Abstract

In this paper we tackle the task of definition modeling, where the goal is to learn to generate definitions of words and phrases. Existing approaches for this task are discriminative, combining distributional and lexical semantics in an implicit rather than direct way. To tackle this issue we propose a generative model for the task, introducing a continuous latent variable to explicitly model the underlying relationship between a phrase used within a context and its definition. We rely on variational inference for estimation and leverage contextualized word embeddings for improved performance. Our approach is evaluated on four existing challenging benchmarks with the addition of two new datasets, CAMBRIDGE and the first non-English corpus ROBERT, which we release to complement our empirical study. Our Variational Contextual Definition Modeler (VCDM) achieves state-of-the-art performance in terms of automatic and human evaluation metrics, demonstrating the effectiveness of our approach.¹

1 Introduction

In most current NLP tasks, fixed-length vector representations of words, word embeddings, are used to represent some form of the meaning of the word. In the case of humans, however, oftentimes we will use a sequence of words known as a definition—a statement of the meaning for a term—to express meanings of terms (words, phrases, or symbols). It is with this in mind that the question of “Can machines define?” is aimed to be answered with the task of definition modeling (Noraset et al., 2017).

Definition modeling can be framed as a task of conditional generation, in which the definition d of the word or phrase is generated given a conditioning variable w such as a word’s associated word embedding or other representations of context. Current approaches for this task (Noraset et al., 2017; Gadetsky et al., 2018; Ni and Wang, 2017; Ishiwatari et al., 2019) are mainly encoder-decoder based, in which one encodes a contextual representation for a word/phrase w using a variety of features such as context or character composition, and uses the contextual representation(s) to generate the definition d.

Despite the relative success of existing approaches for definition modelling, their discriminative nature—where distributional-derived information is at one end of the model and lexical information is at the other—limits their power as the underlying semantic representations of the distributional and lexical information are learned in an implicit rather than direct way. For example, although Ishiwatari et al. (2019) successfully showed that both local and global contexts are useful to disambiguate meanings of phrases in certain cases, their approach heavily relies on an attention mechanism to identify semantic alignments between the input phrase and the output definition, which may introduce noise and ultimately be insufficient to capture the entire meaning of each phrase-definition pair.

To tackle this issue, we propose to explicitly model the underlying semantics of phrase-definition pairs by introducing a continuous latent variable z over a definition space, which is used in conjunction with w to guide the generation of definition d. The introduction of this latent representation enables us to treat it as a global defining signal during the generation process, complementing existing alignment mechanisms such as the attention.

Although the latent definition variable enables us to explicitly model underlying semantics of context-definition pairs, the incorporation of it into the task renders the posterior intractable. In this paper we recur to variational inference to estimate this in-
tractable posterior, effectively making our model a
Conditional Variational Autoencoder and evolving
the generation process from $p(d|w)$ to $p(d|w, z)$.

We also note that existing approaches for definition
modelling heavily rely on word embeddings, which
due to their fixed nature can only capture
so much of the semantics, being known to offer
limited capabilities when dealing with polysemy.
Considering the success of pretrained deep contextualized word representations which by specifically
addressing these limitations have been shown to
improve performance on a variety of downstream
NLP tasks (Peters et al., 2018; Devlin et al., 2018),
in this paper we propose a mechanism to integrate
deep contextualized word representations in the
definition modelling task. Specifically, we success-
fully leverage BERT (Devlin et al., 2018) as our
contextual encoder and our definition encoder to
produce representations for w and d respectively.

Finally, we develop two new datasets for this task,
one derived from the Cambridge Dictionary \(^2\), and
the other derived from Le Petit Robert\(^3\). In summary, our contributions are:

- **Model**: We propose a novel approach for the
task of definition modeling, leveraging deep contextualized word representation and the
variational encoder-decoder architecture. We
achieve new state-of-the-art performance on the
definition modeling task, outperforming the
previous state-of-the-art by as much as 9
BLEU points on the OXFORD dataset and 22
BLEU points on the ROBERT dataset.

- **Datasets**: We develop two new datasets CAM-
BRIDGE and ROBERT for this task. With
ROBERT, a French dataset, being the first non-
English dataset developed for this task.

Datasets and pre-trained models will be publicly
released to the greater NLP community to help
facilitate further advances on this task upon accep-
tance of this paper.

2 Related Work

Our work is related to the seminal paper by Hill
et al. (2016), who proposed using the definitions
found in everyday dictionaries as a means of bridg-
ing existing gaps between lexical and phrasal se-
manitics. Effectively, they train a language model
to map dictionary definitions to lexical representa-
tions of words, presenting the task of reverse
dictionaries, where the goal is to return the name
of a concept given a definition.

Noraset et al. (2017) later introduced the task of
definition modeling, in which a model is tasked
with generating a definition for a given word, given
its respective embedding. The authors argued that,
compared to other related tasks such as word simi-
larly or analogical relatedness, definition genera-
tion can be considered a more transparent view of
the information captured by an embedding. How-
ever, this method does not incorporate contextual
information, preventing it from generating appro-
priate definitions for polysemic words. Addressing
this, Gadetsky et al. (2018) studied the problem of
polysemy in definition modeling, introducing an
attention-based model which uses contextual infor-
mation determine components in the embedding
which may refer to a relevant word meaning.

