Synthesis of SPIO nanoparticles and the subsequent applications in stem cell labeling for Parkinson’s disease

Shuang Yu (✉ yush@sibet.ac.cn)  
Suzhou Institute of Biomedical Engineering and Technology  
https://orcid.org/0000-0002-5604-0293

Li An  
Suzhou Institute of Biomedical Engineering and Technology

Qing Tao  
Suzhou University

Yue Wu  
Suzhou Institute of Biomedical Engineering and Technology

Nana Wang  
Suzhou Institute of biomedical engineering and technology

Yan Liu  
Suzhou Institute of biomedical engineering and technology

Feifei Wang  
Suzhou Institute of biomedical engineering and technology

Lixing Zhang  
Suzhou Institute of Biomedical Engineering and Technology

Aihua Shi  
Suzhou Institute of biomedical engineering and technology

Xiumin Zhou  
Suzhou University

Jingzhong Zhang  
Suzhou Institute of Biomedical Engineering and Technology

Nano Express

Keywords: SPIO, stem cells, Parkinson’s disease, labeling

DOI: https://doi.org/10.21203/rs.3.rs-139065/v1

License: ☕️  This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License
Abstract

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the midbrain, and the stem cell transplantation method provides a promising strategy for the treatment. In these studies, tracking the biological behaviors of the transplanted cells in vivo, is essential for a basic understanding of stem cell function and evaluation of clinical effectiveness. In the present study, we developed a novel ultra-small superparamagnetic iron oxide nanoparticles coating with the polyacrylic acid (PAA) and methoxypolyethylene glycol amine (PEG) by thermal decomposition method and a two-step modification. The USPIO-PAA/PEG NPs have a uniform diameter of 10.07 ± 0.55 nm and proper absorption peak of the corresponding ligands, as showed by TEM and FTIR. MTT showed that the survival of cells incubated with USPIO-PAA/PEG NPs remained above 96%. The synthesized USPIO-PAA/PEG had a good relaxation rate of 84.65 s⁻¹ Mm⁻¹, indicating that they could be efficiently uptake and traced by MRI. Furthermore, the primary human adipose-derived stem cells (HADSCs) were characterized, labeled with USPIO-PAA/PEG and transplanted into the striatum of 6-hydroxydopamine (6-OHDA) induced PD rat models. The labeled cells could be traced by MRI for up to 3 weeks after the transplantation surgery, moreover, transplantation with the labeled HADSCs significantly attenuated apomorphine-induced rotations in PD models, and increased the number of the dopaminergic neurons in the substantia nigra. Overall, the development of USPIO-PAA/PEG NPs provides a promising tool for in vivo tracing technique of cell therapy, and identify a novel strategy to track stem cells with therapeutic potential in PD.

Introduction

Parkinson's disease is a neurodegenerative disease which is characterized by the progressive loss of dopaminergic neurons in the midbrain. The relatively focal impairment makes it a good candidate for cell-based therapies. Several cell types, ranging from fetal midbrain tissue [1] to induced neurons derived from embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) [2] have been implicated in the treatment of PD, however, ethical concerns and the potential risk of tumorigenicity could not be avoided during the application [3]. Mesenchymal stem cells (MSC) are multipotent stem cell population that has been reported in the last decade as a promising therapeutic tool for the neurodegenerative disease, including PD [4, 5]. Compared to other cell types, MSC show good proliferation, widespread availability throughout the human body and immunorepressant ability. Some studies have shown that intracranial transplantation of MSCs promote neuroprotection, neuronal differentiation and immunomodulation [6–8]. In these studies, tracking the viability, migration and integration of transplanted cells in vivo, is essential for a basic understanding of stem cell function and evaluation of clinical effectiveness.

To better analyze the therapeutic effects of the transplanted cells, various tracers have been developed. The safety and efficacy of tracers are the most critical factors influencing the application. Compared to the labeling with fluorescent proteins, tracking using superparamagnetic iron oxide (SPIO) particles would not bring any genetic modification to the transplanted cells. Several studies have used SPIO as an effective contrast agent to visualize and track the transplanted cells [6, 9, 10]. To improve the imaging
contrast and sensitivity, in the present study we developed an ultra-small SPIO nanoparticles (USPIO) coating with polyacrylic acid (PAA) and a subsequent methoxypolyethylene glycol amine (PEG) layer. The novel USPIO-PAA/PEG shows good cellular internalization and long-term MRI tracking capacity in vitro and in vivo. Moreover, the USPIO-PAA/PEG labeled MSCs derived from human adipose tissue (HADSCs) maintained the biological features, improving the behavioral impairments and increasing TH immunoreactivity in the substantia nigra of PD animal models.

