Observation of biexcitonic emission at extremely low power density in tungsten disulfide atomic layers grown on hexagonal boron nitride

Mitsuhiro Okada¹, Yuhei Miyauchi², Kazunari Matsuda¹, Takashi Taniguchi³, Kenji Watanabe³, Hisanori Shinohara¹ & Ryo Kitaura¹

Monolayer transition metal dichalcogenides (TMDCs) including WS₂, MoS₂, WSe₂, and WS₂, are two-dimensional semiconductors with direct bandgap, providing an excellent field for exploration of many-body effects in 2-dimensions (2D) through optical measurements. To fully explore the physics of TMDCs, the prerequisite is preparation of high-quality samples to observe their intrinsic properties. For this purpose, we have focused on high-quality samples, WS₂ grown by chemical vapor deposition method with hexagonal boron nitride as substrates. We observed sharp exciton emissions, whose linewidth is typically 22~23 meV, in photoluminescence spectra at room temperature, which result clearly demonstrates the high-quality of the current samples. We found that biexcitons formed with extremely low-excitation power (240 W/cm²) at 80 K, and this should originate from the minimal amount of localization centers in the present high-quality samples. The results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) provide a fascinating playground for studies of optical and device physics in two dimensions. TMDCs including MoS₂, WS₂, MoSe₂, and WSe₂ are layered semiconductors that are composed of a transition metal layer sandwiched by chalcogen layers with trigonal prismatic coordination geometry. Importantly, these TMDCs can be isolated as their monolayer form, and they are 2D direct-gap semiconductors at monolayer thickness. Due to their 2D structure, many-body effects in TMDCs are prominent, which, for example, results in strong excitonic effects in optical transitions. In fact, photoluminescence (PL) spectra of monolayer TMDCs exhibit strong emissions arising from excitons (electron-hole pairs) and trions (charged excitons) even at room temperature, and these results suggest an opportunity to find further peculiar complex many-body states such as higher-order excitons, electron-hole plasma and exciton condensates.

To further explore the fundamental properties of TMDCs, the important point is preparation of high-quality samples to ensure their intrinsic properties. High-quality samples can show sharp excitonic PL that arises from the long dephasing time and the minimal amount of structural roughness. This leads to easier observation of fine structures in a PL spectrum, giving more chance to observe new excitonic states. In order to realize high-quality samples, we have focused on monolayer WS₂ directly grown on hexagonal boron nitride (hBN), where an ideal atomically flat surface virtually without dangling bonds is available. The monolayer WS₂ grown on hBN (WS₂/hBN) is thus atomically flat with clean interfaces, showing PL peaks whose full-width at half-maximum (FWHM) are much smaller than those of mechanically exfoliated and samples grown onto other substrates.

Using WS₂/hBN, we have observed the formation of biexcitons at 80 K even with extremely low excitation power of 2.8 μW or 240 W/cm², which is 18 or 125 times smaller, respectively, than those reported previously.

¹Department of Chemistry, Nagoya University, Nagoya, 464-8602, Japan. ²Institute of Advanced Energy, Kyoto University, Uji, Kyoto, 611-0011, Japan. ³National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan. Correspondence and requests for materials should be addressed to H.S. (email: noris@nagoya-u.jp) or R.K. (email: r.kitaura@nagoya-u.jp)
Results

CVD Growth of WS₂ on hBN and characterization. We have prepared WS₂/hBN by the chemical vapor deposition (CVD) method with WO₂.9 and elemental sulfur as source materials together with exfoliated hBN flakes as substrates. To check the layer number of WS₂ grown on hBN, we performed PL imaging, atomic force microscopy (AFM), Raman and PL spectroscopy for the respective samples. Figure 1a, b, c and d show a typical PL image, a structure model of WS₂ grown on hBN, Raman and PL spectra, respectively. Because monolayer WS₂ is a direct-gap semiconductor, crystals of monolayer WS₂ can be seen as bright triangular contrasts in the PL images; the triangular shape arises from preferential appearance of zig-zag edges during the growth, being consistent with previous reports on CVD-growths of TMDCs. A typical AFM image of the WS₂/hBN clearly demonstrate the triangular crystal shape with a thickness of 0.7 nm, which is consistent with the monolayer WS₂ structure (Figure S1). The monolayer structure of WS₂ can further be confirmed by the Raman spectrum (Fig. 1c), where the peak separation between E' (358.6 cm⁻¹) and A₁' (419.8 cm⁻¹) modes is 61.2 cm⁻¹ in consistent with monolayer WS₂. The strong and narrow emission peak at 2.014 eV in the PL spectrum (Fig. 1d, taken with excitation energy of 2.54 eV) can be assigned to neutral excitons of monolayer WS₂. All results shown above clearly demonstrate the successful growth of monolayer WS₂ on hBN.

