Existence results for the fractional Nirenberg problem

Yan-Hong Chen, Chungen Liu, and Youquan Zheng

Abstract. We consider the fractional Nirenberg problem on the standard sphere S^n with $n \geq 4$. Using the theory of critical points at infinity, we establish an Euler-Hopf type formula and obtain some existence results for curvature satisfying assumptions of Bahri-Coron type.

1. Introduction

The famous Nirenberg problem in conformal geometry is: on the sphere S^n ($n \geq 2$) with standard metric g_0, is there a representation g of the conformal class $[g_0]$ such that g has scalar curvature (Gauss curvature for $n = 2$) equal to a prescribed function K? This problem is equivalent to the following equations

$$-\Delta g_0 u + 1 = K e^u, \quad \text{on } S^2,$$

$$-\Delta g_0 u + \frac{n - 2}{4(n - 1)} R_{g_0} u = K u^{\frac{n+2}{n-2}}, \quad \text{on } S^n, \quad n \geq 3, \quad (1.1)$$

where R_g is the scalar curvature of g.

The linear operator on the left of (1.1) is known as the conformal Laplacian associated to the metric g_0 and is denoted as $P^{g_0}_1$. Another conformally covariant operator is

$$P^{g}_2 = (-\Delta g)^2 - \text{div}_g (a_n R_g g + b_n \text{Ric}_g) d + \frac{n - 4}{2} Q^n_g,$$

which was discovered by Paneitz, see [32] and [19]. Here Q^n_g, Ric_g are the standard Q-curvature and the Ricci curvature of g respectively, a_n, b_n are constants depending on n. P_1 and P_2 (with g be omitted when there is no ambiguity) are the first two terms of a sequence of conformally covariant elliptic operators $\{P_k\}$, which exists for all $k \in \mathbb{N}$ when n is odd, but only for $k \in \{1, \ldots, n/2\}$ when n is even. The first construction of these operators was by Graham, Jenne, Mason and Sparling in [23]. Thus a natural question is: are there any conformally covariant pseudodifferential operators of noninteger orders?

Key words and phrases. Critical points at infinity, Fractional Laplacian, Morse theory, Nirenberg problem, Yamabe flow.

The third author was partially supported by NSFC of China (11271200).
In [33], the author constructed an intrinsically defined, arbitrary real number order, conformally covariant pseudo-differential operator. In the work of Graham and Zworski [24], it was showed that P_k can be realized as the residues at $\gamma = k$ of a meromorphic family of scattering operators. Using this viewpoint, a family of conformally covariant pseudodifferential operators P^g_γ for noninteger γ was given.

In recent years, there are extensive works on the properties of the fractional Laplacian as non-local operators together with their applications to various problems, for example, [10], [9], [12], [11], [13] and so on. It is well known that $(-\Delta)^\gamma$ on \mathbb{R}^n with $\gamma \in (0, 1)$ is a nonlocal operator. In the remarkable work of Caffarelli and Silvestre [10], the authors express this nonlocal operator as a generalized Dirichlet-Neumann map for an elliptic boundary value problem with local differential operators defined on \mathbb{R}^{n+1}_+. And in the work of Chang and Gonzalez [14], the authors extended the work of [10] and characterized P^g_γ as such a Dirichlet-to-Neumann operator on a conformally compact Einstein manifold.

The operator P^g_γ with $\gamma \in (0, \frac{n}{4})$ has the following conformally covariant property: if $g = v^{\frac{4}{n-2}} g_0$, then

$$P^g_\gamma(v f) = v^{\frac{n+2\gamma}{n-2\gamma}} P_\gamma^g(f)$$

for any smooth function f, see [14]. Generalizing the formula for scalar curvature and the Paneitz Branson Q-curvature, the Q-curvature for g of order γ, is defined as

$$Q_\gamma^g = P_\gamma^g(1).$$

In this paper, we are interested in the fractional Nirenberg problem on the standard sphere S^n. That is to say, we want to find a representation g of the conformal class $[g_0]$ such that Q_γ^g equals to a prescribed function K. This problem is equivalent to solving the following semi-linear equation,

$$\begin{align*}
\begin{cases}
P_\gamma u = Ku^{\frac{n+2\gamma}{n-2\gamma}} & \text{on } S^n, \\
u > 0,
\end{cases}
\end{align*}$$

where P_γ is the 2γ order conformal Laplacian on S^n. This is an intertwining operator and

$$P_\gamma = \frac{\Gamma(B + \frac{1}{2} + \gamma)}{\Gamma(B + \frac{1}{2} - \gamma)}, \quad B = \sqrt{-\Delta g_0 + \left(\frac{n-1}{2}\right)^2}.$$

On the standard n dimensional Riemannian sphere, the prescribing fractional curvature problem was considered in [2], [15], [17], [25], [26] and [27]. On general manifolds, we refer the interested readers to the works [21], [22] and [34] and the references therein.

Let $S^2_\gamma(S^n)$ be the completion of $C^\infty(S^n)$ by means of the norm

$$\|u\|^2 = \int_{S^n} uP_\gamma u\text{vol}_{g_0},$$

$$\Sigma = \{u \in S^2_\gamma(S^n) | \|u\| = 1\}$$

and

$$\Sigma^+ = \{u \in \Sigma | u \geq 0\}.$$
For $u \in S^2(S^n)$, we consider the following functional
\[J(u) = \frac{||u||^2}{\left(\int_{S^n} K u^{\frac{2n}{n-2}} \, dvol_{g_0} \right)^{\frac{n}{n-2}}} \]
It is easy to see that a critical point of J in Σ^+ corresponding to a solution of (1.3). The functional J fails to satisfy the Palais-Smale condition on Σ^+, a description of the sequences which do not satisfy the Palais-Smale condition is given in Lemma 2.2 of Section 2. Thinking of these sequences as critical points, a natural idea is to expand the functional J near the sets of such critical points.

We assume that $K : S^{2n+1} \to \mathbb{R}$ is a C^2 positive function and satisfies the following condition:

\begin{itemize}
 \item[(nd)] each critical point of K, denoted by ξ, is non degenerate, i.e., $\Delta K(\xi) \neq 0$.
\end{itemize}

Denote
\[I^+ := \{ \xi_i \in S^{2n+1} | \nabla K(\xi_i) = 0 \text{ and } -\Delta K(\xi_i) > 0 \} \]
and by $\sharp I^+$ the cardinality of I^+. Let F^+ be the set
\[F^+ = \{ (y_{i_1}, \cdots, y_{i_p}) \in (I^+)^p | y_{i_j} \neq y_{i_k} \text{ if } j \neq k, 1 \leq p \leq \sharp I^+ \}. \]
In Section 5, we will prove that (Lemma 5.1 and Lemma 5.2)

Lemma 1.1. The critical points at infinity of J (see Section 2 for its definition) in Σ^+ corresponding to
\[\sum_{j=1}^p \frac{1}{K(y_{i_j})^{\frac{n}{n-2}}} \delta_{y_{i_j}, \infty} := (y_{i_1}, \cdots, y_{i_p})_{\infty}, \]
with $(y_{i_1}, \cdots, y_{i_p}) \in F^+$. The Morse index of such a critical point at infinity is

\[ind((y_{i_1}, \cdots, y_{i_p})_{\infty}) = p - 1 + \sum_{j=1}^p (n - ind(K, y_{i_j})) \]
where $ind(K, y_{i_j})$ is the Morse index of K at y_{i_j}.

Let F^+_∞ be the set of critical points at infinity of J. Then by Lemma 1.1 we have
\[F^+_\infty = \{ \phi^p_\infty := (y_{i_1}, \cdots, y_{i_p})_{\infty} | (y_{i_1}, \cdots, y_{i_p}) \in F^+ \}. \]
If $\phi^p_\infty \in F^+_\infty$, let $W_u(\phi^p_\infty)$ denote its unstable manifold and $W_s(\phi^p_\infty)$ its stable manifold, with respect to the C^1 vector field $-\partial J$. Then we have
\[dim W_u(\phi^p_\infty) = codim W_s(\phi^p_\infty) = ind(\phi^p_\infty). \]
For any $k \in \mathbb{N}$ and any subset X_k of $\{ \phi^p_\infty \in F^+_\infty : ind(\phi^p_\infty) \leq k \}$, we consider the following set
\[X_k^\infty = \cup_{\phi^p_\infty \in X_k} W_u(\phi^p_\infty), \]
which is a stratified set of dimension at most k. Since Σ^+ is a contractible set, X_k^∞ is contractible in Σ^+ and let $\psi(X_k^\infty)$ be a contraction of X_k^∞ in Σ^+.

Then we have
Theorem 1.2. Assume that $n \geq 4$, $\gamma \in (0, 1)$ and K satisfies condition (nd). If there exists $k_0 \in \mathbb{N}$ and $X_{k_0} \subset \{ \phi^p_\infty \in F^+_\infty : \text{ind}(\phi^p_\infty) \leq k_0 \}$ such that

(H1) \[\sum_{\phi^p_\infty \in X_{k_0}} (-1)^{\text{ind}(\phi^p_\infty)} \neq 1, \]

(H2) \[\psi(X^\infty_{k_0}) \cap W_k(\phi^p_\infty) = \emptyset, \text{ for all } \phi^p_\infty \in F^+_\infty \setminus X_{k_0} \text{ with } \text{ind}(\phi^p_\infty) \leq k_0 + 1, \]

then there exits a solution w of (1.3) satisfying $\text{ind}(w) \leq k_0 + 1$.

As an application of Theorem 1.2, let K assumes the following form

(P) \[K(x) = 1 + \varepsilon K_0(x), \forall x \in \mathbb{S}^n, \text{ where } K_0 \in C^2(\mathbb{S}^n) \text{ and } |\varepsilon| \text{ is small.} \]

Set

\[\mathbb{T} = \{ k \in \mathbb{N} | \forall y \in I^+, n - \text{ind}(K, y) \neq k + 1 \}. \tag{1.4} \]

Then we have

Theorem 1.3. Assume that $n \geq 4$, $\gamma \in (0, 1)$ and K satisfies condition (nd) and (P). If

\[\max_{k \in \mathbb{T}} \left| 1 - \sum_{y \in I^+, n - \text{ind}(K, y) \leq k} (-1)^{n - \text{ind}(K, y)} \right| \neq 0, \tag{1.5} \]

then when $|\varepsilon|$ is small, there exits a solution w of (1.3) satisfying $\text{ind}(w) \leq k_0 + 1$. Here k_0 achieves the maximum of (1.5).

Remark 1.4. Theorem 1.2 and 1.3 also holds when $n = 3$ and $\gamma \in (0, \frac{1}{2})$. This completes the study of Wael Abdelhedi and Hichem Chtioui [2] in the sense that, in this paper, the cases $n = 2$, $\gamma \in (0, 1)$ and $n = 3$, $\gamma \in (\frac{1}{2}, 1)$ were considered.

We shall prove Theorem 1.2 and 1.3 by contradiction, therefore we assume that (1.3) has no solution. Our argument is based on a technical Morse lemma at infinity which involves the construction of a suitable pseudogradient for the function J as in [3, 6, 7, 20, 36]. The Palais-Smale condition is satisfied along the decreasing flow lines of this pseudogradient, as long as these flow lines do not enter the neighborhood of a finite number of critical points of K. Finally, we obtain a Euler-Hopf type formula, this achieves a contradiction.

This paper is organized as follows. In Section 2, we introduce the general variational framework. In Section 3, we will give the expansion of the functional and its gradient near the sets of its critical points at infinity. In Section 4, we establish the Morse lemma at infinity, which allows us to refine the expansion of the function. In Section 5, we give the proof of Theorem 1.2. In Section 6, we give the proof of Theorem 1.3. In Appendices A-C, we will give the estimates used in the proof.
2. Variational structure

Following [3], [4] and [6], we will use the following variational structure. Consider the functional
\[J(u) = \frac{\|u\|^2}{\left(\int_{\Sigma} Ku\frac{2n}{n-2\gamma} \, dvol_{g_0}\right)^{\frac{n-2\gamma}{n}}} \]
defined on \(\Sigma \) which is the unit sphere of \(S^2_\gamma(S^n) \). Let \(\Sigma^+ = \{ u \in \Sigma | u \geq 0 \} \), problem (1.3) will be reduced to finding critical points of \(J \) subjected to the constraint \(u \in \Sigma^+ \). The exponent \(\frac{2n}{n-2\gamma} \) is critical for the Sobolev embedding \(S^2_\gamma(S^n) \hookrightarrow L^q(S^n) \). This embedding is continuous but not compact, so the functional \(J \) does not satisfy the Palais Smale condition. This means that there exists a sequence along which \(J \) is bounded, its gradient goes to zero but it does not converge. The characterization of sequences failing the Palais Smale condition can be analyzed along the ideas introduced in [3], [4] and [6]. In order to describe such a characterization in our case, we need to introduce some notations.

For \(a \in S^n \) and \(\lambda > 0 \), let
\[\delta_{a,\lambda}(x) = c_n \left(\frac{\lambda}{1 + \frac{\lambda^2}{2}(1 - \cos(d(x,a)))} \right)^{\frac{n-2\gamma}{2}}, \]
where \(d(\cdot, \cdot) \) is the distance induced by the standard metric \(g_0 \); \(c_n \) is chosen so that \(\delta_{a,\lambda} \) is the family of the solutions for
\[P_\gamma u = u^{\frac{n+2\gamma}{n}}, \quad u > 0 \quad \text{on} \quad S^n. \quad (2.1) \]
By the stereographic projection, (2.1) can be transformed into the following equation
\[(-\Delta)^\gamma u = u^{\frac{n+2\gamma}{n}}, \quad u > 0 \quad \text{on} \quad \mathbb{R}^n. \quad (2.2) \]
And all positive regular solutions of (2.2) are of form
\[w_{g,\lambda}(x) = c_n \left(\frac{\lambda}{1 + \lambda^2|x-g|^2} \right)^{\frac{n-2\gamma}{2}}, \]
see [16], [28] and [30].

For \(p \geq 1 \), we set
\[\mathcal{E}^p = (0, +\infty)^p \times (S^n)^p \times (0, +\infty)^p, \]
which is the space of the variables \((\alpha, a, \lambda) = (\alpha_1, \cdots, \alpha_p, a_1, \cdots, a_p, \lambda_1, \cdots, \lambda_p) \). For any small \(\varepsilon > 0 \) and \(p \in \mathbb{N}^+ \), we will use the following subset of \(\mathcal{E}^p \),
\[B_\varepsilon = \left\{ (\alpha, a, \lambda) \in \mathcal{E}^p | \varepsilon_{ij} \leq \varepsilon, \lambda_i > \frac{1}{\varepsilon} \right\}, \]
where
\[\varepsilon_{ij} = \left(\frac{\lambda_i}{\lambda_j} + \frac{\lambda_j}{\lambda_i} + \lambda_i\lambda_j d(a_i, a_j)^2 \right)^{\frac{n-2\gamma}{2}}. \]
Now, we define the set \(V(p, \varepsilon) \) of potential critical points at infinity to be

\[
V(p, \varepsilon) = \left\{ u \in \Sigma \mid \exists (\alpha, a, \lambda) \in B_{\varepsilon}, \text{such that} \| u - \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \| < \varepsilon \right. \]

and \(J(u) \frac{n}{n-2} \alpha_j^{\frac{n}{n-2}} K(a_j) - 1 < \varepsilon \right\}.

