Laparoscopic Surgery for Cancer Patients

Bruce J. Ramshaw, MD

Introduction

Minimally invasive techniques such as laparoscopy are now being used frequently in nearly all fields of surgery. The explosion of these procedures can be traced to the development of high-resolution video monitors in the early 1980s. Previously, only one surgeon could view the abdominal cavity through the laparoscope. With a high-resolution monitor and a camera attached to the end of the laparoscope, the surgeon and all assistants can comfortably view a high-quality magnified image, and they can perform surgical procedures using delicate laparoscopic instruments. The potential benefits to the patient include less pain, decreased hospitalization, and earlier return to normal activities.

Concern exists, however, about the rapid application of minimally invasive surgery to a wide variety of procedures. Adequate training, patient selection, unforeseen complications, and appropriate credentialing are some of the issues that have arisen. The use of these procedures in the cancer patient is the subject of increasing excitement and controversy.

Laparoscopic surgery dates back to the 1900s. Before the turn of the century, instruments were developed to look into human organs such as the stomach and bladder. The first minimally invasive abdominal examination, cystoscopic examination of the abdominal cavity of a dog, was reported in 1901 by Kelling. In Russia during the same year a German physician performed the first laparoscopic procedure on a human. Ten years later, Jacobaeus used thoracoscopy and laparoscopy to diagnose several disease states, including malignancy.

A variety of experiences reported in the 1920s revealed that the abdominal cavity could be viewed through a scope in numerous patients without morbidity and that the procedure could be done under local anesthesia without a hospital stay. In the 1930s, Fervers recommended the use of carbon dioxide to establish pneumoperitoneum, and Veress suggested the spring-loaded needle that is used today for insufflation of the abdomen. During this period Ruddock reported on the first significant series of laparoscopic procedures, 500 laparoscopies (including 39 biopsies) over a 4-year period.

The slow development of laparoscopic technology over the next several decades inhibited the adoption of minimally invasive techniques by the surgical community. During the 1960s, however, laparoscopy was widely used by gynecologists, mainly as a diagnostic tool. During this time Semm, a German gynecologist and engineer, developed an automatic insufflation device for monitoring gas flow and intraabdominal pressure. He and others developed a variety of laparoscopic instruments.

In 1982 Semm was the first to report on performance of a laparoscopic appendectomy. In 1985, with the aid of the endoscopic camera and video monitor, the first laparoscopic cholecystectomy was performed by Muhe in Germany, and in
Table 1
Results of Diagnostic Laparoscopy for Staging Abdominal Cancer

Reference	Type of Cancer	No. Patients	Laparoscopy Successful	Disease Status	Correctly Predicted Resectability (%)	Avoided Laparotomy		
D’Ugo et al 16	Gastric	70	70	18	52	100.0	18/70 (25.7%)	
Lowy et al 17	Gastric	71	69	16	53	38	71.7	15/71 (21.1%)
Burke et al 18	Gastric	104	103	32	71	65	91.5	24/104 (23.1%)
John et al 19	Hepatic	52	50	32	18	13	72.2	35/52 (67.3%)
Molloy et al 20	Gastric/esophageal	244	244	92	152	85	55.9	103/244 (42.2%)
Bemelman et al 21	Pancreatic	73	72	12	58	29	50.0	13/73 (17.8%)
Babineau et al 22	Hepatic	29	29	14	15	11	73.3	12/29 (41.4%)
John et al 23	Pancreatic	40	40	24*	14	12	85.7	18/40 (45.0%)
Bemelman et al 24	Gastric/esophageal	56	55	3	53	47	88.7	3/56 (5.4%)
Hemming et al 25	Hepatic, pancreatic,	162	162	58	104	84	80.8	58/162 (35.8%)
Possik et al 26	Gastric, colon	352	345	123	222	111	50.0	123/352 (34.9%)
Reed and Mustafa 27	Hepatic, pancreatic	26	26	6	20	18	90.0	6/26 (23.1%)
Callery et al 28	Hepatobiliary, pancreatic	50	50	22	28	26	92.9	17/150 (11.3%)

*One patient had disease that was found to be unresectable at laparoscopy but resectable at laparotomy.
1987, a series of laparoscopic cholecystectomies was begun in France.8 By the end of the decade, laparoscopic cholecystectomy had begun to spread throughout the general surgical community in the United States.9 The widespread adoption of laparoscopic cholecystectomy may have been more rapid than that of any other health care technology in history.10

Inevitably, the expansion of minimally invasive procedures soon included diagnosis and treatment of malignancies. Although minimally invasive techniques have been used for treating cancers of the colon, lung, upper gastrointestinal tract, pelvic organs, and other organs, reports have been published expressing concern about the safety of these procedures11 and even about the safety of insufflation of the abdominal cavity in the patient with an abdominal malignancy.12

This review discusses several minimally invasive techniques for diagnosis and treatment of malignancies by the general surgeon and explores some of the controversies that have arisen from these procedures. Focal points include the use of laparoscopic surgery for diagnosis and staging of abdominal malignancies, therapeutic resection by laparoscopy, and laparoscopic procedures for palliation. Laparoscopic colon resection, laparoscopic adrenalectomy, and laparoscopic cholecystectomy in a patient with unsuspected carcinoma are reviewed individually. A look at the future of laparoscopic surgery and issues such as training and credentialing concludes this review.

Laparoscopy for Diagnosis and Staging of Cancer

Laparoscopy is now considered an effective tool for diagnosis and staging of malignancies, one that adds to the information provided by other noninvasive diagnostic modalities, especially when combined with laparoscopic ultrasonography.13-15 It is a less invasive alternative to laparotomy for staging of intraabdominal malignancies.

Many authors have advocated the use of diagnostic laparoscopy in conjunction with other diagnostic modalities. Laparoscopy has been shown to decrease significantly the incidence of unnecessary laparotomy for unresectable disease in up to 67% of patients with abdominal malignancies (Table 1). Many of these studies were done with early-generation computed tomography (CT) scans as part of the noninvasive work-up. Lowy et al17 and Burke et al,18 however, have shown that diagnostic laparoscopy continues to have significant advantages in preventing unnecessary laparotomy in patients with gastric cancer even when current-generation CT scanning is used in the diagnostic work-up.

One concern in using diagnostic laparoscopy for the staging of abdominal tumors is the invasiveness of the technique, which currently requires general anesthesia, and the potential complications and costs related to it. The use of diagnostic laparoscopy for staging as a separate procedure is controversial, especially for abdominal tumors in which the diagnostic yield of laparoscopy is low (e.g., colorectal and lower esophageal cancers).

Many studies, especially recent ones, used laparoscopy immediately before a planned laparotomy.16-18,22,27,28 In these studies, all patients had been found to have resectable tumors based on preoperative noninvasive studies, and laparoscopy was used for diagnostic staging.

Laparoscopic staging of an abdominal malignancy should be done at the same time as a planned laparotomy.
staging at the same time that laparotomy was to be performed. When laparoscopy is performed at the time of laparotomy, the unnecessary performance of laparoscopy is less of a concern. Laparoscopic evaluation of the abdomen can be performed in as little as 10 to 15 minutes, and such evaluation eliminates the need for laparotomy in many patients. Thus, it is recommended that diagnostic laparoscopy for staging an abdominal malignancy be performed at the time of planned laparotomy.

Many authors have stressed the importance of laparoscopic ultrasonography during diagnostic laparoscopy for abdominal malignancy.14,19,23,24,28 Ultrasonography during laparoscopy gives the surgeon information that otherwise would not be obtained from laparoscopic visual exploration. Ultrasonography can identify lesions deep in the parenchyma of an organ, especially in solid organs such as the liver and pancreas. It can evaluate invasion of a tumor into other structures, such as major vessels, thus determining that the tumor is not resectable in a patient who otherwise might undergo laparotomy.

John et al19 evaluated patients who had potentially resectable liver tumors with laparoscopy and laparoscopic ultrasound. In 14 of 43 patients (33%), laparoscopic ultrasound detected liver tumors missed upon laparoscopic inspection alone. Laparoscopic ultrasound provided more information about tumor resectability than did laparoscopic inspection alone in 18 of 43 patients (42%).

In a study of patients with pancreatic cancer, John et al23 used laparoscopic ultrasonography to determine resectability. Factors confirming nonresectability were shown by laparoscopic ultrasonography in 23 patients (59%). In 20 of 38 patients (53%), laparoscopic ultrasonography identified information relevant to the assessment of tumor stage that was not apparent during laparoscopic inspection.

In another study using laparoscopic ultrasonography, Bemelman et al21 found that 21 of 22 pancreatic tumors staged as resectable at laparoscopy actually were resectable. Thirteen of 14 patients thought to have unresectable tumors at laparoscopy actually did have unresectable tumors.

