An *In-Silico* Approach of Polyhydroxybutyrate Synthesis and Phylogeny Study for Degradation of Polyhydroxybutyrate in Organisms from Lower to Higher Organization

Shivangi Shrivastava¹, Dr. Mritunjai Singh², Dr. Archana Tiwari³

¹, ², ³School of Biotechnology, Rajiv Gandhi Prodyogiki Vishwavidyalaya

Abstract: The *in-silico* approach is common in today’s world. As it provide a vast knowledge of hypothetical world which have to be proven by undergoing in *in-vitro* conditions. There are much data is available on databases which helps to complete the future study related to medicine, environment and nano-technology. The study covered the new ideas which can able to change the approach of biosynthesis of PHB in microorganisms and degradation of biopolymer without any harmful effect on environment as well as ecosystem.

Keywords: Polyhydroxybutyrate, Phylogeny tree, Polyesters, Biodegradable, Biosynthesis, Ralstonia eutropha

I. INTRODUCTION

In-silico approach is necessary to start any project in medical as well as environmental field. As it contains data which is required for many studies. This work is done with the help of online tools and databases. PHB biosynthesis is important to understand the basic need and requirement of microorganisms for their survival in non favourable conditions. PHB is storage material which is synthesised by acetyl co-A moieties as their raw material (Luengo *et al.*, 2003). Acetyl co-A undergoes in condensation and produce acetoacetyl co-A with the help of various enzyme activities. The sole purpose of biosynthesis of storage material is, limitation of required macromolecules which stops the nitrogenous enzyme to synthesis protein and further go for cell division. When microbial enzyme activity stops, microbes start synthesis of polyhydroxyalkanoates in the cell which are polyesters for their survival (Luengo *et al.*, 2003). These polyhydroxyalkanoates are of many types which depends on cell type and their habitatte. As polyhydroxyalkanoates contains many type of polyesters but this study was focussed on only one type of polyesters which is polyhydroxybutyrate which is highly synthesised by *Ralstonia eutropha* which is a gram negative, non-spore forming bacilli. This study’s solely focussed on polyhydroxybutyrate because this polyester showing major ressemblance with single use polymer i.e., polyethylene which is synthetically synthesised and are not able to degrade after and after several years (Bhat *et al.*, 2020). This single use polymer polluted the area on earth with degrade the quality of environment and ecosystem as many animals and ocean animals are died by eating it (Hayden *et al.*, 2013). These study will hange the future world’s approach for focussing on degradation as well. These biopolymer are not poisnous for mistakenly eating by animals as well as humans because humans contain higher enzymes which are able to degrade these biopolymers in the body and remove out without any gene manipulation.

DATABASES: NCBI, BIOCYC, METACYC, MUSCLE/CLUSTAL W

TOOLS: Comparative analysis, MEGA X

II. METHODS

A. *Selection of Suitable Strain of Microorganism*

1) Search the site of NCBI (ncbi.nih.nlm.in).
2) Open the home page of NCBI.
3) Choose the ‘all genome’ option from left search column.
4) Choose the ‘bacterial name’ in right search option.
5) Result shows bacterial FASTA sequence.
6) Select the BLAST program.
7) Enter a query sequence or upload a file containing sequence.
8) Select the database to search.
9) Select the algorithm and the parameters of the algorithm for the search.
10) Run the BLAST program.
11) Optimise the similar of Bacterial genome and select the perfect one.

B. Study of Biosynthesis of Polyhydroxy Butyrate/ butyric acid in Ralstonia eutropha by Biocyc
1) Search the online tool: biocyc.org
2) Type ‘Polyhydroxybutyrate’ on search column display on right side (up) on the page.
3) Choose the option ‘Polyhydroxbutanoate biosynthesis (polyhydroxybutyrate biosynthesis)’ out from three results.
4) Study the results of reaction with enzymatic pathways.
5) Select the option ‘Multiple Database’ from right side (down) the page.
6) Collect the data of same reaction in multiple databases.

