Modern imaging of the tracheo-bronchial tree

Citation for published version:
Laroia, AT, Thompson, BH, Laroia, ST & van Beek, E 2010, 'Modern imaging of the tracheo-bronchial tree'
World journal of radiology, vol 2, no. 7, pp. 237-48. DOI: 10.4329/wjr.v2.i7.237

Digital Object Identifier (DOI):
10.4329/wjr.v2.i7.237

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
World journal of radiology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Modern imaging of the tracheo-bronchial tree

Archana T Laroia, Brad H Thompson, Sandeep T Laroia, Edwin JR van Beek

Abstract
Recent state-of-the-art computed tomography and improved three-dimensional (3-D) postprocessing techniques have revolutionized the capability of visualizing airway pathology, offering physicians an advanced view of pathology and allowing for appropriate management planning. This article is a comprehensive review of trachea and main bronchi imaging, with emphasis on the dynamic airway anatomy, and a discussion of a wide variety of diseases including, but not limited to, congenital large airway abnormalities, tracheobronchial stenoses, benign and malignant neoplasms and tracheobronchomalacia. The importance of multiplanar reconstruction, 3-D reconstruction and incorporation of dynamic imaging for non-invasive evaluation of the large airways is stressed.

© 2010 Baishideng. All rights reserved.

Key words: Computed tomography; Trachea; Bronchial tree; Airways; Advanced imaging

INTRODUCTION
Imaging of the trachea-bronchial tree has improved recently in large part due to the advancements of computed tomography (CT), allowing for volumetric isotropic voxel imaging, and its associated improvements in post-processing software that allows for advanced three-dimensional (3-D) visualization. Thus, airway imaging has become a tool that physicians can use to help plan interventional procedures, such as bronchoscopy, stent placement, surgery and subsequent follow-up. It is clear that airway imaging competes with invasive bronchoscopy as a choice in establishing a diagnosis. CT does not offer the chance for biopsy or broncho-alveolar lavage, and also does not allow intervention. This review article is intended to give a broad overview of the disease processes radiologists encounter in daily practice and offers insight into CT imaging protocols.

STRUCTURAL ANATOMY
The trachea is a cartilaginous and fibromuscular conduit for ventilation and bronchial secretions. It extends from the level of C6 (cricoid cartilage) to the carina, approximately located at level of T4-T5, where it bifurcates into left and right main stem bronchi (Figure 1). In adults, its length, as measured during inspiratory CT, is approximately 11-13 cm, with 2-4 cm being extrathoracic. During inspiration, the trachea is semi-oval in shape with a coronal diameter of 13 to 25 mm in men and 10 to 21 mm in women, and a sagittal diameter of 13 to 27 mm in men and 10 to 23 mm in women. The trachea has 16 to 22 horseshoe bands of cartilage that compose the anterior and lateral walls of the trachea. The posterior tracheal wall lacks cartilage and
is made of a thin membrane supported by the trachealis muscle. On CT, the tracheal wall appears as a 1-3 mm soft tissue stripe outlined by the air in lumen and mediastinal fat. The posterior wall appears thinner and gives a variable contour to the shape of the trachea due to lack of cartilage. It may appear flat, convex or slightly concave depending on the level of inspiration\(^1,3,4\). The posterior wall of the trachea either flattens or bows slightly forward during expiration. In normal subjects there is up to a 35% reduction in AP tracheal lumen in forced expiration, whereas the transverse diameter decreases only by 13% (Figure 2)\(^4,5\).

The trachea is generally midline in position, often displaced slightly to the right at the level of the aortic arch. It angles posteriorly achieving a mid-coronal location at the level of the carina. Significant error in measurement of the tracheal diameter can occur if the measurement is not perpendicular to the plane of scanning. However, with isotropic imaging made possible with multidetector CT (MDCT), 3-D reconstruction of the airways allows determination of the central axis and hence enables very accurate measurement of the tracheal diameter in any axis. The tracheal index can be calculated as a ratio of the coronal diameter (mm) by the sagittal diameter (mm). The normal value is approximately one\(^6\). The angle of the tracheal bifurcation, also called the carinal angle, can vary widely even in normal individuals. The carinal angle is wider in individuals with an enlarged left atrium, in females, in obese patients, and in people with the carina located closer to the spine. The widening of the carinal angle on serial films can suggest subcardinal lymphadenopathy. The right main stem bronchus has a more direct downward course, is shorter than the left and begins to ramify earlier than the left main bronchus\(^9\).

IMAGE ACQUISITION AND POST PROCESSING

The plain chest radiograph is relatively insensitive to airway changes\(^7\). MDCT, including thin-slice volumetric CT, paired inspiratory and expiratory MDCT and even dynamic 4D MDCT during a full respiratory cycle, allows for exquisite visualization of the central airways. Furthermore, reconstruction methods, including multiplanar imaging and virtual bronchoscopy, are now commonly available. The use of these techniques will be described in greater detail in the sections below, with the most useful techniques highlighted for the various pathologies under evaluation. In addition, MR imaging is increasingly being used to study respiratory dynamics and airway pathophysiology, however, this modality will not be included in this review. Suffice it to say that fast acquisitions of isotropic volumetric data with advanced reconstruction techniques are now capable of generating high quality images with functional information. This has made a significant impact in the direct planning and management of patients\(^8,11\). Pathology of the trachea and the main stem bronchi can be broadly classified into focal or diffuse causes, with or without tracheobronchomegaly (Table 1).
Two-dimensional multiplanar reformation

