Perfect 2-colorings of the generalized Petersen graph $GP(n, 3)$

Hamed Karami

School of Mathematics,
Iran University of Science and Technology,
Narmak, Tehran 16846, Iran

hkarami@alum.sharif.edu

Abstract

In this paper we enumerate the parameter matrices of all perfect 2-colorings of the generalized Petersen graphs $GP(n, 3)$, where $n \geq 7$. We also give some basic results for $GP(n, k)$.

Keywords: perfect coloring, equitable partition, generalized Petersen graphs

Mathematics Subject Classification: 05C15

DOI: 10.5614/ejgta.2022.10.1.16

1. Introduction

The theory of error-correcting codes has always been a popular subject in group theory, combinatorial configuration, covering problems and even diophantine number theory. So, mathematicians always show a lot of interest in this historical research field. The problem of finding all perfect codes was begun by M. Golay in 1949. Perfect code is originally a topic in the theory of error-correcting codes. All perfect codes are known to be completely regular, which were introduced by Delsarte in 1973. A set of vertices, say C, of a simple graph is called completely regular code with covering radius ρ, if the distance partition of the vertex set with respect C is equitable. Therefore, the problem of existence of equitable partitions in graph is of great importance in graph theory. There is another term for this concept in the literature as ”perfect m-coloring”.

As explained above, enumerating parameter matrices in graphs is a key problem to find perfect
Perfect 2-colorings of the generalized Petersen graph $GP(n,3)$ | H. Karami

codes in graphs. For example, by the results of this paper, we can easily conclude that the graph $GP(9,3)$ has just two nontrivial completely regular codes with the size of 9, which neither of them is perfect. There has always been a notably interest in enumerating parameter matrices of some popular families of graphs ”johnson graphs”, ”hypercube graphs” and recently ”generalized petersen graphs” (see [1, 2, 3, 4, 5, 6, 7, 8, 9]).

In this article, all parameter matrices of $GP(n, 3)$ are enumerated.

2. Definition and Concepts

In this section, some basic definitions and concepts are given.

Definition 2.1. The generalized petersen graph $GP(n, k)$, also denoted $P(n, k)$, for $n \geq 3$ and $1 \leq k < \frac{n}{2}$, is a connected cubic graph that has vertices, respectively, edges given by

$$V(GP(n, k)) = \{a_i, b_i : 0 \leq i \leq n-1\},$$

$$E(GP(n, k)) = \{a_ia_{i+1}, a_ib_i, b_ib_{i+k} : 0 \leq i \leq n-1\},$$

These graphs were introduced by Coxeter (1950) and named by Watkins (1969). $GP(n, k)$ is isomorphic to $GP(n, n - k)$. It is why we consider $k < \frac{n}{2}$, with no restriction of generality.

Definition 2.2. For a graph G and an integer m, we call a mapping $T : V(G) \rightarrow \{1, \ldots, m\}$ a perfect m-coloring with matrix $A = (a_{ij})_{i,j\in\{1,\ldots,m\}}$, if it is surjective, and for all i, j, for every vertex of color i, the number of its neighbors of color j is equal to a_{ij}. We call the matrix A the parameter matrix of a perfect coloring. In the case $m = 2$, the first color is called white, and the second color black.

Remark 2.1. In this paper, we consider all perfect 2-colorings, up to renaming the colors; i.e, we identify the perfect 2-coloring with the matrix

$$\begin{bmatrix}
a_{22} & a_{21} \\
a_{12} & a_{11}
\end{bmatrix},$$

obtained by switching the colors with the original coloring.

3. The Existence of Perfect 2-Colorings of $GP(n, 3)$

In this section, we first give some results covering necessary conditions for the existence of perfect 2-colorings of $GP(n, k)$ graphs with a given parameter matrix $A = (a_{ij})_{i,j=1,2}$, and then we enumerate the parameters of all perfect 2-colorings of $GP(n, 3)$.

