RNA interference in glial cells for nerve injury treatment

Junquan Lin1, Seung Bin Jo2, Tae-Hyun Kim2,3, Hae-Won Kim2,3,4 and Sing Yian Chew1,5

Abstract
Drivers of RNA interference are potent for manipulating gene and protein levels, which enable the restoration of dysregulated mRNA expression that is commonly associated with injuries and diseases. This review summarizes the potential of targeting neuroglial cells, using RNA interference, to treat nerve injuries sustained in the central nervous system. In addition, the various methods of delivering these RNA interference effectors will be discussed.

Keywords
RNA interference, central nervous system, nerve injury, drug delivery

Received: 16 April 2020; accepted: 13 June 2020

Introduction
Elucidated by Fire et al. in 19981 and hailed as the ‘Breakthrough of the year’ in 2002,2 RNA interference (RNAi) can be employed as a potent mechanism for over-writing DNA-based regulation in cells, thereby enabling manipulation of cellular functions and behaviour. This was a huge revelation at that time because RNAs have always been thought to be inferior to DNAs and only function to convert genetic information into proteins.2 It turns out that RNAs are more than that and are capable of executing RNAi, which is a natural phenomenon that exists even across various kingdoms (in plants, fungi and animals)3 for regulating gene transcription and protein translation. In addition, the mechanism of RNAi is well-established and more information regarding this process can be found in these excellent reviews.3–6

Although its role has not been fully explored to date, it is clear that RNAi is rightfully an evolutionarily conserved defence mechanism against molecular invaders, such as viruses and transposable elements (TEs), where foreign double stranded RNA (dsRNA) were often introduced.3,7 More recently, it has also been recognized that RNAi plays an important role in development,8 such as neurogenesis,9,10 axonal outgrowth11–13 and myelination14 in the CNS. Given these huge responsibilities in ensuring the smooth progress of such crucial cellular processes, it is almost certain that RNAi is involved in maintaining cell/tissue homeostasis as well. Indeed, using RNAi microarray analysis, studies are revealing that microRNAs (miRNAs), naturally occurring components for regulating RNAi, are commonly dysregulated following nerve injuries6,15,16 and during disease progression.14 Therefore, with the goal of either enhancing tissue regeneration or reverting the dysregulated nucleic acid levels to normalcy, effectors of RNAi such as small interfering RNAs (siRNAs), miRNAs, short hairpin RNAs (shRNAs) and antisense oligonucleotides (ASOs) are useful as therapeutics for treating deficiencies in the CNS.

1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
2 Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
3 Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
4 UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
5 Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

Corresponding authors:
Sing Yian Chew, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459.
Email: sychew@ntu.edu.sg
Hae-Won Kim, Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea.
Email: kimhw@dku.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Traumatic nerve injuries often lead to prolonged disruption of the functional coherence of the tissue. This phenomenon, besides partly attributed to the lack of regeneration in neurons, also stems from the inhibitive status of the seemingly inconspicuous glial cells. Being the most abundant but underappreciated cell type in the CNS, these supportive cells are starting to rack up interests from researchers in recent years given their crucial roles in maintaining an optimal environment for neurons to function. Correspondingly, there are also increasing evidences that prudent regulation of their gene and protein expressions following traumatic injuries can promote functional recovery. This suggests that glial cells should also be considered as potential treatment candidates.

Here, we review currently known nucleic acid materials that are capable of eliciting RNAi, as well as methods for efficient therapeutic delivery. In addition, the possibility of targeting glial cells for treating CNS nerve injuries will also be discussed.

Drivers of RNAi

RNAi is fundamentally triggered by the presence of short sequences of RNA strands, which may be single or double stranded and contains around 19 to 29 nucleotides, within the cell. Currently, the predominantly known drivers of RNAi are siRNAs, miRNAs, shRNAs and ASOs. These nucleic acid sequences in their mature form can be easily obtained through commercial means and despite being so similar in their size, each of them have their own uniqueness and efficiency in achieving the intended outcome.

SiRNA

SiRNAs form the main arm of RNAi and are, in design, the most potent molecules to elicit a transient single gene target knockdown once it interacts with the cell’s machinery that is responsible for eliciting RNAi. Functional siRNAs were observed to be within 21 to 23 base pairs in length and can easily be synthesized in vitro by cleaving long dsRNAs into a pool of siRNAs using Dicer. The main mechanism of siRNA in leading to RNAi is gene regulation, where siRNA binds to perfectly complementary segments of messenger RNA (mRNA) to initiate degradation and prevent transcription from occurring.

MiRNA

MiRNAs, unlike siRNAs, exist endogenously. They are transcribed by RNA polymerase II and usually consist of 19 to 25 nucleotides. Contrary to siRNAs, miRNAs induce RNAi by mainly repressing translation, although occasional degradation of mRNA to prevent transcription can occur as well. The modulation of protein at the translational level in animals usually stems from their imperfect base-pairing with target mRNAs. However in plants, their miRNAs generally bind to mRNAs with near-perfect complementarity, which leads to target mRNA degradation instead, a mechanism that is similar to that displayed by siRNAs. In a sense, the difference in RNAi regulatory mechanisms between siRNAs and miRNAs is determined by the degree of complementarity during the binding to mRNAs. Yet, due to the slight mismatch of miRNAs towards mRNAs, miRNAs have no true target mRNAs and can, therefore, bind to hundreds or even thousands of them, resulting in massive amounts of translational regulation. Since their discovery, we now know that miRNAs govern physiology at an organism level, especially since they are involved in the entire range of cellular processes such as cell proliferation, differentiation, senescence and even apoptosis.

Plasmids encoding shRNA

The shRNAs are 19–22 base pairs in length, linked by a short loop of 4–11 nucleotides and drive RNAi similarly as siRNAs. A major difference between shRNAs and siRNAs is that shRNAs are encoded by plasmids, and long-term expression can be achieved if the plasmids are introduced into the nucleus through viral means. By incorporating inducible promotors in the transcription vector, the expression of shRNAs can also be turned on and off, allowing RNAi to be regulated as desired.

ASOs

ASOs are synthetic, single-stranded DNAs that are 8–50 nucleotides in length. They can bind to target mRNAs through complementary base-pairing to induce endonuclease-mediated transcript knockdown and subsequently, protein downregulation. The concept of ASOs was first described in 1978 by Stephenson and Zamecnik, and ASOs were the first generation of biomolecules that were used for disrupting protein expression, albeit in viruses. Further refinement of the synthesis procedures have since allowed potent modifications to be made on the nucleotides, conferring ASOs enhanced pharmacological properties, such as altering pre-mRNA splicing (gene regulation) and blocking mRNA translation (protein regulation). Certain modifications, such as the use of a phosphorothioate backbone as well as 2′-O-methyl (2′-OMe) and 2′-O-methoxy-ethyl (2′-MOE) oligonucleotides, can also extend their potency beyond functional effects to increase their circulation duration in serum, increase their resistance to nuclease degradation, increase their hybridization affinity to their target RNA and even reduce immunostimulatory activities.
The mechanism for eliciting RNAi is generally similar for these four classes of small nucleic acids. One notable difference between them lies in the extent of modifications before being functional. Figure depicts a well-established RNAi pathway by siRNAs and miRNAs. Adapted with permission from RC Wilson and Doudna in Annu Rev Biophys, 2013.\(^5\)

Delivery methods

While these nucleic acids are known to induce therapeutic effects, the benefits in using these molecules for treating pathologies in the CNS would not be attainable if these biomolecules are unable to reach their intended target environment, that is, the CNS and cytoplasm of cells. Fundamentally, as these nucleic acids possess numerous phosphodiester linkages between each nucleotides, the entire structure tends to be anionic.\(^4\) This indicates that electrostatic attraction is their main form of interaction with other biological materials. In addition, they are also hydrophilic and unable to penetrate effectively into tissue structures within the body. Delivery approaches can, therefore, be designed to either cater to or capitalize on their inherent properties for achieving a therapeutic outcome.

