VVV-WIT-01: highly obscured classical nova or protostellar collision?

P. W. Lucas,1⋆ D. Minniti2,3,4, A. Kamble5, D. L. Kaplan6, N. Cross7, I. Dekany8, V.D. Ivanov9, R. Kurtev2,10, R.K. Saito11, L.C. Smith12, M. Catelan2,13, N. Masetti14,3, I. Toledo15, M. Hempel3, M.A. Thompson1, C. Contreras Peña16, J. Forbrich1, M. Krause1, J. Dale1, J. Emerson17

1 Centre for Astrophysics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
2 Millennium Institute of Astrophysics, Av. Vicuna Mackenna 4860, 782-0436, Macul, Santiago, Chile
3 Departamento de Ciencias Físicas, Universidad Andrés Bello, Fernández Concha 700, Las Condes, Santiago, Chile
4 Vatican Observatory, V00120 Vatican City State, Italy
5 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA
6 Center for Gravitation, Cosmology and Astrophysics, University of Wisconsin-Milwaukee, P.O. Box 415, Milwaukee, WI 53201, USA
7 Wide-Field Astronomy Unit, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
8 Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg, Germany
9 European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching bei Muenchen, Germany
10 Instituto de Física y Astronomía, Universidad de Valparaíso, ave. Gran Bretaña, 1111, Casilla 5030, Valparaíso, Chile
11 Departamento de Física, Universidade Federal de Santa Catarina, Trindade 88040-900, Florianópolis, SC, Brazil
12 Instituto de Astronomía, Universidad de Cambridge, Madingley Road, Cambridge, CB3 0HA, UK
13 INAF - Osservatorio di Astrofisica e Scienza dello Spazio, via Gobetti 93/3, I-40129 Bologna, Italy
14 ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile
15 School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
16 Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
A search of the first Data Release of the VISTA Variables in the Via Lactea (VVV) Survey discovered the exceptionally red transient VVV-WIT-01 ($H - K_s = 5.2$). It peaked before March 2010, then faded by ~9.5 mag over the following two years. The 1.6–22 μm spectral energy distribution in March 2010 was well fit by a highly obscured black body with $T \sim 1000$ K and $A_{K_s} \sim 6.6$ mag. The source is projected against the Infrared Dark Cloud (IRDC) SDC G331.062−0.294. The chance projection probability is small for any single event ($p \approx 0.01$ to 0.02) which suggests a physical association, e.g. a collision between low mass protostars. However, black body emission at $T \sim 1000$ K is common in classical novae (especially CO novae) at the infrared peak in the light curve, due to condensation of dust ~30–60 days after the explosion. Radio follow up with the Australia Telescope Compact Array (ATCA) detected a fading continuum source with properties consistent with a classical nova but probably inconsistent with colliding protostars. Considering all VVV transients that could have been projected against a catalogued IRDC raises the probability of a chance association to $p = 0.13$ to 0.24. After weighing several options, it appears likely that VVV-WIT-01 was a classical nova event located behind an IRDC.

Key words: (stars:) novae, cataclysmic variables, stars: formation, infrared: stars, radio continuum: transients, ISM: clouds

1 INTRODUCTION
Very high amplitude near infrared variable sources detected in the Milky Way are typically cataclysmic variables (CVs)

⋆ E-mail: p.w.lucas@herts.ac.uk (PWL)
that was first observed by the VVV survey in March 2010. In this paper we report the discovery occurred \(\sim 1 \) (OMC-1), likely the consequence of a protostellar collision, the Bebkin-Neugebauer explosion in the Orion Molecular Cloud. For example, the VVV-WIT-01, an extremely red transient (Reynolds et al. 2008). In the Milky Way, the remnants of past explosive events can read-

2 VVV-WIT-01 DISCOVERY DATA

Since 2010, the VVV survey has mapped and monitored the Galactic bulge and the adjacent southern plane in the near infrared with VIRCAM (VISTA InfraRed CAMera) mounted on the 4.1 m wide-field Visible and Infrared Telescope for Astronomy (VISTA, Sutherland et al. 2015) at ESO Paranal Observatory. There are now typically between 75 and 100 epochs of data in the \(K_s \) bandpass for each field, across a total area of 560 deg\(^2\). From 2016, the survey area was extended to cover new fields (the rest of the southern Galactic plane at longitudes \(l > 230^\circ \) and \(l < 20^\circ \), along with the outer bulge (Minniti 2016) leading to less frequent observations of the original VVV fields. Initial data reduc-

\(K_s \) amplitudes \((K_{s,\text{max}} - K_{s,\text{min}})\) vs. \(H-K_s \) colour for candidate high amplitude variable stars returned by the SQL query of VVV DR1. The green circle indicates VVV-WIT-01.

2 VVV-WIT-01 DISCOVERY DATA

Since 2010, the VVV survey has mapped and monitored the Galactic bulge and the adjacent southern plane in the near infrared with VIRCAM (VISTA InfraRed CAMera) mounted on the 4.1 m wide-field Visible and Infrared Telescope for Astronomy (VISTA, Sutherland et al. 2015) at ESO Paranal Observatory. There are now typically between 75 and 100 epochs of data in the \(K_s \) bandpass for each field, across a total area of 560 deg\(^2\). From 2016, the survey area was extended to cover new fields (the rest of the southern Galactic plane at longitudes \(l > 230^\circ \) and \(l < 20^\circ \), along with the outer bulge (Minniti 2016) leading to less frequent observations of the original VVV fields. Initial data reduc-

\(K_s \) amplitudes \((K_{s,\text{max}} - K_{s,\text{min}})\) vs. \(H-K_s \) colour for candidate high amplitude variable stars returned by the SQL query of VVV DR1. The green circle indicates VVV-WIT-01.
Table 1. VVV Photometry of VVV-WIT-01.

MJD-2455250.0	Filter	Magnitude	\(\sigma \)
8.381478	\(K_s \)	12.24	0.02
8.382969	\(K_s \)	12.23	0.02
11.339142	\(K_s \)	12.28	0.02
11.339855	\(K_s \)	12.30	0.02
21.294046	\(K_s \)	12.44	0.02
21.295505	\(K_s \)	12.43	0.02
187.054863	\(K_s \)	12.28	0.02
187.055789	\(K_s \)	12.30	0.02
189.022168	\(K_s \)	12.47	0.05
189.022994	\(K_s \)	16.57	0.06
213.004979	\(K_s \)	16.92	0.10
213.005872	\(K_s \)	16.69	0.07
214.021768	\(K_s \)	16.70	0.09
214.022686	\(K_s \)	16.87	0.11
8.376614	\(H \)	17.50	0.04
8.378080	\(H \)	17.41	0.04
21.289327	\(H \)	17.60	0.02
21.290754	\(H \)	17.62	0.05

Note: the quoted errors are those given by DoPhot, with a floor of 0.02 mag imposed as the estimated calibration uncertainty.

