Ambulatory EEG: Crossing the divide during a pandemic

William O. Tatum a,⁎, Nimit Desai b, Anteneh Feyissa c

a Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
b Department of Neurology, Medical University of South Carolina, Charleston, SC, USA

doi: 10.1016/j.ebr.2021.100500

Abstract

The COVID-19 pandemic forced temporary closure of epilepsy monitoring units across the globe due to potential hospital-based contagion. As COVID-19 exposures and deaths continue to surge in the United States and around the world, other types of long-term EEG monitoring have risen to fill the gap and minimize hospital exposure. AEEG has high yield compared to standard EEG. Prolonged audio-visual video-EEG capability can record events and epileptiform activity with quality like inpatient video-EEG monitoring. Technological advances in AEEG using miniaturized hardware and wireless secure transmission have evolved to small portable devices that are perfect for people forced to stay at home during the pandemic. Application of seizure detection algorithms and Cloud-based storage with real-time access provides connectivity to AEEG interpreters during prolonged "shutdown". In this article we highlight the benefits of AEEG as an alternative to diagnostic inpatient VEM during the paradigm shift to mobile health forced by the Coronavirus.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Inpatient video-EEG monitoring (VEM) is the diagnostic gold standard for patients suspected of epilepsy. However, hospitalization, time-constraints, insurance approval, financial and transportation issues are practical limitations [11]. Because of the COVID-19 pandemic, hospitals across the United States restricted or cancel admissions for VEM in hospital-based epilepsy monitoring units (EMU) [2,3]. Telemedicine has reduced the safety risk of viral exposure to patients and their families [4]. Healthcare workers involved in patient care in an EMU risk potential exposure to infection with Coronavirus (SARS-CoV-2) or its variants [2,5].

The number of hospital-based procedures fell during the pandemic. For example, in Italy, 206 sites saw a reduction of 76%±20% in EEG procedures performed [6]. Furthermore, a survey of 47 epilepsy centers across 22 countries in Europe reported that inpatient VEM was restricted due to the COVID-19 pandemic [7]. In Spain, a study of 255 epilepsy patients reported 15% had a delay in performance of epilepsy-related tests during pandemic lockdown [8].

Attempts to fill the gaps created by EMUs that closed are unable to be overcome by standard EEG due to the brevity that obviates event capture [9–11]. On the other hand, ambulatory video-EEG (AV-EEG) is an effective diagnostic alternative to inpatient VEM [12,13] that at our center has risen in its use to offset the loss of inpatient VEM availability (personal communication, WOT 2/16/2021).

2. Methods

To address the impact of the pandemic, we performed a literature review through November 30, 2020. We compared the role of AEEG to other hospital-based techniques with the intent to highlight the role of AEEG as an alternative EEG method to evaluate patients in the post-COVID-19 era. We searched PubMed and Embase databases using broad search terms (“epilepsy AND ambulatory AND EEG”) and synonyms (“epilepsy AND AEEG”). A similar search was performed for data available for pediatric population (“pediatric AND AEEG”) and synonyms (“epilepsy AND children AND AEEG”). A separate search using the same database was performed related to COVID-19 pandemic and epilepsy (“COVID-19 AND epilepsy”). Relevant articles were analyzed and information for selected topics was extracted.

3. The evolution of ambulatory EEG

The development of AEEG was inspired by Holter 50 years ago to assess dynamic changes in the electrocardiogram (ECG) of patients in an ambulatory setting [13]. Marson and McKinnon developed a four channel portable EEG device in 1972 for continuous recording using ¼ inch audiotape drawn from the success of the music industry [14]. By the mid-1970s, Ives and Wood modified AEEG recorders that could be worn over the shoulder or around the waist [15]. Three years later, Quy modeled AEEG preamplifiers so they were worn on the head, improving the signal to noise ratio [16]. By the 1980s, Bridgers and Ebersole were using AEEG recorders for clinical use with channels available for time display, event markers, and ECG channel [17]. Video was added to the audio signal and eight channel continuous EEG recorders and playback devices became commercially available prompting widespread application in the clinic [18]. Intermittent AEEG recording (i.e., 15 s every 10 min over 24 h) selected targeted samples of EEG and streamlined interpretation [19]. Today, portable lightweight AEEG devices (1 pound) can record up to 36 channels of continuous EEG with or without video. High sampling rates of 512 Hz and bit depth of at least 16-bits for analogue to digital conversion are available in most systems. Spike and seizure detection algorithms, artifact reduction, push-button activation to facilitate event recording, and quantitative EEG are available for trend analyses. Large digital storage capacities are now available to store, retrieve, and modify data from the Cloud. Current technology used for AEEG is essentially the same used for inpatient VEM, capable of reviewing, transferring, and interpreting large volumes of data [20,21]. The minimum number of recording electrodes for standard EEG is 16, however, 25 electrodes has been recommended for long-term EEG monitoring in adults and children to provide better coverage of the anterior and inferior-basal regions of the temporal lobes [20]. Electrodes are connected to a head mounted preamplifier that digitizes and multiplexes data. Preamplifiers are connected to the recording device and are worn around the waist or over the shoulder [21]. Patients and caretakers are educated on push button activation to mark potential events on AEEG detailing the time and description of an event in a diary [21].

