Natural connections on the bundle of Riemannian metrics

R. Ferreiro Pérez and J. Muñoz Masqué
Instituto de Física Aplicada, CSIC
C/ Serrano 144, 28006-Madrid
E-mail: roberto@iec.csic.es, jaime@iec.csic.es

Abstract

Let F_M, \mathcal{M}_M be the bundles of linear frames and Riemannian metrics of a manifold M, respectively. The existence of a unique Diff_M-invariant connection form on $J^1\mathcal{M}_M \times_M FM \to J^1\mathcal{M}_M$, which is Riemannian with respect to the universal metric on $J^1\mathcal{M}_M \times_M TM$, is proved. Applications to the construction of universal Pontryagin and Euler forms, are given.

Mathematics Subject Classification 2000: Primary 53A55; Secondary 53B05, 53B21, 57R20, 58A20, 58D19.

Key words and phrases: Bundle of metrics, linear frame bundles, natural connections, universal Pontryagin forms.

Acknowledgements. Supported by the Ministerio de Educación y Ciencia of Spain, under grant #BFM2002-00141.

1 Introduction

Let $q: \mathcal{M}_M \to M$ be the bundle of Riemannian metrics of a smooth manifold M of dimension n. The goal of this paper is to prove that the bundle $q^*_1 FM \to J^1\mathcal{M}_M$, obtained by pulling the linear frame bundle FM back to the 1-jet bundle of metrics, is endowed with a unique Diff_M-invariant connection form ω—called the universal Levi-Civita connection—with the property of being Riemannian with respect to the universal metric g on $q^*_1 TM$; or equivalently, ω is the only Diff_M-invariant connection form on the subbundle OM of pairs $(u_x, j^*_x g) \in q^*_1 FM$ such that u_x is g_x-orthonormal (see Theorem 5.1 and the precise definitions below). This result is analogous to that proving the existence of a canonical connection on the principal G-bundle $J^1 P \to C(P)$, where $C(P)$ is the bundle of connections of a principal G-bundle $P \to M$ (see [2]).

As is well known (e.g., see [1]), the Levi-Civita map, which assigns its Levi-Civita connection to every Riemannian metric, is a natural map, i.e., it is Diff_M-equivariant with respect to the natural actions of the diffeomorphism
group on the space of Riemannian metrics on M and on the space of linear connections on M. This map induces a $\text{Diff} M$-invariant connection form ω_{hor} on $q^*_1FM \to J^1\mathcal{M}_M$, called the horizontal Levi-Civita connection as it is horizontal with respect to the projection $q^*_1FM = J^1\mathcal{M}_M \times_M FM \to FM$; but ω_{hor} is not a Riemannian connection, i.e., it is not reducible to OM. Surprisingly, ω is obtained by adding a contact form to ω_{hor}, thus showing that the contact structure on $J^1\mathcal{M}_M$ plays a crucial role in our construction.

The connection form ω allows us to construct the universal Pontryagin and Euler differential forms on $J^1\mathcal{M}_M$, which contain more information than the corresponding cohomology classes on M; for example the forms of degree greater than n do not vanish necessarily—unlike their cohomology classes. We also remark on the fact that such forms play the same role, in metric theory, than the universal characteristic forms introduced in \[\mathfrak{K} \] in gauge theories.

2. The bundle of the bundle of metrics

2.1 The bundle of metrics

The bundle of Riemannian metrics $q: \mathcal{M}_M \to M$ is a convex open subset in $S^2(T^*M)$ and every Riemannian metric g is identified to a global section $g: M \to \mathcal{M}_M$ of this bundle.

Every system of coordinates $(U; x^i)$ on M induces a system of coordinates $(q^{-1}U; x^i, y_{ij})$ on \mathcal{M}_M by setting $g_x = y_{ij}(g_x)(dx^i) \otimes (dx^j)$, $\forall g_x \in \mathcal{M}_M$, $x \in U$. We denote by (y^{ij}) the inverse matrix of (y_{ij}).

The diffeomorphism group of M acts in a natural way on \mathcal{M}_M by automorphisms of this bundle: The natural lift of a diffeomorphism $\phi \in \text{Diff} M$ to the bundle of metrics $\bar{\phi}: \mathcal{M}_M \to \mathcal{M}_M$ is defined by

\begin{equation}
(1) \quad \bar{\phi}(g_x) = (\phi^*)^{-1}(g_x) \in (\mathcal{M}_M)_{\phi(x)};
\end{equation}

$\phi^*: S^2T^*_{\phi(x)}M \to S^2T^*_xM$ being the induced homomorphism. Hence $q \circ \bar{\phi} = \phi \circ q$. In the same way, the lift of a vector field $X \in \mathfrak{X}(M)$ is denoted by $\bar{X} \in \mathfrak{X}(\mathcal{M}_M)$. If $X = X^i \partial / \partial x^i$, then

\begin{equation}
(2) \quad \bar{X} = X^i \frac{\partial}{\partial x^i} - \sum_{i \leq j} \left(\frac{\partial X^r}{\partial x^i} y_{kj} + \frac{\partial X^k}{\partial x^i} y_{ki} \right) \frac{\partial}{\partial y_{ij}}.
\end{equation}

2.2 Jets of metrics

Let $q_r: J^r \mathcal{M}_M \to M$ be the r-jet bundle of sections of \mathcal{M}_M and, for every $r \geq s$, let $q_{rs}: J^r \mathcal{M}_M \to J^s \mathcal{M}_M$ be the canonical projections. For every $\phi \in \text{Diff} M$ we denote by $\bar{\phi}^{(r)}$ the natural prolongation to $J^r \mathcal{M}_M$ of the lift $\bar{\phi}$ given in (1); precisely, $\bar{\phi}^{(r)}(j^r_x g) = j^r_x(\bar{\phi} \circ g \circ \phi^{-1})$. Similarly, $X^{(r)}$ denotes the jet prolongation of the lift $X \in \mathfrak{X}(\mathcal{M}_M)$ given in (2).

