Weak values as context-dependent values of observables and Born’s rule

Akio Hosoya and Minoru Koga

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

Received 11 April 2011, in final form 18 August 2011
Published 20 September 2011
Online at stacks.iop.org/JPhysA/44/415303

Abstract
We characterize a value of an observable by a ‘sum rule’ for generally non-commuting observables and a ‘product rule’ when restricted to a maximal commuting subalgebra of observables together with the requirement that the value is unity for the projection operator of the prepared state and the values are zero for the projection operators of the states which are orthogonal to the prepared state. The crucial requirement is that the expectation value and the variance of an observable should be independent of the way of measurement, i.e. the choice of the maximal commuting subalgebra of observables. We shall call the value a ‘contextual value’. We show that the contextual value of an observable coincides with the weak value advocated by Aharonov and his colleagues by demanding the consistency of quantum mechanics with Kolmogorov’s measure theory of probability. This also gives a derivation of Born’s rule, which is one of the axioms of conventional quantum mechanics.

PACS numbers: 02.50.Cw, 03.65.-w, 03.65.Aa, 03.65.Ta

1. Introduction

In the conventional Copenhagen interpretation of quantum mechanics, the value of physical quantity emerges only after measurement but not before. However, the idea of value only after measurement becomes problematic when one considers quantum gravity because measurements presuppose spacetime which emerges after the quantum era of the Universe apart from the fact that there are no observers who can make projective measurements of the Universe [1]. Independently, Ozawa [3] has pursued the possibility of assigning a context-dependent value for a physical quantity before measurement, where the context describes outcomes of the measurements to be performed.

On the other hand, Born’s rule [4] is an axiom of conventional quantum mechanics, though there is literature which claims that the rule can be derived. It seems that there is a lack of either physical intuition because of a lack of a measurement process or mathematical rigor. We
shall give a brief review of these notions restricting our attention to the orthodox view in the discussion part of this work but not to the many world interpretation of quantum mechanics [5, 6].

In this paper, we show that the contextual value of an observable coincides with the weak value proposed by Aharonov and his colleagues [7, 8] on the basis of consistency of quantum mechanics with Kolmogorov’s measure theory of probability [9] and that this consistency also leads to Born’s rule as the unique probability measure of events to be discovered by the post-selection.

The organization of this paper is as follows. After a brief preliminary in section 2, we present in section 3 a theorem that the weak values are the contextual values of observables and give a derivation of Born’s rule. The final section is a summary and discussion of our results and includes a brief review of the claims of the derivation of Born’s rule.

2. Preliminary

We first set up the general framework. Let \mathcal{N} be a set of observables which act on the Hilbert space \mathcal{H} of finite dimension, i.e. dim $\mathcal{H} = N$. Let $\mathcal{V}(\mathcal{N})_{\text{max}}$ be the set of all maximal Abelian subalgebras of \mathcal{N} and choose a maximal Abelian subalgebra $V_{\text{max}} \in \mathcal{V}(\mathcal{N})_{\text{max}}$, noting that the choice is not unique. Then, we can select a complete orthonormal system $\{|\omega\rangle\}_{\omega \in \Omega}$ as the set of all simultaneous eigenstates of the elements of V_{max}, where $\Omega := \{\omega_1, \ldots, \omega_N\}$. Hereafter, we identify the eigenspace of $|\omega\rangle\langle\omega|$ with ω. Therefore, Ω represents the way of orthogonal decomposition of the Hilbert space \mathcal{H}. We call the set $\{|\omega\rangle\}_{\omega \in \Omega}$ ‘context’ induced by V_{max} which is chosen from $\mathcal{V}(\mathcal{N})_{\text{max}}$. In due course, we will use Aharonov’s formalism to interpret the complete orthonormal system $\{|\omega\rangle\}_{\omega \in \Omega}$ as the set of the states to be ‘post-selected’. Thus, since we fix the prepared, i.e. pre-selected state to be $|\psi\rangle$ throughout this paper, the ‘context’ is the context of the measurement to be performed. In the case of a finite-dimensional Hilbert space, a different choice of $V_{\text{max}} \in \mathcal{V}(\mathcal{N})_{\text{max}}$ amounts to a unitary transformation of the complete orthonormal system $\{|\omega\rangle\}_{\omega \in \Omega}$. For an infinite-dimensional case, we have many types of von Neumann algebra [10, 11].

