Gas-liquid phase coexistence and crossover behavior of binary ionic fluids with screened Coulomb interactions: The effect of an interaction range

O. Patsahan

Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,
1 Svientsitskii St., 79011 Lviv, Ukraine

(Dated: February 11, 2014)

Abstract

We study the gas-liquid phase diagram and the crossover behavior of a simple model of ionic fluid: an equimolar binary mixture of equisized hard spheres interacting through screened Coulomb potentials which are repulsive between particles of the same species and attractive between particles of different species. Using our previous results, we obtain explicit expressions for the relevant coefficients of the effective φ^4 Ginzburg-Landau Hamiltonian in a one-loop approximation. Within the framework of this approximation, we calculate the critical parameters and gas-liquid coexistence curves for different values of the dimensionless inverse screening length z. The critical temperature scaled by the Yukawa potential contact value as well as the critical packing fraction rapidly decrease with an increase of the interaction range and then for $z < 0.05$ slowly approach the values found for a purely ionic model, i.e., a restricted primitive model (RPM). The both trends are qualitatively consistent with the results of Monte Carlo simulations. We find that gas-liquid coexistence region reduces with an increase of z and completely vanishes at $z \simeq 2.781$. This qualitatively agrees with the results of Monte Carlo simulations indicating a stable gas-liquid coexistence for $z \leq 4$. It is also shown that an increase in the interaction range from the one typical of simple fluids to the one typical of ionic fluids leads to a decrease of the crossover temperature. For $z \simeq 0.01$, the crossover temperature is the same as for the RPM. For $z \simeq 2.781$, our results indicate a tricritical point.
I. INTRODUCTION

The nature of phase separation and criticality in ionic fluids with the dominant Coulomb interactions (e.g., molten salts and electrolytes in solvents of low dielectric constant) has been an outstanding experimental and theoretical issue for many years. Electrostatic correlations are also known to play an important role in many other technologically relevant systems such as charge-colloidal suspensions, room-temperature ionic liquids and micellar solutions of ionic surfactants. Now, a generally accepted idea is that the gas-liquid and liquid-liquid critical points in ionic fluids belong to the universal class of a three-dimensional Ising model [1–3]. Nevertheless, the crossover from the mean-field-like behavior to the Ising model criticality when approaching the critical point remains a challenging problem for theory, simulations and experiments [2, 3].

The most commonly studied theoretical model of ionic fluids is a restricted primitive model (RPM), which consists of equal numbers of equisized positively and negatively charged hard spheres immersed in a structureless dielectric continuum. The RPM undergoes a gas-liquid-like phase transition at low temperature and low density [4–7]. Theoretical [8–10] and numerical [11–14] investigations of the gas-liquid criticality in the RPM provided strong evidence for an Ising universal class. However, an issue of the width of the critical region was not addressed in these works. On the other hand, the Ginzburg criterion [15–17] was used in Ref. [18–22] in order to study the crossover from the mean-field to asymptotic regime, but the obtained results failed to give a clear answer to the question of the extent of the crossover region in the model.

Quite recently, using the method of collective variables (CVs) [23–26], we have derived the Landau-Ginzburg (LG) Hamiltonian for the model of ionic fluids which includes, besides Coulomb interactions, short-range attractive interactions [27]. An important feature of the developed approach is that it enables us to obtain all the relevant coefficients, including the square-gradient term, within the framework of the same approximation. The Ginzburg temperature for the RPM, calculated using this theory turned out to be about 20 times smaller than for a one-component nonionic model. Furthermore, the results obtained for the RPM supplemented by short-range attractive interactions have shown that the Ginzburg temperature approaches the value found for the RPM when the strength of Coulomb interactions becomes sufficiently large. These results suggest the key role of Coulomb interactions in
the reduction of the crossover region. Nevertheless, the study of the effect of an interaction range on the Ginzburg temperature is needed in order to gain a better understanding of the crossover behavior in ionic fluids.

In the present work, we extend the theory to the binary ionic model with screened Coulomb interactions. Specifically, we consider a two-component system of particles labeled 1 and 2, such that the interaction potential between a particle of species α and one of the species β at a distance r apart is as follows:

$$u_{\alpha\beta}(r) = \begin{cases}
\infty, & r < \sigma \\
(-1)^{\alpha+\beta}K\exp\left(-z(r/\sigma - 1)\right) - \frac{1}{r/\sigma}, & r \geq \sigma
\end{cases} ,$$

(1)

where $\alpha, \beta = (1, 2)$. For $K > 0$, Eq. (1) describes a symmetrical mixture of hard spheres of the same diameter σ in which the like particles interact through a repulsive Yukawa potential for $r > \sigma$, and the unlike particles interact through the opposite attractive Yukawa potential for $r > \sigma$. We restrict our consideration to the case where the number densities of species 1 and 2 are the same, i.e., $\rho_1 = \rho_2 = \rho/2$. For $K = (q)^2/\epsilon$, the model (1) is called a Yukawa restricted primitive model (YRPM). In this case, $q_+ = -q_- = q$ is the charge magnitude and ϵ is dielectric constant of the medium. In the limit $z \to \infty$, the YRPM reduces to a hard sphere model whereas the RPM is recovered by taking the limit $z \to 0$. Thus, the YRPM can provide a basis for the study of the nature of phase and critical behavior in ionic fluids and in partially ionic fluids.

