Sensing infection and tissue damage

Caetano Reis e Sousa

Innate and adaptive immunity work concertedly in vertebrates to restore homoeostasis following pathogen invasion or other insults. Like all homoeostatic circuits, immunity relies on an integrated system of sensors, transducers and effectors that can be analysed in cellular or molecular terms. At the cellular level, T and B lymphocytes act as an effector arm of immunity that is mobilised in response to signals transduced by innate immune cells that detect a given insult. These innate cells are spread around the body and include dendritic cells (DCs), the chief immune sensors of pathogen invasion and tumour growth. At the molecular level, DCs possess receptors that directly sense pathogen presence and tissue damage and that signal via transduction pathways to control antigen presentation or regulate a plethora of genes encoding effector proteins that regulate immunity. Notably, molecular circuits for pathogen detection are not confined to DCs or even to immune cells. All cells express sensors and transducers that monitor invasion by viruses and bacteria and elicit suitable effector barriers to pathogen propagation. Here, I discuss work from my laboratory that has contributed to our understanding of these issues over the years.

Cell-intrinsic immunity to RNA viruses

The ability of all nucleated vertebrate cells to respond to virus invasion has been recognised since the discovery of interferons, virus-induced cytokines produced by both immune and non-immune cells. However, only recently have the relevant sensors and transducers been identified. RNA viruses such as influenza virus replicate using a primer-independent mechanism that leaves a tri-phosphorylated nucleotide at the 5’ end of the genome. The 5’ppp mark is absent from cellular RNAs, which are capped (mRNA) or otherwise processed (rRNA and tRNA). 5’ppp and, for some viruses, 5’pp, therefore acts as a tell-tale sign of RNA virus presence in the cytosol that is recognised, together with elements of RNA secondary structure, by a cytoplasmic protein sensor named RIG-I (Pichlmair et al., 2006; Goubaud et al., 2014). A related sensor, MDA5, recognises double stranded (ds) or highly base-paired RNA, which is also often a product of viral replication and is absent from uninfected cells. Following activation by viral RNA, RIG-I and MDA5 engage the mitochondrial adapter protein MAVS initiating a signal transduction pathway that culminates in activation of transcription factors of the IRF and NF-κB families to induce type I and type III IFN gene expression (Fig 1). Interestingly, IFNs are not themselves antiviral effectors. Rather, they are secreted by virally infected cells and act in an autocrine and paracrine amplification loop, binding to IFN receptors that signal to induce interferon-stimulated genes (ISGs; Fig 1). ISGs include the RIG-I and MDA5 sensors themselves, providing a positive feedback loop for innate virus sensing. ISGs also encode a variety of effector proteins that restrict virus propagation by shutting down cell translation, cleaving cellular and viral RNAs and blocking virion replication, assembly and/or release. As such, ISGs encode effectors of antiviral immunity elicited by a simple cell-intrinsic sensing and transducing immune circuit, albeit one involving IFN-mediated amplification and spread (Fig 1).

Interestingly, the IFN response is absent in invertebrates and plants, which, instead, defend themselves from viruses using RNA interference (RNAi). In those organisms, Dicer enzymes process viral dsRNA to generate small interfering RNA (siRNA) that is loaded onto a complex containing Argonaute proteins that can “slice” viral RNAs bearing complementary sequences. This sequence-specific antiviral RNAi response was thought to have been lost during vertebrate evolution of the IFN response even though the RNAi machinery itself has been preserved and is used for miRNAs generation and action. In fact, sequence-specific antiviral RNAi is not absent in mammals and was recently found to be masked or suppressed by the sequence-unspecific actions of ISG proteins (Maillard et al., 2016). Therefore, RNAi is an antiviral strategy that is preserved from plants to humans and may be important in cellular niches in which the IFN response is attenuated.

