Weed control efficacy of combined application of grass pea and mustard crop residues in T. aman rice

Showrav Ashraf¹, Uttam Kumer Sarker¹, Suriaya Perveen¹, Mohammad Shahidul Islam² Shah Golam Azam³ and Md. Romij Uddin¹*

¹Department of Agronomy, Bangladesh Agricultural University, Mymensingh-2202, BANGLADESH
²Department of Agricultural Extension, Austagram, Kishoreganj, BANGLADESH
³Momenshahi Educational and Training Institute, Mymensingh, BANGLADESH
*Corresponding author’s E-mail: romijagron@bau.edu.bd

ABSTRACT

Among different methods of weed control, allelopathy could lead to reduced labor costs and increased efficiency, without any adverse effects on the environment. In this regard, an experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh to evaluate the allelopathic potential of grass pea and mustard crop residues on weed suppression and crop performance of transplanted Aman rice. The experiment consisted of three cultivars of T. aman rice viz., Binadhan-7, BRRI dhan49 and BR11 and five different level of crop residues such as no use of crop residues, grass pea crop residues @ 2.5 t ha⁻¹, mustard crop residues @ 2.5 t ha⁻¹, combined use of grass pea and mustard crop residues @ 1 t ha⁻¹ of each and hand weeding. All crop residues applied in the experiment suppressed weed growth and inhibition at satisfactory level. The experiment was laid out in a randomized complete block design with three replications. Weed population, weed dry weight and percent inhibition of weed were not significantly influenced by the interaction effect of crop residues (grass pea and mustard) and cultivars. BR11 produced the highest grain and straw yield among the treatment combination. The highest numbers of tillers hill⁻¹, numbers of grains panicle⁻¹, 1000-grain weight, grain yield, straw yield were observed in hand weeding, followed by combined application of grass pea and mustard crop residues @ 1 t ha⁻¹ of each treatment. The highest grain and straw yield (4.81 t ha⁻¹ and 7.65 t ha⁻¹) was observed in hand weeding along with variety BR11 and the second highest (4.19 t ha⁻¹ and 7.36 t ha⁻¹) was obtained from combined use of grass pea and mustard crop residues @ 1 t ha⁻¹ of each. The results of this study indicate that hand weeding followed by combined application of grass pea and mustard crop residues @ 1 t ha⁻¹ of each showed potential activity to suppress weed growth.

Citation of this article: Ashraf, S., Sarker, U. K., Perveen, S., Islam, M. S., Azam, S. G., & Uddin, M. R. (2021). Weed control efficacy of combined application of grass pea and mustard crop residues in T. aman rice. Archives of Agriculture and Environmental Science, 6(2), 134-141. https://dx.doi.org/10.26832/24566632.2021.060204

INTRODUCTION

Rice is the staple food of about 135 million people of Bangladesh and contributes one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aman is one of the second largest rice-crop in the country in respect to the volume of production while Boro remains the top. It is notable that the area coverage of Aman is the largest as a single crop and cultivation of Aman rice covers approximately 50.56% of the country’s total cultivated land area for rice production (Sayeed and Yunus, 2018). Among the various factors reducing the rice yield, weeds are considered as the major constraint. There is no way to get maximum benefit from the rice field without keeping the land free from weed infestation. The subsistence farmers of Bangladesh spend more time and energy on weed control than any other aspects of rice cultivation. Hand weeding is generally...
practiced in major rice cultivation in Bangladesh. The availability of labors has decreased due to their job diversification. So, the hand weeding method for weed control has become costly and being more difficult day-by-day due to the scarcity of labor (Rahman, 2014). To reduce the cost of rice production, it has been urgently needed to adopt alternative method of weed control. Besides hand weeding there are different modern method of weed management such as, mechanical weed control, biological weed control, chemical or herbicidal weed control, allelopathic weed management etc. (Hossain et al., 2017). Among these strategies, allelopathy is a natural and environment-friendly technique which may prove to be a unique tool for weed management and thereby increase crop yields (Uddin and Pyon, 2010).

Allelopathy is a phenomenon in which one organism release biochemical’s that influences the growth, survival, development and reproduction of other organisms. Released biochemical is called as allelochemicals and which have good or lethal effects on targeted organisms (Cheng and Cheng, 2015). Decomposed crop residues releases allelochemicals that can suppress weed boom in farmlands, and decrease the prevalence of diseases and pests. Residue’s mulch can increase the content of soil organic matter and improve soil fertility and also it shows negative effect by soil sickness. Foliar application of sorghum leaf extract significantly reduced the growth of weed (Won et al., 2013). Allelopathy is a natural and environment-friendly technique which may prove to be a unique tool for weed management and thereby increase crop yields (Uddin and Pyon, 2010). The incidence of growth inhibition of certain weeds and the induction of phytotoxic symptoms by plants and their residues is well documented for many crops, including all major grain crops such as rice (Oryza sativa L.), rye (Secale cereale L.), barley, sorghum (Sorghum bicolor L.) Moench, wheat, mustard, marshpepper, hairy vetch, buckwheat and other crop residues (Belz, 2004; Uddin and Pyon, 2010; Uddin et al., 2010; Won et al., 2011; Uddin et al., 2012; Won et al., 2013; Uddin et al., 2014; Ferdousi et al., 2017; Hossain et al., 2017; Sheik et al., 2017; Afroz et al., 2018; Ahmed et al., 2018; Pramanik et al., 2019; Rahman et al., 2000; Sarkar et al., 2020a; Sarkar et al., 2020b).

