Article

Aerial Oxygen-Driven Selenocyclization of O-Vinylanilides Mediated by Coupled Fe$^{3+}$/Fe$^{2+}$ and I$_2$/I$^-$ Redox Cycles

Hao-Yuan Zhang, Tong-Tong Zeng, Zhen-Biao Xie, Ying-Ying Dong, Cha Ma, Shan-Shan Gong and Qi Sun *

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
* Correspondence: sunqi@jxstnu.edu.cn

Abstract: In the past decade, selenocyclization has been extensively exploited for the preparation of a wide range of selenylated heterocycles with versatile activities. Previously, selenium electrophile-based and FeCl$_3$-promoted methods were employed for the synthesis of selenylated benzoxazines. However, these methods are limited by starting material availability and low atomic economy, respectively. Inspired by the recent catalytic selenocyclization approaches based on distinctive pathways, we rationally constructed an efficient and greener double-redox catalytic system for the access to diverse selenylated benzoxazines. The coupling of I$_2$/I$^-$ and Fe$^{3+}$/Fe$^{2+}$ catalytic redox cycles enables aerial O$_2$ to act as the driving force to promote the selenocyclization. Control and test redox experiments confirmed the roles of each component in the catalytic system, and a PhSeI-based pathway is proposed for the selenocyclization process.

Keywords: diselenide; o-vinylanilide; redox cycle; aerial oxygen; multivalent metal; benzoxazine

1. Introduction

Selenium-containing organic compounds, also known as organoselenium compounds, are an important and unique category of organic molecules. As shown in Figure 1, organoselenium compounds (1–8) exhibit versatile biological and pharmacological activities [1–3], such as antioxidant [4–8], antimicrobial [9–11], antiproliferative [12–15], and antiinflammatory activities [16]. Selenium-based probes (9–10) [17] have also been developed for highly sensitive fluorimetric detection of reactive oxygen species (ROS), such as ClO$^-$ [18] and O$_2^•$ [19], in living cells. In addition, the selenium-containing fused bicyclic heterocycle (11) and its analogs have been demonstrated as active organic field effect transistor materials [20]. In the realm of organic synthesis, organoselenium compounds also have a wide range of applications, such as ligands for organometallic catalysts (12) [21], synthetic intermediates [22–24], and even direct catalysts [25]. Therefore, a huge amount of effort has been devoted to developing efficient synthetic methods for selenylated heterocycles over the past decade [26–28].

As an important heterocyclic scaffold, 3,1-benzoxazine is widely found in natural products and bioactive molecules [29–31]. Numerous types of substituted benzoxazines have been synthesized via either cation- or radical-initiated tandem cyclizations [32–35]. Among them, selenylated benzoxazines have been successfully synthesized from the selenocyclization of selenium electrophiles, such as PhSeCl, PhSe$^+$CF$_3$COO$^-$ [36], and N-(PhSe)succinimide with o-vinylanilides [37] (Figure 2a). However, this approach is limited by the availability of selenium electrophiles (RSeX) and difficult to apply to R-modified selenocyclizations. Fe$^{3+}$-promoted selenocyclization with readily available diorganyl diselenides could be a good alternative approach [38–41]. In our experiments (Figure 2b), excess FeCl$_3$ (2 equiv) was required to afford the desired products in 3–4 h due to the chelation of in situ-generated PhSe$^-$ with Fe$^{3+}$. Since the generation of one PhSe$^+$ is accompanied by the formation of one PhSe$^-$ and the consumption of one molecule of Fe$^{3+}$, the efficiency
of this method is low in terms of atomic economy. It is worth noting that Zhang and coworkers reported that the combination of a catalytic amount of FeCl$_3$/benzoyl peroxide (BPO) and 2 equiv of I$_2$ with diselenides afforded the desired products via both cation- and radical-initiated pathways [42] (Figure 2c). According to the mechanism proposed by Zhang et al., BPO facilitated the generation of RSeI and RSe*, while FeCl$_3$ catalyzed the electrophilic cyclization of the neighboring aryl ring. More recently, Zhang et al. reported that I$^+$ generated from the redox reaction of FeCl$_3$ and KI induced the RSe*-initiated reaction pathway and the oxidation of the radical intermediates by Fe$^{3+}$, and aerial oxygen yielded the desired products in 24 h under refluxing conditions [43] (Figure 2d). Inspired by these previous research, we envisioned that only catalytic amount of I$_2$ is actually needed to convert diselenide to RSeI, an ideal selenium electrophile [23,44], if the resulting I$^-$/I$^-$ redox cycle and O$_2$ may construct a double-redox catalytic system for selenylated benzoxazines, featuring greener reaction conditions and high atomic economy. Herein, we report an efficient aerial O$_2$-driven selenocyclization approach mediated by coupled Fe$^{3+}$/Fe$^{2+}$ and I$_2$/I$^-$ redox cycles (Figure 2e). Mechanistic investigation confirmed the roles of each component in this novel double-redox catalytic system and revealed the reasons why Fe$^{3+}$ exhibited the best catalytic reactivity.

![Figure 1. Representative organoselenium compounds.](image1)

![Figure 2. Previous and current selenocyclization methods.](image2)
2. Results and Discussion

In the preliminary experiments, the catalytic reactivities of a series of multivalent transition metal salts, including Cu(acac)₂, Co(acac)₃, VO(acac)₂, Ce(NH₄)₂(NO₃)₆, Ni(acac)₂, MoO₂(acac)₂, PMA, Fe(acac)₃, Fe(OTf)₃, and FeCl₃, were tested. The reaction of 1.0 equiv of o-vinylanilide 1a, 0.6 equiv of diselenide 2a, and 0.1 equiv of metal salt and I₂ in CH₃CN was refluxed under air atmosphere. The data summarized in Table 1 (Entry 1–10) indicate that all of these multivalent transition metals showed some catalytic effect. A major problem with these metal catalysts is that these reactions had difficulty in terms of completion. Among these metals, FeCl₃ salts exhibited remarkably superior reactivity. In the presence of 10 mol% FeCl₃, the selenocyclization took only 30 min to afford the desired benzoxazine product 3a with 93% yield. In addition, the experimental results (Table 1, Entry 11–14) showed that the FeCl₃-catalyzed reaction exhibited notable solvent effects. Acetonitrile was proved as the most suitable solvent. In addition, we further reduced the amount of FeCl₃ and I₂ and found that the reaction could not go to completion when the amount of either FeCl₃ or I₂ was lowered to 5%.