If \(u \) is a function in \(V(p, \varepsilon) \), one can find an optimal representation, following the ideas introduced in [3]. Namely, we have

Lemma 2.1. For any \(p \in \mathbb{N}^* \), there exists \(\varepsilon_p > 0 \) such that if \(\varepsilon \leq \varepsilon_p \) and \(u \in V(p, \varepsilon) \), then the following minimizing problem

\[
\min \left\{ \| u - \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \|, \alpha_i > 0, a_i \in S^n, \lambda_i > 0 \right\}
\]

has a unique solution \((\bar{\alpha}, \bar{a}, \bar{\lambda})\). Thus, we can write \(u \) as follows,

\[
u = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + v
\]

where \(v \) belongs to \(S^2_r(S^n) \) and satisfies the following condition

\[
\langle v, \varphi_i \rangle = 0 \text{ for } i = 1, \cdots, p, \text{ and } \varphi_i = \delta_{a_i, \lambda_i} - \frac{\partial \delta_{a_i, \lambda_i}}{\partial a_i} - \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_i}.
\]

Here \(\langle \cdot, \cdot \rangle \) denotes the inner product in \(S^2_r(S^n) \) defined by

\[
\langle u, v \rangle = \int_{S^n} v P_{\gamma} u d\text{vol}_{g_0}.
\]

Based on the uniqueness result of the corresponding problem at infinity (see [16] and [29]), the failure of the Palais Smale condition can be characterized following the ideas of [8], [20] and [35].

Lemma 2.2. Assume that (1.3) has no solution and let \(\{u_k\} \subseteq \Sigma^+ \) be a sequence satisfying \(J(u_k) \to c \), \(J'(u_k) \to 0 \). Then, there exist an integer \(p \geq 1 \), a positive sequence \(\{\varepsilon_k\} (\varepsilon_k \to 0) \) and an extracted subsequence of \(\{u_k\} \), still denoted by \(\{u_k\} \), such that \(u_k \in V(p, \varepsilon_k) \).

Following Bahri and Coron in [3], [4] and [6], we will use the following definition and notations later.

Definition A critical point at infinity of \(J \) on \(\Sigma^+ \) is a limit of a flow line \(u(s) \) of the equation

\[
\begin{align*}
\frac{\partial u(s)}{\partial s} &= -J(u(s)), \\
u(0) &= u_0,
\end{align*}
\]

such that \(u(s) \) remains in \(V(p, \varepsilon(s)) \) for \(s \geq s_0 \), where \(\varepsilon(s) \to 0 \) as \(s \to +\infty \) and \(u_0 \) is an initial condition.
Using Lemma 2.1, \(u(s) \) can be written as

\[
u(s) = \sum_{i=1}^{p} \alpha_i(s) \delta_{a_i(s),\lambda_i(s)} + v(s).
\]

Let \(a_i := \lim_{s \to \infty} a_i(s) \) and \(\alpha_i = \lim_{s \to \infty} \alpha_i(s) \), then such a critical point at infinity is denoted by

\[(a_1, \cdots, a_p)_{\infty} \quad \text{or} \quad \sum_{i=1}^{p} \alpha_i \delta_{a_i,\infty}.
\]

3. Expansion of the functional and its gradient

In this section, we give the expansion of the functional and its gradient near the potential critical points at infinity.

3.1. Expansion of the functional.

Lemma 3.1. For \(\varepsilon > 0 \) small enough and \(u = \sum_{i=1}^{p} \alpha_i \delta_{a_i,\lambda_i} + v \in V(p, \varepsilon) \) with \(v \) satisfies condition (2.4), we have the following equation,

\[
J(u) = \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\sum_{i=1}^{p} \alpha_i^{\frac{2n}{n-2\gamma}} K(a_i) S} \left[1 - \frac{n - 2\gamma}{n} \frac{c_2}{\Gamma_1} \sum_{i=1}^{p} \alpha_i \frac{2n}{n-2\gamma} \Delta K(a_i) \right] \\
+ \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\sum_{i=1}^{p} \alpha_i^{\frac{2n}{n-2\gamma}} K(a_i) S} \left[\sum_{i \neq j} \frac{c_0^{\frac{2n}{n-2\gamma}}}{c_1^{\frac{2n}{n-2\gamma}}} \omega_n \varepsilon_{ij} \left(\frac{\alpha_i \alpha_j}{\Gamma_2} - \frac{2\alpha_i^{\frac{n+2\gamma}{n-2\gamma}} \alpha_j K(a_j)}{\Gamma_1} \right) \right] \\
+ \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\sum_{i=1}^{p} \alpha_i^{\frac{2n}{n-2\gamma}} K(a_i) S} \left[f(v) + Q(v, v) + o \left(\sum_{i \neq j} \varepsilon_{ij} \right) + o \left(\|v\|^2 \right) \right],
\]

with

\[
f(v) = -\frac{2}{\Gamma_1} \int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i,\lambda_i} \right) v \, dvol_{g_0},
\]

\[
Q(v, v) = \frac{1}{\Gamma_2} \|v\|^2 - \frac{2n + 4\gamma}{\Gamma_1(n + 2\gamma)} \sum_{i=1}^{p} \int_{\mathbb{S}^n} K \left(\alpha_i \delta_{a_i,\lambda_i} \right) \frac{\alpha_i^{n+2\gamma}}{n-2\gamma} v^2 \, dvol_{g_0},
\]

\[
\Gamma_1 = \sum_{i=1}^{p} \alpha_i \frac{2n}{n-2\gamma} K(a_i) S, \quad \Gamma_2 = \sum_{i=1}^{p} \alpha_i^2 S.
\]

Furthermore, the operator norm of \(f \) satisfies

\[
\|f\| = O \left(\sum_{i \neq j} (\varepsilon_{ij})^{\frac{n+2\gamma}{n-2\gamma}} (\log \varepsilon_{ij}^{-1})^{\frac{n-2\gamma}{n}} + \sum_{i=1}^{p} \left(\frac{\|\nabla K(a_i)\|}{\lambda_i} + \frac{1}{\lambda_i^2} \right) \right).
\]
We will give the proof of this lemma in Appendix A.

3.2. Expansion of the gradient. In this subsection, we will compute the gradient of J at $\lambda_j \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_j}$ and $\frac{1}{\lambda_j} \frac{\partial \delta_{a_i, \lambda_i}}{\partial a_j}$, respectively. We have

Lemma 3.2. Let K be a C^2 positive function satisfying condition (nd). Then for each $u = \sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \in V(p, \varepsilon)$, we have the following expansion,

$$-J'(u) \left(\lambda_j \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_j} \right) = 2\lambda(u) \left[-\alpha_j \frac{n - 2\gamma}{2n} c_2 \frac{\Delta K(a_j)}{K(a_j) \lambda_j^2} (1 + o(1)) \right]$$

$$+ 2\lambda(u) \left[\sum_{i \neq j} -\alpha_i \frac{4\gamma}{n + 2\gamma} c_0^{\frac{2n}{n-2\gamma}} c_1 \omega_n \lambda_j \frac{\partial \varepsilon_{ij}}{\partial \lambda_j} (1 + o(1)) + o \left(\sum_{i \neq j} \varepsilon_{ij} \right) \right].$$

and

Lemma 3.3. Let K be a C^2 positive function satisfying condition (nd). Then for each $u = \sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \in V(p, \varepsilon)$, we have the following expansion,

$$-J'(u) \left(\frac{1}{\lambda_j} \frac{\partial \delta_{a_i, \lambda_i}}{\partial a_j} \right) = 2\lambda(u) \left[\frac{n - 2\gamma}{2n} c_0^{\frac{2n}{n-2\gamma}} c_1 \omega_n \lambda_j \frac{\nabla K(a_j)}{K(a_j) \lambda_j} (1 + o(1)) \right]$$

$$+ O \left(\sum_{i \neq j} \varepsilon_{ij} + \frac{1}{\lambda_j^2} \right).$$

We will give the proof of Lemma 3.2 in Appendix B and Lemma 3.3 in Appendix C.

3.3. On the v-part of u. Set

$$H_\varepsilon(a, \lambda) = \{ v \in S^2_p(S^n) \mid v \text{ satisfies (2.4) and } \| v \| \leq \varepsilon \}.$$

Then we have

Lemma 3.4. The quadratic form Q in Lemma 3.1 is positive definite in $H_\varepsilon(a, \lambda)$.

The proof is the same as the one in [1] and uses the non degenerate result of [18], so we omit it.

Lemma 3.5. For any $u = \sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \in V(p, \varepsilon)$, there exists a unique $\tilde{v} = \tilde{v}(\alpha, a, \lambda)$ which minimizes $J(u + v)$ with respect to $v \in E_\varepsilon$. Moreover, we have the following estimate

$$\| \tilde{v} \| \leq c \left[\sum_{i \neq j} (\varepsilon_{ij})^{\frac{n+2\gamma}{n-1}} (\log \varepsilon_{ij}^{-1})^{\frac{n-2\gamma}{n}} + \sum_{i=1}^p \left(\frac{\| \nabla K(a_i) \|}{\lambda_i} + \frac{1}{\lambda_i^2} \right) \right].$$

Proof. The proof of this lemma is similar to [20] and [36], for reader’s convenience, we give it here. From Section 2, we know that the parameterization of $V(p, \varepsilon)$ is given by the following map

$$B_\varepsilon \times H_\varepsilon(a, \lambda) \to V(p, \varepsilon)$$
\[(\alpha, a, \lambda, v) \rightarrow u = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + v,\]

where \((\alpha, a, \lambda)\) is the solution in \(B_{\varepsilon}\) of the minimizing problem (2.3), \(v = u - \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \in H_{\varepsilon}(a, \lambda)\). Since \((\alpha, a, \lambda) \in B_{\varepsilon}\), \(\varepsilon_{ij}'s\) are small enough, then by Lemma 3.4, the quadratic form \(Q\) is definite positive in \(H_{\varepsilon}(a, \lambda)\). Thus there exists a continuous self adjoint, positive definite and invertible operator \(A\), such that \(Q(v) = \frac{1}{2} \langle Av, v \rangle\) on \(H_{\varepsilon}(a, \lambda)\) and \(\beta_0 Id \leq A \leq \beta_1 Id\), here \(\beta_1 > \beta_0\) are positive constants. Then from Lemma 3.1, it holds that

\[J(u) = \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\left(\sum_{i=1}^{p} \alpha_i^{n-2\gamma} K(a_i)S\right)^{\frac{n-2\gamma}{n}}} \left[1 - \frac{n - 2\gamma}{\Gamma_1} \sum_{i=1}^{p} \alpha_i^{\frac{2n}{n-2\gamma}} \frac{\Delta K(a_i)}{\lambda_i^2}\right]
+ \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\left(\sum_{i=1}^{p} \alpha_i^{n-2\gamma} K(a_i)S\right)^{\frac{n-2\gamma}{n}}} \sum_{i \neq j} c_{ij} \omega_n \varepsilon_{ij} \left(\frac{\alpha_i \alpha_j}{\Gamma_2} - \frac{2\alpha_i^{\frac{n+2\gamma}{n-2\gamma}} \alpha_j K(a_j)}{\Gamma_1}\right)
+ \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\left(\sum_{i=1}^{p} \alpha_i^{n-2\gamma} K(a_i)S\right)^{\frac{n-2\gamma}{n}}} \left[f(v) + \frac{1}{2} \langle Av, v \rangle + o \left(\sum_{i \neq j} \varepsilon_{ij}\right) + o \left(||v||^2\right)\right].\]

Observe that the term \(o(||v||^2)\) is, twice differentiable in \(v\), and it’s differential at the origin is \(o(||v||)\). So the expansion of \(J'\) along an increment \(h\) near the origin in \(H_{\varepsilon}(a, \lambda)\) is

\[\langle J'(u), h \rangle = \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\left(\sum_{i=1}^{p} \alpha_i^{n-2\gamma} K(a_i)S\right)^{\frac{n-2\gamma}{n}}} \left[f(h) + \langle Av, h \rangle + o \left(||v||, h\right)\right].\]

Since the second differential of \(o(||v||^2)\) is \(o(1)\), the functional \(f(v) + \frac{1}{2} \langle Av, v \rangle + o \left(||v||^2\right)\) is coercive in a neighborhood of the origin. Therefore, this functional has a unique minimum \(\bar{v}\) in a neighborhood of zero in \(H_{\varepsilon}(a, \lambda)\) and \(\bar{v}\) satisfies

\[f + A\bar{v} + o \left(||\bar{v}||\right) = 0.\]

Now, since the operator \(A + o(1)\) is positive and invertible in a neighborhood of the origin, the inverse \(A^{-1}\) satisfy \(\frac{1}{\beta_0} Id \geq A^{-1} \geq \frac{1}{\beta_1} Id\) and \(||\bar{v}|| \leq c' ||A^{-1}f|| \leq c||f||\) for some constants \(c, c' > 0\). This completes the proof. \(\square\)

Lemma 3.6. There exists \(\varepsilon_0 > 0\) such that, for any \(u = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + v\), \(v \in H_{\varepsilon}(a, \lambda)\), the following estimate holds

\[J(u) = \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\left(\sum_{i=1}^{p} \alpha_i^{n-2\gamma} K(a_i)S\right)^{\frac{n-2\gamma}{n}}} \left[1 + \frac{n - 2\gamma}{\Gamma_1} \sum_{i=1}^{p} \alpha_i^{\frac{2n}{n-2\gamma}} - \frac{\Delta K(a_i)}{\lambda_i^2}\right].\]
results. We start with the Morse lemma at infinity by isolating the contribution of

\[(\alpha_i, a_i, \lambda_i) \]

such that

\[\sum_{i=1}^{p} \alpha_i^2 S \left(\frac{2n}{n-2} \right) K(a_i) S \left(\frac{n-2}{n} \right) \]

This yields

\[\left[\sum_{i=1}^{p} \alpha_i \right] \left[\frac{2n-2}{n} \right] \alpha_i K(a_i) \right] \]

From this, we get the desired estimate.

Proof. Since \(\bar{v} \) is a minimizer, we have

\[(f, \bar{v}) + Q(\bar{v}, \bar{v}) + o(\|\bar{v}\|^2) = 0. \]

This yields

\[(f, v) + Q(v, v) + o(\|v\|^2) = Q(v - \bar{v}, v - \bar{v}) + o(\|\bar{v}\|^2). \]

From this, we get the desired estimate. \(\square \)

4. Morse lemma at infinity

In this section, we prove the following Morse lemma, which completely get rid of the \(v \)-contributions and shows that the functional behaves, at infinity, as

\[J(\sum_{i=1}^{p} \alpha_i \delta_{\alpha_i, \lambda_i}) + |V|^2, \]

where \(V \) is a variable completely independent of \(\bar{a}_i, \bar{\lambda}_i \).

