A CURVATURE FLOW AND APPLICATIONS TO AN ISOPERIMETRIC INEQUALITY

DYLAN CANT

Abstract. Long time existence and convergence to a circle is proved for radial graph solutions to a mean curvature type curve flow in warped product surfaces (under a weak assumption on the warp potential of the surface). This curvature flow preserves the area enclosed by the evolving curve, and this fact is used to prove a general isoperimetric inequality applicable to radial graphs in warped product surfaces under weak assumptions on the warp potential.

1. Introduction

Extrinsic geometric curvature flows are concerned with evolving closed hypersurfaces $\Sigma^n(t) \subset N^{n+1}$ in the normal direction with speed equal to some function related to the curvature. A curve flow is the one-dimensional case $n = 1$. A simple example is the curve shortening flow, which evolves closed curves $\gamma \subset \mathbb{R}^2$ in the outward normal direction ν with speed equal to (minus) the curvature κ:

$$X_t = -\kappa \nu,$$

where X is the position vector of the curve γ. In [Gag83] (and [GH86]), Gage (and Gage-Hamilton) prove an isoperimetric inequality related to the curve shortening flow, an idea which was inspiration for the current work relating isoperimetric inequalities with monotonicity properties of a curve flow.

In [GL15], Guan and Li introduce a new type of mean curvature flow for star-shaped hypersurfaces in space forms. This flow is generalized to starshaped hypersurfaces in warped product spaces in [GLW]. For example, if Σ^n is a hypersurface in \mathbb{R}^{n+1}, then the flow equation is

$$\frac{\partial X}{\partial t} = (n - H u)\nu,$$

where X is the position vector for Σ, H is its mean curvature, and $u = \langle X, \nu \rangle$ is the support function of the hypersurface. For general warped product manifold $N^{n+1} = (0,R) \times \mathbb{S}^n$ with metric $g^N := dr^2 + \varphi(r)^2 g^\mathbb{S}^n$, the [GLW] flow equation is

$$\frac{\partial X}{\partial t} = (n \varphi'(r) - H u)\nu, \quad u := g^N(\varphi(r) \partial_r, \nu).$$

It is shown in [GL15] that the volume enclosed by the hypersurface is constant along this flow.

When $n \geq 2$, Theorem 1.1 in [GL15] guarantees long-time existence of this flow for smooth initial hypersurfaces, and exponential convergence to a sphere as $t \to \infty$. Furthermore, when $n \geq 2$, Theorem 4.2 in [GLW] (see also Proposition
3.5 in [GL15] guarantees that, under the assumption $\varphi' \varphi' - \varphi \varphi'' \leq 1$, the surface area of the hypersurface is monotonically decreasing along the flow; this argument depends on $n \geq 2$ in a crucial way, since it uses higher elementary symmetric functions of the curvatures: essentially, the key is the Minkowski identity

\begin{equation}
\int_M \varphi' H = \frac{2}{n-1} \int_M u \sigma_2.
\end{equation}

In dimension $n = 1$, this inequality is no longer applicable.

The purpose of this current paper is to extend the long-time existence and monotonicity of surface area results of [GL15] to the case $n = 1$, and to prove an isoperimetric inequality for curves in two-dimensional warped product surfaces with weak assumptions on the warp potential φ.

The key results of this paper are:

Theorem 1.1 (long-time existence and convergence to a circle). Let N be a warped-product space with warp potential $\varphi(r)$ satisfying $\varphi' \varphi' - \varphi \varphi'' \geq 0$. If $\gamma_0 \subset N$ is a smooth hypersurface, then there is a unique flow $\gamma(t)$ satisfying (1.2) and $\gamma(0) = \gamma_0$. Furthermore $\min r|_{\gamma_0} \leq r|_{\gamma(t)} \leq \max r|_{\gamma(0)}$, and $r|_{\gamma(t)} \to \text{constant as } t \to \infty$.

Theorem 1.2 (Isoperimetric inequality). If $\gamma_0 \subset N$ is a piecewise C^1 Lipschitz radial graph, and $\varphi' \varphi' - \varphi \varphi'' \in [0, 1]$, then $L(\gamma_0) \geq F(A(\gamma_0))$, where equality holds if and only if γ_0 is a “circle,” where a “circle” is either

(i) a slice $\{r\} \times S^1$.

(ii) a translated circle contained in a “space-form region” $[r_1, r_2] \times S^1$ where $\varphi' \varphi' - \varphi \varphi'' \equiv 1$.

1.1. **Motivating Example.** In this subsection, we show that, in \mathbb{R}^2, the monotonicity of length (e.g. the “surface area” of the hypersurface) of the one-dimensional curve flow (1.1) (with $n = 1$) is intimately connected to the classical isoperimetric ratio in \mathbb{R}^2.

Let $\gamma(t)$ be a curve flow which solves (1.1) with initial data γ_0. Let $L(t)$, $A(t)$, ds, u, κ be the length, area (the “volume”), arc-length one-form, support function, and curvature of $\gamma(t)$, respectively. As we will prove in more generality below, we have the following equations

\begin{equation}
\frac{dA(t)}{dt} = \int_{\gamma(t)} 1 - u \kappa \, ds = 0 \quad \text{and} \quad \frac{dL(t)}{dt} = \int_{\gamma(t)} \kappa - u \kappa^2 \, ds = 2 \pi - \int_{\gamma(t)} u \kappa^2,
\end{equation}

where we have used Gauss-Bonnet in the second equality. Define the isoperimetric difference $\Lambda := L^2 - 4 \pi A$. The classical isoperimetric inequality states that $\Lambda \geq 0$, with equality holding only for circles. We estimate

$$L^2 = \left[\int u^{1/2} u^{1/2} \kappa \, ds \right]^2 \leq \int u \, ds \int u \kappa^2 \leq 2A \int u \kappa^2,$$

where we have used the well-known fact $\int u \, ds = 2A$, and the fact that $\int 1 - u \kappa \, ds = 0$. From this we can estimate the second side of (1.4) to obtain

$$2L \frac{dL(t)}{dt} \leq \frac{L}{2A} (4\pi A - L^2),$$

which yields

\begin{equation}
\frac{d\Lambda}{dt} \leq -\frac{L}{2A} \Lambda.
\end{equation}
Thus, if $\Lambda > 0$ for our initial curve, then Λ decreases as the curve $\gamma(t)$ approaches a circle. By proving that Λ is strictly non-negative in a neighborhood of any circle, one can use (1.5) to prove that $\Lambda \neq 0$ for any initial data γ.

