1-FACtorizations of Cayley Graphs

A. Abdollahi

Abstract. In this note we prove that all connected Cayley graphs of every finite group $Q \times H$ are 1-factorizable, where Q is any non-trivial group of 2-power order and H is any group of odd order.

1. Introduction and Results

Let G be a non-trivial group, $S \subseteq G \setminus \{1\}$ and $S^{-1} = \{s^{-1} : s \in S\}$. The Cayley graph $\Gamma(S : G)$ of the group G with respect to the set S has the vertex set G and the edge set $\{\{g, sg\} : g \in G, s \in S \cup S^{-1}\}$.

A j-factor of a graph is a spanning subgraph which is regular of valence j. In particular, a 1-factor of a graph is a collection of edges such that each vertex is incident with exactly one edge. A 1-factorization of a regular graph is a partition of the edge set of the graph into disjoint 1-factors. A 1-factorization of a regular graph of valence v is equivalent to a coloring of the edges in v colors (coloring each 1-factor a different color). This enables us to use a very helpful result: Any simple, regular graph of valence v can be edge-colored in either v or $v + 1$ colors. This is a specific case of Vizing’s theorem (see [2, pp. 245-248]).

We study the conjecture that says all Cayley graphs $\Gamma(S : G)$ of groups G of even order are 1-factorizable whenever $G = \langle S \rangle$. There are some partial results on this conjecture obtained by Stong [1]. Here we prove

Theorem. Let H be a finite group of odd order and let Q be a finite group of order 2^k ($k > 0$). Then the Cayley graph $\Gamma(S : Q \times H)$ is 1-factorizable for all generating sets S of $Q \times H$.

As a corollary we prove that all connected Cayley graphs of every finite nilpotent group of even order are 1-factorizable which has been proved by

1991 Mathematics Subject Classification. 05C25; 05C70.

Key words and phrases. 1-factorizations; Cayley graphs; Nilpotent groups.

This research was in part supported by a grant from IPM (No. 85200032). The author thanks the Center of Excellence for Mathematics, University of Isfahan.
Stong in [1] Corollary 2.4.1] only for Cayley graphs on minimal generating sets.

2. Proof of the Theorem

We need the following lemma whose proof is more or less as Lemma 2.1 of [1] with some modifications.

Lemma 2.1. Let H be a finite group of odd order. Then the Cayley graph $\Gamma(S: \mathbb{Z}_2 \times H)$ is 1-factorizable, for any generating set S of $\mathbb{Z}_2 \times H$ containing exactly one element of even order.

Proof. Let a be the only element of S of even order. Then $a = zh$, where $z \in \mathbb{Z}_2$ and $h \in H$ and z of order 2. If $a^2 = 1$, then $h = 1$ and $S \setminus \{a\} \subseteq H$ and so $axa^{-1} = x$ for all $x \in S \cap H$. Thus, in this case, Theorem 2.3 of [1] completes the proof. Therefore we may assume that $a^2 \neq 1$. Let $\Gamma' = \Gamma(S \setminus \{a\}: \mathbb{Z}_2 \times H)$ and Γ_1 and Γ_2 be the induced subgraphs of Γ' on the sets H and zH, respectively. It can be easily seen that the map $x \mapsto zx$ is an graph isomorphism from Γ_1 to Γ_2. By Vizing’s theorem the edges in both Γ_1 and Γ_2 can be edges-colored in the same manner in $|S \setminus \{a\}| + 1$ colors (by “the same manner” we mean that the edge $\{h_1, h_2\}$ in Γ_1 has “the same” color as $\{zh_1, zh_2\}$ in Γ_2, and vice versa). Then all that remains to be done is to color the edges from H to zH, that is the following two ‘disjoint’ 1-factors of $\Gamma(S: \mathbb{Z}_2 \times H)$ (here we use $a^2 \neq 1$):

$$\{\{x, ax\} \mid x \in H\} \text{ and } \{\{x, a^{-1}x\} \mid x \in H\}.$$ (note that the edges of $\Gamma(S: \mathbb{Z}_2 \times H)$ are exactly the edges of Γ_1, Γ_2 and those in the above 1-factors). Now since both $x \in H$ and $zx \in zH$ have edges (in Γ_1 and Γ_2, respectively) of the same $|S \setminus \{a\}|$ colors to them, there are ‘two’ colors (note that here we again use $a^2 \neq 1$) that can be used to color 1-factors in (*). This completes the proof. \qed

