Multiresolution equivariant graph variational autoencoder

Truong Son Hy∗ and Risi Kondor

Department of Computer Science, University of Chicago, Chicago, IL 60637, United States of America
∗Author to whom any correspondence should be addressed.
E-mail: hytruongson@uchicago.edu

Keywords: graph neural networks, graph variational autoencoders, hierarchical generative models, molecule generation, supervised and unsupervised molecular representation learning

Abstract

In this paper, we propose Multiresolution Equivariant Graph Variational Autoencoders (MGVAE), the first hierarchical generative model to learn and generate graphs in a multiresolution and equivariant manner. At each resolution level, MGVAE employs higher order message passing to encode the graph while learning to partition it into mutually exclusive clusters and coarsening into a lower resolution that eventually creates a hierarchy of latent distributions. MGVAE then constructs a hierarchical generative model to variationally decode into a hierarchy of coarsened graphs. Importantly, our proposed framework is end-to-end permutation equivariant with respect to node ordering. MGVAE achieves competitive results with several generative tasks including general graph generation, molecular generation, unsupervised molecular representation learning to predict molecular properties, link prediction on citation graphs, and graph-based image generation. Our implementation is available at https://github.com/HyTruongSon/MGVAE.

1. Introduction

Understanding graphs in a multiscale and multiresolution perspective is essential for capturing the structure of molecules, social networks, or the World Wide Web. Graph neural networks (GNNs) utilizing various ways of generalizing the concept of convolution to graphs [1–3] have been widely applied to many learning tasks, including modeling physical systems [4], finding molecular representations to estimate quantum chemical computation [3–8], and protein interface prediction [9]. One of the most popular types of GNNs is message passing neural nets (MPNNs) that are constructed based on the message passing scheme in which each node propagates and aggregates information, encoded by vectorized messages, to and from its local neighborhood. While this framework has been immensely successful in many applications, it lacks the ability to capture the multiscale and multiresolution structures that are present in complex graphs [10–13].

Ying et al [14] proposed a multiresolution GNN that employs a differential pooling operator to coarsen the graph. While this approach is effective in some settings, it is based on soft assignment matrices, which means that (a) the sparsity of the graph is quickly lost in higher layers (b) the algorithm is not able to learn an actual hard clustering of the vertices. The latter is important in applications such as learning molecular graphs, where clusters should ideally be interpretable as concrete subunits of the graphs, e.g. functional groups.

In contrast, in this paper we propose an architecture called Multiresolution Graph Network (MGN), and its generative cousin, Multiresolution Graph Variational Autoencoder (MGVAE), which explicitly learn a multilevel hard clustering of the vertices, leading to a true multiresolution hierarchy. In the decoding stage, to ‘uncoarsen’ the graph, MGVAE needs to generate local adjacency matrices, which is inherently a second order task with respect to the action of permutations on the vertices, hence MGVAE needs to leverage the recently developed framework of higher order permutation equivariant message passing networks [8, 15].

Learning to generate graphs with deep generative models is a difficult problem because graphs are combinatorial objects that typically have high order correlations between their discrete substructures (subgraphs) [16–20]. Graph-based molecular generation [21–25] involves further challenges, including...
correctly recognizing chemical substructures, and importantly, ensuring that the generated molecular graphs are chemically valid. MGN allows us to extend the existing model of variational autoencoders (VAEs) with a hierarchy of latent distributions that can stochastically generate a graph in multiple resolution levels. Our experiments show that having a flexible clustering procedure from MGN enables MGVAE to detect, reconstruct and finally generate important graph substructures, especially chemical functional groups.

2. Related work

There have been significant advances in understanding the invariance and equivariance properties of neural networks in general [26, 27], of GNNs [15, 28], of neural networks learning on sets [29–31], along with their expressive power on graphs [32, 33]. Our work is in line with group equivariant networks operating on graphs and sets. Multiscale, multilevel, multiresolution and coarse-grained techniques have been widely applied to graphs and discrete domains such as diffusion wavelets [34]; spectral wavelets on graphs [35]; finding graph wavelets based on partitioning/clustering [10]; graph clustering and finding balanced cuts on large graphs [36–39]; and link prediction on social networks [40]. Prior to our work, some authors such as [41] proposed a multiscale generative model on graphs using generative adversarial network (GAN) [42], but the hierarchical structure was built by heuristics algorithm, not learnable and not flexible to new data that is also an existing limitation of the field. In general, our work exploits the powerful group equivariant networks to encode a graph and to learn to form balanced partitions via back-propagation in a data-driven manner without using any heuristics as in the existing works.

In the field of deep generative models, it is generally recognized that introducing a hierarchy of latents and adding stochasticity among latents leads to more powerful models capable of learning more complicated distributions [43–48]. Our work combines the hierarchical VAE with learning to construct the hierarchy that results into a generative model able to generate graphs at many resolution levels.

Recent advancements in graph and molecule generation have shown a great potential for designing a wide range of drug candidates with desired properties. Generative Flow Networks (GFlowNets), introduced by [49] as a method to sample a diverse set of candidates in an active learning context, has been found to be capable of generating a diverse set of small molecules [50] and biological sequences such as proteins and DNAs [51]. On the other hand, diffusion models have been popularly adopted to generate the periodic structure of stable materials (e.g. crystals) [52] and generate molecular conformation [53]. As a future work, our scheme of multiresolution generation (i.e. generating the structure at multiple levels of resolutions) can be applied for these most recent techniques in order to improve the accuracy and efficiency in generating large, long-range, and hierarchical structures such as proteins.

3. Multiresolution graph network

3.1. Construction

An undirected weighted graph \(\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{A}, \mathcal{F}_v, \mathcal{F}_e) \) with node set \(\mathcal{V} \) and edge set \(\mathcal{E} \) is represented by an adjacency matrix \(\mathcal{A} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|} \), where \(\mathcal{A}_{ij} > 0 \) implies an edge between node \(v_i \) and \(v_j \) with weight \(\mathcal{A}_{ij} \) (e.g. \(\mathcal{A}_{ij} \in \{0, 1\} \) in the case of unweighted graph); while node features are represented by a matrix \(\mathcal{F}_v \in \mathbb{R}^{|\mathcal{V}| \times d_v} \), and edge features are represented by a tensor \(\mathcal{F}_e \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}| \times d_e} \). The second-order tensor representation of edge features is necessary for our higher-order message passing networks described in the next section. Indeed, \(\mathcal{F}_e \) can be encoded in the diagonal of \(\mathcal{F}_e \).

Definition 3.1. A \(K \)-cluster partition of graph \(\mathcal{G} \) is a partition of the set of nodes \(\mathcal{V} \) into \(K \) mutually exclusive clusters \(\mathcal{V}_1, \ldots, \mathcal{V}_K \). Each cluster corresponds to an induced subgraph \(\mathcal{G}_k = \mathcal{G}[\mathcal{V}_k] \).

Definition 3.2. A coarsening of \(\mathcal{G} \) is a graph \(\tilde{\mathcal{G}} \) of \(K \) nodes defined by a \(K \)-cluster partition in which node \(\tilde{v}_k \) of \(\tilde{\mathcal{G}} \) corresponds to the induced subgraph \(\mathcal{G}_k \). The weighted adjacency matrix \(\tilde{\mathcal{A}} \in \mathbb{N}^{K \times K} \) of \(\tilde{\mathcal{G}} \) is

\[
\tilde{\mathcal{A}}_{kk'} = \begin{cases}
\frac{1}{\sum_{v_i \in \mathcal{V}_k} \sum_{v_j \in \mathcal{V}_{k'}} \mathcal{A}_{ij}} \mathcal{A}_{ij}, & \text{if } k = k', \\
\sum_{v_i \in \mathcal{V}_k} \sum_{v_j \in \mathcal{V}_{k'}} \mathcal{A}_{ij}, & \text{if } k \neq k',
\end{cases}
\]

where the diagonal of \(\tilde{\mathcal{A}} \) denotes the number of edges inside each cluster, while the off-diagonal denotes the number of edges between two clusters.

Figure 1 shows an example of definitions 3.1 and 3.2: a three-cluster partition of the Aspirin \(\text{C}_9\text{H}_8\text{O}_4 \) molecular graph and its coarsening graph. Definition 3.3 defines the multiresolution of graph \(\mathcal{G} \) in a bottom-up manner in which the bottom level is the highest resolution (e.g. \(\mathcal{G} \) itself) while the top level is the lowest resolution (e.g. \(\mathcal{G} \) is coarsened into a single node).
Definition 3.3. An L-level coarsening of a graph G is a series of L graphs $G^{(1)}$, ..., $G^{(L)}$ in which

1. $G^{(L)}$ is G itself.
2. For $1 \leq \ell \leq L - 1$, $G^{(\ell)}$ is a coarsening graph of $G^{(\ell+1)}$ as defined in definition 3.2. The number of nodes in $G^{(\ell)}$ is equal to the number of clusters in $G^{(\ell+1)}$.
3. The top level coarsening $G^{(1)}$ is a graph consisting of a single node, and the corresponding adjacency matrix $A_1 \in \mathbb{R}^{|V_1| \times |V_1|}$.