The first and perhaps the simplest necessary condition for the existence of a perfect 2-colorings of $GP(n, k)$ with the matrix $\begin{bmatrix}a_{11} & a_{12} \\
a_{21} & a_{22}\end{bmatrix}$ is

$$a_{11} + a_{12} = a_{21} + a_{22} = 3.$$
Also, it is clear that neither a_{12} nor a_{21} cannot be equal to zero, otherwise white and black vertices of $GP(n, k)$ would not be adjacent, which is impossible, as the graph is connected.

By the presented conditions, a parameter matrix of a perfect 2-coloring of $GP(n, k)$ must be one of the following matrices:

$$
A_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 0 & 3 \\ 1 & 2 \end{bmatrix}, \quad A_5 = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}, \quad A_6 = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}.
$$

The next proposition provides a formula for calculating the number of white vertices in a perfect 2-coloring (see [4]).

Proposition 3.1. If W is the set of white vertices in a perfect 2-coloring of a graph G with matrix $A = (a_{ij})_{i,j=1,2}$, then

$$|W| = |V(G)| \frac{a_{21}}{a_{12} + a_{21}}.$$

Now, we are ready to enumerate the parameter matrices of all perfect 2-colorings of $GP(n, 3)$. In [1], the parameter matrices of all perfect 2-colorings of $GP(n, k)$ with the matrices of A_1 and A_6 are enumerated. So, we just present theorems in order to enumerate parameter matrices corresponding to perfect 2-colorings of $GP(n, 3)$ with the matrices $A_2, A_3, A_4,$ and A_5.

Perfect 2-colorings of $GP(n, 3)$ with the matrix A_2:

In this part, we show that the graphs $GP(n, 3)$ have no perfect 2-colorings with the matrix A_2.

Theorem 3.1. The graphs $GP(n, 3)$ have no perfect 2-colorings with the matrix A_2.

Proof. At first, we claim that for each perfect 2-coloring, say T, of $GP(n, 3)$ with the matrix A_2, there are no consecutive vertices a_i and a_{i+1}, such that $T(a_i) = T(a_{i+1}) = 2$. To prove it, suppose contrary to our claim, without loss of generality, there is a perfect 2-coloring, say T, of $GP(n, 3)$ with the matrix A_2, such that $T(a_1) = T(a_2) = 2$. It immediately gives $T(b_1) = T(b_2) = T(a_0) = T(a_3) = 1$ and then $T(b_0) = T(b_3) = T(a_4) = T(b_4) = T(b_5) = 1$. Now, from $T(a_3) = T(a_4) = T(b_4) = 1$, we have $T(a_5) = 2$. Next, from $T(a_4) = T(b_5) = 1$ and $T(a_5) = 2$, we get $T(a_6) = 2$. It gives $T(b_6) = 1$ which is a contradiction with $T(a_3) = T(b_3) = T(b_0) = 1$.

Now, to prove the theorem, suppose the assertion is false. Therefore, there is a perfect 2-coloring, say T, of $GP(n, 3)$ with the matrix A_2. By symmetry, with no loss of generality, we can assume $T(a_0) = T(b_0) = 1$ and $T(a_1) = 2$. By the above claim, we have $T(a_2) = 1$. Now, from $T(a_0) = T(a_2) = 1$ and $T(a_1) = 2$, it follows that $T(b_1) = 2$. This immediately gives $T(b_2) = T(a_3) = T(b_4) = 1$. Next, by $T(b_4) = 1$ and $T(b_1) = 2$, we get $T(a_4) = 1$ and, in consequence, $T(b_3) = T(a_5) = 2$. Again, by using the above claim, we get $T(a_6) = 1$ and then $T(b_6) = 1$, which is a contradiction with $T(a_3) = T(b_0) = 1$ and $T(b_3) = 2$.

\[\square\]
Perfect 2-colorings of \(GP(n,3) \) with the matrix \(A_3 \):

We will show that the graphs \(GP(2m,3) \) have a perfect coloring with the matrix \(A_3 \) and the graphs \(GP(2m + 1,3) \) have no perfect 2-colorings with the matrix \(A_3 \).

