The influence of teak plantation areas on water yield and peak discharge from five catchments in Blora Regency

T M Basuki and I B Pramono
Watershed Management Technology Center, Jl. Jend. A. Yani, Pabelan - Kartasura, PO BOX 295

E-mail: tmbasuki@yahoo.com

Abstract. Teak plantation occupies 67% of plantation areas in Java-Indonesia; however, its impact on hydrological responses has not been studied in detail. Therefore, a study to assess the impact of teak areas on water yield and peak discharge was conducted in Blora, Central Java. Five catchments with different percentages of the mature teak plantation from 53% to 82% were chosen. Five stream water level recorders were installed at the outlet of the catchments to measure stream water level (SWL). The SWL data were converted into a discharge. Based on 2008–2018 data, the results showed that the lowest monthly (8–41 mm mo$^{-1}$) and annual (140–445 mm yr$^{-1}$) water yield were found in Modang catchment with teak areas (82%), and the highest monthly (41–107 mm mo$^{-1}$) and annual (526–1,500 mm yr$^{-1}$) water yield occurred in Kejalen catchment with teak areas (74%). Generally, all the catchments had the highest water yield in 2010 and the lowest in 2012. It was found that the broader the teak areas, the lower the peak discharge. Although the catchments with the highest (82%) teak areas produced less monthly and annual water yield compared to the catchments with less teak coverage, however, the catchments with high teak coverage can control peak discharge.

1. Introduction
Forests have essential roles in the water cycle and thus influence the water yield of watersheds or catchments. Each species with its characteristics may have a different impact on the water yield [1]. Through evapotranspiration, interception, infiltration, as well as runoff, the forest ecosystem will influence and regulate water yield [2-4]. In this case, the rate of evapotranspiration and interception will be limited by water availability from the rainfall [2,5,6]. In addition, forest management such as thinning, may impact on water regulation in catchments [7, 8] and peak flow [9].

Although some research findings have shown that tree species characteristics influence the water yield, the study by [10] has observed that the relationship between forest and water yield is not only affected by species and forest areas but also influenced by planting position and scale. Therefore, the relationship between forest cover and water yield is complicated and vary among watersheds due to differences in climate, geology, topography, and forest types [11,12].

Due to differences in biophysical properties and management of the catchments as mentioned above, therefore, some of the researchers found that increasing forest cover will reduce water yield [13...
However, the other researchers have observed that reforestation has a positive impact on stream water continuity even in the dry season [17].

The role of forests in regulating water yield of watersheds is not only limited in the term of quantity of the water yield within a specified period but also its influence on peak discharge for certain rainfall events. In this paper, we present the research findings from five catchments covered by various areas of teak plantations. The teak plantation is the dominant species in Java Island, and it covers around 67% of Java’s area. However, information on the hydrological properties of teak catchments is lacking. Therefore, this research has been conducted to study the influence of teak plantations on water yield and peak discharge.

2. Location and method
2.1. Time and location
The teak catchments are administratively located in Blora Regency, Central Java Province, Indonesia. The teak plantations in the catchments area are managed by Forest Management Unit (Kesatuan Pemangkuan Hutan or KPH) Cepu, Unit I Central Java. Figure 1 shows the position of the catchments area, and Table 1 presents the catchments and teak areas.

![Figure1](image-url)

Figure1. River network and hydrological stations for stream water level recorder at the studied catchments.

Source: [18]

No	Catchment	Catchment area (km²)	% of the mature teak area to the catchment area
1	Modang	3.4	82
2	Cemoro	13.8	82
3	Kejalen	20.1	74
4	Sambong	27.8	70
5	Gagakan	64.8	53
2.2. Method
IKONOS image 2015 from Google Earth was digitized to derive land cover map [18]. The percentage of the mature teak area was obtained by dividing the area of mature teak plantation by each catchment area. Table 1 presents the catchments and the percentage of mature teak areas. In this research, the soil type, rainfall, geology were considered similar for the whole catchments, and therefore only the teak plantation area was assumed to be the factor influencing the water yield and the peak discharge of each catchment.

The research was undertaken in the catchment bases. Conventional stream water gauges and automatic water level recorders using loggers were installed at the outlet of each catchment, which has different teak plantation area, to measure stream water level manually and automatically. The measurements of stream water levels using conventional stream water gauges were conducted three times a day, which were at 7:00 a.m., 12:00 a.m., and 5:00 p.m. The loggers were set up to record the stream water level for five minutes interval. All the stream water level data were converted into a discharge using the discharge rating curve, as presented in Table 2.