Definition 3.4. An L-level MGN of a graph G consists of $L - 1$ tuples of five network components $\{\{c^{(\ell)}, e_{\text{local}}^{(\ell)}, d_{\text{local}}^{(\ell)}, d_{\text{global}}^{(\ell)}, p^{(\ell)}\}\}_{\ell=2}^{L}$. The ℓth tuple encodes $G^{(\ell)}$ and transforms it into a lower resolution graph $G^{(\ell-1)}$ in the higher level. Each of these network components has a separate set of learnable parameters $(\theta_1^{(\ell)}, \theta_2^{(\ell)}, \theta_3^{(\ell)}, \theta_4^{(\ell)}, \theta_5^{(\ell)})$. For simplicity, we collectively denote the learnable parameters as θ, and drop the superscript. The network components are defined as follows:

1. Clustering procedure $c(G^{(\ell)}; \theta)$, which partitions graph $G^{(\ell)}$ into K clusters $V_1^{(\ell)}, ..., V_K^{(\ell)}$. Each cluster is an induced subgraph $G_k^{(\ell)}$ of $G^{(\ell)}$ with adjacency matrix $A_k^{(\ell)}$.
2. Local encoder $e_{\text{local}}(G_k^{(\ell)}; \theta)$, which is a permutation equivariant (see definitions 3.7 and 3.8) GNN that takes as input the subgraph $G_k^{(\ell)}$, and outputs a set of node latents $Z_k^{(\ell)}$ represented as a matrix of size $|V_k^{(\ell)}| \times d_z$.
3. Local decoder $d_{\text{local}}(Z_k^{(\ell)}; \theta)$, which is a permutation equivariant neural network that tries to reconstruct the subgraph adjacency matrix $A_k^{(\ell)}$ for each cluster from the local encoder’s output latents.
4. (Optional) Global decoder $d_{\text{global}}(Z_k^{(\ell)}; \theta)$, which is a permutation equivariant neural network that reconstructs the full adjacency matrix $A^{(\ell)}$ from all the node latents of K clusters $Z^{(\ell)} = \bigoplus_k Z_k^{(\ell)}$ represented as a matrix of size $|V^{(\ell)}| \times d_z$.
5. Pooling network $p(Z_k^{(\ell)}; \theta)$, which is a permutation invariant (see definitions 3.7 and 3.8) neural network that takes the set of node latents $Z_k^{(\ell)}$ and outputs a single cluster latent $z_k^{(\ell)} \in d_z$. The coarsening graph $G^{(\ell-1)}$ has adjacency matrix $A^{(\ell-1)}$ built as in definition 3.2, and the corresponding node features $Z^{(\ell-1)} = \bigoplus_k z_k^{(\ell)}$ represented as a matrix of size $K \times d_z$.

Algorithmically, MGN works in a bottom-up manner as a tree-like hierarchy starting from the highest resolution graph $G^{(L)}$, going to the lowest resolution $G^{(1)}$ (see figure 2). Iteratively, at ℓth level, MGN
partitions the current graph into \(K \) clusters by running the clustering procedure \(\ell \). Then, the local encoder \(e_{local}^{(\ell)} \) and local decoder \(d_{global}^{(\ell)} \) operate on each of the \(K \) subgraphs separately, and can be executed in parallel. This encoder/decoder pair is responsible for capturing the local structures. Finally, the pooling network \(p^{(\ell)} \) shrinks each cluster into a single node of the next level. Optionally, the global decoder \(d_{global}^{(\ell)} \) makes sure that the whole set of node latents \(Z^{(\ell)} \) is able to capture the inter-connection between clusters.

In terms of time and space complexity, MGN is more efficient than existing methods in the field. The cost of global decoding the highest resolution graph is proportional to \(|V|^2 \). For example, while the encoder can exploit the sparsity of the graph and has complexity \(O(|V|^2) \), a simple dot-product decoder \(d_{global}(Z) = \text{sigmoid}(Z^T) \) has both time and space complexity of \(O(|V|^2) \) which is infeasible for large graphs. In contrast, the cost of running \(K \) local dot-product decoders is \(O(|V|^2/K) \), which is approximately \(K \) times more efficient.

3.2. Basic tensor operations

In order to build higher order equivariant networks, we revisit some basic tensor operations: tensor product (see definition 3.5) and tensor contraction (see definition 3.6). It can be shown that these tensor operations respect permutation equivariance \([8, 28]\). Based on them, we build our second order message passing networks.

Definition 3.5. The tensor product of \(A \in \mathbb{R}^{a} \) with \(B \in \mathbb{R}^{b} \) yields a tensor \(C = A \otimes B \in \mathbb{R}^{a+b} \) where

\[
C_{i_1, i_2, \ldots, i_{a+b}} = A_{i_1, i_2, \ldots, i_a} B_{i_{a+1}, i_{a+2}, \ldots, i_{a+b}}.
\]

Definition 3.6. The contraction of \(A \in \mathbb{R}^{n} \) along the pair of dimensions \(\{x, y\} \) (assuming \(x < y \)) yields a \((a-2)\)th order tensor

\[
C_{i_1, \ldots, i_{x-1}, i_x+1, \ldots, i_{y-1}, i_y+1, \ldots, i_n} = \sum_{i_x} \sum_{i_y} A_{i_1, \ldots, i_x, \ldots, i_y}.
\]

where we assume that \(i_x \) and \(i_y \) have been removed from amongst the indices of \(C \). Using Einstein notation, this can be written more compactly as

\[
C_{i_1, i_2, \ldots, i_n} \delta_{i_x}^{i_1} \delta_{i_y}^{i_n} = A_{i_1, i_2, \ldots, i_n} \delta_{i_x}^{i_1} \delta_{i_y}^{i_n}.
\]

3.3. Higher order message passing

In this paper we consider permutation symmetry, i.e. symmetry to the action of the symmetric group, \(S_n \). An element \(\sigma \in S_n \) is a permutation of order \(n \), or a bijective map from \(\{1, \ldots, n\} \) to \(\{1, \ldots, n\} \). The action of \(S_n \) on an adjacency matrix \(A \in \mathbb{R}^{n \times n} \) and on a latent matrix \(Z \in \mathbb{R}^{n \times d} \) are

\[
[\sigma \cdot A]_{i_1, i_2} = A_{\sigma^{-1}(i_1), \sigma^{-1}(i_2)}, \quad [\sigma \cdot Z]_{i,j} = Z_{\sigma^{-1}(i), j},
\]

for \(\sigma \in S_n \). Here, the adjacency matrix \(A \) is a second order tensor with a single feature channel, while the latent matrix \(Z \) is a first order tensor with \(d_x \) feature channels. In general, the action of \(S_n \) on a kth order tensor \(\mathcal{X} \in \mathbb{R}^{d \times d} \) (the last index denotes the feature channels) is defined similarly as:

\[
[\sigma \cdot \mathcal{X}]_{i_1, \ldots, i_k} = \mathcal{X}_{\sigma^{-1}(i_1), \ldots, \sigma^{-1}(i_k), i_k}, \quad \sigma \in S_n.
\]

Network components of MGN (as defined in section 3.1) at each resolution level must be either equivariant, or invariant with respect to the permutation action on the node order of \(G^{(\ell)} \). Formally, we define these properties in definition 3.7.

Definition 3.7. An \(S_n \)-equivariant (or permutation equivariant) function is a function \(f: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d' \times d'} \) that satisfies \(f(\sigma \cdot \mathcal{X}) = \sigma \cdot f(\mathcal{X}) \) for all \(\sigma \in S_n \) and \(\mathcal{X} \in \mathbb{R}^{d \times d} \). Similarly, we say that \(f \) is \(S_n \)-invariant (or permutation invariant) if and only if \(f(\sigma \cdot \mathcal{X}) = f(\mathcal{X}) \).
3.4. Learning to cluster

Definition 3.11. A clustering of n objects into k clusters is a mapping $\pi: \{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$ in which $\pi(i) = j$ if the ith object is assigned to the jth cluster. The inverse mapping $\pi^{-1}(j) = \{i \in [1, n] : \pi(i) = j\}$ gives the set of all objects assigned to the jth cluster. The clustering is represented by an assignment matrix $\Pi \in \{0, 1\}^{n \times k}$ such that $\Pi_{i, \pi(i)} = 1$.

Definition 3.12. The action of S_n on a clustering π of n objects into k clusters and its corresponding assignment matrix Π are

$$[\sigma \cdot \pi](i) = \pi(\sigma^{-1}(i)), \quad [\sigma \cdot \Pi]_{i,j} = \Pi_{\sigma^{-1}(i), j}, \quad \sigma \in S_n.$$

Definition 3.13. Let \mathcal{N} be a neural network that takes as input a graph \mathcal{G} of n nodes, and outputs a clustering π of k clusters. \mathcal{N} is said to be equivariant if and only if $\mathcal{N}(\sigma \cdot \mathcal{G}) = \sigma \cdot \mathcal{N}(\mathcal{G})$ for all $\sigma \in S_n$.

From definition 3.13, intuitively the assignment matrix Π still represents the same clustering if we permute its rows. The learnable clustering procedure $c(\mathcal{G}^{(t)}; \theta)$ is built as follows:
1. A GNN parameterized by θ encodes graph $G^{(\ell)}$ into a first order tensor of K feature channels $\tilde{p}_i^{(\ell)} \in \mathbb{R}^{|V^{(\ell)}| \times K}$.

2. The clustering assignment is determined by a row-wise maximum pooling operation:

$$\pi^{(\ell)}(i) = \arg \max_{k \in [1, K]} \tilde{p}_{i,k}^{(\ell)}$$

(1)

that is an equivariant clustering in the sense of definition 3.13.

A composition of an equivariant function (e.g. graph net) and an equivariant function (e.g. maximum pooling given in equation (1)) is still an equivariant function with respect to the node permutation. Thus, the learnable clustering procedure $c(G^{(\ell)}; \theta)$ is permutation equivariant.

In practice, in order to make the clustering procedure differentiable for backpropagation, we replace the maximum pooling in equation (1) by sampling from a categorical distribution. Let $\pi_i^{(\ell)}$ be a categorical variable with class probabilities $p_i^{(\ell)} \ldots p_i^{(\ell)}$ computed as softmax from $\tilde{p}_i^{(\ell)}$. The Gumbel-max trick [55–57] provides a simple and efficient way to draw samples $\pi^{(\ell)}(i)$:

$$\Pi_i^{(\ell)} = \text{one-hot} \left(\arg \max_{k \in [1, K]} \left[g_{i,k} + \log p_i^{(\ell)} \right] \right),$$

where $g_{i,1}, \ldots, g_{i,K}$ are i.i.d samples drawn from Gumbel(0, 1). Given the clustering assignment matrix $\Pi^{(\ell)}$, the coarsened adjacency matrix $A^{(\ell-1)}$ (see definitions 3.1 and 3.2) can be constructed as $\Pi^{(\ell)^T} A^{(\ell)} \Pi^{(\ell)}$.

