Relationship between the expression of oestrogen receptor and progesterone receptor and 18F-FDG uptake in endometrial cancer

Chunhua Wu1,2*, Ruohua Chen1,2*, Lian Xu1,2, Yumei Chen1, Yining Wang1, Gan Huang1, Jianjun Liu1

1Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
2Department of Ultrasound, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

*Equal contribution

Correspondence to: Jianjun Liu; email: liujrj@sina.com

Keywords: endometrial cancer, ER, PR, PET/CT, SUVmax

ABSTRACT

Background: Progestogens have been widely used for the treatment of inoperable endometrial cancer or younger patients with endometrial cancer. Identifying markers that are predictive of a response to progestogens is critical for successful therapy. Molecular imaging with 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) can provide metabolic phenotypic information of many malignancies. We investigated whether estrogen receptor (ER)/progesterone receptor (PR) status is correlated with 18F-FDG uptake, and whether 18F-FDG PET/CT could be useful for predicting ER/PR status in endometrial cancer.

Results: Endometrial cancers in the ER-positive group had lower SUVmax than those in the ER-negative group (12.3 ± 6.2 vs. 19.9 ± 6.6, respectively; P = 0.003). Endometrial cancers in the PR-positive group also had lower SUVmax than those in the PR-negative group (12.4 ± 6.2 vs. 20.0 ± 6.9, respectively; P = 0.005). Multivariate analysis indicated that SUVmax and tumour differentiation grade were significantly associated with both ER and PR status (P = 0.027 and P = 0.044, respectively). ER expression was predicted with an accuracy of 74.2% when a SUVmax value of 15.3 was used as a cutoff point for analysis. Similarly, PR expression was predicted with an accuracy of 74.2%, when a SUVmax value of 15.95 was used as the threshold for analysis.

Conclusion: Higher 18F-FDG accumulation in endometrial cancers is correlated with negative ER/PR expression. 18F-FDG PET/CT may be used to predict the status of ER/PR and thus aid in optimal treatment decision in endometrial cancers.

INTRODUCTION

Endometrial cancer is one of the most frequently gynaecological malignancies worldwide [1, 2]. Radical treatment remains the main therapeutic approach for endometrial cancer [3, 4]. However, sometimes endometrial cancer is diagnosed at an advanced stage with inoperable or metastatic disease. In patients with inoperable or metastatic endometrial cancer with endometrial cancer, conservative treatment such as progestogens are widely used instead of surgery [5, 6]. However, quite a part of patients do not respond to conservative treatment [7]. Previous studies demonstrate that patients with high ER/PR expression show a higher overall response rate than that shown by patients with low ER/PR expression among patients.
treated with progestogens [8–10]. Therefore, in patients with endometrial cancer, it is meaningful to identify a clinicopathologic feature that is predictive of the status of estrogen receptor (ER)/progestogen receptor (PR) expression. However, thus far, there are no validated clinicopathologic characteristics to select a priori patients who may benefit from conservative treatment in endometrial cancer.

\[^{18} \text{F-fluorodeoxyglucose positron emission tomography} \ (^{18} \text{F-FDG PET}) \] is a noninvasive diagnostic tool widely used in diagnosis and staging of endometrial carcinoma [11–13]. Our previous studies suggested that \(^{18}\text{F-FDG PET/CT} \) could be useful for predicting molecular phenotype in several malignant tumors, including PD-L1 in bladder cancer [14], LDHA expression in lung cancer, and FBP1 expression in hepatocellular carcinoma [15, 16]. Many previous reports have suggested an inverse correlation between \(^{18}\text{F-FDG accumulation of the primary tumour and ER/PR status in breast cancer [17–19]. However, the correlation between \(^{18}\text{F-FDG accumulation and ER/PR status in endometrial cancer, and the possible underlying molecular mechanisms, are still unclear.}

In the present study, we assessed whether ER/PR status of the primary tumour in endometrial cancer is correlated with \(^{18}\text{F-FDG accumulation and whether \(^{18}\text{F-FDG PET/CT} \) can be useful for predicting ER/PR status in endometrial cancer. So far, our study is the first to provide data about the potential use of \(^{18}\text{F-FDG PET/CT} \) in the prediction of ER/PR status in endometrial cancer, as well as to show that \(^{18}\text{F-FDG PET/CT} \) has great effects on determining optimal treatment methods by predicting the response to progestogen treatment in endometrial cancers.

