Structural Characterization and Lifetimes of Triple-Stranded Helical Coinage Metal Complexes: Synthesis, Spectroscopy and Quantum Chemical Calculations

Hanna E. Wagner,[b] Patrick Di Martino-Fumo,[a] Pit Boden,[a] Manuel Zimmer,[a] Willem Klopper,*[c] Frank Breher,*[b] and Markus Gerhards*[a]
Supporting Information

Table of Contents

Page	Section
1	Table of Contents
2	Refinement details of 1, 3 and 4
3-5	Synthesis of the compounds 2, 3 and 4
6-12	NMR-Spectra of 2, 3 and 4
13	Additional crystallographic data of 1
14-23	Additional computational data
24-31	Additional information Step-Scan FTIR
32-38	Geometrical information of calc. structures
39-50	XYZ coordinates of calculated (DFT) structures
Refinement details of 1,3 and 4

Crystal data collection and processing parameters are given below. In order to avoid quality degradation, the single crystals were mounted in perfluoropolyalkylether oil on top of an open Mark tube and then brought into the cold nitrogen stream of a low-temperature device (Oxford Cryosystems Cryostream unit) so that the oil solidified. Diffraction data were measured using a Stoe IPDS II diffractometer and graphite-monochromated MoKα (0.71073 Å) radiation. The structures were solved by dual-space direct methods with SHELXT, followed by full-matrix least-squares refinement using SHELXL-2014/7. All non-hydrogen atoms were refined anisotropically. The contribution of the hydrogen atoms, in their calculated positions, was included in the refinement using a riding model.

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC 1862546-1862548. Copies of the data can be obtained from https://summary.ccdc.cam.ac.uk/structure-summary-form.

Compound	Formula	1	3	4
	C_{24}H_{21}N_9Ru_2P_2F_{12}·3 MeCN	C_{48}H_{36}Ag_3F_6N_{18}PRu_2	C_{48}H_{36}Au_3F_6N_{18}PRu_2	
D\text{calc}/ g cm-3	1.702	1.482	2.153	
µ/mm-1	0.613	1.348	8.518	
Formula Weight	949.68	1535.67	1802.96	
Colour	clear yellow	clear red	clear red	
Shape	irregular	irregular	block	
Size/mm3	0.20×0.10×0.10	0.2×0.05×0.05	0.30×0.20×0.15	
T/K	200	293(2)	200	
Crystal System	trigonal	monoclinic	monoclinic	
Space Group	P-3c1	C2/c	C2/c	
a/Å	13.7710(19)	20.851(4)	19.982	
b/Å	13.7710(19)	13.021(3)	12.988	
c/Å	22.570(5)	27.401(6)	21.632	
α/°	90	90	90	
β/°	90	112.28(3)	97.88	
γ/°	120	90	90	
V/Å3	3706.7(13)	6884(3)	5561.0	
Z	4	4	4	
Z'	0.33333	0.5	0.5	
Wavelength/Å	0.71073	0.71073	0.71073	
Radiation type	MoKα	MoKα	MoKα	
θ\text{max}/°	1.708	1.606	1.875	
θ\text{max}/°	25.984	27.000	26.140	
Measured Refl.	39031	53994	19460	
Independent Refl.	2434	7516	5481	
Reflections Used	1850	5386	4237	
R\text{int}	0.0887	0.0938	0.0484	
Parameters	179	354	384	
Restraints	12	0	145	
Largest Peak	1.507	2.432	2.471	
Deepest Hole	-1.811	-1.356	-2.003	
Goof	1.109	1.005	1.121	
wR\text{2} (all data)	0.2421	0.2305	0.2154	
wR\text{2}	0.2267	0.2186	0.1875	
R\text{1} (all data)	0.0908	0.0923	0.1006	
R\text{1}	0.0787	0.0773	0.0738	
Synthesis of the compounds

The copper complex 2 was already described in the literature before.\[^{[S1-2]}\] However, the adapted synthesis and a complete characterisation are added for completeness.

[S1] M. H. W. Lam, S. T. C. Cheung, K.-M. Fung, W.-T. Wong, *Inorg. Chem.* **1997**, *36*, 4618-4619.

[S2] A. J. Metherell, W. Cullen, A. Stephenson, C. A. Hunter, M. D. Ward, *Dalton Trans.* **2014**, *43*, 71-84.

Synthesis of 2 [{Ru(pypz)$_3$)$_2$Cu$_3$}(PF$_6$)$_2$. To a solution of 200 mg of the pure fac-isomer (0.252 mmol) of [{Ru(pypzH)$_3$}](PF$_6$)$_2$ and 230 mg copper(II) tetrafluoroborate in methanol 0.15 mL of triethylamine were added. The solution immediately turned from yellow to red. Afterwards the solution was stirred at room temperature for three days. The orange precipitate was filtered off and washed with methanol. The crude product was dissolved in dichloromethane and the precipitate of excess copper salt was filtered of via celite before the solvent was removed *in vacuo*. The product was obtained as red powder. The product was crystallized from dichloromethane/diethylether to form orange-red crystals.

Yields: 122 mg (72 %)

Mp = 280 °C (decomposition).

1H NMR (CD$_2$Cl$_2$, 300 MHz): δ/ppm = 6.87 (d, 6H, pz-H, 3J$_{HH} = 2.4$ Hz), 6.91 (ddd, 6H, py-H, 3J$_{HH} = 8.0$, 7.4 ,1.5 Hz), 6.99 (d, 6H, pz-H, 3J$_{HH} = 2.4$ Hz), 7.11 (ddd, 6H, py-H, 3J$_{HH} = 5.7$, 1.5, 0.8 Hz), 7.69 (ddd, 6H, py-H, 3J$_{HH} = 8.0$, 7.4, 1.5 Hz), 7.83 (ddd, 6H, py-H, 3J$_{HH} = 7.9$, 1.5, 0.8 Hz).

13C NMR (CD$_2$Cl$_2$, 75.5 MHz): δ/ppm = 101.37 (s, 6 C, pz-CH), 120.47 (s, 6 C, py-CH), 122.55 (s, 6 , py-CH), 135. 41 (s, 6 C, py-CH), 142.78 (s, 6 C, py-CH), 150.70 (s, 6 C, pz-C$_a$), 150.90 (s, 6 C, py-CH), 157.60 (s, 6 C, py-C$_a$).

ESI-MS (m/z, %) 1258.933 (100) [M−PF6]$^+$.

Elemental analysis (%): Calcd. for C$_{48}$H$_{36}$Cu$_3$F$_6$N$_{18}$PRu$_2$: C 41.10, H 2.59, N 17.97. Found: C 40.52, N 17.63, H 2.66.

IR (solid, attenuated total reflection (ATR) cm$^{-1}$: $\bar{\nu} = 390$ (vw), 411 (w), 427 (w), 451 (vw), 507 (w), 555 (m), 642 (m), 693 (w), 707 (m), 748 (vs), 835 (s), 879 (vw), 950 (vw), 986 (vw), 1018 (vw), 1050 (vw), 1136 (vw), 1149 (vw), 1212 (vw), 1359 (vw), 1445 (vw), 1527 (vw), 1604 (vw).
Synthesis of 3 [(Ru(pypz)$_3$)$_2$Ag$_3$(PF$_6$)]. To a solution of 150 mg of the isolated fac-isomer (0.181 mmol) of [Ru(pypzH)$_3$(PF$_6$)$_2$] and 80 mg silver tetrafluoroborate (4.11 mmol) in methanol 0.1 mL of triethylamine (0.72 mmol) were added. The solution immediately turned from yellow to red. Afterwards the solution was stirred at room temperature for three days. The orange precipitate was filtered off and washed with methanol. The crude product was dissolved in dichloromethane and the precipitate of excess silver salt was filtered of via celite before the solvent was removed in vacuo. The crude product was recrystallized from dichloromethane/diethyl ether to form orange-red needles.

Yields: 95 mg (68 %).

Mp = 290°C (decomposition).

1H NMR (CD$_2$Cl$_2$, 300 MHz): δ/ppm = 6.85 (ddd, 6H, py-H, 3J$_{HH}$ = 7.4, 5.7, 1.5 Hz), 6.90-6.93 (m, 6H, pz-H), 7.11 (ddd, 6H, py-H, 3J$_{HH}$ = 5.7, 1.5, 0.8 Hz), 7.14 (d, 6H, pz-H, 3J$_{HH}$ = 2.37 Hz), 7.66 (ddd, 6H, py-H, 3J$_{HH}$ = 8.0, 7.4, 1.5 Hz), 7.80 (ddd, 6H, py-H, 3J$_{HH}$ = 7.9, 1.5, 0.8 Hz).