Theorem 3.2. All of the graphs \(GP(n,3) \), where \(n \) is even, have a perfect 2-coloring with the matrix \(A_3 \). Also, there are no perfect 2-colorings of \(GP(n,3) \), where \(n \) is odd, with the matrix \(A_3 \).

Proof. To prove the first part, consider the mapping \(T : V(GP(2m,3)) \to \{1, 2\} \) by

\[
T(a_{2i}) = T(b_{2i}) = 1, \\
T(a_{2i+1}) = T(b_{2i+1}) = 2.
\]

for \(i \geq 0 \). It can be easily seen that the given mapping is a perfect 2-coloring of \(GP(2m,3) \) with the matrix \(A_3 \).

To prove the second part, contrary to our claim, suppose there is a perfect 2-coloring, say \(T \), of \(GP(n,3) \), where \(n \) is odd, with the matrix \(A_3 \). Now, we use lemma in ([1], Lemma 3.4).

Lemma 3.1. [1] For each perfect 2-coloring \(T \) of \(GP(n,k) \), where \(k \) is a positive even integer or \(4 \nmid n \), with the matrix \(A_3 \), there are two vertices \(a_i \) and \(b_i \), for some \(0 \leq i \leq n - 1 \), such that \(T(a_i) = T(b_i) \).

By above Lemma, with no loss of generality, we can assume \(T(a_0) = T(b_0) = 1 \). By knowing that the given mapping in the first part is not a perfect 2-coloring with the matrix \(A_3 \), where \(n \) is odd, we should have two cases below.

Case 1. For some positive integer \(i \), \(T(a_i) = T(b_i) = T(b_{i+1}) = 1 \) and \(T(a_{i+1}) = 2 \). It immediately gives \(T(a_{i+2}) = T(a_{i+3}) = T(b_{i+2}) = 1 \). From \(T(a_{i+2}) = T(b_i) = 1 \), we deduce that \(T(b_{i+3}) = 2 \) and then \(T(a_{i+4}) = 1 \). Next, from \(T(b_{i+1}) = T(a_{i+4}) = 1 \), we have \(T(b_{i+4}) = T(a_{i+5}) = 2 \). Now, from \(T(b_{i+1}) = T(a_{i+3}) = 1 \), and \(T(b_{i+3}) = 2 \), it follows that \(T(b_{i+6}) = 2 \), and then from \(T(a_{i+5}) = 2 \), we get \(T(a_{i+6}) = 1 \) and \(T(b_{i+5}) = 2 \). Using this argument, for \(j \geq 0 \), we have

\[
T(a_{10j+i}) = T(b_{10j+i}) = T(b_{10j+i+1}) = T(b_{10j+i+2}) = T(a_{10j+i+3}) = T(a_{10j+i+4}) = T(a_{10j+i+6}) = T(a_{10j+i+7}) = T(b_{10j+i+8}) = T(b_{10j+i+9}) = 1.
\]

and

\[
T(a_{10j+i+1}) = T(a_{10j+i+2}) = T(b_{10j+i+3}) = T(b_{10j+i+4}) = T(a_{10j+i+5}) = T(b_{10j+i+5}) = T(b_{10j+i+6}) = T(b_{10j+i+7}) = T(a_{10j+i+8}) = T(a_{10j+i+9}) = 2.
\]

It gives \(n = 10m \) which contradicts \(n \) is odd.