RESULTS

Study population

Patients’ clinicopathologic features are shown in Table 1. A total of 62 women (median age, 55.2 years; range, 29-76 years) were included in this study, of which 36 patients were already menopausal. Before \(^{18}\text{F-FDG PET/CT} \) scans, endometrial cancer was confirmed in 15 patients by hysteroscopy or colposcopy and in 45 patients by curettage. The mean time from biopsy to the scan was 16.0 days. Among the 62 cases, 49 had well- or moderately differentiated endometrial carcinoma, while 13 had poorly differentiated endometrial carcinoma. The SUVmax of endometrial cancers ranged from 2 to 33.2, with an average of 13.5. Positive ER expression was found in 83.9% (52/62) of the primary tumours, and positive PR expression was found in 85.5% (53/62) of the primary tumours.

Correlation between SUVmax and ER/PR expression

We investigated ER/PR status by immunohistochemical analysis. In the primary tumours, we identified a negative association between SUVmax and the status of ER (Figure 1A) and PR (Figure 1B). Endometrial cancers in the ER-positive group had lower SUVmax than those in the ER-negative group (12.3 ± 6.2 vs. 19.9 ± 6.6, respectively; \(P = 0.003 \)). Endometrial cancers in the PR-positive group also had lower SUVmax than those in the PR-negative group (12.4 ± 6.2 vs. 20.0 ± 6.9, respectively; \(P = 0.005 \)).

We next determined the optimal SUVmax threshold for predicting ER and PR expression. ROC analysis demonstrated that the highest accuracy (74.2%) to predict ER expression was obtained when the SUVmax threshold was 15.3, resulting in area under curve of 0.8 ± 0.062. The sensitivity and specificity of this value for the prediction of ER status was found to be 73.1% (38/52) and 80% (8/10), respectively (Figure 1C). Likewise, ROC analysis also demonstrated that the highest accuracy (74.2%) to predict PR expression was obtained when the SUVmax threshold was 15.95, resulting in area under curve of 0.792 ± 0.066. Similarly, the sensitivity and specificity of this value for the prediction of PR status were found to be 73.6% (39/53) and 77.8% (7/9), respectively (Figure 1D). Taken together, these results demonstrate that SUVmax may be used to predict ER/PR status in endometrial cancer.

Correlation between clinicopathologic characteristics and ER/PR status

Patients were separated into two groups on the basis of ER/PR status. The associations between clinicopathologic characteristics in endometrial cancers and ER/PR status were evaluated (Table 2). No significant differences in biopsy method, time from biopsy to scan, lymph node metastasis, or tumour size were observed between ER-positive and ER-negative groups. Whereas, the groups differed significantly in SUVmax, histologic type, age, menopause status, and FIGO stage (Table 2). In the multivariate analysis, SUVmax of the primary tumour and tumour differentiation grade remained significantly associated with ER status in endometrial cancer (Table 3). Similar correlations were also observed for expression of PR (Table 3).

On the basis of above two parameters including SUVmax and tumour differentiation grade, we categorized endometrial cancers into three groups to infer their potential of being ER-positive: a low-
Table 1. Patient characteristics (n = 62).