We introduce the probability space $(\hat{\Omega}, \hat{\mathcal{F}}, \hat{P})$ adopting the standard notation of Kolmogorov’s measure theory of probability [9] as follows. The sample space is $\hat{\Omega} := \{\omega \in \Omega \mid |\omega\rangle\langle\psi| \neq 0\}$, and the σ-field $\hat{\mathcal{F}}$ over $\hat{\Omega}$ is the power set of $\hat{\Omega}$. \hat{P} is a probability measure over $\hat{\mathcal{F}}$. The measure \hat{P} satisfies the relation $\hat{P}(\{\omega_1\} \cup \{\omega_2\}) = \hat{P}(\{\omega_1\}) + \hat{P}(\{\omega_2\})$. This means the probability of the event that ω_1 is measured or ω_2 is measured is the sum of $\hat{P}(\{\omega_1\})$ and $\hat{P}(\{\omega_2\})$. This probability space excludes the case $|\omega \in \Omega| |\omega\rangle\langle\psi| = 0\}$. We shall deal with the above case at the end of section 3. For notational simplicity, hereafter we represent the set $|\omega\rangle$ by $|\omega\rangle$ as ω so that $\hat{P}(\omega) := \hat{P}(|\omega\rangle)$. For a fixed choice of V_{max}, the field \mathcal{F} is also fixed provided that we specify the prepared state $|\psi\rangle$.

In what follows, we use the standard notation that \mathbb{R} and \mathbb{C} are the fields of real and complex numbers, respectively, and σ_x, σ_y, and σ_z are the Pauli matrices.

3. The main theorem

We denote the contextual value of $A \in \mathcal{N}$ in $\omega \in \hat{\Omega}$ by $\lambda_{\omega}(A)$ and define it as the nonzero map $\lambda_{\omega} : \mathcal{N} \rightarrow \mathbb{C}$ which satisfies the following conditions.

(i) Sum rule:

$$
\lambda_{\omega}(A + B) = \lambda_{\omega}(A) + \lambda_{\omega}(B), \quad \forall A, B \in \mathcal{N}
$$
(ii) Product rule:
\[\lambda_\omega(TS) = \lambda_\omega(T)\lambda_\omega(S), \quad \forall T, S \in V_{\max} \]

(iii) Initial condition:
\[\lambda_\omega(\langle \psi \rangle) = 1, \quad \lambda_\omega(\langle \psi^\perp \rangle) = 0, \]
where \(\langle \psi \rangle \) is the prepared (pre-selected) state and \(\langle \psi^\perp \rangle \) is an arbitrary state orthogonal to \(\langle \psi \rangle \).

(iv) Invariance: the expectation value and the variance of an observable \(\lambda_\omega(\langle A \rangle) \) commute. A simple example of this is \n
\[\lambda_\omega(\langle A \rangle) = \sum_{\omega \in \Omega} P(\omega) \lambda_\omega(A), \]
\[\text{Var}(A) := \sum_{\omega \in \Omega} P(\omega) |\lambda_\omega(A) - \lambda_\omega(\langle A \rangle)|^2 \]

are independent of the choice of \(V_{\max} \) and depend only on the prepared state \(\langle \psi \rangle \) and \(A \).

Some remarks on these conditions are in order. The sum rule (i) excludes the possibility that the values \(\lambda_\omega(A) \) and \(\lambda_\omega(B) \) are eigenvalues of the observables \(A \) and \(B \), if they do not commute. A simple example of this is \(\sigma_x \) and \(\sigma_y \) with the eigenvalues \(\pm 1 \), while the sum \(\sigma_x + \sigma_y \) has eigenvalues \(\pm \sqrt{2} \). Historically, the rule (i) was introduced by von Neumann [10] when he made an argument to refute the hidden variable theory. The product rule (ii) means that the map \(\lambda_\omega \) is a character on \(V_{\max} \) and implies that it can be seen as a ‘valuation’ on \(V_{\max} \) [2]. This means that the contextual value for an observable \(T \in V_{\max} \) can be identified with a classical value of \(T \). We are going to generalize it to a contextual value of an observable \(A \neq V_{\max} \), which has no counterparts in classical theory. We see that \(\lambda_\omega(1) = 1 \) from (ii). The requirement (iii) is just an assumption based on an intuition that the value of the projection operator of the initial state \(\langle \psi \rangle \) is unity and the values of the projection operators of the states \(\langle \psi^\perp \rangle \) which are orthogonal to the prepared \(\langle \psi \rangle \) are zero if we know definitely what the initial states is. The invariance of the expectation value and the variance of an observable \(A \) in the requirement (iv) uniquely determines the normal distribution function of the observable obtained after repeating many experiments according to the central limit theorem.