Two-dimensional multiplanar reformation images are single-voxel-thick sections; 0.6-0.8 mm sections displayed in the coronal, sagittal, or oblique plane. Curved reformations along the long axis of the airways allows for the simultaneous depiction of multiple contiguous airway segments

on a single section. Most PACS stations now permit creation of real-time multiplanar images focusing on the abnormality at the reading workstation itself. A remote post processing station can also be used. Multiplanar reformats are easily performed in real time in all directions with various rendering modes. Multiple adjacent thin slices can be stacked together to generate a thick slab or multiplanar volume reformation image. Slice thickness can be altered to any dimension, but 3 to 7 mm thicknesses generally give adequate images. Various rendering tools can be used. The average MPR can give tomographic equivalent images. Minimum intensity projection (mIP) projects the pixels with the lowest attenuation values in a 2-D format. The trachea-bronchial tree and any lucent abnormalities, such as diverticula or fistulous communications, are well displayed on mIP reconstructions.

3-D reconstruction
3-D reconstructions include external and internal renderings of the airways. External 3-D rendering of the airways is equivalent to CT bronchography. 3-D segmentation of the trachea-bronchial tree provides a rapid anatomic overview of the airways. 3-D reconstructions allow the recognition of mild and focal airway stenoses, providing accurate anatomically more relevant information on the shape, length, and severity of airway stenoses. 3-D images demonstrate the changes of tracheomalacia on inspiration and expiration well.

Internal 3-D rendering of the airways gives images equivalent to bronchoscopy and is aptly referred to as virtual bronchoscopy. It enables the viewer to navigate through the lumen of the airway to the sixth-order and seventh-order subdivisions. Virtual bronchoscopy is a uniquely useful noninvasive method of assessment of tight airway stenosis, which cannot be negotiated on conventional bronchoscopy. It allows for preplanning transbronchial biopsies, evaluation of aspirated foreign bodies and tracheomalacia. Virtual bronchoscopy may obviate the need for invasive conventional bronchoscopy in certain circumstances. It is a great non invasive alternative to conventional bronchoscopy in special subgroups of patients such as young children, very sick patients or elderly patients who may not be able to tolerate bronchoscopy. Virtual bronchoscopy does not permit tissue sampling, which can be done with endoscopic bronchoscopy.

CONGENITAL TRACHEA-BRONCHIAL ANOMALIES

Bronchus suis

Bronchus suis refers to a rare congenital anomaly, whereby the right upper lobe bronchus originates directly from the trachea (Figure 3). It is usually detected incidentally and may not have much clinical implication. However, this anomaly may cause hypoxemia and prolonged atelectasis with intubation or during anesthesia due to inadvertent closure of the bronchial opening by the endotracheal tube. Further information can be found in Reference [12-14].
thermore, bronchus suis is associated with other congenital anomalies, particularly trisomy 21[21]. Hence, identification of this anomaly is of clinical relevance.

Bronchial atresia
This is a developmental disorder, resulting in a segmental or subsegmental bronchus becoming entirely detached from the main airway[22,23]. The distal airway will continue to produce mucus while there is no clearance from the airway, leading to the impaction of mucus seen as the “finger-in-glove” sign on CT (Figure 4). There is collateral air flow into the segment through the pores of Kohn but it becomes trapped causing hyperinflation of the involved segment. Recurrent pneumonia may be a presenting symptom in these patients. The classic locations for atretic bronchi are the apical and apicoposterior segments of the upper lobes[24].

Tracheo-esophageal fistula
Tracheo-esophageal fistula congenital malformation results from a failure of the trachea and esophagus to divide and grow out separately during early development of the primitive foregut. It is often seen in association with other congenital anomalies, of which the VACTERL is most commonly known[15,25]. VACTERL is a well-known congenital malformation syndrome that includes vertebral, anal, cardiac, tracheoesophageal, renal, and limb anomalies. Esophageal atresia is most commonly proximally positioned with a distal tracheo-esophageal fistula (80%-90% of cases), while 5%-8% of fistulas are H-shaped without esophageal atresia[26].

DIFFUSE TRACHEAL PATHOLOGY
Dilatation of the trachea may be caused by rare congenital abnormalities, including Mounier Kuhn’s disease, Ehlers-Danlos syndrome, or more commonly by chronic acquired conditions with recurrent infections (including those associated with cystic fibrosis, tuberculosis, sarcoidosis and histoplasmosis) and allergic reactions leading to fibrosis of the upper lobes, which affects airflow in the main airways.