Ni and Wang (2017) explore a different but related
problem, proposing an approach for automatically
explaining non-standard English expressions (i.e.
slang) in a given sentence. They present a hy-
brid word-character sequence-to-sequence model
that directly explains unseen non-standard expres-
sions, garnering reasonable definitions of expres-
sions given their context.

More recently, Ishiwatari et al. (2019) have tack-
led some of the limitations of previous works on
definition modelling and non-standard English ex-
pression explanation. Concretely, they note that
whenever it is not possible to figure out the mean-
ing of a given expression from its immediate local
context, it is common to consult dictionaries for
definitions or search documents or the web to find
other global context to help in interpretation. In
light of this, they introduce the task of describing
a given phrase in natural language, based on its
local and global contexts. To tackle this the authors
introduce a model which consists of two context
encoders (one for the local context, and one for
the global context) as well as a description decoder.
Our proposed model, uses a more practical vari-
ational encoder-decoder framework, allowing us to
take advantage of explicitly modeling the phrase-
definition relationship, while also leveraging deep
contextualized word representations for more infor-
mative context representations.

\(^2\)https://dictionary.cambridge.org/
\(^3\)https://dictionnaire.lerobert.com/
Finally, our model is also related to Sohn et al. (2015), in which Conditional Variational Autoencoders (CVAEs) —an extension of the original variational autoencoder (VAE) (Kingma and Welling, 2014)— were proposed for generating diverse structured output, mainly in the context of image generation, and visual object segmentation and labeling. Our work is also related to CVAE models that have been developed for the domain of natural language processing, specifically Zhang et al. (2016) who proposed a CVAE in the context of Neural Machine Translation (NMT). As the usage of VAEs has become relatively common, we will omit a detailed explanation of these models, referring readers to Kingma and Welling (2014).

3 Proposed Approach

In a way analogous to previous work (Noraset et al., 2017), our proposed approach is a generative probabilistic model for word definitions, in which the goal is to estimate the probability of generating a definition \(d\), given an input \(w\). Concretely, we propose to directly capture the joint semantics of the \((w, d)\) pairs by introducing a latent variable \(z\) to model the underlying definition space. Our proposed generative process can be formulated as follows:

\[
p(d|w) = \int_z p(d, z|w) dz = \int_z p(d|z, w)p(z|w)dz
\]

where the conditional probability \(p(d|w)\) evolves into \(p(d|w, z)\), and the generation of the definition \(d\) is now conditioned on both the input variable \(w\) and our introduced continuous latent variable \(z\).

Since the introduction of our latent variable makes posterior inference intractable, in this paper we resort to variational inference to perform posterior approximation. Effectively, this makes our proposed generative model a CVAE (Sohn et al., 2015) such that the variational lower bound can be formulated as follows:

\[
\log p(d|w) \geq \mathbb{E}_{z \sim q(z)} \left[\log p(d|w, z) \right] - D_{KL}[q(z)||p(z|w)]
\]

where \(q(z)\) is the introduced variational approximation to the intractable posterior \(p(z|w, d)\) and \(p(z|w)\) is the prior distribution. Following previous work (Sohn et al., 2015; Zhang et al., 2016) we let \(z, w\) and \(d\) be random vectors associated to \(z, w\) and \(d\) respectively, and utilize neural networks to estimate the following components.

- \(q(z) \approx q_\phi(z|w, d)\) is our variational approximation for the intractable posterior (the recognition network), which we model with a neural network with parameters \(\phi\). This makes \(q_\phi(z|w, d)\) a neural definition inferer.
- \(p(z|w) \approx p_\theta(z|w)\) is a (conditional) prior network, parameterized by \(\theta\), which in our case can be regarded as a neural definition prior.
- \(p(d|w, z) \approx p_\theta(d|w, z)\) is a generation network, parameterized by \(\theta\) which acts as a variational definition modeler.

In the following subsections we give details on how we specifically model each one of these components. With this in mind, we develop the following architecture comprised of 3 major components:

- **Encoders** - This component is comprised of two encoders - one context encoder to produce a representation for \(w\) and another definition encoder to produce a representation for \(d\) (Section 3.1).
- **Neural Definition Inferer** - This component infers the latent representation \(z\) from the representation of the word/phrase —the explicitly modeled prior \(p_\theta(z|w)\) — and in conjunction with the definition (the approximated posterior \(q_\phi(z|d, w)\)) (Section 3.2).
- **Variational Definition Modeler** - This component can be viewed as a decoder which takes in latent representation \(z\) to guide the generation of the target sentence, essentially \(p_\theta(d|w, z)\) (Section 3.3).

Notation For clarity when explaining the approach, we define the notation conventions we will follow, namely: \(d\) refers to dimensions, \(e\) refers to the context vectors produced by the attention mechanism, \(g\) refers to projections/activations, and \(h\) refers to sets of vectors.

3.1 Encoders

3.1.1 Context Encoder

To encode the sequence in which the word in question is used, we adopt the BERT (Devlin et al., 2018) architecture, which is comprised of multiple Transformer (Vaswani et al., 2017) encoder layers
pretrained on a masked-language modeling task to encode deep contextual word representations for a given sequence. BERT has also shown to be able to model the relationship between two tasks on pair-wise natural language understanding tasks. It is to this end that we propose the construction of phrase-context pairs to leverage this property in the context encoding process.

