Two Dimensional WS$_2$/C Nanosheets as a Polysulfides Immobilizer for High Performance Lithium-Sulfur Batteries

Soumyadip Majumder, 1 Minhua Shao, 1,∗ Yuanfu Deng, 2 and Guohua Chen 3,

1 Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
2 The Key Laboratory of Fuel Cell for Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
3 Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

A dual function cathode consisting of tungsten disulfide and porous carbon nanosheets (WS$_2$/C) was synthesized to improve the performance of lithium sulfur batteries. The well-defined structure is composed of ≤5 layers with 0.62 nm interlayer spacing corresponding to the (002) facial plane of WS$_2$. The composite depicted very strong affinity toward lithium polysulfides. Rapid transport of lithium ions was also revealed. The cathode demonstrated excellent cycling stability and rate capability by delivering a reversible specific capacity of 419 mAh g$^{-1}$ at 8C after 500 cycles with low capacity fading at 0.04% per cycle. At high sulfur loading of 4.7 mg cm$^{-2}$ the batteries delivered 3.4 mAh cm$^{-2}$ areal capacity after 100 cycles at 0.5C. The synergistic effect of strong chemical interaction between lithium polysulfides and WS$_2$, and the superior electronic conductivity of carbon nanosheets are responsible for the enhanced performance. It also suppressed the self-discharge phenomenon by maintaining 94.5% of its initial capacity after 10 days resting. The electrochemical impedance spectroscopy (EIS) analysis demonstrated that even after 400 cycles, the interfacial and charge transfer resistances only increased by 1.2 and 1.7Ω, respectively, describing faster electrochemical kinetics by inhibiting the formation of insulating layer of lithium sulfide (Li$_2$S) on the surface of the electrodes.

© The Author(s) 2019. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.051903jes]

In recent years tremendous attention has been focused on the development of alternative materials for the next generation energy storage devices for their application in high performance electronic devices and electric vehicles. Among the various energy storage devices, lithium ion batteries (LIBs) are among the most attractive technologies because of their high power and energy densities. How- ever, the currently available lithium ion batteries have approached their capacity limits. Lithium sulfur (Li-S) battery is one of the most promising devices of the next generation lithium ion batteries because it exhibits a combination of high theoretical energy density (2600 Wh kg$^{-1}$), low cost of the raw materials, and environmental benignity. Despite the great potential, the large-scale implementation of the Li-S batteries is severely impeded by their rapid capacity decay and low practical energy density. The major reason behind the poor performance is the shuttling of lithium polysulfides from the cathode to anode, which leads to poor cyclability, low coulombic efficiency and severe self-discharge. The electrically insulating nature of sulfur (5 × 10$^{-30}$ S cm$^{-1}$ at 25°C) also restricts the electron transport and decreases the practical utilization of active material, resulting in low specific capacity. In addition, the large volumetric change (80%) of sulfur upon lithiation/delithiation produces immense mechanical stress which leads to pulverization of cathode. Over the past few years, considerable effort has been devoted to surpassing the obstacles by confining sulfur in conductive carbonaceous frameworks such as microporous carbons, mesoporous carbons, hierarchical carbon, carbon nanotubes or fibers, carbon nanospheres, and graphene sheets. These porous hosts of sulfur significantly reduced the loss of active material by physical confinement and prolonged the cycling life of the Li-S batteries. However, the spatial entrapment of polysulfide species is not sufficient for long period of cycling owing to the weak intermolecular interaction between the non-polar carbon structures and polar lithium polysulfides. Another effective approach to retain lithium polysulfides is the modification of porous carbon using oxygen/sulfur/nitrogen doping and/or some polymer coating on the surface of porous carbon; however, these strategies still need improvements. Because of the strong chemical interactions between the lithium polysulfides and polar materials, such as metal oxides, metal sulfides, metal nitrates, and metal carbides, they have been proved to be effective sulfur hosts. However, most of these polar metal compounds involve complex synthesis procedure and suffer from poor electronic and ionic conductivity, resulting in low sulfur utilization and poor rate capability. From the studies mentioned above, it can be inferred that both strong chemical interaction and physical entrapment of lithium polysulfides are important criteria for a good host of sulfur.