Tracheobronchomegaly (Mounier-kuhn disease)
Tracheobronchomegaly is a rare condition of unknown origin, mainly affecting men in their 4th or 5th decade, however, pediatric patients may also present with this disorder (Figure 5)[27,28]. The process was first described by the French physician Mounier-Kuhn[23] in 1932, and the name was suggested by Katz et al[29] in 1962. Approximately 95% of patients are male and there is an autosomal recessive inheritance. In the early stages of this disorder, patients remain asymptomatic or may present with recurrent bronchitis or pneumonia. As the airway disease progresses, air flow obstruction is commonly encountered and repeated infections lead to progressive disability. The process is characterized by dilation of the trachea and main bronchi caused by severe atrophy of longitudinal elastic fibers and thinning of the muscularis mucosa. Tracheomegaly ensues with flaccid, dilated central airways on inspiration with a tracheal diameter greater than 3 cm, whereas on expiration and during coughing the airway collapses (leading to outflow obstruction)[29]. Airway mucosa protrudes through the intracartilaginous skeleton, leading to broad-based diverticula and a corrugated appearance of the trachea on 3-D reconstructions. The diverticula may become extremely pronounced and an interconnected mesh of airway connections may develop with trapped air content. Bronchiec-tasis and tracheobronchomalacia are commonly associated with this process.
Saber sheath trachea is a common condition associated with chronic obstructive pulmonary diseases or advanced age. One study showed a direct correlation between pulmonary outflow obstruction and the extent of the anomaly. It affects the intrathoracic trachea, sparing the cervical trachea. The tracheal wall thickness is normal or mildly increased. The diagnostic term refers to marked coronal narrowing in the presence of accentuation of the sagittal dimension of the trachea compared to the coronal plane is consistent with the saber sheath configuration.

Chest radiographs may show diffuse narrowing of the trachea on the PA view (Figure 6A). CT shows inward bowing of the lateral tracheal wall, which may be accentuated on the expiratory or dynamic CT, with the classic narrow “saber sheath” shape (Figure 6B).

TRACHEAL AND BRONCHIAL NARROWING

Tracheo-bronchial narrowing is much more common than widening. It can result from a wide variety of causes. MDCT with 3-D reformations from the isotropic data acquisitions allows excellent imaging of the entire tracheobronchial tree in one breath hold and is capable of demonstrating clinically significant outflow obstruction using inspiration and expiration imaging in combination, as well as the full extent of the disease process with additional applications like cine-CT and virtual bronchoscopy.

Tracheo-bronchial malacia

Tracheo-bronchial malacia is increasingly recognized as one of the more frequent diffuse pathologies in clinical practice. It is most commonly the result of chronic inflammation of the airways associated with chronic obstructive pulmonary disease. Other causes may include inherent weakness of the trachea-bronchial cartilage, such as is seen in osteogenesis imperfecta (a type of primary tracheobronchial malacia), or relapsing polychondritis (discussed in more detail below). Focal forms of malacia are seen in patients with compression of the trachea due to vascular rings or enlarged goiters. The hallmark of tracheo-bronchial malacia is the weakness of the cartilaginous rings, allowing collapse of the posterior membranous wall during expiration, leading to outflow obstruction and airtrapping. The main imaging finding is the variable degree of collapse of the airway during expiration, sometimes with almost complete loss of the airway lumen at the end of expiration resulting in airtrapping. These changes are best observed on combined inspiratory and expiratory CT scans (Figure 7). A “frownlike” tracheal configuration, due to the marked

Figure 5 Mounier Kuhn syndrome (congenital tracheobronchomegaly). Axial computed tomography (A), multiplanar sagittal (B) and the minimum intensity projection reconstruction (C) show tracheal enlargement with multiple paratracheal and peribronchial diverticule (arrows). The maximum intensity projection reconstruction (D) demonstrates all interconnected airway structures.

Figure 6 Saber sheath trachea. A: Chest radiograph PA view demonstrating diffuse narrowing of the trachea (arrow); B: Axial computed tomography scan showing inward bowing of the lateral tracheal wall (arrow) with elongated sagittal dimension of the trachea compared to the coronal plane is consistent with the saber sheath configuration.
anterior bowing of the posterior membranous wall forming a crescentic configuration, has been described as characteristic of tracheomalacia.[35-38]

Relapsing polychondritis disorder may be caused by a range of etiologies, including vasculitis[39], amyloidosis and infectious processes. However, many patients do not have a clear etiology upon presentation. The cartilaginous part of the airway (extending from the nose to distal conducting airways), the ears and the joints are progressively destroyed due to an autoimmune process of recurrent inflammation. It results in significant airflow obstruction due to collapse of the trachea and main bronchi during expiration. Approximately 30% of patients also have more distal airway involvement.[40] Association with complex immunological conditions, such as a combination of Crohn’s disease, relapsing polychondritis and epidermolysis bullosa acquisita have been described in the literature[41]. The clinical relevance of this disease, thus, is not limited to airflow obstruction but extends to systemic involvement, including heart block and vasculitis of both small and larger vessels. Hence, making prompt diagnosis is of great importance.[42]

The CT findings often demonstrate varying degrees of tracheal narrowing, often involving multiple segments of the trachea (Figure 8). At expiration, 90% or more patients show signs of collapse (malacia) with or without airtrapping. Calcifications in the airway walls may be seen in approximately 40% of patients[43,44]. CT is particularly useful for the planning of interventional procedures, such as stent placement, and also for follow-up in patients undergoing anti-inflammatory treatment.

