A compatible standard policy measure to tackle solar photovoltaic waste in Indian scenario

Manisha Sheoran¹, Susheela Sharma² and Pancham Kumar³
¹,²,³ Bhartiya Skill Development University, Jaipur, Rajasthan, India

Abstract. Expeditious evolution of solar photovoltaic industry has triggered transformation in energy sector across the world. After the concluded durability of the PV panels amount of junk originates. This junk is directed into the category of solid waste. With the increasing solar power plant installations in India the amount of waste to be accumulated in the nearby years to come will be a matter of grave concern. Hasty action should be taken by the Indian policy makers and other non-governmental agencies to process the solar photovoltaic recycling policies at commercial level in an economically sustainable manner. This paper inspects the prospective requisite of PV reprocessing legislation by investigating the current reprocessing arrangements of the commercialized first and second generation solar PV materials. Emphasis is also laid on the hazardous effects of the waste on human body. Quantity of reclaimed material is considered and its economic importance is analysed. Architectural liability is put at the utmost front for curbing out the havoc to be created by piling up of the junk photovoltaic materials through economically feasible policy framework. Through this article effective solar PV reclaiming policy framework is proposed for the Indian government which will foster new socio-economic, environmental and employment opportunities.

Keywords: Photovoltaic waste, end life, recycling policy.

1. Introduction

Detrimental eventuality caused by the use of conventional resources and the growing energy needs marked the boom of solar PV industry [1]. Endorsed by the bureaucratic undertaking and declining expenses, the solar firms are thriving promptly in India and around the world [2]. At the initial stages of their wheel of life PV panels account no ambiance spoliation [3]. Life cycle reassessment is done to study environmental repercussions involved throughout fabrication, positioning and knocking down conditions [4]. Major health impacts are also related with discarding of solar panels in junkyard [5, 6] as they contain dangerous elements like Cd, Te, Pb, etc. capable of being life threatening [7, 8].

In case of certain thin film and amorphous Si solar cell modules comprising a PV array, additional disposal problems are likely to be caused due to the presence of cadmium and arsenic. Emissions at reclaiming stage proved to be toxic for the biological species i.e. humans, marine life and terrestrial life etc. [9, 10]. Among the PV materials various generations are included. The first generation includes the c-Si, second generation includes thin film (a-Si, CdTe, CIGS). 85% of the PV market share is governed by the c-Si [2, 11]. Currently large number of c-Si panels are available for the reclaiming process due to their greater commercialization [12, 13].

Many firms like Deutsche Solar AG, Solar world AG, Solar cell Inc. (SCI) and Pillington Solar Int. (PSI) are involved into the reclaiming process. The solar e-waste contains toxic metals like Pd, Cd, In, As, Te, Se which causes damage to kidney, liver, CNS, bones, skin etc. [14–18]. This paper emphasizes the gravity of reprocessing of solar waste due to high economic value of the metals like Si, Cu, In, Ag ,Ga,Te.
which reduce the architectural cost of the new solar PV materials [10, 19, 20]. Reclaiming methods of waste PV materials play an important role in economic sustainability [21].

A growing number of literature have been carried out for the analysis of solar PV recycling policies across the globe while Indian scenario still lacks the policy framework and incentives to be provided for reclaiming process [22]. Due to increasing efficiencies of the solar PV materials the amount of waste to be accumulated in near future is increasing, material recovery is insisted to avoid the detriment of valuable materials at the end of wheel of life. Indium cannot be recycled fully due to high blow out percentage [3]. Consciousness among the PV firms and community should be enhanced for the environmental impacts. Framing policies for reclamation across the world can be a leverage to reduce the taxes [23].

2. Methodology
A comprehensive analysis of the first and second generation material is carried out based on the life span reassessment of existing PV technology in market. Among the first and second generation solar PV materials Te, In, Si, Cd, Se are reclaimed through chemical process. The amount of retrieved PV material from the panels depends upon the width, density. Its profit can be calculated by taking the current price in the market. Further landfill waste yard can be calculated [22].