Materials And Methods

Materials

Iron acetylacetonate, TREG, Diethylene Glycol and PEG were purchased from Aladdin Industrial Corporation. (shanghai, China). Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was purchased from Sigma-Aldrich Corporation. (Shanghai, China). Dulbecco's modified eagle medium (DMEM), trypsin-EDTA (0.25%) and fetal bovine serum (FBS) were purchased from Thermo Fisher Scientific. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-Hydroxy succinimide were purchased from Sigma-Aldrich (China). N,N-Dimethylformamide, ethyl alcohol absolute and ethyl acetate were purchased from Sinopharm Chemical Reagent Corporation. Ultrapure water was produced by millipore pure and ultrapure water purification systems. Anti-Human CD90-FITC, Anti-Human CD45-PE, Anti-Human CD34-FITC and Anti-Human CD105-PE were purchased from Biolegend.

Synthesis of USPIO

The USPIO were synthesized by polyol method as previous research. [11–14] Steps of experiment as follow: iron acetylacetonate 1 mmol and TREG 25 mL were mixed in a three-neck flask, which connected to argon, spherical condensing tube and thermometer. After incubated with argon flow for 15 minutes, the mixture was heated to 120°C (heating rate is 3°C/min) and maintained for 1 hours, then the mixture was heated further to 250°C at the same heating rate and maintained for 30 minutes. The reaction mixture was natural cooled to room temperature, diluted with 2 mL absolute ethyl alcohol, followed by precipitation with ethyl acetate. The sediment was collected by centrifugation at 8000 rpm for 20 minutes, then resuspend in absolute ethyl alcohol. The USPIO were stored in absolute ethyl alcohol at 4°C for further use.

Preparation of PAA/PEG coated USPIO

The USPIO-PAA was acquired according to a previous report [15]. In detail, polyacrylic acid (PAA) 1.5 g was dissolved into 24 mL diethylene glycol. After a 5 minutes argon flow, the mixture was heated to 110°C and maintained until the solution pellucid. The ethanol dispersing solution containing 28 mg of USPIO prepared in the previous step was added to the above clarified solution after ultrasonic dispersing. The solution was finally heated to 210°C at a rate of 3°C/min. The reaction was stopped after 2 hours of reflux and naturally cooled to room temperature. After cooling, ethyl acetate was added to the reaction solution to precipitate the USPIO NPs, and then centrifuged at 8000 rpm for 20 min to remove the
supernatant. The precipitate was then dispersed in ethanol, followed by precipitation with ethyl acetate. After the washing procedures for three times, the USPIO-PAA was dispersed in ultrapure water for further use. In order to improve biocompatibility, we further linked PEG to the surface of nanoparticles by EDC and NHS-mediated amidation \[16\]. 0.45 g of PEG was dissolved in 5 ml ultrapure water, and added to the 15 ml USPIO-PAA dispersion (contains 35 mg Fe) supplemented with 20 mg EDC and 12 mg NHS. The mixture was mechanical stirring at room temperature for 2 h, then 10 ml DMF solvent was added, removing water at 40°C in the rotary evaporation apparatus. Finally, 40 mg DEC and 24 mg NHS were added to the mixture, mixing at room temperature for 48 h. The reaction solution was transferred to a dialysis bag in ultrapure water for 72 h, during which ultrapure water was replaced every 12 hours. The mixture was further transferred into an ultrafiltration tube to collect molecules with an Mr > 30kD by centrifugation at 4000 rpm for 10 minutes. The final product was dissolved in ultra-pure water and stored at 4°C.

**Characterization of NPs**

The particle size, size distribution and morphology of the samples were analyzed by TEM. The coating layer was measured by negative stained. After ultrasonic dispersion, the USPIO-PAA and USPIO-PAA/PEG in aqueous solution were added to the copper network of 300-mesh carbon supporting membrane, dried naturally, and then put into a projection electron microscope (Tecnai G2F20 s-twin, FEI) for observation.

The infrared spectroscopy analysis is performed on Agilent Technologies Cary 600 Series FTIR Spectrometer, where the dried sample powder is added directly to the sample tank for detection.