Crystal quality can be confirmed by the Raman and PL spectrum. The observed Raman bands are sharp (i.e., FWHM of the A₁' Raman band is 2.8 cm⁻¹), which clearly demonstrates the high crystallinity of the current WS₂ crystal. The observed FWHM of the PL emission in Fig. 1c, 22.5 meV, is much smaller than those of the exfoliated WS₂ and the CVD-grown WS₂ (grown on SiO₂/Si or sapphire substrates); typical values of FWHM reported range from 42 to 75 meV. The small FWHM should originate from high quality of the grown WS₂/hBN, indicating less surface roughness and amount of defects. The less surface roughness can be directly confirmed by the height profile of the AFM (Figure S1), where the atomically flat surface of WS₂ grown on hBN is clearly seen. A transmission electron microscopy (TEM) image of WS₂/hBN (shown in Figure S2) shows lattice fringes of WS₂, and the corresponding electron diffraction pattern clearly demonstrates the match in the crystallographic orientation between WS₂ and hBN, manifesting a smooth and clean interface existing between WS₂ and hBN.

Temperature dependence in photoluminescence of WS₂/hBN. To further explore excitonic states in WS₂, we measured temperature dependence of PL spectra. Figure 2a shows PL spectra of WS₂/hBN measured at temperatures ranging from 81.7 to 310 K. As seen in Fig. 2a, the emission peak from excitons shifts to the lower energy side when temperature decreases. The peak shift can be well fitted by Varshini’s formula (Figure S3 and
PL spectra measured with the excitation power ranging from 0.37 to 6.6 eV. The calculated Haynes factor is consistent with those of quantum-well systems and the ratio in binding energy between excitons and biexcitons of 0.09–0.23; the exciton binding energy reported ranges from biexcitons. The observed binding energy of the P2 peak is ca. 75 meV, which yields Haynes factor (the ratio in binding energy between excitons and biexcitons) of 1.82. The observed super-liner relation strongly suggests that the P2 emission peak originates from biexcitons. The observed binding energy of the P2 peak is ca. 75 meV, which yields Haynes factor (the ratio in binding energy between excitons and biexcitons) of 0.09–0.23; the exciton binding energy reported ranges from 0.37 to 6.6 eV. The calculated Haynes factor is consistent with those of quantum-well systems and other TMDCs. Valley polarization measurements (Figure S6) also support that the P2 peak originates from biexcitons. As shown in Figure S6, P2 peak shows a valley polarization of 12.7%, which excludes the possibility that the P2 peak originates from bound excitons or bound biexcitons.

Figure 4 shows time-resolved PL intensities. Fitting of the experimental curves in Figure 4 based on a single exponential decay yielded the relaxation time of excitons (τ_{ex}), trions (τ_{tri}) and biexcitons (τ_{bi}) as 15, 22 and 31 ps, respectively. When thermal equilibrium between excitons and biexcitons is reached, τ_{ex} should be twice as large as τ_{bi}; this is, however, not the present case because the measurement was performed at 80 K and the biexciton binding energy of 75 meV is much larger than the thermal energy of 80 K (6.9 meV), which situation should make the biexciton to exciton conversion extremely slow. The temperature, 80 K, is almost ten times smaller than the binding energy of biexcitons, leading to the complete blocking of the biexciton to exciton conversion process.
The observed relation between τ_X and τ_{XX} is therefore consistent with the formation of biexcitons with the large binding energy (for details, see Supporting information)28. The observed binding energy of biexciton, 75 meV, is larger than those reported previously17, 18, 34, 35. Biexcitons are larger than excitons, and biexcitons are supposed to be more sensitive to the screening. The different environment and density of free carrier in WS\textsubscript{2}/hBN might contribute to the observed large binding energy.