Systemic delivery

There are many strategies for delivering nucleic acids into the body. However, if the delivery region of interest is the CNS and the therapeutics are nucleic acids, then options are limited since the presence of the blood–brain barrier (BBB) and the blood–spinal cord barrier (BSCB) would reduce the efficacy of many conventional (intravenous, intramuscular, oral, transdermal) delivery methods substantially.

Surprisingly, gene/RNAi therapy is currently still in its infant stage of application in the clinics. After conducting a comprehensive search on the list of approved clinical trials related to RNAi within the CNS, it was found that there is currently no approved RNAi therapy for treating CNS-related injuries or diseases. Plasmid deliveries are mostly enabled through viral vectors and are only applicable for neurodegenerative diseases or tumours in the CNS. However, none of them have, to date, reached Phase 3 clinical trial (clinicaltrials.gov, identifier: NCT00876863, NCT00985517, NCT00004080, NCT00004041). To clarify, the physical limitations posed by the BBB and BSCB remain true only under physiologically healthy conditions. In the event of an injury in the CNS, depending on the injury intensity and site, their functional integrity may be compromised. Under these circumstances, there may exist a window for therapeutic interventions and the widely used intravenous delivery route may be the preferred method for delivering nucleic acids before the barriers regenerate. Alternatively, if surgery is unavoidable, then the nucleic acids can also be loaded into a biomaterial, most commonly hydrogels,\(^50\) and implanted into or placed near the injury site for localized and sustained delivery.

In the event when bypassing the BBB or BSCB is unfavourable, then nucleic acids can also be delivered directly into the CNS through intrathecal infusion. Although not for nerve injuries, this was the strategy employed to deliver...
ASOs in the first-ever approved treatment of spinal muscular atrophy (SMA). This method of delivery was also used previously in another completed Phase 1 trial for amyotrophic lateral sclerosis (ALS).

Besides intrathecal injection, another notable method for the delivery of therapeutics into the CNS is microbubble-assisted focused-ultrasound blood–brain barrier disruption (MB + FUS BBBD). By focusing ultrasonic waves onto acoustically responsive microbubbles injected into the blood vessels, acoustic cavitations are induced. This in turn leads to the transient disruption of the BBB, thereby, allowing intravenously administered drugs to enter the brain parenchyma efficiently. However, it should be noted that optimization of the parameters (microbubble composition, size distribution and concentration as well as ultrasound settings) is required to prevent thermomechanical-induced haemorrhaging and immunoactivation.

Tissue-localized delivery

Technically, nucleic acids are usually delivered non-virally in either an encapsulated, complexed or naked form. Encapsulation of these labile nucleic acids protects them from free nucleases and ensures that these drugs are not degraded before they can even be taken up by cells. On the contrary, complexed and naked delivery of nucleic acids will require chemical modifications in order to enhance their resistance to biodegradation. This is highlighted by a previous study which demonstrated that direct administration of both naked siRNAs and ASOs into the brain through intracerebroventricular application led only to the detection of ASOs but not siRNAs.

As nucleic acids complexed with a delivery vector are not spared from the harshness of the in vivo milieu, chemical modifications of the former are recommended as well to prevent its degradation. Based on current knowledge, the single most important consideration for the most basic cellular delivery is electrostatic interactions. As both nucleic acids and cellular membrane are similarly charged (anionic), it is not efficient for naked, unmodified nucleic acids to be taken up by cells naturally. Therefore, vectors that are suitable for non-viral delivery are usually cationic (Lipofectamine 2000 reagent, TransIT-TKO, polyethylenimine (PEI), etc.). Due to their high net positive charge, these delivery vectors can form complexes with nucleic acids through electrostatic attraction and still remain cationic, which facilitates cellular uptake by enabling the nucleic acid-vehicle complex to attach to the surface of cells for various vesicular transports (endocytosis and/or macropinocytosis) to occur.

In addition, the delivery of such complexes can be further augmented through scaffold-mediated approaches. In essence, a scaffolding system can be designed to function as a depot to house the nucleic acids, either naked or complexed with a cationic carrier, thereby ensuring their localization. By concentrating the nucleic acids in a confined region, cells that are present will have an increased chance of encountering them, which promotes their uptake and silencing efficiency. Accordingly, common strategies for retaining the naked and complexed nucleic acids within current conceivable scaffolds include electrostatic interaction, surface adsorption and also encapsulation.

Besides providing localized delivery, scaffolds can also be tuned to manipulate the extent and even the location of uptake within cells. This can be achieved by altering the physico-chemical properties (elasticity, topography, composition, etc.) of the substrate, which the cells are attached to, thereby regulating cytoskeletal remodelling and subsequently internalization pathways (Figure 2 and Table 1).

CNS and neuroglial cells

The CNS is the part of the nervous system that consists of the brain and spinal cord. The CNS tissue is comprised of two main cell types, namely, the neurons and the neuroglial cells and is enclosed by connective tissue membranes of meninges. The neuroglial cells further consist of astrocytes, microglial and oligodendrocytes (OL). Neurons are the most studied cell type in the nervous system since they have been discovered, in part due to the importance of their role and also probably due to the lack of appreciation of the other neuroglia cells. This notion is rapidly changing recently as more studies are revealing that the neuroglial cells are, in fact, equally as crucial as neurons in maintaining the functionality of the CNS. The highly branched neuroglial cells that are located between neurons have intimate functional relationships with the neurons, providing both mechanical and physiological support.

CNS diseases are a type of neurological disorders caused by various factors including trauma, infections, degeneration, autoimmune diseases and stroke, and can alter and degrade the function or structure of cells and tissues in the CNS. In particular, the age-dependent neurodegenerative diseases represent a major disease in human because the elderly population has increased in recent years. The major types of neurodegenerative diseases include Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD), ALS, multiple sclerosis (MS), Creutzfeldt–Jakob disease (CJD) and others. The pathological characteristics of these neurodegenerative diseases include aggregation and accumulation of specific proteins in the CNS that are associated with neuronal defect in the CNS. In addition, the gliosis that proliferates and activates neuroglial cells is a major hallmark of neurodegenerative diseases.

Among the neuroglial cells, astrocytes are morphologically heterogeneous cells that provide physical support for
Figure 2. Tissue-localized delivery of RNAi. (A) The area around the lateral ventricle of the rat brain 3 h after intracerebroventricular (i.c.v.) injection of fluorescence-labelled siRNA. The i.c.v. injection of 2 μg siRNA and cell detergent i-Fect with 1:4 w/v ratio (d) was only detected but others not (a: 50 μg siRNA dissolved in siRNA suspension buffer without detergent, b: 2 μg siRNA and the other cell detergent DOTAP (1:4 w/v), c: i-Fect only). Adapted with permission from C Senn et al.60 (B) MiRNAs stimulated extensive neurite ingrowth into fibre-hydrogel scaffolds 2 weeks after spinal cord injury. Neurotrophin-3 (NT-3) and/or miRNAs were treated with PCL fibre-collagen scaffold (a). Neurofilament protein-200 (NF-200) was significantly higher in miRNA-treated groups compared to control group (NT only) (b). Adapted with permission from N Zhang et al.54

Table 1. Table comparing the advantages and disadvantages of various nucleic acid delivery strategies. These comparisons provide different perspectives to the choice of delivery method.

