Identification of genes and functional coexpression modules closely related to ulcerative colitis by gene datasets analysis

Jie Zhu 1, Zheng Wang 1, Fengzhe Chen 1, Changhong Liu Corresp. 2

1 Department of Infectious Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, China
2 Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China

Corresponding Author: Changhong Liu
Email address: cfzj2019@sdu.edu.cn

Background. Ulcerative colitis is a type of inflammatory bowel disease posing a great threat to the public health worldwide. Previously, gene expression studies of mucosal colonic biopsies have provided some insight into the pathophysiological mechanisms in ulcerative colitis; however, the exact pathogenesis is unclear. The purpose of this study is to identify the most related genes and pathways of UC by bioinformatics, so as to reveal the core of the pathogenesis. Methods. Genome-wide gene expression datasets involving ulcerative colitis patients were collected from gene expression omnibus database. To identify most close genes, an integrated analysis of gene expression signature was performed by employing robust rank aggregation method. We used weighted gene co-expression network analysis to explore the functional modules involved in ulcerative colitis pathogenesis. Besides, biological process and pathways analysis of co-expression modules were figured out by gene ontology enrichment analysis using Metascape. Results. 328 ulcerative colitis patients and 138 healthy controls were from 14 datasets. The 150 most significant differentially expressed genes are likely include causative genes of disease, and further studies are needed to demonstrate this. 7 main functional modules were identified, which pathway enrichment analysis indicated were associated with many biological processes. Pathways such as ‘extracellular matrix, immune inflammatory response, cell cycle, material metabolism’ are consistent with the core mechanism of ulcerative colitis. However, ‘defense response to virus’ and ‘herpes simplex infection’ suggest that viral infection is one of the aetiological agents. Besides, ‘Signaling by Receptor Tyrosine Kinases’ and ‘pathway in cancer’ provide new clues for the study of the risk and process of ulcerative colitis cancerization.
Identification of genes and functional coexpression modules closely related to ulcerative colitis by gene datasets analysis

Jie Zhu¹, Zheng Wang¹, Fengzhe Chen¹, Changhong Liu²

¹Department of Infectious Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, P.R. China

²Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, P.R. China

*Corresponding Author:

Changhong Liu²

Jingshi Road 16766, Jinan, Shandong 250000 (P.R. China)

Tel:+86-531-89268763

E-mail:cfzj2019@sdu.edu.cn
Abstract

Background.

Ulcerative colitis is a type of inflammatory bowel disease posing a great threat to the public health worldwide. Previously, gene expression studies of mucosal colonic biopsies have provided some insight into the pathophysiological mechanisms in ulcerative colitis; however, the exact pathogenesis is unclear. The purpose of this study is to identify the most related genes and pathways of UC by bioinformatics, so as to reveal the core of the pathogenesis.

Methods.

Genome-wide gene expression datasets involving ulcerative colitis patients were collected from gene expression omnibus database. To identify most close genes, an integrated analysis of gene expression signature was performed by employing robust rank aggregation method. We used weighted gene co-expression network analysis to explore the functional modules involved in ulcerative colitis pathogenesis. Besides, biological process and pathways analysis of co-expression modules were figured out by gene ontology enrichment analysis using Metascape.

Results.

328 ulcerative colitis patients and 138 healthy controls were from 14 datasets. The 150 most significant differentially expressed genes are likely include causative genes of disease, and further studies are needed to demonstrate this. 7 main functional modules were identified, which pathway enrichment analysis indicated were associated with many biological processes. Pathways such as ‘extracellular matrix, immune inflammatory response, cell cycle, material metabolism’ are consistent with the core mechanism of ulcerative colitis. However, ‘defense response to virus’ and ‘herpes simplex infection’ suggest that viral infection is one of the aetiological agents. Besides, ‘Signaling by Receptor Tyrosine Kinases’ and ‘pathway in cancer’
provide new clues for the study of the risk and process of ulcerative colitis cancerization.
Introduction

Ulcerative colitis (UC) is a subtype of inflammatory bowel disease (IBD), which is a kind of idiopathic, chronic, recurrent, debilitating and nonspecific inflammatory condition, and its characteristic is the alternate periods of remission and active disease (Planell et al. 2013; Strober et al. 2007). Worldwide, UC is more common than Crohn's disease (CD). Both diseases are more common in industrialized countries, particularly in North America and Western Europe, although their incidence is rising in Asia. The whole morbidity reported is between 1.2 and 20.3 cases per 100,000 persons per year, and the prevalence is between 7.6 and 245 cases per 100,000 persons per year (Danese & Fiocchi 2011; Loftus 2004). No sex preponderance exists in UC (Bernstein et al. 2006). The peak age at onset of the disease was 30-40 years (Cosnes et al. 2011). 8-14% of patients have a family history of IBD and first-degree relatives to patients with UC have four times the chance of developing the disease (Childers et al. 2014). Studies have confirmed that genes, environment, intestinal microorganisms and autoimmune factors are involved in the etiology of UC (Chu et al. 2016; Dignass et al. 2012). But, the exact pathogenesis of UC is not clear.

With the progress of genome-wide research, more and more genes closely related to UC have been discovered. The research of DNA microarrays by Lawrence et al. discovered that the differentially expressed genes (DEGs) in UC inflammatory sites, in addition to the expected variety of cytokine, chemokine related genes, and inflammation-related HNL, NGAL, proliferation-related GRO, as well as the tumor-related DD96, DRAL, MX1, and immune-related IGHG3, IGLL2, CD74 (Lawrance et al. 2001). An RNA Microarray study of IBD, including 6 UC patients, found that genes related to functions of biosynthetic and metabolic processes, electrolyte transport, such as HNF4G, KLF5, AQP8, ATP2B1, and SLC16A, were significantly down-regulated in UC samples. Nevertheless, the over-expressed genes are mainly involved in such biological processes as Cell motility, Immune and inflammatory response, Antimicrobial response, Regulation of Cell growth and proliferation, and cytokine chemotaxis.
For example, CORO1A, MMP12, TIMP1, PTGDS, CD79A, POU2AF1, TNFRSF7, IGFBP5, FSCN1, CCL11, etc (Wu et al. 2007). More recently, a similar study involving 67 UC patients showed significantly up-regulation of genes including SAA1, DEFA5&6, MMP3&7, S100A8&9 (Noble et al. 2008). A meta-analysis of 2,693 UC patients reported about 30 gene loci closely related to UC, including not only TNFSF15, NKX2-3, IL12B, MST1, IL18RAP, HLA, IBD5, RNF186/OTUD3/PLA2G2E, DLD/LAMB1, IL10, CARD9, IFNG/IL26, JAK2, IL23R, but also novel FCGR2A, 5p15, 2p16, CARD9 and ORMDL3 (McGovern et al. 2010). However, genetics only explains 7.5% of the disease variation, with small predictive ability for phenotypes, and are currently limited in clinical practice (Consortium et al. 2009).