In previous studies, the biexciton emission have been observed with excitation power of, for example, 50 μW and 30 kW/cm2 at 77 and 4 K, respectively17, 18. In contrast, in our samples, the biexciton emission can be clearly seen with much smaller excitation power of 2.8 μW or 240 W/cm2 at 81.7 K (Fig. 5). Considering the absorption coefficient reported20, the excitation power can be converted to the maximum density of excitons generated, 2.5×10^{8}/cm2, giving the average exciton-exciton distance as 630 nm. In this experiment, biexcitons were formed through the exciton-exciton collision, and the exciton-exciton distance should be comparable to the exciton diffusion length, L_{ex}. The L_{ex} can be calculated using the following formula, $L_{ex} = 2(D_{ex} \tau_{ex})^{1/2}$, where τ_{ex} and D_{ex} are the lifetime (15 ps) and the diffusion coefficient of exciton, respectively. The exciton diffusion coefficient can be estimated from the Einstein relation $D_{ex} = k_B T/M_{ex} \Delta$, where k_B, M_{ex}, and Δ are the Boltzmann constant, the exciton translational mass (~0.55 m_0)36 and homogeneous linewidth of exciton (~3.2 meV); the homogeneous linewidth was determined through spectral fitting with the Voigt function. Using the obtained D_{ex} of ~9.3 cm2/s, L_{ex} was estimated to be ~240 nm, which is comparable to the average exciton-exciton distance. The small homogeneous linewidth of the exciton emission means that the dephasing time of excitons in the present sample is long, leading to the long L_{ex} up to 240 nm even with the short τ_{ex}. The long L_{ex} might originate from significant decrease in roughness scattering in ultralat WS\textsubscript{2} in our WS\textsubscript{2}/hBN samples.
In addition to the flatness, the small amount of trap centers and free carriers in WS₂/hBN also helps to form biexcitons. As shown in Fig. 3a, PL emission from localized excitons, which have been observed typically at 1.8–2.0 eV, is strongly suppressed under higher excitation power. This means that the amount of the trap centers in the current samples is smaller than those in previous studies. In addition, as already discussed, the amount of free carriers in the present sample is small, which lead to less formation of trions. Higher order excitons including biexcitons are formed through collisions of excitons, and other processes such as the formation of localized excitons and trions compete with the formation of biexcitons. The fewer amount of trap centers thus contribute to an easy observation of biexcitons in our high-quality samples. The difference may originates from the difference in substrates, and surface roughness, charged impurities and dangling bonds in ordinal substrates like SiO₂/Si are the origin of the trap centers.

Conclusion
In conclusion, we have grown a high-quality WS₂ on hBN substrates by the CVD method. The present WS₂/hBN sample shows a sharp PL emission at room temperature, and the low temperature PL shows additional peaks originating from biexcitons. The power dependence and valley polarization measurements are consistent with the formation of biexcitons. Biexcitons are formed with extremely low-excitation power, 240 W/cm², which originates from the minimal amount of localization centers in the present high-quality samples. These results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.

Methods
CVD growth of WS₂ on hBN. We have grown WS₂ atomic layers by CVD method with elemental sulfur (Sigma-Aldrich, 99.998%) and tungsten oxide (WO₂.9, Alfa Aesar, 99.99%) as precursors. We prepared thin hBN flakes, whose thickness is typically several tens of nanometers, on sapphire or quartz substrate by the mechanical exfoliation method, and the exfoliated thin hBN flakes were used as substrates for the CVD growth of WS₂ atomic layers. A substrate with hBN flakes, WO₂.9 and sulfur were placed in a quartz tube with diameter of 26 mm; the WO₂.9 was placed in a quartz tube whose inner diameter is 8 mm to avoid rapid sulfurization of WO₂.9. Under Ar flow of 200 sccm, the quartz tube was heated with three-zone furnace at 190, 400 and 1050 degree for 30 minutes; a substrate with hBN flakes and sulfur were placed at the hottest and coldest zone, respectively.