Let $(q_r^{-1}U; x^i, y_{ij}, y_{ij,l}, 1 \leq |l| \leq r, I \in \mathbb{N}^n)$, be the coordinate system induced by $(q^{-1}U; x^i, y_{ij})$; i.e., $y_{ij,l}(j^l_x g) = (\partial^{[l]}(y_{ij} \circ g) / \partial x^j)(x)$. If $(U; x^i)$
is a normal coordinate system for the metric g centered at x, then we have $g_{ij}(j^1_x g) = \delta_{ij}$, $g_{ij,k}(j^1_x g) = 0$.

Let us fix a coordinate system $(U; x^i)$ centered at $x \in M$, and let $\phi \in \text{Diff} M$ be a diffeomorphism such that $\phi(x) \in U$. The equations of the transformation $\tilde{\phi}^{(1)}$ are as follows:

\[
\begin{aligned}
\left(\phi^{-1} \right)^a &= x^a \circ \phi^{-1}, \\
y_{ij} \circ \tilde{\phi}^{(1)} &= y_{ab} \left(\frac{\partial (\phi^{-1})^a}{\partial x^i} \circ \phi \right) \left(\frac{\partial (\phi^{-1})^b}{\partial x^j} \circ \phi \right), \\
y_{ij,k} \circ \tilde{\phi}^{(1)} &= y_{ab,c} \left(\frac{\partial (\phi^{-1})^c}{\partial x^k} \circ \phi \right) \left(\frac{\partial (\phi^{-1})^a}{\partial x^i} \circ \phi \right) \left(\frac{\partial (\phi^{-1})^b}{\partial x^j} \circ \phi \right) \\
&\quad + y_{ab} \left(\frac{\partial (\phi^{-1})^b}{\partial x^j} \circ \phi \right) \left(\frac{\partial^2 (\phi^{-1})^a}{\partial x^i \partial x^k} \circ \phi \right) \\
&\quad + y_{ab} \left(\frac{\partial (\phi^{-1})^a}{\partial x^i} \circ \phi \right) \left(\frac{\partial^2 (\phi^{-1})^b}{\partial x^j \partial x^k} \circ \phi \right).
\end{aligned}
\]

If M is an orientable and connected manifold, we denote by $\text{Diff}^+ M$ the subgroup of orientation preserving diffeomorphisms. The manifold is said to be irreversible if $\text{Diff} M = \text{Diff}^+ M$; otherwise, the manifold is said to be reversible. Every compact, orientable and connected manifold of dimension ≤ 3 is reversible; e.g., see [7, Chapter 9, §1]. We recall the following result about extending diffeomorphisms (see [7, 10]):

Lemma 2.1. Let $\phi: U \to U$ be a diffeomorphism defined on an open neighbourhood of x in an orientable differentiable manifold M such that $\phi(x) = x$. If M is irreversible we further assume $\phi_{*,x} \in \text{Gl}^+ (T_x M)$. Then a global diffeomorphism $\tilde{\phi} \in \text{Diff} M$ exists coinciding with ϕ on a neighbourhood of x.

$\text{Diff}^+ M$ (and hence $\text{Diff} M$) acts transitively on every orientable connected manifold M. Even more, as a simple consequence of the existence of normal coordinates and Lemma 2.1 we have

Proposition 2.2. If M is an orientable and connected manifold, then the group $\text{Diff}^+ M$ acts transitively on $J^1 M$.

Let $\theta \in \Omega^1 (J^1 M, S^2 (T^* M))$ be the structure form of $J^1 M$ (see [3]), where we use the canonical identification $V(M_M) \simeq M_M \times_M S^2 (T^* M)$; i.e., $\theta_{j_{1g}} (X) = (q_{10})_*(X) - g_*(q_1_*(X))$, $\forall X \in T_{j_{1g}} J^1 M$. In local coordinates,

\[
\theta = (dy_{ij} - y_{ij,k} dx^k) \otimes dx^i \otimes dx^j.
\]

The bundle $q^*_1 TM = J^1 M \times_M TM \to J^1 M$, obtained by pulling TM back via $q_1 : J^1 M \to M$, is endowed with a universal metric given by $g_\ast \left((j^1_{2g} X), (j^1_{2g} Y) \right) = g_*(X, Y)$, $\forall X, Y \in T_x M$, which satisfies the following universal property: $(j^1 g)^* g = g$, for every Riemannian metric g on M. By means of this metric, we can identify $q^*_1 TM$ to $q^*_1 T^* M$.

3
If \(\alpha \in \Omega^*(J^1\mathcal{M}_M, T^*M) \), the element of \(\Omega^*(J^1\mathcal{M}_M, TM) \) corresponding to \(\alpha \) under this identification, is denoted by \(g^{-1}\alpha \). We have

\[
q_1^*(\text{EndTM}) \simeq q_1^*(S^2T^*M) = q_1^*(S^2T^*M) \oplus q_1^*(\wedge^2T^*M).
\]

Let \(\text{End}_S TM \) (resp. \(\text{End}_A TM \)) be the image of \(q_1^*(S^2T^*M) \) (resp. \(q_1^*(\wedge^2T^*M) \)) in \(q_1^*(\text{EndTM}) \) under the previous isomorphism. We have

\[
(5) \quad \vartheta = g^{-1}\theta \in \Omega^1(J^1\mathcal{M}_M, \text{End}_S TM).
\]

If \(\alpha \in \Omega^r(J^1\mathcal{M}_M, \text{EndTM}) \), then a decomposition exists such that \(\alpha = \alpha_S + \alpha_A \), where the forms \(\alpha_S \in \Omega^r(J^1\mathcal{M}_M, \text{End}_S TM) \), \(\alpha_A \in \Omega^r(J^1\mathcal{M}_M, \text{End}_A TM) \) are called the symmetric and anti-symmetric parts of \(\alpha \), respectively.