Table 1. Optimization of reaction conditions ¹.

Entry	Mⁿ⁺	Solvent	Reaction Time (h)	Isolated Yield (%)
1	Cu(acac)₂	CH₃CN	8	55
2	Co(acac)₃	CH₃CN	8	51
3	VO(acac)₂	CH₃CN	12	45
4	Ce(NH₄)₂(NO₃)₆	CH₃CN	2	52
5	Ni(acac)₂	CH₃CN	8	22
6	MoO₂(acac)₂	CH₃CN	8	27
7	PMA	CH₃CN	5	28
8	Fe(OTf)₃	CH₃CN	9	92
9	Fe(acac)₃	CH₃CN	1	94
10	FeCl₃	CH₃CN	0.5	93
11	FeCl₃	DCE	3	55
12	FeCl₃	THF	4	73
13	FeCl₃	DMSO	3	80
14	FeCl₃	EtOH	6	81

¹ Reaction conditions: 1a (0.10 mmol), 2a (0.06 mmol), FeCl₃ (0.01 mmol), I₂ (0.01 mmol), solvent (2.0 mL), 80 °C, air.

With the optimized reaction conditions, we further explored the scope of this double-redox catalytic system in the synthesis of selenylated benzoxazines. The data in Table 2 showed that the new method tolerated a variety of substituents on both o-vinylanilide and diorganyl diselenide substrates at different positions. Generally, both strong electron-withdrawing -NO₂ on the benzoyl moiety and more sterically hindered phenyl on the vinyl moiety resulted in lowered reaction rate. As shown in Table 2, selenylated benzoxazines 3a–3t were obtained in 80–93% yields in 0.5–2 h.

To elucidate the proposed roles of each key component in the catalytic system, a series of control experiments were performed. As shown in Scheme 1a,b, the absence of either catalytic amount of FeCl₃ or I₂ resulted in the formation of only a trace amount of 3a. When the reaction was conducted in argon atmosphere, it simply afforded 3a in 38% yield (Scheme 1c). The above experimental results clearly indicate that FeCl₃, I₂, and aerial O₂ are essential to the catalytic system, but replacement of aerial O₂ with pure O₂ did not lead to improvement in the catalytic efficacy, suggesting that the proposed O₂ oxidation of Fe²⁺ was not the rate-limiting step (Scheme 1d). Finally, the ineffectiveness of TEMPO on the
proceeding of this reaction implies that radical species (RSe*) should not be involved in reaction pathway [45,46] (Scheme 1e).

Table 2. Aerial O₂-driven double-redox synthesis of selenylated benzoxazines (3a–3t).

Reaction Conditions	Products (Yield, Time)
10 mol% FeCl₃, 10 mol% I₂, CH₃CN, air, 80 °C	![Products](image)

Scheme 1. Control experiments.

(a)

(b)

(c)

(d)

(e)
To prove the existence and coupling of the proposed Fe$^{3+}$/Fe$^{2+}$ and I$_2$/I$^-$ redox cycles, we further performed a series of control redox reactions without o-vinylanilide. As shown in Scheme 2a, a qualitative chromogenic assay (Figure S1a,b) showed that the treatment of Fe$^{3+}$ with I$^-$ at ambient temperature caused an abrupt formation of a large amount of Fe$^{2+}$ and I$_2$. In another experiment, the exposure of FeCl$_2$ in CH$_3$CN to air at 80 °C for 10 min led to complete oxidation of Fe$^{2+}$ to Fe$^{3+}$ (Scheme 2b) as indicated by a chromogenic assay (Figure S1c). Surprisingly, we found that almost no Fe$^{3+}$ could be detected after the aqueous solution of FeCl$_2$ was exposed to air for 30 min at 80 °C. This result indicates that the efficacy of the aerial oxidation of Fe$^{2+}$ is solvent dependent, which may possibly be one important reason why CH$_3$CN is most suitable for this reaction. Finally, we tested the reaction of I$_2$ with PhSeSePh (Scheme 2c). As shown in Figure S2a, the reaction proceeded very slowly at ambient temperature. As indicated by the decoloration of I$_2$, refluxing at 80 °C significantly promoted the formation of PhSel. However, it still took 3 h for the reaction to reach equilibrium (Figure S2b). When a catalytic amount of Fe$^{3+}$ (10 mol%) was added, the decoloration time was significantly shortened to 30 min (Figure S2c). This result could be explained by the specific chelation of Fe$^{3+}$ with diselenide and induced polarization of Se-Se bonds, which have been reported in numerous previous reports [38–41,47].

The revealed dual roles of Fe$^{3+}$ well explained its superior catalytic activity compared with other multivalent metals in this selenocyclization reaction.

\[
\text{(a) } 2\text{Fe}^{3+} + 2\text{I}^- \xrightarrow{\text{CH}_3\text{CN, air, rt instant}} 2\text{Fe}^{2+} + \text{I}_2
\]

\[
\text{(b) } \text{Fe}^{2+} + \text{O}_2 \xrightarrow{\text{air, CH}_3\text{CN, air, 80 °C 10 min}} \text{Fe}^{3+} + \text{O}_2^-
\]

\[
\text{(c) } [\text{PhSeI}_2]_2 \xrightarrow{10 \text{ mol% FeCl}_3, \text{CH}_3\text{CN, air, 80 °C 30 min}} 2 \text{PhSel}
\]

Scheme 2. Separated control redox reactions without o-vinylanilide.

