Matter-wave interference of a native polypeptide

A. Shayeghi, P. Rieser, G. Richter, U. Sezer, J.H. Rodewald, P. Geyer, T.J. Martinez & M. Arndt

The de Broglie wave nature of matter is a paradigmatic example of quantum physics and it has been exploited in precision measurements of forces and fundamental constants. However, matter-wave interferometry has remained an outstanding challenge for natural polypeptides, building blocks of life, which are fragile and difficult to handle. Here, we demonstrate the wave nature of gramicidin, a natural antibiotic composed of 15 amino acids. Its center of mass is delocalized over more than 20 times the molecular size in our time-domain Talbot-Lau interferometer. We compare the observed interference fringes with a model that includes both a rigorous treatment of the peptide’s quantum wave nature as well as a quantum chemical assessment of its optical properties to distinguish our result from classical predictions. The realization of quantum optics with this prototypical biomolecule paves the way for quantum-assisted measurements on a large class of biologically relevant molecules.

https://doi.org/10.1038/s41467-020-15280-2

1 Faculty of Physics, University of Vienna, VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria. 2 Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom. 3 Department of Chemistry and the PULSE Institute, Stanford University, Stanford, CA 94305, USA. 4 SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. ✉email: markus.arndt@univie.ac.at

NATURE COMMUNICATIONS | (2020) 11:1447 | https://doi.org/10.1038/s41467-020-15280-2 | www.nature.com/naturecommunications
The wave nature of massive particles is a central aspect of quantum physics. The free evolution of particles is no longer described by classical trajectories, but instead by a wave-like propagation in multiple directions. Recombining the wavefronts leads to interference, where the probability amplitude for a particle arriving at a certain position depends on the phase difference of the partial waves. Since these phases are sensitive to even small perturbations, matter-wave interferometry has become an important tool for atom optics1,2, probing fundamental physics3,4 or serving in advanced quantum sensors8–10. The de Broglie wave nature has also been shown for large molecules, from fullerenes11 and molecular clusters12 up to tailor-made macromolecules13. Such experiments probe the quantum-to-classical interface and can be used to characterize neutral molecules in the gas phase, through interference fringe deflection in electric and magnetic fields14 or minimally invasive spectroscopy15,16.

Until today, quantum optics with fragile natural biomolecules has remained elusive due to the challenges in forming stable and intense molecular beams which can be detected with high efficiency and selectivity. Measurements on neutral biomolecules in the gas phase will, however, become valuable as they are solvent-free and allow predicting and evaluating their electronic properties independent of any matrix environments17. A typical matter-wave experiment requires an efficient source to launch neutral particles in high vacuum, beam splitters to coherently prepare, separate and recombine the quantum wave function associated with the molecular center-of-mass motion and an efficient detector with high sensitivity and mass resolution to record the result. For atom interferometry, these challenges have already been elegantly solved2. For interferometry with complex biomolecules, sources are a prime challenge. While evaporation and sublimation can still be used for vitamins and tripeptides18,19, it denatures and decomposes more complex polypeptides. And while matrix assisted laser desorption20 and electrospray ionization21 can volatilize even large proteins, they produce ions which are prone to dephasing and decoherence in quantum experiments. Direct laser desorption using nanosecond laser pulses has proven useful to entrain neutral peptides into cold noble gas jets where selected species could be detected using photoionization with VUV radiation22. However, energetic nanosecond pulses typically ablate large amounts of clusters and nanoparticles23 in addition to the individual peptides that are desired.

In the following, we present a realization of matter-wave interferometry of gramicidin A1, a linear antibiotic polypeptide composed of 15 amino acids with a mass \(m = 1882 \text{ amu} = 3.13 \times 10^{-24} \text{ kg} \). It has many desirable properties for such an experiment. And as a natural amino acid sequence, produced by the soil bacterium Bacillus brevis, it is representative for a large class of biologically relevant molecules. In addition, it contains four tryptophan residues, which is the only one of all 20 natural amino acids that is ionizable with a single vacuum ultraviolet (VUV) photon with energy 7.9 eV. This is crucial for diffraction and detection of the neutral peptides24.

