On the Essential Spectrum of Two-Dimensional Pauli Operators with Repulsive Potentials

Josef Mehringer

Abstract. We investigate the spectrum of the two-dimensional Pauli operator, describing a spin-$\frac{1}{2}$ particle in a magnetic field B, with a negative scalar potential V, such that $|V|$ grows at infinity. In particular, we obtain criteria for discrete and dense pure-point spectrum.

1. Introduction

For modelling the kinetic energy of a non-relativistic spin-$\frac{1}{2}$ particle in the plane, under a magnetic field B in the perpendicular direction to the plane, one uses the two-dimensional Pauli operator

$$H_A := \left[\sigma \cdot (-i\nabla - A)\right]^2 = (-i\nabla - A)^2 - \sigma_3 B \quad \text{on } L^2(\mathbb{R}^2, \mathbb{C}^2),$$

where A is a vector potential associated to B, i.e. $B = \text{curl} \ A := \partial_1 A_2 - \partial_2 A_1$. Here, $\sigma = (\sigma_1, \sigma_2)$ and σ_3 are the Pauli-matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

To study the behaviour of such spin-$\frac{1}{2}$ particles (e.g. electrons) in presence of an additional electric potential V, we investigate the spectrum of the operator

$$H := H_A + V = \left[\sigma \cdot (-i\nabla - A)\right]^2 + V \quad \text{on } L^2(\mathbb{R}^2, \mathbb{C}^2).$$

If V is non-negative or has a certain decay at infinity (e.g. potentials with Coulomb singularities), spectral properties of the magnetic Schrödinger operator $(-i\nabla - A)^2 + V$, as well as of the Pauli operator $H_A + V$ (in dimension $d = 2$ or 3), have been widely studied over the last decades (see, e.g. [2,4] or [5] for a latest overview). In this article, instead, we want to point out some interesting features of the spectrum of H for potentials V, tending to $-\infty$ as
Since such scalar potentials result in an operator H, unbounded from below, it is necessary to discuss questions on self-adjointness related to H. We emphasize that, since we also consider unbounded magnetic fields B, the self-adjointness of H cannot simply be reduced to that of the magnetic Schrödinger operator.

One motivation for the following considerations is an observation made in [10] for the two-dimensional massless magnetic Dirac operator, coupled to an electric potential V: there, an accumulation process of spectral points has been noticed, depending on the ratio $|V^2/B|$ at infinity. This phenomenon can be ascribed to the non-confining effect of V in the case of the Dirac operator. Regarding the Pauli operator, the influence of an additional scalar potential V on the spectrum $\sigma(H)$ depends crucially on the sign of V. For simplicity we outline this dependence for a constant magnetic field $B(x) = B_0$: a positive potential V, growing at infinity, always leads to discrete spectrum of the operator H, independently of B_0 (see, e.g. [9]). Such potential wells only enhance a localization effect caused by B_0, generating eigenvalues and spectral gaps (proportional to B_0). If we instead consider negative potentials V, the situation is quite different since the particle lowers its energy by staying in regions where V is small. A potential V, converging to $-\infty$ as $|x| \to \infty$, has therefore a delocalizing effect, i.e. the particle tends to escape any compact region of the plane. Our results show that such negative potentials V (describing for example constant radial fields) counteract the localizing effect of “hard” magnetic fields B, as they close spectral gaps, induced by B:

- If V converges to $-\infty$, but remains small compared to B, the spectrum $\sigma(H)$ is discrete, i.e. it consists of eigenvalues of finite multiplicity.
- If V is comparable to B, more precisely $|V| \approx 2B$ at infinity, points in the essential spectrum occur.
- If V overtakes B, more explicitly $|V/B| \to \infty$ as $|x| \to \infty$ (at least along a path), the spectrum $\sigma(H)$ covers the whole real line.\(^1\)

The precise statements of the claims above are contained in Theorems 1–4 in Sect. 3. We want to remark that the case $|V/B| \to \infty$ as $|x| \to \infty$ is treated by Theorems 3 and 4. Unlike Theorem 4, which is only valid for constant magnetic fields, Theorem 3 covers also non-constant fields B, but requires stronger constraints on the growth of V. Thus, the important case $B = B_0$ is addressed by two theorems. The ideas of the proofs of Theorems 1–3 originate from those used to prove the results in [10]. However, since we work with a second-order operator, the proofs are technically more laborious. Theorem 4 is based on a further construction of a Weyl sequence, obtained by treating V locally as a potential of a constant electric field. This is a refined approach compared to the method used in the proof of Theorem 3.

The organization of this article is as follows: In the next section some known facts about the Pauli operator are recapitulated. We present our precise results in Sect. 3, provided with some remarks and important applications. In

\(^1\) One may compare this statement with the results about H_A for decaying magnetic fields in [11].
Sect. 4 we give the proof of Theorem 1. The proofs of Theorems 2 and 3 are contained in Sect. 5, while the proof of Theorem 4 can be found in the last section. In the appendix, attached to the main text, we give a proof of the essential self-adjointness of the Pauli operator.

2. Basic Properties of the Pauli Operator

In this section, we point out some basic facts about the Pauli operator and the massless Dirac operator D_A, whose square equals H_A. For a vector potential $A \in C^1(\mathbb{R}^2, \mathbb{R}^2)$, generating the field $B = \text{curl} A \in C(\mathbb{R}^2, \mathbb{R})$, the Hamiltonian D_A is defined as the closure of the operator

$$\sigma \cdot (-i \nabla - A) = \begin{pmatrix} 0 & d^* \\ d & 0 \end{pmatrix} \quad \text{on } C_0^\infty(\mathbb{R}^2, \mathbb{C}^2),$$

which is essentially self-adjoint on the given core (see [3]). Especially, d and d^* can be seen as closed operators, i.e. we use the notation $d = -i \partial_1 - A_1 + i (-i \partial_2 - A_2)$ on $C_0^\infty(\mathbb{R}^2, \mathbb{C})$ and analogously for d^*. One observes that d, d^* satisfy the commutation relation

$$[d, d^*] \varphi := (dd^* - d^*d) \varphi = 2B \varphi \quad \text{for } \varphi \in C_0^\infty(\mathbb{R}^2, \mathbb{C}).$$

We can write $H_A = D_A^2 = \begin{pmatrix} d^*d & 0 \\ 0 & dd^* \end{pmatrix} \quad \text{on } C_0^\infty(\mathbb{R}^2, \mathbb{C}^2)$ and consider H_A as a self-adjoint operator on $\{ \psi \in \mathcal{D}(D_A) \mid D_A \psi \in \mathcal{D}(D_A) \}$, given by the Friedrichs extension. The components dd^* and d^*d of H_A are unitarily equivalent on the orthogonal complement of $\ker(H_A) = \ker(D_A)$. To verify this we note first that due to the matrix structure of D_A, we have

$$\text{sgn}(D_A) := \begin{vmatrix} D_A \\ |D_A| \end{vmatrix} = \begin{pmatrix} 0 & s^* \\ s & 0 \end{pmatrix}$$

on $\ker(D_A) = \ker(d) \perp \ker(d^*) \perp$. Since $\text{sgn}(D_A)^2 = \text{Id}$ on $\ker(D_A) \perp$ the maps

$$s: \ker(d) \perp \rightarrow \ker(d^*) \perp, \quad s^*: \ker(d^*) \perp \rightarrow \ker(d) \perp$$

are unitary and conjugated to each other. By the operator identity $H_A = D_A^2 = \text{sgn}(D_A) D_A^2 \text{sgn}(D_A)$ one concludes that

$$\begin{pmatrix} d^*d & 0 \\ 0 & dd^* \end{pmatrix} \varphi = \begin{pmatrix} s^*dd^*s & 0 \\ 0 & sd^*ds^* \end{pmatrix} \varphi,$$

for any $\varphi = (\varphi_1, \varphi_2)^T$ with $\varphi_1 \in \mathcal{D}(d^*d) \cap \ker(d) \perp$ and $\varphi_2 \in \mathcal{D}(dd^*) \cap \ker(d^*) \perp$. Hence, on $\ker(d) \perp$ the operator d^*d is unitarily equivalent to dd^* (considered as an operator on $\ker(d^*) \perp$). In this article we denote the orthogonal projection...
on $\ker(D_A)$ by P_0 and the orthogonal projections on $\ker(d)$, $\ker(d^*)$ by π, π_*. In addition, we set

$$P_{0}^\perp := 1 - P_0, \quad \pi^\perp := 1 - \pi, \quad \pi_*^\perp := 1 - \pi_*.$$

To define our full Hamiltonian, let $A \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ and $B, V \in C(\mathbb{R}^2, \mathbb{R})$ be such that $B = \text{curl} A$, then H is given by

$$H\varphi = \left[D_A^2 + V \right] \varphi = \left[(-i \nabla - A)^2 - \sigma_3 B + V \right] \varphi \quad \text{for} \quad \varphi \in C_0^\infty(\mathbb{R}^2, \mathbb{C}^2).$$

In general, the closure of this densely defined operator is not self-adjoint without any restriction on the growth rate of V at infinity. However, there are conditions, very similar to those for the classical Schrödinger operator, ensuring essential self-adjointness.

Proposition 1. Let $B, V \in C^1(\mathbb{R}^2, \mathbb{R})$ and $A \in C^2(\mathbb{R}^2, \mathbb{R}^2)$ with $B = \text{curl} A$. In addition, assume that V fulfills the lower bound

$$V(x) \geq -c|x|^2 + d, \quad x \in \mathbb{R}^2, \quad (7)$$

for some constants $c > 0, d \in \mathbb{R}$. Then, H is essentially self-adjoint on $C_0^\infty(\mathbb{R}^2, \mathbb{C}^2)$.

In Appendix A we recap an argument, already given in [8], to prove this proposition. We added a tightened proof for our relaxed regularity conditions because of completeness.