The aim of this article is to further explore the interaction of genes related to the pathogenesis of UC and the interaction of the enriched signal pathways, elucidating underlying pathogenic events that may contribute to find new and valuable therapeutic targets of the disease.

Gene Expression Omnibus is a public database, and dozens of gene expression datasets about UC patients are freely available, which provide very valuable information, and it could be reused to provide new insights into the molecular pathogenesis of UC. In addition, due to the small sample size in single dataset and discrepancies of the characteristics among multiple heterogeneous datasets, individual genome-wide gene expression datasets could have restricted capability in forecasting the functional gene networks. Thus, it is necessary to gather those datasets and synthetically integrate those massive data through systems biology tools, and finally receive the stable and credible results (Marques et al. 2010; Rung & Brazma 2017; Seifuddin et al. 2013).

The robust rank aggregation (RRA) analysis is a strict tool of systems biology, which can be adopted to the comparison of multiple gene ranking lists obtained from experiments on different platforms greatly expanded the sample size, making the identification of genes related to diseases more reliable and valuable (Kolde et al. 2012). The theory of RRA is that by looking at the location of genes respectively in each ranked list and comparing it with a randomly shuffled...
baseline list, each gene will be assigned a p-value, and the better the location in these ranked lists, the smaller the p-value will be. The final ranking of genes is based on the P value, and logarithmic fold changes (logFC) can be calculated as needed to determine the importance of genes together with the P-value.

In the current, systematic review and comprehensive integration of genome-wide gene expression datasets in UC is still missing. Therefore, we performed the systematic review and comprehensively integrated those genome-wide gene expression datasets through RRA to identify the most probable causative genes of UC. We hope to mark out some deepening insights into UC pathogenesis and provide some molecular target for therapeutic.

Moreover, we would use weighted gene co-expression network analysis (WGCNA) to categorise those important and aberrantly expressed genes into several biologically functional modules (Langfelder & Horvath 2008; Prom-On et al. 2010), which could be biologically meaningful gene clusters and play important roles in UC pathogenesis.
Materials & Methods

Datasets search and eligibility criteria

On the Gene Expression Omnibus (GEO) home page (http://www.ncbi.nlm.nih.gov/geo/), "UC biopsy" was used as the search term, and the datasets in the search results were filtered according to the following criteria: (1) the gene expression profile measured by microarray chip technology; (2) the dataset was a comparison between active UC patients’ tissue and non-UC patients’ healthy tissue; (3) Sample size should be at least 5; (4) The database provided raw data or gene expression Fragments Per Kilobase of transcript per Million fragments mapped (FPKM) matrix files for these datasets and can be used for reanalysis. The raw data is the direct information measured by instrument, in CEL format, which can be processed by R and converted into TXT format of gene expression FPKM matrix. The gene expression FPKM matrix files provided by the website should not have been normalized. Datasets that did not meet the above criteria are excluded.

Robust Rank Aggregation (RRA) analysis

The data set of a single platform is difficult to reach a large sample size, and the result is of low credibility. We used the RRA analysis method to comprehensively compare and analyze the results obtained from the genetic difference analysis of each platform, and selected the genes with strong consistency and difference, so as to make the final differentially expressed genes (DEGs) more convincing. Multiple packages of R software were applied for data processing and statistical analysis (https://www.r-project.org/) (Gentleman et al. 2004).

Affy package for data preprocessing

read.AnnotatedDataFrame(), read in the grouping information file for the samples (UC patients and controls); read.csv(), read in the annotations files of gene expression omnibus platform (GPL), including the conversion of probes to gene symbols; eset.rma <- justRMA(), datExpr=exprs...
(eset.rma), these two-step functions apply the RMA method to normalize original files, with the purpose of adjusting the overall characteristics of a single sample to make it more suitable for comparison.

Surrogate variable analysis (SVA) package for batch effect removing

Batch effect is caused by different samples under different conditions such as experiment time, experiment environment, instrument, etc., and merely data normalization cannot remove batch effect. SVA package were used to remove the batch effects from different samples of the same platform (Chen et al. 2011; Leek et al. 2012). This step is performed using Empirical Bayes method, whose core function is ComBat(). Finally, gene expression value matrix files with row name as gene symbol and column name as sample number were obtained for each platform for further analysis.

Limma package for differential genes analysis

The limma package is a comprehensive package with many options for loading data, data pre-processing (background correction, intra-group normalization and inter-group normalization), and differential genetic analysis. The function of empirical Bayes linear regression method for finding differential genes is very popular. At the same time, limma package is very scalable. Both one channel and two channel data can be analyzed for differential genes, even including quantitative PCR and RNA-seq data types (Ritchie et al. 2015).

The gene expression matrix files obtained in the last step were used for differential gene analysis between UC and Control groups by Limma package respectively, so as to acquire the DEGs of each platform (Wettenhall & Smyth 2004). MakeContrasts() as the key function and gene rank lists of different platforms were generated. In the process, the False Discovery Rate (FDR) is calculated by benjamini-hochberg correction method, which means a adjusted P-Value, but the P-Value is still used as the basis for the significance judgment of the result.
RobustRankAggreg package for RRA analysis

The RobustRankAggreg package was used to implement RRA analysis for Gene rank lists of different platforms to generate the most valuable DEGs (Kolde et al. 2012). Core functions: list(), rankMatrix(), aggregateRanks(). Genes with P value<0.05 and $|\log FC| > 1$ were selected, and the smaller the P value, the higher the ranking, often small P value of the gene corresponds to a large $|\log FC|$. The final result was visualized by pheatmap package.

