Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review

Paula Beatriz Santiago¹, Carla Nunes de Araújo¹,², Flávia Nader Motta¹,², Yanna Reis Praça¹,³, Sébastien Charneau⁴, Izabela M. Dourado Bastos¹ and Jaime M. Santana¹*

Abstract

Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control.

Keywords: Proteases, Haematophagy, Digestion, Yolk formation, Immunity, Ticks, Triatomines, Mosquitoes

Background

Haematophagous arthropod vectors are spread worldwide. They are of medical and veterinary importance since their blood-feeding habit provides a scenario for the transmission of a variety of pathogens, including virus, bacteria, protozoans and helminths [1]. Although there are clinical differences among the diseases caused by these organisms, they share the tendency to coexist in low and middle-income countries. Additionally, for most of the infectious diseases transmitted by invertebrate vectors there are neither vaccines nor preventive treatments. Few chemotherapy drugs are available for the treatment with many serious adverse reactions and rapid emergence of resistant strains, generating social and economic losses in those countries. Chikungunya, Mayaro and Zika virus infections, Crimean-Congo haemorrhagic fever, dengue fever, Japanese encephalitis, Rift Valley fever, tick-borne encephalitis, West Nile fever, yellow fever, Lyme disease, plague, rickettsiosis, tularemia, Chagas disease, leishmaniasis, malaria, sleeping sickness, lymphatic filariasis and onchocerciasis are all examples of vector-borne diseases with global impact on morbidity and mortality (Table 1) since they affect more than one billion individuals and cause over one million deaths every year [2].

Ecological factors are associated with vector dispersion to urban areas [3]. Ticks, triatomine bugs, mosquitoes, sand flies, tsetse and black flies are the main haematophagous arthropod vectors [2], which present different feeding habits. In ticks and triatomines, this habit is seen in both female and male, and in all stages of development. Changing from one stage to the next requires at least one blood meal. On the other hand, only females of mosquitoes and sand flies require a blood meal to fulfill their need to complete the oogenesis process [4].

Vascular damage caused by the haematophagous bite during the repast triggers physiological defence responses in the host that are mainly determined by three important events: haemostasis, immunity and inflammation. To accomplish a continued blood flow, a saliva array of pharmacologically active biomolecules, as antihaemostatic, anti-inflammatory and immunomodulatory compounds, is injected into the bite site [5–9]. Within this context, different pathogens can be transmitted by...
Disease	Pathogen	Estimated number	Major distribution	Major vectors
Chikungunya	Chikungunya virus:	37,480 (Americas, 2015)	Africa, the Americas, Asia, Europe	Aedes spp.
Mayaro fever	Mayaro virus:	197 cases (2015)	South America	Haemagogus janthinomys
Zika	Zika virus:	No official WHO report	Africa and Asia (60s to 80s); Americas, Western Pacific	Aedes spp.
Crimean-Congo haemorrhagic fever	Crimean-Congo virus:	Regional outbreaks	Africa, the Balkans, the Middle East, Asia	Hyalomma ssp.
Dengue	Dengue virus, serotypes	3.2 million (Americas, South-East Asia and Western Pacific, 2015)	Africa, the Americas, Eastern Mediterranean, South-East Asia, the Western Pacific	Aedes aegypti and Aedes albopictus (secondary vector)
Japanese encephalitis	Japanese encephalitis virus:	68,000 (Asia, estimated per year)	South-East Asia and Western Pacific regions	Culex spp.
Rift Valley fever	Rift Valley virus:	Regional outbreaks	Africa, Arabian Peninsula	Aedes spp.
Tick-borne encephalitis	Tick-borne encephalitis virus:	10,000–12,000 (estimated per year)	Europe, northern China, Mongolia, the Russian Federation	Ixodidae
West Nile fever	West Nile virus:	Regional outbreaks	Africa, Europe, the Middle East, North America and West Asia	Culex spp.
Yellow fever	Yellow fever virus:	200,000 (estimated per year)	Africa, Central and South America	Aedes and Haemagogus
Lyme disease	Borrelia burgdorferi	25,359 (USA, 2014)	Areas of Asia, north-western, central and eastern Europe, USA	Ixodidae
Plague	Yersinia pestis (Enterobacteriaceae)	783 (2013)	Asia and South America (until 90s); Africa	Xenopsylla cheopis
Rickettsiosis	Species of the genera:	Millions of cases annually	Americas, Europe, Asia, Africa	Ticks, lice and fleas
Tularaemia	Francisella tularensis (Francicellaceae)	Regional outbreaks	North America, eastern Europe, China, Japan, Scandinavia	Dermacentor spp., Chrysops spp., Amblyomma americanum
American trypanosomiasis	Trypanosoma cruzi (Trypanosomatidae)	6 to 7 million	Central and South America	Triatominae
African trypanosomiasis	Trypanosoma brucei (Trypanosomatidae)	3,796 (2014)	sub-Saharan Africa	Glossina spp.
Leishmaniasis	Leishmania spp. (Trypanosomatidae)	900,000–1.3 million (estimated per year)	Americas, North Africa-Eurasia, East Africa, South-East Asia, Mediterranean basin	Plebotomine sand flies
Malaria	Plasmodium spp. (Plasmodiidae)	214 million (estimated, 2015)	sub-Saharan Africa, Asia, Latin America, the Middle East	Anopheles spp.
Lymphatic filariasis	Wuchereria bancrati (Onchocercidae)	120 million (2000)	Angola, Cameroon, Côte d’Ivoire, Democratic Republic of the Congo, India, Indonesia, Mozambique, Myanmar, Nigeria, the United Republic of Tanzania	Culex spp.
Onchocerciasis	Onchocerca volvulus (Onchocercidae)	25 million	sub-Saharan Africa, Africa, Yemen, Brazil, Venezuela	Simulium spp.
Babesiosis	Babesia spp. (Babesiidae)	1,762 (USA, 2013)	EUA	Ixodidae

Data from World Health Organization (WHO) web page available in <http://www.who.int/en/>. Accessed on September 15, 2016

aData from Brazilian Health Ministry

bRecent outbreak in South and Central America but no official count of the number of people infected was reported by WHO

cData from Centers for Disease Control and Prevention (CDC) web page available in <http://www.cdc.gov>. Accessed on September 15, 2016
vector saliva [10, 11]. Depending on each feeding habit, after achieving the necessary fluidity, the haematophilous can consume a large amount of blood in a single meal, and proceed to digestion [4]. Various proteases are involved in the blood meal digestion as a means to obtain the necessary energy for vital biological processes, guaranteeing the haematophilous arthropods’ survival, biological development and reproduction [11].

Proteases are enzymes that hydrolyse (a) peptide bond(s) in amino acid residue sequences; if such catalysis occurs in internal peptide bonds of a protein, they are called endopeptidases. However, when cleavage of a peptide bond takes place at the N- or C-terminal of a polypeptide chain, those enzymes are named exopeptidases. Protease classification involves the clustering of related sequences into families. Currently, there are seven main different families of proteases: aspartic, cysteine, glutamic, metallo, serine, threonine peptidase and asparagine lyase, all grouped according to the molecular composition of their active sites [12]. The clans represent one or more families that have evolutionary relationships evidenced by their tertiary structures or, when no tertiary structures are available, by the order of amino acid residues in the catalytic site and/or by common sequences around it [12]. Each clan is identified by two letters where the first represents the catalytic type of the families. There are three additional letters to assign a clan: P, for peptidases of mixed catalytic type; U, for peptidases of unknown catalytic type; and I, for inhibitors that are proteins. A clan identifier example is PA, which contains both serine PA(S) and cysteine peptidases PA(C). Regarding the family identification, it contains a letter representing the peptidase catalytic type together with a unique number [12]. For instance, S1 is the family of trypsin and chymotrypsin that also belongs to the PA(S) clan. Another clan example is CA, which contains several families of cysteine peptidases with structures like that of papain [12]. In this clan, C1 is the family of cathepsin B and L, peptidases that may act in the digestive vacuoles of protozoa and/or in the lysosomal system of eukaryotic cells [13].

Proteolytic enzymes may be synthesized aszymogens (inactive precursors) or as inactive forms bound to natural inhibitors to prevent unwanted protein degradation as well as to facilitate spatial and temporal organization of proteolytic activity [14]. Zymogen conversion to the active enzyme occurs by limited proteolysis and removal of an activation segment from its tertiary structure within an appropriate subcellular compartment or at the extracellular environment. Proteolysis of the activation segment may be performed by another peptidase or by autocatalysis, requiring, for instance, a drop in pH [14]. In this review, we highlight the functions of haematophilous arthropod proteases in blood-dependent biological processes, with an emphasis on their roles in vector biology.

The role of arthropod vector proteases in blood dependent processes

Haematophagy

Haematophilous arthropod vectors tend to take large blood meals, reducing the number of host visits and ensuring a supply of nutrients for a long period [4]. The blood-feeding habit can both occur from haemorrhagic pools that accumulate in the tissues following skin lacerations (pool feeders, as sand flies and ticks) or directly from a cannulated venule or arteriole (vessel feeders, as triatomines and mosquitoes) [15].