Remark 1. Following the lines of the proof given in Appendix A, we see that the regularity condition on B, V can be relaxed to $B, V \in C^\alpha_{loc}(\mathbb{R}^2, \mathbb{R})$, i.e. both only need to be locally (uniformly) α-Hölder continuous. By a perturbation argument one can also see that it suffices to assume that V, B are C^α_{loc} outside some compact set $K \subset \mathbb{R}^2$, while inside K they only need to be continuous.

Remark 2. The self-adjoint operator given by Proposition 1 is locally compact, i.e. for any characteristic function $\chi_{B_R(0)}$ on the ball $B_R(0)$ with radius R, the operator $\chi_{B_R(0)}(H - i)^{-1}$ is compact.

Remark 3. Considering the case $V = 0$, we obtain that H_A, dd^* and d^*d are essentially self-adjoint on $C_0^\infty(\mathbb{R}^2, \mathbb{C}^2)$, respectively, on $C_0^\infty(\mathbb{R}^2, \mathbb{C})$.

Note that (7) is the same lower bound on V as one needs for the (magnetic) Schrödinger operator to ensure the essential self-adjointness, whereas no restriction on the growth of B is necessary. The regularity conditions on V and A are quite strong compared to those of the magnetic Schrödinger operator (see [12]). The reason is that due to the lack of a diamagnetic inequality for H_A, one uses a direct argument, which requires more regularity on the potentials V and A. The interesting question remains: Could one relax these conditions for the Pauli operator as in the case of the magnetic Schrödinger operator?
3. Main Results

In this section, we assume that B, V and A fulfill the conditions of Proposition 1. It is easy to see that in the following results $B, V \in C^1(\mathbb{R}^2, \mathbb{R})$ can be relaxed to hold only outside some compact set $K \subset \mathbb{R}^2$ as in Remark 1.

Theorem 1. Assume that

$$V(x) \to -\infty \quad \text{as} \quad |x| \to \infty, \quad (8)$$

$$\left| \frac{\nabla V(x)}{V(x)} \right| \to 0 \quad \text{as} \quad |x| \to \infty, \quad (9)$$

$$\limsup_{|x| \to \infty} \left| \frac{V(x)}{2B(x)} \right| < 1. \quad (10)$$

Then $\sigma_{\text{ess}}(H) = \emptyset$, i.e. H has purely discrete spectrum.

Condition (9) is a restriction of the growth rate of V and rather of technical necessity. The interplay between B and V (as mentioned in the introduction) is described by condition (10). Thus, it is worthwhile to investigate further the dependence of $\sigma(H)$ on this quotient:

One can easily observe that if the quotient of (10) surpasses the constant 1, the spectrum of H changes its character. To see this pick $\Omega \in \ker(dd^*d)$, then

$$(dd^* + V)\Omega = (d^*d + 2B + V)\Omega \approx 0,$$

if $2B \approx -V$. Therefore, if $\ker(d^*d)$ contains enough functions (which is the case for fields B bounded form below by some positive constant), we obtain points in the essential spectrum of H, since a Weyl sequence can be constructed out of $\ker(d^*d)$. One can even show that the condition $2B \approx -V$ (at infinity) does not need to hold globally for obtaining $\sigma_{\text{ess}}(H) \neq \emptyset$. We demonstrate this for a certain class of fields B and potentials V.

Definition 1. A function $f : \mathbb{R}^2 \to \mathbb{R}$ varies with rate $\nu \in [0, 1]$ on a set $S \subset \mathbb{R}^2$, if there is a constant $C > 0$ such that for any $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$, with $\alpha(x) = o(|x|^{\nu})$ as $|x| \to \infty$, f satisfies

$$|f(x + \alpha(x))| \leq C|f(x)| \quad \text{for all} \quad x \in S.$$

Note that functions of the form $f_1(x) = c|x|^s$, $f_2(x) = c|x_1|^s$, with $s \in \mathbb{R}$, vary with any rate $\nu \in [0, 1]$ on $\mathbb{R}^2 \setminus B_1(0)$, respectively on $\mathbb{R}^2 \setminus [-1, 1] \times \mathbb{R}$.

Theorem 2. Assume that there is a sequence $(x_n)_{n \in \mathbb{N}}$, with $|x_n| \to \infty$ as $n \to \infty$, and constants $k \in \mathbb{N}, \varepsilon \in (0, 1)$ such that $|\nabla V|, |\nabla B|$ vary with rate 0 on $(x_n)_{n \in \mathbb{N}}$, as well as

$$V(x_n) \to -\infty, \quad (11)$$

$$\frac{|\nabla B(x_n)|^2}{|B(x_n)|^{1-\varepsilon}}, \frac{|\nabla V(x_n)|^2}{|V(x_n)|^{1-\varepsilon}} \to 0, \quad (12)$$

$$V(x_n) + 2k|B(x_n)| \to 0, \quad (13)$$

as $n \to \infty$. Then $0 \in \sigma_{\text{ess}}(H)$.

Let us now consider the case $V \gg B$ at infinity. The next two theorems state that the accumulation of eigenvalues intensifies, creating more points in the essential spectrum and closing spectral gaps.

Theorem 3. Assume that there is a continuous path $\gamma: \mathbb{R}^+ \to \mathbb{R}^2$, with $|\gamma(t)| \to \infty$ as $t \to \infty$, and constants $\epsilon > 0$, $\nu \in [0, 1]$ such that $|\nabla V|, |\nabla B|$ vary with rate ν on $\text{Im}(\gamma)$, as well as

$$
\frac{V(\gamma(t))}{2|B(\gamma(t))|} \to -\infty,
$$

(14)

$$
\left(\frac{|\nabla V(\gamma(t))|}{|V(\gamma(t))|} + \frac{|\nabla B(\gamma(t))|}{|B(\gamma(t))|} \right) \left(\frac{|V(\gamma(t))|^3}{B^2(\gamma(t))} \right)^{\frac{1}{2+\epsilon}} \to 0,
$$

(15)

$$
\frac{1}{|\gamma(t)|^{2\nu}} \left(\frac{|V(\gamma(t))|}{B^2(\gamma(t))} \right)^{1+\epsilon} \to 0,
$$

(16)

as $t \to \infty$. In addition, suppose that, for all $t \in (0, \infty)$, the inequality

$$
B_0 \leq |B(\gamma(t))| \leq \alpha \exp \left(\kappa \frac{|V(\gamma(t))|}{B(\gamma(t))} \right)
$$

(17)

holds with constants $\alpha, \kappa, B_0 > 0$. Then $\sigma_{\text{ess}}(H) = \mathbb{R}$.

For our main application, potentials of power-like growth (see discussion after the next theorem), condition (16) imposes unsatisfying restrictions on the growth rate of V/B. At least in the case of constant magnetic fields it can be weakened.

Theorem 4. Let $B = B_0 > 0$ and $V \in C^2(\mathbb{R}^2, \mathbb{R})$. Assume that there is a continuous path $\gamma: \mathbb{R}^+ \to \mathbb{R}^2$, with $|\gamma(t)| \to \infty$ as $t \to \infty$, and constants $\epsilon > 0$, $\nu \in [0, 1]$ such that the matrix norm of the Hessian matrix $\|\text{Hess}(V)\|_2 : \mathbb{R}^2 \to \mathbb{R}$ varies with rate ν on $\text{Im}(\gamma)$, as well as

$$
V(\gamma(t)) \to -\infty,
$$

(18)

$$
\|\text{Hess}(V)\|_2(\gamma(t))|V(\gamma(t))|^{1+\epsilon} \to 0,
$$

(19)

$$
\frac{1}{|\gamma(t)|^{2\nu}} |V(\gamma(t))|^{1+\epsilon} \to 0,
$$

(20)

as $t \to \infty$. In addition, assume

$$
\limsup_{t \to \infty} \frac{|\nabla V(\gamma(t))|^2}{|V(\gamma(t))|} < (2B_0)^2.
$$

(21)

Then $\sigma_{\text{ess}}(H) = \mathbb{R}$.

Remark 4. Note that a well-known, basic example for this last theorem is a constant electric field E_0 in the x_1-direction with the corresponding potential $V(x) = E_0 x_1$.

Remark 5. Results similar to that of Theorems 1–4 can be obtained for the magnetic Schrödinger operator with scalar potentials V using the same techniques as in the proofs of Theorems 1–4.
Finally, we want to discuss some implications of our results, in particular with respect to spherically symmetric fields B and potentials V, i.e. $B(x) = b(|x|)$, $V(x) = v(|x|)$ for $x \in \mathbb{R}$. Using the rotational gauge

$$A(x) := \frac{A(r)}{r} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}, \quad A(r) = \frac{1}{r} \int_0^r b(s)sd,$$

with $r = |x|$, we decompose H in a direct sum of operators on the half-line. More explicitly, there is a unitary map

$$U : L^2(\mathbb{R}^2, \mathbb{C}^2) \to \bigoplus_{j \in \mathbb{Z}} L^2(\mathbb{R}^+, \mathbb{C}^2; dr)$$

such that $UHU^* = \bigoplus_{j \in \mathbb{Z}} h_j$, with

$$h_j := \begin{pmatrix} -\partial_r^2 + \frac{j^2}{r^2} + \frac{1}{2} & 0 \\ 0 & -\partial_r^2 + \frac{(j+1)^2}{r^2} - \frac{1}{2} \end{pmatrix} + \frac{1}{r} A(r) + \frac{m_j}{r} A(r) + \sigma_3 A'(r) + v(r)$$

on $L^2(\mathbb{R}^+, \mathbb{C}^2; dr)$, where $m_j = j + \frac{1}{2}$ (see, e.g. [13]). It is easy to verify that if

$$\liminf_{r \to \infty} b(r) > 0,$$

$$A'(r)/A^2(r) \to 0 \quad \text{as } r \to \infty,$$

$$\limsup_{r \to \infty} |v(r)|/A^2(r) < 1,$$

then h_j has purely discrete spectrum for every $j \in \mathbb{Z}$. As a consequence, one can use the relations

$$\sigma_\#(H) = \bigcup_{j \in \mathbb{Z}} \sigma_\#(h_j), \quad \# \in \{\text{ac, sc, pp}\},$$

to conclude that $\sigma(H) = \sigma_{\text{pp}}(H), \sigma_{\text{ac}}(H) = \sigma_{\text{sc}}(H) = \emptyset$ if (22)–(24) are fulfilled. To get more information about $\sigma(H) = \sigma_{\text{pp}}(H)$ we employ Theorems 1–4 and obtain:

Corollary 1. Let $b(r) = b_0 r^s, v(r) = v_0 r^t$ with $v_0 < 0 < b_0$ and exponents $0 \leq s, 0 \leq t \leq 2$. Then

a) $\sigma(H)$ is purely discrete if $0 < t < s$ or $0 < t = s$ and $|v_0| < 2b_0$.

b) $0 \in \sigma_{\text{ess}}(H)$ if $0 < t = s$ and $|v_0| = 2kB_0$ for some $k \in \mathbb{N}$.

c) $\sigma(H) = \mathbb{R}$ is dense pure point if $3t < 3s < 2(s + 1)$.

d) $\sigma(H) = \mathbb{R}$ is dense pure point if $s = 0$ and $0 < t < 1$.

