Review

Essential Oils of Lamiaceae Family Plants as Antifungals

Tomasz M. Karpiński

Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland; tkarp@ump.edu.pl or tkarp@interia.pl; Tel.: +48-61-854-61-38

Received: 3 December 2019; Accepted: 6 January 2020; Published: 7 January 2020

Abstract: The incidence of fungal infections has been steadily increasing in recent years. Systemic mycoses are characterized by the highest mortality. At the same time, the frequency of infections caused by drug-resistant strains and new pathogens e.g., Candida auris increases. An alternative to medicines may be essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are plants from the Lamiaceae family. In this review are presented antifungal activities of essential oils from 72 Lamiaceae plants. More than half of these have good activity (minimum inhibitory concentrations (MICs) < 1000µg/mL) against fungi. The best activity (MICs < 100) have essential oils from some species of the genera Clinopodium, Lavandula, Mentha, Thymbra, and Thymus. In some cases were observed significant discrepancies between different studies. In the review are also shown the most important compounds of described essential oils. To the chemical components most commonly found as the main ingredients include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20).

Keywords: Labiatae; fungi; Aspergillus; Cryptococcus; Penicillium; dermatophytes; β-caryophyllene; sesquiterpene; monoterpenes; minimal inhibitory concentration (MIC)

1. Introduction

Fungal infections belong to the most often diseases of humans. It is estimated that about 1.7 billion people (25% of the population) have skin, nail, and hair fungal infections [1]. The development of most of these infections is affected by dermatophytes, namely Trichophyton spp., Microsporum spp., and Epidermophyton spp. [2]. Simultaneously, mucosal infections of the oral and genital tracts caused by Candida spp. are very common. About 0.13 billion of women suffer from vulvovaginal candidiasis. On the other hand, oral candidiasis are common in babies and denture wearers. Fungi also cause life-threatening systemic infections, with mortality reaching >1.6 million, which is >3-fold more than malaria [3]. Among life-threatening fungal infections prevail cryptococcosis (Cryptococcus neoformans) with >1,000,000 cases and mortality rate 20–70%, candidiasis (Candida albicans) with >400,000 cases and mortality rate 46–75%, pneumocystosis (Pneumocystis jirovecii) with >400,000 cases and mortality rate 20–80%, and aspergillosis (Aspergillus fumigatus) with >200,000 cases and mortality rate 30–95% [1,4,5]. In Table 1 are presented diseases caused by some of the most often fungal pathogens among people.
| Table 1. Fungal pathogens of humans and most often observed mycoses (based on [6,7]). |
|---------------------------------|---------------------------------|
| **Superficial mycoses** | • Hortae werneckii (Tinea nigra) |
| | • Malassezia furfur (Pityriasis versicolor) |
| | • Piedraia hortae (Black piedra) |
| | • Trichosporon spp. (White piedra) |
| **Cutaneous and subcutaneous mycoses** | • Aspergillus spp. (Onychomycosis, Keratitis) |
| | • Candida spp. (Tinea pedis, Tinea cruris, Onychomycosis, Keratitis) |
| | • Chaetomium spp. (Subcutaneous phaeohyphomycosis) |
| | • Curvularia spp. (Subcutaneous phaeohyphomycosis) |
| | • Epidermophyton spp. (Tinea pedis, Tinea cruris, Onychomycosis) |
| | • Exophiala spp. (Chromoblastomycosis, Subcutaneous phaeohyphomycosis) |
| | • Fonsecaea spp. (Chromoblastomycosis) |
| | • Fusarium spp. (Onychomycosis, Keratitis, Eumycotic mycetoma) |
| | • Geotrichum spp. (Onychomycosis) |
| | • Microsporum spp. (Tinea corporis, Tinea capitis) |
| | • Phaeoacremonium spp. (Eumycotic mycetoma) |
| | • Phialophora spp. (Chromoblastomycosis, Subcutaneous phaeohyphomycosis) |
| | • Scopulariopsis brevicollis (Onychomycosis) |
| | • Sporothrix schenckii (Lymphocutaneous sporotrichosis) |
| | • Trichophyton spp. (Tinea pedis, Tinea corporis, Tinea cruris, Tinea capitis, Onychomycosis) |
| | • Trichosporon spp. (Onychomycosis) |
| **Endemic mycoses** | • Blastomyces dermatitidis (Blastomycosis) |
| | • Histoplasma capsulatum (Histoplasmosis) |
| | • Coccidioides immitis/posadasii (Coccidioidomycosis) |
| | • Penicillium marneffei (Penicilliosis) |
| | • Paracoccidioides brasiliensis (Paracoccidioidomycosis) |
| **Opportunistic mycoses** | • Acremonium spp. (Hyphalohyphomycosis-cutaneous, disseminated infection) |
| | • Alternaria spp. (Phaeohyphomycosis-subcutaneous, sinusitis, disseminated infection) |
| | • Aspergillus spp. (Allergic reactions, Aspergillosis-nasal, sinusitis, bronchial, pulmonary, systemic dissemination) |
| | • Bipolaris spp. (Phaeohyphomycosis-subcutaneous, sinusitis, brain abscess) |
| | • Candida spp. (Candidiasis-superficial mucosal, cutaneous, widespread hematogenous distribution involving target organs) |
| | • Cryptococcus spp. (Cryptococcus-cutaneous, pulmonary, meningitis) |
| | • Curvularia spp. (Phaeohyphomycosis-subcutaneous, sinusitis, disseminated infection) |
| | • Fusarium spp. (Hyphalohyphomycosis-cutaneous, disseminated infection) |
| | • Geotrichum spp. (Eumycotic mycetoma) |
| | • Lichtheimia spp. (Mucormycosis-cutaneous, invasive) |
| | • Mucor spp. (Mucormycosis-cutaneous, invasive) |
| | • Paecilomyces spp. (Hyphalohyphomycosis-cutaneous, disseminated infection) |
| | • Pneumocystis jirovecii (Pneumocystosis-pneumonia, extrapulmonary manifestations) |
| | • Rhizomucor spp. (Mucormycosis-cutaneous, invasive) |
| | • Rhizopus spp. (Mucormycosis-cutaneous, invasive) |
| | • Scedosporium spp. (Hyphalohyphomycosis-cutaneous, disseminated infection) |
| | • Trichosporon spp. (Trichosporonosis-invasive disease) |
| | • Wangiella spp. (Phaeohyphomycosis-subcutaneous, sinusitis, brain abscess) |
The big problem is growing drug-resistance amid fungi. Among Candida and Aspergillus species is observed resistance to azoles, e.g., to fluconazole, voriconazole, and posaconazole. Some Candida species, especially C. glabrata and C. parapsilosis, can be echinocandin- and multidrug-resistant [8,9]. Acquired resistance to echinocandins has also been reported for yeasts C. albicans, C. tropicalis, C. krusei, C. kefyr, C. lusitaniae, and C. dubliniensis [10]. More than 3% of Aspergillus fumigatus isolates are resistant to one or more azoles [11]. Polyene resistance mainly concerns amphotericin B. Resistance to this drug is observed in Fusarium spp., Trichosporon spp., Aspergillus spp., and Sporothrix schenckii [12,13]. Resistance to amphotericin B has also been reported for C. albicans, C. glabrata, and C. tropicalis [14–16]. Cultures of some Candida species and Cryptococcus neoformans are presented in Figure 1.

The new epidemiological problem is C. auris, a multidrug-resistant organism first described in Japan in 2009 [17]. Recently, C. auris has been reported from 36 countries from six continents [18]. About 30% of isolates demonstrate reduced susceptibility to amphotericin B, and 5% can be resistant to the echinocandins [19,20]. The estimated mortality from C. auris fungemia range from 28% to 60% [21].

Fundamental issues are also the costs of treatment and hospitalization of patients with invasive fungal diseases. According to Drgona et al., all costs range from around €26,000 up to over €80,000 per patient [5].

Therefore, all time, new treatments for fungal infections are being sought. One option may be to apply natural products having antifungal activity. Among these, significant importances have essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are among other plants from the Lamiaceae family.

In this review are presented antifungal activities of essential oils from seventy-two (72) plants of the Lamiaceae family. Moreover, are shown the most important compounds of these essential oils. For objective comparison of results, in this paper were included only antifungal studies specifying the minimum inhibitory concentrations (MICs) for essential oils. The MIC (expressed in µg/mL) is the

Figure 1. Cultures of selected yeast fungi on Sabouraud agar (Author of photos: Tomasz M. Karpiński).
lowest concentration of an antimicrobial agent in which no growth of a microorganism is observed in an agar or broth dilution susceptibility test [22–24].

2. Components of Essential Oils of Lamiaceae Family

The family Lamiaceae or Labiatae contains many valuable medicinal plants. In the family are 236 genera and between 6900 and 7200 species. To the most abundant genera belong *Salvia* (900 species), *Scutellaria* (360), *Stachys* (300), *Plectranthus* (300), *Hyptis* (280), *Teucrium* (250), *Vitex* (250), *Thymus* (220), and *Nepeta* (200). Lamiaceae plants rich in essential oils have great worth in natural medicine, pharmacology, cosmetology, and aromatherapy [25]. The essential oils are mostly present in leaves, however, they can be found in flowers, buds, fruits, seeds, rind, wood, or roots [26]. Essential oils are mixtures of volatile compounds, which are secondary plant metabolites. They play a role in the defense system of higher plants [27]. Essential oils may contain over 300 different compounds, mainly of molecular weight below 300 [28]. Some oils, e.g., obtained from *Lavandula*, *Geranium*, or *Rosmarinus*, contain 450 to 500 chemicals [29]. Among the active compounds of essential oils are various chemical classes, e.g., alcohols, ethers, aldehydes, ketones, esters, phenols, terpenes (monoterpenes, sesquiterpenes), and coumarins [30,31].

In Table 2 are presented the main chemical components of essential oils of selected Lamiaceae family plants. Plant names were unified according to The Plant List [32], however synonyms used in the literature were also left. Chemical component names were unified, according to PubChem [33].

Essential Oil	Main Chemical Components	References
Aeollanthus suaveolens Mart. ex Spreng. = *A. heliotropioides* Oliv.	Linalool (38.5%), α-Farnesene (25.1%), Massoialactone (4.5%), β-Caryophyllene (3.6%), Germacrene D (2.0%)	[34]
Agastache rugosa (Fisch. and C.A.Mey.) Kuntze	Methyl chavicol (93.45%), Methyl eugenol (2.48–50.51%), Estragole (8.55%), Eugenol (0.15–7.54%), Thymol (3.62%), Pulegone (2.56%), Limonene (2.49%), β-Caryophyllene (1.19–2.38%),	[35,36]
Ballota nigra subsp. *foetida* (Vis.) Hayek	β-Caryophyllene (21.8–22.6%), Caryophyllene oxide (18.0–20.5%), Germacrene D (13.1–16.5%), 2-Hexenal (6.5–11.2%), 1-Octen-3-ol (3.5–5.5%), β-Pinene (1.6–4.4%), Limonene (2.2–4.1%), Linalool (1.2–3.5%), β-Bourbonene (1.5–2.7%), α-Humulene (2.2–2.6%), α-Copaene (1.3–2.2%)	[37]
Clinopodium dalmaticum (Benth.) Bräuchler and Heubl = *Microseris dalmatica* Benth.	Piperiterrone oxide (41.77%), Pulegone (15.94%), Piperitene (10.19%), Limonene (5.77%), Piperitone (3.39%), α-Pinene (2.9%), β-Pinene (2.16%)	[38]
Clinopodium nepeta subsp. *glandulosum* (Req.) Govaerts = *Calamintha glandulosa* (Req.) Bentham = *Calamintha officinalis* Moench	Piperiterrone (trace–42.6%), Piperitene (0.0–40.3%), Carvone (1–38.7%), Pulegone (0.6–9.7%), Shisofuran (0.1–9.7%), Menthone (trace–8.3%), Dihydrocarvool acetate (0.1–7.6%), Dihydrocarvool (0–6.9%), 1,8-Cineole (0.0–6.4%), cis-Carvyl acetate (0.0–6.1%),	[39,40]
Clinopodium nepeta (L.) Kuntze = *Calamintha nepeta* (L.) Savi	Pulegone (2.4–84.7%), Isomenthene (1.9–51.3%), Menthone (0.0–35.4%), Carysanthone (1.3–33.9%), 1,8-Cineole (0.3–21.4%), Piperiterrone oxide (0.0–19.1%), Limonene (0.0–13.6%), Isopulegone (0.0–9.4%), Piperitene (0.0–7.7%), Cinerolone (0.0–5.8%), Isopulegol (0.0–4.1%), Isomenthol (0.0–3.9%), β-Caryophyllene (0.0–3.8%), 3-Octanol (0.0–3.0%), β-Pinene (0.0–2.3%), cis-Piperitene oxide (0.0–2.2%)	[41,42]
Essential Oil	Main Chemical Components	References
---------------	--------------------------	------------
Clinopodium thymifolium (Scop.) Kuntze = *Micromeria thymifolia* (Scop.) Frisch	Pulegone (32.81%), Piperitenone (25.7%), Piperitone (11.71%), Isomenthone (4.98%), Limonene (2.4%), β-Caryophyllene (2.39%)	[38]
Clinopodium umbrosum (M.Bieb.) Kuntze = *Calamintha umbrosa* Benth.	β-Caryophyllene (13.9%), Germacrene D (11.6%), Spathulenol (10.6%)	[43]
Dracocephalum heterophyllum Benth.	Citronellol (74.2%), Geraniol (2.8%), cis-Rose oxide (2.2%), Citronellyl acetate (1.7%)	[44]
Hymenocrater longiflorus Benth.	δ-Cadinol (18.49%), α-Pinene (10.16%), p-Menth-1-en-8-ol (9.82%), Hedycaryol (6.42%), β-Eudesmol (4.56%), Spathulenol (4.14%), δ-Cadinenol (3.02%), Linalool (2.98%), β-Caryophyllene oxide (2.81%), β-Bourbonene (2.72%), β-Caryophyllene (2.29%)	[45]
Hyptis ovalifolia Benth.	(R)-6-[2(Z)-1-Heptenyl]-5,6-dihydro-2H-pyran-2-one (60.0%), γ-Cadinene (6.6%), Viridiflorol (6.08%), Caryophyllene oxide (4.98%), γ-Elemene (4.38%)	[46]
Hyssopus officinalis L.	Pinocamphone (5.78–50.77%), 1,8-Cineole (0.47–36.43%), Pinocarvone (0.44–23.4%), β-Pinene (13.38–19.55%), Isopinocamphone (15.32%), α-Phellandrene (trace–3.74%), Sabine (1.7–2.9%), Myrtenol (1.39–2.27%), α-Pinene (1.01–2.57%), cis-Sabinene hydrate (0.0–2.5%), Myrtenyl methyl ether (1.64–2.21%)	[44,47,48]
Lavandula angustifolia Mill.	Linalool (20.18–45.8%), Linalyl acetate (4.6–43.13%), Lavandulyl acetate (0–16.01%), 1,8-Cineole (0.6–13.1%), Camphor (0.52–11.2%), Borneol (0.76–7.5%), Terpinen-4-ol (1.05–5.8%), β-Caryophyllene (0.6–4.95%), Lavandulol (0–16.01%), α-β-Ocimene (1.5–2.84%), Myrcene (0.4–2.41%)	[49–51]
Lavandula multifida L.	Carvacrol (41.5–42.8%), β-Ocimene (27.0–27.4%), Myrcene (5.3–5.7%), α-β-Isobolene (5.0–5.6%), Terpinolene (2.1–3.1%), α-Farnesene (2.6–2.8%)	[52]
Lavandula pedunculata (Mill.) Cav.	Fenchone (6.2–44.5%), 1,8-Cineole (5.1–34.3%), Camphor (8.7–34.0%), β-Pinene (14.9–0.0%), α-Pinene (2.5–8.0%), Camphene (0.8–6.1%), Linalool (0.5–3.8%), Bornyl acetate (0.9–3.5%), Borneol (0.6–3.4%), α-Cadinol (0.2–3.1%), cis-Verbenol (0.2–2.8%), Myrtenal (0.8–2.4%), trans-Verbenol (1.1–2.0%)	[53]
Lavandula stoechas L.	Fenchone (0.0–36.2%), 1,8-Cineole (0–33.9%), Camphor (2.2–18%), α-trans-Necrodyl acetate (0.0–17.4%), Lavandulyl acetate (0.0–7.6%), α-trans-Necrodol (0.0–7.1%), Linalool (0.0–6.2%), α-Copaene-8-ol (0.7–4.7%), Viridiflorol (1.4–3.6%), α-Pinene (1.1–3.2%), 2,3,4,4-Tetramethyl-5-methylene-cyclopenten-1-one (0.0–2.8%), Lyratyl acetate (0–2.4%), Myrtenyl acetate (1.0–2.0%), 1,1,2,3-Tetramethyl-4-hidroximethyl-2-cyclopentene (0.0–2.0%)	[51,54]
Lavandula viridis L’Her.	1,8-Cineole (34.5–42.2%), Camphor (13.4%), α-Pinene (9.0%), Linalool (6.7–7.9%)	[55]
Lepechinia mutica (Benth.) Epling	Δ3-Carene (8.69–24.23%), Thujaops-2-α-ol (0.0–11.9%), Shyobunol (0.0–10.8%), β-Pinene (3.78–7.96%), δ-Cadinene (0.0–6.96%), Globulol (0.0–5.91%), Valerianol (0.0–5.19%), α-Pinene (0.0–4.62%), β-Caryophyllene (0.0–4.55%), Limonene (3.79–4.47%), α-Eudesmol (0.0–4.47%), α-Phellandrene (0.34–3.8%), β-Phellandrene (3.79%), γ-Cadinene (0.0–2.86%), α-Pine (1.23–2.68%), α-Cymene (0.0–2.04%), Isobornyl acetate (0.0–2.2%)	[56,57]
Table 2. Cont.