It is desirable to have a balanced K-cluster partition in which clusters $V_1^{(\ell)}, \ldots, V_K^{(\ell)}$ have similar sizes that are close to $|V^{(\ell)}|/K$. The local encoders tend to generalize better for same-size subgraphs. We want the distribution of nodes into clusters to be close to the uniform distribution. We enforce the clustering procedure to produce a balanced cut by minimizing the following Kullback–Leibler divergence:

$$D_{KL}(P||Q) = \sum_{k=1}^{K} P(k) \log \frac{P(k)}{Q(k)},$$

(2)

where

$$P = \left(\frac{|V_1^{(\ell)}|}{|V^{(\ell)}|}, \ldots, \frac{|V_K^{(\ell)}|}{|V^{(\ell)}|} \right), \quad Q = \left(\frac{1}{K}, \ldots, \frac{1}{K} \right).$$

The whole construction of MGN is equivariant with respect to node permutations of G. In the case of molecular property prediction, we want MGN to learn to predict a real value $y \in \mathbb{R}$ for each graph G while learning to find a balanced cut in each resolution to construct a hierarchical structure of latents and coarsen graphs. The total loss function is

$$\mathcal{L}_{\text{MGN}}(G, y) = \left\| f \left(\bigoplus_{\ell=1}^{L} R \left(Z^{(\ell)} \right) \right) - y \right\|_2^2 + \sum_{\ell=1}^{L} \lambda^{(\ell)} D_{KL}(P^{(\ell)}||Q^{(\ell)}),$$

where f is a multilayer perceptron, \oplus denotes the vector concatenation, R is a readout function that produces a permutation invariant vector of size d given the latent $Z^{(\ell)}$ at the ℓth resolution, $\lambda^{(\ell)} \in \mathbb{R}$ is a hyperparameter, and $D_{KL}(P^{(\ell)}||Q^{(\ell)})$ is the balanced-cut loss as defined in equation (2).

4. Hierarchical generative model

In this section, we introduce our hierarchical generative model for multiresolution graph generation based on variational principles.

4.1. Background on graph VAE

Suppose that we have input data consisting of m graphs (data points) $G = \{G_1, \ldots, G_m\}$. The standard VAEs, introduced by [34] have the following generation process, in which each data graph G_i for $i \in \{1, 2, \ldots, m\}$ is generated independently:

1. Generate the latent variables $Z = \{Z_1, \ldots, Z_m\}$, where each $Z_i \in \mathbb{R}^{l_i \times d}$ is drawn i.i.d. from a prior distribution p_0 (e.g. standard Normal distribution $\mathcal{N}(0, 1)$).

2. Generate the data graph $G_i \sim p_0(G_i \mid Z_i)$ from the model conditional distribution p_G.

We want to optimize \(\theta \) to maximize the likelihood \(p_\theta(\mathcal{G}) = \int p_\theta(\mathcal{Z}) p_\theta(\mathcal{G} | \mathcal{Z}) d\mathcal{Z} \). However, this requires computing the posterior distribution \(p_\theta(\mathcal{G} | \mathcal{Z}) = \prod_{i=1}^m p_\theta(\mathcal{G}_i | Z_i) \), which is usually intractable. Instead, VAEs apply the variational principle, proposed by [58], to approximate the posterior distribution as

\[
q_\phi(\mathcal{Z} | \mathcal{G}) = \prod_{i=1}^m q_\phi(Z_i | \mathcal{G}_i) \quad \text{via amortized inference and maximize the evidence lower bound (ELBO) that is a lower bound of the likelihood:}
\]

\[
\mathcal{L}_{\text{ELBO}}(\phi, \theta) = \mathbb{E}_{q_\phi(\mathcal{Z} | \mathcal{G})} [\log p_\theta(\mathcal{G} | \mathcal{Z})] - D_{\text{KL}}(q_\phi(\mathcal{Z} | \mathcal{G}) || p_\theta(\mathcal{Z}))
\]

\[
= \sum_{i=1}^m \left[\mathbb{E}_{q_\phi(Z_i | \mathcal{G}_i)} [\log p_\theta(\mathcal{G}_i | Z_i)] - D_{\text{KL}}(q_\phi(Z_i | \mathcal{G}_i) || p_\theta(Z_i)) \right].
\]

The probabilistic encoder \(q_\phi(\mathcal{Z} | \mathcal{G}) \), the approximation to the posterior of the generative model \(p_\theta(\mathcal{G}, \mathcal{Z}) \), is modeled using equivariant GNNs (see example 3.10) as follows. Assume the prior over the latent variables to be the centered isotropic multivariate Gaussian \(p_\theta(\mathcal{Z}) = \mathcal{N}(\mathcal{Z}; 0, I) \). We let \(q_\phi(Z_i | \mathcal{G}_i) \) be a multivariate Gaussian with a diagonal covariance structure:

\[
\log q_\phi(Z_i | \mathcal{G}_i) = \log \mathcal{N}(Z_i; \mu_i, \sigma_i^2 I),
\]

where \(\mu_i, \sigma_i \in \mathbb{R}^{|V| \times \text{d}_z} \) are the mean and standard deviation of the approximate posterior output by two equivariant graph encoders. We sample from the posterior \(q_\phi \) by using the reparameterization trick:

\[
Z_i = \mu_i + \sigma_i \odot \epsilon,
\]

where \(\epsilon \sim \mathcal{N}(0, I) \) and \(\odot \) is the element-wise product.

On the another hand, the probabilistic decoder \(p_\theta(\mathcal{G}_i | Z_i) \) defines a conditional distribution over the entries of the adjacency matrix \(\mathcal{A}_i \):

\[
p_\theta(\mathcal{G}_i | Z_i) = \prod_{(u, v) \in V_i^\mathcal{A}} p_\theta(\mathcal{A}_{iuv} = 1 | Z_{iu}, Z_{iv}).
\]

For example, [59] suggests a simple dot-product decoder that is trivially equivariant:

\[
p_\theta(\mathcal{A}_{iuv} = 1 | Z_{iu}, Z_{iv}) = \gamma(Z_{iu}^T Z_{iv}),
\]

where \(\gamma \) denotes the sigmoid function.

4.2. Multiresolution VAEs

Based on the construction of multiresolution graph network (see section 3.1), the latent variables are partitioned into disjoint groups, \(\mathcal{Z}_i = \{ Z_i^{(1)}, Z_i^{(2)}, ..., Z_i^{(l_i)} \} \) where \(Z_i^{(l)} = \{ \{ Z_i^{(l)} \}_k \in \mathbb{R}^{|V_i| \times |\mathcal{A}_i|} \}_{k=1} \) is the set of latents at the \(i \)th resolution level in which the graph \(\mathcal{G}_i^{(l)} \) is partitioned into a number of clusters \(\{ \mathcal{G}_i^{(l)} \}_k \).

In the area of normalizing flows (NFs), [47] has shown that stochasticity (e.g. a chain of stochastic sampling blocks) overcomes expressivity limitations of NFs. In general, our MGVAE is a stochastic version of the deterministic MGN such that stochastic sampling is applied at each resolution level in a bottom-up manner. The prior (equation (6)) and the approximate posterior (equation (7)) are represented by

\[
p(\mathcal{Z}) = \prod_{l=1}^L p(\mathcal{Z}_i^{(l)}) = \prod_{l=1}^L \prod_k p(\mathcal{Z}_i^{(l)} \mid \mathcal{G}_i^{(l)}),
\]

\[
q_\phi(\mathcal{Z}_i | \mathcal{G}_i) = q_\phi(\mathcal{Z}_i^{(1)} | \mathcal{G}_i^{(1)}) \prod_{l=2}^L q_\phi(\mathcal{Z}_i^{(l)} | \mathcal{Z}_i^{(l-1)}, \mathcal{G}_i^{(l)}),
\]

in which each conditional in the approximate posterior are in the form of factorial Normal distributions, in particular

\[
q_\phi(\mathcal{Z}_i^{(l)} | \mathcal{Z}_i^{(l-1)} \mathcal{G}_i^{(l)}) = \prod_k q_\phi(\mathcal{Z}_i^{(l)} \mid \mathcal{Z}_i^{(l-1)}, \mathcal{G}_i^{(l)}),
\]
where each encoder \(q_\theta([Z_i^{(\ell)}]_k | Z_i^{(\ell+1)}, [G_i^{(\ell)}]_k) \) operates on a subgraph \([G_i^{(\ell)}]_k \) as follows:

- The pooling network \(p^{(\ell+1)} \) shrinks the latent \(Z_i^{(\ell+1)} \) into the node features of \(G_i^{(\ell)} \) as in the construction of MGN (see definition 3.4).
- The local (deterministic) graph encoder \(d^{\text{local}}_\psi \) encodes each subgraph \([G_i^{(\ell)}]_k \) into a mean vector and a diagonal covariance matrix (see equation (5)). A second order encoder can produce a positive semidefinite non-diagonal covariance matrix, that can be interpreted as a Gaussian Markov random fields (MRFs) (details in section 4.3). The new subgraph latent \([Z_i^{(\ell)}]_k \) is sampled by the reparameterization trick.