It is worth noting that the YRPM is often used to model a system of oppositely charged colloids [28, 31]. The effective (screened) colloid-colloid interactions in such a system are due to the presence of coions and counterions in the solvent. In this case, K and z take the form: $K/k_B T = Z^2\lambda_B/(1 + \kappa_D\sigma/2)^2/\sigma$ and $z = \kappa_D\sigma$, where $\kappa_D = \sqrt{8\pi\lambda_B\rho_s}$ is the inverse Debye screening length, $\lambda_B = e^2/\epsilon_\infty k_B T$ is the Bjerrum length, ρ_s is the salt concentration and ϵ_∞ is the dielectric constant of the solvent. In a colloid system, the range of interaction can be modified by changing the salt concentration.

Whereas the effect of an interaction range on the gas-liquid phase separation of a simple one-component fluid has been extensively studied (see Ref. [32] and references herein), as far as we know there are only a few works addressing this issue for the case of the YRPM [10, 30, 33, 34].

The evolution of the gas-liquid phase diagram of the YRPM as a function of the in-
teraction range was theoretically studied using the integral equation methods \cite{33, 34} and the hierarchical reference theory (HRT) \cite{10}. The results obtained from the generalized mean-spherical approximation (GMSA) show that both the critical density and the critical temperature increase above the corresponding values for the RPM when \(z \) increases \cite{33}. Moreover, the GMSA predicts a nonmonotonous behavior of the critical temperature as a function of \(z \): the critical temperature attains a maximum at \(z \approx 4 \). In Ref. \cite{33}, the attention was focused on several values of \(z \), \(z = 0, 1.5075, 3, 4, 5 \) and 6 and the gas-liquid coexistence was found for all the listed values. The highest value for which the gas-liquid coexistence was found within the framework of integral equation methods is \(z = 25 \) with the MSA \cite{34}. In Ref. \cite{10} the main emphasis is made on the critical behavior of the model.

Simulations predict a rich phase diagram involving a gas-liquid phase separation as well as several crystalline phases, which is in agreement with experimental confocal microscopy data for charge-stabilized colloidal suspensions \cite{28–31}. These studies indicate a sensitivity of the phase diagram of the YRPM to the variation of \(z \). Unlike theoretical predictions \cite{33, 34}, it is found that the gas-liquid separation is not stable with respect to gas-solid coexistence for \(z > 4 \) \cite{30}.

The purpose of the present paper is to study the effects of the interaction range on the gas-liquid phase diagram and the Ginzburg temperature of the YRPM. To this end, following Ref. \cite{27}, we find analytical expressions for the free energy as well as for all the relevant coefficients of the LG Hamiltonian in a one-loop approximation. Based on these expressions, first we calculate the gas-liquid critical parameters, spinodals and coexistence curves of the model for \(0.001 \leq z \leq 2.781 \). Remarkably, there is no gas-liquid critical point for \(z \geq 2.782 \) in the approximation considered. Our discussion also involves an analysis of the dependence of the coefficients of the effective Hamiltonian on the interaction range. Applying the Ginzburg criterion, we find that the reduced Ginzburg temperature decreases with an increase of the interaction range approaching the RPM value for \(z \simeq 0.01 \). The present analysis also indicates the presence of a tricritical point at \(z \simeq 2.781 \).

The paper is organized as follows. A brief description of the formalism is given in Sec. 2. The results for the gas-liquid phase diagram and the critical parameters are presented in Sec. 3. In Sec 4 we discuss the effect of the interaction range on the crossover behavior of the YRPM. Concluding remarks are made in Sec. 5.
II. THEORY

A. Functional representation of the grand partition function

We start with the YRPM and present the interaction potential (1) in the form:

$$u_{\alpha\beta}(r) = \phi^{\text{HS}}(r) + \phi_{\alpha\beta}^Y(r),$$

where $\phi^{\text{HS}}(r)$ is the interaction potential between the two hard spheres of diameter σ. Thermodynamic and structural properties of the system interacting through the potential $\phi^{\text{HS}}(r)$ are assumed to be known. Therefore, the one-component hard-sphere model is regarded as the reference system. $\phi_{\alpha\beta}^Y(r)$ are the screened Coulomb potentials. Fig. 1 shows the shape of the interaction potentials $\phi_{\alpha\beta}^Y(r)/K$ for different values of the inverse screening length.

![Interaction potentials $\phi_{\alpha\beta}^Y(r)/K$ for different values of the inverse screening length z.](image)

The model under consideration is at equilibrium in the grand canonical ensemble, $\beta = (k_B T)^{-1}$ is the inverse temperature, $\nu_\alpha = \beta \mu_\alpha$ ($\nu_\alpha = \nu_\beta = \nu$) is the dimensionless chemical potential of the αth species. Using the CV method we present the grand partition function (GPF) of the model in the form of a functional integral [26, 27]:

$$\Xi[\nu_\alpha] = \Xi^{\text{HS}} \exp(\Delta \nu N \langle N \rangle_{\text{HS}}) \int (d\rho)(d\omega) \exp\left(\Delta \nu N \rho_0 N - \frac{\beta}{2V} \sum_k \bar{\phi}^Y(k) \rho_{k,C} \rho_{-k,C} \right.$$

$$+ i \sum_k (\omega_{k,N} \rho_{k,N} + \omega_{k,C} \rho_{k,C}) + \sum_{n \geq 2} \frac{(-i)^n}{n!} \sum_{i_1 \geq 0}^{n} \sum_{k_1, \ldots, k_n} M^{(i_n)}_{i_1}(k_1, \ldots, k_n)$$

$$\times \omega_{k_1, C} \ldots \omega_{k_{n+1}, C} \omega_{k_{n+2}, N} \ldots \omega_{k_n, N} \delta_{k_1 + \ldots + k_n}).$$