Laparoscopy’s ability to visualize directly intraabdominal areas and structures gives it a significant advantage over other diagnostic modalities. Direct visualization has been used to characterize abdominal lesions. For example, specific diagnostic and characteristic features have been identified for hepatocellular carcinoma.29,30

Much of the abdominal cavity can be viewed on initial introduction of the laparoscope. Areas obscured from the initial view often can be seen with the use of instruments introduced through accessory ports for retraction and dissection and adjustment of the table for appropriate patient positioning. Entering the lesser sac, for example, requires dissection and retraction as well as reverse Trendelenburg positioning to most adequately and easily expose the anterior surface of the pancreas.

Obtaining biopsies of organs, lymph nodes, and suspicious lesions during laparoscopy is an important part of the diagnosis and staging of malignancies. Laparoscopic guidance of liver biopsy has been shown to be a safe and effective alternative to open liver biopsy, and it significantly decreases hospital stay.31 A skilled laparoscopic surgeon should be able to perform biopsies of most intraabdominal areas and organs and recognize suspicious lesions that require biopsy to rule out malignancy.

The principles of minimally invasive surgery for diagnosing and staging malignancy also have been applied to children with thoracic and abdominal cancers. Holcomb et al32 showed that the success rate of tissue biopsies was high (99%) and morbidity was minimal with no mortality. Laparoscopy also has been used in patients with cancers outside the abdom-
inal and thoracic cavities who had abdominal symptoms. Laparoscopic diagnosis and management of these patients was a safe, effective alternative to an open procedure.33,34

ESOPHAGOGASTRIC CANCER

Primary carcinoma of the lower esophagus and stomach can be cured by surgical resection if it is found early. Unfortunately, these tumors often have spread by the time the diagnosis is made. Preoperative ultrasonography and CT scanning have been shown to be poor predictors of resectability in patients with lower esophageal or gastric cancers, especially when small-volume peritoneal and hepatic metastasis are present.35,36 Many authors, therefore, have advocated the use of diagnostic laparoscopy in addition to noninvasive modalities to assess these patients for metastatic disease.24,26,36

Although some studies of intraperitoneal chemotherapy for patients with gastric cancer and peritoneal seeding suggest that gastric resection and perioperative intraperitoneal chemotherapy may be appropriate, laparoscopy still may be of benefit in these gastric cancer patients. Watt et al37 showed that laparoscopy was more effective than CT scan and ultrasonography in assessing nodal involvement among esophageal and gastric cancer patients. The sensitivities of laparoscopy, CT scan, and ultrasonography were 72%, 57%, and 52%, respectively. The addition of laparoscopy to the preoperative evaluation has increased resectability rates at the time of laparotomy to a range of 56% to 100% in several studies.16-18,20,24,36 In lower esophageal cancers, when resectability is still in question after noninvasive studies and laparoscopy, diagnostic thoracoscopy of the right chest may be performed.38

HEPATOBILIARY CANCER

Laparoscopy aids significantly in the assessment of suspected primary or metastatic hepatobiliary malignancy. Radiographic studies such as ultrasonography, CT angiography, and magnetic resonance (MR) imaging are helpful in determining the diagnosis and resectability of hepatobiliary cancers. Laparoscopy, however, has opened the door to further evaluation, allowing direct visualization of the entire abdominal cavity and access to several areas for biopsy. In addition, laparoscopic ultrasound and laparoscopic-guided biopsy can distinguish between benign and malignant hepatic disease and can identify small peritoneal metastases (less than 1 cm) that might be missed on noninvasive studies.

When a hepatobiliary malignancy is diagnosed, staging by laparoscopy can be safe and beneficial. Hemming et al25 studied 168 patients who underwent laparoscopic staging for malignant tumors (chiefly hepatobiliary tumors) in the abdomen. They reported a 1.8% overall complication rate and no mortality. Several studies have shown that laparotomy can be avoided in a significant number of patients with hepatobiliary cancer when laparoscopy shows that the disease is not resectable.19,22,25,28 Avoiding laparotomy can decrease hospital stay, which averages 5.6 days after laparotomy compared with 1.5 days after laparoscopy.

PANCREATIC CANCER

Although pancreatic cancer has a resectability rate of 5% to 10%, laparotomy for pancreatic tumors was justified in the past. Laparotomy provided histologic diagnosis of the primary tumor or showed extrapancreatic spread and allowed for a palliative procedure for obviously unresectable tumors.39,40

With the current capabilities of radiologic and endoscopic techniques, including biopsy, most pancreatic tumors can be diagnosed and palliated without surgery. In patients whose tumors still appear resectable after noninvasive studies, laparoscopic evaluation is being used for diagnosis and staging so that laparotomy can be avoided, if possible. Studies have
shown that laparoscopic biopsy of extra-pancreatic tissue suspected of harboring metastatic disease and complete abdominal evaluation, including peritoneal washings for cytologic studies, can prevent a significant number of unnecessary laparotomies.41,42

Although laparoscopy has been shown to predict nonresectability reliably, thereby eliminating the need for laparotomy, it does not necessarily predict resectability reliably. In a series of 73 patients with pancreatic cancer, Cuschieri40 found that only four of nine tumors thought to be resectable upon laposcopic examination actually were resectable at laparotomy.

LYMPHOMA
Surgery for lymphoma has been limited to procedures that help in the diagnosis and staging of the disease. In Hodgkin’s disease, staging laparotomy can alter the treatment strategy in some groups of patients by changing the stage of the disease to a later one than that determined by noninvasive means. Studies have shown that after laparotomy, a change in stage can be expected in 20% to 30% of patients with clinical stage I and II disease.43,44

Laparoscopic biopsy of the liver and spleen combined with imaging studies can decrease the need for staging laparotomy by 70% in patients with clinical stage I or II Hodgkin’s disease.44,45 Now that more laparoscopic splenectomies are being performed, case reports of laparoscopic staging for Hodgkin’s disease have been published. These reports show that the entire procedure (including paraaortic lymph node dissection, bilateral liver biopsies, splenectomy, and oophoropexy) can be performed laparoscopically.46,47

Although only a few patients with Hodgkin’s disease are considered candidates for staging laparotomy, the use of laparoscopy for staging is a significant advantage for them. Patients have less postoperative pain and a shorter hospital stay and postoperative recovery period after staging laparoscopy than they do after staging laparotomy.

Laparoscopy has a limited role in non-Hodgkin’s lymphoma. It is used primarily to obtain a sufficient amount of tissue to aid in diagnosis. The addition of laparoscopic-guided biopsy doubles the diagnostic yield compared with that obtained by percutaneous biopsy alone.48

The importance of sampling the liver and spleen in cases of lymphoma makes direct visualization during biopsy a distinct advantage over other modes of percutaneous biopsy. Visualization of the parenchyma of the liver and the spleen after biopsy can help the operator avoid prolonged bleeding from the biopsy site. Any increased bleeding can be controlled laparoscopically with direct pressure, electrocautery, argon laser coagulation, application of hemostatic material, or suturing.

With current laparoscopic capabilities, patients with lymphoma can be accurately diagnosed and staged without laparotomy. The benefits of decreased pain, decreased hospitalization, earlier return to normal activities, and the ability to begin chemotherapy treatments earlier than after laparotomy make laparoscopy an important option in the diagnosis and staging of the patient with lymphoma.49

PELVIC LYMPHADENECTOMY
Most indications for pelvic lymphadenectomy are within the realm of urologic and gynecologic surgery. Several reports evaluating laparoscopic pelvic lymphadenectomy for staging prostate cancer have shown significant benefits, which include decreased pain, decreased hospital stay, and decreased use of laparotomy.50,51 Laparoscopic pelvic and retroperitoneal lymphadenectomies have been used for staging other urologic tumors, such as bladder,52 penile,52,53 and nonseminomatous testicular cancers.54

The large number of laparoscopic surgery for cancer

332 CA—a cancer journal for clinicians
pelvic lymphadenectomies performed for prostate cancer raised concerns about the low yield of positive lymph nodes (sometimes less than 5%) and the incidence of port site metastases.55 To avoid unnecessary surgery, patients who are unlikely to have metastatic disease should not undergo laparoscopic staging. Therefore, laparoscopic pelvic lymph node dissection is limited to patients with prostate cancer who have a high likelihood of metastatic disease as predicted by preoperative clinical staging, prostate-specific antigen levels, and Gleason grade.56,57

For gynecologic tumors, laparoscopic pelvic lymphadenectomy has focused primarily on cervical and early endometrial cancers.58,59 Studies have shown that an adequate lymph node sample can be obtained with the laparoscopic approach; compared with open surgery, the hospital stay is shorter, but a

