The Hajdu Cheney mutation sensitizes mice to the osteolytic actions of tumor necrosis factor α

Received for publication, June 18, 2019, and in revised form, July 29, 2019 Published, Papers in Press, August 1, 2019, DOI 10.1074/jbc_RA119_009824

Jungun Yu†§ and Ernesto Canalis‡¶†
From the Departments of †§‡Orthopaedic Surgery and †¶‌‡UConn Medicine, †¶‌‡UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut 06030

Edited by Jeffrey E. Pessin

Hajdu Cheney syndrome (HCS) is characterized by craniofacial developmental abnormalities, acro-osteolysis, and osteoporosis and is associated with gain–of–NOTCH2 function mutations. A mouse model of HCS termed Notch2tm1.1Ecan harboring a mutation in exon 34 of Notch2 replicating the one found in HCS was used to determine whether the HCS mutation sensitizes the skeleton to the osteolytic effects of tumor necrosis factor α (TNFα). TNFα injected over the calvarial vault caused a greater increase in osteoclast number, osteoclast surface, and eroded surface in Notch2tm1.1Ecan mice compared with littermate WT controls. Accordingly, the effect of TNFα on osteoclastogenesis was greatly enhanced in cultures of bone marrow–derived macrophages (BMMs) from Notch2tm1.1Ecan mice when compared with the activity of TNFα in control cultures. TNFα induced the expression of Notch2 and Notch2 mutant mRNA by ~2-fold, possibly amplifying the NOTCH2-dependent induction of osteoclastogenesis. The effect of TNFα on osteoclastogenesis in Notch2tm1.1Ecan mutants depended on NOTCH2 activation because it was reversed by anti-NOTCH2 negative regulatory region and anti-jagged 1 antibodies. The inactivation of Hes1 prevented the TNFα effect on osteoclastogenesis in the context of the Notch2tm1.1Ecan mutation. In addition, the induction of Il1b, but not of Tgfa and Il6, mRNA by TNFα was greater in Notch2tm1.1Ecan BMMs than in control cells, possibly contributing to the actions of TNFα and NOTCH2 on osteoclastogenesis. In conclusion, the HCS mutation enhances TNFα-induced osteoclastogenesis and the inflammatory bone-resorptive response possibly explaining the acro-osteolysis observed in affected individuals.

NOTCH receptors 1–4 are single-pass type I transmembrane proteins that play a central role in cell fate determination and function (1, 2). In the skeleton, Notch signaling regulates development and homeostasis by controlling the differentiation and function of bone cells, including osteoblasts, osteoclasts, chondrocytes, and osteocytes (3–9). In mammals, there are five ligands for the Notch receptors: namely jagged (JAG)1, JAG2, delta-like (DLL)1, DLL3, and DLL4 (10). Activation of NOTCH receptors follows their interactions with ligands on adjacent cells, resulting in the cleavage of NOTCH by a disintegrin and metalloprotease (ADAM) and the γ-secretase complex and the release of the NOTCH intracellular domain (NICD)2 (11, 12). The NICD translocates into the nucleus to form a complex with mastermind-like and recombination signal-binding protein for the immunoglobulin κ region (RBPjk) and induce the expression of its target genes hairy enhancer of split (Hes) and HES-related with YRPW motif (Hey) (2, 13, 14). Although NOTCH receptors share structural and some biological functions, it is important to note that each NOTCH receptor exerts distinct effects on the skeleton; these are in part related to specific patterns of cellular expression of each receptor (11).

Hajdu Cheney syndrome (HCS) is a rare inherited disease characterized by craniofacial developmental abnormalities, acro-osteolysis, short stature, and osteoporosis (15–17). HCS is caused by point mutations or short deletions in exon 34 of NOTCH2 that lead to the creation of a stop codon upstream of the proline (P), glutamic acid (E), serine (S), and threonine (T)-rich (PEST) domain (18–22). The PEST domain is recognized by the E3 ligase complex for ubiquitin-mediated degradation of NOTCH2. Therefore, the mutations result in the translation of a truncated NOTCH2 protein resistant to ubiquitin-dependent degradation and a gain–of–NOTCH2 function (23). To investigate the mechanisms responsible for HCS, we created a mouse model termed Notch2tm1.1Ecan harboring a point mutation (6955C→T) in exon 34 of Notch2 upstream of the PEST domain. Heterozygous Notch2tm1.1Ecan mice exhibit cancellous and cortical bone osteopenia due to increased osteoclast number and bone resorption (5). Notch2tm1.1Ecan mice also display a reallocation of B cells to the marginal zone of the spleen, shortening of the limbs, and sensitization to the development of osteoarthrits in destabilized joints (24, 25). This is possibly because of increased expression of interleukin (IL) 6, revealing

2The abbreviations used are: NICD, NOTCH intracellular domain; α-MEM, α-minimum essential medium; BMM, bone marrow–derived macrophage; CMV, cytomegalovirus; ES/BS, eroded surface/bone surface; FBS, fetal bovine serum; HCS, Hajdu Cheney syndrome; IL, interleukin; M-CSF, macrophage colony-stimulating factor; m.o.i., multiplicity of infection; NF-κB, nuclear factor-κB; NRR, negative regulatory region; O.C./B.Pm, number of osteoblasts/bone perimeter; Oc.S/BS, osteoclast surface/bone surface; PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)-rich; qRT-PCR, quantitative reverse transcription-PCR; RANKL, receptor activator of NF-κB ligand; RBPjk, recombination signal-binding protein for immunoglobulin κ region; TNFα, tumor necrosis factor α; TRAP, tartrate-resistant acid phosphatase; Veh, vehicle control; P3K, phosphoinositol 3-kinase.
Notch2 and TNFα

a propensity to an enhanced inflammatory response (24). Notch2tm1.1Ecan does not exhibit apparent acro-osteolysis, and homozygous mice display craniofacial dysmorphism and newborn lethality.3 The skeletal phenotype of Notch2tm1.1Ecan reproduces the human syndrome, and iliac crest biopsies from humans afflicted by HCS reveal osteopenia and trabecularization of cortical bone (26).

Histological examination of biopsies from the acro-osteolysis lesions in subjects with HCS reveal the presence of an inflammatory process and neovascularization, but the mechanisms responsible for the bone lysis are not known (17, 27–29). Tumor necrosis factor α (TNFα) is a proinflammatory cytokine primarily produced by activated macrophages. TNFα induces gene expression of Il6 and Il1b as well as its own expression (30, 31). TNFα, IL6, and IL1β enhance the differentiation of cells of the myeloid lineage toward osteoclasts and increase the bone-resorbing activity of mature osteoclasts (32–39).

The excessive release of TNFα, IL6, and IL1β during the inflammatory response perturbs bone homeostasis and promotes pathologic bone erosion and may be mechanistically involved in the acro-osteolysis of HCS (40–42). Therefore, we asked the question whether the HCS mutation sensitizes the skeleton to the osteolytic actions of TNFα. To this end, we examined the effects of TNFα on bone resorption in vivo and on osteoclastogenesis in vitro in Notch2tm1.1Ecan mice and mechanisms responsible. Because we have found no differences in phenotypic manifestations between male and female Notch2tm1.1Ecan mice, the studies were conducted in male mice and sex-matched littermate controls.

Results

Hajdu Cheney Notch2tm1.1Ecan mutation enhances TNFα-induced osteolysis in calvarial bone

To examine whether the Hajdu Cheney mutation sensitizes mice to the osteolytic actions of TNFα, Notch2tm1.1Ecan mice and control littersmates were administered TNFα or PBS as a vehicle control by subcutaneous injection over the calvarial vault once a day for 4 days. Tartrate-resistant acid phosphatase (TRAP)/hematoxylin-stained calvarial sections revealed that TNFα administration increased the number of TRAP-positive multinucleated cells and osteolysis in Notch2tm1.1Ecan and littermate control mice. The effect was more pronounced in Notch2tm1.1Ecan mice, and osteoclast number, osteoclast surface, and eroded surface were 1.7-fold higher in Notch2tm1.1Ecan calvarial bones than in controls (Fig. 1).

Hajdu Cheney mutation enhances TNFα-induced osteoclastogenesis in vitro

TNFα acts directly and indirectly to induce osteoclastogenesis by promoting the osteoclastogenic potential of osteoclast precursors and by increasing receptor activator of NF-κB (NF-κB) ligand (RANKL) expression in osteoblasts (43, 44). To confirm a direct effect of TNFα on osteoclastogenesis in the context, or not, of the Hajdu Cheney mutation, bone marrow-derived macrophages (BMMs) from Notch2tm1.1Ecan and control littersmates were cultured in the presence of macrophage colony-stimulating factor (M-CSF) and TNFα. The effect of TNFα on osteoclastogenesis was enhanced in cultures of Notch2tm1.1Ecan BMMs compared with the effects of TNFα in control cultures (Fig. 2). Although Notch2tm1.1Ecan BMMs were sensitized to the action of TNFα, there was no difference in Tnfr1 and Tnfr2 mRNA expression between Notch2tm1.1Ecan and control mice either in vivo in calvariae or in vitro in BMM cultures (Fig. 3). The effect of TNFα on early signal activation of mitogen-activated protein kinases and IκBα was comparable between Notch2tm1.1Ecan and control BMMs, although a greater induction of AKT phosphorylation was observed in Notch2tm1.1Ecan cultures than in control cultures treated with TNFα (Fig. 3). TNFα treatment induced NF-κB activation in BMMs of both genotypes, as defined by enhanced NF-κB binding to consensus DNA sequences, but there was no difference in NF-κB activation between Notch2tm1.1Ecan and control BMM cultures (Fig. 3). The results suggest that the enhanced osteoclastogenic response of Notch2tm1.1Ecan cells to TNFα was inde-

3 E. Canalis, unpublished observations.
Notch2 and TNFα

Figure 2. Hajdu Cheney mutant BMMs are sensitized to the action of TNFα on osteoclastogenesis. BMMs derived from 2-month-old Notch2tm1.1Ecan mice and control littermates were cultured in the presence of M-CSF at 30 ng/ml and of TNFα at 50, 100, and 200 ng/ml for 6 days. Cells were stained with TRAP, and representative images of TRAP-stained multinucleated cells are shown. The scale bar in the right corner represents 500 μm. TRAP-positive cells with more than three nuclei were considered osteoclasts, and values are means ± S.D.; n = 4 biological replicates for control (white bars) and Notch2tm1.1Ecan (black bars) cells. *, significantly different between Notch2tm1.1Ecan and control, p < 0.05.

Dependent of NF-κB activation and possibly related to enhanced AKT phosphorylation.

TNFα promotes the expression of Notch2 and proinflammatory cytokines

To test for the acute effect of TNFα on gene expression, BMMs from Notch2tm1.1Ecan mice and control littermates were treated with TNFα for 6 and 18 h. TNFα induced the expression of Notch2 mRNA in Notch2tm1.1Ecan and control BMMs. Notch2 mutant (Notch26955C→T) transcripts were detected only in Notch2tm1.1Ecan cells, and their expression was enhanced by TNFα. Hes1 mRNA levels were significantly increased in Notch2tm1.1Ecan BMMs, but they were not affected by treatment with TNFα. The expression of Tnfa, Il6, and Il1b was significantly increased by TNFα, but only the induction of Il1b was greater in Notch2tm1.1Ecan BMMs than in control cultures (Fig. 4). To examine for changes in gene expression during TNFα-induced osteoclast differentiation, Notch2tm1.1Ecan and control BMMs were cultured in the presence of M-CSF and TNFα for 3 and 6 days. TNFα induced Notch2 and Notch26955C→T transcripts by up to 2-fold. Hes1 mRNA expression was increased in Notch2tm1.1Ecan cells but was not altered by TNFα (Fig. 5). TNFα induced Tnfa, Il6, and Il1b in both Notch2tm1.1Ecan and control osteoclasts, but only Il1b was increased in Notch2tm1.1Ecan osteoclasts to a greater extent than in control cells (Fig. 5). Osteoclastogenic gene markers, such as Acp5 and Ctsk, were up-regulated during TNFα-induced osteoclastogenesis and were significantly greater in Notch2tm1.1Ecan osteoclasts than in control cells (Fig. 5). The NF-κB-dependent Nfatc1 gene was up-regulated by TNFα; but in accordance with the results on NF-κB activation, its induction was of equal magnitude in control and Notch2tm1.1Ecan cells.

TNFα accelerates NOTCH2 signal activation and increases JAG1 expression

NOTCH signaling is activated following interactions with ligands of the JAG and DLL families. In previous work, we found that Jag1, but not Jag2 or Dll1, Dll3, and Dll4 transcripts, is expressed as BMMs differentiate toward osteoclasts (11). Jag1 mRNA and JAG1 protein levels were increased about 1.4- and 3-fold, respectively, during TNFα-induced osteoclastogenesis, but the induction was of equal magnitude in Notch2tm1.1Ecan and control osteoclasts (Fig. 6). In accordance with the increase in Notch2 mRNA during osteoclastogenesis, the levels of NOTCH2 were increased as BMMs matured as osteoclasts in the presence of TNFα. The NOTCH2 intracellular domain (N2ICD), representative of NOTCH2 signal activation and cleavage of NOTCH2, was increased in Notch2tm1.1Ecan and control osteoclasts following TNFα treatment. Although N2ICD was increased in both Notch2tm1.1Ecan and control cells, the truncated form of NOTCH2, lacking the PEST domain (N2ICDPEST), was only detected in Notch2tm1.1Ecan cells and increased during differentiation. Therefore, the total levels of N2ICD, intact and truncated, were 2-fold greater in Notch2tm1.1Ecan than in control cells (Fig. 6). HES1 levels were 2-fold greater in Notch2tm1.1Ecan cultures, but NFATc1 was increased to an equal extent in Notch2tm1.1Ecan and control cultures as they differentiated toward osteoclasts in the presence of TNFα (Fig. 6).

Preventing NOTCH2 signaling reverses the sensitizing effect of the Hajdu Cheney mutation on TNFα-induced osteoclastogenesis

To determine whether preventing NOTCH2 signal activation can reverse the effect of the Notch2tm1.1Ecan mutation on TNFα-induced osteoclastogenesis, BMMs from Notch2tm1.1Ecan mice and control littermates were cultured in the presence of M-CSF and TNFα with antibodies directed to the NRR of NOTCH2 or with anti-JAG1 antibodies (45–47). TNFα induced osteoclastogenesis in Notch2tm1.1Ecan BMMs by ~1.6–1.7-fold, an effect that was reversed by anti-NOTCH2 NRR and by anti-JAG1 antibodies (Fig. 7). Moreover, anti-JAG1 antibodies reduced osteoclast differentiation in control as well as in Notch2tm1.1Ecan cultures treated with TNFα, demonstrating that NOTCH signal activation is a requirement for TNFα-dependent osteoclastogenesis (Fig. 7).

Inactivation of Hes1 reverses the sensitizing effect of the Hajdu Cheney mutation on TNFα-induced osteoclastogenesis

In preliminary experiments, we demonstrated that Hes1 is expressed in BMMs, and its expression increases during osteoclastogenesis, whereas Hey1, Hey2, and HeyL transcripts are not detected in this cell lineage (11). To examine the effect of HES1 on osteoclastogenesis in Notch2tm1.1Ecan cells, osteoclast precursors from Notch2tm1.1Ecan;Hes1loxP/loxP and Hes1loxP/loxP littermate controls were transduced with adenoviruses carrying CMV-Cre (Ad-Cre) or GFP (Ad-GFP) control vectors. Hes1 mRNA levels were decreased by 55–80% in Notch2tm1.1Ecan;Hes1Δ/Δ and Hes1Δ/Δ osteoclasts transduced with Ad-Cre compared with Notch2tm1.1Ecan;Hes1loxP/loxP and Hes1loxP/loxP cells transduced with Ad-GFP. Notch2 and Notch26955C→T mutant transcripts were not affected by the Hes1 inactivation, whereas the down-regulation of Hes1 increased the Il1b induction observed in Notch2tm1.1Ecan cells (Fig. 8). Notch2tm1.1Ecan;Hes1loxP/loxP osteoclast precursors treated with TNFα exhibited a 1.5-fold increase in osteoclast number compared with Hes1loxP/loxP cells. Osteoclast number was decreased by 60% in Notch2tm1.1Ecan;Hes1Δ/Δ and decreased by about 30% in
Preventing NOTCH2 signaling reverses the sensitizing effect of the Hajdu Cheney mutation on TNFα-induced osteolysis

To examine whether preventing NOTCH2 signal activation can reverse the effect of the Notch2tm1.1Ecan mutation on TNFα-induced osteolysis, Notch2tm1.1Ecan mice and control littermates were administered anti-NOTCH2 NRR or control anti-ragweed antibodies with TNFα by subcutaneous injection over the calvarial vault once a day for 4 days. TRAP/hematoxylin-stained calvarial sections revealed that osteoclast number, osteoclast surface, and eroded surface were 2-fold higher in TNFα-treated Notch2tm1.1Ecan calvarial bones than in TNFα-treated WT controls. The effect of the Notch2tm1.1Ecan mutation was reversed by the administration of anti-NOTCH2 NRR antibodies, and osteoclast number, osteoclast surface, and eroded surface were significantly reduced compared with anti-

Hes1Δ/Δ cells so that the Hes1 inactivation reversed the TNFα effect on osteoclastogenesis in the context of the Notch2tm1.1Ecan mutation and reduced the effect of TNFα in control cultures (Fig. 8).

Figure 3. TNFα receptor expression and TNFα-induced early signal activation are not altered in Hajdu Cheney mutants. A, total RNA was extracted from calvarial bones (left) or BMMs (right) of Notch2tm1.1Ecan and sex-matched littermate control mice and examined for relative Tnfr1 and Tnfr2 gene expression by qRT-PCR, corrected for Rpl38 copy number. Values are means ± S.D.; n = 4 biological replicates for control (white bars) and Notch2tm1.1Ecan (black bars) calvarial bones or BMMs. B–D, BMMs derived from 2-month-old Notch2tm1.1Ecan mice and control littermates were cultivated for 2 h in the absence of serum and exposed to TNFα at 200 ng/ml for the indicated periods of time, and whole-cell lysates (35 μg of total protein except panel C, 15 μg of total protein for C) were examined by immunoblotting. B, using anti-p-p38, p-ERK, and p-JNK antibodies, stripped and reprobed with anti-p38, ERK, and JNK antibodies. C, using anti-p-AKT antibodies and reprobed with anti-AKT antibodies. D, using anti-p-IκBα or β-Actin antibodies, stripped and reprobed with IκBα antibodies. The band intensity was quantified by ImageLabTM software (version 5.2.1), and the numerical ratios of phosphorylated/unphosphorylated signal in B and C or of p-IκBα/β-Actin and of IκBα/β-Actin in D are shown below each blot. Control ratios at day 0 are normalized to 1. E, BMMs from 2-month-old Notch2tm1.1Ecan mice and control littermates were cultured for 2 h in the absence of serum and exposed to TNFα at 200 ng/ml for 1 h. 20 μg of nuclear extracts for each sample were examined by TransAMTM Flexi NF-κB p65 activation assay kit, and colorimetric changes were measured at 450 nm. Values are means ± S.D.; n = 3 technical replicates for control (white bars) and Notch2tm1.1Ecan (black bars) BMMs. *, significantly different compared with control without TNFα, p < 0.05.
Notch2 and TNFα

Notch2^{tm1.1Ecan} mice have normal serum TNFα levels

To determine whether mice harboring the Notch2^{tm1.1Ecan} mutation have altered serum levels of TNFα, serum was obtained from Notch2^{tm1.1Ecan} and control littermates. At 2 months of age, serum TNFα was (means ± S.D.; n = 3–4) 15.5 ± 0.2 pg/ml in control and 15.3 ± 0.1 pg/ml in Notch2^{tm1.1Ecan} mice; at 12 months of age TNFα was 15.8 ± 0.4 pg/ml in control and 15.6 pg/ml in Notch2^{tm1.1Ecan} mice (both p > 0.05).

Discussion

In this study, we demonstrated that the TNFα-induced osteoclastogenesis and the inflammatory bone-resorptive response to TNFα are enhanced in a mouse model of HCS (Fig. 10). The effect of TNFα required the activation of NOTCH2 signaling because it was reversed in vitro and in vivo by anti-NOTCH2 NRR and by anti-JAG1 antibodies. Moreover, anti-JAG1 antibodies inhibited control and Notch2^{tm1.1Ecan} mutant-dependent osteoclastogenesis demonstrating that NOTCH activation is necessary for optimal osteoclast differentiation secondary to TNFα.

A limitation of the in vivo experiments is that they were conducted in male Notch2^{tm1.1Ecan} and sex-matched controls, and as a consequence caution should be exerted before extrapolating the results to female mice. Recently, an alternative mouse model of HCS with a 6272delT mutation in exon 34 of Notch2 was reported, and mice were studied up to 12 months of age (48). Like Notch2^{tm1.1Ecan} mutants, these mice developed osteopenia secondary to increased bone resorption; the major difference between Notch2^{tm1.1Ecan} and mice harboring the 6272delT mutation is that the latter exhibit increased bone formation and high bone turnover (48). Neither mouse model exhibited acro-osteolysis. This could suggest that environmental factors or vascular injury are required in addition to the inflammatory component for the development of acro-osteolysis. These additional factors do not seem to occur in the available mouse models of the disease that are suitable to examine the inflammatory component of the syndrome but not the fully established acro-osteolysis.

Our results are in contrast to previous work demonstrating that RBPJκ, a component of Notch canonical signaling, inhibits TNFα-induced osteoclastogenesis by suppressing Nfatc1 (49). It is possible that RBPJκ acts directly on osteoclastogenesis and independently of Notch signaling or that the effects of NOTCH2 and HES1 on osteoclastogenesis are independent of canonical Notch signaling. However, we and others have consistently demonstrated a stimulatory effect of NOTCH2 on osteoclastogenesis that is congruent with the results observed in this work (5, 7, 23).

Notch2^{tm1.1Ecan} mice are suitable models to examine the inflammatory component of the syndrome because this was no longer

Figure 4. TNFα enhances the expression of Notch2 and proinflammatory cytokines in Hajdu Cheney mutant and control BMMs. BMMs derived from 2-month-old Notch2^{tm1.1Ecan} mice and control littermates were cultured for the indicated periods of time in the presence of M-CSF at 30 ng/ml and TNFα at 200 ng/ml. Total RNA was extracted, and gene expression was determined by qRT-PCR. Data are expressed as Notch2^{6955C}, Notch2, Hes1, Tnfa, Il6, and Il1b, corrected for Rpl38 copy number. Values are means ± S.D.; n = 4 biological replicates for control (white bars) and Notch2^{tm1.1Ecan} (black bars) BMMs. *, significantly different compared with time 0, p < 0.05. #, significantly different between Notch2^{tm1.1Ecan} and control, p < 0.005.

Figure 5. Expression of Notch2 and proinflammatory cytokines is increased during TNFα-induced osteoclastogenesis. BMMs derived from 2-month-old Notch2^{tm1.1Ecan} mice and control littermates were cultured in the presence of M-CSF at 30 ng/ml and TNFα at 200 ng/ml for 6 days. Total RNA was extracted, and gene expression was determined by qRT-PCR. Data are expressed as Notch2^{6955C}, Notch2, Hes1, Tnfa, Il6, Il1b, Nfatc1, Acp5, and Ctsk, corrected for Rpl38 copy number. Values are means ± S.D.; n = 4 biological replicates for control (white bars) and Notch2^{tm1.1Ecan} (black bars) cells. *, significantly different compared with day 0, p < 0.05. #, significantly different between Notch2^{tm1.1Ecan} and control, p < 0.005.

Ragweed–treated Notch2^{tm1.1Ecan} mice (Fig. 9). As a consequence, osteoclast number and surface were no longer different between TNFα-treated Notch2^{tm1.1Ecan} and control mice; the anti-NOTCH2 NRR antibody also reduced eroded surface in control mice (Fig. 9).
detected following the inactivation of Hes1. Whereas HES1 plays an inhibitory role in osteoblast differentiation, and its overexpression in osteoblasts causes osteopenia, there is virtually no knowledge regarding its function in osteoclast differentiation or function (50). It is likely that HES1 plays a critical role in osteoclastogenesis and that its function is not limited to the osteoclastogenesis occurring during an inflammatory state.

Figure 6. TNFα accelerates NOTCH2 signal activation during osteoclast differentiation and enhances JAG1 expression. BMMs derived from 2-month-old Notch2tm1.1Ecan mice and control littermates were cultured in the presence of M-CSF at 30 ng/ml and of TNFα at 200 ng/ml for 6 days. A, total RNA was extracted, and gene expression was determined by qRT-PCR. Data are expressed as Jag1, corrected for Rpf38 copy number. Values are means ± S.D.; n = 4 biological replicates for control (white bars) and Notch2tm1.1Ecan (black bars) cells. *, significantly different compared with day 0, p < 0.05. B, whole-cell lysates (35 µg of total protein) were examined by immunoblotting using anti-JAG1, NOTCH2 and N2ICD, HES1, NFATc1, and β-Actin antibodies. The band intensity was quantified by ImageLabSM software (version 5.2.1), and the numerical ratio of JAG1/β-Actin, NOTCH2/β-Actin, N2ICD (including N2ICD PEST)/β-Actin, HES1/β-Actin, and NFATc1/β-Actin is shown below each blot. All control ratios at day 0 are normalized to 1.

Figure 7. Preventing NOTCH2 signal activation reverses the effect of the Hajdu Cheney mutation on TNFα-induced osteoclastogenesis. BMMs derived from 2-month-old Notch2tm1.1Ecan mice and control littermates were cultured with M-CSF at 30 ng/ml and TNFα at 200 ng/ml in the presence of control anti-ragweed at 10 or 20 µg/ml (Ctrl) or anti-NOTCH2 NRR (N2NRR) at 10 µg/ml (A), or anti-JAG1 (JAG1) at 20 µg/ml (B) for 6 days. A and B, representative images of TRAP-stained multinucleated cells obtained after 6 days of culture are shown. The scale bars in the right corners represent 500 µm. TRAP-positive cells with more than three nuclei were considered as osteoclasts, and values are means ± S.D. (top and bottom right); n = 4 biological replicates for control (white bars) and Notch2tm1.1Ecan (black bars). *, significantly different between Notch2tm1.1Ecan and control, p < 0.05. #, significantly different between anti-NOTCH2 NRR or anti-JAG1 and control anti-ragweed antibodies, p < 0.05.

Figure 8. Hes1 inactivation reverses the effect of the Hajdu Cheney mutation on TNFα-induced osteoclastogenesis. Osteoclast precursors derived from 2-month-old Notch2tm1.1Ecan;Hes1loxP/loxP and Hes1loxP/loxP littersmate controls were transduced with adenoviruses carrying CMV-Cre (Ad-Cre) or GFP (Ad-GFP) as control at m.o.i. 100 and cultured with M-CSF at 30 ng/ml and TNFα at 200 ng/ml for 3 days until the formation of multinucleated TRAP-positive cells. A, total RNA was extracted, and gene expression was determined by qRT-PCR. Data are expressed as Notch2, Jag1, Notch2, Hes1, and Il1b, corrected for Rpf38 copy number. Values are means ± S.D.; n = 4 technical replicates for Hes1loxP/loxP (white bars) and Notch2tm1.1Ecan;Hes1loxP/loxP (black bars) transduced with Ad-Cre or Ad-GFP. B, representative images of TRAP-stained multinucleated cells are shown. The scale bars in the right corner represent 500 µm. TRAP-positive cells with more than three nuclei were considered osteoclasts, and values are means ± S.D.; n = 4 technical replicates for Hes1loxP/loxP (white bars) and Notch2tm1.1Ecan;Hes1loxP/loxP (black bars) transduced with Ad-Cre or Ad-GFP. *, significantly different between Notch2tm1.1Ecan;Hes1loxP/loxP and Hes1loxP/loxP control, p < 0.05. #, significantly different between Ad-Cre and Ad-GFP, p < 0.05.
It has been reported that toll-like receptor signaling and pro-inflammatory cytokines, such as TNFα and IL1β, induce gene expression of NOTCH receptors and ligands as well as signal activation of NOTCH in several cells and tissues (51). TNFα increased the expression of JAG1 and NOTCH2 during osteoclast differentiation to a similar extent in Notch2^{2_{–/–}} mice and control cells. However, only Notch2^{2_{–/–}}/Ecan^{1_{–/–}} mutant cells synthesized the truncated form of N2ICD (N2ICD_{ΔPEST}) and the intact N2ICD. The summation of the intact and truncated forms of N2ICD resulted in a ~2-fold greater expression of N2ICD in Notch2^{2_{–/–}}/Ecan^{1_{–/–}} mutants than in control cells. The N2ICD_{ΔPEST} is more stable than WT N2ICD because it is resistant to ubiquitin-mediated degradation, explaining the gain-of-NOTCH2 function and the Hes1 induction in Notch2^{2_{–/–}}/Ecan^{1_{–/–}} cells (23, 52). The direct effects of NOTCH2 signaling and HES1 on TNFα-induced osteolysis and osteoclast differentiation in the context of the Notch2^{2_{–/–}}/Ecan^{1_{–/–}} mutation were reversed by treatment with anti-NOTCH2 NRR and anti-JAG1 antibodies and by the Hes1 inactivation. Moreover, anti-JAG1 antibodies and the down-regulation of Hes1 tempered the effects of TNFα in control cultures. This indicates that the effects of TNFα on osteoclastogenesis require NOTCH signal activation and HES1 expression.

Notch2^{2_{–/–}}/Ecan^{1_{–/–}} mutant cells displayed greater Il1b mRNA levels than control cells. The induction of Il1b was HES1-dependent, and this is in agreement with observations in alternative cellular systems (53). Notch signaling and HES1 inhibit the phosophatase and tensin homolog (PTEN) and as a consequence up-regulate the PI3K–AKT signaling pathway, and PI3K–AKT signaling enhances IL1β expression (54–56). In this study, we found greater induction of phospho-AKT by TNFα in Notch2^{2_{–/–}}/Ecan^{1_{–/–}} BMM cultures. Therefore, it is possible that HES1 signals through the PI3K–AKT pathway to enhance osteoclastogenesis and induce IL1β (57). IL1β is involved in the bone-resorbing activity of osteoclasts and in osteoclast formation (37). IL1β might accelerate TNFα-induced osteolysis by increasing the bone-resorbing activity of osteoclasts in Notch2^{2_{–/–}}/Ecan^{1_{–/–}} mice in vivo and contribute to the induction of Hes1 mRNA, as was reported in chondrocytes (58).

RANKL and TNFα signaling activate transcription factor NF-κB. It has been reported that RANKL-induced N2ICD associates with p65 subunit of NF-κB to enhance the transcriptional activity of Nfatc1 (7). We confirmed that TNFα induced NF-κB activation; however, this was not different between Notch2^{2_{–/–}}/Ecan^{1_{–/–}} and control cultures. In accordance with this finding, the expression of target genes dependent on NF-κB activation, including Tnfa, Il6, and Nfatc1, but not Il1b, was not different between Notch2^{2_{–/–}}/Ecan^{1_{–/–}} and control cultures treated with TNFα. This would suggest that mechanisms independent of NF-κB activation are responsible for the induction of IL1β as well as for the enhanced osteoclastogenetic response of Notch2^{2_{–/–}}/Ecan^{1_{–/–}} to TNFα. This could entail either direct effects of the N2ICD or effects of HES1 on osteoclastogenesis, possibly by inducing AKT phosphorylation as a result of an inhibition of PTEN.

Serum levels of TNFα were not different between Notch2^{2_{–/–}}/Ecan^{1_{–/–}} and control mice. In addition, the serum from Notch2^{2_{–/–}}/Ecan^{1_{–/–}} and control mice was examined by Proteome Profiler Mouse Cytokine Array (R&D Systems, Minneapolis, MN) to address whether other proinflammatory cytokines were up-regulated in the systemic circulation of Notch2^{2_{–/–}}/Ecan^{1_{–/–}} mice. Few cytokines, including CXC motif chemokine ligand 13, complement component 5a, CD54, M-CSF, and stromal cell-derived factor 1, were detected in both Notch2^{2_{–/–}}/Ecan^{1_{–/–}} and control serum, although there was no significant difference between genotypes (data not shown). These findings coincide with the RNA analysis of Notch2^{2_{–/–}}/Ecan^{1_{–/–}} BMMs, where the induction of inflammatory cytokines was comparable between Notch2^{2_{–/–}}/Ecan^{1_{–/–}} and control cells and observed only after TNFα stimulation. These observations suggest that TNFα is required for Notch2^{2_{–/–}}/Ecan^{1_{–/–}} mice to exhibit an inflammatory response. However, the circumstances leading to a possible increase in local or systemic TNFα in subjects afflicted by HCS are not known.

It has been an issue of controversy whether TNFα has direct effects on osteoclastogenesis or whether it requires RANKL to
exert its actions (59). In this work, we did not detect Tnfsf11 (encoding RANKL) in BMM cultures, treated or not, with TNFα (data not shown) suggesting that the effects observed were secondary to the direct actions of TNFα and not mediated by RANKL. Moreover, there was no difference on the induction of Tnfsf11 by TNFα in Notch2tm1.1Ecan and control osteoblasts (data not shown) so that a differential expression of RANKL does not explain the phenotypic changes observed in Notch2tm1.1Ecan mutant mice under the influence of TNFα.

In conclusion, Notch2tm1.1Ecan mice are sensitized to the actions of TNFα on osteoclastogenesis and bone resorption, possibly explaining the acro-osteolysis observed in individuals affected by HCS.

Experimental procedures

Mice and TNFα-induced osteolysis in vivo

Notch2tm1.1Ecan mice harboring a 6955C→T substitution in the Notch2 locus have been characterized in previous studies (5, 25, 46). Genotyping was conducted in tail DNA extracts by PCR using forward primer Nch2Lox gtF 5′-CCCTTCTCTGTGCCTAG-3′ and reverse primer Nch2Lox gtR 5′-CTCAGAGCCACAGTCCTAC-3′ and reverse primer Nch2Lox gtR 5′-TCAGAGCCACAGTCCTAC-3′ and reverse primer Nch2Lox gtR 5′-TCAGAGCCACAGTCCTAC-3′ and reverse primer Nch2Lox gtR 5′-TCAGAGCCACAGTCCTAC-3′ and reverse primer Nch2Lox gtR 5′-TCAGAGCCACAGTCCTAC-3′. Genotyping was performed using forward primer 5′-CAGCCAGTGTCACACAGACCCG GAACACACACAC 3′ and reverse primer 5′-TCAGAGCCACAGTCCTAC-3′ (IDT).

Two-month-old heterozygous male Notch2tm1.1Ecan mice in a C57BL/6 background and control sex-matched littermates were administered TNFα, at a dose of 2 μg, or PBS by injection in the subcutaneous space over the calvarial vault one day for 4 consecutive days and sacrificed 24 h after the last injection as reported previously (61). TNFα cDNA and expression vector were obtained from S. Lee (Farmington, CT), and TNFα was purified using nickel-nitrilotriacetic acid–agarose columns (Qiagen, Germantown, MD), in accordance with manufacturer’s instructions. To test whether the effect of TNFα on osteolysis in Notch2tm1.1Ecan calvariae can be reversed by blocking NOTCH2 activation, antibodies directed to the NRR of NOTCH2 (anti-NOTCH2 NRR) or control anti-ragweed antibodies at a dose of 10 mg/kg (all from Genentech, South San Francisco, CA) (46) were injected with TNFα at a dose of 2 μg over the calvarial vault of male Notch2tm1.1Ecan mice and sex-matched littermate controls. All animal experiments were approved by the Institutional Animal Care and Use Committee of UConn Health.

Bone histomorphometry

Calvariae were excised and fixed in 10% formalin for 3 days, decalcified in 14% EDTA (pH 7.2) for 7 days, and embedded in paraffin. Histomorphometry of the medial aspect of each calvaria was carried out in 7-μm-thick sections stained with TRAP and hematoxylin (Thermo Fisher Scientific, Waltham, MA). TRAP enzyme histochemistry was conducted using a commercial kit (Sigma), in accordance with manufacturer’s instructions. Stained sections were used to outline bone tissue area and to measure osteoclast number and surface as well as eroded surface at a magnification of ×100 using an OsteoMeasure morphometry system (Osteometrics, Atlanta, GA) (62).

BMM, adenovirus-Cre-mediated gene deletion, and osteoclast formation

To obtain BMMs, the marrow from heterozygous male Notch2tm1.1Ecan mutant and control sex-matched littermate mice was removed by flushing with a 26-gauge needle, and erythrocytes were lysed in 150 mM NH4Cl, 10 mM KHCO3 and...
0.1 mM EDTA (pH 7.4), as described previously (46). Cells were centrifuged, and the sediment was suspended in α-minimum essential medium (α-MEM) in the presence of 10% fetal bovine serum (FBS; both from Thermo Fisher Scientific) and recombinant human M-CSF at 30 ng/ml. M-CSF cDNA and expression vector were obtained from D. Fremont (St. Louis, MO), and M-CSF was purified as reported previously (63). Cells were seeded on plastic Petri dishes at a density of 300,000 cells/cm² and cultured for 3 days.

For osteoclast formation, cells were collected following treatment with 0.25% trypsin/EDTA for 5 min and seeded on tissue culture plates at a density of 62,500 cells/cm² in α-MEM with 10% FBS, M-CSF at 30 ng/ml, and TNFα at 50, 100, or 200 ng/ml, respectively. Cultures were carried out until the formation of multinucleated TRAP-positive cells. TRAP-positive cells containing more than three nuclei were considered osteoclast precursors in the context of multinucleated TRAP-positive cells. TRAP-positive osteoclast precursors were counted in the presence of reverse primers for Notch2 and TNFα.

Quantitative RT-PCR (qRT-PCR)

Total RNA was extracted from osteoclasts with the RNeasy kit (Qiagen, Valencia, CA) and from homogenized calvarial bones with the micro-RNeasy kit (Qiagen), in accordance with manufacturer’s instructions. The integrity of the RNA extracted from bones was assessed by microfluidic electrophoresis on an Experion system (Bio-Rad), and RNA with a quality indicator number equal to or higher than 7.0 was used for subsequent analysis. Equal amounts of RNA were reverse-transcribed using the iScript RT-PCR kit (Bio-Rad) and amplified in the presence of specific primers (all primers were from IDT; Table 1) with the SsoAdvanced™ Universal SYBR Green Supermix (Bio-Rad) at 60 °C for 40 cycles. Transcript copy number was estimated by comparison with a serial dilution of cDNA for Acp5, Csk, Iilb, Iil6, Jag1, Notch2, and Tnfa (all from Thermo Fisher Scientific), Hes1 (American Type Culture Collection (ATCC), Manassas, VA), and Nfat1 (Addgene plasmid 11793 created by A. Rao, La Jolla, CA).

The level of Notch2^{955CC→T} mutant transcript was measured as described previously (5). Total RNA was reverse-transcribed with Moloney murine leukemia virus reverse transcriptase in the presence of reverse primers for Notch2 and Rpl38 (Table 1). Notch2 cDNA was amplified by qPCR in the presence of TaqMan gene expression assay mix, including specific primers (5′-CATCGTACCTTCCA-3′ and 5′-GGATCTGGTACATAAGGG-3′) and a 6-carboxyfluorescein–labeled DNA probe of sequence 5′-CATTGCTAGGAGC-3′ covalently attached to a 3′-minor groove binder quencher (Thermo Fisher Scientific), and SsoAdvanced Universal Probes Supermix (Bio-Rad) at 60 °C for 45 cycles (59). Notch2^{955CC→T} transcript copy number was estimated by comparison with a serial dilution of a synthetic DNA fragment (IDT) containing ~200 bp surrounding the 955CC→T mutation in the Notch2 locus, and cloned into pcDNA3.1(−) (Thermo Fisher Scientific) by isothermal

Table 1

Gene	Strand	Sequence	GenBank™ accession no.
Acp5	Forward	5′-GAGAAAGCTGTCGAGAGAAGAC-3′	NM_001102404; NM_001102405; NM_001102406
Csk	Reverse	5′-GAGTCTGGTATGGGAGTCAG-3′	NM_007802
Hes1	Forward	5′-ACCAGAAGGAGAAGAAATGAACA-3′	NM_008235
Iilb	Reverse	5′-ATTCCTGGCTGGCTGAG-3′	NM_008361
Il6	Reverse	5′-TTGTTGCTTGGTTCTCCTT-3′	NM_00134054; NM_031168
Jag1	Forward	5′-TGGGAACTGTTGTGGTGGAGTCCG-3′	NM_013822
Nfat1	Forward	5′-GCCAAAGTACAGTCTCAAGG-3′	NM_198429; NM_01164110; NM_01164111; NM_01164112; NM_01164159; NM_016791
Notch2	Forward	5′-GAGTCTGGTATGGGAGTCAG-3′	NM_010928
Rpl38	Reverse	5′-GGATCTGGTATGGGAGTCAG-3′	NM_001048057; NM_001048085; NM_023372
Tnfa	Forward	5′-CACCATCAAGGACTAAATGG-3′	NM_01278601; NM_013693
Tnfr1	Reverse	5′-CATTGCTGACTTCTCGTGAAGA-3′	NM_011609
Tnfr2	Forward	5′-GAGTCTGGTATGGGAGTCAG-3′	NM_011610

Notes:
- Tnfr1 and Tnfr2 transcripts were measured as a sum, as transcription of the Tnfr1 and Tnfr2 loci is not regulated independently.
- For Notch2^{955CC→T} mutation, transcript copy number was estimated by comparison with a serial dilution of a synthetic DNA fragment (IDT) containing ~200 bp surrounding the 955CC→T mutation in the Notch2 locus, and cloned into pcDNA3.1(−) (Thermo Fisher Scientific) by isothermal
Notch2 and TNFα

were incubated with anti-NF-κB binding to the biotinylated probe, unlabeled WT or mutated consensus NF-κB binding oligonucleotide was added in excess (10 pmol/well) to the reaction mixture.

Serum TNFα

Serum levels of TNFα were measured in 2- and 12-month-old Notch2tm1.1Ecan male mice and control littermates using a mouse TNFα-uncoated enzyme-linked immunosorbent assay kit in accordance with manufacturer’s instructions (Thermo Fisher Scientific; catalogue 88-7324).

Statistics

Data are expressed as means ± S.D. Statistical differences were determined by Student’s t test or two-way analysis of variance with Holm-Šidák post hoc analysis for pairwise or multiple comparisons, respectively.

Acknowledgments—We thank Genentech for anti-NOTCH2 NRR, anti-JAG1, and control anti-ragweed antibodies; S. Lee for TNFα cDNA; D. Fremont for M-CSF cDNA; M. Glogauer for Tnfsf11 cDNA; A. Rao for Nfatc1 cDNA; Lauren Schilling and Tabitha Eller for technical assistance; and Mary Yurcak for secretarial support.

References

1. Siebel, C., and Lendahl, U. (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol. Rev. 97, 1235–1294 CrossRef Medline
2. Zanotti, S., and Canalis, E. (2016) Notch signaling and the skeleton. Endocr. Rev. 37, 223–253 CrossRef Medline
3. Bai, S., Kopan, R., Zou, W., Hilton, M. J., Ong, C. T., Long, F., Ross, F. P., and Teitelbaum, S. L. (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J. Biol. Chem. 283, 6509–6518 CrossRef Medline
4. Canalis, E., Parker, K., Feng, J. Q., and Zanotti, S. (2013) Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology 154, 623–634 CrossRef Medline
5. Canalis, E., Schilling, L., Yee, S. P., Lee, S. K., and Zanotti, S. (2016) Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis and bone resorption. J. Biol. Chem. 291, 1538–1551 CrossRef Medline
6. Canalis, E., Yu, J., Schilling, L., Yee, S. P., and Zanotti, S. (2018) The lateral meningocele syndrome mutation causes marked osteopenia in mice. J. Biol. Chem. 293, 14165–14177 CrossRef Medline
7. Fukushima, H., Nakao, A., Okamoto, F., Shin, M., Kajiyama, H., Sakano, S., Bigas, A., Jimi, E., and Okabe, K. (2008) The association of Notch2 and NF-κB accelerates RANKL-induced osteoclastogenesis. Mol. Cell. Biol. 28, 6402–6412 CrossRef Medline
8. Hilton, M. J., Tu, X., Wu, X., Bai, S., Zhao, H., Kobayashi, T., Kronenberg, H. M., Teitelbaum, S. L., Ross, F. P., Kopan, R., and Long, F. (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat. Med. 14, 306–314 CrossRef Medline
9. Zanotti, S., and Canalis, E. (2017) Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 103, 159–167 CrossRef Medline
10. Lindsell, C. E., Boulter, J., diSibio, G., Gossler, A., and Weinmaster, G. (1996) Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neuronal development. Mol. Cell. Neurosci. 8, 14–27 CrossRef Medline
11. Canalis, E. (2018) Notch in skeletal physiology and disease. Osteoporos. Int. 29, 2611–2621 CrossRef Medline
12. Sanchez-Izirary, C., Carpenter, A. C., Weng, A. P., Pear, W. S., Aster, J. C., and Blacklow, S. C. (2004) Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol. Cell. Biol. 24, 9265–9273 CrossRef Medline
13. Iso, T., Kedes, L., and Hamamori, Y. (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255 CrossRef Medline
29. Udell, J., Schumacher, H. R., Jr, Kaplan, F., and Fallon, M. D. (1986) Idio-
28. Brown, D. M., Bradford, D. S., Gorlin, R. J., Desnick, R. J., Langer, L. O.,
26. Sakka, S., Gafni, R. I., Davies, J. H., Clarke, B., Tebben, P., Samuels, M.,
25. Yu, J., Zanotti, S., Walia, B., Jellison, E., Sanjay, A., and Canalis, E. (2018)
24. Zanotti, S., Yu, J., Bridgewater, D., Wolf, J. M., and Canalis, E. (2018) Mice
23. Fukushima, H., Shimizu, K., Watahiki, A., Hoshikawa, S., Kosho, T., Oba,
22. Zhao, W., Petit, E., Gafni, R. I., Collins, M. T., Robey, P. G., Seton, M.,
18. Gray, M. J., Kim, C. A., Bertola, D. R., Arantes, P. R., Stewart, H., Simpson, M. A., Irving, M. D., and Robertson, S. P. (2012) Serpine1 fibulina polycystic kidney syndrome is part of the phenotypic spectrum of Hajdu-Cheney syndrome.

Eur. J. Hum. Genet. 20, 122–124 CrossRef Medline

21, 42–48 CrossRef Medline

14. Iso, T., Santorelli, V., Poizat, C., Jezi, S., Wu, H. Y., Chung, G., Kedes, L., and Hamamori, Y. (2001) HERP, a novel heterodimer partner of HES/ E(spl) in Notch signaling. Mol. Cell. Biol. 21, 6080–6089 CrossRef Medline

15. Hajdu, N., and Kauntze, R. (1948) Cranio-skeletal dysplasia. Br. J. Radiol. 21, 42–48 CrossRef Medline

13. Chenalis, E., and Zanotti, S. (2014) Hajdu-Cheney syndrome: a review. Orphanet J. Rare Dis. 9, 200 CrossRef Medline

12. Gray, M. J., Kim, C. A., Bertola, D. R., Arantes, P. R., Stewart, H., Simpson, M. A., Irving, M. D., and Robertson, S. P. (2012) Serpine1 fibulina polycystic kidney syndrome is part of the phenotypic spectrum of Hajdu-Cheney syndrome. Eur. J. Hum. Genet. 20, 122–124 CrossRef Medline

11. Isidor, B., Lindenbaum, P., Pichon, O., Bézieu, S., Dina, C., Jacquottem, S., Martin-Cognard, D., Thauvin-Robinet, C., Le Merrer, M., Mandel, J. L., David, A., Faivre, L., Cormier-Daire, V., Redon, V., and Le Caigenc, C. (2011) Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nat. Genet. 43, 306–308 CrossRef Medline

10. Majewski, J., Schwartzzentuber, J. A., Caqueret, A., Patry, L., Marcador, J., Fyns, J. P., Boycott, K. M., Ste-Marie, L. G., McKiernan, F. E., Marik, I., Van Esch, H., FORGE Canada Consortium, Michaud, J. I., and Samuel, M. E. (2011) Mutations in NOTCH2 in families with Hajdu-Cheney syndrome. Hum. Mutat. 32, 1114–1117 CrossRef Medline

9. Simpson, M. A., Irving, M. D., Asilmaz, E., Gray, M. J., Dafou, D., Elmslie, F. V., Mansour, S., Holder, S. E., Brain, C. E., Burton, B. K., Kim, K. H., Pauli, R. M., Affimos, S., Stewart, H., Kim, C. A., et al. (2011) Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat. Genet. 43, 303–305 CrossRef Medline

8. Zhao, W., Petit, E., Gafni, R. I., Collins, M. T., Robey, P. G., Seton, M., Miller, K. K., and Mannstadt, M. (2013) Mutations in NOTCH2 in patients with Hajdu-Cheney syndrome. Osteopores. Int. 24, 2275–2281 CrossRef Medline

7. Fukushima, H., Shizumi, K., Watahiki, A., Hoshikawa, S., Kosho, T., Oba, D., Sakano, S., Arakaki, M., Yamada, A., Nagashima, K., Okabe, K., Fukushima, S., Jimi, E., Bigas, A., Nakayama, K. I., et al. (2017) NOTCH2 Hajdu-Cheney mutations Escape SCF(E6B7)-dependent proteolysis to promote osteoporosis. Mol. Cell. 68, 645–658.e5 CrossRef Medline

6. Zanotti, S., Yu, J., Bridgewater, D., Wolf, J. M., and Canalis, E. (2018) Mice harboring a Hajdu-Cheney syndrome mutation are sensitized to osteoarthritic Bone 114, 198–205 CrossRef Medline

5. Yu, J., Zanotti, S., Walla, B., Jellison, E., Sanjay, A., and Canalis, E. (2018) The Hajdu Cheney mutation is a determinant of B-cell allocation of the splenic marginal zone. Am. J. Pathol. 188, 149–159 CrossRef Medline

4. Sakka, S., Gafni, R. L., Davies, J. H., Clarke, B., Tebben, P., Samuels, M., Saraff, V., Klauscher, K., Fratzl-Zelman, N., Roschger, P., Rauch, F., and Höglé, W. (2017) Bone structural characteristics and response to bisphosphonate treatment in children with Hajdu-Cheney syndrome. J. Clin. Endocrinol. Metab. 102, 4163–4172 CrossRef Medline

3. Blumenauer, B. T., Cranney, A. B., and Goldstein, R. (2002) Acro-osteolysis and osteoporosis as manifestations of the Hajdu-Cheney syndrome. Clin. Exp. Rheumatol. 20, 574–575 Medline

2. Brown, D. M., Bradford, D. S., Gorlin, R. J., Desnick, R. J., Langer, L. O., Jowsey, J., and Sauk, I. J. (1976) The acro-osteolysis syndrome: morphologic and biochemical studies. J. Pediatr. 88, 573–580 CrossRef Medline

1. Udell, J., Schumacher, H. R., Jr, Kaplan, F., and Fallon, M. D. (1986) Idiopathic familial acroosteolysis: histomorphometric study of bone and literature review of the Hajdu-Cheney syndrome. Arthritis Rheum. 29, 1032–1038 CrossRef Medline

Gu, Q., Yang, H., and Shi, Q. (2017) Macrophages and bone inflammation. J. Orthop. Translat. 10, 86–93 CrossRef Medline

Kwan Tat, S., Padrines, M., Théoleyre, S., Heymann, D., and Fortun, Y. (2004) IL-6, RANKL, TNF-α/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15, 49–60 CrossRef Medline

Fiskul. 18, 496–505 CrossRef Medline

Front. Immunol. 48, 203–210 CrossRef Medline

Nat. Genet. 18, 94–102 CrossRef Medline

Bone Miner. Res. 11, 88–95 CrossRef Medline

Curr. Osteoporos. Rep. 15, 126–134 CrossRef Medline

J. Clin. Invest. 127, 2030–2039 CrossRef Medline

Biol. 43, 3030–3039 CrossRef Medline

Nature 464, 1052–1057 CrossRef Medline

Osteoporosis 2011; 18, 496–505 CrossRef Medline

Nature 464, 1052–1057 CrossRef Medline

J. Biol. Chem. (2019) 294(39) 14203–14214 14213

AsBMBM
Notch2 and TNFα

mutation causing Hajdu–Cheney syndrome. J. Bone Miner. Res. 33, 70–83 CrossRef Medline

49. Zhao, B., Grimes, S. N., Li, S., Hu, X., and Ivashkiv, L. B. (2012) TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J. Exp. Med. 209, 319–334 CrossRef Medline

50. Zanotti, S., Smerdel-Ramoya, A., and Canalis, E. (2011) Hairy and enhancer of split (HES)1 is a determinant of bone mass. J. Biol. Chem. 286, 2648–2657 CrossRef Medline

51. Shang, Y., Smith, S., and Hu, X. (2016) Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell 7, 159–174 CrossRef Medline

52. Rechsteiner, M., and Rogers, S. W. (1996) PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267–271 CrossRef Medline

53. Cenciarelli, C., Marei, H. E., Zonfrillo, M., Casalbore, P., Felsani, A., Gianetti, S., Trevisi, G., Althani, A., and Mangiola, A. (2017) The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets. Oncotarget 8, 17873–17886 CrossRef Medline

54. Palomero, T., Sulis, M. L., Cortina, M., Real, P. J., Barnes, K., Ciofani, M., Caparros, E., Buteau, J., Brown, K., Perkins, S. L., Bhatap, G.,agarwal, A. M., Basso, G., Castillo, M., Nagase, S., et al. (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 CrossRef Medline

55. Wong, G. W., Knowles, G. C., Mak, T. W., Ferrando, A. A., and Zúñiga-Pflücker, J. C. (2012) HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRbeta-selected mouse thymocytes. Blood 120, 1439–1448 CrossRef Medline

56. Xie, S., Chen, M., Yan, B., He, X., Chen, X., and Li, D. (2014) Identification of a role for the PI3K/AKT/mTOR signaling pathway in innate immune cells. PLoS ONE 9, e94496 CrossRef Medline

57. Lee, S. E., Woo, K. M., Kim, S. Y., Kim, H. M., Kwack, K., Lee, Z. H., and Kim, H. H. (2002) The phosphatidylinositol 3-kinase p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 30, 71–77 CrossRef Medline

58. Ottaviani, S., Tahiri, K., Frazier, A., Hassaine, Z. N., Dumontier, M. F., Baschong, W., Rannou, F., Corvol, M. T., Savouret, J. F., and Richette, P. (2010) Hes1, a new target for interleukin 1β in chondrocytes. Ann. Rheum. Dis. 69, 1488–1494 CrossRef Medline

59. Tanaka, S. (2017) RANKL-independent osteoclastogenesis: a long-standing controversy. J. Bone Miner. Res. 32, 431–433 CrossRef Medline

60. Imayoshi, I., Shimogori, T., Ohotsuka, T., and Kageyama, R. (2008) Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development 135, 2531–2541 CrossRef Medline

61. Yeon Won, H., Hwan Mun, S., Shin, B., and Lee, S. K. (2016) Contradictory role of CD97 in basal and tumor necrosis factor-induced osteoclastogenesis in vivo. Arthritis Rheumatol. 68, 1301–1313 CrossRef Medline

62. Dempster, D. W., Compston, J. E., Drezner, M. K., Gleroux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., Recker, R. R., and Parfitt, A. M. (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2–17 CrossRef Medline

63. Lee, S. H., Rho, I., Jeong, D., Sul, J. Y., Kim, T., Kim, N., Kang, J. S., Miyamoto, T., Suda, T., Lee, S. K., Pignolo, R. I., Koczon-Jaremko, B., Lorenzo, J., and Choi, Y. (2006) v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403–1409 CrossRef Medline

64. Kouadjo, K. E., Nishida, Y., Cadrin-Girard, J. F., Yoshioka, M., and St-Amand, J. (2007) Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics 8, 127 CrossRef Medline

65. Zanotti, S., Smerdel-Ramoya, A., and Canalis, E. (2013) Nuclear factor of activated T-cells (NFαc2 inhibits Notch signaling in osteoblasts. J. Biol. Chem. 288, 624–632 CrossRef Medline

66. Sisto, M., Lisi, S., D’Amore, M., and LoRusso, D. D. (2014) Rituixin-mediated Raf kinase inhibitor protein induction modulates NF-kappaB in Sjogren syndrome. Immunology 143, 42–51 CrossRef Medline