Herein, we report a simple strategy for in situ fabrication of tungsten disulfide (WS$_2$) sheets anchored on mesoporous carbon nanosheets, in which highly crystalline WS$_2$ nanosheets with few layers are homogeneously dispersed on the surface of the carbon nanosheets. During the straightforward solid-phase reaction, sodium chloride (NaCl) particles served as the template to direct the growth of mesoporous carbon nanosheets and to create a 2D confined space which facilitate the construction of few layered WS$_2$ sheets. The mesoporous carbon nanosheets will contribute to the physical confinement of lithium polysulfides and would also improve the electronic conductivity of the WS$_2$/C host. Furthermore, the highly polar few layered WS$_2$ sheets will provide strong chemical interaction with the intermediate polysulfides and enhance the redox reaction kinetics, resulting in long cycling life with low capacity fading rate. Benefiting from the favorable architecture, the sulfur rich electrode of 70 wt% of active material delivers a high specific discharge capacity and excellent cycling performance, with a low capacity fade rate of 0.039%/cycle after 500 cycles at 2.0 C rate (80.50% capacity retention).

Materials and Methods

Preparation of porous WS$_2$/C nanosheets. — The synthesis procedure of porous WS$_2$/C nanosheet composite is depicted in Fig. 1. The process begins with dissolving 17.50 g of sodium chloride (NaCl), 1.50 g of citric acid (C$_6$H$_8$O$_7$), 0.36 g of thiourea (NH$_2$CSNH$_2$), and 0.35 g of sodium tungstate dihydrate (Na$_2$WO$_4$.2H$_2$O) in 100 ml of deionized water with magnetic stirring to make a homogeneous solution. Then, the mixture was heated to 120°C for 30 min. After that, 5 layers with 0.62 nm interlayer spacing ≤5 layers with 0.62 nm interlayer spacing of sodium tungstate dihydrate (Na$_2$WO$_4$.2H$_2$O) in 100 ml of deionized water with magnetic stirring to make a homogeneous solution. Then, the mixture was heated to 120°C for 30 min. After that, 5 layers is part of the JES Focus Issue of Selected Papers from IMLB 2018.
tion. The next step involves the removal of water from the resulting solution by freeze drying for 24 hours, and forming uniform dispersion of NaCl, C6H8O7, NH2CSNH2, and Na2WO4·2H2O in the precursor gel. This step is very critical, because it ensures the formation of a thin complex film of C6H8O7-NH2CSNH2-Na2WO4·2H2O composite around the NaCl particles during freezing.31 Afterwards, the powdered composite (5.00 g) was heated in a quartz boat placed inside the tube furnace at 750 °C (4 °C min⁻¹) for 12 hours under Argon (Ar) flow to obtain WS2/C composite. During the heat-treatment process, the NH2CSNH2 will be hydrolyzed to H2S while Na2WO4·2H2O will be decomposed to form WOx nanosheets within the 2D confined space between the NaCl surfaces.32 Subsequently, the WOx nanosheets will react with H2S, leading to the in situ formation of WS2 nanosheets as shown in Fig. 1. Meanwhile, the citric acid (C6H8O7) will be carbonized into ultrathin carbon sheets. Later on, the as-obtained solid product was washed with deionized water to remove the NaCl particles, leaving behind highly porous structure of WS2/C nanosheets. In the final step, the washed product will be dried in oven at 80 °C for 12 hours before the use.

Synthesis of the WS2/C/S composite.—The WS2/C/S composite was prepared by melt-diffusion method.33 Typically, the powdered WS2/C material was mixed with sulfur in the desired ratio and then heated for 12 hours in a Teflon lined autoclave at 155 °C, with a ramp rate of 2 °C min⁻¹. For comparison, carbon (Super-P)/sulfur composite with the same sulfur content was also synthesized by the same procedures.

Polysulfide adsorption measurements.—The lithium polysulfide adsorption measurement was carried out with 10 mM Li2S6 solution by excitation source and temperature varied from ambient value of 25 to 700 °C at a heating rate of 5 °C min⁻¹. The specific surface area and pore size distribution were analyzed by Brunauer-Emmett-Teller (BET) method based on the nitrogen adsorption-desorption tests conducted with Micromeritics ASAP 2020 Automatic micropore chemisorption physisorption analyzer at 77K. The samples were degassed at 150 °C for 4 hours before the BET measurements. X-ray photoelectron spectroscopy (XPS) was conducted on a Kratos Axis Ultra DLD instrument at room temperature. The binding energy values for all the XPS peaks were calibrated with C 1s peak at 284.6 eV. The UV-visible spectra for lithium polysulfide adsorption tests were obtained with a Lambda 20 (Perkin Elmer) spectrophotometer within a wavelength range of 300 to 800 nm.

