A splitting theorem
for equifocal submanifolds
with non-flat section

Naoyuki Koike

Abstract

We first prove a certain kind of splitting theorem for an equifocal submanifold with non-flat section in a simply connected symmetric space of compact type, where an equifocal submanifold means a submanifold with parallel focal structure. By using the splitting theorem, we prove that each section of an equifocal submanifold with non-flat section in an irreducible simply connected symmetric space of compact type is isometric to a sphere or a real projective space.

1. Introduction

A properly immersed complete submanifold M in a simply connected symmetric space G/K is called a submanifold with parallel focal structure if the following conditions hold:

(PF-i) the restricted normal holonomy group of M is trivial,

(PF-ii) if v is a parallel normal vector field on M such that v_{x_0} is a multiplicity k focal normal of M for some $x_0 \in M$, then v_x is a multiplicity k focal normal of M for all $x \in M$,

(PF-iii) for each $x \in M$, there exists a properly embedded complete connected submanifold through x meeting all parallel submanifolds of M orthogonally.

This notion was introduced by Ewert ([E2]). In [A], [AG] and [AT], this submanifold is simply called an equifocal submanifold. In this paper, we also shall use this name and assume that all equifocal submanifolds have trivial normal holonomy group. The submanifold as in (PF-iii) is called a section of M through x, which is automatically totally geodesic. Note that Terng-Thorbergsson [TeTh] originally introduced the notion
of an equifocal submanifold under the assumption that the sections is flat. The condition (PF-ii) is equivalent to the following condition:

(PF-ii’) for each parallel unit normal vector field \(v \) of \(M \), the set of all focal radii along the geodesic \(\gamma_{v_x} \) with \(\gamma'_{v_x}(0) = v_x \) is independent of the choice of \(x \in M \).

Note that, under the condition (PF-i), the condition (PF-iii) is equivalent to the following condition:

(PF-iii’) \(M \) has Lie triple systematic normal bundle (in the sense of [Koi1]).

In fact, (PF-iii)\(\Rightarrow\)(PF-iii’) is trivial and (PF-iii’)\(\Rightarrow\)(PF-iii) is shown as follows. If (PF-iii’) holds, then it is shown by Proposition 2.2 of [HLO] that \(\exp^\perp(T^\perp_x M) \) meets all parallel submanifolds of \(M \) orthogonally for each \(x \in M \), where \(\exp^\perp \) is the normal exponential map of \(M \). Also, it is clear that \(\exp^\perp(T^\perp_x M) \) is properly embedded. Thus (PF-iii) follows. An isometric action of a compact Lie group \(H \) on a Riemannian manifold is said to be polar if there exists a properly embedded complete connected submanifold \(\Sigma \) meeting every principal orbits of the \(H \)-action orthogonally. The submanifold \(\Sigma \) is called a section of the action. If \(\Sigma \) is flat, then the action is said to be hyperpolar. Principal orbits of polar actions are equifocal submanifolds and those of hyperpolar actions are equifocal ones with flat section. Conversely, homogeneous equifocal submanifolds (resp. homogeneous equifocal ones with flat section) in the symmetric spaces are catched as principal orbits of polar (resp. hyperpolar) actions on the spaces.

In 1997, Heintze and Liu [HL] showed that an isoparametric submanifold in a Hilbert space is decomposed into a non-trivial (extrinsic) product of two such submanifolds if and only if the associated Coxeter group is decomposable. In 1998, by using this splitting theorem of Heintze-Liu, Ewert [E1] showed that an equifocal submanifold with flat section in a simply connected symmetric space of compact type is decomposed into a non-trivial (extrinsic) product of two such submanifolds if and only if the associated Coxeter group is decomposable.

In this paper, we first prove the following splitting theorem for an equifocal submanifold with non-flat section in a simply connected symmetric space of compact type.

Theorem A. Let \(M \) be an equifocal submanifold with non-flat section in a simply connected symmetric space \(G/K \) of compact type and \(\Sigma \) be a section of \(M \). Then \(M \) is decomposed into a non-trivial extrinsic product of two equifocal submanifolds if and only if the restricted
holonomy group of (the induced metric on) Σ is reducible.

Next we prove the following fact in terms of Theorem A.

Theorem B. Let M be an equifocal submanifold with non-flat section in an irreducible simply connected symmetric space G/K of compact type. Then each section of M is isometric to a sphere or a real projective space.

Proof of Theorems A and B

In this section, we shall prove Theorem A. Without loss of generality, we may assume that G is simply connected and K is connected. Let $\pi : G \rightarrow G/K$ be the natural projection and $\phi : H^0([0,1],g) \rightarrow G$ be the parallel transport map for G, where g is the Lie algebra of G and $H^0([0,1],g)$ is the space of all L^2-integrable paths having $[0,1]$ as the domain. Let $M^* := \pi^{-1}(M)$ and $\tilde{M} := (\pi \circ \phi)^{-1}(M)$. Since G is simply connected and K is connected, M^* and \tilde{M} are connected. Denote by A (resp. \tilde{A}) the shape tensor of M (resp. \tilde{M}) and by ∇^\perp (resp. $\tilde{\nabla}^\perp$) the normal connection of M (resp. \tilde{M}). Let Σ_x be the section of M through $x \in M$. Assume that the restricted holonomy group of Σ_x is reducible. Fix $x_0 \in M$. We have the non-trivial orthogonal decomposition $T_x \Sigma_x = W_1 \oplus W_2$, which is invariant with respect to the restricted holonomy group of Σ_{x_0} at x_0. Since M has trivial normal holonomy group, there exists the ∇^\perp-parallel subbundle D_{i}^N of the normal bundle $T^\perp M$ of M with $(D_{i}^N)_{x_0} = W_i$ ($i = 1, 2$). For each $x \in M$, it is easy to show that there exists an isometry f of a neighborhood of x_0 in Σ_{x_0} onto a neighborhood of x in Σ_x such that f_{*x_0} coincides with the parallel translation (with respect to ∇^\perp) along any curve in M from x_0 to x. From this fact, it follows that, for each $x \in M$, the orthogonal decomposition $T_x \Sigma_x = (D_{1}^N)_{x} \oplus (D_{2}^N)_{x}$ is invariant with respect to the restricted holonomy group of Σ_x at x. Let \tilde{D}_{i}^N ($i = 1, 2$) be the subbundles of the normal bundle $T^\perp \tilde{M}$ of \tilde{M} with $(\pi \circ \phi)_{*u}((\tilde{D}_{i}^N)_{u}) = (D_{i}^N)_{((\pi \circ \phi)_{*u})} (u \in \tilde{M})$ and D_{i}^{N*} ($i = 1, 2$) be those of $T^\perp (M^*)$ with $\pi_*((D_{i}^{N*})_{g}) = (D_{i}^N)_{\pi(g)} (g \in G)$. According to Lemma 1A.4 of [PoTh1], the focal set of (M,x) consists of finitely many totally geodesic hypersurfaces in Σ_x. Denote by Σ_x the set of all focal hypersurfaces of (M,x). Let $\psi_x : \tilde{\Sigma}_x \rightarrow \Sigma_x$ be the universal covering of Σ_x. According to the de Rham’s decomposition theorem, $\tilde{\Sigma}_x$ is isometric to the (non-trivial) Riemannian product $\tilde{\Sigma}_1^i \times \tilde{\Sigma}_2^i$ where $\tilde{\Sigma}_i^i$ ($i = 1, 2$) is the complete totally geodesic submanifold of Σ_x through
\[\dot{\gamma} \in \psi^{-1}(x) \text{ such that } (\psi_x)_* \dot{\gamma}(T_x \hat{\Sigma}_x^1) = (D_i^N)_x. \] By retaking the decomposition \(T_{x_0}M = W_1 \oplus W_2 \) if necessary, we may assume that \(\hat{\Sigma}_x^1 \) has no Euclidean part in the de Rham’s decomposition for each \(x \in M \). Let \(\hat{\Sigma}_x := \{ \psi^{-1}_x(L) \mid L \in \hat{\Sigma}_x \} \). According to Corollary 3.6 of [Kol2], elements of \(\hat{\Sigma}_x \) are either \(L_1 \times \hat{\Sigma}_x^2 \)-type \((L_1 \text{ : a totally geodesic hypersurface of } \hat{\Sigma}_x^2) \) or \(\hat{\Sigma}_x \times L_2 \)-type \((L_2 \text{ : a totally geodesic hypersurface of } \hat{\Sigma}_x^2) \), where we need the fact that \(\hat{\Sigma}_x^1 \) has no Euclidean part. Denote by \(\hat{\Sigma}_x^1 \) (resp. \(\hat{\Sigma}_x^2 \)) the set of all elements of \(\hat{\Sigma}_x \) of \(L_1 \times \hat{\Sigma}_x^2 \)-type (resp. of \(\hat{\Sigma}_x \times L_2 \)-type) and set \(\hat{\Sigma}_x^i := \{ L \in \hat{\Sigma}_x \mid \psi^{-1}_x(L) \in \hat{\Sigma}_x^i \} \) \(i = 1,2 \). Let \(V' := \) Span\(_{u \in \hat{M}}(T_u \hat{M}) \), \(V_i := \) Span\(_{u \in \hat{M}}(T_u \hat{M}) \) \((i = 1,2) \) and \(V_0 := (V')^\perp \). Also, let \((\hat{D}_0^T)_u := \bigcap_{v \in T_u \hat{M}} \text{Ker } \tilde{A}_v \), \((\hat{D}_1^T)_u := \bigcap_{v \in (\hat{D}_2^T)_u} \text{Ker } \tilde{A}_v \) \((\hat{D}_2^T)_u \). Without loss of generality, we may assume that \(\hat{M} \) includes the zero element \(\hat{0} \) of \(H^0([0, 1], g) \), where we note that \(\hat{0} \) is the constant path at the zero element 0 of \(g \). Let \(\hat{M}' := \hat{M} \cap V' \). First we prepare the following fact.

