A theoretical model for predicting the surface topography of inhomogeneous materials after shot peening

BingBing Wang¹ · HaiKuan Chen² · GuangTao Xu² · JianWei Zhang¹ · MingHao Zhao²

Received: 28 September 2021 / Accepted: 4 January 2022 / Published online: 26 January 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Shot peening is widely used in engineering as a classical strengthening process. Although many studies on shot peening have been done, most have focused on homogeneous target materials. In this paper, a theoretical model is proposed for predicting the surface morphology of inhomogeneous target materials. The topography of target materials after single-shot impact is calculated on the basis of energy conservation and Hertz contact theory, and the final three-dimensional surface topography after multiple-shot impact is obtained through superposition. Single-shot and random multiple-shot finite element models are used to show the advantages of the proposed model over the existing theoretical model for homogeneous target materials. The roughness is found to increase with the shot velocity and shot radius.

Keywords Shot peening · Surface metamorphic layer · Inhomogeneous material · Surface topography · Theoretical model

1 Introduction
Shot peening is a classical processing technology that has been greatly developed in industry owing to its versatility and wide applicability [1, 2]. Compared with other finishing technologies with obvious thermal damage, jet machining technology has major advantages such as very limited heat-affected area [3] and especially high feasibility of machining free-form surfaces. In shot peening, many shots impact the surface of a workpiece with high speed, resulting in grain refinement and work hardening in the near-surface layers. The compressive residual stress introduced by shot peening can also delay crack progression and further improve the fatigue strength of artifacts [4–7].

However, many pits exist on the surface of the workpiece after shot peening, and therefore the surface morphology may be poor. The surface morphology is very important for evaluating the surface quality of the workpiece, and it greatly affects the functions of parts. Such effects include a series of assembly problems such as friction, wear, vibration, and noise of parts [8–11]. The surface morphology also seriously affects the fatigue performance of the workpiece because the rough surface is equivalent to the presence of many notches (or microcracks), which cause stress concentration [12–14]. When the workpiece is under load, the stress concentration causes fatigue sources to form much more easily, leading to fatigue failure. Therefore, it is very important to predict the surface morphology of the workpiece after shot peening.

Numerous experimental and simulation studies have been conducted on shot peening and have obtained valuable results. For example, Beaucamp and Namba [15] found that better surface roughness could be obtained for mold steel using low inlet pressure and a small abrasive after fluid jet polishing. In the polishing of soft metal (such as copper), low jet pressure combined with a large abrasive can reduce the embedding of the abrasive on the target surface, thus reducing surface pollution [16]. Pham et al. [17] and Tsai et al. [18] studied optimal jet parameters for reducing the surface roughness (Ra) of n-BK7 optical glass and SKD61 mold steel workpieces. A multiple-shot finite element model was used by Lin et al. [19] to investigate the effects of shot peening coverage on surface integrity, and it was found that the plastic strain increase with the shot peening coverage, and variations of each roughness parameter with coverage are different.
There have also been several theoretical works on shot peening. For example, a theoretical model [20] of jet machining was proposed for the case in which abrasion by particles does not reach the level of causing brittle fracture on the target material, and compared with the experimental results, this model predicted the roughness of unmasked channels with average errors of about 36%. A theoretical model was proposed [21] for processing quartz glass through air-abrasive jet polishing that considered the randomness of abrasive particle size and the springback of abrasives from the workpiece surface; the model agreed well with experiment, and showed that to obtain a smooth surface, the small-sized abrasives and the low jet airflow pressure were more effective. Wang et al. [22] proposed an analytical model of overlapped footprints in abrasive air jet polishing of optical glass, and they further studied the effects of polishing parameters including the jet pressure, jet angle, and abrasive size on both machined surface roughness and removed material volume. Qu et al. [23] proposed a material removal profile model for obliquely axial ultrasonic vibration-assisted polishing of K9 optical glass, and this model showed that with larger ultrasonic amplitude and larger oblique angle, the material removal capability can be improved significantly. In addition, Zhang et al. [24] theoretically analyzed the residual stress field for different geometrical features after abrasive waterjet peening, the results of residual stress had relatively good agreement with those of finite element model.

Although many studies have been done on shot peening, most have focused on homogeneous target materials. Actually, most workpieces have gone through heat treatment to produce a surface hard enough to give satisfactory resistance [25–27] before the shot peening. This means the material parameters are actually inhomogeneous near the target surface. Therefore, it is necessary to investigate the effect of shot peening on heterogeneous target materials. This study gives a theoretical model for predicting the surface morphology of heterogeneous target materials after shot peening. The model provides an analytical way to understand and optimize shot peening technology.