Inspired by context-gloss pairs (Huang et al., 2019) for the task of Word-Sense Disambiguation (WSD), we construct phrase-context pairs for our task of definition modeling. Often, there are differences in the word or phrase that we aim to define, and the lexeme form that is used in the context sentence. For example, the lemma run has the following forms: run, runs, ran and running, which all represent the same lexeme. To account for these discrepancies between the lemma and the lexeme form, we construct the aforementioned phrase-context pairs, which are constructed by simply inserting a separator token, denoted as [SEP], between the word/phrase and the context sentence. Below we show how this process would work for an example taken from Cambridge dictionary dataset for the lemma leave:

He left a wife and two children.

\[\text{leave [SEP]} \text{He left a wife and two children.} \]

This form of construction for the phrase-context pairs comes with the added benefit of querying a sentence for a definition by simply prepending the word/phrase and a separator token to the context sequence. As we use BERT as our encoder, we are able to leverage its self attentive nature to produce a representation of the word or phrase in question with respect to the context sentence.

As we initialize our context encoder with BERT, the phrase-context pair sequence \(c = [w_t, [\text{SEP}], c_2, \ldots, c_{M_c}] \), containing word or phrase \(w_t \), is prepended by a [CLS] token and is appended by a [SEP] token, making \(c_0 = [\text{CLS}] \) and \(c_{M_c} = [\text{SEP}] \).

We define this **context encoder** as \(T_c \), which takes in the context sequence \(c \) and returns a sequence of annotation vectors for each token in \(c \). We denote these annotation vectors as \(h_c \), where \(\{h^{(i)}_c\}_{i=0}^{M_c} \in \mathbb{R}^{d_c} \) and

\[
r_{w_t} = T_c(c)[t]
\]

is the \(t \)th representation in \(h_c \), representing \(w_t \). In the case that \(w_t \) is split into multiple subword tokens by the BERT tokenizer, we set the word representation to be the mean of each of its subword representations. Namely, in the case that \(w_t \) is comprised of the \(n \)th to the \(m \)th subtokens,

\[
r_{w_t} = \frac{1}{m - n} \sum_{i=n}^{m} T_c(c)[i]
\]

3.1.2 Definition Encoder

The definition encoder, which we denote as \(T_d \), is also initialized with BERT. This encoder takes in the definition sequence \(d = [d_0, d_1, \ldots, d_{M_d}] \) as input and represents \(d \) as:

\[
r_d = T_d(d)[0]
\]

where \(r_d \in \mathbb{R}^{d_d} \). We take the representation (corresponding to the prepended [CLS] token) as a representation for the entire definition sequence.

3.2 Neural Definition Inferer

We formulate the posterior distribution \(q_\phi(z|d, w) \) and prior distribution \(p_\theta(z|w) \) as multivariate Gaussians with a diagonal covariance matrices. To model these distributions we make use of neural networks, following Zhang et al. (2016).

3.2.1 Neural Definition Posterior

As modeling the true posterior \(p(z|d, w) \) is generally intractable, to approximate this true posterior, we use a variational distribution, formulated as the following multivariate Gaussian:

\[
q_\phi(z|d, w) = \mathcal{N}(z; \mu(d, w), \sigma(d, w)^2 I)
\]

which is parameterized by the mean and \(\mu(d, w) \) standard deviation \(\sigma(d, w) \), both of which are treated as functions of definition \(d \) and phrase \(w \) parameterized by neural networks.

From the neural encoding mechanisms, we gather the definition representation \(r_d \), and the context representation \(r_{w_t} \). We then concatenate \(r_d \) and \(r_{w_t} \) and project the resulting vector onto our latent space, setting \(h_z = g(W_z[r_{w_t}, r_d] + b_z) \), where \(W_z \in \mathbb{R}^{d_c \times (d_d + d_c)} \) is a trainable weight matrix, \(b_z \in \mathbb{R}^{d_c} \) is a trainable bias vector and \(g(\cdot) \) represents a non-linearity activation. In our experiments we set \(g(\cdot) \) to be the \(\text{tanh} \) activation function, following previous work.

To attain the aforementioned mean and variance vectors parameterizing the variational distribution,
setting \(\mu = W_\mu h_z + b_\mu \) and \(\log \sigma^2 = W_\sigma h_z + b_\sigma \), where \(W_\mu, W_\sigma \in \mathbb{R}^{d_z \times d_z} \) are trainable weight matrices parameterizing the projection and \(b_\mu, b_\sigma \in \mathbb{R}^{d_z} \) are bias vectors.

In order to make the parameters \(\theta \) differentiable for gradient descent optimization, we use the “reparameterization trick” (Kingma and Welling, 2014) setting \(z = \mu + \sigma \cdot e \), where \(e \sim \mathcal{N}(0, I) \) is a noise variable sampled from a multivariate Gaussian distribution to derive our latent vector \(z \).

