An improved AFS phase for AdS$_3$ string integrability

Michael C. Abbott a, Inés Aniceto a,b,

a Department of Mathematics, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
b Institute of Physics, Jagiellonian University, Ul. Łojasiewicza 11, 30-348 Kraków, Poland

A R T I C L E I N F O

Article history:
Received 29 January 2015
Accepted 6 February 2015
Available online 11 February 2015
Editor: M. Cvetič

A B S T R A C T

We propose a number of modifications to the classical term in the dressing phase for integrable strings in $AdS_3 \times S^3 \times S^3 \times S^1$, and check these against existing perturbative calculations, crossing symmetry, and the semiclassical limit of the Bethe equations. The principal change is that the phase for different masses should start with a term $Q_1 Q_2$, like the one-loop AdS_3 dressing phase, rather than $Q_2 Q_1$ as for the original AdS_3 AFS phase.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The central object in the integrable picture of planar AdS$_5$/CFT$_4$ is the all-loop S-matrix, and the Bethe ansatz equations which follow from this [1]. Its nontrivial dependence on the 't Hooft coupling λ comes from the dressing phase, and expanding at strong coupling this has the form

$$\sigma_{\text{BES}}(x, y) = \exp \left[i \frac{\sqrt{\lambda}}{2\pi} \sum_{r, s \geq 2} \varepsilon_{r,s}^{(+)}(\lambda) \sigma_r(x) \sigma_s(y) \right]$$

where $\varepsilon_{r,s}^{(+)} = (\delta_{r+1,s} - \delta_{r,s+1}) + a_{r,s} / \sqrt{\lambda} + O(1/\lambda)$. The first term was introduced by Arutyunov, Frolov and Staudacher (AFS) in [2] as a correction needed to match classical strings in $AdS_3 \times S^3$. The coefficients $a_{r,s}$ are the extension to one-loop strings of [3], and this was later extended to all loops in [4].

The dressing phase for AdS$_3$ backgrounds is different, and is now understood quite well at one loop [5–8]; see also [9,10]. However we believe that the classical part of the dressing phase has been treated incorrectly in the literature. This is the subject of our Letter.

A new feature of strings in $AdS_3 \times S^3 \times S^3 \times S^1$ is that there are excitations (above the BMN state) of mass $1, \alpha, 1 - \alpha$ and 0 [11], rather than just one mass in $AdS_5 \times S^5$ or two in $AdS_4 \times CP^3$. The bosonic modes of mass $s_1 = \alpha$ and $s_2 = 1 - \alpha$ are excitations in the two S^3 factors (which have different radii), and there are two such excitations in each sphere, one in the left copy of the algebra (labelled 1, or 3) and one in the right (1, or 3). These and their superpartners are the elementary particles in the Bethe ansatz description of [12], which gives the spectrum as

$$\Delta - J = \sum_{\ell} \sum_{k=1}^{K_{\ell}} E_{\ell}(p_{\ell,k}),$$

$$E_{\ell}(p_{\ell,k}) = \sqrt{\frac{2}{s_{\ell} + 4h^2 \sin^2 \frac{p_{\ell,k}}{2}}}$$

where the allowed $p_{\ell,k}$ are constrained by equations of the form $e^{\ell \pi s_k} = \prod_{j \neq k} S(p_k, p_j)$, using the S-matrix of [13]. This must include (for the first time) a dressing phase for the scattering of particles of different mass.

The first classical phase for two particles of different mass was written down by Borsato, Ohlsson Sax and Sfondrini [12], who gave

$$\sigma_{\text{BOS}}(x, y) = \left(1 - \frac{1}{x y} \right) \left(1 - \frac{1}{x y} \right) \left(1 - \frac{1}{x y} \right)$$

where the masses s_x, s_y enter explicitly through

$$W_{xy} = \frac{4s_x s_y}{s_x + s_y} = \begin{cases} 2s_x, & s_x = s_y \\ 4s_x s_y, & s_x + s_y = 1. \end{cases}$$

When $s_x = s_y = 1$, this is exactly the original AFS phase used in AdS_3. A similar phase was used in [18] when comparing to tree-

* Corresponding author.

 E-mail address: inaceto@math.ist.utl.pt (I. Aniceto).

http://dx.doi.org/10.1016/j.physletb.2015.02.016

0370-2693 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
level amplitudes, but with the exponent of the first factor replaced by
\[i \hbar \frac{W_{xy}}{\sigma_{AFS}} \left(x^+ + \frac{1}{x^+} - y^+ - \frac{1}{y^+} \right) \]
\[= i \hbar \frac{W_{xy}}{\sigma_{AFS}} \left(x + \frac{1}{x} - y - \frac{1}{y} \right) - \frac{s_x + s_y}{W_{xy}}. \]
The last term here has no effect on tree-level worldsheet scattering.