On the basis of the above control experiments and tested redox reactions, a plausible mechanism was proposed for the current catalytic selenocyclization system (Figure 3). At the beginning of the reaction, Fe$^{3+}$ catalyzed the formation of PhSel (2a), the reactive selenium electrophile, which quickly reacted with o-vinylanilide (1a) and formed the seleniranium intermediate (INT1). The intramolecular nucleophilic cyclization (INT2) followed by the deprotonation by the superoxide radical anion (O$_2^•$) afforded the desired benzoxazine (3a). Meanwhile, the released I$^-$ was instantly oxidized back to I$_2$ by Fe$^{3+}$ to provide a continuous resource of PhSel. The consumed Fe$^{3+}$ was also quickly recycled by the aerial oxidation of Fe$^{2+}$. Therefore, the selenocyclization was pushed forward by a green oxidant, aerial oxygen, and only catalytic amounts of FeCl$_3$ and I$_2$ were needed. Since $k_2 > k_1 > k_3$ in the redox cycles, the majority of ion metal existed as Fe$^{3+}$, and iodine existed as I$_2$ during the reaction process, which was verified by a chromogenic assay (Figure S3).

Figure 3. Proposed reaction mechanism.
3. Materials and Methods

3.1. General Methods

The solvents and chemical reagents used in the current research work were purchased from commercial suppliers. All of the reactions were monitored by TLC plates coated with 0.25 mm silica gel 60 F254 and visualized by 254 nm UV. The silica gel used in column chromatography (particle size 32–63 μm) was purchased from Qingdao Haiyang Chemicals, China. 1H, 13C, and 3F NMR spectra were recorded on an AV-400 instrument (Bruker BioSpin, Faellanden, Switzerland) with chemical shifts referenced to DMSO-d6 or CDCl3 and reported in parts per million. Infrared spectra were obtained with a Vertex-70 instrument (Bruker Optics, Billerica, MA, US). HRMS spectra were acquired with a micrOTOF-Q II instrument (Bruker Daltonics, Billerica, MA, US) and reported as m/z. Melting points were measured on an X-4 melting point apparatus and were uncorrected (Tech Instrument, Beijing, China). The characterization data of new 0-vinylanilides [37–42] including 1f, 1g, and 1h and known selenylated benzoxazines [36,52] including 3a, 3d, 3q, and 3r are listed in the Supplementary Materials. The NMR spectra of new 0-vinylanilides and benzoxazines are provided in the Supplementary Materials.

3.2. General Synthetic Procedure and the Characterization of Selenylated Benzoxazines (3a–3t)

To a mixture of 0-vinylanilide (0.1 mmol) and diorganyl diselenide (0.06 mmol) in CH2CN (2 mL), FeCl3 (0.01 mmol) and I2 (0.01 mmol) were added. The reaction was heated at 80 °C for 0.5–2 h and then concentrated in vacuo. Flash column chromatography on silica gel (PE/EA = 10:1) afforded the desired products 3a–3t in pure form.

4-Methyl-2-(4-nitrophenyl)-4-((phenylselanyl)methyl)-4H-benzo[d][1,3]dioxole (3h): a yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.60 (d, J = 2.2 Hz, 1H), 7.38 (d, J = 3.9 Hz, 1H), 7.31–7.30 (m, 2H), 7.21–7.18 (m, 2H), 7.06 (t, J = 4.8 Hz, 5H), 6.99 (d, J = 3.7 Hz, 1H), 3.49 (d, J = 10.2 Hz, 1H), 3.26 (d, J = 10.2 Hz, 1H), 1.79 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 151.9, 137.7, 135.8, 131.8 (×2), 129.4, 122.9, 128.0, 128.0, 123.9, 125.3, 123.9, 122.1, 79.4, 38.6, 25.3; IR (KBr): vmax 3464, 3088, 3002, 2935, 1635, 1590, 1590, 1465, 1346, 1185, 1085, 939, 893, 810, 745 cm−1; HRMS (ESI+): m/z calcd for C22H19N2O3Se [M + H]+ 439.0555; found 439.0552.

8-Methyl-6-phenyl-8-((phenylselanyl)methyl)-8H-[1,3]dioxolo[4′,5′,4,5]benzo[1,2-d][1,3]dioxole (3e): a yellow oil. 1H NMR (400 MHz, CDCl3): δ 8.10 (d, J = 7.5 Hz, 2H), 7.48–7.38 (m, 5H), 7.15–7.14 (m, 3H), 6.82 (s, 1H), 6.61 (s, 1H), 5.95 (d, J = 12.8 Hz, 1H), 5.92 (d, J = 12.8 Hz, 1H), 3.48 (d, J = 12.8 Hz, 1H), 3.35 (d, J = 12.8 Hz, 1H), 1.84 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 155.0, 147.7, 146.1, 134.0, 132.8 (×2), 132.5, 131.1, 130.4, 128.9 (×3), 128.1 (×2), 127.8 (×2), 126.9, 121.7, 106.2, 103.5, 101.3, 79.9, 39.5, 26.4; IR (KBr): vmax 3722, 2963, 1624, 1593, 1482, 1401, 1338, 1327 (×2), 1310, 1303, 1291 (×2), 1162, 1091, 1019, 805, 765 cm−1; HRMS (ESI+): m/z calcd for C22H19NO3Se [M + H]+ 438.0603; found 438.0604.