Format of nucleic acid delivery	Advantages	Disadvantages
Encapsulated	1. Nucleic acids are protected from degradation by nucleases.75	
 2. Delivery can be relatively localized if nucleic acids are confined within a scaffold prior to their release.77
 3. Delivery through nanoparticles can potentially allow nucleic acids to reach specific cell/tissue targets. | 1. May not be uptaken into cells efficiently without a cationic delivery vehicle.
 2. Require proper context for implementation, e.g. not ideal to inject scaffold encapsulating nucleic acids for intravenous delivery.
 3. Nanoparticles encapsulating nucleic acids are not able to penetrate deep into tissue structures as compared to complexed/naked nucleic acids. |
| Complexed | 1. Can be taken up into cells much more efficiently due to the cationic vehicle.54 | 1. May get degraded easily without modifications to its nucleic acid strands.
 2. Due to the electrostatic interactions between the anionic nucleic acids and the cationic vehicle, aggregation may occur, which impedes delivery and uptake.
 3. Delivery unlikely to be localized. |
| Naked | 1. Due to its extremely small size, nucleic acids can potentially penetrate deep into tissues.78
 2. Nucleic acid strands can be modified such that administration of large doses will not elicit an immune response.47 | 1. Requires modification to the nucleic acid strands to enhance its resistance towards nucleases and uptake by cells.44
 2. Delivery unlikely to be localized. |
neurons and mediate the metabolite exchange between the neurons and the blood vessels, including glutamate re-uptake, ionic buffering and water balance. In addition, astrocytes play an important role in BBB maintenance, neuroinflammatory regulation and the repair of the CNS. In the case of AD, astrocytes become reactive as a result of generation and deposition of beta-amyloid (Aβ), which in turn leads to decreased glutamate uptake due to reduced expression of uptake transporters, altered energy metabolism and ion homeostasis, increased release of cytokines and inflammatory mediators and disruption of astrocytic networks. Recently, it was reported that neuroinflammation and ischaemia induced two different types of reactive astrocytes, A1 and A2. A1 astrocytes highly upregulate many classical inflammatory cascade genes to be destructive to synapses, whereas A2 astrocytes upregulate many neurotrophic factors. The A1 astrocyte that is induced by activated inflammatory microglia via the secretory cytokines, including IL-1a, TNF (tumour necrosis factor) and C1q, induces the death of neurons and OLs. Microglia, the resident immune cells of the CNS, have immunological surveillance and defence functions against invading micro-organisms, damaged cells and the debris of apoptotic cells. Microglia are derived from monocyte progenitor cells and their function is tightly regulated by the CNS microenvironment. Microglia express many pattern-recognition receptors (PRRs) and detect pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), including Toll-like receptors (TLRs) 4 and TLR1/2; their coreceptors; CD14; NOD-like receptors (NLRs); receptors for nucleic acids; C-type lectin receptors (CLRs), such as CLEC7A; and chemokine receptors, such as CX3CR1 and CXCR4. In addition, microglia express immune receptors such as TREM2 (triggering receptor expressed on myeloid cells 2) and multiple receptors for neurotransmitters and neuropeptides released by neurons. Therefore, the microglia are highly responsive to injury or neuroinflammatory disease and are activated under the chronic neurodegenerative diseases of the CNS such as AD, PD, MS and ALS. For example, proliferation and activation of microglia is a hallmark of AD and the impaired activities and altered microglial responses to Aβ increase the AD pathogenesis and can be harmful to neurons. The over-activated microglia can release cytotoxic factor and inflammatory cytokines. For this reason, inhibiting the activity of microglia appropriately may be an effective way for the treatment of neurodegenerative diseases.

OLs are responsible for the formation and maintenance of myelin sheath by neurotrophic support in the CNS. In order to myelinate properly, OLs have high metabolic activities with oxygen and adenosine triphosphate (ATP) consumption and Reactive oxygen species (ROS) or hydrogen peroxide formation as toxic by-products. Hence, oxidative damage is a common cause to OL disorder or loss under many neuropathological diseases like MS and ischaemia. The damage of OL is observed in neurodegenerative disorders of the CNS, especially chronic demyelinating diseases such as MS, spinal cord injury, AD, PD and ALS. For example, the toxic effects of Aβ accumulation, a major pathological process in AD, induced OL dysfunction and demyelination. In the case of MS, autoimmune system attacks mainly the myelin and OLs. The consequence of such an autoimmune attack is a local demyelination and subsequent axonal loss that is one of the pathological hallmarks of MS.

Consequently, the deprivation or dysfunction of these various neuroglial cell populations following traumatic nerve injuries and neurodegenerative diseases hinders recovery given the lack of support, as well as inhibitory effects posed by necrotic cellular debris. As such, the maintenance of spared glial cells followed by their quantitative and steady-state functional restoration is a potential area of focus for facilitating treatment.

Neuroglial cells as potential targets of RNAi for nerve injury treatment

RNAi in astrocytes

Astrocytes constitute the largest proportion of all cells in the mammalian CNS (around 20%–40%). They control neuronal activity and well-being through neurometabolic coupling and help to remove excess neurotransmitters, potassium and glutamate from the extracellular space. Following a traumatic nerve insult, astrocytes become activated or reactive, displaying functional and morphological changes that constitute astrogliosis. Over time, they may also migrate and align to form a glial scar that surrounds the injury site, physically and chemically inhibiting local axonal growth.

Studies involving RNAi, conducted in both in vitro and in vivo settings, are thus commonly aimed at circumventing the repercussions caused by this barrier of astrocytes. However, in order to achieve effective gene silencing, it is first imperative to establish a suitable working concentration of RNAi effectors; excessive amounts may be cytotoxic while the opposite may lack potency for an outcome.

Ki et al. conducted a comprehensive testing of the optimal concentration of siRNA for gene silencing in primary cultured rat astrocytes in vitro. Using Lipofectamine 2000 as a transfection reagent, they showed that a siRNA concentration of 20nM is sufficient to induce efficient uptake (~80%) and RNAi (silencing efficiency ~95%), while preserving the cells’ viability.

A similar concentration range was also used in another in vitro study by Li et al., where they investigated the relationship between ephrin-B2 and glial scar formation. Using a custom-made microfluidic platform containing chimeric ventral spinal cord 4.1 (VSC4.1) motoneurons, primary rat astrocytes and rat meningeal fibroblasts (MFb),
they demonstrated that the administration of 30 nM of siRNA against ephrin-B2 complexed with SuperFectinTMII reagent (silencing efficiency ~84%) was able to ameliorate the effects of transforming growth factor-β1 (TGF-β1)-induced astroglial-fibrotic scar formation and enhance axonal growth of VSC4.1 motoneurons (Figure 3).120

Laabs et al. targeted chondroitin polymerizing factor (ChPF), a key enzyme in the chondroitin sulphate proteoglycan (CSPG) biosynthetic pathway, in Neu7 cells (astrocytic cell line) using plasmids encoding shRNA through nucleofection (a method of transfecting nucleic acids into the cellular nucleus). Although the concentration of plasmids used was not stated, they were able to achieve up to 75% uptake efficiency and ~50% silencing efficiency, resulting in reduced CSPG glycosaminoglycans (GAGs) expression by Neu7 cells. The depletion of these inhibitory polysaccharides subsequently promoted axonal growth (Figure 3).121

In another recent work, Smith et al. delivered a modified form of siRNA, siRNA three-way junction (siRNA-3WJ), against astrocyte reactivity effectors, namely lipocalin 2 (Lcn2), glial fibrillary acidic protein (GFAP) and vimentin (Vim) into mice astrocytes using Lipofectamine RNAiMAX. Due to the enhanced potency of siRNA-3WJ, they reported ~87%, ~60% and ~65% gene knockdown of Lcn2, GFAP and Vim, respectively, in activated astrocytes using a dosage of only 5 nM. In addition, the uptake efficiency of the astrocytes, both quiescent and activated, was consistently more than 70%.122 Following this, they proceeded to administer 10 µg of siRNA-3WJ against Lcn2 in mice with a contused spinal cord intralesionally and were
Table 2. A summary of the RNAi-induced gene targets of various glial cells for treating spinal cord injury. Commercially available Lipofectamine is the preferred method for transfecting these cells.