The prior can be either the isotropic Gaussian \(\mathcal{N}(0, 1) \) as in standard VAEs, or be implemented as a parameterized Gaussian \(\mathcal{N}(\hat{\mu}_i, \hat{\Sigma}_i) \) where \(\hat{\mu} \) and \(\hat{\Sigma} \) are learnable equivariant functions (details in section 4.4). The reparameterization trick for conventional \(\mathcal{N}(0, 1) \) prior is the same as in section 4.1, while the new one for the generalized and learnable prior \(\mathcal{N}(\hat{\mu}_i, \hat{\Sigma}_i) \) is given in section 4.3. On the other hand, the probabilistic decoder \(p_\theta(G_i^{(\ell+1)}, \ldots, G_i^{(L)} | Z_i^{(\ell)}, \ldots, Z_i^{(L)}) \) defines a conditional distribution over all subgraph adjacencies at each resolution level:

\[
p_\theta(G_i^{(1)}, \ldots, G_i^{(L)} | Z_i^{(1)}, \ldots, Z_i^{(L)}) = \prod_{\ell} p_\theta(G_i^{(\ell)} | Z_i^{(\ell)}) = \prod_{\ell} \prod_k p_\theta([A_i^{(\ell)}]_k | [Z_i^{(\ell)}]_k).
\]

Extending from equation (3), we write our multiresolution variational lower bound \(\mathcal{L}_{\text{MGVAE}}(\phi, \theta) \) on \(\log p(G) \) compactly as

\[
\mathcal{L}_{\text{MGVAE}}(\phi, \theta) = \sum_i \sum_{\ell} \left[\mathbb{E}_{q_\phi(Z_i^{(\ell)} | G_i^{(\ell)})} \left[\log p_\theta(G_i^{(\ell)} | Z_i^{(\ell)}) \right] - D_{\text{KL}} (q_\phi(Z_i^{(\ell)} | G_i^{(\ell)}) \| p_\theta(Z_i^{(\ell)})) \right],
\]

where the first term denotes the reconstruction loss (e.g., \(||A_i^{(\ell)} - \hat{A}_i^{(\ell)}|| \) where \(A_i^{(\ell)} \) is \(G_i \), itself, \(\hat{A}_i^{(\ell \leq L)} \) are the adjacency produced by MGN at level \(\ell \), and \(\hat{A}_i^{\ell < L} \) are the reconstructed ones by the decoders); and the second term is indeed \(D_{\text{KL}}(\mathcal{N}(\hat{\mu}_i^{(\ell)}, \hat{\Sigma}_i^{(\ell)}) \| \mathcal{N}(\hat{\mu}_i^{(\ell)}, \hat{\Sigma}_i^{(\ell)})) \) where \(\hat{\mu}_i^{(\ell)} \in \mathbb{R}^{|V_i^{(\ell)}| \times d} \) and \(\hat{\Sigma}_i^{(\ell)} \in \mathbb{R}^{|V_i^{(\ell)}| \times |V_i^{(\ell)}| \times d} \) are the mean and covariance tensors produced by the \(\ell \)th encoder for graph \(G_i \), while \(\hat{\mu}_i \) and \(\hat{\Sigma}_i \) are learnable ones in an equivariant manner as in section 4.4. In general, the overall optimization is given as follows:

\[
\min_{\phi, \theta, \{\hat{\mu}_i^{(\ell)} , \hat{\Sigma}_i^{(\ell)}\}_{\ell}} \mathcal{L}_{\text{MGVAE}}(\phi, \theta; \{\hat{\mu}_i^{(\ell)} , \hat{\Sigma}_i^{(\ell)}\}_{\ell}) + \sum_{i, \ell} \lambda(\ell) D_{\text{KL}} (P_i^{(\ell)} || Q_i^{(\ell)}),
\]

where \(\phi \) denotes all learnable parameters of the encoders, \(\theta \) denotes all learnable parameters of the decoders, and \(D_{\text{KL}}(P_i^{(\ell)} || Q_i^{(\ell)}) \) is the balanced-cut loss for graph \(G_i \) at level \(\ell \) as defined in section 3.4.

4.3. MRFs

Undirected graphical models have been widely applied in the domains spatial or relational data, such as image analysis and spatial statistics. In general, kth order graph encoders encode an undirected graph \(G = (V, E) \) into a kth order latent \(z \in \mathbb{R}^d \times d^k \) with learnable parameters \(\theta \), can be represented as a parameterized MRF or Markov network. Based on the Hammersley–Clifford theorem [60, 61], a positive distribution \(p(z) > 0 \) satisfies the conditional independent properties of an undirected graph \(G \) iff \(p \) can be represented as a product of potential functions \(\psi_i \) one per maximal clique, i.e.

\[
p(z | \theta) = \frac{1}{Z(\theta)} \prod_{c \in C} \psi_c(z_c | \theta_c),
\]

where \(C \) is the set of all the (maximal) cliques of \(G \), and \(Z(\theta) \) is the partition function to ensure the overall distribution sums to 1, and given by

\[
Z(\theta) = \sum_{z} \prod_{c \in C} \psi_c(z_c | \theta_c).
\]

Equation (9) can be further written down as

\[
p(z | \theta) \propto \prod_{c \in C} \psi_c(z_c | \theta) \prod_{(i,j) \in E} \psi_{ij}(z_i, z_j) \cdots \prod_{c = (i_1, \ldots, i_k) \in C_k} \psi_c(z_c | \theta),
\]

where \(\psi_c, \psi_{ij}, \text{and} \psi_c \) are the first order, second order and kth order outputs of the encoder, corresponding to every vertex in \(V \), every edge in \(E \) and every clique of size \(k \) in \(C_k \), respectively. However, factorizing a graph
into set of maximal cliques has an exponential time complexity, since the problem of determining if there is a clique of size \(k \) in a graph is known as an NP-complete problem. Thus, the factorization based on Hammersley–Clifford theorem is intractable. The second order encoder relaxes the restriction of maximal clique into edges, that is called as pairwise MRF:

\[
p(z|\theta) \propto \prod_{i \sim z} \psi_\theta(z_i, z_i).
\]

Our second order encoder inherits Gaussian MRF introduced by [62] as pairwise MRF of the following form

\[
p(z|\theta) \propto \prod_{i \sim z} \psi_\theta(z_i, z_i) \prod_{t} \psi_1(z_t),
\]

where \(\psi_\theta(z_i, z_i) = \exp\left(-\frac{1}{2}d_i \lambda_i z_i z_i^T \right) \) is the edge potential, and \(\psi_1(z_t) = \exp\left(-\frac{1}{2} \Lambda_t z_t \right) \) is the vertex potential. The joint distribution can be written in the information form of a multivariate Gaussian in which

\[
\Lambda = \Sigma^{-1},
\]

\[
\eta = \Lambda \mu,
\]

\[
p(z|\theta) \propto \exp\left(\eta^T z - \frac{1}{2} z^T \Lambda z \right).
\]

(10)

Sampling \(z \) from \(p(z|\theta) \) in equation (10) is the same as sampling from the multivariate Gaussian \(\mathcal{N}(\mu, \Sigma) \). To ensure end-to-end equivariance, we set the latent layer to be two tensors \(\mu \in \mathbb{R}^{n \times d} \) and \(\Sigma \in \mathbb{R}^{n \times n \times d} \) that corresponds to \(d \) multivariate Gaussians, whose first index, and second index are first order and second order equivariant with permutations. Computation of \(\Sigma \) is trickier than \(\mu \), simply because \(\Sigma \) must be invertible to be a covariance matrix. Thus, our second order encoder produces tensor \(L \) as the second order activation, and set \(\Sigma = LL^T \). The reparameterization trick from Kingma and Welling [54] is changed to

\[
z = \mu + L \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1).
\]

4.4. Equivariant learnable prior
The original VAE published by [54] limits each covariance matrix \(\Sigma \) to be diagonal and the prior to be \(\mathcal{N}(0, 1) \). Our second order encoder removes the diagonal restriction on the covariance matrix. Furthermore, we allow the prior \(\mathcal{N}(\mu, \Sigma) \) to be learnable in which \(\mu \) and \(\Sigma \) are parameters optimized by back propagation in a data driven manner. Importantly, \(\Sigma \) cannot be learned directly due to the invertibility restriction. Instead, similarly to the second order encoder, a matrix \(L \) is optimized, and the prior covariance matrix is constructed by setting \(\hat{\Sigma} = \hat{L} \hat{L}^T \). The Kullback–Leibler divergence between the two distributions \(\mathcal{N}(\mu, \Sigma) \) and \(\mathcal{N}(\mu, \hat{\Sigma}) \) is as follows:

\[
D_{KL}(\mathcal{N}(\mu, \Sigma)||\mathcal{N}(\hat{\mu}, \hat{\Sigma})) = \frac{1}{2} \left(\text{tr} (\hat{\Sigma}^{-1} \Sigma) + (\hat{\mu} - \mu)^T \hat{\Sigma}^{-1} (\hat{\mu} - \mu) - n + \ln \left(\frac{\det \hat{\Sigma}}{\det \Sigma} \right) \right).
\]

(11)

Even though \(\Sigma \) is invertible, but gradient computation through the KL-divergence loss can be numerical instable because of Cholesky decomposition procedure in matrix inversion. Thus, we add neglectable noise \(\epsilon = 10^{-4} \) to the diagonal of both covariance matrices.

Importantly, during training, the KL-divergence loss breaks the permutation equivariance. Suppose the set of vertices are permuted by a permutation matrix \(P_\sigma \) for \(\sigma \in \mathcal{S}_n \). Since \(\mu \) and \(\Sigma \) are the first order and second order equivariant outputs of the encoder, they are changed to \(P_\sigma \mu \) and \(P_\sigma \Sigma P_\sigma^T \) accordingly. But

\[
D_{KL}(\mathcal{N}(\mu, \Sigma)||\mathcal{N}(\hat{\mu}, \hat{\Sigma})) \neq D_{KL}(\mathcal{N}(P_\sigma \mu, P_\sigma \Sigma P_\sigma^T)||\mathcal{N}(P_\sigma \hat{\mu}, P_\sigma \hat{\Sigma})).
\]

To address the equivariance issue, we want to solve the following convex optimization problem that is our new equivariant loss function

\[
\min_{\sigma \in \mathcal{S}_n} D_{KL}(\mathcal{N}(P_\sigma \mu, P_\sigma \Sigma P_\sigma^T)||\mathcal{N}(\hat{\mu}, \hat{\Sigma})).
\]

(12)

However, solving the optimization based on equation (12) is computationally expensive. One solution is to solve the minimum-cost maximum-matching in a bipartite graph (Hungarian matching) with the cost
matrix \(C = ||\mu - \hat{\mu}|| \) by \(O(n^4) \) algorithm published by Edmonds and Karp [63], that can be still improved further into \(O(n^3) \). The Hungarian matching preserves equivariance, but is still computationally expensive. In practice, instead of finding a optimal permutation, we apply a free-matching scheme to find an assignment matrix \(\Pi \) such that: \(\Pi_{ij} = 1 \) if and only if \(j^* = \arg\min_i ||\mu_i - \hat{\mu}_j||, \) for each \(i \in [1, n] \). The free-matching scheme preserves equivariance and can be done efficiently in a simple \(O(n^2) \) algorithm that is also suitable for GPU computation.

