Analysis of Memreactance with Fractional Kinetics

Rawid Banchuin

Faculty of Engineering and Graduated School of Information Technology, Siam University, Bangkok, Thailand

Correspondence should be addressed to Rawid Banchuin; rawid_b@yahoo.com

Received 1 November 2019; Accepted 31 December 2019; Published 21 January 2020

Copyright © 2020 Rawid Banchuin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, the analysis of the memreactance, i.e., meminductor and memcapacitor, with fractional-order kinetics has been proposed. The meminductances, memcapacitances, and related parameters due to both DC and periodic input waveforms have been derived. The behavioral analysis has been thoroughly performed with the aid of numerical simulation. The effects of fractional-order kinetics have been explored where both linear and nonlinear dopant drift scenarios have been considered. Moreover, the emulation of memreactance with fractional-order kinetics by using the memristor and the effect of the fractional-order kinetics on the memreactance-based circuits have also been mentioned along with the extension of our results to the fractional-order memreactance.

1. Introduction

Apart from the basic circuit elements, the circuit elements with memory, i.e., memristor, meminductor, and memcapacitor, have been found by Leon Chua and his colleagues [1, 2]. The kinetics of the memristor has been further generalized in the fractional-order domain as proposed in previous works [3–7] by using the concept of fractional calculus. By such a concept, the fractional derivative which is capable of including the effect of the past state, i.e., memory effect, of any system of the interested unlike the conventional derivative, has been used in the mathematical analysis. There exist many fractional derivatives, e.g., Riemann–Liouville, Liouville–Caputo [8], Caputo–Fabrizio [9], and Atangana–Baleanu [10]. Some of them, e.g., Riemann–Liouville and Liouville–Caputo derivatives, relied on the simple power-law kernel, whereas the others, e.g., Caputo–Fabrizio and Atangana–Baleanu fractional derivatives, employ more complicated kernel functions, e.g., exponential and Mittag–Leffler functions. As a result, different fractional derivatives describe the effect of the past state, i.e., memory effect, of an arbitrary system in different manners. The applications of the fractional calculus concept and fractional derivatives can be found in many research areas, e.g., biomedical engineering [11, 12], control system [13–15], electrical/electronic engineering [16–30], and plasma physics [31, 32].

Motivated by the generalization of memristor kinetics, we generalize the kinetics of the meminductor and memcapacitor which are commonly referred to as memreactance [33–35] and have been adopted in many applications, e.g., electronic oscillator [36] and synaptic circuit [37, 38], in the fractional-order domain by applying the fractional calculus concept to the state equation of the memreactance and perform the modelling of such memreactance. By using the obtained results, the meminductances, memcapacitances, and related parameters due to both DC and periodic input waveforms have been derived. Moreover, the behavioral analysis has been thoroughly performed with the aid of numerical simulation with MATHEMATICA. The effects of fractional-order kinetics have been explored where both linear and nonlinear dopant drift scenarios have been considered. The emulation of memreactance with fractional-order kinetics by using the memristor and the effect of the fractional-order kinetics on the memreactance-based circuits have also been mentioned. In addition, the extension of our results to the fractional-order memreactance which employs the interpolate characteristics between the memristor and the memreactance has also been presented.
In the following section, the overview of both the meminductor and the memcapacitor will be briefly given followed by the proposed fractional domain generalization and mathematical model in Section 3. The resulting meminductances, memcapacitances, and related parameters due to various input waveforms and the behavioral analysis will be given in Section 4 where the DC waveform will be firstly treated followed by the periodic ones. The emulation by using the memristor will be discussed in Section 5. Moreover, the effect of the fractional-order kinetics on the memreactance-based circuits will be studied in Section 6, and the extension of our results to the fractional-order memreactance will be shown in Section 7. Finally, the conclusion will be drawn in Section 8.

2. The Overview of Meminductor and Memcapacitor

Meminductor and memcapacitor are nonlinear electrical circuit elements. They can be simply thought of as the inductor and capacitor with memory. The meminductor relates the time integral of flux ($\phi(t)$) and instantaneous charge ($q(t)$) through the following constitutive relation [5]:

$$L_M(t) = \frac{d\phi(t)}{dq(t)},$$

(1)

where $L_M(t)$ denotes the memductance. Since we assume the electromechanical model of the meminductor and the current controlled operation [39] in this work, $L_M(t)$ can be given in terms of its minimum and maximum values denoted by L_{min} and L_{max} and the state variable ($x_L(t)$) as

$$\sqrt{L_M(t)} = \sqrt{L_{\text{min}}} + x_L(t) (\sqrt{L_{\text{max}}} - \sqrt{L_{\text{min}}}),$$

(2)

where $x_L(t)$ can be given in terms of the meminductor’s current ($i(t)$) and mobility factor (k_L) by (3) if the linear dopant drift model has been assumed. Note also that $f(x_L(t))$ stands for the window function which has been used for modelling the boundary effect of the device.

$$\frac{dx_L(t)}{dt} = k_L i(t) f(x_L(t)).$$

(3)

On the contrary, the memcapacitance links the instantaneous flux ($\phi(t)$) to the time integral of charge ($\sigma(t)$) by using the following relationship [5]:

$$D_M(t) = \frac{d\phi(t)}{d\sigma(t)},$$

(4)

where $D_M(t)$ denotes the inverse memcapacitance or memelestance. In this research, the principle of memcapacitor physical operation proposed in [40] which is charge controlled has been assumed. As a result, $D_M(t)$ can be in terms of the minimum and maximum of $D_M(t)$, i.e., D_{min} and D_{max} and the memcapacitor’s state variable ($x_C(t)$) as

$$D_M(t) = D_{\text{min}} + x_C(t) (D_{\text{max}} - D_{\text{min}}),$$

(5)

where $x_C(t)$ can be given in terms of $q(t)$ and the memcapacitor’s mobility factor (k_C) based on the linear dopant drift model by (6). Similarly to $f(x_L(t))$, $f(x_C(t))$ denotes the window function of the memcapacitor.

$$\frac{dx_C(t)}{dt} = k_C q(t) f(x_C(t)).$$

(6)

3. The Generalization and Mathematical Modelling of Memreactance with Fractional-Order Kinetics

After a careful consideration of (2), (3), (5), and (6), it has been found that the memreactance can be mathematically defined by using the following equation:

$$y(t) = y_{\text{min}} + x(t) (y_{\text{max}} - y_{\text{min}}),$$

(7)

where

$$\frac{dx(t)}{dt} = k f(x(t)) z(t),$$

(8)

where, $f[]$ stands for the integral operator of arbitrary order a and $f(x(t))$ stands for the window function. It should be mentioned here that $a = 0, k = k_L, x(t) = x_L(t), y(t) = \sqrt{L_M(t)}, y_{\text{min}} = \sqrt{L_{\text{min}}}$, and $y_{\text{max}} = \sqrt{L_{\text{max}}}$ if the memreactance under consideration is a meminductor. For the memcapacitor on the contrary, $a = 1, k = k_C, x(t) = x_C(t), y(t) = D_M(t), y_{\text{min}} = D_{\text{min}}$, and $y_{\text{max}} = D_{\text{max}}$.

For the memreactance with fractional-order kinetics, we replace d/dt in (8) by the fractional-order derivative of arbitrary real order α, i.e., $D^\alpha[]$. Therefore, we obtain

$$D^\alpha [x(t)] = kf(x(t)) z(t),$$

(9)

where $z(t) = f^\alpha[i(t)]$.

If the linear dopant drift has been assumed, the rectangular window function [2], which is linear, will be adopted. Such window function can be given by

$$f(x(t)) = \begin{cases} 1, & 0 \leq x(t) \leq 1, \\ 0, & (x(t)<0) \land (x(t)>1). \end{cases}$$

(10)

Therefore, (9) becomes

$$D^\alpha [x(t)] = \begin{cases} k z(t), & 0 \leq x(t) \leq 1, \\ 0, & (x(t)<0) \land (x(t)>1). \end{cases}$$

(11)

By taking $D^\alpha[]$ for both sides of this equation and keeping the above definition of $z(t)$ in mind, we have

$$D^{a \alpha}[x(t)] = \begin{cases} k i(t), & 0 \leq x(t) \leq 1, \\ 0, & (x(t)<0) \land (x(t)>1). \end{cases}$$

(12)

Since a can be either 0 or 1, we finally obtain

$$D^\beta[x(t)] = \begin{cases} k i(t), & 0 \leq x(t) \leq 1, \\ 0, & (x(t)<0) \land (x(t)>1), \end{cases}$$

(13)

where $\beta = \alpha$ for the meminductor. On the contrary, $\beta = \alpha + 1$ if the memcapacitor had been considered. At this point, it can be seen that the memreactance with fractional-order
kinetics can also be defined by using (7) but with (13) as the state equation instead of (8). By using the Riemann–Liouville fractional-order integral [8], we have

\[
x(t) = \begin{cases}
0, & x(t) < 0, \\
\frac{k}{\Gamma(\beta)} \int_0^t (t-\tau)^{\beta-1}i(\tau)d\tau, & 0 < x(t) < 1, \\
1, & x(t) \geq 1,
\end{cases}
\]

where the integral term in (14) is the Riemann–Liouville fractional-order integral. Note also that \(x(0)\) and \(\Gamma(\cdot)\) denote the initial value of \(x(t)\) and the gamma function [41], respectively.

