X-100-NGS-BSA. The expression of the lacZ reporter expression was detected using an anti-β-galactosidase monoclonal antibody (1:50 in PBS-Triton X-100-NGS-BSA; obtained from the Developmental Studies Hybridoma Bank, DSHB-40-1a-s). C-terminal phosphorylated Mad (equivalent sites to hSmad3 S423+S425) was detected by anti-pSmad3 (1:500 in PBS-Triton X-100-NGS-BSA; purchased from Abcam, ab118825). Wing discs were incubated with these primary antibodies overnight at 4°C on a rotator. After rinsing with PBS-Triton X-100, the discs were then incubated with the fluorophore conjugated secondary antibodies: goat anti-guinea pig (106-545-003), goat anti-mouse (115-545-003), or goat anti-rabbit (111-545-003), all purchased from Jackson Immunological Laboratories. These secondary antibodies were diluted 1:1000 in PBS-Triton X-100-NGS-BSA, and incubated with the samples for one hour at the
All samples were then stained with 1 µM DAPI at room temperature for 10 minutes, rinsed for another two times with PBS-Triton X-100 and mounted in the Vectashield mounting media (Vector Laboratories, H-1000). Confocal images were taken with a Nikon Ti Eclipse microscope system, and images were processed using the Adobe Photoshop CS6 software.

GST-pull down assay. Full-length CDK8 fused with a N-terminal GST tag was described previously (32). The primers mad-5.1 (F: 5’-caccATGGACACCGACGATGTGGA-3’) and mad-3.3 (F: 5’-ctaTTAGGATAACCGAACTAATTG-3’) were used for full-length Mad (AA1-455), mad-5.1 and mad-3.1 (F: 5’-ctaCGGGAGCACCGGACTCTCCA-3’) were used for “Mad-N1” fragment (AA1-150) that contains MH1 domain (AA10-133), mad-5.1 and mad-3.2 (F: 5’-ctaATCCTCCGAGGGACTGTAGG-3’) were used for the “Mad-N2” fragment (AA1-230) that contains the MH1 domain and part of the linker region, mad-5.2 (F: 5’-caccatGAGGACTGTAGG-3’) and mad-3.3 were used for the “Mad-C2” fragment (AA151-455) that contains the MH2 domain (AA255-455) and part of the linker region, and mad-5.3 (F: 5’-caccatGGCAACTCCCAACCGAA-3’) and mad-3.3 were for the “Mad-C1” fragment (AA231-455) that contains the MH2 domain. These coding sequences were amplified from a cDNA clone for mad gene (LD12679) using PrimeStar Max premix (Takara, R045A). The amplified products were inserted into pENTR vectors (ThermoFisher, K240020) and recombined into the pDEST17 vector (N-terminal 6XHis tag) using the Gateway LR Clonase II Enzyme mix (ThermoFisher, 11791100) in E. coli strain DH5α. The constructs were transformed to E. coli strain Rosetta for protein expression using standard protocols.

GST or GST-CDK8 was purified with Glutathione Sepharose 4B (GE Healthcare, 17-0756-01) beads with standard purification protocol. After final wash, the buffer was replaced by pull down buffer (20mM Tris-HCl pH 7.5, 10mM MgCl₂, 100mM NaCl, 1mM DTT, 0.1% NP-40). His-tagged Mad fragments were extracted in pull-down buffer by sonication. 500µL GST or GST-CDK8 coated beads was mixed with equal volume of Mad fragments cell lysate and incubated at 4°C for 3 hours, and these samples were then washed with 1mL pull-down buffer at 4°C, 1 minute for 5 times. The interaction was detected by Western Blot with the primary antibody, anti-His (1:3000; Sigma, H1029) and the secondary antibody, anti-mouse (1:2000; Jackson Immunological Laboratories, 115-035-174).
Yeast two-hybrid assay. Full-length CDK8 was amplified from pBS-CDK8 cDNA clone using primers CDK8-5.1 (F: 5’-caccATGGACTACG ATTTCAAGAT-3’) and CDK8-3.1 (F: 5’-TCAGTTGAAGCGCTGGAAGT-3’), and inserted into pENTR vector. We then used the Gateway LR Clonase II Enzyme mix to recombined CDK8 cDNA into the pGADT7-GW (prey) vector, a gift from Yuhai Cui (Addgene plasmid # 61702) (67). The linker region of Mad was amplified with mad-5.2 and mad-3.2 primers from a mad cDNA clone (LD12679) using PrimeStar Max premix, and then inserted into pENTR vector. All pENTR Mad fragments were recombined into the pGBKT7-GW (bait) vector, a gift from Yuhai Cui (Addgene plasmid # 61703) (67), using the Gateway LR Clonase II Enzyme mix. The yeast two-hybrid assay was performed using AH109 yeast strain as described previously (67).

Figure legends:

Fig. 1 Wing vein patterning phenotypes caused by depletion or overexpression of CDK8 or CycC. Adult female wings of (A) nub-Gal4/+ (control), note the longitudinal veins L1-L6, anterior crossvein (ACV), and posterior crossvein (PCV); (B) w^{1118}/+; nub-Gal4/+; UAS-Cdk8-RNAi/+; (C) w^{1118}/+; nub-Gal4/+; UAS-CycC-RNAi/+; (D) w^{1118}/+; nub-Gal4/+; UAS-Cdk8-RNAi CycC-RNAi/+; (E) w^{1118}/+; nub-Gal4>UAS-Cdk8^{+}/+; and (F) w^{1118}/+; nub-Gal4/UAS-Cdk8^{KD} under a 5X objective microscope. Confocal images of the wing pouch area of a L3 wandering larvae wing disc of (G) ap-Gal4/UAS-2XGFP with DAPI (blue) and GFP (green); (H) ap-Gal4/+ with anti-CDK8 (red) staining; (I) ap-Gal4/+ with anti-CycC (red) staining; (J) ap-Gal4/+; UAS-Cdk8-RNAi/+ with anti-CDK8 (red) staining; (K) ap-Gal4/+; UAS-CycC-RNAi/+ with anti-CycC (red) staining; and (L) ap-Gal4/UAS-Cdk8^{+} with anti-CDK8 (red) staining. Note that the gain for confocal imaging in overexpression figures is lower than others to avoid over saturation of the signals. The dorsal/ventral boundary is shown in G. Scale bar in A (for A-F: 0.4mm), in L (for G-L): 25µm.

Fig. 2 Identification of deficiency lines that can dominantly modify the vein phenotypes caused by altering CDK8 levels. Adult female wings of (A) nub-Gal4/Df(2R)Exel6064; UAS-Cdk8-RNAi, an example of the CDK8 depletion phenotype suppressor lines; (B) nub-Gal4/+; UAS-Cdk8-RNAi/ Df(3R)Exel6176, an example of the CDK8 depletion phenotype enhancer.
lines; (C) nub-Gal4/Df(2R)Exel6064; UAS-CycC-RNAi/+; an example of the CycC depletion phenotype suppressor lines; (D) nub-Gal4/+; UAS-CycC-RNAi/Df(3R)Exel6176, an example of the CycC depletion phenotype enhancer lines; (E) nub-Gal4>UAS-Cdk8+/+; Df(3R)Exel6176/+, an example of the overexpression phenotypes suppressor lines; and (F) nub-Gal4>UAS-Cdk8+/Df(2R)Exel6064, an example of the overexpression phenotypes enhancer lines. Scale bar in F: 0.4mm. (G and H) The number of suppressors and enhancers of the Cdk8-CycC phenotypes as summarized using the Venn diagrams.

Fig. 3 Identification of Dad as an enhancer of the nub>Cdk8i and nub>CycCi phenotypes but a suppressor of Cdk8-overexpression phenotype. (A) Genome region schematic diagram of Df(3R)BSC748 and Df(3R)Exel6176 uncovering the same gene, dad. Adult female wings of (B) nub-Gal4/+; UAS-Cdk8-RNAi/Dad^{Mli04922}, (C) nub-Gal4/+; UAS-CycC-RNAi/Dad^{Mli04922}, (D) nub-Gal4/+; UAS-Cdk8-RNAi CycC-RNAi/Dad^{Mli04922}; and (E) nub-Gal4>UAS-Cdk8⁺/+; Dad^{Mli04922}/+. Scale bar in B: 0.4mm. (F) Summary of genetic interactions between CDK8-CycC and components of the Dpp signaling pathway.