Control of weeds in T. aman rice with environmentally sound weed management practices will increase crop productivity along with economically suitable practice. However, in Bangladesh, a little attempt has been done to investigate the weed suppressing ability of grass pea and mustard crop residues and its optimum dose to establish an easy, economic and sustainable method for efficient weed management of T. aman rice. Therefore, the present study was conducted to evaluate the effectiveness of application of grass pea and mustard crop residues for suppressing weed growth and crop performance of T. aman rice.

MATERIALS AND METHODS

The experiment was carried out at the Agronomy Field Laboratory of Bangladesh Agricultural University, Bangladesh during aman season (July-November) of 2018 to investigate the combined effect of grass pea and mustard crop residues on weed management and crop performance of T. aman rice. The soil of the experimental site was more or less neutral in reaction with pH value 6.8, low in organic matter and fertility level. The experimental consisted of two factors, Factor A - Variety: (i) Binadhan-7 (V1), (ii) BRRI dhan49 (V2), (iii) BR11 (V3) and Factor B- Application of grass pea and mustard crop residues (5): (i) No use of crop residues (T1) (Control), (ii) Grass pea crop residues @ 2.5 t ha⁻¹ (T2), (iii) Mustard crop residues @ 2.5 t ha⁻¹ (T3), (iv) Combined use of grass pea and mustard crop residues @ 1 t ha⁻¹ of each (T4), (v) Hand weeding (T5). The experiment was laid out in a randomized complete block design (RCBD) with three replications. The total number of plots was 45. Each plot size was (2.5 m x 2.0 m). The distance maintained between the individual unit plots was 0.5 m and distance between the replication was 1.0 m. The experimental plots were fertilized with urea, triple super phosphate, muriate of potash and gypsum @ 150, 52, 82, 60 kg ha⁻¹, respectively for the variety of BR11 & BRRI dhan49. On the other hand, 165 kg urea, 115 kg triple super phosphate, 65 kg muriate of potash, 55 kg gypsum and 6 kg zinc sulphate per hectare were applied to the field for Binadhan-7. Except urea, the whole amounts of other fertilizers were applied before final land preparation. Urea was top dressed in two installments at 20 and 40 DAT (Days after Transplanting). The prepared grass pea and mustard crop residues were applied one week before final land preparation as per treatment. Weeds were collected after 30 days of transplanting and counted accordingly. Then the weeds are oven dried for getting dry weight. Data of yield and yield contributing characters were recorded from five randomly selected sample plants from each plot. Data recorded for different parameters were compiled and tabulated in proper form and subjected to statistical analysis. The Analysis of variance was done with the help of computer package MSTAT-C program. The mean differences among the treatments were adjudged by Duncan’s Multiple Range Test (DMRT) as laid out by Gomez and Gomez (1984).

RESULTS AND DISCUSSION

Infested weed species in the experimental field

Five weed species belonging to five families infested the experimental field. Local name, scientific name, family, morphological type and life cycle of the weed in the experimental plot have been presented in Table 1. The weeds of the experimental plots were Echinochloa crusgalli, Nymphaea nochali, Scirpus juncoides, Monochoria vaginalis, Marsilea quadrifolia L. Among the weed species three were broadleaf, one sedge and one grass type morphology. There were three perennial and two annual weed species in the experimental plot.

Effect of variety and crop residues on weed growth and percent inhibition of different weed plants

Interaction effect of variety and different crop residues were found non-significant for different weed plants (Tables 2-4).
Table 1. Infesting weed species found in the experimental plots in rice

S. N.	Local name	Scientific name	Family	Morphological type	Life cycle
1	Shama	Echinochloa crusgalli	Gramineae	Grass	Annual
2	Pani Shapla	Nymphaea nouchali Wild.	Nymphaeaceae	Broadleaf	Perennial
3	Chehra	Scirpus juncoides	Cyperaceae	Sedge	Perennial
4	Pani kachu	Monochoria vaginalis	Pontederiaceae	Broadleaf	Perennial
5	Susni Shak	Marsilea quadrifolia L.	Marsileaceae	Broadleaf	Annual

Table 2. Combined effect of variety and different crop residues on weed density of different weed plants.

