Tumor suppressive p53 signaling empowers metastatic inhibitor KLF17-dependent transcription to overcome tumorigenesis in non-small cell lung cancer

Amjad Ali1, 2, 8, 9*, Muhammad Zeeshan Bhatti1, 8, 9, Abdus Saboor Shah1, Hong-Quan Duong2, 3, Huda Mohammad Alkreathy4, Shah Faisal Mohammad5, 6, Rahmat Ali6, Ayaz Ahmad7, 8*

1. Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
2. Unit of Signal Transduction (GIGA-ST), GIGA-R, University of Liege, CHU, Sart-Tilman, 4000 Liege, Belgium.
3. Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang, Vietnam.
4. Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudia Arabia.
5. Laboratory of Enzymology and Molecular Evolution, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
6. Department of Biotechnology, Faculty of Biological Sciences, University of Science and Technology Bannu, Khyber Pakhtunkhwa, Pakistan.
7. Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
8. Department of Biotechnology, Abdul Wali Khan University, Mardan 23200, Pakistan.
9. These authors contributed equally to this work.

*Corresponding authors:
Amjad Ali, Ph.D.
Institute of Biomedical Sciences,
School of Life Sciences, East China Normal University,
500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
E-mail: amjad_486@yahoo.com
Phone # 0086-15921906215

Ayaz Ahmad, Ph.D.
Institute of Genetics and Developmental Biology,
Chinese Academy of Sciences,
Beijing 100101, People's Republic of China.
E-mail: ahdayazb5@awkum.edu.pk
Phone# 0092-3009598201
Running Title: KLF17 suppresses EMT via p53-dependent pathway in NSCLC.

Key words: Metastasis, KLF17, tumor suppressor p53, lung cancer, chemotherapy.

Capsule:

Background: How Kruppel-like-factor 17 (KLF17) controls metastasis and epithelial-mesenchymal-transition (EMT) during cancer progression remains unknown.

Results: Tumor-suppressive p53 signaling is critical for KLF17 to inhibit cancer metastasis in NSCLC.

Conclusion: These results indicate novel insights into anti-EMT affect of KLF17 via p53-dependent pathway.

Significance: Targeting KLF17 for cancer therapy may be applicable to NSCLC tumors with TP53 status, which may improve prognosis of NSCLC patients.

Abstract

Metastasis, which is controlled by concerted action of multiple genes, is a complex process, and is important cause of cancer death. Kruppel-like-factor 17 (KLF17) is a negative regulator of metastasis and epithelial-mesenchymal-transition (EMT) during cancer progression. However, the underlying molecular mechanism and biological relevance of KLF17 in cancer cells are poorly understood. Here, we show that tumor suppressor protein p53 plays an integral role to induce KLF17 expression in NSCLC. p53 is recruited to KLF17 promoter and results in the formation of p53-DNA complex. p53 enhances binding of p300, and favors histone acetylation on KLF17 promoter. Mechanistically, p53 physically interacts with KLF17 and thereby enhances anti-metastatic function of KLF17. p53 empowers KLF17 mediated EMT genes transcription via enhancing physical association of KLF17 to target gene promoters. Nutlin-3 recruits KLF17 to EMT target gene promoters and results in the formation of KLF17-DNA complex via p53-dependent pathway. p53 depletion abrogates DNA binding affinity of KLF17 to EMT target gene promoters. KLF17 is critical for p53 cellular activities in NSCLC. Importantly, KLF17 enhances p53 transcription to generate a novel positive feedback loop. KLF17 depletion accelerates lungs cancer cells growth in response to chemotherapy. Mechanistically, we found that KLF17 increases tumor suppressor genes p53, p21 and pRB expressions in NSCLC. Functionally, KLF17 required p53 to suppress cancer cell invasion and migration in NSCLC. In conclusion, our study highlights novel insight into anti-EMT affect of KLF17 via p53-dependent pathway in NSCLC, and KLF17 may be a new therapeutic target in NSCLC with p53 status.

Introduction
Non-small-cell lung cancer (NSCLC) is an aggressive type of lung cancer and about 80% of lung cancers are NSCLC [1]. Lung cancer is one of leading cause of cancer-associated death and can be divided into squamous cell carcinoma, adenocarcinoma, and large-cell lung carcinoma [2]. Despite of recent advances and improvements in the field of chemotherapy for lung cancer, still the prognosis of NSCLC is very poor and about 30–55% NSCLC patients show recurrence after chemotherapy [3]. Therefore, it is important to assess the important molecular mechanisms that are involved in inhibition of NSCLC for better treatment and prognosis of NSCLC patients.

KLF17 is a negative regulator of epithelial-mesenchymal-transition (EMT) and metastasis. Depletion of KLF17 promotes EMT and metastasis [4, 5]. Decrease expression of KLF17 has been detected in invasive breast cancer and adenocarcinoma cell lines [4-7]. In addition, KLF17 expression is an important predictor for lymph node metastasis in cancer [4, 6, 7]. Overexpression of KLF17 in cancer cell lines has been shown to inhibit cancer cells growth [7, 8]. Patients having low expression of KLF17 show greater tumor size, later pathological stage, and poor prognosis [4, 7, 8]. KLF17 is also tumor suppressor transcription factor and binds to CACCC sequence on target gene promoters [9, 10]. Recent studies showed that KLF17 inhibits EMT and metastasis by binding directly to the promoters of genes involved in EMT such as ID1, Vimentin, Fibronectin, ZO-1 and E-Cadherin and regulate their expressions [4, 7].

Tumor suppressor p53 known as “guardian of the genome”, and function as an important barrier against cancer [11-14]. Analysis of human cancers indicates a critical role for tumor suppressor p53 in cancer prevention. Tumor suppressor p53 functions are context-dependent and influenced by numerous factors [14-16]. Genetic studies of p53 showed that p53 have anti-proliferative functions and inhibits cancer cell growth [17, 18]. p53 functions as a transcription factor, and have ability to trigger multiple tumor suppressive pathways by targeting key genes [19-21]. Once, p53 activated in response to DNA damage, and then it leads to induction of apoptosis, suppression of cell cycle progression and subsequently leads to cancer inhibition [22, 23].

EMT program is often activated during cancer progression [24, 25]. During EMT, many transcription factors directly repress the adherent junction mediator E-Cadherin [26-28]. Metastasis is a complicated multi-step process, which finally leads to metastatic tumor development [29-31]. EMT is considering as a critical process for cancer progression to a metastatic stage [32].

Here, we report novel molecular and functional link of KLF17 with p53. We showed that p53 empowers tumor suppressive KLF17 signaling during cancer metastasis. KLF17 suppresses EMT and metastasis in a p53-dependent manner in NSCLC. Mechanistically, p53 forms a complex with KLF17 and hence potentiates KL17 mediated EMT genes transcription and tumor suppressive function of KLF17. Intriguingly, chemotherapeutic agents that activate p53 show recruitment of KLF17 to EMT target gene promoters via p53-dependent pathway. Moreover, our results show that novel crosstalk and positive feedback loop exist between p53 and KLF17 in NSCLC and play an important role in the inhibition of cancer
metastasis. Functionally, KLF17 required p53 to suppress cancer metastasis. Taken together, our results describe novel molecular and functional insights into anti-EMT affect of KLF17 via p53-dependent pathway in NSCLC. KLF17 may be a new therapeutic target with p53 status in NSCLC, which may improve treatment and prognosis of NSCLC patients.

Materials and Methods

Plasmids and Transfection
pcDNA3.1-p53 plasmid was described in our previous study[33]. H1299 and A549 lung cancer cell lines were transfected with Lipofectamine 2000 following manufactures protocol (Invitrogen).

Antibodies
Following antibodies were used in Western Blot and ChIP experiments. Anti-p53 (DO-1, Santa Cruz), anti-KLF17 (Abcam), anti-GAPDH (Santa Cruz), anti-β-actin (Santa Cruz), anti-P300 (Santa cruz), anti-AcH4 (Millipore).

Cell culture and Treatments
H1299 and A549 cells were described previously in our study [33]. For cells treatments we used Nutlin-3 (10 µM) (Sigma-Aldrich), Adriamycin (0.5 µM) (Sigma-Aldrich) and Etoposide (10µM) (Sigma-Aldrich).

