L^2-harmonic p-forms on submanifolds with finite total curvature

Jundong Zhoua,b

aSchool of Mathematics and Statistics, Fuyang Normal University, Fuyang, Anhui 236041, People’s Republic of China
bSchool of Mathematical Sciences, University of Science and Technology of China, Hefei Anhui 230026, People’s Republic of China

Abstract

Let $H^p(L^2(M))$ be the space of all L^2-harmonic p-forms ($2 \leq p \leq n - 2$) on complete submanifolds M with flat normal bundle in spheres. In this paper, we first show that $H^p(L^2(M))$ is trivial if the total curvature of M is less than a positive constant depending only on n. Second, we show that the dimension of $H^p(L^2(M))$ is finite if the total curvature of M is finite. The vanishing theorem is a generalized version of Gan-Zhu-Fang theorem and the finiteness theorem is an extension of Zhu-Fang theorem.

2000 Mathematics Subject Classification: 53C42, 53C21

Key words and phrases: Total curvature, L^2-harmonic p-form, Submanifold, Sphere

1 Introduction

L^2-harmonic forms on submanifolds in various ambient spaces had been studied extensively during past few years. Many results demonstrated the fact that there is a close relation between the topology of the submanifold and the total curvature by using theory of L^2-harmonic forms. In [5, 6], it was showed that a complete minimal hypersurface M^m ($m \geq 3$) with sufficient small the total scalar curvature in R^{n+1} has only one end. In 2008, Seo [7] improved the upper bound of the total scalar curvature which was given by Ni [6]. Later Seo [8] proved that if an n-dimensional complete minimal submanifold M in hyperbolic space has sufficiently small total scalar curvature, then M has only one end. It is well-known that Euclidean space and hyperbolic space are space forms all. Fu and Xu [9] studied L^2-harmonic 1-forms on complete submanifolds in space forms and proved that a complete submanifold M^n ($n \geq 3$) with finite total curvature and some conditions on mean curvature must have finitely many ends. Furthermore, Cavalcante, Mirandola and Vitório [10] obtained that if M^n ($n \geq 3$) is a complete noncompact submanifold in Cartan-Hadamard manifold with finite total curvature and the first eigenvalue of the Laplacian of M^n is bounded from below by a suitable constant, then the space of the L^2-harmonic 1-forms on M^n has finite dimension. Zhu and Fang [11] investigated complete noncompact submanifolds in a sphere and obtained a result which was an improvement of Fu-Xu theorem on submanifolds.

*This work is supported by NSF of Anhui Provincia Education Department (No. KJ2017A341) and Talent Project of Fuyang Normal University (No. RCXM201714)

†Email address: zhoujundong109@163.com
in spheres. Meanwhile, Zhu-Fang result was a generalized version of Cavalcante, Mirandola and Vitório’s result on submanifolds in Hadamard manifolds. The following theorem A is Zhu-Fang result.

Theorem A ([11]) Let $M^n (n \geq 3)$ be an n-dimensional complete noncompact oriented manifold isometrically immersed in an $(n + p)$-dimensional sphere S^{n+p}. If the total curvature is finite, then the dimension of $H^1 (L^2 (M))$ is finite and there are finitely many non-parabolic ends on M.

In 2015, Lin [14] studied L^2-harmonic p-forms on complete submanifolds in Euclidean space and proved that if a complete submanifold $M^n (n \geq 3)$ with flat normal bundle in \mathbb{R}^{n+p} has sufficient small the total curvature, then the space of the L^2-harmonic p-forms on M^n is trivial. Recently, Gan, Zhu and Fang [20] studied L^2-harmonic 2-forms on complete noncompact minimal hypersurface in spheres and proved the following result.

Theorem B ([20]) Let $M^n (n \geq 3)$ be an n-dimensional complete noncompact minimal hypersurface isometrically immersed in an $(n + 1)$-dimensional sphere S^{n+1}. There exists a positive constant $\delta(n)$ depending only on n such that if the total curvature is less than $\delta(n)$, then the second space of reduced L^2 cohomology of M is trivial.

Inspired by Li-Wang work [4] and the above results, in this paper, we study the space of L^2-harmonic p-forms on submanifold in spheres and prove the following vanishing and finiteness theorems.