The observed light curve (see Fig. 4) shows a rate of decline similar to that of a core collapse supernova (Meikle 2000; Mannucci et al. 2003; Leibundgut & Suntzeff 2003) or perhaps a classical nova, given that the latter have widely varying decline timescales (see section 4.1). A search of the SIMBAD database revealed that the object is projected within SDC G331.062−0.294, a small Infrared Dark Cloud (IRDC) from the catalogue of Peretto & Fuller (2009) with an equivalent-area radius of 17″. This IRDC catalogue in fact lists two IRDCs within two arcminutes (the other being SDC G331.030−0.299) and inspection of the Spitzer/GLIMPSE 8 μm image for the region shows that these two appear to be part of the same dark region ∼3′ in extent (see Fig. 5) that is seen in projection against the inner part of a large bubble of bright mid-infrared emission designated as MWP1G331057−002239 (Simpson et al. 2012). This bubble is coincident with the HII region IRAS 16067−5145, for which Jones & Dickey (2012) give a kinematic distance of 7.4±1.1 kpc. IRDCs are the densest por-
Figure 4. Observed K_s light curve for VVV-WIT-01. We show the VVV Survey observations from 2010 (green circles), until 2011 (upper limit), and the ISAAC observation from May 2012 (green diamond). The insert shows the contemporaneous VVV and WISE observations from early 2010, where we have averaged data within each day for clarity. The error bars are typically smaller than the point sizes.

Figure 5. Spitzer/GLIMPSE 8 μm $8\times6'$ false colour image of the IRDCs in the VVV-WIT-01 field, with equatorial orientation. This image was taken in 2004, before the transient event (marked with a white star) in SDC G331.062−0.294. We see that this IRDC is part of a larger dark region that includes SDC G331.030−0.299. The bright diffuse 8 μm background emission (green or white areas) is typical of the mid-plane of the inner Milky Way. The white area at the top right is the HII region IRAS 16067−5145 at $d\approx7.4$ kpc, see text.
tions of molecular clouds and the probability of chance association with such an object is only ∼1% (see section 4) for any single unrelated VVV transient within the southern half of the Spitzer/GLIMPSE I survey area (where the Peretto & Fuller (2009) catalogue is defined). We must therefore consider the case for a pre-main sequence origin for the event. We should also keep in mind that many transients have been detected in VVV so the chance of observing at least one transient in an IRDC over the course of the survey is rather higher (discussed later in section 4.6). While a location within or behind an IRDC may appear to explain the red colour simply as a consequence of very high extinction, this alone cannot explain the slope of the spectral energy distribution (SED) in the mid-infrared (see section 3.1).

IRDCs are initially detected simply as dark regions against the bright mid-infrared background of the Galactic plane. Small IRDCs from the Peretto & Fuller (2009) catalogue can be false positive detections caused by dips in the background emission so confirmation is typically sought against the bright mid-infrared background of the Galaxy. Small IRDCs from the Peretto & Fuller (2009) catalogue may appear to explain the IRDC located in front of the HII region IRAS 16067-5145. In summary, VVV-WIT-01 is a very red object \((H-K_s = 5.22 \pm 0.05\) mag), with mean \(K_s = 12.3\) mag in March 2010 (Fig. 4). We have measured an accurate absolute position (uncertainty ∼6 milliarcsec) based on the VVV profile fitting photometry catalogues, astrometrically transformed to the Gaia DR2 reference frame (Lindegren et al. 2018) using numerous stars in the vicinity of the transient (Smith et al., in prep.). The J2000.0 equatorial coordinates are: RA = 16h10m53.4293s, DEC = -51d55m32.439s (J2000), and the Galactic coordinates are: \(l = 331.061347^\circ\), \(b = 0.295905^\circ\).

3 MULTIWAVEBAND FOLLOW UP AND ARCHIVAL OBSERVATIONS

3.1 Infrared and optical data

We searched various archival optical-infrared databases for this source. The source is absent in the optical plates taken with the UK Schmidt Telescope, available at the SuperCOSmos Sky Survey (www-wfau.roe.ac.uk/sss/). There were no detections in the following additional image datasets: \(JHK_s\) data taken on 1999 July 15 by the Two Micron All Sky Survey (Skrutskie et al. 2006), \(IJK\) data taken on 1996 April 16 by the Deep Near Infrared Survey of the Southern Sky (Epchtein et al. 1999), \(riHo\) data taken on 2015 June 8 by VPHAS+ (Drew et al. 2014), 3.6–8.0 \(\mu\)m mid-infrared data taken on 2004 April 2 by Spitzer/GLIMPSE (Benjamin et al. 2003), a 24 \(\mu\)m image taken on 2006 April 13 by Spitzer/MIPS/GAL (Rieke et al. 2004; Carey et al. 2009) and Midcourse Space Experiment 8 \(\mu\)m and 21 \(\mu\)m images taken in 1996–1997 (Egan et al. 1998).

However, the object is present and very bright in the Wide-field Infrared Survey Explorer (WISE) mid-infrared dataset (with several images between 2010 February 28 and 2010 March 7, fortuitously overlapping with the dates of the first VVV images). The WISE photometry from the AllWISE Multi-Epoch Photometry Database is given in Table 2. The tabulated W2 data in fact require a positive correction for saturation of 0.07 mag (Cutri et al. 2012); this applies in a similar fashion for WISE Allsky and AllWISE data taken

MJD-55250	W1	\(\sigma_{W1}\)	W2	\(\sigma_{W2}\)	W3	\(\sigma_{W3}\)	W4	\(\sigma_{W4}\)
5.564351	7.918	0.018	5.592	0.018	4.764	0.028	4.295	0.149
5.686566	7.908	0.015	5.669	0.022	4.753	0.027	4.117	0.111
5.828960	7.929	0.016	5.685	0.022	4.746	0.024	4.066	0.116
5.961264	7.922	0.015	5.775	0.019	4.747	0.031	4.115	0.164
6.027479	7.915	0.017	5.63	0.016	4.795	0.03	4.211	0.193
6.093695	7.934	0.017	5.603	0.024	4.743	0.024	4.025	0.137
6.159783	7.922	0.013	5.667	0.021	4.761	0.023	4.157	0.161
6.225999	7.975	0.016	5.672	0.029	4.696	0.023	4.137	0.167
6.292087	7.945	0.014	5.621	0.017	4.745	0.027	4.153	0.16
6.424591	7.974	0.017	5.546	0.019	4.722	0.029	4.113	0.16
6.424519	7.939	0.016	5.575	0.015	4.75	0.033	4.253	0.165
6.556823	7.945	0.015	5.742	0.028	4.718	0.023	4.14	0.085
6.689127	7.942	0.015	5.627	0.017	4.698	0.027	4.196	0.195
12.57761	8.078	0.018	5.805	0.016	4.806	0.026	4.2	0.166
12.57773	8.057	0.021	5.754	0.021	4.819	0.026	4.243	0.171
During the cryogenic portion of the mission. After making this correction, the mean magnitudes are $W_1(3.3\,\mu m) = 7.95 \pm 0.01$, $W_2(4.6\,\mu m) = 5.73 \pm 0.05$, $W_3(12\,\mu m) = 4.75 \pm 0.01$, and $W_4(22\,\mu m) = 4.16 \pm 0.02$ mag. The brightness of VVV-WIT-01 steadily declined in March 2010 (see Fig. 4) matching the slope of the near-simultaneous VVV observations in K_s.