Intubation related stenosis
Although relatively infrequent, intubation related tracheal stenosis (Figure 9) is one of the most feared complications, particularly in crash-type intubations and in patients who require prolonged ventilatory support[45]. The etiology is mainly related to direct trauma (which may even cause perforation) or due to pressure ischemia of the airway from...
the balloon. In either case, there is a combination of necrosis and/or fibrosis, leading to a progressive stenosis that is typically in a subglottic position or in the upper third of the trachea. CT is highly accurate in detecting the extent of such lesions and is, therefore, very useful in treatment planning for stent placement and subsequent follow-up.\[46-48\]

Idiopathic tracheal stenosis

Most causes of benign intrinsic tracheal stenosis are due to mechanical injuries during trauma, intubation or as a result of chronic inflammatory processes. A review of pathological findings involving 63 patients who underwent resection of idiopathic tracheal stenosis showed that a vast majority of these patients suffered from extensive fibrosis and dilatation of mucus glands, whereas the cartilage had a relatively normal structure (in contrast with chondromalacia). All patients were female, 62 cases were subglottic and/or in the upper one-third of the trachea, and 30% of patients had a history of gastroesophageal reflux.\[49\] CT is currently not able to distinguish between post-traumatic stricture and this type of etiology.

Extrinsic tracheal narrowing

Thyroid cancer may extend both around and into the trachea, causing stenosis or intraluminal tumor extension with airflow obstruction. In addition, large retrosternal benign and malignant goiters and, rarely, traumatic thyroid hemorrhage, can cause tracheal compression (Figure 10).\[50,51\] For all of these conditions, CT is a good modality to show the extent of disease and level of obstruction.

Malignant lymphadenopathy is a common feature of lymphoma and primary lung cancer (both small-cell and non-small cell lung cancer), and may give rise to compression and/or invasion of the trachea. In addition, lymphadenopathy from benign etiologies, such as histoplasmosis and tuberculosis may also cause compression of the trachea (Figure 11). However, due to the anatomy of the trachea, clinically significant external compression caused by lymphadenopathy is relatively uncommon.

Pulmonary artery sling is a condition in which the left pulmonary artery arises from the right main pulmonary artery. As the vessel courses to the left lung, it passes between the trachea and esophagus, giving rise to the potential compression of the trachea. Two types exist: Type I simply gives rise to posterior compression of the distal trachea and right main stem bronchus with anterior compression on the esophagus, whereas Type II is associated with congenital stenosis of the distal trachea, an abnormal low position of the carina and horizontal course of the main bronchi (T-shaped trachea), a bridging bronchus and several other congenital anomalies. Both conditions usually become symptomatic in infancy and early childhood and surgical intervention tends to take place early in life. CT is very helpful for delineation of the various pathologies and is also able to detect functional obstruction with airtrapping as demonstrated on expiratory or cine-CT imaging.

A range of other vascular anomalies can give rise to compression of the trachea, including an enlarged brachiocephalic trunk, double aortic arch and aberrant right subclavian artery. CT has proven useful in adequate identification of these anomalies in the pediatric age group.\[56-58\]

Recurrent respiratory papillomatosis

Recurrent respiratory papillomatosis (RRP) is the result of infection of the upper respiratory tract by human papilloma virus types 6 and 11. RRP has a bimodal age distribution, with most infections taking place at birth through an infected birth canal. However, a more aggressive form occurs in young adults. The tracheo-laryngeal form of papillomatosis occurs in 2%-17% cases and eventually spreads to the lungs in 1% of patients.

Figure 10 Extrinsic narrowing of the trachea. Axial computed tomography image in the superior mediastinum demonstrating displacement and narrowing of the proximal trachea (arrow) by a large thyroid mass.

Figure 11 Axial computed tomography image and sagittal multiplanar reconstruction showing invasion of the anterior wall of off the carina (arrows) by malignant lymphadenopathy from non-small cell lung cancer.
RRP is characterized by benign exophytic lesions in the airway, most commonly involving the larynx and central trachea-bronchial tree (Figure 12)[60]. It is postulated that peripheral seeding occurs, particularly when endoscopic or surgical manipulations are necessary to control the central airway patency. However, peripheral lesions may also be the result of multi-centric localization of initial foci of infection. Central lesions tend to grow in similar fashion to the typical papillomas seen externally on the skin. The lesions give rise to tracheal wall irregularities with progressive mass-like protrusions, and airway obstruction may occur (Figure 13). These lesions tend to be well circumscribed and do not give rise to extension beyond the trachea or bronchial wall. Peripheral lesions typically lead to nodules at first, which will grow to a size of 5 to 50 mm and subsequently tend to cavitate with a mixture of thin and thick-walled cavities.

Complications include airway obstruction, atelectasis, pneumonia or pneumothorax. Malignant degeneration to squamous cell carcinoma is the most serious long-term sequel of pulmonary RRP (Figure 14)[61]. The course of the disease is variable, ranging from spontaneous remission to aggressive recurrences requiring multiple surgical procedures in the patient’s lifetime and accounts for significant morbidity, poor life quality and higher health care costs. MDCT allows for multiplanar and advanced post-processing (including virtual bronchoscopy) and is therefore the preferred modality for noninvasive evaluation of both tracheal and lung lesions. The differential diagnosis of multiple cavitory nodules includes metastatic tumor, fungal disease, mycobacterial infection, hydatid cyst, septic emboli, rheumatoid nodules, amyloidosis, sarcoidosis, pulmonary angitis and granulomatosis.