Theorem 1.1 Let M be an n-dimensional $(n \geq 4)$ complete noncompact submanifold with flat normal bundle in sphere S^{n+l}. There exists a positive constant $c(n)$ depending only on n such that if the total curvature is less than $c(n)$, then $H^p (L^2 (M)) = \{0\}$, $2 \leq p \leq n - 2$, where constant $c(n)$ is given by (3.8).

Theorem 1.2 Let M be an n-dimensional $(n \geq 4)$ complete noncompact submanifold with flat normal bundle in sphere S^{n+l}. If the total curvature is finite and $2 \leq p \leq n - 2$, then the dimension of $H^p (L^2 (M))$ is finite.

Remark 1.1. Theorem 1.1 is a generalization of Theorem B. On the other hand, harmonic p-forms $2 \leq p \leq n - 2$ are studied in Theorem 1.2 which is an extension of Theorem A. It is interesting to ask whether there are finitely many non-parabolic ends on M in Theorem 1.2.

2 Preliminaries

Suppose M is an n-dimensional complete submanifold immersed in an $n + l$ dimensional sphere S^{n+l}, A is the second fundamental form and H is the mean curvature vector of M. The traceless second fundamental form Φ is defined by

$$\Phi(X, Y) = A(X, Y) - \langle X, Y \rangle H,$$

for all vector field X and Y, where \langle , \rangle is the metric of M. Obviously

$$|\Phi|^2 = |A|^2 - n|H|^2.$$

We say M has finite total curvature if

$$\| \Phi \|_{L^n (M)} = \left(\int_M |\Phi|^n \right)^{\frac{1}{n}} < \infty.$$
Lemma 2.1. ([11, 20]) Let M^n be an n-dimensional complete noncompact oriented submanifold in sphere, then
\[\left(\int_M |f|_{n-2}^{2n} \right)^{n-2} \leq C_0 \left(\int_M |\nabla f|^2 + \int_M (|H^2| + 1)f^2 \right), \]
for all $f \in C^1_0(M)$, where C_0 depends only on n.

Lin, Han and Li proved the following estimate.

Lemma 2.2. ([11, 22, 23]) Let M^n be a complete submanifold with flat normal bundle in S^{n+l}, ω be a L^2-harmonic p-form ($2 \leq p \leq n-2$) on M^n, then
\[|\omega|\Delta |\omega| \geq K_p|\nabla |\omega| |^2 + p(n-p)|\omega|^2 + Q_p|\omega|^2, \]
where $Q_p = \inf_{i_1, \ldots, i_n}(h^\alpha_{i_1i_1} + \ldots + h^\alpha_{i_pi_p})(h^\alpha_{i_{p+1}i_{p+1}} + \ldots + h^\alpha_{i_ni_n})$.

3 Proof of our main Theorems

Proof of Theorem 1.1. M has flat normal bundle implies that there exists an orthonormal frame diagonalizing h^α_{ij} simultaneously. Choose proper local orthonormal frames, h^α_{ij} are diagonalized simultaneously. Direct computation yields
\[
2 \sum_{\alpha=n+1}^{n+l} (h^\alpha_{i_1i_1} + \ldots + h^\alpha_{i_pi_p})(h^\alpha_{i_{p+1}i_{p+1}} + \ldots + h^\alpha_{i_ni_n}) \\
= \sum_{\alpha=n+1}^{n+l} (h^\alpha_{i_1i_1} + \ldots + h^\alpha_{i_ni_n})^2 - \sum_{\alpha=n+1}^{n+l} (h^\alpha_{i_{p+1}i_{p+1}} + \ldots + h^\alpha_{i_ni_n})^2 \\
\geq n^2 |H|^2 - \max\{p, n-p\} |A|^2 \\
= \{p, n-p\} n |H|^2 - \max\{p, n-p\} |\Phi|^2. \tag{3.1}
\]
Substituting (3.1) into Lemma 2.2, we have
\[
|\omega|\Delta |\omega| \geq K_p|\nabla |\omega| |^2 + p(n-p)|\omega|^2 + \min\{p, n-p\} \frac{n}{2} |H|^2 |\omega|^2 - \frac{1}{2} \max\{p, n-p\} |\Phi|^2 |\omega|^2. \tag{3.2}
\]
This together with the condition of $2 \leq p \leq n-2$ yields
\[
|\omega|\Delta |\omega| \geq \frac{1}{n-2} |\nabla |\omega| |^2 + 2(n-2)|\omega|^2 + n |H|^2 |\omega|^2 - \frac{n-2}{2} |\Phi|^2 |\omega|^2. \tag{3.3}
\]
Setting $\eta \in C_0^\infty(M)$, multiplying (3.3) by η^2 and integrating over M, we obtain