Proposition 2.1. We have \(\hat{M} = \hat{M}' \times V_0 \subset V' \times V_0 = H^0([0, 1], g) \).

Proof. We shall show \(V_0 \subset (\hat{D}_0^T)_u \) for each \(u \in \hat{M} \), where we regard \((\hat{D}_0^T)_u = T_u \hat{M} \) \((\hat{D}_0^T)_u \subset H^0([0, 1], g) \) as a subspace of \(H^0([0, 1], g) \) under the identification of \(T_u \hat{M} \) \(\text{ with } H^0([0, 1], g) \). From the definition of \(V_0 \), we have \(V_0 \subset T_u \hat{M} \) for each \(u \in \hat{M} \). Let \((\hat{D}_0^T)_u \) be the orthogonal complement of \((\hat{D}_0^T)_u \) in \(T_u \hat{M} \). Clearly we have

\[
\sum_{v \in T_u \hat{M}} \left(\bigoplus_{\lambda \in \text{Spec } \tilde{A}_v \backslash \{0\}} \text{Ker}(\tilde{A}_v - \lambda \text{ id}) \right),
\] where \(\text{Spec } \tilde{A}_v \) is the spectrum of \(\tilde{A}_v \). Let \(X \in \text{Ker}(\tilde{A}_v - \lambda \text{ id}) \) \((v \in T_u \hat{M}, \lambda \in \text{Spec } \tilde{A}_v \backslash \{0\}) \). Let \(J_X \) be the strongly Jacobi field along the normal geodesic \(\gamma_v \) with \(\gamma_v(0) = v \) satisfying \(J_X(0) = X \) (hence \(J_X(0) = -A_vX \)). Let \(\alpha : (-\varepsilon, \varepsilon) \to M \) be a curve in \(M \) with \(\alpha'(0) = X \) and \(\tilde{v} \) be the parallel normal vector field along \(\alpha \) with \(\tilde{v}_0 = v \). Define a map \(\delta : (-\varepsilon, \varepsilon) \times [0, \infty) \to H^0([0, 1], g) \) by \(\delta(t, s) := \gamma_{\tilde{v}_t}(s) \), where \(\gamma_{\tilde{v}_t} \) is the normal geodesic in \(H^0([0, 1], g) \) with \(\gamma_{\tilde{v}_t}(0) = \tilde{v}_t \). Then we have \(\delta_s(\frac{\partial}{\partial t}|_{t=0}) = J_X \). Since \(\delta(t, 0) - \delta(t, \frac{1}{X}) \subset T_{\alpha(t)}M \subset V' \) for each \(t \in (-\varepsilon, \varepsilon) \), we have \(\delta_s(\frac{\partial}{\partial t}|_{t=s=0}) - \delta_s(\frac{\partial}{\partial t}|_{t=0, s=1}) \subset V' \). On the other hand, we have \(\delta_s(\frac{\partial}{\partial t}|_{t=0}) = X \) and \(\delta_s(\frac{\partial}{\partial t}|_{t=0, s=\frac{4}{3}}) = 0 \). Hence we have \(X \in V' \). From the arbitrariness of \(X \), it follows that
Ker(\(\bar{A}_v - \lambda \text{id}\)) \subset V'. Furthermore, it follows from the arbitrariness of \(\lambda\) and \(v\) that \((\bar{D}_0^T)_u \subset V'\), that is, \(V_0 \subset (\bar{D}_0^T)_u\). Since \(V_0 \subset (\bar{D}_0^T)_u \subset T_u \bar{M}\) for any \(u \in M\), we have \(\bar{M} = \bigcup_{u \in \bar{M}} (u + V_0) = \bar{M}' \times V_0 \subset V' \times V_0\). q.e.d.

Define distributions \(D^T_0\), \(D^T_1\) and \(D^T_2\) on \(M\) by

\[
(D^T_0)_x := \left(\bigcap_{v \in T_x^\perp M} \ker A_v \right) \cap \gamma (\epsilon_{g^{-1} T_x M} (g^{-1} T_x^\perp M)),
\]

\[
(D^T_1)_x := \left(\bigcap_{v \in (D^N_2)_x} \ker A_v \right) \cap \gamma (\epsilon_{g^{-1} T_x M} (g^{-1} (D^N_2)_x)) \oplus (D^T_0)_x,
\]

\[
(D^T_2)_x := \left(\bigcap_{v \in (D^N_1)_x} \ker A_v \right) \cap \gamma (\epsilon_{g^{-1} T_x M} (g^{-1} (D^N_1)_x)) \oplus (D^T_0)_x,
\]

for each \(x = gK \in M\), where \(\gamma (\cdot)\) is the centralizer of \(\cdot\) in \(*\). Take an arbitrary \(v \in T^\perp_{eK} M\). Set \(p := T_{eK}(G/K)\). Denote by Spec \(R(v)\) the spectrum of \(R(v) := R(\cdot, v)v\), where \(R\) is the curvature tensor of \(G/K\). For \(\mu \in \text{Spec} R(v)\), we set \(p^v_\mu := \ker (R(v) - \mu \text{id})\), \(f^v_\mu := \text{ad}(v)p^v_\mu\) (\(\mu \in \text{Spec} R(v) \setminus \{0\}\)) and \(f_0 := (\text{Ker ad}(v)) \cap f\). Note that

\[
(2.2) \quad T_{eK} M = p^v_0 \cap T_{eK} M + \sum_{\mu \in \text{Spec} R(v) \setminus \{0\}} (p^v_\mu \cap T_{eK} M)
\]

and

\[
(2.3) \quad T^\perp_{eK} M = p^v_0 \cap T^\perp_{eK} M + \sum_{\mu \in \text{Spec} R(v) \setminus \{0\}} (p^v_\mu \cap T^\perp_{eK} M)
\]
because M is equifocal and hence it has Lie triple systematic normal bundle. Denote by \hat{f} the Lie algebra of K. For each $X \in \mathfrak{g}$, we define loop vectors $l_{v,X,k}^1$ and $l_{v,X,k}^2$ ($k \in \mathbb{N}$) by $l_{v,X,k}^1(t) := X \cos(2k\pi t)$ and $l_{v,X,k}^2(t) := X \sin(2k\pi t)$. For $X \in \mathfrak{p}_\mu^\nu$ ($\mu \in \text{Spec}(R(v) \setminus \{0\})$), we set $X_i := \frac{1}{\sqrt{\mu}}\text{ad}(v)(X)$. For $X \in \mathfrak{p}_\mu^\nu$, $Y \in \mathfrak{p}_\mu^\nu \oplus \mathfrak{f}_0^\nu$ and $k \in \mathbb{Z}$, we define loop vectors $l_{v,X,k}^i$, $l_{v,X,k}^i$ and $l_{v,Y,k}^i \in H^0([0,1], \mathfrak{g})$ ($i = 1, 2$) by

$$
l_{v,X,k}^1(t) = l_{v,X,k}^1(t) = l_{v,X,k}^1(t) - l_{v,X,k}^1(t),
$$
$$
l_{v,X,k}^2(t) = l_{v,X,k}^2(t) = l_{v,X,k}^2(t) + l_{v,X,k}^2(t).
$$