Treatment combination	Number of weeds (m²)				
	E. crusgalli (Shama)	N. nouchali (Pani Shapla)	S. juncoides (Chesra)	M. vaginalis (Pani Kachu)	M. quadrifolia (Susni Shak)
V1T1	7.00	1.33	2.33	8.33	5.00
V1T2	3.33	1.00	2.33	5.33	1.33
V1T3	2.33	0.66	2.00	4.33	1.33
V1T4	1.66	0.33	1.33	4.33	1.33
V1T5	1.66	0.33	1.33	2.33	1.00
V2T1	7.00	1.33	2.33	7.66	4.00
V2T2	4.00	0.66	1.66	5.66	1.66
V2T3	3.33	0.66	1.66	4.00	1.33
V2T4	2.33	0.33	1.33	3.66	1.33
V2T5	1.66	0.33	1.33	1.66	1.33
V3T1	6.66	1.66	2.66	7.66	5.00
V3T2	3.33	1.00	2.00	6.33	2.00
V3T3	3.00	0.66	1.66	5.33	2.00
V3T4	2.00	0.33	1.33	3.00	1.33
V3T5	1.66	0.33	1.33	1.66	1.33
V4T1	1.28	1.12	0.94	1.73	1.16
LSDLDS5	NS	NS	NS	NS	NS

Level of significance NS NS NS NS NS

In a column, figures with the same letters do not differ significantly as per DMRT, NS= Non-significant; V1=Binadhan-7, V2= BRRI dhan49, V3= BR11; T1=No use of crop residues, T2 = Grass pea crop residues @ 2.5 t ha⁻¹, T3 = Mustard crop residues @ 2.5 t ha⁻¹, T4 = Combined use of grass pea and mustard crop residues @ 1 t ha⁻¹ of each, T5 = Hand weeding.

Table 3. Combined effect of variety and different crop residues on dry weight of different weed plants.

Treatment combination	Dry weight of weed (g)				
	E. crusgalli (Shama)	N. nouchali (Pani Shapla)	S. juncoides (Chesra)	M. vaginalis (Pani Kachu)	M. quadrifolia (Susni Shak)
V1T1	11.06	0.33	1.42	3.70	2.00
V1T2	5.28	0.25	0.89	2.36	0.70
V1T3	3.65	0.16	0.78	2.01	0.61
V1T4	2.61	0.07	0.54	1.85	0.50
V1T5	1.94	0.04	0.24	0.74	0.38
V2T1	10.98	0.40	1.14	3.26	1.77
V2T2	6.17	0.20	0.72	2.60	0.65
V2T3	5.16	0.15	0.55	2.08	0.58
V2T4	3.68	0.08	0.41	1.65	0.49
V2T5	2.08	0.04	0.20	0.61	0.34
V3T1	10.47	0.46	1.18	3.50	2.00
V3T2	5.16	0.24	0.69	2.75	0.83
V3T3	4.63	0.19	0.54	2.22	0.71
V3T4	3.09	0.11	0.43	1.33	0.52
V3T5	2.05	0.05	0.22	0.69	0.34
LSDLDS5	1.91	0.26	0.37	0.70	0.44

Level of significance NS NS NS NS NS

NS= Non-significant; V1=Binadhan-7, V2= BRRI dhan49, V3= BR11; T1=No use of crop residues, T2 = Grass pea crop residues @ 2.5 t ha⁻¹, T3 = Mustard crop residues @ 2.5 t ha⁻¹, T4 = Combined use of grass pea and mustard crop residues @ 1 t ha⁻¹ of each, T5 = Hand weeding.
Table 4. Combined effect of variety and different crop residues on percent inhibition of different weed plants.

Treatment combination	E. crusgalli (Shama)	N. nouchali (Pani Shapla)	S. juncoidea (Chesra)	M. vaginalis (Pani Kachu)	M. quadrifolia (Susni Shak)
V1T1	0.00	0.00	0.00	0.00	0.00
V1T2	52.29	35.63	37.17	35.37	64.13
V1T3	66.61	49.13	44.82	43.62	66.93
V1T4	75.37	73.56	62.82	48.34	74.65
V1T5	82.53	90.47	82.36	78.78	80.33
V1T6	0.00	0.00	0.00	0.00	0.00
V2T2	42.3	41.18	35.69	19.31	63.59
V2T3	51.66	64.61	51.15	36.64	63.32
V2T4	65.31	75.75	60.22	48.90	69.04
V2T5	80.61	91.66	80.96	81.08	79.12
V2T6	0.00	0.00	0.00	0.00	0.00
V3T2	49.32	53.00	36.08	21.32	55.19
V3T3	56.32	55.50	54.54	36.36	63.20
V3T4	69.95	68.57	63.01	62.42	73.85
V3T5	79.58	88.43	81.02	80.33	81.42
V3T6	18.48	62.13	26.02	16.98	21.75

Level of significance

| NS | NS | NS | NS | NS |

In a column, figures with the same letters do not differ significantly as per DMRT, NS= Non-significant; V1=Binadhan-7, V2= BRRI dhan49, V3= BRRI dhan49× no use of crop residues, T2= Grass pea crop residues @ 2.5 t ha⁻¹, T3= Mustard crop residues @ 2.5 t ha⁻¹, T4 = Combined use of grass pea and mustard crop residues @ 1 t ha⁻¹ of each, T5 = Hand weeding.

Table 5. Effect of variety on yield contributing characters and yield of T. aman rice.

