Mineralogy and micromorphology of soil from gneissic rock in East Luwu, South Sulawesi

A Ahmad1*, C Lopulisa1, A M Imran2, S Baja1

1Department of Soil Science, Agriculture Faculty, Hasanuddin University, Makassar, Indonesia
2Department of Geological Engineering, Engineering Faculty, Hasanuddin University, Indonesia
*Address: Kampus Unhas, Jl Perintis Kemerdekaan Km.10, Postal Code: 90245, Makassar, South Sulawesi Province, Indonesia

asmitaahmad@yahoo.com or asmita.ahmad@agri.unhas.ac.id

Abstract. Different type of rock, climate, and topography will produce specific mineralogical and micromorphological characteristic in soils. There were still a few research related to the influenced of several types of rocks to soil mineralogy and micromorphology, especially from metamorphic rocks. The objective of this research was to examine the characteristics of mineralogical and micromorphological of soil formed from gneissic rock in East Luwu, South Sulawesi. The observation of soil profiles were carried out in four profiles. The mineralogical analysis was carried out by X-ray diffractometer, and micromorphological analysis was carried out by using the thin section. Gneissic rock consisted of quartz-gneiss and muscovite-quartz gneiss. Minerals in the soil had mesomorphic alteration stage with class of alteration of 2nd and 3rd that had been altering in 25-75%. The minerals were quartz, goethite, muscovite, gibbsite, hematite, boehmite, and ilmenite. Alteration mineral formed sesquioxide horizon in soil. The high intensity of weathering of gneissic rock was influenced by the high intensity of rainfall, reached 3389mm/year. Nodules as the weathering product dominated in typic soil type. The c/f related distribution was enaulic, related distribution was porphyric and b-fabrics were granostriated and stippled speckeld. High content of oxide mineral with stippled speckeld b-fabric showed the advanced stage of pedogenesis process from the gneissic rock.

1. Introduction
Different type of rock, climate, and topography will produce specific mineralogical and micromorphological characteristic in soil [1–3], mainly in the tropical region [4,5]. East Luwu in South Sulawesi Province, Indonesia, included in the tropical climate region with the standardized precipitation index (SPI) value classified as wet with a value of 1-1.49 [6]. This condition causes the weathering process of the parent rock to become soil was faster. One way to assess the level of soil development by analyzing the mineralogical and micromorphological content of the soil has been
formed [7,8]. Information on mineralogical and micromorphological characteristics in the soil has been widely used by several experts in assessing soil fertility and soil management [9–12]. However, the majority of these assessments are still few relationship to the soil characteristic of the parent rock or vice versa, therefore some of the land—uses actually trigger disasters [13,14]. Areas that are composed of massive parent rocks (igneous and metamorphic rock) are considered as areas that are little prone to disasters and can be used for agricultural and plantation without specific management, has led to many landslides such as in the East Luwu Region. Almost each year landslide happened and caused many victims and damage [15].

There were still few research concerning the influenced of several rock types to the soil mineralogical and micromorphological characteristics, especially from metamorphic rocks. This research aimed to examine the characteristics of mineralogical and micromorphological characteristics of the soil that formed from gneissic rock in East Luwu, South Sulawesi.

2. Materials and Methods

Study site of this research was located in Mangkutana Sub-District, East Luwu District of South Sulawesi Province (Figure 1). The location of four soil profiles and four rock profiles were; 120°48’0.72”E and 2°22’57.06”S (L1), 120°48’4.33”E and 2°22’59.49”S (L2), 120°47’40.19”E and 2°22’23.46”S (L3), and 120°47’36.64”E and 2°22’25.26”S (L4). The soil sampling for mineralogical and micromorphological analyses were taken at two depths: 0-30 cm (top layer) and 30-50 cm (sublayer), while the rock profiles were taken at three part of depth, namely; the top (under the soil depth/after C horizon) from 1.5 m to 6.5 m depth, middle from 6.5 to 11.5 depth, and bottom from 101.5 to 16.5 m depth.