C. Use of metacyc tool for study of Polyhydroxybutyrate synthesis in Microorganisms
1) Search metacyc.org
2) Enter Polyhydroxybutyrate in search column
3) Click on pathway of Polyhydroxbutanoate biosynthesis (polyhydroxybutyrate biosynthesis).
4) Retrieve the pathway and collect the data
5) Search this pathway in Multiple Database

D. Comparative Analysis for Cupriavidus necator H 16
1) Search the online tool biocyc.org.
2) Enter polyhydroxybutyrate in search column.
3) Click on pathway of Polyhydroxbutanoate biosynthesis (polyhydroxybutyrate biosynthesis).
4) Run the species comparison
5) Go on comparative analysis start page option given on last of the page.
6) Select Pathways: breakdown by pathway class, information on pathway holes.
7) Select ‘choose organism’ for comparative analysis
8) Add microorganisms according to taxonomy
9) Select pathway option and optimize the data

III. PHYLOGENETIC TREE PRODUCTION BY MEGA X SOFTWARE

For alignment
1) Go to “Align (dropdown) -- Edit/Build Alignment -- Retreive sequences from a file -- OK”.
2) Selected the input file which was in fasta format. A new window was open showing all the sequences.
3) Go to “Edit --> Select All” or simply press Ctrl+A.
4) Go to “Alignment --> Align by MUSCLE --> Align Protein --> OK”. This software can align sequences by ClustalW by selecting “Align by ClustalW” instead of selecting “Align by ClustalW” from the Alignment option at the top menu bar.
5) After processing, it was showed the aligned sequences in the same window.
6) If wanted then saved the session, then go to “Data --> Save Session”. Select the appropriate folder and click Save.

A. Exporting into the MEGA format
1) Go to Data --> Export Alignment --> Mega Format. DATA was also export into other formats such as FASTA, Phylip/Paup at this step.
2) Selected the appropriate folder and clicked Save.
B. Constructing the Phylogenetic Tree

1) Go to the main window of MEGAX. Click Phylogeny --> Construct/Test Maximum Likelihood Tree.
2) Select the converted file (.meg) and click Open.
3) A new window will appear ‘Analysis Parameters’. Here, set the different values such as bootstrapping value, substitution model, etc., It is recommended to test phylogeny by bootstrapping for 500-1000 times. Additionally, selected the substitution model appropriately.
4) After setting parameters, click Compute. It was time taken which depending upon the number of sequences and bootstrap values.
5) Finally, it would showed the constructed tree. Save the tree session and export it into Newick format.

IV. RESULTS AND DISCUSSIONS

Ralstonia eutropha H16 was taken for this study because this strain of organism produces polyhydroxybutyrate in large amount than other strain. They are facultative aerobes that synthesize Polyhydroxybutyrate keto-acids in the absence of Oxygen and higher Carbon amount. The role of PHB synthesis is, it produces energy for microbial survival in such conditions. Another major advantage of the selected strain was, it is a non-spore-forming, non-pathogenic gram-negative bacteria.
Metabolic pathway of any organism shows its whole process of synthesizing and degradation as per requirement of survival. Metabolic pathways the utilisation of macromolecules for further reactions. Metabolic pathway for polyhydroxybutyrate synthesis *in-vivo* was observed and studied with BioCyc.

Result 2: Pathway in multiple database by BioCyc

Result 2.1: Biosynthesis of Polyhydroxybutyrate in *Cupriavidus necator* H16 by MetaCyc
Metacyc online tool provided data of different pathways for multiple reactions at a time which a microbial cell facilitates. Acquired vast knowledge from initial to the final stage. As it cleared all the queries related to Polyhydroxybutyrate synthesis *in-vivo*. For example, acetyl co-enzyme plays the role of substrate for Biosynthesis of PHB with multiple enzyme activities in multiple stages but when and how acetyl co-enzyme undergo for the further reaction of producing PHB *in-vivo*. Synthesis of PHB in microbes complete in 3 steps which occurs in hypoxia condition or facultative microbes undergo fermentation during starvation. These steps are:

Step 1: Acetyl Co-A synthesized from a different metabolic reaction, undergo the condensation process in which two moieties of acetyl Co-A condense with the utility of 3-Ketothiolase to produce a molecule Acetoacetyl Co-A.