The Fe content in USPIO-PAA/PEG dispersion was determined by flame atomic absorption spectrometry (FAAS), whose model is Perkin Elmer Analyst 700. First, 1, 2, 3, 4, and 5 µg/mL iron standard solution was configured to draw the standard curve, then 100 µL USPIO-PAA or USPIO-PAA/PEG dispersion solution was dissolved with nitric acid, and the content of iron was determined in a 50 mL volumetric flask.

Magnetic resonance imaging of the nanoparticles was conducted on clinical scanners with magnetic field of 3 T in the imaging department of the first affiliated hospital of Soochow University. The nanoparticles were dispersed in 1% agarose gel solution according to the corresponding concentration. After the solution solidified, the transverse relaxation time of the samples was measured by multi-echo sequence. Exporting the acquisition of MRI in DICOM format, and then use the RadiAnt DICOM Viewer to open, read the grey value, by importing the gray values of different echo times into Origin for fitting, the transverse relaxation time values of USPIO dispersions with different concentrations were obtained, finally, the transverse relaxation rate r2 of USPIO-PAA and USPIO-PAA/PEG samples was obtained by linear fitting with the transverse relaxation rate of 1/T2 and the Fe concentration of the samples.

**HADSCs Isolation and Identification**

All studies were done in accordance with the ‘Ethical Guiding Principles on Human Embryonic Stem Cell Research’ (of the Ministry of Science and Technology and the Ministry of Health, People's Republic of China, 2003) and Helsinki Declaration. Adipose samples were obtained with informed consent and ethical
approval from the first affiliated hospital of Soochow University. The adipose tissue was washed, cut into small pieces after removing the blood vessels and connective tissue under an anatomical microscope. The blocks were digested with type I collagenase (0.3 pu/mL) at 37°C for 30 min, followed by centrifugation at 500 g for 10 min. The cell pellet was suspended with in DMEM + 10% FBS and seeded at the density of $8 \times 10^4$/cm$^2$. After 48 hours, the old medium containing floating cells was discarded and replaced with fresh medium.

HADSCs were characterized by flow cytometry for surface markers specifically labeling mesenchymal (CD90 and CD105) and hematopoietic (CD34 and CD45) stem cells. A total of $1 \times 10^5$ cells were harvested and incubated with either PE, FITC, APC/cy7 or PerCP conjugated antibodies against CD34, CD45, CD90 and CD105 mouse anti-human monoclonal antibodies and appropriate isotype controls. Stained cells were analyzed using a flow cytometer (LSRFortessa, BD, USA), and data were analyzed using FlowJo software. Four phenotypes of CD90+, CD105+, CD34- and CD45- were selected for the surface markers of HADSCs. Expression levels of cell surface markers were identified by flow cytometry (BD LSRFortessa).

The adipogenic and osteogenic differentiation of HADSCs were evaluated by Oil Red O and Alizarin Red Staining, respectively. HADSCs were cultured with either MesenCultTM Adipogenic Differentiation medium (Stem cell Tech., 05412) or OriCellTM Osteogenic Differentiation Kit (Cyagen, HUXMA-90021). For adipogenic differentiation of HADSCs, cells were assessed on day 14 by qualitative Oil Red O staining for lipid-filled mature adipocytes (VivaCell Biosciences, C37A00150). For osteogenic differentiation of HADSCs, cells were assessed on day 21 by Alizarin Red Staining for calcium nodule in mature osteocytes (VivaCell Biosciences, C37C00150). Images were acquired using an inverted Nexcope microscope.

In vitro cellular uptake of USPIO-PAA/PEG and Biocompatibility evaluation

HADSCS were plated in a 6-well plate with a density of $1 \times 10^6$ per well. Cells were incubated with the medium containing USPIO-PAA/PEG (Fe 10 μg/mL) for 2 hs, and stained with Prussian blue staining for intracellular Fe identification.