After March 2010, the source was no longer detected in the sensitive WISE W_1 or W_2 passbands (we inspected the deeper unWISE W_2 stacked image constructed from data taken on 2010 August 28 to August 31 (Meisner et al. 2018) but the location is severely blended with 2 adjacent stars in the ~6" WISE beam, preventing detection of stars with $W_2 \geq 11$ mag). However, the stacked W_3 image taken at that time shows a clear but uncalibrated detection of a point source at the position of the transient. There are no blending issues in this waveband because fewer stars are detected. Moreover, this source is not present in the GLIMPSE $8\,\mu m$ image taken in 2004 (see Fig. 5) so we can be confident that it is VVV-WIT-01. We suspect that the AllWISE pipeline did not detect it because the sky background level is measured with a coarse spatial grid so the flux peak within the small IRDC did not stand out sufficiently above the (overestimated) background level. We performed aperture photometry on the W_3 FITS image obtained from the NASA Infrared Science Archive with IRAF/DAOPHOT, bootstrapping the zero point using several nearby sources in the AllWISE source catalogue. We find $W_3 = 6.78 \pm 0.14$ mag on 2010 August 29 (the mid-point date of the image stack), the measurement error being dominated by the uncertain background level within the IRDC. This compares with $K_s = 16.45$ on the same date (averaging VVV data from August 28 and August 30), indicating that the transient had faded by 4.2 mag at $2.15\,\mu m$ but only 2.0 mag at $12\,\mu m$. N.B. the August 2010 data were from the "3-Band Cryo" phase of the WISE mission so no data were taken in W_4.

The near simultaneity of the VVV and WISE measurements in March 2010 allows us to define an SED, see Fig. 6 (upper panel). We attempted to fit the SED using a reddened, uniform-temperature black body, i.e. the model is $\log_{10}(B_\nu(T)) = -2.44\nu^3$. We constructed a library of black body SEDs with a range of temperatures and extinctions ($60 < T < 6000\,K$ and $0 < A_K < 20$) and located the area of parameter space with the minimum value of the reduced χ^2 parameter, χ^2_{ν}, computed with five degrees of freedom. Each model was scaled to the same average flux as the data, measured as the average of $\log(B_\nu)$ at the six wavelengths. To relate extinction in K_s and the WISE passbands, we adopted the mid-infrared extinction law defined by Koenig & Leisawitz (2014) for fields with high extinction; separately, the Cardelli et al. (1989) extinction law was used to relate the extinction in H and K_s. This simple model produced a very good fit for $T = 1020\,K$, $A_K = 6.6$ (see upper panel of Fig. 6). In the lower panel of Fig. 6 we illustrate how χ^2 varies in the parameter space: combinations of temperatures and extinction in the ranges $720 < T < 2100\,K$, $3.6 < A_K < 10.1$ can produce values of χ^2_{ν} less than four times the minimum value. (As expected, $\chi^2_{\nu} > 1$ in all models due to systematic uncertainties in the mid-infrared extinction law that become important when extinction is high.) The best fit extinction value, $A_K = 6.6$, is unusually high for an IRDC in the Peretto & Fuller (2009) catalogue so within the likely range of $3.6 < A_K < 10.1$, a lower extinction, slightly lower temperature model is perhaps more likely, unless there is some extinction associated with the transient itself.

If we assume the same extinction was present in early March and late August 2010, then the ratio of K_s and W_3 fluxes from 29 August can be used to calculate a black body temperature. The data indicate significant cooling, e.g. from 1020 K to 713 K (if $A_K = 6.6$) or from 720 K to 602 K (if $A_K = 3.6$). However, the upper limit of $W_2 > 11$ at this epoch corresponds to a fade of over 5 mag at $4.6\,\mu m$, larger than the 4.2 mag fade at $2.15\,\mu m$ and the 2.0 mag at $12\,\mu m$. After including this upper limit in W_2, the SED is not well described by a single temperature black body in late August (see the blue points in Fig. 6), for any value of extinction. Nonetheless, the relative brightness at $12\,\mu m$ suggests a shift to lower temperatures.

Soon after the discovery of the transient in VVV

1 We also considered the modified near infrared extinction law of Alonso-García et al. (2017), derived for VVV data in the inner bulge. Steeper near infrared extinction laws such as this lead to best-fit solutions with slightly lower values of both extinction and temperature, not significantly changing our conclusions.
3.2 High energy and neutrino data

We note that the ANTARES neutrino project (Ageron et al. 2011) did not detect any non-solar astronomical neutrino sources in the 2007–2012 period (see http://antares.in2p3.fr/publicdata2012.html). The Super-Kamiokande and SNEWS neutrino projects (Fukuda et al. 2003; Antonioli et al. 2004) also did not detect any events in a 9 month interval prior to March 2012 (M. Vagins and K. Scholberg, private comm.). Similarly, there are no reported detections of γ-ray or hard X-ray sources that can be connected with this transient in alert data and catalogue data from the Fermi, Swift and INTEGRAL satellites (Ackermann et al. 2013; Oh et al. 2018; Krivonos et al. 2012).

We moreover obtained targeted X-ray follow up observations of the VVV-WIT-01 field with Swift/XRT from 21 April to 13 May 2012, totalling 8123 s on source in the 0.3–70 keV passband. No X-ray source was detected, with a 3σ upper limit of 3×10^{-14} erg cm$^{-2}$ s$^{-1}$.

3.3 Radio cm continuum data

Following the initial announcement of this transient event (Minniti et al. 2012), the field was observed with the Australia Telescope Compact Array (ATCA) at 2.1 GHz, 5.5 GHz and 9 GHz on 2012 May 29, some two years after the first detections (ATCA programme CX240). The observations used the longest baseline array configuration (6 km) and lasted for a full track, providing good uv coverage and a spatial resolution, $\theta = 1''$ at the two higher frequencies, with a symmetric beam. The phase and gain calibrator was 1613-586. The Miriad software package was used to reduce the data, using standard procedures to flag and remove bad data. VVV-WIT-01 was clearly detected at 5.5 GHz and 9 GHz with fluxes of 276 ± 10 μJy and 236 ± 37 μJy respectively. It was not detected at 2.1 GHz, with a 2σ upper limit of approximately 400 μJy. A power law fit to the detections and upper limit yields a spectral index $\alpha = -0.15\pm0.22$, for $F_\nu \propto \nu^\alpha$, essentially a flat radio spectrum.

A second set of ATCA observations at 5.5 GHz and 9 GHz was obtained 7 years later, on 2019 June 24/25, with a duration of almost a full track (ATCA programme C3309).

Again the 6 km configuration was used. The phase and gain calibrators observed on this occasion were 1646-50 and 1600-48, the latter being used only at the start of the run before 1646-50 rose high enough. An adjacent, uncatalogued continuum source at 16:10:59.4 -51:49:24.0 was used for self-calibration at 5.5 GHz but this was not possible at 9 GHz. VVV-WIT-01 was no longer detected, with 3σ upper limits of approximately 40 μJy at both frequencies.