Unfortunately, the argument leading to (1.5) seems to be special to \mathbb{R}^2, and the author was unable to reproduce it for more general warped-product spaces. However, a different argument is possible, and one of the main results in this paper is a general isoperimetric inequality applicable to a large class of warped product spaces (subject to a few conditions on the warp potential ϕ).

2. Geometric Preliminaries

In the remainder of this paper, let $N = (0, R) \times S^1$ be a warped-product surface with metric $g_N := dr^2 + \varphi(r)^2 d\theta^2$, with $\varphi(r) > 0$. Let $\nabla(\cdot, \cdot)$ be the Levi-Civita connection on N.

Define $\Phi : N \to (0, \infty)$ by

$$\Phi(r) = \int_0^r \varphi(r') \, dr'.$$

A closed loop $\gamma \subset N$ is called a C^k radial graph if there is a C^k mapping $\rho : S^1 \to (0, R)$ such that $\gamma = \text{im}(\theta \mapsto (\rho(\theta), \theta))$. We denote by ν and ∂_s the outward normal and unit tangent vector of γ; we assume γ has the orientation such that $g(\partial_r, \partial_r) > 0$ and $g(\partial_\theta, \partial_s) > 0$. The curvature κ satisfies $\nabla(\partial_s, \partial_r) = \kappa \partial_s$.

2.1. Isoperimetric Inequality. Let C_r denote the circle $\{r\} \times S^1 \subset N$, and let $L(r)$ and $A(r)$ denote its length and area, respectively. Then, $A(r) = 2\pi \Phi(r)$, and since $\Phi(r) > 0$, we may solve for r as a function of A, and consequently, there is some differentiable function F such that

$$L(r)^2 = F(A(r)).$$

The isoperimetric inequality is the statement that, for any curve $\gamma \subset N$,

$$L[\gamma]^2 \geq F(A[\gamma]).$$

Unfortunately, this inequality is not true without some restriction on the warp potential φ. If $\varphi' \varphi'' - \varphi \varphi''' > 1$, then the inequality will fail. To prove this assertion, we compute the length and area of the radial graph $\gamma(\epsilon)$ with $\rho(\theta) = r_0 + \epsilon g(\theta)$ to second order in ϵ, and show that

$$\frac{L[\gamma(\epsilon)]^2 - F(A[\gamma(\epsilon)])}{\epsilon^2} = 4\pi^2 \left(\frac{1}{2\pi} \int g \, d\theta \right)^2 + \frac{1}{2\pi} \int (g_0)^2 - g^2 \, d\theta \right) + \beta - 1 \left(\frac{1}{2\pi} \int g \, d\theta \right)^2 - \frac{1}{2\pi} \int g^2 \, d\theta \right),$$

where $\beta = \varphi' \varphi' - \varphi \varphi'''$. If $\beta > 1$ and we consider $g = \cos \theta$, for example, we obtain $L^2 - F(A) < 0$, to lowest order in ϵ. We also note that $\varphi' \varphi' - \varphi \varphi''' = 1$ for \mathbb{R}^2, S^2 and \mathbb{H}^2.
2.2. Geometric properties of Guan-Li mean-curvature flow. Following [GL15], we prove the following lemma:

Lemma 2.1. The vector field $V = \varphi \partial_r$ is a conformal Killing vector field with conformal factor φ'. More precisely, for all vector fields X,Y on N, we have

$$\nabla^2 \Phi(X,Y) = g(\nabla(Y,V),X) = \varphi' g(X,Y).$$

Proof. Simply compute:

$$\nabla^2 \Phi(X,Y) = Y \langle d\Phi, X \rangle - \langle d\Phi, \nabla(Y,X) \rangle = g(\nabla(Y,V),X) + g(V,\nabla(Y,X)) - g(V,\nabla(Y,X)).$$

Then

$$\nabla^2 \Phi(\partial_r, \partial_r) = \varphi' \quad \nabla^2 \Phi(\partial_\theta, \partial_\theta) = \varphi' \Gamma^d_{\partial_r} = \varphi' \Gamma^d,$$

as desired. \hfill \Box

Corollary 2.2. On a curve γ, $\Phi_{ss} = \varphi' - u \kappa$.

Proof. We have $\Phi_s = g(V, \partial_s)$, and taking a second derivative yields

$$\Phi_{ss} = g(\nabla(\partial_s, V), \partial_s) + g(V, \nabla(\partial_s, \partial_s)) = \varphi' - \kappa g(V, \nu) = \varphi' - u \kappa,$$

as desired. We used the well-known fact that $\nabla(\partial_s, \partial_s) = -\kappa \nu$. \hfill \Box

Theorem 2.3. Let $\gamma_0, \gamma(t)$ be closed loops in N, and suppose now that $X(\cdot, t) : \gamma_0 \rightarrow \gamma(t)$ parametrizes $\gamma(t)$ in terms of γ_0. Suppose that X evolves according to $\partial_t X = f \nu$. Then

$$\frac{dL}{dt}(t) = \int_{\gamma(t)} f \kappa\, ds \quad \text{and} \quad \frac{dA}{dt}(t) = \int_{\gamma(t)} f\, ds,$$

where L and A are the length and area of $\gamma(t)$, respectively.

Proof. Consider the normal tube $U_\epsilon \simeq \gamma(t_0) \times (-\epsilon, \epsilon)$ around $\gamma(t_0)$ obtained by sending (p, z) to $\text{Exp}_p(z \nu(p))$. For ϵ small enough, this is a diffeomorphism from $\gamma(t_0) \times (-\epsilon, \epsilon)$ onto an open set $U_\epsilon \subset N$. In the natural coordinates of U_ϵ, we can write $g = A(s, z) \, ds^2 + dz^2$, where $A(s, 0) = g(\partial_s, \partial_s) = g(\nabla(\partial_s, \nu), \partial_s) = \kappa$. Consider $\gamma(t)$ as the graph of $F(\cdot, t) : \gamma(t_0) \rightarrow (-\epsilon, \epsilon)$. Clearly $F(t) = f(s)$. Then

$$L(t) = \int_{\gamma(t_0)} \sqrt{A(s,F(s,t))}^2 + F_s^2\, ds,$$

and so

$$L(t) = \int_{\gamma(t_0)} \kappa(s)f(s)\, ds.$$

Similarly,

$$A(t) = \int_{\gamma(t_0)} \int_{z=0}^{F(s,t)} A(s, z')\, dz'\, ds \quad \Rightarrow \quad A(t) = \int_{\gamma(t_0)} f(s)\, ds.$$