Results

Experiment. We use the idea presented in Fig. 1: A rotating carbon wheel coated with a biomolecular film serves as the sample supply. From there, the molecules are desorbed by pulsed laser light and entrained in a supersonically expanding noble gas jet. While nanosecond lasers are known to deliver intact peptide beams22,25, ultrafast laser pulses with TW/cm^2 intensities and pulse lengths of 290 fs allow for 30-fold improvement in sample efficiency24. The gramicidin beam is then skimmed, vertically and horizontally collimated to <1 mrad, and sent into the interferometer chamber. In our setup we obtain a velocity \(\nu = 600 \text{ ms}^{-1} \) when using argon and \(\nu = 1200 \text{ ms}^{-1} \) when using helium as a carrier gas. The different velocities are used to access different de Broglie wavelengths \(\lambda_{\text{DB}} = \hbar \nu / m \), where \(\hbar \) is Planck’s constant.

We send the peptides through our time-domain Talbot–Lau interferometer12, where three pulsed VUV light gratings \(G^{(1)} - G^{(3)} \) ionize and remove the molecules in the antinodes of the laser fields (see Fig. 2). The gramicidin molecules arrive with a de Broglie wavelength of \(\lambda_{\text{DB}} = 350 \text{ fm} \) (at \(\nu = 600 \text{ ms}^{-1} \)) which is about 10^4 times smaller than the molecular size. We select a velocity spread of \(\Delta \nu \nu \simeq 0.5\% \), defined by the duration of the carrier gas pulse (20 μs) and the beam width (3 × 3 mm^2) of the detection laser. This corresponds to a longitudinal (spectral) de Broglie coherence of ca. 200λ_{\text{DB}} \simeq 72 \text{ pm}. Equally important is the transverse (spatial) coherence which sets an upper limit to the useful width of diffractive elements, across which matter-wave phenomena are relevant. Upon arrival at \(G^{(1)} \), it is of the order of 200 pm, too small for diffraction at \(d = 78.8 \text{ nm} \) gratings.

![Fig. 1 Peptide source: Ultra-fast 290 fs laser pulses with an energy of up to 70 μJ and a wavelength of 343 nm are focused to a spot diameter of 100 μm to desorb gramicidin molecules from a glassy carbon wheel. The molecules are picked up by an adiabatically expanding argon (helium) jet at 600 ms^{-1} (1200 ms^{-1}) from a short-pulse high-pressure valve. The emerging polypeptide matter-wave has a de Broglie wavelength of 350 fm (175 fm). Gramicidin A1 is a 15 amino acid polypeptide. The green ribbon runs along the peptide bonds and the residues are shown as line diagrams. The four Tryptophan residues are shown in green.](https://doi.org/10.1038/s41467-020-15280-2)
However, by defining a precise starting position of the molecules, one can increase their quantum mechanical momentum uncertainty, thus boosting transverse coherence further downstream such that the coherence function covers several effective slits in the second grating. The initial confinement in $G^{(1)}$ makes the interferometer robust against vibrational dephasing but also impedes scanning of the grating nodes relative to the matter-wave fringes. In $G^{(2)}$, the pulse separation between the second and third grating diffracts the matter-wave with an angle γ with respect to the mirror surface, which results in an additional constant transverse momentum $p_y = mv\tan(\gamma)$. The signal seen by the detector depends on the relative shift of the grating nodes to the fringe pattern. Each grating modulates the molecular wave function both in its amplitude and phase via photon absorption and the optical dipole potential, respectively. The transmission function of the k-th grating

$$t^{(k)}(x) = \exp\left[-\frac{n_0^{(k)}}{2} + i\phi_0^{(k)}\right]\cos^2\left(\frac{\pi x}{\lambda}\right)$$

depends on the number of absorbed photons $n_0^{(k)}$ and the acquired phase shift $\phi_0^{(k)}$ at an antinode, which both contribute to the dimensionless parameter β:

$$\beta = \frac{n_0^{(k)}}{2\phi_0^{(k)}} = \frac{\lambda_1}{8n^2a_y\lambda_L}. \quad (3)$$