Our first proposal is that the correct generalisation of the AFS phase to particles of different mass is instead:
\[\sigma_{AFS}(x, y) = \left(1 - \frac{1}{x^+ y^+} \right)^{\frac{s_x + s_y}{W_{xy}}} \left(1 - \frac{1}{x^+ - y^+} \right)^{\frac{s_x - s_y}{W_{xy}}} \times \left(1 - \frac{1}{x^+ y^+} \right)^{\frac{s_y + s_x}{W_{xy}}} \left(1 - \frac{1}{x^+ - y^+} \right)^{\frac{s_y - s_x}{W_{xy}}}. \] (4)

This follows from changing the original definition, the first term of (1), by an overall factor:
\[\sigma_{AFS}(x, y) = \exp \left\{ i \frac{\hbar}{W_{xy}} \sum_{r=2}^{\infty} \left[Q_r(x) Q_{r+1}(y) - Q_{r+1}(x) Q_r(y) \right] \right\}. \] (5)

However this change alone will break the agreement with tree-level worldsheet scattering seen in [18], as we discuss below. This leads us to suggest two further modifications, which we parameterise by \(\beta, \delta, \Delta\), in addition to \(\gamma, \Gamma\) in [12]. Of these five parameters, three will be fixed by tree-level scattering, and one more by a semiclassical limit of the Bethe equations.

- In the one-loop dressing phase, an important difference from the \(A_{dS}^5\) case is that the sum starts with \(a_{1,2} Q_1 Q_2\) \([10, 5, 6]\), rather than \(a_{2,3} Q_2 Q_3\) as in (1). It seems natural to wonder if this should apply to the classical phase too, and thus our second proposal is to include a factor
\[\sigma_{one}(x, y) = \exp \left\{ i \frac{\hbar}{W_{xy}} \left[p_x Q_2(y) - p_y Q_2(x) \right] \right\}. \] (6)

We use \(\sigma_{one} \sigma_{AFS}\) as the classical phase for different-mass scattering only, with power \(\beta = 1\) most natural.

- The \(S\)-matrix derived in [13] contains a number of unfixed scalars \(S_{lm}\), each of which should include the dressing phase. An ansatz for the remaining factors was given in [12], and our third proposal is that this should be slightly modified, introducing a phase like the one needed for the string frame, but with an arbitrary power. Explicitly, we set
\[S^{11}(x, y) = \left(\frac{x^+ y^+}{x^+ y^+} \right)^{1+2\gamma} \times \left[1 - \frac{1}{x^+ y^+} \sigma_{AFS}^2(x, y) \right]^{1+2\gamma} \sigma_{LL}^2(x, y) \]
\[S^{13}(x, y) = \left(\frac{x^+ y^+}{x^+ y^+} \right)^{1+2\gamma} \times \left[1 - \frac{1}{x^+ y^+} \sigma_{AFS}^2(x, y) \right]^{1+2\gamma} \sigma_{LL}^2(x, y). \] (7)
The expressions in [12] have unfixed \(\gamma\) and \(\Gamma\) but \(\delta = \Delta = 0\), while going to the string frame would normally mean increasing \(\delta\) and \(\Delta\) by \(\frac{1}{2}\). We write the one-loop dressing phase \(\sigma_{LL}\) outside the power of 1 + 2\(\gamma\), as it was the total phase which was calculated by semiclassical means in [6]. We omit the two-loop and higher phases.

2. Tree-level BMN scattering

Let us now test this against the results of Sundin and Wulff [18], who computed tree-level Feynman diagrams in the worldsheet theory. To do this we must take the BMN limit, writing \(p = \tilde{p} / h\) with \(\tilde{p}\) order 1 and \(h \gg 1\). Then we can expand
\[x^+ = \frac{s_x + \omega_x}{\tilde{p}_x} \pm i(s_x + \omega_x) \frac{1}{2h} + \mathcal{O} \left(\frac{1}{h^2} \right) \]
\[= \frac{\tilde{p}_x}{h} \left[\omega_x - s_x \right] \pm i \mathcal{O} \left(\frac{1}{h^2} \right). \]
The charges used above are \(Q_n(x) = p_x - i \log(x^+/x^-)\) and, for \(n > 1\),
\[Q_n(x) = \frac{i}{n} - 1 \left[\frac{1}{x^{+n}} - \frac{1}{x^{-n}} \right] \]
\[= \frac{\tilde{p}_x}{h} \left[\omega_x - s_x \right] \pm i \mathcal{O} \left(\frac{1}{h^2} \right). \]

