Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The urgent need for metallo-β-lactamase inhibitors: an unattended global threat

Maria F Mojica*, Maria-Agustina Rossi*, Alejandro J Vila, Robert A Bonomo

Due to their superior tolerability and efficacy, β-lactams are the most potent and prescribed class of antibiotics in the clinic. The emergence of resistance to those antibiotics, mainly due to the production of bacterial enzymes called β-lactamases, has been partially solved by the introduction of β-lactamase inhibitors, which restore the activity of otherwise obsolete molecules. This solution is limited because currently available β-lactamase inhibitors only work against serine β-lactamases, whereas metallo-β-lactamases continue to spread, evolve, and confer resistance to all β-lactams, including carbapenems. Furthermore, the increased use of antibiotics to treat secondary bacterial pneumonia in severely sick patients with COVID-19 might exacerbate the problem of antimicrobial resistance. In this Personal View, we summarise the main advances achieved in this area of research, emphasise the main challenges that need to be solved, and the importance of research on inhibitors for metallo-β-lactamases amidst the current pandemic.

The scourge of antimicrobial resistance

β-lactam antibiotics are the cornerstones of antimicrobial chemotherapy. However, antimicrobial resistance against these life-saving drugs is a major public health problem worldwide. The most concerning problem in antimicrobial resistance involves carbapenem-resistant Gram-negative bacteria. In the past decade, the so-called superbugs (eg, multidrug-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, and multidrug-resistant Pseudomonas aeruginosa) have gained even more notoriety due to their intrinsic abilities to cause life-threatening disease in older people (older than 60 years) and immunocompromised hosts. These pathogens are responsible for more than 540,000 infections and nearly 14,000 deaths annually in the USA alone. Regrettably, the situation is not expected to improve, since current estimates predict that antimicrobial resistance will be the main cause of death in 2050 (10 million deaths per year), threatening even the simplest medical procedure.

The current COVID-19 pandemic might be aggravating this scenario in the future. Most deaths associated with the influenza pandemic of 1918 were caused by subsequent bacterial pneumonia, and secondary bacterial infections were also reported in the 2009 swine influenza pandemic, during the 2003 severe acute respiratory syndrome outbreak, and during the 2012 Middle East respiratory syndrome outbreak. In the current COVID-19 pandemic, sentinel reports showed that secondary infections were present in up to 30% of critically ill patients and these infections were shown to markedly decrease the survival of patients with COVID-19. The bacterial species more frequently isolated are Mycoplasma pneumoniae, Staphylococcus aureus, Legionella pneumophila, Haemophilus spp, Klebsiella spp, P aeruginosa, Chlamydia spp, Streptococcus pneumoniae, and A baumannii. Notably, infections with antibiotic-resistant S aureus, K pneumoniae, P aeruginosa, or A baumannii have been reported in patients with COVID-19 in intensive care units.

Understandably, as inpatients with SARS-CoV-2 infection often exhibit symptoms undistinguishable from hospital-acquired and ventilator-associated pneumonia, empirical treatments with broad-spectrum antibiotics are administered in many cases. A 2020 literature review by Fattorini and colleagues reported that 476 (88.3%) of 539 patients with COVID-19 were treated with broad-spectrum antibiotics, including expanded-spectrum cephalosporins (eg, ceftriaxone, cefazidime, and cefepime), quinolones, and carbapenems. Consequently, antibiotic use has substantially increased in many settings.

With the spread of the pandemic, hospitals around the world have seen an increase of patients infected with COVID-19. This situation has demanded major adjustments to health-care systems and infrastructure, and especially to the infection control and antimicrobial stewardship programmes. Unfortunately, less robust health-care systems, such as those in many Latin American and Asian countries where antimicrobial resistance rates are already perilously high, and antimicrobial stewardship programmes are just beginning to be implemented, are adjusting their response to the pandemic at varying degrees. Regrettably, these circumstances create a so-called perfect storm for an accelerated evolution of antimicrobial resistance.