Reference	Year	No. of Adrenalectomies	No. Converted to Open Procedures	Hospital Stay (Days)	Morbidity	Mortality
Nies et al54	1993	5	1	NR	1	0
Suzuki et al55	1993	12	0	NR	3	0
Matsuda et al56	1993	13	2	NR	4	0
Ono et al56	1994	5	0	10.0	0	0
Fletcher et al57	1994	6	0	3.2	0	0
Uchida et al58	1994	6	0	NR	0	0
Naito et al59	1994	17	NR	NR	NR	NR
Takeda et al50	1994	17	0	11.6	0	0
Stoker et al51	1995	6	0	2.0	0	0
Hata et al52	1995	7	2	NR	2	0
Mandressi et al53	1995	7	1	4.0	0	0
Schlinkert et al53	1995	9	3	2.3	1	0
Prinz54	1995	10	1	2.1	1	0
Mercan et al54	1995	11	0	3.0	0	0
Go et al55	1995	14	0	NR	0	0
Guazzoni et al56	1995	20	0	NR	0	0
Chapuis et al57	1995	25	2	NR	0	0
Nakagawa et al58	1995	25	0	NR	0	0
Miccoli et al59	1995	25	0	3.0	0	0
Brown et al60	1996	8	1	2.3	0	0
MacGillivray et al61	1996	17	0	3.0	3	0
Heintz et al62	1996	20	3	5.0	0	0
Brunt et al63	1996	4	0	3.2	4	0
Marescaux et al64	1996	27	5	4.6	2	0
Walz et al65	1996	30	5	NR	0	0
Fernandez-Cruz et al66	1996	42	2	3.1	0	0
Gagner67	1996	72	2	3.0	8	0
Linos et al68	1997	18	0	2.2	0	0
Horgan et al69	1997	19	0	2.9	4	0

NR = not reported.
low complication rate is maintained. More prospective randomized studies are needed to determine the role of laparoscopic pelvic lymphadenectomy in gynecologic malignancies.

A significant learning curve for laparoscopic pelvic lymphadenectomy has been identified. General surgeons may play a role in the adoption of this procedure because of their familiarity with the laparoscopic pelvic anatomy if their experience includes a significant number of laparoscopic herniorrhaphies. These techniques can be adopted most safely when surgeons familiar with laparoscopic anatomy help other surgeons through their learning curve. Other general surgical applications of laparoscopic pelvic lymphadenectomy are rare and include staging for cutaneous or soft tissue malignancies, especially malignant melanoma.

Laparoscopic Curative Resection

The use of minimally invasive techniques for curative resection of abdominal malignancy is controversial. The growth of laparoscopic capabilities has resulted in reports of the resection of most types of abdominal tumors and organs. Although the reports have shown that these procedures can be done, determining when laparoscopic resection of cancer should be performed is difficult.

Because of the concerns surrounding laparoscopic resection of cancer and the difficulty associated with doing these procedures, laparoscopic resection of abdominal tumors rarely has been performed except in two areas. One is laparoscopic adrenalectomy, which is being done increasingly more often. The greater experience with laparoscopic adrenalectomy has been aided by the fact that a significant number of these resections are performed for benign tumors. The other exception is laparoscopic resection for colorectal malignancy. The high incidence of colorectal disease has led to increased experience with laparoscopic colon resection.

Laparoscopic Gastrectomy

Laparoscopic curative resection of gastric cancer has been reported. The approaches used depended on the extent of the tumor. For early gastric cancers or smooth muscle tumors, some authors used a technique of laparoscopic intragastric resection or a combined laparoscopic-gastroscopic technique that employed standard laparoscopic ports and instruments to perform a wedge resection of the lesion from within the gastric lumen.

Other reports of resection for early gastric cancers describe laparoscopic distal gastrectomy with a primary anastomosis. These resections include a perigastric lymphadenectomy similar to what would be done in an open gastrectomy for cancer. Jagot et al reported on nine patients who underwent laparoscopic gastric mobilization and lymphadenectomy for esophageal cancer. These patients had combined open incisions (six through the right side of the chest and three through the left side of the neck) for esophageal resection and anastomosis. All intraabdominal portions of the procedures were completed laparoscopically. Mean hospital stay was 10.3 days, and no complications occurred.

The patients in these reports of laparoscopic gastric surgery did well with no complications in short-term follow-up; however, all reports included 10 patients or fewer. Using early gastric cancer or gastric lymphoma as an indication, an Italian group performed only 10 laparoscopic gastrectomies in more than 100 patients with gastric cancer in a 4-year period, showing the infrequent use of laparoscopic resection for gastric cancer.

In an international review of laparoscopic gastrectomies, Goh et al sent surveys to many surgeons known to have performed laparoscopic gastrectomies.
Among 118 laparoscopic gastrectomies performed, gastric cancer was the most common indication for the procedure (46 patients).

The indications for laparoscopic resection of gastric cancer must be limited to palliation of advanced gastric cancer and possibly treatment of early gastric cancer. The use of laparoscopy for resection of stage II or III gastric cancers must be evaluated in prospective randomized studies. The infrequent use of laparoscopic resection of gastric cancer, however, makes it difficult to evaluate this technique for future use. Even more difficult is training the inexperienced laparoscopic surgeon to perform and safely adopt this technique.

LAPAROSCOPIC RESECTION OF OTHER UPPER QUADRANT ABDOMINAL CANCERS

Still fewer reports have been published on laparoscopic resection of other upper quadrant abdominal cancers.

Laparoscopic resection of benign liver tumors measuring up to 9 cm in diameter has been reported using electrocautery, ultrasonic dissection, and endoscopic stapling devices to ensure minimal blood loss.70 Laparoscopic liver resection for malignant disease has also been reported for smaller lesions.71,72 Reports of laparoscopic distal pancreatectomy with splenectomy have shown the benefits of decreased pain and shorter hospitalization compared with open surgery.73 Gagner and Pomp74 have even reported three pancreateodudenumectomies performed laparoscopically.

However, each case required a significantly prolonged operative time, and the benefits of minimally invasive surgery, such as a decreased hospital stay, were not realized.

Laparoscopic splenectomy has been discussed in the context of staging for Hodgkin’s disease, and many authors have reported good results from laparoscopic splenectomy for a variety of diseases.75,76 However, primary or metastatic carcinoma of the spleen would be a rare indication.

Other curative laparoscopic procedures, such as laparoscopic resection of small bowel carcinoma, are feasible, but the reported experience is too limited to be a basis for evaluation. Partially be-
Table 3
Results of Laparoscopic Colon Resection

Reference	Year	No. of Patients	No. Resected for Malignancy	No. Converted to Open Procedures	Hospital Stay (Days)	Complications (No.)	Deaths (No.)
Jacobs et al\(^1\)							
Phillips et al\(^1\)							
Monson et al\(^1\)							
Quattlebaum et al\(^1\)							
Dean et al\(^1\)							
Jansen\(^1\)							
Plasencia et al\(^1\)							
Puente et al\(^1\)							
Slim et al\(^1\)							
Zucker et al\(^1\)							
Fine et al\(^1\)							
Lacy et al\(^1\)							
Tucker et al\(^1\)							
Begos et al\(^1\)							
Gellman et al\(^1\)							
Huscher et al\(^1\)							
Kwok et al\(^1\)							

NS = number of patients not specified, but report acknowledged that some patients were resected for cancer.
mortality (Table 2). Compared with traditional open resection, laparoscopic adrenalectomy has less intraoperative blood loss, a decreased requirement for pain medication, a shorter hospital stay, and an earlier return to normal diet and activities.89,93,96,98,101 Although the most common indications for laparoscopic adrenalectomy were pheochromocytoma, primary aldosteronism, nonfunctioning adenoma, and Cushing’s adenoma, cases of primary adrenal adenocarcinoma107 and carcinoma metastatic to the adrenal gland were reported.108

The laparoscopic approaches used for adrenalectomy have included transabdominal supine, transabdominal lateral decubitus, and lateral totally extraperitoneal with balloon dissection. The transabdominal supine approach allows for exploration of the entire abdominal cavity, including the opposite adrenal, without repositioning the patient. The transperitoneal lateral decubitus approach is, however, considered the best approach for maximal exposure of the gland.109 The totally extraperitoneal approach has yielded excellent results, although the exposure is less than optimal and the learning curve is higher than that of the transabdominal approaches.79,110

The most common complication of laparoscopic adrenalectomy has been hemorrhage, which, combined with poor exposure, was the most common reason for conversion to an open procedure.93

Few other complications or morbid conditions and only one death were reported, although one author emphasized the importance of careful handling of the gland and the use of a specimen bag for removal. Gagner et al109 reported a case in which the retrieval bag broke, leaking adrenal fluid into the abdomen, apparently resulting in marked prolonged hypotension that eventually resolved without sequelae.

Most experts consider large size (more than 6 cm) and evidence of invasion of surrounding structures to be contraindications to laparoscopic adrenalectomy, and some consider pheochromocytoma a relative contraindication. For other indications, however, the laparoscopic approach is the preferred method for removal of the adrenal gland if the surgeon is skilled in open adrenalectomy and in advanced laparoscopic techniques.