Glial cell type	RNAi effector	Target	Intent	Transfection vehicle and delivery method	Dosage of effectors	Setting	Uptake efficiency	Silencing efficiency	Reference
Astrocytes	siRNA	GFP	Evaluate optimal transfection dosage	Lipofectamine 2000, bolus	5–80 nM	In vitro	~80%	~95%	Ki et al.119
	Ephrin-B2		Attenuate astrogial-fibrotic scar	SuperFectinTMII, bolus	30 nM	In vitro	–	~84%	Li et al.120
	OASIS		Inhibit astrogliosis	PTD-DRBD, intralesion injection	2 µL from 12.5 µM siRNA stock	In vivo	–	~50%	Takazawa et al.141
	GFAP, Vim	Reducing reactivity of astrocytes	Atelocollagen, intralesion injection, photomechanical waves	25 µL from 10 µM siRNA stock	In vivo	–	–	Ando et al.142	
siRNA-3WJ	Lcn2, GFAP, Vim	Ameliorate astrogial reactivity	Lipofectamine RNAiMAX, bolus	5 nM	In vitro	>70%	~87%, ~60%, ~65%, respectively	Smith et al.122	
	Lcn2	Ameliorate astrogial reactivity	Lipofectamine RNAiMAX, intralesion injection	10 µg	In vivo	–	~55%	Smith et al.122	
	Plasmid encoding shRNA	ChPF	Inhibit GAG chain polymerization	Nucleofection	–	In vitro	~75%	~50%	Laabs et al.121
	miRNA	miR-494 (CDK6)	Promote astrocyte proliferation	Naked, intrathecal infusion	20 nM	In vivo	–	~50%	Wang et al.143
		miR-125b (Sema4D)	Reduce glial scar	Pluronic gel, intralesion application	10 µM	In vivo	–	~50%	Diaz Quiroz et al.144
	ASO	CX43	Reduce glial scar activation	Pluronic gel, intralesion application	1–15 µM	In vivo	–	–	Cronin et al.145
Microglial	siRNA	CD73	Attenuate inflammation	Lipofectamine 2000, bolus	–	In vitro	–	~50%	Xu et al.146
		GFP	Evaluate optimal transfection dosage	Lipofectamine 2000, bolus	5–80 nM	In vitro	~80%	~40%	Ki et al.119
		MALAT1	Reduce inflammatory response	Lipofectamine 2000, bolus	1 µg	In vitro	–	~69%	Zhou et al.147
		Prdx1	Promote microglial proliferation	Lipofectamine 2000, bolus	–	In vitro	–	~66%	Huang et al.148
		RGMa	Reduce microglial inhibition of axonal growth	Lipofectamine 2000, bolus	–	In vitro	–	~60%	Kitayama et al.149
		USP4	Attenuate microglial activation	Lipofectamine 2000, bolus	100 nM	In vitro	–	~50%	Jang et al.150
		IRF5	Facilitate macrophage M1 to M2 polarization	Lipofectamine 2000, bolus	400 nM	In vitro	–	~50%	Li et al.129
		IRF5	Facilitate macrophage M1 to M2 polarization	Cationic liposome, intravenous injection	0.5 mg siRNA/kg of weight	In vivo	–	–	Li et al.129

(Continued)
Table 2. (Continued)

Glial cell type	RNAi effector	Target	Intent	Transfection vehicle and delivery method	Dosage of effectors	Setting	Uptake efficiency	Silencing efficiency	Reference
miRNA	STAT1	Reduce inflammatory response	In vivo-jetPEI, intraperitoneal injection	1 mg siRNA/kg of weight	In vivo	–	>80%	Wu et al. 151	
	miR-199b	Ameliorate inflammatory response	Lipofectamine 2000, bolus	–	In vitro	–	~60%	Zhou et al. 130	
	(IKKβ)								
	miR-124	Reduce microglial activation	Chitosan nanoparticles, bolus	5–50 nM	In vitro	–	~31%	Louw et al. 152	
	(TNF-α)								
	miR-124	Reduce microglial activation	Chitosan nanoparticles, intraspinal injection	5 ng/site, 3 sites in total	In vivo	–	~60%	Louw et al. 152	
	miR-30a-5p	Ameliorate inflammatory response	Lipofectamine 2000, bolus	–	In vitro	–	–	Fu et al. 153	
	(Neurod1)								
	miR-199b	Reduce microglial activation	Chitosan nanoparticles, intraspinal injection	35 ng/site, 3 sites in total	In vivo	–	~60%	Louw et al. 152	
	(IKKβ)								
ASO	miR-124	Reduce microglial activation	Lipoche 2000, bolus	50 nM	In vitro	~60%	~33% to ~78%	Pearse et al. 154	
miRNA	miR-199b	Ameliorate inflammatory response	Lipofectamine, GENEfect, polyethylenimine, bolus	5–200 nM	In vitro	79%–100%	~33% to ~78%	Pearse et al. 154	
	miR-219/338	Enhance OPCs' differentiation and maturation	TransIT-TKO, bolus and scaffold-mediated	50 nM and 4 µg	In vitro	–	~40% to ~70%	Diao et al. 140	
Oligodendrocyte	CX43	Reduce inflammation	Lipofectamine, bolus	50 nM	In vitro	~60%	–	Zhao et al. 139	
progenitor cells	Nogo-A	Promote OLGs' process branching	Lipofectamine 2000, bolus	50 nM	In vitro	~60%	–	Zhao et al. 139	

RNAi: RNA interference; GFAP: glial fibrillary acidic protein; GAG: glycosaminoglycans; ASO: antisense oligonucleotide; IRF5: interferon regulatory factor 5; TNF-α: tumour necrosis factor.
able to obtain ~55% reduction in Lcn2 gene expression. Consequently, the contused region showed mitigated levels of Lcn2 protein and was relatively void of cyst formation as compared to the sham control. More examples that are of Lcn2 protein and was relatively void of cyst formation as compared to the sham control.122 More examples that are relevant to this review have been compiled in Table 2 and readers are advised to refer to it for completeness. Collectively, all these studies suggest that the modulation of astrogliosis is indeed a potential strategy for enhancing nerve and functional recovery.

RNAi in microglia

Microglia are the resident innate immune cells within the CNS. Following a traumatic injury, microglia become activated and along with monocyte-derived macrophages found in blood, begin releasing ROS and pro-inflammatory cytokines to attract more immune cells to the injured region. Once there, these immune sentinels will mediate the confinement of the lesion, as well as facilitate debris clearance. Studies have also demonstrated that these activities are actually neuroprotective. While these events appeared to depict rosininess, it is, in reality, very volatile. Specifically, neuroprotective outcomes can easily be replaced with neurotoxic endings if chronic inflammation persists since microglial cells are phenotypically plastic and may react negatively when they are continually exposed to inflammatory signals. Yet, precisely because they are extremely plastic, efforts to encourage nerve repair are possible and usually consist of factors that are capable of skewing them towards a restorative phenotype.