Apart from obvious phases, the other expansions we will need for this limit are
\[1 - \frac{1}{x^+ y^+} \sigma_{one}^2 \sigma_{AFS}^2 = 1 + \frac{i}{2h} \left[-\tilde{p}_x (\omega_x - s_x) \left(\frac{1}{s_x} - \frac{4\beta}{W_{xy}} \right) \right] + \cdots \]
\[+ \tilde{p}_y (\omega_y - s_y) \left(\frac{1}{s_y} - \frac{4\beta}{W_{xy}} \right) + \mathcal{O} \left(\frac{1}{h^2} \right). \]
\[x^+ - y^+ \equiv \frac{s_x + \omega_x}{\tilde{p}_x} \pm \frac{\alpha (\tilde{p}_y + \tilde{p}_x)}{\alpha_x \tilde{p}_y - \omega_y \tilde{p}_x} + \mathcal{O} \left(\frac{1}{h^2} \right), \]
\[s_x = s_y = \alpha \] only.

Consider two bosons from the left sector of the theory, “1” of mass \(\alpha\) and “3” of mass \(1 - \alpha\). As in [18], and in [20, 14], we should allow for some unknown gauge dependence through \(\delta\) in addition to the spin-chain \(S\)-matrix. However for the mixed-mass case we allow two parameters \(\delta, \epsilon\) (and expect them to be equal at \(\alpha = 1/2\)). Thus we write the scattering amplitudes as
\[A^{11}(x, y) = \exp \left[-\frac{i\alpha}{h} (\omega_x \tilde{p}_y - \omega_y \tilde{p}_x) \right] \frac{x^+ - y^+}{x^- - y^+} S^{11}(x, y), \]
\[s_x = s_y = \alpha. \]
\[A^{13}(x, y) = \exp \left[-\frac{i\alpha}{h} (\omega_x \tilde{p}_y - \omega_y \tilde{p}_x) \right] \frac{x^+ - y^+}{x^- - y^+} S^{13}(x, y), \]
\[s_x = \alpha, \ s_y = 1 - \alpha. \] (8)
The corresponding worldsheet results are in Eq. (3.2) of [18]. These depend on the AFZ gauge parameter [21] which is $a = \frac{1}{2}$ for the simplest light-cone gauge:

$$A_{\text{WS}}^{11}(\vec{p}_x, \vec{p}_y) = 1 + \frac{i}{2h} \frac{\alpha(\vec{p}_x + \vec{p}_y)^2}{\omega \vec{p}_y - \omega_y \vec{p}_x} + \frac{i}{2h} (1 - 2a) \left[\omega_x \vec{p}_y - \omega_y \vec{p}_x \right] + O \left(\frac{1}{h^2} \right)$$

$$A_{\text{WS}}^{13}(\vec{p}_x, \vec{p}_y) = 1 + \frac{i}{2h} (1 - 2a) \left[\omega_x \vec{p}_y - \omega_y \vec{p}_x \right] + O \left(\frac{1}{h^2} \right).$$

Matching $A^{11} = A_{\text{WS}}^{11}$ and $A^{13} = A_{\text{WS}}^{13}$, and demanding that $\Gamma \neq -1$, we find that

$$\beta = 1, \quad \delta_{\text{SF}} = \frac{1}{2}, \quad \Delta_{\text{SF}} = -\frac{1}{2} - 2\Gamma$$

and

$$2\tilde{a} = 1 + 2\gamma + (2a - 1)\alpha, \quad 2\tilde{b} = -(1 + 2\Gamma) + (2a - 1)(1 - \alpha), \quad 2\tilde{c} = -(1 + 2\Gamma) + (2a - 1)\alpha.$$ We write δ_{SF} to indicate that these are the parameters in the string frame; in the spin chain frame we have $\delta = 0$ and $\Delta = -1 - 2\Gamma$ instead.