Dendritic cells as sensors of viruses and microbes

Viruses have evolved measures to block cell-intrinsic immunity; in vertebrates, innate defences are not sufficient to prevent their spread. We have a sophisticated system of adaptive immune defence that makes use of T and B cells that specifically recognise viruses and other pathogens, as well as commensals, at any body barrier that might be colonised. The T and B cells need to be primed by virus-sensing DCs and RNA viruses present in extracellular spaces can be detected by specialised plasmacytoid DCs using transmembrane receptors of the Toll-like receptor (TLR) family such as TLR7 (Diebold et al., 2004). The ligand-binding domain of TLR7 faces the lumen of endosomes and detects the presence of RNA carried by influenza and other RNA viruses that are taken up into those compartments prior to low pH-induced fusion and cytoplasmic entry (Diebold et al., 2004). TLR7 signalling in plasmacytoid DCs results, among others, in the production of type I IFNs that favour priming of antiviral effector T cells.
Interestingly, TLR7 recognition, unlike that of RIG-I, does not rely on virus-specific RNA marks and the receptor can be triggered by self RNA artificially delivered to endosomal compartments (Diebold et al., 2004). This argues that pathogen detection can ensue, in some instances, from recognition of molecules shared between invader and host but that become mislocalised in an infectious setting (Diebold et al., 2004). Nevertheless, many TLRs and other innate immune sensing receptors specifically detect molecular signatures of microbes that are qualitatively distinct from those of self. Such receptors include Dectin-1, a transmembrane protein member of the C-type lectin receptor (CLR) family that binds to fungal and bacterial β-1,3-glucans in the extracellular space and endosomes. Dectin-1 possesses a tyrosine-based hemITAM signalling motif in its cytoplasmic tail that becomes phosphorylated by Src family kinases after ligand engagement and serves as a platform for recruiting Syk, a non-receptor tyrosine kinase (Rogers et al., 2017).
Like Dectin-1, DNGR-1 is a hemiITAM-bearing transmembrane CLR that samples the extracellular and endosomal space and signals via Src and Syk (Sancho et al., 2009). Yet DNGR-1 signalling in response to dead cell encounter does not couple to downstream activation of NF-κB (Fig. 2). Rather, it modulates endosomal maturation and has a specialised role in permitting DCs to extract antigens from cell corpses and present them to CD8⁺ T cells (Sancho et al., 2009). DNGR-1-dependent detection of dead cells plays a role in CD8⁺ T-cell responses to cytopathic viruses and, likely, to cancer, in which cell death induced by hypoxia and/or therapy is an important determinant of immunity.

The ability of DNGR-1 to detect dead cells is due to the fact that it binds to F-actin, which is exposed when cells lose plasma membrane integrity (Ahrens et al., 2012). In retrospect, it makes ample sense that exposure of actin, a highly abundant and ubiquitous cytoskeletal protein, should be a target for innate detection of damaged cells. Notably, actin is so conserved that human or mouse DNGR-1 can bind to F-actin from all tested species, from yeast to humans (Ahrens et al., 2012). One might therefore anticipate that extracellular actin sensing preceded the evolution of adaptive immunity and constitutes an ancient mechanism for detecting tissue injury, with its roots perhaps in tissue repair. Consistent with that notion, actin injection into Drosophila melanogaster induces sterile JAK/STAT responses akin to ones previously seen in the context of injury or stress (Srinivasan et al., 2016). Interestingly, although there is no DNGR-1 in Drosophila, the response requires the fly orthologues of Src and Syk arguing for possible evolutionary conservatism of the pathway of extracellular actin detection (Srinivasan et al., 2016).

Dendritic cell variety

DCs are part of a broader family of phagocytes that includes monocytes, macrophages and granulocytes. In fact, it is often hard to distinguish DCs from monocytes and macrophages leading to debate over their identity and function. Adding to the confusion, DCs are not one cell type but a family of cells that display similarities but also distinct molecular signatures and ontogenetic dependencies. In the mouse, DNGR-1 is a useful marker of hematopoietic cell commitment to the DC lineage, being first expressed at low levels in DC precursors before they leave the bone marrow and colonise all tissues to give rise to the network of sentinel DCs (Schraml et al., 2013). Therefore, DNGR-1-mediated

![Diagram](http://example.com/diagram.png)

Figure 2. Role of the Syk-coupled CLRs, Dectin-1 and DNGR-1, in DCs.

