FAST-GROWING SERIES ARE TRANSCENDENTAL

ROBERT J. MACG. DAWSON AND GRANT MOLNAR

Abstract. Let R be a subring of $\mathbb{C}[[z]]$, and let $X \in \mathbb{C}[[z]]$. The Newton-Puiseux Theorem implies that if the coefficients of X grow sufficiently rapidly relative to the coefficients of the series in R, then X is transcendental over R. We prove an alternative proof of this result by establishing a relationship between the coefficients of $A(X)$ and $A'(X)$, where $A(T)$ is a polynomial over $\mathbb{C}[[z]]$.

1. Introduction

For $C(z) = C$ a power series in $\mathbb{C}[[z]]$, we write $(C)_n$ for the nth coefficient of C, or C_n if no confusion arises. Throughout this paper, indices of series and sequences are always nonnegative unless otherwise noted.

Suppose we are given a ring $R \subseteq \mathbb{C}[[z]]$ and a power series $X \in \mathbb{C}[[z]]$. It is natural to ask what relationship R bears to X. For instance, we may ask whether X is algebraic or transcendental over R. (Recall that X is algebraic over R if there is a nonzero polynomial $F(T) \in R[T]$ such that $F(X) = 0$, and X is transcendental over R otherwise.)

Transcendental elements are useful building blocks in the theory of commutative rings. Indeed, X is transcendental over R precisely if the ring $R[X]$ satisfies the following universal property: for every R-algebra S, and every element $x \in S$, there is a unique R-algebra morphism $f : R[X] \to S$ such that $f(X) = x$. But if X is not transcendental over R, our options for $f(X)$ are sharply curtailed. For instance, if $X \not\in R$ but $X^2 \in R$, then an R-algebra morphism $f : R[X] \to S$ must map X to a square root of X^2 in S; any other series algebraic over R is subject to similar restrictions.

However, transcendental elements are slippery. Indeed, many decades elapsed between Euler’s formulation of the concept for real numbers and Liouville’s 1844 construction of a transcendental number [5]; Hermite did not show e to be transcendental until 1873 [3]. (For an historical overview of the history of transcendental numbers, see the first chapter of Baker [12] or Section 22.2.3 of Suzuki [7].)

The following example follows Liouville’s construction of a decimal expansion that must represent a transcendental number.

Example 1.1. Let $R = \mathbb{C}[z]$. Let $L(z) = \sum_{n\geq 0} z^{2^n}$; we note that the set of nonzero coefficients of L^{p-1} is a proper subset of the set of nonzero coefficients of L^p. For $p < q$, define $c(p, q) := 2^q(1 - 2^{-p})$; then we have $(L^p)_{c(p, q)} = q!$, $(L^j)_{c(p, q)} = 0$ for all $j < p$, and $(L^j)_n = 0$ for all $j \leq p$ and all n with $0 < c(p, q) - n < 2^{q-p}$.

Suppose now that $A(T) := \sum_{j \leq m} A_j T^j \in \mathbb{C}[z][T]$ is a degree m polynomial. We select n with $(A_m)_n \neq 0$, and let $d := \max \{ \deg(A_j) : j \leq m \}$, where we adopt the convention $\deg(0) := -\infty$. Then for any q large enough that $2^{q-p} > d$, we have

$$(A(L))_{c(p, q)+n} = (L^m)_{c(p, q)} \cdot (A_m)_n \neq 0.$$

Thus L is transcendental over $\mathbb{C}[z]$.

It is possible that the technique embodied in Example 1.1 can be extended to construct a series X transcendental over (for instance) the ring of absolutely convergent series. But the
rate of growth of the coefficients of X, rather than of the gaps between them, may also be incompatible with the existence of a nonzero polynomial that takes X to 0.

Recall that a series of the form $C(z) := \sum_{n \gg -\infty} C_n z^{n/d}$ is a Puiseux series, and $\mathbb{C}((z^*)) := \bigcup_{d \geq 1} \mathbb{C}((z^{1/d}))$ is the field of Puiseux series. If for some $r > 0$, $|C_n| = O(r^{n/d})$ as $n \to \infty$, we say C exhibits exponential growth. Otherwise, C exhibits superexponential growth.