This completes the proof. \hfill \Box

Theorem 2.4. Suppose that $\gamma(t)$ evolves with speed function $f = \Phi_{ss}$. Then

$$\frac{dA}{dt}(t) = 0 \quad \text{and} \quad \frac{dL}{dt}(t) = \int_{S^1} (\varphi' \varphi'' - \varphi \varphi') (r_s)^2 - (r_{s\theta})^2 \, d\theta.$$
Proof. The first part of the theorem follows from Theorem 2.3 and fact that \(\int \Phi_{ss} \, ds = 0 \). For the second part of the theorem, we introduce scalar functions \(a, b \) defined by
\[
\partial_r = a \nu + b \partial_s, \quad \text{(note } r_s = b) \]
then it is easy to show that
\[
\partial_s = a \frac{\partial \theta}{\varphi} + b \partial_r, \quad \nu = a \partial_r - b \frac{\partial \theta}{\varphi},
\]
and using this, we may express the curvature \(\kappa \) in terms of \(a \) and \(b \):
\[
\kappa = \frac{\varphi'}{\varphi} \frac{a}{b_s} - \frac{b}{a}.
\]
It is clear that
\[
\Phi_s = \varphi \quad \text{and} \quad \Phi_{ss} = \varphi' b^2 + \varphi b_s,
\]
and thus
\[
\int \kappa \Phi_{ss} \, ds = \int \frac{a \varphi'}{\varphi} \frac{b^2}{a} - \frac{\varphi'}{a} b_s - \frac{\varphi' b^2 b_s}{a} + \varphi' ab_s \, ds.
\]
Integration by parts on the last term yields
\[
\int \kappa \Phi_{ss} \, ds = \int \frac{a \varphi' - \varphi \varphi''}{\varphi} b^2 - \frac{\varphi'}{a} b_s^2 - \frac{\varphi' b^2 b_s}{a} - \varphi' a_s b \, ds,
\]
and thus
\[
\int \kappa \Phi_{ss} \, ds = \int \frac{a (\varphi' - \varphi \varphi'')}{\varphi} b^2 - \frac{\varphi'}{a} b_s^2 - \frac{\varphi' b^2 b_s}{a} - \varphi' a_s b \, ds.
\]
now we use the fact that \(a^2 + b^2 = 1 \) to deduce that \(aa_s = -bb_s \), which makes the last two terms in the integral cancel, and we are left with
\[
\int \kappa \Phi_{ss} \, ds = \int \frac{a (\varphi' - \varphi \varphi'') b^2}{\varphi} - \frac{\varphi'}{a} b_s^2 \, ds
\]
Consider the radial graph parametrization of \(\gamma \), obtained by \(\theta \mapsto (\theta, \rho(\theta)) \). It is straightforward to show that
\[
\frac{a}{\varphi} \, ds = d\theta \quad \text{and} \quad b_s = \frac{a}{\varphi} b_\theta,
\]
whereby we obtain
\[
(2.2) \quad \frac{dL(t)}{dt} = \int \kappa \Phi_{ss} \, ds = \int_{\mathbb{S}^1} (\varphi' \varphi' - \varphi \varphi'')(r_s)^2(\theta) - (r_s \varphi)^2(\theta) \, d\theta,
\]
where we have replaced \(b = r_s \). This completes the proof. \(\square \)

Corollary 2.5. Suppose that \(\varphi' \varphi' - \varphi \varphi'' \leq 1 \). If \(\gamma(t) \) satisfies \(\int_{\mathbb{S}^1} r_s \, d\theta = 0 \), then \(dL(t)/dt \leq 0 \), with equality if and only if \(r_s \equiv 0 \), or \(\varphi' \varphi' - \varphi \varphi'' \equiv 1 \) and \(r_s = a \cos \theta + b \sin \theta \) (\(a, b \) may depend on time).

Proof. Theorem 2.3 guarantees
\[
(2.3) \quad \frac{dL(t)}{dt} \leq \int (r_s)^2 - (r_s \varphi)^2 \, d\theta - 2\pi \int r_s \, d\theta \leq 0,
\]
where we have used the classical Poincaré inequality on the circle. The first inequality is equality only when \(\varphi' \varphi' - \varphi \varphi'' \equiv 1 \) or \(r_s \equiv 0 \), and the second inequality is equality only when \(r_s = a \cos \theta + b \sin \theta \), as desired. \(\square \)
3. PDE Estimates for Guan-Li Curve Flow.

The goal of this section is to prove long-time existence for the curve flow with speed function \(\varphi' - u \kappa \) and convergence to circle as \(t \to \infty \), assuming smooth radial graph \(\gamma_0 \) as initial data.

Following [GL15], we work in the radial graph parametrization: we look for solutions of the form
\[
(3.1) \quad \gamma(t) = \text{im}(\theta \mapsto (\rho(\theta, t), \theta)),
\]
for some \(\rho : \mathbb{S}^1 \times (0, \infty) \to (0, R) \). Parametrizing the flow (3.1) using the radial graph parametrization, we see that
\[
\partial_t X = \rho_t \partial_r = \rho_t \left(\frac{u}{\varphi'} + r_s \partial_s \right),
\]
and thus \(\gamma(t) \) in (3.1) evolves with speed function \(\rho_t u / \varphi' \). Thus, if \(\rho \) satisfies \(\rho_t = \varphi f / u \), (3.1) evolves with speed function \(f \). A straightforward computation yields
\[
\Phi_s = \frac{\varphi \rho_\theta}{\varphi^2 + \rho_\theta^2}, \quad \Phi_{ss} = \frac{\varphi^3 \rho_{\theta\theta} + \varphi' \rho_\theta^5}{(\varphi^2 + \rho_\theta^2)^{3/2}}, \quad \text{(using} \theta_0 = \sqrt{\varphi^2 + \rho_\theta^2} \partial_s),
\]
and \(u = \varphi^2 / \sqrt{\varphi^2 + \rho_\theta^2} \). Therefore, we seek a solution of the following problem
\[
(3.2) \quad \begin{cases}
\rho \in C^\infty(\mathbb{S}^1 \times [0, \infty)) \\
\rho(\theta, 0) = \rho_0(\theta) \quad (\gamma_0 = \text{im}(\theta \mapsto (\rho_0(\theta), \theta))) \\
\rho_t = \frac{\varphi^3 \rho_{\theta\theta} + \varphi' \rho_\theta^5}{\varphi(\varphi^2 + \rho_\theta^2)^{3/2}}
\end{cases}
\]

