Impact of enhanced recovery after surgery programs on pancreatic surgery: A meta-analysis

Hai-Bin Ji, Wen-Tao Zhu, Qiang Wei, Xiao-Xiao Wang, Hai-Bin Wang, Qiang-Pu Chen

Hai-Bin Ji, Wen-Tao Zhu, Qiang Wei, Xiao-Xiao Wang, Hai-Bin Wang, Department of Hepatobiliary Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou 256603, Shandong Province, China

Qiang-Pu Chen, Department of Hepatobiliary Surgery, Clinical Nutrition Support Center, Affiliated Hospital of Binzhou Medical University; Clinical Nutrition and Metabolism Key Laboratory of Shandong Province, Binzhou 256603, Shandong Province, China

ORCID number: Hai-Bin Ji (0000-0001-6606-4929); Wen-Tao Zhu (0000-0002-3432-0606); Qiang Wei (0000-0003-0668-6579); Xiao-Xiao Wang (0000-0002-9402-9685); Hai-Bin Wang (0000-0002-6525-6846); Qiang-Pu Chen (0000-0002-1941-3572).

Author contributions: Zhu WT, Wei Q, and Chen QP designed the research; Ji HB, Wei Q, Wang XX, and Wang HB performed the research; Ji HB, Zhu WT, and Wei Q analyzed the data; Ji HB, Wang XX, and Chen QP wrote the paper.

Conflict-of-interest statement: The authors deny any conflict of interest.

PRISMA 2009 Checklist: The authors have read and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript.

Correspondence to: Qiang-Pu Chen, MS, professor, Chief, Department of Hepatobiliary Surgery, Clinical Nutrition Support Center, Affiliated Hospital of Binzhou Medical University, Clinical Nutrition and Metabolism Key Laboratory of Shandong Province, NO.661 of the 2nd Huanghe Road, Binzhou 256603, Shandong Province, China. drcqp_med@163.com. Telephone: +86-543-3255792

Received: February 5, 2018
Peer-review started: February 6, 2018
First decision: February 24, 2018
Revised: March 8, 2018
Accepted: March 18, 2018
Published online: April 21, 2018

Abstract

AIM
To evaluate the impact of enhanced recovery after surgery (ERAS) programs on postoperative complications of pancreatic surgery.

METHODS
Computer searches were performed in databases (including PubMed, Cochrane Library and Embase) for randomized controlled trials or case-control studies describing ERAS programs in patients undergoing pancreatic surgery published between January 1995 and August 2017. Two researchers independently evaluated the quality of the studies' extracted data that met the inclusion criteria and performed a meta-analysis using RevMan5.3.5 software. Forest plots, demonstrating the outcomes of the ERAS group vs the control group after pancreatic surgery, and funnel plots were used to evaluate potential publication bias.

RESULTS
Twenty case-control studies including 3694 patients, published between January 1995 and August 2017, were selected for the meta-analysis. This study included the ERAS group (n = 1886) and the control group (n = 1808), which adopted the traditional perioperative management. Compared to the control group, the ERAS group had lower delayed gastric emptying rates [odds ratio (OR) = 0.58, 95% confidence interval
(CI): 0.48-0.72, \(P < 0.00001 \)], lower postoperative complication rates (OR = 0.57, 95%CI: 0.45-0.72, \(P < 0.00001 \)), particularly for the mild postoperative complications (Clavien-Dindo I - II) (OR = 0.71, 95%CI: 0.58-0.88, \(P = 0.002 \)), lower abdominal infection rates (OR = 0.70, 95%CI: 0.54-0.90, \(P = 0.006 \)), and shorter postoperative length of hospital stay (PLOS) (WMD = -4.45, 95%CI: -5.99 to -2.91, \(P < 0.00001 \)). However, there were no significant differences in complications, such as postoperative pancreatic fistulas, moderate to severe complications (Clavien-Dindo III - V), mortality, readmission and unintended reoperation, in both groups.

CONCLUSION
The perioperative implementation of ERAS programs in pancreatic surgery is safe and effective, can decrease postoperative complication rates, and can promote recovery for patients.

Key words: Pancreatic surgery; Enhanced recovery after surgery; Postoperative complication; Meta-analysis

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Enhanced recovery after Surgery (ERS) programs have been launched in a variety of surgical fields, including colorectal, orthopedics, urology, esophageal and gynecology, demonstrating favorable outcomes. Pancreatic surgery is considered a high-risk abdominal surgery, due to increased surgical trauma and high incidence of postoperative complications. In this meta-analysis we aimed to evaluate the impact of ERAS on complications of pancreatic surgery. The present study demonstrates that ERAS could reduce complication rates, especially of mild complications, delayed gastric emptying, abdominal infection and postoperative length of hospital stay, while not affecting the rates of postoperative pancreatic fistulas, reoperation, readmission and mortality during the perioperative period.

Ji HB, Zhu WT, Wei Q, Wang XX, Wang HB, Chen QP. Impact of enhanced recovery after surgery programs on pancreatic surgery: A meta-analysis. World J Gastroenterol 2018; 24(15): 1666-1678 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i15/1666.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i15.1666

INTRODUCTION
Enhanced recovery after surgery (ERAS; also called ‘fast track surgery’) was first introduced by Kehlet H, a Danish surgeon, in 1997[1]. ERAS is a multidisciplinary and evidence-based framework developed to decrease perioperative surgical stress, accelerate postoperative recovery and significantly reduce the postoperative length of hospital stay (PLOS). ERAS programs were initially implemented in colorectal surgery and have been shown to be effective for reducing PLOS and complications[2]. Subsequently, ERAS programs have been published in numerous areas of surgery, such as orthopedics, urology, esophageal, gynecology, breast and hepatobiliary[3-8].