(3)
Here, the following notations are introduced. Ξ_{HS} is the GPF of the one-component hard-sphere model with the dimensional chemical potential ν_{HS}. $\Delta \nu_N = \bar{\nu} - \nu_{HS}$ where

$$\bar{\nu} = \nu_{\alpha} + \frac{\beta}{2V} \sum_k \tilde{\phi}^Y(k), \quad \alpha = (1, 2).$$

Hereafter, the subscript HS refers to the hard-sphere system.

$\tilde{\phi}^Y(k)$ is the Fourier transform of the repulsive potential $\phi^Y_{\alpha\alpha}(r) = \phi^Y(r)$, where $\phi^Y(r) = K\sigma \exp[-z(r/\sigma - 1)]/r$. Here we use the Weeks-Chandler-Andersen regularization of the potential $\phi^Y(r)$ inside the hard core [35]. In this case, $\tilde{\phi}^Y(k)$ has the form

$$\tilde{\phi}^Y(x) = \frac{4\pi K\sigma^3}{x^3(z^2 + x^2)} \left\{ [z^2 + x^2(1 + z)] \sin(x) - xz^2 \cos(x) \right\},$$

where $x = k\sigma$.

$\rho_{k,N}$ and $\rho_{k,C}$ are the CVs which describe fluctuations of the total number density and the relative number density (or charge density), respectively:

$$\rho_{k,N} = \rho_{k,+} + \rho_{k,-}, \quad \rho_{k,C} = \rho_{k,+} - \rho_{k,-}.$$

CV $\rho_{k,\alpha} = \rho^c_{k,\alpha} - i\rho^s_{k,\alpha}$ describes the value of the k-th fluctuation mode of the number density of the αth species, the indices c and s denote real and imaginary parts of $\rho_{k,\alpha}$; CVs ω_N and ω_C are conjugate to ρ_N and ρ_C, respectively. $(d\rho)$ and $(d\omega)$ denote volume elements of the CV phase space:

$$(d\rho) = \prod_{A=N,C} d\rho_{0,A} \prod_{k \neq 0} d\rho^c_{k,A} d\rho^s_{k,A}, \quad (d\omega) = \prod_{A=N,C} d\omega_{0,A} \prod_{k \neq 0} d\omega^c_{k,A} d\omega^s_{k,A}$$

and the product over k is performed in the upper semi-space ($\rho_{-k,A} = \rho^c_{k,A}$, $\omega_{-k,A} = \omega^s_{k,A}$).

The nth cumulant $M_n^{(i_n)}$ is a linear combination of the initial cumulants $M_{\alpha_1...\alpha_n}$ which, in turn, coincide with the Fourier transforms of the n-particle connected correlation functions [36] of the hard-sphere system. We have the following recurrence relations for the cumulants $M_n^{(i_n)}$ [26]:

$$M_n^{(0)} = \tilde{G}_{n,HS}, \quad M_n^{(1)} = 0, \quad M_n^{(2)} = \tilde{G}_{n-1,HS}, \quad M_n^{(3)} = 0, \quad M_n^{(4)} = 3\tilde{G}_{n-2,HS} - 2\tilde{G}_{n-1,HS},$$

where $\tilde{G}_{n,HS}$ is the Fourier transform of the n-particle connected correlation function of a one-component hard-sphere system. In general, the dependence of $\tilde{G}_{n,HS}$ on the wave
numbers k_i is very complicated. Hereafter we use the following approximation for $\tilde{G}_{n,\text{HS}}$

$$\tilde{G}_{2,\text{HS}}(k) \simeq \tilde{G}_{2,\text{HS}}(0) + \frac{k^2}{2} \tilde{G}^{(2)}_{2,\text{HS}},$$

$$\tilde{G}_{n,\text{HS}}(k_1, \ldots, k_n) \simeq \tilde{G}_{n,\text{HS}}(0, \ldots) \quad \text{for} \quad n \geq 3,$$

where the superscript (2) denotes the second-order derivative with respect to the wave vector.

