Size-Reduction of Rydberg collective excited states in cold atomic system

Dong-Sheng Ding,1,2, * Yi-Chen Yu,1,2 Zong-Kai Liu,1,2 Bao-Sen Shi,1,2,1 and Guang-Can Guo1,2
1 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China.
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

(Dated: May 19, 2022)

The collective effect of large amounts of atoms exhibit an enhanced interaction between light and atoms. This holds great interest in quantum optics, and quantum information. When a collective excited state of a group of atoms during Rabi oscillation is varying, the oscillation exhibits rich dynamics. Here, we experimentally observe a size-reduction effect of the Rydberg collective state during Rabi oscillation in cold atomic dilute gases. The Rydberg collective state was first created by the Rydberg quantum memory, and we observed a decreased oscillation frequency effect by measuring the time traces of the retrieved light field amplitude, which exhibited chirped characteristics. This is caused by the simultaneous decay to the overall ground state and the overall loss of atoms. The observed oscillations are dependent on the effective Rabi frequency and detuning of the coupling laser, and the dephasing from inhomogeneous broadening. The reported results show the potential prospects of studying the dynamics of the collective effect of a large amount of atoms and manipulating a single-photon wave-packet based on the interaction between light and Rydberg atoms.

The interaction of light with an atomic media containing a large number of particles causes a collective effect [1], which is at the focus of intense research in different areas in quantum metrology, quantum optics, and quantum information. The single collective excitation shared among a large number of ground-state atoms results in a coherent superposition state [2, 3]. In contrast to the single atom coupled to the light field this state can still carry only a single excitation; however, the light matter interaction is enhanced owing to a large number of ground state atoms, as predicted by Dicke’s theory. When the single excitation corresponds to the Rydberg excitation, Rydberg-state super atoms were formed [4–11] consisting of a single Rydberg excitation and many ground state atoms. Because of the exaggerated properties of the Rydberg atom, it is a valuable resource for numerous potential applications in quantum computing [12, 13], quantum optics [14], and many-body physics [15–18] etc.

Storing photons to Rydberg super atoms can be realized by the technology of quantum memory [19, 20], in which an interface between light and Rydberg atoms is created that allows for the storage and retrieval of the optical field. Demonstrating a Rydberg-mediated quantum memory could enable the implementation of quantum computation and information processing with the advantages of Rydberg super atoms, for example, by converting a Rydberg super atom to a single photon, the demonstration of a deterministic single-photon generator can be realized [21, 22]. Coherently preparing and manipulating the Rydberg super atom based on quantum memory holds promise in quantum information science; it should be studied. When the stored collective excited state is driven by the read field, a Rabi oscillation dynamics of the quantum reading process as studied in a double-Λ system [23–25], however, an anomalous reduction-frequency oscillation with a varying frequency has never been reported before.

In this work, we prepared a Rydberg super atom through quantum memory in the Rydberg electromagnetically induced transparency (Rydberg EIT) configuration. Rabi oscillation between the low-lying collective excited-state and high-lying Rydberg-state super atom is realized by driving the coupling laser in the reading process. The retrieved probe pulse exhibits chirped characteristics because of the reduction of the effective size of the Rydberg super atom. Combining the two-level atoms dephasing model extracted from inhomogeneous broadening, we model our experimental observations with a decreased-frequency Rabi oscillation function. The coherent Rabi oscillation in the Rydberg quantum memory process is a new representation for combining the collective dynamical behavior of Rydberg atoms and the radiation of a single photon, which is crucial for the applications of Rydberg atoms in quantum information processing [26] and for providing a versatile interface between light and atoms.

Experimental setup

The schematics of the energy levels, experimental setup, and time sequence are shown in figure 1(a)–(c). The sample media is an optically thick atomic ensemble of Rubidium 85 trapped in MOT. This atomic cloud has a size of 500 µm with a temperature ∼ 20 µK and an average density of ∼ 1.0 × 10^{11} cm^{-3} at the center of the cloud. The optical depth (OD) in MOT is approximately 20. The probe field is then input into the atomic cloud using a beam waist ∼ 5 µm in the center of the MOT estimated by fluorescence imaging, which is covered by the coupling beam with a beam waist of 16...
μm. With a coupling laser beam, we demonstrate the quantum memory via Rydberg-EIT in the ladder-type atomic configuration, consisting of a ground state \(|g\rangle \), an excited state \(|e\rangle \), and a highly-excited Rydberg state \(|r\rangle \); here, \(n = 50 \). The probe and coupling fields are counter-propagating, and couple the two-photon transitions \(|g\rangle \rightarrow |e\rangle \rightarrow |r\rangle \), forming a Ladder-type EIT. The bandwidth of the transparency window of Rydberg-EIT is measured as \(\delta w \sim 2\pi \times 5 \text{ MHz} \).

