The main common methods of methyl methacrylate producing are acetocyanohydrin method and oxidation of isobutylene and tert-butanol. Because of the significant drawbacks of these methods, it is important to develop new, alternative ways of methyl methacrylate obtaining, one of which could be aldol condensation of methyl propionate with formaldehyde in the gas phase. The actual task for today is to find out effective catalysts for this process.

For this aim, methyl propionate condensation with formaldehyde was studied in the presence of $\text{B}_2\text{O}_3–\text{P}_2\text{O}_5–\text{WO}_3/\text{SiO}_2$ catalyst, which previously has shown high activity in the condensation of propionic acid with formaldehyde to methacrylic acid. The paper also investigates the influence of methanol on the side reaction of methyl propionate hydrolysis; it was found that adding methanol causes a slight increase in MMA selectivity, but the yield of unsaturated products decreases, and therefore adding methanol to the reaction mixture for the MP condensation with FA over $\text{B}_2\text{O}_3–\text{P}_2\text{O}_5–\text{WO}_3/\text{SiO}_2$ catalyst is impractical, but the yield of unsaturated products decreases, and therefore adding methanol to the reaction mixture for the MP condensation with FA, namely temperature 653 K and contact time 12 s were found. Under these conditions, in the presence of $\text{B}_2\text{O}_3–\text{P}_2\text{O}_5–\text{WO}_3/\text{SiO}_2$ catalyst with an atomic ratio of components $\text{B}:\text{P}:\text{W}:\text{Si}=3:1:0:6$ respectively total yield of MMA and MMA was 31.91 % while their total selectivity was 32.2 %.

Keywords: methyl methacrylate, methacrylic acid, methyl propionate, formaldehyde, catalyst, heterogeneous catalysis, aldol condensation.

References

1. Koichi, N. (2010). New developments in the production of methyl methacrylate. Applied Catalysis A: General, 221 (1-2), 367–377. doi: 10.1016/j.apcata.200101008-9

2. Wittcoff, H. A., Reuben, B. G., Plotkin, J. S. (2013). Industrial organic chemicals. Second edition. John Wiley & Sons, 188–193. doi: 10.1002/0471651540

3. Li, B., Yan, R., Wang, L., Diao, Y., Li, Z., Zhang, S. (2014). SBA-15 Supported cesium catalyst for methyl methacrylate synthesis via condensation of methyl propionate with formaldehyde. Industrial & Engineering Chemistry Research, 53 (4), 1386–1394. doi: 10.1021/ie40322x.

4. Ai, M. (2005). Formation of methyl methacrylate by condensation of methyl propionate with formaldehyde over silica-supported cesium hydroxide catalysts. Applied Catalysis A: General, 288 (1-2), 211–215. doi: 10.1016/j.apcata.2004.06.027

5. Grate, M. R., Spivey, J. J., Zoeller, J. R. (1997). Synthesis of methyl methacrylate by vapor phase condensation of formaldehyde with propionate derivatives. Catalysis Today, 36 (3), 243–254. doi: 10.1016/S0920-5861(96)00241-6

6. Li, B., Yan, R., Wang, L., Diao, Y., Li, Z., Zhang, S. (2013). Synthesis of methyl methacrylate by aldol condensation of methyl propionate with formaldehyde over acid–base bifunctional catalysts. Catalysis Letter, 143 (8), 829–838. doi: 10.1007/s10521-013-1040-4

7. Ivasiv, V. V., Pikh, Z. G., Zhyznevskyi, V. M., Nebesnyi, R. V. (2011). Plasyko-khimichni vlastivosti poverhknosti $\text{B}_2\text{O}_3–\text{P}_2\text{O}_5–\text{MeO}_x/\text{SiO}_2$ katalizatoriv ta jih vplyv na parametry protsesu aldolnoi kondensatsii propionovoi kysloty z formaldehodom. Dopovidi NAI Ukrainy, 11, 126–130.

8. Nebesnyi, R., Ivasiv, V., Dmytryuk, Y., Lapyshak, N. (2013). Acrylic acid obtaining by acetic acid catalytic condensation with formaldehyde. Eastern-European Journal of Enterprise Technologies, 6(6(66)), 40–42. Available at: http://journals.uran.ua/ejeet/article/view/19130/17146

9. Nebesnyi, R., Ivasiv, V., Pikh, Z., Zhyznevskyi, V., Dmytryuk, Y. (2014). The kinetic of the gas phase aldol condensation reaction of propionic acid with formaldehyde on $\text{B}_2\text{O}_3–\text{P}_2\text{O}_5–\text{WO}_3/\text{SiO}_2$ catalyst. Chemistry & Chemical Technology, 8 (1), 29–34.