$$\frac{n-2}{2} \int_M |\Phi|^2 |\omega|^2 \eta^2 \geq \frac{n-1}{n-2} \int_M |\nabla |\omega||^2 \eta^2 + 2(n-2) \int_M |\omega|^2 \eta^2$$

$$+ n \int_M |H|^2 |\omega|^2 \eta^2 + 2 \int_M |\omega|(\nabla \eta, \nabla |\omega|). \quad (3.4)$$

Combining the Hölder inequality with Lemma 2.1, we get

$$\int_M |\Phi|^2 |\omega|^2 \eta^2 \leq (\int_M |\Phi|^n)^\frac{2}{n} (\int_M (|\omega|\eta)^{\frac{2n}{n-2}}) \frac{n-2}{n}$$

$$\leq C_0(\int_M |\Phi|^n)^\frac{2}{n} (\int_M (|\nabla (\eta|\omega|)|)^2 + \int_M (|H|^2 +1)|\omega|^2 \eta^2)$$

$$\leq C_0(\int_M |\Phi|^n)^\frac{2}{n} (\int_M (|\nabla |\omega||^2 + |\omega|^2 |\nabla \eta|^2 + 2|\omega|\eta(\nabla \eta, \nabla |\omega|))$$

$$+ \int_M (|H|^2 +1)|\omega|^2 \eta^2]. \quad (3.5)$$

Setting $E = \frac{n-2}{2} C_0(\int_M |\Phi|^n)^\frac{1}{n}$ and using (3.4) and (3.5) it follows that

$$E \int_M |\omega|^2 |\nabla \eta|^2 + 2(E-1) \int_M |\omega|\eta(\nabla \eta, \nabla |\omega|)$$

$$\geq (\frac{n-1}{n-2} - E) \int_M |\nabla |\omega||^2 \eta^2 + [2(n-2) - E] \int_M |\omega|^2 \eta^2$$

$$+ (n-E) \int_M |H|^2 |\omega|^2 \eta^2. \quad (3.6)$$

Using the Cauchy-Schwarz inequality in (3.6) , we get

$$(E + \frac{|E-1|}{\epsilon}) \int_M |\omega|^2 |\nabla \eta|^2$$

$$\geq (\frac{n-1}{n-2} - E - |E-1|\epsilon) \int_M |\nabla |\omega||^2 \eta^2 + [2(n-2) - E] \int_M |\omega|^2 \eta^2$$

$$+ (n-E) \int_M |H|^2 |\omega|^2 \eta^2. \quad (3.7)$$

If

$$(\int_M |\Phi|^n)^\frac{1}{n} < \frac{2}{n-2} \sqrt{\frac{n-1}{2C_0}} = c(n), \quad (3.8)$$

then

$$\frac{n-1}{n-2} - E > 0.$$

Choosing sufficient small ϵ, we obtain

$$\frac{n-1}{n-2} - E - |E-1|\epsilon > 0, \quad n-E > 0, \quad 2(n-2) - E > 0.$$
Let $\rho(x)$ be the geodesic distance on M from x_0 to x and $B_r(x_0) = \{x \in M : \rho(x) \leq r\}$ for some fixed point $x_0 \in M$. Choose $\eta \in C_0^\infty(M)$ as

$$
\eta = \begin{cases}
1 & \text{on } B_r(x_0), \\
0 & \text{on } M \setminus B_{2r}(x_0), \\
|\nabla \eta| \leq \frac{2}{r} & \text{on } B_{2r}(x_0) \setminus B_r(x_0),
\end{cases}
$$

and $0 \leq \eta \leq 1$. Substituting the above η into (3.7), we finally have

$$
\frac{4}{r^2}(E + \frac{|E - 1|}{\varepsilon}) \int_{B_{2r}(x_0)} |\omega|^2 \\
\geq \frac{n - 1}{n - 2} - E - |E - 1|\varepsilon \int_{M \setminus B_{r}(x_0)} |\nabla \omega||^2 + [2(n - 2) - E] \int_{B_r(x_0)} |\omega|^2 \\
+ (n - E) \int_{B_r(x_0)} |H|^2|\omega|^2.
$$