WGCNA

In order to clarify the main role of DEGs in the pathogenesis of UC, this method is used to cluster genes with close relationship in the same module. The weighted gene co-expression network was constructed by WGCNA package of R.

First, an appropriate gene expression FPKM matrix file is required. A number of genes and suitable samples were extracted from the raw data, and the matrix file is the FPKM of these genes for each sample. The DEGs generated in the RRA analysis were only the most important genes, and could not present the overall picture of the co-expression network. In order to cover most valuable difference genes, we adjusted the cut off value to p<0.05 and $|\log FC| > 0.14$. In other studies, $|\log FC|$ values are often different in order to select sufficient and relatively high value genes for WGCNA. For example, Yan et al selected $|\log FC| > 0.26$ (Yan et al. 2018), while Lu et al set $|\log FC| > 0.585$ in order to get more differentiated genes (Lu et al. 2014). Besides, only samples from the same platform can be combined for WGCNA. To make the results more convincing, we selected GPL570 with the largest sample size, including 143 UC patients and 79 controls from 8 datasets.

Then, hclust() was used to hierarchical clustering of samples by average method and results in the initial sampletree. The following we defined sample clustering height = 80 to remove the isolated samples from the group, so as to obtain a more hierarchical sampletree for further analysis.
The core process of WGCNA is to build a scale-free distributed topological network, making the functional modules developed more cohesive (Langfelder & Horvath 2008). In the view of many relevant references prove that when the scale-free fit index is greater than 0.85, the network already conforms to the scale-free network distribution (Lancu et al. 2015; Zhang & Horvath 2005). We set an appropriate soft threshold power value to make the generated Scale free Topology Model Fit > 0.85.

Next, module identification was realized by Dynamic Tree Cut method, setting minModuleSize=30 and deepSplit=2. Further, mergeCloseModules(), a function that can be merged automatically, completes the merging of similar modules by setting the minimum height for merging modules at 0.3. Finally, some genes that could not be classified into any functional module were uniformly collected into the grey60 module. Incidentally, the colors of each module are randomly assigned.

Functional enrichment analysis

Functional enrichment analysis was performed by Metascape (http://metascape.org) accord to the genes assigned to each module (Tripathi et al. 2015). In the results, the top 10 biological processes with the minimum p value of each module were listed, which reflected the functional characteristics of the modules.

Statistical analysis

The version of R used for statistical analysis was 3.5.0. In all cases, P<0.05 was considered statistically significant.
Results

UC microarray datasets

In the end, 14 datasets from 5 platforms were selected. Details of datasets were shown in Table 1, including GSE number, sample size, Source types, detection platform, data file type and authors. In the study, the number of UC patients in each dataset ranged from 3 to 74, and the number of normal controls ranged from 3 to 20. The total number of samples enrolled in the final study was 328 UC patients and 138 healthy controls.

150 significant Differentially Expressed Genes (DEGs) between UC and non-UC Patients

The top 100 up-regulated genes and the top 50 down-regulated genes by Robust Rank Aggregation (RRA) analysis were shown in Table S1. P < 6.11E-07 and |logFC| > 1 reminded significant differences of the top 100 up-regulated genes. Besides, the top 50 down-regulated genes had significant difference index of p < 6.32E-07 and |logFC| > 1 (Table S1).

In order to highlight the effect of the presentation, Figure 1 displayed the logFC for unique dataset platforms and multi-dataset platforms of the top 50 up-regulated and top 50 down-regulated genes. Green represents down-regulation and red represents up-regulation. The colors deepen with the increase of |logFC| respectively. The similarity of color saturation reflects the consistency of these important genes in the datasets of each platform.

The expression of the above 100 DEGs in all samples of GPL570 platform was shown in the heatmap (Figure 2). Among them, the 50 up-regulated genes mainly include: (1) Closely associated with inflammatory response, such as S100A8&9, CXCL1&8&10&11&13, CCL19&20, CHI3L1, IL1B, IL1RN, VNN1, IDO1; (2) MMP1&3&7&9&10&12, PIM2, TIMP1, SERPINB5 are closely related to extracellular matrix organization process; (3) LCN2, SELL,
CFB, CD27, CSF3R, C2, LAX1, CFI are associated with immune response; (4) DMBT1, DUOX2& A2, and TNIP3 are associated with viral and other infections; (5) REG1A, REG3A, REG1B, PLAU, TFF1, ADM, WARS are closely related to positive regulation of cell proliferation process; (6) Other genes with scattered functions, such as PI3, OLFM4, IGFBP5, SPINK4, SLC6A14, and AQP9, are related to cell cycle progression and cell metabolism.

In addition, the other 50 down-regulated genes mainly include: (1) PHLPP2, VIPR1, APOBEC3B, PTGDR were associated with the regulation of immune inflammatory response; (2) AQP8, ABCG2, SLC26A2, CA7, BEST4, TRPM6, which involve in transmembrane transport functions; (3) CHP2, ENTPD5, SGK2, CNTFR, CLDN8, CDHR1, CNTN3, CD177, which are related to cell proliferation, migration, and adhesion; (4) SATB2, PPARG, BMP3, HEPACAM2, GUCA2B, GUCA2A, FMO5, CKB, CA1, MAOA and DHRS11 are closely related to biological processes such as cell cycle and metabolism; (5) Other genes are mainly involved in nutrient metabolism, drug and chemical reactions, and chemotactic regulation of cytokines. And a small number of genes do not yet have a clear function.

Color stratification displayed the difference of expression between the two groups. In the top several genes with the greatest difference, genes such as MMP1, REG1A and AQP8 had been confirmed to abnormally expressed in UC (Planell et al. 2013).