It describes the ratio of the molecule’s wavelength-dependent absorption coefficient $\alpha(\lambda_1)$ and its optical polarizability volume $a_y(\lambda_L)$ (converted to the polarizability in SI units via $\alpha[\text{SI}] = 4\pi e_0 \times a_y(\lambda_L)$). The absorption cross section determines the ionization probability and thus controls the effective slit width in all three gratings. The optical polarizability determines the phase of the gramicidin molecules acquire during their transit through $G^{(2)}$. It leaves the fringe periodicity unchanged but modulates the contrast. Since the molecules enter in a variety of different vibrational, rotational and conformational states, as well as

Fig. 2 Time-domain matter-wave interferometry: Matter-wave interferometer (a): Three retro-reflected VUV laser beams realize the standing light waves as pulsed photo-depletion gratings. The antibond states in $G^{(1)}$ prepare a comb of tightly confined positions from where a molecule may emerge. Because of this projective confinement the wave coherence rapidly expands in free flight to cover several nodes and antibond states by the time the second grating fires. Rephasal of the matter-wave behind $G^{(2)}$ then leads to de Broglie interference of each molecule with itself and to the formation of a periodic molecular density pattern around the time when $G^{(3)}$ is fired. Only molecules whose wave functions are aligned with the nodes of $G^{(3)}$ are transmitted to the detector. The coherence rephasing occurs around a characteristic timescale, the n-th multiple of the Talbot time. A typical measurement (b): we toggle between two interferometer modes: a symmetric mode (resonance), where the grating pulse separation times are kept equal and close to nT, and an asymmetric mode (off-resonant or reference), where we set an imbalance of up to 200 ns. Imprinted fringes (c): If the molecular beam velocity has a component parallel to x, the fringe pattern effectively has a transverse velocity component and its position relative to the third grating becomes time dependent. A fringe pattern is visible in case the divergence angle α is smaller than the tilt angle γ.

Modeling. We model the expected signal by evolving the transverse Wigner function $w(x, p_x)$, taking into account tilted and divergent molecular beams, as well as mirror and grating imperfections. As a phase space description, it allows comparing the experiment with both the quantum and the classical expectation within the same framework (see Methods). The free evolution of a particle with initial position x and momentum p_x is then described by a shearing transformation $w(x, p_x) \rightarrow w(x - p_x t/m, p_x)$. Additional terms are introduced to account for earth’s gravitational acceleration g and a tilt of the molecular beam by an angle γ with respect to the mirror surface, which results in an additional constant transverse momentum $p_y = mv\tan(\gamma)$. The signal seen by the detector depends on the Talbot time T_T, the pulse delay τ of $G^{(3)}$ with respect to the Talbot time and the relative shift of the grating nodes to the fringe pattern. Each grating modulates the molecular wave function both in its amplitude and phase via photon absorption and the optical dipole potential, respectively. The transmission function of the k-th grating

$$t^{(k)}(x) = \exp\left[-\frac{n_0^{(k)}}{2} + i\phi_0^{(k)}\right]\cos^2\left(\frac{\pi x}{\lambda}\right) \quad (2)$$

depends on the number of absorbed photons $n_0^{(k)}$ and the acquired phase shift $\phi_0^{(k)}$ at an antinode, which both contribute to the dimensionless parameter β:

$$\beta = \frac{n_0^{(k)}}{2\phi_0^{(k)}} = \frac{\lambda_1}{8n^2a_y\lambda_L}. \quad (3)$$

It describes the ratio of the molecule’s wavelength-dependent absorption coefficient $\alpha(\lambda_1)$ and its optical polarizability volume $a_y(\lambda_L)$ (converted to the polarizability in SI units via $\alpha[\text{SI}] = 4\pi e_0 \times a_y(\lambda_L)$). The absorption cross section determines the ionization probability and thus controls the effective slit width in all three gratings. The optical polarizability determines the phase of the gramicidin molecules acquire during their transit through $G^{(2)}$. It leaves the fringe periodicity unchanged but modulates the contrast. Since the molecules enter in a variety of different vibrational, rotational and conformational states, as well as
orientations, the measured fringes represent an average over the internal properties.

