PIERCING FAMILIES OF CONVEX SETS IN THE PLANE THAT AVOID A CERTAIN SUBFAMILY WITH LINES

DANIEL MCGINNIS

Abstract. We define a $C(k)$ to be a family of k sets F_1, \ldots, F_k such that $\text{conv}(F_i \cup F_{i+1}) \cap \text{conv}(F_j \cup F_{j+1}) = \emptyset$ when $\{i, i+1\} \cap \{j, j+1\} = \emptyset$ (indices are taken modulo k). We show that if \mathcal{F} is a family of compact, convex sets that does not contain a $C(k)$, then there are $k - 2$ lines that pierce \mathcal{F}. Additionally, we give an example of a family of compact, convex sets that contains no $C(k)$ and cannot be pierced by $\lceil \frac{k}{2} \rceil - 1$ lines.

1. Introduction

Let \mathcal{F} be a family of sets in the plane; \mathcal{F} is said to have a line transversal if there is a line that intersects each set in \mathcal{F}. If every r sets in \mathcal{F} have a line transversal, then \mathcal{F} is said to have the $T(r)$-property, and \mathcal{F} is said to be T^n if there are n lines whose union intersects each set in \mathcal{F}. In this case we say \mathcal{F} is pierced by these lines. In 1969, Eckhoff showed that if \mathcal{F} is a family of compact, convex sets that has the $T(r)$-property where $r \geq 4$, then \mathcal{F} is T^2 [1]. A result of Santalo shows that this result is best possible [12], i.e. for all r, there exists a family of compact, convex sets with the $T(r)$-property that does not have a line transversal. Eckhoff also showed in 1973 that the $T(3)$-property does not imply T^2 [2]. In 1975, Kramer proved that the $T(3)$-property implies T^3 [9]. Eckhoff later showed in 1993 that the $T(3)$-property implies T^4, and conjectured that the $T(3)$-property in fact implies T^3 [3]. This conjecture has recently been verified by McGinnis and Zerbib [11]. In fact, they proved a stronger statement, which we now explain.

Three sets F_1, F_2, F_3 in the plane are said to be a tight triple if $\text{conv}(F_1 \cup F_2) \cap \text{conv}(F_2 \cup F_3) \cap \text{conv}(F_3 \cup F_1) \neq \emptyset$. This was first defined by Holmsen [6]. A family of planar sets will be called a family of tight triples if every three sets in the family are a tight triple. If three sets have a line transversal, then they are a tight triple as the convex hull of two of the three sets intersects the third. McGinnis and Zerbib showed that a family of tight triples consisting of compact, convex sets is T^3, which implies Eckhoff’s conjecture.

The main purpose of this paper is to prove an extension of the result that families of tight triples are T^3. We define a certain type of family of sets, which we call a $C(k)$.

Definition 1.1. For $k \geq 4$, we define a $C(k)$ to be a family of k distinct sets in the plane together with a linear ordering, say F_1, \ldots, F_k where the sets are ordered by their indices, such that $\text{conv}(F_i \cup F_{i+1}) \cap \text{conv}(F_j \cup F_{j+1}) = \emptyset$ when $\{i, i+1\} \cap \{j, j+1\} = \emptyset$ (indices are taken modulo k). We show that if \mathcal{F} is a family of compact, convex sets that does not contain a $C(k)$, then there are $k - 2$ lines that pierce \mathcal{F}. Additionally, we give an example of a family of compact, convex sets that contains no $C(k)$ and cannot be pierced by $\lceil \frac{k}{2} \rceil - 1$ lines.

The author gratefully acknowledges support from the Iowa State University Department of Mathematics through the Lambert Graduate Assistantship.
Figure 1. An example of a $C(5)$. The sets of the $C(k)$ are in dark gray, and the ordering on these sets is indicated by the numbers $1, \ldots, 5$. The dark gray and light gray together depict the union $\bigcup_{i=1}^{5} \text{conv}(F_i \cup F_{i+1})$.

Figure 2. A $C(5)$-free and $C(3)$-free family that is not $C(4)$-free.

$\{i, i+1\} \cap \{j, j+1\} = \emptyset$ (indices are taken modulo k). Additionally, we define a $C(3)$ to be a family of three disjoint sets in the plane that is not a tight triple.