Electrochemical measurements.—The working electrodes were prepared by casting N-methyl-2-pyrrolidone (NMP) (Sigma Aldrich, 99% purity) slurry consisting of 70 wt% active material (WS2/C/S or C/S), 20% polyvinylidine fluoride (PVDF) and 10% conductive carbon (Super-P) on aluminum foil current collector using doctor’s blade. The sulfur loading in each electrode varied between 1.4–4.7 mg cm⁻². The coated aluminum foil was dried in a vacuum
oven at 60 °C overnight and cut into circular discs. The cell assembling was conducted using CR 2025-coin cells in an Ar-filled glove box with lithium metal as anode (14 nm diameter) and Celgard 2325 as separator. The electrolyte was composed of 1 M lithium bis(trifluoromethanesulfonimide) in a mixture of 1.3-dioxolane (DOL) and 1.2-dimethoxyethane (DME) (1:1 by volume) with 1 wt% lithium nitrate (LiNO₃) additive. Typically, 18 μl mg⁻¹ of electrolyte was added in each battery during the assembling. The cells were tested in a voltage window of 1.8–2.8 V at different current densities using a Neware CT-3008W battery tester. The cyclic voltammetry (CV) experiments were conducted on an Autolab PGSTAT100 electrochemical workstation with a scan range of 1.8–2.8 V at different scan rates (0.1–0.4 mV s⁻¹). The electrochemical impedance spectroscopy (EIS) measurements of the cells were performed under fully charged condition using the electrochemical workstation within a frequency range of 1 MHz to 10 mHz with a perturbation amplitude of 5 mV.

Results and Discussion

Physicochemical analysis results.—The XRD patterns of WS₂/C composite, as shown in Fig. 2a, reflect the well-developed crystal structure of WS₂. The diffraction peaks located at 14.23°, 33.34°, 39.54°, 44.52°, and 59.11° corresponding to the (002), (100), (103), (006), and (110) crystal planes of hexagonal structure WS₂ (JCPDS-84-1398), respectively, confirm the successful formation of WS₂/C composite. In contrast, the intensity of the diffraction peaks for WS₂/C is weaker than that of pure WS₂, which indicates its low crystallinity because of the presence of amorphous carbon. The broad hump at around 25.6° originates from the (002) crystal plane of carbon (JCPDS-75-1621). The peak corresponding to (002) plane of WS₂/C composite shifts to lower Bragg angle compared to pure WS₂, which indicates the increase in lattice d-spacing of WS₂/C (d = 0.62 nm at 2θ = 14.23°) with respect to pure WS₂ (d = 0.61 nm at 2θ = 14.36°).35

Raman peaks of WS₂/C nanosheets and pure WS₂ as shown in Fig. 2b, reveal two sharp peaks situated at 351 and 417 cm⁻¹, which are attributed to the E₁₂g and A₁g vibrational modes of WS₂.53,56 The first order optical modes of E₁₂g represents the in-plane displacement of W and S atoms and A₁g depicts the out-of-plane symmetric displacement to W 4f and W 4f orbitals of WO₃ respectively, which is one of the intermediate reaction products.32,44 The peak located at 37.9 and 35.7 eV is attributed to W 4f₆ and W 4f₅/₂ orbitals of WS₂, respectively. The peak at 162.2 and 163.4 eV corresponding to the S 2p₅/₅ and S 2p₃/₅ orbitals of WS₂ respectively. The C 1s spectrum in Fig. 4e reveals three different species, located at 284.6, 285.3, and 287.6 eV ascribed to C—C sp³, C—O bonds, and C=O bonds, respectively. The C=O is attributed to the oxygen doping in the porous carbon. However, small impurities of sodium (Na) arising from sodium chloride (NaCl) was also detected by XPS (See in Table S1).