6-(4-Chlorophenyl)-8-methyl-8-((phenylselanyl)methyl)-8H-[1,3]dioxolo[4′,5′,4,5]benzo[1,2-d][1,3]dioxole (3f): a yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.99 (d, J = 8.5 Hz, 2H), 7.38–7.35 (m, 4H), 7.16–7.13 (m, 3H), 6.79 (s, 1H), 6.59 (s, 1H), 5.95 (d, J = 1.2 Hz, 1H), 5.93 (d, J = 1.2 Hz, 1H), 3.46 (d, J = 12.9 Hz, 1H), 3.31 (d, J = 12.9 Hz, 1H), 1.83 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 154.0, 147.7, 146.2, 137.2, 133.8, 132.7 (×2), 131.0, 130.3, 129.1 (×2), 126.2, 1162, 1091, 1019, 805, 765 cm−1; HRMS (ESI+): m/z calcd for C22H19NO3Se [M + H]+ 438.0603; found 438.0604.
Molecules 2022, 27, 7386

8-Methyl-8-((phenylselanyl)methyl)-6-(thiophen-2-yl)-8H-[1,3]dioxolo[4′,5′:4,5]benzo [1,2-
]d][1,3]oxazine (3g): a yellow oil. 1H NMR (400 MHz, CDCl3): δ 7.64 (d, J = 3.4 Hz, 1H), 7.45 (d, J = 4.8 Hz, 1H), 7.40–7.37 (m, 2H), 7.16–7.15 (m, 3H), 7.06 (t, J = 4.2 Hz, 1H), 6.76 (s, 1H), 6.59 (s, 1H), 5.94 (s, 1H), 5.92 (s, 1H), 3.47 (d, J = 12.8 Hz, 1H), 3.32 (d, J = 12.8 Hz, 1H), 1.82 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 151.7, 147.7, 145.9, 136.9, 133.9, 132.7 (x2), 130.4, 129.9, 129.7, 128.9 (x3), 127.6, 126.9, 121.6, 105.9, 103.6, 101.2, 80.4, 39.3, 26.3; IR (KBr): vmax

24, 1628, 1484, 1446, 1385, 1318, 1262, 1089, 1024, 762 cm−1; HRMS (ESI+): m/z calcd for C24H22NO4Se [M + H]+ 468.0709; found 468.0712.

4-Phenyl-4-((phenylselanyl)methyl)-2-(p-toly1)-4H-benzo[d][1,3]oxazine (3i): a colorless oil. 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 8.2 Hz, 2H), 7.52–7.48 (m, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.34–7.26 (m, 4H), 7.19–7.18 (m, 2H), 7.09–7.05 (m, 1H), 7.02–6.97 (m, 1H), 3.60 (d, J = 12.6 Hz, 1H), 3.43 (d, J = 12.6 Hz, 1H), 1.94 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 156.1, 138.8, 135.8, 132.5, 132.3 (x2), 131.3, 130.7, 129.4, 129.1 (x2), 128.6 (x3), 128.1 (x2), 128.0 (x2), 127.7, 127.0, 126.0, 125.3, 123.0, 79.8, 38.2, 26.6; IR (KBr): vmax 3436, 1628, 1484, 1446, 1385, 1318, 1262, 1089, 1024, 758 cm−1; HRMS (ESI+): m/z calcd for C24H22NO4Se [M + H]+ 456.0861; found 456.0862.

2-(4-Chlorophenyl)-4-phenyl-4-((phenylselanyl)methyl)-4H-benzo[d][1,3]oxazine (3k): a colorless oil. 1H NMR (400 MHz, CDCl3): δ 8.07 (d, J = 8.6 Hz, 2H), 7.44–7.36 (m, 8H), 7.33–7.29 (m, 3H), 7.24–7.12 (m, 5H), 3.93 (d, J = 13.2 Hz, 1H), 3.89 (d, J = 13.2 Hz, 1H); 13C NMR (100 MHz, CDCl3): δ 155.2, 142.1, 139.2, 137.6, 133.3 (x2), 130.8, 129.3 (x2), 129.0 (x2), 128.5 (x3), 128.4 (x2), 128.3 (x2), 127.4, 127.2, 126.6, 125.9, 125.6, 124.6, 83.7, 39.1; IR (KBr): vmax 3399, 1658, 1481, 1446, 1398, 1315, 1259, 1085, 1022, 939, 801, 736 cm−1; HRMS (ESI+): m/z calcd for C27H22NO3Se [M + H]+ 470.1018; found 470.1015.

2-(4-Nitrophenyl)-4-phenyl-4-((phenylselanyl)methyl)-4H-benzo[d][1,3]oxazine (3l): a colorless oil. 1H NMR (400 MHz, CDCl3): δ 8.24 (s, 4H), 7.44–7.27 (m, 10H), 7.20–7.13 (m, 4H), 3.94 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 154.0, 149.4, 142.0, 138.8, 133.2 (x2), 130.6, 129.4, 129.0 (x2), 128.7 (x2), 128.5 (x3), 127.4, 127.2, 126.0, 125.9 (x2), 124.8, 123.9, 123.3 (x2), 84.3, 39.0; IR (KBr): vmax 3399, 2963, 1628, 1521, 1499, 1446, 1390, 1316, 1260, 1083, 1024, 801, 762 cm−1; HRMS (ESI+): m/z calcd for C27H21N2O3Se [M + H]+ 501.0712; found 501.0709.
4-Phenyl-4-((phenylselanyl)methyl)-2-(thiophen-2-yl)-4H-benzo[d][1,3]oxazine (3m): a colorless oil. 1H NMR (400 MHz, CDCl$_3$): δ 7.75 (d, $J = 3.6$ Hz, 1H), 7.48–7.45 (m, 3H), 7.41–7.26 (m, 8H), 7.23–7.17 (m, 4H), 7.15–7.09 (m, 2H), 3.95 (d, $J = 13.1$ Hz, 1H), 3.86 (d, $J = 13.1$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$): δ 152.9, 142.1, 139.5, 133.3 (x 2), 130.9, 130.4, 130.2, 129.3, 129.0 (x 2), 128.4 (x 3), 128.3 (x 2), 127.7, 127.3, 127.1, 126.2, 126.0, 125.3, 124.7, 83.9, 39.1; IR (KBr): ν_{max} 3401, 2963, 1628, 1521, 1465, 1400, 1261, 1088, 1025, 802, 755 cm$^{-1}$; HRMS (ESI+): m/z calcd for C$_{25}$H$_{29}$NOSe [M + H]$^+$ 462.0425; found 462.0415.