The probe field has a pulse width of 200 ns. The coupling field is modulated into double rectangular pulses with a width of 400 ns to demonstrate the write and read operations. The amplitudes and frequencies of the write and read pulses are tuned individually by an electro-optic modulator (EOM, LM 0202, Germany) and an acoustic-optic modulator (AOM) respectively; therefore, we can turn on/off the coupling field with fast rising and falling time. This guarantees that the probe is efficiently converted into the Rydberg polariton. We adiabatically switch off the coupling field, and a stored high-lying Rydberg-state super atom is obtained given by \(1/\sqrt{N_m} \sum \exp[ik_S \cdot r_i] |g\rangle_1 \cdots |g\rangle_{N_m} \), also referred to as a Rydberg polariton. \(k_S = k_c - k_p \) is the wave vector of the atomic polariton, \(k_c \) and \(k_p \) are the vectors of the coupling and probe fields and \(r_i \) denotes the position of the \(i \)-th atom in atomic cloud. After a programmed storage time, the polariton is converted back into photonic excitation by switching on the coupling laser again. Figure 1(c) shows the storage sequence for the probe pulse; the leaked and retrieved probe fields both exhibit oscillation.

The repetition rate of our experiment is 200 Hz, and the MOT trapping time is 4.71 ms. Moreover, the experimental window is 290 μs. The probe field is collected into a single-mode fiber and detected by a single-photon detector (avalanche diode, PerkinElmer SPCM-AQR-16-FC, 60% efficiency, maximum dark count rate of 25/s). The two detectors are gated by an arbitrary function generator. The signal from the single-photon detector and the triggered signal from the arbitrary function generator are then sent to a time-correlated single-photon counting system (TimeHarp 260) to measure the probe temporal profile.

Results

Theoretical analysis

In the storage process, the input probe field contains approximately 10 photons per pulse, and the efficiency of converting the photons to Rydberg polaritons is measured to be \(\sim 0.04 \), guaranteeing one polariton excitation in the one storage process. The probe field illuminates the entire ensemble and excites all atoms with equal probability. Owing to the \(L \)-length cylinder mesoscopic atomic ensemble along the direction of probe beam, our system can be regarded as quasi-one-dimensional mesoscopic atomic ensemble, see the schematic diagram in Fig. 2(a). After storing the probe pulse in this medium, the converted Rydberg polariton can be expressed as follows:

\[
|R_m\rangle = \frac{1}{\sqrt{N_m}} \sum_{i=1}^{N_m} e^{i\Delta k \cdot r_i} |g_1 \cdots r_i \cdots g_{N_m}\rangle
\]

where \(N_m \) is the atom number in interacted area \(m \), \(\Delta k \) is the wave-vector mismatch between the probes, and coupling fields, \(r_i \) is the position of atom \(i \). Accordingly,
The fitted parameters (\(y\) and \(\Omega\)) serving the populations |\(\text{an}\rangle\) of the coupling laser beam. The low-lying collective excited state is converted into the state |\(\text{on}\rangle\) of the collective states |\(\text{on}\rangle\). Consequently, the collective Rabi frequency coupling the collective state |\(\text{on}\rangle\) and |\(\text{on}\rangle\) becomes \(|\langle E_{m}| r\rangle| R_{m}\rangle\) decreed. This reduction can be observed by observing the populations |\(E_{m}\rangle\) or |\(R_{m}\rangle\) under the driving of the coupling laser beam. The low-lying collective excited state is converted into the |\(E_{m}\rangle\) field versus time under different \(\Omega\). The low-lying collective excited state |\(\text{on}\rangle\) corresponds to the enhanced effective Rabi frequency, \(|\langle E_{m}| r\rangle| R_{m}\rangle\), which is the ground state with \(|\langle E_{m}| r\rangle| R_{m}\rangle\). Consequently, the collective memory is regarded as a delayed four-wave mixing process [22]. Owing to the atoms loss and nonlinear conversion in the reading process, the size of the collective states |\(E_{m}\rangle\) or |\(R_{m}\rangle\) decreased. This reduction can be observed by observing the populations |\(E_{m}\rangle\) or |\(R_{m}\rangle\) under the driving of the coupling laser beam. The low-lying collective excited state is converted into the |\(E_{m}\rangle\) field versus time under different \(\Omega\). The fitted parameters (\(y_0, b, c\)) are \((-2.7, 9.5, 2.8)\) for the black data, \((-6.0, 13.2, 1.9)\) for red data, \((-5.1, 12.6, 1.92)\) for blue data and \((-3.9, 11.4, 1.94)\) for green data. In this process, the detuning is \(\Delta_p = -2\pi \times 2.7 \text{ MHz}\) and \(\Delta_e = 2\pi \times 14.8 \text{ MHz}\) for writing, and \(\Delta_e = 2\pi \times 23.4 \text{ MHz}\) for reading. All error bars in the experimental data are estimated using Poisson statistics.