To elucidate the strong chemical interaction of WS₂/C composite with lithium polysulfides, the polysulfide adsorption test was performed followed with XPS study. An obvious peak shift to lower binding energy of 54.6 eV for Li 1s spectrum compared to pure Li₂S₄ (55.4 eV) after the addition of WS₂/C composite has been reported,49 which is also observed in the present study (SI, Fig. S2 (a)). The downward shift indicates electron transfer to Li⁺ ions, validating the existence of chemical interaction.50 Moreover, the peak of W 4f₅/₂ (32.5 eV) and W 4f₇/₂ (34.7 eV) in pristine WS₂ (SI, Fig. S2 (b)) shifted toward higher binding energy of 33.4 and 35.6 eV respectively, which further indicates the valence bond chemical interaction of W with polysulfides. According to the earlier studies, the dangling bonds at the edges of transition metal dichalcogenides (TMD’s) have strong affinity for lithium polysulfides.31–35 This explains the strong sulfophilic property of TMD materials like WS₂.

It can be observed from Fig. 5 that the original dark red color disappears and becomes a clear solution upon the addition of WS₂/C powder into the Li₂S₆ solution. On the contrary, after the addition of Super-P carbon into the Li₂S₆ solution, the color of the Li₂S₆ solution did not change obviously. This gives us visual evidence of the strong interaction of WS₂/C with long chain lithium polysulfides. In order to have further understanding regarding the chemical interaction between WS₂/C and polysulfides, UV-visible analysis of the supernatant was conducted. The WS₂/C shows the highest transmittance (93%) at a wavelength of 555 nm, which is considered as the characteristic wavelength for the first derivative peak of Li₂S₆ (Fig. 5).54 The transmittance for Super-P carbon (9%) is even lower than pristine Li₂S₆ solution (22%) because of the presence of some freely suspended black carbon particles. Hence, based on the XPS and UV-visible spectroscopy analysis, it is expected that WS₂/C as a sulfur host would...
Electrochemical analysis of WS$_2$/C/S composite.—The electrochemical behavior of WS$_2$/C/S composite was investigated using CR-2025-coin cells. The cyclic voltammetry (CV) measurements were carried out to evaluate the redox kinetics of the sulfur cathodes. The CV curves of WS$_2$/C/S cathode electrode at scan rate of 0.1 mV s$^{-1}$ are presented in Fig. 6a. During the anodic scan of WS$_2$/C/S electrode, two oxidation peaks located at 2.31 (peak A) and 2.37 V (peak B) are relevant to the oxidation reaction of Li$_2$S$_2$/Li$_2$S to higher order polysulfide (Li$_2$S$_8$) and eventually to elemental sulfur, respectively.$^{55,56}$ In the cathodic scan, two distinct peaks situated at 2.30 (peak C) and 2.03 V (peak D) can be observed. The first peak located at 2.30 V (peak C) is associated with the reduction of elemental sulfur to long chain polysulfides (Li$_x$S$_8$, 4$\leq x \leq$8). The second reduction peak at 2.03 V (peak D) is related to the conversion of long chain polysulfides to solid state Li$_2$S$_2$/Li$_2$S products.$^{57,58}$ Meanwhile, it is worth mentioning that the peak current and position did not change significantly during the subsequent cycles, reflecting excellent electrochemical reversibility. Similar results of CV were obtained for the Super-P Carbon/S control electrode (Refer Fig. S3(a)). However, both the oxidative and reductive peak currents for WS$_2$/C/S electrode are considerably higher than those of Super-P Carbon/S electrodes, which indicates better electrochemical performance of the WS$_2$/C/S electrode originated from the catalytic conversion.$^{59}$

Typical galvanostatic charge-discharge profiles of WS$_2$/C/S composite at different current rates (1 C = 1675 mAh g$^{-1}$) are shown in Fig. 6b. Two prominent discharge plateaus discern the multistep reduction of elemental sulfur (S$_8$) to long chain polysulfides (Li$_x$S$_8$, 4$\leq x \leq$8) at 2.32 V and eventually to short-chain polysulfides Li$_2$S$_2$/Li$_2$S at 2.13 V. The second discharge plateau at 2.13 V is quite long, indicating better redox kinetics and better utilization of sulfur.$^{60}$ Even at a high current rate of 8.0 C, the second discharge plateau is very distinct, which suggests faster reduction of lower order polysulfides to Li$_2$S.$^{61,62}$ During the charging process two plateaus recorded at 2.22 and 2.32 V reflect the oxidation reaction of short-chain polysulfides to long chain polysulfides and sulfur, respectively.$^{56,63}$ These results are consistent with the observation from CV curves. Cathodes with WS$_2$/C/S show higher onset potential and larger discharge capacities compared to Super-P Carbon/S (Details shown in Fig. S3(b)).
The larger discharge capacity and higher onset potentials of WS$_2$/C/S reflect the superior electrochemical kinetics and lower sulfide loss, which indicates that the sulfophilic properties of WS$_2$ facilitate the reduction of low order polysulfides to Li$_2$S$^{62,63}$.