Haemostasis aims to restore vascular architecture and prevent blood loss leading to vasoconstriction, platelet aggregation and clotting [16, 17]. These would disrupt feeding and bleeding. Haematophilous saliva is injected at the bite site continuously during probing and ingestion phases to recognize and neutralize/modulate molecules involved in critical haemostatic pathways [17–20]. Among anti-haemostatic mechanisms, there is a variety of salivary natural protease inhibitors, pointing to the diverse cocktail arthropods produce against host proteases [21–24].

Advances in transcriptomic approaches have made it possible to analyse in a deeper insight the biochemical complexity of the saliva from many haematophilous arthropods, unravelling coding sequences for salivary gland proteases [25–36]. However, these sequences are not a guarantee of salivary protein expression, and few have been characterized so far [37]. From our experience, the saliva of triatomine bugs displays low proteolytic activities, tested by in-gel zymography or saliva direct incubation with fluorogenic substrates (unsubmitted).

Digestion

Proteins represent about 95% of the blood [4], from which albumin and haemoglobin (Hb) comprise over 80% of the total protein content [38]. Consequently, the haematophilous arthropods require proteases as the main enzymes in the midgut to process blood meal digestion [4, 38].

The blood meal is placed in the gut lumen, and it is usually separated from the epithelium by an extracellular semipermeable layer, known in some species as peri-trophic matrix [4]. In insects, the architecture of the gut is usually a simple tube constituted of one layer of epithelium resting on a continuous basal lamina. There are functional variable sections in the gut among the different insect orders, but generally a uniform pattern can be observed. The anterior segment receives the blood meal and displays specializations consistent with the abilities to post-feeding distension, ion and water regulation to dehydration of blood, and carbohydrate digestion; while
the posterior segment is often responsible for the synthesis and secretion of digestive proteases to digest the meal [39, 40]. The tick midgut consists of a central stomach that acts as a storage organ. Histologically, the lumen is surrounded by a thin epithelial layer and a thin outer layer of muscle fibers [11, 41].

Haematophagous arthropod vectors can be divided into two groups based on the different strategies to process the blood digestion [38]. In insects, midgut cells synthesize and secret digestive proteases in the lumen, typically via secretory vesicles or other small secretory structures placed near the base of the microvilli, where extracellular digestion occurs generating peptides, which are then absorbed by the epithelial cells [4, 39]. In haematophagous insects, the proteolytic network involved in midgut protein digestion is composed by serine proteases, mainly trypsins, with chymotrypsins and carboxypeptidases playing a supplementary role (Fig. 1). In this group, the triatomines are an exception as they use cathepsin and aspartic proteases [4].

In ticks, the digestion process occurs intracellularly through heterophagy by midgut cells [41]. Albumin is taken non-specifically by endocytosis into small acidic vesicles, while the endocytosis of Hb by digestive cells would be mediated by specific receptors and addressed to large digestive vesicles [42, 43]. Although the internalization of albumin and Hb by digestive cells occur by distinct routes, the proteolytic system that controls the albuminolytic and haemoglobinolytic pathways is the same [38]. A multi-enzyme model for Hb degradation was proposed in *Ixodes ricinus*. Inside the acidic digestive vesicle, the degradation pathway is initiated by cysteine and aspartic endopeptidases (cathepsin L, legumain and cathepsin D), generating large peptide fragments (8–11 kDa), followed by the action of cathepsins B and C exopeptidases, generating smaller peptides (2–7 kDa). Finally, serine carboxypeptidase (SCP) and leucine aminopeptidase (LAP) might participate in the liberation of dipeptides and free amino acids. It has been suggested that the final stages of Hb degradation take place both inside and outside of the digestive vesicles, in the cytosol. The heme moiety released forms aggregates that are accumulated in the hemosomes. The Hb specific receptor probably evolved as an adaptation to avoid the toxicity of the heme (Fig. 1) [11, 44, 45].

Yolk formation

A blood meal provides the necessary resources for haematophagous arthropods to produce their eggs [4]. The yolk precursor protein vitellogenin (Vg) is, in arthropods, synthesized in the fat body and then secreted into the haemolymph. After being uptaken by oocyte coated vesicles, the Vg suffers dissociation and a crystallization process occurs in the endosome compartment, forming aggregates that are accumulated in the hemosomes of the oocyte.
the yolk body. Vitellogenin proteolysis generates vitellin (Vt) in lysosome-like organelles. The final mature yolk body containing the crystalline Vt form provides the energy to support embryo development, together with lipids and sugars [46].

The accumulation of yolk proteins is regulated by the developmental hormones juvenile hormone (JH) and 20-hydroxyecdysone (20-HE), both found in low levels in young females. Once adults undergo eclosion, the level of JH rises and the fat body becomes responsive to signals that induce vitellogenesis [47]. The roles of JH also include the growth of terminal follicles and the development of oocyte competence for protein internalization [46].

Upon a blood meal, the JH level drops in haemolymph, while that of the egg development neurosecretory hormone (EDNH) increases to stimulate the release of ecdysone by ovaries. The latter is a steroidal prohormone that is converted in 20-HE, the main regulator of vitellogenesis in the fat body. This hormone stimulates the expression of Vg, which is secreted in the haemolymph and endocytosed by oocytes [47]. Besides the 20-HE, the nutrients consumed during a blood meal could also be a signal for vitellogenesis regulation by the fat body [48]. The hormonal regulated yolk formation steps are summarized in Fig. 2.

Immunity

All arthropods need to defend themselves against infectious pathogens. Their innate immune response has physical barriers that include the cuticle, gut, trachea, chemical barriers, and defender cells that allow well-developed humoral and cellular responses [49]. The humoral responses are accomplished by antimicrobial peptides, such as defensins, secreted by fat body, hemocytes and epithelial layer of the gut [49, 50].

Pathogen recognition occurs via soluble or transmembrane pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs), resulting in antimicrobial peptides synthesis, enzymatic cascades that can induce coagulation of haemolymph, wound healing and melanin formation. In addition, it may also activate phagocytosis, encapsulation, nodulation and antiviral response. Our current view of the arthropods immune system is represented in Fig. 3. Three major arthropod signalling immune pathways involved in the humoral and cellular responses have been described: the Toll, the immunodeficiency (IMD), and the JAK-STAT [51]. Innate immune response is triggered upon activation of Toll and IMD pathways, inducing antimicrobial peptide gene expression [52]. The JAK-STAT pathway also exerts its activity against such pathogens as viruses [53], bacteria [54–56], and *Plasmodium* [55, 57].

Among the enzymatic cascades, the prophenoloxidase (proPO) one leads to melanisation of pathogens and damaged tissues, one of the major innate defence systems in invertebrates. Tiny amounts of PAMPs recognized by the PRRs ensure the activation of zymogenic proPO into active phenoloxidase (PO) by a cascade of serine proteases. PO oxidizes tyrosine to dihydroxyphenylalanine and then to quinones, which are precursors of melanin and other toxic and reactive compounds. This process is controlled by specific protease inhibitors and by active PO in a complex manner aiming to avoid superfluous activation and production of cytotoxic compounds [51, 58, 59].

Finally, the presence of hypervariable PRRs in arthropods [60–62] with the ability to differently bind and recognize a range of microorganisms, microbial products, and multicellular parasites has shed some light on the possible existence of memory and specificity in arthropod immunity [62–64].

Proteases from haematophagous arthropod vectors

In ticks

The digestive proteolytic network from *I. ricinus* proposed by biochemical and genetic analyses indicated a
combination of four cysteine peptidase activities, cathepsins B (IrCB), C (IrCC), L (IrCL) and legumain (IrAE), and an aspartic peptidase activity, cathepsin D (IrCD) that operate together in haemoglobinolysis [65]. An insight into the gene transcription revealed that an increase in total haemoglobinolysis matches with the activity profiles of IrCC, IrAE, IrCD and IrCB, being the last the most abundant protease of the pathway [66].

The endolysosomal localisation of IrCL1 was confirmed by immunolocalization [67]. The legumain IrAE is expressed only in the gut tissue and is localized within the peritrophic matrix, beyond in the digestive vesicles of gut cells. IrAE hydrolyzed Hb to a predominant peptide of 4 kDa [68].

Cathepsin L-like cysteine proteases have been reported in Haemaphysalis longicornis [69], HICPL-A is up-regulated during the repast and cleaves bovine Hb in a dose-dependent manner at pH 5.5 [69]. Two other cathepsin L-like genes, HLCG-A and HLCG-B may also have important functions in the digestion of host Hb [70]. These cathepsin L-like cysteine activities are also present in Rhipicephalus (Boophilus) microplus tick crude midgut extracts [71–73], larvae [74, 75], and eggs [76]. The enzymes mediating these activities are named Boophilus microplus cathepsin L-like (BmCL1), R. microplus larval cysteine endopeptidase (RmLCE), and vittelin degrading cysteine endopeptidase (VTDCE), respectively. RmLCE is possibly the native form of the recombinant BmCL1 [74]. VTDCE is present in fat body, gut, salivary glands, ovary extracts, and haemolymph from partially or fully engorged females, suggesting it could have an extra ovarian origin, to be later internalized by oocytes [76]. Coexistence has been proposed between VTDCE and Vg/Vt with no polypeptide cleavage during vitellogenesis [77]. Although VTDCE has been classified as a cathepsin L-like cysteine [76], a very low similarity was found between its deduced amino acid sequence (AFK78425.1) and any other cysteine endopeptidase. On the other hand, phylogenetic sequence analysis revealed that VTDCE is similar to some tick antimicrobial peptides [78]. Moreover, the presence of VTDCE significantly inhibits Staphylococcus epidermidis growth after a period of 24 h. This is the first arthropod protease to be reported as an antimicrobial that is not correlated with its peptidase activity [78]. Finally, VTDCE, BmCL1 and RmLCE hydrolyse Hb and vitellin at acidic pH [73, 74, 76], and thus may have a fundamental role during tick development.