The origins of the strong restrictions on s, t in c), d) can easily be tracked back to conditions (15) and (16) of Theorem 3, and (19) of Theorem 4. Unfortunately, even in the case of a constant magnetic field ($s = 0$), we cannot cover the full range of potentials ($0 < t \leq 2$) for which one might expect $\sigma(H) = \mathbb{R}$.

4. Proof of Theorem 1

Note that the assumptions imply that either $B(x) \to \infty$ or $B(x) \to -\infty$. It suffices to consider the case $B(x) \to \infty$ as $|x| \to \infty$, since otherwise we only have to interchange the roles of d and d^* in the proof. By modifying B and V...
on a compact set and comparing the corresponding resolvents, we may assume that B, V satisfy

\[V(x) \leq -1/\delta, \quad (25) \]
\[|\nabla V(x)| \leq |\delta V(x)|, \quad (26) \]
\[|V(x)| \leq 2(1 - \eta)B(x), \quad (27) \]

where $\delta \in (0, \frac{1}{4})$ is fixed, but can be chosen arbitrarily small, and $\eta \in (0, 1)$ is a fixed (\(\delta\)-independent) constant (c.f. [10] Appendix B).

Using the commutator relation (3) we see that

\[dd^* \geq 2B \geq (1 - \eta)^{-1}|V| \geq (1 - \eta)^{-1} \delta^{-1} \quad (28) \]

on $C_0^\infty(\mathbb{R}^2, \mathbb{C})$ and therefore on $D(dd^*)$. Since dd^* and d^*d are isospectral away from 0, we obtain a spectral gap $(0, \beta) \subset \rho(H_A)$, with $\beta = (1 - \eta)^{-1} \delta^{-1}$. Thus, 0 can be regarded as an isolated point of the spectrum, which is used in the following commutator estimates.

Lemma 1. Let $V \in C^1(\mathbb{R}^2, \mathbb{R})$, $B \in C(\mathbb{R}^2, \mathbb{R})$ and $A \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ with $B = \text{curl } A$. Assume further that the conditions (25)–(27) are fulfilled for $\delta \in (0, \frac{1}{4})$ and $\eta \in (0, 1)$. Then:

a) The operators $[P_{0}^\perp, V^{-1}] V$ and $V [P_{0}^\perp, V^{-1}]$ are well-defined on the core $C_0^\infty(\mathbb{R}^2, \mathbb{C}^2)$ and extend to bounded operators on $L^2(\mathbb{R}^2, \mathbb{C}^2)$ with

\[\|V [P_{0}^\perp, V^{-1}] \|, \| [P_{0}^\perp, V^{-1}] V \| \leq 4\delta^{\frac{3}{2}}. \]

The same holds true if we replace P_{0}^\perp above by P_0.

b) $P_0 D(V), P_{0}^\perp D(V) \subset D(V)$.

Lemma 2. Let $V \in C^1(\mathbb{R}^2, \mathbb{R})$, $B \in C(\mathbb{R}^2, \mathbb{R})$ and $A \in C^1(\mathbb{R}^2, \mathbb{R}^2)$ with $B = \text{curl } A$. Assume further that the conditions (25)–(27) are fulfilled for $\delta \in (0, \frac{1}{4})$ and $\eta \in (0, 1)$. Then $[\text{sgn}(D_A)P_{0}^\perp, V^{-1}]$ maps $L^2(\mathbb{R}^2, \mathbb{C}^2)$ in $D(V)$ and

\[\|V [\text{sgn}(D_A)P_{0}^\perp, V^{-1}] \| \leq 4\delta^{\frac{3}{2}}. \quad (29) \]

The proofs of those commutator estimates can be found in [10]. Since D_A is a first-order operator, it is much more convenient to commute V with functions of D_A instead of with functions of H_A. For proving Theorem 1, it suffices to find a constant $c > 0$ such that

\[\|H\varphi\| \geq c\|V\varphi\|, \quad \varphi \in C_0^\infty(\mathbb{R}^2, \mathbb{C}^2) \quad (30) \]

