Selective synthesis of Fe$_3$O$_4$Au$_x$Ag$_y$ nanomaterials and their potential applications in catalysis and nanomedicine

Essy Kouadio Fodjo1,*, Koffi Mouroufié Gabriel2, Brou Yapi Serge1, Dan Li3*, Cong Kong4* and Albert Trokourey1

Abstract
In these recent years, magnetite (Fe$_3$O$_4$) has witnessed a growing interest in the scientific community as a potential material in various fields of application namely in catalysis, biosensing, hyperthermia treatments, magnetic resonance imaging (MRI) contrast agents and drug delivery. Their unique properties such as metal–insulator phase transitions, superconductivity, low Curie temperature, and magnetoresistance make magnetite special and need further investigation. On the other hand, nanoparticles especially gold nanoparticles (Au NPs) exhibit striking features that are not observed in the bulk counterparts. For instance, the mentioned ferromagnetism in Au NPs coated with protective agents such as dodecane thiol, in addition to their aptitude to be used in near-infrared (NIR) light sensitivity and their high adsorptive ability in tumor cell, make them useful in nanomedicine application. Besides, silver nanoparticles (Ag NPs) are known as an antimicrobial agent. Put together, the Fe$_3$O$_4$Au$_x$Ag$_y$ ($\{x, y\} = \{0, 1\}$) nanocomposites with tunable size can therefore display important demanding properties for diverse applications. In this review, we try to examine the new trend of magnetite-based nanomaterial synthesis and their application in catalysis and nanomedicine.

Keywords: Magnetite-based nanoparticles, Synthesis and application of nanoparticles, Core–shell nanoparticles, Magnetic resonance imaging, Drug delivery

Background
Nanostructures have inherited particular properties which are linked with their size and their morphology. These physical properties have a significant effect on their application [1, 2]. Among these nanostructures which have aroused a huge application, magnetic iron oxide (Fe$_3$O$_4$ and Fe$_2$O$_3$) NPs have attracted much attention especially in the catalysis for chemical degradation and biomedical applications due to their low toxicity, superparamagnetic and low Curie temperature. Indeed, in recent studies, magnetite nanocomposites have been successfully used as a magnetically recyclable catalyst for the degradation of organic compounds [3, 4] while further research [5] have demonstrated the non-toxicity of the Fe$_3$O$_4$ nanoparticles on rat mesenchymal stem cells and their ability to label the cells. However, these iron oxides are unstable due to their ability to undergo oxidation easily [5]. To overcome this issue, a combination with noble metal NPs such as silver (Ag) or gold (Au) has been used. This combination provides not only an important stability for these iron oxides in solution, but also the ability to bind various biological ligands with convenient enhancement of optical and magnetic properties (Fig. 1) [6–8]. These Fe$_3$O$_4$Au$_x$Ag$_y$ NPs have the advantages to be useful in suspension application. Such a suspension can interact with an external magnetic field to facilitate a magnetic separation or can be guided to a specific area, thus facilitating a magnetic resonance imaging for...
medical diagnosis and an alternating current (AC) magnetic field-assisted cancer therapy [9–11].

Furthermore, in the core–shell types, the properties of the nanostructures change from one structure to another, depending on the size, the shape and the shell or core composition. In this nanostructure, the shell can prevent the core from corrosion or dissolution. This effect can lead to a major enhancement of the thermal, mechanical, and electrical properties of the system [12, 13]. Besides, because of the coupling between the spectrally localized surface plasmon resonance (LSPR) of the noble metal NPs and the continuum of interband transitions of the other hybrid component in the core–shell nanostructures, Fano resonances (FR) in strongly coupled systems can arise. This plasmon hybridization can be rationalized and can serve as a good substitute in biological applications [14, 15].

Since the dimensions of the individual components are nanoscale level or comparable to the size of the biomolecules, the combination is always expected to proffer novel functions which are not available in single-component materials. However, only appropriate sizes of the Fe3O4AuAg NPs exhibit such properties and are super-paramagnetic [16]. Therefore, tailoring of an appropriate nanostructure constitutes the main problem.

