Maitotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-cancer drug

Alireza Heidari1,2*, Jennifer Esposito1 and Angela Caissutti3
1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract

Maitotoxin (or MTX) is an extremely potent toxin produced by Gambierdiscus toxicus, a dinoflagellate species. Maitotoxin is so potent that it has been demonstrated that an intraperitoneal injection of 130 ng/kg was lethal in mice. Maitotoxin was named from the ciguateric fish Ctenochaetus striatus—called "maito" in Tahiti—from which maitotoxin was isolated for the first time. It was later shown that maitotoxin is actually produced by the dinoflagellate Gambierdiscus toxicus. Parameters such as FT-IR and Raman vibrational wavelengths and intensities for single crystal Maitotoxin are calculated using density functional theory and were compared with empirical results. The investigation about vibrational spectrum of cycle dimers in crystal with carboxyl groups from each molecule of acid was shown that it leads to create Hydrogen bonds for adjacent molecules. The current study aimed to investigate the possibility of simulating the empirical values. Analysis of vibrational spectrum of Maitotoxin is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP/6-31-HEG**. Vibration modes of methylene, carboxyl acid and phenyl cycle are separately investigated. The obtained values confirm high accuracy and validity of results obtained from calculations.

Molecular structure of Maitotoxin [1-42].

Introduction

Maitotoxin (or MTX) is an extremely potent toxin produced by Gambierdiscus toxicus, a dinoflagellate species. Maitotoxin is so potent that it has been demonstrated that an intraperitoneal injection of 130 ng/kg was lethal in mice. Maitotoxin was named from the ciguateric fish Ctenochaetus striatus—called "maito" in Tahiti—from which maitotoxin was isolated for the first time. It was later shown that maitotoxin is actually produced by the dinoflagellate Gambierdiscus toxicus. Density Functional Theory (DFT) is one of the most powerful calculation methods for electronic structures [5-7]. Numerous results have been previously studied and indicate successful use of these methods [8-10]. The theory is one of the most appropriate methods

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine; American International Standards Institute, Irvine, CA 3800, USA. E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Key words: Vibronic Structure, Vibrational Spectra Analysis, Density Functional Theory (DFT), Maitotoxin, Non-Focal Functions of Becke, Correlation Functions of Lee-Yang-Parr, Time-Resolved Absorption and Resonance, FT-IR and Raman Biospectroscopy, Anti-Cancer Drug

Received: August 10, 2019; Accepted: December 10, 2019; Published: December 12, 2019
for simulating the vibrational wavenumbers, molecular structure as well as total energy. It may be useful to initially consider the calculated results by density functional theory using HF/6-31G*, HF/6-31+G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP6-31-HEG** approach [11-16]. It should be noted that calculations are performed by considering one degree of quantum interference as well as polarization effects of 2d orbitals in interaction [17-364].

Details of calculations

All calculations of molecular orbital in the base of ab are performed by Gaussian 09. In calculation process, the structure of Maitotoxin molecule (Figure 1) is optimized and FT-IR and Raman wavenumbers are calculated using HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP6-31-HEG** base. All optimized structures are adjusted with minimum energy. Harmonic vibrational wavenumbers are calculated using second degree of derivation to adjust convergence on potential surface as good as possible and to evaluate vibrational energies at zero point. In optimized structures considered in the current study, virtual frequency modes are not observed which indicates that the minimum potential energy surface is correctly chosen. The obtained geometry is calculated by minimizing the energy relative to all geometrical quantities without forcing any constraint on molecular symmetry. Calculations were performed by Gaussian 09. The current calculation is aimed to maximize structural optimization using density functional theory. The calculations of density functional theory are performed by HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP6-31-HEG** function in which non-focal functions of Becke and correlation functions of Lee-Yang-Parr beyond the Franck-Condon approximation are used. After completion of optimization process, the second order derivation of energy is calculated as a function of core coordination and is investigated to evaluate whether the structure is accurately minimized. Vibrational frequencies used to simulate spectrums presented in the current study are derived from these second order derivatives. All calculations are performed for room temperature of 525 (K).

Vibration analysis

Analysis of vibrational spectrum of Maitotoxin is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP6-31-HEG**. Vibration modes of methylene, carboxyl acid and phenyl cycle are separately investigated.

C-H stretching vibrations in single replacement of benzene cycles are usually seen in band range of 3220-3470 cm\(^{-1}\). Weak Raman bands are at 3209 cm\(^{-1}\) and 3222 cm\(^{-1}\). C-C stretching mode is a strong Raman mode at 1219 cm\(^{-1}\). Raman weak band is seen at 1693 cm\(^{-1}\), too. Bending mode of C-H is emerged as a weak mode at 1418 cm\(^{-1}\) and 1217 cm\(^{-1}\) and a strong band at 1301 cm\(^{-1}\) in Raman spectrum. Raman is considerably active in the range of 1220-1470 cm\(^{-1}\) which 1213 cm\(^{-1}\) indicates this issue.

C-H skew-symmetric stretching mode of methylene group is expected at 3205 cm\(^{-1}\) and its symmetric mode is expected at 3019 cm\(^{-1}\). Skew-symmetric stretching mode of CH\(_\text{3}\) in Maitotoxin has a mode in mid-range of Raman spectrum at 3120-3240 cm\(^{-1}\). When this mode is symmetric, it is at 3115 cm\(^{-1}\) and is sharp. The calculated wavenumbers of higher modes are at 3083 cm\(^{-1}\) and 3113 cm\(^{-1}\) for symmetric and skew-symmetric stretching mode of methylene, respectively.