Carbapenemases: a threat to be faced and the intricacies of metallo-β-lactamases

Resistance to carbapenems among Gram-negative bacteria is primarily due to the production of carbapenemases, which inactivate these life-saving drugs. Bacteria achieve these challenging chemical reactions with two types of enzymes: one based on a serine residue (serine β-lactamases) or another using one or two zinc ions (metallo-β-lactamases). Some serine β-lactamases (such as K pneumoniae carbapenemases [KPC] and oxacillinase-48 [OXA-48-like carbapenemases]) can hydrolyse carbapenems, whereas all metallo-β-lactamases are carbapenemases. Metallo-β-lactamases are of particular interest and concern given several factors: (I) their ability
Personal View

metallo-β-lactamase inhibitors; (3) the rapid pace at which new variants are isolated (figure 1A); (4) the transferability of their encoding genes; and (5) their ubiquity, because they are isolated from nosocomial and environmental sources.20,25

Metallo-β-lactamas are further divided into three subclasses (B1, B2, and B3), based primarily on their metal content and different active site features. Most metallo-β-lactamas that have been identified so far belong to subclass B1, among which imipenemase (IMP), Verona imipenemase (VIM), and New Delhi metallo-β-lactamase (NDM) families are the three most common metallo-β-lactamases found in clinical isolates.20 Subclass B2 has the fewest members and includes enzymes produced by different species of Aeromonas, such as A hydrophila, A veronii, and Serratia fonticola (the enzyme are commonly named in the literature as CphA, ImiS, and ShI, respectively). Subclass B3 includes L1 of Stenotrophomonas maltophilia, an emerging multidrug-resistant bacterium in patients who are severely immunocompromised. This microorganism is associated with respiratory tract infections in patients who are chronically ill, who have cancer, or who have cystic fibrosis, and for whom antibiotic treatment options are limited.21

The β-lactamase genes (bla genes) encoding subclass B1 metallo-β-lactamas are largely plasmid-borne and are of greater clinical relevance compared with metallo-β-lactama subclasses B2 and B3, and other B1 enzymes that are not plasmid borne. This characteristic means subclass B1 metallo-β-lactamas can be transferred between bacterial strains via these mobile genetic elements. IMP-type β-lactamas were identified in 1991 in Japan and are still the predominant metallo-β-lactamas in southeast Asia, where they can be found among P aeruginosa, A baumannii, and different species of Enterobacterales.20 However, VIM-type β-lactamas were discovered in 1997 in Italy and, until 2017, were the predominant metallo-β-lactamas in Europe, especially in Mediterranean countries.20 VIM-2-like β-lactamas are associated mostly with P aeruginosa, whereas VIM-1-like β-lactamas (eg, VIM-4) are frequently reported in strains of Enterobacterales.20 Lastly, the first documented case of infection caused by NDM-producing bacteria occurred in 2008, when the blaNDM gene was detected in K pneumoniae and Escherichia coli strains from a patient returning to Sweden from India.27 Since then, blaNDM has disseminated globally, and it is considered endemic in the Indian subcontinent and the Middle East (figure 1B). Notably, NDM is currently the predominant metallo-β-lactamase in Europe. The blaNDM gene has been reported in several families of Enterobacterales as well as in other Gram-negative bacteria, such as Vibrio cholerae, Pseudomonas spp, and A baumannii.20,27,28 NDM-producing microorganisms can cause life-threatening infections; therefore, that fact that these microorganisms are actively disseminating outside the health-care system is a matter of concern.20,25