Essential Oil	Main Chemical Components	References
Marrubium vulgare L.	γ-Eudesmol (11.93%), β-Citronellol (9.9%), Citronellyl formate (9.5%), Germacrene-D (9.37%), Geranyl formate (6.25%), Geranyl tiglate (5.53%), Ledene (5.35%), 1,8-Cineole (3.72%), Neryl acetate (3.41%), δ-Cadinene (3.3%), Cyclononasiloxane octadecamethyl (3.08%), Geraniol (2.74%), N-trimethylsilyl trifluoroacetamide (2.35%), Eicosamethylcyclocasiloxane (2.29%), α-Thujone (2.29%), trans-Caryophyllene (2.15%)	[58]
Melissa officinalis L.	Geranial (23.4%), Neral (16.3%), Citronellal (13.7%), β-Caryophyllene (4.6%), Geraniol (3.4%), Isomenthone (3.0%), Menthol (2.9%), Methyl citronellate (2.7%), Germacrene D (2.4%), Limonene (2.2%)	[59]
Mentha cervina L.	Isomenthone (8.7–77%), Pulegone (12.9–75.1%), Menthol (0.8–4.4%), Limonene (0.8–4.3%)	[60]
Mentha × piperita L.	Menthol (34.82–43.85%), Menthone (9.1–31.68%), Carvone (0.0–19.54%), Menthol acetate (1.64–17.4%), Anethole (0.0–9.54%), Isomenthone (4.71–8.08%), Limonene (0.86–6.9%), Menthofuran (6.8%), Eucalyptol (4.36–6.21%), 1,8-Cineole (5.6%), Pulegone (0.47–5.15%), Isomenthol acetate (4.56–4.91%), Isomenthol (0.68–3.58%), Sabine (0.0–2.5%)	[61–64]
Mentha pulegium L.	Pulegone (2.3–70.66%), Piperitone (0.24–38.0%), Piperitenone (1.58–33.0%), Neomenthol (11.21%), α-Terpineol (0.0–4.4%), 1,8-Cineole (0.11–4.0%), Piperitenone oxide (0.0–3.4%), Menthol (2.63–3.0%), Borneol (0.0–2.9%), Isopulegone (2.33%)	[65,66]
Mentha requienii Benth.	Pulegone (77.6%), Isomenthone (18.2%), Limonene (1.76%)	[67]
Mentha spicata L.	Pulegone (0.0–78.7%), Carvone (0.0–59.12%), Menthol (0.0–39%), Menthone (5.1–21.9%), Neomenthol (11.2%), Menthol acetate (0.0–6.9%), Dihydrocarveol (0.0–6.27%), Limonene (1.0–5.8%), 1,8-Cineole (3.0–5.42%), cis-Dihydrocarveol (0.0–4.9%), cis-Carveol (0.0–3.9%), β-Caryophyllene (0.7–2.8%), β-Mycene (0.3–2.3%)	[49,51,61,68]
Mentha suaveolens Ehrh.	Piperitenone oxide (0.0–87.25%), Carvone (0.0–50.59%), Pulegone (0.0–30.0%), Demelverine (0.0–43.46%), Cinerolone (0.0–38.79%), p-Cymene (0.0–35.22%), Limonene (0.0–31.25%), Piperitenone oxide (0.0–26.0%), p-Cymenol-8 (0.0–20.6%), Spathulenol (0.0–18.35%), β-Caryophyllene oxide (0.3–17.25%), α-Pharnesene (0.0–16.5%), α-Cadinol (0.09–10.69%), Calamene (0.44–10.63%), α-Cubenene (0.0–10.08%), α-Caryophyllene (2.0–9.8%), Veridiflorol (0.0–7.5%), Cubenol (0.0–7.46%), Verbenone (0.0–6.56%), δ-Fenchol (0.3–5.9%), Menthol (0.0–5.7%), Borneol (0.0–5.6%), Citronellyl acetate (0.0–5.45%), δ-Cadinene (0.0–4.89), Eucalyptol (0.0–4.21%), cis-8-Menthene (0.3–4.2%), Fenchone (0.1–3.6%), Geraniol (1.0–3.4%), γ-Muurocol (0.0–3.29%), α-Pine (0.1–2.7%), β-Caryophyllene (2.56%), cis-Carveol (2.31%), Germacrene D (0.0–2.04%)	[69–71]
Micromeria albanica (K. Maly) Silic	Piperitenone oxide (38.73%), Pulegone (13.43%), Piperitenone (9.72%), Piperitone (5.62%), Limonene (3.2%), α-Copaene (2.12%)	[38]
Essential Oil	Main Chemical Components	References
---------------	--------------------------	------------
Moluccella spinosa L.	α-Pinene (26.6%), Caryophyllene oxide (16.8%), β-Caryophyllene (8.6%), α-Thujene (5.9%), Nonacosane (9.5%), Heptacosane (5.3%), Ethylbenzaldehyd (3.4%), Pentacosane (2.5%), Tetracosane (2.3%), Sabinine (2.2%)	[72]
Nepeta ciliaris Benth. = *Nepeta leucophylla* Benth.	Caryophyllene oxide (14.8-26.3%), β-Caryophyllene (18.0%), β-Sesquiphellandrene (15.0%), Iridodial β-monoenol acetate (9.8%)	[43]
Nepeta clarkei Hook. f.	β-Sesquiphellandrene (22.0%), Actinidine (10.0%), Germacrene D (8.0%)	[43]
Ocimum basilicum L.	Linalool (18.0–68.0%), Methyl chavicol (0.0–57.3%), Geraniol (0.0–16.5%), 1,8-Cineole (1.4–15.1%), p-Allylanisole (0.2–13.8%), Eugenol (0.0–12.32%), Limonene (0.2–10.4%), β-Farnesene (0.0–6.3%), α-Caryophyllene (0.0–4.5%), α-Bergamotene (0.0–4.34%), α-Cadinol (0.0–4.05%), β-Caryophyllene (0.0–4.5%), α-Bergamotene (0.0–4.34%), α-Cadinol (0.0–4.05%)	[44,68,73–76]
Ocimum × africanum Lour. = *Ocimum × citriodorum*	Nerol (23.0%), Geranial (15.77%), Methyl chavicol (9.45%), Linalool (9.42%), β-Bisabolenene (8.31%), β-Caryophyllene (7.8%), Geraniol (5.2%), Neral (4.93%), α-Bergamotene (3.52%), α-Bisabolene (2.29%), β-Cubecene (2.26%)	[76]
Ocimum campechianum Mill. = *Ocimum micranthum* Willd.	Eugenol (46.55%), β-Caryophyllene (11.94%), β-Elemene (9.06%), 1,8-Cineole (5.35%), β-Elemene (4.17%), Bicyclogermacrene (2.9%), cis-Ocimene (2.69%), allo-Ocimene (2.42%), α-Humulene (2.4%)	[73]
Ocimum forskolei Benth.	endo-Fenchol (31.1%), τ-Cadinol (12.2%), Fenchone (12.2%), Camphor (6.2%), Linalool (5.7%), Methyl(E)-cinnamate (5.1%), α-Bergamotene (3.1%), γ-Cadinene (2.9%), endo-Fenchyl acetate (2.8%), Linalool (2.5%)	[77]
Ocimum gratissimum L.	Eugenol (0.0–61.3%), Methyl chavicol (0.0–44.63%), Linalool (0.26–21.84%), α-Caryophyllene (0.0–11.89%), Geraniol (0.0–21.91%), α-Bisabolene (0.0–17.19%), Camphor (0.0–21.91%), β-Caryophyllene (0.0–11.89%), Geraniol (0.0–21.91%), α-Bisabolene (0.0–17.19%), Camphor (0.0–21.91%)	[81–83]
Ocimum majorana L.	Carvacrol (43.26%), Thymol (21.64%), p-Cymene (13.95%), γ-Terpinene (11.28%),	[84]
Essential Oil	Main Chemical Components	References
----------------------------	--	------------------
Origanum vulgare L.	Pulegone (0.0–77.45%), Carvacrol (0.21–65.9%), Cymenol (0.0–58.6%), Thymol (3.7–45.22%), α-Cymene (0.0–14.33%), Terpinen-4-ol (0.03–12.55%), β-Terpineol (0.0–10.46%), p-Cymene (0.5–9.3%), γ-Terpineine (3.1–9.12%), Borneol (0.0–6.1%), α-Piine (0.0–5.1%), Menthone (0.0–4.86%), Linalool (0.0–4.8%), Sabinene (0.0–3.91%), P-Phellandrene (0.0–3.74%), β-Caryophyllene (0.0–3.7%), α-Terpineol (0.0–3.35%), Sabinene hydrate (0.0–3.31%), α-Cadinol (0.0–3.3%), α-Terpineine (1.63–3.1%), Eucalyptol (0.0–2.8%), β-OCimene (0.0–2.77%), cis-Isopulegone (2.22%), β-Mycrène (0.0–2.2%), Antiol (0.0–2.13%), Piperitone (0.0–2.13%), Germacrene D (0.0–1.23%)	[49,62,64,68,74,88–91]
Pogostemon cablin (Blanco) Benth.	Patchouli alcohol (38.3–44.52%), α-Bulnesene (0.0–13.3%), γ-Guaiene (8.89–9.6%), Pogostol (0.0–6.2%), Sacythellene (5.8%), α-Bergamotene (5.76%), Eremophiline (4.34%), β-Guaiene (3.54%), β-Caryophyllene (1.93–3.0%), Patchouline (1.8–2.77%)	[92,93]
Pogostemon heyneanus Benth.	Acetophenone (51.0%), Patchouli alcohol (14.0%), Nerolidol (5.4%), β-Piine (5.3%), Limonene (4.0%), Benzyol acetone (2.4%), β-Caryophyllene (2.0%)	[93]
Premna microphylla Turcz.	Blumenol C (49.7%), γ-Greiene (6.1%), Limonene (3.8%), α-Guaiene (3.3%), Cryptone (3.1%), α-Cyperene (2.7%), cis-14-nor-Muurol-5-en-4-one (2.4%)	[94]
Rosmarinus officinalis L.	α-Pine (5.4–37.9%), 1,8-Cineole (0.88–26.54%), Eucalyptol (0.0–24.34%), Limonene (0.0–21.7%), Camphor (2.45–21.6%), Myrcyne (0.9–20.18%), Borneol (0.0–18.08%), Bornyl acetote (0.92–14.99%), Verbenone (1.36–12.0%), Camphene (1.7–11.38%), Linalool oxide (0.10–10.8%), β-Pine (0.0–6.95%), β-Caryophyllene (0.0–6.3%), Linalool (0.0–5.32%), α-Cymene (0.0–4.43%), p-Cymene (0.0–4.43%), β-Phellandrene (0.0–3.9%), Sabinene (0.0–3.72%), γ-Cadinene (0.21–2.4%), Terpinen-4-ol (0.0–2.2%), α-Humulene (0.0–2.13%), α-Terpineine (0.0–2.13%), Germacrene D (0.0–1.23%)	[51,62,68,87,91,95–98]
Salvia fruticosa Miller	1,8-Cineole (16.9–54.4%), Camphor (0.6–18.34%), Manool (0–11.2%), β-Thujone (0.6–9.0%), β-Pine (0.0–9.0%), Sabinene (0.0–8.6%), Viridiflorol (0.0–8.4%), β-Caryophyllene (1.53–8.3%), α-Thujone (trace–8.1%), Borneol (0.0–8.0%), Camphene (0.0–7.0%), α-Pine (1.5–6.85%), Bornyl acetate (0.0–6.8%), β-Terpineol (trace–6.7%), Myrcyne (1.3–5.2%), Caryophyllene oxide (0.0–3.9%), β-Terpiney acetate (0.0–2.2%), α-Humulene (0.16–1.5%)	[49,51,99]
Salvia mirzayanii Rech. f. and Esfand	1,8-Cineole (41.2%), Linalool acetate (10.7%), α-Terpineyl acetate (5.7%), Myrcyne (4.7%), Geranyl acetate (3.7%), γ-Cadinene (3.3%), Linalool (2.5%), Neryl acetate (2.3%)	[100]
Essential Oil	Main Chemical Components	References
-------------------------	--	--------------
Salvia officinalis L.	1,8-Cineole (4.2–50.3%), Camphor (8.8–25.0%), α-Thujeone (1.2–19.9%), Viridisflorol (0.5–17.5%), β-Thujeone (0.1–9.9%), β-Pinene (0.8–7.3%), β-Caryophyllene (1.4–5.5%), Borneol (1.5–5.4%), α-Pinene (0.5–4.8%), Camphene (0.2–3.9%), Bornyl acetate (0.2–3.3%), α-Terpineol (0.0–3.1%), α-Terpenyl acetate (0.0–2.6%), α-Humulene (0.4–2.6%), α-Farnesene (0.0–2.5%), Eicosane (0.0–2.0%)	[96,101]
Salvia sclarea L.	Linalyl acetate (84%), Caryophyllene oxide (24.1%), Linalool (13.6%), 1H-Naphtho(2,1,6)pyran (8.6%), Sclareol (11.5%), Spathulenol (11.4%), β-Caryophyllene (5.1%)	[85,102]
Satureja hortensis L.	Thymol (23.12–29.0%), Carvacrol (24.5–26.5%), γ-Terpinene (20.72–22.6%), p-Cymene (6.3–9.3%), α-Terpine (2.2–2.93%), p-Cymene (6.3–9.3%), α-Terpineol (0.0–3.1%), α-Terpenyl acetate (0.0–2.6%), α-Humulene (0.4–2.6%), α-Farnesene (0.0–2.5%), Eicosane (0.0–2.0%)	[103,104]
Satureja montana L.	Carvacrol (47.1%), p-Cymene (9.0%), γ-Terpinene (6.1%), β-Caryophyllene (3.6%), Linalool (3.1%), Thymol (2.6%), Borneol (2.1%)	[68]
Satureja thymbra L.	Thymol (25.16–44.5%), γ-Terpinene (11.1–39.23%), p-Cymene (7.17–21.7%), Carvacrol (4.18–5.3%), Carvacrol methyl ether (0.1–3.33%), α-Terpine (1.0–3.26%), β-Caryophyllene (1.2–2.76%), Caryophyllene oxide (0.32–2.0%)	[51,105]
Stachys cretica L.	Germacrene D (12.9–20.3%), β-Caryophyllene (0.9–9.5%), α-Pinene (0.7–8.6%), Octacosane (0.0–7.2%), β-Pinene (1.5–6.2%), Linalyl acetate (0.0–5.2%), Nonacosane (0.4–4.9%), 9-Geranyl-p-cymene (0.0–4.9%), Heptacosane (0.3–4.8%), cis-Chrysanthenyl acetate (0.0–4.8%), β-Farnesene (3.1–4.0%), Hexadecanoic acid (1.3–3.5%), Caryophyllyl oxide (0.5–2.9%), β-Bisabolene (1.6–2.8%), Linalool (0.0–2.6%), Pentacosane (0.0–2.5%), Sesquisabinene (2.1%), Ceryl acetate (0.0–2.1%)	[106]
Stachys officinalis (L.) Trevis	Germacrene D (19.9%), β-Caryophyllene (14.1%), α-Humulene (7.5%), δ-Cadinene (4.0%), β-Bourbonene (3.8%), α-Seline (3.4%), γ-Murolene (3.2%), Oct-1-en-3-ol (2.9%), Caryophyllene oxide (2.5%), Hexadecanoic acid (2.4%), β-Selinene (2.1%), γ-Cadinene (2.0%), τ-Murolol (2.0%)	[107]
Stachys pubescens Ten.	Germacrene (22.4%), δ-Cadinene (19.7%), 2,6-Octadien (11.5%), Linalool (9.7%), Limonene (6.3%), δ-Elemene (5.4%), β-Ocimene (2.8%), α-Terpine (2.7%), 2,6-Octadienal (2.1%)	[108]
Teucrium sauvagei Le Houerou	β-Eudesmol (28.8%), τ-Cadinol (17.5%), α-Thujeone (8.7%), γ-Cadinene (5.6%), Sabinene (4.8%), β-Selinene (4.2%), Limonene (2.8%), γ-Selinene (2.8%), α-Selinene (2.8%), δ-Cadinene (2.2%), Terpinen-4-ol (2.2%), p-Cymene (2.0%)	[109]
Teucrium yemense Dellers.	Caryophyllene oxide (4.3–20.1%), 7-epi-α-Selinene (1.3–20.1%), β-Caryophyllene (11.2–19.1%), α-Cadinol (2.0–9.5%), α-Pinene (2.3–6.6%), δ-Cadinene (0.4–6.5%), α-Humulene (4.0–6.4%), τ-Cadinol (2.0–5.7%), γ-Selinene (0.4–5.5%), τ-Murolol (0.6–4.9%), Shyobunol (0.0–4.6%), Valencene (0.0–3.7%), Ledol (0.5–3.6%), cis-Sesquisabinene hydrate (0.9–3.4%), β-Pinene (1.1–3.1%), Germacrene D-4-ol (0.0–3.1%), γ-Cadinene (0.0–2.7%), β-Selinene (0.3–2.5%), Alloaromadendrene (trace–2.2%)	[77]
Table 2. Cont.