Variety	Plant height (cm)	Number of total tillers hill⁻¹	Number of effective tillers hill⁻¹	Number of non-effective tillers hill⁻¹	Panicle length (cm)	No. of grains panicle⁻¹	1000-grain weight (g)	Harvest index (%)
V1	101.19c	11.54a	8.85a	2.69a	21.21a	87.36c	21.48c	38.69a
V2	107.80a	10.81c	8.38b	2.42b	20.47b	91.34b	22.20b	37.70b
V3	106.16b	11.06b	8.41b	2.64a	21.13a	97.45a	22.80a	37.30c
LSD(0.05)	0.65	0.11	0.14	0.13	0.11	0.89	0.08	0.31
Level of significance	**	**	**	**	**	**	**	**

In a column, figures with same letter(s) or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT. **=Significant at 1% level of probability; V1=Binadhan-7, V2= BRRI dhan49, V3=BRRI dhan49× no use of crop residues.

Weed density of different weed plants had no significant difference among them. Numerically, the highest weed population of Shama (7.00), Pani Kachu (8.33) and Susni Shak (5.00) were found both in V1T1 (Binadhan-7 × no crop residues) and V1T4 (BRRI dhan49 × no crop residues), and the lowest Shama population 1.66 was found in V1T4, V1T5, V1T6 and V3T4 treatment (Table 2). The maximum number of Pani Shapla weed (1.66) and Chesra (2.66) were found in V2T1 (BRRI dhan49 × no crop residue). The lowest number of Pani Shapla (0.33) was found in V1T4, V1T5, V3T4 and V3T6, and V2T5 treatments. The lowest population of Chesra (1.00) and Pani Kachu (1.66) were observed from V1T5 (BRRI dhan49 × hand weeding) treatment (Table 2). Ahmed et al. (2018) showed that variety have significant effect on number of weed population for biskatali, tit begun, shama and angta. Combined effect of variety and different crop residues had no statistical significance on weed dry weight (Table 3). Numerically, the highest dry weight of Shama (11.06 g), Chesra(1.42 g), Pani Kachu (3.70 g) and Susni Shak (2.00 g) was found in V1T3 (Binadhan-7 × no crop residues) and the maximum dry weight of Pani Shapla (0.46 g) was found in V3T1 (Binadhan-7 × no crop residue). The lowest weed dry weight of Shama (1.94 g), and Chesra (2.00 g) was found in V1T5 (Binadhan-7 × hand weeding). Treatment combination V1T3 showed the lowest result for Chesra(0.20 g), Pani Kachu (0.61 g) and Susni Shak (0.34g).

Apparently, percent inhibition of Shama (82.53%) and Chesra (82.36%) were the highest in V1T5 (Binadhan-7 × hand weeding) treatment presented in Table 4. Treatment V1T5 (BRRI dhan49 × hand weeding) showed the highest percent inhibition of Pani Shapla (91.66%),Pani Kachu (81.08%) and Susni Shak (81.42%). Ferdousi et al. (2017) found that the highest percent inhibition of 75.32, 58.24, 72.60, 57.45 and 82.24 was in Shama, Panishapla, Pani chaise, Panikachu and Susnishak, respectively which was caused by the application of wheat crop residues @ 2 t ha⁻¹.
Effect of variety on yield contributing characters and yield of crop

Variety had significant influence on yield and yield contributing characters of *T. aman* rice (Table 5). The tallest plant (107.80 cm) was observed in BRRI dhan49 and the shortest plant (101.19 cm) was found in Binadhan-7. Plant height is a varietal character and the genetic constituent of the cultivar. Therefore, it was different among the three varieties. Similar findings were found by Rahman et al. (2020). The highest number of total tillers hill\(^{-1}\) (11.54) and number of effective tillers hill\(^{-1}\) (8.85) were found in BRRI dhan49 (Table 5). The probable reason of the differences in producing effective tillers hill\(^{-1}\) was the genetic make-up of the variety which was primarily influenced by heredity. These findings collaborated with those reported by BRRI (2018) who stated that effective tillers hill\(^{-1}\) was varied with variety. Sarker et al. (2020) reported similar trend of tillering habits with different varieties of rice. The longest panicle (21.21 cm) was recorded in Binadhan-7 and the shortest panicle (20.47 cm) was recorded in BRRI dhan49 (Table 5). This result was similar to Sheikh et al. (2017), who reported that panicle length has significant relationship with variety. The highest number of grains (97.45) was observed in BR11 and the lowest one (87.36) was found in Binadhan-7. Hasan (2015) reported variable number of grains among the varieties. The highest thousand grain weight (22.80 g) was found in BR11 and the lowest one (21.48 g) was found in Binadhan-7 (Table 5). Varietal differences regarding the number of grains and thousand grain weights might be due to differences in genetic constituents. This finding collaborates with the findings of Hasan (2015), Nomun et al. (2020), Sarker et al. (2020a) and Paul et al. (2021).