\[
\begin{align*}
|E_m\rangle &= \frac{1}{\sqrt{N_m}} \sum_{i=1}^{N_m} e^{i k_p \cdot \tau_i} |g_1 \cdots e_i \cdots g_{N_m}\rangle \quad (2)
\end{align*}
\]

Owing to the atoms loss and nonlinear conversion in the reading process, the size of the collective states |\(E_{m}\rangle\) or |\(R_{m}\rangle\) decreased. This reduction can be observed by observing the populations |\(E_{m}\rangle\) or |\(R_{m}\rangle\) under the driving of the coupling laser beam. The low-lying collective excited state is converted into the |\(E_{m}\rangle\) field versus time under different \(\Omega\). The fitted parameters (\(y_0, b, c\)) are \((-2.7, 9.5, 2.8)\) for the black data, \((-6.0, 13.2, 1.9)\) for red data, \((-5.1, 12.6, 1.92)\) for blue data and \((-3.9, 11.4, 1.94)\) for green data. In this process, the detuning is \(\Delta_p = -2\pi \times 2.7 \text{ MHz}\) and \(\Delta_e = 2\pi \times 14.8 \text{ MHz}\) for writing, and \(\Delta_e = 2\pi \times 23.4 \text{ MHz}\) for reading. All error bars in the experimental data are estimated using Poisson statistics.

\[
\begin{align*}
\Omega_{\text{coll}} &= -\frac{\varepsilon e}{\hbar} \langle E_m| r| R_m\rangle \\
&= -\frac{\varepsilon e}{\hbar} \sqrt{\eta} \sum_{i=1}^{N_{m'}^r} \langle g_1 \cdots g_i \cdots g_{N_m'} | r| g_1 \cdots r_i \cdots g_{N_m}\rangle \\
&- \frac{\varepsilon |e| \sqrt{1-\eta}}{\hbar} \sum_{i=1}^{N_{m'}^r} \langle g_1 \cdots e_i \cdots g_{N_m'} | r| g_1 \cdots r_i \cdots g_{N_m}\rangle \\
&= \frac{N_{m'}^r}{\sqrt{N_m}} \sqrt{\eta} \Omega_g + \frac{N_{m'}^r}{N_m} \sqrt{1-\eta} \Omega
\end{align*}
\]

Here, \(N_{m'}^r\) is the remaining number of ground state atoms owing to the loss induced by blue laser driving. \(\Omega_g = -\frac{\varepsilon e}{\hbar} \langle g| r| r\rangle\), corresponds to the Rabi frequency of a two-level single atom between the ground state |\(g\rangle\) and Rydberg state |\(r\rangle\), and \(\Omega = -\frac{\varepsilon \eta}{\hbar} \langle e| r| r\rangle\) corresponds to the Rabi frequency of a two-level single atom between the excited state |\(e\rangle\) and Rydberg state |\(r\rangle\). The first term corresponds to the enhanced effective Rabi frequency, which was not considered in our experiment (we detected only the transition process between |\(e\rangle\) and |\(r\rangle\)). The equation Eq.(3) gives rise to an anomalous oscillation between the residual low-lying collective excited state |\(E_m\rangle\) and the high-lying Rydberg-state super atom |\(R_m\rangle\),
with a decreased Rabi frequency \(N_m' \Omega \sqrt{1 - 7j/N_m} \). Because the quantum state \(|E_m\rangle\) is continuously converted to \(|G_m\rangle\) and the ground state atoms are lost during the reading process, the effective Rabi frequency \(\Omega_{\text{coll}} \) decreases with time during the oscillation as stated.