NDM-1 is unique in being a membrane-bound protein, by contrast with other metallo-β-lactamas. This cellular localisation favours its secretion and dissemination in outer membrane vesicles.20 Outer membrane vesicles are spherical portions of the outer membrane that protrude and detach from growing cells in response to a wide variety of environments.23,24 NDM-1 is selectively secreted in an active form into outer membrane vesicles by different bacteria, therefore being protected against the action of extracellular proteases.20 These outer membrane vesicles possess potent carbapenemase activity that helps with titrating the amount of available antibiotic at the infection site and can protect neighbouring bacteria otherwise susceptible to antibiotics.25,26 Furthermore, the finding of a plasmid containing the blaNDM gene in outer membrane vesicles from A baumannii27 has also suggested an active role of vesicles in direct gene transfer.26 Despite that, the effects of outer membrane vesicles in the dissemination of resistance is controversial, and this area deserves attention. Notably, NDM-1 is also tailored to be expressed by all bacterial hosts highlighted as Priority One by WHO,26,28 by contrast with other host-specific metallo-β-lactamas. The rapid evolution (figure 1A) and spread (figure 1B) of NDM presents a threat that requires urgent action.

Two main strategies are currently used to counteract resistance due to β-lactamas. The first involves the synthesis of new β-lactam compounds refractory to hydrolysis by these enzymes (eg, cefiderocol). The second strategy is the development of β-lactamase inhibitors, which can be paired with the antibiotics and formulated as a single product.29 In this way, β-lactamase inhibitors prolong the usefulness of otherwise obsolete β-lactam antibiotics. Currently, clinical inhibitors approved for metallo-β-lactamas are not available. Metallo-β-lactamas do not share an evolutionary relationship with serine β-lactamas, because these β-lactamas possess different structures, active sites, and catalytic mechanisms.

The first generation of β-lactamase inhibitors introduced in the clinic includes mechanistic-based inhibitors—ie, so-called suicide inactivators with a β-lactam structure (eg, clavulanic acid, tazobactam, and sulbactam; table). Suicide inactivators are β-lactam compounds that are hydrolysed by the serine β-lactamas but remain bound to the active site serine residue, thereby inactivating the enzyme. None of these compounds are markedly active against the current carbapenemas. The second generation of β-lactamase inhibitors corresponds to non-β-lactam-based compounds—the diazabicyclooctanones—such as avibactam and relebactam.42 These compounds act as reversible inhibitors of class A carbapenemas (eg, KPC-2) and extended-spectrum β-lactamas (eg, CTX-M), class C cephalosporinas (eg, AmpC, as commonly referred to
in the literature, from *Enterobacter cloacae* complex and *P. aeruginosa*), and some class D, notably the OXA-48 carbapenemase. However, none of these compounds effectively inactivate metallo-β-lactamases in a clinically meaningful way. In 2017, the approval of vaborbactam in combination with meropenem defined a third generation of β-lactamase inhibitors: boronate compounds, designed as transition state analogues. Vaborbactam is a potent inhibitor of serine β-lactamases, especially KPC-2, but is not active against metallo-β-lactamases. Overall, there are six approved serine β-lactamase inhibitors in different combinations with antibiotics, but none of these inhibitors work against metallo-β-lactamases (table).

Challenges for the development of metallo-β-lactamase inhibitors

The development of an efficient metallo-β-lactamase inhibitor that is active against the three subclasses is a challenging task. The clinically available serine β-lactamase inhibitors target the catalytic serine residue that cleaves the β-lactam ring. Metallo-β-lactamases do not possess this serine residue in their active site. Instead, a water molecule activated by the zinc ions pursues β-lactam hydrolysis. As a result of this fundamental difference in the catalytic mechanism, none of the currently available serine β-lactamase inhibitors are active against metallo-β-lactamases. Furthermore, the active sites of serine β-lactamases and metallo-β-lactamases present different sizes and topologies. Serine β-lactamases have a narrow and deep catalytic site. By contrast, the active site in metallo-β-lactamases is in a shallow groove, with only a few contact points to bind the inhibitor or substrate. An additional challenge in achieving metallo-β-lactamase inhibition resides on their large structural diversity, which involves low homology among active site residues and different Zn²⁺ content. Lastly, we note that, unlike serine β-lactamases, which are exclusively bacterial enzymes, metallo-β-lactamases belong to a superfamily of metalloproteins with diverse biological functions beyond β-lactam hydrolysis. This superfamily, designated as the metallo-hydrolase/oxidoreductase superfamily, groups more than 30000 genes distributed in all three domains.