An array of studies has shown that the perioperative implementation of ERAS programs can reduce PLOS without increasing complications or mortality. However, pancreatic surgery is still considered a high-risk abdominal surgery, due to the anatomical location of the pancreas and high rate of complications (30%-60%). Postoperative complications, such as postoperative pancreatic fistula (POPF), delayed gastric emptying (DGE), abdominal infection, and so on, are the main reasons for delayed recovery and the frequent need for additional interventions, without which the complications are potentially life threatening. For these reasons, the implementation of ERAS programs has lagged for pancreatic surgeries.

There had been an increasing number of ERAS programs implemented in pancreatic surgery when the ERAS group published evidence-based consensus recommendations for pancreatic surgery in 2012[9]. The benefit of implementing ERAS programs on postoperative complications in pancreatic surgery has not reached consensus. For this reason, we performed a meta-analysis of the available studies on ERAS programs compared with traditional perioperative management in patients undergoing pancreatic surgery.

MATERIALS AND METHODS
Search strategy
A search was performed by two researchers (Ji HB and Wang XX) in August 2017 of the PubMed, Cochrane Library and Embase database, spanning the period from January 1995 to August 2017. The search language was restricted to English, using the search terms “enhanced recovery after surgery”, “fast track surgery”, “ERAS”, “clinical pathways”, “pancreatectomy”, “pancreatoduodenectomy” and “duodenopancreatectomy”, and using the Boolean operators “AND” and “OR”. Synonyms of all these terms were used in this search. The PubMed search strategy for the meta-analysis is shown in Table 1.

Inclusion/exclusion criteria
Studies meeting all of the following selection criteria were eligible for inclusion: (1) studies concerning patients undergoing pancreatic surgery; (2) the ERAS group implemented ERAS programs management, and the control group adopted traditional perioperative management; (3) measures in perioperative management were described in both groups; and (4) studies reported at least the following outcome measures, POPF, DGE, abdominal infection, mortality and PLOS, and explained their diagnostic criteria for postoperative complications.
Table 1 The search strategy for the PubMed database

Search number	Description	Number of publications
1	Enhanced recovery after surgery [Title/Abstract] OR ERAS [Title/Abstract] OR fast track surgery [Title/Abstract]	3333
2	Clinical pathways [MeSH Terms]	5848
3	1 OR 2	9130
4	Pancreatectomy [MeSH Terms] OR Pancreatectom* [Title/Abstract] OR Pancreatoduodenectomy [MeSH Terms] OR Pancreatoduodenectomy* [Title/Abstract] OR duodenopancreatectomy [MeSH Terms] OR duodenopancreatectomy* [Title/Abstract]	21497
5	3 AND 4 NGT [animals[mh] NOT humans[mh]]	69
6	S limited to English	68

\^Date of search: August 1, 2017.

Exclusion criteria were (1) sample size of less than 10; (2) comments, guidelines, reviews, case reports, abstracts, letters and non-comparative studies; (3) repeated publication of the same study population; and (4) incomplete clinical data.

Outcomes of interest

The outcomes of interest were POPF, DGE, PLOS, abdominal infection, mortality, readmission, unintended reoperation and occurrence of any complication within a postoperative period of 30 d. POPF was defined using the International Study Group of Pancreatic Fistula (ISGPF) guidelines describing a drain output of any measurable volume of fluid on or after postoperative day (POD) 3, with an amylase content greater than three times the serum amylase activity or as defined by the study's authors\(^{[10]}\). DGE was defined according to the International Study Group of Pancreatic Surgery's (ISGPS) recommendation that patients needing maintenance of a nasogastric tube (NGT) for > 3 d, needing to reinsert the NGT for persistent vomiting after POD 3, or unable to tolerate a solid diet by POD 7, should be considered DGE. In addition, there are another two widely used definitions for DGE after pancreatic resection (1) Yeo defined DGE as an NGT left in place for ≥ 10 d plus one of the following, or for < 10 d plus two of the following (a) repeated emesis after removal of the NGT, (b) need for prokinetic agents after POD 10, (c) need for reinsertion of the NGT, or (d) failure to progress with the diet. (2) Van Berge Henegouwen et al\(^{[11]}\) defined DGE as gastric stasis requiring NGT for ≥ 10 d or the inability to tolerate a regular diet after POD 14. PLOS was defined as the span from the day of surgery to the day of actual discharge from the hospital. Abdominal infection was defined by the study's authors. Mortality was defined as the range from the day of hospitalization to the first 30 d after actual discharge. Readmission was defined as the patient needing medical attention again within 30 d after discharge. Overall postoperative complications included any complication from the time of surgery to discharge, or within 30 d, with severity grading and classification relying on the Clavien-Dindo system\(^{[12]}\). Unintended reoperation was defined as patients with complications or other reasons that required reoperation within 30 d after discharge.

Data extraction

Data were extracted from each study by two authors (Ji HB and Wei Q) independently. The main parameters included common information (time of study publication, country, study type, and authors), characteristics of the study population (sex and age), elements of ERAS programs, and postoperative outcomes (overall complications, POPF, DGE, abdominal infection, PLOS, mortality, readmission, and unintended reoperation). All continuous outcome variables were described using the means and standard deviations for this meta-analysis. We needed to estimate means and standard deviations via the methodologies reported by Hozo et al\(^{[13]}\) if the original data were expressed as medians or ranges.

Quality assessment

The quality assessment of each study was done by two authors (Zhu WT and Ji HB) independently via the Methodological Index for Non-Randomized Studies (MINORS) checklist. It was then summarized by a French surgeon, and if there was a disagreement, the third researcher was involved in the negotiation or adjudication, until a consensus was achieved. The MINORS checklist includes eight methodological items for non-comparative studies and an additional four items for comparative studies. The items are scored 0 (not reported), 1 (reported but inadequate), or 2 (reported and adequate). The overall ideal scores were 24 for comparative studies.