By using (7) and (14) and keeping in mind that the initial value of \(y(t)\), i.e., \(y(0)\), can be given as

\[
y(0) = y_{\text{min}} + x(0)(y_{\text{max}} - y_{\text{min}}),
\]

we obtain

\[
y(t) \leq y_{\text{min}}, \\
y(t) = y(0) + \frac{k(y_{\text{max}} - y_{\text{min}})}{\Gamma(\beta)} \int_0^t (t-\tau)^{\beta-1}i(\tau)d\tau, & 0 < y(t) < y_{\text{max}}, \\
y(t) \geq y_{\text{max}},
\]

which can be rewritten in a more compact manner in terms of the nested \(\min\) and \(\max\) similarly to the previously proposed model of the memristor with fractional-order kinetics [7] as follows:

\[
y(t) = \min\left[\max\left[y(0) + \frac{k(y_{\text{max}} - y_{\text{min}})}{\Gamma(\beta)} \int_0^t (t-\tau)^{\beta-1}i(\tau)d\tau, y_{\text{min}} \right], y_{\text{max}} \right].
\]

On the contrary, if the nonlinear dopant drift model has been adopted, the analysis will become more complicated. Here, we adopt Jocklecar’s window function [5] which can be given by (18) where \(p \geq 1\) and \(p \in \{l\}. Note that the aforementioned rectangular window function which merely models the boundary effect in a discrete manner is approximately equivalent to Jocklecar’s window function when \(p\) approaches \(\infty\) [5].

\[
f(x(t)) = 1 - (2x(t) - 1)^{2p}. \tag{18}
\]

By using (18), (13) becomes

\[
D^\alpha x(t) = k\left(1 - (2x(t) - 1)^{2p}\right)z(t). \tag{19}
\]

As \(D^\alpha [x(t)] \stackrel{\Delta}{=} (d^a x(t)/dt^a)\), (19) can be rearranged by following [3] as

\[
\left(1 - (2x(t) - 1)^{2p}\right)^{-1} d^a x(t) = k\tau z(t)dt^a,
\]

which is equivalent to

\[
\left(1 - (2x(t) - 1)^{2p}\right)^{-1} x^{\alpha-1}(t) \frac{d^a x(t)}{d(x(t))^{\alpha}} dx(t) = k\tau z(t)dt^a.
\]

Since we define \(d^a x(t)/d(x(t))^{\alpha}\) as the \(\alpha^{th}\) order Riemann–Liouville fractional derivative [8] of \(x(t)\) with respect to \(x(t)\), we have

\[
\left(1 - (2x(t) - 1)^{2p}\right)^{-1} \frac{d^a x(t)}{d(x(t))^{\alpha}} = \frac{1}{k\tau} z(t)dt^a.
\]

As it can be, respectively, seen from (7) that \(x(t) = ((y(t) - y_{\text{min}})/(y_{\text{max}} - y_{\text{min}}))\), at \(x(0) = ((y(0) - y_{\text{min}})/(y_{\text{max}} - y_{\text{min}}))\), the relationship between \(y(t)\) and \(z(t)\) can be finally obtained as follows:
When \(p = 1 \) which means that the dopant drift is highly nonlinear [5] as the degree of nonlinearity is inversely proportional to \(p \) and \(p \geq 1 \), (26) becomes

\[
\sum_{r=0}^{\infty} \frac{\alpha^{2r+1}(t)}{2r+1} \left(\sum_{r=0}^{\infty} \frac{\alpha^{2r+1}(0)}{2r+1} \right) = 2k\Gamma(2-\alpha) \int_{0}^{t} \tau^{\alpha-1} z(\tau) d\tau,
\]

which is equivalent to

\[
\tanh^{-1}[x(t)] - \tanh^{-1}[x(0)] = 2k\Gamma(2-\alpha) \int_{0}^{t} \tau^{\alpha-1} z(\tau) d\tau.
\]

Therefore, we have the following expression of \(x(t) \):

\[
x(t) = \tanh \left[\tanh^{-1}[x(0)] + 2k\Gamma(2-\alpha) \int_{0}^{t} \tau^{\alpha-1} z(\tau) d\tau \right].
\]

By combining (7) and (30) and keeping the above expression of \(x(0) \) in mind, the following expression of \(y(t) \) can be obtained:

\[
y(t) = y_{\min} + \left(\tanh \left[\tanh^{-1} \left(\frac{y(0) - y_{\min}}{y_{\max} - y_{\min}} \right) \right] + 2k\Gamma(2-\alpha) \int_{0}^{t} \tau^{\alpha-1} z(\tau) d\tau \right) (y_{\max} - y_{\min}).
\]

(31)

However, it is very hard to obtain the exact expression of \(y(t) \) like (31) when \(p > 1 \) because it is hard to derive the exact expression of \(x(t) \) like (30). As an example for illustration, we let \(p = 2 \). Thus by using (26), we have

\[
\sum_{r=0}^{\infty} \frac{\alpha^{2r+1}(t)}{4r+1} \left(\sum_{r=0}^{\infty} \frac{\alpha^{2r+1}(0)}{4r+1} \right) = 2k\Gamma(2-\alpha) \int_{0}^{t} \tau^{\alpha-1} z(\tau) d\tau,
\]

which is equivalent to

\[
\tanh^{-1}(2x(t) - 1) - \tanh^{-1}(2x(0) - 1) = 4k\Gamma(2-\alpha) \int_{0}^{t} \tau^{\alpha-1} z(\tau) d\tau + \tanh^{-1}(2x(0) - 1) \quad (33)
\]

\[- \tanh^{-1}(2x(0) - 1).
\]

Obviously, it can be seen that \(x(t) \) is very hard to be analytically obtained. More complexity can be expected if larger values of \(p \) have been assumed.

4. Meminductance, Memcapacitance, and

Behavioral Analysis

By using our mathematical model, meminductance and memcapacitance of the fractional-order kinetic memreactance excited by various waveforms can be determined and the behavioral analysis can be analyzed where the DC waveform will be firstly considered followed by the AC ones as will be presented in the following sections.

4.1. DC Waveform. Mathematically, the DC waveform can be defined as \(i(t) = I_{DC}u(t) \), where \(I_{DC} \) and \(u(t) \) denote the magnitude of the waveform and the unit step function. If we assume the linear dopant drift which yields a linear proportional relationship between the rate of expansion/contraction of the doped region and the applied current (charge) of the meminductor (memcapacitor), the resulting \(\sqrt{L_M(t)} \) and \(D_M(t) \) can be obtained by using (17) and by keeping in mind that \(\beta = \alpha \), \(k = k_I \), \(y(t) = \sqrt{L_M(t)} \), \(y_{\min} = \sqrt{L_{\min}} \), and \(y_{\max} = \sqrt{L_{\max}} \) for the meminductor and \(\beta = \alpha + 1 \), \(k = k_C \), \(y(t) = D_M(t) \), \(y_{\min} = D_{\min} \), and \(y_{\max} = D_{\max} \) for the capacitor as follows:

\[
\sqrt{L_M(t)} = \min \left[\max \left[\sqrt{L_M(0)} + \frac{k_I(\sqrt{L_{\max}} - \sqrt{L_{\min}})I_{DC}t^\alpha}{\Gamma(\alpha + 1)}, \sqrt{L_{\min}} \right], \sqrt{L_{\max}} \right].
\]

(34)

\[
D_M(t) = \min \left[\max \left[D_M(0) + \frac{k_C(D_{\max} - D_{\min})I_{DC}t^{\alpha+1}}{\Gamma(\alpha + 2)}, D_{\min} \right], D_{\max} \right]
\]

(35)

After obtaining \(\sqrt{L_M(t)} \) and \(D_M(t) \), \(L_M(t) \) and memcapacitance (\(C_M(t) \)) can be, respectively, obtained as the square of \(\sqrt{L_M(t)} \) and reciprocal of \(D_M(t) \). By using \(L_{\min} = 1 \text{mH} \), \(L_{\max} = 20 \text{mH} \), \(L(0) = 5 \text{mH} \), \(D_{\min} = 0.1 \text{mF}^{-1} \), \(D_{\max} = 0.1 \text{GF}^{-1} \), and \(D(0) = 0.01 \text{GF}^{-1} \), \(L_M(t) \)'s and \(C_M(t) \)'s with various \(\alpha \)'s excited by the DC waveform can be numerically simulated, as depicted in Figures 1–4 where \(I_{DC} = 1 \text{A} \) has been assumed in Figures 1 and 3 and \(I_{DC} = -1 \text{A} \) has been assumed in Figures 2 and 4. Moreover, \(L_M(t) \)'s and \(C_M(t) \)'s simulated based on the SPICE models of the meminductor and memcapacitor [39, 40] with the rectangular window function have also been included in these
figures where the strong agreements between our \(L_M(t) \)'s and \(C_M(t) \)'s with \(\alpha = 1 \) and their SPICE model-based benchmarks which imply the accuracy of our simulation results can be observed. These figures also show that \(L_M(t) \) is an increasing and decreasing function of \(t \) when \(I_{\text{DC}}>0 \) and \(I_{\text{DC}}<0 \), respectively, and vice versa for \(C_M(t) \). However, both \(L_M(t) \) and \(C_M(t) \) are saturated at either \(L_{\text{max}} \) or \(L_{\text{min}} \) and \(C_{\text{max}} = 1/D_{\text{min}} \) or \(C_{\text{min}} = 1/D_{\text{max}} \) which are the maximum and minimum values of \(C_M(t) \), after certain saturation times, i.e., \(t_{\text{sat.L}} \) and \(t_{\text{sat.C}} \), for the meminductor and memcapacitor, respectively. It has also been shown that \(t_{\text{sat.L}} \) and \(t_{\text{sat.C}} \) are directly proportional to \(\alpha \).