Characteristics	No. of Patients
Age (y)	
Mean ± SD	55.2±11.2
Range	29-76
Menopause status	
Pre	26
Post	36
Time from biopsy to scan (days)	16.0±9.1
Biopsy method before scan	
Hysteroscopy or colposcopy	15
Curettage	45
None	2
Myometrial invasion	
<50%	45
≥50%	17
Histologic type	
Well- or moderately differentiated	49
Poorly differentiated	13
Tumor size (cm)	2.9±1.8
FIGO stage	
1	56
2-4	6
SUVmax	
Mean ± SD	13.5±6.8
Range	2-33.2
ER expression	
Negative	10
Positive	52
PR expression	
Negative	9
Positive	53

Potential group (SUVmax > 15.3 and poorly differentiated), a moderate-potential group (SUVmax < 15.3 and poorly differentiated, or SUVmax > 15.3 and well- or moderately differentiated), and a high-potential group (SUVmax < 15.3 and well- or moderately differentiated). The probability of ER-positive status in these groups was 37.5% (3/8), 73.7% (14/19), and 100.0% (35/35), respectively (P < 0.001; Table 4). Similarly, based on these two parameters, we categorized endometrial cancers into three groups to infer their potential of being PR-positive: a low-potential group (SUVmax > 15.95 and poorly differentiated), a moderate-potential group (SUVmax < 15.95 and poorly differentiated, or SUVmax > 15.95 and well- or moderately differentiated), and a high-potential group (SUVmax < 15.95 and well- or moderately differentiated). The probability of PR-positive status in these groups was 37.5% (3/8), 72.2% (13/18), and 100.0% (36/36), respectively (P < 0.001; Table 4).

DISCUSSION

Progestogens are widely used for the treatment of patients with metastatic endometrial cancers or younger patients [20–22]. The status of ER/PR in endometrial cancers is being explored as a predictive marker for response to progestogen therapy, i.e., high ER/PR expression shows a significant association with good response [8]. Testing for ER/PR status is now common in the management of endometrial cancer [21]. The current study found ER and PR expression rates of 83.9% and 85.5%, respectively, which were similar to those reported previously [23, 24]. \(^{18}\)F-FDG PET/CT is a noninvasive diagnostic tool to detect malignant tumors [25]. Many previous studies have suggested that \(^{18}\)F-FDG PET/CT has the potential for predicting the status of ER/PR in breast cancer [17–19]. In this study, we demonstrate that the SUVmax was significantly lower in endometrial cancer with positive ER/PR expression than in endometrial cancers that lacked
ER/PR expression. This is the first study, to our knowledge, that analyzes the correlation between 18F-FDG accumulation and ER/PR status in endometrial cancer patients.

Hormone therapy targeting progestogens was widely used for treating many malignant tumours, including endometrial cancer [20]. However, the clinicopathologic characteristics of patients correlated with response from hormone therapy are still unknown, and identifying patients who are possible to achieve response from progestogens while excluding those who are unresponsive to the treatment is still an important question. The status of ER/PR assessed by immunohistochemistry analysis is considered as a predictive marker for progestogens treatment in endometrial cancer [21]. Whereas, tumor tissue obtained by curettage or surgical resection are invasive. Though several studies have reported the application of 16a-18F-fluoro-17b-estradiol (18F-FES) PET/CT in ER-positive breast cancer [26, 27], there are no studies reporting the application of 18F-FES PET/CT in endometrial cancers. For these reasons, other noninvasive methods, such as 18F-FDG PET/CT, which could predict the expression of ER/PR and inform optimal treatment decision with hormone therapy would be of important clinical value in endometrial cancers.

We discovered a negative correlation between SUVmax and ER/PR status in endometrial cancers. The ROC curves analysis demonstrated that 18F-FDG accumulation of primary tumors could be useful for predicting ER/PR status. Multivariate analysis revealed that both SUVmax and tumour differentiation grade were significant predictors of ER/PR expression in endometrial cancers. However, the molecular mechanism of association between 18F-FDG accumulation and ER/PR status are still unclear. HIF1α played a key role in regulating 18F-FDG accumulation of tumor cells [28, 29]. Previous studies have identified that HIF1α directly down-regulates ER expression levels in cancer lines [30–33]. In addition, Cerchi et.al reported an inverse correlation between HIF-1α levels and PR expression [33, 34]. These data suggest that a negative correlation between 18F-FDG accumulation and ER/PR status may reflect the activation of HIF-1α pathway.

