Exact Bayesian Analysis of Mixtures

C.P. Robert¹,², K.L. Mengersen³
¹Université Paris-Dauphine, ²CREST, Paris, and ³Queensland University of Technology, Brisbane

Abstract

In this paper, we show how a complete and exact Bayesian analysis of a parametric mixture model is possible in some cases when components of the mixture are taken from exponential families and when conjugate priors are used. This restricted set-up allows us to show the relevance of the Bayesian approach as well as to exhibit the limitations of a complete analysis, namely that it is impossible to conduct this analysis when the sample size is too large, when the data are not from an exponential family, or when priors that are more complex than conjugate priors are used.

Keywords: Bayesian inference, conjugate prior, exponential family, Poisson mixture, binomial mixture, normal mixture.

1 Introduction

As a warning to the reader, we want to stress from the beginning that this paper is mostly a formal exercise: to understand how the Bayesian analysis of a mixture model unravels and automatically exploits the missing data structure of the model is crucial for grasping the details of simulation methods (not covered in this paper, see, e.g., Robert and Casella 2004, Lee et al. 2009) that take full advantage of the missing structures. It also allows for a comparison between exact and approximate techniques when the former are available. While the relevant references are pointed out in due time, we note here that our paper builds upon the foundational paper of Fearnhead (2005).

We thus assume that a sample \(x = (x_1, \ldots, x_n) \) from the mixture model

\[
\sum_{i=1}^{k} p_i h(x) \exp \{ \theta_i \cdot R(x) - \Psi(\theta_i) \}
\]

is available, where \(\theta \cdot R(x) \) denotes the scalar product between the vectors \(\theta \) and \(R(x) \). We are selecting on purpose the natural representation of an exponential family (see, e.g., Robert, 2001, Chapter 3), in order to facilitate the subsequent derivation of the posterior distribution.

When the components of the mixture are Poisson \(\mathcal{P}(\lambda_i) \) distributions, if we define \(\theta_i = \log \lambda_i \), the Poisson distribution indeed is written as a natural exponential family:

\[
f(x|\theta_i) = (1/x!) \exp \{ \theta_i x - e^{\theta_i} \}.
\]

For a mixture of multinomial distributions \(\mathcal{M}(m; q_{i1}, \ldots, q_{iv}) \), the natural representation is given by

\[
f(x|\theta_i) = (m!/x_1! \cdots x_v!) \exp (x_1 \log q_{i1} + \cdots + x_v \log q_{iv})
\]

and the overall (natural) parameter is thus \(\theta_i = (\log q_{i1}, \ldots, \log q_{iv}) \).

In the normal \(\mathcal{N}(\mu, \sigma_i^2) \) case, the derivation is more delicate when both parameters are unknown since

\[
f(x|\theta_i) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp \left(-\frac{\mu_i^2}{2\sigma_i^2} + \frac{\mu_i x}{\sigma_i^2} + \frac{-x^2}{2\sigma_i^2} \right).
\]
In this particular setting, the natural parameterisation is in $\theta_i = (\mu_i/\sigma_i^2, 1/\sigma_i^2)$ while the statistic $R(x) = (x, -x^2/2)$ is two-dimensional. The moment cumulant function is then $\Psi(\theta) = \theta_1^2/\theta_2$.

2 Formal derivation of the posterior distribution

2.1 Locally conjugate priors

As described in the standard literature on mixture estimation (Dempster et al., 1977, MacLachlan and Peel, 2000, Frühwirth-Schnatter, 2006), the missing variable decomposition of a mixture likelihood associates each observation in the sample with one of the k components of the mixture (1), i.e.

$$x_i | z_i \sim f(x_i | \theta_{z_i}).$$

Given the component allocations z, we end up with a cluster of (sub)samples from different distributions from the same exponential family. Priors customarily used for the analysis of these exponential families can therefore be extended to the mixtures as well.

While conjugate priors do not formally exist for mixtures of exponential families, we will define locally conjugate priors as priors that are conjugate for the completed distribution, that is, for the likelihood associated with both the observations and the missing data z. This amounts to taking regular conjugate priors for the parameters of the different components and a conjugate Dirichlet prior on the weights of the mixture, $(p_1, \ldots, p_k) \sim D(\alpha_1, \ldots, \alpha_k)$.

When we consider the complete likelihood

$$L_c(\theta, p|\bf{x}, \bf{z}) = \prod_{i=1}^n p_{z_i} \exp [\theta_{z_i} \cdot R(x_i) - \Psi(\theta_{z_i})]$$

$$= \prod_{j=1}^k p_j^{n_j} \exp \left[\theta_j \cdot \sum_{z_i = j} R(x_i) - n_j \Psi(\theta_j) \right]$$

$$= \prod_{j=1}^k p_j^{n_j} \exp [\theta_j \cdot S_j - n_j \Psi(\theta_j)] ;$$

it is easily seen that we remain within an exponential family since there exists a sufficient statistic with fixed dimension, $(n_1, S_1, \ldots, n_k, S_k)$. If we use a Dirichlet prior,

$$\pi(p_1, \ldots, p_k) = \frac{\Gamma(\alpha_1 + \cdots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} p_1^{\alpha_1-1} \cdots p_k^{\alpha_k-1} ;$$

on the vector of the weights (p_1, \ldots, p_k) defined on the simplex of \mathbb{R}^k, and (generic) conjugate priors on the θ_js,

$$\pi_j(\theta_j) \propto \exp [\theta_j \cdot s_{0j} - \lambda_j \Psi(\theta_j)] ,$$

the posterior associated with the complete likelihood $L_c(\theta, p|\bf{x}, \bf{z})$ is then of the same family as the prior:

$$\pi(\theta, p|\bf{x}, \bf{z}) \propto \pi(\theta, p) \times L_c(\theta, p|\bf{x}, \bf{z})$$

$$\propto \prod_{j=1}^k p_j^{\alpha_j-1} \exp [\theta_j \cdot s_{0j} - \lambda_j \Psi(\theta_j)] \times p_j^{n_j} \exp [\theta_j \cdot S_j - n_j \Psi(\theta_j)]$$

$$= \prod_{j=1}^k p_j^{\alpha_j+n_j-1} \exp [\theta_j \cdot (s_{0j} + S_j) - (\lambda_j + n_j) \Psi(\theta_j)] ;$$
the parameters of the prior are transformed from α_j to $\alpha_j + n_j$, from s_{0j} to $s_{0j} + S_j$ and from λ_j into $\lambda_j + n_j$.

For instance, in the case of the Poisson mixture, the conjugate priors are Gamma $G(a_j, b_j)$, with corresponding posteriors (for the complete likelihood), Gamma $G(a_j + S_j, b_j + n_j)$ distributions, in which S_j denotes the sum of the observations in the jth group.

For a mixture of multinomial distributions, $M(m; q_{1j}, \ldots, q_{vj})$, the conjugate priors are Dirichlet $D_v(\beta_{j1}, \ldots, \beta_{ju})$ distributions, with corresponding posteriors $D_v(\beta_{j1} + s_{j1} + \ldots, \beta_{ju} + s_{ju})$, s_{ju} denoting the number of observations from component j in group u ($1 \leq u \leq v$), with $\sum_u s_{ju} = n_j m$.

In the normal mixture case, the standard conjugate priors are products of normal and inverse gamma distributions, i.e.

$$\mu_j | \sigma_j \sim \mathcal{N}(\xi_j, \sigma_j^2/c_j) \quad \text{and} \quad \sigma_j^{-2} \sim \mathcal{G}(a_j/2, b_j/2).$$

Indeed, the corresponding posterior is

$$\mu_j | \sigma_j \sim \mathcal{N}((c_j \xi_j + n_j \bar{x}_j, \sigma_j^2/(c_j + n_j))$$

and

$$\sigma_j^{-2} \sim \mathcal{G}((a_j + n_j)/2, b_j + n_j \sigma_j^2 + (\bar{x}_j - \xi_j)^2/(c_j^{-1} + n_j^{-1})), $$

where $n_j \bar{x}_j$ is the sum of the observations allocated to component j and $n_j \sigma_j^2$ is the sum of the squares of the differences from \bar{x}_j for the same group (with the convention that $n_j \sigma_j^2 = 0$ when $n_j = 0$).

2.2 True posterior distributions

These straightforward derivations do not correspond to the observed likelihood, but to the completed likelihood. While this may be enough for some simulation methods like Gibbs sampling (see, e.g., Diebolt and Robert, 1990, 1994), we need further developments for obtaining the true posterior distribution.

If we now consider the observed likelihood, it is natural to expand this likelihood as a sum of completed likelihoods over all possible configurations of the partition space of allocations, that is, a sum over k^n terms. Except in the very few cases that are processed below, including Poisson and multinomial mixtures (see Section 2.3), this sum does not simplify into a smaller number of terms because there exists no summary statistics. From a Bayesian point of view, the complexity of the model is therefore truly of magnitude $O(k^n)$.

The observed likelihood is thus

$$\sum_k \prod_{j=1}^k p_j^{n_j} \exp \{ \theta_j \cdot S_j - n_j \Psi(\theta_j) \}$$

(with the dependence of (n_j, S_j) upon z omitted for notational purposes) and the associated posterior is, up to a constant,

$$\sum_k \prod_{j=1}^k p_j^{n_j+\alpha_j-1} \exp \{ \theta_j \cdot (s_{0j} + S_j) - (n_j + \lambda_j) \Psi(\theta_j) \}$$

$$= \sum_k \omega(z) \pi(\theta, p|\mathbf{x}, z),$$

where $\omega(z)$ is the normalising constant missing in

$$\prod_{j=1}^k p_j^{n_j+\alpha_j-1} \exp \{ \theta_j \cdot (s_{0j} + S_j) - (n_j + \lambda_j) \Psi(\theta_j) \}$$
2 Formal derivation of the posterior distribution

\[\omega(z) \propto \prod_{j=1}^{k} \frac{\Gamma(n_j + \alpha_j)}{\Gamma(\sum_{j=1}^{k} \{n_j + \alpha_j\})} \times \prod_{j=1}^{k} K(s_{0j} + S_j, n_j + \lambda_j), \]

if \(K(\xi, \delta) \) is the normalising constant of \(\exp\{\theta_j \cdot \xi - \delta \Psi(\theta_j)\} \), i.e.

\[K(\xi, \delta) = \int \exp\{\theta_j \cdot \xi - \delta \Psi(\theta_j)\} d\theta. \]

The posterior \(\sum_z \omega(z) \pi(\theta, p|x, z) \) is therefore a mixture of conjugate posteriors where the parameters of the components as well as the weights can be computed in closed form! The availability of the posterior does not mean that alternative estimates like MAP and MMAP estimates can be computed easily. However, this is a useful closed form result in the sense that moments can be computed exactly: for instance, if there is no label switching problem (Stephens, 2000b; Jasra et al., 2005) and, if the posterior mean is producing meaningful estimates, we have that

\[E[\nabla \Psi(\theta_j)|x] = \sum_z \omega(z) \frac{s_{0j} + S_j}{n_j + \lambda_j}, \]

since, for each allocation vector \(z \), we are in an exponential family set-up where the posterior mean of the expectation \(\Psi(\theta) \) of \(R(x) \) is available in closed form. (Obviously, the posterior mean only makes sense as an estimate for very discriminative priors; see Jasra et al. 2005.) Similarly, estimates of the weights \(p_j \) are given by

\[E[p_j|x] = \sum_z \omega(z) \frac{n_j + \alpha_j}{n + \alpha}, \]

where \(\alpha = \sum_j \alpha_j \). Therefore, the only computational effort required is the summation over all partitions.

