Research Paper

Relationship Between Comorbidity, Chronic Diseases, ICU Hospitalization, and Death Rate in the Elderly With Coronavirus Infection

Hamed Akhavizadegan1,2, Mahmood Aghaziarati1, Mohammad Ghasem Roshanfekr Balalemi2, Zahra Arman Broujeni2, Fatemeh Taghizadeh1, Isa Akbarzadeh Arab1, *Majid Janani3

1. Department of Urology, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran.
2. Department of Research, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran.
3. Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran, Iran.

Extended Abstract

1. Introduction

The rapid spread of Coronavirus Disease 2019 (COVID-19) worldwide was considered a pandemic [1, 2]. Numerous deaths occurred globally due to this disease [3]. Although the COVID-19 is fatal in all ages, it is much severe in elderly patients [4, 5].

Aging is among the critical risk factors for increased disease severity and mortality in patients with COVID-19 [6].

Citation

Akhavizadegan H, Aghaziarati M, Roshanfekr Balalemi MG, Arman Broujeni Z, Taghizadeh F, Akbarzadeh Arab I, et al. [Investigating the Association Between Comorbidity With Chronic Diseases and ICU Hospitalization and Death Rate in the Elderly Infected With Coronavirus (Persian)]. Iranian Journal of Ageing. 2021; 16(1):86-101. https://doi.org/10.32598/sija.16.1.3161.1
Comorbidity of a condition with chronic diseases in the elderly is a common health problem worldwide [7], especially in countries with higher life expectancy [8, 9].

Triage, patient prioritization, and reducing COVID-19-induced mortality are major challenges; thus, numerous studies have focused on the risk factors associated with COVID-19 outcomes in patients; however, data in elderly patients remains limited. Therefore, this study was performed to describe the demographic and clinical characteristics and to investigate the relationship between comorbidity and COVID-19 outcomes in the elderly.

2. Materials and Methods

This retrospective cohort study was conducted in patients aged ≥60 years with COVID-19, hospitalized in Baharloo Hospital. All included patients were diagnosed with COVID-19 as per a positive Polymerase Chain Reaction (PCR) test, a typical view of COVID-19 on Computer Tomography (CT) scan, or radiography data.

The research participants’ demographic data, including age, gender, Body Mass Index (BMI), disease severity, comorbidity with chronic diseases, and outcome variables, including the duration of hospitalization, a history of Intensive Care Unit (ICU) hospitalization, and disease outcome (death/alive) were collected from the admission records.

An Independent Samples t-test was used to compare the mean scores of the quantitative data between the dead and surviving groups. Besides, the Chi-squared test was used to investigate the relationship between qualitative variables and the death or survival of the explored patients. Analysis of Variance (ANOVA) was also used to compare the mean values of the quantitative variables in groups with one, ≥2, and without comorbidities. The logistic regression model was used to investigate the relationship between comorbidity and outcomes. The Kaplan–Meier and Logrank tests were used to report survival and compare survival in the elderly with/without underlying disease. STATA was used for data analysis; the significance level of <0.05 was bilaterally considered in all analyzes.

3. Results

Overall, 522 elderly patients admitted to Baharloo Hospital were included in the present study. Approximately

Table 1. The demographic characteristics and symptoms of the elderly with COVID-19 at the time of hospitalization by underlying disease subgroups

Characteristic	Total (n=522)	Without Comorbidity (n = 152)	With One Underlying Disease (n=157)	With two or More Underlying Diseases (n=213)	P
Age	72.5±8.44	70.3±8.46	73.4±8.76	73.4±7.90	<0.001
BMI, kg/m²	26.5±4.21	26.5±3.74	25.5±4.5	27.0±4.13	0.067
Gender (male)	281 (53.8)	87 (57.2)	87 (55.4)	107 (50.2)	0.372
female	241 (46.2)	65 (42.8)	70 (44.6)	106 (49.8)	
Symptoms					
Fever	267 (51.1)	71 (46.7)	90 (57.3)	106 (49.8)	0.153
Chills	144 (27.6)	30 (19.7)	51 (32.5)	63 (29.6)	0.030
Myalgia	138 (26.4)	36 (23.7)	42 (26.8)	60 (28.2)	0.629
Cough	319 (61.1)	106 (69.7)	86 (54.8)	127 (59.6)	0.022
Dyspnea	363 (69.5)	94 (61.8)	111 (70.7)	158 (74.2)	0.038
Hospitalization duration (days)	6 (6.7)	4.5 (8)	6 (7)	7 (5.5)	0.007
ICU admission	147 (28.2)	26 (17.1)	46 (29.3)	75 (35.2)	<0.001
Death	121 (23.2)	24 (15.8)	39 (24.8)	58 (27.2)	0.032

*Median and interquartile range has been reported.
77% (n=422) of the hospitalized elderly survived the disease, and 23% died. The Mean±SD age of the study participants was 72.55±8.44 years, and about 54% (281) of them were males. The age of the elderly who expired due to COVID-19 (76.31±8.66 y) was older than that in the surviving elderly (71.41±8.04 y), i.e., statistically significant (P<0.001) (Table 1).

