A seven-year surveillance study of the epidemiology, antifungal susceptibility, risk factors and mortality of candidaemia among paediatric and adult inpatients in a tertiary teaching hospital in China

Zhangrui Zeng
The Affiliated Hospital of Southwest Medical University

Yinhuan Ding
The Affiliated Hospital of Southwest Medical University

Gang Tian
The Affiliated Hospital of Southwest Medical University

Kui Yang
The Affiliated Hospital of Southwest Medical University

Jian Deng
The Affiliated Hospital of Southwest Medical University

Guangrong Li
The Affiliated Hospital of Southwest Medical University

Jinbo Liu (✉ liujb2019@163.com)
The Affiliated Hospital of Southwest Medical University

Research

Keywords: candidaemia, epidemiology, paediatric patients, adult patients, risk factors

Posted Date: April 27th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-24682/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on August 14th, 2020. See the published version at https://doi.org/10.1186/s13756-020-00798-3.
Abstract

Background There are no current national estimates of the candidaemia burden in China, and epidemiological candidaemia data from the underdeveloped region of China are lacking.

Methods A 7-year retrospective study was carried out to analyse the prevalence, species distribution, antifungal susceptibility, risk factors and inpatient mortality of candidaemia among paediatric and adult patients in a regional tertiary teaching hospital in China.

Results During the seven-year study period, a total of 201 inpatients with candidaemia were identified. The median age of the patients was 65 years (range, 1 day to 92 years), and 114 of the patients (56.7%) were male; the mean annual incidence was 0.26 cases per 1,000 admissions (0.42 cases per 1,000 paediatric vs 0.24 cases per 1,000 adult admissions, P<0.05). Candida albicans was the most common fungal species (81/201, 40.3%) in all patients, Candida glabrata was the most common fungal species (18/35, 51.4%) in paediatric patients. Most isolates were susceptible to flucytosine (99.0%) and amphotericin B (99.0%), and the activity of antifungal agents against Candida species was no significant difference in satisfaction between paediatric and adult patients(P>0.05). The all-cause mortality rate was 20.4% (paediatric patients: 11.4% vs adult patients:22.3%, P>0.05). The univariate predictors of poor outcomes in paediatric patients were less than that in adult patients (4 vs 11 predictors). Respiratory dysfunction and septic shock were independent predictors of 30-day mortality in all patients.

Conclusions The epidemiological data of candidaemia in paediatric and adult patients are only different in the distribution of Candida species and the mean annual incidence of candidaemia. Flucytosine and amphotericin B could be used as the first-choice agent when there is no the result of antifungal susceptibility tests.

Background Candidaemia is the most common fungal disease among hospitalized patients worldwide and is the fourth to tenth most common bloodstream infection (BSI) in most population-based studies[1, 2]. It is associated with significant morbidity and mortality[3]. The main risk factors for candidaemia include critical illness, a long intensive care unit (ICU) length of stay, haematologic malignant disease, solid-organ transplantation, solid-organ tumours, low birth weight in neonates and preterm infants, broad-spectrum antimicrobial agent use, central venous catheterization (CVC), total parenteral nutrition, haemodialysis, abdominal surgery, and aggressive chemotherapy[1]. With the increase in related research, reports have shown that the incidence of candidaemia is age-specific, with maximum rates observed in those with older age (over 65 years)[1, 4, 5].

More than 40 Candida species can cause candidaemia in humans[6]. Five species of Candida (Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis and Candida krusei) are the most common species and account for more than 90% of all the isolates[2]. The variability in the relative proportions of Candida isolates has been associated with clinical condition or risk factors such as age, underlying comorbidities, the extensive use of antifungal agents and geography. Candida albicans is the primary cause of candidaemia and one of the most common species in many countries, Candida glabrata is the second or third most common species in the USA and Europe, and Candida parapsilosis is predominant in neonates in South America, southern Europe and Asia[2]. The global incidence of candidaemia varies from 0.3 to 5 per 1,000 admissions according to geographical region, local epidemiology, age and other factors[7]; the 30-day mortality among all patients with candidaemia has been reported to be between 22% and 70%[8], and the cost of candidaemia has been reported to be US $40,000 per patient[1, 9, 10].

In China, the epidemiology of candidaemia varies widely among different areas[11]. Epidemiological surveillance of candidaemia has focused on ICUs and single centres in China, and national surveillance systems are usually absent. Most of
the existing epidemiological surveillance of candidaemia has focused on adults or children, and little information about
general populations (including neonates, children and adults) is known. Therefore, in the present study, we performed a seven-
year retrospective study to evaluate the epidemiology, antifungal susceptibility, risk factors and mortality of candidaemia
among all inpatients in a tertiary teaching hospital in China.

Methods

Patient data collection

We conducted a retrospective observational study of electronic laboratory records. The fungal specimen data were collected
from inpatients with candidaemia in the Affiliated Hospital of Southwest Medical University (Luzhou, China), which is a 3,200-
bed tertiary care teaching hospital with 43 wards and approximately 120,000 annual admissions, from January 2013 to
December 2019. The diagnostic criteria of candidaemia were based on the guidelines for the diagnosis and treatment of Candidiasis: the expert consensus issued by the Chinese Medical Association[12]; these criteria were also in accordance with
the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)* guidelines for the diagnosis and
management of Candida diseases 2012[13, 14] and the Infectious Diseases Society of America (IDSA) Guidelines for the
Management of Candidiasis: 2016 Update[15]. For each patient, only the first episode was included in our analysis. Patient
cultures with two or more Candida species were excluded from the analysis, and all data were collected from electronic
medical records. The following data were retrospectively collected from all patients: demographic characteristics, underlying
comorbidities, Candida species, susceptibility to antifungal agents and mortality. Data on the following risk factors
associated with candidaemia were also collected: gestational age and weight of neonates, indwelling central vascular
catheter, mechanical ventilation, systemic corticosteroid treatment (a dose equivalent to prednisone 10 mg/d for at least 14
days), total parenteral nutrition, chemotherapy, abdominal surgery, ICU admission, neutropenia (absolute neutrophil count
<500 cells/μl), concomitant bacterial infections, septic shock, haemodialysis, broad-spectrum antibiotic use and treatment
with antifungal agents. The study protocol was approved by the ethics committee of the hospital (Project No. K2016004). The
need for informed consent was waived by the Clinical Research Ethics Committee.