Fig. 4 CDK8-CycC may positively regulate Mad/Smad-dependent transcription. Confocal images of the wing pouch area of a L3 wondering larvae wing disc of (A) ap-Gal4, sal-lacZ/+ (control); (B) ap-Gal4, sal-lacZ/+; UAS-Cdk8-i/+; (C) ap-Gal4, sal-lacZ/+; UAS-CycC-i/+; and (D) ap-Gal4, sal-lacZ/+; UAS-Cdk8-i CycC-i/+ . All signals presented were from anti-β-galactosidase staining. Scale bar in D: 25µm. (E) Western Blots of a GST pulldown assay between GST-CDK8 and His-tagged Mad fragments. The amino acids positions of MH1 (Mad homology domain 1) and MH2 (Mad homology domain 2), separated by the linker region, are based on BLAST search of Drosophila Mad-RA isoform (455AA). The other isoform, Mad-RB (525AA), has additional 70AA at the N-terminus. We focused on the Mad-RA isoform in this work. (F) Yeast two-hybrid assay showing the specific interaction between CDK8 and the linker region of Mad. SD/-Leu/-Trp and SD/-Leu/-Trp/-His are dropout media lacking “Leu and Trp”, or “Leu, Trp, and His”, respectively. The con-transformed yeast cultures were spotted on SD/-Leu/-Trp and SD/-Leu/-Trp/-His plates, positive interactions results in yeast growth on the SD/-Leu/-Trp/-His plate. AD, GAL4-activation domain (prey); BD, GAL4-DNA-binding domain (bait); AD- or BD-protein, AD- or BD-fusion proteins.
Fig. 5 Involvement of additional Mediator subunits in regulating Mad/Smad-dependent transcription. (A) Summary of effects on sal transcription and morphology of wing and eye by tissue-specific depleting individual subunits of the Mediator complex: depleting eight of them decreased sal expression, while depleting seven of them disrupted the morphology of wing discs. NE: no effects; ND: not determined. Confocal images of anti-β-Gal staining of wing discs of the following genotypes: (B) ap-Gal4, sal-lacZ/+; UAS-Med12 RNAi/+; (C) ap-Gal4, sal-lacZ/+; UAS-Med13 RNAi/+; (D) ap-Gal4, sal-lacZ/+; UAS-Med15 RNAi/+; (E) ap-Gal4, sal-lacZ/+; UAS-Med23 RNAi/+; (F) ap-Gal4, sal-lacZ/+; UAS-Med24 RNAi/+; (G) in ap-Gal4, sal-lacZ/+; UAS-Med25 RNAi; and (J) ap-Gal4, sal-lacZ/+; UAS-Med7 RNAi/. Scale bar in D: 25µm.

Fig. 6 CDK9 and Yorkie also positively regulate Mad/Smad-dependent transcription. (A) Model: linker region of pMad may be phosphorylated by CDK8, CDK9, or MAPKs as priming kinase recruiting Yki/YAP binding to pMad to drive target gene, such as sal transcription; and further phosphorylation by Sgg/GSK3 at the linker region may switch the binding to dSmuf1 and causes pMad degradation. Anti-β-Gal staining of wing discs of the following genotypes: (B) ap-Gal4, sal-lacZ/+; UAS-yki RNAi/+; (C) ap-Gal4, sal-lacZ/UAS-Cdk9 RNAi; (D) ap-Gal4, sal-lacZ/UAS-Cdk7 RNAi; (E) ap-Gal4, sal-lacZ/+; UAS-rl RNAi/+; (F) ap-Gal4, sal-lacZ/+; UAS-ERK2 RNAi/+; and (G) ap-Gal4, sal-lacZ/UAS-sgg RNAi. Scale bar in G: 25µm. (I) Model of Mad/Smad-dependent transcription activation through the CDK8 module and the Mediator complex. (GTFs: General Transcription Factors)

Fig. S1 Further validation of CDK8-specific phenotypes. Adult female wings of the following genotypes: (A) w^{1118}+/; nub-Gal4>UAS-Cdk8^{+}/+; cdk8^{K185}+/+; and (B) w^{1118}+/; nub-Gal4+/; UAS-Cdk8-RNAi CycC-RNAi/cdk8^{K185}. Confocal images of the wing pouch area of a L3 wandering larvae wing disc of (C) ap-Gal4+/; UAS-Cdk8-RNAi, CycC-RNAi/+ with anti-CDK8 (red) staining, (D) ap-Gal4+/+; UAS-Cdk8-RNAi, CycC-RNAi/+ with anti-CycC (red) staining and (E) ap-Gal4/UAS-Cdk8^{KD} with anti-CDK8 (red) staining. Note that the gain in overexpression figures is lower than others, otherwise the signal will be over saturated. Scale bar in A (for A-B: 0.4mm), in E (for C-E): 25µm.
Fig. S2 Validation of the sal-lacZ reporter. Confocal images of anti-β-Gal stainings of the wing pouch area of wing discs of the following genotypes: (A) ap-Gal4, sal-lacZ/+; UAS-dpp-RNAi/+; (B) ap-Gal4, sal-lacZ/UAS-Mad-RNAi; +; and (C) ap-Gal4, sal-lacZ/UAS-Medea-RNAi; +. Scale bar in C: 25µm.

Fig. S3 Depletion of CDK8 or CycC did not affect p-Mad level. Confocal images of anti-p-Mad staining of wing discs from the following genotypes: (A) ap-Gal4, sal-lacZ/+ (control); (B) ap-Gal4, sal-lacZ/+; UAS-Cdk8-i/+; (C) ap-Gal4, sal-lacZ/+; UAS-CycC-i; and (D) ap-Gal4, sal-lacZ/+; UAS-Cdk8-i CycC-i. Scale bar in D: 25µm.

Fig. S4 Additional results from the yeast two hybrid assay. Full-length (FL) Mad or CDK8 proteins as the bait, or Mad-C2 fragment as the prey, are able to auto-activate in this assay. Refer the figure legend in Fig. 4 and the Materials and Methods for more details.

Fig. S5 Depletion of certain Mediator subunits strongly disrupted wing disc morphology. Confocal images of anti-β-Gal staining of wing discs of the following genotypes: (A) ap-Gal4, sal-lacZ/+; UAS-Med8 RNAi/+; (B) ap-Gal4, sal-lacZ/+; UAS-Med14 RNAi/+; (C) ap-Gal4, sal-lacZ/+; UAS-Med16 RNAi/+; (D) ap-Gal4, sal-lacZ/+; UAS-Med17 RNAi/+; (E) ap-Gal4, sal-lacZ/+; UAS-Med21 RNAi/+; and (F) in ap-Gal4, sal-lacZ/+; UAS-Med22 RNAi. Scale bar in F: 25µm.

**Fig. S6 Sequence alignment of part of the Mad/Smad1 linker region showing the conservation of the potential phosphorylation sites by CDKs, MAPks, and GSK3.

Table S1. Results of 490 deficiency (Df) lines tested for potential dominant modification of vein phenotypes caused by altered levels of CDK8 or CycC.
Table S2. Specific Df lines that interact with CDK8-CycC.

Table S3. Mediator subunits that do not affect Mad-dependent sal-lacZ expression. Note that when depleted using either nub-Gal4 or ey-Gal4 line, 10 of them generated phenotypes in wing, eye, or both; while the other five are uncertain.

Acknowledgements: We are grateful to Lauren Bridges, Christine Hermann, and Suzie Park for their technical assistance with the genetic screen, Liz Perkins for the TRiP lines, and the Bloomington Drosophila Stock Center (NIH P40OD018537) for the fly strains. We also thank Xiuren Zhang for advice in the yeast two-hybrid assay, and Laurel Raftery and Fajun Yang for helpful discussions. The monoclonal antibody against β-Gal (DSHB-40-1a-s) was deposited to the Developmental Studies Hybridoma Bank at the University of Iowa by Joshua Sanes. This work was supported by grants from the National Institute of Health (DK095013 to J.Y.J.) and the “Association contre la Cancer” (ARC, to H.M.B.).

References:
1. Boube M, Joulia L, Cribbs DL, & Bourbon HM (2002) Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110(2):143-151.
2. Bourbon HM, et al. (2004) A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Molecular cell 14(5):553-557.
3. Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends in biochemical sciences 30(5):235-239.
4. Soutourina J (2018) Transcription regulation by the Mediator complex. Nature reviews. Molecular cell biology 19(4):262-274.
5. Bourbon HM (2008) Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic acids research 36(12):3993-4008.
6. Conaway RC & Conaway JW (2011) Function and regulation of the Mediator complex. *Curr Opin Genet Dev* 21(2):225-230.

7. Fondell JD (2013) The Mediator complex in thyroid hormone receptor action. *Biochimica et biophysica acta* 1830(7):3867-3875.

8. Poss ZC, Ebmeier CC, & Taatjes DJ (2013) The Mediator complex and transcription regulation. *Critical reviews in biochemistry and molecular biology* 48(6):575-608.

9. Yin JW & Wang G (2014) The Mediator complex: a master coordinator of transcription and cell lineage development. *Development* 141(5):977-987.

10. Morris EJ, et al. (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. *Nature* 455(7212):552-556.

11. Zhao J, Ramos R, & Demma M (2013) CDK8 regulates E2F1 transcriptional activity through S375 phosphorylation. *Oncogene* 32(30):3520-3530.