3.4 Radio mm/submm continuum data

The transient was also followed up with the Atacama Large Millimeter/submillimeter Array (ALMA), using the 12 m antennae in the main array. Observations were made in the continuum in ALMA band 3 (2.6–3.6 mm), band 6 (1.1–1.4 mm) and band 7 (0.8–1.1 mm) in 2013 and 2015 (ALMA project codes 2012.1.00463.S and 2013.A.00023.S). These were reduced with the standard data reduction pipeline by observatory staff. No source was detected at the coordinates of VVV-WIT-01, to 3σ upper limits of approximately 0.1 mJy in all 3 bands. In bands 6 and 7 two sources were detected within the area of SDC G331.062–0.294, both of them offset from VVV-WIT-01 by a few arcseconds. One of these sources is coincident with a likely YSO, VVV J161053.93-515532.8, that happens to show a ∼1 mag infrared outburst in 2015. This is one of the two red stars visible to either side of VVV-WIT-01 in the middle panel of figure 3, both of which are YSO candidates. We give details of VVV J161053.93-515532.8 in Appendix A. The other ALMA detection has no infrared counterpart and may well be an extragalactic object.

4 DISCUSSION AND SEARCHES FOR ADDITIONAL EVENTS

4.1 Protostellar collision interpretation

Owing to the location projected against an IRDC, we must consider the case for a genuine physical association and a pre-main sequence origin. IRDCs are numerous in the inner Galactic plane but relatively small. Using the equivalent area radii from Peretto et al. (2016) for IRDCs that passed their far-infrared confirmation test, we derive a covering fraction, $f = 1.2\%$ within the southern portion of the GLIMPSE-I survey area at $295 < l < 350$, $|b| < 1^\circ$, where the IRDC catalogue of Peretto et al. (2016) was defined. This rises to $f = 2.3\%$ if we include IRDCs that did not pass the automated confirmation test. These small covering fractions led us to explore the possibility that the transient was a collision between YSOs within the IRDC, SDC G331.062–0.294. Collisions, which will often lead to mergers, can cause high amplitude transient events such as the “mergeburst” observed in V1309 Sco (Tylenda et al. 2011, arising in a contact eclipsing binary system) and other likely examples such as V838 Mon and V4332 Sgr (Martini et al. 1999; Tylenda & Soker 2006; Kochanek et al. 2014). As noted earlier, such events are a possible explanation for “luminous red novae” seen in external galaxies.

We note that the high amplitude of the event (∼9.5 mag at 4.5 μm) tends to argue against some form of episodic accretion event in a protostar because infrared variations in the most extreme such events have not exceeded ~6 to
7 mag hitherto, e.g. Audard et al. (2014). An apparent protostellar eruption with an unprecedented mid-infrared amplitude of 8.5 mag has recently been discovered in the public WISE/NEOWISE, GLIMPSE and VVV data (Lucas et al., in prep) but the event has a long plateau and a slow decline over several years, not resembling the rapid decline seen in VVV-WIT-01.

Bally et al. (2017) provide three examples of explosion remnants within Galactic star formation regions that are likely due to historical collisions between YSOs. The best-studied example is the Becklin-Neugebauer event in OMC-1, where recent data indicate that three YSOs are moving away from a common origin some 500 years ago, at the centre of the explosion remnant (Kuiper et al. 2010b). The physics of collisions between protostars, and mergers, is discussed in detail by Bally & Zinnecker (2005). The topic is interesting in part because mergers are a possible mode of formation for massive stars (Bonnell et al. 1998), though it is now thought likely that massive stars can form without recourse to this mechanism (Kuiper et al. 2010a; Baumgardt & Klessen 2011; Kuiper & Hosokawa 2018). If collisions in star forming regions do occur, the relatively low space density in such regions would require some explanation other than random motions within the cluster potential, even when gravitational focussing is allowed for (Shara 2002). Possible explanations might include focussing of YSOs within relatively small volumes due to formation within hub-filament systems of dense gas within molecular clouds (Myers 2009; Peretto et al. 2013; Williams et al. 2018), ongoing accretion of low angular momentum gas in a star forming cluster (Gieles et al. 2018) or perhaps the unstable dynamical decay of newborn multiple systems (Ravirawattana et al. 2012; Moekel & Bonnell 2013; Railton et al. 2014).

No massive protostar remained visible in the vicinity of VVV-WIT-01 after the transient event so a collision would have to involve low mass YSOs. This is not an obstacle because the great majority of YSOs have low masses and they can appear faint when embedded in an IRDC at a distance of several kpc. IRDCs have typical distances of 1–8 kpc (Simon et al. 2006) and we inferred in section 2 that SDC G331.062−0.294 is probably located in front of the bright HII region IRAS 16067-5145 at \(d \approx 7.4 \) kpc. The recent \(^{12}\text{CO}\)-based molecular cloud catalogue of Miville-Deschênes et al. (2017) lists at least four massive molecular clouds that appear to overlap the location of VVV-WIT-01, with likely distances ranging from 1.5 to 8.5 kpc. The distance to SDC G331.062−0.294 can be constrained using blue foreground stars with parallaxes from Gaia. Gaia source 5933412592646831872 is projected in this IRDC and has a likely minimum parallax-based distance of 2.4 kpc in Bailer-Jones et al. (2018). Source 593345801623623552 projected in the adjacent, apparently connected IRDC SDC G331.030−0.299 has a likely minimum parallax-based distance of 3.1 kpc (based on a \(\pi \) parallax and neglecting the small systematic parallactic error in Gaia DR2). Combining these lower limits with the upper limit from the background HII region, we can assume \(3.1 < d < 7.4 \) kpc for these IRDCs. Unfortunately it was not possible to calculate a red clump giant distance (López-Corredoira et al. 2002) because the IRDCs are too small to have a projected population of such stars. The giant branch in the 2MASS and VVV \(K_s \) vs \(J−K_s \) colour magnitude diagrams for the larger region within 3 arcminutes of VVV-WIT-01 (not shown) shows a fairly smooth increase in extinction with distance at \(d > 3 \) kpc, consistent with the existence of several large molecular clouds along this line of sight.

4.2 Supernova hypotheses

The non-detections of neutrinos and \(\gamma \)-rays (see section 3.2) rule out a highly obscured core collapse supernova on the far side of the Galactic disc. Such events are very luminous \(\gamma \)-ray and hard X-ray sources; we would also expect to detect the neutrino signal because it is very rare for all three of the neutrino observatories listed in section 3.2 to be offline simultaneously.

These neutrino and high energy radiation checks were necessary because a relatively low luminosity core collapse supernova with peak absolute magnitude \(M_K = -16 \) subject to extinction \(A_K = 10 \) mag (the maximum plausible value, see above) might have apparent magnitude \(m_K = 10.5 \) if located at \(d = 20 \) kpc from the sun; the infrared data alone would not entirely rule out this possibility because VVV-WIT-01 was discovered after the peak. Similarly, while a core collapse supernova would typically be a far brighter cm continuum radio source than was observed (see section 3.3), rare examples with blue supergiant progenitors can be radio-quiet (Weiler & Sramek 1988).