13C NMR (CD$_2$Cl$_2$, 75.5 MHz): δ/ppm = 78.11 (s, 6 C, pz-C$_q$), 103.53 (d, 6 C, pz-CH, 2J$_{CAg}$ = 1.61 Hz), 120.37 (s, 6 C, py-CH), 122.50 (s, 6 C, py-CH), 135.43 (s, 6 C, py-CH), 143.73 (d, 6 C, pz-CH, 3J$_{CAg}$ = 0.4 Hz), 150.92 (s, 6 C, py-CH), 157.76 (s, 6 C, py-C$_q$).

ESI-MS (m/z, %) 1390.861 (100) [M−PF$_6$]+.

Elemental analysis (%): Calcd. for C$_{48}$H$_{36}$Ag$_3$F$_6$N$_{18}$PRu$_2$: C 37.54, H 2.36, N 16.42. Found: C 37.50, H 2.50, N 16.02.

IR (solid, attenuated total reflection (ATR) cm$^{-1}$: $\tilde{\nu}$ = 397 (vw), 413 (w), 444 (vw), 506 (w), 555 (w), 612 (vw), 640 (w), 749 (vs), 838 (s), 881 (vw), 946 (vw), 981 (w), 1018 (w), 1053 (w), 1094 (vw), 1132 (vw), 1231 (vw), 1355 (w), 1446 (w), 1527 w, 1604 (w).

Synthesis of 4 [(Ru(pypz)$_3$)$_2$Au$_3$](PF$_6$). To a solution of 128 mg of the isolated fac-isomer (0.155 mmol) of [Ru(pypzH)$_3$](PF$_6$)$_2$ and 150 mg chloro(tetrahydrothiophene)gold(I) (0.47 mmol) in methanol 0.1 mL of triethylamine (0.72 mmol) were added. The solution immediately turned from yellow to red. Afterwards the solution was heated to reflux for 16 h. The resulting orange precipitate of the crude complex was filtered off and washed with methanol. The crude product was dissolved in dichloromethane and the precipitate of elemental gold was filtered of via celite before the solvent was removed in vacuo. The crude product was recrystallized from dichloromethane/hexane 4 was obtained as orange-red needles.

Yields: 90 mg (64 %).

Mp = 260-295°C (decomposition).

1H NMR (CD$_2$Cl$_2$, 300 MHz): δ/ppm = 6.88 (ddd, 6H, py-H, 3J$_{HH}$ = 7.4, 5.8, 1.5 Hz), 6.91 (d, 6H, pz-H, 3J$_{HH}$ = 2.5), 7.06 (d, 6H, pz-H, 3J$_{HH}$ = 2.4 Hz), 7.08 (ddd, 6H, py-H, 3J$_{HH}$ = 5.68, 1.5,
0.8 Hz), 7.69 (ddd, 6H, py-H, $^3\text{J}_{HH} = 8.0, 7.5, 1.5$ Hz), 7.82 (ddd, 6H, py-H, $^3\text{J}_{HH} = 7.9, 1.5, 0.8$ Hz).

13C NMR (CD$_2$Cl$_2$, 75.5 MHz): δ/ppm = 103.77 (s, 6 C, pz-CH), 120.64 (s, 6 C, py-CH), 122.72 (s, 6 C, py-CH), 135.71 (s, 6 C, py-CH), 143.30 (s, 6 C, pz-CH), 150.33 (s, 6 C, py-CH).

ESI-MS (m/z, %) 1658.572 (100) [M−PF6]+.

Elemental analysis: Calcd. for C$_{48}$H$_{36}$Au$_3$F$_6$N$_{18}$PRu$_2$: C 31.98, H 2.01, N 13.98. Found: C 32.49, H 2.14, N 13.93.

IR (solid, attenuated total reflection (ATR) cm$^{-1}$: $\tilde{\nu}$ = 388 (vw), 419 (w), 451 (w), 506 (vw), 523 (vw), 555 (s), 642 (w), 708 (m), 748 (vs), 834 (vs), 879 (vw), 951 (vw), 987 (vw), 1018 (vw), 1074 (vw), 1137 (vw), 1156 (vw), 1362 (vw), 1445 (w), 1528 (vw), 1605 (vw).
NMR spectra

1H NMR spectroscopic investigations of crystalline 3 show the expected pattern, very similar to the spectrum of 2. A slight difference could be observed for the multiplet with a chemical shift of $\delta = 6.90$-6.93 ppm, which is correlated to the pyrazolyl CH group next to the coordinating nitrogen atom. In 2, this signal appears as a regular doublet ($\delta^{1}\text{H} = 6.87$ ppm) with a coupling constant of 2.4 Hz that superimposes the signal at $\delta^{1}\text{H} = 6.91$ ppm (ddd) of a pyridine CH group. In 3, however, the doublet is replaced by the already described multiplet slightly shifted to higher frequencies. This kind of splitting in 3 as compared to 2 is caused by coupling to ^{109}Ag and therefore neither observable in the copper complex nor in the gold complex. Both the 1H NMR spectra and crystal structures are consistent proving that all six 3-(pyridine-2-yl)pyrazolyl ligands are equivalent in solid state and in solution. In the 13C NMR spectrum of 3, coupling of the carbon atoms of the CH-groups in the pyrazole rings to the silver atoms are observable. This correlation leads to two doublets with chemical shifts of $\delta^{13}\text{C} = 103.5$ and 143.8 ppm and coupling constants of 1.61 and $= 0.4$ Hz, respectively. The chemical shift with the larger coupling constant can be assigned to the carbon atoms right next to the coordinating nitrogen atoms. Furthermore, a $^{109}\text{Ag},^1\text{H}$ correlation spectrum clearly demonstrates that the silver cations of the complex 3 are coordinated to the deprotonated nitrogen atom of the pyrazolyl rings.

1H-NMR

![NMR spectrum](image)

Figure SI-1: 1H-NMR-spectrum (300 MHz, CD$_2$Cl$_2$) of 2. Impurities of solvents are marked with a diamond sign. The residual CDHCl$_2$ peak is marked with an asterisk.
13C-1H-NMR

Figure SI-2: 13C-1H-NMR-spectrum (75 MHz, CD$_2$Cl$_2$) of 2. The CD$_2$Cl$_2$ peak is marked with an asterisk.
Figure SI-3: 1H-NMR-spectrum (300 MHz, CD$_2$Cl$_2$) of 3. Impurities of solvents are marked with a diamond sign. The residual CDCl$_2$ peak is marked with an asterisk.

Figure SI-4: 109Ag/1H-NMR spectrum of 3.
13C-{1H}-NMR

Figure SI-5: 13C-{1H}-NMR-spectrum (75 MHz, CD$_2$Cl$_2$) of 3. The CD$_2$Cl$_2$ peak is marked with an asterisk.
Figure SI-6. 1H-NMR-spectrum (300 MHz, CD$_2$Cl$_2$) of 4. Impurities of solvents are marked with a diamond sign. The residual CDHC$_2$ peak is marked with an asterisk.
Figure SI-7: 13C(1H)-NMR-spectrum (75 MHz, CD$_2$Cl$_2$) of 4. The CD$_2$Cl$_2$ peak is marked with an asterisk. Due to low solubility of 4 quaternery carbon atoms could not be observed. The peak with a chemical shift of 150.33 ppm could only be observed with the help of hetero nuclear correlation spectra.
Figure SI-8: HMQC-spectrum of 4.

$$\text{[(Ru(pypz)₃Au)₂(PF₆)]}$$ 4

$$\text{[(Ru(pypz)₃Ag)₂(PF₆)]}$$ 3

$$\text{[(Ru(pypz)₃Cu)₂(PF₆)]}$$ 2

Figure SI-9: 1H NMR spectra of 2, 3 and 4 in CD₂Cl₂. For better gratitude of the essential peaks, residual solvent peaks of CDHCl₂ and trace amounts of CHCl₃ between 7.3 and 7.5 ppm were cleared out.
Additional crystallographic data

Figure SI-10: Molecular structure of $\text{fac-Ru(pypzH)_3}(\text{PF}_6)_2$ (1). The anion $[\text{PF}_6]^-$, solvent molecule (MeCN) and hydrogen atoms except of H1-H1'' have been omitted for clarity, displacement ellipsoids are drawn at the 30 % probability level. Selected bond lengths [pm] and angles [°]: Ru1−N2'' 207.2(4); Ru1−N2 204.6(4); N3−N3' 417.4; N1−Ru1−N1' 95.3(7); N1−Ru1−N2' 171.6(1); N1−Ru1−N2 77.0(0); N1−Ru1−N2' 88.9(0); N2−Ru1−N2' 99.1(2). Equivalent atoms denoted with primes are generated by (i) $−y, x−y, z$ and (ii) $−x+y, −x, z$.
Additional computational data

Figure SI-11: Computed UV/Vis spectrum of 3, obtained from TDDFT calculations at the M06/def2-TZVP level (def2-SV(P) for H).