Step 2: In the second step, Acetoacetyl Co-A reduces by the process of NADPH-dependent Acetoacetyl Co-A reductase to produce (R)-3-hydroxybutyrate Co-A.

Step 3: In the last step, PHB synthase synthesis and merge 3 hydroxybutyrate moieties to produce the Poly 3-hydroxybutyrate backbone.

Result 3.1: Comparative Analysis Summary Results
The major aim of comparative analysis is to identify similarities and differences between different species/taxonomy. Investigation of bacterial communities and diversity is very important as these microbes exert direct beneficial or pathogenic effects on other species. Comparison of the culturable and non-culturable community will help to determine the structurally abundant, functionally viable, and potentially valuable bacteria that can ultimately be used as inoculum for the desired product. This study concluded that there are many taxonomy and species which are available for higher productivity nonetheless productive more than *Ralstonia eutropha*.

Result 3.2: Outcomes of Storage Compound Biosynthesis

The roots of a phylogenetic tree represent the common ancestor of the sequences. Some trees are unrooted, and thus do not specify the common ancestor. A tree can be rooted using an outgroup (that is, a taxon known to be distantly related from all other Operational taxonomic units). Bootstrapping is a statistical technique that tests the sampling errors of a phylogenetic tree. It does so by repeatedly sampling trees through slightly perturbed datasets.

Result 4.1: Aligned Hydroxybutyrate dehydrogenase Enzyme of different species

Result 4.2: Evolutionary Analysis by Maximum Likelihood Method
V. CONCLUSION

Ralstonia eutropha H16 was taken for this study because this strain of organism produces polyhydroxybutyrate in large amount than other strain. They are facultative aerobes that synthesize Polyhydroxybutyrate keto-acids in the absence of Oxygen and higher Carbon amount. The role of PHB synthesis is, it produces energy for microbial survival in such conditions. Another major advantage of the selected strain was, it is a non-spore-forming, non-pathogenic gram-negative bacteria. Metabolic pathway of any organism shows its whole process of synthesizing and degradation as per requirement of survival. Metabolic pathways the utilisation of macromolecules for further reactions. Metabolic pathway for polyhydroxybutyrate synthesis in-vivo was observed and studied with BioCyc. Metacyc online tool provided data of different pathways for multiple reactions at a time which a microbial cell facilitates. Acquired vast knowledge from initial to the final stage. As it cleared all the queries related to Polyhydroxybutyrate synthesis in-vivo. For example, acetyl co-enzyme plays the role of substrate for Biosynthesis of PHB with multiple enzyme activities in multiple stages but when and how acetyl co-enzyme undergo for the further reaction of producing PHB in-vivo. The major aim of comparative analysis is to identify similarities and differences between different species/taxonomy. Investigation of bacterial communities and diversity is very important as these microbes exert direct beneficial or pathogenic effects on other species. Comparison of the culturable and non-culturable community will help to determine the structurally abundant, functionally viable, and potentially valuable bacteria that can ultimately be used as inoculum for the desired product. This study was required to check whether the strain selected for study is suitable or not. This study concluded that there are many taxonomy and species which are available for higher productivity nonetheless productive more than Ralstonia eutropha. The roots of a phylogenetic tree represent the common ancestor of the sequences. Some trees are unrooted, and thus do not specify the common ancestor. A tree can be rooted using an outgroup (that is, a taxon known to be distantly related from all other Operational taxonomic units). Bootstrapping is a statistical technique that tests the sampling errors of a phylogenetic tree. It does so by repeatedly sampling trees through slightly perturbed datasets. Data were collected from NCBI for producing a phylogeny tree. Each enzyme (Protein) was selected from different species. Collected data is in FASTA sequence form. For MegaX, a sheet was generated and uploaded according to the MegaX sheet format. Sequence after upload was sequence aligned with the help of Muscle/ClustalW. After all these steps data sheet was prepared for phylogeny tree analysis for evolutionary. The phylogeny tree was constructed in between enzymes that present in multiple organisms from microbial species to higher eukaryotes. That enzyme was responsible for the synthesis of keto-acids (hydroxybutyrate). Results were showed that positively define the evolution of genes responsible for an enzyme present in almost all organisms. For example, homo sapiens’ liver cells also produce hydroxybutyrate in starvation conditions.