6-Bromo-2,4-diphenyl-4-((phenylselanyl)methyl)-4H-benzo[d][1,3]oxazine (3n): a colorless oil. 1H NMR (400 MHz, CDCl$_3$): δ 8.06 (d, $J = 6.2$ Hz, 2H), 7.43 (t, $J = 6.0$ Hz, 1H), 7.38–7.32 (m, 5H), 7.29 (d, $J = 5.8$ Hz, 2H), 7.25–7.20 (m, 3H), 7.15–7.07 (m, 5H), 3.81 (d, $J = 10.6$ Hz, 1H), 1.97 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 155.4, 140.5, 137.5, 137.2, 136.6 (x 2), 131.2, 130.8, 130.6 (x 2), 129.4, 128.2, 128.0 (x 3), 127.5 (x 2), 127.4 (x 2), 127.2 (x 2), 127.0, 126.6, 126.3, 126.1, 124.9, 118.2, 83.2, 38.1; IR (KBr): ν_{max} 3758, 2921, 1617, 1573, 1471, 1385, 1315, 1257, 1176, 1156, 1079, 1024, 966, 827, 735 cm$^{-1}$; HRMS (ESI+): m/z calcd for C$_{27}$H$_{22}$BrNOSe [M + H]$^+$ 533.9966; found 533.9949.

4-(((2-Chlorophenyl)selanyl)methyl)-4-methyl-2-phenyl-4H-benzo[d][1,3]oxazine (3p): a colorless oil. 1H NMR (400 MHz, CDCl$_3$): δ 8.14 (d, $J = 7.7$ Hz, 3H), 7.50–7.42 (m, 3H), 7.34–7.27 (m, 4H), 7.19 (s, 2H), 7.07 (t, $J = 7.4$ Hz, 1H), 6.99 (t, $J = 7.6$ Hz, 1H), 3.60 (d, $J = 12.6$ Hz, 1H), 3.42 (d, $J = 12.6$ Hz, 1H), 1.94 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 156.1, 147.0, 138.8, 132.4, 131.2, 129.4, 128.1 (x 2), 128.0 (x 2), 127.7, 126.6, 125.3, 124.4, 123.9, 123.0, 119.1, 79.8, 38.2, 26.6; IR (KBr): ν_{max} 3722, 2890, 1598, 1574, 1478, 1411, 1368, 1312, 1263, 1193, 1036, 936, 863, 831, 783 cm$^{-1}$; HRMS (ESI+): m/z calcd for C$_{22}$H$_{16}$BrNOSe [M + H]$^+$ 471.9810; found 471.9803.

6-(4-Methoxyphenyl)-8-methyl-8-((methylselanyl)methyl)-8H-[1,3]dioxolo[4′,5′:4,5]benzo[1,2-d][1,3]oxazine (3s): a yellow oil. 1H NMR (400 MHz, CDCl$_3$): δ 8.10 (d, $J = 8.9$ Hz, 2H), 6.95 (d, $J = 8.8$ Hz, 2H), 6.82 (s, 1H), 6.69 (s, 1H), 5.98 (s, 2H), 3.97 (s, 3H), 3.05 (d, $J = 13.0$ Hz, 1H), 2.95 (d, $J = 13.0$ Hz, 1H), 1.84 (d, $J = 8.7$ Hz, 6H); 13C NMR (100 MHz, CDCl$_3$): δ 162.2, 155.1, 147.6, 145.8, 134.4, 129.6 (x 2), 121.9, 113.6 (x 2), 105.9, 103.4, 101.2, 80.0, 55.3, 36.9, 31.4, 30.2, 26.0, 6.4; IR (KBr): ν_{max} 3741, 3410, 2960, 2899, 2836, 1614, 1505, 1479, 1311, 1256, 1172, 1086, 1034, 941, 838, 806 cm$^{-1}$; HRMS (ESI+): m/z calcd for C$_{19}$H$_{20}$NOSe [M + H]$^+$ 406.0552; found 406.0550.

4-(((4-Methoxyphenyl)selanyl)methyl)-4-methyl-2-phenyl-4H-benzo[d][1,3]oxazine (3t): a yellow oil. 1H NMR (400 MHz, CDCl$_3$): δ 8.30 (d, $J = 7.2$ Hz, 2H), 7.55–7.48 (m, 3H), 7.44 (d, $J = 8.8$ Hz, 2H), 7.39 (d, $J = 4.1$ Hz, 2H), 7.28–7.23 (m, 1H), 7.19 (d, $J = 7.4$ Hz, 1H), 6.84 (d, $J = 8.6$ Hz, 2H), 3.80 (s, 3H), 3.69 (d, $J = 11.0$ Hz, 1H), 3.50 (d, $J = 11.0$ Hz, 1H), 1.96 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ 159.2, 156.0, 138.8, 134.6, 132.3 (x 2), 131.6, 129.5, 128.4 (x 2), 128.2 (x 2), 127.0, 126.8, 125.6, 123.0, 122.1, 115.0 (x 2), 55.3, 26.6, 15.7; IR (KBr): ν_{max} 3727, 3046, 2996, 2941, 2907, 2837, 1932, 1849, 1794, 1618, 1592, 1272, 1489, 1448, 1369, 1318, 1029, 967, 838, 880, 835, 814, 751 cm$^{-1}$; HRMS (ESI+): m/z calcd for C$_{23}$H$_{22}$NO$_2$Se [M + H]$^+$ 424.0810; found 424.0805.
4. Conclusions

