ISOPERIMETRIC INEQUALITIES FOR MINIMAL
SUBMANIFOLDS IN RIEMANNIAN MANIFOLDS:
A COUNTEREXAMPLE IN HIGHER CODIMENSION

VICTOR BANGERT AND NENA RÖTTGEN

Abstract.
For compact Riemannian manifolds with convex boundary, B. White proved
the following alternative: Either there is an isoperimetric inequality for mini-
mal hypersurfaces or there exists a closed minimal hypersurface, possibly with
a small singular set. There is the natural question if a similar result is true for
submanifolds of higher codimension. Specifically, B. White asked if the non–
existence of an isoperimetric inequality for \(k \)-varifolds implies the existence of
a nonzero, stationary, integral \(k \)-varifold. We present examples showing that
this is not true in codimension greater than two. The key step is the construc-
tion of a Riemannian metric on the closed four–dimensional ball \(B^4 \) with the
following properties: (1) \(B^4 \) has strictly convex boundary. (2) There exists a
complete nonconstant geodesic \(c : \mathbb{R} \to B^4 \). (3) There does not exist a closed
geodesic in \(B^4 \).

1. Introduction

If \(D \) is a two-dimensional Riemannian disc with locally convex boundary \(\partial D \) and
if there is no closed geodesic in \(D \), then there is a constant \(C > 0 \) such that every
geodesic segment in \(D \) has length at most \(C \). An equivalent formulation of this
fact is: If there exists a nonconstant geodesic \(c : \mathbb{R} \to D \), then \(D \) contains a closed
geodesic. This fact is due to Birkhoff, cf. [2, VI. 10], and played a role in the proof
that there exist infinitely many closed geodesics on every Riemannian 2-sphere, cf.
[1] and [5].

In arbitrary dimensions, an analogous result has been proven by B. White [8, Theorem 2.1] in the codimension one situation, i.e. when geodesics are replaced
by minimal hypersurfaces. As part of the opening colloquium of the collaborative
research center SFB/Transregio 71 in Freiburg, April 2009, B. White lectured on
this result, and posed the question if there could be a version of the result that is
not restricted to the codimension one case, see also [8, Remark 2.8].

Here, we construct a Riemannian metric \(g \) on the closed four-dimensional ball
\(B^4 \) such that \(\partial B^4 \) is strictly convex and such that \(B^4 \) carries a complete geodesic,
but no closed geodesic. Actually one would expect that such an example exists
already on the closed 3-ball. We believe that this is the case, but our construction
would be considerably more complicated.
Now we explain how this can be used to answer B. White’s question [8, Remark 2.8], that explicitly asks:

Let N be a compact, k-convex Riemannian manifold containing a nonzero, stationary k-varifold. Does this imply that N contains an integral stationary k-varifold?

For more details on this question see Section 4.

Taking the Riemannian product of an arbitrary closed Riemannian manifold M with our example (B^4, g) we obtain a compact manifold \tilde{M} of dimension $\tilde{m} \geq 4$. This \tilde{M} has convex boundary. So \tilde{M} is k-konvex for every $k < \tilde{m}$. The product of M with a complete geodesic in B^4 gives an $(\tilde{m} - 3)$-dimensional minimal submanifolds in \tilde{M}. Hence, from [8, Theorem 2.3] we know that there exists a nonzero, stationary $(\tilde{m} - 3)$-varifold in \tilde{M}. Indeed, we can describe explicitly such a varifold V_0 in M, and prove that up to scale $-V_0$ is the only stationary $(\tilde{m} - 3)$-varifold in \tilde{M}.

From the explicit description of V_0 we conclude that V_0 is not rectifiable and, hence, not integral. This gives a negative answer to B. White’s question for the case of varifolds of arbitrary dimension, and codimension at least three.

Finally we sketch the idea underlying the construction of the metric g on B^4. First, we deform the standard metric g_0 on the ball $B^4 \subset \mathbb{R}^4$ of radius 2 so that all the spheres $S^3(\rho) \subset B^4$ of radius $\rho \in [0, 2]$ remain strictly convex, except for $S^3(1)$ whose second fundamental form vanishes precisely on the vectors tangent to an irrational geodesic foliation \mathcal{F} of the Clifford torus $T^2 \subset S^3(1)$. This implies that there are no closed geodesics in B^4 with respect to this metric. Moreover, we achieve that also the second fundamental form of the Clifford torus T^2 vanishes in the direction of \mathcal{F}. Then the leaves of \mathcal{F} are complete geodesics not only in T^2 but also with respect to the metric on B^4.

Contents

1. Introduction 1
2. Convex Distance Functions 2
3. The Example 3
4. An answer to a question by Brian White 6
5. Appendix 10
6. References 11

2. Convex Distance Functions

In this section we will recall some well known facts about geodesics and distance functions. Let (M, g) denote a Riemannian manifold and $i : N \hookrightarrow M$ a submanifold. We will denote the induced metric on N by g^N. Then a curve $c : I \subset \mathbb{R} \rightarrow N$ is a g-geodesic if and only if c is a g^N-geodesic and the second fundamental form of N vanishes on its tangent vectors.