5,344 DEGs were clustered into 7 functional modules through WGCNA

Appropriate samples and genes were screened to construct gene expression FPKM matrix files. Data sets must come from the same platform to be combined into a single matrix file for analysis, and we selected all samples from the GPL570 platform with the largest sample size. After adjusting the cut off value of RRA process to \(p < 0.05 \) and \(|\log FC| > 0.14 \), 5344 DEGs were obtained, which was more suitable for WGCNA.
When soft-threshold power was set to 10, the scale-free topology index was >0.85, and mean connectivity was infinitely close to 0 (Figure 3A). The analysis produced 8 co-expression modules, among which 7 modules contained more genes and were the main functional modules (Figure 3B). The number of genes in each module ranged from 97 to 1,718. The module with the largest number of genes was the blue module and the second largest module is the black module with 1,398 genes. Blue and black modules also contain the largest number of the 150 most important DEGs. Therefore, we believe that the pathways involved in the two modules dominate the occurrence and progress of UC. The detailed gene names were listed in Table S2. The network heatmap plot showed that these major modules maintain a good independence from each other (Figure 3C).

Co-expression modules were enriched to obtain significant pathways

Table 2 listed the functional enrichment analysis results of 7 major co-expression modules. Biological processes from were ranked by Log10(P), and having the greatest |Log10(P)| was considered critical.

The genes of blue module were significantly enriched in ‘extracellular matrix organization, lymphocyte activation, blood vessel morphogenesis, leukocyte migration and inflammatory response’. And ‘nucleobase-containing small molecule metabolic process, small molecule catabolic process, isoleucine degradation’ were the most important pathways enriched in black module. Besides, the genes of salmon module were mainly enriched in the biological processes of ‘interferon signaling, defense response to virus and herpes simplex infection’. Cyan module was enriched into functional pathways involved in multiple fields, including protein regulation, neutrophil immunity, tyrosine kinase pathway, cancer-related pathways and many other aspects. In addition, the enriched pathways of Grey60 and midnightblue modules were closely related.
to inflammatory response, while the ‘Cell Cycle’ and ‘Cell Cycle Checkpoints’ were the results of green module functional enrichment (Table2).
Discussion

UC is a type of IBD that affects the large intestine and colon. The pathogenesis of UC is complex and remains largely unknown. It is believed that genetic features, the immune response to microbial dysbiosis, mucosal immune response and environmental factors contribute to the pathogenesis of UC (Danese & Fiocchi 2011). Though many genes have been found to be involved in UC, the gene networks associated with the etiology of UC has not been clearly defined.

In this study, 14 genome-wide gene expression datasets were finally included, which involved a total of 328 UC patients and 138 healthy controls. Integrated analysis using the RRA method identified quite a few crucially up-regulated or down-regulated genes (Table 1&Figure 1). Some of those genes are novel UC gene signatures and their molecular roles in UC pathogenesis are still largely unknown. These abnormally expressed genes may be therapeutic targets for UC and need further research.

The WGCNA clustering criteria have a great biological significance which have been widely used to explore the molecular mechanisms of various diseases (Yan et al. 2018), including IBD (Lin et al. 2018; Xie et al. 2018). In our study, the expressions of 5344 UC associated genes obtained from the RRA analysis were used in the WGCNA analysis, together with they were classified into 7 co-expression biologically functional modules (Figure 3B), which highlighted some new insights into the pathogenesis of UC at a systems level.

By functional enrichment analysis of the modules, we revealed several significant pathogenic mechanisms closely related to UC. In the absence of clinical traits, the importance of module is often judged by the number of genes they contain. The blue and black modules both have more than 1000 genes, and contain the largest number of top 150 genes, which are considered to be the two most important modules.

To further understand the significance of these functional modules in the pathogenesis of UC, enrichment analysis was performed using Metascape. The importance of pathways is based on
Log10(P) values. Important pathways in important modules probably have the strongest correlation with the symptoms or pathophysiology of UC. The enrichment analysis of genes in the blue module mainly involved in ‘extracellular matrix organization, lymphocyte activation, blood vessel morphogenesis, leukocyte migration’ which relevant to inflammatory responses revealed that inflammatory pathway occupies a core position in various pathways related to UC. Extracellular matrix can regulate inflammation, healing and fibrosis. The intestinal extracellular matrix is comprised of various macromolecules, including glycoproteins such as collagens, vitronectin, fibronectin and matricellular proteins. A recent study has reported that extracellular matrix organization strongly promotes the occurrence of Intestinal fibrosis which is common in IBD (Latella et al. 2014; Wynn & Ramalingam 2012). The black modules with the second largest number of genes and the enriched functional pathways mainly include ‘nucleobase-containing small molecule metabolic process, small molecule catabolic process, isoleucine degradation’. The regulation of metabolism of various small molecular substances suggests that many pathways and metabolism are active in tissue cells when UC is activated. ‘Cell Cycle’ and ‘Cell Cycle Checkpoints’ were the most outstanding pathways of Green module. One study pointed out that the cell cycle regulates the immune, tolerance and autoimmunity functions of T cells, and the excessive inflammation of IBD is the loss of immune tolerance caused by abnormal regulation of the cell cycle (Sturm et al. 2004). The enrichment results of Cyan module pathway can be seen that immune response-related pathways are still common and the localization of a large number of proteins inside and outside the cell once again indicates the activity of cell metabolism. In addition, ‘pathway in cancer’ process conforms to the recognized fact that UC and colorectal cancer (CRC) are closely related. Studies have shown that 8 to 10 years after diagnosis of UC, the risk of CRC begins to increase (Yashiro 2014). Tyrosine kinase receptor pathway, which regulates cell proliferation and differentiation and promotes cell survival, has been closely associated with CRC (Herr et al. 2018). Meanwhile, it has been reported that tyrosine kinase receptor RON is highly expressed in UC mucosa (Hirayama et al. 2007).
Therefore, we believe that tyrosine kinase pathway plays an important role in the occurrence of UC canceration.