Remark 1.2. A power series $C(z) \in \mathbb{C}[[z]]$ exhibits exponential growth precisely if $C(z)$ converges for z in a neighborhood of the origin. In other words, $C(z)$ exhibits exponential growth precisely if $C(z)$ defines an analytic function in a neighborhood of the origin.

Theorem 1.3 (Newton-Puiseux Theorem, [6]). The field $\mathbb{C}((z^*))$ is algebraically closed. Moreover, if a nonzero polynomial $A(T) \in \mathbb{C}((z^*))[T]$ has coefficients exhibiting exponential growth, then the roots of $A(T)$ exhibit exponential growth.

The following corollary is a straightforward application of the Newton-Puiseux Theorem (see [4]).

Corollary 1.4. If $X \in \mathbb{C}[[z]]$ exhibits superexponential growth, then X is transcendental over the ring of series exhibiting exponential growth.

Example 1.5. The power series $\sum_{n \geq 0} n! z^n \in \mathbb{C}[[z]]$ is irrational over the ring of series exhibiting exponential growth. It is a fortiori irrational over the ring of Abel-summable series, the ring generated by the convergent series, and the ring of absolutely convergent series, since these are all subrings of the ring of series exhibiting exponential growth.

Remark 1.6. The proof of the Newton-Puiseux Theorem applies without modification if we replace \mathbb{C} with any characteristic 0 algebraically closed field equipped with an absolute value $|\cdot|$. It may also be adapted to prove that fast-growing series are transcendental over other subrings of $\mathbb{C}[[z]]$ whose series exhibit modest growth.

The object of this note is to establish by purely elementary means that if every series in R has coefficients exhibiting at most modest growth, then any series $X \in \mathbb{C}[[z]]$ with sufficiently fast-growing coefficients is transcendental over R. We attain this result by means of an elementary algebraic identity (Theorem 2.2), rather than by invoking the machinery of Puiseux series. We state our main theorem (Theorem 3.3) here.

Theorem. Fix R a subring of $\mathbb{C}[[z]]$, and suppose we have a monotone increasing function $\rho : \mathbb{N} \to \mathbb{R}_{>0}$ such that for every $C \in R$, we have $C_n = O(\rho(n))$ as $n \to \infty$.

Let $X \in \mathbb{C}[[z]]$; suppose that $|X_0| \geq 1$, and that for every fixed λ and m, the power series X satisfies the following conditions as $n \to \infty$:

$$\rho(n) \left(\sum_{\ell \leq \frac{n}{4}} |X_\ell| \right)^m = o(|X_n - \lambda|);$$

$$\rho(n) |X_{n-\lambda-1}| \left(\sum_{\ell < \frac{n}{4}} |X_\ell| \right)^m = o(|X_n - \lambda|).$$

Then X is transcendental over R.
In particular, Theorem 3.3 applies to the ring of power series exhibiting exponential growth, for instance when we take $\rho(n) := n!$ (see Example 3.5 below). Although the content of Theorem 3.3 is implied by Corollary 1.4, at least when R is the ring of series exhibiting exponential growth, we find merit in our approach and hope that Theorem 2.2 may find other applications in the future.

Remark 1.7. Our work applies verbatim to power series over any characteristic 0 field K equipped with an absolutely value $|\cdot|$.

The idea behind the proof of Theorem 3.3 is fairly straightforward: we suppose we have a polynomial $A(T) := \sum_{j \leq m} A_j T^j \in R[T]$ such that $A(X) = 0$, and deduce that $A(T) = 0$. To do so, we make a careful examination of $A(X)^n$ for n large; if the coefficients of X grow sufficiently rapidly, then the behavior of X^n will dominate $A(X)^n$ unless the coefficient of X^n is zero. But as $A(X) = 0$, the coefficient of X^n must be zero, and so the behavior of X^n will dominate $A(X)^n$ unless this coefficient is zero; proceeding inductively, for any ℓ small, we conclude the coefficient of $X^{n-\ell}$ is zero. It turns out that for ℓ small relative to n, the coefficient of $X^{n-\ell}$ in $A(X)^n$ is independent of n: in fact, the coefficient of $X^{n-\ell}$ is precisely $A'(X)_{\ell}$, where $A'(X) := \sum_{j \leq m} j A_j X^{j-1}$ is the formal derivative of $A(T)$ evaluated at X (see Theorem 2.2 below). Consequently, if $A(X) = 0$ we would expect to have $A'(X) = 0$, and this is indeed the case; now an easy bit of algebra tells us that $A(T) = 0$ as desired. In the remainder of this note, we formalize the intuition outlined above.