Lemma 4.1. There is a covering \(\{O_i\} \), a subset \(\{(\alpha_i, a_i, \lambda_i)\} \) of the base space for the bundle \(V(p, \varepsilon) \) and a diffeomorphism \(\xi_i : V(p, \varepsilon) \rightarrow V(p, \varepsilon') \) for some \(\varepsilon' > 0 \) with

\[\xi_i(\sum_{i=1}^{p} \alpha_i \delta_{\alpha_i, \lambda_i} + \bar{v}) = \sum_{i=1}^{p} \alpha_i \delta_{\bar{\alpha}_i, \bar{\lambda}_i} \]

such that

\[J(\sum_{i=1}^{p} \alpha_i \delta_{\alpha_i, \lambda_i} + v) = J(\sum_{i=1}^{p} \alpha_i \delta_{\bar{\alpha}_i, \bar{\lambda}_i}) + \frac{1}{2} J''(\sum_{i=1}^{p} \alpha_i \delta_{\bar{\alpha}_i, \bar{\lambda}_i}) |V_i| \cdot |V_i|, \]

where \((\alpha, a, \lambda) \in O_i \), \((\bar{\alpha}, \bar{a}, \bar{\lambda}) \) is independent of \(O_i \) and \(V_i \) is orthogonal to \(\delta_{\bar{\alpha}_i, \bar{\lambda}_i}, \frac{\partial \delta_{\bar{\alpha}_i, \bar{\lambda}_i}}{\partial \bar{\alpha}_i}, \frac{\partial \delta_{\bar{\alpha}_i, \bar{\lambda}_i}}{\partial \bar{\lambda}_i} \).

We will prove this lemma at the end of this section. We now need a few technical results. We start with the Morse lemma at infinity by isolating the contribution of \(v - \bar{v} \).

Lemma 4.2. For any \(\sum_{i=1}^{p} \alpha_i \delta_{\bar{\alpha}_i, \bar{\lambda}_i} \in V(p, \varepsilon) \), let \((\bar{\alpha}, \bar{a}, \bar{\lambda}) = ((\bar{\alpha}_1, \ldots, \bar{\alpha}_p), (\bar{a}_1, \ldots, \bar{a}_p), (\bar{\lambda}_1, \ldots, \bar{\lambda}_p)) \). Then there is a neighborhood \(U \) of \((\bar{\alpha}, \bar{a}, \bar{\lambda}) \) such that

\[J(\sum_{i=1}^{p} \alpha_i \delta_{\alpha_i, \lambda_i} + v) = J(\sum_{i=1}^{p} \alpha_i \delta_{\alpha_i, \lambda_i} + \bar{v}(\alpha, a, \lambda)) + \frac{1}{2} J''(\sum_{i=1}^{p} \alpha_i \delta_{\alpha_i, \lambda_i} + \bar{v}(\alpha, a, \lambda)) |V_i| \cdot |V_i| \]
for any $\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + v \in V(p, \varepsilon)$ with $(\alpha, a, \lambda) \in U$, where $V = V(\alpha, a, \lambda, v)$ is a C^1-diffeomorphism with range orthogonal to

$$\bigcup_{i=1}^{p} \left\{ \delta_{a_i', \lambda_i'}, \frac{\partial \delta_{a_i', \lambda_i'}}{\partial \lambda_i'}, \frac{\partial \delta_{a_i', \lambda_i'}}{\partial a_i'} \right\}$$

for any $(\alpha', a', \lambda') \in U$ and $\|V\| = O(\|v\|)$.

The proof is similar to the one given for the Riemannian case, we refer the readers to [7] for the sake of completeness.

Lemma 4.3. For any $u = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \in V(p, \varepsilon')$, ε' small enough, let $\bar{u} = u + \tilde{v}(\alpha, a, \lambda)$. There is a vector field W_0 such that for some constants $C_1 > 0$, $C_2 > 0$, $C_3 > 0$ independent of $u = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \in V(p, \varepsilon')$, it holds that

\begin{enumerate}
\item \begin{equation}
\langle -\nabla J(\bar{u}), W_0 + \frac{\partial \tilde{v}}{\partial (a_i, \alpha_i, \lambda_i)}(W_0) \rangle \geq C_1 \left(\sum_{i=1}^{p} \left(\frac{|\nabla K(a_i)|}{\lambda_i} + \frac{1}{\lambda_i^2} \right) + \sum_{i \neq j} \varepsilon_{ij} \right),
\end{equation}
\item \begin{equation}
\langle -\nabla J(u), W_0 \rangle \geq C_2 \left(\sum_{i=1}^{p} \left(\frac{|\nabla K(a_i)|}{\lambda_i} + \frac{1}{\lambda_i^2} \right) + \sum_{i \neq j} \varepsilon_{ij} \right),
\end{equation}
\item $|W_0|$ is bounded,
\item $d\lambda_i(W_0) \leq C_3 \lambda_i$, $\forall i \in \{1, \cdots, p\}$,
\item The only region where the λ_i’s are not bounded along the decreasing flow lines of W_0 is where (a_1, \cdots, a_p) is close to some $(y_i, \cdots, y_p) \in F^+$, and the λ_i’s are comparable.
\end{enumerate}

Proof. We follow the proof of [6] and [36]. We need to define W_0 so that the Palais Smale condition is satisfied on its decreasing flow lines and W_0 has no action on the a_i’s variables. Moving the a_i’s contains no risk for the Palais Smale condition, since they lie in a compact set, so we only need to prove

$$\forall s \geq 0, \quad \frac{\partial}{\partial s} \left(\sup_{1 \leq i \leq p} \lambda_i \right) \leq 0,$$

where s is the time along a flow line of W_0.

Since $|\lambda_i \frac{\partial \lambda_i}{\partial a_i}| \leq c \varepsilon_{ij}$, we derive from Lemma 3.3 that

$$\left| J'\left(\sum_{j} \alpha_j \delta_{a_j, \lambda_j} \frac{1}{\lambda_i} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_i} \lambda_i \right) \right| \geq c \left(\frac{|\nabla K(a_i)|}{\lambda_i} - \frac{1}{\lambda_i^3} \left(\sum_{j \neq i} \varepsilon_{ij} + \frac{1}{\lambda_i^2} \right) \right),$$

where c is a positive constant.

If for all $i = 1, \cdots, p$, it holds that

$$\sum_{j \neq i} \varepsilon_{ij} \leq \frac{C}{\lambda_i^2},$$

(4.1)
where C is a suitable constant, then we have

$$|J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_i, \lambda_i}}{\partial a_i}| \geq c \frac{\|\nabla K(a_i)\|}{\lambda_i} - \frac{1}{c'} \frac{1}{\lambda_i^2}$$

for a suitable constant c'.

If (4.1) does not hold for some index, we choose the index i so that λ_i is the largest concentration with

$$\sum_{j \neq i} \varepsilon_{ij} > \frac{C}{\lambda_i^2}. \tag{4.2}$$

Then for $\lambda_j \geq \lambda_i$, we have

$$\sum_{k \neq j} \varepsilon_{kj} \leq \frac{C}{\lambda_j^2}.$$

Observe that, if λ_j and λ_i are comparable, or if $\lambda_i \geq \lambda_j$, then

$$\lambda_i \frac{\partial \varepsilon_{ij}}{\partial \lambda_i} = -n \varepsilon_{ij} (1 + o(1)).$$

If they are not and $\lambda_i = o(\lambda_j)$, then

$$\lambda_i \frac{\partial \varepsilon_{ij}}{\partial \lambda_i} = O(\varepsilon_{ij}) \leq \frac{C}{\lambda_i^2} = o\left(\frac{1}{\lambda_i^2}\right).$$

Thus we have

$$-\sum_{j \neq i} \lambda_i \frac{\partial \varepsilon_{ij}}{\partial \lambda_i} \geq \frac{n}{2} \sum_{j \neq i} \varepsilon_{ij} \geq \frac{C}{2\lambda_i^2}.$$

Hence, choosing C large enough, it holds that

$$J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \lambda_i \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_i} \geq \frac{C}{4\lambda_i^2}.$$

Combine the estimates above, we have

$$|J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_i, \lambda_i}}{\partial a_i}| + \frac{\tilde{C}}{C} J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \lambda_i \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_i} \geq c \frac{\|\nabla K(a_i)\|}{\lambda_i} - \frac{1}{c'} \frac{1}{\lambda_i^2}$$

for suitable positive constants C, \tilde{C}.

Assume now, that we have another index i such that (4.2) holds, but λ_i is not the largest. We introduce the set

$$I_i = \{k | \lambda_k \geq \lambda_i, \sum_{k \neq j} \varepsilon_{kj} > \frac{C}{\lambda_k^2}\}.$$

Observe that for $\lambda_k \geq \lambda_j$, we have

$$2\lambda_k \varepsilon_{kj} \frac{\lambda_k}{\lambda_k} + \lambda_j \frac{\varepsilon_{kj}}{\lambda_j} \leq -\frac{n}{2} \varepsilon_{ij} (1 + o(1)).$$
Then there exist nonnegative constants β_i such that

$$|J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_i}| + \sum_{k \in I_i} c_k \tilde{c} J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{\partial \delta_{a_k, \lambda_k}}{\partial \lambda_k} \geq c \frac{|\nabla K(a_i)|}{\lambda_i} - \frac{1}{c} \frac{1}{\lambda_i^2}.$$

We order the concentrations as follows,

$$\lambda_1 \leq \cdots \leq \lambda_p.$$

If

$$\frac{|\nabla K(a_i)|}{\lambda_i} \geq \frac{1}{c^2} \frac{1}{\lambda_i^2},$$

then

$$|J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_i}| + \sum_{k \in I_i} c_k \tilde{c} J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{\partial \delta_{a_k, \lambda_k}}{\partial \lambda_k} \geq \frac{c \cdot |\nabla K(a_i)|}{4 \lambda_i} + \frac{1}{c} \frac{1}{4 \lambda_i^2}.$$

This yields that

$$|J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_i}| + \sum_{k \in I_i} c_k \tilde{c} J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{\partial \delta_{a_k, \lambda_k}}{\partial \lambda_k} \geq -\sum_{j \neq i} c_{ij} \lambda_i \frac{\partial \varepsilon_{ij}}{\lambda_i} + \frac{|\nabla K(a_i)|}{\lambda_i} + \frac{\bar{c}}{\lambda_i^2}.$$

So there exist nonnegative constants β_i, γ_i such that

$$\sum_i \beta_i |J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_i}| + J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \sum_i \gamma_i \lambda_i \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_i}$$

$$\geq \bar{c} \sum_i \frac{|\nabla K(a_i)|}{\lambda_i} + \frac{1}{\lambda_i^2} + \sum_{j \neq i} \varepsilon_{ij}.$$

Moreover, β_i can be chosen such that

$$\beta_i = 0 \quad \text{if} \quad |J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_i}| < \frac{\bar{c}}{10p} \sum_i \frac{1}{\lambda_i^2}.$$

Define

$$W_0 = -\sum_i \beta_i \text{sign}(J'(\sum_j \alpha_j \delta_{a_j, \lambda_j}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_i}) \frac{1}{\lambda_i} \frac{\partial \delta_{a_i, \lambda_i}}{\partial a_i} - \sum_i \gamma_i \lambda_i \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_i}.$$

Then W_0 is a C^1 vector field and $||W_0|| \leq C$. Since $d\lambda_i(W_0) = -\gamma_i \lambda_i$, thus $|d\lambda_i(W_0)| \leq C\lambda_i$, $\forall i = 1, \cdots, p$.

A similar proof can be repeated if we assume
\[\sum_{j \neq i} \varepsilon_{ij} \geq \frac{C}{\lambda_i^2}. \]

The above proof can be extended as follows. Assume that instead of \(\lambda_1 \leq \cdots \leq \lambda_p \), we single out a subsequence
\[\lambda_{i_1} \leq \lambda_{i_1+1} \leq \cdots \leq \lambda_{i_1+r}. \]
We will construct a vector field \(W_{(i_1,r)} \) in \(\text{span}\{\frac{\partial \delta_{a_1}}{\partial a_1}, \frac{\partial \delta_{a_1}}{\partial \lambda_1}\}_{i_1 \leq i_1 + r} \) such that
\[\|W_{(i_1,r)}\| \leq C \]
and
\[0 \leq -d(\sup_{i_1 \leq i \leq i_1 + r} \lambda_i)(W_{(i_1,r)}) \leq C \sup_{i_1 \leq i \leq i_1 + r} \lambda_i. \]

Under the assumption
\[\frac{|\nabla K(a_i)|}{\lambda_i} \geq \frac{2}{c^2 \lambda_i^2} \quad \text{or} \quad \sum_{s=0}^{r} \varepsilon_{i_1+s} \geq \frac{1}{\lambda_i^2} \quad (4.3) \]
we have a vector field \(W_{(i_1,r)} \) such that
\[-J'(\sum_{j} \alpha_j \delta_{a_j, \lambda_j})(W_{(i_1,r)}) \geq C(\sum_{s=0}^{r} \varepsilon_{i_1+s} + \sum_{s=0}^{r} \frac{1}{\lambda_{i_1+s}} + \sum_{j \geq i_1 + r + 1} \frac{|\nabla K(a_{i_1+s})|}{\lambda_{i_1+s}}) \quad (4.4) \]
If \(i_1 = 1 \), we have the result. Otherwise, for any \(l < i_1 \), it holds that
\[\frac{|\nabla K(a_l)|}{\lambda_l} \leq \frac{2}{c^2 \lambda_l^2} \quad \text{and} \quad \sum_{k=l}^{p} \sum_{i \neq k} \varepsilon_{ik} \leq \frac{c}{\lambda_l^2}. \quad (4.5) \]

It is easy to see that the desired estimate follows from (4.4) and (4.5), unless:
\[\sum_{i \geq i_1} \frac{|\nabla K(a_l)|}{\lambda_i} + \sum_{i \geq i_1} \frac{1}{\lambda_i^2} + \sum_{k=i_1}^{p} \varepsilon_{ik} = o\left(\frac{1}{\lambda_l^2}\right) = o\left(\frac{1}{\lambda_l^2}\right) \]
for some \(l \leq i_1 - 1 \). Assume that (4.6) holds, then for \(i \leq i_1 - 1 \), one has \(\lambda_i |\nabla K(a_i)| \leq \frac{2}{c^2} \) and \(|\nabla K(a_i)| = o(1) \). So, for \(i \leq i_1 - 1 \), \(a_i \) is close to a critical point of \(K \) which we denote by \(y_i \). so \(\lambda_i d(a_i, y_i) \leq C \) for \(i \leq i_1 - 1 \). Consequently, if for \(i, j \leq i_1 - 1 \), \(a_i \) and \(a_j \) are
close to the same critical point y_i, $\frac{\lambda_i}{\lambda_j} \to +\infty$ or $\frac{\lambda_i}{\lambda_j} \to +\infty$, and $\varepsilon_{ij} = o\left(\frac{1}{\lambda_i \lambda_j}\right) = o\left(\frac{1}{\lambda_i^2}\right)$. Now, if a_i and a_j are close to distinct critical points y_i and y_j, $\varepsilon_{ij} = o\left(\frac{1}{\lambda_i^2}\right)$. Thus, for all $i,j \leq i_1 - 1$, the ε_{ij}’s are $o\left(\frac{1}{\lambda_i^2}\right)$. From (4.6), this fact also holds for $i,j \geq i_1$. Thus we have
\[
\sum_{i \neq j} \varepsilon_{ij} = o\left(\frac{1}{\lambda_i^2}\right).
\]
This implies
\[
\sum_{i \geq i_1} \frac{|\nabla K(a_i)|}{\lambda_i} = o\left(\frac{1}{\lambda_i^2}\right).
\]
But
\[
\sum_{i < i_1} \frac{|\nabla K(a_i)|}{\lambda_i} \leq \sum_{i < i_1} \frac{c}{\lambda_i} \leq \frac{c}{\lambda_i^2},
\]
and so
\[
\sum_{i} p \frac{|\nabla K(a_i)|}{\lambda_i} \leq \frac{c}{\lambda_i^2}.
\]
Hence it holds that
\[
-J'(\sum_{j} \alpha_j \delta_j) \lambda_1 \frac{\partial \delta_{a_1,\lambda_1}}{\partial \lambda_1} = -c \frac{-\Delta K(y_1)}{\lambda_1^2} + o\left(\frac{1}{\lambda_i^2}\right) + \sum_{i \neq 1} c_{1,i} \lambda_1 \frac{\partial \varepsilon_1}{\partial \lambda_1}
\]
\[
= -c \frac{-\Delta K(y_1)}{\lambda_1^2} + o\left(\frac{1}{\lambda_i^2}\right).
\]
Furthermore, it holds that
\[
\frac{1}{\lambda_i^2} \geq c^2 \left(\sum_{i} p \frac{|\nabla K(a_i)|}{\lambda_i} + \sum_{i=1}^p \frac{1}{\lambda_i} + \sum_{i \neq j} \varepsilon_{ij}\right),
\]
for some constant $c > 0$.