The biocompatibility and cytotoxicity of USPIO-PAA/PEG was determined by MTT colorimetry. HADSCS were plated in a 96-well plate at a density of $5 \times 10^3$ per well, incubated with different concentrations (0, 10, 20, 40, 80, 160) of USPIO-PAA/PEG 24 h, 48 h or 72 h. 20 μl MTT solution (5 mg/mL) was added to each well for 4 h, followed by 150 μL dimethyl sulfoxide to dissolve the crystals. Absorbance value of each hole was measured at OD 570 nm using enzyme-labeled instrument. (BioTek Synergy HT)

6-OHDA induced PD Model

15–20 of male Wistar rats (SPF grade, weighing 220 ± 20 g) were used for in vivo tracing of USPIO-PAA/PEG-labeled HADSCs on PD animals. All procedures were performed according to the Regulations in China (Regulations for the administration of affairs concerning experimental animals, 2017) and
approved by the Institutional Animal Care and Use committee at Chinese Academy of Sciences. Throughout, animals were housed under controlled illumination (12/12-hour light/dark cycle, “on” at 7am) with ad libitum access to food and water. PD model was prepared by 2-point injection of 6-hydroxydopamine (6-OHDA, Sigma, St. Louis, MO, USA) into the unilateral striatum of rats. As described previously [17, 18], rats were stereotaxically injected with 3 µL of 6-OHDA solution (5 µg/µL) at 2 coordinates (AP:1.2 mm, ML:2.2 mm, DV:-4.0-6.0 mm; and AP:-1.0 mm, ML:4.4 mm, DV:-4.5-6.5 mm) respectively. Apomorphine-induced rotation (0.5 mg/kg, subcutaneously) tests were used to test the validity of PD models. The rats were injected with apomorphine (0.5 mg/kg) subcutaneously at 1, 2 and 3 weeks following 6-OHDA treatment, and the rotation scores were evaluated for 30 min in an open field. The PD model has more than 7 rotations per min induced by apomorphine was considered succeed.

**Cell transplantation and in vivo MRI imaging**

HADCs were incubated with USPIO-PAA/PEG (iron concentration was 10 µg/mL) for 2 hs when they reached 80% confluence. 3 weeks after PD model preparation, 3 × 10⁶ of USPIO-PAA/PEG –labeled HADCs or saline were injected into the left striatum of PD rat models at the following coordinate (AP:1.2 mm, ML:2.2 mm, DV:-4.0-6.0 mm). These animals were subjected to the apomorphine-induced rotation tests at 1, 2 or 3 weeks after the transplantation surgery.

For *in vivo* MRI, animals were imaged using an *in vivo* imaging system (IVIS) small animal imaging system (Perkin Elmer, Waltham, MA, USA) at the 3th, 9th, 15th and 21th following the saline or HADSCs injection.

**Histology analysis**

The brains of the remaining rat models were harvested and sectioned to a thickness of 30 mm for analysis 3 weeks post-stem cell transplantation (n = 5 per group). Sections were incubated with anti-tyrosine hydroxylase (TH, abcam, England), and visualized with Alexa-594-conjugated donkey anti rabbit antibody (Abcam). DAPI was used for counterstaining with nuclei. Images were captured using Leica TCS SP5 confocal microscope.

**Statistical Analysis**

Numerical data were expressed as the mean ± SD. Data were subjected to 2-tailed Student t tests or one-way ANOVA using GraphPad Prism 7.0 (GraphPad Software Inc., San Diego, CA, USA) to evaluate the difference. * indicates p < 0.05 and NS indicates no significant difference.

**Results**

**The synthesis and characterization of nanoparticles**

The experimental design was shown in Fig. 1. The hydrophobic USPIO NPs were prepared by using the thermal decomposition method. As shown in Fig. 2a-c, the diameter of the original USPIO-TREG NPs were 4.07 ± 0.57 nm; by coating with PAA, the diameter of the USPIO-PAA NPs increased to 6.34 ± 0.54 nm; a
Further modification of the NPs with PEG makes the diameter of USPIO-PAA/PEG NPs reach 10.07 ± 0.55 nm. All three nanoparticles were spherical in shape and evenly dispersed. Statistical analysis showed that there was significant difference (F = 10, **p < 0.01, ##p < 0.01) among the diameters of the USPIO-TREG, USPIO-PAA and USPIO-PAA/PEG NPs, indicating a successful modification with PAA and PEG (Fig. 2d).

By using the infrared absorption method, we found that USPIO-TREG has no obvious characteristic absorption peak, USPIO-PAA has an obvious carbonyl absorption peak at 1728 cm⁻¹ due to the carbonyl stretching vibration peak in the PAA molecule, and USPIO-PAA/PEG has a carbon-nitrogen bond in-plane bending vibration peak at 1595 cm⁻¹. All of these data further confirmed that PAA or PEG molecules have been successfully modified to the surface of NPs.