A type Ia supernova in the inner Milky Way would be radio-quiet and lack detectable neutrino emission (Odrzywolek & Plewa 2011). However, such an event would have been detected in \(\gamma \)-rays by the Fermi, Swift or INTEGRAL telescopes due to strong emission at specific energies associated with the decay of \(^{56}\text{Ni}\) and \(^{56}\text{Co}\) in the ejecta, see Wang et al. (2019) for a full discussion. For example, in the case of SN2014j at \(3.3 \) Mpc distance, the 847 keV line of \(^{56}\text{Co}\) was detected by INTEGRAL for more than four months (Diehl et al. 2015).

4.3 Helium flash hypothesis

A few examples of a very late thermal pulse in a post-Asymptotic Giant Branch star have been observed over the past century, e.g. V4334 Sgr (Sakurai’s object) and V605 Aql. (see e.g. Hajduk et al. 2005). In these events, the star returns from the white dwarf cooling track to giant star status but then remains luminous (\(L \sim 10^5 \text{L}\odot\) for hundreds of years. Such stars can appear almost nova-like at visible wavelengths because the rise in flux takes place over a time of order 1 year and subsequent formation of dust in the ejecta can cause a rapid optical fading, as in V605 Aql. The near infrared flux can also fade and re-brighten as the ejecta cool and the observed structure changes (Hinkle & Joyce 2014; Evans et al. 2006; Hinkle & Joyce 2002; Clayton et al. 2013; Kimeswenger et al. 2000) but the mid-infrared flux remains high for several years, with measured temperatures exceeding 500 K. The data for VVV-WITS-01 do not seem consistent with a helium flash event because, while some cooling apparently occurred over the six month interval after first detection, the source faded by 2 mag at 12 \(\mu \)m and by much larger amounts at 4.6 \(\mu \)m and 2.15 \(\mu \)m (see section 3.1), indicating that the total luminosity probably declined by a
large factor during this time. This rapid decline, and the continued decline from 2010–2012 at 4.6 μm, contrast with the approximately constant luminosity of V4334 Sgr over several years (Hinkle & Joyce 2014). The relative rarity of these events also means that a chance association with an IRDC would be unlikely.

4.4 Classical Nova interpretation

A clear case may be made for a classical nova located behind the IRDC. Classical novae are the commonest type of transient seen in VVV: at least 20 likely examples have been discovered within the VVV dataset, many of them in the “VVV disc” area at Galactic longitudes $295 < l < 350^\circ$ (e.g. Saito et al. 2015, 2016) and many others have been independently discovered within the Galactic bulge since 2010, by VVV, WISE or optical surveys such as OGLE and ASAS. Classical novae (and recurrent novae, which are novae that have been observed to erupt more than once) have outburst amplitudes from 7 to 20 mag in the optical (e.g. Strope et al. 2010; Osborne 2015) and a very wide range of decay timescales; in the sample of 95 novae the radio light curves presented by Strope et al. (2010), the τ_s parameter (the time for the outburst to decline by 3 mag from the peak at optical wavelengths) ranges from 3 days to 900 days. Strope et al. (2010) illustrated considerable variety in the morphological features of nova light curves that remains poorly understood.

In the infrared, only a few well sampled novae have been studied in detail (see e.g. Gehrz 1988, 1999; Hachisu & Kato 2006; Gehrz et al. 2015), though fairly well sampled K bandpass light curves are available for many novae in the SMARTS database (www.astro.sunysb.edu/fwalter/SNARTS/NovaAtlas/). Many novae have a second peak in the infrared light curve some 30 to 60 days after the initial optical/infrared maximum, due to the condensation of a dust shell within the ejecta that is sometimes optically thick and sometimes optically thin, perhaps due to clumpiness (see e.g. Gehrz 1988; Hachisu & Kato 2006; Das et al. 2013; Burlak et al. 2015). The SED of the dust shell is well fit by emission from a black body at temperatures from ~700 to 1100 K. Examples include Nova Cyg 1978 (Gehrz et al. 1980b) and Nova Ser 1978 (Gehrz et al. 1980a), whilst in the SMARTS database the light curves of e.g. V906 Car and V5668 Sgr appear to show a prominent K bandpass dust peak. A large amount of dust production is more common in CO novae, originating in low mass white dwarfs, than ONeMg novae wherein the white dwarf has a typical mass $M < 1 M_\odot$ (Gehrz 1999). Our derived temperature near 1000 K for the Planckian emission from VVV-WIT-01 is clearly a close match to a classical nova soon after the epoch of dust condensation.

The absolute visual magnitudes of classical novae at peak brightness typically lie in the range $−10 < M_V < −5$ (Warner 1987) and K_s magnitudes are similar to V at this time, in the absence of reddening. The absolute K_s magnitude of the second peak after the epoch of dust formation can vary widely depending on the optical depth and temperature of the dust (e.g. Hachisu & Kato 2019) but in some of the above examples it is similar to, or only 1 or 2 mag fainter than, the first peak. Adopting our best-fit values of extinction and temperature $A_K = 6.6$, $T \approx 1000 K$ for VVV-WIT-01, the brightest K_s magnitudes in March 2010 would imply a distance modulus $m-M = 10.6$ to 15.6, or $d = 1.3$ to 13 kpc, if we were observing the initial outburst. If we adopt a lower extinction model more typical of IRDCs, within the likely range of $3.6 < A_K < 10.1$ (see section 4.3), these distances can rise by up to a factor of three, despite the slightly lower temperature associated with these models. The photometric maximum was not in fact observed so the distance is not well constrained in this interpretation, though it would have to be larger than the minimum distance of 3.1 kpc to the IRDC (see section 4.1). Nonetheless, a classical nova with a prominent dust peak could plausibly be located at a distance of several kpc, i.e. behind the IRDC.

4.5 The cm continuum test

The cm continuum data from ATCA provide a valuable test of the protostellar collision and nova hypotheses. Numerous radio shells associated with classical novae have been observed previously. Nearby novae have typical fluxes of the order of a few mJy at 4–9 GHz continuum when observed ~2 years after the event and the radio spectral index at those frequencies is typically approximately flat at that time, consistent with optically thin free-free emission (Hjellming et al. 1979; Seequist 2008; Finzell et al. 2017). Optically thin nova shells then fade fairly rapidly at these frequencies as the shell becomes increasingly optically thin, with $S \propto (t-t_0)^{\alpha}$, where α ranges from -3 to -1 and t_0 is the time of the explosion. If VVV-WIT-01 was a classical nova, we would expect the radio emission to have faded by a factor of at least 4.5, and more likely by one or two orders of magnitude, between the 2012 and 2019 ATCA observations. The ATCA nondetection in 2019 at a level an order of magnitude fainter than the 2012 flux is therefore consistent with this interpretation. The flat spectral index and ~0.25 mJy flux level in 2012 are also consistent with a classical nova at a distance of several kpc.