Neoplasms of the trachea

Neoplasms of the trachea are rare, especially when compared to tumors of the lung and mediastinum. In fact, tracheal neoplasms account for less than 1% of all intrathoracic malignancies[7]. The most common malignancy of the central airways is squamous cell carcinoma and adenocystic carcinoma. Only the squamous cell types exhibit...
a link with smoking. A benign counterpart to squamous cell carcinoma, the squamous cell papilloma has also been linked to smokers[62]. Mucoepidermoid and carcinoid tumors are less commonly encountered tumors of the trachea. Metastatic lesions of the trachea and bronchi are most commonly seen with melanoma and breast cancer (Figure 15). Direct tumor invasion into the trachea from adjacent neoplasms originating from lung, esophagus, thyroid and mediastinum are not uncommon. Due to the nonspecific radiographic features characteristic of most endobronchial tumors, the CT appearance is not useful in determining the cell type of most tumors with the exception of hamartomas and lipomas, which contain macroscopic adipose tissue suggestive of their diagnosis (Figure 16). Tracheal neoplasms with internal calcified matrix suggest the diagnosis of chondrosarcoma. Sarcomas of the trachea appear uniformly fleshy (Figure 17). Carcinoid tumors, though generally nonspecific in appearance, may exhibit a higher degree of contrast enhancement than other tracheal neoplasms, which can suggest the diagnosis. MDCT incorporating multiplanar reconstructions is the modality of choice in the evaluation and preoperative planning of tracheal tumors. Dedicated airway studies of the intrathoracic trachea using very thin collimation render exquisite anatomic information that is useful in planning bronchoscopy and surgical resection. CT not only accurately provides location and dimensional information about the tumor, but also provides ancillary information about tumor extension, relationships to adjacent mediastinal structures and airway patency. Furthermore, CT provides additional information, such as regional lymphadenopathy and pulmonary metastatic disease, which is useful in tumor staging. Virtual bronchoscopy also provides a valuable imaging tool to assess tumor location, size and airway patency complementary to traditional fiberoptic bronchoscopy.

Wegener’s granulomatosis

Wegener’s granulomatosis (WG) is a systemic vasculitis syndrome characterized by pulmonary angiitis and granulomatosis that can affect any organ in the body, but most commonly involves the kidneys and the sinopulmonary system. The basic pathogenesis of the disease involves small vessel vasculitis. A triad consisting of pulmonary disease, sinusitis and glomerulonephritis are the hallmarks of WG. Although the etiology is unclear, there is some suspicion that the disease may be linked to a potential inhaled infectious agent resulting in a hypersensitivity reac-
Subglottic stenosis is the most frequent large airway manifestation of WG occurring in 8.5%-50% of patients. Patients with upper airway disease usually present with symptoms of wheezing, stridor or dyspnea reflecting the upper airway lesions associated with WG. Pathologic findings of airway involvement include bronchiolitis, bronchitis, extrinsic airway compression, chondritis, and destruction of cartilage. The peak incidence of WG is in the 4th and 5th decades of life with a 3:2 male-female predominance. The sensitivity of c-ANCA for WG is 96% for generalized disease and 67% in cases where the disease is more localized. The specificity is 99%. The peak incidence of WG is in the 4th and 5th decades of life with a 3:2 male-female predominance. Before the use of immunosuppressive medications, the mean survival of patients with generalized WG was 5 mo from the onset of symptoms, with a 1-year mortality rate of 80%. Fortunately, the survival has been significantly improved with the instigation of combination therapies using cyclophosphamide and corticosteroids, with a mean five-year survival rate now of 90%-95% and a mean survival rate of 21.7 years.

CONCLUSION

The complementary use of both 2-D and 3-D CT imaging can very accurately define the location as well as intra- and extra-luminal extent of pathology of the central airways. It has become a valuable tool for the clinician to assist with the diagnosis and planning of therapy for both focal and diffuse diseases of the airways. With the currently achieved image quality and versatility of depicting these pathologies, imaging of the airways knows virtually no boundaries.