Furthermore, a significantly higher proportion of the expired elderly patients had cardiovascular diseases, compared to the rest (P=0.011). Additionally, the mortality rate in the elderly with one or more underlying diseases was significantly higher than that in the elderly without such conditions (24.8% vs. 15.8%; P=0.032) (Table 2).

Logistic regression analysis suggested that having cardiovascular disease increases the odds of death in the elderly by 1.07 (OR=1.07, 95%CI: 1.04-1.09); also, the odds of death in participants who had ≥2 underlying diseases was 1.69 (OR=1.69, 95%CI: 0.97-2.91, P=0.04) times higher than that in the elderly without such conditions, i.e., significant (Table 2). Moreover, the regression results for each outcome are presented in Table 2.

As shown in Figure 1, the survival rate of the patients without underlying diseases was higher than that in the patients with underlying diseases (Figure 1B). Besides, the frequencies of death and ICU hospitalization were directly related to the underlying diseases. Additionally, the elderly with a higher frequency of underlying diseases generated a higher mortality rate and ICU hospitalization (Figure 1C).

4. Discussion and Conclusion

This study described the demographic and clinical characteristics and investigated the association between underlying diseases and the severity of COVID-19 in the elderly. Numerous studies suggested that the mortality rate in the elderly with COVID-19 is much higher than that in the young population [4, 5, 10]. The obtained results also signified that approximately 23% of the elderly with COVID-19 expired, i.e., higher than the mortality rate in China, Korea, and Italy [4, 11].

Patients with COVID-19 usually die from various causes, including multiple organ failure, shock, respiratory failure, heart failure, arrhythmias, and renal failure [12, 13]. Previous studies indicated that a higher age can cause an inadequate response of the immune system to pathogens, the dysfunction of organs [14-17], and accelerated inflammation; eventually leading to multiple organ failure and death, and death in the ICU [18, 19].

Previous studies reported that comorbidity with other diseases may lead to a weakened immune system and

Table 2. The ORs of underlying diseases by each disease and the combination of underlying diseases to cause death or hospitalization

Comorbidity	Outcome: Death	Outcome: ICU Hospitalization		
	OR (95%CI)	P	OR (95%CI)	P
Cardiovascular disease	1.07 (1.04-1.09)	<0.001	1.64 (1.05-2.55)	0.027
Respiratory diseases	0.72 (0.24-1.55)	0.303	1.32 (0.61-2.84)	0.303
Renal Diseases	1.23 (0.48-3.13)	0.651	1.70 (0.71-4.05)	-
Hypertension	1.21 (0.79-3.13)	0.373	1.41 (0.95-2.10)	0.86
Diabetes	1.30 (0.85-2.01)	0.222	1.70 (1.13-2.56)	0.10
Stroke (brain)	0.90 (0.45-1.18)	0.780	2.13 (1.14-3.97)	0.017
Thyroid disease	0.89 (0.22-2.38)	0.852	1.48 (0.45-4.83)	0.516
Rheumatic diseases	2.14 (0.75-8.23)	0.136	1.26 (0.36-4.41)	0.709
Without underlying disease	1	-	1	-
With one underlying disease	1.46 (0.82-2.63)	0.199	1.68 (0.95-2.95)	0.071
With two or more underlying diseases	1.69 (0.97-2.91)	0.040	2.26 (1.34-3.81)	0.002
the dysfunction of the body; thus, this condition presents higher adverse impacts in the elderly patient, compared to the young patients with COVID-19 [16, 17, 20, 21]. Previous studies, specified cardiovascular disease, obstructive pulmonary disease, hypertension, and diabetes as the most critical risk factors for the severity and mortality of COVID-19 [22].

Sun et al. examined 3400 patients and reported similar results to ours [45]. Ruan et al. also explored 150 patients with COVID-19 and concluded that cardiovascular disease and hypertension were higher in patients who expired due to the disease, compared to the patients who were discharged (43% vs. 19%, P<0.001) [46]. A systematic review and meta-analysis study included 16 studies and 3994 patients; accordingly, the relevant data demonstrated that hypertension (OR=2.95), diabetes (OR=3.07), cardiovascular disease (OR=4.58), and chronic kidney disease (OR=5.32) generated a higher risk of mortality or undesirable outcomes in this group [47].

Finally, our results suggested that mortality is very high in the elderly with COVID-19. Chronic disease aggravates the prognosis in the elderly. Our results are expected to impact preventive interventions and take a more appropriate approach to prioritize older patients with risk factors, rather than adopting calendar age policies as a general indicator of risk. Furthermore, it seems that more care should be provided for the elderly with COVID-19 and underlying disease.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Tehran University of Medical Sciences (Code: IR.TUMS.VCR.REC.1399.148). All ethical principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them.
Funding

This study was performed using the recorded data of the patients admitted to Baharloo Hospital and supported by the Tehran University of Medical Sciences.