12. Fryer CJ, White JB, & Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. *Molecular cell* 16(4):509-520.

13. Donner AJ, Szostek S, Hoover JM, & Espinosa JM (2007) CDK8 is a stimulus-specific positive coregulator of p53 target genes. *Molecular cell* 27(1):121-133.

14. Alarcon C, et al. (2009) Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. *Cell* 139(4):757-769.

15. Aleman A, et al. (2014) Mad linker phosphorylations control the intensity and range of the BMP-activity gradient in developing Drosophila tissues. *Scientific reports* 4:6927.

16. Zhao X, et al. (2012) Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. *J Clin Invest* 122(7):2417-2427.

17. Bancerek J, et al. (2013) CDK8 Kinase Phosphorylates Transcription Factor STAT1 to Selectively Regulate the Interferon Response. *Immunity* 38(2):250-262.

18. Clark AD, Oldenbroek M, & Boyer TG (2015) Mediator kinase module and human tumorigenesis. *Critical reviews in biochemistry and molecular biology* 50(5):393-426.

19. Xu W & Ji JY (2011) Dysregulation of CDK8 and Cyclin C in tumorigenesis. *J Genet Genomics* 38(10):439-452.

20. Schiano C, et al. (2014) Involvement of Mediator complex in malignancy. *Biochimica et biophysica acta* 1845(1):66-83.
21. Spaeth JM, Kim NH, & Boyer TG (2011) Mediator and human disease. *Seminars in cell & developmental biology* 22(7):776-787.

22. Firestein R, et al. (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. *Nature* 455(7212):547-551.

23. Kapoor A, et al. (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. *Nature* 468(7327):1105-1109.

24. Broude EV, et al. (2015) Expression of CDK8 and CDK8-interacting Genes as Potential Biomarkers in Breast Cancer. *Curr Cancer Drug Targets* 15(8):739-749.

25. Brewster CD, Birkenheuer CH, Vogt MB, Quackenbush SL, & Rovnak J (2011) The retroviral cyclin of walleye dermal sarcoma virus binds cyclin-dependent kinases 3 and 8. *Virology* 409(2):299-307.

26. Rovnak J & Quackenbush SL (2002) Walleye dermal sarcoma virus cyclin interacts with components of the mediator complex and the RNA polymerase II holoenzyme. *J Virol* 76(16):8031-8039.

27. Xu W, et al. (2015) Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/beta-catenin signaling pathway. *Cancer letters* 356(2 Pt B):613-627.

28. Osherovich L (2008) CDK8 is enough in colorectal cancer *Science-Business eXchange* 1(34):5-7.

29. Rzymski T, Mikula M, Wiklik K, & Brzozka K (2015) CDK8 kinase--An emerging target in targeted cancer therapy. *Biochimica et biophysica acta* 1854(10 Pt B):1617-1629.

30. Aragon E, et al. (2011) A Smad action turnover switch operated by WW domain readers of a phosphoserine code. *Genes & development* 25(12):1275-1288.

31. Kambadur R, et al. (1998) Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. *Genes & development* 12(2):246-260.

32. Loncle N, et al. (2007) Distinct roles for Mediator Cdk8 module subunits in Drosophila development. *EMBO J* 26(4):1045-1054.

33. Milan M, Campuzano S, & Garcia-Bellido A (1997) Developmental parameters of cell death in the wing disc of Drosophila. *Proceedings of the National Academy of Sciences of the United States of America* 94(11):5691-5696.
34. St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. *Nature reviews. Genetics* 3(3):176-188.

35. Hamaratoglu F, Affolter M, & Pyrowolakis G (2014) Dpp/BMP signaling in flies: from molecules to biology. *Seminars in cell & developmental biology* 32:128-136.

36. Affolter M & Basler K (2007) The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. *Nature reviews. Genetics* 8(9):663-674.

37. Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, & O'Connor MB (2017) TGF-beta Family Signaling in Drosophila. *Cold Spring Harbor perspectives in biology* 9(9).

38. Massague J (2012) TGFbeta signalling in context. *Nature reviews. Molecular cell biology* 13(10):616-630.

39. Raftery LA & Sutherland DJ (1999) TGF-beta family signal transduction in Drosophila development: from Mad to Smads. *Developmental biology* 210(2):251-268.

40. Santibanez JF, Krstic, J., Quintanilla, M., Bernabeu, C. (2016) TGF–β Signalling and Its Role in Cancer Progression and Metastasis. *eLS.*

41. Affolter M, Marty T, Vigano MA, & Jazwinska A (2001) Nuclear interpretation of Dpp signaling in Drosophila. *EMBO J* 20(13):3298-3305.

42. Restrepo S, Zartman JJ, & Basler K (2014) Coordination of patterning and growth by the morphogen DPP. *Current biology : CB* 24(6):R245-255.

43. Moustakas A, Souchelnytskyi S, & Heldin CH (2001) Smad regulation in TGF-beta signal transduction. *Journal of cell science* 114(Pt 24):4359-4369.

44. Malik S & Roeder RG (2005) Dynamic regulation of pol II transcription by the mammalian Mediator complex. *Trends in biochemical sciences* 30(5):256-263.

45. Blair SS (2007) Wing vein patterning in Drosophila and the analysis of intercellular signaling. *Annual review of cell and developmental biology* 23:293-319.

46. De Celis JF (2003) Pattern formation in the Drosophila wing: The development of the veins. *BioEssays : news and reviews in molecular, cellular and developmental biology* 25(5):443-451.

47. de Celis JF & Barrio R (2000) Function of the spalt/spalt-related gene complex in positioning the veins in the Drosophila wing. *Mechanisms of development* 91(1-2):31-41.

48. Nellen D, Burke R, Struhl G, & Basler K (1996) Direct and long-range action of a DPP morphogen gradient. *Cell* 85(3):357-368.
49. Xu P, Lin X, & Feng XH (2016) Posttranslational Regulation of Smads. Cold Spring Harbor perspectives in biology 8(12).

50. Kato Y, Habas R, Katsuyama Y, Naar AM, & He X (2002) A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Nature 418(6898):641-646.

51. Terriente-Felix A, Lopez-Varea A, & de Celis JF (2010) Identification of genes affecting wing patterning through a loss-of-function mutagenesis screen and characterization of med15 function during wing development. Genetics 185(2):671-684.

52. Fuentealba LC, et al. (2007) Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131(5):980-993.

53. Naar AM, Lemon BD, & Tjian R (2001) Transcriptional coactivator complexes. Annu Rev Biochem 70:475-501.

54. Allen BL & Taatjes DJ (2015) The Mediator complex: a central integrator of transcription. Nature reviews. Molecular cell biology 16(3):155-166.

55. Stevens JL, Cantin GT, Wang G, Shevchenko A, & Berk AJ (2002) Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296(5568):755-758.

56. Galli GG, et al. (2015) YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Molecular cell 60(2):328-337.

57. Oh H, et al. (2013) Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell reports 3(2):309-318.

58. Tansey WP (2001) Transcriptional activation: risky business. Genes & development 15(9):1045-1050.

59. Cantelli G, Crosas-Molist E, Georgouli M, & Sanz-Moreno V (2017) TGFBeta-induced transcription in cancer. Seminars in cancer biology 42:60-69.

60. Kahata K, Dadras MS, & Moustakas A (2018) TGF-beta Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harbor perspectives in biology 10(1).

61. Galbraith MD, Donner AJ, & Espinosa JM (2010) CDK8: A positive regulator of transcription. Transcr 1(1):4-12.
62. Eivers E, et al. (2009) Mad is required for wingless signaling in wing development and segment patterning in Drosophila. *PloS one* 4(8):e6543.

63. Zhao M, et al. (2013) Mediator MED15 modulates transforming growth factor beta (TGFbeta)/Smad signaling and breast cancer cell metastasis. *J Mol Cell Biol* 5(1):57-60.

64. Akoulitchev S, Chuikov S, & Reinberg D (2000) TFIIH is negatively regulated by cdk8-containing mediator complexes. *Nature* 407(6800):102-106.

65. Ni JQ, et al. (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. *Nature methods* 8(5):405-407.

66. Gobert V, et al. (2010) A genome-wide RNA interference screen identifies a differential role of the mediator CDK8 module subunits for GATA/RUNX-activated transcription in drosophila. *Molecular and cellular biology* 30(11):2837-2848.