Essential Oil	Main Chemical Components	References
Thymbra capitata (L.) Cav. = Thymus capitatus (L.) Hoffmann. and Link = Cordiothymus capitatus (L.) Rchb.f. Solms	Carvacrol (35.6–75.0%), Thymol (0.1–29.3%), p-Cymene (5.0–21.0%), γ-Terpinene (4.0–12.3%), α-Terpinene (1.0–3.0%), β-Myrcene (0.8–3.0%), Linalool (0.5–2.9%), β-Caryophyllene (0.2–2.5%)	[51,110–112]
Thymbra spicata L.	Carvacrol (20.1–64.0%), γ-Terpinene (11.6–31.2%), p-Cymene (9.6–26.0%), α-Terpinene (1.2–10.1%), β-Myrcene (0.9–7.7%), Thujene (trace–5.2%), β-Caryophyllene (0.5–5.1%)	[51,113,114]
Thymus bovei Benth.	Geraniol (35.38%), α-Citral (20.37%), β-Citral (14.76%), Neral (7.38%), 3-Octanol (4.38%)	[115]
Thymus daenensis Celak.	Carvacrol (31.46%), α-Terpineol (22.95%), Thymol (20.2%), Camphene (6.27%), 2,6-Octadien (2.22%), Borneol (2.17%), Cyclohexanone (2.1%)	[108]
Thymus kotschyanus Boiss. and Hohen.	Thymol (46.72%), Benzene (6.88%), Carvacrol (3.73%), γ-Terpinene (3.58%), β-Caryophyllene (3.39%), Linalool (2.86%), Phenol (2.61%), Borneol (2.51%), Isopropyl (2.07%)	[108]
Thymus mastichina (L.)	Thymol (44.9%), Geraniol (10.8%), γ-Terpinene (10.3%), Citronellol (8.5%), p-Cymene (7.2%)	[116,117,118]
Thymus nigricus Klokov et Des.-Shost.	Thymol (26.0%), Carvacrol (21.0%), γ-Terpinene (8.8%), p-Cymene (7.8%), Octan-3-one (3.9%), Camphor (3.9%), β-Bisabolene (3.0%), Borneol (2.9%), Oct-1-en-3-ol (2.0%)	[119]
Thymus pulegioides L.	Carvacrol (13.91–39.07%), Thymol (11.53–34.66%), γ-Cymene (18.72–27.06%), α-Terpinene (4.13–13.73%), Linalool (3.34–3.59%), 3-Octanone (1.05–2.67%), α-Terpinene (1.67–2.37%)	[120]
Thymus schimperi Ronniger	Thymol (52.6%), p-Cymene (15.3%), β-Caryophyllene (6.8%), Sabine hydrate (3.8%), γ-Terpinene (2.9%), Terpinen-4-ol (2.4%)	[68]
Thymus serpyllum L.	Thymol (59.5%), γ-Terpinene (11.6%), p-Cymene (6.4%), Carvacrol methyl ether (5.9%), Carvacrol (4.9%), α-Terpinene (3.3%), β-Caryophyllene (2.3%)	[121]
Thymus striatus Vahl.	Carvacrol (3.3–70.3%), Thymol (0.6–51.8%), Borneol (0.0–40.6%), p-Cymene (2.9–38.9%), α-Cymene (0.0–31.7%), α-Terpinol (0.0–19.9%), Linalool (0.0–16.0%), γ-Terpinene (0.3–12.65%), Camphene (0.0–12.3%), 1,8-Cineole (0.0–11.3%), α-Pinene (0.2–6.1%), β-Caryophyllene (0.0–3.5%), Neomenthol (0.0–2.8%), β-Cubebeene (0.0–2.4%), Geraniol (0.0–2.32%), Menthone (0.0–2.2%)	[61,64,74,85,87,104,116,122–126]
Thymus vulgaris L.	Linalool (5.5–39.7%), Thymol (0.52–39.6%), p-Cymene (2.2–21.2%), Terpinen-4-ol (1.0–11.2%), β-Myrcene (3.0–8.6%), γ-Terpinene (7.6–7.9%), α-Terpinene (1.2–4.2%), β-Caryophyllene (1.6–3.6%), α-Pinene (0.9–3.6%), Limonene (1.7–2.6%), Carvacrol (0.08–2.4%), Terpinolene (0.2–2.0%)	[116,127]
Thymus zygis L.	Carvacrol (20.5%), 1,8-Cineole (1.5–19.61%), Bicyclogermacrene (0.0–16.2%), β-Farnesene (0.0–16.1%), Sabine hydrate (0.0–14.57%), Sclarene (0.0–10.9%), α-Pinene (0.9–9.76%), Manool (0.0–8.2%), β-Caryophyllene (3.0–6.6%), β-Caryophyllene oxide (0.0–5.83%), Limonene (0.0–4.89%), Vulgarol B (0.0–4.7%), β-Pinene (0.4–4.4%), α-Terpinyl acetate (1.2–4.21%), β-Sitosterol (3.13%), p-Cymene (0.0–3.11%), Geranyl linalool (0.0–3.1%), β-Phellandrene (0.0–3.0%), Cembrene A (0.7–2.8%), Beyrene (0.0–2.6%), β-Myrcene (trace–2.12%), γ-Elemene (2.11%), s-Cadinol (2.01%)	[51,128,129]

Vitex agnus-castus L.
Table 2. Cont.

Essential Oil	Main Chemical Components	References
Zataria multiflora Boiss.	Thymol (25.8–48.4%), Carvacrol (1.5–34.36%), Carvacrol methyl ether (0.0–28.32%), p-Cymene (2.27–13.2%), γ-Terpineol (0.5–3.69%), α-Pinene (0.02–3.13%), β-Caryophyllene (2.24–3.12%), Carvacrol acetate (0.0–2.26%), Linalool (0.9–6.52%), α-Terpinylen acetate (5.4%), α-Terpineol (0.0–28.32%), Carvacrol methyl ether (0.92–10.6%), Linalool (0.0–2.21%)	[117,130]
Ziziphora clinopodioides L.	Carvacrol (0.63–74.29%), Thymol (7.28–55.6%), γ-Terpineol (1.54–24.56%), p-Cymene (2.21–10.25%), α-Terpinene (0.0–2.26%)	[131,132]
Ziziphora tenuior L.	Pulegone (46.8%), p-Menth-3-en-8-ol (12.5%), Isomenthone (6.6%), 8-Hydroxymenthone (6.2%), Isomenthol (4.7%), Limonene (3.2%)	[133]

To the chemical components most commonly found as the main ingredients in essential oils, among plants presented in Table 2, include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20) (Figure 2). Sesquiterpene β-caryophyllene seems particularly important antifungal component in the Lamiaceae family. Its activity and its derivatives, such as caryophyllene oxide is well known [134–136]. According to Bona et al. [137], essential oils containing high concentrations of phenolic monoterpenes (e.g., carvacrol, p-cymene, thymol) have great antifungal activities. Rich in these substances are, among others Origanum and Thymus plants. Important antifungal chemicals often presented in Lamiaceae are also other monoterpenes as alcohol linalool and cyclic 1,8-cineole, limonene, pinenes, and terpinenes [138–146]. Table 1 shows that all of these antifungal substances are common in presented plants.

![β-caryophyllene](image1)

![linalool](image2)

![α-pinene](image3)

![β-pinene](image4)

![1,8-cineole](image5)

![limonene](image6)
Figure 2. Chemical formulas of ten substances the most commonly found in essential oils of Lamiaceae plants presented in Table 1.

3. Antifungal Activity of Essential Oils of Lamiaceae Family

In Table 3 are shown the antifungal activities of selected Lamiaceae essential oils. More than half of the essential oils have good activity (<1000 µg/mL) against fungi. In some cases are observed significant discrepancies between different studies. An example could be the action of essential oils from Italian Calamintha nepeta against Candida albicans. In the work of Marongiu et al. [39], minimal inhibitory concentrations amounted to 1.25–2.5 µg/mL, while in Božović et al. [40] MICs were between 780 to 12,480 µg/mL. Differences may be related to the different biochemical composition of the examined essential oils. In results presented by Marongiu et al. [39] the main components of essential oils were pulegone (39.9–64.4%), piperitenone oxide (2.5–19.1%) and piperitenone (6.4–7.7%), while in Božović et al. [40] three main substances were pulegone (37.7–84.7%), crysanthenone (1.3–33.9%) and menthone (0.5–35.4%). Some authors have described that the content of active substances varies depending on the season. In studies of Gonçalves et al. [60] in Mentha cervina during the flowering phase in August amount of isomenthone and pulegone in essential oil amounted 8.7% and 75.1% respectively. Simultaneously, in the vegetative phase in February, the content of both components changed significantly and amounted to 77.0% for isomenthone and 12.9% for pulegone. Similarly, Al-Maskri et al. [75] presented essential changes in some compounds of Ocimum basilicum essential oil between winter and summer. In the summer essential oil, there is significantly more of linalool, p-allylanisole and β-farnesene, and at the same time much less content of limonene and 1,8-cineole. In this work, a seasonal variation of chemical composition is directly related to other antifungal activities. It is particularly evident in action against Aspergillus niger, which was lower in the summer season. Zone of growth inhibition (ZOI) for winter essential oil was 21 mm and MIC > 50 µg/mL, while for summer essential oil-ZOI was 13 mm and MIC > 100 µg/mL [75]. Influence on the content of chemical substances in essential oils also has a method of obtaining them. Čavar et al. [40] compared the composition of oils obtained from Calamintha glandulosa using three methods: Hydrodistillation (HD), steam distillation (SD) and aqueous reflux extraction (ARE). For example, the level of menthone was 3.3% in ARE, 4.7% in HD, and 8.3% in SD method, while for shisofuran was only 0.1% in HD and SD, and even 9.7% in ARE [40]. Additionally, many other factors can affect antimicrobial activity, such as amount and concentration of inoculum, type of culture medium, pH of the medium and incubation time. All these factors can affect the value of MIC [145]. Differences are visible in Table 2. Generally, it can be assumed that the best activity (MICs < 100) have essential oils from Clinopodium spp. (excluding C. nepeta subsp. glandulosum and C. umbrosum), Lavandula spp., Mentha spp. (excluding M. piperita), Thymbra spp., and Thymus spp. (excluding T. migricus and T. vulgaris). The highest values of MICs are
presented among others for *Aeollanthus suaveolens*, *Agastache rugosa*, *Lepechinia mutica*, *Mentha × piperita*, and *Salvia sclarea*. Simultaneously, some essential oils have a very different activity, and MIC values differ depending on the region, chemical composition, research methodology, etc. Significant variations can be observed even in *Ocimum basilicum* (MICs 1–10,000), *O. sanctum* (MICs 0.1–500), *Origanum majorana* (MICs 0.5–14,400) or in *Thymus vulgaris* (MICs 0.08–3600).

The mode of action of essential oils is multidirectional. Essential oils lead to disruption of the cell wall and cell membrane through a permeabilization process. The lipophilic compounds of essential oils can pass through the cell wall and damage polysaccharides, fatty acids, and phospholipids, eventually making them permeable [146,147]. Change of the permeability for H⁺ and K⁺ cations affects cellular pH and damage of cellular organelles [148,149]. Additionally, essential oils inhibit the synthesis of fungal DNA, RNA, proteins, and polysaccharides [150]. Essential oils can also disintegrate mitochondrial membrane [151,152]. It has also been shown that essential oil from *Thymus vulgaris* inhibits the production of aflatoxins by *Aspergillus flavus* and leads to the reduction of ergosterol production [123].

| Table 3. Minimal inhibitory concentrations (MICs) of essential oils against fungi. |
|-------------------------------|---------------------------------|-----------------|
| **Source of the Essential Oil** | **Targeted Fungus** | **MICs (µg/mL; µl/mL)** | **Reference(s)** |
| *Aeollanthus suaveolens* Mart. ex Spreng. = *A. heliotropioides* Oliv. | *Candida albicans* | 1200–5000 | [34] |
| | *Candida glabrata* | 5000 | [34] |
| | *Candida krusei* | 2500 | [34] |
| | *Candida parapsilosis* | 2500 | [34] |
| | *Candida tropicalis* | 1200 | [34] |
| | *Cryptococcus neoformans* | 600–5000 | [34] |
| | *Aspergillus flavus* | 10,000 | [153] |
| | *Aspergillus niger* | 5000 | [153] |
| | *Blastoschizomyces capitatus* | 5000 | [153] |
| | *Candida albicans* | 28–5000 | [153,154] |
| | *Candida utilis* | 5000 | [153] |
| | *Candida tropicalis* | 5000 | [153] |
| | *Cryptococcus neoformans* | 10,000 | [153] |
| | *Trichoderma viride* | 5000 | [153] |
| | *Trichophyton erinacei* | 780 | [153] |
| | *Trichophyton mentagrophytes* | 3120 | [153] |
| | *Trichophyton rubrum* | 150 | [153] |
| | *Trichophyton schoenleinii* | 1560 | [153] |
| | *Trichophyton soudanense* | 1560 | [153] |
| | *Trichophyton tonsurans* | 10,000 | [153] |
| | *Trichosporon mucoides* | 5000 | [153] |
| *Agastache rugosa* (Fisch. and C.A.Mey.) Kuntze | *Alternaria solani* | 750 | [37] |
| | *Botrytis cinerea* | 600 | [37] |
| | *Fusarium coeruleum* | 350 | [37] |
| | *Fusarium culmorum* | 300 | [37] |
| | *Fusarium oxysporum* | 300 | [37] |
| | *Fusarium solani* | 350 | [37] |
| | *Fusarium sporotrichioides* | 350 | [37] |
| | *Fusarium tabacinum* | 350 | [37] |
| | *Fusarium verticillioides* | 300 | [37] |
| *Ballota nigra* subsp. foetida (Vis.) Hayek | *Aspergillus niger* | 0.4 | [38] |
| | *Aspergillus ochraceus* | 0.4 | [38] |
| | *Cladosporium cladosporioides* | 0.4 | [38] |
| | *Fusarium tricinctum* | 0.4 | [38] |
| | *Penicillium ochrachromogenes* | 0.4 | [38] |
| | *Phomopsis helianthi* | 0.2 | [38] |
| | *Trichoderma viride* | 0.4 | [38] |
| *Clinopodium dalmaticum* (Benth.) Bräuchler and Heubl = *Micromeria dalmatica* Benth. | *Aspergillus niger* | 1250 | [39] |
| | *Aspergillus ochraceus* | 0.4 | [38] |
| | *Fusarium tricinctum* | 0.4 | [38] |
| | *Penicillium ochrachromogenes* | 0.4 | [38] |
| | *Phomopsis helianthi* | 0.2 | [38] |
| | *Trichoderma viride* | 0.4 | [38] |
| *Clinopodium nepeta* subsp. glanduloum* (Req.) *Govaria = Calamintha glandulosa* (Req.) Bentham = *Calamintha officinalis* Moench | *Aspergillus niger* | 1250 | [39] |
| | *Candida albicans* | 2500 | [39] |
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µL/mL)	Reference(s)
Clinopodium nepeta (L.) Kuntze = Calamintha nepeta (L.) Savi	Aspergillus fumigatus	0.64–5	[41]
	Aspergillus niger	0.32–10	[41]
	Candida albicans	1.25–12,480	[41,42]
	Candida guilliermondii	1.25–2.5	[41]
	Candida kruzei	1.25–2.5	[41]
	Candida parapsilosis	1.25–2.5	[41]
	Candida tropicalis	1.25–2.5	[41]
	Cryptococcus neoformans	0.32–1.25	[41]
	Epidermophyton floccosum	0.64–2.5	[41]
	Microsporum canis	0.64–2.5	[41]
	Microsporum gypseum	1.25–5	[41]
	Trichophyton mentagrophytes	0.64–5	[41]
	Trichophyton rubrum	0.64–5	[41]
Clinopodium thymifolium (Scop.) Kuntze = Micromeria thymifolia (Scop.) Fritsch	Aspergillus niger	2	[38]
	Aspergillus ochraceus	2	[38]
	Cladosporium cladosporioides	2	[38]
	Fusarium tricinctum	2	[38]
	Penicillium ochrochloron	0.4	[38]
	Phomopsis helianthi	0.4	[38]
	Trichoderma viride	2	[38]
Clinopodium umbrosum (M.Bieb.) Kuntze = Calamintha umbrosa Benth.	Alternaria solani	3000	[43]
	Fusarium oxysporum	2000	[43]
	Helminthosporium maquidis	1500	[43]
	Alternaria solani	625	[155]
	Candida albicans	625–1000	[44,155]
	Epidermophyton floccosum	2500	[155]
	Fusarium semitectum	313	[155]
Hymenocrater longiflorus Benth.	Aspergillus niger	480	[45]
	Candida albicans	240	[45]
Hyptis ovalifolia Benth.	Microsporum canis	15.6–1000	[46,156]
	Microsporum gypseum	7.8–1000	[46,156]
	Trichophyton mentagrophytes	15.6–1000	[46,156]
	Trichophyton rubrum	7.8–1000	[46,156]
	Aspergillus niger	52,200	[47]
	Aspergillus ochraceus	26,100	[47]
	Aspergillus versicolor	10,440	[47]
	Candida albicans	128–1000	[44,48]
	Candida glabrata	512–1024	[48]
	Candida kruzei	128–256	[48]
	Candida parapsilosis	256–512	[48]
	Candida tropicalis	512–1024	[48]
	Cladosporium cladosporioides	10,440	[47]
	Cladosporium fulvum	26,100	[47]
	Penicillium fumiculosum	52,200	[47]
	Penicillium ochrochloron	26,100	[47]
	Trichoderma viride	10,440	[47]
Lavandula angustifolia Mill.	Candida albicans	0.125–512	[50,51,157]
	Malassezia furfur	>4	[49]
	Trichophyton rubrum	1–512	[49,51]
	Trichosporon beigeli	2	[49]
Lavandula multifida L.	Aspergillus fumigatus	0.32	[52]
	Aspergillus niger	0.32	[52]
	Candida albicans	0.32	[52]
	Candida guilliermondii	0.32	[52]
	Candida kruzei	0.64	[52]
	Candida parapsilosis	0.32	[52]
	Candida tropicalis	0.32	[52]
	Cryptococcus neoformans	0.16	[52]
	Epidermophyton floccosum	0.16	[52]
	Microsporum canis	0.16	[52]
	Microsporum gypseum	0.16	[52]
	Trichophyton mentagrophytes	0.16	[52]
	Trichophyton mentagrophytes var. interdigitale	0.16	[52]
	Trichophyton rubrum	0.16	[52]
	Trichophyton verrucosum	0.16	[52]
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	References(s)
Lavandula pedunculata (Miller) Cav.			
	Aspergillus flavus	5–10	[53]
	Aspergillus fumigatus	2.5–5	[53]
	Aspergillus niger	5	[53]
	Candida albicans	2.5	[53]
	Candida guillermondii	1.25	[53]
	Candida kruzie	1.25–2.5	[53]
	Candida parapsilosis	2.5–5	[53]
	Candida tropicalis	1.25–2.5	[53]
	Cryptococcus neoformans	0.32–1.25	[53]
	Epidermophyton floccosum	0.32–0.64	[53]
	Microsporum canis	0.32–1.25	[53]
	Microsporum gypseum	0.64–2.5	[53]
	Trichophyton mentagrophytes	0.64–1.25	[53]
	Trichophyton rubrum	0.32–1.25	[53]
	Trichophyton mentagrophytes var. interdigitale	0.16–0.64	[54]
	Trichophyton rubrum	0.16–256	[51,54]
	Trichophyton verrucosum	0.32	[54]
Lavandula stoechas L.			
	Aspergillus flavus	1.25–10	[54]
	Aspergillus fumigatus	0.64–1.25	[54]
	Aspergillus niger	0.32–1.25	[54]
	Candida albicans	0.64–512	[53,54]
	Candida guillermondii	1.25	[54]
	Candida kruzie	2.5	[54]
	Candida parapsilosis	2.5	[54]
	Candida tropicalis	2.5	[54]
	Cryptococcus neoformans	0.64	[54]
	Epidermophyton floccosum	0.16–0.32	[54]
	Microsporum canis	0.16–0.64	[54]
	Microsporum gypseum	0.32–0.64	[54]
	Trichophyton mentagrophytes	0.32–0.64	[54]
	Trichophyton mentagrophytes var. interdigitale	0.16–0.64	[54]
	Trichophyton rubrum	0.16–256	[51,54]
	Trichophyton verrucosum	0.32	[54]
Lavandula viridis L’Her.			
	Aspergillus flavus	5	[55]
	Aspergillus fumigatus	2.5	[55]
	Aspergillus niger	2.5	[55]
	Candida albicans	1.25–2.5	[55]
	Candida guillermondii	0.64–1.25	[55]
	Candida kruzie	1.25–2.5	[55]
	Candida parapsilosis	2.5	[55]
	Candida tropicalis	1.25–2.5	[55]
	Cryptococcus neoformans	0.64	[55]
	Epidermophyton floccosum	0.32	[55]
	Microsporum canis	0.32	[55]
	Microsporum gypseum	0.64	[55]
	Trichophyton mentagrophytes	0.32–0.64	[55]
	Trichophyton mentagrophytes var. interdigitale	0.32–0.64	[55]
	Trichophyton rubrum	0.32	[55]
	Trichophyton verrucosum	0.32	[55]
Lepechinia mutica (Benth.) Epling			
	Candida albicans	>9000	[56]
	Fusarium graminearum	>9000	[56]
	Microsporum canis	2200–4500	[56]
	Pyricularia oryzae	>9000	[56]
	Trichophyton rubrum	2200–4500	[56]
Marrubium vulgare L.			
	Aspergillus niger	>1180	[58]
	Botrytis cinerea	>1100	[58]
	Fusarium solani	>1190	[58]
	Penicillium digitatum	>1120	[58]
Melissa officinalis L.			
	Aspergillus niger	313	[59,158]
	Candida albicans	30–313	[59,158]
	Cryptococcus neoformans	78	[158]
	Epidermophyton floccosum	30	[59]
	Microsporum canis	30	[59]
	Penicillium verrucosum	125	[159]
	Trichophyton mentagrophytes var. interdigitale	15	[59]
	Trichophyton rubrum	15	[59]
	Trichophyton tonsurans	15	[59]
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	Reference(s)
Mentha cervina L.	Aspergillus flavus	2.5–5	[60]
	Aspergillus fumigatus	1.25–2.5	[60]
	Aspergillus niger	1.25–2.5	[60]
	Candida albicans	1.25–2.5	[60]
	Candida guilliermondii	1.25–2.5	[60]
	Candida kruzei	1.25–2.5	[60]
	Candida parapsilosis	1.25–2.5	[60]
	Candida tropicalis	1.25–2.5	[60]
	Cryptococcus neoformans	1.25	[60]
	Epidermophyton floccosum	0.64–1.25	[60]
	Microsporum canis	1.25	[60]
	Microsporum gypseum	1.25–2.5	[60]
	Trichophyton mentagrophytes	1.25–2.5	[60]
	Trichophyton rubrum	1.25	[60]