10. Jackson, S. D., Johnson, D. W., Scott, J. D. et. al. (2003). Production of unsaturated acids or esters thereof. Patent 7035147. Assignee: Lucite International UK Limited (GB). № 346191; filing date: 17.01.2003; publication date: 30.05.2006.

11. Jackson, S. D., Johnson, D. W., Scott, J. D. et. al. (2003). Catalysis for the production of unsaturated acids or esters thereof. Assignee: Lucite International UK Limited (GB). № 647876; filing date: 01.04.1999; publication date: 08.04.2003.

MICROSILICA INFLUENCE ON THE PHASE CONSTITUTION AND PROPERTIES OF SPINEL-FORMING COMPOSITION (p. 8-12)

Victoria Pesehanka, Anna Voytyuk, Yaroslav Pitak

Experience in using low cement alumina-magnesia castables, containing spinel-forming reagents, in monolithic ladle linings identified their significant advantages in terms of thermomechanical properties, corrosion resistance and slag resistance. A particular feature of these castables is the synthesis of «in situ» magnesium aluminate spinel at high operating temperatures, which provides increased operational lifetime of the lining.

The microsilica influence on the phase constitution of the composite mixture, containing calcium aluminate cement and spinel-forming reagents – calcined alumina and sintered periclase after firing at 1700 °C was investigated in the paper. It was found that as a result of the interaction of cement calcium aluminates with microsilica, fusible compounds – anorthite and helenite that, at increased microsilica content, impair physical and technical properties of the composite are formed. It was determined that the ratio of spinel-forming reagents and content of the silica-containing material in a matrix component of alumina-magnesia castables is a more important factor of the synthesis of high-melting-point crystalline phases than the microsilica content. Directed regulation of the phase composition of the matrix component of alumina-magnesia castables by adjusting the grain-size composition of spinel-forming reagents and their optimal ratio will ensure achieving a set of the given physical and technical characteristics of concrete and increasing the operational lifetime of monolithic ladle linings.

Keywords: alumina-magnesia castable, microsilica, spinel-forming reagents, phase constitution, fusible compounds.

References

1. Pivinskii, Yu. E. (2005). Neformovannyе ogneupory. Vol. 1. Obshchie voprosy tekhnoalogii. M.: Tekhnoenergik, 448.

2. Migal, V. P., Margashtivl, A. P., Skurikhin, V. V., Rusakov, G. V., Aleksseev, P. E. (2009). Neformovannyе ogneupornyе materialy diya metallurgicheskoy promyslenosti. Ognegornyе i tekhnicheskaya keramika, 4, 27–33.

3. Migal, V. P., Skurikhin, V. V., Bulin, V. V. (2011). Neformovannyе ogneuponyе, vypuskayuemyе OMO «borovskiy kombinez ogneuporov». Novye ogneupory, 10, 11–14.

4. Tokarev, A. V., Akselerod, L. M., Koral, L. N., Shelko, P. A. (2005). Nizkotemperaturnye betony firmy «DALMOND» v futerovke stalero-zhilovykh kovshov. Novye ogneupory, 6, 63–68.

5. Kondratev, E. A., Valulina, M. A. (2014). Perspektivnyе tekhnologii neformovannyх ogneuporov v Bogdanovskom OMO «ognegornyе». Novye ogneupory, 9, 14–16.

6. Polonskyi, M. G. (2003). Primenenie glinozemshpinelnykh i glinozemmagnesnazykh betonov v futerovkah stalero-zhilovykh kovshov. Ognegornyе i tekhnicheskaya keramika, 3, 37–42.

7. Ochugova, I. G. (2002). Mokroe torkretirovanie betonami nizkoy vlagostantsi – novyy sposob remonta i izgotovleniya futerovki stalero-zhilovyh kovshov. Novye ogneupory, 6, 50–53.

8. Shirama, N., Murakami, K., Takita, I. (2001). Monolithic refractories lining for RH degassers with wet gunning. Taikabutsu Refractories, 53 (8), 481–487.