![Figure 1](image-url)

Figure 1. The association between 18F-FDG accumulation and ER/PR status in endometrial cancers ($n = 62$). (A) The association between 18F-FDG accumulation and ER status. Endometrial cancers in the ER-positive group had lower SUVmax than those in the ER-negative group (12.3 ± 6.2 vs. 19.9 ± 6.6, respectively; $P = 0.003$). (B) The association between 18F-FDG accumulation and PR status. Endometrial cancers in the PR-positive group also had lower SUVmax than those in the PR-negative group (12.4 ± 6.2 vs. 20.0 ± 6.9, respectively; $P = 0.005$). (C) ROC analysis of SUVmax for predicting ER status. When the cutoff threshold of SUVmax was 15.3, the sensitivity and specificity to predict ER expression were 73.1% and 80.0%, respectively. The area under curve was 0.8 (95% confidence interval: 0.679-0.921; $P = 0.003$). (D) ROC analysis of SUVmax for predicting PR status. When the cutoff threshold of SUVmax was 15.95, the sensitivity and specificity to predict PR expression were 73.6% and 77.8%, respectively. The area under curve was 0.792 (95% confidence interval: 0.663-0.992; $P = 0.005$).
Table 2. Relationship between ER/PR expression and clinicopathological characteristics in endometrial cancer (n = 62).

Characteristics	Total	ER expression	PR expression	P value	P value
	Total	Negative	Positive		
	64.4±5.3	53.4±11.2		0.004	
Age	64.7±5.9	53.6±11.2			0.005
Menopause status					
Pre	26	1	25	0.025	1
Post	36	9	27		1
Biopsy method					
Hysteroscopy or colposcopy	15	2	13	0.689	2
Curettage	45	8	37		7
Time from biopsy to scan	15.6±8.6	16.1±9.3	0.886		15.5±9.0
Myometrial invasion					
<50%	45	3	42	0.001	3
≥50%	17	7	10		6
Lymph node metastasis					
Absent	57	8	49	0.13	8
Present	5	2	3		1
Histologic type					
Well/moderately differentiated	49	3	46	<0.001	2
Poorly differentiated	13	7	6		7
Tumor size (cm)	3.4±1.7	2.8±1.8	0.362		2.9±1.9
FIGO stage	1	56	7	0.048	5
2-4	6	3	3		4
SUVmax	19.9±6.6	12.3±6.2	0.003		12.4±6.2

Table 3. Multivariate analysis of ER/PR expression in patients with endometrial cancer.

Predictors	Factor	Odds ratio	95% Confidence interval	P
ER	Age	0.855	0.706-1.037	0.112
	Menopause status	1.412	0.016-125.322	0.88
	Tumor differentiation	0.029	0.002-0.549	0.029
	FIGO stage	7.191	0.276-187.288	0.236
	SUVmax	0.82	0.687-0.978	0.027
PR	Age	0.881	0.728-1.065	0.19
	Menopause	0.636	0.002-232.969	0.88
	Tumor differentiation	0.047	0.003-0.836	0.037
	FIGO stage	0.852	0.04-18.324	0.919
	SUVmax	0.808	0.656-0.994	0.044

Table 4. Rates of positive ER and PR expression in patients with endometrial cancer with low, moderate, and high potential for ER/PR expression, as indicated by SUVmax and histologic type.