The comparison performed in [18] used σ_{BOS} for A^{13} (and for $A^{11}, \sigma_{\text{BOS}} = \sigma_{\text{AFS}}$). If we repeat this allowing arbitrary parameters (including β, and demanding $\delta_{\text{SF}} \neq \frac{1}{2}, \Gamma \neq -\frac{1}{2}$) we find that

$$\beta = 0, \quad \delta_{\text{SF}} = \Delta_{\text{SF}} = \frac{1}{2}$$

and

$$2\tilde{a} = 1 + 2\gamma + (2a - 1)\alpha, \quad 2\tilde{b} = 1 + 2\Gamma + (2a - 1)(1 - \alpha), \quad 2\tilde{c} = 1 + 2\Gamma + (2a - 1)\alpha.$$ Setting $\gamma = 1 = 0$ returns precisely the phases used in [18].

We can similarly check agreement for scattering with a “1” or “3” particle in the right sector, using the same gauge phases $\tilde{a}, \tilde{b}, \tilde{c}$ as before with the appropriate S matrix elements from [13]:

$$A^{11}(x, y) = e^{-\frac{\pi}{2} \frac{\omega_{x} \vec{p}_y - \omega_{y} \vec{p}_x}{\omega \vec{p}_y - \omega_y \vec{p}_x}} \sqrt{1 - \frac{1 - x^2}{1 - x y}} S^{11}(x, y)$$

$$A^{13}(x, y) = e^{-\frac{\pi}{2} \frac{\omega_{x} \vec{p}_y - \omega_{y} \vec{p}_x}{\omega \vec{p}_y - \omega_y \vec{p}_x}} \sqrt{1 - \frac{1 - x^2}{1 - x y}} \sqrt{1 - \frac{1 - y^2}{1 - x y}} S^{13}(x, y).$$

The phases S^{11} should be modified from those of [12] by the same factors δ, Δ, ι. Thus

$$S^{11}(x, y) = \left[1 - \frac{1 - x^2 y^2}{1 - x y} \right]^{-\frac{1}{2}} S^{11}(x, y),$$

$$S^{13}(x, y) = \left[1 - \frac{1 - x^2 y^2}{1 - x y} \right]^{+\frac{1}{2}} S^{13}(x, y)$$

(and σ_{LL} is replaced with σ_{LR}) and the worldsheet results are [18]

$$A_{\text{WS}}^{11}(\vec{p}_x, \vec{p}_y) = A_{\text{WS}}^{11}(\vec{p}_x, \vec{p}_y) - \frac{i}{2h} \frac{4\alpha \vec{p}_y \vec{p}_y}{\omega \vec{p}_y - \omega_y \vec{p}_x} + O \left(\frac{1}{h} \right),$$

$$A_{\text{WS}}^{13}(\vec{p}_x, \vec{p}_y) = A_{\text{WS}}^{13}(\vec{p}_x, \vec{p}_y).$$

Clearly we obtain no new constraints from these.

3. Crossing relations

We can obtain a check on the phases described above from crossing symmetry [22]. If we stay in the BMN limit there is nothing to learn, since (by construction) we have not changed the results. But if we take the semiclassical limit without small momentum ($h \gg 1, p \sim 1$) then we obtain a nontrivial check which in fact mixes the classical and one-loop phases. The relevant equations from [12] for the scalars $S^{1m}(7)$ and $S^{1m}(10)$ are

$$S^{11}(x, y) S^{11}(x, \tilde{y}) = \frac{x - y^+}{x - y^-} \frac{x^+ - y}{x^+ - y^+} \frac{x^+ - y^-}{x^+ - y^+}$$

$$= \frac{1 - e^{\frac{i}{2}(p_x - p_y)/4}}{1 - e^{\frac{i}{2}(p_x + p_y)/2}} + O \left(\frac{1}{h} \right).$$

$$S^{13}(x, y) S^{13}(x, \tilde{y}) = \frac{x - y^+}{x - y^-} \frac{x^+ - y}{x^+ - y^+} \frac{x^+ - y^-}{x^+ - y^+}$$

$$= \frac{1 - e^{i(3p_x - 3p_y)/4}}{1 - e^{i(p_x + p_y)/2}} + \ldots$$

Here \tilde{y} indicates that the argument has been moved $y^+ \to 1/y^\mp$. On the right we use $x^+ = e^{\frac{i}{2}(p_x + p_y)/2} + O(1/h)$, and separate two factors: a phase and a trigonometric part. (There are two more crossing equations, for $S^{11}(x, y) S^{11}(x, y)$ and $S^{13}(x, y) S^{13}(x, y)$. These can be treated almost identically.)