Moreover, there are obvious similarities between the pathway enrichment results of grey60 module and midnightblue module. The former chiefly include ‘myeloid leukocyte activation, inflammatory response, response to bacterium’. The latter also focuses on the fields of ‘inflammatory response, immune response’. Numerous studies have demonstrated the association between clostridium difficile infection and UC. Clostridium difficile toxins may lead to an enhanced inflammatory response in the presence of Clostridium difficile infection (Martinelli et al. 2014). With regard to other bacteria, salmonella and campylobacter infections have also been noted to cause an exacerbation of IBD (Malik 2015; Singh et al. 2009). The functional enrichment pathways of salmon module mainly involve in ‘interferon signaling, defense response to virus and herpes simplex infection’, of which ‘interferon signaling’ is the most important. There were some observational studies on the link between Interferon Signaling and UC. It is generally known that IFN-gamma plays a key role in the early steps of installation of inflammation, promoting monocyte recruitment and activation, and inducing the expression of other inflammatory cytokines. IFN-gamma expression was increased in the pouch mucosa of UC patients compared with controls, and thus it seems to play a pivotal role in UC patients (Leal et al. 2010). Interferon signaling has been identified as a central aspect of innate immune response which induces a wide variety of antiviral proteins against pathogens infection. Moreover, interferon signaling play a crucial role in the response to herpes virus infection by antagonizing viral replication and spread (Noisakran & Carr 2001; Su et al. 2016). This reminds us that the occurrence of UC is probably a sequential process of herpes simplex infection-defense response to virus-interferon signaling in a part of patients. A study reported corticosteroid refractory patients may benefit from antiviral therapy (Shukla et al. 2015). This subgroup of patients who were refractory to corticosteroid was likely to undergo above-mentioned sequential process continuously. Therefore, screening for herpes virus infection, prompt diagnosis and antiviral therapy may effectively relief these patients' condition and reduce colectomy risk. However, the
molecular mechanisms underlying the roles of nucleobase-containing small molecule metabolic process in UC are still poorly understood and need to be elucidated in the future.

RRA analysis in the study identifies a large amount of significant DEGs that were drastically up-regulated or down-regulated, plenty of which have been reported in previous articles. We listed top 100 DEGs in the visualization operation to show the reliability of the results. The most significant causative genes are likely to be contained in the top 100 genes and need further experimental verification. Therefore, in our discussion, we will focus on the genes that are considered to be closely associated with the occurrence and development of UC.

MMP1, REG1A and AQP8 have been reported in related literatures (Planell et al. 2013). MMP1, which belong to metal dependent enzymes family, is known as interstitial collagenase involved in extracellular matrix turnover (Fanjul-Fernandez et al. 2009). MMP1 expression increased in the colonic mucosa of UC patients compared to normal controls, and the mucosa up-regulation of MMP1 correlated with the severity of disease in UC (Wang et al. 2009). There is growing evidence that MMP-1 reflect acute tissue injury and involved in the initial steps of ulceration in UC and new blood vessel formation, but the molecular mechanism underlying its effects remains unclear (McKaig et al. 2003; Wang & Yan 2006). In the previous literature it has been pointed out by several authors that Abnormally high expression of REG1A is present in the colonic mucosa in UC patients, but its precise molecular mechanism is far from being completely understood (Planell et al. 2013). Currently several researches reported that AQP8 play important roles in gastrointestinal diseases, including UC. The expression of AQP8 is a marker of normal proliferating colonic epithelial cells and AQP8 are closely connected with fluid transport in colon (Zhao et al. 2016). A study reported that AQP8 expression reduced in the ileum of UC patients while AQP8 was dramatically induced in the colon of UC patients (Zahn et al. 2007). However, a study with larger number of samples found that the AQP8 expression was markedly decreased in UC colon tissue compared to healthy subjects in agreement with the our results (Min et al. 2013). The decrease of AQP8 may lead to the disorder of colonic mucosal fluid absorption and reduce the secretion of intestinal tract, but its molecular mechanism is poorly
understood (Calamita et al. 2001; Elkjaer et al. 2001). High expression of DUOX2 and DUOXA2 have been shown in patients with active UC, especially where inflammation is prominent. Both of them are regulated by inflammation and crypt-by-crypt basis in UC tissues, which can increase the production of H₂O₂. This process can enhance innate defense, but has the risk of potential DNA damage (MacFie et al. 2014). Studies have confirmed that DMBT1 and IL-22 mRNA are obviously highly expressed in UC mucosa, and have a significant correlation. IL-22 increased DMBT1 expression by stimulating STAT3 and NF-κB. This process is likely to have an important effect on the innate immunity of UC mucosa (Fukui et al. 2011). A study of 32 UC patients found that the detected levels of MMP-9 and LCN-2 in feces of patients with active UC were significantly increased, and that fecal MMP-9 could be a reliable biomarker of IBD activity (Buisson et al. 2018). Coincidentally, another report suggested that Serum LCN2 level significantly increased in patients with active UC, and it can serve as a biomarker of active UC (Stallhofer et al. 2015).

Among the significantly down-regulated genes, the high ranking ABCG2 also demonstrated low expression in patients with active UC in a previous study. ABCG2 is an efflux transporter involved in mucosal barrier function, low expression of which may increase the risk of tissue exposure to carcinogens, bacterial toxins and drugs (Englund et al. 2007). There are also some genes with significant differences, such as HMGCS2 and PCK1 are novel gene signatures of UC, but still lack of direct experimental evidence. Therefore, their relationship and value with UC need to be validated in future studies.

As mentioned above, this study creatively applied the RRA method to comprehensively analyze the DEGs of large samples from multiple platforms. The important DEGs filtered out are more reliable, and the functional distribution of the DEGs is more concentrated, which is conducive to clustering clearer functional modules in the process of WGCNA, so as to reveal an intimate pathway network with UC. The results of our study on important genes are compared with the results of other similar studies in Table S3. It can be found that in some studies, the DEGs of
RNA microarray between UC and control group have a great overlap with our result, or at least a similarity in functional distribution. Since the sample size of our study is larger, the results are more comprehensive. Some unreported genes still have considerable research value due to their homology with many genes that have been confirmed to be closely related to UC in gene function (Kobayashi et al. 2013; Noble et al. 2008; Planell et al. 2013; Wu et al. 2007). Compared to other data re-analyses researches on UC, almost all of the studies were conducted directly by functional clustering for a large number of DEGs to display the main mechanisms of the disease, which can not reflect the importance of the individual genes (Feng et al. 2017; Song et al. 2018). We innovatively used RRA to summarize and analyze the differential genes in multiple data sets to obtain the likely important causative genes of UC.

