Host Resistance in *Pyrus* to Fabraea Leaf Spot

Richard L. Bell and Tom van der Zwet

U.S. Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station, 45 Wiltshire Road, Kearneysville, WV 25430-9425

Additional index words. Fabraea maculata, Entomosporium maculatum, Diplocarpon mespili, pear

Abstract. Pear leaf spot, caused by the fungus *Fabraea maculata* Atk. (anamorph: *Entomosporium mespili* (DC.) Sac.) occurs in most areas of the world where pears are grown. Most major cultivars of the european pear, *P. communis* L., for which data are available are susceptible. Ratings appearing in the literature are sometimes contradictory. This study evaluated resistance/susceptibility within a diverse collection of *Pyrus* cultivars and other germplasm in a randomized and replicated nursery plot using quantitative measures of disease incidence and severity. The least susceptible genotypes were the *P. communis* cultivars 'Beurre Fouquier' and 'Bartlett', the *P. pyrifolia* cultivars 'Imamura Aki', and the *P. communis* x *P. ussuriensis* hybrid NJ 477643275.

Pear leaf spot, caused by the fungus *Fabraea maculata* Atk. (anamorph: *Entomosporium mespili* (DC.) Sac.) occurs in most areas of the world where pears are grown under warm, humid conditions. Susceptible cultivars are often defoliated by midsummer resulting in weak trees and a reduction in fruit buds. Infected fruits are disfigured, cracked, misshapen, and unmarketable as fresh fruit. In the nursery the disease can be serious, causing defoliation and stunted growth (Anderson, 1956). Most major cultivars of the european pear, *P. communis* L., for which data are available are considered susceptible (Bell, 1991). However, ratings appearing in the literature are sometimes contradictory. Resistance to Fabraea leaf spot has been reported in some cultivars of *P. communis*, notably 'Clapp Favorite', 'Doyenné du Comice', 'Minister Dr. Lucius', 'Louise Bonne d'Avranches' and 'Duchesse d'Angouleme' (Esmarch, 1935; Koch, 1907). However, when Kovalov (1963) listed 'Beurre Diel' and 'Bartlett' as resistant, Esmarch (1935) reported them to be susceptible.

Genotypes of a number of east Asian species, *P. ussuriensis* Maxim., *P. pyrifolia* (Burm.) Nak., *P. calleryana* Decne., *P. fauriei* Scheid., and *P. dimorphophylla* Mak., have been reported as resistant (Beck, 1958; Kovalov, 1940; Tukey and Braese, 1934; and Wisker, 1916). Zaleski et al. (1959) reported that seedlings of *P. caucasia* Fed. were more resistant than interspecific hybrids of *P. salicifolia* Pall. or *P. pyrifiliformis* Vill. with *P. communis*. A multi-year study of 207 *Pyrus* genotypes (Bell and van der Zwet, 1988) demonstrated variability within and among species and interspecific hybrids. Pure species or interspecific hybrids involving *P. calleryana*, *P. pyrifolia* and *P. ussuriensis* were generally more resistant than *P. communis* genotypes. Drain (1954) noted resistance in the *P. communis* x *P. pyrifolia* hybrids, 'Moore's' and 'Hoskins'. Lombard and Westwood (1987) listed seedlings of *P. caucasia* and *P. cordata* Desv. as moderately tolerant, those of the Circum-Mediterranean species *P. amygdaliformis*, *P. elaeagritolia* Pall., and *P. syriaca* Boiss., and seedlings and clones of *P. betulifolia* Bunge as having high tolerance, *P. calleryana* seedlings and clones as very tolerant, and *P. pashia* D. Don. as susceptible. In contrast to some of the other studies, Lombard and Westwood (1987) listed *P. pyrifolia* and *P. ussuriensis* as having only low tolerance.

One explanation of the disparity among these studies is that each species is heterogeneous for this trait. Furthermore, all studies thus far reported are based upon epiphytotic infections in nonrandomized orchard plots and have not been corroborated by controlled studies. Studies based upon artificial inoculation were not possible due to the lack of an in vitro cultural medium suitable for the production of large amounts of inoculum until improvements developed by van der Zwet and Stroo (1985). In addition, the ratings were based upon relatively undefined subjective scales, with the exception of a previous study by Bell and van der Zwet (1988), which used a scale based on a visual estimate of the number of lesions and degree of defoliation.