Statistical analysis

The meta-analysis was performed using RevMan5.3.5 software (Ji HB and Wang HB). Continuous and categorical variables were calculated as weighted mean differences (WMDs) or odds ratios (ORs) with their corresponding 95% confidence interval (CI), respectively. Heterogeneity was assessed using a chi-square test, where \(P > 0.05\) was considered non-significant. \(I^2 \) values were used for the evaluation of statistical heterogeneity, and the \(I^2 \) value of 50% or more indicated the presence of substantial heterogeneity.
Scores > 12.

RESULTS

Pancreatic fistula
Eighteen studies reported the rates of POPF. The overall results (OR = 0.87, 95%CI: 0.74-1.03, \(P = 0.10\); Figure 2), or only those using the ISGPF definition (OR = 0.90, 95%CI: 0.76-1.07, \(P = 0.24\)), showed that there were no significant differences present in either group. Furthermore, there was no significant difference in A (OR = 1.05, 95%CI: 0.81-1.36, \(P = 0.71\)), B (OR = 1.13, 95%CI: 0.85-1.51, \(P = 0.40\)), and C (OR = 0.90, 95%CI: 0.60-1.33, \(P = 0.59\)) grade of POPF between the ERAS group and control group.

DGE
Eighteen studies reported the rates of DGE. Compared to the control group, the ERAS group had a lower incidence of DGE (OR = 0.58, 95%CI: 0.48-0.72, \(P < 0.00001\); Figure 3). The difference persisted when including only studies that adopted the ISGPS definition (OR = 0.50, 95%CI: 0.39-0.65, \(P < 0.00001\)).

Postoperative complications
The rate of overall postoperative complications was lower in the ERAS group (OR = 0.57, 95%CI: 0.45-0.72, \(P < 0.00001\); Figure 4). Additionally, the incidence of mild postoperative complications (Clavien-Dindo I-II), which relies on the Clavien-Dindo definition of severity and classification, was lower in the ERAS group (OR = 0.71, 95%CI: 0.58-0.88, \(P = 0.002\); Figure 5). There were no statistically significant differences in the moderate to severe complication rates (Clavien-Dindo III-V) between the ERAS group and control group (OR = 0.90, 95%CI: 0.73-1.11, \(P = 0.32\)).

Abdominal infection
A total of 12 studies reported the rates of abdominal infection. The incidence of abdominal infection was lower (OR = 0.70, 95%CI: 0.54-0.90, \(P = 0.006\); Figure 6) in the ERAS group.

PLOS
A total of 13 studies reported the PLOS, and they showed that the ERAS group had shorter PLOS (WMD = -4.45, 95%CI: -5.99 to -2.91, \(P < 0.00001\); Figure 7) than the control group.

In addition, there were no significant differences in rates of mortality (OR = 0.85, 95%CI: 0.54-1.36, \(P = 0.51\); Figure 8), readmission (OR = 1.04, 95%CI: 0.83-1.30, \(P = 0.75\); Figure 9), and unintended reoperation (OR = 0.87, 95%CI: 0.63-1.20, \(P = 0.40\); Figure 10).

Subgroup analysis
The subgroup analysis, which included only larger...
This analysis revealed that no single study generated an overall significant effect. We aimed to investigate the influence of a single study on the overall results by omitting one study in each turn. This analysis revealed that no single study generated an overall significant effect.

Sensitivity analysis

We aimed to investigate the influence of a single study on the overall results by omitting one study in each turn. This analysis revealed that no single study generated an overall significant effect.
especially strong influence on the results, with estimates ranging from an OR of 0.54 to 0.62 (Table 4).

Publication bias

Funnel plots based on the incidence of POPF and mortality were used to evaluate potential publication bias in this study (Figure 11). There was no evidence of publication bias of POPF, mortality or other outcomes of this study (other figures not shown).

DISCUSSION

ERAS requires surgical, nursing, anesthesia, nutritionist and other specialties to work together and uses a series of optimal and evidence-based management measures to lessen perioperative surgical stress while promoting the recovery of organ function in the early postoperative period [34,35]. ERAS programs were initially implemented in colorectal surgery, with recommendations for each step...
to achieve optimal perioperative care[36]. Subsequently, ERAS programs had been launched in numerous fields of surgery, such as orthopedics, urology, esophageal and gynecology.

The literature from these disciplines has suggested that standardizing ERAS measures could reduce the incidence of complications, accelerate recovery for patients, reduce hospitalization costs and save medical resources in perioperative care[34,4,7,8]. Pancreatic surgery is an effective treatment of pancreatic tumors, periampullary tumors, duodenal tumors and distal bile duct tumors. Currently, despite surgical techniques, anesthesia, and preoperative imaging assessment making great progress and the mortality of the procedure rates of DGE, POPF, readmission, and mortality. Kagedan et al[39] analyzed 10 studies suggesting that the ERAS group had only shorter PLOS and no differences in other complications. As mentioned above, we may reasonably conclude that the influence of ERAS programs on the postoperative complications of pancreatic surgery is controversial. Hence, the application of ERAS programs in the perioperative period of pancreatic surgery is still being explored in our practices.

The main measures of the ERAS programs include no bowel preparation and clear fluids until 2-3 h before surgery, multimodal analgesia of postoperative, clear fluids or food intakes, enhanced mobilization and removal of the drainage tube in early period. The ERAS group had shorter PLOS and lower postoperative complication rates; however, there were no significant differences in rates of DGE, POPF, readmission, and mortality. Kagedan et al[39] analyzed 10 studies suggesting that the ERAS group had only shorter PLOS and no differences in other complications. As mentioned above, we may reasonably conclude that the influence of ERAS programs on the postoperative complications of pancreatic surgery is controversial. Hence, the application of ERAS programs in the perioperative period of pancreatic surgery is still being explored in our practices.