REFERENCES

[1] Ahn WS, Park SJ, Lee SY. Production of poly(3-Hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Applied Environmental Microbiology, 2000; 66: 3624–7.
[2] Akiyama M, Taima Y, Doi Y. Production of poly(3-hydroxyalkanoates) by a bacterium of the genus Alcaligenes utilizing long-chain fatty acids. Applied Microbiology and Biotechnology, 1992; 37:698–701.
[3] Albuquerque M G E, Eiroa M, Torres C, Nunes B R, Reis M A M. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. Journal of Biotechnology, 2007; 130: 411-21.
[4] Albuquerque M, Torres C, Reis M. Polyhydroxyalkanoate (PHA) production by a mixed microbial culture using sugar molasses: effect of the influent substrate concentration on culture selection. Water Resource, 2010; 44:3419–3433.
[5] Allen A, Anderson W, Ayorinde F, Eribo B. Biosynthesis and characterization of copolymer poly(3HB-3HV) from saponified Jatropha curcas oil by Pseudomonas oleovorans. Journal of Industrial Microbiology and Biotechnology 2010; 37: 849-56.
[6] Arcos-Hernandez M. V., Laycock B., Pratt S., Donose B.C., Nikole M.A., Luckman P., Werker A., and Lant P.A., Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polymer Degradation and Stability, 2012.
[7] Ashby RD, Foglia TA. Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Applied Microbiology Biotechnology, 1998; 49: 431-7.
[8] Bassas M, Marqués AM, Manresa A. Study of the crosslinking reaction (natural and UV induced) in polyunsaturated PHA from linseed oil. Biochemical Engineering Journal 2008; 40: 275-83.
[9] Begun G, Palko A, Brown L. The ammonia-ammonium carbonate system for the concentration of nitrogen-15. Journal of Physical Chemistry, 1956; 60:48–51.
[10] Bengtsson S, Pisco AR, Reis MAM, Lemos PC. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycerine accumulating organisms. Journal of Biotechnology, 2010; 145: 253-63.
[11] Bertrand J-L, Ramsay BA, Ramsay JA, Chavarie C. Biosynthesis of Poly–Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava. Applied Environmental Microbiology, 1990; 56: 3133-8.
[12] Bhart R. A., Qadri H., Wani K. A., Dar G.H., Mehmood M. A., Innovative Waste Management Technologies for Sustainable Development. IGI Global: International Publisher of Information Science and Technology Research, 2020; 4: 52-81.
[13] Bhattacharya R., Patel K., Trivedi U., A Handbook of Applied Bioprocess Technology: Synthesis, Degradation and Applications, 2013; 10: 51: 35: 311-331.
[14] Bhubalan K, Lee W-H, Loo C-Y, et al. Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polymer Degradation Stability 2008; 93: 17-23.
[15] Byrom D. Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiology Letter, 1992; 103:247–250.

[16] Cai Z., Hou C., and Yang G., Characteristics and blending performance of electroactive polymer blend made with cellulose and poly (3-hydroxybutyrate). Carbohydrate Polymers, 2012; 87: 650-657.

[17] Ceyhan N, Ozdemir G. Poly-hydroxybutyrate (PHB) production from domestic wastewater using Enterobacter aerogenes 12Bi strain. African Journal of Microbiology Research 2011; 5: 690-702.

[18] Chaijamrus S, Udpuay N. Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agricultural Engineering International: The CGI E Journal, 2008;X.

[19] Chan R.T., Garvey C.J., Marcal H., Russell R.A., Holden P.J., and Foster L.J.R., Manipulation of Polyhydroxybutyrate Properties through Blending with Ethyl-Cellulose for a Composite Biomaterial. International Journal of Polymer Science. 2011.

