Identification of \textit{SETD2-NF1} fusion gene in a pediatric spindle cell tumor with the chromosomal translocation t(3;17)(p21;q12)

IOANNIS PANAGOPOULOS1,2, LUDMILA GORUNOVA1,2, INGVILD LOBMAIER3, BODIL BJERKEHAGEN3 and SVERRE HEIM1,2,4

1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital; 2Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo; 3Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital; 4Faculty of Medicine, University of Oslo, Oslo, Norway

Received January 1, 2017; Accepted March 29, 2017

DOI: 10.3892/or.2017.5628

Abstract. Spindle cell tumors are clinically heterogeneous but morphologically similar neoplasms. The term refers to the tumor cells’ long and slender microscopic appearance. Distinct subgroups of spindle cell tumors are characterized by chromosomal translocations and also fusion genes. Other spindle cell tumors exist that have not yet been found to have characteristic, let alone pathognomonic, genetic or pathogenetic features. Continuous examination of spindle cell tumors is likely to reveal other subgroups that may, in the future, be seen to correspond to meaningful clinical differences and may even be therapeutically decisive. We analyzed genetically a pediatric spindle cell tumor. Karyotyping showed the tumor cells to carry a t(3;17)(p21;q12) chromosomal translocation whereas RNA sequencing identified a \textit{SETD2-NF1} fusion gene caused by the translocation. RT-PCR together with Sanger sequencing verified the presence of the above-mentioned fusion transcript. Interphase FISH analysis confirmed the existence of the chimeric gene and showed that there was no reciprocal fusion. The fusion transcript codes for a protein in which the last 114 amino acids of \textit{SETD2}, i.e., the entire Set2 mias. Absence of the SRI domain would result in inability to recruit \textit{SETD2} to its target gene locus through binding to the phosphor-C-terminal repeat domain of elongating RNA polymerase II and may affect H3K36 methylation. Alternatively, loss of one of two functional \textit{SETD2} alleles might be the crucial tumorigenic factor.

Introduction

Spindle cell tumors are clinically heterogeneous but morphologically similar neoplasms that can occur anywhere. The term is descriptive and based on the tumor cells’ long and slender microscopic appearance (https://librepathology.org/wiki/Spindle_cell_lesions). The diagnosis of spindle cell tumors relies on histological and morphological features supported by ancillary investigations which include immunohistochemistry, cytogenetics, fluorescence in situ hybridization (FISH), and/or molecular genetics. The diagnosis is prognostically imprecise and even sometimes fails to distinguish benign from low-grade malignant tumors (1,2).

Cytogenetic and molecular genetic analyses of spindle cell tumors have led to the recognition of several distinct karyotypic entities, presumably corresponding to equally distinct pathogenetic subgroups, characterized by chromosomal translocations and also fusion genes that identify specific tumor types (3). For example, congenital fibrosarcomas carry the translocation t(12;15)(p13;q25) which results in the generation of an \textit{ETV6-NTRK3} fusion gene (4). Dermatofibrosarcoma protubers, another subtype of spindle cell sarcoma, is characterized cytogenetically by supernumerary ring chromosomes or the translocation t(17;22)(q22;q13) (5). Either change results in formation of a \textit{COL1A1-PDGFB} fusion gene in which \textit{PDGFB} exon 1 is deleted and replaced by a variable segment of the \textit{COL1A1} gene (5). A subset of inflammatory myofibroblastic tumor, a neoplasm composed of myofibroblastic spindle cells and infiltrating inflammatory cells, harbor clonal chromosomal rearrangements of chromosome band 2p23 (6). These rearrangements target the ALK gene which may serve as the 3′-partner in fusions with various translocation partners bringing about ALK tyrosine kinase activation (6).

Solitary fibrous tumor, another rare spindle cell tumor, is now defined genetically as carrying a submicroscopic inversion of the long arm of chromosome 12 (12q13) resulting in fusion of the two neighboring genes \textit{NAB2} and \textit{STAT6} (7-10). This creates a chimeric transcription factor in which the NAB2 repressor domain is substituted by a carboxyl-terminal STAT6 transactivation domain or near-full-length \textit{STAT6} (7-10).