Mentha × piperita L.	Aspergillus flavus	1450–5000	[62,64]
	Aspergillus niger	625–10,000	[64,158]
	Aspergillus parasiticus	2500	[64]
	Candida albicans	225–1125	[63,158,160]
	Candida glabrata	225	[62]
	Candida tropicalis	225–230	[62]
	Cryptococcus neoformans	313	[158]
Mentha pulegium L.	Fusarium oxysporum	125	[161]
	Penicillium chrysogenum	1250	[64]
	Penicillium minioluteum	2090–2200	[62]
	Penicillium oxalicum	1300–2050	[62]
	Penicillium verrucosum	2500	[90]

Mentha × piperita L.	Aspergillus niger	0.25–1.25	[65,66,162]
	Aspergillus flavus	1.25	[162]
	Aspergillus fumigatus	1.25	[162]
	Candida albicans	0.94–3.75	[65,66,162]
	Candida brasarensis	3.75	[163]
	Candida guilliermondii	1.25	[162]
	Candida kruzei	0.94–1.25	[162,163]
	Candida parapsilosis	1.25	[162]
	Candida tropicalis	1.25	[162]
	Cryptococcus neoformans	0.64	[162]
	Epidermophyton floccosum	1.25	[162]
	Microsporum canis	1.25	[162]
	Microsporum gypseum	1.25–2.5	[162]
	Saccharomyces cerevisiae	<0.3–0.94	[66,163]
	Trichophyton mentagrophytes	1.25–2.5	[162]
	Trichophyton mentagrophytes var. interdigitale	2.5	[162]
	Trichophyton rubrum	1.25	[162]
	Trichophyton verrucosum	1.25	[162]

Mentha requienii Bentham	Alternaria spp.	>40	[67]
	Aspergillus fumigatus	>60	[67]
	Candida albicans	0.94–40	[67,163]
	Candida brasarensis	3.75	[163]
	Candida kruzei	0.94	[163]
	Fusarium spp.	>40	[67]
	Penicillium spp.	>60	[67]
	Rhodotorula spp.	45	[67]
	Saccharomyces cerevisiae	0.94	[163]