[20] Chander M., Microbial Production of Biodegradable Plastics from Agricultural Waste. International Journal of Research and Analytical Reviews, 2019; 6(2): 2349-5138.

[21] Chaudhry W, Jamil N, Ali I, Ayaz M, Hasnain S. Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Annals of Microbiology, 2011; 61: 623-9.

[22] Chen G-Q, Page WJ. Production of poly-b-hydroxybutyrate by Azotobacter vinelandii in a two-stage fermentation process. Biotechnology Techniques, 1997; 11: 347-50.

[23] Costa S, Lépine F, Milot S, Déziel E, Nitschke M, Contiero J. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology 2009; 36: 1063-72.

[24] Cromwick AM, Foglia T, Lenz RW. The microbial production of poly(hydroxyalkanoates) from tallow. Applied Microbiology and Biotechnology, 1996; 46: 464-9.

[25] Cui Y W, Shi Y P, Gong X Y. Effects of C/N in the substrate on the simultaneous production of polyhydroxyalkanoates and extracellular polymeric substances by Halofexer mediterranei via kinetic model analysis. Journal of Chemical Society, 2017; 7:18953–18961.

[26] De Almeida A, Giordano AM, Nikol PL, Pettinari MJ. Effects of aeration on the synthesis of poly(3-hydroxybutyrate) from glycerol and glucose in recombinant Escherichia coli. Applied Environmental Microbiology, 2010; 76:2036–2040.

[27] Du C., Sabirova J., Soetaert W., Lin S.K.C., Polyhydroxyalkanoates Production from Low-cost Sustainable Raw materials. Current Chemical Biology, 2012; 6:1.

[28] Eggink G, Steinbuchel A, Poirier A, Witholt B. International symposium on bacterial polyhydroxyalkanoates. NRC Research Press, Toulouse, 1997.

[29] Fernández D, Rodríguez E, Bassas M, et al. Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: Effect of culture conditions. Biochemical Engineering Journal 2005; 26: 159-67.

[30] Fukui T, Doi Y. Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Applied Microbiology and Biotechnology 1998; 49: 333-6.

[31] Full TD, Jung DO, Madigan MT. Production of polyhydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Letter of Applied Microbiology, 2006; 43: 377-84.

[32] Fuller RC. Microbial inclusions with special reference to PHA inclusions and intracellular boundary envelopes. International Journal of Biological Macromolecules 1999; 25: 21-9.

[33] Gumen A, Annur M, Heidelberg T. Growth kinetics, effect of carbon substrate in biosynthesis of mcl-PHA by Pseudomonas putida Bet001. Brazilian Journal of Microbiology, 2014; 45:427–438.

[34] Gustafsson J., Landberg M., Batorov V., Akesson D., Taherzadeh M.J., and Zamani A., Development of Bio-Based Films and 3D Objects from Apple Pomace. Polymers 2019; 11: 289.

[35] Haba E, Vidal-Mas J, Bassas M, Espany MJ, Llorens J, Manresa A. Poly 3-(hydroxyalkanoates) produced from oily substrates by Pseudomonas aeruginosa 4T2 (NCBIM 40044): Effect of nutrients and incubation temperature on polymer composition. Biochemical Engineering Journal 2007; 35: 99-106.

[36] Hao J, Wang X, Wang H. Overall process of using a valerate-dominant sludge hydrolysate to produce high-quality polyhydroxyalkanoates (PHA) in a mixed culture. Journal of Natural Products, 2017; 7:6939–6943.

[37] He W, Tian W, Zhang G, Chen G-Q, Zhang Z. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiology Letter, 1998; 169: 45-9.

[38] Hohne G., Hemminger W.F., and Flammersheim H.J., Differential Scanning Calorimetry. Springer, 2003.

[39] http://www.ncbi.nlm.nih.gov

[40] https://www.researchgate.net/figure/Fig-II-3-Pathway-of-PHB-synthesis_fig2_312934859

[41] https://www.researchgate.net/figure/Updated-prices-of-bioplastics_tbl5_266850155

[42] Hu D. Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P-3-HB-b-P-4-HB. Biomacromolecule, 2011; 12:3166–3173.