9. Ko, Y. C. (2000). Influence of the characteristics of spinels on the slag resistance of Al_2O_3 – MgO and Al_2O_3 – Spinell castables.
A STUDY OF THE EFFECT OF IRON (III) COMPOUNDS ON OXIDATION OF IRON (II) IONS BY ATMOSPHERIC OXYGEN

Victor Yavorskiy, Yoroslav Kalyon, Olga Rubay

Deferrisation of groundwater has been performed by many methods whose choice depends on the form in which iron (Fe) compounds exist in water and on its chemical composition. A number of published studies have proved that the iron (III) compounds/sediment used in the filtering substrate has a catalytic effect on the oxidation process. The same property of iron (III) compounds/sediments observed in the sediment resulting from contact purification of water. However, in the case of filtering, due to the large-size granules of the filter substrate, the specific surface area of the autocatalytic layer is small, which significantly reduces the system performance. In the schemes of contact filtering with held-up sediment, the area of the phases’ contact increases, but there is a need for strict observation of the speed of the water flow and an extended contact time (45 min.). Therefore, our tasks were to increase the active contact area of the catalyst pellet of the iron (III) sediment and to reduce the time of the contact between water and the held-up sediment.

Deferrisation was carried out in a horizontal absorber bucket of dispersants, in which the dispersed phase is 0.02 and 0.05 mol Fe²⁺/m³. The time of the contact between the purified water and the compounds of the sediment was 15 to 80 sec, depending on the pH of the water and the dose of the applied iron (III) compounds.

The obtained results can serve as a basis for the development of a resource and energy saving technology of groundwater deferring with recirculation of the newly formed sediment.

Keywords: autocatalytic process, deferrisation, iron (III) compounds/sediment, oxidation by atmospheric oxygen.

References

1. Rubay, O. (2014). Zastosowania horizonhinalnego absorbera z lozowpodobnymi dysperhatorami dla oczyszczania wod od ziemskich. V Mizhnarodna konferencyi studentiv, aspirantiv ta molodyh uchenykh "Khimia ta suchasni tehnolohii". Ivano-Frankivsk, 39.
2. Yavorskiy, V., Kalyon, Ya., Rubay, O. (2015). Doslidzhennya protsesu oksydenia ioniv Ferumu (II) kysnem povitria u vodi. Materiały VІ Mizhnarodnoi naukovo-praktycheskoj konferencii studentiv, aspirantiv ta molodyh uchenykh "Khimiya ta suchasni tehnolohii". Donetsk, 176.
3. Bolotova, O. V. (2005). Isledovaniia po snizheniiu soderzhania ugilekstolii iz podzemnyh vod Tiumenskogo regiona [Linguistic description and evaluation of information language]. Moscow, 139.
4. Morgan, B., Lahay, O. (2007). The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution – basic principles and a simple heuristic description. Chemosphere, 68 (11), 2080–2084. doi:10.1016/j.chemosphere.2007.02.015.
5. Garnars, A., Blomquist, S., Johansson, B., Anderson, C. (2002). March. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochemica et Cosmochimica Acta, 66 (5), 745–758. doi:10.1016/S0016-7037(01)00819-3.
6. Lazarev, R. T., Nikoladze, N. G. (1983). Sposob ochistki podzemnyh vod ot zheleza. Certificate of authorship № 1058898 SSSR, S 02 F 1/64. Filed 23.11.1981. Бул. № 12, 3. Available at: http://patentdb.ru/3-1058898-sposob-ochistki-podzemnyh-vod-ot-zheleza.html.
7. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
8. Atshur, A. K. (2015). Ochistka vody od zheleza na napornih fil'trah. PGU, Novopolotsk. Available at: http://www.polymercon.ru/articles/839/.
9. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
10. Kalyon, Y., Rubay, O. (2015). Ochistka vody od zheleza na napornih fil'trah. PGU, Novopolotsk. Available at: http://www.polymercon.ru/articles/839/.
11. Gerasimov, N. G. et al. (2007). Tehnicheskiy pravochnik dlia ochiщения podzemnyh vod ot zheleza. VODA. Moskow, 139.
12. M. S. Meng, R. T. Nikoladze, N. G. (1983). Sposob ochistki podzemnyh vod ot zheleza. Certificate of authorship № 1058898 SSSR, S 02 F 1/64. Filed 23.11.1981. Bul. № 12, 3. Available at: http://patentdb.ru/3-1058898-sposob-ochistki-podzemnyh-vod-ot-zheleza.html.
13. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
14. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
15. V. V. Tikhomirov, A. N. (2015). Ochistka vody od zheleza na napornih fil'trah. PGU, Novopolotsk. Available at: http://www.polymercon.ru/articles/839/.
16. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
17. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
18. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
19. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
20. Orlov, V. O., Martynov, S. Yu., Kunytsksii, S. O., Medlur, M. M., UDUVHP (2012). Resourseskomnii materialy, konstruktivni, budilni ta sporudovi. Rivne, 646.
4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.
no more than 1.5 m, and the ratio of mass flows of brine and vapor-potokov i ikh Chislennoye resheniye. Izdatel'stvo Politehnicheskogo universiteta, 425.