Now, let $F : N \times (-\varepsilon, \varepsilon) \rightarrow M$ be a normal variation with variational vector field $V = \frac{dF}{dt}_{|t=0}$ along $i = F(\cdot, 0)$. Then, for any tangent vectors $v_1, v_2 \in T_pN$, one
calculates, cf. \cite{3} (1.33)],
\[
\frac{d}{dt}_{t=0} (F^*_t g)(v_1, v_2) = g(\nabla_{v_1} V, v_2) + g(v_1, \nabla_{v_2} V),
\]
(1)
where $F_t : N \to M$ is defined by $F_t(\cdot) = F(\cdot, t)$.

If, additionally, $|V| = 1$, it follows from equation (1), that the second fundamental form $h^N(\cdot, \cdot)$ of N with respect to V is given by
\[
h^N(v_1, v_2) = \frac{1}{2} \frac{d}{dt}_{t=0} (F^*_t g)(v_1, v_2).
\]
(2)

We will use this fact in the special case where N is a level set of a C^∞-function d with $|\text{grad } d| = 1$. These functions will be called distance functions, cf. \cite{3} 2.3.1]. Then the restriction of the gradient flow Φ_t to N is a normal variation with variational vector field $V = \text{grad } d$. The gradient of d is contained in the null space of the Hessian $\nabla^2 d$ and for any $v_1, v_2 \in T_p N$ one obtains
\[
\nabla^2 d(v_1, v_2) = g(\nabla_{v_1} V, v_2) = -h^N(v_1, v_2).
\]
(3)

Hence a distance function is a convex function if the second fundamental form (with respect to grad d) of any of its level sets is everywhere negative semidefinite. Recall that a C^2-function $f : M \to \mathbb{R}$ is convex if one of the following equivalent conditions is satisfied:

- For any geodesic segment $c : I \to M$ the composition $f \circ c : I \to \mathbb{R}$ is convex.
- The Hessian $\nabla^2 f$ is everywhere positive semidefinite.

In particular, we have:

\textbf{Fact 1.} Let $f : M \to \mathbb{R}$ be a convex function. Then any closed geodesic in M is contained in one of the level sets of f. If the second fundamental form of a smooth level set of f is definite at some point, then there is no closed geodesic passing through this point. \hfill \square

Therefore there are no closed geodesics on a manifold that is equipped with a convex distance function, if its Hessian restricted to the tangent spaces of the level sets is everywhere definite.

3. The Example

Consider the closed standard 4-ball (B^4, g_0) with radius 2 and the Clifford torus $(T^2, g_0^{T^2})$ given by \{\sqrt{2} (\sin \varphi, \cos \varphi, \sin \theta, \cos \theta) \mid \varphi, \theta \in [0, 2\pi]\}. The Clifford torus is a flat torus that is isometrically embedded in the standard sphere $S^3 \subset B^4$. The map $(\varphi, \theta) \in \mathbb{R}^2 \to \frac{1}{\sqrt{2}}(\sin \varphi, \cos \varphi, \sin \theta, \cos \theta)$ from euclidean \mathbb{R}^2 to the Clifford torus T^2 is a homothetic covering map. The projection to T^2 of a family of parallel lines in \mathbb{R}^2 will be called a geodesic foliation of T^2. A geodesic foliation of T^2 is called rational if the corresponding family of parallels has rational slope and irrational otherwise. The geodesics of a rational foliation of T^2 are all closed, while the geodesics of an irrational geodesic foliation of T^2 are all dense on T^2.

The metric g that we will define on B^4 will have the following properties:

(G1) The induced metric g^{T^2} on T^2 is the flat one induced by g_0.
(G2) The function $d : B^4 \to [0, 2]$ given by the euclidean distance to zero is a convex distance function with respect to the metric g.,
(G3) There exists an irrational geodesic foliation \mathcal{F} of T^2 such that the following holds for the hessian $\nabla^2(d^2)$ with respect to g: $\nabla^2(d^2)|_x$ is positive definite for all $x \in B^4 \setminus T^2$, and for $x \in T^2$ the nullspace of $\nabla^2(d^2)|_x$ coincides with the tangent line to \mathcal{F} at x.

(G4) The second fundamental form of the Clifford torus T^2 as a submanifold of S^3 vanishes on the vectors tangent to the irrational geodesic foliation \mathcal{F} of $T^2 \subset S^3$.

From (G2), (G3) and equation (3) we conclude

(G3') For any sphere $S^3(\rho) = d^{-1}(\rho)$, $\rho \in [0, 2] \setminus \{1\}$, the second fundamental form $h^{S^3}(\rho)$ with respect to grad d is negative definite, and on $S^3 = S^3(1)$ the zero directions of h^{S^3} are precisely the vectors tangent to the irrational geodesic foliation \mathcal{F}.

Now we will prove

Proposition 1. Suppose g is a Riemannian metric on B^4 satisfying conditions (C1)-(C4). Then there exists a complete (non-constant) g-geodesic $c : \mathbb{R} \to B^4$, but no closed g-geodesic in B^4. Moreover, $\partial B^4 = S^3(2)$ is strictly convex.

