COVID-19: Molecular and serological detection methods

Ahmed E Dhamad, Muna A Abdal Rhida

1 Cell and Molecular Biology, University of Arkansas at Fayetteville, Fayetteville, Arkansas, United States
2 Department of Biological Sciences, Wasit University, Kut, Wasit, Iraq

Corresponding Author: Ahmed E Dhamad
Email address: adhamad@uark.edu

Since COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared as a pandemic disease by the World Health Organization (WHO) in early 2020, many countries, organizations, and companies have tried to find the best way to diagnose the virus and contain its spreading. SARS-CoV-2 is a positive-sense single RNA (+ssRNA) coronavirus and mainly spreads through droplets, respiratory secretions, and direct contact. The early detection of the virus plays a central role in lowering COVID19 incidents and mortality rates. Thus, finding a simple, accurate, cheap, and quick detection approach for SARS-CoV-2 at early stage of the viral infection is urgent and at high demand all around the world. The Food and Drug Administration (FDA) and other health agencies have declared Emergency Use Authorization (EUA) to develop diagnostic methods for COVID-19 and fulfill the demand. However, not all developed methods are appropriate and selecting a suitable method is challenging. Among all detection methods, rRT-PCR is the gold standard method. Unlike molecular methods, serological methods lack the ability of early detection with low accuracy. In this review, we summarized the current knowledge about COVID-19 detection methods aiming to highlight the advantages and disadvantages of molecular and serological methods (Fig.1).
COVID-19: Molecular and serological detection methods

Ahmed E. Dhamad¹,² and Muna A. Abdal Rhida ¹,²
¹Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas, USA
²Department of Biological Sciences, Wasit University, Kut, Wasit, Iraq

Corresponding Author:
Ahmed Dhamad¹
1 University of Arkansas, Fayetteville, AR, 72703, USA
adhamad@uark.edu
COVID-19: Molecular and serological detection methods

Ahmed E. Dhamad¹,² and Muna A. Abdal Rhida ¹,²
¹Cell and Molecular Biology, University of Arkansas, Fayetteville, Arkansas, USA
²Department of Biological Sciences, Wasit University, Kut, Wasit, Iraq

Abstract

Since COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared as a pandemic disease by the World Health Organization (WHO) in early 2020, many countries, organizations, and companies have tried to find the best way to diagnose the virus and contain its spreading. SARS-CoV-2 is a positive-sense single RNA (+ssRNA) coronavirus and mainly spreads through droplets, respiratory secretions, and direct contact. The early detection of the virus plays a central role in lowering COVID19 incidents and mortality rates. Thus, finding a simple, accurate, cheap, and quick detection approach for SARS-CoV-2 at the early stage of the viral infection is urgent and at high demand all around the world. The Food and Drug Administration (FDA) and other health agencies have declared Emergency Use Authorization (EUA) to develop diagnostic methods for COVID-19 and fulfill the demand. However, not all developed methods are appropriate and selecting a suitable method is challenging. Among all detection methods, rRT-PCR is the gold standard method. Unlike molecular methods, serological methods lack the ability of early detection with low accuracy. In this review, we summarized the current knowledge about COVID-19 detection methods aiming to highlight the advantages and disadvantages of molecular and serological methods (Fig.1).
Keywords: COVID-19, SARS-CoV-2, rRT-PCR, ID NOW COVID-19, Isothermal Amplification, CRISPR-Cas12, LFA, ELISA

Introduction

In January 2020, WHO initially named a newly identified β-coronavirus that caused many pneumonia cases in December 2019 in Wuhan, China as the 2019-novel coronavirus (2019-nCoV) [1, 2]. Eventually, WHO and Coronavirus Study Group (CSG) of International committee officially named the virus as SARS-CoV-2 and the disease as coronavirus disease 2019 (COVID-19) [3]. SARS-CoV-2 is a member of the coronaviruses (CoV) family and it is an enveloped, non-segmented, positive-sense single RNA (+ssRNA) coronavirus [1]. In early 2020, the whole genome sequence of SARS-CoV-2 was revealed which was 29.9kb[4] and 96.2% and 79.5% identical to a bat CoV RaTG13 and SARS-CoV genome sequences, respectively [2, 5]. CoVs genome includes six to twelve open reading frames (ORFs) [6]. The first and largest ORF (ORF1a/b) occupies approximately two-thirds of the viral RNA [7, 8] and the remaining one-third of the genome encodes the four main structural proteins which includes spike (S), envelope (E), membrane (M), and nucleocapsid (N) protein and other accessory proteins [8-11]. The S protein plays a major role in SARS-CoV-2 infectious process and it is a promising target for vaccine and therapeutic development [12, 13].

COVID-19 virus is a highly contagious and spreads through droplets, respiratory secretions, and direct contact [14, 15]. Recent studies reported that the virus was isolated from fecal swabs and blood samples of COVID-19 patients [16, 17] suggesting that the virus may have different routes to transmit between humans. The number of
SARS-CoV-2 virus that causes ill to human is not clearly defined yet; however, a large hospitalized cohort (n=1145) was analyzed and the overall mean log10 viral load was 5.6 copies per mL [18]. Elderly people and whom has chronic underlying diseases, such as but not limited to hypertension [19, 20], diabetes [21, 22], and chronic obstructive pulmonary disease [23], are the most vulnerable [24, 25]. Current studies showed that the median age of COVID-19 patients was 47–59 years and females were the minority, less than 46% [26-28]. While children and youth have lower rates of COVID-19 infection compared to elder people [29-31]. The incubation period of the virus is one to fourteen days with 3-7 days being the most [32].

It has been reported that the clinical symptoms of confirmed COVID-19 patients were varied from mild flu-like symptoms to very severe respiratory symptoms and even respiratory and kidney failures and death [33, 34]. According to WHO and other sources, fever, dry cough, and tiredness are the most common symptoms while sore throat, diarrhea, headache, conjunctivitis, rash on skin, and discoloration of fingers or toes are less common symptoms of COVID-19 patients [35-37]. A recent study used an app-based symptom tracker showed that people who had COVID-19 loss of smell and taste and those with a positive test result (65.03%) intended to have anosmia higher than those with a negative test result (21.71%) [38, 39]. Although COVID-19 became a pandemic disease, the mortality rate is low (3.4%) compared to SARS and MERS patients, 9.6% and 35% respectively [40].

The first incidents of COVID-19 were diagnosed in Wuhan, China, in December 2019. After a few months, WHO announced COVID-19 as a pandemic disease across the whole world. As of July 2^{nd} 2020, a total of 10,716,063 confirmed cases globally,
2,686,587 confirmed in USA and 8,029,476 outside of USA, with 516,726 globally
deads were reported by the Coronavirus Resource Center, John Hopkins University
[41]. Having a rapid and accurate diagnostic method at early stage of infection can help
to contain the pandemic. Thus, many companies and laboratories were given authority
under EUA restrictions to develop diagnostic methods. Consequently, hundreds of
diagnostic kits based on different methods are available now, but selecting the proper
method requires further investigation. In this review, the standard and current molecular
and serological detection methods for SARS-CoV-2 will be discussed and highlighted.

As of today, among all detection methods rRT-PCR is the gold standard method. Unlike
molecular methods, serological methods lack the ability of early detection with low
accuracy. This review intends to help health care providers and related branches to
choose the appropriate method for battling the COVID-19 pandemic and rise the public
knowledge about the methods that could be used to detect the virus.

Survey Methodology

This literature review explored the peer-reviewed and preprint literatures with
mainly focusing on COVID-19 disease and its molecular and serological detection
methods. We searched the following databases and websites from March to July 2020:
Google Scholar, PubMed, bioRxiv, medRxiv, I-TASSER, CDC, WHO, Coronavirus
Resource Center (John Hopkins University), Chinese Center for Disease Control and
Prevention (CCDC), and National Institute of Infectious Diseases (NIID). And the top
keywords that searched were: COVID-19, SARS-CoV-2, coronavirus, genomic RNA,
protein structure, ACE2, transmission, symptoms, molecular detection methods,
serological detection methods, rRT-PCR, ID NOW COVID-19, isothermal amplification,
CRISPR, SARS-CoV-2 DETECTR, LAMP, recombinase polymerase amplification (RPA), LFA, and ELISA.

Diagnostic methods

Under the pressure of the pandemic, COVID-19 test demand is sharply increased which pushes a lot of biotech companies/inventors to produce different kits based on variant approaches to detect SARS-CoV-2. The molecular and serological methods are the main methods to detect the virus.

Molecular methods

Based on how viral RNA be processed and detected, there are three major molecular methods which are: real-time reverse transcription polymerase chain reaction (rRT-PCR), isothermal amplification, and clustered regularly interspaced short palindromic repeats (CRISPR) based methods. All these methods follow the same protocol that have been recommended by the Centers for Disease Control and Prevention (CDC) for collecting specimens from COVID-19 patients [42].

rRT-PCR method

It is the gold standard and reliable molecular method to diagnose SARS-CoV-2 with high sensitivity (positive agreement) and specificity (negative agreement) [43]. This method has been developed by several laboratories to detect COVID-19 virus [44-46]. In this method (Fig. 2B), cDNA is generated from the extracted RNA of COVID-19 virus with specific primers for the following genes 2019nCoV-N1 (N1), 2019nCoV-N2 (N2), and RNAse P (RP; internal control) as recommended by U.S. CDC (Table 1) and other health agencies [43, 47, 48] (Table S1). The upper respiratory system’s swabs are the
main specimens that are used to detect COVID-19 virus; however, serum, ocular
secretions, and stool can be used as well [49-51]. If both genes (N1 and N2) were
positive, it is considered as a positive sample as shown in Table 2. The positive result
confirms the presence of viral RNA in the specimen, but not necessarily the virus
viability [52]. Besides the internal control (RP), there are three controls that must be run
to make sure the result is legitimate (Table S2). These controls are 2019-nCoV Positive
Control (nCoVPC), No Template Control (NTC), and Human Specimen Control
(HSC)[42]. Even though rRT-RPC is the gold standard method and the most widely
used for diagnosing COVID-19 virus in clinic and research laboratories, it has some
limitations [53]. Beside highly costed, professional skills needed, it is time-consuming
(requires 2-5 days from collecting a sample till getting the result) and must be done in a
laboratory.

Isothermal amplification-based method

It is another molecular approach where a nucleic acid is rapidly and specifically
amplified by a polymerase with high strand displacement activity (e.g. optimized Bst
polymerase) and different sets of primers at constant temperature (60-65°C) without the
need of thermal cycler [54]. ID NOW COVID-19 (Abbott) is a recent example of using
isothermal amplification technique to detect COVID-19 virus in clinics. It is molecular
point-of-care platform in the United States of America and used under an Emergency
Use Authorization (EUA) only to diagnose SARS-CoV-2. In this test a certain region of
RdRp gene of SARS-CoV-2 is amplified by specific primers and results are displayed in
a short time compared to rRT-PCR (Fig. 2A). It can show a positive result as little as 5
minutes and a negative result in 13 minutes. It has a performance of ≥94 % sensitivity
and ≥98% specificity compared to lab-based PCR reference tests as it is advertised by the manufacturers [55]. However, Harrington et al. results that published in a peer-reviewed journal showed that the overall sensitivity and specificity were 74.73% and 99.41%, respectively [56].

CRISPR-Cas12 based method

In this method (e.g. SARS-CoV-2 DETECTR), the RNA virus is extracted from a specimen and designated regions of N2, E, RP genes are amplified at 62°C for 20 min by specific primes through Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP) approach[57-59]. Then, designed Cas12 gRNAs direct Cas12 protein to specific areas of the above amplified genes where a reporter molecule (a single stranded DNA (ssDNA) probe) is cleaved. This reaction occurs at 37°C for 10 min and the result is visualized by a fluorescent reader or a lateral flow strip (Fig. 2C). Both genes N2 and E must be positive to consider the sample is positive (Table 3).

Broughton et al. showed that SARS-CoV-2 DETECTR was reliable to detect coronavirus in respiratory swab samples with 90% sensitivity and 100% specificity[60]. Unlike rRT-PCR, this method is fast (<50 minutes), cheap, and point-of-care test (POCT). It requires less equipment and the result can be visualized by naked eyes. However, it requires troubleshooting and specific design of all enzymes, primers, and reporters that are used in this method.

In addition to the above molecular methods, Recombinase polymerase amplification (RPA) [61]has been developed and/or integrated with other methods to detect COVID-19 virus. This method does not require thermal cycler and can be used as POCT with low cost and high sensitivity and specificity. The drawback is that it requires several
specific designed primers which could be difficult to obtain and the result of this method could be interfered by virus quantification and debris [62].

Serological methods

Unlike molecular methods, serological methods (also called antibody tests) can be applied to detect past and current SARS-CoV-2 infection and monitor the progress of the disease periods and immune response. They can detect the presence of antibodies (e.g. IgG, IgM, and IgA) in a COVID-19 patient’s serum and plasma. Other biological fluids such as but not limited to saliva and sputum could be used as well. Antibodies are produced as a defense mechanism by the immune system against SARS-CoV-2. First, IgM is produced after a few days of infection and last for approximately two weeks which followed by IgG production that is last longer [63, 64]. Thus, detecting IgM in a patient’s sample indicates early-stage infection while detecting IgG indicates a current or prior infection [52]. In addition to lacking an early detection, accuracy is the main challenge of these approaches where crossover could occur with other antibodies that produced as a result of infection of other coronavirus family members such as SARS-CoV [65, 66].

Lateral flow assay (LFA)

It is one of the most popular serological method that has been applied in clinics to detect antigens [67], antibodies [68], and amplified nucleic acids [69, 70] in variant biological samples such as blood (serum or plasma) [71, 72], urine [73], and saliva [74]. LFA is a paper-like membrane strip that is coated with two lines. The first line, the test line, contains anti-human IgG/IgM antibodies, while the second line, the control line,
contains anti-rabbit IgG antibodies. After adding a patients specimen (e.g. blood) into the sample well, IgG/IgM antibodies are moved by capillary action toward the lines crossing through the conjugated pad where a specific conjugated antigen (e.g. gold COVID-19 antigen conjugate) and rabbit-gold conjugated antibodies are impeded [75]. IgG/IgM antibodies are interacted and made a complex with gold COVID-19 antigen conjugate. The complex binds anti-human IgG/IgM antibodies and immobilizes at the test line, while the rabbit-gold conjugate antibodies bind anti-rabbit IgG antibody and immobilized at the control line. The result will be visible as a red line due to the accumulation of gold particles. If both test and control lines appear red, the result is positive and negative when only the control line appears red. If both lines disappear or only the test line appears, the result is invalid (Fig. 3). The advantages of FLA are rapid (10-30 minutes), cheap, no need for professional skills, and portable (POCT). It can be done by 1-2 blood drops and the result is visualized by naked eyes without an expensive equipment. The drawback of FLA is a qualitative method, tells the presence or absence of antibodies against the virus without telling how much they were in a patient’s sample, and it less accurate compared to rRT-PCR. It was showed that FLA has clinical 57% sensitivity and 100% specificity for IgM and 81% sensitivity and 100% specificity for IgG [76].

Enzyme-linked immunosorbent assay (ELISA)

It is another serological method and called enzyme immunoassay (EIA). ELISA is a plate-based method that has been used for detecting and quantifying soluble substances such as proteins and antibodies in clinic and research laboratories. It includes direct and indirect formats [77]. The indirect ELISA, the most popular and more
sensitive than the direct ELISA, an antigen (e.g. a recombinant protein (N protein) of SARS-CoV-2 virus) is coated onto the inner surface of 96-well or 384-well polystyrene plates [78]. A diluted patient’s plasma which may have anti-SARS-CoV-2 IgG/IgM is added to the wells. The plate is incubated for one hour to allow the antibodies to interact with coated antigens. After washing the plate to eliminate unspecific interactions, a conjugated antibody with a reported enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP) is added to form sandwich complexes [79, 80]. These complexes are detected and quantified by adding a substrate (e.g. 3,3',5,5'-tetramethylbenzidine) that is utilized by the report enzyme and leads to change in the reaction color [81, 82]. The color is detected and measured by a plate reader (Fig. 4). ELISA is relatively fast (2-5 hours) and cheap compared to rRT-PCR, and it is similar to FLA regard to accuracy. It has been reported that ELISA results were 50% (IgG) and 81% (IgM) for patients on day zero and became 81% (IgG) and 100%(IgM) on day five of SARS-CoV-2 infection [16]. Another study accomplished by Xiang et al. showed that using ELISA to detect IgM and IgG on day four of symptom onsite revealed a sensitivity of 77.3% and specificity of 100% for IgM while those were 83.3% and 95% respectively for IgG [64].

Worth mention that there are other serological methods that are less common than FLA and ELISA [83]. A colloidal gold immunochromatography assay (GICA), and Chemiluminescent immunoassay (CLIA) were developed to diagnose COVID-19; however, they have low sensitivity at the beginning of the infection [84, 85]. Pan et al. reported that the sensitivity of GICA were 11.1% on the first week and 92.9% on the second weeks after the onset of symptoms [86]. Neutralization assays, on the other
hands, are standard methods for determining antibody efficacy (e.g. serum virus neutralization (SVN) assay). They are used to check whether a patient has active antibodies that can neutralize the SARS-CoV-2 infection [87, 88]. These assays play a key role in determining if an individual is eligible to donate his/her convalescent plasma as a treatment for seriously ill people although such treatment has not been fully validated [89].

Both molecular and serological methods are not perfect in terms of detecting COVID-19 virus and each method has its own limitations [90]. Though molecular methods are more reliable than serological methods, both methods could give false results due to various reasons. For instance, incorrect sampling, inadequate viral material in the specimen, improper RNA extraction, cross-reactions with other viral species, contamination, and technical issues could lead to positive and negative false results. To overcome such issues and increase the certainty of given results, these methods can be followed by secondary diagnostic methods such as a chest CT scan and x-ray imaging [91-93].

Conclusion

Scientists have made significant progress in the characterization of the COVID-19 virus and how to limit its spreading. Also, they are working hard on diagnostic methods and finding therapies and vaccines against the virus. Currently, neither an approved vaccine nor a specific antiviral treatment is available for COVID-19 disease. Thus, detecting SARS-CoV-2 at the early infectious stage by a rapid and accurate diagnostic method could save thousands of lives. In this review we have discussed and summarized the current knowledge about molecular and serological methods that have
been used to detect SARS-CoV-2. Though the molecular methods are more expensive, slower, and less available than serological methods, they are more accurate and rRT- PCR is the gold standard method among them (Table 4). Further research and collaboration between scientists and companies are needed to overcome some limitations of current methods and might find a new and better avenue to detect the virus. For instance, standardized the methods, produce new and high-quality kits and make them available at low cost will make the current methods more reliable.

References

1. Zhu, N., D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G. F. Gao, W. Tan, Investigating China Novel Coronavirus, and Team Research, A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, 2020. 382(8): p. 727-733.

2. Zhou, P., X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang, H. D. Chen, J. Chen, Y. Luo, H. Guo, R. D. Jiang, M. Q. Liu, Y. Chen, X. R. Shen, X. Wang, X. S. Zheng, K. Zhao, Q. J. Chen, F. Deng, L. L. Liu, B. Yan, F. X. Zhan, Y. Y. Wang, G. F. Xiao, and Z. L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020. 579(7798): p. 270-273.

3. Guo, Y. R., Q. D. Cao, Z. S. Hong, Y. Y. Tan, S. D. Chen, H. J. Jin, K. S. Tan, D. Y. Wang, and Y. Yan, The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res, 2020. 7(1): p. 11.

4. Wu, F., S. Zhao, B. Yu, Y. M. Chen, W. Wang, Z. G. Song, Y. Hu, Z. W. Tao, J. H. Tian, Y. Y. Pei, M. L. Yuan, Y. L. Zhang, F. H. Dai, Y. Liu, Q. M. Wang, J. J. Zheng, L. Xu, E. C. Holmes, and Y. Z. Zhang, A new coronavirus associated with human respiratory disease in China. Nature, 2020. 579(7798): p. 265-269.

5. Lu, R., X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, Y. Bi, X. Ma, F. Zhan, L. Wang, T. Hu, H. Zhou, Z. Hu, W. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J. Yuan, Z. Xie, J. Ma, W. J. Liu, D. Wang, W. Xu, E. C. Holmes, G. F. Gao, G. Wu, W. Chen, W. Shi, and W. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020. 395(10224): p. 565-574.

6. Song, Z., Y. Xu, L. Bao, L. Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han, and C. Qin, From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses, 2019. 11(1).

7. de Wilde, A. H., E. J. Snijder, M. Kikkert, and M. J. van Hemert, Host Factors in Coronavirus Replication. Curr Top Microbiol Immunol, 2018. 419: p. 1-42.

8. Cui, J., F. Li, and Z. L. Shi, Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019. 17(3): p. 181-192.
9. Chen, Y., Q. Liu, and D. Guo, \textit{Emerging coronaviruses: Genome structure, replication, and pathogenesis}. J Med Virol, 2020. \textbf{92}(4): p. 418-423.

10. Yang, J. and Y. Zhang, \textit{Protein Structure and Function Prediction Using I-TASSER}. Curr Protoc Bioinformatics, 2015. \textbf{52}: p. 5.8.1-5.8.15.

11. \textit{Genome-wide structure and function modeling of SARS-CoV-2}. 2020; Available from: https://zhanglab.ccmb.med.umich.edu/COVID-19/.

12. Jiang, S., C. Hillyer, and L. Du, \textit{Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses}. Trends Immunol, 2020. \textbf{52}(5): p. 581-5815.

13. Du, L., Y. He, Y. Zhou, S. Liu, B. J. Zheng, and S. Jiang, \textit{The spike protein of SARS-CoV--a target for vaccine and therapeutics development}. Nat Rev Microbiol, 2009. \textbf{7}(3): p. 226-36.

14. Cascella, M., M. Rajnik, A. Cuomo, S. C. Dulebohn, and R. Di Napoli, \textit{Features, Evaluation and Treatment Coronavirus (COVID-19)}, in StatPearls. 2020: Treasure Island (FL).

15. Yang, P. and X. Wang, \textit{COVID-19: a new challenge for human beings}. Cell Mol Immunol, 2020. \textbf{17}(5): p. 555-557.

16. Zhang, W., R. H. Du, B. Li, X. S. Zheng, X. L. Yang, B. Hu, Y. Y. Wang, G. F. Xiao, B. Yan, Z. L. Shi, and P. Zhou, \textit{Molecular and serological investigation of 2019-nCoV infected patients: implications of multiple shedding routes}. Emerg Microbes Infect, 2020. \textbf{9}(1): p. 386-389.

17. Liu, J., X. Zheng, Q. Tong, W. Li, B. Wang, K. Sutter, M. Trilling, M. Lu, U. Dittmer, and D. Yang, \textit{Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV}. J Med Virol, 2020. \textbf{92}(5): p. 491-494.

18. Pujadas, E., F. Chaudhry, R. McBride, F. Richter, S. Zhao, A. Wajnberg, G. Nadkarni, B. S. Glicksberg, J. Houldsworth, and C. Cardon-Cardo, \textit{SARS-CoV-2 viral load predicts COVID-19 mortality}. Lancet Respir Med, 2020.

19. Kreutz, R., E. A. E. Algharably, M. Azizi, P. Dobrowolski, T. Guzik, A. Januszewicz, A. Persu, A. Prejbisz, T. G. Riemer, J. G. Wang, and M. Burnier, \textit{Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19}. Cardiovasc Res, 2020.

20. Schifferin, E. L., J. M. Flack, S. Ito, P. Munter, and R. C. Webb, \textit{Hypertension and COVID-19}. Am J Hypertens, 2020. \textbf{33}(5): p. 373-374.

21. Hussain, A., B. Bhowmik, and N. C. do Vale Moreira, \textit{COVID-19 and diabetes: Knowledge in progress}. Diabetes Res Clin Pract, 2020. \textbf{162}: p. 108142.

22. Fang, L., G. Karakulakis, and M. Roth, \textit{Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?} Lancet Respir Med, 2020. \textbf{8}(4): p. e21.

23. Lippi, G. and B. M. Henry, \textit{Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19)}. Respir Med, 2020. \textbf{167}: p. 105941.

24. Muniyappa, R. and S. Gubbi, \textit{COVID-19 pandemic, coronaviruses, and diabetes mellitus}. Am J Physiol Endocrinol Metab, 2020. \textbf{318}(5): p. E736-E741.

25. Emami, A., F. Javanmardi, N. Pirbonyeh, and A. Akbari, \textit{Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: a Systematic Review and Meta-Analysis}. Arch Acad Emerg Med, 2020. \textbf{8}(1): p. e35.

26. Wang, D., B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, Y. Zhao, Y. Li, X. Wang, and Z. Peng, \textit{Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China}. JAMA, 2020.

27. Guan, W. J., Z. Y. Ni, Y. Hu, W. H. Liang, C. Q. Ou, J. X. He, L. Liu, H. Shan, C. L. Lei, D. S. C. Hui, B. Du, L. J. Li, G. Zeng, K. Y. Yuen, R. C. Chen, C. L. Tang, T. Wang, P. Y. Chen, J. Xiang, S. Y. Li, J. L. Wang, Z. J. Liang, Y. X. Peng, L. Wei, Y. Liu, Y. H. Hu, P. Peng, J. M. Wang, J. Y. Liu, Z. Chen, G. Li, Z. J. Zheng, S. Q. Qiu, J. Luo, C. J. Ye, S. Y. Zhu, N. S. Zhong, and Covid China Medical Treatment
28. Li, Q., X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng, Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med, 2020. 382(13): p. 1199-1207.

29. Tian, S., N. Hu, J. Lou, K. Chen, X. Kang, Z. Xiang, H. Chen, D. Wang, N. Liu, D. Liu, G. Chen, Y. Zhang, D. Li, Z. Huan, H. Lian, S. Niu, L. Zhang, and J. Zhang, Characteristics of COVID-19 infection in Beijing. J Infect, 2020. 80(4): p. 401-406.

30. Chan, J. F., S. Yuan, K. H. Kok, K. K. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C. Yip, R. W. Poon, H. W. Tsoi, S. K. Lo, K. H. Chan, V. K. Poona, W. M. Chan, J. D. Ip, J. P. Cai, V. C. Cheng, H. Chen, C. K. Hui, and K. Y. Yuen, A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020. 395(10223): p. 514-523.

31. Davies, N. G., P. Klepac, Y. Liu, K. Prem, M. Jit, Cmmid Covid- working group, and R. M. Eggo, Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med, 2020. 32. Lauer, S. A., K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich, and J. Lessler, The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med, 2020. 172(9): p. 577-582.

33. Huang, C., Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020. 395(10223): p. 497-506.

34. Sohrabi, C., Z. Alsafi, N. O'Neill, M. Khan, A. Kerwan, A. Al-Jabir, C. Iosifidis, and R. Agha, World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg, 2020. 76: p. 71-76.

35. Wei, Y., Y. Lu, L. Xia, X. Yuan, G. Li, X. Li, L. Liu, W. Liu, P. Zhou, C. Y. Wang, and H. Zhang, Analysis of 2019 novel coronavirus infection and clinical characteristics of outpatients: An epidemiological study from a fever clinic in Wuhan, China. J Med Virol, 2020. 40. de Wit, E., N. van Doremalen, D. Falzarano, and V. J. Munster, SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol, 2016. 14(8): p. 523-34.

36. Drew, D. A., L. H. Nguyen, C. J. Steves, C. Menni, M. Freydin, T. Varsavsky, C. H. Sudre, M. J. Cardoso, S. Ourselin, J. Wolf, T. D. Spector, A. T. Chan, and Cope Consortium, Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science, 2020. 368(6497): p. 1362-1367.

37. COVID-19 symptoms. 2020; Available from: https://www.who.int/health-topics/coronavirus#tab=tab_3.

38. Menni, C., A. M. Valdes, M. B. Freidin, C. H. Sudre, L. H. Nguyen, D. A. Drew, S. Ganesh, T. Varsavsky, M. J. Cardoso, J. S. El-Sayed Moustafa, A. Visconti, P. Hysy, R. C. E. Bowyer, M. Mangino, M. Falchi, J. Wolf, S. Ourselin, A. T. Chan, C. J. Steves, and T. D. Spector, Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med, 2020.
410 42. Resources for Laboratories Working on Coronavirus (COVID-19). 2020; Available from: https://www.cdc.gov.
411 43. Corman, V. M., O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K. Chu, T. Bleicker, S. Brunink, J. Schneider, M. L. Schmidt, D. G. Mulders, B. L. Haagmans, B. van der Veer, S. van den Brink, L. Wijsman, G. Godeurski, J. L. Romette, J. Ellis, M. Zambon, M. Peiris, H. Goossens, C. Reusken, M. P. Koopmans, and C. Drosten, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 2020. 25(3).
412 44. Amrane, S., H. Tissot-Dupont, B. Doudier, C. Eldin, M. Hocquart, M. Mailhe, P. Dudouet, E. Ormieres, L. Ailhaud, P. Parola, J. C. Lagier, P. Brouqui, C. Zandotti, L. Ninove, L. Luciani, C. Boschi, B. La Scola, D. Raoult, M. Million, P. Colson, and P. Gautret, Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France, - January 31st to March 1st, 2020: A respiratory virus snapshot. Travel Med Infect Dis, 2020: p. 101632.
413 45. Capobianchi, M. R., M. Rueca, F. Messina, E. Giombini, F. Carletti, F. Colavita, C. Castilletti, E. Lalle, L. Bordi, F. Vairo, E. Nicastri, G. Ippolito, C. E. M. Gruber, and B. Bartolini, Molecular characterization of SARS-CoV-2 from the first case of COVID-19 in Italy. Clin Microbiol Infect, 2020. 26(7): p. 954-956.
414 46. Chu, D. K. W., Y. Pan, S. M. S. Cheng, K. P. Y. Hui, P. Krishnan, Y. Liu, D. Y. M. Ng, C. K. C. Wan, P. Yang, Q. Wang, M. Peiris, and L. L. M. Poon, Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia. Clin Chem, 2020. 66(4): p. 549-555.
415 47. Peihua Niu, Roujian Lu, Li Zhao, Huijuan Wang, Baoying Huang, Fei Ye, Wenling Wang, and Wenjie Tan, Three Novel Real-Time RT-PCR Assays for Detection of COVID-19 Virus. China CDC Weekly, 2020. 2(25): 453-457.
416 48. Naganori Nao, 1Kazuya Shirato, 2Harutaka Katano, 1Shutoku Matsuyama, and 1Makoto Takeda Detection of second case of 2019-nCoV infection in Japan. 2020.
417 49. Xia, J., J. Tong, M. Liu, Y. Shen, and D. Guo, Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol, 2020. 92(6): p. 589-594.
418 50. Carter, L. J., L. V. Garner, J. W. Smoot, Y. Li, Q. Zhou, C. J. Saveson, J. M. Sasso, A. C. Gregg, D. J. Soares, T. R. Beskid, S. R. Jervey, and C. Liu, Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Cent Sci, 2020. 6(5): p. 591-605.
419 51. Team, Covid- Investigation, Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nat Med, 2020. 26(6): p. 861-868.
420 52. Sethuraman, N., S. S. Jeremiah, and A. Ryo, Interpreting Diagnostic Tests for SARS-CoV-2. JAMA, 2020.
421 53. Kubina, R. and A. Dziedzic, Molecular and Serological Tests for COVID-19 a Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics (Basel), 2020.
422 54. Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000. 28(12): p. E63.
423 55. ID NOW™ COVID-19. 2020; Available from: https://www.alere.com/en/home/product-details/id-now-covid-19.html.
424 56. Harrington, A., B. Cox, J. Snowdon, J. Bakst, E. Ley, P. Grajales, J. Maggiore, and S. Kahn, Comparison of Abbott ID Now and Abbott m2000 methods for the detection of SARS-CoV-2 from nasopharyngeal and nasal swabs from symptomatic patients. J Clin Microbiol, 2020.
425 57. Wang, D., J. Yu, Y. Wang, M. Zhang, P. Li, M. Liu, and Y. Liu, Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). J Virol Methods, 2020. 276: p. 113775.
Lamb, L. E., S. N. Bartolone, E. Ward, and M. B. Chancellor, *Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification.* PLoS One, 2020. 15(6): p. e0234682.

Hong, T. C., Q. L. Mai, D. V. Cuong, M. Parida, H. Minekawa, T. Notomi, F. Hasebe, and K. Morita, *Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus.* J Clin Microbiol, 2004. 42(5): p. 1956-61.

Broughton, J. P., X. Deng, G. Yu, C. L. Fasching, J. Singh, J. Streithorst, A. Granados, A. Sotomayor-Gonzalez, K. Zorn, A. Gomez, E. Hsu, W. Gu, S. Miller, C. Y. Pan, H. Guevara, D. A. Wadford, J. S. Chen, and C. Y. Chiu, *Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay.* medRxiv, 2020.

Amer, H. M., A. Abd El Wahed, M. A. Shalaby, F. N. Almajhdi, F. T. Hufert, and M. Weedmann, *A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay.* J Virol Methods, 2013. 193(2): p. 337-40.

Yu, L., S. Wu, X. Hao, X. Dong, L. Mao, V. Pelechano, W. H. Chen, and X. Yin, *Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform.* Clin Chem, 2020.

To, K. K., O. T. Tsang, W. S. Leung, A. R. Tam, T. C. Wu, D. C. Lung, C. C. Yip, J. P. Cai, J. M. Chan, T. S. Chik, D. P. Lau, C. Y. Choi, L. L. Chen, W. M. Chan, K. H. Chan, J. D. Ip, A. C. Ng, R. W. Poon, C. T. Luo, V. C. Cheng, J. F. Chan, I. F. Hung, Z. Chen, H. Chen, and K. Y. Yuen, *Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study.* Lancet Infect Dis, 2020. 20(5): p. 565-574.

Xiang, F., X. Wang, X. He, Z. Peng, B. Yang, J. Zhang, Q. Zhou, H. Ye, Y. Ma, H. Li, X. Wei, P. Cai, and W. L. Ma, *Antibody Detection and Dynamic Characteristics in Patients with COVID-19.* Clin Infect Dis, 2020.

Important Information on the Use of Serological (Antibody) Tests for COVID-19 - Letter to Health Care Providers. June 19, 2020; Available from: https://www.fda.gov/.

Maxim, L. D., R. Niebo, and M. J. Utell, *Screening tests: a review with examples.* Inhal Toxicol, 2014. 26(13): p. 811-28.

Boisen, M. L., D. Oottamasathien, A. B. Jones, M. M. Millett, D. S. Nelson, Z. A. Bornholdt, M. L. Fusco, D. M. Abelson, S. Oda, J. N. Hartnett, M. M. Rowland, M. L. Heinrich, M. Akdag, A. Goba, M. Momoh, M. Fullah, M. Gbakie, S. Safa, R. Fonnie, L. Kanneh, R. W. Cross, J. B. Geisbert, T. W. Geisbert, P. C. Kulakosky, D. S. Grant, J. G. Schieffelin, R. B. Wilson, E. O. Saphire, L. M. Branco, R. F. Garry, S. H. Khan, K. R. Pitts, and Consortium Viral Hemorrhagic Fever, *Development of Prototype Filovirus Recombinant Antigen Immunoassays.* J Infect Dis, 2015. 212 Suppl 2: p. S359-67.
of cryptococcal antigenemia in HIV-positive outpatients beginning antiretroviral therapy in Mwanza, Tanzania. J Int AIDS Soc, 2014. 17: p. 19040.

73. Moreno, M. L., A. Cebolla, A. Munoz-Suano, C. Carrillo-Carrion, I. Comino, A. Pizarro, F. Leon, A. Rodriguez-Herrera, and C. Sousa, Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing. Gut, 2017. 66(2): p. 250-257.

74. Carrio, A., C. Sampedro, J. L. Sanchez-Lopez, M. Pimienta, and P. Campoy, Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection. Sensors (Basel), 2015. 15(11): p. 29569-93.

75. Parolo, C., A. de la Escosura-Muniz, and A. Merkoci, Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron, 2013. 40(1): p. 412-6.

76. Jie Xiang, Mingzhe Yan, Hongze Li, Ting Liu, Chenyao Lin, Shuang Huang, Changxin Shen, Evaluation of Enzyme-Linked Immunoassay and Colloidal Gold- Immunochromatographic Assay Kit for Detection of Novel Coronavirus (SARS-Cov-2) Causing an Outbreak of Pneumonia (COVID-19). medRxiv, 2020.

77. Zhang, Y., W. A. Brooks, D. Goswami, M. Rahman, S. P. Luby, and D. D. Erdman, A duplex recombinant viral nucleoprotein microbead immunoassay for simultaneous detection of seroresponses to human respiratory syncytial virus and metapneumovirus infections. J Virol Methods, 2014. 206: p. 55-62.

78. Gao, X., H. Zhou, C. Wu, Y. Xiao, L. Ren, G. Paranos-Baccala, L. Guo, and J. Wang, Antibody against nucleocapsid protein predicts susceptibility to human coronavirus infection. J Infect, 2015. 71(5): p. 599-602.

79. Dongyang Li, Yibin Ying, Jian Wu, Reinhard Niessner & Dietmar Knopp, Comparison of monomeric and polymeric horseradish peroxidase as labels in competitive ELISA for small molecule detection. Microacta 2013.

80. Zhang, Z., Z. Chen, S. Wang, F. Cheng, and L. Chen, Iodine-Mediated Etching of Gold Nanorods for Plasmonic ELISA Based on Colorimetric Detection of Alkaline Phosphatase. ACS Appl Mater Interfaces, 2015. 7(50): p. 27639-45.

81. Madersbacher, S. and P. Berger, Double wavelength measurement of 3,3',5,5'-tetramethylbenzidine (TMB) provides a three-fold enhancement of the ELISA measuring range. J Immunol Methods, 1991. 138(1): p. 121-4.

82. Lee, M., B. A. Harrison, and G. E. Lewis, Jr., A rapid sporozoite ELISA using 3,3',5,5'-tetramethylbenzidine as the substrate chromogen. Am J Trop Med Hyg, 1990. 42(4): p. 314-9.

83. La Marca, A., M. Capuzzo, T. Paglia, L. Roli, T. Trenti, and S. M. Nelson, Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online, 2020. 41(3): p. 483-499.

84. Infantino, M., V. Grossi, B. Lari, R. Bambi, A. Perri, M. Manneschi, G. Terenzi, I. Liotti, G. Ciotta, C. Taddei, M. Benucci, P. Casprini, F. Veneziani, S. Fabbri, A. Pompeiti, and M. Manfredi, Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: an Italian experience. J Med Virol, 2020.

85. Zhang P, Gao Q, Wang T, Ke Y, Mo F, Jia R, Liu W, Liu L, Zheng S, Liu Y, Li L, Wang Y, Xu L, Hao K, Yang R, Li S, Lin C, Zhao Y, Evaluation of recombinant nucleocapsid and spike proteins for serological diagnosis of novel coronavirus disease 2019 (COVID-19). medRxiv, 2020.

86. Pan, Y., X. Li, G. Yang, J. Fan, Y. Tang, J. Zhao, X. Long, S. Guo, Z. Zhao, Y. Liu, H. Hu, H. Xue, and Y. Li, Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect, 2020. 81(1): p. e28-e32.
87. Gauger, P. C. and A. L. Vincent, *Serum Virus Neutralization Assay for Detection and Quantitation of Serum Neutralizing Antibodies to Influenza A Virus in Swine*. Methods Mol Biol, 2020. 2123: p. 321-333.

88. Muruato, A. E., C. R. Fontes-Garfias, P. Ren, M. A. Garcia-Blanco, V. D. Menachery, X. Xie, and P. Y. Shi, *A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation*. bioRxiv, 2020.

89. Shen, C., Z. Wang, F. Zhao, Y. Yang, J. Li, J. Yuan, F. Wang, D. Li, M. Yang, L. Xing, J. Wei, H. Xiao, Y. Yang, J. Qu, L. Qing, L. Chen, Z. Xu, L. Peng, Y. Li, H. Zheng, F. Chen, K. Huang, Y. Jiang, D. Liu, Z. Zhang, Y. Liu, and L. Liu, *Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma*. JAMA, 2020.

90. Bisoffi, Z., E. Pomari, M. Deiana, C. Piubelli, N. Ronzoni, A. Beltrame, G. Bertoli, N. Riccardi, F. Perandin, F. Formenti, F. Gobbi, D. Buonfrate, and R. Silva, *Sensitivity, Specificity and Predictive Values of Molecular and Serological Tests for COVID-19: A Longitudinal Study in Emergency Room*. Diagnostics (Basel), 2020. 10(9).

91. Yang, W., A. Sirajuddin, X. Zhang, G. Liu, Z. Teng, S. Zhao, and M. Lu, *The role of imaging in 2019 novel coronavirus pneumonia (COVID-19)*. Eur Radiol, 2020.

92. Wang, C., P. W. Horby, F. G. Hayden, and G. F. Gao, *A novel coronavirus outbreak of global health concern*. Lancet, 2020. 395(10223): p. 470-473.

93. Wong, H. Y. F., H. Y. S. Lam, A. H. Fong, S. T. Leung, T. W. Chin, C. S. Y. Lo, M. M. Lui, J. C. Y. Lee, K. W. Chiu, T. Chung, E. Y. P. Lee, E. Y. F. Wan, F. N. I. Hung, T. P. W. Lam, M. Kuo, and M. Y. Ng, *Frequency and Distribution of Chest Radiographic Findings in COVID-19 Positive Patients*. Radiology, 2019: p. 201160.

List of Figures

Figure 1: Workflow summary of molecular and serological detection methods of COVID-19. The figure is created with BioRender.com.

Figure 2: Schematic flowchart of molecular detection methods for COVID-19 virus.

(A) A viral RNA is directly amplified and detected from the sample by isothermal amplification method (e.g. ID NOW COVID-19). (B) The standard rRT-PCR method is illustrated where a viral RNA is extracted and converted into cDNA. Specific areas of cDNA (target genes) are amplified and detected by rRT-PCR. (C) demonstration of CRISPR-Cas12 based method. After amplifying specific areas of extracted viral RNA, the Cas12 enzyme recognizes specific sequences and then cleaves the ssDNA probe. The cleavage probes are visualized as a red line in the lateral flow strip. The figure is created with BioRender.com.
Figure 3: Schematic flowchart of FLA.

A sample is loaded in the sample well (A) and incubated to allow the capillary action to move sample antibodies (IgG/IgM) forward (B). Gold COVID-19 antigen conjugates from the conjugate pad recognize and interact with sample antibodies forming complexes (C) that are immobilized by anti-human IgG/IgM antibodies and display the test red line (D). Control antibodies (rabbit-gold conjugates) are immobilized by anti-rabbit IgG antibodies and show the control red line (E). (F) FLA results possibilities are illustrated. The figure is created with BioRender.com.

Figure 4: Schematic flowchart of indirect ELISA.

A coated SARS-CoV-2 protein (antigen) onto wells of ELISA plate (A) interacts with the first antibody (anti-SARS-CoV-2 antibody) that is in a patient’s sample (B). (C) After adding a secondary antibody (a conjugated antibody), it recognizes and interacts with the first antibodies. The reaction is developed by adding a substrate (D) which is cleaved by the conjugated enzyme and changes the reaction color after incubation (E) and (F), respectively. (G) Results are read by ELISA plate reader. The figure is created with BioRender.com.

List of Tables

Table 1:
Primers and probes that have been recommended by the U.S.CDC to detect SARS-CoV-2 by rRT-PCR.

Table 2:
Expected results and their interpretations of rRT-PCR method for COVID-19 specimens.

Table 3:
Expected results and their interpretations of SARS-CoV-2 DETECTR method for COVID-19 specimens.

Table 4:
Comparison between molecular and serological methods for detecting COVID-19 virus.

Supplementary Tables

Table S1:
Primers and probes that have been recommended by other institutions to perform rRT-PCR and detect SARS-CoV-2.

Table S2:
The rRT-PCR controls with expected results and interpretations.
Figure 1

Workflow summary of molecular and serological detection methods of COVID-19. The figure is created with BioRender.com.
Figure 2

Schematic flowchart of molecular detection methods for COVID-19 virus.

(A) A viral RNA is directly amplified and detected from the sample by isothermal amplification method (e.g. ID NOW COVID-19). (B) The standard rRT-PCR method is illustrated where a viral RNA is extracted and converted into cDNA. Specific areas of cDNA (target genes) are amplified and detected by rRT-PCR. (C) demonstration of CRISPR-Cas12 based method. After amplifying specific areas of extracted viral RNA, the Cas12 enzyme recognizes specific sequences and then cleaves the ssDNA probe. The cleavage probes are visualized as a red line in the lateral flow strip. The figure is created with BioRender.com.
A

ID NOW COVID-19

Isothermal amplification

B

Collected specimen

SARS-CoV-2

RNA extraction

Purified RNA

Generating cDNA

rRT-qPCR

rRT-qPCR results

C

Isothermal amplification

M2 and E genes

SARS-CoV-2

Cas12 system

ssDNA probe

Cleaved ssDNA probe

Lateral flow strips

Positive

Negative

Threshold

Fluorescence

Copies per reaction (Cq)
Figure 3

Schematic flowchart of FLA.

A sample is loaded in the sample well (A) and incubated to allow the capillary action to move sample antibodies (IgG/IgM) forward (B). Gold COVID-19 antigen conjugates from the conjugate pad recognize and interact with sample antibodies forming complexes (C) that are immobilized by anti-human IgG/IgM antibodies and display the test red line (D). Control antibodies (rabbit- gold conjugates) are immobilized by anti-rabbit IgG antibodies and show the control red line (E). (F) FLA results possibilities are illustrated. The figure is created with BioRender.com.
Figure 4

Schematic flowchart of indirect ELISA.

A coated SARS-CoV-2 protein (antigen) onto wells of ELISA plate (A) interacts with the first antibody (anti-SARS-CoV-2 antibody) that is in a patient’s sample (B). (C) After adding a secondary antibody (a conjugated antibody), it recognizes and interacts with the first antibodies. The reaction is developed by adding a substrate (D) which is cleaved by the conjugated enzyme and changes the reaction color after incubation (E) and (F), respectively. (G) Results are read by ELISA plate reader. The figure is created with BioRender.com.
Table 1 (on next page)

Primers and probes that have been recommended by the U.S.CDC to detect SARS-CoV-2 by rRT-PCR
Table 1:

Primers and probes that have been recommended by the U.S. CDC to detect SARS-CoV-2 by rRT-PCR

Gene target	Description	Oligonucleotide Sequence (5’>3’)	Label
2019-nCoV_N1	2019-nCoV_N1 Forward Primer	5’-GAC CCC AAA ATC AGC GAA AT-3’	None
	2019-nCoV_N1 Reverse Primer	5’-TCT GGT TAC TGC CAG TTG AAT CTG-3’	None
	2019-nCoV_N1 Probe	5’-FAM-ACC CCG CAT TAC GTT TGG TGG ACC-BHQ1-3’	FAM, BHQ-1
2019-nCoV_N2	2019-nCoV_N2 Forward Primer	5’-TTA CAA ACA TTG GCC GCA AA-3’	None
	2019-nCoV_N2 Reverse Primer	5’-GCG CGA CAT TCC GAA GAA-3’	None
	2019-nCoV_N2 Probe	5’-FAM-ACA ATT TGC CCC CAG CGC TTC AG-BHQ1-3’	FAM, BHQ-1
RNAse P	RNAse P Forward Primer	5’-AGA TTT GGA CCT GCG AGC G-3’	None
	RNAse P Reverse Primer	5’-GAG CGG CTG TCT CCA CAA GT-3’	None
	RNAse P Probe	5’-FAM – TTC TGA CCT GAA GGC TCT GCG CG – BHQ1-3’	FAM, BHQ-1
Table 2 (on next page)

Expected results and their interpretations of rRT-PCR method for COVID-19 specimens
Table 2: Expected results and their interpretations of rRT-PCR method for COVID-19 specimens

2019nCoV-N1	2019nCoV-N2	RNaseP	Result (SARS-CoV-2)
+	+	+/-	Positive
-	-	+	Negative
-	-	-	Invalid
If only 1 of the 2 targets is positive	+/-	In conclusive	
Table 3 (on next page)

Expected results and their interpretations of SARS-CoV-2 DETECTR method for COVID-19 specimens
Table 3:
Expected results and their interpretations of SARS-CoV-2 DETECTR method for COVID-19 specimens

N gene	E gene	RNaseP	Result (SARS-CoV-2)
+	+	+/-	Positive
+	-	+/-	Indeterminate
-	+	+/-	Indeterminate
-	-	+	Negative
-	-	-	Invalid
Table 4 (on next page)

Comparison between molecular and serological methods for detecting COVID-19 virus
Table 4:
Comparison between molecular and serological methods for detecting COVID-19 virus

	Molecular Methods	Serological Methods
Technique based	rRT-PCR	CRISPR-Cas12
Sample	RNA	RNA
Accuracy	High	High/Moderate
Time*	Hours	Minutes
Professional skills need	Yes	YES/ No
POCT	No	Yes/No
Availability	Limited	Limited
Cost	Very high	High
High throughput	Yes	No

* Time that is required for running the test without preparation time.