Authors’ contributions

Research of texts: Hamed Akhavizadegan and Mohammad Ghasem Roshanfekr Balalemi; Drafting of the article: Hamed Akhovizadegan, Mahmoud Aghaziarti and Zahra Boroujeni; Completion and correction of the draft article: Majid Janani and Fatemeh Taghizadeh; Data analysis: Issa Akbarzadeh Arab and Majid Janani; Editing, completion and final approval: All authors.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

We would like to thank the staff and management of Baharloo Hospital who cooperated with us in the implementation of this project.
بررسی ارتباط ابتلا به هنوزمان به بیماری‌های زمینه‌ای و درصد بستری در آی‌سی‌یو و مرگ در سالمندان مبتلا به کروناویروس جدید

سالمندی به معنای سن بالاتر از 19 سال است. بیماری‌های اپیدمیولوژیک کروناویروس 2019 ناشی از کووید-19 می‌باشد که به زبان سنتی نیز به آن کروناویروس نامیده می‌شود. بیماری کرونا ابتلا را به سالمندان می‌گردد که یک بار ابتلا شده بوده‌اند. در این مطالعه، بررسی ارتباط ابتلا به هنوزمان به بیماری‌های زمینه‌ای و درصد بستری در آی‌سی‌یو و مرگ در سالمندان مبتلا به کروناویروس جدید انجام شد.

اهداف
- بررسی ارتباط ابتلا به هنوزمان به بیماری‌های زمینه‌ای و درصد بستری در آی‌سی‌یو و مرگ در سالمندان مبتلا به کروناویروس جدید
- تعیین عوامل غیربیماری در ارتباط با مرگ در بیمارستان بهارلو، تهران، ایران
- تأثیر این عوامل بر مرگ در آی‌سی‌یو و درصد بستری در سالمندان بیمارستان بهارلو، تهران، ایران

کلمات کلیدی
- سالمندی
- کروناویروس
- ابتلا به هنوزمان
- درصد بستری
- مرگ

مقدمه
کروناویروس، عامل بیماری سندروم حاد تنفسی در سال 2019 در شرق ویتنام و چیین شناسایی شد. این بیماری در سراسر جهان به سرعت گسترش یافته و یک بیماری پاندمی در نظر گرفته شد. درمان بیماران کرونایی تا به حال فقط شامل بستری در بیمارستان می‌باشد. در این مطالعه، بررسی ارتباط ابتلا به هنوزمان به بیماری‌های زمینه‌ای و درصد بستری در آی‌سی‌یو و مرگ در سالمندان مبتلا به کروناویروس جدید در بیمارستان بهارلو، تهران، ایران انجام شد.
شماره 16 دوره 1400 بهار

ریسک‌های مهم افزایش شدت بیماری و کشندگی در بیماران مبتلا به کووید 19 است [1]. این احتمال زمانی که بیمار به زندگی بازگشته و بیماری را در طول تاریخ مراقبتی بهبود می‌دهد و درمان در مراکز درمانی ادامه می‌یابد. این مسئله برای جامعه بهداشت و درمان و درمان‌های مبتلا به کووید 19، بسیار مهم است.

مطالعات نشان داده است که بیش از نیمی از افراد مسن حداقل دو بیماری مزمن هستند که شامل فشار خون، دیابت، سکته مغزی، بیماری‌های قلبی عروقی و بیماری‌های سیستم تنفسی گزارش شده است که مبتلا به چند بیماری مزمن هستند، در مقایسه با بیماران با یک بیماری. پیشگیری از بیماری کروناویروس و کاهش مرگ و میر ناشی از بیماری در سالمندان اهمیت بسزایی دارد.

این مطالعه به صورت همگروهی گذشته نگر بر اساس داده‌های بیمارستان بهارلو در سال 1399 انجام شد. بیمارانی که علاوه بر علائم بیماری دارند و از این رو، این مطالعه به منظور توصیف خصوصیات جمعیتی، بالینی و بررسی همبستگی بیماری‌ها با پیش‌بینی شد.

روش‌های مطالعه

شرکت‌کنندگان

این مطالعه به صورت هم‌زمانی تمامی بیمارانی که با کووید 19 مبتلا شدند در بیمارستان بهارلو با توجه به شرایط درمانی و پیش‌بینی پیش‌بینی شدند. در این مطالعه، بیمارانی که علاوه بر اعتراضات و علائم وابسته به کووید 19 داشتند، بیمارانی که مبتلا به چند بیماری مزمن هستند، در مقایسه با بیماران با یک بیماری.

روش‌های مطالعه

رشت‌های مطالعه

مکان‌ها

بارش، سمن، شاخه‌های بینی، شست‌بازی، مکان‌های کم‌پرسن، از بیماری‌های ناشی از بیماری‌های مزمن، سهم‌یابی شدید، نشان دهنده این بود که بیمارانی که علاوه بر اعتراضات و علائم وابسته به کووید 19 داشتند، بیمارانی که مبتلا به چند بیماری مزمن هستند، در مقایسه با بیماران با یک بیماری.

تشخیص و جمع‌آوری داده‌ها

از میانگین و انحراف معیار برای توصیف داده‌های کمی و از فراوانی و درصد فراوانی برای توصیف داده‌های طبقه‌بندی استفاده شد. از آزمون مستقل برای مقایسه داده‌های کمی و از آزمون کای اسکوئر برای مقایسه داده‌های دسته‌بندی شده است. از آزمون تی مستقل برای مقایسه میانگین داده‌های کمی بین دو گروه و از آزمون آناویس برای مقایسه میانگین متغیرهای کیفی کشیده است. از آزمون آناویس برای مقایسه میانگین متغیرهای کیفی کشیده است. از آزمون آناویس برای مقایسه میانگین متغیرهای کیفی کشیده است.
کره پیشده که این تفاوت از نظر آماری معنی‌دار بود (P<0.001) (جدول شماره ۲).