Potential	ER expression (%)	PR expression (%)				
	Negative	Positive	P	Negative	Positive	P
Low	62.5	37.5	<0.001	62.5	37.5	<0.001
Moderately	26.3	73.7	<0.001	27.8	72.2	
High	0	100		0	100	

www.aging-us.com 12925 AGING
We divided endometrial cancers into three groups based on their potential for being ER-positive or PR-positive, as indicated by SUVmax and tumour differentiation grade: low potential, moderate potential, and high potential. ER-positive was found in 100.0% of the endometrial cancers in the high-potential group, but only in 37.5% of endometrial cancers in the low-potential group. Similarly, PR-positive was found in 100.0% of the endometrial cancers in the high-potential group, but only in 37.5% of endometrial cancers in the low-potential group. These data demonstrate that progesterogen treatment may not be recommended for endometrial cancers with low potential of being ER/PR-positive. Novel hormone therapy approaches are now being developed to target the ER/PR axis. For these reasons, noninvasive strategies, including molecular imaging tools, which could be used for predicting the status of ER/PR are of important clinical value, and have good prediction effect of the response to hormone therapy in endometrial cancers.

This study is limited by its small sample and retrospective design. Though 18F-FDG PET/CT could have a good predictive value, it is not feasible to obtain an optimal cutoff for SUVmax in the clinical setting, and 18F-FDG PET/CT cannot supersede immunohistochemistry analysis for detecting ER/PR expression. And there is a partial overlap between positive and negative ER/PR cases in 18F-FDG uptake. In addition, most of patients had positive ER and PR expression and this may influence the statistical analysis.

CONCLUSIONS

Our study demonstrates that higher 18F-FDG accumulation in endometrial cancers is correlated with negative ER/PR expression. 18F-FDG PET/CT may be used to predict the status of ER/PR and thus aid in optimal treatment decision in endometrial cancers. This study can promote the advancement of noninvasive methods to infer ER/PR status. Progress in new radiotracers may improve the accuracy of this technique.

MATERIALS AND METHODS

Study population

Sixty-two women with endometrial cancer were examined in this study. Before 18F-FDG PET/CT scans were obtained, endometrial cancer was confirmed in 60 patients by using curettage, hysteroscopy, or colposcopy. Endometrial cancer was suspected in two patients but was not confirmed by pathologic tests before 18F-FDG PET/CT scans. All patients underwent 18F-FDG PET-CT before radical treatment at Ren Ji Hospital between December 2015 and April 2019. Inclusion criteria were as follows: (1) they had been treated by hysterectomy with lymphadenectomy; (2) endometrial cancers were confirmed by pathology of surgical specimens, curettage, hysteroscopy, or colposcopy; (3) adjuvant therapy had not been administered before scan; and (4) clinicopathological data were all available, including age, menopause status, biopsy method, FIGO stage, and the time from biopsy to scan, tumour size, and histologic type, were available. Informed consent was not obtained, and the RenJi Hospital Institutional Review Board approved this retrospective study.

PET-CT

Endometrial cancer patients were asked to fast for more than six hours before 18F-FDG injected. Patients’ glucose levels were measured before 18F-FDG administration, and there were no patients whose blood glucose level exceeded 140 mg/dL in this study. The mean uptake time was approximately 60 minutes (ranged from 50 to 70 minutes). PET was carried out with an acquisition time of 3 minutes per bed position by a combined PET/CT (Biograph mCT; Siemens). The CT was used for attenuation correction.

Two board-certified nuclear medicine physicians (Ruohua Chen and Jianjun Liu) assessed the 18F-FDG accumulation. ROIs were placed on the tumor uptake lesion of axial section for semi-quantitative analysis. The following formula was used to calculating the maximum of standardized uptake value (SUVmax) of the primary tumor: decay-corrected tracer tissue concentration (injected 18F-FDG dose/patients’ weight).

Pathological evaluation

One board-certified pathologist assessed the primary tumour. Pathological parameters were recorded, including tumour histological type, FIGO stage, maximum tumour size, depth of myometrial invasion, and pelvic or paraaortic lymph node metastasis.

Immunohistochemical analysis

Tumor tissues were paraffin-embedded and used for immunohistochemical analysis. Positivity for ER and PR was assessed by one board-certified pathologist. The percentage of cells that stained positively for ER or PR was quantified. Cases in which more than 5% of tumour cells stained positive for ER/PR were considered to reflect positive expression [23].
Statistical analysis

All values are demonstrated as mean ± SD. The statistical differences between different groups were compared using Mann–Whitney U test or chi-square test. P value < 0.05 was considered as significant. SPSS software was used for statistical analysis.