The reading process in our system can be modeled using a two-level atomic system with a varying effective Rabi frequency because the super atom could be regarded as a quasi-single particle. In the state evolution, as we consider the inhomogeneous broadening in our system, the broadening width can be embodied by the transparency bandwidth of the Rydberg-EIT. The probability of the retrieved signal is distributed as a Gaussian profile owing to the time reversal in the writing and reading processes \([20, 32, 33]\) \(\sim e^{-C^2t^2} \). The probability of the retrieved probe pulse under Rabi oscillation is expressed by \([34]\):

\[
P_r(\beta, \Delta, C, t_0, \Omega_n, t) = e^{-\beta^2(t-t_0)^2} \left(1 - \cos\left(\frac{e^{-C^2t^2} + 1}{2} \Omega t \right) \right)
\]

The term \(e^{-\beta^2(t-t_0)^2} \) is the fitted emission rate from a low-lying collective excited state to a photon; \(C^2 \) is the chirped coefficient, and \(t_0 \) is a parameter that fits the temporal profile of the probe intensity. The Rabi frequency \(\Omega = \sqrt{\Delta^2 + \Omega_n^2} \). \(\Omega_n \) is the effective Rabi frequency of the atomic transitions \(|r\rangle\) and \(|e\rangle\) involving \(\Omega_c \) and \(\Delta_c \). The temporal profile of the retrieved probe field can be simulated by integrating the inhomogeneous shift \(\Delta \):

\[
P_s(\beta, C, t_0, \Omega_n, t) = \int_{-\infty}^{+\infty} \sqrt{\pi/\alpha} e^{-\alpha \Delta^2} P_r(\beta, \Delta, C, t_0, \Omega_n, t) d\Delta
\]

here, we consider the energy broadening effect, which is distributed with a Gaussian function \(\sqrt{\pi/\alpha} e^{-\alpha \Delta^2} \); here \(\alpha \) is the broadening coefficient.

Size-reduction of Rabi oscillations

To explore the chirped character of the observed Rabi oscillations, we measure the temporal profile of the retrieved probe field with varying \(\Omega_c \). Here, we set \(\Delta_p = -2\pi \times 2.7 \text{ MHz} \) and \(\Delta_c = 2\pi \times 14.79 \text{ MHz} \) to write the Rydberg polariton and set \(\Delta_c = 2\pi \times 23.4 \text{ MHz} \) to read the Rydberg polariton out. We record the retrieved probe field, and deduce that the oscillation exhibits a period of gradual increase, which corresponds to a chirped pulse; the results are shown in Fig. 2(b-e). The effective Rabi frequency, \(\Omega_n \), was fitted as \(2\pi \times 46.1 \text{ MHz} \), \(2\pi \times 47.7 \text{ MHz} \), \(2\pi \times 49.3 \text{ MHz} \), and \(2\pi \times 50.9 \text{ MHz} \), as shown in Fig. 2(b-e), which tend to be consistent with \(\Omega_n^{\text{exp}} \) at large \(\Omega_c \) by considering the effective Rabi frequency \(\Omega_n^{\text{exp}} = \sqrt{\Omega_n^2 + \Delta_c^2} \). The different peaks against time are plotted in Fig. 2(f), which are fitted by the polynomial function \(y = y_0 + bx + cx^2 \) different from the normal fixed oscillation period with linear behavior. The collective state \(|E_m\rangle\) is continuously converted to \(|G_m\rangle\) during the reading process and the collective Rabi frequency gradually decreased over time. This observation differs from previous works \([6]\). The Rabi oscillation is demonstrated with fixed \(N_m \) and \(\Omega \), thus the Rabi frequency is a constant of \(\sqrt{N_m}\Omega \).