همچنین درصد بالاتری از سالمندان فوت‌شده بیشتر بیماری‌های قلبی عروقی بودند که این تفاوت از نظر آماری معنی‌دار بود (P<0.001). از طرفی میزان هما freund سالمندی که مبتلا به یک یا چند بیماری زمینه‌ای بودند، نسبت به سالمندی که بیماری زمینه‌ای نداشتند، به طور معنی‌داری بیشتر بود (P<0.001) (جدول شماره ۲).

نتایج نشان داد سالمندی که بیماری زمینه‌ای داشتند بیشتر از سالمندی که بیماری زمینه‌ای نداشتند. بیماری‌های زمینه‌ای که کمتر از ۴۰ سالگی بیمارانی که فوت شده بودند نسبت به سالمندانی که زنده مانده بودند، به صورت معنی‌داری با یک برابر از مقدار آسیب‌پذیری بیماری که بیماری زمینه‌ای بود که زنده مانده بودند (P<0.001). در سالمندی که فوت کرده بودند نسبت به سالمندی که زنده مانده بودند، جویی این کمی که بیماری‌های زمینه‌ای بودند، به صورت معنی‌داری با یک برابر بیشتر بودند (P<0.001) (جدول شماره ۲). هرچند سرطان در سالمندی که زنده مانده بودند، بیشتر از سالمندی که فوت شده بود.

جدول ۱: اطلاعات میانگین‌های جامعه‌شناسی و هالاک سالمندی میان‌بینی که به‌کرای ۱۹ از بیمارستان پیرامون وجود داشت

مقدارها	فوت‌شده (۷۲/۱۸۷)	زنده‌مانده (۵۷/۱۷۱)
تعداد (نفر)	۴۳/۵۴۷	۴۳/۵۴۷
سن (سال)	میانگین ± انحراف معیار	میانگین ± انحراف معیار
سن بیماری‌های قلبی عروقی	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)
سن بیماری‌های آسیب‌پذیر	۵۰/۳۱ (±۸۶)	۴۲/۳۱ (±۸۶)

مقدار هالاک میانگین در بالاترین دسته (درصد)
جدول 1. بیماری‌های زمینه‌ای در سالمندان مبتلا به کووید ۱۹ به تفکیک مورد فوریتهد و رنده

متغیرها	مقدارها
میانگین سنی (سال)	۲۸.۱ ±۱۹
جنسیت	مرد
نفر	۱۰۴
زن	۱۰۴
کل افراد	۲۰۸
تعداد بیماری‌های زمینه‌ای	۱۲۱
تنها با یک بیماری زمینه‌ای	۸۸
تنها با یک بیماری زمینه‌ای و دیگری با یک بیماری زمینه‌ای	۳۳
به دو بیماری زمینه‌ای نیز دارند	۱۲
سرطان	بیمارانی که مبتلا به سرطان هستند.
نوع سرطان	بیمارانی که مبتلا به سرطان هستند.
میانگین وزن سازن (کیلوگرام بر متر مربع)	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷
میانگین کثیفی وزن سازن	۲۷.۹ ±۷.۷

سأ: نفرانقضایی
بیماری‌های زمینه‌ای در آی‌سی‌یو نشان داد که داشتن بیماری‌های قلبی عروقی از طرفی رگرسیون لجستیک برای پیامد بستری/ عدم بستری سالمندانی بود که بیماری زمینه‌ای نداشتند که این مقدار از نظر آماری معنی‌دار بود. همچنین به صورت کلی نسبت شانس برای پیامد بستری در آی‌سی‌یو 1/29 (95% CI=0/17-7/17) بود. سالمندانی که بیماری زمینه‌ای نداشتند، به طور معنی‌داری بالاتر از سالمندانی بود که بیماری زمینه‌ای داشتند که این مقدار از نظر آماری معنی‌دار بود (OR=2/24, 95% CI=1/21-3/67). در سالمندانی که بیماری زمینه‌ای نداشتند، نیاز به مراقبت‌های بیشتری در آی‌سی‌یو نشان داد. در جدول شماره 7، نتایج دریافتی در نشان‌دهنده پیش‌بینی بیماری زمینه‌ای در آی‌سی‌یو و در هر سالمند برای میانگین سالمندانی که بیماری زمینه‌ای داشتند و در سالمندانی که بیماری زمینه‌ای نداشتند به ترتیب 0/64 و 0/57 نشان داد که این مقدار از نظر آماری معنی‌دار بود (OR=1/37, 95% CI=0/30-1/45).
بهار 1400، دوره 16، شماره 1

بین بیماری‌های قلبی عروقی با مرگ ناشی از کووید و اختلال در عملکرد بدن شود. مطالعات پیشین نشان داده شده است که همچنین ابتلا به بیماری‌های قلبی عروقی به فشار خون نیز مبتلا هستند. فشار خون یکی از بیماری‌هایی است که پیش آگهی بیماری را به پیامد‌های منفی از جمله مرگ یا بستری در آی‌سی‌یو می‌شود.