Regarding this study, findings are consistent with many previous research conclusions and current mainstream views, which reflects the reliability of research methods and results. However, due to various reasons, the research has some limitations. Firstly, because the raw data does not provide enough information about clinical traits and disease outcomes of samples, the correlation degree between modules and clinical traits cannot be analyzed by WGCNA method, which is limited in the judgment of module importance. Secondly, as for the setting of cut off value, $p < 0.05$ is considered to have statistical significance. LogFC is set based on the similar studies and the appropriate number of genes needed for the next analysis. The difference in the value set makes a difference in the results, but not in the essence. Third, the comprehensive analysis of multiple data sets is conducive to the selection of genes with relatively consistent differences for key research. However, there are differences in experimental conditions and sample composition of different data sets, which may cause some valuable information to be cleared in the data processing. Finally, this study only delineates the possible range of closely related genes through bioinformatics method, showing the most important pathways related to the pathogenesis. The results still need to be verified by specific experimental research, and provide help for the progress of disease diagnosis and treatment.
Conclusions

Bioinformatics analysis helps us narrow the scope of our research, which deepens the understanding of the molecular mechanism and provides theoretical foundation for molecular target therapy. The biggest characteristic of this study is that in the pathogenesis of UC, immunity and infection are the two most important factors. We suspect that the two are most likely to be cause-and-effect in the process of disease initiation and progression, which is a hot topic in medical research at present. Herpesvirus infection-viral response-interferon pathway may be the trilogy of corticosteroid refractory UC patients, who are necessary to accept antiviral therapy.

We can use this research as the basis for further clinical specimens experiment to verify these genes and pathways, which may lead to future insights into disease pathogenesis, diagnosis, and treatment.
References

Bernstein CN, Wajda A, Svenson LW, MacKenzie A, Koehoorn M, Jackson M, Fedorak R, Israel D, and Blanchard JF. 2006. The epidemiology of inflammatory bowel disease in Canada: a population-based study. *Am J Gastroenterol* 101:1559-1568 DOI 10.1111/j.1572-0241.2006.00603.

Buisson A, Vazeille E, Minet-Quinard R, Goutte M, Bouvier D, Goutorbe F, Pereira B, Barnich N, and Bommelaer G. 2018. Fecal Matrix Metalloprotease-9 and Lipocalin-2 as Biomarkers in Detecting Endoscopic Activity in Patients With Inflammatory Bowel Diseases. *J Clin Gastroenterol* 52:e53-e62 DOI 10.1097/mcg.0000000000000837.

Calamita G, Mazzone A, Bizzoca A, Cavalier A, Cassano G, Thomas D, and Svelto M. 2001. Expression and immunolocalization of the aquaporin-8 water channel in rat gastrointestinal tract. *Eur J Cell Biol* 80:711-719 DOI 10.1078/0171-9335-00210.

Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, and Liu C. 2011. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. *PLoS One* 6:e17238 DOI 10.1371/journal.pone.0017238.

Childers RE, Eluri S, Vazquez C, Weise RM, Bayless TM, and Hutfless S. 2014. Family history of inflammatory bowel disease among patients with ulcerative colitis: a systematic review and meta-analysis. *J Crohns Colitis* 8:1480-1497 DOI 0.1016/j.jcrohns.2014.05.008.

Chu H, Khosravi A, Kusumawardhani IP, Kwon AH, Vasconcelos AC, Cunha LD, Mayer AE, Shen Y, Wu WL, Kambal A, Targan SR, Xavier RJ, Ernst PB, Green DR, McGovern DP, Virgin HW, and Mazmanian SK. 2016. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. *Science* 352:1116-1120 DOI 10.1126/science.aad9948.
Consortium UIG, Barrett JC, Lee JC, Lees CW, Prescott NJ, Anderson CA, Phillips A, Wesley E, Parnell K, Zhang H, Drummond H, Nimmo ER, Massey D, Blaszczyk K, Elliott T, Cotterill L, Dallal H, Lobo AJ, Mowat C, Sanderson JD, Jewell DP, Newman WG, Edwards C, Ahmad T, Mansfield JC, Satsangi J, Parkes M, Mathew CG, Wellcome Trust Case Control C, Donnelly P, Peltonen L, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin A, Craddock N, Deloukas P, Duncanson A, Jankowski J, Markus HS, McCarthy MI, Palmer CN, Plomin R, Rautanen A, Sawcer SJ, Samani N, Trembath RC, Viswanathan AC, Wood N, Spencer CC, Bellenguez C, Davison D, Freeman C, Strange A, Langford C, Hunt SE, Edkins S, Gwilliam R, Blackburn H, Bumpstead SJ, Dronov S, Gillman M, Gray E, Hammond N, Jayakumar A, McCann OT, Liddle J, Perez ML, Potter SC, Ravindrarajah R, Ricketts M, Waller M, Weston P, Widaa S, Whittaker P, Attwood AP, Stephens J, Sambrook J, Ouwehand WH, McArdle WL, Ring SM, and Strachan DP. 2009. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 41:1330-1334 DOI 10.1038/ng.483.

Cosnes J, Gower-Rousseau C, Seksik P, and Cortot A. 2011. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 140:1785-1794 DOI 10.1053/j.gastro.2011.01.055.

Danese S, and Fiocchi C. 2011. Ulcerative colitis. N Engl J Med 365:1713-1725 DOI 10.1056/NEJMra1102942.

Dignass A, Lindsay JO, Sturm A, Windsor A, Colombel JF, Allez M, D'Haens G, D'Hoore A, Mantzaris G, Novacek G, Oresland T, Reinisch W, Sans M, Stange E, Vermeire S, Travis S, and Van Assche G. 2012. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: current management. J Crohns Colitis 6:991-1030 DOI 10.1016/j.crohns.2012.09.002.

Elkjaer ML, Nejsum LN, Gresz V, Kwon TH, Jensen UB, Frokiaer J, and Nielsen S. 2001. Immunolocalization of aquaporin-8 in rat kidney, gastrointestinal tract, testis, and airways. Am J Physiol Renal Physiol 281:F1047-1057 DOI 10.1152/ajprenal.0158.2001.

Englund G, Jacobson A, Rorsman F, Artursson P, Kindmark A, and Ronnblom A. 2007. Efflux transporters in ulcerative colitis: decreased expression of BCRP (ABCG2) and Pgp (ABCB1). Inflamm Bowel Dis 13:291-297 DOI 10.1002/ibd.20030.