Moreover, in recent years, Ali et al. [17] have examined a large range of synthesis methods of nanomaterials. In these methods, mechanochemical (i.e., laser ablation arc discharge, combustion, electrodeposition, and pyrolysis) and chemical (sol–gel synthesis, template-assisted synthesis, reverse micelle, hydrothermal, co-precipitation, etc.) methods have extensively been studied. According to these authors, various shapes and size of NPs (i.e., nanorod, porous spheres, nanohusk, nanocubes, distorted cubes, and self-oriented flowers) can be obtained using nearly matching synthetic protocols by simply changing the reaction parameters [18]. Although they claimed the possibility to synthesize specific size and shape, they did not show the different routes to produce these physical properties. In this review, we will intensively discuss the way to design Fe3O4AuAg, namely Fe3O4 nanocomposites in which Au and Ag are involved. Particular interest will be paid to core–shell nanostructures and their application in catalysis and nanomedicine.

Synthesis methods

Fe3O4 synthesis

Among the most popular synthesis methods, co-precipitation is widely used for the synthesis of Fe3O4 NPs. It is convenient and considered as the easiest method. In this method, Fe2+ and Fe3+ are the main precursor in solution. The starting molar ratio Fe2+/Fe3+ [19, 20], the basicity (NaOH, NH4OH, and CH3NH2) [21], and the ionic strength [N(CH3)4]+, CH3NH3+, NH4+, Na+, Li+, and K+] [22, 23] of the media play a major role. For instance, studies performed by Laurent et al. [24] have shown a change in magnetite NPs size by adjusting the basicity and the ion strength, and a change in shape by tuning the electrostatic surface density of the nanoparticles. For Patsula et al. [5], the synthesis of different shape, size, and particle size distribution of Fe3O4 can be done through the different reaction temperatures, the concentration of the stabilizer, and the type of high-boiling-point solvents. Other factors such as an inlet of
nitrogen gas or agitation are also critical in achieving the desired size, and the morphology of the magnetite NPs [25].

Moreover, in base media for instance, Fe(OH)2 and Fe(OH)3 are easily formed. The aqueous mixture of Fe3+ and Fe2+ sources at Fe3+/Fe2+ = 2:1 molar ratio can lead to a black color product of Fe3O4 [26] which is governed by Eq. (1):

\[
\text{Fe}^{2+} + 2\text{Fe}^{3+} + 8\text{OH}^- \rightarrow \text{Fe}_3\text{O}_4 + 4\text{H}_2\text{O} \quad (1)
\]

In recent study [27], it has been reported that the molar ratios smaller than Fe3+/Fe2+ = 2:1 cannot compensate the oxidation of Fe2+ to Fe3+ for the preparation of Fe3O4 nanoparticles under oxidizing environment. However, in synthesis evolving in anaerobic conditions, a complete precipitation of Fe3O4 is likely formed, and no attentiveness is needed about the starting Fe3+/Fe2+ ratio as the excess of Fe2+ can be converted into Fe3+ in the Fe3O4 lattice as described by Schikorr reaction (Eq. 2):

\[
3\text{Fe(OH)}_2 \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2 + 2\text{H}_2\text{O} \quad (2)
\]

At low temperature, with the presence of organic compounds, the anaerobic conditions can also give rise to the formation of “green rust”. Likely, the excess of iron(II) hydroxide in the medium along with this green rust can progressively be transformed into iron(II, III) oxide. It should also be noted that all along these syntheses in aqueous media, the pH of the reaction mixture has to be adjusted in the synthesis and the purification steps to achieve smaller monodisperse NPs. Furthermore, in an oxygen-free environment, most preferably in the presence of N2, the bubbling nitrogen gas can help to prevent the NPs from oxidation or to reduce the size of the NPs [16].

Synthesis of Fe3O4AuAg

The hybrid nanostructures with two or more components have attracted more attention due to the synergistic properties induced by their interactions. In the synthesis of nanocomposites, several techniques such as co-reduction of mixed ions, organic-phase temporary linker and seed-mediated growth have been explored [28, 29]. All of them have proven their feasibility and advantages. The aim of the application is the main motivation of the chosen technique as the structure and surface composition of the shell or the core are among the primordial parameters on which the properties of the nanocomposites are subjugated [30, 31].

The co-reduction of mixed ions is known to be less selective in core–shell synthesis. In this procedure, the component which acts as the core can be formed randomly depending on the reactions parameters (pH, temperature, agitation, duration of the reaction, standard potential associated with each ion, etc.) [32, 33]. Furthermore, when designing a solution-based synthetic system for core/shell multicomponent nanocrystals, it is important to consider the electronegativity of the metals for the selection of the appropriate reducing agent. It is relatively difficult to judge whether they can be prepared in a designed synthetic system because of their huge difference in the oxidizing power. This electronegativity is important to avoid polydispersity and keep the by-products in nanoscale level. This process is not suitable for Fe3O4 nanocomposites synthesis as the iron ions may undergo reduction, but it can be used for the Au–Ag nanocomposite synthesis.