Microorganism identification and antifungal susceptibility

According to the manufacturer's instructions, blood was inoculated into both aerobic and anaerobic BacT/AlerT 3D vials
(Bruker Diagnostics Inc., USA). All positive cultures were manually sampled and inoculated onto CHROMagar Candida
medium (CHROMagar Company, France) to ensure viability and purity. The identification of all species was confirmed by a
MicroScan WalkAway 96 Plus System (Siemens, Germany) and Microflex LT (Bruker Diagnostics Inc., USA) matrix-assisted
laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) system.

Antifungal susceptibility tests for fluconazole (FCA), itraconazole (ITR), voriconazole (VRC), flucytosine (5-FC) and
amphotericin B (AMB) were performed for all Candida strain isolates by using an ATB FUNGUS 3 kit (bioMérieux, France). The
minimal inhibitory concentrations (MICs) of the antifungal agents were judged by visualization in our laboratory according to
the manufacturer's instructions. The quality control strains were C. parapsilosis ATCC 22019 and C. krusei ATCC 6258. The
results were interpreted using the Clinical and Laboratory Standards Institute M27-A3 microbroth dilution method.

Statistical analyses

The data were analysed using Microsoft Excel (version 2016, Redmond, USA) and IBM SPSS software version 24 for Windows
(IBM, Armonk, USA). The categorical data were compared using chi-square or Fisher's exact tests. The continuous data were
analysed using Student’s t-test or Mann-Whitney U test. Multivariable logistic regression analysis was performed to identify
independent predictors of candidemia and 30-day hospital mortality. Biologically plausible variables with a value of P<0.1
according to the univariate analyses were included in the multiple logistic regression model. Statistical significance was determined using two-tailed tests, and P<0.05 was considered statistically significant.

Results

A total of 201 distinct candidaemia episodes were identified during our study period. The median age was 65 years (range 1 day -92 years), and 114 patients (56.7%) were male. Most candidaemia episodes were diagnosed in medical wards (89, 44.3%), followed by ICUs (46, 22.9%), paediatric wards (35, 17.4%) and surgical wards (31, 15.4%). Most of the patients had one or more comorbidities. Pulmonary infection (49.8%), chronic/acute renal failure (45.3%) and cardiovascular disease (42.8%) were the most common underlying comorbidities, followed by neurological diseases (38.8%), diabetes mellitus (29.9%), respiratory dysfunction (28.9%), gastrointestinal pathologies (28.9%) and chronic/acute liver disease (24.4%). Moreover, the most common underlying conditions documented prior to candidaemia were prior exposure to broad-spectrum antibiotics (89.1%), treatment with antifungal agents (56.7%), concomitant bacterial infections (54.7), total parenteral nutrition (47.3%), mechanical ventilation (43.3%), ICU/paediatric ICU (PICU)/neonatal ICU (NICU) admission (40.3%) and CVC (38.3%). In total, 53 (26.4%, 53/201) patients had received previous antifungal treatment, and paediatric patients accounted for 71.4% (25/35) of the total. The underlying comorbidities in adult patients were significantly worse than those in paediatric patients, but the number of underlying conditions in paediatric patients were significantly higher than those in adult patients, and the difference was statistically significant (P<0.05). FCA was the most frequently used empirical antifungal treatment (60/114, 52.6%). The demographic and clinical characteristics of the patients are summarized in Table 1 and Table 2.

The mean annual incidence of candidaemia was 0.26/1,000 admissions, including 0.42/1,000 paediatric admissions (1.61/1,000 neonatal admissions (<28 days), 0.06/1,000 infant admissions (28 days-1 year) and 0.04/1,000 child admissions (1 year < age < 16 years)) and 0.24/1000 adult admissions (0.09/1,000 surgical admissions, 0.30/1,000 medical admissions and 1.64/1,000 ICU admissions). According to the Candida species, the incidence of the three most commonly isolated Candida species were as follows: *C. albicans*, 0.10/1,000 admissions; *C. glabrata*, 0.09/1,000 admissions; and *C. tropicalis*, 0.04/1,000 admissions.

The most common species among all Candida species isolates was *C. albicans* (40.3%), followed by *C. glabrata* (36.3%), *C. tropicalis* (13.9%), *C. parapsilosis* (4.0%), *C. krusei* (3.0%) and others (2.5%). The distribution of Candida species in paediatric (<16 years) and adult (≥16 years) patients is shown in Table 1. In patients aged 0-16 years and 49-65 years, *C. glabrata* was the predominant species (51.4% and 41.1%, respectively), but in patients aged 17-49 and >65 years, *C. albicans* was the main species (45.7% and 56.9%, respectively). The distribution of Candida species in paediatric, surgical, internal medicine and ICU wards is shown in figure 1.

The results of *in vitro* susceptibility testing of Candida strain isolates are summarized in Table 3. All isolates were highly susceptible to AMB (99.0%) and 5-FC (99.0%). The resistance rates of ITR, VRC and FCA were 24.9% 19.4% and 18.5%, respectively. *C. tropicalis* had the highest antifungal agent resistance rate among the Candida species and was resistant to FCA (39.3%), ITR (39.3%) and VRC (42.9%). The activity of antifungal agents against Candida species was no significant difference in satisfaction between paediatric and adult patients (P>0.05). The detailed data are shown in Table 3.

The all-cause mortality rate in the 201 patients was 20.4% (41/201). The 7-day and 30-day mortality rates were 8.5% (17/201) and 17.9% (36/201), respectively. The mortality rates of *C. albicans*, *C. glabrata*, *C. tropicalis* and *C. parapsilosis* infections were 27.2% (22/81), 16.4% (12/73), 21.4% (6/28) and 12.5% (1/8), respectively. The mortality rates for paediatric wards,
medical wards, surgical wards and ICU wards were 11.4% (4/35), 22.5% (20/89), 16.1% (5/31) and 26.1% (12/46), respectively. The mortality rates for different age groups were 11.4% (4/35, 0-16 years) in paediatric patients and 22.3% (37/166>16years), 7.7% (4/52, 17-49 years), 19.6% (11/56, 50-65 years) and 37.9% (22/58, >65 years)) in adult patients.