In this $h \gg 1$ limit we can write the complete dressing phase as

$$\sigma_{\text{one}} \sigma_{\text{AFS}} \sigma_{\text{LL}} \sigma_{\text{higher-loop}}$$

$$= \exp \left[\frac{i}{\hbar} \tilde{\theta}_{\text{one}} + \theta_{\text{AFS}} + i\theta_{\text{LL}} + O(1/h) \right]$$

with each θ of order 1. Considering (11) at order h in the exponent, the cancellation is very simple from (5) and (6), because $Q_d(1/y^\mp) = -Q_d(y^\mp) + O(1/h)$. At order h^0 it’s easier to use form (4) for the AFS phase. The exponent $\frac{\hbar}{2}(x + \frac{1}{2} - y - \frac{5}{2})$ has terms at order h and h^{-1} but not h^0, so this first factor does not contribute. The other two factors give

$$\sigma_{\text{AFS}}(x^\pm, y^\mp) \times \sigma_{\text{AFS}} \left(x^\mp, \frac{1}{y^\mp} \right)$$

$$= \left[1 - \frac{1 - x^2 y^2}{1 - x y} \right] \times \left[1 - \frac{x^+}{x^-} \right] \left[1 - \frac{1 - x^2 y^2}{1 - x y} \right]$$

$$= \exp \left[\frac{2p_x s_y}{W_{xy}} + O \left(\frac{1}{h} \right) \right].$$

At the same order there is also a contribution from (6). Using $Q_d(1/y^\mp) = -Q_d(y^\mp) - 2s_x/h + O(1/h^2)$ we see that it exactly cancels the last equation if $\beta = 1$:

$$\sigma_{\text{one}}(x^\pm, y^\mp) \sigma_{\text{one}} \left(x^\mp, \frac{1}{y^\mp} \right) = \exp \left(-\frac{2p_x s_y}{W_{xy}} + \ldots \right).$$

Note that if $\beta = 0$, it is difficult to imagine what would cancel the phase $e^{\frac{i}{2}(p_x + 2a)}$ from σ_{AFS} in the $S^{13} S^{13}$ case at generic α.4

For the remaining factors in $S^{1m}(7)$ and $S^{1m}(10)$, the contribution is

4 If we used (3) instead, the power would be an integer: $\sigma_{\text{BOS}}(x^\pm, y^\mp) \sigma_{\text{BOS}}(x^\mp, \frac{1}{y^\mp}) = e^{\theta \hbar} + O(1/h)$ in both the $S^{11} S^{11}$ and $S^{13} S^{13}$ cases.
\[
\sigma^{11}_{\beta}(x, y) = \left(\frac{x^2 - y^2}{x^2 y^2}\right)^{\frac{1}{2} + \gamma + \delta} \left[1 + \frac{1}{x^2 y^2} \frac{x^2}{1 - y^2}
ight]^{1 + 2\gamma}
\]
\[
\times \left(\frac{y^2 - x^2}{x^2 y^2}\right)^{\frac{1}{2} + \gamma + \delta} \left[1 + \frac{1}{y^2 x^2} \frac{y^2}{1 - x^2}\right]^{\frac{1}{2} + 2\gamma}
\]
\[
= i \exp \left[-ip_y(\gamma/4 + 4\gamma + 2\delta) + ip_x/4\right] + O(1/h).
\]

Combined with \(e^{ip_x y^{2(1+2\gamma)}}\) from \(\sigma_{AFS}\), and using coefficients (9) with the spin-chain frame \(\delta = 0\), we get \(e^{ip_x y}\) as in (11). For the mixed mass case, the remaining contribution is instead
\[
\sigma^{13}_{\beta}(x, y) = -i \exp \left[-ip_y(\gamma/4 + 4\gamma + 2\Delta) - ip_x/4\right] + O(1/h)
\]
which combined with \(\sigma_{spin}\) gives \(e^{ip_x y}\). In both cases the power of \(e^{ip_x y}\) does not yet match (11).

At order \(\delta^0\) there will also be a contribution from the one-loop phase. The semiclassical calculation of this in [6] gave the following final answer for left–right scattering:
\[
\theta_L(x^\pm, y^\pm) = \chi(x^+, y^+) - \chi(x^-, y^+) + \chi(x^-, y^-) - \chi(x^+, y^-)
\]
\[
= (I_{xy} - I_{yx}),
\]
and for left–right scattering:
\[
\theta_{LR}(x^\pm, y^\pm) = \bar{\chi}(x^+, y^+) - \bar{\chi}(x^-, y^+) + \bar{\chi}(x^-, y^-) - \bar{\chi}(x^+, y^-)
\]
\[
= (\bar{I}_{xy} - \bar{I}_{yx}),
\]
where
\[
G(z, x^\pm) = \frac{i}{2} \log \left(\frac{z - x^+}{z - x^-}\right) - \frac{px}{2}.
\]

Notice that \(G(z, x^\pm) = G(z, 1/x^\pm)\). Then it is easy to see that \(\theta_L(x^\pm, y^\pm) + \theta_{LR}(x^\pm, 1/y^\pm) = 0\), and thus there is no contribution to crossing from evaluating at \(1/y^\pm\). However in moving \(y^\pm \to 1/y^\pm\) we move some poles across contours.