As the properties depend on the component which acts as core or shell, an appropriate design can be achieved using typical synthetic route to avoid the haphazard core/shell formation. For instance, for a given application, one would want to have a selected component as the core. This aim can be achieved efficiently using chemical makeup (Fig. 2a) of functional groups (organic-phase temporary linker) to modify the selected core surface. In this purpose, hydrophilic functional groups such as NH2 and SH can promote the attachment of the selected metal as a core while hydrophobic functional groups such as CH3 and PPh2 lead to minimal attachment [8, 34]. In this process, the adsorption of one component onto the core is affected by the surface charge, the solution pH, and the precursor concentrations. The thickness of the shell and the size of the core are strongly pH-dependent [35–37]. This chemical makeup method can also be used to prevent iron NPs from oxidation and agglomeration [23].

Another similar method without chemical makeup is seed-mediated growth (Fig. 2b). In this process, the core/shell NPs is designed by growing a uniform shell on the core NPs through adsorption of the shell compound ions on the seed-mediated NPs [38, 39]. This growth technique can be used for the fabrication of NPs such as Fe3O4AuAg, with controlled size by acting on the precursor concentration of the shell component. In addition, the seed particles themselves can participate in the reaction as catalysts, where charge transfer between the seeds and newly nucleated components is involved. This effect lowers the energy for heterogeneous nucleation. As long as the reactant concentration, seed-to-precursor ratio, and heating profile are controlled, core/shell nanostructures or multicomponent heterostructures [40] and the desired thickness [41] can be obtained. Besides core–shell nanostructures, heteromultimers with two joined NPs (Fig. 3, Step 1 and 2) sharing a common interface can be synthesizes. The growth of heteromultimers follows procedures similar to those of core–shell NPs synthesis methods. However, a convenient route to control core/shell vs. heterodimer formation...
is mainly obtained by controlling the polarity of the solvent (Fig. 2b). It has been proposed that when a magnetic component, such as Fe₃O₄, is nucleated on Au or Ag, electrons will transfer from Au or Ag to Fe₃O₄ through the interface to match their chemical potentials [42, 43]. The charge transfer leads to electron deficiency on the metal (Au or Ag). If a polar solvent is used in the reaction, the electron deficiency on the metal can be replenished from the solvent leading therefore to the formation of multiple nucleation sites. This process results in continuous shell formation. On the other hand, if a non-polar solvent is used, once a single nucleated site depletes the electrons from the metal, the electron deficiency cannot be replenished from the solvent. This phenomenon
prevents new nucleation events and promotes heterodimer NPs [44–46]. Additionally, strong reductant such as sodium borohydride promotes heterodimer formation [47].

Physicochemical properties of Fe₃O₄ and nanocomposites

Fe₃O₄ is a typical magnetic iron oxide with a cubic inverse spinel structure in which oxygen forms a face-centered cubic close packing. Some of the Fe³⁺ occupy 1/8th of interstitial tetrahedral while equal amounts of Fe²⁺ and Fe²⁺ fill half of the available octahedral sites [48, 49] in the space group Fd3m with 0.8394 nm as lattice parameter. The conduction and the magnetism properties are mainly due to the distribution of these iron ions. Indeed, the electron spins of the Fe²⁺ and Fe³⁺ in the octahedral sites are coupled while the spins of the Fe³⁺ in the tetrahedral sites are anti-parallel coupled to those in octahedral sites. As the magnetic moments of the Fe³⁺ and Fe²⁺ are 5 and 4 Bohr magneton respectively, it results a magnetic moment equal to (→5←4←5) = 4 Bohr magneton (Fig. 4). This net effect is that the magnetic contributions of both sets are not balanced and it raises a permanent magnetism.

