Modulation of Short-Latency Afferent Inhibition Depends on Digit and Task-Relevance

Michael J. Asmussen, Christopher M. Zapallow, Mark F. Jacobs, Kevin G. H. Lee, Philemon Tsang, Aimee J. Nelson*
Department of Kinesiology, McMaster University, Hamilton, Canada

Abstract

Short-latency afferent inhibition (SAI) occurs when a single transcranial magnetic stimulation (TMS) pulse delivered over the primary motor cortex (M1) is preceded by peripheral electrical nerve stimulation at a short inter-stimulus interval (~20–28 ms). SAI has been extensively examined at rest, but few studies have examined how this circuit functions in the context of performing a motor task and if this circuit may contribute to surround inhibition. The present study investigated SAI in a muscle involved versus uninvolved in a motor task and specifically during three pre-movement phases; two movement preparation phases between a “warning” and “go” cue and one movement initiation phase between a “go” cue and EMG onset. SAI was tested in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles in twelve individuals. In a second experiment, the origin of SAI modulation was investigated by measuring H-reflex amplitudes from FDI and ADM during the motor task. The data indicate that changes in SAI occurred predominantly in the movement initiation phase during which SAI modulation depended on the specific digit involved. Specifically, the greatest reduction in SAI occurred when FDI was involved in the task. In contrast, these effects were not present in ADM. Changes in SAI were primarily mediated via supraspinal mechanisms during movement preparation, while both supraspinal and spinal mechanisms contributed to SAI reduction during movement initiation.

Introduction

Short-latency afferent inhibition (SAI) occurs when a single transcranial magnetic stimulation (TMS) pulse over the primary motor cortex (M1) is preceded by peripheral electrical nerve stimulation at a short inter-stimulus interval (~20–28 ms) such that the corticospinal output to the targeted hand muscle is reduced [1,2]. SAI may contribute to another circuit known as surround inhibition that is important to performing individual finger movement. Surround inhibition is a powerful neurophysiological mechanism that focuses neural activity by inhibiting areas surrounding the intended neural response. This mechanism has been observed in the visual [3], somatosensory [4], and motor systems [5]. Particularly, surround inhibition in the motor system may be a mechanism that allows for precise selective movements by enhancing neural activity for muscles performing a task, while inhibiting neural activity for those muscles uninvolved in the task.

The functional significance of SAI to hand control remains largely unknown yet an active muscle can modify the magnitude of SAI [6,7]. We and others have shown that SAI is reduced during both the onset of muscle activity [6,8,9] and during sustained muscle contraction [6,7]. Specifically, we observed reductions in SAI as early as movement preparation between an auditory “warning” and “go” cue and these reductions are likely cortically or sub-cortically mediated [6]. Previous work [8] has suggested that SAI may contribute to surround inhibition, particularly during EMG onset. However, a number of questions regarding the functional significance of SAI remain unexplored. First, how is SAI modified when the muscle is involved versus uninvolved in the task? [8,9]. Second, does the modulation of SAI depend on the specific digit (i.e., digit 2 versus digit 5)? Compared to the 5th digit, the 2nd digit may play a greater role in grasping and has a larger cortical representation that could lead to changes in SAI [10–13]. Third, does SAI act before EMG onset and before movement initiation? It may be that the SAI circuit is involved in focussing neural activity differently depending on the specific digit that is or is uninvolved in the task.

The purpose of this study was to determine whether SAI is modulated during movement preparation (i.e., between a “warning” and “go” cue) and movement initiation (i.e., between a “go” cue and onset of muscle activity) when a muscle is involved or uninvolved in a finger flexion task. SAI was measured in the first dorsal interosseous (FDI) and abductor digit minimi (ADM) to represent muscles controlling the 2nd and 5th digit, respectively, which contribute differently to the overall functional capacity of the hand. In a second experiment, spinal excitability via Hoffman reflexes (H-reflexes) were measured in FDI and ADM during the same motor task.
A. Movement trial

High tone (warning)

PW1 PW2

100 ms 1 s 2-3 s 4-5 s

High tone (go)

PG

100 ms

B. Dummy trial

Low tone (warning)

PW1 PW2

100 ms 1 s 2-3 s 4-5 s

Low tone (go)

PG

100 ms

C. No Stimulation trial

Low tone (warning)