Let us focus on the effect on the term \(\bar{\chi}(x^+, y^+)\). The only pole in the integrand at \(z = y^+\) comes from \(\partial_G(z, y^\pm)\) in \(\bar{I}_{yx}\). Moving the pole to \(z = 1/y^+\) pulls it across \(U_x\), anti-clockwise, and the final pole has residue \(-IG(y^+, x^+)\). The contribution is then
\[
\Delta \bar{\chi}(x^+, y^+) = \frac{i}{8} \left[-\log(y^+ - x^+) + \frac{1}{2} \log x^+\right].
\]

There is a similar contribution from \(\bar{I}_{xy}\), from the log cut. Together these give the remainder of (11):
\[
\sigma_{\beta L}(x, y)\sigma_{\beta L}(x, y) = \frac{\sqrt{x^2 - y^2} \sqrt{x^2 - y^2}}{\sqrt{x^2 + y^2} \sqrt{x^2 + y^2}}
\]
\[
= e^{-i{p}_y/2} \frac{1 - e^{i(p_x+p_y)/2}}{1 - e^{i(p_x-p_y)/2}}.
\]

4. Semiclassical limit of Bethe equations

Another check of the phases is to look at the semiclassical limit of the Bethe equations, which should reproduce the finite-gap equations. This calculation was also done in [12], so we do not show much detail. But the result is changed by using our phase: [12] found \(\Gamma = \gamma + \frac{1}{2}\).

It suffices to look at the left sector, with \(K_1 \neq 0\) and \(K_3 \neq 0\) only. Then Eqs. (4.5) and (4.7) of [12] become
\[
\frac{2\pi n_{1,k}}{2\sigma} = -\frac{-x}{x^2 - 1}\left[\left(L + K_1(\frac{1}{2} + \gamma + \delta) + K_3(\Gamma + \Delta)\right)
\right.
\]
\[
+ Q_{1,2}[1 + (1 + 2\gamma)] + Q_{3,2}\left[1 + 2(\gamma - \alpha - \beta)\right]
\]
\[
+ \frac{1}{x^2 - 1}\left[\left(1 + \Gamma\right)\left(1 - \alpha - \beta\right)\right]
\]
\[
+ 2\int dx^2 \rho_2(y) - \frac{1}{x^2 - 1}\left[\left(1 + \Gamma\right)\left(1 - \alpha - \beta\right)\right]
\]
\[
+ Q_{3,2}[1 + (1 + 2\gamma)] + Q_{1,2}\left[1 + 2(\gamma - \alpha - \beta)\right]
\]
\[
+ \frac{1}{x^2 - 1}\left[\text{winding}\right] + 2\int dx \rho_3(y) + [\text{constant}]
\]
\end{align}

where \(Q_{\ell,n}\) is the total charge of particles of type \(\ell\) (and of course \(Q_1\) is momentum, \(Q_2\) an energy). Define \(E_\ell\) to be the curly brackets above (i.e. \(-\frac{1}{2}\) the sum of the residues at \(x = \pm 1\), divided by the mass).

If we set \(E_1 = E_2\) (which in the language of [23] means working above the \(\xi = \phi\) vacuum) we find
\[
\beta = 1, \quad \gamma + \Gamma = -\frac{3}{2}, \quad \delta - \Delta = 1 + 2\Gamma.
\]

We have derived these constraints on the parameters independent of the near-BMN comparison, (9), but the two are completely compatible. Using both (i.e. using (16) and \(\delta = 0\)) we get
\[
2\pi E_1 = 2\pi E_3
\]
\[
= L - (1 + \Gamma)(K_1 + K_3) - (1 + 2\Gamma)(Q_{1,2} + Q_{3,2}).
\]

5. Conclusion

In summary, we suggest three alterations to the classical dressing phase given in [12] for strings in AdS3 x S3 x S3 x S1, when scattering particles of different mass:

1. Preserve the AFS phase's form \(\theta_{AFS} = ih/W \sum_{r=2}^\infty [Q_r Q_{r+1} - Q_{r+1} Q_r]\), which gives (4).
2. Start this sum from \(r = 1\), giving one more term, (6) with \(\beta = 1\).
3. Add an extra string frame-like phase, as in (7), with \(\Delta = -1 - 2\Gamma\).