Effective control of the disease requires frequent applications of fungicides throughout the growing season, especially after periods of rain. Cultivars with resistance would reduce grower costs and potential residues associated with pesticide usage. Reliable evaluation methods are needed, and the use of small nursery plots may be more efficient in terms of space and maintenance requirements than orchard plots. This study sought to evaluate resistance or susceptibility within a diverse collection of *Pyrus* cultivars and other germplasm in a randomized and replicated nursery plot using quantitative measures of disease incidence and severity.

Materials and Methods

Plant material. Thirty-four genotypes of pear (Table 1) were selected to represent a range of susceptibility and genetic diversity, and with the exception of three additions, were selected from genotypes studied previously (Bell and van der Zwet, 1988). Five rows of 'Bartlett' seedling rootstocks were planted in a nursery block at a spacing of about 1.5 m between rows and 0.6 m between trees. Two trees of each genotype were produced by budding in late summer in a random order onto two rootstocks in each row, and grown in single leader trees the following spring. Lack of bud took reduced the number of trees produced for some genotypes, leading to incomplete blocks (i.e., rows). However, at least three trees of each genotype and as many as eight were used in the study. No fungicides were applied during the study. Jones and Aldwinckle (1990) stated that the primary inoculum consists of ascospores and conidia from overwintering leaves, as well as conidia from twig cankers. Therefore, leaves from infected trees in the orchard were collected during the previous fall and spread uniformly in the nursery in an attempt to provide natural inoculum.

Disease evaluation. During the summer, random leaves were examined to confirm that the symptoms were consistent with *Fabraea maculata*. In late August, 10 leaves were collected from the apical through the basal portions of each tree. The number of lesions per leaf were counted and the most prominent damage and the number of leaves per tree on which data could be collected was reduced. Leaf area was measured using a leaf area meter (LI-COR Biosciences, Lincoln, Neb.), and the number of lesions per square centimeter leaf area was calculated.

Statistical analysis. The linear model was a nested linear model with genotypes treated as fixed effects and trees within genotypes and leaves within trees as random effects. The data were analyzed as a completely randomized design due to the incomplete nature of the blocks (i.e., rows). The residuals were computed using SAS PROC MIXED (Littell et al., 1996) and analyzed for normality using the Shapiro-Wilk test and normal probability plots using SAS PROC UNIVARIATE (SAS Institute, 1990). The distribution of mean number of lesions per tree (W = 0.81, P < W = 0.0001) was not normal, probably due primarily to kurtosis. The distribution of mean lesions per leaf area
per tree (W = 0.59, P < W < 0.0001) were not normal, also due to kurtosis, but the mean lesion size per tree was normally distributed (W = 0.99, P < W < 0.53). Variance of number of lesions per leaf genotype were found to be unequal according to plots of residuals versus genotype means and Bartlett's homogeneity of variance test option in SAS PROC GLM (SAS Institute, 1990) (chi-square = 169.5, P > chi-square = <0.0001). In addition, Spearman's rank correlation, computed using SAS PROC CORR (SAS Institute, 1990), between residuals and genotype means was highly significant (r = 0.67, P < 0.0001). Variance of the residuals for number of lesions per leaf area was not equal according to the residual versus mean plots, Spearman's rank correlation (r = 0.65, P < 0.00001), and Bartlett's test (chi-square = 166.7, P > chi-square = <0.00001). Variance of lesion size residuals were equal according to Bartlett's test (chi-square = 32.0, P > chi-square = <0.41), although the residual versus mean plot was inconclusive, due to the discrete nature of the scores. Data for number of lesions per leaf and lesions per leaf area were log transformed. Analysis indicated improvement in equality of variances and normality.

Analyses of variance was performed using SAS PROC MIXED, with denominator degrees of freedom computed by Satterthwaite's method. Differences in least-square means adjusted and tested using the Tukey option (Littell et al., 1996). Pearson's correlation coefficients were computed between genotypic means for number of lesions per leaf, lesion size, and lesions per leaf area. Rank correlations between these variables and the mean and minimum severity scores reported in Bell and van der Zwart (1988) were computed. Rank correlations were computed between the proportion of infected leaves and mean lesion size.