The rock grade of weathering was analyzed with Santi (2006) method. The soil minerals were analyzed with X-ray Diffractometer (XRD-700 Shimadzu) and polarized microscope to identify clay and non-clay minerals. Identification of clay and non-clay minerals used Kerr (1959) and Grim (1968) method. Micromorphological procedures were done by impregnated the soil and rock blocks about 3 cm diameter with polyester resin and their respective thin sections were made following the procedures of Benyarku and Stoops, (2005). The thin sections were studied with polarizing microscope according to Bullock et al. (1985), Stoops (2003), and Kerr (1959) guidelines, paying attention to microstructure, pore type, groundmass composition, and specific pedofeatures. FitzPatrick (1993) was also used to make interpretations of some features.
2.1. Terrain Characteristic
According to Simandjuntak et al. (1991), there are two mountains ranges namely the Tineba Mountains and the Koro-Ue Mountains extending from northwest to southeast in the western part of East Luwu District, with altitudes about 700-3016 meters above sea level (asl) and formed by granite and metamorphic rocks from Pompangeo Complex (MTmp Formation). The MTmp Formation consisted of schist, gneiss, marble, quartzite, slate, and fillite. The area in Mangkutana Sub-district in East Luwu District had elevations of 181-320 meters asl and slope range from 41 to more than 60%. The geologic of this area was dominated by gneissic rock, namely quartz-gneiss and muscovite-quartz gneiss.

The land system of this area was Bukit Pandan (BPD) [24]. Characteristics of BPD were hilly to mountainous geomorphology, metamorphic parent rock, 0-8 months of wet months, 0-4 months of dry months, no flood risk, 17-22°C of minimum temperature and 27-33°C of maximum temperature. The average rainfall data for ten years was 3566 mm/year [25,26]. The minimum rainfall was 3000 mm/year and the maximum rainfall was 4811 mm/year (Figure 2). Land use of this area dominated by palm plantation and mixed plant.

![Rainfall Distribution](image.png)

Figure 2. Rainfall distribution for ten years in Mangkutana Sub District

The soils had a reddish brown color showed the high level of iron oxide in the soil resulted from a very strong weathering process [27]. In the subhorizon layer an oxic horizon had been formed, characterized by sandy clay to sandy clay loam texture, 16.12 to 16.31 cmol+/kg of CEC (1N NH4Oac pH7), more than 35% of base saturation, and the domination of kaolinite in clay mineral. The soil was classified as Kaolinitic Inceptic Eutrudox.

3. Result
The gneiss rock had III to V level of weathering and the color changed from reddish gray to reddish (Figure 3). Thin section of rocks sample showed nodule formation in all profiles, but only at the bottom of rock profiles showed coating of clay minerals at the edges of primary mineral crystals, while the imperfect formation of oxide minerals (imperfect infilling) was often found in the bottom layers of the profile (Figure 4).

The soil mineral consisted of quartz (50.7%), kaolinite (10.6%), muscovite (16.6%), gibbsite (2.9%), hematite (8.7%), and ilmenite (10.6%) (Figure 5 and Figure 6).
1.5-6.5 meter (top): reddish color, weathered colors had entered almost all parts of the rock body. Small blocks of rock could be destroyed by hand; not destroyed when dry samples were immersed in water. The weathering classified into V level.

6.5-11.5 meter (middle): reddish color, small blocks could be destroyed by hand, a color change occurred in the middle of the rock body. Slightly fragile. The weathering classified into IV level.

11.5-16.5 meter (bottom): reddish gray color, generally decayed, the small block cannot be destroyed by hand. The weathering classified into III level.

Figure 3. Weathering level of gneiss rock in studying site

Figure 4. Appearance rock profiles showed the nodule formation in all profiles description; q (quartz), m (muscovite), n (nodules), ox (oxide minerals), cl (clay minerals)). Magnification 10x.
Micromorphology of soil showed 3/2 c/f ratio at top and sublayer, with weak development of soil structure. High slope, rainfall and human activity in this area caused pore dynamic that destroyed the soil structure [28]. The minerals had mesomorphic alteration stage. The class of alterations were 2 and 3 and alteration minerals were 25-75%. Nodules as one of alteration product dominated with typic type to show the intense of redox process in the soil. The soil had enaulic c/f related distribution and smaller unit of aggregates consisted of quartz and muscovite minerals (Table 1 and Fig. 7). Varied b-fabric types and common clay coating showed intensive weathering and clay illuviation in this area together with redoximorphic features. The reddish color of the micromass indicated that a gleyic stage was not reached.