Because of a double-exchange interaction existing between Fe²⁺ and Fe³⁺ in octahedral sites due to d orbital overlap between iron atoms, the additional spin-down electron can hop between neighboring octahedral-sites, thereby resulting in a high conductivity [20, 50]. The electrical conductivity in Fe₃O₄ is generally caused by the superposition of the surface plasmon (SP) band and SP hopping conduction. Indeed, below room temperature, the band conduction is the dominant transport mechanism [51–53]. However, these properties can be improved when magnetite NPs are doped using a specific component such as Au and Ag. The obtained nanostructures can easily and promptly be induced into magnetic resonance by self-heating, applying the external magnetic field, or by moving along the attraction field [25, 54, 55]. Owing to the quantized oscillation of conduction electrons under an external electromagnetic field, these NPs can exhibit strong surface plasmon resonance (SPR) absorption similar to the metal NPs themselves [56, 57]. The ideal core size to obtain a perfect SPR is around 10 nm, and when this size is far less, these NPs show little or no SPR absorption [58, 59]. The controlled coating of either Au or Ag on the Fe₃O₄/(Au, Ag) NPs facilitates the tuning of the plasmonic properties of these core/shell NPs. Moreover, depositing a thicker Au shell on the magnetite NPs leads to a red-shift of the absorption band, while coating Ag on these seed particles results in a blue-shift of the absorption band compared with the metal absorption band itself. These phenomena are relevant to the shell thickness and the metal polarization regarding some parameters such as the dielectric environments, the refractive index of the second component or the charge repartition on the metal [40].

Applications

Fe₃O₄AuₓAgʸ catalytic properties

The physicochemical properties of Fe₃O₄AuₓAgʸ arise from the polarization effect at the interfaces of the different component of Fe₃O₄AuₓAgʸ. This polarization allows Fe₃O₄AuₓAgʸ hybrid nanostructures to form a storage structure of electrons (Fig. 5) which are discharged when exposed to an electron acceptor such as O₂ or organic compound. This structure can therefore give the ability of displaying a high catalytic activity towards an
electron-transfer reaction, or excellent surface-enhanced Raman scattering activity when Au or Ag acts as a shell [60–62]. The formation of a space-charge layer at two different components interface is known to improve charge separation under band gap excitation, thus generating high density catalytic hot pot sites [63]. Indeed, these nanocomposites are useful in promoting light induced electron-transfer reactions and can be used as a powerful material for charge separation. In addition, individually, Ag NPs have a high antibacterial activity [64], Au NPs are optical active [65] while Fe₃O₄ NPs are supermagnetic [9]. All these properties make Fe₃O₄AuₓAgᵧ NPs convenient to be used in magnetic separation and in catalytic degradation of pollutants. Another advantage is that they are perfectly recycled in several folds [66].

Nanomedicine application

Avoiding alteration of healthy cell in chemotherapy, immunotherapy and radiotherapy is a major concern as these techniques do not specifically target the cancerous cells [67]. In a recent study [41], the toxicity grade of magnetic NPs on mouse fibroblast cell line has been classified as grade 1, which belongs to no cytotoxicity. Besides, the hemolysis rates are found to be far less than 5% while an acute toxicity testing in beagle dogs has shown no significant difference in body weight and no behavioral changes. Meanwhile, blood parameters, autopsy, and histopathological studies have shown no significant difference compared with those of the control group. These results suggest that Fe₃O₄AuₓAgᵧ NPs can be considered as an alternative agent to overcome the observed side effects in tumor treatment.

However, the trend in Fe₃O₄AuₓAgᵧ NPs concept is to deliver the drugs such as anticancer and at the same time, to observe what happens to the cancerous cells without damaging the healthy cell. This concept can be achieved thanks to the antimicrobial, magnetic and optic activities of the Fe₃O₄AuₓAgᵧ NPs. These hybrid NPs can be ideally used as magnetic resonance imaging (MRI) contrast enhancement agents.

In recent studies [6, 45, 68–72], authors have also shown that Fe₃O₄AuₓAgᵧ NPs can be manipulated using external magnetic field either for a magnetic separation of biological products (Fig. 6), a magnetic field-assisted cancer therapy and site-specific drug delivery or as a magnetic guidance of particle systems for MRI and for surface enhanced Raman spectroscopy detection.

Well-engineered Fe₃O₄AuₓAgᵧ NPs can effectively guide heat to the tumor without damaging the healthy tissue as injected Fe₃O₄AuₓAgᵧ nano-sized particles tend to accumulate in the tumor. This accumulation is done either passively through the enhanced permeability and retention effect or actively through their conjugation with a targeted molecule due to the unorganized nature of its vasculature. When applying hyperthermia with these NPs, the tumor temperature can increase up to 45 °C whereas the body temperature remains at around 38 °C [73, 74]. This ability of such NPs prevents the healthy cell from being altered.