3.2.2 Neural Definition Prior

Our prior is a conditional distribution formulated as the following multivariate Gaussian:

\[
p_\theta(z|w) = \mathcal{N}(z; \mu'(w), \sigma'(w)^2 \mathbf{I})
\]

(7)

which is parameterized by \(\mu'(\cdot) \), and \(\sigma'(\cdot) \) which are both solely functions of phrase \(w \). In a similar fashion to the neural definition posterior, we make use of a linear projection to project \(r_{w0} \) to the mean vector \(\mu' \) and another linear projection to derive the log variance vector. During inference (at test time) when sampling from \(p_\theta(z|w) \), we set our latent vector \(z \) to be the mean vector \(\mu' \).

To initialize the decoding procedure detailed in the next subsection, we feed the latent representation \(z \) and project it to the decoding space setting \(h'_d = g(W_d z + b_d) \), where \(W_d \in \mathbb{R}^{d_z \times d_d} \) and \(b_d \in \mathbb{R}^{d_d} \).

3.3 Variational Definition Modeler

Given phrase \(w \) and latent representation \(z \), the process of definition modeling can be formulated as the following conditional language model:

\[
p(d|w,z) = \prod_{j=1}^{M_d} p(d_j|d_{<j}, z, w) \sum_{i=1}^{M_\lambda} \alpha_\lambda \frac{1}{w_a h_c^{(i)}} \]

(8)

\[
p(d_j|d_{<j}, z, w) = g_d(s_j, c_j)
\]

(9)

where \(g_d \) is a feed-forward neural network which returns a distribution over the elements in the decoder vocabulary given the context vector \(c_j \) (see Eq. 16) and decoder state \(s_j \).

During generation of the definition sequence, we want the decoder to rely on all of the encoded components at each timestep. We modify the LSTM Cell (Hochreiter and Schmidhuber, 1997) to encompass previous context vector \(c_{j-1} \), and the projected latent definition representation \(h'_d \).

Intuitively, at each timestep \(j \), we want the generated token to have the ability to rely on each of these components in the case that the previous hidden state and/or generated token does not provide enough information or misleads the accurate generation of the next token. We refer to this modified cell as the Variational Contextual Definition Modeler (VCDM) Cell, and the resulting decoder as a VCDM-RNN. The VCDM Cell calculates the decoder hidden state \(s_j \) as follows:

\[
i_j = \sigma(W_E d_j + U s_{j-1} + A c_{j-1} + V h'_d) \]

(10)

\[
f_j = \sigma(W_f d_j + U f s_{j-1} + A f c_{j-1} + V f h'_d) \]

(11)

\[
o_j = \sigma(W_o d_j + U_o s_{j-1} + A_o c_{j-1} + V_o h'_d) \]

(12)

\[
\tilde{c}_j = g(W_{g} d_j + U_{g} s_{j-1} + A_{g} c_{j-1} + V_{g} h'_d) \]

(13)

\[
C_j = (f_j \cdot C_{j-1} + i_j \cdot \tilde{c}_j) \]

(14)

\[
s_j = g(c_j) \cdot o_j \]

(15)

where \(E_{d_j} \in \mathbb{R}^{d_w} \) is the embedding for the target word, \(W, W_f, W_o, W_g \in \mathbb{R}^{d_d \times d_w} \), \(U, U_f, U_o, U_g \in \mathbb{R}^{d_d \times d_d} \), \(A, A_f, A_o, A_g \in \mathbb{R}^{d_d \times d_d} \), and \(V, V_f, V_o, V_g \in \mathbb{R}^{d_d \times d_d} \) are trainable weight matrices parameterizing the RNN cell.

Additionally, at each decoder timestep \(j \) we attend to the set of annotation vectors \(h_c \) produced by the last layer of the context encoder. To compute context vector \(c_j \), we use general attention (Luong et al., 2015) shown below:

\[
c_j = \sum_{i=1}^{T} \alpha_i h_c^{(i)} \]

(16)

\[
\alpha_i = \text{softmax}(s_j^T W_a h_c^{(i)}) \]

(17)

where \(W_a \in \mathbb{R}^{d_d \times d_c} \), and \(\alpha_i \) can be viewed as an alignment over \(h_c \) and \(c_j \) as a vector capturing the encoder hidden states scaled by this alignment.

3.4 Optimization challenges

Despite the VAE’s appeal as a tool to learn unsupervised representations through the use of latent variables, these models are often found to ignore latent variables when using powerful generators. To overcome this issue of “posterior collapse” (Bowman et al., 2016), we incorporate the following heuristics: (1) annealing the KL term from 0 to 1 using a sigmoid annealing schedule, following Bowman et al. (2016) and (2) thresholding the KL term in the objective function with a constant \(\lambda \) using the “free bits” technique (Kingma et al., 2016). With these changes, our objective function is modified

\[
\begin{align*}
&\text{maximize}_{\theta, \phi} \mathbb{E}_{p(x|w)} \left[\log p(x|w, \theta) - D_{KL}(q(z|x|w, \phi) || p(z)) \right] \\
&\text{subject to} \quad \text{the alignment is differentiable for } \mathbb{R}^{d_z} \end{align*}
\]

(18)

Note: For clarity, we omit the bias terms in Equations 10-15.
Table 1: Statistics for CAMBRIDGE and ROBERT. The number of individual phrases, number of examples, and the mean and s.d. of the lengths of each partition of the dataset are reported.

