Ethical and social implications of approaching death prediction in humans - when the biology of ageing meets existential issues

CURRENT STATUS: UNDER REVIEW

SUBJECT AREAS
Medical Ethics

KEYWORDS
Ageing, anticipation, death, longevity risk, medical care, mortality, prediction, presymptomatic test, program
Abstract
Background: The discovery of biomarkers of ageing has led to the development of predictors of impending natural death and has paved the way for personalised estimation of the risk of death in the general population. This study intends to identify the ethical resources available to approach the idea of death as a process and consider the perspective of death prediction. The reflection on human mortality is necessary but not sufficient to face this issue. Knowledge about death anticipation in clinical contexts allows for a better understanding of it. Still, the very notion of prediction and its implications must be clarified. This study outlines in a prospective way issues that call for further investigation in the various fields concerned: ethical, psychological, medical and social.

Methods: The study is based on an interdisciplinary approach, a combination of philosophy, clinical psychology, medicine, demography, biology and actuarial science.

Results: The present study proposes an understanding of death prediction based on its distinction with the relationship to human mortality and death anticipation, and on the analogy with the implications of genetic testing performed in pre-symptomatic stages of a disease. It leads to the identification of a multi-layered issue, including the individual and personal relationship to death prediction, the potential medical uses of biomarkers of ageing, the social and economic implications of the latter, especially in regard of the way the longevity risk is perceived.

Conclusions: The present study work strives to propose a first sketch of what the implications of death prediction as such could be - from an individual, medical and social point of view. Both with anti-ageing medicine and the transhumanist quest for immortality, research on biomarkers of ageing brings back to the forefront crucial ethical matters: should we, as human beings, keep ignoring certain things, primarily the moment of our death, be it an estimation of it? If such knowledge was available, who should be informed about it and how such information should be given? Is it a knowledge that could be socially shared?

Background
Death prediction is not a new idea, neither at a population level nor at an individual one. Since the late 17th century, demographers have routinely estimated and analysed multiple population-level
death-related parameters commonly summarised in life-tables. For instance, the Human Mortality Database now gathers and distributes high-quality data for 40 countries (online access: http://www.mortality.org/; consulted August 6th 2019). At the other end of the spectrum, medical teams from fields such as nephrology, intensive care and oncology take into account median life expectancy in everyday prognosis and design of treatment strategy, without necessarily discussing this parameter with patients.

In the past few years, the discovery of biomarkers of ageing has led to the development of predictors of impending natural death and has paved the way for personalised estimation of the risk of death in the general population. Recently published research has focused on the prediction of high risks of mortality in apparently healthy adults, echoing the first description in 2011 of the Smurf phenotype, a harbinger of natural death in Drosophila melanogaster. These recent findings suggest that the end-of-life is 1) molecularly and physiologically highly stereotyped, 2) evolutionarily conserved and 3) predictable.

Taken together, these results from independent groups studying multiple organisms including humans and using different approaches, delineate future directions in ageing research. The ability to identify and characterise individuals about to die of natural causes is a game-changer in this field. It also brings to the forefront the notion that death is no longer seen as an event, a final point on a given timeline; rather, it is considered as a process with variations from one species to the other as well as amongst individuals.

There is little doubt that the discovery of predictors of impending natural death in apparently healthy adults will raise major ethical implications for both individuals and society. Such new knowledge would likely bring changes to one’s personal attitude toward one’s death. The potential public health and economic uses of this research should be investigated with equal attention.

The purpose of this study is, first of all, to clarify the meaning and scope of the ongoing research on predictors of impending natural death within the historical evolution of biological thinking about death, and within the biology of ageing. On the basis of this understanding, we will then examine the ethical resources available to approach the idea of death as a process and consider the perspective of
death prediction, and we will outline issues that call for further investigation in the various fields concerned: ethical, psychological, medical and social.

Methods
This study was based on an interdisciplinary collaboration initiated by Michael Rera, a researcher specialised in the biology of ageing, leading a project on such predictors of impending natural death.

With Marie Gaille, a researcher in philosophy of medicine, with a focus on end-of life issues and medical decisions’ ethical dimension. Aiming for a mutual understanding and for an active debate and open conversation between colleagues, they gathered a group with a pluridisciplinary perspective: a combination of philosophy, clinical psychology, medicine, demography, biology and actuarial science.

Though mostly made of colleagues working in French public research or care institutions, the group also included Katrin Solhdju (historian of sciences in the Université de Mons, Belgium, working on the issue of knowledge sharing) in one of its meetings. Informal exploratory interviews (< 5) were made by Marie Gaille within two medical specialties (nephrology, intensive care) in order to make a preliminary work of identification of issues in the medical field raised by the prospect of such indicators; several informal contacts were made with actuarians in order to understand what could be their viewpoint on such indicators.

It resulted a stable group (< 10 persons) that met during two workshops (September 25th 2017 ; January 9th 2018) and several informal meetings in order to share the state of the literature in their respective fields, to elaborate a common language and a shared topic. After one year of exchange, it was decided to propose a collaborative and interdisciplinary paper in order, first, to highlight the specificity and novelty of the issues raised by the research on predictors of impending natural death, both from an individual and a social point of view, and second, to elaborate a combination of disciplines and viewpoints able to grasp the meaning and scope of the discovery of predictors of impending natural death and point at the need for further research on the topic.

The question was put into perspective with regard to contemporary theories of ageing as well as our understanding of what death is. Philosophy (literature review and conceptual analysis) and psychology (theory and clinical experience) have allowed us to break down into distinct themes the
individual relationship to death, its anticipation and its prediction in order to better understand the challenges that the prediction of natural incoming death might raise. Our approach to the problem in the medical field has been focused on intensive care because of the high frequency of death secondary to acute illnesses. It is therefore natural that we have examined how the development of tools to predict the risk of death could become a medical decision-making tool and enable the teams involved to better cope with it. Demographic and actuarial approaches have allowed us to put prediction of death in the context of the long-standing analysis of mortality tables. Novel methods of death prediction pose new challenges to long-established assumptions of demographic models used in the implementation of pension and public health policies and insurance decisions.

Results

Biology of ageing: Natural death as a predictable process

A broad range of age-related patterns of mortality are observed across species, from negligible senescence to post-reproductive death through progressive age-dependent risk increase\(^1\). The present discussion mostly builds upon work conducted in Drosophila melanogaster and in humans. In both species increasing mortality is observed with age (the definition of “ageing” we adopt), which leads to sigmoidal survival curves or type I survivorship curves\(^2\). In humans, the increase in mortality with age has been acknowledged at least since the first life-table was computed by John Graunt in 1662\(^3\); the exponential nature of the force of mortality for most of adult life has been put forward as early as 1825\(^4\).

Figure 1

Early conceptions of ageing and death. Despite these long-recognised statistical regularities, the nature of ageing was long ignored by biologists. For decades, ageing and death were mostly seen as natural phenomena - so natural indeed that they did not warrant an explanation. Though the idea of death as a natural phenomenon was explicitly formulated by Linné, early attempts to explain death can be found in Paracelse, and later Metchnikoff, who both interpreted death as a chronic poisoning of the organism - an idea further developed by subsequent theories such as the Oxidative Stress Theory.
of Ageing.