Mentha spicata L.	Aspergillus flavus	1.25	[162]
	Aspergillus fumigatus	0.64	[162]
	Aspergillus niger	0.64–313	[51,158,162]
	Candida albicans	1.25–625	[51,158,162]
	Candida guilliermondii	1.25	[162]
	Candida kruzei	1.25	[162]
	Candida parapsilosis	1.25	[162]
	Candida tropicalis	1.25	[162]
	Cryptococcus neoformans	0.32–313	[158,162]
	Epidermophyton floccosum	0.64	[162]
	Fusarium graminearum	2.5	[164]
	Fusarium moniliforme	2.5	[164]
	Malassezia furfur	>4	[49]
	Microsporum canis	0.64–2	[68,162]
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µL/mL)	Reference(s)
	Microsporum gypseum	0.64–3	[162]
	Penicillium corylophilum	0.625	[165]
	Penicillium expansum	2.5	[164]
	Trichophyton erinacei	3	[68]
	Trichophyton mentagrophytes	0.64–3	[66,162]
	Trichophyton mentagrophytes var. interdigitale	0.64	[162]
	Trichophyton rubrum	0.25–512	[49,51,162]
	Trichophyton terrestre	3	[68]
	Trichophyton verrucosum	0.32	[162]
	Trichosporon beigelii	0.25	[162]
Mentha suaveolens Ehrh.	Candida albicans	0.34–1250	[69,71,166]
	Candida glabrata	0.69–2.77	[69]
	Cryptococcus neoformans	300	[167]
	Microsporum canis	1250	[167]
	Microsporum gypseum	1250	[167]
	Trichophyton mentagrophytes	600–1250	[167]
	Trichophyton rubrum	5000	[167]
	Trichophyton violaceum	600	[167]
Micromeria alba (Griseb. ex K. Maly) Silic	Aspergillus niger	0.2	[38]
	Aspergillus ochraceus	0.2	[38]
	Cladosporium cladosporioides	0.2	[38]
	Fusarium tricinctum	0.4	[38]
	Penicillium ochrochloron	0.2	[38]
	Phomopsis helianthi	0.2	[38]
	Trichoderma viride	0.4	[38]
Moluccella spinosa L.	Aspergillus niger	50	[72]
	Candida albicans	100	[72]
	Fusarium oxysporum	100	[72]
Nepeta ciliaris Benth. = Nepeta leucophylla Benth.	Alternaria solani	3000	[43]
	Candida albicans	0.78	[168]
	Fusarium oxysporum	1000	[43]
	Trichophyton rubrum	0.19	[168]
	Helminthosporium maudis	1500	[43]
Nepeta clarkei Hook. f.	Alternaria solani	3000	[43]
	Fusarium oxysporum	2000	[43]
	Helminthosporium maudis	2000	[43]
Ocimum basilicum L.	Aspergillus flavus	10,000	[64]
	Aspergillus fumigatus	>50	[75]
	Aspergillus niger	>50–10,000	[64,75,158]
	Aspergillus parasiticus	5000	[64]
	Candida albicans	30–625	[73,74,158]
	Candida guilliermondii	3.125–6.25	[76]
	Cryptococcus neoformans	313–1250	[158,169]
	Debaryomyces Hansenii	6.25	[76]
	Epidermophyton floccosum	15	[74]
Ocimum × africanum Lour. = Ocimum × citriodorum	Microsporum canis	1–15.2	[68,74]
	Penicillium glaucum	10,000	[64]
	Penicillium italicum	>50	[75]
	Rhizopus stolonifer	>50	[75]
	Rhizotorula glutinis	86	[73]
	Trichophyton erinacei	2.5	[68]
	Trichophyton mentagrophytes	2.5–8.3	[68,74]
	Trichophyton terrestre	3	[68]
	Saccharomycodes cerevisiae	28	[73]
	Schizosaccharomyces pombe	86	[73]
	Trichophyton rubrum	8.3	[74]
	Trichophyton tomsorans	8	[74]
	Verruca lypellytica	57	[73]
Ocimum × africanum Lour. = Ocimum × citriodorum	Candida guilliermondii	3.125	[76]
	Debaryomyces Hansenii	1.56	[76]
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	References
Ocimum campechianum Mill. = Ocimum micranthum Willd.	Candida albicans	69 [73]	
	Rhodotorula glutinis	139 [73]	
	Saccharomyces cerevisiae	69 [73]	
	Schizosaccharomyces pombe	104 [73]	
	Varronia hypolitica	69 [73]	
Ocimum forskolei Benth.	Candida albicans	35.3–8600 [77,170]	
	Aspergillus fumigatus	>1000 [78]	
	Candida albicans	350–1500 [76,171]	
	Candida kruziei	750 [171]	
	Candida parapsilosis	380 [171]	
	Candida tropicalis	1500 [171]	
	Cryptococcus neoformans	250–300 [78,79]	
	Fusarium oxysporum f. sp. cubense	62.5 [80]	
	Fusarium oxysporum f. sp. hypoperosu	31.25 [80]	
Ocimum gratissimum L.	Fusarium oxysporum f. sp. trachepileum	62.5 [80]	
	Fusarium solani	62.5 [80]	
	Macrophomina phaseolina	62.5–125 [80]	
	Malassezia pachydermatis	300 [78]	
	Microsporum canis	200–500 [78,172]	
	Microsporum gypseum	150–250 [78,172]	
	Rhizoctonia solani	31.25 [80]	
	Scopulariopsis brevicaulis	400 [78]	
	Trichophyton interdigital	250 [78]	
	Trichophyton mentagrophytes	200–250 [78,172]	
	Trichophyton rubrum	150–250 [78,172]	
Ocimum tenuiflorum L. = Ocimum sanctum L.	Aspergillus flavus	300 [83]	
	Candida albicans	0.1–300 [81,82]	
	Candida glabrata	0.15–300 [81,82]	
	Candida kruziei	0.35–450 [81,82]	
	Candida parapsilosis	0.25–500 [81,82]	
	Candida tropicalis	0.1–300 [81,82]	
Origanum compactum Benth.	Alternaria alternata	300 [84]	
	Bipolaris orieae	300 [84]	
	Fusarium equiseti	300 [84]	
	Fusarium graminearum	300 [84]	
	Fusarium verticillioides	300 [84]	
Origanum majorana L.	Aspergillus flavus	450–650 [62]	
	Aspergillus niger	625 [158]	
	Botrytis cinerea	5000 [87]	
	Candida albicans	625 [158]	
	Cryptococcus neoformans	313 [158]	
	Fusarium delphinioides	1800–14,400 [85]	
	Fusarium incarnatum-equiseti	450–3600 [85]	
	Fusarium napsiforme	3600–14,400 [85]	
	Fusarium oxysporum	900–3600 [85]	
	Fusarium solani	900–3600 [85]	
	Fusarium verticillioides	14,400 [85]	
	Microsporum canis	0.5 [68]	
	Microsporum gypseum	2 [68]	
	Penicillium expansum	10,000 [87]	
	Penicillium minioluteum	400–500 [62]	
	Penicillium oxalicum	350–400 [62]	
	Spathothrix brasiliensis	≤2250–9000 [86]	
	Spathothrix scheeckii	≤2250–9000 [86]	
	Trichophyton erinacei	1 [68]	
	Trichophyton mentagrophytes	1.5 [68]	
	Trichophyton terrestre	2 [68]	
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	References(s)
Pogostemon cablin (Blanco) Benth.	Aspergillus flavus	0.32–0.64	[62,89,91]
	Aspergillus fumigatus	0.32–0.64	[62,89,91,158]
	Aspergillus niger	0.32–0.623	[62,89,91,158]
	Aspergillus ochraceus	470	[91]
	Aspergillus parasiticus	2500	[64]
	Candida albicans	0.32–700	[74,88,89,91,158]
	Candida glabrata	350	[88]
	Candida guillermondii	0.64–1–2.5	[89]
	Candida krusei	0.64–700	[88,89]
	Candida parapsilosis	0.64–170	[88,89]
	Candida tropicalis	0.32–700	[88,89]
	Cladosporium sp.	0.05–0.3	[173]
	Cryptococcus neoformans	0.16–78	[89,158]
	Epidermophyton floccosum	0.32–2	[74,89]
	Fusarium sp.	0.1–0.5	[173]
	Malassezia furfur	1–780	[49,174]
	Microsporum canis	0.025–1.25	[68,74,89]
	Microsporum gypseum	0.025–4.125	[68,89]
	Penicillium chrysogenum	625	[64]
	Penicillium corphophylum	0.625	[165]
	Penicillium funiculosum	610	[91]
	Penicillium ochrochloron	710	[91]
	Penicillium verrucosum	1.1719	[90,158]
	Trichophyton mentagrophytes	0.32–1.25	[74,89]
	Trichophyton rubrum	0.16–1.25	[74,89,89]
	Trichophyton tonsurans	1	[74]
	Trichophyton beigelii	0.25	[49]
	Trichophyton erinacei	0.5	[68]
	Trichophyton mentagrophytes	0.5	[68]
	Trichophyton terrestre	0.25	[68]
Pogostemon heyneanus Benth.	Candida albicans	6000	[176]
	Candida glabrata	6000	[176]
	Candida tropicalis	10,000	[176]
Premna microphylla Turcz.	Aspergillus niger	>500	[94]
	Candida albicans	>500	[94]
	Fusarium oxysporum	>500	[94]
Rosmarinus officinalis L.	Aspergillus flavus	330	[91]
	Aspergillus fumigatus	590	[91]
	Aspergillus ochraceus	380–10,000	[91,98,158]
	Botrytis cinerea	2500	[87]
	Candida albicans	30.2–1000	[51,91,96,98,158]
	Cryptococcus neoformans	313	[158]
	Epidermophyton floccosum	30	[96]
	Microsporum canis	2.5–30.2	[68,96]
	Microsporum gypseum	2.5	[68]
	Penicillium expansum	5000	[87]
	Penicillium ochrochloron	470	[91]
	Penicillium funiculosum	570	[91]
	Trichophyton erinacei	1.5	[68]
	Trichophyton mentagrophytes	5–15.3	[68,96]
	Trichophyton rubrum	15–256	[51,96]
	Trichophyton terrestre	5	[68]
	Trichophyton tonsurans	15.2	[96]
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	References(s)
Salvia fruticosa Miller	**Candida albicans**	512 [51]	
Fusarium oxysporum f. sp. dianthi	>2000 [99]		
Fusarium proliferatum	>2000 [99]		
Salvia mirzayanii Rech. f. and Esfand	**Candida albicans**	0.5–2 [100]	
Candida krusei	1 [100]		
Candida dubliensis	0.06–0.5 [100]		
Candida glabrata	0.06–1 [100]		
Candida parapsilosis	0.25–4 [100]		
Candida tropicalis	0.25–2 [100]		
Trichosporon beigeli	1 [49]		
Salvia officinalis L.	**Aspergillus flavus**	5–10 [101]	
Aspergillus fumigatus	2.5–5 [101]		
Aspergillus niger	5–1250 [101,158]		
Candida albicans	2.5–2780 [96,101,158,177]		
Candida guilliermondii	1.25–2.5 [101]		
Candida krusei	2.5–5 [101]		
Candida parapsilosis	5 [101]		
Candida tropicalis	1.25 [101]		
Cryptococcus neoformans	0.64–625 [101,158]		
Epidermophyton floccosum	0.64–100 [96,101]		
Microsporum canis	1.25–100.2 [96,101]		
Microsporum gypseum	1.25–2.5 [101]		
Trichophtyon mentagrophes	1.25–60 [96,101]		
Trichophyton mentagrophes var. interdigital	1.25 [101]		
Trichophyton rubrum	0.64–60 [96,101]		
Trichophyton tonsurans	60 [96]		
Trichophyton verrucosum	1.25–2.5 [101]		
Salvia sclarea L.	**Aspergillus niger**	1250 [158]	
Candida albicans	1250 [158]		
Cryptococcus neoformans	313 [158]		
Fusarium delphinoides	1800–3600 [85]		
Fusarium incanumatum-equiseti	1800–3600 [85]		
Fusarium moniliforme	1800–3600 [85]		
Fusarium oxysporum	1800–3600 [85]		
Fusarium solani	3600–7200 [85]		
Fusarium verticillioides	1800 [85]		
Salvia scabra L.	**Alternaria alternata**	62.5 [103]	
Aspergillus flavus	31.25–500 [103,104,117]		
Aspergillus niger	471 [117]		
Aspergillus ochraceus	423 [117]		
Aspergillus parasiticus	373 [117]		
Aspergillus terreus	389 [117]		
Satureja hortensis L.	**Aspergillus variecolor**	125 [103]	
Candida albicans	200–400 [103,178]		
Fusarium culmorum	125 [103]		
Fusarium oxysporum	250 [103]		
Microsporum canis	62.5 [103]		
Monilinia fructicola	31.25 [103]		
Penicillium spp.	125 [103]		
Rhizoctonia solani	125 [103]		
Rhizopus spp.	250 [103]		
Sclerotinia minor	250 [103]		
Sclerotinia sclerotiorum	125 [103]		
Trichophyton mentagrophes	62.5 [103]		
Trichophyton rubrum	31.25 [103]		
Satureja montana L.	**Microsporum canis**	0.5 [68]	
Microsporum gypseum	2 [68]		
Trichophyton erinacei	2 [68]		
Trichophyton mentagrophes	2 [68]		
Trichophyton terrestris	3 [68]		
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	References(s)
Satureja thymbra L.	Aspergillus flavus	25 [105]	
	Aspergillus fumigatus	1.25–25 [105,179]	
	Aspergillus niger	2.5–25 [105,179]	
	Aspergillus ochraceus	2.5–25 [105,179]	
	Aspergillus versicolor	1.25 [179]	
Candida albicans	25–128 [51,105]		
Penicillium funiculosum	2.5–25 [105,179]		
Penicillium ochrochloron	1–2.5 [105,179]		
Trichoderma viride	1.25–25 [105,179]		
Trichophyton rubrum	128 [51]		
Stachys cretica L.	Candida albicans	625 [106]	
Stachys officinalis (L.) Trevis	Aspergillus niger	2500 [107]	
	Candida albicans	5000 [107]	
Stachys pubescens Ten.	Alternaria alternata	1 [108]	
	Aspergillus flavus	0–5 [108]	
	Fusarium oxyporum	1 [108]	
Teucrium sauvagei Le Houerou	Aspergillus fumigatus	>1000 [109]	
	Candida albicans	>1000 [109]	
	Cryptococcus neoformans	>1000 [109]	
	Epidermophyton floccosum	850 [109]	
	Microsporum canis	800 [109]	
	Microsporum gypseum	900 [109]	
	Scopulariopsis brevicaulis	>1000 [109]	
	Scytalidium dimidiatum	>1000 [109]	
Trichophyton mentagrophytes var. interdigitale	950 [109]		
Trichophyton mentagrophytes var. mentagrophytes	900 [109]		
	Trichophyton rubrum	800 [109]	
	Trichophyton soudanense	800 [109]	
Teucrium yemense Defflers.	Aspergillus niger	313 [77]	
	Botrytis cinerea	313 [77]	
	Candida albicans	1250 [77]	
Thymbra capitata (L.) Cav. = *Thymus capitatus* (L.) Hoffmanns. and Link = Cordelthybus capitatus (L.) Rchb.f. Solms	Aspergillus flavus	0.32 [111]	
	Aspergillus fumigatus	0.16–0.32 [111]	
	Aspergillus niger	0.1–0.16 [111,180]	
	Aspergillus oryzae	0.2 [180]	
Candida albicans	0.16–128 [51,110–112]		
Candida glabrata	0.32 [111,112]		
Candida guillermondii	0.16–0.32 [111,112]		
Candida kruzei	0.32 [111]		
Candida leporidis	0.32 [111,112]		
Candida tropicalis	0.32 [111,112]		
Epidermophyton floccosum	0.08 [111]		
Fusarium solani	0.2 [180]		
Microsporum canis	0.08 [111]		
Microsporum gypseum	0.08 [111]		
Penicillium digitatum	0.5 [180]		
Trichophyton mentagrophytes	0.08 [111]		
Trichophyton rubrum	0.16–64 [51,111]		
Thymbra spicata L.	Aspergillus fumigatus	0.3 [179]	
	Aspergillus niger	0.6 [179]	
	Aspergillus versicolor	0.3 [179]	
	Aspergillus ochraceus	0.6 [179]	
Candida albicans	1.12–3750 [51,113,114]		
Candida kruzei	1.12 [114]		
Candida parapsilosis	0.32 [111,112]		
Candida tropicalis	0.32 [111,112]		
Epidermophyton floccosum	0.08 [111]		
Fusarium solani	0.2 [180]		
Microsporum canis	0.08 [111]		
Microsporum gypseum	0.08 [111]		
Penicillium digitatum	0.5 [180]		
Trichophyton mentagrophytes	0.08 [111]		
Trichophyton rubrum	0.16–64 [51,111]		
Thymus borei Benth.	Candida albicans	250 [115]	
Thymus daenensis Celak.	Alternaria alternata	>8 [108]	
	Aspergillus flavus	1 [108]	
	Fusarium oxyporum	4 [108]	
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	References(s)	
Thymus kotechnus Boiss. and Hohen.	Alternaria alternata	1	[108]	
	Aspergillus flavus	0.5	[108]	
	Fusarium oxysporum	0–5	[108]	
	Candida albicans	1.25–2.5	[116]	
	Candida glabrata	1–2.5	[116]	
	Candida guilliermondii	1.25	[116]	
	Candida krusei	1.25–2.5	[116]	
	Candida parapsilosis	2–5	[116]	
	Candida tropicalis	2.5–10	[116]	
	Aspergillus flavus	0.32–0.64	[119]	
	Aspergillus niger	0.16	[181]	
	Aspergillus tubingensis	0.08–0.31	[181]	
	Epidermophyton floccosum	0.08	[181]	
	Microsporum canis	0.025	[68]	
	Microsporum gypseum	0.128–1	[120]	
	Penicillium chrysogenum	0.512–2	[120]	
	Phomopsis helianthi	0.5	[121]	
	Trichoderma viride	0.1	[121]	
	Trichophyton mentagrophytes	0.1	[68]	
	Trichophyton terrestris	0.1	[68]	
Thymus mastichina (L.) L.	Candida albicans	1.25	[108]	
	Aspergillus flavus	0.5	[108]	
	Fusarium oxysporum	0–5	[108]	
	Thymus mastichina (L.) L.	Candida albicans	1.25	[116]
	Aspergillus flavus	1	[108]	
	Aspergillus niger	1.5	[121]	
	Aspergillus ochraceus	1	[121]	
	Aspergillus terreus	1	[121]	
	Aspergillus versicolor	1	[121]	
	Cladosporium cladosporioides	0.5	[121]	
	Epidermophyton floccosum	0.08	[181]	
	Microsporum canis	0.025	[68]	
	Microsporum gypseum	0.512–2	[120]	
	Penicillium chrysogenum	0.025	[68]	
	Phomopsis helianthi	0.5	[121]	
	Trichoderma viride	2	[121]	
	Trichophyton mentagrophytes	1	[68]	
Thymus nigricus Klokov et Des.-Shost.	Aspergillus flavus	452	[117]	
	Aspergillus niger	460	[117]	
	Aspergillus ochraceus	430	[117]	
	Aspergillus parasiticus	581	[117]	
	Aspergillus terreus	447	[117]	
Thymus pulegioides L.	Aspergillus flavus	1–4	[120]	
	Aspergillus niger	0.128–1	[120]	
	Candida albicans	0.32–0.64	[119]	
	Candida glabrata	0.32–0.64	[119]	
	Candida guilliermondii	0.32	[119]	
	Candida krusei	0.32–0.64	[119]	
	Candida tropicalis	0.32–0.64	[119]	
	Epidermophyton floccosum	0.16	[119]	
	Microsporum canis	0.16	[119]	
	Microsporum gypseum	0.16	[119]	
	Microsporum gypseum	0.128–1	[120]	
	Penicillium chrysogenum	0.512–2	[120]	
	Rhodotorula spp.	0.08	[181]	
	Trichophyton spp.	0.08–0.31	[181]	
	Verticillium sp.	0.512–2	[120]	
	Thymus schimperi Ronninger	Aspergillus flavus	0.16	[121]
	Aspergillus niger	0.128–1	[120]	
	Aspergillus ochraceus	0.08	[181]	
	Microsporum canis	0.025	[68]	
	Microsporum gypseum	0.512–2	[120]	
	Penicillium chrysogenum	0.025	[68]	
	Verticillium sp.	0.512–2	[120]	
	Thymus serpyllum L.	Aspergillus carbonarius	1.25	[182]
	Aspergillus ochraceus	0.625	[182]	
	Aspergillus niger	2.5	[182]	
	Microsporum canis	0.025	[68]	
	Microsporum gypseum	0.25	[68]	
	Trichophyton erinacei	0.1	[68]	
	Trichophyton mentagrophytes	0.2	[68]	
	Trichophyton terrestris	0.1	[68]	
	Alternaria alternata	1	[121]	
	Aspergillus flavus	1.5	[121]	
	Aspergillus niger	1	[121]	
	Aspergillus ochraceus	1	[121]	
	Aspergillus terreus	1	[121]	
	Aspergillus versicolor	1	[121]	
	Cladosporium cladosporioides	0.5	[121]	
	Epidermophyton floccosum	0.128–1	[120]	
	Microsporum canis	0.025	[68]	
	Microsporum gypseum	0.512–2	[120]	
	Penicillium chrysogenum	0.025	[68]	
	Verticillium sp.	0.512–2	[120]	
	Thymus striatus Vahl.	Phomopsis helianthi	0.5	[121]
	Trichoderma viride	2	[121]	
	Trichophyton mentagrophytes	1	[121]	
Table 3. Cont.

Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	References(s)
Thymus vulgaris L.			
Thymus zygis L.			
Candida albicans	0.16–0.32	[116]	
Candida glabrata	0.16	[116]	
Candida krusei	0.08–0.16	[116]	
Candida guillermondii	0.16	[116]	
Candida parapsilosis	0.16–0.32	[116]	
Candida tropicalis	0.16–0.32	[116]	
Chaetomium globosum	1.6	[122]	
Cladosporium spp.	12.8	[122]	
Cladosporium sphaerospermum	19.6	[122]	
Cryptococcus neoformans	78	[122]	
Epidermophyton floccosum	4	[74]	
Fusarium spp.	62.5	[185]	
Fusarium delphinoide	900–1800	[85]	
Fusarium incarnatum-equiseti	450–3600	[85]	
Fusarium napiforme	900	[85]	
Fusarium oxysporum	5–900	[85,126]	
Fusarium solani	1800–3600	[85]	
Fusarium verticillioides	900	[85]	
Malassezia furfur	920	[174]	
Microsporum canis	2.2	[74]	
Mortierella spp.	250	[185]	
Mucor spp.	50.2 ± 8.4	[122]	
Penicillium spp.	18.95–500	[122,185]	
Penicillium brevicompactum	19.6	[122]	
Penicillium chrysogenum	312.5–1750	[64,184]	
Penicillium chrysogenum	19.6	[122]	
Penicillium citrusum	1250	[184]	
Penicillium expansum	625	[87]	
Penicillium griseofulvum	19.6	[122]	
Rhizopus spp.	12.6	[122]	
Rhodotorula glutinis	72	[73]	
Saccharomyces cerevisae	72	[73]	
Schizosaccharomyces pombe	36	[73]	
Stachybotrys chartarum	6.2	[122]	
Trichoderma spp.	16.8	[122]	
Trichophyton mentagrophytes	2.2	[74]	
Trichophyton rubrum	2–72	[74,124]	
Trichophyton tonsurans	2.2	[74]	
Ulocladium spp.	5.45 ± 1.5	[122]	
Yarrowia lipolytica	36	[73]	
Candida albicans	0.16–0.32	[116]	
Candida glabrata	0.32	[116]	
Candida krusei	0.16–0.32	[116]	
Candida guillermondii	0.16	[116]	
Candida parapsilosis	0.32	[116]	
Candida tropicalis	0.16–0.32	[116]	
Penicillium corylophilum	0.3125–0.625	[165]	
Source of the Essential Oil	Targeted Fungus	MICs (µg/mL; µl/mL)	Reference(s)
----------------------------	-----------------	--------------------	--------------
Vitex agnus-castus L.	Candida albicans	0.53–512	[51,129]
	Candida dubliniensis	0.27	[129]
	Candida famata	2.13	[129]
	Candida glabrata	0.27	[129]
	Candida krusei	0.27	[129]
	Candida lusitaniae	2.13	[129]
	Candida parapsilosis	1.06	[129]
	Candida tropicalis	0.13	[129]
	Epidermophyton floccosum	0.64–2.5	[128]
	Microsporum canis	0.64–5	[128]
	Microsporum gypseum	1.25–10	[128]
	Trichophyton mentagrophytes	1.25–10	[128]
	Trichophyton rubrum	0.64–512	[51,128]
Zataria multiflora Boiss.	Aspergillus flavus	358	[117]
	Aspergillus niger	358	[117]
	Aspergillus ochraceus	341	[117]
	Aspergillus parasiticus	367	[117]
	Aspergillus terreus	447	[117]
	Microsporum canis	0.125–0.25	[130]
	Microsporum gypseum	0.03–0.06	[130]
	Trichophyton mentagrophytes	0.03–0.06	[130]
	Trichophyton rubrum	0.03–0.06	[130]
	Trichophyton schoenleini	0.125–0.6	[130]
Ziziphora clinopodioides Lam.	Aspergillus flavus	48.82	[184,186]
	Aspergillus fumigatus	1750	[184]
	Aspergillus niger	3000	[184]
	Aspergillus ochraceus	1500	[184]
	Aspergillus parasiticus	48.82	[186]
	Penicillium chrysogenum	3000	[184]
	Penicillium citrinum	1750	[184]
Ziziphora tenuior L.	Aspergillus flavus	1.25	[133]
	Aspergillus fumigatus	0.64	[133]
	Aspergillus niger	0.64	[133]
	Candida albicans	1.25	[133]
	Candida guillermondii	1.25	[133]
	Candida krusei	1.25	[133]
	Candida parapsilosis	1.25	[133]
	Candida tropicalis	1.25	[133]
	Cryptococcus neoformans	0.16	[133]
	Epidermophyton floccosum	0.64	[133]
	Microsporum canis	0.64–1.25	[133]
	Microsporum gypseum	1.25	[133]
	Trichophyton mentagrophytes	1.25	[133]
	Trichophyton mentagrophytes var. interdigitale	1.254	[133]
	Trichophyton rubrum	0.64	[133]
	Trichophyton verrucosum	0.64	[133]