[43] Iriani E.S., Permana A.W., Yuliani S., Kailaku S.I., and Sulaiman A.A., The effect of Agricultural waste Nanocellulose on The Properties of Bioplastic for Fresh Fruit Packaging. Earth and Environmental Science, 2019; 309: 012035.

[44] Israni N, Shivakumar S. Evaluation of upstream process parameters influencing the growth associated PHA accumulation in Bacillus sp. Journal of Scientific and Industrial Research, 2015;74:290–295.

[45] Jiang G. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. International Journal of Molecular Science, 2016; 17:1157.

[46] kahar P, Tsuge T, Taguchi K. Doi Y. High yield production of polyhydroxyalkanoates from soybean oil by Atalania eutropha and its recombinant strain. Polymer Degradation Stability, 2004; 83: 79-86.

[47] Kang M, Peng S, Tian Y, Zhang H. Effects of dissolved oxygen and nutrient loading on phosphorus fluxes at the sediment–water interface in the hai river estuary, China. Marine Pollution Bulletin, 2018; 130:132–139.

[48] Kaur M., Aggrawal N.K., Kumar V., and Dhiman R., Effects and Management of Partheniumhysterophorus : A Weed of Global Significance. International Scholarly Research Notices, 2014.

[49] Keenan TM, Nakas JP, Tanenbaum SW. Polyhydroxyalkanoate copolymers from forest biomass. Journal of Industrial Microbiology, 2006; 33: 616-26.
[50] Keenan TM, Tanenbaum SW, Nakas JP. Microbial formation of polyhydroxyalkanoates from forestry-based substrates. ACS Symposium Series, 2006; 921: 193-209.

[51] Kellerhals M B, Kessler B, Witholt B, Tchouboukov A, Brandl H. Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules, 2000; 33:4690-4698.

[52] Khosravi-Darani K, Mokhtar Z B, Amai T, Tanaka K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Applied Microbiology and Biotechnology, 2013; 97:1407–1424.

[53] Kim J.S., Lee Y.Y., Kim T.H., A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 2015; 08:084.

[54] Kim S W, Kim P, Lee H S, Kim J H. High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnology Letter, 1996; 18:25–30.

[55] Koller M, Bona R, Chiellini E et al. Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresource Technology, 2008; 99: 4854-63.

[56] Koller M, Hesse P, Salerno A, Reiterer A, Braunegg G. A viable antibiotic strategy against microbial contamination in biotechnological production of polyhydroxyalkanoates from surplus whey. Biomass Bioenergy, 2011; 35: 748-53.

[57] Korkkakaki E, Van Loosdrecht MC, Kleerebezem R (Impact of phosphate limitation on PHA production in a feastfamine process. Water Resources 126:472–480.

[58] Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N. Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. Journal of Bioscience and Bioengineering, 2009; 107: 240-5.

[59] Kumar B.S., Prabakaran G., Production of PHB (bioplastics) using bio-effluent as substrate by Alcaligenes eutrophus. Indian Journal of Biotechnology, 2006; 5: 76-79.

[60] Kumar M, Singhal A, Verma PK, Thakur I S. Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. ISTKB. Journal of the American Chemical Society, 2017; 2:9156–9163.

[61] Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 33(7), 1870-1874.

[62] Lavanya D., Kulkarni P.K., Dixit M., Raavi P.K., Krishna L.N.V., Sources of Cellulose and their Applications- A Review. International Journal of Drug formulation and Research, 2011; 2(6): 2229-5054.

[63] Law K-H, Leung Y-C, Lawford H, Chua H, Lo W-H, Yu P. Production of polyhydroxybutyrate by Bacillus species isolated from municipal activated sludge. Applied Biochemistry and Biotechnology, 2001; 91-93: 515-24.

[64] Lee SY, Middelberg APJ, Lee YK. Poly(3-hydroxybutyrate) production from whey using recombinant Escherichia coli. Biotechnology Letter, 1997; 19: 1033-5.

