An XMM-Newton study of Hyper-Luminous Infrared Galaxies

A. Ruiz, F.J. Carrera, and F. Panessa

Instituto de Física de Cantabria (IFCA), CSIC-UC, Santander 39005, Spain
e-mail: ruizca@ifca.unican.es

Received November 7, 2006; accepted May 18, 2007

ABSTRACT

Aims. Hyper-Luminous Infrared Galaxies (HLIRGs) are the most luminous persistent objects in the Universe. They exhibit extremely high star formation rates, and most of them seem to harbour an Active Galactic Nucleus (AGN). They are unique laboratories to investigate utmost star formation, and its connection to super-massive black hole growth. X-ray studies of HLIRGs have the potential to unravel the AGN contribution to the bolometric output from these bright objects.

Methods. We have selected a sample of 14 HLIRGs observed by XMM-Newton (type 1, type 2 AGN and starburst), 5 of which are candidates to be Compton-thick objects. This is the first time that a systematic study of this type of objects is carried out in the X-ray spectral band. Their X-ray spectral properties have been correlated with their infrared luminosities, estimated by IRAS, ISO and sub-millimeter observations.

Results. The X-ray spectra of HLIRGs present heterogeneous properties. All our X-ray detected HLIRGs (10) have AGN-dominated X-ray spectra. The hard X-ray luminosity of 8 of them is consistent with a pure AGN contribution, while in the remaining 2 sources both an AGN and a starburst seem to contribute to the overall emission. We found soft excess emission in 5 sources. In one of them it is consistent with a pure starburst origin, while in the other 4 sources it is consistent with an AGN origin. The observed X-ray emission is systematically below the one expected for a standard local QSO of the same IR luminosity, suggesting the possible presence of absorption in type 2 objects and/or a departure from a standard spectral energy distribution of QSO. The X-ray-to-IR-luminosity ratio is constant with redshift, indicating similar evolutions for the AGN and starburst component, and that their respective power sources could be physically related.

Key words. galaxies: active – galaxies: starburst – galaxies: evolution – X-rays: galaxies – infrared: galaxies

1. Introduction

Ultra-luminous Infrared Galaxies (ULIRGs) are a class of galaxies with bolometric luminosity \(L_{\text{IR}} \gtrsim 10^{12} L_{\odot} \), dominated by the emission in the infrared (IR) waveband (see Sanders & Mirabel 1996 for a complete review). They are, together with optical quasars, the most luminous objects in the Local Universe. ULIRGs are rare in the Local Universe (Soifer et al. 1987), but large numbers are detected instead in deep-IR surveys, and are a fundamental constituent of the high redshift galaxy population (Smail et al. 1997; Genzel & Cesarsky 2000; Franceschini et al. 2001). They are powered by Active Galactic Nucleus (AGN) and/or starburst (SB) triggered by mergers of gas-rich spiral galaxies (Veilleux et al. 2002). Optical spectroscopic studies reveal that the fraction of ULIRGs hosting an AGN increases with increasing IR luminosity (Veilleux et al. 1995; 1999). Furthermore, the fraction of Seyfert 1 to Seyfert 2 ULIRGs increases with IR luminosity.

It has been proposed that ULIRGs at high redshift could be the origin of massive elliptical and S0 galaxies (Franceschini et al. 1994; Lilly et al. 1999; Genzel & Cesarsky 2000). An important fraction of stars in present day galaxies would have been formed during these evolutionary phases.

Observations in the X-ray band are a powerful tool to disentangle the AGN contribution to the bolometric luminosity from the ULIRGs. X-rays studies of ULIRGs have confirmed their composite nature (powered by AGN and/or starburst), with indications for a predominance of the SB over the AGN phenomenon, even when observed in hard X-rays (Franceschini et al. 2003).

The brightest end of the ULIRG distribution is occupied by the Hyper-Luminous Infrared Galaxies (HLIRGs, \(L_{\text{IR}} \gtrsim 10^{13} L_{\odot} \)). They are among the most luminous objects in the Universe, although the origin of this luminosity is still uncertain. This population exhibits extremely high star formation rates, and most seem to also harbour an AGN (Rowan-Robinson 2000).

The source and trigger of the emission from HLIRGs have been discussed since their discovery. Initially the extreme luminosity of HLIRGs was attributed to gravitational magnification, but Hubble Space Telescope (HST) observations discovered that only a minority of these galaxies (~15-20 per cent) have been misclassified owing to lensing (Farrah et al. 2002b). Currently, there are three main hypotheses on the nature of these objects:

a) They could be simply the high luminosity tail of the ULIRG population, and therefore their power sources are probably triggered by galaxy mergers. Though HST has revealed some merging systems among HLIRGs, there is a significant fraction of them in isolated systems (Farrah et al. 2002b).

b) Assuming that the majority of the rest-frame far infrared (FIR) and sub-millimeter (sub-mm) emission comes from star formation (Verma et al. 2002; Farrah et al. 2002a), their estimated star formation rates (SFR) are > 1000 M_\odot yr^{-1}, the highest for any object in the Universe. HLIRGs could be very young galaxies going through their major episode of star formation (Rowan-Robinson 2000).

c) They may be a completely new class of objects, where the IR emission is originated via some other mechanism: e.g., a transient IR-luminous phase in quasar evolution (Farrah et al. 2002b).
The state-of-the-art X-ray, IR and sub-mm observations suggest that HLIRGs are powered by dust-enshrouded black hole accretion and violent star formation (Rowan-Robinson 2000; Verma et al. 2002). IRAS 14026+4321 (Wang et al. 2006) and IRAS 18216+6418 (Véron-Cetty & Véron 2006). IRAS 00182-7112 has been classified as type 2 source using the optical emission lines from Armus et al. (1989) and the diagnostic diagrams from Osterbrock (1989, chap. 12).

The state-of-the-art X-ray, IR and sub-mm observations suggest that HLIRGs are powered by dust-enshrouded black hole accretion and violent star formation (Rowan-Robinson 2000; Verma et al. 2002). IRAS 14026+4321 (Wang et al. 2006) and IRAS 18216+6418 (Véron-Cetty & Véron 2006). IRAS 00182-7112 has been classified as type 2 source using the optical emission lines from Armus et al. (1989) and the diagnostic diagrams from Osterbrock (1989, chap. 12).

A. Ruiz et al.: An XMM-Newton study of Hyper-Luminous Infrared Galaxies

Table 1. Hyper-luminous galaxies observed by XMM-Newton with redshift less than ~ 2.

Source	Type	IR-Model	RA	DEC	z	L_{IR} [erg s^{-1} cm^{-2}]
IRAS 00182-7112	QSO 2 (CT)	0.35 / 0.65	RR00	00 20 34.7	0.327	46.49
IRAS F00235+1024	NL SB (CT)	0.5 / 0.5	F02a	00 26 06.5	0.575	<46.76
IRAS 07380-2342	NL	0.6 / 0.4	F02a	07 40 09.8	0.292	46.56
IRAS 09104+4109	QSO 2 (CT), cD	1 / 0	RR00	09 13 45.4	0.442	<46.42
PG 1206+459	QSO	1 / 0	RR00	12 08 58.0	1.158	47.20
PG 1247+267	QSO	1 / 0	RR00	12 50 05.7	2.038	47.70
IRAS F12509+3122	QSO	0.6 / 0.4	F02a	12 53 17.6	0.780	<46.86
IRAS 12515+1027	Sy2 (CT)	0.4 / 0.6	RR00	12 54 00.8	1.112	46.18
IRAS 13279+3401	QSO 1.5	0.7 / 0.3	F02a	13 30 15.3	0.36	46.58
IRAS 14026+4341	QSO 1.5	0.6 / 0.4	F02a	14 04 38.8	0.323	46.26
IRAS F14218+3845	QSO	0.2 / 0.8	F02a	14 23 55.0	1.21	47.80
IRAS F15307+3252	QSO 2 (CT)	0.7 / 0.3	V02	15 32 44.0	0.926	<47.07
IRAS 16347+7037	QSO	0.8 / 0.2	F02b	16 34 28.9	1.334	47.42
IRAS 18216+6418	QSO 1.2, cD	0.6 / 0.4	F02a	18 21 57.3	0.297	46.49