4. Ambulatory video-EEG

High-quality, high-definition video cameras are optional to record patient behavior during activities of daily living and increases the diagnostic yield. In a study of 59 temporal lobe epilepsy patients experiencing 262 seizures, EEG lateralized ictal onset in 64.4%, semiology lateralized ictal onset in 78%, yet combining video and EEG lateralize seizures in 94.9% [22]. Goodwin et al. offered video camcorders to 45 patients alongside AEEG and captured an ictal event in 76% (34) patients, however, only 50% (17) had an event recorded on video. There are limitations to the use of video with AEEG. Maintaining proper distance from the camera and centering it to ensure the patient remains in the field of view is crucial to good quality video recording during AVEEG. Additionally, proper use of video is reliant on familiarity with the recording equipment to ensure adequate capture of an event in case one occurs. The yield is also proportional to the amount of observation by the family or caregiver and hence is often more effective in successfully capturing events in the pediatric population [23]. AEEG without video has a lower yield than AEEG with video which aids interpretation when an event is captured [24] and facilitates diagnosis in up to 80–85% of patients undergoing AEEG [23,25].

5. How long should we record ambulatory EEG?

AEEG is capable of recording up to 72–96 h, though 1–2 days is usually performed for most diagnostic purposes yet depends upon the individual and reasons for recording. In a retrospective study of 180 patients, Faulkner et al found an average latency of 50% of
patients with the first interictal epileptiform discharge (IED) within the initial 4 h of AEEG and recovery of IEDs in 95% of patients after 48 h, concluding that 2 days of was the optimal duration for recovery of IEDs [26]. In contrast, in a smaller retrospective review of 57 AEEGs, the yield did not significantly increase after 13 h of recording [27]. In a large retrospective review of 358 AEEG in adults, Kuo et al. found the yield did not increase beyond 24 h of recording IEDs but did increase for event recording [28]. Hence, 1–2 days appears optimal for interictal EEG recording, though longer durations may be required to capture events.

6. Clinical indications of ambulatory EEG

6.1. Diagnosis of suspected epilepsy

There are multiple reasons to obtain an AEEG (Table 1). Compared with other forms of EEG such as VEM, AEEG has advantages (Table 2) and disadvantages (Table 3). Keezer et al. found the sensitivity of AEEG was 2.23 times greater than standard EEG in the diagnosis of patients suspected to have epilepsy (Fig. 1) [29].

Table 1
Indications for AEEG.

- Diagnosis of epilepsy
- Classification of seizures and epilepsy syndromes
- Quantification of epileptiform activity and seizure burden (especially seizures without self-awareness)
- Differential diagnosis of seizures
- Detection of subclinical and subtle electroclinical seizures
- Assess the treatment response to antiseizure medication
- Validate the historical report of seizure freedom
- To address prognosis when considering withdrawal of ASM
- When inpatient VEM is unavailable or inaccessible
- For selected patients undergoing pre-surgical assessment in temporal lobe epilepsy

ASM: Anti-seizure medication; VEM: Video Monitoring.

Table 2
Advantages of AEEG.

- Records prolonged EEG in the patients’ habitual environment.
- Avoids the discomfort of hospitalization regulations and restrictions.
- Allows patients to have support of their family at home.
- Exposes patients to natural stressors and seizure triggers to increase the likelihood of capturing episodes.
- Avoids the risk of hospital-associated infections.
- Cost is more than one-half the cost of inpatient VEM [57].
- Easier access to AEEG as opposed to inpatient VEM.
- Ambulation is not as severely restricted as other techniques recording EEG.
- Able to be obtained with simultaneous video recording
- Captures natural sleep and circadian variations.
- Able to perform up to several days of overnight EEG recording.
- Increased yield after a non-diagnostic rEEG or VEM session [45].

EEG: Electroencephalography; VEM: Video Monitoring; rEEG: routine EEG.

Table 3
Limitations of AEEG.

- Cannot be used in emergencies such as serial seizures or status epilepticus.
- When used without video diagnostic yield is reduced.
- Requires patient to be visibly in front of camera during events in question.
- Typically, AEEG is not performed in real-time.
- Requires post-processing and time-delays for review.
- Push-button activations and diary entries may be poorly documented without patient and the family’s cooperation.
- Ability to fix technical problems is limited.
- Environmental and equipment associated artifacts require daily re-gelling of electrodes to prevent deterioration when serial days of AEEG are recorded.
- Battery life can limit the duration of AEEG recording depending upon the parameters of recording. Rechargeable batteries and new designs reduce power consumption [60].
- Lack of medical supervision limits ASM tapering to facilitate seizures limiting use in pre-surgical evaluation of patients with drug-resistant epilepsy.
- Cosmetically, may be socially embarrassing and overly cumbersome for patients.

ASM: Anti-seizure medication; AEEG: Ambulatory EEG.
monitoring unit, particularly with high clinical suspicion for non-epileptic events [34]. The diagnostic impact of AEEG resulted in a reduction in testing charges by 76%, and antiseizure medication charges by 69% [35].

6.3. Detecting “silent” seizures

Some focal impaired awareness seizures are clinically apparent, however, when they are subtle and associated with a loss of self-awareness, they may defy detection by observers (Figs. 2 & 3). Sub-clinical seizures are only evident on EEG where a clinical correlate is absent despite the presence of an electrographic seizure. Similarly, nocturnal seizures may defy detection due to an intervening post-ictal somnolence that supersedes recognition when patient return to sleep. In these cases, overnight AEEG monitoring has remarkably use quantifying “silent” seizures [9–13].

The seizure frequency reported by patients with epilepsy is often under-estimated. In one hospital study, 30% of patients admitted for inpatient VEM were always self-unaware of their seizures 1 hour after they occurred [36]. An outpatient AEEG record review of 502 reports found 38.3% of patients experiencing focal seizures were unassociated with push button event activation and absent diary entries despite electrographic confirmation of seizures in their home environment [33].