LAPAROSCOPIC RESECTION OF COLORECTAL CANCER

Laparoscopic colon resection is one of the most commonly performed advanced laparoscopic procedures. In comparison with open colon resection, the laparoscopic approach offers the patient decreased blood loss, earlier return of bowel function, shorter hospital stay, and lowered hospital costs.111,112 Many series of laparoscopic colectomies, including resection for malignant disease, have reported the safety and effectiveness of laparoscopic colon surgery (Table 3). The benefits of minimally invasive colectomy have been shown even in elderly and high-risk patients.130,131 Despite these studies, laparoscopic colon resection is still controversial, especially for the management of colon cancer.132-134

One concern about the laparoscopic approach for treatment of colon cancer is whether laparoscopic techniques can achieve true “oncologic” resection (i.e., wide margins and intact resection of areas of lymph node drainage) of the colon. Studies of animal and cadaver models measured the length of divided major arterial supply (i.e., inferior mesenteric artery) and the amount of lymph nodes remaining after resection of the colon to show that laparoscopic techniques could adhere to principles of cancer surgery.135,136

The adequacy of lymphadenectomy has been addressed by several studies, which consistently showed that the number of lymph nodes resected laparoscopically was similar to the number.
retrieved in open colectomy for cancer.112,115,116,120,126,128,131

The technique of laparoscopic colon resection also has been controversial. Some surgeons have performed completely laparoscopic colon resections as opposed to laparoscopic-assisted resections. The laparoscopic-assisted approach involves performing one or more components of the operation (for example, the anastomosis) outside the peritoneal cavity through a small incision. When a completely laparoscopic approach is used, all elements of the procedure are performed within the abdominal cavity.132

Studies comparing these two techniques have shown no significant differences in the strength of the anastomosis, the length of postoperative ileus, or the length of hospital stay.137,138

With the fast spread of laparoscopic techniques, another concern is the means by which a surgeon becomes adequately trained to do a laparoscopic colon resection for cancer. Experts in the field have admitted that the current 1- or 2-day training courses are severely inadequate.132 Their contention is supported by studies showing that the learning curve (as measured by operative time, complexity of cases, and percentage of conversions to an open procedure) seems to vary from 10 to 60 cases.139-141 Surgeons must try to obtain additional training after these courses and ask for assistance from surgeons who are more experienced with laparoscopic techniques.

Appropriate intraoperative judgment, such as when to convert to an open procedure, is also critical to the safe adoption of the laparoscopic approach for colectomy. Relative indications for converting to an open procedure include tumor invasion into small bowel, adhesions, fistulas, obesity, bulky tumor, bleeding, and thickened or short mesentery.112,114,115,120,121,124,126,127,129 It is important to identify the need to convert to an open procedure as soon as possible because this can reduce operative time and overall costs, both of which are significantly increased when conversion to an open technique is required.

Port Site Metastasis

Probably the most compelling argument against the use of laparoscopy for resecting colon cancer has arisen from the many reports of early postoperative recurrence in the port site.142-145 The exact mechanism of tumor implantation is not clear. Many reported port site metastases have occurred at secondary ports through which specimens were not removed. Ugarte146 reported a case in which a patient, 1 month before open resection of a colon cancer, underwent laparoscopic cholecystectomy and subsequently developed a recurrence of the colon cancer in one of the port sites used in the laparoscopic cholecystectomy. Montorsi et al143 reported a case of wound site recurrence after laparoscopic colon resection for cancer even after many precautions were taken, such as placing the specimen in a retrieval bag before removing it from the abdominal cavity. Evidence such as this has led to the belief that pneumoperitoneum itself might cause tumor cells to migrate or dislodge and spread throughout the abdomi-
The most likely mechanism of tumor implantation at trocar sites in laparoscopic colectomy seems to be direct implantation. Extraction of the specimen through a very small incision allows for the possibility of tumor cells shedding into the wound. Laparoscopic instruments, especially crushing instruments, can be involved in the direct transfer of tumor cells to abdominal wall trocar sites. Other mechanisms include dissemination of cancer cells in the irrigation fluid, especially with movement of trocars, and hematogenous spread.

Animal studies have evaluated the effects of laparotomy compared with those of laparoscopy on tumor growth and the propensity for abdominal wall recurrences. Most studies indicate that laparotomy has a permissive effect on tumor establishment and growth compared with laparoscopy.

Several animal studies show that the effects of pneumoperitoneum, especially with carbon dioxide, lead to increased implantation of tumor cells in the abdominal wall. Studies of rats undergoing laparoscopic surgery showed a threefold to fivefold increase in the incidence of metastases in the abdominal access wounds of those with pneumoperitoneum compared with those without pneumoperitoneum.

Some surgeons have proposed gasless laparoscopy to alleviate the theoretical concerns of pneumoperitoneum in cancer patients. An added benefit of gasless laparoscopy is that conventional early postoperative intraperitoneal 5-FU was used in an attempt to control the disease. These patients were disease free 1.5 years after this treatment.

Other intraoperative measures proposed to prevent port site metastasis include handling the tumor as little as possible, suturing the ports in place so they cannot move during the operation, irrigating the peritoneal cavity with povidone-iodine, irrigating port sites with sterile water, and deflating the abdomen before removing the trocars.

Current Recommendations
Some early reports of prospective or randomized studies comparing laparoscopic colectomy with open colectomy specifically for colon cancer have found more favorable results with the laparoscopic approach. However, the American Society of Colon and Rectal Surgeons currently recommends that curative resection of colorectal cancer not be performed laparoscopically except as part of a prospective, controlled clinical trial.
Society of Colon and Rectal Surgeons currently recommends that curative resection of colorectal cancer not be performed laparoscopically unless it is part of a prospective, controlled clinical trial. Most experts agree with this cautious approach and recommend that for colon cancer, the laparoscopic approach be limited to either palliative resection of advanced lesions or curative resection of early lesions. However, it is difficult to identify lesions that are early cancers by laparoscopic evaluation alone, and trocar site metastases from early colon cancers have been reported in patients who were treated with laparoscopic resection.

Laparoscopy for Palliation of Cancer

The use of laparoscopic techniques for palliation of abdominal cancer may be one of the best applications of minimally invasive surgery. In patients who no longer have the hope of cure but are plagued by the complications of an unresectable tumor (such as obstructive jaundice or intractable pain), palliation should be attempted by the least invasive means possible. Minimally invasive techniques, including laparoscopic surgery, offer a great advantage over open surgery in patients whose life expectancy is limited because of cancer.

Laparoscopic choledochojejunostomy and gastrojejunostomy are technically feasible for the palliation of malignant duodenal or biliary obstruction. The most common tumor associated with these conditions is an unresectable cancer of the pancreas. Laparoscopic bypass of the duodenum, with the use of endoscopic stapling devices and endoscopic suturing techniques, can be done in about the same amount of time as the open procedure with little morbidity and mortality.

Laparoscopic choledochojejunostomy also has been shown to be effective, although it requires a patent cystic duct with no impending obstruction from cancer and a gallbladder free of stones. Benefits of the laparoscopic approach for choledochojejunostomy or gastrojejunostomy over the open procedure include decreased postoperative hospital stay and earlier return to regular diet. Morbidity, mortality, and survival rates in patients treated laparoscopically are similar to those of patients treated with open bypass.

Tarnasky et al studied the opportunity to use laparoscopic bypass for biliary obstruction. Over a 2-year period, these investigators assessed cholangiograms in patients with malignant biliary obstruction and found that nearly half the patients were ineligible for choledochojejunostomy because of previous biliary surgery (29%) or hilar tumors (17%). For patients with more proximal malignant obstructions (common bile duct or hilar), Soulez et al reported a technique of hepaticogastrostomy using fluoroscopic, endoscopic, and laparoscopic guidance for biliary decompression. Appropriate patient selection is essential for the achievement of good re-
sults with minimally invasive procedures for palliation of malignant obstructive jaundice.

The use of laparoscopic techniques to assist in the treatment and palliation of hepatic tumors offers significant advantages compared with open surgery. With the assistance of laparoscopic ultrasound, hepatic cryotherapy has been used to treat patients with unresectable malignancy metastatic to the liver and for treatment of primary liver carcinomas.163,164 Although the evaluation of hepatic cryotherapy for survival advantage is ongoing, the laparoscopic approach can significantly lessen the pain and reduce the postoperative recovery period compared with open surgery.

A laparoscopic technique also has been described for the implantation of an intraarterial catheter for regional chemotherapy of unresectable liver metastasis in patients without evidence of extrahepatic metastatic disease.165 The potential benefits of decreased postoperative pain, faster recovery, and possibly, reduced immunosuppressive effect compared with open surgery are significant advantages in this patient group. Laparoscopic colon resection can be performed concomitantly in these patients if the liver metastases are synchronous lesions.

Laparoscopic colectomy for palliation is an accepted procedure that allows patients to avoid the trauma of open surgery. With the decreased recovery time after minimally invasive surgery, patients can return to normal activities faster and may begin adjuvant therapies much sooner than they would after an open colon resection. These benefits are especially important to patients and their families when life expectancy is limited.