10-5 s

D. Rest trial

4-5 s

Figure 1. Timeline of the three trial types in a block and the rest trial. The ‘Warning’ and ‘Go’ represent the auditory ‘warning’ and ‘go’ cue, respectively. The small arrows pointing down indicate when SAI was tested. Before the experiment, the researcher defined whether the low and high tone meant move 2nd or 5th digit, respectively. The movement trial indicates trials that were used for analysis, while the dummy trial indicates trials
that were not used for analysis. In this figure, 2nd digit movement was being analyzed and the high tone indicates the movement condition, while the low tone would inform the participant to perform the 5th digit movement and would serve as the dummy trial. ’100 ms’ on the left side of the timeline represents the time between the ‘warning’ cue and when SAI was tested in the post-warning 1 phase (PW1). ‘1 s’ represents the time between the ‘go’ cue and when SAI was tested in the post-go phase (PG). ‘2–3 s’ is the varied interval between the ‘warning’ and ‘go’ cue, while the ‘4–5 s’ indicate the varied length of the trial. In the ‘no stimulation’ condition, neither TMS nor nerve stimulation was delivered, but the participant still completed the trial with the ‘warning’ and ‘go’ cue present. The rest trial, SAI was tested, but no auditory cues were given and the participant did not complete the movement.

doi:10.1371/journal.pone.0104807.g001

Methods

Ethics Statement
This study was approved by the Office of Research Ethics at McMaster University and conformed to the Declaration of Helsinki. Written informed consent was obtained from all participants in the study.

Participants
Twelve healthy individuals (X age = 20, SD = 2, 5 females) participated in Experiment 1 and of those, ten subjects (X age = 20.1, SD = 2.1, 6 males) participated in Experiment 2. All participants were deemed to be right handed determined using a modified version of the Edinburgh Handedness Inventory [14]. All participants were screened for any contra-indicators of TMS (i.e., no intake of benzodiazepines).

Electromyography (EMG)
Surface Ag/AgCl EMG electrodes were placed on the FDI and ADM muscles of the right and left hands in a muscle belly-tendon montage. The right hand was engaged in the task while the left hand remained relaxed throughout the experiments. The analog signal from the electrodes was amplified with a gain of 1000, band-pass filtered between 60 and 2500 Hz (Introlux Technologies Corporation Model 2024F, Bolton, Canada) and sampled at a frequency of 5000 Hz using an analog-to-digital interface (Power 1401, Cambridge Electronic Design, Cambridge, UK). The EMG electrodes were used to record the electrical signal to the muscles and the recorded signal was used to measure the peak-to-peak amplitude of the MEP elicited in the FDI and ADM of the right hand and ongoing muscle activity in the left hand. Analysis was completed off-line using Signal software (version 5.07, Cambridge Electronic Design, Cambridge, UK).

Peripheral Nerve Stimulation
Peripheral nerve stimulation was achieved with 200 μs square wave pulses delivered using Grass SD9 Telefactor stimulators (Grass Technologies, West Warwick, USA). The digital nerves of the 2nd and 5th digits were stimulated using ring electrodes with the cathode proximal to the anode and positioned around the proximal and intermediate phalynx. Digital nerves were stimulated at ~3 times perceptual threshold, an intensity shown to evoke SAI at rest [1]. To elicit H-reflexes, the ulnar nerve was stimulated (1 ms square wave pulse) at the wrist approximately 8 cm proximal to the thenar muscles of the right hand. The intensity of ulnar nerve stimulation was set to elicit M-waves of 10% of the direct maximal muscular response (M-wave_max) in FDI or ADM. This intensity was used to ensure the H-reflex recorded was on the ascending portion of the H-reflex recruitment curve [15].

Transcranial Magnetic Stimulation (TMS)
TMS was delivered using two custom built 50 mm diameter figure-of-eight branding coils connected to two Magstim 2002 stimulators (Magstim, Whitland, UK). Coil position and orientation was monitored throughout the experiment using Brainlab Neuronavigation (Rogue Research, Montreal, Canada) with optical sensors placed on the coil and the participant. The coil was oriented at 45° in relation to the parasagittal plane to induce a posterior-lateral to anterior-medial current in the cortex and preferentially activate corticospinal neurons trans-synaptically [16]. One TMS coil delivered a monophasic pulse over M1 in the optimal location to elicit MEPs in the FDI muscle of the right hand, while a separate coil delivered a monophasic pulse over the optimal location to elicit MEPs in the ADM muscle of the right hand. Only one coil was placed on the scalp at any time during data collection. The optimal hotspot for each muscle was obtained separately and was determined by the position of the coil that produced a MEP ~1 mV at the lowest percentage of maximal stimulator output (%MSO). The hotspot for FDI was first identified and subsequently the ADM hotspot was located. The group-averaged difference between ADM hotspot in relation to the FDI hotspot was 3 mm medial and 7 mm posterior.