Proof. Note first that by conditions (G3) and (H) the geodesics of the irrational foliation are complete g-geodesics contained in $T^2 \subset B^4$, cf. the discussion at the beginning of Section 2. Next we will show that there are no closed g-geodesics in B^4. So, let us assume that there exists a closed g-geodesic $c : S^1 \to B^4$. Using properties (C2), (G3) and Fact 1 we conclude that c lies in the euclidean sphere S^3 and that c is a leaf of the irrational foliation \mathcal{F} of $T^2 \subset S^3$. This contradicts our assumption that c is closed.

Now we describe how one can construct a Riemannian metric g on B^4 that satisfies properties (C1)-(C4). We consider the coordinate system

$$F : [0, 2[\times [0, \pi/2[\times \mathbb{R}^2 \longrightarrow B^4$$

$$(\rho, \psi, \varphi, \theta) \longrightarrow \begin{pmatrix} \rho \cos \psi \sin \varphi \\ \rho \cos \psi \cos \varphi \\ \rho \sin \psi \sin \theta \\ \rho \sin \psi \cos \theta \end{pmatrix}. \quad (4)$$

For $\rho = 1$ and $\psi = \pi/4$ the coordinates φ and θ describe the Clifford torus, i.e. $T^2 = F([1] \times \{\pi/4\} \times \mathbb{R}^2)$. We denote the induced coordinate vectors on $\text{im}(F) := F([1] \times [0, \pi/2[\times \mathbb{R}^2)$ by ∂_ρ, ∂_ψ, ∂_φ, ∂_θ. They form a g_0-orthogonal frame on $\text{im}(F)$, and the metric g_0 is given in these coordinates by the diagonal matrix

$$\text{diag}(1, \rho^2, \rho^2 \cos^2 \psi, \rho^2 \sin^2 \psi).$$

This shows, in particular, that $F|_{[1] \times \{\pi/4\} \times \mathbb{R}^2}$ is - up to the constant factor $1/\sqrt{2}$ - an isometric covering map with group of deck transformation $2\pi \mathbb{Z} \times 2\pi \mathbb{Z}$. For fixed $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ we consider the vectorfield $Y = \partial_\varphi + \alpha \partial_\theta$. The restriction of Y to the torus T^2 is tangent to an irrational geodesic foliation and the vector field $Z := \alpha \tan \psi \partial_\varphi - \cot \psi \partial_\theta$ completes ∂_ρ, ∂_ψ and Y to an orthogonal frame on $\text{im}(F)$. We define a new metric g on $\text{im}(F)$ by requiring that the vectorfields ∂_ρ,
\(\partial_{\psi}, Y \) and \(Z \) are pairwise \(g \)-orthogonal and by setting for \(x = F(\rho, \psi, \varphi, \theta) \)
\[
g(\partial_{\rho}, \partial_{\rho}) \mid x = g_0(\partial_{\rho}, \partial_{\rho}) \mid x = 1,
\]
\[
g(\partial_{\psi}, \partial_{\psi}) \mid x = g_0(\partial_{\psi}, \partial_{\psi}) \mid x = \rho^2,
\]
\[
g(Y,Y) \mid x = R(\rho, \psi),
\]
\[
g(Z,Z) \mid x = g_0(Z,Z) \mid x = \rho^2(\cos^2 \psi + \alpha^2 \sin^2 \psi),
\]
where the function \(R \in C^\infty([0,2[\times]0, \pi/2[; \mathbb{R}^+) \) is chosen such that the following conditions are fulfilled:

(R1) \(R(\rho, \psi) = \rho^2(\cos^2 \psi + \alpha^2 \sin^2 \psi) \),

if \((\rho, \psi) = (1, \pi/4)\) or \((\rho, \psi) \in ([0,2[\times]0, \pi/2[) \setminus ([1/2,3/2] \times [\pi/8,3\pi/8])\)

(R2) \(\frac{\partial}{\partial \rho} R(\rho, \psi) > 0 \) if \((\rho, \psi) \neq (1, \pi/4)\)

(R3) \(\frac{\partial}{\partial \rho} R(1, \pi/4) = 0 \)

For completeness, we will construct such a function \(R \) in the appendix. First note that condition (R1) ensures that \(g \) coincides with the standard metric \(g_0 \) outside the tubular neighborhood of \(T^2 \) given by the image of \([1/2,3/2] \times [\pi/8,3\pi/8] \times \mathbb{R}^2 \) under \(F \). Therefore, the standard metric extends \(g \) to a smooth metric on all of \(B^4 \).

Proposition 2. The metric \(g \) fulfills conditions (C1)-(C4).