Results and Discussion

Differences among genotypes were highly significant (P = 0.003 to 0.0001) for number of lesions, leaf area, number of lesions per unit leaf area, and lesion size. Variance due to differences among individual trees of each genotype was also highly significant (P = 0.0001) for each measured variable, indicating the need for adequate replication and randomization. Use of infected leaves distributed in the nursery was apparently not effective in achieving uniform inoculum levels through the nursery plot. The frequencies of infected leaves on grafted trees were generally high, indicating a lack of immunity. All leaves of fifteen genotypes had at least one lesion on each leaf, but as many as seven leaves of 'Lincoln' had no lesions, either through escape or resistance. There was no relationship between presence or number of uninsected leaves and other measures of infection. Most noninfected leaves for a genotype were on the same tree (data not shown).

The least susceptible genotypes were the *P. communis* cultivars 'Beurre Fouqueray' and 'Bartlett', the *P. pyrifolia* cultivar 'Imamura Aki', and the *P. x ussuriensis* × *P. pyrifolia* hybrid NJ 477643275 (Table 1). The most susceptible genotype, with >12 lesions/cm² of leaf area, was NY 10353. This genotype developed almost twice the number of lesions per leaf area as the next two most susceptible genotypes, NY 10345 and NY 10355. All three of these are *P. communis* × *P. ussuriensis* BC, interspecific hybrids. Severe early season defoliation of NY 10333 has been observed in our unsprayed orchard block.

Mean lesion size was smallest in Illinois 76, putatively an interspecific hybrid of *P. ussuriensis* and *P. pyrifolia* (L. F. Hough, pers. comm.), and NJ 477643275, a seedling of Illinois 76 and 'Pai Li'. Mean lesion size ranged continuously up to 'Pai Li' and 'Pontotoc'. Five of the six genotypes with the lowest numbers of lesions per unit leaf area also had the smallest mean lesion size ratings, suggesting that the mechanism of resistance that affects incidence of infection may also retard lesion development.

There were moderate to high positive correlations between mean number of lesions and lesion size (r = 0.54, P = 0.001) and with lesions per leaf area (r = 0.79, P < 0.0001). There was a moderately small, positive rank correlation (r = 0.37, P = 0.03) between the mean proportion of infected leaves and mean lesion size. These observations suggest that factors affecting whether infection occurs are at least moderately associated with those affecting severity of infection.

Due to significant variability among trees of a single genotype, which resulted in many overlapping classes in the mean separation test, the replicated nursery screening technique was only moderately useful for identifying the most resistant and the most susceptible genotypes, at least in a single-year study. The rank correlation between the mean number of lesions per leaf area and the mean scores reported in Bell and van der Zwart (1988) was low and not significant (r = -0.28, P = 0.12), while the rank correlation with the minimum scores was moderate and significant (r = -0.38, P = 0.03). One reason for the low correlations may be the relative importance of leaf lesions as a source of inoculum. While condidia which overwintered on infected leaves can serve as a source of inoculum during the spring, overwintering bark cankers are a more important source in mature trees trained and pruned according to standard commercial practice (Goldsworth and Smith, 1938). In such trees, the lowest leaves would be further from the overwintered leaf litter than the leaves of young single-shoot trees used in our current study. Horie and Kobayashi (1980) concluded that condidia from...
diseased overwintered leaves on the ground could serve as a source of primary inoculum on low growing plants, although shoot lesions would also be an important source of inoculum in taller plants, especially as secondary lesions developed during the growing season. The greater amount of inoculum to be expected on trees containing overwintering bark cankers may account for the generally more severe leaf spot infections observed in our earlier study of mature trees (Bell and van der Zwet, 1988). In that study data was collected later, in mid-September, and the more severe scores in that rating scale took into account percentage leaf spot infections observed in our earlier study. Defoliation. These differences in assessment that rating scale took into account percentage leaf spot infections observed in our earlier study of mature trees (Bell and van der Zwet, 1988). Our present study did not include many of the cultivars previously reported to be resistant, but the P. communis cultivars 'Beurre Fougeray' and 'Bartlett' and the P. pyrifolia cultivars, 'Imamura Aki' and 'Japan Golden Russet', were moderately resistant in this study as well as in our previous study (Bell and van der Zwet, 1988). Our results for 'Bartlett' agree more closely with Kovalev (1963) than Esmarch (1935), 'Beurre Fougeray', 'Maxine', and 'Moonglow' combine moderate levels of resistance to Fabraea leaf spot with resistance to fire blight. These cultivars should be particularly useful in breeding new disease resistant pear cultivars.