In spite of all these genetic-pathologic correlations, other spindle cell tumors exist that have not yet been found to have
characteristic, let alone pathognomonic, genetic or pathoge-
netic features. By way of example, Fruth et al (11) reported
a laryngeal spindle cell sarcoma which did not fit into any
of the existing spindle cell sarcoma sub-entities: The initially
benign-appearing mesenchymal tumor first changed its
clinical phenotype without corresponding histological signs
of malignancy but later assumed more aggressive histological
features. Alaggio et al (12) described two spindle cell tumors
with EWSR1-WT1 fusion and favorable prognosis. According
to the authors, the tumors could represent ‘an unrecognized
subgroup of tumors with spindle cell morphology, bearing
the same translocation as desmoplastic small round cell tumor,
but characterized by a more favorable clinical course’. In a
previous study of ours, we described a spindle cell sarcoma
that could not be further sub-classified, but which carried a
ring chromosome composed of chromosome 12 material,
several fusion genes mapping to 12q, and amplification of
MDM2 (13). Nord et al (14) reported a spindle cell sarcoma
of the heart with a ring chromosome, amplification of the
MDM2 gene, and homozygous deletion of CDKN2A. Finally,
Lestou et al (15) reported a case of spindle cell sarcoma in the
lower abdominal wall with a complex karyotype, ring chromo-
somes, amplification of chromosome 18, and co-amplification
of 12p11 and 12q13-q22 in the ring chromosomes. The examples
above show that continuous examination of tumors with
spindle cell morphology is likely to reveal yet other genetic
subgroups that may, in the future, be seen to correspond to
meaningful clinical and even, when suitable therapeutics are
construed against the pathogenetic mechanisms involved, be
also therapeutically decisive.

In the present study, we analyzed genetically a pediatric
spindle cell tumor. The cytogenetic analysis showed that the
tumor cells carried a t(3;17)(p21;q12) chromosomal translo-
cation and RNA sequencing identified a SETD2-NF1 fusion
gene caused by the translocation.

Materials and methods

Ethics statement. The study was approved by the Regional
Committee for Medical and Health Research Ethics, South-
East Norway (REK sør-øst; http://helseforskning.etikkom.no)
and written informed consent was obtained from the patient
for publication of the case details. The ethics committee's
approval included a review of the consent procedure. All
patient information has been de-identified.

Case history. A 16-year-old male presented with a mass in the
left deltoid region. After analysis of a needle biopsy, surgical
resection was performed. Macroscopic examination disclosed
a 4.2 cm large, well demarcated tumor (Fig. 1A). Microscopic
examination revealed a moderately cellular tumor with
spindle cells without clear atypia intermingled with loose
intercellular matrix, partly with myxoid tissue and collagen
(Fig. 1B). Dilated vessels were seen. There were some necrotic
areas but very few mitotic figures (0-1/10 high power fields).
Immunohistochemistry demonstrated positive focal staining
for CD34 and CD99 (Fig. 1C and D), but negativity for cyto-
keratin cocktail (AE1/AE3, EMA, S-100, SMA, and desmin;
data not shown). There was no nuclear STAT6 staining and the
molecular analysis did not show presence of the NAB2-STAT6
fusion transcript which is pathognomonic for solitary fibrous
tumor. FISH analysis was negative for rearrangement of the
FUS gene. The histological diagnosis could therefore not be
more precise than spindle cell tumor of uncertain malignancy.
Three years after treatment, no local recurrence has developed
and the patient is in remission.

G-banding and karyotyping. Both a core needle preoperative
biopsy and fresh tissue from a representative area of the tumor
in the surgical specimen were received and analyzed cytoge-
netically as part of our diagnostic routine. The samples were
disaggregated mechanically and enzymatically with collagen-
ase II (Worthington, Freehold, NJ, USA). The resulting cells
were cultured and harvested using standard techniques (16).
Chromosome preparations were G-banded with Wright stain
and examined. The karyotype was written according to The
International System for Human Cytogenetic Nomenclature
(ISCN) 2013 guidelines (17).