Taking into consideration the works mentioned above had been published before the R. (B.) microplus genome sequencing [79], we decided to carry out a deeper investigation to differentiate the sequence annotations and features of those three proteases. After a search into R. (B.) microplus genome database (GenBank: HM748961), ten different protein-coding genes for cathepsin L were identified, including BmCL1 (AAF61565.1); nevertheless, none of them codes for VTDCE. A comparative pairwise amino acid sequence alignment demonstrates a homology of, at least, 97% among the sequences (Table 2), that together with the fully identified active site residues (Additional file 1) may indicate R. (B.) microplus presents ten active cathepsin L isoforms. It is not possible to conclude that BmCL1 and RmLCE are the same isoform. However, a stage specific expression pattern may exist to guarantee the success of cathepsin L blood dependent processes in this tick.

Tsuji et al. [80] reported the molecular characterization of a cathepsin B-like named longipain from the midgut.
epithelium of *H. longicornis* tick. It is specifically localized in the lysosomes and secreted into the intestinal lumen, following blood-feeding. Enzymatic assays with natural substrates indicate that longipain cleaves spectrin, an important component of erythrocyte membranes, but not Hb. Endogenous RNAi knockdown experiment suggests longipain activity in ticks is involved in feeding capacity and protection against parasites [80]. It is worth pointing out that this toxic effect may be direct and/or by means of the degradation of ingested proteins and peptides.

Legumains have been identified in the gut of *H. longicornis*, *H. longicornis* legumain 1 (HILgm1) and *H. longicornis* legumain 2 (HILgm2), by their ability to cleave Z-Ala-Ala-Asn-AMC at neutral pH [81, 82]. Differently, the optimal pH activity of *I. ricinus* legumain from *I. ricinus* is acidic [68]. HILgm1 and HILgm2 localize in the midgut epithelium and are upregulated during the blood-feeding process. However, HILgm2 is expressed at a lower level than HILgm1 during digestion and there is no expression of HILgm2 above 96 h of feeding. The expression of HILgm1 continues until full engorgement [82]. Moreover, the cleavage of bovine Hb by these legumains corroborates their role in the digestion of blood proteins [83]. Silencing of both genes by RNAi has revealed an extended feeding period, survival decrease, weight loss, delayed oviposition and reduced number of normal eggs. In addition, the epithelium of the gut shows, upon this condition, damage and disruption of normal cellular remodelling during feeding, resulting in luminal narrowing in silenced individuals [83].

The results of some very well designed experiments indicate that three cathepsin D isoforms (*IrCD 1–3*) play central and distinct roles in the physiology and development of *I. ricinus*. *IrCD1* is associated with the gut of partially engorged female ticks and is induced by feeding. This protease plays a haemoglobinolytic role in the digestive vesicles supported by immunolocalization and RNAi knockdown. *IrCD2* isoform is expressed both in gut and salivary glands and its expression peak is observed in fully fed females. *IrCD3* isoform is expressed in ovaries, and therefore is not related to haemoglobinolysis [84]. It has been proposed *IrCD1* would act together with *IrAE*, while *IrCD2* could be secreted into the gut lumen to generate haemoglobin-derived antimicrobial peptides to preserve the blood meal. Finally, *IrCD3* isoform would play a role in yolk protein degradation [85].

Other aspartic proteases have been shown to be also involved in yolk degradation [11]. Eggs of *R. (B.) microplus* express two aspartic proteases able to degrade Vt during embryogenesis: boophilus yolk cathepsin (BYC) and tick heme-binding protease (THAP). The activity of THAP seems to be regulated by heme molecule, and BYC also cleaves Hb [86-88]. Interestingly, a cathepsin D from this tick midgut (BmAP) may be responsible for the generation of antimicrobial peptides, suggesting that proteases play roles in immune response against parasite invasion [85, 89]. At last, a *H. longicornis* cathepsin D (longepsin) is highly expressed in the midgut after a blood meal and hydrolyses Hb, besides being expressed in the salivary glands [90].

Some SPs have also been described in ticks. A multi-domain SP from *I. ricinus* named *IrFC* triggers coagulation of haemolymph in response to bacterial lipopolysaccharides, as its homolog in horseshoe crab. RT-PCR analysis has revealed that the *IrFC* mRNA is expressed in all life stages, and in adults it is present mainly in hemocytes as observed by indirect immunofluorescence microscopy, suggesting this enzyme has a function in tick immunity [91].

HLSG-1 and HLSG-2 SPs of the hard tick *H. longicornis*, which carries and transmits various pathogens [92], are blood meal-induced and expressed in the midgut,
salivary glands as well as in other organs [93]. Another H. longicornis SP named HISP is expressed during development and is localized in the adult tick midgut. This protease contains the domains CUB (complement C1r/C1s, Uegf, Bmp1) and LDL (low-density lipoprotein receptor class A domains), important at mediating extracellular protein–protein interactions [94–96]. Lower levels of HISP upon RNAi correlates well with the diminished capacity of ticks to degrade host erythrocytes, suggesting this enzyme is involved in haemolysis. Moreover, the recombinant protein rHISP also shows haemolytic activity in vitro in a dose-dependent manner [95]. Two other SPs studied, HISP2 and HISP3, are also localized in the midgut epithelial cells and lumen of adult ticks [97]. Silencing of these three SP genes together have resulted in body weight reduction, indicating they may form a proteolytic network for host Hb digestion in the midgut of ticks [97]. Finally, a carboxypeptidase-like SP, HISCPI, is found in the vacuoles of midgut endothelial cells of H. longicornis, and its up-regulation is observed after a blood meal. Of interest, this protease is also able to cleave Hb [98].

Curiously, I. scapularis degradome (the full repertoire of proteases encoded by the genome) is mainly represented by metalloproteases (~40%) [99]. These are organized in 23 families, but functions in tick physiology are unknown for many of them. M12 family contains 14 enzymes that are believed to be involved in the regulation of blood-feeding. For instance, recombinant M12 AAP22067 mediates gelatinase and fibrinogenolytic activities [19], which are essential to maintain host blood in a fluid state during tick feeding. Metalloproteases make part of the midgut transcriptome from the hard tick Dermacentor variabilis [100], but their functions are unknown.

From the hard tick H. longicornis, an aminopeptidase member of the M17 family, HILAP, is upregulated by blood meal during initial feeding period and acts in the liberation of free amino acids in the cytosol of midgut epithelial cells [101]. In the sialotranscriptome of Hae- maphysalis flava, metalloprotease genes supposed to be involved in modulating host haemostasis are over expressed in semi-engorged ticks, probably to maintain blood flow [102]. In R. microplus, RNAi silencing of metalloproteases affects average egg weight and oviposition rate [103]. In addition, three metalloprotease sequences from Amblyomma americanum show identity to annotated tick metalloproteases, and another shows identity to I. scapularis endothelin-converting enzyme (ECE) [104]. Endothelins are a family of potent vasoconstrictive peptides [105]. Thus, the role of ECE in haematomphagous arthropod saliva might be the hydrolysis of endothelins to impair vasoconstriction.

Finally, tick salivary glands also express metalloproteases. From I. ricinus, two cDNAs coding homologous putative metalloproteases (Metis 1 and Metis 2) are expressed in salivary glands during feeding most likely to stimulate fibrinolysis. Indeed, knock-down by RNAi of Metis 1 and Metis 2 impairs blood meal completion [106]. The presence of specific antibodies against HLMP1, a recombinant tick reprolysin metalloprotease, results in lower feeding efficiency of H. longicornis in rabbits [107]. Protein sequences of the reprolysin family of metalloproteases fromIxodes persulcatus (Ip-MPs), Rhipephalus sanguineus (Rs-MPs) and R. microplus (BrRm-MPs) have been found in the salivary glands of partially and fully fed female ticks, and may be required during tick feeding to manipulate host defences and support tick haematophagy [108].

In summary, cysteine-, serine-, aspartic- and metalloproteases have been described in ticks (Table 3 and Fig. 4). Notably cysteine and aspartic proteases are known for their role in tick digestion; however, as evidenced, they are distributed in different tissues where they have variable biological functions. Serine proteases are related to digestion and immunity, and metalloproteases have been described in the salivary glands and may act mainly on the vector-host interface to prevent haemostasis. Tick proteases play wide biological roles and their expressions and activities undergo tissue specific regulation.