For a general $Z \in \mathfrak{g}$, we define loop vectors $l_{v,Z,k}^i \in H^0([0,1], \mathfrak{g})$ ($i = 1, 2$, $k \in \mathbb{Z}$) by

$$
l_{v,Z,k}^i := l_{v,Z0,k}^i + \sum_{\mu \in \text{Spec}(R(v)) \setminus \{0\}} (l_{v,Zp,\mu,k}^i + l_{v,Zl,\mu,k}^i),
$$

where $Z = Z_{0} + \sum_{\mu \in \text{Spec}(R(v)) \setminus \{0\}} (Z_{p,\mu} + Z_{l,\mu})$ ($Z_{0} \in \mathfrak{p}_{0}^\nu$, $Z_{p,\mu} \in \mathfrak{p}_{\mu}^\nu$, $Z_{l,\mu} \in \mathfrak{f}_{\mu}^\nu$).

Denote by $\hat{\ast}$ the constant path at $\ast \in \mathfrak{g}$. Note that $\hat{\ast}$ is the horizontal lift of $\ast \in \mathfrak{g} = T_{e}G$ to 0. Then, according to Propositions 3.1 and 3.2 of [Koi2] and those proofs, we have the following relations.

Lemma 2.2. Let $X \in T_{e}K \cap \mathfrak{p}_{\mu}^\nu$. Then we have

$$
\hat{A}_e l_{v,X,k}^1 = \frac{\sqrt{\mu}}{2k\pi} (\hat{X} - l_{v,X,k}^1),
$$
$$
\hat{A}_e l_{v,X,k}^2 = \frac{\sqrt{\mu}}{2k\pi} (\hat{X}_1 - l_{v,X,k}^1),
$$
$$
\hat{A}_e \hat{X} = A_e \hat{X} - \frac{\sqrt{\mu}}{2}\hat{X}_1 + \frac{\sqrt{\mu}}{2k}\sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{k} l_{v,X,k}^1,
$$
$$
\hat{A}_e \hat{X}_1 = -\frac{\sqrt{\mu}}{2} \hat{X} + \frac{\sqrt{\mu}}{2k}\sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{k} l_{v,X,k}^2
$$

and

$$
\hat{\nabla}_{v,X,k}^L \hat{v}^L \cdot \hat{v}^L = \hat{\nabla}_{v,X,k}^L \hat{v}^L \cdot \hat{v}^L = \hat{\nabla}_{X_1}^L \hat{v}^L = \hat{\nabla}_{X_1}^L \hat{v}^L = 0,
$$

where $k \in \mathbb{Z} \setminus \{0\}$ and \hat{v}^L is the horizontal lift of a parallel normal vector field \hat{v} with $\hat{v}_0 = v$ along an arbitrary curve α in M with $\dot{\alpha}(0) = X$.

6
Lemma 2.3. Let \(w \in T_{eK}^\perp M \cap p_\alpha^u \). Then we have

\[
\begin{align*}
\tilde{A}_0 t_{v,w,k}^1 &= \frac{\sqrt{\mu}}{2 k \pi} t_{v,w,k}^1, \\
\tilde{A}_0 t_{v,w,k}^2 &= \frac{\sqrt{\mu}}{2 k \pi} (\hat{w}_1 - t_{v,w,k}^2), \\
\tilde{A}_0 \hat{w}_1 &= \frac{\sqrt{\mu}}{2 \pi} \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{k} t_{v,w,k}^2,
\end{align*}
\]

and

\[
\tilde{\nabla}_{\tilde{\nabla}_{v,w,k}^L} \tilde{v}^L = -\frac{\sqrt{\mu}}{2 k \pi} \hat{w}, \quad \tilde{\nabla}_{\tilde{\nabla}_{v,w,k}^L} \tilde{v}^L = 0, \quad \tilde{\nabla}_{\tilde{\nabla}_{v,w,k}^L} \tilde{v}^L = \frac{\sqrt{\mu}}{2} \hat{w},
\]

where \(k \in \mathbb{Z} \setminus \{0\} \) and \(\tilde{v}^L \) is as in Lemma 2.2.

Lemma 2.4. Let \(X \in p_0^u \) and \(Y \in f_0^u \). Then we have

\[
\begin{align*}
\tilde{A}_0 e_{X,k}^0 &= \tilde{A}_0 e_{X,k}^1 = \tilde{A}_0 e_{Y,k}^0 = \tilde{A}_0 e_{Y,k}^1 = \tilde{A}_0 \hat{Y} = 0, \\
\tilde{\nabla}_{\tilde{\nabla}_{X,k}^L} \tilde{v}^L &= \tilde{\nabla}_{\tilde{\nabla}_{Y,k}^L} \tilde{v}^L = \tilde{\nabla}_{\tilde{\nabla}_{Y,k}^L} \tilde{v}^L = \tilde{\nabla}_{\tilde{\nabla}_{Y,k}^L} \tilde{v}^L = 0
\end{align*}
\]

and

\[
\tilde{A}_0 \tilde{X} = \tilde{A}_0 \tilde{X}, \quad \tilde{\nabla}_{\tilde{\nabla}_{X,k}^L} \tilde{v}^L = 0 \quad \text{(when \(X \in p_0^u \cap T_{eK} M \))},
\]

where \(i = 1, 2, k \in \mathbb{N} \) and \(\tilde{v}^L \) is as in Lemma 2.2.

From Lemmas 2.2 ~ 2.4, we can show the following relations.

Lemma 2.5. At \(0 \in \tilde{M} \), \((\tilde{D}_0^T)\) is equal to

\[
\begin{align*}
\text{Span}\{ \tilde{X} \mid X \in (D_0^T)_K \}\oplus \text{Span}\{ \hat{\eta} \mid \eta \in \mathfrak{c}_i (T_{eK}^\perp M) \}
\oplus \text{Span}\{ l_{Z,k}^0 \mid Z \in \mathfrak{c}_g (T_{eK}^\perp M), k \in \mathbb{N} \setminus \{0\} \}
\oplus \text{Span}\{ l_{Z,k}^1 \mid Z \in \mathfrak{c}_g (T_{eK}^\perp M), k \in \mathbb{N} \setminus \{0\} \}
\end{align*}
\]

and \((\tilde{D}_{j_1}^T)\) is equal to

\[
\begin{align*}
\text{Span}\{ \tilde{X} \mid X \in (D_{j_1}^T)_K \}\oplus \text{Span}\{ \hat{\eta} \mid \eta \in \mathfrak{c}_i ((D_{j_2}^N)_K) \}\oplus \text{Span}\{ l_{Z,k}^0 \mid Z \in \mathfrak{c}_g ((D_{j_2}^N)_K) \oplus \mathfrak{c}_g (T_{eK}^\perp M), k \in \mathbb{N} \setminus \{0\} \}
\oplus \text{Span}\{ l_{Z,k}^1 \mid Z \in \mathfrak{c}_g ((D_{j_2}^N)_K) \oplus \mathfrak{c}_g (T_{eK}^\perp M), k \in \mathbb{N} \setminus \{0\} \},
\end{align*}
\]

where \((j_1, j_2) = (1, 2) \) or \((2, 1)\).

Proof. According to Lemmas 2.2 ~ 2.4, we have

\[
\begin{align*}
\text{Ker} \tilde{A}_0 &= \text{Span}\{ \tilde{X} \mid X \in \text{Ker} A_0 \cap p_0^u \}\oplus \text{Span}\{ \hat{\eta} \mid \eta \in f_0^u \}
\oplus \text{Span}\{ l_{Z,k}^0 \mid Z \in \text{Ker} \text{ad}(v), k \in \mathbb{N} \setminus \{0\} \}
\oplus \text{Span}\{ l_{Z,k}^1 \mid Z \in \text{Ker} \text{ad}(v), k \in \mathbb{N} \setminus \{0\} \}.
\end{align*}
\]
Hence we have the desired relations. q.e.d.

From Lemmas 2.2 ~ 2.4, we have the following lemma.