In addition, gold NPs are known to be strong near-infrared (NIR) absorbers. Their effectiveness in cancer like breast and tumor optical contrast has been demonstrated and, the optical contrast of the tumor can be increased by 1 ~ 3.5 dB using injected Au NPs [75]. The applications of Fe₃O₄AuₓAgᵧ NPs have therefore not only the magnetism properties of iron oxide that renders them to be easily manipulated and heated by an external magnetic field, but also an excellent NIR light sensitivity and a high adsorptive ability from the metal layer which make them useful for photothermal therapy [41, 76, 77].

Conclusions

Recent synthetic efforts have led to the understanding of the formation of a large variety of multicomponent NPs with different levels of complexity. A selected nanostructure with hybrid components can be synthesized by tailoring the synthesis parameters. Despite these exciting new developments, the study of multicomponent NPs is still at its infancy stage compared with most single-element systems. In this purpose the mastery of the synthesis process of Fe₃O₄AuₓAgᵧ nanocomposites may be a milestone for their extensive application. Furthermore, the strong coupling between the different components exhibits novel physical phenomena and enhance their properties, thus, making them superior to their single-component counterparts for their application in nanomedicine and catalysis. This novel agent will help in diagnosis and treatment of terminal diseases efficiently by using their guiding capability. They may also provide an alternative to the highly toxic chemotherapy or thermotherapy, with
the use of less toxic nano-carriers as anticancer agents and with less heat for healthy cells.

This application may pave a new dimension in cancer treatment and management in the near future. Another benefit of Fe₃O₄Au-Ag nanocomposites may be found in their highly catalytic properties for contaminant degradation in industry and waste processing. This last point is imperative for fighting against upstream roots of water-borne diseases.

Abbreviations
AC: alternating current; FR: Fano resonances; LSPR: localized surface plasmon resonance; MRI: magnetic resonance imaging; NPs: nanoparticles; NIR: near-infrared.

Authors’ contributions
EKF: General writing of the article. DL and CK: General editing of the article. AC: alternating current; FR: Fano resonances; LSPR: localized surface plasmon resonance; MRI: magnetic resonance imaging; NPs: nanoparticles; NIR: near-infrared.