\[(a) \text{NL: narrow-line objects; Sy2: Seyfert 2. Compton-thick candidates are labeled as CT. Spectral classification from Rowan-Robinson (2000), except IRAS F00235+1024 (Verma et al. 2002), IRAS 14026+4321 (Wang et al. 2006) and IRAS 18216+6418 (Véron-Cetty & Véron 2006). IRAS 00182-7112 has been classified as type 2 source using the optical emission lines from Armus et al. (1989) and the diagnostic diagrams from Osterbrock (1989, chap. 12).} \]

\[(b) \text{Fraction of the IR emission originated in AGN and/or SB. See Sect. 2 for details. Data from: (RR00) Rowan-Robinson 2000, (F02a) Farrah et al. 2002, (F02b) Verma et al. 2002, } \]

\[(c) \text{Source in cluster.} \]

\[(d) \text{Not detected in X-rays. We use the optical data to classify this source as QSO. See Sect. 2 for details.} \]

2. The HLIRG sample

Our sample of HLIRGs has been selected from the Rowan-Robinson (2000) sample of 45 HLIRGs. The sources in this mother sample can be classified in four sub-samples: (1) objects found from direct optical follow-up of 60 μm or 850 μm surveys; (2) sources found from comparison of known quasar and radio galaxy lists with 60 μm catalogues, or using IR color selection (biased to AGN); (3) sources selected from sub-mm observations of known high-redshift AGN; and (4) known luminous IR galaxies not included in the previous subsamples, but satisfying $L_{IR} > 10^{13}L_{\odot}$. The first one is a flux limited sample, unbiased towards AGN; the sources in the second and third sub-samples have been selected in order to host an AGN, and therefore suffer from selection effects.

We have chosen all the HLIRGs with public data in the XMM-Newton Science Archive (XSA), as of December 2004. We included also observations of five sources from OBS-ID 030536 by our group (see Table 2). Then we constrained the resulting sample to those sources with redshift less than ~2, to prevent a strong bias due to the presence of high-z QSOs. In our final sample there are 8 sources which are included in the first Rowan-Robinson (2000) subsample, 4 sources are in the second subsample, 1 source is in the third and 1 is in the fourth one.
Most of our sources are selected from subsamples which are in principle not biased in favour of AGN. However, selecting the sample by using the availability of XMM-Newton data probably introduces a selection effect in favour of the presence of an AGN. Moreover, estimating the completeness level of this sample is difficult, since it is not flux limited. From IR and sub-mm unbiased surveys, Rowan-Robinson (2000) estimates that the number of HLIRGs brighter than 200 mJy at 60 µm over the whole sky is 100-200. 14 of them are included in our sample, which is the largest sample of HLIRGs studied in X-rays.

Table 1 describes our sample. Column 2 shows the optical spectral classification as derived from the literature: twelve sources in our sample present AGN characteristics. Eight of them are classified as ‘type 1’, and four of them as ‘type 2’. We have classified QSO instead of Seyfert to those objects with intrinsic 2-10 keV luminosity > 10^{44} erg s^{-1} (see Table 1). A couple of sources have been classified from the literature as “Narrow Line” (NL) sources, i.e. which show narrow forbidden emission lines typical of HII regions. All ‘type 2’ and one NL-SB galaxy are CT candidates.

The analysis of the IR Spectral Energy Distribution (SED) of our sources has revealed that the SED can be modeled by a combination of an AGN and a SB components (Rowan-Robinson 2000; Verma et al. 2002; Farrah et al. 2002a). In Table 1, column 3 we report the fraction of the AGN and SB component needed to fit the SED. Three objects are completely dominated by the AGN component, while in other three the SB component is dominant.

In order to compare the properties of HLIRGs with other similar classes of objects, we have included in our study two samples. We chose a sample of 10 ULIRGs studied in X-rays by XMM-Newton (Franceschini et al. 2003). The sample is flux-limited at 60 µm and complete to S_{60 µm} ≥ 5.4 Jy. In addition, we have selected all the HLIRGs (six) from the Stevens et al. (2005) sample of high redshift X-ray Compton-thin absorbed QSO. These sources have been observed in X-rays by ROSAT (Page et al. 2001) and by XMM-Newton (Page et al. 2007), and by SCUBA in the sub-mm band (Page et al. 2004).

3. X-ray data reduction and analysis

3.1. Data reduction

Table 2 presents the most relevant information about the XMM-Newton observations. The data have been processed using the Science Analysis System (SAS) version 6.1.0, and have been analyzed using the standard software packages (FTOOLS and XSPEC) included in HEAsoft 5.3.1.

We reprocessed the EPIC PN and MOS Observation Data Files (ODFs) to obtain new calibrated and concatenated event lists, using the SAS tasks EMPROC and EPPROC, including the latest calibration files at the time of reprocessing. The new event files were filtered to avoid intervals of flaring particle background, and only events corresponding to pattern 0-12 for MOS and 0-4 for PN were used (Ehle et al. 2005). The events with energy above 12 keV and below 0.2 keV were also filtered out. The source spectra were extracted from circular regions, whose radius was chosen in each case to optimize the signal-to-noise ratio (S/N), and to avoid the CCD gaps. The background spectra were taken in circular source-free regions near the object, also avoiding CCD gaps. We generated our own redistribution matrices and ancillary files (correction for the effective area) using the SAS tasks RMFGEN and ARFGEN.

XMM-Newton has detected 10 out of 14 sources (~ 70%) with different S/N quality. In those cases where the S/N ratio was poor, the MOS and PN spectra were co-added (Page et al. 2003). All spectra were rebinned to have ≥ 25 counts per energy channel, except IRAS 00182-7112 (≥ 15 counts) and PG 1206+459 (≥ 20 counts). The resulting EPIC spectra (see Fig. 1) reveal heterogeneous spectral properties for these objects (see Table 4 and Sects. 3.4.3.5).

3.2. Non-detected sources

We have estimated upper limits to the luminosity of the sources not detected by XMM-Newton. We estimated the count rate which would correspond to 3σ fluctuations of the background in a circular region of the PN-EPIC images, centered in the source coordinates. To convert between count rate and physical units a
Fig. 1. XMM-Newton X-ray spectra and residuals of the detected sources from the HLIRGs sample. The solid line is the best fit model. Continues on next figure.
simple model was chosen: a power law with $\Gamma = 2$ and Galactic absorption.

3.3. Cluster emission subtraction

Two sources of our sample, IRAS 09104+4109 and IRAS 18216+6418, reside in clusters. They present soft extended emission from the intra-cluster medium (ICM). To take into account this residual foreground in the subsequent spectral analysis, we added an XSPEC thermal component to the spectral model. Two parameters characterize this model: temperature and normalization.

We estimated the temperature of the cluster extracting an X-ray spectrum in an annular region around the source and fitting it with a thermal bremsstrahlung model. The normalization was obtained re-normalizing the flux from the annulus to that from the source circular region. To this end, we integrated the X-ray surface brightness profile of the cluster over both regions.\(^1\)

\(^1\) The background spectrum of the annular region was extracted in a circular region free of sources away from the cluster emission. We used the XMM-Newton “blank fields” (Read & Ponman 2003) to extract the background spectrum of the source.

Table 3. Chandra observations description.

Source	Instrument	Grating	Exp. time. [ks]	Obs. date
IRAS 09104+4109	ACIS-S	None	9.17	1999-11-03
IRAS 18216+6418	ACIS-S	LETG	171.82	2001-01-18

We determined the brightness profile using public Chandra data (see Table 3). Assuming an isothermal ICM, the radial profile of a cluster can be well fitted by a β-model (Sarazin 1986; Mushotzky 2004). This profile was then convolved with the XMM-Newton PSF, before integrating it over the regions of interest.
3.4. Spectral analysis

Our aim is to estimate the AGN and SB contribution to the total X-ray emission. The general model of the X-ray spectrum emitted by an AGN has typically four components: an underlying absorbed power law\(^{2}\), a reflection component, an iron \(K_{\alpha}\) emission line and a soft excess above the power law at energies below \(\sim 1\) keV.