B. Gaussian approximation

In the Gaussian approximation, which corresponds to taking only the terms with $n \leq 2$ into account in the cumulant expansion, the integration in Eq. (3) leads to the following expression for the logarithm of the GPF

$$\ln \Xi_G = \ln \Xi_{\text{HS}} - \frac{1}{2} \sum_k \ln \left[1 + \frac{\beta \tilde{\phi}^Y(k)}{V} \tilde{\phi}^{(2)}_2 \right].$$

After the Legendre transform of $\ln \Xi_G$, one gets the Helmholtz free energy in the one-loop approximation

$$\beta f_{\text{RPA}} = \frac{\beta F_{\text{RPA}}}{V} = \beta f_{\text{HS}} - \frac{\beta \rho}{2V} \sum_k \tilde{\phi}^Y(k) + \frac{1}{2V} \sum_k \ln \left[1 + \beta \rho \tilde{\phi}^Y(k) \right], \quad (6)$$

where f_{RPA} denotes the Helmholtz free energy density. The one-loop free energy (6) coincides with the free energy in the random phase approximation (RPA) of the theory of liquids [37]. In the limit of point charge particles (i.e., $z = 0$ and $\sigma = 0$), Eq. (6) yields the Debye-Hückel limiting law.

From Eq. (6), one can find the chemical potential ν in the RPA ($\nu = \partial(-\beta f_{\text{RPA}}/\partial \rho)$) and on its basis obtain the gas-liquid phase diagram.

C. Effective Ginzburg-Landau Hamiltonian

We consider the model (2) near the gas-liquid critical point. In this case, the phase space of CVs $\rho_{k,N}$ contains CV $\rho_{0,N}$ related to the order parameter. In order to obtain the effective Hamiltonian in terms of $\rho_{k,N}$, one should integrate out CVs $\rho_{k,C}$, $\omega_{k,C}$, and $\omega_{k,N}$. A detailed derivation of this type of Hamiltonian is given in Ref. [27]. Using the results of Ref. [27], we can write an expression for the effective φ^4 LG Hamiltonian of the model under
consideration

\[H_{eff} = a_{1,0} \rho_{0,N} + \frac{1}{2! \langle N \rangle} \sum_k \left(a_{2,0} + k^2 a_{2,2} \right) \rho_{k,N} \rho_{-k,N} + \frac{1}{3! \langle N \rangle^2} \sum_{k_1,k_2} a_{3,0} \]

\[\times \rho_{k_1,N} \rho_{k_2,N} \rho_{-k_1-k_2,N} + \frac{1}{4! \langle N \rangle^3} \sum_{k_1,k_2,k_3} a_{4,0} \rho_{k_1,N} \rho_{k_2,N} \rho_{k_3,N} \rho_{-k_1-k_2-k_3,N} \]

(7)

with the coefficients having the following form in a one-loop approximation:

\[a_{1,0} = -\Delta \nu_N - \tilde{C}_{1,Y} \]

(8)

\[a_{n,0} = -\rho^{n-1} \tilde{C}_{n,HS} - \rho^{n-1} \tilde{C}_{n,Y} \]

(9)

\[a_{2,2} = -\frac{1}{2} \rho \tilde{C}^{(2)}_{2,HS} - \frac{1}{4 \langle N \rangle} \sum_q \tilde{g}^{(2)}(q) \left[1 + \tilde{g}(q) \right]. \]

(10)

Here, we introduce the following notations. The superscript (2) in Eq. (10) denotes the second-order derivative with respect to the wave vector. \(\tilde{C}_{n,HS} \) is the Fourier transform of the \(n \)-particle direct correlation function of a one-component hard-sphere system in the long-wavelength limit. The functions \(\tilde{C}_{n,HS} \) differ from the ordinary direct correlation functions \(\tilde{c}_{n,HS} \) by an ideal term [36, 37]. Explicit expressions for \(\tilde{C}_{n,HS} \) and \(\tilde{C}^{(2)}_{2,HS} \) for \(n \leq 4 \) in the Percus Yevick (PY) approximation are given in Ref. [27] (see Appendix in Ref. [27]).

The second term on the right-hand side of Eqs. (8)-(10) arises from the integration over CVs \(\rho_{k,C} \) and \(\omega_{k,C} \). In particular, \(\rho^{n-1}\tilde{C}_{n,Y} \) reads

\[\rho^{n-1}\tilde{C}_{n,Y} = \frac{(n-1)!}{2 \langle N \rangle} \sum_q \tilde{g}(q)^n, \]

(11)

where

\[\tilde{g}(q) = -\frac{\beta \rho \tilde{\phi}^Y(q)}{1 + \beta \rho \tilde{\phi}^Y(q)}, \]

(12)

\(\rho = \langle N \rangle/V \) is the number density and \(\tilde{\phi}^Y(q) \) is given by (5).

Taking into account Eqs. (5) and (12), one can obtain the following explicit expressions for \(\rho^{n-1}\tilde{C}_{n,Y} \):

\[-\rho^{n-1}\tilde{C}_{n,Y} = \frac{(n-1)!(-24\eta)^{n-1}}{\pi} \int_0^\infty x^2 \left[\tilde{f}(x) \left[T^* x^3 (z^2 + x^2) + 24\eta \tilde{f}(x) \right] \right]^n \, dx, \]

(13)

where

\[\tilde{f}(x) = [z^2 + x^2(1 + z)] \sin(x) - xz^2 \cos(x). \]

(14)
Hereafter, the following reduced units are introduced for the temperature

\[T^* = (\beta K)^{-1} \]

(15)

and for the density

\[\eta = \frac{\pi}{6} \rho^*, \quad \rho^* = \rho \sigma^3. \]

(16)

The explicit expression for the second term in Eq. (10) is too long to be presented herein. We only emphasize that in the limit of charged point particles, i.e., \(z = 0 \) and \(\sigma = 0 \), the expression for \(a_{2,2} \) leads to the correct result for the density-density correlation length (see Refs. [27, 38]).