Proof. First note that condition (C1) follows from condition (R1). Next, our definition of \(g \) directly implies that \(\partial_{\rho} \) is the \(\rho \)-gradient of the euclidean distance \(d \) from zero. Hence \(d \) is a distance function also with respect to \(g \). Thus, by the discussion in Section 2, we can calculate its \(g \)-Hessian on \(\text{im}(F) \) with equations (2) and (3). As \(g \mid_{\text{im}(F)} = \partial_{\rho} \) commutes with \(\partial_{\psi}, Y \) and \(Z \), we obtain for \(V, W \in \{\partial_{\psi}, Y, Z\} \)
\[
\frac{d}{dt}_{|t=0} (\Phi_t^* g)_{|p}(V,W) = \frac{d}{dt}_{|t=0} g_{\Phi_t(p)}(V_{|\Phi_t(p)}, W_{|\Phi_t(p)}),
\]
where \(\Phi_t \) denotes the gradient flow of \(d \). Remember that on \(\text{im}(F) \) the flow lines of \(\Phi \) are the \(\rho \)-coordinate lines. Using the preceding equation and equations (2) and (3) we see that on \(\text{im}(F) \) the matrix of the \(g \)-Hessian of \(d \) with respect to the frame \(\partial_{\rho}, \partial_{\psi}, Y, Z \) is the diagonal matrix given by

\[
\text{diag}
\left(0, \rho, \frac{1}{2} \frac{\partial}{\partial \rho} R(\rho, \psi), \rho(\cos^2 \psi + \alpha^2 \sin^2 \psi)\right).
\]

Now, condition (C3) follows immediately from (R2) and (R3). Since the metric coincides with the standard metric in a neighborhood of \(B^4 \setminus \text{im}(F) \) and the Hessian of \(d \) is positive semidefinite on \(\text{im}(F) \), the function \(d \) is convex everywhere. So, also condition (C2) is proven. Finally, to prove (C4), we consider the projection \(\pi_{\psi} : S^3 \cap \text{im}(F) \to]0, \pi/2[; \quad F(1, \psi, \varphi, \theta) \mapsto \psi \). This provides a distance function with gradient \(\partial_{\psi} \) whose gradient flowlines are given by the coordinate lines of \(\psi \). Now we calculate the second fundamental form \(h^S \) of \(T^2 \) in \(S^3 \) with respect to \(\partial_{\psi} \), using equation (2). Then \(Y, \partial_{\psi} \mid 0 = 0 \) and condition (R3) imply:
\[
h^S(Y, Y) = -\frac{1}{2} \frac{\partial}{\partial \psi} R(1, \pi/4) = 0.
\]
This completes the proof. \(\square \)
Remark 1. The construction above can easily be generalized to balls B of dimension $n \geq 5$. The construction yields a Riemannian metric on B fulfilling properties (G1)-(G4) with the obvious modifications of the dimension.

4. An answer to a question by Brian White

As mentioned in the introduction, our example is related to isoperimetric inequalities in Riemannian manifolds. Brian White [8] showed that an isoperimetric inequality holds for minimal hypersurfaces (or -more generally- for codimension one varifolds) in a compact, connected Riemannian manifold \tilde{M} with mean-convex boundary if $\dim(\tilde{M}) < 7$ and if there does not exist a smooth, closed, embedded minimal hypersurface $N \subset \tilde{M}$ (The same conclusion is true if $\dim(\tilde{M}) \geq 7$, provided one replaces “smooth” by “smooth except for a singular set of Hausdorff dimension at most $\dim(\tilde{M}) - 7$”).

An isoperimetric inequality in higher codimension is obtained in [8, Theorem 2.3] under the stronger condition, that there does not exist any nonzero, stationary k-varifold in a compact, k-convex Riemannian manifold N implies the existence of a nonzero, stationary, integral k-varifold in N. For a brief introduction to varifolds on Riemannian manifolds see [8, Appendix].

In the following Proposition we answer this question in the negative for codimension larger than 2. Starting with an arbitrary closed, connected, m-dimensional Riemannian manifold (M, g') we consider the product metric $\tilde{g} = g' \oplus g$ on $\tilde{M} = M \times B$, where B is a closed ball of dimension $n \geq 4$ and g a Riemannian metric on B fulfilling (G1)-(G4), cf. Section 3. Then $\partial \tilde{M} = M \times \partial B$ has the following convexity property. The second fundamental form of $\partial \tilde{M}$ with respect to the inward pointing unit normal is positive semi-definite, and its kernel consists of the vectors tangent to the factor M. In Proposition 3 we will show that (\tilde{M}, \tilde{g}) contains a unique stationary, $(m+1)$-dimensional varifold V_0 of unit mass, and, in Fact 2, that V_0 is not rectifiable and, hence, not integral. This provides a negative answer to the question posed in [8, Remark 2.8]. It is easy to see (and follows from Proposition 3) that in our case there is a unique limit varifold and that this is equal to V_0.

Next we describe the $(m+1)$-varifold V_0 in \tilde{M}: A general $(m+1)$-varifold in \tilde{M} is a finite Borel measure on the total space of the Grassmann bundle $\pi : G_{m+1}(\tilde{M}) \to \tilde{M}$. The support of V_0 is the subset $\tilde{\mathcal{F}}$ of $G_{m+1}(\tilde{M})$ given by

$$\tilde{\mathcal{F}} = \{ T_p M \times T_q \mathcal{F} \mid (p, q) \in M \times \mathbb{T}^2 \},$$

Remark 2. According to B. White’s proof of [8, Theorem 2.3] any limit of the varifolds induced by the M_n, normalized so as to have mass one, is a non-zero, stationary, $(m+1)$-dimensional varifold. It is easy to see (and follows from Proposition 3) that in our case there is a unique limit varifold and that this is equal to V_0.