Lemma 2.6. Assume that \(v \in D_i^N \). Let \(\tilde{v}^L \) be as in Lemma 2.2. Then the statements (i) and (ii) hold.

(i) For each \(X \in T\tilde{M} \), we have \(\nabla_X \tilde{v}^L \in \tilde{D}_i^N \).

(ii) For each \(Y \in \tilde{D}_j^T \oplus \tilde{D}_0^T \) (\(j \neq i \)), we have \(\nabla_Y \tilde{v}^L = 0 \).

Proof. Without loss of generality, we may assume that the base point of \(X \) is \(0 \). First we shall show the statement (i). According to (2.2), (2.3) and Lemmas 2.2 ~ 2.4, we have only to show \(\nabla_X \tilde{v}^L \in \tilde{D}_i^N \) in case of \(X = l_{v,w,k} \) or \(\tilde{w}_1 \) (\(w \in T_{v,w}M \cap p_i^w \)). Suppose that \(w \in D_i^N \) (\(j \neq i \)). Then we have \(\mu = 0 \) because the sectional curvature of \(\operatorname{Span}\{v, w\} \) is equal to \(0 \). This contradicts \(\mu \neq 0 \). Hence we have \(w \in D_i^N \). Therefore, it follows from Lemma 2.3 that \(\nabla_X \tilde{v}^L \in \operatorname{Span}\{\tilde{w}\} \subset \tilde{D}_i^N \). Thus the statement (i) is shown. Next we shall show the statement (ii). From (i), we have \(\nabla_Y \tilde{v}^L = 0 \). Also, from the definitions of \(\tilde{D}_j^T \) and \(\tilde{D}_0^T \), we have \(\tilde{A}_vY = 0 \). Hence, we obtain \(\nabla_Y \tilde{v}^L = 0 \). q.e.d.

By using (ii) of Lemma 2.6, we prove the following lemma.

Lemma 2.7. For each \(u \in \tilde{M} \), the tangent space \(T_u\tilde{M} \) is orthogonally decomposed as \(T_u\tilde{M} = (\tilde{D}_1^T)_u \oplus (\tilde{D}_2^T)_u \oplus (\tilde{D}_0^T)_u \).

Proof. Take unit vectors \(v_i \) belonging to \((\tilde{D}_i^N)_u \) (\(i = 1, 2 \)). According to (i) of Lemma 2.6, we have \(\tilde{R}^\perp(X,Y)v_1 \in (\tilde{D}_1^N)_u \) for any \(X,Y \in T_u\tilde{M} \), where \(\tilde{R}^\perp \) is the curvature tensor of the normal connection of \(\tilde{M} \). Hence, it follows from the Ricci equation that \([\tilde{A}_v1, \tilde{A}_v2] = 0 \). Therefore, we have

\[
T_u\tilde{M} = \bigoplus_{\lambda \in \operatorname{Spec} \tilde{A}_v1} \bigoplus_{\mu \in \operatorname{Spec} \tilde{A}_v2} \left(\ker(\tilde{A}_v1 - \lambda \text{id}) \cap \ker(\tilde{A}_v2 - \mu \text{id}) \right),
\]

where \(\operatorname{Spec} \tilde{A}_v1 (i = 1, 2) \) is the spectrum of \(\tilde{A}_v1 \). Set \(\tilde{L}^i_u := \{ (\pi \circ \phi)|_{T_u^i\tilde{M}})^{-1}(L) | L \in L^i_u \} \) (\(i = 1, 2 \)). The family \(\tilde{L}^1_u \cup \tilde{L}^2_u \) gives the family of all focal hypersurfaces of \(\tilde{M} \) at \(u \). Let \(\lambda \in \operatorname{Spec} \tilde{A}_v1 \setminus \{ 0 \} \) and \(\mu \in \operatorname{Spec} \tilde{A}_v2 \setminus \{ 0 \} \). We shall show \(\ker(\tilde{A}_v1 - \lambda \text{id}) \cap \ker(\tilde{A}_v2 - \mu \text{id}) = \{ 0 \} \). Suppose that \(\ker(\tilde{A}_v1 - \lambda \text{id}) \cap \ker(\tilde{A}_v2 - \mu \text{id}) \neq \{ 0 \} \). Take \(X(\neq 0) \in \ker(\tilde{A}_v1 - \lambda \text{id}) \cap \ker(\tilde{A}_v2 - \mu \text{id}) \). The point \(u + \frac{1}{\lambda}v_1 \) and \(u + \frac{1}{\mu}v_2 \) are focal points along the normal geodesics \(\gamma_{v_1} \) and \(\gamma_{v_2} \), respec-
tively. Hence there exist $L_1 \in \mathfrak{D}_u^1$ with $u + \frac{1}{\lambda}v_1 \in L_1$ and $L_2 \in \mathfrak{D}_u^2$ with $u + \frac{1}{\lambda}v_2 \in L_2$. Let $w_\theta := \cos \theta \cdot v_1 + \frac{1}{\lambda} \sin \theta \cdot v_2$ ($0 \leq \theta \leq \frac{\pi}{2}$). Since $A_{w_\theta}X = \lambda(\sin \theta + \cos \theta)X$, the point $u + \frac{1}{\lambda(\sin \theta + \cos \theta)}w_\theta$ is a focal point along γ_{w_θ} for each $\theta \in [0, \frac{\pi}{2}]$. Define a curve $c : [0, \frac{\pi}{2}] \to H^0([0, 1], \mathfrak{g})$ by $c(\theta) := u + \frac{1}{\lambda(\sin \theta + \cos \theta)}w_\theta$ (\theta \in I), which is smooth and regular. For each $\theta \in [0, \frac{\pi}{2}]$, we have $c(\theta) \in \bigcup_{L \in \mathfrak{D}_u^1 \cup \mathfrak{D}_u^2} (L \cap \text{Span}\{v_1, v_2\})$.

For simplicity, we set $F := \bigcup_{L \in \mathfrak{D}_u^1 \cup \mathfrak{D}_u^2} (L \cap \text{Span}\{v_1, v_2\})$. Since F is a family of affine lines in $\text{Span}\{v_1, v_2\}$ which are parallel to $\text{Span}\{v_1\}$ or $\text{Span}\{v_2\}$ and c is a regular curve in F, c lies in the only affine line belonging to F. It is clear that the affine lines $L_1 \cap \text{Span}\{v_1, v_2\}$ and $L_2 \cap \text{Span}\{v_1, v_2\}$ are mutually distinct. These facts contradict $c(0) \in L_1$ and $c\left(\frac{\pi}{2}\right) \in L_2$ (see Fig. 2). Therefore we have $\text{Ker}(\tilde{A}_{v_1} - \lambda \text{id}) \cap \text{Ker}(\tilde{A}_{v_2} - \mu \text{id}) = \{0\}$. This fact together with (2.1) deduces $\bigoplus_{\lambda \in \text{Spec} \tilde{A}_{v_1} \setminus\{0\}} \text{Ker}(\tilde{A}_{v_1} - \lambda \text{id}) \subset \text{Ker}(\tilde{A}_{v_2} - \mu \text{id}) \subset (\tilde{D}_0^T)_{u} \oplus (\tilde{D}_1^T)_{u}$. That is, the orthogonal complement $((\tilde{D}_0^T)_{u} \oplus (\tilde{D}_1^T)_{u})^\perp$ of $(\tilde{D}_0^T)_{u} \oplus (\tilde{D}_1^T)_{u}$ is contained in $\text{Ker} \tilde{A}_{v_1}$. From the arbitrariness of v_2, we have $\bigoplus_{\lambda \in \text{Spec} \tilde{A}_{v_1} \setminus\{0\}} \text{Ker}(\tilde{A}_{v_1} - \lambda \text{id}) \subset (\tilde{D}_0^T)_{u} \oplus (\tilde{D}_1^T)_{u}$.

\[\text{Fig. 2.} \]

Next we prepare the following lemma.
Lemma 2.8. (i) The distributions $\tilde{D}_i^T \oplus \tilde{D}_0^T$ $(i = 1, 2)$ are totally geodesic.

(ii) The distributions \tilde{D}_i^T $(i = 1, 2)$ are totally geodesic.