67. Lu Q, et al. (2010) Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. *The Plant journal : for cell and molecular biology* 61(2):259-270.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
A

Phenotypes caused by depleting individual subunits of the Mediator complex

Mediator subunit	Effect on sal expression	nub-Gal4 phenotype	ey-Gal4 phenotype	Terriente-Félix et al. (2010)
CDK8	Decreased	Ectopic vein	NE	ND
CycC	Decreased	Ectopic vein	NE	ND
Med12	Decreased	Pupal lethal	small eye	smaller wing
Med13	Decreased	Pupal lethal	small eye	ND
Med15	Decreased	Apoptosis	small eye	cell death
Med23	Decreased	Vein defects	NE	ND
Med24	Decreased	NE	NE	ND
Med31	Decreased	Apoptosis	small eye	ND
Med7	Deformed	No wing	NE	ND
Med8	Deformed	Pupal lethal	small eye	ND
Med14	Deformed	Wingless	small eye	ND
Med16	Deformed	Pupal lethal	small eye	smaller wing
Med17	Deformed	No wing	small eye	ND
Med21	Deformed	Pupal lethal	small eye	ND
Med22	Deformed	Apoptosis	small eye	ND

B

Fig. 5

- **UAS-Med12 RNAi**
- **UAS-Med13 RNAi**
- **UAS-Med15 RNAi**
- **UAS-Med23 RNAi**
- **UAS-Med24 RNAi**
- **UAS-Med31 RNAi**
- **UAS-Med1 RNAi**
- **UAS-Med25 RNAi**
- **UAS-Med7 RNAi**
Fig. 6
Fig. S1

A

nub>Cdk8\(^*/cdk8^{K185}\)

B

nub>Cdk8i/cdk8^{K185}\)

Fig. S2

A

Sal-lacZ

ap-Gal4, sal-lacZ/+; UAS-dpp-i/+;

B

ap-Gal4, sal-lacZ/ UAS-mad-i; +

C

ap-Gal4, sal-lacZ/ UAS-medea-i; +

Fig. S3

A'

p-Mad

ap-Gal4/+;

B'

ap>Cdk8-i

C'

p-Mad

ap>CycC-i

D'

ap>Cdk8-and CycC-i

25\(\mu\)m
Fig. S4

Condition	Image 1	Image 2
SD/-Leu	![Image](image1.png)	![Image](image2.png)
/-Trp	![Image](image1.png)	![Image](image2.png)
BD-Mad-FL+AD-CDK8	![Image](image1.png)	![Image](image2.png)
BD-Mad-FL+AD	![Image](image1.png)	![Image](image2.png)
AD-Mad-C2+BD-CDK8	![Image](image1.png)	![Image](image2.png)
AD-Mad-C2+BD	![Image](image1.png)	![Image](image2.png)
AD+BD-CDK8	![Image](image1.png)	![Image](image2.png)

Fig. S5

Condition	Image 1	Image 2
SD/-Leu	![Image](image1.png)	![Image](image2.png)
/-Trp	![Image](image1.png)	![Image](image2.png)
BD-Mad-FL+AD-CDK8	![Image](image1.png)	![Image](image2.png)
BD-Mad-FL+AD	![Image](image1.png)	![Image](image2.png)
AD-Mad-C2+BD-CDK8	![Image](image1.png)	![Image](image2.png)
AD-Mad-C2+BD	![Image](image1.png)	![Image](image2.png)
AD+BD-CDK8	![Image](image1.png)	![Image](image2.png)

Fig. S6

Mad [D. melanogaster]
Smad1 [Danio rerio]
Smad1 [X. tropicalis]
Smad1 [Mus musculus]
Smad1 [Homo sapiens]

Residue	D. melanogaster	Danio rerio	X. tropicalis	Mus musculus	Homo sapiens
198	STSNTSVGS	GSTATTPHSP	SSSTYPHSP	SSSSTYPHSP	SSSSTYPHSP
202	SSVNSNPNSPDLSAGTTP	SSSDGSPQMFQMPADTPP	TSSDGSPFQMPADTPP	TSSDGSPFQMPADTPP	TSSDGSPFQMPADTPP
208	DSAGTTPP	FQMPADTPP	FQMPADTPP	FQMPADTPP	FQMPADTPP
212					
Table S1. Results of 490 Df lines tested for potential dominant modification of vein phenotypes caused by altered levels of CDK8 or CycC

