Soliton solutions for coupled Schrödinger systems
with sign-changing potential

Chungen Liu * Youquan Zheng †

Abstract In this paper, a class of coupled systems of nonlinear Schrödinger equations
with sign-changing potential, including the linearly coupled case, is considered. The existence
of non-trivial bound state solutions via linking methods for cones in Banach spaces
is proved.

Key words coupled Schrödinger system, sign-changing potential, cohomological index

MSC2010 35J10; 35J50; 35Q55

1 Introduction and main results

Recently, many mathematicians focused their attention to coupled nonlinear Schrödinger
systems. From the viewpoint of physics, coupled Schrödinger systems arise from the
models of a lot of natural phenomena. A typical example is the study of the dynamics of
coupled Bose-Einstein condensates and the following equation is derived

\begin{align}
\left\{
\begin{array}{l}
i \frac{\partial \psi_1}{\partial t} = (-\frac{\partial^2}{\partial x^2} + V_1 + U_{11}|\psi_1|^2 + U_{12}|\psi_2|^2)\psi_1 + \lambda \psi_2,
\end{array}
\right.
\end{align}

\begin{align}
\left\{
\begin{array}{l}
i \frac{\partial \psi_2}{\partial t} = (-\frac{\partial^2}{\partial x^2} + V_2 + U_{22}|\psi_2|^2 + U_{21}|\psi_1|^2)\psi_2 + \lambda \psi_1.
\end{array}
\right.
\end{align}

Such systems of equations also appear in nonlinear optical models and many other physical
contexts, see [7] for detail discussions. For such coupled systems, the solutions of the form
\(\psi_j = u_j \exp(i\omega_j t)\) (standing waves) are interesting, where \(u_j\) solve the following system

\begin{align}
\left\{
\begin{array}{l}
-\frac{\partial^2 u_1}{\partial x^2} + (V_1 + \omega_1)u_1 = -(U_{11}|u_1|^2 + U_{12}|u_2|^2)u_1 - \lambda u_2, \\
-\frac{\partial^2 u_2}{\partial x^2} + (V_2 + \omega_2)u_2 = -(U_{22}|u_2|^2 + U_{21}|u_1|^2)u_2 - \lambda u_1.
\end{array}
\right.
\end{align}

*School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China.

Partially supported by NNSF of China(11071127, 10621101) and National Basic Research Program of
China(973 Program: 2011CB808002).

E-mail: liucg@nankai.edu.cn

†School of Mathematical Sciences, Nankai University, Tianjin 300071, China.

E-mail: zhengyq@mail.nankai.edu.cn
In this paper, we will consider the following coupled system of nonlinear Schrödinger equations

\[
\begin{aligned}
-\Delta u_1 + (b_1(x) - \lambda V_1(x))u_1 &= W_t(x, u_1, u_2) + \lambda \gamma(x) u_2, \\
-\Delta u_2 + (b_2(x) - \lambda V_2(x))u_2 &= W_t(x, u_1, u_2) + \lambda \gamma(x) u_1,
\end{aligned}
\]

(1.3)

\(u_1, u_2 \in H^1(\mathbb{R}^N) \),

here and in the sequel, \(V_i \in L^\infty(\mathbb{R}^N), \gamma \in L^\infty(\mathbb{R}^N) \), \(i = 1, 2 \), \(\nabla_x W = (W_t, W_s) \) is the gradient of \(W(x, t, s) \) with respect to \(z = (t, s) \in \mathbb{R}^2 \) and we will write \(W(x, z) = W(x, t, s) \) for convenience. We divide our discussions into two cases.

The non-radially symmetric case. We assume \(b_i(x) \) satisfying the following conditions

(B) for \(i = 1, 2 \), \(b_i \in C(\mathbb{R}^N) \), there exists a constant \(b_i^0 > 0 \) such that \(\inf_{x \in \mathbb{R}^N} b_i(x) \geq b_i^0 \), and the \(n \) dimensional Lebesgue measure \(\text{meas}\{x \in \mathbb{R}^N \mid b_i(x) \leq M\} < \infty \) for any \(M > 0 \).

We assume \(W \) satisfying the following conditions.

\(W_1 \) \(W \in C^1(\mathbb{R}^N \times \mathbb{R}^2) \), there exists \(p \in (2, 2^*) \) such that \(0 \leq W(x, z) \leq C(1 + |z|^p) \), \n for \(\forall (x, z) \in \mathbb{R}^N \times \mathbb{R}^2 \), here, \(2^* = \frac{2N}{N-2} \) if \(N > 2 \) and \(2^* = +\infty \) if \(N = 1, 2 \),

\(W_2 \) \(\lim_{|z| \to \infty} \frac{W(x, z)}{|z|^2} = +\infty \) uniformly for \(x \in \mathbb{R}^N \),

\(W_3 \) \(W_t(x, 0, s) = 0, W_s(x, t, 0) = 0 \) for any \(x \in \mathbb{R}^N \), \(s \in \mathbb{R} \), \(t \in \mathbb{R} \), and \(\lim_{|z| \to 0} \frac{W(x, z)}{|z|^2} = 0 \) uniformly for \(x \in \mathbb{R}^N \),

\(W_4 \) \(W(x, z) = \nabla_z W(x, z) \cdot z - 2W(x, z) \), then there exists \(\theta \geq 1 \) such that \(\theta W(x, z) \geq W(x, \eta z), \forall (x, z) \in \mathbb{R}^N \times \mathbb{R}^2 \) and \(\eta \in [0, 1] \).

Remark. (1) From (W_4) and \(W(x, 0) = 0 \), we see that \(W(x, z) \geq 0 \) for any \((x, z) \in \mathbb{R}^N \times \mathbb{R}^2 \) by taking \(\eta = 0 \). So we have \(\nabla_x W(x, z) \cdot z \geq 2W(x, z) \).

(2) From condition (W_3), when \(\lambda \gamma(x) \neq 0, \forall x \in \mathbb{R}^N \), for a non-trivial solution \(u = (u_1, u_2) \) of the problem \(\text{(1.3)} \), it is easy to see that \(u_1 \neq 0 \) and \(u_2 \neq 0 \), so \(u \) does not have an immediate counterpart for a single equation. We also remind that under the above conditions the potential \(b_i(x) - \lambda V_i(x) \) may change sign since \(\lambda \in \mathbb{R} \), see Theorem 1.1 below.

In this case, we have the following main result.

Theorem 1.1 If (B) and (W_1)–(W_4) hold, the problem \(\text{(1.3)} \) possesses a non-trivial solution for every \(\lambda \in \mathbb{R} \).
The radially symmetric case. We assume that $b_i(x)$ satisfy the following condition

$$(B)_r \text{ for } i = 1, 2, b_i \in C(\mathbb{R}^N), \text{ there exists a constant } b_i^0 > 0 \text{ such that } \inf_{x \in \mathbb{R}^N} b_i(x) \geq b_i^0,$$

and b_i are radially symmetric, i.e., $b_i(x) = b_i(|x|), \forall x \in \mathbb{R}^N,$

and $V_i(x), \gamma(x), W(x, z)$ further satisfy

$$(V)_r \text{ for } i = 1, 2, V_i(x) = V_i(|x|), \gamma(x) = \gamma(|x|), \forall x \in \mathbb{R}^N.$$

$$(W_3) \text{ } W(x, z) = W(|x|, z), \forall (x, z) \in \mathbb{R}^N \times \mathbb{R}^2.$$

For this case we have the following result.

Theorem 1.2 If $(B)_r$, $(V)_r$ and (W_1)–(W_5) hold, the problem (1.3) possesses a non-trivial radially symmetric solution for every $\lambda \in \mathbb{R}$.