The univariate predictors of poor outcomes due to candidaemia are shown in Table 4. For paediatric patients with candidaemia, the variables associated with 30-day mortality were as follows: length of hospital stay, respiratory dysfunction, chronic/acute renal failure and septic shock. For adult patients with candidaemia, the variables associated with 30-day mortality were as follows: age, length of hospital stay, respiratory dysfunction, pulmonary infection, cardiovascular disease, chronic/acute renal failure, other invasive catheters, mechanical ventilation, septic shock, C. albicans infection, concomitant bacterial infection and haematologic (nonmalignant) disease. The results of the multivariate analysis are listed in Table 5. Because the total number of paediatric patients (35 patients) and deaths (3 patients) were very small, multivariable logistic regression analysis was not performed in paediatric patients. Respiratory dysfunction and septic shock were independent predictors of 30-day mortality in all patients and adult patients. The length of hospital stay was a protective factor for 30-day mortality in all patients and adult patients, and other invasive catheters were only the protective factor for 30-day mortality in all patients.

Discussion

This was a 7-year retrospective study of candidaemia in a regional tertiary teaching hospital in Southwest China. We not only analysed the epidemiological characteristics, including the basic information of patients, underlying comorbidities, risk factors, distribution of Candida species, antifungal agent use, antifungal agent susceptibility results and patient outcomes, but also made epidemiologically compared paediatric patients and adult patients.

Our data showed that there was no significant difference in the sex ratio, length of hospital stay or mortality between adult and paediatric patients (P>0.05). However, the proportions of underlying comorbidities in paediatric patients, including pulmonary infection, neurological diseases, congenital malformations/syndromes and haematologic (nonmalignant) disease, were higher than those in adult patients (P<0.05), and the other proportions in adult patients were similar or higher than those in paediatric patients (Table 2). There were differences in the type and number of underlying comorbidities between paediatric patients and adult patients, and the low proportion of underlying comorbidities in paediatric patients is similar to the results of other studies on paediatric candidaemia. Among the risk factors, only CVC, other invasive catheters and abdominal surgery in adult patients had higher risks than those in paediatric patients (P<0.05), and other risk factors in children had higher or similar risks as those in adult patients (Table 2). The univariate predictors of poor outcomes in paediatric patients with candidaemia were only four predictors, which was significantly less than that in adults patients (11 predictors) (Table 4). This situation has not been clearly shown in other studies, and more epidemiological investigations are needed to confirm it. The incidence of candidaemia in pediatric patients was significantly higher than that in adults (P<0.05) (Table 2), however, there was no significant difference in mortality between pediatric patients and adult patients (P>0.05) (Table 2), it is different from other studies[16, 17].

Our data showed that the median age of patients with candidaemia and the proportion of males were similar to those in other studies[8, 18-23]. Moreover, our study showed that the patients with candidaemia were hospitalized mostly in internal medicine wards, which was different from other studies that reported hospitalisation in mainly ICU wards[8, 22, 24-27], and similar to other studies[28-31]. This phenomenon may be related to the demographic characteristics of the inpatients in our hospital, most of whom had more than two underlying diseases and were hospitalized in internal medicine wards. However, the incidence of candidaemia was still the highest in the ICU, similar to other studies[8, 30-34]. In accordance with other
studies[17-19, 24, 25, 30, 32, 35, 36]. *C. albicans* was the most common cause of candidaemia in the whole hospital, but the proportion of non-*C. albicans* infections was higher than that of *C. albicans* infections. Moreover, the proportions of *C. glabrata* in surgical, internal medicine and paediatric wards were the highest, which was different from other studies in China[18, 19, 35-37] and similar to other studies in other countries[4, 22, 27, 29, 32]. This may be due to the large number of elderly patients and the increasing use of azole antifungal agents.

Our data showed that the incidence of candidaemia increased from 0.20 episodes/1,000 admissions in 2013 to 0.37 episodes in 2016 and then dropped to 0.26 between 2017 and 2019. The change in the annual incidence rate was mainly due to the change in the incidence rate in paediatric patients. The reasons may be due to the gradual easing of restrictions of China's two-child policy since 2013. The number of geriatric pregnant women has increased annually, resulting in an increase in the incidence of neonatal diseases. The change trend was similar to that reported by Oeser et al[38]. The overall morbidity and 30-day mortality in ICUs and hospitals in this study were similar to those in another hospital in this region of China[18], but lower than those in hospitals in other regions of China[35, 37] and other countries[5, 8, 16, 20, 21, 23, 25, 30]. It has been reported that the overall mortality rate of candidaemia is 20%-49% globally[39], and the mortality rate was 20.4% in our hospital, which is low compared to global rate. This may be because the demographic characteristics and underlying diseases of patients in this region are different from those in other regions or countries, and few severe patients were admitted to our hospital.

With regard to resistance, resistance to FCA, ITR and VRC were common in *C. albicans* and non-*C. albicans* species (Table 3). In our study, AMB and 5-FC were highly active against all Candida species. In paediatric patients, the resistance rate of ITR was higher than that in adult patients, but the resistance rates of FCA and VRC were lower than those in adult patients; however, and the resistance rate of Candida species was no significant difference in satisfaction between paediatric and adult patients(P>0.05). Moreover, FCA was highly active against all Candida species in paediatric patients and could be used in paediatric patients with candidaemia as a first-line agent. In the whole hospital, the resistance rate to azole was higher than those reported in other regions[18, 19, 36] and countries[17, 19, 25, 29, 30, 34]. This may be related to the long-term use of empirical prophylactic drugs by clinicians. Therefore, it was necessary to conduct an epidemiological analysis of antifungal agent susceptibility and guide clinicians to choose the rational antifungal agents to avoid the continuous increase in resistance rates.