The term \(\Delta \nu_N \) in Eq. (5) can be rewritten as follows (see Eq. (4)):

\[\Delta \nu_N = \nu - \nu_{HS} + \frac{1}{2T^*}. \]

(17)

Summarizing, the expressions for coefficients \(a_{2,0}, a_{3,0}, a_{4,0}, \) and \(a_{2,2} \) consist of two terms. While the first term depends solely on the characteristics of a hard-sphere system, the second term is of a mixed type and takes into account the concentration-concentration (or charge-charge) correlations. Coefficient \(a_{1,0} \) is the excess part of the chemical potential \(\nu \), and the equation \(a_{1,0} = 0 \) yields the chemical potential in the RPA. It follows from Eqs. (8), (13) and (17) that

\[\nu = \nu_{HS} - \frac{1}{2T^*} + \frac{1}{\pi} \int_0^\infty \frac{x^2 \bar{f}(x)}{T^*x^3(z^2 + x^2) + 24\eta \bar{f}(x)} \, dx. \]

(18)

It is worth noting that the chemical potential and all the coefficients with \(n \geq 2 \) except \(a_{2,2} \) can be obtained from the one-loop free energy (see Eq. (6))

\[a_{n,0} = \rho^{n-1} \frac{\partial^n (\beta f_{RPA})}{\partial \rho^n} = \rho^{n-1} \tilde{C}_n(0, \ldots), \]

where \(\tilde{C}_n(0, \ldots) \) denotes the Fourier transform of the n-particle direct correlation function of the full system in the long-wavelength limit.

III. GAS-LIQUID PHASE TRANSITION

In this section we study the gas-liquid phase diagram of the model (2) using Eq. (9) and Eqs. (13)-(18). First, we consider the critical point. At the critical point, the system of equations

\[a_{2,0}(\rho_c, T_c) = 0, \quad a_{3,0}(\rho_c, T_c) = 0 \]

(19)
holds yielding the critical temperature and the critical density. These equations can be rewritten as follows:

\[
\frac{(1 + 2\eta)^2}{(1 - \eta)^4} - \frac{24\eta}{\pi} \int_0^{\infty} \frac{x^2 f^2(x)dx}{[T^* x^3(z^2 + x^2) + 24\eta f(x)]^2} = 0, \quad (20)
\]

\[
\frac{(1 - 7\eta - 6\eta^2)(1 + 2\eta)}{(1 - \eta)^5} - \frac{1152\eta^2}{\pi} \int_0^{\infty} \frac{x^2 f^3(x)dx}{[T^* x^3(z^2 + x^2) + 24\eta f(x)]^3} = 0, \quad (21)
\]

where the PY approximation is used for \(\tilde{C}_{n,HS}[37]\).

Solving Eqs. (20)-(21) we obtain the critical temperature \(T_c^*\) and the critical density \(\rho_c^*\) for \(z\) ranging from \(z = 0.001\) to \(z = 2.781\). At \(z > 2.781\), the system of equations (20)-(21) has no solution in the region of the gas-liquid phase transition indicating a disappearance of the critical point. In order to illustrate this situation, in Fig. 2 we plot the loci of Eqs. (20)-(21) for 2.75, 2.78 and 2.79. Since the loci of equation \(a_{3,0} = 0\) are located very close to one another for a small variation of \(z\), they are indistinguishable in the plot.

![FIG. 2: The loci of equations \(a_{2,0} = 0\) (solid lines) and \(a_{3,0} = 0\) (doted line) for 2.75, 2.78 and 2.79. The loci of \(a_{3,0} = 0\) are not distinguishable for the above listed values of \(z\).](image)

The results for the reduced critical parameters (see Eqs. (15)-(16)) for different values of \(z\) are presented in Table 1. The dependence of \(T_c^*\) and \(\rho_c^*\) on the parameter \(z^{-1}\) measuring the interaction range is displayed in Figs. 3 and 4, respectively. As is seen, the reduced critical temperature \(T_c^*\) rapidly decreases with an increase of the interaction range for \(z^{-1} \leq 20\) and then slowly approaches the critical temperature of the RPM \((T_c^* = 0.08446)\). The reduced critical density \(\rho_c^*\) demonstrates a sharp decrease in the region \(z^{-1} \leq 10\) reaching the RPM critical value for \(z^{-1} \simeq 100\). A decrease of both the critical temperature and the critical
density expressed in the same reduced units is observed in Ref. [30].

![FIG. 3: The reduced critical temperature T^*_c (Eq. (15)) of the YRPM as a function of the interaction range. The inset shows T^*_c as a function of z. The line is a guide to the eye.](image1)

FIG. 3: The reduced critical temperature T^*_c (Eq. (15)) of the YRPM as a function of the interaction range. The inset shows T^*_c as a function of z. The line is a guide to the eye.

![FIG. 4: The reduced critical density (Eq. (16)) of the YRPM as a function of the interaction range. The inset shows ρ^*_c as a function of z. The line is a guide to the eye.](image2)

FIG. 4: The reduced critical density (Eq. (16)) of the YRPM as a function of the interaction range. The inset shows ρ^*_c as a function of z. The line is a guide to the eye.