NPs show good *in vitro* imaging ability and biocompatibility

The *in vitro* imaging ability of USPIO-PAA and USPIO-PAA/PEG was evaluated by the grayscale values of MRI images at different concentrations (equivalent to Fe concentrations). After fitting, the transverse relaxation time values of the dispersions at different concentrations were obtained. By setting the transverse relaxation rate of 1/T₂ as the vertical coordinate and the Fe concentration as the horizontal coordinate, the transverse relaxation rate of USPIO-PAA was calculated as 107.94 s⁻¹mm⁻¹ (Fig. 3a), and 84.65 s⁻¹mm⁻¹ for USPIO-PAA/PEG (Fig. 3b). Both particles showed good MRI imaging properties.

By incubating the USPIO-PAA/PEG NPs with HADSCs for different time, we found that USPIO-PAA/PEG NPs has no significant effects to the survival of cells (p > 0.05). The cell viability of HADSCs remains above 96% when the equivalent Fe concentrations ranging from 0-160 µg/mL. Moreover, the increase of the incubation time (from 24 h to 72 h) does not induce significant cell loss at each Fe concentrations (Fig. 4a). A similar observation was obtained when USPIO-PAA/PEG NPs were incubated with iPSCs at different concentrations (Fig. 4b), indicating the biosafety of the synthesized USPIO-PAA/PEG NPs.

To identify whether cells could be effectively labeled by USPIO-PAA/PEG NPs, we have incubated the HADSCs with USPIO-PAA/PEG NPs (Fe 10 µg/mL) for 2 h. As shown in Fig. 4c, a large number of NPs stained into blue were observed in HADSCs, reflecting an excellent internalization efficiency of NPs.

Long-term tracking of USPIO-PAA/PEG NPs labeled HADSCs in PD rat models

HADSCs labeled with USPIO-PAA/PEG NPs were transplanted into the left striatum of PD rat model by stereotactic injection. As shown in Fig. 5, we observed a clear MRI signal in the left striatum 3 days after the HADSC transplantation, indicating a proper *in vivo* tracing of the transplanted cells. A dynamic observation on D3, D9, D15 and D21 after transplantation showed that the transplanted cells with NP labeling could be clearly traced up to 3 weeks, and the MRI signals did not show obvious reduction during the process. These results indicate that the synthesized nanoparticles have good potential for the *in vivo* tracing of the transplanted cells.
USPIO-PAA/PEG NPs labeled HADSCs exhibited therapeutic effects in PD model

To evaluate whether NPs labeled HADSCs exhibited therapeutic effects, we first performed a phenotypic characterization of the isolated HADSCs. As shown in Fig. 6a, the cultured HADSCs were spindle-shaped cells. The flow cytometry analysis showed that the HADSCs were highly expressed markers for mesenchymal cells, such as CD90 (> 99%) and CD105 (> 99%), whereas few of them expressed hematopoietic markers such as CD34 and CD45 (Fig. 6b-g). The HADSCs could differentiate towards either adipogenic or osteogenic lineages under certain conditions; and the differentiation capacity was shown by Oil red O or Alizarin red staining, respectively (Fig. 5h). Note the lipid droplets or calcified nodules in the differentiated HADSCs, while no such structure in the control HEK293 cells (Fig. 6h). All of these indicate that HADSCs fulfill the criteria of mesenchymal cells.

The apomorphine-induced rotations was $17.1 \pm 1.79$, $28.7 \pm 1.77$ and $31.86 \pm 1.72$ per min in the 1st, 2nd and 3rd weeks after 6-OHDA injection, confirming the successful establishment of the rat PD model. As shown in Fig. 7, the rotation numbers of PD rat models reduced to $32.59 \pm 1.12$, $31.85 \pm 1.98$ and $31.54 \pm 1.73$ in the 1st, 2nd and 3rd weeks followed by NPs labeled HADSCs transplantation in the striatum of lesion side. Statistical analysis revealed a significant difference between the saline- and the HADSC-administered groups from the 2nd week after transplantation surgery ($p < 0.01$ at 2nd week, $p < 0.01$ at 3rd week; $n = 5$ in each group), indicating the NPs labeled HADSCs improves the behavioral impairments in the PD models.

