Management of gallstones and gallbladder disease in patients undergoing gastric bypass

Bernabé M Quesada, Gustavo Kohan, Hernán E Roff, Carlos M Canullán, Luis T Chiappetta Porras

Abstract
The appropriate management of gallstones and gallbladder disease in patients undergoing gastric bypass remains unknown. Several therapeutic modalities are used and include performing cholecystectomy on all patients at the time of gastric bypass, regardless of the presence or absence of gallstones and/or symptoms (prophylactic approach) [37], simultaneous cholecystectomy only to patients with gallstones (elective or selective approach) [38] and expectant management with or without the prophylactic administration of ursodeoxycholic acid until symptoms develop (conventional approach) [39].

The objective of the paper is to discuss the rationale and the results obtained with these therapeutic modalities.

© 2010 Baishideng. All rights reserved.

Key words: Gallbladder; Gastric bypass; Morbid obesity; Gallstones; Cholecystectomy

Peer reviewers: Florencia Georgina Que, MD, Department of Surgery, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, United States; Masayuki Sho, MD, PhD, Professor, Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashiwara, Nara, 634-8522, Japan; Jai Dev Wig, MS, FRCS, Former Professor and Head, Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India

Quesada BM, Kohan G, Roff HE, Canullán CM, Porras LTC. Management of gallstones and gallbladder disease in patients undergoing gastric bypass. World J Gastroenterol 2010; 16(17): 2075-2079 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i17/2075.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i17.2075

INTRODUCTION
Rapid weight loss after bariatric surgery is one of many known risk factors for gallstone development, along with age, female gender, parity, race, obesity, genetics, very-low-calorie diets, short bowel syndrome, gallbladder motor dysfunction, diabetes, drugs and gastrointestinal surgery, among many others [1-25].

Traditionally cholecystectomy was indicated only in the presence of both gallstones and symptoms, but recently some have advocated elective cholecystectomy in selected cases in the absence of symptoms and even in the absence of gallstones [26-28].

Sustained weight loss after gastric bypass is achieved by a combination of gastric restriction and a variable degree of malabsorption [29-31] and has therefore a greater risk for gallstone development than purely restrictive procedures like adjustable gastric banding [32-34]. The appropriate management of gallstones and gallbladder disease in these patients is still under debate and several therapeutic modalities are used [36], including simultaneous cholecystectomy to all patients at the time of gastric bypass, regardless of the presence or absence of gallstones and/or symptoms (prophylactic approach) [37], simultaneous cholecystectomy only to patients with gallstones (elective or selective approach) [38] and expectant management with or without the prophylactic administration of ursodeoxycholic acid until symptoms develop (conventional approach) [39].

The objective of the paper is to discuss the rationale and the results obtained with these therapeutic modalities.
PROPHYLACTIC APPROACH

This consists of performing simultaneous cholecystectomy on all patients at the time of gastric bypass, regardless of the presence or absence of gallstones and/or symptoms.

The rationale behind this approach is based on the elevated incidence of gallstone development after gastric bypass compared to the normal population and the low sensitivity and specificity of ultrasonography for detecting gallstones in patients with morbid obesity. A minimal morbidity rate with the addition of cholecystectomy is required.

In the series of Fobi et al., abnormal findings in the gallbladder were found in 75% of surgical specimens despite a negative preoperative ultrasound. Most of these patients had gallstones but other findings include cholesterolosis and cholecystitis. The addition of cholecystectomy to open gastric bypass added only an average of 15 min and the authors report no specific morbidity related to it.

Nougou et al. found some pathology in nearly 82% of specimens after simultaneous cholecystectomy with laparoscopic gastric bypass. 8.3% of patients did not undergo simultaneous cholecystectomy because it was judged to be dangerous. In the remaining patients, cholecystectomy added only 19 min on average to the procedure, with no extra ports addition. The authors do not report specific morbidity related to cholecystectomy.

Guadalajara et al. performed simultaneous cholecystectomy on 89 patients undergoing open gastric bypass and found a postoperative incidence of gallstones of 24% while the preoperative ultrasound incidence was only 16%.

Liem et al. performed simultaneous cholecystectomy on all patients undergoing open gastric bypass and found an incidence of gallbladder pathology of 80%.

A summary of these results is presented in Table 1.

ELECTIVE/SELECTIVE APPROACH

This consists of performing simultaneous cholecystectomy only on patients with asymptomatic gallstones diagnosed pre or intraoperatively.