High-throughput paired-end RNA-sequencing analysis. Tumor
tissue adjacent to that used for cytogenetic analysis and
histologic examination was frozen and stored at -80°C. Total
RNA was extracted using miRNeasy Mini kit according to
the manufacturer's instructions (Qiagen Nordic, Oslo,
Norway). Tumor tissue was disrupted and homogenized in
Qiazol Lysis Reagent (Qiagen Nordic) using a 5 mm stainless
steel bead and TissueLyser II (Qiagen Nordic). Subsequently,
total RNA was purified using QIAcube (Qiagen Nordic). The
RNA quality was evaluated using the Experion Automated
Electrophoresis System (Bio-Rad Laboratories, Oslo, Norway).
The RNA quality indicator (RQI) was 9.9. Total RNA (3 μg)
was sent for high-throughput paired-end RNA-sequencing at
the Norwegian Sequencing Centre, Ullevål Hospital (http://
www.sequencing.uio.no/). Detailed information about the
high-throughput paired-end RNA-sequencing was given
elsewhere (18). The software FusionCatcher (19) (https://
github.com/ndaniel/fusioncatcher) was used for discovery of
fusion transcripts.

Molecular genetic analysis. Total RNA (1 μg) was reverse-
transcribed in a 20 μl reaction volume using iScript Advanced
cDNA Synthesis kit for RT-qPCR according to the manufac-
turer’s instructions (Bio-Rad Laboratories). The 25 μl PCR
volume contained 12.5 μl Premix Ex Taq DNA Polymerase
Hot Start version (Takara Bio Europe/SAS, Saint-Germain-en-
Laye, France), 2 μl of cDNA, and 0.4 μM of each of the forward
primer SETD2-7227F1 (5'-CCT CCC AAC TGG AAG ACA
GCT CGA-3') and reverse primer NF1-020-452R1 (5'-AGC
TTT CCA ACC CAG GAC TGT GGT C-3'). The PCR was run
on a C-1000 Thermal cycler (Bio-Rad Laboratories). The PCR
conditions for amplification were: initial denaturation at 94°C
for 30 sec followed by 35 cycles of 7 sec at 98°C and 2 min
at 68°C, and a final extension for 5 min at 68°C. PCR prod-
ucts (3 μg) were stained with GelRed (Biotium), analyzed by
electrophoresis through 1.0% agarose gel, and photographed.
The remaining 22 μl PCR products were purified using the
MinElute PCR purification kit (Qiagen Nordic) and direct
sequenced using the light run sequencing service of GATC
Biotech (http://www.gatc-biotech.com/en/sanger-services/
lightrun-sequencing.html). The BLAST software (http://www.
ONCOLOGY REPORTS 37: 3181-3188, 2017

ncbi.nlm.nih.gov/BLAST/) was used for computer analysis of sequence data.

Fluorescence in situ hybridization (FISH). BAC probes were retrieved from the Human ’32K’ BAC Re-Array library (BACPAC Resources, http://bacpac.chori.org/home.htm). They were selected according to physical and genetic mapping data on chromosomes 3 and 17 (see below) as reported on the Human Genome Browser at the University of California, Santa Cruz website (May 2004, http://genome.ucsc.edu/). FISH mapping of the clones on normal controls was performed to confirm their chromosomal location. The clones were RP11-565B06 (chr3:46962826-47104129) and RP11-380M12 (chr3:47033474-47226748) mapping to chromosome subband 3p21.31 which contains the SETD2 gene (red signal), and RP11-518B17 (chr17:26576215-26749754) and RP11-592F3 (chr17:26705272-26874157) mapping to chromosome subband 17q11.2 which contains the NF1 gene (green signal). FISH was performed as described elsewhere (18). Fluorescent signals were captured and analyzed using the Cytovision system (Leica Biosystems, Newcastle, UK).

Results

G-banding. The G-banding analysis of short-term cultured cells from both the core needle biopsy and surgical specimen yielded the karyotype 46,XY,t(3;17)(p21;q12),del(10)(q24)[11] (Fig. 2A).