Another role for endoscopic techniques in palliation of cancer was described by Melki et al.166 Thoracoscopic splanchnicectomy was used to relieve intractable abdominal pain caused by unresectable pancreatic cancer. Subsequent reports showed the effectiveness of thoracoscopic denervation for the relief of upper abdominal cancer pain.167,168 Takahashi et al169 described a group of patients who underwent this procedure, all of whom had immediate pain relief postoperatively.

In patients such as these, who are usually in the last stages of their disease, a minimally invasive procedure that can significantly relieve pain may make the remaining days or weeks of life tolerable.

Carcinoma of the gallbladder is found in about 1% to 2% of all cholecystectomies performed.

Laparoscopic Cholecystectomy: Unsuspected Carcinoma of the Gallbladder and Trocar Site Metastasis

Laparoscopic cholecystectomy is by far the most commonly used therapeutic laparoscopic procedure in all of general surgery. In a short time, laparoscopic cholecystectomy has become the procedure of choice for most gallbladder diseases.

Despite some early reports of increased bile duct injuries and deaths resulting from the laparoscopic ap-
laparoscopic cholecystectomy has been shown to be safe and effective when performed by skilled laparoscopic surgeons. We have done more than 3,000 laparoscopic cholecystectomies at our institution and have encountered only one bile duct injury, which was successfully repaired over a T-tube.

Although the benefits of laparoscopic cholecystectomy have been impressive, the rare occurrence of an unsuspected carcinoma of the gallbladder and reports of subsequent metastasis to abdominal wall trocar sites have raised some concern. Carcinoma of the gallbladder is found in about 1% to 2% of all cholecystectomies performed.

The percentage of carcinomas of the gallbladder in relation to cholecystectomies performed may be decreasing, and the gallbladder cancers found may be at an earlier stage with the advent of laparoscopic cholecystectomy. With this minimally invasive approach, more patients are electing to have surgery earlier for symptomatic cholelithiasis, and more surgeons feel comfortable proceeding with laparoscopic cholecystectomy in patients whose age or medical condition precludes open surgery.

In one large series, Yamaguchi et al reported that the incidence of unsuspected carcinoma of the gallbladder detected during pathologic study was less than 1% (24 of 2,616 laparoscopic cholecystectomies). Abdominal wall metastasis occurred in three of the 24 patients.

The literature has many more case reports of trocar site metastasis from unsuspected carcinoma of the gallbladder. Approximately half of all trocar site metastases reported are from carcinoma of the gallbladder.

MANAGEMENT OF UNSUSPECTED CARCINOMA OF THE GALLBLADDER AND TROCAR SITE METASTASIS

The possibility of gallbladder carcinoma should be entertained in all patients undergoing laparoscopic cholecystectomy, especially the elderly, because this entity may be difficult to diagnose preoperatively.

Preoperative findings that suggest gallbladder carcinoma include the presence of a fixed mass inside the gallbladder, a thickened posterior gallbladder wall with no distinct plane between the gallbladder and the liver, and a mass effect within the gallbladder invading adjacent organs. These may be found on ultrasound or CT scan.

Signs of gallbladder carcinoma during laparoscopic surgery include difficulty in dissecting the gallbladder from the gallbladder bed of the liver; increased size of the gallbladder; a thickened, whitish wall; and neovascularization of the wall.

When gallbladder carcinoma is suspected preoperatively or intraoperatively, conversion to an open procedure should be considered. Jacobi et al reported a case of laparoscopic cholecystectomy that was converted to an open procedure because of technical problems. A microscopic adenocarcinoma was diagnosed at final pathologic study. Two
months after the operation, the patient developed metastases to the abdominal wall at two trocar sites, but the paramedian laparotomy incision was free of tumor. This finding supports the recommendation that open laparotomy be performed when cancer is suspected.

If the laparoscopy is not converted to an open procedure when cancer is suspected, a laparoscopic retrieval bag should be used when the gallbladder is removed from the abdomen.
Some surgeons have recommended laparoscopic cholecystectomy as the primary therapy when a tumor of the gallbladder is believed to be noninvasive. Porter et al. have reported the use of laparoscopic cholecystectomy as curative treatment for a noninvasive carcinoid tumor of the gallbladder. Other cases have been reported in which laparoscopic cholecystectomy was used for preoperatively suspected gallbladder carcinoma. Because of the small number of patients and the limited follow-up, however, the role of laparoscopic cholecystectomy for definitive therapy has not yet been established.

A gallbladder removed laparoscopically from a patient who was suspected of having gallbladder cancer preoperatively should be opened and undergo biopsy before the patient is awakened. If an invasive cancer is diagnosed on frozen section, an open resection of the liver and excision of port sites, especially the umbilical port site, should be considered.

Unfortunately, gallbladder carcinoma is sometimes not diagnosed until the final pathology report is made. In patients with in situ carcinoma or T1 lesions without invasion of the lymphatic, venous, or perineural spaces, no further resection is indicated. However, when an invasive tumor is diagnosed, another operation is recommended for resection of the liver covering the gallbladder bed. The excision of trocar sites also should be considered. As was mentioned earlier, the umbilical trocar site is especially at risk for metastasis because the gallbladder is typically removed through this incision. Microscopic metastasis in the umbilical trocar site has been documented as early as 8 days after the initial laparoscopic cholecystectomy. A trocar site used for drain placement is also at high risk for metastasis.

A high index of suspicion for gallbladder carcinoma must be maintained, especially in patients with the previously mentioned preoperative and intraoperative signs of malignancy. Although laparoscopic cholecystectomy may be curative for noninvasive gallbladder carcinoma, conversion to an open operation should be considered if invasive gallbladder carcinoma is suspected. The finding of invasive gallbladder carcinoma is treated by segmental liver resection to include the gallbladder bed and excision of all laparoscopic port sites.

Conclusion

After the long hibernation of laparoscopic surgery, in the last decade modern technology has created a spate of laparoscopic techniques and procedures. This new technology coupled with rapidly increasing surgical experience has made laparoscopy a viable tool in the diagnosis and management of abdominal malignancy (Figure). For patients devastated by a diagnosis of malignancy, avoiding open surgery with concomitant benefits such as decreased pain and shorter hospitalization can be a bright spot in the battle against cancer.

Laparoscopy, however, has not undergone such rapid development without significant costs. Many surgeons, under economic and competitive pressures, have begun to perform laparoscopic procedures without adequate training or monitoring. Increases in major complications and many deaths have resulted. Credentialing of laparoscopic procedures has varied and is sometimes based only on the experience gained at a 1- or 2-day course. Only when thorough training and preparation are required and strict credentialing is mandated can the risk of complications from laparoscopic surgery can be minimized.

The problem of adequate training and monitoring has been recognized, and improved methods of training (such as multimedia interactive computer-based training and virtual reality simula-
tion) are being developed. For surgeons who cannot find appropriately trained physicians to monitor or assist them during the learning curve for laparoscopic procedures, the use of high-bandwidth telecommunications, or telemedicine, is being studied to provide expert laparoscopic surgeons for proctoring worldwide.

Minimally invasive technology continues to advance at a rapid pace, and now “needle scopes” and other instruments less than 3 mm in diameter are being used. Many laparoscopic procedures for diagnosis and staging of malignancy may soon be done in the physician’s office under local anesthesia. The concurrent advances in oncologic research such as immunoscintigraphy and radioimmune-guided surgery will undoubtedly be used with minimally invasive techniques to improve the care of the cancer patient.

The future of laparoscopic surgery for the management of malignancy holds exciting prospects. However, this bright future is in jeopardy if scientific evaluation, including prospective studies, of these new procedures, especially those for attempted curative resection, is not carried out to determine which procedures benefit the patient. Although surgeons, with pressure from patients, hospitals, and equipment companies, are happy to perform laparoscopic procedures offering their patients less pain and earlier return to normal activities, they must remember first to do no harm.