In this study, we analysed the prognostic factors in all patients and adult patients with candidaemia. Age, length of hospital stay, respiratory dysfunction, pulmonary infection, cardiovascular disease, chronic/acute renal failure, other invasive catheters, mechanical ventilation and septic shock were the common predictors of mortality in the univariate analysis (P<0.05) in both adult patients and all patients, and the univariate predictors of poor outcomes in paediatric patients were less than that in adults patients (4 vs 11 predictors), as shown in Table 4. Because the total number of paediatric patients (35 patients) and deaths (3 patients) were very small, multivariable logistic regression analysis was not performed in paediatric patients. However, our study showed that respiratory dysfunction and septic shock were common independent predictors of 30-day mortality in both adult patients and all patients, and length of hospital stay and other invasive catheters were protective factors for 30-day mortality in all patients. The prognostic factors of 30-day mortality in all patients and adult patients were almost the same, and the independent predictors were the same; there were no significant differences. Septic shock was an independent predictor of 30-day mortality; this has been reported in many other studies[18, 35]. However, the other factors reported here have rarely been reported in other studies[35, 40-43], possibly because the demographic characteristics, underlying diseases and risk factors of the patients in our study were different from those in other studies; this may be the reason that the independent predictors and protective factors in this study were different from those in other studies[5, 35, 40-43]. The independent predictors and protective factors in different regions and countries are shown in Table 6.
This study has several potential limitations. First, due to the technical limitations of the clinical microbiology laboratory and the impact of hospital policies, there are were data on echinocandins in our hospital. Second, this was a single-centre retrospective study. Our data might be influenced by the distribution of the regional population, the level of medical intervention, and the distribution of patient types. Therefore, the results may not be generalizable to all patients with candidaemia in China. The epidemiological findings will pave the way for more in-depth studies and help us establish better antifungal stewardship in our hospital.

Conclusion

C. albicans was the main Candida species, but *C. glabrata* has become the second most common species in this region. FCA was the main antifungal agent for paediatric patients. AMB and 5-FC were highly active against all Candida species. The morbidity and mortality rates in elderly patients were the highest. Respiratory dysfunction and septic shock were independent predictors of 30-day mortality. Further multi-centre studies on candidaemia in different geographical regions in all patients should be conducted to help infection specialists assess the distribution and trends in patients with suspected fungal infections.

Abbreviations

BSI: bloodstream infection; ICU: intensive care unit; PICU: paediatric intensive care unit; NICU neonatal intensive care unit; USA: United States of America; ATCC: American type culture collection; MALDI-TOF MS: Matrix-assisted laser desorption/ionization-time of flight mass spectroscopy; FCA: fluconazole; ITR: itraconazole; AMB: amphotericin B; VRC: voriconazole; 5-FC: flucytosine; CVC: central venous catheter; MIC: minimal inhibitory concentration; OR: odds ratio; CI: confidence interval.

Declarations

Acknowledgements

We thank Yanhan Li in the medical records room for guiding us in reviewing the electronic medical records. We have asked for American Journal Experts (AJE, www.aje.com) for its linguistic assistance during the preparation of this revised manuscript.

Availability of data and materials

The data set supporting the conclusions in this article is available from the corresponding author on reasonable request.

Authors’ contributions

ZRZ, GT and JD designed the study and drafted the manuscript. ZRZ, YHD, KY, JBL, GRL and JD collected the data. ZRZ and GT analyzed the data; ZRZ and GT wrote the paper. ZRZ and GT are contributed equally to this work and share first authorship. All authors have read approved the final manuscript.

Funding
This work was supported by the Science and Technology Project of Science and Technology Department of Sichuan Province (No. 2018DJPT0011), the Science and Technology Project of Health and Family Planning Commission of Sichuan Province (No. 17PJ506) and the Affiliated Hospital of Luzhou Medical College Science Foundation (No. 14035). The funder had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Ethics approval and consent to participate

The study protocol was approved by the Ethics Committee of the Affiliated Hospital of Southwest Medical University (project no. KY2020043). This is a retrospective study. The need for informed consent was waived by the Clinical Research Ethics Committee.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Kullberg BJ, Arendrup MC. *Invasive Candidiasis. N Engl J Med* 2015, **373**:1445-1456.

2. Antinori S, Milazzo L, Sollima S, Galli M, Corbellino M. *Candidemia and invasive candidiasis in adults: A narrative review. Eur J Intern Med* 2016, **34**:21-28.

3. Tsay SV, Mu Y, Williams S, Epson E, Nadle J, Bamberg WM, *et al.* *Burden of Candidemia in the United States, 2017. Clin Infect Dis* 2020.

4. Ala-Houhala M, Valkonen M, Kolho E, Friberg N, Anttila VJ. *Clinical and microbiological factors associated with mortality in candidemia in adult patients 2007-2016. Infect Dis (Lond)* 2019, **51**:824-830.

5. Kato H, Yoshimura Y, Suido Y, Shimizu H, Ide K, Sugiyama Y, *et al.* *Mortality and risk factor analysis for Candida bloodstream infection: A multicenter study. J Infect Chemother* 2019, **25**:341-345.

6. Ghazi S, Rafel R, Osman M, El Safadi D, Mallat H, Papon N, *et al.* *The epidemiology of Candida species in the Middle East and North Africa. J Mycol Med* 2019, **29**:245-252.

7. Falagas ME, Roussos N, Vardakas KZ. *Relative frequency of albicans and the various non-albicans Candida spp among candidemia isolates from inpatients in various parts of the world: a systematic review. Int J Infect Dis* 2010, **14**(e954-966).

8. Lausch KR, Sogaard M, Rosenvinge FS, Johansen HK, Boysen T, Roder B, *et al.* *High incidence of candidaemia in a nationwide cohort: Underlying diseases, risk factors and mortality. Int J Infect Dis* 2018, **76**:58-63.

9. McCarty TP, Pappas PG. *Invasive Candidiasis. Infect Dis Clin North Am* 2016, **30**:103-124.

10. Strollo S, Lionakis MS, Adjemian J, Steiner CA, Prevots DR. *Epidemiology of Hospitalizations Associated with Invasive Candidiasis, United States, 2002-2012. Emerg Infect Dis* 2016, **23**:7-13.

11. Chen M, Xu Y, Hong N, Yang Y, Lei W, Du L, *et al.* *Epidemiology of fungal infections in China. Front Med* 2018, **12**:58-75.

12. Zhang Y, Wang F, Expert Group of the Summit Forum on diagnosis and treatment Strategy of Candidiasis CMA. *The diagnosis and treatment of Candidiasis:the expert consensus. Chin J Infect Chemother(Chin)* 2011, **11**:81-95.
13. Cuenca-Estrella M, Verweij PE, Arendrup MC, Arikan-Akdagli S, Bille J, Donnelly JP, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clin Microbiol Infect 2012, 18 Suppl 7:9-18.

14. Ullmann AJ, Comely OA, Donnelly JP, Akova M, Arendrup MC, Arikan-Akdagli S, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: developing European guidelines in clinical microbiology and infectious diseases. Clin Microbiol Infect 2012, 18 Suppl 7:1-8.

15. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016, 62:e1-50.