By using the aforementioned observation, (34) and (35), we have

\[
\sqrt{L_M(0)} + \frac{k_L(\sqrt{T_{\text{max}} - \sqrt{T_{\text{min}}}})}{\Gamma(\alpha + 1)} I_{\text{DC}} t_{\text{sat.L}}^{\alpha + 1} = \left\{ \begin{array}{ll}
\sqrt{T_{\text{max}}}, & I_{\text{DC}}>0, \\
\sqrt{T_{\text{min}}}, & I_{\text{DC}}<0,
\end{array} \right.
\]

(36)

\[
D_M(0) + \frac{k_C(D_{\text{max}} - D_{\text{min}})I_{\text{DC}} t_{\text{sat.C}}^{\alpha+1}}{\Gamma(\alpha + 2)} = \left\{ \begin{array}{ll}
D_{\text{max}}, & I_{\text{DC}}>0, \\
D_{\text{min}}, & I_{\text{DC}}<0,
\end{array} \right.
\]

(37)

Therefore, \(t_{\text{sat.L}} \) and \(t_{\text{sat.C}} \) can be immediately given by

\[
t_{\text{sat.L}} = \left\{ \begin{array}{ll}
\Gamma(\alpha + 1)(\sqrt{T_{\text{max}} - \sqrt{T_{\text{min}}}}) I_{\text{DC}}^{\alpha + 1}, & I_{\text{DC}}>0, \\
\frac{\Gamma(\alpha + 1)(\sqrt{T_{\text{max}} - \sqrt{T_{\text{min}}}})}{k_L(\sqrt{T_{\text{max}} - \sqrt{T_{\text{min}}}})} I_{\text{DC}}^{\alpha + 1}, & I_{\text{DC}}<0,
\end{array} \right.
\]

(38)

\[
t_{\text{sat.C}} = \left\{ \begin{array}{ll}
\Gamma(\alpha + 2)(D_{\text{max}} - D_{\text{min}}) I_{\text{DC}}^{\alpha + 1}, & I_{\text{DC}}>0, \\
\frac{\Gamma(\alpha + 2)(D_{\text{max}} - D_{\text{min}})}{k_C(D_{\text{max}} - D_{\text{min}})} I_{\text{DC}}^{\alpha + 1}, & I_{\text{DC}}<0,
\end{array} \right.
\]

(39)

which shows that they are proportional to the size of difference between the initial and saturated memreactance values which can be either maxima or minima. So, both \(t_{\text{sat.L}} \) and \(t_{\text{sat.C}} \) reach their maximum values given, respectively, by \(t_{\text{sat,L,M}} \) and \(t_{\text{sat,C,M}} \), if and only if \(L_M(0) \) and \(D_M(0) \) reach their possible peak values given by either \(L_{\text{min}} \) and \(D_{\text{min}} \) when \(I_{\text{DC}}>0 \) or \(L_{\text{max}} \) and \(D_{\text{max}} \) when \(I_{\text{DC}}<0 \). Thus, \(t_{\text{sat,L,M}} \) and \(t_{\text{sat,C,M}} \) can be found as

\[
t_{\text{sat,L,M}} = \left\{ \begin{array}{ll}
\Gamma(\alpha + 1)(\sqrt{T_{\text{max}} - \sqrt{T_{\text{min}}}}) I_{\text{DC}}^{\alpha + 1}, & I_{\text{DC}}>0, \\
\frac{\Gamma(\alpha + 1)(\sqrt{T_{\text{max}} - \sqrt{T_{\text{min}}}})}{k_L(\sqrt{T_{\text{max}} - \sqrt{T_{\text{min}}}})} I_{\text{DC}}^{\alpha + 1}, & I_{\text{DC}}<0.
\end{array} \right.
\]

(40)

\[
t_{\text{sat,C,M,MAX}} = \frac{\Gamma(\alpha + 2)(D_{\text{max}} - D_{\text{min}})}{k_C(D_{\text{max}} - D_{\text{min}})} I_{\text{DC}}^{\alpha + 1},
\]

(41)

Now, let us assume the nonlinear dopant drift which in turn leads to a nonlinear relationship between such a rate of expansion/contraction of the doped region and the current (charge) of the meminductor (memcapacitor). By using (27), the following \(\sqrt{L_M(t)} \) and \(D_M(t) \) with arbitrary \(p \) can be obtained:

Figure 1: \(L_M(t) \) due to the DC waveform with \(I_{\text{DC}}>0 \): \(\alpha = 0.75 \) (red), \(\alpha = 1 \) (green), \(\alpha = 1.25 \) (blue), and SPICE model (black dots).

Figure 2: \(C_M(t) \) due to the DC waveform with \(I_{\text{DC}}>0 \): \(\alpha = 0.75 \) (red), \(\alpha = 1 \) (green), \(\alpha = 1.25 \) (blue), and SPICE model (black dots).

Figure 3: \(L_M(t) \) due to the DC waveform with \(I_{\text{DC}}<0 \): \(\alpha = 0.75 \) (red), \(\alpha = 1 \) (green), \(\alpha = 1.25 \) (blue), and SPICE model (black dots).

Figure 4: \(C_M(t) \) due to the DC waveform with \(I_{\text{DC}}<0 \): \(\alpha = 0.75 \) (red), \(\alpha = 1 \) (green), \(\alpha = 1.25 \) (blue), and SPICE model (black dots).
\[\sum_{r=0}^{\infty} \left(\left(\sqrt{L_M(t)} - \sqrt{L_{\text{min}}} \right) / \left(\sqrt{L_{\text{max}}} - \sqrt{L_{\text{min}}} \right) \right)^{2r+1} = \frac{2k_l I_D C (2 - \alpha) t^a}{\alpha}, \]

(42)

\[\sum_{r=0}^{\infty} \left(\left(D_M(t) - D_{\text{min}} \right) / \left(D_{\text{max}} - D_{\text{min}} \right) \right)^{2r+1} = \frac{2k_C (2 - \alpha) I_D C t^{a+1}}{\alpha + 1}. \]

(43)

If we let \(p = 1 \), the resulting \(\sqrt{L_M(t)} \) and \(D_M(t) \) can be obtained by using (31) as follows:

\[\sqrt{L_M(t)} = \sqrt{L_{\text{min}}} + \left(\text{tanh} \left(\text{tanh}^{-1} \left(\sqrt{L_{\text{max}}} - \sqrt{L_{\text{min}}} \right) / \sqrt{L_{\text{max}}} - \sqrt{L_{\text{min}}} \right) + \frac{2k_l I_D C (2 - \alpha) t^a}{\alpha} \right), \]

(44)

\[D_M(t) = D_{\text{min}} + \left(\text{tanh} \left(\text{tanh}^{-1} \left(\frac{D_M(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) + \frac{2k_C (2 - \alpha) I_D C t^{a+1}}{\alpha + 1} \right) \right)(D_{\text{max}} - D_{\text{min}}). \]

(45)

As previously done for the conventional memcapacitor with integer kinetic transport [5], we assume that the memreactance with the nonlinear dopant drift is saturated at either \(x(t) = x_{\text{on}} \), i.e., \(y(t) = y_{\text{sat,off}} \), or \(x(t) = x_{\text{off}} \), i.e., \(y(t) = y_{\text{sat,off}} \). By using (44) and keeping in mind that \(x_{\text{on}} = x_{\text{on,off}} \), \(x_{\text{off}} = x_{\text{off,off}} \), \(y_{\text{sat,off}} = \sqrt{L_{\text{sat,off}}} \), and \(y_{\text{sat,off}} = \sqrt{L_{\text{sat,off}}} \) for the meminductor, the following nonlinear dopant drift model-based saturation time of the meminductor can be obtained:

\[T_{\text{sat,L}} = \begin{cases} \frac{\alpha}{2k_l I_D C (2 - \alpha)} \left[\text{tanh}^{-1} \left(\sqrt{L_{\text{sat,off}}} - \sqrt{L_{\text{max}}} \right) - \text{tanh}^{-1} \left(\sqrt{L_{\text{sat,off}}} - \sqrt{L_{\text{min}}} \right) \right]^{1/\alpha}, & I_D C > 0, \\ \frac{\alpha}{2k_l I_D C (2 - \alpha)} \text{tanh}^{-1} \left(\sqrt{L_{\text{sat,off}}} - \sqrt{L_{\text{max}}} \right) - \text{tanh}^{-1} \left(\sqrt{L_{\text{sat,off}}} - \sqrt{L_{\text{min}}} \right) \right]^{1/\alpha}, & I_D C < 0. \end{cases} \]

(46)

On the contrary, the nonlinear dopant drift model-based saturation time of the memcapacitor can be derived by using (45) and keeping in mind that \(x_{\text{on}} = x_{\text{on,C}} \), \(x_{\text{off}} = x_{\text{off,C}} \), \(y_{\text{sat,off}} = D_{\text{sat,off}} \), and \(y_{\text{sat,off}} = D_{\text{sat,off}} \) as

\[T_{\text{sat,C}} = \begin{cases} \frac{\alpha + 1}{2k_C (2 - \alpha)} \left[\text{tanh}^{-1} \left(\frac{D_{\text{sat,off}} - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) - \text{tanh}^{-1} \left(\frac{D_{\text{sat,off}} - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) \right]^{1/(\alpha + 1)}, & I_D C > 0, \\ \frac{\alpha + 1}{2k_C (2 - \alpha)} \left[\text{tanh}^{-1} \left(\frac{D_{\text{sat,off}} - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) - \text{tanh}^{-1} \left(\frac{D_{\text{sat,off}} - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) \right]^{1/(\alpha + 1)}, & I_D C < 0. \end{cases} \]

(47)

