Fusion procedure for cyclotomic Hecke algebras

O. V. Ogievetsky and L. Poulain d’Andecy

Center of Theoretical Physics
Aix Marseille Université, CNRS, UMR 7332, 13288 Marseille, France
Université de Toulon, CNRS, UMR 7332, 83957 La Garde, France

Mathematics Laboratory of Versailles, LMV, CNRS UMR 8100
Versailles Saint-Quentin University
45 avenue des Etas-Unis, 78035 Versailles Cedex, France

Abstract

A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of the multi-tableau and is proportional to the inverse of the corresponding Schur element.

1. Introduction

This article is a continuation of the article [10] on the fusion procedure for the complex reflection groups $G(m, 1, n)$. The cyclotomic Hecke algebra $H(m, 1, n)$, introduced in [1, 2, 3], is a natural flat deformation of the group ring of the complex reflection group $G(m, 1, n)$.

In [10], a fusion procedure, in the spirit of [8], for the complex reflection groups $G(m, 1, n)$ is suggested: a complete system of primitive pairwise orthogonal idempotents for the groups $G(m, 1, n)$ is obtained by consecutive evaluations of a rational function in several variables with values in the group ring $\mathbb{C}G(m, 1, n)$. This approach to the fusion procedure relies on the existence of a maximal commutative set of elements of $\mathbb{C}G(m, 1, n)$ formed by the Jucys–Murphy elements.

Jucys–Murphy elements for the cyclotomic Hecke algebra $H(m, 1, n)$ were introduced in [11] and were used in [9] to develop an inductive approach to the representation theory of the chain of the

On leave of absence from P. N. Lebedev Physical Institute, Leninsky Pr. 53, 117924 Moscow, Russia
algebras $H(m,1,n)$. In the generic setting or under certain restrictions on the parameters of the algebra $H(m,1,n)$ (see Section 2 for precise definitions), the Jucys–Murphy elements form a maximal commutative set in the algebra $H(m,1,n)$.

A complete system of primitive pairwise orthogonal idempotents of the algebra $H(m,1,n)$ is indexed by the set of standard m-tableaux of size n. We formulate here the main result of the article. Let $\lambda^{(m)}$ be an m-partition of size n and T be a standard m-tableau of shape $\lambda^{(m)}$.

Theorem. The idempotent E_T of $H(m,1,n)$ corresponding to the standard m-tableau T of shape $\lambda^{(m)}$ can be obtained by the following consecutive evaluations

$$E_T = F_{\lambda^{(m)}}(u_1,\ldots,u_n)\bigg|_{u_1=c_1} \cdots \bigg|_{u_{n-1}=c_{n-1}} \bigg|_{u_n=c_n}. \tag{1}$$

Here $F_{\lambda^{(m)}}(u_1,\ldots,u_n)$ is a rational function with values in the algebra $H(m,1,n)$, $F_{\lambda^{(m)}}$ is an element of the base ring and c_1,\ldots,c_n are the quantum contents of the m-nodes of T.

The classical limit of our fusion procedure for algebras $H(m,1,n)$ reproduces the fusion procedure of [10] for the complex reflection groups $G(m,1,n)$. For $\mathbb{C}G(m,1,n)$, the variables of the rational function are split into two parts, one is related to the position of the m-node (its place in the m-tuple) and the other one - to the classical content of the m-node. The position variables can be evaluated simultaneously while the classical content variables have then to be evaluated consequently from 1 to n. For the algebra $H(m,1,n)$, the information about positions and classical contents is fully contained in the quantum contents, and now the function $F_{\lambda^{(m)}}$ depends on only one set of variables.

Remarkably, the coefficient $F_{\lambda^{(m)}}$ appearing in (1) depends only on the shape $\lambda^{(m)}$ of the standard m-tableau T (cf. with the more delicate fusion procedure for the Birman-Murakami-Wenzl algebra [3]). In the classical limit, this coefficient depends only on the usual hook length, see [10]. However, in the deformed situation, the calculation of $F_{\lambda^{(m)}}$ needs a non-trivial generalization of the hook length. It appears that the coefficient $F_{\lambda^{(m)}}$ is proportional to the inverse of the Schur element of the algebra $H(m,1,n)$ corresponding to the m-partition $\lambda^{(m)}$ (see [4] for an expression of the Schur elements of $H(m,1,n)$ in terms of generalized hook lengths); the proportionality factor is a unit of the ring $\mathbb{C}[q,q^{-1},v_1,\ldots,v_m]$, where q,v_1,\ldots,v_m are the parameters of $H(m,1,n)$ (see Section 2 for precise definitions).

For $m=1$, the cyclotomic Hecke algebra $H(1,1,n)$ is the Hecke algebra of type A and our fusion procedure reduces to the fusion procedure for the Hecke algebra in [5]. The factors in the rational function are arranged in [5] in such a way that there is a product of “Baxterized” generators on one side and a product of non-Baxterized generators on the other side. For $m>1$ a rearrangement, as for the type A, of the rational function appearing in (1) is no more possible.

The additional, with respect to $H(1,1,n)$, generator of $H(m,1,n)$ satisfies the reflection equation whose “Baxterization” is known [7]. But - and this is maybe surprising - the full Baxterized form is not used in the construction of the rational function in (1). The rational expression involving the additional generator satisfies only a certain limit of the reflection equation with spectral parameters.

The Hecke algebra of type A is the natural quotient of the Birman-Murakami-Wenzl algebra. The fusion procedure, developed in [6], for the Birman-Murakami-Wenzl algebra provides a one-parameter family of fusion procedures for the Hecke algebra of type A. We think that for $m>1$ the fusion procedure (1) can be included into a one-parameter family as well.