For instance, Li et al. utilized siRNAs to target a transcription factor, interferon regulatory factor 5 (IRF5), known to upregulate genes produced by classically activated macrophages. Using 400 nM of siRNAs against IRF5, they demonstrated that transfected microglial and macrophages isolated from the injured spinal cord had significantly decreased expression of IRF5 (silencing efficiency ~50%) and corresponding amounts of pro-inflammatory cytokines, such as TNF-α, IL-6 and IL-12. Conversely, the anti-inflammatory cytokine IL-10 was enhanced. When these siRNAs against IRF5 were intravenously administered into mice with contusion injuries, similar trends with reduction and enhancement of pro-inflammatory (CD86) and anti-inflammatory (Arg1) microglial, respectively, were observed. Importantly, these observations were associative with limited spinal cord tissue damage and improved locomotor functional recovery (Figure 4).

In another study, Zhou et al. utilized miR-199b, which they established as a negative regulator of IKKβ, to modulate production of inflammatory cytokines. They demonstrated in vitro in primary rat microglial that overexpression of miR-199b through transfection of miR-199b mimic led to a corresponding suppression of IKKβ gene expression (silencing efficiency ~60%). As IKKβ positively regulates inflammatory cytokines such as TNF-α and IL-1β, the downregulation of IKKβ also resulted in the downregulation of these cytokines. Further administration of 100 nM of miR-199b through intrathecal injection in rats with a compression-induced spinal cord injury similarly attenuated the levels of IKKβ (silencing efficiency >50%) as well as TNF-α and IL-1β. Subsequent behaviour tests were also performed better by miR-199b-treated rats.

While it appears that, in these examples mentioned, along with many more in Table 2, the reduction of pro-inflammatory signals is correlated with enhanced functional outcomes, it is advisable to be most prudent when attempting to manipulate the immune cells’ secretome as a treatment option. Besides the contrasting observations in a very recent work suggesting that prescribed inflammation could promote recovery, it should be recognized that the response of the immune system is far more complex to influence than it seems given its spatiotemporal sensitivity.

RNAi in OLs

OLs are responsible for forming myelin sheath around the axons in the CNS, consequently enabling essential saltatory signal conduction. Following a traumatic nerve injury, OLs become necrotic and disintegrate, leaving behind highly inhibiting myelin components that hinder new myelin formation. Without these sheaths, energy-efficient conduction in axons are impeded, resulting in their eventual degeneration and functional impairment. By targeting OLs and their immature progenitor cells, oligodendrocyte progenitor cells (OPCs), the intended outcome is straightforward: restore the formation of myelin sheaths in the region. Interestingly, while searching the literature, it was observed that viral-based approaches appeared to be the preferred choice for enacting RNAi in OLs to enhance their myelinating capacity and subsequent extent of recovery from nerve injuries. Despite this trend, it does not imply that non-viral delivery methods are ineffective for transfecting OLs.

Zhao et al. demonstrated that Lipofectamine 2000 could be used to transfact primary OL culture with siRNAs against Nogo-A (50 nM) and achieve a ~60% gene knockdown efficiency. Besides that, they showed that the suppression of Nogo-A in OLs enhanced its process branching, which is a crucial event for initiating myelination.

In our lab, we employed a non-viral, scaffold-mediated strategy to transfect OLs. Specifically, we complexed a cocktail of miR-219 and miR-338 (2–4 µg or ~200–400 nM of miRs in total) with a commercial transfection vehicle, TransIT-TKO, and adsorbed these complexes onto polydopamine-coated electrospun fibrous scaffolds before allowing primary rat OPCs to be reverse transfected after they were seeded onto these scaffolds. Through this method of delivery, we were able to obtain ~40% to ~70% of gene silencing efficiency as well as observe the biological effects of miR-219/miR-338 in
enhancing OPC differentiation64,140 and OL myelination.50,64 Furthermore, when we loaded the miR-TKO complex into a three-dimensional (3D) hybrid scaffold containing electrospun fibres and collagen and implanted it into a spinally injured rat, we found that despite the inhibitive microenvironment, miR-219/miR-338 was able to preserve the viability of oligodendroglial lineage cells, promote the extent and rate of their differentiation, and also most importantly, augment their myelinating capacity (Figure 5 and Table 2).50

Authors' perspectives and conclusion

In our opinion, the discovery of RNAi and the effectors driving this process is both ground-breaking and exciting. Specifically, the effector nucleic acids are able to provide more utility as compared to normal conventional drugs. For instance, siRNAs can be used to target a single specific gene while miRNAs are often used for targeting multiple genes. On the contrary, shRNAs can be employed to prolong gene regulation with the added benefit of being switchable (on or off). Finally, ASOs can be modified to be used for naked and efficient delivery. However, there are also some downsides pertaining to the use of these nucleic acids for RNAi such as competition with endogenous RNAs,155 possible activation of innate immune responses156 and also accidental suppression of off-target genes.157 In addition, there is always a need to consider the method of intracellular delivery, which usually involves their complexation with a cationic delivery vehicle or encapsulation into nanoparticles.

In the context of spinal cord injury, we feel that miRNAs have the greatest potential for treatment purposes. Recent RNA sequencing of the rodent spinal cord158,159 revealed thousands of dysregulated genes post traumatic
Given the ability of miRNAs to regulate numerous genes concurrently, future studies can be conducted to identify the miRNAs required to re-regulate these dysregulated genes back to normalcy and perhaps to map the regulated pathways to the respective cell type.

RNAi holds great potential for treating injuries and diseases, which are frequently associated with dysregulated cellular gene and protein expressions. A major concern, as discussed in this review, is the method to efficiently deliver RNAi drivers into the traumatically injured CNS in order to regulate cellular gene and protein expressions towards an advantageous state, where functional recovery may be attained. Glial cells, being more abundant than neurons, are ideal targets for RNAi therapy. Besides being more amenable than neurons in accepting cationic carrier-complexed small nucleic acids, glial cells are also more proficient in shaping the injured/diseased milieu, through signalling molecules to enhance tissue regrowth. More importantly, besides the previously approved ASO-based therapeutics, with the recent (2018) FDA approval of Onpattro (patisiran), a siRNA-based therapeutic for the treatment of peripheral nerve disease (polyneuropathy) in...
adult patients, RNAi has become a clinically viable treatment option. Following this landmark acceptance, we can now anticipate that other potent and safe RNAi therapeutics will soon be approved as well. A greater implication of this approval, however, is the motivation for researchers to look towards RNAi as a preferred treatment choice. Specifically, as described, using RNAi to elicit changes in glial cells may provide an avenue to attain a more permissive environment for neuronal regeneration and/or locomotor recovery.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: SY Chew and J Lin would like to acknowledge partial funding support from the Singapore National Research Foundation under its National Medical Research Council Cooperative Basic Research Grant (NMRC-CBRG, NMRC/CBRG/0096/2015) and administered by the Singapore Ministry of Health’s National Medical Research Council; Ministry of Education Tier 1 grant (RG38/19). This research was supported in part by the National Research Foundation (NRF), Republic of Korea (2015K1A4A3A01064257, 2018R1A2B3003446).