The studied varieties significantly affected the grain and straw yield (Figures 1 and 2). The highest grain yield (3.94 t ha\(^{-1}\)) was obtained in BR11, followed by (3.83 t ha\(^{-1}\)) in BRRI dhan49 and the lowest grain yield (3.67 t ha\(^{-1}\)) was obtained in Binadhan-7 (Figure 1). Different yield parameters (no. of tiller, no of grain panicle\(^{-1}\), filled grain panicle\(^{-1}\), 1000 grain weight etc.) influenced the grain and straw yields. The highest straw yield (6.61 t ha\(^{-1}\)) was found in BR11 followed by BRRI dhan49 (6.29 t ha\(^{-1}\)) and the lowest straw yield (5.80 t ha\(^{-1}\)) was found in Binadhan-7 (Figure 2).

Effect of crop residues on yield contributing characters and yield of crop

Grass pea and mustard crop residues had significant effect on yield and yield contributing characters of *T. aman* rice (Table 6). The tallest plant (114.99 cm) was found in T\(_6\) (hand weeding) treatment followed by T\(_4\) (combined use of grass pea and mustard crop residues @ 1 t ha\(^{-1}\) of each) treatment and the shortest plant (99.57 cm) was found in T\(_1\) (no crop residues) treatment. This might be due to the availability of more nutrients from a weed free environment. Similar findings were found by Hasan (2015), who reported that the highest plant height was produced due to weed free condition and the lowest plant height was in no weeding condition. The highest number of total tillers hill\(^{-1}\) (13.24) and the number of effective tillers hill\(^{-1}\) (10.91) were produced by T\(_5\) (hand weeding) treatment, followed by T\(_4\) (combined use of grass pea and mustard crop residues @ 1 t ha\(^{-1}\) of each) treatment and the lowest number of total tillers hill\(^{-1}\) (8.96) and number of effective tillers hill\(^{-1}\) (6.18) was produced by T\(_7\) (no crop residue) treatment (Table 6). The longest panicle (21.87 cm) was observed in T\(_5\) (hand weeding) treatment followed by T\(_4\) (combined use of grass pea and mustard crop residues @ 1 t ha\(^{-1}\) of each) treatment and the shortest one (19.99 cm) was observed in T\(_1\) (no crop residue) treatment (Table 6). Similar findings were found by Hossain et al. (2017), who reported that weed free condition facilitates more favorable condition which improves the panicle length of crop plants. The highest number of grains panicle\(^{-1}\) (97.29) was produced by T\(_5\) (hand weeding) treatment followed by T\(_4\) (combined use of grass pea and mustard crop residues @ 1 t ha\(^{-1}\) of each) treatment while the lowest number of grains panicle\(^{-1}\) (87.01) was produced by T\(_1\) (no crop residue) treatment. It indicates that the highest crop residues encourage the number of grains.
Table 6. Effect of crop residues on yield contributing characters and yield of T. aman rice.

Treatment	Plant height (cm)	Number of total tillers hill \(^1\)	Number of effective tillers hill \(^1\)	Panicle length (cm)	No. of grains panicle \(^{-1}\)	1000-grain weight (g)	Harvest index (%)
T\(_1\)	99.57e	8.96e	6.18e	19.99e	87.01e	21.34e	36.02c
T\(_2\)	100.85d	10.02d	7.32d	20.48d	89.38d	21.56d	37.88b
T\(_3\)	102.97c	10.80c	8.12c	20.93c	91.60c	22.10c	38.08b
T\(_4\)	106.88b	12.65b	10.21b	21.41b	94.97b	22.51b	38.03b
T\(_5\)	114.99a	13.24a	10.91a	21.87a	97.29a	23.31a	39.48a
LSD\(_{0.05}\)	0.84	0.14	0.18	0.14	1.16	0.09	0.40

In a column, figures with same letter(s) or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT; \(*\) = Significant at 1% level of probability; T\(_1\) = No use of crop residues, T\(_2\) = Grass pea crop residues @ 2.5 t ha\(^{-1}\), T\(_3\) = Mustard crop residues @ 2.5 t ha\(^{-1}\), T\(_4\) = Combined use of grass pea and mustard crop residues @ 1 t ha\(^{-1}\) of each, T\(_5\) = Hand weeding.

Rahman et al. (2020) observed that effective weed management increased number of grains due to more availability of water, nutrients and light. The highest weight of 1000 grains (23.31 g) were recorded in T\(_5\) (hand weeding) treatment, followed by T\(_4\) (combined use of grass pea and mustard crop residues @ 1 t ha\(^{-1}\) of each) treatment and the lowest one (21.34) was produced by T\(_1\) (no crop residue) treatment (Table 6). Similar findings were found by Hossain (2017), who reported that weed free condition facilitates more favorable condition for crop plants which ultimately improve 1000-grain weight.

Grain yield and straw yield were significantly influenced by grass pea and mustard crop residues (Figure 3 and Figure 4). The highest grain yield (4.60 t ha\(^{-1}\)) was produced by T\(_5\) (hand weeding) treatment, followed by T\(_4\) (combined use of grass pea and mustard crop residues @ 1 t ha\(^{-1}\) of each) (4.02 t ha\(^{-1}\)) and lowest one (3.17 t ha\(^{-1}\)) was produced by T\(_1\) (no crop residue) treatment (Figure 3). Incorporation of grass pea and mustard crop residues @ 1 t ha\(^{-1}\) of each, decrease weed emergence in the rice field and produced second maximum grain yield. On the other hand, control plot (no crop residue) showed maximum weed population and highest dry weight of weed. The weeds compete with the crop for nutrient, water, air, sunlight and space and so grain yield decreased. Uddin and Pyon (2010) reported that crop residues influence crop performance.