Next we describe the $(m+1)$-varifold V_0 in \tilde{M}: A general $(m+1)$-varifold in \tilde{M} is a finite Borel measure on the total space of the Grassmann bundle $\pi : G_{m+1}(\tilde{M}) \to \tilde{M}$. The support of V_0 is the subset $\tilde{\mathcal{F}}$ of $G_{m+1}(\tilde{M})$ given by

$$\tilde{\mathcal{F}} = \{ T_p M \times T_q \mathcal{F} \mid (p, q) \in M \times \mathbb{T}^2 \},$$
where \mathcal{F} is the foliation of the Clifford torus $T^2 \subset B$ defined in (G3). In particular, $\pi|_F$ is one-to-one. Now V_0 is the pushforward of the normalized Riemannian volume of $M \times T^2$, i.e. $V_0 = (\pi|_F^{-1})# \text{vol}_{M \times T^2}$.

In particular, the weight measure μ_{V_0} of V_0 is the normalized Riemannian volume $\text{vol}_{M \times T^2}$ of the $(m+2)$-dimensional submanifold $M \times T^2$. This implies that the $(m+1)$-density of μ_{V_0} is identically zero.

For rectifiable $(m+1)$-varifolds V the weight measure μ_V has an approximate tangent space for μ_V almost every point and hence its $(m+1)$-density is positive μ_V-almost everywhere, cf. [7] §15. Since the $(m+1)$-density of μ_{V_0} vanishes, we conclude

Fact 2. The $(m+1)$-varifold V_0 is not rectifiable.

Here is the main result of this section.

Proposition 3. Let (\hat{M}, \hat{g}) and V_0 be as above. Then V_0 is stationary, and V_0 is the only stationary $(m+1)$-varifold of mass one in (\hat{M}, \hat{g}).

Remark 3. Statement and proof of Proposition 3 include the case $\dim(M) = m = 0$. In this case the only stationary, unit mass 1-varifold in B is the stationary, non-rectifiable 1-varifold V_0 with support on the tangent vectors to the irrational geodesic foliation \mathcal{F} of T^2 (see the description of V_0 above).

We first recall the following well known fact from ergodic theory:

Fact 3. (cf. [4], p. 69) Suppose T_t is the one-parameter group of translations on the standard torus $\mathbb{R}^2/(2\pi\mathbb{Z})^2$ given by $[(x_1, x_2)] \mapsto [(x_1+\alpha_1 t, x_2+\alpha_2 t)]$ with α_1 and α_2 rationally independent. Then the flow T_t is uniquely ergodic, i.e. the Lebesgue measure μ on $\mathbb{R}^2/(2\pi\mathbb{Z})^2$ is the – up to scale – unique T_t-invariant Borel measure on $\mathbb{R}^2/(2\pi\mathbb{Z})^2$.

Corollary 1. Let \bar{Y} be the unit vector field on T^2 tangent to \mathcal{F}, that is given by the normalisation of $Y|_{T^2}$, cf. Section 3, and denote by φ^Y_t its flow. Then the Riemannian area vol_{T^2} is the – up to scale – unique Borel measure on T^2 that is invariant under φ^Y_t.

Proof. The norm of the vectorfield $Y = \partial_\phi + \alpha \partial_\theta$ is constant on T^2, and we denote it by $a = |Y|_{T^2} = \frac{1}{\sqrt{2}} \sqrt{1+\alpha^2}$. Now, the covering map $\rho : \mathbb{R}^2 \to T^2$, $\rho(x_1, x_2) = F(1, \frac{x_1}{\sqrt{2}}, x_2, x_2)$ induces a diffeomorphism $\hat{\rho} : \mathbb{R}^2/(2\pi\mathbb{Z})^2 \to T^2$ conjugating the irrational linear flow T_t from Fact 3 with $\alpha_1 = \frac{1}{\sqrt{2}}$ and $\alpha_2 = \frac{\sqrt{2}}{\alpha}$ to the flow φ^Y_t. So, by Fact 3 the push-forward $\hat{\rho}_#\mu$ of the Lebesgue measure μ on $\mathbb{R}^2/(2\pi\mathbb{Z})^2$ is the – up to scale – unique φ^Y_t-invariant Borel measure on T^2. On the other hand, $\hat{\rho}_#\mu$ equals vol_{T^2} up to a factor since $\hat{\rho}$ is a homothety. \hfill \Box

We first give a short outline of the proof of Proposition 3. In Step 1 we calculate that V_0 is indeed stationary, see also Remark 3. In Step 2 and 3 we consider an arbitrary nonzero, stationary $(m+1)$-varifold V in \hat{M}. In Step 2 we show that its support is contained in the set $\tilde{\mathcal{F}} \subset G_{m+1}(\hat{M})$. This relies on the convexity properties of the spheres $S^3(\rho) \subset B$, cf. Section 3. In the last step, we use the Constancy Theorem [7, 41.2(3)] to prove that the weight measure μ_V of V has a product structure. Then the unique ergodicity of the flow φ^Y_t can be used to show that μ_V is indeed proportional to the product measure $\text{vol}_M \otimes \text{vol}_{T^2}$. This proves that $V = \lambda V_0$ for some $\lambda > 0$.