با افزایش ریسک این بیماری در مبتلایان، باعث نقص در پاسخ سیستم ایمنی بدن به عوامل بیماری زا، اختلال در عملکرد بدن و بروز پیشنهادات نارسایی قلبی، آریتمی‌ها و شوک می‌شود. درصد مبتلا به کووید به نسبت بیماران جوان مبتلا به کووید بیشتر از بیماران سالمند بود. در این بیماران، به نظر می‌رسد یکی از مکانیسم‌های مهم نارسایی قلبی در آی‌سی‌یو به عنوان پروکسی از شدت بیماری نشان می‌دهد. ابتلا به کووید بیشتر از بیماری‌های مزمن دیابت، املاحا و ارتباط معنی‌داری با ابتلا به بیماری‌های قلبی عروقی وجود دارد.

ب شناخت درصد مبتلا به کووید، درصد مرگ و همچنین درصد بستری در مبتلایان کووید شاهد این نتایج است که نشان می‌دهد مقدار اکسیژن اشباع در بدو بستری سالمندان کم می‌باشد. همچنین نشان می‌دهد میزان سایه‌های سلامتی (جاگریزه) در بیماران کووید بیشتر از بیماران جوان مبتلا به کووید بوده است.

با توجه به اینکه در اکثر مطالعات، شایع ترین بیماری‌ها در بین بیماران سالمند مبتلا به کووید شامل می‌باشند. در این مطالعه نیز شایع ترین بیماری‌ها چنین بود. بیماران مبتلا به کووید ۱۹ با توجه به مطالعات اصلی، ابتلا به کووید، میزان درصد مرگ و همچنین درصد بستری با عوامل سیستماتیک مشخصی ارتباط مستقیم دارند. بنابراین نشان داده شده است که کمک به مطالعه کووید بیماران در درصد مرگ و بستری در آی‌سی‌یو اثرات طبیعی به دست می‌آورد، سالمندان بیماری‌هایی را با شدت بالایی داشته‌اند. از طرف دیگر، مطالعه‌های دیگر نشان داده است که این بیماری‌ها ممکن است با پیش‌زمینه‌های مختلفی در مبتلایان کووید نشان دهد. ابتلا به کووید بیشتر از بیماری‌های مزمن دیابت، املاحا و ارتباط معنی‌داری با ابتلا به بیماری‌های قلبی عروقی وجود دارد.
تاریخ: اوتام لری کیپینگ دایر در مک اس سالمند بود. فرد اکثر آن به نتیجه بیماری سیستم عروقی بستری شد. نتایج مطالعه ما با مطالعات پیشین هم‌رسید. نظر هم‌رسیدگی برای نتایج این مطالعه خوب بود.

تصویر 1. دموپار اصلی (A) کانال دایر در آن لری سالمند بود. فرد در مک اس بستری شد. نتایج مطالعه ما با مطالعات پیشین هم‌رسید. نظر هم‌رسیدگی برای نتایج این مطالعه خوب بود.
بودند، افزایش خطر مرگ مزمن در بیماران مبتلا به بیماری‌های قلبی عروقی را گزارش کرده‌اند. بیمارانی که احتمالاً توسط فیبر ال‌پی‌ای‌دی زخمی شده‌اند، افزایش خطر مرگ ومیر در بیماران مبتلا به بیماری‌های قلبی عروقی دارند. در پژوهش‌های قبلی، احتمال ارتباط بین عفونت‌های سیستمیک و خطر مرگ ومیر در بیماران مبتلا به بیماری‌های قلبی عروقی نشان داده شده است. آن‌ها نتیجه مشابهی را در شدت بیماری و مرگ به علت کووید نیز نشان داده‌اند. این نتایج نشان می‌دهند که بیماری‌های قلبی عروقی نیز در بیماران کووید-پозیتیو اثرات میدانی و شدیدی داشته و معنی‌سازی دارد.

یکی از محدودیت‌های این مطالعه این است که تعداد پیامدها (فوت‌ها و بستری‌های در آی‌سی‌یو) نسبتاً کم بود. هر چند این مطالعه توان کافی داشته که ارتباطی بین عفونت‌های سیستمیک و بیماری‌های قلبی عروقی را بیان کند، احتمال وجود متغیرهای دیگری علاوه بر سن در این رابطه وجود داشته باشد. از سوی دیگر، این مطالعه در صورت نگر انجام شده و از داده‌های بیمارستان برای جمع‌آوری اطلاعات استفاده شد. ناقص بودن برخی پرونده‌ها نیز میانگینی از محدودیت‌های این مطالعه بود. به علاوه، نویسندگان تمام تلاش خود را جهت تکمیل اطلاعات و پروسه‌گیری‌های نهایی داشته‌اند.