6.4. Treatment decisions

Lack of witnesses to report seizures, inadequate seizure logs, patient memory deficits, post-ictal amnesia in patients without seizure self-awareness, and those experiencing subclinical seizures compromise management [33,36]. With respect to chronic treatment in patients with epilepsy, Oxley and Roberts retrospectively

Fig. 1. Generalized spike-and-waves at 5 Hz on AEEG in a patient with JME who previously had two non-diagnostic standard EEGs.

Fig. 2. AEEG demonstrating of a 85-year-old man with recurrent left temporal focal impaired awareness seizure without self-awareness. While he denied their occurrence, his wife insisted that he be evaluated for recurrent “episodes”.

4
analyzed 100 AEEG recordings and found that AEEG captured events in 80% of patients and guided a change of treatment by either adjusting the dosage of ASM or starting a new ASM regime in 57% of patients [37]. Faulkner et al found in 324 AEEG studies that the results led to a change in management in 51% of his patients [32]. AEEG may be able to validate drug-resistance in patients with focal epilepsy adequately treated with ASM who report seizure freedom.

Even in patients after a first seizure, the initial diagnosis of epilepsy now includes the occurrence of a single seizure. One seizure in conjunction with an abnormal epileptiform EEG provides more than 60% likelihood that recurrence is anticipated [38]. Therefore, despite a single seizure, AEEG can yield an initial diagnosis of epilepsy when epileptiform discharges occur after a first seizure and may be especially useful to consider when an initial standard EEG is non-diagnostic [39].

Before considering ASM withdrawal, the presence of epileptiform activity is associated with a risk of seizure relapse despite prolonged seizure freedom with ASM [40,41]. However, standard EEG in patients with epilepsy often does not detect IEDs creating a false sense of security based on limited time sampled. Koepp et al compared standard EEG with AEEG in predicting seizure recurrence following ASM reduction [43]. In this small study, 15 seizure-free patients, comparison was made before ASM reduction. AEEG was found to be superior to standard EEG in detecting epileptiform activity and better predicted seizure recurrence after withdrawal of ASM [42]. Still, the true predictive value of AEEG similar to standard EEG on recurrence remains inconsistent [43,44].

6.5. Driving

Driving privileges are a primary concern to people with epilepsy. State-specific regulations by the Department of Motor Vehicles exist requiring people with epilepsy to attain a period of prolonged seizure freedom prior to reinstatement of driving privileges. This regulation is designed to ensure personal and public safety are maintained by avoiding risk from breakthrough seizures [45]. Fattouch et al retrospectively analyzed AEEG recordings of 1100 patients and found a large number of unreported ictal events in patients who were “seizure-free”, yet still drove regularly [46]. Tatum et al carried out a survey in 236 patients with seizures and reported 14.8% of patients continued to drive despite being ineligible, with 8.9% of patients who drove undeterred by the law despite being aware of state restrictions [47]. Therefore, AEEG is ideally suited to objectively assess seizure freedom. When patients report seizure freedom, the AEEG may disclose clinical seizures or electrographic seizures to provide a clinician with greater confidence prior to safe return to driving (Fig. 4) [42].

7. Safety

AEEG is typically not used in the presurgical evaluation of patients with drug resistant epilepsy due to safety concerns [48–50]. Diagnostic AEEG has no significant risks beyond those associated with performance of standard EEG [51]. Electrodes need to be adequately disinfected to prevent transmission of contagious disease such as viral hepatitis, Creuzfeldt-Jacob disease, and HIV [52]. Similar to continuous EEG monitoring (cEEG), AEEG equipment should be disinfected for COVID-19 with a commercially available germicidal disposable wipe or solution, which is virucidal and bactericidal with at least 70% isopropyl alcohol, prior to next use [2,53]. Electronic equipment should be covered with washable or plastic coverings or cases to facilitate this cleaning. Where possible, disposable electrodes should be used. Difficult to clean parts should have “rest period” between uses [53–55]. Rest periods are warranted because infectious sources such as the Coronaviruses can be found on inanimate surfaces for up to 9 days without proper disinfection [54].

Technologists performing and interacting with patients during a pandemic should use personal protective equipment (PPE) during hook-ups and take-downs. These should include the use of an isolation gown, gloves, and medical face mask or shield, when near or in contact with patients (Fig. 5) [2,54].

Electrical safety can be established by avoiding electrical current leakage through proper use of fuses, outlets to ground the equipment, grounding electrode, and by avoiding use of extension cords [56]. Patients should be advised to avoid contact of the electrical machinery and wiring with water to maximize safety and minimize electrical current exposure that has been linked to skin burns and potentially more serious injury [56].

8. Cost

It is imperative that during a healthcare crisis such as a pandemic, judicious economic strategies are employed for the benefit of patients and organizations. In a study of 255 epilepsy patients by
Fonseca et al., approximately 30% of patient reported a reduction in income directly linked to the impact of the COVID-19 pandemic [8]. In a large retrospective cohort study of 13,958 patients, outpatient AEEG cost was significantly lower compared to inpatient VEM monitoring. Interestingly, overall epilepsy-related healthcare expenditures in patients undergoing AEEG was lower in the first 12 months after the initial study compared with patients who underwent inpatient VEM [57]. These findings were similar to original economic models which indicated that AEEG was up to 66% cheaper than inpatient VEM [25]. Since January 1, 2020, in the United States, reimbursement for long-term inpatient EEG monitoring modified the fee structure for VEM and AEEG reimbursement for professional and technical components though still incurs hospital costs to patients for inpatient VEM.