The main measures of the ERAS programs include no bowel preparation and clear fluids until 2-3 h before surgery, multimodal analgesia of postoperative, clear fluids or food intakes, enhanced mobilization and removal of the drainage tube in early period. The ERAS group had reduced time of fasting in the preoperative period, which can decrease the insulin resistance in the postoperative period. We adopted multimodal

Study or Subgroup	ERAS group	Control group	Odds Ratio	Year			
	Events	Total	Events	Total	Weight	M-H, Fixed, 95%CI	
Vanoueu T	53	145	32	64	13.7%	0.58 [0.32, 1.04]	2007
Abu Hilal M	6	20	13	24	4.0%	0.36 [0.10, 1.26]	2013
Coolen MM	20	86	17	97	6.0%	1.43 [0.69, 2.94]	2014
Braga M	46	115	54	115	15.8%	0.75 [0.40, 1.39]	2014
Yui R	52	57	40	52	1.8%	3.12 [1.02, 9.58]	2014
Partell S	7	22	26	66	4.3%	0.72 [0.26, 2.00]	2015
Joliat GR	18	74	30	87	10.2%	0.61 [0.31, 1.22]	2015
Morales Soriano R	6	41	12	44	4.8%	0.46 [0.15, 1.36]	2015
Williamson C	25	50	29	50	7.1%	0.72 [0.33, 1.59]	2015
Zouros E	15	75	15	50	7.0%	0.58 [0.25, 1.34]	2016
Bai X	55	124	30	63	10.8%	0.88 [0.48, 1.61]	2016
Dai J	32	68	68	98	14.4%	0.39 [0.21, 0.74]	2017

Total (95%CI) 877 810 100.0% 0.71 [0.58, 0.88]
Total events 335 366
Heterogeneity: Χ² = 16.67, df = 11 (P = 0.12); I² = 34%
Test for overall effect: Z = 3.15 (P = 0.002)

Figure 5 Forest plots demonstrating the outcomes of mild complications.

Study or Subgroup	ERAS group	Control group	Odds Ratio	Year			
	Events	Total	Events	Total	Weight	M-H, Fixed, 95%CI	
Abu Hilal M	2	20	0	24	0.3%	6.62 [0.30, 146.37]	2013
Coolen MM	14	86	15	97	8.5%	1.06 [0.48, 2.35]	2014
Nussbaum DP	16	100	25	142	12.5%	0.89 [0.45, 1.77]	2014
Kobayashi S	5	100	5	90	3.6%	0.89 [0.25, 3.20]	2014
Yui R	2	57	10	52	7.3%	0.15 [0.03, 0.73]	2014
Nussbaum DP	6	50	9	100	3.8%	1.38 [0.46, 4.12]	2014
Williamson C	6	50	2	50	1.3%	3.27 [0.63, 17.07]	2015
Morales Soriano R	3	41	2	44	1.3%	1.66 [0.26, 10.46]	2015
Shao Z	46	325	69	310	43.8%	0.58 [0.38, 0.87]	2015
Bai X	10	124	9	63	7.9%	0.53 [0.20, 1.37]	2016
Zouros E	1	75	0	50	0.4%	2.03 [0.08, 50.92]	2016
Dai J	2	68	16	98	9.2%	0.16 [0.03, 0.70]	2017

Total (95%CI) 1096 1120 100.0% 0.70 [0.54, 0.90]
Total events 113 162
Heterogeneity: Χ² = 18.46, df = 11 (P = 0.07); I² = 40%
Test for overall effect: Z = 2.72 (P = 0.006)

Figure 6 Forest plots demonstrating the outcomes of abdominal infection.
analgesia in the postoperative period, which was able to reduce the stress caused by pain. The programs, such as, no bowel preparation before surgery, clear fluids or food intakes, enhanced mobilization in the early postoperative period which may promote rehabilitation of gastrointestinal function[39].

The ERAS programs aimed to reduce the incidence of complications and accelerate recovery for patients. Among them, gastrointestinal function rehabilitation is an important part of the rapid recovery in abdominal surgery. In addition, the early postoperative oral feeding, which may play an important role in the gastrointestinal function rehabilitation in the postoperative period. This is because early postoperative oral feeding is more in line with human physiology of the digestive tract, and which may have a beneficial effect on immunological, inflammatory and nutritional status. In addition, early postoperative oral feeding can promote the recovery of gastrointestinal motility, protect the gastrointestinal mucosal barrier, shorten time to gas and stools passage, and reduce the incidence of complications.

A total of 20 studies and 3694 patients were included in our meta-analysis. Compared with the control group, the ERAS group had lower rates of DGE, lower postoperative complication rates, particularly lower mild postoperative complication rates, lower abdominal infection rates, and shorter PLOS. However, no significant differences existed in POPF, moderate
Table 1: Meta-analysis of Intended Reoperation

Study or Subgroup	ERAS group	Control group	Odds Ratio	Year		
Kennedy EP	7	91	3	44	2.5% 1.14 [0.28, 4.63]	2007
Vanounou T	13	145	4	64	3.4% 1.48 [0.46, 4.72]	2007
Balzano G	18	252	16	252	10.1% 1.13 [0.56, 2.28]	2008
Kennedy EP	5	71	10	40	8.1% 0.23 [0.07, 0.72]	2009
Abu Hilal M	1	20	2	24	1.2% 0.58 [0.05, 6.90]	2013
Coolen MM	11	86	14	97	7.8% 0.87 [0.37, 2.03]	2014
Braga M	14	115	12	115	7.1% 1.19 [0.52, 2.70]	2014
Nussbaum DP	31	100	36	142	13.9% 1.32 [0.75, 2.33]	2014
Nussbaum DP	15	50	20	100	6.3% 1.71 [0.79, 3.73]	2014
Pillai SA	0	20	0	20	Not estimable	2014
Shao Z	43	325	44	310	26.5% 0.92 [0.59, 1.45]	2015
Partelli S	3	22	11	66	3.2% 0.79 [0.20, 3.14]	2015
Morales Soriano R	4	41	4	44	2.4% 1.08 [0.25, 4.64]	2015
Zouros E	5	75	3	50	2.3% 1.12 [0.26, 4.91]	2016
Bai X	11	124	2	63	1.6% 2.97 [0.64, 13.83]	2016
Dai J	0	68	6	98	3.6% 0.10 [0.01, 1.88]	2017