Figure 1: Evolution and dissemination of NDM-1 carbapenemase

(A) Timeline of appearance of NDM variants. Number of amino acid substitutions compared with NDM-1: one (blue), two (green), three (yellow), and five (red).

(B) Global dissemination of NDM carbapenemases. Grey sections indicate areas with no reports of NDM carbapenemase. NDM-New Delhi metallo-β-lactamase.

For more on the amino acid substitutions of the NDM variants see https://www.ncbi.nlm.nih.gov/pathogens/isolates/refgene/NDM
Table: Clinically available serine β-lactamase inhibitors and metallo-β-lactamase inhibitors in clinical trials

β-lactam partner	**Formulation**	**Usage**	**Inhibitor type**	**Inhibition mechanism**	**Inhibition profile of the inhibitor**
Clavulanic acid	1984	Amoxicillin	Augmentin	First generation	Suicide inhibitor, β-lactam analogue
					Yes
Sublactam	1987	Ampicillin	Unasyn	First generation	Suicide inhibitor, β-lactam analogue
					Yes
Tazobactam	1993	Piperacillin	Zosyn	First generation	Suicide inhibitor, β-lactam analogue
					Yes
Tazobactam	2014	Cefotaxime	Zeraxa	First generation	Suicide inhibitor, β-lactam analogue
					Yes
Avibactam	2015	Ceftazidime	Avycaz	First generation	Suicide inhibitor, β-lactam analogue
					Yes
Avibactam					Yes
					Yes
Vaborbactam	2017	Meropenem	Vaborone	First generation	Suicide inhibitor, β-lactam analogue
					Yes
Relebactam	2019	Imipenem	Vaborone	First generation	Suicide inhibitor, β-lactam analogue
					Yes
Tamborbactam		Gefapix	Vaborone	First generation	Suicide inhibitor, β-lactam analogue
					Yes
QPX7728					Yes

FDA=US Food and Drug Administration. cIAI=complicated intra-abdominal infection. cUTI=complicated urinary tract infection. DBO=diazabicyclooctanone. *Clavulanic acid is used to treat a wide variety of bacterial infections, among them: lower respiratory tract infections, acute bacterial ophthalmia, sinusitis, skin and skin structure infections, and cUTIs. Sublactam is used to treat a wide variety of bacterial infections, among them: gynaecological infections, bone and joint infections, cIAIs, and skin and skin structure infections. Tazobactam with piperacillin is used to treat a wide variety of bacterial infections, among them: cIAIs, skin and skin structure infections, gynaecological infections, community-acquired pneumonia, and nosocomial pneumonia. The phase 3 study will determine the efficacy against cIAIs, nosocomial pneumonia (including hospital-acquired pneumonia and ventilator associated pneumonia), cUTIs, or bloodstream infections due to metallo-β-lactamase-producing Gram-negative bacteria. Relebactam in combination with imipenem and cilastatin. IMP-type metallo-β-lactamase are weakly inhibited.
of life, Archaea, Bacteria, and Eukarya. Members of this superfamily share a common protein fold that results in all of them having similar active sites. This characteristic explains why L-captopril, an inhibitor of the angiotensin-converting enzyme, can inhibit metallo-β-lactamases. Therefore, another challenge is to achieve a fine balance to develop effective broad-spectrum metallo-β-lactamase inhibitors. This superfamily share a common protein fold that results in all of them having similar active sites. This characteristic explains why L-captopril, an inhibitor of the angiotensin-converting enzyme, can inhibit metallo-β-lactamases. Therefore, another challenge is to achieve a fine balance to develop effective broad-spectrum metallo-β-lactamase inhibitors that are still selective enough to avoid toxicity due to inhibition of off-target enzymes.