ORCID iDs

Hae-Won Kim https://orcid.org/0000-0001-6400-6100
Sing Yian Chew https://orcid.org/0000-0002-6084-5967

References

1. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.
2. Couzin J. Small RNAs make big splash. Science 2002; 298: 2296–2297.
3. Farrell RE. Chapter 23 – RNAi: take a RISC – role the dicer. In: Farrell RE (ed.) RNA methodologies. 4th ed. San Diego, CA: Academic Press, 2010, pp. 539–560.
4. Kim D and Rossi J. RNAi mechanisms and applications. Biotechniques 2008; 44: 613–616.
5. Wilson RC and Doudna JA. Molecular mechanisms of RNA interference. Ann Rev Biophys 2013; 42: 217–239.
6. Nieto-Diaz M, Esteban F, Reigada D, et al. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 2014; 8: 53.
7. Obbard DJ, Gordon KJH, Buck AH, et al. The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 2009; 364: 99–115.
8. Carrington JC and Ambros V. Role of MicroRNAs in plant and animal development. Science 2003; 301: 336–338.
9. Jiao S, Liu Y, Yao Y, et al. miR-124 promotes proliferation and differentiation of neuronal stem cells through inactivating Notch pathway. Cell Biosci 2017; 7: 68.
10. Cheng L-C, Pastrana E, Tavazoie M, et al. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009; 12: 399–408.
11. Dajas-Bailador F, Bonev B, Garcez P, et al. microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nat Neurosci 2012; 15: 697–699.
12. Zhang Y, Ueno Y, Liu XS, et al. The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci 2013; 33: 6885–6894.
13. Vo N, Klein ME, Varlamova O, et al. cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A 2005; 102: 16426–16431.
14. Zhao X, He X, Han X, et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 2010; 65: 612–626.
15. Tiggeslaar S, Streijger F, Sinha S, et al. Serum microRNAs reflect injury severity in a large animal model of thoracic spinal cord injury. Sci Rep 2017; 7: 1376.
16. Madathil SK, Nelson PT, Saatman KE, et al. MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays 2011; 33: 21–26.
17. Yiu G and He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006; 7: 617–627.
18. Dana H, Chalbatani GM, Mahmoodzadeh H, et al. Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci 2017; 13: 48–57.
19. Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122: 553–563.
20. Olsen PH and Ambros V. The lin-4 regulatory RNA controls developmental timing in caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999; 216: 671–680.
21. Seggerson K, Tang L and Moss EG. Two genetic circuits repress the caenorhabditis elegans heterochronous gene lin-28 after translation initiation. Dev Biol 2002; 243: 215–225.
22. Rhoades MW, Reinhart BJ, Lim LP, et al. Prediction of plant MicroRNA targets. Cell 2002; 110: 513–520.
23. Llae C, Xie Z, Kasschau KD, et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002; 297: 2053–2056.
24. Giza DE, Vasilescu C and Calin GA. Key principles of miRNA involvement in human diseases. Discoveries 2014; 2: e34.
25. Lee RC, Feinbaum RL and Ambros V. The C. elegans heterochronous gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.
26. Bian S, Xu T-l and Sun T. Tuning the cell fate of neurons and glia by microRNAs. Curr Opin Neurobiol 2013; 23: 928–934.
27. Shatseva T, Lee DY, Deng Z, et al. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci 2011; 124: 2826–2836.
28. Visvanathan J, Lee S, Lee B, et al. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 2007; 21: 744–749.
29. Mondonizadeh M, Arefian E, Mosayebi G, et al. MicroRNA-124 regulates neuronal differentiation of...
mesenchymal stem cells by targeting Sp1 mRNA. J Cell Biochem 2015; 116: 943–953.

30. Marasa BS, Srikantan S, Martindale JL, et al. MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging 2010; 2: 333–343.

31. Bu H, Wedel S, Cavinato M, et al. MicroRNA regulation of oxidative stress-induced cellular senescence. Oxid Med Cell Longev 2017; 2017: 239869.

32. Williams J, Smith F, Kumar S, et al. Are microRNAs true sensors of ageing and cellular senescence? Ageing Res Rev 2017; 35: 350–363.

33. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potent human oncogene. Nature 2005; 435: 828–833.

34. Fawzy MS, Toraih EA, Ibrahim A, et al. Evaluation of miRNA-196a2 and apoptosis-related target genes: ANXA1, DFFA and PDCD4 expression in gastrointestinal cancer patients: a pilot study. PLoS ONE 2017; 12: e0187310.

35. Moore CB, Guthrie EH, Huang MT-H and Taxman DJ. Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol Biol 2010; 629: 141–158.

36. Herold MJ, van den Brandt J, Seibler J, et al. Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc Natl Acad Sci U S A 2008; 105: 18507.

37. Matsushita N, Matsushita S, Hirakawa S, et al. Doxycycline-dependent inducible and reversible RNA interference mediated by a single lentivirus vector. Biosci Biotechnol Biochem 2013; 77: 776–781.

38. Muntoni F and Wood MJA. Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 2011; 10: 621.

39. Opalinska JB and Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 2002; 1: 503–514.

40. Stephenson ML and Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 1978; 75: 285–288.

41. Rinaldi C and Wood MJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 2017; 14: 9.

42. Watanabe TA, Geary RS and Levin AA. Plasma protein clearance kinetics, biodistribution, and organ saturability of phosphorothioate Oligonucleotides in mice. Proc Natl Acad Sci U S A 2006; 16: 169–180.

43. Rifa'i A, Brysch W, Fadden K, et al. Clearance kinetics, biodistribution, and organ saturability of phosphorothioate oligodeoxynucleotides in mice. Am J Pathol 1996; 149: 717–725.

44. McKay RA, Miraglia LJ, Cummins LL, et al. Characterization of a potent and specific class of antisense oligonucleotide inhibitor of human protein kinase C-α expression. J Biol Chem 1999; 274: 1715–1722.

45. Freier SM and Altmann KH. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res 1997; 25: 4429–4443.

46. Lubini P, Zürcher W and Egli M. Stabilizing effects of the RNA 2'-substituent: crystal structure of an oligodeoxynucleotide duplex containing 2'-O-methylated adenosines. Chem Biol 1994; 1: 39–45.

47. Hamm S, Latz E, Hangel D, et al. Alternating 2′-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 2010; 215: 559–569.

48. Chery J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 2016; 4: 35–50.

49. Jacobson DR and Saleh OA. Counting the ions surrounding nucleic acids. Nucleic Acids Res 2016; 45: 1596–1605.

50. Milbreta U, Lin J, Pines C, et al. Scaffold-mediated sustained, non-viral delivery of mir-219/miR-338 promotes CNS remyelination. Mol Ther 2019; 27: 411–423.

51. Milbreta U, Nguyen LH, Diao H, et al. Three-dimensional nanofiber hybrid scaffold directs and enhances axonal regeneration after spinal cord injury. ACS Biomater Sci Eng 2016; 2: 1319–1329.

52. Guo W and Li J. Targeted siRNA delivery reduces nitric oxide mediated cell death after spinal cord injury. J Nanobiotechnology 2017; 15: 38.

53. Moreno PMD, Ferreira AR, Salvador D, et al. Hydrogel-assisted antisense LNA gappedrimer delivery for in situ gene silencing in spinal cord injury. Mol Ther Nucleic Acids 2018; 11: 393–406.

54. Zhang N, Milbreta U, Chin JS, et al. Biomimicking fiber scaffold as an effective in vitro and in vivo microRNA screening platform for directing tissue regeneration. Adv Sci 2019; 6: 1800808.

55. Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388: 3017–3026.

56. Miller T, Smith R, Pestronk A, et al. Results of a phase 1, double-blind, placebo-controlled, dose-escalation study of the safety, tolerability, and pharmacokinetics of ISIS 333611 administered intrathecally to patients with familial ALS due to SOD1 gene mutations (S25.001). Neurology 2012; 78: S25.001.