Figure 5. Graphic pattern minerals of soil from muscovite-quartz gneiss

Figure 6. Graphic pattern minerals of soil from quartz gneiss
Figure 7. Micromorphological characteristic showed enaulic related distribution (A-B), porphyric, c/f ratio (C-D), granostriated b-fabric and mineral weathering (E-F), stippled speckled b-fabric (G-H), and silt and clay coatings (I-J). caption; m: muscovite, q: quartz, p: pore, rf: rock fragment. Size 500μm.
Profile	Layer	Micromorphology characteristic	Groundmass	Coarse component	Porosity	Pedofeatures							
	Top		c/f	Related distribution	color	composition	b-fabric	structure	Diameter size	abundance	accommodation		
			2µ	3/2	Enaulic and porphyric	Reddish brown	Clay, silt, and oxide	Slight	Weak C tums and weak angular blocky	Weak structure	10%	-	-
					Reddish brown	Clay, silt, and oxide	Slight	Weak structure	Weak structure	10%	-	-	

Table 1. Soil micromorphology characteristic
4. Discussion
Weathering of gneissic rocks showed a high level of weathering with oxide mineral content and increasing of clay fraction as a weathering product. The presence of clay coating on primary minerals reduced rock stability and triggered the mass movement in sloping areas. [5,29], therefore the slope stability was needed to maintain the stability for land sustainability.

Weathering minerals in soil had destroyed the stability of primary mineral and produced clay minerals and oxide mineral. High intensity of weathering could be seen in high accumulation of clay fraction in groundmass and the model in micro mass (Fig. 7). The dominant mineral such as quartz, kaolinite and iron oxide, especially gibbsite showed that soil had advanced stage processes [1,30], and had formed sesquioxide horizon. Land management in this condition needed the additions of organic fertilizer and lime as the most appropriate soil management options[31,32].

The soil micro mass contained clay fraction and separately associated with oxide and silt fraction. Striated b-fabric in the sublayer with clay oxide (Fig. 6), caused friction intergrain and increased shear stress and reduced the shear strength of grain [27,33,34]. According to Drees et al., (2003) b-fabric straited indicative shear failure of a soil mass. Type of striated b-fabric in the sublayer become more varied with clay illuviation from the top layer and mineral weathering in the sublayer. Clay coating in pores had reduced the porosity and percolation as found in the soil of Ishia, Italy that triggered the landslide [36].

5. Conclusions
The high content of oxide mineral with straited b-fabric showed the advanced stage of pedogenesis process from the gneissic rock. Striated b-fabric in the sublayer with clay oxide could cause friction and trigger disaster.

Acknowledgment
The authors thank to the Ministry of Research, Technology and Higher Education Indonesia for Sandwich like program. The authors also thank to Lleida University in Catalonia, Spain for the opportunity to study soil micromorphology in soil micromorphology laboratory.

References
[1] Foth H D 1990 Fundamentals of Soil Science (New York: John Wiley & Sons)
[2] Ring-rose-Voase A J and Humphreys G S 1994 SOIL MICROMORPHOLOGY: STUDIES IN MANAGEMENT AND GENESIS
[3] Bockheim J G and Hartemink A E 2017 The Soils of Wisconsin
[4] Hartemink A E 2004 Tropical soils — properties and management for sustainable agriculture Geoderma 123
[5] Regmi A D, Yoshida K, Dhital M R and Pradhan B 2014 Weathering and mineralogical variation in gneissic rocks and their effect in Sangrumba Landslide, East Nepal Environ. Earth Sci. 71 2711–27
[6] BMKG 2016 Standardized Precipitation Index Bul. Agroklim. (Agroclimate Bul. 5 5–10
[7] Stoops G 2018 Interpretation of Micromorphological Features of Soils and Regoliths (Micromorphology as a Tool in Soil and Regolith Studies) (Elsevier B.V.)
[8] Pacheco A A, Ker J C, Schaefer C E G R, Fontes M P F, Andrade F V, Martins E de S and Oliveira F S de 2018 Mineralogy, Micromorphology, and Genesis of Soils with Varying Drainage Along a Hillslope on Granitic Rocks of the Atlantic Forest Biome, Brazil Rev. Bras. Ciência do Solo 42
[9] Zaiets O and Poch R M 2016 Micromorphology of organic matter and humus in Mediterranean mountain soils Geoderma 272 83–92
[10] Abe S S, Masunaga T, Yamamoto S, Honna T and Wakatsuki T 2006 Comprehensive assessment of the clay mineralogical composition of lowland soils in West Africa Soil Sci. Plant Nutr. 52 479–88
[11] Mandiringana O T, Mnkeni P N S, Mkile Z, Van Averbeke W, Van Ranst E and Verplancke H 2005 Mineralogy and fertility status of selected soils of the Eastern Cape Province, South Africa *Commun. Soil Sci. Plant Anal.* **36** 2431–46