An interferometer with three absorptive gratings would allow for the creation of classical Moiré-like patterns. This assumes molecules to be particles following ballistic trajectories that are modified by the gradient forces arising from the interaction between the optical dipole potential of the grating and the molecule’s optical polarizability. The difference between the quantum and the classical expectations is encoded in how these optical properties enter the transmission function (see Methods). The behavior of the fringe contrast is governed by \(\beta \), making this a crucial parameter for a quantitative distinction between classical and quantum effects. A thorough understanding of the final signal therefore requires knowledge about the electronic properties of gramicidin with respect to its ground and excited states. This is a challenge since gramicidin has many possible conformational states and one has to evaluate electronic properties for an ensemble populating a complex potential energy surface (PES). The gramicidin molecule contains 1010 electrons which renders electronic structure calculations demanding even without global optimization of the conformational space and when combined with density functional theory (DFT). Here, we perform short ab-initio molecular dynamics (AIMD) simulations at 300 K, assuming the worst case of no internal cooling, to explore the conformational PES and get a measure of the dynamic polarizability volume of gramicidin (see Methods). Molecular geometries are extracted from the AIMD simulation every picosecond and are fed into subsequent DFT calculations to estimate the ensemble average of the optical polarizability volume \(\langle \alpha_V(\lambda_L) \rangle_{300K} \).

In addition, the absorption cross section has to be determined as a thermal average \(\langle \sigma(\lambda_L) \rangle_{300K} \) for the calculation of \(\beta \). The relevant relaxation channels after photon absorption are ionization and dissociation, since our detector is only sensitive to the depletion of the molecular beam: \(\sigma = \sigma_{PI} + \sigma_{PD} \), where \(\sigma_{PI} \) and \(\sigma_{PD} \) are the photoionization and the photodissociation cross sections, respectively. A lack of detected fragments indicates a comparatively small \(\sigma_{PD} \), making \(\sigma_{PI} \) a strong lower bound for the total cross section. It is measured under identical conditions in an independent experiment by monitoring the gramicidin ion count rate

\[
N_I = N_0 (1 - e^{-\sigma_V \phi}),
\]

as a function of the VUV photon fluence \(\phi \).

These tools at hand, we can now analyze the matter-wave interferogram obtained with gramicidin, both in the first \((n = 1) \) and fractional \((n = 1/2) \) Talbot order. We record them by shifting the third grating around the ’resonant’ interference mode in steps of 20 ns \((n = 1) \) and 10 ns \((n = 1/2) \) at a fixed time delay for the off-resonant reference signal at \(\tau_{off} = 200 \text{ ns} \) \((n = 1) \) and 100 ns \((n = 1/2) \). For a finite divergence and tilt of the molecular beam, the fringe density pattern scans across the grating when \(\tau \) is varied. We expect a sinusoidal modulation with a Gaussian envelope26 (see Figs. 2c and 3).

\[
S_N = V_0 \exp\left[-\left(\frac{\tau - \tau_{off}}{\sigma_p \sqrt{2}} \right)^2 \right] \cos\left(2\pi \frac{\tau - \tau_{off}}{\sigma_p} \right).
\]

The modulation of the fringe visibility \(V_0 \) allows us to more precisely determine the divergence angle \(\alpha = 0.4 \) mrad from the width \(\sigma_p \) of the resonance dip

\[
\alpha = \arcsin\left(\frac{d}{2 \sigma_p \sqrt{2 \ln 10}} \right).
\]

We extract the model parameters \(\alpha \) and \(\gamma \) from the data in Fig. 3, the absorption cross section from independent measurements and the VUV polarizability volume from our quantum chemical analysis.

The dynamic polarizability volume is computed by Q-Chem29 using DFT with the range-separated hybrid exchange-correlation functional LC-ωPBE030, which has been shown to perform well for the calculation of polarizabilities31, and the 6-31G basis set. The Coupled-Perturbed Kohn-Sham method32 is used to calculate the optical polarizability volume for every extracted geometry at \(\lambda_L \) to obtain the ensemble average \(\langle \alpha_V(\lambda_L) \rangle_{300K} = (157 \pm 1) \times 10^{-30} \text{ m}^2 \).

In order to obtain the photoionization cross section \(\sigma_{PI} \), we measure and plot the number of ions \(N_I \) as a function of the photon fluence \(\phi \) (see Methods, Fig. 4) and construct a fit according to Eq. (4). We find an ionization cross section of \(\sigma_{PI} = \langle \sigma(\lambda_L) \rangle_{300K} = (4.7 \pm 0.2) \times 10^{-20} \text{ m}^2 \) and thus \(\beta \approx 0.6 \). This value is used for simulating both the quantum and classical predictions.