The preceding discussion shows that trace \(S\) is parallel, and spans \(T_qF\) at every point \(q\) of \(T^2\). We decompose any vectorfield \(X\) on \(M\) as a sum \(X(p, q) = X_1(p) + X_2(q)\), where \(X_1(p) \in T_pM\) and \(X_2(q) \in T_qB\). So, by the special character of the Levi Civita connection of a Riemannian product, we obtain for every \((p, q) \in M \times T^2:\)

\[
\begin{align*}
\text{div}_{T_pM \times T_qF} X &= \text{div}_M(X_1^1)_{p} + g(\nabla_{\bar{Y}} X_2^1, \bar{Y})_{q} \\
&= \text{div}_M(X_1^1)_{p} + \frac{d}{dt}_{t=0} g(X_2^1, \bar{Y}) \circ \varphi^\bar{Y}_t(q),
\end{align*}
\]

where \(\varphi^\bar{Y}_t\) denotes the flow of \(\bar{Y}\). Now the Gauss Theorem and the invariance of the volume of the flat torus under \(\varphi^\bar{Y}_t\), cf. Corollary 1 imply that

\[
\delta V_0(X) = \int_{M \times T^2} \text{div}_{T_pM \times T_qF} X \, d\mu_0(p, q)
= \int_{T^2} \int_M \text{div}_M(X_1^1)_{p} \, d\nu_1(M) \, d\nu_2(q)
+ \int_M \int_{T^2} \frac{d}{dt}_{t=0} g(X_2^1, \bar{Y}) \circ \varphi^\bar{Y}_t(q) \, d\nu_1(M) \, d\nu_2(q)
= 0 + \int_M \int_{T^2} \frac{d}{dt}_{t=0} \left(\int_{T^2} g(X_2^1, \bar{Y})_{q} \, d(\varphi^\bar{Y}_t)^\# \nu_2(q) \right) \, d\nu_1(M)
= 0.
\]

So \(V_0\) is stationary.

Now, we consider an arbitrary nonzero, stationary \((m + 1)\)-varifold \(V\) in \(\tilde{M}\).

Step 2: First, we prove that the varifold \(V\) has support in \(\tilde{F}\).
We consider \(f : \tilde{M} \to \mathbb{R}_{\geq 0}, (p, q) \mapsto d^2(q)\), where \(d(q)\) denotes the (euclidean) distance from \(q \in B\) to \(0 \in B\), cf. Section 3. Note that (C2) and (C3) imply the following: If \((v, w) \in T_pM \times T_qB\) then \(\nabla^2 f((v, w), (v, w)) > 0\) except in the following two cases

- \(w = 0\), or
- \(q \in \mathbb{T}^2\) and \(w \in T_qF\).

Now suppose \(V\) is a stationary \((m + 1)\)-varifold in \(\tilde{M}\). We test \(V\) against the vectorfield \(X = \text{grad} \, f\). Then we have

\[
0 = \delta V(X) = \int_{\mathbb{A}(\tilde{M})} \text{div}_S X \, dV(S) = \int_{G_{m+1}(\tilde{M})} \text{trace}_S(\nabla^2 f) \, dV(S).
\]

The preceding discussion shows that \(\text{trace}_S(\nabla^2 f) > 0\) except if \(S \in \tilde{F}\). Hence \(\text{spt}(V) \subset \tilde{F}\).

Step 3: We show that \(\mu_V\) equals \(\nu_{M \times T^2}\) up to a constant.
First, we prove that for any Borel set \(A \subset B\) there exists \(c_A > 0\) such that the Borel measure \(\mu^A\) on \(M\) defined by \(\mu^A(\cdot) := \mu_V(\cdot \times A)\) is given by \(c_A \cdot \nu_{M}\).
Note that μ^A can be considered as an m-varifold on the m-dimensional manifold M. We will show that μ^A is a stationary m-varifold, and then the Constancy Theorem [7, 41.2(3)] implies that μ^A is a multiple of the Riemannian volume measure vol_M as claimed. Denote the measure $(\pi_2)_# \mu_V$ on B by $\mu_{V,2}$, where $\pi_2 : M \times B \to B$ denotes the usual projection to the second component. We choose a sequence $f_n \in C^\infty(B)$ converging to the indicator function χ_A in $L^1(\mu_{V,2})$. This implies that $f_n \circ \pi_2$ converges to $\chi_{M \times A}$ in $L^1(\mu_V)$. Denoting the projection $M \times B \to M$ by π_1 we calculate for every vectorfield X on M

$$\int_M \text{div}_M X \, d\mu^A = \int_{M \times A} \text{div}_M X \circ \pi_1 \, d\mu_V$$

$$= \lim_{n \to \infty} \int_{M \times B} (f_n \circ \pi_2) \cdot (\text{div}_M X \circ \pi_1) \, d\mu_V$$

$$= \lim_{n \to \infty} \int_{M \times B} \text{div}_{T_p M \times T_q F}((f_n \circ \pi_2) \cdot (X \circ \pi_1)) \, d\mu_V (p, q),$$

since it follows from equation (6) that

$$\text{div}_{T_p M \times T_q F}((f_n \circ \pi_2) \cdot (X \circ \pi_1)) = f_n(q) \cdot \text{div}_M X|_p.$$