Proof. For simplicity, set $\tilde{D}_i^T := \tilde{D}_i^T \oplus \tilde{D}_0^T$ $(i = 1, 2)$. Denote by \tilde{h} (resp. \tilde{h}_{10}) the second fundamental form of \tilde{M} (resp. \tilde{D}_i^T), by \tilde{A}^1 the shape tensor of \tilde{D}_i^T, by $\tilde{\nabla}$ (resp. ∇^M) the Levi-Civita connection of $H^0([0, 1], \mathfrak{g})$ (resp. \tilde{M}) and by $\nabla^{\perp 2}$ the normal connection of \tilde{D}_2^T. Also, denote by ∇ the connection of the bundle $T^*\tilde{M} \otimes T^*\tilde{M} \otimes T^*\tilde{M}$ induced from ∇^{M} and $\nabla^{\perp 2}$. Let $X, Y \in (\tilde{D}_1^T)_u$ and $Z \in (\tilde{D}_2^T)_u$. Let \tilde{X} (resp. \tilde{Y}) be a section of \tilde{D}_1^T with $\tilde{X}_u = X$ (resp. $\tilde{Y}_u = Y$) and \tilde{Z} be a section of \tilde{D}_2^T with $\tilde{Z}_u = Z$. For any $v_1 \in (\tilde{D}_1^N)_u$, we have $\langle \tilde{h}(Y, Z), v_1 \rangle = \langle \tilde{A}_{v_1} Y, Z \rangle = 0$ because of $(\tilde{D}_1^T)_u \subset \text{Ker} \tilde{A}_{v_1}$. Also, for any $v_2 \in (\tilde{D}_2^N)_u$, we have $\langle \tilde{h}(Y, Z), v_2 \rangle = \langle \tilde{A}_{v_2} Y, Z \rangle = 0$ because of $(\tilde{D}_1^T)_u \subset \text{Ker} \tilde{A}_{v_2}$. Hence we have $\tilde{h}(Y, Z) = 0$. From the arbitrarinesses of Y, Z and u, we have $\tilde{h}(\tilde{D}_1^T, \tilde{D}_2^T) = 0$. Also, we can show $\tilde{h}(\tilde{D}_1^T, \tilde{D}_1^T) \subset \tilde{D}_1^N$ and $\tilde{h}(\tilde{D}_2^T, \tilde{D}_2^T) \subset \tilde{D}_2^N$. Let X, Y, Z and \tilde{Z} be as above. It follows from $\tilde{h}(\tilde{D}_1^T, \tilde{D}_2^T) = 0$ that

$$
(\tilde{\nabla}_X \tilde{h})(Y, Z) = \tilde{\nabla}_X^{\perp} \tilde{h}(\tilde{Z}, \tilde{Y}) \quad \text{mod} \ (\tilde{D}_1^T)_u.
$$

Also, it follows from $\tilde{h}(\tilde{D}_1^T, \tilde{D}_1^T) \subset \tilde{D}_1^N$ and Lemma 2.6 that

$$
(\tilde{\nabla}_Y \tilde{h})(X, Y) = \tilde{\nabla}_Y^{\perp} \tilde{h}(\tilde{X}, \tilde{Y}) \quad \text{mod} \ (\tilde{D}_1^T)_u.
$$

By (2.2), (2.3) and the Codazzi equation, we have $\tilde{h}(Z, h_{10}(X, Y)) \in (\tilde{D}_1^N)_u$. On the other hand, it follows from $\tilde{h}(\tilde{D}_2^T, \tilde{D}_2^T) \subset \tilde{D}_2^N$ that $\tilde{h}(Z, h_{10}(X, Y)) \in (\tilde{D}_2^N)_u$. Hence we have $\tilde{h}(Z, h_{10}(X, Y)) = 0$. According to the proof of Lemma 2.7, we have

$$
(\tilde{D}_1^T)_u = \bigoplus_{v_2 \in (\tilde{D}_1^N)_u} \bigoplus_{\mu \in \text{Spec} \tilde{A}_{v_2} \setminus \{0\}} \text{Ker}(\tilde{A}_{v_2} - \mu \text{id}).
$$

If $Z \in \text{Ker}(\tilde{A}_{v_2} - \mu \text{id}) \ (\mu \in \text{Spec} \tilde{A}_{v_2} \setminus \{0\})$, then we have

$$
(\tilde{h}(Z, h_{10}(X, Y)), v_2) = \langle \tilde{A}_{v_2} Z, h_{10}(X, Y) \rangle = \mu \langle h_{10}(X, Y), Z \rangle = 0,
$$

that is, $\langle h_{10}(X, Y), Z \rangle = 0$. From the arbitrariness of $Z \in (\tilde{D}_2^T)_u$, it follows that $h_{10}(X, Y) = 0$. From the arbitrarinesses of X and Y, it follows
that \(h_{10} = 0 \), that is, \(\tilde{D}^T_{10} \) is totally geodesic. Similarly, we can show that \(\tilde{D}^T_{20} \) is totally geodesic. By the similar discussion, we can show the statement (ii). \(\text{q.e.d.} \)

By using Lemmas 2.6~2.8, we show the following fact.

Lemma 2.9. We have \(V' = V_1 \oplus V_2 \) (orthogonal direct sum).

Proof. Clearly we have \(V' \equiv V_1 + V_2 \). We have only to show \(V_1 \perp V_2 \). Take arbitrary \(u_1, u_2 \in M \) and arbitrary \(v_j \in (\tilde{D}_i^N)_{u_i} \) \(((i, j) = (1, 2), (2, 1))\). Define a subset \(U(u_1) \) of \(H^0([0, 1], \mathfrak{g}) \) by \(U(u_1) := \cup L_u \tilde{D}_{20}^T \), where \(L_u \tilde{D}_{10}^T \) (resp. \(L_u \tilde{D}_{20}^T \)) is the leaf of \(\tilde{D}_{10}^T \) (resp. \(\tilde{D}_{20}^T \)) through \(u_1 \) (resp. \(u \)). Since \(\tilde{M} \) is complete, \(\tilde{D}_{10}^T \) is totally geodesic by Lemma 2.8 and \(\tilde{D}_{20}^T \) is the orthogonal complementary distribution of \(\tilde{D}_{10}^T \) by Lemma 2.7. \(\tilde{D}_{20}^T \) is an Ehresmann connection for the foliation consisting of integral manifolds of \(\tilde{D}_{10}^T \) (see [BH]). Note that the discussions in [BH] are valid in the infinite dimensional case. From the infinite dimensional version of the discussion in [BH], it follows that \(U(u_1) = \tilde{M} \).

Therefore we have \(L_{u_1} \tilde{D}_{10}^T \cap L_{u_2} \tilde{D}_{20}^T \neq \emptyset \). Take \(u_3 \in L_{u_1} \tilde{D}_{10}^T \cap L_{u_2} \tilde{D}_{20}^T \) and curves \(\alpha_i : [0, 1] \to L_{u_i} \tilde{D}_{10}^T \) \((i = 1, 2)\) with \(\alpha_i(0) = u_i \) and \(\alpha_i(1) = u_3 \). According to (ii) of Lemma 2.6, we have \(P_{\tilde{\alpha}_i}(v_j) \in (\tilde{D}_j^N)_{u_3} \) \((i = 1, 2)\), where \(P_{\tilde{\alpha}_i} \) is the parallel translation along \(\alpha_i \) with respect to \(\tilde{\nabla} \). Hence we obtain \(\langle v_1, v_2 \rangle = 0 \). Therefore, it follows from the arbitrarinesses of \(v_1 \) and \(v_2 \) that \(V_1 \perp V_2 \). \(\text{q.e.d.} \)