The second half of the 19th century represents a turning point in the understanding of ageing. Two decades after Darwin’s On the origin of species was published, German evolutionary biologist August Weismann published his own theory of ageing in mammals. Its key idea was that the limitation of lifespan occurred for evolutionary reasons: since death allows the replacement and the transformation of generations, it fosters progress and evolution. The idea that ageing is a trait selected by evolution, and as such programmed, was therefore introduced.

Evolutionary vs. functionalist biology on death. The 20th century staged the confrontation between two biologies – the first one seeking to answer the why (evolutionary biology); the second one the how (functionalist biology). Much greater emphasis was placed on the latter with the discovery of DNA, the rapid development of molecular biology tools and, regarding ageing, the discovery of the first enzymes detoxifying the Reactive Oxygen Species, echoing Harman’s free radical theory of ageing.

On the one hand, the functionalist conception - which partly took up Weismann's reflections - further developed the idea that there is an ageing program, coded and contained in an organism’s genome. Although Weisman justifies its existence invoking evolutionary reasons (at the species level), the idea of a “programmed death” as such seems to go against darwinian evolution, since fitness crucially depends on survival, and hence on postponement of death. This was the main argument used against Weisman’s vision of ageing as being adaptive. The notion of a "program" can for instance be found in François Jacob’s work, e.g. in his book the Logic of life:

"death [is] imposed from within, as a necessity prescribed from the egg onward by the genetic programme itself."

From this perspective, death is clearly part of a process that begins, if not at birth, then at least several years before the individual's time of death.

Evolutionary theories, on the other hand, long denied the possibility of ageing and death being deliberately programmed by the organism. They expounded on the fundamental role of chance and,
in this sense, seem to be more in line with Darwinian theories.

Recent evolutionary theories of ageing. From the 1950s onwards, three major evolutionary theories were introduced. According to Medawar’s theory of accumulation of mutations, published in 1952, ageing is caused by the progressive accumulation of deleterious mutations with effects that manifest only late in life. Because selective pressure decreases with age (fertility being considerably higher at younger ages), such mutations are not systematically eliminated by natural selection and can be considered responsible for the development of genetic traits leading to old age and death. Williams’ antagonistic pleiotropy theory goes a little further than Medawar’s, by inferring the existence of genes and mutations with antagonistic effects: beneficial at an early age (and therefore selected by evolution), they would also explain negative manifestations of aging and eventually lead to death. Finally, the so-called “disposable soma” theory as formulated by statistician Thomas Kirkwood, was based on the idea that the individual has a limited amount of energy, shared between reproductive functions and (non-reproductive) maintenance functions of the organism, the “soma”. According to Kirkwood’s theory, the increase in mammalian longevity is linked to a decrease in growth and reproduction rates, delaying death.

In each case, ageing was interpreted as a continuous process resulting from 1) the accumulation of deleterious mutations, 2) the expression of antagonist genes, or 3) the use of a limited amount of disposable energy - leading to an individual’s death.

Current functionalist approaches. These evolutionary theories coexisted until functionalist approaches became dominant in the 1980s. Evolutionary conserved mechanisms of ageing were discovered in model organisms such as C. elegans and D. melanogaster (oxidising agents, nutrients sensing deficiencies, protein aggregation, telomere attrition, cellular senescence, inflammation, etc.)\(^9\) with the first longevity-promoting genetic mutation identified in nematodes by Cynthia Kenyon and collaborators in 1993\(^{10}\), later shown to be conserved in flies\(^{11}\), mice\(^{12}\) and humans\(^{13}\).

Nowadays, numerous theories still coexist. Attempts have been made at classifying them into broad categories, such as: “evolutionary theories” vs. “mechanistic theories”; “programmed theories” vs.
“damage/error theories”; “cellular” vs. “physiological” vs. “organ-based” vs. “genetic theories”.

However, a more prevalent approach today is to try and link together the mechanisms and phenomena that are already well-known and explained. Some new theories were proposed as an attempt to build a unified version of ageing14,15.

Predictors of death. Whether death is programmed - genetically - or not, it may still be predicted. The most readily accessible predictor of the mortality risk, and perhaps the most widely studied, is chronological age, or, to put it plainly, the amount of time an individual has been alive. As previously mentioned, life-tables based on the mortality experience of whole populations have revealed that, in humans, the risk of death increases exponentially with chronological age for most of adult life. It should be noted that this approach yields an incomplete perspective of the ageing process at an individual level, since the interpretability of a life-table is to some extent based on the assumption of a homogeneous population. In cases where individuals experience different levels of risk, e.g. due to genetic or developmental characteristics, the population-level mortality trajectory depends on the age-related increase in mortality, but also on the distribution of the aforementioned characteristics16. Accordingly, chronological age alone fails to identify impending death situations, except at extreme ages. It has recently been estimated in Italian centenarians that the force of mortality reached a plateau at 0.645 y^{-1} after age 10517. In other words, approximately 50\% (1-e^{-0.645}) of individuals who have reached this age are expected to die within one year.

This line of reasoning leads to the notion of physiological age: two individuals of the same chronological age can experience different risks of impending death.

Death prediction based on processes. One crucial question that we have so far largely set aside is that the notion of death may refer either only to a single moment, or to a process. Indeed, death is most often represented as an event - a point on the arrow of time, e.g. in classical survival analysis methods commonly used in epidemiological or demographic research. The idea that stands in contrast to this first one is that of death as a process including a risk phase that precedes the final event, as first delineated by Buffon in his Histoire naturelle de l’homme18.
The latter perspective on death has been given renewed impetus by the recent identification in drosophila flies of an increase in intestinal permeability (the “Smurf phenotype”) that systematically occurs during aging and precedes impending death19,20. While Smurf individuals have a markedly decreased life expectancy, compared to non-Smurf individuals, no - or little - effect of chronological age on death rates was found among Smurfs individuals. Flies randomly transition to the Smurf state, then die. Since the first description of the Smurf phenotype, in vivo assessment of intestinal barrier dysfunction associated with ageing has been performed in other model organisms21 (Fig. 2). The interesting point to highlight here is the scaling of Smurf-phase duration depending on the life expectancy of the considered organism. From 2–4 days in nematodes and drosophila - in which we first described this impending death phenotype - characterized by a 20–90 days lifespan, the Smurf phase duration goes up to approximately 6 months in the zebrafish Danio rerio, which has a 5-year life expectancy. It is now reasonable to posit that increased intestinal permeability is linked to evolutionary conserved mechanisms and could potentially be observed in humans, although this “Smurf period” might last years22. Results recently published by Angarita and collaborators23 further bolster this hypothesis (Fig. 3).

This characterisation of death as a process has major implications for prediction, since observation of whether a fly has reached the Smurf state - its physiological age - predicts its risk of impending death better than its chronological age does. In humans, recent work has actually built upon the assumption that death is a process in the course of which progression to intermediate states can be observed and therefore yield insights into survival even for apparently healthy individuals.