Roughly speaking, if F_1, \ldots, F_k is a $C(k)$, then the union $\bigcup_{i=1}^{k} \text{conv}(F_i \cup F_{i+1})$ resembles a closed loop that does not cross itself (see Figure 1). Notice that the sets in a $C(k)$ are pairwise disjoint.

A family \mathcal{F} is said to be $C(k)$-free if \mathcal{F} does not contain a $C(k)$ as a subfamily. We note that a $C(k)$-free family may not be $C(k-1)$-free, and similarly, a $C(k-1)$-free family need not be $C(k)$-free. (see Figure 2).

Let $L(k)$ be the smallest integer such that any $C(k)$-free family of compact, convex sets can be pierced by $L(k)$ lines. The following is the main result of this paper.
Theorem 1.2. Let \(k \geq 4 \). We have the following:

\[
\left\lceil \frac{k}{2} \right\rceil \leq L(k) \leq k - 2.
\]

For \(k = 4 \), the lower bound of Theorem 1.2 follows from the result of Santaló 12 that there are families with the \(T(4) \)-property that do not have a line transversal. This is due to the fact that a \(C(k) \) cannot have a line transversal, so a family with the \(T(4) \)-property is in particular \(C(4) \)-free. We also note that the upper bound for \(k = 4 \) was essentially proved in the concluding remarks of 11. Indeed, the proof outlined in 11 shows that if \(\mathcal{F} \) is a family of compact, convex sets in the plane that is not \(T^2 \), then there are non-parallel lines such that each quadrant defined by these two lines contains a set from \(\mathcal{F} \). These 4 sets then make up a \(C(4) \).

For \(k = 5 \), we get a tight result.

Corollary 1.3. The following equality holds:

\[
L(5) = 3.
\]

The proof of Theorem 1.2 is split into two sections. Section 2 is dedicated to proving the lower bound of Theorem 1.2 and Section 3 is dedicated to the upper bound. For 2 points \(p \) and \(q \), we denote by \([p, q]\) to be the line segment connecting \(p \) and \(q \). If \(p = q \), then \([p, q]\) consists of a single point.

2. The lower bound

In this section we exhibit a \(C(k) \)-free family \(\mathcal{F} \) that is not \(T^{\left\lceil \frac{k}{2} \right\rceil - 1} \). The inspiration for the construction of such a family comes from 2 where an example of a family of compact, convex sets with the \(T(3) \)-property that is not \(T^2 \) is exhibited by Eckhoff. As mentioned earlier, the result is already established for \(k = 4 \) so we may assume that \(k \geq 5 \).

For \(k \) odd, we will present a family \(\mathcal{F} \) that is both \(C(k) \)-free and \(C(k + 1) \)-free and is not \(T^{\left\lceil \frac{k}{2} \right\rceil - 1} \). This will establish the lower bound of Theorem 1.2. We note that for \(k \) even, an example of a \(C(k) \)-free family that is not \(T^{\left\lceil \frac{k}{2} \right\rceil - 1} \) is given simply by \(k - 1 \) points in general position. However, in this example, the family is \(C(k) \)-free for the seemingly trivial reason that are only \(k - 1 \) sets in the family. For each \(k \geq 5 \), we present a family demonstrating the lower bound of Theorem 1.2 that contains more than \(k \) sets.

Let \(p_1, \ldots, p_{3(k-1)} \) be equidistant points on the unit circle, arranged clockwise. For \(1 \leq i \leq 3 \), let \(p_i^k \) be a point lying slightly counterclockwise to \(p_i \) and \(p_i^c \) to be a point lying slightly clockwise to \(p_i \) in such a way that the points \(p_1^k, p_1^c, p_2^k, p_2^c, p_3^k, p_4, \ldots, p_{3(k-1)} \) are arranged in clockwise order.