2
2. Definitions

2.1. Cyclotomic Hecke algebra and Baxterized elements

The cyclotomic Hecke algebra $H(m,1,n+1)$ is generated by $\tau, \sigma_1, \ldots, \sigma_n$ with the defining relations

$$\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1} \quad \text{for } i = 1, \ldots, n-1,$$

$$\sigma_i\sigma_j = \sigma_j\sigma_i \quad \text{for } i, j = 1, \ldots, n \text{ such that } |i-j| > 1,$$

$$\tau\sigma_1\tau = \sigma_1\tau\tau,$$

$$\tau\sigma_i = \sigma_i\tau \quad \text{for } i > 1,$$

$$\sigma_i^2 = (q-q^{-1})\sigma_i + 1 \quad \text{for } i = 1, \ldots, n,$$

$$(\tau - v_1)\ldots(\tau - v_m) = 0 \quad \text{(2)}.$$

The cyclotomic Hecke algebras $H(m,1,n)$ form a chain (with respect to n) of algebras defined by inclusions $H(m,1,n) \ni \tau, \sigma_1, \ldots, \sigma_{n-1} \mapsto \tau, \sigma_1, \ldots, \sigma_n, \sigma_{n-1} \in H(m,1,n+1)$. These inclusions allow to consider (as it will often be done in the article) elements of $H(m,1,n)$ as elements of $H(m,1,n+n')$ for any $n' = 0, 1, 2, \ldots$.

We shall work with a generic cyclotomic Hecke algebra (that is, q, v_1, \ldots, v_m are indeterminates and we consider the algebra $H(m,1,n+1)$ over a certain localization of the ring $\mathbb{C}[q, q^{-1}, v_1, \ldots, v_m]$), or in a specialization such that the following conditions are satisfied

$$1 + q^2 + \cdots + q^{2N} \neq 0 \quad \text{for } N < n,$$

$$q^{2i}v_j - v_k \neq 0 \quad \text{for } i, j, k \text{ such that } j \neq k \text{ and } -n < i < n,$$

$$q \neq 0, \quad v_j \neq 0 \quad \text{for } j = 1, \ldots, m \quad \text{(3)}.$$

Note that the restrictions (3) for the parameters of $H(m,1,n+1)$ imply the corresponding restrictions for the parameters of $H(m,1,n)$.

Define, for $i = 1, \ldots, n$, the Baxterized elements, with spectral parameters α and β:

$$\sigma_i(\alpha,\beta) := \sigma_i + (q-q^{-1})\frac{\beta}{\alpha - \beta}. \quad \text{(4)}$$

These Baxterized elements satisfy the Yang–Baxter equation with spectral parameters:

$$\sigma_i(\alpha,\alpha')\sigma_{i+1}(\alpha,\alpha'')\sigma_i(\alpha',\alpha'') = \sigma_{i+1}(\alpha',\alpha'')\sigma_i(\alpha,\alpha'')\sigma_{i+1}(\alpha,\alpha').$$

The following formula will be used later:

$$\sigma_i(\alpha,\beta)\sigma_i(\beta,\alpha) = \frac{(\alpha - q^2\beta)(\alpha - q^{-2}\beta)}{(\alpha - \beta)^2} \quad \text{for } i = 1, \ldots, n. \quad \text{(5)}$$

We also define the following rational function with values in $H(m,1,n+1)$:

$$\tau(\rho) := \frac{(\rho - v_1)(\rho - v_2)\ldots(\rho - v_m)}{\rho - \tau}. \quad \text{(6)}$$
Remarks. (i) One can rewrite \(\tau(\rho) \) as a polynomial, in \(\rho \), function. Indeed, let \(a_0, a_1, \ldots, a_m \) be the polynomials in \(v_1, \ldots, v_m \) defined by

\[
(X - v_1)(X - v_2) \cdots (X - v_m) = a_0 + a_1X + \cdots + a_mX^m,
\]

where \(X \) is an indeterminate. Define the polynomials \(a_i(\rho), \ i = 0, \ldots, m, \) in \(\rho \), with values in \(\mathbb{C}[v_1, \ldots, v_m] \), by

\[
a_0(\rho) = a_0 + a_1\rho + \cdots + a_m\rho^m \quad \text{and} \quad a_{i+1}(\rho) = \rho^{-1}(a_i(\rho) - a_i) \quad \text{for} \ i = 0, \ldots, m - 1.
\]

The polynomials \(a_i(\rho), \ i = 0, \ldots, m, \) are given explicitly by

\[
a_i(\rho) = \rho + a_i + a_{i+1} + \cdots + \rho^{m-i} a_m \quad \text{for} \ i = 0, \ldots, m.
\] (7)

It is straightforward to verify that

\[
(\rho - \tau)^{m-1} \sum_{i=0}^{m-1} a_{i+1}(\rho) \tau^i = a_0(\rho) = (\rho - v_1)(\rho - v_2) \cdots (\rho - v_m).
\] (8)

It follows from (3) and (6) that

\[
\tau(\rho) = a_1(\rho) + a_2(\rho) \tau + \cdots + a_m(\rho) \tau^{m-1} = \sum_{i=0}^{m-1} a_{i+1}(\rho) \tau^i.
\] (9)

For example, for \(m = 1 \), we have \(\tau(\rho) = 1 \); for \(m = 2 \), we have \(\tau(\rho) = \tau + \rho - v_1 - v_2 \); for \(m = 3 \), we have \(\tau(\rho) = \tau^2 + (\rho - v_1 - v_2 - v_3)\tau + \rho^2 - \rho(v_1 + v_2 + v_3) + v_1v_2 + v_1v_3 + v_2v_3 \).