نتایج ما نشان داد مرگ ومیر در سالمندان مبتلا به کووید سطح بالاست. ابتلا به بیماری‌های مزمن، پیش آگهی بهترین سالمندان در زمانی که اوصلش صاحب آن را می‌گیرند. انتظار می‌رود نتایج ما تأثیری در مداخلات پیشگیرانه داشته باشد و به جای اتخاذ سیاست‌هایی که از سن ترجیح پذیر شده به نوعی کلی به نواحی خاص فیبر اورز استفاده می‌کنند، روش‌هایی که به وسیله فیبر اورز به شدت به عفونت‌های سیستمیک خاصی هستند، سبب بهبود شدید بیماری‌های قلبی عروقی می‌شود. از طرفی، ابتلا به بیماری‌های قلبی عروقی، همچنین به سالمان، می‌تواند باعث تغییر در سطح پلاک‌ها و کاهش در میزان اسیدونت‌ها در خون شود. با توجه به اینکه بیماری‌های قلبی عروقی از طرف دیگر، می‌تواند باعث نقص عملکرد سیستم ایمنی بدن و افزایش بیان گلوکز خون شود، این موضوع جدی است.

پیشنهاد می‌شود مطالعات بیشتری در این زمینه انجام شود. بنابر چنین پژوهش‌ها، می‌توان به توجه به اینکه تعداد پیامدها کم بوده و احتمال وجود متغیرهای دیگری را نداشتیم، در آینده، مطالعات با حجم نمونه بالاتر و به صورت طولانی‌تر اجرا شود. از طرف دیگر، مطالعات بیشتری در این زمینه انجام شود که شامل ارزیابی اثرات میکروب‌های مرتبط با بیماری‌های قلبی عروقی برای بیماران معیشت کننده شود.
Reference

[1] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020; 395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5]

[2] Worldometers. COVID-19 coronavirus pandemic. 2021 [Updated 2021 January 24]. Available from: https://www.worldometers.info/coronavirus/

[3] Cacinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Bio-Medica: Atenei Parmensis. 2020; 91(1):157-60. [doi: 10.23750/abm.v91i1.9397]

[4] Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. International Journal of Infectious Diseases. 2020; 101:138-48. [DOI:10.1016/j.ijid.2020.05.036.20089854]

[5] Kang SJ, Jung SI. Age-related morbidity and mortality among patients with COVID-19. Infection & Chemotherapy. 2020; 52(2):154-64. [DOI:10.3947/ic.2020.52.2.154] [PMID] [PMCID]

[6] Leung C. Risk factors for predicting mortality in elderly patients with COVID-19: A review of clinical data in China. Mechanisms of Ageing and Development. 2020; 188:111255. [DOI:10.1016/j.mad.2020.11.255] [PMID] [PMCID]

[7] Parhoan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: A systematic review and meta-analysis of observational studies. The Aging Male. 2020; 25(5):1416-24. [DOI:10.1080/10986015.2020.1890629]

[8] Hussain A, Mahawar K, Xia Z, Yang W, Shamsi E-H. Obesity and mortality of COVID-19. Meta-analysis. Obesity Research & Clinical Practice. 2020; 14(4):295-300. [DOI:10.1016/j.orcp.2020.07.002] [PMID] [PMCID]

[9] Pinto LC, Bertoluci MC. Type 2 diabetes as a major risk factor for COVID-19 severity: A meta-analysis. Archives of Endocrinology and Metabolism. 2020; 64(3):199-200. [DOI:10.20945/2359-5970000000256] [PMID]

[10] J Y I, Ma Z, Peppelenbosch MP, Pan Q. Potential association between COVID-19 mortality and health-care resource availability. The Lancet Global Health. 2020; 8(4):e480. [DOI:10.1016/S2214-109X(20)30068-1]

[11] Ou M, Zhu J, Ji P, Li H, Zhong Z, Li B, et al. Risk factors of severe cases with COVID-19: A meta-analysis. Epidemiology & Infection. 2020; 148:e175. [DOI:10.1017/S095026882000179X] [PMID] [PMCID]

[12] Rahman A, Sathi NJ. Risk factors of the severity of COVID-19: A meta-analysis. International Journal of Clinical Practice. 2020; e13916. [DOI:10.1111/iopc.13916]

[13] Lara PC, Macías-Verde D, Burgos-Burgos J. Age-induced NLRP3 inflammasome over-activation increases lethality of SARS-CoV-2 pneumonia in elderly patients. Aging and Disease. 2020; 11(4):756-62. [DOI:10.14336/AD.2020.0601] [PMID] [PMCID]

[14] Dorshkind K, Swain S. Age-associated declines in immune system development and function: causes, consequences, and reversal. Current Opinion in Immunology. 2009; 21(4):404-7. [DOI:10.1016/j.coi.2009.07.001] [PMID] [PMCID]

[15] Zhou X, Chen D, Wang L, Zhao Y, Wei L, Chen Z, et al. Low serum calcium: A new, important indicator of COVID-19 patients from mild/moderate to severe/critical. Bioscience Reports. 2020; 40(12):BSR20202690. [DOI:10.1042/BSR20202690] [PMID] [PMCID]

[16] Sun JK, Zhang WH, Zou L, Liu Y, Li J, Kan XH, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging. 2020; 12(12):11287-95. [DOI:10.18632/aging.103526] [PMID] [PMCID]

[17] Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging. 2020; 12(7):6049-57. [DOI:10.18632/aging.105000] [PMID] [PMCID]