ACKNOWLEDGMENTS

We thank Gary Walsh and John Voight for their helpful observations.

2. Algebraic Techniques

In this section, we give a relationship between the coefficients of $A(X)$ and $A'(X)$ which emphasizes the high-index coefficients of X.

Lemma 2.1. Fix a power series $X \in \mathbb{C}[[z]]$. For any m, we have
\[
X^m = X^{[m]} + mX^{(m)},
\]
where the power series $X^{[m]}$ and $X^{(m)}$ are defined by
\[
(X^{[m]})_n := \sum_{\sum k_j = n \atop k_1, \ldots, k_m \leq \frac{n}{\ell}} X_{k_1} \cdots X_{k_m},
\]
and
\[
(X^{(m)})_n := \sum_{\ell < \frac{n}{\ell}} (X^m)_{\ell} X_{n-\ell}.
\]

Proof. By definition, we have
\[
(X^m)_n = \sum_{\sum k_j = n \atop k_1, \ldots, k_m \leq \frac{n}{\ell}} X_{k_1} \cdots X_{k_m}
\]
\[
= \sum_{\sum k_j = n \atop k_1, \ldots, k_m \leq \frac{n}{\ell}} X_{k_1} \cdots X_{k_m} + \sum_{j=1}^m \sum_{\sum k_j = n \atop k_j > \frac{n}{\ell}} X_{k_1} \cdots X_{k_m}.
\]
If \(j = 1 \) and \(\ell := n - k_1 \), then \(\ell < n/2 \). By symmetry, the last sum is independent of \(j \), so
\[
(X^m)_n = (X^{[m]})_n + m \sum_{\ell < n/2} X_{n-\ell} \sum_{k_2 + \ldots + k_m = \ell} X_{k_2} \ldots X_{k_m}
\]
\[
= (X^{[m]})_n + m \sum_{\ell < n/2} X_{n-\ell}(X^{m-1})_{\ell},
\]
from which (1) follows. \(\square \)

Informally, Lemma 2.1 partitions the summands of \((X^m)_n\) into a central “core” in which every index is less than or equal to \(n/2 \), and \(m \) sets in which each summand has a (necessarily single) factor \(X_k z^k \) with \(k > n/2 \). We illustrate this with the summands of \((X^3)_4\), the coefficient of \(z^4 \) in \(X^3 = (X_0 + X_1 z + X_2 z^2 + \ldots)^3 \), arranged as

\[
X_0X_1X_3 \quad X_0X_0X_4 \quad X_1X_0X_3 \\
X_0X_2X_2 \quad X_1X_1X_2 \quad X_2X_0X_2 \\
X_0X_4X_0 \quad X_1X_3X_0 \quad X_2X_2X_0 \quad X_3X_1X_0 \quad X_4X_0X_0.
\]

The terms in any of the three boldfaced triangles sum to \((X^{(3)})_4\), while \((X^{[3]})_4\) is the sum over the central inverted triangle.