In the case of a collision between YSOs, numerical simulations of relatively violent collisions (those would produce a transient event of nova-like luminosity) predict between 1% and 10% of the combined stellar mass would be ejected, i.e. a mass of order a few $10^{-2} M_\odot$ to a few $10^{-3} M_\odot$ for a collision between low mass stars (Laycock & Sills 2005; Dale & Davies 2006; Soker & Tylenda 2006). This is supported by an empirical estimate of $1 M_\odot$ ejected, in the case of the massive Becklin-Neugebauer event (Bally et al. 2017). The ejection velocities would be lower than in a classical nova, of order 10^2 km/s (i.e. a little less than the escape velocity): this is in line with the ejection velocities observed in V1309 Sco, V4332 Sgr and V838 Mon (Tylenda & Soker 2006; Kamiński et al. 2009, 2015, and references therein). Classical novae typically eject a few $10^{-4} M_\odot$, e.g. Gehrz (1999), at speeds of order 10^3 km/s. Since the ejected mass from a stellar collision is likely to be two or three orders of magnitude greater and the velocity is likely to be almost an order of magnitude less, we would expect the collision ejecta to remain optically thick in the 4 cm continuum for ~2 orders of magnitude longer than the 2 year timescale that is characteristic of novae. Free-free emission from optically thick ejecta tends to slowly brighten over time as the surface area increases, as is observed in the early stages of nova shell expansion, so in such an event we would have expected the radio continuum flux to be brighter in the 2019 ATCA ob-
observation than in 2012. The non-detection in 2019 therefore argues fairly strongly against the collision hypothesis.

4.6 Searches for additional very red transients

In order to further test our two main hypotheses, we searched the current working database of VVV/VVVX 2010–2018 light curves covering the original 560 deg2 area (see section 2) to determine how many transient events have occurred and whether there have been any other exceptionally red transients in star forming regions. We detected 59 transient events with amplitudes over 4 mag, 12 of which occurred within the boundary of the GLIMPSE-I survey at $295 < l < 350\,^{\circ}$, $-1 < b < 1\,^{\circ}$ where the IRDC catalogue of Peretto & Fuller (2009) is defined. None of these events were projected in IRDCs and none have SEDs as red as those of Peretto & Fuller (2009). None of these events have been previously identified as novae or nova candidates but some are new: their infrared light curves will be the subject of a separate paper.

With 12 events over the 2010–2018 interval in the GLIMPSE I survey area, the IRDC covering fractions, f, noted in section 4.1 imply that the chance of observing at least one in an IRDC is $p = 1 - (1-f)^{12} = 0.13$ (including only confirmed IRDCs) or $p = 0.24$ (including all IRDC candidates). In view of this result, the nova hypothesis appears very plausible. It was merely surprising, at the time, to detect such a chance projection amongst the first VVV transients near the start of the survey. A separate search for transients in IRDCs was conducted with the WISE/NEOWISE time series data from 2010 and 2014–2017. We constructed a variable star and transient source catalogue for all sources within $2\,^{\circ}$ of the 7139 confirmed IRDCs listed in Peretto et al. (2016). This search did not find any additional transients, though some high amplitude variable sources were detected (Lucas et al., in prep).

4.7 Upper limit on the protostellar collision rate

The ATCA data and the incidence of VVV transients have led us to conclude that VVV-WIT-01 was very probably a classical nova behind an IRDC. The main caveats are that our empirical knowledge of stellar mergers is limited to a few probable events and the present generation of numerical simulations is unlikely to be the final word. We can use the non-detection of stellar mergers in VVV to place a limit on the incidence of luminous collisions between YSOs. Our search of the 2010–2018 VVV data spanned ~8.5 years and covered an area of sky that encompasses ~10^{11} stars (assuming the Milky Way contains at least twice that number of stars). Adopting a constant star formation rate (for simplicity) and typical stellar lifetimes in excess of 10^{10} yr, a fraction of order 10^{-5}, i.e. 10^7 stars, have ages $\lesssim 1$ Myr. Our detection efficiency is ≈ 0.5, given that events occurring in the southern summer may have been missed by our search. The non-detection in 8.5 years then implies that the rate is probably $\lesssim 0.2$ collisions per year. For 10^7 YSOs with ages $\lesssim 1$ Myr, likely to still be in a crowded and dynamically unstable environment, a limit of 0.2 collisions per year implies a 1 in 5×10^7 chance of a collision per year for individual YSOs, or 1 in 50 per Myr per YSO. This upper limit is at a level that begins to be useful, confirming that, while such collisions are rare, there may be numerous such events within the lifetime of massive pre-main sequence clusters of several thousands stars, such as the Orion Nebula Cluster. A careful search of datasets such as VVV, GLIMPSE, WISE and the United Kingdom Infrared Deep Sky Survey (UKIDSS) may yield more examples of the remnants of pre-main sequence mergers, to add to the three listed by Bally & Zinnecker (2005).

5 CONCLUSIONS

The VVV-WIT-01 transient event was uniquely red amongst transients detected in the VVV dataset thus far. It was also unique in its projected location in an IRDC. The contemporaneous timing of observations with VISTA and WISE in March 2010 was fortunate but the sparse sampling of the light curve and lack of a spectrum make a definitive classification difficult. Nonetheless, the absence of γ-ray and neutrino emission allows us to rule out a Galactic supernova and the very high amplitude and steep decline in flux make it unlikely that this was an episodic accretion event in a YSO. The steep decline in mid-infrared flux also appears to rule out a Very Late Thermal Pulse in a post-AGB star.

The hypothesis of a highly obscured classical nova with a bright dust peak appears to fit all the available data. Whilst it was initially surprising that such an event should be projected in an IRDC in the first year of the survey, VVV subsequently detected several dozen transients in the 2010–2018 interval, including 12 in the Spitzer/GLIMPSE region where the Peretto & Fuller (2009) IRDC catalogue was defined. Consequently, the chance of detecting a single such event over the course of the survey is calculated as between 13% and 24%, not a very unlikely occurrence. The protostellar collision/merger burst hypothesis is the most interesting one that we have considered, given that the remnants of a few such events involving pre-main sequence stars have been observed in the Milky Way (Bally & Zinnecker 2005). The rapidly fading 4 cm continuum flux detected by ATCA appears to be inconsistent with this interpretation, causing us to favour the nova hypothesis. A cautionary note remains that our prediction regarding the radio evolution of a merger burst rests on theoretical simulations in a field that is still maturing. We should remain open to the possibility that the transient was a new type of event. Any detections of additional very red transients in star forming regions would require us to reconsider the classical nova interpretation.