We first define three families of sets, which consists only of line segments (see Figure 3).

\[
\mathcal{F}_1 = \{ [p_1^k, p_1^c], [p_4, p_6], [p_7, p_9], \ldots, [p_{3(k-1)}-2, p_{3(k-1)}] \}
\]

\[
\mathcal{F}_2 = \{ [p_2, p_4], [p_5, p_7], [p_8, p_{10}], \ldots, [p_{3(k-1)}-4, p_{3(k-1)}-2], [p_{3(k-1)}-1, p_1^c] \}
\]

\[
\mathcal{F}_3 = \{ [p_3, p_5], [p_6, p_8], [p_{10}, p_{12}], \ldots, [p_{3(k-1)}-3, p_{3(k-1)}-1], [p_{3(k-1)}, p_2^c] \}.
\]

Finally, we take \(\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3 \) (see Figure 3). We now show that \(\mathcal{F} \) is \(C(k) \)-free and \(C(k + 1) \)-free, and we show it is not \(T^{\left\lceil \frac{k}{2} \right\rceil - 1} \). For a set \([p, q] \in \mathcal{F}\) we say that \(p \) comes clockwise before \(q \) if the clockwise distance along the unit circle from \(p \)
Figure 3. An example demonstrating the lower bound of Theorem 1.2 for \(k = 5 \). The sets in \(F_1 \) are red, in \(F_2 \) are blue, and in \(F_3 \) are green.

to \(q \) is less than the clockwise distance from \(q \) to \(p \). When \([p, q] \in F\) and \(p \) comes clockwise before \(q \), we denote \(\text{arc}[p, q] \) to be the arc along the unit circle that goes clockwise from \(p \) to \(q \). When \([p, q] \in F\) and \(p \) comes before \(q \), we denote \(\text{arc}[p, q] \) to be the arc along the unit circle that goes clockwise from \(p \) to \(q \). Also, we use \(I([p, q]) \) to denote the set of indices \(i \) such that \(p_i \in \text{arc}[p, q] \), \(p_i' \in \text{arc}[p, q] \), or \(p_i'' \in \text{arc}[p, q] \). For example, \(I(p_5', p_4) = \{2, 3\} \). Note that if \(F_1, F_2 \in F \) intersect, then \(I(F_1) \cap I(F_2) \neq \emptyset \).

Lemma 2.1. The family \(F \) is \(C(k) \)-free and \(C(k + 1) \)-free.

Proof. Let \([p, q] \in F\) where \(p \) comes clockwise before \(q \). There is no set of \(F \) that is disjoint from \([p, q]\) and contains a point on \(\text{arc}[p, q] \). Since for each such set \([p, q]\), \(\text{arc}[p, q] \) contains at least 3 of the \(3k \) points in

\[P = \{p_1^k, p_1', p_2^k, p_2', p_3^k, p_3', p_4, \ldots, p_{3(k-1)}\}, \]

a \(C(k) \) of \(F \) has the property that each set \([p, q]\) in the \(C(k) \) contains exactly 3 points in \(\text{arc}[p, q] \), and every point of \(P \) is in \(\text{arc}[p, q] \) for some \([p, q]\) of the \(C(k) \). However, each set \([p', q']\) of \(F \) that contains \(p_5^k \) in \(\text{arc}[p', q'] \) has the property that at least 4 points of \(P \) are contained in \(\text{arc}[p', q'] \), a contradiction. Also, \(F \) is \(C(k + 1) \)-free by the same reasoning. \(\square \)

Lemma 2.2. The family \(F \) is not \(T[\frac{k}{2}] \)-free.

Proof. Notice that for any \(F \in F \), if a line \(L \) pierces \(F \), then \(L \) intersects \(\text{arc}F \). Any point on the unit circle is contained in \(\text{arc}F \) for at most 3 sets \(F \in F \). If a point is contained in \(\text{arc}F \) for 3 such sets \(F \in F \), then this point must be of the form \(p_i \) for some \(4 \leq i \leq 3(k - 1) \). Since a line intersects the unit circle in at most 2 points, any line intersects at most 6 sets in \(F \).

Now, since \(\text{arc}[p_1^k, p_3^k] \) does not contain \(p_i \) for any \(4 \leq i \leq 3(k - 1) \), there is no line that intersects \([p_1^k, p_3^k]\) and intersects 6 sets in \(F \).
It follows that if a lines pierce F, then $6(a-1)+5 \geq 3(k-1)$, so $a > \frac{k+1}{2} = \left\lfloor \frac{k}{2} \right\rfloor - 1$. This completes the proof.

\[\square \]

3. The upper bound

In this section, we prove that every $C(k)$-free family F can be pierced by $k-2$ lines, and again, we may assume that $k \geq 5$. Because the sets of F are compact, it is the case that if every finite subfamily of F is T^n, then F is T^n. This is stated for instance in \[3\]. Therefore, throughout this section we may assume that F is finite, and thus, we may scale the plane so that each set of F is contained in the open unit disk.