Fuks, N. A. (1958). Ispareniye i rost kapel v gazoobraznoy srede. Moscow: Nauka.

Zaitsev, V. F., Polianin, A. D. (2001). Spravochnik po obyknovennym differentsialnym uravneniiam. Moscow: FIZMATLIT, 577.

Andreyev, E. I. (1985). Raschet teplo- i massoobmena v kontaktnykh systemakh. Moscow: Energiya, 488.

Isachenko, V. P., Osipova, V. A., Sukomel, A. S. (1975). Teploperedachi i teplomassoobmena v orositelnykh kamerakh. Teoreticheskie osnovy khimicheskoi tekhniki, 42 (4), 419–428.

Shilaiav, M. I., Khromova, E. M. (2008). Modelirovaniia protsessov teplomassoobmena v orisotelnikh kamerakh. Teoreticheskii sbornik khimicheskoi tehnologii, 42 (1), 15–26.

11. Semenov, V., Nikitin, N. (2008). Condensation Heat Transfer on Noncircular Pipes in Stationary Vapor. Heat Transfer Research, 39 (4), 317–326. doi: 10.1615/heattransres.v39.i4.50

12. Andreyev, E. F. (1985). Raschet teplo- i massoobmena v kontaktnykh apparatakh. Lavr. Energiya, 192.

13. Gvozdikov, A. N., Gvozdikov, M. A. (2009). Izuchenie protsessov teplo- i vlagooobmena v fonsornoy kameri oresheniya kapelno-plenchnogo tipa. Seriya: Stroitelstvo i arkhitektura, 14, 161.

14. Balachandar, S., Eaton, J. K. (2010). Turbulent Dispersed Multiphase Flow. Annual Review of Fluid Mechanics, 42 (1), 111–133. doi: 10.1146/annurev.fluid.010908.162543

15. Maxey, M. R., Patel, B. K., Chang, E. J., Wang, L.-P. (1997). Simulations of disordered turbulent multiphase flow. Fluid Dynamics Research, 20 (1-6), 143–156. doi: 10.1063/1.5893(96)00042-1

16. Sou, S.; Deich, M. Ye. (Ed.) (2006). The study concentrated mash cooking parameters for hydrolysis of starch-containing raw material biopolymers. Abstracts “Microbial biocatalysts for processing starch hydrolysates different carbohydrate composition. Part 1. Production of alcohol and alcoholic beverages, 3, 18–21.

17. Fursova, T. I., Korneev, O. S., Vostrikovs, S. V. (2007). Using the enzyme preparations to obtain starch hydrolysates different carbohydrate composition. Part 1. Production of alcohol and alcoholic beverages, 3, 18–21.

18. Isachenko, V. P., Ospova, A. V., Sukomel, A. S. (1975). Teploperecha-da: Uchebnoe posobiye dlya vuzov. Moscow: Energija, 488.

19. Tolkhsniy, A. K., Mankovskyi, O. N., Aleksandrov, M. V. (1976). Teploobmennaia apparatura khimicheskix proizvodstv. Inhenier-nye metody rascheta, 368.

20. Peterson, P. F., Schrock, V. E., Kageyama, T. (1953). Diffusion Theory for Turbulent Vapor Condensation With Noncondensable Gases. Journal of Heat Transfer, 115 (4), 998–1003. doi: 10.1115/1.2811397

21. Isachenko, V. P. (1977). Teplobmen pri kondensatsii. Moscow: En ergiya, 240.

22. Zaitsev, V. F., Polianin, A. D. (2001). Spravochnik po obyknovennym differentsialnym uravneniiam. Moscow: FIZMATLIT, 577.

23. Tsvetkov, F. E., Grigor'ev, B. A. (2001). Teplomassoobmen. Moscow: Izdatelstvo M[Jel], 550.

24. Fucks, A. N. (1958). Ispareniye i rost kapel v gazovozrashnoy srede. Izdatelstvo USSR, 92.

25. Barlovich, V. A. (2009). Osnovy termogazodinamiki dvuhfaznykh potokov i iki Chislennoye resheniye. Izdatelstvo Politehnicheskogo universiteta, 425.

26. Kologrivov, M. M., Buzovski, V. P. (2014) Inzhenernaia metodika rascheta teplomassoobmena v ehzektzionnom aparate. Nauchnye rabytory Odeskoi natsionalnoi akademii pishchevykh tehnologii, 45 (1), 38–45.