From the sum rule (i), we can apply Riesz’s theorem and using the normalization \(\lambda_\omega(1) = 1 \), we can write the contextual value of \(A \in \mathcal{N} \) as

\[\lambda_\omega(A) = \frac{\text{Tr}[W_\omega A]}{\text{Tr}[W_\omega]}, \]

with \(W_\omega \) being some operator. The product rule (ii) for the maximal Abelian subalgebra \(V_{\max} \) narrows down the expression for the operator \(W_\omega \) to

\[W_\omega = a\langle \alpha | + b\langle \beta | + W^\perp_\omega, \quad a, b \in \mathbb{C}, \]

for some \(\langle \alpha | \in \mathcal{H} \) and \(\langle \beta | \in \mathcal{H}^*, \) where \(\mathcal{H}^* \) is the dual space of \(\mathcal{H} \). Here, \(W^\perp_\omega \) is an operator which satisfies \([W^\perp_\omega, \langle \alpha | \omega \rangle] = 0 \). The requirement (iii) implies that \(W_\omega \) has a form \(W_\omega = |\psi \rangle \langle q| + |r \rangle \langle \psi | \) for some \(|q \rangle \) and \(|r \rangle \). Equating this with (4), we find that \(\langle \alpha | = |\psi \rangle \), \(\langle \beta | = \langle \psi | \) and \(W^\perp_\omega = 0 \) so that

\[W_\omega = a|\psi \rangle \langle \alpha | + b\langle \alpha | \psi |, \quad a, b \in \mathbb{C}, \]

and the contextual value becomes

\[\lambda_\omega(A) = \frac{a\langle \alpha | A |\psi \rangle + b\langle \psi | A |\alpha \rangle}{a\langle \alpha | \psi \rangle + b\langle \psi | \alpha \rangle}. \]
Theorem. A map \(\lambda_\omega : \mathcal{N} \rightarrow \mathbb{C} \) satisfying the above conditions (i)–(iv) is of the form
\[
\lambda_\omega(A) = \frac{\langle \omega | A | \psi \rangle}{\langle \omega | \psi \rangle}, \quad \text{for} \quad \omega \in \Omega,
\]
and the probability measure is
\[
\hat{P}(\omega) = |\langle \omega | \psi \rangle|^2.
\]
Since \(|\psi\rangle\) is a complete orthonormal system and \(A \in \mathcal{N}\) is arbitrary, the above constraints are equivalent to the completeness relation \(\sum_{\omega \in \Omega} |\omega\rangle\langle \omega| = 1\) for \(|\omega\rangle\langle \omega|\) as we see comparing with its matrix elements with (13).

We demand that the variation of \(\mathcal{L}_E(|\omega\rangle, \mu)\) with respect to \(|\omega\rangle\) should vanish. That is,

\[
\frac{\delta \mathcal{L}_E(|\omega\rangle, \mu)}{\delta (|\omega\rangle)} = \frac{\partial \tilde{P}(\omega)}{\partial (|\omega\rangle)} - \tilde{P}(\omega) = \frac{\hat{P}(\omega)}{a(|\omega\rangle \langle \psi| + b(|\psi\rangle \langle \omega|)} - \sum_i \mu_i \langle \psi_i | \omega\rangle = 0.
\]

This holds for all \(A \in \mathcal{N}\). A particular choice \(A = |\psi\rangle \langle \psi|\) implies that \(\frac{\partial \mathcal{L}_E}{\delta (|\omega\rangle)} \propto |\psi\rangle\), since the second, third and fourth terms are then \(\propto |\psi\rangle\). To see the implication of the component of the above equation perpendicular to \(|\psi\rangle\) consider the case \(A = |\psi\rangle \langle \psi| + |\psi\rangle \langle \psi|\), where \(|\psi\rangle\) is a state orthogonal to \(\psi\rangle\) to find that the second and the forth terms cancel each other. We therefore see that the sum of the first and the third terms and the sum of the second and the fourth terms separately vanish, i.e.