First, we will need to introduce a topological tool known as the KKM Theorem \[8\].

Let $\Delta^{n-1} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_i \geq 0, \sum_{i=1}^{n} x_i = 1\}$ denote the $(n-1)$-dimensional simplex in \mathbb{R}^n, whose vertices are the canonical basis vectors e_1, \ldots, e_n. A face σ of Δ^{n-1} is a subset of Δ^{n-1} of the form $\text{conv} \{(e_i : i \in I)\}$ for some $I \subset [n]$.

Theorem 3.1. Let A_1, \ldots, A_n be open sets such that for every face σ of Δ^{n-1} we have $\sigma \subset \bigcup_{i \in \sigma} A_i$. Then we have that $\cap_{i=1}^{n} A_i \neq \emptyset$.

We remark that the original KKM Theorem was stated for when the sets A_i are closed, and the statement where the A_i’s are open as stated here appears in e.g. \[10\].

Let U be the unit circle, and let $f : [0, 1] \to U$ be a parameterization of U defined by $f(t) = (\cos(2\pi t), \sin(2\pi t))$.

A point $x = (x_1, \ldots, x_{2(k-2)}) \in \Delta^{2(k-2)-1}$ corresponds to $2(k-2)$ points on U given by $f_i(x) = f(\sum_{j=1}^{i} x_j)$ for $0 \leq i \leq 2(k-2)$ (note that $f_0(x) = f_{2(k-2)}(x)$). We define the line segments $\ell_i(x) = [f_i(x), f_i+k-2(x)]$ for $0 \leq i \leq 2(k-2)-1$ where addition is taken modulo $2(k-2)$ (see Figure 4). Note that $\ell_i(x) = \ell_{i+k-2}(x)$.

For $1 \leq i \leq k-3$, we define the region R_x^i to be the open set bounded by the lines $\ell_i(x)$ and $\ell_{i-1}(x)$ and by the arc from $f_{i-1}(x)$ to $f_i(x)$. For $k-2 \leq i \leq 2(k-2)$, we define R_x^i to be the intersection of the region in the open unit disk bounded by $\ell_{i-1}(x)$, $\ell_i(x)$ and the arc from $f_{i-1}(x)$ to $f_i(x)$ with the open halfspaces defined by $\ell_j(x)$ for those $1 \leq j \leq 2(k-2)$ for which $\ell_j(x)$ is a line segment and (not a point) containing the open arc from $f_{i-1}(x)$ to $f_i(x)$ (see Figures 4-7).

Lemma 3.2. Assume that each R_x^i is non-empty. Let Q_1 be the open quadrant defined by the lines $\ell_{k-3}(x)$ and $\ell_{k-2}(x)$ that contains the open arc along the unit circle from $f_0(x)$ to $f_{k-3}(x)$. There is some $1 \leq j \leq k-3$ such that R_x^j is contained in Q_1.

Proof. Let Q_2, Q_3, Q_4 be the remaining quadrants defined by $\ell_{k-3}(x)$ and $\ell_{k-2}(x)$ so that Q_1, Q_2, Q_3, Q_4 occur in counterclockwise order (see Figure 8). Since the regions R_x^i are non-empty, the Q_i’s are non-empty. Assume that R_x^{k-3} is not contained in Q_1, then $\ell_{k-4}(x)$ intersects Q_4. Similarly, if we assume that R_x^{k} is not contained in Q_1, then $\ell_1(x)$ intersects Q_2. If $k = 5$, then we are done since $k-4 = 1$ and $\ell_1(x)$ cannot intersect both Q_2 and Q_4. Otherwise, $k \geq 6$, and we take j to be the smallest index such that $\ell_j(x)$ intersects Q_4. Such an index exists since we assume that $\ell_{k-4}(x)$ intersects Q_4. Also, $j > 1$, since we assume that $\ell_1(x)$ intersects Q_2 (and hence does not intersect Q_4). Therefore $j-1 \geq 1$ and $\ell_{j-1}(x)$ intersects Q_2, or the intersection of $\ell_{k-2}(x)$ and $\ell_{k-3}(x)$. This implies that $\ell_{j-1}(x)$ and $\ell_j(x)$ intersect in Q_1 (see Figure 8). Therefore, R_x^j is contained in Q_1. \[\square \]
Lemma 3.3. If a connected set F contained in the unit disc does not intersect any $\ell_j(x)$, then F is contained in R_x^i for some i.

