Abstract

Differentially private algorithms for common metric aggregation tasks, such as clustering or averaging, often have limited practicality due to their complexity or a large number of data points that is required for accurate results. We propose a simple and practical tool, FriendlyCore, that takes a set of points D from an unrestricted (pseudo) metric space as input. When D has effective diameter r, FriendlyCore returns a “stable” subset $C \subseteq D$ that includes all points, except possibly few outliers, and is certified to have diameter r. FriendlyCore can be used to preprocess the input before privately aggregating it, potentially simplifying the aggregation or boosting its accuracy. Surprisingly, FriendlyCore is light-weight with no dependence on the dimension. We empirically demonstrate its advantages in boosting the accuracy of mean estimation and clustering tasks such as k-means and k-GMM, outperforming tailored methods.
Contents

1 **Introduction** .. 1
 1.1 Our Framework .. 1
 1.2 Example Applications ... 2
 1.2.1 Private Averaging ... 2
 1.2.2 Private Clustering of Well-Separated Instances .. 3
 1.2.3 Private Learning a Covariance Matrix .. 4
 1.3 Related work .. 4

2 **Preliminaries** .. 5
 2.1 Notation ... 5
 2.2 Zero-Concentrated Differential Privacy (zCDP) ... 5
 2.3 \((\varepsilon, \delta)\)-Differential Privacy (DP) ... 6
 2.4 Properties of DP and zCDP .. 6
 2.4.1 The Laplace Mechanism ... 6
 2.4.2 The Gaussian Mechanism .. 7
 2.4.3 Composition ... 7
 2.4.4 Other Facts .. 7

3 **Friendly Differential Privacy** .. 8

4 **From Friendly to Standard Differential Privacy** .. 9
 4.1 Basic Filter .. 10
 4.2 zCDP Filter .. 11
 4.3 Paradigm for zCDP ... 13
 4.4 Paradigm for DP .. 14
 4.5 Comparison Between the Paradigms .. 14
 4.6 Computation efficiency ... 15

5 **Applications** .. 15
 5.1 Averaging ... 15
 5.1.1 Known Diameter ... 15
 5.1.2 Unknown Diameter ... 16
 5.2 Clustering .. 17
 5.2.1 Unordered \(k\)-Tuple Clustering .. 19
 5.2.2 From Unordered to Ordered Tuples .. 21
 5.2.3 Ordered \(k\)-Tuple Clustering ... 22
 5.2.4 Unordered \(k\)-Tuple Clustering: Putting All Together ... 24
 5.2.5 FriendlyCore Clustering ... 25

6 **Empirical Results** ... 26
 6.1 Averaging ... 26
 6.2 Clustering ... 27

7 **Conclusion** .. 30
1 Introduction

Metric aggregation tasks are at the heart of data analysis. Common tasks include averaging, k-clustering, and learning a mixture of distributions. When the data points are sensitive information, corresponding for example to records or activities of particular users, we would like the aggregation to be private. The most widely accepted solution to individual privacy is differential privacy (DP) [DMNS06] that limits the effect that each data point can have on the outcome of the computation.

Differentially private algorithms, however, tend to be less accurate and practical than their non-private counterparts. This degradation in accuracy can be attributed, to a large extent, to the fact that the requirement of differential privacy is a worst-case kind of a requirement. To illustrate this point, consider the task of privately learning mixture of Gaussians. In this task, the learner gets as input a sample $D \subseteq \mathbb{R}^d$, and, assuming that D was correctly sampled from some appropriate underlying distribution, then the learner needs to output a good hypothesis. That is, the learner is only required to perform well on typical inputs. In contrast, the definition of differential privacy is worst-case in the sense that the privacy requirement must hold for any two neighboring datasets, no matter how they were constructed, even if they are not sampled from any distribution. This means that in the privacy analysis one has to account for any potential input point, including “unlikely points” that have significant impact on the aggregation. The traditional way for coping with this issue is to bound the worst-case effect that a single data point can have on the aggregation (this quantity is often called the sensitivity of the aggregation), and then to add noise proportional to this worst-case bound. That is, even if all of the given data points are “friendly” in the sense that each of them has only a very small effect on the aggregation, then still, the traditional way for ensuring DP often requires adding much larger noise in order to account for a neighboring dataset that contains one additional “unfriendly” point whose effect on the aggregation is large.

In this paper we present a general framework for preprocessing the data (before privately aggregating it), with the goal of producing a “certificate” that the data is “friendly” (or well-behaved). Given that the data is “certified friendly”, the private aggregation step can then be executed without accounting for “unfriendly” points that might have a large effect on the aggregation. Hence, our certificate potentially allows for much less noise to be added in the aggregation step, as it is no longer forced to operate in the original “worst-case” setting.

1.1 Our Framework

Let us first make the notion of “friendliness” more precise.

Definition 1.1 (f-friendly and f-complete datasets). Let D be a dataset over a domain X, and let $f: X^2 \rightarrow \{0,1\}$ be a reflexive predicate. We say that D is f-friendly if for every $x, y \in D$, there exists $z \in X$ (not necessarily in D) such that $f(x, z) = f(y, z) = 1$. As a special case, we call D f-complete, if $f(x, y) = 1$ for all $x, y \in D$.\(^1\)

Example 1.2 (Points in a metric space). Let D be points in a metric space and $f_r(x, y) := \mathbb{1}_{d(x, y) \leq r}$. Then if D is f_r-friendly, it is f_{2r}-complete (by the triangle inequality).

We define a relaxation of differential privacy, where the privacy requirement must only hold for neighboring datasets which are both friendly. Formally,

\(^1\)In an f-friendly dataset, every two elements have a common friend whereas in an f-complete dataset, all pairs are friends.
Definition 1.3 (f-friendly DP algorithm). An algorithm \(A \) is called \(f \)-friendly \((\varepsilon, \delta)\)-DP, if for every neighboring databases \(\mathcal{D}, \mathcal{D}' \) such that \(\mathcal{D} \cup \mathcal{D}' \) is \(f \)-friendly, it holds that \(A(\mathcal{D}) \) and \(A(\mathcal{D}') \) are \((\varepsilon, \delta)\)-indistinguishable.

Note that nothing is guaranteed for neighboring datasets that are not \(f \)-friendly. Intuitively, this allows us to focus the privacy requirement only on well-behaved inputs, potentially requiring significantly less noise to be added.

We present a preprocessing tool, called \text{FriendlyCore}, that takes as input a dataset \(D \) and a predicate \(f \), and outputs a subset \(C \subseteq D \). If \(D \) is \(f \)-complete, then \(C = D \) (i.e., no elements are removed from the core). In addition, for any neighboring databases \(\mathcal{D} \) and \(\mathcal{D}' = \mathcal{D} \cup \{z\} \), we show that \text{FriendlyCore} satisfies the following two key properties with respect to the outputs \(C = \text{FriendlyCore}(\mathcal{D}) \) and \(C' = \text{FriendlyCore}(\mathcal{D}') \):

1. Friendliness: \(C \cup C' \) is guaranteed to be \(f \)-friendly.
2. Stability: \(C \) is distributed “almost” as \(C \setminus \{z\} \).

At the high level, \text{FriendlyCore} on input \(D \) acts as follows: For every element \(x \in D \), it counts \(c = \sum_{y \in D} f(x, y) \) (i.e., the number of \(x \)’s “friends”), and puts \(x \) inside the core with probability \(q(c) \), where \(q \) is a low-sensitivity monotonic function with \(q(n/2) = 0, q(n) = 1 \) and smoothness in the range \([n/2, n] \), i.e. \(q(c) \approx q(c + 1) \). The utility follows since if \(D \) is \(f \)-complete then all the counts are \(n \). The friendliness is guaranteed since for every \(x, y \in C \cup C' \), the set of \(x \)’s friends and set of \(y \)’s friends are both larger than \(n/2 \) and therefore must intersect. The stability follows by the smoothness of \(q \). See Section 4 for more details.

Using this preprocessing tool, we prove the following theorem that converts a friendly DP algorithm into a standard (end-to-end) DP one using \text{FriendlyCore}.

Theorem 1.4 (Paradigm for DP, informal). If \(A \) is \(f \)-friendly \((\varepsilon, \delta)\)-DP, then \(A(\text{FriendlyCore}(\cdot)) \) is \(\approx (2\varepsilon, 2e^{3\varepsilon} \delta)\)-DP.

In this work we also present a version of \text{FriendlyCore} for the \(\delta \)-approximate \(\rho \)-zero-Concentrated Differential Privacy model of [BS16] (in short, \((\rho, \delta)\)-zCDP). This version has similar utility guarantee (i.e., when \(D \) is \(f \)-complete, then \(C = D \)). In addition, this version gets additional privacy parameters \(\rho, \delta \), and satisfies the following privacy guarantee.

Theorem 1.5 (Paradigm for zCDP, informal). If \(A \) is \(f \)-friendly \((\rho, \delta)\)-zCDP, then \(A(\text{FriendlyCore}_{\rho', \delta'}(\cdot)) \) is \((\rho + \rho', \delta + \delta')\)-zCDP.

1.2 Example Applications

1.2.1 Private Averaging

Computing the average (center of mass) of points in \(\mathbb{R}^d \) is perhaps the most fundamental metric aggregation task. The traditional way for computing averages with DP is to first bound the diameter \(\Lambda \) of the input space, say using the ball \(B(0, \Lambda/2) \) with radius \(\Lambda/2 \) around the origin, clip all points to be inside this ball, and then add Gaussian noise per-dimension that scales with \(\Lambda \). Now consider a case where the input dataset \(D \) contains \(n \) points from some small set with diameter \(r \ll \Lambda \), that is located \textit{somewhere} inside our input domain \(B(0, \Lambda/2) \). Suppose even that we know the diameter
r of that small set, but we do not know where it is located inside $B(0, \Lambda/2)$. Ideally, we would like to average this dataset while adding noise proportional to the effective diameter r instead of to the worst-case bound on the diameter Λ. This is easily achieved using our framework. Indeed, such a dataset is dist_r-complete for the predicate $\text{dist}_r(x, y) := 1_{\|x - y\|_2 \leq r}$, that is, two points are friends if their distance is at most r. Therefore, using our framework, it suffices to design an dist_r-friendly DP algorithm for averaging. Now, the bottom line is that when designing a dist_r-friendly DP algorithm for this task, we do not need to add noise proportionally to Λ, and a noise proportionally to r suffices. The reason is that we only need to account for neighboring datasets that are dist_r-friendly, and the difference between the averages of any two such neighboring datasets (i.e., the sensitivity) is proportional to r. See Figure 1 (Left) for an illustration.

We note that existing tailored methods for this averaging problem, for example [NSV16] and [KV18] (applied coordinated wise after a random rotation), also provide sample complexity that is asymptotically optimal in that it matches that of dist_r-friendly DP averaging. These methods, however, have large ”constant factors” in the sample complexity. The advantage of FriendlyCore is in its simplicity and dimension-independent sample complexity that allows for small overhead over what is necessary for friendly DP averaging.

In Section 6.1 we report empirical results of the averaging application. We observe that the zCDP version of our FriendlyCore framework provides significant practical benefits, outperforming the practice-oriented CoinPress [BDKU20] for high d or Λ. This application is described in Section 5.1.

1.2.2 Private Clustering of Well-Separated Instances

Consider the problem of k-clustering of a set of points that is easily clusterable. For example, when the clusters are well separated or sampled from k well separated Gaussians. If data is not this nice, we should still be private, but we do not need the clusters. A classic approach [NRS07] is to split the data randomly into pieces, run some non-private off-the-shelf clustering algorithm on each piece, obtaining a set of k centers (which we call a k-tuple) from each piece, and privately aggregating the result. If the clusters are well separated, then the centers that we compute for different pieces should be similar.\(^2\) Recently, Cohen et al. [CKM+21] formulated the private k-tuple clustering problem as the aggregation step. That is, for an input set of such k-tuples (which are similar to each other), the task is to privately compute a new k-tuple that is similar to them. The k-tuple clustering problem is an easier private clustering task where all clusters are of the same size and utility is desired only when the clusters are separated. The application of FriendlyCore provides a simple solution: A tuple $X = \langle x_1, \ldots, x_k \rangle$ is a “friend” of a tuple $Y = \langle y_1, \ldots, y_k \rangle$, if for every x_i there is a unique y_j that is substantially closer to x_i than to any other x_ℓ, $\ell \neq i$. Formally, given a parameter $\gamma \leq 1$, we define the predicate $\text{match}_\gamma(X, Y)$ to be 1, if there exists a permutation π over $[k]$ such that for every i it holds that $\|x_i - y_{\pi(i)}\| < \gamma \cdot \min_{j \neq i} \|x_i - y_j\|$. Now given a database D of k-tuples as input, we can compute $C = \text{FriendlyCore}(D)$ with respect to the predicate match_γ for guaranteeing the friendliness of the core C. In particular, if there are a few tuples that are not similar to the others (i.e., “outliers”), then they will be removed by FriendlyCore (see Figure 1 (Right) for an illustration). It follows that for small enough constant γ (as shown in Section 5.2, $\gamma = 1/7$ suffices), the tuples are guaranteed to be separated enough for making the clustering problem almost trivial: We can use any tuple $Z = \langle z_1, \ldots, z_k \rangle$ in C to partition the

\(^2\) Starting from the work of [ORSS12], such separation conditions have been the subject of many interesting papers. See, e.g., [She21] for a survey of such separation conditions in the context of differential privacy.
Figure 1: Left: Private averaging example. When we apply FriendlyCore with \textit{dist}_r, the output is guaranteed to be \textit{dist}_r-friendly (and \textit{dist}_2-complete). When \(r \) is the diameter of the blue points then \(C \) includes all blue points and no red points. Right: \(k \)-tuple clustering. The predicate \text{match}_r(X,Y) holds for \(\gamma = 1/7 \) for any pair of the red, blue, and green 4-tuples but does not hold for pairs that include the pink tuple.

tuple points to \(k \) parts (the partition is guaranteed to be the same no matter what tuple \(Z \) we choose). We can then take a private average of each part (with an appropriate noise) to get a tuple of DP centers. In this application, the use of FriendlyCore both simplifies the solution and lowers the sample complexity of private \(k \)-tuple clustering. This translates to using fewer parts in the clustering application and allowing for private clustering of much smaller datasets. We remark that the private averaging of each part can be done again by applying FriendlyCore on each part (as described in Section 1.2.1). It even turns out that the flexibility of FriendlyCore allows to do all \(k \) averaging using a single call to FriendlyCore using a special specification of a predicate for ordered tuples (see details in Section 5.2.3).

In Section 6.2 we report empirical results of the clustering application, implemented in the zCDP model. We observe that in several different clustering tasks, it outperforms a recent practice-oriented implementation of Chang and Kamath [CK21] that is based on local-sensitivity hashing (LSH). The clustering algorithm is described in Section 5.2.

1.2.3 Private Learning a Covariance Matrix

In an independent (but later) work, Ashtiani and Liaw [AL21] described a polynomial-time algorithm for privately learning the parameters of unrestricted Gaussians. At the core of their construction, they present a framework in the DP model for privately learning average-based aggregation tasks, and applied it on private averaging and private learning a covariance matrix. For emphasizing the flexibility of FriendlyCore, in Appendix A we show how to apply FriendlyCore (based on their tools) for learning an unrestricted covariance matrix.

1.3 Related work

Our framework has similar goals to the smooth-sensitivity framework [NRS07] and to the propose-test-release framework [DL09]. Like our framework, these two frameworks aim to avoid worst-case restrictions and to perform well on well-behaved inputs. More formally, for a function \(f \) mapping datasets to the reals, and a dataset \(D \), define the local sensitivity of \(f \) on \(D \) as follows:
\[
\text{LS}_f(D) = \max_{D' \sim D} ||f(D) - f(D')||,
\]
where \(D' \sim D \) denotes that \(D' \) and \(D \) are neighboring datasets. That is, unlike the standard definition of (global) sensitivity which is the maximum difference in the value of \(f \) over every pair of neighboring datasets, with local sensitivity we consider only neighboring datasets w.r.t. the given input dataset. As a result, there are many cases where the
local sensitivity can be significantly lower than the global sensitivity. Both the smooth-sensitivity framework and the propose-test-release framework aim to privately release the value of a function while only adding noise proportionally to its local sensitivity rather than its global sensitivity (when possible).

Our framework is very different in that it does not aim for local sensitivity, and is not limited by it. Specifically, in the application of private averaging, the local sensitivity is still very large even when the dataset is friendly. This is because even if all of the input points reside in a tiny ball, to bound the local sensitivity we still need to account for a neighboring dataset in which one point moves “to the end of the world” and hence causes a large change to the average of the points.

2 Preliminaries

2.1 Notation

Throughout this work, a database \mathcal{D} is an (ordered) vector over a domain \mathcal{X}. Given $\mathcal{D} = (x_1, \ldots, x_n) \in \mathcal{X}^n$, for $I \subseteq [n]$ let $D_I := (x_i)_{i \in I}$, let $D_{-I} := D \setminus I$, and for $i \in [n]$ let $D_i := x_i$ and $D_{-i} := D_{\setminus \{i\}}$ (i.e., $(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$). For $\mathcal{D} = (x_1, \ldots, x_n)$ and $\mathcal{D}' = (x'_1, \ldots, x'_m)$ let $\mathcal{D} \cup \mathcal{D}' = (x_1, \ldots, x_n, x'_1, \ldots, x'_m)$. For $n \in \mathbb{N}$ we denote by 0^n the n-size all-zeros vector.

For $p \in [0, 1]$ let Bern(p) be the Bernoulli distribution that outputs 1 w.p. p and 0 otherwise. For $p = (p_1, \ldots, p_n) \in [0, 1]^n$, we let Bern($p$) be the distribution that outputs (V_1, \ldots, V_n), where $V_i \leftarrow$ Bern(p_i), and the V_i’s are independent.

For $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$, we let $\|x\| := \sqrt{\sum_{i=1}^d x_i^2}$ (i.e., the ℓ_2 norm of x) and let $\|x\|_1 := \sum_{i=1}^d |x_i|$ (the ℓ_1 norm of x). For $c \in \mathbb{R}^d$ and $r \geq 0$, we denote $B(c, r) := \{x \in \mathbb{R}^d : \|x - c\| \leq r\}$. For a database $\mathcal{D} \in (\mathbb{R}^d)^n$ we denote by $\text{Avg}(\mathcal{D}) := \frac{1}{|\mathcal{I}|} \sum_{x \in \mathcal{D}} x$ the average of all points in \mathcal{D}. For $r \geq 0$ and $x, y \in \mathbb{R}^d$ we denote $\text{dist}_r(x, y) := 1_{\{\|x - y\| \leq r\}}$ (i.e., 1 if $\|x - y\| \leq r$ and 0 otherwise).

The support of a discrete random variable X over \mathcal{X}, denoted $\text{Supp}(X)$, is defined as $\{x \in \mathcal{X} : P(x) > 0\}$, where $P(\cdot)$ is the probability mass/density function of X’s distribution.

Throughout this paper, we define neighboring databases with respect to the insertion/deletion model, where one database is obtained by adding or removing an element from the other database. Formally,

Definition 2.1 (Neighboring databases). Let \mathcal{D} and \mathcal{D}' be two databases over a domain \mathcal{X}. We say that \mathcal{D} and \mathcal{D}' are neighboring, if either there exists $j \in [|\mathcal{D}|]$ such that $\mathcal{D}_{-j} = \mathcal{D}'$, or there exists $j \in [|\mathcal{D}'|]$ such that $\mathcal{D} = \mathcal{D}'_{-j}$.

2.2 Zero-Concentrated Differential Privacy (zCDP)

Definition 2.2 (Rényi Divergence ([R61])). Let X and X' be random variables over \mathcal{X}. For $\alpha \in (1, \infty)$, the Rényi divergence of order α between X and X' is defined by

$$D_\alpha(X||X') = \frac{1}{\alpha - 1} \cdot \ln \left(\mathbb{E}_{x \sim X} \left[\left(\frac{P'(x)}{P(x)} \right)^{\alpha - 1} \right] \right),$$

where $P(\cdot)$ and $P'(\cdot)$ are the probability mass/density functions of X and X', respectively.
Definition 2.3 (zCDP Indistinguishability). We say that two random variable \(X, X' \) over a domain \(\mathcal{X} \) are \(\rho \)-indistinguishable (denote by \(X \approx_{\rho} X' \)), iff for every \(\alpha \in (1, \infty) \) it holds that
\[
D_\alpha(X||X'), D_\alpha(X'||X) \leq \rho \alpha.
\]

We say that \(X, X' \) are \((\rho, \delta)\)-indistinguishable (denote by \(X \approx_{\rho,\delta} X' \)), iff there exist events \(E, E' \subseteq \mathcal{X} \) with \(\Pr[X \in E], \Pr[X' \in E'] \geq 1 - \delta \) such that \(X|_E \approx_{\rho} X'|_{E'} \).

Definition 2.4 ((\(\rho, \delta \))-zCDP [BS16]). An algorithm \(A \) is \(\delta \)-approximate \(\rho \)-zCDP (in short, \((\rho, \delta)\)-zCDP), if for any neighboring databases \(D, D' \) it holds that \(A(D) \approx_{\rho,\delta} A(D') \).\(^3\) If the above holds for \(\delta = 0 \), we say that \(A \) is \(\rho \)-zCDP.