(ii) The elements \(\tau(\rho) \) and \(\sigma_1(\alpha, \beta) \) satisfy a certain form of a reflection equation with spectral parameters:

\[
\sigma_1(\alpha, \beta) \tau(\alpha) \sigma_1^{-1}(\beta) = \tau(\beta) \sigma_1^{-1}(\alpha) \sigma_1(\alpha, \beta).
\] (10)

Indeed, due to (3) and (6), the equality (11) is equivalent to

\[
(\tau - \beta) \sigma_1(\tau - \alpha) \sigma_1(\beta, \alpha) = \sigma_1(\beta, \alpha) (\tau - \alpha) \sigma_1(\tau - \beta),
\]

which is proved by a straightforward calculation. The equation (11) is a certain (we leave the details to the reader) limit of the usual reflection equation with spectral parameters.

2.2. \(m \)-partitions, \(m \)-tableaux and generalized hook length

Let \(\lambda \vdash n + 1 \) be a partition of size \(n + 1 \), that is, \(\lambda = (\lambda_1, \ldots, \lambda_l) \), where \(\lambda_j, j = 1, \ldots, l \), are positive integers, \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l \) and \(n + 1 = \lambda_1 + \cdots + \lambda_l \). We identify partitions with their Young diagrams: the Young diagram of \(\lambda \) is a left-justified array of rows of nodes containing \(\lambda_j \) nodes in the \(j \)-th row, \(j = 1, \ldots, l \); the rows are numbered from top to bottom.

An \(m \)-partition, or a Young \(m \)-diagram, of size \(n + 1 \) is an \(m \)-tuple of partitions such that the sum of their sizes equals \(n + 1 \); e. g. the Young 3-diagram (\(\square, \square, \square \)) represents the 3-partition ((2), (1), (1)) of size 4.
An m-node $\alpha^{(m)}$ is a pair (α, k) consisting of a usual node α and an integer $k = 1, \ldots, m$, indicating to which diagram in the m-tuple the node belongs. The integer k will be called position of the m-node, and we set $\text{pos}(\alpha^{(m)}) := k$.

For an m-partition $\lambda^{(m)}$, an m-node $\alpha^{(m)}$ of $\lambda^{(m)}$ is called removable if the set of m-nodes obtained from $\lambda^{(m)}$ by removing $\alpha^{(m)}$ is still an m-partition. An m-node $\beta^{(m)}$ not in $\lambda^{(m)}$ is called addable if the set of m-nodes obtained from $\lambda^{(m)}$ by adding $\beta^{(m)}$ is still an m-partition. For an m-partition $\lambda^{(m)}$, we denote by $\mathcal{E}_-(\lambda^{(m)})$ the set of removable m-nodes of $\lambda^{(m)}$ and by $\mathcal{E}_+(\lambda^{(m)})$ the set of addable m-nodes of $\lambda^{(m)}$. For example, the removable/addable m-nodes (marked with -/+ for the 3-partition $(\square, \square, \square)$ are

$$
\begin{pmatrix}
+ & - & + \\
- & + & - \\
+ & + & +
\end{pmatrix}
$$

Let $\lambda^{(m)}$ be an m-diagram of size $n+1$. A standard m-tableau of shape $\lambda^{(m)}$ is obtained by placing the numbers $1, \ldots, n+1$ in the m-nodes of the diagrams of $\lambda^{(m)}$ in such a way that the numbers in the nodes ascend along rows and columns in every diagram.

Let q, v_1, \ldots, v_m be the parameters of the cyclotomic Hecke algebra $H(m,1,n+1)$. For an m-node $\alpha^{(m)} = (\alpha, k)$ lying in the line x and the column y of the k-th diagram, we denote by $c(\alpha^{(m)})$ the quantum content of the node α, $cc(\alpha^{(m)}) := v_k q^{2(y-x)}$. We denote by $cc(\alpha^{(m)})$ the classical content of the node α, $cc(\alpha^{(m)}) := y - x$. Let $\{\xi_1, \ldots, \xi_m\}$ be the set of distinct m-th roots of unity, ordered arbitrarily; we define also $p(\alpha^{(m)}) := \xi_k$.

For a standard m-tableau T of shape $\lambda^{(m)}$ let $\alpha_i^{(m)}$ be the m-node of T occupied by the number i, $i = 1, \ldots, n+1$; we set $c(T|i) := c(\alpha_i^{(m)})$, $cc(T|i) := cc(\alpha_i^{(m)})$ and $p(T|i) := p(\alpha_i^{(m)})$. For example, for the standard 3-tableau $T = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$ we have

$$
c(T|1) = v_1, \ c(T|2) = v_2, \ c(T|3) = v_1 q^2 \text{ and } c(T|4) = v_3, \\
cc(T|1) = 0, \ cc(T|2) = 0, \ cc(T|3) = 1 \text{ and } cc(T|4) = 0, \\
p(T|1) = \xi_1, \ p(T|2) = \xi_2, \ p(T|3) = \xi_1 \text{ and } p(T|4) = \xi_3,
$$

where $\{\xi_1, \xi_2, \xi_3\}$ is the set of all third roots of unity, ordered arbitrarily.

Generalized hook length. The hook of a node α of a partition λ is the set of nodes of λ consisting of the node α and the nodes which lie either under α in the same column or to the right of α in the same row; the hook length $h_\lambda(\alpha)$ of α is the cardinality of the hook of α. We extend this definition to m-nodes. For an m-node $\alpha^{(m)} = (\alpha, k)$ of an m-partition $\lambda^{(m)}$, the hook length of $\alpha^{(m)}$ in $\lambda^{(m)}$, which we denote by $h_{\lambda^{(m)}}(\alpha^{(m)})$, is the hook length of the node α in the k-th partition of $\lambda^{(m)}$.