In addition to these datasets, we also develop the CAMBRIDGE (English) and ROBERT (French) dataset. We collect this data from the online version of the Cambridge Dictionary\(^7\) and Le Petit Robert\(^8\). Following the spirit of previously released datasets, we include three components for each example: (1) the word or phrase being defined, (2) an example (context sentence) in which it is contained and (3) its corresponding definition. These datasets can be seen as an addition to the domain of “traditional” dictionary definitions, with ROBERT being the first non-English dataset. Please refer to Table 1 for statistics regarding these datasets.

4.2 Experiments

4.2.1 Our Model: VCDM

We initialize each of our encoders with BERT-base-uncased (or in the case of ROBERT, CamemBERT-base (Martin et al., 2019)), setting \(d_e, d_c = 768\). We set latent dimension \(d_z = 83\), and the LSTM decoder’s hidden size \(d_d = 512\) with an output vocabulary size of 10k, initializing embeddings with Word2Vec (Mikolov et al., 2013). We perform gradient descent using the Adam optimizer (Kingma and Ba, 2014) with its default hyperparameters. During decoding, we use the beam-search algorithm, setting the beam size to 5. We implement all models in PyTorch (Paszke et al., 2019).

4.2.2 Baselines

Local and Global Context-Aware Description generator (LoG-CAD): proposed by Ishiwatari et al. (2019), this model achieved the previous state-of-the-art on existing datasets for this task. The model makes use of a BiLSTM (Graves and Schmidhuber, 2005) to encode sentence-level context, a character-level CNN (Zhang et al., 2015) to encode character-level information, and pretrained Google CBOW\(^9\)(Mikolov et al., 2013) vectors (for ROBERT we use the French fasttext word vectors (Grave et al., 2018)). During decoding, this method makes use of a 2-layer attentional 300-dim LSTM decoder with an additional gating mechanism to combine all these sources of encoding information.

LSTM baseline (LSTM): To show the effect of continuous latent variable modeling for this task,

\(^7\)dictionary.cambridge.org
\(^8\)https://dictionnaire.lerobert.com/
\(^9\)https://code.google.com/archive/p/word2vec/
and for a more direct comparison to LoG-CAD, we implement an LSTM version of our proposed architecture. Following LoG-CAD, use a 2-layer 300 dimensional BiLSTM as each encoder and use a 10k Byte-Pair tokenized (Sennrich et al., 2016) encoder vocabulary. The neural definition inferer and the variational definition modeler are kept the same as our proposed method.

BERT Baselines: This baseline is a single-layer attentional 512-dim LSTM-LM decoder conditioned on \(r_{wt} \). We use two variants: (1) **BERT-fr** where \(r_{wt} \) is produced by a a frozen BERT-base encoder and (2) **BERT-ft** where \(r_{wt} \) is produced by a BERT-base encoder finetuned during training.

4.3 Evaluation

When comparing our approach to our baselines we make use of two automatic evaluation metrics, namely sentence-level BLEU (Papineni et al., 2002; Koehn et al., 2007) and the recently proposed BERTScore (Zhang et al., 2019). While the former is a well-known metric for machine translation, based mainly on n-gram matching between source and target, the latter is a rather new approach that leverages BERT’s pretrained contextual embeddings, matching words in candidate and reference sentences by way of cosine similarity. Concretely, BERTScore computes 3 metrics, namely precision (denoted as \(P_{BERT} \)), recall (denoted as \(R_{BERT} \)) and F1 score (denoted as \(F_{BERT} \)).

Our interest in BERTScore sparks from the fact that it has been recently shown to correlate better with human judgement in system evaluations, and to address the potential issue of coherent definition generations being given low evaluation scores as a result of having zero or low n-gram overlap with the reference sentence.

Finally, in addition to our automatic evaluation we also performed a human study, where three different human annotators evaluated the output generated by our proposed approach, as well as by the LoG-CAD and BERT-ft baselines. We followed the approach by Ishiwatari et al. (2019) and used their 1-5 scale:

1. Completely wrong or self-definition
2. Correct topic with wrong information
3. Correct but incomplete
4. Small details missing

DATA Set	Model	BLEU	\(P_{BERT} \)	\(R_{BERT} \)	\(F_{BERT} \)
OXFORD	LoG-CAD	18.63	86.40	80.57	83.38
	LSTM	21.02	85.58	85.51	85.52
	BERT-fr	18.26	85.95	85.11	85.50
	BERT-ft	27.26	87.36	87.07	87.19
	VCDM	**27.38**	**87.47**	**87.11**	**87.27**
URBAN	LoG-CAD	10.65	78.73	81.77	80.09
	LSTM	11.10	84.27	83.54	83.87
	BERT-fr	9.89	84.04	82.36	83.12
	BERT-ft	11.45	84.91	82.65	83.71
	VCDM	**13.90**	**85.15**	**83.70**	**84.36**
WIKIPEDIA	LoG-CAD	36.65	89.51	88.17	88.83
	LSTM	38.86	90.09	88.44	89.21
	BERT-fr	35.97	89.51	88.11	88.77
	BERT-ft	**42.97**	**90.48**	**89.54**	**89.97**
	VCDM	42.27	90.89	88.97	89.87
CAMBRIDGE	LoG-CAD	16.87	86.09	85.32	85.68
	LSTM	16.44	86.21	85.43	85.81
	BERT-fr	17.90	87.17	85.95	86.53
	BERT-ft	20.04	87.81	86.88	87.24
	VCDM	**22.46**	**88.16**	**87.46**	**87.70**
ROBERT	LoG-CAD	22.94	69.77	68.09	68.80
	LSTM	39.76	78.89	79.18	78.90
	BERT-fr	23.61	73.74	71.90	72.63
	BERT-ft	41.50	81.82	80.54	81.02
	VCDM	**44.97**	**82.80**	**81.96**	**82.24**