2.3 (\(\varepsilon, \delta \))-Differential Privacy (DP)

Definition 2.5 ((\(\varepsilon, \delta \))-DP-indistinguishable). Two random variable \(X, X' \) over a domain \(\mathcal{X} \) are called \((\varepsilon, \delta)\)-DP-indistinguishable (in short, \(X \approx_{\varepsilon,\delta} X' \)), iff for any event \(T \subseteq \mathcal{X} \), it holds that \(\Pr[X \in T] \leq e^\varepsilon \cdot \Pr[X' \in T] + \delta \). If \(\delta = 0 \), we write \(X \approx_{\varepsilon} X' \).

Definition 2.6 ((\(\varepsilon, \delta \))-DP [DMNS06]). Algorithm \(A \) is \((\varepsilon, \delta)\)-DP, if for any two neighboring databases \(D, D' \) it holds that \(A(D) \approx_{\varepsilon,\delta} A(D') \). If \(\delta = 0 \) (i.e., pure privacy), we say that \(A \) is \(\varepsilon \)-DP.

2.4 Properties of DP and zCDP

Fact 2.7 (From DP to zCDP and vice versa ([BS16])). Any \((\varepsilon, \delta)\)-DP mechanism is \((\frac{1}{2} \varepsilon^2, \delta)\)-zCDP. Any \((\rho, \delta)\)-zCDP mechanism is \((\rho + 2\sqrt{\rho \ln(1/\delta')}, \delta + \delta')\)-DP for every \(\delta' > 0 \).

Fact 2.8 (Group Privacy ([BS16])). Let \(D \) and \(D' \) be a pair of databases that differ by \(k \) points (i.e., \(D \) is obtained by \(k \) operations of addition or deletion of points on \(D' \)). If \(A \) is \(\rho \)-zCDP, then \(A(D) \approx_{k \rho} A(D') \). If \(A \) is \((\varepsilon, \delta)\)-DP, then \(A(D) \approx_{k \varepsilon, k \delta} A(D') \).

Fact 2.9 (Post-processing). Let \(F \) be a (randomized) function. If \(A \) is \((\rho, \delta)\)-zCDP, then \(F \circ A \) is \((\rho, \delta)\)-zCDP. If \(A \) is \((\varepsilon, \delta)\)-DP, then \(F \circ A \) is \((\varepsilon, \delta)\)-DP.

2.4.1 The Laplace Mechanism

Definition 2.10 (Laplace distribution). For \(\sigma \geq 0 \), let \(\text{Lap}(\sigma) \) be the Laplace distribution over \(\mathbb{R} \) with probability density function \(p(z) = \frac{1}{\sigma} \exp\left(\frac{-|z|}{\sigma}\right) \).

Theorem 2.11 (The Laplace Mechanism [DMNS06]). Let \(x, x' \in \mathbb{R} \) with \(|x - x'| \leq \lambda \). Then for every \(\varepsilon > 0 \) it holds that \(x + \text{Lap}(\lambda/\varepsilon) \approx_{\varepsilon} x' + \text{Lap}(\lambda/\varepsilon) \).

\(^3\)We remark that our two parameters \((\rho, \delta)\)-zCDP has a different meaning than the two parameters definition \((\xi, \rho)\)-zCDP of [BS16]. Throughout this work, we only consider the case \(\xi = 0 \) and therefore omit it from notation.
2.4.2 The Gaussian Mechanism

Definition 2.12 (Gaussian distributions). For \(\mu \in \mathbb{R}\) and \(\sigma \geq 0\), let \(\mathcal{N}(\mu, \sigma^2)\) be the Gaussian distribution over \(\mathbb{R}\) with probability density function \(p(z) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right)\). For higher dimension \(d \in \mathbb{N}\), let \(\mathcal{N}(0, \sigma^2 \cdot I_d)\) be the spherical multivariate Gaussian distribution with variance \(\sigma^2\) in each axis. That is, if \(Z \sim \mathcal{N}(0, \sigma^2 \cdot I_d)\) then \(Z = (Z_1, \ldots, Z_d)\) where \(Z_1, \ldots, Z_d\) are i.i.d. according to \(N(0, \sigma^2)\).

Fact 2.13 (Concentration of One-Dimensional Gaussian). If \(X\) is distributed according to \(\mathcal{N}(0, \sigma^2)\), then for all \(\beta > 0\) it holds that
\[
\Pr\left[X \geq \sigma\sqrt{2\ln(1/\beta)}\right] \leq \beta.
\]

Theorem 2.14 (The Gaussian Mechanism [DKM+06; BS16]). Let \(x, x' \in \mathbb{R}^d\) be vectors with \(\|x - x'\|_2 \leq \lambda\). For \(\rho > 0\), \(\sigma = \frac{\lambda}{\sqrt{2\rho}}\) and \(Z \sim \mathcal{N}(0, \sigma^2 \cdot I_d)\) it holds that \(x + Z \approx_{\rho} x' + Z\). For \(\varepsilon, \delta > 0\), \(\sigma = \frac{\lambda \sqrt{2\ln(1.5/\delta)}}{\varepsilon}\) and \(Z \sim \mathcal{N}(0, \sigma^2 \cdot I_d)\) it holds that \(x + Z \approx_{\varepsilon, \delta} x' + Z\).

We remark that zCDP is tailored for this mechanism, i.e. it achieves pure zCDP with relatively small noise (compared to the DP case).

2.4.3 Composition

Fact 2.15 (Composition of DP and zCDP mechanisms [DRV10; BS16]). If \(A : X^* \to Y\) is \((\rho, \delta)\)-zCDP and \(A' : X^* \times Y \to Z\) is \((\rho', \delta')\)-zCDP (as a function of its first argument), then the algorithm \(A''(D) := A'(D, A(D))\) is \((\rho + \rho', \delta + \delta')\)-zCDP. If \(A\) is \((\varepsilon, \delta)\)-DP and \(A'\) is \((\varepsilon', \delta')\)-DP then \(A''\) is \((\varepsilon + \varepsilon', \delta + \delta')\)-DP.

We remark that Fact 2.15 is optimal for the zCDP model, but not optimal for the DP model.

2.4.4 Other Facts

Fact 2.16. Let \(X, X'\) be random variables over a domain \(\mathcal{X}\), and let \(E, E' \subseteq \mathcal{X}\) be events such that \(X|_E \approx_{\rho, \delta} X'|_{E'}\) and \(\Pr[X \in E], \Pr[X' \in E'] \geq 1 - \delta\). Then \(X \approx_{\rho, \delta + \delta'} X'|_{E'}\).

Proof. By definition there exists \(F \subseteq E\) and \(F' \subseteq E'\) with \(\Pr[X \in F|X \in E], \Pr[X \in F'|X \in E'] \geq 1 - \delta\) such that \(X|_F \approx_{\rho} X'|_{E'}\). The proof now follows since
\[
\Pr[X \in F] = \Pr[X \in E] \cdot \Pr[X \in F|X \in E] \geq (1 - \delta') \cdot (1 - \delta) \geq 1 - (\delta + \delta'),
\]
and similarly \(\Pr[X' \in F'] \geq 1 - (\delta + \delta')\). \(\square\)

The following fact is proven in Appendix B.1.

Fact 2.17. Let \(X, X'\) be \(\rho\)-indistinguishable random variables over \(\mathcal{X}\), and let \(E \subseteq \mathcal{X}\) be an event with \(\Pr[X \in E], \Pr[X' \in E] \geq q\). Then \(X|_E \approx_{\rho/q} X'|_E\).
3 Friendly Differential Privacy

In this section we define a “friendly” relaxation of zCDP and DP, and give an example of such an algorithm. We start by defining an f-friendly database for a predicate f.

Definition 3.1 (f-friendly). Let D be a database over a domain X, and let $f: X^2 \rightarrow \{0, 1\}$ be a predicate. We say that D is f-friendly if for every $x, y \in D$, there exists $z \in X$ (not necessarily in D) such that $f(x, z) = f(y, z) = 1$.

We next define the relaxation of zCDP and DP, where the privacy requirement must only hold for neighboring datasets that their union is f-friendly. Formally,

Definition 3.2 (Friendly zCDP and DP). An algorithm A is called f-friendly (ρ, δ)-zCDP, if for every neighboring databases D, D' such that $D \cup D'$ is f-friendly, it holds that $A(D) \approx_{\rho, \delta} A(D')$. If for every such D, D' it holds that $A(D) \approx_{\epsilon, \delta} A(D')$, we say that A is f-friendly (ϵ, δ)-DP.

Note that nothing is guaranteed when $D \cup D'$ is not f-friendly. Intuitively, this allows us to focus the privacy requirement only on well-behaved inputs, potentially requiring significantly less noise to be added.

We next describe a concrete example of a friendly zCDP algorithm for estimating the average of points in \mathbb{R}^d, where the friendliness is with respect to the predicate $\text{dist}_r(x, y) := 1_{\{\|x - y\| \leq r\}}$ for a given parameter $r \geq 0$.

Algorithm 3.3 (FriendlyAvg).

Input: A database $D \in (\mathbb{R}^d)^*$, privacy parameters $\rho, \delta > 0$, and $r \geq 0$.

Operation:

1. Let $n = |D|$, $\rho_1 = 0.1(1 - \delta)\rho$ and $\rho_2 = 0.9\rho$.
2. Compute $\hat{n} = n - \sqrt{\frac{\ln(1/\delta)}{\rho_1}} - 1 + \mathcal{N}(0, \frac{1}{2\rho_1})$.
3. If $n = 0$ or $\hat{n} \leq 0$, output \bot and abort.
4. Otherwise, output $\text{Avg}(D) + \mathcal{N}(0, \sigma^2 \cdot I_{d \times d})$ for $\sigma = \frac{2r}{\hat{n}} \cdot \frac{1}{\sqrt{2\rho_2}}$.

We remark that Step 4 of FriendlyAvg is the standard zCDP Gaussian Mechanism (Theorem 2.14) that guarantees ρ_2-indistinguishably for two databases D and D' with $\|\text{Avg}(D) - \text{Avg}(D')\| \leq 2r/\hat{n}$. Steps 1 to 3 are for making the value of \hat{n} indistinguishable between executions over neighboring databases (recall that we handle the insertion/deletion model).

We also remark that FriendlyAvg can be easily modified for the DP model: Given $\epsilon > 0$ (instead of ρ), split it into ϵ_1, ϵ_2, compute $\hat{n} = n - \frac{\ln(1/\delta)}{\epsilon_1} + \text{Lap}(1/\epsilon_1)$ (i.e., add laplace noise instead of Gaussian noise), and at the last step, use the Gaussian mechanism for DP with $\sigma' = \frac{2r}{\hat{n}} \cdot \sqrt{\frac{2\ln(2.5/\delta)}{\epsilon_2}}$.

We next prove the properties of FriendlyAvg (in the zCDP model).

Claim 3.4 (Privacy of FriendlyAvg). Algorithm FriendlyAvg(\cdot, ρ, δ, r) is dist_r-friendly (ρ, δ)-zCDP.
Proof. Let $D = (x_1, \ldots, x_n)$ and $D' = D_{-j}$ be two f_r-friendly neighboring databases, and let $n' = n - 1$. Consider two independent random executions of FriendlyAvg(D) and FriendlyAvg(D') (both with the same input parameters ρ, δ, r). Let \hat{N} and O be the (r.v.’s of the) values of \hat{n} and the output in the execution FriendlyAvg(D), let \hat{N}' and O' be these r.v.’s w.r.t. the execution FriendlyAvg(D'), and let ρ_1, ρ_2 be as in Step 1.

If $n' = 0$ then $P[D'|D = \bot] = 1$ and $n = 1$, and by a concentration bound of the normal distribution (Fact 2.13) it holds that $P[D = \bot] \geq 1 - \delta$. Therefore, we conclude that $O \approx_{0, \delta} O'$ in this case.

It is left to handle the case $n' \geq 1$. By Fact 2.13 (concentration of one-dimensional Gaussian) it holds that $Pr[\hat{N} \leq n], Pr[\hat{N}' < n] \geq 1 - \delta$. It is left to prove that $O|_{\hat{N} \leq n} \approx_{\rho} O'|_{\hat{N}' \leq n}$.

Since $n - n' = 1$, then by the properties of the Gaussian Mechanism (Theorem 2.14) it holds that $\hat{N} \approx_{\rho_1} \hat{N}'$. By Fact 2.17 we deduce that $\hat{N}|_{\hat{N} \leq n} \approx_{\rho_1/(1-\delta)} \hat{N}'|_{\hat{N}' \leq n}$. Hence by composition (Fact 2.15) it is left to prove that for every fixing of $\hat{n} \leq n$ it holds that $O|_{\hat{N} = \hat{n}} \approx_{\rho_2} O'|_{\hat{N}' = \hat{n}}$. For $\hat{n} \leq 0$ it is clear (both outputs are \bot). Therefore, we show it for $\hat{n} \in (0, n]$.

By the dist.-friendly assumption, for every $i \in [n] \setminus \{j\}$ there exists a point $y_i \in \mathbb{R}^d$ such that $\|x_i - y_i\| \leq r$ and $\|x_j - y_i\| \leq r$. Now, observe that

$$\|\text{Avg}(D) - \text{Avg}(D')\| = \frac{\left\| (n - 1) \cdot \left(x_j - \sum_{i \in [n] \setminus \{j\}} x_i \right) \right\|}{n(n - 1)} \leq \frac{\sum_{i \in [n] \setminus \{j\}} \|x_i - x_j\|}{n(n - 1)} \leq \frac{\sum_{i \in [n] \setminus \{j\}} (\|x_i - y_i\| + \|x_j - y_i\|)}{n(n - 1)} \leq 2r/n$$

Namely, the ℓ_2-sensitivity of the function Avg is at most $2r/n \leq 2r/\hat{n}$ for neighboring and dist.-friendly databases. The proof now follows by the guarantee of the Gaussian Mechanism (Theorem 2.14). \qed

4 From Friendly to Standard Differential Privacy

In this section we describe a paradigm for transforming any f-friendly zCDP (or DP) algorithm A, for some $f: \mathcal{X}^2 \to \{0, 1\}$, into a standard zCDP (or DP) one. The main component is an algorithm F (called a “filter”) that decides which elements to take into the core. Namely, given a database $D = (x_1, \ldots, x_n)$, $F(D)$ returns a vector $v \in \{0, 1\}^n$ such that the sub-database $C = (x_i)_{v_i = 1}$ (the “core”) satisfies properties that are described below. We only focus on product-filters:

Definition 4.1 (product-filter). *We say that $F: \mathcal{X}^* \to \{0, 1\}^*$ is a product-filter if for every n and every $D \in \mathcal{X}^n$, there exists $p = (p_1, \ldots, p_n) \in \{0, 1\}^n$ such that $V = F(D)$ is distributed according to Bern(p).*

In this work we present two product-filters: BasicFilter (Section 4.1) and zCDPFilter (Section 4.2). The filters are slightly different, but follow the same paradigm: For every $i \in [n]$, compute $\sum_{j=1}^n f(x_i, x_j)$ (i.e., the number of x_i‘s friends). If this number is no more than $n/2$, then set $p_i = 0$ (or almost zero). If this number is high (i.e., close to n), then set $p_i = 1$ (or almost one). Between $n/2$ and n, use smooth low-sensitivity p_i‘s (i.e., probabilities that do not change
by much if the number of friends is changed by one). As a result, we obtain in particular that all the elements in the core are guaranteed to have more than \(n/2 \) friends. It follows that if we look at executions on neighboring databases, then the resulting cores \(C \) and \(C' \) satisfy that \(C \cup C' \) is \(f \)-friendly because for every \(x_i, x_j \in C \cup C' \), the set of \(x_i \)'s friends must intersect the set of \(x_j \)'s friends.

The utility property (i.e., taking elements with many friends), is captured by the following definition.

Definition 4.2 ((f, α, β, n)-complete filter). We say that a filter \(F: \mathcal{X}^* \rightarrow \{0,1\}^* \) is \((f, n, \alpha, \beta)\)-complete, if given a database \(D = (x_1, \ldots, x_n) \in \mathcal{X}^n \), \(F(D) \) outputs w.p. \(1 - \beta \) a vector \(v = (v_1, \ldots, v_n) \in \{0,1\}^n \) s.t. \(v_i = 1 \) for every \(i \in [n] \) with \(\sum_{j=1}^{n} f(x_i, x_j) \geq (1 - \alpha)n \). We omit the \(n \) if the above holds for every \(n \in \mathbb{N} \), and omit the \(\beta \) if the above also holds for \(\beta = 0 \).

Namely, with probability \(1 - \beta \), such a filter gives us a “core” \(C \) which contains all elements \(x_i \in D \) that are friends of at least \(1 - \alpha \) fraction of the elements in \(D \). For \(\alpha = 0 \) we obtain a filter that preserves a “complete” database \(D \): if for every \(x_i, x_j \in D \) it holds that \(f(x_i, x_j) = 1 \) (i.e., all the elements are friends of each other), then w.p. \(1 - \beta \) it holds that \(C = D \) (i.e., no element is removed from the core).

4.1 Basic Filter

In the following we describe BasicFilter and prove its properties.

Algorithm 4.3 (BasicFilter).

Input: A database \(D = (x_1, \ldots, x_n) \in \mathcal{X}^n \), a predicate \(f: \mathcal{X}^2 \rightarrow \{0,1\} \), and \(0 \leq \alpha < 1/2 \).

Operation:

1. For \(i \in [n] \):

 (a) Let \(z_i = \sum_{j=1}^{n} f(x_i, x_j) - n/2 \).

 (b) Sample \(v_i \leftarrow \text{Bern}(p_i) \) for \(p_i = \begin{cases} 0 & z_i \leq 0 \\ 1 & z_i \geq (1/2 - \alpha)n \\ \frac{z_i}{(1/2 - \alpha)n} & \text{o.w.} \end{cases} \).

2. Output \(v = (v_1, \ldots, v_n) \).

Note that for every \(i \), if \(x_i \) has at most \(n/2 \) friends, then \(p_i = 0 \), and if \(x_i \) has at least \((1 - \alpha)n \) friends, then \(p_i = 1 \). We next state and prove the properties of BasicFilter.

Lemma 4.4. For any predicate \(f: \mathcal{X}^2 \rightarrow \{0,1\} \) and \(0 \leq \alpha < 1/2 \), \(F = \text{BasicFilter}(\cdot, f, \alpha) \) is an \((f, \alpha)\)-complete product-filter. Furthermore, for every \(n \in \mathbb{N} \) and every neighboring databases \(D \in \mathcal{X}^n \) and \(D' = D_{-j} \), the following holds w.r.t. the random variables \(V = F(D) \) and \(V' = F(D') \):

1. **Friendliness:** For every \(v \in \text{Supp}(V) \) and \(v' \in \text{Supp}(V') \), the database \(C \cup C' \), for \(C = D_{\{i \in [n]: v_i = 1\}} \) and \(C' = D'_{\{i \in [n-1]: v'_i = 1\}} \), is \(f \)-friendly, and
2. **Stability:** Let \(p = (p_1, \ldots, p_n) \) and \(p' = (p'_1, \ldots, p'_{n-1}) \) for \(p_i = \Pr[V_i = 1] \) and \(p'_i = \Pr[V'_i = 1] \). Then \(\|p_{-j} - p'\|_1 \leq 1/(1-2\alpha) \).

Namely, apart from being a complete filter, BasicFilter preserves small \(\ell_1 \) norm of the probabilities of the vectors up to the index \(j \) of the additional element. In addition, for any neighboring databases \(D \) and \(D' \), it guarantees that \(C \cup C' \), for the resulting cores \(C \) and \(C' \), is \(f \)-friendly.

Proof of Lemma 4.4. It is clear by construction that \(F = \text{BasicFilter}(\cdot, f, \alpha) \) is a product-filter. Also, the \((f, \alpha)\)-complete property immediately holds by construction since for every database \(D = (x_1, \ldots, x_n) \), each element \(x_i \) with \(\sum_{j=1}^n f(x_i, x_j) \geq (1-\alpha)n \) has \(z_i \geq (1/2-\alpha)n \) and therefore \(p_i = 1 \) (i.e., \(v_i = 1 \) w.p. 1). We next prove the friendliness and stability properties.

Fix neighboring databases \(D = (x_1, \ldots, x_n) \) and \(D' = D_{-j} \), let \(V = F(D) \) and \(V' = F(D') \), let \(z_i, p_i \) be the values in the execution \(F(D) \) and let \(z'_i, p'_i \) be these values in the execution \(F(D') \). For proving the friendliness property, we fix \(i \in [n] \) with \(p_i > 0 \) and \(k \in [n-1] \) with \(p'_k > 0 \), and show that there exists \(y \) with \(f(x_i, y) = f(x_k, y) = 1 \). Since \(p_i > 0 \) it holds that \(\sum_{\ell \in [n]} f(x_i, x_{\ell}) \geq [n/2] + 1 \) and therefore \(\sum_{\ell \in [n]\{j\}} f(x_i, x_{\ell}) \geq [n/2] + 1 \). In addition, since \(p'_k > 0 \) it holds that \(\sum_{\ell \in [n]\{j\}} f(x_k, x_{\ell}) \geq [(n-1)/2] + 1 \). Since \([n/2] + [(n-1)/2] + 1 = n > n-1 \), there must exist \(\ell \in [n] \setminus \{j\} \) with \(f(x_i, x_{\ell}) = f(x_k, x_{\ell}) = 1 \), as required.