Fanjul-Fernandez M, Folgueras AR, Cabrera S, and Lopez-Otin C. 2009. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta 1803:3-19 DOI 10.1016/j.bbamcr.2009.07.004.

Feng J, Gao Q, Liu Q, Wang F, Lin X, Zhao Q, Liu J, and Li J. 2017. Integrated strategy of differentially expressed genes associated with ulcerative colitis. Mol Med Rep 16:7479-7489 DOI 10.3892/mmr.2017.7509.
Fukui H, Sekikawa A, Tanaka H, Fujimori Y, Kataké Y, Fujii S, Ichikawa K, Tomita S, Imura J, Chiba T, and Fujimori T. 2011. DMBT1 is a novel gene induced by IL-22 in ulcerative colitis. *Inflamm Bowel Dis* 17:1177-1188 DOI 10.1002/ibd.21473.

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, and Zhang J. 2004. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol* 5:R80 DOI 10.1186/gb-2004-5-10-r80.

Herr R, Halbach S, Heizmann M, Busch H, Boerries M, and Brummer T. 2018. BRAF inhibition upregulates a variety of receptor tyrosine kinases and their downstream effector Gab2 in colorectal cancer cell lines. *Oncogene* 37:1576-1593 DOI 10.1038/s41388-017-0063-5.

Hirayama I, Ide M, Asao T, and Kuwano H. 2007. Receptor protein tyrosine kinase Ron is highly expressed in colorectal mucosa of ulcerative colitis patients. *Hepatogastroenterology* 54:1672-1675.

Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Buning C, Cohain A, Cichon S, D'Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Garey R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JL, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelman J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H, International IBDGC, Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, and Cho JH. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. *Nature* 491:119-124 DOI 10.1038/nature11582.

Kobayashi T, Mitsuyama K, Yamasaki H, Masuda J, Takedatsu H, Kuwaki K, Yoshioka S, Nagayama K, and Sata M. 2013. Microarray analyses of peripheral whole blood cells from ulcerative colitis patients: effects of leukocytapheresis. *Int J Mol Med* 31:789-796 DOI 10.3892/ijmm.2013.1270.

Kolde R, Laur S, Adler P, and Vilo J. 2012. Robust rank aggregation for gene list integration and meta-analysis. *Bioinformatics* 28:573-580 DOI 10.1093/bioinformatics/btq709.
Iancu OD, Colville A, Oberbeck D, Darakjian P, McWeeney SK, and Hitzemann R. 2015. Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations. Front Genet 6:174 DOI 10.3389/fgene.2015.00174.

Langfelder P, and Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559 DOI 10.1186/1471-2105-9-559.

Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, and Lawrance IC. 2014. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis 8:1147-1165 DOI 10.1016/j.crohns.2014.03.008.

Lawrance IC, Fiocchi C, and Chakravarti S. 2001. Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum Mol Genet 10:445-456 DOI 10.1093/hmg/10.5.445.

Leal RF, Ayrizono MLS, Milanski M, Coope A, Fagundes JJ, Velloso LA, and Coy CSR. 2010. Activation of signal transducer and activator of transcription-1 (STAT-1) and differential expression of interferon-gamma and anti-inflammatory proteins in pelvic ileal pouches for ulcerative colitis and familial adenomatous polyposis. Clin Exp Immunol 160:380-385.

Leek JT, Johnson WE, Parker HS, Jaffe AE, and Storey JD. 2012. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882-883 DOI 10.1093/bioinformatics/bts034.

Lin X, Li J, Zhao Q, Feng JR, Gao Q, and Nie JY. 2018. WGCNA Reveals Key Roles of IL8 and MMP-9 in Progression of Involvement Area in Colon of Patients with Ulcerative Colitis. Curr Med Sci 38:252-258 DOI 10.1007/s11596-018-1873-6.

Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, Abedian S, Cheon JH, Cho J, Dayani NE, Franke L, Fuyuno Y, Hart A, Juyal RC, Juyal G, Kim WH, Morris AP, Poustchi H, Newman WG, Midha V, Orchard TR, Vahedi H, Sood A, Sung JY, Malekzadeh R, Westra HJ, Yamazaki K, Yang SK, International Multiple Sclerosis Genetics C, International IBDGC, Barrett JC, Alizadeh BZ, Parkes M, Bk T, Daly MJ, Kubo M, Anderson CA, and Weersma RK. 2018. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47:979-986 DOI 10.1038/ng.3359.

Loftus EV, Jr. 2004. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 126:1504-1517.
Lu X, Ye K, Zou K, and Chen J. 2014. Identification of copy number variation-driven genes for liver cancer via bioinformatics analysis. *Oncol Rep* 32:1845-1852 DOI 10.3892/or.2014.3425

MacFie TS, Poulsom R, Parker A, Warnes G, Boitsova T, Nijhuis A, Suraweera N, Poehlmann A, Szary J, Feakins R, Jeffery R, Harper RW, Jubb AM, Lindsay JO, and Silver A. 2014. DUOX2 and DUOXA2 form the predominant enzyme system capable of producing the reactive oxygen species H2O2 in active ulcerative colitis and are modulated by 5-aminosalicylic acid. *Inflamm Bowel Dis* 20:514-524 DOI 10.1097/01.MIB.0000442012.45038.0e.

Malik TA. 2015. Inflammatory Bowel Disease: Historical Perspective, Epidemiology, and Risk Factors. *Surg Clin North Am* 95:1105-1122 DOI 10.1016/j.suc.2015.07.006.

Marques FZ, Campain AE, Yang YH, and Morris BJ. 2010. Meta-analysis of genome-wide gene expression differences in onset and maintenance phases of genetic hypertension. *Hypertension* 56:319-324 DOI 10.1161/HYPERTENSIONAHA.110.155366.

Martinelli M, Strisciuglio C, Veres G, Paerregaard A, Pavic AM, Aloj M, Martin-de-Carpi J, Levine A, Turner D, Del Pezzo M, Staiano A, Miele E, Porto Ibld Working Group of European Society for Pediatric Gastroenterology H, and Nutrition. 2014. Clostridium difficile and pediatric inflammatory bowel disease: a prospective, comparative, multicenter, ESPGHAN study. *Inflamm Bowel Dis* 20:2219-2225 DOI 10.1097/MIB.0000000000000219.