The final result is shown in Fig. 3, which compares the experimental data (black circles), with a fit based on Eq. (5) (solid red line), the quantum simulation (dashed blue line) and the classical description (dotted green line). Figure 3a presents data for the first Talbot order, while Fig. 3b shows the \(n = 1/2 \) Talbot order, where the peptides are entrained in helium to double their mean velocity to 1200 m/s. In both cases, the resulting molecular density pattern at \(G^{(3)} \) has a fringe separation of \(d = \ldots \)
environments—our experiments show that quantum phenomena can be observed with building blocks of life under suitable boundary conditions. Molecular interference patterns can be used as flying nanorulers33 that will become important in studies of optoelectronic and structural properties of complex biomolecules.

Methods

Sample preparation. Gramicidin D (Sigma Aldrich, CAS: 1403-97-6) is used which is a mixture of different antibiotic compounds. The major component is gramicidin A1, a linear polypeptide composed of 15 amino acids. It has the chemical formula C\textsubscript{28}H\textsubscript{40}N\textsubscript{12}O\textsubscript{12}S. The molecule is sketched in Fig. 1 represents one specific configuration of gramicidin A1. The green ribbon follows the peptide sequence while the tryptophan, valine and isoleucine rest groups are explicitly shown. The source emits a large variety of structural conformers, which all contribute to the same matter-wave interference pattern. Each contributing molecule is individually excited in its rotational degrees of freedom.

Molecular beam. The experiment runs at 100 Hz. In every cycle, an Even-Lavie valve releases a 20 μs short and dense pulse of argon with a backing pressure of about 30 bar. A femtosecond laser (Topag PHAROS, 290 fs, 70 mJ, 343 nm) is focused (\(\phi = 100 \) μm) onto the surface of a glassy carbon wheel coated with gramicidin to create a cloud of isolated molecules. The argon (helium) pulses then entrain the molecules with a mean velocity of around 600 m s-1 (1200 m s-1). Further downstream the particle beam is skimmed (Beam Dynamics skimmer, \(\phi = 2 \) mm), collimated to a rectangular shape of 0.6 × 1 mm2 (the longer axis parallel to the grating vectors) and finally transferred to the interferometer chamber via a differentially pumped stage. The pressure in the main chamber is \(2 \times 10^{-7} \) mbar, in the source chamber 1 × 10-8 mbar. Molecular beam velocities are determined by comparing the timing of the desorption laser with the detection laser pulse.

Grating lasers. The grating laser beams are emitted by three GAM EX50 fluorine lasers (\(\lambda = 157.6 \) nm, 4 mJ, 8 ns, flat top profile). All beams are reflected by the same dielectric mirror 3 × 5 cm2, coated onto a 2 mm thick CaF\textsubscript{2} substrate with the best technically available reflectivity in this wavelength range to date, i.e., \(R \approx 97\% \). The laser waist is elongated parallel to the molecular beam axis \(z \) (\(10 \times 1 \) mm2) and spatially separated by \(\approx 2 \) cm which allows molecules of different velocities to interact with a laser grating at the same time.

Mirror imperfections. For a perfectly flat mirror and in the absence of external accelerations, \(S_{\text{g}} \) is positive and equal to the theoretical visibility. In a real world scenario, \(S_{\text{g}} \) is given by the visibility of the molecular density pattern at the position of \(G \) and its relative displacement \(\Delta \mathbf{d} = \Delta x, -2\Delta z, \Delta x \). Each Talbot image is scanned with respect to \(G \). Here, \(\Delta x \) captures both the possible mirror corrugations at the grating site and the displacement of the molecular fringes due to external accelerations—for instance gravity. The molecular transmission is maximized for \(\Delta \mathbf{d} = 0 \) and minimized for \(\Delta \mathbf{d} = (n + 1/2) \mathbf{d} \) with \(n \in \mathbb{Z} \). If the mirror surface had deformations exceeding 10 nm across the 10 mm grating laser beam profile, the molecules of the same gas pulse but with different velocities would experience differently shifted interferometers. To avoid the ensuing reduction in fringe contrast, the effective grating width is set to \(< 3 \) mm by the geometry of the final detection laser.