16. Braga PR, Cruz IL, Ortiz I, Barreiros G, Nouer SA, Nucci M. Secular trends of candidemia at a Brazilian tertiary care teaching hospital. Braz J Infect Dis 2018, 22:273-277.

17. Santolaya ME, Thompson L, Benadof D, Tapia C, Legarraga P, Cortes C, et al. A prospective, multi-center study of Candida bloodstream infections in Chile. PLoS One 2019, 14:e0212924.

18. Jia X, Li C, Cao J, Wu X, Zhang L. Clinical characteristics and predictors of mortality in patients with candidemia: a six-year retrospective study. Eur J Clin Microbiol Infect Dis 2018, 37:1717-1724.

19. Lin S, Chen R, Zhu S, Wang H, Wang L, Zou J, et al. Candidemia in Adults at a Tertiary Hospital in China: Clinical Characteristics, Species Distribution, Resistance, and Outcomes. Mycopathologia 2018, 183:679-689.

20. Hesstvedt L, Gaustad P, Muller F, Torp Andersen C, Brunborg C, Mylvaganam H, et al. The impact of age on risk assessment, therapeutic practice and outcome in candidemia. Infect Dis (Lond) 2019, 51:425-434.

21. Keighley C, Chen SC, Marriott D, Pope A, Chapman B, Kennedy K, et al. Candidaemia and a risk predictive model for overall mortality: a prospective multicentre study. BMC Infect Dis 2019, 19:445.

22. Lindberg E, Hammarstrom H, Atoallahy N, Kondori N. Species distribution and antifungal drug susceptibilities of yeasts isolated from the blood samples of patients with candidemia. Sci Rep 2019, 9:3838.

23. Ortega-Loubon C, Cano-Hernandez B, Poves-Alvarez R, Munoz-Moreno MF, Roman-Garcia R, Balbas-Alvarez S, et al. The Overlooked Immune State in Candidemia: A Risk Factor for Mortality. J Clin Med 2019, 8.

24. Alkharsashi N, Aljohani S, Layqah L, Masaudi E, Baharoon W, Al-Jahdali H, et al. Candida Bloodstream Infection: Changing Pattern of Occurrence and Antifungal Susceptibility over 10 Years in a Tertiary Care Saudi Hospital. Can J Infect Dis Med Microbiol 2019, 2019:2015692.

25. Medeiros MAP, Melo APV, Bento AO, Souza L, Neto FAB, Garcia JB, et al. Epidemiology and prognostic factors of nosocomial candidemia in Northeast Brazil: A six-year retrospective study. PLoS One 2019, 14:e0221033.

26. Orsetti E, Brescini L, Mazzanti S, Trave F, Morroni G, Masucci A, et al. Characterisation of candidemia in patients with recent surgery: A 7-year experience. Mycoses 2019, 62:1056-1063.

27. Pinto-Magalhaes S, Martins A, Lacerda S, Filipe R, Prista-Leao B, Pinheiro D, et al. Candidemia in a Portuguese tertiary care hospital: Analysis of a 2-year period. J Mycol Med 2019, 29:320-324.

28. Luzzati R, Merelli M, Ansaldi F, Rosin C, Azzini A, Cavinato S, et al. Nosocomial candidemia in patients admitted to medicine wards compared to other wards: a multicentre study. Infection 2016, 44:747-755.

29. Canela HMS, Cardoso B, Vitali LH, Coelho HC, Martinez R, Ferreira M. Prevalence, virulence factors and antifungal susceptibility of Candida spp. isolated from bloodstream infections in a tertiary care hospital in Brazil. Mycoses 2018, 61:11-21.

30. Papadimitriou-Olivergeris M, Spilopoulou A, Kolonitsiou F, Bartzavali C, Lambropoulou A, Xaplanteri P, et al. Increasing incidence of candidaemia and shifting epidemiology in favor of Candida non-albicans in a 9-year period (2009-2017) in a university Greek hospital. Infection 2019, 47:209-216.

31. Siopi M, Tarpazti A, Kalogeropoulou E, Damianidou S, Vasilakopoulou A, Vourli S, et al. Epidemiological Trends of Fungemia in Greece with a Focus on Candidemia during the Recent Financial Crisis: a 10-Year Survey in a Tertiary Care Academic Hospital and Review of Literature. Antimicrob Agents Chemother 2020, 64.
32. Israel S, Amit S, Israel A, Livneh A, Nir-Paz R, Korem M. The Epidemiology and Susceptibility of Candidemia in Jerusalem, Israel. Front Cell Infect Microbiol 2019, 9:352.

33. Koehler P, Stecher M, Cornely OA, Koehler D, Vehreschild M, Bohlius J, et al. Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect 2019, 25:1200-1212.

34. Ryan P, Motherway C, Powell J, Elsaka A, Sheikh AA, Jahangir A, et al. Candidaemia in an Irish intensive care unit setting between 2004 and 2018 reflects increased incidence of Candida glabrata. J Hosp Infect 2019, 102:347-350.

35. Li Y, Du M, Chen LA, Liu Y, Liang Z. Nosocomial Bloodstream Infection Due to Candida spp. in China: Species Distribution, Clinical Features, and Outcomes. Mycopathologia 2016, 181:485-495.

36. Xiao Z, Wang Q, Zhu F, An Y. Epidemiology, species distribution, antifungal susceptibility and mortality risk factors of candidemia among critically ill patients: a retrospective study from 2011 to 2017 in a teaching hospital in China. Antimicrob Resist Infect Control 2019, 8:89.

37. Ma CF, Li FQ, Shi LN, Hu YA, Wang Y, Huang M, et al. Surveillance study of species distribution, antifungal susceptibility and mortality of nosocomial candidemia in a tertiary care hospital in China. BMC Infect Dis 2013, 13:337.

38. Oeser C, Lamagni T, Heath PT, Sharland M, Ladhani S. The epidemiology of neonatal and pediatric candidemia in England and Wales, 2000-2009. Pediatr Infect Dis J 2013, 32:23-26.

39. Mellinghoff SC, Cornely OA, Jung N. Essentials in Candida bloodstream infection. Infection 2018, 46:897-899.

40. Cortes JA, Reyes P, Gomez CH, Cuervo SI, Rivas P, Casas CA, et al. Clinical and epidemiological characteristics and risk factors for mortality in patients with candidemia in hospitals from Bogota, Colombia. Braz J Infect Dis 2014, 18:631-637.