Since the maximum saturation time occurred when the memreactance is saturated at either \(y(t) = y_{\text{on}} \) given \(y(0) = y_{\text{off}} \) or \(y(t) = y_{\text{off}} \) given \(y(0) = y_{\text{on}} \), the maximal values of \(T_{\text{sat,L}} \) and \(T_{\text{sat,C}} \) can be, respectively, given by
\[
T_{\text{sat,L,M}} = \begin{cases}
\frac{\alpha}{2k_L I_{\text{DC}} \Gamma(2 - \alpha)} & \left(\tanh^{-1}\left[\frac{\sqrt{I_{\text{off}} - I_{\text{min}}}}{\sqrt{I_{\text{max}} - I_{\text{min}}}}\right] - \tanh^{-1}\left[\frac{\sqrt{I_{\text{on}} - I_{\text{min}}}}{\sqrt{I_{\text{max}} - I_{\text{min}}}}\right]\right)^{1/a} , \quad I_{\text{DC}} > 0,

\frac{\alpha}{2k_L I_{\text{DC}} \Gamma(2 - \alpha)} & \left(\tanh^{-1}\left[\frac{\sqrt{I_{\text{off}} - I_{\text{max}}}}{\sqrt{I_{\text{max}} - I_{\text{min}}}}\right] - \tanh^{-1}\left[\frac{\sqrt{I_{\text{on}} - I_{\text{max}}}}{\sqrt{I_{\text{max}} - I_{\text{min}}}}\right]\right)^{1/a} , \quad I_{\text{DC}} < 0,
\end{cases}
\]

\[
T_{\text{sat,C,M}} = \begin{cases}
\frac{\alpha + 1}{2k_C \Gamma(2 - \alpha)} & \left(\tanh^{-1}\left[\frac{D_{\text{off}} - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}}\right] - \tanh^{-1}\left[\frac{D_{\text{on}} - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}}\right]\right)^{1/(\alpha+1)} , \quad I_{\text{DC}} > 0,

\frac{\alpha + 1}{2k_C \Gamma(2 - \alpha)} & \left(\tanh^{-1}\left[\frac{D_{\text{off}} - D_{\text{max}}}{D_{\text{max}} - D_{\text{min}}}\right] - \tanh^{-1}\left[\frac{D_{\text{on}} - D_{\text{max}}}{D_{\text{max}} - D_{\text{min}}}\right]\right)^{1/(\alpha+1)} , \quad I_{\text{DC}} < 0,
\end{cases}
\]

which can be simplified as

\[
T_{\text{sat,L,M}} = \left[\frac{\alpha}{2k_L I_{\text{DC}} \Gamma(2 - \alpha)} \left(\tanh^{-1}\left[x_{\text{L,off}}\right] - \tanh^{-1}\left[x_{\text{L,on}}\right]\right)^{1/a}\right],
\]

\[
T_{\text{sat,C,M}} = \left[\frac{\alpha + 1}{2k_C \Gamma(2 - \alpha)} \left(\tanh^{-1}\left[x_{\text{C,off}}\right] - \tanh^{-1}\left[x_{\text{C,on}}\right]\right)^{1/(\alpha+1)}\right].
\]

At this point, we simulate \(T_{\text{sat,L,M}}\), \(T_{\text{sat,C,M}}\), \(T_{\text{sat,C,M'}}\), and \(T_{\text{sat,C,M''}}\) with respect to \(I_{\text{DC}}\) by assuming that \(x_{\text{on,C}} = x_{\text{on,L}} = 0.01\) and \(x_{\text{off,C}} = x_{\text{off,L}} = 0.99\) where other parameters similar to those of the simulation of \(L_M(t)\) and \(C_M(t)\) have been adopted. The results are depicted in Figures 5 and 6 which show that these saturation times are directly proportional to \(\alpha\) but inversely proportional to the magnitude of \(I_{\text{DC}}\). It can also be seen that the memreactance with the nonlinear dopant drift except the memcapacitor with \(\alpha > 1\) takes longer time to reach saturation.

Before we proceed to the subsequent section, it should be mentioned here that

\[
T_{\text{sat,M,L}} = \frac{\left(\tanh^{-1}\left[x_{\text{L,off}}\right] - \tanh^{-1}\left[x_{\text{L,on}}\right]\right)^{1/a}}{2\Gamma(\alpha) \Gamma(2 - \alpha)},
\]

\[
T_{\text{sat,M,C}} = \frac{\left(\tanh^{-1}\left[x_{\text{C,off}}\right] - \tanh^{-1}\left[x_{\text{C,on}}\right]\right)^{1/(\alpha+1)}}{2\Gamma(2 - \alpha) \Gamma(\alpha + 1)}.
\]

4.2. Periodic Waveforms. For the sinusoidal waveform with arbitrary phase \((\theta)\), i.e., \(i(t) = I_m \sin(\omega t + \theta)\), where \(I_m\) and \(\omega\) respectively, denote its peak value and angular frequency, \(\sqrt{L_M(t)}\) with the linear dopant drift can be given by using (17) with \(\beta = \alpha\), \(k = k_L\), \(\gamma(t) = \sqrt{L_M(t)}\), \(y_{\text{min}} = \sqrt{L_{\text{min}}}\), and \(y_{\text{max}} = \sqrt{L_{\text{max}}}\), as

\[
\sqrt{L_M(t)} = \min \left[\max \left[\sqrt{L_M(0)} - \frac{k_L(\sqrt{I_{\text{min}} - \sqrt{I_{\text{max}}}I_m^2)}{\Gamma(\alpha + 1)} \sin(\theta), F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 1, \frac{1}{4}(\omega t)^2\right) + \frac{\omega t \cos(\theta)}{\alpha + 1}, F_2\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{4}(\omega t)^2\right)\right]
ight],
\]

\[
\sqrt{L_{\text{min}}}, \sqrt{L_{\text{max}}},
\]

where \(F_2(;; ;)\) denotes a generalized hypergeometric function with \(p = 1\) and \(q = 2\) [42].

At the steady state, \(\sqrt{L_M(t)}\) is reduced to the following equation which can be given by using our model and the asymptotic approximation of the sinusoidal function’s fractional-order integration [43]:

\[
\sqrt{L_M(t)} = \min \left[\max \left[\sqrt{L_M(0)} - \frac{k_L(\sqrt{I_{\text{min}} - \sqrt{I_{\text{max}}}I_m^2)}{\omega^2} \cos(\theta + 1 - \frac{\alpha}{2}) - \cos(\omega t + \theta + \frac{1 - \alpha}{2})\right]\right],
\]

\[
\sqrt{L_{\text{min}}}, \sqrt{L_{\text{max}}},
\]

By using (53) with \(\theta = \pi/2\) rad, \(I_{\text{min}} = 1\) mH, \(I_{\text{max}} = 20\) mH, and \(L(0) = 5\) mH, we can simulate the \(\rho(t)\)-\(q(t)\) and \(\varphi(t)\)-\(i(t)\) characteristics of the fractional-order kinetic meminductor with various \(\alpha’s\), as depicted in Figures 7–10 where \(I_m = 10\) mA has been assumed in Figures 7 and 9. On the contrary, \(I_m = -10\) mA has been adopted in Figures 8 and 10. Moreover, the vertical axes of these figures have been scaled up by 100 for visibility. From Figures 7 and 8, it can be seen that the one-to-one correspondence between \(\rho(t)\) and \(q(t)\) ceased to be existed when \(\alpha \neq 1\) which means that the constitutive relation of the meminductor is ambiguous when its kinetic transport is of fractional order. Therefore, the unambiguous constitutive relation which is one of the basic fingerprints of the meminductor [39] cannot be preserved by the fractional-order domain generalization.
However, despite the asymmetricities, the pinched hysteresis loop in the $\phi(t)$-$i(t)$ characteristic which is also a basic fingerprint of the meminductor can be preserved by the fractional-order domain generalization as can be seen from Figures 9 and 10 where the strong agreements between the $\phi(t)$-$i(t)$ Lissajous curve of the device with $\alpha = 1$ and the SPICE meminductor model counterpart with rectangular window function that verify our results can be observed. Moreover, it can be observed that the lobe area of the pinched hysteresis loop which refers to the memory effect and linearity is inversely proportional to α. Therefore, more memory effect and less linearity can be obtained by using the meminductor with fractional-order kinetics of lower α, and vice versa.