Since V is stationary, we know from Step 2 that $\text{spt}(V) \subset \tilde{\mathcal{F}}$. Hence

$$\delta V((f_n \circ \pi_2) \cdot (X \circ \pi_1)) = \int_{M \times \mathbb{R}^2} \text{div}_{T_p M \times T_q F}((f_n \circ \pi_2) \cdot (X \circ \pi_1)) \, d\mu_V (p, q) = 0$$

for all $n \in \mathbb{N}$. Thus $\int_M \text{div}_M X \, d\mu^A = 0$ for every vectorfield X on M, i.e. the m-varifold defined by μ^A is stationary, and hence a multiple of vol_M, see [7, 41.2(3)]. Using the abbreviation $\mu_{V,2} = (\pi_2)_# \mu_V$ introduced above, the constant c_A can be calculated as follows

$$c_A = \frac{1}{\text{vol}_M(M)} \mu^A(M) = \frac{1}{\text{vol}_M(M)} \mu_{V,2}(A).$$

Hence, μ_V is given as a product of vol_M and $\mu_{V,2}$. Next, we prove that – up to scale – $\mu_{V,2}$ coincides with the Riemannian area vol_2.

The idea is to show invariance of $\mu_{V,2}$ under the flow $\varphi_t^{\tilde{Y}}$ of \tilde{Y}. Then the unique ergodicity of $\varphi_t^{\tilde{Y}}$ implies that $\mu_{V,2}$ is a multiple of vol_2, cf. Corollary [11].

We consider $f \in C^1(B)$ and $\tilde{X} = (f\tilde{Y}) \circ \pi_2$. Since \tilde{X} is defined in a neighborhood of $\text{spt}(\mu_V)$ and V is stationary we have

$$0 = \delta V(\tilde{X}) = \int \text{div}_S \tilde{X} \, dV(S).$$
Since \(\text{spt}(V) \subset \tilde{F} \), equation 6 implies
\[
0 = \int_{M \times \mathbb{T}^2} \text{div}_{T_pM \times T_qF} \tilde{X} \, d\mu_V(p,q) = \int_{M \times \mathbb{T}^2} g(\nabla_Y f \tilde{Y}, \tilde{Y}) \circ \pi_2 \, d\mu_V \\
= \int_{M \times \mathbb{T}^2} \left(df(\tilde{Y}) + fg(\nabla_Y \tilde{Y}, \tilde{Y}) \right) \circ \pi_2 \, d\mu_V \\
= \int_{\mathbb{T}^2} df(\tilde{Y}) \, d\mu_{V;2}.
\]
Since every function \(f \in C^1(\mathbb{T}^2) \) can be extended to a \(C^1 \)-function on \(B \) we conclude that
\[
\int_{\mathbb{T}^2} df(\tilde{Y}) \, d\mu_{V;2} = 0
\]
for all \(f \in C^1(\mathbb{T}^2) \). This implies that \(\mu_{V;2} \) is \(\varphi^\tilde{Y} \)-invariant. For convenience, we include the simple proof. Since \((d(f \circ \varphi^\tilde{Y}_t))(\tilde{Y}_p) = \left. \frac{d}{dt} f \circ \varphi^\tilde{Y}_t \right|_t (p)\), we have for all \(t > 0 \)
\[
0 = \int_0^t \int_{\mathbb{T}^2} d(f \circ \varphi^\tilde{Y}_t)(\tilde{Y}) \, d\mu_{V;2} \, dt \\
= \int_{\mathbb{T}^2} f \, d(\varphi^\tilde{Y}_t)(\mu_{V;2})) - \int_{\mathbb{T}^2} f \, d\mu_{V;2}.
\]
This together with the Borel regularity of \(\mu_{V;2} \) implies the \(\varphi^\tilde{Y}_t \)-invariance of \(\mu_{V;2} \). Now the unique ergodicity of \(\varphi^\tilde{Y}_t \) implies our claim, cf. Corollary 4.

This completes the proof of Step 3. Together, Step 2 and Step 3 prove the claimed uniqueness of \(V_0 \). \(\square \)

Remark 4. Actually, the calculation in Step 1 can be replaced by the following more involved argument showing that \(V_0 \) is stationary. Since \(\tilde{M} \) does not satisfy an isoperimetric inequality for \((m+1)\)-varifolds, B. White’s Theorem 2.3 from 8 implies that \(\tilde{M} \) contains a nonzero, stationary \((m+1)\)-varifold \(V \). But now the preceding two steps show that this \(V \) is a nonzero multiple of \(V_0 \). Hence \(V_0 \) is stationary.

5. Appendix

Lemma 1. There is a function \(R \in C^\infty([0,2[\times]0,\pi/2[, \mathbb{R}^+) \) that fulfills conditions (H1)-(H3).