Behavioural task
A similar behavioural task was performed in Experiments 1 and 2. At the beginning of the set-up, participants were seated with their right arm relaxed with their shoulder abducted ~20° and elbow flexed at ~90°. In this position, participants voluntarily flexed their finger at the metacarpophalangeal joint maximally against a load cell (Transducer Techniques, model THA-50-Q load cell, Temecula, USA). This measure was completed for the 2nd and 5th digits separately. Participants then practiced performing a phasic isometric finger flexion to 5% of their maximum force (F_max) for their 2nd and 5th digit (5% F_max), separately, using visual

| Table 1. Percentage of MSO to obtain ~1 mV MEP in each condition. |
|---------------|---------------|---------------|---------------|---------------|
| | Rest | Move 2nd digit | Move 5th digit |
| | MEPP (%) | MEPP (%) | MEPP (%) | MEPP (%) |
| | PW1 | PW2 | PG | PW1 | PW2 | PG |
| FDI | 60 ± 3 | 61 ± 4 | 61 ± 5 | 61 ± 5 | 60 ± 4 | 53 ± 4 |
| ADM | 60 ± 3 | 61 ± 4 | 61 ± 5 | 61 ± 5 | 60 ± 4 | 53 ± 4 |

Means (% MSO) followed by standard error are presented.
doi:10.1371/journal.pone.0104807.t001

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e104807
feedback of their force displayed on an oscilloscope. The 5% \(F_{\text{max}} \) was the force requirement for the behavioural task.

Each trial consisted of an auditory tone that served as the “warning” cue followed 2 to 3 seconds later by a second auditory tone that served as the “go” cue (Figure 1). Upon hearing the “go” cue, participants flexed their 2nd or 5th digit to 5% \(F_{\text{max}} \) against a load cell and released the contraction once 5% \(F_{\text{max}} \) was achieved (i.e., a phasic contraction). The voltage from the load cell was passed through a strain gage amplifier (Futek model CSG110-FSH03546, Thornhill, Canada) and the online force level achieved by the 2nd or 5th digit was displayed on an oscilloscope as a bright line. Subjects were required to position one line which represented their current force level over another line that marked the 5% \(F_{\text{max}} \) for that particular digit. In a single block, there were three trial types. One trial type would test the movement condition that was used for analysis (ex., move 2nd digit, SAI in FDI) and, in the example in Figure 1, the high tone would be used for both the “warning” and “go” cue (Figure 1A). The second trial type was a dummy trial that the participant would perform the other type movement. If the 2nd digit movement was the condition for analysis, the low tone was used in the dummy trial for both the “warning” and “go” cue and would indicate 5th digit movement (Figure 1B). If the block was testing 5th digit movement (i.e., move 5th digit, SAI in FDI), the trials for analysis would have the low tone serve as the cues, while the high tone would serve as the cues for the dummy trials and require the participant to move the 2nd digit. The “go” cue was always congruent with the tone of the “warning” cue. For example, if the warning cue’s tone indicated 2nd digit movement, the go cue would be the same tone and indicate to move the 2nd digit. The researcher informed the participant the meaning of the high versus low tone before the experiment. The no stimulation trial would have tones present and the participant would perform the movement, but no stimulation was given (Figure 1C). The rest trial was performed in a separate block and the timeline is depicted in Figure 1D.

Experiment 1: SAI as a function of task and phase

SAI was investigated in FDI and ADM by placing the coil on the motor hot spot for each respective muscle. To elicit SAI in FDI or ADM, stimulation was applied to the digital nerve of the 2nd or 5th digit, respectively. SAI in these muscles was investigated during three pre-movement phases prior to EMG onset such that a single TMS pulse was delivered either 100 ms after the “warning” cue in

![Figure 2. Differences in SAI across the three pre-movement phases.](image)

Group-averaged SAI ratio data (with standard error of the mean) for each pre-movement time point (i.e., PW1, PW2, PG) and muscle (FDI, ADM). Values greater than 1 indicate a reduction in SAI, while values less than 1 indicate an increase in SAI. An asterisk over a bar connecting two different conditions indicates significant differences. Significant differences were tested at \(p \leq 0.05 \).

doi:10.1371/journal.pone.0104807.g002

Table 2. Unconditioned MEP size for FDI and ADM during all conditions.