Stock #	Deficiency	Cytogenetic breakpoints	Modification
			nub>Cdk8+
			nub>Cdk8-i
			nub>CycC-i
25019	Df(3R)BSC515	88F6;89A8	enhancer
			enhancer
			enhancer
3180	Df(2L)H20	36A8--9;36E1--2	NE
			enhancer
			enhancer
6219	Df(1)v-L1	9F13;10A5	NE
			enhancer
			enhancer
7691	Df(3R)ExcL6213	99C5;99D1	NE
			enhancer
			enhancer
7896	Df(2R)ExcL7162	56F11;56F16	NE
			enhancer
			enhancer
8031	Df(1)ED411	3A3;3A8	NE
			enhancer
			enhancer
8074	Df(3L)ED217	70F4;71E1	NE
			enhancer
			enhancer
8103	Df(3R)ED5177	83B4;83B6	NE
			enhancer
			enhancer
24415	Df(3L)BSC391	67B7;67C5	NE
			enhancer
			enhancer
24923	Df(3L)BSC419	78C2;78D8	NE
			enhancer
			enhancer
26846	Df(1)BSC767	11E8;12A7	NE
			enhancer
			enhancer
27356	Df(2R)BSC784	59B4;59B6	NE
			enhancer
			enhancer
7573	Df(3L)ExcL66094	63D2;63E1	NE
			enhancer
			enhancer
997	Df(3L)Ac1	67A2;67D11--13	strong enhancer
			enhancer
			enhancer
8098	Df(3L)Ed4674	73B5;73E5	strong enhancer
			enhancer
			enhancer
1581	Df(2L)JS31	23A3--4;23D	strong suppressor
			enhancer
			enhancer
7623	Df(3R)ExcL6144	83A6--83A6	strong suppressor
			enhancer
			enhancer
25436	Df(2R)BSC603	60C7--60D1	strong suppressor
			enhancer
			enhancer
26846	Df(3R)BSC748	89E5;89E11	strong suppressor
			enhancer
			enhancer
2596	Df(3L)6B-29+Df(3R)6B-29	81Fa;81Fa	suppressor
			enhancer
			enhancer
7512	Df(2L)ExcL6030	33A2--33B3	suppressor
			enhancer
			enhancer
7561	Df(2R)ExcL6082	60C4--60C7	suppressor
			enhancer
			enhancer
7976	Df(3R)ExcL8159	88A4;88B1	suppressor
			enhancer
			enhancer
24413	Df(3L)BSC389	66C12;66D8	suppressor
			enhancer
			enhancer
2352	Df(3R)X3F	99D1--2;99E1	suppressor
			enhancer
			enhancer
7657	Df(3R)ExcL6178	90F4;91A5	suppressor
			enhancer
			enhancer
3547	Df(3R)L127	99B5--6;99F1	weak suppressor
			enhancer
			enhancer
7840	Df(2L)ExcL8038	36E5;36F5	enhancer
			enhancer
			enhancer
6962	Df(3R)Ed2	91A5;91F1	NE
			NE
			enhancer
7495	Df(2L)ExcL6009	24C3;24C8	NE
			NE
			enhancer
7585	Df(3L)ExcL6106	64D6;64E2	NE
			NE
			enhancer
7749	Df(2R)ExcL6284	51B1;51C2	NE
			NE
			enhancer
8033	Df(1)ED6957	8B6;8C13	NE
			NE
			enhancer
8089	Df(3L)ED230	79C2;80A4	NE
			NE
			enhancer
8105	Df(3R)ED6232	96F10;97D2	NE
			NE
			enhancer
8684	Df(3R)ED6096	94B5;94E7	NE
			NE
			enhancer
9059	Df(1)ED7620	18D10;19A2	NE
			NE
			enhancer
9410	Df(2R)BSC132	45F6;46B4	NE
			NE
			enhancer
27582	Df(2R)BSC821	57D10;57E6	NE
			NE
			enhancer
5411	Df(3L)Aprt-32	62B1;62E3	strong enhancer
			NE
			enhancer
24990	Df(3R)BSC486	87B10;87E9	suppressor
			NE
			enhancer
25695	Df(3R)BSC620	99C5;99D3	suppressor
			NE
			enhancer
26847 Df(3R)BSC749 100B1--100C1 suppressor NE enhancer			
9560 Df(2L)BSC169 25E5;25F3 weak enhancer NE enhancer			
2471 Df(2R)M60E 60E2--3;60E11--12 weak suppressor NE enhancer			
26836 Df(3R)BSC738 83E5;84A1 weak suppressor NE enhancer			
9157 Df(2R)ED1770 44D5;45B4 enhancer strong enhancer enhancer			
7903 Df(2R)Exel7173 58D4;58E5 NE strong enhancer enhancer			
8673 Df(2L)BSC107 21C2;21E2 NE strong enhancer enhancer			
8901 Df(2L)ED19 21B3;21B7 NE strong enhancer enhancer			
8912 Df(2R)ED2247 48A3;48D5 NE strong enhancer enhancer			
2155 Df(3R)A113 100A;3Rt suppressor strong enhancer enhancer			
7965 Df(3R)Exel7310 86E18;87A1 suppressor strong enhancer enhancer			
25430 Df(2R)BSC597 58A2;58F1 suppressor strong enhancer enhancer			
901 Df(1)syr 1A1;1B9--10 weak suppressor strong enhancer enhancer			
749 In(2R)bw[VDe2L]Cy[R] b42--b43;42A2--3 NE suppressor enhancer			
7649 Df(3R)Exel6170 87F10;87F14 strong enhancer suppressor enhancer			
7624 Df(3R)BSC567 98B6;98E5 NE lethal lethal			
5281 Df(1)dx81 5C3--10;6C3--12 lethal lethal lethal			
26865 Df(2L)BSC768 34A9;34B8 lethal lethal lethal			
25390 Df(3R)BSC567 98B6;98E5 NE lethal lethal			
25058 Df(1)BSC530 1A5;1B12 NE NE lethal			
6478 Df(2L)BSC17 30C3--30F1 weak suppressor NE lethal			
7617 Df(3L)Exel6138 79D3;79E3 NE enhancer NE			
7676 Df(3R)Exel6197 95D8;95E1 NE enhancer NE			
7931 Df(3R)Exel7315 87B8;87B9 NE enhancer NE			
8045 Df(2R)ED1612 42A13;42E6 NE enhancer NE			
8967 Df(3R)ED5147 82E7;83A1 NE enhancer NE			
9579 Df(4)Ed6330 102B7;102D5 NE enhancer NE			
26848 Df(3R)BSC750 88E2;88E5 NE enhancer NE			
27586 Df(1)BSC825 7E1;8C4 NE enhancer NE			
23680 Df(2L)BSC295 24D4;24F3 strong suppressor enhancer NE			
7745 Df(3L)Exel6279 66A17;66B5 weak enhancer enhancer NE			
7633 Df(3R)Exel154 85E9;85F1 weak suppressor enhancer NE			
26529 Df(3R)BSC677 93D1;93F14 lethal lethal NE			
4961 Df(2R)Kr10 60F1;60F5 NE lethal NE			
3370 Df(1)sut(s)83 1B10;1D6--E1 lethal lethal NE			
7543 Df(2R)Exel6061 48F1;49A6 enhancer NE NE			
7548 Df(2R)Exel6066 53F8;54B6 enhancer NE NE			
7588 Df(3L)Exel6109 65C3;65D3 enhancer NE NE			
7709 Df(1)Exel6235 5A2;5A6 enhancer NE NE			
7731 Df(3R)Exel6264 85D24;85E5 enhancer NE NE			
7744 Df(2L)Exel6277 23A2;23B1 enhancer NE NE			
9169 Df(1)Exel6712 3D3;3F1 enhancer NE NE			
9218 Df(1)ED7261 12F2;12F5 enhancer NE NE			
Entry	Description	Chromosome	Start
---------	-----------------	------------	-------
9626	Df(2R)BSC199	48C5;48E4	enhancer
24378	Df(2L)BSC334	26D7;26E3	enhancer
24516	Df(3R)ED5003	100E1;100F5	enhancer
25007	Df(3R)BSC503	99E3;99F6	enhancer
25063	Df(1)BSC353	6C2;6C8	enhancer
27580	Df(3R)BSC819	93A2;93B8	enhancer
23152	Df(2L)BSC252	34D1;34F1	enhancer
167	Df(2L)TW161	38A6--B1;40A4--B1	NE
744	Df(2L)M24F-B	24E1--2;24F6--7	NE
903	Df(1)v-L3	9F10;10A7--8	NE
944	Df(2R)gsb	4C15--16;5A1--2	NE
1158	Df(1)rif	15A1--2;15A4--5	NE
1469	Df(2L)J39	31C--D;32D--E	NE
1642	Df(2R)vgj135	49A;49E1--2	NE
1842	Df(3R)Antp17	84A5;84D9	NE
2234	Df(3R)R133	99E1--5;3Rt	NE
2528	Df(2R)gsb	60E9--10;60F1--2	NE
3486	Df(3R)Ubx109	89D1--2;89E1--2	NE
3521	Df(2R)Jp6	52E3--5;52F	NE
3678	Df(3R)sbd45	89B4;89B10	NE
4959	Df(2L)C'	h35;h38L	NE
6338	Df(2L)BSC6	26D3--E1;26F4--7	NE
6507	Df(2L)drm-P2	23F3--4;24A1--2	NE
6647	Df(2R)BSC22	56D7--E3;56F9--12	NE
6755	Df(3L)BSC23	62E8;63B5--6	NE
6867	Df(3L)BSC27	65D4--5;65E4--6	NE
6963	Df(2L)ED3	35B2;35D1	NE
6964	Df(3L)BSC33	65E10--F1;65F2--6	NE
7413	Df(3R)BSC43	92F7--93A1;93B3--6	NE
7571	Df(3L)Exel6092	62F5;63A3	NE
7586	Df(3L)Exel6107	64E5;64F5	NE
7591	Df(3L)Exel6112	66B5;66C8	NE
7634	Df(3R)Exel6155	85F1;85F10	NE
7675	Df(3R)Exel6196	95C12;95D8	NE
7680	Df(3R)Exel6201	96C2;96C4	NE
7713	Df(1)Exel6239	5F2;6B1--2	NE
7714	Df(1)Exel6240	6B2;6C4	NE
7723	Df(1)Exel6255	20A1;20C1	NE
7739	Df(3R)Exel6272	93A4;93B13	NE
7742	Df(3R)Exel6275	88D1;88D7	NE
7768	Df(1)Exel7468	18B7;18C8	NE
7807	Df(2L)Exel7034	28E1;28F1	NE
7876	Df(2R)Exel7131	50E4;50F6	NE
7929	Df(3L)Exel8104	65F7;66A4	NE
7983	Df(3R)Exel7328	89A12;89B6	NE
7997	Df(3R)Exel7378	99F8;100A5	NE
8035	Df(1)ED7294	13B1;13C3	NE
Item	Description	Location	Result
------	-------------	----------	--------
8047	Df(3L)ED201	61B1;61C1	NE
8049	Df(3L)ED4191	61C3;62A2	NE
8058	Df(3L)ED4293	63C1;63C1	NE
8059	Df(3L)ED208	63C1;63F5	NE
8060	Df(3L)ED4341	63F6;64B9	NE
8061	Df(3L)ED210	64B9;64C13	NE
8068	Df(3L)ED4470	68A6;68E1	NE
8073	Df(3L)ED4543	70C6;70F4	NE
8078	Df(3L)ED4606	72D4;73C4	NE
8097	Df(3L)ED4502	70A3;70C10	NE
8099	Df(3L)ED4685	73D5;74E2	NE
8101	Df(3L)ED4978	78D5;79A2	NE
8102	Df(3L)ED5017	80A4;80C2	NE
8469	Df(2L)BSC50	30F4--5;31B1--4	NE
8674	Df(2L)BSC109	25C4;25C8	NE
8679	Df(2L)ED1303	37E5;38C6	NE
8685	Df(2L)ED7665	84B4;84E11	NE
8835	Df(2L)BSC110	25C1;25C4	NE
8898	Df(1)ED7170	11B15;11E8	NE
8904	Df(2L)ED4651	23B8;23F3	NE
8906	Df(2L)ED678	29F5;30B12	NE
8907	Df(2L)ED775	33B8;34A3	NE
8908	Df(2L)ED94	21E2;21E3	NE
8914	Df(2R)ED2436	51F11;52D11	NE
8918	Df(2R)ED3683	55C2;56C4	NE
8931	Df(2R)ED1715	43A4;43F1	NE
8935	Df(2L)ED1203	36F7;37C5	NE
8948	Df(1)ED6630	3B1;3C5	NE
8949	Df(1)ED6802	5A12;5D1	NE
8956	Df(1)ED6727	4B6;4D5	NE
8964	Df(3R)ED6025	92A11;92E2	NE
8965	Df(3R)ED5156	82F8;83A4	NE
8970	Df(3L)BSC113	67B1;67B5	NE
9053	Df(1)ED6443	1B14;1E1	NE
9060	Df(2L)ED489	27E4;28B1	NE
9062	Df(2R)ED1673	42E1;43D3	NE
9063	Df(2R)ED1791	44F7;45F1	NE
9064	Df(2R)ED2426	51E2;52B1	NE
9067	Df(2R)ED3728	56D10;56E2	NE
9152	Df(3R)ED5705	88E12;89A5	NE
9153	Df(1)ED7005	9B1;9D3	NE
9171	Df(1)ED7147	10D6;11A1	NE
9176	Df(2L)ED136	22F4;23A3	NE
9217	Df(1)ED7161	11A1;11B14	NE
9219	Df(1)ED7331	13C3;13F1	NE
9267	Df(2R)ED3791	57B1;57D4	NE
9269	Df(2L)ED1315	38B4;38F5	NE
Line	Description	Coordinates	Outcome 1
------	----------------------------------	--------------	-----------
9270	Df(2L)ED250	24F4;25A7	NE
9278	Df(2R)ED2747	53D11;53F8	NE
9341	Df(2L)ED385	26B1;26D7	NE
9343	Df(2L)ED334	25F2;26B2	NE
9348	Df(1)ED6584	3A8;3B1	NE
9352	Df(1)ED7229	12E5;12F2	NE
9355	Df(3L)ED4457	67E2;68A7	NE
9421	Df(4)ED6364	101F1;102A6	NE
9422	Df(4)ED6369	102A1;102C1	NE
9423	Df(2R)BSC135	56C11;56D5	NE
9487	Df(3R)ED10845	93B9;93D4	NE
9497	Df(3R)BSC137	94F1;95A4	NE
9500	Df(3R)BSC140	96F1;96F10	NE
9502	Df(2L)BSC142	28C3;28D3	NE
9505	Df(2L)BSC145	32C1;32C1	NE
9507	Df(2L)BSC148	36C8;36E3	NE
9508	Df(2L)BSC149	36F5;36F10	NE
9539	Df(2R)BSC152	46C1;46D6	NE
9596	Df(2R)BSC161	54B2;54B17	NE
9600	Df(2L)BSC165	24D4;24D8	NE
9605	Df(2L)BSC172	25B10;25C1	NE