Let $\lambda^{(m)}$ be an m-partition. For $j = 1, \ldots, m$, let $I_{\lambda^{(m)},x,j}$ be the number of nodes in the line x of the j-th diagram of $\lambda^{(m)}$, and $c_{\lambda^{(m)},y,j}$ be the number of nodes in the column y of the j-th diagram of $\lambda^{(m)}$. The hook length of an m-node $\alpha^{(m)}$ lying in the line x and the column y of the k-th diagram of $\lambda^{(m)}$ can be rewritten as

$$
h_{\lambda^{(m)}}(\alpha^{(m)}) = I_{\lambda^{(m)},x,k} + c_{\lambda^{(m)},y,k} - x - y + 1.
$$
where $\alpha^{(m)}$ is the m-node lying in the line x and the column y of the k-th diagram of $\lambda^{(m)}$ (in particular, $h^{(k)}_{\lambda^{(m)}}(\alpha^{(m)}) = h_{\lambda^{(m)}}(\alpha^{(m)})$ is the usual hook length).

For an m-partition $\lambda^{(m)}$ of size n, we define

$$F_{\lambda^{(m)}} := (q^{-1} - q)^n \prod_{\alpha^{(m)} \in \lambda^{(m)}} \left(c(\alpha^{(m)}) \prod_{k=1}^{m} \frac{q^{-cc(\alpha^{(m)})}}{\ell_{\lambda^{(m)}}(\alpha^{(m)})^q - h^{(k)}_{\lambda^{(m)}}(\alpha^{(m)}) - v_k q h_{\lambda^{(m)}}^{(k)}(\alpha^{(m)})} \right).$$

(11)

The element $F_{\lambda^{(m)}}$ can also be written as

$$F_{\lambda^{(m)}} = \prod_{\alpha^{(m)} \in \lambda^{(m)}} \left(\frac{q^{cc(\alpha^{(m)})}}{h_{\lambda^{(m)}}(\alpha^{(m)})^q} \prod_{k=1}^{m} \frac{q^{-cc(\alpha^{(m)})}}{\ell_{\lambda^{(m)}}(\alpha^{(m)})^q - h^{(k)}_{\lambda^{(m)}}(\alpha^{(m)}) - v_k q h_{\lambda^{(m)}}^{(k)}(\alpha^{(m)})} \right),$$

(12)

where $[j]_q := q^{j-1} + q^{j-3} + ... + q^{-j+1}$ for a non-negative integer j.

3. Idempotents and Jucys–Murphy elements of $H(m, 1, n + 1)$

The Jucys–Murphy elements J_i, $i = 1, \ldots, n + 1$, of the algebra $H(m, 1, n + 1)$ are defined by the following initial condition and recursion:

$$J_1 = \tau \quad \text{and} \quad J_{i+1} = \sigma_i J_i \sigma_i, \quad i = 1, \ldots, n.$$

(13)

We recall that, under the restrictions [3], the elements J_i, $i = 1, \ldots, n+1$, form a maximal commutative set of $H(m, 1, n + 1)$ [1]. Recall also that

$$J_i \sigma_k = \sigma_k J_i \quad \text{for } k \neq i-1, i.$$

(14)

The irreducible representations of $H(m, 1, n + 1)$ are labelled by the m-partitions of size $n + 1$. The basis vectors of the irreducible representation of $H(m, 1, n + 1)$ labelled by the m-partition $\lambda^{(m)}$ are parameterized by the standard m-tableaux of shape $\lambda^{(m)}$. The Jucys–Murphy elements are diagonal in this basis. For a standard m-tableau \mathcal{T}, denote by $E_\mathcal{T}$ the corresponding primitive idempotent of $H(m, 1, n + 1)$. We have, for all $i = 1, \ldots, n + 1$,

$$J_i E_\mathcal{T} = E_\mathcal{T} J_i = c_i E_\mathcal{T},$$

(15)

where $c_i := c(\mathcal{T}|i)$, $i = 1, \ldots, n+1$. Due to the maximality of the commutative set formed by the Jucys–Murphy elements, the idempotent $E_\mathcal{T}$ can be expressed in terms of the elements J_i, $i = 1, \ldots, n + 1$. Let $\gamma^{(m)}$ be the m-node of \mathcal{T} containing the number $n + 1$. As the m-tableau \mathcal{T} is standard, the m-node $\gamma^{(m)}$ of $\lambda^{(m)}$ is removable. Let \mathcal{U} be the standard m-tableau obtained from \mathcal{T} by removing
the m-node $\gamma^{(m)}$, and let $\mu^{(m)}$ be the shape of \mathcal{U}. The inductive formula for E_T in terms of the Jucys–Murphy elements reads:

$$E_T = E_{\mathcal{U}} \prod_{\beta^{(m)} \in \mathcal{E}^+ (\mu^{(m)})} \frac{J_{n+1} - c(\beta^{(m)})}{c(\gamma^{(m)}) - c(\beta^{(m)})},$$

(16)

with the initial condition: $E_{\mathcal{U}_0} = 1$ for the unique m-tableau \mathcal{U}_0 of size 0. Here $E_{\mathcal{U}}$ is considered as an element of the algebra $H(m, 1, n+1)$. Note that, due to the restrictions (3), we have $c(\beta^{(m)}) \neq c(\gamma^{(m)})$ for any $\beta^{(m)} \in \mathcal{E}^+ (\mu^{(m)})$ such that $\beta^{(m)} \neq \gamma^{(m)}$.