9. Utility

9.1. Clinical usefulness

The utility of AEEG has been demonstrated in multiple class III and IV studies (Table 4). Obtaining sleep is the most effective method to “activate” the EEG [58] and increase the yield of AEEG for recording IEDs and seizures [37,59,60]. Dash et al. prospectively reviewed AEEG recordings of 101 patients and found a diagnostic yield of 72% [10]. Morris et al. evaluated patients undergoing 16-channel AEEG and found usefulness in 74.4% patients. In that study, seizures were captured in 11.9%, and IEDs captured in 26.2% of the patients [59]. Faulkner et al. found utility in 68% of 324 AEEG recordings with 52% of patients experiencing typical events, and 36% containing IEDs [32]. In patients 60 years and older, 58 AEEG studies identified diagnostic results in 37% of the patients including IEDs in 26% and NEE in 16% of patients [60]. Smaller studies (n = 26 patients) undergoing AEEG recorded nonepileptic events without EEG changes in 46% of the patients [61] emphasizing variability of study results and population biases. Nonetheless, multiple retrospective studies support a high diagnostic yield of AEEG to differentiate epileptic from events without EEG changes (presumed nonepileptic events).

9.2. Comparison with standard EEG

During technical set-up and removal of standard EEG or AEEG, the same safety risk applies to both the technologist and patient. Early work by Bridges and Ebersole compared standard EEG to AEEG in 500 patients where IEDs were present in 11% undergoing standard EEG and increased to 61% with AEEG [17]. Similar incremental findings in detection differences were reported in a study involving 62 patients who experienced frequent events where IEDs were detected in 33.8% on AEEG, but was not superior to standard EEG in seizure detection [62]. In patients undergoing a repeat EEG compared to those undergoing an AEEG after an initial non-diagnostic standard EEG, Doshi found a greater yield of IEDs increasing from 1.9% to 17.5% during AEEG monitoring in 105 patients [63].