REFERENCES

1. Minnich DJ, Mathisen DJ. Anatomy of the trachea, carina, and bronchi. Thorac Surg Clin 2007; 17: 571-585
2 Webb EM, Elicker BM, Webb WR. Using CT to diagnose non-neoplastic tracheal abnormalities: appearance of the tracheal wall. AJR Am J Roentgenol 2000; 174: 1315-1321
3 Ugalle P, Miro S, Fréchette E, Deslauriers J. Correlative anatomy for thoracic inlet; glottis and subglottic trachea, carina, and main bronchi; lobes, fissures, and segments; hilum and pulmonary vascular system; bronchial arteries and lymphatics. Thorac Surg Clin 2007; 17: 639-659
4 Ederle JR, Heusell CP, Hast J, Fischer B, Van Beek EJ, Ley S, Thelen M, Kauczor HU. Evaluation of changes in central airway dimensions, lung area and mean lung density at paired inspiratory/expiratory high-resolution computed tomography. Eur Radiol 2003; 13: 2474-2481
5 Boiselle PM, Reynolds KF, Ernst A. Multplanar and three-dimensional imaging of the central airways with multidetector CT. AJR Am J Roentgenol 2002; 179: 301-308
6 Grenier PA, Beigelman-Aubry C, Fettia C, Prêteux F, Brauner MW, Lenoir S. New frontiers in CT imaging of airway disease. Eur Radiol 2002; 12: 1022-1044
7 Kwong JS, Müller NI, Miller RR. Diseases of the trachea and main-stem bronchi: correlation of CT with pathologic findings. Radiographics 1992; 12: 645-657
8 Grenier PA, Beigelman-Aubry C, Fettia C, Martin-Bouyer Y. Multidetector-row CT of the airways. Semin Roentgenol 2003; 38: 146-157
9 Bauer TL, Steiner KV. Virtual bronchoscopic: clinical applications and limitations. Surg Oncol Clin N Am 2007; 16: 323-328
10 Ferguson JS, McLennan G. Virtual bronchoscopic. Proc Am Thorac Soc 2005; 2: 488-491, 504-505
11 Finkelstein SE, Summers RM, Nguyen DM, Schrump DS. Virtual bronchoscopy for evaluation of airway disease. Thorac Surg Clin 2004; 14: 79-86
12 Lee KS, Boiselle PM. Update on multidetector computed tomography imaging of the airways. J Thorac Imaging 2010; 25: 112-124
13 Javidan-Nejad C. MDCT of trachea and main bronchi. Radiol Clin North Am 2010; 48: 157-176
14 Beigelman-Aubry C, Brillet PY, Grenier PA. MDCT of the airways: technique and normal results. Radiol Clin North Am 2009; 47: 185-201
15 Berrocal T, Madrid C, Novo S, Gutiérrez J, Arjonilla A, Gómez-León N. Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics 2004; 24: e17
16 Freeman SJ, Harvey JE, Goddard PR. Demonstration of supernumerary tracheal bronchus by computed tomographic scanning and magnetic resonance imaging. Thorax 1995; 50: 426-427
17 Kairamkonda V, Thorburn K, Sargison R. Tracheal bronchus associated with VACTERL. Eur J Pediatr 2003; 162: 165-167
18 Verghees S, Jensen G, Ratnayaka K, Kanter J. A fluoroscopic diagnosis of bronchus suis or porcine bronchus to explain hypoxemia during anesthesia. Anesth Analg 2008; 107: 1445
19 Adetayo OA, Suskind DL. Radiology quiz case: Tracheal bronchus. Arch Otolarngol Head Neck Surg 2006; 132: 453, 454
20 O’Sullivan BP, Frassica J, Rayder SM. Tracheal bronchus: a cause of prolonged atelectasis in intubated children. Chest 1998; 113: 537-540
21 Doolittle AM, Mair EA. Tracheal bronchus: classification, endoscopic analysis, and airway management. Otolaryngol Head Neck Surg 2002; 126: 240-243
22 Fraser R, Colman N, Muller NL, Pare PD. Developmental and metabolic lung disease. In: Fraser R, Colman N, Muller NL, Pare PD, editors. Synopsis of diseases of the chest. 3rd ed. Philadelphia: Elsevier Saunders, 2005: 188-221
23 Mounier-Kuhn P. Dilatation de la trachée; constatations radiographiques et bronchoscopiques. Lyon Med 1932; 150: 106-109
24 Lee EY, Boiselle PM, Cleveland RH. Multidetector CT evaluation of congenital lung anomalies. Radiology 2008; 247, 632-648
25 Botto LD, Khoury MJ, Mastroiacovo P, Castilla EE, Moore CA, Skjaerven R, Mutchnick OM, Borman B, Caccihi G, Czeizel AE, Goujon J, Irgens LM, Lancaster PA, Martínez-Frias ML, Merloh P, Riusuisen A, Stoll C, Sumiyoshi Y. The spectrum of congenital anomalies of the VATER association: an international study. Am J Med Genet 1997; 71: 8-15
26 Swischuk LE. Alimentary tract. In: Swischuk LE, editor. Imaging of the newborn, infant, and young child. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2003: 350-356
27 Choplin RH, Wehunt WD, Theros EG. Diffuse lesions of the trachea. Semin Roentgenol 1985; 18: 38-50
28 Shin MS, Jackson RM, Ho KJ. Tracheobronchomegaly (Mounier-Kuhn syndrome): CT diagnosis. AJR Am J Roentgenol 1988; 150: 777-779
29 Katz I, Levine M, Herman P. Tracheobronchomegaly. The Mounier-Kuhn syndrome. Am J Roentgenol Radium Ther Nucl Med 1962; 88: 1084-1094
30 Trigaux JP, Hermès G, Dubois P, Van Beers B, Delaunois L, Jamar J. CT of sable-sheath trachea. Correlation with clinical, chest radiographic and functional findings. Acta Radiol 1994; 35: 247-250
31 Garstang JS, Bailey DM. General anaesthesia in a patient with undiagnosed ‘sable-sheath’ trachea. Anaesth Intensive Care 2001; 29: 417-420
32 Boiselle PM, Lee KS, Lin S, Raptopoulos V. Cine CT during coughing for assessment of tracheomalacia: preliminary experience with 64-MDCT. AJR Am J Roentgenol 2006; 187: W175-W177
33 Boiselle PM, Lee KS, Ernst A. Multidetector CT of the central airways. J Thorac Imaging 2005; 20: 186-195
34 Remy-Jardin M, Remy J, Artaud F, Fribourg M, Duhamel A. Volume rendering of the tracheobronchial tree: clinical evaluation of bronchographic images. Radiology 1998; 208: 761-770
35 Gilkeson RC, Cianciello LM, Hejal RB, Montenegro HD, Lange P. Tracheobronchomalacia: dynamic airway evaluation with multidetector CT. AJR Am J Roentgenol 2001; 176: 205-210
36 Baroni RH, Feller-Kopman D, Nishino M, Hatahu H, Loring SH, Ernst A, Boiselle PM. Tracheobronchomalacia: comparison between end-expiratory and dynamic expiratory CT for evaluation of central airway collapse. Radiology 2005; 235: 635-641
37 Boiselle PM, Ernst A. Tracheal morphology in patients with tracheomalacia: prevalence of inspiratory lunate and expiratory ‘frozen’ shapes. J Thorac Imaging 2006; 21: 190-196
38 Boiselle PM, Feller-Kopman D, Ashiku S, Weeks D, Ernst A. Tracheobronchomalacia: evolving role of dynamic multislice helical CT. Radiol Clin North Am 2003; 41: 627-636
39 Schina M, Karsaliakos P, Apostolou T, Mousoulis G. Relapsing polychondritis as a secondary phenomenon of primary systemic vasculitis. Clin Nephrol 2006; 70: 446-449
40 Ernst A, Rafaei S, Boiselle P, Sung A, Reddy C, Michaug M, Majd A, Herth FJ, Trentham D. Relapsing polychondritis and airway involvement. Chest 2009; 135: 1024-1030
41 Vicente EF, Hernández-Núñez A, Apar J, Aragües M, García-Vicuña R, Crohn’s disease, relapsing polychondritis and epimyelosis bullosa acquisita: an immune-mediated inflammatory syndrome. Rheumatology (Oxford) 2008; 47: 380-381
42 Hojaili B, Keiser HD. Relapsing polychondritis presenting with complete heart block. J Clin Rheumatol 2008; 14: 24-26
43 Lee KS, Ernst A, Trentham DE, Lunn W, Feller-Kopman DJ, Boiselle PM. Relapsing polychondritis: prevalence of expiratory CT airway abnormalities. Radiology 2006; 240: 565-573
44 Zylak CJ, Eyler WR, Spizarny DL, Stone CH. Developmental lung anomalies in the adult: radiologic-pathologic correlation. Radiographics 2002; 22 Spec No: S25-S43
45 Sue RD, Susanto I. Long-term complications of artificial airways. Clin Chest Med 2003; 24: 457-471
46 Hoppe H, Dinkel HP, Walder B, von Allmen G, Gugger M, Vock P. Grading airway stenosis down to the segmental level using virtual bronchoscopy. Chest 2004; 125: 704-711
Laroia AT et al. Modern imaging of the tracheo-bronchial tree