PD is characterized by the loss of neurons expressing tyrosine hydroxylase (TH) in the substantia nigra. By using immunostaining against TH, we found that 6-OHDA reduces the TH-expressing neurons in the substantia nigra, and the transplantation with HADSCs in the striatum of PD rat models could alleviate such reduction (Fig. 8). Combined with the observation that cell transplantation alleviates the behavioral impairments of PD rats, we concluded that USPIO-PAA/PEG NPs labeled HADSCs exert therapeutic effects in PD rat models.

Discussion

Cell therapy is a promising strategy for the treatment of neurodegenerative diseases, and has been in the front edge of preclinical research over the last 20 years [19, 20]. Tracing the transplanted cells is an indispensable part for the clarification of underlying mechanisms as well as the evaluation of clinical effects, however, it is challenging and to some extent, hampered the application of cell therapy [21, 22]. Computed Tomography (CT), near infrared fluorescence imaging (NIFI) and MRI are the most commonly used methods for the in vivo tracking of transplanted cells [21, 22]. Compared to the rather high radiation of CT and low sensitivity of NIFI, MRI shows good imaging of deep tissue, high contrast and low ionizing radiation, making it a good candidate for the in vivo tracing [23–26]. The development of proper tracers for MRI therefore becomes an indispensable part of promoting the application of cell therapy.
SPIO is a simple and reliable labeling strategy for MRI visualization. To achieve long-term \textit{in vivo} tracing of the transplanted cells, the SPIO particles is required to have a uniform and ultra-small size, since large particles may lead to uneven distribution of the tracers and interfere with the normal blood circulation [23]. Moreover, the internalization efficiency and biocompatibility of nanoparticles is another important index to evaluate the tracers. Nanoparticles usually enter cells through liquid phase endocytosis [27], receptor-mediated endocytosis [28] and phagocytosis [29]. To achieve a better cellular uptake, the SPIO particles are usually modified with intermediate ligands [11, 30, 31]. In the present study, we synthesized a novel ultra-small USPIO-PAA/PEG nanoparticles, modifying the SPIO cores with PAA and PEG ligands, respectively. The USPIO-PAA/PEG NPs have uniform ultra-small diameter ($10.07 \pm 0.55$ nm), good dispersion in aqueous solution, biocompatibility with various cell types as well as good magnetic response effect \textit{in vitro} and \textit{in vivo}. Importantly, the signals of labeled adipocytes could be clearly detected under MRI after brain transplantation for up to three weeks, indicating the good potential for clinical application.

PD is characterized by a progressively loss of dopaminergic neurons in the substantia nigra, and by the deficiency of dopaminergic levels in the dopaminergic networks [1]; the most affected one is the nigrostriatal pathway including the striatum. In the present study, we transplanted USPIO-PAA/PEG labeled HADSCs into the striatum of PD rat models, and found that such transplantation improved the behavioral impairments, moreover, it attenuated the loss of dopaminergic neurons in the substantia nigra to some extent. Similarly, Ardeshir et al. reported that transplanting the MSCs derived from rat adipose tissues attenuated apomorphine induced rotations in PD models [32]. Different from transplanting fetal midbrain tissues [33] or dopaminergic neural progenitors [34], HADSCs exerts its therapeutic effects mainly through the paracrine effects [35, 36], rather than substituting for the impaired tissues. Studies have shown that MSCs act as promoters of immunomodulation, neuroprotection and neuronal differentiation, and these effects are essentially mediated by the secretome released by MSCs [6, 7, 35]. Our result is consistent with these observations, moreover, it indicates that the novel USPIO-PAA/PEG tracers did not interfere with the neuroprotection effects of HADSCs.

**Conclusions**

We have developed a novel USPIO-PAA/PEG tracers showing high cell uptake efficiency, excellent biocompatibility and long-term MRI tracing capacities. The HADSCs labeled with USPIO-PAA/PEG could be traced with MRI for 3 weeks after cell transplantation. Moreover, the labeled HADSCs significantly attenuated the behavioral impairments of PD models, and increase the number of dopaminergic neurons in the substantia nigra. The development of USPIO-PAA/PEG tracer may provide a promising tool in stem cell research and application.