Vibrational stability. The most important vibration frequencies in the experiment are related to the frequencies of the turbomolecular pumps. Taking 3000 Hz as a higher order worst case scenario the amplitude required for a 1 e-3 contrast reduction is \(\approx 15 \) nm, while the noise at that frequency is estimated to be \(\approx 1 \) nm.

Coriolis force. Considering the latitude (48.22°N) and orientation (162°E) of the molecular beam on Earth and assuming a velocity of 600 m s-1 the Coriolis force on gramicidin causes a shift of around 1 nm. Even for large velocity spreads phase averaging can be neglected. Also path-length differences arising from the Coriolis force are negligible for the mass considered here.

Optical polarizability volume at \(\lambda_0 \). The AIMD (BLYP34,35/6-31G) simulations are performed using the TeraChem program package36,37. During the AIMD run, a single molecule is propagated over 30 ps in time steps of 1 fs at a temperature of 300 K, which is controlled by a Russi-Parinello thermostat36 with a relaxation time of 0.1 ps. The dynamic polarizability volume is computed by Q-Chem29 using DFT with the range-separated hybrid exchange-correlation functional LC-\(\omega \)PBE30 and the 6-31G basis set. The Coupled-Perturbed Kohn-Sham method31 is used to calculate the optical polarizability for every extracted geometry at \(\lambda_0 \) to obtain the ensemble average. LC-\(\omega \)PBE30 has been shown to perform well for the calculation of polarizabilities38.

Fig. 4 Ion counts as a function of the photon fluence \(\phi \). The error bars represent the standard deviation of the count rate, assuming Poissonian statistics. The ionization cross section \(\sigma(\lambda_0) \) can be extracted according to Eq. (5). The single exponential increase in the range of available laser intensities is compatible with a single-photon process.

**In summary, we have demonstrated matter-wave interferometry with a complex native polypeptide, the antibiotic gramicidin. The fringe visibility of around 20% in the first Talbot order stands in marked discrepancy to a classical phase space description and is in very good agreement with quantum mechanics, including a detailed quantum chemical analysis of the molecular electronic properties. Our source techniques based on UV femtosecond desorption can volatilize fragile biomolecules in a more efficient way than other methods to date. While matter-wave experiments with biomolecules in the gas phase do not elucidate biological function per se—which is related to electronic structure determining folding dynamics and interactions with matrix
ionization cross section at λ_t. In order to obtain Φ_{ψ}, we measure and plot the number of counted ions N_{ψ} as a function of the photon fluence Φ (see Fig. 4), which is the total number of photons per unit area integrated over the laser pulse length:

$$N_{\psi} = N_{\psi}(1 - e^{-\alpha_{\psi}}),$$

where α_{ψ} and the total number of molecules N_0 enter as fit parameters.

Data analysis. In order to calculate S_{det}, mass spectra are summed up and subtracted from the background in both measurement modes to obtain S_{det}, and S_{det}^X. There is a systematic error by assuming that the mass signals are proportional to the number of detected molecules. We thus consider a worst case scenario where every event at the detector is attributed to a single detected molecule $N_{\text{event}} = 1$. We then compare the amplitudes of our mass signals within a threshold value, that is derived from the standard deviation of the background noise. The probability of not detecting a particle P_{ran} is assumed to follow Poissonian statistics

$$P_{\text{zero}} = \frac{N_{\text{event}}}{N_{\text{frames}}} = e^{-\lambda},$$

with λ_{ψ} as the average number of counts per frame. The total number of detected molecules N within one measurement consisting of N_{frames} is then given by

$$N = N_{\text{frames}}(1 - \ln P_{\text{ran}}),$$

while Gaussian error propagation delivers the 1σ error-bars of each data point.

Quantum model of the interference fringes. Our beam experiments are supported by phase space simulations as introduced by Nimrichter and Hornberger for near-field matter-wave interferometry \(^{26}\) and refined for time-domain experiments \(^{27}\). We here adapt the model to the details of our study. The simulations are based on the one-dimensional Wigner function $w(x, p_t)$ with x and p_t for the positions and the momenta of states, respectively. The Wigner function is defined as the transformation of the position density matrix $\rho(x, x') = \langle x'|\rho| x \rangle^{41}$

$$w(x, p_t) = \frac{1}{2\pi\hbar} \int dx' e^{ip_t(x - x')} \frac{|\rho(x, x')|^2}{2},$$

where the molecular beam propagation at a time t is represented by the Hamiltonian $H_t = \frac{p_t^2}{2m}$ in absence of external fields. The Wigner function therefore transforms like

$$w(x, p_t) \rightarrow w(x - \frac{p_t}{m}T_0, p_t).$$

The formalism allows a simple comparison with classical phase space dynamics based on ballistic trajectories. Under free evolution the classical phase space density transforms like the Wigner function.