Figure SI-12: Computed UV/Vis spectrum of 4, obtained from TDDFT calculations at the M06/def2-TZVP level (def2-SV(P) for H).
Figure SI-13: Weighted average transition densities of 3 for the bands A through C of Figure 6. Green corresponds to a gain while orange indicates a loss of electron density (iso-value: ±0.005 \AA^3).

Figure SI-14: Weighted average transition densities of 4 for the bands A through C of Figure 6. Green corresponds to a gain while orange indicates a loss of electron density (iso-value: ±0.005 \AA^3).
Table SI1. Type of electronic excitations for 2, 3 and 4.

Excitation	Compound	ΔE /eV	λ /nm	f_{osc}	Character
4e	2	2.725	455.0	0.0316	M(Ru)LCT
	3	2.744	451.8	0.0252	
	4	2.769	447.8	0.0244	
5e	2	2.860	433.5	0.0695	M(Ru)LCT
	3	2.880	430.5	0.0696	
	4	2.898	427.8	0.0923	
6e	2	2.880	430.5	0.2332	M(Ru)LCT
	3	2.897	427.9	0.2395	
	4	2.914	425.5	0.2033	
5a_2	2	3.281	377.9	0.0338	M(Ru)LCT
	3	3.291	376.7	0.0405	
	4	3.314	374.1	0.0397	
13e	(10e)	3.336	371.7	0.0323	M(Ru)LCT
	(11e)	3.338	371.4	0.0758	
14e	(11e)	3.337	371.5	0.0502	M(Ru)LCT
	(12e)	3.345	370.7	0.0108	
9a_2	2	3.540	350.2	0.0421	M(Ru)LCT
	3	3.550	349.3	0.0432	
	4	3.579	346.4	0.0358	
16a_2	(15a_2)	2	4.264	290.8	M(Cu/Ag/Au)LCT
	3	4.355	284.7	1.0686	
	4	4.293	288.8	1.1058	
Figure SI-15: Transition densities of 2 for the substantial transitions shown in Figure 6 (blue sticks). Green corresponds to a gain while orange indicates a loss of electron density (iso-value: ±0.0025 \(a_0^{-3}\)).
Figure SI-16: Transition densities of 3 for the substantial transitions. Green corresponds to a gain while orange indicates a loss of electron density (iso-value: ±0.0025 a_0^{-3}).
Figure SI-17: Transition densities of 4 for the substantial transitions. Green corresponds to a gain while orange indicates a loss of electron density (iso-value: ±0.0025 a_0^{-3}).
Figure SI-18: Computed absorption spectrum of the Ru metalloligand $[\text{Ru(pypzH)}_3]^{2+}$ in comparison with the compounds 2, 3, and 4.

$3e$ ($\lambda = 385.0$ nm, $f_{osc} = 0.2515$)

$7e$ ($\lambda = 314.2$ nm, $f_{osc} = 0.0664$)

Figure SI-19: Transition densities of the Ru metalloligand $[\text{Ru(pypzH)}_3]^{2+}$. Green corresponds to a gain while orange indicates a loss of electron density (iso-value: $\pm 0.0025 \, \alpha_0^{-3}$).
Figure SI-20: Spin densities of the lowest triplet state of 2, 3, and 4 (iso-value: ±0.01 a_0^{-3}).
Figure SI-21: Frontier molecular orbitals and spin density of 2 in the lowest triplet state T_1: a) Singly occupied molecular orbital (SOMO) and b) lowest unoccupied molecular orbital (LUMO).

Figure SI-22: Frontier molecular orbitals and spin density of 3 in the lowest triplet state T_1: a) Singly occupied molecular orbital (SOMO) and b) lowest unoccupied molecular orbital (LUMO).
Figure SI-23: Frontier molecular orbitals and spin density of 4 in the lowest triplet state T_1: a) Singly occupied molecular orbital (SOMO) and lowest unoccupied molecular orbital (LUMO).
Additional information Step-Scan FTIR

![Image](image_url)

Figure SI-24: Step-scan FTIR spectrum 0 to 500 ns after irradiation of 2 and the ground state FTIR spectrum (black) in comparison. The negative bands correlate to the absorption bands of the ground state.

![Image](image_url)

Figure SI-25: Comparison of calculated ground state (green) and excited state (orange) IR spectrum with the Step-Scan difference spectrum of \([\text{Ru(pypz)}_3\text{Cu}]^+\) (2).
Figure SI-26: Decay curves obtained from a global fit of eight bands of (2). A bi-exponential fit yields two time constants.

Table SI2. Type of vibrations of 2.

ν/cm⁻¹ ground state	ν/cm⁻¹ excited state	Character of the vibration
1609	1600	C-C stretching in pyridine
1557	1522	C-C stretching in pyridine and C-H-bending
1531	1531	C-C stretching between pyridine and pyrazole
1448	1448	C-C stretching in pyridine accompanied with C-H-wagging
1363	1355	N₂-C stretching in pyrazole
1215	1215	C-H wagging
1150	1131	N-N stretching in pyrazole accompanied with breathing of both rings
Figure SI-27: Step-scan FTIR spectrum 0 to 500 ns after irradiation of 3 and the ground state FTIR spectrum (black) in comparison. The negative bands correlate to the absorption bands of the ground state.

Figure SI-28: Comparison of calculated ground state (green) and excited state (orange) IR spectrum with the Step-Scan difference spectrum of [(Ru(pyz)₃)₂Ag₃]⁺ (3).
Figure SI-29: Decay curves obtained from a global fit of eight bands of (3). A bi-exponential fit yields two time constants.

Table SI3. Type of vibrations of 3.

𝜈/cm⁻¹ ground state	𝜈/cm⁻¹ excited state	Character of the vibration
1609	1601	C-C stretching in pyridine
1558	1522	C-C stretching in pyridine and C-H-bending
1531	1522	C-C stretching between pyridine and pyrazole
1447	1442	C-C stretching in pyridine accompanied with C-H-wagging
1359	1351	N₂-C stretching in pyrazole
1217		C-H wagging
1149 - 1135	1118	N-N stretching in pyrazole accompanied with breathing of both rings
Figure SI-30: Step-scan FTIR spectrum 0 to 500 ns after irradiation of 3 and the ground state FTIR spectrum (black) in comparison. The negative bands correlate to the absorption bands of the ground state.

Figure SI-31: Comparison of calculated ground state (green) and excited state (orange) IR spectrum with the Step-Scan difference spectrum of [[Ru(pypz)3]2Au3]+ (4).
Figure SI-32: Decay curves obtained from a global fit of eight bands of (4). A bi-exponential fit yields two time constants.

Table SI4. Type of vibrations of 4.

\(\tilde{\nu} / \text{cm}^{-1} \) ground state	\(\tilde{\nu} / \text{cm}^{-1} \) excited state	Character of the vibration
1609	1601	C-C stretching in pyridine
1557	1551	C-C stretching in pyridine and C-H-bending
1532	1524	C-C stretching between pyridine and pyrazole
1448	1443	C-C stretching in pyridine accompanied with C-H-wagging
1433	1426	C-C stretching in pyridine accompanied with C-H-bending
1365	1359	N\(_2\)-C stretching in pyrazole
1225		C-H wagging
1161		N-N stretching in pyrazole accompanied with breathing of both rings
Figure SI-33: Comparison of obtained FTIR spectra of the excited state (normalized) of 2, 3 and 4.

Figure SI-34: Comparison of calculated IR spectra of the singlet ground state of 2, 3 and 4. A Gaussian convolution of 10 cm\(^{-1}\) was used to broaden the bands. (scal. 0.965).
Figure SI-35: Comparison of calculated IR spectra of the excited triplet state of 2, 3 and 4. A Gaussian convolution of 10 cm$^{-1}$ was used to broaden the bands. (scal. 0.965).
Geometrical information of calc. structures

Figure SI-36: Structural definitions of the calculated ground state of [(Ru(pypz)_3)_2M_3]^+ (M = Cu, Ag, Au). H atoms are omitted for clarity. Calculation method: M06/def2-TZVP [def2-ecp pseudo-potentials for Ru, Ag, and Au, def2-SV(P) for H].