In triatomines

There are a few reports on triatomine protease activities. In triatomine bugs, two cathepsin L-like proteases of Triatoma brasiliensis, TBCATL-1 and TBCATL-2 [109]; one of R. prolixus, RpCat [110], and another of T. infestans (CatLI) [111] have been characterized in the midgut of these species. TBCATL-1 and TBCATL-2 proteolytic activities have been detected in the posterior midgut by zymogram assay. Cathepsin B (CatB1) is present in gut extracts of T. infestans. CatLI and CatB1 activities decrease during the first two days after feeding but increase to a maximum value at five and 10 days post feeding. A strong acidic peptidase activity found in the gut extract of T. infestans is possibly mediated by a cathepsin B. Although the molecular features and functional properties of the protein are unknown, the enzymatic activity is efficiently inhibited by CA-074, a specific cathepsin-B inhibitor [111]. The cathepsin B-like activity, which is present in the midgut of R. prolixus, is increased following a blood meal [112]. Indeed, trace amounts of cathepsin B are detected in the lysosome of R. prolixus midgut cells before feeding, but after blood sucking, cathepsin B localizes in a granular precipitate associated with this organelle, and may be released in the gut lumen [113].

A cathepsin D aspartic-like protease activity is detectable in the blood-sucking triatomine R. prolixus [114]. It has been suggested that Trypanosoma cruzi colonization of R. prolixus may modulate the expression of cathepsin D in the invertebrate since its activity is much higher on
Table 3 Proteases from ticks

Protease	Species	Synthetic/Natural substrate	Inhibitor	Localization	Role	Reference
Cysteine						
Cathepsin L						
IrCL 1	*Ixodes ricinus*	Z-Phe-Arg-AMC	E-64; Z-Phe-Phe-DMK	Gut	Digestion	[67]
HICPL-A	*Haemaphysalis longicornis*	Z-Phe-Arg-AMC	Leupeptin; Antipain; E-64	Gut	Digestion	[69]
HLCG-A; HLCG-B	*H. longicornis*	–	–	–	Digestion	[70]
BmCL 1	*Rhipicephalus (Boophilus) microplus*	H-D-Val-Phe-Lys-pNA; Hb	E-64; Leupeptin; Antipain	Gut	Digestion; yolk formation	[72, 73]
RmLCE	*R. (B) microplus*	AbzAla-Ile-Ala-Phe-Phe-Ser-Arg-Gln-EDDnp; N-Cbz-Phe-Arg-AMC; Hb	E-64; Pepstatin A; Papain	Larve; gut	Digestion; yolk formation	[72, 74]
VTDCE	*R. (B) microplus*	N-Cbz-Phe-Arg-AMC; Hb	E-64	Salivary glands; gut; haemolymph; fat body; ovary; eggs	Yolk formation; immunity; digestion	[76, 77]
Cathepsin B						
IrCB	*I. ricinus*	–	–	Gut	Digestion	[44, 66]
Longipain	*H. longicornis*	Z-Phe-Arg-AMC	E-64	Gut	Immunity	[80]
Cathepsin C						
IrCC	*I. ricinus*	Hb	–	Salivary glands; gut; ovary	Digestion	[44, 66]
Legumain						
IrAE	*I. ricinus*	Z-Ala-Ala-Asn-AMC	Azapeptidil	Gut	Digestion	[68]
H1Lgm 1; H1Lgm 2	*H. longicornis*	Z-Ala-Ala-Asn-AMC	Iodoacetamide; N-ethylmaleimide	Gut	Haematophagy; digestion; yolk formation	[81–83]
Aspartic						
Cathepsin D						
IrCD1	*I. ricinus*	Hb	Pepstatin	Gut female	Digestion	[85]
IrCD2	*I. ricinus*	–	–	Gut; salivary glands	Digestion	[85]
IrCD3	*I. ricinus*	–	–	Ovaries	Yolk formation	[85]
BYC	*R. (B) microplus*	Hb; Vitellin	–	Eggs	Yolk formation	[86, 87]
THAP	*R. (B) microplus*	Abz-AIAFFSRQ-EDDnp	Pepstatin	Eggs	Yolk formation	[88]
BmAP	*R. (B) microplus*	–	–	Gut	Immunity	[89]
Longepsin	*H. longicornis*	FITC-casein	Pepstatin A	Salivary glands; gut	Digestion	[90]
Serine						
Trypsin-like						
IrFC	*I. ricinus*	–	–	Hemocytes	Immunity	[91]
HLSG1; HLSG2	*H. longicornis*	Bz-l-Arg-pNa; BSA	Salivary glands; gut	Haematophagy; digestion		[93]
HISP; HISP 2; HISP 3	*H. longicornis*	Bz-l-Arg-pNa; BSA	–	Gut	Digestion	[94, 95, 97]
Carboxypeptidase-like						
HISCP1	*H. longicornis*	Z-Phe-Leu, Pyr-Phe-Leu-pNA	PMSF	Gut	Digestion	[98]
Metallo						
Is-degradome		*Ixodes scapularis*	–	–	Digestion	[99]
days 1–3 after infection [114]. A similar result has been found in *T. infestans* [115], another vector of *T. cruzi*. Yet, *T. infestans* midgut TiCatD is strongly induced after feeding whereas TiCatD2 is upregulated only 10 to 20 days after meal, suggesting that the former might play a role in processes related to early digestion [116]. The midgut transcriptome of *R. prolixus* shows that transcripts from digestive enzymes are significantly well expressed, with a predominance of cysteine and aspartic proteases [117].

More recently, triatomine cathepsin D has also been proposed to be involved in vitellogenesis. *Dipetalogaster maxima* cathepsin D (DmCatD) is expressed in the fat body and ovarian tissues during the reproductive cycle. As for other peptidases, DmCatD also degrades Vt. Early activation of DmCatD seems to be a relevant physiological mechanism in yolk protein degradation during follicular atresia to either increase female lifetime or sustain younger oocytes until improvement of nutritional conditions [118].

Triapsin is the best serine protease characterized in triatomines. This trypsin-like SP is expressed in the D2 pair of *T. infestans* salivary glands as an inactive precursor and activated during salivation stimulated by biting. Triapsin shows high specificity towards arginine at the P1 site. This protease may be involved in hydrolysis of the superfamily of Proteinase Activated G protein-coupled Receptors (PAR), which regulates growth, development, inflammation, and responses to injury. Triapsin is unlikely to be involved in digestion since this phenomenon in Hemiptera seems to depend exclusively on the action of cysteine and aspartic proteases [18]. However, it is imperative to perform experiments to test the involvement of this peptidase on the physiology of triatomines and other insect vectors of illnesses.

Our group has used next-generation sequencing and mass spectrometry-based protein identification to study the transcriptome and proteome of *R. neglectus* salivary glands (sialome) [25]. The results have revealed abundant transcripts of putative secreted trypsin-like peptidases, although only one SP was detected in the proteome, suggesting physiological conditions may influence secretion [25]. Sequence alignments disclosed the presence of domains present in proteins that act in haemostasis and immunity such as the CUB domain [119] and the cysteine-stabilized structures for molecular recognition (CLIP, LDLa and SUSHI domains). Five SP sequences from *R. neglectus* sialotranscriptome [25] match to SPs sequences from *T. infestans* [28, 120], *T. braziliensis* [29], *P. megistus* [30] and *R. prolixus* [117]. Although physiological roles of SPs are unknown, their presence in the sialotranscriptome of different triatomine species is indicative of the importance of these proteases in haematophagy.

Two metalloproteases are expressed in the haemolymph of *R. prolixus* infected with *Enterobacter cloacae* [121] or *Trypanosoma rangeli* [122]. The source of these proteases is the fat body and their release into the haemolymph upon infection suggests these enzymes may be involved in *R. prolixus* defence mechanisms. In *T. matogrossensis* saliva [123] and *R. prolixus* oddities [117], sequences related to the astacin family of metalloproteases have been reported. In the sialome of *R. neglectus*, one coding sequence related to the zinc-dependent metalloproteases from the astacin-like metalloproteases as well as other two related to the adamalinis/reprolysin family, which includes ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs), have also been reported. Both are members of the metzincins metalloproteases superfamily [25]. Astacin family members can hydrolyse

Table 3 Proteases from ticks (Continued)

Name	Species/Description	Function	Source
Dv-coding	*Deinococcus variabilis*	–	Gut
Hf-coding	*Haemaphysalis flava*	–	Salivary glands
Aa-sequences	*Amblyomma americanum*	–	Salivary glands
Metis 1; Metis 2	*I. ricinus*	–	Salivary glands
M12			
AAP22067	*I. scapularis*	–	Salivary glands
M17			
Reprolysin			
HLMP1	*H. longicornis*	–	Gut
HILAP			

Page 10 of 20
fibrinogen and fibronectin [124–126], leading to local haemorrhage [127], whereas disintegrins bind to platelets acting as potent inhibitors of platelet aggregation [128–130]. These proteases may have key functions in the maintenance of blood flow at the bite site. In summary, in triatomines vectors, as observed in ticks, protease activities involved in digestion belong to cysteine and aspartic families (Table 4 and Fig. 4), whereas serine- and metallo- proteases seem to participate in some aspects of haematophagy and immunity.

In mosquitoes

Vitellogenic cathepsin B (VCB) from *Aedes aegypti* mosquito is specifically expressed by fat body during vitellogenesis in response to repast, internalized by developing oocytes, and deposited in the yolk bodies for the onset of embryogenesis. VCB hydrolyses Vg at acidic pH, and may be involved in the embryonic degradation of yolk proteins [131].