Position shifts due to constant accelerations parallel to the grating vectors (\mathbf{k}) are introduced as a transformation (Eq. 21) also holds for the classical case when we exchange the Talbot-Lau-Interferometer as sequences of free propagation followed by transmission through a grating. The initial state at the first grating is assumed to be an incoherent mixture with a spatial extension $\Delta x \gg d$ and a momentum $\Delta p \gg \hbar d$. The initial Wigner function at $w_\text{in}(x, p_t)$ is described by the transverse momentum distribution $D(p_t)$, which is given by integration of the three dimensional momentum distribution $\rho(p_x, p_y, p_z)$ over two dimensions: $D(p_t) = \int dp_x dp_y \rho(p_x, p_y, p_t)$. This leads to

$$w_\text{in}(x, p_t) = \frac{1}{\sqrt{\pi} \Delta x} D(p_t) + p_t,$$

where Δx denotes the additional constant momentum due to the tilt. According to Eq. (21), transmission through the first grating with the transmission kernel T_1 leads to $w_1(x, p_t)$. Note that p_t is a constant momentum. Therefore the substitution in the integral $\int dp_t T_1(x, p_x, p_y, p_z)D(p_t)$ with $p_t = p_0 + p_{\psi}$ leads to $dp_t = d(p_0) + dp_{\psi}$. With iterative usage of Eq. (13) and Eq. (21), the Wigner function transforms to $w_{\psi}(x, p_t)$ for free propagation for a time $t = T_0$, then to $w_{\psi}(x, p_t)$ after the transmission through the second grating and after another free propagation for a time $t = 2T_0$ it transforms to $w_{\psi}(x, p_0)$, which denotes the state of the beam before interacting with the third grating. The corresponding transformations are listed below:

$$w_{\psi}(x, p_t) = \frac{1}{\sqrt{\pi} \Delta x} \int \Phi_{\psi}T_0(x, p_x, p_y, p_z)D(p_t) + p_t,$$

$$w_{\psi}(x, p_t) = \frac{1}{\sqrt{\pi} \Delta x} \int \Phi_{\psi}T_0(x, p_x, p_y, p_z)D(p_t) + p_t,$$

$$w_{\psi}(x, p_t) = \frac{1}{\sqrt{\pi} \Delta x} \int \Phi_{\psi}T_0(x, p_x, p_y, p_z)D(p_t) + p_t,$$

where Φ_{ψ} is the average number of absorbed photons in an anitnode and Φ_{ψ} the eikonal phase, gained by integration of the interaction potential over the intensity profile of the laser. For the optical gratings they read:

$$\Phi_{\psi_1} = 4\sigma_{\psi_1}(\lambda_0)\lambda_0 \frac{\lambda_0}{\lambda_0},$$

where λ_0 is the pulse energy, A_0 the illuminated area, c the speed of light, σ_{ψ_1} the absorption cross section and ψ_1 the optical polarization at the grating wavelength λ_0. Taking imperfections into account such as a mirror reflectivity $R = 0.97$ and a grating coherence factor $C = 0.76^{38}$, there is an effective reduction of the coherent contribution to Φ_{ψ_1} and Φ_{ψ_1}

$$\Phi_{\psi_1} = R\Phi_{\psi_1}, \Phi_{\psi_1} = R\Phi_{\psi_1}.$$
halving of the fringe period at half the Talbot order \(n = 1/2 \). However, this prediction becomes intensity dependent when using optical gratings. Figure 5 shows the quantum and classical expectation for the molecular density at \(G(3) \) in the half-Talbot order as a function of laser power, i.e., as a function of the mean number of photons absorbed in the antinodes of each grating, \(n_{0,\text{eff}} \). For \(n_{0,\text{eff}} = 3 \), as used in our experiments, \(d \)-periodic fringes are expected in both the \(n = 1/2 \) and the \(n = 1/2 \) Talbot order, classically and quantum mechanically. However, for \(n = 1 \), the quantitative distinction between both models is clear and with a large margin in our experiment (see main text).