Case 2. For some positive integer \(i \), \(T(a_i) = T(b_i) = T(a_{i+2}) = 1 \) and \(T(a_{i+1}) = T(b_{i+1}) = T(b_{i+2}) = 2 \). It immediately gives \(T(a_{i+3}) = 1 \) and then \(T(a_{i+4}) = T(b_{i+3}) = 2 \). From \(T(a_{i+4}) = T(b_{i+1}) = 2 \), we have \(T(b_{i+4}) = 1 \) and then we deduce that \(T(a_{i+5}) = 2 \) and \(T(b_{i+5}) = T(a_{i+6}) = 1 \). From \(T(a_{i+3}) = T(b_i) = 1 \) and \(T(b_{i+3}) = 2 \), we get \(T(b_{i+6}) = 2 \). Now, from \(T(a_{i+5}) = T(b_{i+6}) = 2 \) and \(T(a_{i+6}) = 1 \), we have \(T(a_{i+7}) = 1 \) and then \(T(b_{i+7}) = 2 \) which is a contradiction of \(T(b_{i+4}) = 1 \) and \(T(a_{i+4}) = T(b_{i+1}) = T(b_{i+7}) = 2 \). \(\square \)
Perfect 2-colorings of $GP(n,3)$ with the matrix A_4:

We show that just the graphs $GP(4m,3)$ among the graphs $GP(n,3)$ have a perfect 2-coloring with the matrix A_4.

Theorem 3.3. All the graphs $GP(n,3)$, where $4 \mid n$, have a perfect 2-coloring with the matrix A_4. Also, there are no perfect 2-coloring of $GP(n,3)$, where $4 \nmid n$, with this matrix.

Proof. For the first part, consider the mapping $T : V(GP(4m,3)) \to \{1,2\}$ by

$$T(a_{4i}) = T(b_{4i+2}) = 1,$$

$$T(b_{4i}) = T(a_{4i+1}) = T(b_{4i+1}) = T(a_{4i+2}) = T(a_{4i+3}) = T(b_{4i+3}) = 2.$$

for $i \geq 0$. It can be easily checked that the given mapping is a perfect 2-coloring with the matrix A_4.

To prove the second part, contrary to our claim, suppose that there is a perfect 2-coloring of $GP(n,3)$ with the matrix A_4, say T. With no restriction of generality, let $T(a_0) = 1$. It follows that $T(a_1) = T(b_0) = T(a_{n-1}) = T(b_{n-1}) = 2$. From $T(a_1) = 2$ and $T(a_0) = 1$ we get $T(b_1) = T(a_2) = 2$. Now, we should have two cases below.

Case 1. $T(b_2) = 1$. It immediately gives

$$T(a_{4i}) = T(b_{4i+2}) = 1,$$

$$T(b_{4i}) = T(a_{4i+1}) = T(b_{4i+1}) = T(a_{4i+2}) = T(a_{4i+3}) = T(b_{4i+3}) = 2.$$

for $i \geq 0$. It clearly gives $n = 4m$ which is a contradiction of $4 \nmid n$.

Case 2. $T(b_2) = 2$. It immediately gives $T(a_3) = 1$ and $T(b_3) = T(a_4) = 2$. From $T(a_4) = 2$ and $T(a_3) = 1$, we get $T(b_4) = T(a_5) = 2$. Then, from $T(a_2) = T(b_2) = T(b_{n-1}) = 2$, we have $T(b_5) = 1$. So, we immediately conclude that $T(a_6) = 2$. Now, from $T(b_0) = T(b_3) = 2$ and $T(a_3) = 1$, we have $T(b_6) = 2$. It gives $T(a_7) = 1$ and then $T(b_7) = 2$ which is a contradiction of $T(b_0) = T(b_4) = T(a_4) = 2$.

Perfect 2-colorings of $GP(n,3)$ with the matrix A_5

Here, we show that just the graphs $GP(5m,3)$, where $m \in \mathbb{N}$, among the graphs $GP(n,3)$ have a perfect 2-coloring with the matrix A_5.

Theorem 3.4. The graphs $GP(5m,5t+2)$ and $GP(5m,5t+3)$, where $t \geq 0$, have a perfect 2-coloring with the matrix A_5. $GP(n,k)$ graphs for n such that $5 \nmid n$, have no perfect colorings with the matrix A_5.