4. Fusion formula for the algebra $H(m, 1, n+1)$

Let $\lambda^{(m)}$ be an m-partition of size $n+1$ and \mathcal{T} a standard m-tableau of shape $\lambda^{(m)}$. For $i = 1, \ldots, n+1$, we set $c_i := c(\mathcal{T} | i)$.

Theorem 1. The idempotent E_T corresponding to the standard m-tableau \mathcal{T} of shape $\lambda^{(m)}$ can be obtained by the following consecutive evaluations

$$E_T = F_{\lambda^{(m)}} \Phi(u_1, \ldots, u_{n+1}) \bigg|_{u_1 = c_1} \ldots \bigg|_{u_{n+1} = c_{n+1}} = E_{\mathcal{T}}.$$

(21)
Proof. The Theorem 1 follows, by induction on n, from (18) and the Propositions 2 and 5 below. \hfill \square

Till the end of the text, $\gamma^{(m)}$ and $\delta^{(m)}$ denote the m-nodes of T containing the numbers $n+1$ and n respectively; U is the standard m-tableau obtained from T by removing $\gamma^{(m)}$, and $\mu^{(m)}$ is the shape of U; also, W is the standard m-tableau obtained from U by removing the m-node $\delta^{(m)}$ and $\nu^{(m)}$ is the shape of W.

For a standard m-tableau V of size N, we define

\[F_V(u) := \frac{u - c(V)}{(u-v_1) \cdots (u-v_m)} \prod_{i=1}^{N-1} \frac{(u - c(V))^2}{(u - q^2c(V))} ; \] (22)

by convention, for $N = 1$, the product in the right hand side is equal to 1.

Proposition 2. We have

\[F_T(u)\phi_{n+1}(c_1, \ldots, c_n, u)E_{U} = \frac{u - c_n + 1}{u - J_n + 1} E_{U}. \] (23)

Proof. We prove (23) by induction on n. As $J_1 = \tau$, we have by (20)

\[\frac{u - c_1}{u - J_1} = \frac{u - c_1}{(u-v_1) \cdots (u-v_m)} \tau(u), \]

which verifies the basis of induction ($n = 0$).

We have: $E_WE_{U} = E_{U}$ and E_W commutes with σ_n. Rewrite the left hand side of (23) as

\[F_T(u)\sigma_n(u, c_n) \cdot \phi_{n}(c_1, \ldots, c_{n-1}, u)E_{U} \cdot \sigma_n^{-1}E_{U}. \]

By the induction hypothesis we have for the left hand side of (23):

\[F_T(u)(F_U(u))^{-1}\sigma_n(u, c_n)\frac{u - c_n}{u - J_n} \sigma_n^{-1}E_{U}. \]

Since J_{n+1} commutes with E_{U}, the equality (23) is equivalent to

\[F_T(u)(F_U(u))^{-1}(u - c_n)\sigma_n^{-1}(u - J_{n+1})E_{U} = \frac{(u - c_{n+1})(u - c_n)^2}{(u - q^2c_n)(u - q^{-2}c_n)}(u - J_n)\sigma_n(c_n, u)E_{U}; \] (24)

(the inverse of $\sigma_n(u, c_n)$ is calculated with the help of (21)). By (22),

\[F_T(u)(F_U(u))^{-1}(u - c_n) = \frac{(u - c_n)^2}{(u - q^2c_n)(u - q^{-2}c_n)}. \] (25)

Therefore, to prove (24), it remains to show that

\[\sigma_n^{-1}(u - J_{n+1})E_{U} = (u - J_n)\sigma_n(c_n, u)E_{U}. \] (26)

Replacing J_{n+1} by $\sigma_n J_n \sigma_n$, we write the left hand side of (26) in the form

\[(u\sigma_n^{-1} - J_n\sigma_n)E_{U}. \] (27)
As \(J_n E_d = c_n E_d \), the right hand side of (26) is

\[
(u \sigma_n - J_n \sigma_n + (q - q^{-1})(u - c_n)\frac{u}{c_n - u})E_d
\]

and thus coincides with (27).

Lemma 3. We have

\[
F_T(u) = (u - c_{n+1}) \prod_{\beta^{(m)} \in \mathcal{E}_-(\nu^{(m)})} \left(u - c(\beta^{(m)}) \right) \prod_{\alpha^{(m)} \in \mathcal{E}_+(\mu^{(m)})} \left(u - c(\alpha^{(m)}) \right)^{-1}
\]

The proof is by induction on \(n \). For \(n = 0 \), we have

\[
F_T(u) = \frac{u - c_1}{(u - v_1) \ldots (u - v_m)},
\]

which is equal to the right hand side of (29).

Now, for \(n > 0 \), we write

\[
F_T(u) = \frac{u - c_{n+1}}{(u - v_1) \ldots (u - v_m)} \frac{(u - c_n)^2}{(u - q^2 c_n)(u - q^{-2} c_n)} \prod_{i=1}^{n-1} \frac{u - c_i)^2}{(u - q^2 c_i)(u - q^{-2} c_i)}.
\]

Using the induction hypothesis, we obtain

\[
F_T(u) = \frac{(u - c_{n+1})(u - c_n)^2}{(u - q^2 c_n)(u - q^{-2} c_n)} \prod_{\beta^{(m)} \in \mathcal{E}_-(\nu^{(m)})} \left(u - c(\beta^{(m)}) \right) \prod_{\alpha^{(m)} \in \mathcal{E}_+(\mu^{(m)})} \left(u - c(\alpha^{(m)}) \right)^{-1}
\]