RNA-sequencing, molecular genetic analysis, and FISH confirmation of SETD2-NF1 fusion. Using the FusionCatcher software with the fastq files obtained from the Norwegian Sequencing Centre, 31 potential fusion transcripts were found (Table I), among them SETD2-NF1. Taking into consideration that SETD2 and NF1 map to chromosome bands 3p21.31 and 17q11.2, respectively (http://genome-euro.ucsc.edu/index.html), the bands identified by G-banding analysis as being recombined by the 3;17 translocation, we decided to investigate further the SETD2-NF1 fusion transcript using molecular techniques. No other fusions were examined.

RT-PCR with the SETD2-7227F1 and NF1-020-452R1 primer combination amplified a 268 bp cDNA fragment (Fig. 2B). Sanger sequencing showed that it was a SETD2-NF1 chimeric cDNA fragment with the fusion point identical to that found using FusionCatcher (Fig. 2C and D; Table I). In this fusion transcript, the sequence of SETD2 coding for the last 114 amino acids of the SETD2 protein are replaced by the NF1 sequence coding for 30 amino acids (Fig. 2D and E).

Interphase FISH analysis confirmed the SETD2-NF1 fusion. All 100 counted nuclei showed a red signal corresponding to the SETD2 (Fig. 3A and C), a green signal corresponding to NF1 (Fig. 3B and C), and a yellow fusion signal corresponding to the SETD2-NF1 (Fig. 3C).

Discussion

Fusion transcripts of both NF1 and SETD2 with various partners have been described in hematologic malignancies as well as solid tumors (20-22). However, this is the first time that a fusion between SETD2 and NF1 was found. The SETD2 gene is ubiquitously expressed and codes for a protein which belongs to a class of huntingtin interacting...
proteins characterized by WW motifs (23,24). SETD2 is also a DNA-binding factor that binds the proximal EIA promoter of adenovirus serotype 12 (24). In addition, SETD2 was shown to possess histone H3 lysine 36 (H3-K36) specific HMTase activity, auto-methylation activity, a novel transcriptional activation domain, and association with hyperphosphorylated RNA polymerase II during transcriptional elongation via its SRI (Set2 Rpb1 interacting) domain, which explains why H3K36 trimethylation is found in the body of actively transcribed genes (25). SETD2 was shown to interact with the Ser2/Ser5 hyperphosphorylated RNA polymerase II (25). The SETD2 protein is solely responsible for all H3K36 trimethylation in humans (26). SETD2 serves as a linker between responsible for coupling transcription to histone methylation by RNA polymerase II. This suggests that the SRI domain is involved in the histone H3-K36 methylation and transcriptional regulation in yeast and mammals (25,28).

Table I. Fusion transcripts detected using FusionCatcher.

5'-Chr	3'-Chr	5'-Partner gene	3'-Partner gene	Fusion description	Fusion sequence
17	3	COL1A1	APOD	CTSCCTCCACCAAACCAACTTTT*ccccccccttaaaagacacaaactaat	AACATATGATGAAAACCCCATGAG*caactgcatcagcagacctgtna
3	17	SETD2	NF1		
3	7	COL1A2	APOD		
19	19	ADCK4	NUMBL		
1	1	PEAR1	LRRC71		
2	3	IGFBP5	APOD		
19	19	CYP4F12	CYP4F24P	pseudogene	
17	X	COL1A1	TIMP1		
3	3	DVL3	AM2P1		
3	3	COL7A1	UNC2		
11	11	CTSC	RAB38		
10	10	MTG1	RP11-108K14.4	readthrough	
11	11	LSP1	TNNT3	short distance	
1	1	CTBS	GN5	readthrough	
19	19	GRAMD1A	SCN1B	readthrough	
10	10	SYNPO2L	MOYOL	readthrough	
19	19	XRCC1	ETH1E	readthrough	
11	11	HPX	APBB1	readthrough	
16	16	LCAT	PSMB10	readthrough	
2	2	SOCS5	LINC01119	short distance	
3	3	TBC1D23	NIT2	readthrough	
2	2	ADCY3	PTRHD1	readthrough	
19	19	CADM4	ZNF428	readthrough	
20	20	CCM2L	HCK	short distance	
17	17	COL1A1	CPX1M		
16	16	COQ9	POLR2C	readthrough	
1	1	EIF4G3	HP1BP3	readthrough	
X	X	MORF4L2-AS1	TEM351	readthrough	
7	7	RHBBD2	POR		
14	3	SERPINA3	APOD		
1	1	VPS45	PLEKHO1	readthrough	