5. Experiments

5.1. Molecular graph generation

We examine the generative power of MGN and MGVAE in the challenging task of molecule generation, in which the graphs are highly structured. We demonstrate that MGVAE is the first hierarchical graph VAE model generating graphs in a permutation-equivariant manner that is competitive against autoregressive results. We train on two datasets that are standard in the field:

1. QM9 [64, 65]: contains 134K organic molecules with up to nine atoms (C, H, O, N, and F) out of the GDB-17 Universe of molecules.
2. ZINC [66]: contains 250K purchasable drug-like chemical compounds with up to twenty-three heavy atoms.

We only use the graph features as the input, including the adjacency matrix, the one-hot vector of atom types (e.g. carbon, hydrogen, etc) and the bond types (single bond, double bond, etc) without any further domain knowledge from chemistry or physics. First, we train autoencoding task of reconstructing the adjacency matrix and node features. We use a learnable equivariant prior (see section 4.4) instead of the conventional \(N(0, 1) \). Then, we generate 5000 different samples from the prior, and decode each sample into a generated graph (see figure 3). We implement our graph construction (decoding) in two approaches:

1. All-at-once: We reconstruct the whole adjacency matrix by running the probabilistic decoder (see section 4). MGVAE enables us to generate a graph at any given resolution level \(\ell \). In this particular case, we select the highest resolution \(\ell = L \). Furthermore, we apply learnable equivariant prior as in section 4.4. Our second order encoders are interpreted as MRFs (see section 4.3). This approach preserves permutation equivariance. In addition, we implement a correcting process: the decoder network of the highest resolution level returns a probability for each edge, we sort these probabilities in a descending order and gradually add the edges in that order to satisfy all chemical constraints. Furthermore, we investigate the expressive power of the second order \(S_n \)-equivariant decoder by replacing it by an MLP decoder with two hidden layers of size 512 and sigmoid nonlinearity. We find that the higher order decoder outperforms the MLP decoder given the same encoding architecture. Table 1 shows the comparison between the two decoding models.

2. Autoregressive: This decoding process is constructed in an autoregressive manner similarly to [67]. First, we sample each vertex latent \(z \) independently. We randomly select a starting node \(v_0 \), then we apply breadth first search to determine a particular node ordering from the node \(v_0 \), however that breaks the permutation equivariance. Then iteratively we add/sample new edge to the existing graph \(G_t \) at the \(t \)th iteration (given a randomly selected node \(v_0 \) as the start graph \(G_0 \)) until completion. We apply second-order MGN with gated recurrent architecture to produce the probability of edge \((u, v) \) where one vertex \(u \) is in the existing graph \(G_t \) and the another one is outside; and also the probability of its label. Intuitively, the decoding process is a sequential classification.

In our setting for small molecules, \(L = 3 \) and \(K = 2^{L-1} \) for the \(\ell \)th level. On each resolution level, the local encoders and local decoders are second-order \(S_n \)-equivariant networks with up to four equivariant layers. The number of channels for each node latent \(d_\ell \) is set to 256. We compare our methods with other graph-based generative models including GraphVAE [22], CGVAE [67], MolGAN [23], and JT-VAE [24]. We evaluate the quality of generated molecules in three metrics: (i) validity, (ii) novelty and (iii) uniqueness as the percentage of the generated molecules that are chemically valid, different from all molecules in the training set, and not redundant, respectively.

We randomly select 10 000 training examples for QM9; and 1000 (autoregressive) and 10 000 (all-at-once) training examples for ZINC. It is important to note that our training sets are much smaller comparing to other methods. For all of our generation experiments, we only use graph features as the input for the encoder such as one-hot atomic types and bond types. Since ZINC molecules are larger then QM9 ones, it is more difficult to train with the second order \(S_n \)-equivariant decoders (e.g. the number of bond/non-bond predictions or the number of entries in the adjacency matrices are proportional to
3. MGV AE generates molecules on QM9 (four on the left) and ZINC (the rest) equivariantly. Both equivariant MGV AE and autoregressive MGN generate high-quality molecules with complicated structures such as rings.

Table 1. All-at-once MGV AE with MLP decoder vs. second order decoder.

Dataset	Method	Validity	Novelty	Uniqueness
QM9	MLP decoder	100%	99.98%	77.62%
	s_n decoder	100%	100%	95.16%

Table 2. The list of chemical/atomic features used for the all-at-once MGV AE on ZINC. We denote each feature by its API in RDKit.

Feature	Type	Number	Description
GetAtomicNum	Integer	1	Atomic number
IsInRing	Boolean	1	Belongs to a ring?
IsInRingSize	Boolean	9	Belongs to a ring of size $k \in \{1, \ldots, 9\}$?
GetIsAromatic	Boolean	1	Aromaticity?
GetDegree	Integer	1	Vertex degree
GetExplicitValence	Integer	1	Explicit valence
GetFormalCharge	Integer	1	Formal charge
GetIsotope	Integer	1	Isotope
GetMass	Double	1	Atomic mass
GetNoImplicit	Boolean	1	Allowed to have implicit Hs?
GetNumExplicitHs	Integer	1	Number of explicit Hs
GetNumImplicitHs	Integer	1	Number of implicit Hs
GetNumRadicalElectrons	Integer	1	Number of radical electrons
GetTotalDegree	Integer	1	Total degree
GetTotalNumHs	Integer	1	Total number of Hs
GetTotalValence	Integer	1	Total valance

squared number of nodes) Therefore, we input several chemical/atomic features computed from RDKit for the all-at-once MGV AE on ZINC (see table 2). We concatenate all these features into a vector of size 24 for each atom.

We train our models with Adam optimization method [68] with the initial learning rate of 10^{-3}.

Figures 4 and 5 show some selected examples out of 5000 generated molecules on QM9 by all-at-once MGV AE, while figure 6 shows the molecules generated by autoregressive MGN. Qualitatively, both the decoding approaches capture similar molecular substructures (bond structures). Figure 7 shows an example of interpolation on the latent space on ZINC with the all-at-once MGV AE. Figure 8 shows some generated molecules on ZINC by the all-at-once MGV AE. Figure 9 and table 3 show some generated molecules by the autoregressive MGN on ZINC dataset with high quantitative estimate of drug-likeness (QED) computed by RDKit and their SMILES strings. On ZINC, the average QED score of the generated molecules is 0.45 with standard deviation 0.21. On QM9, the QED score is 0.44 ± 0.07.

Our models are equivalent with the state-of-the-art, even with a limited training set (see table 4). Figure 3 shows some randomly selected examples out of 5000 generated molecules. Admittedly, molecule generation is a somewhat subject task that can only be evaluated with objective numerical measures up to a certain point. Qualitatively, however the molecules that MGV AE generates are as good as the state of the art, in some cases better in terms of producing several high-quality drug-like molecules with complicated functional groups and structures.

5.2. General graph generation by MGV AE

We further examine the expressive power of hierarchical latent structure of MGV AE in the task of general graph generation. We choose two datasets from GraphRNN paper [16]:

1. Community-small: A synthetic dataset of 100 two-community graphs where $12 \leq |V| \leq 20$.
2. Ego-small: 200 three-hop ego networks extracted from the Citeseer network [69] where $4 \leq |V| \leq 18$.

Figure 4. Some generated examples on QM9 by the all-at-once MGVAE with second order S_n-equivariant decoders.

Figure 5. Some generated examples on QM9 by the all-at-once MGVAE with an MLP decoder instead of the second order S_n-equivariant one. It generates more tree-like structures.

Figure 6. Some generated examples on QM9 by the autoregressive MGN.
Figure 7. Interpolation on the latent space: we randomly select two molecules from ZINC and we reconstruct the corresponding molecular graphs on the interpolation line between the two latents.

Figure 8. Some generated examples on ZINC by the all-at-once MGVAE with second order S_n-equivariant decoders. In addition of graph features such as one-hot atomic types, we include several chemical features computed from RDKit (as in table 2) as the input for the encoders. A generated example can contain more than one connected components, each of them is a valid molecule.

The datasets are generated by the scripts from the GraphRNN codebase [70]. We keep 80% of the data for training and the rest for testing. We evaluate our generated graphs by computing maximum mean discrepancy (MMD) distance between the distributions of graph statistics on the test set and the generated set as proposed by [16]. The graph statistics are node degrees, clustering coefficients, and orbit counts. As suggested by [19], we execute 15 runs with different random seeds, and we generate 1024 graphs for each run, then we average the results over 15 runs. We compare MGVAE against GraphVAE [22], DeepGMG [17], GraphRNN [16], GNF [19], and GraphAF [71]. The baselines are taken from GNF paper [19] and GraphAF paper [71]. In our setting of (all-at-once) MGVAE, we implement only $L = 2$ levels of resolution and $K = 2^L$ clusters for each level. Our encoders have ten layers of message passing. Instead of using a high order equivariant network as the global decoder for the bottom resolution, we only implement a simple fully connected network that maps the latent $Z^{(L)} \in \mathbb{R}^{|V| \times d_z}$ into an adjacency matrix of size $|V| \times |V|$. For the ego dataset in particular, we implement the learnable equivariant prior as in sections 4.3 and 4.4. Table 5 includes our quantitative results in comparison with other methods. MGVAE outperforms all competing
5.3. Link prediction on citation graphs by MGVAE

We demonstrate the ability of the MGVAE models to learn meaningful latent embeddings on a link prediction task on popular citation network datasets Sen et al [69]. At training time, 15% of the citation links (edges) were removed while all node features are kept, the models are trained on an incomplete graph Laplacian constructed from the remaining 85% of the edges. From previously removed edges, we sample the same number of pairs of unconnected nodes (non-edges). We form the validation and test sets that contain 5% and 10% of edges with an equal amount of non-edges, respectively.