The rationale behind this approach is based on an assumed higher incidence of symptomatic gallbladder disease in patients with gallstones in comparison to those without them. Some groups administer prophylactic ursodeoxycholic acid to patients without gallstones and therefore not submitted to concomitant cholecystectomy. A low morbidity rate is also required to support this approach.

Hamad et al. performed simultaneous cholecystectomy on 16.9% of patients at the time of gastric bypass. Operative times were significantly longer for patients undergoing simultaneous cholecystectomy and total hospital stay was almost doubled in comparison to gastric bypass without concomitant cholecystectomy. A significantly higher major morbidity rate was observed for patients undergoing simultaneous cholecystectomy but no specific morbidity was directly related to it. The most common pathological finding in the specimens was cholecystitis (99% of the cases). All patients without simultaneous cholecystectomy received 300 mg of ursodeoxycholic acid twice a day orally for a 6 mo period. During follow up 2.3% of these patients developed symptomatic gallstone disease and required cholecystectomy after an average of 12.4 mo.

Villegas et al. performed simultaneous cholecystectomy on 14% of patients after intraoperative diagnosis of gallstones or sludge with the aid of laparoscopic ultrasound. The global need for a subsequent cholecystectomy was 7%. Patients completing prophylactic ursodeoxycholic acid treatment had a significantly lower need of subsequent cholecystectomy.

In the series of open gastric bypass of Caruana et al., the diagnosis of gallstones was made by intraoperative palpation of the gallbladder. The authors did not report significant morbidity related to the addition of cholecystectomy. A subgroup of 125 patients that did not undergo simultaneous cholecystectomy was followed for at least 16 mo, requiring 8% of them to have a subsequent cholecystectomy for symptomatic gallstone disease.

Ahmed et al. retrospectively analyzed a series of 400 consecutive patients and found only significant differences in terms of operative times, which were 29 min longer for patients undergoing simultaneous elective cholecystectomy. No information about the incidence of symptomatic gallstone disease in the population without simultaneous elective cholecystectomy is given.

The group of the Universidad Católica de Chile reports a rate of simultaneous elective cholecystectomy of 10.9%. The only significant differences were found for operative times, which were higher for the population undergoing simultaneous elective cholecystectomy. No information regarding the incidence of symptomatic gallstones in the population without simultaneous elective cholecystectomy was given.

Taylor et al. performed simultaneous cholecystectomy on 15% of patients. They reported the lowest need for subsequent cholecystectomy without the administration of prophylactic ursodeoxycholic acid, with only 3% of patients requiring it.

Tucker et al. performed simultaneous cholecystectomy on 7.2% of patients. A subgroup of patients was not submitted to this approach although they had gallstones present at the time of gastric bypass. The need for subsequent cholecystectomy in these patients was 17.6% whereas for patients without gallstones at the time of gastric bypass it was 6%.

A summary of these results is presented in Table 1.

CONVENTIONAL APPROACH

This consists of performing cholecystectomy only in the presence of both gallstones and symptoms, following the present guidelines for gallstone disease management. The rationale behind this approach is to
indicate cholecystectomy only for the patients requiring it and since most of the subsequent cholecystectomies are performed when a significant weight loss is achieved, the operation is done in a leaner and healthier patient.

Swartz et al. found an incidence of subsequent cholecystectomy of 14.7%, with a significant lower incidence for patients completing prophylactic ursodeoxycholic acid treatment. In Fuller and coworker’s experience, the need for subsequent cholecystectomy in patients completing prophylactic ursodeoxycholic acid treatment, was 9.84% (unpublished data). For patients with gallstones present at the time of surgery a subsequent cholecystectomy was needed in 5% and for patients without gallstones in 10.71% (P not significant). Based on our own data, the natural history of patients with asymptomatic gallstones undergoing gastric bypass is very much like the natural history of asymptomatic gallstones in the general population.

A summary of these results is presented in Table 1.

URSDODEXYCHOLIC ACID TREATMENT

The preventive administration of ursodeoxycholic acid proved to be significantly better than placebo in preventing gallstone formation in a double blind, prospective and randomized study conducted by Sugerman et al. A daily dose of 600 mg was associated with the lowest rate of gallstone formation and the lowest incidence of adverse events. Patients that developed gallstones showed a lower compliance rate. The effect of the 6 mo treatment seems to last for at least 1 year, since at that moment patients were reevaluated with ultrasonography and the incidence of gallstones was significantly less compared to the placebo arm. Unfortunately, there is no mention in the study regarding how many of those patients that developed gallstones were actually symptomatic and therefore required cholecystectomy, since the actual standard of care for non-obese patients indicates a cholecystectomy only when both symptoms and gallstones are present (SSAT NIH). A true benefit for ursodeoxycholic acid would be a lower rate of delayed cholecystectomy over the placebo group.