In female *Ae. aegypti* two different groups of gut trypsins show different levels of expression after a blood meal. The first one is the early trypsin group, whose
transcription occurs in the midgut of newly emerged adult before feeding and is under the control of JH [132], being translated at detectable levels after blood-feeding [133, 134]. Early trypsins, secreted either through stretching of the midgut or osmotic effect, would be required for the transcription of the second group, the late trypsins. It is possible that released amino acids are also involved in this process [135, 136]. Expression of late trypsins requires complete synthesis of new mRNAs after feeding, produced in large amounts 8–10 h after a blood meal, suggesting it may have a major role in the digestive process [133]. These two phases would allow the mosquitoes to assess the quality of the meal before committing to the synthesis of late trypsins, since large amount of these proteases in the absence of blood might be harmful for the mosquitoes [135].

Within this context, three trypsins of *Ae. aegypti* [Aedes Early Trypsin (AaET), AaSPVI and AaSPVII] had their enzymatic activities compared among them and with bovine trypsin (BvT). The specific activities of AaET and BvT are comparable, and 5–10 times higher than those of AaSPVI and AaSPVII late trypsins. In addition, AaSPVI is 3–4 times more active on Hb than AaET and AaSPVII [137]. AaSPVI RNAi knockdown, but not that of AaSPVII, triggers a significant decrease in the late phase trypsin-like activity. In contrast, injections of AaSPVI and AaSPVII dsRNAs decrease both degradation of endogenous serum albumin in vivo and egg production. Taken together, these data indicate that AaSPVI and AaSPVII contribute to blood digestion and oocyte maturation [138]. *Ae. aegypti* late trypsin (AaLT), that lacks trypsin-like activity, and AaSPI are classified as collagenase-like SP and might be

Protease Species	Species	Synthetic/Natural substrate	Inhibitor	Localization	Role	Reference
Cysteine						
Cathepsin L	*Triatoma brasiliensis*	Gelatin	E-64; CA-074	Gut	Digestion	[109]
TBCATL-1; TBCATL-2	*Triatoma brasiliensis*	–	–	–	–	–
RpCat	*Rhodnius prolixus*	–	–	Gut	Digestion	[110]
CatL1	*Triatoma infestans*	–	–	–	–	Digestion
Rp-coding sequences	*R. prolixus*	–	–	–	–	Digestion
CatB1	*T. infestans*	Z- Phe-Arg-pNA	E-64; CA-074	Gut	Digestion	[111]
Rp-activity	*R. prolixus*	N-Benzoyl-DL-Arg-β-Napthylamide	–	Gut	Digestion	[113]
Cathepsin B						
Aspartic; Cathepsin D						
Rp-activity	*R. prolixus*	Hb	Pepstatin A	Gut	Immunity	[114]
Ti-coding sequences	*T. infestans*	–	–	–	–	–
TiCatD; TiCatD2	*T. infestans*	MOCAc-GKPILFwFRLK (Dnp)-D-R-NH2	Pepstatin A	Gut	Digestion	[116]
Rp-coding sequences	*R. prolixus*	–	–	Gut	Digestion	[117]
DmCatD	*Dipetalogaster maxima*	–	–	Fat body	Yolk formation	[118]
Serine; Trypsin-like						
Triapsin	*T. infestans*	pNA; H-D-Ile-Pro-Arg-pNA	APMSF; SBTI; Antipain	Salivary glands	Haematophagy	[18]
Rn-coding sequences	*Rhodnius neglectus*	–	–	–	–	–
Metallo						
Rp-activity	*R. prolixus*	Gelatin	1–10 Phenanthroline	Fat body, haemolymph	Immunity	[121, 122]
Astacin						
Tm-sequences	*Triatoma matogrossensis*	–	–	Salivary glands	Haematophagy	[123]
Rp-sequences	*R. prolixus*	–	–	Oddities	–	–
Rn-coding sequence	*R. neglectus*	–	–	Salivary glands	Haematophagy	[25]
Reprolysin						
Rn-coding sequence	*R. neglectus*	–	–	Salivary glands	Haematophagy	[25]

Table 4 Proteases from triatomines
related to mosquito defence against complement present in the host blood [139].

A gene cluster of gut trypsin-like SPs, Antryp 1–7, has been identified in Anopheles gambiae [140–142]. Antryp 1 and 2 present selective proteolytic activity against blood components; Antryp1 mediates degradation of both Hb and serum albumin, whereas Antryp2 seems to be mainly active on Hb. While transcription of Antryp 1 and 2 is induced after a blood meal, Antryp 3–7 are constitutively transcribed in females and their levels are down-regulated after blood-feeding. These observations suggest that Antryp 3–7 are involved in initiating the events leading to the expression of other SPs directly related to mosquito defence against complement present in the host blood [139].

An intriguing possibility is that SPs levels in haematophagous vectors may be associated with infections. Eight immune related SPs have been described in An. gambiae: ISPL5, ISP13 [153, 154], AgSp14D1 [155], Sp14A, Sp14D2, Sp18D, Sp2A [156], and Sp22D [156, 157]. These SPs, except for Sp18D and Sp2A, probably participate in the anti-bacterial and anti-Plasmodium defence mechanisms [153–155]. Furthermore, AgSp14D1 catalytic domain has similar sequence identities to kallikreins and coagulation factors, members that are involved in immune and wound responses [155]. Sp14A, Sp14D1, and Sp14D2 present an amino-terminal clip domain, characteristic of secreted proteases that activate prophenoloxidases, regulate melanotic parasite encapsulation and antimicrobial peptide synthesis [155]. Regarding Sp22D mRNA, it is expressed constitutively in three immune related cell types: adult hemocytes, fat body, and midgut epithelial cells. The authors suggest that Sp22D is secreted into the hemolymph where it may interact with pathogen surfaces and initiate an immune response as rapid as pathogen detection [157]. Sp2A and Sp18D functions remain to be characterized, although Sp18D present the clip domain and Sp2A is similar to vertebrate and invertebrate blood coagulation factors [155]. In An. dirus, the main vector of malaria in Southeast Asia, the SP cDNAs for ClipSP1, SerF2, and SerF3 have been analyzed upon P. falciparum infection. Only SerF3 seems to be upregulated in infected An. dirus, and might also play a role in the mosquito immunity [158].

Metalloproteases have also been reported in mosquitoes. Late metalloprotease trypsin, leucineaminopeptidase (LpNa), carboxypeptidase A (HPA) and carboxypeptidase B (HA) of the midgut of An. aegypti females present enzymatic activities stimulated 20–24 h after a blood or protein, but not free amino acids meal. There is a positive correlation between metalloprotease activity and protein concentration in the meal [159]. AgMMPI, a matrix metalloprotease (MMP) from An. gambiae, is expressed as a transmembrane/membrane protein (MT-MMPI) in epithelial tissues and as a secreted (S-MMPI) isoform in hemocytes. MT-MMPI transcript levels show a remarkable response to blood meal digestion and to midgut invasion by Plasmodium ookinetes [160]. Since tissue invaded by pathogens has often been associated with increased MMP activity, this study suggests MMPs may have an impact in vector competence determination [161, 162].

The mRNA of lysosomal aspartic protease (mLAP) of Ae. aegypti females is expressed in fat body during vitellogenesis and is upregulated between 6 and 12 h after blood meal, with high levels at 24 h and then gradually
Table 5 Proteases from dipterans
Protease
Cystein
Cathepsin B
GmCath B
Cathepsin D
mLAP
Serine; Trypsin-like
AaET; AaSVI; AaSNVI
AaLT
Antryp-7
Cq-proteins
Aa-proteins
ISPL5; ISP13
AgSP14D1
SP14A; SP14D2; SP18D; SP2A
SP22D
ClipSP 1; SerF 2; SerF 3
Pptyp 1-4
Litryp 1; Litryp 2
Chymotrypsin-like
JHA1S
AaChymo
AaSP II-V
Aa-protein
Anchym 1; Anchym 2
AgChyL
Anachy1; Anachy2
Andchy1; Andchy2
Ppchym 1; Ppchym 2
Colagenase-like
AaSPI
Metallo; Leucine-aminopeptidases
LpNa
Carboxypeptidase A and B
HPA; HA
MIMP
AgMMP 1
declining. It has been suggested a negative translational regulation of mLAP expression by 20-HE [163].

In summary, the vast majority of mosquito peptidases are serine proteases involved in digestion (Table 5 and Fig. 4), and evidences indicate that they probably participate in other processes, including immunity and development, suggesting they are multitasking enzymes. Interestingly, a member of the metalloprotease class is also involved in digestion. Additionally, although products coding for serine proteases from salivary gland transcriptome have been reported in some mosquito species, the question of whether they have a function in saliva remains to be investigated.

In other dipterans

Four trypsin-like (Pptryp1-Pptryp4) and two chymotrypsin-like (Ppchym1 and Ppchym2) cDNAs from *Phlebotomus papatasi* midgut have been studied. Ppchym1 and Ppchym2 expression profiles are similar to *Ae. aegypti* early and late trypsins, suggesting that a two-phase digestive mechanism also occurs in sand flies [164]. In *Lutzomyia longipalpis* two trypsin-like SP cDNAs, Lltryp1 and Lltryp2, have also been described [165]. While Lltryp1 is expressed in females after a blood meal, Lltryp2 is detected in both sexes regardless of feeding. *L. longipalpis* infection by *Leishmania major* promastigotes has not modified the expression levels of Lltryp1 and Lltryp2. It is plausible that different results may be obtained when infections are performed with *Leishmania chagasi* amastigotes [166]. In contrast, a correlation has been reported between *Leishmania* spp. infections and reduced trypsin-like SP activity in *P. papatasi*. The presence of specific inhibitors of trypsin in the blood meal prevents the early killing of *L. major* and *Leishmania donovani* in the midgut of this insect species, implying that the proteolytic activity in the sand fly midgut modulates vector susceptibility to infections [167–169]. Finally, a cathepsin B (GmcathB) from tsetse *Glossina morsitans morsitans* is induced after blood meal and can degrade bovine Hb and serum albumin in a wide pH range [170].