Proof. It is easy to find a function \(k \in C^\infty(\mathbb{R}^2, \mathbb{R}) \) that meets conditions (R2) and (R4), and the following weakening of condition (R1)

\[
R1' \quad k(1, \pi/4) = \cos^2(\pi/4) + \alpha^2 \sin^2(\pi/4).
\]

For example \(k(\rho, \psi) = (\psi - \pi/4)^2 \rho + (\rho - 1)^3 + \cos^2(\pi/4) + \alpha^2 \sin^2(\pi/4) \) has these properties, but we do not need the explicit formula. In addition, we define the function \(l \in C^\infty(\mathbb{R}^2, \mathbb{R}^+) \) by \(l(\rho, \psi) = \rho^2(\cos^2 \psi + \alpha^2 \sin^2 \psi) \). Then
\[
(k - l)(1, \pi/4) = 0 \quad \text{and} \quad \frac{\partial}{\partial \rho}(k - l)(1, \pi/4) = -2 \left(\cos^2 (\pi/4) + \alpha^2 \sin^2 (\pi/4) \right) < 0.
\]
Therefore we can find \(\frac{1}{2} < \rho_1 < \rho_2 < 1 < \rho_3 < \rho_4 < \frac{3}{2} \) and \(\pi/8 < \psi_1 < \pi/4 < \psi_2 < \frac{3\pi}{8} \) such that for any \(\psi \in [\psi_1, \psi_2] \)

\[
(k - l)(\rho, \psi) > 0 \quad \text{if } \rho \in [\rho_1, \rho_2], \quad (k - l)(\rho, \psi) < 0 \quad \text{if } \rho \in [\rho_3, \rho_4].
\]

(7)

Now choose a bump function \(\beta \in C^\infty(\mathbb{R}^2, [0, 1]) \) with support in \([\rho_1, \rho_4] \times [\psi_1, \psi_2] \), that is constantly equal to 1 in a neighbourhood of \((1, \pi/4)\), and has the following property for any \(\psi \in [\psi_1, \psi_2] \)

\[
\frac{\partial}{\partial \rho} \beta(\rho, \psi) \begin{cases}
\geq 0 & \text{for } \rho \in [\rho_1, \rho_2] \\
= 0 & \text{for } \rho \in [\rho_2, \rho_3] \\
\leq 0 & \text{for } \rho \in [\rho_3, \rho_4].
\end{cases}
\]

(8)

Since \((k - l)(1, \pi/4) = 0\) we can choose the parameters \(\rho_1, \rho_2, \rho_3, \rho_4, \psi_1 \) and \(\psi_2 \) in such a way that the function

\[
R := (1 - \beta)l + \beta k = l + \beta(k - l)
\]

is positive on the open set \([0, 2] \times [0, \pi/2] \). Obviously the restriction of \(R \) to \([0, 2] \times [0, \pi/2] \) meets conditions \((R1)\) and \((R3)\). To finish the proof we check the monotonicity condition \((R2)\):

\[
\frac{\partial}{\partial \rho} R = (1 - \beta) \frac{\partial}{\partial \rho} l + \beta \frac{\partial}{\partial \rho} k + (k - l) \frac{\partial}{\partial \rho} \beta,
\]

where the sum of the first two terms is positive if \((\rho, \psi) \neq (1, \pi/4)\) and the last term is nonnegative as \((7)\) and \((8)\) show.

\[\square\]

Acknowledgements: We thank Eugene Gutkin and Stéphanie Sabourau for useful comments. This work was partially supported by the DFG Collaborative Research Center SFB TR 71.

References

1. Victor Bangert, *On the existence of closed geodesics on two-spheres*, Internat. J. Math. 4 (1993), no. 1, 1–10. MR MR1209957 (94d:58036)

2. George D. Birkhoff, *Dynamical systems*, American Mathematical Society Colloquium Publications, Vol. VIII, American Mathematical Society, Providence, R.I., 1927.

3. Tobias H. Colding and William P. Minicozzi, II, *Minimal surfaces*, Courant Lecture Notes in Mathematics, vol. 4, New York University Courant Institute of Mathematical Sciences, New York, 1999. MR MR1683966 (2002b:49072)

4. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaï, *Ergodic theory*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982, Translated from the Russian by A. B. Sosinskiĭ. MR 832433 (87f:28019)

5. John Franks, *Geodesics on \(S^2 \) and periodic points of annulus homeomorphisms*, Invent. Math. 108 (1992), no. 2, 403–418. MR MR1161099 (93f:58192)

6. Peter Petersen, *Riemannian geometry*, Graduate Texts in Mathematics, vol. 171, Springer-Verlag, New York, 1998. MR MR1480173 (98m:53001)

7. Leon Simon, *Lectures on geometric measure theory*, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University Centre for Mathematical Analysis, Canberra, 1983. MR 756417 (87a:49004)

8. Brian White, *Which ambient spaces admit isoperimetric inequalities for submanifolds?*, J. Differential Geom. 83 (2009), no. 1, 213–228. MR MR2545035

Mathematisches Institut, Abteilung für Reine Mathematik, Albert-Ludwigs-Universität, Eckerstr. 1, 79104 Freiburg im Breisgau, Germany