Wudel et al. compared, in a randomized double-blind fashion, a cohort of 60 patients without gallstones at the time of open gastric bypass and prescribed them.

Table 1 Results for cholecystectomy

Author	Yr	Indication for cholecystectomy	Increased morbidity	Ursodeoxycholic acid administration	Need for subsequent cholecystectomy
Fobi et al.	2002	Prophylactic open	No	NA	NA
Nougou et al.	2008	Prophylactic laparoscopic	No	NA	NA
Guadalajara et al.	2006	Prophylactic open	No	NA	NA
Liem et al.	2004	Prophylactic open	No	NA	NA
Hamad et al.	2003	Selective laparoscopic	Yes	Yes	2.30
Villegas et al.	2004	Selective laparoscopic	NR	Yes	7.00
Caruana et al.	2005	Selective open	No	No	8.00
Ahmed et al.	2007	Selective laparoscopic	No	No	NR
Escalona et al.	2008	Selective laparoscopic	No	No	NR
Taylor et al.	2006	Selective open	NR	No	3.00
Tucker et al.	2008	Selective laparoscopic	No	NR	11.80
Swartz et al.	2005	Conventional	NA	Yes	14.70
Fuller et al.	2007	Conventional	NA	Yes	7.69
Ellner et al.	2007	Conventional	NA	No	9.00
Portenier et al.	2007	Conventional	NA	No	8.10
Papasavas et al.	2006	Conventional	NA	No	7.83
Patel et al.	2006	Conventional	NA	No	6.00
Patel et al.	2009	Conventional	NA	No	4.90
Cosme Argerich Hospital	2010	Conventional	NA	No	9.84

NA: Not applicable; NR: Not reported.
a 6-mo course of ursodeoxycholic acid, ibuprofen or placebo. 71% of the patients subsequently developed gallstones and no benefit of the two therapies investigated could be demonstrated because of an extremely low compliance rate of 28%.

A recently published meta-analysis by Uy et al concluded that ursodeoxycholic acid administration prevents gallstone formation after bariatric surgery, but no meta-analysis of symptomatic gallstones could be done, since only one paper addressed this topic and unfortunately did not include patients undergoing gastric bypass.

CONCLUSION

Prophylactic and selective management can be safely performed and the only significant difference with patients not submitted to concomitant cholecystectomy is mostly observed in operative times that are higher in those who do undergo cholecystectomy. Data obtained from conventional management studies, with or without ursodeoxycholic acid administration, show that most of the patients remain asymptomatic even when they develop gallstones and therefore do not require a subsequent cholecystectomy, so that the risks of performing a concomitant cholecystectomy might be unwarranted. Treatment with ursodeoxycholic acid prevents gallstone formation after gastric bypass but most of the studies conducted show a low compliance rate and do not mention the true benefit of the treatment, which would be a lower cholecystectomy rate.