Table SI5. Structural characterisation of 2 in the D_3-symmetrical ground state.

involved atoms	distances / Å
Cu-Cu	3.479
\angle Cu-Cu-Cu / °	60.0
N$_1$-Ru	2.102
N$_2$-Ru	2.061
A(Cu$_{\text{triangle}}$)-Ru	3.095
Cu-Ru	3.857
N$_3$-Cu	1.880
N$_1$-C$_1$	1.355
C$_1$-C$_2$	1.387
C$_2$-C$_3$	1.377
C$_3$-C$_4$	1.385
C$_4$-C$_5$	1.377
C$_5$-N$_1$	1.336
C$_1$-C$_6$	1.441
C$_6$-N$_2$	1.344
N$_2$-N$_3$	1.336
N$_3$-C$_8$	1.348
C$_8$-C$_7$	1.377
C$_7$-C$_6$	1.395
Figure SI-37: Structural definitions of the calculated excited (T_1) state of $\left[[\text{Ru(pypz)}_2]_2M_3\right]^+$ ($M = \text{Cu, Ag, Au}$). H atoms are omitted for clarity.
Table S16. Structural characterisation of 2 in the excited state (T₁).

involved atoms	distances / Å	In. Atoms	d / Å	In. Atoms	d / Å
Cu₁-Cu₂	3.551				
Cu₂-Cu₃	3.880				
Cu₃-Cu₁	3.621				
N₁ₐ-Ru₁	2.648	N₁₀-Ru₁	2.123	N₁₆-Ru₁	2.160
N₂ₐ-Ru₁	2.100	N₂₂-Ru₁	2.053	N₂₆-Ru₁	2.338
∠ Cu₁-Cu₂-Cu₃ / °	58.1				
∠ Cu₂-Cu₃-Cu₁ / °	56.4				
∠ Cu₃-Cu₁-Cu₂ / °	65.5				
Cu₁-Ru₁	3.620	Cu₂-Ru₁	3.772	Cu₃-Ru₁	3.875
N₃ₐ-Cu₁	1.886	N₃₀-Cu₂	1.886	N₃₆-Cu₃	1.883
N₁₉-C₁ₐ	1.339	N₁₀-C₁₉	1.354	N₁₆-C₁₆	1.352
C₁₈-C₂₈	1.391	C₁₉-C₂₉	1.388	C₁₆-C₂₆	1.389
C₂₉-C₃₉	1.378	C₂₀-C₃₀	1.376	C₂₀-C₃₀	1.377
C₃₉-C₄₉	1.384	C₃₀-C₄₀	1.386	C₃₀-C₄₀	1.385
C₄₉-C₅₉	1.381	C₴₀-C₵₀	1.376	C₴₀-C₵₀	1.377
C₅₉-N₁₉	1.326	C₵₀-N₁₀	1.336	C₵₀-N₁₀	1.336
C₁₉-C₆₉	1.456	C₁₉-C₆₉	1.440	C₁₆-C₆₆	1.449
C₆₉-N₂₉	1.343	C₆₀-N₂₀	1.347	C₆₀-N₂₀	1.339
N₂₉-N₃₉	1.341	N₂₀-N₃₀	1.337	N₂₀-N₃₀	1.335
N₃₉-C₈₉	1.342	N₃₀-C₸₀	1.345	N₃₀-C₸₀	1.345
C₸₉-C₇₉	1.378	C₸₀-C₇₀	1.380	C₸₀-C₇₀	1.381
C₇₉-C₆₉	1.395	C₇₀-C₶₀	1.392	C₇₀-C₆₀	1.397
Table SI7. Structural characterisation of 3 in the D_3-symmetrical ground state.

involved atoms	distances / Å
Ag-Ag	3.290
\angle Ag-Ag-Ag / °	60.0
N$_1$-Ru	2.101
N$_2$-Ru	2.063
A(Ag$_{\text{triangle}}$)-Ru	3.392
Ag-Ru	4.030
N$_3$-Ag	2.113
N$_1$-C$_1$	1.355
C$_1$-C$_2$	1.388
C$_2$-C$_3$	1.377
C$_3$-C$_4$	1.385
C$_4$-C$_5$	1.377
C$_5$-N$_1$	1.336
C$_1$-C$_6$	1.441
C$_6$-N$_2$	1.345
N$_2$-N$_3$	1.334
N$_3$-C$_8$	1.348
C$_8$-C$_7$	1.378
C$_7$-C$_6$	1.395
Table S18. Structural characterisation of 3 in the excited state (T₁).

involved atoms	distances / Å	In. Atoms	d / Å	In. Atoms	d / Å
Ag₁–Ag₂	3.298				
Ag₂–Ag₃	3.603				
Ag₃–Ag₁	3.479				
N₁₁a–Ru₁	2.623	N₁₁b–Ru₁	2.121	N₁₁c–Ru₁	2.152
N₂₂a–Ru₁	2.104	N₂₂b–Ru₁	2.055	N₂₂c–Ru₁	2.354
∡Ag₁–Ag₂–Ag₃ / °	60.4				
∡Ag₂–Ag₃–Ag₁ / °	55.5				
∡Ag₃–Ag₁–Ag₂ / °	64.2				
Ag₁–Ru₁	3.779	Ag₂–Ru₁	3.940	Ag₃–Ru₁	4.108
N₃₃a–Ag₁	2.113	N₃₃b–Ag₂	2.116	N₃₃c–Ag₃	2.106
N₁₁a–C₁₁a	1.339	N₁₁b–C₁₁b	1.354	N₁₁c–C₁₁c	1.352
C₁₁a–C₂₂a	1.391	C₁₁b–C₂₂b	1.388	C₁₁c–C₂₂c	1.389
C₂₂a–C₃₃a	1.378	C₂₂b–C₃₃b	1.376	C₂₂c–C₃₃c	1.377
C₃₃a–C₄₄a	1.385	C₃₃b–C₄₄b	1.386	C₃₃c–C₄₄c	1.385
C₄₄a–C₅₅a	1.381	C₄₄b–C₅₅b	1.376	C₄₄c–C₅₅c	1.376
C₅₅a–N₅₅a	1.326	C₅₅b–N₅₅b	1.336	C₅₅c–N₅₅c	1.336
C₁₁a–C₆₆a	1.456	C₁₁b–C₆₆b	1.440	C₁₁c–C₆₆c	1.449
C₆₆a–N₆₆a	1.344	C₆₆b–N₆₆b	1.348	C₆₆c–N₆₆c	1.341
N₂₂a–N₂₂a	1.338	N₂₂b–N₂₂b	1.336	N₂₂c–N₂₂c	1.334
N₃₃a–C₈₈a	1.342	N₃₃b–C₈₈b	1.344	N₃₃c–C₈₈c	1.344
C₈₈a–C₇₇a	1.378	C₈₈b–C₇₇b	1.381	C₈₈c–C₇₇c	1.382
C₇₇a–C₆₆a	1.395	C₇₇b–C₆₆b	1.392	C₇₇c–C₆₆c	1.397
Table S19. Structural characterisation of 4 in the D_3-symmetrical ground state.

involved atoms	distances / Å
Au-Au	3.542
\angle Au-Au-Au / °	60.0
N$_1$-Ru	2.095
N$_2$-Ru	2.075
A(Au$_{\text{triangle}}$)-Ru	3.274
Au-Ru	4.026
N$_3$-Au	2.048
N$_1$-C$_1$	1.354
C$_1$-C$_2$	1.388
C$_2$-C$_3$	1.377
C$_3$-C$_4$	1.385
C$_4$-C$_5$	1.377
C$_5$-N$_1$	1.337
C$_1$-C$_6$	1.440
C$_6$-N$_2$	1.344
N$_2$-N$_3$	1.335
N$_3$-C$_8$	1.349
C$_8$-C$_7$	1.376
C$_7$-C$_6$	1.394
Table S110. Structural characterisation of 4 in the excited state (T₁).