9610	Df(2L)BSC180	23B7;23C3	NE
9615	Df(2L)BSC188	26F1;27A2	NE
9631	Df(2L)BSC204	29D5;29F8	NE
9635	Df(2L)BSC208	31D7;31D11	NE
9637	Df(2L)BSC209	31D7;31E1	NE
9642	Df(2L)BSC214	31F5;32B4	NE
9682	Df(2L)ED1378	38F1;39D2	NE
9708	Df(2L)BSC233	27F3;28D2	NE
9715	Df(2L)BSC240	30C7;30F2	NE
23156	Df(2L)BSC256	36E3;36F2	NE
23170	Df(2R)BSC274	50A7;50B4	NE
23171	Df(1)BSC275		NE
23663	Df(2L)BSC278	35E1;35F1	NE
23666	Df(2R)BSC281	46F1;47A9	NE
23672	Df(1)BSC287	10A10;10B11	NE
23676	Df(2L)BSC291	27D6;27F2	NE
23677	Df(2L)BSC292	23F6;24A2	NE
23686	Df(2R)BSC303	46E1;46F3	NE
23688	Df(2R)BSC305	49A4;49A10	NE
23714	Df(3R)ED10555	88C9;88D8	NE
24113	Df(2L)ED1102	35F12;36A10	NE
24114	Df(2L)ED1161	36A10;36C9	NE
24123	Df(2L)ED247	24A2;24C3	NE
24124	Df(2L)ED7853	25A3;25B10	NE
24133	Df(2L)ED690	30B3;30E4	NE
24142	Df(3R)ED6346	100A5;100B1	NE
Reference	Description		
-----------	-------------		
24143	Df(3R)ED6361 100C7;100E3 NE NE NE		
24145	Df(1)ED6716 3F3;4B4 NE NE NE		
24146	Df(1)ED7225 12C4;12E8 NE NE NE		
24336	Df(1)BS310 12F5;13A10 NE NE NE		
24356	Df(2R)BS331 53D14;54A1 NE NE NE		
24371	Df(2R)BS347 54D2;54E9 NE NE NE		
24375	Df(1)BS351 6C11;6D7 NE NE NE		
24379	Df(2R)BS355 50C3;50F1 NE NE NE		
24385	Df(2R)BS361 21A1;21B1 NE NE NE		
24909	Df(3R)BS310 96E6;96E9 NE NE NE		
24914	Df(3L)BS410 64E7;65B3 NE NE NE		
24915	Df(3L)BS411 65A2;65C1 NE NE NE		
24929	Df(2R)BS425 48F1;49A1 NE NE NE		
24955	Df(3L)BS451 79B2;79F5 NE NE NE		
24959	Df(2L)BS455 22D5;22E1 NE NE NE		
24968	Df(3R)BS464 83B7;83E1 NE NE NE		
24980	Df(3R)BS476 85D16;85D24 NE NE NE		
24993	Df(3R)BS497 97E6;98B5 NE NE NE		
25005	Df(3R)BS501 98F10;99B9 NE NE NE		
25006	Df(3R)BS502 99D3;99D8 NE NE NE		
25008	Df(3R)BS504 99F4;100A2 NE NE NE		
25021	Df(3R)BS517 92C1;92F13 NE NE NE		
25061	Df(1)BS533 4F4;4F10 NE NE NE		
25075	Df(3R)BS547 99B5;99C2 NE NE NE		
25114	Df(1)BS571 6A4;6A10 NE NE NE		
25126	Df(3R)BS588 86C7;86D7 NE NE NE		
25391	Df(1)BS572 9F8;10A3 NE NE NE		
25414	Df(1)BS580 4A5;4C13 NE NE NE		
25416	Df(1)BS582 15A1;15E2 NE NE NE		
25417	Df(1)BS583 15F1;16B10 NE NE NE		
25420	Df(1)BS586 18F2;19D1 NE NE NE		
25441	Df(2R)BS608 60E11;60F2 NE NE NE		
25694	Df(3R)BS619 94D10;94E13 NE NE NE		
25696	Df(3R)BS621 85F5;85F14 NE NE NE		
25697	Df(1)BS622 7C2;7D1 NE NE NE		
25705	Df(2R)BS630 41D3;41F11 NE NE NE		
25733	Df(1)BS643 15F9;16F1 NE NE NE		
25734	Df(1)BS644 19C1;19E7 NE NE NE		
25741	Df(2R)BS651 51C5;51E2 NE NE NE		
26533	Df(3R)BS681 83E2;83E5 NE NE NE		
26540	Df(2L)BS688 22B1;22D6 NE NE NE		
26541	Df(2L)BS689 30F5;31B1 NE NE NE		
26542	Df(2L)BS690 35D4;35D4 NE NE NE		
26544	Df(2L)BS692 23B3;23B7 NE NE NE		
Line	Gene	Coordinates	Status
------------	--------	--------------	----------
26551	Df(2R)BSC699	48D7;48E6	NE
26553	Df(2R)BSC701	56F15;57A9	NE
26554	Df(2R)BSC702	57A2;57B3	NE
26560	Df(1)BSC708	19E7;20A4	NE
26568	Df(1)BSC716	17A3;17D6	NE
26569	Df(1)BSC717	2F2;3A4	NE
26571	Df(1)BSC719	2A3;2B13	NE
26574	Df(1)BSC722	10B3;10E1	NE
26853	Df(1)BSC755	9C4;9F5	NE
26857	Df(1)BSC760	14E1;14F2	NE
26858	Df(1)BSC761	14D1;14F1	NE
27354	Df(2R)BSC782	56D8;56D14	NE
27359	Df(2R)BSC787	58F4;59B1	NE
27365	Df(3R)BSC793	100B5;100C4	NE
27369	Df(3L)BSC797	77C3;78A1	NE
27372	Df(3L)BSC800	62A9;62A9	NE
27378	Df(3R)BSC806	98F1;98F10	NE
27585	Df(1)BSC824	20C1;20F3	NE
27887	Df(1)BSC843	1A1;1A3	NE
8957	Df(3R)ED5514	86C7;86E11	strong enhancer
3096	Df(3L)ZN47	64C;65C	strong enhancer
8096	Df(3L)ED4287	62B4;62E5	strong enhancer
7885	Df(2R)Exel9060	52E1;52F1	strong suppressor
24126	Df(2L)ED441	27A1;27E1	strong suppressor
24137	Df(3R)ED5664	88D1;88E3	strong suppressor
1467	Df(3R)P115	89B7--89E7	suppressor
1702	Df(2R)X1	46C;47A1	suppressor
2597	Df(3R)10-65	81Fa;81Fa	suppressor
7443	Df(3R)BSC47	83B7--C1;83C6--D1	suppressor
7631	Df(3R)Exel16152	85C11;85D2	suppressor
7839	Df(2L)Exel7070	36E2;36E6	suppressor
7871	Df(2R)Exel8057	49F1;49F10	suppressor
8069	Df(3L)ED4475	68C13;69B4	suppressor
8947	Df(1)ED6829	5C7;5F3	suppressor
8952	Df(1)ED7217	12A9;12C6	suppressor
8954	Df(1)ED7374	15A1;15E3	suppressor
9503	Df(2L)BSC143	31B1;31D9	suppressor
9700	Df(3L)BSC223	79A3;79B3	suppressor
9701	Df(3L)BSC224	65D5;65E6	suppressor
9716	Df(2L)BSC241	32C1;32F2	suppressor
24971	Df(3R)BSC467	83F1;84B2	suppressor
26580	Df(3R)BSC728	89A8;89B2	suppressor
27346	Df(3L)BSC774	71F1;72D10	suppressor
27404	Df(3R)FDD-0317950	96C8;96D1	suppressor
27888	Df(3L)BSC845	71D3;72A1	suppressor
6999	Df(2L)BSC30	34A3;34B7--9	weak enhancer
7682	Df(3R)Exel6203	96E2;96E6	weak enhancer
8910 Df(2R)ED2219 47D6;48B6 weak enhancer NE NE			
9078 Df(3R)ED5438 85E5;85F8 weak enhancer NE NE			
6698 Df(1)h1-a 7B7;7E2 weak suppressor NE NE			
7688 Df(3R)Exel6210 98E1;98F5 weak suppressor NE NE			
7869 Df(2R)Exel7121 49B5;49B12 weak suppressor NE NE			
7890 Df(2R)Exel7149 54C10;54D5 weak suppressor NE NE			
9208 Df(3R)ED5815 90F4;91B8 weak suppressor NE NE			
9210 Df(3R)ED6255 97D2;97F1 weak suppressor NE NE			
9683 Df(2R)ED1484 42A2;42A14 weak suppressor NE NE			
24946 Df(3L)BSC442 71D2;71E3 weak suppressor NE NE			
24953 Df(3L)BSC449 77F2;78C2 weak suppressor NE NE			
26513 Df(2R)BSC661 59D8;59F5 weak suppressor NE NE			
25065 Df(1)BSC337 8C4;8E4 NE NE NE			
27347 Df(3L)BSC775 75A2;75E4 NE NE NE			
7888 Df(2R)Exel7144 53C8;53D2 weak suppressor NE NE			
24627 Df(3L)ED50002 61A1;61B1 NE NE or suppressor NE			
24416 Df(3L)BSC392 67C4;67D1 suppressor NE or weak enhancer NE			
26524 Df(3L)BSC672 63A7;63B12 weak suppressor NE or weak enhancer NE			
24395 Df(3L)BSC371 64C1;64E1 suppressor NE or weak suppressor NE			
24380 Df(2R)BSC356 60B8;60C4 NE strong enhancer NE			
8941 Df(2R)ED1725 43E4;44B5 weak enhancer strong enhancer NE			
7943 Df(3L)Exel9008 76B3--4;76B9 NE strong suppressor NE			
8913 Df(2R)ED2354 50E6;51B1 NE suppressor NE			
9350 Df(1)ED7424 17D1;18C1 NE suppressor NE			
9501 Df(3R)BSC141 92F2;93A1 NE suppressor NE			
23295 Df(1)FDD-0024486 14C4;14D1 NE suppressor NE			
24386 Df(3L)BSC362 61C1;61C7 NE suppressor NE			
8087 Df(3L)ED229 76A1;76E1 strong suppressor suppressor NE			
7545 Df(2R)Exel6063 52F6;53C4 suppressor suppressor NE			
7944 Df(3L)Exel9009 76B5;76B9 suppressor NE			
7574 Df(3L)Exel6095 63E1;63E3 weak suppressor suppressor NE			
7577 Df(3L)Exel6098 63F2;63F7 weak suppressor suppressor NE			
26516 Df(2R)BSC664 57D12;58A3 NE suppressor NE			
7636 Df(3R)Exel6157 86B1;86B2--86B3 lethal weak enhancer NE			
741 Df(2R)M41A10 41A;41A NE weak enhancer NE			
8921 Df(3R)ED5623 87E3;88A4 NE weak enhancer NE			
8955 Df(1)ED6906 7A3;7B2 NE weak enhancer NE			
23682 Df(2R)BSC298 46B2;46C7 NE weak enhancer NE			
7790 Df(2L)Exel8010 24C8;24D4 suppressor weak enhancer NE			
7952 Df(3R)Exel7283 83B7;83C2 suppressor weak enhancer NE			
9090 Df(3R)ED5644 88A4;88C9 suppressor weak enhancer NE			
9347 Df(3R)ED6187 95D10;96A7 weak enhancer weak enhancer NE			
7734 Df(3R)Exel6267 88B1;88C2 weak suppressor weak enhancer NE			
9697 Df(3L)BSC220 75F1;76A1 weak suppressor weak enhancer NE			
9204 Df(3R)ED5339 85D1;85D11 NE weak suppressor NE			
9226 Df(3R)ED5100 81F6;82E7 NE weak suppressor NE			
9266 Df(2L)ED1473 39B4;40A5 NE weak suppressor NE			
Df/EXL	Genotype	Chromosome Position	Gene Effect
--------	-----------	---------------------	-------------
9433	Df(4)M101-62f	101E;102B	NE
9482	Df(3R)ED10642	89B17;89D5	NE
24958	Df(2L)BSC454	21B7;21B8	suppressor
25428	Df(2R)BSC595	47A3;47F1	suppressor
26839	Df(3R)BSC741	88E8;88F1	suppressor
26828	Df(3L)BSC730	68F7;69E6	weak suppressor
7875	Df(2R)Exel7130	50D4;50E4	NE
7708	Df(1)Exel6234	4F10;5A2	NE
24970	Df(3R)BSC466	84E1;85A10	strong enhancer
7544	Df(2R)Exel6062	49E6;49F1	NE
7681	Df(3R)Exel6202	96D1;96D1	NE
7737	Df(3R)Exel6270	89B18;89D8	NE
8672	Df(2L)BSC106	21B7;21C2	NE
24132	Df(2L)ED629	29B4;29E4	strong enhancer
1491	Df(2L)r10	35D1;36A6--7	weak enhancer
27576	Df(3L)BSC815	66C3;66D4	weak suppressor
24399	Df(3L)BSC375	66A3;66A19	NE
7497	Df(2L)Exel6011	25C8;25D5	lethal
23674	Df(3L)BSC289	61F6;62A9	enhancer
8946	Df(2L)ED1050	35B8;35D4	NE
9641	Df(2L)BSC213	32B1;32C1	NE
25078	Df(2R)BSC350	53C1;53C6	NE
26866	Df(2R)BSC769	59B7;59D9	NE
9693	Df(3L)BSC181	62A11;62B7	strong enhancer
24335	Df(2R)BSC267	44A4;44C4	weak enhancer
24429	Df(1)BSC405	16D5;16F6	NE
24947	Df(3L)BSC443	72B1;72E4	NE
25077	Df(3R)BSC549	83A6;83B6	NE
27353	Df(2L)BSC781	35F1;36A1	NE
3469	Df(2R)PK1	57C5;57F5--6	weak enhancer
27577	Df(3L)BSC816	66D9;66D12	weak suppressor
949	Df(1)C128	7D1;7D5--6	enhancer
23665	Df(2R)BSC280	45C4;45F4	NE
6780	Df(2R)14H10W-35	54E5--57B5--7	enhancer
3909	Df(2R)59AD	59A1--3;59D1--4	NE
27352	Df(2R)BSC780	60C2;60D14	strong suppressor
3196	Df(1)Sx1--bt	6E2;7A6	suppressor
1164	Df(2L)tkv3	25A4--5;25D5	weak enhancer
9077	Df(3R)ED5330	85A5;85D1	weak enhancer
7659	Df(3R)Exel6180	91B5;91C5	NE
5330	Df(2L)ed1	24A2;24D4	NE
9718	Df(2L)BSC244	32F2;33B6	enhancer
25059	Df(1)BSC331	3C3;3E2	enhancer
26869	Df(1)BSC772	14B9;14C4	lethal
442	Df(2R)CX1	49C1--4;50C23--D2	strong suppressor
24989	Df(2R)BSC485	49B10;49E6	suppressor
24118	Df(2L)ED105	21E2;22A1	NE