References
1. Fierer AS, Sackier JM: Laparoscopic general surgery: A current state of affairs. Part I. Cont Surg 1995;46:239-245.
2. Gunning JE: The history of laparoscopy. J Reprod Med 1974;12:222-226.
3. Stellato TA: History of laparoscopic surgery. Surg Clin North Am 1992;72:997-1002.
4. Veress J: Neues Instrument zur Ausfuhrung von Brustoder Bauchpunktionen und Pneumothoraxbehandlung. Dtsch Med Wochenschr 1938;41:1480.
5. Nagy AG, Poulin EC, Girotti MJ, et al: History of laparoscopic surgery. Can J Surg 1992;35:271-274.
6. Semm K: Endoscopic appendectomy. Endoscopy 1983;15:59-64.
7. Muhe E: Die erste Cholecystektomie durch das Laparoskop. English summary. Langenbecks Arch Klin Chir 1986;369:804.
8. Dubois F, Icard P, Berthelot G, et al: Coelioscopic cholecystectomy: Preliminary report of 36 cases. Ann Surg 1990;211:60-62.
9. Reddick EJ, Olsen DO: Laparoscopic laser cholecystectomy: A comparison with mini-lap cholecystectomy. Surg Endosc 1989;3:131-133.
10. Banta HD, Vondeling H: Diffusion of minimally invasive therapy in Europe. Health Policy 1993;23:125-133.
11. Banta HD: Implications for hospitals, health workers, and patients. Minimally Invasive Surgery 1993;3:1546-1549.
12. Jones DB, Guo LW, Reinhard MK, et al: Impact of pneumoperitoneum on trocar site implantation of colon cancer in a hamster model. Dis Colon Rectum 1995;38:1182-1188.
13. Easter DW, Cuschieri A, Nathanson LK, et al: The utility of diagnostic laparoscopy for abdominal disorders: Audit of 120 patients. Arch Surg 1992;127:379-383.
14. Greene FL: Laparoscopy in malignant disease. Surg Clin North Am 1992;72:1125-1137.
15. Sackier JM, Berci G, Paz-Partlow M: Elective diagnostic laparoscopy. Am J Surg 1991;161:326-331.
16. D’Ugo DM, Coppola R, Persiani R, et al: Immediately preoperative laparoscopic staging for gastric cancer. Surg Endosc 1996;10:996-999.
17. Lowy AM, Mansfield PF, Leach SD, et al: Laparoscopic staging for gastric cancer. Surgery 1996;119:611-614.
18. Burke EC, Karpeh MS, Conlon KC, et al: Laparoscopy in the management of gastric adenocarcinoma. Ann Surg 1997;225:262-267.
19. John TG, Greig JD, Crosbie JL, et al: Superior staging of liver tumors with laparoscopy and laparoscopic ultrasound. Ann Surg 1994;220:711-719.
20. Molloy RG, McCourtney JS, Anderson JR: Laparoscopy in the management of patients with cancer of the gastric cardia and oesophagus. Br J Surg 1995;82:352-354.
21. Bemelman WA, De Wit LT, van Delden OM, et al: Diagnostic laparoscopy combined with laparoscopic ultrasonography in staging of cancer of the pancreatic head region. Br J Surg 1995;82:820-824.
22. Babineau TJ, Lewis WD, Jenkins RL, et al: Role of staging laparoscopy in the treatment of hepatic cancer. CA Cancer J Clin 1997;47:327-350.
malignancy. Am J Surg 1994;167:151-155.
23. John TG, Greig JD, Carter DC, et al: Carcinoma of the pancreatic head and peri-ampullary region: Tumor staging with laparoscopy and laparoscopic ultrasonography. Ann Surg 1995;221:156-164.
24. Bemelman WA, van Delden OM, Van Lanschot JJ, et al: Laparoscopy and laparoscopic ultrasonography in staging of carcinoma of the esophagus and gastric cardia. J Am Coll Surg 1995;181:421-425.
25. Hemming AW, Nagy AG, Scudamore CH, et al: Laparoscopic staging of intraabdominal malignancy. Surg Endosc 1995;9:325-328.
26. Possik RA, Franco EL, Pires DR, et al: Sensitivity, specificity, and predictive value of laparoscopy for the staging of gastric cancer and for the detection of liver metastases. Cancer 1986;58:1-6.
27. Reed WP, Mustafa IA: Laparoscopic screening of surgical candidates with pancreatic cancer or liver tumors. Surg Endosc 1997;11:12-14.
28. Callery MP, Strasberg SM, Doherty GM, et al: Staging laparoscopy with laparoscopic ultrasonography: Optimizing resectability in hepatobiliary and pancreatic malignancy. J Am Coll Surg 1997;185:33-39.
29. Bhargava DK, Verma K, Dasarathy S: Laparoscopic and histological features of hepatocellular carcinoma. Indian J Med Res 1991;94:424-425.
30. Kameda Y, Shinji Y: Early detection of hepatocellular carcinoma by laparoscopy; Yellow nodules as diagnostic indicators. Gastroint Endosc 1992;28:554-559.
31. Falcone RE, Wanamaker SR, Barnes F, et al: Laparoscopic vs. open wedge biopsy of the liver. J Laparoendosc Surg 1993;3:325-329.
32. Holcomb GW 3rd, Tomita SS, Haase GM, et al: Minimally invasive surgery in children with cancer. Cancer 1995;76:121-128.
33. Mackenzie DJ, James B, Geller SA, et al: Laparoscopic staging of intraabdominal malignancy. J Pediatr Surg 1992;27:93-95.
34. Easter DW, Jamshidipour R, McQuaid K: Mesothelioma of the peritoneum: a 55-year institutional review with emphasis on surgical therapy. J Surg Oncol 1985;28:217-221.
35. Cuschieri A: Laparoscopy for pancreatic cancer: Does it benefit the patient? Eur J Surg Oncol 1988;14:41-44.
36. Warshaw AL: Implications of peritoneal cytology for staging of early pancreatic cancer. Am J Surg 1991;161:26-29.
37. Warshaw AL, Gu ZY, Wittenberg J, et al: Preoperative staging and assessment of resectability of pancreatic cancer. Arch Surg 1990;125:230-233.
38. Leibenhaut MH, Hoppe RT, Efron B, et al: Prognostic indicators of laparotomy findings in clinical stage I-II supradiaphragmatic Hodgkin's disease. J Clin Oncol 1989;7:81-91.
39. Mauch P, Larson D, Osteen R, et al: Prognostic factors for positive surgical staging in patients with Hodgkin's disease. J Clin Oncol 1990;8:257-265.
40. Berci G, Cuschieri A: Practical Laparoscopy. London, Bailliere Tindall, 1986, pp 35-41.
41. Chabner BA, Johnson RE, Young RC, et al: Sequential nonsurgical and surgical staging of non-Hodgkin's lymphoma. Ann Intern Med 1976;85:149-154.
42. Greene FL, Brown PA: Laparoscopic approaches to abdominal malignancy. Semin Surg Oncol 1994;10:386-390.
43. Schoborg TW: Laparoscopic staging of prostatic carcinoma. Semin Surg Oncol 1994;10:422-430.
44. Bukfly GB, Golzolzang NJ, et al: Laparoscopic pelvic lymph node dissection: A review of 103 consecutive cases. J Urol 1994;151:670-674.
45. Prasad BR, Parr NJ, Fowler JW: Laparoscopic pelvic lymphadenectomy: Early results. Br J Urol 1994;73:271-274.
46. Assimos DG, Jarow JP: Role of laparoscopic pelvic lymph node dissection in the management of patients with penile cancer and inguinal adenopathy. J Endourol 1994;8:365-369.
47. Janetschek G, Reissigl A, Peschel R, et al: Diagnostic laparoscopic retroperitoneal lymph node dissection for non-seminomatous testicular tumor. Ann Urol (Paris) 1995;29:81-90.
malignancy. Semin Surg Oncol 1994;10:431-439.
59. Childers JM, Nasseri A: Minimal access surgery in gynecologic cancer: We can, but should we? Curr Opin Obstet Gynecol 1995;7:57-62.
60. Fowler JM, Carter JR, Carlson JW, et al: Lymph node yield from laparoscopic lymphadenectomy in cervical cancer: A comparative study. Gynecol Oncol 1993;51:187-192.
61. Melendez TD, Childers JM, Nour M, et al: Laparoscopic staging of endometrial cancer: The learning experience. J Soc Laparoendosc Surg 1997;145-149.
62. Kavoussi LR, Sosa E, Chandhoke P, et al: Complications of laparoscopic pelvic lymph node dissection. J Urol 1993;149:322-325.
63. Jones WO, Cable RL, Gilling PJ: Laparoscopic pelvic lymphadenectomy for malignant melanoma. Aust N Z J Surg 1995;65:765-767.
64. Ohashi S: Laparoscopic intraluminal (intragastric) surgery for early gastric cancer: A new concept in laparoscopic surgery. Surg Endosc 1995;9:169-171.
65. Ballesta-Lopez C, Bastida-Vila X, Catarci M, et al: Laparoscopic Billroth II distal subtotal gastrectomy with gastric stump suspension for gastric malignancies. Am J Surg 1996;171:289-292.
66. Goh PM, Alponat A, Mak K, et al: Early international results of laparoscopic gastrectomies. Surg Endosc 1997;11:650-652.
67. Gurbuz AT, Peetz ME: Resection of a gastric leiomyoma using combined laparoscopic and gastroscope approach. Surg Endosc 1997;11:285-286.
68. Jagot P, Sauvanet A, Berthoux L, et al: Laparoscopic mobilization of the stomach for oesophageal replacement. Br J Surg 1996;83:540-542.
69. Tamborino T, Barbieri M: Techniques of laparoscopic gastrectomy for gastric cancer. Presented at the First International Symposium of Laparo-thorascopic Surgery; October 19, 1996; Tbilisi, Georgia.