The typical power law photon index for AGN is \(\Gamma \approx 1.5 - 2.1\) (Nandra & Pounds 1994; Reeves & Turner 2000; Mateos et al. 2005). The soft excess component, common in type 1 AGN (Reeves & Turner 2000; Piconcelli et al. 2005), can be fitted with a thermal model, with an expected temperature remarkably constant around 0.1-0.3 keV (Piconcelli et al. 2005; Gierliński & Done 2006). The ratio between the luminosity of the soft excess component and the power law component in the soft band (0.5-2 keV) is \(\sim 0.15 - 1.45\) (Piconcelli et al. 2005). The X-ray-to-bolometric luminosity ratio in the hard band (2-10 keV) for an AGN is \(\sim 0.015\) (Elvis et al. 1994; Risaliti & Elvis 2004, see Sect. 4).

Several models have been proposed for the origin of the observed soft excess in AGN, such as a relativistically blurred photoionized disc reflection (Ross & Fabian 1993; Crummy et al. 2006) or ionized absorption in a wind from the inner disc to ionized disc reflection (Ross & Fabian 1993; Crummy et al. 2006) served soft excess in AGN, such as a relativistically blurred photon index \(\Gamma \approx 1.5 - 2.1\) (Nandra & Pounds 1994; Reeves & Turner 2000; Mateos et al. 2005). The soft excess component, common in type 1 AGN (Reeves & Turner 2000; Piconcelli et al. 2005), can be fitted with a thermal model, with an expected temperature remarkably constant around 0.1-0.3 keV (Piconcelli et al. 2005; Gierliński & Done 2006). The ratio between the luminosity of the soft excess component and the power law component in the soft band (0.5-2 keV) is \(\sim 0.15 - 1.45\) (Piconcelli et al. 2005). The X-ray-to-bolometric luminosity ratio in the hard band (2-10 keV) for an AGN is \(\sim 0.015\) (Elvis et al. 1994; Risaliti & Elvis 2004, see Sect. 4).

We compared this model with a power law reflected by an AGN has typically four components: an underlying power law, a thermal component in the X-ray spectra of those sources where it was not significant. To this end, we fixed all parameters to their best fit values. We added a thermal component \(z_{\text{gau}}\) to parameterize the starburst emission and/or the AGN soft excess emission.

In those cases where \(\Gamma\) was out of the range expected for AGN or SB, this parameter was fixed to 2, and we tried to fit again the spectrum with an absorbed power law and a reflection model \(p_{\text{exrav}}\). In either case, additional intrinsic absorption and thermal emission models were also added (if needed) to improve the fit.

The best fit model for each source is given in Table 4. We have calculated the luminosity for each component in the hard and soft X-ray bands, corrected by Galactic and intrinsic absorption. A more detailed description of the analysis and the results for each source is presented in Section 5.5.

We have estimated upper limits (see Table 4 column 11) for a thermal component in the X-ray spectra of those sources where it was not significant. To this end, we fixed all parameters to their best fit values. We added a thermal component \(z_{\text{brems}}\) with a fixed temperature, \(kT = 0.6\) keV (the mean temperature of the ULIRGs thermal component from Franceschini et al. 2003), and we calculated the \(2\sigma\) confidence interval for the normalization parameter, which was then used to estimate the upper limit to the luminosity.

3.5. Source by source analysis

IRAS 00182-7112

This type 2 QSO was detected only in the EPIC-PN camera. We modeled the spectrum of IRAS 00182-7112 with a reflection component, using the \(p_{\text{exrav}}\) model (Magdziarz & Zdziarski 1995). The photon index is fixed to 2 and a pure reflection component is assumed. This implies a lower limit to the column density of the absorber material \((N_H > 10^{24} \text{ cm}^{-2})\). We marginally detect a narrow emission line at \(6.75\pm0.08\) keV (significance \(2 - 3\sigma\)), consistent with He-like Fe line (this energy it is also consistent at \(2\sigma\) level with neutral Fe 6.4 keV line).

ISO and Spitzer IR data suggest the presence of a deeply obscured nuclear power source (Fran et al. 2001; Spoon et al. 2004). This is qualitatively consistent with our X-ray analysis results. The X-rays detected by XMM-Newton should be the reflected emission from the AGN, and the line is an iron \(K_{\alpha}\) fluorescent emission from the reflecting material. The equivalent width of this line, \(0.8 \pm 0.6\) keV, is consistent with the CT hypothesis, but the poor quality of the spectrum prevents us from reaching any stronger conclusion. Assuming that the direct X-ray emission is completely absorbed by CT material, we have found that the intrinsic 2-10 keV luminosity of the AGN responsible for the reflection component is \(6.3 \times 10^{44} (2\pi/\Omega_{\text{refl}})\) erg s\(^{-1}\), where \(\Omega_{\text{refl}}\) is the solid angle subtended by the reflector at the illuminating source. This X-ray emission gives an estimate to the bolometric luminosity of the AGN of \(\sim 1.1 \times 10^{33} L_{\odot}\), which is consistent with the IR observations (see Figs. 3-4).

In conclusion, our X-ray analysis of this source points to an AGN with CT obscuration.

IRAS F00235+1024

XMM-Newton observed this NL SB galaxy for 26 ks, but it was not detected by the EPIC cameras. Wilman et al. (2003), assuming a thermal \(\text{mekal}\) model \((kT = 0.5\) keV\), estimate an upper...
limit to the 0.5-2 keV luminosity of 2.8 × 10^42 erg s^{-1}, consistent with our result in this band. The limit in the soft band implies a weak SB emission in X-rays, compared to that expected from the IR luminosity (Farrah et al. 2002, see Table 5). Their upper limit to the hard X-ray luminosity (∼1.9 × 10^42 erg s^{-1}) is also consistent with ours.

IRAS 07380-2342
This NL object has not been detected by XMM-Newton.

IRAS 09104+4109
The type 2 QSO IRAS 09104+4109 resides in a rich cluster (Kleinmann et al. 1988). The X-ray soft extended emission from the IC was already detected by ROSAT (Fabian & Crawford 1995). We subtracted this foreground as explained in Section 5.3.

The source spectra were extracted from a circular region of 20′′ for all detectors, and the cluster spectra from an annular region between 20′′ and 90′′ (constrained to the CCD where the source is located). The cluster emission was fitted with a mekal model. The temperature is kT = 5.5 ± 0.4 keV, and the metal abundance is 0.30 ± 0.12 Z⊙, which is consistent with the mean Fe abundance for clusters with a temperature greater than 5 keV (Baumgartner et al. 2001). We obtained the radial brightness profile using Chandra data: a β-model with a core radius of 4′′.6 ± 0′′.6 and β = 0.76 ± 0.03.

The cluster emission represents 62% of the total 0.5-10 keV luminosity. The spectrum of the source was fitted with a power law with a Fe Kα broad (σ = 0.27 ± 0.09 keV) emission line at 6.61 ± 0.08 keV. This broad line could be explained as a complex of neutral and ionized narrow lines merged due to the low resolution of the detector.

Although IRAS 09104+4109 is classified as a type 2 QSO, the XMM-Newton data did not reveal any intrinsic absorption feature. However, the Chandra observation of this source suggested a column density of 3 × 10^23 cm^{-2} (Iwasawa et al. 2001). Also, BeppoSAX detected this object at energies greater than 10 keV, pointing to non-thermal quasar emission emerging from a thick absorbing torus (Franceschini et al. 2000), with N_H = 7 × 10^{24} cm^{-2}.