Figure 221

Accumulating evidence points to the notion that predictions based on specific biomarkers can significantly outperform predictions based on risk factors and chronological age. Horne and coauthors for instance showed that a risk-score based on complete blood count and metabolic information led to accurate prediction of survival in the short (at 30 days) to medium term (at 5 years) in the general population24.
In 2014, Fisher et al. performed biomarker profiling by nuclear magnetic resonance in two large groups of people\(^{25}\). They combined test results of four selected biomarkers (plasma albumin, alpha-1-acid glycoprotein, very-low-density-lipoprotein particle size and citrate) into a biomarker score that predicted all-cause mortality more accurately than any previously identified risk factors of that kind. Other research groups have associated specific age-related mal- or dys-functions to an increased risk of all-cause mortality: for example, Pinto et al. have demonstrated that olfactory dysfunction is a strong predictor of 5-year mortality in older adults\(^{26}\). This heterogeneity amongst populations is presently modeled using frailty models and various instruments to measure biological susceptibility have also been elaborated in order to predict patient outcomes and identify individuals with a high-risk of short-term death\(^{27\text{–}29}\). Others have also focused on specific model organisms to try and elucidate significant mechanisms that are associated with ageing and short-term death\(^{20,30\text{–}32}\). This rapidly improving ability to identify at-risk individuals, and therefore to predict with high accuracy the occurrence of death for apparently healthy individuals, evidently raises major ethical questions.

Figure 3\(^{23}\)

Being Mortal: Philosophical And Psychological Approaches

The key question raised by this prospect is to determine whether tools to grasp the implications of death prediction for human beings actually exist. We have deliberately limited the examination of these issues to human beings - which does not mean that such questioning could not be extended to other living beings. We will propose a multilevel analysis by first examining human awareness about death and then turning to philosophy and psychology, the human condition being a core subject of both.

Philosophy and mortality

Philosophy will be approached as an academic discipline based on a set of texts beginning with pre-Socratic fragments up to contemporary works, so as to offer a multi-layered conceptual analysis of core issues. Although both elements (i.e. the texts themselves and the conceptual analysis derived
from them) vary from one cultural area to another, there are enough common features to consider philosophy here as a homogeneous and consistent body of questions and theories.

In this perspective, philosophy has paid much attention to the meaning of the mortal condition. Death is seen as, if not a defining then possibly the most elemental feature of the human condition, as illustrated in the famous syllogism “All men are mortal. Socrates is a man. Therefore, Socrates is mortal.” Formulating this point may even appear as an odd thing to do, as no one would question this fact. It is often said that human beings are the only living beings who are aware of their own mortality. This awareness, however, comes with a correlated lack of knowledge: although everyone knows they are mortal, no one knows when or how they will die. This lack of knowledge is most often seen as a positive since knowing one’s own date of death has been depicted as a tragic fate. Death foretold appears tolerable only as a third-person experience.

This awareness can lead to the belief that human life is devoid of meaning. Although there are various attitudes towards one’s own death, including seeing it as a welcome event (p. 95) to the point of committing suicide ('Characterization of the Will-to-Live', Supplements to the Second Book, p. 439 sq.) human beings are generally described as facing the harshest imaginable fate: the challenge of accepting, during their lifetime, that their death is coming, and with it, the fact that their achievements, commitments or bonds will fall into oblivion, as if they had not existed.

Linked to this notion of human life as being meaningless, human mortality is seen as a basic impulse for philosophy itself (‘On Death and its relation to the Indestructibility of our Inner Nature’, chapter XLI, Supplements to the Fourth Book, The World as Will and Idea, volume II, p. 463). As a reflection on death, philosophers have addressed the quest for immortality from a moral point of view.

Philosophy has mainly proposed an examination of the feelings or experience induced by the awareness of one’s future death. It has done so mostly for human beings, even though attention has been paid to animal sensitivity. Twentieth century philosophy has especially focused on one
feeling defined as ‘anxiety’ \(^{43}\). Such an ‘anxiety’ - or fear of death - has been commented upon since Ancient times, especially in connection with the strategies developed by human beings to escape the thought of death \(^{44}\), series IX, Diversion, 168, p. 44).

When tackling the issue of mortality, philosophers themselves have searched for ways to prevent anxiety about death: thanks to a renewed idea of death as “being nothing to us” \(^{45}\) (124 sq.) \(^{46}\), or in connection with religious consolation \(^{44}\)(series XXXIV, 505, p. 122), or with a combative attitude against such an anxiety about one’s death, death being seen fully as part of human life \(^{47}\) (I, XIX, p. 72 ; III, XIII, p. 571 ; I, XIX, p. 64).

Psychology and mortality

The analysis of psychic life has brought new insights into human awareness of death. Questioning the apparent subjective unity defended by most of Western philosophical thinking, the hypothesis of the unconscious introduces the idea that the same subject can be acted upon by multiple internal forces that do not all obey the same requirements. Psychic life would therefore be a source of conflict between conscious elements - products of logical thought in accordance with the “reality principle”, and more irrational and unconscious elements abiding by the “pleasure principle” \(^{48}\) (vol. XII). In this perspective, death can therefore, within the same individual, be consciously invested as rational knowledge and concurrently entirely negated by fantasies of immortality - Freud having highlighted their kinship with the workings of the unconscious mind \(^{48}\) (vol. XIV).

Psychologists working with people suffering from life-threatening conditions commonly find such ambivalence in the patients’ discourse, sometimes going as far as dissociation \(^{49} – 51\). Psychoanalyst Michel de M’Uzan radically differentiates the powerful movements that agitate the person close to death from those specific to mourning \(^{52}\) associated with a peaceful acceptance of death \(^{53}\). What characterises this “work of dying”* is therefore not a form of detachment supported by a completely passive psyche. As a matter of fact, the psyche shows intense activity when approaching death: revolt, vital surge, relational appetite and even creativity of thought actually testify to the conflict
at work in psychic life when facing the reality of death.

In this perspective, the emphasis is no longer on denying or accepting representations of death, but rather on the imbalance caused by their resurgence within psychic life. The psychodynamic approach therefore aims to identify the psychological processes that allow this balance to endure in order to achieve a good life, both individually and collectively; with repression being one such process. These hypotheses have been widely adopted in the fields of human and social sciences, as evidenced by many more contemporary authors who go as far as to point out a genuine collective denial of death. According to them, this denial gives even more compelling force to the work of repression and, consequently, make its suppression during an actual encounter with death even less acceptable for an individual or a community. Events such as wars, epidemics, being diagnosed with a disease or a disability have an immediate effect as they shatter our “comforting illusions” undermining all the processes that human societies have devised to escape the constraints nature places on each individual.

* “travail de trépas”

Anticipating Incoming Death

Philosophy and psychology have examined the meaning of death awareness for human beings, highlighting its existential and psychic implications. However, the focus on this awareness does not specifically clarify what it means to anticipate one’s own death. A specific investigation must be led on this issue.

Death anticipation is not uncommon today, particularly in health-care institutions, even though practical ways of dealing with it, both individually and collectively, are still in the process of being defined. Extraordinary situations occur where one has a precise idea of the moment of one’s death: when a person is sentenced to death, or when a person plans to commit suicide for instance. More commonly, anticipation of one’s death occurs in “end-of-life” situations, that is to say, during a medically diagnosed time of human life - a few hours, days, weeks or even months - in which the person is considered as entering the last moments of life. We have few historical testimonies or
literary description of such moments (for example, in Rousseau56, Part 6, Letter XI). Today, such situations are better documented and more numerous. This is partly due to the contemporary social organisation of death in most Western countries (61 p. 6). Another part of the explanation lies in “modern scientific capability” which has “profoundly altered the course of human life” yet not always made it possible to cure people57. The development of intensive care since the 1950s is paradigmatic of this “alteration”. It has led to a multiplication of cases where the patient is kept alive and conscious long enough to face the perspective of impending death. Cancerology must also be taken into account to understand this shift. In common representations, a cancer diagnosis has long meant and still often equates to some sort of death sentence58 (p. 35). For this reason, health professionals have developed communication strategies, partial truths and step-by-step announcement of such diagnoses59. It has been observed that patients may both hope for a cure and be convinced that they are about to die58. This is still the case, even with the latest advances in cancerology, which can lead, in certain cases, to cancer becoming chronic.