Scissoring vibrations of CH\(_\text{2}\) are usually seen at the range of 1547-1601 cm\(^{-1}\) which often includes mid-range bands. Weak bands at 1560 cm\(^{-1}\) are scissoring modes of CH\(_\text{2}\) in Raman spectrum. Moving vibrations of methylene are usually seen at 1489 cm\(^{-1}\). For the investigated chemical in the current study, these vibrations are at 1359 cm\(^{-1}\) were calculated using density functional theory. Twisting and rocking vibrations of CH\(_\text{2}\) are seen in Raman spectrum at 935 cm\(^{-1}\) and 1209 cm\(^{-1}\), respectively, which are in good accordance with the results at 919 cm\(^{-1}\) and 1184 cm\(^{-1}\), respectively.

In a non-ionized carboxyl group (COOH), stretching vibrations of carbonyl [C=O] are mainly observed at the range of 1860-1918 cm\(^{-1}\). If dimer is considered as an intact constituent, two stretching vibrations of carbonyl for symmetric stretching are at 1760-1805 cm\(^{-1}\) in Raman spectrum. In the current paper, stretching vibration of carbonyl mode is at 1817 cm\(^{-1}\) which is a mid-range value.

Stretching and bending bands of hydroxyl can be identified by width and band intensity which in turn is dependent on bond length of Hydrogen. In dimer form of Hydrogen bond, stretching band of O-H is of a strong Raman peak at 1387 cm\(^{-1}\) which is due to in-plane metamorphism mode. Out-of-plane mode of O-H group is a very strong mode of peak at 1069 cm\(^{-1}\) of Raman spectrum. The stretching mode of C-O (H) emerges as a mid-band of Raman spectrum at 1267 cm\(^{-1}\).

Lattice vibrations are usually seen at the range of 0-570 cm\(^{-1}\). These modes are induced by rotary and transferring vibrations of molecules and vibrations and are including Hydrogen bond. Bands with low wavenumbers of Hydrogen bond vibrations in FT-IR and Raman spectrum (Figure 2) are frequently weak, width and unsymmetrical. Rotary lattice vibrations are frequently stronger than transferring ones. Intra-molecular vibrations with low wavenumbers involving two-bands O-H …O dimer at 108 cm\(^{-1}\), 213 cm\(^{-1}\) and 269 cm\(^{-1}\) are attributed to a
rotary moving of two molecules involving in-plain rotation of molecules against each other.

Conclusion and summary

Calculations of density functional theory using HF/6-31G*, HF/6-31+G**, MP2/6-31G, MP2/6-31+1G**, BLYP/6-31G, BLYP/6-31+1G**, B3LYP/6-31G and B3LYP6-31-HEG** levels were used to obtain vibrational wavenumbers and intensities in single crystal of Maitotoxin. Investigation and consideration of vibrational spectrum confirm the formation of dimer cycles in the investigated crystal with carboxyl groups from each Hydrogen molecule of acid protected from adjacent molecules. The calculated vibrational spectrum which obtains from calculations of density functional theory is in good accordance with recorded empirical values which indicates successful simulation of the problem. The obtained results indicate that the results obtained from theoretical calculations are valid through comparing with empirical recorded results.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT1201009373525. We acknowledge Mr. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figure. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript.

References

1. Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z. Design and Fabrication of Silicon Nanowires towards Efficient Solar Cells. Nano Today2016, 11, 704–737, 10.1016/j.nantod.2016.10.001
2. Sandhu, S.; Fan, S. Current-Voltage Enhancement of a Single Coaxial Nanowire Solar Cell. ACS Photonics2015, 2, 1698–1704, 10.1021/acsphotonics.5b00236
3. van Dam, D.; Van Hoof, N. J. J.; Cui, Y.; van Veldhoven, P. J.; Bakkers, E. P. A. M.; Gómez-Plata, J.; Haverkort, J. M. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatters. ACS Nano2016, 10, 11414–11419, 10.1021/acsnano.6b06874
4. Luo, S.; Yu, W. B.; He, Y.; Ouyang, G. Size-Dependent Optical Absorption Modulation of SiGe and GeSiCore/shell Nanowires with Different Cross-Sectional Geometries. Nanotechnology2015, 26, 085702, 10.1088/0957-4484/26/8/085702
5. Yu, P.; Yao, W.; Wu, J.; Niu, X.; Rogach, A. L.; Wang, Z. Effects of Plasma Metall Ion-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Sci. Rep.2017, 7, 7696, 10.1038/s41598-017-08077-9
6. Gouda, A. M.; Allam, N. K.; Swillam, M. A. Efficient Fabrication Methodology of Wide Angle Black Silicon for Energy Harvesting Applications. RSC Adv.2017, 7, 26974–26982, 10.1039/C7RA03568C
7. Branz, H. M.; Yost, V. E.; Ward, S.; Jones, K. M.; To, B.; Stradins, P. Nanostructured Black Silicon and the Optical Reflectance of Graded-Density Surfaces. Appl. Phys. Lett.2009, 94, 231121, 10.1063/1.3152244
8. Fazio, B.; Artoni, P.; Antonia Iatí, M.; D’Andrea, C.; Lo Faro, M. J.; Del Sorbo, S.; Gómez Rivas, J.; Haverkort, J. M. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatters. ACS Nano2016, 10, 11414–11419, 10.1021/acsnano.6b06874
9. Kuo, M.-D.; Rim, T.; Kim, K.; Meyyappan, M.; Baek, C.; High Efficiency Silicon Solar Cell Based on Asymmetric Nanowire. Sci. Rep.2015, 5, 11646, 10.1038/srep11646
10. Jin, S.; Hong, S.; Mativenga, M.; Kim, B.; Shin, H. H.; Park, J. K.; Kim, T. W.; Jang, J. Low-Temperature Polycrystalline Silicon Solar Cells with Single Orientation on Glass by Blue Laser Annealing. Thin Solid Films2016, 616, 838–841, 10.1016/j.tsf.2016.10.026
11. Crouch, B.; Carey, J. E.; Warrender, J. M.; Aziz, M. J.; Mazur, E.; Géhin, F. Y.Choice of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon. J. Appl. Phys.2004, 94, 10825–10829, 10.1063/1.1762244
12. Pedraza, A. J.; Fowlkes, J. D.; Lowndes, D. H. Silicon Microlens Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation. Appl. Phys. Lett.1999, 74, 2322, 10.1063/1.123838
13. Pedraza, A. J.; Fowlkes, J. D.; Lowndes, D. H. Silicon Microlens Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation. Appl. Surf. Sci.2000, 168, 251–255, 10.1016/S0169-4332(00)00611-5
14. Porte, H. P.; Turchinovich, D.; Persheyev, S.; Fan, Y.; Rose, M. J.; Jepsen, P. U. Ultrafast Photocatalytic Dynamics and Crystallinity of Black Silicon. IEEE Trans. Terahertz Sci.2013, 3, 331–341, 10.1109/TTHZ.2013.2255917
111. Heidari, “Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO43−) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”, J Biom Biostat 7: 292, 2016.