The highest straw yield (7.06 t ha\(^{-1}\)) was observed in T\(_5\) (hand weeding) treatment and the lowest straw yield (5.64 t ha\(^{-1}\)) was observed in T\(_1\) (no crop residues) treatment (Figure 4). It might be due to application of crop residues added organic matter to the soil and enhance straw yield.

The highest biological yield (11.66 t ha\(^{-1}\)) was obtained in T\(_5\) (hand weeding) treatment and the lowest biological yield (8.81 t ha\(^{-1}\)) was obtained in T\(_1\) (no crop residue) treatment (Table 6). Variations in biological yield among the weed control treatment were dependent upon the severity of weed infestation and climatic condition. The highest harvest index (39.48%) was observed in T\(_5\) (hand weeding) treatment, and the lowest harvest index (36.02%) was observed in T\(_1\) (no crop residue) treatment (Table 6). Higher weed infestation not only reduced grain yield and finally influenced straw yield as well as biological yield.
Interaction effect of variety and crop residues on yield contributing characters and yield of *T. aman* rice

The effect of interaction between variety and crop residues had significant impact on yield and yield contributing characters of *T. aman* rice (Table 7). The tallest plant (120.86 cm) was obtained from BRRI dhan49 in *T*. (hand weeding) treatment and Binadhan-7 produced the shortest plant in *T*. (no crop residue) treatment. This might be due to the availability of more nutrients from a weed free environment. The highest number of total tillers hill$^{-1}$ (13.57) and number of effective tillers hill$^{-1}$ (11.20) were produced by Binadhan-7 in *T*. (hand weeding) treatment, while the lowest number of total tillers hill$^{-1}$ (8.75) and number of effective tillers hill$^{-1}$ were found from BRRI dhan49 in *T*. (no crop residue) treatment. Sarkar *et al.* (2020) reported that interaction between variety and crop residues facilitate tillering by suppressing weed population. The longest panicle (22.19 cm) was observed in Binadhan-7 in *T*. (hand weeding) treatment and the shortest one (19.69 cm) was found in BRRI dhan49 in *T*. (no crop residue) treatment (Table 6). Similar findings were found by Sheikh *et al.* (2017), who reported that interaction between variety and crop residues suppress the weed population which facilitate the panicle length of crop plants. The highest number of grains panicle$^{-1}$ (102.78) was produced by BR11 in *T*. (hand weeding) treatment and the lowest number of grains panicle$^{-1}$ (83.67) was produced by Binadhan-7 in *T*. (no crop residue) treatment (Table 7). The interaction between variety and crop residues plays an important role in effective weed management which increased number of grains due to more favorable environment (Hossain *et al.*, 2017). Weight of 1000-grains was significantly affected by the interaction between variety and crop residues. The highest weight of 1000 grains (24.37) were recorded in BR11 in *T*. (hand weeding) treatment (Table 7). This finding was similar with the findings of Sarker *et al.* (2020b), who reported that interaction between variety and crop residues plays an important role in case of increased 1000-grain weight. Grain yield and straw yield were significantly influenced by the interaction between varieties and crop residues. The highest grain yield (4.81 t ha$^{-1}$) and straw yield (7.65 t ha$^{-1}$) were produced by BR11 in *T*. (hand weeding) treatment and the lowest grain yield (3.07 t ha$^{-1}$) and straw yield (5.32 t ha$^{-1}$) were produced by Binadhan-7 in *T*. (no crop residue) treatment (Table 7). The lowest yield ha$^{-1}$ in the control plot might be due to the poor performance of yield contributing characters like number of tillers hill$^{-1}$ and grain panicle$^{-1}$. Severe weed infestation occurred in the plots due to competition for moisture, nutrients between weed and rice plants. Similar results were also observed by Sarker *et al.* (2020). The highest biological yield (12.47 t ha$^{-1}$) and harvest index (40.38%) were produced by BR11 in *T*. (hand weeding) treatment and the lowest biological yield (8.39 t ha$^{-1}$) and harvest index (35.52%) were produced by Binadhan-7 in *T*. (no crop residue) treatment (Table 7). Similar findings were found by Sarker *et al.* (2020a), who reported that interaction between variety and crop residues plays an important role in increasing biological yield.

Table 7. Combined effect of variety and different crop residues on yield contributing characters and yield of *T. aman* rice.