Next, we consider some special cases of (1.3). Firstly, we consider some linearly coupled systems. Precisely, we assume that $W_i(x, t, s)$ does not depend on s and $W_{a_i}(x, t, s)$ does not depend on t, that is to say one can write (1.3) as

$$
\begin{cases}
-\Delta u_1 + (b_1(x) - \lambda V_1(x))u_1 = f(x, u_1) + \lambda \gamma(x)u_2,
-\Delta u_2 + (b_2(x) - \lambda V_2(x))u_2 = g(x, u_2) + \lambda \gamma(x)u_1,
\end{cases}
$$

$$(1.4) \quad u_1, u_2 \in H^1(\mathbb{R}^N).$$

In this case, we assume that $f, g \in C(\mathbb{R}^N \times \mathbb{R})$ satisfy

$$(f_1) \quad \exists p_1 \in (2, 2^*) \text{ such that } |f(x, t)| \leq C(1 + |t|^{p_1-1}), f(x, t)t \geq 0, \forall (x, t) \in \mathbb{R}^N \times \mathbb{R},$$

$$(f_2) \quad \text{set } F(x, t) = \int_0^t f(x, t)dt, \lim_{|t| \to \infty} \frac{F(x, t)}{|t|^2} = +\infty \text{ uniformly in } x \in \mathbb{R}^N,$$

$$(f_3) \quad \lim_{t \to 0} \frac{f(x, t)}{t} = 0 \text{ uniformly in } x \in \mathbb{R}^N,$$

$$(f_4) \quad F(x, t) = f(x, t)t - 2F(x, t), \text{ then there exists } \theta_1 \geq 1 \text{ such that } \theta_1 F(x, t) \geq F(x, \eta t),$$

$$(g_1) \quad \exists p_2 \in (2, 2^*) \text{ such that } |g(x, s)| \leq C(1 + |s|^{p_2-1}), g(x, s)s \geq 0, \forall (x, s) \in \mathbb{R}^N \times \mathbb{R},$$

$$(g_2) \quad \text{set } G(x, s) = \int_0^s g(x, s)ds, \lim_{|s| \to \infty} \frac{G(x, s)}{|s|^2} = +\infty \text{ uniformly in } x \in \mathbb{R}^N,$$

$$(g_3) \quad \lim_{s \to 0} \frac{g(x, s)}{s} = 0 \text{ uniformly in } x \in \mathbb{R}^N,$$

$$(g_4) \quad G(x, s) = g(x, s)s - 2G(x, s), \text{ then there exists } \theta_2 \geq 1 \text{ such that } \theta_2 G(x, s) \geq G(x, \eta s),$$

$$(g_5) \quad \forall (x, s) \in \mathbb{R}^N \times \mathbb{R} \text{ and } \eta \in [0, 1].$$
Theorem 1.3 If (B), $(f_1)–(f_4)$ and $(g_1)–(g_4)$ hold, the problem (1.4) possesses a non-trivial solution for every $\lambda \in \mathbb{R}$.

Proof. Set $W(x,t,s) = F(x,t) + G(x,s)$, it is easy to see that (W_1) and (W_4) hold.

As for (W_2), from (f_2) and (g_2), $\forall M > 0$, there exists $R > 0$ such that $\frac{F(x,t)}{|t|^2} > 2M$ when $|t| \geq R$ and $\frac{G(x,s)}{|s|^2} > 2M$ when $|s| \geq R$. Then

$$
\frac{F(x,t) + G(x,s)}{t^2 + s^2} \geq \frac{F(x,t) + G(x,s)}{2 \max(|t|^2, |s|^2)} > M
$$

when $\max(|t|, |s|) \geq R$. So $\lim_{|z| \to \infty} \frac{W(x,z)}{|z|^2} = +\infty$ uniformly for $x \in \mathbb{R}^N$.

From (f_3), (g_3) and the continuity of f and g, we can see $f(x,0) = 0 = g(x,0)$, so $W_t(x,0,s) = 0, W_s(x,t,0) = 0$ for any $x \in \mathbb{R}^N$, $s \in \mathbb{R}, t \in \mathbb{R}$. Also from (f_3) and (g_3), we have $\lim_{|t| \to 0} \frac{F(x,t)}{|t|^2} = 0$ and $\lim_{|s| \to 0} \frac{G(x,s)}{|s|^2} = 0$, so

$$
0 \leq \frac{F(x,t) + G(x,s)}{|t|^2 + |s|^2} \leq \frac{F(x,t)}{|t|^2} + \frac{G(x,s)}{|s|^2} \to 0.
$$

So (W_3) holds. From Theorem 1.1 we get the assertion.

As in Theorem 1.2, assuming that $f(x,t)$ and $g(x,s)$ further satisfy

(f_5) $f(x,t) = f(|x|, t)$, for any $(x,t) \in \mathbb{R}^N \times \mathbb{R},$

(g_5) $g(x,s) = g(|x|, s)$, for any $(x,s) \in \mathbb{R}^N \times \mathbb{R},$

also setting $W(x,t,s) = F(x,t) + G(x,s)$ and by the same reason as in the proof of Theorem 1.3 we have the following consequence.

Theorem 1.4 If $(B)_r$, $(V)_r$, $(f_1)–(f_5)$ and $(g_1)–(g_5)$ hold, the problem (1.4) possesses a non-trivial radially symmetric solution for every $\lambda \in \mathbb{R}$.

By taking $f(x,t) = c_1(x)|t|^{p_1-2}t$ and $g(x,s) = c_2(x)|s|^{p_2-2}s$ with $c_i \in L^\infty(\mathbb{R}^N)$ and $\inf_{x \in \mathbb{R}^N} c_i(x) > 0$, $i = 1, 2$, we get the following system

$$
\begin{align*}
-\Delta u_1 + (b_1(x) - \lambda V_1(x))u_1 &= c_1(x)|u_1|^{p_1-2}u_1 + \lambda \gamma(x)u_2, \\
-\Delta u_2 + (b_2(x) - \lambda V_2(x))u_2 &= c_2(x)|u_2|^{p_2-2}u_2 + \lambda \gamma(x)u_1,
\end{align*}
$$

(1.5)

$u, v \in H^1(\mathbb{R}^N),$

then for $p_1, p_2 \in (2, 2^*)$, we have the following consequences.

Corollary 1.5 If (B) holds, the problem (1.5) possesses a non-trivial solution for every $\lambda \in \mathbb{R}$.
Corollary 1.6 If \((B)_r\), \((V)_r\) hold, and \(c_i(x) = c_i(|x|)\) for any \(x \in \mathbb{R}^N\), \(i = 1, 2\), the problem \((1.5)\) possesses a non-trivial radially symmetric solution for every \(\lambda \in \mathbb{R}\).

Secondly, by taking \(W(x, t, s) = \frac{1}{4}t^4 + \frac{1}{2}t^2s^2 + \frac{1}{2}s^4\), we get the following systems

\[
\begin{align*}
-\Delta u_1 + (b_1(x) - \lambda V_1(x))u_1 &= u_1^3 + u_2^3 + \lambda \gamma(x)u_2, \\
-\Delta u_2 + (b_2(x) - \lambda V_2(x))u_2 &= u_2^3 + u_1^3 + \lambda \gamma(x)u_1, \\
u_1, u_2 &\in H^1(\mathbb{R}^N).
\end{align*}
\]

as consequences of Theorem 1.1 and 1.2, we have

Corollary 1.7 If \((B)\) holds, the problem \((1.6)\) possesses a non-trivial solution for every \(\lambda \in \mathbb{R}\).

Corollary 1.8 If \((B)_r\) and \((V)_r\) hold, the problem \((1.6)\) possesses a non-trivial radially symmetric solution for every \(\lambda \in \mathbb{R}\).

The study of linearly coupled Schrödinger systems from the mathematical point of view began very recently, see \([1, 3, 4, 7]\). In \([3]\), the authors proved the existence of positive ground state solution of the following system of nonlinear Schrödinger equations for \(0 < \lambda < 1\),

\[
\begin{align*}
-\Delta u + u &= (1 + a(x))|u|^{p-2}u + \lambda v, \\
-\Delta v + v &= (1 + b(x))|v|^{p-2}v + \lambda u, \\
u, v &\in H^1(\mathbb{R}^N),
\end{align*}
\]

with \(a, b \in L^\infty(\mathbb{R}^N)\), \(\lim_{|x| \to \infty} a(x) = \lim_{|x| \to \infty} b(x) = 0\), \(\inf_{\mathbb{R}^N} \{1 + a(x)\} > 0\), \(\inf_{\mathbb{R}^N} \{1 + b(x)\} > 0\) and \(a(x) + b(x) \geq 0\). In \([3]\), the authors devoted to the study the multi-bump solitons of the following system

\[
\begin{align*}
-\Delta u + u - u^3 &= \epsilon v, \\
-\Delta v + v - v^3 &= \epsilon u, \\
u, v &\in H^1(\mathbb{R}^N),
\end{align*}
\]

in \(\mathbb{R}^N\) with dimension \(N = 1, 2, 3\). In \([1]\), A. Ambrosetti studied the following two systems