41. Wang H, Liu N, Yin M, Han H, Yue J, Zhang F, et al. The epidemiology, antifungal use and risk factors of death in elderly patients with candidemia: a multicentre retrospective study. BMC Infect Dis 2014, 14:609.

42. Tedeschi S, Tumietto F, Giannella M, Bartoletti M, Cristini F, Cioni G, et al. Epidemiology and outcome of candidemia in internal medicine wards: A regional study in Italy. Eur J Intern Med 2016, 34:39-44.

43. Gonzalez-Lara MF, Torres-Gonzalez P, Cornejo-Juarez P, Velazquez-Acosta C, Martinez-Gamboa A, Rangel-Cordero A, et al. Impact of inappropriate antifungal therapy according to current susceptibility breakpoints on Candida bloodstream infection mortality, a retrospective analysis. BMC Infect Dis 2017, 17:753.

Tables

Table 1: Distribution and incidence of Candida species.
Candida species

	Total	C. albicans (n=81)	C. glabrata (n=73)	C. tropicalis (n=28)	C. parapsilosis (n=8)	C. krusei (n=6)	others (n=5)
Distribution n(%)	100.0%	40.3%	36.3%	13.9%	4.0%	3.0%	2.5%
Paediatric patients (≤16 years)							
0-28 days	32(15.9)	16(50.0)	15(46.9)	0 (0)	0 (0)	0 (0)	1 (2.9)
29 days - 1 year	1(0.5)	0 (0)	1(100.0)	0 (0)	0 (0)	0 (0)	0 (0)
2-16 years	2(1.0)	0 (0)	2(100.0)	0 (0)	0 (0)	0 (0)	0 (0)
Adult patients (>16 years)	166(82.6)	65(39.2)	55(33.1)	28(16.9)	8(4.8)	6(3.6)	4(2.4)
17 - 49 years	52(25.9)	21(40.4)	19 (36.5)	7(13.5)	1(1.9)	3(5.8)	1 (1.9)
50 - 65 years	56 (27.9)	11(19.6)	23 (41.1)	14 (25.0)	5(8.9)	1(1.8)	2 (3.6)
> 65 years	58(28.8)	33(56.9)	13(22.4)	7(12.1)	2(3.4)	2(3.4)	1(1.7)
Gender							
Male	114(56.7)	44 (38.6)	39 (34.2)	19 (16.7)	6(5.3)	2(1.7)	4 (3.5)
Female	87 (43.3)	37 (42.5)	34 (39.1)	9(10.3)	2(2.3)	4(4.6)	1 (1.1)
Incidence (episodes/1,000 admissions)							
2013	0.20	0.06	0.12	0.01	0.00	0.01	0.00
2014	0.22	0.09	0.10	0.03	0.00	0.00	0.01
2015	0.27	0.10	0.12	0.02	0.00	0.03	0.00
2016	0.37	0.23	0.10	0.04	0.00	0.01	0.00
2017	0.32	0.10	0.14	0.07	0.01	0.00	0.00
2018	0.16	0.06	0.07	0.02	0.00	0.00	0.00
2019	0.26	0.08	0.04	0.05	0.05	0.01	0.03
Mean annual incidence	0.26	0.10	0.09	0.04	0.01	0.01	0.01

*Others include *C. guilliermondii* (4), *C. haemulonii* (1) and *C. inconspicua* (1).
Statistical results of demographic characteristics of pediatric and adult patients

Age (median range)	All patients (n=201)	Child patients<16 years (n=35)	Adult patients>16 years (n=166)	P*
	65 years (1 day, 92 years)	1 day (1 day,5 years)	>16 years (92 years)	<0.001
Gender (male:female)	114:87	22:13	92:74	0.420
Length of hospital stay (days)	36.9±39.5	41.5±20.9	30.6±39.6	0.117
Underlying comorbidities (n, %)	24 (11.9)	2 (5.7)	22 (13.3)	0.211
Gastrointestinal perforation	58 (28.9)	3 (8.6)	55 (33.1)	0.004
Respiratory dysfunction	100 (49.8)	24 (68.6)	76 (45.8)	0.014
Pulmonary infection	86 (42.8)	3 (8.6)	83 (50.0)	<0.001
Cardiovascular disease	78 (38.8)	24(68.6)	54 (32.5)	<0.001
Neurological diseases	58 (28.9)	2 (5.7)	43 (25.9)	0.001
Gastrointestinal pathology	49 (24.4)	9 (25.7)	40 (24.1)	0.839
Chronic/acute liver disease	91 (45.3)	9 (25.7)	82 (49.4)	0.011
Chronic/acute renal failure	15 (7.5)	0 (0)	15 (9.0)	0.065
Haematological malignancy	11 (5.5)	2 (5.7)	9 (5.4)	0.697
Congenital malformations/syndromes	6 (3.0)	3 (8.6)	3 (1.8)	<0.001
Diabetes mellitus	60 (29.9)	0 (0)	60 (36.1)	<0.001
Hematologic (nonmalignant)	29 (14.4)	10 (28.6)	19 (11.4)	0.009
HIV/AIDS	10 (5.0)	0 (0)	10 (6.0)	0.136
Severe trauma	17 (8.5)	2 (5.7)	15 (9.0)	0.521
Risk factors (n, %)	27 (13.4)	20 (57.1)	7 (4.3)	0.014
Presence of CVC	60 (29.9)	5 (14.3)	55 (33.1)	0.027
Other invasive catheters	64 (71.3)	21 (60.0)	66 (39.8)	0.028
Mechanical ventilation	42 (20.9)	9 (25.7)	33 (19.9)	0.440
Receipt of corticosteroids	95 (47.3)	18 (51.4)	77 (46.4)	0.587
Total parenteral nutrition	55 (27.4)	9 (25.7)	46 (27.7)	0.810
Malnutrition	20 (10.0)	2 (5.7)	18 (10.8)	0.357
Chemotherapy	30 (16.9)	0 (0)	30 (18.1)	0.006
Hemodialysis	31 (15.4)	0 (0)	31 (18.7)	0.005
Abdominal surgery	81 (40.3)	35 (100.0)	46 (27.7)	<0.001
ICU/PICU/NICU	16 (8.0)	0 (0)	16 (9.6)	0.056
Neutropenia	110 (54.7)	30 (85.7)	80 (48.2)	<0.001
Septic shock	39 (19.4)	3 (8.6)	36 (21.7)	0.075
Broad-spectrum antibiotics	179 (89.1)	35 (100.0)	144 (86.7)	0.022
Treatment with antifungal agents	114 (56.7)	27 (77.1)	87 (52.4)	0.007
C. albicans	73 (36.3)	18 (51.4)	55 (33.1)	0.041
C. glabrata	28 (13.9)	0 (0)	28 (16.9)	0.009
C. tropicalis	41 (20.4)	4 (11.4)	37 (22.3)	0.113