This decomposition further allows for a closed form expression of the marginal distributions of the various parameters of the mixture. For instance, the (marginal) posterior distribution of \(\theta_i \) is given by

\[\sum_z \omega(z) \frac{\exp[\theta_j \cdot (s_{0j} + S_j) - (n_j + \lambda_j)\Psi(\theta_j)]}{K(s_{0j} + S_j, n_j + \lambda_j)}. \]

(Nothing that, when the hyperparameters \(\alpha_j, s_{0j}, \) and \(n_j \) are independent of \(j \), this posterior distribution is independent of \(j \).) Similarly, the posterior distribution of the vector \((p_1, \ldots, p_k)\) is equal to

\[\sum_z \omega(z) D(n_1 + \alpha_1, \ldots, n_k + \alpha_k). \]

If \(k \) is small and \(n \) is large, and when all hyperparameters are equal, the posterior should then have \(k \) spikes or peaks, due to the label switching / lack of identifiability phenomenon.

We will now proceed through standard examples.

2.3 Poisson mixture

In the case of a two component Poisson mixture,

\[x_1, \ldots, x_n \overset{iid}{\sim} p \mathcal{P}(\lambda_1) + (1 - p) \mathcal{P}(\lambda_2), \]

let us assume a uniform prior on \(p \) (i.e. \(\alpha_1 = \alpha_2 = 1 \)) and exponential priors \(\mathcal{E}xp(1) \) and \(\mathcal{E}xp(1/10) \) on \(\lambda_1 \) and \(\lambda_2 \), respectively. (The scales are chosen to be fairly different for the purpose of illustration. In a realistic setting, it would be sensible either to set those scales in terms of the scale of the
The normalising constant is then equal to

\[
K(\xi, \delta) = \int_{-\infty}^{\infty} \exp[\theta_j \xi - \delta \log(\theta_j)] \, d\theta
= \int_0^{\infty} \lambda_j^{\xi-1} \exp(-\delta \lambda_j) \, d\lambda_j
= \delta^{-\xi} \Gamma(\xi),
\]

with \(s_{01} = 1\) and \(s_{02} = 10\), and the corresponding posterior is (up to the normalisation of the weights)

\[
\sum_z \frac{\prod_{j=1}^2 \Gamma(n_j + 1)\Gamma(1 + S_j)/(s_{0j} + n_j)^{S_j+1}}{\Gamma(2 + \sum_{j=1}^2 n_j)} \pi(\theta, p|x, z)
= \sum_z \frac{\prod_{j=1}^2 n_j!S_j!/(s_{0j} + n_j)^{S_j+1}}{(N+1)!} \pi(\theta, p|x, z)
\propto \sum_z \prod_{j=1}^2 n_j!S_j!/(s_{0j} + n_j)^{S_j+1} \pi(\theta, p|x, z),
\]

with \(\pi(\theta, p|x, z)\) corresponding to a Beta \(B(c(1 + n_j, 1 + N - n_j))\) distribution on \(p\) and to a Gamma \(Ga(S_j + 1, s_{0j} + n_j)\) distribution on \(\lambda_j\) (\(j = 1, 2\)).

An important feature of this example is that the sum does not need to involve all of the \(2^n\) terms, simply because the individual terms in the previous sum factorise in \((n_1, n_2, S_1, S_2)\), which then acts like a local sufficient statistic. Since \(n_2 = n - n_1\) and \(S_2 = \sum x_i - S_1\), the posterior only requires as many distinct terms as there are distinct values of the pair \((n_1, S_1)\) in the completed sample. For instance, if the sample is \((0, 0, 0, 1, 2, 2, 4)\), the distinct values of the pair \((n_1, S_1)\) are \((0, 0), (1, 0), (1, 1), (1, 2), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), \ldots, (6, 5), (6, 7), (6, 8), (7, 9)\). There are therefore 41 distinct terms in the posterior, rather than \(2^8 = 256\).

The problem of computing the number (or cardinality) \(\mu_a(n_1, S_1)\) of terms in the \(k^n\) sum with the same statistic \((n_1, S_1)\) has been tackled by Fearnhead (2005) in that he proposes a recursive formula for computing \(\mu(n_1, S_1)\) in an efficient way, as expressed below for a \(k\) component mixture:

Theorem 1: (Fearnhead, 2005) If \(e_j\) denotes the vector of length \(k\) made up of zeros everywhere except at component \(j\) where it is equal to one, if

\[
n = (n_1, \ldots, n_k), \quad n - e_j = (n_1, \ldots, n_j - 1, \ldots, n_k), \quad \text{and} \quad y e_j = (0, \ldots, y, \ldots, 0),
\]

then

\[
\mu_1(e_j, y e_j) = 1 \quad \text{and} \quad \mu_n(n, s) = \sum_{j=1}^k \mu_{n-1}(n - e_j, s - y_n e_j).
\]

Therefore, once the \(\mu_n(n, s)\) are all computed, the posterior can be written as

\[
\sum_{(n_1, S_1)} \mu_n(n_1, S_1) \prod_{j=1}^2 [n_j!S_j!/(s_{0j} + n_j)^{S_j+1}] \pi(\theta, p|x, n_1, S_1),
\]
up to a constant, since the complete likelihood posterior only depends on the sufficient statistic \((n_1, S_1)\).