Our combined analysis of the BeppoSAX and XMM-Newton data sets (which will be taken as the best fit for this source in what follows) shows that a reflection-only model is needed to explain the complete spectrum in the 0.2 to 50 keV range. This implies a lower limit (N_H > 10^{25} cm^{-2}) to the column density of the absorber, which it is consistent with Iwasawa et al. (2001), where a similar analysis of this source is done with BeppoSAX and Chandra observations. Assuming Γ = 1.4, which is in the flatter side of the photon index distribution of quasars (Reeves & Turner 2009), they found that a cold reflection model without transmitted component fits well the complete data.

This model gives an intrinsic hard X-ray luminosity of 2 × 10^{45} (2π/Ω_{eff}) erg s^{-1} for the AGN. The estimated bolometric luminosity of this source is then ∼3.5 × 10^{43} L_\odot, which is consistent with its IR data (see Figs. 2 & 3).

We have also found in our combined analysis a new thermal component, but its temperature (kT ∼ 3 keV) is too high to be associated to SB or AGN emission. Since there is no evidence of a SB component in the IR SED of this source (Rowan-Robinson 2000), this thermal component is probably due to an incomplete subtraction of the cluster emission. Previous results indicate that a strong cooling flow of the IC is taking place in the core of the cluster (Fabian & Crawford 1995; Allen & Fabian 1998; Ettori & Fabian 1999; Iwasawa et al. 2001), so the isothermal
ICM hypothesis we have assumed could underestimate the cluster luminosity in the central region.

We can confirm that IRAS 09104+4109 is probably a CT source, and that the X-ray emission detected below 10 keV by XMM-Newton is only a reflection continuum from cold matter.

PG 1206+459

The XMM-Newton observation of this QSO is contaminated by background flares at the beginning and at the end of the observation. The final effective exposure is ~ 7 ks. The spectra continuum has been modeled with a power law. We have not detected significant intrinsic absorption or soft excess. The lack of absorption in the X-ray spectra is consistent with the optical and IR evidences (Haas et al. 1998; Rowan-Robinson 2000). Its hard X-ray luminosity is 1.3×10^{45} erg s$^{-1}$, which gives a bolometric luminosity of $\sim 2.2 \times 10^{13} L_\odot$, in agreement with the IR data (see Figs. [2] [3]). The X-ray spectrum of this object is therefore consistent with having a pure AGN origin.

PG 1247+267

The X-ray spectrum of this QSO has been modeled as a power law and a thermal component. A pexrav model is formally the best fit ($\chi^2/\nu = 224/282$) of these data. However, the photon index obtained ($\Gamma \sim 2.3$) with this model is slightly larger than the one expected for an AGN. Moreover, the reflection scaling factor (≈ 4) is quite larger than the typically expected for type 1 sources (within 0 and 1). No other reflection features have been found in the X-ray spectrum. Therefore, we have adopted the power law plus thermal component as our best fit. The bolometric luminosity of the AGN is $\sim 1.4 \times 10^{44} L_\odot$, using its hard X-ray luminosity. This result is consistent with the IR observations (see Figs. [2] [3]).

The temperature of the thermal component ($kT = 0.48^{+0.23}_{-0.17}$ keV) is consistent with the typical temperature of a SB galaxy. However, the bolometric luminosity that we can estimate through the soft X-ray emission for this SB is $\sim 10^{49}$ erg s$^{-1}$, much higher than the Rowan-Robinson (2000) estimate ($< 5.2 \times 10^{46}$ erg s$^{-1}$). Therefore, the soft excess component is too luminous to have a pure SB origin. Furthermore, its soft excess-to-power law soft X-ray luminosity ratio is ~ 0.4, which is typical for soft excess observed in AGN. The X-ray spectrum of this object is consistent with being dominated by an AGN.

IRAS F12509+3122

A significant fraction ($\sim 50\%$) of the observation time of this QSO is affected by high background. The PN and MOS spectra can be fitted by a power law model and a thermal component with $kT = 0.21 \pm 0.03$ keV, at a lower energy than that expected for a standard SB, but consistent with soft excess originated in an AGN. The bolometric luminosity inferred from the X-ray thermal luminosity is one order of magnitude greater than the estimate for a SB using IR data (Farrah et al. 2002a). The thermal-to-power law luminosity ratio is ~ 1.2, in the range of AGN soft excess. The X-ray spectrum of this source is also AGN-dominated.

IRAS 13279+3401

This QSO has not been detected by XMM-Newton.

IRAS 14026+4341

The XMM-Newton observation of this QSO is heavily contaminated by background flares. All the PN data are affected by count rate background greater than 15 counts per second. The MOS data have a brief interval free of flares, but the source is not detected.

IRAS F14218+3845

The QSO IRAS F14218+3845 was observed by XMM-Newton in two occasions. The second observation was heavily affected by high radiation background. We co-added the six spectra of the different observations to increase the S/N ratio. The spectrum was modeled with a power law. No significant soft excess or intrinsic absorption was found.

The IR data suggest that this HLIRG is a SB dominated source (Verma et al. 2002; Farrah et al. 2002a), but our analysis of its XMM-Newton X-ray spectrum does not reveal any SB features. Using the upper limit that we have estimated (see Table [2] for a thermal component, the total SB luminosity is less than 6×10^{42} erg s$^{-1}$, which is consistent with the SB luminosity estimated by Farrah et al. (2002a) through IR and sub-mm data (6×10^{46} erg s$^{-1}$). Although a SB component cannot be excluded, the data point to an AGN-dominated X-ray emission (Franceschini et al. 2003).

IRAS F15307+3252

Previous observations with ROSAT and ASCA detected no X-ray emission from this QSO 2 (Fabian et al. 1996; Ogasaka et al. 1997). We detected a faint X-ray emission in the XMM-Newton public data. The observation of this source is affected by high background flares. The three EPIC extracted spectra were coadded to increase S/N ratio. We fitted this spectrum using a power law. We were not able to find any absorption feature or thermal emission.
Table 5. Flux and luminosity data of the sample.

Source	R^a	12µm	25µm	60µm	100µm	IR Modelb	L_{IR}	L_{IR}	L_{IR}	L_{IR}	L_{IR}
IRAS 00182-7112	17.738	<0.06025	0.133±0.010	1.20±0.08	1.19±0.12	S+A	46.49	<46.72	<46.93	<46.48	<46.74
IRAS F00235+0234	>21.5	<0.173	<0.193	0.43±0.06	<0.94	S+A	46.76	<47.27	46.74	46.44	46.45
IRAS F12509+07380	16.869	0.48±0.03	0.80±0.08	1.17±0.09	3.5±0.3	A+S	46.56	47.08	46.97	46.79	46.48
IRAS F14218+6418	17.819	0.13±0.03	0.33±0.013	0.53±0.04	<0.44	A	46.42	<46.99	46.92	46.84	46.15
IRAS F15307+6418	15.135	0.21±0.04	<0.113	0.26±0.05	0.35±0.07	A	47.20	<47.94	<47.80	47.78	<46.57
IRAS F19216+6418	14.621	<0.126	<0.113	0.24±0.05	0.17±0.03	A	47.70	<48.39	<47.94	47.41	<46.76
IRAS F15307+3252	16.590	<0.106	0.10±0.03	0.22±0.04	<0.675	A+S	46.86	<47.37	46.76	46.62	46.62
IRAS F13541+1027	17.654	<0.0632	0.190±0.016	0.71±0.06	0.76±0.15	S+A	46.18	<46.51	46.63	46.27	46.39
IRAS F14218+3845	15.698	<0.0937	<0.126	1.18±0.08	1.20±0.18	A+S	46.58	<46.84	46.53	46.36	46.04
IRAS F14218+3845	15.651	0.12±0.03	0.285±0.014	0.62±0.06	0.99±0.24	A+S	46.26	46.70	46.54	46.34	46.11
IRAS F15307+3252	19.131	<0.065	0.071±0.019	0.23±0.04	<0.71	A+S	<47.07	<47.46	47.22	47.05	46.73
IRAS F15307+3252	13.979	0.05±9±0.010	0.122±0.004	0.27±0.05	0.35±0.07	A+S	47.42	47.86	47.81	47.73	47.04
IRAS F15307+3252	13.943	<0.238	0.445±0.012	1.24±0.05	2.13±0.17	A+S	46.49	46.69	46.78	46.54	46.37

a Observed by IRAS (from NED).
b UK-R magnitude (SuperCOSMOS Sky Survey).
c AGN (A) and/or starburst (S) components needed to fit the IR SED (as in Table 1 col. 3). First letter indicates the dominant component.
d Infrared luminosities in the 40 – 500 µm (FIR) and 1 – 1000 µm (IR) bands, computed using IRAS fluxes (Sanders & Mirabel 1996).
e 60 and 100 µm fluxes are ISO data from Haas et al. (2000).