Conclusions

In this review, we discussed the role of some proteases involved in processes related to the blood-feeding habit of arthropods: blood sucking, digestion, yolk formation, immunity and in the transmission and survival of pathogens. The diversity and expansion of proteases families assigned to these processes in the insects and ticks presented here reinforce the hypothesis that haematophagy evolved independently several times in haematophagous organisms, including within Insecta [15, 171]. It is possible that to adapt to blood-feeding habit, the set of proteins available in an ancestral non-haematophagous lineage have faced the challenge of developing new biological activities, resulting in the generation of the essential nutrients and detoxification of the adverse molecules [172].

The combination of arthropod cysteine/aspartic protease network for protein digestion may have evolved early in metazoan, predating the transition to serine proteases based digestion found in insects [85, 173, 174]. The remarkable exception for this picture occurs in triatomine bugs, a feature consistent with its evolutionary path from hemipteran ancestors feeding on sap and seeds, which may have re-routed the extracellular digestion from trypsins to cathepsins to avoid the trypsin inhibitors found on seeds [4]. Therefore, two evolutionarily distinct haematophagous vectors, ticks and triatomines, utilize this combination of cysteine and aspartic proteases to perform most of the digestive function [11]. Notably, the evolutionary path of these vectors indicates that their conserved bulk of digestive proteases are related by convergent evolution [172].

We have noticed that authors have given different names for proteases belonging to the same clan or isoforms even in a single organism. This issue calls for a unified nomenclature to avoid misunderstanding and ambiguities. Thus, we suggest that a careful sequence analysis be done when describing a new gene to name it according to the clan (or clan prototype) name and in the case of already studied proteases, rename them. MEROPS database (merops.sanger.ac.uk) is very useful to define accurate systematic nomenclature, since it allows search for organism peptidase, family, clans, substrates, inhibitors and other resources.

Considering the central functions that proteases from haematophagous arthropod vectors have, a question that arose is whether proteases could be employed as potential targets for the development of alternative strategies for arthropod vector control, for instance, in the emerging investigation on arthropod protease inhibitors [175]. Another question would be if these molecules can stimulate immune mechanisms in the host that could block the transmission of microorganisms by these vectors. Resolving this issue would require the isolation of the best candidates and to accomplish extensive investigations aiming to determine the molecular interactions and mechanisms involved in the functions of proteases.

Additional file

Additional file 1: Overview of multiple sequence alignment of ten predicted Cathepsin L from *R. (B.) microplus*. The alignments were performed by multiple sequence comparison using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/), and manually edited using Aline (http://bondray.org/software/aline.html). Black, fully conserved residues. Gray, not conserved residues. Blue, catalytic residues. (BMP 2207 kb)
Abbreviations
20-HE: 20-Hydroxyecdysone; CUB: Complement C1r/C1s, Uegf, Bmp1 domain; DREDD: Caspase-8 like; EDNH: Egg development neurosecretory hormone; Hb: Haemoglobin; IMD: Immunodeficiency pathway; JH: Juvenile hormone; LDLa: Low-density lipoprotein receptor domain class A; PAR: Proteinase-activated G protein coupled receptors; PO: Phenoloxidasease; SPS: Serine proteases; SUSH: Domain abundant in complement control proteins; Vg: Vitellogenin; Vt: Vitellin

Acknowledgements
We are grateful to the Vice-Presidency for Research and Graduate Studies of the University of Brasilia.

Funding
This work was supported by MCTI/CNPq/FNDCT/PRO-CENTRO-OESTE (407730/2013-3 and 407855/2013-0), CAPES/Incentivo a Pesquisa em Parasitologia Básica (23038.005298/2011-83), FAPDF (193.001.076/2015, 193.001.053/2015 and 193.000.082/2015), INCT-CNPq-FAPERG (465771/2014-9), CNpq, Finep and UnB.

Availibility of data and materials
Not applicable.

Authors’ contributions
PBS, CNA, FNM, YRP, SC, IMDB: conceived the study, and wrote the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasilia, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil.
2Faculdade de Ceilandia, Universidade de Brasília, Centro Metropolitano, Conjunto A, Lote 01, 72220-275 Brasília, DF, Brazil. *Programa Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasilia, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil.
3Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil.

Received: 17 June 2016 Accepted: 27 January 2017

Published online: 13 February 2017

References
1. Mehlhorn H. Arthropods as vectors of emerging diseases, vol. 3. Germany: Springer International Publishing AG; 2012.
2. World Health Organization. Vector-borne diseases. 2016. http://www.who.int/mediacentre/factsheets/fs387/en/. Accessed 15 Sep 2016.
3. Ribeiro G, Gugel-Gonçalves R, Reis RB, Santos CG, Amarim A, Andrade SG, et al. Frequent house invasion of the blood-sucking bug Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol. 2001;31(4–5):465–72.
4. Mannino DM, Baker CJ, Charles-Dominique A, Strickland GT, Azzam K, et al. The biology of blood-sucking in insects. 2nd ed. New York: Cambridge University Press; 2005.
5. Ribeiro JM. Role of saliva in blood-feeding by arthropods. Annu Rev Entomol. 1993;38:673–88.
6. de Araújo CN, Bussacos AC, Sousa AO, Hecht MM, Teixeira AR. Interactome: smart hematophagous triatomine salivary gland molecules counteract hematophagy during meal acquisition. J Proteomics. 2012;75(13):3829–41.
7. Fontaine A, Diouf I, Bakálk N, Missé D, Pagès F, Fusai T, et al. Implication of haematophagous arthropod salivary proteins in host-vector interactions. Parasit Vectors. 2011;4:187.
8. Ribeiro JM, Langhansová H, Lieskovská J, Andersen JF, Francischetti IM, Chavakis T, et al. Modulation of host immunity by tick saliva. J Proteomics. 2015;128:58–68.
9. Chmelar J, Ribeiro JM, Karim S, Kopeck P, Francischetti IM, Pedra JH, et al. Saliomes and mialomes: a systems-biology view of tick tissues and tick-host interactions. Trends Parasitol. 2016;32(3):242–54.
10. Ribeiro JM. Vector salivation and parasite transmission. Mem Inst Oswaldo Cruz. 1987;82(3):1–3.
11. Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29(6):276–85.
12. Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44:D343–50.
13. Rawlings ND, Weller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014;42:DS03–9.
14. Khan AR, James MN. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998;7(4):815–36.
15. Ribeiro JMC, Arca B. From Sialomes to the sialoverse: an insight into salivary potion of blood-feeding insects. Adv Insect Physiol. 2009;37:59–118.
16. Riveria J, Lozano ML, Navarro-Núñez L, Vicente V, Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica. 2009;94(5):700–11.
17. Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front Biosci. 2009;14:2051–88.
18. Amino R, Tanaka AS, Schenkman S, Trippin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas‘ disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol. 2001;31(4–5):465–72.
19. Francischetti IM, Mather TN, Ribeiro JM. Cloning of a salivary gland metalloproteinase and characterization of gelatinase and fibrinogenolytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochimie Biophys Acta. 2003;1634(4):869–75.
20. Faudry E, Lozzi SP, Santana JM, D’Souza-Ault M, Keffer S, Felix CR, et al. Trautomatia infestans apyrase belong to the S Nucleotide family. J Biol Chem. 2004;279(19):19607–13.
21. Kazimirová M, Štrábová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol. 2013;3:43.
22. Chmelar J, Calvo E, Pedra JH, Francischetti IM, Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteomics. 2012;75(13):3842–54.
23. Ribeiro JMC, Assumpção TC, Francischetti IMB. An insight into the sialomes of bloodsucking Heteroptera. Psyche. 2012;2012(470436):16.
24. Calvo E, Mizurini DM, Sá-Nunes A, Ribeiro JM, Andersen JF, Mans BJ, et al. Alboserpina, a factor Xa inhibitor from the mosquito vector of yellow fever, birds hpaerin and membrane phospholipids and exhibits anthrombotic activity. J Biol Chem. 2011;286(27):27998–8010.
25. Santiago PB, Assumpção TC, Araújo CN, Bastos IM, Neves D, Silva IG, et al. A deep insight into the sialome of Rhodnius neglectus, a vector of Chagas disease. PLoS Negl Trop Dis. 2016;10(4):e0004581.
26. Assumpção TC, Chameau S, Santiago PB, Francischetti IM, Meng Z, Araújo CN, et al. Insight into the salivary transcriptome and proteome of Ophiolagostes maxima. J Proteome Res. 2011;10(2):669–79.
27. Ribeiro JM, Mans BJ, Arcá B. An insight into the sialome of blood-feeding Nematocera. Insect Biochem Mol Biol. 2010;40(11):767–84.
28. Assumpção TC, Francischetti IM, Andersen JF, Schwarz A, Santana IM, Ribeiro JM. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas‘ disease. Insect Biochem Mol Biol. 2008;38(2):213–33.
29. Santos A, Ribeiro JM, Leihne MJ, Gontijo NF, Sant’Anna MR, et al. The sialotranscriptome of the blood-sucking bug Triatominae Brasilinensis. Hemiptera, Triatominae. Insect Biochem Mol Biol. 2007;37(7):702–12.
30. Ribeiro JM, Schwarz A, Francischetti IM. A deep insight into the sialotranscriptome of the Chagas disease vector, Panstrongylus megistus (Hemiptera: Heteroptera). J Med Entomol. 2011;48(2):351–8.
31. Karim S, Singh P, Ribeiro JM. A deep insight into the sialotranscriptome of the gulf coast tick, Amblyomma maculatum. PLoS One. 2011;6(12), e28525.
32. de Castro MH, de Kleek D, Plenaar R, Latif AA, Rees DJ, Mans BJ. De novo assembly and annotation of the salivary gland transcriptome of Rhipicephalus appendiculatus male and female ticks during blood feeding. Ticks Tick Borne Dis. 2016;7(4):536–48.
Yu X, Gong H, Zhou Y, Zhang H, Cao J, Zhou J. Differential silicatanatranscriptsce of unfed and fed *Rhipicephalus haemaphysaloides*, with particular regard to differentially expressed genes of cysteine proteases. Parasit Vectors. 2015;8:597.