| Total (95%CI) | 1605 | 1529 | 100.0% | 1.04 [0.83, 1.30] |

| Total events | 181 | 187 | | |

Figure 9: Forest plots demonstrating the outcomes of readmission.

Study or Subgroup	ERAS group	Control group	Odds Ratio	Year		
Vanounou T	7	145	4	64	6.8% 0.76 [0.21, 2.70]	2007
Balzano G	17	252	20	252	24.1% 0.84 [0.43, 1.64]	2009
Abu Hilal M	0	20	3	24	4.0% 0.15 [0.01, 3.08]	2013
Nussbaum DP	10	100	18	142	17.3% 0.77 [0.34, 1.74]	2014
Yui R	1	57	1	52	1.3% 0.91 [0.06, 14.94]	2014
Pillai SA	3	20	1	20	1.1% 3.35 [0.32, 35.36]	2014
Coolen MM	7	86	13	97	14.5% 0.57 [0.22, 1.51]	2014
Braga M	14	115	12	115	13.6% 1.19 [0.52, 2.70]	2014
Morales Soriano R	5	41	5	44	5.5% 1.08 [0.29, 4.05]	2014
Partelli S	1	22	3	66	1.9% 1.00 [0.10, 10.14]	2015
Zouros E	4	75	2	50	2.9% 1.35 [0.24, 7.68]	2016
Bai X	4	124	1	63	1.7% 2.07 [0.23, 18.89]	2016
Dai J	2	68	5	98	5.1% 0.56 [0.11, 2.99]	2017

| Total (95%CI) | 1125 | 1087 | 100.0% | 0.87 [0.63, 1.20] |

| Total events | 75 | 88 | | |

Figure 10: Forest plots demonstrating the outcomes of unintended reoperation.
to severe complications, mortality, readmission or unintended reoperation in both groups.

Many factors, such as age, nutritional status, and serious comorbidity, can influence patients’ postoperative complication rates and the process of postoperative recovery\cite{41, 42}. The patients’ demographic data in the included studies was basically identical, so these influences may be eliminated for the outcomes in this study. In addition, all of the included studies described the diagnostic criteria for postoperative complications. Therefore, to a certain extent, information bias was possible, because some complications did not have national criteria. Second, only retrospective case control studies were included in this analysis. Therefore, to a certain extent, the outcomes of this study may be influenced by the selection bias. Third, the degree of implementation of ERAS programs and the compliance of patients may be different between studies. Finally, there was no evidence

Table 3 Results of Subgroup Analysis

Outcomes of interest	Studies	Patients	OR/WMD	95%CI	P-value	Heterogeneity P-value	I²	%
Studies with cases ≥ 100								
POPF	14	3067	0.87	0.73-1.03	0.11	0.02	48	
DGE	14	3117	0.58	0.47-0.71	<0.00001	0.07	39	
Overall complications	14	3045	0.57	0.45-0.72	<0.00001	0.06	46	
Mild complications	9	1470	0.74	0.59-0.93	0.009	0.07	46	
Abdominal infection	10	2087	0.67	0.51-0.87	0.003	0.07	42	
PLOS	10	2394	-4.64	-3.77 to -2.91	<0.00001	0.09	65	
Mortality	15	2802	0.83	0.51-1.37	0.47	1	0	
Readmission	12	2877	1.05	0.83-1.33	0.68	0.23	22	
Unintended reoperation	9	1955	0.85	0.60-1.21	0.38	0.96	0	
MINORS score > 12								
POPF	15	2784	0.84	0.70-1.00	0.05	0.13	30	
DGE	16	2949	0.52	0.42-0.64	<0.00001	0.12	31	
Overall complications	16	3008	0.56	0.44-0.71	<0.00001	0.01	51	
Mild complications	11	1504	0.67	0.54-0.83	0.0003	0.24	21	
Abdominal infection	10	1791	0.63	0.46-0.85	0.002	0.05	46	
PLOS	11	2272	-4.35	-3.97 to -2.72	<0.00001	0.03	66	
Mortality	16	2523	0.96	0.56-1.65	0.89	0.99	0	
Readmission	13	2598	1.09	0.84-1.33	0.52	0.82	0	
Unintended reoperation	11	1787	0.96	0.65-1.41	0.83	0.94	0	

CI: Confidence interval; DGE: Delayed gastric emptying; MINORS score: Methodological Index for Non-Randomized Studies checklist; OR: Odds ratio; PLOS: Postoperative length of hospital stay; POPF: Postoperative pancreatic fistula; WMD: Weighted mean difference.