XMM-Newton has observed IRAS F15307+3252 on more occasions, but the data are still private. Iwasawa et al. (2005), using the complete data set, found a prominent Fe Kα line at ~ 6.5 keV, indicating the presence of a CT AGN. This is in agreement with optical spectro-polarimetry data indicating the presence of a dust-enshrouded quasar (Hines et al. 1995).

The estimate of the AGN bolometric luminosity using the observed emission line luminosity is also consistent with previous results (Yun & Scoville 1998; Aussel et al. 1998; Verma et al. 2002; Peeters et al. 2004). The hard X-ray emission detected by us is probably reflected radiation, because of CT obscuration. Panessa et al. (2006) found that the ratio between the intrinsic and the observed X-ray luminosity in CT Seyfert galaxies is ~ 60. We have corrected the X-ray luminosity calculated with the public XMM-Newton data by this factor. The resulting hard X-ray luminosity (~ 3.2×10^{45} erg s$^{-1}$) is consistent with the estimate given by Iwasawa et al. (2005) ($L_X > 1 \times 10^{45}$ erg s$^{-1}$), using the luminosity of the iron emission line. Assuming an AGN origin, this X-ray emission gives a bolometric luminosity for this source of ~ 5.5×10^{45} L$_\odot$, in agreement with the IR data (see Figs. 2-3). Iwasawa et al. (2005) also found extended soft emission, with $kT = 2.1^{+0.6}_{-0.4}$ keV. They identify this extended emission with hot gas associated with a relatively poor cluster around this object. Although no galaxy cluster has been found associated to this source, an HST observation shows a moderate galaxy over-density. Moreover, its bolometric luminosity to temperature relation would be similar to that typical of poor clusters (Fukazawa et al. 2004).

In summary, the X-ray spectrum of this source is consistent with the emission originated in a CT AGN.

IRAS 16347+7037

The spectrum of the QSO IRAS 16347+7037 was modeled with a power law and a thermal component. No intrinsic absorption is detected.

The XMM-Newton X-ray spectrum is consistent with a type 1 AGN spectrum, as the optical (Evans et al. 1998) and IR (Haas et al. 1998; Farrah et al. 2002b) observations suggest. Previous X-ray data from ASCA was also consistent, and there was no evidence of iron Kα emission feature or any absorption edge (Nandra et al. 1995).

The soft excess has $L(0.5 – 2.0$ keV) = 5.6×10^{45} erg s$^{-1}$. This would imply a SB bolometric luminosity three orders of magnitude greater than the SB luminosity calculated with the IR data (Farrah et al. 2002b, see Table 5). Therefore this component is unlikely to be associated to a SB. Moreover, its thermal-power law luminosity ratio is consistent with a soft excess from the AGN.

This model gives a bolometric luminosity for the AGN of ~ 2.2×10^{44}L$_\odot$, in agreement with the IR observations of this source (see Figs. 2-3). Our analysis points to a pure AGN origin for the X-ray spectrum, in agreement with the optical and IR data.

IRAS 18216+6418

The PN data of this QSO 1.2 were heavily affected by pile-up, so we used only the MOS data. The source spectra were extracted from a 20'' radius circular region in both MOS detectors. This QSO is located in a rich cluster, and ROSAT detected the ICM thermal emission (Saxton et al. 1997; Hall et al. 1997). We subtracted the soft X-ray emission from the cluster, as explained in Sect. 3.3.

The MOS cameras operated in small-window mode, so we considered the PN image to model the cluster (the pile-up only affects the central region of the source). We extracted a spectrum from an annular region between 20'' and 80'' (constrained to the CCD where the source is located). The resulting temperature of the zbrems model was $kT = 2.3^{+0.6}_{-0.5}$ keV. We used also the radial X-ray brightness profile published by Fang et al. (2002), (core radius of 17''.6 ± 0''.17, $\beta = 0''.47^{+0''.06}_{-0''.03}$), to renormalize the cluster model. The cluster X-ray emission is 32% of the total 0.5-10 keV luminosity.

The source spectrum best fit is a power law ($\Gamma = 1.57^{+0.10}_{-0.11}$) with a soft thermal component. A pexrav model is formally the best fit ($\chi^2/\nu = 321/333$) of this spectrum. As discussed in PG...
1247+267, the steeper photon index ($\Gamma \sim 2.3$) and the reflection scaling factor $\gg 1$ ($R \sim 15$) lead us to adopt the power law plus thermal component as our best fit.

The photon index of the power law is not consistent with previous X-ray observations with ASCA ($\Gamma = 1.75 \pm 0.03$, Yamashita et al. 1997) and Chandra ($\Gamma = 1.761^{+0.047}_{-0.052}$, Fang et al. 2002).

In Fig. 1(j) a systematic effect in the Δr^2 spectrum can be seen above 5 keV. This may be due to a bad extraction of the cluster emission or to the use of the blank-field background. If we ignore the data above 4.5 keV, we get a steeper photon index ($\Gamma = 1.68 \pm 0.11$), compatible with previous X-ray observations.

A thermal component is also detected, with a temperature of $0.49^{+0.09}_{-0.08}$ keV, consistent with SB emission. However, if this emission was associated to the SB, the bolometric luminosity of the SB would be three orders of magnitude higher than the luminosity calculated using the IR data (Farrah et al. 2002). The soft component-to-power-law luminosity ratio is in the range of that typically observed in an AGN.

Ginga (Kii et al. 1991), ASCA (Yamashita et al. 1997), and Chandra (Fang et al. 2002), Yaqoob & Serlemitsos (2005) detected iron emission features in this HLIRG. Jiménez-Bailón et al. (2007) detected a Fe-K emission line with a complex structure in the PN XMM-Newton spectrum of this source. We have also detected an emission line in the 6-7 keV rest frame band, but the significance of the detection ($< 2\sigma$) was below our adopted threshold, and therefore we have not considered it further. We have estimated a 3σ flux upper limit to a broad ($\sigma = 0.1$ keV) line component at 6.4 keV of $< 3 \times 10^{-5}$ photons cm$^{-2}$ s$^{-1}$, consistent with the value $\sim (3 \pm 1) \times 10^{-5}$ photons cm$^{-2}$ s$^{-1}$ obtained with the Chandra data (Fang et al. 2002).

Assuming an AGN origin, the hard X-ray emission gives a bolometric luminosity for this source of $\sim 7 \times 10^{33} L_\odot$, in agreement with its IR data (see Figs. 2, 3). The X-ray spectrum of this object is consistent with a pure AGN origin.

4. Discussion

In their study of X-ray emission from ULIRGs, Franceschini et al. (2003) define that the X-ray emission of a ULIRG is AGN-dominated if it presents either: a) a high X-ray luminosity, $L_{2-10 \text{ keV}} > 10^{42.5}$ erg s$^{-1}$; b) a heavily obscured hard X-ray component with $N_H > 10^{22}$ cm$^{-2}$ (very flat or inverted hard X-ray spectra); or c) a Fe-K emission complex at ~ 6.4 keV with equivalent width ≥ 1 keV (iron fluorescent emission from material illuminated by the AGN). The ten detected HLIRGs from our sample present at least one of the three characteristics above, thus showing an AGN-dominated X-ray spectrum.