New perspectives in the development of metallo-β-lactamase inhibitors

Taniborbactam and QPX7728 are novel boronate compounds that are effective against most of the B1 metallo-β-lactamases (figure 2A). Both compounds are currently in phase 3 and phase 1 clinical trials, respectively, giving some hope (table). The development of boronate-based inhibitors, although promising, is still in its infancy. There are limitations in the scope of currently available boronates, as well as an incomplete understanding of their mechanism of inhibition and spectrum of action. What makes some boronates potent metallo-β-lactamase inhibitors and others not? Why do boronates inhibit some B1 metallo-β-lactamases (eg, the IMP-type metallo-β-lactamases) less efficiently? Why are boronates not active against B3 metallo-β-lactamases, such as L1 metallo-β-lactamase? Expanding this knowledge will enable the design of potent boronate molecules able to be cross-class metallo-β-lactamase inhibitors.

Metallo-β-lactamases can also be inactivated by metal chelators that remove the essential zinc ions in metallo-β-lactamases. Taniborbactam or Aspergillomarasmine A (figure 2A), or metal-based compounds that replace the zinc ions with other metals that gives rise to an inactive variant. The latter situation is the case of colloidal bismuth subcitrate, a compound used for the treatment of *Helicobacter pylori* infections. The use of chelators is appealing because these agents mimic a natural defence mechanism in vertebrate hosts. Metallo-β-lactamases activate a water molecule, which is responsible for the cleavage of the β-lactam ring. After this step, a central reaction intermediate with a negative charge is formed. This intermediate is bound to the active site by interaction with the metal centre and some conserved residues, such as Asn233 and Lys224 (figure 2B). Finally, this intermediate species receives a proton from a water molecule before being released from the active site. Notably, this intermediate is not present in the reaction of carba-penems has been elucidated. The zinc ions in metallo-β-lactamases activate a water molecule, which is responsible for the cleavage of the β-lactam ring. After this step, a central reaction intermediate with a negative charge is formed. This intermediate is bound to the active site by interaction with the metal centre and some conserved residues, such as Asn233 and Lys224 (figure 2B). Finally, this intermediate species receives a proton from a water molecule before being released from the active site. Notably, this intermediate is not present in the reaction of carba-penem hydrolysis that is catalysed by Serine β-lactamase. The elucidation of this common catalytic mechanism is of major relevance to advance in the metallo-β-lactamase inhibitor design, given that novel strategies inspired by the mechanism are possible. A representative example of this novel approach is the family of bisthiazolidines, which mimic the β-lactam antibiotics and are active against the three subclasses of metallo-β-lactamases (figure 2A). It is also necessary to elucidate which is the action of these new compounds on other cellular targets in bacteria.

The present prospects offers hope, but further efforts are needed in understanding how metallo-β-lactamases can be inhibited and, also importantly, how metallo-β-lactamases can escape the action of novel inhibitors by means of new mutations. Future developments should also consider that tebipenem, the first oral carbapenem,
is in phase 3 clinical trials. Therefore, the development of oral β-lactamase inhibitors to be paired with this antibiotic would be a major step forward in the fight against bacterial resistance.

As made evident by the COVID-19 pandemic, densely populated urban settlements characterised by poor hygiene, contaminated water, and close proximity of domestic animals favours the dissemination of antimicrobial resistance. This finding corresponds to cities, where 90% of the urban population growth is expected to take place. Global travel and food transportation will soon recover; however, the growing threat of antimicrobial resistance will not diminish. As bla genes become more and more widespread, vulnerable populations will probably bear the burden of untreatable infections. The wealth of information that has been gathered during the past 5 years in understanding metallo-β-lactamas (particularly NDM-1) should now be translated into practical solutions to counteract antimicrobial resistance.