Proof. Let \tilde{R}_x^i be the region bounded by the arc from $f_{i-1}(x)$ to $f_i(x)$ and by the lines $\ell_{i-1}(x)$ and $\ell_i(x)$. Note that $\tilde{R}_x^i = R_x^i$ for $1 \leq i \leq k-3$. Also, we have that F is contained in \tilde{R}_x^i for some i. If $1 \leq i \leq k-3$, then we are done since $\tilde{R}_x^i = R_x^i$. So assume that $i \geq k-2$ and F is not contained in R_x^i. Since F does not intersect any $\ell_j(x)$, there is some j such that F is contained in the open halfspace defined by $\ell_j(x)$ that does not contain the arc from $f_{i-1}(x)$ to $f_i(x)$.

If $i = 2(k-2)$, then choose the largest index $j \in \{1, \ldots, k-4\}$ such that the open halfspace defined by $\ell_j(x)$ not containing the arc from $f_{2(k-2)-1}(x)$ to $f_0(x)$ contains F. Then F is contained in R_x^{j+1}. This is because R_x^{j+1} is the region in the open unit disk obtained by taking intersection of the open halfspace defined by $\ell_j(x)$ that does not contain the arc from $f_{2(k-2)-1}(x)$ to $f_0(x)$ (which contains F) with the open halfspace defined by $\ell_{j+1}(x)$ that contains the arc from $f_{2(k-2)-1}(x)$ to $f_0(x)$ (which contains F by the maximality of j).

If $i = k-2$, then choose the smallest index $j \in \{1, \ldots, k-4\}$ such that the halfspace defined by $\ell_j(x)$ not containing the arc from $f_{k-3}(x)$ to $f_{k-2}(x)$ contains F. Then F is contained in R_x^i (by similar reasoning as above).

Hence, we may assume that $i \neq k-2, 2(k-2)$. Let $i' = i - (k-2)$. If there is some $u \in \{0, \ldots, i'-2\}$ such that the halfspace defined by $\ell_u(x)$ not containing the arc from $f_{i-1}(x)$ to $f_i(x)$ contains F, then let j be the largest such index. Then F is contained in R_x^{j+1}. Otherwise, choose the smallest index $j \in \{k-3, \ldots, i'+1\}$ such that the halfspace defined by $\ell_j(x)$ not containing the arc from $f_{i-1}(x)$ to $f_i(x)$ contains F. Then F is contained in R_x^i.

This completes the proof. □

With the goal of using the KKM Theorem, we define A_i to be the set of points $x \in \Delta^{2(k-2)-1}$ for which R_x^i contains a set in \mathcal{F}. Because R_x^i is open and each set in \mathcal{F} is closed, it follows that A_i is open. Let us assume for contradiction that there is no point $x \in \Delta^{2(k-2)-1}$ for which the lines $\ell_j(x)$, $0 \leq j \leq k-3$ pierce \mathcal{F}. Then by Lemma 3.3 for each $x \in \Delta^{2(k-2)-1}$, there is some region R_x^i that contains a set in \mathcal{F}. It follows that $\Delta^{2(k-2)-1} \subseteq \bigcup_{i=1}^{2(k-2)-1} A_i$. Also, it is clear that for $x = (x_1, \ldots, x_{2(k-2)})$, if $x_i = 0$, then the region R_x^i is empty and hence $x \notin A_i$. It follows from this fact that the sets A_i satisfy the conditions of the KKM Theorem.

Therefore, by the KKM Theorem, there exists a point $x \in \bigcap_{i=1}^{2(k-2)-1} A_i$. Notice in particular that each R_x^i is non-empty.

Let $1 \leq i \leq k-3$ be the index such that R_x^i is contained in Q_1, guaranteed by Lemma 3.2 where Q_1 is defined as in Lemma 3.2.