This result is in agreement with the trend noted by Veilleux et al. (1999) for ULIRGs: the fraction of sources with Seyfert characteristics increase with L_{IR} (from $\sim 25\%$ among ULIRGs with $L_{IR} < 10^{12.5} L_\odot$ to $\sim 50\%$ among those with $L_{IR} > 10^{12.2} L_\odot$). However, we must keep in mind that our sample is not complete, and could be slightly biased towards AGN. The first subsample in Rowan-Robinson (2000), which is not biased in favour of AGN (see Sect. 2), presents 50% of objects with Seyfert characteristics.

Five objects from our sample (four type 2 objects and one NL object) are probably CT, as reported in the literature. Our analysis of the XMM-Newton data of two sources (IRAS 00182-7112, IRAS 12514+1027) are consistent with the CT hypothesis, as well as our combined analysis of XMM-Newton and BeppoSAX data for IRAS 09104+4109, IRAS F00235+1024 has not been detected, probably because it is heavily obscured. We have found no absorption features in IRAS F15307+3252, but as explained in Sect. 3.5, recently published results from XMM-Newton private data are consistent with CT absorption (Iwasawa et al. 2005).

We have calculated the FIR (40-500 \mu m) luminosities (L_{FIR}) using the IRAS fluxes (Sanders & Mirabel 1996, see Table 5 column 7). In Fig. 2, we have plotted the 2-10 keV luminosity of the power law component for each source versus the FIR luminosity. We have included the ULIRGs data from Franceschini et al. (2003) and the high-z QSO from Stevens et al. (2005) for comparison. No correlation between the 2-10 keV and the FIR luminosity is found in HLIRGs, although it must be kept in mind that the sample is not complete in any sense.

We have estimated the expected X-ray luminosity for a standard AGN, given its FIR luminosity. To this end, we calculated the 2-10 keV-to-FIR luminosity ratio typical of nearby bright QSOs, using their mean SED. Since the original Elvis et al. (1994) sample was biased towards sources with high X-ray luminosity, we have employed the Risaliti & Elvis (2004) new data on QSO SED. Using this corrected SED, the ratio of the 2-10 keV band to bolometric luminosity changes significantly by a factor of 2, from ~ 0.03 to ~ 0.015. The X-ray luminosity derived from the IR luminosity using the latter ratio is plotted in Fig. 2 with a thick solid line. The top area between thin lines ("AGN-zone") is the dispersion of the SED, calculated with the 90 percentile distribution (Elvis et al. 1994).

We can also calculate a relationship between FIR and X-ray luminosity for SB galaxies. The SFR of a SB is given by its FIR luminosity by $SFR_{\text{FIR}} \sim L_{\text{FIR}}/2.2 \times 10^{43} M_\odot$ yr$^{-1}$ (Kennicutt 1998), and by its 2-10 keV X-ray luminosity by $SFR_X \sim L_{2-10}/10^{39} M_\odot$ yr$^{-1}$ (Persic et al. 2004), all luminosities...
are in CGS units). Assuming equal SFR, the 2-10 keV to FIR luminosity ratio is \(L_{\text{2-10 keV}}/L_{\text{FIR}} \sim 4.5 \times 10^{-5}\). This relation is shown in Fig. 2 as the lower thick solid line (“SB-line”).

Most HLIRGs and all high-z QSO are in the “AGN-zone”, while only the AGN-dominated ULIRGs and two HLIRGs seem to be composite sources: their X-ray luminosity is too high to be produced only by a SB (above the “SB-line”), and their FIR luminosity is too high to be produced only by an AGN (to the right of the “AGN-zone”). The SB-dominated ULIRGs are concentrated near the “SB-line”. The upper limits for the X-ray-undetected HLIRGs seem to indicate that their hard X-ray emission comes only from SB activity. However, the X-ray emission of the non-detected sources could be affected by heavy obscuration. Actually, one of the non-detected sources, IRAS F00235+1024, is probably CT as seen from their IR spectrum so its X-ray emission could be depressed by heavy absorption. However the remaining sources are optical QSOs, where little or no absorption is expected. For example, the QSOs from Stevens et al. (2005) show relatively low absorption \((21 < \log N_H < 22 \text{ cm}^{-2})\). Recent XMM-Newton observations of these high-z HLIRGs suggest highly ionized winds with \(22.5 < \log N_H < 23.5 \text{ cm}^{-2}\) (Page et al. 2007). Further sensitive data on isotropic indicators (such as FIR or MIR or > 10 keV emission) is needed to investigate the seemingly contradictory nature of these HLIRGs.

Note that if the Elvis et al. (1994) X-ray-to-FIR ratio is used instead of the Risaliti & Elvis (2004) ratio, only three HLIRGs (IRAS 09104+4109, IRAS 16347+7037 and IRAS 18216+6418) would lie on the “AGN-zone”, and the rest would be considered as composite AGN/SB sources. This confirms the relevance of the Risaliti & Elvis (2004) correction.

The HLIRGs FIR emission is systematically above the same X-ray luminosity (i.e., the sources are located on the right of the thick upper line in Fig. 2). This FIR excess could be associated to the SB activity in HLIRGs. Alternatively, this could also hint to a possible difference between the standard QSO SED and the AGN component of the HLIRGs SED. In this line, it has been shown that the shape of the SED is probably related to the luminosity (Marconi et al. 2004).

We tried to unravel the origin of the excess infrared emission with respect to that predicted using the Risaliti & Elvis (2004) QSO SED. We have estimated the AGN contribution to the total IR luminosity of the HLIRGs in two independent ways, in order to know if this IR excess comes from SB activity, or from an intrinsic difference in the AGN SED.

On one hand, Rowan-Robinson (2000) has modeled the IR SED of all sources in this sample with radiative transfer models, and he estimated the contribution of the AGN dust torus \((L_{\text{AGN}})^{0.5-10 \text{ keV}}\) and the SB to the total IR luminosity \((1-100 \mu \text{m},L_{\text{IR,SB}})\) (Table 3, columns 9 and 10 respectively). We have corrected the relative contribution of IRAS F00235+1024, IRAS 07380-2342, IRAS F12509+3122, IRAS 12514+1027, IRAS 13279+3401, IRAS 14026+4341 and IRAS F14218+33845 IR data are taken from the Verma et al. (2002) results; IRAS F15307+3252 IR data is taken from the Farrah et al. (2002b) results. Symbols as in Fig. 2.

The soft excess in IRAS 09104+4109 is probably associated to cluster emission (see Sect. 5 for details). Symbols as in Fig. 2.

In Fig. 3 we compare the relative contribution of the AGN to the total IR luminosity calculated by Rowan-Robinson (2000), to our estimate obtained from X-ray data (we have included only...
the X-ray detected sources). The dotted line corresponds to the 1:1 relation, i.e. an agreement between the two estimates. Most of the sources have lower limits on the abscissae because their lower IR luminosities, we have included a sample of SB-dominated ULIRGs only.

Symbols of the sources have lower limits on the abscissae because their 12 and 25 μm IRAS fluxes are upper limits (see Table 5).

Our estimates of the AGN relative contribution for all sources are formally consistent with that of Rowan-Robinson (2000). However, there seems to be a systematically overestimate of the IR AGN component from Rowan-Robinson (2000) with respect to the X-ray measurements.

The values of \(L_{\text{AGN}}^{\text{IR,(X)}} / L_{\text{IR}} \) plotted in Fig. 3 are independent of the SB luminosity, so this disagreement is probably due to the IR-to-X-ray ratio used to estimate the IR luminosity from the X-ray luminosity. This favours the hypothesis of an intrinsic difference between the standard QSO SED and the AGN component of the HLIRGs SED. A detailed radio-to-X-ray study of the spectral energy distribution of HLIRGs is needed to solve this question.