The WS$_2$/C/S electrode demonstrates excellent rate capability, as shown in Fig. 6c. It delivers high reversible specific discharge capacities of ~911, 759, 652, 548, 440 mAh g$^{-1}$ at 0.5, 1, 2, 4, and 8 C, respectively. The WS$_2$/C/S composite shows a greatly improved rate performance at high current density in comparison with Super-P carbon/S cathodes. Hence, the WS$_2$/C sulfur host can withstand the stress of very high current density, suggesting superior electronic and ionic conductivity compared to Super-P carbon.
The cycling performance of WS2/C/S and Super-P carbon/S electrodes are presented in Fig. 6d. The WS2/C/S electrode shows a very stable cycling performance by delivering a specific discharge capacity of 615 mAh g\(^{-1}\) after 400 cycles at 0.5 C rate with a low decay rate of 0.078\% per cycle. In contrast, the Super-P carbon/S electrode delivers a specific discharge capacity of 437 mAh g\(^{-1}\) after 400 cycles at 0.5 C rate with a decay rate of 0.13\% per cycle. This indicates the effective inhibition of polysulfides shuttling during cycling because of the strong entrapping ability of WS2/C. To further investigate the durability of this material at higher current rates, the WS2/C/S electrodes were cycled at high current rates of 1, 2, 4, and 8 C and the performance is shown in Fig. 6e. In the first few cycles an increase in specific capacity can be observed because of the incomplete activation of the cathode. During the initial activation process, the sulfur particles cling of WS2/C/S as shown in Fig. 6f was carried out to demonstrate the enhanced lifetime of this material. Impressively, the electrode still maintains a low decay rate of 0.048\% per cycle over 1000 cycles at 1 C current rate. These results further confirm superior cycling stability of WS2/C/S electrode.

**Lithium-ion diffusion coefficient analysis.**—To have more in-depth understanding for the excellent rate and cycling performance of WS2/C/S composite, lithium-ion diffusion coefficients of the composites were evaluated by conducting series of CVs at various scan rates and were calculated by Randles-Sevick equation as given below:\(^{65-67}\)

\[
I_p = 2.69 \times 10^{5} n^{1.5} A D_{Li}^{0.5} C_{Li}^{0.5}
\]

in which \(D_{Li}\) represents lithium ion diffusion coefficient (cm\(^2\) s\(^{-1}\)), \(I_p\) stands for the peak current (ampere), \(n\) represents the number of electrons involved in the reaction (\(n = 2\) for Li-S battery), \(A\) is the area of electrodes (cm\(^2\)), \(C_{Li}\) refers to the lithium ion concentration (mol L\(^{-1}\)), and \(v\) signifies the scanning rate (V s\(^{-1}\)).

The linear fitting of the peak current with square root of the scanning rate explains that the process is diffusion controlled (See SI, Fig. S3(a-d)). According to the previous reports,\(^{67-69}\) the increase in the peak current at higher scan rates describes the decrease in the size of the diffusion layer. The values of the lithium-ion diffusion coefficients are summarized in Table I.

It is found from Table I that the lithium-ion diffusion coefficients for WS2/C/S cell at all peaks are significantly higher than Super-P carbon/S cell. The diffusion coefficient of WS2/C/S electrode at peak D is around 2.6 times higher than Super-P carbon/S electrode. These results are consistent with those reported by Ghazi and co-workers\(^{26}\) who coated MoS\(_2\), a similar transition metal dichalcogenide (TMD) like WS2, on Celgard separator. Therefore, it can be deduced that WS2/C porous nanosheets can provide adequate pathways for lithium ion diffusion, resulting in the improvement of rate capability.