Table 4 Results of sensitivity analysis by omitting one study in each turn

Studies	OR	95%CI	P-value
Omitting Vanounou et al\cite{31}	0.56	0.44-0.72	<0.00001
Omitting Kennedy et al\cite{32}	0.56	0.44-0.71	<0.00001
Omitting Balzano et al\cite{33}	0.56	0.43-0.73	<0.0001
Omitting Kennedy et al\cite{34}	0.56	0.46-0.74	<0.0001
Omitting Abu Hilal et al\cite{35}	0.56	0.45-0.73	<0.0001
Omitting Yui et al\cite{36}	0.56	0.44-0.72	<0.0001
Omitting Kobayashi et al\cite{37}	0.56	0.45-0.74	<0.0001
Omitting Coolsen et al\cite{38}	0.54	0.43-0.69	<0.0001
Omitting Braga et al\cite{39}	0.55	0.43-0.71	<0.0001
Omitting Pillai et al\cite{40}	0.57	0.45-0.73	<0.0001
Omitting Joliat et al\cite{41}	0.57	0.45-0.73	<0.0001
Omitting Partelli et al\cite{42}	0.55	0.44-0.68	<0.0001
Omitting Williamson et al\cite{43}	0.56	0.44-0.71	<0.0001
Omitting Morales Soriano et al\cite{44}	0.58	0.46-0.74	<0.0001
Omitting Shao et al\cite{45}	0.57	0.44-0.74	<0.0001
Omitting Zouros et al\cite{46}	0.57	0.44-0.73	<0.0001
Omitting Bai et al\cite{47}	0.56	0.44-0.71	<0.0001
Omitting Dai et al\cite{48}	0.62	0.52-0.71	<0.0001
Overall effect	0.57	0.45-0.72	<0.0001

CI: Confidence interval; OR: Odds ratio.
to indicate that major publication bias existed in these studies, and potential publication bias is impossible to completely rule out in small studies. Hence, these factors had some influence on our results.

In summary, the results from our present study demonstrate that the implementation of ERAS programs could reduce overall complication rates, especially of mild complications, DGE, rates of abdominal infection, and PLOS, while not affecting the rates of POPF, reoperation, readmission, and mortality during the perioperative period for pancreatic surgery. The perioperative period for pancreatic surgery is safe and effective to implement ERAS programs that can decrease postoperative complication rates and promote recovery. However, in the future, we need to include more high-quality and strict prospective studies to assess the contributions of individual program components.

ARTICLE HIGHLIGHTS

Research background
Enhanced recovery after surgery (ERAS) is a multidisciplinary and evidence-based framework, developed to decrease perioperative surgical stress, accelerate postoperative recovery and significantly reduce the postoperative length of hospital stay (PLOS). ERAS programs have been launched in a variety of other fields of surgery, such as colorectal, orthopedics, urology, esophageal, and gynecology, and have demonstrated favorable outcomes. The implementation of ERAS programs has lagged surrounding pancreatic surgeries because of the anatomical location of the pancreas and the high rate of postoperative complications (30%-60%). It is very important to promote the postoperative recovery for this high-risk abdominal surgery via implementing ERAS programs during the perioperative period.

Research motivation
ERAS requires surgical, nursing, anesthesia and other specialties to work together and uses a series of optimal or evidence-based management measures to lessen perioperative surgical stress while promoting the recovery of organ function in the early postoperative period. The implementation of ERAS programs may play a very important role in the perioperative period for pancreatic surgery.

Research objectives
This study evaluated the impact of ERAS programs on postoperative complications and PLOS of pancreatic surgery.

Research methods
Computer searches were performed in databases (including PubMed, Cochrane Library, and Embase) for randomized controlled trials or case-control studies describing ERAS programs in patients undergoing pancreatic surgery published between January 1995 and August 2017. Two researchers independently evaluated the quality of the studies’ extracted data that met inclusion criteria and performed a meta-analysis using RevMan5.3.3 software. Forest plots, demonstrating the outcomes of the ERAS group versus the control group after pancreatic surgery, and funnel plots were used to evaluate potential publication bias.

Research results
Twenty case-control studies, published between January 1995 and August 2017, including 3694 patients, were selected for the meta-analysis. They included the ERAS group (n = 1886) and control group (n = 1808), which adopted the traditional perioperative management. Compared to the control group, the ERAS group had lower delayed gastric emptying (DGE) rates (odds ratio (OR) = 0.58, 95% confidence interval (CI): 0.48-0.72, P < 0.00001), lower postoperative complication rates (OR = 0.57, 95%(CI): 0.45-0.72, P < 0.00001), particularly for mild postoperative complications (Clavien-Dindo I - II) (OR = 0.71, 95%(CI): 0.58-0.88, P = 0.002), lower abdominal infection rates (OR = 0.70, 95%(CI): 0.54-0.90, P = 0.006) and shorter PLOS (weighted mean difference (WMD) = -4.45, 95%(CI): -5.99 to -2.91, P < 0.00001). However, there were no significant differences in postoperative pancreatic fistulas (POPF), moderate to severe complications (Clavien-Dindo III - IV), mortality, readmission and unintended reoperation in both groups.

Research conclusions
The results from our present study demonstrate that the implementation of ERAS programs could reduce overall complication rates, especially of mild complications, DGE, rate of abdominal infection and PLOS, while not affecting the rates of POPF, reoperation, readmission and mortality during the perioperative period for pancreatic surgery. The perioperative period for pancreatic surgery is safe and effective to implement ERAS programs that can decrease postoperative complication rates and promote recovery.

Research perspectives
We need to include more high-quality and strict prospective studies to assess the contributions of individual program components, such as clear fluids or food intakes in the early period, and removal of the drainage tube.