Data availability
The data that support the findings of this study—in particular the raw data of Fig. 3 incl. measured data, error bars, fit, classical and quantum prediction—are available from the corresponding authors upon reasonable request.

Code availability
The proprietary Matlab code that has been developed throughout the years and used to produce the classical and quantum predictions as described in the methods section is available to the editor and reviewers on request from the corresponding authors.

Received: 10 October 2019; Accepted: 26 February 2020;
Published online: 19 March 2020

Fig. 5 Expected periodicity of the fringes: Molecular density patterns at \(G(3) \) in the \(n = 1/2 \) Talbot order, as a function of the grating strength, i.e., the mean number of photons absorbed in the grating antinode: \(n_{0,\text{eff}} = 3 \) (black), 4 (magenta), 6 (blue), and 12 (green). The top and bottom panel show the quantum and classical expectation, respectively.

downloading Fig. 5

References
1. Cronin, A. D., Schmiedmayer, J. & Pritchard, D. E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).
2. Tino, G. & Kasevich, M. Atom Interferometry, Vol. 188. In Proceedings of the International School of Physics "Enrico Fermi" (IOS, Varenna, 2014).
3. Kovachy, T. et al. Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015).
4. Schlipfert, D. et al. Quantum test of the universality of free fall. Phys. Rev. Lett. 112, 203002 (2014).
5. Hamilton, P. et al. Atom-interferometer constraints on dark energy. Science 349, 849 (2015).
6. Asenbaum, P. et al. Phase shift in an atom interferometer due to spacetime curvature across its wave function. Phys. Rev. Lett. 118, 183602 (2017).
7. Rosi, G. et al. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states. Nat. Commun. 8, 15529 (2017).
8. Geiger, R. et al. Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011).
9. Savoie, D. et al. Interleaved atom interferometry for high-sensitivity inertial measurements. Sci. Adv. 4, 7948 (2018).
10. Parker, R. H., Yu, C., Zhong, W., Ester, B. & Müller, H. Measurement of the fine-structure constant as a test of the standard model. Science 360, 191–195 (2018).
11. Arndt, M. et al. Wave-particle duality of c60 molecules. Nature 401, 680–682 (1999).
12. Haslinger, P. et al. A universal matter-wave interferometer with optical ionization gratings in the time domain. Nat. Phys. 9, 144–148 (2013).
13. Fein, Y. Y. et al. Quantum superposition of molecules beyond 25 KDa. Nat. Phys. 15, 1242–1247 (2019).
14. Gring, M. et al. Influence of conformational molecular motions on matter wave interferometry. Phys. Rev. A 81, 031604(R) (2010).
15. Eibenberger, S., Cheng, X., Cotter, J. P. & Arndt, M. Absolute absorption cross sections from photon recoil in a matter-wave interferometer. Phys. Rev. Lett. 112, 250402 (2014).
16. Rodewald, J. et al. New avenues for matter-wave-enhanced spectroscopy. Appl. Phys. B 123, 3 (2017).
17. Jarrold, M. F. et al. Peptides and proteins in the vapor phase. Annu. Rev. Phys. Chem. 51, 179–207 (2000).
18. Mairhofer, L. et al. Quantum-assisted metrology of neutral vitamins in the gas phase. Angew. Chem. Int. Ed. 56, 10947–10951 (2017).
19. Schätti, J. et al. Tailoring the volatility and stability of oligopeptides. J. Mass. Spectrom. 52, 559–556 (2017).
20. Karas, D. M., Bahr, D. U., Ingendoh, A. & Hillenkamp, P. D. F. Laser desorption/ionization mass spectrometry of proteins of mass 100,000 to 250,000 dalton. Angew. Chem. Int. Ed. 28, 760–761 (1989).
21. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 61–71 (1989).
22. Marksteiner, M., Haslinger, P., Scalfani, M. & Arndt, M. Uv and vuv ionization of organic molecules, clusters, and complexes. J. Phys. Chem. A 113, 9952–9957 (2009).