**Self-discharge analysis.**—Self-discharge is also another major hurdle that impedes the large-scale application of lithium sulfur batteries. The gradual dissolution of polysulfides at resting condition results in the open-circuit voltage (OCV) drop and leads to lower specific discharge capacities. In this work, we have monitored the

![Figure 4. XPS spectra of (a) W 4f, (b) S 2p, and (c) C 1s of the WS2/C composite.](image)

![Figure 5. UV-visible transmittance spectra of Li\(_2\)S\(_6\) with WS2/C and Super-P carbon. Inset shows the digital images of the polysulfide adsorption test.](image)

**Table I. Li ion diffusion coefficient (D\(_{Li}^{+}\) × 10\(^{-5}\)) for WS2/C/S and Super-P Carbon/S electrodes.**

| Peak | WS2/C/S (cm\(^2\) s\(^{-1}\)), Fig. S3(a) | Super-P Carbon/S (cm\(^2\) s\(^{-1}\)), Fig. S3(b) |
|------|----------------------------------|----------------------------------|
| A    | 4.596                           | 2.429                           |
| B    | 10.041                          | 5.630                           |
| C    | 1.789                           | 1.226                           |
| D    | 3.769                           | 1.424                           |
Figure 6. (a) Cyclic Voltammetry (CV) curves of WS$_2$/C/S at a scan rate of 0.1 mVs$^{-1}$. (b) First-cycle voltage profiles of WS$_2$/C/S cathodes at different C-rates. (c) Rate performance comparison of WS$_2$/C/S and Super-P Carbon/S. (d) Cycling performance of WS$_2$/C/S and Super-P Carbon/S at 0.5 C rate. (e) Cycling performance of WS$_2$/C/S at 1, 2, 4 and 8 C for 500 cycles. (f) Long-term cycling performance of WS$_2$/C/S at 1 C rate.
OCV of WS₂/C/S batteries over a period of 10 days to analyze the effect on self-discharge behavior. The battery maintained a stable OCV of around 2.50V (Refer to SI, Fig. S4(a, b)) with a capacity retention of 94.5% even after 10 days of resting (0.023% loss/hour) which is considerably better than previously reported retention of 91% (0.64% loss/hour) and 84.4% (0.216% loss/hour) after 14 and 72 hours respectively. However, a quick drop in voltage from 2.67 to 2.51V in the first 24 hours implies the dissolution of some of the residual surface sulfur in the electrolyte.

**Performance at high sulfur loading.**—For the commercialization of Li-S batteries, high areal sulfur mass loading is required for achieving high mass and volumetric specific energy densities. Therefore, thicker electrodes were fabricated to study the effect of high sulfur loading on cycling and rate performance. As indicated in Fig. 7, even with a high mass loading of 4.7 mg cm⁻², the cell could deliver a maximum areal capacity of around 4.4 mAh cm⁻² (corresponding to specific capacity of 940 mAh g⁻¹) at 0.2 C rate and could maintain at 4 mAh cm⁻² after 45 cycles. The initial few cycles were tested at low current rate of 0.05 C to complete the activation process of the electrodes. It is also important to mention that the battery retains an areal discharge capacity of around 3.4 mAh cm⁻² (corresponding to specific capacity of 738 mAh g⁻¹) after 100 cycles at 0.5 C rate, which is higher than most of the commercially available lithium-ion batteries. The excellent cycling and rate performance under high mass loading fully demonstrate the significant reduction of polysulfide shuttling and rapid diffusion of Li⁺ through the porous matrix.

**Electrochemical impedance analysis.**—Electrochemical impedance spectroscopy (EIS) measurements were carried out on fully charged freshly assembled and cycled cells, to obtain further information about the electrochemical mechanisms involved between the electrode and electrolyte interface. As shown in Fig. 8, the Nyquist plots consists of a depressed semi-circle in the high frequency range relevant to interfacial resistance (Rint), depressed semi-circle in the middle frequency range ascribed to the charge transfer resistance (Rct), and a linear slope in the low frequency range ascribed to the Warburg impedance (Zw) of lithium ion diffusion.
transfer resistance (Rt) and a sloping line representing the Warburg resistance (Zw). From Fig. 8b it can be noted that after 400 cycles the redistribution of active material within the matrix provided better frequency region which accounts for the formation of solid electrolyte after cycling (Fig. 8b), one more semi-circle emerged in the high frequency region which accounts for the formation of solid electrolyte interphase. It is essential to note that the resistance of the cell after 75 cycles become significantly lower than the fresh cell because of the electrochemical activation discussed before or the dissolution of residual surface sulfur in the electrolyte. In addition, upon cycling the redistribution of active material within the matrix provided better contact with the sulfur host, resulting in lowering of charge transfer resistance. \(^{71,72}\) From Fig. 8b it can be noted that after 400 cycles the Rct slightly increased to 7.5 \(\Omega\) (compared to 6.2 \(\Omega\) after 75 cycles) and the Rct slightly increased to 8.06 \(\Omega\) (compared to 6.36 \(\Omega\) after 75 cycles). This further proves that WS\(_2\)/C nanosheets can greatly reduce the polysulfide shuttling and also inhibit the formation of solid insulting layer of Li\(_2\)S\(_2\)/LiS on the surface of the electrode.