\[
\frac{\partial \tilde{P}(\omega)}{\partial (|\omega\rangle)} = \sum_i \mu_i \langle \psi_i | \omega\rangle |\psi\rangle = 0,
\]

Adding these two equations yields

\[
\frac{\partial \tilde{P}(\omega)}{\partial (|\omega\rangle)} = \sum_i \mu_i \langle \psi_i | \omega\rangle |\psi\rangle
\]

and its integration gives \(\tilde{P}(\omega) = \sum_i \mu_i \langle \psi_i | \omega\rangle |\omega\rangle |\psi\rangle + \tilde{P}_0\), where \(\tilde{P}_0\) is an integration constant. Therefore, (15) becomes

\[
\left(\sum_i \mu_i \langle \psi_i | \omega\rangle |\omega\rangle |\psi\rangle + \tilde{P}_0 \right) \frac{a}{a(|\omega\rangle \langle \psi| + b(|\psi\rangle \langle \omega|)} - \sum_i \mu_i \langle \psi_i | \omega\rangle = 0, \quad \forall \omega \in \tilde{\Omega}.
\]

This implies that \(\tilde{P}_0 = 0\) and \(b = 0\). We note that \(\frac{\delta \mathcal{L}_E(|\omega\rangle, \mu)}{\delta (|\omega\rangle)} = 0\) is automatically satisfied. Therefore, the context invariance of the expectation value \(\text{Ex}(\lambda)\) leads to expressions for the probability measure and the contextual value of an observable \(A\) as

\[
\tilde{P}(\omega) = \sum_i \mu_i \langle \psi_i | \omega\rangle |\omega\rangle |\psi\rangle,
\]

\[
\lambda_\omega (A) = \frac{\langle \omega | A | \psi\rangle}{(|\omega\rangle \langle \psi|)}.
\]

We further demand that the variance \(\text{Var}(\lambda) = \sum_{\omega \in \tilde{\Omega}} \tilde{P}(\omega) |\lambda_\omega (A)|^2\) is context independent. To simplify the discussion we set \(\text{Ex}(\lambda) = 0\) or replace \(A\) by \(A - \text{Ex}(\lambda)\). It is possible to set up a similar variational problem for \(\text{Var}(\lambda)\) to the previous one for \(\text{Ex}(\lambda)\). Instead, we simply insert the result of (19) into the expression for \(\text{Var}(\lambda)\) to obtain

\[
\text{Var}(\lambda) = \sum_{\omega \in \tilde{\Omega}} \tilde{P}(\omega) |\lambda_\omega (A)|^2
\]

\[
= \sum_{\omega \in \tilde{\Omega}} \sum_i \mu_i \langle \psi_i | \omega\rangle \langle \omega | A | \psi\rangle \langle \psi | \omega\rangle \langle \omega | \psi\rangle
\]

\[
= \sum_{\omega \in \tilde{\Omega}} \sum_i \mu_i \langle \psi_i | \omega\rangle \langle \psi | A | \psi\rangle \langle \psi | \omega\rangle \langle \omega | \psi\rangle.
\]
This is independent of the context \(\{|\omega\}\}_{\omega \in \Omega} \) if and only if \(\mu_i = 0 \) for \(i \neq 0 \). The remaining parameter \(\mu_0 \) is fixed to be unity by the normalization condition \(\sum_{\omega \in \Omega} P(\omega) = \mu_0 = 1 \). Then, we arrive at the main theorem (9) and (10).

Now, we can naturally extend the probability space \((\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})\) to \((\Omega, \mathcal{F}, P)\) as follows. The sample space is \(\Omega \), and the \(\sigma \)-field \(\mathcal{F} \) over \(\Omega \) is the power set of \(\Omega \). \(P \) is the probability measure over \(\mathcal{F} \) satisfying the following conditions: \(P|_{\mathcal{F}^0} = \tilde{P}, P|_{\Omega \setminus \mathcal{F}^0} = 0 \). From the theorem, we can write \(P(\omega) = |\langle \omega | \psi \rangle|^2 \). Thus, the probability space \((\Omega, \tilde{\mathcal{F}}, \tilde{P})\) describes the standard quantum mechanical statistics in the context \(\{|\omega\\}_{\omega \in \Omega} \).