holds (see Lemma 4 in the appendix).
Proof of Theorem 1. Let \(\varphi \in C_0^\infty(\mathbb{R}^2, \mathbb{C}) \). By Lemma 1 we can split \(\|H\varphi\| \) as
\[
\|H\varphi\|^2 = \|(H_A + V)(P_0 + P_0^\perp)\varphi\|^2
= \|(VP_0 + (H_A + V)P_0^\perp)\varphi\|^2
= \|(H_A + V)P_0^\perp\varphi\|^2 + 2\text{Re}\langle(H_A + V)P_0^\perp\varphi, VP_0\varphi\rangle + \|VP_0\varphi\|^2
= \|(H_A + V)P_0^\perp\varphi\|^2 - \delta \|VP_0^\perp\varphi\|^2
+ 2\text{Re}\langle VP_0\varphi, H_A P_0^\perp\varphi\rangle + \|V\varphi\|^2 - (1 - \delta) \|VP_0^\perp\varphi\|^2.
\]
For the cross-term, condition (26) yields
\[
\|\langle VP_0\varphi, H_A P_0^\perp\varphi\rangle\| = \|\langle D_A VP_0\varphi, D_A P_0^\perp\varphi\rangle\|
\leq \frac{1}{2}\delta^{3/2}\|(-i\sigma \nabla V)VP_0\varphi\|^2 + \frac{1}{2}\delta^{3/2}\|D_A P_0^\perp\varphi\|^2
\leq \frac{1}{2}\delta^{3/2}\|VP_0\varphi\|^2 + \frac{1}{2}\delta^{3/2}\|H_A P_0^\perp\varphi\|^2
\leq \frac{1}{4}\delta^{3/2}\|H_A P_0^\perp\varphi\|^2 + \frac{1}{4}\delta^{3/2}\|V\varphi\|^2 + 2\|VP_0\varphi\|^2.
\]
By Lemma 1 a) we have
\[
\|VP_0^\perp\varphi\|, \|VP_0\varphi\| \leq (1 + 4\delta^{3/2})\|V\varphi\|,
\]
and therefore
\[
\|V\varphi\|^2 - (1 - \delta) \|VP_0^\perp\varphi\|^2 - \frac{1}{4}\delta^{3/2}\|V\varphi\|^2 - \frac{1}{2}\delta^{3/2}\|VP_0\varphi\|^2
\geq (\delta - 14\delta^{3/2})\|V\varphi\|^2. \tag{32}
\]
Because
\[
\|(H_A + V)P_0^\perp\varphi\|^2 - \delta^{3/2}\|H_A P_0^\perp\varphi\|^2 - \delta\|VP_0\varphi\|^2
\geq (1 - \varepsilon - \delta^{3/2})\|H_A P_0^\perp\varphi\|^2 + (1 - \varepsilon^{-1} - \delta)\|VP_0^\perp\varphi\|^2
\]
for any \(\varepsilon \in (0, 1) \), it suffices to show, in view of (31) and (32), that
\[
\langle H_A P_0^\perp\varphi, H_A P_0^\perp\varphi\rangle + \frac{1 - \varepsilon^{-1} - \delta}{1 - \varepsilon - \delta^{3/2}}\langle VP_0^\perp\varphi, VP_0^\perp\varphi\rangle \geq 0 \tag{33}
\]
for \(\delta > 0 \) small enough and some \(\varepsilon \in (0, 1) \). We choose \(\varepsilon = 1 - \delta^{1/2} \), then
\[
-\frac{1 - \varepsilon^{-1} - \delta}{1 - \varepsilon - \delta^{3/2}} = \frac{1}{1 - \delta} \left(\frac{1}{1 - \delta^{1/2}} + \delta^{1/2} \right) =: c_\delta > 0.
\]
Since \(dd^* \geq 2B \), and therefore \(\text{ker}(d^*) = \{0\} \), we have
\[
P_0^\perp = \begin{pmatrix} \pi^\perp & 0 \\ 0 & \pi^\perp \end{pmatrix} = \begin{pmatrix} \pi^\perp & 0 \\ 0 & 1 \end{pmatrix}.
\]
Setting \(\varphi = (\varphi_1, \varphi_2)^T \), one can rewrite (33) as
\[
\|H_A P_0^\perp\varphi\|^2 - c_\delta \|VP_0^\perp\varphi\|^2
= \|d^*d\pi^\perp\varphi_1\|^2 - c_\delta \|V\pi^\perp\varphi_1\|^2 + \|dd^*\varphi_2\|^2 - c_\delta \|V\varphi_2\|^2.
\]
Using the isometries s, s^* given in (5), relation (6), and the estimate (28), one obtains
\[
\|dd^*\varphi_2\|^2 - c_\delta \|V\varphi_2\|^2
= \langle d^*\varphi_2, d^*dd^*\varphi_2 \rangle - c_\delta \langle \sqrt{-V}\varphi_2, |V|\sqrt{-V}\varphi_2 \rangle
= \langle sd^*\varphi_2, dd^*sd^*\varphi_2 \rangle - c_\delta \langle \sqrt{-V}\varphi_2, |V|\sqrt{-V}\varphi_2 \rangle
\geq \langle sd^*\varphi_2, 2Bsd^*\varphi_2 \rangle - c_\delta \langle d^*\sqrt{-V}\varphi_2, d^*\sqrt{-V}\varphi_2 \rangle
\geq \langle sd^*\varphi_2, 2Bsd^*\varphi_2 \rangle - c_\delta \langle \sqrt{-V}d^*\varphi_2, \sqrt{-V}d^*\varphi_2 \rangle
- c_\delta \langle [d^*, \sqrt{-V}]\varphi_2, \sqrt{-V}d^*\varphi_2 \rangle
- c_\delta \langle \sqrt{-V}d^*\varphi_2, [d^*, \sqrt{-V}]\varphi_2 \rangle
- c_\delta \langle [d^*, \sqrt{-V}]\varphi_2, [d^*, \sqrt{-V}]\varphi_2 \rangle
\geq \|\sqrt{2Bsd^*}\varphi_2\|^2 - c_\delta \left(\|d^*\varphi_2\| + \|\sqrt{-V}d^*\varphi_2\|\right)^2
\geq \|\sqrt{2Bsd^*}\varphi_2\|^2 - c_\delta \left(\delta \|sd^*\varphi_2\| + (1 + 4\delta^2)\|\sqrt{-V}sd^*\varphi_2\|\right)^2
\geq \left[1 - c_\delta (1 - \eta) (1 + 15\delta^2)\right] \|\sqrt{2Bsd^*}\varphi_2\|^2,
\] (35)
where we applied the bound $\|\sqrt{-V}[s\pi^+, \sqrt{-V}^{-1}]\| \leq 4\delta^2$. For the latter write
\[
G[\text{sgn}(DA)P_0^+, G^{-1}] = \begin{pmatrix} 0 & G[s^+, G^{-1}] \\ G[s\pi^+, G^{-1}] & 0 \end{pmatrix},
\] (36)
where $G = \sqrt{-V}$ and therefore, by Lemma 2 with $\sqrt{-V}$ instead of V, we get
\[
\|\sqrt{-V}[s\pi^+, \sqrt{-V}^{-1}]\| \leq \|\sqrt{-V}[\text{sgn}(DA)P_0^+, \sqrt{-V}^{-1}]\| \leq 4\delta^2.
\]
Similarly, we obtain a lower bound for $\|d^*d\pi^+\varphi_1\|^2 - c_\delta \|V\pi^+\varphi_1\|^2$ by applying again the upper relation of Eq. (6). More precisely,
\[
\|d^*d\pi^+\varphi_1\|^2 - c_\delta \|V\pi^+\varphi_1\|^2
= \|d^*ds^*s\pi^+\varphi_1\|^2 - c_\delta \|Vs^*s\pi^+\varphi_1\|^2
= \|dd^*s\pi^+\varphi_1\|^2 - c_\delta \|Vs^*V^{-1}Vs\pi^+\varphi_1\|^2
= \|dd^*s\pi^+\varphi_1\|^2 - c_\delta \|(s^* + T)Vs\pi^+\varphi_1\|^2,
\]
where $T = V[s^*, V^{-1}]$. As above, Lemma 2 together with relation (36) for $G = V$ yields $\|T\| \leq 4\delta^2$. Thus,
\[
\|d^*d\pi^+\varphi_1\|^2 - c_\delta \|V\pi^+\varphi_1\|^2 \geq \|dd^*s\pi^+\varphi_1\|^2 - c_\delta (1 + 10\delta^2)\|Vs\pi^+\varphi_1\|^2.
\]
We note that $s\pi^+\varphi_1 \in \mathcal{D}(dd^*) \subset \mathcal{D}(V)$, hence we can use (35) (by approximating $s\pi^+\varphi_1$ through C_0^∞-functions in the graph norm of dd^*) to conclude that
\[
\|d^*d\pi^+\varphi_1\|^2 - c_\delta \|V\pi^+\varphi_1\|^2
\geq \left[1 - c_\delta (1 - \eta) (1 + 15\delta^2)\right] \|\sqrt{2Bsd^*s\pi^+}\varphi_1\|^2.
\]
Combining this inequality with (35) leads to
\[
\|H_A P_0^\perp \varphi\|^2 - c_\delta \|VP_0^\perp \varphi\|^2 \\
\geq [1 - c_\delta (1 - \eta)(1 + 50\delta^2)] \left(\|\sqrt{2B}sd^* \varphi_2\|^2 + \|\sqrt{2Bd^\perp \varphi_1}\|^2 \right),
\]
where the r.h.s is non-negative for \(\delta\) small enough. □

5. Proof of Theorems 2 and 3

The basic strategy of the proofs is to represent \(B\) and \(V\) locally through constant values \(V_n := V(x_n)\) and \(B_n := B(x_n)\) along a sequence \((x_n)_{n \in \mathbb{N}} \subset \mathbb{R}^2\). Since one also needs to compare vector potentials associated to \(B_n\) and \(B\), we use the gauges
\[
A_n(x) := \int_0^1 B_n \wedge (x - x_n) \text{sd}s = \frac{1}{2} B_n \wedge (x - x_n),
\]
\[
\tilde{A}_n(x) := \int_0^1 B(x_n + s(x - x_n)) \wedge (x - x_n) \text{sd}s,
\]
where \(a \wedge v := a(-v_2, v_1)\) for \(a \in \mathbb{R}\) and \(v = (v_1, v_2) \in \mathbb{R}^2\). The two given vector potentials fulfill \(\text{curl} A_n = \text{curl} \tilde{A}_n = B\); hence, for every \(n \in \mathbb{N}\) there exists a function \(g_n \in C^2(\mathbb{R}^2, \mathbb{R})\) such that \(\nabla g_n = A_n - \tilde{A}_n\). In addition, for every vector potential \(A_n\), representing the constant magnetic fields \(B_n\), we obtain operators \(d_n\) and \(d_n^*\), \(n \in \mathbb{N}\), defined as in (2). For a sequence of natural numbers \((k_n)_{n \in \mathbb{N}}\) we set
\[
\psi_n(x) := \begin{pmatrix} (d_n^*)^{k_n} e^{-\frac{B_n}{4}|x - x_n|^2} \\ 0 \end{pmatrix}.
\]
Iterating the commutator relation (3) for \(d_n, d_n^*\) yields
\[
d_n^*d_n \left[(d_n^*)^{k_n} e^{-\frac{B_n}{4}|x - x_n|^2} \right] = 2k_n B_n \left[(d_n^*)^{k_n} e^{-\frac{B_n}{4}|x - x_n|^2} \right], \quad n \in \mathbb{N}, \tag{37}
\]
i.e. \(\psi_n\) is an eigenfunction of \(H_{A_n}\) for the corresponding eigenvalue \(2k_n B_n\). For the localization let \(\chi \in C_0^\infty(\mathbb{R}^2, [0, 1])\) be such that \(\chi(x) = 1\) for \(|x| \leq 1\) and \(\chi(x) = 0\) for \(|x| \geq 2\). We set
\[
\chi_n(x) := \chi \left(\frac{x - x_n}{r_n} \right),
\]
where \(r_n > 0\) will be chosen in the proofs. For the Weyl sequence, we define functions \(\varphi_n\) through
\[
\varphi_n(x) := e^{i g_n(x)} \chi_n(x) \psi_n(x), \quad x \in \mathbb{R}^2, \tag{38}
\]
with \(n \in \mathbb{N}\). Bounds on the norm of \(\varphi_n\) can be obtained in [10]. They are given through:
Lemma 3. For all $n \in \mathbb{N}$ large enough we have
\[
\|\varphi_n\|^2 = 2\pi \int_0^\infty (B_n r)^{2k_n} e^{-\frac{B_n}{2} r^2} dr = 2^{k_n+1} \pi B_n^{k_n-1} k_n! \tag{39}
\]
\[
\|\varphi_n\|^2 \geq \|\psi_n\|^2 \left(1 - \frac{1}{k_n!} \int_{\frac{1}{2} B_n r_n^2}^{\infty} s^{k_n} e^{-s} ds \right). \tag{40}
\]

Now $H\varphi_n$ can be written as
\[
e^{-i g_n} (H_A + V)\varphi_n = (H_{\tilde{A}} + V)\chi_n \psi_n
\]
\[
= (H_A + V)\chi_n \psi_n + 2(\tilde{A}_n - A_n)(-i \nabla - A_n)\chi_n \psi_n
\]
\[
+ (\tilde{A}_n - A_n)^2 \chi_n \psi_n + \text{div}(\tilde{A}_n - A_n)\chi_n \psi_n
\]
\[
+ (B - B_n)\chi_n \psi_n, \tag{41}
\]
with the localization error
\[
(H_{\tilde{A}_n} + V)\chi_n \psi_n - \chi_n (H_{A_n} + V)\psi_n
\]
\[
= -(\Delta \chi_n) \psi_n + 2(-i \nabla \chi_n)(-i \nabla - A_n)\psi_n. \tag{42}
\]

To prove Theorems 2 and 3 we estimate each term of (41) separately. For the proofs we use the notation $K_n := \{ x \in \mathbb{R}^2 \mid r_n \leq |x - x_n| \leq 2r_n \}$ with $n \in \mathbb{N}$.