Ethics approval and consent to participate

The study was approved by the institutional review board of the Shanghai Jiaotong University-affiliated Ren Ji Hospital and was in accordance with the 2013 revision of the Declaration of Helsinki. The need for informed consent was waived due to the retrospective nature of the study.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

FUNDING

This work was supported by grants from the National Natural Science Foundation of China (nos. 81701724, 81718581, 81830052, 81530053, 81602415, 81571710, 81771861, 81701725, 81601520, 81601536, and 81572719), and Innovative Research Team of high-level local Universities in Shanghai.

REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; 136:E359–86. https://doi.org/10.1002/ijc.29210 PMID:25220842

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019; 69:7–34. https://doi.org/10.3322/caac.21551 PMID:30620402

3. Lee YC, Lheureux S, Oza AM. Treatment strategies for endometrial cancer: current practice and perspective. Curr Opin Obstet Gynecol. 2017; 29:47–58. https://doi.org/10.1097/GCO.0000000000000338 PMID:27941361

4. Lundin ES, Wodlin NB, Nilsson L, Kjölhede P. A prospective randomized assessment of quality of life between open and robotic hysterectomy in early endometrial cancer. Int J Gynecol Cancer. 2019. [Epub ahead of print].

5. Fan Z, Li H, Hu R, Liu Y, Liu X, Gu L. Fertility-preserving treatment in young women with grade 1 presumed stage IA endometrial adenocarcinoma: a meta-analysis. Int J Gynecol Cancer. 2018; 28:385–93. https://doi.org/10.1097/IGC.0000000000001164 PMID:29266019

6. McKenzie ND, Kennard JA, Ahmad S. Fertility preserving options for gynecologic Malignancies: a review of current understanding and future directions. Crit Rev Oncol Hematol. 2018; 132:116–24. https://doi.org/10.1016/j.critrevonc.2018.09.020 PMID:30447916

7. Gallos ID, Yap J, Rajkhowa M, Luesley DM, Coomarasamy A, Gupta JK. Regression, relapse, and live birth rates with fertility-sparing therapy for endometrial cancer and atypical complex endometrial hyperplasia: a systematic review and metaanalysis. Am J Obstet Gynecol. 2012; 207:266.e1–12. https://doi.org/10.1016/j.ajog.2012.08.011 PMID:23021687

8. Gallos ID, Devey J, Ganesan R, Gupta JK. Predictive ability of estrogen receptor (ER), progesterone receptor (PR), COX-2, Mlh1, and bcl-2 expressions for regression and relapse of endometrial hyperplasia treated with LNG-IUS: a prospective cohort study. Gynecol Oncol. 2013; 130:58–63. https://doi.org/10.1016/j.ygyno.2013.04.016 PMID:23603367

9. Yamazawa K, Hirai M, Fujito A, Nishi H, Terauchi F, Ishikura H, Shozu M, Isaka K. Fertility-preserving treatment with progesterin, and pathological criteria to predict responses, in young women with endometrial cancer. Hum Reprod. 2007; 22:1953–58. https://doi.org/10.1093/humrep/dem088 PMID:17449880

10. Utsunomiya H, Suzuki T, Ito K, Moriya T, Konno R, Sato S, Yaegashi N, Okamura K, Sasano H. The correlation between the response to progestogen treatment and the expression of progesterone receptor B and 17beta-hydroxysteroid dehydrogenase type 2 in human endometrial carcinoma. Clin Endocrinol (Oxf). 2003; 58:696–703. https://doi.org/10.1046/j.1365-2265.2003.01766.x PMID:12780745