	Rest	Move 2nd digit	Move 5th digit				
	PW1	PW2	PG	PW1	PW2	PG	
FDI	1.27±0.08	1.20±0.10	1.46±0.17	1.11±0.17	1.39±0.07	1.05±0.07	0.88±0.09
ADM	0.99±0.08	1.24±0.12	1.26±0.15	1.11±0.13	1.09±0.08	1.03±0.11	1.34±0.21

Mean MEP amplitude (mV) followed by standard error are presented.
doi:10.1371/journal.pone.0104807.t002
Figure 3. Raw traces of conditioned and unconditioned MEPs for FDI and ADM. Each trace is an individual trial that is representative of the group-averaged data. A: Raw EMG traces of SAI in FDI during preparation for 2nd digit movement. B: Raw EMG traces of SAI in FDI during preparation for 5th digit movement. C: Raw EMG traces of SAI in ADM during preparation for 2nd digit movement. D: Raw EMG traces of SAI in FDI during preparation for 5th digit movement.
doi:10.1371/journal.pone.0104807.g003
Table 3. SAI data and SAI ratio for FDI and ADM during all conditions.

Muscle	Move 2nd digit	Move 5th digit	Move 2nd digit	Move 5th digit
FDI	PW1	PW2	PW1	PW2
	0.51	0.053	0.80	0.053
	0.126	0.66	0.126	0.66
	0.087	1.32	0.233	0.78
	0.064	1.63	0.104	1.63

ADM	PW1	PW2	PW1	PW2
	0.68	0.051	0.68	0.051
	0.75	0.057	0.75	0.057
	0.76	0.057	0.76	0.057
	0.75	0.057	0.75	0.057

Means for SAI data and SAI ratio data: SAI = SAI phase and SAI ratio = SAI phase / SAI rest. HSD critical for a significance of 0.05 was calculated as 0.81 for comparing amongst SAI ratio data.
Experiment 2: H-reflex as a function of task and phase

H-reflexes were used to investigate whether SAI modulation may occur via spinal and/or supraspinal mechanisms [17]. The H-reflex measure was used to determine if spinal excitability changes as a function of phase, muscle and task involvement. H-reflexes were obtained in FDI or ADM by having the participants produce a light voluntary contraction with their 2nd or 5th digit, respectively. This stimulus duration and light voluntary contraction was implemented because an H-reflex is more readily obtained in FDI and ADM when they are slightly active [18]. Participants performed the same behavioural task as in Experiment 1 (12 testing conditions with dummy and no stimulation trials and one rest condition) with one exception for all conditions. The participant maintained a light voluntary contraction in the digit that the targeted muscle for the H-reflex was actively involved in (e.g., 2nd digit for FDI or 5th digit for ADM H-reflex) and increased the force by \(5\%\) in response to the ‘Go’ cue. The force requirement during the task was the same for 2nd and 5th digit.

Statistical analyses

SAI was calculated as the ratio of the conditioned MEP to the unconditioned MEP (\(\text{SAI} = \frac{\text{PNS,TMS}}{\text{TMS}_{\text{alone}}}\)). Spinal excitability was defined with the following formula using the peak-to-peak amplitude of the H-reflex and M-wave:

\[
\text{Spinal Excitability} = \frac{\text{H-reflex}_{\text{max}}}{\text{M-wave}_{\text{max}}}
\]

A three-way repeated measures ANOVA with factors PHASE (3 levels: PW1, PW2, PG), MUSCLE (2 levels: FDI, ADM), and MOVEMENT TYPE (2 levels: 2nd, 5th digit) was conducted for SAI (Experiment 1) and spinal excitability (Experiment 2). For both ANOVAs the dependent measures of SAI and spinal excitability were normalized to the measure at rest (i.e., \(\text{SAI}_{\text{ratio}} = \frac{\text{SAI}_{\text{phase}}}{\text{SAI}_{\text{rest}}}\)). Statistical analyses allows for the comparison of increases or decreases of SAI or spinal excitability between muscles (e.g., SAI reduction in FDI in relation to SAI reduction in ADM). Means less than 1 indicate increased SAI (or increased spinal excitability) in relation to rest and means greater than 1 indicate reduced SAI (or decreased spinal excitability) in relation to rest. Tukey’s post-hoc analysis was performed if a significant effect was found.