Table 2: Results on the test set for URBAN, OXFORD, WIKIPEDIA, CAMBRIDGE, and ROBERT.

5. Correct to evaluate 100 randomly sampled instances from OXFORD.

To compare the values obtained for each example across two models, we utilized t-tests and pair-wise bootstrap resampling tests with 10,000 samples (Koehn, 2004), controlling for the random seed (set to 2 in our experiments).

5 Results

Automatic Evaluation: Table 2 shows the results on the test set for each reported metric and dataset. Firstly, we note that the LSTM Baseline is able to consistently outperform LoG-CAD in terms of BERTScore, although with mixed results in terms of BLEU. We think this difference is mainly due to the n-gram matching nature of BLEU, which tends to give better scores for longer but incorrect generations, as the example in Table 3 shows, while also being unable to adequately handle cases where the definitions are expressed using words not present in the gold standard. We believe these results validate the usage of a metric such as BERTScore on this task, ultimately showing that tackling definition
Context In arming the dictator, the US was creating a Frankenstein something that destroys or harms the person or people who created it

Generated	BL	P	R	F
something that you say or do that you think someone of something is ridiculous	12.5	83.41	84.78	84.09
an extremely frightening or offensive person	8.13	**87.00**	84.78	**85.88**

Table 3: An example from the CAMBRIDGE test set, showing an evaluation issue caused by BLEU. The generated outputs of the LoG-CAD baseline are shown above, and ours below. BL stands for sentence BLEU and P, R and F stand for \(P_{\text{BERT}}, R_{\text{BERT}}, \) and \(F_{\text{BERT}}. \)

Configuration	\(F_{\text{BERT}} (\Delta) \)	BLEU (\(\Delta \))
VCDM	87.70 (-)	22.46 (-)
Decoder LSTM Cell	87.68 (-0.02)	22.27 (-0.19)
Frozen definition encoder	87.14 (-0.56)	20.70 (-1.76)
Tied encoders	87.14 (-0.56)	20.59 (-1.87)
Frozen encoders	86.35 (-1.35)	17.42 (-5.04)
Frozen context encoder	85.19 (-2.51)	13.49 (-8.97)

Table 4: Results of the ablation study performed on CAMBRIDGE.

modeling with a generative approach can lead to improved results, and suggesting that the incorporation of a latent variable that models the underlying definition space is beneficial for this task.

Results on Table 2 also show that the inclusion of BERT significantly improves generation quality in terms of BERTScore and BLEU on most datasets. This suggests that the inclusion of pretrained deep contextual word representations is beneficial for the task, which is expected given its contextual nature. We also see that VCDM is able to successfully leverage BERT, as our model is able to offer improved results compared to BERT baselines in all datasets except WIKIPEDIA. We think these results offer additional empirical evidence to support the effectiveness of our generative approach. Improvements provided by our model are particularly significant in the case of URBAN, a dataset which there are many rare words and the context is arguably less informative due to its noisy properties.

We surmise that the subpar performance of VCDM over BERT-ft in WIKIPEDIA is related to the properties of the dataset domain (i.e. description generation of named entities). With this in mind, it could be argued that a completely context-focused architecture (such as that of our finetuned BERT baseline) has properties that are more beneficial in this setting. Contrary to findings in Ishiwatari et al. (2019) which argue for the inclusion of a global context during generation, we find that a contextually-focused (local context) architecture with a strong context encoder (such as BERT) results in better performance within this domain.

Ablation Study: To further evaluate the contribution of each introduced component in our approach we performed an ablation study on CAMBRIDGE. Results of these experiments are summarized in Table 4, where it is possible to see that each of our introduced components is beneficial to the task. Note that the VCDM-Cell vs LSTM-Cell improvement is minimal on this dataset. The purpose of the integration of the latent variable in the decoder LSTM cell is for it to act as a "global definition signal" so we can rely on the properties of the latent variable. As this property is especially useful in cases in which there is noisy context, we think it is reasonable to assume that as context here is more informative, the performance gain from including a global definition signal is relatively small. We also see that freezing the context encoder has a extremely negative impact on performance. We believe this is because the context-encoder hasn’t effectively learned to use the phrase-context pairs (Sec. 3.1.1).

Human Evaluation: Average human scores obtained are 2.51 for LoG-CAD, 3.08 for BERT-ft and 3.31 for VCDM. When tested for statistical significance (Table 5), we observed that both VCDM and BERT-ft were superior to LoG-CAD with 99% confidence, using both paired t-tests or pair-wise bootstrap resampling tests (Koehn, 2004), and that the difference between VCDM and BERT-ft was statistically significant at 95% for the t-test.