When the kinetic transport is fractional, the meminductor becomes unbalanced unless $\alpha \neq 1$ as it has nonzero average power consumption caused by nonzero stored energy after an integer number of periods. In order to illustrate this issue, the areas of the upper lobe and lower lobe of the
\(\varphi(t) - i(t) \) Lissajous curve, i.e., \(A_{UL} \) and \(A_{LL} \), must be firstly calculated. For doing so, we use the following equations:

\[
A_{UL} = \int_{-\theta \omega}^{(\alpha - \theta)/\omega} \varphi(t) di(t), \quad (54)
\]

\[
A_{LL} = \int_{(2\alpha - \theta)/\omega}^{(2\alpha - \theta)/\omega} \varphi(t) di(t). \quad (55)
\]

Since \(\varphi(t) = L_M(t)i(t) \), where \(i(t) = I_m \sin(\omega t + \theta) \), \(A_{UL} \) and \(A_{LL} \) can be obtained by using (53)–(55) as follows:

\[
A_{UL} = -\frac{k I_m^2 \pi}{12 \omega \alpha^2} \sin \left(\frac{\alpha \pi}{2} \right) \left(\sqrt{\frac{L_{\max}}{L_{\min}}} - \sqrt{\frac{L_{\min}}{L_{\max}}} \right)^2
\times \left[16 \omega^\alpha \sqrt{L_M(0)} + k I_m \left(\sqrt{\frac{L_{\max}}{L_{\min}}} - \sqrt{\frac{L_{\min}}{L_{\max}}} \right) \left(3 \cos \left(\frac{\alpha \pi}{2} \right) \right)
- 16 \sin \left(\frac{\alpha \pi}{2} - \theta \right) \right], \quad (56)
\]

\[
A_{LL} = -\frac{k I_m^4 \pi}{12 \omega \alpha^2} \sin \left(\frac{\alpha \pi}{2} \right) \left(\sqrt{\frac{L_{\max}}{L_{\min}}} - \sqrt{\frac{L_{\min}}{L_{\max}}} \right)^2
\times \left[16 \omega^\alpha \sqrt{L_M(0)} + k I_m \left(\sqrt{\frac{L_{\max}}{L_{\min}}} - \sqrt{\frac{L_{\min}}{L_{\max}}} \right) \right]
\times \left[16 \sin \left(\frac{\alpha \pi}{2} - \theta \right) - 3 \pi \cos \left(\frac{\alpha \pi}{2} \right) \right]. \quad (57)
\]

Therefore, \(A_{UL} + A_{LL} \) can be immediately found as

\[
A_{UL} + A_{LL} = -\frac{k^2 I_m^4 \pi}{4 \omega \alpha^2} \sin(\alpha \pi) \left(\sqrt{\frac{L_{\max}}{L_{\min}}} - \sqrt{\frac{L_{\min}}{L_{\max}}} \right)^2. \quad (58)
\]

Since \(A_{UL} \) and \(A_{LL} \) are, respectively, referred to as the energy intake and energy dissipated during the positive and negative half cycles, \(A_{UL} + A_{LL} \) refers to the total stored energy after a period and its multiple is referred to as the aforesaid net stored energy after an integer number of periods. \(A_{UL} + A_{LL} \neq 0 \), and so do its multiple and such net stored energy; thus, nonzero average power consumption is obtained and the aforementioned unbalance occurred. However, it can be seen from (51) that \(A_{UL} + A_{LL} = 0 \) and so do its multiple, the net stored energy, and the average power consumption if we let \(\alpha = 1 \). Therefore, the balance can be achieved with this specific value of \(\alpha \). It can also be seen from (56)–(58) that the total stored energy after a period, net stored energy after an integer number of periods, and average power consumption are independent of \(\theta \) despite the energy intake and energy dissipated during the positive and negative half cycles are dependent.

Despite employing fractional-order kinetic transport, the meminductor still has identical time instants at which \(\varphi(t) \) and \(i(t) \) cross zero levels; that is, the fractional-order domain generalization preserves this basic fingerprint of the meminductor. For illustration, we simulate \(\varphi(t) \) of the fractional-order meminductor with various \(\alpha \)'s, as depicted in Figures 11 and 12 where \(i(t) \) has also been included and \(\varphi(t) \)'s have been multiplied by 100 for visibility.

From Figures 11 and 12 where \(\theta = \pi/2 \) rad, \(L_{\min} = 1 \) mH, \(L_{\max} = 20 \) mH, and \(L(0) = 5 \) mH have also been assumed, it can be seen that time instants at which both \(\varphi(t) \) and \(i(t) \) cross zero levels are identical. Without regarding any specific device, we commonly denote these time instants by \(t_x \). Since \(i(t) = I_m \sin(\omega t + \theta) \), \(t_x \) can be obtained by

\[
t_x = n \pi - \theta / \omega, \quad (59)
\]

where \(n = \{1, 2, 3, \ldots \} \).

Now, the effects of the nonlinear dopant drift will be studied. By using (27), the resulting \(\sqrt{L_M(t)} \) with arbitrary \(p \) can be found as

\[
\sum_{r=0}^{\infty} \left(\sqrt{L_M(t)} - \sqrt{L_{\min}} \right) \left(\sqrt{L_{\max}} - \sqrt{L_{\min}} \right)^{2p+1} - \left(\sqrt{L_M(0)} - \sqrt{L_{\min}} \right) \left(\sqrt{L_{\max}} - \sqrt{L_{\min}} \right)^{2p+1}
= j k L_I \Gamma(2 - \alpha) w^{-\alpha} \left[\exp(j \theta) \Gamma(\alpha, j \omega t) - \exp(-j \theta) \Gamma(\alpha, j \omega t) \right], \quad (60)
\]

where \(\Gamma() \) denotes the incomplete gamma function [44].

On the contrary, \(\sqrt{L_M(t)} \) with \(p = 1 \) can be obtained by using (31) as follows:

\[
\sqrt{L_M(t)} = \sqrt{L_{\min}} + \left(\tanh^{-1} \left[\frac{\sqrt{L_M(0)} - \sqrt{L_{\min}}}{\sqrt{L_{\max}} - \sqrt{L_{\min}}} \right] + j k L_I \Gamma(2 - \alpha) w^{-\alpha} \left[\exp(j \theta) \Gamma(\alpha, j \omega t) - \exp(-j \theta) \Gamma(\alpha, j \omega t) \right] \right) \left(\sqrt{L_{\max}} - \sqrt{L_{\min}} \right). \quad (61)
\]
If we let α approach 0, $\int_0^1 \tau^{-1} z(\tau) d\tau$ approaches $\int_0^1 \tau^{-1} z(\tau) d\tau$. Thus by also, respectively, applying (27) and (31), we have

$$\begin{align*}
\sum_{r=0}^{\infty} &\left(\sqrt{L_M(t)} - \sqrt{L_{\text{min}}} \right)^{2pr+1} - \left(\sqrt{L_M(0)} - \sqrt{L_{\text{min}}} \right)^{2pr+1} \\
&= 2k_L I_m \Gamma(2 - \alpha) \left[\sin(\theta)\text{Ci}(\omega t) + \cos(\theta)\text{Si}(\omega t) \right],
\end{align*}$$

where $\text{Si}(\)$ and $\text{Ci}(\)$ stand for sine and cosine integral functions [45].

If α approaches 1 on the contrary, $\int_0^1 \tau^{n-1} z(\tau) d\tau$ approaches $\int_0^1 \tau^{-1} z(\tau) d\tau$. As a result, we have

$$\begin{align*}
\sum_{r=0}^{\infty} &\left(\sqrt{L_M(t)} - \sqrt{L_{\text{min}}} \right)^{2pr+1} - \left(\sqrt{L_M(0)} - \sqrt{L_{\text{min}}} \right)^{2pr+1} \\
&= \frac{2k_L I_m \Gamma(2 - \alpha) \cos(\omega \tau + \theta)}{\omega},
\end{align*}$$

with these results, we can simulate $L_M(t)$ with the effect of the nonlinear dopant drift as dashed curves in Figures 13 and 14 where those based on the linear dopant drift have also been included as normal curves for comparison. We also simulate the $\phi(t)-i(t)$ characteristic, as shown in Figures 15 and 16 where the dashed curves have been adopted for being
and 10, it can be seen that the nonlinear dopant drift reduces the effects of \(\alpha \) on the variation in \(L_{\text{M}}(t) \) and variation in nonlinearity of the device; that is, the device is more robust to the effects of fractional kinetic transport. We have also found that the meminductor becomes more nonlinear with increasing \(\alpha \) and with a more symmetric pinched hysteresis loop if the nonlinear dopant drift has been assumed for ceteris paribus.

At this point, the memcapacitor with fractional-order kinetics will be considered where cosinusoidal with arbitrary \(\theta \), i.e., \(i(t) = I_m \cos(\omega t + \theta) \), will be assumed. Assuming the linear dopant drift, \(D_M(t) \) can be given by using (17) with \(\beta = \alpha + 1, k = k_C \), \(\gamma(t) = D_M(t), \gamma_{\text{min}} = D_{\text{min}} \), and \(\gamma_{\text{max}} = D_{\text{max}} \) as

\[
D_M(t) = D_M(0) - \frac{k_C(D_{\text{min}} - D_{\text{max}})I_{m}^{\alpha+1}}{\Gamma(\alpha+2)} \\
\cdot \left[\sin(\theta)F_2\left(1; \frac{\alpha+1}{2} + 1, \frac{\alpha+1}{2}; 1; \frac{1}{4} \right) \right] \\
\cdot \left(\frac{\pi}{2} - \omega t - 2\theta \right)^2 \\
+ \frac{((\pi/2) - \omega t - 2\theta)\cos(\theta)}{\alpha + 2}F_2 \\
\cdot \left(1; \frac{\alpha+1}{2} + 1, \frac{\alpha+1}{2} + \frac{3}{4} \right) \left(\frac{\pi}{2} - \omega t - 2\theta \right)^2. \tag{64}
\]

Similarly to \(\sqrt{L_M(t)} \), \(D_M(t) \) is reduced to a simplified version at the steady state given by

\[
D_M(t) = D_M(0) - \frac{k_C(D_{\text{min}} - D_{\text{max}})I_{m}}{\omega^{\alpha+1}} \left[\cos\left(\frac{\theta - \alpha \pi}{2} \right) \\
- \cos\left(\frac{1 - \alpha}{2} \pi - (\omega t + \theta) \right) \right]. \tag{65}
\]