Figure 9. Some generated molecules on ZINC by the autoregressive MGN with high QED (drug-likeness score).
Table 3. SMILES of the generated molecules included in figure 9. Online drawing tool: https://pubchem.ncbi.nlm.nih.gov//edit3/index.html.

Row	Column	SMILES
1	1	O=C1NC(CCCF)tc2[nH]nnnc21
2		OCC(OSBr)c1cccc(-c2cccc(Cl)tc2Cl)[nH]1
3		C=CC1=CC=cc(=C=ONC(Cl)=C=Cl)[nH][c2=O]=O1
4		COC(=CN1NC=CN1)=C=CC=CC(Cl)=CO1
2	1	[NH-]=C(CNS1(=O)=NNc2cc(F)ccccc21)=C1C1
2		CS(=O)N1CC[SH](C)C(CNCc2ccccc2)C1
3		C=C(Cl)[SH](=O)(NC)c1ccccc1CC1
4		CC(F)C(=C(C1C[=NH2]+[O-])C1)C=c2ccc(Cl)c(n2)CC1O

Table 4. Molecular graph generation results. GraphVAE results are taken from [67].

Dataset	Method	Train size	Features	Validity	Novelty	Uniqueness
QM9	GraphVAE	∼100K	Graph	61.00%	85.00%	40.90%
	CGVAE			100%	94.35%	98.57%
	MolGAN			98.1%	94.2%	10.4%
	Autoregressive MGN	10K		100%	95.01%	97.44%
	All-at-once MGVAE			100%	95.16%	
ZINC	GraphVAE	∼200K	Graph	14.00%	100%	31.60%
	CGVAE			100%	100%	99.82%
	JT-VAE			100%	——	——
	Autoregressive MGN	1K		100%	99.89%	99.69%
	All-at-once MGVAE	10K	Chemical	99.92%	100%	99.34%

We compare our model MGVAE against popular methods in the field:

1. Spectral clustering (SC) [72]
2. Deep walks (DW) [73]
3. Variational graph autoencoder (VGAE) [59]

on the ability to correctly classify edges and non-edges using two metrics: area under the ROC curve (AUC) and average precision (AP). Numerical results of SC and DW are experimental settings are taken from [59]. We reran the implementation of VGAE as in [59].

For MGVAE, we initialize weights by Glorot initialization [74]. We repeat the experiments with five different random seeds and calculate the average AUC and AP along with their standard deviations. The number of message passing layers ranges from 1 to 4. The size of latent representation is 128. The number of coarsening levels is \(L \in \{3, 7\} \). In the \(\ell \)th coarsening level, we partition the graph \(G^{(\ell)} \) into \(2^\ell \) (for \(L = 7 \)) or \(4^\ell \) (for \(L = 3 \)) clusters. We train for 2048 epochs using Adam optimization [68] with a starting learning rate of 0.01. Hyperparameters optimization (e.g. number of layers, dimension of the latent representation, etc) is done on the validation set. MGVAE outperforms all other methods (see table 6).

We propose our learning to cluster algorithm to achieve the balanced \(K \)-cut at every resolution level. Besides, we also implement two fixed clustering algorithms:

1. **Spectral**: It is similar to the one implemented in [10].
First, we embed each node \(i \in V \) into \(\mathbb{R}^{n_{\text{max}}} \) as \((\xi_1(i)/\lambda_1(i), \ldots, \xi_{n_{\text{max}}}(i)/\lambda_{n_{\text{max}}}(i)) \), where \(\{\lambda_n, \xi_n\}_{n=0}^{n_{\text{max}}} \) are the eigen-pairs of the graph Laplacian \(\mathcal{L} = \mathcal{D}^{-1}(\mathcal{D} - \mathcal{A}) \) where \(\mathcal{D} = \sum_j A_{ij} \). We assume that \(\lambda_0 \leq \cdots \leq \lambda_{n_{\text{max}}} \). In this case, \(n_{\text{max}} = 10 \).

At the \(\ell \)th resolution level, we apply the K-Means clustering algorithm based on the above node embedding to partition graph \(\mathcal{G}^{(\ell)} \).

2. K-Means:
 - First, we apply PCA to compress the sparse word frequency vectors (of size 1433 on Cora and 3703 on Citeseer) associating with each node into ten dimensions.
 - We use the compressed node embedding for the K-Means clustering.

Tables 7 and 8 show that our learning to cluster algorithm returns a much more balanced cut on the highest resolution level compared to both Spectral and K-Means clusterings. For instance, we have \(L = 7 \) resolution levels and we partition the \(\ell \)th resolution into \(K = 2^\ell \) clusters. Thus, on the bottom levels, we have 128 clusters. If we distribute nodes into clusters uniformly, the expected number of nodes in a cluster is 21.15 and 25.99 on Cora (2708 nodes) and Citeseer (3327 nodes), respectively. We measure the minimum, maximum, standard deviation of the numbers of nodes in 128 clusters. Furthermore, we measure the Kullback–Leibler divergence between the distribution of nodes into clusters and the uniform distribution. Our learning to cluster algorithm achieves low KL losses of 0.02 and 0.01 on Cora and Citeseer, respectively.

5.4. Graph-based image generation by MGVAE

In this additional experiment, we apply MGVAE into the task of image generation. Instead of matrix representation, an image \(I \in \mathbb{R}^{H \times W} \) is represented by a grid graph of \(H \cdot W \) nodes in which each node represents a pixel, each edge is between two neighboring pixels, and each node feature is the corresponding pixel’s color (e.g. \(\mathbb{R}^1 \) in gray scale, and \(\mathbb{R}^3 \) in RGB scale). Figure 12 demonstrates an example of graph representation for images. Since images have natural spatial clustering, instead of learning to cluster, we implement a fixed clustering procedure as follows:

- For the \(\ell \)th resolution level, we divide the grid graph of size \(H^{(\ell)} \times W^{(\ell)} \) into clusters of size \(h \times w \) that results into a grid graph of size \(H^{(\ell)} h \times W^{(\ell)} w \), supposingly \(h \) and \(w \) are divisible by \(H^{(\ell)} \) and \(W^{(\ell)} \), respectively. Each resolution is associated with an image \(I^{(\ell)} \) that is a zoomed out version of \(I^{(\ell+1)} \).
• The global encoder $e^{(\ell)}$ is implemented with ten layers of message passing that operates on the whole $H^{(\ell)} \times W^{(\ell)}$ grid graph. We sum up all the node latents into a single latent vector $Z^{(\ell)} \in \mathbb{R}^d$. The global decoder $d^{(\ell)}$ is implemented by the convolutional neural network architecture of the generator of DCGAN model [75] to map $Z^{(\ell)}$ into an approximated image $\hat{I}^{(\ell)}$. The S_n-invariant pooler $p^{(\ell)}$ is a network operating on each small $h \times w$ grid graph to produce the corresponding node feature for the next level $\ell + 1$. MGVAE is

Figure 11. Generated examples by MGVAE (top) and training examples (bottom) from the EGO-SMALL dataset which contains randomly-sampled subgraphs of the Citeseer citation network.
Table 6. Citation graph link prediction results (AUC & AP).

Dataset	Cora	Citeseer		
Method	AUC (ROC)	AP	AUC (ROC)	AP
----------	--------------	------	--------------	------
SC	84.6 ± 0.01	88.5 ± 0.00	80.5 ± 0.01	85.0 ± 0.01
DW	83.1 ± 0.01	85.0 ± 0.00	80.5 ± 0.02	83.6 ± 0.01
VGAE	90.97 ± 0.77	91.88 ± 0.83	89.63 ± 1.04	91.10 ± 1.02
MGVAE (Spectral)	91.19 ± 0.76	92.27 ± 0.73	90.55 ± 1.17	91.89 ± 1.27
MGVAE (K-Means)	93.07 ± 5.61	92.49 ± 5.77	90.81 ± 1.19	91.98 ± 1.02
MGVAE	95.67 ± 3.11	95.02 ± 3.36	93.93 ± 5.87	93.06 ± 6.33

Table 7. Learning to cluster algorithm returns balanced cuts on Cora.

Method	Min	Max	STD	KL divergence
Spectral	1	2020	177.52	3.14
K-Means	1	364	40.17	0.84
Learn to cluster	10	36	4.77	0.02

Table 8. Learning to cluster algorithm returns balanced cuts on Citeseer.

Method	Min	Max	STD	KL divergence
Spectral	1	3320	292.21	4.51
K-Means	1	326	41.69	0.74
Learn to cluster	11	38	4.93	0.01

Figure 12. An image of digit 8 from MNIST (left) and its grid graph representation at 16 × 16 resolution level (right).