This process can be regarded as shaping a light pulse; the advantage of shaping a light pulse with this method is that the shaping operation is on-demand. Next, we change the storage time \(\Delta t \) and record the retrieved probe field; the results are shown in Fig. 3(b-e). Dephasing also occurs during the storage process, which affects the coherence of the Rabi oscillations between the collective \(|R_m\rangle\) and \(|E_m\rangle\). In the Bloch sphere given in Fig. 3(a), the trajectory of rotations driven by the coupling field do not express a curve but a surface because the point on the Bloch sphere is replaced by a sphere surface. The size of the sphere surface is determined by the broadening coefficient \(\alpha \). The broadening effect reduces the visibility of the Rabi oscillations and may even suppress them significantly as decoherence in the storage process \([35, 36]\). As observed in Fig. 3(b), the retrieved probe pulse shows an obviously decreased visibility which is marked by the red arrow. When increasing the storage time from \(\Delta t = 200 \text{ ns} \) to \(\Delta t = 500 \text{ ns} \), the visibility is further reduced, as shown in Fig. 3(b-e) because of the increased \(\alpha \). This is because the collective state is dephased during storage, which generates a finite storage lifetime. The atoms in the MOT are not spin-polarized, and the absence of spin polarization with respect to light leads to an inhomogeneous broadening of the Rabi frequencies and, therefore, to dephasing. Additionally, the inhomogeneous \(\Omega_c \) caused by the transverse differentiated intensity distribution of the coupling field induce additional dephasing. The broadening effect reflects the broadened bandwidth of the transparency window of the Rydberg EIT, as given in Ref. \([37]\).

Moreover, we changed the detuning \(\Delta_c \) to explore the evolution of the collective state. In this process, we write the high-lying Rydberg-state super atom under the optimized condition \(\Delta_p = -2\pi \times 2.7 \text{ MHz} \) and \(\Delta_c = 2\pi \times 14.8 \text{ MHz} \). In the read process, the temporal profile of the retrieved probe field is changed by varying \(\Delta_c \). The results are given in Fig. 4(a-e), in which the detuning \(\Delta_c \) is changed to \(-2\pi \times 12 \text{ MHz} \) (b) \(2 \text{ pi times} 17.6 \text{ MHz} \), and (c) \(2\pi \times 26 \text{ MHz} \) (c) respectively. The periods of these oscillations are clearly increased as the effective Rabi frequencies are increased versus \(\Delta_c \). The theoretical function fits the results in Fig. 4(b) and Fig. 4(c) but with uncertainty deviations for the red detuning of \(\Delta_c \), as shown in the example in Fig. 4(a).

When the detuning \(\Delta_c \) is large enough, we can evaluate more complex oscillations shown in Fig. 4(e-f). In these two cases, we set the detuning \(\Delta_c = 2\pi \times 35 \text{ MHz} \) and
Figure 3. Measurement of retrieved probe field. (a) Bloch sphere for Rabi oscillation with inhomogeneous broadening. (b-e) the retrieved probe field against time under different storage times Δt; The solid curves are fits of the form $P_s(\beta, C, t_0, \Omega_n, t)$. In this process, the detunings $\Delta_p = -2\pi \times 2.7$ MHz and $\Delta_n = 2\pi \times 14.8$ MHz for writing, and $\Delta_c = 2\pi \times 17.6$ MHz for reading. All error bars in the experimental data are estimated from the Poisson statistics.

Figure 4. Measurement of retrieved probe field with different detuning Δ_c. (a-e) Retrieved probe field against detuning Δ_c; solid curves are fits of the form $P_s(\beta, C, t_0, \Omega_n, t)$ with the fit parameters $(\beta, C, t_0, \Omega_n)$. In this process, the storage time was set to 300 ns and $\Omega_c = 2\pi \times 44.8$ MHz. All error bars in the experimental data are estimated using Poisson statistics.

$\Delta_c = 2\pi \times 44$ MHz, respectively. The constructive and destructive interference appeared alternately along the time axis in Fig. 4(e) and (f) supports a superposition of two Rabi oscillations, with fitted Rabi frequencies $\Omega_n = 2\pi \times 41.4$, $2\pi \times 62.1$ MHz for Fig. 4(e) and $\Omega_n = 2\pi \times 49.3$, $2\pi \times 68.4$ MHz for Fig. 4(f). Accordingly, the system is described by state $|\psi\rangle = c_1 |R_{m1}\rangle + c_2 |R_{m2}\rangle + c_3 |E_m\rangle$.