We calculate the spinodal curves for different values of z using Eq. (20). The results are presented in the (T^*, η) plane in Fig. 5. As is seen, the spinodals change their form with the variation of the interaction range. For small values of z, the curves have a noticeable maximum at small η and change their run at higher values of η, thus tending to higher temperatures. The second positive slope of spinodal curves indicates another type of the phase instability connected with the charge-ordering: at higher densities and at lower temperatures, the attraction between oppositely-charged ions is expected to dominate the thermal
motion. When \(z \) increases, the maximum of spinodals moves to higher densities, becomes flatter and finally disappears at \(z > 2.78 \). Evidently, the form of spinodals for small \(z \) is very similar to that obtained for the RPM (see Ref. [7]).

TABLE I: The reduced gas-liquid critical parameters, \(T_c^* \) and \(\rho_c^* \), the coefficients of the effective Hamiltonian and the reduced Ginzburg temperature \(t_G \) depending on the dimensionless inverse screening length for the Yukawa-RPM model. The results are obtained in the one-loop approximation. The results for \(z = 0 \) (RPM) are from Ref. [27].

\(z \)	\(T_c^* \)	\(\rho_c^* \)	\(a_{2,1} \)	\(a_{2,2} \)	\(a_{4,0} \)	\(t_G \)
2.781	0.170910	0.0718	1.7466	0.1784	0.0003	0
2.78	0.170886	0.0707	1.7322	0.1750	0.0152	\(8 \times 10^{-5} \)
2.77	0.170697	0.0684	1.7035	0.1750	0.0434	0.0007
2.75	0.170319	0.0661	1.675	0.1730	0.0695	0.0018
2.7	0.169384	0.0625	1.6307	0.1699	0.1076	0.0046
2.6	0.167523	0.0573	1.5699	0.1660	0.1576	0.0109
2.5	0.165656	0.0535	1.5258	0.1635	0.1901	0.0171
2.0	0.155964	0.0400	1.3778	0.1580	0.2784	0.0452
1.8	0.15183	0.0357	1.3333	0.1577	0.2986	0.0540
1.5	0.145215	0.0301	1.2750	0.1594	0.3109	0.0592
1	0.13248	0.0215	1.1910	0.1702	0.3064	0.0506
0.8	0.126383	0.0182	1.161	0.1793	0.2939	0.0409
0.5	0.11521	0.0138	1.1184	0.2020	0.2508	0.0216
0.4	0.110640	0.0122	1.1069	0.2135	0.2394	0.0168
0.1	0.09245	0.0091	1.0784	0.2521	0.1816	0.0060
0.05	0.08857	0.0089	1.0762	0.2555	0.1756	0.0054
0.01	0.0853	0.0088	1.0759	0.2570	0.1754	0.0053
0.005	0.08488	0.0088	1.0758	0.2570	0.1752	0.0053
0.001	0.08454	0.0088	1.0758	0.2570	0.1752	0.0053
0	0.08446	0.0088	1.0758	0.2570	0.1752	0.0053

In order to calculate the coexistence curves, we use the equation (18) for the chemical
FIG. 5: The spinodal curves of the YRPM for z ranging from 0.01 to 2.7 in the (T^*, η) representation.

FIG. 6: The coexistence curves (solid) and spinodal curves (dashed) of the YRPM for z ranging from 1.0 to 2.7 in the (T^*, η) representation.

potential and employ the Maxwell double-tangent construction. Fig. 6 shows both the coexistence curves (solid lines) and spinodals (dashed lines) in the (T^*, η) plane for a set of z values. As is seen, the region of gas-liquid coexistence reduces with an increase of z. This means that the liquid phase becomes more and more difficult to observe when the interaction region decreases. For $z \geq 2.782$, no critical point can be calculated and $z \simeq 2.781$ can be considered as the limit value for gas-liquid phase separation in the approximation considered in this paper. We recall that the limit value for a stable gas-liquid separation obtained in simulations is $z = 4$ [30]. Therefore, contrary to the previous theoretical predictions [33, 34],
our results are qualitatively consistent with the available simulation results.

IV. THE CROSSOVER TEMPERATURE

In this section, we study the effect of the interaction range on the temperature region in which the crossover from classical behavior to Ising-like critical behavior occurs. To this end, we use the Ginzburg criterion [15, 16]. This criterion defines the reduced Ginzburg temperature \(t_G \) which marks a lower bound of the temperature region where a mean-field description is self-consistent. For \(|t| \ll t_G \) where \(|t| = |T - T_c|/T_c \), Ising critical behavior should be exhibited. Therefore, it is reasonable to take the reduced Ginzburg temperature as an estimate of the crossover temperature [1, 17, 19].

The Ginzburg temperature expressed in terms of coefficients of the Hamiltonian (7) reads

\[
\begin{align*}
 t_G &= \frac{1}{32\pi^2 a_{2,0}^2 a_{2,2}^2}, \\
 a_{2,t} &= \frac{48\eta T_c^\ast}{\pi} \int_0^\infty \frac{x^5(z^2 + x^2)f^2(x)}{(T_c^\ast x^3(z^2 + x^2) + 24\eta f(x))^2} dx,
\end{align*}
\]

(22, 23)

where \(a_{2,t} = \partial a_{2,0}/\partial t \big|_{t=0} \). Taking into account Eqs. (9) and (13), one can obtain for \(a_{2,t} \)

\[
a_{2,t} = \frac{48\eta T_c^\ast}{\pi} \int_0^\infty \frac{x^5(z^2 + x^2)f^2(x)}{(T_c^\ast x^3(z^2 + x^2) + 24\eta f(x))^2} dx,
\]

(23)

where \(f \) is given by (14).