Electrophoretic Mobility Shift Assay (EMSA)
EMSA was performed with 32P-radiolabeled probes. 2 µg of nuclear extract or different Concentration of purified proteins was incubated with 32P-radiolabeled-probes in 20µl of EMSA reaction buffer (2 µg of poly (dl-dC), 20 mM HEPES (pH 7.9), 1 mM MgCl2, 40 mM KCl, 0.1 mM EDTA, 1 mM DTT and 12% glycerol). To perform the competition assay, excess of unlabeled competitor’s oligo was added to the EMSA reaction mixture. Protein-DNA complexes were resolved in 5% polyacrylamide gels containing 0.5x TBE and exposed to phosphoimager (Bio-Rad).

Chromatin Immunoprecipitation (ChIP) Assay
ChIP was performed as described previously [33]. PCR-amplification of the genomic-fragments was performed with specific primers flanking putative binding-sites on the KLF17 promoter. The PCR products were separated by electrophoresis through 2.0% agarose.

KLF17 luciferase reporter constructs
DNA-fragments containing KLF17 genomic sequences were amplified from 293T cell genomic DNA using the polymerase chain reaction and primers derived from human genomic KLF17 and ligated into kpn1/xhol sites of the promoterless pGL3-Basic (Promega) vector and was named as pGL3-KLF17-luc. Different deletion constructs of KLF17 promoter were generated from 2kb KLF17 promoter and ligated into kpn1/xhol sites of pGL3-Basic vector.

Luciferase Assay
After transfection and/or treatment, the cells were washed with phosphate buffered saline (PBS) 3 times. The cells were then lysed in the luciferase cell culture lysis buffer provided with the luciferase Assay Kit (Promega,
After a brief vortex, whole cell lysates were centrifuged in the cold (4°C) at 12000 rpm for 2 min. Supernatant was collected in a fresh-tube and 20-30 ml of that was added to luciferase assay substrate (60-80 ml). Luminescence was measured as relative-light-units (RLU), twice for each lysate, taking the reading of luciferase assay using a LUMIstar OPTIMA, BMG LABTECH. Each assay was repeated for three times. Fold repression values were represented as mean of the three experiments.

RNA Interference

Cells were cultured to 30% confluence. For each well in a 6-well culture dish, 20nM of KLF17/p53 siRNAs or appropriate negative controls siRNAs was transfected into cells using Lipofectamine 2000 (Invitrogen) following manufactures protocol. Cells were incubated at 37°C in a CO2 incubator, and 6-8 hr later, 10% serum growth medium was added to the transfection mixture. Cell-extracts were assayed by Western blot for KLF17/p53 protein expression at 72 hr post transfection, while for mRNA expression at 48 hr after transfection. Please see the supplementary information for primer sequences.

RT-PCR

RT-PCR was performed as described previously (33). Each experiment was performed in duplicates, and repeated thrice.

Preparation of total cell extract and western blot analysis

Cells were washed with PBS and treated with an extraction buffer (50 mM Tris-HCl, pH 7.4, 1% Nonidet P-40, 0.25% sodium-deoxycholate, 150mM NaCl, and 1 mM EDTA) supplemented with 1 mM phenylmethanesulfonyl-fluoride, 1 mM sodium-orthovanadate (Na3VO4), 0.1 mM dithiothreitol, 0.4 μg/ml leupeptin/ pepstatin). Cell extract was stored at -20°C until required. Protein samples were subject to electrophoresis in 10% SDS polyacrylamide-gel. Separated proteins were electroblotted to Nitrocellulose membranes (Bio-Rad), and blot was blocked for 1 hr at room temperature with blocking buffer 0.1% PBST with 5% fat-free dried milk powder. Blot was then incubated with primary antibodies, (1:1000 dilution) at 4°C overnight. Blot was washed with 0.1% TBST 3 times, and incubated with secondary antibodies (mouse, rabbit) (1:5000 dilution) for 1 hr. Blot was washed again 3 times and exposed to Odyssey LI-COR-scanner.

MTT assay

Cell viability was assessed with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay in replicates. Cells were seeded in 96-well plate at 2.5×10^3 cells/well, and incubated in 10% FBS supplemented with DMEM for 24 hr. After that cells were treated with Nutlin-3/Adriamycin for indicated time points. Controls received DMSO vehicle at a concentration equal to that in drug-treated cells. After that drug-containing medium was replaced with 200μL of 10% FBS supplemented with DMEM containing 0.5 mg/mL MTT, and cells were incubated in the CO2 incubator at 37°C for 2 hr, and absorbance (490 nm) was measured and analyzed.

Cell migration

Cell culture inserts with a pore size of 8 μm
were pre-coated by adding 10 μg/mL Collagen I in PBS to the upper chamber at room temperature for 2 hr. At the onset of each experiment, the cells were detached with Versene and resuspended as single cells in serum-free DMEM. For the migration experiments, we took 25,000 cells in 0.5 mL and diluted them in serum-low DMEM (supplemented with 2% FBS). Cells were added to the upper chamber and the lower chamber was filled with 0.70 mL DMEM supplemented with 10% FBS. The cells were allowed to migrate for 24 hr at 37°C in a humidified atmosphere of 5% CO₂. The experiment was terminated by discarding the medium and fixing the cells in the filter with 4% paraformaldehyde for 10 min. Non-invading cells on the upper side of the insert were removed by a cotton-tipped applicator. Staining of the cells on the bottom of the membrane was performed with DAPI (300 nM in PBS) for 5 min at room temperature and washed with PBS. Membranes were excised from the inserts and mounted on slides using Dako Fluorescent Mounting Medium. Cells were either counted manually or with the help of the Image J software.

Cell invasion
Cell invasion experiments were performed in BD Matrigel™ invasion chambers (BD Biosciences) with a membrane pore diameter of 8 μm. For the invasion experiments, we used 50,000 cells per well suspended in 0.5 mL serum-low DMEM (supplemented with 2% FBS). The rest of the protocol was identical to that described in the migration assay.

Results

p53 enhances metastatic suppressor KLF17 transcription

KLF17 negatively regulates metastasis [4-7]. Tumor suppressive p53 plays a key role in the inhibition of tumorigenesis by regulating the expression of several important genes [11-13]. However, the affect of p53 on KLF17 transcription remains unknown during cancer progression. Therefore, we investigated the role of p53 on KLF17 regulation in A549 cells. A549 cell lines express tumor suppressive p53 (TP53) [34, 35]. We depleted p53 expression in A549 cells using specific siRNA targeting p53. We found that KLF17 mRNA levels induced in a dose-dependent manner in response to Nutlin-3 (Fig. 1A). In contrast, we did not observed any induction in KLF17 transcript levels in p53 depleted cells treated with Nutlin-3 (Fig. 1A), suggesting that p53 is important for KLF17 induction. Nutlin-3 activates/stabilizes p53 by blocking the interaction between mdm2 and p53 [36, 37]. Furthermore, silencing of p53 by siRNA resulted in decrease expression of KLF17 in lung cancer cells (Figs. 1B-1E). We treated A549 cells with different p53 activating chemotherapeutic agents, and observed that these drugs were able to induce KLF17 expression (Fig. 1F). To further verify our results, we performed protein analysis of KLF17 in response to Nutlin-3. We found that KLF17 protein level induced in Nutlin-3 treated cell lines (Fig. 1G). Taken together, our data suggest that p53 enhances KLF17 mRNA and protein levels in lung cancer cells.

Next, we aimed to analyze the transcriptional regulation of KLF17 by p53. In a dose dependent manner, p53 was able to induce transcriptional activity of KLF17-luc reporter in H1299 (p53 null) lung cancer cells (Fig.
Next, we generated different deletion constructs of KLF17-luc to find minimal responsive region required for KLF17 activation by p53 (Fig. 1I). Luciferase analysis indicated the region between (-2000/-498) is responsive to p53 (Fig. 1J). While, region beyond the (-498/+1) was unable to enhance the KLF17 transcription (Fig. 1J), suggesting that p53 responsive region lies between (-1015/-498) region. Using the NCBI database we found p53 consensus responsive element (p53RE) within KLF17 promoter (Fig. 1J). Mutation analysis of this p53RE indicated that p53 was unable to activate the KLF17 transcription from this mutated region (Fig. 1K). This data indicate that p53RE is critical for KLF17 regulation by p53 in lung cancer cells.

p53 interacts with KLF17 promoter via p53RE and recruits p300 in response to chemotherapy

To gain insight into the molecular details of KLF17 regulation by p53, we performed chromatin immunoprecipitation (ChIP) assay in A549 cells. ChIP analysis indicated that Nutlin-3 treated cells showed recruitment of p53 to KLF17 promoter, which contains bona fide p53RE. In contrast, no recruitment of p53 was observed within upstream region of KLF17 promoter (Figs. 2A and 2B). We obtained similar results using etoposide and adriamycin, anti-cancer drugs (Fig. 2C). To further verify our data, we performed gel shift assay in A549 cells that left untreated or treated with nutlin-3 for 24 hr. We designed oligo-probe containing the putative p53RE from KLF17 promoter. Gel shift assay revealed formation of p53-DNA complex on this p53RE, which was further verified by competition assay (Fig. 2D). Next, we analyzed the kinetics of p53 binding to KLF17 promoter. ChIP analysis indicated that p53 recruitment to KLF17 promoter was increased in a time-dependent manner (Fig. 2E). Taken together, p53 binds directly to KLF17 promoter and enhances KLF17 transcription in lung cancer cells.