Second, we tested whether there was a relationship between unconditioned MEP amplitude and degree of SAI. The reason for this analysis was to ensure that the unconditioned MEP amplitude did not affect the degree of SAI, as larger MEP amplitude could also yield reduced SAI [7]. Pearson's product moment correlation coefficient between the unconditioned MEP amplitude (i.e., TMS\(_{\text{alone}}\)) and the degree of SAI (\(\text{SAI} = \frac{\text{PNS,TMS}}{\text{TMS}_{\text{alone}}}\)) in each muscle during both 2nd and 5th digit movement [6]. Last, we conducted a three-way repeated measures ANOVA on the unconditioned MEP amplitude with factors PHASE (3 levels: PW1, PW2, PG), MUSCLE (2 levels: FDI, ADM), and MOVEMENT TYPE (2 levels: 2nd, 5th digit) on the unconditioned MEP amplitude. For all statistical tests, the alpha level was set at \(p \leq 0.05\). Sphericity was tested and when this assumption was violated the Greenhouse Geisser correction was implemented and the adjusted degrees of freedom were reported.

Results

Experiment 1: SAI as a function of task and phase

Experiment 1 examined whether SAI was dependent on the specific digit and its involvement in the task being performed. The group mean \(F_{\text{max}}\) for the 2nd digit was 30.9 \(\pm\) 11.5 and 18.5 \(\pm\) 6.9 for the 5th digit similar to previous research [6]. Although the nerve stimulation was delivered at the same intensity in relation to perceptual threshold, SAI at rest was greater in FDI compared to ADM (\(t_{11} = 3.04, p = 0.011\)).

Figure 2 displays the group-averaged SAI ratio (with standard error of the mean) during the pre-movement phases (PW1, PW2, PG) for each muscle (FDI, ADM) and each task (involved,
uninvolved). The raw traces of the unconditioned and conditioned MEP for each movement condition are presented in Figure 3. The repeated measures ANOVA revealed a significant three-way interaction between PHASE, MOVEMENT TYPE, and MUSCLE (F(1.3,11.4) = 4.803, p = 0.037), a PHASE by MOVEMENT interaction (F(2.22) = 5.238, p = 0.024), and main effect of PHASE (F(2.22) = 4.069, p = 0.031) and MUSCLE (F(3,11) = 19.520, p = 0.001). Post-hoc Tukey’s test revealed two significant differences in the PG phase, but no significant differences in PW1 or PW2. First, SAI was reduced in FDI when it was involved versus uninvolved in the task during movement initiation (p<0.05). There were no differences of SAI in ADM when it was involved versus uninvolved in the task. Second, SAI in FDI was significantly reduced compared to ADM when each muscle was involved in the task (p<0.05). There were no differences in SAI between FDI and ADM when there were uninvolved in the task. These data indicate that SAI reduction are task and muscle specific. Table 3 indicates that SAI reduction are task and muscle specific. The group means (with standard error of the mean) for the SAI ratio data of spinal excitability during the pre-movement phase are presented in Figure 4. The repeated measures ANOVA for SAI revealed a significant main effect of PHASE (F(2,22) = 13.198, p < 0.001). There were no muscle specific effects for similar effects in ADM. These reductions in SAI when a muscle is involved in the task may be necessary to allow the neural activity in M1 during movement initiation. Similar to SAI, surround inhibition is a neurophysiological mechanism that inhibits surrounding muscle representations that are not performing the desired movement. Surround inhibition is most prominent during movement initiation [5, 17] and it is during this phase that we observed the most robust modulation of SAI across task and muscles. A previous report suggest that SAI may contribute to surround inhibition during EMG onset [8]. Our study extends these findings and indicates that SAI may contribute to surround inhibition even before EMG onset. When FDI was performing the task, there was the greatest reduction in SAI. When the FDI was uninvolved in the task, SAI remained intact. There was also a trend for similar effects in ADM. These reductions in SAI when a muscle is involved in the task may be necessary to allow somato-sensory input to increase activity in the area of M1 responsible for the desired motor output. When the muscle is uninvolved, SAI remains intact and may be necessary to prevent unwanted movements. Overall, the data suggests that SAI may function to inhibit or focus neural activity during movement initiation even before the onset of muscle activity and contribute to surround inhibition. The goal of the present study was to investigate SAI in muscles involved and uninvolved in a finger flexion task and determine whether the degree of SAI modulation depended on the specific digit. We chose to study two digits, the 2nd and 5th, that contribute differently to whole hand function. Results indicated that SAI behaved differently in FDI compared to ADM. SAI in FDI was reduced when FDI was involved versus uninvolved in the task and this effect was observed only during movement initiation. In contrast, SAI in ADM was not modulated by its involvement in the task. Further, during movement initiation the reduction of SAI in FDI was greater compared to ADM when each muscle was involved in the task. In summary, SAI was modulated differently before movement onset for muscles controlling the 2nd versus 5th digit. The findings from this study are applicable to individuals with certain movement disorders and may provide insight into the direction of interventions for neurorehabilitation [9, 17, 19].