Contributors
RAB and AJV conceived the idea for this Personal View and wrote the Personal View. MFM and M-AR did the literature search, analysed and discussed the data, made the figures, and also assisted in writing the Personal View. All authors discussed and approved the final version of the Personal View.

Declaration of interests
We declare no competing interests.

Acknowledgments
This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health to RAB and AJV (award number RO1AI100560). This work was also supported, in part, by funds and/or facilities provided by the Cleveland Department of Veterans Affairs (award number I01BX009749) to RAB from the Biomedical Laboratory Research & Development Service of the Veterans Biomedical Laboratory Research & Development Service of the Veterans Education, and Clinical Center VISN 10. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Veterans Affairs.

Editorial note: the Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations.

References
1 CDC. Antibiotic resistance threats in the United States. Atlanta, GA: Centers for Disease Control and Prevention, 2019.
2 O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. 2014 http://www.iapami.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for-the-health-and-wealth-of-nations_1-2.pdf (accessed June 22, 2023).
3 Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198: 962–70.
4 Morris DE, Cleary DW, Clarke SC. Secondary bacterial infections associated with influenza pandemics. Front Microbiol 2017; 8: 1041.
5 Wilder-Smith A, Green JA, Paton NI. Hospitalized patients with bacterial infections: a potential focus of SARS transmission during an outbreak. Epidemicl Infect 2004; 132: 607–08.
6 Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet 2020; 386: 995–1007.
7 Dudoignon E, Camélenta F, Deniau B, et al. Bacterial pneumonia in COVID-19 critically ill patients: a case series. Clin Infect Dis 2020; 72: 905–06.
8 Fattorini I, Creti R, Palma C, Fantosti A. Bacterial coinfections in COVID-19: an underestimated adversary. Ann Ist Super Sanita 2020; 56: 159–64.
9 Rawson TM, Moore ISP, Zhu N, et al. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis Clin Infect Dis 2020; 71: 2459–68.
10 Davis MW, McMunus D, Koff A, et al. Re-purposing antimicrobial stewardship tools in the electronic medical record for the management of COVID-19 patients. Infect Control Hosp Epidemiol 2020; 41: 1335–37.
11 García-Betancur JC, Appel TM, Esparza G, et al. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2021; 19: 217–23.
12 Sader HS, Castanheira M, Arendt SJR, Goossens H, Flamm RK. Geographical and temporal variation in the frequency and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bacterial pneumonia: results from 20 years of the SENTRY Antimicrobial Surveillance Program (1997–2016). J Antimicrob Chemother 2019; 74: 1595–606.
13 Cox JA, Vliege E, Mendelson M, et al. Antibiotic stewardship in low- and middle-income countries: the same but different? Clin Microbiol Infect 2017; 23: 812–18.
14 Acosta LD. Capacidad de respuesta frente a la pandemia de COVID-19 en América Latina y el Caribe. Rev Panam Salud Publica 2020; 44: 1.
15 Garcia PJ, Alarcón A, Bayer A, et al. COVID-19 response in Latin America. Am J Trop Med Hyg 2020; 103: 1765–72.
16 Erezuel GJ, Gafit A, Hugo A, et al. The COVID-19 pandemic: a call to action for health systems in Latin America to strengthen quality of care. Int J Qual Heal Care 2020; 32: 1–2.
17 Reardon S. Antibiotic treatment for COVID-19 complications could fuel resistant bacteria. 2020. https://www.sciencemag.org/news/2020/04/antibiotic-treatment-covid-19-complications-could-fuel-resistant-bacteria (accessed June 22, 2021).
18 Antimicrobial resistance in the age of COVID-19. Nat Microbiol 2020; 5: 779–799.
19 Tooker CL, Hinchliffe P, Bragginton EC, et al. β-lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 2019; 431: 3472–500.
20 Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clin Microbiol Rev 2020; 33: e00047–19.
21 Bush K. The ABCD’s of β-lactamase nomenclature. J Infect Chemother 2013; 19: 549–59.
22 Chang YT, Lin CY, Chen YH, Hsu EHR. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front Microbiol 2015; 6: 893.
23 Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35: 147–51.
24 Laurenti I, Riccio ML, Mazzariol A, et al. Cloning and characterization of blh/IM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999; 43: 1584–90.
25 Mojica MF, Bonomo RA, Fast W. Bl-Metallo-β-lactamas: where do we stand? Curr Drug Targets 2016; 17: 1029–50.
26 López C, Ayala JA, Bonomo RA, González LJ, Vila AJ. Protein determinants of dissemination and host specificity of metallo-β-lactamas. Nat Commun 2019; 10: 1667.
27 Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, blh/(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53: 5046–54.
28 Nordmann P, Poirel L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin Infect Dis 2019; 69 (suppl7): S521–28.
29 Wu W, Feng Y, Tang G, Qiao F, McNally A, Zong Z. NDM new β-lactamases and their bacterial producers in health care settings. Clin Microbiol Rev 2019; 32: e00115–18.
30 Mills MC, Lee J. The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global. Environ Pollut 2019; 255: 113145.
31 Rok R, Daniels-Haardt I, Becker K, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 2018; 24: 1241–50.
characterization of QPX7728, an ultrabroad-spectrum inhibitor for carbapenem-resistant bacterial infections. J Med Chem 2020; 63: 7491–507.