\[
\begin{align*}
-u_1'' + u_1 &= (1 + \varepsilon a_1(x))u_1^3 + \gamma u_2, \\
-u_2'' + u_2 &= (1 + \varepsilon a_2(x))u_2^3 + \gamma u_1, \\
u_1, u_2 &\in H^1(\mathbb{R}),
\end{align*}
\]

\[
\begin{align*}
-\varepsilon^2 u_1'' + u_1 + U_1(x)u_1 &= u_1^3 + \gamma u_2, \\
-\varepsilon^2 u_2'' + u_2 + U_2(x)u_2 &= u_2^3 + \gamma u_1, \\
u_1, u_2 &\in H^1(\mathbb{R}),
\end{align*}
\]
and proved the existence of non-trivial solution for (1.9) under the conditions \(a_i \in L^\infty(\mathbb{R}) \),
\[
\lim_{{|x|\to \infty}} a_i(x) = 0, \; i = 1, 2, \; 0 < \gamma < 1, \; \gamma \neq 3/5, \; \text{and} \; (1.10)
\] possesses a solution concentrating at nondegenerate stationary points of the sum \(U_1 + U_2 \) when \(\varepsilon \to 0 \) under the conditions \(U_i \in L^\infty \) and \(\inf_{x \in \mathbb{R}} U_i(x) > -1, \; i = 1, 2 \). The main tools in [1, 3, 4] are the perturbation techniques, we refer [5] for detailed discussions about these methods. In [7], the following system was considered
\[
\begin{aligned}
-u'' + a(x)u_1 - b(x)u_2 &= c(x)H_1(u_1, u_2)u_1, \\
-u'' + d(x)u_2 - e(x)u_1 &= f(x)H_2(u_1, u_2)u_2, \\
u_1, u_2 &\in H^1(\mathbb{R}),
\end{aligned}
\tag{1.11}
\]
the authors got a non-trivial solution via Krasnosel’skii fixed point theory. We note that the potentials in systems (1.7)-(1.11) are positive.

To prove the main theorem, we deal with the existence problem of non-trivial solutions by variational methods. We first study an eigenvalue problem, whose eigenfunctions are solutions of (1.3) but without the nonlinear term, then the non-zero critical point of the functional related to the nonlinear perturbation of this eigenvalue problem is a weak solution of (1.3). To find the critical point, we use a critical point theorem developed by Degiovanni and Lancelotti in [10].

The rest of the paper is organized as follows. The variational setting is contained in section 2. In section 3, we study the eigenvalue problem. We prove that there exists a divergent sequence of eigenvalues which are defined by the cohomological index. We prove Theorem 1.1 and 1.2 in section 4.

2 Variational setting

Let \(H_1 := \{ u_1 \in H^1(\mathbb{R}^N) | \int_{\mathbb{R}^N} b_1(x)u_1^2dx < \infty \} \), then \(H_1 \) is a Hilbert Space with inner product \(\langle u_1, v_1 \rangle_1 = \int_{\mathbb{R}^N} (\nabla u_1 \cdot \nabla v_1 + b_1(x)u_1v_1)dx \) and norm \(\| u_1 \|^2_1 = \langle u_1, u_1 \rangle_1 \). Similarly, let \(H_2 := \{ u_2 \in H^1(\mathbb{R}^N) | \int_{\mathbb{R}^N} b_2(x)u_2^2dx < \infty \} \), then \(H_2 \) is a Hilbert Space with inner product \(\langle u_2, v_2 \rangle_2 = \int_{\mathbb{R}^N} (\nabla u_2 \cdot \nabla v_2 + b_2(x)u_2v_2)dx \) and norm \(\| u_2 \|^2_2 = \langle u_2, u_2 \rangle_2 \).

For the non-radially symmetric case, by the condition (B), \(H_1 \) and \(H_2 \) can be compactly embedded into \(L^p(\mathbb{R}^N) \), \(2 \leq p < 2^* \) (see for example, [6, 17]). Set \(\mathcal{H} := H_1 \times H_2 \), then \(\mathcal{H} \) is a Hilbert space with inner product \(\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_1 + \langle \cdot, \cdot \rangle_2 \) and with norm \(\| u \|^2 = \| u_1 \|^2_1 + \| u_2 \|^2_2 \) for \(u = (u_1, u_2) \).

For the radially symmetric case, let \(H_{1,r} := \{ u_1 \in H_1 | u_1 \text{ is radially symmetric} \} \),

\(H_{2,r} := \{ u_2 \in H_2 | u_2 \text{ is radially symmetric} \} \), then \(H_{i,r} \) is a Hilbert Space with inner product \(\langle \cdot, \cdot \rangle_i \) and norm \(\| \cdot \|_i \) for \(i = 1, 2 \). By condition (B)\(_r\), \(H_{i,r} \) can be compactly embedded into \(L^p(\mathbb{R}^N) \), \(2 \leq p < 2^* \) for \(i = 1, 2 \) (see \[6\] [17]). In this case, we set \(H_r := H_{1,r} \times H_{2,r} \), then \(H_r \) is a Hilbert space with inner product \(\langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle_1 + \langle \cdot, \cdot \rangle_2 \) and with norm \(\| u \|^2 = \| u_1 \|^2_1 + \| u_2 \|^2_2 \) for \(u = (u_1, u_2) \).

In order to prove \(\text{Theorem 1.1} \) we define a functional \(\Psi : H \rightarrow \mathbb{R} \) by

\[
\Psi(u) = E(u) - \lambda J(u) - P(u), \ u = (u_1, u_2) \in H,
\]

where

\[
E(u) = \frac{1}{2} \| u \|^2,
\]

\[
J(u) = \int_{\mathbb{R}^N} \left(\frac{1}{2} V_1(x)u_1^2 + \gamma(x)u_1u_2 + \frac{1}{2} V_2(x)u_2^2 \right) dx,
\]

and

\[
P(u) = \int_{\mathbb{R}^N} W(x, u)dx = \int_{\mathbb{R}^N} W(x, u_1, u_2)dx,
\]

then these four functionals are \(C^1 \), and for \(u = (u_1, u_2), \ v = (v_1, v_2) \in H \), there hold

\[
\langle E'(u), v \rangle = \int_{\mathbb{R}^N} (\nabla u_1 \cdot \nabla v_1 + b_1(x)u_1 v_1) dx + \int_{\mathbb{R}^N} (\nabla u_2 \cdot \nabla v_2 + b_2(x)u_2 v_2) dx,
\]

\[
\langle J'(u), v \rangle = \int_{\mathbb{R}^N} (V_1(x)u_1 v_1 + \gamma(x)u_2 v_1 + \gamma(x)u_1 v_2 + V_2(x)u_2 v_2) dx,
\]

\[
\langle P'(u), v \rangle = \int_{\mathbb{R}^N} (W_1(x, u_1, u_2)v_1 + W_2(x, u_1, u_2)v_2) dx,
\]

\[
\langle \Psi'(u), v \rangle = \langle E'(u), v \rangle - \lambda \langle J'(u), v \rangle - \langle P'(u), v \rangle.
\]

It is clear that critical points of \(\Psi \) are weak solutions of \((1.3) \).

For the radially symmetric case, we can also define these four functionals and \((2.16)-(2.19) \) hold, the only difference is the domain \(H \) of the functional \(\Psi \) is replaced by \(H_r \).

And the critical points of the functional \(\Psi \) are radially symmetric weak solutions of \((1.3) \).

In order to find a critical point of \(\Psi \), we need the following critical point theorem. It was proved in \[10\], where the functional was supposed to satisfy the \((PS) \) condition. Recently, in \[9\], the author extended it to more general case (the functional space is completely regular topological space or metric space). As observed in \[15\], if the functional space is a real Banach space, according to the proof of Theorem 6.10 in \[9\], the Cerami condition is sufficient for the compactness of the set of critical points at a fixed level and the first deformation lemma to hold (see \[10\]). So this critical point theorem still hold under the Cerami condition.
Theorem 2.1 (10) Let \mathcal{H} be a real Banach space and let C_-, C_+ be two symmetric cones in \mathcal{H} such that C_+ is closed in \mathcal{H}, $C_- \cap C_+ = \{0\}$ and
\[
i(C_+ \setminus \{0\}) = i(\mathcal{H} \setminus C_+) = m < \infty.
\]

Define the following four sets by
\[
D_- = \{u \in C_- | \|u\| \leq r_-, \}
\]
\[
S_+ = \{u \in C_+ | \|u\| = r_+ \},
\]
\[
Q = \{u + te | u \in C_-, t \geq 0, \|u + te\| \leq r_-, e \in H \setminus C_- \},
\]
\[
H = \{u + te | u \in C_-, t \geq 0, \|u + te\| = r_- \}.
\]

Then $(Q, D_- \cup H)$ links S_+ cohomologically in dimension $m + 1$ over \mathbb{Z}_2. Moreover, suppose $\Psi \in C^1(\mathcal{H}, \mathbb{R})$ satisfying the Cerami condition, and $\sup_{x \in D_- \cup H} \Psi(x) < \inf_{x \in S_+} \Psi(x)$, $\sup_{x \in Q} \Psi(x) < \infty$. Then Ψ has a critical value $d \geq \inf_{x \in S_+} \Psi(x)$.