Photoluminescence (PL) and Raman measurement. We obtained PL images by a fluorescence microscope (Leica TCS SP8 gSTED) with excitation wavelength of 488 nm at room temperature. Raman and PL spectra were measured by using a confocal-microscope based Raman microscopy (Jobin Yvon LabRAM HR-800) with 488 nm excitation (CW laser, COHERENT Sapphire 488 LP). In measurements of Raman spectra, a notch filter was used to filter out the intense signal from Rayleigh scattering. An objective lens (100 x, 0.9 NA) was used to focus the laser light onto a sample and collect the backscattered light from the sample. Raman and PL signal were detected with a charge-coupled device. In temperature dependence measurements, we placed WS₂/hBN in a cryostat (CryoVac KONTI-Cryostat-Micro) with continuous flowing of liquid N₂ under vacuum of ~10⁻⁶ Torr. Temperature was controlled by a CryoVac TIC 304-MA.

AFM and TEM observations. AFM images were obtained with a Veeco Dimension 3100. High-resolution TEM images were taken with a JEM-2100F (JEOL) operated at 80 keV. We transferred hBN flakes with grown WS₂ onto a copper TEM grid by the standard polymer-based transfer technique. TEM images were recorded with a
charge-coupled device with exposure time of typically 1–3 seconds. Electron energy loss spectroscopy (EELS) and energy-dispersive X-ray (EDX) spectroscopy were carried out with a post column spectrometer (gatan Enfina) and an in column spectrometer, respectively.

References

1. Ding, Y. et al. First principles study of structural, vibrational and electronic properties of graphene-like MX_x (M = Mo, Nb, W, Ta; X = S, Se, Te) monolayers. *Physica B: Condensed Matter* **406**, 2254–2260 (2011).

2. Hone, J., Shan, J., Heinz, T. F. Atomically thin MoS_2: a new direct-gap semiconductor. *Phys. Rev. Lett.* **105**, 136805 (2010).

3. Zhu, B., Chen, X. & Cui, X. Exciton binding energy of monolayer WS_2. *Sci. rep.* **5** (2015).

4. Wang, H., Zhang, C. & Rana, F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS_2. *Nano lett.* **15**, 339–345 (2014).

5. Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. *Nature comm.* **5** (2014).

6. Mitioglu, A. et al. Extraordinary room-temperature photoluminescence in triangular WS_2 monolayers. *Nano lett.* **13**, 3447–3454 (2012).

7. Peimyoo, N. et al. Probing excitonic dark states in single-layer tungsten disulfide. *Nature* **513**, 214–218 (2014).

8. Filinov, A., Riva, C., Peeters, F., Lozovik, Y. E. & Bonitz, M. Influence of well-width fluctuations on the binding energy of excitons, charged excitons, and biexcitons in GaAs-based quantum wells. *Phys. Rev. B* **70**, 035323 (2004).

9. Kleiman, D. Binding energy of excitons and biexcitons in quantum wells. *Phys. Rev. B* **28**, 871 (1983).

10. Shang, J. et al. Observation of dark neutral excitons in a 2D transition-metal dichalcogenide semiconductor. *ACS nano* **9**, 647–655 (2015).

11. Chen, J.-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO_2. *Nature nanotech* **3**, 206–209 (2008).

Acknowledgements

This work was supported by Grant-in-aid for Young Scientists A (No. 25708002), Scientific Research on Innovative Areas (No. 25107002, No. 16H00963 and No. 16H00963), challenging Exploratory Research (No. 16H03825), Scientific Research B (No. 16H03825) and Scientific Research S (No. 22225001 and No. 16H06331) from MEXT, Japan, and World Premier International Research Center, Advanced Institute for Materials Research and the Global COE Program in Chemistry, Nagoya University. M.O. thanks the Research Fellowship for Young Scientists supported by Japan Society for the Promotion of Science (JSPS). We thank S. Masubuchi and T. Machida in the Institute of Industrial Science in The University of Tokyo for their useful advice on mechanical exfoliation.
Author Contributions
M.O. performed the growth and basic spectroscopic characterization of the samples. T.T. and K.W. prepared high quality single crystals of hBN. M.O., Y.M. and K.M. performed time-dependence of PL intensity. R.K. and H.S. designed the study and co-wrote the paper. All authors discussed the results.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-00068-0

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017