By using (65) with \(\theta = 0 \, \text{rad}, \ D_{\text{min}} = 0.1 \, \text{MF}^{-1}, \ D_{\text{max}} = 0.1 \, \text{GF}^{-1}, \) and \(D(0) = 0.01 \, \text{GF}^{-1} \), we can simulate the \(\varphi(t) - \sigma(t) \) and \(\nu(t) - q(t) \) characteristics with various \(\alpha \)'s, as shown in Figures 17–20 where \(I_m = 0.1 \, \mu\text{A} \) has been assumed in Figures 17 and 19. On the contrary, \(I_m = -0.1 \, \mu\text{A} \) has been adopted in Figures 18 and 20. Moreover, the vertical axes of
Similarly to the meminductor, it has been found that the constitutive relation of the memcapacitor with fractional-order kinetics becomes ambiguous unless \(\alpha \neq 1 \) as the one-to-one correspondence between \(\phi(t) \) and \(\sigma(t) \) ceased to exist, as shown in Figures 17 and 18. Thus, it can be stated that the fractional-order domain generalization cannot preserve the unambiguous constitutive relation which is one of the basic fingerprints of the memcapacitor [40]. However, the 2nd basic fingerprint, i.e., the pinched hysteresis loop in the \(\nu(t) - q(t) \) characteristic, can be preserved despite the asymmetry when \(\alpha \neq 1 \), as shown in Figures 19 and 20 where the strong agreements between the \(\nu(t) - q(t) \) characteristic with \(\alpha \neq 1 \) and the SPICE memcapacitor model-based counterpart with rectangular window function can be observed. Similarly to the meminductor, it can be seen that the lobe area of the pinched hysteresis loop of the memcapacitor with fractional-order kinetics is also inversely proportional to \(\alpha \). Therefore, more memory effect and less

Figure 17: \(\phi(t) - \sigma(t) \) of the memcapacitor under the periodic waveform with \(I_m > 0 \): \(\alpha = 0.75 \) (red), \(\alpha = 1 \) (green), and \(\alpha = 1.25 \) (blue).

Figure 18: \(\phi(t) - \sigma(t) \) of the memcapacitor under the periodic waveform with \(I_m < 0 \): \(\alpha = 0.75 \) (red), \(\alpha = 1 \) (green), and \(\alpha = 1.25 \) (blue).

Figure 19: \(\nu(t) - q(t) \) of the memcapacitor under the periodic waveform with \(I_m > 0 \): \(\alpha = 0.75 \) (red), \(\alpha = 1 \) (green), \(\alpha = 1.25 \) (blue), and SPICE model (black dots).

Figure 20: \(\nu(t) - q(t) \) of the memcapacitor under the periodic waveform with \(I_m < 0 \): \(\alpha = 0.75 \) (red), \(\alpha = 1 \) (green), \(\alpha = 1.25 \) (blue), and SPICE model (black dots).
linearity can also be obtained by using the memcapacitor with lower α, and vice versa.

Unlike the meminductor, we have found that the fractional-order kinetic memcapacitor is balanced. For illustration, the areas of the upper lobe and lower lobe of the $v(t)$-$q(t)$ pinched hysteresis loop, i.e., A_{UC} and A_{LC}, must be calculated by using the following equations:

$$A_{UC} = \int_{t}^{(\pi - \theta)/\omega} q(t)\, dv(t), \quad (66)$$

$$A_{LC} = \int_{(\pi - \theta)/\omega}^{\pi} q(t)\, dv(t). \quad (67)$$

Since $v(t) = D_M(t)q(t)$ and $q(t) = \int_{0}^{1} i(r)\, dr$, where $i(t) = I_m \cos(\omega t + \theta)$, A_{UC} and A_{LC} can be obtained by using (65)–(67) as follows:

$$A_{UC} = -\frac{2}{3} k_C \frac{I_m^3}{\omega\alpha^3} \sin\left(\frac{\alpha\pi}{2}\right) (D_{\max} - D_{\min}),$$

$$A_{LC} = \frac{2}{3} k_C \frac{I_m^3}{\omega\alpha^3} \sin\left(\frac{\alpha\pi}{2}\right) (D_{\max} - D_{\min}), \quad (68)$$

which show that $A_{UC} + A_{LC} = 0$. Since A_{UC} and A_{LC}, respectively, refer to the energy intake and energy dissipated during the positive and negative half cycles, $A_{UC} + A_{LC}$ and its multiple can be interpreted in a similar manner to $A_{UL} + A_{LL}$ and its multiple. So, $A_{UC} + A_{LC} = 0$ means that zero average power consumption is obtained, and therefore, the memcapacitor with fractional-order kinetics is balanced. Moreover, both A_{UC} and A_{LC} are independent of θ, and so do the energy intake and energy dissipated during the positive and negative half cycles unlike those of the fractional-order kinetic meminductor.

Finally, it can be seen that the fractional-order domain generalization preserves the 3rd basic fingerprint of the memcapacitor, i.e., identical time instants at which $v(t)$ and $q(t)$ cross zero levels. As illustrations, we simulate $v(t)$ of the fractional-order kinetic memcapacitor with various $\alpha’s$, as depicted in Figures 21 and 22 where $q(t)$ has also been included, $v(t)$’s have been divided by 10 for visibility, and $\theta = 0$ rad, $D_{\min} = 0.1$ MF, $D_{\max} = 0.1$ GF, and $D(0) = 0.01$ GF have been assumed. Obviously, these figures show that $v(t)$ and $q(t)$ employ identical $t_{\alpha0}$. Since $i(t) = I_m \cos(\omega t + \theta)$, $q(t) = (I_m/\omega)\sin(\omega t + \theta)$ as $q(t) = \int_{0}^{t} i(r)\, dr$. Therefore, $t_{\alpha0}$ can be obtained as given by (59).

Finally, the effects of the nonlinear dopant drift will be analyzed. By using (27) and (31), the resulting $D_M(t)$ with arbitrary p and $p = 1$ can be, respectively, found as

$$\sum_{r=0}^{\infty} \frac{((D_M(t) - D_{\min})/(D_{\max} - D_{\min}))^{2pr+1} - ((D_M(0) - D_{\min})/(D_{\max} - D_{\min}))^{2pr+1}}{2pr + 1} = \frac{j k c \Gamma(2 - a)I_m}{\omega \alpha^3} \left[\exp(j\theta)\Gamma(\alpha, -j\omega t) - \exp(-j\theta)\Gamma(\alpha, j\omega t)\right].$$

$$D_M(t) = D_{\min} + \left[\tanh^{-1}\left(\frac{D_M(0) - D_{\min}}{D_{\max} - D_{\min}}\right) + \frac{j k c \Gamma(2 - a)I_m}{\omega \alpha^3} \left[\exp(j\theta)\Gamma(\alpha, -j\omega t) - \exp(-j\theta)\Gamma(\alpha, j\omega t)\right]\right](D_{\max} - D_{\min}). \quad (69)$$

If α approaches 0, we have

$$\sum_{r=0}^{\infty} \frac{((D_M(t) - D_{\min})/(D_{\max} - D_{\min}))^{2pr+1} - ((D_M(0) - D_{\min})/(D_{\max} - D_{\min}))^{2pr+1}}{2pr + 1} = \frac{2k_c \Gamma(2 - a)I_m}{\omega} \left[c\sin(\theta) + s\cos(\theta)\right],$$

$$D_M(t) = D_{\min} + \left[\tanh^{-1}\left(\frac{D_M(0) - D_{\min}}{D_{\max} - D_{\min}}\right) + \frac{2k_c \Gamma(2 - a)I_m}{\omega} \left[c\sin(\theta) + s\cos(\theta)\right]\right](D_{\max} - D_{\min}), \quad (70)$$

as $\int_{0}^{t} t^{p-1} z(r)\, dr$ approaches $\int_{0}^{t} r^{-1} z(r)\, dr$.
But if α approaches 1 instead, we have

$$\sum_{r=0}^{\infty} \left\{ \left(\frac{D_M(t) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right)^{2^{pr+1}} - \left(\frac{D_M(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right)^{2^{pr+1}} \right\} \frac{2^{pr+1}}{2^{pr+1} + 1}$$

$$= - \frac{2k_C \Gamma(2 - \alpha) I_m \cos(\omega t + \theta)}{\omega^2},$$

(71)

$$D_M(t) = D_{\text{min}} + \left(\tanh \left[\tanh^{-1} \left(\frac{D_M(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) \right] - \frac{2k_C \Gamma(2 - \alpha) I_m \cos(\omega t + \theta)}{\omega^2} \right) (D_{\text{max}} - D_{\text{min}}).$$

This is because $\int_{t_0}^{t} e^{-1} \tau^{\alpha-1} \tau(\tau) d\tau$ approaches $\int_{t_0}^{t} \tau^{\alpha} d\tau$.

By keeping in mind that $C_M(t) = 1/D_M(t)$ and applying the above equations, we can simulate $C_M(t)$ affected by the nonlinear dopant drift as dashed curve in Figures 23 and 24 where those based on the linear dopant drift have been included as normal curves for comparison. We also simulate the $v(t)$-$q(t)$ characteristic, as shown in Figures 25 and 26 where the dashed curves have been used for being distinguished from the linear dopant drift-based $v(t)$-$q(t)$ depicted in Figures 19 and 20. Here, we choose $p = 1$ where $\theta = 0$ rad, $D_{\text{min}} = 0.1 \text{ MF}^{-1}$, $D_{\text{max}} = 0.1 \text{ GF}^{-1}$, and $D(0) = 0.01 \text{ GF}^{-1}$ have also been assumed for ceteris paribus.

From Figures 23–26, where strong agreements between our results with the nonlinear dopant drift and those based on the SPICE model with Jocklecar’s window function and $p = 1$ can be observed, and Figures 19 and 20, it can be seen that the nonlinear dopant drift reduces the effects of α on the variation in $C_M(t)$ and variation in nonlinearity of the device. Therefore, the memcapacitor with the nonlinear dopant drift is more robust to the effects of fractional kinetic transport. Similarly to the meminductor, the memcapacitor with the nonlinear dopant drift also becomes more nonlinear with increasing α and employs a more symmetric pinched hysteresis loop than that with the linear dopant drift.