Proof of Theorem 2. We set $k_n = k$ and choose the radii to be $r_n^{-4} = B_n^{(2-\epsilon)}$. Then, for any $p \geq 0$,
\[
\frac{(B_n)^p}{k_n!} \int_{\frac{1}{2} B_n r_n^2}^{\infty} s^{k_n} e^{-s} ds = \frac{(B_n)^p}{k!} \int_{\frac{1}{2} B_n^{1/2}}^{\infty} s^{k} e^{-s} ds \to 0 \quad \text{as } n \to \infty.
\]
In addition, we have $\|\psi_n\|^2 \leq 2 \|\varphi_n\|^2$ for $n \in \mathbb{N}$ large enough. For treating the terms on the r.h.s. of (41), we estimate:
\[
\| (\tilde{A}_n - A_n)(-i \nabla - A_n)\chi_n \psi_n \|^2
\]
\[
\leq C_1 r_n^4 \| \nabla B(x_n) \|^2 \| (\tilde{A}_n - A_n)\chi_n \psi_n \|^2
\]
\[
\leq 2C_1 r_n^4 \| \nabla B(x_n) \|^2 \left[(2k + 1)B_n \| \psi_n \|^2 + r_n^{-2} \| \nabla \chi \|^2 \int_{K_n} |\psi_n(x)|^2 dx \right]
\]
\[
\leq 16kC_1 \| \nabla B(x_n) \|^2 \| \psi_n \|^2 + 4C_1 \| \nabla \chi \|^2 \| \psi_n \|^2 B_n^{\epsilon/2} \frac{1}{k!} \int_{\frac{1}{2} B_n^{1/2}}^{\infty} s^{k} e^{-s} ds.
\]
In addition,
\[
\| (\tilde{A}_n - A_n)^2 \chi_n \psi_n \|^2 \leq C_2 r_n^4 \| \nabla B(x_n) \|^4 \| \psi_n \|^2 \leq C_2 \| \nabla B(x_n) \|^4 B_n^{2(1-\epsilon)} \| \psi_n \|^2,
\]
\[
\| \text{div} (\tilde{A}_n - A_n)\chi_n \psi_n \|^2 = \| \text{div} \tilde{A}_n \chi_n \psi_n \|^2 \leq C_3 r_n^2 \| \nabla B(x_n) \|^2 \| \psi_n \|^2
\]
\[
\leq C_3 \| \nabla B(x_n) \|^2 B_n^{1-\epsilon} \| \psi_n \|^2,
\]
\[
\| (B - B_n)\chi_n \psi_n \|^2 \leq C_4 r_n^2 \| \nabla B(x_n) \|^2 \| \psi_n \|^2 \leq C_4 \| \nabla B(x_n) \|^2 B_n^{-\epsilon/2} \| \psi_n \|^2.
\]
For the first term of the r.h.s of (41) we get, due to (42), that

\[\| (H_{A_n} + V) \chi_n \psi_n \| \leq \| \chi_n (H_{A_n} + V) \psi_n \| + \| (\Delta \chi_n) \psi_n \| + 2\| (-i \nabla \chi_n) (-i \nabla - A_n) \psi_n \|, \]

with

\[\| (\Delta \chi_n) \psi_n \| ^2 \leq r_n^{-1}\| \Delta \chi \| _\infty ^2 \int _{K_n} |\psi_n(x)| ^2 dx \]

\[\leq 2\| \Delta \chi \| _\infty ^2 \| \psi_n \| ^2 \frac{1}{k!} B_n ^{2-\epsilon} \int _{\frac{1}{2} B_n ^{1/2}} s^k e^{-s} ds, \]

and

\[\| (-i \nabla \chi_n) (-i \nabla - A_n) \psi_n \| ^2 \leq r_n^{-2} \| \nabla \chi \| _\infty ^2 \int _{K_n} |(-i \nabla - A_n) \psi_n(x)| ^2 dx \]

\[\leq \| \nabla \chi \| _\infty ^2 \| \psi_n \| ^2 (2k + 1) B_n ^{2-\epsilon/2} \int _{\frac{1}{2} B_n ^{1/2}} s^k e^{-s} ds. \]

Because of (37) and since \(|\nabla V| \) vary with rate 0, we conclude by the mean value theorem

\[\| \chi_n (H_{A_n} + V) \psi_n \| ^2 \leq \| \chi_n (V + 2kB_n) \psi_n \| ^2 \]

\[\leq C_5 \| \nabla V(x_n) \| ^2 r_n ^2 \| \chi_n \psi_n \| ^2 + (2kB_n + V_n) ^2 \| \chi_n \psi_n \| ^2 \]

\[\leq C_5 (4k)^{1-\epsilon} \frac{\| \nabla V(x_n) \| ^2}{|V_n| ^{1-\epsilon}} \| \psi_n \| ^2 + (2kB_n + V_n) ^2 \| \varphi_n \| ^2. \]

Hence, by (41) and conditions (11)–(13) we see that \(\| (H_{A_n} + V) \varphi_n \| / \| \varphi_n \| \to 0 \) as \(n \to \infty \). In addition, note that \(r_n \to 0 \) as \(n \to \infty \), so we can assume that the \(\varphi_n \) have mutually disjoint support, i.e. \((\varphi_n) _{n \in \mathbb{N}} \) is a Weyl sequence for 0.

Proof of Theorem 3. We first note that it suffices to prove \(0 \in \sigma_{\text{ess}}(H) \), since for \(E \in \mathbb{R} \) we consider \(V_E := V - E \) instead of \(V \), which also fulfills (14)–(17) along \(\gamma \). Because \(\mathbb{R}^+ \ni t \mapsto V(\gamma(t))/B(\gamma(t)) \) is continuous and (14) holds we find points \((x_n) _{n \in \mathbb{N}} \subset \text{Ran}(\gamma) \), with \(|x_n| \to \infty \) as \(n \to \infty \), such that \(2nB(x_n) = -V(x_n) \). We choose \(k_n = n \) and set

\[r_n := \sqrt{2n ^{1+\epsilon} / B_n}. \tag{43} \]

Note that \(r_n / |x_n| ^\nu \to 0 \) as \(n \to \infty \) by (16). In particular, we might assume the \(\varphi_n \) to have mutually disjoint support. Further, for any \(\lambda \geq 0 \),

\[\frac{e^{\lambda n}}{n!} \int _{n ^{1+\epsilon}} ^{\infty} s ^n e ^{-s} ds \leq e^{\lambda n} \exp \left(n \ln(2n) - n ^{1+\epsilon} / 2 + n \right) \to 0 \quad \text{as} \quad n \to \infty. \]

Hence, we can choose \(N \in \mathbb{N} \) so large that \(\| \varphi_n \| ^2 \leq \| \psi_n \| ^2 \leq 2\| \varphi_n \| ^2 \) for \(n \geq N \). Proceeding as in the proof of Theorem 2, we obtain for the terms on the r.h.s. of (41):
\[(\tilde{A}_n - A_n)(-i \nabla - A_n) \chi_n \psi_n \|^2 \]
\[
\leq C_6 r_n^4 |\nabla B(x_n)|^2 (2n + 1) B_n \left[|\psi_n|^2 + r_n^{-2} |\nabla \chi|^2 \right] \int_{K_n} |\psi_n(x)|^2 \, dx
\]
\[
\leq 16C_6 n^{3+2\epsilon} B_n \left| \frac{\nabla B(x_n)}{B_n^2} \right|^2 |\psi_n|^2 + C_6 \left| \nabla \chi \right|^2 |\psi_n|^2 B_n \frac{1}{n!} \int_{n^{1+\epsilon}}^{\infty} s^n e^{-s} \, ds
\]
\[
\leq \tilde{C}_6 \left(\frac{|V_n|^3}{B_n^2} \right)^{1+\epsilon} \frac{|\nabla B(x_n)|^2}{B_n^2} |\psi_n|^2 + \tilde{C}_6 \left| \nabla \chi \right|^2 |\psi_n|^2 \frac{2\epsilon + 1}{n!} \int_{n^{1+\epsilon}}^{\infty} s^n e^{-s} \, ds.
\]

Using (as in the first inequality above) that $|\nabla B|$ vary with rate ν, we conclude that

\[
\|(\tilde{A}_n - A_n)^2 \chi_n \psi_n\|^2 \leq C_7 r_n^4 \left| \frac{\nabla B(x_n)}{B_n^4} \right|^4 |\psi_n|^2,
\]
\[
\|\text{div}(\tilde{A}_n - A_n) \chi_n \psi_n\|^2 \leq C_8 r_n^2 \left| \frac{\nabla B(x_n)}{B_n^2} \right|^2 |\psi_n|^2,
\]
\[
\|(B - B_n) \chi_n \psi_n\|^2 \leq C_9 r_n^2 \left| \frac{\nabla B(x_n)}{B_n^2} \right|^2 |\psi_n|^2.
\]

We estimate, using equality (42), the first term on the r.h.s. of (41) by

\[
\|(H_{A_n} + V) \chi_n \psi_n\| \leq \|(V - V_n) \chi_n \psi_n\| + \|(\Delta \chi_n) \psi_n\|
\]
\[+ 2 \left\| (-i \nabla \chi_n)(-i \nabla - A_n) \psi_n \right\|,
\]

with

\[
\|(\Delta \chi_n) \psi_n\|^2 \leq \|\Delta \chi\|^2_{\infty} \|\psi_n\|^2 \frac{B_n^2}{n^{2+2\epsilon}} \frac{1}{n!} \int_{n^{1+\epsilon}}^{\infty} s^n e^{-s} \, ds
\]
\[
\leq \alpha^2 \|\Delta \chi\|^2_{\infty} \|\psi_n\|^2 \frac{e^{4\kappa n}}{n^{2+2\epsilon}} \frac{1}{n!} \int_{n^{1+\epsilon}}^{\infty} s^n e^{-s} \, ds,
\]

and

\[
\left\| (-i \nabla \chi_n)(-i \nabla - A_n) \psi_n \right\|^2 \leq \|\nabla \chi\|^2_{\infty} \|\psi_n\|^2 \frac{B_n}{n^{1+\epsilon}} \int_{K_n} (2n + 1) B_n \left| \psi_n(x) \right|^2 \, dx
\]
\[
\leq \alpha \left\| \nabla \chi \right\|^2_{\infty} \|\psi_n\|^2 \frac{e^{2\kappa n}}{n^{1+\epsilon}} \frac{1}{n!} \int_{n^{1+\epsilon}}^{\infty} s^n e^{-s} \, ds.
\]