112. Heidari, “Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Unununium Dimer (Unu2+) Molecular Cations”, Chem Sci J 7: e112, 2016.

113. Heidari, “Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio-Spectroscopic Techniques”, J Drug Metab Toxicol 7: e129, 2016.

114. Heidari, “Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells’ Treatment”, Biochem Pharmacol (Los Angel) 5: 207, 2016.

115. Heidari, “A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage”, Struct Chem Crystallog Ann Com 2: 1, 2016.

116. Heidari, “Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cells”, Pharm Anal Chem Open Access 2: 113, 2016.

117. Heidari, “A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment”, Chemo Open Access 5: e192, 2016.

118. Heidari, “Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacokinet Exp Ther 1: e005, 2016.

119. Heidari, “Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques”, Insights Anal Electrochem 2: 1, 2016.

120. Heidari, “Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicity Dis 1: 2, 2016.

121. Heidari, “Combined Theoretical and Computational Study of the Belousov-Zhabotinsky Chaotic Reaction and Curritt Arrangement for Synthesis of Meclorethamine, Cisplatin, Streptozotocin, Cyclophosphamide, Melphalan, Busulphan and BCNU as Anti-Cancer Drugs”, Insights Med Phys 1: 2, 2016.

122. Heidari, “A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed 7: 2, 2016.

123. Heidari, “Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedine Biotechnol 6: e144, 2016.

124. Heidari, “Molecular Dynamics and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study”, J Glycofid 5: e111, 2016.

125. Heidari, “Synthesis and Study of 5-[(Phenylsulfonyl)Amino]-1,3,4-Thiadiazole-2-Sulfonamide as Potential Anti-Pertussis Drug Using Chromatography and Spectroscopic Techniques”, Transl Med (Sunnyvale) 6: e138, 2016.

126. Heidari, “Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Oxygen (O2) Using Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) Equations”, Electronic J Biol 12: 4, 2016.

127. Heidari, “An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes of Ozone Diluted by Cumene”, International Journal of Advanced Chemistry, 4 (1) 5–9, 2016.

128. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues”, Arch Can Res. 4: 2, 2016.

129. Heidari, “Genomics and Proteomics Studies of Zolpidem, Nopcipem, Alpidem, Saripidem, Miprofen, Zeltimide, Olprofene and Abafangin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs”, J Data Mining Genomics & Proteomics 7: e125, 2016.

130. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells”, J Pharmacogenomics Pharmacoproteomics 7: e153, 2016.

131. Heidari, “Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach”, Transl Biomed. 7: 2, 2016.

132. Heidari, “A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectricoporohes (DEP) Method”, Arch Can Res. 4: 2, 2016.

133. Heidari, “Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxaliplatin, Heptaplatin and Lobaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study”, J Inform Data Min 1: 3, 2016.

134. Heidari, “Linear and Non-Linear Quantitative Structure–Anti-Cancer–Activity Relationship (QSACAR) Study of Hydros Ruthenium (IV) Oxide (RuO3) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs”, J Integral Oncol 5: e110, 2016.

135. Heidari, “Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J Nanosci Curr Res 1: e101, 2016.

136. Heidari, “Coplanarity and Collinearity of 4–Doninyl–2,2–Bithiazole in One Domain of Bleomycin and Pinguaycin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidente Ligands as Anti–Tumor Nano Drug”, Int J Drug Dev & Res 8: 007–008, 2016.

137. Heidari, “A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations”, J Pharmacovigil 4: e161, 2016.

138. Heidari, “Nanotechnology in Preparation of Semipermeable Polymers”, J Adv Chem Eng 6: 157, 2016.

139. Heidari, “A Gastrointestinal Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for Analysis of Aminosalicelates Nanoparticles as Digestive System Nano Drugs under Synchrotron Radiations”, J Gastrointest Dis Syst 6: e119, 2016.