27. Aleksandrov, V. Y., Klimovs’kii, K. K. (2009). A procedure for calculating gas ejectors. Thermal engineering, 56 (8), 656–659. doi: 10.1134/S0406015609080060

DEVELOPMENT OF METHOD OF USE OF ACID-RESISTANT SELECTIVE ACTION ENZYME PREPARATIONS (p. 38-44)

Petro Shiyan, Tatiana Mudrak, Anatoliy Kuts, Iaroslav Boiarchuk

A lot of studies were conducted nowadays in distilling industry on biocatalysis and fermentation of wort from starch-containing raw material using selective action enzyme complexes, but operational parameters for hydrolization of starch-containing raw material biopolymers are not sufficiently investigated at low pH of the substrate. On the market of enzyme preparations in Ukraine there are acid-resistant enzymes that enable hydrolization of grain mashes in low pH environment. This article concentrates on determination of efficiency of use of acid-resistant enzyme preparations (EP) when producing worts from starch-containing raw material. The results of studies in content in wort of water-soluble carbohydrates and insoluble starch depending on pH, temperature of termofermentive processing (TFP) and enzyme activity stabilizer Ca2+ ions are demonstrated. In terms of bioconversion efficiency of raw grain material components and assurance of microbiological purity of intermediate products of alcohol production, optimum pH is 3.8–4.0, mash processing time is 90 minutes.

Keywords: mash, enzyme preparations, fermentation of wort, wort, water-soluble carbohydrates, insoluble starch, concentration.

References

1. Shiyan, P. L., Soinitsky, V. V., Olynychuk, S. T. (2009). Innovation technologies of alcohol industry. Theory and practice: a monograph. Kiev: Publishing House “Ascania”, 424.

2. Rimareva, L. V., Overchenko, M. B., Ignatov, N. I., Abramov, I. M. (2008). Theoretical and practical bases of enzymatic catalysis of polymers of grain raw materials in the production of alcohol. Production of alcohol and alcoholic beverages, 3, 4–9.

3. Rimareva, L. V. (2010). Bases theoretical and practical biotechnologies of yeast. Moscow: DeLi print, 252.

4. Fursova, T. I., Korneev, O. S., Vostrikovs, S. V. (2007). Using the enzyme preparations to obtain starch hydrolysates different carbohydrate composition. Part 1. Production of alcohol and alcoholic beverages, 3, 18–21.

5. Fursova, T. I., Korneev, O. S., Vostrikovs, S. V. (2008). Researches fermentation process starch hydrolysates different carbon composition. Part 2. Production of alcohol and alcoholic beverages, 1, 13–15.

6. Gromov, S. I., Pykhov, S. V., Golubev, A. D.; Polyakov, V. A., Rymareva, A. V. (Eds.) (2006). The study concentrated mash cooking modes at the mechanics and enzymatic treatment using different enzyme preparations. Abstracts “Microbial biocatalysts for processing branches of agriculture”. Moscow, VNIIPBT, 141–148.

7. Stallions, N. A. (1984). Amyloytic enzymes in the food industry. Moscow: Light and food industry, 160.

8. Bushin, M. A., Vostrikovs, S. V., Yakovlev, A. N. (2005). Changes in carbohydrate composition and viscosity of the grain in the process of mixing the water-heat treatment. Production of alcohol and alcoholic beverages, 4, 22–23.

9. Rimareva, L. V., Overchenko, M. B., Ignatov, N. I., Kadieva, A. T. (2004). Multizyme systems in the production of alcohol. Production of alcohol and alcoholic beverages, 3, 22–24.

10. Production schedules wort alcohol production in low-temperature cooking raw starch using enzymes concentrated TR-003247-812-2002 (2002). Kiev: Ministerstvo agrarnoi' polityky Ukrainy.

INVESTIGATION OF INTERACTION OF AMINOETHYLETHYLENEDIAMINE WITH SUNFLOWER OIL (p. 44-49)

Anatoliy Melnik, Olga Chumak, Serhii Malik, Alisher Khusanov

The interaction reaction of sunflower oil with hydroxethyl-ethylenediamine at molar ratios of reactants of from 1:1 to 1:3, and
Abstract and References. Технологии органических и неорганических веществ

temperatures of 393–433 K by changes in the amine concentration over time was investigated, based on which the rate constants, activation energy and entropy were calculated. Using a kinetic first-order reaction model, the estimated thermodynamic parameters, changes in the amine concentration over time were calculated and compared with the experimental values. Analysis of variance between concentrations indicates that the amine concentration can be used for the sunflower oil amidation reaction control only at the initial stage. This is caused by the fact that both nitrogen and oxygen-containing products that also react with amine are formed in the oil amidation.