[12] De Souza E S, Fernandes A R, De Souza Braz A M, De Oliveira F J, Alleoni L R F and Campos M C C 2018 Physical, chemical, and mineralogical attributes of a representative group of soils from the eastern Amazon region in Brazil *Soil* **4** 195–212

[13] Mugagga F, Kakembo V and Buyinza M 2012 Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides *Catena* **90** 39–46

[14] Reichenbach P, Busca C, Mondini A C and Rossi M 2014 The Influence of Land Use Change on Landslide Susceptibility Zonation : The Briga Catchment Test Site (Messina , Italy) *Environ. Manage.* **54** 1372–84

[15] BNPB 2019 Data Informasi Bencana Indonesia (DIBI) https://bnpb.cloud/dibi/laporan5

[16] Santi P M 2006 Field Methods for Characterizing Weak Rock for Engineering *Environ. Eng. Geosci.* **XII** 1–11

[17] Kerr P 1959 *Optical Mineralogy* (McGraw-Hill Book Company, Inc.)

[18] Grim R 1968 *Clay Mineralogy* (New York: McGraw-Hill Book Company, Inc.)

[19] Benyarku C A and Stoops G 2005 *Guidelines for preparation of rock and soil thin sections and polished sections* vol 33

[20] Bullock P, Fedoroff N, Jongerius A, Stoops G and Tursina T 1985 *Handbook for Soil Thin Section Description* vol 1

[21] Stoops G 2003 *Guidelines for Analysis and Description of Soil* ed M Vepraskas (Soil Science Society of America, Inc.)

[22] FitzPatrick E 1993 *Soil Microscopy And Micromorphology* (Chichester, New York, Brisbane, Toronto, Singapore)

[23] Simandjuntak T, Rusmana E, Surono and Supandjono J 1991 Geological Map of Malili Quadrangle, Sulawesi

[24] RePPProT 1988 *Regional Physical Planning Programme fo Transmigration. Tinjauan Hasil-Hasil Tahap I Sulawesi* (Jakarta, Indonesia: Direktorat Bina Program dan Direktorat Jenderal Penyiapan Pemukiman Departemen Transmigrasi)

[25] BMKG 2017 Data curah hujan tahun 2008-2016 untuk Kabupaten Gowa, Enrekang, Toraja Utara dan Luwu Timur (Rainfall Data in 2008-2016 for Gowa, Enrekang, North Toraja, and East Luwu District)

[26] Kominfo Lutim 2018 *Profil Kecamatan Mangkutana* (Luwu Timur: Kabupaten Luwu Timur)

[27] Ahmad A, Poch R M, Lopulisa C, Imran A M and Baja S 2018 Identification of Soil Characteristic on North Toraja Landslide, Indonesia *ARPN J. Eng. Appl. Sci.* **13** 8381–5

[28] Nimmo J R 2004 Porosity and Pore Size Distribution *Encycl. Soils Environ.* **3** 295–303

[29] Regmi A D, Yoshida K, Dhital M R and Devkota K 2013 Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal *Landslides* **10** 1–13

[30] Bijilal B S and Nathan S 2018 Geochemistry and Clay Mineralogy of Weathering and Soil Profiles , Malappuram District , Northern Kerala , India : Its Implications on Paleoclimate *J. Geotech. Eng.* **3** 1–13

[31] Agoume, V. and Birang A M 2009 Impact of Land-use Systems on some Physical and Chemical Soil Properties of an Oxisol in the Humid Forest Zone of Southern Cameroon *Tropicultura* **27** 15–20

[32] Thomas R and Ayarza M 2001 *Dynamics of Soil Organic Matter and Indicators of*
Soil Quality Edited by (CIAT)

[33] Mahalinga-Iyer U and Williams D J 1994 Consolidation and shear strength properties of a lateritic soil Eng. Geol. 38 53–63

[34] Otoko G R 2014 Dependence of shear strength and compressibility of tropical lateritic soils on clay content Int. J. Eng. Technol. Res. 2 1–9

[35] Drees L R, Wilding L P, Owens P R, Wu B, Perotto H and Sierra H 2003 Steepland resources: Characteristics, stability and micromorphology Catena 54 619–36

[36] Vingiani S, Mele G, De Mascellis R, Terrible F and Basile A 2015 Volcanic soils and landslides: A case study of the island of Ischia (southern Italy) and its relationship with other Campania events Solid Earth 6 783–97