Note: The table lists various genotypes with their associated chromosome positions, gene effects, and phenotypes. Some entries indicate weak or strong suppressor effects, while others indicate enhancer or deleterious effects. The phenotypes range from weak and strong enhancements to lethal effects. The table also includes some entries that indicate weak or strong suppressor effects on other loci.
Gene ID	Description	Chromosome	Region	Type	Effect	Reference					
7546	Df(2R)Exel6064	53C11;53D11	strong enhancer	suppressor	strong suppressor	9424	Df(2R)BSC136	59F5;60B6	enhancer	NE	suppressor
7002	Df(3L)1-16	80F;80F	NE	NE	suppressor	8836	Df(2L)BSC111	28F5;29B1	NE	NE	suppressor
8975	Df(3L)BSC118	67B11;67C5	NE	NE	suppressor	9066	Df(2R)ED3610	54F1;55C8	NE	NE	suppressor
9510	Df(2L)BSC151	40A5;40E5	NE	NE	suppressor	23169	Df(2R)BSC273	49F4;50A13	NE	NE	suppressor
24376	Df(1)BSC352	16F7;17A8	NE	NE	suppressor	25011	Df(3R)BSC507	85D6;85D15	NE	NE	suppressor
9066	Df(2R)ED3610	54F1;55C8	NE	NE	suppressor	9510	Df(2L)BSC151	40A5;40E5	NE	NE	suppressor
25068	Df(1)BSC540	9E8;10A3	NE	NE	suppressor	25437	Df(2R)BSC604	60D4;60E11	NE	NE	suppressor
26514	Df(1)BSC662	7D6;7F1	NE	NE	suppressor	26566	Df(1)BSC714	13E14;14A8	NE	NE	suppressor
27383	Df(2L)BSC812	34B11;34E1	NE	strong suppressor	NE	9594	Df(2L)BSC139	34B4;34C4	NE	NE	suppressor
6646	Df(3L)BSC20	76A7--;76B4--5	NE	suppressor	NE	6646	Df(3L)BSC20	76A7--;76B4--5	NE	suppressor	NE
7551	Df(2R)Exel6069	56B5;56C11	NE	NE	suppressor	8974	Df(3L)BSC117	65E9;65F5	NE	NE	suppressor
7973	Df(3R)Exel8157	87D8;87D10	NE	strong suppressor	suppressor	7498	Df(2L)Exel6012	25D5;25E6	NE	strong suppressor	suppressor
9215	Df(3R)ED5495	85F16;86C7	NE	NE	suppressor	7521	Df(2L)Exel6038	35D6;35E2	NE	NE	suppressor
8072	Df(3L)ED4486	69C4;69F6	NE	NE	suppressor	9082	Df(3R)ED5474	85F11;86B1	NE	suppressor	suppressor
9481	Df(3R)ED10639	89B7;89B18	NE	NE	suppressor	23690	Df(2R)BSC307	50B6;50C18	NE	suppressor	suppressor
24407	Df(2R)BSC383	50C6;50D2	NE	NE	suppressor	24758	Df(2R)ED50004	60F5;60F5	NE	NE	suppressor
25064	Df(1)BSC336	7B2;7C1	NE	NE	suppressor	25432	Df(2R)BSC599	59B1;59B3	NE	NE	suppressor
25678	Df(2R)BSC594	56E1;56F9	NE	NE	suppressor	26855	Df(1)BSC758	14A6;14C1	NE	suppressor	suppressor
27362	Df(3R)BSC790	90B6;90E2	NE	NE	suppressor	3650	Df(3L)M21	62F;63D	strong suppressor	suppressor	
8029	Df(3R)ED5577	86F9;87B13	NE	NE	weak enhancer	8104	Df(3R)ED780	89E11;90C1	NE	NE	weak enhancer
Chromosome	Stock Name	Positions	Effects								
------------	------------	-----------	---------								
2R	Df(2L)BSC277	34A1;34B2	NE, NE, weak enhancer								
2L	Df(2L)ED1272	37C5;38A2	NE, NE, weak enhancer								
2R	Df(2L)ED8142	31E1;32A4	NE, NE, weak enhancer								
2R	Df(2R)BSC429	51C2;51D1	NE, NE, weak enhancer								
3L	Df(3L)BSC671	63A2;63B11	NE, NE, weak enhancer								
3R	Df(3R)BSC469	86D8;87A2	NE, NE, weak enhancer								
2L	Df(2L)Exel6005	22A3;22B1	NE, NE, weak enhancer								
2L	Df(2L)ED793	34E4;35B4	NE, NE, weak enhancer								
3R	Df(3R)Exel6176	89E11;89F1	strong suppressor, weak enhancer								
3R	Df(3R)BSC650	90C6;91A2	NE, NE, weak suppressor								
2L	Df(2L)al	21B8--C1;21C8--D1	NE, enhancer								
3R	Df(3R)Tpl10	83C1--2;84B1--2	NE, weak suppressor								
3R	Df(3R)ED6085	93F14;94B5	enhancer, NE, weak suppressor								
2R	Df(2R)BSC34	3C11;3F3	enhancer, NE, weak suppressor								
3L	Df(3L)ED4710	74D1;75B11	NE, NE, weak suppressor								
3R	Df(3R)BSC461	96B15;96D1	NE, NE, weak suppressor								
2R	Df(2R)BSC598	58F3;59A1	NE, NE, weak suppressor								
3R	Df(3R)BSC633	84B2;84C3	NE, NE, weak suppressor								
3L	Df(3L)BSC553	78A2;78C2	suppressor, NE, weak suppressor								
2L	Df(2L)ast2	21D1--2;22B2--3	weak enhancer, NE, weak suppressor								
2R	Df(2R)BSC19	56F12--14;57A4	weak suppressor, NE, weak suppressor								
3L	Df(3L)BSC12	69F6--70A1;70A1--2	NE, suppressor								
3R	Df(3R)ED6220	96A7;96C3	NE, suppressor								
3L	Df(3L)BSC35	66F1--2;67B2--3	suppressor, suppressor, weak suppressor								
1R	Df(1)DCB1-35b	19F1--2;20E--F	weak suppressor								