4. Essential Oils of Lamiaceae Plants in Cosmetics and Medicines

Some essential oils of Lamiaceae family plants and/or their components are commonly used in cosmetics and less often in medicine. Essential oils from *Thymus vulgaris*, *Origanum vulgare*, *Rosmarinus officinalis*, *Calamintha officinalis*, *Salvia officinalis*, or *Lavandula officinalis* are in cosmetic formulations as natural preservatives [187]. *Lavandula angustifolia* oil is commonly used as a fragrance in cosmetics, soaps, perfumes and pharmaceutical products. It also acts as an anti-inflammatory, and is calming, headache relieving, is a sedative and is skin healing. Essential oils from *Lavandula hybridra* and *L. angustifolia* also have anti-louse activity. Compounds (essential oils and mainly menthol) extracted from *Mentha piperita* are commonly used as a fragrance in soaps, cosmetics and as well as in the kitchen as a spice and refreshing products. Moreover, they are often found in chewing gums, toothpastes, and mouthwashes. For medical use, it can be taken orally in gastrointestinal complications. *Rosmarinus officinalis* essential oil is often an ingredient as a fragrance in cosmetics, soaps, bath salts and oils, gels and ointments. It is widely used for hair care and hair-loss treatment because it promotes hair growth and helps against dandruff [188]. In medicine, essential oils from Lamiaceae family are used in
aromatherapy (Salvia sclarea, Lavandula officinalis, Mentha piperita, Rosmarinus officinalis) [189], sinusitis (Lavandula officinalis, Thymus vulgaris) [190], and in upper respiratory tract for treatment of catarrh (Mentha piperita, Mentha arvensis, Thymus spp.) [191]. Both essential oils from Lamiaceae plants and mono-substances are used in toothpastes and mouthwashes. In many of these the following chemicals, like limonene, linalool, menthol, and thymol, are presented as flavorings and fragrances [192,193]. Additionally, in some toothpastes are essential oils, e.g., in “Parodontax®” occurs Salvia officinalis oil, Mentha piperita oil, and Mentha arvensis oil; in “Lacalut Active Herbal” is Mentha arvensis oil, Thymus vulgaris oil, and Salvia officinalis oil, while in “Signal Family Herbal Fresh” are oils from Mentha piperita and Salvia officinalis [194]. Literature data confirm a strong antifungal effect against C. albicans and anti-inflammatory activity of “Parodontax” toothpaste [195,196]. Besides toothpastes, also some medicines used to rinse the oral cavity or throat contain a large number of essential oils. Mention may be made of “Salviasept” having in its composition the oils from Mentha × piperita, Thymus vulgaris, Thymus zygis, Origanum majorana, and Salvia officinalis or “Dentosept Complex” containing oils from Mentha piperita, Thymus vulgaris, Salvia sp., Lavandula sp., and Eucalyptus globulus. Among the antifungal medicines in “Acerin Talk” antifungal foot deodorant are present Lavandula sp. oil, menthol, linalool, limonene, and geraniol, while in “Podoflex Tincture” for nails mucosis occur among others oils from Salvia sclarea and Lavandula angustifolia and mono-substances current in Lamiaceae plants: geraniol, limonene, linalool, citral, and eugenol [194].

5. Conclusions

More than half of the essential oils from Lamiaceae family plants have good antifungal activity (MICs < 1000 µg/mL). The microbiological data indicate that they could be used alone or in combination with antifungal drugs in the treatment of fungal infections, especially of the skin and mucous membranes. Some essential oils and their components extracted from Lamiaceae plants are used in cosmetics and medicines. Essential oils may be of future relevance in the treatment of multi-drug resistant fungi.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4. [CrossRef] [PubMed]
2. White, T.C.; Findley, K.; Dawson, T.L., Jr.; Scheynius, A.; Boekhout, T.; Cuomo, C.A.; Xu, J.; Saunders, C.W. Fungi on the skin: Dermatophytes and Malassezia. Cold Spring Harb. Perspect. Med. 2014, 4. [CrossRef]
3. Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi 2017, 3, 57. [CrossRef] [PubMed]
4. Park, B.J.; Wannemuehler, K.A.; Marston, B.J.; Govender, N.; Pappas, P.G.; Chiller, T.M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009, 23, 525–530. [CrossRef] [PubMed]
5. Drgona, L.; Khachatryan, A.; Stephens, J.; Charbonneau, C.; Kantecki, M.; Haider, S.; Barnes, R. Clinical and economic burden of invasive fungal diseases in Europe: Focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 7–21. [CrossRef] [PubMed]
6. Murray, P.R.; Rosenthal, K.S.; Pfaffer, M.A. Section 6. Mycology. In Medical Microbiology, 7th ed.; Saunders: Philadelphia, PA, USA, 2013; pp. 605–711.
7. Reddy, K.R. Fungal infections (Mycoses): Dermatophytoes (Tinea, Ringworm). J. Gandaki Med. Coll. Nepal 2017, 10. [CrossRef]
8. Lortholary, O.; Desnos-Ollivier, M.; Sibton, K.; Fontanet, A.; Bretagne, S.; Dromer, F. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: A prospective multicenter study involving 2,441 patients. Antimicrob. Agents Chemother. 2011, 55, 532–538. [CrossRef]
9. Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaffer, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732. [CrossRef]

10. Arendrup, M.C.; Perlin, D.S. Echinocandin resistance: An emerging clinical problem? Curr. Opin. Infect. Dis. 2014, 27, 484–492. [CrossRef]

11. Van der Linden, J.W.; Arendrup, M.C.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.M.; Chryssanthou, E.; Mellado, E.; Kidd, S.E.; Tortorano, A.M.; et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041–1044. [CrossRef]

12. Pfaffer, M.A.; Diekema, D.J. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004, 42, 4419–4431. [CrossRef] [PubMed]

13. Perlin, D.S.; Rautemaa-Richardson, R.; Alastrauey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [CrossRef]

14. Kr奶油, V., Jr.;SPANíK, S.; KUNOVA, A.; TRUPL, J. Breakthrough fungemia appearing during empiric therapy. J. Infect. Dis. 2017, 129, 53–58. [CrossRef]

15. Hull, C.M.; Bader, O.; Parker, J.E.; Weig, M.; Gross, U.; Warrilow, A.G.; Kelly, D.E.; Kelly, S.L. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob. Agents Chemother. 2012, 56, 6417–6421. [CrossRef]

16. Woods, R.A.; Bard, M.; Jackson, I.E.; Drutz, D.J. Resistance to polyene antibiotics and correlated sterol changes with amphotericin B. Chemotherapy 1997, 43, 367–370. [CrossRef] [PubMed]

17. Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov, a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2009, 53, 41–44. [CrossRef]

18. Tracking Candida Auris. Case Count Updated as of July 31, 2019; CDC. Available online: https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html (accessed on 9 September 2019).

19. Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017, 64, 134–140. [CrossRef]

20. Friedman, D.Z.P.; Schwartz, I.S. Emerging fungal infections: New patients, new patterns, and new pathogens. J. Fungi 2019, 5, 67. [CrossRef]

21. Hata, D.J.; Humphries, R.; Lockhart, S.R.; College of American Pathologists Microbiology Committee. Candida auris: An emerging yeast pathogen posing distinct challenges for laboratory diagnostics, treatment, and infection prevention. Arch. Pathol. Lab. Med. 2019. [CrossRef]

22. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast, 3rd ed.; Approved Standard, CLSI document M27-A3, Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.

23. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; Approved Standard, CLSI document M38-A2, Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.

24. Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecule 2019, 24, 47. [CrossRef]

25. Ramasubramania Raja, R. Medicinally potential plants of Labiatae (Lamiaceae) family: An overview. Res. J. Med. Plant. 2012, 6, 203–213.

26. Carović-Stanko, K.; Petek, M.; Grđiša, M.; Pintar, J.; Bedeković, D.; Bedeković, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390. [CrossRef]

27. Radulović, N.S.; Blažgojević, P.D.; Stojanović-Radić, Z.Z.; Stojanović, N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem. 2013, 20, 932–952. [PubMed]

28. Vainstein, A.; Lewinsohn, E.; Pichersky, E.; Weiss, D. Floral fragrance. New inroads into an old commodity. Plant Physiol. 2001, 127, 1383–1389. [CrossRef]
29. De Groot, A.C.; Schmidt, E. Essential oils, Part III: Chemical composition. *Dermatitis* 2016, 27, 161–619. [CrossRef]
30. Piątkowska, E.; Rusiecka-Ziołkowska, J. Influence of essential oils on infectious agents. *Adv. Clin. Exp. Med.* 2016, 25, 989–995. [CrossRef]
31. Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. *Medicines* 2016, 3, 25. [CrossRef]
32. The Plant List. Available online: http://www.theplantlist.org (accessed on 12 September 2019).
33. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 23 September 2019).
34. Ngo Mback, M.N.; Agnaniet, H.; Nguimatsia, F.; Jazet Dongmo, P.M.; Hzounda Fokou, J.B.; Bakarnga-Via, I.; Fekam Boyom, F.; Menut, C. Optimization of antifungal activity of *Aeollanthus heliotropoides* oliv essential oil and Time Kill Kinetic Assay. *J. Mycol. Med.* 2016, 26, 233–243. [CrossRef]
35. Ivanov, I.G.; Vrancheva, R.Z.; Petkova, N.T.; Tumbarski, Y.; Dincheva, I.N.; Badjakov, I.K. Phytochemical compounds of anise hyssop (*Agastache foeniculum*) and antibacterial, antioxidant, and acetylcholinesterase inhibitory properties of its essential oil. *J. Appl. Pharm. Sci.* 2019, 9, 72–78.
36. Li, H.Q.; Liu, Q.Z.; Liu, Z.L.; Du, S.S.; Deng, Z.W. Chemical composition and nematodicidal activity of essential oil of *Agastache rugosa* against *Meloidogyne incognita*. *Molecules* 2013, 18, 4170–4180. [CrossRef]
37. Fraternale, D.; Ricci, D. Essential oil composition and antifungal activity of aerial parts of *Ballota nigra* ssp *foetida* collected at flowering and fruiting times. *Nat. Prod. Commun.* 2014, 9, 1015–1018. [CrossRef] [PubMed]
38. Marinković, B.; Marin, P.D.; Knezević-Vukcević, J.; Soković, M.D.; Brkić, D. Activity of essential oils of three *Micromeria* species (Lamiaceae) against micromycetes and bacteria. *Phytother. Res.* 2002, 16, 336–339. [CrossRef] [PubMed]
39. Monforte, M.T.; Tzakou, O.; Nostro, A.; Zimbalatti, V.; Galati, E.M. Chemical composition and biological activities of *Calaminthia officinalis* Moench essential oil. *J. Med. Food* 2011, 14, 297–303. [CrossRef] [PubMed]
40. Čavar, S.; Vidic, D.; Maksimović, M. Volatile constituents, phenolic compounds, and antioxidant activity of *Calaminthia glandulosa* (Req.) Bentham. *J. Sci. Food Agric.* 2013, 93, 1758–1764. [CrossRef]
41. Marongiu, B.; Piras, A.; Poredsa, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical composition and biological assays of essential oils of *Calaminthia nepeta* (L.) Savi subsp. nepeta (Lamiaceae). *Nat. Prod. Res.* 2010, 24, 1734–1742. [CrossRef] [PubMed]
42. Božović, M.; Garzoli, S.; Sabatino, M.; Pepi, F.; Baldisserotto, A.; Andreotti, E.; Romagnoli, C.; Mai, A.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-*Candida* activity of *Calaminthia nepeta* (L.) Savi subsp. *landulosa* (Req.) Ball—New approaches. *Molecules* 2017, 22, 203. [CrossRef]
43. Kumar, V.; Mathela, C.S.; Tewari, A.K.; Bisht, K.S. In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi. *Pestic. Biochem. Physiol.* 2014, 114, 67–71. [CrossRef]
44. Stappen, I.; Wanner, J.; Tabanca, N.; Wedge, D.E.; Ali, A.; Kaul, V.K.; Lai, B.; Jaitak, V.; Goeche, V.K.; Schmidt, E.; et al. Chemical composition and biological activity of essential oils of *Dracocephalum heterophyllum* and *Hyssopus officinalis* from Western Himalaya. *Nat. Prod. Commun.* 2015, 10, 133–138. [CrossRef]
45. Ahmad, F.; Sadeghi, S.; Modarresi, M.; Abiri, R.; Mikaeli, A. Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of *Hymenocrater longiflorus* Benth., of Iran. *Food Chem. Toxicol.* 2010, 48, 1137–1144. [CrossRef]
46. De Oliveira, C.M.A.; Silva, M.R.R.; Kato, L.; da Silva, C.C.; Ferreira, H.D.; Souza, L.K.H. Chemical composition and antifungal activity of the essential oil of *Hyptis ovalifolia* Benth. (Lamiaceae). *J. Braz. Chem. Soc.* 2004, 15, 756–759. [CrossRef]
47. Džamić, A.M.; Soković, M.D.; Novaković, M.; Jadranin, M.; Ristić, M.S.; Tešević, V.; Marin, P.D. Composition, antifungal and antioxidant properties of *Hyssopus officinalis* L. subsp. *pilifer* (Pant.) Murb. essential oil and deodorized extracts. *Ind. Crops Prod.* 2013, 51, 401–407.
48. Hristova, Y.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.; Goeche, V. Chemical composition and antifungal activity of essential oil of *Hyssopus officinalis* L. from Bulgaria against clinical isolates of *Candida* species. *Biotechnol. Biotechnol. Equip.* 2015, 29, 592–601. [CrossRef]
49. Adam, K.; Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of *Origanum vulgare* subsp. hirtum, *Mentha spicata*, *Lavandula angustifolia*, and *Salvia fruticosa* essential oils against human pathogenic fungi. *I. Agric. Food Chem.* 1998, 46, 1739–1745.
50. D’Auria, F.D.; Tecca, M.; Strippoli, V.; Salvatore, G.; Battinelli, L.; Mazzanti, G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. *Med. Mycol.* 2005, 43, 391–396. [CrossRef] [PubMed]

51. Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. *Evid. Based Compl. Altern. Med.* 2016, 2016. [CrossRef]

52. Zuzarte, M.; Vale-Silva, L.; Gonçalves, M.J.; Cavaleiro, C.; Vaz, S.; Canhoto, J.; Pinto, E.; Salgueiro, L. Antifungal activity of phenolic-rich *Lavandula multifida* L. essential oil. *Eur. J. Clin. Microbiol. Infect. Dis.* 2012, 31, 1359–1366. [CrossRef]

53. Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Dinis, A.M.; Canhoto, J.M.; Salgueiro, L.R. Chemical composition and antifungal activity of the essential oils of *Lavandula pedunculata* (Miller) Cav. *Chem. Biodivers.* 2009, 6, 1283–1292. [CrossRef]

54. Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. *Lavandula luisiieri* essential oil as a source of antifungal drugs. *Food Chem.* 2012, 135, 1505–1510. [CrossRef]

55. Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Canhoto, J.; Vale-Silva, L.; Silva, M.J.; Pinto, E.; Salgueiro, L. Chemical composition and antifungal activity of the essential oils of *Lavandula viridis* L’Her. *J. Med. Microbiol.* 2011, 60, 612–618. [CrossRef]

56. Ramírez, J.; Gilardonni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.L.; Cagliero, C.; Picco, A.M.; Vidari, G. Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant *Lepechinia mutica* Benth (Lamiaceae). *Chem. Biodivers.* 2017, 14, e1700292. [CrossRef]

57. Ramírez, J.; Gilardonni, G.; Ramón, E.; Tosi, S.; Picco, A.M.; Bicchi, C.; Vidari, G. Phytochemical study of the Ecuadorian species *Lepechinia mutica* (Benth.) Epling and high antifungal activity of carnosol against *Pyricularia oryzae*. *Pharmaceuticals* 2018, 11, 33. [CrossRef] [PubMed]

58. Zarai, Z.; Kadri, A.; Ben Chobba, I.; Ben Mansour, R.; Bekir, A.; Mejdoub, H.; Gharsallah, N. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of *Marrubium vulgare* L. essential oil grown in Tunisia. *Lipids Health Dis.* 2011, 10, 161. [CrossRef] [PubMed]

59. Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of *Melissa officinalis* L. (Lamiaceae) essential oil. *J. Agric. Food Chem.* 2004, 52, 2485–2489. [CrossRef] [PubMed]

60. Gonçalves, M.J.; Vicente, A.M.; Cavaleiro, C.; Salgueiro, L. Composition and antifungal activity of the essential oil of *Mentha cervina* from Portugal. *Nat. Prod. Res.* 2007, 21, 867–871. [CrossRef] [PubMed]

61. Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; van Griensven, I.J. Chemical composition of essential oils of *Thymus* and *Mentha* species and their antifungal activities. *Molecules* 2009, 14, 238–249. [CrossRef] [PubMed]

62. Camiletti, B.X.; Asensio, C.M.; Pecci Mde, L.; Lucini, E.I. Natural control of corn postharvest fungi *Aspergillus flavus* and *Penicillium* sp. using essential oils from plants grown in Argentina. *J. Food Sci.* 2014, 79, M2499–M2506. [CrossRef]

63. Samber, N.; Khan, A.; Varma, A.; Manzoor, N. Synergistic anti-candidal activity and mode of action of *Mentha piperita* essential oil and its major components. *Pharm. Biol.* 2015, 53, 1496–1504. [CrossRef]

64. Hossain, F.; Follett, P.; Dang Vu, K.; Harich, M.; Salmieri, S.; Lacroix, M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. *Food Microbiol.* 2016, 53, 24–30. [CrossRef]

65. Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of *Mentha pulegium* L. essential oil. *J. Ethnopharmacol.* 2008, 119, 325–327. [CrossRef]

66. Abdelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian *Mentha pulegium* L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. *Ind. Crops Prod.* 2016, 94, 197–205. [CrossRef]

67. Chessa, M.; Sias, A.; Piana, A.; Mangano, G.S.; Petretto, G.L.; Masia, M.D.; Tirillini, B.; Pintore, G. Chemical composition and antibacterial activity of the essential oil from *Mentha requienii* Bentham. *Nat. Prod. Res.* 2013, 27, 93–99. [CrossRef] [PubMed]

68. Nardoni, S.; Giovaneli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Manciante, F. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. *Nat. Prod. Commun.* 2015, 10, 1473–1478. [CrossRef] [PubMed]
Biomolecules 2020, 10, 103

69. Oumzil, H.; Ghouami, S.; Rajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002, 16, 727–731. [CrossRef] [PubMed]

70. El-Kashoury, S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A. Chemical composition of the essential oil and botanical study of the flowers of Mentha suaveolens. Pharm. Biol. 2014, 52, 688–697. [CrossRef] [PubMed]

71. Garzoli, S.; Pirolli, A.; Vavala, E.; Di Sotto, A.; Sartorelli, G.; Božović, M.; Angioletta, L.; Mazzanti, G.; Pepi, F.; Ragn, R. Multidisciplinary approach to determine the optimal time and period for extracting the essential oil from Mentha suaveolens Ehrh. Molecules 2015, 20, 9640–9655. [CrossRef] [PubMed]

72. Casiglia, S.; Jemia, M.B.; Riccobono, L.; Bruno, M.; Scandolera, E.; Senatore, F. Chemical composition of the essential oil of Maluoccella spinosa L. (Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles. Nat. Prod. Res. 2015, 29, 1201–1206. [CrossRef]

73. Sacchetti, G.; Medici, A.; Maietti, S.; Radice, M.; Muzzoli, M.; Braccioli, E.; Brunì, R. Composition and functional properties of the essential oil of amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J. Agric. Food Chem. 2004, 52, 3486–3491. [CrossRef]

74. Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae species and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [CrossRef]

75. Al-Maskri, A.Y.; Hanif, M.A.; Al-Maskari, M.Y.; Abraham, A.S.; Al-sabahi, J.N.; Al-Mantheri, O. Essential oil from Ocimum basilicum (Omani Basil): A desert crop. Nat. Prod. Commun. 2011, 6, 1487–1490.

76. Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils of basil Ocimum different cultivars. BMC Complement Altern. Med. 2017, 17, 60. [CrossRef]

77. Ali, N.A.A.; Chhetri, B.K.; Dosoky, N.S.; Shari, K.; Al-Fahad, A.J.A.; Wessjohann, L.; Setzer, W.N. Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines 2017, 4, 17. [CrossRef] [PubMed]

78. Dubey, N.K.; Tiwari, T.N.; Mandin, D.; Andriamboavonjy, H.; Chaumont, J.P. Antifungal properties of Ocimum gratissimum essential oil (ethyl cinnamate chemotype). Fitoterapia 2000, 71, 567–569. [CrossRef]

79. Lemos Jde, A.; Passos, X.S.; Fernandes Ode, F.; Paula, J.R.; Ferri, P.H.; Souza, L.K.; Lemos Ade, A.; Silva Mdo, R. Antifungal activity of Ocimum gratissimum L. towards Cryptococcus neoformans. Mem. Inst. Oswaldo Cruz 2005, 100, 55–58. [CrossRef] [PubMed]

80. Mohr, F.B.; Lermen, C.; Gazim, Z.C.; Gonçalves, J.E.; Alberton, O. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil. Genet. Mol. Res. 2017, 16. [CrossRef]

81. Amber, K.; Aijaz, A.; Immaculata, X.; Luqman, K.A.; Nikhat, M. Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine 2010, 17, 921–925. [CrossRef]

82. Khan, A.; Ahmad, A.; Akhtar, F.; Youusuf, S.; Hess, I.; Khan, L.A.; Manzoor, N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010, 161, 816–823. [CrossRef]

83. Kumar, A.; Shukla, R.; Singh, P.; Dubey, N.K. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol. 2010, 48, 539–543. [CrossRef]

84. Santamarina, M.P.; Roselló, J.; Sempere, F.; Gíménez, S.; Blázquez, M.A. Commercial Origanum compactum Benth. and Cinnamomum zeylanicum Blume essential oils against natural mycoflora in Valencia rice. Nat. Prod. Res. 2015, 29, 2215–2238. [CrossRef]

85. Homa, M.; Fekete, I.P.; Bőszőrményi, A.; Singh, Y.R.; Selvam, K.P.; Shobana, C.S.; Manikandan, P.; Kredics, L.; Vágvölgyi, C.; Galgóczy, L. Antifungal effect of essential oils against Fusarium keratitis isolates. Planta Med. 2015, 81, 1277–1284. [CrossRef]

86. Waller, S.B.; Madrid, I.M.; Ferraz, V.; Picoli, T.; Cleff, M.B.; de Faria, R.O.; Meireles, M.C.; de Mello, J.R. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil. Braz. J. Microbiol. 2016, 47, 896–901. [CrossRef]

87. Nikkhah, M.; Hashemi, M.; Habibi Najafi, M.B.; Farhoosh, R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int. J. Food Microbiol. 2017, 257, 285–294. [CrossRef] [PubMed]
88. Rosato, A.; Vitali, C.; Piarulli, M.; Mazzotta, M.; Argenti, M.P.; Mallamaci, R. In vitro synergic efficacy of the combination of Nystatin with the essential oils of *Origanum vulgare* and *Pelargonium graveolens* against some *Candida* species. *Phytomedicine* 2009, 16, 972–975. [CrossRef] [PubMed]

89. Vale-Silva, L.; Silva, M.J.; Oliveira, D.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L.; Pinto, E. Correlation of the chemical composition of essential oils from *Origanum vulgare* subsp. virens with their in vitro activity against pathogenic yeasts and filamentous fungi. *J. Med. Microbiol.* 2012, 61, 252–260. [PubMed]

90. Jeršek, B.; Poklar Ulrih, N.; Skrt, M.; Gavarić, N.; Božin, B.; Smole Možina, S. Effects of selected essential oils on the growth and production of ochratoxin A by *Penicillium verrucosum*. *Arhiv Higijenu i Tokskologiju* 2014, 65, 199–208. [CrossRef]

91. Elansary, H.O.; Abdelgaleil, S.A.M.; Mahmoud, E.A.; Yessoufou, K.; Elhendi, K.; El-Hendawy, S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. *BMC Complement Altern. Med.* 2018, 18, 214. [CrossRef]

92. Kocevski, D.; Du, M.; Kan, J.; Jing, C.; Lačanin, I.; Pavlović, H. Antifungal effect of *Allium tuberosum*, *Cinnamomum cassia*, and *Pogostemon cablin* essential oils and their components against population of *Aspergillus* species. *J. Food Sci.* 2013, 78, M731–M737. [CrossRef]

93. Murugan, R.; Mallavarapu, G.R.; Padmashree, K.V.; Rao, R.R.; Livingstone, C. Volatile oil composition of *Pogostemon heynaeus* and comparison of its composition with patchouli oil. *Nat. Prod. Commun.* 2010, 5, 1961–1964. [CrossRef]

94. Zhang, H.Y.; Gao, Y.; Lai, P.X. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of essential oil from *Punica granatum* L. *Turczaninow*. *Molecules* 2017, 22, 381. [CrossRef]

95. Angioni, A.; Barra, A.; Cereti, E.; Barile, D.; Coïsson, J.D.; Arlorio, M.; Dessi, S.; Coroneo, V.; Cabras, P. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of *Rosmarinus officinalis* L. *J. Agric. Food Chem.* 2004, 52, 3530–3535. [CrossRef]

96. Bozin, B.; Mimica-Dukic, N.; Samočlijk, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (*Rosmarinus officinalis* L. and *Salvia officinalis* L., Lamiaceae) essential oils. *J. Agric. Food Chem.* 2007, 55, 7879–7885. [CrossRef]

97. Ozcan, M.M.; Chalchat, J.C. Chemical composition and antifungal activity of rosemary (*Rosmarinus officinalis* L.) oil from Turkey. *Int. J. Food Sci. Nutr.* 2008, 59, 691–698. [CrossRef] [PubMed]

98. Jiang, Y.; Wu, N.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. *Environ. Toxicol. Pharmacol.* 2011, 32, 63–68. [CrossRef] [PubMed]

99. Pitarokili, D.; Tzakou, O.; Loukis, A.; Harvala, C. Volatile metabolites from *Salvia fruticosa* L. *from Munzur Valley in Tunceli, Turkey*. *J. Agric. Food Chem.* 2005, 53, 3294–3301. [CrossRef] [PubMed]

100. Zomorodian, K.; Moein, M.; Pakshir, K.; Karami, F.; Sabahi, Z. Chemical composition and antimicrobial activities of the essential oil from *Salvia mirzayanii* leaves. *J. Evid. Based Complementary Altern. Med.* 2017, 22, 770–776. [CrossRef]

101. Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-bdour, T.H.; Salgueiro, L. Essential oil of common sage (*Salvia officinalis* L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. *BioMed Res. Int.* 2013, 2013. [CrossRef]

102. Yuce, E.; Yildirim, N.; Yildirim, N.C.; Paksoy, M.Y.; Bagci, E. Essential oil composition, antioxidant and antifungal activities of *Salvia sclarea* L. from Munzur Valley in Tunceli, Turkey. *Cell. Mol. Biol.* 2014, 60, 1–5.

103. Güllüce, M.; Sökmen, M.; Daferera, D.; Ağar, G.; Ozkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Sahin, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of *Satureja hortensis* L. *J. Agric. Food Chem.* 2003, 51, 3958–3965. [CrossRef]

104. Ömidbeygi, M.; Barzegar, M.; Hamidi, Z.; Naghdibadi, H. Antifungal activity of thyme, summer savory and clove essential oils against *Aspergillus flavus* in liquid medium and tomato paste. *Food Control* 2007, 18, 1518–1523. [CrossRef]

105. Geweli, A.; Džamčić, A.M.; Soković, M.; Ristić, M.S.; Marin, P.D. Antimicrobial and antioxidant activities of essential oils of *Satureja thymbra* growing wild in Libya. *Molecules* 2012, 17, 4836–4850. [CrossRef]

106. Serbetçi, T.; Demirci, B.; Güzel, C.B.; Kültür, S.; Ergüven, M.; Başer, K.H. Essential oil composition, antimicrobial and cytotoxic activities of two endemic *Stachys cretica* subspecies (Lamiaceae) from Turkey. *Nat. Prod. Commun.* 2010, 5, 1369–1374. [CrossRef]
107. Lazarević, J.S.; Đorđević, A.S.; Kitić, D.V.; Zlatković, B.K.; Stojanović, G.S. Chemical composition and antimicrobial activity of the essential oil of *Stachys officinalis* (L.) Trevis. (*Lamiaceae*). *Chem. Biodivers.* 2013, 10, 1335–1349. [CrossRef] [PubMed]

108. Mohammadi, A.; Nazari, H.; Imani, S.; Amrollahi, H. Antifungal activities and chemical composition of some medicinal plants. *J. Mycol. Med.* 2014, 24, e1–e8. [CrossRef] [PubMed]

109. Salah, K.B.; Mahjoub, M.A.; Chaumont, J.P.; Michel, L.; Millet-Clerc, J.; Chraeif, I.; Ammar, S.; Mighri, Z.; Aouni, M. Chemical composition and in vitro antifungal and antioxidant activity of the essential oil and methanolic extract of *Teucrium sauvagei* Le Houerou. *Nat. Prod. Res.* 2006, 20, 1089–1097. [CrossRef] [PubMed]

110. Goren, A.C.; Bilsel, G.; Bilsel, M.; Demir, H.; Kocabaş, E.E. Analysis of essential oil of *Coridothymus capitatus* (L.) and its antibacterial and antifungal activity. *Zeitschrift für Naturforschung C* 2003, 58, 687–690. [CrossRef]

111. Salgueiro, L.R.; Pinto, E.; Gonçalves, M.J.; Pina-Vaz, C.; Cavaleiro, C.; Rodrigues, A.G.; Palmeira, A.; Tavares, C.; Costa-de-Oliveira, S.; Martinez-de-Oliveira, J. Chemical composition and antifungal activity of the essential oil of *Thymus capitata*. *Planta Med.* 2004, 70, 572–575. [CrossRef]

112. Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J.A.; Rodrigues, A.G. The anti-*Candida* activity of *Thymbra capitata* essential oil: Effect upon pre-formed biofilm. *J. Ethnopharmacol.* 2012, 140, 379–383. [CrossRef]

113. Kiliç, T. Analysis of essential oil composition of *Thymbra spicata* var. *spicata*: Antifungal, antibacterial and antymycobacterial activities. *Z. Naturforsch. C* 2006, 61, 324–328.

114. Unlü, M.; Vardar-Unlü, G.; Vural, N.; Dönmez, E.; Ozbaş, Z.Y. Chemical composition, antibacterial and antifungal activity of the essential oil of *Thymus spicata* L. from Turkey. *Nat. Prod. Res.* 2009, 23, 572–579. [CrossRef]

115. Jaradat, N.; Adwan, L.; Kaibni, S.; Shraim, N.; Zaid, A.N. Chemical composition, anthelmintic, antibacterial and antioxdiant effects of *Thymus bovei* essential oil. *BMC Complement Altern. Med.* 2016, 16, 418. [CrossRef]

116. Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of *Thymus* oils and their major compounds. *J. Eur. Acad Dermatol. Venereol.* 2004, 18, 73–78. [CrossRef]

117. Alizadeh, A.; Zamani, E.; Sharaifiz, R.; Javan-Nikkhhah, M.; Nazari, S. Antifungal activity of some essential oils against toxigenic *Aspergillus* species. *Commun. Agric. Appl. Biol. Sci.* 2010, 75, 761–767. [PubMed]

118. Alizadeh, A.; Sharaifiz, R.; Javan-Nikkkhah, M.; Sedaghat, N. Survey of *Thymus migricus* essential oil on aflatoxin inhibition in *Aspergillus flavus*. *Commun. Agric. Appl. Biol. Sci.* 2010, 75, 769–776. [PubMed]

119. Pinto, E.; Pina-Vaz, C.; Salgueiro, L.; Gonçalves, M.J.; Costa-de-Oliveira, S.; Cavaleiro, C.; Palmeira, A.; Rodrigues, A.; Martinez-de-Oliveira, J. Antifungal activity of the essential oil of *Thymus pulegioides* on *Candida* and dermatophyte species. *J. Med. Microbiol.* 2006, 55, 1367–1373. [CrossRef] [PubMed]

120. Pagiotti, R.; Angelini, P.; Rubini, A.; Tirillini, B.; Granetti, B.; Venanzoni, R. Identification and characterisation of human pathogenic filamentous fungi and susceptibility to *Thymus schimperi* essential oil. *Mycoles* 2011, 54, e364–e376. [CrossRef]

121. Couladis, M.; Tsakou, O.; Kujundzic, S.; Sokovic, M.; Mimica-Dukić, N. Chemical analysis and antifungal activity of *Thymus striatus*. *Phytother. Res.* 2004, 18, 40–42. [CrossRef]

122. Segvić Klarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (*Thymus vulgaris* L.) essential oil and thymol against moulds from damp dwellings. *Lett. Appl. Microbiol.* 2007, 44, 36–42. [CrossRef]

123. De Lira Mota, K.S.; de Oliveira Pereira, F.; de Oliveira, W.A.; Lima, I.O.; de Oliveira Lima, E. Antifungal activity of *Thymus vulgaris* L. essential oil and its constituent phytochemicals against *Rhizopus oryzae*: Interaction with ergosterol. *Molecules* 2012, 17, 14418–14433. [CrossRef]

124. Khan, M.S.; Ahmad, I.; Cameotra, S.S. *Carum copticum* and *Thymus vulgaris* oils inhibit virulence in *Trichophyton rubrum* and *Aspergillus* spp. *Braz. J. Microbiol.* 2014, 45, 523–531. [CrossRef]

125. Kohiyama, C.Y.; Yamamoto Ribeiro, M.M.; Mossini, S.A.; Bando, E.; Bomfim Nda, S.; Nerilo, S.B.; Rocha, G.H.; Grespan, R.; Mikcha, J.M.; Machinski, M., Jr. Antifungal properties and inhibitory effects upon aflatoxin production of *Thymus vulgaris* L. by *Aspergillus flavus* Link. *Food Chem.* 2015, 173, 1006–1010. [CrossRef]

126. Divband, K.; Shokri, H.; Khosravi, A.R. Down-regulatory effect of *Thymus vulgaris* L. on growth and Tran gene expression in *Fusarium oxysporum* strains. *Microb. Pathog.* 2017, 104, 1–5. [CrossRef]
127. Lagha, R.; Ben Abdallah, F.; Al-Sarhan, B.O.; Al-Sodany, Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against *Escherichia coli* isolated from UTI patients. *Molecules* 2019, 24, 1161. [CrossRef] [PubMed]

128. Marongiu, B.; Piras, A.; Poreda, S.; Falconieri, D.; Goncalves, M.J.; Salgueiro, L.; Maxia, A.; Lai, R. Extraction, separation and isolation of volatiles from *Vitex agnus-castus* L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2. *Nat. Prod. Res.* 2010, 24, 569–579. [CrossRef] [PubMed]