49. King AM, Reid-Yu SA, Wang W, et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 2014; 510: 503–06.

50. Wang R, Lai TP, Gao P, et al. Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat Commun 2018; 9: 439.

51. Zygiel EM, Nolan EM. Transition metal sequestration by the host-defense protein calprotectin. Annu Rev Biochem 2018; 87: 621–43.

52. Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 2010; 14: 218–24.

53. Corbin BD, Seeley EH, Raah A, et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 2008; 319: 96–65.

54. Balz G, Vitore-Horens L, Bethel CR, Bonomo RA, González LJ, Vila AJ. Clinical evolution of New Delhi metallo-β-lactamase (NDM) optimizes resistance under Zn(II) deprivation. Antimicrob Agents Chemother 2017; 62: e01849–17.

55. Cheng Z, Thomas FW, Ju L, et al. Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. J Biol Chem 2018; 293: 12606–18.

56. Rotondo CM, Syechten H, Koteva K, Wright GD. Suppression of β-lactam resistance by Aspergillomarasmine A is influenced by both the metallo-β-lactamase target and the antibiotic partner. Antimicrob Agents Chemother 2020; 64: e0386–19.

57. Lisa M-N, Palacios AR, Aitha M, et al. A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat Commun 2017; 8: 518.

58. Palacios AR, Rossi M-A, Mahler RS, Vila AJ. Metallo-β-lactamase inhibitors inspired on snapshots from the catalytic mechanism. Biomolecules 2020; 10: 854.

59. Hinscliffe P, González MM, Mojica MF, et al. Cross-class metallo-β-lactamase inhibition by bisthiadiazolines reveals multiple binding modes. Proc Natl Acad Sci USA 2016; 113: e3745–54.

60. Jain A, Uitley L, Parr TR, Zahawa T, Pucci MJ. Teipenem, the first oral carbapenem antibiotic. Expert Rev Ant Infect Ther 2018; 16: 513–22.

61. Kohayashi R, Konomi M, Hasegawa K, Morozumi M, Sunakawa K, Ushukata K. In vitro activity of teipenem, a new oral carbapenem antibiotic, against penicillin-nonsusceptible Streptococcus pneumoniae. Antimicrob Agents Chemother 2005; 49: 889–94.

62. Nadimpalli ML, Marks SJ, Montealegre MC, et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat Microbiol 2020; 5: 787–95.

© 2021 Elsevier Ltd. All rights reserved