Functional significance of SAI modulation

SAI creates a transient inhibition of M1 shortly after stimulation of a peripheral nerve and this inhibition might function to focus the neural activity in M1 during movement initiation. Similar to SAI, surround inhibition is a neurophysiological mechanism that inhibits surrounding muscle representations that are not performing the desired movement. Surround inhibition is most prominent during movement initiation [5, 17] and it is during this phase that we observed the most robust modulation of SAI across task and muscles. A previous report suggest that SAI may contribute to surround inhibition during EMG onset [8]. Our study extends these findings and indicates that SAI may contribute to surround inhibition even before EMG onset. When the muscle is involved in the task, there was the greatest reduction in SAI. When the FDI was uninvolved in the task, SAI remained intact. There was also a trend for similar effects in ADM. These reductions in SAI when a muscle is involved in the task may be necessary to allow somato-sensory input to increase activity in the area of M1 responsible for the desired motor output. When the muscle is uninvolved, SAI remains intact and may be necessary to prevent unwanted movements. Overall, the data suggests that SAI may function to inhibit or focus neural activity during movement initiation even before the onset of muscle activity and contribute to surround inhibition.

Digit specific effects of SAI

SAI was modulated differently for SAI in FDI compared to ADM, which represents muscles controlling the 2nd and 5th digit, respectively. The 2nd digit contributes more than the 5th digit during static grip [12], gripping an object with varying force levels [13], and during different gripping tasks [10]. Amputation of the 2nd digit results in a greater loss of overall hand function in relation to the 5th digit [20]. Further, the cortical representation of the 2nd digit may be larger than the 5th digit [11], potentially because of its greater involvement in hand control [10, 12, 13]. In our study, the TMS stimulator output was greater for FDI in relation to ADM, likely because of the increased cortical representation of the 2nd digit in relation to the 5th. This converging evidence indicates that the 2nd digit plays a larger role in hand control. Since the 2nd digit
Table 4. Spinal excitability data and spinal excitability ratio data for FDI and ADM during all conditions.

Muscle	Spinal Excitability Data	Spinal Excitability Ratio Data	
	Rest	Move 2nd digit	Move 5th digit
FDI	PW1	0.01±0.05	0.02±0.02
	PW2	0.02±0.03	0.01±0.02
	PG	0.06±0.01	0.05±0.01
ADM	PW1	0.02±0.00	0.03±0.00
	PW2	0.02±0.00	0.03±0.00
	PG	0.06±0.00	0.05±0.00

H-reflexes were recorded since this technique recruits the same motorneuron pool as that recruited from a single TMS pulse [18].

Mechanisms of SAI modulation

To determine whether increases in spinal excitability may contribute to SAI modulation, H-reflexes were recorded since this technique recruits the same motorneuron pool as that recruited from a single TMS pulse [18].

Applications to movement disorders

In certain movement disorders such as focal hand dystonia (FHD), digit representations in SI overlap [28,29]. Further in typically functioning adults, stimulation of multiple digits reduces the amount of inhibition within M1 in relation to single digit stimulation [30]. In FHD where digit representations overlap in SI, stimulation of a single digit during movement initiation could activate other digit representations in the cortex and cause a reduction in SAI across multiple muscles leading to unwanted...
movements of other digits. In FHD there is also lack of surround inhibition [5,17] and maladaptive modulation of SAI may be adding to problems in this network. To support this statement, individuals with Parkinson’s disease who also present with unwanted movements exhibit facilitation instead of SAI when a digit in the surrounding area is stimulated [31]. Further, a reduction in SAI is correlated with functional recovery from stroke with larger reductions in SAI being associated with more movement [32]. As a result, how SAI is modulated during movement initiation for muscles involved versus uninvolved in a task may be a marker for certain movement disorders that present with unwanted movements.