140. Heidari, “DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nanoparticles Derivatives”, Biomedical Data Mining 5: e102, 2016.

141. Heidari, “A Successful Strategy for the Prediction of Solubility in the Construction of Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Using Genetic Function Approximation (GFA) Algorithm”, J Mol Biol Technol 1: 1, 2016.

142. Heidari, “Computational Study on Molecular Structures of C9H8O, C24H4, C24H4, C24H4, C24H4 and C24H4 Fullerene Nano Molecules under Synchrotron Radiations Using Fuzzy Logic”, J Mater Sci Eng 5: 282, 2016.

143. Heidari, “Graph Theoretical Analysis of Zigzag Polyhexahexamethylene Biguanide, Polyhexahexamethylene Adipamide, Polyhexahexamethylene Biguanide Gauze and Polyhexahexamethylene Biguanide Hydrochloride (PIMB) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs)”, J Applet Comput Math 5: e143, 2016.

144. Heidari, “The Impact of High Resolution Imaging on Diagnosis”, Int J Clin Med Imaging 3: 1006101, 2016.

145. Heidari, “A Comparative Study of Conformational Behavior of Isetroinoin (13-Cis Retinoic Acid) and Tretinoin (All–Trans Retinoic Acid (ATRA)) Nanoparticles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Harnee–Fock (HF) and Density Functional Theory (DFT) Methods”, Insights in Biomed 1: 2, 2016.
Heidari A (2019) Maitotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-cancer drug

Glob Imaging Insights, 2019 doi: 10.15761/GII.1000189

198. Heidari, “Overview of the Role of Vitamins in Reducing Negative Effect of Decapetyl (Triptorelin Acetate or Pamoate Salts) on Prostate Cancer Cells and Tissues: Labeling in Prostate Cancer Treatment Process through Transformation of Malignant Prostate Tumors into Benign Prostate Tumors under Synchrotron Radiation”, Open J Anal Bioanal Chem 1 (1): 021–026, 2017.

199. Heidari, “Electron Phenomenological Spectroscopy, Electron Paramagnetic Resonance (EPR) Spectroscopy and Electron Spin Resonance (ESR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Aust J Anal Pharm 4 (3): 1091, 2017.

200. Heidari, “Therapeutic Nanomedicine Different High Resolution Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time Using Mathematica and MATLAB”, Madridge J Nano Tech. Sci. 2 (2): 77–83, 2017.

201. Heidari, “A Consensus and Prospective Study on Reducing Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles-Free Interval Using Synchrotron Radiation Therapy Antibody–Drug Conjugate for the Treatment of Limited-Stage Small Cell Diverse Epithelial Cancers”, Cancer Clin Res Rep, 1: 2, e001, 2017.

202. Heidari, “A Novel and Modern Experimental Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White Synchrotron Radiation”, Cancer Sci Res Open Access 4 (2): 1–8, 2017.

203. Heidari, “Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations”, J Oral Cancer Res 1 (1): 12–17, 2017.

204. Heidari, “Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, International Journal of Biomedicine, 7 (4), 335–340, 2017.

205. Heidari, “Force Spectroscopy and Fluorescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, European Cancer. 2 (5), 239–246, 2017.

206. Heidari, “Photoacoustic Spectroscopy, Photomission Spectroscopy and Photothermal Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, BAOU Cancer Res Ther, 3; 3, 045–052, 2017.

207. Heidari, “J Spectroscopy, Exchange Spectroscopy (EXSY), Nuclear Overhauser Effect Spectroscopy (NOESY) and Total Correlation Spectroscopy (TOCSY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Eng Sci J, 1 (2): 006–013, 2017.

208. Heidari, “Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Biopharm Sci, 1: 103–107, 2017.

209. Heidari, “Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Cancer Res Ther, 3; 3, 045–052, 2017.

210. Heidari, “Modern Approaches in Designing Ferritin, Ferritin Light Chain, Transferrin, Beta-2 Transferrin and Bacterioferritin-Based Anti-Cancer Nano Drugs Encapsulating Nanosphere as DNA-Binding Proteins from Starved Cells (DPS)”, Mod Appro Drug Des. 1 (1). MADD.000504, 2017.

211. Heidari, “Potency of Human Interferon β-1α and Human Interferon β-1b in Induced Plasma Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Arch Biotechnol Biomed. 1 (1): 067–0100, 2017.

212. Heidari, “Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron Radiation with the Passage of Time Using Mathematica and MATLAB”, Madridge J Nano Tech. Sci. 2 (2): 77–83, 2017.

213. Heidari, “Overview of the Role of Vitamins in Reducing Negative Effect of Decapetyl (Triptorelin Acetate or Pamoate Salts) on Prostate Cancer Cells and Tissues: Labeling in Prostate Cancer Treatment Process through Transformation of Malignant Prostate Tumors into Benign Prostate Tumors under Synchrotron Radiation”, Open J Anal Bioanal Chem 1 (1): 021–026, 2017.

214. Heidari, “Electron Phenomenological Spectroscopy, Electron Paramagnetic Resonance (EPR) Spectroscopy and Electron Spin Resonance (ESR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Aust J Anal Pharm 4 (3): 1091, 2017.

215. Heidari, “Therapeutic Nanomedicine Different High Resolution Experimental Images and Computational Simulations for Human Brain Cancer Cells and Tissues Using Nanocarriers Deliver DNA/RNA to Brain Tumors under Synchrotron Radiation with the Passage of Time Using Mathematica and MATLAB”, Madridge J Nano Tech. Sci. 2 (2): 77–83, 2017.