In summary, a novel double-redox catalytic system was rationally constructed to provide efficient access to a variety of selenylated benzoxazines. The combination of only catalytic amounts of FeCl$_3$ and I$_2$ and the use of aerial oxygen as the end oxidant make this approach greener and more atomically efficient than conventional methods based on selenium electrophiles and FeCl$_3$. This new method is widely applicable to a great diversity of o-vinylanilide and diorganyl diselenide substrates. Mechanistic investigation confirmed that the coupling of I$_2$/I$^-$ and Fe$^{3+}$/Fe$^{2+}$ catalytic redox cycles enabled aerial O$_2$ to act as the driving force to promote the selenocyclization reaction, which proceeds via a PhSeI-based pathway.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/molecules27217386/s1: characterization data of new o-vinylanilides and known selenylated benzoxazines, Figures S1–S3: The chromogenic assays of the control redox reactions without o-vinylanilide and Figures S4–S51: The NMR spectra of new o-vinylanilides and all products.

Author Contributions: Conceptualization, H.-Y.Z. and Q.S.; methodology, H.-Y.Z.; validation, Z.-B.X.; formal analysis, T.-T.Z.; investigation, H.-Y.Z.; resources, Y.-Y.D.; writing—original draft preparation, S.-S.G.; writing—review and editing, Q.S.; visualization, C.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (21961013 for Q.S.) and the Science and Technology Project of the Dept. of Education of Jiangxi Province (GJJ211136 for S.-S.G.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of all compounds are available from the authors.

References

1. Mugesh, G.; Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. *Chem. Rev.* 2001, 101, 2125–2180. [CrossRef]

2. Nogueira, C.W.; Zeni, G.; Rocha, J.B. Organoselenium and organotellurium compounds: Toxicology and pharmacology. *Chem. Rev.* 2004, 104, 6255–6286. [CrossRef] [PubMed]

3. Masayuki, N.; Dinesh, R.; Mamoru, K. Biologically significant selenium-containing heterocycles. *Coord. Chem. Rev.* 2011, 255, 2968–2990.

4. Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. *Acc. Chem. Res.* 2010, 43, 1408–1419. [CrossRef] [PubMed]

5. Tabuchi, Y.; Sugiyama, N.; Horiiuchi, T.; Furusawa, M.; Furuhama, K. Ebseen, a seleno-organic compound, protects against ethanol-induced murine gastric mucosal injury in both in vivo and in vitro systems. *Eur. J. Pharmacol.* 1995, 272, 195–201. [CrossRef]

6. Bhabak, K.P.; Mugesh, G. A simple and efficient strategy to enhance the antioxidant activities of amino-substituted glutathione peroxidase mimics. *Chem. Eur. J.* 2008, 14, 8640–8651. [CrossRef]

7. Sarma, B.K.; Mugesh, G. Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebseen: Unexpected complications with thiol exchange reactions. *J. Am. Chem. Soc.* 2005, 127, 11477–11485. [CrossRef] [PubMed]

8. Bhabak, K.P.; Mugesh, G. Synthesis, characterization, and antioxidant activity of some ebseen analogues. *Chem. Eur. J.* 2007, 13, 4594–4601. [CrossRef]

9. Sidwell, R.W.; Huffman, J.H.; Call, E.W.; Alaghamandan, H.; Cook, P.D.; Robins, R.K. Effect of selenazofurin on influenza A and B virus infections of mice. *Antivir. Res.* 1986, 6, 343–353. [CrossRef]

10. Koketsu, M.; Ishihara, H.; Hatsu, M. Novel compounds, 1,3-selenazine derivatives, as antibacterial agents against Escherichia coli and Staphylococcus aureus. *Res. Commun. Mol. Path. Pharmacol.* 1998, 101, 179–180.

11. Bien, M.; Błaszczyzk, B.; Kalinowska, K.; Młochowski, J. Antifungal activity of 2-(4-chlorophenyl)-1,2-benziselenazol-3 (2H)-one, the analog of ebseen. *Arch. Immunol. Ther. Exp.* 1999, 47, 185–193.

12. Cho, S.I.; Koketsu, M.; Ishihara, H.; Matsuhashi, M.; Naim, A.C.; Fukazawa, H.; Uehara, Y. Novel compounds, 1,3-selenazine derivatives’ as specific inhibitors of eukaryotic elongation factor-2 kinase. *BBA Gen. Subj.* 2000, 1475, 207–215. [CrossRef]
13. Palmarisa, F.; Loredana, C.; Ghassan, A.S.; Hiremagalur, N.J.; Vivek, V.G.; Thaw, S.; Bryan, P.S.; William, D.J.; Barry, M.G.; Graziella, P.; et al. Synthesis, structure, and antiproliferative activity of selenophenurin, an inosine 5-monophosphate dehydrogenase inhibitor analogue of selenozofurin. *J. Med. Chem.* 1997, 40, 1731–1737.