These definitions extend to full power series. For instance, we have
\[
X^{[3]}(z) = X_0 + 3X_0^2X_1 z + 3X_0X_1^2 z^2 + X_1^3 z^3 + (3X_0X_2 + 3X_1^2X_2)z^4 + \ldots
\]
and
\[
X^{(3)}(z) = X_0^2X_2 z^2 + (X_0^2X_3 + 2X_0X_1X_2)z^3 + (X_0^2X_4 + 2X_0X_1X_3)z^4 + \ldots.
\]

But observe that for \(m = 0, 1, 2 \) and \(n \) arbitrary, the set
\[
\{ (k_1, \ldots, k_m) \in \mathbb{Z}^m : k_1 + \ldots + k_m = n \text{ and } 0 \leq k_1, \ldots, k_m \leq n/2 \}
\]
may be empty or singleton, so there are a few irregularities for low powers: we have \(X^{[0]} = 1 \), \(X^{[1]} = X_0 \), and \(X^{[2]} = 1 + X_1^2 z^2 + X_2^2 z^4 + \ldots \).

Let
\[
\delta(A, X) := \sum_{|j| \leq m} A_j X^{[j]},
\]
and write \(\delta_n(A, X) := \delta(A, X)_n \). We may think of \(\delta(A, X) \) as a “pseudopolynomial” version of \(A(X) \) using only the cores of the powers \(X^m \). Let also
\[
\epsilon_n(A, X) := \sum_{j \leq m} \sum_{k+p+q = m \atop q < p \leq m/2} j(A_j)_k (X^{j-1})_q X_p
\]
and, for \(\lambda < n/2 \), let
\[
\gamma_{n,\lambda}(A, X) := \sum_{\lambda \leq \ell < \frac{n}{2}} A'(X)_\ell X_{n-\ell}.
\]

While innocuous on its face, Lemma 2.1 is instrumental in the proof of the following algebraic identity.

Theorem 2.2. Fix a power series \(X \in \mathbb{C}[[z]] \) and a polynomial \(A(T) \in \mathbb{C}[[z]][T] \). For any \(n \) and any \(\lambda < n/2 \), we have
\[
(2) \quad A(X)_n = \sum_{\ell < \lambda} A'(X)_\ell X_{n-\ell} + \gamma_{n,\lambda}(A, X) + \delta_n(A, X) + \epsilon_n(A, X),
\]
Proof. Write $A(T) = \sum_{j \leq m} A_j T^j$, where m is the degree of A. By definition,

\begin{equation}
A(X)_n = \sum_{j \leq m} (A_j X^j)_n = \sum_{j \leq m} \sum_{k \leq n} (A_j)_k (X^j)_{n-k}.
\end{equation}

Substituting (1) into (3), and recalling the definition of $X^{[j]}$, we obtain

\[
A(X)_n = \sum_{j \leq m} \sum_{k \leq n} (A_j)_k ((X^{[j]})_{n-k} + j(X^{[j]})_{n-k})
\]

\[
= \sum_{j \leq m} \left((A_j X^{[j]})_n + j \sum_{k \leq n} (A_j)_k \sum_{q < \frac{n-k}{2}} (X^{j-1})_q X_{n-k-q} \right)
\]

\[
= \delta_n(A, X) + \sum_{j \leq m} j \sum_{k \leq n} (A_j)_k \sum_{q < \frac{n-k}{2}} (X^{j-1})_q X_{n-k-q}
\]

Let $p := n - k - q$, so $q < (n - k)/2$ if and only if $q < p$. Thus

\[
A(X)_n - \delta_n(A, X) = \sum_{k+p+q=n, q<p} \left(\sum_{j \leq m} j A_j \right)_k (X^{j-1})_q X_p
\]

We break this sum into two cases, depending on whether $p \leq n/2$ or $p > n/2$.

In the first case, we get

\[
\sum_{k+p+q=n} j (A_j)_k (X^{j-1})_q X_p = \epsilon_n(A, X).
\]

In the second case, k and q have no restriction other than that $k + p + q = n$, and

\[
\sum_{k+p+q=n, \frac{n}{2} < p \leq n} \left(\sum_{j \leq m} j A_j \right)_k (X^{j-1})_q X_p = \sum_{\frac{n}{2} < p \leq n} \left(\sum_{j \leq m} j A_j X^{j-1} \right)_{n-p} X_p
\]

\[
= \sum_{\frac{n}{2} < p \leq n} A'(X)_{n-p} X_p.
\]

Setting $\ell := n - p$, (2) follows immediately. \qed

Figure 1 may make what we have just done clearer. The coefficient $A(X)_n$ is the sum of a number of terms of the form $(A_j)_k X_{\ell_1} X_{\ell_2} \cdots X_{\ell_j}$, where $k + \ell_1 + \cdots + \ell_j = n$. If none of the indices ℓ_i exceeds $(n-k)/2$, the summand is part of the core. Otherwise, let p be some maximal ℓ_i, and let q the sum of the others. For fixed n, the triplets (k, p, q) may be considered as barycentric coordinates.