Qualitative Evaluation: Finally we provide a qualitative evaluation by showing an example of the output of our model and of two of our base-
Table 6: Example showing the generated definitions for two senses of the word “present”, taken from OXFORD.

Word: Present(VB) Present(NN)
Context: Within a sexist ideology and a male-dominated cinema, the woman is presented as what she represents for man. In addition to this, think of the presents, the toys, gift sets, and most importantly, all that \[\text{ representatives as what she presented to resemble a bride <unk>}\] wrapping paper.

| Reference: To represent (someone or something) to others in a particular way A thing given to someone as a gift |
| LoG-CAD: a person who is present a person's mind in a particular way |
| BERT-ft: Portrait or regard (someone or something) as a particular person, idea or action An item of furniture presented to resemble a bride <unk> |
| VCDM: To portray or describe (someone or something) in a particular context A thing kept as a gift for children |

In the OXFORD dataset, which this example is taken from there are 7 senses of the “present”, showing VCDM’s ability to effectively disambiguate between a large amount of senses.

6 Conclusion

In this paper we have introduced a generative model that directly combines distributional and lexical semantics via a continuous latent variable for the task of definition modeling. Empirical results on multiple corpora, including two new datasets released, show that our model is able to outperform previous work by a consistent margin, also successfully being able to leveraging contextualized word representations. For future work we are interested in exploring how definition modeling could be adapted to a multilingual or cross-lingual setting.

Acknowledgments

We are grateful for the support provided by the NVIDIA Corporation, donating two of the GPUs used for this research. We thank Victor Zhong for insightful discussions, and thank Pablo Loyola, Cristian Rodriguez-Opazo, and Jorge Balazs for proofreading the work and providing useful suggestions.

References

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio. 2016. Generating Sentences from a Continuous Space. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages 10–21, Berlin, Germany. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language understanding. Artyom Gadetsky, Ilya Yakubovskiy, and Dmitry P. Vetrov. 2018. Conditional generators of words definitions. CoRR, abs/1806.10090.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. 2018. Learning word vectors for 157 languages. In Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018).

Alex Graves and Jürgen Schmidhuber. 2005. Framework phone classification with bidirectional lstm and other neural network architectures. Neural networks, 18(5-6):602–610.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and Yoshua Bengio. 2016. Learning to understand phrases by embedding the dictionary. Transactions of the Association for Computational Linguistics, 4:17–30.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Luyao Huang, Chi Sun, Xipeng Qiu, and Xuanjing Huang. 2019. Glossbert: Bert for word sense disambiguation with gloss knowledge. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).

Shonosuke Ishiwatari, Hiroaki Hayashi, Naoki Yoshinaga, Graham Neubig, Shoetsu Sato, Masashi Toyoda, and Masaru Kitsuregawa. 2019. Learning to Describe Unknown Phrases with Local and Global Contexts. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3467–3476, Minneapolis, Minnesota. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs, stat]. ArXiv: 1312.6114.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. 2016. Improved Variational Inference with Inverse Autoregressive Flow. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages 4743–4751. Curran Associates, Inc.
A Datasets

Tables 1, 2 and 3 provide a summary of the sizes of each partition for the datasets OXFORD, URBAN and WIKIPEDIA, respectively.

Partition	Count	Length			
	Phrases	Examples	Phrase	Context	Definition
Train	33,128	97,855	1.00	17.74	11.02
Valid	8,867	12,232	1.00	17.80	10.99
Test	8,850	12,232	1.00	17.56	10.95

Table 1: Statistics for OXFORD. The number of individual phrases, number of examples, and the mean lengths of each partition of the dataset are reported.

Partition	Count	Length			
	Phrases	Examples	Phrase	Context	Definition
Train	190,696	411,384	1.54	10.89	10.99
Valid	26,876	57,883	1.54	10.86	10.95
Test	26,875	38,371	1.68	11.14	11.50

Table 2: Statistics for URBAN. The number of individual phrases, number of examples, and the mean lengths of each partition of the dataset are reported.

Partition	Count	Length			
	Phrases	Examples	Phrase	Context	Definition
Train	151,995	887,455	2.10	18.79	5.89
Valid	8,361	44,003	2.11	19.21	6.31
Test	8,397	57,232	2.10	19.02	6.94

Table 3: Statistics for WIKIPEDIA. The number of individual phrases, number of examples, and the mean lengths of each partition of the dataset are reported.

B Evaluation

We make use of the sentence-bleu.cpp\(^1\) script in the MOSES (Koehn et al., 2007) GitHub repository to compute sentence-level BLEU, and use the bert-score Python package\(^2\) to calculate BERTScore, with hash roberta-large_L17_no-idf_version=0.3.2 (hug_trans=2.8.0) for the English datasets and hash bert-base-multilingual-cased_L9_no-idf_version=0.3.3(hug_trans=2.10.0) for ROBERT which is in French. For datasets where there are multiple examples for a given word sense, such as WIKIPEDIA, we note that results provided by (Ishiwatari et al., 2019) are obtained by first averaging the evaluation metrics for multiple examples for a given sense—although this is not reported on the paper—which tends to inflate the final values of the metrics. Instead, in this paper report example-wise metric averages, which provide more realistic values of the aggregated evaluation metrics.