Literature Cited

Anderson, H.W. 1956. Diseases of fruit crops. McGraw Hill, New York.
Beck, J. 1958. Search continues for disease resistant pear. Rpt. Lafayette, Ind. 1(3):6–7.
Bell, R.L. 1991. Pears (Pyrus). In: J.N. Moore and J.R. Ballington (eds.). Genetic resources of temperate fruit and nut crops. Acta Horticulturae, vol. 290. chapter 14. Intl. Soc. for Hort. Sci., Wageningen.
Bell, R.L. and T. van der Zwet. 1988. Susceptibility of Pyrus germplasm to fabraea leaf spot. Acta Hort. 224:229–236.
Drain, B.D. 1954. Blight resistant pears of today and tomorrow. Trans. Ill. Hort. Soc. 88:125–127.
Esmarch, F. 1935. Little known leaf spots of pears. (in German). Krank. Pflanze. 12:129–132.
Goldworthy, M.C. and M.A. Smith. 1938. The comparative importance of leaves and twigs as overwintering infection sources of the pear leaf-blight pathogen, Fabraea maculata. Phytopathology 28:574–582.
Horie, H. and T. Kobayashi. 1980. Entomosporium leaf spot of Pomoideae, Rosaceae in Japan. II. Parasitism and over-wintering of the fungus. Euro. J. For. Pathol. 10:117–124.
Hough, L.F. 1944. The new pear breeding project. Trans. Ill. Hort. Soc. 78:106–110.
Jones, A.L. and H.S. Aldwinkle (eds.). 1990. Compendium of apple and pear diseases. Amer. Phytopathol. Soc., St. Paul, Minn.
Koch, G. 1907. The resistance of different pear varieties against brown leaf (Stigmoatae mespili) and the different parasite types against Septoria lycopersici (in German). Z. Landw. Versuchsch. Osterr. 10:759–761.
Kovalev, N.V. 1940. Immunity of fruit trees to fungus diseases (in Russian). C.R. Acad. Sci. U.S.S.R. 27:176–179.
Kovalev, N.V. 1963. Leaf blight of pears (in Russian). Zasc. Rast. Vred. Bozej. 8(11):58. Hort. Abstr. 34:2545 (1964).
Littell, R.C., G.A. Milliken, W.W. Stroup, and R.D. Wolflinger. 1996. SAS system for mixed models. SAS Inst. Inc., Cary, N.C.
Lombard, P.B. and M.N. Westwood. 1987. Pear rootstocks, p. 145–183. In: R.C. Rom and R.F. Carlson (eds.). Rootstocks for fruit crops. John Wiley and Sons, New York.
SAS Institute, Inc. 1990. SAS procedures guide. version 6. 3rd ed. SAS Inst., Inc., Cary, N.C.
Tukey, H.B. and K.D. Braese. 1934. Trials with pear stocks in New York. Proc. Amer. Soc. Hort. Sci. 30:361–364.
van der Zwet, T. and H. F. Stroo. 1985. Effects of cultural conditions on sporulation, germination, and pathogenicity of Entomosporium maculatum. Phytopathology 75:94–97.
Wisker, A.L. 1916. Blight-resistant roots—The first step towards pear blight control. Mon. Bul. Calif. Comm. Hort. 5(2):48–53.
Zala{ś}ski, K., J. Wierszyłowski, and Z. Rebandel. 1959. Observations and experiments on leaf blight of pear (Fabraea maculata Adk., Entomosporium maculatum Lev.) and its biology and control in seedlings during nursery production (from 1948 to 1954) (in Polish). Prace Kom. Nauk. Roln. Lesn., Poznan 5(1):46. Plant Brdg. Abstr. 30:723 (1960).