[18] Fang X, Li S, Yu H, Wang P, Zhang Y, Chen Z, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: A systematic review and meta-analysis. Aging. 2020; 12(13):12493-503. [DOI:10.18632/aging.105379] [PMID] [PMCID]

[19] Norman GR, Stratford P, Regehr G. Methodological problems in the retrospective computation of responsiveness to change: The lesson of Cronbach. Journal of Clinical Epidemiology. 1997; 50(8):869-79. [DOI:10.1016/s0895-4356(97)80057-4]

[20] Wolff JL, Starfield B, Anderson G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Archives of Internal Medicine. 2002; 162(20):2269-76. [DOI:10.1001/archinte.162.20.2269] [PMID]

[21] Fortin M, Bravo G, Hudon C, Vanasse A, Lapointe L. Prevalence of multimorbidity among adults seen in family practice. The Annals of Family Medicine. 2005; 3(3):223-8. [DOI:10.1370/afm.227] [PMID] [PMCID]

[22] Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323(20):2052-9. [DOI:10.1001/jama.2020.6775]

[23] Fortin M, Lapointe L, Hudon C, Vanasse A. Multimorbidity is common to family practice: Is it commonly researched? Canadian Family Physician. 2005; 51(2):244-5. [PMCID]

[24] Gonzalez JS, Safren SA, Cagliero E, Weder DJ, Delahanty L, Wittenberg E, et al. Depression, self-care, and medication adherence in type 2 diabetes: Relationships across the full range of symptom severity. Diabetes Care. 2007; 30(9):2222-7. [DOI:10.2337/dc07-1044] [PMID] [PMCID]

[25] Salimi S, Hamlyn JM. COVID-19 and crosstalk with the hallmarks of aging. The Journals of Gerontology. Series A. 2020; 75(9):e34-41. [DOI:10.1093/gerona/glaa149] [PMID] [PMCID]

[26] Martin-Sánchez FJ, Del Toro E, Cardassay E, Carbó AV, Cuesta F, Vigara M, et al. Clinical presentation and outcome across age categories among patients with COVID-19 admitted to a Spanish Emergency Department. European Geriatric Medicine. 2020; 11(5):829-41. [DOI:10.1007/s41999-020-00359-2] [PMID] [PMCID]

[27] Lee JY, Kim HA, Huh K, Hyun M, Rhee J-Y, Jang S, et al. Risk factors for mortality and respiratory support in elderly patients hospitalized with COVID-19 in Korea. Journal of Korean Medical Science. 2020; 35(23):e223. [DOI:10.3346/jkms.2020.35.e223] [PMID] [PMCID]

[28] Atkins J, Masoli J, Delgado J, Pilling L, Kuo C, Kuchel G, et al. Preexisting comorbidities predicting severe COVID-19 in older adults in the UK biobank community cohort. The Journals of Gerontology. Series A. 2020; 75(11):2224-30. [DOI:10.1101/2020.05.06.2092709]
[29] Novel CPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China (Chinese). Zhonghua Liu Xing Bing Xue Za Zhi = Zhonghua Liu Xing Bing Xue Zazhi. 2020; 41(2):145-51. [DOI:10.46234/ccdw.2020.032]

[30] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet. 2020; 395(10223):507-13. [DOI:10.1016/S0140-6736(20)30211-7]

[31] Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science. 2013; 339(6116):166-72. [DOI:10.1126/science.1230720] [PMID] [PMCID]

[32] Fernández-Ruiz I. Immune system and cardiovascular disease. Challenges and opportunities. Science. 2013; 339(6116):166-72. [DOI:10.1126/science.1230720] [PMID] [PMCID]

[33] Tran DD, Groeneveld A, Van der Meulen J, Nauta J, Strack van Schijndel R, Thijs L. Age, chronic disease, sepsis, organ system failure, and mortality in a medical intensive care unit. Critical Care Medicine. 2020; 18(5):474-9. [DOI:10.1007/s00254-19005000-00392] [PMID] [PMCID]

[34] Sanyaloa A, Okorie C, Marinkovic A, Patidar R, Younis K, Desai P, et al. Comorbidity and its Impact on Patients with COVID-19. SN: Comprehensive Clinical Medicine. 2020; 2:1069-76. [DOI:10.32399/2020-00363-4] [PMID] [PMCID]

[35] Jaccarino G, Grassi G, Borghi C, Ferri C, Salvetti M, Volpe M, Age and multimorbidity predict death among COVID-19 patients: Results of the SARS-RAS study of the Italian Society of Hypertension. Hypertension. 2020; 76(2):366-72. [DOI:10.1161/HYPERTENSIONAHA.120.15324] [PMID] [PMCID]

[36] de Almeida-Pititto B, Duaib PM, Zaïdennegov L, Dantas JR, De Souza FD, Rodacki M, et al. Severity and mortality of COVID-19 in patients with diabetes, hypertension and cardiovascular disease: A meta-analysis. Diabetology & Metabolic Syndrome. 2020; 12:75. [DOI:10.1186/s13098-020-00586-4] [PMID] [PMCID]

[37] Fuchs L, Novack V, McLenann S, Celi LA, Baumfeld Y, Park S, et al. Trends in severity of illness on ICU admission and mortality among the elderly. PLoS One. 2014; 9(4):e93234. [DOI:10.1371/journal.pone.0093234] [PMID] [PMCID]