Fix \(x_0 \in M \). According to Lemma 2.15 and Proposition 2.16 of [E2], the focal set of \((M, x_0) \) consists of finitely many totally geodesic hypersurfaces in the section \(\Sigma_{x_0} \) through \(x_0 \). Let \(\Sigma_{x_0} \) be the family of all the focal hypersurfaces. The focal hypersurfaces divide \(\Sigma_{x_0} \) into some open cells. Denote by \(\Delta \) the component containing \(0 \in T_{x_0}^0 M \) of the inverse image by \(\exp_{x_0} \) of the open cell containing \(x_0 \). Define a map \(f : M \times \Delta \to G/K \) by \(f(x, v) := \exp_x^v(\tilde{v}) \) \((x, v) \in M \times \Delta\), where \(\tilde{v} \) is the parallel normal vector field of \(M \) with \(\tilde{v}_{x_0} = v \). Let \(U := f(M \times \Delta) \), which is an open dense subset of \(G/K \) consisting of non-focal points of \(M \). For each \(v \in \Delta \), denote by \(M_v \) the parallel submanifold \(\eta_v(M) \) of \(M \), where \(\eta_v \) is the end-point map for \(\tilde{v} \), that is, \(\eta_v(x) = f(x, v) \) \((x \in M)\). Let \(E_i^N \) \((i = 1, 2)\) be the distribution on \(U \) such that \(E_i^N |_M = D_i^N \), \(E_i^N |_{\Sigma_x} \) is a parallel distribution on \(\Sigma_x \) for
each $x \in M$ and that $E^N_i|_{M_v}$ is a normal parallel subbundle of $T^\perp M_v$ for each $v \in \triangle$. Denote by $(D^T_i)^v$ ($i = 0, 1, 2$) the distributions on M_v corresponding to the distributions D^T_i ($i = 0, 1, 2$) on M. It is shown that $(D^T_i)^v = (\eta_v)_* (D^T_i)$. For each $i \in \{0, 1, 2\}$, the distributions $(D^T_i)^v$'s ($v \in \triangle$) give a distribution on U. Denote by E^T_i ($i = 0, 1, 2$) this distribution on U. Set $E_i := E^T_i \oplus E^N_i$ and $E_{i0} := E^T_i \oplus E^N_i \oplus E^T_0$ ($i = 1, 2$). Let $\tilde{U} := (\pi \circ \phi)^{-1}(U)$, which is an open dense subset of $H^0([0, 1], g)$. For each $v \in \triangle$, denote by \tilde{M}_v the submanifold $\eta_v^L(\tilde{M})$, where η_v^L is the end-point map for the horizontal lift \tilde{v}^L of \tilde{v}. Note that $\eta_v^L(M)$ is not a parallel submanifold of M because \tilde{v}^L is not parallel with respect to the normal connection of \tilde{M}. Let \tilde{E}^N_i ($i = 1, 2$) be the horizontal lift of E^N_i to \tilde{U}. Denote by $(\tilde{D}^T_i)^v$ the distributions on \tilde{M}_v corresponding to the distributions D^T_i ($i = 0, 1, 2$) on \tilde{M}.

For each $i \in \{0, 1, 2\}$, the distributions $(\tilde{D}^T_i)^v$'s ($v \in \triangle$) give a distribution on \tilde{U}. Denote by \tilde{E}^T_i ($i = 0, 1, 2$) this distribution. Set $\tilde{E}_i := \tilde{E}^T_i \oplus \tilde{E}^N_i$ and $\tilde{E}_{i0} := \tilde{E}^T_i \oplus \tilde{E}^N_i \oplus \tilde{E}^T_0$ ($i = 1, 2$). By using Lemmas 2.5 and 2.8, we show the following lemma.

Lemma 2.10. (i) The distributions \tilde{E}_{i0} ($i = 1, 2$) are totally geodesic.

(ii) The distributions \tilde{E}_i ($i = 1, 2$) are totally geodesic.

Proof. For each $X \in \Gamma(TM)$, we define $\overline{X} \in \Gamma(TU)$ by $\overline{X}_{f(x,v)} := (\eta_v)_* x(X_x)$ ($((x, v) \in M \times \triangle)$, where η_v is as above. Also, for each $w \in \triangle$, we define $\overline{w} \in \Gamma(TU)$ by $\overline{w}_{f(x,v)} := P^\Sigma_x (\overline{w}_x)$ ($((x, v) \in M \times \triangle)$, where \overline{w} is the parallel normal vector field of M with $\overline{w}_{x_0} = w$ and P^Σ_x is the parallel translation along the geodesic $\gamma^L_{\overline{w}} : [0, 1] \to \Sigma_x$ with $\gamma^L_{\overline{w}}(0) = \overline{v}$ with respect to the Levi-Civita connection of Σ_x. Note that P^Σ_x coincides with the parallel translation along $\gamma^L_{\overline{w}}$ with respect to the Levi-Civita connection of G/K because Σ_x is totally geodesic. Without loss of generality, we may assume $x_0 = eK$. We suffice to show that \tilde{E}_{i0} ($i = 1, 2$) and \tilde{E}_i ($i = 1, 2$) have 0 as a geodesic point. Easily we can show that if $X \in \Gamma(D^T_i)$ (resp. $w \in \triangle \cap (D^2_i)^{eK}$), then $\overline{X} \in \Gamma(E^T_i)$ (resp. $\overline{w} \in \Gamma(E^N_i)$), where $i = 0, 1$ and $j = 1, 2$. We shall show that \tilde{E}_{10} has 0 as a geodesic point. From Lemma 2.5, we have

\begin{equation}
(\tilde{E}_{10})_0 = \text{Span}\{\overline{X} \mid X \in (D^T_{10})^{eK}\} \oplus \text{Span}\{\eta \mid \eta \in \xi_1((D^N_2)^{eK})\}
\oplus \text{Span}\{P^\Sigma_{\overline{L}_k} Z \mid Z \in \xi_2((D^N_2)^{eK}), k \in \mathbb{N} \setminus \{0\}\}
\oplus \text{Span}\{P^\Sigma_{\overline{L}_k} Z \mid Z \in \xi_3((D^N_2)^{eK}), k \in \mathbb{N} \setminus \{0\}\}
\oplus \text{Span}\{\overline{w} \mid w \in (D^N_1)^{eK}\}.
\end{equation}

Denote by \tilde{k}_{10} the second fundamental form of \tilde{E}_{10}. First we show
\(\tilde{h}_{10}((\tilde{D}_1^N)_0, (\tilde{D}_1^N)_0) = 0 \). Let \(w_1, w_2 \in (D_1^N)_eK \). Denote by \(\nabla, \nabla^* \) and \(\tilde{\nabla} \) the Levi-Civita connection of \(G/K, G \) and \(H^0([0, 1], g) \). Denote by \((\cdot)^L \) (resp. \((\cdot)^* \)) the horizontal lift of \((\cdot) \) to \(H^0([0, 1], g) \) (resp. \(G \)). According to Lemmas 2.2 and 2.3 in [Koi2], we have

\[
\tilde{\nabla}_{w_1}w_2 = (\nabla_{w_1}w_2)^L_0 - t[w_1, w_2] + \frac{1}{2}w_1w_2^L_0 = (\nabla_{w_1}w_2)^L_0 - t[w_1, w_2],
\]

where \(t[w_1, w_2] \) is the \(H^0 \)-path in \(g \) assigning \(t[w_1, w_2] \) to each \(t \in [0, 1] \).

Since \(E_1^N \) is totally geodesic, we have \(\nabla_{w_1}w_2 \in (D_1^N)_eK \) and hence \((\nabla_{w_1}w_2)^L_0 \in (E_{10})_0 \) by (2.4). Also, we have \([w_1, w_2] \in g((D_2^N)_eK) \) and hence \(t[w_1, w_2] \in (E_{10})_0 \) by (2.4). Therefore, we have \(\tilde{\nabla}_{w_1}w_2^L \in (\tilde{E}_{10})_0 \), that is, \(\tilde{h}_{10}(\tilde{w}_1, \tilde{w}_2) = 0 \). Thus we have

(2.5) \[
\tilde{h}_{10}((\tilde{D}_1^N)_0, (\tilde{D}_1^N)_0) = 0.
\]

Set \(\tilde{E}_{10}^T := \tilde{E}_1^T \oplus \tilde{E}_2^T \). Next we show that \(\tilde{h}_{10}((\tilde{E}_{10}^T)_0, (\tilde{E}_{10}^T)_0) = 0 \). Let \(\tilde{X}, \tilde{Y} \in \Gamma(\tilde{E}_{10}^T) \). For each \(w \in (D_1^N)_eK \), we have

(2.6) \[
\langle \tilde{h}(\tilde{X}_0, \tilde{Y}_0), \tilde{w} \rangle = \langle \tilde{A}_{\tilde{w}}\tilde{X}_0, \tilde{Y}_0 \rangle = 0
\]

from the definition of \(\tilde{E}_{10}^T \). Hence we have \(\tilde{h}(\tilde{X}_0, \tilde{Y}_0) \in (\tilde{D}_1^N)_0 \subset (\tilde{E}_{10})_0 \).