Next, we asked that how p53 induces KLF17 transcription in lung cancer cells. p53 is known to interacts with co-activators such as p300, and lead to histone acetylation [38, 39]. Therefore, we examined the physical association of p300 with KLF17 promoter via p53RE. We treated A549 cells with Nutlin-3 and observed binding of p300 and AcH4 (a marker of chromatin activation) [40, 41] to p53RE with in KLF17 promoter (Fig. 2F). Furthermore, we observed time dependent recruitment of p300 and AcH4 to KLF17 promoter in lung cancer cells treated with Nutlin-3. ChIP analysis showed that binding of p300 and AcH4 increased to KLF17 promoter in a time-dependent manner (Figs. 2G and 2H). In conclusion, p53 enhances binding of p300 to KLF17 promoter to favor histone acetylation, and ultimately induce KLF17 transcription in A549 lung cancer cells in response to chemotherapy.

p53 empowers KLF17 mediated EMT genes transcription in NSCLC

Our results indicate that KLF17 expression is induced by p53 in lung cancer cells. KLF17 is a transcription factor and binds to the promoters of its target genes via CACCC DNA sequence [4, 6, 7]. Therefore, we investigated the affect of p53 on KLF17 mediated genes transcription. KLF17 inhibits metastasis and tumor growth by negatively
regulating ID1, Vimentin and Fibronectin expression, while inducing the ZO-1 and E-Cadherin transcript [4, 7]. We silenced p53 expression in lung cancer cells using siRNA targeting p53 (Fig. 3A, upper panel). p53 depleted and control cells were left untransfected or transfected with KLF17 expression vector and qRT-PCR was performed to check the mRNA levels of the KLF17 target genes (Fig. 3A, lower panel). Transcript analysis of these target genes revealed that tumor suppressive ability of KLF17 was higher in p53 containing A549 cells in comparison with p53-depleted cells (Figs. 3B-F and Supplementary Figure S1A).

Furthermore, we performed immunoblot to detect protein levels of KLF17 downstream target genes in both control and p53-depleted cell lines. Importantly, we found that knockdown of p53 decreased both KLF17 and KLF17 positively regulated genes expression (Fig. 3G). In contrast, silencing of p53 suppressed KLF17 protein level and enhanced the expression of KLF17 negatively regulated genes (Fig. 3H). Taken together, these results suggest that p53 potentiates KLF17 to regulate EMT target genes expression.

p53 enhances binding of KLF17 to EMT target gene promoters

To further gain insight that how p53 enhances tumor suppressive ability of KLF17, we tested the interaction between KLF17 and tumor suppressor p53 by immunoprecipitation assay in A549 cells. We found that endogenous p53 co-immunoprecipitated with KLF17 and resulted in the formation of p53-KLF17 complex (Fig. 5A). Importantly, formation of this complex further enhanced in Nutlin-3 treated cells (Fig. 5A). Nutlin-3 is an anti-cancer drug, which activates tumor suppressor p53 [33, 34]. The endogenous interaction between p53 and KLF17 was further confirmed by immunoprecipitating to Vimentin, Fibronectin and ZO-1 promoters (Figs. 4A-D). Conversely, in p53 containing cells KLF17 have significant physical association with its target gene promoters (Figs. 4B-D and Supplementary Figure S2A).

To further verify our results, we performed EMSA analysis using oligo probe from ZO-1 promoter that contain CACCC KLF17 responsive element. We transfected A549 cells with control siRNA or siRNA targeting against p53 and then left untransfected or transfected with expression plasmid encoding KLF17. EMSA analysis showed decrease formation of KLF17-DNA complex in p53-depleted cells in comparison with control cells which have p53 (Fig. 4E, compare lane 4 with lane 5). Next, we co-transfected flag-KLF17 with flag-p53 in lung cancer cells and found that formation of KLF17-DNA complex was much stronger than the control (Fig. 4E, compare lane 4 with lane 6). Taken together, these results indicate that p53 is critical for binding ability of KLF17 to EMT target gene promoters and enhances formation of KLF17-DNA complex.

p53 physically interacts with KLF17

To further gain insight that how p53 enhances tumor suppressive ability of KLF17, we tested the interaction between KLF17 and tumor suppressor p53 by immunoprecipitation assay in A549 cells. We found that endogenous p53 co-immunoprecipitated with KLF17 and resulted in the formation of p53-KLF17 complex (Fig. 5A). Importantly, formation of this complex further enhanced in Nutlin-3 treated cells (Fig. 5A). Nutlin-3 is an anti-cancer drug, which activates tumor suppressor p53 [33, 34]. The endogenous interaction between p53 and KLF17 was further confirmed by immunoprecipitating
KLF17 in lung cancer cells. A positive interaction between p53 and KLF17 was observed in both control and Nutlin-3 treated cells (Fig. 5B). Similar co-precipitation of p53 and KLF17 were obtained when A549 cells were transfected with flag-KLF17 (Fig. 5C).

To elucidate the region of KLF17 that might mediate the interaction between KLF17 and p53, A549 cells were transfected with flag-tagged full-length KLF17 (KLF17 FL), KLF17 Δ1, KLF17 Δ2 and KLF17 Δ3, that contained deletions in N-terminal (Fig. 5D). The transfected cells were subjected to immunoprecipitation, carried out with anti-flag antibody. Positive interactions were obtained only between p53 and KLF17 FL, or KLF17 Δ1, or KLF17 Δ2, but not with p53 and KLF17 Δ3 (Fig. 5E). These results indicate that the region containing amino acids from (1 to 210) in N-terminal region mediated the interaction between p53 and KLF17, and may be exerted an important effect on tumor suppressive function of KLF17 in lung cancer cells.

Activation of p53 recruits KLF17 to EMT gene promoters via p53-dependent manner

Our results show that p53 enhances KLF17 mediated EMT genes transcription. These hints prompted us to investigate the affect of Nutlin-3 on recruitment of KLF17 to EMT target gene promoters. A549 cells were left untreated or treated with Nutlin-3 and subjected to ChIP analysis. ChIP assay showed recruitment of KLF17 to EMT target gene promoters in A549 cells treated with Nutlin-3, but not in the control cells (Fig. 6A). Next we examined whether recruitment of KLF17 to EMT target gene promoters in response to nutlin-3 is p53-dependent. We transfected A549 cells with control siRNA or siRNA targeting p53 and then left untreated or treated with Nutlin-3. ChIP analysis indicated recruitment of KLF17 to EMT target gene promoters in control cells (Figs. 6B and 6C). In contrast, we did not observed any binding of KLF17 to EMT target gene promoters in p53-depleted cells treated with Nutlin-3 (Figs. 6B and 6C). Furthermore, we did detailed kinetics study of KLF17 recruitment on ID1 promoter in response to Nutlin-3. ChIP assay showed recruitment of KLF17 to ID1 promoter in Nutlin-3 treated in a p53-dependent manner (Fig. 6D). Conversely, we did not observed binding of KLF17 with ID1 promoter in p53-knockdown cancer cells (Fig. 6D).

Furthermore, we did EMSA analysis to detect the formation of KLF17-DNA complex in response to Nutlin-3. We used oligo-probe from ZO-1 promoter and observed formation of KLF17-DNA complex in control cells treated with Nutlin-3 (Fig. 6E, lane1, 2 and 4). In contrast, we did not observed any formation of KLF17-DNA complex in p53-depleted cells treated with Nutlin-3 (Fig. 6E, lanes 5-8).