involved atoms	distances / Å	In. Atoms d / Å	In. Atoms	d / Å	
Au₁-Au₂	3.478				
Au₂-Au₃	3.859				
Au₃-Au₁	3.781				
N₁₁a-Ru₁	2.624	N₁b-Ru₁	2.135	N₁c-Ru₁	2.156
N₂₁a-Ru₁	2.109	N₂b-Ru₁	2.068	N₂c-Ru₁	2.334
4 Au₁-Au₂-Au₃ / °	61.8				
4 Au₂-Au₃-Au₁ / °	54.2				
4 Au₃-Au₁-Au₂ / °	64.1				
Au₁-Ru₁	3.738	Au₂-Ru₁	3.971	Au₃-Ru₁	4.071
N₃₁a-Au₁	2.045	N₃b-Au₂	2.044	N₃c-Au₃	2.039
N₁₁a-C₁a	1.340	N₁b-C₁b	1.352	N₁c-C₁c	1.353
C₁₁a-C₂a	1.391	C₁b-C₂b	1.389	C₁c-C₂c	1.389
C₂₁a-C₃a	1.378	C₂b-C₃b	1.376	C₂c-C₃c	1.376
C₃₁a-C₄a	1.384	C₃b-C₄b	1.387	C₃c-C₄c	1.385
C₄₁a-C₅a	1.381	C₄b-C₅b	1.376	C₄c-C₅c	1.377
C₅₁a-N₁₁a	1.326	C₅b-N₁b	1.336	C₅c-N₁c	1.336
C₁₁a-C₆a	1.457	C₁b-C₆b	1.439	C₁c-C₆c	1.447
C₆₁a-N₂₁a	1.344	C₆b-N₂b	1.347	C₆c-N₂c	1.336
N₂₁a-N₃₁a	1.337	N₂b-N₃b	1.335	N₂c-N₃c	1.329
N₃₁a-C₈a	1.343	N₃b-C₈b	1.345	N₃c-C₈c	1.347
C₈₁a-C₇a	1.377	C₈b-C₇b	1.378	C₈c-C₇c	1.379
C₇₁a-C₆a	1.396	C₇b-C₆b	1.392	C₇c-C₆c	1.399
XYZ coordinates of calculated (DFT) structures

Singlet ground state of [{Ru(pypz)$_3$)$_2$Cu$_3$} (2):

Atom	X	Y	Z
H	-4.8360851	-1.8788285	6.2116582
H	-4.8360851	1.8788285	-6.2116582
C	-3.9597409	-1.5050774	5.6936121
H	-3.8627511	-3.1342586	4.2924632
H	-3.7497200	-0.2676018	-6.9079420
C	-3.9597409	1.5050774	-5.6936121
H	-3.7497200	0.2676018	6.9079420
C	-3.4243233	2.2037250	4.6347267
C	-3.3623906	0.3174944	-6.0827377
C	-3.3623906	-0.3174944	6.0827377
H	-3.8627511	3.1342586	-4.2924632
H	-3.4136410	-2.7178206	-0.4869979
H	-2.5808209	-4.3382570	2.4101516
C	-3.4243233	2.2037250	-4.6347267
C	-2.6588327	-2.5422346	-1.2402168
H	-2.4666303	-4.4041850	-2.4101516
H	-3.4136410	2.7178206	0.4869979
C	-1.8520275	-3.5703709	2.2073103
C	-2.3035790	-1.7082901	3.9842878
C	-2.1660182	-3.3890883	2.2073103
C	-2.2497642	0.1201247	5.3995036
C	-2.2497642	-0.1201247	-5.3995036
C	-2.3035790	1.7082901	-3.9842878
H	-1.7521659	-1.0451317	5.6782869
C	-2.6588327	2.5422346	1.2402168
N	-2.0410199	-1.3460679	-1.3124293
C	-1.6628229	-2.3568956	2.8685340
H	-0.7829720	-4.9123699	-4.2924632
Cu	-2.0085367	0.0000000	0.0000000
H	-2.4666303	4.4041850	2.4101516
H	-1.7521659	1.0451317	5.6782869
N	-1.7161888	-0.5508456	4.3743677
H	-2.5808209	4.3382570	-2.4101516
N	-2.0410199	1.3460679	1.3124293
C	-2.1660182	3.3890883	2.2073103
H	-0.6468812	-4.3152101	0.4869979
N	-1.7161888	0.5508456	-4.3743677
C	-0.8722234	3.5737340	1.2402168
C	-1.2097208	2.6184952	2.8685340
C	-0.1963201	-4.0674135	-4.6347267
N	-1.1582176	-1.3960014	2.3134554
C	-1.8520275	3.5703709	-2.2073103
C	-1.6628229	2.3568956	2.8685340
C	-0.3276331	2.8491029	-3.984278
N	-0.6298639	-1.7010465	2.3134554
N	-1.1582176	1.3960014	2.3134554
C	-1.2097208	2.6184952	2.8685340
H	0.7909293	-5.1275868	6.2116582
H	-0.0290277	-2.0399860	5.6782869
C	0.6764352	-4.1817749	-5.6936121
N	-0.1452191	-2.4406090	1.3124293
N	-0.6298639	1.7010465	2.3134554
C	-0.8722234	3.5737340	-1.2402168
N	0.3810482	-1.761859	-4.3743677
Ru	-0.0000000	0.0000000	3.2921770
H	-0.6468812	4.3152101	-0.4869979
Ru	-0.0000000	0.0000000	-3.2921770
---	---	---	---
H	-0.782972	4.9123699	4.2924632
C	1.4062371	-3.0706629	-6.0827377
C	-0.3276331	2.8491029	3.9842878
H	-0.0290277	2.0399860	-5.6782869
C	1.0208511	-2.0084153	5.3995036
C	-0.1963201	4.0674135	4.6347267
N	-0.1452191	2.4406090	-1.3124293
H	2.1066099	-3.1135519	-6.9079420
N	0.3810482	1.7616859	4.3743677
C	1.2289131	-1.8882906	-5.3995036
H	1.6431100	-3.3811537	6.9079420
Cu	1.0042683	-1.7394438	0.0000000
N	1.3351407	-1.2108404	4.3743677
C	1.9561536	-2.7531685	6.0827377
C	1.0208511	2.0084153	-5.3995036
H	1.7811936	-0.9948543	-5.6782869
C	0.6764352	4.1817749	5.6936121
C	1.2289131	1.8882906	5.3995036
H	0.7909293	5.1275868	6.2116582
N	1.3351407	2.1084040	-4.3743677
H	1.7811936	0.9948543	5.6782869
H	1.6431100	3.3811537	-6.9079420
Cu	1.0042683	1.7394438	0.0000000
C	1.4062371	3.0706629	6.0827377
N	1.7880815	0.3050451	2.3134554
N	1.7880815	-0.3050451	-2.3134554
C	1.9561536	2.7531685	6.0827377
N	2.1862390	-1.0945411	-1.3124293
C	3.2833057	-2.6769757	5.6936121
C	2.6312121	-1.1408129	3.9842878
N	2.1862390	1.0945411	1.3124293
C	2.1066099	3.1135519	6.9079420
H	4.0451558	-3.2487583	6.2116582
C	2.6312121	1.1408129	-3.9842878
C	2.8725437	-0.2615987	2.8685340
C	2.8725437	0.2615987	-2.8685340
C	3.6206434	-1.8636885	4.6347267
C	3.2833057	2.6769757	5.6936121
C	3.5310561	-1.0314994	-1.2402168
C	3.6206434	1.8636885	-4.6347267
C	3.5310561	1.0314994	1.2402168
H	4.6457232	-1.7781113	4.2924632
H	4.0605222	-1.5973895	-0.4869979
C	4.0180456	0.1812826	2.2073103
C	4.0180456	-0.1812826	-2.2073103
H	4.0451558	3.2487583	6.2116582
H	4.0605222	1.5973895	4.8669979
H	4.6457232	1.7781113	-4.2924632
H	5.0474512	-0.0659280	2.4101516
H	5.0474512	0.0659280	-2.4101516
Excited triplet state of [(Ru(pypz)₃)Cu] (2):