34. Garcia GR, Gardiassini LG, Ribeiro JM, Anatriello E, Ferreira BR, Moreira RN, et al. The silicatanatranscriptome of the neotropical malaria vector *Anopheles parnasi* and *Amblyomma cajennense* ticks, uncovered by 454-based RNA-seq. Parasit Vectors. 2014;7:430.

35. Calvo E, Sanchez-Vargas I, Favreau AJ, Barbacid KJ, Pamh VM, Olsen KE, et al. An insight into the silicatanatranscriptome of the West Nile mosquito vector *Culex tarsalis*. BMC Genomics. 2010;11:51.

36. Calvo E, Pamh VM, Marconi G, Andersen JF, Ribeiro JM. The salivary gland transcriptome of the neotropical malaria vector *Anopheles darlingi* reveals elevated evolution of genes relevant to hematophagy. BMC Genomics. 2009;10:57.

37. Guo X, Booth CJ, Paley MA, Wang X, DePonte K, Krikig E, et al. Inhibition of neutrophil function by two tick salivary proteins. Infect Immun. 2009;77(6):2320–9.

38. Sojka D, Pytelková J, Perner J, Horn M, Konvišová J, Schrenkova J, et al. Multienzyme degradation of host serum albumin in ticks. Ticks Tick Borne Dis. 2016;7(6):604–13.

39. Lehane M, Billingsley P. Biology of the insect midgut. 1st ed. Dordrecht: Springer Netherlands; 1996.

40. Liu L, Dai J, Zhao YO, Narasimhan S, Yang Y, Zhang L, et al. The JAK-STAT pathway regulates tick antimicrobial peptides, thereby controlling the load in early stages of infection. EMBO J. 1999;18(4):959–68.

41. Christensen BM, Li J, Chen CC, Nappi AJ. Melanization immune responses in mosquito vectors. Trends Parasitol. 2005;21(4):192–9.

42. Cerenius L, Lee BL, Soderhall K. The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008;29(6):263–71.

43. Watson FL, Püttmann-Holgado R, Thomas F, Larson DL, Hughes M, Kondo M, et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 2005;309(5742):1874–8.

44. Dong Y, Taylor HE, Dimopoulos G, AgDiscam, a hypervariable immunoglobulin domain-containing receptor of the *Anopheles gambiae* innate immune system. PLoS Biol. 2006;4(7):e229.

45. Armitage SA, Freiburgh RR, Kurz J, Bravo G. The evolution of Discam genes across the arthropods. BMC Evol Biol. 2012;12:553.

46. Rowley AF, Powell A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J Immunol. 2007;179(11):2209–14.

47. Garcia ES, Castro DP, Figueredo MB, Genta FA, Azambuja P. *Trypanosoma rangeli*: a new perspective for studying the modulation of immune reactions of *Rhodius prolixus*. Parasit Vectors. 2009;2(1):33.

48. Sojka D, Franta Z, Horn M, Hajdusek O, Caffrey CR, Maers M, et al. Profiling of proteolytic enzymes in the gut of the tick lecide ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit Vectors. 2008;1(1):7.

49. Franta Z, Frantová H, Konvišová J, Horn M, Sojka D, Mareš M, et al. Dynamics of digestive proteolytic system during blood feeding of the tick *I. ricinus*. Parasit Vectors. 2010;3:119.

50. Franta Z, Sojka D, Frantová H, Dvorák J, Horn M, Srba J, et al. IL-1 - the haemoglobinolitic cathespin L of the hard tick, lecide ricinus. Int J Parasitol. 2011;41(12):1233–62.

51. Sojka D, Hajdusek O, Dvorák J, Sajid M, Franta Z, Schneider EL, et al. IA.E: an asparaginyl endopeptidase (legumain) in the gut of the hard tick *I. ricinus*. Int J Parasitol. 2007;37(7):713–24.

52. Yamaji K, Tsuij N, Myoshi T, Islam MK, Hatta T, Allm MA, et al. Hemoglobinolitic activity of a cysteine protease from the iodixoid tick *Haemaphysalis longicornis*. Insect Biochem Mol Biol. 2006;36(4):322–35.

53. Tsuij N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K. A cysteine cathepsin L-like protein from a blood-feeding tick. J Med Entomol. 1990;27(3):302–16.

54. Mulenga A, Sugimoto C, Ingram G, Ohashi K, Nozuma M. Molecular cloning of two *Haemaphysalis longicornis* cathespin L-like cysteine protease genes. J Vet Med Sci. 1999(61)(S):497–502.

55. Mendiola I, Alonso M, Marquet MC, Finlay C. *Boophilus microplus*: multiple proteolytic activities in the midgut. Exp Parasitol. 1996;82(1):27–39.

56. Renard G, Garcia JF, Cardoso FC, Richter MF, Sanatani IA, Ozaki LS, et al. Cloning and functional expression of a *Boophilus microplus* cathespin L-like enzyme. Insect Biochem Mol Biol. 2000;30(11):1017–26.

57. Renard G, Lara FA, de Cardoso FC, Miguenes FC, Dansa-Petrsetski M, Termignoni C, et al. Expression and immunolocalization of a *Boophilus microplus* cathespin L-like enzyme. Insect Mol Biol. 2002;11(4):325–8.

58. Estrela AB, Seixas A, Ceolato JC, Pontes EG, Lara F, Gondim KC, et al. A cysteine endopeptidase from tick *Amblyomma parvum* and *Amblyomma cajennense* ticks. J Mol Evol. 2011;41(12):1253–62.

59. Estrela A, Seixas A, Termignoni C. A cysteine endopeptidase. Int J Parasitol. 2003;33(7):695–705.

60. Estrela AB, Seixas A, Masuda A, Horn F, et al. A *Boophilus microplus* vitellin-degrading cysteine endopeptidase. Parasitology. 2003;126(2):155–63.

61. Seixas A, Estrela AB, Ceolato JC, Pontes EG, Lara F, Gondim KC, et al. Localization and function of a *Boophilus microplus* vitellin-degrading cysteine endopeptidase. Comp Biochem Physiol B Biochem Mol Biol. 2007;148(4):410–6.

62. Seixas A, Dos Santos PC, Velloso FF, Da Silva VI, Masuda A, Horn F, et al. A *Boophilus microplus* vitellin-degrading cysteine endopeptidase. Parasitology. 2003;126(2):155–63.