**Abbreviations**

SPIO: small superparamagnetic iron oxide; USPIO: ultras-small superparamagnetic iron oxide; PAA: polyacrylic acid; PEG: methoxypolyethylene glycol amine; HADSCs: human adipose-derived stem cells;
USPIO-PAA/PEG: ultras-small superparamagnetic iron oxide nanoparticles coating with the polyacrylic acid and methoxypolyethylene glycol amine; 6-OHDA: 6-hydroxydopamine; CT: computed tomography; NIFI: near infrared fluorescence imaging; MRI: magnetic resonance imaging; TH: tyrosine hydroxylase; TEM: transmission electron microscope

**Declarations**

*Ethics approval and consent to participate*

For all the experiments involving human tissues, studies were done in accordance with the ‘Ethical Guiding Principles on Human Embryonic Stem Cell Research’ (of the Ministry of Science and Technology and the Ministry of Health, People’s Republic of China, 2003) and Helsinki Declaration.

For all the animal experiments, procedures were performed according to the Regulations in China (*Regulations for the administration of affairs concerning experimental animals, 2017*) and approved by the Institutional Animal Care and Use committee at Chinese Academy of Sciences.

*Consent for publication*

All authors have read and approved the final manuscript.

*Competing interests*

The authors declare that they have no competing interests.

*Authors’ contributions*

LA, JZ and SY contributed to the conceptualization, grant acquisition, data analysis and writing. QT, YW, NW, YL, FW, LZ, AS and XZ contributed to the experiments and data analysis.

*Funding*

This work was funded by the Key Research and Development Program of Jiangsu Province, China (Grant No. BE2018668 and BE2017669), the National Natural Science Foundation of China (Grant No. 81701332 to S. Yu), the key Areas Research and Development Program of Guangdong (2019B020236001) and the Major Innovative Research Team of Suzhou, China (Grant No. ZXT2019007).

*Availability of data and materials*

All data supporting the conclusions of this article are included within the article.

*References*
1. Barker RA, Drouin-Ouellet J, Parmar M 2015: Cell-based therapies for Parkinson disease—past insights and future potential. Nat Rev Neurol 11:492-503
2. Parmar M 2018: Towards stem cell-based therapies for Parkinson's disease. Development 145:
3. Ben-David U, Benvenisty N 2011: The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature reviews. Cancer 11:268-277
4. Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ 2016: MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential. Front Pharmacol 7:231
5. Cun X, Hosta-Rigau L 2020: Topography: A Biophysical Approach to Direct the Fate of Mesenchymal Stem Cells in Tissue Engineering Applications. Nanomaterials 10:2070
6. Chen A, Siow B, Blamire AM, Lako M, Clowry GJ 2010: Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem cell research 5:255-266
7. Chen X, Liang H, Xi Z, Yang Y, Shan H, Wang B, Zhong Z, Xu C, Yang GY, Sun Q, Sun Y, Bian L 2020: BM-MSC Transplantation Alleviates Intracerebral Hemorrhage-Induced Brain Injury, Promotes Astrocytes Vimentin Expression, and Enhances Astrocytes Antioxidation via the Cx43/Nrf2/HO-1 Axis. Frontiers in cell and developmental biology 8:302
8. van Velthoven CT, Sheldon RA, Kavelaars A, Derugin N, Vexler ZS, Willemen HL, Maas M, Heijnen CJ, Ferriero DM 2013: Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke 44:1426-1432
9. Jiang R, Liao Y, Yang F, Cheng Y, Dai X, Chao J 2019: SPIO nanoparticle-labeled bone marrow mesenchymal stem cells inhibit pulmonary EndoMT induced by SiO2. Experimental cell research 383:111492
10. Lauridsen H, Foldager CB, Hansen L, Pedersen M 2018: Non-invasive cell tracking of SPIO labeled cells in an intrinsic regenerative environment: The axolotl limb. Experimental and therapeutic medicine 15:3311-3319
11. Tong S, Hou S, Zheng Z, Zhou J, Bao G 2010: Coating Optimization of Superparamagnetic Iron Oxide Nanoparticles for High T2 Relaxivity. Nano Letters 10:4607-4613
12. Cai W, Wan J 2007: Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366-370
13. Wan J, Cai W, Meng X, Liu E 2007: Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun (Camb) 10:5004-5006
14. Maity D, Chandrasekharan P, Si-Shen F, Xue J, M, Ding J 2010: Polyol-based synthesis of hydrophilic magnetite nanoparticles. Journal of Applied Physics 107:
15. Okano H, Yamanaka S 2014: iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain 7:22
16. Zhang Y, Kohler N, Zhang M 2002: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23:1553-1561
17. Jingzhong Z, Hui Y, Deyi D, Chunli D, Chunli Z, Xiaohong S, Jinlu Z, Quanyuan X. 2005. Long-term therapeutic effects on parkinsonian rats of intrastriatal co-grafts with genetically engineered fibroblasts expressing tyrosine hydroxylase and glial cell line-derived neurotrophic factor. Int J Neurosci 115:769-779