Element	X	Y	Z
H	-5.9639415	-4.0078589	3.4761896
H	5.9067358	-5.6938104	-0.0062625
C	-5.4755723	3.2966848	2.818846
H	-4.0464098	2.6404488	4.2865081
H	6.9379777	-4.0093540	1.5263673
C	5.5474000	4.6700257	0.0140811
H	-6.7314433	-3.7067444	1.110829
C	-4.4163194	2.5422912	3.2720815
H	6.1224958	-3.7415585	0.8649420
H	-5.9038335	-3.1341311	1.5113345
H	4.0246789	-4.9913718	-1.4672908
H	0.7060859	-2.4699151	3.8242271
C	-2.1776014	-0.8958199	4.9464664
C	4.5064674	-4.2832599	-0.8022376
H	1.3875327	-1.751972	3.3817444
H	2.5193206	-0.8353709	5.0419069
C	-0.3804530	-4.2261998	-1.3183948
C	-2.0155846	-0.943827	3.9778158
H	-3.804537	1.6380161	2.4161776
C	2.3006556	-0.9194033	3.9896055
C	-5.2558248	-2.2202139	0.7106369
C	5.6285153	-2.4521926	0.8475655
H	4.0635875	-2.9650657	-0.7544345
H	6.0513726	-1.6841121	1.4961982
C	-1.1318685	-3.4560862	-1.4209548
N	1.4083063	-1.5807497	2.0487409
N	-2.6993072	-0.7908791	2.7872119
H	4.2058819	1.1234437	4.9071659
Cu	0.0868748	2.0042714	0.7718946
H	-2.2918998	-3.9212732	3.2415187
H	-5.5606720	-2.0628030	-0.3208293
N	-4.2320126	-1.4769777	1.1402544
C	2.5481407	-4.0208662	-3.1458554
N	-1.2072419	-2.4590870	-0.5161405
C	-2.0912135	-3.2862209	-2.3938248
H	-0.3436780	0.9064024	4.2415538
N	4.6380555	-2.0600445	0.0550310
C	-1.0927659	0.4178462	3.6347969
C	2.8660633	-0.2169035	2.9295385
C	4.4259610	1.4754041	3.9058559
N	2.3228946	-0.6453665	1.7739246
C	2.3215303	-3.0806575	-2.6700645
C	2.9531213	-2.4964125	-1.5717395
C	3.8236864	0.8530369	2.8209713
N	-2.1955696	-0.0130560	1.8139061
N	-2.1999591	-1.6428358	-0.8803315
C	-2.7493775	-2.1177617	-2.0113364
H	5.7500884	3.0378037	4.5276413
H	-5.5568728	0.6358752	1.9175026
C	5.2775528	2.5350576	3.6906467
N	-1.1213762	0.7309864	2.3291409
N	2.3809603	-1.3078133	-1.3191751
C	1.3577130	-2.1658596	3.0346465
N	4.0766801	1.2558384	1.5528384
Ru	-3.1819393	-0.0542093	0.0046340
H	0.6267102	-2.2075496	3.8297096
Ru	3.1259453	0.1073412	0.0411818
H	-4.1421815	-2.5059208	4.357114
C	5.5162686	2.9563195	2.3918788
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
---------	--------------	--------------	--------------
C	-3.8594911	-1.3709769	-2.5469804
H	5.2962075	-0.6225235	-2.0067090
C	-5.2996040	1.6049049	1.4974859
C	-4.4919559	-1.6650075	3.7465265
N	1.4026472	-1.1050678	-2.2131022
H	6.1704987	3.7927334	2.1790772
N	-4.2609905	-0.3318737	1.7760775
C	4.9003837	2.2891137	1.3583002
H	-6.8301682	2.6643560	2.5368857
Cu	-0.1121955	1.8368132	1.2804527
N	-4.2747173	1.6201201	0.6401142
C	-6.0053780	2.7368674	1.8385420
C	5.0147347	0.3585837	-2.3813338
H	5.0621512	2.5824948	0.3247887
C	-5.5429560	-0.8823453	4.1701735
C	-5.2812262	0.4204930	-2.1992499
H	-6.0437432	-1.0956500	-5.1082271
N	4.0739325	0.9993517	-1.6827400
H	-5.5699860	1.2444696	-1.5520533
H	6.3778882	0.338519	-4.0218557
Cu	0.1185311	0.2546468	-1.9680466
C	-5.9457804	0.1827945	-3.3813966
N	-2.2104422	1.5075940	-0.9292804
N	1.9466909	2.0620536	-0.4622421
C	5.6135304	0.985023	-3.4970157
N	1.0962365	2.8252194	0.2280718
C	-5.6381153	3.9471934	1.2724082
C	-3.9024250	2.8037808	0.0944682
N	-1.1882222	1.6030868	-1.7824821
H	-6.7656434	0.8270593	-3.6744554
H	-6.1750009	4.8572927	1.5163919
C	3.6699521	2.2215879	-2.0955526
C	-2.777113	2.7204046	-0.8022772
C	2.6274789	2.8463697	-1.3073275
C	-4.5762040	3.9787243	0.3962137
C	5.2162903	2.1567635	-3.9182233
C	1.2248390	4.0970183	-0.1902710
C	4.237525	2.8202925	-3.2131342
C	-1.1091365	2.8827019	-2.1980103
H	-4.2507881	4.9052222	-0.0631808
H	0.6147675	4.8821395	0.2346618
C	-2.0997095	3.6354955	1.6064343
C	2.1930442	4.1673569	-1.1729169
H	5.6632688	2.6113079	-4.7958473
H	-0.3284128	3.1823923	-2.8834364
H	3.8856362	3.7985021	-3.5207897
H	-2.2998885	4.6862055	1.7406538
H	2.5447669	5.0476185	-1.6876582
Singlet ground state of \([\{\text{Ru}(\text{pypz})_3\}_2\text{Ag}_3\} (3):

\[
\begin{array}{ccc}
\text{H} & -4.9253045 & -1.6625718 \\
\text{H} & -4.9253040 & 1.6625725 \\
\text{C} & -4.0306443 & -1.3308918 \\
\text{H} & -4.0148115 & -2.9557182 \\
\text{H} & -3.7331717 & 0.4221603 \\
\text{C} & -4.0306440 & 1.3308917 \\
\text{H} & -3.7331709 & 0.4221617 \\
\text{C} & -3.5305017 & 2.0479197 \\
\text{C} & -3.3746906 & 0.1765766 \\
\text{H} & -3.3746903 & 0.1765776 \\
\text{H} & -4.0148111 & 2.9557180 \\
\text{H} & -3.1938844 & -2.9054389 \\
\text{C} & -2.0544836 & -3.4591279 \\
\text{C} & -2.3866366 & -1.6066215 \\
\text{C} & -1.9590827 & -3.5022487 \\
\text{H} & -2.2420015 & 0.2095504 \\
\text{H} & -2.2420014 & -0.2095507 \\
\text{C} & -2.3866364 & 1.6066217 \\
\text{H} & -1.6993557 & -1.1084965 \\
\text{C} & -2.4773898 & 2.6840199 \\
\text{N} & -1.9497807 & -1.4473347 \\
\text{C} & -1.7844401 & -2.2755738 \\
\text{H} & -0.5409909 & -4.9454793 \\
\text{Ag} & -1.9009742 & 0.0000002 \\
\text{H} & -2.1934828 & 4.5374766 \\
\text{H} & -1.6993567 & 1.1084962 \\
\text{N} & -1.7429648 & -0.4816749 \\
\text{H} & -2.8286614 & 4.1839059 \\
\text{N} & -1.9497804 & 1.4473343 \\
\text{C} & -1.9590828 & 3.5022493 \\
\text{H} & -0.9073589 & -4.2347227 \\
\text{N} & -1.7429663 & 0.4816749 \\
\text{C} & -1.0813403 & -3.5000545 \\
\text{C} & -1.0813057 & -2.6714544 \\
\text{C} & 0.0031223 & -4.0720762 \\
\text{H} & -1.1084884 & -1.4437778 \\
\text{C} & -2.0544834 & 3.4591285 \\
\text{C} & -1.7844402 & 2.2755737 \\
\text{C} & -0.1962757 & -2.8586484 \\
\text{N} & -0.7163783 & -1.6726929 \\
\text{N} & -1.0984847 & 1.4437774 \\
\text{C} & -1.0813054 & 2.6714540 \\
\text{H} & 1.0647846 & -5.0900149 \\
\text{H} & -0.1158045 & -2.0277588 \\
\text{C} & 0.8926286 & -4.1473976 \\
\text{N} & -0.2847900 & -2.4179680 \\
\text{N} & -0.7163781 & 1.6726930 \\
\text{C} & -1.0813197 & 3.5000549 \\
\text{N} & 0.4572759 & -1.7385152 \\
\text{Ru} & -0.0081337 & -0.0032999 \\
\text{H} & -0.9073583 & 4.2347227 \\
\text{Ru} & -0.0081341 & 0.0032998 \\
\text{H} & -0.5409915 & 4.9454790 \\
\text{C} & 1.5674942 & -3.0021038
\end{array}
\]
Atom	X-Coordinate	Y-Coordinate	Z-Coordinate
C	-0.1962759	2.8586475	4.2382653
H	-0.1158053	2.0477905	-5.9446077
C	0.9327862	-2.0478905	5.6589360
C	0.0031220	4.0720759	4.8810838
N	-0.2847897	2.4179682	-1.5501568
H	2.2800913	-3.0147642	-7.1353650
N	0.4572756	1.7385140	4.6316008
C	1.3202903	-1.8259267	-5.6481002
H	1.5017452	-3.4459453	7.1654074
Ag	0.9367307	-1.6518419	0.0062513
N	1.2771373	-1.2688508	4.6289689
C	1.8371061	-2.8354311	6.3359930
C	0.9327856	2.0478905	-5.6589362
H	1.8278044	-0.9055939	-5.9253945
C	0.8926284	4.1473973	5.9297266
C	1.3202896	1.8259263	5.6480997
H	1.0647843	5.0900151	6.4375381
N	1.2771374	1.2688518	-4.6289694
C	1.8278042	0.9055945	5.5253950
H	1.5017451	3.4459447	7.1654070
Ag	0.9367311	1.6518415	-0.0062514
C	1.5674939	-3.0021037	6.3199473
N	1.7846175	0.2203298	2.5559793
N	1.7846177	-0.2203305	2.5559789
C	1.8371055	2.8354315	-6.3359937
N	2.2097440	0.9659553	-1.5341839
C	3.1629376	-2.8243269	5.9341566
C	2.5706549	-1.2632506	4.2254025
N	2.2097432	0.9659546	1.5341840
H	2.2800909	3.0147644	7.1353653
H	3.9012353	-3.4313123	6.4464837
C	2.5706549	1.2632514	-4.2254030
C	2.8427739	-0.4068475	3.0989034
C	2.8427751	0.4068470	-3.0989022
C	3.5297702	2.0317500	4.8694865
C	3.1629380	2.8243267	-5.9341557
C	3.5450459	-0.8114557	-1.4317301
C	3.5297694	2.0317503	-4.8694888
C	3.5450466	0.8114580	1.4317265
H	4.5547960	-1.9978090	4.5185675
H	4.0906977	-1.3296153	-0.6555084
C	3.9991653	-0.0525697	2.4039988
C	3.9991613	0.0525679	-2.4039971
H	3.9012348	3.4313121	-6.4464832
H	4.0906972	1.3296140	0.6555087
H	4.5547956	1.9978089	-4.5185668
H	5.0140068	-0.3657208	2.5890252
H	5.0140074	0.3657223	-2.5890252
Excited triplet state of \([\text{Ru}(\text{pypz})_3]_2\text{Ag}_3\) (3):