If
\[
-\Delta K(y_1) \geq c' > 0,
\]
then
\[
-J'(\sum_{j} \alpha_j \delta_j) \lambda_1 \frac{\partial \delta_{a_1,\lambda_1}}{\partial \lambda_1} \geq c \left(\sum_{i} p \frac{|\nabla K(a_i)|}{\lambda_i} + \sum_{i=1}^p \frac{1}{\lambda_i} + \sum_{i \neq j} \varepsilon_{ij}\right).
\]
Set
\[
W_0 = \lambda_1 \frac{\partial \delta_{a_1,\lambda_1}}{\partial \lambda_1}.
\]
Then, $d(\sup_i \lambda_i)(W_0) \leq 0$.

If
\[
-\Delta K(y_1) < 0,
\]
set

\[W_0 = -\lambda_1 \frac{\partial \delta_{\alpha_1, \lambda_1}}{\partial \lambda_1} \]

Then it satisfies all the required properties. Lemma 4.3 then follows as soon as \(i_1 \) exists.

Assume now that such \(i_1 \) satisfying (4.3) does not exist, that is to say, \(\forall i \in \{1, \ldots, p\} \),

\[\frac{|\nabla K(a_i)|}{\lambda_i} \leq \frac{2}{c^2} \frac{1}{\lambda_i^2} \quad \text{and} \quad \sum_{k=l}^{p} \sum_{i \neq k} \varepsilon_{ik} \leq \frac{c}{\lambda_i^2}. \]

We assume that

\[\inf d(a_i, a_j) < \frac{1}{2} \inf d(y_k, y_l). \]

(otherwise, the proof is straightforward). Under this condition, \(a_i \) and \(a_j \) are close to some same critical point \(y_i \), then \(\inf(\lambda_i, \lambda_j) = o(\sup(\lambda_i, \lambda_j)) \), so

\[\frac{|\nabla K(a_i)|}{\lambda_i} \leq \frac{2}{c^2} \frac{1}{\lambda_i^2} \quad \text{and} \quad \sum_{k=l}^{p} \sum_{i \neq k} \varepsilon_{ik} \leq o\left(\frac{1}{\lambda_i^2}\right). \]

Then the same argument used in the previous case can be repeated.

Since the same argument is valid when two concentrations are not comparable. So we will assume now that \(\inf d(a_i, a_j) \geq d_0 > 0 \), and all concentrations are comparable, that is, \(\frac{1}{c} \leq \frac{\lambda_i}{\lambda_j} \leq c \). If some index \(i \), \(a_i \) is not close to some critical point \(y_i \), then

\[\varepsilon_{ij} = o\left(\frac{1}{\lambda_i^2}\right) = o\left(\frac{1}{\lambda_j^2}\right), \]

and

\[\frac{1}{\lambda_i^2} \leq \frac{1}{\lambda_j^2}. \]

so

\[\sum_{k=l}^{p} \sum_{i \neq k} \varepsilon_{ik} \leq o\left(\frac{1}{\lambda_i^2}\right). \]

and

\[\sum_{k=l}^{p} \frac{1}{\lambda_k^2} + \sum_{k \neq l} \varepsilon_{kl}. \]

Hence \(W_0 = \frac{1}{\lambda_i} \frac{\partial \delta_{\alpha_1, \lambda_1}}{\partial \lambda_1} \) is the desired vector field. Now, we are left with the case where each point \(a_i \) is close to a critical point \(y_i \). It holds that

\[-J'(\sum_j \alpha_j \delta_j) \lambda_i \frac{\partial \delta_{\alpha_1, \lambda_1}}{\partial \lambda_1} = -c \frac{\Delta K(y_i)}{\lambda_i^2} + o\left(\frac{1}{\lambda_i^2}\right). \]

Set \(W_0 = \lambda_i \frac{\partial \delta_{\alpha_1, \lambda_1}}{\partial \lambda_1} \). If \(-\Delta K(y_i) < 0, d\lambda_i(W_0) = -\lambda_i, \) so \(d(\sup \lambda_i)(W_0) \leq 0, \) and in this case \(w_0 \) is constructed.

The final pseudogradient vector field \(W_0 \) will be a convex combination of the vector field constructed in the above cases.

Finally, it remains the case where the points \(a_i \) are close to distinct critical points \(y_i \), having \(-\Delta K(y_i) > 0 \) and all the concentrations are comparable. In this region the decreasing flow lines of \(W_0 \) are attracted by the critical point at infinity \((y_{j_1}, \ldots, y_{j_p})_\infty\). Thus condition (5) is satisfied and this completes the proof. \(\square \)
LEMMA 4.4. For any $u = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \in V(p, \varepsilon_1)$ ($\varepsilon_1 < \varepsilon/2$), we have
\[J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + \bar{v}(\alpha, a, \lambda)) = J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}) \]
with
\[\sum_{i \neq j} \varepsilon_{ij} + \sum_{i} \frac{1}{\lambda_i^2} \rightarrow 0 \iff \sum_{i \neq j} \varepsilon_{ij} + \sum_{i} \frac{1}{\lambda_i^2} \rightarrow 0 \]
and
\[|\tilde{a}_i - a_i| \rightarrow 0 \text{ as } \sum_{i \neq j} \varepsilon_{ij} + \sum_{i} \frac{1}{\lambda_i^2} \rightarrow 0. \]

PROOF. We follow the proof of [7] and [20]. By Lemma 4.3, the vector field W_0 is Lipschitz. Hence, there is a one parameter group h_s generated by W_0 satisfying
\[
\begin{cases}
\frac{d}{ds} h_s(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}) = W_0(h_s(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i})), \\
h_0(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}) = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}.
\end{cases}
\]
Therefore $J(h_s(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}))$, $J(h_s(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}) + \bar{v}(s))$ are both decreasing functions of s. By the definition of \bar{v}, it holds that
\[J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + \bar{v}) \leq J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}) = J(h_0(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i})). \]

By Lemma 4.3, the flow line $h_s(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i})$ satisfies the (PS) condition if it does not go to infinity. Since the flow line started far away from these critical points at infinity and $d\lambda_{i_0} \leq C\lambda_{i_0}$, then it will take an infinite time for the flow line to go to infinity. Then the flow line would be down the level
\[J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + \bar{v}) = J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}) + o(1) \]
before it exists from $V(p, \varepsilon)$. Thus there is at most one solution of the equation
\[J(h_s(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i})) = J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + \bar{v}). \quad (4.7) \]

Indeed, we assume $\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \in V(p, \varepsilon_1)$ with $\varepsilon_1 < \varepsilon/2$. Then the flow line will travel from $\partial V(p, \varepsilon_1)$ to $\partial V(p, \varepsilon)$. During this strip, it holds that
\[-J'(h_s(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i})) \geq C \left(\sum_{i=1}^{p} \left(\frac{\nabla K(a_i)}{\lambda_i} + \frac{1}{\lambda_i^2} \right) + \sum_{i \neq j} \varepsilon_{ij} \right) \geq C(\varepsilon) > 0 \]
and
\[d(\partial V(p, \varepsilon_1), \partial V(p, \varepsilon)) = a(\varepsilon), \quad |W_0| \leq C. \]

Let Δs denote the time to travel from $\partial V(p, \varepsilon_1)$ to $\partial V(p, \varepsilon)$, then we have $a(\varepsilon) \leq C\Delta s$. Let $\gamma(\varepsilon) = -\frac{C(\varepsilon)a(\varepsilon)}{C}$, then $J(h_s(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}))$ decreases at least $-\gamma(\varepsilon)$ during this strip. Hence, (4.7) has a unique solution.
Conversely, starting from $\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}$ in $V(p, \varepsilon_2)$, ε_2 sufficiently small, we consider the vector field $-W_0$. The flow line is $h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i})$, we have to solve

$$J(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}) + \bar{v}(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}))) = J(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}).$$

(4.8)

It holds that

$$\frac{d}{ds}(J(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}) + \bar{v}(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i})))) = J'(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}) + \bar{v}(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i})))(-W_0 - \frac{\partial \bar{v}}{\partial (\alpha_i, a_i, \lambda_i)}(W_0))$$

$$\geq C \left(\sum_{i=1}^{p} \left(\frac{|\nabla K(\tilde{u}_i(s))|}{\lambda_i(s)} + \frac{1}{\lambda_i^2(s)} \right) + \sum_{i \neq j} \tilde{\varepsilon}_{ij}(s) \right) > 0.$$

So $J(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}) + \bar{v}(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i})))$ is an increasing function of s. Therefore there is at most one solution of (4.8). We have here the same problem discussed in the first case. If (PS) is satisfied along the increasing flow lines of the vector field, then we can apply the same argument above to show that the flow line does not exit from $V(p, \varepsilon)$. If (PS) is not satisfied, since $|d\lambda_{i_0}(W_0)| \leq C\lambda_{i_0}$, it would be in an infinite time, and during this time $[0, +\infty)$, we have

$$\bar{u}_s = h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}) + \bar{v}(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i}))$$

and

$$\frac{d}{ds} J(\bar{u}_s) \geq C \left(\sum_{i=1}^{p} \left(\frac{|\nabla K(\tilde{u}_i(s))|}{\lambda_i(s)} + \frac{1}{\lambda_i^2(s)} \right) + \sum_{i \neq j} \tilde{\varepsilon}_{ij}(s) \right).$$

Since $\lim_{s \to \infty} J(\bar{u}_s) = J(\bar{u}_\infty) < \infty$, we have

$$\int_0^\infty \left(\sum_{i=1}^{p} \left(\frac{|\nabla K(\tilde{u}_i(s))|}{\lambda_i(s)} + \frac{1}{\lambda_i^2(s)} \right) + \sum_{i \neq j} \tilde{\varepsilon}_{ij}(s) \right) ds < \infty.$$

Therefore, up to a subsequence $s_k \to \infty$, it holds that

$$\frac{1}{\lambda_i^2(s_k)} + \sum_{i \neq j} \tilde{\varepsilon}_{ij}(s_k) \to 0$$

and

$$J(\bar{u}_{s_k}) - J(h_{-s_k}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}_i})) \to 0,$$
since \(\tilde{v}(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}})) \to 0. \) So

\[
\limsup_{s \to \infty} J(\bar{u}_s) = \limsup_{s \to \infty} J(h_{-s}(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}})) > J(\sum_{i=1}^{p} \tilde{\alpha}_i \delta_{\tilde{a}_i, \tilde{\lambda}}).
\]

By continuity of \(J(\bar{u}_s), \) equation (4.8) has a solution.

Next, we will show that

\[
\text{Proof of Lemma} 4.1. \quad \text{Lemma} 4.1 \text{ follows from Lemma} 4.2 \text{ and } 4.4, \text{ since for any } \varepsilon > 0, \text{ there exist } \varepsilon > 0 \text{ and } \varepsilon' > 0 \text{ such that }
\]

\[
V(p, \varepsilon) \xrightarrow{h} V(p, \varepsilon_1) \xrightarrow{h} V(p, \varepsilon') \supseteq V(p, \varepsilon).
\]
Proof. By Lemma 4.3, the Palais-Smale condition is satisfied along the flow lines of W_0 except in case (5). So we assume for a function $u = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + v$ in $V(p, \varepsilon)$ that the concentration points a_j converge to distinct critical points y_{ij} in I^+ and that all speeds of concentrations λ_j are comparable. By the Morse lemma at infinity Lemma 4.1, we have

$$J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + v) = J(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i}) + \frac{1}{2} J''(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i})V_i \cdot V_i.$$

The variable V is completely independent from the others, and close to zero in a fixed Hilbert subspace. Minimizing with respect to V, the problem is reduced in a finite dimensional problem. In fact, we can do as V is zero. Indeed, one can define on the V-variable the pseudogradient $\frac{\partial J}{\partial V} = -V$ and then $V(s) = e^{-s} V(0)$ will go to zero as s goes to $+\infty$. From the proof of Lemma 4.3, we have $|\nabla K(a_j)| = o(1)$ and $\bar{e}_{ij} = o\left(\frac{1}{\lambda_j^2}\right)$. Therefore, after a suitable change of variables, we have (drop the tilde for simplicity),

$$J(u) = \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\left(\sum_{i=1}^{p} \alpha_i^{2n} K(a_i)S\right)^{\frac{n-2\gamma}{n}}} \left[1 - \sum_{j=1}^{p} \Delta K(y_{ij}) \right]. \quad (5.1)$$

(5.1) yields a split of the variables a and λ. When $a = (a_1, \cdots, a_p)$ is equal to $y = (y_{i1}, \cdots, y_{ip})$, only the variables λ_j can move. Since $-\Delta K(y_{ij}) > 0$, in order to decrease $J(u)$, the only way is to increase the variables λ_j. When $\lambda_j = +\infty$ for $j = 1, \cdots, p$, one obtains the critical point at infinity $(y_{i1}, \cdots, y_{ip})_\infty$. This completes the proof. □

Lemma 5.2. Let $\phi^p_\infty = (y_{i1}, \cdots, y_{ip})_\infty \in F_\infty^+$ and $i(\phi^p_\infty)$ be the Morse index of J at ϕ^p_∞. Then

$$i(\phi^p_\infty) = p - 1 + \sum_{j=1}^{p} (n - \text{ind}(K, y_{ij})), $$

where $\text{ind}(K, y_{ij})$ is the Morse index of K at y_{ij}.