Involvement of the SETD2 gene has been reported in many types of malignancy (29). Inactivation of SETD2 is common in clear cell renal carcinoma with loss or decrease of H3K36me3 mark (30), when it is associated with worse prognosis and development of recurrent and/or metastatic disease (31). Downregulation of SETD2 at transcriptional and protein levels was observed in breast cancer (32,33). The expression of SETD2 was lower in malignant samples, decreased with increasing tumor stage, and was lower in samples from patients who developed metastasis, local recurrence, or died from breast cancer compared to those who were disease-free for >10 years (32). SETD2 mutations were also described in high-grade gliomas and in leukemias (34-36). The mutations are either nonsense or frameshift mutations that truncate a portion of the C terminus of SETD2. Truncating
mutations result in loss of the C terminus SRI domain which is responsible for the recruitment of SETD2 to its target gene locus through binding to the phosphor-C-terminal repeat domain (PCTD) of elongating RNA polymerase II (36). Recently, genomic disruption of \textit{SETD2} was reported in chronic lymphocytic leukemia and the data suggested that \textit{SETD2} aberrations may be clinically relevant (37). Patients with \textit{SETD2} abnormalities and wild-type \textit{TP53} and \textit{ATM} had significantly shorter progression-free and overall survival compared with cases with wild-type for all three genes (37).

In malignant mesotheliomas, a combination of the methods array comparative genomic hybridization and targeted next-generation sequencing revealed biallelic \textit{SETD2} inactivation in 9 out of 33 examined tumors (38). Gene fusions and splice alterations were also reported to be frequent mechanisms for \textit{SETD2} inactivation (39).

\textit{SETD2} was found to be the most significantly and recurrently mutated gene in type II enteropathy-associated T-cell lymphoma (EATL-II); 86\% (13/15) of EATL-II tumors with 20 distinctive mutations (40). Fourteen of these mutations consisted of premature stop codon, nonsense, frameshift indels or splicing mutations expected to confer critical changes in protein structure. The other six missense mutations occurred in highly conserved residues of functional domains and were predicted to be deleterious with a damaging effect on the protein (40).

The \textit{NF1} gene spans approximately 280 kbp, has 58 exons (mRNA transcript variant 1, NM_001042492.2) and codes for
the cytoplasmatic and multidomain protein neurofibromin (41). Neurofibromin is a negative regulator of the RAS cellular proliferation pathway (42-45). Several other functions of neurofibromin were also reported, among them positive regulation of adenyl cyclase, regulation of cell adhesion and motility, and suppression of epithelial mesenchymal transition (42-45). The NF1 gene is a classical tumor suppressor gene whose inactivation is responsible for the neurofibromatosis type 1 (NF1) tumor predisposition syndrome (http://omim.org/entry/613113). Mutations of NF1 are also linked to juvenile myelomonocytic leukemia (http://omim.org/entry/607785) and Watson syndrome (http://omim.org/entry/193520). The NF1 syndrome is characterized by the development of multiple neurofibromas, café-au-lait spots, and Lisch nodules (42,45). Patients with NF1...
syndrome are at increased risk to develop malignant peripheral nerve sheath tumors, phaeochromocytoma, leukemia, glioma, rhabdomyosarcoma, and breast cancer (42,45). Both alleles of NF1 are inactivated in the tumors in NF1 patients. Mutations in the NF1 gene may also result in cardiovascular, musculoskeletal, and nervous system anomalies (45,46).

Splicing in the NF1 gene is complex and several alternative transcripts were found (47); altogether 23 according to the ensemble genome browser (http://www.ensembl.org/Homo_sapiens/Gene/Summary?db=gene;g=ENSG00000196712;r=17:31378891-31382106;ts=ENST000004422121). The transcript NF1-020 (ENST00000422121) has three exons and is thought to undergo nonsense mediated decay, a process which detects nonsense mutations and prevents the expression of truncated or erroneous proteins (48). Thus, the functional significance, if any, of the NF1-020 transcript is unclear.