ACKNOWLEDGEMENTS

We gratefully acknowledge data from the ESO Public Survey program ID 179.B-2002 taken with the VISTA telescope, and products from the Cambridge Astronomical Survey Unit (CASU). We thank the referee, Nye Evans, for a helpful and constructive report. We also thank M. Vagins and K. Scholberg for checking their neutrino data during the relevant 2009-2010 time period. This publication makes use of data
REFERENCES

Ackermann M., et al., 2013, ApJ, 771, 57
Ageron M., et al., 2011, Nuclear Instruments and Methods in Physics Research A, 656, 11
Alonso-García J., Mateo M., Sen B., Banerjee M., Catelan M., Minniti D., von Braun K., 2012, AJ, 143, 70
Alonso-García J., et al., 2017, ApJ, 849, L13
Alonso-García J., et al., 2018, A&A, 619, A4
Antonioli P., et al., 2004, New Journal of Physics, 6, 114
Auldard M., et al., 2014, Protostars and Planets VI, pp 387–410
Bailey-Jones C. A. L., Rybizki J., Fouesneau M., Mantele G., Andrä R., 2018, AJ, 156, 58
Bally J., Zinnecker H., 2005, AJ, 129, 2281
Bally J., Ginsburg A., Arce H., Eisen J., Youngblood A., Zapata L., Zinnecker H., 2017, ApJ, 837, 60
Baumgardt H., Klessen R. S., 2011, MNRAS, 413, 1810
Beckwith S. V. W., Sargent A. I., Chini R. S., Guesten R., 1990, AJ, 99, 924
Benjamin R. A., et al., 2003, PASP, 115, 953
Bonelli I. A., Bate M. R., Zinnecker H., 1998, MNRAS, 298, 93
Burlak M. A., Esipov V. F., Komissarova G. V., Shenavrin V. I., Taranova O. G., Tatarinkov A. M., Tatarinova A. A., 2015, Baltic Astronomy, 24, 109
Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
Carey S. J., et al., 2009, PASP, 121, 76
Clayton G. C., et al., 2013, ApJ, 771, 130
Contreras Peña C., et al., 2017, MNRAS, 465, 3011
Cross N. J. G., et al., 2012, A&A, 548, A119
Cutri R. M., et al., 2012, Technical report, Explanatory Supplement to the WISE All-Sky Data Release Products
Dale J. E., Davies M. B., 2006, MNRAS, 366, 1424
Das R. K., Banerjee D. P. K., Ashok N. M., Mondal S., 2013, Bulletin of the Astronomical Society of India, 41, 195
De K., et al., 2019, The Astronomer’s Telegram, 13130, 1
Diehl R., et al., 2015, A&A, 574, A72
Drew J. E., et al., 2014, MNRAS, 440, 2036
Egan M. P., Shipman R. F., Price S. D., Carey S. J., Clark F. O., Cohen M., 1998, ApJ, 494, L199
Epschtein N., et al., 1999, A&A, 349, 236
Evans A., et al., 2006, MNRAS, 375, 175
Finzell T., et al., 2018, ApJ, 852, 108
Fukuda S., et al., 2003, Nuclear Instruments and Methods in Physics Research A, 501, 418
Gehrz R. D., 1988, ARA&A, 26, 377
Gehrz R. D., 1999, Phys. Rep., 311, 405
Gehrz R. D., Grasdalen G. L., Hackwell J. A., Ney E. P., 1980a, ApJ, 237, 855
Gehrz R. D., Hackwell J. A., Grasdalen G. L., Ney E. P., Neugebauer G., Sellgren K., 1980b, ApJ, 239, 570
Gehrz R. D., et al., 2015, ApJ, 812, 132
Gieles M., et al., 2018, MNRAS, 478, 2461
Gutermuth R. A., Megeath S. T., Myers P. C., Allen L. E., Pipher J. L., Fazio G. G., 2009, ApJS, 184, 18
Hachisu I., Kato M., 2006, ApJS, 167, 59
Hachisu I., Kato M., 2019, ApJS, 242, 18
Hadjuk M., et al., 2005, Science, 308, 231
Hildebrand R. H., 1983, QJRAS, 24, 267
Hinkle K., Joyce R., 2002, ApSS, 279, 51
Hinkle K. H., Joyce R. S., 2014, ApJ, 785, 146
Hjellming R. M., Wade C. M., Vanden Berg N. R., Newell R. T., 1979, AJ, 84, 1619
Irwin M. J., et al., 2004, in Quinn P. J., Bridge A., eds, Proc. SPIEVol. 5493, Optimizing Scientific Return for Astronomy through Information Technologies. pp 411–422, doi:10.1117/12.551449
Johnstone D., Hendricks B., Herczeg G. J., Bruderer S., 2013, ApJ, 765, 133
Jones C., Dickey J. M., 2012, ApJ, 753, 62
Kamiński T., Schmidt M., Tyldena R., Konacki M., Gromadzki M., 2009, ApJS, 182, 33
Kamiński T., Mason E., Tyldena R., Schmidt M. R., 2015, A&A, 580, A34
Kasliwal M. M., et al., 2011, ApJ, 730, 134
Kimeswenger S., Koiller J., Schmeja S., 2000, A&A, 360, 699
Kochanek C. S., Adams S. M., Belczynski K., 2014, MNRAS, 443, 1319
Koenig X. P., Leisawitz D. T., 2014, ApJ, 781, 131
Kóspál Á., et al., 2013, A&A, 551, A62
Krivonos R., Tsyganov S., Sunyaev R., 2012, A&A, 545, A27
Kuiper R., Hosokawa T., 2018, A&A, 616, A101
Kuiper R., Klahr H., Dullemont C., Kley W., Henning T., 2010a, A&A, 511, A81
Kuiper R., Klahr H., Beuther H., Henning T., 2010b, ApJ, 722, 1556
Laycock D., Sills A., 2005, ApJ, 627, 277
Leibundgut B., Suntzeff N. B., 2003, in Weiler K., ed., Lecture Notes in Physics, Berlin Springer Verlag Vol. 598, Supernovae and Gamma-Ray Bursters. pp 77–90 (arXiv:astro-ph/0304112), doi:10.1007/3-540-45863-8_6
Lindgren L., et al., 2018, A&A, 616, A2
López-Corredoira M., Cabrera-Lavers A., Garzón F., Hammersley P. L., 2002, A&A, 394, 883
Lucas P. W., et al., 2017, MNRAS, 472, 2990
Mannucci F., et al., 2003, A&A, 401, 519
Martini P., Wagner R. M., Tomany A., Rich R. M., della Valle M., Hauschildt P. H., 1999, AJ, 118, 1034
Megeath S. T., et al., 2004, ApJS, 154, 367
Meikle S. T., et al., 2004, ApJS, 154, 314
Meenker A. M., Lang D., Schlegel D. J., 2018, AJ, 156, 69
Minniti D., 2016, in Galactic Surveys: New Results on Formation, Evolution, Structure and Chemical Evolution of the Milky Way. p. 10
Minniti D., et al., 2010, New Astron., 15, 433