Testing these against the tree-level near-BMN scattering [18], we find that given the first point, the other two are obligatory. And all parameters but \(\gamma\) and \(\Gamma\) are then fixed. The crossing equations (up to one-loop order) give a similar constraint; in particular the first point requires the second. Finally the semiclassical limit of the Bethe equations gives another, compatible constraint which also relates \(\gamma\) and \(\Gamma\).
This leaves one free parameter. We conjecture that this is γ = 0, and thus Γ = −iγ, because known string solutions can be placed in one or both S3 factors, and this fact must be reflected in the Bethe equations. As α → 0.1 we approach AdS3 × S3 × T4 with a unit radius sphere, and thus should recover the usual su(2) equation.5 At α = 1/2 we can place exactly the same solution in each S3, and the situation is very similar to that studied in AdS3 × CP3 in [16], where it was necessary to scale the coupling h by the mass of the particles.

The S-matrix has been compared to one-loop worldsheet scattering only for massive modes at α = 1, when the background is AdS3 × S3 × T4 [18,7,24]. This is only sensitive to the equal-mass phase S11, and is thus unaffected by our proposal.6

In the case of AdS3 × S3 × T4 with mixed NS-NS and R–R flux, some issues of how to correctly define the AFS phase were discussed in [25]. In that case, the dispersion relation is E(p) = \sqrt{M^2 + 4h^2(1 - \chi^2)\sin^2(p/2)} with M^2(p) = (1 ± \chi hp)^2, differing for left and right sectors (with \chi = 0 for pure R–R). But no differences with the earlier proposal of [26] are claimed at tree level.

The dressing phase also matters a great deal in the quantum Bethe equations; this is of course how the one-loop phase was discovered [3]. Comparisons of such results against one-loop energy corrections to spinning strings have been published in [10,27], and (unlike AdS3 × S5) they do not yet see perfect agreement.

Acknowledgements

We thank Diego Bombardelli, Romuald Janik, Per Sundin and especially Olof Ohlsson Sax for discussions and comments. Michael is supported by an NRF Innovation fellowship. Inês was partially supported by the FCT-Portugal fellowship SFRH/BPD/69696/2010 and by the NCN grant 2012/06/A/ST2/00396. We thank CERN for hospitality.