Also, since \(\tilde{D}_{10}^T \) is totally geodesic by Lemma 2.8, we have \(\nabla_{\tilde{X}_0}^N \tilde{Y} \in (\tilde{D}_{10}^T)_0 \subset (\tilde{E}_{10})_0 \). Therefore, we have \(\tilde{h}_{10}(\tilde{X}_0, \tilde{Y}_0) = 0 \). Thus we have

(2.7) \[
\tilde{h}_{10}((\tilde{E}_{10}^T)_0, (\tilde{E}_{10}^T)_0) = 0.
\]
Similarly, we can show $\tilde{h}_{10}((\tilde{D}_1^N)_{\tilde{0}}, (\tilde{E}_{10})_0) = 0$, which together with (2.5) \sim (2.7) and $\tilde{E}_{10} = (\tilde{E}_{10})_0 \oplus (\tilde{D}_1^N)_{\tilde{0}}$ implies that $\tilde{h}_{10} = 0$, that is, $\tilde{0}$ is a geodesic point of \tilde{E}_{10}. This completes the proof of the totally geodesicness of \tilde{E}_{10}. Similarly, we can show that \tilde{E}_{20} and \tilde{E}_i $(i = 1, 2)$ are totally geodesic.

Let $\tilde{M}(u) := \tilde{M} \cap (u + V)$ and $(F_i)_u := T_u\tilde{M}(u)$ $(u \in \tilde{M}, i = 1, 2)$.

Lemma 2.11. The correspondence $F_i : u \mapsto (F_i)_u$ $(u \in \tilde{M})$ gives a totally geodesic distribution on \tilde{M} having $\tilde{M}(u)$’s $(u \in \tilde{M})$ as integral manifolds, where $i = 1, 2$.

Proof. Fix $u_0 \in \tilde{M}$. From (ii) of Lemma 2.6, it follows that $V_i = \text{Span}\left(\bigcup_{u \in L_{u_0}} (\tilde{D}_i^N)_{u} \right)$, where L_{u_0} is the leaf of \tilde{D}_i^T through u_0. On the other hand, it follows from Lemma 2.10 that $(\tilde{D}_i^N)_{u}$’s $(u \in L_{u_0})$ are contained in $T_{u_0}L_{u_0} \oplus (\tilde{D}_i^N)_{u_0}$. Hence we have $V_i \subset T_{u_0}L_{u_0} \oplus (\tilde{D}_i^N)_{u_0}$ and hence $\tilde{M}(u_0) \subset L_{u_0}$. It is clear that $\tilde{M}(u_0)$ is totally geodesic in L_{u_0}. Also, according to Lemma 2.8, L_{u_0} is totally geodesic in \tilde{M}. Hence $\tilde{M}(u_0)$ is totally geodesic in \tilde{M}. This completes the proof. q.e.d.

By using this lemma, we can show the following fact.

Lemma 2.12. The submanifold $\tilde{M}(u)$’s $(u \in \tilde{M})$ are integral manifolds of \tilde{D}_i^T $(i = 1, 2)$.

Proof. Let $\tilde{M}'(u) := \tilde{M} \cap (u + V')$ $(u \in \tilde{M})$. Since $V' = V_1 \oplus V_2$ (orthogonal direct sum) by Lemma 2.9, we have $T_u\tilde{M}'(u) = (F_1)_u \oplus (F_2)_u$ (orthogonal direct sum) for each $u \in M$. Also, it follows from Lemma 2.7 that $T_u\tilde{M}'(u) = (\tilde{D}_1^T)_u \oplus (\tilde{D}_2^T)_u$ (orthogonal direct sum) for each $u \in \tilde{M}$. On the other hand, it follows from the proof of Lemma 2.11 that $(F_i)_u \subset (\tilde{D}_i^T)_u$ $(u \in \tilde{M}, i = 1, 2)$. These facts imply $F_i = \tilde{D}_i^T$ $(i = 1, 2)$. Hence the statement of this lemma follows. q.e.d.
By using Lemma 2.11, we can show the following fact.

Lemma 2.13. For any two points u_1 and u_2 of \widetilde{M}', $\widetilde{M}_1(u_1)$ intersects with $\widetilde{M}_2(u_2)$.

Proof. Denote by \mathfrak{F}_1 the foliation on \widetilde{M}' consisting of the integral manifolds of $F_1|_{\widetilde{M}'}$. Since \mathfrak{F}_1 is totally geodesic by Lemma 2.11 and the induced metric on each leaf of \mathfrak{F}_1 is complete, $F_2|_{\widetilde{M}'}$ is an Ehresmann connection for \mathfrak{F}_1 in the sense of Blumenthal-Hebda and hence the statement of this lemma follows (see [BH]). q.e.d.

By using this lemma and imitating the proof of Corollary 3.11 of [HL], we can show the following fact.

Lemma 2.14. For any $u_0 \in \widetilde{M}_i(=\widetilde{M}_i(\hat{0}))$, the translation map $f_{u_0} : V' \to V'$ defined by $f_{u_0}(u) := u + u_0$ ($u \in V'$) maps $\widetilde{M}_j(=\widetilde{M}_j(\hat{0}))$ isometrically onto $\widetilde{M}_j(u_0)$, where $(i, j) = (1, 2)$ or $(2, 1)$.

By using this lemma and imitating the proof of Corollary 3.12 of [HL], we can show the following fact.

Proposition 2.15. We have $\widetilde{M}' = \widetilde{M}_1 \times \widetilde{M}_2 \subset V_1 \times V_2 = V'$.

Define ideals g' and g_i ($i = 1, 2$) by

$$
g' := \text{Span} \bigcup_{x^* \in M^*} \{ g_0 \ast v(x^*)^{-1} g_0^{-1} | v \in T_{x^*}^L M^*, \ g_0 \in G \},$$

$$g_i := \text{Span} \bigcup_{x^* \in M^*} \{ g_0 \ast v(x^*)^{-1} g_0^{-1} | v \in ((D_i^N)_{\pi(x^*)})_{x^*}^L, \ g_0 \in G \}.
$$
Also, set $g_0 := g \oplus g'$, which is also an ideal of g. Let G' and G_i \((i = 0, 1, 2)\) be the connected Lie subgroups of G whose Lie algebras are g' and g_i \((i = 0, 1, 2)\), respectively. Since G/K is simply connected, we may assume that G is simply connected. So we have $G = G' \times G_0$ and $G' = G_1 \times G_2$. By imitating the proof of Lemma 5.1 of [Ko4], we can show the following fact.

Lemma 2.16. We have $V' \subset H^0([0, 1], g')$ and $V_i \subset H^0([0, 1], g_i)$ \((i = 1, 2)\).

Also, by using Lemma 2.9 and imitating the proof of Lemma 3.7 of [E1], we can show the following fact.

Lemma 2.17. We have $g_1 \perp g_2$ and hence $H^0([0, 1], g') = H^0([0, 1], g_1) \oplus H^0([0, 1], g_2)$ (orthogonal direct sum).

Let $V'_0 := H^0([0, 1], g') \ominus V'$ and $V_{i,0} := H^0([0, 1], g_i) \ominus V_i$ \((i = 1, 2)\). Clearly we have $V'_0 = V_{1,0} \oplus V_{2,0}$. Set $\tilde{M}_{i,H^0} := \tilde{M} \cap H^0([0, 1], g_i)$ and $\tilde{M}_{i,H^0} := \tilde{M} \cap H^0([0, 1], g_i)$ \((i = 1, 2)\). It follows from Proposition 2.1 that $\tilde{M}_{i,H^0} = \tilde{M}' \times V'_0$ and $\tilde{M}_{i,H^0} = \tilde{M}_i \times V_{i,0}$ \((i = 1, 2)\). Furthermore, it follows from Proposition 2.15 that $M = \tilde{M}_{i,H^0} \times \tilde{M}_{2,H^0} \times H^0([0, 1], g_0)$. It is clear that the parallel transport map ϕ for G is decomposed as $\phi = \phi_1 \times \phi_2 \times \phi_0$, where ϕ_i \((i = 0, 1, 2)\) is the parallel transport map for G_i. Set $M_{i,H^0} := \phi_i(M_{i,H^0})$ \((i = 1, 2)\). Clearly we have $M^* = M_{1,H^0} \times M_{2,H^0} \times G_0 \subset G_1 \times G_2 \times G_0 = G$. Let (g, θ) be the orthogonal symmetric Lie algebra of G/K. By imitating the discussion in Section 4 of [E1], we can show the following fact.