The coefficients c_1, c_2 and c_3 are the time-dependent complex amplitudes, here $|R_{m1}\rangle$ and $|R_{m2}\rangle$ correspond to the states of high-lying Rydberg-state super atoms. However, for the red detuning $\Delta_c = -2\pi \times 35$ MHz in Fig. 4(d) completely opposite to the case in Fig. 4(e), there is a single oscillation with fitted Rabi frequencies $\Omega_n = 2\pi \times 41.4$ MHz. The measured data with
$\Delta_c = \pm 2\pi \times 35 \text{ MHz}$ with asymmetric Rabi oscillations supports that an enhanced Rabi oscillation process occurs under blue detuning.

Conclusion

In summary, the entire process of the Rydberg-quantum memory with Rabi oscillation can be considered as manipulating a Rydberg super atom to shape the photon wave-packet. The unique technology to modulate the photon wave-packet presented here is based on the Rabi oscillation between different collective excited states. This is significantly different from the progresses of using electro-optical modulators to directly modulate the amplitude of single-photon wave packets \[\text{(38, 39)}\] or modulating the properties of pump fields by electro-optical modulators and spatial light modulation to change the temporal quantum waveform of narrowband biphotons in cold atoms \[\text{(40, 41)}\], or modulating photonic bandwidth through sum frequency generation \[\text{(42, 43)}\]. The anomalous Rabi oscillations hint that the arbitrary photonic wave-packet could be constructed via superposing multi-polaritons with more tunable detunings. The reported results combined the techniques of quantum memory and the anomalous Rabi oscillations have potential in modulating the single photon wave-packet \[\text{(21)}\] and provide a perspective approach of constructing an interface between light and the atoms to study collective effect. Additionally, this can be regarded as a tool to realize the manipulation of the quantum state towards the study of quantum mechanics in the microscopic field.

Acknowledgments

Dong-Sheng Ding and Yi-Chen Yu contributed equally to the study. The authors would like to thank Prof. Wei Zhang, Jin-Ming Cui, and Prof. Xiang-Dong. Chen for the initial discussions on the results, Prof. Lin Li from Huazhong University Of Science and Technology and Prof. Yuan Sun from the National University of Defense Technology for their valued discussions. This study was supported by the National Key R&D Program of China (2017YFA0304800), the National Natural Science Foundation of China (Grant Nos. U20A20218, 61525504, 61435011), and Fundamental Research Funds for the Central Universities, and the Youth Innovation Pro motion Association of CAS under Grant No. 2018490.

Conflict of interest The authors declare no conflict of interest.

* dds@ustc.edu.cn
* drshi@ustc.edu.cn

[1] M.T. Rouabah W. Guerin and R. Kaiser, “Light interacting with atomic ensembles: Collective, cooperative and mesoscopic effects,” Journal of Modern Optics 64, 895–907 (2016).

[2] Robert H Dicke, “Coherence in spontaneous radiation processes,” Physical review 93, 99 (1954).

[3] Jens Honer, Robert Löw, Hendrik Weimer, Tilman Pfau, and Hans Peter Büchler, “Artificial atoms can do more than atoms: deterministic single photon subtraction from arbitrary light fields,” Physical review letters 107, 093601 (2011).

[4] Alpha Gaëtan, Yevhen Miroshnychenko, Tatjana Wilk, Amosden Chotia, Matthieu Viteau, Daniel Comparat, Pierre Pillet, Antoine Browaeys, and Philippe Grangier, “Observation of collective excitation of two individual atoms in the Rydberg blockade regime,” Nat. Phys. 5, 115 (2009).

[5] E Urban, Todd A Johnson, T Henage, L I森hower, DD Yavuz, TG Walker, and M Saffman, “Observation of Rydberg blockade between two atoms,” Nature Physics 5, 110 (2009).

[6] YO Dudin, L Li, F Bariani, and A Kuzmich, “Observation of coherent many-body rabi oscillations,” Nature Physics 8, 790 (2012).

[7] Johannes Zeiher, Peter Schauß, Sebastian Hild, Tomas Macrò, Immanuel Bloch, and Christian Gross, “Microscopic characterization of scalable coherent Rydberg superatoms,” Phys. Rev. X 5, 031015 (2015).