[65] Lee W-H, Loo C-Y, Nomura CT, Sudesh K. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3- hydroxyvalerate precursors. Biotechnology and Biotechnology, 2008; 99: 6844- 51.

[66] Li R, Chen Q, Wang PG, Qi Q. A novel-designed Escherichia coli for the production of various polyhydroxyalkanoates from inexpensive substrate mixture. Applied Microbiology and Biotechnology, 2007; 75: 1103-9.

[67] Lin CSK, Luque R, Clark JH, Webb C, Du C. Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Biofuels, Bioproducts, Biorefining, 2012; 6: 88-104.

[68] Liu C, Luo G, Wang W, He Y, Zhang R, Liu G. The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation. Fuel, 2018; 224:537-544.

[69] Loo C-Y, Lee W-H, Tai D, Doi Y, Sudesh K. Biosynthesis and Characterization of Poly(3-hydroxybutyrate-3-hydroxyhexanoate) from Palm Oil Products in a Wautersia eutropha Mutant. Biotechnology Letter, 2005; 27: 1405-10.

[70] Luengo J.M., Garcia B., Sandoval A., Naharro G., and Olivera E.R., Bioplastics from microorganisms. Current Opinion in Microbiology, 2003; 6: 251-260.

[71] Marangoni C, Furigo Jr A, de Aragão GMF. Production of poly(3- hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding. Process Biochemistry, 2002; 38: 137-41.

[72] Martinez G A, Rebecchi S, Decori D, Domingos J M B, Rio D D, Bertin L, Porto C D, Fava F. Towards multi-purpose biorefinery platforms for the valorisation of red grape pomace: production of polyphenols, volatile fatty acids, polyhydroxyalkanoates and biogas. Green Chemistry, 2016; 18:261–270.

[73] Martinez-Toledo MV, Gonzalez-Lopez J, Rodelas B, Pozo C, Salmeron V. Production of poly--hydroxybutyrate by Azotobacter chroococcum H23 in chemically defined medium and alpechin medium. Journal of Applied Microbiology 1995; 78: 413-8.

[74] Mary Sijii.K., Pillai P.K.S., Amma D.B., Pothen L.A., Thomas S., Handbook of Biopolymer-Based Materials: From Blends and Composites to Gels and Complex Network, 2013; 26: 777-799.

[75] Masood F, Abdul-Salam M, Yasin T, Hameed A. Effect of glucose and olive oil as potential carbon sources on production of PHAs copolymer and tercopolymer by Bacillus cereus FA11. 3 Biotechnology, 2017; 7:87–101.

[76] megaX

[77] Mohanty A.K., Wibowo A, Misra M., and Drzal L.T., Development of Renewable Resource- Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of Cellulosic Plastics. Polymer Engineering and Science, 2003; 43: 5.

[78] Mousavioun P., George G.A., and Doherty W.O., Environmental degradation of lignin/poly (hydroxybutyrate) blends. Polymer Degradation and Stability, 2012; 97: 1114-1122.

[79] Mudunur C, Mondal K, Singh U., Katiyar V., Production of Polyhydroxyalkanoates and its Potential Applications. Advances in Sustainable Polymer, 2019.

[80] Murh A, Biodegradable latexes from animal-derived waste: biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. Reactive and Functional Polymers, 2013; 73:1391–1398.

[81] Munoz LEA, Riley MR. Utilization of cellulose waste from tequila bagasse and production of polyhydroxyalkanoate (pha) bioplastics by Saccharophagus degradans. Biotechnology and Bioengineering, 2008; 100: 882-8.
Characterization of polyetherols by Pseudomonas saccharophila. V.C., and Bertolin T.E., Enzymatic Saccharification of Lignocellulosic Residues by Cellulases obtained from P, Gaillard J L, Corroler D. Impact of carbon source and variable nitrogen conditions on bacterial polymers: biosynthesis, modifications and applications. Nature Reviews Microbiology, 2010; 8:578.