Liporace et al. performed a class II study comparing the yield of a sleep deprived EEG (sEEG) and 16 channel AEEG in 46 patients following a non-diagnostic EEG and found deeper stages of sleep...
| Study                        | Type of Study | No. of patients | Age Range             | No. of channels | AEEG recording duration | AEEG with Video | Yield (Seizures) | Yield (IED) | Yield (NEE) | Comments                                           |
|-----------------------------|---------------|-----------------|-----------------------|-----------------|-------------------------|----------------|-----------------|-------------|-------------|----------------------------------------------------|
| Ebersole and Leroy (1983)   | N/A           | 40              | Adults or adolescents | 3               | 16–24 h                 | No             | 17.5%           | 47.5%       | NA          | Concurrence between both AEEG and inpatient telemetry interpretation of normal vs EA was 77% overall (79% for focal and 100% for generalized interictal abnormalities). All seizures noted on inpatient telemetry were detected by AEEG. EA were found in 17.4% of patients. Among patients who had both EEG and AEEG, there was a 61% increase in the yield of EA and a 21-fold increase in detecting seizures with AEEG. EA were detected in 34% by AEEG vs 26% by rEEG. Patients who had clinical attacks once a week or more frequently showed an improved yield on AEEG but was not helpful when attacks were less frequent. Clinical event was recorded in 80% of the patients and it led to a change in treatment in 57% of the patients. 16 channel AEEG system was clinically useful in 74.4% of patients and 67.5% of patients had useful findings on AEEG with previously non-diagnostic rEEG. AEEG is better than sEEG in detecting epileptiform discharges or seizures. This study recommended the selection of a computer-assisted AEEG over a sEEG in patients with presumed epilepsy and a non-diagnostic rEEG. 38.3% of the seizures went unrecognized by the patient leading to underreporting of seizures which impacts optimal diagnosis and treatment. AEEG contributed to diagnosis in 5% of the patients. This study states that a repeat EMU admission rather than an ambulatory recording should be considered if an initial EMU admission for event classification is indeterminate. AEEG contributed to clinical diagnosis in 71% of patients and is useful in patients with frequent clinical spells to differentiate between epileptic and non-epileptic events, to quantify seizures and epileptiform activity. AEEG changed the diagnosis in 51% of patients with a high diagnostic utility in the detection of paroxysmal events. AEEG can be a useful alternative to inpatient VEM in the diagnosis of non-epileptic events. The diagnostic utility of AEEG was 67.0%. Implementation of video AEEG protocols in a secondary care center appears to have high diagnostic utility, particularly for patients with psychogenic nonepileptic seizures. A total of 27 patients (24.3%) had changes in medical treatment following video-AEEG, most frequently antiepileptic drug introduction/increase when epileptic seizures were captured. This proportion was similar between patients with or without a previously established diagnosis of epilepsy. |
| Bridgers and Ebersole (1985) | Retrospective | 500             | 2 months–82 yrs.      | 3               | 6–24 h                  | No             | 6.4%            | 11%         | 15.3%       | EA were found in 17.4% of patients. Among patients who had both EEG and AEEG, there was a 61% increase in the yield of EA and a 21-fold increase in detecting seizures with AEEG. EA were detected in 34% by AEEG vs 26% by rEEG. Patients who had clinical attacks once a week or more frequently showed an improved yield on AEEG but was not helpful when attacks were less frequent. Clinical event was recorded in 80% of the patients and it led to a change in treatment in 57% of the patients. 16 channel AEEG system was clinically useful in 74.4% of patients and 67.5% of patients had useful findings on AEEG with previously non-diagnostic rEEG. AEEG is better than sEEG in detecting epileptiform discharges or seizures. This study recommended the selection of a computer-assisted AEEG over a sEEG in patients with presumed epilepsy and a non-diagnostic rEEG. |
| Cull (1985)                  | N/A           | 62              | 13–81 yrs.            | 4               | 24 h                    | No             | NA              | 33.8%       | 6.5%        | EA were detected in 34% by AEEG vs 26% by rEEG. Patients who had clinical attacks once a week or more frequently showed an improved yield on AEEG but was not helpful when attacks were less frequent. Clinical event was recorded in 80% of the patients and it led to a change in treatment in 57% of the patients. 16 channel AEEG system was clinically useful in 74.4% of patients and 67.5% of patients had useful findings on AEEG with previously non-diagnostic rEEG. AEEG is better than sEEG in detecting epileptiform discharges or seizures. This study recommended the selection of a computer-assisted AEEG over a sEEG in patients with presumed epilepsy and a non-diagnostic rEEG. |
| Oxley and Roberts (1985)     | Retrospective | 100             | 16–50 yrs.            | 4               | 48–216 h                | No             | 54%             | NA          | 32%         | Clinical event was recorded in 80% of the patients and it led to a change in treatment in 57% of the patients. 16 channel AEEG system was clinically useful in 74.4% of patients and 67.5% of patients had useful findings on AEEG with previously non-diagnostic rEEG. AEEG is better than sEEG in detecting epileptiform discharges or seizures. This study recommended the selection of a computer-assisted AEEG over a sEEG in patients with presumed epilepsy and a non-diagnostic rEEG. |
| Morris et al. (1994)         | Retrospective | 344             | 6 months–69 yrs.      | 16              | 32 h                    | No             | 11.9%           | 26.2%       | 36.3%       | Clinical event was recorded in 80% of the patients and it led to a change in treatment in 57% of the patients. 16 channel AEEG system was clinically useful in 74.4% of patients and 67.5% of patients had useful findings on AEEG with previously non-diagnostic rEEG. AEEG is better than sEEG in detecting epileptiform discharges or seizures. This study recommended the selection of a computer-assisted AEEG over a sEEG in patients with presumed epilepsy and a non-diagnostic rEEG. |
| Liporace et al. (1988)       | Prospective   | 46              | NA                    | 16              | 24 h                    | No             | 15%             | 33%         | NA          | AEEG is better than sEEG in detecting epileptiform discharges or seizures. This study recommended the selection of a computer-assisted AEEG over a sEEG in patients with presumed epilepsy and a non-diagnostic rEEG. |
| Tatum et al. (2001)          | Retrospective | 502             | 1 month–93 yrs.       | 16              | 28.5 h (mean)           | No             | 8.50%           | NA          | NA          | 38.3% of the seizures went unrecognized by the patient leading to underreporting of seizures which impacts optimal diagnosis and treatment. AEEG contributed to diagnosis in 5% of the patients. This study states that a repeat EMU admission rather than an ambulatory recording should be considered if an initial EMU admission for event classification is indeterminate. AEEG contributed to clinical diagnosis in 71% of patients and is useful in patients with frequent clinical spells to differentiate between epileptic and non-epileptic events, to quantify seizures and epileptiform activity. AEEG changed the diagnosis in 51% of patients with a high diagnostic utility in the detection of paroxysmal events. AEEG can be a useful alternative to inpatient VEM in the diagnosis of non-epileptic events. The diagnostic utility of AEEG was 67.0%. Implementation of video AEEG protocols in a secondary care center appears to have high diagnostic utility, particularly for patients with psychogenic nonepileptic seizures. A total of 27 patients (24.3%) had changes in medical treatment following video-AEEG, most frequently antiepileptic drug introduction/increase when epileptic seizures were captured. This proportion was similar between patients with or without a previously established diagnosis of epilepsy. |
| Zarkou et al. (2011)         | Retrospective | 19              | NA                    | NA              | No                      | NA             | NA              | NA          | NA          |  |
| Dash et al. (2012)           | Prospective   | 101             | 13–60 yrs.            | 24              | 15–96 h                 | No             | 9.9%            | 30.8%       |  |
| Faulkner et al. (2012)       | Retrospective | 324             | 12–79 yrs.            | 32              | 72–96 h                 | No             | 15.7%           | 36%         | 29.6%       |  |
| McCormick et al. (2014)      | Retrospective | 26              | NA                    | NA              | NA                      | No             | NA              | NA          | 46%         | AEEG can be a useful alternative to inpatient VEM in the diagnosis of non-epileptic events. The diagnostic utility of AEEG was 67.0%. Implementation of video AEEG protocols in a secondary care center appears to have high diagnostic utility, particularly for patients with psychogenic nonepileptic seizures. A total of 27 patients (24.3%) had changes in medical treatment following video-AEEG, most frequently antiepileptic drug introduction/increase when epileptic seizures were captured. This proportion was similar between patients with or without a previously established diagnosis of epilepsy. |
| Lawley et al. (2016)         | Retrospective | 88              | 2–80 yrs              | 32              | 24–48                   | Yes            | 6.8%            | NA          | 55.7%       |  |
| Manfredonia et al. (2016)    | Retrospective | 111             | 2–81 yrs              | NA              | NA                      | Yes            | 55.9%           | 14.5%       | 85.5%       |  |

(continued on next page)
were achieved with AEEG and the yield of detecting IEDs was 33% [9] similar to Cull's study of 62 patients. Moreover, in this prospective study involving 2 blinded reviewers higher yield for detection of seizures was present in 15% of AEEG studies (mean 24 h of recording) compared to none in the sdEEG cohort [9]. Geut et al. noted higher sensitivity with AEEG (63%) compared to sdEEG (45%) of studies focused on detection of IEDs [64].