47 Koletsis EN, Kalogeropoulos C, Prodromaki E, Kagadis GC, Katsanos K, Sphiroupolus K, Petas T, Nikiforidis GC, Dougenis D. Tumoral and non-tumoral trachea stenoses: evaluation with three-dimensional CT and virtual bronchoscopy. J Cardiothorac Surg 2007; 2: 18

48 Sun M, Ernst A, Boiselle PM. MDCT of the central airways: comparison with bronchoscopy in the evaluation of complications of endotracheal and tracheostomy tubes. J Thorac Imaging 2007; 22: 136-142

49 Mark EJ, Meng F, Kradin RL, Mathisen DJ, Matsubara O. Idiopathic tracheal stenosis: a clinicopathologic study of 63 cases and comparison of the pathology with chondromalacia. Ann J Surg Pathol 2008; 32: 1138-1143

50 McCaffrey TV, Bergstrahl EJ, Hay JD. Locally invasive papillary thyroid carcinoma: 1940-1990. Head Neck 1994; 16: 165-172

51 Ket S, Ozbudak O, Ozdemir T, Dertsiz L. Acute respiratory failure and tracheal obstruction in patients with posterior gi- ant mediastinal (intrathoracic) goiter. Interact Cardiovasc Thorac Surg 2004; 3: 174-175

52 Oka Y, Nishijima J, Azuma T, Inada K, Miyazaki S, Nakano H, Nishida Y, Sakata K, Hashimoto J, Izukura M. Blunt thyroid trauma with acute hemorrhage and respiratory distress. J Emerg Med 2007; 32: 381-385

53 Lee KH, Yoon CS, Choe KO, Kim MJ, Lee HM, Yoon HK, Kim B. Use of imaging for assessing anatomical relationships of tracheobronchial anomalies associated with left pulmonary artery sling. Pediatr Radiol 2001; 31: 269-278

54 Berdon WE. Rings, slings, and other things: vascular compr- ession of the infant trachea updated from the midcentury to the millennium—the legacy of Robert E. Gross, MD, and Edward D. Neuhauser, MD. Radiology 2000; 216: 624-632

55 Lee EY, Siegel MJ. MDCT of tracheobronchial narrowing in pediatric patients. J Thorac Imaging 2007; 22: 300-309

56 Katz M, Konen E, Rozenman J, Szeinberg A, Itzchak Y. Spiral CT and 3D image reconstruction of vascular rings and associated tracheobronchial anomalies. J Comput Assist Tomogr 1995; 19: 564-568