No	Sub DAS	Discharge Rating curve
1	Modang	$Q = 0.52H^{1.22}, H < 0.3 \text{ m}$ $Q = 6.89H^{3.07}, H = 0.3 - 0.9 \text{ m}$ $Q = 7.79H^{2.78}, H > 0.9 \text{ m}$
2	Cemoro	$Q = 2.94H^{1.63}, H < 0.3 \text{ m}$ $Q = 22.16H^{3.80}, H = 0.3 - 0.6 \text{ m}$ $Q = 12.15H^{1.89}, H > 0.6 \text{ m}$
3	Kejalen	$Q = 1.41H^{2.62}, H < 1.2 \text{ m}$ $Q = 1.10H^{2.19}, H > 1.2 \text{ m}$
4	Sambong	$Q = 3.40H^{2.68}, H > 1.95 \text{ m}$ $Q = 5.56H^{1.54}, H < 1.95 \text{ m}$
5	Gagakan	$Q = 9.28H^{2.00}$

Note: $Q =$ discharge ($\text{m}^3 \text{ sec}^{-1} \text{ km}^{-2}$), $H =$ stream water level (m)
Source: Analyzed by the Team of Watershed Management Technology Center, unpublished as cited by [19]

The peak discharge data were obtained based on the five minutes observation. Both conventional and automatic rainfall gauges were set up to obtain rainfall data. The automatic rainfall gauge was set up for every five minutes.

3. Results and discussion
3.1. Temporal distribution of water yield
The mean monthly water yield based on data from 2008 to 2018 for each catchment is provided in figure 2. The trend lines indicating the relationship between the mean monthly water yield and the percentage area of mature teak show that for the wet season, the higher the percentage of the teak area, the lower the mean monthly water yield. However, in the dry season, the trend lines are relatively
horizontal, and there are no differences between catchments with different teak areas. It means the increase in rainfall does not significantly increase the discharge. In the dry month of August, the trend line shows a bit higher in the catchment with the more extensive mature teak areas than in the catchments with the smaller teak areas. It indicates that on the broader teak area, more rainfall can be preserved in the soil and released in the dry season. In the broader teak area, there are more soil organic matter and litterfall, and therefore, soil aggregation much better, and more rainwater can be infiltrated into the soil.

The findings in our research are in agreement with some research findings of the previously published papers, although the species are different. At a micro-scale, a reduction of forest area will increase water yield due to decreasing evapotranspiration [20]. However, in a large watershed, which is more than 10,000 km2, [21] have concluded that the hydrological responses of reforested watersheds were also affected by the properties of the watersheds. Besides [21], a review by [22] have found research findings on the impact of forest changes on hydrological responses from small (< 1,000 km2) to large (> 1,000 km2) watersheds and have found that the increase of water yield due to the decrease in forest cover is statistically significant for all of the watershed sizes. On the other hand, the effect of the increase in forest cover on water yield is not consistent among the watershed sizes [22].

The annual water yield of the studied catchments is presented in figure 3. On the annual bases, the trend lines indicate that the increase in the mature teak areas causes a decrease in annual water yield. This research finding is in line with the research conducted by [23] and [24]. A research conducted by [25] in Willow Watershed in Central British Columbia has found that the annual water yield at the large watershed was also significantly increased with the increase in forest harvesting. The increase in water yield in the less forest cover within the watersheds is because of the decrease in evapotranspiration and interception [25].

Based on the previous researches, the increase in water yield due to the decrease in forest covers varies among the studies. Observation on water yield for two years in the old-growth of tropical Montane Cloud Forest (TMCF) in eastern Mexico, 20 yr-old TMCF naturally regenerating, and a heavily grazed pasture was conducted by [26]. It was observed that the yearly and seasonal patterns of water yield in the mature and secondary forest were similar. However, in the pasture catchment, the annual water yield was 10% higher than the forested catchments due to low interception [26]. In the Upper Zaguano River Watershed, China [27] have measured that in this large study area (> 10,000 km2), the mean annual water yield increment due to forest harvesting was 38 mm yr$^{-1}$ and -38.3 mm yr$^{-1}$ which was caused by climatic variability.