216. Heidari, “A Consensus and Prospective Study on Reducing Cadmium Oxide (CdO) Nanoparticles Sensitivity in Recurrent Ovarian Cancer by Extending the Cadmium Oxide (CdO) Nanoparticles-Free Interval Using Synchrotron Radiation Therapy Antibody–Drug Conjugate for the Treatment of Limited-Stage Small Cell Diverse Epithelial Cancers”, Cancer Clin Res Rep, 1: 2, e001, 2017.

217. Heidari, “A Novel and Modern Experimental Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White Synchrotron Radiation”, Cancer Sci Res Open Access 4 (2): 1–8, 2017.

218. Heidari, “Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations”, J Oral Cancer Res 1 (1): 12–17, 2017.

219. Heidari, “Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, International Journal of Biomedicine, 7 (4), 335–340, 2017.

220. Heidari, “Force Spectroscopy and Fluorescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, European Cancer. 2 (5), 239–246, 2017.

221. Heidari, “Photoacoustic Spectroscopy, Photomission Spectroscopy and Photothermal Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, BAOU Cancer Res Ther, 3; 3, 045–052, 2017.

222. Heidari, “J Spectroscopy, Exchange Spectroscopy (EXSY), Nuclear Overhauser Effect Spectroscopy (NOESY) and Total Correlation Spectroscopy (TOCSY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Eng Sci J, 1 (2): 006–013, 2017.

223. Heidari, “Neutron Spin Echo Spectroscopy and Spin Noise Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Biopharm Sci, 1: 103–107, 2017.

224. Heidari, “Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Cancer Res Ther, 3; 3, 045–052, 2017.

225. Heidari, “Modern Approaches in Designing Ferritin, Ferritin Light Chain, Transferrin, Beta-2 Transferrin and Bacterioferritin-Based Anti-Cancer Nano Drugs Encapsulating Nanosphere as DNA-Binding Proteins from Starved Cells (DPS)”, Mod Appro Drug Des. 1 (1). MADD.000504, 2017.

226. Heidari, “Potency of Human Interferon β-1α and Human Interferon β-1b in Induced Plasma Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Arch Biotechnol Biomed. 1 (1): 067–0100, 2017.

227. Heidari, “Different High-Resolution Simulations of Medical, Medicinal, Clinical, Pharmaceutical and Therapeutics Oncology of Human Breast Cancer Translational Nano Drugs Delivery Treatment Process under Synchrotron and X-Ray Radiations”, J Oral Cancer Res 1 (1): 12–17, 2017.
Heidari A (2019) Maitotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-cancer drug

Glob Imaging Insights, 2019 doi: 10.15761/GII.1000189

216. Heidari, "Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Radiation with the Passage of Time", SM J Clin. Med. Imaging, 4 (1): 1018, 2018.

217. Heidari, “Nuclear Inelastic Scattering Spectroscopy (NIS) and Nuclear Inelastic Absorption Spectroscopy (NIAIS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Irradiation”, Int J Pharm Sci, 2 (1): 1–14, 2018.

218. Heidari, “X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Irradiation”, J Oncol Res, 2 (1): 1–14, 2018.

219. Heidari, “Correlation Two-Dimensional Nuclear Magnetic Resonance (NMR) (2D-NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Irradiation”, EMS Can Sci, 1–1001, 2018.

220. Heidari, “Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macroscopic Spectroscopy and Photothermal Macroscopic Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrontron Irradiation”, SM J Biometrics Biostat, 3 (1): 1024, 2018.

221. Heidari, “A Novel and Modern Experimental Biospectroscopic Comparative Study on Human Common Cancer’s Cells, Tissues and Tumors before and after Synchrontron Radiation Therapy”, Open Acc J Oncol Med. 1 (1), 2018.

222. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endothelio-tyroid Cancer Cells and Cancer Cells under Synchrontron Irradiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018.

223. Heidari, "Nuclear Resonance Vibrational Spectroscopy (NIRVS), Nuclear Inelastic Scattering Spectroscopy (NIS), Nuclear Inelastic Absorption Spectroscopy (NIAIS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Irradiation”, Int J Biochem Mol Biol. 6 (1): 1–5, 2018.

224. Heidari, “A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrontron Irradiation”, Glob J Endocrinol Metab. 1 (3). GJEM. 000514–0006519, 2018.

225. Heidari, “Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Cancer Cells under Synchrontron Irradiation”, EMS Pharma J. 1 (1): 002–008, 2018.

226. Heidari, “A Modern Comparative and Comprehensive Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrontron Irradiation”, J Analyt Molecual Tech. 3 (1): 8, 2018.

227. Heidari, “Investigation of Cancer Types Using Synchrontron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, European Modern Studies Journal, Vol. 2, No. 1, 13–29, 2018.

228. Heidari, “Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrontron Irradiation”, Imaging J Clin Medical Sci. 5 (1): 001–007, 2018.

229. Heidari, “Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Irradiation”, Int J Bioorg Chem Mol Biol. 6 (2e): 1–6, 2018.

230. Heidari, “Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, Non-Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non-Melanoma Skin Cancer Using Synchrontron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, Ther Res Skin Dis 1 (1), 2018.

231. Heidari, “Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy and Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Radiation with the Passage of Time”, International Journal of Chemistry Papers, 2 (1): 1–12, 2018.

232. Heidari, “Mössbauer Spectroscopy, Mössbauer Emission Spectroscopy and 15Fe Mössbauer Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Irradiation”, Acta Scientific Cancer Biology 2:3:17–20, 2018.

233. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Radiation with the Passage of Time”, Organic & Medicinal Chem J. 6 (1): 555676, 2018.

234. Heidari, “Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AIDS-Related Cancers Cells and Tissues with the Passage of Time under Synchrontron Irradiation”, Int J Bioanal Biostat. 2 (1): 001–007, 2018.

235. Heidari, “Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Radiation and Anti-Cancer Nano Drugs Delivery”, Am J Nanotechnol Nanomed. 1 (1): 001–009, 2018.

236. Heidari, “Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 29P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Irradiation”, Ann Biomet Biostat. 1 (1): 1001, 2018.

237. Heidari, “Grazing-Incidence Small-Angle Neutron Scattering (GISANS) and Grazing-Incidence X-Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrontron Irradiation”, Ann Cardiovasc Surg. 1 (2): 1006, 2018.

238. Heidari, “Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blasto-ma Cancer Cells and Tissues”, Clin Med Rev Case Rep 5: 201, 2018.

239. Heidari, “Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Incredibly Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOEY) and Rotating Frame Nuclear Overhaurser Effect Spectroscopy (ROEY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Radiation”, Acta Scientific Pharmaceutical Sciences 2.5:30–35, 2018.

240. Heidari, “Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluotation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Radiation”, Oncol Res Rev, Volume 1 (1): 1–10, 2018.

241. Heidari, “Pump-Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrontron Radiation”, Adv Material Sci Engg, Volume 2, Issue 1, Pages 1–7, 2018.

242. Heidari, “Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrontron Radiation”, Insights Pharmacol Pharm Sci 1 (1): 1–8, 2018.
Heidari A (2019) Maitotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-cancer drug
Heidari A (2019) Maitotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-cancer drug

274. Heidari, R. Gobato, “A Novel Approach to Reduce Toxicities and to Improve Bioavailability of DNA/RNA of Human Cancer Cells-Containing Cocaine (Codeine, Lysergic Acid Diethylamide or LSD), 1, 5, 9-Tetrahydrocannabinol (THC) ([1- trans]-1,5,9-Tetrahydrocannabinol), Theobromine (Xanthothe), Caffeine, Aspartame (APM) (NutraSweet) and Ziludovine (ZDV) [Azidothymidine (AZT)] as Anti-Cancer Nano Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance”, Para Panza Journal of Science and Education, v. 4, n. 6, p. 17-18, 2018.

275. Heidari, R. Gobato, “Ultraviolet Photoelectron spectroscopy (UPS) and Ultraviolet-Visible (UV-Vis) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Para Panza Journal of Science and Education, v. 4, n. 4, pp. 18-38, 2018.

276. R. Gobato, A. Heidari, A. Mitra, “The Creation of C13H14BeLiSeN6”, J. Cancer Research and Therapeutic Mol Med, Volume 5 (3): 1–8, 2018.

277. R. Gobato, A. Heidari, A. Mita, “Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H²”, ResearchGate, See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326201181, 2018.

278. R. Gobato, A. Heidari, “Using the Quantum Chemistry for Genesis of a Nano Biomembrane with a Combination of the Elements Be, Li, Se, Si, C and H²”, J Nanomed Res. 7 (4): 241–252, 2018.

279. Heidari, “Bastadins and Bastaranes-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Glob Imaging Insights, Volume 3 (4): 1-7, 2018.

280. Heidari, “Fucitol, Peroxycycladine, DEAD or DEADCAT (DiEthyl Azodicarboxylate), Skatole, the NanoPutians, Thecabin, Pikachurin, Tie Fighter, Spermidine and Mirosurvace Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Glob Imaging Insights, Volume 3 (1): 1-8, 2018.

281. E. Dadvar, A. Heidari, “A Review on Separation Techniques of Graphene Oxide (GO)/Base on Hybrid Polymer Membranes for Eradicating of Dyes and Oil Compounds: Recent Progress in Graphene Oxide (GO)/Base on Polymer Membranes-Related Nanotechnology”, Clin Med Rev Case Rep 5: 228, 2018.

282. Heidari, R. Gobato, “First-Time Simulation of Deoxyuridine Monophosphate (dUMP) (Deoxyuridylide Acid or Deoxyuridylate) and Vomitoxin (Deoxynivalenol (DON)) ((3α,7α)-3,7,15-Trihydroxy-12,13-Epoxytrichothec-9–En-8-One, 2-Amino-9-((1S, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H-Purin–6(9H)-One, 2-Amino-9-((1R, 3R, 4R)-4-Hydroxy-3-(Hydroxymethyl)-2-Methylenecyclopentyl)-1H–Purin–6(9H)–One, 2-Amino-9–((1R,3R,4R)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopentyl)–1H–Purin–6(9H)–One, 2–Amino–9–((1R,3R,4S)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopentyl)–1H–Purin–6(9H)–One, 2–Amino–9–((1S,3R,4R)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopentyl)–1H–Purin–6(9H)–One)”, Inorg Chem Sci 3 (5), Pages 402–409, 2018.

283. Heidari, “C5 and C7—Encapsulating Carbon Nanotubes Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Integr Mol Med, Volume 5 (3): 1–8, 2018.

284. Heidari, “Two-Dimensional (2D) I4 or Proton NMR, 15N NMR, 13C NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Glob Imaging Insights, Volume 3 (6): 1-8, 2018.