REFERENCES

1. Nakkeb A, Comuzzie AG, Martin L, Sonnenberg GE, Swartz-Basile D, Kissebah AH, Pitt HA. Gallstones: genetics versus environment. Ann Surg 2002; 235: 842-849
2. Sarin SK, Negi VS, Dewan R, Sasan S, Saraya A. High familial prevalence of gallstones in the first-degree relatives of gallstone patients. Hepatology 1995; 22: 138-141
3. Dittrick GW, Thompson JS, Campos D, Bremers D, Sudan D. Gallbladder pathology in morbid obesity. Obes Surg 2005; 15: 238-242
4. Elingier S. Gallstones in obesity and weight loss. Eur J Gastroenterol Hepatol 2000; 12: 1347-1352
5. Liddle RA, Goldstein RB, Saxton C. Gallstone formation during weight-reduction dieting. Arch Intern Med 1989; 149: 1760-1763
6. Stampfer MJ, McLaure KE, Colditz GA, Manson JE, Willett WC. Risk of symptomatic gallstones in women with severe obesity. Am J Clin Nutr 1992; 55: 652-658
7. Everhart JE, Khare M, Hill M, Maurer KR. Prevalence and ethnic differences in gallbladder disease in the United States. Gastroenterology 1999; 117: 632-639
8. McLaure KM, Hayes KC, Colditz GA, Stampfer MJ, Speizer FE, Willett WC. Weight, diet, and the risk of symptomatic gallstones in middle-aged women. N Engl J Med 1989; 321: 563-569
9. Pauzdekzi J, Paumgartner G. Review article: defects in gallbladder motor function–role in gallstone formation and recurrence. Aliment Pharmacol Ther 2000; 14 Suppl 2: 32-34
10. Weinsier RL, Ullmann DO. Gallstone formation and weight loss. Obes Res 1996; 1: 51-56
11. Everhart JE. Contributions of obesity and weight loss to gallstone disease. Ann Intern Med 1993; 119: 1029-1035
12. Festi D, Colecchia A, Larocca A, Villanova N, Mazzella G, Petroni ML, Romano F, Roda E. Review: low caloric intake and gallbladder motor function. Aliment Pharmacol Ther 2000; 14 Suppl 2: 51-59
13. Kamath RO, Plummer LJ, Sadur CN, Adler MA, Strader WJ, Young RL, Weinstein RL. Cholelithiasis in patients treated with a very-low-calorie diet. Am J Clin Nutr 1992; 56: 2555-2575
14. Yang HY, Peterson GM, Mraks JW, Roth MP, Schoenfield LJ. Risk factors for gallstone formation during rapid weight loss (Abstract). Gastroenterology 1990; 98: A266
15. Gebhard RL, Prigge WF, Arsel HI, Schlanzer L, Ketover SR, Sande D, Holtmeier K, Peterson FJ. The role of gallbladder emptying in gallstone formation during diet-induced rapid weight loss. Hepatology 1996; 24: 544-548
16. Shiffman ML, Sugarman HJ, Kellum JM, Moore EW. Changes in gallbladder bile composition following gallstone formation and weight reduction. Gastroenterology 1992; 103: 214-221
17. Petroni ML. Review article: gall-bladder motor function in obesity. Aliment Pharmacol Ther 2000; 14 Suppl 2: 48-50
18. Shiffman ML, Sugarman HJ, Kellum JH, Brewer WH, Moore EW. Gallstones in patients with morbid obesity. Relationship to body weight, weight loss and gallbladder bile cholesterol solubility. Int J Obes Relat Metab Disord 1993; 17: 153-158
19. Dowling RH. Review: pathogenesis of gallstones. Aliment Pharmacol Ther 2000; 14 Suppl 2: 39-47
20. Pazzi P, Scagnarlini R, Gamberini S, Pezzoli A. Review article: gall-bladder motor function in diabetes mellitus. Aliment Pharmacol Ther 2000; 14 Suppl 2: 62-65
21. De Santis A, Attili AF, Gianinn Corradini S, Scafeato E, Cantagalli A, De Luca C, Pinto G, Lisi D, Capocaccia L. Gallstones and diabetes: a case-control study in a free-living population sample. Hepatology 1997; 25: 787-790
22. Dowling RH, Hussain SH, Murphy GM, Besser GM, Wass JA. Gallstones during octreotide therapy. Metabolism 1992; 41: 22-33
23. Hussain SH, Murphy GM, Kennedy C, Besser GM, Wass JA, Dowling RH. The role of bile composition and physical chemistry in the pathogenesis of octreotide-associated gallbladder stones. Gastroenterology 1994; 107: 1503-1513
24. Qvist N. Review article: gall-bladder motility after intestinal surgery. Aliment Pharmacol Ther 2000; 14 Suppl 2: 35-38
25. Fukagawa T, Kato H, Saka M, Morita S, Sano T, Sasaki M. Gallstone formation after gastric cancer surgery. J Gastrointest Surg 2009; 3: 866-889
26. Al-Azzawi HH, Nakkeb A, Saxena R, Maluccio MA, Pitt HA. Cholecystoestasis: an explanation for increased cholecystectomy rates. J Gastrointest Surg 2007; 11: 835-842; discussion 842-843
27. Schwesinger WH, Diehl AK. Changing indications for laparoscopic cholecystectomy. Stones without symptoms and symptoms without stones. Surg Clin North Am 1996; 76: 493-504
28. Bingener J, Richards ML, Schwesinger WH, Sirinek KR. Laparoscopic cholecystectomy for biliary dyskinesia: correlation of preoperative cholecystokinin cholecystography results with postoperative outcome. Surg Endosc 2004; 18: 802-806
29. Ponksy TA, DeSagun R, Brody F. Surgical therapy for biliary dyskinesia: a meta-analysis and review of the literature. J Laparoendosc Adv Surg Tech A 2005; 15: 439-442
30. Cottam DR, Fisher B, Sridhar V, Atkinson J, Dallal R. The effect of stoma size on weight loss after laparoscopic gastric bypass surgery: results of a blinded randomized controlled trial. Obes Surg 2009; 19: 13-17
31. Choban PS, Flanbaum L. The effect of Roux limb lengths on outcome after Roux-en-Y gastric bypass: a prospective, randomized clinical trial. Obes Surg 2002; 12: 540-545
32. Nelson WK, Fatima J, Houghton SG, Thompson GB, Kenedrick ML, Mai JL, Kenzel KA, Sarr MG. The malabsorptive very long limb Roux-en-Y gastric bypass for super obesity: results in 257 patients. Surgery 2006; 140: 517-522, discussion 522-523
33. Patino JF, Quinero GA. Asymptomatic cholelithiasis revis-
Cholecystectomy. Surg Endosc 1993; 7: 271-279