The paper is organized as follows. Section 2 outlines the theoretical model for predicting surface topography after multiple-shot impact. Then, Sect. 3 presents verification based on the finite element method and discusses the results. Finally, the main conclusions are summarized in Sect. 4.

2 Theoretical model

Let us consider a shot impacting on a target material. When the shot velocity is lower than the elastic critical value v_{ela}, the maximum stress inside the target is less than the yield stress, so there is only elastic deformation on the target material (see Fig. 1a). When the shot velocity is higher than v_{ela}, there will be residual plastic deformation on the target material after the shot rebounds (see Fig. 1b).

Fig. 1 Schematics of shot impacts on the target material for (a) $v \leq v_{ela}$ and (b) $v > v_{ela}$

2.1 Calculating the elastic critical velocity and maximum depth

For the case shown in Fig. 1a, we ignore energy loss in the form of friction. The kinetic energy of the shot is converted into the work done by the contact force F_{ela} exerted by the target material as the velocity decreases to zero:

$$\frac{1}{2}mv^2 = \int_0^{\lambda_{ela}} F_{ela} d\lambda ,$$

where m and v are the mass and velocity of the shot, F_{ela} is the contact force, and λ_{ela} is the critical depth. The relationship between the elastic contact force and the impact depth can be obtained according to Hertz contact theory [28–30]. When the maximum stress in the vertical contact force system is equal to the yield strength of the target material, the shot peening process enters the critical stage of shaping, and the critical depth λ_{ela} can be obtained from

$$\lambda_{ela} = \frac{1}{4\sigma_y^2} \left(\frac{1}{E_1} + \frac{1}{E_2} \right) \frac{1 - \nu_1^2}{E_1} \frac{1 - \nu_2^2}{E_2} R ,$$

where σ_y is the yield strength of the surface layer; E_1 and E_2, are the elastic moduli of the shot and target material, respectively; ν_1 and ν_2 are the Poisson ratios of the shot and target material, respectively; and R is the radius of the shot. In our study, E_1 and E_2 are set equal and constant because the elastic modulus in the near-surface layers is unchanged [31].
2.2 Calculating the residual depth of the dent

When the shot velocity is greater than \(v_{\text{ela}} \), there is a dent on the target material caused by residual plastic deformation after the shot rebounds, as shown in Fig. 1b. For this case, the kinetic energy of the shot is converted into the work of the contact forces \(F_{\text{ela}} \) and \(F_{\text{pla}} \) exerted by the target material. If we also ignore the energy loss of friction and other forms, then

\[
\frac{1}{2} m (v^2 - v_{\text{ela}}^2) = \int_{\lambda_{\text{ela}}}^{\lambda_{\text{pla}}} F_{\text{pla}} d\lambda ,
\]

(3)

where \(\lambda_{\text{pla}} \) is the maximum depth of impact. For homogeneous target materials, the plastic contact force \(F_{\text{pla}} \) can be evaluated according to full plasticity theory as

\[
F_{\text{pla}} = k \times 2\pi \int_0^{a_p} \sigma_y r dr ,
\]

(4)

where \(k = 3 \) is a correction coefficient [32], and \(a_p \) is the radius of the dent. For a material with an inhomogeneous metamorphic layer, the yield stress \(\sigma_y \) in the metamorphic layer can be expressed as

\[
\sigma_y = f(h), \quad h \in (0, h_i) ,
\]

(5)

where \(h_i \) is the thickness of the metamorphic layer. This paper assumes a perfectly elastoplastic model.

As shown in Fig. 2a, \(\sigma_y \) can also be written in terms of the radius \(r \) at depth \(h \) as

\[
\sigma_y = g(r), r \in (0, a_p) .
\]

(6)

According to the geometric relationship between the pits shown in Fig. 2b, the relationship between \(g(r) \) and \(f(h) \) can be obtained as

\[
g(r) = f(\sqrt{R^2 - r^2} - R + \lambda) .
\]

(7)

To introduce the inhomogeneity of the target material, let us consider a circle ring with a width \(dr \) (see Fig. 3).

![Fig. 3 The inside of the ring is regarded as a homogeneous material](image)

The plastic contact force provided by the ring is \(dF_{\text{pla}} = k \sigma_y 2\pi rdr \). Clearly, the direction of the plastic contact force \(F_{\text{pla}} \) is vertical and upward.