Since $\int_M |\omega|^2 < \infty$, by taking $r \to \infty$, we have $\nabla|\omega| = 0$ and $\omega = 0$. That is $H^p(L^2(M)) = \{0\}$. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Let $\omega \in H^p(L^2(M))$, $2 \leq p \leq n - 2$ and $\eta \in C_0^\infty(M \setminus B_r(x_0))$. Similar to (3.7), we get

$$
(F + \frac{|F - 1|}{\varepsilon}) \int_{M \setminus B_{r}(x_0)} |\omega|^2|\nabla \eta|^2 \\
\geq \frac{n - 1}{n - 2} - F - |F - 1|\varepsilon \int_{M \setminus B_{r}(x_0)} |\nabla \omega||^2 \eta^2 + [2(n - 2) - F] \int_{M \setminus B_{r}(x_0)} |\omega|^2 \eta^2 \\
+ (n - F) \int_{M \setminus B_{r}(x_0)} |H|^2|\omega|^2 \eta^2,
$$

where $F = \frac{n - 2}{2} C_0(\int_{M \setminus B_{r}(x_0)} |\Phi|^n)^{\frac{2}{n}}$. The condition $(\int_M |\Phi|^n)^{\frac{2}{n}} < \infty$ implies that there is a decreasing positive function $\varepsilon(r)$ satisfying

$$
\lim_{r \to \infty} \varepsilon(r) = 0, \quad (\int_{M \setminus B_{r}(x_0)} |\Phi|^n)^{\frac{2}{n}} < \varepsilon(r).
$$

Thus we can choose $r = r_0 > 0$ such that

$$
\frac{n - 1}{n - 2} - F = \frac{n - 1}{n - 2} - \frac{n - 2}{2} C_0(\int_{M \setminus B_{r_0}(x_0)} |\Phi|^n)^{\frac{2}{n}} > 0.
$$

Choosing sufficient small ε, we get

$$
\frac{n - 1}{n - 2} - F - |F - 1|\varepsilon > 0.
$$

This together with (3.9) yields that

$$
\int_{M \setminus B_{r_0}(x_0)} |\nabla \omega|^2 \eta^2 \leq \frac{F + |F - 1|}{\varepsilon} \int_{M \setminus B_{r_0}(x_0)} |\omega|^2|\nabla \eta|^2
$$
where the positive constant C_1 depends only on n. Applying lemma 2.1 to $\eta|\omega|$ and combining with (3.10), (3.11) and (3.12), we obtain

$$
\int_{M \setminus B_r(x_0)} (\eta|\omega|)^{\frac{2a}{n-2}} \frac{n-2}{n}
\leq C_0 \int_{M \setminus B_r(x_0)} \left(\frac{\nabla|\omega|^2}{\nabla|\omega|^2 + 2|\omega||\nabla\eta|} + 2|\omega|(|H|^2 + 1)|\omega|^2 \eta^2 \right)
\leq C_0 \int_{M \setminus B_r(x_0)} \left[2\nabla|\omega|^2 \eta^2 + 2|\omega|^2 \nabla\eta^2 + (|H|^2 + 1)|\omega|^2 \eta^2 \right]
\leq C_2 \int_{M \setminus B_r(x_0)} |\omega|^2 \nabla\eta^2,
$$

(3.13)

where positive constant C_2 depends only on n.

Choose $\eta \in C_0^\infty(M \setminus B_r(x_0))$ as

$$
\eta = \begin{cases}
0 & \text{on } B_r(x_0), \\
\rho(x) - r_0 & \text{on } B_{r_0+1}(x_0) \setminus B_r(x_0), \\
1 & \text{on } B_r(x_0) \setminus B_{r_0+1}(x_0), \\
\frac{2r - \rho(x)}{r} & \text{on } B_{2r}(x_0) \setminus B_r(x_0), \\
0 & \text{on } M \setminus B_{2r}(x_0),
\end{cases}
$$

where $\rho(x)$ is the geodesic distance on M from x_0 to x and $r > r_0 + 1$. By substituting η into (3.13) it follows that

$$
\int_{B_r(x_0) \setminus B_{r_0+1}(x_0)} \left(|\omega|^{\frac{2a}{n-2}} \right)^{\frac{n-2}{n}} \leq C_2 \int_{B_{r_0+1}(x_0) \setminus B_r(x_0)} |\omega|^2 + \frac{C_2}{r^2} \int_{B_{2r}(x_0) \setminus B_r(x_0)} |\omega|^2.
$$