Triplets with $p \leq q$ (shown in white) are the summands of the core, $\delta_n(A, X)$. (Due to the definition of p, we cannot have $p = 0$ and $q > 0$ simultaneously; these positions on the graph are left empty.) Coordinates with $q < p \leq n/2$ (shown in light grey) are summands of $\epsilon_n(A, X)$. Finally, coordinates with $p > n/2$ correspond to the region in which the coefficient of X_p in $A(X)_n$ is $A'(X)_{n-p}$. We subdivide this into the summands of $\gamma_{n,\lambda}(X, A)$ (dark grey) and the set of triplets (shown in black) for which $l < \lambda$. Unlike the others, this last set of triplets does not become more numerous with increasing n. We shall see that if the coefficients of X grow fast enough, each of $\gamma_{n,\lambda}(X, A), \delta_n(X, A)$, and $\epsilon_n(X, A)$ is insignificant compared to the terms with $l < \lambda$.
3. CRITERIA AND CONSTRUCTIONS FOR TRANSCENDENTAL POWER SERIES

In this section, we prove our main theorem and furnish some related results.

Lemma 3.1. Fix a power series \(X \in \mathbb{C}[[z]] \) and a polynomial \(A(T) \in \mathbb{C}[[z]][T] \), and suppose that \(A(X) = 0 \). Suppose moreover that for each \(\lambda \), we have, as \(n \to \infty \):

\[
|\gamma_{n,\lambda}(A, X)| = o(|X_{n-\lambda}|); \tag{4}
|\delta_n(A, X)| = o(|X_{n-\lambda}|); \tag{5}
|\epsilon_n(A, X)| = o(|X_{n-\lambda}|). \tag{6}
\]

Then \(A'(X) = 0 \).

Proof. Let \(n \geq 0 \) be arbitrary. By Theorem 2.2 we have

\[
A(X)_n = \sum_{\ell<\lambda} A'(X)_{\ell} X_{n-\ell} + \gamma_{n,\lambda}(A, X) + \delta_n(A, X) + \epsilon_n(A, X),
\]

We claim \(A'(X)_\ell = 0 \) for each \(\ell \). If not, then let \(\lambda \) be minimal such that \(A'(X)_\lambda \neq 0 \). Then

\[
A(X)_n = A'(X)_\lambda X_{n-\lambda} + \gamma_{n,\lambda}(A, X) + \delta_n(A, X) + \epsilon_n(A, X),
\]

By conditions (4), (5) and (6) we observe

\[
|\gamma_{n,\lambda}(A, X)|, |\delta_n(A, X)|, |\epsilon_n(A, X)| < \frac{|A'(X)_\lambda X_{n-\lambda}|}{3}
\]

for \(n \) sufficiently large. Thus

\[
0 = |A(X)_n| \geq |A'(X)_\lambda X_{n-\lambda}| - |\delta_n(A, X)| - |\epsilon_n(A, X)| - |\gamma_{n,\lambda}(A, X)| > 0,
\]

and we have obtained a contradiction. Then \(A'(X)_\ell = 0 \) for all \(\ell \), and thus \(A'(X) = 0 \) as desired. \(\square \)

Lemma 3.2. Let \(R \) be a subring of \(\mathbb{C}[[z]] \) and let \(X \in \mathbb{C}[[z]] \). Suppose that conditions (4) through (6) of Lemma 3.1 hold for all series polynomials \(A(T) \in R[T] \) such that \(A(X) = 0 \). Then \(X \) is transcendental over \(\mathbb{C} \).