Lemma 2.18. We have $\theta(g_i) = g_i$ \((i = 0, 1, 2)\).

Let $f_i := \text{Fix}(\theta|_{g_i})$ and $K_i := \exp G_i(f_i)$, where $i = 0, 1, 2$. Since G/K is simply connected, we have $G/K = G_1/K_1 \times G_2/K_2 \times G_0/K_0$. Denote by π_i the natural projection of G_i onto G_i/K_i \((i = 0, 1, 2)\). Let $M_{i,H^0} := \pi_i(M_{i,H^0})$ \((i = 1, 2)\). Now we prove Theorem A.

Proof of Theorem A. Assume that the holonomy group of the section Σ is reducible. Then, under the above notations, we have $M = M_{1,H^0} \times M_{2,H^0} \times G_0/K_0 \subset G_1/K_1 \times G_2/K_2 \times G_0/K_0 = G/K$. Let $t := T_{eK}M$ and t_i \((i = 1, 2)\) be the normal space of M_{i,H^0} in G_i/K_i. Since M is equifocal, t is a Lie triple system. Hence it follows that t_i \((i = 1, 2)\).
are Lie triple systems. This fact implies that \(M_{i,H^0} (i=1,2) \) have Lie triple systematic normal bundle. On the other hand, it is clear that \(M_{i,H^0} (i=1,2) \) satisfy the conditions (PF-i) and (PF-ii). Thus \(M_{i,H^0} (i=1,2) \) is equifocal. The converse is trivial. q.e.d.

Next we shall prove Theorem B in terms of Theorem A.

Proof of Theorem B. Let \(\Sigma \) be the section of \(M \) through \(x_0 = g_0 K \) (\(\in M \)) and \(\pi_\Sigma : \tilde{\Sigma} \to \Sigma \) be the universal covering of \(\Sigma \). Since \(G/K \) is irreducible, it follows from Theorem A that the holonomy group of \(\Sigma \) is irreducible, that is, \(\tilde{\Sigma} \) is irreducible. Since \(\Sigma \) is totally geodesic in \(G/K \), it is a symmetric space. Hence \(\tilde{\Sigma} \) is an irreducible simply connected symmetric space. On the other hand, according to Lemma 1A.4 of [PoTh1], \(\Sigma \) and hence \(\tilde{\Sigma} \) admit a totally geodesic hypersurface. Hence, it follows from the result in [CN] that \(\tilde{\Sigma} \) is isometric to a sphere, that is, \(\Sigma \) is isometric to a sphere or a real projective space (of constant curvature). q.e.d.

References

[A] M. M. Alexandrino, Singular riemannian foliations with sections, Illinois J. Math. 48 (2004) 1163-1182.

[AG] M. M. Alexandrino and C. Gorodski, Singular Riemannian foliations with sections, transnormal maps and basic forms, arXiv:math.GT/0608069.

[AT] M. M. Alexandrino and D. Többen, Singular Riemannian foliations on simply connected spaces, Differential Geom. Appl. 24 (2006) 383-397.

[B] L. Biliotti, Coisotropic and polar actions on compact irreducible Hermitian symmetric spaces, Trans. Amer. Math. Soc. 358 (2006) 3003-3022.

[BH] R. A. Blumenthal and J. J. Hebda, Complementary distributions which preserves the leaf geometry and applications to totally geodesic foliations, Quat. J. Math. 35 (1984) 383-392.

[BV] J. Berndt and L. Vanhecke, Curvature-adapted submanifolds, Nihonkai Math. J. 3 (1992) 177-185.

[BCO] J. Berndt, S. Console and C. Olmos, Submanifolds and holonomy, Research Notes in Mathematics 434, CHAPMAN & HALL/CRC Press, Boca Raton, London, New York Washington, 2003.

[BS] R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958) 964-1029. Correction in Amer. J. Math. 83 (1961) 207-208.

[Ch] U. Christ, Homogeneity of equifocal submanifolds, J. Differential Geometry 62 (2002) 1-15.

[CKT] Y.W. Choe, U.H. Ki and R. Takagi, Compact minimal generic submanifolds with parallel normal section in a complex projective space, Osaka J. Math. 37 (2000) 489-499.
[CN] B.Y. Chen and T. Nagano, Totally geodesic submanifolds of symmetric spaces II, Duke Math. J. **45** (1978) 405-425.

[Co] L. Conlon, Remarks on commuting involutions, Proc. Amer. Math. Soc. **22** (1969) 255-257.

[D] J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. **228** (1985) 125-137.

[E1] H. Ewert, A splitting theorem for equifocal submanifolds in simply connected compact symmetric spaces, Proc. Amer. Math. Soc. **126** (1998) 2443-2452.

[E2] H. Ewert, Equifocal submanifolds in Riemannian symmetric spaces, Doctoral thesis.

[G] C. Gorodski, Polar actions on compact symmetric spaces which admit a totally geodesic principal orbit, Geometriae Dedicata **103** (2004) 193-204.

[H] S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978.

[HL] E. Heintze and X. Liu, A splitting theorem for isoparametric submanifolds in Hilbert space, J. Differential Geom. **45** (1997) 319-335.

[HLO] E. Heintze, X. Liu and C. Olmos, Isoparametric submanifolds and a Chevalley-type restriction theorem, arXiv:math.DG/0004028.

[HPTT] E. Heintze, R.S. Palais, C.L. Terng and G. Thorbergsson, Hyperpolar actions on symmetric spaces, Geometry, topology and physics for Raoul Bott (ed. S. T. Yau), Conf. Proc. Lecture Notes Geom. Topology **4**, Internat. Press, Cambridge, MA, 1995 pp214-245.

[Koi1] N. Koike, Tubes of non-constant radius in symmetric spaces, Kyushu J. Math. **56** (2002) 267-291.

[Koi2] N. Koike, On proper Fredholm submanifolds in a Hilbert space arising from submanifolds in a symmetric space, Japan. J. Math. **28** (2002) 61-80.

[Koi3] N. Koike, Actions of Hermann type and proper complex equifocal submanifolds, Osaka J. Math. **42** (2005) 599-611.

[Koi4] N. Koike, A splitting theorem for proper complex equifocal submanifolds, Tohoku Math. J. **58** (2006) 393-417.

[Kol1] A. Kollross, A Classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. **354** (2001) 571-612.

[Kol2] A. Kollross, Polar actions on symmetric spaces, J. Differential Geomery **77** (2007) 425-482.

[KW] A. Korányi and J.A. Wolf, Realization of Hermitian symmetric spaces as generalized half-planes, Ann. of Math. **81** (1965) 265-288.

[LT] A. Lytchak and G. Thorbergsson, Variationally complete actions on non-negatively curved manifolds, Illinois J. Math. (to appear).

[M] P. Molino, Riemannian foliations, Progress in Mathematics vol. 73, Birkhäuser Boston 1988.

[Pa] R.S. Palais, Morse theory on Hilbert manifolds, Topology **2** (1963) 299-340.

[PaTe] R.S. Palais and C.L. Terng, Critical point theory and submanifold geometry, Lecture Notes in Math. **1353**, Springer, Berlin, 1988.

[PoTh1] F. Podestá and G. Thorbergsson, Polar actions on rank-one symmetric spaces, J. Differential Geometry **53** (1999) 131-175.

[PoTh2] F. Podestá and G. Thorbergsson, Polar and coisotropic actions on
Kähler manifolds, Trans. Amer. Math. Soc. 354 (2002) 1759-1781.

[Ta] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975) 43-53.

[TaTa] R. Takagi and T. Takahashi, On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 469-481.

[TeTh] C.L. Terng and G. Thorbergsson, Submanifold geometry in symmetric spaces, J. Differential Geometry 42 (1995) 665-718.

[Th] G. Thorbergsson, Isoparametric foliations and their buildings, Ann. of Math. 133 (1991) 429-446.

[Tö] D. Töben, Parallel focal structure and singular Riemannian foliations, Trans. Amer. Math. Soc. 358 (2006) 1677-1704.

[Ts] K. Tsukada, Totally geodesic hypersurfaces of naturally reductive homogeneous spaces, Osaka J. Math. 33 (1996) 697-707.

Department of Mathematics, Faculty of Science
Tokyo University of Science, 26 Wakamiya-cho
Shinjuku-ku, Tokyo 162-8601 Japan
(koike@ma.kagu.tus.ac.jp)