After the end of wheel of life of solar panels the decommissioned and the damaged solar modules can have their own fate. Till now the regular scenario was to either dump in junkyards or practice landfilling of PV waste, but with the increasing technology efficiency the amount of solar PV installations being accumulated is increasing drastically. Some of the typical reclaiming methods like mechanical, chemical and thermal methods are also applied. Figure 1 further depicts the end of wheel of life of solar PV modules.

![Figure 1. Fate of solar module after end of wheel of life](Image)

Various PV firms like First Solar, Deutsche Solar, Solar cells Inc. (SCI), Pillington Solar International (PSI) have initiated the PV reclaiming programmes. SCI is indulged in recovering the backing film, EVA by the pyrolysis at 500 C. First solar has developed methods to reclaim the CdTe panels by acid treatment and precipitation reactions. Deutsche Solar operated on the damaged panels through thermal treatment followed by the chemical treatment. The Financial Rewarding (F.R) of the reclaiming process can be estimated as:
Here \(r.i \) is redemption rate, \(q.i \) is the quantity of waste (kg/ton) and \(c.i \) is the cost of target material.

3. Legislative framework for solar PV recycling in India

With the macroscopic proliferation of solar photovoltaic installations the PV waste is also getting accumulated in huge amount. Photovoltaic scrap management methods and defining recycling policy framework is very critical for solar panel waste management, especially in India where recycling of PV material is not practiced extensively. The hazardous materials utilized for the manufacturing of solar PV panels is either left untreated or they are not recycled once their life cycle is completed. This causes detrimental effects for the environment [24, 25]. This calls for a rigid policy framework which can govern and enforce the compulsory assemblage, resumption and recycling of solar PV materials. The proposed legislative strategy for recycling of solar PV panels is depicted below in Figure 2.
Regulative Framework
• Manufacturing firm should be registered and environmental safe materials to be used

Lay out the accountability of the collaborator for scrap handling
• Establish PV waste joint collection centers
• Alimony to such ventures should be provided

Compose model for PV waste compilation
• Business to Business
• Business to Consumer

Launch of treatment method
• Hazardous and non-hazardous material should be treated
• Risk factor should be established

Disposition Corporation Endowment
• Survey usual recycling methods
• Developing units to accumulate recycling materials

Manufacturer Liability System
• Stringent responsibility of the producer to take back its product from market

Set up of head body on PV industry
• Monitoring of the activity
• Promotion of sustainable materials in designing

Financial Aid
• Monetary funds should be provided to the recyclers by the government

Recycling Institution Set Up
• Institutes which impart professional skills among recycling teams should be established

Figure 2. Proposed Solar PV Reclaiming Policy Framework for Indian Government
4. Conclusion
The paper presents a compatible standard policy framework for solar PV recycling in both rural and urban India. With everyday target achievement of new solar PV plant, the waste accumulation has reached to million tons. The PV waste left without treatment possess serious detrimental effects on ecosystem, though solar PV recycling is still not practiced to full-fledged industrial scale in India. Treacherous planetary waste spawned by the decommissioning of solar PV materials can’t be thrown in garbage. There has to be a stringent plan for their management. The implementation of a legislative PV recycling structure in emergent nations especially in Indian scenario will be a great life savior to tackle the havoc which is to be originated in times to come. Comprehensive analysis is carried out on existing PV reclaiming methods carried out by various PV firms. An affirmative response to this policy from Indian government will effectively curb the future forecast of the PV scrap disaster.