57. Song K-H, Harvey BK and Borden MA. State-of-the-art of microbubble-assisted blood-brain barrier disruption. Theranostics 2018; 8: 4393–4408.

58. HynynenK, McDannoldN, VykhodtsevaN, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220: 640–646.

59. Kovacs ZI, Kim S, Jikaria N, et al. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A 2017; 114: E75–e84.

60. Senn C, Hangartner C, Moes S, et al. Central administration of small interfering RNAs in rats: a comparison with antisense oligonucleotides. Eur J Pharmacol 2005; 522: 30–37.

61. Dalby B, Cates S, Harris A, et al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 2004; 33: 95–103.

62. Lasiecka ZM and Winkler B. Chapter 19 – studying endosomes in cultured neurons by live-cell imaging. In: Pfister KK (ed.) Methods in cell biology. San Diego, CA: Academic Press, 2016, pp. 389–408.

63. Akhtar S and Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007; 59: 164–182.
Nguyen LH, Gao M, Lin J, et al. Three-dimensional Catuogno S, Esposito CL, Condorelli G, et al. Nucleic Modaresi S, Pacelli S, Whitlow J, et al. Deciphering the Ong W, Lin J, Bechler ME, et al. Microfiber drug/gene tribes to cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U A 1995; 92: 7297–7301. Akhtar S and Benter IF. Nonviral delivery of synthetic disposited siRNAs in vivo. J Clin Invest 2007; 117: 3623–3632. Kim HS and Yoo HS. Matrix metalloproteinase-inspired suicidal treatments of diabetic ulcers with siRNA-decorated nanofibrous meshes. Gene Ther 2013; 20: 378–385. Nabzdýk CS, Chun MC, Oliver-Allen HS, et al. Gene silencing in human aortic smooth muscle cells induced by PEI-siRNA complexes released from dip-coated electrospun poly(ethylene terephthalate) grafts. Biomaterials 2014; 35: 3071–3079. Low WC, Rujitanaroj P-O, Lee D-K, et al. Nanofibrous scaffold-mediated REST knockdown to enhance neuronal differentiation of stem cells. Biomaterials 2013; 34: 3581–3590. Chooi WH, Ong W, Murray A, et al. Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells. Biomater Sci 2018; 6: 3019–3029. Diao HJ, Low WC, Lu QR, et al. Topographical effects on fiber-mediated microRNA delivery to control oligodendroglial precursor cells development. Biomaterials 2015; 70: 105–114. Rujitanaroj PO, Jao B, Yang J, et al. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater 2013; 9: 4513–4524. Rujitanaroj PO, Wang YC, Wang J, et al. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 2011; 32: 5915–5923. Modaressi S, Pacelli S, Whitlow J, et al. Deciphering the role of substrate stiffness in enhancing the internalization efficiency of plasmid DNA in stem cells using lipid-based nanocarriers. Nanoscale 2018; 10: 8947–8952. Missirlis D. The effect of substrate elasticity and actomyosin contractility on different forms of endocytosis. PLoS ONE 2014; 9: e96548. Fliervoet LAL, Engbersen FJF, Schiffelers RM, et al. Polymers and hydrogels for local nucleic acid delivery. J Mater Chem B 2018; 6: 5651–5670. Nguyen LH, Gao M, Lin J, et al. Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Scientific Reports 2017; 7: 42212. Catuogno S, Esposito CL, Condorelli G, et al. Nucleic acids delivering nucleic acids. Adv Drug Deliv Rev 2018; 134: 79–93. Valente LA, Begg LR and Filiano AJ. Updating neuroimmune targets in central nervous system dysfunction. Trends Pharmacol Sci 2019; 40: 482–494. Jäkel S and Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci 2017; 11: 24. Verkhratsky A, Ho MS, Zorec R, et al. The concept of neuroglia. Adv Exp Med Biol 2019; 1175: 1–13. Verkhratsky A. Physiology of neuronal-glial networking. Neurochem Int 2010; 57: 332–343. Stephenson J, Nutma E, van der Valk P, et al. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154: 204–219. Pardiek J and Sakiyama-Elbert S. Genome engineering for CNS injury and disease. Curr Opin Biotechnol 2018; 52: 89–94. Gitler AD, Dhillon P and Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 2017; 10: 499–502. Prinz M and Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci 2017; 20: 136–144. Meyer-Luehmann M and Prinz M. Myeloid cells in Alzheimer’s disease: culprits, victims or innocent bystanders? Trends Neurosci 2015; 38: 659–668. Burda JE and Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014; 81: 229–248. Stobart JL and Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 2013; 7: 38. Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science 2016; 353: 777–783. Assefa BT, Gebre AK and Altaye BM. Reactive astrocytes as drug target in Alzheimer’s disease. Biomed Res Int 2018; 2018: 4160247. Sofroniew MV. Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 2015; 16: 249–263. Acosta C, Anderson HD and Anderson CM. Astrocyte dysfunction in Alzheimer disease. J Neurosci Res 2017; 95: 2430–2447. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541: 481–487. Marin IA and Kipnis J. Central nervous system: (immunological) ivory tower or not? Neuropsychopharmacology 2017; 42: 28–35. Wolf SA, Boddeke HW and Kettenmann H. Microglia in physiology and disease. Ann Rev Physiol 2017; 79: 619–643. Colonna M and Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 2017; 35: 441–468. Ma Y, Wang J, Wang Y, et al. The biphasic function of microglia in ischemic stroke. Prog Neurobiol 2017; 157: 247–272. Perry VH and Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 2013; 35: 601–612. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 2013; 61: 71–90. Deczkowska A, Keren-Shaul H, Weiner A, et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 2018; 173: 1073–1081. Hansen DV, Hanson JE and Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 2018; 217: 459–472.
103. Xu L, He D and Bai Y. Microglia-mediated inflammation and neurodegenerative disease. *Mol Neurobiol* 2016; 53: 6709–6715.

104. Barateiro A, Brites D and Fernandes A. Oligodendrocyte development and myelination in neurodevelopment: molecular mechanisms in health and disease. *Curr Pharm Des* 2016; 22: 656–679.

105. Bergles DE and Richardson WD. Oligodendrocyte development and plasticity. *Cold Spring Harb Perspect Biol* 2015; 8: a020453.

106. Nave KA. Myelination and support of axonal integrity by glia. *Nature* 2010; 468: 244–252.

107. Bradl M and Lassmann H. Oligodendrocytes: biology and pathology. *Acta Neuropathol* 2010; 119: 37–53.

108. Peferoen L, Kipp M, van der Valk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system. *Immunology* 2014; 141: 302–313.

109. Cai Z and Xiao M. Oligodendrocytes and Alzheimer’s disease. *Int J Neurosci* 2016; 126: 97–104.

110. Tognatta R and Miller RH. Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. *Neuropharmacology* 2016; 110: 539–547.

111. Wang H-f, Liu X-k, Li R, et al. Effect of gel cells on remyelination after spinal cord injury. *Neural Regen Res* 2017; 12: 1724–1732.

112. Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. *Glia* 2014; 62: 1377–1391.

113. Nortley R and Attwell D. Control of brain energy supply by astrocytes. *Curr Opin Neurobiol* 2017; 47: 80–85.

114. Filosa JA, Bonev AD, Straub SV, et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. *Nat Neurosci* 2006; 9: 1397–1403.

115. Petr GT, Sun Y, Frederick NM, et al. Conditional deletion of the Glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. *J Neurosci* 2015; 35: 5187.