11. Bollineni VR, Ytre-Hauge S, Bollineni-Balabay O, Salvesen HB, Haldorsen IS. High diagnostic value of 18F-FDG PET/CT in endometrial cancer: systematic review and meta-analysis of the literature. J Nucl Med. 2016; 57:879–85. https://doi.org/10.2967/jnumed.115.170597 PMID:26823564
12. Albano D, Zizioli V, Odicino F, Giubbini R, Bertagna F. Clinical and prognostic value of 18F-FDG PET/CT in recurrent endometrial carcinoma. Rev Esp Med Nucl Imagen Mol. 2019; 38:87–93. https://doi.org/10.1016/j.remn.2018.09.005 PMID: 30573388

13. Kim HJ, Cho A, Yun M, Kim YT, Kang WJ. Comparison of FDG PET/CT and MRI in lymph node staging of endometrial cancer. Ann Nucl Med. 2016; 30:104–13. https://doi.org/10.1007/s12149-015-1037-8 PMID: 26546334

14. Chen R, Zhou X, Liu J, Huang G. Relationship between the expression of PD-1/PD-L1 and 18F-FDG uptake in bladder cancer. Eur J Nucl Med Mol Imaging. 2019; 46:848–54. https://doi.org/10.1007/s00259-018-4208-8 PMID: 30627815

15. Zhou X, Chen R, Xie W, Ni Y, Liu J, Huang G. Relationship between 18F-FDG accumulation and lactate dehydrogenase a in breast adenocarcinomas. J Nucl Med. 2014; 55:1766–71. https://doi.org/10.2967/jnumed.114.145490 PMID: 25342384

16. Chen R, Li J, Zhou X, Liu J, Huang G. Fructose-1,6-bisphosphatase 1 reduces 18F FDG uptake in hepatocellular carcinoma. Radiology. 2017; 284:844–53. https://doi.org/10.1148/radiol.2017161607 PMID: 28387640

17. Has Şimşek D, Şanli Y, Küle CB, Karanlik H, Kiliç B, Kuyumcu S, Önder S, Özmen V. Correlation of 18F-FDG PET/CT with pathological features and survival in primary breast cancer. Nucl Med Commun. 2017; 38:694–700. https://doi.org/10.1097/MNM.0000000000000694 PMID: 28557954

18. Khare S, Singh SS, Irrinki S, Sakaray Y, Mittal BR, Bal A, Singh G. 18F-fluorodeoxyglucose positron emission tomography/computed tomography features in locally advanced breast cancer and their correlation with molecular subtypes. Indian J Nucl Med. 2018; 33:290–94. https://doi.org/10.4103/ijnm.IJNM_77_18 PMID: 30386049

19. Lee J, Lee EJ, Moon SH, Kim S, Hyun SH, Cho YS, Choi JY, Kim BT, Lee KH. Strong association of epidermal growth factor receptor status with breast cancer FDG uptake. Eur J Nucl Med Mol Imaging. 2017; 44:1438–47. https://doi.org/10.1007/s00259-017-3705-5 PMID: 28488029

20. Deli T, Orosz M, Jakab A. Hormone replacement therapy in cancer survivors - review of the literature. Pathol Oncol Res. 2020; 26:63–78. https://doi.org/10.1007/s12253-018-00569-x PMID: 30617760

21. Travaglini A, Raffone A, Saccone G, Insabato L, Mollo A, De Placido G, Zullo F. Immunohistochemical predictive markers of response to conservative treatment of endometrial hyperplasia and early endometrial cancer: A systematic review. Acta Obstet Gynecol Scand. 2019; 98:1086–1099. https://doi.org/10.1111/aogs.13587 PMID: 30793281

22. Jerzak KJ, Duska L, MacKay HJ. Endocrine therapy in endometrial cancer: an old dog with new tricks. Gynecol Oncol. 2019; 153:175–83. https://doi.org/10.1016/j.ygyno.2018.12.018 PMID: 30616900