The relevant coefficients of the LG Hamiltonian are calculated at \(T^* = T_c^* \) and \(\rho^* = \rho_c^* \) using Eqs. (9)-(10), (13)-(14) and (23). The results for \(a_{2,t}, a_{2,2}, \) and \(a_{4,0} \) for different values of \(z \) are presented in Table 1. It is instructive to view the coefficients as functions of \(z^{-1} \). Figs. 7-9 show the dependence of the coefficients on the interaction range. While \(a_{2,t} \) is a decreasing function of \(z^{-1} \), the other two coefficients demonstrate a nonmonotonous behavior. It is worth noting that \(a_{2,t} > 1 \) for the whole range of \(z \) for which coexistence exists. The coefficient \(a_{2,2} \) corresponds to a squared range of the effective density-density attraction. Being nearly constant for \(z \leq 0.1 \), \(a_{2,2} \) decreases for larger values of \(z \) and attains a minimum at \(z \simeq 1.8 \). Then, it slightly increases in the range \(1.8 \leq z \lesssim 2.78 \). The coefficient \(a_{4,0} \) has a maximum at \(z \simeq 1.5 \) and then (for \(z > 1.5 \)) sharply tends to zero indicating the presence of a tricritical point \(z \simeq 2.781 \). For \(z \lesssim 0.01 \) (\(z^{-1} \gtrsim 100 \)), all three coefficients become equal to the corresponding coefficients of the RPM [27].
FIG. 7: The coefficient $a_{2,t}$ as a function of the interaction range z^{-1}. The line is a guide to the eye.

FIG. 8: The coefficient $a_{2,2}$ as a function of the interaction range z^{-1}. The line is a guide to the eye.

The results for the reduced Ginzburg temperature t_G are summarized in Table 1 and its dependence on the interaction range is shown in Fig. 10. For $z \simeq 0.01$ ($z^{-1} \simeq 100$), the reduced Ginzburg temperature approaches the value $t_G = 0.0053$ obtained for the RPM in Ref. [27]. For large values of z (small z^{-1}), t_G shows a nonmonotonous behavior passing through a sharp maximum at $z \simeq 1.5$ and approaching zero at $z \simeq 2.78$. Remarkably, a maximum value of t_G is about 10 times larger than that obtained for the RPM.
FIG. 9: The coefficient $a_{4,0}$ as a function of the interaction range z^{-1}. The line is a guide to the eye.

FIG. 10: The reduced Ginzburg temperature as a function of the interaction range z^{-1}. The line is a guide to the eye.

V. CONCLUSIONS

Using the approach that exploits the method of CVs we have studied the gas-liquid coexistence and the associated crossover behavior in the screened Coulomb restricted primitive model (YRPM). For this model, we have obtained explicit expressions for all the relevant coefficients of the LG Hamiltonian in a one-loop approximation. Gas-liquid phase diagram, critical parameters and Ginzburg temperature are calculated for $0.001 \leq z \leq 2.781$ using
these expressions. It should be emphasized that the approximation considered produces the mean-field phase diagram.

First, we have studied the dependence of critical temperature and critical density on the interaction range of the Yukawa potential. The critical temperature scaled by the Yukawa potential contact value decreases with an increase of the interaction range for the whole range of \(z \) for which coexistence exists. The reduced critical density shows a similar trend. The both trends qualitatively agree with the results of simulations [30].

Our results have shown that the region of gas-liquid coexistence in the plane “reduced temperature-reduced density” reduces with an increase of the inverse screening length \(z \) and completely disappears at \(z > 2.78 \). The evolution of the gas-liquid coexistence region with the variation of \(z \) is qualitatively consistent with the results of computer simulations [30], although the above mentioned limit value differs from \(z = 4 \) obtained from simulations. Therefore, contrary to the previous theoretical studies using of the integral equation methods, a simple formalism presented in this paper has produced the results for gas-liquid phase separation which qualitatively agree with the available simulation findings.

Finally, we have studied the effect of the interaction region on the crossover behavior by applying the Ginzburg criterion. We have analyzed the coefficients of the LG Hamiltonian as functions of the interaction range. It is significant that for \(z \leq 0.01 \), all the coefficients approach the values obtained for the RPM. It appears that the coefficient \(a_{4,0} \) decreases for \(z > 1.5 \) and approaches zero when \(z \simeq 2.78 \) indicating the existence of a tricritical point. Accordingly, the reduced Ginzburg temperature tends to zero in this domain of \(z \).