Since $|\nabla V|$ vary with rate ν, we have

\[
\|\chi_n (H_{A_n} + V) \psi_n\|^2 \leq \|\chi_n (V - V_n) \psi_n\|^2 \leq C_{10} \|\nabla V(x_n)\|^2 r_n^2 |\psi_n|^2
\]
\[
\leq \tilde{C}_{10} \left(\frac{|V_n|^3}{B_n^2} \right)^{1+\epsilon} \frac{|\nabla V(x_n)|^2}{|V_n|^2} |\psi_n|^2.
\]

We see that $\|(H_{A_n} + V) \varphi_n\|/\|\varphi_n\| \to 0$ as $n \to \infty$, and therefore, by (41) and the above estimates, that $\|(H_{A} + V) \varphi_n\|/\|\varphi_n\| \to 0$ as $n \to \infty$. \qed
6. Proof of Theorem 4

Throughout this section we consider the case of a constant magnetic field \(B(x) = B_0 \). In addition, we assume that \(A \) is in the rotational gauge, i.e.

\[
A(x) = \frac{B_0}{2} \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}.
\]

Note that \(H_A \) is invariant under rotations. More precisely, for a matrix \(R \in SO(2, \mathbb{R}) \) define the unitary map

\[
U_R : L^2(\mathbb{R}^2, \mathbb{C}^2) \to L^2(\mathbb{R}^2, \mathbb{C}^2), \quad \psi(\cdot) \mapsto \psi(R^{-1} \cdot),
\]

then \(U_R^{-1} H_A U_R = H_A \) and therefore

\[
U_R^{-1} (H_A + V) U_R = H_A + V_R \quad \text{with} \quad V_R(\cdot) = V(R \cdot).
\]

To construct a Weyl sequence, consider a second gauge \(\tilde{A} \), the Landau gauge \(\tilde{A}(x) = B_0 x_1 \hat{e}_2 \). Then, our Hamiltonian reads

\[
H_{\tilde{A}} + V = -\partial_1^2 + (-i \partial_2 - B_0 x_1)^2 - \sigma_3 B_0 + V = \tilde{d}^* \tilde{d} + B_0 - \sigma_3 B_0 + V,
\]

with

\[
\tilde{d} = -i \partial_1 + i (-i \partial_2 - B_0 x_1), \quad \tilde{d}^* = -i \partial_1 - i (-i \partial_2 - B_0 x_1).
\]

For electric fields of the form \(V(x) = V_0 + \mathcal{E}_0 (x_1 - \zeta) \), with constants \(V_0, \mathcal{E}_0, \zeta \in \mathbb{R} \), we can write

\[
H_{\tilde{A}} + V = -\partial_1^2 + (-i \partial_2 - B_0 x_1)^2 - \sigma_3 B_0 + V_0 + \mathcal{E}_0 (x_1 - \zeta) = -\partial_1^2 + B_0^2 (x_1 - \frac{1}{B_0} (-i \partial_2 - \frac{\mathcal{E}_0}{2B_0}))^2 + \frac{\mathcal{E}_0}{B_0} (-i \partial_2 - \frac{\mathcal{E}_0}{2B_0}) - \mathcal{E}_0 \zeta - \sigma_3 B_0 + V_0 + \left(\frac{\mathcal{E}_0}{2B_0} \right)^2. \tag{45}
\]

Performing a Fourier transform in \(x_2 \), we obtain the direct integral representation

\[
H_{\tilde{A}} + V \approx \int_{\mathbb{R}} h(\xi) d\xi
\]

on \(L^2(\mathbb{R}_\xi, L^2(\mathbb{R}, \mathbb{C}^2)) \), with

\[
h(\xi) = -\partial_1^2 + B_0^2 (x_1 - \frac{1}{B_0} (\xi - \frac{\mathcal{E}_0}{2B_0}))^2 + \frac{\mathcal{E}_0}{B_0} (\xi - \frac{\mathcal{E}_0}{2B_0}) - \mathcal{E}_0 \zeta - \sigma_3 B_0 + V_0 + \left(\frac{\mathcal{E}_0}{2B_0} \right)^2
\]

\[
= -\partial_1^2 + B_0^2 (x_1 - \hat{\zeta})^2 + \mathcal{E}_0 \hat{\zeta} - \mathcal{E}_0 \zeta - \sigma_3 B_0 + V_0 + \left(\frac{\mathcal{E}_0}{2B_0} \right)^2.
\]

Here we set \(\hat{\zeta} = \frac{1}{B_0} (\xi - \frac{\mathcal{E}_0}{2B_0}) \). Note that \(h(\xi) \) is the Hamiltonian of a shifted harmonic oscillator. Thus, we define for \(n \in \mathbb{N}_0 \)

\[
\phi_n(x) = \frac{1}{\sqrt{2^n n! \sqrt{\pi}}} H_n(x) e^{-\frac{1}{2} x^2}, \quad x \in \mathbb{R},
\]

\[
\]
where H_n denotes the nth Hermite polynomial. The normalized functions
\[
\hat{\psi}_{E_0,n,\xi}(x_1) := \sqrt{B_0} \left(\phi_n \left(\sqrt{B_0} (x_1 - \frac{1}{B_0} (\xi - \frac{\xi_0}{2B_0})) \right) \right)
\]
fulfill the equation
\[
h(\xi) \hat{\psi}_{E_0,n,\xi} = \left(2nB_0 + \mathcal{E}_0 \left(\frac{1}{B_0} (\xi - \frac{\xi_0}{2B_0}) - \zeta \right) + V_0 + \left(\frac{\xi_0}{2B_0} \right)^2 \right) \hat{\psi}_{E_0,n,\xi}.
\]
Hence,
\[
\psi_{E_0,n,\xi}(x_1, x_2) := e^{i \xi x_2} \hat{\psi}_{E_0,n,\xi}(x_1)
\]
satisfies
\[
[H_A + V] \psi_{E_0,n,\xi}
= \left(2nB_0 + \mathcal{E}_0 \left(\frac{1}{B_0} (\xi - \frac{\xi_0}{2B_0}) - \zeta \right) + V_0 + \left(\frac{\xi_0}{2B_0} \right)^2 \right) \psi_{E_0,n,\xi},
\]
for $\xi \in \mathbb{R}$ and $n \in \mathbb{N}_0$, seen as a differential equation. In addition, we have
\[
\begin{align*}
d\psi_{E_0,n,\xi} &= -i \sqrt{2nB_0} \psi_{E_0,n-1,\xi} + i \frac{\xi_0}{2B_0} \psi_{E_0,n,\xi}, \quad (48) \\
\hat{d}^* \psi_{E_0,n,\xi} &= i \sqrt{2(n+1)B_0} \psi_{E_0,n+1,\xi} - i \frac{\xi_0}{2B_0} \psi_{E_0,n,\xi}. \quad (49)
\end{align*}
\]
Proof of Theorem 4. As discussed in the proof of Theorem 3, it is sufficient to find a Weyl sequence for $E = 0$. Because of (18) and (21) there exists a sequence $\{y_n\}_{n \in \mathbb{N}} \subset \text{Ran}(\gamma)$ such that
\[
V(y_n) = -2nB_0 - \left(\frac{\nabla V(y_n)}{2B_0} \right)^2. \quad (50)
\]
Further, one can find rotations $R_n \in SO(2, \mathbb{R})$ such that $\nabla V_{R_n}(x_n) = \nabla V_{R_n}(x_n)|\dot{e}_1$ with $x_n = R_n^{-1} y_n = (x_{n,1}, x_{n,2})^T$ for $n \in \mathbb{N}$. We set
\[
\begin{align*}
V_n := V(y_n) &= V_{R_n}(x_n), \quad (51) \\
\mathcal{E}_n := |\nabla V(y_n)| &= |\nabla V_{R_n}(x_n)|, \quad (52) \\
\xi_n := B_0 x_{n,1} + \frac{\xi_0}{2B_0}. \quad (53)
\end{align*}
\]
For the Weyl functions let $\chi \in C_c^\infty(\mathbb{R}, [0, 1])$ with $\chi(x) = 1$ for $|x| \leq 1$, $\chi(x) = 0$ for $|x| \geq 2$. Define
\[
\chi_{n,j}(x) := \chi \left(\frac{x-x_{n,j}}{r_n} \right), \quad j = 1, 2,
\]
and
\[
\varphi_n(x) := \chi_{n,1}(x_1) \chi_{n,2}(x_2) \psi_{E_0,n,\xi_0}(x_1, x_2)
= \chi \left(\frac{x_2-x_{n,2}}{r_n} \right) e^{-i \xi_n x_2} \chi \left(\frac{x_1-x_{n,1}}{r_n} \right) \left(\sqrt{B_0} \phi_n \left(\sqrt{B_0} (x_1 - x_{n,1}) \right) \right),
\]
where the localization radii r_n are chosen to be $r_n := \sqrt{n^{1+\epsilon}/B_0}$. Note that
\[
r_n \leq 2r_n \int_{-\sqrt{n}^{1+\epsilon}}^{\sqrt{n}^{1+\epsilon}} |\phi_n(x)|^2 dx \leq \|\varphi_n\|^2
\leq 4r_n \int_{-2\sqrt{n}^{1+\epsilon}}^{2\sqrt{n}^{1+\epsilon}} |\phi_n(x)|^2 dx \leq 4r_n,
\]
(54)
for $n \in \mathbb{N}$ large enough (see Lemma 5 in the appendix). By denoting $g(x) = \frac{B_0}{2} x_1 x_2$ for $x \in \mathbb{R}^2$, we get, due to (44), (47), (50) and (53), that