Next we asked whether p53-dependent KLF17 recruitment to EMT target genes promoters is limited to Nutlin-3 induced model or other anti-cancer drugs that activate p53 can also show this phenomenon. We selected adriamycin and etoposide chemotherapeutic agents that activate p53. Importantly, ChIP assay revealed that both adriamycin and etoposide treated cell have more recruitment of KLF17 to ID1 promoter in a p53-dependent manner (Figs. 6F and 6G). To address whether endogenous p53 binds to KLF17 target gene promoters, we did ChIP analysis in A549 cells treated with Nutlin-3.
ChIP analysis showed no recruitment of p53 to KLF17 target gene promoters in both control and Nutlin-3 treated cells (Supplementary figures S3A-S3C). Taken together, these results show that p53 is critical for KLF17 recruitment to EMT target gene promoters in lung cancer cells in response to different p53 induced chemotherapeutic agents.

Knockdown of KLF17 impairs tumor suppressive function of p53

Next, we aimed to address the impact of KLF17 regulation on p53 cellular activities. Knockdown of KLF17 impairs tumor suppressive function of p53

Next, we aimed to address the impact of KLF17 regulation on p53 cellular activities. p53 suppresses cell growth, decreases drug resistance, enhances apoptosis and blocks cell-cycle progression in response to chemotherapy [12-16]. Therefore, we investigated the molecular and biological roles of p53 in control and KLF17-depleted lung cancer cell lines. We selected different p53 target genes such as PUMA and PIG3 that are up regulated by p53 [42, 43]. We carried out mRNA analysis of PUMA and PIG3 genes in control and KLF17-depleted lung cancer cells. qRT-PCR results indicated strong induction of PUMA and PIG3 expression in control cells treated with Nutlin-3, in comparison with KLF17-depleted cells (Figs. 7A and 7B). Moreover, we observed decrease recruitment of p53 to PUMA and PIG3 target gene promoters in response to Nutlin-3 in KLF17-depleted cells (Figs. 7C and 7D), suggesting that KLF17 may be important for full transcriptional activity of p53 in lung cancer cells.

Next, we treated p53 containing A549 lung cancer cell lines with Nutlin-3 and observed that KLF17 depleted cells were less sensitive to nutlin-3 and more proliferative, even in the presence of p53 (Fig. 7E). Furthermore, knockdown of KLF17 decreased apoptotic level of A549 cells in response to Nutlin-3 (Fig. 7F). Next, we assessed proliferative role of KLF17 and p53 in A549 cells. Importantly, knockdown of KLF17 and p53 independently enhanced cell growth (Fig. 7G). Strikingly, co-silencing of KLF17 and p53 further induced cell proliferation in A549 cells (Fig. 7G). These data indicate that KLF17 plays important role in the inhibition of A549 lung cancer cell growth in response to chemotherapy and is important for full tumor suppressive function of p53.

Overexpression of KLF17 enhances cyostatic ability of p53

Next, we sought whether enforce expression of KLF17 suppress lung cancer cells growth in response to chemotherapy. MMT analysis showed that both Nutlin-3 (which activates p53) and KLF17 independently decreased the cell viability of lung cancer cells. While, the combination of both nutlin-3 and KLF17 further inhibited the lung cancer cell growth (Fig. 8A). Apoptotic analysis of lung cancer cells showed the same results (Fig. 8B).

Next, we aimed to address the mechanism that how KLF17 inhibits lung cancer cells growth. Intriguingly, we found that KLF17 increased tumor suppressor p21 and pRB expressions in lung cancer cells (Fig. 8C and Supplementary Figures S4A-S4C). p21 and pRB are the inhibitor of cell growth and enhance apoptosis [12, 13, 44-47]. Importantly, depletion of KLF17 decreased mRNA and protein levels of p21 and pRB (Figs. 8D and 8E). Taken together, these results show that KLF17 is critical for inhibition of cell growth and induction of apoptosis in response to chemotherapy in lung cancer cells.
KLF17 enhances p53 transcription to generate a positive feedback loop

Next, we asked whether a positive feedback loop exists between KLF17 and p53, we depleted KLF17 expression in A549 cells. qRT-PCR analysis showed that depletion of KLF17 suppressed mRNA level of p53 (Figs. 9A and 9B). We obtained similar results at protein level (Fig. 9C).

To further assess the effect of KLF17 on p53 expression, we established A549 transfectants stably expressing KLF17 using lentiviral infection. A qRT-PCR analysis demonstrated that KLF17 expression level in lenti-KLF17 A549 cell lines were significantly higher than in the control stable cell lines (Fig. 9D). Consistently, we observed higher expression of p53 both at mRNA and protein levels in A549 cells stably expressing KLF17 (Figs. 9E and 9F).

Next, we investigated whether KLF17 enhance p53 transcription, we co-transfected p53-Luc reporter with KLF17 encoding plasmid into A549 cells. Induction was observed when reporter construct was co-transfected with different doses of KLF17 (Fig. 9G). Importantly, we found higher luciferase activity of p53-Luc construct in lenti-KLF17 A549 cells (Fig. 9H).

Bioinformatics analysis, using NCBI database, revealed that human p53 promoter contains three putative KLF17 responsive elements termed as KLF17RE (Fig. 9I, upper panel). We attempted to indentify the regulatory region conferring KLF17 responsiveness within the p53 promoter. We constructed different p53-Luc constructs that contain KLF17RE(s) (Fig.9I, lower panel). Deletion of KLF17RE-2 construct abolished its response to KLF17 induction, validating that KLF17 binds to KLF17RE-2 to induce p53 transcription in A549 cells stably expressing KLF17 (Fig. 9I and supplementary fig.S5).

To determine whether KLF17 directly binds to KLF17RE-2 within p53 promoter, a chromatin immunoprecipitation assay was performed in A549 expressing lenti-KLF17. The anti-KLF17 antibody specifically pull down DNA fragments corresponding to KLF17RE-2, which suggest direct binding of KLF17 to p53 promoter (Fig. 9K). Moreover, we observed recruitment of p300, a co-activator, to KLF17RE-2 region within p53 promoter in A549 cells stably expressing KLF17 (Fig. 9L).

Taken together, these results suggest that KLF17 enhances p53 transcription and generate a novel positive feedback with p53 in lung cancer cells to jointly control cancer progression.

KLF17 suppresses EMT and metastasis in a p53-dependent manner

Mechanistically, our results indicate that p53 enhance KLF17 mediated EMT genes transcription. These hints prompted us to investigate the functional effect of KLF17 on tumor cells migration and invasion in both control and p53 depleted cells. Overexpression of KLF17 inhibited cell migration in A549 cells (Fig. 10A, upper panel). Importantly, depletion of p53 lost the ability of KLF17 to suppress invasion of lung cancer cells (Figs. 10C, 10D).

Next, we performed invasion assay in A549 cells. Enforce expression of KLF17 decreased the invasion of A549 cells (Fig. 10C, upper panel). In contrast, silencing of p53 abolished KLF17 ability to significantly suppress invasion of lung cancer cells (Figs. 10C,
lower panel, and 10D). Taken together, these results suggest that KLF17 inhibits metastasis and invasion of lung cancer cells in a p53-dependent manner.

Discussion

Activation of tumor suppressive signaling is linked with inhibition of cancer progression and metastasis. Metastasis is a complex multistep process, which is control by joint regulation of several signaling cascade and is one of main cause of cancer-associated death. NSCLC is aggressive type of lung cancer and prognosis of NSCLC patients is very poor and about 30-55% NSCLC patients after chemotherapy show recurrence. The inhibitory effect of KLF17 on tumor cell migration and metastasis has been reported; however, the underlying molecular mechanism that how KLF17 control cancer metastasis remains elusive. Only a limited number of KLF17 target genes that regulate cancer cell migration and metastasis have been identified. Several studies showed that KLF17 suppresses cancer cell migration through targeting EMT-inducing transcription factors such as ID1 and ZO-1. We previously showed that mutant-p53 proteins exerts gain-of-function (GOF) ability to inhibit KLF17 expression [48]. Similarly, recent study showed that microRNA-9 represses KLF17 expression [6]. However, the signaling that positively control KLF17 pathway to suppress cancer metastasis remains unknown. Here, we showed novel molecular and functional link of KLF17 with p53. Our data reveals for the first time that KLF17 suppresses EMT and metastasis in a p53-dependent manner (Fig.11). Our study provides new insight into KLF17 pathway during cancer metastasis and for the first time, links KLF17 signaling with p53. Our results indicate that tumor suppressor p53 plays an integral role to potentiate KLF17 tumor suppressive function to suppress EMT and metastasis. Depletion of p53 abrogates KLF17 mediated inhibition of EMT and metastasis in NSCLC. KLF17 is one of the key inhibitor of EMT and metastasis [4, 48,49]. Knockdown of KLF17 promotes EMT and metastasis [4-8, 48]. Mechanistically, we found that endogenous p53 interacts with KLF17 and thereby enhances anti-EMT and tumor suppressive function of KLF17. Our results highlight novel crosstalk between p53 and KLF17 tumor suppressive signaling in lung cancer cells (Fig.11). Moreover, we show that novel positive feedback loop exists between p53 and KLF17, which suggest that these two tumor suppressor proteins amplify each other signaling (Fig.11). We found that endogenous p53 and KLF17 proteins form a complex in lung cancer cells. Importantly, formation of p53-KLF17 complex further enhanced in response to chemotherapeutic agent that activates p53 such as Nutlin-3.

p53 is a tumor suppressor transcription factor and plays a key role in the inhibition of tumor development and metastasis [12,13, 15]. Our study indicates that KLF17 is a novel transcriptional target of p53 signaling in lung cancer cells. We show that p53 enhances KLF17 transcription in lung cancer cells via p53RE. Depletion of p53 is associated with decrease expression of KLF17 in lung cancer cells. EMSA analyses showed formation of p53-DNA complex on KLF17 promoter, which suggest that KLF17 is a direct target of p53. Our study highlights that induction of KLF17 by p53 may reduce risk of metastasis,
EMT and cancer development in lung cancer cells.