52 Society for Surgery of the Alimentary Tract. SSAT patient care guidelines. Treatment of gallstone and gallbladder disease. J Gastrointest Surg 2005; 9: 1222-1224

53 Swartz DE, Felix EL. Elective cholecystectomy after Roux-en-Y gastric bypass: why should asymptomatic gallstones be treated differently in morbidly obese patients? Surg Obes Relat Dis 2005; 1: 555-560

54 Fuller W, Rasmussen JJ, Ghosh J, Ali MR. Is routine cholecystectomy indicated for asymptomatic cholelithiasis in patients undergoing gastric bypass? Surg Obes Surg 2007; 12:747-751

55 ElNner SJ, Myers TT, Piorkowski JR, Mavanur AA, Barba CA. Routine cholecystectomy is not mandatory during morbid obesity surgery. Surg Obes Relat Dis 2007; 3: 456-460

56 Portenier DD, Grant JP, Blackwood HS, Pryor A, McMahan RL, DeMaria E. Expectant management of the asymptomatic gallbladder at Roux-en-Y gastric bypass. Surg Obes Relat Dis 2007; 3: 476-479

57 Patel KR, White SC, Tejirian H, Han SH, Russell D, Vira D, Liao L, Patel KB, Gracia C, Haigh P, Dutton E, Mehran A. Gallbladder management during laparoscopic Roux-en-Y gastric bypass surgery: routine preoperative screening for gallstones and postoperative prophylactic medical treatment are not necessary. Am Surg 2006; 72: 857-861

58 Patel JA, Patel NA, Piper GL, Smith DE 3rd, Malhotra G, Colella J. Perioperative cholecystectomy in patients presenting for laparoscopic Roux-en-Y gastric bypass: have we reached a consensus? Am Surg 2009; 75: 470-476; discussion 476

59 McSherry CK, Ferstenberg H, Calhoun WF, Lahman E, Virshup M. The natural history of diagnosed gallstone disease in obese and asymptomatic patients. Ann Surg 1985; 202: 59-67

60 Friedman GD. Natural history of asymptomatic and symptomatic gallstones. Am J Surg 1993; 165: 399-404

61 Diehl AK. Epidemiology and natural history of gallstone disease. Gastroenterol Clin North Am 1991; 20: 1-19

62 Sugerman HJ, Brewer WH, Shiffman ML, Brolin RE, Fobi MA, Linner JH, MacDonald KG, MacGregor AM, Martin LF, Oram-Smith JC. A multicenter, placebo-controlled, randomized, double-blind, prospective trial of prophylactic ursodiol for the prevention of gallstone formation following gastric-bypass-induced rapid weight loss. Am J Surg 1995; 169: 91-96; discussion 96-97

63 Wudel IJ Jr, Wright JK, Debek JP, Allos TM, Shyr Y, Chapman WC. Prevention of gallstone formation in morbidly obese patients undergoing rapid weight loss: results of a randomized controlled pilot study. J Surg Res 2002; 102: 50-56

64 Uy MC, Talingdan-Te MC, Espinosa WZ, Daez ML, Ong JP. Ursodeoxycholic acid in the prevention of gallstone formation after bariatric surgery: a meta-analysis. Obes Surg 2008; 18: 1532-1538

65 Miller K, Hell E, Lang B, Lengauer E. Gallstone formation prophylaxis after gastric restrictive procedures for weight loss: a randomized double-blind placebo-controlled trial. Ann Surg 2003; 238: 697-702

S- Editor Wang YR L- Editor O’Neill M E- Editor Zheng XM