By integrating along the surface of the dent, we can express the plastic contact force \(F_{\text{pla}} \) as

\[
F_{\text{pla}} = k \times 2\pi \int_0^{a_p} g(r) r dr ,
\]

(8)

where \(a_p \) is a geometrical parameter given by the geometrical relationship \(a_p^2 = 2R\lambda_{\text{pla}} \) [32], we can obtain \(\lambda_{\text{pla}} \) by solving Eq. (3) numerically. After that, the corresponding permanent deformation depth can be obtained via

\[
\lambda_{\perp} = \lambda_{\text{pla}} - \lambda_{\text{ela}} .
\]

(9)

2.3 Calculating the morphologies after shot peening

Following Ref. [21], the morphology generated by a single shot is assumed to be part of a sphere. When the shot velocity is lower than the elastic critical value \(v_{\text{ela}} \), the \(i \)-th shot has no effect on the surface morphology of the target material. When the shot velocity is higher than \(v_{\text{ela}} \), as shown in Fig. 4, the morphology caused by a single shot can be calculated [21] via

\[
y_i = \begin{cases}
\frac{R^{(i)2} - (x - x_i')^2 - (z - z_i')^2}{2} \bigg|_{\lambda_{i-1} (\lambda \geq \lambda_{\text{ela}})}^{{\frac{1}{2}}} + y_{0,i}' (\lambda \geq \lambda_{\text{ela}}), \\
y_i = R^{(i)} - \lambda_{\perp}^{(i)}, \quad \lambda < \lambda_{\text{ela}}
\end{cases}
\]

(10)

where \(y_{0,i}' = R^{(i)} - \lambda_{\perp}^{(i)} \), and \(R^{(i)} \) is the radius of the \(i \)-th shot.

In this study, we calculate the surface morphology of the target after multi-shot peening via superposition of the pit morphology formed by each single shot. When the distance between two dents is greater than the sum of the radii of the two dents, the dents do not overlap and the depth of each dent is not affected [21]. The depth coordinate of a dent is \(y_i' = R^{(i)} - \lambda_{\perp}^{(i)} \). When the distance between two dents is less than the sum of the dent radii but greater than either dent
radius, there is a slight overlap between the dents. In this case, the depth of a dent is not affected, and the depth coordinates are the same as in the previous case. When the distance between the two dents is less than either dent radius, the dents overlap significantly, and the dent depth increases to some extent. The increase [21] in depth is

\[
\lambda_{l_{i}}^{(i-1)} = \lambda_{l_{\text{per}}}^{(i-1)} - \frac{l^2_{\text{min}i}}{2R^{(i)}},
\]

(11)

where \(l^2_{\text{min}i}\) is the minimum distance between the \(i\)-th dent and other dents (minimum dent spacing), and the depth coordinate in this case is \(y_{0}^{i} = R^{(i)} - \lambda_{l_{\text{per}}}^{(i-1)} - \lambda_{l_{i}}^{(i-1)}\).

It should be mentioned that the method of superposition employed in this paper is only an approximate method. This is because that the deformation process of the target under multi-shot peening is a nonlinear, therefore it is almost impossible to obtain the surface morphology of the target after multi-shot peening accurately by superposition of the pit morphology formed by single shot.

3 Verification and discussion

3.1 Verification of the depth caused by a single shot

To validate the proposed theoretical model, we used a two-dimensional axisymmetric single-shot finite element model based on the Abaqus (see Fig. 5). We considered a target material with a metamorphic layer in which the yield strength is inhomogeneous (varying with depth). The constitutive model was an ideal elastoplastic model. The size of the target material was 3 mm × 3 mm. The size of the strengthening area was 1 mm × 1 mm with a minimum mesh size of 10 μm × 10 μm. The thickness of the metamorphic layer was 1 mm and was discretized with five layers. The element type of the target body was CAX4R. The shot was constrained as a rigid body and set to surface contact with the target. To verify the applicability of the method, a variety of shot velocities and radii were selected in the finite element model.

Both a linear distribution and an exponential distribution of yield strength along with the vertical direction were used to verify the theoretical model. The detail forms of yield strength are listed in captions of Figs. 6 and 7, respectively. This study used the yield strengths
of the base material and the surface material to calculate the impact depth λ_{per} of a single shot according to the homogeneous theory [21], the results of the homogeneous model with the yield strength of the surface material and base material are denoted by $H\text{-}S$ and $H\text{-}B$, respectively. Figures 6 and 7 show that the results of base yield strength calculated via the homogeneous algorithm is higher than the numerical result of the heterogeneous. Furthermore, the results of surface yield strength calculated via the homogeneous algorithm is lower than the numerical result of the heterogeneous. The theoretical results considering heterogeneity are closer to the numerical results, verifying the accuracy of the heterogeneous model. Therefore, it is necessary to include heterogeneity when building a three-dimensional surface model.