9.3. Comparison with inpatient VEM

The diagnostic usefulness of inpatient VEM has been reported to range between 19% and 75% [20,65]. In comparison, the usefulness of AEEG similarly has ranged up to 72% [10,32]. However, AEEG with video that fails to capture the clinical event on video has decreased clinical yield compared to inpatient VEM. In the largest study to date, Syed et al evaluated 9221 AVEEG reports across 28 states and found at least one patient-activated pushbutton event was captured on video in 54% of recordings. Epileptiform activity was reported in 18.0% of AVEM recordings: 88.9% were interictal, and 10.6% reflected both interictal and ictal states and found at least one patient-activated pushbutton event recorded in only 27.4% of patients [68] demonstrating utility of AEEG similarly has ranged up to 72% [10,32]. However, in another retrospective study by Fox and colleagues, opposed to a separate study. At our institution, AEEG increased sequential AEEG following an unsuccessful inpatient VEM as recorded in only 27.4% of patients [68] demonstrating utility of AEEG.

10. Pediatric AEEG

The COVID-19 pandemic also caused drastic changes in managing children with epilepsy. In a survey of 212 pediatric neurologists from 49 countries, 90.6% noted reduced access to EEG services and 93.4% reported closed or severely limited admissions to EMUs for VEM. Many respondents resorted to relying on clinical history alone and/or review of home video to diagnose first seizures and epilepsy [69].

10.1. Utility in children

The utility of AEEG has been evaluated in children with epileptic seizures and nonepileptic events (Table 5). Olson et al. retrospectively reviewed AEEG results in 167 children experiencing at least three seizures per week with 89% of children experiencing...
their typical spells over a mean of 1.9 days [70]. The authors felt children experiencing paroxysmal events should have frequent spells to justify obtaining AEEG. Saravanan et al. retrospectively reviewed 54 children recording IEDs in 50%, NEE in 18.5%, resulting in a change in management in 31%, and reporting AEEG was best suited for children with daily seizures [71]. Wirrell et al. prospectively recorded 16 channel AEEG in 64 children (age 0–17 years) and found a diagnostic yield of 61% to differentiate epileptic from nonepileptic events. In addition, an overall change in diagnostic category was found in 27% of children, determined seizure and IED frequency, and was able to classify seizure type or localization in 100% [72]. Overnight AEEG performed in school-aged children found recording was feasible, non-intrusive, and well tolerated [73]. A prospective study of 100 children (aged 11 days to 16 years) referred with a range of clinical questions underwent AEEG and arrived at a diagnosis in 71% of patients (nonepileptic in 45% and epileptic in 24%) [74]. The authors recommended ascertaining event frequency through telephone checks in order to improve the likelihood of recording a typical attack. Relative to classification, Adhami et al. retrospectively reviewed charts of 50 pediatric patients including AEEG and characterized the diagnosis in 70.3% and classified the seizure types in 25% concluding diagnostic AEEG is less useful for seizure classification [75]. Foley et al. compared 18 channel computer-assisted AEEG to standard EEG in 84 children and adolescents with diagnosed ($n = 49$) or suspected ($n = 35$) epilepsy. Over 1.4 days, AEEG was found to be useful in 87% of patients with events recorded in 73% of diagnosed patients (electrographic seizures in 45%), and 86% of patients suspected of epilepsy (electrographic seizures in 17%) [76]. When compared to standard EEG, AEEG offered additional accuracy in classifying seizures in pediatric patients [76] with 84% of caregivers preferring use of AEEG monitoring [76].

### 10.2. Comparison with VEM in children

Comparing AVEEG and inpatient VEM in children 1–17 years, Carlson et al. found similar yields with a typical event recorded in 64% on AEEG, and 62% of children who underwent VEM [71]. Recording quality was also similar, but technical limitations for video capture of events occurred in 52% of patients monitored by AVEEG (i.e., camera focal point and lighting) resulting in lost diagnostic information in 15% of studies. Nonetheless, 76% elected to choose AEEG as opposed to inpatient VEM [77]. Similar findings were reported by Alix et al. who found AEEG captured events in

![Table 5](image)

| Study               | Type of Study | No. of patients | Age Range | No. of channels | AEEG recording duration | Yield (Seizures) | Yield (IED) | Yield (NEE) | Comments |
|---------------------|---------------|-----------------|-----------|-----------------|-------------------------|-----------------|-------------|-------------|----------|
| Foley et al (2000) | Retrospective | 84              | 17 months-18 yrs | 18              | 1.4 days                | 17%             | 69%         | NA          | Computer assisted AEEG is well-tolerated, reliable and useful in 87% of children. This study demonstrates that there is a high likelihood of recording a child’s typical seizure like events on AEEG when parents report that events occur 3 days a week or more. AEEG helped in diagnosis in 31% of the patients. Children who are experiencing at least daily (and preferably many times a day) or sleeping episodes be considered for AEEG recording. |
| Olson (2001)       | Retrospective | 167             | 4 months-18 yrs | 16              | 1–4 days                | 20.38%          | NA          | 68%         |         |
| Saravanan et al (2001) | Retrospective | 54              | 1–16 yrs.     | 8               | 48 hrs                  | 5.5%            | 50%         | 18.50%      |         |
| Wirrell et al (2008) | Prospective   | 64              | 0–17 yrs.     | 16              | 32.7 days (mean)        | 16%             | NA          | 48%         | AEEG contributed to diagnosis in 73% of children leading to a change in management in 27% of the patients. The yield in differentiating epileptic from non-epileptic events was 61%. AEEG helped in diagnosis in 71% of children, with diagnosis of epilepsy made in 26% of the patients. |
| Hussain et al (2013) | Prospective   | 100             | 11 days-16 yrs | 8               | NA                      | NA              | 24%         | 45%         | AEEG contributed to a clinical diagnosis in 71% of children, with diagnosis of epilepsy made in 26% of the patients. |
| Iqbal et al (2014)  | Retrospective | 48              | 2–21 yrs.     | NA              | 1–3 days                | NA              | NA          | NA          | AEEG diagnosed seizures in two-thirds of children. When AEEG is inconclusive, video telemetry provides diagnosis in a further fifth. |
| Alix et al (2015)   | Retrospective | 30              | 3–16 yrs.     | NA              | NA                      | NA              | NA          | NA          |         |
| Adhami et al (2015) | Retrospective | 50              | 10.25 yrs. (median age) | NA | 1–3 days | NA | NA | NA | AEEG helped in event characterization in 70.3% of patients and in seizure classification in 25% of the patients. It is valuable for event characterization and less likely to be of help in seizure classification. |
| Carlson et al (2018) | Prospective   | 33              | 1–17 yrs.     | NA              | 1–3 days                | 42%             | NA          | 9%          | Ambulatory VEM is similar to inpatient VEM in capturing events and diagnostic efficacy. Despite technical difficulties encountered in ambulatory settings, it didn’t affect the EEG quality and is an accessible and cost effective alternative to inpatient VEM. |
| Nagyova et al (2018) | Retrospective | 199             | 5 months-19 yrs | 16              | 1–2 days                | 42.6%           | NA          | NA          | Pediatric AEEG was clinically useful in two-thirds of patients (64.8%). The most common reason for failure of AEEG recording is inability to capture an event. |