Let F_1 be the set in \mathcal{F} contained in R_x^i, and let F_j be the set of \mathcal{F} contained in R_x^{k-4+j} for $2 \leq j \leq k$. Note that the corresponding regions R_x^i and R_x^j are disjoint, so F_1, \ldots, F_k are pairwise distinct.

Now, conv$(F_1 \cup F_2)$ is separated from F_3, \ldots, F_k by the line $\ell_0(x)$, so conv$(F_1 \cup F_2)$ is disjoint from conv$(F_u \cup F_{u+1})$ for all $3 \leq u \leq k-1$. For $j \in \{2, \ldots, k-1\}$, conv$(F_j \cup F_{j+1})$ is separated from F_{j+2}, \ldots, F_k by $\ell_{k-4+j+1}(x)$, so conv$(F_j \cup F_{j+1})$ is disjoint from conv$(F_u \cup F_{u+1})$ for all $j+2 \leq u \leq k-1$. Finally, conv$(F_k \cup F_1)$ is separated from F_2, \ldots, F_{k-1} by $\ell_{k-3}(x)$, so conv$(F_k \cup F_1)$ is disjoint from conv$(F_u \cup F_{u+1})$ for all $2 \leq u \leq k-2$. It follows that the sets F_1, \ldots, F_k form a $C(k)$, a contradiction.
This completes the proof of Theorem 1.2.

4. Concluding Conjecture

We present a conjecture for the correct value of \(L(k) \), which states that the lower bound of Theorem 1.2 is correct.

Conjecture 4.1. We have that \(L(k) = \lceil \frac{k}{2} \rceil \).

5. Acknowledgements

The author would like to thank Shira Zerbib for commenting on a first draft of this paper.

References

[1] Jürgen Eckhoff. Der Satz von Radon in konvexen Produktstrukturen. II. *Monatsh. Math.*, 73:7–30, 1969.

[2] Jürgen Eckhoff. Transversalenprobleme in der Ebene. *Arch. Math. (Basel)*, 24:195–202, 1973.

[3] Jürgen Eckhoff. A Gallai-type transversal problem in the plane. *Discrete Comput. Geom.*, 9(2):203–214, 1993.

[4] Jürgen Eckhoff. Common transversals in the plane: the fractional perspective. *European J. Combin.*, 29(8):1872–1880, 2008.

[5] Andreas F. Holmsen. New results for \(T(k) \)-families in the plane. *Mathematika*, 56(1):86–92, 2010.

[6] Andreas F. Holmsen. Geometric transversal theory: \(T(3) \)-families in the plane. In *Geometry—intuitive, discrete, and convex*, volume 24 of *Bolyai Soc. Math. Stud.*, pages 187–203. János Bolyai Math. Soc., Budapest, 2013.

[7] M. Katchalski and A. Liu. Symmetric twins and common transversals. *Pacific J. Math.*, 86(2):513–515, 1980.

[8] B. Knaster, C. Kuratowski, and S. Mazurkiewicz. Ein beweis des fixpunktsatzes für n-dimensionale simplexe. *Fund. Math.*, 14(1):132–137, 1929.

[9] D. Kramer. Transversalenprobleme vom Hellyschen und Gallaischen Typ, Dissertation, Universität Dortmund, 1974.

[10] Marc Lassonde. Sur le principe KKM. *C. R. Acad. Sci. Paris Sér. I Math.*, 310(7):573–576, 1990.

[11] Daniel McGinnis and Shira Zerbib. Line transversals in families of connected sets the plane, 2021.

[12] L. A. Santaló. A theorem on sets of parallelepips with parallel edges. *Publ. Inst. Mat. Univ. Nac. Litoral*, 2:49–60, 1940.
Figure 5. The regions R_2^2 (on the left) and R_3^3 (on the right).

Figure 6. The regions R_4^4 (on the left) and R_5^5 (on the right).

Figure 7. The region R_6^6.
Figure 8. The quadrants Q_1, Q_2, Q_3, and Q_4.

Figure 9. If $\ell_j(x)$ intersects Q_4 and $\ell_{j-1}(x)$ intersects Q_2 (or the intersection of $\ell_0(x)$ and $\ell_{k-3}(x)$), then the intersection of $\ell_j(x)$ and $\ell_{j-1}(x)$ is in Q_1.