For proving the stability property, note that for every \(i \in [n] \setminus \{j\} \) it holds that

\[
\frac{z_i}{n} - \frac{z'_i}{n-1} = \frac{\sum_{\ell \in [n]} f(x_i, x_{\ell})}{n} - \frac{\sum_{\ell \in [n]\{j\}} f(x_i, x_{\ell})}{n-1} = \frac{f(x_i, x_j)}{n} - \frac{\sum_{\ell \in [n]\{j\}} f(x_i, x_{\ell})}{n(n-1)}.
\]

Since the above belongs to \([-1/n, 1/n]\), we deduce that \(|p_i - p'_i| \leq \frac{1}{(1-2\alpha)n} \) and conclude that \(\|p_{-j} - p'\|_1 \leq \frac{n-1}{(1-2\alpha)n} < \frac{1}{1-2\alpha} \). \(\square \)

4.2 zCDP Filter

We next describe our filter zCDPFilter that is tailored for the zCDP model and is better in practice.

Algorithm 4.5 (zCDPFilter).

Input: A database \(D = (x_1, \ldots, x_n) \in \mathcal{X}^n \), a predicate \(f : \mathcal{X}^2 \mapsto \{0, 1\} \), and \(\rho, \delta > 0 \).

Operation:

1. Let \(\rho_1 = 0.1\rho \) and \(\rho_2 = 0.9\rho \).
2. Compute \(\hat{n} = n + \sqrt{\frac{\ln(2/\delta)}{\rho_1}} + \mathcal{N}(0, \frac{1}{2\rho_1}) \).
3. For \(i \in [n] \):
 - (a) Let \(z_i = \sum_{j=1}^{n} f(x_i, x_j) - n/2 \) and let \(\hat{z}_i = z_i + \mathcal{N}(0, \frac{\hat{n}}{8\rho_2}) \).
 - (b) If \(\hat{z}_i < \sqrt{\frac{\hat{n} \ln(2\hat{n}/\delta)}{4\rho_2}} + \frac{1}{2} \), set \(v_i = 0 \). Otherwise, set \(v_i = 1 \).
4. Output \(v = (v_1, \ldots, v_n) \).
Note that zCDPFilter differs from BasicFilter in the way it uses the \{z_i\}'s. BasicFilter use them directly to compute low-sensitivity probabilities \{p_i\}'s such that each \(v_i\) is sampled from Bern(\(p_i\)). zCDPFilter, on the other hand, does not compute the \{p_i\}'s explicitly. Rather, it creates noisy versions \{\hat{z}_i\} of the \{z_i\}'s that preserve indistinguishability between neighboring executions, and therefore guarantees that the \{\hat{v}_i\}'s are also indistinguishable by post-processing. This and all other properties of zCDPFilter are stated in the following theorem.

Lemma 4.6. Let \(f : \mathcal{X}^2 \rightarrow \{0, 1\}\) and \(\rho, \delta > 0\). \(F = zCDPFilter(\cdot, f, \rho, \delta)\) is a product-filter that is \((f, \alpha, \beta, n)\)-complete for every \(0 \leq \alpha < 1/2, \beta > 0\), and \(n \geq \frac{\ln(1/(1-\alpha)e\cdot\min(\beta, \delta))}{(1/2-\alpha)^2}\). Furthermore, for every \(n \in \mathbb{N}\) and every neighboring databases \(D = (x_1, \ldots, x_n)\) and \(D' = D_{-j}\), there exist events \(E \subseteq \{0, 1\}^n\) and \(E' \subseteq \{0, 1\}^{n-1}\) with \(\Pr[F(D) \in E], \Pr[F(D') \in E'] \geq 1 - \delta\) such that the following holds w.r.t. the random variables \(V = F(D)\) and \(V' = F(D')\):

1. **Friendliness:** For every \(v \in E\) and \(v' \in E'\), the database \(C \cup C'\), for \(C = D_{\{i\in[n] : v_i = 1\}}\) and \(C' = D'_{\{i\in[n-1] : v'_i = 1\}}\), is \(f\)-friendly, and

2. **Privacy:** \((V_{-j})|_E \approx_\rho V'|_E'\).

The proof of Lemma 4.6 appears at Appendix B.4 and sketched below.

Proof Sketch. Fix two neighboring databases \(D = (x_1, \ldots, x_n)\) and \(D' = (x_1, \ldots, x_{n-1})\), and consider two independent executions of \(F(D)\) and \(F(D')\) for \(F = zCDPFilter(\cdot, f, \rho, \delta)\). For simplicity, we assume that both executions use the same value \(\hat{n}\) at Step ii. For utility, we use the fact \(\hat{n} \leq n + \sqrt{\frac{\ln(2/\delta)}{\rho_1}} + \sqrt{\frac{\ln(2/\beta)}{\rho_2}}\) with confidence \(1 - \beta/2\). By the lower bound on \(n\), it follows that \((1/2 - \alpha)n \geq \sqrt{\frac{\ln(2/\delta)}{4\rho_2}} + \sqrt{\frac{n \ln(2/\beta)}{4\rho_2}} + \frac{1}{2}\), yielding that all elements with \((1 - \alpha)n\) friends are added to the core with confidence \(1 - \beta/2\).

For proving friendliness and privacy, we define \(E \subseteq \{0, 1\}^n\) to be the subset of all vectors \(v \in \{0, 1\}^n\) that does not include “bad” coordinates \(i \in [n]\). Namely, \(v_i = 0\) for \(i \in [n]\) with \(\sum_{j=1}^{n-1} f(x_i, x_j) \leq (n - 1)/2\). Event \(E' \subseteq \{0, 1\}^{n-1}\) is defined by \(\{v_{-n} : v \in E\}\) (i.e., the vectors in \(E\) without the \(n\)th coordinate).

Note that \(\hat{n} \geq n\) with confidence \(1 - \delta/2\). In that case it follows that in both executions \(F(D)\) and \(F(D')\), all the bad elements are removed with confidence \(1 - \delta/2\), yielding that outputs are in \(E\) and \(E'\) (respectively).

The friendliness property now follows since for every \(v \in E\) and \(v' \in E'\) and for every \(i, j \in [n-1]\) such that \(v_i = 1\) and \(v'_j = 1\), there exists \(\ell \in [n-1]\) such that \(f(x_i, x_{\ell}) = f(x_j, x_{\ell}) = 1\).

For proving the privacy guarantee, note that for every \(i \in [n-1]\) it holds that \(|z_i - z'_i| = |1/2 - f(x_i, x_n)| = 1/2\), yielding that \(\tilde{Z}_i \approx_\rho Z'_i\). Therefore, by composition and post-processing, we deduce that \(V_{-n} \approx_\rho V'\). Now note that when conditioning \(V\) on the event \(E\), the “bad” coordinates become 0, and the distribution of the other coordinates remain the same (this is because the \(V_i\)'s are independent, and \(E\) only fixes the bad \(i\)'s to zero). Similarly, the same holds when conditioning \(V'\) on the event \(E'\), and therefore we conclude that \((V_{-n})|_E \approx_\rho V'|_E'\). \(\square\)

Note that unlike BasicFilter, zCDPFilter has restrictions on \(n\) and \(\beta\) in the utility guarantee (i.e., \(\beta\) cannot be 0, and there is also a lower bound on \(n\)). Also, the friendliness and privacy properties only hold together with high probability, and not with probability 1 as in BasicFilter. Still, zCDPFilter is preferable in the zCDP model since its privacy guarantee is stronger than the
Theorem 4.8

A single element x

Let Lemma 4.9.

0 (FriendlyCore)

zCDP FriendlyCore

4.3 Paradigm for zCDP

We next define FriendlyCore and state the general paradigm for obtaining (standard) end-to-end zCDP.

Definition 4.7 (FriendlyCore). Define FriendlyCore(D, f, ρ, δ) := D_{i: v_i=1} for v = zCDPFilter(D, f, ρ, δ).

Theorem 4.8 (Paradigm for zCDP). For every ρ, δ > 0 and f-friendly (ρ', δ')-zCDP algorithm A, algorithm B(D) := A(FriendlyCore(D, f, ρ, δ)) is (ρ + ρ', δ + δ')-zCDP. Furthermore, for every 0 ≤ α < 1/2, β > 0, n ≥ \frac{4\ln((1/2-\alpha)\min(\beta, \delta))}{\min(1-\alpha, \rho)} and D ∈ X^n, with probability 1−β over the execution FriendlyCore(D, f, ρ, δ), the output includes all elements x ∈ D with ∑_{y∈D} f(x, y) ≥ (1−α)n.

For proving the privacy guarantee, we use the following lemma (proven in Appendix B.5) that bounds the zCDP-indistinguishability loss between two executions of a zCDP mechanism over random databases R, R' that are “almost indistinguishable” from being neighboring (i.e., expect of a single element x_j, the other elements’ distributions is (ρ, δ)-indistinguishable).

Lemma 4.9. Let D = (x_1, ..., x_n) and D' = D−j be neighboring databases, let V, V' be random variables over \{0, 1\}^n and \{0, 1\}^{n−1} (respectively) such that V−j ≈_ρ,δ V', and define the random variables R = D_{i∈[n]: v_i=1} and R' = D'_{i∈[n−1]: v'_i=1}. Let A be an algorithm such that for any neighboring C ∈ Supp(R) and C' ∈ Supp(R') satisfy A(C) ≈_ρ',δ' A(C'). Then A(R) ≈_ρ+ρ',δ+δ' A(R').

Note that the requirement from algorithm A in Lemma 4.9 is weaker than being (fully) (ρ', δ')-zCDP since it only guarantees indistinguishability for pairs of neighboring databases (C, C') ∈ Supp(R) × Supp(R'), and not necessarily for all neighboring pairs in X* × X*. This weaker requirement takes a crucial part in proving the privacy guarantee in Theorem 4.8, since we apply the lemma with the algorithm A which is only f-friendly zCDP, and use the fact that we are certified that every C and C in the support satisfy that C ∪ C' is f-friendly. The proof of Lemma 4.9 basically follows by composition, but is slightly subtle. See the proof at Appendix B.5. We now prove Theorem 4.8 using Lemma 4.9.

Proof of Theorem 4.8. The utility guarantee immediately follows since zCDPFilter(·, f, ρ, δ, β) is an (f, n, α, β)-complete database for such values of n (Lemma 4.6). In the following we prove the privacy guarantee of B.

Let D = (x_1, ..., x_n) and D' = D−j be two neighboring databases. Consider two independent executions B(D) and B(D'). Let V be the (r.v. of the) value of v in the execution B(D) (the output of zCDPFilter that is computed internally in FriendlyCore), and let V' this r.v. w.r.t. the execution B(D'). By Lemma 4.6, there exist events E ⊆ \{0, 1\}^n and E' ⊆ \{0, 1\}^{n−1} with \Pr[V ∈ E], \Pr[V' ∈ E'] ≥ 1−δ that satisfy Item 1 (friendliness) and Item 2 (privacy). The friendliness property implies that for every v ∈ E and v' ∈ E', the database C ∪ C', for C = D_{i∈[n]: v_i=1} and C' = D'_{i∈[n−1]: v'_i=1}, is f-friendly. Therefore, in case C and C' are neighboring, we deduce that A(C) ≈_ρ',δ' A(C') since A is f-friendly (ρ', δ')-zCDP. The privacy guarantee of zCDPFilter implies that V−j ≈_ρ V'−j. Hence, by Lemma 4.9 we deduce that A(R)|V ∈ E ≈_ρ+ρ',δ' A(R')|V' ∈ E' for the random variables R = D_{i∈[n]: v_i=1} and R' = D'_{i∈[n−1]: v'_i=1}. We now conclude by Fact 2.16 that A(R) ≈_ρ+ρ',δ+δ' A(R'), as required since A(R) ≡ B(D) and A(R') ≡ B(D').
4.4 Paradigm for DP

We next define FriendlyCoreDP and state the general paradigm for obtaining (standard) end-to-end DP.

Definition 4.10 (FriendlyCoreDP). Define FriendlyCoreDP$(\mathcal{D}, f, \alpha) := \mathcal{D}_{\{i: v_i=1\}}$ for $v = \text{BasicFilter}(\mathcal{D}, f, \alpha)$.

Theorem 4.11 (Paradigm for DP). For every $0 \leq \alpha < 1/2$ and every f-friendly (ε, δ)-DP algorithm A, algorithm $B(\mathcal{D}) := A(\text{FriendlyCoreDP}(\mathcal{D}, f, \alpha))$ is $(\gamma(e^\varepsilon - 1), \gamma \delta e^{e+\gamma(e^{-1})})$-DP for $\gamma = \frac{1}{(1-2\alpha)} + 1$. Furthermore, the output of FriendlyCoreDP$(\mathcal{D}, f, \rho, \delta)$ includes all elements $x \in \mathcal{D}$ with $\sum_{y \in \mathcal{D}} f(x, y) \geq (1 - \alpha)n$.

We remark that for small values of ε and $\alpha = 0$, Theorem 4.11 yields that if A is f-friendly (ε, δ)-DP, then B is $\approx (2\varepsilon, 2e^{3\varepsilon}\delta)$-DP, and in general for $\varepsilon = O(1)$ and $1/2 - \alpha = \Omega(1)$ we obtain $(O(\varepsilon), O(\delta))$-DP. Namely, the paradigm is optimal (up to constant factors) for transforming an f-friendly (ε, δ)-DP, for $\varepsilon = O(1)$, into a standard DP one.

For proving the privacy guarantee of FriendlyCoreDP, we use the following lemma (proven in Appendix B.6) that bounds the DP-indistinguishability loss between two executions over “ℓ_1-close” random databases.

Lemma 4.12. Let $\mathcal{D} \in \mathcal{X}^n$ and let $p, p' \in [0, 1]^n$ with $\|p - p'\|_1 \leq \gamma$. Let V and V' be two random variables, distributed according to $\text{Bern}(p)$ and $\text{Bern}(p')$, respectively, and define the random variables $R = \mathcal{D}_{\{i: V_i=1\}}$ and $R' = \mathcal{D}_{\{i: V'_i=1\}}$. Let A be an algorithm that for every neighboring databases $\mathcal{C} \in \text{Supp}(R)$ and $\mathcal{C}' \in \text{Supp}(R')$ satisfy $A(\mathcal{C}) \approx_{\varepsilon, \delta} A(\mathcal{C}')$. Then $A(R) \approx_{\varepsilon, \delta} A(R')$.

We now prove Theorem 4.11 using Lemma 4.12.

Proof of Theorem 4.11. The utility guarantee immediately holds since $\text{BasicFilter}(\cdot, f, \alpha)$ is (f, α)-complete (Lemma 4.4). We next focus on proving the privacy guarantee.

Fix two neighboring databases $\mathcal{D} \in \mathcal{X}^n$ and $\mathcal{D}' = \mathcal{D}_{-j}$. Consider two independent executions of $B(\mathcal{D})$ and $B(\mathcal{D}')$. Let V be the (r.v. of the) value of v in the execution $B(\mathcal{D})$ (the output of BasicFilter that is computed internally in FriendlyCoreDP), and let V' this r.v. w.r.t. the execution $B(\mathcal{D}')$. By the stability property (Lemma 4.4), there exist $p, p' \in [0, 1]^n$ such that $V \leftarrow \text{Bern}(p)$ and $V' \leftarrow \text{Bern}(p')$ and it holds that $\|p_{-j} - p'_{-j}\|_1 \leq 1/(1-2\alpha)$. In order to apply Lemma 4.12, we need to extend V' to be an n-size vector. Let V'' be the n-size vector that is obtained by adding 0 to the j'th location in V' (i.e., $\hat{V}'_j = 0$ and $\hat{V}'_{-j} = V'_{-j}$), and let $\hat{p}' \in \{0, 1\}^n$ be the vector such that $\hat{V}' \leftarrow \text{Bern}(\hat{p}')$ (obtained by adding 0 to the j'th location in \hat{p}'). So it holds that $\|p - \hat{p}'\|_1 \leq 1 + 1/(1-2\alpha)$. Let $R = \mathcal{D}_{\{i: V_i=1\}}$ and $R' = \mathcal{D}_{\{i: V'_i=1\}}$. By the friendliness property (Lemma 4.4), for every $\mathcal{C} \in \text{Supp}(R)$ and $\mathcal{C}' \in \text{Supp}(R')$ it holds that $\mathcal{C} \cup \mathcal{C}'$ is f-friendly. We now conclude the proof by Lemma 4.12 since A is f-friendly (ε, δ)-DP and it holds that $A(R) \equiv B(\mathcal{D})$ and $A(R') \equiv B(\mathcal{D}')$.

4.5 Comparison Between the Paradigms

Up to constant factors, the paradigm for DP is optimal, since we transform an f-friendly (ε, δ)-DP algorithm into a $\approx (2\varepsilon, 2e^{3\varepsilon}\delta)$-DP one. However, in the zCDP model, when n is sufficiently large, we can use most of the privacy budget (say, 0.9 of it) for the friendly algorithm A, and use the rest for FriendlyCore (i.e., we do not have to lose significant constant factors). The zCDP model has
also advantage of tight composition, and whenever the friendly algorithm A relies on the Gaussian Mechanism (i.e., for averaging and clustering problems), which is tailored for zCDP, we gain in accuracy compared to the DP model.

4.6 Computation efficiency

Our filters BasicFilter and zCDPFilter computes \(f(x, y) \) for all pairs, that is, doing \(O(n^2) \) applications of the predicate. However, using standard concentration bounds, it is possible to use a random sample of \(O(\log(n/\delta)) \) elements \(y \) for estimating with high accuracy the number of friends of each \(x \). This provides very similar privacy guarantees, but is computationally more efficient for large \(n \).

5 Applications

In this section we present two applications of FriendlyCore: Averaging (Section 5.1) and Clustering (Section 5.2). These applications are described in the zCDP model, but can easily be adopted to the DP model as well. In Appendix A we present a third application of learning an unrestricted covariance matrix in the DP model, which relies on the tools that have been recently developed by [AL21]. In this section we only describe the algorithms and prove their privacy guarantees, where we refer to Appendix B for the missing statements and proofs of the utility guarantees.

5.1 Averaging

In this section we use FriendlyCore to compute a private average of points \(D = (x_1, \ldots, x_n) \in (\mathbb{R}^d)^\ast \). In Section 5.1.1 we present a zCDP algorithm that given an (utility) advise of the effective diameter \(r \) of the points, estimates \(\text{Avg}(D) \) up to an additive \(\ell_2 \) error of \(\tilde{O}\left(\frac{r}{n} \cdot \sqrt{\frac{d}{\rho}}\right) \). In Section 5.1.2 we present the case where the effective diameter \(r \) is unknown, but only a segment \([r_{\min}, r_{\max}]\) that contains \(r \) is given. Throughout this section, we remind the reader that we denote \(\text{dist}_r(x, y) := 1_{\{\|x-y\| \leq r\}} \).

5.1.1 Known Diameter

In the following we describe the algorithm for the known diameter case.

Algorithm 5.1 (FC_Avg).

Input: A database \(D = (x_1, \ldots, x_n) \in (\mathbb{R}^d)^\ast \), privacy parameters \(\rho, \delta > 0 \) and a diameter \(r \geq 0 \).

Operation:

1. Let \(\rho_1 = 0.1\rho \) and \(\rho_2 = 0.9\rho \).
2. Compute \(C = \text{FriendlyCore}(D, \text{dist}_r, \rho_1, \delta/2) \).
3. Output \(\text{FriendlyAvg}(C, \rho_2, \delta/2, r) \) (Algorithm 3.3).

Theorem 5.2 (Privacy of FC_Avg). Algorithm FC_Avg(\(\cdot, \rho, \delta, r \)) is \((\rho, \delta) \)-zCDP.
Proof. Claim 3.4 implies that \(\text{FriendlyAvg}(\cdot, \rho_2, \delta/2, r) \) is dist,\(\cdot \)-friendly \((\rho_2, \delta/2) \)-zCDP. Therefore, we conclude by the privacy guarantee of the FriendlyCore paradigm (Theorem 4.8) that \(\text{FC_Avg}(\cdot, \rho, \delta, \beta, r) \) is \((\rho = \rho_1 + \rho_2, \delta) \)-zCDP. □

5.1.2 Unknown Diameter

In the following we describe the algorithm \(\text{FC_Avg.UnknownDiam} \) for the unknown diameter case, where we are only given a lower and upper bound \(r_{\text{min}}, r_{\text{max}} \) (respectively) on the effective diameter \(r \). This is done by first searching for the diameter \(r \) using a private binary search \(\text{FindDiam} \), and then apply our known diameter algorithm \(\text{FC_Avg} \), which results with an additive \(\ell_2 \) error of \(\tilde{O}\left(\frac{r_{\text{max}} - r_{\text{min}}}{\rho} \right) \) (proven in Appendix B). The following algorithm is the basic component of our binary search which checks (privately) whether a parameter \(r \) is a good diameter.

\[\begin{align*}
\text{Algorithm 5.3} \quad (\text{CheckDiam}).
\end{align*}\]

Input: A database \(\mathcal{D} = (x_1, \ldots, x_n) \in (\mathbb{R}^d)^* \), a privacy parameter \(\rho > 0 \), a confidence parameter \(\beta > 0 \), and a diameter \(r \geq 0 \).