3.1. \(C^0 \) and Gradient Estimate for Solutions of (3.2). Following [GL15], we first prove solutions of (3.2) satisfy a \(C^0 \) a priori estimate. At critical points of \(\rho \) we have \(\rho_\theta = 0 \) and thus
\[
\rho_t = \frac{1}{\varphi'} \rho_{\theta\theta},
\]
and, by the standard maximum principle, this implies that
\[
(3.3) \quad \min \rho_0 \leq \rho(\theta, t) \leq \max \rho_0.
\]
The gradient estimate requires more work. We begin by showing that \(\omega := \rho_\theta^2 \) satisfies a parabolic evolution equation. We compute
\[
(3.4) \quad \omega_t = 2\rho_\theta \omega_{\theta, t} = \frac{\varphi^3}{\varphi(\varphi^2 + \rho_\theta^2)^{3/2}} \omega_{\theta\theta} - 2 \frac{\varphi^3}{\varphi(\varphi^2 + \rho_\theta^2)^{3/2}} (\rho_{\theta\theta})^2
\]
\[
+ \frac{\partial}{\partial \theta} \left(\frac{\varphi^2}{(\varphi^2 + \rho_\theta^2)^{3/2}} \right) + \frac{2\varphi' \omega}{\varphi(\varphi^2 + \rho_\theta^2)^{3/2}} - \frac{3\varphi \rho_\theta^5}{\varphi(\varphi^2 + \rho_\theta^2)^{5/2}} \omega_\theta
\]
\[
- \frac{2(4\varphi' \varphi' - \varphi'' \varphi) \rho_\theta^6}{(\varphi^2 + \rho_\theta^2)^{5/2}} - \frac{2(\varphi' \varphi' - \varphi'' \varphi) \rho_\theta^8}{(\varphi^2 + \rho_\theta^2)^{5/2}},
\]
and abbreviating yields
\[
(3.5) \quad \omega_t = A(\rho, \omega) \omega_{\theta\theta} - 2A(\rho, \omega) (\rho_{\theta\theta})^2 + B(\rho, \omega, \omega_\theta) \omega_\theta - C_1(\rho, \omega) \omega^3 - C_2(\rho, \omega) \omega^4
\]
We now make the assumption that \(\varphi' \varphi' - \varphi'' \varphi > 0 \), which enables us to conclude that \(C_1 > 0 \) and \(C_2 > 0 \). We remark that this assumption also plays a key role in
proving the convergence to a circle. Supposing that ω achieves a positive maximum at (θ, t) for a positive time $t > 0$, we have

$$\omega_t(\theta, t) = A(\rho, \omega)\omega_{\theta \theta}(\theta, t) - C_1(\rho, \omega)\omega^3 - C_2(\rho, \omega)\omega^4,$$

which implies that $\omega_t < 0$, a contradiction. Thus ω can only attain its maximum on the initial data, so

$$0 \leq \omega(t > 0) < \omega(t = 0).$$

(3.6)

3.2. Long-time existence of solutions of equation (3.2). Appealing to the classical parabolic theory for quasi-linear parabolic equations (see, for instance, [LSU68]), the higher regularity a priori estimates for ρ follow from the uniform C^0 and gradient estimates. To be precise, we have:

Theorem 3.1. Let ρ solve (3.2), and suppose that $\varphi' \varphi' - \varphi'' > 0$. Then, for any integer $k \geq 0$, and any $t_0 > 0$, there exists a constant $C(t_0, \rho_0, k)$ such that

$$|\rho(\cdot, t)|_{C^k} < C(t_0, \rho_0, k) \quad t > t_0.$$

(3.7)

These estimates guarantees long-time existence and uniqueness and thus the first part of Theorem 1.1 (see, for instance, the proof of Theorem 8.3 in [Lie96]).

3.3. Convergence to a circle as $t \to \infty$. The goal of this subsection is to prove the second part of Theorem 1.1, that $\kappa_\gamma(\theta(t)) \to \text{constant}$.

Suppose that ρ is a solution to (3.2). As shown in the previous section, $\omega = \rho^2_\theta$ satisfies the following PDE

$$\omega_t = A(\rho, \omega)\omega_{\theta \theta} - 2A(\rho, \omega)(\rho \omega^2) + B(\rho, \omega, \omega_\theta)\omega_\theta - C_1(\rho, \omega)\omega^3 - C_2(\rho, \omega)\omega^4,$$

with constants $a_i, b_i, c_{i,j}$, such that $0 \leq a_1 \leq A \leq a_2 < \infty$, $0 < c_{i,1} \leq C_1 \leq c_{i,2} < \infty$, $i = 1, 2$. Let $v : [0, \infty) \to [0, \infty)$ be the unique solution to

$$v_t = -c_{1,1}v^3 - c_{2,1}v^4 \quad v(0) = \max \omega + \epsilon \quad (\epsilon > 0)$$

It is clear that v is always positive, and that $v = O(t^{-1/2})$.

Letting $u = \omega - v$, which satisfies

$$u_t \leq A(\rho, \omega)u_{\theta \theta} - 2A(\rho, \omega)(u \omega^2) + B(\rho, \omega, \omega_\theta)u_\theta - c_{1,1}u(\omega^2 + v \omega + v^2) - c_{2,1}u(\omega^3 + v \omega^2 + v^2 \omega + v^3).$$

(3.8)

Suppose now that u achieves a positive maximum at (θ, t). Then evaluating the right hand side of (3.8) yields $u_t(\theta, t) < 0$, which is a contradiction. Thus u cannot achieve a positive maximum, and so $\omega \leq v$, and since $v \to 0$ uniformly as $t \to \infty$, we deduce that $\omega \to 0$ uniformly, and thus $\rho(\cdot, t)$ uniformly approaches a constant function as $t \to \infty$. This proves that the curve flow converges to a circle.

4. Monotonicity of length and the Isoperimetric inequality

Let $\gamma(t)$ be a solution to the flow with speed function $\varphi' - uk$. Unfortunately, it seems difficult to directly prove that $L[\gamma(t)]$ is monotonically nonincreasing - however, we will prove that $L[\gamma(t)]$ is monotonically nonincreasing for bilaterally symmetric curves:
4.1. Bilaterally symmetric radial graphs. For each $\alpha \in S^1$, consider the isometry $\mathcal{R}_\alpha : N \to N$ defined by

$$\mathcal{R}_\alpha : (r, \theta) \mapsto (r, \alpha^2 \theta^{-1}),$$

where multiplication happens in $S^1 \subset \mathbb{C}$. Note that the antipodal points $\pm \alpha$ are fixed, and so we can consider this as a reflection through a line:

It is clear that $\mathcal{R}_\alpha : N \to N$ is an isometry. If $\gamma \subset N$ is a curve such that there is some $\alpha \in S^1$ such that γ is fixed under \mathcal{R}_α, then we say γ has a **bilateral symmetry** with axis α.