57 Hopkins KL, Patrick LE, Simonneau SF, Bank ER, Parks WJ, Smith SS. Pediatric great vessel anomalies: initial clinical expe- rience with spiral CT angiography. Radiology 1996; 200: 811-815

58 Honnec D, Wildberger JE, Das M, Hohl C, Mahnken AH, Barker M, Günther RW, Staatz G. Value of virtual tracheo- bronchoscopy and bronchography from 16-slice multidete- ctor-row spiral computed tomography for assessment of sus-pected tracheobronchial stenosis in children. Eur Radiol 2006; 16: 1684-1691

59 Tasca RA, Clarke RW. Recurrent respiratory papillomatosis. Arch Dis Child 2006; 91: 689-691

60 Giménez A, Franquet T, Prats R, Estrada P, Villalba J, Bague S. Unusual primary lung tumors: a radiologic-pathologic overview. Radiographics 2002; 22: 601-619

61 Kozower BD, Javidan-Nejad C, Lewis JS, Safdar S, Cooper JD, Patterson GA. Clinical-pathologic conference in general thorac- ic surgery: malignant transformation of recurrent respiratory papillomatosis. J Thorac Cardiovasc Surg 2005; 130: 1190-1193

62 Grillo HC, Mathisen DJ. Primary tracheal tumors: treatment and results. Ann Thorac Surg 1990; 49: 69-77

63 Frazier AA, Rosado-de-Christenson ML, Galvin JR, Flem- ing MV. Pulmonary anigits and granulomatosis: radiologic-pathologic correlation. Radiographics 1998; 18: 687-716 quiz 727

64 Polychronopoulos VS, Prakash UB, Golbin JM, Edell ES, Specks U. Airway involvement in Wegener's granulomatosis. Rheum Dis Clin North Am 2007; 33: 755-775, vi

65 Nölle B, Specks U, Lüdemann J, Rohrbach MS, DeRemee RA, Gross WL. Anticytoplasmic autoantibodies: their immu- nodiagnostic value in Wegener granulomatosis. Ann Intern Med 1989; 111: 28-40

66 Leatherman JW. The lung in systemic vasculitis. Semin Respir Infect 1988; 3: 274-288

67 Prince JS, Duhame LR, Levin DL, Harrell JH, Friedman PJ. Nonneoplastic lesions of the tracheobronchial wall: radiologic findings with bronchoscopic correlation. Radiographics 2002; 22 Spec No: S215-S230

68 Daum TE, Specks U, Colby TV, Edell ES, Brutinel MW, Prakash UB, DeRemee RA. Tracheobronchial involvement in Wegener's granulomatosis. Ann J Respir Crit Care Med 1995; 151: 522-526

69 Gluth MB, Shinnners PA, Kasperbauer JL. Subglottic stenosis associated with Wegener's granulomatosis. Laryngoscope 2003; 113: 1304-1307

70 Cordier JF, Valeyre D, Guillelvin L, Loire R, Brechot JM. Pulmonary Wegener's granulomatosis. A clinical and imaging study of 77 cases. Chest 1990; 97: 906-912

71 Maguire R, Fauci AS, Doppman JL, Wolff SM. Unusual ra- diographic features of Wegener's granulomatosis. AJR Am J Roentgenol 1978; 130: 233-238

72 Eagleton LE, Rosher RB, Hawe A, Bilinsky RT. Radiation therapy and mechanical dilation of endobronchial obstruc- tion secondary to Wegener's granulomatosis. Chest 1979; 76: 609-610

73 Amin R. Endobronchial involvement in Wegener's granulo- matosis. Postgrad Med J 1983; 59: 452-454

74 Hellmann D, Laing T, Petri M, Jacobs D, Creamley R, Stullberg M. Wegener's granulomatosis: isolated involvement of the trachea and larynx. Ann Rheum Dis 1987; 46: 628-631

75 Travis WD, Hoffman GS, Leavitt RY, Pass HI, Fauci AS. Surgical pathology of the lung in Wegener's granulomatosis. Review of 87 open lung biopsies from 67 patients. Am J Surg Pathol 1991; 15: 315-333

76 Langford CA, Sneller MC, Hallahan CW, Hoffman GS, Kam- merer WA, Talar-Williams C, Fauci AS, Lebovics RS. Clinical features and therapeutic management of subglottic stenosis in patients with Wegener's granulomatosis. Arthritis Rheum 1996; 39: 1754-1760

77 Scream NJ, Siwasothy P, Flower CD, Lockwood CM. Tracheal involvement in Wegener's granulomatosis: evaluation using spiral CT. Clin Radiol 1998; 53: 809-815

78 Mayberry JP, Primack SL, Müller NL. Thoracic manifestations of systemic autoimmune diseases: radiographic and high- resolution CT findings. Radiographics 2000; 20: 1623-1635

79 Summers RM, Aggarwal NR, Sneller MC, Cowan MJ, Wood BJ, Langford CA, Shellhamer JH. CT virtual bronchoscopy of the central airways in patients with Wegener's granulomato- sis. Chest 2002; 121: 242-250

S-Editor Cheng JX L-Editor Lutze M E-Editor Yang C