All included studies involved AEEG without video except Carlson et al.; IED-Interictal epileptiform discharges; NEE-Non-epileptic events; NA-Not available; EA-Epileptiform abnormality; AEEG-Ambulatory EEG; EEG-Routine EEG; sdEEG-Sleep deprived EEG; VEM-Video EEG monitoring.

*PubMed search of relevant articles until the year 2019 which talk about clinical utility of AEEG have been included. Articles discussing the role of AEEG in ASM withdrawal and pre-surgical assessment have been excluded.*
focused on seizure detection with alarms that signal a patient’s location, smartphone real-time access, and Cloud storage [95].

12. Conclusions

AEEG is a good out-of-hospital alternative in selected patients when inpatient VEM is not feasible or available. Instead, AEEG should be utilized as a supplement as opposed to a replacement in concert with other forms of EEG including standard EEG and VEM. With limited access to inpatient VEM due to limited community resources, financial burden, or in the case of EMU closures due to the COVID-19 pandemic, outpatient AEEG is an important tool that should not be overlooked and can provide impactful evaluations to help diagnose epilepsy and nonepileptic events in adults and children. Technology continues to improve AEEG recording devices with newer sensor designs, wireless signal transmission, seizure detection algorithms, and miniaturization of AEEG hardware. The focus on ambulatory EEG alternative to healthcare forced by the COVID-19 pandemic is expected to shift more patients from inpatient diagnostic VEM to AEEG. Future studies that are needed to determine utility of newer ambulatory EEG devices.

Disclosures

None of the authors have any financial interests to disclose.

Conflicts of interest

None of the authors have potential conflicts of interest to be disclosed.

Acknowledgment

The authors thank Alison Dowdell for editorial assistance.

References

[1] Benbadis SR. What type of EEG (or EEG-video) does your patient need? Expert Rev Neurother 2015;15(5):461–4. https://doi.org/10.1586/14737175.2015.1029918.

[2] Sethi NK. EEG during the COVID-19 pandemic: What remains the same and what is different. Clin Neurophysiol 2020;131(7):1462. https://doi.org/10.1016/j.clinph.2020.04.007.

[3] Albert DVF, Das RR, Acharya JN, Lee JW, Pollard JR, Punia V, et al. The impact of COVID-19 on epilepsy care: a survey of the American Epilepsy Society Membership. Epilepsy Curr 2020;20(5):316–24. https://doi.org/10.1177/1535707720960094.

[4] French JA, Brodie MJ, Caraballo R, Devinsky O, Ding D, Jehi L, et al. Keeping people with epilepsy safe during the COVID-19 pandemic. Neurology 2020;94(23):1032–7. https://doi.org/10.1212/WNL.0000000000009637.

[5] Lord AS, Lombardi N, Evans K, Deveaux D, Douglas E, Mansfield L, et al. Keeping the team together: transformation of an inpatient neurology service at an urban, multi-ethnic, safety net hospital in New York City during COVID-19. Clin Neurol Neurosurg 2020;197:106156. https://doi.org/10.1016/j.clineuro.2020.106156.

[6] Assenza G, Lanzione J, Rucci L, Boscaino M, Tombini M, Galimberti CA, et al. Electrocorticography at the time of Covid-19 pandemic in Italy. Neurol Sci 2020;41(8):1999–2004. https://doi.org/10.1007/s10072-020-04546-8.

[7] Krysl D, Beniczky S, Franceschetti S, Arzimanoglou A. The COVID-19 outbreak and approaches to performing EEG in Europe. Epileptic Disorders 2020;22(5):546–54. https://doi.org/10.1016/j.epio.2020.1208.

[8] Fonseca E, Quintana M, Lallana S, Luís Restrepo J, Abbara L, Santamarina E, et al. Epilepsy in time of COVID-19: a survey-based study. Acta Neurol Scand 2020;142(6):546–54. https://doi.org/10.1111/ane.13315.

[9] Liporace J, Tatum W, Morris GL, French J. Clinical utility of sleep-deprived versus computer-assisted ambulatory 16-channel EEG in epilepsy patients: a multi-center study. Epilepsy Res 1998;32(3):357–62. https://doi.org/10.1016/S0920-1211(98)00065-2.

[10] Dash D, Hernandez-Ronquillo L, Moien-Afshari F, Telesz-Zesteno JF. Ambulatory EEG: a cost-effective alternative to inpatient video-EEG in adult patients. Epileptic Disord 2012;14(3):290–7. https://doi.org/10.1684/epid.2012.0525.
international survey of clinicians. J Child Neurol 2020;35(13):924–33. https://doi.org/10.1177/0883073820940189.