$$
\begin{array}{ccc}
\text{H} & -4.8614947 & -1.6452597 & 6.4879065 \\
\text{H} & -5.4181596 & 1.9054716 & -6.2351396 \\
\text{C} & -3.9791281 & -1.3148801 & 5.9508253 \\
\text{H} & -3.9954796 & -2.9447350 & 4.5483349 \\
\text{H} & -4.2814446 & -0.0437298 & -7.3126965 \\
\text{C} & -4.4598888 & 1.5511405 & -5.8697588 \\
\text{H} & -3.6552483 & 0.4432547 & 7.1609371 \\
\text{C} & -3.5031204 & -2.0373616 & 4.8796140 \\
\text{C} & -3.8354770 & 0.4705360 & -6.4696400 \\
\text{C} & -3.3146689 & -0.1590383 & 6.3276595 \\
\text{H} & -4.3280536 & 3.0070322 & -4.2960962 \\
\text{H} & -3.3212294 & -2.9865821 & -0.7499564 \\
\text{H} & -2.8673469 & -4.1731388 & 2.6018203 \\
\text{C} & -3.8562311 & 2.1687707 & -4.7961146 \\
\text{C} & -2.5780841 & -2.7557866 & -1.5006165 \\
\text{H} & -2.1772533 & -4.6277557 & 2.6080904 \\
\text{H} & -3.3008984 & 2.8200219 & 0.5998767 \\
\text{C} & -2.0818149 & -3.4631152 & 2.4003248 \\
\text{C} & -2.3722860 & -1.5982431 & 4.2054702 \\
\text{C} & -1.9869548 & -3.5805681 & -2.4370113 \\
\text{C} & -2.1967768 & 0.2235322 & 5.6202272 \\
\text{C} & -2.6180822 & 0.0617109 & -5.9626328 \\
\text{C} & -2.6295188 & 1.6929364 & -4.3438133 \\
\text{H} & -2.0865464 & -0.7838469 & 6.4009318 \\
\text{C} & -2.5636991 & 2.6191893 & 1.3648476 \\
\text{N} & -2.0909529 & -1.5071666 & 1.6043665 \\
\text{C} & -1.7899447 & -2.2784947 & 3.0765585 \\
\text{H} & -0.4507874 & -5.0203625 & -4.4817921 \\
\text{Ag} & -2.0030746 & -0.0723150 & -0.0512006 \\
\text{H} & -2.2791141 & 4.4929437 & 2.4998605 \\
\text{H} & -1.6485658 & 1.1238783 & 5.8859358 \\
\text{N} & -1.7190467 & -0.4730181 & 4.5843276 \\
\text{H} & -2.9349360 & 4.2251823 & -2.7257232 \\
\text{N} & -2.0155224 & 1.3918039 & 1.4704096 \\
\text{C} & -2.0338191 & 3.4587309 & 2.3198029 \\
\text{H} & -0.9473120 & -4.2775043 & 0.6596558 \\
\text{C} & -2.0227131 & 0.6575153 & -4.9381990 \\
\text{C} & -1.1134378 & -3.5298099 & 1.4226392 \\
\text{C} & -1.0998517 & -2.7424258 & -3.1056749 \\
\text{C} & 0.1271358 & -4.1493895 & -4.7687218 \\
\text{N} & -1.1928684 & -1.4988545 & -2.5934217 \\
\text{C} & -2.1840150 & 3.4796632 & -2.5206446 \\
\text{C} & -1.9477727 & 2.2850469 & -3.2021257 \\
\text{C} & -0.1223021 & -2.9342077 & -4.1452273 \\
\text{N} & -0.7147840 & 1.6965592 & 2.5165155 \\
\text{N} & -1.1378095 & 1.4155356 & 2.4746381 \\
\text{C} & -1.1269168 & 2.6510023 & 3.0055508 \\
\text{H} & 1.3181006 & -5.1708313 & -6.2233362 \\
\text{H} & -0.0383176 & -1.9287642 & 5.9233534 \\
\text{C} & 1.1076845 & -4.2274238 & -5.7312410 \\
\text{N} & -0.2982229 & -2.4600199 & 1.5052713 \\
\text{N} & -0.8955803 & 1.6635261 & -2.6434074 \\
\text{C} & -1.2111303 & 3.5117396 & -1.5448243 \\
\text{N} & 0.5822809 & -1.8243189 & -4.4693365 \\
\text{Ru} & -0.0047058 & -0.0006898 & 3.4597524 \\
\text{H} & -1.0142906 & 4.2521676 & -0.7816678 \\
\text{Ru} & 0.0067163 & -0.0613849 & -3.4405121 \\
\text{H} & -0.6032038 & 4.9501498 & 4.3943288 \\
\text{C} & 1.8235437 & -3.0868725 & -6.0607181 \\
\end{array}
$$
Singlet ground state of \([\{\text{Ru(pypz}_3\}\}_2\text{Au}_3]\) (4):

H	-4.8445048	-1.8043999	6.4394398			
H	-4.8445182	1.8044101	-6.4394425			
C	-3.9640464	-1.4512448	5.9140433			
H	-3.9150598	3.0844018	4.5157565			
H	-3.7034556	0.3167590	7.1260598			
C	-3.9640176	1.4512094	5.9140422			
H	-3.7034576	0.3167518	7.1260563			
C	-3.4531924	-2.1627862	4.8515841			
C	-3.3377648	0.2762193	6.2967882			
C	-3.3377437	-0.2761768	6.2968020			
H	-3.9150506	3.0843893	-4.5157512			
H	-3.3346286	2.8467891	0.6341871			
H	-2.7129978	-4.2951240	2.6154737			
C	-3.4532178	2.1628036	4.8515881			
C	-2.6044571	-2.6365510	-1.4022882			
H	-2.3375500	-4.4801414	-2.5850969			
H	-3.3346216	2.8467876	0.6341983			
C	-1.9600115	-3.5541218	2.4026538			
H	-2.3282036	-1.6914147	4.1901417			
C	-2.0859331	-3.4519672	2.3814653			
C	-2.2258926	0.1399919	5.5996688			
C	-2.2258819	-0.1399945	5.5996716			
C	-2.3281697	1.6913917	4.1901318			
H	-1.7089158	-1.0574398	5.8675649			
C	-2.6044821	2.6365459	1.4022535			
N	-2.0474481	-1.4110981	1.4868617			
C	-1.7129931	-2.3540212	3.0689343			
H	-0.6668422	-4.9188566	-4.4657357			
Au	-2.0638328	-0.0000134	0.0001030			
H	-2.3375486	4.4801243	2.5850947			
H	-1.7089058	1.0574458	5.8675490			
N	-1.7176695	-0.5433894	4.5696072			
H	-2.7130039	4.2951273	2.6154740			
N	-2.0474365	1.4110874	1.4868662			
C	-2.0859541	3.4520049	2.3814859			
H	-0.8127723	-4.3239052	0.6488977			
N	-1.7176677	0.5434047	4.5696109			
C	-1.0028979	-3.5860344	1.4147938			
C	-1.1800883	-2.6324418	3.0540079			
C	-0.1046762	-4.0562805	-4.8040952			
N	-1.1765658	-1.4085147	-2.4983654			
C	-1.9599959	3.5541147	-2.4026384			
C	-1.7130053	2.3540277	-3.0689370			
C	-0.2847339	-2.8384368	-4.1636746			
N	-0.6693518	-1.7263790	2.5008293			
N	-1.1765671	1.4085255	2.4983670			
C	-1.1800888	2.6324123	3.0539977			
H	0.9458068	-5.0961513	6.3532856			
H	-0.0617676	2.0262692	5.8606164			
C	0.7888218	-4.1497118	5.8476327			
N	-0.2358384	-2.4794292	1.4883142			
N	-0.6693437	1.7263765	2.5008259			
C	-1.0029044	3.5860086	-1.4148219			
N	0.3965804	-1.7338068	-4.5500814			
Ru	-0.0153123	-0.0114113	3.4678506			
H	-0.8127703	4.3239134	-6.468873			
Ru	-0.0153136	0.0114103	-3.4678566			
H	-0.6668485	4.9188734	4.4657416			
C	1.4856862	-3.0175306	-6.2367085			
Excited triplet state of \([\text{Ru(pypz)}_3]^{2+}\text{Au}\) (4):