products from the WISE satellite, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration (NASA). This research has made use of NASA’s Astrophysics Data System Bibliographic Services and the SIMBAD database operated at CDS, Strasbourg, France. P.W.L. acknowledges support by STFC Consolidated Grants ST/R00905/1, ST/M001108/1 and ST/J001333/1 and the STFC PATR grant ST/R00126X/1. D.M. acknowledges support from the FONDECYT Regular grant No. 1170121, the BASAL Center for Astrophysics and Associated Technologies (CATA) through grant AFB170002, and the Ministry for the Economy, Development and Tourism, Programa Iniciativa Científica Milenio grant IC120009, awarded to the Millennium Institute of Astrophysics (MAS). D.L.K. was supported by NSF grant AST-1816492. N.M. acknowledges financial support from ASI-INAF contract n.2017-14-H.0. M.H. acknowledges financial support from the Comité Mixto ESO-Gobierno de Chile. Support for M.C. is provided by Proyecto Basal AFB-170002; by the Ministry for the Economy, Development, and Tourism’s Millennium Science Initiative through grant IC 120009, awarded to the Millennium Institute of Astrophysics (MAS); and by FONDECYT project #1171273.
Minniti D., Lucas P. W., Cross N., Ivanov V. D., Delak V., Kurtev R., 2012, The Astronomer’s Telegram, 4041
Miville-Dechênes M.-A., Murray N., Lee E. J., 2017, ApJ, 834, 57
Moeckel N., Bonnell I. A., 2013, Primordial triplets and collisions of massive stars (arXiv:1301.6959)
Molinari S., et al., 2010, A&A, 518, L100
Moorwood A., et al., 1998, The Messenger, 94, 7
Myers P. C., 2009, ApJ, 700, 1609
Odrzywolek A., Plewa T., 2011, A&A, 529, A156
Oh K., et al., 2018, ApJS, 235, 4
Osborne J. P., 2015, Journal of High Energy Astrophysics, 7, 117
Pastorello A., et al., 2019, A&A, 625, L8
Peretto N., Fuller G. A., 2009, A&A, 505, 405
Peretto N., et al., 2013, A&A, 555, A112
Peretto N., Lenfestey C., Fuller G. A., Traficante A., Molinari S., Thompson M. A., Ward-Thompson D., 2016, A&A, 590, A72
Raittōn A. D., Tout C. A., Aarseth S. J., 2014, Publ. Astron. Soc. Australia, 31, e017
Rawrinswattan K., Lomax O., Goodwin S. P., 2012, MNRAS, 419, 2025
Reynolds S. P., Borkowski K. J., Green D. A., Hwang U., Harrus I., Petre R., 2008, ApJ, 680, L41
Rieke G. H., et al., 2004, ApJS, 154, 25
Saito R. K., et al., 2012, A&A, 537, A107
Saito R. K., Minniti D., Angeloni R., Delak I., Catelan M., 2015, The Astronomer’s Telegram, 7124
Saito R. K., Minniti D., Catelan M., Angeloni R., Beamin J. C., Palma T., Gutierrez L. A., Montenegro K., 2016, The Astronomer’s Telegram, 8602
Schechter P. L., Mateo M., Saha A., 1993, PASP, 105, 1342
Shara M. M., 2002, in Shara M. M., ed., Astronomical Society of the Pacific Conference Series Vol. 263, Stellar Collisions, Mergers and their Consequences. p. 1
Simon R., Rathborne J. M., Shah R. Y., Jackson J. M., Chambers E. T., 2006, ApJ, 653, 1325
Simpson R. J., et al., 2012, MNRAS, 424, 2442
Skrutskie M. F., et al., 2006, AJ, 131, 1163
Soker N., Tylden R., 2006, MNRAS, 373, 733
Stroepe R. J., Schaefer B. E., Henden A. A., 2010, AJ, 140, 34
Sutherland W., et al., 2015, A&A, 575, A25
Tylden R., Soker N., 2006, A&A, 451, 223
Tylden R., et al., 2011, A&A, 528, A114
Wang X., Fields B. D., Lien A. Y., 2019, MNRAS, 486, 2910
Warner B., 1987, MNRAS, 227, 23
Weiler K. W., Sramek R. A., 1988, ARAA, 26, 295
Williams G. M., Peretto N., Avison A., Duarte-Cabral A., Fuller G. A., 2018, A&A, 613, A11

APPENDIX A: A SUBMM-BRIGHT VARIABLE YSO IN SDC G331.062−0.294

As noted in section 3.4, the ALMA follow up observations of VVV-WIT-01 did not detect the transient but a submm/mm continuum source was detected 4.5” to the east. The submm flux was 0.62±0.04 mJy in band 6 (230 GHz) and 0.86±0.06 mJy in band 7 (336.5 GHz). It was not detected in band 3 (100 GHz) to a 3σ limit of 0.14 mJy. The band 6 observations were obtained on 2015 August 14 and 2015 September 4 and the band 7 observations were on 2015 September 25. The beam sizes were 0.5”, 0.3” and 0.25”, in bands 3, band 6 and band 7, respectively. The ALMA source is coincident (within 0.1”) with the red VVV point source, VVV J161053.93-515532.8.

Figure A1. VVV K_s light curve for the submm-bright source VVV J161053.93-515532.8. A jump of ~0.9 mag occurred in mid-2015, lasting for at least 13 days. The flux had returned to the pre-outburst level in data taken 12 months later. The inset panel shows an expanded view of the data during the outburst.

The infrared colours and fluxes are typical for a low mass class I or class II YSO (Megeath et al. 2004; Gutermuth et al. 2009) at a distance of a few kpc and in view of the projected location in an IRDC it is likely that VVV J161053.93-515532.8 is indeed a YSO. The K_s light curve clearly shows an infrared outburst of 0.9 mag amplitude in the data taken on 30 June and 13 July 2015 (MJDs 57203 and 57216). This further supports a YSO identification, in view of the fact that high amplitude variability is fairly common in YSOs (Contreras Peña et al. 2017). The infrared burst faded by 0.08 mag over the 13 days between the two dates of observation. The infrared flux was otherwise fairly constant from 2012–2018 and was observed at the quiescent level on 2015 May 19 and 2016 July 5. A slow 0.25 mag decline was seen from 2010 to 2011.

The ALMA continuum detections can be attributed to emission by dust in the cool outer regions of a circumstellar disc. This would be consistent with the non-detection in band 3, due to the decline in dust emissivity with increasing wavelength. We can estimate the dust mass with the equation $M_{dust} = (F_d d^2) / (\kappa \beta_\nu(T))$ (Hildebrand 1983). Adopting $T = 20$ K and opacity $\kappa = 10(\nu/1000)^{\beta}$ GHz cm2 g$^{-1}$ and $\beta = 1$ (Beckwith et al. 1990) yields a mass $M_{dust} = 5 \times 10^{-4} (d/3 \text{ kpc})^2 \text{ M}_\odot$. Adapting the conventional gas to dust ratio of 100:1, this implies $M_{dust} = 0.05 (d/3 \text{ kpc})^2 \text{ M}_\odot$. Recalling that the distance to SDC G331.062−0.294 is likely to be between 3.1 and 7.4 kpc, this indicates that the YSO hosts a relatively massive disc, or perhaps an unusually warm one. It is certainly possible that the infrared outburst was ongoing at the time of the ALMA detections in August and September 2015, resulting in heating of the outer disc (Johnstone et al. 2013).
This paper has been typeset from a \TeX/\LaTeX file prepared by the author.