Since the late 1960s, the discussion surrounding individual wishes regarding one’s own death has become widespread and reached the general public. This qualifies the aforementioned notion of both a collective and an individual denial of death. This discussion has informed the way individuals anticipate their own deaths. It is now frequent for individuals to express end-of-life preferences; manifestoes have been published in newspapers; cases have been brought to court; ethical committees have provided guidelines for health professional faced with refusals of treatment and expressed wishes to die; reforms have been passed to provide a legal framework for these new ways of facing the end of one’s life in a medical setting37,60–62.

As a result, health-care professionals, medical institutions and societies at large have begun to face the challenges posed by death-anticipation for patients. This takes the form of a vivid discussion, mostly about what medicine fails to do, could do, or should do better. First, the lack of teaching in medical curricula about the frailty of old patients, about the way they might want to live and die, and
about mortality in itself is criticised (61 p. 9). The necessity to make up for it in contemporary health-care systems is now emphasised. In addition, the development of palliative care in health-care systems over several decades is viewed as a way to provide answers for this issue, though it has also been criticised for conveying questionable conceptions of what constitutes a “good death” and a “good way” to face one’s death. For several decades, certain health-care institutions have integrated a new way of practising medicine, no longer focused on trying to cure, but rather on providing care to dying persons. Finally, palliative care is not the only answer to criticism aimed at current medical education. Death-anticipation gives rise to other types of initiatives such as the recent “anticipated discussions”, which give patients the possibility to discuss their “end-of-life” with their physicians.

Advance directives and care for people at the end of their lives stand in contrast to a medicine that states, in the face of therapeutic failure, that “there is nothing more to do”. On the contrary, the palliative care movement, and more broadly the philosophy of care, are based on the idea that “there is always something to do with a patient” provided that the care process is focused on the person’s needs and wishes regardless of curative possibilities.

Psychology actually tells us that it is crucial to maintain one's creativity and ability to think and feel emotions in extreme and unpredictable situations. This necessity can be seen in relation to the infant's state of ontological precariousness, with the ability to emerge from it depending on the quality of the emotional and human environment provided (Vol. 1). Freudian and post-Freudian research has carefully examined how, for infants, an experience of extreme helplessness in response to an original state of distress becomes the starting point of a trauma. Traumatic feeling comes with “a high state of passivity”, i.e. a constrained and unwanted experience closely related to this original state of distress. As such, only a permanent work of anticipation based on a reliable social environment may allow the individuals concerned to protect themselves from it. Experiences in clinical psychology in the context of degenerative diseases, certain types of cancer or AIDS -
cases where therapeutic impotence had not been overcome – show that people may be unable to modify or reduce this vulnerability for a period of time, which inevitably results in a traumatic experience73,74. Previous research and authors have shown that the quality of human support and the environment reduces traumatic impact and, even more so, post-traumatic distress. Giving space to the patient's wishes thus alleviates their feelings of powerlessness and helps them cope with their situation.

Moreover, human creativity, which is so important in human life, would then be considered by some other authors as the key element of the work of ageing75. Death appears as a consequence of the impossibility to continue to age: that is, to keep on transforming somatic and psychic processes in order to maintain the balance between the various requirements that allow the continuation of life76. The reliability of human beings stems from their ability to survive in conditions where their greatest precariousness is revealed76.

In both this section and the previous one, the relationship to one's own death is based on the notion of death as an event interrupting life. Death is considered as the final term, just as it is when used in its metaphorical sense77. Anticipation of death is not uncommon but, so far, it has been considered when taking place in a medical context where the person in care suffers from a lethal disease or very poor health condition due to old age. However, the research into predictors for impending natural death implies that death prediction could become relevant to anyone, at any age, and not necessarily solely to persons suffering from a condition; death may equally no longer be considered as a fixed event, but rather as a process. This notion has been sketched out once before, but not really developed so far (56,57 p. 75). As a result, we must now take another step in our reflection and consider the specifics of death prediction as understood within the research on predictors of impending natural death.

Discussion

Individual Implications of mortality prediction

If such predictors were to become widely available, anyone could experience entering a phase of life
set to a “countdown” (which could last several years). This phase could be described as a very
different dying process from what is today labelled as “end-of-life”, and from the experience
described by anthropologist Todd Meyers about “Beverly”, a person with multiple chronic conditions,
who refers to her own life as one long dying process78. In addition, the notion of prediction of death
may differ from that of anticipation of death.

In the context of this possible future, we address some implications of the widespread availability of
tools of this kind. In this last section of the study, we propose a first sketch of the implications of
predicting death as such, which differs from the awareness of death or even of the anticipation of
death as approached in the two previous sections. We will pay special attention to the process as
experienced by the person informed of such a prediction, its possible uses in medical decision-taking,
and finally its possible social and economical uses. We thus hope to anticipate the potential outcomes
of contemporary biological research on ageing and identify directions for further investigation in that
field.

Though still largely theoretical, the experience of entering a phase of life set to a “countdown”
probably has some common features with a situation we are familiar with: namely, the situation
arising from genetic testing made in pre-symptomatic stages of a disease. Let us recall here the main
points of ethical analysis developed in such a situation. It may help us to foresee the implications of
death prediction itself. Particularly interesting insights may be derived from the case of pre-
symptomatic testing for Huntington’s disease. Reflecting on a family history in her book Mapping
Fate: A Memoir of Family, Risk, and Genetic Research, Alice Wexler recounts the life of the author’s
mother whose health slowly deteriorates because of Huntington’s disease, and the action initiated by
her sister and her father to discover the gene causing the disease82. The use of the word “fate”
suggests that, after receiving their test results, the person affected will not see their life as an open
future, but as a timespan closing in on itself.

This finite course of time appears to be the main issue at stake;79,80 a point that echoes Vladimir
Jankélévitch’s analysis of death: on the basis of Victor Hugo’s work of fiction, The last day of a
condemned man53, he emphasised that a death sentence leads a person to enter “an unbearable and inhuman” time, where one’s time of death is known54. Nietzsche’s anthropological perspective - according to which it is better for human beings not to know their future - appears as strikingly relevant on this matter81. Along the same lines, Jean-Claude Ameisen states that we live in a state of constant forgetfulness of our previous metamorphoses, letting the memory of all the ones that occurred before sink into oblivion82. In other words, we require a certain ignorance of the future in order to be able to live. Having one’s forthcoming death announced completely breaks with this dynamic and, as such, any framework for disclosure should take into account the time and support needed to recalibrate one’s choice between ignorance and awareness83 – 86. Ethical discussions on genetic screening, be it for adults (as used to detect risks of breast cancer) or for children (as used to detect risks of cystic fibrosis or neuromuscular diseases) tend to reach similar conclusions87 – 93. As a result, undergoing genetic testing is not an obvious decision to make. Interestingly, only a minority of people who do make it actually complete the process94, 95. This information alters the individual’s health status yet it does not provide them with any medical response or treatment. In so doing it may definitely raise levels of stress and impair possibilities of planning the future. It also raises the question of the status of the individual who tests positive: will they be considered a patient of medicine, especially so if the announcement comes from a medical actor? How can this announcement be managed whilst patients are totally asymptomatic and do not feel sick or near death? What kind of support can be offered to them and should it be strictly medical? These unresolved questions clearly show specific attention should be paid to the ethical implications of death prediction. In terms of decision-making, they call for the elaboration of a special process, probably unfolded over a long time period, and on several stages.

