ADDENDUM TO
“SUPERCONNECTIONS AND PARALLEL TRANSPORT”

FLORIN DUMITRESCU

Abstract. In this addendum to our article “Superconnections and Parallel Transport” we give an alternate construction to the parallel transport of a superconnection contained in Corollary 4.4 of [2], which has the advantage that is independent on the various ways a superconnection splits as a connection plus a bundle endomorphism valued form.

Consider as in Section 4 of [2] a superconnection \(\mathbb{A} \) in the sense of Quillen (see [3] and [1]) on a \(\mathbb{Z}/2 \)-graded vector bundle \(E \) over a manifold \(M \), i.e. an odd first-order differential operator

\[
\mathbb{A} : \Omega^*(M, E) \to \Omega^*(M, E)
\]

satisfying Leibniz rule

\[
\mathbb{A}(\omega \otimes s) = d\omega \otimes s \pm \omega \otimes \mathbb{A}(s),
\]

with \(\omega \in \Omega^*(M) \) differential form on \(M \) and \(s \in \Gamma(M; E) \) arbitrary section of the bundle \(E \) over \(M \). For such a superconnection we defined in [2] a notion of parallel transport along (families of) superpaths \(c : S \times \mathbb{R}^{1|1} \to M \) that is compatible under gluing of superpaths. Let us briefly recall this construction. First, let us write \(\mathbb{A} = \mathbb{A}_1 + A \), with \(\mathbb{A}_1 = \nabla \) the connection part of the superconnection \(\mathbb{A} \) and \(A \in \Omega^*(M, \text{End } E)^{odd} \) the linear part of the superconnection. For an arbitrary superpath \(c \) in \(M \) consider the diagram

\[
\begin{array}{ccc}
E & \xrightarrow{c^*} & c^*E \\
\downarrow \pi^*E & & \downarrow \pi \\
M & \xrightarrow{c} & S \times \mathbb{R}^{1|1} \\
\downarrow \pi & & \downarrow \pi \\
\Pi TM & \xrightarrow{\tilde{c}} & \Pi TM
\end{array}
\]

with \(\tilde{c} \) a canonical lift of the path \(c \) to \(\Pi TM \), the “odd tangent bundle” of \(M \). Then parallel transport along \(c \) is defined by parallel sections \(\psi \in \Gamma(c^*E) \)

Date: January 4, 2011.
along c which are solutions to the following differential equation
\[(c^*\nabla)_D\psi - (c^*A)\psi = 0.\]
Here $D = \partial_\theta + \theta \partial_t$ denotes the standard (right invariant) vector field on $\mathbb{R}^{1|1}$, see Section 2.4 of [2].

Our alternate construction goes as follows. We first write $A = A_0 + \bar{A}$, where A_0 denotes the zero part of the superconnection and \bar{A} the remaining part. Define then a connection $\bar{\nabla}$ on the bundle π^*E over ΠTM as follows
\[\nabla_{L_X}(\omega \otimes s) = L_X\omega \otimes s \pm \iota_X\bar{A}s,\]
\[\nabla_{\iota_X}(\omega \otimes s) = \iota_X\omega \otimes s,\]
for $\omega \in \Omega^*(M)$ and $s \in \Gamma(M; E)$. Here, for a vector field X on M, L_X and ι_X denote the Lie derivative respectively contraction in the X-direction acting as even respectively odd derivations on $\Omega^*(M) = C^\infty(\Pi TM)$, i.e. as vector fields on ΠTM. These relations are enough to define a connection $\bar{\nabla}$ on the bundle π^*E over ΠTM since the algebra of vector fields on ΠTM is generated over $C^\infty(\Pi TM)$ by vector fields of the type L_X and ι_X, for X arbitrary vector field on M, i.e.

\[\text{Vect}(\Pi TM) = C^\infty(\Pi TM) < L_X, \iota_X \mid X \in \text{Vect}(M) > .\]

Parallel transport along a superpath $c : S \times \mathbb{R}^{1|1} \to M$ is defined by parallel sections $\psi \in \Gamma(c^*E)$ along c which are solutions to the following differential equation
\[(c^*\nabla)_D\psi - (c^*A_0)\psi = 0.\]
As before, the parallel transport is well-defined (cf. Proposition 4.2 of [2]) by this “half-order” differential equation and is compatible under glueing of superpaths (i.e. it satisfies properties (i) and (ii) of Theorem 4.3 in [2]). The advantage of this construction resides in the fact that the parallel transport so defined is invariant under the various ways in which a superconnection can be written as a sum of a connection plus a linear part, as \bar{A} is invariant under such splittings.

Denote by D the de Rham differential on ΠTM. If ω is a function on ΠTM, then the 1-form $D\omega$ on ΠTM evaluated on the standard odd vector field d on ΠTM gives us
\[(D\omega)(d) = d\omega,\]
the differential of ω, understood as a function on ΠTM. This allows us to conclude that for any s a section of E,
\[\nabla ds = \bar{A}s.\]
Let us note that the connection $\bar{\nabla}$ is torsion free in the odd directions, i.e.
\[\left[\nabla_{\iota_X}, \nabla_{\iota_Y}\right] = \nabla_{[\iota_X, \iota_Y]} (= 0),\]
where X and Y are vector fields on M.
The two constructions coincide when we consider connections instead of superconnections on the bundle E over M. When the manifold M reduces to a point, a graded vector bundle with superconnection reduces to a $\mathbb{Z}/2\mathbb{Z}$-vector space V together with an odd endomorphism $A (= A_0)$ of V. The two constructions of parallel transport we considered also coincide in this situation giving rise to the supergroup homomorphism of Example 3.2.9 in [4]

$$R^{1|1} \ni (t, \theta) \mapsto e^{-tA^2 + \theta A} \in GL(V),$$

as solution to the “half-order” differential equation $D\psi = A\psi$.

We can also recover the superconnection from its associated parallel transport by first recovering the A_0 from looking at constant superpaths in M, and then recover \hat{A} by looking at parallel transport along the superpath given by $R^{1|1} \times \Pi TM \to R^{0|1} \times \Pi TM \to M$, where the two maps are the obvious projection maps. The lift of such a superpath to ΠTM gives, after the obvious projection map, the flow of the vector field d on ΠTM. Given that $\nabla ds = \hat{A}s$, this recovers \hat{A}. Compare with Section 4.4 of [2].

Acknowledgements. The construction presented here is a mere continuation of an idea of Stephan Stolz who first thought to interpret a Quillen superconnection on a bundle E over M as a connection on the pullback bundle π^*E over ΠTM. I would like to thank Peter Teichner for suggesting to write up this Addendum.

References

[1] Nicole Berline, Ezra Getzler, and Michèle Vergne. *Heat kernels and Dirac operators*. Grundlehren Text Editions. Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original.

[2] Florin Dumitrescu. Superconnections and parallel transport. *Pacific J. Math.*, 236(2):307–332, 2008.

[3] Daniel Quillen. Superconnections and the Chern character. *Topology*, 24(1):89–95, 1985.

[4] Stephan Stolz and Peter Teichner. What is an elliptic object? In *Topology, geometry and quantum field theory*, volume 308 of *London Math. Soc. Lecture Note Ser.*, pages 247–343. Cambridge Univ. Press, Cambridge, 2004.

Institute of Mathematics of the Romanian Academy “Simion Stoilow”
21 Calea Grivitei
Bucharest, Romania.
Email: florinndo@gmail.com