KLF17 suppresses EMT by regulating the expression of EMT markers [4-6]. In this study, we examined whether KLF17 regulates its target gene expression in a p53-dependent manner. Indeed, we found that p53 potentiates KLF17 mediated EMT target genes expression during cancer metastasis. Our results show that knockdown of p53 decreased both KLF17 and KLF17 downstream target genes expression. With respect to the mechanism of KLF17 target genes regulation by p53, we found that depletion of p53 reduced recruitment of KLF17 to EMT target gene promoters. Moreover, p53 enhanced formation of KLF17-DNA complex on EMT target gene promoters. Our results indicate that p53 is critical for binding/recruitment of KLF17 to EMT target gene promoters and p53 plays a key role to empower tumor suppressive function of KLF17.

It is interesting to note that different chemotherapeutic agents that activate p53 such as Nutlin-3, Adriamycin and Etoposide promote recruitment of KLF17 to EMT target gene promoters in a p53-dependent manner. EMSA analysis showed that Nutlin-3 treatment results in the formation of KLF17-DNA complex on EMT target gene promoters, which was p53-dependent. These results pointing towards that p53 activating anti-cancer drugs may induce KLF17 expression and recruits KLF17 to EMT promoters via p53-dependent pathway. Our data show that p53 is crucial for KLF17 recruitment to EMT target gene promoters in response to chemotherapy. These results highlight the importance of p53 in triggering KLF17 signaling to overcome cancer progression.

p53 has been shown to suppress cancer progression by inhibiting cancer cell growth and proliferation [12,13, 15]. In this study, we showed that KLF17 is important for full tumor suppressive function of p53. Depletion of KLF17 impairs p53 signaling to inhibit cancer progression significantly. KLF17 is a tumor suppressive transcription factor and regulates the expression of its target gene promoters. We showed that p53 is a novel direct target of KLF17 in lung cancer cells. KLF17 induces p53 expression to generate a novel feedback loop. Our results show that KLF17 is important to maintain high level of p53. Depletion of KLF17 is associated with decrease expression of p53 in lung cancer cells. These results highlight interplay between p53 and KLF17 during cancer metastasis and show that these two proteins are engaged in a positive feedback loop.

Functionally, we examined whether KLF17 suppresses the tumor cell migration and invasion via p53-dependent pathway. Both KLF17 and p53 inhibit EMT and metastasis. Our study defines a novel functional link between these two tumor suppressor proteins during cancer metastasis. Importantly, our data show that KLF17 suppresses cancer cell migration and invasion in a p53-dependent manner. Depletion of p53 abrogates KLF17 function to inhibit tumor cell migration and invasion significantly in lung cancer cells. These results indicate for the first time that inhibition of tumor cell migration and invasion by KLF17 is p53-dependent in NSCLC.
Functional and molecular crosstalk of KLF17 with other tumor suppressive signaling remains unknown. Our study revealed novel molecular and functional link between KLF17 and p53 signaling. p53 and KLF17 form a novel positive feedback loop to amplify each other signaling. p53 is important to trigger KLF17 pathway in lung cancer cells to overcome EMT and cancer metastasis. Endogenous p53 and KLF17 form a complex and hence enhances the KLF17 tumor suppressive function. This finding extends the repertoire of roles for both p53 and KLF17 signaling during cancer progression. Our finding contributes to comprehensive understanding of KLF17 function in metastatic process, including its role as a transcriptional activator for inducing adherent protein expression and as a transcriptional repressor for suppressing oncogenic protein expression in tumor microenvironment.

These findings define novel mechanism by which p53-KLF17 pathway mutually affect each other during EMT and cancer metastasis, provide a new model of regulation of KLF17 tumor suppressive pathway by p53 and defines novel insights into anti-metastatic function of KLF17 via p53-dependent pathway in NSCLC. Thus, p53-KLF17 novel positive feedback play important role in inhibition of cancer metastasis. In addition, these results indicate that KLF17 may be a new therapeutic target in NSCLC tumors with p53 status, which may improve prognosis and treatment of NSCLC patients.

Acknowledgment:
We thank our lab colleagues for helpful technical suggestions and critically discussing our data. We thank to Higher Education Commission (HEC) and Ministry of Education (MOE) of Pakistan for supporting this study.

Competing financial interests:
The authors declare no competing financial interests.

Author contributions:
Amjad Ali and Muhammad Zeeshan Bhatti, designed project, performed major experiments and contributed to writing; Abdus Saboor Shah, Hong-Quan Duong, Huda Mohammad Alkreathy, Shah Faisal Mohammad and Rahmat Ali performed experiments and analyzed data; Ayaz Ahmad, designed project and wrote the manuscript.

References:
[1] Ettinger DS, Akerley W, Bepler G, Blum MG, Chang A, Cheney RT, et al. (2010) Non-small cell lung cancer, J Natl Compr Cancer Netw 8, 740–801.

[2] Lazar V, Suo C, Orecar C, van den Oord J, Balogh Z, Guegan J, et al. (2013) Integrated molecular portrait of non-small cell lung cancers, BMC Med Genet 6, 53.

[3] Siegel R, Ma J, Zou Z, Jemal A. (2014) Cancer statistics, CA: a cancer J clinicians 64, 9–29.

[4] K. Gumireddy, A. Li, P.A. Gimotty, A.J. Klein-Szanto, L.C. Showe, D. Katsaros, G. Coukos, L. Zhang, Q. Huang. (2009) KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer, Nature cell biology 11, 1297-1304.

[5] F.Y. Liu, Y.L. Deng, Y. Li, D. Zeng, Z.Z. Zhou, D.A. Tian, M. Liu. (2013) Down-regulated KLF17 expression is associated with tumor invasion and poor prognosis in hepatocellular carcinoma, Medical oncology 30, 425.

[6] Z. Sun, Q. Han, N. Zhou, S. Wang, S. Lu, C. Bai, R.C. Zhao. (2013) MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma, Molecular oncology 7, 884-894.

[7] M.P. Iwanicki, J.S. Brugge. (2009) Transcriptional regulation of metastatic [Id]entity by KLF17, Genome biology 10, 244.

[8] Cai XD, Zhou YB, Huang LX, Zeng QL, Zhang LJ, Wang QQ, Li SL, Feng QJ, Han AJ. (2012) Reduced expression of Krüppel-like factor 17 is related to tumor growth and poor prognosis in lung adenocarcinoma, Biochem Biophys Res Commun 418, 67-73.

[9] P. Dong, M. Kaneuchi, Y. Xiong, L. Cao, M. Cai, X. Liu, S.W. Guo, J. Ju, N. Jia, Y. Konno, H. Watari, M. Hosaka, S. Sudo, N. Sakuragi. (2013) Identification of KLF17 as a novel epithelial to mesenchymal transition inducer via direct activation of TWIST1 in endometrioid endometrial cancer, Carcinogenesis.

[10] J. van Vliet, L.A. Crofts, K.G. Quinlan, R. Czolij, A.C. Perkins, M. Crossley. (2006) Human KLF17 is a new member of the Sp/KLF family of transcription factors, Genomics 87, 474-482.

[11] K.S. Yee, K.H. Vousden, Complicating the complexity of p53. (2005) Carcinogenesis 26, 1317-1322.

[12] D. Menendez, A. Inga, M.A. Resnick. (2009) The expanding universe of p53 targets, Nature review Cancer 9, 724-737.