Interaction	Plant height (cm)	Number of total tillers hill$^{-1}$	Number of effective tillers hill$^{-1}$	Panicle length (cm)	No. of grains panicle$^{-1}$	No. of sterile spikelets panicle$^{-1}$	1000-grain weight (g)	Grain yield (t ha$^{-1}$)	Straw yield (t ha$^{-1}$)	Harvest index (%)
V$_i$ V$_j$										
V$_1$ T$_2$	97.17j	9.33h	6.36i	20.14f	83.67k	17.36f	20.58j	3.07i	5.23j	36.56g
V$_1$ T$_3$	98.70i	10.16f	7.43g	20.67e	86.00i	16.53j	20.85i	3.43j	5.52i	38.35cde
V$_1$ T$_4$	101.14gh	11.64d	8.72e	21.23d	87.57hi	15.78j	21.64h	3.66gh	5.78h	38.81bc
V$_2$ T$_2$	102.82f	12.99b	10.53c	21.82b	89.13gh	15.16j	21.90g	3.91ef	6.02f	39.36b
V$_2$ T$_3$	106.12e	13.57a	11.20a	22.19a	90.45j	14.48j	22.45de	4.31c	6.36d	40.38a
V$_2$ T$_4$	100.73h	8.75i	6.22ij	19.69h	84.87jk	18.18j	21.59j	3.22k	5.84gh	35.52h
V$_3$ T$_2$	102.46fg	9.66g	7.06h	20.07g	87.53hi	17.58j	21.87g	3.54i	5.93fg	37.41f
V$_3$ T$_3$	105.00e	10.03f	7.56g	20.32f	90.24g	16.82j	22.12f	3.73g	6.18e	37.66f
V$_3$ T$_4$	109.96c	12.54c	10.17d	20.85e	95.44de	15.98j	22.31e	3.97e	6.36d	38.46cd
V$_3$ T$_5$	120.86a	13.08b	10.90ab	21.44cd	98.65bc	15.43j	23.11c	4.67b	7.16c	39.47b
V$_1$ T$_5$	100.80h	8.81i	5.96j	20.14f	92.52f	18.34j	21.84g	3.23k	5.75h	35.98gh
V$_2$ T$_5$	101.39gh	10.24f	7.47g	20.71e	94.63e	17.35j	21.95g	3.63hi	5.95fg	37.87df
V$_2$ T$_4$	102.75f	10.75e	8.08f	21.24d	97.01cd	16.54j	22.54d	3.83f	6.32d	37.76ef
V$_2$ T$_5$	107.86d	12.44c	9.94d	21.56c	100.34b	16.00j	23.32b	4.59b	7.36b	36.27g
V$_3$ T$_5$	118.01b	13.08b	10.63bc	21.99ab	102.78a	15.23j	24.37a	4.81a	7.65a	38.61c
LSD(0.05)	1.46	0.24	0.31	0.24	2.00	0.41	0.17	0.09	0.12	0.69

In a column, figures with same letter(s) or without letter do not differ significantly where figures with dissimilar letter differ significantly as per DMRT. ** = Significant at 1% level of probability, * = Significant at 5% level of probability, NS = non-significant. V$_1$ = Binadhan-7, V$_2$ = BRRI dhan49, V$_3$ = BR11, T$_1$ = No use of crop residues, T$_2$ = Grass pea crop residues @ 2.5 t ha$^{-1}$, T$_3$ = Mustard crop residues @ 2.5 t ha$^{-1}$, T$_4$ = Combined use of grass pea and mustard crop residues @ 1 t ha$^{-1}$ of each, T$_5$ = Hand weeding.

Showrav Ashraf et al. /Arch. Agric. Environ. Sci., 6(2): 134-141 (2021)
Conclusion

Interaction of combined use of grass pea and mustard crop residues and varieties had significant effect on yield and yield contributing characters of transplant aman rice. Among the interactions, (V₃ × T₃) BR11 with hand weeding showed the best performance, followed by (V₃ × T₄) BR11 from combined use of grass pea and mustard crop residues @ 1 t ha⁻¹ of each, in reducing weed infestation and highest yield of T. aman rice. The highest grain and straw yield (4.81 t ha⁻¹ and 7.65 t ha⁻¹) was observed in hand weeding along with variety BR11, whereas the second highest (4.59 t ha⁻¹ and 7.36 t ha⁻¹) was obtained from combined use of grass pea and mustard crop residues @ 1 t ha⁻¹ of each along with BR11 and the lowest dry weight of weed produced in that combination. From the results of this study, it may be concluded that both of grass pea and mustard crop residues have weed suppressing ability, whereas their combined application showed better performance than that of their single application in weed control. Therefore, grass pea and mustard crop residues could be a prospective source of weed control tool for crop production in modern agricultural science.

Open Access: This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) or sources are credited.

REFERENCES

Afroz, F., Uddin, M. R., Hasan, A. K., Sarker, U. K., Hoque, M. M. I., & Islam, M. A. (2018). Combined allelopathic effect of buckwheat and marsh pepper residues on weed management and crop performance of transplant aman rice. *Archives of Agriculture and Environmental Science*, 3(3), 289-296.

Ahmed, F., Uddin, M. R., Hossain, M. D., Sarker, U. K., Sarkar, D., & Chady, D. N. (2018). Effect of aqueous extract of sorghum crop residues on weed management and crop performance of wheat. *Bangladesh Agronomy Journal*, 21(2), 87-95.