Keywords: sunflower oil, amidation, hydroxyethyl ethylenediamine, composition, kinetics, model, adequacy.

References

1. Ivanskii, V. I. (1978). Chemistry of gercetocyclic compounds. High school, 500.
2. Tyagi, R., Tyagi, V. K., Pandey, S. K. (2007). Imidazoline and Its Derivatives: An Overview. Journal of olen science, 56 (5), 211–222. doi: 10.5650/jos.56.211
3. Bajpai, D. J., Tyagi, V. K. (2006). Fatty Imidazolines: Chemistry, Synthesis, Properties and Their Industrial Applications. Journal of olen science, 55 (7), 319–329. doi: 10.5650/jos.55.319
4. Wu, Y., Harrington, P. R. (1997). Thermal reactions of fatty acids with diethyle triamine. Journal of the American Oil Chemists’ Society, 74 (6), 641–644. doi: 10.1007/s11746-017-0120-2
5. Bistline, R. G., Hampson, J. W., Linfield, W. M. (1983). Synthesis and properties of fatty imidazolines and their N-(2-aminoethyl) derivatives. Journal of the American Oil Chemists’ Society, 60 (4), 823–828. doi: 10.1007/bf02787436
6. Fairgield, S., Kunsik, A. E. (1984). Chemistry of amion and amphotolyte nitrogen containing surface-active substances. Valgas, 290.
7. Linfield, W. M. (1984). Fatty oxazolines and imidazolines. Journal of the American Oil Chemists’ Society, 61 (2), 437–441. doi: 10.1007/bf02678810
8. Belov, P. S., Firolov, V. I. Chistyakov, B. E. (1975). New surface-active substances based on substituted imidazolines, 54.
9. Elster, C. H., Gisb, J. G. (1979). Pat. 4161604 USA. Process for making 1-hydroxyethyl-2-undecyl-2-imidazoline. USA; LONZA AG; decl. 1,1078; publ. 7,177.
10. Gabriel, R. (1984). Selective amidation of fatty methyl esters with N-(2-aminoethyl)ethanolamine under base catalysis. Surfactants and detersgents, 61 (5), 965–971.
11. Bon, R. S., Hong, C., Bouma, M. J., Schmitz, R. E., de Kanter, F. J. J., Lutz, M. et al. (2004). Novel Multicomponent Reaction for the Combinatorial Synthesis of 2-Imidazolines. ChemInform, 35 (5), 3542–3553. doi: 10.1002/chin.200405056
12. Togo, H., Ishihara, M. (2006). An Efficient Preparation of 2-Imidazolines and Imidazolides from Aldheydes with Molecular Iodine and (Diacetoxyiodo)benzene. Synlett, 2, 227–230. doi: 10.1055/s-2005-923604
13. Watts, M. M. (1990). Imidazoline hydrolysis in alkaline and acidic media – A review. Journal of the American Oil Chemists’ Society, 67 (12), 993–995. doi: 10.1007/bf00254186
14. Serebraykov, B. R., Masagutov, R. M., Pravdin, V. H. (1989). New process of organic synthesis. Moscow: Chemistry, 400.
15. Phillips, B. M., Lace, R. B., Lamberj, A. J. (1980). Pat. 4212983 USA. Manufacture of imidazoline compounds. USA; Albright & Wilson Limit Co; decl. 20.12.78; publ. 15.07.80.
16. Siggia, S., Khanna, J. (1983). Quantitative organic analysis by the Limit Co; decl. 20.12.78; publ. 15.07.80.
17. Shmidt, R., Sapunov, V. N. (1985). Informal kinetics. In the quest for chemical reactions. Moscow: Mir, 264.
18. Melnik, A. P., Matveva, T. V., Pouchenko, V. Yu. (2013). Obtaining of mono-diacylglycerols and ethanolamides by amidation oils. LLAP, 268.

RECOVERING OF FATTY ACIDS FROM SOAP STOCK USING CARBON DIOXIDE (p. 50-53)

Svitlana Molchenko, Igor Demidov

Since the domestic oil and fat industry is characterized by a steady production growth, the amount of waste is constantly increasing, which adversely affects the ecological situation in Ukraine. In particular, these products include soap stock – waste of alkaline refining of vegetable oils, which is a source of fatty acids. Fatty acids are a commodity product, the demand and the cost of which is much higher in the soap stock.