285. Heidari, “FT-Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (6): 1-8, 2018.

286. Heidari, “A Modern and Comprehensive Investigation of Inelastic Electron Tunneling Spectroscopy (IETS) and Scanning Tunneling Spectroscopy on Malignant and Benign Human Cancer Cells, Tissues and Tumors through Optimizing Synchrotron Microbeam Radiotherapy for Human Cancer Treatments and Diagnostics: An Experimental Biospectroscopic Comparative Study”, Glob Imaging Insights, Volume 3 (6): 1–8, 2018.

287. Heidari, “A Hypertension Approach to Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Glob Imaging Insights, Volume 3 (6): 1-8, 2018.

288. Heidari, “Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (6): 1-8, 2018.

289. Heidari, “2–Amino–9–((1R, 3R, 4R)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopropyl)–1H–Purin–6(9H)–One, 2–Amino–9–((1R, 3R, 4R)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopropyl)–1H–Purin–6(9H)–One and 2–Amino–9–((1S, 3R, 4S)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopropyl)–1H–Purin–6(9H)–One—Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Glob Imaging Insights, Volume 3 (5): 1–9, 2018.

290. Heidari, “BeLi SeSi C70 N NMR and 31P Radial,” J. Cancer Research and Therapeutic Mol Med, Volume 5 (3): 1–8, 2018.

291. Heidari, “Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (6): 1-8, 2018.

292. Heidari, “C5 and C7—Encapsulating Carbon Nanotubes Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Integr Mol Med, Volume 5 (3): 1–8, 2018.

293. Heidari, “2–Amino–9–((1R, 3R, 4R)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopropyl)–1H–Purin–6(9H)–One, 2–Amino–9–((1R, 3R, 4R)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopropyl)–1H–Purin–6(9H)–One and 2–Amino–9–((1S, 3R, 4S)–4–Hydroxy–3–(Hydroxymethyl)–2–Methylenecyclopropyl)–1H–Purin–6(9H)–One—Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Glob Imaging Insights, Volume 3 (5): 1–9, 2018.

294. Heidari, “FT–Raman Spectroscopy, Coherent Anti-Stokes Raman Spectroscopy (CARS) and Raman Optical Activity Spectroscopy (ROAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (5): 1-8, 2018.

295. Heidari, “Incredible Natural-Abundance Double-Quantum Transfer Experiment (INADEQUATE), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (6): 1-8, 2018.
Heidari A (2019) Maitotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-cancer drug

300. Heidari, “Production of Electrochemiluminescence (ECL) Biosensor Using Os–Pd/HCl Nanocomposites for Detecting and Tracking of Human Gastroenterological Cancer Cells”, J Med Nan Res, Volume 5 (1): 20, 2019.

301. Heidari, “Enhancing the Raman Scattering for Diagnosis and Treatment of Human Cancer Cells, Tissues and Tumors Using Cadmium Oxide (CdO) Nanoparticles”, J Toxicol Risk Assess 4: 1, 012–025, 2019.

302. Heidari, “Human Malignant and Benign Human Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation Using Anti-Cancer Nano Drugs Delivery”, Integr Mol Med, Volume 5 (5): 1–13, 2019.

303. Heidari, “Analogous Nano Compounds of the Form M(C(H,Be,LiT)2+) Exist for M – (Nd, Tb, Pa, Pa, Nb, Th, and Yb)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPFPC) Nano Melamine”, Integr Mol Med, Volume 5 (5): 1–8, 2018.

304. Heidari, “Hadron Spectroscopy, Baryon Spectroscopy and Meson Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Integr Mol Med, Volume 5 (5): 1–8, 2018.

305. R. Gobato, M. R. R. Gobato, A. Heidari, “Raman Spectroscopy Study of the Nano Molecule C3H,Be,LTiSe3 Using ab initio and Hartree-Fock Methods in the Basis Set CC-pVTZ and 6-311G** (3df, 3pd)”, International Journal of Advanced Engineering and Science, Volume 7, Number 1, Pages 14–35, 2019.

306. Heidari, R. Gobato, “Evaluating the Effect of Anti-Cancer Nano Drugs Dosage and Reduced Leukemia and Polycythemia Vera Levels on Trends of the Human Blood and Bone Marrow Cancers under Synchrotron Radiation”, Trends in Res, Volume 2 (1): 1–8, 2019.

307. Heidari, R. Gobato, “Assessing the Variety of Synchrotron, Synchrocyclotron and LASER Radiations and Their Roles and Applications in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment”, Trends in Res, Volume 2 (1): 1–8, 2019.

308. Heidari, “Three-Dimensional (3D) Simulations of Human Cancer Cells, Tissues and Tumors for Using in Human Cancer Cells, Tissues and Tumors Diagnosis and Treatment as a Powerful Tool in Human Cancer Cells, Tissues and Tumors Research and Anti-Cancer Nano Drugs Sensitivity and Delivery Area Discovery and Evaluation”, Trends in Res, Volume 2 (1): 1–8, 2019.

309. Heidari, R. Gobato, “Investigation of Energy Production by Synchrotron, Synchrocyclotron and LASER Radiations in Human Cancer Cells, Tissues and Tumors and Evaluation of Their Effective on Human Cancer Cells, Tissues and Tumors Treatment Trend”, Trends in Res, Volume 2 (1): 1–8, 2019.

310. Heidari, R. Gobato, “High-Resolution Mapping of DNA/RNA Hypermethylation and Hypomethylation Process in Human Cancer Cells, Tissues and Tumors under Synchrotron Radiation”, Trends in Res, Volume 2 (2): 1–9, 2019.