Proof. Suppose \(A(T) \in R[T] \) is chosen with \(A(X) = 0 \). Repeated applications of Lemma 3.1 show that every derivative of \(A(X) \) vanishes. Then \(A(T) = A(X) = 0 \). Thus \(X \) is transcendental over \(R \) as desired. \(\square \)

At this point, we are ready to prove our main theorem.
Theorem 3.3. Fix R a subring of $\mathbb{C}[[z]]$, and suppose we have a monotone increasing function $\rho : \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that for every $C \in R$, we have $|C| = O(\rho(n))$ as $n \to \infty$.

Suppose that $|X_0| \geq 1$, and that for every fixed λ and m, the power series X satisfies the following conditions as $n \to \infty$:

$$\rho(n) \left(\sum_{\ell \leq \frac{n}{\lambda}} |X_\ell| \right)^m = o(|X_{n-\lambda}|);$$

$$\rho(n) |X_{n-\lambda-1}| \left(\sum_{\ell < \frac{n}{\lambda}} |X_\ell| \right)^m = o(|X_{n-\lambda}|).$$

Then X is transcendental over R.

Proof. Note that the last condition of Theorem 3.3 gives us $|X_n| = o(|X_{n+1}|)$ as $n \to \infty$, and a fortiori $|X_n|$ is eventually increasing. We will prove that conditions 4, 5, and 6 of Lemma 3.1 hold for every polynomial $A(T) \in R[T]$ with $A(X) = 0$, so Lemma 3.2 will give us our desired result.

Fix a polynomial $A(T) = \sum_{j \leq m} A_j T^j \in R[T]$ for which $A(X) = 0$; and fix $\lambda \geq 0$. We compute (as $n \to \infty$):

$$|\gamma_{n,\lambda}(A, X)| \leq \sum_{\lambda < \ell \leq \frac{n}{\lambda}} \sum_{j \leq m} \sum_{k \leq \ell} |j(A_j)_k (X^{j-1})_{\ell-k} X_{n-\ell}|$$

$$= O \left(\rho(n) \sum_{\lambda < \ell < \frac{n}{\lambda}} \sum_{k \leq \ell} \left| (X^{m-1})_{\ell-k} X_{n-\ell} \right| \right)$$

$$= O \left(n \rho(n) |X_{n-\lambda-1}| \sum_{k_1, \ldots, k_{m-1} < \frac{n}{\lambda}} |X_{k_1} \cdots X_{k_{m-1}}| \right)$$

$$= O \left(\rho(n) |X_{n-\lambda-1}| \left(\sum_{\ell < \frac{n}{\lambda}} |X_\ell| \right)^m \right)$$

$$= o(|X_{n-\lambda}|),$$

where the second-to-last asymptotic holds because $n = O \left(\sum_{\ell < \frac{n}{\lambda}} |X_\ell| \right)$. Thus condition 4 holds.

Next we compute

$$|\delta_n(A, X)| \leq \sum_{j \leq m} \sum_{k \leq n} |(A_j)_k (X^{[j]}_{n-k})|$$

$$= O \left(\rho(n) \sum_{k \leq n} \sum_{k_1, \ldots, k_m = n-k \atop k_1, \ldots, k_m \leq \frac{n}{\lambda}} |X_{k_1} \cdots X_{k_m}| \right)$$

$$= O \left(n \rho(n) \left(\sum_{\ell < \frac{n}{\lambda}} |X_\ell| \right)^m \right)$$
\[= O \left(\rho(n) \left(\sum_{\ell \leq \frac{n}{2}} |X_\ell| \right)^{m+1} \right) \]
\[= o(|X_{n-\lambda}|), \]
where the second-to-last asymptotic holds because \(n = O \left(\sum_{\ell \leq \frac{n}{2}} |X_\ell| \right) \). Thus condition 5 holds.