[13] D.R. Green, G. Kroemer, Cytoplasmic functions of the tumour suppressor p53. (2009) Nature 458, 1127-1130.

[14] M. Mihara, S. Erster, A. Zaika, O. Petrenko, T. Chittenden, P. Pancoska, U.M. Moll. (2003) p53 has a direct apoptogenic role at the mitochondria, Molecular cell 11, 577-590.

[15] C.P. Martins, L. Brown-Swigart, G.I. Evan. (2006) Modeling the therapeutic efficacy of p53 restoration in tumors, Cell 127, 1323-1334.

[16] A. Ventura, D.G. Kirsch, M.E. McLaughlin, D.A. Tuveson, J. Grimm, L. Lintault, J. Newman, E.E. Reczek, R. Weissleder, T. Jacks. (2007) Restoration of p53 function leads to tumour regression in vivo, Nature 445, 661-665.

[17] S.T. Szak, D. Mays, J.A. Pietenpol. (2001) Kinetics of p53 binding to promoter sites in vivo, Molecular and cellular biology 21, 3375-3386.

[18] A.J. Levine. (1997) p53, the cellular gatekeeper for growth and division, Cell 88, 323-331.

[19] W.J. Lu, J.F. Amatruda, J.M. Abrams. (2009) p53 ancestry: gazing through an evolutionary lens, Nature reviews cancer 9, 758-762.
[20] S.M. Sykes, H.S. Mellert, M.A. Holbert, K. Li, R. Marmorstein, W.S. Lane, S.B. McMahon. (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction, *Molecular cell* 24, 841-851.
[21] C.J. Sherr. (2006) Divorcing ARF and p53: an unsettled case, *Nature reviews Cancer* 6, 663-673.
[22] J.P. Thiery, J.P. Sleeman. (2006) Complex networks orchestrate epithelial-mesenchymal transitions, *Nature reviews Molecular cell biology* 7, 131-142.
[23] J.P. Thiery, H. Acloque, R.Y. Huang, M.A. Nieto. (2009) Epithelial-mesenchymal transitions in development and disease, *Cell* 139, 871-890.
[24] M.A. Nieto. (2009) Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives, *The International journal of developmental biology* 53, 1541-1547.
[25] J.P. Thiery. (2003) Epithelial-mesenchymal transitions in development and pathologies, *Current opinion in cell biology* 15, 740-746.
[26] H. Acloque, M.S. Adams, K. Fishwick, M. Bronner-Fraser, M.A. Nieto. (2009) Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease, *The Journal of clinical investigation* 119, 1438-1449.
[27] Y. Kang, J. Massague. (2004) Epithelial-mesenchymal transitions: twist in development and metastasis, *Cell* 118, 277-279.
[28] A. Cano, M.A. Perez-Moreno, I. Rodrigo, A. Locascio, M.J. Blanco, M.G. del Barrio, F. Portillo, M.A. Nieto. (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression, *Nature cell biology* 2, 76-83.
[29] G.P. Gupta, J. Massague. (2006) Cancer metastasis: building a framework, *Cell* 127, 679-695.
[30] A.F. Chambers, A.C. Groom, I.C. MacDonald. (2002) Dissemination and growth of cancer cells in metastatic sites, *Nature review. Cancer* 2, 563-572.
[31] C. Birchmeier, W. Birchmeier, E. Gherardi, G.F. Vande Woude. (2003) Met, metastasis, motility and more, *Nature reviews Molecular cell biology* 4, 915-925.
[32] J.A. Joyce, J.W. Pollard. (2009) Microenvironmental regulation of metastasis, *Nature reviews Cancer* 9, 239-252.
[33] Ali A, Wang Z, Fu J, Ji L, Liu J, Li L, Wang H, Chen J, Caulin C, Myers JN, Zhang P, Xiao J, Zhang B, Li X. (2013) Differential regulation of the REGγ-proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells, *Nat Commun.*
[34] A Mirza, M McGuirk, T N Hockenberry, Q Wu, H Ashar, S Black, SF Wen, L Wang, P Kirschmeier, W R Bishop, L L Nielsen, C B Pickett and S LiuHuman. (2002) survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway, *Oncogene* 21, 2613-2622.
[35] M Matsuoka , H Igisu , and Y Morimoto . (2003) Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers, *Envion Health Perspect.* 111, 509–512.
[36] Arva NC, Talbott KE, Okoro DR, Brekman A, Qiu WG, Bargonetti J. (2008) Disruption of the p53-Mdm2 complex by Nutlin-3 reveals different cancer cell phenotypes, *Ethn Dis.* 18.
[37] Künkele A, De Preter K, Heukamp L, Thor T, Pajtler KW, Hartmann W, Mittelbronn M, Grotzer MA, Deubzer HE, Speleman F, Schramm A, Eggert A, Schulte JH. (2012) Pharmacological activation of the p53 pathway by Nutlin-3 exerts anti-tumoral effects in medulloblastomas, *Neuro Oncol.* 14.
[38] Iyer NG, Chin SF, Ozdag H, Daigo Y, Hu DE, Cariati M, Brindle K, Aparicio S, Caldas C. (2004) p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21
levels, *Proc Natl Acad Sci USA* **101**.

[39] Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K. (1997) Recruitment of p300/CBP in p53-dependent signal pathways, *Cell* **89**, 1175-84.

[40] Tang H, Chen F, Tan Q, Tan S, Liu L, Zhang F. (2009) Regulation of CD11b transcription by decreasing PRC2 and increased acH4 level during ATRA-induced HL-60 differentiation, *Acta Biochim Biophys Sin* (Shanghai). **41**, 588-93.

[41] Lee ER, Murdoch FE, Fritsch MK. (2007) High histone acetylation and decreased polycomb repressive complex 2 member levels regulate specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid, *Stem Cells*. **25**, 2191-9.

[42] Katsunori N, K H Vousden. (2001) *PUMA*, a Novel Proapoptotic Gene, Is Induced by p53, *Molecular Cell* **7**, 683–694.

[43] J-H Lee, Y Kang, V Khare, Z-Y Jin, M-Y Kang¹, Y Yoon, J-W Hyun, M-H Chung, S-I Cho, J Y Jun, I-Y Chang and H J You. (2010) The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage, *Oncogene* **29**, 1431–1450.

[44] Tarek Abbas and Anindya Duttap. (2009) p21 in cancer: intricate networks and multiple activities, *Nat Rev Cancer*. **6**, 400–414.

[45] A J Poole, D Heap, R E Carroll and A L Tyner. (2004) Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon, *Oncogene* **23**, 8128–8134.

[46] Manning AL, Dyson NJ. (2011) pRB, a tumor suppressor with a stabilizing presence, *Trends Cell Biol* **8**, 433-41.

[47] D W Goodrich. (2006) The retinoblastoma tumor-suppressor gene, the exception that proves the rule, *Oncogene* **25**, 5233–5243.

[48] Ali A, Shah AS, Ahmad A. (2014) Gain-of-function of mutant p53: mutant p53 enhances cancer progression by inhibiting KLF17 expression in invasive breast carcinoma cells. *Cancer Lett* **354**, 87-96.

[49] Ali A, Zhang P, Liangfang Y, Wenshe S, Wang H, Lin X, Dai Y, Feng XH, Moses R, Wang D, Li X, Xiao J. (2015) KLF17 empowers TGF-β/Smad signaling by targeting Smad3-dependent pathway to suppress tumor growth and metastasis during cancer progression, *Cell Death Dis* **6**, e1681.

Figure legends:

Fig.1. Tumor suppressor p53 induces KLF17 expression

(A) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and then left untreated or treated with Nutlin-3 (10 µM/L) for indicated time points. Total RNA was isolated and subjected to qRT-PCR. Data are representative of three independent experiments (mean ± s.d.). (Two-tailed Student’s *t*-test, P**<0.005).

(B, C and D) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48
hr. Total RNA was extracted and subjected to RT-PCR analysis. (B, C) Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

(E) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 72 hr and subjected to western blot analysis with indicated antibodies.

(F) A549 cells were left untreated or treated with Nutlin-3 (10 µM), Etoposide (10 µM) and Adriamycin (0.5 µM) for 12 hr and analyzed by qRT-PCR. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

(G) A549 cells were treated with Nutlin-3 (10µM) for 24 hr and subjected to western blot analysis with indicated antibodies.

(H) H1299 cells were co-transfected with KLF17 reporter construct (2 µg) in combination with different concentrations of p53 for 24 hr prior to lysis, and analyzed for luciferase-activity. Data are representative of three independent experiments (mean ± s.d.). (Two-tailed Student’s t-test, P**<0.005).