5. The Emulation by Using Memristor

Despite employing the fractional-order kinetics, the constitutive relations of the meminductor and memcapacitor remain as given by (1) and (4). As a result, the emulation of memreactance by using the memristor and conventional memristor to meminductor/memcapacitor emulators [33, 46] remains possible. In this section, such possibility will be illustrated.

Since the constitutive relation of the memristor can be given by [5, 7]
\(M(t) = \frac{d\varphi(t)}{dq(t)} \) \((72) \)

(1) can be obtained via the following transformation:

\[p_L(t) = a\varphi_M(t), \]
\[q_L(t) = bq_M(t), \] \((73) \)

where \(a \) and \(b \) are real constants. Moreover, the subscripts \(L \) and \(M \) refer to the meminductor and memristor, respectively.

By taking differentiation with respect to \(t \) for both sides of the above transformation equations, we have

\[\varphi_L(t) = av_M(t), \]
\[i_L(t) = bi_M(t). \] \((74) \)

As \(\varphi_L(t) = \int_0^t v_L(t)\,dt \), the following transformation equations can be obtained:

\[v_L(t) = a\frac{dv_M(t)}{dt}, \]
\[i_L(t) = bi_M(t). \] \((75) \)

Since we assume that \(i_L(t) \) and \(i_M(t) \) flow in the opposite directions, \(i_L(t) = bi_M(t) \) becomes \(i_L(t) = -bi_M(t) \). After taking the Laplace transformation for both sides of the equations, the following linear transformation that transforms the memristor to the meminductor can be obtained:

\[\begin{bmatrix} V_L(s) \\ I_L(s) \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} V_M(s) \\ -I_M(s) \end{bmatrix}. \] \((76) \)

By using (76), \(L_M(t) \) can be given in terms of \(M(t) \) as follows:
\[L_M(t) = \frac{a}{b} M(t). \]

(77)

For obtaining \(L_M(t) \) exactly as given by (2) and the fractional-order kinetics, the following \(M(t) \) must be used:

\[M(t) = \frac{b}{a} \left(\sqrt{L_{\text{min}}} + x_M(t) \left(\sqrt{L_{\text{max}}} - \sqrt{L_{\text{min}}} \right) \right), \]

(78)

where \(x_M(t) \) can be mathematically defined by (19) with \(x(t) = x_M(t), z(t) = i(t), \) and \(k = k_M \). For the meminductor emulation, \(k_M = k_L \) must be satisfied.

At this point, it can be seen that the meminductor can be emulated by using the memristor and the conventional memristor to the meminductor emulator [47] despite taking the fractional-order kinetics into account. The kinetics of the memristor must be of fractional order for obtaining the memcapacitor with fractional-order kinetics.

6. The Influence of Fractional-Order Kinetics on Memreactance-Based Circuits

For studying the influence of the fractional-order kinetics on the meminductor-based circuit, the meminductor-based oscillator [36] depicted here in Figure 27 has been chosen. By taking the fractional-order kinetics of the meminductor into account, the dynamical equation of this circuit can be given as follows:

\[\frac{d u_1(t)}{d t} = A \phi(t) + B \phi(t) \rho_a(t) - C u_1(t), \]

\[\frac{d u_2(t)}{d t} = D u_2(t) - E \phi(t) - F \phi(t) \rho_a(t), \]

\[\frac{d \phi(t)}{d t} = u_2(t) - u_1(t), \]

(84)

\[D^\alpha[\rho_a(t)] = \phi(t), \]

where \(A = (L_{\text{max}}/C_1) \), \(B = (k(I_{\text{min}} - I_{\text{max}})/C_1) \), \(C = (1/C, R) \), \(D = (G/C_2) \), \(E = (L_{\text{max}}/C_2) \), and \(F = (k(I_{\text{min}} - I_{\text{max}})/C_2) \). Note also that the linear dopant drift model has been assumed in the formulation of (84) in which the voltage terms have been denoted by \(u_1(t) \) and \(u_2(t) \), for ceteris paribus as these model and voltage symbols have been assumed in [36].

According to [36], this meminductor-based oscillator with integer kinetics generates the periodic output if we let \(A = 1, B = 6, C = 4.6, D = 0.4, E = 4 \), and \(F = 1 \) and becomes chaotic when \(D = 0.7 \) and other parameters remain the same. By using (77) with \(\{A, B, C, D, E, F, u_1(0), u_2(0)\} = \{1, 6, 4.6, 0.4, 4, 1, 2.5, 0.01, 0.01, 0.01\} \) and \(\{A, B, C, D, E, F, u_1(0), u_2(0)\} = \{1, 6, 4.6, 0.4, 4, 1, 2.5, 0.01, 0.01, 0.01\} \) we can simulate \(u_2(t) \) with various \(\alpha \)'s, as depicted in Figures 28–30 and Figures 31–33. These figures show that \(u_2(t) \) remains periodic and chaotic when \(A = 1, B = 6, C = 4.6, D = 0.4, 4, 1, 2.5, 0.01, 0.01, 0.01, 0.01\} \) and \(\{A, B, C, D, E, F, u_1(0), u_2(0)\} = \{1, 6, 4.6, 0.7, 4, 1, 0.01, 0.01, 0.01, 0.01\} \), respectively, despite the incorporation of the meminductor’s fractional-order kinetics. Note that the strong agreements between \(u_2(t) \) with \(\alpha = 1 \) and that based on the conventional integer kinetics which can be obtained by allowing all derivatives to be of the conventional type [36] can be observed. It can also be seen that \(u_2(t) \) becomes more oscillatory with the increasing \(\alpha \). Therefore, it can be stated that incorporating the fractional-order kinetics can offer more degrees of freedom as the amount of oscillation becomes now controllable via \(\alpha \).

In addition, it can be seen from these simulation results that \(D \) is the most prominent control parameter of this circuit because it solely determines whether the circuit is periodic or chaotic. So, it is worthy to further explore the
effect of D on the circuit’s dynamics. In order to do so, we simulate the 3D phase portraits of $u_1(t)$, $u_2(t)$, and $\phi(t)$ by using (77). It should be mentioned here that $\rho_\alpha(t)$ is not of our interest because it is merely a fractional integral of $\phi(t)$ as can be seen from (77). Here, we assume $\{A, B, C, \alpha, E, F, u_1(0), u_2(0), \phi(0), \rho_\alpha(0)\} = \{1, 6, 4.6, 0.4, 1, 2.5, 0.01, 0.01, 0.01\}$ and let D be the bifurcation parameter. As a result, the following phase portraits can be obtained.

From Figure 34 in which $D=0.7$ has been assumed, a chaotic attractor can be observed, thus confirming the above simulation result depicted in Figure 31. In addition, we have also found by using the numerical computation with MATHEMATICA that the corresponding Lyapunov exponents are given by $LE_1=0.152939$, $LE_2=0.0294933$, $LE_3=-0.00451014$, and $LE_4=-4.00792$ where the Lyapunov dimension can be found as $D_L=3.0463$. From the Lyapunov exponents, it can be seen that a contracting volume with expansions in two directions in the phase space of the
attractor indicates that the chaotic dissipative behavior can be observed because $L_E_1 + L_E_2 + L_E_3 + L_E_4 < 0$ where $L_E_1 > 0$ and $L_E_2 > 0$. In addition, the obtained fractional number D_L states that the manifold in the phase space is a strange attractor which also indicates the chaotic behavior. From Figures 35–38, it can be seen that the circuit becomes an attractor which also indicates the chaotic behavior. From the attractor, it is evident that the chaotic dissipative behavior can be obtained if $D \leq 0.1$ has been satisfied due to the observed stable focus.

For a similar study on the memcapacitor-based circuit, the memcapacitor-based synaptic network [37] which is depicted here in Figure 39 will be considered. If a current pulse has been applied as an input to this circuit, the resulting synaptic weight, $\psi(t)$, will be given by [38]

$$
\psi(t) = \frac{D_a(t) - D_b(t)}{D_a(t) + D_b(t)},
$$

where $D_a(t) = D_{\text{min}} + \tanh \left[\tanh^{-1} \left(\frac{D_a(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) + \frac{k \Gamma (2 - \alpha) I_{\text{ap}}^{\alpha + 1}}{\alpha + 1} \right] \left(D_{\text{max}} - D_{\text{min}} \right)$, and $D_b(t) = D_{\text{min}} + \tanh \left[\tanh^{-1} \left(\frac{D_b(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) - \frac{k \Gamma (2 - \alpha) I_{\text{ap}}^{\alpha + 1}}{\alpha + 1} \right] \left(D_{\text{max}} - D_{\text{min}} \right)$.