Denote by \(\delta^{(m)}_l \) and \(\delta^{(m)}_b \) the \(m \)-nodes which are, respectively, just above and just below \(\delta^{(m)} \) and \(\delta^{(m)}_l \) and \(\delta^{(m)}_b \) the \(m \)-nodes which are, respectively, just on the left and just on the right of \(\delta^{(m)} \); it might happen that one of the coordinates of \(\delta^{(m)}_l \) (or \(\delta^{(m)}_b \)) is not positive, and in this situation, by definition, \(\delta^{(m)}_l \not\in \mathcal{E}_-(\nu^{(m)}) \) (or \(\delta^{(m)}_b \not\in \mathcal{E}_-(\nu^{(m)}) \)). It is straightforward to see that:

- If \(\delta^{(m)}_l \not\in \mathcal{E}_-(\nu^{(m)}) \) then
 \[
 \mathcal{E}_-(\mu^{(m)}) = \mathcal{E}_-(\nu^{(m)}) \cup \{\delta^{(m)}\}
 \]
 and
 \[
 \mathcal{E}_+(\mu^{(m)}) = \left(\mathcal{E}_+(\nu^{(m)}) \cup \{\delta^{(m)}_b\}, \delta^{(m)}_l\right) \backslash \{\delta^{(m)}\}
 \]

- If \(\delta^{(m)}_l \in \mathcal{E}_-(\nu^{(m)}) \) and \(\delta^{(m)}_b \not\in \mathcal{E}_-(\nu^{(m)}) \) then
 \[
 \mathcal{E}_-(\mu^{(m)}) = \left(\mathcal{E}_-(\nu^{(m)}) \cup \{\delta^{(m)}_l\}\right) \backslash \{\delta^{(m)}\}
 \]
 and
 \[
 \mathcal{E}_+(\mu^{(m)}) = \left(\mathcal{E}_+(\nu^{(m)}) \cup \{\delta^{(m)}_b\}\right) \backslash \{\delta^{(m)}\}
 \]

- If \(\delta^{(m)}_b \not\in \mathcal{E}_-(\nu^{(m)}) \) and \(\delta^{(m)}_l \in \mathcal{E}_-(\nu^{(m)}) \) then
 \[
 \mathcal{E}_-(\mu^{(m)}) = \left(\mathcal{E}_-(\nu^{(m)}) \cup \{\delta^{(m)}_l\}\right) \backslash \{\delta^{(m)}_b\}
 \]
 and
 \[
 \mathcal{E}_+(\mu^{(m)}) = \left(\mathcal{E}_+(\nu^{(m)}) \cup \{\delta^{(m)}_l\}\right) \backslash \{\delta^{(m)}_b\}
 \]
Lemma 4. We have

\[\mathcal{E}_-(\mu^{(m)}) = \left(\mathcal{E}_-(\nu^{(m)}) \cup \{ \delta^{(m)} \} \right) \setminus \{ \delta_i^{(m)}, \delta_j^{(m)} \} \quad \text{and} \quad \mathcal{E}_+(\mu^{(m)}) = \mathcal{E}_+(\nu^{(m)}) \setminus \{ \delta^{(m)} \} . \]

In each case, it follows that the right hand side of (30) is equal to

\[(u - c_{n+1}) \prod_{\beta^{(m)} \in \mathcal{E}_-(\mu^{(m)})} (u - c(\beta^{(m)})) \prod_{\alpha^{(m)} \in \mathcal{E}_+(\mu^{(m)})} (u - c(\alpha^{(m)}))^{-1} , \]

which establishes the formula (29). □

Lemma 4. We have

\[\prod_{\beta^{(m)} \in \mathcal{E}_-(\mu^{(m)})} (c_{n+1} - c(\beta^{(m)})) \prod_{\alpha^{(m)} \in \mathcal{E}_+(\mu^{(m)}) \setminus \{ \gamma^{(m)} \}} (c_{n+1} - c(\alpha^{(m)}))^{-1} = F_{\lambda^{(m)}} \frac{F_{\mu^{(m)}}}{F_{\mu^{(m)}}} . \] (31)

Proof. 1. The definition (31), for a usual partition λ, reduces to

\[F_{\lambda} := \prod_{\alpha \in \lambda} \frac{q^{cc(\lambda)}}{\theta_{h(\lambda)}(\lambda)} . \]

The Lemma 4 for a usual partition λ is established in [5], Lemma 3.2.

2. Set $k = \text{pos}(\gamma^{(m)})$. Define, for an m-partition $\theta^{(m)}$,

\[\tilde{F}_{\theta^{(m)}} := \prod_{\alpha^{(m)} \in \theta^{(m)}} \frac{q^{cc(\alpha^{(m)})}}{h_{\theta^{(m)}}(\alpha^{(m)})} , \] (32)

and, for $j = 1, \ldots, m$ such that $j \neq k$,

\[F_{\theta^{(m)}} = \tilde{F}_{\theta^{(m)}} \prod_{j = 1, \ldots, m} F_{\theta^{(m)}} . \] (33)

By (32), we have

\[F_{\theta^{(m)}} = \tilde{F}_{\theta^{(m)}} \prod_{j = 1, \ldots, m} F_{\theta^{(m)}} . \] (34)

Fix $j \in \{1, \ldots, m\}$ such that $j \neq k$. We shall show that

\[\prod_{\beta^{(m)} \in \mathcal{E}_-(\mu^{(m)}) \setminus \{ \gamma^{(m)} \}} (c_{n+1} - c(\beta^{(m)})) \prod_{\alpha^{(m)} \in \mathcal{E}_+(\mu^{(m)}) \setminus \{ \gamma^{(m)} \}} (c_{n+1} - c(\alpha^{(m)}))^{-1} = F_{\lambda^{(m)}} \frac{F_{\mu^{(m)}}}{F_{\mu^{(m)}}} . \] (35)