Proof of the Theorem. Let $G = Q \times H$ and S be any generating set of G. We argue by induction on $|S|$. If $|S| = 1$, then G is a cyclic group of even order and Corollary 2.3.1 of [1] completes the proof. Now assume that $|S| > 1$ and for any non-trivial group Q_1 of 2-power order and subgroup H_1 of H the Cayley graph $\Gamma(S_1 : Q_1 \times H_1)$ is 1-factorizable for any generating set S_1 of $Q_1 \times H_1$ with $|S_1| < |S|$. Since the set of elements of odd order in G is the subgroup H and $G = \langle S \rangle$, S has at least one element a of even order.

First assume that S has another element distinct from a of even order. Consider the subgroup G_1 generated by $S \setminus \{a\}$ of G. Then $G_1 = Q_1 \times H_1$ for some subgroups $Q_1 \leq Q$ and $H_1 \leq H$ such that $Q_1 \neq 1$. Therefore the induction hypothesis implies that $\Gamma(S \setminus \{a\} : G_1)$ has a 1-factorization. Since $\Gamma(S \setminus \{a\}, G)$ consists of disjoint copies of $\Gamma(S \setminus \{a\} : G_1)$ which are 1-factorizable, $\Gamma(S \setminus \{a\}, G)$ has a 1-factorization. Now since the only element
of \(S \backslash (S \backslash \{a\}) \) has even order, Lemma 2.2 of [1] shows that \(\Gamma(S : G) \) is 1-factorizable.

Hence we may assume that \(a \) is the only element of \(S \) of even order. Since \(a = a_1 a_2 \) for some \(a_1 \in Q \) and \(a_2 \in H \), we have

\[
G = \langle S \rangle = \langle S \backslash \{a\}, a_1 a_2 \rangle = \langle a_1 \rangle \times \langle S \backslash \{a\}, a_2 \rangle.
\]

It follows that \(Q = \langle a_1 \rangle \). Consider the subgroup \(N = \langle a_2 \rangle \). Then \(N \) is a normal subgroup of \(G \) such that \(N \cap S = \emptyset \). It is easy to see that when \(s, t \in S \) with \(s \neq t \pm 1 \), neither \(st \) nor \(st^{-1} \) belongs to \(N \). Now by Lemma 2.4 of [1], it is enough to show that \(\Gamma(S N : G N) \) is 1-factorizable. Since \(N \cong Z_2 \times H \), it follows from Lemma [2.1] that \(\Gamma(S N : G N) \) is 1-factorizable. This completes the proof. \(\square \)

Corollary 2.2. If \(G \) is a finite nilpotent group of even order, then \(\Gamma(S : G) \) is 1-factorizable for all generating sets \(S \) of \(G \).

Proof. It follows from the Theorem and the fact that every finite nilpotent group is the direct product of its Sylow subgroups. \(\square \)

References

[1] R. A. Stong, *On 1-factorizability of Cayley graphs*, Journal of Combinatorial Theory, Series B, 39, 298-307 (1985).

[2] O. Ore, *The Four-color Problem*, Academic Press, New York, 1967.

Department of Mathematics, University of Isfahan, Isfahan 81746-71441, Iran; and Institute for Studies in Theoretical Physics and Mathematics (IPM); Tehran, Iran.

E-mail address: a.abdollahi@math.ui.ac.ir