Theorem 4.1. Let $0 \leq \phi' \phi' - \phi'\phi'' \leq 1$. Suppose γ_0 is a smooth, bilaterally symmetric with axis α, radial graph, and suppose $\gamma(t)$ is a solution to the flow with initial data $\gamma(0) = \gamma_0$. Then $\gamma(t)$ is also bilaterally symmetric with axis α and furthermore $L[\gamma(t)]$ is nonincreasing.

Proof. The fact that $\gamma(t)$ is also bilaterally symmetric follows from uniqueness of solutions and the fact that $\mathcal{R}_\alpha(\gamma(t))$ also is a solution to the flow.

If γ is bilaterally symmetric radial graph, and $p \in \gamma$, then it is an easy computation to show that $r_\gamma(p) = -r_\gamma(\mathcal{R}_\alpha(p))$, and so $\int_{S^1} r_\gamma d\theta = 0$. Then Corollary 2.4 implies that $\frac{d}{dt} L[\gamma(t)] \leq 0$, as desired. \qed

Corollary 4.2. Let $0 \leq \phi' \phi' - \phi'\phi'' \leq 1$. If γ_0 is a smooth bilaterally symmetric radial graph, then $L[\gamma_0] \geq F(A[\gamma_0])$ (cf. subsection 2.1 for definition of F).

Proof. Using monotonicity of length and the constancy of area, we deduce $L[\gamma_0] \geq L[\gamma(\infty)] = F(A[\gamma(\infty)]) = F(A[\gamma_0])$, as desired. \qed

Theorem 4.3 (Isoperimetric inequality, without equality case). Let $0 \leq \phi' \phi' - \phi'\phi'' \leq 1$. If γ_0 is any piecewise C^1 and Lipschitz radial graph, then $L[\gamma_0] \geq F[A(\gamma_0)]$.

Proof. Let ρ_0 be the radial length function of γ_0, and, for each α, define

$$\rho_{\alpha,1}(\theta) = \begin{cases} \rho(\theta) & \text{imag}(\alpha \theta^{-1}) \geq 0 \\ \rho(\alpha^2 \theta^{-1}) & \text{imag}(\alpha \theta^{-1}) \leq 0 \end{cases}$$

and

$$\rho_{\alpha,2}(\theta) = \begin{cases} \rho(\theta) & \text{imag}(\alpha^{-1} \theta) \leq 0 \\ \rho(\alpha^2 \theta^{-1}) & \text{imag}(\alpha^{-1} \theta) \geq 0 \end{cases}$$

Then note that $\text{imag}(\alpha^{-1} \theta) \geq 0$ implies that

$$\text{imag}(\alpha^{-1} \alpha^2 \theta^{-1}) = \text{imag}(\alpha \theta^{-1}) \leq 0,$$

and so $\rho_{\alpha,1}(\alpha^2 \theta^{-1}) = \rho_{\alpha,1}(\theta)$ and $\rho_{\alpha,2}(\alpha^2 \theta^{-1}) = \rho_{\alpha,2}(\theta)$. Let $\gamma_0, \gamma_{\alpha,1}$ and $\gamma_{\alpha,2}$ be the curves defined by $\rho_0, \rho_{\alpha,1}, \rho_{\alpha,2}$. By continuity there is some $\alpha \in S^1$ such that $\gamma_{\alpha,1}$ and $\gamma_{\alpha,2}$ have the same area. Suppose that $L[\gamma_{\alpha,1}] \leq L[\gamma_0] \leq L[\gamma_{\alpha,2}]$. It therefore suffices proving that $L[\gamma_{\alpha,1}] \geq F[A(\gamma_{\alpha,1})] = F[A(\gamma_0)]$, and so we may assume from the outset that ρ_0 is piecewise C^1, Lipschitz, and bilaterally symmetric.
As in the proof of Theorem 4.3, convolve with smooth mollifiers to obtain \(\rho_n \to \rho_0 \)
be a sequence of smooth, symmetric, functions converging to \(\rho_0 \).
Since \(\rho_0 \) is Lipshitz, its derivative is bounded. Since \(\rho_{n,\theta} \to \rho_{0,\theta} \) uniformly on any compact set \(K \subset S^1 \) such that \(\rho_0 \in C^1(K) \), we deduce that \(L[\gamma_n] \to L[\gamma_0] < \infty \) and \(A[\gamma_n] \to A[\gamma_0] < \infty \). Then \(L[\gamma_0] \geq F(A[\gamma_0]) \) follows, as desired. \(\square \)

5. Equality case for isoperimetric inequality.

The rest of this paper is dedicated to discussing when equality holds in Theorem 4.3. Ideally, \(L[\gamma_0] = F(A[\gamma_0]) \) would imply that \(\gamma_0 \) is a circle \(\{r\} \times S^1 \), but, when \(N \) satisfies \(\phi' \phi' - \phi \phi'' \geq 0 \), there are complications arising from translation isometries of \(N \) (e.g. translated circles in the space forms \(\mathbb{R}^2, S^2 \) and \(H^2 \) are equality cases).

A key tool in our argument is the following existence result:

Theorem 5.1. Suppose \(\phi' \phi' - \phi \phi'' \geq 0 \). Let \(\gamma_0 \) be a piecewise \(C^1 \) Lipshitz radial graph. Then there is a smooth solution \(\gamma(t) \) to the flow \(\phi' - \phi \) such that \(\rho_{\gamma(t)}(\cdot,t) \to \rho_{\gamma(0)}(\cdot) \) uniformly, \(L[\gamma(t)] \to L[\gamma_0] \), and \(A[\gamma(t)] \to A[\gamma_0] \) as \(t \searrow 0 \). If \(\gamma_0 \) is bilaterally symmetric, then we may take \(\gamma(t) \) to be bilaterally symmetric as well.

Proof. As in the proof of Theorem 4.3, convolve with smooth mollifiers to obtain \(\rho_n \to \rho_0 \) a sequence of smooth radial length functions converging to \(\rho_0 \). If \(\gamma_0 \) (hence \(\rho_0 \)) has a bilateral symmetry, we may take \(\rho_n \) to have the same bilateral symmetry. Using the existence result Theorem 1.1 for smooth initial data, let \(\rho_n(\cdot,t) \) be solutions to (3.2) with initial data \(\rho_n \). For each \(t_0 > 0 \), Theorem 3.1 guarantees that there is a constant \(C(t_0,\rho_0,k) \) such that

\[
|\rho_n(\cdot,t)|_{C^k} \leq C(t_0,\rho_0,k) \quad t \geq t_0.
\]

We can take \(C \) to be independent of \(n \), since it only depends on the \(C_0 \) and \(C_1 \) estimates of the initial data \(\rho_n \), and for \(n \) sufficiently large, the \(C_0 \) and \(C_1 \) estimates of \(\rho_n \) can be estimated from the \(C_0 \) and Lipshitz estimates of \(\rho_0 \).