Limitations

There are a few limitations that may impact our interpretation of the data. We observed differences in the modulation of SAI in FDI compared to ADM in a finger flexion task. One consideration is that such effects may have emerged because FDI may provide greater assistance to the long finger flexors compared to ADM. Future studies may examine the effects of SAI modulation in these two muscles during finger abduction, an action in which these muscles are primarily responsible for. We recorded H-reflexes to determine the level of spinal excitability in each muscle during the phases of movement. When measuring spinal excitability in FDI by stimulating the ulnar nerve, heteronymous excitation of the median nerve is possible [33] and could activate the first lumbrical muscles. A future study to test whether the type of nerve innervating the digit drives this SAI modulation may compare movements of a muscle in the thumb such as abductor pollicis brevis (i.e., median nerve) versus ADM (i.e., ulnar nerve). Further, we added light voluntary contraction when recording H-reflexes since this approach was necessary to record reflexes from these hand muscles and therefore, there was a small increase in force level to perform this task. Evidence in a study on lower limb spinal excitability, however, indicates that small increases in overall excitability, however, indicates that small increases in overall MVC does not affect H-reflex amplitude [34]. Thus, it is unlikely that the force level modification in the present work affected spinal excitability. Last, we elicited SAI in ADM and FDI with the same perceptual threshold to match the level of afferent input to the cortex. Our data indicates that SAI was greater in FDI compared to ADM at rest. It could be that the results of the study may have differed if SAI was matched for the same level of inhibition. However, the absolute magnitude of SAI for each muscle did not approach floor or ceiling levels thereby allowing SAI modulation to occur equally for each muscle tested. Further, since the opportunity for SAI modulation is similar for both muscles, the possible range of modulation is not limited or favoured for either muscle. If we had attempted to match SAI magnitude at rest across the two muscles, it is likely that the same effects would be observed, namely a very large reduction in FDI SAI. Therefore this limitation is unlikely to affect the overall interpretation of the data.

Conclusion

SAI modulation prior to the onset of movement behaved differently for muscles controlling the 2nd versus 5th digit and how they differed depended on the movement phase tested. This work on the functionality of SAI has implications to individuals with certain movement disorders such as focal hand dystonia and Parkinson’s disease that have difficulties preventing unwanted movements. Interventions aimed at improving SAI modulation during wanted and unwanted movements may improve hand function in certain movement disorders.

Author Contributions

Conceived and designed the experiments: MJA AJN. Performed the experiments: MJA CMZ MFJ KGL PT. Analyzed the data: MJA AJN. Contributed reagents/materials/analysis tools: MJA CMZ MFJ KGL PT. Contributed to the writing of the manuscript: MJA CMZ MFJ KGL PT.