For convenience, let us recall the definition and some properties of the cohomological index of Fadell-Rabinowitz for a \mathbb{Z}_2-set, see [11, 12, 16] for details. For simplicity, we only consider the usual \mathbb{Z}_2-action on a linear space, i.e., $\mathbb{Z}_2 = \{1, -1\}$ and the action is the usual multiplication. In this case, the \mathbb{Z}_2-set A is a symmetric set with $-A = A$.

Let E be a normed linear space. We denote by $\mathcal{S}(E)$ the set of all symmetric subsets of E which do not contain the origin of E. For $A \in \mathcal{S}(E)$, denote $\tilde{A} = A/\mathbb{Z}_2$. Let $\rho : \tilde{A} \to \mathbb{R}P^\infty$ be the classifying map and $\rho^* : H^*(\mathbb{R}P^\infty) = \mathbb{Z}_2[\omega] \to H^*(\tilde{A})$ the induced homomorphism of the cohomology rings. The cohomological index of A, denoted by $i(A)$, is defined by $\sup\{k \geq 1 : \rho^*(\omega^{k-1}) \neq 0\}$. We list some properties of the cohomological index here for further use in this paper. Let $A, B \in \mathcal{S}(E)$, there hold

(i1) (monotonicity) if $h : A \to B$ is an odd map, then $i(A) \leq i(B)$,

(i2) (continuity) if C is a closed symmetric subset of A, then there exists a closed symmetric neighborhood N of C in A, such that $i(N) = i(C)$, hence the interior of N in A is also a neighborhood of C in A and $i(\text{int}N) = i(C)$,

(i3) (neighborhood of zero) if V is bounded closed symmetric neighborhood of the origin in E, then $i(\partial V) = \dim E$.

8
3 The eigenvalue problem

First we solve the eigenvalue problem

\[E'(u) = \mu J'(u), \; u \in \mathcal{H}. \quad (3.20) \]

Lemma 3.1 For any \(u = (u_1, u_2), v = (v_1, v_2) \in \mathcal{H} \), it holds that

\[\langle E'(u) - E'(v), u - v \rangle \geq (\|u_1\|_1 - \|v_1\|_1)^2 + (\|u_2\|_2 - \|v_2\|_2)^2. \quad (3.21) \]

Proof. By direct computations, we have

\[
\langle E'(u) - E'(v), u - v \rangle \\
= \int_{\mathbb{R}^N} (|\nabla u_1|^2 + |\nabla v_1|^2 - 2\nabla u_1 \cdot \nabla v_1) \, dx + \int_{\mathbb{R}^N} b_1(x) (|u_1|^2 + |v_1|^2 - 2u_1 v_1) \, dx \\
+ \int_{\mathbb{R}^N} (|\nabla u_2|^2 + |\nabla v_2|^2 - 2\nabla u_2 \cdot \nabla v_2) \, dx + \int_{\mathbb{R}^N} b_2(x) (|u_2|^2 + |v_2|^2 - 2u_2 v_2) \, dx.
\]

From the definition of the norm in \(\mathcal{H} \), we can get

\[
\int_{\mathbb{R}^N} (|\nabla u_1|^2 + |\nabla v_1|^2 - 2\nabla u_1 \cdot \nabla v_1) \, dx + \int_{\mathbb{R}^N} b_1(x) (|u_1|^2 + |v_1|^2 - 2u_1 v_1) \, dx \\
= \|u_1\|_1^2 + \|v_1\|_1^2 - 2\langle u_1, v_1 \rangle_1 \geq \|u_1\|_1^2 + \|v_1\|_1^2 - 2\|\|u_1\|_1\|_1 (\|u_1\|_1 - \|v_1\|_1)^2, \quad (3.22)
\]

\[
\int_{\mathbb{R}^N} (|\nabla u_2|^2 + |\nabla v_2|^2 - 2\nabla u_2 \cdot \nabla v_2) \, dx + \int_{\mathbb{R}^N} b_2(x) (|u_2|^2 + |v_2|^2 - 2u_2 v_2) \, dx \\
= \|u_2\|_2^2 + \|v_2\|_2^2 - 2\langle u_2, v_2 \rangle_2 \geq \|u_2\|_2^2 + \|v_2\|_2^2 - 2\|\|u_2\|_2\|_2 (\|u_2\|_2 - \|v_2\|_2)^2. \quad (3.23)
\]

Now (3.22) and (3.23) imply (3.21).

Lemma 3.2 If \(u_n \to u \) and \(\langle E'(u_n), u_n - u \rangle \to 0 \), then \(u_n \to u \) in \(\mathcal{H} \).

Proof. Since \(\mathcal{H} \) is a Hilbert space and \(u_n = (u_n, v_n) \to u = (u, v) \), we only need to show that \(\|u_n\| \to \|u\| \). Note that

\[
\lim_{n \to \infty} \langle E'(u_n) - E'(u), u_n - u \rangle = \lim_{n \to \infty} (\langle E'(u_n), u_n - u \rangle - \langle E'(u), u_n - u \rangle) = 0.
\]

By inequality (3.21) we have

\[
\langle E'(u_n) - E'(u), u_n - u \rangle \geq (\|u_n\|_1 - \|u\|_1)^2 + (\|v_n\|_2 - \|v\|_2)^2.
\]

So \(\|u_n\|_1 \to \|u\|_1, \|v_n\|_2 \to \|v\|_2 \) and hence \(\|u_n\| \to \|u\| \) as \(n \to \infty \) and the assertion follows.

Lemma 3.3 \(J' \) is weak-to-strong continuous, i.e. \(u_n \to u \) in \(\mathcal{H} \) implies \(J'(u_n) \to J'(u) \).
Proof. Since \(u_n \to u \in \mathcal{H} \), \(u_n \to u \) in \(H_1 \). So \(u_n \to u \) in \(L^2(\mathbb{R}^N) \) because \(H_1 \) compactly embedded into \(L^2(\mathbb{R}^N) \). Similarly, we have \(v_n \to v \) in \(L^2(\mathbb{R}^N) \).

For any \(v = (\tilde{u}, \tilde{v}) \in \mathcal{H} \),

\[
\int_{\mathbb{R}^N} \tilde{u}^2 \, dx \leq \frac{1}{b_1} \int_{\mathbb{R}^N} b_1(x) \tilde{u}^2 \, dx \leq \frac{1}{b_1} \|\tilde{u}\|^2_1 \leq \frac{1}{b_1} \|v\|^2
\]

so \(\left(\int_{\mathbb{R}^N} \tilde{u}^2 \, dx \right)^\frac{1}{2} \leq C \|v\| \). Similarly, we have \(\left(\int_{\mathbb{R}^N} \tilde{v}^2 \, dx \right)^\frac{1}{2} \leq C \|v\| \). Then,

\[
|\langle J'(u_n) - J'(u), v \rangle| = \left| \int_{\mathbb{R}^N} (V_1(x)(u_n - u)\tilde{u} + \gamma(x)(v_n - v)\tilde{u} + \gamma(x)(u_n - u)\tilde{v} + V_2(x)(v_n - v)\tilde{v}) \, dx \right|
\]

\[
\leq \|V_1\|_\infty \left(\int_{\mathbb{R}^N} (u_n - u)^2 \, dx \right)^\frac{1}{2} \left(\int_{\mathbb{R}^N} \tilde{u}^2 \, dx \right)^\frac{1}{2} + \|\gamma\|_\infty \left(\int_{\mathbb{R}^N} (v_n - v)^2 \, dx \right)^\frac{1}{2} \left(\int_{\mathbb{R}^N} \tilde{u}^2 \, dx \right)^\frac{1}{2}
\]

\[
+ \|\gamma\|_\infty \left(\int_{\mathbb{R}^N} (u_n - u)^2 \, dx \right)^\frac{1}{2} \left(\int_{\mathbb{R}^N} \tilde{v}^2 \, dx \right)^\frac{1}{2} + \|V_2\|_\infty \left(\int_{\mathbb{R}^N} (v_n - v)^2 \, dx \right)^\frac{1}{2} \left(\int_{\mathbb{R}^N} \tilde{v}^2 \, dx \right)^\frac{1}{2}
\]

\[
\leq C \left(\int_{\mathbb{R}^N} (u_n - u)^2 \, dx \right)^\frac{1}{2} \|v\| + C \left(\int_{\mathbb{R}^N} (v_n - v)^2 \, dx \right)^\frac{1}{2} \|v\| \to 0,
\]

hence \(J'(u_n) \to J'(u) \).