Now recursively define subsequences of \((\rho_n : n \in \mathbb{N}) \) by the two properties

(i) \((\rho_{mn} : n \in \mathbb{N})\) converges to a smooth limit function on \([1/m, m] \times S^1 \) satisfying (3.2) (convergence in \(C^k \) for every \(k \)).

(ii) \((\rho_{mn} : n \in \mathbb{N})\) is a subsequence of \((\rho_{m'n} : n \in \mathbb{N})\) if \(m' > m \).

It is always possible to do this because \(\{\rho_n : n \in \mathbb{N}\} \) satisfies the (uniform) estimates (5.1) (here we are using Arzéla-Ascoli, invoking the fact that \(\rho_n : n \in \mathbb{N} \) is bounded in \(C^{k+1}(S^1 \times [1/m, m]) \)).
Then, using the standard diagonal trick, ρ_{mm} converges to a smooth function ρ on $C^k(S^1 \times (0, \infty))$ which satisfies (3.2). By taking more subsequences, we may upgrade this to $C^{\infty}(S^1 \times (0, \infty))$ convergence. It is clear that $\rho(\cdot, t) \to \rho_0(\cdot)$ uniformly and such that the length and area are continuous as $t \to 0$, as desired.

Theorem 5.2. Let $\gamma_0 \subset N$ be a piecewise C^1 Lipschitz radial graph. Suppose that $\varphi' \varphi'' - \varphi' \varphi'' \equiv 1$ on γ_0. If $L[\gamma_0] = F(A[\gamma_0])$, then γ_0 is a circle $\{r \} \times S^1$.

Proof. First, using the “cut and reflect” technique in Theorem 4.3, we may cut γ_0 into two bilaterally symmetric halves γ_1 and γ_2 satisfying $A[\gamma_1] = A[\gamma_2] = A[\gamma_0]$. Clearly we have $L[\gamma_1] = F(A[\gamma_1])$. Now apply Theorem 5.1 to deduce a solution to the flow $\gamma_1(t)$. It is clear that $L[\gamma_1(t)]$ is a constant. By Corollary 2.4, we deduce that $r_*(t) = 0$, and so the $\gamma_1(t) = \{r \} \times S^1$ (for all $t > 0$). This is obviously stable as $t \to 0$ by uniform convergence, so $\gamma_1 = \{r \} \times S^1$. Clearly $\gamma_2 = \{r \} \times S^1$ for the same r (by continuity), so $\gamma_0 = \{r \} \times S^1$, as desired.

Now we must consider the case when $\varphi' \varphi' - \varphi' \varphi'' \equiv 1$. First, we note the following result:

Lemma 5.3. If $N = (r_1, r_2) \times S^1$ is a warped-product space satisfying $\varphi' \varphi' - \varphi' \varphi'' \equiv 1$, then there is $k > 0$ and r_0 such that $\varphi(r) = \sinh(k(r - r_0))$, $\sin(k(r - r_0))$ or $r - r_0$, and N can be isometrically embedded into $k^{-1}H^2$, $k^{-1}S^2$ or R^2. (The gauss curvature is $-k^2, k^2, 0$).

Proof. We use the well known fact that $k^{-1}H^2 - \{\text{origin}\}$, $k^{-1}S^2 - \{\pm(0, 0, 1)\}$ and $R^2 - \{(0, 0)\}$ are warped product surfaces with potentials $\sinh kr$, $\sin kr$ and r, respectively.

Note that $\varphi' \varphi' - \varphi'' \varphi \equiv 1$ implies that the gauss curvature $K = -\varphi'' / \varphi$ is constant, and so
\[
\varphi(r) = \begin{cases}
A \sinh(k(r - r_0)) & K = -k^2 \\
A \sin(k(r - r_0)) & K = k^2, \\
Ar - r_0 & K = 0
\end{cases}
\]
Then invoking $\varphi' \varphi' - \varphi'' \varphi = 1$, we deduce that $A = 1$ in all cases. Then the map $(r_1, r_2) \times S^1 \to (0, \infty) \times S^1$ defined by $(r, \theta) \to (r - r_0, \theta)$ is an isometric embedding of the tube into $k^{-1}H^2$, $k^{-1}S^2$, or R^2, depending on the sign of K.

Thanks to this result, if we are given $\gamma_0 \subset N$ satisfying $\varphi' \varphi' - \varphi'' \varphi \equiv 1$ on γ_0, then we may assume that $\gamma_0 \subset k^{-1}H^2, k^{-1}S^2$ or R^2, and then, up to rescaling, $\gamma_0 \subset H^2, S^2$ or R^2. If γ_0 is a radial graph in N, then we may assume it is a radial graph in H^2, S^2 or R^2. Referring to Corollary 2.4, if $r(t)$ is a bilaterally symmetric solution to the curve flow (in one of these three space forms) satisfying $L[\gamma(t)] = \text{constant}$, then $r_\alpha = a \cos \theta + b \sin \theta$ on $\gamma(t)$. We will show that this condition on the radial length function r implies that $\gamma(t)$ is a circle (which may be translated).

We first show that curves satisfying $r_\alpha = a \cos \theta + b \sin \theta$ are unique up to initial point.

Theorem 5.4. Suppose that $\gamma_1, \gamma_2 \subset N$ are C^1 radial graphs in a warped-product space N and $\gamma_1 \cap \gamma_2 \neq \emptyset$. Suppose that the unit tangent fields ∂_{α} and ∂_{β} satisfy $g^N(\partial_\alpha, \partial_\beta) > 0$, $j = 1, 2$. If $r_\alpha = a \cos(\theta + \alpha)$ is true on both γ_1 and γ_2 for the same constants $a \in (-1, 1)$ and $\alpha \in R/2\pi\mathbb{Z}$, then $\gamma_1 = \gamma_2$.
Using the orthogonal decomposition

\[F_j(0) = p \quad F_j'(s) = \partial_{j,s}, \]

where \(\partial_{j,s} \) is the unit tangent vector to \(\gamma_j \). Let \(F_j = (r_j, \theta_j) \), where \(\theta_j : \mathbb{R} \to \mathbb{R}/2\pi \mathbb{Z} \). Using the orthogonal decomposition

\[\partial_{j,s} = g^N(\partial_r, \partial_{j,s})\partial_r + g^N(\frac{1}{\varphi}\partial_{\theta}, \partial_{j,s})\partial_{\theta} = r_j'(s)\partial_r + \varphi\theta_j'(s)\partial_{\theta}, \]

we deduce that

\[\theta_j'(s)^2 = \frac{1 - r_j'(s)^2}{\varphi^2(r_j(s))}, \]

and thus

(5.2)

\[r_j(0) = r(p) \quad \theta_j(0) = \theta(p) \quad r_j' = a \cos(\theta + \alpha) \quad \theta_j' = \frac{\sqrt{1 - a^2 \cos^2(\theta_j + \alpha)}}{\varphi(r_j)}. \]

We are allowed to choose the positive square root since \(g^N(\partial_{\theta}, \partial_{j,s}) > 0 \) implies that \(\theta_j' > 0 \).