Proof. For the first part, consider the mapping $T : V(GP(5m,5t+2)) \to \{1,2\}$ by

$$T(a_{5i}) = T(a_{5i+2}) = T(a_{5i+3}) = T(b_{5i}) = T(b_{5i+1}) = T(b_{5i+4}) = 2,$$

$$T(a_{5i+1}) = T(a_{5i+4}) = T(b_{5i+2}) = T(b_{5i+3}) = 1,$$

for $i \geq 0$. It can be easily checked that the given mapping gives a perfect 2-coloring with the matrix A_5. The mapping $T : V(GP(5m,5t+3)) \to \{1,2\}$ by the exactly above definition is also a perfect 2-coloring with the matrix A_5. Moreover, the second part can be proved by Proposition 3.1.

\[\square\]
Remark 3.1. There is no information for the cases $GP(5m, 5t)$, $GP(5m, 5t + 1)$ and $GP(5m, 5t + 4)$ in Theorem 3.4. So, we leave these cases as an open problem.

Finally, we summerize the obtained results from enumerating the parameter matrices of $GP(n, k)$ in the following table.

	$GP(n, 2)$	$GP(n, 3)$	$GP(n, k)$
A_1	all graphs	all graphs	all graphs
A_2	just $GP(3m, 2)$	no graphs	?
A_3	no graphs	just $GP(2m, 3)$?
A_4	no graphs	just $GP(4m, 3)$?
A_5	just $GP(5m, 2)$	just $GP(5m, 3)$?
A_6	no graphs	just $GP(2m, 3)$	just $GP(2m, 2t + 1)$

Acknowledgement

The author would like to thank Mehdi Alaeiyan for his help to enumerating parameter matrices of perfect 2-colorings of $GP(n, 2)$ graphs in which we obtained some results that are useful for this paper too. He is also thankful to Yazdan Golzadeh for giving comment on the second part of Theorem 3.3.

References

[1] A. Mehdi and K. Hamed, Perfect 2-colorings of generalized Petersen graphs, *Proc. Indian Acad. Sci.* **126** (3) (2016), 289–294.

[2] A. Mehdi, K. Hamed, and S. Sajjad, Perfect 3-colorings of $GP(5, 2)$, $GP(6, 2)$, and $GP(7, 2)$, *Journal of the Indonesian Mathematical Society* **24** (2) 2018, 47–53.

[3] A.M. Hadi and K. Hamed, Perfect 2-colorings of Platonic graphs, *Proc. Iranian Journal of Nonlinear Analysis and Application* **8** (2) (2017), 29–35.

[4] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect 2-colorings of Johnson graphs $J(6, 3)$ and $J(7, 3)$, *Lecture Notes in Computer Science* **5228** (2008), 11–19.

[5] S.V. Avgustinovich and I. Yu. Mogilnykh, Perfect colorings of the Johnson graphs $J(8, 3)$ and $J(8, 4)$ with two colors, *Journal of Applied and Industrial Mathematics* **5** (2011), 19–30.

[6] D.G. Fon-Der-Flaass, A bound on correlation immunity, *Siberian Electronic Mathematical Reports Journal* **4** (2007), 133–135.

[7] D.G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, *Siberian Mathematical Journal*, **4** (2007), 923–930.
[8] D.G. Fon-der-Flaass, Perfect 2-colorings of a 12-dimensional Cube that achieve a bound of correlation immunity, *Siberian Mathematical Journal* **4** (2007), 292–295.

[9] A.L. Gavrilyuk and S.V. Goryainov, On perfect 2-colorings of Johnson graphs $J(v, 3)$, *Journal of Combinatorial Designs* **21** (2013), 232–252.

[10] C. Godsil, Compact graphs and equitable partitions, *Linear Algebra and Its Application* **255** (1997), 259–266