4. Summary and discussions

We have shown that the contextual value of an observable is the weak value by demanding the consistency of quantum mechanics with Kolmogorov’s measure theory of probability in conjunction with the consideration of the values of observables. The crucial requirement was that the expectation value and the variance of an observable should be independent of the way of measurement. This leads eventually to Born’s rule in quantum mechanics. The assumptions of the sum rule (i) and the product rule (ii) may not have much problem and the invariance (iv) of the expectation value and the variance is crucial to relate the contextual value to the concept of probability. The third assumption (iii) is debatable. At the moment we do not have complete justification. We believe the usefulness of (iii) to characterize the contextual value.

Going back to the original motivation in the introduction, we would like to examine in what sense the weak value can be regarded as the value before projective measurements. Let \(A(t) \) be an operator at time \(t \leq T \) in the Heisenberg representation, where \(T \) is the time of the projective measurement. We choose \(A(T) \) as an element of \(V_{\text{max}} \) so that the post-selected state \(\{a\} \) is an eigenstate of \(A(T) \), \(\langle a|A(T) = \langle a|a \) of the eigenvalue \(a \). The weak value

\[
\frac{\langle a|A(T)|\psi\rangle}{\langle a|\psi\rangle}
\]

(21)
can be interpreted as the value before projective measurement provided that \(\langle a| \) is not orthogonal to the pre-selected state \(|\psi\rangle \). At \(t = T \), the weak value (21) coincides with the eigenvalue \(a \). As stressed before the weak value depends on the context, i.e. the states to be post-selected. The price is that the contextual value is complex in general.

The extension of the derivation of Born’s rule to the mixed state case is straightforward but technically involved so that we postpone it for future publication.

From the main theorem, we see that the value of an observable is given by the weak value (9). As is by now well known, the weak value is experimentally accessible [12–21] and theoretically analyzed by many people [22–25]. The weak value coincides with one of eigenvalues when the observable is restricted to the maximal Abelian subalgebra \(V_{\text{max}} \in V(N)_{\text{max}} \). For a general \(A \in N \), the weak value can be deduced from the information associated with the state to be post-selected, which is circumstantially inferred from the set of eigenvalues to be obtained by projective measurements of all the elements of \(V_{\text{max}} \).

The Kochen–Specker theorem [26] tells us that it is not possible to assign non-contextual values to all observables in quantum mechanics. Since the only non-contextual values are eigenvalues of the observables, this theorem does not apply to the weak values. Actually the weak value is explicitly dependent on the context defined by the post-selected states.

In the proof of Gleason’s theorem [27], he demanded that the measure over the set of all the subspaces of the Hilbert space \(\mathcal{H} \) should be independent of the choice of basis in order to conclude that the measure has a quadratic form in the state vector components if \(\dim(\mathcal{H}) \geq 3 \). This leads to the standard expression for the expectation value. There is a gap between the
probability and the measure over the set of all the subspaces of the Hilbert space \mathcal{H}, so that the derived Born’s rule lacks the probabilistic interpretation. In a mathematical sense, Gleason’s theorem is close to ours. We believe that we have filled the gap by introducing the physical concept of the contextual value of observables defined by the prepared state and the states to be post-selected. A rather surprising finding in this work is that the contextual value coincides with the weak value.

Zurek [28] claimed that he derived Born’s rule from ‘the environment assisted invariance’. He considered an entangled state

$$\psi = |s_1\rangle|e_1\rangle + |s_2\rangle|e_2\rangle$$

(22)

where $|s_1\rangle$ and $|s_2\rangle$ are the orthonormal basis of the system, while $|e_1\rangle$ and $|e_2\rangle$ are the orthonormal basis of the environment. Consider an observable $A \otimes 1$ with $A = |s_1\rangle \langle s_1| - |s_2\rangle \langle s_2|$. The elementary events are $x_1 := \{|s_1\rangle \langle e_1|\}$ and $x_2 := \{|s_2\rangle \langle e_2|\}$. The sample space is $\Omega := \{x_1, x_2\}$, and the σ-field is the power set of Ω. We would like to show that the probabilities to obtain x_1 and x_2 are $1/2$. To see this we compute the weak values: $\lambda_{x_1}(A) = 1$, $\lambda_{x_2}(A) = -1$. We apply formula (7) noting that the left-hand side is zero because of symmetry under the SWAP operation of the states of 1 and 2 both for the system and environment. The operator $A \otimes 1$ does not distinguish the state of environment so that the expectation value has to be symmetric under the SWAP of the system state. Then, we see that $P(x_1) = P(x_2) = 1/2$, using $Ex(1) = P(x_1) + P(x_2) = 1$. In this simple case, only the discrete symmetry is sufficient to derive Born’s rule. Here, we see that the symmetry principle should apply to the expectation value to obtain Born’s rule. The role of entanglement with the environment is not clear for us, though we suspect a possible connection to the post-selection.

