On the accuracy of DFT exchange-correlation functionals for H bonds in small water clusters II: The water hexamer and van der Waals interactions

Biswajit Santra1, Angelos Michaelides1,2*, Martin Fuchs3, Alexandre Tkatchenko1, Claudia Filippi3, and Matthias Scheffler1

1Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
2Materials Simulation Laboratory, London Centre for Nanotechnology and Department of Chemistry, University College London, London WC1E 6BT, UK
3Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, NL-2300 RA Leiden, and Faculty of Science and Technology and MESA+ Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Second order Møller-Plesset perturbation theory (MP2) at the complete basis set (CBS) limit and diffusion quantum Monte Carlo (DMC) are used to examine several low energy isomers of the water hexamer. Both approaches predict the so-called “prism” to be the lowest energy isomer, followed by “cage”, “book”, and “cyclic” isomers. The energies of the four isomers are very similar, all being within 10-15 meV/H\textsubscript{2}O. This reference data is then used to evaluate the performance of several density-functional theory (DFT) exchange-correlation (xc) functionals. A subset of the xc functionals tested for smaller water clusters [Santra \textit{et al.}, J. Chem. Phys. \textbf{127}, 184104 (2007)] has been considered. Whilst certain functionals do a reasonable job at predicting the absolute dissociation energies of the various isomers (coming within 10-20 meV/H\textsubscript{2}O), none predict the correct energetic ordering of the four isomers, nor does any predict the correct low total energy isomer. All xc functionals tested either predict the book or cyclic isomers to have the largest dissociation energies. A many-body decomposition of the total interaction energies within the hexamers leads to the conclusion that the failure lies in the poor description of van der Waals (dispersion) forces in the xc functionals considered. It is shown that the addition of an empirical pairwise (attractive) C_6R^{-6} correction to certain functionals allows for an improved energetic ordering of the hexamers. The relevance of these results to density-functional simulations of liquid water is also briefly discussed.

I. INTRODUCTION

How good is density-functional theory (DFT) for hydrogen (H) bonds? What is the best exchange-correlation (xc) functional for treating H bonds? Questions like these are far from uncommon for developers and practitioners of Kohn-Sham DFT, particularly those interested in simulating collections of atoms held together with H bonds. Clearly imprecise and vague questions it is nonetheless important to answer them, once, of course, terms like “good” and “best” have been defined and consideration made to the properties of interest (energetic, structural, dynamical, electronic). Indeed considerable effort has been expended in an attempt to answer questions like these \cite{1, 2, 3, 4, 5, 6, 7, 8}, and with new xc functionals regularly appearing, there appears to be no end in sight for such studies.

One particularly important class of H bonded systems, arguably the most important, are the H bonds that hold water molecules together, either as gas phase molecular clusters or condensed phase solid (ice) and liquid water. Kohn-Sham DFT has been widely used to examine water under various conditions and environments \cite{1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}. Along with this widespread application there have also been various benchmark studies specifically aimed at accessing the performance of various xc functionals in treating gas phase water clusters \cite{1, 5, 6, 7}, adsorbed clusters \cite{16, 17, 18, 19, 20, 21, 22, 23}, and liquid water \cite{8, 10, 11, 12, 13, 14, 15}. In particular, the question of the performance of DFT xc functionals in describing the structure and dynamics of liquid water has become a particularly hot and contentious issue due to apparent discrepancies between experiment and DFT \cite{8, 10, 11, 12, 13, 14, 15}. Reconciling these differences, which are mainly concerned with the radial distribution functions (RDFs) and diffusion coefficient of liquid water, remains an immensely important open question and is one that is actively being addressed by many. However, simultaneously addressing all the possible factors which could account for the difference between the experimental and theoretical RDFs and diffusion coefficients (e.g. quantum nuclear effects, xc functional, density, basis set, and so on) is far from straightforward and not particularly practicable. Instead the course we and others have chosen to follow to shed light on the performance of DFT xc functionals for treating water is to investigate well-defined gas phase water clusters for which precise comparison can be made to high level quantum chemistry calculations. This approach allows the precise performance limitations for a range of xc functionals to be obtained, information that is likely to be of relevance to liquid water.

*Electronic address: angelos.michaelides@ucl.ac.uk

Previously we tested the performance of 16 xc func-
tions for the equilibrium structures of the water dimer to pentamer making reference to complete-basis set (CBS) extrapolated MP2 data [1]. That study revealed that of the functionals tested the hybrid X3LYP [24] and PBE0 [25] functionals were the most accurate, both coming within 10 meV/H bond of MP2 for each cluster. Among the non-hybrid functionals mPWLYP [26, 27] and PBE1W [3] offered the best performance [1]. Here, we extend this work to the water hexamer. The water hexamer is interesting and warrants particular attention, not least because it provides a critical test for DFT xc functionals. Other often cited reasons for being interested particularly in water hexamers are that they represent a transition from cyclic structures favored by smaller water clusters to 3D structures favored by larger water clusters. And, that water hexamers are believed to be important constituents of liquid water and known to be building blocks of various phases of ice [41].

In the following, we report a study in which the ability of several popular xc functionals to describe the energies and structures of the four water hexamers mentioned above is addressed. How many of the widely used xc functionals such as PBE, BLYP, and B3LYP perform for the relative energies of these isomers remains unclear, although there are indications that these and other DFT xc functionals are likely to encounter problems for the hexamer [7, 38, 39, 40]. Other often cited reasons for being interested particularly in water hexamers are that they represent a transition from cyclic structures favored by smaller water clusters to 3D structures favored by larger water clusters. And, that water hexamers are believed to be important constituents of liquid water and known to be building blocks of various phases of ice [41].

II. METHODS AND REFERENCE DATA

This paper involves the application of a variety of theoretical approaches, which we now briefly describe. Specifically, we discuss how the MP2 and DMC reference data is acquired, and then the set-up for the DFT calculations.

A. MP2

MP2 has been used to compute structures and binding energies for each of the four isomers. All MP2 calculations have been performed with the Gaussian03 [42] and NWChem [43] codes and all geometries were optimized with an aug-cc-pVTZ basis set within the “frozen core” approximation i.e., correlations of the oxygen 1s orbital were not considered [43]. Although the aug-cc-pVTZ basis set is moderately large (92 basis functions/H$_2$O), this finite basis set will introduce errors in the predicted MP2 structures. However, a test with the H$_2$O dimer reveals that the aug-cc-pVTZ and aug-cc-pVQZ MP2 structures differ by only 0.004 Å in the O-O bond length and 0.16° in the H bond angle (ϕ, Fig. 1). Likewise, Nielsen and co-workers have shown that the MP2 O-O distances in the cyclic trimer differ by 0.006 Å between the aug-cc-pVTZ and aug-cc-pVQZ basis sets with all other bonds differing by <0.003 Å [44]. For our present purposes these basis set incompleteness errors on the
structures are acceptable and it seems reasonable to assume that the MP2 aug-cc-pVTZ structures reported here come with error bars compared to the MP2/CBS limit of ±0.01 Å for bond lengths and ±0.5° for bond angles.

Total energies and dissociation energies are known to be more sensitive to basis set incompleteness effects than the geometries are. To obtain reliable MP2 total energies and dissociation energies we employ the aug-cc-pVTZ, aug-cc-pVQZ (172 basis functions/H$_2$O) and aug-cc-pV5Z (287 basis functions/H$_2$O) basis sets in conjunction with the well-established methods for extrapolating to the CBS limit. Usually the extrapolation schemes rely on extrapolating separately the Hartree-Fock (HF) and correlation contributions to the MP2 total energy. For extrapolation of the HF part we use Feller’s exponential fit

$$E_{X}^{HF} = E_{CBS}^{HF} + A e^{-B X},$$

where, X is the cardinal number corresponding to the basis set (X=3, 4, and 5 for the aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z basis sets, respectively). E_{X}^{HF} is the corresponding HF energy, E_{CBS}^{HF} is the extrapolated HF energy at the CBS limit, and A and B are fitting parameters. For the correlation part of the MP2 total energy we follow an inverse power of highest angular momentum equation

$$E_{X}^{Corr} = E_{CBS}^{Corr} + C X^{-3} + D X^{-5},$$

where E_{X}^{Corr} is the correlation energy corresponding to X, E_{CBS}^{Corr} is the extrapolated CBS correlation energy, and C and D are fitting parameters.