[8] TM Weber, M Höning, T Niederprum, T Manthey, O Thomas, V Guerrera, M Fleischhauer, G Barontini, and H Ott, “Mesoscopic Rydberg-blockaded ensembles in the superatom regime and beyond,” Nature Physics 11, 157–161 (2015).

[9] II Beterov, M Saffman, EA Yakshina, DB Tretyakov, VM Entin, GN Hamzina, and II Ryabtsev, “Simulated quantum process tomography of quantum gates with Rydberg superatoms,” Journal of Physics B: Atomic, Molecular and Optical Physics 49, 114007 (2016).

[10] Asaf Paris-Mandoki, Christoph Braun, Jan Kumlin, Christoph Tresp, Ivan Mirgorodskiy, Florian Christaller, Hans Peter Büchler, and Sebastian Hofferberth, “Free-space quantum electrodynamics with a single Rydberg superatom,” Physical Review X 7, 041010 (2017).

[11] Hannes Busche, Paul Huillery, Simon W Ball, Teodora Iliev, Matthew PA Jones, and Charles S Adams, “Contactless nonlinear optics mediated by long-range Rydberg interactions,” Nature Physics 13, 655–658 (2017).

[12] MD Lukin, M Fleischhauer, R Cote, LM Duan, D Jaksch, O Thomas, V Guerrera, M Fleischhauer, G Barontini, and H Ott, “Mesoscopic Rydberg-blockaded ensembles in the superatom regime and beyond,” Nature Physics 11, 157–161 (2015).

[13] mark Saffman, “Quantum computing with atomic qubits and Rydberg interactions: progress and challenges,” Journal of Physics B: Atomic, Molecular and Optical Physics 49, 202001 (2016).

[14] Ofer Firstenberg, Charles S Adams, and Sebastian Hofferberth, “Nonlinear quantum optics mediated by Rydberg interactions,” Journal of Physics B: Atomic, Molecular and Optical Physics 49, 152003 (2016).

[15] Peter Schauß, Marc Cheneau, Manuel Endres, Takeshi Fukuhara, Sebastian Hild, Ahmed Omran, Thomas Pohl, Christian Gross, Stefan Kuhr, and Immanuel Bloch, “Observation of spatially ordered structures in a two-dimensional Rydberg gas,” Nature 491, 87–91 (2012).

[16] Henning Labuhn, Daniel Barredo, Sylvain Ravets, Sylvain De Léséleuc, Tommaso Macrì, Thierry Lahaye, and Antoine Browaeys, “Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum ising mod-
[17] Dong-Sheng Ding, Hannes Busche, Bao-Sen Shi, Guang-Can Guo, and Charles S Adams, “Phase diagram and self-organizing dynamics in a thermal ensemble of strongly interacting Rydberg atoms,” Physical Review X 10, 021023 (2020).

[18] Dong-Sheng Ding, Zong-Kai Liu, Hannes Busche, Bao-Sen Shi, Guang-Can Guo, Charles S Adams, and Franco Nori, “Epidemic spreading and herd immunity in a driven non-equilibrium system of strongly-interacting atoms,” arXiv preprint arXiv:2106.12290 (2021).

[19] Félix Bussières, Nicolas Sangouard, Mikael Afzelius, Hugues De Riedmatten, Christoph Simon, and Wolfgang Tittel, “Prospective applications of optical quantum memories,” Journal of Modern Optics 60, 1519–1537 (2013).

[20] Dong-Sheng Ding, Kai Wang, Wei Zhang, Shuai Shi, Ming-Xin Dong, Yi-Chen Yu, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo, “Entanglement between low- and high-lying atomic spin waves,” Phys. Rev. A 94, 052326 (2016).

[21] YO Dudin and A Kuzmich, “Strongly interacting Rydberg excitations of a cold atomic gas,” Science 336, 887–889 (2012).

[22] Fabian Ripka, Harald Kübler, Robert Löw, and Tilman Pfau, “A room-temperature single-photon source based on strongly interacting Rydberg atoms,” Science 362, 446–449 (2018).

[23] Shengwang Du, Jianming Wen, and Morton H Rubin, “Narrowband biphoton generation near atomic resonance,” JOSA B 25, C98–C108 (2008).