Medical Applications And Related Issues

Being able to precisely predict impending death would inevitably have medical implications. We shall give a few examples of those potential implications and discuss ensuing issues. We will focus first on
the case of an acutely ill patient with a so-called fatal prognosis, then on a healthy subject diagnosed with a fatal disease. Scientific progress over the past century has considerably increased our understanding of human physiology, but many aspects of it are still unknown. Death prediction is naturally dependent on the progress of research and medical advances, but it is a new parameter in our end-of-life appraisal that must be considered through a patient-based approach.

Acutely ill with fatal prognosis. After traumatic brain injury, cardiac arrest or septic shock, patients may suddenly become comatose or suffer multiple organ failure requiring organ support. Treatment for such diseases is dispensed in intensive care units (ICU) and can last up to several weeks at a time. Both patients and family are always very affected by an ICU hospitalisation and relatives may often want to know the prognosis of the disease. It is unlikely that anyone would wish to carry on with invasive treatments in the ICU for a patient with a 100% probability of short-term death. For the most severe cases, clinical scores based on multiple exams - clinical, radiological and biological - are precise enough to provide guidance as to the withdrawal of treatment, which is a legal procedure in France96–98 and simply a recommendation in the UK99. For comatose patients after cardiac arrest, some factors indicating very poor outcome are also now identified100. But for all other patients, their precision remains low (with a C-statistic value of 0.82 at best)101.

In such cases, having a robust predictor of fatal outcome would be very helpful. It would help shorten the length of stay in the ICU, avoid pointless suffering for the patient and allow more time for next-of-kin support102,103. It would also make it possible to better allocate resources between therapeutic care for patients who are more likely to survive and palliative care for those with a very reliable predictor of impending death. But to be implemented within the routine of care, such a predictor will have to rely on large cohorts as well as on a robust pathophysiology. It means that increasing the number of cases in the database will not be enough, due to the high-variability of human bodies and conditions. In the modern world of machine learning and “artificial intelligence”, such a score will have to remain relatively low on the vertical line of “The Axes of Machine Learning and Big Data” yet remain consistently as high as possible on the horizontal line104. Numerous initiatives are now
expanding on these issues98,100,105.

Patient fit and well-being diagnosed. Thanks to recent advances, a previously healthy person diagnosed with a fatal disease may be given a reasonable idea of their remaining life expectancy. From a medical perspective, even in the absence of a known cure, an optimistic approach may consist in trying everything to increase the life expectancy of the patient, including active therapy but also avoidance of treatment inasmuch as it may exacerbate the underlying condition. From a research perspective, studying the way of life of the patient and other comorbidities will help practitioners understand why a certain pathology may worsen and how to prevent it.

From a pragmatic point of view, knowing that a patient is due to die (i.e. in the coming months) will raise ethical problems regarding which treatments to offer this patient. For example, a patient diagnosed with a fatal disease and who suffers acute kidney injury or metastatic disease may not necessarily benefit from long-term dialysis or chemotherapy. Within the medical community this type of discussion is already commonplace, if not a daily occurrence, for a broad range of patients, yet it is sometimes addressed with imprecise tools. Indeed, medical progress has made many pathologies survivable and there is nothing unusual today in treating an 80-year-old patient for his second or third cancer. Adding an objective tool will help medical teams devise the best plan of care in accordance with the patient’s wishes.

But again, it is important to emphasise here that the prediction of life expectancy may remain indicative for a long time, to be taken into account among several others rather than as a binary answer.

Implications For Society: The Case Of Longevity Risk

The development of predictors for impending natural death would also change the way longevity risk is perceived, both from a social and an individual point of view. The availability of accurate death predictors could dramatically change how the risk of outliving one’s savings is perceived by individuals. As a consequence, the design of state pensions and long-term care systems could be modified.

Managing social and economic challenges produced by the unpredictable nature and sustained
improvement in human lifespan is an age-old issue. As discussed in the introduction, the first age-specific mortality model, motivated by the pricing of life annuities, was published in 1825. Since then, there has been a spectacular development of mortality models (see e.g.), used for evaluating pensions and public health reforms or regulatory reserve for pension funds and insurance companies. This so-called Longevity risk is usually subdivided into several components, including a systematic mortality risk - arising from unknown future improvement in mortality reduction; and an idiosyncratic risk - correlated to the unpredictability of an individual's date of death.

First, personalized measurement of physiological age would substantially reduce the systematic risk. Such measures would open a whole new field of research for developing more accurate mortality models, which could be based on observable frailty indicators, and thus a better assessment of the longevity risk for society.

Pension and long-term care providers (states, pension funds, insurance companies...) cannot evaluate how long benefits will need to be paid to an individual and are therefore faced with significant idiosyncratic risk in addition to the systemic risk. Having access to accurate individual death predictors could reduce this idiosyncratic risk by reducing the residual variance of late-life phase individuals. This would be particularly relevant for small providers, heterogeneous groups or individualised retirement systems in which individuals bear their own longevity risk.

But the implementation of death predictors is also likely to challenge solidarity and risk-pooling principles on which many retirement and long term-care systems are built, thereby encouraging more individualised organisations. Indeed, the unpredictable nature of one's date of death is a strong incentive for one's willingness to contribute to the pool and risk-sharing systems, which entail both the prospect of obtaining less than contributed (for instance in retirement benefits) and the counterbalancing insurance against one's own longevity risk (risk of outliving one's savings).

However, if better death predictors were to become available, should individuals with a shorter remaining lifespan be authorized to withdraw from retirement systems that share the longevity risk?
This looming issue is reminiscent of the current questions surrounding solidarity between groups known to have different life expectancies. For instance, it is already the case that insurance companies are not allowed to charge higher premiums to women112, including for longevity related products, even though women are known to live longer than men. Some concerns have also been raised regarding “unfair” redistribution properties of public pension systems in the presence of socioeconomic differences in mortality (see e.g. 113–116). Indeed, these systems could produce “an undesirable transfer of wealth away from lower socioeconomic groups with shorter life expectancy to higher socioeconomic groups with above average longevity”114. The magnitude of such challenges would be vastly expanded in the presence of individualised death predictors. The solidarity principles of pensions and long-term care systems could be jeopardised, or at least redefined.

The most urgent question to answer might be: which institutions, if any, should have access to information on death predictors? For instance, should an individual have to disclose the information that they have entered the “countdown” phase of their life? Again, this issue echoes present ones, since policyholders already have to disclose to insurance companies pieces of information (smoking habits, previous illnesses...) known to be determinants of mortality117. Thus, the availability of massive amounts of individual data relevant for death prediction might be one of the most important regulatory challenges of the coming decades.