Fig. 4 is a luminosity-luminosity plot of the soft X-ray excess versus power law components. In IRAS 09104+4109, IRAS F12509+3122, PG 1247+267, IRAS 16347+7037 and IRAS 18216+6418 the soft excess component is too luminous to come only from a SB (see Sect. 3.5 for a detailed description of each source). In the case of IRAS 09104+4109 the soft excess is probably due to an incomplete subtraction of the cluster emission, while in the remaining four sources is probably of the same origin as in luminous QSO (Piconcelli et al. 2005).

An X-ray thermal component associated to SB emission has been observed in all ULIRGs from Franceschini et al. (2003). However, only in 1 out of 14 HLIRGs we have found a soft X-ray emission whose origin could be associated to SB activity.

Oddly, the above HLIRGs with AGN-like soft excess emission follow the correlation found for SB-dominated ULIRGs by Franceschini et al. (2003) (dotted line in Fig. 4). To increase the statistics and to test if this correlation holds at lower IR luminosities, we have included a sample of SB galaxies (Franceschini et al. 2003 and references therein). We have calculated a non-parametric correlation coefficient (generalized Kendall’s Tau\(^6\)) for the SB galaxies and the SB-dominated ULIRGs, finding \(Z_\tau = 3.69 \) with a significance level\(^7\) of 99.98% (> 3σ). The correlation slope is consistent with that obtained by Franceschini et al. (2003) for SB-dominated ULIRGs only.

We have investigated the relationship between the X-ray soft excess component luminosity and the FIR luminosity (Fig. 5), finding no clear correlation. A test using generalized Kendall’s Tau confirms this impression: \(Z_\tau = 2.13 \), with a significance level 96.66% (< 3σ).

We have also tested a possible cosmological evolution in the sample. We have estimated the SFR for each source using its IR luminosity (Kennicutt 1998). Their SFR and 2-10 keV-to-IR-luminosity ratio versus redshift are plotted in Fig. 6. Cosmic star formation shows an important decline between \(z \sim 2 \) and the present day (Franceschini et al. 1999), so we expect an increment of the SFR of HLIRGs up to \(z \sim 2 \). Higher SFR at higher redshift is observed in the upper panel of the Fig. 6. However the sources follow the lower envelope, which is the IRAS FSC sensitivity limit (solid line in Fig. 6), indicating clearly a selection effect. Therefore, we can not draw conclusions about the dependence of SFR with redshift.

As shown in the bottom panel of the Fig. 6 the ratio of hard X-ray-to-FIR luminosity remains constant with \(z \). This holds even if we subtract the FIR luminosity emitted by the AGN, calculated using the X-ray PL luminosity as in Fig. 5.

We have seen that the IR emission is consistent with an AGN origin, but if we assume that the IR excess shown in Fig. 2 is associated to the SB activity, Fig. 6 shows that its evolution must be similar to that of the X-ray emission. This, in turn, suggests that the presence of a SB and the occurrence of AGN activity through accretion onto a super-massive black hole are physically related. This result is in agreement with the coeval black hole/stellar bulge formation hypothesis (Granato et al. 2004; Stevens et al. 2005; Di Matteo et al. 2005).

5. Conclusions

We have performed a systematic X-ray study of a sample of 14 Hyper-Luminous Infrared Galaxies using XMM-Newton data from the archive, and our own private data. We modeled the X-ray spectra of each source, finding very heterogeneous spectral properties. Our results are summarized as follows:

1. All X-ray detected HLIRGs of the sample (ten sources) have AGN-dominated X-ray spectra.
2. No correlation is found between the 2-10 keV and IR luminosities in HLIRGs. The hard X-ray luminosity of most (eight) HLIRGs is consistent with emission from an AGN component only. However two HLIRGs (as well as all the AGN-dominated ULIRGs) seem to show a composite AGN/SB nature: their X-ray luminosity is too high to be produced only by a SB, and their IR luminosity is too high to be produced by only an AGN. The remaining four HLIRGs are undetected in X-rays.
3. The hard X-ray luminosity associated to the AGN is systematically below the one expected for a local QSO (Elvis et al. 1994; Risaliti & Elvis 2004) of the same IR luminosity. This seems to suggest that there is an intrinsic difference between the AGN component of the HLIRGs SED and the SED of local QSOs. A detailed radio-to-X-ray study of the HLIRGs SED is needed to understand this issue.

\(^6\) We employed the ASURV software for this test (Isobe et al. 1983, 1986).

\(^7\) Note that even excluding the isolated source in the bottom left corner, this correlation remains almost unchanged.
Acknowledgements. A.R. acknowledges support from a Universidad de Cantabria fellowship. F.P. acknowledges support by a “Juan de la Cierva” fellowship. Financial support for A.R., F.P., and F.J.C. was provided by the Spanish Ministry of Education and Science, under project ESP2003-08812. This paper is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA: Chandra, a NASA mission; BeppoSAX, a project of the ASI (Italy) with participation of the NIVR (Netherlands) and the Space Science Department of ESA; ISO, an ESA project with the participation of ISAS and NASA; and RXTE, a joint project of the US, UK and the Netherlands. This research also has made use of the SuperCOSMOS Sky Survey (SSS) data base and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

Allen, S. W. & Fabian, A. C. 1998, MNRAS, 297, L57

Armus, L., Heckman, T. M., & Miley, G. K. 1989, ApJ, 347, 727

Aussel, H., Gerin, M., Boulanger, F., et al. 1998, A&A, 334, L73

Baumgartner, W., Homer, D., & Mushotzky, R. 2001, Bulletin of the American Astronomical Society, 33, 1337

Bianchi, S., Guainazzi, M., & Chiaberge, M. 2006, A&A, 448, 499

Crummy, J., Fabian, A. C., Gallo, L., & Ross, R. S. 2006, MNRAS, 365, 1067

Dahlem, M., Weaver, K. A., & Heckman, T. M. 1998, ApJS, 118, 401

Di Matteo, T., Springel, V., & Hernquist, L. 2005, Nature, 433, 604

Dickey, J. M. & Lockman, F. J. 1990, ARA&A, 28, 215

Ehle, M., Breitfellner, M., González Riestra, R., et al. 2005, XMM-Newton Users’ Handbook, 2nd edn., XMM-Newton SOC Team

Elvis, M., Wilkes, B. J., McDowell, J. C., et al. 1994, ApJS, 95, 1

Ettori, S. & Fabian, A. C. 1999, MNRAS, 305, 834

Evens, A. S., Sanders, D. B., Cutri, R. M., et al. 1998, ApJ, 506, 205

Fabian, A. C. & Crawford, C. S. 1995, MNRAS, 274, L63

Fabian, A. C., Cutri, R. M., Smith, H. E., Crawford, C. S., & Brandt, W. N. 1996, MNRAS, 283, L95

Fang, T., Davis, D. S., Lee, J. C., et al. 2002, ApJ, 565, 86

Farrah, D., Serjeant, S., Efstathiou, A., Rowan-Robinson, M., & Verma, A. 2002a, MNRAS, 335, 1163

Farrah, D., Verma, A., Oliver, S., Rowan-Robinson, M., & McMahon, R. 2002b, MNRAS, 329, 605

Franceschini, A., Aussel, H., Cesarsky, C. J., Elbaz, D., & Fadda, D. 2001, A&A, 378, 1

Franceschini, A., Bassani, L., Cappi, M., et al. 2000, A&A, 353, 910

Franceschini, A., Brato, V., Persic, M., et al. 2003, MNRAS, 343, 1181

Franceschini, A., Hasinger, G., Miyaji, T., & Malquori, D. 1999, MNRAS, 310, L5

Franceschini, A., Mazzei, P., de Zotti, G., & Danese, L. 1994, ApJ, 427, 140

Fukazawa, Y., Makishima, K., & Ohashi, T. 2004, PASJ, 56, 965

Genzel, R. & Cesarsky, C. J. 2000, ARA&A, 38, 761

Gierlowski, M. & Done, C. 2004, MNRAS, 349, L7

Gierlowski, M. & Done, C. 2006, MNRAS, 371, L16

Granato, G. L., De Zotti, G., Silva, L., Bressan, A., & Danese, L. 2004, ApJ, 600, 580