70. Ferzli G, David A, Kiel T: Laparoscopic resection of a large hepatic tumor. Surg Endosc 1995;9:733-735.
71. Nietsch M, Watanabe Y, Ueda S, et al: Minimally invasive hepatic resection using laparoscopic surgery and minithoracotomy. Arch Surg 1997;132:206-208.
72. Hashizume M, Takenaka K, Yanaga K, et al: Laparoscopic hepatic resection for hepatocellular carcinoma. Surg Endosc 1995;9:1289-1291.
73. Salky BA, Edye M: Laparoscopic pancreactectomy. Surg Clin North Am 1996;76:539-545.
74. Gagner M, Pomp A: Laparoscopic pylorus-preserving pancreaticoduodenectomy. Surg Endosc 1994;8:408-410.
75.四种 SP, Martin IG, Alao D, et al: Laparoscopic splenectomy: The suspended pedicle technique. Surg Endosc 1996;10:393-396.
76. Trias M, Targarona EM, Balague C: Laparoscopic splenectomy: An evolving technique. A comparison between anterior and lateral approaches. Surg Endosc 1996;10:389-392.
77. Gagner M, Lacroix A, Bolte E: Laparoscopic adrenalectomy in Cushing’s syndrome and pheochromocytoma. N Engl J Med 1992;327:1033. Letter.
78. Marsas E, Mutter D, Wheeler MH: Laparoscopic right and left adrenalectomies: Surgical procedures. Surg Endosc 1996;10:912-915.
79. Heintz A, Walgenbach S, Junginger T: Results of endoscopic retroperitoneal adrenalectomy. Surg Endosc 1996;10:633-635.
80. Matsuda T, Terachi T, Yoshida O: Laparoscopic adrenalectomy: The surgical technique and initial results of 13 cases. Minimally Invasive Therapy 1993;2:123-127.
81. Stoker ME, Patwardhan N, Maini BS: Laparoscopic adrenal surgery. Surg Endosc 1995;9:387-391.
82. Miccoli P, Iaconi P, Conte M, et al: Laparoscopic adrenalectomy. J Laparoendosc Surg 1995;5:221-226.
83. Schlengers RT, van Heerden JA, Grant CS, et al: Laparoscopic left adrenalectomy for aldosteronoma: Early Mayo Clinic experience. Mayo Clin Proc 1995;70:844-846.
84. Nies C, Bartsch D, Schaefer U, et al: Laparoscopic adrenalectomy. Dtsch Med Wochenschr 1993;118:1831-1836.
85. Suzuki K, Kageyama S, Ueda D, et al: Laparoscopic adrenalectomy: Clinical experience with 12 cases. J Urol 1993;150:1099-1102.
86. Ono Y, Katoh N, Kinukawa T, et al: Laparoscopic nephrectomy, radical nephrectomy and adrenalectomy: Nagoya experience. J Urol 1994;152:1962-1966.
87. Fletcher DR, Beiles CB, Hardy KJ: Laparoscopic adrenalectomy. Aust N Z J Surg 1994;64:427-430.
88. Uchida M, Imaive Y, Yoneda K, et al: Endoscopic adrenalectomy by retroperitoneal approach for primary aldosteronism. Hinyokika Kiyo 1994;40:43-46.
89. Naito S, Uozumi J, Ichimiya H, et al: Laparoscopic adrenalectomy: Comparison with open adrenalectomy. Eur Urol 1994;26:253-257.
90. Takeda M, Go H, Imai T, et al: Experience with 17 cases of laparoscopic adrenalectomy: Use of ultrasonic aspirator and argon beam coagulator. J Urol 1994;152:902-905.
91. Hata M, Nakagawa K, Yanaihara H, et al: Experience in seven cases of laparoscopic adrenalectomy. Hinyokika Kiyo 1995;41:507-510.
92. Mandressi A, Buizza C, Antonelli D, et al: Retroperitoneoscopy. Ann Urol (Paris) 1995;29:91-96.
93. Prinz RA: A comparison of laparoscopic and open adrenalectomies. Arch Surg 1995;130:404-408.
94. Mercan S, Seven R, Ozarmagan S, et al: Endoscopic retroperitoneal adrenalectomy: Surgery 1995;118:1071-1076.
95. Go H, Takeda M, Imai T, et al: Laparoscopic adrenalectomy for Cushing’s syndrome: Comparison with primary aldosteronism. Surgery 1995;117:11-17.
96. Guazzoni G, Montorsi F, Bocciardi A, et al: Transperitoneal laparoscopic versus open adrenalectomy for benign hyperfunctioning adrenal tumors: A comparative study. J Urol 1995;153:1597-1600.
97. Chapuis Y, Maiguen B, Abboud B: Adrenalectomy under celioscopy: Experience of 25 operations. Presse Med 1995;24:845-848.
98. Nakagawa K, Murai M, Deguchi N, et al: Laparoscopic adrenalectomy: Clinical results in 25 patients. J Endourol 1995;9:265-267.
99. Brown JP, Albala DM, Jahoda A: Laparoscopic surgery for adrenal lesions. Semin Surg Oncol 1996;12:96-99.
100. MacGillivray DC, Shichman SJ, Ferrer FA, et al: A comparison of open vs laparoscopic adrenalectomy. Surg Endosc 1996;10:987-990.
101. Brunt LM, Doherty GM, Norton JA, et al: Laparoscopic adrenalectomy compared to open adrenalectomy for benign adrenal neoplasms. J Am Coll Surg 1996;183:1-10.
102. Walz MK, Peitgen K, Hoermann R, et al: Posterior retroperitoneoscopy as a new minimally invasive approach for adrenalectomy: Results of 30 adrenalectomies in 27 patients. World J Surg 1996;20:769-774.
103. Fernandez-Cruz L, Saenz A, Benarroch G, et al: Does hormonal function of the tumor influence the outcome of laparoscopic adrenalectomy? Surg Endosc 1996;10:1088-1091.
104. Gagner M: Laparoscopic adrenalectomy. Surg Clin North Am 1996;76:523-537.
105. Linos DA, Stylopoulos N, Boukis M, et al: Anterior, posterior, or laparoscopic approach for the management of adrenal diseases? Am J Surg 1997;173:120-125.
106. Horgan S, Sinanan M, Helton WS, et al: Use of laparoscopic techniques improves outcome from adrenalectomy. Am J Surg 1997;173:371-374.
107. Rutherford JC, Gordon RD, Stowasser M, et al: Laparoscopic adrenalectomy for adrenal tumours causing hypertension and for ‘incidentalomas’ of the adrenal on computerized tomography scanning. Clin Exp Pharmacol Physiol 1995;22:490-492.
108. de Canniere L, Lorge F, Rosiere A, et al: From laparoscopy in colorectal surgery: A prospective evaluation of laparoscopic-assisted colectomy in an unselected group of patients. Lancet 1992;340:831-833.
109. Quattlebaum JH Jr, Flanders HD, Usher CH: 3rd: Laparoscopically assisted colectomy. Surg Laparosc Endosc 1993;3:81-87.
110. Dean PA, Beart RW Jr, Nelson H, et al: Laparoscopic-assisted segmental colectomy: Early Mayo Clinic experience. Mayo Clin Proc 1994;69:834-840.
111. Jansen A: Laparoscopic-assisted colon resection: Evolution from an experimental technique to a standardized surgical procedure. Ann Chir Gynaecol 1994;83:86-91.
112. Plasencia G, Jacobs M, Verdeja JC, et al: Laparoscopic-assisted sigmoid colectomy and low anterior resection. Dis Colon Rectum 1994;37:829-833.
113. Puente I, Sosa JL, Sleeman D, et al: Laparoscopic assisted colorectal surgery. J Laparoendosc Surg 1994;4:1-7.
114. Slim K, Pezet D, Stenel J Jr, et al: Prospective analysis of 40 initial laparoscopic colorectal resections: A plea for a randomized trial. J Laparoendosc Surg 1994;4:241-245.
115. Zucker KA, Pitcher DE, Martin DT, et al: Laparoscopic-assisted colon resection. Surg Endosc 1994;8:12-18.
116. Fine AP, Lanasa S, Gannon MP, et al: Laparoscopic colon surgery: Report of a series. Am Surg 1995;61:412-416.
117. Lacy AM, Garcia-Valdecasas JC, Pique JM, et al: Short-term outcome analysis of a randomized study comparing laparoscopic vs open colectomy for colon cancer. Surg Endosc 1995;9:1101-1105.
118. Tucker JG, Ambrose WL, Orange GR, et al: Laparoscopically assisted bowel surgery: Analysis of 114 cases. Surg Endosc 1995;9:297-300.
119. Begos DG, Arsenault J, Ballantyne GH: Laparoscopic colon and rectal surgery at a VA hospital: Analysis of the first 50 cases. Surg Endosc 1996;10:1049-1056.
120. Hellman L, Salpy B, Edye M: Laparoscopic assisted colectomy. Surg Endosc 1996;10:1041-1044.
121. Henschler C, Silecchia G, Croce E, et al: Laparoscopic colorectal resection: A multicenter Italian study. Surg Endosc 1996;10:875-879.
122. Kwok SP, Lau WY, Carey PD, et al: Prospective evaluation of laparoscopic-assisted large bowel excision for cancer. Ann Surg 1996;223:170-176.
123. Peters WR, Fleshman JW: Minimally invasive colectomy in elderly patients. Surg Laparosc Endosc 1995;5:477-479.
124. Ara-Thorbeck C, Garcia-Caballero M, Salvi M, et al: Laparoscopic indications and advantages of laparoscopic-assisted colon resection for carcinoma in elderly patients. Surg Laparosc Endosc 1994;4:110-118.
125. Jager RM, Monson JRT, Sackier J, et al: Laparoscopic resection of colorectal cancer. Cont Surg 1995;6:93-111.
126. Forde KA, Hulten L: Laparoscopy in colorec-
Wound metastases following laparoscopic and open surgery for abdominal cancer in a rat model. Br J Surg 1996;83:1087-1090.