Finally, we compute
\[
|\epsilon_n(A, X)| \leq \sum_{j \leq m} \sum_{k+p+q=n, q < p \leq \frac{n}{2}} |j(A_j)k (X^{j-1})_q X_p| \\
= O \left(n\rho(n) \left| X_{\left| \frac{n}{2} \right|} \right| \sum_{k+q < n, q < \frac{n}{2}} \left| (X^{m-1})_{q} \right| \right) \\
= O \left(n^2 \rho(n) \left| X_{\left| \frac{n}{2} \right|} \right| \left(\sum_{q < \frac{n}{2}} |X_q| \right)^{m-1} \right) \\
= O \left(\rho(n) \left(\sum_{\ell \leq \frac{n}{2}} |X_\ell| \right)^{m+2} \right) \\
= o(|X_{n-\lambda}|),
\]
where the second-to-last asymptotic holds because \(n, \sum_{q < \frac{n}{2}} |X_q| \), and \(|X_{\left| \frac{n}{2} \right|}| \) are each \(O \left(\sum_{\ell < \frac{n}{2}} |X_\ell| \right) \). Thus condition 6 holds, and \(X \) is transcendental over \(R \). \(\square \)

Corollary 3.4. Assume the notation of Theorem 3.3. Suppose that \(|X_0| \geq 1 \), and that for every fixed \(\lambda \) and \(m \), the power series \(X \) satisfies the following condition as \(n \to \infty \):
\[
\rho(n) |X_{n-\lambda-1}| \left(\sum_{\ell \leq \frac{n}{2}} |X_\ell| \right)^{m} = o(|X_{n-\lambda}|).
\]
Then \(X \) is transcendental over \(R \).

Example 3.5. Let \(R \subseteq \mathbb{C}[[z]] \) comprise the power series which exhibit exponential growth. Then we may take \(\rho(n) = n! \), since \(n! \) exhibits superexponential growth. Let \(X = \sum_{n \geq 0} 2^{n!} z^n \), so \(X_n = 2^{n!} \). Then \(|X_0| = 2 > 1 \). Moreover, for every fixed \(\lambda \) and \(m \), we have (as \(n \to \infty \)):
\[
n! \left(\sum_{\ell \leq \frac{n}{2}} 2^\ell \right)^{m} \leq n! \left(\sum_{\ell \leq \left\lfloor \frac{n}{2} \right\rfloor} 2^\ell \right)^{m} = O \left(2^\left\lfloor \frac{n+4}{2} \right\rfloor! \right) = o \left(2^{(n-\lambda)!} \right),
\]
so \(X \) is transcendental over \(R \) by Corollary 3.4. The series \(X \) is a fortiori transcendental over the ring of Abel-summable series, the ring generated by the convergent series, and the ring of absolutely convergent series, since these are all subrings of \(R \).
References

[1] Baker, A. Transcendental Number Theory, Cambridge, C.U.P., 1975
[2] Cantor, G. Über eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen, Jour. Reine Angew. Math. 77 (1874), 258-62
[3] Hermite, C., Sur la fonction exponentielle, Comptes Rendus 77 (1874), 18-24, 74-9, 226-33, 285-93; Oeuvres III, 150-81
[4] Leason, Todd (https://math.stackexchange.com/users/173354/todd leason), Roots of polynomials those coefficients are analytic functions, Mathematics Stack Exchange.
[5] Liouville, J., Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même reductible à des irrationnelles algébriques, Comtes Rendus 18 (1844), 883-5, 910-11; J. Math. pures appl. 16 (1851), 133-42.
[6] Krzysztof Jan Nowak, Some elementary proofs of Puiseux’s theorems, Univ. Iagel. Acta Math. (2000), no. 38, 279–282. MR 1812118
[7] Suzuki, J, A History of Mathematics, Prentice-Hall, Upper Saddle River, (2002)
[8] Weierstrass, K. Mathematische Werke. II. Abhandlungen 2, Georg Olms Verlagsbuchhandlung, Hildesheim; Johnson Reprint Corp., New York (1967), 135-142

Email address: rdawson@cs.smu.ca

DEPT. OF MATHEMATICS AND COMPUTING SCIENCE, SAINT MARY’S UNIVERSITY, HALIFAX, NS, CANADA, B3H 3C3

Email address: Grant.S.Molnar.GR@dartmouth.edu

MATHEMATICS DEPARTMENT, DARTMOUTH COLLEGE, HANOVER, NH, USA, 245 KEMENY HALL