(3.14)

Since $|\omega| \in L^2(M)$, Letting $r \to \infty$, we conclude that

$$
\int_{B_r(x_0) \setminus B_{r_0+1}(x_0)} \left(|\omega|^{\frac{2a}{n-2}} \right)^{\frac{n-2}{n}} \leq C_2 \int_{B_{r_0+1}(x_0) \setminus B_r(x_0)} |\omega|^2.
$$

(3.15)
On the other hand, the Hölder inequality asserts that
\[
\int_{B_{r_0+2}(x_0) \setminus B_{r_0+1}(x_0)} |\omega|^2 \leq \left(\text{vol}(B_{r_0+2}(x_0)) \right)^{\frac{n}{n-2}} \int_{B_{r_0+2}(x_0) \setminus B_{r_0+1}(x_0)} \left(|\omega|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{2}}. \tag{3.16}
\]

From (3.15) and (3.16), we conclude that there exists a constant \(C_3 > 0 \) depending on \(\text{vol}(B_{r_0+2}(x_0)) \) and \(n \) such that
\[
\int_{B_{r_0+2}(x_0)} |\omega|^2 \leq C_3 \int_{B_{r_0+1}(x_0)} |\omega|^2. \tag{3.17}
\]

Fix a point \(x \in M \) and take \(\tau \in C^1_0(B_1(x)) \). Multiplying (3.3) by \(|\omega|^{q-2} \tau^2 \) with \(q > 2 \) and integrating by parts on \(B_1(x) \), we obtain
\[
-2 \int_{B_1(x)} \tau |\omega|^{q-1} (\nabla \tau, \nabla |\omega|) + \frac{n-2}{2} \int_{B_1(x)} |\Phi|^2 |\omega|^{q} \tau^2
\geq \left(\frac{1}{n-2} + q - 1 \right) \int_{B_1(x)} |\omega|^{q-2} |\nabla |\omega||^2 \tau^2 + 2(n-2) \int_{B_1(x)} |\omega|^{q} \tau^2
+ n \int_{B_1(x)} |H|^2 |\omega|^{q} \tau^2. \tag{3.18}
\]

By using the Cauchy-Schwarz inequality it follows that
\[
-2 \int_{B_1(x)} \tau |\omega|^{q-1} (\nabla \tau, \nabla |\omega|) \leq \frac{1}{n-2} \int_{B_1(x)} |\omega|^{q-2} |\nabla |\omega||^2 \tau^2 + (n-2) \int_{B_1(x)} |\omega|^{q} |\nabla \tau|^2. \tag{3.19}
\]

It follows from (3.18) and (3.19) that
\[
(n-2) \int_{B_1(x)} |\omega|^{q} |\nabla \tau|^2 + \frac{n-2}{2} \int_{B_1(x)} |\Phi|^2 |\omega|^{q} \tau^2
\geq (q-1) \int_{B_1(x)} |\omega|^{q-2} |\nabla |\omega||^2 \tau^2 + 2(n-2) \int_{B_1(x)} |\omega|^{q} \tau^2
+ n \int_{B_1(x)} |H|^2 |\omega|^{q} \tau^2. \tag{3.20}
\]

On the other hand, setting \(f \in C^1_0(B_1(x)) \), similar to Lemma 2.1, we have
\[
\left(\int_{B_1(x)} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}} \leq C_0 \int_{B_1(x)} |\nabla f|^2 + \int_{B_1(x)} (|H|^2 + 1) f^2. \tag{3.21}
\]

Applying (3.21) to \(\tau |\omega|^{\frac{q}{2}} \), we obtain
\[
\left(\int_{B_1(x)} (\tau^2 |\omega|^q)^{\frac{n-2}{n}} \right)^{\frac{n-2}{n}} \leq C_0 \int_{B_1(x)} |\nabla (\tau |\omega|^\frac{q}{2})|^2 + C_0 \int_{B_1(x)} (|H|^2 + 1) \tau^2 |\omega|^q
\leq 2C_0 \int_{B_1(x)} |\nabla \tau|^2 |\omega|^q + \frac{q^2}{2} C_0 \int_{B_1(x)} \tau^2 |\omega|^{q-2} |\nabla |\omega||^2
+ C_0 \int_{B_1(x)} (|H|^2 + 1) \tau^2 |\omega|^q. \tag{3.22}
\]
Inequality (3.22) and (3.20) imply that
\[(\int_{B_1(x)} (\tau^2 |\omega|^q)^{\frac{n}{n-2}})^{\frac{n-2}{n}} \leq 2C_0 \int_{B_1(x)} |\nabla \tau|^2 |\omega|^q + \frac{q^2}{2(q-1)} C_0 \int_{B_1(x)} ((n-2)|\nabla \tau|^2 + \frac{n-2}{2} |\Phi|^2 \tau^2) |\omega|^q\]
\[\leq \frac{q^2}{2(q-1)} C_0 \int_{B_1(x)} [2(n-2) + n|H|^2] |\omega|^q \tau^2 + C_0 \int_{B_1(x)} (|H|^2 + 1) \tau^2 |\omega|^q\]
\[\leq qC_4 \int_{B_1(x)} (|\nabla \tau|^2 + |\Phi|^2 \tau^2) |\omega|^q, \quad (3.23)\]
where C_4 is a positive constant depending only on n. Let $q_k = \frac{2n^k}{(n-2)^k}$ and $r_k = \frac{1}{2} + \frac{k}{2(k+1)}$ for an integer $k \geq 0$. Choose $\tau_k \in C_0^\infty(B_{r_k}(x))$ such that $\tau_k = 1$ on $B_{r_{k+1}}(x)$ and $|\nabla \tau_k| \leq 2^{k+3}$. Replacing q and τ in (3.23) by q_k and τ_k respectively, we obtain
\[(\int_{B_{r_{k+1}}(x)} |\omega|^q_{k+1})^{\frac{1}{q_{k+1}}} \leq [q_k C_4 (4^{k+3} + \sup_{B_{r_k}(x)} |\Phi|^2)]^{\frac{1}{q_k}} \left(\int_{B_{r_k}(x)} |\omega|^q_k\right)^{\frac{1}{q_k}}. \quad (3.24)\]
Apply the Morse iteration to $|\omega|$ via (3.24), we conclude that
\[\|\omega\|^2_{L^\infty(B_{\frac{1}{2}}(x))} \leq C_5 \int_{B_1(x)} |\omega|^2,\]
where C_5 is a positive constant depending only on n. Obviously
\[|\omega(x)|^2 \leq C_5 \int_{B_1(x)} |\omega|^2. \quad (3.25)\]
Choose $x \in B_{r_0+1}(x_0)$ such that
\[|\omega(x)|^2 = \|\omega\|^2_{L^\infty(B_{r_0+1}(x_0))}.\]
This together with (3.25) yields that
\[\|\omega\|^2_{L^\infty(B_{r_0+1}(x_0))} = |\omega(x)|^2 \leq C_5 \int_{B_1(x)} |\omega|^2 \leq C_5 \int_{B_{r_0+2}(x_0)} |\omega|^2. \quad (3.26)\]
This together with (3.17) implies that there exists a positive constant C_6 depending on n and $\text{vol}(B_{r_0+2}(x_0))$, such that
\[\sup_{B_{r_0+1}(x_0)} |\omega|^2 \leq C_6 \int_{B_{r_0+1}(x_0)} |\omega|^2. \quad (3.27)\]
Let φ be a finite dimensional subspace of $H^p(L^2(M))$. Lemma 11 in [25] implies that there exits $\omega \in \varphi$ such that
\[\frac{\text{dim} \varphi}{\text{vol}(B_{r_0+1}(x_0))} \int_{B_{r_0+1}(x_0)} |\omega|^2 \leq \left\{\binom{n}{p}, \text{dim} \varphi \right\} \sup_{B_{r_0+1}(x_0)} |\omega|^2.\]
This together with (2.27) yields $\text{dim} \varphi \leq C_7$, where C_7 depending on n and $\text{vol}(B_{r_0+1}(x_0))$. This implies that $\text{dim} H^p(L^2(M)) < \infty$, which completes the proof of Theorem 1.2.
References

[1] S. Tanno, *Harmonic forms and stability of minimal hypersurfaces*, J. Math. Soc. Japan 48 (1996), 761-768.

[2] H.Z. Li, *L^2 harmonic forms on a complete stable hypersurfaces with constant mean curvature*, Kodai Math. J., 21 (1998), 1-9.

[3] H.D. Cao, Y. Shen, S.H. Zhu, *The structure of stable minimal hypersurfaces in R^{n+1}*, Math. Res. Lett., 4 (1997), 637-644.

[4] P. Li, J.P. Wang, *Minimal hypersurfaces with finite index*, Math. Res. Lett., 9 (2002), 95-104.

[5] G. Yun, *Total scalar curvature and L^2 harmonic 1-forms on a minimal hypersurface in Euclidean space*, Geom. Dedicata, 89 (2002), 135-141.

[6] L. Ni, *Gap theorems for minimal submanifolds in R^{n+1}*, Commun. Anal. Geom., 9 (2001), 641-656.

[7] K. Seo, *Minimal submanifolds with small total scalar curvature in Euclidean space*, Kodai Math. J., 31 (2008), 113-119.

[8] K. Seo, *Rigidity of minimal submanifolds in hyperbolic space*, Arch. Math. 94 (2010), 173-181.

[9] H.P. Fu, H.W. Xu, *Total curvature and L^2 harmonic 1-forms on complete submanifolds in space forms*, Geom. Dedicata, 144 (2010), 129-140.

[10] M.P. Cavalcante, H. Mirandola, F. Vitório, *L^2-harmonic 1-forms on submanifolds with finite total curvature*, J. Geom. Anal., 24 (2014), 205-222.

[11] P. Zhu, S.W. Fang, *Finiteness of non-parabolic ends on submanifolds in spheres*, Ann. Global Anal. Geom., 46 (2014), 187-196.

[12] P. Zhu, S.W. Fang, *A gap theorem on submanifolds with finite total curvature in spheres*, J. Math. Anal. Appl., 413 (2014), 195-201.

[13] N.T. Dung, K. Seo, *Vanishing theorems for L^2 harmonic 1-forms on complete submanifolds in a Riemannian manifold*, J. Math. Anal. Appl., 423 (2015), 1594-1609.

[14] H.Z. Lin, *Vanishing theorems for harmonic forms on complete submanifolds in Euclidean space*, J. Math. Anal. Appl., 425 (2015), 774-787.

[15] H.Z. Lin, *L^2 harmonic forms on submanifolds in a Hadamard manifold*, Nonlinear Anal., 125 (2015), 310-322.

[16] H.Z. Lin, *Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space*, Nonlinear Anal., 148 (2017), 126-137.

[17] Y.B. Han, H. Pan, *L^p p-harmonic 1-forms on submanifolds in a Hadamard manifold*, J. Geom. Phys., 107 (2016), 79-91.

[18] X.L. Chao, Y.S. Lv, *L^2 harmonic 1-forms on submanifolds with weighted poincar inequality*, J. Korean Math. Soc., 53 (2016), 583-595.

[19] Y.B. Han, *The topological structure of complete noncompact sumanifolds in spheres*, J. Math. Anal. Appl., 457 (2018), 991-1006.
[20] W.Z. Gan, P. Zhu, S.W. Fang, \(L^2 \) harmonic 2-forms on minimal hypersurfaces in spheres, Diff. Geom. Appl., 56 (2018), 202-210.

[21] D. Hoffman, J. Spruck, Sobolev and isoperimetric inequalities for riemannian submanifolds, Comm. Pure Appl. Math., 27 (1974) 715-727.

[22] D.M.J. Calderbank, P. Gauduchon, M. Herzlich, Refined Kato Inequalities and Conformal Weights in Riemannian Geometry, J. Funct. Anal., 173 (2000), 214-255.

[23] Y.B. Han, The topological structure of complete noncompact manifolds in spheres, J. Math. Anal. Appl., 475 (2018), 991-1006.

[24] P. Li, Geometric Analysis, Cambridge Stud. Adv. Math., vol.5, 2012.

[25] P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Éc. Norm. Supér., 13 (1980), 451-468.