The method of recovering fatty acids from the soap stock by carbon dioxide decomposition of their soaps was proposed. The effect of temperature, pressure of carbon dioxide and concentration of the aqueous solution of soap on the decomposition depth was experimentally proved in the paper. Studies have shown that the decomposition process of potassium salts of fatty acids by carbonate acid proceeds at a depth of over 90%. The resulting fatty acids are well suited for use in many industries. Rational technological parameters were determined, and the approximation model of the process was obtained. It was found that after the decomposition of potassium salts of fatty acids by carbonate acid, fatty acid composition of resulting fatty acids, which was determined by gas-liquid chromatography, changes slightly.

Keywords: vegetable oils, soap stock, waste, fatty acids, carbon dioxide, decomposition.

References

1. Kovari, K., Denise, J., Hollo, J. (2006). Seed crushing, oil refining and environmental problem. Olaj Szap. Kozmet, 45 (2), 45–52.
2. Weber, K. (2004). New concepts of environmental, protection in the production of fat. Inform. Int. News Fats, Oils and Relat. Mater, 4, 512–515.
3. Cavanagh, G. C. (1997). Looking back. AOCS and vegetable oil processing. INFORM Fats, Oils and Relat. Mater, 8, 7–8, 762–768.
4. Henon, G., Kemeny, L. (1999). Neutralization of Vegetable Oils. Part I, 77 (4), 12–21.
5. Watts, M. M. (1997). A simpler refining process for vegetable oils. Chem. Eng. USA, 5, 33–58.
6. Dijkstra, A. J., Van Opstal, M. (1989). The total degumming process. Journal of the American Oil Chemists’ Society, 66 (7), 1002–1009. doi: 10.1007/bf02682627
7. Shavrak, E. I. (2004). Isledovanie protsessa razlozheniya soapstockov rasti-telnyih masel smerjii kisloty s tselyu vyideleniya zhirnyih kislot. Izvestiya Vysishih uchebnyih zavedeniy. Tehnicheskie nauki, 5, 95–101.
8. Shavrak, E. I., Rabinovich, L. M., Kudryashov, V. A. (2004). Vyidelenie zhirnyih kislot iz othodov pishevoy promyshlennosti. Ekologicheskie sistemy i pribory, 10, 17–21.
9. Drozdov, A. S., Didenko, Z. V., Volkova, L. D. et. al. (1995). Pat RU 2048511 Rossisskaya Federatsiya, MPK C11B3/00. Sposob polucheniya zhirenyih kislot iz soapstockov rastitelsnyih masel, 5064258/13.
10. Samoylov, G. I., Sugattaullina, I. H., Ziatdinova, F. S. et. al. (1996). Pat RU 2064739 Rossisskaya Federatsiya, MPK C11B3/00. Sposob polucheniya zhirenyih kislot iz soapstockov rastitelsnyih masel, 95102976/13.
11. Mag, T. K., Green, D. H., Kwong, A. T. (1983). Continuous acidulation of soapstock and recovery of acid oil. Journal of the American Oil Chemists’ Society, 60 (5), 1008–1011. doi: 10.1007/bf02660217
12. Mankovskaya, N. K. (1985). Sinteticheskie zhirnye kisloty. Po-luchenie, svoystva, primenenie. Moscow: Himiya, 168.
13. Molchenko, S. M., Demidov, I. M., Ved, V. E. (2015). Oderzhannymi zhirenyih kislot z soapstocku shlyahom rozkladannya mila karbonatnomu nuyu kislotoyu. Visnik Natsionalnogo tehnilchnogo universitu `HPI`, 7 (1116), 76–82.

STUDY OF EMULSIFIER NATURE EFFECT ON THE PROCESS OF HYDROCARBON FRACTION COOLIGOMERIZATION IN THE EMULSION

(p. 34-57)

Ulyana Fuch, Bogdan Dzynyk, Roman Subtelny

The process of emulsifier coooligomerization of C8 fraction unsaturated hydrocarbons of coooligomers production (synthetic low-molecular petroleum resins), which are obtained from cheap petro-chemical raw materials – hydrocarbon fractions of liquid pyrolysis products (LPP) or cracking of oil, refined products and gas was investigated in the paper.

Since the emulsifier and initiator nature, as well as the emulsification process have the greatest effect on the coooligomerization process in the emulsion, the research is aimed at studying the influence of the main factors – the nature and concentration of emulsifiers and...
The antimicrobial activity of the developed experimental forms of antiseptic preparations relatively commonly infectious agents was investigated. The complex action of the antiseptic solution from Streptomycesalbus UN 44, caused by the activity of bacteriolysins and antibiotic of the strain, defining a wide range of antimicrobial activity was shown. The maximum ability of such an antiseptic to destroy and inhibit the growth of microorganisms is determined in relation to the Gram-positive bacteria of the genera Corynebacte-
ricium, Bacillus, Streptococcus, Staphylococcus.