References
1. Barakat NAM, Abdelkareem MA, El-Newehy M, Kim HY (2013) Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: an effective impact toward methanol electrooxidation. Nanoscale Res Lett 8(1):402–407
2. Liu XQ, locozzera J, Wang Y, Cui X et al (2017) Noble metal–metal oxide nanobyrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ Sci 10(2):402–434
3. Lin FH, Doong RA (2011) Bifunctional Au–Fe₃O₄ heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115(14):6591–6598
4. Zhu MY, Diao GW (2011) Synthesis of porous Fe₃O₄ nanospheres and its application for the catalytic degradation of xylene orange. J Phys Chem C 115(39):18923–18934
5. Patanis A, Kostina L, Lorisih M, Hamzic LF et al (2016) Superparamagnetic Fe₃O₄ nanoparticles: synthesis by thermal decomposion of iron(III) gluconate and application in magnetic resonance imaging. ACS Appl Mater Interfaces 8(11):7238–7247
6. Bao F, Yao J, Gu RA (2009) Synthesis of magnetic Fe3O4/Au core/shell nanoparticles for bioseparations and immunoassay based on surface-enhanced Raman spectroscopy. Langmuir 25(18):10782–10787
7. Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117(3):901–986
8. Freitas M, Couto MS, Barroso MF et al (2016) Highly monodisperse Fe₃O₄@Au superparamagnetic nanoparticles as reproducible platform for biosensing genetically modified organisms. ACS Sens 1(8):1044–1053
9. Ge SJ, Agbakpe M, Wu ZY, Kuang LY et al (2015) Influences of surface coating, UV irradiation and magnetic field on the agela removal using magnetite nanoparticles. Environ Sci Technol 49(2):1190–1196
10. Li WP, Liao PY, Su CH, Yeh CS (2014) Formation of oligonucleotide–gated silica shell-coated Fe3O4-Au core–shell nanosorbactheda for magnetically targeted and near-infrared light-responsive theranostic platform. J Am Chem Soc 136(28):10062–10075
11. Das R, Rinaldi-Montes N, Alonso J, Amghozou Z (2016) Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe₃O₄ nanoflowers. ACS Appl Mater Interfaces 8(38):25162–25169
12. Zhang L, Dong WF, Sun HB (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical applications. Nanoscale 5(7):7664–7684
13. Quaresma P, Osorio I, Dona G, Carvalho PA et al (2014) Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Adv 4(8):3659–3667
14. Pena-Rodriguez O, Pal U (2011) Au@Ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale 3(9):3609–3612
15. Qian J, Sun YD, Li YD, Xu JJ, Sun Q (2015) Nanosphere-in-a-nanoegg: damping the high-order modes induced by symmetry breaking. Nanoscale Res Lett 10(10):17–24
16. Soenen SJ, Himmelreich U, Nuyten N, Pisanc TR et al (2010) Intracellular NP coating stability determines NP diagnostics efficacy and cell functionality. Small 6(19):2136–2145
17. Ali A, Zafar H, Zia M, Haji IU, Phull AR, Ab JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67
18. Fortin JP, Wilhelm C, Servais J, Menager C et al (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129(9):2628–2635
19. Wu S, Sun A, Zhao F et al (2011) Fe₃O₄ magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884
20. ElBayoumi TA, Torchilin VP (2010) Liposomes: methods and protocols, volume 1: pharmaceutical nanocarriers. Method Mol Biol 605:1–86
21. Zhen GL, Muir BW, Moffat BA et al (2011) Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J Phys Chem C 115(2):327–334
22. Li XA, Zhang B, Ju CH et al (2011) Morphology-controlled synthesis and electromagnetic properties of porous Fe₃O₄ nanoparticles from iron alkoxide precursors. J Phys Chem C 115(25):12350–12357
23. Vikesland PJ, Rebudos RL, Bottero JY, Rose J, Masion A (2016) Aggregation dynamics in protein immobilization. Molecule 19(8):11465–11486
27. Maity D, Agrawal D (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308(1):146–55
28. Schantl W (2010) Current directions in core–shell nanoparticle design. Nanoscale 2(6):829–843
29. Leung KCF, Xuan SH, Zhu XM, Wang DW et al (2012) Gold and iron oxide hybrid nanocomposite materials. Chem Soc Rev 41(5):1911–1928
30. Feng L, Wechsler D, Zhang P (2008) Alloy-structure-dependent electronic behavior and surface properties of Au–Pd Nanoparticles. Chem Phys Lett 461(4–6):254–259
31. Nalawade P, Mukherjee P, Kapoor S (2013) Triethylamine induced synthesis of silver and bimetallic (Ag/Au) nanoparticles in glycerol and their antibacterial study. J Nanoscale Chem 4(2):113–120
32. Mao JJ, Wang DS, Zhao GF, Jia W, Li YD (2013) Preparation of bimetallic nanocrystals by coreduction of mixed metal ions in a liquid−solid−solution synthetic system according to the electroweakness of alloys. Cryst Eng Commun 15(24):4806–4810
33. Samal AK, Polavarapu U, Rodal-Cedeira S, Liz-Marzan LM et al. (2013) Size tunable Au@Ag core−shell nanoparticles: synthesis and surface−enhanced Raman scattering properties. Langmuir 29(4):15076–15082
34. Zhang A, Dong CG, Liu H, Ren JC (2013) Blinking behavior of CdSe/CdS quantum dots controlled by alkylthiols as surface trap modifiers. J Phys Chem C 117(46):24592–24600