B. QUANTUM MONTE CARLO

In order to assess the importance of correlation effects beyond the MP2 level, we evaluated the binding energies of the water clusters using quantum Monte Carlo calculations (QMC). QMC is a stochastic approach to solve the many-electron Schrödinger equation \cite{62}. The central quantity which determines the accuracy of a QMC calculation is the trial wave function, i.e. a correlated ansatz for the many-electron wave function. In variational Monte Carlo the expectation value of the many-electron Hamiltonian is computed as a statistical average over a large number of electronic configurations which are sampled from the square of the trial wave function using the Metropolis algorithm. An optimized trial wave function may be obtained within variational Monte Carlo based on variational principles for the trial wave function using the Metropolis algorithm. An optimized trial wave function is then used in diffusion Monte Carlo (DMC) which yields the best energy within the fixed-node approximation (i.e. projecting out the lowest-energy state with the same nodes as the trial wave function).

DMC calculations yield highly accurate results for a wide variety of chemical systems (molecules and solids) and properties (binding energies, reaction energetics) as shown, for example, in Refs. \cite{52, 53, 54, 55}. Recent studies of hydrogen-bonded (and stacked aromatic) molecular dimers \cite{56, 57, 58, 59, 60} demonstrate that DMC describes the interaction energies of such non-covalently bonded systems in very close agreement with the best available CCSD(T)/CBS estimates, in particular where corrections beyond MP2/CBS are significant \cite{62}.

In the present work, the trial wave functions are chosen of the Slater-Jastrow form with $\Psi = D_\uparrow D_\downarrow e^J$, i.e. as the product of Slater determinants D_α of one-particle orbitals for the spin-up and spin-down electrons and a Jastrow correlation factor e^J depending on the electron-electron and electron-nucleus distances \cite{63}. The one-electron orbitals are represented in an atomic Gaussian basis and generated from DFT-B3LYP calculations using the GAMESS code \cite{64}. The parameters of the Jastrow correlation factor are optimized using the variance minimization method \cite{65}. The atomic cores are represented using the nonlocal pseudopotentials of Ref. \cite{66} and included in diffusion QMC within the usual localization approximation (i.e. nonlocal potentials are transformed into local operators by projection onto the trial wave function). The QMC calculations are performed using the CHAMP package \cite{67, 68}. All QMC results reported below are from DMC. The results for the different isomers are given in Table 1 and calculated for MP2/aug-cc-VTZ geometries (see Sec. II.A) using a time step of $\tau = \frac{1}{\beta} E_h^{-1}$ and a target population of 800 walkers.

The main approximations in our DMC calculations are the fixed-node and pseudopotential localization approximations, and the quality of both is determined by the choice of the trial wave function. To estimate their effect on the hydrogen bond energies we have carefully analyzed the results of DMC calculations for the water dimer (in terms of the choice of pseudopotentials, basis set, terms in the Jastrow factor, and the time step in DMC) using the same form of the trial wave function as for the water hexamers. For the dissociation energy of the water dimer we obtain $D_e = 218 \pm 3$ meV, in agreement with the recent result of Gurturbay and Needs (GN), 218 ± 3 meV, obtained by a DMC calculation that employed a different set of pseudopotentials but appears otherwise essentially analogous to ours \cite{57}. These pseudopotential DMC results are consistent with the CCSD(T)/CBS result of Ref. \cite{69} (217.7 meV) and the all-electron DMC result of GN (224 ± 4 meV, for a Slater-Jastrow wave function using DFT-B3LYP orbitals). GN furthermore showed that going beyond the localization approximation for nonlocal pseudopotentials produces equivalent results for the water dimer dissociation energy to within 5 meV.
As the nodes of the trial wave function are given by its determinantal part, i.e. by \(D_\sigma \), we also use orbitals from HF instead of DFT-B3LYP calculations to build the Slater determinants and thus provide a test of the sensitivity of the DMC results to changes in the nodes. While HF orbitals noticeably increase the total energies of the monomer and dimer compared to DFT-B3LYP orbitals, we find that these changes cancel in the DMC dissociation energy. Our DMC-HF result is 214 ± 6 meV compared to 218 ± 8 meV for all-electron DMC-HF \(^{70}\). On the other hand, GN showed that the inclusion of so-called backflow correlations to alter the nodes in a Slater-Jastrow wave function produces a slightly stronger hydrogen bond, changes being < 20 meV in their pseudopotential DMC and somewhat smaller in their all-electron DMC calculation. From the above comparison of our DMC results for the water dimer with the best available theoretical reference data, DMC and CCSD(T), errors in the hydrogen bond strength due to the fixed-node and pseudopotential (localization) approximation appear small. We therefore expect that our DMC calculations provide an accurate account of approximations appear small. We therefore expect that our DMC calculations provide an accurate account of the interactions between water molecules also in the hexamers, i.e. \(\approx 10 \) meV/H\(_2\)O. To further corroborate this estimate requires additional investigation, in particular of the accuracy of the available, different pseudopotentials as well as of refinement of the trial wave functions. This is beyond the scope of the present study, but we note that previous DMC-HF studies using different pseudopotentials (and slightly different geometries) than employed here found somewhat larger dissociation energies of the water dimer \((245 \pm 9 \text{ meV}^{71} \text{ and } 232 \pm 4 \text{ meV}^{58}\) than in the present work and in Ref. \(^{57}\). The pseudopotentials used in these and the present study are both based on atomic HF calculations, yet their functional form is different. The accuracy of the pseudopotentials used here has been explicitly demonstrated for molecular properties of diatomic molecules at the CCSD(T) level \(^{60}\).

C. KOHN-SHAM DFT

We have performed DFT calculations with 12 different \(xc \) functionals, chosen either because they are popular or have previously been shown to perform well for the strengths of hydrogen bonds between water molecules. Specifically, we have examined the following generalized gradient approximation (GGA) functionals: PW91 \(^{72}\), PBE \(^{73}\), PBE1W \(^{5}\), mPWLYP \(^{24}\), BP86 \(^{74}\), BLYP \(^{27}\), \(^{74}\), and XLYP \(^{24}\). The meta-GGA TPSS \(^{76}\) has also been considered as well as the following hybrid functionals: PBE0 \(^{25}\), X3LYP \(^{24}\), B3LYP \(^{27}\), \(^{77}\), \(^{78}\), \(^{79}\), and B98 \(^{80}\). The local-density approximation (LDA) has not been considered since it is known to overestimate the dissociation energy of water clusters by >50% \(^{39}\).

Most DFT calculations have been performed with the Gaussian03 \(^{43}\) and NWChem \(^{44}\) codes. Such calculations are all-electron and employ Gaussian-type orbital basis sets. Geometries were optimized with an aug-cc-pVTZ basis set and energies with an aug-cc-pV5Z basis set. We have shown before that such large basis sets are, for DFT, sufficiently large to reflect the true performance of each \(xc \) functional at a level of accuracy that is reasonably expected to approach the basis set limit to within about 0.5 meV/H bond or better \(^{4}\).

While standard quantum chemistry software packages, such as the ones mentioned above, can be conveniently used for the simulation of small water clusters, one of our longer term goals is the accurate simulation of condensed phases of water such as ice or liquid water. Therefore, we have also performed selected DFT calculations with codes suitable for condensed phase simulations, such as the plane-wave pseudopotential code CPMD \(^{81}\) and the all electron numeric atom-centered orbitals (NAO) code FHI-aims, which originates from our laboratory \(^{82}\). A byproduct of such effort is the interesting comparison of three different methodologies for DFT calculations (Gaussians, plane-waves, and NAOs) of the energetics of hydrogen bonded systems. For the pseudopotential plane-wave DFT calculations in CPMD we have used hard Goedecker \(et\ al\). \(^{53}\) \(^{84}\) pseudopotentials along with an energy cutoff of at least 200 Ry for the plane-wave kinetic energy. For each hexamer an appropriate cell size was chosen to leave at least 10 Å of vacuum on each side of the cluster. This cell size was found to be converged by performing selected simulations with a larger vacuum of 15 Å and with or without the Hockney Poisson solver \(^{85}\) for electrostatic decoupling between neighboring cells. In the case of the all-electron NAO calculations with the FHI-aims code we have employed hydrogenic basis functions and carefully benchmarked all calculation parameters (basis set, grid size, cutoff potential) to achieve extreme convergence equivalent to or better than an aug-cc-pV5Z Gaussian basis set. As we will discuss below, a comparison between these three methods on the energetics of small water clusters (dimer-pentamer) reveals that the differences in the binding energy are on the order of 0.1 meV between Gaussian and FHI-aims and of 1 meV between Gaussian and CPMD, a value which is negligible for all our conclusions. Further, we have implemented a \(C_6R^{-6} \) semi-empirical correction for vdW interactions both in CPMD and FHI-aims, so that we could perform full geometry optimizations with and without this correction.

D. DISSOCIATION ENERGY

For MP2, DFT, and DMC we have calculated dissociation energies per \(\text{H}_2\text{O} \) \((D_e^n) \) which is given by,

\[
D_e^n = (E^{n\text{H}_2\text{O}} - nE^{\text{H}_2\text{O}})/n\text{H}_2\text{O} \quad ,
\]

where \(E^{n\text{H}_2\text{O}} \) is the total energy of each cluster with \(n \) \(\text{H}_2\text{O} \) molecules, \(E^{\text{H}_2\text{O}} \) is the total energy of a \(\text{H}_2\text{O} \)
monomer, and \(n_{H_2O} \) is the number of water molecules in the cluster.

III. RESULTS

Now we present and discuss our MP2 and DMC reference data. Following this we evaluate the accuracy of the 12 exchange-correlation functionals considered, and then present a many-body decomposition of the total dissociation energies as well as a detailed discussion of the value of accounting for vdW dispersion forces in these clusters.

A. REFERENCE DISSOCIATION ENERGIES

Following the procedure outlined above, we obtain MP2 dissociation energies at the CBS limit for the prism, cage, book, and cyclic hexamers of 332.3, 331.9, 330.2, and 324.1 meV/H\(_2O\), respectively (see Table I). Thus with MP2 the prism is the most stable isomer and the cage isomers appear energetically very close as they only differ by about two standard errors. Moreover, the absolute dissociation energies obtained with DMC and MP2 are within 4 meV/H\(_2O\) of each other for all four clusters (Table I). The sequence prism< cage< book< cyclic is also consistent with the previous MP2/CBS study of the water hexamer reported by Xantheas et al. [36, 37]. The DMC calculations also find the prism to be the most stable isomer and predict the same energetic ordering as MP2. Clearly, the cyclic is the least stable isomer while the prism and the cage isomers appear energetically very close as they only differ by about two standard errors.

Most of the DFT dissociation energies obtained with DMC and MP2 are within 4 meV/H\(_2O\) of each other for all four clusters (Table I). The sequence prism< cage< book< cyclic is also consistent with recent CCSD(T) calculations [6, 37], although the absolute binding energies from CCSD(T) when reported are some 10-15 meV/H\(_2O\) larger than our MP2/CBS dissociation energies. Most of this difference can, however, be attributed to the smaller (aug-cc-pVTZ) basis set used in the CCSD(T) study [38]. Therefore, it is clear that all the explicitly correlated wave function based methods [MP2, DMC, CCSD(T)] predict the same low energy structure – prism – and the same energetic ordering: prism< cage< book< cyclic. With this consensus from different methods it now seems that the question of which isomer is the lowest energy on the Born-Oppenheimer potential energy surface (in the absence of contributions from zero point vibrations) is resolved in favor of the prism, and that suggestions to the contrary are not correct [7]. There remain, of course, minor differences in the relative energetic ordering of some structures on the order of 5 meV/H\(_2O\) [notably CCSD(T) predicts particularly unstable book and cyclic structures compared to MP2, with DMC being in between]. Resolving such small remaining differences is beyond the scope of the current paper, which instead now focuses on how the various DFT functionals do in describing the energies and structures of these clusters.

B. DFT DISSOCIATION ENERGIES

We turn now to the results obtained with the various DFT xc functionals and first consider: (i) if the DFT xc functionals tested are able to predict the correct energetic ordering of the four hexamer isomers; and (ii) what are the absolute errors in the total dissociation energies for each of the isomers. The answer to the first question is simple. All popular and widely used functionals tested fail to predict the correct minimum energy isomer. Instead of identifying the prism as the minimum energy conformer, all xc functionals tested either opt for the cyclic or book conformers (Table I). This includes the X3LYP and PBE0 functionals, which, in our previous study [1], were identified as the most accurate xc functionals of those tested on the global minimum structures of small water clusters. It is somewhat discouraging that most of the xc functionals tested despite being immensely popular for liquid water simulations, fail to predict the correct low energy structure for a system as seemingly simple as six water molecules. However, the failure is not entirely unexpected given that according to the wave function methods all four structures are so close in energy (within 10-15 meV/H\(_2O\)).

With regard to the second issue of how well the functionals perform at predicting the absolute binding energies of the clusters, the best functionals are PBE0, mPW1LYP, and X3LYP, producing mean absolute errors (MAE) averaged over the four clusters of 6, 7, and 9 meV/H\(_2O\). PBE and PW91 produce errors of 12 and 28 meV/H\(_2O\), respectively. B98 and TPSS both have a MAE of 20 meV/H\(_2O\). B3LYP and BLYP under-bind by \(\sim 29 \) and \(\sim 48 \) meV/H\(_2O\), respectively. All of these conclusions are largely consistent with our previous study on smaller water clusters [1]. We note that the MAEs discussed are those obtained with respect to the MP2/CBS reference data. If instead we use the DMC results as the reference, the conclusions all remain essentially the same. This can be seen from Table I and is, of course, due to the fact that the DMC and MP2 reference data is so similar (always within 4 meV/H\(_2O\)).

Looking more closely at how the functionals perform for specific clusters, we have plotted in Fig. 2a) and 2b) the difference between each functional and MP2/CBS (\(\Delta D^e_n \)) for all four isomers. Since each cluster nominally has a different number of H bonds [12], and we are interested also in the description of H bonds, in Fig. 2b) we also plot the error per H bond for each of the clusters. Fig. 2 proves to be very illuminating and from it we extract the following key conclusions: (i) Upon moving from the prism to the cyclic isomer (as plotted in Fig. 2a), all xc functionals display a trend towards increased binding; (ii) Most functionals underbind the prism, with PBE and PW91 being the only exceptions; (iii) As we saw before for the dimer to pentamer [1].
TABLE I: Dissociation energies of the four water hexamers obtained from various electronic structure approaches: MP2/CBS; diffusion quantum Monte Carlo (DMC); CCSD(T) with a triple-ζ basis set (Ref. [23]); 12 different DFT exchange-correlation functionals computed, unless indicated otherwise, with an aug-cc-pVTZ basis set; and HF at the CBS limit. The most stable isomer from each method is indicated in bold and the relative energies of the other isomers are given in parenthesis. Mean errors (ME) and mean absolute errors (MAE) in dissociation energies, averaged over the four hexamers in comparison with MP2 and DMC are also given. All structures were optimized consistently with MP2, HF and each DFT functional with an aug-cc-pV5Z basis set; and HF at the CBS limit. The most stable isomer from each method is indicated in bold and the relative energies of the other isomers are given in parenthesis. Mean errors (ME) and mean absolute errors (MAE) in dissociation energies, averaged over the four hexamers in comparison with MP2 and DMC are also given. All structures were optimized consistently with MP2, HF and each DFT functional with an aug-cc-pVTZ basis set except for the DMC calculations which used the MP2 structures. DFT xc functionals are arranged here with increasing value of MAE from MP2. All values are in meV/H.

Method	Prism	Cage	Book	Cyclic	MP2	DMC
MP2	332.3	331.9	330.2	324.1	8.2	—
DMCa	331.9	329.5	327.8	320.8	11.1	—
CCSD(T)b	347.6	345.5	338.9	332.5	15.1	—
PBE0	322.9	325.3	330.9	330.8	0.1	5.9
mPWLYP	323.2	325.9	333.6	333.3	0.3	6.9
X3LYP	317.2	319.2	325.8	326.0	—	8.5
PBEIW	315.2	314.8	322.1	321.5	0.6	11.3
PBE	336.1	339.4	345.6	344.1	1.5	11.7
B98	305.3	306.8	312.6	312.5	0.1	20.4
TPSS	303.9	302.8	313.6	316.7	—	20.4
PW91	351.4	354.7	360.3	360.3	1.3	27.3
BP86	294.9	297.4	308.5	306.6	1.9	27.8
B3LYP	294.4	297.1	305.1	306.7	—	28.8
XLYP	287.9	286.9	296.3	297.9	—	37.4
BLYP	273.6	277.4	287.5	289.8	—	47.6
BLYPc	273.6	277.3	287.4	289.8	—	47.6
BLYPd	272.1	276.0	286.7	289.7	—	48.5
HF	222.9	224.4	230.6	235.1	—	101.4

aThe statistical errors on the dissociation energies of prism, cage, book, and cyclic are ±1.0, ±0.9, ±1.0, and ±1.0 meV/H₂O, respectively. For the relative energies of the cage, book, and cyclic with respect to the prism (calculated as differences of total energies of the isomers rather than their dissociation energies) the statistical errors are ±1.0, ±1.1, and ±1.0 meV/H₂O, respectively.

bReference 33

cFull geometry optimization was done with FHI-aims code.

dFull geometry optimization was done with CPMD code.

Here also BLYP performs consistently when we consider the error per H bond, coming around ~35 meV/H bond off MP2. Likewise XLYP yields very similar errors for all four isomers when considered on a per H bond basis. We will draw upon these conclusions later.

Another interesting finding is that the calculations on different water hexamers agree within 0.1 meV/H₂O between the all-electron Gaussian03 and FHI-aims codes and within 1.5 meV/H₂O between Gaussian03 and the pseudopotential plane-wave CPMD code (Table I). The latter value is most probably due to the difference in treatment of core electrons, however this difference is still very small for all practical purposes. This level of agreement is also achieved for the smaller clusters – dimer to pentamer – in their equilibrium geometries (Fig. 1). This again reinforces that the basis sets employed here are sufficiently large to reflect the true performance of a given xc functional, absent of basis set incompleteness errors.

C. Geometry

Let us now consider the quality of the geometrical predictions made by the various xc functionals. The five key structural parameters of the H₂O clusters (some of them are shown in Fig. 1) that we evaluate are: (i) The distance between adjacent oxygen atoms involved in a H bond, R_O··O; (ii) The length of a H bond, given by the distance between the donor H and the acceptor O, R_O···H = R_HO (Fig. 1); (iii) The H bond angle, ∠(O···H-O) = φ (Fig. 1); (iv) The internal O-H bond lengths of each water, R_O-H; and (v) The internal H-O-H angle of each water, ∠(H-O-H) = θ (Fig. 1).
FIG. 2: Difference in the dissociation energy (ΔD_e) in (a) meV/H$_2$O and (b) meV/H bond between the various DFT xc functionals and MP2. In (b) the generally accepted number of H bonds in the prism, cage, book, and cyclic isomers of 9, 8, 7, and 6, respectively, have been used [42]. Positive values correspond to an over-estimation of the dissociation energy by a given DFT xc functional. We note that the reference MP2 dissociation energies are at the CBS limit whereas for the DFT xc functionals an aug-cc-pV5Z basis set has been employed. Lines are drawn to guide the eye only.

TABLE II: Mean absolute error (MAE) of the various DFT functionals from MP2 for five different structural parameters, averaged over the four water hexamers examined here. The numbers in bold all have MAE \leq 0.010 Å for bond lengths and \leq0.50° for bond angles. Mean errors (ME) are given in parenthesis. MP2 and DFT (and HF) structures were optimized consistently with MP2 and with each DFT functional (and HF) with an aug-cc-pVTZ basis set. The DFT+vdW structures were optimized with a numerical atom-centered basis set (FHI-AIMS code). The order of the DFT xc functionals is the same as in Table I.

Xc Functional	$\Delta R_{O\cdot O}$ (Å)	ΔR_{bb} (Å)	$\Delta R_{O\cdot H}$ (Å)	$\Delta \phi$ (°)	$\Delta \theta$ (°)
PBE0	0.023 (-0.017)	0.028 (-0.018)	**0.002** (0.000)	0.96 (-0.01)	0.69 (+0.69)
mPWLYP	0.021 (+0.021)	0.019 (+0.008)	0.013 (+0.013)	0.95 (-0.25)	0.49 (+0.49)
X3LYP	**0.009** (+0.008)	0.012 (+0.009)	**0.000** (0.000)	**0.48** (-0.29)	0.98 (+0.98)
PBE1W	0.062 (+0.045)	0.096 (+0.051)	0.011 (+0.011)	3.98 (-0.64)	**0.32** (+0.03)
PBE	0.032 (-0.019)	0.055 (-0.036)	0.014 (+0.014)	1.87 (+0.12)	0.24 (+0.18)
PBE+vdW	0.026 (-0.022)	0.044 (-0.039)	0.012 (+0.012)	1.11 (+0.26)	0.21 (+0.03)
B98	0.025 (+0.025)	0.028 (+0.028)	**0.001** (-0.001)	1.07 (-0.20)	0.66 (+0.66)
TPSS	0.094 (+0.040)	0.155 (+0.058)	0.011 (+0.011)	6.03 (-0.87)	0.58 (0.53)
PW91	0.039 (-0.034)	0.060 (-0.051)	0.014 (+0.014)	1.59 (+0.15)	**0.36** (+0.33)
BP86	0.032 (-0.026)	0.055 (-0.046)	0.016 (+0.016)	1.65 (+0.27)	**0.28** (+0.16)
B3LYP	0.019 (+0.019)	0.020 (+0.020)	**0.000** (+0.000)	0.61 (-0.28)	0.89 (+0.89)
XLYP	0.092 (+0.082)	0.113 (+0.091)	0.011 (+0.011)	3.73 (-0.99)	0.52 (+0.52)
BLYP	0.039 (+0.039)	0.029 (+0.028)	0.012 (+0.012)	1.29 (-0.20)	**0.39** (+0.39)
BLYP+vdW	0.030 (-0.026)	0.052 (-0.044)	0.013 (+0.013)	1.94 (0.59)	**0.63** (+0.63)
HF	0.163 (+0.163)	0.199 (+0.199)	0.026 (-0.026)	1.64 (-0.029)	1.62 (+1.62)

In Table II the MAE and ME of each xc functional compared to MP2 and averaged over all four clusters are reported. This provides a broad overview of how each functional performs, revealing that for structural predictions X3LYP is the most accurate functional. X3LYP outperforms all other functionals for almost all structural parameters considered with an average error of only 0.02 Å for the bond lengths and 0.5° for the bond angles. Considering the predicted O-O distances, on average, X3LYP, mPWLYP, PBE1W, TPSS, B98, B3LYP, BLYP, and XLYP predict slightly
longer (0.008 to 0.082 Å) distances, whereas, PBE0, PBE, BP86, and PW91 produce slightly shorter O-O distances (0.017 to 0.034 Å). This conclusion also holds for the related quantity R_{\text{O-H}}. For the O-H bond length, R_{\text{O-H}}, on average all functionals perform reasonably well coming within 0.02 Å. In particular the results for X3LYP, PBE0, B98, and B3LYP are nearly identical to MP2. For the internal H-O-H angle θ, the MAE from all the functionals is within $\sim 1.0^\circ$. Finally, for the H bond angle, ϕ, X3LYP, B3LYP, PBE0, and mPWLYP perform the best, all coming within 1.0°. For this quantity, however, several functionals exhibit quite large discrepancies. Specifically, XLYP, PBE1W, and TPSS yield average MAEs of 3.7°, 3.9°, and 6.0°, respectively. As we go from cyclic to book to cage to prism, the H bond angles in the clusters become increasingly non-linear (179° for cyclic, $\sim 160^\circ$–170° for book, $\sim 152^\circ$–166° for cage, and $\sim 135^\circ$–168° for prism) and it appears that certain xc functionals struggle to reliably describe such non-linear H bonds. Indeed closer inspection reveals that the largest errors in ϕ are encountered for the prism isomer. In this isomer there are two water molecules that are each involved in donating two hydrogen bonds (the molecules labeled dd for double donor in Fig. 3), and according to MP2 the H bonds these molecules donate are very bent (i.e., values of $\phi \sim 135^\circ$). Several of the xc functionals fail to describe these very non-linear essentially putative H bonds, and for one or both of the waters in the prism sacrifice a single very non-linear H bond to enable the other to become more linear and hence stronger (Fig. 3). TPSS fails for both double donor water molecules and PBE1W and XLYP fail to describe one of them. The limitations of functionals such as those considered here in describing non-linear putative H bonds in water clusters has also recently been pointed out by Shields and Kirschner [90]. There it was argued that vDW dispersion forces are critical to the binding of such weak H bond structures. We tend to agree with this conclusion and will show more evidence in support of it below.

D. MANY-BODY DECOMPOSITION OF THE DISSOCIATION ENERGIES

To identify precisely where the problem with the DFT xc functionals lies in correctly describing the energetic ordering of the various isomers, we have performed a many-body decomposition of the total dissociation energies of the hexamers. This has involved decomposing the total interaction energy within the clusters into 1-body, 2-body, 3-body, 4-body, 5-body, and 6-body contributions. Such many-body expansions have before proved useful in understanding the binding in H bonded clusters (including water clusters). A full description of the procedure involved can be found in Refs. [91, 92, 93, 94]. Very briefly, the total 1-body energy is the energy cost incurred upon deforming all six monomers from the equilibrium isolated monomer structure to the structures they assume in a given hexamer. The total 2-body interaction energy is the sum of all possible dimer interactions within the hexamer, i.e., the total energy (gain) to form all possible water dimers within a given hexamer from each of its (deformed) monomers. The total 3-body interaction corresponds to the energy (gain) to form all possible trimer combinations (excluding dimer interactions inside the trimers), and so on for the 4-, 5-, and 6-body interactions. We have performed such a many-body decomposition for the prism and cyclic conformers, since the prism conformer is favored by the wave function approaches and the cyclic conformer is favored by many of the DFT xc functionals. The decomposition, the results of which are reported in Table III, has been performed with MP2 (with an aug-cc-pV5Z basis set) and with the X3LYP, PBE0, and BLYP xc functionals. To enable an exact comparison between MP2 and the various XC functionals, absent of any contributions arising from the slightly different structures obtained
with the different approaches, we have used the MP2 geometries for all decompositions.

Let us first consider the MP2 reference data. For each cluster a small positive 1-body energy of ~ 17 meV/H$_2$O is observed. The 2-body interaction is attractive (negative) and at -244 meV and -283 meV/H$_2$O for the cyclic and prism isomers, respectively, comprised by far the largest contribution to the many-body expansion. The 3-body interaction is also large and overall attractive: -84 and -64 meV/H$_2$O for the cyclic and prism structures, respectively. Indeed because of their magnitude the 2- and 3-body interactions almost decide what the total dissociation energies are. The 4-, 5-, and 6-body terms are all considerably smaller. These results are consistent with those reported by Xantheas et al. \[92\] with a smaller basis set.

Turning our attention now to how the DFT xc functionals perform, we first consider the two more accurate xc functionals for which the many-body decomposition has been performed (PBE0 and X3LYP). For the 1-, 4-, 5-, and 6-body contributions, we find reasonably good agreement with MP2. As we have said, these terms are small and the difference between MP2 and the two xc functionals is typically ≤ 8 meV/H$_2$O. For the (larger) 3-body terms we observe variable performance with overbinding (8-9 meV) for the cyclic isomer and underbinding (3-5 meV) for the prism. It is for the 2-body terms that we observe the largest deviations from MP2 with a consistent underbinding for each functional and cluster. Both PBE0 and X3LYP underestimate the 2-body contribution in the prism isomer by 9 and 20 meV/H$_2$O, respectively. And for the cyclic isomer PBE0 and X3LYP underestimate the 2-body contribution by 4 and 13 meV/H$_2$O, respectively. It is interesting that these errors are noticeably larger than the 1-2 meV/H$_2$O errors obtained with these functionals for the equilibrium water dimer \[31\]. Thus we observe from the many-body analysis that these xc functionals yield larger errors when describing the non-equilibrium dimer configurations present in the various water hexamers, compared to the equilibrium water dimer. Upon inspection of the errors associated with the individual dimer configurations within the hexamers we find that there is a systematic underbinding for dimers at intermediate separations (O-O distances $\sim 3.0 \mbox{ - } 5.0 \mbox{ Å}$) typical of vdW bonded complexes and also for certain orientations of water molecules held together with very non-linear H bonds. There are not enough distinct dimer configurations within the hexamers to allow us to understand the precise dependence of the 2-body error on orientation and H bond angle. However, the distance dependence of the underbinding is more clear and is something that we now address with a distance dependent vdW correction.

Before moving on we note that the BLYP errors from the many-body analysis are consistently larger compared to PBE0 and X3LYP, consistent with the generally inferior performance of this functional. However, the main conclusion from the many-body analysis that the 2-body terms are underbound (and are more poorly described than the equilibrium dimer) still holds.

E. DFT+vdW DISSOCIATION ENERGY

Nowadays it is well known that most popular xc functionals generally show unsatisfactory performance for van der Waals forces, which inherently arise due to non-local correlations \[4, 95, 96\]. In order to test if the lack of van der Waals forces is indeed responsible for the underestimation in the 2-body interactions, we use a simple C_6R^{-6} correction for the DFT total energies. The C_6R^{-6} correction method was early proposed for correcting HF calculations \[97\], and specifically applied to DFT by Wu and Yang \[98\], Grimme \[99\] and Jurečka et al. \[100\]. Certainly the C_6R^{-6} scheme is a simple one for incorporating dispersion interactions into DFT calculations in contrast to other approaches (e.g. DFT xc functionals explicitly accounting for non-local correlation \[101\], interaction of the instantaneous dipole moment of the exchange hole \[102\], using maximally localized Wannier functions \[103\] or modified pseudopotentials \[104\]). However, consistently accurate results have been obtained with the C_6R^{-6} correction and it has a well established physical basis. With this approach the pairwise vdW interaction (E_{disp}) is calculated by:

$$E_{\text{disp}} = -\sum_{j>i} f_{\text{damp}}(R_{ij}, R_{ij}^0)C_{6ij}R_{ij}^{-6}, \quad (4)$$

where, C_{6ij} are the dispersion coefficients for an atom pair ij (here taken from the work of Wu and Yang \[98\]), R_{ij} is the inter-atomic distance, R_{ij}^0 is the sum of equilibrium vdW distances for the pair (derived from atomic vdW radii \[105\]), and f_{damp} is a damping function. The damping function is needed to avoid the divergence of the R^{-6} term at short distances and reduces the effect of the correction on covalent bonds. We use a Fermi-type function f_{damp}:

$$f_{\text{damp}}(R_{ij}, R_{ij}^0) = \left(1 + \exp\left(-d \left(\frac{R_{ij}}{s_{R_{ij}}^0} - 1\right)\right)\right)^{-1}, \quad (5)$$

where, d determines the steepness of the damping function (the higher the value of d, the closer it is to the step function), and $s_{R_{ij}}$ reflects the range of interaction covered by the chosen DFT xc functional. The value of d was set to 20 and s_{R} is 0.80 for BLYP, 1.00 for PBE and 1.03 for PBE0. These values of d and s_{R} were obtained by fitting to the intermolecular binding energies of the S22 database \[100\] at the CBS limit for all DFT xc functionals \[106, 107\].

The results for the PBE, PBE0 and BLYP functionals after applying the correction on the four hexamers are shown in Table IV. Also the total vdW interaction
TABLE III: Many-body contributions to the total dissociation energies of the cyclic and prism isomers as obtained from MP2, X3LYP, PBE0, BLYP, and BLYP+vdW. For the MP2 many-body decomposition an aug-cc-pV5Z basis set is employed and so the total MP2 dissociation energies differ slightly from the MP2/CBS values given in Table I. Likewise, to avoid complications from the slightly different optimized structures obtained from MP2 and the DFT xc functionals, the DFT many-body decompositions are performed on the optimized MP2 structures (with an aug-cc-pV5Z basis set for the DFT energies). Values in the parenthesis are the difference between each functional and the MP2 results. Negative values indicate a gain in energy, i.e., a net attraction when all the n-body interactions of a given class are summed up, and positive values a net repulsion. All values are in meV/H\(_2\)O.

	Cyclic				
	MP2	X3LYP	PBE0	BLYP	BLYP+vdW
1-body	+16.6	+12.9 (-3.7)	+16.5 (-0.1)	+2.4 (-14.2)	+2.0 (-14.6)
2-body	-244.2	-231.2 (+13.0)	-240.8 (+3.4)	-175.8 (+68.4)	-227.8 (+16.4)
3-body	-83.6	-92.1 (-8.5)	-92.8 (-9.2)	-97.7 (-14.1)	-97.7 (-14.1)
4-body	-16.0	-13.9 (+2.1)	-8.1 (+7.9)	-14.8 (+1.2)	-14.8 (+1.2)
5-body	+0.5	-1.7 (-2.2)	-6.4 (-6.9)	-1.9 (-2.4)	-1.9 (-2.4)
6-body	-0.9	+0.0 (+0.9)	+1.2 (+2.1)	+0.0 (+0.9)	+0.0 (+0.9)
Total	-327.6	-326.0 (+1.6)	-330.4 (-2.8)	-287.8 (+39.8)	-340.2 (-12.6)

TABLE IV: Absolute values of vdW interaction energies and vdW corrected total dissociation energies for the four water hexamers for three different xc functionals. The DFT structures employed are fully relaxed geometries calculated with the FHI-aims code (the CPMD code gives very similar numbers [108]). For comparison the MP2/CBS results are also displayed. The energies of the most stable isomers are indicated in bold and the relative energies of the other structures with respect to the prism are given in parenthesis. MAE’s in total dissociation energies are calculated from the MP2/CBS values averaging over the four hexamers. All numbers are in meV/H\(_2\)O.

	Prism	Cage	Book	Cyclic	MAE
vdW interaction energy					
Method	BLYP+vdW	PBE+vdW	PBE0+vdW		
BLYP+vdW	93.8	40.9	35.2	35.4	-
PBE+vdW	90.5	40.5	31.6	27.4	22.9
PBE0+vdW	75.8	32.1	19.4	14.4	28.6

Total dissociation energy					
Method	MP2	BLYP+vdW	PBE+vdW	PBE0+vdW	
MP2	332.3	359.9	380.1	360.6	
	331.9(0.4)	356.3(3.6)	377.8(10.5)	361.9(1.3)	
	330.2(2.1)	344.8(15.1)	367.3(10.5)	359.2(1.4)	
	324.1(8.2)	344.8(15.1)	367.3(10.5)	351.4(9.2)	
	—	25.5	46.1	28.6	

Within each hexamer is reported. One can see that the vdW correction is largest for the prism and cage structures and noticeably less for book and cyclic structures; favoring the prism or cage over the cyclic or the book structure. The new energetic orderings of the hexamers are thus in contrast to all pure DFT functionals, which predict the book or cyclic structures to have the lowest energy (Table I), and in better agreement with the wave function based methods. The energy difference between the most stable and the least stable hexamers is also in reasonably good agreement with MP2 and DMC results (around 10-15 meV). Of the three functionals to which the correction has been applied, the BLYP+vdW method gives the best agreement with MP2. The MAE in the total dissociation energies for all four hexamers is reduced from 15% to 8%. And, moreover, the correct energetic ordering of the four isomers is recovered, i.e., BLYP+vdW predicts the sequence prism < cage < book < cyclic. The results for BLYP+vdW are encouraging, however, it is important to note that there remains an 8% error (a significant overbinding). In addition, the “success” of BLYP+vdW is achieved at the expense of a smaller \(s_R \) parameter which shifts the vdW minima to quite short distances (see below). Also, the three-body contribution of BLYP, unaffected by the pairwise vdW correction, shows substantial error. Thus, further investigation is required to rule out fortuitous
error cancellation for BLYP+vdW. Nonetheless these findings for at least three different functionals support the suggestion that the origin of the incorrect prediction of the energetic ordering of the water hexamers lies in the absence of vdW dispersion forces in the functionals considered.

IV. DISCUSSION AND CONCLUSIONS

Having presented a lot of data obtained with various approaches, let us now recap the main results and discuss them in a somewhat broader context. To begin, there is the reference data itself, which has been acquired with MP2 and diffusion quantum Monte Carlo (DMC). From this we conclude that the prism is the lowest total energy isomer for six water molecules in the absence of contributions from zero point vibrations. This conclusion agrees with the general consensus that has emerged, being consistent with the very recent triple-ζ CCSD(T) results [6, 37]. There remain, of course, minor differences in the relative energetic ordering of some structures on the order of 5 meV/H$_2$O [notably CCSD(T) predicts particularly unstable book and cyclic structures compared to MP2, with DMC being in between]. Resolving such small remaining differences will provide interesting work for the future. In this regard CCSD(T) calculations at the CBS limit would be welcome. We stress that the ordering arrived at here, prism < cage < book < cyclic, is the ordering obtained in the absence of corrections for zero point contributions. It is known that zero point energies will alter the relative energy spacings with indications that the cage becomes the most stable isomer [31, 32, 33].

It is interesting to see that DMC and MP2 dissociation energies of the different isomers are so similar to each other, within 4 meV/H$_2$O. This may indicate that correlation effects beyond MP2 have little effect on the hydrogen bond energetics in these water clusters or it may indicate a favorable cancelation of errors in the MP2 and/or DMC calculations. Nonetheless, it demonstrates that DMC can achieve high accuracy in describing the energetics of hydrogen bonds between water molecules, already at the simplest DMC level, i.e. pseudopotential fixed-node DMC with a single-determinant Slater-Jastrow trial wave function, as has been found for a number of other hydrogen bonded systems (including DNA base pairs) [53, 55]. For the water hexamers studied here, the fixed-node and pseudopotential approximation in DMC incur no significant errors on the calculated hydrogen bond energies. We stress, however, that in general such errors depend on the system considered and still need to be carefully assessed by comparing to standard quantum chemistry approaches such as e.g. CCSD(T)/CBS and monitoring the quality of the trial wave function and, when used, also the pseudopotentials.

The main part of this paper was concerned with using the reference data from the wave function based methods to evaluate the performance of several DFT xc functionals. A sub-set of the xc functionals previously tested for small water clusters [1] was considered. It was found that whilst certain functionals did a reasonable job at predicting the absolute dissociation energies of the various isomers (coming within 10-20 meV/H$_2$O), none of the functionals tested predict the correct energetic ordering of the four isomers, nor does any predict the correct lowest energy isomer. All xc functionals either predict the book or cyclic isomers to have the largest dissociation energies. There have been indications before that certain DFT xc functionals may not predict the correct lowest energy structure for the water hexamer. BLYP, for example, was long ago shown to favor the cyclic isomer [39]. Likewise X3LYP, B3LYP, and PBE1W have been shown to favor the cyclic structure [4, 7]. Here, we have shown that several other popular xc functionals fail to predict the correct lowest energy structure too. Furthermore, by attributing the failure to an improper treatment of vdW forces it seems likely that many other semi-local and hybrid xc functionals which do not account for vdW in some way will also fail in this regard. We have shown that by augmenting the BLYP functional with an empirical pairwise C_6R^{-6} correction the correct energetic ordering of the four hexamers is recovered. Equivalent empirical corrections to other functionals (PBE, PBE0) also improves the ordering somewhat, favoring the prism and cage isomers over the book and cyclic ones. Of course there are other means of incorporating vdW dispersion forces implicitly into DFT xc functionals such as the approaches pioneered by Lundqvist and Langreth and Becke and others [101, 102, 103, 104]. It will be interesting to see if these functionals can predict the correct lowest energy structure for the water hexamer and, at the same time, yield accurate total dissociation energies. Indeed on the general point of benchmarking and accessing the performance of existing and new xc functionals for the treatment of H bonded systems, it seems that the water hexamer would be an appropriate test case to add to existing H bond test sets since it presents a stern challenge for any xc functional. We reiterate that we are not suggesting that all xc functionals which do not account for vdW forces in one way or another are likely to fail to predict the correct energy ordering for the water hexamer. Indeed Truhlar and co-workers have very recently reported that a few empirical hybrid meta-GGA functionals achieve the correct energetic ordering [4, 100]. This looks like an exciting development but what the precise reason for the success of the functionals tested is remains unclear to us at present.

Having identified a lack of vdW dispersion forces as being at the heart of the incorrect energy ordering of the various water hexamers, we now consider why the C_6R^{-6} correction scheme applied here works to alter the relative energies of the four isomers. Since the
Dispersion forces are generally considered to be long range and indeed the tails of all three vdW curves extend to beyond 4 Å. However, the minima of the vdW curves are located at considerably shorter distances: ∼2.20, ∼2.55 Å for the O–O, H–H, and O–H interactions, respectively. The H–H interaction dominates simply because there are more them. For brevity we do not show the results of similar analysis performed for the PBE and PBE0 vdW corrections. However, the general conclusion that the vdW dispersion contribution favors the more compact prism and cage isomers over the less compact book and cyclic isomers because the former are closer to the minima of the vdW curves than the latter also holds for the PBE and PBE0 vdW corrections.

Finally, this paper has focused on water clusters. However, it does not seem unreasonable to suggest that the results presented here will be of some relevance to DFT simulations of liquid water. Certainly if an xc functional encounters difficulties in predicting the correct energetic ordering of the low energy isomers of the water hexamer it is likely that similar errors will exist in describing the many more competing configurations of water clusters present transiently or otherwise in the liquid. Given that the hybrid xc functionals PBE0 and X3LYP also fail for the hexamer, despite otherwise predicting H bond strengths and structures for smaller water clusters in excellent agreement with MP2 it seems likely that these functionals may not offer the promise anticipated for liquid water [1]. Indeed a very recent PBE0 simulation for liquid water which ran for a reasonably respectable 10 ps, found that the PBE and PBE0 RDFs were essentially indistinguishable [11]. Based on the foregoing results and discussion the lack of a significant improvement in describing the liquid is not entirely unexpected. We suggest instead that density-functional methodologies which account for vdW dispersion forces are likely to offer more promise in the quest to improve the description of liquid water. Again very recent MD simulations of liquid water are consistent with this suggestion. Lin et al. have reported BLYP simulations for liquid water corrected with a similar C6R−6 correction scheme to the one employed here (but with a different damping function) as well as a separate account for vdW through the use of modified pseudopotentials [112]. These simulations indicate that (at the experimental density and temperatures tested) accounting for vdW forces lowers the peak maximum in the O-O RDF, and in so doing brings the experimental and theoretical RDFs into better agreement.

Acknowledgments

This work is supported by the European Commission through the Early Stage Researcher Train-
ing Network MONET, MEST-CT-2005-020908 (www.sljus.lu.se/monet). A.T. thanks the Alexander von Humboldt (AvH) Foundation for funding. A.M’s work is supported by a EURYI award (www.esf.org/euryi) and by the EPSRC.

[1] B. Santra, A. Michaelides, and M. Scheffler, J. Chem. Phys. 127, 184104 (2007).
[2] S. Tsuzuki and H. P. Lüthi, J. Chem. Phys. 114, 3949 (2001).
[3] J. J. Novoa and C. Sosa, J. Phys. Chem. 99, 15837 (1995).
[4] Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 1, 415 (2005).
[5] E. E. Dahlke and D. G. Truhlar, J. Phys. Chem. B 109, 15677 (2005).
[6] E. E. Dahlke, R. M. Olson, H. R. Leverentz, and D. G. Truhlar, J. Phys. Chem. A 112, 3976 (2008).
[7] J. T. Su, X. Xu, and W. A. Goddard III, J. Phys. Chem. A 108, 10518 (2004).
[8] J. Ireta, J. Neugebauer, and M. Scheffler, J. Phys. Chem. A 108, 5692 (2004).
[9] T. Todorova, A. P. Seitsonen, J. Hutter, I.-F. W. Kuo, and C. J. Mundy, J. Phys. Chem. B 110, 3685 (2006).
[10] M. V. Fernández-Serra and E. Artacho, J. Chem. Phys. 121, 11136 (2004).
[11] H.-S. Lee and M. E. Tuckerman, J. Phys. Chem. A 110, 5549 (2006).
[12] J. VandeVondele, F. Mohamed, M. Krack, J. Hutter, M. Sprik, and M. Parrinello, J. Phys. Chem. J. 122, 014515 (2005).
[13] Ph. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.-A. Näslund, T. K. Hirsch, L. Ojamäe, P. Glatzel, L. G. M. Pettersson, and A. Nilsson, Science 304, 995 (2004).
[14] J. D. Smith, C. D. Cappa, K. R. Wilson, B. M. Messer, R. C. Cohen, and R. J. Saykally, Science 306, 851 (2004).
[15] J. C. Grossman, E. Schwegler, E. W. Draeger, F. Gygi, and G. Galli, J. Chem. Phys. 120, 300 (2004).
[16] X. L. Hu and A. Michaelides, Surf. Sci. 601, 5378 (2007).
[17] A. Michaelides, App. Phys. A 85, 415 (2006).
[18] P. J. Feibelman, Science 295, 99 (2002).
[19] V. A. Ranea, A. Michaelides, R. Ramírez, P. L. de Andres, J. A. Vergés, and D. A. King, Phys. Rev. Lett. 92, 136104 (2004).
[20] A. Michaelides and P. Hu, J. Chem. Phys. 114, 513 (2001).
[21] S. Meng, E. G. Wang, and S. Gao, Phys. Rev. B 69, 195404 (2004).
[22] A. Michaelides and K. Morgenstern, Nature Mater. 6, 597 (2007).
[23] A. Michaelides, Faraday Discuss. 136, 287 (2007).
[24] X. Xu and W. A. Goddard III, Proc. Natl. Acad. Sci. U.S.A. 101, 2673 (2004).
[25] C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999).
[26] C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).
[27] W. Lee, C. Yang and R. G. Parr, Phys. Rev. B 37, 785 (1988).
[28] C. J. Tsai and K. D. Jordan, Chem. Phys. Lett. 213, 181 (1993).
[29] K. Kim, K. D. Jordan, and T. S. Zwier, J. Am. Chem. Soc. 116, 11568 (1994).
[30] K. Liu, M. G. Brown, R. J. Saykally, J. K. Gregory, and D. C. Clary, Nature 381, 501 (1996).
[31] J. K. Gregory and D. C. Clary, J. Phys. Chem. 100, 18014 (1996).
[32] J. K. Gregory and D. C. Clary, J. Phys. Chem. A 101, 6813 (1997).
[33] J. Kim and K. S. Kim, J. Chem. Phys. 109, 5886 (1998).
[34] M. Losada and S. Leutwyler, J. Chem. Phys. 117, 2003 (2002).
[35] K. Nauta and R. E. Miller, Science 287, 293 (2000).
[36] S. S. Xantheas, C. J. Burnham, and R. J. Harrison, J. Chem. Phys. 116, 1493 (2002).
[37] R. M. Olson, J. L. Bentz, R. A. Kendall, M. W. Schmidt, and M. S. Gordon, J. Chem. Theory Comput. 3, 1312 (2007).
[38] K. Laasonen, M. Parrinello, R. Car, C. Lee, and D. Vanderbilt, Chem. Phys. Lett. 207, 208 (1993).
[39] C. Lee, H. Chen, and G. Fitzgerald, J. Chem. Phys. 101, 4472 (1994).
[40] D. A. Estrin, L. Pagliero, G. Corongiu, and E. Clementi, J. Chem. Phys. 100, 8701 (1996).
[41] V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford University Press, Inc., New York, 2003).
[42] For these hexamers it is invariably assumed that the prism, cage, book, and cyclic isomers have 9, 8, 7, and 6 H bonds, respectively. In figure 2 we have used these conventional H bond numbers. However, it is interesting to note that upon inspection of our optimized MP2 and DFT structures of the four hexamers and employing several standard geometric definitions of H bonds between water molecules we find that the number of H bonds counted depends sensitively on which definition is used. See the supporting information for more details.
[43] Gaussian 03, Revision C.02. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. Y. Iyengar, J. Tomasi, V. Barone, M. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.omperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Fiskorz, I. Komaromi, R. L.
We have used Gaussian03 [43] and NWChem [44] interchangeably, since total energies of the water clusters obtained from the two codes differ by no more than 0.4 meV per water molecule.

[43] E. J. Bylaska, W. A. de Jong, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. aprà, T. L. Windus, S. Hirata, M. T. Hacker, Y. Zhao, P.-D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Niplocha, V. Tipparaju, M. Krishnan, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Frchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tssemekhan, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kuttel, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang, "NWChem, a Computational Chemistry Package for Parallel Computers, Version 5.0" (2006), Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.

[44] We have used Gaussian03 [43] and NWChem [44] interchangeably, since total energies of the water clusters obtained from the two codes differ by no more than 0.4 meV per water molecule.
more than 5 meV/H bond.

[87] All our dissociation energies come within \(\sim 1.3 \) meV/H\(_2\)O of ref. [36]. These differences are small. Most of it can be attributed to the use of different extrapolation methods. Applying the extrapolation scheme used by Xantheas et al. [36] (extrapolating the dissociation energies with a 4, 5 polynomial and taking double-, triple-, quadruple, and pentuple-\(\zeta \) values) the dissociation energies obtained by us (Xantheas) are 331.54 (331.45), 331.19 (330.94), 329.59 (329.63), and 324.19 (324.22) meV/H\(_2\)O for the prism, cage, book, and cyclic, respectively. Thus when the same extrapolation scheme is used ours and Xantheas' MP2/CBS results agree to within 0.3 meV/H\(_2\)O.

[88] We believe the differences between CCSD(T) and MP2 (10-15 meV/H\(_2\)O) come mostly from the use of an aug-cc-pVTZ basis set for the CCSD(T) energy calculations. Indeed with this basis set the difference between MP2 and CCSD(T) is reduced to only 4 meV/H\(_2\)O. Specifically, our MP2/aug-cc-pVTZ dissociation energies are 346.5, 345.9, 343.0, and 335.1 meV/H\(_2\)O, respectively, for prism, cage, book, and cyclic isomers. In addition, the different basis sets used to obtain the structures is likely to account for some of the remaining difference. Here we use MP2 structures optimized with an aug-cc-pVTZ basis set where as in ref. [36] MP2 structures optimized with a polarized double-\(\zeta \) basis set of Dunning and Hay [114], DH(d,p) are used.

[89] Dissociation energies calculated (using BLYP) respectively with G03/aug-cc-pV5Z, CPMD, and FHI-aims codes are the following: dimer (180.7, 179.3, 180.6), trimer (191.7, 190.8, 191.9), tetramer (264.9, 263.9, 265.1), and pentamer (281.2, 280.7, 281.3). Likewise in comparison to G03/aug-cc-pVTZ structures CPMD and FHI-aims respectively concede maximum error of 0.031, 0.009 Å for bond lengths and 0.57°, 0.03° for bond angles (parameters considered are shown in Table III).

[90] G. C. Shields and K. N. Kirschner, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 38, 32 (2008).

[91] S. S. Xantheas, J. Chem. Phys. 100, 7523 (1994).

[92] S. S. Xantheas, Chem. Phys. 258, 225 (2000).

[93] J. M. Pedulla, F. Vila, and K. D. Jordan, J. Chem. Phys. 105, 11091 (1996).

[94] M. Quack, J. Stohner, and M. A. Suhm, J. Mol. Struct. 599, 381 (2001).

[95] S. Kristýn and P. Pulay, Chem. Phys. Lett. 229, 175 (1994).

[96] J. M. Pérez-Jordá and A. D. Becke, Chem. Phys. Lett. 233, 134 (1995).

[97] R. Ahlrichs, R. Penco, and G. Scroles, Chem. Phys. 19, 119 (1977).

[98] Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).

[99] S. Grimme, J. Comput. Chem. 25, 1463 (2004).

[100] P. Jurečka, Č. Černý, P. Hobza, and D. R. Salahub, J. Comput. Chem. 28, 555 (2007).

[101] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

[102] A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, 154104 (2005).

[103] P. L. Silvestrelli, Phys. Rev. Lett. 100, 053002 (2008).

[104] O. Anatole von Lilienfeld, I. Tavernet, U. Rothlisberger, and D. Sebastiani, Phys. Rev. Lett. 93, 153004 (2004).

[105] We have used Bondi's vDW radii for different atoms [111]. More precisely for the atom pairs we used the following radii and vDW coefficients (in a.u.): \(R_{O-H} = 5.45 \), \(R_{O-H}^d = 5.74 \), \(R_{O-H}^o = 5.28 \), \(C_{O-H} = 2.78 \), \(C_{O-H}^d = 12.14 \), and \(C_{O-H}^o = 5.67 \). For more details on the averaging of vDW radii and dispersion coefficients for pairs of atoms see Ref. [100].

[106] A. Tkatchenko, V. Blum, and M. Scheffler, unpublished.

[107] Also we made fits on various water dimers to reproduce the MP2 2-body interaction by optimizing the correction parameters using BLYP. A large set of parameters was considered by a careful scan over the range \(0.8 \leq s_r \leq 1.5 \) and \(20 \leq d \leq 40 \). All possible combinations of water dimers from all four hexamers (total 48 dimers) were included in the fitting and interestingly the set of parameters which yielded the smallest MAE for the 48 dimers were \(s_r = 0.82 \) and \(d = 20 \), which are nearly the same as those found from the S22 database.

[108] We have also performed full geometry optimizations with vDW corrected BLYP and PBE using the CPMD code and the total dissociation energies are within 1 meV from the numbers presented in Table III. We also note that with FHI-aims code PBE0+vdW calculations were performed on PBE+vdW optimized geometries.

[109] Our calculations with the M05-2X functional with a larger basis set (aug-cc-pVQZ) also find the prism to be the lowest energy structure. Specifically, the dissociation energies are 353.5, 347.9, 339.9, and 333.1 meV/H\(_2\)O for prism, cage, book, and cyclic, respectively.

[110] The total intra-molecular O-H and H-H dispersion contributions are 0.6 and \(\sim 13-17 \) meV, respectively. These are small compared to intermolecular contributions and remain almost constant for all the hexamers and for brevity are not shown in Fig. II.

[111] M. Guidon, F. Schiiffmann, J. Hutter, and J. VandeVondele, J. Chem. Phys. 128, 214104 (2008).

[112] I.-C. Lin, A. P. Seitsonen, M. D. Coutinho-Neto, I. Tavernelli, and U. Rothlisberger, J. Phys. Chem. B (in press).

[113] See EPAPS document No. XXXX for a database of the coordinates (optimized consistently with MP2, 12 DFT xc functionals, and HF with an aug-cc-pVTZ basis set and vdW corrected geometries optimized with all electron NAOs) and the total energies (obtained with an aug-cc-pV5Z basis set) of each isomer studied here. A table with the number of H bonds in the prism isomer, obtained with various H bond definitions, is also provided. This document can be reached through a direct link in the online article’s HTML reference section or via EPAPS homepage [http://www.aip.org/pubservs/epaps.html].

[114] T. H. Dunning Jr. and P. J. Hay, Methods of Electronic Structure Theory (Plenum Press, New York, 1997), p 1.

[115] A. J. Bondi, J. Phys. Chem. 68, 441 (1964).