Lemma 3.4 If \(u_n \to u \) in \(\mathcal{H} \), then \(J(u_n) \to J(u) \).

Proof.

\[
2|J(u_n) - J(u)| = |\langle J'(u_n), u_n \rangle - \langle J'(u), u \rangle|
\]

\[
= |\langle J'(u_n), u_n \rangle - \langle J'(u), u_n \rangle + \langle J'(u), u_n - u \rangle|
\]

\[
\leq \|J'(u_n) - J'(u)\| \|u_n\| + o(1).
\]

Because \(u_n \to u \), \(u_n \) is bounded. From Lemma 3.3 we have \(J(u_n) \to J(u) \).

In this section, we assume that \(V_1 \) and \(V_2 \) satisfy the following condition

\[
(**) \quad \text{meas}\{x \in \mathbb{R}^N | V_1(x) > 0\} > 0 \quad \text{or} \quad \text{meas}\{x \in \mathbb{R}^N | V_2(x) > 0\} > 0.
\]

Set \(\mathcal{M} = \{u \in \mathcal{H} | J(u) = 1\} \), by (**), we can see that \(\mathcal{M} \) is not empty, see also Lemma 3.4 below. Clearly, \(J(u) = \frac{1}{2} \langle J'(u), u \rangle \), so 1 is a regular value of the functional \(J \). Hence by the implicit theorem, \(\mathcal{M} \) is a \(C^1 \)-Finsler manifold. It is complete, symmetric, since \(J \) is continuous and even. Moreover, 0 is not contained in \(\mathcal{M} \), so the trivial \(\mathbb{Z}_2 \)-action on \(\mathcal{M} \) is free. Set \(\bar{E} = E|_{\mathcal{M}} \).

Lemma 3.5 If \(u \in \mathcal{M} \) satisfies \(\bar{E}(u) = \mu \) and \(\bar{E}'(u) = 0 \), then \((\mu, u) \) is a solution of the functional equation \(J(u) = \mu \).
Proof. By Proposition 3.54 in [16], the norm of $\tilde{E}'(u) \in T_u^*M$ is given by
$$||\tilde{E}'(u)||_u^* = \min_{\nu \in \mathbb{R}} ||E'(u) - \nu J'(u)||^*$$
(3.20) and $\mu = \tilde{E}(u) = \frac{1}{2}(E'(u),u) = \frac{1}{2} \nu J'(u),u) = \frac{1}{2} \nu J(u) = \nu$.

Lemma 3.6 \tilde{E} satisfies the (PS) condition, i.e. if (u_k) is a sequence on M such that
$\tilde{E}(u_k) \to c$, and $\tilde{E}'(u_k) \to 0$, then up to a subsequence $u_k \to u \in M$ in \mathcal{H}.

Proof. First, from the definition of E, we can deduce that (u_k) is bounded. Then, up
to a subsequence, u_k converges weakly to some u, by Lemma 3.1, we have $J(u) = 1$, so
$u \in M$.

From $\tilde{E}'(u_k) \to 0$, we have $E'(u_k) - \nu_k J'(u_k) \to 0$ in \mathcal{H} for a sequence of real numbers
(ν_k). So $\langle E'(u_k) - \nu_k J'(u_k),u_k \rangle \to 0$, thus we get $\nu_k \to c$. By Lemma 3.3 we have
$E'(u_k) \to c J'(u)$. Hence
$$\langle E'(u_k),u_k - u \rangle = \langle E'(u_k) - c J'(u),u_k - u \rangle + \langle c J'(u),u_k - u \rangle \to 0.$$

By Lemma 3.2 we obtain $u_k \to u$. \hfill \Box

Let \mathcal{F} denote the class of symmetric subsets of M, $\mathcal{F}_n = \{ M \in \mathcal{F} | i(M) \geq n \}$ and
$$\mu_n = \inf_{M \in \mathcal{F}_n} \sup_{u \in M} E(u). \quad (3.24)$$

Since $\mathcal{F}_n \supset \mathcal{F}_{n+1}$, $\mu_n \leq \mu_{n+1}$.

Lemma 3.7 If (**) holds, then for every \mathcal{F}_n, there is a compact symmetric set $M \in \mathcal{F}_n$.

Proof. We follow the idea of the proof of Theorem 3.2 in [13]. Suppose
meas$\{ x \in \mathbb{R}^N | V_1(x) > 0 \} > 0$, it implies that $\forall n \in \mathbb{N}$, there exist n open balls $(B_i)_{1 \leq i \leq n}$ in \mathbb{R}^N
such that $B_i \cap B_j = \emptyset$ for $i \neq j$ and meas$\{ x \in \mathbb{R}^N | V_1(x) > 0 \} \cap B_i > 0$. Approximating the
characteristic function χ_i of set $\{ x \in \mathbb{R}^N | V_1(x) > 0 \} \cap B_i$ by a C^∞-function u_i in $L^2(\mathbb{R}^N)$,
and require that the sequence $\{ u_i \}_{1 \leq i \leq n} \subseteq C^\infty(\mathbb{R}^N)$ satisfies $\int_{\mathbb{R}^N} V_1(x)|u_i|^2dx > 0$ for
all $i = 1, \cdots, n$ and supp $u_i \cap \text{supp } u_j = \emptyset$ when $i \neq j$. Set $u_i = (u_i,0) \in \mathcal{H}$, then
$J(u_i) = \frac{1}{2} \int_{\mathbb{R}^N} V_1(x)|u_i|^2dx > 0$. Normalizing u_i, we assume that $J(u_i) = 1$. Denote by
U_n the space spanned by $(u_i)_{1 \leq i \leq n}$. $\forall u \in U_n$, we have $u = \sum_{i=1}^n \alpha_i u_i$ and $J(u) = \sum_{i=1}^n |\alpha_i|^2$.

So $(J(u))^2$ defines a norm on U_n. Since U_n is n dimensional, this norm is equivalent to
$|| \cdot ||$. Thus $\{ u \in U_n | J(u) = 1 \} \subseteq M$ is compact with respect to the norm $|| \cdot ||$ and by
the property (i3) of cohomological index, \(i(\{ u \in U_n | J(u) = 1 \}) = n \). So \(\{ u \in U_n | J(u) = 1 \} \in F_n \). If \(\text{meas}\{ x \in \mathbb{R}^N | V_2(x) > 0 \} > 0 \), the proof is similar.

By Lemma 3.7, we have \(\mu_n < +\infty \), and by condition (B), there holds \(\mu_n \geq 0 \). Furthermore, by Lemma 3.6 and Proposition 3.52 in [10], we see that \(\mu_n \) is sequence of critical values of \(\tilde{E} \) and \(\mu_n \to +\infty \), as \(n \to \infty \). By Lemma 3.5, we get a divergent sequence of eigenvalues for problem (3.20). So we have the following result.

Theorem 3.8 Under the condition (**) the problem (3.20) has an increasing sequence of eigenvalues for problem (3.20).

Lemma 3.9 Under the condition (**) Set

\[
\rho_n = \inf_{K \subseteq F_n} \sup_{u \in K} E(u),
\]

where \(F_n = \{ K \subseteq F_n | K \text{ is compact} \} \). We have \(\mu_n = \rho_n \).

Proof. From Lemma 3.7, \(F_n \neq \emptyset \) and so \(\rho_n < +\infty \). It is obvious that \(\mu_n \leq \rho_n \). If \(\mu_n < \rho_n \), there is \(M \in \mathcal{F} \) such that \(\sup_{u \in M} E(u) < \rho_n \). The closure \(\overline{M} \) of \(M \) in \(\mathcal{M} \) is still in \(\mathcal{F} \). By the property (i2) of the cohomological index, we can find a small open neighborhood \(A \in \mathcal{F} \) of \(\overline{M} \) in \(\mathcal{M} \) such that \(\sup_{u \in A} E(u) < \rho_n \). As it was proved in the proof of Proposition 3.1 in [10], for every symmetric open subset \(A \) of \(\mathcal{M} \), there holds \(i(A) = \sup\{ i(K) | K \subseteq A \} \). So we can choose a symmetric compact subset \(K \subseteq A \) with \(i(K) \geq n \) and \(\sup_{u \in K} E(u) < \rho_n \). This contradicts to the definition of \(\rho_n \). Therefore, we have \(\mu_n = \rho_n \).

Set \(C_m = \{ u \in \mathcal{H} \setminus \{ 0 \} | E(u) \leq \mu_m J(u) \} \) and \(D_m = \{ u \in \mathcal{H} | E(u) < \mu_{m+1} J(u) \} \). It is clear that \(C_m, D_m \in \mathcal{S}(\mathcal{H}) \), i.e., \(C_m \) and \(D_m \) are symmetric subsets of \(\mathcal{H} \) and do not contain 0.

Theorem 3.10 If \(\mu_m < \mu_{m+1} \) for some \(m \in \mathbb{N} \), then the cohomological indices satisfy

\[
i(C_m) = i(D_m) = m.
\]

Proof. Follow the idea of the proof of Theorem 3.2 in [10]. Suppose \(\mu_m < \mu_{m+1} \). If we set \(A_m = \{ u \in \mathcal{M} | E(u) \leq \mu_m \} \) and \(B_m = \{ u \in \mathcal{M} | E(u) < \mu_{m+1} \} \), by the definition (3.24), we have \(i(A_m) \leq m \). Assume that \(i(A_m) \leq m - 1 \). Then, by the property (i2) of the cohomological index, there exists a symmetric neighborhood \(N \) of \(A_m \) in \(\mathcal{M} \) satisfying \(i(N) = i(A_m) \). By the equivariant deformation theorem (see [8]), there exists \(\delta > 0 \) and an odd continuous map \(i : \{ u \in \mathcal{M} | E(u) \leq \mu_m + \delta \} \to \{ u \in \mathcal{M} | E(u) \leq \mu_m - \delta \} \cup N = N \).
Hence $i(u \in M \mid E(u) \leq \mu_m + \delta) \leq m - 1$. By (3.24), there exists $M \in F_m$ such that $\sup_{u \in M} E(u) < \mu_m + \delta$. So $M \subseteq \{u \in M \mid E(u) \leq \mu_m + \delta\}$ and thus $i(M) \leq m - 1$. This contradicts to the fact that $M \in F_m$. Thus we have $i(A_m) = m$. By 2-homogeneity of the functionals E, J, the map $h : C_m \rightarrow A_m$ with $h(u) = \frac{1}{\sqrt{J(u)}} u$ is odd, from the monotonicity (i1) of the cohomological index, we have $i(C_m) \leq m$. But it is clear that $A_m \subseteq C_m$, we have $i(C_m) \geq m$, so $i(C_m) = m$.

Since $A_m \subseteq B_m$ and $i(A_m) = m$, we have $i(B_m) \geq m + 1$. As in the proof of Lemma 3.9, there exists a symmetric, compact subset K of B_m with $i(K) \geq m + 1$. Since $\max_{u \in K} E(u) < \mu_{m+1}$, this contradicts to definition (3.24). So $i(B_m) = m$. Similar to the above arguments, we also have $i(D_m) = m$. \[\square\]

Remark 3.11 If we consider the following eigenvalue problem,

$$E'(u) = \mu J'(u), \quad u \in H_r,$$

(3.27)

then all the results in this section still hold, we only need to replace the space \mathcal{H} by \mathcal{H}_r.

4 Proof of the main theorems

Replacing (λ, V_i, γ) with $(-\lambda, -V_i, -\gamma)$ if necessary, we can assume that $\lambda \geq 0$. First, we consider the case that condition $(\ast\ast)$ holds and there exists $m \geq 1$ such that $\mu_m \leq \lambda < \mu_{m+1}$. Set

$$C_+ = \{u \in \mathcal{H} \mid E(u) \geq \mu_m J(u)\},$$

(4.28)

$$C_- = \{u \in \mathcal{H} \mid E(u) \leq \mu_m J(u)\}.\quad (4.29)$$

It is easy to see that C_-, C_+ are two symmetric closed cones in \mathcal{H} and $C_- \cap C_+ = \{0\}$. By (3.26) we have

$$i(C_- \setminus \{0\}) = i(C_m) = i(D_m) = i(\mathcal{H} \setminus C_+) = m.\quad (4.30)$$

Lemma 4.1 There exist $r_+ > 0$ and $\alpha > 0$ such that $\Psi(u) > \alpha$ for $u \in C_+$ and $\|u\| = r_+$.

Proof. Let $\varepsilon > 0$ be small enough, from (W1) and (W3), we have $|W(x, z)| \leq \varepsilon|z|^2 + C_\varepsilon|z|^p$.

13
By the Sobolev embedding inequality, for $u = (u_1, u_2) \in C_+$, we can get

\[
\Psi(u) = E(u) - \lambda J(u) - P(u)
\]
\[
= E(u) - \frac{\lambda}{\mu_{m+1}} \cdot \mu_{m+1} J(u) - P(u)
\]
\[
\geq E(u) - \frac{\lambda}{\mu_{m+1}} E(u) - \varepsilon \int_{R^N} |u_1|^2 dx
\]
\[
- \varepsilon \int_{R^N} |u_2|^2 dx - C_\varepsilon \int_{R^N} |u_1|^p dx - C_\varepsilon \int_{R^N} |u_2|^p dx
\]
\[
\geq E(u) - \frac{\lambda}{\mu_{m+1}} E(u) - \varepsilon \int_{R^N} b_1(x) |u_1|^2 dx - \frac{\varepsilon}{2} \int_{R^N} b_2(x) |u_2|^2 dx
\]
\[
- C_\varepsilon \int_{R^N} |u_1|^p dx - C_\varepsilon \int_{R^N} |u_2|^p dx
\]
\[
\geq (1 - \frac{\lambda}{\mu_{m+1}} - 2 \max(\frac{\varepsilon}{m}, \frac{\varepsilon}{2})) E(u) - C_\varepsilon \int_{R^N} |u_1|^p dx - C_\varepsilon \int_{R^N} |u_2|^p dx
\]
\[
\geq \frac{1}{2}(1 - \frac{\lambda}{\mu_{m+1}} - 2 \max(\frac{\varepsilon}{m}, \frac{\varepsilon}{2})) \|u\|^2 - C \|u\|^p.
\] (4.31)

We remind that in the second inequality of (4.31), the condition (B) has been applied. Since $p > 2$, the assertion follows.

Since $\lambda \geq \mu_m$, by (W_1) it holds that

\[
\Psi(u) \leq 0, \ \forall u \in C_-
\] (4.32)

Set $R^+ = [0, +\infty)$. Following the idea of the proof of Theorem 4.1 in [10], we have

Lemma 4.2 Let $e = (e_1, e_2) \in H \setminus C_-$, there exists $r_- > r_+$ such that $\Psi(u) \leq 0$ for $u \in C_- + R^+ e$ and $\|u\| \geq r_-.$

Proof. Define another norm on H by $\|u\|_V^2 := \int_{R^N} (|V_1(x)| + |\gamma(x)| + 1)|u|^2 dx + \int_{R^N} (|V_2(x)| + |\gamma(x)| + 1)|v|^2 dx$ for $u = (u, v)$. Then the same reason as the proof of Theorem 4.1 in [10], there exists some constant $b > 0$ such that $\|u + te\| \leq b \|u + te\|_V$ for every $u \in C_-$, $t \geq 0$ and some $b > 0$. That is

\[
\int_{R^N} (|\nabla(u + te_1)|^2 + b_1(x)|u + te_1|^2) dx + \int_{R^N} (|\nabla(v + te_2)|^2 + b_2(x)|v + te_2|^2) dx
\]
\[
\leq b^2 \int_{R^N} (|V_1(x)| + |\gamma(x)| + 1)|u + te_1|^2 dx + b^2 \int_{R^N} (|V_2(x)| + |\gamma(x)| + 1)|v + te_2|^2 dx.
\] (4.33)

Let $\{u_k\}$ be a sequence such that $\|u_k\| \to +\infty$ and $u_k \in C_- + R^+ e$. Set $v_k = (u_k, v_k) := \frac{u_k}{\|u_k\|}$, then, up to a subsequence, $\{v_k\}$ converges to some $v = (u_0, v_0)$ weakly in H and $u_k \to u_0$, $v_k \to v_0$ a.e. in R^N. Note that Lemma 4.4 is also true for functional $\int_{R^N} (|V_1(x)| + |\gamma(x)| + 1)|u|^2 dx + \int_{R^N} (|V_2(x)| + |\gamma(x)| + 1)|v|^2 dx$, $u = (u, v) \in H$, it follows from (4.33) that $\int_{R^N} (|V_1(x)| + |\gamma(x)| + 1)|u_0|^2 dx + \int_{R^N} (|V_2(x)| + |\gamma(x)| + 1)|v_0|^2 dx \geq \frac{1}{b^2}$.

So $|v| \neq 0$ on a positive measure set Ω_0. By (W_2) we have

\[
\lim_{k \to \infty} \frac{W(x, u_k(x))}{\|u_k\|^2} = \lim_{k \to \infty} \frac{W(x, u_k, v_k(x))}{\|u_k\|^2 \|v_k(x)\|^2} |v_k(x)|^2 = +\infty, \ x \in \Omega_0.
\]
By \((W_1)\) and Fatou lemma we can get
\[
\frac{\int_{\mathbb{R}^N} W(x, u_k(x))dx}{\|u_k\|^2} \to +\infty, \text{ as } k \to \infty.
\]
By the arbitrariness of the sequence \(\{u_k\}\), we have
\[
\frac{\int_{\mathbb{R}^N} W(x, u(x))dx}{\|u\|^2} \to +\infty
\]
as \(\|u\| \to +\infty\) and \(u \in C_+ + \mathbb{R}^+e\). Noting that
\[
\Psi(u) = \frac{1}{2} - \frac{\lambda J(u)}{\|u\|^2} - \frac{\int_{\mathbb{R}^N} W(x, u(x))dx}{\|u\|^2}
\]
and by conditions (B) and (V), for \(u = (u, v) \in \mathcal{H}\)
\[
\frac{|J(u)|}{\|u\|^2} \leq C(\int_{\mathbb{R}^N} |u|^2dx + \int_{\mathbb{R}^N} |v|^2dx) \leq C(\int_{\mathbb{R}^N} b_1(x)|u|^2dx + \int_{\mathbb{R}^N} b_2(x)|v|^2dx) \leq C,
\]
the assertion follows from (4.34), (4.35) and (4.36).

Lemma 4.3 \(\Psi\) satisfies the Cerami condition, i.e., for any sequence \(\{u_k\}\) in \(\mathcal{H}\) satisfying \((1 + \|u_k\|)\Psi'(u_k) \to 0\) and \(\Psi(u_k) \to c\) possesses a convergent subsequence.

Proof. Let \(\{u_k\}\) be a sequence in \(\mathcal{H}\) satisfying \((1 + \|u_k\|)\Psi'(u_k) \to 0\) and \(\Psi(u_k) \to c\). We claim that \(\{u_k\}\) is bounded in \(\mathcal{H}\). Otherwise, if \(\|u_k\| \to \infty\), we consider \(v_k := \frac{u_k}{\|u_k\|}\).

Then, up to subsequence, we get \(v_k \to v\) in \(\mathcal{H}\) and \(v_k \to v\) a.e. in \(\mathbb{R}^N\).

If \(v \neq 0\) in \(\mathcal{H}\), since \(\Psi'(u_k)u_k \to 0\), that is to say
\[
\|u_k\|^2 - \lambda J'(u_k) \cdot u_k - \int_{\mathbb{R}^N} \nabla_z W(x, u_k(x)) \cdot u_k dx = \|u_k\|^2 - 2\lambda J(u_k) - \int_{\mathbb{R}^N} \nabla_z W(x, u_k(x)) \cdot u_k dx \to 0,
\]
from (4.36), we have \(\frac{|J(u_k)|}{\|u_k\|^2} \leq C\), so by dividing the left hand side of (4.37) with \(\|u_k\|^2\) there holds
\[
\left| \int_{\mathbb{R}^N} \frac{\nabla_z W(x, u_k(x)) \cdot u_k(x)}{\|u_k\|^2} dx \right| \leq C'
\]
for some constant \(C' > 0\). On the other hand, Since \(v(x) \neq 0\) in some positive measure set \(\Omega \subset \mathbb{R}^N\), so \(v_k(x) \neq 0\) for large \(k\), and \(|u_k(x)| \to +\infty\) as \(k \to \infty\), for any fixed \(x \in \Omega\). So by \((W_2)\), we have
\[
\lim_{k \to \infty} \frac{|v_k(x)|^2 2W(x, u_k(x))}{\|u_k\|^2} = +\infty, \ \forall x \in \Omega.
\]
By Remark (1) before Theorem 1.1 we have
\[
\nabla_z W(x, u_k(x)) \cdot u_k(x) \geq 2W(x, u_k(x)).
\]
So as $k \to +\infty$, we have
\[
\int_{\mathbb{R}^N} \frac{\nabla_z W(x, \mathbf{u}_k(x)) \cdot \mathbf{u}_k(x)}{\| \mathbf{u}_k \|^2} \, dx = \int_{\{ \mathbf{v}_k \neq 0 \}} 2W(x, \mathbf{u}_k(x)) \frac{\nabla_z W(x, \mathbf{u}_k(x)) \cdot \mathbf{u}_k(x)}{\| \mathbf{u}_k \|^2} \, dx
\]
\[
\geq \int_{\mathbb{R}^N} \chi_{\{ \mathbf{v}_k \neq 0 \}}(x)|\mathbf{v}_k(x)|^2 \frac{2W(x, \mathbf{u}_k(x))}{\| \mathbf{u}_k \|^2} \, dx \geq \int_{\Omega} \chi_{\{ \mathbf{v}_k \neq 0 \}}(x)|\mathbf{v}_k(x)|^2 \frac{2W(x, \mathbf{u}_k(x))}{\| \mathbf{u}_k \|^2} \, dx \to \infty,
\]
this contradicts to (4.38). There is another explanation about the above estimate. We observe that there exists $\delta > 0$ such that $\text{meas}\{ x \in \Omega \,|\, |\mathbf{v}(x)| \geq \delta \} > 0$. Otherwise, $\forall n \in \mathbb{N}$,
$\text{meas}\{ x \in \Omega \,|\, |\mathbf{v}(x)| \geq \frac{1}{n} \} = 0$. Set $\Omega_n = \{ x \in \Omega \,|\, |\mathbf{v}(x)| \geq \frac{1}{n} \}$, then in $\Omega \setminus \bigcup_{n=1}^{+\infty} \Omega_n$, there holds $\mathbf{v}(x) = 0$. But $\Omega \setminus \bigcup_{n=1}^{+\infty} \Omega_n$ and Ω have the same measure, it is impossible. We may assume $\text{meas} \Omega < +\infty$, by Egorov’s theorem, there exists a positive measure subset Ω_0 of $\{ x \in \Omega \,|\, |\mathbf{v}(x)| \geq \delta \}$ such that \mathbf{v}_k uniformly convergent to \mathbf{v}, so for $k \geq K$ with K large, there holds $|\mathbf{v}_k(x)| \geq \delta/2$ in Ω_0. Thus (4.39) holds in Ω_0. So there holds
\[
\int_{\{ \mathbf{v}_k(x) \neq 0 \}} |\mathbf{v}_k(x)|^2 \frac{\nabla_z W(x, \mathbf{u}_k(x)) \cdot \mathbf{u}_k(x)}{\| \mathbf{u}_k \|^2} \, dx \geq \int_{\Omega_0} |\mathbf{v}_k(x)|^2 \frac{2W(x, \mathbf{u}_k(x))}{\| \mathbf{u}_k \|^2} \, dx \to \infty.
\]
If $\mathbf{v} = 0$ in \mathcal{H}, inspired by [14], we choose $t_k \in [0, 1]$ such that $\Psi(t_k \mathbf{u}_k) := \max_{t \in [0, 1]} \Psi(t \mathbf{u}_k)$. For any $\beta > 0$ and $\tilde{\mathbf{v}}_k := (4\beta)^{1/2} \mathbf{v}_k \to 0$, by Lemma [3.3] and the compactness of P' (see Lemma 1.22 in [18]) we have that $J(\tilde{\mathbf{v}}_k) \to 0$ and $\int_{\mathbb{R}^N} W(x, \tilde{\mathbf{v}}_k(x)) \, dx = P(\tilde{\mathbf{v}}_k) = P(\xi_k \tilde{\mathbf{v}}_k) = \langle P'(\xi_k \tilde{\mathbf{v}}_k), \tilde{\mathbf{v}}_k \rangle = \langle P'(\xi_k \tilde{\mathbf{v}}_k) - P'(0), \tilde{\mathbf{v}}_k \rangle + \langle P'(0), \tilde{\mathbf{v}}_k \rangle \to 0$ as $k \to \infty$, here $\xi_k \in (0, 1)$. So there holds
\[
\Psi(t_k \mathbf{u}_k) \geq \Psi(\tilde{\mathbf{v}}_k) = 2\beta - \lambda J(\tilde{\mathbf{v}}_k) - \int_{\mathbb{R}^N} W(x, \tilde{\mathbf{v}}_k(x)) \, dx \geq \beta,
\]
when k is large enough. By the arbitrariness of β, it implies that
\[
\lim_{k \to \infty} \Psi(t_k \mathbf{u}_k) = \infty. \tag{4.40}
\]
Since $\Psi(0) = 0$, $\Psi(\mathbf{u}_k) \to c$, we have $t_k \in (0, 1)$. By the definition of t_k,
\[
\langle \Psi'(t_k \mathbf{u}_k), t_k \mathbf{u}_k \rangle = 0. \tag{4.41}
\]
From (4.40), (4.41), we have
\[
\Psi(t_k \mathbf{u}_k) - \frac{1}{\theta} \langle \Psi'(t_k \mathbf{u}_k), t_k \mathbf{u}_k \rangle = \int_{\mathbb{R}^N} \left(\frac{1}{2} \nabla_z W(x, t_k \mathbf{u}_k(x)) \cdot t_k \mathbf{u}_k(x) - W(x, t_k \mathbf{u}_k(x)) \right) \, dx \to \infty. \tag{4.42}
\]
By (W$_4$), there exists $\theta \geq 1$ such that
\[
\int_{\mathbb{R}^N} \left(\frac{1}{2} \nabla_z W(x, \mathbf{u}_k(x)) \cdot \mathbf{u}_k(x) - W(x, \mathbf{u}_k(x)) \right) \, dx \geq \frac{1}{\theta} \int_{\mathbb{R}^N} (\nabla_z W(x, t_k \mathbf{u}_k(x)) \cdot t_k \mathbf{u}_k(x) - W(x, t_k \mathbf{u}_k(x))) \, dx, \tag{4.43}
\]

Hence
\[
\int_{\mathbb{R}^N} \left(\frac{1}{2} \nabla_z W(x, u_k(x)) \cdot u_k(x) - W(x, u_k(x)) \right) \, dx \to \infty. \tag{4.44}
\]

On the other hand,
\[
\int_{\mathbb{R}^N} \left(\frac{1}{2} \nabla_z W(x, u_k(x)) \cdot u_k(x) - W(x, u_k(x)) \right) \, dx = \Psi(u_k) - \frac{1}{2} \langle \Psi'(u_k), u_k \rangle \to c. \tag{4.45}
\]

(4.44) and (4.45) are contradiction. Hence \(\{u_k\}\) is bounded in \(\mathcal{H}\). So up to a subsequence, we can assume that \(u_k \rightharpoonup u\) for some \(H\).

Since \(\Psi'(u_k) = E'(u_k) - \lambda J'(u_k) - P'(u_k) \to 0\) and \(J', P'\) are compact, we have that \(E'(u_k) \to \lambda J'(u) + P'(u)\) in \(\mathcal{H}\). So
\[
\langle E'(u_k), u_k - u \rangle = \langle E'(u_k) - (\lambda J'(u) + P'(u)), u_k - u \rangle + \langle \lambda J'(u) + P'(u), u_k - u \rangle \to 0.
\]

By Lemma 3.2, \(u_k \to u\) in \(\mathcal{H}\).

Remark 4.4 If we replace the space \(\mathcal{H}\) by \(\mathcal{H}_r\), then Lemma 4.1, 4.2, 4.3 also hold.

Proof of Theorem 1.1 Define \(D_-, S_+, Q, H\) as Theorem 2.1, then from Lemma 4.1 \(\Psi(u) \geq \alpha > 0\) for every \(u \in S_+\), from Lemma 4.2 \(\Psi(u) \leq 0\) for every \(u \in D_- \cup H\) and \(\Psi\) is bounded on \(Q\). Applying Lemma 4.3, it follows from Theorem 2.1 that \(\Psi\) has a critical value \(d \geq \alpha > 0\). Hence \(u\) is a non-trivial weak solution of (1.1).

For the cases \(0 \leq \lambda < \mu_1\) or \(V_1^+(x) \equiv 0 \equiv V_2^+(x)\), set \(C_- = \{0\}\) and \(C_+ = \mathcal{H}\), it is easy to see that the arguments above are valid. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2 By Remarks 3.11 and 4.4, the proof is the same as that of Theorem 1.1 we only need to replace the space \(\mathcal{H}\) by \(\mathcal{H}_r\).

References

[1] A. Ambrosetti, *Remarks on some systems of nonliear Schrödinger equations*, J. fixed point theory applic. 4(2008), 35–46.

[2] A. Ambrosetti and E. Colorado, *Standing waves of some coupled nonlinear Schrödinger equations*, J. London Math. Soc. 75(2)(2007), 67–82.

[3] A. Ambrosetti, E. Colorado and D. Ruiz, *Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations*, Calc. Var. 30(2007), 85–112.

[4] A. Ambrosetti, G. Cerami and D. Ruiz, *Solitons of linearly coupled systems of semi-linear non-autonomous equations on \(\mathbb{R}^n\)*, J. Func. Anal. 254(2008), 2816–2845.
[5] A. Ambrosetti and A. Malchiodi, *Perturbation methods and semilinear elliptic problems on \(\mathbb{R}^N \)*, Progr. Math. 240, Birkhäuser, 2005.

[6] T. Bartsch, Z.-Q. Wang, *Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R}^n \)*, Comm. Partial Differential Equations, 20(1995), 1725–1741.

[7] J. Belmonte-Beitia, V. M. Pérez-García and P. J. Torres, *Solitary waves for linearly coupled Nonlinear Schrödinger equations with inhomogeneous coefficients*, J. Nonlinear Sci 19(2009), 437–451.

[8] M. Degiovanni, *On Morse theory for continuous functionals*, Conf. Semin. Mat. Univ. Bari 290(2003), 1–22.

[9] M. Degiovanni, *On topological and metric critical point theory*, J. Fixed Point Theory Appl. DOI 10.1007/s11784-009-0001-4, 2009.

[10] M. Degiovanni and S. Lancelotti, *Linking over cones and non-trivial solutions for \(p \)-Laplace equations with \(p \)-superlinear nonlinearity*, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(2007), 907–919.

[11] E. R. Fadell and P. H. Rabinowitz, *Bifurcation for odd potential operators and an alternative topological index*, J. Func. Anal. 26(1)(1977), 48–67.

[12] E. R. Fadell and P. H. Rabinowitz, *Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamilton symstems*, Invent. Math. 45(2)(1978), 139–174.

[13] S. El. Habib and N. Tsouli, *On the spectrum of the \(p \)-Laplacian operator for Neumann eigenvalue problems with weights*, Electronic Journal of Differential Equations, Conference, 14(2006), 181–190.

[14] L. Jeanjean, *On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \(\mathbb{R}^N \)*, Proc. Roy. Soc. Edinburgh A, 129(1999), 787–809.

[15] C. Liu and Y. Zheng, *Linking Solutions for \(p \)-Laplace Equations with Nonlinear Boundary Conditions and Indefinite Weight*, Calc. Var. Partial Differential Equations, Doi: 10.1007/s00526-010-0361-z.
[16] K. Perera, R. P. Agarwal and D. O’Regan, *Morse-theoretic aspects of p-Laplacian type operators*, Mathematical Surveys and Monographs, Volume 161, American Mathematical Society, Providence, Rhode Island, 2010.

[17] M. Willem, *Minimax Theorems*, Birkhäuser, Boston, 1996.

[18] W. Zou and M. Schechter, *Critical Point Theory and its Applications*. Springer-Verlag, New York, 2006.