5. References
[1] Solangi KH, Islam MR, Saidur R, et al. A review on global solar energy policy. Renewable and Sustainable Energy Reviews 2011; 15: 2149–2163.
[2] IEA P. Snapshot of Global PV Market. Snapshot T1:35, Spain: International Energy Agency, http://www.iea-pvps.org/fileadmin/dam/public/report/statistics/IEA-PVPS_T1_35_Snapshot2019-Report.pdf (2019, accessed 10 October 2019).
[3] Ylä-Mella J, Pongrácz E. Drivers and Constraints of Critical Materials Recycling: The Case of Indium. Resources 2016; 5: 34.
[4] Laleman R, Albrecht J, Dewulf J. Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation. Renewable and Sustainable Energy Reviews 2011; 15: 267–281.
[5] Lee SH, Kang HG. Comparative Health Risk Assessment of CdTe Solar PV System and Nuclear Power Plant. 2014; 10.
[6] Gottesfeld P, Cherry CR. Lead emissions from solar photovoltaic energy systems in China and India. Energy Policy 2011; 39: 4939–4946.
[7] Cyrs WD, Avens HJ, Capshaw ZA, et al. Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels. Energy Policy 2014; 68: 524–533.
[8] Huang B, Zhao J, Chai J, et al. Environmental influence assessment of China’s multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process. Solar Energy 2017; 143: 132–141.
[9] Ilias AV, Meletios RG, Yiannis KA, et al. Integration & assessment of recycling into c-Si photovoltaic module’s life cycle. International Journal of Sustainable Engineering 2018; 11: 186–195.
[10] Kumar A, Holuszko M, Espinosa DCR. E-waste: An overview on generation, collection, legislation and recycling practices. Resources, Conservation and Recycling 2017; 122: 32–42.
[11] Murakami F, Sulzbach A, Pereira GM, et al. How the Brazilian government can use public policies to induce recycling and still save money? Journal of Cleaner Production 2015; 96: 94–101.
[12] Redlinger M, Egger M, Woodhouse M. Evaluating the availability of gallium, indium, and tellurium from recycled photovoltaic modules. Solar Energy Materials and Solar Cells 2015; 138: 58–71.
[13] Strachala D, Hylský J, Vaněk J, et al. Methods for recycling photovoltaic modules and their impact on environment and raw material extraction. Acta Montanistica Slovaca 2017; 22: 257–269.
[14] Goe M, Gaustad G. Estimating Direct Human Health Impacts of End- of -life Solar Recovery. Golisano Institute for Sustainability.
[15] Granata G, Pagnanelli F, Moscardini E, et al. Recycling of photovoltaic panels by physical operations. Solar Energy Materials and Solar Cells 2014; 123: 239–248.
[16] Karthikeyan L, Suresh V, Krishnan V, et al. The Management of Hazardous Solid Waste in India: An Overview. *Environments* 2018; 5: 103.

[17] Sharma A. A comprehensive study of solar power in India and World. *Renewable and Sustainable Energy Reviews* 2011; 15: 1767–1776.

[18] Sinha P, Wade A. Assessment of Leaching Tests for Evaluating Potential Environmental Impacts of PV Module Field Breakage. *IEEE J Photovoltaics* 2015; 5: 1710–1714.

[19] Cucchiella F, D’Adamo I, Rosa P. End-of-Life of used photovoltaic modules: A financial analysis. *Renewable and Sustainable Energy Reviews* 2015; 47: 552–561.

[20] Fthenakis VM, Kim HC. Photovoltaics: Life-cycle analyses. *Solar Energy* 2011; 85: 1609–1628.

[21] Padoan FCSM, Altimari P, Pagnanelli F. Recycling of end of life photovoltaic panels: A chemical prospective on process development. *Solar Energy* 2019; 177: 746–761.

[22] Klugmann-Radziemska E. Current Trends in Recycling of Photovoltaic Solar Cells and Modules Waste / Recykling Zużytych Ogniw I Modułów Fotowoltaicznych - Stan Obecny. *Chemistry-Didactics-Ecology-Metrology* 2012; 17: 89–95.

[23] Di Francia G. The impact of recycling policies on the photovoltaic Levelized Cost of the Electricity. In: *2013 International Conference on Renewable Energy Research and Applications (ICRERA)*. Madrid, Spain: IEEE, pp. 979–983.

[24] Huang B, Zhao J, Chai J, et al. Environmental influence assessment of China’s multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process. *Solar Energy* 2017; 143: 132–141.

[25] McDonald NC, Pearce JM. Producer responsibility and recycling solar photovoltaic modules. *Energy Policy* 2010; 38: 7041–7047.