*Statistical results of demographic characteristics of pediatric and adult patients

a Includes the following diseases: chronic obstructive pulmonary disease and acute respiratory distress syndrome.

b Includes the following diseases: cholecystitis, pancreatitis, and peritonitis.

c Chronic/Acute renal failure is the permanent or sudden and often temporary loss of kidney function with N waste retention a hypourcrinia.
d CVC=central venous catheter.

e a dose equivalent to the prednisone dosage of 0.3 mg/kg/day for at least 14 days.

f including: gastrointestinal perforations, severe acute pancreatitis and complex ventral hernia.

g Neutropenia is the absolute neutrophil count, that is, <500 cells/μl

Table 3 In vitro antifungal susceptibility testing of 201 clinical isolates into 5 antifungal agents

Species	Antifungal agent	Children(35)	Adults(166)	total	Pc
		(No of isolates)			
Candida albicans(81)	Amphotericin B	0	0	0b	
		2(12.5)	17(26.2)	19(23.5)	0.248
		8(50.0)	22(33.8)	30(37.0)b	0.231
	Voriconazole	4(25.0)	20(30.8)	24(29.6)b	0.651
Candida glabrata(73)	Amphotericin B	1(5.6)	0	1(1.4)b	0.078
		0	0	0b	
		1(5.6)	5(9.1)	6(8.2)	0.635
		2(11.1)	5(9.1)	7(9.6)b	0.801
	Voriconazole	1(5.6)	2(3.6)	3(4.1)b	0.722
C. tropicalis(28)	Amphotericin B	0	1(3.6)	1(3.6)b	
		0	1(3.6)	1(3.6)b	
		0	11(39.3)	11(39.3)b	
		0	11(39.3)	11(39.3)b	
	Voriconazole	0	12(42.9)	12(42.9)b	
C. parapsilosis(8)	Amphotericin B	0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
C. krusei(6)	Amphotericin B	0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
others(5)	Amphotericin B	0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
		0	0	0	
All of isolates(201)	Amphotericin B	1(2.9)	1(0.6)	2(1.0)	0.222
		0(0)	2(1.2)	2(1.0)	0.513
		3(8.6)	33(20.6)	36(18.5)	0.096
		10(28.6)	40(24.1)	50(24.9)	0.578
	Voriconazole	5(14.3)	34(20.5)	39(19.4)	0.400

MIC= minimal inhibitory concentration

Resistance rate was based on the intrinsic resistance of C. krusei and did not follow the actual MICs.

The breakpoints of Candida spp. according to the manufacturer's instructions of ATB FUNGUS 3 system.

The difference of resistance rate between children and adults was analyzed by chi square test.
Table 4. Factors associated with 30-days mortality by univariate analysis in inpatients with candidaemia
Variable	Adult patients (>16 years) 30-days outcome	P-value	Child patients (0-16 years) 30-days outcome	P-value	All patients 30-days outcome	P-value
	Survived (n=133) Died (n=33)		Survived (n=32) Died (n=3)		Survived (n=165) Died (n=36)	
Median age (range)	60 years (18, 92 years) 67 years (29, 86 years)	0.001	1 days (1 day) 1 days (1 day, 5 years)	0.585	1 days (1 day) 1 days (1 day, 5 years)	0.001
Gender (male:female)	72:61	0.503	26:13	0.164	91:74	0.557
Length of hospital stay (days)	35.3±42.8	0.002	43.8±20.2	0.029	36.9±39.5	<0.001
Underlying comorbidities (n, %)						
Gastrointestinal perforation	15(11.3)	0.132	2(6.3)	0.656	17(10.3)	7(19.4)
Respiratory dysfunction	28(21.1)	<0.001	1(3.1)	<0.001	29(17.6)	<0.001
Pulmonary infection	54(40.6)	0.007	22(68.8)	0.941	76(46.1)	0.025
Cardiovascular disease	56(42.1)	<0.001	3(9.4)	0.579	59(35.8)	<0.001
Neurological diseases	41(30.8)	0.347	22(68.8)	0.941	63(38.2)	0.697
Gastrointestinal pathology	42(31.6)	0.238	2(6.3)	0.656	44(26.7)	0.143
Chronic/acute liver disease	30(22.6)	0.352	9(28.1)	0.287	39(23.6)	0.600
Chronic/acute renal failure	60(45.1)	0.027	6(18.8)	-	66(40.0)	0.001
Haematological malignancy	4(3.0)	0.120	2(6.3)	0.656	6(36.4)	0.217
Solid tumour	12(9.0)	0.990	0(0)	-	12(7.3)	0.826
Severe autoimmune diseases	12(9.0)	0.990	0(0)	-	12(7.3)	0.826
Congenital malformations/syndromes	0	0	15	0.365	5(3.0)	0.799
Hematologic (nonmalignant)						
Diabetes mellitus	45(33.8)	0.214	0(0)	-	45(27.3)	15.15
HIV/AIDS	9(6.8)	0.419	0(0)	-	9(5.5)	0.503
Severe trauma	12(9.0)	0.990	2(6.3)	0.565	14(8.5)	3(8.3)
Risk factors (n, %)						
premature neonates ≤ 36 weeks*	-	-	28(87.5)	0.515	28(93.3)	2(100.0)
Very low birth weight neonates (<1500 g)*	-	-	19(59.4)	0.886	19(63.3)	2(100.0)
Presence of CVC	57(42.9)	0.718	6(18.8)	0.546	63(38.2)	14(38.9)
Other invasive catheters	51(38.3)	0.004	5(15.6)	0.460	56(33.9)	4(11.1)
Mechanical ventilation	45(33.8)	0.002	19(59.4)	0.805	64(38.8)	23(36.9)
Receipt of corticosteroids	27(20.3)	0.785	9(18.1)	0.287	36(21.8)	6(16.7)
Total parenteral nutrition	57(42.9)	0.067	17(53.1)	0.512	74(44.8)	21(58.3)
Malnutrition	36(27.1)	0.710	8(25.0)	0.752	44(26.7)	11(30.6)
Chemotherapy	16(12.0)	0.324	2(6.3)	0.656	18(10.9)	2(5.6)
Abdominal surgery	24(18.0)	0.676	0(0)	-	24(14.5)	7(19.4)
Hemodialysis	22(16.5)	0.303	0(0)	-	22(13.3)	8(22.2)
ICU/PICU/NICU	33(24.8)	0.094	32(100.0)	0.65	65(39.4)	16(44.4)
Neutropenia*	13(9.8)	0.905	0(0)	-	13(7.9)	3(8.3)
Concomitant bacterial infections	59(44.4)	0.047	27(84.4)	0.460	86(52.1)	24(66.7)
Septic shock	8(6.0)	<0.001	1(3.1)	<0.001	9(5.5)	30(66.7)