63. Seixas A, Estrela AB, Ceolato JC, Pontes EG, Lara F, Gondim KC, et al. Characterization of asparaginyl endopeptidase, legumain in the gut of the hard tick *I. ricinus*. Int J Parasitol. 2007;37(7):713–24.
feeding in the ixodid tick Haemaphysalis longicornis. Insect Biochem Mol Biol. 2007;37(9):911–22.
82. Alam MA, Tsuji N, Miyoshi T, Islam MK, Huang X, Hatta T, et al. Hlgm2, a member of asparaginyl endopeptidases/legumains in the midgut of the ixodid tick Haemaphysalis longicornis, is involved in blood-meal digestion. J Insect Physiol. 2008;54(3):573–85.
83. Alam MA, Tsuji N, Miyoshi T, Islam MK, Hatta T, Fujisaki K. Legumains from the hard tick Haemaphysalis longicornis play modulatory roles in blood feeding and gut cellular remodelling and impact on embryogenesis. Int J Parasitol. 2009;39(1):97–107.
84. Sojka D, Franta Z, Frantová H, Bartošová P, Horn M, Váchová J, et al. Characterization of gut-associated cathepsin D hemoglobinase from tick midguts (IrcD1). J Biol Chem. 2012;287(22):1152–63.
85. Sojka D, Hartmann D, Bartošová-Sojková P, Dvořák J. Parasite cathepsin D-like peptidases and their relevance as therapeutic targets. Trends Parasitol. 2016;32(9):708–23.
86. Logullo C, Vaz Ida S, Sorgine MH, Paiva-Silva GO, Faria FS, Zingali RB, et al. Characterization of gut-associated cathepsin K-like peptidases and their relevance as therapeutic targets. J Insect Physiol. 1993;37(9):911–7.
87. Miyoshi T, Tsuji N, Islam MK, Kamio T, Fujisaki K. Cloning and molecular characterization of developmentally regulated proteins. J Mol Biol. 1993;231(2):539–47.
88. Miyoshi T, Tsuji N, Islam MK, Huang X, Motobu M, Alim MA, et al. Molecular characterization of legumains from the hard tick Haemaphysalis longicornis. J Biol Chem. 2000;275(37):28653–62.
89. Balczun C, Siemanowski J, Pausch JK, Helling S, Marcus K, Stephan C, et al. Identification of sialoprotein genes. Infect Genet Evol. 2015;32:135–45.
90. Barnard AC, Nijhof AM, Gaspar AR, Neitz AW, Jongejan F, Maritz-Olivier C. Characterization of a blood-induced serine carboxypeptidase from the hard tick Boophilus microplus. J Biol Chem. 1998;273(10):6121–7.
91. Leyria J, Fruttero LL, Nazar M, Canavoso LE. The role of DmCatD, a cathepsin D-like peptidase, and acid phosphatase in the process of follicular atresia in the reduviid bug Triatoma infestans. Insect Biochem Mol Biol. 2004;34(5):443–9.
92. Abreu LA, Valle D, Manso PP, Façanha AR, Pelajo-Machado M, Masuda H, et al. Proteolytic activity of Boophilus microplus yolk pro-Cathepsin D (yBC) is coincident with cortical acidification during embryogenesis. Insect Biochem Mol Biol. 2004;34(5):443–9.
93. Sojka D, Hartmann D, Bartošová-Sojková P, Dvořák J. Parasite cathepsin D-like peptidases and their relevance as therapeutic targets. Trends Parasitol. 2016;32(9):708–23.
94. Miyoshi T, Tsuji N, Islam MK, Huang X, Motobu M, Alim MA, et al. Molecular characterization of legumains from the hard tick Haemaphysalis longicornis. J Biol Chem. 2000;275(37):28653–62.
95. Miyoshi T, Tsuji N, Islam MK, Alim MA, Hatta T, Huang X, et al. A set of serine peptidase paralogs are required for blood-digestion in the ixodid tick Haemaphysalis longicornis. J Insect Physiol. 2007;53(2):195–203.
96. Bork P, Beckmann G. The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol. 1999;231(2):539–45.
97. Miyoshi T, Tsuji N, Islam MK, Alim MA, Hatta T, Huang X, et al. Identification and characterization of a leucine aminopeptidase from the hard tick Haemaphysalis longicornis. Parasitol Int. 2008;57(4):499–505.
98. Motobu M, Franta Z, Frantová H, Bartošová P, Horn M, Váchová J, et al. Characterization of gut-associated cathepsin D hemoglobinase from tick midguts (IrcD1). J Biol Chem. 2012;287(22):1152–63.
125. Feitosa L, Gremski W, Veiga SS, Elias MC, Granner E, Mangili OC, et al. Characterization of midgut gelatinase activity in the brown spider (Loxosceles intermedia) venom. Toxicon. 1998;36(7):1039–51.

126. da Silva RB, Wille AC, Chaim OM, Appel MH, Silva DT, Franco CR, et al. Detection and characterization of metalloproteinases with gelatinolytic, fibrinectinolytic and fibrinogenolytic activities in brown spider (Loxosceles intermedia) venom. Biochem. J. 2010;421(1):21–32.

127. Huang TF, Chang MC, Teng CY, Yang JH. Antiplatelet protease, kistomin, selectively cleaves platelet glycoprotein IIb-IIIa and impairs platelet function. Mol Pharmacol. 2007;72(4):984–92.

128. Barillas-Mury CV, Noriega FG, Wells MA. Recombinant juvenile hormone esterase, an effective tool for modifying juvenile hormone-dependent expression of the early trypsin gene in mosquitoes. Insect Mol Biol. 2000;9(1):27–31.

129. Noriega FG, Pennington JE, Barillas-Mury C, Wang YX, Wells MA. Early trypsin and midgut protease genes in Aedes aegypti midgut are early genes post-transcriptionally regulated by feeding. Insect Mol Biol. 1996;5(2):25–9.

130. Noriega FG, Wang YX, Pennington JE, Barillas-Mury CV, Wells MA. Early trypsin, a female-specific midgut protease in Aedes aegypti, isolation, amino-terminal sequence determination, and cloning and sequencing of the gene. Insect Biochem Mol Biol. 1996;26(21):1919–26.

131. Barillas-Mury CV, Noriega FG, Wells MA. Early trypsin activity is part of the signal transduction system that activates transcription of the late trypsin gene in the midgut of the mosquito, Aedes aegypti. Insect Biochem Mol Biol. 1995;25(2):241–6.

132. Brandon MC, Pennington JE, Iseke J, Zamaora J, Schilling AS, Miesfeld RL. TOR signaling is required for amino acid stimulation of early trypsin protein synthesis in the midgut of Aedes aegypti mosquitoes. Insect Biochem Mol Biol. 2008;38(10):916–22.

133. Rodriguez AA, Gearing J, Iseke J, Miesfeld RL. In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito Aedes aegypti. BMC Biochem. 2011;12:43.

134. Iseke J, Rascón AA, Kunz S, Miesfeld RL. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes. Insect Mol Biol. 2009;18(12):2903–12.

135. Brackney DE, Iseke J, W CB, Zamaora J, Foy BD, Miesfeld RL, et al. Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti. J Insect Physiol. 2010;56(7):736–44.

136. Müller HM, Crampton JM, della Torre A, Sinden R, Crisanti A. Members of a trypsin gene family in Anopheles gambiae are induced in the gut by blood feeding. EMBO J. 1993;12(7):2891–900.

137. Nirmala X, Marinotti O, James AA. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae. Biochem. J. 2005;381(3):371–85.

138. Díaz-Lopes G, Borges-Veloso A, Saboia-Vahia L, Domont GB, Britto C, Cuervo P, et al. Expression of active trypsin-like serine peptidases in the midgut of sugar-feeding female Anopheles gambiae. Parasit Vectors. 2015;8:296.

139. Graf R, Raikhel AS, Brown MR, Lea AO, Briegel H. Mosquito trypsin: immunocytochemical localization in the midgut of blood-fed Aedes aegypti (L.). Cell Tissue Res. 1986;245(1):19–27.

140. Graf R, Boeckh P, Briegel H. Structural diversity of trypsin from different mosquito species feeding on vertebrate blood. Experientia. 1991;47(6):603–9.

141. Borges-Veloso A, Saboia-Vahia L, Dias-Lopes G, Domont GB, Britto C, Cuervo P, et al. In-depth characterization of trypsin-like serine peptidases in the midgut of the sugar-fed Culex quinquefasciatus. Parasit Vectors. 2015;8:373.

142. Bian G, Raikhel AS, Zhu J. Characterization of a juvenile hormone-regulated chymotrypsin-like serine protease gene in Aedes aegypti mosquito. Insect Biochem Mol Biol. 2008;38(2):190–200.

143. Jiang Q, Hall M, Noriega FG, Wells M. cDNA cloning and pattern of expression of an adult, female-specific chymotrypsin from Aedes aegypti midgut. Insect Biochem Mol Biol. 1997;27(4):283–9.

144. Saboia-Vahia L, Cuervo P, Borges-Veloso A, de Souza NP, Britto C, Dias-Lopes G, et al. The midgut of Aedes albopictus females expresses active trypsin-like serine peptidases. Parasit Vectors. 2014;7:253.

145. Graf R, Boeckh P, Briegel H. Structural diversity of trypsin from different mosquito species feeding on vertebrate blood. Experientia. 1991;47(6):603–9.
167. Borovský D, Schlein Y. Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med Vet Entomol. 1987;1(3):235–42.

168. Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology. 1997;115(Pt4):359–69.

169. Schlein Y, Jacobson RL. Resistance of Phlebotomus papatasi to infection with Leishmania donovani is modulated by components of the infective bloodmeal. Parasitology. 1998;117(Pt5):467–73.

170. Ruttayaporn N, Zhou M, Suganuma K, Yamazaki S, Kawazu S, Inoue N. Expression and characterization of cathepin B from tsetse (Glossina morsitans morsitans). Jpn J Vet Res. 2013;619(4):137–47.

171. Ribeiro JM. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis. 1995;4(3):143–52.

172. R. Kini M, J. Clemetson K, S. Markland F, McLane MA, Morita T. Toxins and Hemostasis. From Bench to Bedside. New York: Springer; 2010.

173. Delcroix M, Sajid M, Caffrey CR, Lim KC, Dvorak J, Hsieh I, et al. A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem. 2006;281(51):39316–29.

174. Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A. Digestive proteases of blood-feeding nematodes. Trends Parasitol. 2003;19(9):417–23.

175. da Silva DS, de Oliveira CF, Parra JR, Marangoni S, Macedo ML. Short and long-term antinutritional effect of the trypsin inhibitor ApTI for biological control of sugarcane borer. J Insect Physiol. 2014;61:1–7.