$$H U_{R_n} e^{-ig} \varphi_n = U_{R_n} e^{-ig} [H + V_{R_n}] \varphi_n = U_{R_n} e^{-ig} (\tilde{d}^* \tilde{d} \varphi_n - \chi_{n,1} \chi_{n,2} \tilde{d}^* \tilde{d} \psi_{\eta, n, \xi_n}) + \frac{\| \tilde{d}^* \tilde{d} \varphi_n - \chi_{n,1} \chi_{n,2} \tilde{d}^* \tilde{d} \psi_{\eta, n, \xi_n} \|}{\varphi_n},$$

with, using (48) and (49),

$$\| - i \chi_{n,2} \partial_1 \chi_{n,1} + \chi_{n,1} \partial_2 \chi_{n,2} \| \tilde{d}^* \psi_{\eta, n, \xi_n} \| \leq \sqrt{2(n + 1)} B_0 \left\| - i \chi_{n,2} \partial_1 \chi_{n,1} + \chi_{n,1} \partial_2 \chi_{n,2} \psi_{\eta, n+1, \xi_n} \right\| + \frac{E}{2B_0} \left\| - i \chi_{n,2} \partial_1 \chi_{n,1} + \chi_{n,1} \partial_2 \chi_{n,2} \psi_{\eta, n, \xi_n} \right\| \leq 2 \sqrt{2(n + 1)} B_0 \| \chi' \|_\infty \sqrt{2r_n} \| \varphi_{n+1} \| + \frac{E}{2B_0} r_n \| \chi' \|_\infty \sqrt{2r_n} \| \varphi_n \| \leq 2 \sqrt{2} \| \chi' \|_\infty \left(B_0 \sqrt{\frac{2n+2}{n+1}} + \frac{E}{2} \sqrt{\frac{B_0}{n+1}} \right) \sqrt{r_n},$$

and

$$\| - i \chi_{n,2} \partial_1 \chi_{n,2} - \chi_{n,1} \partial_2 \chi_{n,2} \| \tilde{d} \psi_{\eta, n, \xi_n} \| \leq \sqrt{2nB_0} \left\| - i \chi_{n,2} \partial_1 \chi_{n,1} - \chi_{n,1} \partial_2 \chi_{n,2} \psi_{\eta, n-1, \xi_n} \right\| + \frac{E}{2B_0} \left\| - i \chi_{n,2} \partial_1 \chi_{n,1} - \chi_{n,1} \partial_2 \chi_{n,2} \psi_{\eta, n, \xi_n} \right\| \leq 2 \sqrt{2} \| \chi'' \|_\infty r_n^{-2} \sqrt{r_n},$$

Thus, in view of condition (21) and estimate (54), we get

$$\| \tilde{d}^* \tilde{d} \varphi_n - \chi_{n,1} \chi_{n,2} \tilde{d}^* \tilde{d} \psi_{\eta, n, \xi_n} \| \leq 0 \text{ as } n \to \infty.$$

To estimate the remaining term on the r.h.s of (55), we expand V_{R_n} up to second order and obtain, by (51) and (52), that

$$\| [V_{R_n} (x) - V_n - \mathcal{E}_n (x_1 - x_1, n)] \varphi_n (x) | \leq \| \text{Hess}(V_{R_n}) \|_2 (\eta_{x,x_n}) |x - x_n|^2 | \varphi_n (x)|,$$

with $\eta_{x,x_n} \in [x, x_n]$. Because R_n are rotations, we have that $\| \text{Hess}(V_{R_n}) \|_2 (\cdot) = \| \text{Hess}(V) \|_2 (R_n \cdot)$ for $n \in \mathbb{N}$. Since $\| \text{Hess}(V) \|_2$ varies with rate ν along $\text{Im}(\gamma)$ and since (by (20) and (50)) $r_n/|x_n|^\nu \to 0$ as $n \to \infty$, we find a constant $C_{11} > 0$ such that, for $n \in \mathbb{N}$ large enough,

$$\| \text{Hess}(V_{R_n}) \|_2 (\eta) \leq C_{11} \| \text{Hess}(V_{R_n}) \|_2 (x_n), \quad \eta \in B_{2r_n} (x_n)$$
holds. As a consequence,

\[\| U_{R_n} e^{-ig} [V_{R_n} - V_n - \varepsilon_n(x_1 - x_{1,n})] \varphi_n \| \]
\[\leq 4C_{11} \| \text{Hess}(V) \|_2 (R_n x_n) r_n^2 \| \varphi_n \| \]
\[\leq 4C_{11} \| \text{Hess}(V) \|_2 (y_n) \left(\frac{|V_n|}{B_0} \right)^{1+\epsilon} \| \varphi_n \| \]

for \(n \in \mathbb{N} \) large enough. With (19) we conclude that \((U_{R_n} e^{-ig} \varphi_n)_{n \in \mathbb{N}} \) is a Weyl sequence for 0.

\[\square \]

Acknowledgements

This work has been supported by SFB-TR12 “Symmetries and Universality in Mesoscopic Systems” of the DFG. The author also wants to thank Edgardo Stockmeyer for useful discussions and remarks as well as the Faculdad de Física de la Pontificia Universidad Católica de Chile for the great hospitality.

Appendix A. Essential Self-Adjointness of the Pauli Operator

For the proof of Proposition 1 we first note that for \(\varphi \in C_0^\infty(\mathbb{R}^2, \mathbb{C}) \) we can write

\[\begin{align*}
\left[(-i \nabla - A)^2 + B \right] \varphi &= \sum_{k,l=1}^{2} (-i \partial_k - A_k) C_{k,l} (-i \partial_l - A_l) \varphi, \\
\left[(-i \nabla - A)^2 - B \right] \varphi &= \sum_{k,l=1}^{2} (-i \partial_k - A_k) C_{k,l} (-i \partial_l - A_l) \varphi,
\end{align*} \]

where \(C_{k,l} \) denote the coefficients of the symmetric non-negative definite matrix

\[C = 1 - \sigma_2 = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} = C^*. \]

Furthermore, along the proof we use the notation \(B_R := \{ x \in \mathbb{R}^2 | ||x|| \leq R \} \) and \(S_R := \{ x \in \mathbb{R}^2 | ||x|| = R \} \)

Proof of Proposition 1. Since \(H \) is a diagonal matrix operator, it suffices to show that both operators on the diagonal,

\[Q_\pm := [(-i \nabla - A)^2 \pm B + V], \]

are essentially self-adjoint on \(C_0^\infty(\mathbb{R}^2, \mathbb{C}) \). Because \(Q_\pm \) are symmetric on \(C_0^\infty(\mathbb{R}^2, \mathbb{C}) \), we have to show that \(Q_+^* \varphi = \pm i \varphi \) implies \(\varphi \equiv 0 \) for \(\varphi \in D(Q_+^*), \) respectively, that \(Q_-^* \varphi = \pm i \varphi \) implies \(\varphi \equiv 0 \) for \(\varphi \in D(Q_-^*). \) We only treat the case \(Q_-^* \varphi = i \varphi, \) since the others are completely analogous. Let \(\varphi \in D(Q_-^*) \) be such that \(Q_-^* \varphi = i \varphi, \) then

\[[(-i \nabla - A)^2 - B + V] \varphi = i \varphi \] (57)
holds in distributional sense. By elliptic regularity theory (see, e.g. [6, 7]) we obtain \(\varphi \in C^2(\mathbb{R}^2, \mathbb{C}) \), and that (57) holds strongly. Using integration by parts gives

\[
\int_{B_R} \left[\sum_{k,l=1}^{2} (-i \partial_k - A_k)C_{k,l}(-i \partial_l - A_l)\varphi \right] \bar{\varphi} \, dx \\
= \int_{B_R} \left[\sum_{k,l=1}^{2} (-i \partial_k - A_k)\varphi C_{k,l}(-i \partial_l - A_l)\varphi \right] \, dx \quad (58)
\]

with \(R > 0 \), where \(\nu_k(x) = x_k/|x| \) for \(k = 1, 2 \). By taking the imaginary part of (58), we conclude with (57) that

\[
\int_{B_R} |\varphi|^2 \, dx = \int_{S_R} \left[\sum_{k,l=1}^{2} \nu_k C_{k,l}(-i \partial_l - A_l)\varphi \right] \varphi \, dS
\]

for any \(R > 0 \). Applying Cauchy–Schwarz yields

\[
\int_{B_R} |\varphi|^2 \, dx \leq \left(\int_{S_R} \sum_{k,l=1}^{2} (-i \partial_k - A_k)\varphi C_{k,l}(-i \partial_l - A_l)\varphi \, dS \right)^{1/2} \left(\int_{S_R} |\varphi|^2 \, dS \right)^{1/2}.
\]

Hence it suffices to show that

\[
\int_{\mathbb{R}^2} \sum_{k,l=1}^{2} \frac{(-i \partial_k - A_k)\varphi C_{k,l}(-i \partial_l - A_l)\varphi}{|x|^2 + 1} \, dx < \infty, \quad (59)
\]

since this implies that \((1, \infty) \ni r \mapsto r^{-1} \int_{B_r} |\varphi|^2 \, dx\) is an \(L^1\)-function, i.e. \(\varphi \equiv 0 \). For (59) we consider the function

\[
f(R) := \int_{B_R} \sum_{k,l=1}^{2} \frac{(-i \partial_k - A_k)\varphi C_{k,l}(-i \partial_l - A_l)\varphi}{|x|^2 + 1} \, dx,
\]

with \(R > 0 \). Using Eq. (57) and integration by parts, we obtain, with \(\zeta(x) = (|x|^2 + 1)^{-1} \), \(M \geq c + |d| \), that

\[
f(R) - M\|\varphi\|^2 \\
\leq f(R) + \int_{B_R} \zeta V |\varphi|^2 dx
\]
\[\int_{B_R} \zeta(Q^* \varphi) \phi \, dx - i \int_{B_R} \left[\sum_{k,l=1}^2 (\partial_l \zeta) C_{k,l} (-i \partial_k - A_k) \varphi \right] \phi \, dx + i \int_{S_R} \zeta \left[\sum_{k,l=1}^2 \nu_i C_{k,l} (-i \partial_k - A_k) \varphi \right] \phi \, dS.\]