Dectin-1 and DNGR-1 can both be expressed by DCs. Dectin-1 is monomeric but can oligomerise upon binding to β-glucans exposed by fungal cells. Src family kinases (SFKs) phosphorylate the tyrosine in the VxxL hemiITAM motif and allow for docking and activation of Syk, which then signals to NF-κB, MAPK and NFAT resulting in DC activation. In contrast, DNGR-1 is a homodimer stabilised by a disulphide bond in its neck region. Binding of DNGR-1 to F-actin on dead cells also leads to SFK-dependent hemiITAM phosphorylation and Syk activation, but this does not transmit to NF-κB and does not induce DC activation. Rather, DNGR-1 signalling appears to regulate endosomal maturation to favour presentation of dead cell-associated antigens by MHC class I molecules, a process known as cross-presentation.
Acknowledgements
This Commentary is focused on the contributions of the members of my laboratory over the years. I am deeply grateful to all of them, as well as to the Institute that has nurtured our research. Special thanks also to my family, mentors, colleagues and friends for their constant support. Work in my laboratory is presently supported by The Francis Crick Institute (which receives core funding from Cancer Research UK (FC001136), the UK Medical Research Council (FC001136), and the Wellcome Trust (FC001136), an ERC Advanced Investigator Grant (AdG 268670) and a Wellcome Trust Investigator Award (WT106973MA)). I apologise for not being able to discuss and cite the work of others due to strict length constraints and a limit of ten references.

Conflict of interest
The author declares that he has no conflict of interest.

References
Ahrens S, Zelenay S, Sancho D, Hanč P, Kjaer S, Feast C, Fletcher G, Durkin C, Postigo A, Skehel M et al (2012) F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. *Immunity* 36: 635–645

Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. *Science* 303: 1529–1531

Goubau D, Schlee M, Deddouche S, Prijssers AJ, Zillinger T, Goldeck M, Schuberth C, van der Veen AG, Fujimura T, Rehwinkel J et al (2014) Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’-diphosphates. *Nature* 514: 372–375

LebundGut-Landmann S, Gross O, Robinson MJ, Ostorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J et al (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. *Nat Immunol* 8: 630–638

Maillard PV, van der Veen AG, Deddouche Grass S, Rogers NC, Merts A, Reis e Sousa C (2016) Inactivation of the type I interferon pathway reveals long double-stranded RNA-mediated RNA interference in mammalian cells. *EMBO J* 35: 2505–2518

Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5’-phosphates. *Science* 314: 997–1001

Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD et al (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. *Immunity* 22: 507–517

Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernandez-Falcon P, Rosewell I, Reis e Sousa C (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. *Nature* 458: 899–903

Schraml BU, van Blijswijk J, Zelenay S, Whitney PG, Filby A, Acton SE, Rogers NC, Moncaut N, Carvajal JJ, Reis e Sousa C (2013) Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. *Cell* 154: 843–858

Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, Phillips D, Yunus AA, Rosen MK, Valente RS et al (2016) Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in *Drosophila* melanogaster. *Elife* 5: e19662

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Caetano Reis e Sousa

Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom.

E-mail: caetano@crick.ac.uk

Caetano Reis e Sousa is awarded the 2017 Louis-Jeantet Prize for Medicine for his contribution to our understanding of the mechanisms by which the immune system senses pathogen invasion and tissue damage. He is a Senior Group Leader at The Francis Crick Institute, Professor of Medicine at Imperial College London and Honorary Professor at both University College London and King’s College London.

FONDAISON LOUIS-JEANTET

EMBO Molecular Medicine Sensing infection and damage

© 2017 The Author