\[
\begin{align*}
H & \quad -4.8492022 & -1.8838409 & 6.3271043 \\
H & \quad -5.0264566 & 2.0387580 & -5.8634844 \\
C & \quad -3.9727420 & -1.5094508 & 5.8095566 \\
H & \quad -3.8155321 & -3.1865222 & 4.4725092 \\
H & \quad -4.0852026 & -0.2084732 & -6.4593006 \\
C & \quad -4.1194614 & 1.6714504 & -5.3953801 \\
H & \quad -3.8218267 & 0.3129101 & 6.9584472 \\
C & \quad -3.4044262 & -2.2336756 & 4.7858402 \\
C & \quad -3.6046097 & 0.4293471 & -5.7275887 \\
C & \quad -3.4087410 & -0.2941650 & 6.1622943 \\
H & \quad -3.8453588 & 3.4031634 & -4.1518866 \\
H & \quad -3.1598145 & -3.1235590 & 0.7206748 \\
H & \quad -2.5550255 & -4.3856696 & 2.6173856 \\
C & \quad -3.4670692 & 2.4328010 & -4.4528183 \\
C & \quad -2.4460702 & -2.8779533 & -1.4937408 \\
H & \quad -2.2059673 & -4.6561510 & 2.7749300 \\
H & \quad -3.2155658 & 2.6762033 & 0.2868536 \\
C & \quad -1.8159634 & -3.6302251 & 2.4067875 \\
C & \quad -2.2851851 & -1.7358803 & 4.1343541 \\
C & \quad -1.9468270 & -3.6399669 & 2.5261348 \\
C & \quad -2.2968656 & 0.1448079 & 5.4793158 \\
C & \quad -2.4516343 & 0.0653632 & -5.1054477 \\
C & \quad -2.3091333 & 1.9496663 & -3.8568433 \\
H & \quad -2.0068882 & -0.9571418 & -5.3380569 \\
C & \quad -2.5497707 & 2.5067807 & 1.1210939 \\
N & \quad -1.8987450 & -1.6525383 & -1.5411653 \\
C & \quad -1.6183748 & -2.4086830 & 3.0501567 \\
H & \quad -0.4950633 & -5.1492668 & -4.4153116 \\
Au & \quad -1.9421137 & -0.1890034 & -0.1140365 \\
H & \quad -2.4264466 & 4.3873298 & 2.2679431 \\
H & \quad -1.8280704 & 1.0927179 & 5.7287821 \\
N & \quad -1.7318627 & -0.5513274 & 4.4875501 \\
H & \quad -2.3708031 & 4.7740176 & -2.6397356 \\
N & \quad -1.9681419 & 1.3014007 & 1.2849685 \\
C & \quad -2.1370386 & 3.3599691 & 2.1182788 \\
H & \quad -0.6054008 & -4.4073531 & 0.6996821 \\
N & \quad -1.8031502 & 0.7420882 & -4.1977376 \\
C & \quad -0.8336796 & -3.6585885 & 1.4446622 \\
N & \quad -1.0669198 & -2.7875243 & -3.1947942 \\
C & \quad -0.0423049 & -4.2896207 & -4.8961597 \\
N & \quad -1.0569169 & -1.5941179 & 2.5776995 \\
C & \quad -1.7008298 & 3.9857163 & -2.3358670 \\
C & \quad -1.5921190 & 2.6842176 & 2.8368155 \\
C & \quad -0.2476051 & -3.0147316 & -4.3777184 \\
N & \quad -0.5787515 & -1.7649033 & 2.4937759 \\
N & \quad -1.1804785 & 1.3486632 & 2.3600266 \\
C & \quad -1.2654433 & 2.5849007 & 2.8819448 \\
H & \quad 0.9260919 & -5.4259692 & -6.4303310 \\
H & \quad -0.0809547 & -1.9115706 & 5.9090421 \\
C & \quad 0.7516320 & -4.4397381 & -6.0126445 \\
N & \quad -0.0988110 & -2.5297792 & 1.5122574 \\
N & \quad -0.6149760 & 2.0358696 & -2.1967300 \\
N & \quad -0.7260392 & 4.0472288 & -1.3624540 \\
N & \quad 0.3036099 & -1.9352295 & 4.9479939 \\
Ru & \quad -0.0119963 & 0.0022014 & 3.4250540 \\
H & \quad -0.4465163 & 4.8575597 & -0.7040037 \\
Ru & \quad 0.0287210 & 0.0715618 & -3.2801217 \\
H & \quad -0.9970169 & 4.8962177 & 4.3190117 \\
C & \quad 1.3282843 & -3.3213426 & -6.5898373
\end{align*}
\]
Element	x	y	z
C	-0.4537777	2.8480431	4.0422278
H	-0.0545631	2.2462862	-5.5769889
C	0.9681382	-1.9211708	5.6260566
C	-0.3978209	4.0739395	4.6913785
N	-0.0850202	2.8643480	-1.3024229
H	1.9599379	-3.3977634	-7.4667309
N	0.2738183	1.7902790	4.4739371
C	1.0737913	0.9681382	-1.9211708
C	0.3978209	4.0739395	-5.5769889
N	0.0850202	2.8643480	-1.3024229
H	1.5011179	1.1808687	-6.4381535
C	0.4170657	4.2232786	5.7907085
C	1.0706806	1.9518268	5.5351549
H	0.4687047	5.1742950	6.3091638
N	1.3573659	1.2994112	-4.4129168
C	1.6433605	1.0749542	5.8395817
H	1.6037403	3.4468479	-6.9704716
Au	1.1113340	2.0288123	0.1213451
C	1.1713252	3.1426594	6.2189621
N	1.8241068	0.3262670	2.4955406
C	1.8806862	-0.3799509	2.4779553
C	1.9365717	2.7899962	-6.1762740
N	2.3258619	-1.1232731	-1.4623911
C	3.2082567	-2.6569296	5.9306622
C	2.6004774	-1.1421046	4.1868304
N	2.2821608	1.0874970	1.5006203
H	1.8314382	3.2177459	7.0741637
H	3.9527211	-3.2415195	6.4594889
C	2.6698504	1.1062851	-4.1508360
C	2.8770917	-0.2904518	3.0598081
C	2.9437907	0.2068461	-3.0620760
C	3.5679985	-1.8820024	4.8516282
C	3.2838933	2.600311	-5.9087092
C	3.6661138	-1.0179147	-1.4078136
C	3.6523684	1.7522062	-4.8896497
C	3.6205693	0.9477691	1.4265343
H	4.5940639	-1.8379648	4.5050713
H	4.2179510	-1.5436960	-0.6420175
C	4.0497566	0.0780683	2.4019108
C	4.1101537	-0.1858248	2.4117914
H	4.0397923	3.1124540	6.4939557
H	4.1777868	1.4850640	0.6727129
H	4.6948653	1.5752877	4.6517423
H	5.0609575	-0.2290975	2.6130027
H	5.1266946	0.0951314	-2.6335189