3 Natural connections

3.1 Linear frame bundles

Let \(\pi: FM \to M \) be the linear frame bundle of \(M \), and let \((x^i, x^j) \) be the coordinate system induced on \(\pi^{-1}U \) by a coordinate system \((U; x^h) \) in \(M \); i.e.,

\[
u u = ((\partial/\partial x^j)_x, \ldots, (\partial/\partial x^h)_x) \cdot (x^j(u)), \quad \forall u \in \pi^{-1}(x), \quad \forall x \in U.
\]

The lift of \(\phi \in \text{Diff}M \) to \(FM \) is denoted by \(\hat{\phi}: FM \to FM \), \(\hat{\phi}(u) = \phi(u) \). Analogously, \(\hat{X} \in \mathfrak{X}(FM) \) stands for the lift of \(X \in \mathfrak{X}(M) \). Let \(q_1^*FM = J^1\mathcal{M}_M \times_M FM \) be the pull-back of \(FM \) to \(J^1\mathcal{M}_M \) via \(q_1: J^1\mathcal{M}_M \to M \). There are two canonical projections

\[
q_1^*FM \xrightarrow{\hat{q}_1} FM \quad \xrightarrow{\pi} \quad J^1\mathcal{M}_M \xrightarrow{\hat{q}_1} M
\]

The first projection \(\hat{\pi}: q_1^*FM \to J^1\mathcal{M}_M \) is a principal \(GL(n, \mathbb{R}) \)-bundle with respect to the induced action, given by \((j_1^h g, u) \cdot A = (j_2^h g, u \cdot A), \quad \forall j_2^h g \in J^1\mathcal{M}_M, \quad \forall u \in F_{\mathcal{M}}, \quad \forall A \in GL(n, \mathbb{R}) \), and the second projection \(\hat{q}_1: q_1^*FM \to FM \) is \(GL(n, \mathbb{R}) \)-equivariant.

The diffeomorphism group \(\text{Diff}M \) acts on \(\mathcal{M}_M \) and on \(FM \) as explained above; hence it acts on \(q_1^*FM \) by the induced action. If \(\phi \in \text{Diff}M \) its lift to \(q_1^*FM \) is \(\hat{\phi} = (\tilde{\phi}^{(1)}, \tilde{\phi}) \). Similarly, if \(X \in \mathfrak{X}(M) \) we denote by \(\hat{X} \) its lift to \(q_1^*FM \). As \(\hat{q}_1 \) is a \(\text{Diff}M \)-equivariant map we have \((\hat{q}_1)_*(\hat{X}) = \hat{X} \). For every \(t \in \mathbb{R} \), we define \(\varphi_t \in \text{AutFM} \) (resp. \(\varphi_t \in \text{Diff}(J^1\mathcal{M}_M) \), resp. \(\varphi_t \in \text{Aut}(q_1^*FM) \)) by

\[
\varphi_t(u) = \exp(-\frac{t}{2}) \cdot u,
\]

\[
\hat{\varphi}_t(j_1^h g) = j_1^h (\exp(t) \cdot g),
\]

\[
\hat{\varphi}_t(j_2^h g, u) = (j_2^h (\exp(t) \cdot g), \exp(-\frac{t}{2}) \cdot u).
\]

We denote by \(\xi \in \mathfrak{X}(FM) \) (resp. \(\xi \in \mathfrak{X}(J^1\mathcal{M}_M) \), resp. \(\hat{\xi} \in \mathfrak{X}(q_1^*FM) \)) the infinitesimal generator of the 1-parameter group \((\varphi_t) \) (resp. \((\varphi_t) \), resp. \((\hat{\varphi}_t) \)) defined above. We have \(q_1*(\xi) = 0, \hat{q}_1*(\hat{\xi}) = \xi \), and \(\pi_*(\hat{\xi}) = \xi \). Hence, the group
\(\mathcal{G} = \text{Diff}M \times \mathbb{R} \) acts on the principal \(\text{Gl}(n, \mathbb{R}) \)-bundle \(\pi : q^*_1FM \to J^1\mathcal{M}_M \). by automorphisms. If \((\phi, t) \in \mathcal{G}\), we set \(\hat{\phi}_t = \phi \circ \hat{\varphi}_t = \hat{\varphi}_t \circ \phi \). This action induces a \(\mathcal{G} \)-action on the associated bundles to \(q^*_1FM \), (such as \(q^*_1TM \), \(q^*_1T^*M \), etc.), and on the space of sections and differential forms with values on such bundles.

Proposition 3.1. The universal metric \(g \in \Omega^0(J^1\mathcal{M}_M, S^2T^*M) \) on the bundle \(q^*_1TM \), is invariant under the action of the group \(\mathcal{G} = \text{Diff}M \times \mathbb{R} \) defined above.

Proof. Let \(\tilde{g} \in \Omega^0(q^*_1FM, S^2(\mathbb{R}^n)^*) \) be the \(\text{Gl}(n, \mathbb{R}) \)-invariant function on \(q^*_1FM \) corresponding to \(g \). Let \((e_i)\) be the standard basis on \(\mathbb{R}^n \) and let \((e^i)\) be its dual basis. For every \(j^1_xg \in J^1\mathcal{M}_M \) and every frame \(u_x = (X_1, \ldots, X_n) \in FM_n \) we have \(\tilde{g}(j^1_xg, u_x) = g_x(X_1, X_j)e^i \otimes e^j \). Hence, for every \((\phi, t) \in \mathcal{G}\), we have

\[
\left(\tilde{\phi}^*_t \tilde{g} \right)(j^1_xg, u_x) = \tilde{g}(\phi_t^{-1}(j^1_xg), \phi_t u_x)
= (\phi_t^{-1})^* g_{\phi(tx)}(\phi_t X_1, \phi_t X_j)e^i \otimes e^j
= g_x(X_1, X_j)e^i \otimes e^j
= \tilde{g}(j^1_xg, u_x).
\]

\(\Box \)

3.2 The horizontal Levi-Civita connection

We denote by \(\pi : F_qM \to M \) the orthonormal frame bundle with respect to a Riemannian metric \(g \) on \(M \), which is a reduction of group \(O(n) \) of the bundle \(FM \). We denote by \(\Gamma^g \) the Levi-Civita connection of \(g \); i.e., the only symmetric connection on \(F_qM \). If there is no risk of confusion we also denote by \(\Gamma^g \) its direct image with respect to the canonical injection \(F_qM \hookrightarrow FM \) (see [3, II, Proposition 6.1]). Analogously, \(\omega^g \) denotes the connection form of both connections, and \(\nabla^g \) the covariant derivation law with respect to \(\Gamma^g \) on the associated vector bundles.

Proposition 3.2. The \(\text{gl}(n, \mathbb{R}) \)-valued 1-form on \(q^*_1FM \) defined by

\[
\omega_{\text{hor}}(X) = \omega^g((\bar{q}_1)_*X), \forall X \in T(j^1_xFM),
\]

is a connection form on the principal \(\text{Gl}(n, \mathbb{R}) \)-bundle \(\pi : q^*_1FM \to J^1\mathcal{M}_M \).

Proof. The definition makes sense as \(\omega^g|_{\pi^{-1}(x)} \) depends only on \(j^1_xg \). We check the two characteristic properties of a connection form.

1. For every \(A \in \text{gl}(n, \mathbb{R}) \) we have

\[
\omega_{\text{hor}}(A_{j^1_xFM}) = \omega^g((\bar{q}_1)_*A_{j^1_xFM}) \quad \text{by the definition of } \omega_{\text{hor}}
= \omega^g(A_{\bar{q}_1}) \quad \text{as } \bar{q}_1 \text{ is equivariant}
= A \quad \text{as } \omega^g \text{ is a connection form}
\]

2. For every \(A \in \text{Gl}(n, \mathbb{R}) \) and \(X \in TFM_{j^1\mathcal{M}_M} \), we have
\[(R^*_A \omega_{\text{hor}})(X) = \omega_{\text{hor}}((R_A)_*X) = \omega^g((\bar{q}_1)_*(R_A)_*X) = \omega^g((R_A)_*(\bar{q}_1)_*X) \quad \text{as } \bar{q}_1 \text{ is equivariant}
\]
\[= (\text{Ad}_{A^{-1}} \circ \omega^g)((\bar{q}_1)_*X) \quad \text{as } \omega^g \text{ is a connection form}
\]
\[= (\text{Ad}_{A^{-1}} \circ \omega_{\text{hor}})(X).
\]

Remark 3.3. The bundle of orthonormal frames cannot be used in the preceding definition as it depends on the metric chosen. Below, we show that, in fact, \(\omega_{\text{hor}}\) is not reducible to the bundle of orthonormal frames, although a new connection form \(\omega\) can be defined, which will be reducible to this bundle.

The connection \(\omega_{\text{hor}}\) induces a derivation law \(\nabla_{\omega_{\text{hor}}}\) in the associated bundles to \(q_1^*FM\); in particular, on \(q_1^*TM\), \(q_1^*T^*M\), etc. In local coordinates we have
\[
\nabla_{\omega_{\text{hor}}} X = (dX^i + \Gamma^i_{jk} X^j dx^k) \otimes \frac{\partial}{\partial x^i},
\]
\[
\nabla_{\omega_{\text{hor}}} \alpha = (d\alpha_i - \Gamma^i_{jk} \alpha_k dx^k) \otimes dx^i,
\]
(6)
\[
\Omega_{\text{hor}} = (d\Gamma^i_{jk} \wedge dx^k + \Gamma^i_{as} \Gamma^s_{jk} dx^s \wedge dx^r) dx^i \otimes \frac{\partial}{\partial x^i},
\]
where \(X = X^i \partial/\partial x^i \in \Omega^0(J^1M, TM), \alpha = \alpha_i dx^i \in \Omega^0(J^1M, T^*M), \)
(7)
\[
\Gamma^i_{jk} = \frac{1}{2} y^a_{ij,k} + y^a_{ak,j} - y^a_{jk,i},
\]
and \(\Omega_{\text{hor}}\) is the curvature form of \(\omega_{\text{hor}}\).

Proposition 3.4. The connection form \(\omega_{\text{hor}}\) satisfies the following properties:

1. If \(\sigma_g: FM \to q_1^*FM\) is the equivariant section induced by a Riemannian metric \(g\) (i.e., \(\sigma_g(u_x) = (j_x^*g, u_x))\), then \(\sigma_g^*\omega_{\text{hor}}\) is the Levi-Civita connection form of \(g\).
2. The form \(\omega_{\text{hor}}\) is invariant under the action of the group \(G = \text{Diff}M \times \mathbb{R}\) on \(q_1^*FM\).
3. \(\nabla_{\omega_{\text{hor}}} g = \theta\).

Proof. (1) Let \(X \in T_{u_x}FM\). As \(\bar{q}_1 \circ \sigma_g = \text{id}_{FM}\), we have
\[
(\sigma_g^*\omega_{\text{hor}})(X) = \omega_{\text{hor}}(\sigma_g(X)) = \omega^g(\bar{q}_1 \circ \sigma_g(X)) = \omega^g((\bar{q}_1 \circ \sigma_g)_*(X)) = \omega^g(X).
\]
(2) First recall that if \(\phi \in \text{Diff}M \) and \(\omega^g \) is the Levi-Civita connection of the metric \(g \), then \((\tilde{\phi}^{-1})^*\omega^g = \omega^{\phi^*g}\) is the Levi-Civita connection of the metric \(\phi \cdot g = \phi \circ g \circ \phi^{-1} \). In the same way, if \(t \in \mathbb{R} \), then \((\tilde{\phi}^{-1})^*\omega^g\) is the Levi-Civita connection of the metric \(\exp(t) \cdot g \). From the definition of \(\omega_{\text{hor}} \), for every \(X \in T_{(j,g,u)}q^*_1FM \), and \((\phi, t) \in G\) we have

\[
(\tilde{\phi}_t^* \omega_{\text{hor}})(X) = (\omega_{\text{hor}})(\tilde{\phi}_t^* X) \\
= \omega^{\phi^* g}(\tilde{q}_1 \circ \tilde{\phi}_t \circ X) \\
= \left((\tilde{\phi}_t^{-1})^* \omega^g \right) (\tilde{\phi}_t \circ \tilde{q}_1 \circ X) \\
= \omega^g(\tilde{q}_1 \circ X) \\
= \omega_{\text{hor}}(X).
\]

(3) In local coordinates, we have

\[
\nabla^{\omega_{\text{hor}}} g = \left(dy_{ij} - \left(y^a_{ij} \Gamma^a_{ki} + y^a_{ai} \Gamma^a_{kj} \right) dx^k \right) \otimes dx^j \otimes dx^i \\
= \left(dy_{ij} - y_{ij,k} dx^k \right) \otimes dx^j \otimes dx^i,
\]

where we have used the equation

\[
y_{ij,k} = y_{a,j} \Gamma^a_{ki} + y_{a,i} \Gamma^a_{kj},
\]

and we conclude by virtue of the formula (4).

\[
(8)
\]

3.3 The universal Levi-Civita connection

The connections on \(q^*_1FM \) are an affine space modelled over \(\Omega^1(J^1M, \text{End} T M) \). Furthermore, as \(\vartheta \in \Omega^1(J^1M, \text{End} T M) \), we can define a connection form on \(q^*_1FM \) as follows:

\[
\omega = \omega_{\text{hor}} + \frac{1}{2} \vartheta.
\]

The connection form \(\omega \) is called the universal Levi-Civita connection.

The following lemma can be proved by computing in local coordinates:

Lemma 3.5. If \(\alpha \in \Omega^1(J^1M, \text{End} T M) \), then \(\nabla^{\omega_{\text{hor}} + \alpha} g = \nabla^{\omega_{\text{hor}}} g - 2 \alpha_S \).

The next theorem states the basic properties of the universal Levi-Civita connection and it is analogous to Proposition 3.4.

Theorem 3.6. The connection form \(\omega \) satisfies the following properties:

1. With the notations of Proposition 3.4 for any Riemannian metric \(g \), the form \(\sigma^*_g \omega \) is the Levi-Civita connection form of \(g \).
2. The form \(\omega \) is invariant under the action of \(G = \text{Diff}M \times \mathbb{R} \) on \(q^*_1FM \).
3. If \(\nabla^\omega \) is the derivation law induced by \(\omega \), then

\[
(9) \quad \nabla^\omega g = 0.
\]
Proof. (1) Follows from Proposition $\S 3.4$ and from the fact that $(j^1 g)^* \vartheta = 0$.

(2) From Proposition $\S 3.1$ and Proposition $\S 3.1$ (2), we know that ω_{hor} and g are G-invariant. Moreover, from Proposition $\S 3.1$ (3) we have $\theta = \nabla^{\omega_{\text{hor}}} g$, and hence θ, as well as $\vartheta = g^{-1} \theta$, are also G-invariant. Hence $\omega = \omega_{\text{hor}} + \frac{1}{2} \vartheta$ is G-invariant.

(3) It is a consequence of Lemma $\S 3.5$ and Proposition $\S 3.1$ (3). □

Let $OM \to J^1 M_M$ be the reduction of $q_1^* FM$ to the subgroup $O(n)$ given by $OM = \{(u_x, j_x^1 g) \in q_1^* FM: u_x \text{ is } g_x\text{-orthonormal}\}$.

The following result shows the advantage of ω over ω_{hor}.

Proposition 3.7. The connection ω is reducible to a connection on OM.

Proof. It follows from \S III, Proposition 1.5 and the formula (9). □

Proposition 3.8. If Ω is the curvature form of ω, then we have

\begin{equation}
\Omega = (\Omega_{\text{hor}})_A - \frac{1}{2} \vartheta \wedge \vartheta.
\end{equation}

Proof. As $\omega = \omega_{\text{hor}} + \frac{1}{2} \vartheta$, we have $\Omega = \Omega_{\text{hor}} + \frac{1}{2} d^\omega_{\text{hor}} \vartheta + \frac{1}{2} \vartheta \wedge \vartheta$. Hence, it suffices to prove $d^\omega_{\text{hor}} \vartheta = -\vartheta \wedge \vartheta - 2 (\Omega_{\text{hor}})_S$. Let (x^i) be a system of normal coordinates for g centered at x. By taking the covariant exterior differential with respect to ω_{hor} in the local expression $\vartheta = y^a (dy_{a_j} - y_{a_j,k} \wedge dx^k) \otimes dx^j \otimes \partial / \partial x^i$, and evaluating it at $j_x^1 g$, we have

\begin{equation}
(d^\omega_{\text{hor}} \vartheta)_{j_x^1 g} = (dy^a \wedge dy_{a_j} - dy_{a_j,k} \wedge dx^k)_{j_x^1 g} \otimes \left(dx^j \otimes \frac{\partial}{\partial x^i} \right)_{j_x^1 g}.
\end{equation}

Taking the exterior differential in $y^a y_{a_j} = \delta^a_j$ we obtain $dy^a = -y^b y_{b_j} dy^b$, and taking the exterior differential in the formula (8) and evaluating at $j_x^1 g$ we have $(dy_{a_j,k})_{j_x^1 g} = (d\Gamma^a_{jk})_{j_x^1 g} + (d\Gamma^a_{jk})_{j_x^1 g}$. Substituting these expressions in (11) and taking the formula (6) into account we obtain

\begin{align*}
(d^\omega_{\text{hor}} \vartheta)_{j_x^1 g} = & - \left(dy_{a_j} \wedge dy_{a_j} + (d\Gamma^a_{jk} + d\Gamma^a_{jk}) \wedge dx^k \right)_{j_x^1 g} \otimes \left(dx^j \otimes \frac{\partial}{\partial x^i} \right)_{j_x^1 g} \\
& = -\vartheta_{j_x^1 g} \wedge \vartheta_{j_x^1 g} - 2 ((\Omega_{\text{hor}})_S)_{j_x^1 g}.
\end{align*}

□

4 Universal Pontryagin and Euler forms

Let T^d_g denote the Weil invariant polynomials of degree d for the Lie group G, see \S XIII. As $OM \to J^1 M_M$ is a principal $O(n)$-bundle and ω is a connection form on this bundle, the Chern-Weil construction of the characteristic classes provides us a closed differential $(2d)$-form $f(\Omega)$ on $J^1 M_M$, by applying a Weil
polynomial \(f \in I_d^{O(n)} \) to the curvature \(\Omega \) of \(\omega \). As is well known (e.g., see [6, 8]), \(I_d^{O(n)} \) is spanned by the polynomials \(p_k \in I_{2k}^{O(n)} \), \(1 \leq k \leq \lfloor \frac{n}{2} \rfloor \), characterized by
\[
\det \left(\lambda I - \frac{1}{2\pi} X \right) = \sum p_k(X)\lambda^{n-2k}, \quad \forall X \in \mathfrak{so}(n).
\]

We define the universal \(k \)-Pontryagin form of \(M \) as \(p_k(\Omega) \in \Omega^{4k}(J^1M_M) \). Moreover, assuming \(M \) is connected and oriented, we have a principal \(SO(n) \)-bundle over \(J^1M_M \), \(O^+M = \{(u_x,j_x^2g) \in OM: u_x \text{ is positively oriented} \} \), and \(\omega \) is reducible to \(O^+M \). A well-known result (e.g., see [6] Chapter 8, [8] XII, Theorem 2.7) states that \(\mathcal{T}^{SO(n)} \) is generated by the polynomials \(\{p_k\} \) for odd \(n \), and by \(\{p_k, Pf\} \) for even \(n \), where \(Pf \in \mathcal{T}_{n/2}^{SO(n)} \) denotes the Pfaffian. For every even dimension \(n = \dim M \), we define the universal Euler form of \(M \) by setting
\[
E = (2\pi)^{-\frac{n}{2}} Pf(\Omega) \in \Omega^n(J^1M_M).
\]

From the identity \((2\pi)^{-n} Pf^2 = p_{n/2} \) we deduce \(E \wedge E = p_{n/2}(\Omega) \). The properties of \(\omega \) lead us readily to the following

Proposition 4.1. We have

1. The universal Pontryagin forms and the universal Euler form are closed.
2. The universal Pontryagin forms \(p_k(\Omega) \) (resp. the universal Euler form \(E \)) are invariant under the action of \(Diff^\ast M \times \mathbb{R} \) (resp. \(Diff^\ast M + \mathbb{R} \)) on \(J^1M_M \).
3. For any Riemannian metric \(g \) on \(M \), we have
 \[
 \begin{align*}
 (j^1g)^*(p_k(\Omega)) &= p_k(\Omega^g), \\
 (j^1g)^*(E) &= (2\pi)^{-\frac{n}{2}} Pf(\Omega^g),
 \end{align*}
 \]
 where \(\Omega^g \) denotes the curvature of the Levi-Civita connection \(\omega^g \) of \(g \).

Remark 4.2. The Euler form is not invariant under the elements of \(Diff^\ast M \) (recall that \(O^+(M) \) is invariant under \(Diff^\ast M \), but not under \(Diff^\ast (M) \)). In fact, for any \(\phi \in Diff^\ast M \) we have \(\phi^{(1)} \ast (E) = -E \).

The relation between the universal Pontryagin and Euler forms on \(J^1M_M \) and the usual Pontryagin and Euler classes on \(M \) is the same as the relation between characteristic forms and classes on the bundle of connections of a principal bundle (e.g., see [3]): The map \(q^1_\ast: H^\ast(M) \rightarrow H^\ast(J^1M_M) \) is an isomorphism with inverse map \((j^1g)^\ast: H^\ast(J^1M_M) \rightarrow H^\ast(M) \), for any Riemannian metric \(g \) on \(M \), and by [1] (3) the \(k \)-Pontryagin (resp. Euler) class of \(M \) is the image under this isomorphism of the cohomology class of the universal \(k \)-Pontryagin (resp. Euler) form.

As in the case of the bundle of connections of a principal bundle, the Pontryagin forms contain more information than the Pontryagin classes. For example, if \(4k > n \), the \(k \)-Pontryagin class vanishes, but the corresponding form does not
necessarily, as \(\dim J^1M_M > n \). For example, if \(n = 2 \), then the first Pontryagin form \(p_1(\Omega) \in \Omega^2(J^1M_M) \) does not vanish, whereas the first Pontryagin class vanishes by dimensional reasons. According to [5], these higher-order Pontryagin forms can be interpreted as closed Diff\(^+M \)-invariant differential forms on the space of Riemannian metrics on \(M \). In a forthcoming paper, we shall study these forms and their extension to equivariant cohomology in a similar way as done in [5] for the characteristic forms on the bundle of connections.

5 The universal Levi-Civita connection characterized

Theorem 5.1. The universal Levi-Civita connection \(\omega \) is the only Diff\(M \)-invariant connection form on \(q^*_1FM \to J^1M_M \) satisfying the condition \((9) \). In other words, the form \(\omega \) is the only Diff\(M \)-invariant connection form on the bundle \(OM \to J^1M_M \).

The proof of this theorem is based in the following

Lemma 5.2. The Diff\(M \)-invariant 1-forms on \(J^1M_M \), with values on \(\otimes^2T^*M \), are \(\lambda \theta + \mu \mathrm{tr} \theta \otimes g \), \(\lambda, \mu \in \mathbb{R} \). Equivalently, the only Diff\(M \)-invariant connection forms on the bundle \(q^*_1FM \to J^1M_M \) are \(\omega + \lambda \theta + \mu \mathrm{tr} \theta \otimes \text{id}_{TM} \), \(\lambda, \mu \in \mathbb{R} \).

Proof of Theorem 5.1. The universal Levi-Civita connection \(\omega \) satisfies the conditions of the statement by virtue of Theorem 3.6. Conversely, let us suppose that \(\omega \) is another Diff\(M \)-invariant connection on \(q^*_1FM \). Then, we have \(\omega = \omega + \alpha \), with \(\alpha \in \Omega^1(J^1M_M, \text{End} TM) \). Clearly, \(\alpha \) is Diff\(M \)-invariant, and from Lemma 5.2 we have \(\alpha = \lambda \theta + \mu \mathrm{tr} \theta \otimes \text{id}_{TM} \) for some \(\lambda, \mu \in \mathbb{R} \). Hence \(\nabla^\omega g = -2(\lambda \theta + \mu \mathrm{tr} \theta \otimes g) \), and consequently, \(\omega \) satisfies the condition \((9) \) if and only if \(\lambda = \mu = 0 \); i.e., if and only if \(\omega = \omega \).

Next, we state some necessary results to prove Lemma 5.2. First of all, we recall the following:

Theorem 5.3 ([11]). (Fundamental theorem of the invariant theory for the orthogonal group) Let \((v, w) \mapsto \langle v, w \rangle \) be the standard scalar product on \(V = \mathbb{R}^n \), allowing us to identify \(V \) with its dual space. We consider the tensorial representation of \(O(n) \) on \(\otimes^kV \). Then, we have

1. For \(k \) odd, the unique \(O(n) \)-invariant element of \(\otimes^kV \) is the zero element.
2. For \(k = 2l \) even, the subspace of \(O(n) \)-invariant elements on \(\otimes^kV \) is generated by the following invariant linear forms

\[
\varphi_{i_1, i_2, \ldots, i_{2l-1}, i_{2l}}(v_1, \ldots, v_{2l}) = \langle v_{i_1}, v_{i_2} \rangle \cdots \langle v_{i_{2l-1}}, v_{i_{2l}} \rangle,
\]

where \(i_1, i_2, \ldots, i_{2l-1}, i_{2l} \) stands for an arbitrary permutation of the set of indices \(1, 2, \ldots, 2l - 1, 2l \).
Theorem 5.4 ([11]). (Fundamental theorem of the invariant theory for the special orthogonal group) With the previous notations, for $k < n$, the $SO(n)$-invariants on $\otimes^k V$ coincide with $O(n)$-invariants. For $k = n$, the space of $SO(n)$-invariants is generated by the space of $O(n)$-invariants and $\wedge^n V$.

Remark 5.5. For $k = 4$, from Theorem 5.3 we conclude that the $O(n)$-invariants are generated by the following tensors:

\[
\begin{align*}
\xi_1 &= \sum_{i,j} e_i \otimes e_i \otimes e_j \otimes e_j, \\
\xi_2 &= \sum_{i,j} e_i \otimes e_j \otimes e_i \otimes e_j, \\
\xi_3 &= \sum_{i,j} e_i \otimes e_j \otimes e_j \otimes e_i.
\end{align*}
\]

Proposition 5.6. Let (e_1, \ldots, e_n) be the standard orthonormal base in $V = \mathbb{R}^n$. Consider the $O(n)$-module $E = \otimes^3 V \oplus (S^2 V \otimes (\otimes^2 V)) \oplus (S^2 V \otimes (\otimes^3 V))$.

1. The invariant elements under the action of $O(n)$ on E are

\[
(12) \quad \eta = \lambda \sum_{i,j} e_i \otimes e_i \otimes e_j \otimes e_j + \mu \sum_{i,j} e_i \otimes e_j \otimes e_i \otimes e_j, \quad \lambda, \mu \in \mathbb{R},
\]

where \otimes denotes the symmetric product.

2. For $n \geq 4$ the $SO(n)$-invariants on E coincide with the $O(n)$-invariants.

Proof. (1) Every direct summand in E is $O(n)$-invariant; hence we need only to analyze the invariants on each summand.

From Theorem 5.3 it follows that there are no invariants on $\otimes^3 V$ and on $S^2 V \otimes (\otimes^3 V)$, and the invariants on $S^2 V \otimes (\otimes^2 V)$ are obtained by linear combination of the elements cited in Remark 5.5. Hence, they are of the form $\xi = \lambda \xi_1 + \mu \xi_2 + \nu \xi_3$. Then, $\xi \in S^2 V \otimes (\otimes^2 V)$ if and only if $\mu = v$, and we obtain (12).

(2) For $n > 5$ the result follows from Theorem 5.3. For $n = 5$, from Theorem 5.3 it follows that $O(n)$-invariants and $SO(n)$-invariants coincide on $\otimes^3 V$ and on $S^2 V \otimes (\otimes^3 V)$. Moreover, since we have $\wedge^3 V \cap (S^2 V \otimes (\otimes^3 V)) = 0$, the same conclusion holds for the remaining summand $S^2 V \otimes (\otimes^2 V)$. Finally, for $n = 4$, again from Theorem 5.3 and the fact that $\wedge^4 V \cap (S^2 V \otimes (\otimes^3 V)) = 0$, it follows that there are no new invariant on $\otimes^3 V$ or on $S^2 V \otimes (\otimes^3 V)$. Also, as $-id_V \in SO(4)$ and $-(id_V) \cdot \eta = -\eta$ for all $\eta \in S^2 V \otimes (\otimes^3 V)$, we conclude that no new invariant appears on $S^2 V \otimes (\otimes^3 V)$, and the result follows.

Proof of Lemma 5.2. Let us fix a point $z_0 = j^{1}_{x_0} g_0 \in J^1 \mathcal{M}_M$, and let us consider a normal coordinate system $(U; x^i)$ centered at x_0 for the metric g_0. The expression of a covector $\eta \in \Omega^1(J^1 \mathcal{M}_M; \otimes^2 T^* M)$ at z_0 on this coordinate system is $\eta_{z_0} = (\lambda_{ah,i} dx^i + \lambda_{ab,j} dy_{ij} + \lambda_{ab,k} dy_{ij,k})_{z_0} \otimes (dx^a)_{z_0} \otimes (dx^b)_{z_0}$.