116. Sofroniew MV. Astroglialosis. *Cold Spring Harb Perspect Biol* 2015; 7: a020420.

117. Cregg JM, DePaul MA, Filous AR, et al. Functional regeneration beyond the glial scar. *Exp Neurol* 2014; 253: 197–207.

118. McKeon RJ, Schreiber RC, Rudge JS, et al. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. *J Neurosci* 1991; 11: 3398.

119. Ki KH, Park DY, Lee SH, et al. The optimal concentration of siRNA for gene silencing in primary cultured astrocytes and microglial cells of rats. *Korean J Anesthesiol* 2010; 59: 403–410.

120. Li Y, Chen Y, Tan L, et al. RNAi-mediated ephrin-B2 silencing attenuates astroglial-fibrotic scar formation and improves spinal cord axon growth. *CNS Neurosci Ther* 2017; 23: 779–789.

121. Laabs TL, Wang H, Katagiri Y, et al. Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. *J Neurosci* 2007; 27: 14494.

122. Smith JA, Braga A, Verheyen J, et al. RNA nanotherapeutics for the amelioration of astroglial reactivity. *Mol Ther Nucleic Acids* 2018; 10: 103–121.

123. Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. *Glia* 2010; 58: 253–263.

124. Kroner A and Rosas Almanza J. Role of microglia in spinal cord injury. *Neurosci Lett* 2019; 709: 134370.

125. Hines DJ, Hines RM, Mulligan SJ, et al. Microglia processes block the spread of damage in the brain and require functional chloride channels. *Glia* 2009; 57: 1610–1618.

126. Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, et al. Different approaches to modulation of microglia phenotypes after spinal cord injury. *Front Syst Neurosci* 2019; 13: 37.

127. Bellver-Landete V, Bretheau F, Mailhot B, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. *Nat Commun* 2019; 10: 518.

128. David S and Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. *Nat Rev Neurosci* 2011; 12: 388–399.

129. Li J, Liu Y, Xu H, et al. Nanoparticle-delivered IRF5 siRNA facilitates M1 to M2 transition, reduces demyelination and neurofilament loss, and promotes functional recovery after spinal cord injury in mice. *Inflammation* 2016; 39: 1704–1717.

130. Zhou H-J, Wang L-Q, Xu Q-S, et al. Downregulation of miR-199b promotes the acute spinal cord injury through IKKβ-NF-κB signaling pathway activating microglial cells. *Exp Cell Res* 2016; 349: 60–67.

131. Torres-Espin A, Forero J, Fenrich KK, et al. Eliciting inflammation enables successful rehabilitative training in chronic spinal cord injury. *Brain* 2018; 141: 1946–1962.

132. Almad A, Sahinkaya FR and McTigue DM. Oligodendrocyte fate after spinal cord injury. *Neurotherapeutics* 2011; 8: 262–273.

133. Miron VE, Kuhlmann T and Antel JP. Cells of the oligodendroglial lineage, myelination, and remyelination. *Biochim Biophys Acta* 2011; 1812: 184–193.

134. Franklin RJM and French-Constant C. Regenerating CNS myelin – from mechanisms to experimental medicines. *Nat Rev Neurosci* 2017; 18: 753–769.

135. Wu H-F, Cen J-S, Zhong Q, et al. The promotion of functional recovery and nerve regeneration after spinal cord injury by lentiviral vectors encoding Lingo-1 shRNA delivered by Pluronic F-127. *Biomaterials* 2013; 34: 1686–1700.

136. Zhang H-L, Wang J and Tang L. Sema4D knockdown in oligodendrocytes promotes functional recovery after spinal cord injury. *Cell Biochem Biophys* 2014; 68: 489–496.

137. Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. *Nat Neurosci* 2005; 8: 745–751.

138. Yu CG, Li Y, Raza K, et al. Calpain 1 knockdown improves tissue sparing and functional outcomes after spinal cord injury in rats. *J Neurotrauma* 2012; 30: 427–433.

139. Zhao X, Wu J, Kuang F, et al. Silencing of Nogo-A in rat oligodendrocyte cultures enhances process branching. *Neurosci Lett* 2011; 499: 32–36.
140. Diao HJ, Low WC, Milbreta U, et al. Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells. *J Control Release* 2015; 208: 85–92.

141. Takazawa A, Kamei N, Adachi N, et al. Endoplasmic reticulum stress transducer old astrocyte specifically induced substances contribute to astrogliosis after spinal cord injury. *Neural Regen Res* 2018; 13: 536–540.

142. Ando T, Sato S, Toyooka T, et al. Photomechanical wave-driven delivery of siRNAs targeting intermediate filament proteins promotes functional recovery after spinal cord injury in rats. *PLoS ONE* 2012; 7: e51744.

143. Wang Y, Sun JC, Wang HB, et al. Effects of microRNA-494 on astrocyte proliferation and synaptic remodeling in the spinal cord of a rat model of chronic compressive spinal cord injury by regulating the Nogo/Ngr signaling pathway. *Cell Physiol Biochem* 2018; 48: 919–933.

144. Diaz Quiroz JF, Tsai E, Coyle M, et al. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. *Dis Model Mech* 2014; 7: 601.

145. Cronin M, Anderson PN, Cook JE, et al. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. *Mol Cell Neurosci* 2008; 39: 152–160.

146. Xu S, Zhai W, Shao M, et al. Ecto-5'-nucleotidase (CD73) attenuates inflammation after spinal cord injury by promoting macrophages/microglia M2 polarization in mice. *J Neuroinflammation* 2018; 15: 155.

147. Zhou H-J, Wang L-Q, Wang D-B, et al. Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKβ/NF-κB signaling pathway. *Am J Physiol Cell Physiol* 2018; 315: C52–C61.

148. Huang S, Liu X, Zhang J, et al. Expression of peroxiredoxin 1 after traumatic spinal cord injury in rats. *Cell Mol Neurobiol* 2015; 35: 1217–1226.

149. Kitayama M, Ueno M, Itakura T, et al. Activated microglia inhibit axonal growth through RGMa. *PLoS ONE* 2011; 6: e25234.

150. Jiang X, Yu M, Ou Y, et al. Downregulation of USP4 promotes activation of microglia and subsequent neuronal inflammation in rat spinal cord after injury. *Neurochem Res* 2017; 42: 3245–3253.

151. Wu Y, Yang L, Mei X, et al. Selective inhibition of STAT1 reduces spinal cord injury in mice. *Neurosci Lett* 2014; 580: 7–11.

152. Louw AM, Kolar MK, Novikova LN, et al. Chitosan polypex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. *Nanomedicine* 2016; 12: 643–653.

153. Fu X, Shen Y, Wang W, et al. MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neford 1 through MAPK/ERK signalling. *Clin Exp Pharmacol Physiol* 2018; 45: 68–74.

154. Pearse DD, Pereira FC, Stolyarov A, et al. Inhibition of tumour necrosis factor-α by antisense targeting produces immunohistochemical and morphological changes in injury-activated microglia and macrophages. *Euro J Neurosci* 2004; 20: 3387–3396.

155. Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. *Nature* 2006; 441: 537–541.

156. Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. *Nat Med* 2005; 11: 263–270.

157. Jackson AL, Bartz SR, Schelter J, et al. Expression profiling reveals off-target gene regulation by RNAi. *Nat Biotechnol* 2003; 21: 635–637.

158. Li Y, Chen Y, Li X, et al. RNA sequencing screening of differentially expressed genes after spinal cord injury. *Neural Regen Res* 2019; 14: 1583–1593.

159. Poplawski GHD, Kawaguchi R, Van Niekerk E, et al. Injured adult neurons regress to an embryonic transcriptional growth state. *Nature* 2020; 581: 77–82.