References

1. Tokimura H, Di Lazzaro V, Tokimura Y, Oliverio A, Profice P, et al. (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 525 Pt 2: 503–513.
2. Fischer M, Orth M (2011) Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS. Brain Stimul 4: 202–209.
3. Blakemore C, Carpenter RH, Georgeana MA (1970) Lateral inhibition between orientation detectors in the human visual system. Nature 228: 37–39.
4. Tinaazzi M, Priori A, Bertola I, Frasson E, Mauguiere F, et al. (2000) Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 123 (Pt 1): 42–50.
5. Beck S, Hallett M (2011) Surround inhibition in the motor system. Exp Brain Res 210: 165–172. 10.1007/s00221-010-2610-6 [doi].
6. Asmussen MJ, Jacobs MF, Lee KGH, Zapalow CM, Nelson AJ (2015) Short-Latency Afferent Inhibition Modulation during Finger Movement. PLoS ONE 10: e014966. doi:10.1371/journal.pone.014966.
7. Ni Z, Charab S, Gunraj C, Nelson AJ, Udupa K, et al. (2011) Transcranial magnetic stimulation in different current directions activates separate cortical circuits. J Neurophysiol 105: 749–756.
8. Voller B, St Clair GA, Danbois J, Pirio RS, Lomarev M, et al. (2006) Short-latency afferent inhibition during selective finger movement. Exp Brain Res 169: 226–231.
9. Richardson SP, Bliem R, Lomarev M, Shamim E, Dong N, et al. (2008) Changes in short afferent inhibition during phasic movement in focal dystonia. Muscle Nerve 37: 358–363.
10. Kinoshita H, Kawai S, Ikuta K, Teraoka T (1996) Individual finger forces acting on a grasped object during shaking actions. Ergonomics 39: 243–256. 10.1080/00140139508925183 [doi].
11. Sutherland WW, Levesque MF, Baumgartner C (1992) Cortical sensory representation of the human hand: size of finger regions and nonoverlapping digit somatotopy. Neurology 42: 1020–1026.
12. Reilmann R, Gordon AM, Herrmanns H (2001) Initiation and development of fingertip forces during whole-hand grasping. Exp Brain Res 140: 443–452. 10.1007/s002210010381 [doi].
13. Kinoshita H, Kawai S, Ikuta K (1995) Contributions and co-ordination of individual fingers in multiple finger prehension. Ergonomics 38: 1212–1230. 10.1080/00140139508925183 [doi].
14. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 73–79.
15. Kukou M (2008) The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods 171: 1–12. S0165-0270(08)00119-2 [pii]; 10.1016/j.jneumeth.2008.02.012 [doi].
16. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, et al. (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52: 97–103.
17. Beck S, Richardson SP, Shamim EA, Pang N, Schubert M, et al. (2006) Short intracortical and surround inhibition are selectively reduced during movement initiation in focal hand dystonia. J Neurosci 26: 10363–10369.
18. Inghilleri M, Lorenzano C, Conte A, Frasca V, Manfredi M, et al. (2003) Effects of transcranial magnetic stimulation on the H reflex and F wave in the hand muscles. Clin Neurophysiol 114: 1096–1101. S1388245703000567 [pii].
19. Beck S, Schubert M, Richardson SP, Hallett M (2009) Surround inhibition depends on the force exerted and is abnormal in focal hand dystonia. J Appl Physiol 107: 1513–1518. 91580.2008 [pii]; 10.1152/japplphysiol.91580.2008 [doi].
20. Swanson A (1964) Evaluation of impairment of function in the hand. Surgical Clinics of North America 44: 925–940.
21. Di Lazzaro V, Pilato F, DiLone M, Tonioli PA, Ziemann U (2005) Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol 569: 315–323.
22. Di Lazzaro V, Oliverio A, Saturno E, DiLone M, Pilato F, et al. (2005) Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. J Physiol 564: 661–668.
23. Di Lazzaro V, Pilato F, DiLone M, Profice P, Ranieri F, et al. (2007) Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study. Clin Neurophysiol 118: 2207–2214.
24. Udupa K, Ni Z, Gunraj C, Chen R (2009) Interactions between short latency afferent inhibition and long interval intracortical inhibition. Exp Brain Res 199: 177–183.

25. Udupa K, Ni Z, Gunraj C, Chen R (2013) Effects of short latency afferent inhibition on short interval intracortical inhibition. J Neurophysiol. jn.00613.2013 [pii];10.1152/jn.00613.2013 [doi].

26. Zikopoulos B, Barbaras H (2007) Circuits multisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Rev Neurosci 18: 417–438.

27. Knight RT, Staines WR, Swick D, Chao LL (1999) Prefrontal cortex regulates inhibition and excitation in distributed neural networks. Acta Psychol (Amst) 101: 159–178.

28. Elbert T, Candia V, Altenmüller E, Rau H, Sterr A, et al. (1998) Alteration of digital representations in somatosensory cortex in focal hand dystonia. Neuroreport 9: 3571–3575.

29. Nelson AJ, Blake DT, Chen R (2009) Digit-specific aberrations in the primary somatosensory cortex in Writer’s Cramp. Ann Neurol 66: 146–154.

30. Tamburin S, Fiaschi A, Andreoli A, Marani S, Zanette G (2005) Sensorimotor integration to cutaneous afferents in humans: the effect of the size of the receptive field. Exp Brain Res 167: 362–369.

31. Saifer A, Mohar GF, Paradiso G, Gunraj CA, Lang AE, et al. (2003) Short and long latency afferent inhibition in Parkinson’s disease. Brain 126: 1883–1894. 10.1093/brain/awg183 [doi];awg183 [pii].

32. Di Lazzaro V, Profice P, Pilato F, Capone F, Ranieri F, et al. (2012) The level of cortical afferent inhibition in acute stroke correlates with long-term functional recovery in humans. Stroke 43: 250–252.

33. McNeil CJ, Butler JE, Taylor JL, Gandevia SC (2013) Testing the excitability of human motoneurons. Front Hum Neurosci 7: 152. 10.3389/fnhum.2013.00152 [doi].

34. Chen YS, Zhou S, Cartwright C, Crowley Z, Baglin R, et al. (2010) Test-retest reliability of the soleus H-reflex is affected by joint positions and muscle force levels. J Electromyogr Kinesiol 20: 980–987. S1050-6411(09)00161-8 [pii];10.1016/j.elekin.2009.11.003 [doi].