(I) Schematic representation of different deletion luciferase constructs of KLF17.

(J) Schematic representation of p53 responsive element (p53RE) within KLF17 promoter. Different luciferase constructs of KLF17 (each 2 µg) were co-transfected with p53 (50 ng) for 24 hr and analyzed by luciferase assay. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P**<0.005).

(K) H1299 cells were co-transfected with wild-type (2 µg) or mutated (2 µg) p53RE KLF17 luciferase reporter constructs in combination with p53 (50 ng) for 24 hr, and luciferase activity was measured. Data are representative of three independent experiments (mean ± s.d.). (Two-tailed Student’s t-test, P**<0.005).

Fig.2. p53 interacts and recruits p300 to KLF17 promoter in response to chemotherapy

(A) Schematic representation of ChIP primers from KLF17 promoter.

(B and C) A549 cells were left untreated or treated with Nutlin-3, Adriamycin and Etoposide for 24 hr, and chromatin immunoprecipitation were performed with indicated antibodies. (B) Data are representative of three independent experiments (mean ± s.d.). (Two-tailed Student’s t-test, P*<0.05).

(D) EMSA was performed using nuclear extract from A549 cells treated with Nutlin-3 (10 µM) for 24 hr. 2 µg of nuclear extract protein were incubated with 32p-radiolabeled probe containing p53RE from KLF17 promoter.
A549 cells were left untreated or treated with Nutlin-3 (10 µM) for indicated time points and chromatin immunoprecipitation were performed with indicated antibodies. Data are representative of three independent experiments (mean ± s.d.). (Two-tailed Student’s t-test, P*<0.05).

A549 cells were left untreated or treated with Nutlin-3 (10 µM) for 24 hr, and chromatin immunoprecipitation were performed with indicated antibodies. (G, H) Data are representative of three independent experiments (mean ± s.d.). (Two-tailed Student’s t-test, P*<0.05).

Fig.3. p53 potentiates KLF17 mediated EMT target genes expression

(A) (Upper panel) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and subjected to western blot analysis with indicated antibodies. (Lower panel) A549 cells were transfected with expression plasmid encoding KLF17 for 24 hr and subjected to western blot analysis with indicated antibodies.

(B-F) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and then transfected with expression plasmid encoding KLF17 for 24 hr. qRT-PCR was performed to check different genes expressions. The average was calculated based on three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P**<0.005).

(G and H) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 72 hr, and subjected to western blot analysis with indicated antibodies.

Fig.4. Depletion of p53 decreases binding of KLF17 to EMT gene promoters

(A) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and subjected to western blot analysis with indicated antibodies.

(B-D) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and then transfected with expression plasmid encoding KLF17 for 24 hr. ChIP was performed with antibody specific for KLF17. The average was calculated based on three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05).

(E) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and then transfected with control vector or expression plasmid encoding KLF17 for 24 hr. EMSA was performed with oligo-pbrobe derived from ZO-1 promoter that conatin corresponding KLF17 responsive element.

Fig.5. KLF17 physically interacts with KLF17
(A) A549 cells were immunoprecipitated with anti-p53 antibody and then subjected to western blot with indicated antibodies.

(B) A549 cells were immunoprecipitated with anti-KLF17 antibody and then subjected to western blot with indicated antibodies.

(C) A549 cells were transfected with flag-vector or flag-KLF17 for 24 hr and then immunoprecipitated with anti-Flag antibody and analyzed by western blot with indicated antibodies.

(D) Mapping the interaction domain between KLF17 and p53. Different deletion constructs of KLF17 were generated to find out the region required for p53 and KLF17 interaction.

(E) A549 cells were transfected with full length flag-KLF17 or with different deletion constructs of KL17 for 24 hr and then immunoprecipitated with flag antibody and analyzed by western blot with indicated antibodies.

Fig.6. Nutlin-3 recruits KLF17 to EMT gene promoters in a p53-dependent manner.

(A) A549 cells were left untreated or treated with Nutlin-3 (10 µM) for 24 hr, and chromatin immunoprecipitation were performed with indicated antibodies.

(B-D) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and then left untreated or treated with Nutlin-3 (10 µM) for 24 hr, and chromatin immunoprecipitation were performed with indicated antibodies. (B-D) The average was calculated based on three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05).

(E) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and then left untreated or treated with Nutlin-3 (5 and/or 10 µM) for 24 hr, and EMSA was performed with oligo-probe derived from ZO-1 promoter.

(F) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and then left untreated or treated with Adriamycin for 24 hr, and chromatin immunoprecipitation were performed with indicated antibodies. The average was calculated based on three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05).

(G) A549 cells were transfected with control siRNA or siRNA targeting against p53 (20 nM) for 48 hr, and then left untreated or treated with Etoposide for 24 hr, and chromatin immunoprecipitation were performed with indicated antibodies. The average was calculated based on three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05).
Fig. 7. Depletion of KLF17 affects the cytostatic function of p53

(A and B) A549 cells was transfected with control siRNA or siRNA targeting against KLF17 (20 nM) for 48 hr and then treated with Nutlin-3 (10 µM) for 24 hr. Total RNA was extracted and subjected to qRT-PCR analysis for indicated genes. Lower panel shows knockdown efficiency of KLF17 in A549 cells.

(C and D) A549 cells was transfected with control siRNA or siRNA targeting against KLF17 (20 nM) for 48 hr and then treated with Nutlin-3 (10 µM) for 24 hr. ChIP was performed with indicated target gene promoters with anti p53 antibody.

(E) A549 cells was transfected with control siRNA or siRNA targeting against KLF17 (20 nM) for 48 hr and then left untreated or treated with Nutlin-3 (10 µM/L) for 24 hr and MTT assay was performed. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

(F) A549 cells were transfected with control siRNA or siRNA targeting against KLF17 (20 nM) for 48 hr and then left untreated or treated with Nutlin-3 (10 µM/L) for 24 hr and FACS analysis was performed to detect the apoptotic level. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

(G) A549 cells were transfected with siRNAs targeting against p53 (20 nM) and KLF17 (20 nM) either independently or in combination for 72 hr and then subjected to MTT analysis. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

Fig. 8. Overexpression of KLF17 enhances p53 tumor suppressive function.

(A) A549 cells were transfected with flag-vector or vector encoding KLF17 plasmid for 24 hr and then left untreated or treated with Nutlin-3 (10 µM/L) for 24 hr and MTT assay was performed to detect cell growth. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05).

(B) A549 cells were transfected with flag-vector or vector encoding KLF17 plasmid for 24 hr and then left untreated or treated with Nutlin-3 (10 µM/L) for 24 hr and FACS analysis was performed to detect apoptotic level. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05).

(C) A549 cells were transfected with flag-vector or vector encoding KLF17 plasmid for 24 hr and subjected to
western blot analysis with indicated antibodies.

(D) A549 cells were transfected with control siRNA or siRNA targeting against KLF17 (20 nM) for 48 hr and subjected to qRT-PCR analysis. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

(E) A549 cells were transfected with control siRNA or siRNA targeting against KLF17 (20 nM) for 72 hr and subjected to western blot analysis with indicated antibodies.

Fig.9. KLF17 enhances p53 transcription to generate a feedback loop

(A and B) A549 cells were transfected with control siRNA or siRNA targeting against KLF17 (20 nM) for 48 hr and subjected to qRT-PCR analysis. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

(C) A549 cells were transfected with control siRNA or siRNA targeting against KLF17 (20 nM) for 72 hr and subjected to western blot analysis with indicated antibodies.

(D) Lenti-KLF17 transfection significantly increased KLF17 expression compared to lenti-control transfection in A459 cells and subjected to qRT-PCR analysis. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P***<0.0005).

(E) A549 cells stably expressing lenti control vector or lenti KLF17 were subjected to qRT-PCR analysis for p53 expression. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P**<0.005).

(F) A549 cells stably expressing lenti control vector or lenti KLF17 were subjected to western blot analysis with indicated antibodies.

(G) A549 cells were transfected with p53-Luciferase construct in combination with 10, 25 and/or 50 ng of Flag-KLF17 for 24 hr prior to lysis and subjected to luciferase assay. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

(H) A549 cells expressing lenti control vector or lenti KLF17 were transfected with p53-Luciferase construct for 24 hr prior to lysis and subjected to luciferase assay. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P**<0.005). Lower panel represent lenti-KLF17 expression in A459 cells.
(I) Schematic representation of different luciferase constructs for KLF17 responsive elements in p53 promoter.