Haas, M., Chini, R., Meisenheimer, K., et al. 1998, ApJ, 503, L109

Haas, M., Müller, S. A. H., Chini, R., et al. 2000, A&A, 354, 453

Hall, P. B., Ellingson, E., & Green, R. F. 1997, AJ, 113, 1179

Hines, D. C., Schmidt, G. D., Smith, P. S., Cutri, R. M., & Low, F. J. 1995, ApJ, 450, L1

Isobe, T., Feigelson, E. D., & Nelson, P. I. 1985, BAAS, 17, 573

Isobe, T., Feigelson, E. D., & Nelson, P. I. 1986, ApJ, 306, 490

Iwasawa, K. 1999, MNRAS, 302, 96

Iwasawa, K., Crawford, C. S., Fabian, A. C., & Wilman, R. J. 2005, MNRAS, 362, L20

Iwasawa, K., Fabian, A. C., & Ettori, S. 2001, MNRAS, 321, L15

Jiménez-Bailón, E., Santos-Lleó, M., Piccioni, E., et al. 2007, A&A, 461, 917

Kaastra, J. S. & Mewe, R. 1993, A&AS, 97, 443

Kellogg, E., Baldwin, J. R., & Koch, D. 1975, ApJ, 199, 299

Kennicutt, R. C. 1998, ApJ, 498, 541

Kui, T., Williams, O. R., Ohashi, T., et al. 1991, ApJ, 367, 455

Kleinmann, S. G., Hamilton, D., Keel, W. C., et al. 1988, ApJ, 328, 161

Lilly, S. J., Eales, S. A., Gear, W. K. P., et al. 1999, ApJ, 518, 641

Mahtani, P. Zdzierski, A. A. 1995, MNRAS, 273, 837

Magorrian, J., Tremaine, S., Richstone, D., et al. 1998, AJ, 115, 2285

Marconi, A., Risaliti, G., Gilli, R., et al. 2004, MNRAS, 351, 169

Mateos, S., Barcons, X., Carrera, F. J., et al. 2005, A&A, 433, 855

McCleire, R. J. & Dunlop, J. S. 2002, MNRAS, 331, 795

Mewe, R., Gronenschild, E. H., & van den Oord, G. H. J. 1985, A&A, 62, 197

Moshirsky, M., Gaskell, P., Conrow, T., et al. 1999, in IRAS Faint Source Catalogue, version 2.0 (1990)

Mushotzky, R. F. 2004, in Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution, ed. J. S. Mulchaey, A. Dressler, & A. Oemler, 123

Nandra, K. & Pounds, K. A. 1994, MNRAS, 268, 405

Ogasaoka, Y., Inoue, H., Brandt, W. N., et al. 1997, PASJ, 49, 179

Osterbrock, D. E. 1989, Astrophysics of gaseous nebulae and active galactic nuclei (Mill Valley, CA, University Science Books)

Page, M. J., Carrera, F. J., Ebrero, J., Stevens, J. A., & Ivison, R. J. 2007, in Studying Galaxy Evolution with Spitzer and Herschel, ed. V. Charmandaris, D. Rigopoulou, & N. Kylafis, 378

Page, M. J., Davis, S. W., & Salvi, N. J. 2003, MNRAS, 343, 1241

Page, M. J., Mittaz, J. P. D., & Carrera, F. J. 2001, MNRAS, 325, 575

Page, M. J., Stevens, J. A., Ivison, R. J., & Carrera, F. J. 2004, ApJ, 611, L85

Panessa, F., Bassani, L., Cappi, M., et al. 2006, A&A, 455, 173

Peeters, E., Spoon, H. W. W., & Tielens, A. G. G. M. 2004, ApJ, 613, 986

Fig. 6. Symbols as in Fig. 2. Top: SFR derived from FIR luminosity (Kennicutt 1998), versus redshift. The dotted line represents the SFR limit corresponding to the HLIRGs definition. The solid line is the SFR for a source with IRAS fluxes equal to the IRAS FSC sensitivity limits (Moshir et al. 1990). Bottom: 2–10 keV power-law-X-ray-to-FIR luminosities ratio versus redshift. The area between the dotted lines represent the expected ratio for a quasar (with 90% of dispersion) with a standard SED (Elvis et al. 1994; Risaliti & Elvis 2004).
Persic, M. & Rephaeli, Y. 2002, A&A, 382, 843
Persic, M., Rephaeli, Y., Braito, V., et al. 2004, A&A, 419, 849
Piconcelli, E., Jimenez-Bailón, E., Guainazzi, M., et al. 2005, A&A, 432, 15
Read, A. M. & Ponman, T. J. 2003, A&A, 409, 395
Reeves, J. N. & Turner, M. J. L. 2000, MNRAS, 316, 234
Risaliti, G. & Elvis, M. 2004, A Panchromatic View of AGN (ASSL Vol. 308: Supermassive Black Holes in the Distant Universe), 187
Ross, R. R. & Fabian, A. C. 1993, MNRAS, 261, 74
Rowan-Robinson, M. 2000, MNRAS, 316, 885
Sanders, D. B. & Mirabel, I. F. 1996, ARA&A, 34, 749
Sarazin, C. L. 1986, Reviews of Modern Physics, 58, 1
Saxton, R. D., Barstow, M. A., Turner, M. J. L., et al. 1997, MNRAS, 289, 196
Silverman, J. D., Green, P. J., Barkhouse, W. A., et al. 2005, ApJ, 624, 630
Smail, I., Ivison, R. J., & Blain, A. W. 1997, ApJ, 490, L5
Soifer, B. T., Sanders, D. B., Madore, B. F., et al. 1987, ApJ, 320, 238
Spengel, D. N., Verde, L., Peiris, H. V., et al. 2003, ApJS, 148, 175
Spoon, H. W. W., Armus, L., Cami, J., et al. 2004, ApJS, 154, 184
Stevens, J. A., Page, M. J., Ivison, R. J., et al. 2005, MNRAS, 360, 610
Tran, Q. D., Lutz, D., Genzel, R., et al. 2001, ApJ, 552, 527
Veilleux, S., Kim, D.-C., & Sanders, D. B. 2002, ApJS, 143, 315
Veilleux, S., Kim, D.-C., Sanders, D. B., Mazzarella, J. M., & Soifer, B. T. 1995, ApJS, 98, 171
Verma, A., Rowan-Robinson, M., McMahon, R., & Andreas Efstathiou, A. E. 2002, MNRAS, 335, 574
Véron-Cetty, M.-P. & Véron, P. 2006, A&A, 455, 773
Wang, J., Wei, J. Y., & He, X. T. 2006, ApJ, 638, 106
White, N. E., Swank, J. H., & Holt, S. S. 1983, ApJ, 270, 711
Wilman, R. J., Fabian, A. C., Crawford, C. S., & Cutri, R. M. 2003, MNRAS, 338, L19
Wilman, R. J., Fabian, A. C., Cutri, R. M., Crawford, C. S., & Brandt, W. N. 1998, MNRAS, 300, L7
Yamashita, A., Matsumoto, C., Ishida, M., et al. 1997, ApJ, 486, 763
Yaqoob, T. & Serlemitsos, P. 2005, ApJ, 623, 112
Yun, M. S. & Scoville, N. Z. 1998, ApJ, 507, 774

List of Objects

‘IRAS 00182-7112’ on page 2
‘IRAS F00235+1024’ on page 2
‘IRAS 07380-2342’ on page 2
‘IRAS 09104+4109’ on page 2
‘PG 1206+459’ on page 2
‘PG 1247+267’ on page 2
‘IRAS F12509+3122’ on page 2
‘IRAS 12514+1027’ on page 2
‘IRAS 13279+3401’ on page 2
‘IRAS 14026+4341’ on page 2
‘IRAS F14218+3845’ on page 2
‘IRAS F15307+3252’ on page 2
‘IRAS 16347+7037’ on page 2
‘IRAS 18216+6418’ on page 2