Now, the closed-form expression allows for a straightforward representation of the marginals. For instance, the marginal in \(\lambda_1\) is given by

\[
\sum_{\mathbf{z}} \left(\prod_{j=1}^{2} \frac{n_j! S_j!/(s_{0j} + n_j)^{S_j+1}}{(n_1 + 1)^{S_1} \lambda_1^{S_1} \exp\{-(n_1 + 1)\lambda_1\}/n_1!} \right) = \sum_{(n_1, S_1)} \mu_n(n_1, S_1) \prod_{j=1}^{2} \frac{n_j! S_j!/(s_{0j} + n_j)^{S_j+1}}{(n_1 + 1)^{S_1} \lambda_1^{S_1} \exp\{-(n_1 + 1)\lambda_1\}/n_1!} \times (n_1 + 1)^{S_1+1} \lambda_1^{S_1} \exp\{-(n_1 + 1)\lambda_1\}/n_1!
\]

up to a constant, while the marginal in \(\lambda_2\) is

\[
\sum_{(n_1, S_1)} \mu_n(n_1, S_1) \prod_{j=1}^{2} \frac{(n_j! S_j!/(s_{0j} + n_j)^{S_j+1})}{(n_1 + 10)^{S_1+1} \lambda_2^{S_2} \exp\{-(n_1 + 10)\lambda_2\}/n_2!} \times (n_1 + 1)^{S_1+1} \lambda_1^{S_1} \exp\{-(n_1 + 10)\lambda_2\}/n_2!
\]

again up to a constant, and the marginal in \(p\) is

\[
\sum_{(n_1, S_1)} \mu_n(n_1, S_1) \prod_{j=1}^{2} \frac{n_j! S_j!/(s_{0j} + n_j)^{S_j+1}}{(N + 1)!} \frac{(N + 1)!}{n_1!(N - n_1)!} p^{n_1}(1-p)^{N-n_1}
\]

\[
= \sum_{u=0}^{N} \sum_{S_1; n_1 = u} \mu_n(u, S_1) \frac{S_1!(N - S_1)!}{(u + 1)^{S_1+1} (n - u + 10)^{S - S_1+1}} p^u (1-p)^{N-u},
\]

still up to a constant, if \(S\) denotes the sum of all observations.

As pointed out above, another interesting outcome of this closed-form representation is that marginal likelihoods (or evidences) can also be computed in closed form. The marginal distribution of \(x\) is directly related to the unnormalised weights \(\omega(\mathbf{z}) = \omega(n_1, S_1)\) in that

\[
m(x) = \sum_{\mathbf{z}} \omega(\mathbf{z}) = \sum_{(n_1, S_1)} \mu_n(n_1, S_1) \omega(n_1, S_1)
\]

\[
= \sum_{(n_1, S_1)} \mu_n(n_1, S_1) \prod_{j=1}^{2} \frac{n_j! S_j!/(s_{0j} + n_j)^{S_j+1}}{(N + 1)!},
\]

up to the product of factorials \(1/y_1! \cdots y_n!\) (but this is irrelevant in the computation of the Bayes factor).

In practice, the derivation of the cardinalities \(\mu_n(n_1, S_1)\) can be done recursively as in [Fearnhead (2005)]: include each observation \(y_k\) by updating all the \(\mu_{k-1}(n_1, S_1, k-1-n_1, S_2)\)s in both \(\mu_k(n_1 + 1, S_1 + y_k, n_2, S_2)\) and \(\mu_k(n_1, S_1, n_2+1, S_2 + y_k)\), and then check for duplicates. Below is a naïve R implementation (for reasonable efficiency, the algorithm should be programmed in a faster language like C), where \(n\text{comp}\) denotes the number of components:

```r
#Matrix of sufficient statistics, last column is number of occurrences
Cardin=matrix(0, ncol=2*ncomp+1, nrow=ncomp)

#Initialisation
for (i in 1:ncomp) Cardin[i,((2*i)-1):(2*i)]=c(1,dat[i])
Cardin[,2*ncomp+1]=1
```


Formal derivation of the posterior distribution

```r
# Update
for (i in 2:length(dat)){
  ncard=dim(cardin)[1]
  update=matrix(t(cardin),ncol=2*ncomp+1,nrow=ncomp*ncard,byrow=T)
  for (j in 0:(ncomp-1)){
    update[j*ncard+(1:ncard),(2*j)+1]=
      update[j*ncard+(1:ncard),(2*j)+1]+1
    update[j*ncard+(1:ncard),(2*j)+2]=
      update[j*ncard+(1:ncard),(2*j)+2]+dat[i]
  }
  update=update[do.call(order,data.frame(update)),]
  nu=dim(update)[1]
  changepoints
  jj=c(1,(2:nu)[apply(abs(update[2:nu,1:(2*ncomp)]-
    update[1:(nu-1),1:(2*ncomp)]),1,sum)>0])
  # duplicates or rather ncomplicates!
  duplicates=(1:nu)[-jj]
  if (length(duplicates)>0){
    for (dife in 1:(ncomp-1)){
      ji=jj[jj+dife<=nu]
      ii=ji[apply(abs(update[ji+dife,1:(2*ncomp)]-
        update[ji,1:(2*ncomp)]),1,sum)==0]
      if (length(ii)>0)
        update[ii,(2*ncomp)+1]=update[ii,(2*ncomp)+1]+
        update[ii+dife,(2*ncomp)+1]
    }
    update=update[-duplicates,]
  }
  cardin=update
}

At the end of this program, all non-empty realisations of the sufficient \((n_1, S_1)\) are available in the two first columns of cardin, while the corresponding \(\mu_{n_1}(n_1, S_1)\) is provided by the last column.

Once the \(\mu_{n_1}(n_1, S_1)\)'s are available, the corresponding weights can be added as the last column of cardin, i.e.

\[
w = \log(\text{cardin}[,2\times\text{ncomp}+1]) + \text{apply}(\text{lfactorial}(\text{cardin}[,2\times(1:\text{ncomp})-1]),1,\text{sum}) + \
\text{apply}(\text{lfactorial}(\text{cardin}[,2\times(1:\text{ncomp})]),1,\text{sum}) - \
\text{apply}(\log(\text{xi}[1:\text{ncomp}]+\text{cardin}[,2\times(1:\text{ncomp})-1]))* \
(\text{cardin}[,2\times(1:\text{ncomp})+1]),1,\text{sum}) - \text{sum}(\text{lfactorial}(\text{dat}))
\]

\[
w = \exp(w - \text{max}(w))
\]

\[
\text{cardin} = \text{cbind}(\text{cardin}, w)
\]

where \(\text{xi}[j]\) denotes \(s_{0j}\). The marginal posterior on \(\lambda_{1}\) can then be plotted via