Operation:

i. For \(i \in [n] \): Compute \(s_i = |\{j \in [n]: \|x_i - x_j\| \leq r\}| \).

ii. Let \(a = (\sum_{i=1}^{n} s_i)/n \) and let \(\hat{a} = a + \mathcal{N}(0, 2/\rho) \).

iii. Output \(\begin{cases} 1 & \hat{a} \geq n \sqrt{\frac{4\ln(1/\beta)}{\rho}} \\ 0 & \text{o.w.} \end{cases} \)

Claim 5.4 (Privacy of CheckDiam). Algorithm \(\text{CheckDiam}(\cdot, \rho, \beta, r) \) is \(\rho \)-zCDP.

Proof. Fix two neighboring databases \(\mathcal{D} = (x_1, \ldots, x_n) \) and \(\mathcal{D}' = \mathcal{D}_{-j} \), where we assume w.l.o.g. that \(j = n \). i.e., \(\mathcal{D}' = (x_1, \ldots, x_{n-1}) \). Let \(a, \{s_i\}_{i=1}^{n} \) and \(a', \{s'_i\}_{i=1}^{n-1} \) be the values from Step ii in the executions \(\text{CheckDiam}(\mathcal{D}) \) and \(\text{CheckDiam}(\mathcal{D}') \), respectively, and note that for every \(i \in [n-1] \) is holds that \(s'_i \leq s_i \leq s'_i + 1 \). Therefore, it holds that

\[a \geq \frac{\sum_{i=1}^{n-1} s'_i}{n} = a' - \frac{\sum_{i=1}^{n-1} s'_i}{n(n-1)} \geq a' - 1, \]

and

\[a \leq \frac{\sum_{i=1}^{n-1} (s'_i + 1) + s_n}{n} \leq a' + \frac{n-1}{n} + \frac{s_n}{n} \leq a' + 2. \]

The privacy guarantee now follows by the Gaussian mechanism (Theorem 2.14) and post-processing (Fact 2.9). □

We next describe our private binary search for the diameter \(r \).
Algorithm 5.5 (FindDiam).

Input: A database $D = (x_1, \ldots, x_n) \in (\mathbb{R}^d)^n$, a privacy parameter $\rho > 0$, a confidence parameter $\beta > 0$, lower and upper bounds $r_{\min}, r_{\max} \geq 0$ on the diameter (respectively), and a base $b > 1$.

Operation:

1. Let $t = \log_b (r_{\max}/r_{\min})$.
2. Perform a binary search over $x \in \{b^0, b^1, \ldots, b^t\}$, each step of the search is done by calling $\text{CheckDiam}(D, \frac{\rho}{\log_2(t)}, \frac{\beta}{\log_2(t)}, r = x \cdot r_{\min})$.
3. Output $r = x \cdot r_{\min}$ where x is the outcome of the above binary search.

Claim 5.6 (Privacy of FindDiam). Algorithm $\text{FindDiam}(\cdot, \rho, \beta, r_{\min}, r_{\max}, b)$ is ρ-zCDP.

Proof. Immediately holds by the privacy guarantee of CheckDiam (Claim 5.4) and basic composition of $\log_2(t)$ iterations of the binary search. \qed

We are now ready to fully describe our algorithm for estimating the average of points where the effective diameter is unknown.

Algorithm 5.7 (FC_Avg_UnknownDiam).

Input: A database $D = (x_1, \ldots, x_n) \in (\mathbb{R}^d)^n$, privacy parameters $\rho, \delta > 0$, a confidence parameter $\beta > 0$, and lower and upper bounds $r_{\min}, r_{\max} > 0$ on the diameter (respectively).

Operation:

1. Let $\rho_1 = 0.1\rho$ and $\rho_2 = 0.9\rho$.
2. Compute $r = \text{FindDiam}(D, \rho_1, \beta/2, r_{\min}, r_{\max}, b = 1.5)$.
3. Output $\text{FC_Avg}(D, \rho_2, \delta, \beta/2, r)$.

Theorem 5.8 (Privacy of FC_Avg_UnknownDiam). Algorithm $\text{FC_Avg_UnknownDiam}(\cdot, \rho, \delta, \beta, r_{\min}, r_{\max})$ is (ρ, δ)-zCDP.

Proof. Immediately follows by composition (Fact 2.15) of the ρ_1-zCDP mechanism FindDiam (Claim 5.6) and the (ρ_2, δ)-zCDP mechanism FC_Avg (Theorem 5.2). \qed

5.2 Clustering

In this section we use FriendlyCore for constructing our private clustering algorithm FC_Clustering. Recently, [CKM+21] identified a very simple clustering problem, called unordered k-tuple clustering, and reduced standard clustering tasks like k-means and k-GMM (under common separation assumptions) to this simple problem via the sample and aggregate framework of [NRS07]. The idea is to split the database into random parts, and execute a non-private clustering algorithm on each part for obtaining an unordered k-tuples from each execution. Then the goal is to privately...
aggregate all the \(k\)-tuples for obtaining a new \(k\)-tuple that is close to them. \[CKM+21\] described simple algorithms that privately solve this problem. However, their algorithms do not perform well in practice (i.e., requires either too many tuples or an extremely large separation). In this section we show how to solve the unordered \(k\)-tuple clustering problem using \texttt{FriendlyCore} in a much more efficient way, yielding the first algorithm of this type that is also practical in many interesting cases (see Section 6.2). In Section 5.2.1 we explain the unordered \(k\)-tuple clustering problem, define a predicate \texttt{match}\(_{\gamma}\) for such unordered tuples (where \(\gamma\) is a match quality parameter), and prove properties of this predicate (in particular, showing that a \texttt{match}\(_{\gamma}\)-friendly database is \texttt{match}\(_{2\gamma/(1-\gamma)}\)-complete). In Section 5.2.2 we present a reduction \texttt{FriendlyReorder} from unordered to ordered tuples, that is privacy safe for databases that are \texttt{match}\(_{1/\gamma}\)-friendly. In Section 5.2.3 we present the ordered tuples problem, and solve it again using a special specification of \texttt{FriendlyCore}. In Section 5.2.4 we combine the reduction from unordered to ordered tuples, along with the algorithm for ordered one, and present our end-to-end \texttt{zCDP} algorithm \texttt{FC}_\texttt{kTupleClustering} for unordered \(k\)-tuple clustering. Finally, in Section 5.2.5 we are going back to the original clustering problems that we are interested in (e.g., \(k\)-means and \(k\)-GMM) and present our main clustering algorithm \texttt{FC}_\texttt{Clustering} that combines between our algorithm \texttt{FC}_\texttt{kTupleClustering} for unordered \(k\)-tuple clustering to the reduction of \[CKM+21\] from standard clustering problems into the unordered tuples problem.

While \texttt{FC}_\texttt{Clustering} consists of several components, the algorithm itself is not very complicated. For making the presentation more accessible, in Algorithm 5.9 we give an informal description of \texttt{FC}_\texttt{Clustering}, and in Figure 2 we present a graphical illustration of the steps on synthetic data.

Algorithm 5.9 (FC_Clustering, informal).

\textit{Input:} A database \(\mathcal{D} \in \mathbb{R}^d\)\(^*\), parameters \(\rho, \delta > 0\), a bound \(\Lambda > 0\) on the \(\ell_2\) norm of the points, and a parameter \(t \in \mathbb{N}\) (number of tuples).

\textit{Oracle:} Non private clustering algorithm \(A\).

\textit{Operation:}

1. Shuffle the order of the points in \(\mathcal{D}\). Let \(\mathcal{D} = (x_1, \ldots, x_n)\) be the database after the shuffle.

2. For \(i \in [t]\): Compute the \(k\)-tuple \(X^i = A(D^i)\) where \(D^i = (x_{(i-1)m+1}, \ldots, x_{im})\) for \(m = \lceil n/t \rceil\).

3. Let \(\mathcal{T} = (X^1, \ldots, X^t)\) (a database of unordered tuples).

4. Compute \(C = \texttt{FriendlyCore}(\mathcal{T}, \text{match}_{1/\gamma}, \rho/3, \delta/3)\) (\texttt{match}_{1/\gamma} is defined in Definition 5.12).

5. Pick a tuple \(X = (x_1, \ldots, x_k) \in \mathcal{T}\) and split the set of all points of all the tuples in \(\mathcal{T}\) into \(k\) parts \(Q^1, \ldots, Q^k\) according to it (i.e., each point \(y\) is chosen to be in \(Q^i\) for \(i = \arg\min_{j \in [k]} \|x_i - y\|\)).

6. For \(i \in [k]\): Compute \((\rho/3, \delta/3)\)-\texttt{zCDP} averages \(Y = (y_1, \ldots, y_k)\) for \(Q^1, \ldots, Q^k\) (respectively).

7. Perform a private Lloyd step over the entire database \(\mathcal{D}\) with the centers \(Y\) (using privacy budget \(\rho/3, \delta/3\) and radius \(\Lambda\)), and output the resulting centers.
Figure 2: Top figures from left to right: (a) Database of size $n = 2e5$. (b) Points of 300 3-tuples that have been generated by (non-private) k-means++ on random parts of the database (Step 2). (c) Points of all the 207 3-tuples that were chosen to be in the core (Step 4). Bottom figures from left to right: (d) Picking the first tuple (black points) and splitting the points according to it (Step 5). (e) Privately estimating the averages of each part (red points, Step 6). (f) The private centers places on the entire data. (g) The centers after a private Lloyd step (yellow points, Step 7).

Theorem 5.10 (Privacy of FC_Clustering). Algorithm \(FC_{Clustering}^A(\cdot, \rho, \delta, \Lambda, t) \) is \((\rho, \delta)\)-zCDP (for any \(A \)).

The proof of Theorem 5.10, along with the formal construction, appears at Section 5.2.5.

Remark 5.11. Steps 4 to 6 of Algorithm 5.9 are actually an informal description of our algorithm \(FC_{kTupleClustering} \), which is formally described in Section 5.2.4. Step 5, which also can be seen as “ordering” the unordered tuples, is an informal description of our algorithm \(FriendlyReorder \) which is described in Section 5.2.2. Note that computing the averages in Step 6 can be done by applying \(FC_{Avg}_UnknownDiam \) on each of the \(Q_i \)’s (i.e., additional \(k \) calls to \(FriendlyCore \)). But actually, we do that by a new algorithm \(FC_{AvgOrdTup} \) that only uses a single call to \(FriendlyCore \) which is applied with a special type of predicate over ordered tuples. Algorithm \(FC_{AvgOrdTup} \) is described in Section 5.2.3.

5.2.1 Unordered \(k \)-Tuple Clustering

In this section we are given a database \(D \in ((\mathbb{R}^d)^k)^* \), where each element \(X = (x_1, \ldots, x_k) \in D \) is a \(k \)-tuple of points in \(\mathbb{R}^d \). In case all tuples are close to each other (up to reordering), the goal is to privately determine a new \(k \)-tuple that is close to them.

We start by defining a predicate over such tuples that captures the “closeness” property.

Definition 5.12 (Predicate \(match_\gamma \)). For \(\gamma \in [0, 1] \), a permutation \(\pi: [k] \to [k] \) and \(X = (x_1, \ldots, x_k) \), \(Y = (y_1, \ldots, y_k) \in (\mathbb{R}^d)^k \), let \(match_\gamma^\pi(X, Y) = 1 \) iff for every \(i \in [k] \) it holds that

\[
\|x_i - y_{\pi(i)}\| < \gamma \cdot \min_{j \neq i} \{ \min \{ \|x_i - y_{\pi(j)}\|, \|x_j - y_{\pi(i)}\| \} \}.
\]
We let $\text{match}_\pi(X, Y) = 1$ iff there exists a permutation π such that $\text{match}^\pi_\gamma(X, Y) = 1$ (otherwise, $\text{match}_\pi(X, Y) = 0$).

In the following we prove key properties of this predicate. We start by stating an approximate triangle inequality with respect to this predicate for the case of the identity permutation.

Claim 5.13. Let $X, Y, Z \in (\mathbb{R}^d)^k$ such that $\text{match}^\text{id}_\gamma(X, Z) = \text{match}^\text{id}_\gamma(Y, Z) = 1$, where id is the identify permutation. Then $\text{match}^\text{id}_\gamma(2\gamma/(1-\gamma))(X, Y) = 1$.

Proof. Fix $i \in [k]$ and $j \in [k] \setminus \{i\}$, and note that

1. $\text{match}^\text{id}_\gamma(X, Z) = 1 \implies \|x_i - z_i\| < \gamma \cdot \min\{\|x_i - z_j\|, \|x_j - z_i\|\}.$
2. $\text{match}^\text{id}_\gamma(Y, Z) = 1 \implies \|y_i - z_i\| < \gamma \cdot \min\{\|y_i - z_j\|, \|y_j - z_i\|\}.$

We prove the claim by showing that $\|x_i - y_i\| < \frac{2\gamma}{1-\gamma}\|x_i - y_j\|$ (and by symmetry between X and Y we also deduce that $\|x_i - y_i\| < \frac{2\gamma}{1-\gamma}\|x_j - y_i\|$). Using triangle inequality multiple times, it holds that

\[
\|x_i - y_i\| \leq \|x_i - z_i\| + \|y_i - z_i\| < \gamma(\|x_i - z_j\| + \|y_j - z_i\|) \\
\leq \gamma(2\|x_i - y_j\| + \|x_i - z_i\| + \|y_j - z_i\|). \quad (1)
\]

We next bound $\|x_i - z_i\| + \|y_j - z_j\|$ as a function of $\|x_i - y_j\|$. Observe that

\[
\|x_i - z_i\| < \gamma \|x_i - z_j\| \leq \gamma(\|x_i - y_j\| + \|y_j - z_j\|)
\]

and

\[
\|y_j - z_j\| < \gamma \|y_j - z_i\| \leq \gamma(\|x_i - y_j\| + \|x_i - z_i\|).
\]

By summing the above two inequalities we deduce that

\[
\|x_i - z_i\| + \|y_j - z_j\| < \frac{2\gamma}{1-\gamma}\|x_i - y_j\|. \quad (2)
\]

We now conclude by Equations (1) and (2) that

\[
\|x_i - y_i\| < \left(2\gamma + \frac{2\gamma^2}{1-\gamma}\right)\|x_i - y_j\| = \frac{2\gamma}{1-\gamma}\|x_i - y_j\|.
\]

We next extend Claim 5.13 for arbitrary permutations.

Claim 5.14. Let $X, Y, Z \in (\mathbb{R}^d)^k$ such that $\text{match}^\pi_\gamma(X, Z) = \text{match}^\pi_\gamma(Y, Z) = 1$. Then

$\text{match}^{\pi_1\pi^{-1}}_{2\gamma/(1-\gamma)}(X, Y) = 1$.

Proof. Let $X' = (x_{\pi^{-1}((1))})_{i=1}^k$ and $Y' = (y_{\pi^{-1}((1))})_{i=1}^k$. Then it holds that $\text{match}^\text{id}_\gamma(X', Z) = \text{match}^\text{id}_\gamma(Y', Z) = 1$, where id is the identity permutation. By Claim 5.13 we deduce that $\text{match}^\text{id}_\gamma(2\gamma/(1-\gamma))(X', Y') = 1$, yielding that $\text{match}^{\pi_1\pi^{-1}}_{2\gamma/(1-\gamma)}(X, Y) = 1$.

\[\square\]
The following claim states how much we lose by moving from a friendly database into a complete one (in which there is a match between every pair of tuples).

Claim 5.15. If $D \in ((\mathbb{R}^d)^k)^*$ is match$_{γ}$-friendly, then it is match$_{2γ/(1−γ)}$-complete.

Proof. Immediately follows by Claim 5.14 since the match$_{γ}$-friendly assumption implies that for every $X, Y \in D$ there exists $Z \in (\mathbb{R}^d)^k$ such that match$_{γ}(X, Z) = match_{γ}(Y, Z) = 1$. □

5.2.2 From Unordered to Ordered Tuples

The main component of our clustering algorithm is to reorder the unordered tuples in a way that is not influenced by adding or removing a single tuple. Note that without privacy, such a reordering can be easily done by picking an arbitrary tuple X, and reorder every tuple Y according to it, as describe in the following definition.

Definition 5.16. For $X = (x_1, \ldots, x_k), Y = (y_1, \ldots, y_k) \in (\mathbb{R}^d)^k$ with match$_1(X, Y) = 1$, define ord$_X(Y) := (y_{π(1)}, \ldots, y_{π(k)})$, where $π: [k] → [k]$ is the (unique) permutation such that match$_1^π(X, Y) = 1$ (i.e., $∀i \in [k] : π(i) = \argmin_{j \in [k]} \{∥x_i − y_j∥\}$).

The following claim implies that picking one of the tuples and ordering the others according to it, is actually safe when the database is friendly. In other words, the claim states that for a match$_{1/γ}$-friendly database, every two tuples must induce the same reordering of the other tuples (up to a permutation).

Claim 5.17. For any match$_{1/γ}$-friendly $S \in ((\mathbb{R}^d)^k)^*$ and any $X, Y \in S$, there exists a permutation $π: [k] → [k]$ (depends only on X, Y) such that for all $Z \in S$, the tuples $Z = ord_X(Z)$ and $Z' = ord_Y(Z)$ satisfy for all $i \in [k]$ that $Z_{π(i)} = Z'_{ι_i}$.

Proof. Fix $X, Y, Z \in S$. By Claim 5.15 it holds that D is match$_{1/3}$-complete. In particular, there exists permutations $π_1, π_2, π_3$ such that match$_{1/3}(X, Z) = match_{1/3}(Y, Z) = match_{1/3}(X, Y) = 1$. First, this implies that ord$_X(Z) = (Z_{π_1(i)})_{i=1}^k$ and ord$_Y(Z) = (Z_{π_2(i)})_{i=1}^k$. Second, by applying Claim 5.14 on the fact that match$_{1/3}(X, Z) = match_{1/3}(Y, Z) = 1$, we obtain that match$_{1/3}(X, Y) = 1$. Since it also holds that match$_{1/3}(X, Y) = 1$, we conclude that $π_3 = π_2 \circ π_1^{-1}$, and the claim follows by setting $π = π_3$ (which only depends on X, Y). □

We now use Claim 5.17 in order to construct an match$_{1/γ}$-friendly zCDP algorithm for unordered tuples that applies a zCDP algorithm for ordered tuples (i.e., it reduces the unordered tuples problem to the ordered ones).

21
Algorithm 5.18 (FriendlyReorder).

Input: A database $D = (X^1, \ldots, X^n) \in ((\mathbb{R}^d)^k)^*$.

Operation:

1. If D is empty, output $A(D)$. Otherwise:
2. Sample a uniformly random permutation $\pi: [k] \rightarrow [k]$.
3. For $i \in [n]$ let $(y^i_1, \ldots, y^i_k) = \text{ord}_{X^i}(X^i)$ and let $\bar{y}^i = (y^i_{\pi(1)}, \ldots, y^i_{\pi(k)})$.
4. Output $\tilde{D} = (\bar{y}^1, \ldots, \bar{y}^n)$.

Claim 5.19 (Privacy of FriendlyReorder). If A (algorithm for ordered tuples) is (ρ, δ)-zCDP then $B(D) := A(\text{FriendlyReorder}(D))$ is match$_{1/\gamma}$-friendly (ρ, δ)-zCDP.

Proof. Fix neighboring databases $D = (X^1, \ldots, X^n) \in ((\mathbb{R}^d)^k)^*$ and $D' = D_{-j}$ such that $D \cup D'$ is match$_{1/\gamma}$-friendly. For a permutation $\pi: [k] \rightarrow [k]$ let FriendlyReorderπ be algorithm FriendlyReorder where the permutation chosen in Step 2 is set to π (and not chosen uniformly at random). We prove the claim by showing that for every permutation π there exists a permutation π' such that $A(\text{FriendlyReorder}_{\pi}(D)) \approx_{\rho, \delta} A(\text{FriendlyReorder}_{\pi'}(D'))$.

If $j \neq 1$ (i.e., the first tuple in D and D' is X^1), then for every permutation π, the resulting database \bar{D} in FriendlyReorder$\pi(D)$ and the corresponding database \bar{D}' in FriendlyReorder$\pi(D')$ are neighboring (in particular, $\bar{D}' = \bar{D}_{-j}$), and we deduce that the outputs (after applying A) are (ρ, δ)-indistinguishable since A is (ρ, δ)-zCDP.

Otherwise, $D' = (X^2, \ldots, X^n)$. Since D is match$_{1/\gamma}$-friendly, Claim 5.17 implies that there exists a permutation $\sigma: [k] \rightarrow [k]$ such that for all $i \in [n] \setminus \{1\}$, the tuple $(y^i_1, \ldots, y^i_k) = \text{ord}_{X^i}(X^i)$ satisfy $(y^i_{\sigma(1)}, \ldots, y^i_{\sigma(k)}) = \text{ord}_{X^i}(X^i)$. In the following, fix a permutation $\pi: [k] \rightarrow [k]$, and define $\pi' = \pi \circ \sigma^{-1}$. Then it holds that the resulting database \bar{D} in FriendlyReorder$\pi(D)$ and the corresponding database \bar{D}' in FriendlyReorder$\pi'(D')$ are neighboring (in particular, $\bar{D}' = \bar{D}_{-1}$), and conclude that $A(\text{FriendlyReorder}_{\pi}(D)) \approx_{(\rho, \delta)} A(\text{FriendlyReorder}_{\pi'}(D'))$.}$

5.2.3 Ordered k-Tuple Clustering

In this section we are given a database $D = (X^1, \ldots, X^n) \in ((\mathbb{R}^d)^k)^*$ where each $X^i = (x^i_1, \ldots, x^i_k)$ is a k-tuple, and the goal is to estimate the averages in each coordinates of the tuples. That is, to estimate $(\text{Avg}(D^1), \ldots, \text{Avg}(D^k))$ where $D^j = (x^j_i)_{i=1}^n$. We present an algorithm that given an (utility) advice of values $r_1, \ldots, r_k \geq 0$ such that for all $j \in [k]$ and $x, y \in D^j$ it holds that $\|x - y\| \leq r_j$, it estimate each $\text{Avg}(D^j)$ up to an additive error of $\tilde{O}(\frac{r_j}{n} \cdot \sqrt{\frac{d}{\rho}})$. The diameters advice are computed in a private preprocessing step.

Note that this problem can be trivially solved by applying our average algorithm (Section 5.1) on each set D^j. This however, requires k invocations of FriendlyCore (one per average), which requires $n = \Omega(k \log(1/\min\{\beta, \delta\})/\rho)$ (i.e., n is linearly dependent in k). In this section we show how to solve it using a single invocation of FriendlyCore with the following extension of the predicate dist_r for pairs over \mathbb{R}^d to $\text{dist}_{r_1, \ldots, r_k}$ for pairs over $(\mathbb{R}^d)^k$.
Definition 5.20 (Predicate \(\text{dist}_{r_1,\ldots,r_k}\)). For \(r_1,\ldots,r_k\) and \(X = (x_1,\ldots,x_k), Y = (y_1,\ldots,y_k) \in (\mathbb{R}^d)^k\), we let \(\text{dist}_{r_1,\ldots,r_k}(X,Y) = \prod_{i=1}^k \text{dist}_{r_i}(x_i, y_i)\).

Algorithm 5.21 (FriendlyOrdTupAvg).

Input: A database \(D = (X^i = (x^i_1,\ldots,x^i_k))_{i=1}^n\) of ordered tuples, privacy parameters \(\rho, \delta > 0\), and diameters \(r_1,\ldots,r_k \geq 0\).

Operation:

1. Let \(\rho_1 = 0.1(1 - \delta)\rho\) and \(\rho_2 = 0.9\rho\).
2. Compute \(\hat{n} = n - \left\lfloor \frac{\ln(1/\delta)}{\rho_1} \right\rfloor - 1 + \mathcal{N}(0, 1/2\rho_1^2)\), where \(n = |D|\).
3. If \(n = 0\) or \(\hat{n} \leq 0\), output \(\bot\) and abort.
4. Otherwise, for \(j \in [k]\):
 - Let \(D^j = (x^j_i)_{i=1}^n\).
 - Compute \(\hat{a}^j = \text{Avg}(D^j) + \mathcal{N}(0, \sigma^2 \cdot 1_{d \times d})\), for \(\sigma = \frac{2r_j}{n} \cdot \frac{1}{\sqrt{2\rho_2}}\).
5. Output \((\hat{a}^1,\ldots,\hat{a}^n)\).

Claim 5.22 (Privacy of FriendlyOrdTupAvg). *Algorithm* FriendlyOrdTupAvg\((\cdot, \rho, \delta, r_1,\ldots,r_k)\) is \(\text{dist}_{r_1,\ldots,r_k}\)-friendly \((\rho, \delta)\)-zCDP.

Proof. Let \(D = (X_1,\ldots,X_n)\) and \(D' = D_{-j}\) be two \(\text{dist}_{r_1,\ldots,r_k}\)-friendly neighboring databases, and let \(n' = n - 1\). Consider two independent random executions of FriendlyAvg\((D)\) and FriendlyAvg\((D')\) (both with the same input parameters \(\rho, \delta, r_1,\ldots,r_k\)). Let \(\hat{N}\) and \(\hat{A} = (\hat{A}^1,\ldots,\hat{A}^k)\) be the (r.v.’s of the) values of \(\hat{n}\) and \((\hat{a}^1,\ldots,\hat{a}^k)\) in the execution FriendlyAvg\((D)\), let \(\hat{N}'\) and \(\hat{A}'\) be these r.v.’s w.r.t. the execution FriendlyAvg\((D')\), and let \(\rho_1, \rho_2\) be as in Step 1. As done in the proof of Claim 3.4, it is enough to prove that \(\hat{A}^j|_{\hat{N} = \hat{n}} \approx_{\rho_2} \hat{A}'^j|_{\hat{N}' = \hat{n}}\) for every \(\hat{n} \leq n\). In particular, it is enough to prove that for every \(j \in [k]\) it holds that \(\hat{A}^j|_{\hat{N} = \hat{n}} \approx_{\rho_2/k} \hat{A}'^j|_{\hat{N}' = \hat{n}}\). Since \(D \cup D'\) is \(\text{dist}_{r_1,\ldots,r_k}\)-friendly, for every \(j\) it holds that \(\hat{D}^j \cup (\hat{D}^j)'\) is \(\text{dist}_{r_j}\)-friendly. Hence, using the same arguments as in the proof of Claim 3.4, it holds that \(\|\text{Avg}(\hat{D}^j) - \text{Avg}((\hat{D}^j)')\| \leq 2r_j/n \leq 2r_j/\hat{n}\). Hence, by the properties of the Gaussian mechanism (Theorem 2.14) we conclude that \(\hat{A}^j|_{\hat{N} = \hat{n}} \approx_{\rho_2/k} \hat{A}'^j|_{\hat{N}' = \hat{n}}\), as required. \(\square\)

We now present our main zCDP algorithm for averaging ordered \(k\)-tuples, that is based on finding a friendly core of such tuples, and applying the friendly algorithm FriendlyOrdTupAvg.
Algorithm 5.23 (FC_AvgOrdTup).

Input: A database $\mathcal{D} = (X^i = (x^i_1, \ldots, x^i_k))_{i=1}^n \in ((\mathbb{R}^d)^k)^*$, privacy parameters $\rho, \delta > 0$, a confidence parameter $\beta > 0$ and lower and upper bounds $r_{\text{min}}, r_{\text{max}} > 0$ on the diameters (respectively).

Operation:

1. Let $\rho_1 = \rho_2 = 0.05\rho$ and $\rho_3 = 0.9\rho$.
2. For $j \in [k]$:
 - Let $\mathcal{D}^j = (x^j_i)_{i=1}^n$.
 - Compute $r_j = \text{FindDiam}(\mathcal{D}^j, \rho_1/k, \beta/(2k), r_{\text{min}}, r_{\text{max}}, b = 1.5)$ (Algorithm 5.5).
3. Compute $C = \text{FriendlyCore}(\mathcal{D}, \text{dist}_{r_1, \ldots, r_k}, \rho_2, \delta/2, \beta/2)$.
4. Output $\text{FriendlyOrdTupAvg}(C, \rho_3, \delta/2, r_1, \ldots, r_k)$ (Algorithm 5.21).

Claim 5.24 (Privacy of FC_AvgOrdTup). Algorithm FC_AvgOrdTup($\cdot, \rho, \delta, \beta, r_{\text{min}}, r_{\text{max}}$) is (ρ, δ)-zCDP.

Proof. By Claim 5.6, each execution of $\text{FindDiam}(\cdot, \rho_1/k, \beta/(2k), r_{\text{min}}, r_{\text{max}}, b = 1.5)$ is ρ_1/k-zCDP, and therefore the computation of r_1, \ldots, r_k is $(\rho_1, \delta/2)$-zCDP. Since $\text{FriendlyOrdTupAvg}(\cdot, \rho_3, \delta/2, r_1, \ldots, r_k)$ is $\text{dist}_{r_1, \ldots, r_k}$-friendly ρ_3-zCDP (Claim 5.22), we deduce by the privacy guarantee of the FriendlyCore paradigm (Theorem 4.8) that Steps 3+4 are $(\rho_2 + \rho_3, \delta)$-zCDP. We now conclude by composition that the entire computation is $(\rho = \rho_1 + \rho_2 + \rho_3, \delta)$-zCDP.

5.2.4 Unordered k-Tuple Clustering: Putting All Together

Now that we have the reduction FriendlyReorder from unordered to ordered k-tuples (for friendly databases), and given our algorithm FC_AvgOrdTup for ordered k-tuple clustering, we describe the fully end-to-end zCDP algorithm for unordered k tuple clustering.

Algorithm 5.25 (FC_kTupleClustering).

Input: A database $\mathcal{D} = (X^i = (x^i_1, \ldots, x^i_k))_{i=1}^n \in ((\mathbb{R}^d)^k)^*$, privacy parameters $\rho, \delta > 0$, a confidence parameter $\beta > 0$ and lower and upper bounds $r_{\text{min}}, r_{\text{max}} > 0$ on the diameters (respectively).

Operation:

- Compute $C = \text{FriendlyCore}(\mathcal{D}, \text{match}_1, \rho/2, \delta/2, \beta/2)$.
- Compute $\tilde{C} = \text{FriendlyReorder}(C)$ (Algorithm 5.18).
- Output $\text{FC_AvgOrdTup}(\tilde{C}, \rho/2, \delta/2, \beta/2, r_{\text{min}}, r_{\text{max}})$ (Algorithm 5.23).
Claim 5.26 (Privacy of FC_kTupleClustering). Algorithm FC_kTupleClustering(\cdot, \rho, \delta, \beta, r_{\text{max}}, r_{\text{min}}) is (\rho, \delta)-zCDP.

Proof. Since A = FC_AvgOrdTup(\cdot, \rho/2, \delta/2, \beta, r_{\text{max}}, r_{\text{min}}) is (\rho/2, \delta/2)-zCDP (Claim 5.24), we deduce by Claim 5.19 that A(FriendlyReorder(\cdot)) is match_1/7-friendly (\rho/2, \delta/2)-zCDP. Hence, we conclude by Theorem 4.8 that the output is (\rho, \delta)-zCDP. □

5.2.5 FriendlyCore Clustering

Given algorithm FC_kTupleClustering, we now can plug it into the reduction of [CKM+21] from standard clustering problems into the k tuple clustering, for obtaining our final clustering method FC_Clustering (described below). In this section we only prove its privacy guarantee, where we refer to Appendix B.3 for the utility guarantees of FC_kTupleClustering and of FC_Clustering for k-means and k-GMM under common separation assumptions (which follow by the tools of [CKM+21]).

Algorithm 5.27 (NoisyLloydStep).

Input: A database D ∈ (\mathbb{R}^d)^*, a k-tuple Y = (y_1, \ldots, y_k) ∈ (\mathbb{R}^d)^k, privacy parameters \rho, \delta > 0, and a bound \Lambda on the ℓ_2 norm of the points.

Operation:

1. Remove all x ∈ D with \|x\| > \Lambda.
2. For i ∈ [k]:
 (a) Let D^i = \{x ∈ D: i = \text{argmin}_{j \in [k]} \|x - y_j\|\}.
 (b) Compute \hat{a}_i = FriendlyAvg(D^i, \rho, \delta, r = 2\Lambda) (Algorithm 3.3).
3. Output (\hat{a}_1, \ldots, \hat{a}_k).
Algorithm 5.28 (FC_Clustering).

Input: A database $D \in (\mathbb{R}^d)^*$, privacy parameters $\rho, \delta > 0$, a confidence parameter $\beta > 0$, a lower bound $r_{\min} > 0$ on the diameters of the clusters, a bound $\Lambda > 0$ on the ℓ_2 norm of the points, and a parameter $t \in \mathbb{N}$ (number of tuples).

Oracle: Non private clustering algorithm A.

Operation:

1. Shuffle the order of the points in D. Let $D = (x_1, \ldots, x_n)$ be the database after the shuffle.
2. Let $m = \lfloor n/t \rfloor$.
3. For $i \in [t]$: Compute the k-tuple $X^i = A(D^i)$ for $D^i = (x_{(i-1)m+1}, \ldots, x_{im})$.
4. Let $T = (X^1, \ldots, X^t)$.
5. Compute $Y = \text{FC}_{k\text{TupleClustering}}(T, \rho/2, \delta/2, \beta, r_{\min}, r_{\max} = 2\Lambda)$.
6. Output $\text{NoisyLloydStep}(D, Y, \rho/2, \delta/2, \Lambda)$.

Theorem 5.29 (Privacy of FC_Clustering, Restatement of Theorem 5.10). Algorithm $\text{FC}_{\text{Clustering}}^A(\cdot, \rho, \delta, \beta, r_{\min}, \Lambda, t)$ is (ρ, δ)-$z\text{CDP}$ (for any A).

Proof. First, note that for every $Y \in (\mathbb{R}^d)^k$, algorithm $\text{NoisyLloydStep}(\cdot, Y, \rho, \delta, \beta, r_{\min}, r_{\max})$ is ρ-$z\text{CDP}$. This is because $\text{FC}_{\text{Avg}}\text{UnknownDiam}(\cdot, \rho, \delta, \beta, r_{\min}, r_{\max})$ is (ρ, δ)-$z\text{CDP}$ and for every neighboring databases D and D', there is only a single i such that the databases D^i and D'^i from Step 2a of $\text{NoisyLloydStep}(D, \ldots)$ and $\text{NoisyLloydStep}(D', \ldots)$ (respectively) are neighboring, and the others equal to each other.

Back to $\text{FC}_{\text{Clustering}}$, we obtain the required privacy by composition of $\text{FC}_{k\text{TupleClustering}}$ and NoisyLloydStep. \square

6 Empirical Results

In this section we present empirical results of our FriendlyCore based averaging and clustering algorithms. In all experiments we used privacy parameter $\rho = 1$, $\delta = 10^{-8}$, and all of them were tested in a MacBook Pro Laptop with 4-core Intel i7 CPU with 2.8GHz, and with 16GB RAM.

6.1 Averaging

We tested mean estimation of samples from a Gaussian with unknown mean and known variance. We compared a Python implementation of our private averaging algorithm FC_{Avg} with the algorithm CoinPress of [BDKU20]. The implementations of CoinPress, and the experimental test bed, were taken from the publicly available code of [BDKU20] provided at https://github.com/twistedcubic/coin-press. Following [BDKU20], we generate a dataset of n samples from a d-dimensional Gaussian $\mathcal{N}(0, I_{d \times d})$. We ran FC_{Avg} with $r = \sqrt{2}(\sqrt{d} + \sqrt{\ln(100n)})$ for guaranteeing that almost all pairs of samples have ℓ_2 distance at most r from each other (computed according to the known variance).
Algorithm CoinPress requires a bound \(R \) on the \(\ell_2 \) norm of the unknown mean. Both algorithms perform a similar final private averaging step that has dependence on \(\sqrt{d} \). But they differ in the "preparation:" CoinPress has inherent dependence on \(d \) and \(R \). FC\textunderscore Avg\textunderscore preparation, on the other hand, has no dependence on \(d \) or \(R \).

Following [BDKU20] we perform 50 repetitions of each experiment and use the trimmed average of values between the 0.1 and 0.9 quantiles. We show the \(\ell_2 \) error of our estimate on the Y-axis.

Figure 3(1) reports the effect of varying the bound \(R \), with fixed \(d = 1000 \) and \(n = 800 \). We tested CoinPress with 4, 20 and 40 iterations. We observe that FC\textunderscore Avg, that does not depend on \(R \), outperforms CoinPress for \(R > 10^7 \). Figure 3(2) reports the effect of varying the dimension \(d \), with fixed \(n = 800 \) and \(R = 10\sqrt{d} \). We tested CoinPress with 2, 4 and 8 iterations. We observed that the performance of all algorithms deteriorates with increasing \(d \), which is expected due to all algorithms using private averaging, but CoinPress deteriorates much faster in the large-\(d \) regime.

Finally we note that CoinPress slightly performs better than FC\textunderscore Avg in the small-\(d \) small-\(R \) regime (see Figure 3(3) that includes also a comparison to the algorithm of [KV18]). The reason is that FriendlyAvg (Algorithm 3.3), which is the last step of FC\textunderscore Avg, uses noise of magnitude \(\approx \frac{2\pi}{n\sqrt{2\rho}} \) which is far by a factor of 2 from the ideal magnitude that we could hope for.

6.2 Clustering

We tested the performance of our private clustering algorithm FC\textunderscore Clustering with \(t = 200 \) tuples on a number of \(k \)-Means and \(k \)-GMM tasks. We compared a Python implementation of FC\textunderscore Clustering with a recent algorithm of Chang and Kamath [CK21] that is based on recursive locality-sensitive hashing (LSH). We denote their algorithm by LSH\textunderscore Clustering. The implementations of LSH\textunderscore Clustering, and the experimental test bed of Figure 4, were taken from the publicly available code of [CK21] provided at https://github.com/google/differential-privacy/tree/main/learning/clustering. LSH\textunderscore Clustering guarantees privacy in the DP model. Therefore, in order to compare it with our (\(\rho = 1, \delta \))-zCDP guarantee, we chose to apply it with a (\(\varepsilon = 2, \delta \))-DP guarantee, so that non of the guarantees implies the other. Furthermore, unlike FC\textunderscore Clustering which may fail to produce centers in some cases (e.g., when the core of tuples is empty or close to be empty), LSH\textunderscore Clustering always produces centers. Therefore, in order to handle failures of FC\textunderscore Clustering, we used only \(\rho = 0.99 \) privacy budget, and on failures we executed LSH\textunderscore Clustering with \(\varepsilon = \sqrt{0.02} \) (which implies \(\rho = 0.01 \) zCDP) as backup.
We performed 30 repetitions of each experiment and present the medians (points) along with the 0.1 and 0.9 quantiles.

In Figure 4 (Left) we present a comparison in dimension $d = 2$ with $k = 8$ clusters. In each repetition, we sampled eight random centers $\{c_i\}_{i=1}^8$ from the unit ball, and the database was obtained by collecting $n/8$ samples from each Gaussian $N(c_i, 0.0221I_{2 \times 2})$, where the samples were clipped to ℓ_2 norm of 1. For FC_Clustering we used an oracle access to k-means++ provided by the KMeans algorithm of the Python library sklearn, and used $r_{\text{min}} = 0.001$ and radius $\Lambda = 1$. We set the radius parameter of LSH_Clustering to 1. We plotted the normalized k-means loss that is computed by $1 - X/Y$, where X is the cost of k-means++ on the entire data, and Y is the cost of the tested private algorithm. From this experiment we observed that for small values of n, FC_Clustering fails often, which yield an inaccurate results. Yet, increasing n also increases the success probability of FC_Clustering which yields very accurate results, while LSH_Clustering stay behind. See Figure 4 (Right) for a graphical illustration of the centers in one of the iterations for $n = 2\cdot 5$.

In Figure 5 (Left) we present a comparison for separating $n = 2.5 \cdot 10^5$ samples from a uniform mixture of $k = 5$ Gaussians $N(c_i, I_{d \times d})$ for varying d. In each repetition, each of the c_i’s was chosen uniformly from $\{-1,1\}^d$, yielding that the distance between each pair of centers is $\approx \sqrt{2d}$. We analyze the labeling accuracy, which is computed by finding the best permutation that fits between the true labeling and the induced clustering, and plotted the labeling failure of the best fit. Here, we used $r_{\text{min}} = 0.1$, and radius $\Lambda = 10\sqrt{d}$ for FC_Clustering and LSH_Clustering. For the non-private oracle access of FC_Clustering, we used a PCA-based clustering that easily separate between such Gaussians in high dimension.\footnote{The algorithm project the points into the k principal components, cluster the points in that low dimension, and then translate the clustering back to the original points and perform a Lloyd step.} From this experiment we observed that FC_Clustering takes advantage of the PCA method and gains perfect accuracy on large values of d, in contrast to LSH_Clustering.

At that point, we showed that FC_Clustering succeed well on well-separated databases, since the results of the non-private algorithm (each is executed on a random piece of data) are very similar to each other in such cases. We next show that such stability can also be achieved on large enough real-world datasets, even when there is no clear separation into k clusters.

In Figure 5 (Right) we used the publicly available dataset of [FH15] that contains the acquired time series from 16 chemical gas sensors exposed to gas mixtures at varying concentration levels. The dataset contains $\approx 8M$ rows, where each row contains 16 sensors’ measurements at a given point in time, so we translate each such row into a 16-dimensional point. We compared the clustering algorithms for varying k, where we used $r_{\text{min}} = 0.1$, and radius $\Lambda = 10^5$ for FC_Clustering and LSH_Clustering. We observed that FC_Clustering, with k-means++ as the non-private oracle, succeed well on various k’s, except of $k = 5$ in which it fails due to instability of the non-private algorithm.\footnote{There are two different solutions for $k = 5$ that have similar low cost but do not match, yielding that when splitting the data into random pieces, the non-private KMeans choose one of them in one set of part and the other one in the other pieces, and therefore fails.}

In summary, we observed from the experiments that when FC_Clustering succeed, it outputs very accurate results. However, FC_Clustering may fail due to instability of the non-private algorithm on random pieces of the database. Hence, it seems that in cases where we have a clear separation or many points, we might gain by combining between FC_Clustering and LSH_Clustering. In this work we chose to spend 0.99 of the privacy budget on FC_Clustering, but other combinations might perform better on different cases.
Figure 4: Left: k-means results in $d = 2$ and $k = 8$, for varying n. Right: A graphical illustration of the centers in one of the iterations for $n = 2e5$. Green points are the centers of FC_Clustering and the red points are the centers of LSH_Clustering.

Figure 5: Left: Labeling Failure of samples from a uniform mixture of $k = 5$ Gaussians, varying d. Right: k-means results on Gas Sensors’ measurements over time, varying k.
7 Conclusion

We presented a general tool FriendlyCore for preprocessing metric data before privately aggregating it. The processed data is guaranteed to have some properties that can simplify or boost the accuracy of aggregation. Our tool is flexible, and in this work we illustrate it by presenting three different applications (averaging, clustering, and learning an unrestricted covariance matrix). We show the wide applicability of our framework by applying it to private mean estimation and clustering, and comparing it to private algorithms which are specifically tailored for those tasks. For private averaging, we presented a simple algorithm with dimension-independent preprocessing, that is also independent of the ℓ_2 norm of the points.\(^6\) For private clustering, we presented the first practical algorithm that is based on the sample and aggregate framework of [NRS07], which has proven utility guarantees for easy instances (see Appendix B.3), and achieves very accurate results in practice when the data is either well separated or very large.

Acknowledgments

Edith Cohen is supported by Israel Science Foundation grant no. 1595-19.

Haim Kaplan is supported by Israel Science Foundation grant no. 1595-19, and the Blavatnik Family Foundation.

Yishay Mansour has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 882396), by the Israel Science Foundation (grant number 993/17) and the Yandex Initiative for Machine Learning at Tel Aviv University.

Uri Stemmer is partially supported by the Israel Science Foundation (grant 1871/19) and by Len Blavatnik and the Blavatnik Family foundation.

References

[AL21] H. Ashtiani and C. Liaw, “Private and polynomial time algorithms for learning gaussians and beyond,” CoRR, vol. abs/2111.11320, 2021. [Online]. Available: https://arxiv.org/abs/2111.11320 (cit. on pp. 4, 15, 32, 34).

[AM05] D. Achlioptas and F. McSherry, “On spectral learning of mixtures of distributions,” in Learning Theory, 18th Annual Conference on Learning Theory, COLT 2005, vol. 3559, 2005, pp. 458–469 (cit. on pp. 39, 40).

[BDKU20] S. Biswas, Y. Dong, G. Kamath, and J. R. Ullman, “Coinpress: Practical private mean and covariance estimation,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS 2020, 2020 (cit. on pp. 3, 26, 27).

[BS16] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications, extensions, and lower bounds,” in Theory of Cryptography - 14th International Conference, TCC 2016, vol. 9985, 2016, pp. 635–658 (cit. on pp. 2, 6, 7, 42).

\(^6\)The latter property results with an optimal asymptotic that matches the histogram-based construction of [KV18]
[CK21] A. Chang and P. Kamath, *Practical differentially private clustering*, 2021. [Online]. Available: https://ai.googleblog.com/2021/10/practical-differentially-private.html (cit. on pp. 4, 27).

[CKM+21] E. Cohen, H. Kaplan, Y. Mansour, U. Stemmer, and E. Tsfadia, “Differentially-private clustering of easy instances,” in *Proceedings of the 38th International Conference on Machine Learning, ICML 2021*, vol. 139, 2021, pp. 2049–2059. [Online]. Available: https://arxiv.org/abs/2112.14445 (cit. on pp. 3, 17, 18, 25, 37–39).

[DKM+06] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, ourselves: Privacy via distributed noise generation,” in *EUROCRYPT*, vol. 4004, 2006, pp. 486–503 (cit. on p. 7).

[DL09] C. Dwork and J. Lei, “Differential privacy and robust statistics,” in *STOC*, ACM, 2009, pp. 371–380 (cit. on p. 4).

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in *TCC*, vol. 3876, 2006, pp. 265–284 (cit. on pp. 1, 6).

[DRV10] C. Dwork, G. N. Rothblum, and S. P. Vadhan, “Boosting and differential privacy,” in *FOCS*, IEEE Computer Society, 2010, pp. 51–60 (cit. on p. 7).

[FH15] J. Fonollosa and R. Huerta, *Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring*, 2015. [Online]. Available: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures (cit. on p. 28).

[KSSU19] G. Kamath, O. Sheffet, V. Singhal, and J. Ullman, “Differentially private algorithms for learning mixtures of separated gaussians,” in *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems, NeurIPS 2019*, 2019, pp. 168–180 (cit. on p. 39).

[KV18] V. Karwa and S. Vadhan, “Finite sample differentially private confidence intervals,” in *9th Innovations in Theoretical Computer Science Conference (ITCS 2018)*, 2018 (cit. on pp. 3, 27, 30).

[NRS07] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity and sampling in private data analysis,” in *STOC*, ACM, 2007, pp. 75–84 (cit. on pp. 3, 4, 17, 30).

[NSV16] K. Nissim, U. Stemmer, and S. P. Vadhan, “Locating a small cluster privately,” in *Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016*, 2016, pp. 413–427 (cit. on p. 3).

[ORSS12] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy, “The effectiveness of lloyd-type methods for the k-means problem,” *J. ACM*, vol. 59, no. 6, 28:1–28:22, 2012 (cit. on pp. 3, 38, 39).

[R61] A. Rényi, “On measures of entropy and information,” in *Proeceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics*, 1961, 547–561 (cit. on p. 5).

[She21] M. Shechner, “Differentially private algorithms for clustering with stability assumptions,” M.S. thesis, Ben-Gurion University, 2021 (cit. on p. 3).
A Learning a Covariance Matrix

In this section, we are given a database that consists of independent samples from a Gaussian $\mathcal{N}(0, \Sigma)$ where the covariance matrix $\Sigma \succ 0$ is unknown, no bounds on $\|\Sigma\|$ (the operator norm) are given, and the goal is to privately estimate Σ. Without privacy, it can just be estimated by the empirical covariance of the samples: $\frac{1}{n} \sum_{i=1}^{n} x_i \cdot x_i^T$. In an independent (but later) result, Ashtiani and Liaw [AL21] described a polynomial-time algorithm for privately learning the parameters of an unrestricted Gaussian. At the core of their construction, they present a general framework in the DP model and apply it on the problem of learning an unrestricted covariance matrix. Their tool do not outputs a subset $C \subseteq D$ as FriendlyCore. Rather, it outputs a weighted average of the elements, where the weights are chosen in a way that makes the task of privately estimating it to be simpler than its unrestricted counterpart. When applying it on the learning covariance matrix task, they implicitly use a special “friendliness” predicate between covariance matrices, and apply their tool on the empirical covariance matrices, each is computed (non-privately) from a different part of the data points.

We next show how to apply FriendlyCore along with the tools of Ashtiani and Liaw [AL21] in order to privately learn an unrestricted covariance matrix. We start by defining a predicate and states key properties from [AL21].

Definition A.1 (Predicate matrixDist, [AL21]). For $d \times d$ matrices $\Sigma_1, \Sigma_2 \succ 0$, let $\text{matrixDist}(\Sigma_1, \Sigma_2) := \max \left(\|\Sigma_2^{-1/2} \Sigma_1^{-1/2} - I_d\|, \|\Sigma_1^{-1/2} \Sigma_2^{-1/2} - I_d\| \right)$ and let $\text{matrixDist}_\gamma(\Sigma_1, \Sigma_2) := \mathbb{1}_{\{\text{matrixDist}(\Sigma_1, \Sigma_2) \leq \gamma\}}$.

Lemma A.2 (Approximate triangle inequality (Lemma 7.2 in [AL21])). If $\text{matrixDist}(\Sigma_1, \Sigma_2) \leq 1$ and $\text{matrixDist}(\Sigma_2, \Sigma_3) \leq 1$ then $\text{matrixDist}(\Sigma_1, \Sigma_3) \leq \frac{3}{2} \cdot (\text{matrixDist}(\Sigma_1, \Sigma_2) + \text{matrixDist}(\Sigma_2, \Sigma_3))$.

Lemma A.3 (Lemma 9.1 in [AL21]). For a matrix $\Sigma \succ 0$ and $\eta > 0$, define $B_\eta(\Sigma) := \Sigma^{1/2}(I + \eta G)(I + \eta G)^T \Sigma^{1/2}$, where G is a $d \times d$ matrix with independent $\mathcal{N}(0,1)$ entries. For every $\eta > 0$, $\varepsilon, \delta \in (0,1]$, and every matrices $\Sigma_1, \Sigma_2 \succ 0$ such that $\text{matrixDist}(\Sigma_1, \Sigma_2) \leq \gamma$ for

$$\gamma = \min \left\{ \sqrt{\frac{\varepsilon}{2d(d + 1/\eta^2)}}, \frac{\varepsilon}{8d\sqrt{\ln(1/\delta)}}, \frac{\varepsilon}{8\ln(2/\delta)}, \frac{\varepsilon\eta}{12d\sqrt{\ln(2/\delta)}} \right\},$$

it holds that $B_\eta(\Sigma_1) \approx_{\varepsilon, \delta} B_\eta(\Sigma_2)$.

Lemma A.4 (Implicit in [AL21]). There exists a constant $c > 0$ such that the following holds. Let $\Sigma_1, \ldots, \Sigma_n \succ 0$ such that $\text{matrixDist}(\Sigma_i, \Sigma_j) \leq 0.1$ for every $i, j \in [n]$. Assuming that $n \geq c/\gamma$, then it holds that $\text{matrixDist}(\frac{1}{n} \sum_{i=1}^{n} \Sigma_i, \frac{1}{n} \sum_{i=2}^{n} \Sigma_i) \leq \gamma$.

We now describe our friendly DP algorithm for estimating the mean of covariance matrices.
Algorithm A.5 (FriendlyCovariance).

Input: A database $D = (\Sigma_1, \ldots, \Sigma_n) \in (\mathbb{R}^{d \times d})^*$ and parameters $\varepsilon, \delta, \eta > 0$.

Operation:

1. Let $n = |D|$, let $\varepsilon_1 = 0.1\varepsilon$ and $\varepsilon_2 = 0.9\varepsilon$, let $\gamma = \gamma(\eta, \varepsilon, \delta)$ be the value from Lemma A.3, and let c be the constant from Lemma A.4.
2. Compute $\hat{n} = n - \lceil \ln(1/\delta) \rceil + \text{Lap}(1/\varepsilon_1)$.
3. If $n = 0$ or $\hat{n} \leq c/\gamma$, output \bot and abort.
4. Output $B_\eta\left(\frac{1}{n} \sum_{i=1}^{n} \Sigma_i\right)$, where B_η is the algorithm from Lemma A.3.

Claim A.6 (Privacy of FriendlyCovariance). Algorithm $\text{FriendlyCovariance}(\cdot, \varepsilon, \delta, \gamma)$ is $\text{matrixDist}_{0.03}$-friendly (ε, δ)-DP.

Proof. Let $D = (\Sigma_1, \ldots, \Sigma_n)$ and $D' = D_{-j}$ be two $\text{matrixDist}_{0.03}$-friendly neighboring databases, and let $n' = n - 1$. Consider two independent random executions of $\text{FriendlyCovariance}(D)$ and $\text{FriendlyCovariance}(D')$ (both with the same input parameters $\varepsilon, \delta, \eta$). Let \tilde{N} and O be the r.v.'s of the values of \hat{n} and the output in the execution $\text{FriendlyCovariance}(D)$, and let N' and O' be these r.v.'s w.r.t. the execution $\text{FriendlyCovariance}(D')$, and let $\varepsilon_1, \varepsilon_2$ be as in Step 1. If $n \leq c/\gamma$ then $\Pr[O = \bot], \Pr[O' = \bot] \geq 1 - \delta$ and we conclude that $O \approx_{0,\delta} O'$ in this case.

It is left to handle the case $n \geq c/\gamma$. Since $D \cup D'$ is $\text{matrixDist}_{0.03}$-friendly, for every $i, \ell \in [n]$ there exists a matrix Σ'' such that $\text{matrixDist}(\Sigma_i, \Sigma'')$, $\text{matrixDist}(\Sigma'_\ell, \Sigma'') \leq 0.03$, and therefore we deduce by Lemma A.2 that $\text{matrixDist}(\Sigma_i, \Sigma'_\ell) \leq 0.1$. Let $\Sigma = \frac{1}{n} \sum_{i \in [n]} \Sigma_i$ and $\Sigma' = \frac{1}{n-1} \sum_{i \in [n], i \neq j} \Sigma_i$. By Lemma A.4 it holds that $\text{matrixDist}(\Sigma, \Sigma') \leq \gamma$. Since $O = B_\eta(\Sigma)$ and $O' = B_\eta(\Sigma')$, we conclude by Lemma A.3 that $O \approx_{\varepsilon, \delta} O'$.

We now describe the end-to-end DP algorithm for covariance estimation using FriendlyCoreDP:

Algorithm A.7 (FC_Covariance).

Input: A database $D = (x_1, \ldots, x_n) \in (\mathbb{R}^d)^*$, privacy parameters $\varepsilon, \delta \in (0, 1]$, and parameters $t \in \mathbb{N}$ and $\eta > 0$.

Operation:

1. Let $m = \lfloor n/t \rfloor$.
2. For $i \in [t]$: Compute $\Sigma_i = \frac{1}{m} \cdot \sum_{j=(i-1) \cdot m+1}^{i \cdot m} x_j \cdot x_j^T$.
3. Let $T = (\Sigma_1, \ldots, \Sigma_t)$.
4. Compute $C = \text{FriendlyCoreDP}(T, \text{matrixDist}_{0.03}, \alpha = 0)$.
5. Output $\text{FriendlyCovariance}(C, \varepsilon, \delta, \eta)$.

Claim A.8 (Privacy of FC_Covariance). FC_Covariance(\cdot, \varepsilon, \delta, t) is $(2(e^\varepsilon - 1), 2\delta e^{2(\varepsilon - 1)})$-DP.

Proof. Immediately follows by the privacy guarantee of FriendlyCoreDP (Theorem 4.11) because FriendlyCovariance is $\text{matrixDist}_{0.03}$-friendly (ε, δ)-DP (Claim A.6). □

For getting a meaningful utility guarantee, note that FriendlyCovariance requires to create at least $t = \Omega\left(\frac{1}{\varepsilon^2} + \ln\left(\frac{1}{(\beta\delta)^2}\right)\right)$ matrices in order to fail with probability at most $\beta/2$. In addition, the following key lemma (Lemma A.9) implies that it is enough to take $n = \tilde{\Omega}(t \cdot (d + \ln(1/\beta)))$ samples in order to guarantee with confidence $1 - \beta/2$ that the database \mathcal{T} is $\text{matrixDist}_{0.03}$-complete, yielding that FriendlyCoreDP takes all matrices into the core.

Lemma A.9 (Lemma 9.3 in [AL21]). There exists a universal constant $\varepsilon' > 0$ such that the following holds. Let $n \geq \varepsilon'(d + \ln(4/\beta))$, let X_1, \ldots, X_n be i.i.d. samples from $\mathcal{N}(0, \Sigma)$, and let $\Sigma = \sum_{i=1}^n X_iX_i^T$. Then $\text{matrixDist}(\Sigma, \tilde{\Sigma}) \leq 0.01$ with probability $1 - \beta/2$.

As shown by [AL21], taking $\eta = \Theta\left(\frac{1}{\sqrt{d} + \sqrt{\ln(1/\beta)}}\right)$ suffices for achieving a full utility guarantee.

We refer to [AL21] for further details.

B Missing Proofs

B.1 Proving Fact 2.17

Fact 2.17 is an immediate corollary of the following fact.

Fact B.1. Let $\alpha \in (1, \infty)$, let P and Q be probability distributions over \mathcal{X} with $D_\alpha(P||Q) < \infty$, and let $E \subseteq \mathcal{X}$ be an event. Then it holds that

$$D_\alpha(P|_E||Q|_E) \leq \frac{1}{P[E]} \cdot D_\alpha(P||Q)$$

Proof. For simplicity we only present the proof for the case that P and Q are discrete, but it can easily be extended to the continuous case as well. Compute

$$D_\alpha(P||Q) = \frac{1}{\alpha - 1} \ln\left(\sum_{x \in E} \frac{P(x)^\alpha}{Q(x)^{\alpha - 1}} + \sum_{x \notin E} \frac{P(x)^\alpha}{Q(x)^{\alpha - 1}}\right)$$

$$\geq \frac{1}{\alpha - 1} P[E] \cdot \ln\left(\frac{1}{P[E]} \cdot \sum_{x \in E} \frac{P(x)^\alpha}{Q(x)^{\alpha - 1}}\right) + \frac{1}{\alpha - 1} P[\neg E] \cdot \ln\left(\frac{1}{P[\neg E]} \cdot \sum_{x \notin E} \frac{P(x)^\alpha}{Q(x)^{\alpha - 1}}\right)$$

$$= P[E] \cdot D_\alpha(P|_E||Q|_E) + P[\neg E] \cdot \ln\left(\frac{P[E]}{Q[E]}\right) + P[\neg E] \cdot D_\alpha(P||Q) + P[\neg E] \cdot \ln\left(\frac{P[\neg E]}{Q[\neg E]}\right)$$

$$= P[E] \cdot D_\alpha(P|_E||Q|_E) + P[\neg E] \cdot D_\alpha(P||Q) + D_{KL}(\text{Bern}(P[E])||\text{Bern}(Q[E]))$$

$$\geq P[E] \cdot D_\alpha(P|_E||Q|_E),$$

where the second inequality holds by Jensen’s inequality, and D_{KL} denotes the KL-divergence. □
B.2 Utility of Averaging Algorithms

Throughout this section, we use the following definition.

Definition B.2 ((f, α, ℓ)-complete). A database D is called $(f, α, ℓ)$-complete iff there exist at least $n - ℓ$ elements $x \in D$ such that $|\{y \in D : f(x, y) = 1\}| \geq (1 - α)n$. If $α = ℓ = 0$ (meaning that $f(x, y) = 1$ for all $x, y \in D$), we say that D is f-complete.

B.2.1 Utility of FriendlyAvg

Claim B.3 (Utility of FriendlyAvg). The following holds for any $ρ, β, δ > 0$: Let $D \in (ℝ^d)^n$ for $n = Ω\left(\sqrt{\frac{\ln(1/β)}{ρ}}\right)$. Then with probability $1 - β$, FriendlyAvg$(D, ρ, δ, r)$ (Algorithm 3.3) outputs $\hat{a} \in ℝ^d$ with $\|\hat{a} - \text{Avg}(D)\| \leq O\left(\frac{r}{n} \cdot \sqrt{\frac{d\ln(1/β)}{ρ}}\right)$.

Proof. Consider a random execution of FriendlyAvg$(D, ρ, δ, r)$, let \hat{N} be the value of \hat{n} in the execution, and let \hat{A} be its output. Assuming that $n \geq 2 \cdot \sqrt{\frac{\ln(1/β) + \ln(2/β)}{\sqrt{ρ}}} + 2$, it holds that $\hat{N} \geq n/2$ with probability $1 - β/2$ (holds by Fact 2.13). Given that $\hat{N} \geq n/2$, we obtain by Fact 2.13 that $\|\hat{A} - \text{Avg}(D)\| \leq \frac{2r}{n} \cdot \sqrt{\frac{d\ln(2/β)}{ρ2}}$ with probability $1 - β/2$, as required. \square

B.2.2 Utility of FC_Avg_KnownDiam

Claim B.4. Let $D \in (ℝ^d)^n$ be dist, complete, for $n \geq \frac{\frac{16}{ρ}\ln(4/(ρ\max\{β, δ\}))}{1}$. Then w.p. $1 - β$, FC_Avg_KnownDiam$(D, ρ, δ, β, r)$ estimates Avg(D) up to an additive error of $O\left(\frac{r}{n} \cdot \sqrt{\frac{d\ln(1/β)}{ρ}}\right)$.

Proof. By applying the utility guarantee of FriendlyCore with $α = 0$ (Theorem 4.8) it holds that with probability $1 - β/2$, the core C that FriendlyCore forwards to FriendlyAvg is all D. The proof then follows by the utility guarantee of FriendlyAvg (Claim B.3). \square

Claim B.4 can be extended to cases where the database D is only close to be dist, complete, i.e., cases in which we are only given r' that is smaller than the effective diameter r of the database, but still most of the points are close by $ℓ_2$ distance of r'.

Lemma B.5. Let $D \in (ℝ^d)^n$ be an dist, complete database for dist$(x, y) := 1_{\{||x - y|| \leq r\}}$ and let $r' \leq r$ be such that D is (dist, $α, β$)-complete for $0 \leq α < 1/2$ and $ℓ < n/2$. If $n \geq \frac{-4\ln(1/2(1/2 - α)ρ\max\{β, δ\})}{(1/2 - α)^2 ρ}$, then w.p. $1 - β$ over FC_Avg_KnownDiam$(D, ρ, δ, β, r')$, the output \hat{a} satisfy $\|\hat{a} - \text{Avg}(D)\| \leq \frac{r'}{n} \cdot \sqrt{\frac{d\ln(1/β)}{ρ}}$.

Proof. By applying the utility guarantee of FriendlyCore (Theorem 4.8) it holds that with probability $1 - β/2$, the core $C \subseteq D$ that FC_Paradigm forwards to FriendlyAvg in the execution FC_Avg_KnownDiam$(D, ρ, δ, β, r')$ contains all points $x \in D$ with $|\{y \in D : ||x - y|| \leq r'\}| \geq (1 - α)n$, which in particular yields that $|C| \geq n - ℓ$. Along with the utility guarantee of FriendlyAvg (Claim B.3), we obtain that the output \hat{a} satisfy $\|\hat{a} - \text{Avg}(C)\| \leq O\left(\frac{r'}{n} \cdot \sqrt{\frac{d\ln(1/β)}{ρ}}\right)$. We conclude the proof since $\|\text{Avg}(D) - \text{Avg}(C)\| \leq \frac{(n - |C|)r}{n} \leq \frac{r}{n}$, where the first inequality since D is dist, complete. \square
B.2.3 Utility of FC_Avg_UnknownDiam

Claim B.6 (Utility of CheckDiam (Algorithm 5.3)). If \mathcal{D} is dist$_r$-complete, then CheckDiam($\mathcal{D}, \rho, \beta, r$) outputs 1 w.p. $1 - \beta$. If \mathcal{D} is not (dist$_r, \alpha, \ell := \frac{2}{\alpha} \sqrt{\frac{4 \ln(1/\beta)}{\rho}}$)-complete for some $\alpha > 0$, then CheckDiam($\mathcal{D}, \rho, \beta, r$) outputs 0 w.p. $1 - \beta$.

Proof. Let $\mathcal{D} = (x_1, \ldots, x_n) \in (\mathbb{R}^d)^*$ and let \hat{A} be the value of \hat{a} in a random execution of CheckDiam($\mathcal{D}, \rho, \beta, r$). If \mathcal{D} is dist$_r$-complete, then $a = n$, and therefore we deduce by Fact 2.13 that

$$\Pr\left[\hat{A} \geq n - \sqrt{\frac{4 \ln(1/\beta)}{\rho}}\right] = \Pr\left[N(0, 2/\rho) \geq -\sqrt{\frac{4 \ln(1/\beta)}{\rho}}\right] \geq 1 - \beta.$$

If \mathcal{D} is not (dist$_r, \alpha, \ell$)-complete, then there are more than ℓ points $x_i \in \mathcal{D}$ with $s_i < (1 - \alpha)n$. Therefore

$$a = \sum_{i=1}^n s_i/n < \frac{(n - \ell)n + \ell \cdot (1 - \alpha)n}{n} = n - \alpha \ell = n - 2\sqrt{\frac{4 \ln(1/\beta)}{\rho}}.$$

Hence, we conclude by Fact 2.13 that

$$\Pr\left[\hat{A} \geq n - \sqrt{\frac{4 \ln(1/\beta)}{\rho}}\right] = \Pr\left[N(0, 2/\rho) \geq \sqrt{\frac{4 \ln(1/\beta)}{\rho}}\right] \leq \beta.$$

Claim B.7 (Utility of FindDiam (Algorithm 5.5)). Let $\mathcal{D} \in (\mathbb{R}^d)^*$ be an dist$_{r_{max}}$-complete database. Then for every $\alpha, \beta > 0$, with probability $1 - \beta$ over a random execution of FindDiam($\mathcal{D}, \rho, \beta, r_{max}, r_{min}, b$), the output r of the execution satisfies that \mathcal{D} is (dist$_r, \alpha, \ell(r)$)-complete for $\ell = O\left(\frac{1}{\alpha} \cdot \frac{\log(1/\beta) \log \log(r_{max}/r_{min})}{\rho}\right)$.

Proof. The binary search performs at most $\log_2(t)$ calls to CheckDiam, each returns a “correct” result with probability $1 - \beta / \log_2(t)$ (follows by Claim B.6), where “correct” means that if the output for r is 1 then \mathcal{D} is (dist$_r, \alpha, \ell(r) := \frac{2}{\alpha} \sqrt{\frac{4 \ln(1/\beta) \log \log(r_{min}/r_{max})}{\rho}}$)-complete, and if the output for r is 0 then \mathcal{D} is not dist$_r$-complete. Overall, all calls are “correct” with probability $1 - \beta$, yielding that the resulting r of the binary search satisfy that \mathcal{D} is (dist$_r, \alpha, \ell(r)$)-complete, as required.

Claim B.8 (Utility of FC_Avg_UnknownDiam (Algorithm 5.7)). Let $\mathcal{D} \in (\mathbb{R}^d)^n$ be an dist$_r$-complete database for $r \in [r_{min}, r_{max}]$ and

$$n = \Omega\left(\frac{\log(1/\min\{\beta, \delta\})}{\rho} + \frac{\log(1/\beta) \log \log(r_{max}/r_{min})}{\rho}\right).$$

Then with probability $1 - \beta$ over the execution FC_Avg_UnknownDiam($\mathcal{D}, \rho, \beta, r_{min}, r_{max}$), the output \hat{a} satisfy

$$||\hat{a} - \text{Avg}(\mathcal{D})|| \leq O\left(\frac{r}{n} \sqrt{\frac{\log(1/\beta)(d + \log \log(r_{max}/r_{min}))}{\rho}}\right).$$

Proof. Let \mathcal{D} as in the theorem statement. By the utility guarantee of FindDiam (Claim B.6) it holds that with probability $1 - \beta/2$, the resulting r' (the value of r that is computed in Step 2 of FC_Avg_UnknownDiam) satisfy that \mathcal{D} is (dist$_r, 0, 1, \ell$)-complete for $\ell = O\left(\sqrt{\frac{\log(1/\beta) \log \log(r_{max}/r_{min})}{\rho}}\right)$. Given that, we apply the extended utility guarantee of FC_Avg_KnownDiam (Lemma B.5) which
yields that with probability $1 - \beta/2$, the additive error is at most $\frac{\ell r}{n} + O\left(\frac{r'}{n} \sqrt{\frac{d \log(1/\beta)}{\rho}}\right) = O\left(\frac{r}{n} \sqrt{\frac{\log(1/\beta)(d + \log(r_{\max}/r_{\min}))}{\rho}}\right)$, as required.

\begin{claim}[Utility of FC_AvgOrdTup (Algorithm 5.23)]{claim:B.9}
Let $D = (X^i = (x^i_1, \ldots, x^i_k)) \in ((\mathbb{R}^d)^k)^n$ be an $\text{dist}_{r_1, \ldots, r_k}$-complete database for $r_1, \ldots, r_k \in [r_{\min}, r_{\max}]$ where
\[n = \Omega\left(\frac{\log(1/\min\{\beta, \delta\})}{\rho} + \sqrt{\frac{k \log(k/\beta) \log(r_{\max}/r_{\min})}{\rho}}\right),\]
and for $j \in [k]$ let $D^j = (x^j_i)_{i=1}^n$. Then w.p. $1 - \beta$ over the execution FC_AvgOrdTup($D, \rho, \delta, \beta, r_{\min}, r_{\max}$), the output $(\hat{a}^1, \ldots, \hat{a}^k)$ satisfy
\[\forall j \in [k]: \quad \|\hat{a}^j - \text{Avg}(D^j)\| \leq O\left(\frac{r}{n} \sqrt{\frac{k \log(k/\beta)(d + \log(r_{\max}/r_{\min}))}{\rho}}\right).\]
\end{claim}

The proof holds similarly to Claim B.8 up to the factor k that we loose in the privacy parameter and the confidence parameter, except for the first term in the lower bound on n that does not need to be multiply by k since we only apply FriendlyCore twice and not k times.

B.3 Utility of Clustering Algorithms

In this section we state the utility of our main clustering algorithm FC,Clustering for k-means and k-GMM under common separation assumption, using the reductions of [CKM+21] to k-tuple clustering.

B.3.1 Definitions from [CKM+21]

We recall from [CKM+21] the property of a collection of unordered k-tuples $(x_1, \ldots, x_k) \in (\mathbb{R}^d)^k$, which we call partitioned by Δ-far balls.

\begin{definition}[Δ-far balls]
A set of k balls $B = \{B_i = B(c_i, r_i)\}_{i=1}^k$ over \mathbb{R}^d is called Δ-far balls, if for every $i \in [k]$ it holds that $\|c_i - c_j\| \geq \Delta \cdot \max\{r_i, r_j\}$ (i.e., the balls are relatively far from each other).
\end{definition}

\begin{definition}[(partitioned by Δ-far balls)]
A k-tuple $X \in (\mathbb{R}^d)^k$ is partitioned by a given set of k Δ-far balls $B = \{B_1, \ldots, B_k\}$, if for every $i \in [k]$ it holds that $|X \cap B_i| = 1$. A database k-tuples $D = ((\mathbb{R}^d)^k)^*$ is partitioned by B, if each $X \in D$ is partitioned by B. We say that D is partitioned by Δ-far balls if such a set B of k Δ-far balls exists.
\end{definition}

For a database of k-tuples $D \in ((\mathbb{R}^d)^k)^*$, we let Points($D$) be the collection of all the points in all the k-tuples in D.

\begin{definition}[The points in a collection of k-tuples]
For $D = ((x_{1,j})_{j=1}^k, \ldots, (x_{n,j})_{j=1}^k) \in ((\mathbb{R}^d)^k)^n$, we define Points($D$) = $(x_{i,j})_{i \in [n], j \in [k]} \in (\mathbb{R}^d)^{kn}$.
\end{definition}

We now formally define the partition of a database $D \in ((\mathbb{R}^d)^k)^*$ which is partitioned by Δ-far balls for $\Delta > 3$. 37
Definition B.13 (Partition(\mathcal{D})). Given a database $\mathcal{D} \in \left(\mathbb{R}^d \right)^k$ which is partitioned by Δ-far balls for $\Delta > 3$, we define the partition of \mathcal{D}, which we denote by Partition(\mathcal{D}) = $\{P_1, \ldots, P_k\}$, by fixing an (arbitrary) k-tuple $X = (x_1, \ldots, x_k) \in \mathcal{D}$ and setting $P_i = \{x \in \text{Points}(\mathcal{D}) : i = \text{argmin}_{j \in [k]} \|x - x_j\|\}$.

Definition B.14 (good-averages solutions). Let $\mathcal{D} \in \left(\mathbb{R}^d \right)^n$, let $\{P_1, \ldots, P_k\} = \text{Partition}(\mathcal{P})$, let $a_i = \text{Avg}(P_i)$, and let $\alpha, r_{\text{min}} \geq 0$. We say that a k-tuple $Y = \{y_1, \ldots, y_k\} \in \mathbb{R}^d$ is an (α, r_{min})-good-averages solution for clustering \mathcal{D}, if there exist radii $r_1, \ldots, r_k \geq 0$ such that $B = \{B_i = B(a_i, r_i)\}_{i=1}^{k}$ are Δ-far balls (for $\Delta > 3$) that partitions \mathcal{D}, and for every $i \in [k]$ it holds that:

$$\|y_i - a_i\| \leq \alpha \cdot \max\{r_i, r_{\text{min}}\}$$

For applications, [CKM+21] focused on a specific type of algorithms for the k-tuple clustering problems, that outputs a good-averages solution.

Definition B.15 (averages-estimator for k-tuple clustering). Let A be an algorithm that gets as input a database of unordered tuples in $\left(\mathbb{R}^d \right)^k$. We say that A is an $(n, \alpha, r_{\text{min}}, \beta, \Lambda, \Delta)$-averages-estimator for k-tuple clustering, if for every $\mathcal{D} \in (B(0, \Lambda)^k)^* \subseteq \left(\mathbb{R}^d \right)^n$ that is partitioned by Δ-far balls, $A(\mathcal{D})$ outputs w.p. $1 - \beta$ an (α, r_{min})-good-averages solution $Y \in \mathbb{R}^d$ for clustering \mathcal{D}.

B.3.2 Utility of FC$_k$TupleClustering

We next prove that FC$_k$TupleClustering (Algorithm 5.25) is a good averages-estimator for k-tuple clustering.

Claim B.16 (Utility of FC$_k$TupleClustering). Algorithm FC$_k$TupleClustering($\cdot, \rho, \delta, \beta, r_{\text{min}}, r_{\text{max}}$) is an $(n, 1, r_{\text{min}}, \beta, \Lambda = r_{\text{max}}/2, \Delta = 10)$-averages-estimator for k-tuple clustering, for

$$n = \Omega\left(\frac{\log(1/\min(\beta, \delta))}{\rho} + \frac{k\log(k/\beta)(d+\log\log(r_{\text{max}}/r_{\text{min}}))}{\rho}\right).$$

Proof. If \mathcal{D} is partitioned by 10-far balls, then in particular it is match$_{1/7}$-complete (the predicate from Definition 5.12). Therefore, at the first step of FC$_k$TupleClustering, the core of tuples contains all of \mathcal{D}. The proof now immediately follow by the utility guarantee of algorithm FC AvgOrdTup (Claim B.9).

B.3.3 Utility of FC$_k$Clustering for k-Means

In the k-means problem, we are given a database $\mathcal{D} \in \mathbb{R}^d$ and a parameter $k \in \mathbb{N}$, the goal is to compute k centers $C = (c_1, \ldots, c_k) \in \mathbb{R}^d$ that minimize $\text{COST}_D(C):= \sum_{x \in \mathcal{D}} \min_{i \in [k]} \|x - c_i\|$ as possible, i.e. close as possible to $\text{OPT}_k(\mathcal{D}) := \min_{C \in (\mathbb{R}^d)^k} \text{COST}_D(C)$.

We state our utility guarantee for databases that are separated according to Ostrovsky et al. [ORSS12].

Definition B.17 ((ϕ, ξ)-separated [ORSS12; CKM+21]). A database $\mathcal{D} \in \mathbb{R}^d$ is (ϕ, ξ)-separated for k-means if $\text{OPT}_k(\mathcal{D}) + \xi \leq \phi^2 \cdot \text{OPT}_{k-1}(\mathcal{D})$.
As shown by [ORSS12], for such database with sufficiently small ϕ, any set of centers C that well approximate the k-means cost, must be close in distance to the optimal centers (i.e., there must be a match between the centers). Therefore, by using a good approximation k-means algorithm as an oracle for FC_Clustering, we obtain a guarantee that $\text{FC_kTupleClustering}$ succeed to compute a tuple Y that is close to all other non-private algorithm. This property has been used by [CKM+21; SSS20] for constructing private clustering for such databases. Here we state the properties of our construction, which follows from Theorem 5.11 in [CKM+21] (reduction to k-tuple clustering).

Claim B.18 (Utility of FC_Clustering for k-Means). Let A be a (non-private) $1/\omega$-approximation algorithm for k-means (i.e., that always returns centers with cost $\leq \omega \OPT_k$), and let

\[
t = \Omega \left(\frac{\log(1/\min\{\beta, \delta\})}{\rho} + \frac{k \log(k/\beta)(d + \log \log(r_{\max}/r_{\min}))}{\rho} \right)
\]

(the number of tuples that are required by Claim B.16). Then for any $D \in \mathcal{B}(0, \Lambda)^n$ that is (ϕ, ξ)-separated for k-means for $\phi \leq \frac{1}{\sqrt{17}(1 + \omega)}$ and $\xi = \tilde{\Omega}(\Lambda^2 k d t + \Lambda \sqrt{k d t \omega \cdot \OPT_k(D)})$, algorithm $\text{FC_Clustering}(D, \rho, \delta, \beta, r_{\min} = \gamma/n, \Lambda, t)$ outputs with probability $1 - \beta$ centers $C \in (\mathbb{R}^d)^k$ such that

\[
\text{COST}_D(C) \leq (1 + 64\gamma)\OPT_k(D) + O(\Lambda^2 k (d + \log(k/\beta))/\rho),
\]

for $\gamma = 2 \cdot \frac{\omega \phi^2 + \phi}{1 - \phi}$.

We remark that additive errors in the cost is independent of n, and the additive term ξ in the separation is only logarithmic in n (hidden inside the $\tilde{\Omega}$).

B.3.4 Utility of FC_Clustering for k-GMM

In this section we state the utility guarantee for learning a mixture of well separated and bounded k Gaussians. The setting is that we are given n samples from a mixture $\{(\mu_1, \Sigma_1, w_1), \ldots, (\mu_k, \Sigma_k, w_k)\}$, i.e., for each sample, one of the Gaussians is chosen w.p. proportional to its weight (the i'th Gaussian is chosen w.p. $w_i / \sum_{j=1}^k w_j$), and then the sample is taken from $\mathcal{N}(\mu_i, \Sigma_i)$ for the chosen i.

The goal here is to output a set of k centers $C = (c_1, \ldots, c_k) \in (\mathbb{R}^d)^k$ which is a perfect classifier: Up to reordering of the c_i's, for every sample x that was drawn from the i'th Gaussian in the mixture, it holds that $i = \arg\min_{j \in [k]} \|x - c_i\|$.

As done in previous works [CKM+21; KSSU19], we assume that we are given a lower bound w_{\min} on the weights, and a lower and upper bounds $\sigma_{\min}, \sigma_{\max}$ on the norm of each covariance matrix Σ_i. Unlike those works, we do not need to assume a bound R on the ℓ_2 norms of each μ_i.

We use the PCA-based algorithm of [AM05] as the non-private oracle access for FC_Clustering given $s = \Omega(k (d + \log(k/\beta))/w_{\min})$ samples from a mixture that has assumed separation

\[
\forall i, j \in [k] : \quad \|\mu_i - \mu_j\| \geq \Omega \left(\sqrt{k \log(n k)} + 1/\sqrt{w_i} + 1/\sqrt{w_j} \right) \cdot \max\{\|\Sigma_i\|, \|\Sigma_j\|\},
\]

(3)

outputs a perfect classifier with confidence $1 - \beta$ (note that the separation is independent of d). We now state the utility guarantee of FC_Clustering that follows (implicitly) by the proof of Theorem 6.12 in [CKM+21] (reduction to k-tuple clustering).

Claim B.19 (Utility of FC_Clustering for k-GMM). Let D be a set of $n = s \cdot t$ samples from a mixture $\{(\mu_1, \Sigma_1, w_1), \ldots, (\mu_k, \Sigma_k, w_k)\}$ for $t = \Omega \left(\frac{\log(1/\min\{\beta, \delta\})}{\rho} + \frac{k \log(k/\beta)(d + \log \log(r_{\max}/r_{\min}))}{\rho} \right)$
We deduce that for every such note that by a concentration bound of Gaussians (Fact 2.13) it holds that according to Equation (3), and for each i: \(w_i \geq w_{\text{min}} \) and \(\sigma_{\text{min}} \leq \| \Sigma_i \| \leq \sigma_{\text{max}} \). Then with probability \(1 - 2\beta \), the output of FC_Clustering\(^A\)\((D, \rho, \delta, \beta, r_{\text{min}} = 0.1\sigma_{\text{min}}, \Delta = 10\sigma_{\text{max}})\), for \(A \) being [AM05]’s algorithm, outputs a perfect classifier.

B.4 Proving Lemma 4.6

In this section we prove the properties of zCDPFilter (Algorithm 4.5), restated below.

Lemma B.20 (Restatement of Lemma 4.6). Let \(f: \mathcal{X}^2 \to \{0, 1\} \) and \(\rho, \delta > 0 \). \(F = \text{zCDPFilter}(\cdot, f, \rho, \delta) \) is a product-filter that is \((f, \alpha, \beta, n)\)-complete for every \(0 \leq \alpha < 1/2, \beta > 0, \) and \(n \geq \frac{-4\ln((1/2-\alpha)\rho\min\{\beta, \delta\})}{(1/2-\alpha)^2\rho} \).

Furthermore, for every \(n \in \mathbb{N} \) and every neighboring databases \(D = (x_1, \ldots, x_n) \) and \(D' = D_{-i} \), there exist events \(E \subseteq \{0, 1\}^n \) and \(E' \subseteq \{0, 1\}^{n-1} \) with \(\Pr[F(D) \in E], \Pr[F(D') \in E'] \geq 1 - \delta \), such that the following holds w.r.t. the random variables \(V = F(D) \) and \(V' = F(D') \):

1. **Friendliness:** For every \(v \in E \) and \(v' \in E' \), the database \(C \cup C' \), for \(C = D_{\{i\in[n]: v_i=1\}} \) and \(C' = D'_{\{i\in[n-1]: v'_i=1\}} \), is \(f \)-friendly, and

2. **Privacy:** \((V_{-j})|_E \approx_{\rho} V'|_{E'} \).

Proof. Fix two neighboring databases \(D = (x_1, \ldots, x_n) \) and \(D' = D_{-i} \). For simplicity and without loss of generality, we assume that \(k = n \), i.e., \(D' = (x_1, \ldots, x_{n-1}) \). Consider two independent executions \(F(D) \) and \(F(D') \) for \(F = \text{zCDPFilter}(\cdot, f, \rho, \delta) \) (Algorithm 4.5). Let \(\rho_1, \rho_2 \) be as in Step i, let \(z = (z_1, \ldots, z_n) \) be the values of these variables in the execution \(F(D) \), and let \(\{z'_i\}_{i=1}^{n-1} \) be these values in the execution \(F(D') \). In addition, let \(\hat{N}, \{\hat{Z}_i, V_i\}_{i=1}^n \) be the (r.v.’s) of the values of \(\hat{n}, \{\hat{z}_i, v_i\}_{i=1}^n \) in the execution \(F(D) \), and let \(\hat{N}', \{\hat{Z}'_i, V'_i\}_{i=1}^{n-1} \) be these r.v.’s w.r.t. \(F(D') \).

We first prove that \(F \) is \((f, n, \alpha, \beta)\)-complete (Definition 4.2) for every \(n \) that satisfy

\[
(1/2 - \alpha)n \geq \left(\sqrt{\frac{\tilde{n} \cdot \ln(2\tilde{n}/\delta)}{4\rho_2}} + \sqrt{\frac{\tilde{n} \cdot \ln(2\tilde{n}/\beta)}{4\rho_2}} + \frac{1}{2} \right), \text{ for } \tilde{n} = n + \sqrt{\frac{\ln(2/\delta)}{\rho_1}} + \sqrt{\frac{\ln(2/\beta)}{\rho_1}}, \tag{4}
\]

(In particular, this holds for \(n \geq \frac{-4\ln((1/2-\alpha)\rho\min\{\beta, \delta\})}{(1/2-\alpha)^2\rho} \)). Fix \(n \) that satisfy Equation (4). First, note that by a concentration bound of Gaussians (Fact 2.13) it holds that

\[
\Pr[\hat{N} > \tilde{n}] \leq \beta/2
\]

Second, note that for every \(i \) with \(\sum_{j=1}^n f(x_i, x_j) = 1 \) it holds that \(z_i \geq (1/2 - \alpha)n \). We deduce that for every such \(i \)
\[
\Pr[V_i = 0 \mid \hat{N} \leq \tilde{n}] = \Pr \left[\hat{Z}_i < \sqrt{\frac{\tilde{N} \cdot \ln(2\tilde{N}/\delta)}{4\rho_2}} + \frac{1}{2} \mid \hat{N} \leq \tilde{n} \right] \\
\leq \Pr \left[\mathcal{N} \left(0, \frac{\tilde{N}}{8\rho_2} \right) < -(1/2 - \alpha)n + \sqrt{\frac{\tilde{N} \cdot \ln(2\tilde{N}/\delta)}{4\rho_2}} + \frac{1}{2} \mid \hat{N} \leq \tilde{n} \right] \\
\leq \Pr \left[\mathcal{N} \left(0, \frac{\tilde{N}}{8\rho_2} \right) < -\sqrt{\frac{n \cdot \ln(2n/\beta)}{4\rho_2}} \mid \hat{N} \leq \tilde{n} \right] \\
\leq \beta/2n,
\]

where the penultimate inequality holds by Equation (4). Hence, by the union bound, we deduce that w.p. 1 - \beta, for all these i’s it holds that \(V_i = 1 \), as required.

We next define the events \(E \) and \(E' \) for the friendliness and privacy properties.

First, note that by Fact 2.13 it holds that

\[
\Pr \left[\hat{N} < n \right] \leq \frac{\delta}{2}
\]

In the following, let \(\mathcal{I} = \{i \in [n] : \sum_{j=1}^{n-1} f(x_i, x_j) \leq (n - 1)/2 \} \) and let \(E \subseteq \{0, 1\}^n \) be the event \(\{ v \in \{0, 1\}^n : v_{\mathcal{I}} = 0^{\mathcal{I}} \} \). In addition, let \(\mathcal{I}' = \mathcal{I} \setminus \{n\} \) and let \(E' \subseteq \{0, 1\}^{n-1} \) be the event \(\{ v' \in \{0, 1\}^{n-1} : v'_{\mathcal{I}' \mathcal{I}} = 0^{\mathcal{I}' \mathcal{I}} \} \). Note that for every \(i \in \mathcal{I} \) it holds that \(z_i \leq -1/2 \) and \(z_i' \leq 1/2 \), and therefore

\[
\Pr \left[V_i = 1 \mid \hat{N} \geq n \right] = \Pr \left[\hat{Z}_i > \sqrt{\frac{\tilde{N} \cdot \ln(2\tilde{N}/\delta)}{4\rho_2}} + \frac{1}{2} \mid \hat{N} \geq n \right] \leq \frac{\delta}{2n},
\]

where the last inequality holds by Fact 2.13. Therefore, by the union bound we deduce that

\[
\Pr[V \notin E] \leq \frac{\delta}{2} + \Pr \left[V \notin E \mid \hat{N} \geq n \right] \leq \delta.
\]

A similar calculation also yields that \(\Pr[V' \notin E'] \leq \delta \). It remains to prove friendliness and privacy w.r.t. the events \(E \) and \(E' \).

To prove friendliness, fix \(v \in E \) and \(v' \in E' \). By definition of \(E \), for every \(i \in [n] \) s.t. \(v_i = 1 \) it holds that \(\sum_{j=1}^{n-1} f(x_i, x_j) > (n - 1)/2 \), and for every \(i' \in [n-1] \) s.t. \(v_i' = 1 \) it holds that \(\sum_{j=1}^{n-1} f(x_i, x_j) > (n - 1)/2 \). This yields that there exists at least one \(j \in [n-1] \) such that \(f(x_i, x_j) = f(x_i, x_j') = 1 \). We therefore conclude that \(D_{\{i : v_i = 1\}} \cup D_{\{i' : v_i' = 1\}} \) is f-friendly.

We now prove privacy. Note that for every \(i \in [n-1] \) it holds that \(|z_i - z_i'| = |1/2 - f(x_i, x_n)| = 1/2 \). By the properties of the Gaussian Mechanism for zCDP (Theorem 2.14) we obtain that \(\hat{Z}_i \approx_{\rho/2} \hat{Z}_i' \). By composition of zCDP mechanisms (Fact 2.15) we obtain that \((\hat{Z}_1, ..., \hat{Z}_{n-1}) \approx_{\rho} (\hat{Z}_1', ..., \hat{Z}_{n-1}') \). Hence, by post-processing, it holds that \(V_{-n} \approx_{\rho} V' \). Now note that when conditioning \(V \) on the event \(E \), the coordinates in \(\mathcal{I} \) become 0, and the distribution of the coordinates outside \(\mathcal{I} \) remain the same, i.e. \(V_{-\mathcal{I}} \mid E \equiv V_{-\mathcal{I}} \) (this is because the \(V_i \)'s are independent, and \(E \) is only an event on the coordinates in \(\mathcal{I} \)). Similarly, the same holds when conditioning \(V' \) on the event \(E' \). Since \(\mathcal{I}' = \mathcal{I} \setminus \{n\} \), we conclude that \((V_{-n}) \mid E \approx_{\rho} (V') \mid E' \). \(\Box \)
B.5 Proving Lemma 4.9

In this section we prove Lemma 4.9, restated below.

Lemma B.21 (Restatement of Lemma 4.9). Let $D = (x_1, \ldots, x_n)$ and $D' = D_{-j}$ be neighboring databases, let V, V' be random variables over $\{0, 1\}^n$ and $\{0, 1\}^{n-1}$ (respectively) such that $V_{-j} \approx_{\rho, \delta} V'$, and define the random variables $R = D_{i \in [n] : V_i = 1}$ and $R' = D'_{i \in [n-1] : V'_i = 1}$. Let A be an algorithm such that for any neighboring $C \in \text{Supp}(R)$ and $C' \in \text{Supp}(R')$ satisfy $A(C) \approx_{\rho', \delta'} A(C')$. Then $A(R) \approx_{\rho + \rho', \delta + \delta'} A(R')$.

We use the following fact about Rényi divergence.

Fact B.22 (Quasi-Convexity). [Lemma 2.2 in [BS16]] Let P_0, P_1 and Q_0, Q_1 be two distributions, and let $P = tP_0 + (1 - t)P_1$ and $Q = tQ_0 + (1 - t)Q_1$ for $t \in [0, 1]$. Then for any $\alpha > 1$:
\[
D_\alpha(P||Q) \leq \max\{D_\alpha(P_0||Q_0), D_\alpha(P_1||Q_1)\}
\]

The following fact is an immediate corollary of Fact B.22.

Fact B.23. Let $X = tX_0 + (1 - t)X_1$ for $t \in [0, 1]$. If $X_0 \approx_{\rho, \delta} Y$ and $X_1 \approx_{\rho, \delta} Y$, then $X \approx_{\rho, \delta} Y$.

The composition proof for zCDP mechanisms immediately follows by the composition property of Rényi divergence (see [BS16]), and can straightforwardly be extended to the following fact.

Fact B.24. Let $Y \approx_{\rho, \delta} Y'$, and let F and F' be two (randomized) functions such that $\forall y \in \text{Supp}(Y) \cup \text{Supp}(Y') : F(y) \approx_{\rho', \delta'} F'(y)$. Then $F(Y) \approx_{\rho + \rho', \delta + \delta'} F'(Y')$.

We now use Facts B.23 and B.24 to prove Lemma 4.9 which handles specific cases where the input databases that we consider are random variables which are only “close” to being neighboring.

proof of Lemma 4.9. Let $D = (x_1, \ldots, x_n)$ and $D' = D_{-j} = (x'_1, \ldots, x'_{n-1})$. The proof holds by Fact B.24 for the following choices of Y, Y', F, F': Let $Y := V_{-j}$ and $Y' := V'$. For $y \in \text{Supp}(Y) \cup \text{Supp}(Y') \subseteq \{0, 1\}^{n-1}$, define $F'(y) := A(C')$ for $C' = (x'_j)_{i \in [n-1] : y_i = 1}$, and define $F(y)$ as the output of the following process: (1) Sample $v_j \leftarrow V_{-j}|y$ and let $v_{-j} := y$; (2) Output $A(C)$ for $C = (x_i)_{i \in [n] : v_i = 1}$. By definition, $A(R) \equiv F(Y)$ and $A(R') \equiv F'(Y')$. Since $Y \approx_{\rho, \delta} Y'$, it is left to prove that $F(y) \approx_{\rho', \delta'} F'(y)$ for every $y \in \text{Supp}(Y) \cup \text{Supp}(Y')$. Fix such y, let $C' = (x'_j)_{i \in [n-1] : y_i = 1}$ and let C be the database that is obtained by adding x_j to the jth location in C' (i.e., $C_j = x_j$ and $C_{-j} = C'$). Note that $F'(y) \equiv A(C')$, and $F(y)$ depends on the value of the sample v_j: If $v_j = 0$ then it outputs $A(C')$ (same output as $F'(y)$), and if $v_j = 1$ then it outputs $A(C)$ which is (ρ', δ')-indistinguishable from $A(C')$ since C, C' are neighboring databases in $\text{Supp}(R), \text{Supp}(R')$ (respectively). In particular, $F(y)$ is a convex combination of random variables that are (ρ', δ')-indistinguishable from $F'(y)$. Hence, we deduce by Fact B.23 that $F(y) \approx_{\rho', \delta'} F'(y)$, as required.

B.6 Proof of Lemma 4.12

Claim B.25 (Restatement of Lemma 4.12). Let $D \in \mathcal{X}^n$ and let $p, p' \in [0, 1]^n$ with $\|p - p'\|_1 \leq \gamma$. Let V and V' be two random variables, distributed according to $\text{Bern}(p)$ and $\text{Bern}(p')$, respectively, and define the random variables $R = D_{i \in [n] : V_i = 1}$ and $R' = D_{i \in [n] : V'_i = 1}$. Let A be an algorithm that for every neighboring databases $C \in \text{Supp}(R)$ and $C' \in \text{Supp}(R')$ satisfy $A(C) \approx_{\gamma e \varepsilon - 1} A(C')$. Then $A(R) \approx_{\gamma e \varepsilon - 1} A(R')$. (Due to space constraints, the proof of this claim is omitted.)
Proof. We assume w.l.o.g. that V and V' are jointly distributed in the following probability space: For each $i \in [n]$, we draw $r_i \sim U[0,1]$, and set $V_i = 1_{\{r_i \leq p_i\}}$ and $V'_i = 1_{\{r_i \leq p'_i\}}$. Note that with this choice,

$$\Pr[V_i \neq V'_i] = \Delta_i := |p_i - p'_i|.$$ \hfill (8)

This probability space is a product space over i. Consider a partition of the support of this joint probability space as a product over i of two parts for each i: A_{i0} when $r_i \in [0, \tau_i]$, and A_{i1} for $r_i \in [\tau_i, 1]$, where

$$\tau_i = \min\{p_i, p'_i\} \frac{1}{1 - |p_i - p'_i|}.$$

If $|p'_i - p_i| = 1$ there is only one part $r_i \in [0, 1]$. Each part in the support has the form $F_z = \bigcap_i A_{iz}$ for some $z \in \{0, 1\}^n$.

This partition has the following structure. First note that $\min\{p_i, p'_i\} \leq \tau_i \leq \max\{p_i, p'_i\}$. The first inequality is immediate. The second inequality follows from

$$\tau_i(1 - \Delta_i) = \min\{p_i, p'_i\} \Rightarrow \tau_i = \min\{p_i, p'_i\} + \tau_i \Delta_i \leq \min\{p_i, p'_i\} + \Delta_i = \max\{p_i, p'_i\}.$$

Therefore, each of A_{iz} for $z \in \{0, 1\}$ has (at least one of) a fixed V_i or a fixed V'_i.

Claim B.26. The point τ_i satisfies

$$\text{For } z \in \{0, 1\}, \Pr_{(V_i, V'_i) \sim A_{iz}}[V_i \neq V'_i] = \Delta_i,$$

that is, for each part A_{iz}, the probability of $V_i \neq V'_i$ conditioned on A_{iz} is exactly Δ_i.

Proof. Using (8), it suffices to establish the claim for $A_{i0} (\tau_i \leq \tau_i)$. Assume without loss of generality that $p_i \leq p'_i$. Since $r_i \leq \tau_i \leq p'_i$, we have that $V'_i = 1$ for all outcomes in this part. For outcomes $r_i \leq p_i$ we have $V_i = V'_i$. For outcomes $r_i \in (p_i, \tau_i)$ we have $V_i \neq V'_i$. The conditional probability is

$$\frac{\tau_i - p_i}{\tau_i} = \left(\frac{p_i}{1 - \Delta_i} - p_i\right) \frac{1 - \Delta_i}{p_i} = \Delta_i.$$

\hfill \square

As a corollary, due to the joint space being a product space, we have that this also holds in each part F_z of the joint space. That is,

$$\forall z \in \{0, 1\}^n \forall i \in [n], \Pr_{(V_i, V'_i) \sim F_z}[V_i \neq V'_i] = \Delta_i.$$ \hfill (9)

We now get to the group privacy analysis. For possible outputs T of Algorithm A we relate the probabilities that $A(S) \in T$ and that of $A(S') \in T$.

Note that for the random variables S and S' we have

$$\Pr[A(S) \in T] = \sum_{z \in \{0,1\}^n} \Pr[F_z] \cdot \Pr_{(V_i, V'_i) \sim F_z}[A(V) \in T]$$ \hfill (10)

$$\Pr[A(S') \in T] = \sum_{z \in \{0,1\}^n} \Pr[F_z] \cdot \Pr_{(V_i, V'_i) \sim F_z}[A(V') \in T].$$ \hfill (11)

The following Claim will complete the proof.
Claim B.27. For $z \in \{0,1\}^n$,
\[
\Pr_{(V,V') \sim F_z}[A(V') \in T] \leq e^{\Delta(e^{\epsilon}-1)} \Pr_{(V,V') \sim F}[A(V) \in T] + \Delta e^{\Delta(e^{\epsilon}-1)} \delta
\]

Proof. Let C be the center vector of part F_z, that is, for each i, if V_i is fixed on the support of A_{iz_i} to a value $b \in \{0,1\}$ then $C_i = b$ and otherwise, if V'_i is fixed to $b \in \{0,1\}$ let $C_i = b$. Let $I \subset [n]$ be the positions i where V_i is fixed on the support of A_{iz_i}. Let $I' = [n] \setminus I$.

We now relate the two probabilities $\Pr_{(V,V') \sim F_z}[A(V) \in T]$ and $\Pr[A(C) \in T]$. Note that for $i \in I$ then for any V_i in the support of F_z we have $V_i = C_i$. It is only possible to have $V_i \neq C_i$ for $i \in I'$. Let E_k be the event in F_k that V is different than C in k coordinates. This event is a sum of $|I'|$ Bernoulli random variables with probabilities $\{\Delta_i\}_{i \in I'}$. Let $\Delta_{I'} = \sum_{i \in I'} \Delta_i$ and let $\Delta_I = \sum_{i \in I} \Delta_i$.

\[
\Pr_{(V,V') \sim F_z}[A(V) \in T] = \sum_{k=0}^n \Pr_{F_z}[E_k] \cdot \Pr_{(V,V') \sim E_k}[A(V) \in T]
\leq \sum_{k=0}^n \Pr_{F_z}[E_k] \cdot e^{k\epsilon} \Pr[A(C) \in T] + \sum_{k=0}^n \Pr_{F_z}[E_k] \cdot ke^{k\epsilon} \delta
\]
\[
= \Pr[A(C) \in T] \sum_{k=0}^n \Pr_{F_z}[E_k] \cdot e^{k\epsilon} + \delta \sum_{k=0}^n \Pr_{F_z}[E_k] \cdot ke^{k\epsilon}
\leq \Pr[A(C) \in T] e^{\Delta_{I'}(e^{\epsilon}-1)} + \Delta_{I'} \delta e^{\epsilon} + \Delta_I (e^{\epsilon}-1) \tag{12}
\]

The first inequality holds by group privacy. The last inequality holds by Claim B.28 and Claim B.29.

Similarly, let E'_k be the event in F_z that V' is different than C in k coordinates. The probability of E'_k is according to a sum of $|I|$ Bernoulli random variables with probabilities $\{\Delta_i\}_{i \in I}$.

\[
\Pr_{(V,V') \sim F_z}[A(V') \in T] = \sum_{k=0}^n \Pr_{F_z}[E'_k] \cdot \Pr_{(V,V') \sim E_k}[A(V') \in T]
\geq \sum_{k=0}^n \Pr_{F_z}[E'_k] \cdot e^{-k\epsilon} \left(\Pr[A(C) \in T] - ke^{k\epsilon} \delta \right)
\]
\[
= \Pr[A(C) \in T] \sum_{k=0}^n \Pr_{F_z}[E'_k] \cdot e^{-k\epsilon} - \delta \sum_{k=0}^n \Pr_{F_z}[E'_k] \cdot k
\]
\[
= \Pr[A(C) \in T] \sum_{k=0}^n \Pr_{F_z}[E'_k] \cdot e^{-k\epsilon} - \delta \Delta_I
\geq \Pr[A(C) \in T] e^{-\Delta_{I'}(e^{\epsilon}-1)} - \delta \Delta_I
\]

The first inequality holds by group privacy. The last inequality holds by an adaptation of Claim B.28. Rearranging, we obtain
\[
\Pr[A(C) \in T] \leq \Pr_{(V,V') \sim F_z}[A(V') \in T] e^{\Delta_{I'}(e^{\epsilon}-1)} + \delta \Delta_I e^{\Delta_{I'}(e^{\epsilon}-1)} \tag{13}
\]

The claim follows by combining (12) and (13), noting that $\alpha = \sum_{i=1}^n \Delta_i = \Delta_I + \Delta_{I'}$. \qed
The proof follows using (10) and (11) by substitution the claim for each F_z. □

Claim B.28. Let $X = X_1 + \ldots + X_n$, where the X_i’s are independent, and each X_i is distributed according to Bern(p_i), and let $\alpha = \sum_{i=1}^{n} p_i$. Then for every $\varepsilon > 0$ it holds that $E[e^{\varepsilon X}] \leq e^{(e\varepsilon - 1)\alpha}$.

Proof. The proof holds by the following calculation

\[
\log(E[e^{\varepsilon X}]) = \log(\prod_{i=1}^{n} (1 - p_i + p_i e^{\varepsilon})) = \sum_{i=1}^{n} \log(1 - p_i + p_i e^{\varepsilon})
\]

\[
\leq n \cdot \log \left(1 - \frac{\sum_{i=1}^{n} p_i}{n} + \frac{\sum_{i=1}^{n} p_i e^{\varepsilon}}{n} \right)
\]

\[
\leq n \cdot \log \left(e^{(e\varepsilon - 1)\frac{\sum_{i=1}^{n} p_i}{n}} \right)
\]

\[
= (e\varepsilon - 1)\alpha.
\]

The first inequality holds by Jensen’s inequality since the function $x \mapsto \log(1 - x + xe^{\varepsilon})$ is concave. The second inequality holds since $1 - x + xe^{\varepsilon} = 1 + (e\varepsilon - 1)x \leq e^{(e\varepsilon - 1)x}$ for every x. □

Claim B.29. Let $X = X_1 + \ldots + X_n$, where the X_i’s are independent, and each X_i is distributed according to Bern(p_i), and let $\alpha = \sum_{i=1}^{n} p_i$. Then for all $\varepsilon > 0$ it holds that $E[X \cdot e^{\varepsilon X}] \leq \alpha \cdot e^{\varepsilon + (e\varepsilon - 1)\alpha}$.

Proof. Compute

\[
E[X \cdot e^{\varepsilon X}] = \sum_{i=1}^{n} E[X_i \cdot e^{\varepsilon X}] = \sum_{i=1}^{n} E[X_i \cdot e^{\varepsilon X_i}] \cdot E[e^{\varepsilon(X - X_i)}]
\]

\[
\leq \sum_{i=1}^{n} p_i e^{\varepsilon} \cdot e^{(e\varepsilon - 1)\alpha} = \alpha \cdot e^{\varepsilon + (e\varepsilon - 1)\alpha},
\]

where the inequality holds by Claim B.28. □