[24] Milrian S Mendes, Pablo L Saldanha, José WR Tabosa, and Daniel Felinto, “Dynamics of the reading process of a quantum memory,” New Journal of Physics 15, 075030 (2013).

[25] Rafael A de Oliveira, Milrian S Mendes, Weliton S Martins, Pablo L Saldanha, José WR Tabosa, and Daniel Felinto, “Single-photon superradiance in cold atoms,” Physical Review A 90, 023848 (2014).

[26] Mark Saffman, TG Walker, and Klaus Molmer, “Quantum information with Rydberg atoms,” Reviews of Modern Physics 82, 2313 (2010).

[27] Michael Fleischhauer, Atac Imamoglu, and Jonathan P Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Reviews of modern physics 77, 633 (2005).

[28] Dong-Sheng Ding, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nature communications 4, 2527 (2013).

[29] Dong-Sheng Ding, Yun Kun Jiang, Wei Zhang, Zhi-Yuan Zhou, Bao-Sen Shi, and Guang-Can Guo, “Optical precursor with four-wave mixing and storage based on a cold-atom ensemble,” Physical review letters 114, 093601 (2015).

[30] Dong-Sheng Ding, Wei Zhang, Zhi-Yuan Zhou, Shuai Shi, Bao-Sen Shi, and Guang-Can Guo, “Raman quantum memory of photonic polarized entanglement,” Nature Photonics 9, 332 (2015).

[31] Christoph Tresp, “Rydberg polaritons and Rydberg superatoms—novel tools for quantum nonlinear optics,” (PhD Thesis, 2017).

[32] Irina Novikova, Alexey V Gorshkov, David F Phillips, Anders S Sørensen, Mikhail D Lukin, and Ronald L Walsworth, “Optimal control of light pulse storage and retrieval,” Physical Review Letters 98, 243602 (2007).

[33] Jesse L Everett, Pierre Vernaz-Gris, Geoff T Campbell, Aaron D Tranter, Karun V Paul, Anthony C Leung, Ping Koy Lam, and Ben C Buchler, “Time-reversed and coherently enhanced memory: A single-mode quantum atom-optic memory without a cavity,” Physical Review A 98, 063846 (2018).

[34] J Stanojevic and R Côté, “Many-body rabi oscillations of Rydberg excitation in small mesoscopic samples,” Physical Review A 80, 033418 (2009).

[35] Sylvain de Léséleuc, Daniel Barredo, Vincent Lienhard, Antoine Browaeys, and Thierry Lahaye, “Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states,” Physical Review A 97, 053803 (2018).

[36] Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien, Sylvain Schwartz, Alexander S Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D Lukin, “High-fidelity control and entanglement of Rydberg-atom qubits,” Physical review letters 121, 123603 (2018).

[37] Yi-Chen Yu, Ming-Xin Dong, Ying-Hao Ye, Guang-Can Guo, Dong-Sheng Ding, and Bao-Sen Shi, “Experimental demonstration of switching entangled photons based on the Rydberg blockade effect,” Science China Physics, Mechanics & Astronomy 63 (2020), 10.1007/s11433-020-1602-1.

[38] Pavel Kolchin, Chinnay Belthangady, Shengwang Du, GY Yin, and SE Harris, “Electro-optic modulation of single photons,” Physical review letters 101, 103601 (2008).

[39] Holger P Specht, Jörg Bochmann, Martin Mücke, Bernhard Weber, Eden Figueroa, David L Moehring, and Gerhard Rempe, “Phase shaping of single-photon wave packets,” Nature Photonics 3, 469 (2009).

[40] JF Chen, Shanchao Zhang, Hui Yan, MMT Loy, George Ke Lun Wong, and Shengwang Du, “Shaping biphoton temporal waveforms with modulated classical fields,” Physical review letters 104, 183604 (2010).

[41] Luwei Zhao, Xiaxin Guo, Yuan Sun, Yumian Su, MMT Loy, and Shengwang Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Physical review letters 115, 193601 (2015).

[42] Matthew T Rakher, Lijun Ma, Marcelo Davanco, Oliver Slattery, Xiao Tang, and Kartik Srinivasan, “Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot,” Physical review letters 107, 083602 (2011).

[43] Jonathan Lavoie, John M Donohue, Logan G Wright, Alessandro Fedrizzi, and Kevin J Resch, “Spectral compression of single photons,” Nature Photonics 7, 363 (2013).