In the present case, the t(3;17) resulted in a SETD2-NF1 fusion transcript in which the first 18 exons of SETD2 (sequence with accession number NM_014159 version 6) are fused to exon 3 of the transcript NF1-020 (ENST00000422121) (Fig. 2C and D). The fusion transcript would code for a protein in which the last 114 amino acids of SETD2, in other words the entire SRI domain, are replaced by 30 amino acids encoded by the NF1 sequence (Fig. 2D and E). The result would be similar to that seen with the truncating SETD2 mutations found in leukemias (36). Absence of the SRI domain would result in inability to recruit SETD2 to its target gene locus through binding to the phosphor-C-terminal repeat domain of elongating RNA polymerase II and may affect H3K36 methylation. Alternatively, loss of one of two functional SETD2 alleles might be the crucial factor in tumorigenesis. Whether aberrations of SETD2 are recurrent and define a specific subgroup of spindle cell tumors, remains to be seen.

Acknowledgements

The authors thank Hege Kilen Andersen and Nina Øino for excellent technical assistance. This work was supported by grants from the Norwegian Radium Hospital Foundation.

References

1. Collini P, Sorensen PH, Patel S, Blay J, Issels RD, Maki RG, Eriksson M and del Muro XG: Sarcomas with spindle cell morphology. Semin Oncol 36: 324-337, 2009.
2. Fisher C: Spindle cell sarcomas. Surg Pathol Clin 4: 721-744, 2011.
3. Heim S and Mitelman F (eds): Cancer Cytogenetics: Chromosomal and Molecular Genetic Aberrations of Tumor Cells, Fourth Edition. Wiley-Blackwell, 2015. doi: 10.1002/9781118795569.
4. Sandberg AA and Bridge JA: Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: Congenital (infantile) fibrosarcoma and mesoblastic nephroma. Cancer Genet Cytofgenet 132: 1-13, 2002.
5. Llombart B, Serra-Guitiñán C, Montaegudo C, López Guererro JA and Sammartin O: Dermatofibrosarcoma protuberans: A comprehensive review and update on diagnosis and management. Semin Diagn Pathol 30: 13-28, 2013.
6. Fletcher CDM, Bridge JA, Hogendoorn PCW and Mertens F: WHO Classification of Tumors of Soft Tissue and Bone. 4th edition. IARC, Lyon, 2013.
7. Chmielecki J, Crago AM, Rosenberg M, O'Connor R, Walker SR, Ambrogio L, Auclair D, McKenna A, Heinrich MC, Frank DA, et al: Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors. Nat Genet 45: 131-132, 2013.
8. Mohajeri A, Tayebe J, Collin A, Nilsson J, Magnusson L, von Steyern FV, Brojös O, Domanski HA, Larsson O, Sciot R, et al: Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene in classical solitary fibrous tumors. Cancer Genet Cytofgenet 213: 1-7, 2013.
9. Robinson DR, Wu YM, Kalyana-Sundaram S, Cao X, Lonigro RJ, Shih V, Chen CL, Zhang L, Wang S, Su F, et al: Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet 45: 180-185, 2013.
10. Schweizer L, Koelsche C, Sahn F, Piro RM, Capper D, Reuss DE, Pusch S, Habel A, Meyer J, Göck T, et al: Meningeal hemangioendothelioma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol 125: 651-658, 2013.
11. Fruth K, Hansen T, Katenkamp D, Mann W and Lippert BM: Recurrence of a laryngeal spindle cell sarcoma with a transformation into a higher grade of malignancy. Auris Nasus Larynx 36: 491-495, 2009.
12. Alaggio R, Rosolen A, Sartori F, Leszl A, d'Amore ES, Bisogno G, Carlí M, Cecchetto G, Coffin CM and Nifino V: Spindle cell tumor with EWS-WT1 transcript and a favorable clinical course: A variant of DSCC, a variant of leiomyosarcoma, or a new entity? Genes Chromosomes Cancer 37: 164-169, 2002.