152. Kawamura YJ, Saito H, Sawada T, et al: Laparoscopic-assisted colectomy and lymphadenectomy without peritoneal insufflation for sigmoid colon cancer patients. Dis Colon Rectum 1995;38:550-552.

153. Schneider JJ, Smith RS, Organ CH Jr: Apneumic laparoscopy in surgical oncology. Semin Surg Oncol 1994;10:391-396.

154. Demetrick JS, Liggins RT, Machan L, et al: The development of a novel intraperitoneal tumor-seeding prophylactic. Am J Surg 1997;173:403-406.

155. Jacquet P, Sugarbaker PH: Wound recurrence after laparoscopic colectomy for cancer: New rationale for intraoperative intraperitoneal chemotherapy. Surg Endosc 1996;10:295-296. Editorial.

156. Jacquet P, Averbach AM, Stephens AD, et al: Cancer recurrence following laparoscopic colectomy: Report of two patients treated with heated intraperitoneal chemotherapy. Dis Colon Rectum 1995;38:1110-1114.

157. Franklin ME Jr, Rosenthal D, Norem RF: Prospective evaluation of laparoscopic colon resection versus open colon resection for adenocarcinoma: A multicenter study. Surg Endosc 1995;9:811-816.

158. Shimi S, Banting S, Cuschieri A: Laparoscopy in the management of pancreatic cancer: Endoscopic cholecystojenunostomy for advanced disease. Br J Surg 1992;79:317-319.

159. Rhodes M, Nathanson L, Fielding G: Laparoscopic biliary and gastric bypass: A useful adjunct in the treatment of carcinoma of the pancreas. Gut 1995;36:778-780.

160. Wu J, Holtzapfel D, Eubanks S: Open versus laparoscopic palliative procedures for unresectable periampullary tumors. Abstract from the Joint Meeting of the Sections on Surgery, Gastroenterology, and Radiology.

161. Tarnasky PR, England RE, Lail LM, et al: Cystic duct patency in malignant obstructive jaundice: An ERCP-based study relevant to the role of laparoscopic cholecystojejunostomy. Ann Surg 1995;221:265-271.

162. Soulez G, Gagner M, Therasse E, et al: Malignant biliary obstruction: Preliminary results of palliative treatment with hepatico-gastrostomy under fluoroscopic, endoscopic, and laparoscopic guidance. Radiology 1994;192:241-246.

163. Cuschieri A, Crosthwaite G, Shimi S, et al: Hepatic cryotherapy for liver tumors: Development and clinical evaluation of a high efficiency insulated multineedle probe system for open and laparoscopic use. Surg Endosc 1995;9:483-489.

164. Wren SM, Coburn MM, Yan M, et al: Is cryosurgical therapy appropriate for treating hepatocellular cancer? Arch Surg 1997;132:599-604.

165. Feliciotti F, Paganini A, Guerrieri M, et al: Laparoscopic intra-arterial catheter implantation for regional chemotherapy of liver metastases. Surg Endosc 1996;10:449-452.

166. Melki J, Riviere J, Roullee N, et al:
Splanchnicectomie thoracique sous video-thoracoscopic. Presse Med 1993;22:1095-1097.

167. Worsey J, Ferson PF, Keenan RJ, et al: Thoracoscopic pancreatic denervation for pain control in irresectable pancreatic cancer. Br J Surg 1993;80:1051-1052.

168. Lin CC, Mo LR, Lin YW, et al: Bilateral thoracoscopic lower sympathetic-splanchnicectomy for upper abdominal cancer pain. Eur J Surg 1994;572(Suppl):59-62.

169. Takahashi T, Kakita A, Izumika Z, et al: Thoracoscopic splanchnicectomy for the relief of intractable abdominal pain. Surg Endosc 1996;10:65-68.

170. Green FL: New York State Health Department ruling: A “wake-up call” for all. Surg Endosc 1992;6:271. Editorial.

171. Ress AM, Sarr MG, Nagorney DM, et al: Spectrum and management of major complications of laparoscopic cholecystectomy. Am J Surg 1993;165:655-662.

172. The Southern Surgeons Club: A prospective analysis of 1518 laparoscopic cholecystectomies. N Engl J Med 1991;324:1073-1078.

173. Airan M, Appel M, Berci G, et al: Retrospective and prospective multi-institutional laparoscopic cholecystectomy study organized by the Society of American Gastrointestinal Endoscopic Surgeons. Surg Endosc 1992;6:169-176.

174. Garcha IS, Ramshaw BJ: An analysis of over 3,000 laparoscopic cholecystectomies performed at one institution. Presented at the First International Symposium of Laparo-thoracoscopic Surgery; October 20, 1996; Tbilisi, Georgia.

175. Beltz WR, Condon RE: Primary carcinoma of the gallbladder. Ann Surg 1974;180:180-184.

176. Shibashi T, Nagai H, Yasuda T, et al: Two cases of early gallbladder cancer incidentally discovered by laparoscopic cholecystectomy. Surg Laparosc Endosc 1995;5:21-26.

177. Yamaguchi K, Chijiwa K, Ichimiyi H, et al: Gallbladder carcinoma in the era of laparoscopic cholecystectomy. Arch Surg 1996;131:981-985.

178. Drouard F, Delamarre J, Capron JP: Cutaneous seeding of gallbladder cancer after laparoscopic cholecystectomy. N Engl J Med 1991;325:1316. Letter.

179. Nduka CC, Monson JR, Menzies-Gow N, et al: Abdominal wall metastases following laparoscopy. Br J Surg 1994;81:648-652.

180. Targarona EM, Pons MJ, Viella P, et al: Unsuspected carcinoma of the gallbladder: A laparoscopic dilemma. Surg Endosc 1994;8:211-213.

181. Kim HJ, Roy T: Unexpected gallbladder cancer with cutaneous seeding after laparoscopic cholecystectomy. South Med J 1994;87:817-820.

182. Jacobi CA, Keller H, Monig S, et al: Implantation metastasis of unsuspected gallbladder carcinoma after laparoscopy. Surg Endosc 1995;9:351-352.

183. Copfer JC, Rodgers JJ, Dalton ML: Trocar-site metastasis following laparoscopic cholecystectomy for unsuspected carcinoma of the gallbladder: Case report and review of the literature. Surg Endosc 1995;9:348-350.

184. Chijiwa K, Sumiyoshi K, Nakayama F: Impact of recent advances in hepatobiliary imaging techniques on the preoperative diagnosis of carcinoma of the gallbladder. World J Surg 1991;15:322-327.

185. Porter JM, Kalloo AN, Abernathy EC, et al: Carcinoid tumor of the gallbladder: Laparoscopic resection and review of the literature. Surgery 1992;112:100-105.

186. Fong Y, Brennan MF, Turnbull A, et al: Gallbladder cancer discovered during laparoscopic surgery: Potential for iatrogenic tumor dissemination. Arch Surg 1993;128:1054-1056.

187. Wagoner M, Rossi RL: Radical operations for carcinoma of the gallbladder: Present status in North America. World J Surg 1991;15:344-347.

188. New York State Department of Health Memorandum on Laparoscopic Surgery. Health Facilities Series H-18 Series No. 92-20. Albany, NY, 1992.

189. Stoney WS: Laparoscopic cholecystectomy: Problems of rapid growth. South Med J 1991;84:681-683. Editorial.

190. Airan MC, Ko ST: Effectiveness of strict credentialing and proctoring guidelines on outcomes of laparoscopic cholecystectomy in a community hospital. Surg Endosc 1994;8:396-399.

191. Doerr RJ, Kulaylat MN, Bumpers H, et al: The role of immunoscintigraphy in the staging and management of colorectal cancer. Am Surg 1996;62:956-960.