REFERENCES

1. Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br J Anaesth 1997; 78: 606-617 [PMID: 9175983]
2. Basse L, Raskov HH, Hjort Jakobsen D, Sonne E, Billesholle P, Hendel HW, Rosenberg J, Kehlet H. Accelerated postoperative recovery programme after colonic resection improves physical performance, pulmonary function and body composition. Br J Surg 2002; 89: 446-453 [PMID: 11952586 DOI: 10.1046/j.1365-2096.2001.02044.x]
3. Barbieri A, Vanhaecht K, Van Herck P, Sermeus W, Faggiano F, Marchisio S, Panella M. Effects of clinical pathways in the joint replacement: a meta-analysis. BMC Med 2009; 7: 32 [PMID: 19570193 DOI: 10.1186/1741-7015-7-32]
4. Azhar RA, Bochner B, Catto J, Goh AC, Kelly J, Patel HD, Pruthi RS, Thalmann GN, Desai M. Enhanced recovery after urological surgery: a contemporary systematic review of outcomes, key elements, and research needs. Eur Urol 2016; 70: 176-187 [PMID: 26970912 DOI: 10.1016/j.euro.2016.02.051]
5. Arsalani-Zaehr R, ElFadl D, Yassin N, MacFie J. Evidence-based review of enhancing postoperative recovery after breast surgery. Br J Surg 2011; 98: 181-196 [PMID: 21104705 DOI: 10.1002/bjs.7331]
6. Hughes MJ, McNally S, Wigmore SJ. Enhanced recovery following liver surgery: a systematic review and meta-analysis. HPB (Oxford) 2014; 16: 699-706 [PMID: 24631606 DOI: 10.1111/hpb.12245]
7. Pisarska M, Malczak P, Major P, Wysoki M, Bydzyński A, Pędzniwiatr M. Enhanced recovery after surgery protocol in oesophageal cancer surgery: systematic review and meta-analysis. PLoS One 2017; 12: e0174382 [PMID: 28350805 DOI: 10.1371/journal.pone.0174382]
8. de Groot JJ, Ament SM, Maessen JM, Dejong CH, Kleijnen JM, Slangen BF. Enhanced recovery pathways in abdominal gynecologic surgery: a systematic review and meta-analysis. Acta Obset Gynecol Scand 2016; 95: 382-395 [PMID: 26613531 DOI: 10.1111/aogs.12831]
9. Lassen K, Coolsen MM, Slim K, Carli F, de Aguilar-Nascimento JE, Schäfer M, Parks RW, Fearon KC, Lobo DN, Demartines N, Braga M, Ljungqvist O, Dejong CH; ERAS® Society; European Society for Clinical Nutrition and Metabolism; International Association for Surgical Metabolism and Nutrition. Guidelines for perioperative care for pancreaticoduodenectomy: Enhanced Recovery After Surgery (ERAS®) Society recommendations. Clin Nutr 2012; 31: 817-830 [PMID: 23079762 DOI: 10.1016/
Enhanced recovery pathways in pancreatic surgery. Rosato EL, Sauter PK, Rosenberg LM, Doria C, van Dam RM, van der Wilt AA, Slim K, Lassen K, Zerbi A, Braga M, Rocchetti S, Beneduce AA, Kehlet H. Management of patients in fast track surgery: a suggested definition by the International Study Group of Pancreatico-duodenectomy at an academic institution--the first step in multidisciplinary team building. J Am Coll Surg 2007; 204: 917-23; discussion 923-4 [PMID: 17481510 DOI: 10.1016/j.jamcollsurg.2007.01.057]

Vanounou T, Pratt W, Fischer JE, Vollmer CM Jr, Callery MP. Deviation-based cost modeling: a novel model to evaluate the clinical and economic impact of clinical pathways. J Am Coll Surg 2007; 204: 570-579 [PMID: 17382215 DOI: 10.1016/j.jamcollsurg.2007.01.025]

Balzano G, Zerbi A, Braga M, Rocchetti S, Beneduce AA, Di Carlo V. Fast-track recovery programme after pancreaticoduodenectomy reduces delayed gastric emptying. Br J Surg 2008; 95: 1387-1393 [PMID: 18844251 DOI: 10.1002/bjs.6324]

Kennedy EP, Grenda TR, Sauter PK, Rosato EL, Chojnacki KA, Berger AC, Yeo CJ. Implementation of a critical pathway for pancreaticoduodenectomy at an academic institution. J Gastrointest Surg 2009; 13: 938-944 [PMID: 19109068 DOI: 10.1007/s11605-009-0803-0]

Abu Hilal M, Di Fabio F, Badran A, Alsaati H, Clarke H, Fecher I, Armstrong TH, Johnson CD, Pearce NW. Implementation of enhanced recovery programme after pancreaticoduodenectomy: a single-centre UK pilot study. Pancreatology 2013; 13: 58-62 [PMID: 23895571 DOI: 10.1016/j.pan.2012.11.312]

Braga M, Pecorelli N, Ariotti R, Capretti G, Greco M, Balzano G, Castoldi R, Beretta L. Enhanced recovery pathway in patients undergoing pancreaticoduodenectomy. World J Surg 2014; 38: 2960-2966 [PMID: 24870390 DOI: 10.1007/s00268-014-2653-5]

Pillai SA, Palaniappan R, Pichaimuthu A, Rajendran KK, Sathyanesan J, Govindhan M. Feasibility of implementing fast-track surgery in pancreaticoduodenectomy with pancreaticogastrostomy for reconstruction—a prospective cohort study with historical control. Int J Surg 2014; 12: 1005-1009 [PMID: 25014648 DOI: 10.1016/j.ijsu.2014.07.002]

Coolsem MM, van Dam RM, Chigharoe A, Olde Damink SW, Dejong CH. Improving outcome after pancreaticoduodenectomy: experiences with implementing an enhanced recovery after surgery (ERAS) program. Dig Surg 2014; 31: 177-184 [PMID: 25097014 DOI: 10.1159/000353458]

Nussbaump DP, Pennk K, Stinnett SS, Speicher PJ, Cocicu A, Blazer DG 3rd, Zani S, Clary BM, Tyler DS, Blazer DG 3rd. The role of clinical care pathways: an experience with distal pancreatectomy. J Surg Res 2014; 190: 64-71 [PMID: 24666986 DOI: 10.1016/j.jss.2014.02.026]