Proof. By (5.1), the Morse index of J at ϕ^p_∞ is equal to the Morse index of the functional

$$\gamma_0(\alpha, a) = \frac{\sum_{i=1}^{p} \alpha_i^2 S}{\left(\sum_{i=1}^{p} \alpha_i^{2n} K(a_i)S\right)^{\frac{n-2\gamma}{n}}}$$

at its critical point. Since γ_0 is homogeneous in the variable α and has a maximum point

$$\left(\frac{1}{K(a_1)}, \frac{1}{K(a_2)}, \cdots, \frac{1}{K(a_p)}\right)$$

with critical value $S^{\frac{2}{n}} \left(\sum_{i=1}^{p} \frac{1}{K(a_i)^{n-2\gamma}}\right)^{\frac{2}{n}}$. On the other hand, γ_0 has a single critical point $y = (y_{i1}, y_{i2}, \cdots, y_{ip})$ in the a variable. Thus, after a change of variables, we have the following normal form,

$$J(u) = S^{\frac{2}{n}} \left(\sum_{j=1}^{p} \frac{1}{K(y_{ij})^{\frac{n-2\gamma}{2n}}}\right)^{\frac{2}{n}} \left[1 - |\alpha^-|^2 + \sum_{j=1}^{p} (|\alpha_j^+|^2 - |\alpha_j^-|^2)\right]. \quad (5.2)$$

EXISTENCE RESULTS FOR THE FRACTIONAL NIRENBERG PROBLEM 20
Here $\alpha^- \in \mathbb{R}^{p-1}$ is the coordinate of α and $a_j^+ (a_j^-)$ is the coordinate of a_j along the stable (unstable) manifold of y_j. This completes the proof.

Proof of Theorem 1.2. We follow the argument of [36]. Let N be a submanifold of Σ^+ with dimension k, and let ψ^p_∞ be a critical point at infinity with Morse index $\text{ind}(\psi^p_\infty) \leq k$. We say that ψ^p_∞ is dominated by N and denote as $\psi^p_\infty < N$, if

$$N \cap W_s(\psi^p_\infty) \neq \emptyset.$$

Now, for any $k \in \mathbb{N}$ and any subset X_k of $\{\psi^p_\infty \in F_\infty^+ : i(\psi^p_\infty) \leq k\}$, we recall the following set given by

$$X_k^\infty = \bigcup_{\phi^p_\infty \in X_k} W_u(\phi^p_\infty).$$

X_k^∞ is a stratified set of top dimension k. Without loss of generality, we assume it equal to k. Since Σ^+ is a contractible set, X_k^∞ is contractible in Σ^+. More precisely, there exists a contraction $h : [0, 1] \times X_k^\infty \rightarrow \Sigma^+$, i.e., h is continuous and such that $\forall u \in X_k^\infty$, $h(0, u) = u$ and $h(1, u) = \bar{u}$ a fixed point in X_k^∞. Let

$$\psi(X_k^\infty) = h([0, 1] \times X_k^\infty).$$

Then $\psi(X_k^\infty)$ is contractible of dimension $k + 1$. Now, deform $\psi(X_k^\infty)$ by the flow lines of $-\partial J$. By transversality arguments, we can assume that the deformation avoids all critical points at infinity of Morse index greater then or equal to $k + 2$.

Using a result of Bahri and Rabinowitz (Proposition 7.24 and Theorem 8.2 of [5]), we have

$$\psi(X_k^\infty) \simeq \bigcup_{\phi^p_\infty < \psi(X_k^\infty), \text{ind}(\phi^p_\infty) \leq k+1} W_u(\phi^p_\infty) \simeq X_k^\infty \cup \bigcup_{\phi^p_\infty \in F^p_\infty \setminus X_k, \phi^p_\infty < \psi(X_k^\infty), \text{ind}(\phi^p_\infty) \leq k+1} W_u(\phi^p_\infty).$$

Now, taking $k = k_0$, where k_0 is the integer in Theorem 1.2, and by condition (H2), we have

$$\psi(X_{k_0}^\infty) \simeq X_{k_0}^\infty.$$

Now $X_{k_0}^\infty$ is a finite CW complex in dimension k_0, and the j-dimensional cells of $X_{k_0}^\infty$ are the unstable manifolds of critical points at infinity of Morse index $\text{ind}(\phi^p_\infty) = j$. Hence we have

$$1 = \chi(\psi(X_{k_0}^p)) = \chi(X_{k_0}^\infty) = \sum_{\phi^p_\infty \in X_{k_0}} (-1)^{\text{ind}(\phi^p_\infty)},$$

which contradicts the assumption (H1). Hence, there is a solution w. And it is easy to derive from the above arguments that its Morse index $\text{ind}(w) \leq k_0 + 1$. This completes the proof.

□

6. Proof of Theorem 1.3.

Since $K = 1 + \varepsilon K(x)$, the functional is

$$J(u) = \frac{\|u\|^2}{\left(\int_{\mathbb{R}^n} (1 + \varepsilon K_0) u^{-2\gamma} dvol_{g_0}\right)^{\frac{n-2\gamma}{n}}}.$$
If $\varepsilon = 0$, we obtain the Yamabe functional

$$J_0(u) = \frac{\|u\|^2}{\left(\int_{\Sigma} u^{\frac{2n}{n-2}} \, dvol_{g_0}\right)^{\frac{2n-2}{n}}}.$$

Let σ be the minimum of J_0 on Σ^+, then

$$\sigma = J_0(\delta_{a,\lambda}) = S^\frac{2n}{n},$$

where S is the constant defined in A.1. Since

$$J(u) = J_0(u) (1 + O(\varepsilon)),$$

with $O(\varepsilon)$ is independent of u, when $|\varepsilon|$ is small enough,

$$J^\sigma + \eta \subset J_0^\sigma + 2\eta \subset J_0^\sigma + 3\eta. \tag{6.1}$$

We recall that $J^\beta = \{ u \in \Sigma^+ : J(u) \leq \beta \}, \beta \in \mathbb{R}$.

By (5.2), the critical level corresponding to a critical point at infinity with p bubbles is

$$J((y_1, \ldots, y_p)_\infty) = S^\frac{2n}{n} \left(\frac{1}{p \sum_{j=1}^{p} \frac{1}{K(y_j)^{\frac{p-2}{p}}}}\right)^{\frac{2n}{n}},$$

which tends to $S^\frac{2n}{n} p^\frac{2n}{n}$ in our current case as $\varepsilon \to 0$. Let $\eta = \frac{\sigma}{p}$, when $|\varepsilon|$ is sufficiently small, then critical points at infinity made of two bubbles or more are above the level $\sigma + 3\sigma$ and the ones with a single bubble are below the level $\sigma + \eta$. Therefore, $J^\sigma + 3\eta \simeq J^\sigma + \eta$. By (6.1), $J_0^\sigma + 2\eta \subset J^\sigma + \eta$. Since $J_0^\sigma + 2\eta$ is contractible, $J^\sigma + \eta$ is also contractible.

Let k_0 be the integer which achieves the maximum of (1.5). Then

$$\sum_{y \in I^+ \cap \text{ind}(K,y) \leq k} (-1)^{n - \text{ind}(K,y)} \neq 1. \tag{6.2}$$

Let

$$X_{k_0} = \{ (y)_\infty | y \in I^+, \text{ind}(y)_\infty \leq k_0 \},$$

which is the set of critical points at infinity with a single bubble and having Morse index $\leq k_0$. By Lemma 5.2, (6.2) becomes

$$\sum_{(y)_\infty \in X_{k_0}} (-1)^{n - \text{ind}(K,y)} \neq 1,$$

which is condition (H1) in Theorem 1.2.

Let

$$X_{k_0}^\infty = \bigcup_{(y)_\infty \in X_{k_0}} W_u(y)_\infty.$$
Then $X_k^{\infty} \subset J^{\sigma+\eta}$. Since $J^{\sigma+\eta}$ is contractible, X_k^{∞} is contractible in $J^{\sigma+\eta}$. More precisely, there exists a contraction $h : [0, 1] \times X_k^{\infty} \to J^{\sigma+\eta}$, i.e., h is continuous and such that $\forall u \in X_k^{\infty}$, $h(0, u) = u$ and $h(1, u) = \tilde{u}$ a fixed point in X_k^{∞}. Set $\psi(X_k^{\infty}) = h([0, 1] \times X_k^{\infty})$.

Now let $\phi^\infty_k \in F^+_\infty \setminus X_k^{\infty}$ such that $i(\phi^\infty_k) \leq k_0 + 1$. If ϕ^∞_k has at least two bubbles, then $\psi(X_k^{\infty}) \cap W_s(\delta^\infty_k) = \emptyset$ since $\psi(X_k^{\infty}) \subset J^{\sigma+\eta}$. So it remains to consider the critical points at infinity with a single bubble $(y)_\infty \in X_k^{\infty}$ such that $i(y)_\infty = k_0 + 1$. Since $k_0 \in T$, such critical points at infinity does not exist. Thus condition (H2) in Theorem 1.2 is satisfied. By Theorem 1.2, we have the desired result. This completes the proof. \qed
Appendix A. Proof of Lemma 3.1.

We write
\[J(u) = \frac{\|u\|^2}{\left(\int_{S^n} K u^{\frac{2n}{n-2\gamma}} d\text{vol}_{g_0} \right)^{\frac{n-2\gamma}{n}}} = \frac{N}{D}. \]

To prove Lemma 3.1, we only need to give the expansions of \(N \) and \(D \). First, we expand the numerator \(N \) as follows
\[N = \|u\|^2 = \| \sum_{i=1}^{p} \alpha_i \delta_{\lambda_i} + v \|^2 = \sum_{i=1}^{p} \alpha_i^2 \| \delta_i \|^2 + \sum_{i \neq j} \alpha_i \alpha_j \langle \delta_i, \delta_j \rangle + \|v\|^2. \]

Here, the other terms are zero since \(v \) satisfies condition (2.4).

Lemma A.1. It holds that
\[\int_{S^n} \delta_{\lambda_i} P_\gamma \delta_{\lambda_i} d\text{vol}_{g_0} = S, \]
where \(S \) is the sharp constant for the following conformally invariant Sobolev inequality
\[\|f\|^2_{L^2(S^n)} \leq S \int_{S^n} f P_\gamma f d\text{vol}_{g_0}, \quad 2^* = \frac{2n}{n - 2\gamma}. \]

Lemma A.1 was proved by Lieb in [31].

Lemma A.2. For \(i \neq j \), we have
\[\int_{S^n} \delta_{\lambda_i} P_\gamma \delta_{\lambda_j} d\text{vol}_{g_0} = c_0 2^* c_1 r_\gamma^{\frac{2n}{n-2\gamma}} (1 + o(1)), \quad \text{with} \quad c_1 = \int_0^\infty \frac{r_\gamma^{n-2\gamma} dr}{(1 + r_\gamma^2)^{\frac{n+2\gamma}{2}}}. \]

Proof.
\[I = \int_{S^n} \delta_{\lambda_i} P_\gamma \delta_{\lambda_i} d\text{vol}_{g_0} = c_0 \frac{2n}{n-2\gamma} \int_{R^n} \frac{\lambda_i^{n+2\gamma}}{1 + \lambda_i^2 |\zeta - g_i|^2} \frac{1}{1 + \lambda_j^2 |\zeta - g_j|^2} \frac{1}{|\lambda_i^{n+2\gamma}} d\zeta \]
\[= c_0 \frac{2n}{n-2\gamma} \left(\frac{\lambda_j}{\lambda_i} \right)^{\frac{n-2\gamma}{2}} \int_{R^n} \frac{1}{1 + |\zeta'|^2} \frac{1}{1 + |\lambda_i^{\gamma} \zeta' + \lambda_j d_{ij}|^2} \frac{2n}{n-2\gamma} d\zeta'. \]

Let
\[\mu = \max \left(\frac{\lambda_i}{\lambda_j}, \frac{\lambda_i}{\lambda_j}, \lambda_i \lambda_j d_{ij}^2 \right), \quad \text{where} \quad d_{ij} = d(g_i, g_j). \]

First, we assume \(\mu = \frac{\lambda_i}{\lambda_j} \). Note that
\[1 + \left| \frac{\lambda_j}{\lambda_i} \zeta' + \lambda_j d_{ij} \right|^2 = \left(1 + \lambda_j^2 |d_{ij}|^2 \right) \left(1 + 2 \frac{\lambda_j}{1 + \lambda_j^2 |d_{ij}|^2} d_{ij} \frac{\lambda_j}{\lambda_i} \zeta' + \left(\frac{\lambda_j}{\lambda_i} \right)^2 \frac{|\zeta'|^2}{1 + \lambda_j^2 |d_{ij}|^2} \right). \]
If $|\zeta'| \leq \frac{1}{2} \frac{\lambda_j}{\lambda_i}$, then
\[
\left(1 + \left|\frac{\lambda_j}{\lambda_i} \zeta' + \lambda_j d_{ij}\right|^2\right)^{-\frac{n-2\gamma}{2}} = \left(1 + \lambda_j^2 |d_{ij}|^2\right)^{-\frac{n-2\gamma}{2}}
\]
\[
\left(1 - (n-2\gamma) \frac{\lambda_j}{1 + \lambda_j^2 |d_{ij}|^2} \lambda_j^2 \zeta' + O\left(\frac{\lambda_j}{\lambda_i}\right)^2 |\zeta'|^2\right).
\]

Thus we have
\[
\int_{B(0, \frac{1}{2} \lambda_j)} \frac{1}{|1 + |\zeta'|^2|^{\frac{n+2\gamma}{2}}} d\zeta' = \omega_n \int_0^\infty \frac{r^{n-1}}{(1 + r^2)^{\frac{n+2\gamma}{2}}} dr + O\left(\frac{\lambda_j}{\lambda_i}^{2\gamma}\right),
\]
and
\[
\int_{B(0, \frac{1}{2} \lambda_j)} \frac{|\zeta'|^2}{|1 + |\zeta'|^2|^{\frac{n+2\gamma}{2}}} d\zeta' = O\left(\frac{\lambda_i}{\lambda_j}^{2-2\gamma}\right).
\]

Hence
\[
I = c_0^{\frac{2n}{n-2\gamma}} \left(\frac{\lambda_j}{\lambda_i}\right)^{\frac{n+2\gamma}{2}} \left(1 + \lambda_j^2 |d_{ij}|^2\right)^{-\frac{n-2\gamma}{2}} \omega_n \int_0^\infty \frac{r^{n-1}}{(1 + r^2)^{\frac{n+2\gamma}{2}}} dr + O\left(\frac{\lambda_j}{\lambda_i}^{2\gamma}\right).
\]

Under the assumption $\mu = \frac{\lambda_j}{\lambda_i}$, we have, as $\varepsilon_{ij} \to 0$,
\[
I = c_0^{\frac{2n}{n-2\gamma}} \varepsilon_{ij} \left[\omega_n \int_0^\infty \frac{r^{n-1}}{(1 + r^2)^{\frac{n+2\gamma}{2}}} dr + O\left(\varepsilon_{ij}^{\frac{4\gamma}{n-2\gamma}}\right)\right].
\]

Similarly, the result of the lemma holds in the case $\mu = \frac{\lambda_i}{\lambda_j}$.