Let $p_1 < p_2 < \cdots < p_s$ be positive integers such that the j-th partition of $\mu^{(m)}$ is (μ_1, \ldots, μ_s) with

\[\mu_1 = \cdots = \mu_{p_1} > \mu_{p_1+1} = \cdots = \mu_{p_2} > \cdots > \mu_{p_{s-1}+1} = \cdots = \mu_{p_s} > 0 . \]
We set \(p_0 := 0 \), \(p_{s+1} := +\infty \) and \(\mu_{p_{s+1}} := 0 \). Assume that the \(m \)-node \(\gamma^{(m)} \) lies in the line \(x \) and column \(y \). The left hand side of (35) is equal to

\[
\prod_{b=1}^{s} \left(v_k q^{2(y-x)} - v_j q^{2(\mu_{p_b} - p_b)} \right) \prod_{b=1}^{s+1} \left(v_k q^{2(y-x)} - v_j q^{2(\mu_{p_{b-1}} - p_{b-1})} \right)^{-1}.
\]

(36)

The factors in the product (33) correspond to the \(m \)-nodes of an \(m \)-partition. The \(m \)-nodes lying neither in the column \(y \) of the \(k \)-th diagrams (of \(\lambda^{(m)} \) or \(\mu^{(m)} \)) nor in the line \(x \) of the \(j \)-th diagrams do not contribute to the right hand side of (35). Let \(t \in \{0, \ldots, s\} \) be such that \(p_{t} < x \leq p_{t+1} \). The contribution from the \(m \)-nodes in the column \(y \) and lines 1, \ldots, \(p_{t} \) of the \(k \)-th diagrams is:

\[
\prod_{b=1}^{t} \left(\prod_{a=p_{b-1}+1}^{p_{b}} \frac{v_k q^{-(\mu_{p_b} - y + x - a)} - v_j q^{(\mu_{p_b} - y + x - a)}}{v_k q^{-(\mu_{p_{b-1}} - y + x - a + 1)} - v_j q^{(\mu_{p_{b-1}} - y + x - a + 1)}} \right);
\]

the contribution from the \(m \)-nodes in the column \(y \) and lines \(p_{t+1}, \ldots, x \) of the \(k \)-th diagrams is:

\[
\prod_{a=p_{t+1}}^{x-1} \left(\frac{v_k q^{-(\mu_{p_{t+1}} - y + x - a)} - v_j q^{(\mu_{p_{t+1}} - y + x - a)}}{v_k q^{-(\mu_{p_{t+1}} - y + x - a + 1)} - v_j q^{(\mu_{p_{t+1}} - y + x - a + 1)}} \right) q^{-cc(\gamma^{(m)})}.
\]

The contribution from the \(m \)-nodes lying in the line \(x \) of the \(j \)-th diagrams is:

\[
\prod_{b=t+1}^{s} \prod_{a=\mu_{p_{b-1}} + 1}^{\mu_{p_b}} \frac{v_j q^{-(y - a + p_b - x)} - v_k q^{(y - a + p_b - x)}}{v_j q^{-(y - a + p_{b-1} - x)} - v_k q^{(y - a + p_{b-1} - x)}}.
\]

After straightforward simplifications, we obtain for the right hand side of (36)

\[
x^y \prod_{b=1}^{s} \left(v_k q^{-(\mu_{p_b} - y + x - p_b)} - v_j q^{(\mu_{p_b} - y + x - p_b)} \right) \prod_{b=1}^{s+1} \left(v_k q^{-(\mu_{p_{b-1}} - y + x - p_{b-1})} - v_j q^{(\mu_{p_{b-1}} - y + x - p_{b-1})} \right)^{-1}.
\]

(37)

The comparison of (36) and (37) concludes the proof of the formula (35).

3. The assertion of the Lemma is a consequence of the formulas (31), (33) together with the part 1 of the proof.

\(\square \)

Proposition 5. The rational function \(F_T(u) \) is non-singular at \(u = c_{n+1} \), and moreover

\[
F_T(c_{n+1}) = F_{\lambda^{(m)}}^{-1} F_{\mu^{(m)}}^{-1}.
\]

(38)

Proof. The formula (29) shows that the rational function \(F_T(u) \) is non-singular at \(u = c_{n+1} \), and moreover

\[
F_T(c_{n+1}) = \prod_{\beta^{(m)} \in \mathcal{E}_-^{(\mu^{(m)})}} \left(c_{n+1} - c(\beta^{(m)}) \right) \prod_{\alpha^{(m)} \in \mathcal{E}_+^{(\mu^{(m)})}} \left(c_{n+1} - c(\alpha^{(m)}) \right)^{-1}.
\]

(39)

We use the Lemma 4 to conclude the proof of the Proposition.

\(\square \)
The rational function $a_i = \frac{\sigma_2(v_1q^2, v_2)\sigma_1(v_1q^2, v_1)\tau(v_1q^2)\sigma_1^{-1}(v_2, v_1)\tau(v_2)\sigma_1^{-1}\tau(v_1)}{(q + q^{-1})(v_1q^{-1} - v_2q)(v_1 - v_2)(v_2q^{-2} - v_1q^2)}$.

5. Remarks on the classical limit

Recall that the group ring $\mathbb{C}G(m, 1, n+1)$ of the complex reflection group $G(m, 1, n+1)$ is obtained by taking the classical limit: $q \to 1$ and $v_i \to \xi_i$, $i = 1, \ldots, m$, where $\{\xi_1, \ldots, \xi_m\}$ is the set of distinct m-th roots of unity. The “classical limit” of the generators τ, σ_1, \ldots, σ_n of $H(m, 1, n+1)$ we denote by t, s_1, \ldots, s_n.