Acknowledgments

This work has been inspired by the stimulating lecture by Professor Andreas Döring at Nagoya. The authors would like to acknowledge the useful comments of Professor Masanao Ozawa and information on the types of von Neumann algebras by Professor Izumi Ojima and deeply thank Professor Shin Takagi for his critical comment which leads to a substantial improvement of the previous version. The authors are supported by the Global Center of Excellence Program ‘Nanoscience and Quantum Physics’ at Tokyo Institute of Technology.

References

[1] Isham C and Doering A 2008 J. Math. Phys. 49 053518
[2] Döring A 2010 arXiv:1004.3573v1 [quant-ph]
[3] Ozawa M 2011 Found. Phys. 41 592
[4] Born M 1926 Z. Phys. 37 863 (footnote on p 865) (in German)
[5] DeWitt B and Graham R (ed) 1973 The Many-Worlds Interpretation of Quantum Mechanics (Princeton Series in Physics) (Princeton, NJ: Princeton University Press)
[6] Deutsch D 1999 Proc. R. Soc. A 455 3129
[7] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[8] Aharonov Y and Rohrlich D 2005 Quantum Paradoxes (Weinheim: Wiley-VCH)
[9] Kolmogorov A N 1956 Foundations of the Theory of Probability 2nd edn (New York: Chelsea) (second English translation edited by N Morrison with an added bibliography by A T Bharucha-Reid)
[10] von Neumann J 1932 *Mathematische Grundlagen der Quantumechanik* (Berlin: Springer)
von Neumann J 1955 *Mathematical Foundations of Quantum Mechanics* (Princeton, NJ: Princeton University Press) chapter 3
For criticism, see Bell J S 1966 *Rev. Mod. Phys.* **38** 447
[11] Takesaki M 2002 *Theory of Operator Algebras I* (Berlin: Springer) chapter 5
[12] Ritchie N W M, Story J G and Hulet R G 1991 *Phys. Rev. Lett.* **66** 1107
[13] Parks A, Cullin D and Stoudt D 1998 *Proc. R. Soc. A* **454** 2997
[14] Resch K J, Lundeen J S and Steinberg A M 2004 *Phys. Lett. A* **324** 125
[15] Pryde G L *et al* 2005 *Phys. Rev. Lett.* **94** 220405
[16] Wang Q, Sun F, Zhang Y, Li J, Huang Y and Guo G 2006 *Phys. Rev. A* **73** 023814
[17] Resch K J 2008 *Science* **319** 733
[18] Hosten O and Kwiat P 2008 *Science* **319** 787
[19] Yokota K, Yamamoto T, Koashi M and Imoto N 2009 *New J. Phys.* **11** 033011
[20] Palacios-Laloy A, Mallet F, Nguyen F, Bertet P, Vion D, Esteve D and Korotkov A N 2010 *Nature Phys.* **6** 442
[21] Brunner N and Simon C 2010 *Phys. Rev. Lett.* **105** 010405
[22] Mitchison G, Jozsa R and Popescu S 2007 *Phys. Rev. A* **76** 060302
[23] Jozsa R 2007 *Phys. Rev. A* **76** 044103
[24] Shikano Y and Hosoya A 2010 *J. Phys. A: Math. Theor.* **43** 025304
[25] Hosoya A and Shikano Y 2010 *J. Phys. A: Math. Theor.* **43** 385307
[26] Kochen S and Specker E 1967 *J. Math. and Mech.* **17** 59
[27] Gleason A M 1957 *J. Math. Mech.* **6** 885
[28] Zurek W H 2003 *Phys. Rev. Lett.* **90** 120404