Finally, we consider the case $\mu = \lambda_i \lambda_j |d_{ij}|^2$. We rewrite I as
\[
I = c_0^{\frac{2n}{n-2\gamma}} \int_{\mathbb{R}^n} \frac{1}{|1 + |\zeta'|^2|^{\frac{n+2\gamma}{2}}} \frac{1}{|\lambda_j^2 \zeta' + \sqrt{\lambda_i \lambda_j d_{ij}}|^{\frac{n-2\gamma}{2}}} d\zeta'.
\]

Without loss of generality, we assume $\lambda_i \leq \lambda_j$, then we have
\[
\frac{\lambda_i}{\lambda_j} + \sqrt{\frac{\lambda_j}{\lambda_i} \zeta'} + \sqrt{\lambda_i \lambda_j d_{ij}} = \left(\frac{\lambda_i}{\lambda_j} + \lambda_i \lambda_j d_{ij}^2\right) \left(1 + \frac{\lambda_i \lambda_j |\zeta'|^2 + 2 \lambda_j |d_{ij}|^2}{\lambda_i + \lambda_i \lambda_j d_{ij}^2}\right).
\]
By the same arguments used in the first case we have
\[
\int_{|\zeta'| \leq \frac{\epsilon}{\sqrt{\mu}}} \frac{1}{1 + |\zeta'|^{\frac{n+2\gamma}{2}}} \frac{1}{\frac{\lambda_i}{\lambda_j} + |\sqrt{\frac{\lambda_j}{\lambda_i}} \zeta' + \sqrt{\lambda_i \lambda_j d_{ij}}|^{\frac{n-2\gamma}{2}}} d\zeta' = \varepsilon_{ij} \left[\omega_n \int_0^\infty \frac{r^{n-1}}{(1 + r^2)^{\frac{n+2\gamma}{2}}} dr + O \left(\frac{\epsilon^{\frac{\gamma}{2}}}{\lambda_{ij}} \right) \right].
\]

Set
\[
B_1 := \left\{ \zeta' \in \mathbb{R}^n ||\zeta'| + \lambda_i d_{ij}| \leq \frac{1}{10} \lambda_i |d_{ij}| \right\}, \quad B_2 := \left\{ \zeta' \in \mathbb{R}^n ||\zeta'| \leq \sqrt{\frac{\mu}{10}} \right\}.
\]

Then we have
\[
\int_{(B_1 \cup B_2)^c} \frac{1}{1 + |\zeta'|^{\frac{n+2\gamma}{2}}} \frac{1}{\frac{\lambda_i}{\lambda_j} + |\sqrt{\frac{\lambda_j}{\lambda_i}} \zeta' + \sqrt{\lambda_i \lambda_j d_{ij}}|^{\frac{n-2\gamma}{2}}} d\zeta' \leq \frac{c}{\mu^{\frac{n-2\gamma}{2}}} \int_0^\infty \frac{r^{n-1}}{(1 + r^2)^{\frac{n+2\gamma}{2}}} dr.
\]

Therefore,
\[
\int_{(B_1 \cup B_2)^c} \frac{1}{1 + |\zeta'|^{\frac{n+2\gamma}{2}}} \frac{1}{\frac{\lambda_i}{\lambda_j} + |\sqrt{\frac{\lambda_j}{\lambda_i}} \zeta' + \sqrt{\lambda_i \lambda_j d_{ij}}|^{\frac{n-2\gamma}{2}}} d\zeta' = O(\frac{1}{\mu^2}) = O(\epsilon_{ij}^{\frac{1}{2}}).
\]

On B_1, we have $|\zeta'| \geq \frac{9}{10} \lambda_i |d_{ij}|$, this leads to
\[
\int_{B_1} \frac{1}{1 + |\zeta'|^{\frac{n+2\gamma}{2}}} \frac{1}{\frac{\lambda_i}{\lambda_j} + |\sqrt{\frac{\lambda_j}{\lambda_i}} \zeta' + \sqrt{\lambda_i \lambda_j d_{ij}}|^{\frac{n-2\gamma}{2}}} d\zeta' = O(\frac{1}{\mu^2}) = O(\epsilon_{ij}^{\frac{1}{2}}).
\]

This completes the proof Lemma A.2. \hfill \Box

Now let us consider the denominator D of J,
\[
D^{\frac{n}{n-2\gamma}} = \int_{\mathbb{S}^n} K \left(\sum_{i=1}^p \alpha_i \delta_{\zeta_i} + v \right)^{\frac{2n}{n-2\gamma}} dvol_{g_0}.
\]
First, since

\[
\left| \int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + v \right)^{\frac{2n}{n-2\gamma}} d\nu_{g_0} - \int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{2n}{n-2\gamma}} d\nu_{g_0} \right|
\]

\[- \frac{2n}{n-2\gamma} \int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{n+2n}{n-2\gamma}} v d\nu_{g_0}
\]

\[- \frac{2n^2 + 4n\gamma}{n^2 - 4\gamma^2} \int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{n}{n-2\gamma}} v^2 d\nu_{g_0} \]

\leq C \left[\int_{\mathbb{S}^n} v^{\frac{2n}{n-2\gamma}} d\nu_{g_0} + \int_{\mathbb{S}^n} \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{6n-n}{n-2\gamma}} \inf \left(\left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^3, |v|^3 \right) d\nu_{g_0} \right]
\]

\leq C \left[\int_{\mathbb{S}^n} v^{\frac{2n}{n-2\gamma}} d\nu_{g_0} + \int_{\mathbb{S}^n} \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{6n-n}{n-2\gamma}} \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{6n-n}{n-2\gamma}} |v|^3 d\nu_{g_0} \right]
\]

\leq C \int_{\mathbb{S}^n} v^{\frac{2n}{n-2\gamma}} d\nu_{g_0} \leq C \left(\int_{\mathbb{S}^n} v P_{\gamma} v d\nu_{g_0} \right)^{\frac{n}{n-2\gamma}}.

we have

\[
\int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} + v \right)^{\frac{2n}{n-2\gamma}} d\nu_{g_0} = \int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{2n}{n-2\gamma}} d\nu_{g_0}
\]

\[+ \frac{2n}{n-2\gamma} \int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{n+2n}{n-2\gamma}} v d\nu_{g_0}
\]

\[+ \frac{2n^2 + 4n\gamma}{n^2 - 4\gamma^2} \int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{4n}{n-2\gamma}} v^2 d\nu_{g_0} + O \left(\int_{\mathbb{S}^n} v P_{\gamma} v d\nu_{g_0} \right)^{\frac{n}{n-2\gamma}}.
\]

Lemma A.3.

\[
\int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{2n}{n-2\gamma}} d\nu_{g_0} = \sum_{i=1}^{p} \alpha_i^{\frac{2n}{n-2\gamma}} K(a_i) S + \sum_{i=1}^{p} \alpha_i^{\frac{2n}{n+2\gamma}} c_2 \frac{\Delta K(x_i)}{\lambda_i^2}
\]

\[+ O \left(\sum_{i=1}^{p} \frac{1}{\lambda_i^2} \right) + \frac{2n}{n-2\gamma} \sum_{i \neq j} \alpha_i^{\frac{n+2\gamma}{n-2\gamma}} \alpha_j^{\frac{n-2\gamma}{n-2\gamma}} c_1 \omega_n \varepsilon_{ij} + o \left(\sum_{i \neq j} \varepsilon_{ij} \right)
\]

\[+ O \left(\sum_{i \neq j} \frac{1}{\lambda_i^{2\gamma} - \lambda_j^{2\gamma}} \right) + O \left(\sum_{i \neq j} \frac{\varepsilon_{ij}^{n/2\gamma}}{\log \varepsilon_{ij}} \right), \quad c_2 = \frac{c_0^{n-2\gamma}}{\lambda_i^{2\gamma}} \int_{\mathbb{S}^n} |\zeta|^2 w_{0,1}^{\frac{2n}{n-2\gamma}} d\zeta.
\]
PROOF.

\[
\int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right)^{2n/(n-2)} \, d\mathrm{vol}_{g_0} = \sum_{i=1}^{p} \alpha_i \cdot \int_{\mathbb{S}^n} K \delta_{a_i, \lambda_i}^{2n/(n-2)} \, d\mathrm{vol}_{g_0} + \frac{2n}{n-2} \sum_{i \neq j} \alpha_i \frac{a_j}{\lambda_j} \int_{\mathbb{S}^n} K \delta_{a_i, \lambda_i} \delta_{a_j, \lambda_j} \, d\mathrm{vol}_{g_0} + O \left(\sum_{i \neq j} \int_{\mathbb{S}^n} \delta_{a_i, \lambda_i} \inf(\delta_{a_i, \lambda_j}, \delta_{a_i, \lambda_i})^2 \, d\mathrm{vol}_{g_0} \right).
\]

And it holds that

\[
\sum_{i \neq j} \int_{\mathbb{S}^n} \delta_{a_i, \lambda_i} \inf(\delta_{a_i, \lambda_j}, \delta_{a_i, \lambda_i})^2 \, d\mathrm{vol}_{g_0} \leq C \sum_{i \neq j} \epsilon_{ij}^{n/(n-2)} \log \epsilon_{ij}^{-1}.
\]

Since

\[
\int_{\mathbb{S}^n} K \delta_{a_i, \lambda_i}^{2n/(n-2)} \, d\mathrm{vol}_{g_0} = \int_{\mathbb{R}^n} \tilde{K}(x') w_{g_i, \lambda_i}^{2n/(n-2)} \, dx'
\]

\[
= \int_{\mathbb{R}^n} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i, \lambda_i}^{2n/(n-2)} \, dx' + \tilde{K}(g_i) \int_{\mathbb{R}^n} w_{g_i, \lambda_i}^{2n/(n-2)} \, dx'
\]

\[
= \int_{B(g_i, \rho)} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i, \lambda_i}^{2n/(n-2)} \, dx' + \int_{B(g_i, \rho)^c} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i, \lambda_i}^{2n/(n-2)} \, dx'
\]

\[
+ \tilde{K}(g_i) \int_{\mathbb{R}^n} w_{g_i, \lambda_i}^{2n/(n-2)} \, dx'
\]

\[
= \int_{B(0, \rho')} \left(\tilde{K}(x') - \tilde{K}(0) \right) w_{0, \lambda_i}^{2n/(n-2)} \, dx' + \int_{B(0, \rho')^c} \left(\tilde{K}(x') - \tilde{K}(0) \right) w_{0, \lambda_i}^{2n/(n-2)} \, dx'
\]

\[
+ K(a_i) \int_{\mathbb{S}^n} \delta_{a_i, \lambda_i}^{2n/(n-2)} \, d\mathrm{vol}_{g_0}
\]

\[
\int_{B(0, \rho')^c} \left(\tilde{K}(x') - \tilde{K}(0) \right) w_{0, \lambda_i}^{2n/(n-2)} \, dx' \leq \frac{C}{\lambda_i^n}
\]

and

\[
\int_{B(0, \rho')} \left(\tilde{K}(x') - \tilde{K}(0) \right) w_{0, \lambda_i}^{2n/(n-2)} \, dx' = c_0 \int_{\mathbb{R}^n} \left| \zeta \right|^2 w_{0, 1}^{2n/(n-2)} \, dx' \frac{\Delta K(x_i)}{\lambda_i^2} + O \left(\frac{1}{\lambda_i^6} \right),
\]

we have

\[
\int_{\mathbb{S}^n} K \delta_{a_i, \lambda_i}^{2n/(n-2)} \, d\mathrm{vol}_{g_0} = K(a_i) S + c_0 \int_{\mathbb{R}^n} \left| \zeta \right|^2 w_{0, 1}^{2n/(n-2)} \, dx' \frac{\Delta K(x_i)}{\lambda_i^2} + o \left(\frac{1}{\lambda_i^2} \right).
\]
Finally, we expand the term \(\int_{\mathbb{R}^n} K(x) \frac{n+2\gamma}{n-2\gamma} \delta_{a_i, \lambda_i} \delta_{a_j, \lambda_j} dvol_{g_0} \).

\[
\int_{\mathbb{R}^n} K(x) \frac{n+2\gamma}{n-2\gamma} \delta_{a_i, \lambda_i} \delta_{a_j, \lambda_j} dvol_{g_0} = \int_{B(g_i, \rho)} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} w_{g_j, \lambda_j} dx' \\
+ \int_{B(g_i, \rho)^c} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} w_{g_j, \lambda_j} dx' \\
+ \tilde{K}(g_i) \int_{\mathbb{R}^n} w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} w_{g_j, \lambda_j} dx'.
\]

And we have

\[
\sum_{i \neq j} \int_{B(g_i, \rho)} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} w_{g_j, \lambda_j} dx' \\
= O \left(\sum_{i \neq j} \| \nabla \tilde{K}(g_i) \| \int_{B(g_i, \rho)} \| x' \|^{\frac{n}{n-2\gamma}} w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} w_{g_j, \lambda_j} dx' \right) \\
= O \left(\sum_{i \neq j} \left(\int_{B(g_i, \rho)} \| x' \|^{\frac{n}{n-2\gamma}} w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} dx' \right)^{\frac{2\gamma}{n}} \left(\int_{B(g_i, \rho)} w_{g_i, \lambda_i}^{\frac{n}{n-2\gamma}} w_{g_j, \lambda_j}^{\frac{n}{n-2\gamma}} dx' \right)^{\frac{n-2\gamma}{n}} \right) \\
= O \left(\sum_{i \neq j} \left(\frac{1}{\lambda_i} \right)^{\frac{2\gamma}{n}} + \sum_{i \neq j} \varepsilon_{ij}^{\frac{n-2\gamma}{n}} \log \varepsilon_{ij}^{-1} \right) .
\]

Hence

\[
\int_{\mathbb{R}^n} K(x) \frac{n+2\gamma}{n-2\gamma} \delta_{a_i, \lambda_i} \delta_{a_j, \lambda_j} dvol_{g_0} = c_0^\frac{1}{\lambda_i} K(a_i) c_1 \omega_3 \varepsilon_{ij} \left(1 + o(1) \right) \\
+ O \left(\sum_{i \neq j} \left(\frac{1}{\lambda_i} \right)^{\frac{2\gamma}{n}} + \sum_{i \neq j} \frac{1}{\lambda_i^{\frac{n+2\gamma}{n-2\gamma}}} + \sum_{i \neq j} \varepsilon_{ij}^{\frac{n-2\gamma}{n}} \log \varepsilon_{ij}^{-1} \right) .
\]

Combine the above estimates, we have the assertion of this lemma. \(\square \)

Lemma A.4. If \(0 < \gamma \leq \frac{n}{6} \), then

\[
\int_{\mathbb{R}^n} K \left(\sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \right) v dvol_{g_0} = O \left(\left(\int_{\mathbb{R}^n} v P_{\gamma} v \right)^\frac{1}{2} \right) \left(O \left(\sum_{i \neq j} \left(\varepsilon_{ij} \right)^{\frac{n+2\gamma}{2(n-2\gamma)}} \left(\log \varepsilon_{ij}^{-1} \right)^{\frac{n-2\gamma}{2n}} \right) + \sum_{i=1}^p \left(\frac{\| \nabla K(a_i) \|}{\lambda_i} + \frac{1}{\lambda_i^2} \right) \right) .
\]
If $1 > \gamma > \frac{4}{6}$, then
\[
\int_{\mathbb{S}^n} K \left(\sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{n+2\gamma}{n-2\gamma}} v \, dv_{g_0} = O \left(\left(\int_{\mathbb{S}^n} v P_2 v \right)^{\frac{4}{6}} \left(\sum_{i \neq j} (\varepsilon_{ij})^{\frac{n+2\gamma}{n-2\gamma}} \log \varepsilon_{ij} \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_j^2} \right) \right) \right).
\]

Proof.
\[
\int_{\mathbb{S}^n} K \left(\sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \right)^{\frac{n+2\gamma}{n-2\gamma}} v \, dv_{g_0} = \sum_{i=1}^p \alpha_i \int_{\mathbb{S}^n} K^{\frac{n+2\gamma}{n-2\gamma}} v \, dv_{g_0} + O \left(\left(\int_{\mathbb{S}^n} v P_2 v \right)^{\frac{4}{6}} \left(\sum_{i \neq j} (\alpha_i \delta_{a_i, \lambda_i} \alpha_j \delta_{a_j, \lambda_j})^{\frac{2n}{n+2\gamma}} \right) \right).
\]