Kobayashi S, Ooshima R, Koizumi S, Katayama M, Sakurai J, Watanabe T, Nakano H, Imaizumi T, Otsubo T. Perioperative care with fast-track management in patients undergoing pancreaticoduodenectomy. World J Surg 2014; 38: 2430-2437 [PMID: 24692004 DOI: 10.1002/jss.2014.06.036]

Shao Z, Jin G, Ji W, Shen L, Xu H. The role of fast-track surgery in pancreaticoduodenectomy: a retrospective cohort study of 635 consecutive resections. Int J Surg 2015; 15: 129-133 [PMID: 25615646 DOI: 10.1016/j.ijss.2015.01.007]

Joliat GR, Labgaia I, Petermann D, Hübler M, Griesser AC, Demartines N, Schäfer M. Cost-benefit analysis of an enhanced recovery protocol for pancreaticoduodenectomy. Br J Surg 2015; 102: 1676-1683 [PMID: 26492489 DOI: 10.1002/bjs.9957]

Partelli S, Crippa S, Castagnani R, Ruffo G, Marmorale C, Francioni AM, De Angelis F, Falconi M. Evaluation of an enhanced recovery protocol after pancreaticoduodenectomy in elderly patients. HPB (Oxford) 2016; 18: 153-158 [PMID: 26902134 DOI: 10.1016/j.hpb.2015.09.009]

Williamsson C, Karlsson N, Sturesson C, Lindell G, Andersson R, Tingstedt B. Impact of a fast-track surgery programme for pancreaticoduodenectomy. J Surg Res 2015; 120: 1133-1141 [PMID: 26042725 DOI: 10.1016/j.jss.9856]

Moraes Soriano R, Esteve Pérez N, Tejada Gavela S, Cuadrado García A, Rodríguez Pino JC, Morón Canis JM, Molina Romero X, Muñoz Pérez J, González Argente X. Outcomes of an enhanced recovery after surgery programme for pancreaticoduodenectomy. Cir Exp 2015; 93: 509-515 [PMID: 26072690 DOI: 10.1016/j.ciresp.2015.04.009]

Bai X, Zhang X, Lu F, Li G, Gao S, Lou J, Zhang Y, Ma T, Wang J, Chen W, Huang B, Liang T. The implementation of an enhanced recovery after surgery (ERAS) program following pancreatic surgery in an academic medical center of China. Pancreatology 2016; 16: 665-670 [PMID: 27090583 DOI: 10.1016/j.pan.2016.03.018]

Zouros E, Liakakos T, Machairas A, Patapis P, Agalianos C, Dervenis C. Improvement of gastric emptying by enhanced recovery after surgery in patients undergoing pancreaticoduodenectomy. Hepatobiliary Pancreat Dis Int 2016; 15: 198-208 [PMID: 27020637]

Dai J, Jiang Y, Fu D. Postoperative complications and improving clinical outcome: Enhanced recovery after surgery in pancreaticoduodenectomy - a retrospective cohort study. Int J Surg 2017; 39: 176-181 [PMID: 28132917 DOI: 10.1016/j.ijsu.2017.01.089]

Wilmore DW, Kehlet H. Management of patients in fast track surgery. BMJ 2001; 322: 473-476 [PMID: 11222424]

Kehlet H, Wilmore DW. Multimodal strategies to improve surgical outcome. Am J Surg 2002; 183: 630-641 [PMID: 12095591]

Lassen K, Soop M, Nygren J, Cox PB, Hendry PO, Spies C, von Meyenfeldt MF, Fearon KC, Revhaug A, Norderval S, Ljungqvist O, Lobo DN, Dejong CH. Enhanced Recovery After Surgery (ERAS) Group. Consensus review of optimal perioperative care in colorectal surgery: Enhanced Recovery After Surgery (ERAS) Group recommendations. Arch Surg 2009; 144: 961-969 [PMID: 19841366 DOI: 10.1001/archsurg.2009.170]

Barton JG. Enhanced recovery pathways in pancreatic surgery. Surg Clin North Am 2016; 96: 1301-1312 [PMID: 27865279 DOI: 10.1016/j.suc.2016.07.003]

Coolsem MM, van Dam RM, van der Wilt AA, Slim K, Lassen K, Dejong CH. Systematic review and meta-analysis of enhanced recovery after pancreatic surgery with particular emphasis on pancreaticoduodenectomies. World J Surg 2013; 37: 1909-1918 [PMID: 23566280 DOI: 10.1002/jss.2014.06.036]

Kagedan DJ, Ahmed M, Devitt KS, Wei AC. Enhanced recovery...
Ji HB et al. Impact of pancreatic surgery: A meta-analysis after pancreatic surgery: a systematic review of the evidence. HPB (Oxford) 2015; 17: 11-16 [PMID: 24750457 DOI: 10.1111/hpb.12265]

Martos-Benítez FD, Gutiérrez-Noyola A, Soto-García A, González-Martínez I, Betancourt-Plaza I. Program of gastrointestinal rehabilitation and early postoperative enteral nutrition: a prospective study. Updates Surg 2018; 70: 105-112 [PMID: 29429053 DOI: 10.1007/s13304-018-0514-8]

Garth AK, Newsome CM, Simmance N, Crowe TC. Nutritional status, nutrition practices and post-operative complications in patients with gastrointestinal cancer. J Hum Nutr Diet 2010; 23: 393-401 [PMID: 20337847 DOI: 10.1111/j.1365-277X.2010.01058.x]

Kobayashi S, Segami K, Hoshino H, Nakahara K, Katayama M, Koizumi S, Otsubo T. Risk factors for failure of early recovery from pancreateoduodenectomy despite the use of enhanced recovery after surgery protocols and a physical aging score to predict postoperative risks. J Hepatobiliary Pancreat Sci 2018; 25: 231-239 [PMID: 29412516 DOI: 10.1002/jhbp.540]