We evaluate our MGVAE architecture on the MNIST dataset [76] with 60 000 training examples and 10 000 testing examples. The original image size is 28 × 28. We pad zero pixels to get the image size of $2^3 \times 2^3$ (e.g. $H(3) = W(3) = 32$). Each cluster is a small grid graph of size 2×2 (e.g. $h = w = 2$). Accordingly, the image sizes for all resolutions are $32 \times 32, 16 \times 16, 8 \times 8$, etc. In this case, the whole network architecture is a two-dimensional quadtree. The latent size d_z is selected as 256. We train our model for 256 epochs by Adam optimizer [68] with the initial learning rate 10^{-3}. In the testing process, for the lth resolution, we sample a random vector of size d_z from prior $N(0, 1)$ and use the decoder $d_l^{(l)}$ to decode the corresponding image. We generate 10 000 examples for each resolution. We compute the Frechet inception distance (FID) proposed by [77] between the testing set and the generated set as the metric to evaluate the quality of our generated examples. We use the FID implementation from [78]. We compare our MGVAE against variants of GANs [42] including DCGAN [75], VEEGAN [79], PacGAN [80], and PresGAN [81]. Table 9 shows our quantitative results in comparison with other competing generative models. The baseline results are taken from Prescribed Generative Adversarial Networks paper [81]. MGVAE outperforms all the baselines for the highest resolution generation. Figures 14 and 15 show some generated examples of the 32×32 and 16×16 resolution, respectively.

trained to reconstruct all resolution images. Figure 13 shows an example of reconstruction at each resolution on a test image of MNIST (after the network converged).
Table 9. Quantitative evaluation of the generated set by FID metric for each resolution level on MNIST. It is important to note that the generation for each resolution is done separately: for the ℓth resolution, we sample a random vector of size $d_\ell = 256$ from $\mathcal{N}(0, 1)$, and use the global decoder $d^{(\ell)}$ to decode into the corresponding image size. The baselines are taken from [81].

Method	FID_1 (32×32)	FID_1 (16×16)	FID_1 (8×8)
DCGAN	113.129	N/A	N/A
VEEGAN	68.749		
PACGAN	58.535		
PresGAN	42.019		
MGVAE	**39.474**	64.289	**39.038**

5.5. Unsupervised molecular properties prediction on QM9

Density function theory (DFT) is the most successful and widely used approach of modern quantum chemistry to compute the electronic structure of matter, and to calculate many properties of molecular systems with high accuracy [82]. However, DFT is computationally expensive [7], that leads to the use of machine learning to estimate the properties of compounds from their chemical structure rather than computing them explicitly with DFT [8]. To demonstrate that MGVAE can learn a useful molecular representations and capture important molecular structures in an unsupervised and variational autoencoding manner, we extract the highest resolution latents (at $\ell = L$) and use them as the molecular representations for the downstream tasks of predicting DFT’s molecular properties on QM9 including 13 learning targets. For the training, we normalize all learning targets to have mean 0 and standard deviation 1.

The name, physical unit, and statistics of these learning targets are detailed in table 10.

The implementation of MGVAE is the same as detailed in section 5.1. MGVAE is trained to reconstruct the highest resolution (input) adjacency, its coarsening adjacencies and the node atomic features. In this case, we do not use any chemical features: the node atomic features are just one-hot atomic types. After MGVAE is converged, to obtain the S_n-invariant molecular representation, we average the node latents at the Lth level into a vector of size 256. Finally, we apply a simple MLP with two hidden layers of size 512, sigmoid nonlinearity and a linear layer on top to predict the molecular properties based on the extracted molecular representation. We compare the results in mean average error (MAE) in the corresponding physical units with four methods on the same split of training and testing from [8]:

1. Support vector machine on optimal-assignment Weisfeiler–Lehman (WL) graph kernel [83, 84]
2. Neural graph fingerprint (NGF) [5]
3. PATCHY-SAN (PSCN) [2]
4. Second order S_n-equivariant covariant compositional networks (CCN 2D) [8, 28].
Our unsupervised results show that MGVAE is able to learn a universal molecular representation in an unsupervised manner and outperforms WL in 12, NGF in 10, PSCN in 8, and CCN 2D in 8 out of 13 learning targets, respectively (see table 11). There are other recent methods in the field that use several chemical and geometric information but comparing to them would be unfair.

5.6. Supervised molecular properties prediction on ZINC
To further demonstrate the comprehensiveness of MGN, we apply our model in a supervised regression task to predict the solubility (LogP) on the ZINC dataset. We use the same split of 10 K/1 K/1 K for training/validation/testing as in [85]. The implementation of MGN is almost the same as detailed in section 5.1, except we include the latents of all resolution levels into the prediction. In particular, in each resolution level, we average all the node latents into a vector of size 256; then we concatenate all these vectors into a long vector of size $256 \times L$ and apply a linear layer for the regression task. The baseline results are taken from [86] including:

1. Multilayer perceptron (MLP),
2. Graph convolution networks (GCN),
3. Graph attention networks (GAT) [87],
4. MoNet [88],
5. Disentangled graph convolutional networks (DisenGCN) [89],
Figure 15. Generated examples at the 16×16 resolution level.

Table 10. Description and statistics of 13 learning targets on QM9.

Target	Unit	Mean	STD	Description
α	bohr3	75.2808	8.1729	Norm of the static polarizability
C_v	cal mol$^{-1}$ K$^{-1}$	31.6204	4.0674	Heat capacity at room temperature
G	eV	-70.8352	9.4975	Free energy of atomization
gap	eV	6.8583	1.2841	Difference between HOMO and LUMO
H	eV	-77.0167	10.4884	Enthalpy of atomization at room temperature
HOMO	eV	-6.5362	0.5977	Highest occupied molecular orbital
LUMO	eV	0.3220	1.2748	Lowest unoccupied molecular orbital
μ	D	2.6729	1.5034	Norm of the dipole moment
ω_1	cm$^{-1}$	3504.1155	266.8982	Highest fundamental vibrational frequency
R^2	bohr2	1189.4091	280.4725	Electronic spatial extent
U	eV	-76.5789	10.4143	Atomization energy at room temperature
U_0	eV	-76.1145	10.3229	Atomization energy at 0 K
ZPVE	eV	4.0568	0.9016	Zero point vibrational energy

Table 11. Unsupervised molecular representation learning by MGVAE to predict molecular properties calculated by DFT on QM9 dataset.

	alpha	C_v	G	gap	H	HOMO	LUMO	μ	ω_1	R^2	U	U_0	ZPVE
WL	3.75	2.39	4.84	0.92	5.45	0.38	0.89	1.03	192	154	5.41	5.36	0.51
NGF	3.51	1.91	4.36	0.86	4.92	0.34	0.82	0.94	168	137	4.89	4.85	0.45
PSCN	1.63	1.09	3.13	0.77	3.56	0.30	0.75	0.81	152	61	3.54	3.50	0.38
CCN 2D	1.30	0.93	2.75	0.69	3.14	0.23	0.67	0.72	120	53	3.02	2.99	0.35
MGVAE	2.83	0.91	1.78	0.66	1.87	0.34	0.58	0.95	195	90	1.89	1.90	0.14

6. Factorizable graph convolutional networks (FactorGCN) [86],
7. GatedGCN [85] that uses additional edge information.

Our supervised result shows that MGN outperforms the state-of-the-art models in the field with a margin of 20% (see table 12).
Table 12. Supervised MGN to predict solubility on ZINC dataset.

Method	MLP	GCN	GAT	MoNet	DiscernGCN	FactorGCN	GatedGCN_E	MGN
MAE	0.667	0.503	0.479	0.407	0.538	0.366	0.363	0.290

6. Software

We implemented our models and experiments by PyTorch deep learning framework [90]. We released our implementation at https://github.com/HyTruongSon/MGVAE.

7. Conclusion

We introduced MGVAE built upon MGN, the first generative model to learn and generate graphs in a multiscale and equivariant manner. The key idea of MGVAE is learning to construct a series of coarsened graphs along with a hierarchy of latent distributions in the encoding process while learning to decode each latent into the corresponding coarsened graph at every resolution level. MGVAE achieves state-of-the-art results from link prediction to molecule and graph generation, suggesting that accounting for the multiscale structure of graphs is a promising way to make GNNs even more powerful.

Data availability statement

No new data were created or analyzed in this study.

ORCID iD

Truong Son Hy ▶ https://orcid.org/0000-0002-5092-3757

References

[1] Scarselli F, Gori M, Chung Tsoi A, Hagenbuchner M and Monfardini G 2009 The graph neural network model IEEE Trans. Neural Netw. 20 61–80
[2] Niepert M, Ahmed M and Kutzkov K 2016 Learning convolutional neural networks for graphs Proc. The 33rd Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 48) (New York, USA, 20–22 June 2016) (PMLR) pp 2014–23
[3] Li Y, Zemel R, Brockschmidt M and Tarlow D 2016 Gated graph sequence neural networks Proc. ICLR'16
[4] Battaglia P, Pascanu R, Lai M, Jimenez Rezende D and kavukcuoglu koray 2016 Interaction networks for learning about objects, relations and physics Advances in Neural Information Processing Systems vol 29, ed D Lee, M Sugiyama, U Luxburg, I Guyon and R Garnett (Curran Associates, Inc.) (available at: https://proceedings.neurips.cc/paper/2016/file/3147da8ab4a0437c15e51a5cc7f24c4-Paper.pdf)
[5] Duvenaud D K, Maclaurin D, Iparraguirre J, Bombarell R, Hirzel T, Aspuru-Guzik A and Adams R P 2015 Convolutional networks on graphs for learning molecular fingerprints 28 2224–32
[6] Kearnes S, McCloskey K, Berndl M, Pande V and Riley P 2016 Molecular graph convolutions: moving beyond fingerprints J. Comput.-Aided Mol. Des. 30 595–608
[7] Gilmer J, Schoenholz S S, Riley P F, Vinyals O and Dahl G E 2017 Neural message passing for quantum chemistry Proc. 34th Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 70) ed D Precup and Y W Teh (PMLR) pp 1263–72
[8] Hy T S, Trivedi S, Pan H, Anderson B M and Kondor R 2018 Predicting molecular properties with covariant compositional networks J. Chem. Phys. 148 241745
[9] Fout A, Byrd J, Shariat B and Ben-Hur A 2017 Protein interface prediction using graph convolutional networks Proc. 31st Int. Conf. on Neural Information Processing Systems (NIPS’ 17) (Red Hook, NY, USA) (Curran Associates, Inc.) pp 6533–42
[10] Rustamov R and Guibas L J 2013 Wavelets on graphs via deep learning Advances in Neural Information Processing Systems vol 26 (Curran Associates, Inc.)
[11] Chen X, Cheng X and Mallat S 2014 Unsupervised deep Haar scattering on graphs Advances in Neural Information Processing Systems vol 27 (Curran Associates, Inc.)
[12] Cheng X, Chen X and Mallat Sephane 2015 Deep Haar scattering networks CoRR (arXiv:1509.09187)
[13] Xu B, Shen H, Cao Q, Qiu Y and Cheng X 2019 Graph wavelet neural network Int. Conf. on Learning Representations
[14] Ying Z, You J, Morris C, Ren X, Hamilton W and Leskovec J 2018 Hierarchical graph representation learning with differentiable pooling Advances in Neural Information Processing Systems vol 31 (Curran Associates, Inc.)
[15] Maron H, Ben-Hamu H, Shamir N and Lipman Y 2019 Invariant and equivariant graph networks Int. Conf. on Learning Representations (available at: https://openreview.net/forum?id=Syz72CJ9tm)
[16] You J, Ying R, Ren X, Hamilton W and Leskovec J 2018 GraphRNN: generating realistic graphs with deep auto-regressive models Proc. 35th Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 80) (10–15 July 2018) (PMLR) pp 5708–17
[17] Li Y, Vinyals O, Dyer C, Pascanu R and Battaglia P W 2018 Learning deep generative models of graphs ICML'18 (arXiv:1803.03324)
[18] Liao R, Li Y, Song Y, Wang S, Hamilton W, Duvenaud D K, Urtasun R and Zemel R 2019 Efficient graph generation with graph recurrent attention networks Advances in Neural Information Processing Systems vol 32 (Curran Associates, Inc.)
[19] Liu J, Kumar A, Ba J, Kiros J and Swersky K 2019 Graph normalizing flows Advances in Neural Information Processing Systems vol 32 (Curran Associates, Inc.)
Dai H, Nazi A, Li Y, Dai B and Schuurmans D 2020 Scalable deep generative modeling for sparse graphs Proc. 37th Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 119) (13–18 July 2020) (PMLR) pp 2302–12