[70] Olson DM. Success of ambulatory EEG in children. J Clin Neurophysiol 2001;18(2):158–61. https://doi.org/10.1097/00004691-200103000-00006.

[71] Saravanan K, Acomb B, Beirne M, Appleton R. An audit of ambulatory cassette EEG monitoring in children. Seizure-Eur J Epilepsy 2001;10(8):579–82.

[72] Wirrell E, Kozlik S, Telez J, Wiebe S, Hamiwka L. Ambulatory electroencephalography (EEG) in children: diagnostic yield and tolerability. J Child Neurol 2008;23(5):655–62.

[73] Marcus CL, Traylor J, Biggs SN, Roberts RS, Nixon GM, Narang I, et al. Feasibility of comprehensive, unattended ambulatory polysomnography in school-aged children. J Clin Sleep Med 2014;10(6):913–8.

[74] Hussain N, Gayatri N, Downey L, Seri S, Whitehouse W, Blake A. Ambulatory electroencephalogram in children: a prospective clinical audit of 100 cases. J Pediatr Neurosci 2013;8(3):188. https://doi.org/10.4103/1817-1745.122660.

[75] Adhami S. Ambulatory EEG in children: When is it most helpful? Epilepsy Curr 2013;13:274.

[76] Foley CM, Legido A, Miles DK, Chandler DA, Grover WD. Long-term computer-assisted outpatient electroencephalogram monitoring in children and adolescents. J Child Neurol 2000;15(1):49–55.

[77] Carlson S, Kandler RH, Moorhouse D, Ponnusamy A, Mordekar SR, Alix JJP. Home video telemetry in children: A comparison to inpatient video telemetry. Seizure 2018;61:209–13.

[78] Alix JJP, Kandler RH, Mordekar SR. The value of long term EEG monitoring in children: a comparison of ambulatory EEG and video telemetry. Seizure 2014;23(8):662–5.

[79] Casson A, Yates D, Smith S, Duncan J, Rodriguez-Villegas E. Wearable electroencephalography. IEEE Eng Med Biol Mag 2010;29(3):44–56.

[80] Fonseca C, Cunha JPS, Martins RE, Ferreira VM, de Sa JPM, Barbosa MA, et al. A novel dry active electrode for EEG recording. IEEE Trans Biomed Eng 2007;54(1):162–5.

[81] McKay JH, Feyissa AM, Sener U, D’Souza C, Smelick C, Spaulding A, et al. Time is brain: The use of EEG electrode caps to rapidly diagnose nonconvulsive status epilepticus. J Clin Neurophysiol 2019;36(6):460–6. https://doi.org/10.1097/WNP.0000000000000695.

[82] Young GB, Ives JR, Chapman MG, Mirsattari SM. A comparison of subdermal wire electrodes with collodion-applied disk electrodes in long-term EEG recordings in ICU. Clin Neurophysiol 2006;117(6):1376–9.

[83] McLaughlin BL, Mariano LJ, Prakash SR, et al. An electroencephalographic recording platform for real-time seizure detection. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2012. p. 875–8.

[84] Jakab A, Kulkas A, Salpavaara T, Kauppinen P, Verho J, Heikkilä H, et al. Novel wireless electroencephalography system with a minimal preparation time for use in emergencies and prehospital care. Biomed Eng Online 2014;13(1):60.

[85] Stacey WC, Litt B. Technology insight: neuroengineering and epilepsy—designing devices for seizure control. Nat Clin Practice Neurol 2008;4(4):190–201.

[86] Nair D, Morrell M. Nine-year prospective safety and effectiveness outcomes from the long-term treatment trial of the RNS® System (S36. 005). AAN Enterprises; 2019.

[87] King-Stephens D, Miro E, Weber PB, Laxer KD, Van Ness PC, Salanova V, et al. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia 2015;56(6):959–67.

[88] Chen H, Chen W, Bao S, Lu C, Wang L, Ma J, et al. Design of an integrated wearable multi-sensor platform based on flexible materials for neonatal monitoring. IEEE Access 2020;8:23732–47.

[89] Gheryani M, Salem O, Mehtaoua A. An effective approach for epileptic seizures detection from multi-sensors integrated in an Armband. In: 2017 IEEE 19th International Conference on E-Health Networking, Applications and Services (Healthcom). IEEE; 2017. p. 1–6.

[90] Marquez A, Dumn M, Ciriacco J, Farahmand F. iSeiz: A low-cost real-time seizure detection system utilizing cloud computing. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC). IEEE; 2017. p. 1–7.

[91] Regalia G, Caborni C, Migliorini M, Onorati F, Picard R. Real-time seizure detection performance with Embrace alert system: One year real-life setting case study. In: ; 2017. doi:10.13140/RG.2.2.28448.48648.

[92] Poh M-Z, Loddenkemper T, Reinersberger C, et al. Convulsive seizure detection using a wrist-worn electrodernal activity and accelerometer biosensor. Epilepsia 2012;53(5):e93–7.

[93] Ramgopal S, Thome-Souza S, Jackson M, Kadish NE, Sánchez Fernández I, Klehm J, et al. Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy. Epilepsy Behav 2014;37:291–307.

[94] Parvez J, Gururangan K, Razavi B, Chafe C. Detecting silent seizures by their sound. Epilepsia 2018;59(4):877–84.

[95] Lin S-K, Wang L-C, Lin C-Y, Chieu H. An ultra-low power smart headband for real-time epileptic seizure detection. IEEE J Transl Eng Health Med 2018;6:1–10.