BRRI (2018). Adhunik Dhaner Chas (In Bangla). (21th Revised Edn.) Bangladesh Rice Research Institute, Joydebpur, Gazipur, Bangladesh. pp. 7-15.

Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. *Frontiers in Plant Science*, 6, 10-20.

Ferdousi, S., Uddin, M. R., Begum, M., Sarker, U. K., Hossain, M. N., & Hoque, M. M. I. (2017). Herbicidal activities of wheat residues in transplant aman rice. *Progressive Agriculture*, 28, 253-261.

Gomez, M. A., & Gomez, A. A. (1984). *Statistical Procedures for Agricultural Research*. John Willey and Sons. New York, Chichester, Brisbane, Toronto. pp. 97-215.

Hasan, M. R. (2015). Effect of different crop residues on weed management and crop performance of rice. MS Thesis, Department of Agronomy, Bangladesh Agricultural University, Mymensingh. pp. 36.

Hossain, M. N., Uddin, M. R., Salam, M. A., Sarker, U. K., Ferdousi S., & Uddin, M. J. (2017). Allelopathic potential of mustard crop residues on weed management and performance of transplant aman rice. *Journal of Bangladesh Agricultural University*, 15, 133-139.

Nomun, M. A. A., Uddin, M. R., Hasan, A. K., Rahman, M. S., Kaisar, N., & Talukder, F. U. (2020). Efficacy of Variety and Mustard Crop Residues On Weed Management And Crop Performance of Transplant Aman Rice. *Journal of Wastes And Biomass Management*, 2(1), 33-40.

Paul, D., Sarker, U. K., Uddin, M. R., & Sarkar, D. (2021). Weed suppression and crop performance of T. aman rice in response to combined application of lentil and grasspea crop residues. *Journal of Research in Weed Science*, 4(1), 110-121.

Pramanik, S. K., Uddin, M. R., Sarker, U. K., Sarkar, D., Ahmed, F., & Alam, M. J. (2019). Allelopathic potential of marshpepper residues for weed manage-ment and yield of transplant Amanrice. *Progressive Agriculture*, 30(4), 379-386.

Rahman, M. M. (2014). Effect of herbicidal and physical weed control on the yield of transplant aman rice. M.S. Thesis, Department of Agronomy, Bangladesh Agricultural University, Mymensingh-2202.

Rahman, S. H., Uddin, M. R., Salam, M. A., Sarker, U. K., Rasul, S., & Hasan, M. (2020). Weed management and crop performance of rice as influenced by different crop residues. *Archives of Agriculture and Environmental Science*, 5(3), 275-282.

Sarker, D., Uddin, M. R., Paul, S. K, Sarker, U. K., Ahmed, F., Pramanik, S., & Chady, D. N. (2020). Aqueous extract of mustard crop residues on weed management and crop performance of wheat. *SAARC Journal of Agriculture*, 18(2), 17-26.

Sarker, B.S. Uddin, M.R., Anwar, M.P., Sarker, U.K., & Rasul, S. (2020b). Effect of Sunflower Crop Residues on Weed Management in Transplanted Aman Rice. *Journal of Bangladesh Agricultural University*, 18(3), 557-564.

Sarker, U. K., Uddin, M. R., & Faruk, G. M. (2020a). Weed suppressing ability and performance of common crop residues for sustainable weed management. *Journal of Research in Weed Science*, 3(3), 310-327.

Sayeed, K. A., & Yunus, M. M., (2018). Rice prices and growth, and poverty reduction in Bangladesh. FAO: Rome, Italy.

Sheikh, M. A. H., Uddin, M. R., Salam, M. A., Sarker, U. K., & Haque, M. A. (2017). Weed suppression and crop performance of rice (cv. BRRI dhan29) as influenced by application of different crop residues. *Fundamental and Applied Agriculture*, 2(1), 207-211.

Uddin, M. R., & Pyon, J. Y. (2010). Herbicidal Activity of Rotation Crop Residues on Weeds and Selectivity to Crops. *Journal of Agricultural Science*, 37, 1-6.

Uddin, M. R., Park, S. U., Dayan, F. E., & Pyon, J. Y. (2014). Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. *Pest Management Science*, 70, 252-257.

Uddin, M. R., Won, O. J., & Pyon, J. Y. (2010). Herbicidal effects and crop selectivity of sorgoleone, a sorghum root exudate under greenhouse and field conditions. *Korean Journal of Weed Science*, 30(4), 412-420.

Uddinn, M. R., Li, X., Won, O. J., Park, S. U., & Pyon, J. Y. (2012). Herbicidal activity of phenolic compounds from hairy root cultures of *Fagopyrum tataricum* Gaertn. *Weed Research*, 52(1), 25-33.

Won, O. J., Uddin, M. R., & Pyon, J. Y. (2011). Herbicidal activities and crop injury of hairy vetch residues. *Korean Journal of Weed Science*, 31(2), 175-182.

Won, O. J., Uddin, M. R., Park, K. W., Pyon, J. Y., & Park, S. U. (2013). Phenolic compounds in sorghum leaf extracts and their effects on weed control. *Allelopathy Journal*, 31(1), 147-156.