Based on figure 3, it can be seen that the annual water yield of the Gagakan Catchment with the lowest mature teak area (53%) fluctuates more than the catchment with higher teak coverage. The ranges of annual water yield between dry and wet years are broader compared to other years. For example, the annual water yield of the catchment with 53% mature teak area in the dry year 2008 was around 405 mm, however, at the wet year 2010, it increased into 1,522 mm. On the other hand, Cemoro catchment with 82% mature teak area had an annual water yield of 436 mm in 2008, and it became 849 mm in a wet year in 2010. A possible reason for this condition is less water can be stored during the dry year in the catchment with a 53% teak coverage area.
Figure 2. Mean monthly water yield at different mature teak areas at the observed catchments.
Figure 3. Annual water yield of the studied catchments.
3.2. Peak discharge at various rainfall event

At the same rainfall event, the hydrological responses of the catchments are varied. For instance, at the rainfall 44 mm per event, on 22nd February at Gagakan catchment covered by 53\% of old teak, the peak discharge was 0.21 m3sec-1km-2. However, on 25 February at the same catchment with the same rainfall (44 mm per event), the peak discharge was 1.22 m3sec-1km-2. A possible reason for this condition is the difference in soil moisture content [28]. The peak discharge of the catchments at various rainfall events are presented in figure 4. Results from the data analysis also show that the relationships between the percentage of the teak plantation area in the catchments and the peak discharge are generally strong, but the relationships are not linear (figure 4).

Although the increase in teak coverage decreases the mean monthly and annual water yield, however, the teak plantations can reduce peak discharge, as presented in figure 4. The possible reason is that more rainwater that can be retained in the forest floor and also more evapotranspiration and interception at the broader teak plantation area compared to the smaller teak plantation area, and therefore the less peak discharge. In this case, the higher rainfall depth is not always causing higher peak discharge. This means that the factors affecting peak discharge are not only rainfall and forest cover (in this research teak plantation), but other factors such as soil moisture may influence the peak discharge. Antecedent soil moisture at the forest area has a strong (92\%) correlation with the direct runoff [29].

As a comparison to our findings, [30] reported their findings based on the research in the seasonal tropics of Central Panama. It has observed that peak discharge of the mosaic catchment (subsistence agriculture, mixed-age forest, and pasture) and graze pasture catchment were 1.4 and 1.7 higher than that of the forested catchment, respectively. Meanwhile, [31] have examined that planned forest harvesting 50\% of the catchment has increased from 9\% to 25\% compared to the peak discharge of the control catchment.
Figure 4. The relationship between the teak plantation area and peak discharge.
4. Conclusion
Based on the study in the five teak catchments with various teak areas, it can be concluded that the increase in the mature teak area will cause a decrease in annual water yield. The mean monthly water yield in the wet season is higher in the catchment with the smaller teak area, and however, in the dry season, the water yield is similar among the catchments with various teak areas. The increase in the teak areas causes a decrease in water yield; however, the wider the teak areas within the catchments reduce the peak discharge. The implication of the latest finding is forests in general or teak plantation, in this case, can be used to mitigate peak flood until a particular rainfall event. The research findings are based on relatively small catchments, and the impact of teak plantation on water yield and peak discharge may be different at a large watershed. Therefore, in the future, research on the impact of teak plantation on water yield at large watersheds is a challenge.

Acknowledgments
We acknowledge the financial support from the Watershed Management Technology Center, Surakarta, Indonesia. Our appreciation for the anonymous reviewers and the editors for the constructive comments. We also would like to thank Lathif Brahmantyo for the technical assistant.