311. Heidari, “A Novel and Comprehensive Study on Manufacturing and Fabrication Nanoparticles Methods and Techniques for Processing Cadmium Oxide (CdO) Nanoparticles Colloidal Solution”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019.

312. Heidari, “A Combined Experimental and Computational Study on the Catalytic Effect of Aluminum Nitride Nanocrystal (AlN) on the Polymerization of Benzene, Naphthalene, Anthracene, Phenanthrene, Chrysene and Tetracene”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019.

313. Heidari, “Novel Experimental and Three-Dimensional (3D) Multiphysics Computational Framework of Michaelis–Menten Kinetics for Catalyst Processes Innovation, Characterization and Carrier Applications”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019.

314. Heidari, “The Hydrolysis Constants of Copper (I) (Cu+) and Copper (II) (Cu2+) in Aqueous Solution as a Function of pH Using a Combination of pH Measurement and Biospectroscopic Methods and Techniques”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019.

315. Heidari, “Vibrational Biospectroscopic Study of Ginkoense Virus-Sized Macromolecule and Polypeptide Macromolecule as Mega Macromolecules Using Attenuated Total Reflectance–Fourier Transform Infrared ATR–FTIR Spectroscopy and Mathematika 11.3”, Glob Imaging Insights, Volume 4 (1): 1–8, 2019.

316. Heidari, “Three-Dimensional (3D) Imaging Spectroscopy of Carcinoma, Sarcoma, Leukemia, Lymphoma, Multiple Myeloma, Melanoma, Brain and Spinal Cord Tumors, Germ Cell Tumors, Neuroendocrine Tumors and Carcinoïd Tumors under Synchrotron Radiation”, Glob Imaging Insights, Volume 4 (1): 1–9, 2019.

317. R. Gobato, M. R. R. Gobato, A. Heidari, A. Mitra, “New Nano–Molecule Karumi–C3H,Be,LiT,Se3C3H,Be,LiT,Se3, and Raman Spectroscopy Using ab initio, Hartree–Fock Method in the Base Set CC-pVTZ and 6-311G** (3df, 3pd)”, J Anal Pharm Res. 8 (1): 1–6, 2019.

318. Heidari, J. Esposito, A. Caissutti, “The Importance of Attenuated Total Reflectance Fourier Transform Infrared ATR–FTIR and Raman Biospectroscopy of Single–Walled Carbon Nanotubes (SWCNT) and Multi-Walled Carbon Nanotubes (MWTCNT) in Interpreting Infrared and Raman Spectra of Human Cancer Cells, Tissues and Tumors”, Oncogen 2 (2): 1–21, 2019.

319. Heidari, J. Esposito, A. Caissutti, “Study of Anti-Cancer Properties of Thin Layers of Cadmium Oxide (CdO) Nanostructure”, Int J Analyt Bioanalyt Methods 1 (1), 20 Pages, 2019.

320. A. Heidari, J. Esposito, A. Caissutti, “The Quantum Entanglement Dynamics Induced by Non-Linear Interaction between a Moving Nano Molecule and a Two-Mode Field with Two-Photon Transitions Using Reduced Von Neumann Entropy and Jaynes–Cummings Model for Human Cancer Cells, Tissues and Tumors Diagnosis”, Int J Crit Care Emerg Med 5 (2): 071–084, 2019.

321. Heidari, J. Esposito, A. Caissutti, “Mechanism of Action and Their Side Effects at a Glance Prevention, Treatment and Management of Immune System and Human Cancer Nano Chemotherapy”, Nanosci Technol 6 (1): 1–4, 2019.

322. R. Gobato, MRR. Gobato, A. Heidari, “Evidence of Tornado Storm Hit the Counties of Rio Bravo do Ivi and Rosario do Ivi, Southern Brazil”, Sci Lett 7 (1), 9 Pages, 2019.

323. Heidari, J. Esposito, A. Caissutti, “The Importance of Quantum Hydrodynamics (QHD) Approach to Single–Walled Carbon Nanotubes (SWCNT) and Multi-Walled Carbon Nanotubes (MWCNT) in Genetic Science”, SCIOL Genet Sci 2 (1): 113–129, 2019.

324. Heidari, J. Esposito, A. Caissutti, “Polytixin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, J Pharm Drug Res, 3 (1): 150–170, 2019.

325. Heidari, J. Esposito, A. Caissutti, “Alypsialoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, J J Chem Sci Eng, 2 (2): 70–89, 2019.

326. Heidari, J. Esposito, A. Caissutti, “Cyanotoxin Time–Resolved Absorption and Resonance FT–IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibrionic–Mode Coupling Structure in Vibrational Spectra Analysis”, British Journal of Medical and Health Research, 6 (4): 1–41, 2019.

327. Heidari, J. Esposito, A. Caissutti, “Potential and Theranostics Applications of Novel Anti-Cancer Nano Drugs Delivery Systems in Preparing for Clinical Trials of Synchrotron Microbeam Radiation Therapy (SMART) and Synchrotron Stereotactic Radiotherapy (SSRT) for Treatment of Human Cancer Cells, Tissues and Tumors Using Image Guided Synchrotron Radiotherapy (RSRT)”, Ann Nalnosi Nanotechnol, 3 (1): 1006–1019, 2019.

328. Heidari, J. Esposito, A. Caissutti, “Study of Anti-Cancer Properties of Thin Layers of Cadmium Oxide (CdO) Nanostructure”, J Pharm Drug Res, 3 (1): 150–170, 2019.