```
Formal derivation of the posterior distribution

Tab. 1: Number of pairs \((n_1, S_1)\) for simulated datasets from a Poisson \(\mathcal{P}(\lambda)\) and different numbers of components. *(Missing terms are due to excessive computational or storage requirements.)*

\((n, \lambda)\)	\(k = 2\)	\(k = 3\)	\(k = 4\)
\((10, 0.1)\)	11	66	286
\((10, 1)\)	52	885	8160
\((10, 10)\)	166	7077	120,908
\((20, 0.1)\)	57	231	1771
\((20, 1)\)	260	20,607	566,512
\((20, 10)\)	565	100,713	—
\((30, 0.1)\)	87	4060	81,000
\((30, 1)\)	520	82,758	—
\((30, 10)\)	1413	637,020	—
\((40, 0.1)\)	216	13,986	—
\((40, 1)\)	789	271,296	—
\((40, 10)\)	2627	—	—

\[
\begin{align*}
\text{sum(cardin[,2*(ncomp+1)]*dgamma(lam,shape=cardin[,2*comp]+1, rate=cardin[,2*comp-1]+xi[comp])/sum(cardin[,2*(ncomp+1)])}
\end{align*}
\]

\[
\begin{align*}
lalam=\text{seq(.01,1.2*max(dat),le=100)}
mamar=\text{apply(as.matrix(lalam),1,marlam,comp=1)}
\text{plot(lalam,mamar,type="l",xlab=expression(mu[1]),ylab="",lwd=2)}
\end{align*}
\]

while the marginal posterior on \(p\) is given through

\[
\begin{align*}
marp=\text{function(p,comp=1)}
\{ \text{sum(cardin[,2*(ncomp+1)]*dbeta(p,shape1=cardin[,2*comp-1]+1, shape2=length(dat)-cardin[,2*comp-1]+1)/sum(cardin[,2*(ncomp+1)])}} \}
\end{align*}
\]

\[
\begin{align*}
\text{pepe=seq(.01,.99,le=99)}
\text{papar=apply(as.matrix(pepe),1,marp)}
\text{plot(pepe,papar,type="l",xlab="p",ylab="",lwd=2)}
\end{align*}
\]

Now, even with this considerable reduction in the complexity of the posterior distribution (to be compared with \(k^n\)), the number of terms in the posterior still grows very fast both with \(n\) and with the number of components \(k\), as shown through a few simulated examples in Table 1. (The missing items in the table simply took too much time or too much memory on the local mainframe when using our R program. Fearnhead 2005 used a specific C program to overcome this difficulty with larger sample sizes.) The computational pressure also increases with the range of the data: that is, for a given value of \((k, n)\), the number of rows in \text{cardin} is much larger when the observations are larger, as shown for instance in the first three rows of Table 1. A simulated Poisson \(\mathcal{P}(\lambda)\) sample of size 10 is primarily made up of zeros when \(\lambda = .1\) but mostly takes different values when \(\lambda = 10\). The impact on the number of sufficient statistics can be easily assessed when \(k = 4\). (Note that the simulated dataset corresponding to \((n, \lambda) = (10, 0.1)\) in Table 1 corresponds to a sample only made up of zeros, which explains the \(n + 1 = 11\) values of the sufficient statistic \((n_1, S_1) = (n_1, 0)\) when \(k = 2\).)

An interesting comment one can make about this decomposition of the posterior distribution is that it may happen that, as already noted in Casella et al. (2004), a small number of values of the local sufficient statistic \((n_1, S_1)\) carry most of the posterior weight. Table 2 provides some occurrences of this feature, as for instance in the case \((n, \lambda) = (20, 10)\).
2 Formal derivation of the posterior distribution

(n, λ)	$k = 2$	$k = 3$	$k = 4$
$(10, 1)$	20/44	209/675	1219/5760
$(10, 10)$	58/126	1292/4641	13,247/78,060
$(20, 0.1)$	38/40	346/630	1766/6160
$(20, 1)$	160/196	4533/630	17,660/419,824
$(10, 0.1, 10, 2)$	99/314	5597/28,206	—
$(10, 1, 10, 5)$	21/625	13,981/117,579	—
$(15, 1, 15, 3)$	50/829	62,144/211,197	—
$(20, 10)$	1/580	259/103,998	—
$(30, 0.1)$	198/466	20,854/70,194	30,052/44,950
$(30, 1)$	202/512	18,048/80,470	—
$(30, 5)$	1/1079	58,820/366,684	—

Tab. 2: Number of sufficient statistics (n_i, S_i) corresponding to the 99% largest posterior weights/total number of pairs for datasets simulated either from a Poisson $\mathcal{P}(\lambda)$ or from a mixture of two Poisson $\mathcal{P}(\lambda_i)$, and different numbers of components. (Missing terms are due to excessive computational or storage requirements.