Since
\[
\int_{\mathbb{S}^n} \sum_{i \neq j} (\alpha_i \delta_{a_i, \lambda_i})^{\frac{8n}{n^2 - 4\gamma^2}} \inf[(\alpha_i \delta_{a_i, \lambda_i}, \alpha_j \delta_{a_j, \lambda_j})^{\frac{2n}{n+2\gamma}}] dv_{g_0} = O \left(\sum_{i \neq j} (\varepsilon_{ij})^{\frac{n+2\gamma}{n-2\gamma}} \log \varepsilon_{ij} \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_j^2} \right) \right),
\]
when $0 < \gamma \leq \frac{2}{5}$ and
\[
\int_{\mathbb{S}^n} \sum_{i \neq j} (\alpha_i \delta_{a_i, \lambda_i})^{\frac{8n}{n^2 - 4\gamma^2}} \inf[(\alpha_i \delta_{a_i, \lambda_i}, \alpha_j \delta_{a_j, \lambda_j})^{\frac{2n}{n+2\gamma}}] dv_{g_0} = O \left(\sum_{i \neq j} (\varepsilon_{ij})^{\frac{n+2\gamma}{n-2\gamma}} \log \varepsilon_{ij} \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_j^2} \right) \right),
\]
when $1 > \gamma > \frac{4}{6}$. Now, we estimate $\int_{\mathbb{S}^n} K^{\frac{n+2\gamma}{n-2\gamma}} \delta_{a_i, \lambda_i} v \, dv_{g_0}$.
\[
\int_{\mathbb{S}^n} K^{\frac{n+2\gamma}{n-2\gamma}} \delta_{a_i, \lambda_i} v \, dv_{g_0} = \int_{\mathbb{R}^n} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} v \, dx', \quad x' = F(x), \quad g_i = F(a_i)
\]
\[
= \int_{B(g_i, \rho)} \left(\nabla \tilde{K}(g_i)(x' - g_i) + o(|x' - g_i|) \right) w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} v \, dx' + \int_{B^c(g_i, \rho)} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i, \lambda_i}^{\frac{n+2\gamma}{n-2\gamma}} v \, dx'
\]
\[
= O \left(\left(\int_{\mathbb{S}^n} v P_2 v \right)^{\frac{4}{6}} \left(\frac{\|
abla K(a_i)\|}{\lambda_i} + \frac{1}{\lambda_i^2} \right) \right).
\]
This completes the proof. □

Lemma A.5. For any \(u = \sum_{i=1}^{p} \alpha_i \delta_{a_i,\lambda_i} + v \in V(p, \varepsilon) \), we have

\[
\int_{S^n} K(x) \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i,\lambda_i} \right)^{\frac{4}{n-2\gamma}} v^2 dvol_{g_0} \\
= \sum_{i=1}^{p} \alpha_i^{\frac{n-2\gamma}{n-2\gamma}} K(a_i) \int_{S^n} \delta_{a_i,\lambda_i}^{\frac{n-2\gamma}{n-2\gamma}} v^2 dvol_{g_0} \\
+ O \left(\int_{S^n} vP_\gamma \, dvol_{g_0} \right) \left(\sum_{i=1}^{p} \frac{1}{\lambda_i} + \sum_{i \neq j} \varepsilon_{ij}^{\frac{2}{n-2\gamma}} (\log \varepsilon_{ij}^{-1})^{\frac{2\gamma}{n}} \right).
\]

Proof. First, we have

\[
\int_{S^n} K(x) \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i,\lambda_i} \right)^{\frac{4}{n-2\gamma}} v^2 dvol_{g_0} \\
= \int_{\mathbb{R}^n} \tilde{K}(x') \left(\sum_{i=1}^{p} \alpha_i w_{g_i,\lambda_i} \right)^{\frac{4}{n-2\gamma}} v^2 dx' \\
= \sum_{i=1}^{p} \alpha_i^{\frac{n-2\gamma}{n-2\gamma}} \int_{\mathbb{R}^n} \tilde{K}(x') w_{g_i,\lambda_i}^{\frac{n-2\gamma}{n-2\gamma}} v^2 dx' \\
+ O \left(\int_{S^n} vP_\gamma \, dvol_{g_0} \right) \left(\varepsilon_{ij}^{\frac{2}{n-2\gamma}} (\log \varepsilon_{ij}^{-1})^{\frac{2\gamma}{n}} \right).
\]

Now, we compute

\[
\sum_{i=1}^{p} \alpha_i^{\frac{n-2\gamma}{n-2\gamma}} \int_{\mathbb{R}^n} \tilde{K}(x') w_{g_i,\lambda_i}^{\frac{n-2\gamma}{n-2\gamma}} v^2 dx'.
\]

Set \(\tilde{K}(x') = \tilde{K}(x') - \tilde{K}(g_i) + \tilde{K}(g_i) \), it yields that

\[
\sum_{i=1}^{p} \alpha_i^{\frac{n-2\gamma}{n-2\gamma}} \int_{\mathbb{R}^n} \tilde{K}(x') w_{g_i,\lambda_i}^{\frac{n-2\gamma}{n-2\gamma}} v^2 dx' \\
= \sum_{i=1}^{p} \alpha_i^{\frac{n-2\gamma}{n-2\gamma}} \tilde{K}(g_i) \int_{\mathbb{R}^n} w_{g_i,\lambda_i}^{\frac{n-2\gamma}{n-2\gamma}} v^2 dx' \\
+ \sum_{i=1}^{p} \alpha_i^{\frac{n-2\gamma}{n-2\gamma}} \int_{B_i} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i,\lambda_i}^{\frac{n-2\gamma}{n-2\gamma}} v^2 dx' \\
+ \sum_{i=1}^{p} \alpha_i^{\frac{n-2\gamma}{n-2\gamma}} \int_{B_i} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w_{g_i,\lambda_i}^{\frac{n-2\gamma}{n-2\gamma}} v^2 dx'.
\]
Therefore
\[
\sum_{i=1}^{p} \alpha_i \int_{\mathbb{R}^n} \bar{K}(x') w_{g_i, \lambda_i}^{\frac{4\gamma}{n-2\gamma}} v^2 dx' = \sum_{i=1}^{p} \alpha_i \int_{\mathbb{R}^n} \bar{K}(g_i) \int_{\mathbb{R}^n} w_{g_i, \lambda_i}^{\frac{4\gamma}{n-2\gamma}} v^2 dx'
+ \sum_{i=1}^{p} \alpha_i \int_{B(0,\rho)} \left(\nabla \bar{K}(0) \cdot x' + o(|x'|) \right) w_{0, \lambda_i}^{\frac{4\gamma}{n-2\gamma}} v^2 dx'
+ \sum_{i=1}^{p} \alpha_i \int_{B_i} \left(\bar{K}(x') - \bar{K}(g_i) \right) w_{g_i, \lambda_i}^{\frac{4\gamma}{n-2\gamma}} v^2 dx'
= \sum_{i=1}^{p} \alpha_i \int_{\mathbb{R}^n} \bar{K}(g_i) \int_{\mathbb{R}^n} w_{g_i, \lambda_i}^{\frac{4\gamma}{n-2\gamma}} v^2 dx'
+ O \left(\int_{\mathbb{S}^n} vP_\gamma v \, dvol_{g_0} \right) \left(\sum_{i=1}^{p} \frac{|\nabla K(a_i)|}{\lambda_i} + \sum_{i=1}^{p} \frac{1}{\lambda_i^{2\gamma}} \right).
\]

This completes the proof. \qed

Appendix B. Proof of Lemma 3.2.

First, we have
\[
J(u) = \lambda(u) \int_{\mathbb{S}^n} uP_\gamma u \, dvol_{g_0}, \quad \lambda(u) = \left(\int_{\mathbb{S}^n} Ku^{\frac{2n}{n-2\gamma}} \, dvol_{g_0} \right)^{-\frac{n-2\gamma}{2n}},
\]
\[
\lambda'(u)W = -2 \left(\int_{\mathbb{S}^n} Ku^{\frac{2n}{n-2\gamma}} \, dvol_{g_0} \right)^{-\frac{2n-2\gamma}{2n}} \left(\int_{\mathbb{S}^n} Ku^{\frac{n+2\gamma}{n-2\gamma}} W \, dvol_{g_0} \right)
= -2\lambda(u) \int_{\mathbb{S}^n} Ku^{\frac{n+2\gamma}{n-2\gamma}} W \, dvol_{g_0}.
\]

Therefore
\[
J'(u)W = \lambda'(u)W \int_{\mathbb{S}^n} uP_\gamma u \, dvol_{g_0} + 2\lambda(u) \int_{\mathbb{S}^n} P_\gamma uW \, dvol_{g_0}
= 2\lambda(u) \left[-\lambda(u) \int_{\mathbb{S}^n} Ku^{\frac{n+2\gamma}{n-2\gamma}} W \, dvol_{g_0} \int_{\mathbb{S}^n} uP_\gamma u \, dvol_{g_0} + \int_{\mathbb{S}^n} P_\gamma uW \, dvol_{g_0} \right]
= 2\lambda(u) \left[\int_{\mathbb{S}^n} P_\gamma uW \, dvol_{g_0} - \lambda(u) \int_{\mathbb{S}^n} Ku^{\frac{n+2\gamma}{n-2\gamma}} W \, dvol_{g_0} \int_{\mathbb{S}^n} uP_\gamma u \, dvol_{g_0} \right].
\]

Since \(u = \sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \in V(p, \varepsilon) \subset \Sigma^+ \), we have \(\int_{\mathbb{S}^n} uP_\gamma u \, dvol_{g_0} = 1 \). Thus
\[
J'(u)W = 2\lambda(u) \left[\int_{\mathbb{S}^n} P_\gamma uW \, dvol_{g_0} - \lambda(u) \int_{\mathbb{S}^n} Ku^{\frac{n+2\gamma}{n-2\gamma}} W \, dvol_{g_0} \right].
\]
Let $W = \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j}$, then we have

$$J'(u) \left(\lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} \right) =$$

$$2\lambda(u) \left[\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} - \lambda(u) \frac{n-2s}{n-2} \left(\int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right) \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} \mathrm{dvol}_{g_0} \right) \right]$$

and

$$\int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i, \lambda_i} \right) \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} \mathrm{dvol}_{g_0} =$$

$$\int_{\mathbb{S}^n} K \left[\sum_{i,j}^{n-2s} \delta_{a_i, \lambda_i} \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} + \sum_{i \neq j}^{n-2s} \alpha_i \delta_{a_i, \lambda_i} \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} \mathrm{dvol}_{g_0} = \right]$$

$$\sum_{i,j}^{n-2s} \delta_{a_i, \lambda_i} \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} \mathrm{dvol}_{g_0} + \sum_{i,j}^{n-2s} \alpha_i \delta_{a_i, \lambda_i} \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} \mathrm{dvol}_{g_0}.$$
Lemma B.4.
\[
\int_{\mathbb{R}^n} \tilde{K}(x') w^{n+\frac{2}{n}}_{g_i, \lambda_i} \lambda_i \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_i} d\nu_0 = \int_{\mathbb{R}^n} \tilde{K}(x') w^{n+\frac{2}{n}}_{g_i, \lambda_i} \lambda_i \frac{\partial w_{g_i, \lambda_i}}{\partial \lambda_i} \theta_0 \wedge d\theta_0
\]
\[
= \Delta \tilde{K}(g_i) \int_{B_i} |x' - g_i|^2 w^{n+\frac{2}{n}}_{g_i, \lambda_i} \lambda_i \frac{\partial w_{g_i, \lambda_i}}{\partial \lambda_i} \theta_0 \wedge d\theta_0
\]
\[
+ O \left(\int_{B_i} |x' - g_i|^2 w^{n+\frac{2}{n}}_{g_i, \lambda_i} \lambda_i \frac{\partial w_{g_i, \lambda_i}}{\partial \lambda_i} \theta_0 \wedge d\theta_0 \right)
\]
\[
+ \int_{B_i} \left(\tilde{K}(x') - \tilde{K}(g_i) \right) w^{n+\frac{2}{n}}_{g_i, \lambda_i} \lambda_i \frac{\partial w_{g_i, \lambda_i}}{\partial \lambda_i} \theta_0 \wedge d\theta_0
\]
\[
= -\frac{n - 2\gamma}{2n} \frac{\Delta K(a_i)}{\lambda_i^2} c_2 (1 + o(1)).
\]

Lemma B.5. For \(i \neq k \),
\[
\int_{\mathbb{R}^n} K(x) \delta^{\frac{4x}{n-2x}}_{a_i, \lambda_i} \lambda_i \frac{\partial \delta_{a_i, \lambda_i}}{\partial \lambda_i} \delta_{a_k, \lambda_k} d\nu_0
\]
\[
= \frac{n - 2\gamma}{n + 2\gamma} \frac{2}{c_0} K(a_i) c_1 \omega_n \lambda_i \frac{\partial \varepsilon_{ik}}{\partial \lambda_i} + o(\varepsilon) + O \left(\frac{1}{\lambda_i^2, \lambda_k} \right).
\]

Lemma B.6. For \(i \neq k \), it holds that
\[
\int_{\mathbb{R}^n} K(x) \delta^{\frac{4x}{n-2x}}_{a_i, \lambda_i} \lambda_i \frac{\partial \delta_{a_k, \lambda_k}}{\partial \lambda_i} \delta_{a_i, \lambda_i} d\nu_0 = O \left(\frac{n}{\varepsilon_{ik} \log \varepsilon_{ik}} \right).
\]

Lemma B.7. For \(j \neq k, k \neq i \) and \(i \neq j \), it holds that
\[
\int_{\mathbb{R}^n} K(x) \delta^{\frac{4x}{n-2x}}_{a_k, \lambda_k} \lambda_i \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_i} \delta_{a_k, \lambda_k} d\nu_0 = O \left(\frac{n}{\varepsilon_{ik} \log \varepsilon_{ik}} \right) + O \left(\frac{n}{\varepsilon_{jk} \log \varepsilon_{jk}} \right).
\]

Using the estimates above, we have
\[
J'(u) \left(\lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} \right) =
\]
\[
2\lambda(u) \left[\sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} - \lambda(u) \frac{n}{n-2\gamma} \left(\int_{\mathbb{R}^n} K \left(\sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \right) \lambda_j \frac{\partial \delta_{a_j, \lambda_j}}{\partial \lambda_j} d\nu_0 \right) \right]
\]
\[
= 2\lambda(u) \left[\sum_{i,j} \alpha_i c_0^{\frac{2n}{n-2\gamma}} c_1 \omega_n \lambda_j \frac{\partial \varepsilon_{ij}}{\partial \lambda_j} (1 + o(1)) + o(\sum \varepsilon_{ij}) \right] - 2\lambda(u) \frac{n}{n-2\gamma}
\]
\[
\left[-\alpha_j \frac{n - 2\gamma}{2n} \frac{\Delta K(a_j)}{\lambda_j^2} (1 + o(1)) + \sum_{i \neq j} \alpha_i \frac{n+2\gamma}{n-2\gamma} c_0^{\frac{2n}{n-2\gamma}} c_1 \omega_n \lambda_j \frac{\partial \varepsilon_{ij}}{\partial \lambda_j} K(a_i) (1 + o(1)) \right]
\]
\[
- 2\lambda(u) \frac{n}{n-2\gamma} \left[\sum_{i \neq j} \alpha_i \alpha_j \frac{4n}{n-2\gamma} c_0^{\frac{2n}{n-2\gamma}} c_1 \omega_n \lambda_j \frac{\partial \varepsilon_{ij}}{\partial \lambda_j} K(a_j) (1 + o(1)) \right]
\]
+ o\left(\sum_{i \neq j} \varepsilon_{ij}\right) + O\left(\sum_{i \neq j} \varepsilon_{ij}^{\frac{n}{n-2\gamma}} \log \varepsilon_{ij}^{-1}\right)\].