Gómez-Bombarelli R, Wei J N, Duvenaud D, Miguel Hernández-Lobato J, Sánchez-Lengeling B, Sheberla D, Aguilar-Iparraguirre J, Hirzel T D, Adams R P and Aspuru-Guzik Aan 2018 Automatic chemical design using a data-driven continuous representation of molecules ACS Cent. Sci. 4 268–76

Simonovsky M and Komodakis N 2018 GraphVAE: towards generation of small graphs using variational autoencoders CoRR (arXiv:1802.03480)

De Cao N and Kipf T 2018 MolGAN: an implicit generative model for small molecular graphs

Jin W, Barzilay R and Jaakkola T 2018 Junction tree variational autoencoder for molecular graph generation Proc. 35th Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 80) (10–15 July 2018) (PMLR) pp 2332–32

Henning Thiede E, Hy T S and Kondor R 2020 The general theory of permutation equivariant neural networks and higher order graph variational encoders CoRR (arXiv:2004.03990)

Cohen T S and Welling M 2016 Group equivariant convolutional networks Proc. 33rd Int. Conf. on Machine Learning vol 48 pp 2990–9

Cohen T and Welling M 2017 Steerable CNNs Proc. ICLR p 5

Kondor R, Hy T S, Pan H, Trivedi S and Anderson B M 2018 Covariant compositional networks for learning graphs Proc. ICLR Workshop (available at: https://openreview.net/forum?id=S1TgE7W68)

Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R R and Smola A J 2017 Deep sets Advances in Neural Information Processing Systems vol 30 (Curran Associates, Inc.,)

Serviansky H, Segol N, Shlomi J, Cranmer K, Gross E, Maron H and Lipman Y 2020 Set2Graph: learning graphs from sets

Jin W, Barzilay R and Jaakkola T 2018 Junction tree variational autoencoder for molecular graph generation Proc. 35th Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 80) (10–15 July 2018) (PMLR) pp 2332–32

Henning Thiede E, Hy T S and Kondor R 2020 The general theory of permutation equivariant neural networks and higher order graph variational encoders CoRR (arXiv:2004.03990)

Cohen T S and Welling M 2016 Group equivariant convolutional networks Proc. 33rd Int. Conf. on Machine Learning vol 48 pp 2990–9

Cohen T and Welling M 2017 Steerable CNNs Proc. ICLR p 5

Kondor R, Hy T S, Pan H, Trivedi S and Anderson B M 2018 Covariant compositional networks for learning graphs Proc. ICLR Workshop (available at: https://openreview.net/forum?id=S1TgE7W68)

Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R R and Smola A J 2017 Deep sets Advances in Neural Information Processing Systems vol 30 (Curran Associates, Inc.,)

Serviansky H, Segol N, Shlomi J, Cranmer K, Gross E, Maron H and Lipman Y 2020 Set2Graph: learning graphs from sets Advances in Neural Information Processing Systems vol 30 (Curran Associates, Inc.,)

Maron H, Litany O, Chechik G and Fetaya E 2020 On learning sets of symmetric elements

Zhou D, Zheng L, Xu J and He J 2019 Misc-GAN: a multi-scale generative model for graphs

Dhillon I, Guan Y and Kulis B 2005 A fast kernel-based multilevel algorithm for graph clustering Proc. 11th ACM SIGKDD Int. Conf. on Knowledge Discovery in Data Mining (KDD ’05) (New York, NY, USA) (Association for Computing Machinery) pp 629–34

Dhillon I S, Guan Y and Kulis B 2007 Weighted graph cuts without eigenvectors: a multilevel approach IEEE Trans. Pattern Anal. Mach. Intel. 29 1944–57

Chiang K-Y, Jiyoung Whang J and Dhillon I S 2012 Scalable clustering of signed networks using balanced null distribution Proc. 21st ACM Int. Conf. on Information and Knowledge Management (CIKM ’12) (New York, NY, USA) (Association for Computing Machinery) pp 619–24

Si S, Shin D, Dhillon I S and Parlett B N 2014 Multi-scale spectral decomposition of massive graphs Advances in Neural Information Processing Systems vol 27 (Curran Associates, Inc.,)

Shin D, Si S and Dhillon I S 2012 Multi-scale link prediction Proc. 21st ACM Int. Conf. on Information and Knowledge Management (CIKM ’12) (New York, NY, USA) (Association for Computing Machinery) pp 215–24

Zhou D, Zheng L, Xu J and He J 2019 Misc-GAN: a multi-scale generative model for graphs Front. Big Data 2 3

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y 2014 Generative adversarial nets Advances in Neural Information Processing Systems vol 27 (Curran Associates, Inc.,)

Blei D M, Ng A Y and Jordan M I 2003 Latent Dirichlet allocation J. Mach. Learn. Res. 3 993–1022

Ranganath R, Tran D and Blei D 2016 Hierarchical variational models Proc. 33rd Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 48) (New York, NY, USA, 20–22 June 2016) (PMLR) pp 324–33

Ingraham J and Marks D 2017 Variational inference for sparse and undirected models Proc. 34th Int. Conf. on Machine Learning (Proc. Machine Learning Research) (PMLR) (06–11 August 2017) pp 1607–16

Kuschny A, Cherian A, Charles M, Cole R, Cook B and van der Smagt P 2019 Learning hierarchical priors in VAEs Advances in Neural Information Processing Systems vol 32 (Curran Associates, Inc.,)

Wu H, Kohler J and Nef F 2020 Stochastic normalizing flows Advances in Neural Information Processing Systems vol 33 (Curran Associates, Inc.,)

Vahdat A and Kautz J 2020 NVAE: a deep hierarchical variational autoencoder Advances in Neural Information Processing Systems vol 33 (Curran Associates, Inc.,) pp 5933–44

Vahdat A and Kautz J 2020 NVAE: a deep hierarchical variational autoencoder Advances in Neural Information Processing Systems vol 33 (Curran Associates, Inc.,) pp 5933–44

Bengio Y, Delue T, Hu E J, Lahlou S, Tiwari M and Bengio E 2021 GFlowNet foundations (arXiv:2111.09266)

Bengio E, Jain M, Korabiyov M, Prepuc D and Bengio Y 2021 Flow network based generative models for non-iterative diverse candidate generation Advaneis in Neural Information Processing Systems vol 34 pp 2731–94

Jain M et al 2022 Multi-objective hierarchical Q-learning with GFlowNets Proc. 39th Int. Conf. on Machine Learning (Proc. Machine Learning Research vol 162) ed K Chaudhuri, S Jegelka, I. Song, C Szepesvari, G Niu and S Sabato (PMLR) (17–23 July 2022) pp 9786–801

Xie T, Fu X, Ganea O-E, Barzilay R and Jaakkola T S 2022 Crystal diffusion variational autoencoder for periodic material generation Int. Conf. on Learning Representations (available at: https://openreview.net/forum?id=03RL.pj-tc)

Xu M, Yu L, Song Y, Shi C, Ermon S and Tang J 2022 GeoDiff: a geometric diffusion model for molecular conformation generation Int. Conf. on Learning Representations (available at: https://openreview.net/forum?id=PCvxEMzvQC)

Kingma D P and Welling M 2014 Auto-encoding variational Bayes 2nd Int. Conf. on Learning Representations (ICLR 2014) (Conf. Track Proc.) (Bosfo AR, Canada, 14–16 April 2014)

Gumbel E J 1954 Statistical theory of extreme values and some practical applications: a series of lectures US Govt. Print. Office 33

Maddison C J, Tarlow D and Minka T 2014 A* sampling Advances in Neural Information Processing Systems vol 27 (Curran Associates, Inc.,)

Jang E, Gu S and Soole B 2017 Categorical reparameterization with Gumbel-Softmax ICLR

Wainwright M J and Jordan M I 2005 A variational principle for graphical models New Directions in Statistical Signal Processing

Kipf T N and Welling M 2016 Variational graph auto-encoders