14. Guan, Q.; Han, C.; Zuo, D.; Li, Z.; Zhang, Q.; Zhai, Y.; Zhang, W. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities. *Eur. J. Med. Chem.* 2014, 87, 306–315. [CrossRef]

15. Wen, Z.; Xu, J.; Wang, Z.; Qi, H.; Xu, Q.; Bai, Z.; Zhang, W. 3-(4,4,5-Trimethoxyphenylselenyl)-1H-indoles and their selenoxides as combretastatin A-4 analogs: Microwave-assisted synthesis and biological evaluation. *Eur. J. Med. Chem.* 2015, 90, 184–194. [CrossRef]

16. Casaril, A.M.; Ignasiak, M.T.; Chuang, C.Y.; Vieira, B.; Padilha, N.B.; Carroll, L.; Davies, M.J. Selenium-containing indolyl compounds: Kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. *Free Radic. Bio. Med.* 2017, 113, 395–405. [CrossRef]

17. Mamgain, R.; Singh, F.V. Selenium-based fluorescence probes for the detection of bioactive molecules. *ACS Org. Inorg. Au.* 2022, 4, 262–288. [CrossRef]

18. Halle, M.B.; Yudhistira, T.; Lee, K.J.; Choi, J.H.; Kim, Y.; Park, H.S.; Churchill, D.G. Overriding phenol dehalogenation when exploring mycophenolic acid intermediates as selenium-based ROS biological probes. *ACS Omega* 2018, 3, 13474–13483. [CrossRef] [PubMed]

19. Madibone, K.S.; Deshmukh, P.P.; Navalkar, A.; Maje, S.K.; Badani, P.M.; Manjare, S.T. Cyclic organoselenium BODIPY-based probe: Targeting superoxide in MCF-7 cancer cells. *ACS Omega* 2020, 5, 14186–14193. [CrossRef]

20. Debnath, S.; Chithiravel, S.; Sharma, S.; Bedi, A.; Krishnamoorthy, K.; Zade, S.S. Selenium-containing fused bicyclic heterocycle diselenolodiselenole: Field effect transistor study and structure-property relationship. *ACS Appl. Mater. Interfaces* 2016, 8, 18222–18230. [CrossRef]

21. Kumar, A.; Rao, G.K.; Saleem, F.; Singh, A.K. Organoselenium ligands in catalysis. *Dalton Trans.* 2012, 41, 11949–11977. [CrossRef] [PubMed]

22. Spell, M.; Wang, X.; Wahba, A.E.; Conner, E.; Ragains, J. An α-selective, visible light photocatalytic glycosylation of alcohols with selenoglucosides. *Carbohydr. Res.* 2013, 369, 42–47. [CrossRef] [PubMed]

23. Win, K.M.N.; Sonawane, A.D.; Koketsu, M. Iodine mediated in situ generation of R-Se–I: Application towards the construction of pyrano[4,3-b] quinoline heterocycles and fluorescence properties. *Org. Biomol. Chem.* 2019, 17, 9039–9049. [CrossRef]

24. Goualt, T.A.; Kazimirska, J.A.; Back, D.F.; Zeni, G. Iron(III)-promoted synthesis of 3-(organoselenyl)-1,2-dihydroquinolines from diorganoselenides and N-arylpropargylamines by sequential carbon-carbon and carbon-selenium bond formation. *Adv. Synth. Catal.* 2018, 361, 96–104. [CrossRef]

25. Shao, L.; Li, Y.; Lu, J.; Jiang, X. Recent progress in selenium-catalyzed organic reactions. *Org. Chem. Front.* 2019, 6, 2999–3041. [CrossRef]

26. Jurinic, C.K.; Belladona, A.L.; Schumacher, R.F.; Godoi, B. Diorganoseleno compounds and copper/iron salts: Versatile cyclization system to achieve carbo- and heterocycles from alkenes. *Synthesis 2021*, 53, 2545–2558.

27. Sonawane, A.D.; Sonawane, R.A.; Ninomiya, M.; Koketsu, M. Synthesis of seleno-heterocycles via electrophilic/radical cyclization of alkyne containing heteroatoms. *Adv. Synth. Catal.* 2020, 362, 3485–3515. [CrossRef]

28. Sun, K.; Wang, X.; Li, C.; Wang, H.; Li, L. Recent advances in tandem selenocyclization and tellurocyclization with alkenes and alkynes. *Org. Chem. Front.* 2020, 7, 3100–3119. [CrossRef]

29. Kumar, N.; Yadav, N.; Amarnath, N.; Sharma, V.; Shukla, S.; Srivastava, A.; Lochab, B. Integrative natural medicine inspired graphene nanovehicle-benzoxazine derivatives as potent therapy for cancer. *Mol. Cell. Biochem.* 2018, 454, 123–138. [CrossRef]

30. Tanabe, J.; Sue, M.; Ishihara, A.; Iwamura, H. Occurrence and characterization of 2-hydroxy-1,4-benzoxazin-3-one and indole matrix proteins. *Eur. J. Med. Chem.* 2017, 138, 1014–1020. [CrossRef] [PubMed]

31. Tang, Z.; Tan, Y.; Chen, H.; Wan, Y. Benzoxazine: A privileged scaffold in medicinal chemistry. *Curr. Med. Chem.* 2022, 29, 8670–8673. [CrossRef]

32. Liu, T.; Zheng, D.; Wu, J. Synthesis of 3-((arylsulfonyl) methyl) indolin-2-ones via insertion of sulfur dioxide using anilines as the aryl source. *Org. Chem. Front.* 2017, 4, 1079–1083. [CrossRef]

33. Tian, Y.; Ge, Y.; Zheng, L.; Yan, Q.; Ren, Y.; Wang, Z.; Zhang, K.; Wang, Z.; Zhao, J.; Li, Z. A free radical cascade difunctionalization of α-vinylanilides with simple ketones and esters. *Asian J. Org. Chem.* 2019, 8, 2188–2191. [CrossRef] [PubMed]

34. Wu, J.; Zong, Y.; Zhao, C.; Yan, Q.; Sun, L.; Li, Y.; Zhao, J.; Ge, Y.; Li, Z. Silver or cerium-promoted free radical cascade difunctionalization of α-vinylanilides with sodium aryl-oralkylsulfinites. *Org. Biomol. Chem.* 2018, 17, 794–797. [CrossRef] [PubMed]