Therefore, $\psi(t)$ with the fractional-order kinetics can be obtained as follows:

$$
\psi(t) = \frac{\tanh \left[\tanh^{-1} \left(\frac{D_a(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) + \frac{k \Gamma (2 - \alpha) I_{\text{ap}}^{\alpha + 1}}{\alpha + 1} \right] \left(D_{\text{max}} - D_{\text{min}} \right)}{2D_{\text{min}} \left[\tanh \left[\tanh^{-1} \left(\frac{D_a(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) + \frac{k \Gamma (2 - \alpha) I_{\text{ap}}^{\alpha + 1}}{\alpha + 1} \right] \left(D_{\text{max}} - D_{\text{min}} \right) \right] + \tanh \left[\tanh^{-1} \left(\frac{D_b(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) - \frac{k \Gamma (2 - \alpha) I_{\text{ap}}^{\alpha + 1}}{\alpha + 1} \right] \left(D_{\text{max}} - D_{\text{min}} \right) + \tanh \left[\tanh^{-1} \left(\frac{D_a(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) + \frac{k \Gamma (2 - \alpha) I_{\text{ap}}^{\alpha + 1}}{\alpha + 1} \right] \left(D_{\text{max}} - D_{\text{min}} \right) + \tanh \left[\tanh^{-1} \left(\frac{D_b(0) - D_{\text{min}}}{D_{\text{max}} - D_{\text{min}}} \right) - \frac{k \Gamma (2 - \alpha) I_{\text{ap}}^{\alpha + 1}}{\alpha + 1} \right] \left(D_{\text{max}} - D_{\text{min}} \right)}.
$$
By allowing $D_{m2}(0) = D_{m3}(0) = 0.009901 \text{ MF}^{-1}$ and other parameters to be similar to those of [30], $\psi(t)$ can be simulated under the assumption that $I_0 = 1 \mu\text{A}$ and the current pulse duration is 2 sec [37, 38], as depicted in Figure 40. From this figure, a strong agreement between $\psi(t)$ with $\alpha = 1$ and that with integer kinetics can be observed. It can also be seen that the circuit quality can be improved with increasing α as faster weight adjustment and more proportion of linear regions [37] can be obtained. This marks the circuit quality improvement of employing the fractional-order kinetics.

Now, we let $D_{m2}(0) = D_{m3}(0) = 0.005 \text{ MF}^{-1}$. As a result, $\psi(t)$ can be simulated, as depicted in Figure 41 where a strong agreement between $\psi(t)$ with $\alpha = 1$ and that with integer kinetics can also be observed. From this figure, it can be seen that the circuit quality can also be improved by decreasing $D_{m2}(0)$ and $D_{m3}(0)$ as the faster weight adjustment can be obtained.
\[\psi (t) = L_M(t)i(t), \]
\[q(t) = C_M(t)v(t), \]

which are the port equations of the meminductor and memcapacitor, respectively. Therefore, it can be seen that the fractional-order meminductor and fractional-order memcapacitor behave similarly to their conventional counterparts if \(\gamma = 1 \). This asserts the aforesaid statement on the interpolate characteristic of these fractional-order memreactive devices. From (92) and (93), the following port equation of the fractional-order memreactance can be generally obtained:

\[D^{1-\gamma}[u_\phi(t)] = X_M(t)u_i(t), \]

where \(\{u_i(t), u_\phi(t), X_M(t)\} \) can be either \(\{i(t), \psi(t), L_M(t)\} \) or \(\{v(t), q(t), C_M(t)\} \) for the fractional-order meminductor and fractional-order memcapacitor, respectively.

Now, we will show that our mathematical model and its related results have been found to be applicable to the fractional-order memreactance with fractional-order kinetics as they determine \(L_M(t) \) and \(C_M(t) \). Thus, the effects of fractional-order kinetics on the fractional-order memreactance can be analyzed. By using (96) with appropriate sets of variables, \(\psi(t) \) and \(v(t) \) due to arbitrary \(i(t) \) can be, respectively, found as

\[
\psi(t) = \psi(0) + \frac{1}{\Gamma(1 - \gamma)} \int_0^t (t - \tau)^{\gamma - 1} L_M(t) i(\tau) d\tau,
\]

\[
v(t) = \frac{C_M^{-1}(t)}{\Gamma(1 + \gamma)} \frac{d}{dt} \int_0^t (t - \tau)^{\gamma - 1} i(\tau) d\tau,
\]

where \(L_M(t) \) and \(C_M(t) \) can be determined by using any of our equations of \(\sqrt{L_M(t)} \) and \(D\phi(t) \) derived in Section 4 depending on the input, drift model, and assumption on \(\alpha \). Here, we assume that \(\gamma = 0.5 \) as this value is the midpoint between 0 and 1. Note that two extreme cases, i.e., \(\gamma = 0 \) and \(\gamma = 1 \), have already been considered in [7] and the previous sections of this work, respectively. This is because the fractional-order memreactance, respectively, becomes the memristor when \(\gamma = 0 \) and memreactance when \(\gamma = 1 \) as mentioned above. In addition, let \(i(t) = i_0 \sin(\omega t + \phi) \). If we allow \(\theta = \pi/2 \) rad, \(L_{\text{min}} = 1 \) mH, \(L_{\text{max}} = 20 \) mH, and \(L(0) = 5 \) mH similarly to the meminductor, the resulting asymptotic \(\psi(t) \) and \(\phi(t) \) - \(i(t) \) characteristics of the fractional-order meminductor can be simulated, as depicted in Figures 42–45 where \(\phi(0) = 0 \) Wb and nonlinear dopant drift with \(\rho = 1 \) have been assumed. From these figures, we have found that \(\psi(t) \) of the fractional-order meminductor employs a DC term which is positive if \(L_M > 0 \), and vice versa. Moreover, such a DC term has been found to be directly proportional to \(\alpha \). Note also that the fractional-order meminductor does not share the 2nd basic fingerprint of the meminductor as its \(\psi(t) - i(t) \) hysteresis loop does not pinch but takes the elliptical shape which indicates that the fractional-order meminductor with the assumed \(\gamma \) behaves like an AC resonator on the \(\psi(t) - i(t) \) plane, as can be seen from Figures 44 and 45 where the scaling has been applied to the vertical axis for visibility.

For the fractional-order memcapacitor on the contrary, we let \(\theta = 0 \) rad, \(D_{\text{min}} = 0.1 \) MF, \(D_{\text{max}} = 0.1 \) GF, and
Figure 42: $\varphi(t)$ of the fractional-order meminductor with fractional kinetics: $\alpha = 0.75$ (red), $\alpha = 1$ (green), and $\alpha = 1.25$ (blue) under the periodic input with $I_m > 0$.

Figure 43: $\varphi(t)$ of the fractional-order meminductor with fractional kinetics: $\alpha = 0.75$ (red), $\alpha = 1$ (green), and $\alpha = 1.25$ (blue) under the periodic input with $I_m < 0$.

Figure 44: $\varphi(t)$-$i(t)$ of the fractional-order meminductor with fractional kinetics: $\alpha = 0.75$ (red), $\alpha = 1$ (green), and $\alpha = 1.25$ (blue) under the periodic input with $I_m > 0$.
that the area of the hysteresis loop of the fractional-order memcapacitor is directly proportional to α; thus, less linearity can be obtained by using the fractional-order memcapacitor with higher α. This is in contrast to the behavior of the memcapacitor. Similarly to the fractional-order meminductor, the fractional-order memcapacitor does not share the 2nd basic fingerprint of the memcapacitor as its $v(t)$-$q(t)$ hysteresis loop does not pinch but takes the elliptical shape which implies that the fractional-order memcapacitor with the assumed γ behaves like an AC resonator on the $v(t)$-$q(t)$ plane.
application of our results to the fractional-order memreactance have also been presented. The results of this work have been found to be beneficial to those memelement-involved research areas.

Data Availability

The simulated data used to support the findings of this study are included within this article.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

The author would like to acknowledge Mahidol University, Thailand, for the online database service which is our primary information resource.

References

[1] L. Chua, “Memristor—the missing circuit element,” *IEEE Transactions on Circuit Theory*, vol. CT–18, no. 5, pp. 507–519, 1971.

[2] M. Di Ventra, Y. V. Pershin, and L. O. Chua, “Circuit elements with memory: memristors, memcapacitors, and meminductors,” *Proceedings of the IEEE*, vol. 97, no. 10, pp. 1717–1724, 2009.

[3] M. E. Fouda and A. G. Radwan, “On the fractional-order memristor model,” *Journal of Fractional Calculus and Applications*, vol. 4, no. 1, pp. 1–7, 2013.

[4] M. E. Fouda and A. G. Radwan, “Fractional-order memristor response under dc and periodic signals,” *Circuits, Systems, and Signal Processing*, vol. 34, no. 3, pp. 961–970, 2015.

[5] A. G. Radwan and M. E. Fouda, *On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor*, Vol. 26, Springer, Berlin, Germany, 2015.

[6] G. Si, L. Diao, J. Zhu, Y. Lei, O. Babajide, and Y. Zhang, “Modeling and character analyzing of current-controlled memristors with fractional kinetic transport,” *Communications in Nonlinear Science and Numerical Simulation*, vol. 48, pp. 224–235, 2017.

[7] R. Banchuim, “On the memristances, parameters, and analysis of the fractional order memristor,” *Active and Passive Electronic Components*, vol. 2018, Article ID 3408480, 14 pages, 2018.

[8] I. Podlubny, *Fractional Differential Equations*, Academic Press, New York, USA, 1999.

[9] M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel,” *Progress in Fractional Differentiation and Applications*, vol. 1, no. 2, pp. 73–85, 2015.

[10] A. Atangana and D. Baleanu, “New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model,” *Thermal Science*, vol. 20, no. 2, pp. 763–769, 2016.

[11] I. S. Jesus, J. A. Tenreiro Machado, and J. Boaventure Cunha, “Fractional electrical impedances in botanical elements,” *Journal of Vibration and Control*, vol. 14, no. 9-10, pp. 1389–1402, 2008.

[12] C. Tang, F. You, G. Cheng, D. Gao, F. Fu, and X. Dong, “Modeling the frequency dependence of the electrical
[45] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, vol. 204, Elsevier, Amsterdam, Netherlands, 2006.

[46] A. D. Polyanin and A. V. Manzhirov, *Handbook of Mathematics for Engineers and Scientists*, Chapman and Hall/CRC, London, UK, 2006.

[47] D. Biolek and V. Biolkova, “Mutator for transforming memristor into memcapacitor,” *Electronics Letters*, vol. 46, no. 21, pp. 1428-1429, 2010.