23. Alkushi A, Clarke BA, Akbari M, Makretsov N, Lim P, Miller D, Magliocco A, Coldman A, van de Rijn M, Huntsman D, Parker R, Gilks CB. Identification of prognostically relevant and reproducible subsets of endometrial adenocarcinoma based on clustering analysis of immunostaining data. Mod Pathol. 2007; 20:1156–65. https://doi.org/10.1038/modpathol.3800950 PMID: 17717550

24. Guan J, Xie L, Luo X, Yang B, Zhang H, Zhu Q, Chen X. The prognostic significance of estrogen and progesterone receptors in grade I and II endometrioid endometrial adenocarcinoma: hormone receptors in risk stratification. J Gynecol Oncol. 2019; 30:e13. https://doi.org/10.3802/j.go.2019.30.e13 PMID: 30479097

25. Jadvar H, Alavi A, Gambhir SS. 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med. 2009; 50:1820–27. https://doi.org/10.2967/jnumed.108.054098 PMID: 19837767

26. Liu C, Gong C, Liu S, Zhang Y, Zhang X, Xu X, Yuan H, Wang B, Yang Z. 18F-FES PET/CT influences the staging and management of patients with newly diagnosed estrogen receptor-positive breast cancer: a retrospective comparative study with 18F-FDG PET/CT. Oncologist. 2019; 24:e1277–1285. https://doi.org/10.1634/theoncologist.2019-0096 PMID: 31337657

27. Salem K, Kumar M, Powers GL, Jeffery JJ, Yan Y, Mahajan AM, Fowler AM. 18F-16α-17β-fluoroenestradiol binding specificity in estrogen receptor-positive breast cancer. Radiology. 2018; 286:856–64.
28. Gordan JD, Lal P, Dondeti VR, Lettero R, Parekh KN, Oquendo CE, Greenberg RA, Flaherty KT, Rathmell WK, Keith B, Simon MC, Nathanson KL. HIF-alpha effects on c-myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell. 2008; 14:435–36.
https://doi.org/10.1016/j.ccr.2008.10.016
PMID:19061835

29. Zhang H, Lu C, Fang M, Yan W, Chen M, Ji Y, He S, Liu T, Chen T, Xiao J. HIF-1α activates hypoxia-induced PFKFB4 expression in human bladder cancer cells. Biochem Biophys Res Commun. 2016; 476:146–52.
https://doi.org/10.1016/j.bbrc.2016.05.026
PMID:27181362

30. Helczynska K, Kronblad A, Jögi A, Nilsson E, Beckman S, Landberg G, Pählman S. Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Res. 2003; 63:1441–44.
PMID:12670886

31. Kurebayashi J, Otsuki T, Moriya T, Sonoo H. Hypoxia reduces hormone responsiveness of human breast cancer cells. Jpn J Cancer Res. 2001; 92:1093–01.
https://doi.org/10.1111/j.1349-7006.2001.tb01064.x
PMID:11676860

32. Stoner M, Saville B, Wormke M, Dean D, Burghardt R, Safe S. Hypoxia induces proteasome-dependent degradation of estrogen receptor alpha in ZR-75 breast cancer cells. Mol Endocrinol. 2002; 16:2231–42.
https://doi.org/10.1210/me.2001-0347
PMID:12351689

33. Dachs GU, Kano M, Volkova E, Morrin HR, Davey VC, Harris GC, Cheale M, Frampton C, Currie MJ, Wells JE, Robinson BA. A profile of prognostic and molecular factors in european and māori breast cancer patients. BMC Cancer. 2010; 10:543.
https://doi.org/10.1186/1471-2407-10-543
PMID:20932344

34. Cerci SM, Bozkurt KK, Eroglu HE, Cerci C, Erdemoglu E, Bulbul PT, Cetin M, Cetin R, Ciris IM, Bulbul M. Evaluation of the association between HIF-1α and HER-2 expression, hormone receptor status, ki-67 expression, histology and tumor FDG uptake in breast cancer. Oncol Lett. 2016; 12:3889–95.
https://doi.org/10.3892/ol.2016.5199
PMID:27895745