1. Consider the Baxterized elements (41) with spectral parameters of the form $\alpha = v_\rho q^{2a}$ and $\alpha' = v_{\rho'} q^{2a'}$ with $p, p' \in \{1, \ldots, m\}$. One directly finds that

$$\lim_{q \to 1} \lim_{v_i \to \xi_i} \sigma_i(\alpha, \alpha') = s_i + \frac{\delta_{p,p'}}{a - a'} .$$

For the Artin generators $\bar{s}_1, \ldots, \bar{s}_n$ of the symmetric group S_{n+1}, the standard Baxterized form is:

$$\bar{s}_i(a, a') := \bar{s}_i + 1 \frac{1}{a - a'} \text{ for } i = 1, \ldots, n .$$

In view of (40), we define generalized Baxterized elements for the group $G(m, 1, n+1)$ as follows:

$$s_i(p, p', a, a') := s_i + \frac{\delta_{p, p'}}{a - a'} \text{ for } i = 1, \ldots, n .$$

These elements satisfy the following Yang–Baxter equation with spectral parameters:

$$s_i(p, p', a, a')s_{i+1}(p, p'', a, a'')s_i(p', p'', a', a'') = s_{i+1}(p', p'', a', a'')s_i(p, p'', a, a'')s_i(p, p', a, a') .$$

The Baxterized elements (41) have been used in [10] for a fusion procedure for the complex reflection group $G(m, 1, n+1)$.

2. It is immediate that

$$\lim_{v_i \to \xi_i} a_0(\rho) = \rho^m - 1 \quad \text{and} \quad \lim_{v_i \to \xi_i} a_i(\rho) = \rho^{m-i} \text{ for } i = 1, \ldots, m ,$$

where $a_i(\rho)$, $i = 0, \ldots, m$, are defined in (7). It follows from (41) that

$$\lim_{v_i \to \xi_i} \tau(\rho) = \sum_{i=0}^{m-1} \rho^{m-1-it} .$$

The rational function $t(\rho) := \frac{1}{m} \sum_{i=0}^{m-1} \rho^{m-1-it}$ with values in $\mathbb{C}G(m, 1, n+1)$ was used in [10] for a fusion procedure for the complex reflection group $G(m, 1, n+1)$.
3. Define, for an m-partition $\lambda^{(m)}$,

$$f_{\lambda^{(m)}} := \left(\prod_{\lambda^{(m)} \in \lambda^{(m)}} h_{\lambda^{(m)}}(\alpha^{(m)}) \right)^{-1}.$$ \hspace{1cm} (43)

The classical limit of $F_{\lambda^{(m)}}$ is proportional to $f_{\lambda^{(m)}}$. More precisely, we have

$$\lim_{q \to 1} \lim_{v_i \to \xi_i} F_{\lambda^{(m)}} = r_{\lambda^{(m)}} f_{\lambda^{(m)}}, \quad \text{where } r_{\lambda^{(m)}} = \frac{1}{m^n} \prod_{\lambda^{(m)} \in \lambda^{(m)}} p(\alpha^{(m)}). \hspace{1cm} (44)$$

The formula (44) is obtained directly from (12) since

$$\prod_{i=1}^{m} (\xi_k - \xi_i) = m/\xi_k \text{ for } k = 1, \ldots, m.$$ \hspace{1cm} (45)

4. Using formulas (40), (42) and (44), it is straightforward to check that the classical limit of the fusion procedure for $H(m, 1, n + 1)$ given by Theorem 1 leads to the fusion procedure [10] for the group $G(m, 1, n + 1)$. Also, for $m = 1$ one reobtains the fusion procedure [5] for the Hecke algebra and, in the classical limit, the fusion procedure [8] for the symmetric group.

References

[1] Ariki S. and Koike K., A Hecke algebra of $(\mathbb{Z}/r\mathbb{Z}) \wr S_n$ and construction of its irreducible representations, Adv. in Math. 106 (1994) 216–243.

[2] Broué M. and Malle G., Zyklotomische Heckealgebren, Asterisque 212 (1993) 119–189.

[3] Cherednik I. V., A new interpretation of Gelfand-Tzetlin bases, Duke Math. J. 54 (1987) 563–577.

[4] Chlouveraki M. and Jacon N., Schur elements for the Ariki-Koike algebra and applications, J. of Algebr. Comb. 35, 2 (2012) 291–311. ArXiv: 1105.5910

[5] Isaev A., Molev A. and Os’kin A., On the idempotents of Hecke algebras, Lett. Math. Phys. 85 (2008) 79–90. ArXiv: 0804.4214

[6] Isaev A., Molev A. and Ogievetsky O., Idempotents for Birman-Murakami-Wenzl algebras and reflection equation. arXiv:1111.2502

[7] Isaev A. P. and Ogievetsky O. V., On Baxterized solutions of reflection equation and integrable chain models, Nucl. Phys. B 760 [PM] (2007) 167–183. ArXiv: math-ph/0510078

[8] Molev A., On the fusion procedure for the symmetric group, Reports Math. Phys. 61 (2008), 181–188.

[9] Ogievetsky O. and Pouliain d’Andecy L., On representations of cyclotomic Hecke algebras, Mod. Phys. Lett. A 26 No. 11 (2011) 795-803. arXiv:1012.5844

[10] Ogievetsky O. and Pouliain d’Andecy L., Fusion formula for Coxeter groups of type B and complex reflection groups $G(m, 1, n)$. ArXiv: 1111.6293