Causes and Breaking of Seed Dormancy in Flowering Dogwood (Cornus florida L.)

Hailin Liu, Cunmeng Qian, Jian Zhou, Xiaoyan Zhang, Qiuyue Ma, and Shuxian Li

The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 210037 Nanjing, China

Additional index words. Cornus florida, dormancy, germination, water uptake, endogenous inhibitors, break dormancy

Abstract. Cornus florida seeds show strong dormancy. In this study, we investigated the causes of the dormancy by assessing the permeability of the stony endocarp, the germination of seeds after mechanical dissection, and the effect of endogenous inhibitors. Water uptake by intact and cracked seeds during imbibition showed that the endocarp formed a strong barrier for water absorption. Meanwhile, extracts from endocarp decreased the germination frequency of Chinese cabbage seeds from 99.3% (control) to 2.7%. Therefore, the endocarp was the mechanical barrier and contained endogenous inhibitors for seed germination. However, the germination percentage of decoated seeds and dissected seeds with the exposed radicle were only 13.3% and 28.7%, respectively. It was found that the endosperm also played a role in seed dormancy. Extracts from endosperm decreased the germination frequency of Chinese cabbage seeds from 99.3% (control) to 53.0%. By contrast, extracts from embryo did not affect the germination of Chinese cabbage seeds. When tested with the excised embryos, germination percentage was up to 85.3% at the 16th day of incubation. Taking these results together, we concluded that the endocarp and endosperm were responsible for seed dormancy in C. florida. To break the seed dormancy of C. florida, stratification and soaking in sulfuric acid are the effective means. The highest germination frequency was achieved by immersing seeds in 98% sulfuric acid for 10 minutes, then soaking the seeds in 500 mg L⁻¹ gibberellic acid (GA₃) for 72 hours before cold stratification at 5 °C for 60 days.

Flowering dogwood (C. florida L.), a member of the subgenus Benhamidia in Cornus, is a small- to medium-sized deciduous tree native to eastern North America (Borer et al., 2013; McLemore, 1990; Rushforth, 1999). The species is prized for the ornamental value of the pink, red, or white petal-like, red foliage and bright red berries in autumn. As noted by the U.S. Department of Agriculture Census of Horticultural Specialties (USDA-NASS, 2010) from retail and wholesale sales, in the United States, and especially in states such as Tennessee, C. florida is an economically important ornamental tree and may also be used as an important food source for wildlife in forests when its fruits ripen in autumn (Paul and David, 2008; Stiles, 1980). In addition, C. florida is widely considered as a calcium pump, increasing the rates of mineralization of the forest litter and soil because of the high calcium concentrations in its foliage (Holzmueller et al., 2007; Thomas, 1969).

Typically, C. florida is propagated from seeds, but the seeds usually develop strong dormancy (Coartney et al., 1989), which may be a great challenge for seed reproduction (Dirr and Heuser, 1987). Studied with C. kousa var. Chinensis, Fu et al. (2013) indicated that the dormancy of Chinese dogwood could be classified as physiological dormancy due to the existence of inhibitory substances in the endosperm. However, the causes of C. florida seed dormancy remains largely unknown thus far, except that Laufmann and Wiesner (1998) reported rapid germination of eastern dogwood (C. florida cv. Small) by embryo extraction, cut cotyledons, and GA₃. Normal seed germination of C. florida requires a moist prechill treatment at 3–5 °C for 3–4 months. In this study, we aimed to identify the multifaceted causes and to establish a practical and powerful method to successfully break the seed dormancy of C. florida that can be applied in seed reproduction practice.

Materials and Methods

Source of seeds. The seed of C. florida is encased within a stony endocarp pit (hereafter seeds with endocarp are referred to as the seed). In this study, the seeds of C. florida were imported via Lovelace Seed Company (Elbsberry, MO) in Spring 2013 and stored at 4 °C. The seeds were collected from Knoxville, TN.

Water permeability of the endocarp. To test whether the hard stony endocarp may restrict water imbibition for germination, two experiments were performed to test the water absorption capability of the seed. In Expt. I, 30 intact seeds enclosed within the endocarp were weighed on an electronic balance accurately to 0.001 g, then were immersed in 200 mL distilled water at room temperature for 168 h. At 12-hour intervals, the seeds were removed from the water, surface dried using filter paper, and weighed. The seeds were then reimmeasured. The final weight measurement was recorded after soaking for 14 cycles for 168 h. In Expt. II, the same procedure was repeated except for the fact that the endocarp was cracked in the micropylar region of pliers, otherwise, the procedures were identical to those used in Expt. I. The two experiments were conducted using three replicates of 30 seeds each. In each experiment, the water uptake ratio was calculated and expressed as a percentage of the seed fresh weight.

Germination after mechanical manipulation. Three experiments were performed to identify whether different tissues restrict the germination of C. florida seeds. Before the experiments, seeds were treated as follows: a) the stony endocarp was completely removed following breakage using a pair of pliers (“decocated seeds”) (Fig. 1B); b) the decoated seeds were carefully dissected using a single-side blade to expose the radicle (“radicle-exposed seeds”) (Fig. 1B); and c) the embryo was excised from the seed (Fig. 1C). After these preliminary treatments, the materials were incubated on moist absorbent cotton at 25 °C and an 8-h photoperiod. During incubation, the seeds were watered every 2 d. Germination was monitored every second day for 16 d. The germination percentage was determined in accordance with the International Seed Testing Association (ISTA) (2011) guidelines. Three replicates of 50 seeds were used in each of the three experiments.

Extraction of inhibitors of seeds. Inhibitors of C. florida seed germination were extracted from the endocarpic pit, the endosperm, and the embryo using methanol as the extract solvent. The extraction procedure was conducted as that described by Hou et al. (2014). First, the endocarps, the endosperms, and the embryos were excised separately. Then, the endocarps were ground into powder in a mill grinder, and the endosperms and the embryos were separately ground into powder in liquid nitrogen. The powdered samples were extracted with methanol in a soxhlet apparatus. The extracts were obtained by the following procedures: the powdered samples (2.5 g) were suspended separately in 40 mL of 80% (v/v) methanol at 5 °C for 24 h three times. Subsequently, the combined supernatants from the extractions for each tissue were evaporated under vacuum at 37 °C to remove the solvent completely. Finally, 2 mL of each extract was diluted to 100 mL with distilled water.

The activity of inhibitors in the extracts was determined by incubating nondormant Chinese cabbage seeds in petri dishes moistened with the extracts. Three replicates of
100 cabbage seeds were used for each extract. Seeds in each replicate petri dish were soaked in 5 mL of the extract solution for 3 h, whereas control seeds were soaked in distilled water for the same period. The seeds were incubated in a growth chamber at 25 °C with an 8-h/16-h (light/dark) photoperiod. Seedling emergence was counted daily for 6 d. A seedling was classified as emergent in accordance with the ISTA (2011) rules. Germination percentage was calculated based on the number of normal seedlings that emerged as a proportion of the total number of seeds sown.

Evaluation of methods to break seed dormancy. We applied the following treatments to evaluate their capability to break the dormancy of C. florida seeds. In treatment 1, seeds were immersed in 500 mg·L⁻¹ GA₃ for 48, 60, 72, and 84 h at room temperature. A parallel control was conducted using seeds imbibed in water for 84 h without GA₃. The water or GA₃ solution was changed twice daily (Hartmann et al., 1989). After soaking, the seeds were stratified at 5 °C (cold stratification) for 90 d. In treatment 2, seeds were soaked as in treatment 1, but were stratified during the day at 15 °C and during the night at 5 °C (alternative stratification) for 90 d. During stratification, water was added to keep the sand with water-holding capacity of 50% to 60%. In treatment 3, seeds were soaked in concentrated sulfuric acid (98%) with seeds: acid of 1:2 (v/v) for 0, 5, 10, or 20 min (chemical scarification). During treatment, the solutions were stirred continuously with a glass rod. After chemical scarification, the seeds were washed in running water for 24 h. Next, the seeds were soaked in 500 mg·L⁻¹ GA₃ for 72 h and stratified at 5 °C for 60 d.

After completion of the stratification treatment, the germinability of four replicates of 50 seeds each was tested in moistened sand at 25 °C with an 8-h/16-h (light/dark) photoperiod. The number of germinated seeds was counted every other day for 30 d. During the germination test, water was added to keep the seeds moist. A seedling was classified as emergent in accordance with the ISTA (2011) rules. The germination percentage was calculated as described above.

Statistical analysis. A completely randomized design was used in all experiments. The effect of the treatments was assessed by the final germination percentage for each trial. The significance of differences between the means was assessed using the least significant difference (LSD) test with SPSS v19.0 (http://support.spss.com/).

Results

Water absorption by C. florida seeds. The cracked seeds absorb water more rapidly than the intact seeds. The water uptake by cracked seeds increased to a saturation level of 16.9% in 24 h, and then leveled off. In contrast, the water uptake by intact seeds only increased to 7.3% in 24 h, and it would take at least 168 h for the intact seeds to achieve a nearly saturation level of water uptake (Fig. 2).

Germination after mechanical manipulation of seeds. The excised embryos showed no dormancy. After incubation for 7 d, the embryonic axis elongated and the cotyledons of excised embryos started to expand and turned green (Fig. 1D). The germination percentage was 85.3% after 16 d of incubation. In contrast, the germination percentage of decoated and radicle-exposed seeds were only 13.3% and 28.8%, respectively, after 16 d of incubation.

Inhibitor activity of extracts from C. florida seeds. Extracts from the excised embryos of C. florida showed no significant effect on cabbage seed germination (P = 0.217) comparing to the control, whereas extracts from the endosperm significantly (P < 0.001) reduced the percentage germination of cabbage seeds from 99.3% (control) to 53.0%. Soaking cabbage seeds in the same concentration of extracts from the endocarp had an even more significant (P < 0.001) negative effect on cabbage seed germination (reduced to 2.7%). It indicates that both the endosperm and the endocarp contain endogenous inhibitors, which play an important role in the dormancy of C. florida seeds.

Effects of cold and chemical scarification on C. florida seed germination. Germination responses under different GA₃ soaking periods combined with stratification treatments showed significant differences. Generally, with increasing duration of soaking in GA₃ up to 72 h, seed germination increased significantly (P < 0.05) in both treatment 1 and treatment 2. Compared with the control (soaking in GA₃ for 0 h combined with 90 d of cold stratification), for which 22.3% germination was recorded, seed germination increased to 79.0% when seeds were soaked in GA₃ for 72 h followed by 90 d of cold stratification (Table 1). For the same duration of soaking in GA₃, germination in treatment 1 (cold stratification) was slightly higher than that in treatment 2 (alternative stratification), except for soaking in GA₃ for 0 and 60 h (Table 1). Statistical analysis showed that the effect on seed germination of cold stratification was not significantly different from that of alternative stratification (P > 0.05). However, we observed that the germination speed was more erratic when seeds were treated with alternative stratification. Therefore, seeds were only cold stratified at 5 °C (cold stratification) in treatment 3. It is also notable that soaking seeds in GA₃ for 72 h had the best effect on seeds germination in both treatment 1 and treatment 2 (Table 1), thus only 72 h-GA₃ soaking was performed in treatment 3.

To shorten the duration of cold stratification, seeds were scarified in sulfuric acid before GA₃ soaking (72 h) in treatment 3. With chemical scarification, most seeds germinated at cold stratification of 60 d, and we achieved seed germination percentage of 81.8% at cold stratification of 60 d when seeds were first scarified in sulfuric acid for 10 min (Table 1). Thus, chemical scarification shorten the duration of cold stratification from 90 to 60 d. However, if we increased the scarification duration to 20 min, seed germination percentage would be greatly reduced (lowered to 5.5%). This indicated that excessive chemical scarification would cause damage to the seeds.

Discussion

Causes of C. florida seed dormancy. Water uptake is a fundamental requirement for the completion of seed germination (Manz et al., 2005). In this study, water absorption by intact seeds increased slowly...
A significance test was made for germination percentages of seeds soaking in sulfuric acid for different durations.

Table 1. Effects of different treatments on *C. florida* seed germination.

Treatment	Duration in sulfuric acid (min)	Stratification	Germination percentage of different GA$_3$ soaking time treatments (%)				
			0 h	48 h	60 h	72 h	80 h
Treatment 1	0	Cold stratification for 90 d	22.3 ± 0.3 a	39.7 ± 0.9 b	50.3 ± 1.5 c	79.0 ± 1.5 e	74.7 ± 1.2 d
Treatment 2	0	Alternative stratification for 90 d	25.5 ± 0.5 a	28.3 ± 1.2 a	51.5 ± 1.2 b	74.8 ± 0.9 d	56.3 ± 0.9 c
Treatment 3	0	Cold stratification for 60 d	22.3 ± 0.3 a	39.7 ± 0.9 b	50.3 ± 1.5 c	79.0 ± 1.5 e	74.7 ± 1.2 d
	5		20.8 ± 0.2 a	37.3 ± 1.2 a	50.3 ± 1.5 c	78.0 ± 1.5 e	74.7 ± 1.2 d
	10		19.8 ± 0.2 a	36.5 ± 1.2 a	50.3 ± 1.5 c	78.0 ± 1.5 e	74.7 ± 1.2 d

Values of germination percentage are displayed with the mean ± SE (n = 50). In treatment 1 and treatment 2, germination percentages followed by the same letters in the same row indicated no significant difference at $P \leq 0.05$ by the LSD test, whereas those followed by different letters in the same row indicated significant difference at $P \leq 0.05$ by the LSD test. Both treatment 1 and treatment 2 indicated that soaking seeds in GA$_3$ for 72 h had the best effect on seed germination, thus only 72 h-GA$_3$ soaking was performed in treatment 3 (“—” indicates germination is not carried out at the corresponding period of GA$_3$ treatments). In treatment 3, significance test was made for germination percentages of seeds soaking in sulfuric acid for different duration.

Fig. 2. Water absorption curves of the intact and cracked seeds of *C. florida*.

Fig. 2. Water absorption curves of the intact and cracked seeds of *C. florida*.

Literature Cited

Baskin, J.M. and C.C. Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14:1–16.

Bewley, J.D. and M. Black. 1982. Viability, dormancy and environmental control. Physiology and biochemistry of seeds in relation to germination, Vol. 2. Springer-Verlag, New York, NY.

Bhatt, I.D., R.S. Rawal, and U. Dhar. 2000. A high value tree species of Kumaun Himalaya, India. Seed Sci. Technol. 28:597–606.
Borer, C.H., S.G. Sapp, and L.H. Hutchinson. 2013. Flowering dogwood (*Cornus florida* L.) as mediator of calcium cycling: New insights are revealed by analysis of foliar partitioning. Trees 27:841–849.

Coartney, J.S., W.R. Luckham, and P.L. Smeal. 1989. A guide to the commercial production of dogwoods, Vol. 430. Virginia Cooperative Extension Service.

Cohn, M.A. 1987. Mechanisms of physiological seed dormancy. Symposium on seed and seedbed ecology of rangeland plants, p. 21–23. Tucson, AZ.

Cohn, M.A. 1990. Factors influencing the efficacy of dormant-breaking chemicals, p. 261–267. In: R.B. Taylorson (ed.). Recent advances in the development and germination of seeds. Plenum Press, New York, NY.

Dirr, M.A. and C.W. Heuser. 1987. The reference manual of woody plant propagation: From seed to tissue culture. Varsity Press, Athens.

Ertekin, M. 2010. Improving germination of Judas tree (*Cercis siliquastrum*) seeds by hormone treatment. Seed Sci. Technol. 38:595–601.

Everitt, J.H. 1983. Seed germination characteristics of three woody plants species from south Texas. J. Range Mgt. 36:411–414.

Fu, X.X., H.N. Liu, X.D. Zhou, and X.L. Shang. 2013. Seed dormancy mechanism and dormancy breaking techniques for *Cornus kousa* var. *chinaensis*. Seed Sci. Technol. 41:458–463.

Hartmann, H.T., D.E. Kester, and E.T. Davies. 1989. Plant propagation: principals and practices, 5th ed. Prentice Hall, Englewood Cliffs, NJ.

Holzmüller, E.J., S. Jose, and M.A. Jenkins. 2007. Relationship between *Cornus florida* L. and calcium mineralization in two southern Appalachian forest types. For. Ecol. Mgt. 245:110–117.

Hou, J., H.L. Liu, Q.Y. Ma, W.W. Wei, T.M. Yin, and S.X. Li. 2014. Development of dormancy in seeds of *Sapium sebiferum* (L.) Roxb. during maturation. Prop. Ornam. Plants 14:13–19.

ISTA, International Seed Testing Association. 2011. International rules for seed testing. International Seed Testing Association, Zurich, Switzerland.

Laufmann, J.E. and L.E. Wiesner. 1998. Rapid germination of eastern dogwood (*Cornus florida* L. cv. Small) using embryo extraction, cut cotyledons and gibberellic acid. Seed Technol. 20:99–105.

Li, S.X., H.B. Gu, Y. Mao, T.M. Yin, and H.D. Gao. 2012. Effects of tallow tree seed coat on seed germination. J. For. Res. 23:229–233.

Li, S., T. Shi, F. Kong, Q. Ma, Y. Mao, and T. Yin. 2013. Methods for breaking the dormancy of eastern redbud (*Cercis canadensis*) seeds. Seed Sci. Technol. 41:27–35.

Manz, B., K. Müller, B. Kucera, F. Vollke, and M.G. Leubner. 2005. Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiol. 138:1538–1551.

Mark, P.B. 1994. A review of plant embryo culture. HortScience 29:1243–1246.

McLemore, B.F. 1990. *Cornus florida* L. flowering dogwood. Silvics of North Amer. 2:278.

Murat, Z., T. Zeynal, and U. Halil. 2010. The effects of different acid treatment and stratification duration on germination of *Cercis siliquastrum* L. seeds. Not. Bot. Hort. Agrobo. 38:159–163.

Paul, F.S. and J.G. David. 2008. *Loss of Cornus florida* L. leads to significant changes in the seedling and sapling strata in an eastern deciduous forest. J. Torrey Bot. Soc. 135:506–515.

Rushforth, K. 1999. Trees of Britain and Europe. HarperCollins Publisher, London.

Stiles, E.W. 1980. Patterns of fruit presentation and seed dispersal in bird-disseminated woody plants in the eastern deciduous forest. Amer. Nat. 116:670–688.

Thomas, W.A. 1969. Accumulation and cycling of calcium by dogwood trees. Ecol. Monogr. 39:101–120.

United States Department of Agriculture, National Agricultural Statistics Service (USDA-NASS). 2010. Department of Agriculture, Washington DC.