35. Vandenboogaard A, Chen Y, Gonzalez F, Brook MA (2011) Silicon shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation. ACS Appl Mater Interfaces 3(10):3942–3947
36. Haldar KK, Kundu S, Patra A (2014) Core−side-dependent catalytic properties of bimetallic Au@Ag core−shell nanoparticles. ACS Appl Mater Interfaces 6(24):21946–21953
37. Dembski S, Milde M, Dyba M, Schweizer S, Gellermann C, Klockenbrinck T (2011) Effect of pH on the synthesis and properties of luminescent SiO2/calcium phosphate: Eu4+−core−shell nanoparticles. Langmuir 27(23):14025−14032
38. Wu LH, Mendoza-Garcia A, Li Q, Sun SH (2016) Organic phase synthesis of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512
39. Stefan M, Pana O, Leostean C, Bele C et al. (2014) Synthesis and characterization of Fe3O4@TiO2 core−shell Nanoparticles. J Appl Phys 116(11):114312−114322
40. Zeng H, Sun SH (2008) Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 18(3):391−400
41. Li YT, Liu J, Zhong YJ, Zhang J et al. (2011) Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo. Int J Nanomed 6:2805−2819
42. Yu H, Chen M, Rice PM, Wang SX et al. (2005) Dumbbell-like bifunctional Au−Fe3O4 nanoparticles. Nano Lett 5(2):379−382
43. Shi WL, Zeng H, Sahoo Y, Ohulchanskyy TY et al. (2006) A general approach to binary and ternary hybrid nanocrystals. Nano Lett 6(10):3828−3857
44. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293−346
45. Lee Y, Garcia MA, Huls NAF, Sun S (2010) Synthetic tuning of the catalytic properties of Au−Fe3O4 nanoparticles. Angew Chem 122(17):1293−1296
46. Jiang J, Gu HW, Shao HL, Devlin E et al. (2008) Bifunctional Fe3O4−Ag heterodimer nanoparticles for two-photon fluorescent imaging and magnetic manipulation. Adv Mater 20(23):4403−4407
47. Guo SJ, Dong SJ, Wang EK (2009) A general route to construct diverse multifunctional Fe3O4/metal hybrid nanostuctures. Chem Eur J 15(10):2416−2424
48. Alarfaj NA, El-Tohamy MF (2015) A high throughput gold nanoparticles chemiluminescence detection of opioid receptor antagonist naloxone hydrochloride. Chem Cent J 9:6–14
49. Pologhiitvar V, Luque R, Fihri A, Zhu HB et al. (2011) Magneticallyrecoverable nanocatalysts. Chem Rev 111(5):3036−3075
50. Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK (2006) Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 98(18):1331−1334
51. Schrupt S, Dung M, Tsunekawa M, Fujiwara H et al. (2005) High−energy photoemission on Fe3O4 small polaron physics and the Verwey transition. Europhys Lett 70(6):789−795
52. Hervoni A, Bapna M, Potrowski S, Majetich SA, Markovich G (2016) Tracking the Verwey transition in single magnetite nanocrystals by variable−temperature scanning tunneling microscopy. J Phys Chem Lett 7(1):1661−1666
53. Yu QZ, Shi MM, Cheng YN, Wang M, Chen HZ (2008) Fe3O4@Au/ polyaniline multifunctional nanocomposites: their preparation and optical, electrical and magnetic properties. Nanotechnology 19(26):265702−265707
54. Ortega D, Panikhurst QA (2013) Magnetic hyperthermia, in nanoscience: volume 1: nanostructures through chemistry. In: Brief PO (ed). Royal Society of Chemistry, Cambridge, pp 60−88
55. Dadashi S, Pourasali R, Delavari H (2015) Structural and optical properties of pure iron and iron oxide nanoparticles prepared via pulsed Nd: YAG laser ablation in liquid. Procedia Mater Sci 11:722−726
56. Zhu J (2009) Surface plasmon resonance from bimetallic interface in Au−Ag core−shell structure nanowires. Nanoscale Res Lett 4(9):977−981
57. Bedford EE, Boujdays S, Pradier CM, Gu FX (2015) Nanostuctured and spiky gold in biomolecule detection: improving binding efficiencies and enhancing optical signals. RSC Adv 5(21):16461−16475
58. Mayer KM, Haffer JH (2011) Localized surface plasmon resonance sensors. Nanoscale 3(26):9194−9202
59. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371−384
60. Selvan ST, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semi-conductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed 46(14):2448−2452
61. Solerich J, Escritano E, Querol J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16(4):8070−8101
62. Lemire J, Harison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371−384
63. Estelrich J, Escritano E, Querol J, Busquets MA (2015) Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 16(4):8070−8101
64. Fodjo et al. Chemistry Central Journal (2017) 11:58
75. Jin HZ, Kang KA (2008) Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Chapter: oxygen transport to tissue XXVIII. Adv Exp Med Biol 599:45–52

76. Wang LX, Bai JW, Li YJ, Huang Y (2008) Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew Chem Int Ed 47(13):2439–2442

77. Xu ZC, Hou YL, Sun SH (2007) Magnetic core/shell Fe₃O₄/Au and Fe₃O₄/Au/Ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129(28):8698–8699