NE, no effects.
Table S2. Specific Df lines that interact with CDK8-CycC.

Stock #	Genotype	Cytogenetic breakpoints	nub>Cdk8+	nub>Cdk8-i	nub>CycC-i	nub>Cdk8-i, CycC-i
25059	Df(1)BSC531	3C3;3E2	enhancer	strong suppressor	strong suppressor	enhancer
901	Df(1)svr	1A1;1B9--10	weak suppressor	strong enhancer	enhancer	lethal
3196	Df(1)Stel-bt	6E2;7A6	suppressor	strong enhancer	strong enhancer	strong enhancer
9718	Df(2L)BSC244	32F2;33B6	enhancer	strong suppressor	strong suppressor	strong enhancer
1581	Df(2L)JS31	23A3--4;23D	strong suppressor	enhancer	enhancer	enhancer
25430	Df(2R)BSC597	58A2;58F1	suppressor	strong enhancer	enhancer	weak enhancer
27352	Df(2R)BSC780	60C2;60D14	strong suppressor	strong enhancer	strong enhancer	strong enhancer
7546	Df(2R)Exel6064	53C11;53D11	strong enhancer	suppressor	strong suppressor	enhancer
2596	Df(3L)6B-29+Df(3R)6B-29	81Fa;81Fa	suppressor	enhancer	enhancer	NE
24413	Df(3L)BSC389	66C12;66D8	suppressor	enhancer	enhancer	enhancer
26525	Df(3L)BSC673	67C7;67D10	suppressor	enhancer	weak enhancer	enhancer
27577	Df(3L)BSC816	66D9;66D12	weak suppressor	enhancer	strong enhancer	enhancer
7945	Df(3L)Exel9011	76B8;76B9	suppressor	weak enhancer	enhancer	enhancer
2155	Df(3R)A113	100A;3Rt	suppressor	strong enhancer	enhancer	enhancer
26846	Df(3R)BSC748	89E5;89E11	strong suppressor	enhancer	enhancer	enhancer
9215	Df(3R)Ed5495	85F16;86C7	enhancer	suppressor	suppressor	weak suppressor
7655	Df(3R)Exel6176	89E11;89F1	strong suppressor	weak enhancer	weak enhancer	weak enhancer
7657	Df(3R)Exel6178	90F4;91A5	suppressor	enhancer	enhancer	enhancer
7965	Df(3R)Exel7310	86E18;87A1	suppressor	strong enhancer	enhancer	enhancer
7976	Df(3R)Exel8159	88A4;88B1	suppressor	enhancer	weak enhancer	enhancer
7918	Df(3R)Exel8194	100A4;100A7	suppressor	weak enhancer	strong enhancer	enhancer
2352	Df(3R)X3F	99D1--2;99E1	suppressor	enhancer	enhancer	lethal
7512	Df(2L)Exel6030	33A2--33B3	suppressor	enhancer	enhancer	enhancer
25436	Df(2R)BSC603	60C7--60D1	strong suppressor	enhancer	enhancer	enhancer
7561	Df(2R)Exel6082	60C4--60C7	suppressor	enhancer	enhancer	enhancer
7623	Df(3R)Exel6144	83A6--83B6	strong suppressor	enhancer	enhancer	strong enhancer

NE, no effects
Mediator subunit	Effect on sal expression	nub-Gal4 phenotype	ey-Gal4 phenotype	Terriente-Félix et al. (2010)
Med1	NE	Apoptosis	NE	ND
Med4	NE	Vein defects	NE	ND
Med6	NE	Larval lethal	small eye	ND
Med11	NE	Apoptosis	ND	ND
Med19	NE	Ectopic vein	ND	ND
Med20	NE	Vein defects	weak defects	cell death
Med25	NE	smaller wing	NE	smaller wing
Med27	NE	Apoptosis	weak defects	smaller wing
Med28	NE	Apoptosis	small eye	ND
Med30	NE	Apoptosis	ND	cell death
Med9	NE	NE	NE	ND
Med10	NE	NE	NE	smaller wing
Med18	NE	ND	ND	ND
Med26	NE	NE	ND	ND
Med29	NE	NE	ND	ND

NE, no effects;
ND, not determined.