References

[1] J.A. Minahan, K. Zarembo, The Bethe ansatz for \mathcal{N} = 4 super Yang–Mills, J. High Energy Phys. 0303 (2003) 013, arXiv:hep-th/0212208; N. Beisert, et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3–32, arXiv:1012.3982.
[2] G. Arutyunov, S. Frolov, M. Staudacher, Bethe ansatz for quantum strings, J. High Energy Phys. 1310 (2004) 016, arXiv:hep-th/0406256.
[3] N. Beisert, A.A. Tseytlin, On quantum corrections to spinning strings and Bethe equations, Phys. Lett. B 629 (2005) 102–110, arXiv:hep-th/0509084; R. Hernández, E. López, Quantum corrections to the string Bethe ansatz, J. High Energy Phys. 1607 (2006) 004, arXiv:hep-th/0603204.
[4] N. Beisert, B. Eden, M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 01 (2007) P021, arXiv:hep-th/0610251; N. Beisert, R. Hernández, E. López, A crossing-symmetric phase for AdS3 × S5 strings, J. High Energy Phys. 1011 (2006) 070, arXiv:hep-th/0609044.
[5] R. Borsato, O. Ohlsson Sax, A. Sfondrini, R. Stafałski Jr., A. Torrielli, Dressing phases of AdS3/CFT2, Phys. Rev. D 88 (2013) 066004, arXiv:1306.2512.
[6] M.C. Abbott, The AdS3 × S3 × S1 × S1 hernanz-leppez phases: a semiclassical derivation, J. Phys. A 46 (2013) 445401, arXiv:1305.5106.
[7] P. Sundin, Worldsheet two- and four-point functions at one loop in AdS3/CFT2, Phys. Lett. B 733 (2014) 134–139, arXiv:1403.1449.
[8] B. Bianchi, B. Hoare, AdS3 × S3 × M string S-matrices from unitarity cuts, J. High Energy Phys. 1408 (2014) 097, arXiv:1405.7947.
[9] J.R. David, B. Sahoo, S-matrix for magnons in the D1–D5 system, J. High Energy Phys. 1010 (2010) 112, arXiv:1005.0501.
[10] M. Beccaria, F. Levkovich-Maslyuk, G. Macorini, A. Tseytlin, Quantum corrections to spinning superstrings in AdS3 × S3 × M; determining the dressing phase, J. High Energy Phys. 1304 (2013) 006, arXiv:1211.6080.
[11] A. Babichenko, B. Stefánski Jr., K. Zarembo, Integrandality and the AdS3/CFT2 correspondence, J. High Energy Phys. 1003 (2010) 058, arXiv:0912.1723.
[12] R. Borsato, O. Ohlsson Sax, A. Sfondrini, All-loop Bethe ansatz equations for AdS3/CFT2, J. High Energy Phys. 2013 (2013) 116, arXiv:1212.0505v3.
[13] R. Borsato, O. Ohlsson Sax, A. Sfondrini, A dynamic susy(1|1)2 S-matrix for AdS3/CFT2, J. High Energy Phys. 2013 (2013) 113, arXiv:1211.5119.
[14] K. Zarembo, Worldsheet spectrum in AdS3/CFT2 correspondence, J. High Energy Phys. 0904 (2009) 135, arXiv:0903.1747v4.
[15] M.C. Abbott, I. Aniceto, D. Bombardelli, Real and virtual bound states in Lüscher corrections for CP^1 magnons, J. Phys. A 46 (2013) 315401, arXiv:1111.2839.
[16] N. Coronas, P. Vieira, The all loop AdS3/CFT2 Bethe ansatz, J. High Energy Phys. 0901 (2009) 016, arXiv:0807.0777.
[17] A. Mauri, A. Santambrogio, S. Scoleri, The leading order dressing phase in ABJM theory, J. High Energy Phys. 2013 (2014) 146, arXiv:1301.7732.
[18] P. Sundin, L. Wulf, Worldsheet scattering in AdS3/CFT2, J. High Energy Phys. 1307 (2013) 007, arXiv:1302.5349.
[19] M.C. Abbott, Comment on strings in AdS3 × S5 × S3 at one loop, J. High Energy Phys. 1302 (2013) 102, arXiv:1211.5587.
[20] G. Arutyunov, S. Frolov, Foundations of the AdS3 × S5 superstring, J. Phys. A 42 (2009) 254003, arXiv:0901.4937.
[21] G. Arutyunov, S. Frolov, M. Zamalija, Finite-size effects from giant magnons, Nucl. Phys. B 778 (2007) 1–35, arXiv:hep-th/0606126.
[22] R.A. Janik, The AdS3 × S5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006, arXiv:hep-th/0603038; G. Arutyunov, S. Frolov, On AdS3 × S5 string S-matrix, Phys. Lett. B 639 (2006) 378–382, arXiv:hep-th/0604043; P. Vieira, D. Volin, Review of AdS/CFT integrability, Chapter III. 3: The dressing factor, Lect. Math. Phys. 99 (2012) 231–235, arXiv:1012.3992.
[23] M. Abbott, I. Aniceto, Macroscopic (and microscopic) massless modes, arXiv: 1412.6380.
[24] R. Roiban, P. Sundin, A. Tseytlin, L. Wulf, The one loop worldsheet S-matrix for the AdS3 × T10–2n superstring, J. High Energy Phys. 1408 (2014) 160, arXiv:1407.7883.
[25] A. Babichenko, A. Dekel, O. Ohlsson Sax, Finite-gap equations for strings on AdS3 × S5 × T4 with mixed 3-form flux, J. High Energy Phys. 1411 (2014) 122, arXiv:1405.6087.
[26] B. Hoare, A. Tseytlin, Massive S-matrix of AdS3 × S3 × T4 superstring theory with mixed 3-form flux, Nucl. Phys. B 873 (2013) 395–418, arXiv:1304.4099.
[27] M. Beccaria, G. Macorini, Quantum corrections to short folded superstring in AdS3 × S3 × M4, J. High Energy Phys. 1303 (2013) 040, arXiv:1212.5672.

5 In particular we expect the usual AFS phase. This is the reason for not allowing some power of \sigma_{1 \sigma} in S_{11} (7).
6 But note aside that both (6) and (5) are zero at order 1/h^2 in the BMN limit.