We now turn to a minnow dataset made of 50 observations, for which we need a minimal description. As seen in Figure 1, the datapoints take large values, which is a drawback from a computational point of view since the number of statistics to be registered is much larger than when all datapoints are small. For this reason, we can only process the mixture model with $k = 2$ components.

If instead we use a completely symmetric prior with identical hyperparameters for λ_1 and λ_2, the output of the algorithm is then also symmetric in both components, as shown by Figure 2. The modes of the marginals of λ_1 and λ_2 remain the same, nonetheless.

2.4 Multinomial mixtures

The case of a multinomial mixture can be dealt with similarly: If we have n observations $\mathbf{n}_j = (n_{j1}, \ldots, n_{jk})$ from the mixture

$$\mathbf{n}_j \sim pM_k(d_j; q_{11}, \ldots, q_{1k}) + (1 - p)M_k(d_j; q_{21}, \ldots, q_{2k})$$

where $n_{j1} + \cdots + n_{jk} = d_j$ and $q_{11} + \cdots + q_{1k} = q_{21} + \cdots + q_{2k} = 1$, the conjugate priors on the q_{ij}s are Dirichlet distributions $(i = 1, 2)$,

$$(q_{11}, \ldots, q_{ik}) \sim \mathcal{D}(\alpha_{i1}, \ldots, \alpha_{ik}),$$

and we use once again the uniform prior on p. (A default choice for the α_{ij}'s is $\alpha_{ij} = 1/2$.) Note that the d_js may differ from observation to observation, since they are irrelevant for the posterior distribution: given a partition \mathbf{z} of the sample, the complete posterior is indeed

$$p^n (1 - p)^n z \prod_{i=1}^{2} \prod_{z_j = i}^{n_{ij1}} \cdots \prod_{z_k = i}^{n_{ijk}} \prod_{i=1}^{2} \prod_{h=1}^{k} q_{ih}^{-1/2},$$

up to a normalising constant that does not depend on \mathbf{z}.

More generally, if we consider a mixture with m components,

$$\mathbf{n}_j \sim \sum_{\ell=1}^{m} p_{\ell} M_k(d_j; q_{\ell 1}, \ldots, q_{\ell k}),$$
Fig. 1: (top left) Marginal posterior distribution of λ_1 (top right) marginal posterior distribution of λ_2 (bottom left) marginal posterior distribution of p (bottom right) histogram of the minnow dataset. (The prior parameters are 1/100 and 1/200 to remain compatible with the data range.)
Fig. 2: Same legend as Figure 1 for a symmetric prior with hyperparameter 1/100.
the complete posterior is also directly available, as
\[\prod_{i=1}^{m} p_i^{n_i} \times \prod_{i=1}^{m} \prod_{z_j=i} q_{i1}^{n_{i1}} \cdots q_{ik}^{n_{ik}} \times \prod_{i=1}^{m} \prod_{h=1}^{k} q_{ih}^{-1/2}, \]
once more up to a normalising constant.

The corresponding normalising constant of the Dirichlet distribution being
\[K(\alpha_{i1}, \ldots, \alpha_{ik}) = \frac{\prod_{j=1}^{k} \Gamma(\alpha_{ij})}{\Gamma(\alpha_{i1} + \cdots + \alpha_{ik})}, \]
it produces the overall weight of a given partition \(z \) as
\[n_1!n_2! \frac{\prod_{j=1}^{k} \Gamma(\alpha_{i1} + S_{1j})}{\Gamma(\alpha_{11} + \cdots + \alpha_{1k} + S_1)} \times \frac{\prod_{j=1}^{k} \Gamma(\alpha_{ij} + S_{2j})}{\Gamma(\alpha_{21} + \cdots + \alpha_{2k} + S_2)}, \]
where \(n_i \) is the number of observations allocated to component \(i \), \(S_{ij} \) is the sum of the \(n_\ell j \)s for the observations \(\ell \) allocated to component \(i \) and
\[S_i = \sum_j \sum_{z_\ell=i} n_{\ell j}. \]

Given that the posterior distribution only depends on those “sufficient” statistics \(S_{ij} \) and \(n_i \), the same factorisation as in the Poisson case applies, namely that we simply need to count the number of occurrences of a particular local sufficient statistic \((n_1, S_{11}, \ldots, S_{km})\). The book-keeping algorithm of Fearnhead (2005) applies in this setting as well. What follows is a naive R program translating the above:

```R
em = dim(dat)[2]
emp = em + 1
empcomp = emp * ncomp

# Matrix of sufficient statistics:
# last column is number of occurrences
# each series of (em+1) columns contains, first, number of allocations
# and, last, sum of multinomial observations
cardin = matrix(0, ncol=empcomp+1, nrow=ncomp)

# Initialisation
for (i in 1:ncomp) cardin[i, emp*(i-1)+(1:emp)] = c(1, dat[1,])
cardin[, empcomp+1] = 1

# Update
for (i in 2:dim(dat)[1]){
  ncard = dim(cardin)[1]
  update = matrix(t(cardin), ncol=empcomp+1, nrow=ncomp*ncomp*ncard, byrow=T)
  for (j in 0:(ncomp-1)){
    # Initialisation
    ...
    # Update
    ...
  }
}
```
\[\text{indi} = j \times \text{ncard} + (1: \text{ncard}) \]
\[\text{empj} = \text{emp} \times j \]
\[\text{update}[\text{indi}, \text{empj}+1] = \text{update}[\text{indi}, \text{empj}+1]+1 \]
\[\text{update}[\text{indi}, \text{empj}+(2: \text{emp})] = (t(\text{update}[\text{indi}, \text{empj}+(2: \text{emp})]) \times \text{dat}[i, 1]) \]

\[\text{update} = \text{update}[\text{do.call(order, data.frame(update))},] \]

\[\text{nu} = \text{dim(update)}[1] \]

changepoints
\[\text{jj} = c(1, (2: \text{nu})[\text{apply}(\text{abs(update}[2: \text{nu}, 1: \text{empcomp}]-\text{update}[1: (\text{nu}-1), 1: \text{empcomp}]), 1, \text{sum}) > 0]) \]

duplicates or rather ncomplicates!
\[\text{duplicates} = (1: \text{nu})[-\text{jj}] \]
\[\text{if (length(duplicates)>0){} for (dife in 1: (\text{ncomp}-1)) { } } \]
\[\text{ji} = \text{jj}[[\text{jj}+\text{dife}<=\text{nu}]] \]
\[\text{ii} = \text{ji}[\text{apply}(\text{abs(update}[\text{ji}+\text{dife}, 1: \text{empcomp}]- \text{update}[[\text{ji}, 1: \text{empcomp}]), 1, \text{sum}) == 0] \]
\[\text{if (length(ii)>0) } \]
\[\text{update}[\text{ii}, \text{empcomp}+1] = \text{update}[\text{ii}, \text{empcomp}+1]+ \text{update}[\text{ii}+\text{dife}, \text{empcomp}+1] \]
\[\text{update} = \text{update}[-\text{duplicates},] \]

\[\text{cardin} = \text{update} \]

print(sum(cardin[, 2*ncomp+1] - ncomp^i) \]

where \text{dat} is now a matrix with \text{k} columns.

The computation of the number of replicates of a given sufficient statistic
\[\sigma = (n_1, S_{11}, \ldots, n_m, S_{1m}, \ldots, S_{km}) \]
\[\mu_n(\sigma) \], is then provided by the last column of the matrix \text{cardin}. The overall weight is then computed as the product of \mu_n(\sigma) with the normalising constant \text{2}:

\[\text{colsums} = \text{matrix}(0, \text{ncol=ncomp, nrow=dim(update)}[1]) \]
\[\text{colsums}[, y] = \text{apply(update}[, (y-1) \times \text{emp}+(2: \text{emp})], 1, \text{sum}) \]
\[\text{w} = \log(\text{cardin}[, \text{empcomp}+1]) + \text{apply(lfactorial(\text{cardin}[, \text{emp}*(0: (\text{ncomp}-1))+1]), 1, \text{sum})} \]
\[\text{w} = \exp(\text{w}-\text{max(w)}) \]
\[\text{cardin} = \text{cbind(cardin, w)} \]

As shown in Table \text{3} once again, the reduction in the number of cases to be considered is enormous.
2 Formal derivation of the posterior distribution

(n, d_j, k)	$m = 2$	$m = 3$	$m = 4$	$m = 5$
(10, 5, 3)	33/35	4602/9093	56,815/68,964	–
(10, 5, 4)	90/232	3650/21,249	296,994/608,992	–
(10, 5, 5)	247/707	247/7857	59,195/409,600	–
(10, 10, 2)	19/20	803/885	3703/4800	7267/11550
(10, 10, 3)	117/132	1682/1893	48,571/60,720	–
(10, 10, 4)	391/514	3022/3510	83,757/170,864	–
(10, 10, 5)	287/1008	7,031/12,960	35,531/312,320	–
(20, 5, 2)	129/139	517/1140	26,997/45,600	947/10,626
(20, 5, 3)	384/424	188,703/209,736	108,545/220,320	–
(20, 5, 4)	3410/6944	819,523/1,058,193	–	–
(20, 10, 5)	1225/1332	9,510/1,089,990	–	–

Tab. 3: Number of sufficient statistics $(n, S_{ij})_{1\leq i\leq m, 1\leq j\leq k}$ corresponding to the 99% largest posterior, of pairs (n, S_i) corresponding to the 99% largest posterior weights, and total number of statistics for datasets simulated from mixtures of m multinomial $M_k(d_j; q_1, \ldots, q_k)$ and different parameters.

(Missing terms are due to excessive computational or storage requirements.)

2.5 Normal mixtures

For a normal mixture, the number of truly different terms in the posterior distribution is much larger than in the previous (discrete) cases, in the sense that only permutations of the members of a given partition within each term of the partition provide the same local sufficient statistics. Therefore, the number of observations that can be handled in an exact analysis is necessarily extremely limited.

As mentioned in Section 2.4, the locally conjugate priors for normal mixtures are products of normal $\mu_j | \sigma_j \sim \mathcal{N}(\xi_j, \sigma_j^2/c_j)$ by inverse gamma $\sigma_j^{-2} \sim \mathcal{G}(a_j/2, b_j/2)$ distributions. For instance, in the case of a two-component normal mixture,

$$x_1, \ldots, x_n \overset{iid}{\sim} p \mathcal{N}(\mu_1, \sigma_1^2) + (1-p) \mathcal{N}(\mu_2, \sigma_2^2),$$

we can pick $\mu_1 | \sigma_1 \sim \mathcal{N}(0, 10\sigma_1^2)$, $\mu_2 | \sigma_2 \sim \mathcal{N}(1, 10\sigma_2^2)$, $\sigma_j^{-2} \sim \mathcal{G}(2, 2/\sigma_j^0)$, if a difference of one between both means is considered likely (meaning of course that the data are previously scaled) and if σ_j^0 is the prior assumption on the variance (possibly deduced from the range of the sample). Obviously, the choice of a Gamma distribution with 2 degrees of freedom is open to discussion, as it is not without consequences on the posterior distribution.

The normalising constant of the prior distribution is (up to a true constant)

$$K(a_1, \ldots, a_k, b_1, \ldots, b_k, c_1, \ldots, c_k, \xi_1, \ldots, \xi_k) = \prod_{i=1}^{k} \sqrt{c_j}.$$

Indeed, the corresponding posterior is

$$\mu_j | \sigma_j \sim \mathcal{N}\left[(c_j \xi_j + n_j \bar{x}_j, c_j + n_j)\right]$$

and

$$\sigma_j^{-2} \sim \mathcal{G}\left[(a_j + n_j)/2, \{b_j + n_j \sigma_j^2 + (\bar{x}_j - \xi_j)^2/(c_j^{-1} + n_j^{-1})\}\right].$$

The number of different sufficient statistics $(n_j, \bar{x}_j, \sigma_j^2)$ is thus related to the number of different partitions of the dataset into at most k groups. This is related to the Bell number (Rota, 1964),
which grows extremely fast. We therefore do not pursue the example of the normal mixture any further for lack of practical purpose.

Acknowledgements

This paper is a chapter of the book *Mixtures: Estimation and Applications*, edited by the authors jointly with Mike Titterington and following the ICMS workshop on the same topic that took place in Edinburgh, March 03-05, 2010. The authors are deeply grateful to the staff at ICMS for the organisation of the workshop, to the funding bodies (EPSRC, LMS, Edinburgh Mathematical Society, Glasgow Mathematical Journal Trust, and Royal Statistical Society) for supporting this workshop, and to the participants in the workshop for their innovative and exciting contributions.

References

Aitkin M 2001 Likelihood and Bayesian analysis of mixtures. *Statistical Modelling* 1, 287–304.

Berger J and Bernardo J 1989 Estimating a product of means: Bayesian analysis with reference priors. *Journal of the American Statistical Association* 84, 200–207.

Carlin B and Chib S 1995 Bayesian model choice through Markov chain Monte Carlo. *Journal of the Royal Statistical Society Series B* 57, 473–484.

Casella G, Robert C and Wells M 2004 Mixture models, latent variables and partitioned importance sampling. *Statistical Methodology* 1, 1–18.

Congdon P 2006 Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. *Computational Statistics and Data Analysis* 50, 346–357.

Dempster A, Laird N and Rubin D 1977 Maximum likelihood from incomplete data via the EM algorithm (with discussion). *Journal of the Royal Statistical Society Series B* 39, 1–38.

Diebolt J and Robert C 1990 Estimation des paramètres d’un mélange par échantillonnage bayésien. *Notes aux Comptes–Rendus de l’Académie des Sciences* I 311, 653–658.

Diebolt J and Robert C 1994 Estimation of finite mixture distributions by Bayesian sampling. *Journal of the Royal Statistical Society Series B* 56, 363–375.

Escobar M and West M 1995 Bayesian prediction and density estimation. *Journal of the American Statistical Association* 90, 577–588.

Fearnhead P 2005 Direct simulation for discrete mixture distributions. *Statistics and Computing* 15, 125–133.

Friehwirth-Schnatter S 2006 *Finite Mixture and Markov Switching Models*. Springer-Verlag.

Jasra A, Holmes C and Stephens D 2005 Markov Chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. *Statistical Science* 20, 50–67.

Kass R and Raftery A 1995 Bayes factors. *Journal of the American Statistical Association* 90, 773–795.

Lee K, Marin JM, Mengersen K and Robert C 2009 Bayesian inference on mixtures of distributions In *Perspectives in Mathematical Sciences I: Probability and Statistics* (ed. Sastry NN, Delampady M and Rajeev B), pp. 165–202. World Scientific Singapore.

MacLachlan G and Peel D 2000 *Finite Mixture Models*. Wiley.
Mengersen K and Robert C 1996 Testing for mixtures: A Bayesian entropic approach (with discussion) In *Bayesian Statistics 5* (ed Berger J, Bernardo J, Dawid A, Lindley D and Smith A), pp. 255–276. Oxford University Press.

Phillips D and Smith A 1996 Bayesian model comparison via jump diffusions In *Markov chain Monte Carlo in Practice* (ed. Gilks W, Richardson S and Spiegelhalter D), pp. 215–240. Chapman and Hall.

Richardson S and Green P 1997 On Bayesian analysis of mixtures with an unknown number of components (with discussion). *Journal of the Royal Statistical Society Series B* **59**, 731–792.

Robert C 2001 *The Bayesian Choice* 2nd edn. Springer-Verlag.

Robert C and Casella G 2004 *Monte Carlo Statistical Methods* 2nd edn. Springer-Verlag.

Roeder K and Wasserman L 1997 Practical Bayesian density estimation using mixtures of normals. *Journal of the American Statistical Association* **92**, 894–902.

Rota GC 1964 The number of partitions of a set. *American Mathematical Monthly* **71**, 498–504.

Stephens M 2000a Bayesian analysis of mixture models with an unknown number of components—an alternative to reversible jump methods. *Annals of Statistics* **28**, 40–74.

Stephens M 2000b Dealing with label switching in mixture models. *Journal of the Royal Statistical Society Series B* **62**, 795–809.