Rincon J, Camarillo R, Rodriguez L, Ancillo V. Fractionation of used frying oil by supercritical CO2 and cosolvents. Industrial and Engineering Chemistry Research, 2010; 49:2410–2418.

Ruiz C., Kenny S.T., Naranctic T., Babu R., and Connor K.O., Conversion of waste cooking oil into medium chain polyhydroxyalkanoates. Canadian Journal of Microbiology, 1995; 41: 262-6.

Shahid S, Mosrati R, Ledauphin J, Amiel C, Fontaine P, Gaillard J L, Corroler D. Impact of carbon source and variable nitrogen conditions on bacterial polymers: biosynthesis, modifications and applications. Nature Reviews Microbiology, 2010; 8:578.

Rincon J, Camarillo R, Rodriguez L, Ancillo V. Fractionation of used frying oil by supercritical CO2 and cosolvents. Industrial and Engineering Chemistry Research, 2010; 49:2410–2418.

Ruiz C., Kenny S.T., Naranctic T., Babu R., and Connor K.O., Conversion of waste cooking oil into medium chain polyhydroxyalkanoates. Canadian Journal of Microbiology, 1995; 41: 262-6.

Rincon J, Camarillo R, Rodriguez L, Ancillo V. Fractionation of used frying oil by supercritical CO2 and cosolvents. Industrial and Engineering Chemistry Research, 2010; 49:2410–2418.

Ruiz C., Kenny S.T., Naranctic T., Babu R., and Connor K.O., Conversion of waste cooking oil into medium chain polyhydroxyalkanoates. Canadian Journal of Microbiology, 1995; 41: 262-6.

Rincon J, Camarillo R, Rodriguez L, Ancillo V. Fractionation of used frying oil by supercritical CO2 and cosolvents. Industrial and Engineering Chemistry Research, 2010; 49:2410–2418.

Ruiz C., Kenny S.T., Naranctic T., Babu R., and Connor K.O., Conversion of waste cooking oil into medium chain polyhydroxyalkanoates. Canadian Journal of Microbiology, 1995; 41: 262-6.

Rincon J, Camarillo R, Rodriguez L, Ancillo V. Fractionation of used frying oil by supercritical CO2 and cosolvents. Industrial and Engineering Chemistry Research, 2010; 49:2410–2418.
[113] Volova T.G., Boyandin A.N., Vasiliev A.D., Karpov U.A., Pradnikova S.V., Mishukova O.V., Boyarskikh U.A., Filipenko M.L., Rudnev V.P., Xuan B.B., Dung V.V., Gitelson I.I., Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polymer Degradation and Stability, 2010; 95: 2350-2359.

[114] Wu Q, Huang H, Hu G, Chen J, Ho K P, Chen G Q. Production of poly-3-hydroxybutrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 2001; 80: 111-8.

[115] www.biocyc.com
[116] www.metacyc.com
[117] Xu Z, Dai X, Chai X. Effect of influent pH on biological denitrification using biodegradable PHBV/PLA blends as electron donor. Biochem Eng J, 2018; 131:24-30.
[118] Yellore, Desai. Production of poly-3-hydroxybutyrate from lactose and whey by Methylobacterium sp. ZP24. Letter Applied Microbiology, 1998; 26: 391-4.
[119] Young FK, Kastner JR, May SW. Microbial Production of poly--hydroxybutyric acid from d-xylene and lactose by Pseudomonas cepacia. Applied Environmental Microbiology, 1994; 60: 4195-8.
[120] Yu J, Si Y. A dynamic study and modeling of the formation of polyhydroxyalkanoates combined with treatment of high strength wastewater. Environmental Science and Technology, 2001; 35:3584-3588.
[121] Yu J, Stahl H. Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresource Technology, 2008; 99: 8042-8.
[122] Zhao D. Improving polyhydroxyalkanoate production by knocking out the genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei. Appl Microbiol Biotechno, 2013; 197:3027–3036.
[123] Sepe P., and Limited R.T. Thermal Analysis of Polymers, Rapra Technology Limited.