35. Zhao, J.-F.; Duan, X.-H.; Yang, H.; Guo, L.-N. Transition-metal-free oxyfluorination of olefinic amides for the synthesis of fluorinated heterocycles. *J. Org. Chem.* 2015, 80, 11149–11155. [CrossRef]

36. Okuma, K.; Seto, J.I. Synthesis of indoles, 3,1-benzoxazines, and quinolines from 2-alkenylanilides and active seleniums. *Phosphorus Sulfur Silicon Relat. Elem.* 2010, 185, 1014–1020. [CrossRef]

37. Chaitanya, M.; Anbarasan, P. Acid-mediated oxycyclodensation of α-vinylanilides with N-(arylthio/arylseleno) succinimides. *Org. Lett.* 2018, 20, 1183–1186. [CrossRef]

38. Speranca, A.; Godoi, B.; Pinton, S.; Back, D.F.; Menezes, P.H.; Zeni, G. Regioselective synthesis of isochromenones by iron (III)/PhSeSePh-mediated cyclization of 2-alkynylaryl esters. *J. Org. Chem.* 2011, 76, 6789–6797. [CrossRef]
39. Speranca, A.; Godoi, B.; Zeni, G. Iron(III) chloride/diorganyl diselenides: A tool for intramolecular cyclization of alkynone α-methyloximes. *J. Org. Chem.* 2013, 78, 1630–1637. [CrossRef] [PubMed]

40. Mantovani, A.C.; Goulart, T.A.; Back, D.F.; Menezes, P.H.; Zeni, G. Iron(III) chloride and diorganyl diselenides-mediated 6-endo-dig cyclization of aryliolpropilates and aryliolpropilamides leading to 3-organoselenyl-2H-coumarins and 3-organoselenyl-quinolinolines. *J. Org. Chem.* 2014, 79, 10526–10536. [CrossRef] [PubMed]

41. Yao, H.-F.; Li, F.-H.; Li, J.; Wang, S.-Y.; Ji, S.-J. Iron(III) chloride-promoted cyclization of α,β-alkynic tosylhydrazones with diselenides: Synthesis of 4-arylselanyl)-1H-pyrazoles. *Org. Biomol. Chem.* 2020, 18, 1987–1993. [CrossRef] [PubMed]

42. Yang, Z.-J.; Hu, B.-L.; Deng, C.-L.; Zhang, X.-G. Iron-promoted electrophilic annulation of aryl enynes with disulfides or diselenides leading to polysubstituted naphthalenes. *Adv. Synth. Catal.* 2014, 356, 1962–1966. [CrossRef]

43. Cheng, F.; Wang, L.-L.; Mao, Y.-H.; Dong, Y.-X.; Liu, B.; Zhu, G.-F.; Zhang, J.-Q. Iron-catalyzed radical annulation of unsaturated carboxylic acids with disulfides for the synthesis of γ-lactones. *J. Org. Chem.* 2021, 86, 8620–8629. [CrossRef]

44. Win, K.M.N.; Sonawane, A.D.; Koketsu, M. Synthesis of selenated tetracyclic indoloazulenes via iodine and diorganyl diselenides. *Org. Biomol. Chem.* 2021, 19, 3199–3206. [CrossRef]

45. Sahoo, H.; Grandhi, G.S.; Ramakrishna, I.; Baidya, M. Metal-free switchable ortho/ipso-cyclization of N-arylalkynamides: Divergent synthesis of 3-selenyl quinolin-2-ones and azaspiro[4,5]trienones. *Org. Biomol. Chem.* 2019, 17, 10163–10166. [CrossRef] [PubMed]

46. Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Visible-light-enabled spirocyclization of alkynes leading to 3-sulfonyl and 3-sulfenyl azaspiro[4,5]trienones. *Green Chem.* 2017, 19, 5608–5613. [CrossRef]

47. Yu, L.; Ren, L.; Yi, R.; Wu, Y.; Chen, T.; Guo, R. Iron salt, a cheap, highly efficient and environment-friendly metal catalyst for Se-Se bond cleavage and the further reaction with methylenecyclopropanes under mild conditions. *J. Org. Chem.* 2011, 86, 2228–2233. [CrossRef]

48. Guo, J.; Hao, Y.; Li, G.; Wang, Z.; Liu, Y.; Li, Y.; Wang, Q. Efficient synthesis of SCF₃-substituted tryptanthrins by a radical tandem cyclization. *Org. Biomol. Chem.* 2020, 18, 1994–2001. [CrossRef]

49. Nishio, T. Reaction of (1,ω)-N-acylamino alcohols with Lawesson’s reagent: Synthesis of sulfur-containing heterocycles. *J. Org. Chem.* 1997, 62, 1106–1111. [CrossRef]

50. Jana, S.; Ashokan, A.; Kumar, S.; Verma, A.; Kumar, S. Copper-catalyzed trifluoromethylation of alkenes: Synthesis of trifluoromethylated benzoxazines. *Org. Biomol. Chem.* 2015, 13, 8411–8415. [CrossRef]

51. Cooper, P.; Crisenza, G.E.; Feron, L.J.; Bower, J.F. Iridium-catalyzed α-selective arylation of styrenes by dual C—H functionalization. *Angew. Chem. Int. Ed.* 2018, 130, 14394–14398. [CrossRef]

52. Lu, F.; Xu, J.; Li, H.; Wang, K.; Ouyang, D.; Sun, L.; Huang, M.; Jiang, J.; Hu, J.; Alhumade, H.; et al. Electrochemical oxidative radical cascade cyclization of olefinic amides and thiophenols towards the synthesis of sulfated benzoxazines, oxazolines and iminoisobenzofurans. *Green Chem.* 2021, 23, 7982–7986. [CrossRef]