3.2 Analysis of 3D morphological model

In actual shot peening, the surface morphology of the target material is the superposition of many random dents. Therefore, we used a 3D finite element model with random shots to validate the 3D morphology predicted by the proposed model. As shown in Fig. 8, the y coordinate of the i-th shot particle was $i \times 2R$, while the x and z coordinates of each shot were generated by a random function.

The size of the target material was $3 \text{ mm} \times 3 \text{ mm} \times 3 \text{ mm}$, with a $1 \text{ mm} \times 1 \text{ mm} \times 1 \text{ mm}$ strengthening area, as shown in Fig. 9a. Eight-node elements with reduced integration (C3D8R) were used, and the minimum mesh size was $20 \mu\text{m} \times 20 \mu\text{m} \times 20 \mu\text{m}$. An infinite element layer (CIN3D8) was used to avoid stress wave reflection on the boundaries (see Fig. 9b).

The Avrami equation [33–35] for the coverage rate and shot number is

$$C\% = 100 \times \left[1 - e^{-\frac{N \times \pi R^2}{S}}\right], \quad (12)$$

where $C\%$ is the expected coverage rate, N is the number of shots, and S is the area of the region to be strengthened.

Figure 10 shows the surface morphologies predicted by the proposed model and the numerical calculation when the
Fig. 10 Numerical and theoretical results for 3D surface topography and 2D sectional contours when \(v = 80 \text{ m/s} \) and (a) \(R = 0.2 \text{ mm} \), (b) \(R = 0.4 \text{ mm} \), (c) \(R = 0.6 \text{ mm} \), and (d) \(R = 0.8 \text{ mm} \).
shot velocity is 80 m/s and the shot radii are 0.2 mm, 0.4 mm, 0.6 mm, and 0.8 mm. The contours generated by the theoretical model are mostly consistent with the numerical results, and the numbers of peaks and troughs in the theoretical model are almost the same as those of the numerical results. Table 1 lists the values of the roughness R_a for different radii.

Table 1 Roughness R_a for different radii when $v = 80$ m/s

Shot radii (mm)	0.2	0.4	0.6	0.8	
R_a (μm)	Numerical	7.178	10.658	12.283	13.968
	Theoretical	5.414	10.823	13.150	13.639
Error(%)	24.58	1.55	7.06	2.36	

The theoretical results agree well with the numerical results, and R_a increases with the shot radius.

Table 2 Roughness R_a for different velocities when $R = 0.8$ mm

Shot speed (m/s)	20	40	60	80	
R_a (μm)	Numerical	5.178	8.202	11.451	13.968
	Theoretical	4.511	8.027	10.762	13.639
Error(%)	12.88	2.13	6.02	2.36	

Figure 11 shows the surface morphologies for the shot velocities 20 m/s, 40 m/s, and 60 m/s for a shot radius of 0.8 mm, and Table 2 lists the values of the roughness R_a for different velocities for this radius. As in Fig. 10 and Table 1, the theoretical results agree well with the numerical results, and R_a increases with the shot radius.

Fig. 11 Numerically and theoretically obtained 3D surface topographies and 2D sectional contours for $R = 0.8$ mm and (a) $v = 20$ m/s, (b) $v = 40$ m/s, and (c) $v = 60$ m/s.
results agree well with the numerical results for different velocities, which further confirms the proposed model.

Figure 12 shows the roughness versus shot radius and velocity in the proposed theoretical model. Clearly, Ra increases with both the radius and velocity of the shot. However, Ra varies almost linearly with shot velocity but nonlinearly with the shot radius.

4 Conclusion

In this paper, a theoretical model was proposed for predicting the surface topography of an inhomogeneous target material after shot peening. Finite element models were used to validate the proposed model. The main conclusions drawn from the results are:

1. For the residual depth after one shot, the proposed inhomogeneous theoretical model agrees better with the finite element models than the existing theoretical model for homogeneous target materials.
2. The proposed inhomogeneous theoretical model effectively predicts the 3D surface topography and roughness Ra after multiple-shot impact. The relative errors of Ra between theoretical and numerical results are in the range of 1.55% to 25.51% for different radii when $v=80$ m/s; and for different velocities when $R=0.8$ mm, the relative errors are in the range of 2.13% to 12.88%.
3. The roughness Ra increases almost linearly with shot velocity while increasing nonlinearly with shot radius.
11. Grabon W, Pawlus P, Wos S, Koszela W, Wieczorowski M (2018) Effects of cylinder liner surface topography on friction and wear of liner-ring system at low temperature. Tribol Int 121(1):148–160
12. Gao H (1991) Stress concentration at slightly undulating surfaces. J Mech Phys Solids 39(4):443–458
13. Yang L, Qu J (1993) Fracture mechanics parameters for cracks on a slightly undulating interface. Int J Fract 64(1):79–91
14. Xie HB, Jiang ZY, Yuen WYD (2011) Analysis of friction and surface roughness effects on edge crack evolution of thin strip during cold rolling. Tribol Int 44(9):971–979
15. Beaucamp A, Namba Y (2013) Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing. CIRP Ann-Manuf Technol 62(1):315–318
16. Beaucamp A, Namba Y, Messelink W, Walker D, Charlton P, Freeman R (2014) Surface integrity of fluid jet polished tungsten carbide. Procedia CIRP 13:377–381
17. Pham HL, Shiou F, Yu Z, Hsu W (2013) Investigation of optimal air- driving fluid jet polishing parameters for the surface finish of N-BK7 optical glass. J Manuf Sci E-T Asme 135(1):011–015
18. Tsai F, Yan B, Kuan C, Hsu R, Hung J (2009) An investigation into superficial embedment in mirror-like machining using abrasive jet polishing. Int J Adv Manuf Tech 43(5–6):500–512
19. Lin Q, Liu H, Zhu C, Parker RG (2019) Investigation on the effect of shot peening coverage on the surface integrity. Appl Surf Sci 489:66–72
20. Haj MJR, Spelt JK, Papini M (2013) Surface roughness and erosion rate of abrasive jet micro-machined channels: Experiments and analytical model. Wear 303:138–145
21. Wang Z, Li HN, Yu TB, Chen H, Zhao J (2019) On the predictive modelling of machined surface topography in abrasive air jet polishing of quartz glass. Int J Mech Sci 152:1–18
22. Wang Z, Li HN, Yu TB, Wang ZX, Zhao J (2019) Analytical model of dynamic and overlapped footprints in abrasive air jet polishing of optical glass. International J Mach Tools Manuf 141:59–77
23. Qu S, Wang ZX, Zhang C, Ma ZL, Zhang TQ, Chen H, Wang Z, Yu TB, Zhao J (2021) Material removal profile prediction and experimental validation for obliquely axial ultrasonic vibration-assisted polishing of K9 optical glass. Ceram Int 47:33106–33119
24. Zhang M, He Z, Zhang Y, Wang X, Zhao S, Fu T, Chen L (2019) Theoretical and finite element analysis of residual stress field for different geometrical features after abrasive waterjet peening. J Press Vess-T Asme 141(1):011401
25. Jiang Z, Wang P, Li D, Li Y (2019) Influence of the decomposition behavior of retained austenite during tempering on the mechanical properties of 2.25Cr-1Mo-0.25 V steel. Mat Sci Eng A-Struct 742:540–552
26. Markevič R, Mole N, Naglič I, Šturm R (2020) Time and temperature dependent softening of H11 hot-work tool steel and definition of an anisothermal tempering kinetic model. Mater Today Commun 22:100744
27. Jilg A, Seifert T (2018) Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening. Mat Sci Eng A-Struct 721:96–102
28. Popov VL (2010) Contact Mechanics and Friction Physical Principles and Applications. Springer
29. Thornton C (1997) Coefficient of restitution for collinear collisions of elastic- perfectly plastic spheres. J Appl Mech-T Asme 64(2):383–386
30. Miao HY, Larose S, Perron C, Lévesque M (2010) An analytical approach to relate shot peening parameters to Almen intensity. Surf Coat Tech 205(7):2055–2066
31. Xu G, Hao M, Qiao Y, Zhang Y, Wang G (2020) Characterization of elastic-plastic properties of surface-modified layers introduced by carburizing. Mech Mater 144:103364
32. Tabor D (1951) The Hardness of Metals. Clarendon Press, Oxford, UK
33. Pham TQ, Khun NW, Butler DL (2017) New approach to estimate coverage parameter in 3D FEM shot peening simulation. Surf Eng 33(9):687–695
34. Kirk D, Abyanheh MY (1995) Theoretical basis of shot peening coverage control. The Shot Peener 9(2):28–30
35. Bagherifard S, Ghelichi R, Guagliano M (2010) A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material. Surf Coat Technol 204(24):4081–4090

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.