* Calculated as the percentage of the total number of patients.
Table 5. Factors associated with 30-days mortality by multivariate analysis*

Variable	All patients	Adult patients		
	Odds ratio 95% confidence interval	P-value	Odds ratio 95% confidence interval	P-value
Median age	1.02 0.973-1.065 0.444 1.03 0.957-1.109	0.427	0.04 0.002-0.695 0.028 0.04 0.001-1.233	0.066
Length of hospital stay (days)	0.88 0.809-0.964 0.005 0.89 0.802-0.99	0.032	4.59 0.554-37.999 0.158 12.56 0.981-160.793	0.052
Respiratory dysfunction	13.78 2.254-84.198 0.005 22.57 2.014-252.84	0.011	2.50 0.464-13.425 0.287 1.19 0.191-7.392	0.854
Pulmonary infection	0.68 0.125-3.693 0.655 0.98 0.142-6.743	0.982	0.65 0.088-4.787 0.672 3.36 0.269-41.933	0.347
Cardiovascular disease	0.65 0.088-4.787 0.672 3.36 0.269-41.933	0.347	0.04 0.002-0.695 0.028 0.04 0.001-1.233	0.066
Chronic/acute renal failure	2.50 0.464-13.425 0.287 1.19 0.191-7.392	0.854	0.04 0.002-0.695 0.028 0.04 0.001-1.233	0.066
Her invasive catheters	0.04 0.002-0.695 0.028 0.04 0.001-1.233	0.066	0.04 0.002-0.695 0.028 0.04 0.001-1.233	0.066
Mechanical ventilation	4.97 0.42-58.742 0.204		4.97 0.42-58.742 0.204	
Septic shock	99.97 11.997-832.995 <0.001 89.72 10.161-792.184	<0.001	99.97 11.997-832.995 <0.001 89.72 10.161-792.184	<0.001
Diabetes mellitus	0.12 0.013-1.038 0.054		0.12 0.013-1.038 0.054	
C. albicans	115(86.5) 29(87.9) 0.830 32(100.0) 3(100.0) - 147(89.1) 32(88.9) 0.972		115(86.5) 29(87.9) 0.830 32(100.0) 3(100.0) - 147(89.1) 32(88.9) 0.972	
Treatment with antifungal agents	71(53.4) 16(48.5) 0.614 24(75.0) 3(100.0) 0.324 95(57.6) 19(52.8) 0.599		71(53.4) 16(48.5) 0.614 24(75.0) 3(100.0) 0.324 95(57.6) 19(52.8) 0.599	
Species, n (%)	C. albicans 47(35.3) 18(54.5) 0.043 16(50.0) 0(0) 0.096 63 (38.2) 18 (50.0) 0.190		C. albicans 47(35.3) 18(54.5) 0.043 16(50.0) 0(0) 0.096 63 (38.2) 18 (50.0) 0.190	
	C. glabrata 46(34.6) 9(27.3) 0.424 15(46.9) 3(100.0) 0.078 61 (37.0) 12 (33.3) 0.681		C. glabrata 46(34.6) 9(27.3) 0.424 15(46.9) 3(100.0) 0.078 61 (37.0) 12 (33.3) 0.681	

ICU= intensive care unit; PICU= pediatric intensive care unit, NICU=neonatal intensive care unit

*Because the total number of pediatric patients (35 patients) and deaths (3 patients) were very small, multivariable logistic regression analysis was not performed in pediatric patients.
Authors	Country or region	Protective factor	Predictors of 30-day mortality	Reference
Ma et al	China	Presence of CVC	-	37
Cortes et al	Colombia	Fluconazole therapy	-	40
Wang et al	China	antifungal therapy administered before microbiological documentation	absence of antifungal therapies, receipt of mechanical ventilation and APACHE II score ≥20	41
Tedeschi et al	Italy	central-venous-catheter removal and adequate and timely (within 72 h of drawing blood cultures) therapy	chronic-obstructive-pulmonary-disease and isolation of C. tropicalis	42
Li et al	China	proven catheter-related candidemia	Severe sepsis or septic shock	35
Gonzalez-Lara et al	Mexico	Early CVC withdrawal and empirical antifungal therapy	severe sepsis and previous diagnosis of cirrhosis	43
Jia et al	China	ICU admission, catheter-related candidemia, ascites, septic shock and concomitant bacterial infection	-	18
Ortega-Loubon et al	Spain	prolonged mechanical ventilation, age and low lymphocyte count	-	23
Kato et al	Japan	follow-up blood culture, empiric treatment with fluconazole	age >65 years and SOFA score ≥6	5
Ala-Houhala et al	Finland	Severity of underlying illnesses, ICU stay at the onset of candidemia and age >65 years	-	4
Medeiros et al	Brazil	older age, severe sepsis and hypotension	-	25
Santolaya et al	Chile	mechanical ventilation and previous use of corticosteroids	-	17
Alkharashi et al	Saudi Arabia	use of broad-spectrum antibiotics and use of central venous catheters	-	24
Xiao et al	China	GCS score, P/F ratio, MAP	-	36

CVC: central venous catheter; APACHE: Acute Physiology and Chronic Health Evaluation; ICU: Intensive care unit; SOFA: Sequential Organ Failure Assessment; GCS: Glasgow Coma Scale; P/F ratio: PaO2/FiO2 ratio; MAP: Mean arterial pressure.

Figures
Figure 1

Distribution of the fungal species according to different wards. FootNote: Others include C. guilliermondii (4), C. haemulonii (1) and C. inconspicua (1).