18. Zhang J, Gotz S, Vogt Weisenhorn DM, Simeone A, Wurst W, Prakash N. 2015. A WNT1-regulated developmental gene cascade prevents dopaminergic neurodegeneration in adult En1(+/−) mice. Neurobiol Dis 82:32-45

19. Silani V, Fogh I, Ratti A, Sassone JC, Ciammola A, Cova L. 2002. Stem cells in the treatment of amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Other Motor Neuron Disord 3:173-181

20. Wu Q-Y, Li J, Feng Z-T, Wang T-H. 2007. Bone marrow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer’s disease rat model. Neuroscience Letters 417:281-285

21. Bulte JWM, Daldrup-Link HE. 2018. Clinical Tracking of Cell Transfer and Cell Transplantation: Trials and Tribulations. Radiology 289:604-615

22. Zheng Y, Huang J, Zhu T, Li R, Wang Z, Ma F, Zhu J. 2017. Stem Cell Tracking Technologies for Neurological Regenerative Medicine Purposes. Stem cells international 2017:41-49

23. Yi P, Chen G, Zhang H, Tian F, Tan B, Dai J, Wang Q, Deng Z. 2013. Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials 34:3010-3019

24. Gera A, Steinberg GK, Guzman R. 2010. In vivo neural stem cell imaging: current modalities and future directions. Regenerative Medicine 5:73-86

25. Cromer Berman S, Walczak P, Bulte JWM. 2011. Tracking stem cells using magnetic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 3:343-355

26. Kozenkova EI, Levada KI, Efremova MV, Omelyanchik A, Nalench YA, Garanina AS, Pshenichnikov SI, Zhukov DG, Lunov OI, Lunova MI, Kozenkov IV, Innocenti CM, Albino MA, Abakumov MA, Sangregorio C, Rodionova VI. 2020. Multifunctional Fe3O4-Au Nanoparticles for the MRI Diagnosis and Potential Treatment of Liver Cancer. Nanomaterials 10:1646

27. Yeh TC, Zhang W, Ildstad ST, Ho C. 1993. Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med 30:617-625

28. Moore AJ, Basilion JP, Chiocca EA, Weissleder R. 1998. Measuring transferrin receptor gene expression by NMR imaging. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1402:239-249

29. Weissleder R, Cheng HC, Bogdanova A, Bogdanov A Jr. 1997. Magnetically labeled cells can be detected by MR imaging. J Magn Reson Imaging 7:258-263

30. Corot C, Robert P, Idee JM, Port M. 2006. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471-1504

31. Wang HH, Wang Y-XJ, Leung KC-F, Au DW, T-Xuan S, Chak C-P, Lee SKM, Sheng H, Zhang G, Qin L, Griffith JF, Ahuja AT. 2009. Durable Mesenchymal Stem Cell Labelling by Using Polyhedral Superparamagnetic Iron Oxide Nanoparticles. Chemistry - A European Journal 15:12417-12425
32. Moayeri A, Darvishi M, Amraei M. 2020. Homing of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) Labeled Adipose-Derived Stem Cells by Magnetic Attraction in a Rat Model of Parkinson's Disease. Int J Nanomedicine 15:1297-1308

33. Lindvall O, Sawle G, Widner H, Rothwell JC, Bjorklund A, Brooks D, Brundin P, Frackowiak R, Marsden CD, Odin P, et al. 1994. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson's disease. Annals of neurology 35:172-180

34. Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, Sundberg M, Moore MA, Perez-Torres E, Brownell AL, Schumacher JM, Spealman RD, Isacson O. 2015. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease. Cell stem cell 16:269-274

35. Keshtkar S, Azarpira N, Ghahremani MH. 2018. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem cell research & therapy 9:63

36. Uccelli A, Moretta L, Pistoia V. 2008. Mesenchymal stem cells in health and disease. Nature reviews. Immunology 8:726-736