(J) A549 cells stably expressing lenti control vector or lenti KLF17 vector were transfected with different p53-Luciferase construct for 24 hr prior to lysis and subjected to luciferase assay. Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05).

(K) A549 cells expressing lenti control vector or lenti KLF17 vector were subjected to ChIP analysis with anti-KLF17 antibody. IgG serve as a negative control.

(L) A549 cells expressing lenti control vector or lenti KLF17 vector were subjected to ChIP analysis with anti-p300 antibody. IgG serve as a negative control.

Fig.10. KLF17 suppresses EMT in a p53-dependent manner

(A) A549 cells were transfected with Flag-vector encoding KLF17 or transfected with siRNA targeting against p53 and cell migration assay was performed.

(B) Statistical analysis of (A). Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

(C) A549 cells were transfected with Flag-vector encoding KLF17 or transfected with siRNA targeting against p53 and cell invasion assay was performed.

(D) Statistical analysis of (C). Data are representative of three independent experiments with mean ± s.d. (Two-tailed Student’s t-test, P*<0.05 and P**<0.005).

Fig.11. Model showing that (a) KLF17 suppresses cancer metastasis via p53-dependent pathway and (b) showing novel positive feedback loop exist between p53 and KLF17.
Figure 1

A. Relative KLF17 mRNA level

B. Relative p53 mRNA level

C. Relative KLF17 mRNA level

D. A549

E. A549

F. KLF17 expression

G. KLF17 promoter

H. KLF17 promoter

I. KLF17 Luc deletion constructs

J. GTACTAGCTACAGCTAGCTCC Score = 90%

K. WT-p53RE Mutated-p53RE
Figure 2

A
KLF17 promoter

ChIP primers

Control p53RE

B

KLF17 promoter

Fold relative to IgG

Nutlin-3
α-IgG α-p53
p53RE Control region
ChIP

C

ChIP

Nutlin-3 p53RE
Input IgG p53
Etoposide p53RE
Adriamycin p53RE

D

Nutlin-3 WT-Comp. Mut-Comp.
p53RE - + + + +
- + + - +
- - - - +

E

ChIP:KLF17 promoter

Fold relative to IgG

Nutlin-3 α-IgG α-p53
0 6 12 24 0 6 12 24

F

ChIP

Nutlin-3 p53RE
Input IgG p300

G

ChIP:KLF17 promoter

Fold relative to IgG

Nutlin-3 (hr) α-IgG α-p300

H

ChIP:KLF17 promoter

Fold relative to IgG

Nutlin-3 (hr) α-IgG α-AcH4
Figure 3

A. siRNA-CTL siRNA-p53
IB: p53
IB: β-actin
CTL-Vector F-KLF17
IB: Flag
IB: β-actin

B. ID1
Relative mRNA level
Flag-Vector Flag-KLF17
IB: β-actin

C. Vimentin
Relative mRNA level
Flag-Vector Flag-KLF17
IB: β-actin

D. Fibronectin
Relative mRNA level
Flag-Vector Flag-KLF17
IB: β-actin

E. ZO-1
Relative mRNA level
Flag-Vector Flag-KLF17
IB: β-actin

F. E-Cadherin
Relative mRNA level
Flag-Vector Flag-KLF17
IB: β-actin

G. A549
IB: p53
IB: KLF17
IB: E-Cadherin
IB: ZO-1
IB: GAPDH

H. A549
IB: KLF17
IB: Vimentin
IB: ID1-1
IB: GAPDH
Figure 4

A

siRNA-CTL siRNA-p53

IB: p53

IB: β-actin

WB

ChIP: ZO1 promoter

Fold relative to IgG

Flag-KLF17 - +

α-KLF17

ChIP: Vimentin promoter

Fold relative to IgG

Flag-KLF17 - +

α-KLF17

ChIP: Fibronectin promoter

Fold relative to IgG

Flag-KLF17 - +

α-KLF17

E

KLF17-DNA complex

Free probe

Flag-KLF17

Flag-Flag-KLF17

Flag-p53

Flag-Flag-p53

Free probe

1 2 3 4 5 6

siRNA-CTL siRNA-p53

siRNA-CTL siRNA-p53

siRNA-CTL siRNA-p53

siRNA-CTL siRNA-p53

siRNA-CTL siRNA-p53

siRNA-CTL siRNA-p53
Figure 5

A

Nutlin-3	IgG	p53
Inputs	+	-
IB: p53	-	+
IB: KLF17	-	+

B

Nutlin-3	IgG	KLF17
Inputs	+	-
IB: p53	-	+
IB: KLF17	-	+

C

Flag-Vector	KLF17
Flag	-
KLF17	+

D

FL	81	165	210	C389
Δ1				
Δ2				
Δ3				

E

FL	Δ1	Δ2	Δ3
IP: Flag			
IB: p53			

A549

Flag-Vector	HSP90
Flag	-
HSP90	+
Figure 6

A. ChIP

Nutlin-3 - IgG - KLF17
ID1 - + - +
Vimentin - + - +
Fibronectin - + - +
ZO-1 - + - +
E-Cadherin - + - +

B. ChIP: ZO-1 promoter

Fold relative to IgG

C. ChIP: Vimentin promoter

Fold relative to IgG

D. ChIP: ID1 promoter

Fold relative to IgG

E. CTI-siRNA p53-siRNA

Nutlin-3 (10µM) + - + + + + +
Nutlin-3 (5µM) - + - - - - -
WT-Competitor - + - - - - -
Mut-Competitor - - + - - - -

F. ChIP: ID1 promoter

Fold relative to IgG

G. ChIP: ID1 promoter

Fold relative to IgG

Etoposide - + - -

α-KLF17 - + - -

KLF17-DNA complex

Free probe

Adriamycin - + - -

α-KLF17 - + - -
Figure 7

A. PUMA

B. PIG3

C. ChIP: PUMA promoter

D. ChIP: PIG3 promoter

E. A549 lung cancer cells

F. A549 lung cancer cells

G. A549 lung cancer cells

Relative mRNA levels

OD value

% apoptosis

Fold relative to IgG

Fold relative to IgG

Relative mRNA levels

PUMA

PIG3

ChIP: PUMA promoter

ChIP: PIG3 promoter

A549 lung cancer cells

CTL-siRNA

KLF17-siRNA

α-p53

α-p53
Figure 8

A549 lung cancer cells

A

- OD value
- Flag-vector
- Flag-vector+Nutlin-3
- Flag-KLF17
- Flag-KLF17+Nutlin-3

B

- % apoptosis
- Flag-vector
- Flag-vector+Nutlin-3
- Flag-KLF17
- Flag-KLF17+Nutlin-3

C

- WB
- IB: β-actin
- IB: pRB
- IB: GAPDH
- siRNA-CTL
- si-RNA-KLF17

D

- Relative mRNA levels
- KLF17
- p21
- pRB

E

- WB
- IB: KLF17
- IB: p21
- IB: pRB
- IB: GAPDH

A549 lung cancer cells
Figure 9

KLF17 expression

**

p53 expression

IB: KLF17
IB: p53
IB: GAPDH

p53 promoter

IB: KLF17
IB: β-actin

ChIP: p53 promoter

fold change relative to IgG

KLF17RE-2

fold change relative to IgG

KLF17RE-2

Lenti-CTL
Lenti-KLF17
IgG
α-KLF17
IgG
α-P300

Flag-KLF17

RLU

Flag

RLU

Flag
Figure 10

A

CTL Flag-KLF17

siRNA-p53 siRNA-p53 + Flag-KLF17

Cell migration

B

CTL Flag-KLF17

siRNA-p53 siRNA-p53 + Flag-KLF17

Cell migration

A549

C

CTL Flag-KLF17

siRNA-p53 siRNA-p53 + Flag-KLF17

Cell invasion

D

CTL Flag-KLF17

siRNA-p53 siRNA-p53 + Flag-KLF17

Cell invasion
a) KLF17 suppress EMT via p53-dependent pathway

b) Novel crosstalk between KLF17 and p53

Figure 11
Tumor suppressive p53 signaling empowers metastatic inhibitor KLF17-dependent transcription to overcome tumorigenesis in non-small cell lung cancer
Amjad Ali, Muhammad Zeeshan Bhatti, Abdus Saboor Shah, Hong-Quan Duong, Huda Mohammad Alkreathy, Shah Faisal Mohammad, Rahmat Ali and Ayaz Ahmad

J. Biol. Chem. published online April 24, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M114.635730

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts