A fast algorithm for computing the Boys function

Gregory Beylkin

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA

Sandeep Sharma

Department of Chemistry, University of Colorado, Boulder, CO 80302, USA

We present a new fast algorithm for computing the Boys function using a nonlinear approximation of the integrand via exponentials. The resulting algorithms evaluate the Boys function with real and complex valued arguments and are competitive with previously developed algorithms for the same purpose.

1. INTRODUCTION

The Boys function

\[F(n, z) = \int_0^1 e^{-st^2} t^{2n} dt = \frac{1}{2} \int_0^1 e^{-z_s} s^{n-1/2} ds, \]

appears in problems of computing Gaussian integrals, and over the years, there were many algorithms proposed for its evaluation, see e.g.\cite{2}. The Boys function is related to a number of special functions, for example the error function and the incomplete Gamma function, and (for pure imaginary argument) to the Fresnel integrals.

It is common (see e.g.\cite{6}) to use recursion to compute the Boys function for different \(n \). The recursion is obtained via integration by parts,

\[F(n, z) = -\frac{1}{2z} \int_0^1 \frac{d}{ds} (e^{-zs}) s^{n-1/2} ds \]

\[= \frac{n-1/2}{z} F(n-1, z) - \frac{1}{2z} e^{-z}, \]

and can be run starting with \(n = 1 \) so that we need to have the value \(F(0, z) \) or starting from a large \(n = n_{\text{max}} \) and going to \(n = 1 \)

\[F(n-1, z) = \frac{z}{n-1/2} F(n, z) + \frac{1}{2(n-1/2)} e^{-z}, \]

so that we need to have the value \(F(n_{\text{max}}, z) \). In order to avoid a loss of accuracy, the choice of which recursion to use depends on the size \(z \) and \(n_{\text{max}} \). Iterating recursion (2), the dominant term expressing \(F(n, z) \) via \(F(0, z) \) is \(\prod_{j=1}^n (j-1/2)/z^n \). We set

\[z^* = \left(\prod_{j=1}^n (j-1/2) \right)^{1/n} \]

and choose (2) when \(|z| \geq z^* \) and (3) if \(|z| < z^* \). For example, if \(n_{\text{max}} = 18 \) then \(z^* \approx 6.75 \). We note that other choices of the parameter \(z^* \) are possible.

At each step, recursions (2) and (3) require only three multiplications and one addition (since the coefficients can be computed in advance and stored), so it is hard to obtain a more efficient alternative if one needs to compute these functions for a range of \(n \), \(1 \leq n \leq n_{\text{max}} \). In order to initialize these recursions, we need fast algorithms for computing \(F(0, z) \) and \(F(n_{\text{max}}, z) \). Computing \(F(0, z) \) for real \(z \) is straightforward since

\[F(0, z) = \int_0^1 e^{-st^2} dt = \frac{\sqrt{\pi} \text{Erf}(\sqrt{z})}{2\sqrt{\pi}}. \]

For a real argument an optimized implementation of the error function \(\text{Erf} \) is available within programming languages. For a complex argument we present an algorithm for computing \(F(0, z) \) using nonlinear approximation of the integrand following the approach in\cite{10}. We obtain a rational approximation of \(F(0, z) \) with an additional exponential factor.

We note that, as a function of complex argument, the Boys function \(F(0, z) \) can be highly oscillatory. In particular, if \(z \) is purely imaginary, then the Boys function is related to the Fresnel integrals,

\[S(y) = \int_0^y \sin \left(\frac{\pi t^2}{2} \right) dt, \quad C(y) = \int_0^y \cos \left(\frac{\pi t^2}{2} \right) dt, \]
so that

$$C(y) - iS(y) = \int_0^y e^{-i\frac{z^2}{2}}dt = y \int_0^1 e^{-i\frac{y^2}{2}} ds = yF\left(0, i\frac{\pi}{2} y^2\right).$$ \hfill (5)$$

For computing $F(n_{\text{max}}, z)$, instead of tabulating this function as it is done for real argument in e.g. 12,13,15,16, we use a nonlinear approximation of the integrand in (1) (see 11) leading an approximation of the Boys function valid for the complex argument $\Re e(z) \geq 0$ with tight error estimates. For $\Re e(z) < 0$ we compute $e^z F(n, z)$ instead of $F(n, z)$. Based on these approximations, we develop two algorithms, for real and complex valued arguments. We refer to 3,4,8,14,15,17,18 for previously developed algorithms for the Boys function with complex argument. The complex argument appears in a number of problems, for example, in calculations with mixed Gaussian/plane wave bases in molecules and scattering problems 12,13,14,15,16, in the context of complex scaling calculations 17 of excited states, and in using gauge invariant basis functions for calculating magnetic properties 18.

II. APPROXIMATION OF $F(0, z)$ FOR COMPLEX VALUED ARGUMENT

We have

$$F(0, z) = \int_0^1 e^{-\sigma^2} dt = \frac{1}{2} \int_0^1 e^{-\sigma s^{-1/2}} ds$$ \hfill (6)$$

and use the integral

$$s^{-1/2} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-\sigma^2} dt$$ \hfill (7)$$

to obtain

$$F(0, z) = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{1 - e^{-(t^2 + z)}}{t^2 + z} dt = \frac{1}{\sqrt{\pi}} \int_0^\infty q(t^2 + z) dt,$$ \hfill (8)$$

where

$$q(\xi) = \left(1 - e^{-\xi}\right) / \xi, \quad \xi \in \mathbb{C}$$

is an analytic function. An algorithm for computing $F(0, z)$ is essentially a quadrature for the integral in (8). Note that if, instead, we were to use a quadrature to compute $F(0, z)$ via integrals in (6) then, for each z, we would need to evaluate as many exponentials as the number of quadrature terms. Importantly, when using (8), we need to evaluate e^{-z} only once and then use the result as a factor.

A. The case $\Re e(z) \geq 0$.

We split the integral (6) into three terms

$$F(0, z) = \frac{1}{\sqrt{\pi}} \int_0^{t_{\text{max}}} \frac{1}{t^2 + z} dt \quad - \quad e^{-z} \int_0^{t_{\text{max}}} \frac{e^{-t^2}}{t^2 + z} dt \quad - \quad e^{-z} \int_{t_{\text{max}}}^\infty \frac{e^{-t^2}}{t^2 + z} dt,$$ \hfill (9)$$

and observe that the last term in (9) (without the factor e^{-z}) is estimated as

$$\left| \frac{1}{\sqrt{\pi}} \int_{t_{\text{max}}}^\infty \frac{e^{-t^2}}{t^2 + z} dt \right| \leq \frac{1}{\sqrt{\pi}} \int_{t_{\text{max}}}^\infty \frac{e^{-t^2}}{t^2} dt \leq \frac{1}{\sqrt{\pi}} \int_{t_{\text{max}}}^\infty \frac{e^{-t^2}}{t^2} dt = \frac{1}{\sqrt{\pi}} \left(\frac{e^{-t_{\text{max}}}}{t_{\text{max}}} - \sqrt{\pi} \text{Erfc}(t_{\text{max}}) \right) = \epsilon_{t_{\text{max}}},$$ \hfill (10)$$
Selecting \(t_{\text{max}} = e^{7/4} \) to obtain \(\epsilon_{\text{max}} \approx 5.9 \cdot 10^{-18} \). For the first term in (9) we have

\[
\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{1}{t^2 + z} dt = \frac{1}{2} \sqrt{\pi \over z}.
\]

For \(|z| \geq r_0 = 0.35 \) we use quadrature (see Appendix for details) to approximate the second term in (9) as

\[
\left| \frac{1}{\sqrt{\pi}} \int_{0}^{t_{\text{max}}} e^{-t^2} dt - \sum_{m=1}^{M} W_m e^{-\eta_m} \frac{\eta_m}{\eta_m + z} \right| \leq \epsilon,
\]

where \(M = 22 \) and nodes and weights are given in Table I. We note that it is possible to use the standard Gauss-Legendre quadrature on the interval \([0,t_{\text{max}}]\) but the number of terms, \(M \), will be larger. As a result we obtain approximation

\[
\left| F(0,z) - \left(\frac{1}{2} \sqrt{\pi \over z} - \frac{1}{2} e^{-z} \sum_{m=1}^{22} W_m e^{-\eta_m} \frac{\eta_m}{\eta_m + z} \right) \right| \leq 2\epsilon + \epsilon_{\text{max}}, \quad |z| \geq r_0.
\]

B. The case \(\Re e(z) < 0 \)

In this case, we compute \(e^x F(0,z) \) rather than \(F(0,z) \). Since the denominator in (8) can be zero, we cannot separate terms in \(q(t^2 + z) \) as in (9). Instead, we split the integral (8) into two terms and obtain

\[
e^x F(0,z) = \frac{e^x}{\sqrt{\pi}} \int_{0}^{t_{\text{max}}} \frac{1 - e^{-\left(t^2 + z\right)}}{t^2 + z} dt + \frac{1}{\sqrt{\pi}} \int_{t_{\text{max}}}^{\infty} e^x - e^{-t^2} dt.
\]

The first term in (13) is approximated by using the Gauss-Legendre quadrature on the interval \([0,t_{\text{max}}]\). The function \(q \) is analytic and, therefore, there is no singularity at \(t^2 = -z \). Since we can compute derivatives of \(q \), the error introduced by this quadrature can be estimated using results in (12) (Section 5.2). For example, we obtain

\[
\left| \frac{1}{\sqrt{\pi}} \int_{0}^{t_{\text{max}}} e^x - e^{-t^2} dt - \frac{1}{\sqrt{\pi}} \sum_{m=1}^{M^g} \eta_m^g e^x \left(1 - e^{-\left(\eta_m^g + z\right)} \right) \right| \leq \epsilon^g
\]

with \(M^g = 16 \) and \(\epsilon^g \approx 10^{-14} \) where \(t_m, \eta_m^g \) are the standard Gauss-Legendre nodes and weights on the interval \([0,t_{\text{max}}]\). In the second term in (13), we drop \(e^{-t^2} \) (since its contribution is less than \(e^{-t_{\text{max}}^2} \approx 4.2 \cdot 10^{-15} \)) and obtain

\[
\frac{1}{\sqrt{\pi}} \int_{t_{\text{max}}}^{\infty} e^x dt = e^x \text{Arctan} \left(\sqrt{\frac{x}{t_{\text{max}}}} \right).
\]

While we obtain an explicit expression, computing arctangent of a complex argument is relatively expensive. For a complex argument, we evaluate arctangent using

\[
\text{Arctan}(z) = \frac{1}{2} \log \frac{1 - iz}{1 + iz}.
\]

As a result of dropping \(e^{-t^2} \) in the second term of (13), our approximation in (14) has a singularity at \(z = -t_{\text{max}}^2 \). In order to avoid using (14) in the vicinity of singularity, we use two different parameters, \(t_{\text{max}} \) and \(t_{\text{max},1} \) and switch to the version with \(t_{\text{max},1} \) if \(|z| + t_{\text{max},1}^2 \leq 1/2 \), where \(t_{\text{max},1} = \sqrt{t_{\text{max}}^2 + 1} \).

We note that it is possible to increase the number of terms in the quadrature in order to avoid evaluating arctangent. This might be of interest on a parallel (GPU or multi-core) computer since computation of quadrature terms is trivially parallel. As a result, we obtain approximation

\[
\left| e^x F(0,z) - \frac{e^x}{\sqrt{\pi z}} \text{Arctan} \left(\sqrt{\frac{z}{t_{\text{max}}}} \right) - \frac{1}{\sqrt{\pi}} \sum_{m=1}^{M^g} \eta_m^g e^x \left(1 - e^{-\left(\eta_m^g + z\right)} \right) \right| \leq \tilde{\epsilon}, \quad |z| + t_{\text{max}}^2 > 1/2,
\]
where $\tilde{\epsilon} \approx 10^{-14}$. For $|z| > t_{\text{max}}^2$, we have a converging series for the second integral in (9) as follows:

$$
\int_0^{t_{\text{max}}} e^{-t^2} \frac{dt}{t^2 + z} = \frac{1}{z} \int_0^{t_{\text{max}}} \frac{e^{-t^2}}{t^2/z + 1} dt
$$

$$
= \frac{1}{z} \sum_{j=0}^{\infty} (-1)^j z^{-j} \int_0^{t_{\text{max}}} e^{-t^2} t^{2j} dt
$$

$$
= \frac{1}{2z} \sum_{j=0}^{\infty} (-1)^j z^{-j} \left(\Gamma(j + 1/2) - \Gamma(j + 1/2, t_{\text{max}}^2) \right)
$$

$$
= \frac{1}{z} \sum_{j=0}^{\infty} (-1)^j z^{-j} t_{\text{max}}^{2j+1} F(j, t_{\text{max}}^2)
$$

(16)

so that we can use

$$
\left| F(0, z) - \left[\frac{\sqrt{\pi}}{2\sqrt{z}} - \frac{e^{-z}}{2\sqrt{\pi z}} \sum_{j=0}^{J} (-1)^j z^{-j} \left(\Gamma(j + 1/2) - \Gamma(j + 1/2, t_{\text{max}}^2) \right) \right] \right| \leq \epsilon_{\text{max}}, \ |z| > t_{\text{max}}^2,
$$

(17)

instead of (12) and

$$
\left| e^z F(0, z) - \left[\frac{\sqrt{\pi}}{2\sqrt{z}} - \frac{1}{2\sqrt{\pi z}} \sum_{j=0}^{J} (-1)^j z^{-j} \left(\Gamma(j + 1/2) - \Gamma(j + 1/2, t_{\text{max}}^2) \right) \right] \right| \leq \epsilon_{\text{max}}, \ |z| > t_{\text{max}}^2,
$$

(18)

instead of (15). Since the parameter t_{max} is fixed, the coefficients of the series are computed offline.

Note that the series in (16)-(17) is related to the asymptotic expansion of $F(0, z)$ (see e.g. [3]),

$$
F(0, z) \sim \frac{1}{2} \sqrt{\frac{\pi}{2\sqrt{z}}} - \frac{\sqrt{\pi} e^{-z}}{2z} \sum_{j=0}^{J} \frac{z^{-j}}{\Gamma(\frac{1}{2} - j)}
$$

$$
= \frac{1}{2} \sqrt{\frac{\pi}{2\sqrt{z}}} - \frac{e^{-z}}{2\sqrt{\pi z}} \sum_{j=0}^{J} (-1)^j z^{-j} \Gamma(j + 1/2).
$$

(19)

We use (17) and (18) for $|z| \geq 100$ so that it is sufficient to keep only seven terms yielding an error of less than 10^{-13}.

For $|z| \leq r_0$ we use the Taylor expansion of (5),

$$
F(0, z) = \sum_{j=0}^{\infty} \frac{(-1)^j z^j}{j!(2j+1)}.
$$

(20)

and we need 10 terms to maintain an accuracy of about 13 digits. While selecting parameters as above leads to algorithms with a reasonable speed, we did not optimize these choices as they may depend on several factors, e.g. computer architecture.

Since the Boys function $F(0, z)$ is related to the error function (and can be used to compute it), we compared the speed of our algorithm with that of the well-known algorithm by Gautschi[20] for computing the error function with complex argument using a rational approximation of the closely related Faddeeva function. The speed of that algorithm was measured in comparison with the speed of computing $\exp(z)$. In[20] it is stated that with an accuracy of ~ 10 digits, the code is $7 - 15$ times slower than the speed of computing $\exp(z)$. Using the same comparison for our algorithm, this ratio is ~ 12 for an accuracy of about 13 digits. Our algorithm is implemented using Fortran 90 compiled by Intel’s ifort with compiler flags -O3 -ipo -static and running on a laptop with ≈ 2.3 GHz chipset. We timed our code by performing 10^6 evaluations yielding $\approx 0.92 \cdot 10^{-7}$ seconds per evaluation in comparison with $\approx 0.79 \cdot 10^{-8}$ seconds per evaluation for $\exp(z)$ with a complex argument.

While algorithms for computing the Fresnel integrals appear to be somewhat faster than using the Boys function in (5) (see e.g.[21]), we note that the generalized Fresnel integrals, e.g. $\int_0^z e^{i\theta^2} d\theta$, $n \geq 2$, can be evaluated using our approach and plan to consider algorithms for these oscillatory special functions elsewhere.
Since \(w \) where \(\eta \in \mathbb{C} \) and estimate \(\hat{q} \). We obtain approximation
\[
\hat{q} = \left(1 - e^{-z} \right) / z
\]
Indeed, denoting the factor on the right hand side of \((23) \), \(q(z) = (1 - e^{-z}) / z \), we have
\[
q(z) = \frac{1}{2} \left(e^{-z} q(z) + q(z) \right)
\]
and, therefore, for $\Re e (z) \geq 0$

$$|q(2z)| \leq |q(z)|.$$

This implies that $|q(z)|$ reaches its maximum at $z = 0$, where $q(0) = 1$.

If $\Re e (z) < 0$ we compute $e^z F (0, z)$ instead of $F (0, z)$,

$$e^z F (n, z) = \frac{1}{2} \int_0^1 e^{z (1-s)} s^{n-1/2} ds = \frac{1}{2} \int_0^1 e^{z s} (1-s)^{n-1/2} ds.$$

Using (22) we obtain

$$e^z F (n, z) = \frac{1}{2} \sum_{m=1}^M w_m \int_0^1 e^{z s} e^{\eta_m s} ds = \frac{1}{2} \int_0^1 e^{z s} \left[g_n (s) - \sum_{m=1}^M w_m e^{\eta_m s} \right] ds$$

and the estimate

$$\left| e^z F (n, z) - \frac{1}{2} \sum_{m=1}^M w_m \frac{e^{z + \eta_m} - 1}{z + \eta_m} \right| \leq \frac{\varepsilon}{2} \frac{e^{\Re e(z)} - 1}{\Re e(z)} \leq \frac{\varepsilon}{2},$$

For computing values of $e^z F (n, z)$ for $0 \leq n \leq n_{\text{max}}$ for $\Re e (z) < 0$, we use recursions

$$e^z F (n, z) = \frac{n-1/2}{z} e^z F (n-1, z) - \frac{1}{2z}$$

instead of (2) and

$$e^z F (n-1, z) = \frac{2z}{2n-1} e^z F (n, z) + \frac{1}{2n-1}$$

instead of (3).

IV. IMPLEMENTATION DETAILS

The speed of computation of values of $F (n_{\text{max}}, z)$ for $n_{\text{max}} \geq 7$ depends on the number of terms M in approximation (22). We demonstrate the results of approximating $F (12, z)$ and display function $g_{12} (s)$ in Figure 1. Using only 13 terms (see Table II), we achieve accuracy for $F (12, z)$ $\varepsilon \approx 2 \cdot 10^{-14}$ (e.g. accuracy of evaluation of $F (12, 0)$ is $2.08 \cdot 10^{-14}$).

In implementing this approximation, we need to isolate cases where z is close to $-\eta_m$ by using the Taylor expansion for $\frac{1-e^{-z+\eta_m}}{e^z+\eta_m}$. Since most of η_m have imaginary part, it is a minimal effort if z is real since η_m is real in only three terms in our example in Table II. In addition, for the real argument z, we need to use only five terms with complex valued parameters as they come in complex conjugate pairs.

We implemented these algorithms using Fortran 90 on a laptop described in Section II. Computing the Boys functions $F (n, z)$ for $n = 0, \ldots 12$ for the real argument takes $\approx 0.34 \cdot 10^{-7}$ seconds. The subroutine for the complex valued argument is slower and takes $\approx 0.21 \cdot 10^{-6}$ seconds.

![Figure 1. The function $g_{12} (s)$ in (21) and the error of its near optimal approximation via exponentials in (22) with parameters described in Table II.](image-url)
m	\(\eta_m \)	\(w_m \)
1	0.70719431320570010 · 10^1 + 0.16487291250752115 · 10^{-i}	0.36443632402898501 · 10^{-10} + 0.26411751072107504 · 10^{-10}
2	0.70719431320570010 · 10^{-1} − 0.16487291250752115 · 10^{-i}	0.36443632402898501 · 10^{-10} − 0.26411751072107504 · 10^{-10}
3	−0.57143271715191635 + 0.1327857945323633 · 10^2i	0.1818525034675363 · 10^{-6} + 0.21860458971399352 · 10^{-5}
4	−0.57143271715191635 − 0.1327857945323633 · 10^2i	0.1818525034675363 · 10^{-6} − 0.21860458971399352 · 10^{-5}
5	−0.47193021330392506 · 10^4 + 0.99835257112371032 · 10^{-i}	−0.99489169272055748 · 10^{-3} − 0.23049079105203073 · 10^{-3}
6	−0.47193021330392506 · 10^{-1} − 0.99835257112371032 · 10^{-i}	−0.99489169272055748 · 10^{-3} + 0.23049079105203073 · 10^{-3}
7	−0.71704662772895089 · 10^{-3} + 0.6671236839820768 · 10^{-i}	−0.25625216985879006 · 10^{-1} + 0.35818335274876982 · 10^{-1}
8	−0.71704662772895089 · 10^{-1} − 0.6671236839820768 · 10^{-i}	−0.25625216985879006 · 10^{-1} − 0.35818335274876982 · 10^{-1}
9	−0.84899747054724699 · 10^{-1} + 0.33434804168467491 · 10^{-i}	0.16506801544880723 + 0.32273964471776045i
10	−0.84899747054724699 · 10^4 − 0.33434804168467491 · 10^{-i}	0.16506801544880723 − 0.32273964471776045i
11	0.36564414363150973 · 10^2	−0.20104641661565164 · 10^{-25}
12	−0.32424239255921954 · 10^{-1}	−0.3956356955042078 · 10^{-3}
13	−0.89066047733100753 · 10^{-1}	0.7234994580585292

Table II. Weights and exponents of the approximation of \(g_{12}(s) \) on \([0, 1]\) in \([23]\). With these parameters the absolute error in \([23]\) is \(\varepsilon \approx 2.5 \cdot 10^{-13} \).

V. CONCLUSION

Since their introduction in \([1]\) the Boys functions with real argument have widely been used for computing Gaussian integrals. When using mixed Gaussian/exponential bases, one needs to evaluate the Boys functions with complex argument. Such mixed bases are appropriate for scattering problems and for bound state problems where using only plane waves becomes too expensive near singularities. Consequently, mixed Gaussian/exponential bases provide a greater flexibility in formulation and solving problems of quantum chemistry and we present our results in part to facilitate their use.

While for real argument the Boys functions can be easily tabulated in regions where their asymptotic is not accurate, it is more difficult to apply such straightforward implementation for a complex argument. A careful reading of reference \([20]\) reveals shortcomings of existing approaches (relying mostly on expansions) to computing the Boys functions of complex argument (see e.g. conclusion in \([23]\)). For our approach a better comparison is offered by Gautschi’s algorithm \([23]\) for the error function of complex argument since it is related to \(F(0, z) \) as in \([4]\), see Section \(\text{II} \). Our approach of approximating a part of the integrand so that the resulting integral can be evaluated explicitly, is simpler and yields tight accuracy estimates. Note that the part of the integrand we are approximating is real while the Boys functions we are computing are complex-valued. As a side remark we note that the Boys function \(F(0, z) \) remains bounded for complex argument with \(\Re(e(z)) \geq 0 \) (and \(e^F(0, z) \) for \(\Re(e(z)) < 0 \)) and, for this reason, provides a good alternative approach for computing the error function of complex argument.

We avoid the direct timing comparisons with existing algorithms since such comparisons are generally misleading. Given different hardware (single core, multi-core, GPU, etc), different compilers and compiler flags, and different implementations, it is hard to compare algorithms by simply running them. Instead one can look at algorithmic possibilities an approach offers. Our code is compact and it is easy to simply count the total number of operations. We note that computation of each term in the sums \([12]\) and \([23]\) is trivially parallel and only recursions in \([2]\) and \([3]\) require a sequential implementation (with just three multiplications and one addition per function). Thus timing of our algorithms implemented on a multi-core or GPU computer will be much faster than the quoted timings of our implementation on a single CPU.

VI. SUPPLEMENTARY MATERIAL

The supplementary material for this paper consists of 5 Fortran 90 subroutines implementing, as an example, algorithms for computing the Boys function with indices \(n = 0, \ldots, 12 \). The subroutine dboysfun12.f90 evaluates the Boys functions \(F(n, z) \) for real non-negative argument \(z \). The subroutines dboysfun12.f90 and dboysfun00.f90 evaluate the Boys functions \(F(n, z) \) for complex argument \(z \) with non-negative real part. Finally, the subroutines dboysfun00nrp.f90, dboysfun12nrp.f90 evaluate the functions \(e^{F}(n, z) \) for complex argument \(z \) with negative real part.

VII. ACKNOWLEDGEMENTS

SS was supported by the NSF under Grant CHE-1800584. SS was also partly supported through the Sloan research fellowship.
The exponents and the weights in (27) grow as in order to obtain approximation of (8) in (12).

\[s^{-1/2} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-s e^\tau + \tau^2} d\tau, \quad 0 \leq s \leq 1, \]

(26)

and discretize it (following) yielding

\[\left| s^{-1/2} - \sum_{m=1}^{M} w_m e^{-\eta_m s} \right| \leq \varepsilon s^{-1/2}, \quad \delta \leq s \leq 1, \]

(27)

where \(\eta_m, w_m > 0 \) are arranged in an ascending order, and we estimate that

\[\left| F(0, z) - \frac{1}{2} \int_{t_0}^{t_1} e^{-z} \left(\sum_{m=1}^{M} w_m e^{-\eta_m s} \right) ds \right| \leq \varepsilon t_{\text{max}} \]

(28)

in order to obtain

\[\left| F(0, z) - \left(\frac{1}{2} \sqrt{\frac{\pi}{z}} - \frac{e^{-z}}{2 \sqrt{\pi}} \sum_{m=1}^{M} w_m e^{-\eta_m} \right) \right| \leq 2\varepsilon. \]

(29)

The exponents and the weights in (27) grow as \(\eta_m \approx e^{\tau_0} \) and \(w_m \approx e^{r_0} / \eta_m \) (see), so that in (29) it is sufficient to use a subset of terms with \(\eta_m \leq e^{r_{\text{max}}} \). Selecting \(r_{\text{max}} = 7/2 \) so that \(t_{\text{max}} = e^{r_{\text{max}}/2} \) in (10), the error \(\varepsilon_{\text{max}} \approx 5.9 \cdot 10^{-18} \). Consequently, we only need the 22 terms displayed in Table 1 and obtain approximation of (8) in (12).
A. KH Weiss and C. Ochsenfeld. A rigorous and optimized strategy for the evaluation of the Boys function kernel in molecular electronic structure theory. J. Comput. Chem., 36(18):1390–1398, 2015.

G. Mazur, M. Makowski, and R. Lazarski. Boys function evaluation on graphical processing units. Journal of Mathematical Chemistry, 54(10):2022–2047, 2016.

G. Beylkin and L. Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete Contin. Dyn. Syst., 36(8):4077–4100, 2016.

TN Rescigno, CW McCurdy Jr, and V McKoy. Low-energy e–h 2 elastic cross sections using discrete basis functions. Physical Review A, 11(3):825, 1975.

N. S. Ostlund. Polyatomic scattering integrals with Gaussian orbitals. Chemical Physics Letters, 34(3):419–422, 1975.

R. Colle, A. Fortunelli, and S. Simonucci. A mixed basis set of plane waves and Hermite Gaussian functions. Analytic expressions of prototype integrals. Il Nuovo Cimento D, 9(8):969–977, 1987.

R. Colle, A. Fortunelli, and S. Simonucci. Hermite Gaussian functions modulated by plane waves: a general basis set for bound and continuum states. Il Nuovo Cimento D, 10(7):805–818, 1988.

L. Füsti-Molnár and P. Pulay. Accurate molecular integrals and energies using combined plane wave and gaussian basis sets in molecular electronic structure theory. The Journal of chemical physics, 116(18):7795–7805, 2002.

W. P. Reinhardt. Complex coordinates in the theory of atomic and molecular structure and dynamics. Annual Review of Physical Chemistry, 33(1):223–255, 1982.

K. Wolinski, J. F. Hinton, and P. Pulay. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Journal of the American Chemical Society, 112(23):8251–8260, 1990.

D. Kahaner, C. Moler, and S. Nash. Numerical methods and software. Prentice-Hall, Inc., 1989.

W. Gautschi. Efficient computation of the complex error function. SIAM Journal on Numerical Analysis, 7(1):187–198, 1970.

J. Boersma. Computation of Fresnel integrals. Math. Comput., 14(69-72), 1960.

G. Beylkin, L. Monzón, and I. Satkauskas. On computing distributions of products of non-negative independent random variables. Appl. Comput. Harmon. Anal., 46(2):400–416, 2018. see also arXiv:1707.07762

G. Beylkin and L. Monzón. Approximation of functions by exponential sums revisited. Appl. Comput. Harmon. Anal., 28(2):131–149, 2010.