References
[1] Carlyle-Moses D E, Park A D and Cameron J L 2010 Modeling rainfall interception loss in forest restoration trials in Panama Ecohydrology 3 272–83
[2] Dye P and Versfeld D 2007 Managing the hydrological impacts of South African plantation forests: an overview For. Ecol. Manag. 251 121–8
[3] Little C, Lara A, McPhee J and Urrutia R 2009 Revealing the impact of exotic forest plantations on water yield in large scale watersheds in South-Central Chile J. Hydrol. 374 162–70
[4] Shao Q, Traylen A and Zhang L 2012 Nonparametric method for estimating the effects of climatic and catchment characteristics on mean annual evapotranspiration Water Resour. Res. 48 1–13
[5] Mitchell P J, Benyon R G and Lane P N J 2012 Responses of evapotranspiration at different topographic positions and catchment water balance following a pronounced drought in a mixed-species eucalypt forest, Australia J. Hydrol. 440 44 62–74
[6] Williams C A, Reichstein M, Buchmann N, Baldocchi D, Beer C and Schwalm C 2012 Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers Water Resour. Res. 48 1–13
[7] Kalantari Z, Lyon S W, Folkeson L, French H K, Stolte J and Jansson PE 2014 Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment Sci. Total Environ. 466–467 741–54
[8] Sutmöller J, Hentschel S, Hansen J and Meesenburg H 2011 Coupled forest growth-hydrology modelling as an instrument for the assessment of effects of forest management on hydrology in forested catchments Adv. Geosci. 271 49–54
[9] Dung B X, Gomi T, Miyata S and Siddle R C 2012 Peak flow responses and recession flow characteristics after thinning of Japanese cypress forest in a headwater catchment Hydrol. Res. Letters 6 35–40
[10] Ellison D, Futter M N and Bishop K 2012 On the forest cover-water yield debate: from demand- to supply-side thinking Glob. Change Biol. 18 806–20
[11] He Z, Zhao W, Liu H and Tang Z 2012 Effect of forest on annual water yield in the mountains of an arid inland river basin: a case study in the Pailugou catchment on northwestern China’s Qilian Mountains Hydrol. Process 621 613–21
[12] Wang S, Fu B J, He C S, Sun G and Gao G Y 2011 A comparative analysis of forest cover and
catchment water yield relationships in northern China For. Ecol. Manag. 262 1189–98
[13] Bradshaw C J A, Sodhi N S, Peh K S and Brook B W 2007 Global evidence that deforestation amplifies flood risk and severity in the developing world Glob. Change Biol 13 2379–95
[14] Liu W, Wei X, Liu S, Liu Y, Fan H and Zhang M 2014 How do climate and forest changes affect long-term streamflow dynamics: a case study in the upper reach of Poyang river basin Ecohydrology 12
[15] Sun G, Zhou G, Zhang Z, Wei X, Mcnulty S G and Vose J M 2006 Potential water yield reduction due to forestation across China J. Hydrol. 358 548–58
[16] Yao Y, Cai T, Wei X, Zhang M and Ju C 2011 Effect of forest recovery on summer streamflow in small forested watersheds, Northeastern China Hydro. Process 7
[17] Zhou G, Wei X, Luo Y, Zhang M, Li Y and Qiao Y 2010 Forest recovery and river discharge at the regional scale of Guangdong Province, China Water Resour. Res. 46 (9) 1–10
[18] Basuki T M 2017 Sediment yield and alternatives soil conservation practices of teak catchments J. Degrad. Min. Lands. Manag. 05 (1) 965–73
[19] Basuki T M, Pramono I 2017 Hutan Jati: Tempat Tumbuh, Hasil Air, dan Sedimen (In Bahasa Indonesia). First Edit. Sudiro P. and Hadi P., editor. Surakarta: UNS Press.; p. 99
[20] Zhang L, Dawes W R and Walker G R 2001 Response of mean annual evapotranspiration to vegetation changes at the catchment scale Water Resour. Res. 37 (3) 701–8
[21] Liu W, Wei X, Li Q, Fan H, Duan H and Wu J 2016 Hydrological recovery in two large forested watersheds of southeastern China: The importance of watershed properties in determining hydrological responses to reforestation Hydro. Earth Syst. Sci. 20 (12) 4747–56
[22] Zhang M, Liu N, Harper R, Li Q, Liu K and Wei X A 2017 global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime J. Hydrol. 546 44–59
[23] Iroumé A, Palacios H 2013 Afforestation and changes in forest composition affect runoff in large river basins with pluvial regime and Mediterranean climate, Chile J. Hydrol. 505 113–25
[24] Cao S, Chen L, Shankman D, Wang C, Wang X and Zhang H 2011 Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration Earth-Science Rev. 104 (4) 240–5
[25] Lin Y and Wei X 2008 The impact of large-scale forest harvesting on hydrology in the Willow watershed of Central British Columbia J. Hydrol. 359 (1–2) 141–9
[26] Muñoz-Villers L E, McDonnell J J 2013 Land use change effects on runoff generation in a humid tropical montane cloud forest region Hydro. Earth Syst. Sci. 17 (9) 3543–60
[27] Zhang M, Wei X, Sun P and Liu S 2012 The effect of forest harvesting and climatic variability on runoff in a large watershed: The case study in the Upper Minjiang River of Yangtze River basin J. Hydrol. 464–465 1–11.
[28] Pramono I B, Gunawan T, Wiryanto, Budiastriti M T S 2016 The ability of pine forests in reducing peak flow at Kedungbulus sub watershed, Central Java, Indonesia Int. J. Appl. Environ. Sci. 11 (6) 1549–68
[29] Zehe E, Gnaett M, Morgen M, Bauer A and Bronstert A 2010 Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains Hydro. Earth Syst. Sci. 14 (6) 873–89
[30] Ogden F L, Crouch T D, Stallard R F and Hall J S 2013 Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. p. 8443–62
[31] Kura P K, Alila Y and Weiler M 2012 Forest harvesting effects on the magnitude and frequency of peak flows can increase with return period Water Resour. Res. 48 (1) 1–19