Conclusions

In summary, we have demonstrated an innovative and feasible approach to improve the electrochemical performance of Li-S batteries by utilizing porous WS\(_2\)/C nanosheets as a sulfur host. The in situ synthesis of the composite by solid phase reaction circumvents the usual complex synthesis procedures involved. The proposed host greatly improves the performance of the Li-S battery by the advantages of mesoporosity, chemical polarity, and physical surface area into a single entity. The porous carbon nanosheets not only provide conductive pathways for electron transport, but also create a physical barrier for the confinement of the intermediate soluble polysulfides. Moreover, the strong chemical interaction of WS\(_2\) toward the polysulfides facilitate the suppression of shuttling during cycling. The batteries made of WS\(_2\)/C cathode showed superior cycle-life and rate performance by delivering a specific discharge capacity of 419 mAh g\(^{-1}\) after 500 cycles at 8 C rate with a low decay rate of 0.04% per cycle. In addition, the high mass loading cathode delivered a specific discharge capacity of 207.241.231.81 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).
57. S. Niu, W. Lv, G. Zhou, Y. He, B. Li, Q. H. Yang, and F. Kang, *Chem. Commun.*, **51**, 17720 (2015).
58. L. Luo, X. Qin, J. Wu, G. Liang, Q. Li, M. Liu, F. Kang, G. Chen, and B. Li, *J. Mater. Chem. A*, **6**, 3612 (2018).
59. X. C. Liu, S. P. Zhou, M. Liu, G. L. Xu, X. D. Zhou, L. Huang, S. G. Sun, K. Amine, and F. S. Ke, *Nano Energy*, **50**, 685 (2018).
60. Y. Chen, S. Choi, D. Su, X. Gao, and G. Wang, *Nano Energy*, **47**, 331 (2018).
61. Y. Sun, Z. W. Seh, W. Li, H. Yao, G. Zheng, and Y. Cui, *Nano Energy*, **11**, 579 (2015).
62. Y. Su, Y. Z. Fu, T. Cochell, and A. Manthiram, *Nat. Commun.*, **4**, 2985 (2013).
63. Y. S. Su and A. Manthiram, *Chem. Commun.*, **46**, 8817 (2012).
64. S. H. Chung, P. Han, and A. Manthiram, *ACS Appl. Mater. Interfaces*, **8**, 4709 (2016).
65. J. L. Wang, F. J. Lin, H. Jia, J. J. Yang, C. W. Monroe, and Y. N. Xu, *Li, Angew. Chem., Int. Ed.*, **53**, 10099 (2014).
66. S. R. Das, S. B. Majumder, and R. S. Kativar, *J. Power Sources*, **139**, 261 (2005).
67. J. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Ren, and F. Wei, *ACS Nano*, **9**, 3002 (2015).
68. A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamental and Applications*, 2nd ed., John Wiley & Sons, Hoboken, New Jersey (2001).
69. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, *J. Chem. Educ.*, **95**, 197 (2018).
70. L. Yan, N. Luo, W. Kong, S. Luo, H. Wu, K. Jiang, Q. Li, S. Fan, W. Duan, and J. Wang, *J. Power Sources*, **389**, 160 (2018).
71. N. A. Canas, K. Hirose, B. Pascucci, N. Wagner, K. A. Friedrich, and R. Hiesgen, *Electrochim. Acta*, **97**, 42 (2013).
72. Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, and Y. Liu, *J. Electrochem. Soc.*, **166**, A553 (2013).
73. C. Li, Z. Li, Q. Li, Z. Zhang, S. Dong, and L. Yin, *Electrochim. Acta*, **215**, 689 (2016).