13. Panagopoulos I, Bjerkehagen B, Gorunova L, Berner JM, Boye K and Heim S: Several fusion genes identified by whole transcriptome sequencing in a spindle cell sarcoma with rearrangements of chromosome 12q and MDM2 amplification. Int J Oncol 45: 1820-1836, 2014.
14. Nord KH, Macchia G, Tayebe J, Nilsson J, Vult von Steyern F, Brosjö O, Mandahl N and Mertens F: Integrative genome and transcriptome analyses reveal two distinct types of ring chromosome in soft tissue sarcomas. Hum Mol Genet 23: 878-888, 2014.
15. Lestou VS, O’Connell JX, Łudkowski O, Gosling H, Lessack D and Horsman DE: Coamplification of 12p11 and 12q13 approximately q23 in multiple ring chromosomes in a spindle cell sarcoma cell line resolved by novel multicolor fluorescence in situ hybridization techniques. Cancer Genet Cytofgenet 139: 139-142, 2002.
16. Mandahl N: Methods in solid tumour cytogenetics. In: Human cytogenetics: Malignancy and Acquired Abnormalities. Rooney DE (ed), 3rd edition. Oxford University Press, New York, pp65-203, 2001.
17. Schaffer LG, McGowan-Jordan J and Schimid M (eds): ISCN 2013: An International System for Human Cytogenetic Nomenclature Karger, Basel, 2013.
18. Panagopoulos I, Gorunova L, Bjerkehagen B and Heim S: The ‘grep’ command but not fusionMap, FusionFinder or ChimeraiScan captures the CIC-DUX4 fusion gene from whole transcriptome sequencing data on a small round cell tumor with t(4;19)(q35;q13). PLoS One 9: e99439, 2014.
19. Nicorici D, Satalan H, Edgren H, Kangaspeska S, Murumagi A, Kalliomäki O, Virtanen S and Kikku O: FusionCatcher - a tool for finding somatic fusion genes in paired-end RNA-sequencing data. bioRxiv, 2014. doi: 10.1101/011650.
20. Andersson AK, Maj W, Wang J, Chen X, Gedman AL, Dang J, Nakitandwe J, Holmfeldt L, Parker M, Easton J, et al: St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project: The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet 47: 330-337, 2015.
21. Chen K, Navin NE, Wang Y, Schmidt HK, Wallis JW, Niu B, Funato K, Zhao H, McLellan MD, Hoadley KA, et al: BreakTrans: Uncovering the genomic architecture of gene fusions. Genome Biol 14: R87, 2013.
22. Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Veenis R, et al: A variant of DSCT, a variant of leiomyosarcoma, or a new entity? Genes Chromosomes Cancer 52: 873-886, 2013.
23. Faber PW, Barnes GT, Srinidhi J, Gusella JF and Macdonald ME: Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7: 1463-1474, 1998.
24. Rega S, Stiewe T, Chang DI, Pollmeier B, Esche H, Bardenheuer W, Marquetan G and Pützer BM: Identification of the full-length huntingtin-interacting protein p23/HIP/HYPB as a DNA-binding factor. Mol Cell Neurosci 18: 68-79, 2001.
25. Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HHI, Zhang QH, Chen SJ, Huang QH and Chen Z: Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280: 35261-35271, 2005.
26. Edmunds JW, Mahadevan LC and Clayton AL: Dynamic histone H3 methylation during gene induction: HYBP/Setd2 mediates all H3K36 trimethylation. EMBO J 27: 406-420, 2008.
27. Wagner EJ and Carpenter PB: Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13: 115-126, 2012.
28. Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL and Strahl BD: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25: 3305-3316, 2005.
29. Kudithipudi S and Jeltsch A: Role of somatic cancer mutations in human protein lysine methyltransferases. Biochim Biophys Acta 1846: 366-379, 2014.
30. Duns G, van den Berg E, van Duivenbode I, Osinga J, Hollema H, Hofstra Rm and Kok K: Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70: 4287-4291, 2010.
31. Hakimi AA, Phatnani HP, Shibata Y, Hall H, Greenleaf AL and Strahl BD: A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25: 3305-3316, 2005.