For reversible M we set $G = SO(n)$ and for irreversible M, $G = O(n)$. Given $A \in G$, we define a local diffeomorphism $\varphi_A : U \to M$ around x_0 by
\[\varphi_A(x) = A_j^i x^j, \forall x \in U. \] As \(\varphi_A \) is a linear transformation, from the expression (3) we deduce \(\varphi_A(j_{x_0}^1 g_0) = j_{x_0}^1 g_0 \) and we have
\[
\varphi_A^{-1} (dx^i)_{x_0} = (A^{-1})_a^i (dx^a)_{x_0} = \sum_a A_i^a (dx^a)_{x_0}, \\
\varphi_A^{-1} (dy_{ij})_{x_0} = A_i^a A_j^b (dy_{ab})_{x_0}, \\
\varphi_A^{-1} (dy_{ij,k})_{x_0} = A_i^a A_j^b A_k^c (dy_{abc})_{x_0}.
\]
Hence the map
\[
(dx^i)_{x_0} \mapsto e_i, \\
(dy_{ij})_{x_0} \mapsto e_i \otimes e_j, \\
(dy_{ij,k})_{x_0} \mapsto e_i \otimes e_j \otimes e_k,
\]
determines a \(G \)-module isomorphism between \(T_{x_0} J^1 M \otimes (\otimes^2 T^*_{x_0} M) \) and the space \(E \) in the statement of Proposition 5.6. The local diffeomorphism \(\varphi_A \) satisfies the conditions in Lemma 5.1, and, hence, there exists \(\phi_A \in \text{Diff}_M \) extending \(\varphi_A \) on a neighbourhood of \(x_0 \). As \(\eta \) is \(\text{Diff}_M \)-invariant we have \(\varphi_A^{-1} (\eta) = \eta \), and hence \(\varphi_A^{-1} (\eta_{x_0}) = \eta_{x_0} \) for every \(A \in G \). As \(n = \text{dim} \ M \geq 4 \) for an irreversible \(M \), from Proposition 5.6 for some \(\lambda, \mu \in \mathbb{R} \), we obtain
\[
\eta_{x_0} = \lambda \sum_{i,j} (dy_{ij})_{x_0} \otimes (dx^i)_{x_0} \otimes (dx^j)_{x_0} + \mu \sum_{i,j} (dy_{ij})_{x_0} \otimes (dx^i)_{x_0} \otimes (dx^j)_{x_0}
\]
As the point \(x_0 \in J^1 M \) is arbitrary, for certain smooth functions \(a, b \) on \(J^1 M \) we have \(\eta = a \theta + b \text{tr} \theta \otimes \mathbf{g} \). As \(\eta, \theta \) and \(\text{tr} \theta \otimes \mathbf{g} \) are \(\text{Diff}_M \)-invariant, \(a \) and \(b \) are also \(\text{Diff}_M \)-invariant and, by virtue of Proposition 2.2, they are constant.

\[\square \]

Remark 5.7. The characterization of the connection \(\omega \) given on Theorem 5.1 does not hold for higher-order jet bundles. In fact, below we sketch the proof of the existence of a natural 1-form \(\alpha \in \Omega^1 (J^3 M, \text{End}_A T M) \). Hence, \(\omega + \alpha \) is a \(\text{Diff}_M \)-invariant connection form on \(q_3^* FM \), which also satisfies the condition (9), by virtue of Lemma 3.6. Let
\[
\theta = \langle dy_{ij} - y_{ij,k} dx^k \rangle \otimes \partial/\partial y_{ij} + \langle dy_{ij,k} - y_{ij,kr} dx^r \rangle \otimes \partial/\partial y_{ij,k},
\]
be the \((q_3)^* V(q_3) \)-valued 1-form on \(J^3 M \) defining its contact structure (cf. [9]). We first notice the natural exact sequence of vector bundles over \(J^2 M \),
\[
0 \to (q_2)^* (S^2 T^* M \otimes S^2 T^* M) \overset{\iota_2}{\longrightarrow} (q_2)^* J^2 (S^2 T^* M) \to (q_2)^* J^1 (S^2 T^* M) \to 0
\]
splits naturally, as a retract \(\rho_2 : (q_2)^* J^2 (S^2 T^* M) \to (q_2)^* J^1 (S^2 T^* M) \) exists of \(\iota_2 \) given by,
\[
\rho_2 (j_2^2 g, j_2^2 h) (X_1, X_2, X_3, X_4) = \frac{1}{2} \langle \nabla \theta \rangle^2 (h) (X_3, X_4, X_1, X_2)
\]
\[\quad + \frac{1}{2} \langle \nabla \theta \rangle^2 (h) (X_4, X_3, X_1, X_2), \]

12
for all \(j^2 g \in J^2_2(\mathcal{M}) \), \(j^2 h \in J^2_2(S^2 T^*M) \), and \(X_1, \ldots, X_4 \in T_x M \). Let
\(c_{24} : (q_2)^* \otimes^4 T^*M \to (q_2)^* \otimes^2 T^*M \)
be the metric contraction of the second and fourth arguments, i.e.,
\(c_{24}(j^2 g, X_1 \otimes X_2 \otimes X_3 \otimes X_4) = (j^2 g, g(X_2, X_4)X_1 \otimes X_3) \).
By using the canonical vector-bundle isomorphism \(V(q_2) \cong (q_2)^* J^2(S^2 T^*M) \),
the form we are looking for, is defined as follows:
\(\alpha = (c_{24} \circ \rho_2 \circ \theta^3)_\lambda \).

References

[1] M. Atiyah, R. Bott, V. K. Patodi, *On the Heat Equation and the Index Theorem*, Inventiones Math. **19** (1973), 279–330.

[2] M. Castrillón López, J. Muñoz Masqué, *The geometry of the bundle of connections*, Math. Z. **236** (2001), 797–811.

[3] —, *Gauge interpretation of characteristic classes*, Math. Res. Lett. **8** (2001), 457–468.

[4] D. B. A. Epstein *Natural tensors on Riemannian manifolds*, J. Differential Geom. **10** (1975) 631–645.

[5] R. Ferreiro Pérez, *Equivariant Characteristic forms in the bundle of connections*, preprint arXiv: math-ph/0307022 (to appear in J. Geom. Phys.)

[6] V. Guillemin, S. Sternberg, *Supersymmetry and Equivariant de Rham Theory*, Springer-Verlag, Berlin Heidelberg, 1999.

[7] M. W. Hirsch, *Differential Topology*, Graduate Texts in Mathematics **33**, Springer-Verlag New York Inc., New York, 1976.

[8] S. Kobayashi, K. Nomizu, *Foundations of Differential Geometry*, John Wiley & Sons, Inc. (Interscience Division), New York, Volume I, 1963; Volume II, 1969.

[9] J. Muñoz Masqué, *Formes de structure et transformations infinitésimales de contact d’ordre supérieur*, C. R. Acad. Sci. Paris **298**, Série I, no. 8, (1984), 185–188.

[10] R. Palais, *Extending diffeomorphisms*, Proc. Amer. Math. Soc. **11** (1960) 274–277.

[11] M. Spivak, *A comprehensive Introduction to Differential Geometry*, Volume 5, Publish or Perish, Inc., Wilmington, Del., 1979.