[38] Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thorax. 2020; 75(7):998-1000. [DOI:10.1136/thoraxjnl-2020-211008] [PMID] [PMCID]

[39] Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembris C, Cantarangkul V, et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. Journal of Thrombosis and Haemostasis. 2020; 18(7):1738-42. [DOI:10.1111/jth.14850] [PMID] [PMCID]

[40] Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoibah H, Singh IP, et al. Large vessel stroke as a presenting feature of Covid-19 in the young. New England Journal of Medicine. 2020; 382(20):e60. [DOI:10.1056/NEJMoa2009787] [PMID] [PMCID]

[41] Singh R, Suthi L, Singh V, Chaithiraphan S, Laathavorn P, Sy R, et al. Hypertension and stroke in Asia: Prevalence, control and strategies in developing countries for prevention. Journal of Human Hypertension. 2000; 14(10):749-63. [DOI:10.1038/sj.jhh.1001057] [PMID] [PMCID]

[42] Sun Y, Guan X, Jia L, Xing N, Cheng L, Liu B, et al. Independent and combined effects of hypertension and diabetes on clinical outcomes in patients with COVID-19: A retrospective cohort study of Huoshen Mountain Hospital and Guanggu Fangcang Shelter Hospital. The Journal of Clinical Hypertension. 2021; 23(2):218-31. [DOI:10.1111/jch.14146] [PMID] [PMCID]

[43] Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020; 46(5):846-8. [DOI:10.1002/ijmr.20991-x] [PMID] [PMCID]

[44] Nandy K, Salunke A, Pathak SK, Pandey A, Doctor C, Puj K, et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes & Metabolic Syndrome. 2020; 14(5):1017-25. [DOI:10.1016/j.dsx.2020.06.064] [PMID] [PMCID]

[45] Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology. 2020; 109(5):531-8. [DOI:10.1007/s00392-020-01626-9] [PMID] [PMCID]

[46] Kumar A, Arora A, Sharma P, Anikhindhi SA, Bansal N, Singh V, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2020; 14(4):535-45. [DOI:10.1016/j.dsx.2020.04.044] [PMID] [PMCID]

[47] Huang L, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19: A systematic review and meta-analysis. Critical Care Medicine. 2020; 12:75. [DOI:10.1007/s00134-020-01626-9] [PMID] [PMCID]

[48] Paladimos L, Chamorro-Pareja N, Karamanis D, Li W, Zavras V, et al. Comorbidity With Chronic Diseases and Covid-19 Outcomes in Elderly Patients. Iranian Journal of Ageing. 2021; 16(1):86-101.

Akhavaneghan A, et al. Comorbidity With Chronic Diseases and Covid-19 Outcomes in Elderly Patients. Iranian Journal of Ageing. 2021; 16(1):86-101.
[55] Ceriello A. Management of diabetes today: An exciting confusion. Diabetes Research and Clinical Practice. 2020; 162:108129. [DOI:10.1016/j.diabres.2020.108129] [PMID]

[56] Maddaloni E, Buzzetti R. Covid-19 and diabetes mellitus: Unveiling the interaction of two pandemics. Diabetes/Metabolism Research and Reviews. 2020; 36(7):e33213321. [DOI:10.1002/dmrr.3321] [PMCID]

[57] Gerrings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology & Medical Microbiology. 1999; 26(3-4):259-65. [DOI:10.1111/j.1574-695X.1999.tb01397.x] [PMID]

[58] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. The Lancet. 2020; 395(10229):1033-4. [DOI:10.1016/S0140-6736(20)30628-0]

[59] Tian W, Jiang W, Yao J, Nicholson CJ, Li RH, Sigurslid HH, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. Journal of Medical Virology. 2020; 92(10):1875-83. [DOI:10.1002/jmv.26050] [PMID] [PMCID]

[60] Wang X, Fang X, Cai Z, Wu X, Gao X, Min J, et al. Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: A systematic review and meta-analysis. Research. 2020; 2020:2402961. [DOI:10.34133/2020/2402961] [PMID] [PMCID]

[61] Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. The New England Journal of Medicine. 2013; 368(21):2004-13. [DOI:10.1056/NEJma1216063] [PMID]

[62] Madjid M, Vela D, Khalili-Tabrizi H, Casscells SW, Litovsky S. Systemic infections cause exaggerated local inflammation in atherosclerotic coronary arteries: Clues to the triggering effect of acute infections on acute coronary syndromes. Texas Heart Institute Journal. 2007; 34(1):11-8. [PMCID]

[63] Mauriello A, Sangiorgi G, Fratoni S, Palmieri G, Bonanno E, Anemona L, et al. Diffuse and active inflammation occurs in both vulnerable and stable plaques of the entire coronary tree: A histopathologic study of patients dying of acute myocardial infarction. Journal of the American College of Cardiology. 2005; 45(10):1585-93. [DOI:10.1016/j.jacc.2005.01.054] [PMID]

[64] Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Canadian Journal of Cardiology. 2018; 34(5):575-84. [DOI:10.1016/j.cjca.2017.12.005] [PMID] [PMCID]