129. Asdadi, A.; Hamdouch, A.; Oukacha, A.; Moutaj, R.; Gharby, S.; Harhar, H.; El Hadek, M.; Chebli, B.; Idrissi Hassani, L.M. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild *Vitex agnus-castus* L. seeds growing in area of Argan Tree of Morocco against clinical strains of *Candida* responsible for nosocomial infections. *J. Mycol. Med.* 2015, 25, e118–e127. [CrossRef] [PubMed]

130. Mahboubi, M.; Heidary Tabar, R.; Mahdizadeh, E. The anti-dermatophyte activity of *Zataria multiflora* essential oils. *J. Mycol. Med.* 2017, 27, 232–237. [CrossRef] [PubMed]

131. Shahbazi, Y. Chemical compositions, antioxidant and antimicrobial properties of *Ziziphus clinopodioides* Lam. essential oils collected from different parts of Iran. *J. Food Sci. Technol.* 2017, 54, 3491–3503. [CrossRef] [PubMed]

132. Mohammadifard, F.; Alimohammadi, S. Chemical composition and role of opioidergic system in *β*-caryophyllene and *γ*-terpinene—an antinociceptive effect of *Ziziphus clinopodioides* essential oil. *Basic Clin. Neurosci.* 2018, 9, 357–366. [CrossRef] [PubMed]

133. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Paoli, M.; Tomi, F.; Effertth, T.; Salgueiro, L. *Ziziphus tenuior* L. essential oil from Dana Biosphere Reserve (Southern Jordan); Chemical characterization and assessment of biological activities. *J. Ethnopharmacol.* 2016, 194, 963–970. [CrossRef]

134. Yang, D.; Michel, L.; Chaumont, J.P.; Milet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. *MycoPathologia* 1999, 148, 79–82. [CrossRef]

135. Dahham, S.S.; Tabana, Y.M.; Isqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene *β*-caryophyllene from the essential oil of *Aquilaria crassna*. *Molecules* 2015, 20, 11808–11829. [CrossRef]

136. Selestino Neta, M.C.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.; França, M.; Endringer, D.C.; Scherer, R. Effects of *β*-caryophyllene and *Murraya paniculata* essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. *Pharm. Biol.* 2017, 55, 190–197. [CrossRef]

137. Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalerio, E. Sensitivity of *Candida albicans* to essential oils: Are they an alternative to antifungal agents? *J. Appl. Microbiol.* 2016, 121, 1530–1545. [CrossRef]

138. Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish *Origanum acutidens* to essential oils. *Pharm. Biol.* 2017, 55, 3491–3503. [CrossRef]

139. Marei, G.I.K.; Abdel Rasoul, M.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical characterization and assessment of biological activities. *J. Ethnopharmacol.* 2016, 194, 963–970. [CrossRef]

140. Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. *J. Mycol. Med.* 2017, 27, 95–104. [CrossRef] [PubMed]

141. Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-*Candida* activity of *Bursera morelensis* Ramirez essential oil and two compounds, *α*-pinene and *γ*-terpinene—an in vitro study. *Molecules* 2017, 22, 95. [CrossRef]

142. de Oliveira Lima, M.I.; Araújo de Medeiros, A.C.; Souza Silva, K.V.; Cardoso, G.N.; de Oliveira Lima, E.; de Oliveira Pereira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant *Trichophyton rubrum*. *J. Mycol. Med.* 2017, 27, 195–202. [CrossRef] [PubMed]

143. de Macêdo Andrade, A.C.; Rosalen, P.L.; Freires, L.A.; Scotti, L.; Scotti, M.T.; Aquino, S.G.; de Castro, R.D. Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-*β*-pinene enantiomers against *Candida* spp. *Curr. Top. Med. Chem.* 2018, 18, 2481–2490. [CrossRef] [PubMed]

144. Wang, K.; Jiang, S.; Pu, T.; Fan, L.; Su, F.; Ye, M. Antifungal activity of phenolic monoterpene and structure-related compounds against plant pathogenic fungi. *Nat. Prod. Res.* 2019, 33, 1423–1430. [CrossRef]
145. Shi, Y.; Si, H.; Wang, P.; Chen, S.; Shang, S.; Song, Z.; Wang, Z.; Liao, S. Derivatization of natural compound β-pinene enhances its in vitro antifungal activity against plant pathogens. *Molecules* 2019, 24, 3144. [CrossRef]
146. Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural monoterpenes: Much more than only a scent. *Chem. Biodiv.* 2019, 16, e19004. [CrossRef]
147. Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. *Int. J. Food Microbiol.* 2004, 94, 223–253. [CrossRef] [PubMed]
148. Helal, G.A.; Sarhan, M.M.; Abu Shahla, A.N.K.; Abou El-Khair, E.K. Effects of *Cymbopogon citratus* L. essential oil on the growth, lipid content and morphogenesis of *Aspergillus niger* ML2-strain. *J. Basic Microbiol.* 2006, 46, 456–469. [CrossRef] [PubMed]
149. Rammanee, K.; Hongpattarakere, T. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of *Aspergillus flavus* and *Aspergillus parasiticus*. *Food Bioprocess Technol.* 2011, 4, 1050–1059. [CrossRef]
150. Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. *Front. Microbiol.* 2012, 3, 1–24. [CrossRef] [PubMed]
151. Basak, S.; Guha, P. A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. *J. Food Sci. Technol.* 2018, 55, 4701–4710. [CrossRef]
152. Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. *Microb. Pathog.* 2019, 134. [CrossRef]
153. Shin, S.; Kang, C.A. Antifungal activity of the essential oil of *Agastache rugosa* Kuntze and its synergism with ketoconazole. *Lett. Appl. Microbiol.* 2003, 36, 111–115. [CrossRef]
154. Gong, H.; Li, S.; He, L.; Kasim, R. Microscopic identification and in vitro activity of *Agastache rugosa* (Fisch. et Mey) from Xinjiang, China. *BMC Complement Altern. Med.* 2017, 17, 95. [CrossRef]
155. Zhang, C.; Li, H.; Yun, T.; Fu, Y.; Liu, C.; Gong, B.; Neng, B. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Tibetan herbal medicine *Dracocephalum heterophyllum* Benth. *Nat. Prod. Res.* 2008, 22, 1–11. [CrossRef]
156. Souza, L.K.; de Oliveira, C.M.; Ferri, P.H.; de Oliveira Júnior, J.G.; de Souza Júnior, A.H.; Fernandes Ode, F.; Silva Mdo, R. Antimicrobial activity of *Hyptis ovalifolia* towards dermatophytes. *Memórias do Instituto Oswaldo Cruz* 2003, 98, 963–965. [CrossRef]
157. Dolatabadi, S.; Salari, Z.; Mahboubi, M. Antifungal effects of *Ziziphus tenuior*, *Lavandula angustifolia*, *Cuminum cyminum* essential oils against clinical isolates of *Candida albicans* from women suffering from vulvovaginal candidiasis. *Infect* 2019, 23, 222–226. [CrossRef]
158. Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. *Molecules* 2018, 23, 1549. [CrossRef] [PubMed]
159. Ozcakmak, S.; Dervisoglu, M.; Yilmaz, A. Antifungal activity of lemon balm and sage essential oils on the growth of ochratoxigenic *Penicillium verrucosum*. *Afr. J. Microbiol. Res.* 2012, 6, 3079–3084. [CrossRef]
160. Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against *Candida albicans*: Microscopic observations and chemical characterization of *Cymbopogon citratus*. *BMC Complement Altern. Med.* 2010, 10, 65. [CrossRef] [PubMed]
161. Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on *Syzygium aromaticum essential oil*. *J. Basic Microbiol.* 2006, 46, 3079–3084. [CrossRef]
162. Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of essential oil from *Mentha spicata* L. and *Mentha pulegium* L. growing wild in Sardinia island (Italy). *Nat. Prod. Res.* 2019. [CrossRef]
163. Fancellu, F.; Zara, S.; Petretto, G.L.; Chessa, M.; Addis, R.; Rourke, J.P.; Pintore, G. Essential oils from three species of *Mentha* harvested in Sardinia: Chemical characterization and evaluation of their biological activity. *Int. J. Food Prop.* 2017, 20, 1751–1761. [CrossRef]
164. Houicher, A.; Hechachna, H.; Teldji, H.; Ozogul, F. In vitro study of the antifungal activity of essential oils obtained from *Mentha spicata*, *Thymus vulgaris*, and *Laurus nobilis*. *Recent Pat. Food Nutr. Agric.* 2016, 8, 99–106. [CrossRef]
165. Ji, H.; Kim, H.; Beuchat, L.R.; Ryu, J.H. Synergistic antimicrobial activities of essential oil vapours against
Penicillium corylophilum on a laboratory medium and beef jerky. *Int. J. Food Microbiol.* 2019, 291, 104–110. [CrossRef]

166. Pietrella, D.; Angiolella, L.; Vavala, E.; Rachini, A.; Mondello, F.; Ragno, R.; Bistoni, F.; Vecchiarelli, A. Beneficial effect of *Mentha suaveolens* essential oil in the treatment of vaginal candidiasis assessed by real-time
monitoring of infection. *BMC Complement Altern. Med.* 2011, 11, 18. [CrossRef]

167. Angiolella, L.; Vavala, E.; Sivric, S.; D’Auria, F.D.; Ragno, R. In vitro activity of *Mentha suaveolens* essential oil
against *Cryptococcus neoformans* and dermatophytes. *Int. J. Essent. Oil Ther.* 2010, 4, 35–36.

168. Bisht, D.S.; Padalia, R.C.; Singh, L.; Pande, V.; Lal, P.; Mathela, C.S. Constituents and antimicrobial activity of
the essential oils of six Himalayan *Nepea* species. *J. Serb. Chem. Soc.* 2010, 75, 739–747. [CrossRef]

169. Cardoso, N.N.; Alviano, C.S.; Blank, A.F.; Arrigoni-Blank, M.F.; Romanos, M.T.; Cunha, M.M.; da Silva, A.J.;
Alviano, D.S. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from *Ocimum basilicum*
var. Maria bonita: Mechanisms of action and synergism with amphotericin B and *Ocimum basilicum* essential
oil. *Braz. J. Microbiol.* 2017, 55, 1380–1388. [CrossRef] [PubMed]

170. Al-Hajj, N.Q.M.; Wang, H.X.; Ma, C.; Lou, Z.; Bashari, M.; Thabit, R. Antimicrobial and antioxidant activities
of the essential oils of some aromatic medicinal plants (*Pulicaria fulviolus*-Asteraceae and *Ocimum forskoles-Lamiaceae*).
Trop. J. Pharmaceut. Res. 2014, 13, 1287–1293. [CrossRef]

171. Nakamura, C.V.; Ishida, K.; Faccin, L.C.; Filho, B.P.; Rozental, S.; de Souza, W.; Ueda-Nakamura, T. In vitro activity
of essential oil from *Ocimum gratissimum* L. against four *Candida* species. *Res. Microbiol.* 2004, 155, 579–586. [CrossRef]

172. Silva, M.R.; Oliveira, J.G., Jr.; Fernandes, O.F.; Passos, X.S.; Costa, C.R.; Souza, L.K.; Lemos, J.A.; Paula, J.R. Antifungal
activity of *Ocimum gratissimum* towards dermatophytes. *Mycoses* 2005, 48, 172–175. [CrossRef]

173. Bedoya-Serna, C.M.; Dacanal, G.C.; Fernandes, A.M.; Pinho, S.C. Antifungal activity of nanoemulsions
encapsulating oregano (*Origanum vulgare*) essential oil: In vitro study and application in Minas Padrão
cheese. *Braz. J. Microbiol.* 2018, 49, 929–935. [CrossRef]

174. Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giussiano, G.; Angiolella, L. Chemical characterization and antifungal
activity of *Origanum vulgare*, *Thymus vulgaris* essential oils and carvacrol against *Malasseza furfur*. *Nat. Prod. Res.*
2018, 33, 3273–3277. [CrossRef]

175. Wang, G.S.; Deng, J.H.; Ma, Y.H.; Shi, M.; Li, B. Mechanisms, clinically curative effects, and antifungal
activities of cinnamon oil and pogostemon oil complex against three species of *Candida*. *J. Tradit. Chin. Med.*
2012, 32, 19–24. [CrossRef]

176. Farisa Banu, S.; Rubini, D.; Shanmugavelan, P.; Murugan, R.; Gowrishankar, S.; Karutha Pandian, S.;
Nithyanand, P. Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by *Candida*
species. *J. Mycol. Med.* 2018, 28, 332–339. [CrossRef]

177. Sooktio, T.; Srichavaj, T.; Thaweboon, S.; Thaweboon, B.; Shrestha, B. In vitro effects of *Salvia officinalis* L.
essential oil on *Candida albicans*. *Asian Pac. J. Trop. Biomed.* 2013, 3, 376–380. [CrossRef]

178. Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical composition and antifungal activity of *Satureja hortensiss* L.
estential oil against planktonic and biofilm growth of *Candida albicans* isolates from buccal lesions of HIV(+) individuals. *Microb. Pathog.* 2016, 96, 1–9. [CrossRef]

179. Marković, T.; Chatzopoulou, P.; Šiljegović, J.; Nikolić, M.; Glašočića, J.; Ćirić, A.; Soković, M. Chemical
analysis and antimicrobial activities of the essential oils of *Satureja thymbra* L. and *Thymbra spicata* L. and
their main components. *Arch. Biol. Sci. Belgrade* 2011, 63, 457–464. [CrossRef]

180. Tabti, L.; Dib Mel, A.; Gaouar, N.; Samira, B.; Tabti, B. Antioxidant and antifungal activity of extracts of the
aerial parts of *Thymus capitatus* (L.) Hoffmanns against four phytopathogenic fungi of *Citrus sinensis*. *Jundishapur J. Nat. Pharm. Prod.* 2014, 9, 49–54. [CrossRef] [PubMed]

181. Nasir, M.; Tafess, K.; Abate, D. Antimicrobial potential of the Ethiopian *Thymus schimperi* essential oil in
comparison with others against certain fungal and bacterial species. *BMC Complement Altern. Med.*
2015, 15, 260. [CrossRef] [PubMed]

182. Sokolić-Mihalak, D.; Frece, J.; Slavica, A.; Delaš, F.; Pavlović, H.; Markov, K. The effects of wild thyme
(*Thymus serpyllum* L.) essential oil components against ochratoxin-producing Aspergilli. *Arhiv za Higijenu i
Tokskologiju* 2012, 63, 457–462. [CrossRef]
183. Perina, F.J.; Amaral, D.C.; Fernandes, R.S.; Labory, C.R.; Teixeira, G.A.; Alves, E. *Thymus vulgaris* essential oil and thymol against *Alternaria alternata* (Fr.) Keissler: Effects on growth, viability, early infection and cellular mode of action. *Pest Manag. Sci.* 2015, 71, 1371–1378. [CrossRef]

184. Sharifzadeh, A.; Javan, A.J.; Shokri, H.; Abbaszadeh, S.; Keykhosravy, K. Evaluation of antioxidant and antifungal properties of the traditional plants against foodborne fungal pathogens. *J. Mycol. Med.* 2016, 26, e11–e17. [CrossRef]

185. Liu, J.; Sui, G.; He, Y.; Liu, D.; Yan, J.; Liu, S.; Qin, W. Prolonging storage time of baby ginger by using a sand-based storage medium and essential oil treatment. *J. Food Sci.* 2014, 79, M593–M599. [CrossRef]

186. Moghadam, H.D.; Sani, A.M.; Sangatash, M.M. Antifungal activity of essential oil of *Ziziphora clinopodioides* and the inhibition of aflatoxin B1 production in maize grain. *Toxicol. Ind. Health* 2016, 32, 493–499. [CrossRef]

187. Dreger, M.; Wiegus, K. Application of essential oils as natural cosmetic preservatives. *Herba Pol.* 2013, 59, 142–156. [CrossRef]

188. Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics—A critical review. *Cosmetics* 2018, 5, 11. [CrossRef]

189. Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. *Asian Pac. J. Trop. Biomed.* 2015, 5, 601–611. [CrossRef]

190. Helms, S.; Miller, A.L. Natural treatment of chronic rhinosinusitis. *Altern. Med. Rev.* 2006, 11, 196–207.

191. Schilcher, H. Efficient phytotherapy. Herbal medicines in the upper respiratory tract for catarrh. *Herba Pol.* 2000, 46, 52–57.

192. Vranic, E.; Lacević, A.; Mehmedagić, A.; Uzunovic, A. Formulation ingredients for toothpastes and mouthwashes. *Bosnian J. Basic Med. Sci.* 2004, 4, 51–58. [CrossRef]

193. Guven, Y.; Ustun, N.; Tuna, E.B.; Aktoren, O. Antimicrobial effect of newly formulated toothpastes and a mouthrinse on specific microorganisms: An in vitro study. *Eur. J. Dent.* 2019, 13, 172–177. [CrossRef]

194. DOZ Pharmacy. Available online: https://www.doz.pl/ (accessed on 17 December 2019).

195. Ehlers, V.; Helm, S.; Kasaj, A.; Willershausen, B. The effect of Parodontax® on the MMP-8 concentration in gingivitis patients. *Schweiz Monatsschr. Zahnmed.* 2011, 121, 1041–1051.

196. Adwan, G.; Salameh, Y.; Adwan, K.; Barakat, A. Assessment of antifungal activity of herbal and conventional toothpastes against clinical isolates of *Candida albicans*. *Asian Pac. J. Trop. Biomed.* 2012, 2, 375–379. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)