Conclusions

The biological research on ageing presented in the first part invites us to consider death prediction and to identify and analyse its ethical, medical and social implications, both from an individual and a collective standpoint. Such research leads to consider the prediction of death as an object requiring multidisciplinary reflection. Without claiming to be exhaustive, in this article we have applied this very method, focusing specifically on biology, philosophy, psychology, medicine, demography and actuarial sciences.

From a conceptual and ethical standpoint, philosophical and psychological approaches are enriched by an analysis that distinguishes aspects of the relationship to death that are often considered as an
interwoven whole: the awareness of one's own mortality, the challenge of anticipating one's death, and finally the issues that arise from predicting it.

The reflections presented here are intended to outline the issues to be addressed, both individually and collectively. What kind of medicine and health-care do we want? What collective organisation do we want to adopt, in terms of insurance? What are we, as human beings, able to apprehend and what would we prefer to ignore? What information about ourselves do we allow to circulate and do we accept to share?

The present work provides a framework for identifying and examining forthcoming issues, such as conditions and consequences of a (potential) clinical use of death prediction, risks associated with private interests taking control of information obtained in that context, and potential increased psychological vulnerability. These issues can therefore be addressed head on rather than be viewed as unspecified “risks” that may eventually need to be tackled in future. According to the authors of this study, the issues associated with death prediction should be addressed upstream. A multidisciplinary and foresight-based approach must go hand in hand with biological research on death prediction.

In conclusion, the development of new, powerful tools for assessing individuals’ short to midterm life expectancy will bring new challenges but also - and it is important to keep this in mind - great opportunities; it will open new ways of looking after ageing patients, their diseases as well as the care offered to them and, as such, allow a transition from a mostly curative approach to better consideration for palliative solutions, which may contribute to a better acceptance of death in our ageing societies.

Declarations

Abbreviations

None

Acknowledgements

We acknowledge the Chaire Modélisation Mathématique et Biodiversité of Veolia Environment - Ecole Polytechnique - Museum National d’Histoire Naturelle - FX for allowing the discussion of MR and SK.
We thank Emilie Zinsou and Jonathan Tennant for their useful comments.

Authors' contributions

MG and MR designed and led the project. CG, NT and MR wrote the state-of-the-art regarding the biology of ageing and associated physiological markers. MA, MG, ER wrote Being mortal, Anticipating incoming death, Implications of death prediction. CD wrote the paragraphs concerning medical applications. SK discussed the case of impending death predictors in the context of insurance. MG, MR and NT extensively edited the text of the article. EZTraduction corrected the english and homogenised the styles across the article.

All authors have read and approved the manuscript.

Funding

This project was partially funded by the IHSS (Institut Humanités, Sciences et Sociétés, Université Paris Diderot), the CNRS (Centre National de la Recherche Scientifique) and ATIP/Avenir young group leader program.

Availability of data and material

Not applicable

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests

Authors' information

Université de Paris, SPHERE, UMR 7219, CNRS-Université Paris Diderot, bâtiment Condorcet, case 7093, 5 rue Thomas Mann, 75205 Paris, France: Marie Gaille, Clémence Guillermain

Sorbonne Université, IBPS, B2A, CNRS, Institut de Biologie Paris - Seine, 75005 Paris, France: Michael Rera

Université de Paris, CRPMS - EA 3522, IUH - EA 3518, bâtiment Olympe de Gouges, 8 rue Albert
Einstein, 75013 Paris, France: Marco Araneda, Elise Ricadat

Head of intensive care unit, begin military hospital & CognacG research unit, UMR CNRS-Paris

Descartes-SSA, Paris, France: Clément Dubost

Laboratoire Manceau de Mathématiques, Institut du Risque et de l’Assurance, Le Mans

Université, 72000 Le Mans, France: Sarah Kakai

Max Planck Institute for Demographic Research, Rostock, Germany: Nicolas Todd

corresponding author: marie.gaille@cnrs.fr

References

1. Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).

2. Rauschert, E. Survivorship Curves. Nature Education Knowledge 3, 18

3. Graunt, J. Natural and Political Observations Made upon the Bills of Mortality. (Cambridge University Press, 1899).

4. Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil Trans Roy Soc 513–585 (1825).

5. Darwin, C. The origin of species by means of natural selection, or, The preservation of favored races in the struggle for life. (Bantam Classic, 2008).

6. McCord, J. M. & Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049–55 (1969).

7. Harman, D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 298–300 (1956).

8. Jacob, F. The logic of life: a history of heredity. (Princeton Univ. Press, 1993).

9. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–217 (2013).

10. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–4 (1993).

11. Clancy, D. J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–6 (2001).
12. Bluher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–4 (2003).

13. van Heemst, D. et al. Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 4, 79–85 (2005).

14. Lane, N. A unifying view of ageing and disease: the double-agent theory. J Theor Biol 225, 531–40 (2003).

15. Blagosklonny, M. V. Aging is not programmed: Genetic pseudo-program is a shadow of developmental growth. Cell Cycle 12, 3736–3742 (2013).

16. Vaupel, J. W., Manton, K. G. & Stallard, E. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16, 439–454 (1979).

17. Barbi, E., Lagona, F., Marsili, M., Vaupel, J. W. & Wachter, K. W. The plateau of human mortality: Demography of longevity pioneers. Science 360, 1459–1461 (2018).

18. Buffon, G. L. L. C. de & Schmitt, S. Œuvres complètes. […] T. 4: Histoire naturelle, générale et particulièr, avec la description du Cabinet du Roy (1753). (Champion, 2010).

19. Rera, M. et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab 14, 623–34 (2011).

20. Rera, M., Clark, R. I. & Walker, D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci U A 109, 21528–33 (2012).

21. Dambroise, E. et al. Two phases of aging separated by the Smurf transition as a public path to death. Sci. Rep. 6, (2016).

22. Rera, M., Vallot, C. & Lefrançois, C. The Smurf transition: new insights on ageing from end-of-life studies in animal models. Curr. Opin. Oncol. Publish Ahead of Print, (2017).

23. Angarita, S. A. K. et al. Quantitative Measure of Intestinal Permeability Using Blue Food Coloring. J. Surg. Res. 233, 20–25 (2019).

24. Horne, B. D. et al. Exceptional Mortality Prediction by Risk Scores from Common Laboratory Tests. Am. J. Med. 122, 550–558 (2009).

25. Fischer, K. et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the
prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Med 11, e1001606 (2014).

26. Pinto, J. M., Wroblewski, K. E., Kern, D. W., Schumm, L. P. & McClintock, M. K. Olfactory dysfunction predicts 5-year mortality in older adults. PLoS One 9, e107541 (2014).

27. Dent, E., Kowal, P. & Hoogendijk, E. O. Frailty measurement in research and clinical practice: A review. Eur. J. Intern. Med. 31, 3–10 (2016).

28. de Vries, N. M. et al. Outcome instruments to measure frailty: a systematic review. Ageing Res. Rev. 10, 104–114 (2011).

29. Fulop, T. et al. Aging, frailty and age-related diseases. Biogerontology 11, 547–563 (2010).

30. Coburn, C. et al. Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. PLoS Biol 11, e1001613 (2013).

31. Yang, Y. et al. Temporal scaling of aging as an adaptive strategy of Escherichia coli. Sci. Adv. 5, eaaw2069 (2019).

32. Fehrmann, S. et al. Aging yeast cells undergo a sharp entry into senescence unrelated to the loss of mitochondrial membrane potential. Cell Rep 5, 1589–99 (2013).

33. Canetti, E., Matt, P. von & Kreiss, B. Le livre contre la mort. (Albin Michel, 2018).

34. Canetti, E., Rey, F. & Schwarzinger, H. Théâtre. (Albin Michel, 1986).

35. García Márquez, G. Chronicle of a death foretold. (Penguin Books, 2014).

36. Schopenhauer, A. The world as will and representation. (Dover Publications, 1969).

37. Gaille-Nikodimov, M. La valeur de la vie. (Les Belles lettres, 2010).

38. Lévi-Strauss, C. & Lévi-Strauss, C. The naked man. (University of Chicago Press, 1990).

39. Williams, B. Problems of the self: philosophical papers 1956 - 1972. (Cambridge Univ. Press, 1999).

40. Beauvoir, S. de. All men are mortal. (Norton, 1992).

41. Burgat, F. Une autre existence: la condition animale. (A. Michel, 2012).

42. Larrère, C. & Larrère, R. Du bon usage de la nature: pour une philosophie de l’environnement. (Aubier, 1997).
43. Heidegger, M., Stambaugh, J. & Schmidt, D. J. Being and time. (State University of New York Press, 2010).
44. Pascal, B., Levi, H. & Pascal, B. Pensées and other writings. (Oxford University Press, 2008).
45. Epicurus, Inwood, B. & Gerson, L. P. The Epicurus reader: selected writings and testimonia. (Hackett, 1994).
46. Lucretius Carus, T. & Smith, M. F. On the nature of things. (Hackett Pub, 2001).
47. de Montaigne, M. Essays. (1595).
48. Freud, S., Strachey, J. & Freud, S. On the history of the psycho-analytic movement: papers on metapsychology and other works; (1913-1914). (Vintage, 2001).
49. Campbell, J. F., Koppenhofer, A. M., Kaya, H. K. & Chinnasri, B. Are there temporarily non-infectious dauer stages in entomopathogenic nematode populations: a test of the phased infectivity hypothesis. Parasitology 118 (Pt 5), 499–508 (1999).
50. Raimbault, G. L’enfant et la mort: des enfants malades parlent de la mort; problèmes de la clinique du deuil. (Privat, 1977).
51. Oppenheim, D. Le soignant face à l’enfant qui peut mourir. in Fins de vie, éthique et société 413-423 (ERES, 2012). doi:10.3917/eres.hirsc.2012.01.0413
52. Kübler-Ross, E. & Maheu, P. La mort: dernière étape de la croissance. (France Loisirs, 1985).
53. M’Uzan, M. de. De l’art à la mort: itinéraire psychanalytique. (Gallimard, 1983).
54. Pontalis, J. B. Entre le rêve et la douleur. (1977).
55. Thomas, L.-V. Anthropologie de la mort. (Payot, 1975).
56. Rousseau, J.-J., Stewart, P., Vaché, J. & Rousseau, J.-J. Julie, or, The new Heloise: letters of two lovers who live in a small town at the foot of the Alps. (Dartmouth College : University Press of New England, 1997).
57. Gawande, A. Being mortal: medicine and what matters in the end. (2015).
58. Bataille, P. & Bretonnière, S. Vivre et vaincre le cancer: [les malades et les proches témoignent. (2016).
59. FAINZANG, S. ANTHROPOLOGY OF LYING: information in the doctor -patient relationship.
60. Maglio, M. Une nouvelle loi pour la fin de vie?: Détour par l’Italie. médecine/sciences 35, 258–262 (2019).
61. Gaille, M. & Horn, R. The role of ‘accompagnement’ in the end-of-life debate in France: from solidarity to autonomy. Theor. Med. Bioeth. 37, 473–487 (2016).
62. Horn, R. Le droit de mourir: choisir sa fin de vie, en France et en Allemagne. (2013).
63. Castra, M. Bien mourir: sociologie des soins palliatifs. (Presses universitaires de France, 2003).
64. Fouquet, C., Brédart, A. & Bouleuc, C. French adaptation of a question prompt list for cancer patients and their carers in supportive and palliative care. Bull. Cancer (Paris) 693–701 (2012). doi:10.1684/bdc.2012.1593
65. Brandes, K., Linn, A. J., Butow, P. N. & van Weert, J. C. M. The characteristics and effectiveness of Question Prompt List interventions in oncology: a systematic review of the literature: QPL interventions in oncology. Psychooncology. 24, 245–252 (2015).
66. Amar, S. & Amar, S. L’accompagnement en soins palliatifs: approche psychanalytique : spécificité du psychologue, aménagement du cadre thérapeutique, analyse théorico-clinique des problématiques de la fin de vie. (Dunod, 2012).
67. Spitz, R. A. & Cobliner, W. G. De la naissance à la parole: la première année de la vie. (2012).
68. Winnicott, D. W. Collected papers. (Tavistock, 1958).
69. Bion, W. R. Learning from experience. (Karnac, 1991).
70. Kolk, B. A. van der. Le corps n’oublie rien: le cerveau, l’esprit et le corps dans la guérison du traumatisme. (A. Michel, 2019).
71. Janet, P. L’amnésie et la dissociation des souvenirs par l’émotion. Journal de Psychologie normale et pathologique 417–453 (1904).
72. Valdimarsdóttir, U. et al. Parents’ intellectual and emotional awareness of their child’s impending death to cancer: a population-based long-term follow-up study. Lancet Oncol. 8, 706–714 (2007).
73. Sébert, A.-L., Schwering, K.-L., Alberti, C., Ricadat, E. & Boissel, N. Que reste-t-il de l’annonce ?: Les enjeux à long terme de l’annonce d’un diagnostic de cancer chez les adolescents et les jeunes
adultes : étude qualitative menée auprès de patients traités dans une unité d’hématologie dédiée. Psycho-Oncol. 12, 193-197 (2018).

74. Rannou, S. et al. Le vécu de l’annonce d’un cancer à l’ère du dispositif d’annonce. Psycho-Oncol. 5, 227–234 (2011).

75. Villa, F. La puissance du vieillir. (Presses Universitaires de France, 2010). doi:10.3917/puf.vill.2010.01

76. Villa, F. À propos de l’ordinaire et extraordinaire détermination humaine à rester en vie. Champ Psy 35, 105 (2004).

77. Levi, P. If this is a man. (Abacus, 1987).

78. Meyers, T. Chroniques de la maladie chronique. (2017).

79. Hermant, É., Pihet, V., Despret, V., Solhdju, K. & Stengers, I. Le chemin des possibles: la maladie de Huntington entre les mains de ses usagers. (Ding ding dong éditions, 2017).

80. Huntington, G., A. R, Bergerat, V. & Dingdingdong – Institut de coproduction de savoir sur la maladie de Huntington. Manifeste de Dingdingdong. Précédé de De la chorée de George Huntington. (Dingdingdong éditions, 2012).

81. Nietzsche, F. W., Williams, B., Nauckhoff, J. & Del Caro, A. The gay science: with a prelude in German rhymes and an appendix of songs. (Cambridge University Press, 2001).

82. Ameisen, J.-C. « Nous vivons dans l’oubli de nos métamorphoses... ». La mort et la sculpture du vivant. Ann. Hist. Sci. Soc. 62e année, 1253–1283 (2007).

83. Gargiulo, M. & Salvador, M. Vivre avec une maladie génétique. (A. Michel, 2009).

84. Houdayer, F. et al. The psychological impact of cryptic chromosomal abnormalities diagnosis announcement. Eur. J. Med. Genet. 56, 585–590 (2013).

85. Chaumet, H. & Houdayer, F. Maladies rares d’origine génétique : des malades en quête d’identité. in Handicap : une identité entre-deux 157 (ERES, 2017). doi:10.3917/eres.korff.2017.01.0157

86. Delanne, J. et al. Secondary findings from whole-exome/genome sequencing evaluating stakeholder perspectives. A review of the literature. Eur. J. Med. Genet. 62, 103529 (2019).

87. Ross, L. F. & Clarke, A. J. A Historical and Current Review of Newborn Screening for Neuromuscular
Disorders From Around the World: Lessons for the United States. Pediatr. Neurol. 77, 12-22 (2017).

88. the Global Alliance for Genomics and Health Regulatory and Ethics Working Group Paediatric Task Team et al. Genomic newborn screening: public health policy considerations and recommendations. BMC Med. Genomics 10, (2017).

89. d’Agincourt-Canning, L. & Baird, P. Genetic testing for hereditary cancers: The impact of gender on interest, uptake and ethical considerations. Crit. Rev. Oncol. Hematol. 58, 114-123 (2006).

90. Ropka, M. E. Uptake Rates for Breast Cancer Genetic Testing: A Systematic Review. Cancer Epidemiol. Biomarkers Prev. 15, 840-855 (2006).

91. Robins Wahlin, T.-B. To know or not to know: A review of behaviour and suicidal ideation in preclinical Huntington’s disease. Patient Educ. Couns. 65, 279-287 (2007).

92. Sweeney, K., Ghane, A., Legg, A. M., Huynh, H. P. & Andrews, S. E. Predictors of Genetic Testing Decisions: A Systematic Review and Critique of the Literature. J. Genet. Couns. 23, 263-288 (2014).

93. Gargiulo, M. & Durr, A. Anticiper le handicap. Les risques psychologiques des tests génétiques. Esprit Juillet, 52-65 (2014).

94. Novas, C. & Rose, N. Genetic risk and the birth of the somatic individual. Econ. Soc. 29, 485-513 (2000).

95. Clément, S., Gargiulo, M., Feingold, J. & Durr, A. Guidelines for presymptomatic testing for Huntington’s disease: Past, present and future in France. Rev. Neurol. (Paris) 171, 572-580 (2015).

96. Gall, J.-R. L., Lemeshow, S. & Saulnier, F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA 270, 2957-2963 (1993).

97. Raus, K., Chambaere, K. & Sterckx, S. Controversies surrounding continuous deep sedation at the end of life: the parliamentary and societal debates in France. BMC Med. Ethics 17, (2016).

98. Pirracchio, R. et al. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study. Lancet Respir. Med. 3, 42-52 (2015).

99. Manara, A. R. & Menon, D. K. Withdrawal of treatment after devastating brain injury: post-cardiac arrest pathways lead in best practice. Anaesthesia 72, 1179-1184 (2017).

100. Velly, L. et al. Use of brain diffusion tensor imaging for the prediction of long-term neurological
outcomes in patients after cardiac arrest: a multicentre, international, prospective, observational, cohort study. Lancet Neurol. 17, 317–326 (2018).

101. Gao, Q. et al. Development and validation of a new score for predicting functional outcome of neurocritically ill patients: The INCNS score. CNS Neurosci. Ther. (2019). doi:10.1111/cns.13134

102. Kaur, J. & Mohanti, B. K. Transition from Curative to Palliative Care in Cancer. Indian J. Palliat. Care 17, 1–5 (2011).

103. Temel, J. S. et al. Early Palliative Care for Patients with Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 363, 733–742 (2010).

104. Beam, A. L. & Kohane, I. S. Big Data and Machine Learning in Health Care. JAMA 319, 1317 (2018).

105. Nielsen, A. B. et al. Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. Lancet Digit. Health 1, e78–e89 (2019).

106. Kirkwood, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140379–20140379 (2015).

107. Lee, R. D. & Carter, L. R. Modeling and Forecasting U.S. Mortality. J. Am. Stat. Assoc. 87, 659–671 (1992).

108. Renshaw, A. E. & Haberman, S. Lee–Carter mortality forecasting with age-specific enhancement. Insur. Math. Econ. 33, 255–272 (2003).

109. Li, N. & Lee, R. D. Coherent Mortality Forecasts for a Group of Populations: An Extension of the Lee-Carter Method. Demography 42, 575–594 (2005).

110. Cairns, A. J. G., Blake, D. & Dowd, K. A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration. J. Risk Insur. 73, 687–718 (2006).

111. Barrieu, P. et al. Understanding, modelling and managing longevity risk: key issues and main challenges. Scand. Actuar. J. 2012, 203–231 (2012).

112. European Commission - PRESS RELEASES - Press release - EU rules on gender-neutral pricing in
insurance industry enter into force. Available at: https://europa.eu/rapid/press-release_IP-12-1430_en.htm. (Accessed: 9th August 2019)

113. Meyricke, R. & Sherris, M. The determinants of mortality heterogeneity and implications for pricing annuities. Insur. Math. Econ. 53, 379–387 (2013).

114. Villegas, A. M. & Haberman, S. On the Modeling and Forecasting of Socioeconomic Mortality Differentials: An Application to Deprivation and Mortality in England. North Am. Actuar. J. 18, 168-193 (2014).

115. Alai, D. H., Arnold (-Gaille), S., Bajekal, M. & Villegas, A. M. Mind the Gap: A Study of Cause-Specific Mortality by Socioeconomic Circumstances. North Am. Actuar. J. 22, 161–181 (2018).

116. Holzmann, R., Alonso-García, J., Labit-Hardy, H. & Villegas, A. M. NDC Schemes and Heterogeneity in Longevity: Proposals for Redesign. (World Bank, 2019). doi:10.1596/31637

117. Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. The Lancet 392, 2052–2090 (2018).

Figures
Different types of survivorship curves. Humans, most mammals and model organisms such as Drosophila melanogaster and Caenorhabditis elegans have Type I survivorship curves with death primarily occurring in old age. Birds and some reptiles have a Type II survivorship curve, whereas trees and marine invertebrates have a Type II curve. Image credit: Population demography: Figure 5 by OpenStax College, Biology, CC BY 4.0
Evolutionary conservation of the Smurf phenotype through 900 million years of evolution.

(published in Dambroise, E, et al. Two phases of aging separated by the Smurf transition as a public path to death. Sci. Rep. 6, (2016).)
Smurf drosophila and in septic human beings. (left) picture of age-matched Drosophila melanogaster males that underwent the Smurf assay. In non-Smurf individuals, the blue dye is restricted to the digestive tract while in smurf individuals - showing a high risk of impending death - the blue coloration is extended to the whole body. (right) Intestinal permeability - to the blue dye #1 used in the drosophila Smurf Assay - in septic (or not) humans, 2 and 8 hours after dye administration as reported in Angarita, S. A. K. et al. Quantitative Measure of Intestinal Permeability Using Blue Food Coloring. J. Surg. Res. 233, 20-25 (2019).