Since solutions to (5.2) are unique, we conclude that \(F_1 = F_2 \), and thus \(\gamma_1 = \gamma_2 \), as desired.

To prove that the only graphs satisfying \(r_s = a \cos \theta \) are circles, we find it convenient to split the argument into three sections depending on the ambient space \(\mathbb{R}^2, \mathbb{S}^2 \) or \(\mathbb{H}^2 \).

Lemma 5.5. Given any \(a \in (-1, 1) \) and \(\alpha \in \mathbb{R}/2\pi \mathbb{Z} \), the circle

(5.3) \(\mathbb{C}(a, \alpha, R) := \text{im}(\beta \mapsto (aR \sin \alpha + R \cos \beta, aR \cos \alpha + R \sin \beta)) \)

satisfies \(r_s = a \cos(\theta + \alpha) \).

Proof. By rotational symmetry of \(\mathbb{R}^2 \) it suffices to prove the case \(\alpha = 0 \). Then we note that

\[r_s = a \cos(\theta) \iff rr_s = ax \iff xx_s + yy_s = ax, \]

plugging in \(x(\beta), y(\beta) \), we obtain

\[xx_s + yy_s = -R \cos \beta \sin \beta + aR \cos \beta + R \cos \beta \sin \beta = aR \cos \beta = ax, \]

and so indeed \(r_s = a \cos(\theta) \) on the circle \(\text{im}(\beta \mapsto (R \cos \beta, aR + R \sin \beta)) \), which completes the proof.

Theorem 5.6. If \(\gamma \subset \mathbb{R}^2 \) is a \(C^1 \) radial graph which satisfies \(r_s = a \cos(\theta + \alpha) \), then \(\gamma \) is a circle.

Proof. First note that if \(|a| \geq 1 \), then \(|r_s(\theta = -\alpha)| \geq 1 \) which contradicts the fact that \(r_s > 0 \), since \(r_s^2 + r_s' = 1 \). Thus \(a \in (-1, 1) \). This argument uses the fact that \(\gamma \) is a radial graph to deduce that \(r_s > 0 \) and that there exists some point on \(\gamma \) with \(\theta = -\alpha \).

Consider the circles \(\mathbb{C}(a, \alpha, R) \) defined in the previous theorem. It is straightforward to see that the two points

\[c_+(a, \alpha, R) := ((aR + R) \sin \alpha, (aR + R) \cos \alpha) \]
\[c_-(a, \alpha, R) := ((aR - R) \sin \alpha, (aR - R) \cos \alpha) \]
both lie on $C(a, \alpha, R)$. Since $|a| < 1$, $R \mapsto c_+(R)$ is surjective onto the ray $\mathbb{R}_+(\sin \alpha, \cos \alpha)$ and $R \mapsto c_-(R)$ is surjective onto the ray $\mathbb{R}_-(\sin \alpha, \cos \alpha)$.

Let p be the point on γ where the radius function r is maximized. Then $r_*(p) = 0$, so $\theta(p) + \alpha = \pi/2 + \pi \mathbb{Z}$. It follows that γ intersects the line $\mathbb{R}(\sin(\alpha), \cos(\alpha))$, and so there is some R such that either $p = c_+(a, \alpha, R)$ or $p = c_-(a, \alpha, R)$. Theorem 5.4 implies that $\gamma = C(a, \alpha, R)$.

Turning now to the S^2 case, we consider $S^2 \subset \mathbb{R}^3$ with $x = \sin r \cos \theta$, $y = \sin r \sin \theta$ and $z = \cos r$.

Theorem 5.7. The circle $C_R(p) \subset S^2 - \{(0, 0, 0, \pm 1)\}$, $R \neq 0$, satisfies

$$r_s = \frac{y(p)}{\sin R} \cos \theta - \frac{x(p)}{\sin R} \sin \theta.$$

Proof. It suffices to prove that

$$(5.4) \quad \sin r r_s = \frac{y(p)}{\sin R} \sin r \cos \theta - \frac{x(p)}{\sin R} \sin r \sin \theta \iff z_s = \frac{x(p)y - y(p)x}{\sin R},$$

where we have used $x = \sin r \cos \theta$, $y = \sin r \sin \theta$, and $z = \cos r$.

To prove this, we note that, at a point q on the circle $C_R(p)$, the unit tangent vector $\partial_s(q)$ satisfies

$$\partial_s(q) \sin R = p \times q \quad \text{ (vector cross product)},$$

which implies that

$$z_s \sin R = \det \begin{pmatrix} x(p) & y(p) \\ x(q) & y(q) \end{pmatrix},$$

which is equivalent to (5.4). \qed

Theorem 5.8. If $\gamma \subset S^2 - \{(0, 0, \pm 1)\}$ is a radial graph which satisfies $r_s = a \cos \theta + b \sin \theta$, then γ is a circle.

Proof. For simplicity, rotate γ so that $r_s = b \sin \theta$, with $b > 0$. As in the proof of Theorem 5.6, we may assume that $b < 1$. There is a unique smooth $f : (0, \pi) \rightarrow (0, \pi)$ such that $b \sin R = \sin f(R)$; clearly $f(R) < R$. Now consider the circle $C_R(p)$ where $p = (\sin f(R), 0, \cos f(R))$. Since $x(p) = b \sin R$, $y(p) = 0$, we conclude

Figure 1. $C_R(p)$ shown for various R with $b = 0.75$ and 0.95, respectively.

from Theorem 5.7 that $C_R(p)$ also satisfies $r_s = b \sin \theta$. It is clear that the points $(\sin(f(R) \pm R), 0, \cos(f(R) \pm R))$ lie on $C_R(p)$. Define

$$g_1(R) = f(R) + R \quad g_2(R) = f(R) - R,$$
Since \(f'(R) = b \cos R / \cos f(R) \), we obtain

\[
f'(R)^2 = \frac{b^2 \cos^2 R}{1 - b^2 + b^2 \cos^2 R} < 1,
\]
so \(g_1(R) \) is increasing, and similarly, \(g_2(R) \) is decreasing. Since \(g_1(\pi) = \pi \) and \(g_2(\pi) = -\pi \), we conclude that \(g_1 \) is surjective onto \((0, \pi)\) and \(g_2 \) is surjective onto \((-\pi, 0)\).

Now let \(\mu \in \gamma \) be the point which maximizes the radial function \(r_\gamma \). Then \(r_\gamma(\mu) = 0 \), so \(\sin \theta(\mu) = 0 \), so \(\mu = (\sin \alpha, 0, \cos \alpha) \) for some \(\alpha \). Since \(\mu \neq (0, 0, \pm 1) \), we can take \(\alpha \in (-\pi, 0) \cup (0, \pi) \). Thus there is some \(R \) such that \(\alpha = g_1(R) \) or \(\alpha = g_2(R) \), and thus \(\mu \in C_R(p) \). Since \(C_R(p) \) also satisfies \(r_\gamma = b \sin \theta \), we may invoke Theorem 5.9 to conclude that \(\gamma = C_R(p) \). \(\square \)

A similar argument to the \(\mathbb{S}^2 \) case works for the \(\mathbb{H}^2 \) case (we found it useful to work in the hyperboloid model \(\mathbb{H}^3 \subset \mathbb{R}^4 \)), and we obtain

Theorem 5.9. Let \(N = \mathbb{R}^2, k^{-1}\mathbb{S}^2 \) or \(k^{-1}\mathbb{H}^2 \). If \(\gamma_0 \subset N \) is a \(C^1 \) radial graph satisfying \(r_\gamma = \alpha \cos \theta + b \sin \theta \), then \(\gamma_0 \) is a circle (which may be translated).

Theorem 5.10. Let \(N \) be a warped product space, let \(\gamma_0 \subset N \) be a piecewise \(C^1 \) Lipshitz radial graph satisfying \(L[\gamma_0] = F(A[\gamma_0]) \), and suppose \(0 \leq \varphi' \varphi' - \varphi \varphi'' \leq 1 \). Then, considering \(\gamma_0 \) as lying in a subset of one of the spaceforms, \(\gamma_0 \) is a circle.

Proof. We have already proved the case where \(\varphi' \varphi' - \varphi \varphi'' \neq 1 \) in Theorem 5.2 so we assume that \(\varphi' \varphi' - \varphi \varphi'' = 1 \). Using the same “cut and reflect” technique used in Theorem 4.3 and Theorem 5.2, we may cut \(\gamma_0 \) (along an axis \(\alpha \in \mathbb{S}^1 \)) into two bilaterally symmetric halves \(\gamma_1 \) and \(\gamma_2 \). Following Theorem 5.2 the solution \(\gamma_1(t) \) (guaranteed by Theorem 5.1) has constant length, and thus (by Corollary 2.5) \(r_\gamma(t) = a(t) \cos \theta + b(t) \sin \theta \) holds along the flow, and so (by Theorem 5.9) \(\gamma_1(t) \) is a circle for all positive \(t \). Let \(r_1 \) be the (constant) radius of \(\gamma_1(t) \), let \(C_0 \) be the (translated) circle of radius \(r_1 \) fixed under the reflection through \(\alpha \) which contains the points \((\rho_0(\pm \alpha), \pm \alpha)\). The centre of \(C_0 \) is uniquely determined by its axis of symmetry \(\alpha \in \mathbb{S}^1 \), its radius \(r_1 \), and the points \((\rho_0(\pm \alpha), \pm \alpha)\). The centre of \(\gamma_1(t) \) is also determined by its axis of symmetry, its radius, and the point \((\rho_1(\pm \alpha), \alpha)\), and by convergence \(\rho_1(t) \rightarrow \rho_0(\pm \alpha) \), we deduce that \(\gamma_1(t) \) converges to \(C_0 \) uniformly as \(t \rightarrow 0 \). We deduce that \(\gamma_1 = C_0 \), and similarly, \(\gamma_2 = C_0 \), and thus by the construction of \(\gamma_1 \) and \(\gamma_2 \), we conclude \(\gamma_0 = C_0 \), as desired. \(\square \)

Combining Theorems 4.3, 5.2 and 5.10 we conclude the isoperimetric inequality Theorem 1.2 stated in the introduction.

6. Conclusion

It seems to be a general phenomenon that many sophisticated tools used in higher dimensions \(n > 1 \) (such as the Minkowski identity [1.3]) cannot be used when \(n = 1 \). The symmetry argument used in Theorem 4.1 replaced the use of the Minkowski identity, but necessitated a more complicated argument to deal with the non-symmetric case.

As mentioned in section 2.1, the restriction \(\varphi' \varphi' - \varphi \varphi'' \leq 1 \) is sharp - without it the isoperimetric inequality is guaranteed to fail. However, the restriction \(\varphi' \varphi' - \varphi \varphi'' > 0 \) is not sharp (we used this inequality to prove the convergence to a circle). For example, the cylinder \(\mathbb{S}^1 \times [0,1] \) satisfies \(\varphi' \varphi' - \varphi \varphi'' \equiv 0 \), and it is easy to explicitly show that it does satisfy the isoperimetric inequality.
Acknowledgements. Many thanks to my supervisor, Pengfei Guan, for providing guidance, insight, and many office hours to answer my questions. I would also like to thank the McGill Mathematics department for their support. The author was supported by NSERC undergraduate student research award.

References

[Gag83] Michael E. Gage. An isoperimetric inequality with applications to curve shortening. *Duke Mathematical Journal*, 50, No. 4:1225–1229, 1983.

[GH86] Michael E. Gage and Richard S. Hamilton. The heat equation shrinking convex plane curves. *J. Differential Geometry*, 26:69–96, 1986.

[GL15] Pengfei Guan and Junfang Li. A mean curvature flow in space form. *International Mathematics Research Notices*, 2015, No. 13:4716–4740, 2015.

[GLW] Pengfei Guan, Junfang Li, and Mu-Tao Wang. A normalized flow in warped product spaces. Soon to be submitted for publication.

[Lie96] Gary M. Lieberman. *Second Order Parabolic Differential Equations*. World Scientific Publishing, first edition, 1996.

[LSU68] O.A. Ladyzenskaya, V.A. Solonnikov, and N. N. Uralceva. *Linear and Quasi-Linear Equations of Parabolic type*. American Mathematical Society, 1968.

Mathematics Department, McGill University, Montreal, Quebec

E-mail address: dylan.cant@mcgill.ca