By the estimates
\[
\left| \int_{B_R} \left[\sum_{k,l=1}^2 (\partial_l \zeta) C_{k,l} (-i \partial_k - A_k) \varphi \right] \phi \, dx \right| \\
\leq \int_{B_R} 2 \zeta^{1/2} \left| \sum_{k,l=1}^2 \nu_i C_{k,l} (-i \partial_k - A_k) \varphi \right| |\phi| \, dx \\
\leq 2 \int_{B_R} \left[\sum_{k,l=1}^2 \zeta (-i \partial_k - A_k) \varphi C_{k,l} (-i \partial_k - A_k) \varphi \right]^{1/2} |\phi| \, dx \\
\leq 2 [f(R)]^{1/2} \|\varphi\| \leq \frac{1}{2} f(R) + 2 \|\varphi\|^2,
\]

and
\[
\left| \int_{S_R} \zeta \left[\sum_{k,l=1}^2 \nu_k C_{k,l} (-i \partial_k - A_k) \varphi \right] \phi \, dS \right| \\
\leq \int_{S_R} \zeta \left[\sum_{k,l=1}^2 (-i \partial_k - A_k) \varphi C_{k,l} (-i \partial_k - A_k) \varphi \right]^{1/2} |\phi| \, dS \\
\leq \left(\int_{S_R} \sum_{k,l=1}^2 \zeta (-i \partial_k - A_k) \varphi C_{k,l} (-i \partial_k - A_k) \varphi \, dS \right)^{1/2} \left(\int_{S_R} |\varphi|^2 \, dS \right)^{1/2} \\
= \left(f'(R) \int_{S_R} |\varphi|^2 \, dS \right)^{1/2},
\]

we conclude that
\[f(R) \leq 2(3 + c) \|\varphi\|^2 + 2 \left(f'(R) \int_{S_R} |\varphi|^2 \, dS \right)^{1/2}.\]

If \(f(R) = 0\) for all \(R > 0\), then clearly (59) holds. If \(f(R_0) > 0\) for some \(R_0 > 0\), then \(f(R) > 0\) for all \(R > 0\) and \(f'(R)/f^2(R) \in L^1(R_0, \infty)\), which implies that
\[
\left(\frac{f'(R)}{f^2(R)} \int_{S_R} |\varphi|^2 \, dS \right)^{1/2} \in L^1(R_0, \infty).
\]

Hence, there exists a sequence \((R_n)_{n \in \mathbb{N}} \subset (0, \infty)\) such that \(R_n \to \infty\) as \(n \to \infty\) and
\[
\left(f'(R_n) \int_{S_{R_n}} |\varphi|^2 dS \right)^{1/2} \leq \frac{1}{4} f(R_n).
\]

Therefore, \(f(R_n) \leq 4(3 + c)\|\varphi\|^2 \) for all \(n \in \mathbb{N} \), which implies (59) since \(f(R) \) is a monotonically increasing function. \(\square \)

Appendix B. Remarks on Local Compact Operators

Lemma 4. Let \(A \) be a locally compact, self-adjoint operator on \(L^2(\mathbb{R}^n, \mathbb{C}^m) \) with \(n, m \geq 1 \). Assume there is a function \(G \in L^\infty_{loc}(\mathbb{R}^n, [0, \infty)) \) with \(G(x) \to \infty \) as \(|x| \to \infty \) such that

\[
\|A\varphi\| \geq \|G\varphi\| \quad \text{for } \varphi \in \mathcal{D}(A).
\]

Then \(\sigma_{\text{ess}}(A) = \emptyset \), i.e. \(A \) has purely discrete spectrum.

Proof. Assume \(\lambda \in \sigma_{\text{ess}}(A) \subseteq \mathbb{R} \). Then one can find a normalized sequence \((\varphi_n)_{n \in \mathbb{N}} \subseteq \mathcal{D}(A)\) such that \(\varphi_n \rightharpoonup 0 \) and \(\|(A - \lambda)\varphi_n\| \to 0 \) as \(n \to \infty \). Let \(R > 0 \) be a fixed constant. We have

\[
\|\chi_R \varphi_n\| = \|\chi_R (A - i - \lambda)^{-1}(A - i - \lambda)\varphi_n\| \leq \|\chi_R (A - i - \lambda)^{-1}||\|(A - \lambda)\varphi_n\| + \|\chi_R (A - i - \lambda)^{-1}\varphi_n\|
\]

using the notation \(\chi_R := \chi_{B_R(0)} \). Since \(\chi_R (A - i - \lambda)^{-1} \) is compact, this inequality implies that \(\|\chi_R \varphi_n\| \to 0 \) as \(n \to \infty \). Let \(R > 0 \) be so large that \(G(x) \geq 5|\lambda| + 1 \) for \(|x| \geq R \). Choosing \(N \in \mathbb{N} \) large enough, we can estimate, for \(n \geq N \),

\[
\|(A - \lambda)\varphi_n\| \geq \|G\varphi_n\| - |\lambda| \\
\geq \|G(1 - \chi_R)\varphi_n\| - \|G\chi_R\| \|\chi_R \varphi_n\| - |\lambda| \\
\geq (5|\lambda| + 1)(\|1 - \chi_R\| \varphi_n\| - \|G\chi_R\| \|\chi_R \varphi_n\| - |\lambda| \\
\geq (|\lambda| + 1/2) - \|G\chi_R\| \|\chi_R \varphi_n\|.
\]

Hence, \(\|(A - \lambda)\varphi_n\| \to 0 \) as \(n \to \infty \), which is a contradiction. \(\square \)

Appendix C. Integral Estimates

Lemma 5. Let \(H_n \) be the \(n \)th Hermite polynomial. Then, for any \(\epsilon > 0 \),

\[
\frac{1}{2^n n!} \int_{\sqrt{n}^{1+\epsilon}}^{\infty} |H_n(x)|^2 e^{-x^2} dx \to 0 \quad \text{as } n \to \infty,
\]

\[
\frac{1}{2^n n!} \int_{-\infty}^{-\sqrt{n}^{1+\epsilon}} |H_n(x)|^2 e^{-x^2} dx \to 0 \quad \text{as } n \to \infty.
\]

Proof. We only treat the first case, since the second claim can be deduced from the first one by a symmetry argument. Due to the identity

\[
H_n(x) = (-1)^n \sum_{k_1 + 2k_2 = n} \frac{n!}{k_1! k_2!} (-1)^{k_1 + k_2} (2x)^{k_1}
\]
for the nth Hermite polynomial (see, e.g. [1]), we obtain for $|x| \geq 1$ the estimate
\[
|H_n(x)| \leq \sum_{k_1+2k_2=n} \frac{n!}{k_1!k_2!} (2|x|)^{k_1} \leq \frac{n+1}{2} 2^n n! |x|^n.
\]

Thus, for $n \in \mathbb{N}$ large enough we have
\[
\int_{\sqrt{n^{1+\epsilon}}}^{\infty} |\phi_n(x)|^2 dx \leq \frac{(n+1)^2}{4} 2^n n! \int_{\sqrt{n^{1+\epsilon}}}^{\infty} x^{2n} e^{-x^2} dx
\leq \frac{(n+1)^2}{4} 2^n n^{1+\epsilon} n! \exp\left(-n^{1+\epsilon}/2\right) \int_{\sqrt{n^{1+\epsilon}}}^{\infty} e^{-x^2/2} \, dx \rightarrow 0
\]
as $n \to \infty$, using Stirling’s Formula. \qed

References

[1] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, vol. 55. Washington, D.C. (1964)
[2] Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45(4), 847–883 (1978)
[3] Chernoff, P.R.: Schrödinger and Dirac operators with singular potentials and hyperbolic equations. Pacific J. Math. 72(2), 361–382 (1977)
[4] Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics, study edition. Springer, Berlin (1987)
[5] Erdős, L.: Recent developments in quantum mechanics with magnetic fields. In: Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, vol. 76 of Proc. Sympos. Pure Math., pp. 401–428. Amer. Math. Soc., Providence (2007)
[6] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, vol. 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin (1983)
[7] Hellwig, G.: Partial differential equations: an introduction. In: Teubner, B.G., Stuttgart, 2nd edn. Translated from the German by Eberhard Gerlach, Mathematische Leitfaden (1977)
[8] Iwatsuka, A.: Essential selfadjointness of the Schrödinger operators with magnetic fields diverging at infinity. Publ. Res. Inst. Math. Sci. 26(5), 841–860 (1990)
[9] Kondratiev, V., Maz’ya, V., Shubin, M.: Discreteness of spectrum and strict positivity criteria for magnetic Schrödinger operators. Commun. Partial Differ. Equ. 29(3-4), 489–521 (2005)
[10] Mehringer, J., Stockmeyer, E.: Confinement-deconfinement transitions for two-dimensional Dirac particles. J. Funct. Anal. 266(4), 2225–2250 (2014)
[11] Miller, K., Simon, B.: Quantum magnetic Hamiltonians with remarkable spectral properties. Phys. Rev. Lett. 44, 1706–1707 (1980)
[12] Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press, New York, London (1975)
[13] Thaller, B.: The Dirac equation. Texts and Monographs in Physics. Springer, Berlin (1992)

Josef Mehringer
Faculdad de Física
Pontificia Universidad Católica de Chile
Av. Vicuña Mackenna 4860
Casilla 306
Santiago 22, Chile

Current address:
Josef Mehringer
Mathematisches Institut
Ludwig-Maximilians-Universität
Theresienstraße 39
80333 Munich, Germany
e-mail: josef.mehringer@math.lmu.de

Communicated by Jan Derezinski.
Received: June 3, 2014.
Accepted: February 7, 2015.