Since \(\lambda(u)\frac{a_j^{\frac{4\gamma}{n-2\gamma}}}K(a_j) \to 1\), we have the desired estimate of Lemma 3.2.

Appendix C. Proof of Lemma 3.3.

Let \(W = \frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j}\), then we have

\[
J'(u) \left(\frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j}\right) = 2\lambda(u) \left[\sum_{i=1}^{p} \alpha_i \delta_{a_i,\lambda_i} \frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j} - \lambda(u)\frac{n-2\gamma}{n-2\gamma} \left(\int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i,\lambda_i}\right) \frac{n+2\gamma}{n-2\gamma} \frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j}\right)\right].
\]

and

\[
\int_{\mathbb{S}^n} K \left(\sum_{i=1}^{p} \alpha_i \delta_{a_i,\lambda_i}\right) \frac{n+2\gamma}{n-2\gamma} \frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j} d\text{vol}_0 =
\]

\[
\int_{\mathbb{S}^n} K \left[\alpha_j \frac{n+2\gamma}{n-2\gamma} \delta_{a_j,\lambda_j} + \sum_{i \neq j} \alpha_i \frac{n+2\gamma}{n-2\gamma} \delta_{a_i,\lambda_i} + \frac{n+2\gamma}{n-2\gamma} \alpha_j \frac{n+2\gamma}{n-2\gamma} \delta_{a_j,\lambda_j} \left(\sum_{i \neq j} \alpha_i \delta_{a_i,\lambda_i}\right)\right] \frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j} d\text{vol}_0
\]

\[
+ \int_{\mathbb{S}^n} K \left[\sum_{k \neq j, i \neq j} O\left(\delta_{a_k,\lambda_k}^{\frac{4\gamma}{n-2\gamma}} \delta_{a_i,\lambda_i}\right) + \sum_{k \neq j} O\left(\delta_{a_j,\lambda_j}^{\frac{4\gamma}{n-2\gamma}} \delta_{a_k,\lambda_k}^{\frac{4\gamma}{n-2\gamma}}\right) \frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j} d\text{vol}_0\right].
\]

Moreover, we have the following estimates.

Lemma C.1.

\[
\langle \delta_{a_j,\lambda_j}, \frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j}\rangle = 0.
\]

Lemma C.2.

\[
\langle \delta_{a_i,\lambda_i}, \frac{1}{\lambda_j} \frac{\partial \delta_{a_j,\lambda_j}}{\partial a_j}\rangle = c_0^{\frac{2\gamma}{n-2\gamma}} c_1 \omega_n \frac{1}{\lambda_j} \frac{\partial \epsilon_{ij}}{\partial a_j} + \frac{1}{\lambda_j} O\left(\epsilon_{ij}^{\frac{n+1}{n-2\gamma}} \lambda_i \lambda_j \xi(a_i, a_j)\right).
\]
Lemma C.3. Since \(w_{g_j, \lambda_j} \frac{n+2\gamma}{n-2\gamma} \frac{1}{\lambda_j} \frac{\partial w_{g_j, \lambda_j}}{\partial a_j} = \int_{\mathbb{R}^n} K(x) \delta_{a_j, \lambda_j} \frac{1}{\lambda_j} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_j} \, d\omega_0 \), it holds that

\[
\int_{\mathbb{R}^n} K(x) \delta_{a_j, \lambda_j} \frac{1}{\lambda_j} \frac{\partial \delta_{a_j, \lambda_j}}{\partial a_j} \, d\omega_0 = \int_{\mathbb{R}^n} \tilde{K}(x') \frac{1}{\lambda_j} \frac{\partial w_{g_j, \lambda_j}}{\partial a_j} \, dx'
\]

\[
= \int_{B_j} \big(\tilde{K}(x') - \tilde{K}(g_j) \big) \frac{1}{\lambda_j} \frac{\partial w_{g_j, \lambda_j}}{\partial a_j} \, dx' + \int_{B_j^c} \big(\tilde{K}(x') - \tilde{K}(g_j) \big) \frac{1}{\lambda_j} \frac{\partial w_{g_j, \lambda_j}}{\partial a_j} \, dx'
\]

\[
= \frac{n-2\gamma}{2n} c_0^{-2n} c_1 \omega_n \frac{\nabla K(a_j)}{\lambda_j} + O \left(\frac{1}{\lambda_j^3} \right).
\]

Lemma C.4. For \(i \neq j \), it holds that

\[
\int_{\mathbb{R}^n} K(x) \delta_{a_j, \lambda_j} \frac{1}{\lambda_i} \frac{\partial \delta_{a_i, \lambda_i}}{\partial a_i} \, d\omega_0 = \int_{\mathbb{R}^n} \tilde{K}(x') \frac{1}{\lambda_i} \frac{\partial w_{g_j, \lambda_j}}{\partial a_i} \, dx'
\]

\[
= K(g_j) \int_{\mathbb{R}^n} \frac{1}{\lambda_i} \frac{\partial w_{g_j, \lambda_j}}{\partial a_i} \, dx' + \int_{B_i} \big(\tilde{K}(x') - \tilde{K}(g_j) \big) \frac{1}{\lambda_i} \frac{\partial w_{g_j, \lambda_j}}{\partial a_i} \, dx'
\]

\[
+ \int_{B_i^c} \big(\tilde{K}(x') - \tilde{K}(g_j) \big) \frac{1}{\lambda_i} \frac{\partial w_{g_j, \lambda_j}}{\partial a_i} \, dx'
\]

\[
= c_0^{-2n} c_1 \omega_n \frac{K(a_j)}{\lambda_j} \frac{\partial \varepsilon_{ij}}{\partial a_j} + o(\varepsilon_{ij}) + O \left(\frac{1}{\lambda_j^3} \right) \cdot \frac{1}{\lambda_i^3} + \frac{1}{\lambda_j^3} \frac{1}{\lambda_i^3}
\]
Lemma C.7. For \(j \neq k, k \neq i \) and \(i \neq j \), it holds that

\[
\int_{\mathbb{S}^n} K(x) \frac{1}{\lambda_i} \left(\frac{1}{\lambda_j} \right)^\frac{n}{2} \frac{1}{\lambda_k} \delta_{a_j, \lambda_j} \delta_{a_i, \lambda_i} dvol_{g_0} = O \left(\varepsilon_{ik}^{-\frac{n}{4}} \log \varepsilon_{ik}^{-1} \right) + O \left(\varepsilon_{jk}^{-\frac{n}{4}} \log \varepsilon_{jk}^{-1} \right).
\]

Using the lemmas above, we have

\[
J'(u) \left(\frac{1}{\lambda_j} \frac{1}{\lambda_j} \right) = \frac{2\lambda(u)}{n} \left(\sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \frac{1}{\lambda_j} \frac{1}{\lambda_j} \right) \lambda(u)^{-\frac{n}{4}} \left(\int_{\mathbb{S}^n} K \left(\sum_{i=1}^p \alpha_i \delta_{a_i, \lambda_i} \right) \frac{1}{\lambda_j} \frac{1}{\lambda_j} \right)
\]

\[
-2\lambda(u) \frac{2n-2\gamma}{n-2\gamma} \left[\frac{n+2\gamma}{n-2\gamma} \frac{2}{n} \alpha_{0} \frac{2}{n} \gamma_{1} \omega_{n} \frac{1}{\lambda_j} \frac{1}{\lambda_j} \right] \frac{\nabla K(a_j)}{\lambda_j} (1 + o(1)) + O \left(\sum_{i=1}^p \frac{1}{\lambda_j^2} \right)
\]

\[
-2\lambda(u) \frac{2n-2\gamma}{n-2\gamma} \left[\sum_{i \neq j} \frac{n+2\gamma}{n-2\gamma} \left(K(a_i)c_0 \frac{2}{n} \gamma_{1} \omega_{n} \frac{1}{\lambda_j} \frac{1}{\lambda_j} \right) (1 + o(1)) \right]
\]

\[
-2\lambda(u) \frac{2n-2\gamma}{n-2\gamma} \left[\left(\sum_{i \neq j} \varepsilon_{ij} \right) + O \left(\sum_{i \neq j} \varepsilon_{ij}^{-\frac{n}{4}} \log \varepsilon_{ij}^{-1} \right) \right].
\]

Since \(\lambda(u)^{-\frac{n}{4}} \frac{1}{\lambda_j^2} K(a_j) \to 1 \), we have the desired estimate of Lemma 3.3.

References

[1] Wael Abdelhedi and Hichem Chtioui. The prescribed boundary mean curvature problem on the standard \(n \)-dimensional ball. Nonlinear Anal., 67(3):668–686, 2007.
[2] Wael Abdelhedi and Hichem Chtioui. On a Nirenberg-type problem involving the square root of the Laplacian. J. Funct. Anal., 265(11):2937–2955, 2013.
[3] A. Bahri. Critical points at infinity in some variational problems, volume 182 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1989.
[4] A. Bahri and J.-M. Coron. The scalar-curvature problem on the standard three-dimensional sphere. J. Funct. Anal., 95(1):106–172, 1991.
[5] A. Bahri and P. H. Rabinowitz. Periodic solutions of Hamiltonian systems of 3-body type. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(6):561–649, 1991.
[6] Abbas Bahri. An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension. Duke Math. J., 81(2):323–466, 1996. A celebration of John F. Nash, Jr.
[7] Mohamed Ben Ayed, Yansong Chen, Hichem Chtioui, and Mokhles Hammami. On the prescribed scalar curvature problem on 4-manifolds. Duke Math. J., 84(3):633–677, 1996.
[8] H. Brezis and J.-M. Coron. Convergence of solutions of H-systems or how to blow bubbles. Arch. Rational Mech. Anal., 89(1):21–56, 1985.
[9] L. Caffarelli, J.-M. Roquejoffre, and O. Savin. Nonlocal minimal surfaces. Comm. Pure Appl. Math., 63(9):1111–1144, 2010.
EXISTENCE RESULTS FOR THE FRACTIONAL NIRENBERG PROBLEM

10] Luis Caffarelli and Luis Silvestre. An extension problem related to the fractional Laplacian. *Comm. Partial Differential Equations*, 32(7-9):1245–1260, 2007.

11] Luis Caffarelli and Enrico Valdinoci. Uniform estimates and limiting arguments for nonlocal minimal surfaces. *Calc. Var. Partial Differential Equations*, 41(1-2):203–240, 2011.

12] Luis A. Caffarelli, Sandro Salsa, and Luis Silvestre. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. *Invent. Math.*, 171(2):425–461, 2008.

13] Luis A. Caffarelli and Alexis Vasseur. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. *Ann. of Math. (2)*, 171(3):1903–1930, 2010.

14] Sun-Yung Alice Chang and María del Mar González. Fractional Laplacian in conformal geometry. *Adv. Math.*, 226(2):1410–1432, 2011.

15] Guoyuan Chen and Youquan Zheng. A perturbation result for the Q_γ curvature problem on S^n. *Nonlinear Anal.*, 97:3–14, 2014.

16] Wenxiong Chen, Congming Li, and Biao Ou. Classification of solutions for an integral equation. *Comm. Pure Appl. Math.*, 59(3):330–343, 2006.

17] Yan-Hong Chen and Youquan Zheng. On the fractional order Q curvature equation in \mathbb{R}^n. *arXiv:1402.0356*.

18] Juan Dávila, Manuel del Pino, and Yannick Sire. Nondegeneracy of the bubble in the critical case for nonlocal equations. *Proc. Amer. Math. Soc.*, 141(11):3865–3870, 2013.

19] Zindine Djadli, Emmanuel Hebey, and Michel Ledoux. Paneitz-type operators and applications. *Duke Math. J.*, 104(1):129–169, 2000.

20] Najoua Gamara. The prescribed scalar curvature on a 3-dimensional CR manifold. *Adv. Nonlinear Stud.*, 2(3):193–235, 2002.

21] María del Mar González, Rafe Mazzeo, and Yannick Sire. Singular solutions of fractional order conformal Laplacians. *J. Geom. Anal.*, 22(3):845–863, 2012.

22] María del Mar González and Jie Qing. Fractional conformal Laplacians and fractional Yamabe problems. *Analysis and PDE*, page to appear.

23] C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling. Conformally invariant powers of the Laplacian. I. Existence. *J. London Math. Soc. (2)*, 46(3):557–565, 1992.

24] C. Robin Graham and Maciej Zworski. Scattering matrix in conformal geometry. *Invent. Math.*, 152(1):89–118, 2003.

25] Tianling Jin, Yanyan Li, and Jingang Xiong. On a fractional nirenberg problem, part I: blow up analysis and compactness of solutions. *J. Eur. Math. Soc.*, page to appear.

26] Tianling Jin, Yanyan Li, and Jingang Xiong. On a fractional nirenberg problem, part II: existence of solutions. *International Mathematics Research Notices*, page to appear.

27] Tianling Jin and Jingang Xiong. A fractional Yamabe flow and some applications. *Journal fur die reine und angewandte Mathematik*, page to appear.

28] Yan Yan Li. Remark on some conformally invariant integral equations: the method of moving spheres. *J. Eur. Math. Soc. (JEMS)*, 6(2):153–180, 2004.

29] Yan Yan Li. Remark on some conformally invariant integral equations: the method of moving spheres. *J. Eur. Math. Soc. (JEMS)*, 6(2):153–180, 2004.

30] Elliott H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. *Ann. of Math. (2)*, 112(2):349–374, 1983.

31] Elliott H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. *Ann. of Math. (2)*, 112(2):349–374, 1983.

32] Stephen M. Paneitz. A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary). *SIGMA Symmetry Integrability Geom. Methods Appl.*, 4:Paper 036, 3, 2008.

33] Lawrence J. Peterson. Conformally covariant pseudo-differential operators. *Differential Geom. Appl.*, 13(2):197–211, 2000.
[34] Jie Qing and David Raske. On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds. *Int. Math. Res. Not.*, pages Art. ID 94172, 20, 2006.

[35] Michael Struwe. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. *Math. Z.*, 187(4):511–517, 1984.

[36] Ridha Yacoub. Existence results for the prescribed Webster scalar curvature on higher dimensional CR manifolds. *Adv. Nonlinear Stud.*, 13(3):625–661, 2013.

School of Mathematical Science, Nankai University, Tianjin 300071, P.R. China
E-mail address: cyh1801@163.com

School of Mathematical Science and LPMC, Nankai University, Tianjin 300071, P.R. China
E-mail address: liucg@nankai.edu.cn

School of Science, Tianjin University, Tianjin 300072, P. R. China.
E-mail address: zhengyq@tju.edu.cn