C Model Details

We train each of our models using a batch size of 64, and set 1e-3 as the initial learning rate for the Adam optimizer. However, when finetuning BERT (or CamemBERT) in any circumstance, we set the initial learning rate for the BERT parameters to be 5e-5 and use a linear warmup schedule, warming up for the first epoch. We train all models in PyTorch (Paszke et al., 2019), and use the HuggingFace\(^3\) (Wolf et al., 2019) implementation of CamemBERT-base and BERT-base-uncased. Trainable parameter counts are for each model are shown in Table ??.

Additionally, we re-implement LoG-CAD (Ishiwatari et al., 2019) using the authors’ GitHub repository\(^4\).

\(^1\)https://github.com/moses-smt/mosesdecoder/blob/master/mert/sentence-bleu.cpp
\(^2\)https://github.com/Tiiiger/bert_score
\(^3\)https://github.com/huggingface/transformers
\(^4\)https://github.com/shonosuke/ishiwatari-naacl2019
D Infrastructure and Environment

Experiments for different datasets were run in two different machines:

- A server machine with an Intel Xeon E5-2630 CPU, and two NVIDIA RTX-2080 (Driver 418.56, CUDA 10.1) GPUs, running Ubuntu 16.04

- An additional server machine with an Intel Core i7-6850K CPU and two NVIDIA Titan Xp (Driver 430.50, CUDA 10.1) GPUs, also running Ubuntu 16.04

E Additonal Output Examples

Word	Yen
Context	If Koizumi has enjoyed some economic success, say critics, it has been through a combination of good luck and what many believe has been an artificial weakens of they yen against the dollar.
Reference	the basic monetary unit of japan.
LoG-CAD	a longing or yearning
BERT-ft	a monetary in a foreign country
VCDM	the basic monetary unit of japan, equal to 100 cents.

Table 4: Descriptions for the rare word “yen”

Word	doucheturd
Context	Brad, you’re such a doucheturd.
Reference	insulting noun, being both a douche or douchebag and a turd
LoG-CAD	a person who is a douchebag
BERT-ft	a person who is a douchebag
VCDM	a person who is a mix of a douche and a turd

Table 5: Descriptions for the slang word “doucheturd”
Gold	LoG-CAD	VCDM
(especially of a political party) sponsor (a candidate) in an election	a candidate or candidate in a race or election	set (a person or team) in an election
(of a batsman) run from one wicket to the other in scoring or attempting to score a run	a race or contest in which a race is run	(of a sports team) run by hitting at the reach of the three runs
a large open stretch of land used for pasture or the raising of stock	a specially <unk> area for cattle or cattle	a large open stretch of land used for pasture or the raising of stock
a specially <unk> area for cattle or cattle	(of a horse) be <unk>	a preliminary test of a procedure or system
a person or thing that is <unk> or <unk>	a continuous search or undertaking	a row of unravelled stitches
a series of people who are <unk>	move or move in a specified direction	a short, narrow <unk>
be <unk> or <unk>	move or cause to move in a specified direction	in a careless or <unk> way
become undone	a <unk> or <unk> run over a tree	a track made or regularly used by a particular animal
become undone by being undone	a <unk> or <unk>	move made or regularly used by a particular animal
cause something to pass or lead somewhere	move or cause to move in a specified direction	move made or regularly used by a particular animal
move or move in a <unk>	become undone by being undone	move made or regularly used by a particular animal
cause something to pass or lead somewhere by constant strength	make a series of facts or plans	put in an area
put in an area	put in an area	move or cause to move between the spools of a recording machine
put in an area	put in an area	move or cause to move between the spools of a recording machine
publish or be published in a newspaper or magazine	put (a form of public transport) in service	move or cause to move between the spools of a recording machine
publish or be published in a newspaper or magazine	provide (an undertaking, train, or service) for a service	move or cause to move between the spools of a recording machine
put (a form of public transport) in service	provide (an undertaking, train, or service) for a service	move or cause to move between the spools of a recording machine
the act of running; traveling on foot at a fast pace	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the act of running; traveling on foot at a fast pace	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the act of testing something	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the act of testing something	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the average or usual type of person or thing	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the average or usual type of person or thing	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the act of testing something	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the act of testing something	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the after part of a ship’s bottom where it rises and narrows towards the stern	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the after part of a ship’s bottom where it rises and narrows towards the stern	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the after part of a ship’s bottom where it rises and narrows towards the stern	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine
the general aspects of something, especially a language	move or cause to move in a specified direction	move or cause to move between the spools of a recording machine

Table 6: Comparison of the outputs for the 23 senses of “run” on OXFORD.
References

Shonosuke Ishiwatari, Hiroaki Hayashi, Naoki Yoshinaga, Graham Neubig, Shoetsu Sato, Masashi Toyoda, and Masaru Kitsuregawa. 2019. Learning to Describe Unknown Phrases with Local and Global Contexts. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3467–3476, Minneapolis, Minnesota. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8026–8037. Curran Associates, Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. 2019. Huggingface’s transformers: State-of-the-art natural language processing.