The possible existence of a tricritical point for the YRPM with a large \(z \) was discussed in Ref. [4]. For \(z < 2.78 \), \(t_G \) shows a nonmonotonous behavior. First, \(t_G \) increases reaching a maximum at \(z \simeq 1.5 \) and then for \(z < 1.5 \), \(t_G \) again decreases approaching the RPM value for \(z \simeq 0.01 \). It is interesting to note that the reduced Ginzburg temperature for the YRPM with \(z = 1.8 \) is about 10 times larger than \(t_G \) for the RPM (\(z = 0 \)). Therefore, we have found that an increase in the interaction region from the one typical of nonionic fluids to the one typical of ionic fluids leads to a decrease of the temperature region where the crossover from the mean-field critical behavior to Ising model criticality occurs. Extending our previous studies, we have clearly demonstrated that the range of the interactions plays
a crucial role in the crossover behavior observed in ionic fluids.

[1] K. Gutkowski, M.A. Anisimov, and J.V. Sengers, J. Chem. Phys. 114, 3133 (2001).
[2] J.V. Sengers and J.G. Shanks, J. Stat. Phys. 137, 857 (2009).
[3] W. Schröer, Contrib. Plasma Phys. 52, 78 (2012).
[4] G. Stell, J. Stat. Phys. 78, 197 (1995).
[5] Y. Levin and M.E. Fisher, Physica A 225, 164 (1996).
[6] J.-M. Caillol, Mol. Phys. 103, 1271 (2005).
[7] O.V. Patsahan, Condens. Matter Phys 7, 35 (2004).
[8] O.V. Patsahan and I.M. Mryglod, J. Phys.: Condens. Matter 16, L235 (2004).
[9] A. Ciach, Phys. Rev.E 73, 066110 (2006).
[10] A. Parola and D. Pini, Mol. Phys. 109, 2989 (2011).
[11] A.-P. Hynninen and A.Z. Panagiotopoulos, Mol. Phys. 106, 2039 (2008).
[12] J.-M. Caillol, D. Levesque, and J.-J. Weis, J. Chem. Phys. 116, 10794 (2002).
[13] E. Luijten, M.E. Fisher, and A.Z. Panagiotopoulos, Phys. Rev. Lett. 88, 185701 (2002).
[14] Y.C. Kim, M.E. Fisher, and A.Z. Panagiotopoulos, Phys. Rev. Lett. 95, 195703 (2005).
[15] A. P. Levanyuk, Sov. Phys. JETP 36, 571 (1959) [Zh. Eksp. Teor. Fiz. 36, 810 (1959)].
[16] V.L. Ginzburg, Sov. Phys. Solid State 2, 1824 (1960) [Fiz. Tverd. Tela 2, 2031-2043 (1960)].
[17] P.M. Chaikin and T.C. Lubensky Principles of condensed matter physics (Cambridge University Press, 1995).
[18] M.E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 33826 (1993).
[19] M.E. Fisher and B.P. Lee, Phys. Rev. Lett. 77, 3561 (1996).
[20] J.F. Leote de Carvalho and R. Evans, J. Phys.: Condens. Matter 7, L57 (1995).
[21] W. Schröer and V.C. Weiss, J. Chem. Phys. 109, 8504 (1998).
[22] V.C. Weiss and W. Schröer, J. Chem. Phys. 106, 1930 (1997).
[23] D.N. Zubarev, Dokl. Acad. Nauk SSSR, 95, 757-760 (1954) (in Russian).
[24] I.R. Yukhnovsky, Sov. Phys. JETP 34, 263 (1958) [Zh. Eksp. Teor. Fiz. 34, 379 (1958)].
[25] I. R. Yukhnovskii and M.F. Holovko, Statistical Theory of Classical Equilibrium Systems, (Naukova Dumka, Kiev, 1980) (in Russian).
[26] O. Patsahan, and I. Mryglod, Condens. Matter Phys. 9, 659 (2006).
[27] O.V. Patsahan, Phys. Rev. E, 88, 022102 (2013).

[28] M.E. Leunissen, C.G. Christova, A.P. Hynninen, C.P. Royall, A.I. Campbell, A. Imhof, M. Dijkstra, R. van Roij and A. van Blaaderen, Nature, 437, 235 (2005).

[29] A.P. Hynninen, M. E. Leunissen, A. van Blaaderen and M. Dijkstra, Phys. Rev. Lett. 96, 018303 (2006).

[30] A. Fortini, A.-P. Hynninen, M. Dijkstra, J. Chem. Phys. 125, 094502 (2006).

[31] M. Bier, R. van Roij, M. Dijkstra, J. Chem. Phys. 133, 124501 (2010).

[32] E.B.El Mendoub, J.-F. Wax, N. Jakse, J. Chem. Phys. 132, 5237 (2010).

[33] R.J.F. Leote de Carvalho, R. Evans, Mol. Phys, 92, 211 (1997).

[34] L. Mier-Y-Terán, S.E. Quiñones-Cisneros, I.D. Núñez-Ribini, E. Lemus-Fuentes, Mol. Phys, 95,179 (1998).

[35] J. D. Weeks, D. Chandler, and H.C. Andersen, J. Chem. Phys. 54, 5237 (1971).

[36] G. Stell, in *Phase transitions and critical phenomena*, edited by C. Domb and M.S. Green (Academic Press, London, 1975) vol. 5B, p. 205.

[37] J.P. Hansen and I.R. McDonald *Theory of simple liquids* (Academic Press, 1986).

[38] B.P. Lee and M.E. Fisher, Phys. Rev. Lett. 76, 2906 (1996).