The ability of the strain Streptomycesalbus UN 44 to accu-
mulate an antibiotic in the cell and to secrete it exogenously was revealed. The leading fungistic antibiotic activity in the finished forms of dry producer biomass and complex liquid antiseptic, the combination of substances with different mechanisms of antimicro-
bial action in the complex preparation was shown.

Finished forms of antiseptic preparations (solution, extract, dry
biomass) for use in veterinary, medicine, canning were proposed.

Keywords: Streptomycesalbus, bacteriolysins, antibiotic, fin-
ished forms, antimicrobial activity, antiseptics.

References

1. Vagyarova, G. G. (2002). Mykroorganizmy – producenty biolog-
chesky aktvnyh veshestv. Moscow: Hnymya, 231.
2. Van Wezel, G. P., McKenzie, N. L., Lodwell, J. R. (2009). Applying
the genetics of secondary metabolism in model Actinomycetes to the
discovery of new antibiotics. Methods in Enzymol., 458. 137–141.
3. Emelda, E. J. (2012). Antimicrobial Activity of Antibiotic Producing
Streptomycetes macrosporus. IOSR Journal of Pharmacy and Bio-
lological Sciences, 3 (20). 23–25. doi: 10.9708-0038-0252023
4. Postolachi, O., Burteva, S., Derjanschi, V. (2007). Selection of
Streptomycetes with antimicrobial activity to the pathogens of bee’s
diseases. USAMV-CN., 64 (1-2). 256–259.
5. Syväk, V. K., Deynka, S. E. (2014). Antibiotykorezystentnost: baga-
togranym problem. Klyn. ta eksper. patologyya, 13 (245), 222–224.
6. Bassetti, M., Righi, E. (2015). Development of novel antibacte-
rial drugs to combat multiple resistant organisms. Langenbeck’s
Archives of Surgery, 400 (2). 153–165. doi: 10.1007/s00423-015-
1280-4
7. Projan, S. J. (2011). Stimulating Antibacterial Research and Develop-
ment: Sense and Sensibility? Antibiotic Discovery and Develop-
ment, 1103–1105. doi: 10.1007/978-1-4614-1400-1_37
8. Ziemk, J., Rajnis, A., Solekla J. (2013). New perspectives on anti-
bacterial drug research. Centr. Eur. J. of Biol., 8 (10). 943–957.
9. Coates, A. R. M., Hu, Y (2006) New Strategies for Antibacterial Drug
Design. Drugs in R & D, 7 (3). 133–151. doi: 10.2165/00126839-
200607030-00001
10. Sokolova, I. E., Kylochek, T. P., Vinikov A. I. (2004). A Biosynthesis
activity of Streptomycyes recifensis var. lyticus. Mycrobyol. gurn., 66
(6), 10–17.
11. Alekseenko, O. M., Gernosekova, I. V., Vynnnykov A. I. (2011). Vu-
vchennya vplyvu ekzometabolitiv Streptomyces recifensis var. lyticus
na ryst gruba Pleurotus ostreatus. Mycrobyol. i bioteh., 2 (14),
11–47.
12. Gernosekova, I. V., Vynnnykov, A. I. (2006). Optymyzatsiya fer-
macytynogo serevodovyh rufyazymyotikhykh mutantwv Streptomyces
recifensis var. lyticus za dopomogu metodu matematuchnogho
planuvannya eksperumentyt. Vysn. Dnyprop. un-tu. Biol., ekol., 1
(14), 67–72.
13. Romanovsk, I. I. (1997). Biotehnologichny aspektv stvorennya
immobylizovannych na polymernych nosjah biologichno aktuvnyn
bylkovych rechov. Odesa, 39.
14. Romanovska, I. I. Dekyna, S. N., Martunyuk, N. B. (2002). Immobil-
yzatsya proteazu C u biogely lамydan. Dozaps. biolog. ta med., 2 (14),
25–48.
15. Zelen, L., Todesichuk, T., Klokko, V. (2014). Multistage selection of
soil actinomycetes Streptomyces albus as a producer of antimicro-
bial substances. Emirates Journal of Food and Agriculture, 27 (3).
250–257. doi: 10.9755/ejfa.v27i3.18267
16. Todesichuk, T. S. (2000). Rozrobka tekhnolohi hidrolitychnoho
fermentmoho preparatu Cytoretyks. Kiev, 25.
17. Todesichuk, T. S., Klokko, V. V., Zelen, L. B. (2014). Taxonomic
analysis Streptomyces sp. 2435 strain, a producer of antimicrobial
substances. Mikrobiol. Zhurn., 76 (1), 3–8.