McGovern DP, Gardet A, Torkvist L, Goyette P, Essers J, Taylor KD, Neale BM, Ong RT, Lagace C, Li C, Green T, Stevens CR, Beauchamp C, Fleshner PR, Carlson M, D'Amato M, Halfvarson J, Hibberd ML, Lordal M, Padyukov L, Andriulli A, Colombo E, Latiano A, Palmieri O, Bernard EJ, Deslandres C, Hommes DW, de Jong DJ, Stokkers PC, Weersma RK, Sharma Y, Silverberg MS, Cho JH, Wu J, Roeder K, Brant SR, Schumm LP, Duerr RH, Dubinsky MC, Glazer NL, Haritunians T, Ippoliti A, Melmed GY, Siscovick DS, Vasiliauskas EA, Targan SR, Annese V, Wijmenga C, Pettersson S, Rotter JI, Xavier RJ, Daly MJ, Rioux JD, and Seielstad M. 2010. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. *Nat Genet* 42:332-337 DOI 10.1038/ng.549.

McKag BC, McWilliams D, Watson SA, and Mahida YR. 2003. Expression and regulation of tissue inhibitor of metalloproteinase-1 and matrix metalloproteinases by intestinal myofibroblasts in inflammatory bowel disease. *Am J Pathol* DOI 162:1355-136010.1016/S0002-9440(10)63931-4.

Min M, Peng LH, Sun G, Guo MZ, Qiu ZW, and Yang YS. 2013. Aquaporin 8 expression is reduced and regulated by microRNAs in patients with ulcerative colitis. *Chin Med J (Engl)* 126:1532-1537.
Noble CL, Abbas AR, Cornelius J, Lees CW, Ho GT, Toy K, Modrusan Z, Pai N, Zhong F, Chalasani S, Clark H, Arnott ID, Penman ID, Satsangi J, and Diehl L. 2008. Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis. *Gut* 57:1398-1405 DOI 10.1136/gut.2008.148395.

Noisakran S, and Carr DJ. 2001. Type I interferons and herpes simplex virus infection: a naked DNA approach as a therapeutic option? *Immunol Res* 24:1-11 DOI 10.1385/IR:24:1:01.

Planell N, Lozano JJ, Mora-Buch R, Masamunt MC, Jimeno M, Ordas I, Esteller M, Ricart E, Pique JM, Panes J, and Salas A. 2013. Transcriptional analysis of the intestinal mucosa of patients with ulcerative colitis in remission reveals lasting epithelial cell alterations. *Gut* 62:967-976 DOI 10.1136/gutjnl-2012-303333.

Prom-On S, Chanthaphan A, Chan JH, and Meechai A. 2010. Enhancing biological relevance of a weighted gene co-expression network for functional module identification. *J Bioinform Comput Biol* 9:111-129.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, and Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res* 43:e47 DOI 10.1093/nar/gkv007.

Rung J, and Brazma A. 2017. Reuse of public genome-wide gene expression data. *Nat Rev Genet* 14:89-99 DOI 10.1038/nrg3394.

Seifuddin F, Pirooznia M, Judy JT, Goes FS, Potash JB, and Zandi PP. 2013. Systematic review of genome-wide gene expression studies of bipolar disorder. *BMC Psychiatry* 13:213 DOI 10.1186/1471-244X-13-213.

Shukla T, Singh S, Loftus EV, Jr., Brüning DH, and McCurdy JD. 2015. Antiviral Therapy in Steroid-refractory Ulcerative Colitis with Cytomegalovirus: Systematic Review and Meta-analysis. *Inflamm Bowel Dis* 21:2718-2725 DOI 10.1097/mib.0000000000000489.

Singh S, Graff LA, and Bernstein CN. 2009. Do NSAIDs, antibiotics, infections, or stress trigger flares in IBD? *Am J Gastroenterol* 104:1298-1313 DOI 10.1038/aig.2009.15.

Song R, Li Y, Hao W, Wang B, Yang L, and Xu F. 2018. Identification and analysis of key genes associated with ulcerative colitis based on DNA microarray data. *Medicine (Baltimore)* 97:e10658 DOI 10.1097/md.0000000000010658.

Stallhofer J, Friedrich M, Konrad-Zerna A, Wetzke M, Lohse P, Glas J, Tillack-Schreiber C, Schnitzler F, Beigel F, and Brand S. 2015. Lipocalin-2 is a Disease Activity Marker in Inflammatory Bowel Disease Regulated by IL-17A, IL-22, and TNF-alpha and Modulated by IL23R Genotype Status. *Inflamm Bowel Dis* 21:2327-2340 DOI 10.1097/mib.000000000000515.
Strober W, Fuss I, and Mannon P. 2007. The fundamental basis of inflammatory bowel disease. *J Clin Invest* 117:514-521 DOI 10.1172/JCI30587.

Sturm A, Leite AZ, Danese S, Krivacic KA, West GA, Mohr S, Jacobberger JW, and Fiocchi C. 2004. Divergent cell cycle kinetics underlie the distinct functional capacity of mucosal T cells in Crohn's disease and ulcerative colitis. *Gut* 53:1624-1631 DOI 10.1136/gut.2003.033613.

Su C, Zhan G, and Zheng C. 2016. Evasion of host antiviral innate immunity by HSV-1, an update. *Virol J* 13:38 DOI 10.1186/s12985-016-0495-5.

Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, Moulton HM, DeJesus P, Che J, Mulder LC, Yanguex E, Andenmatten D, Pache L, Manicassamy B, Albrecht RA, Gonzalez MG, Nguyen Q, Brass A, Elledge S, White M, Shapira S, Hacohen N, Karlas A, Meyer TF, Shaales M, Gatorano A, Johnson JR, Jang G, Johnson T, Verschueren E, Sanders D, Krogan N, Shaw M, Konig R, Stertz S, Garcia-Sastre A, and Chanda SK. 2015. Meta- and Orthogonal Integration of Influenza "OMICs" Data Defines a Role for UBR4 in Virus Budding. *Cell Host Microbe* 18:723-735 DOI 10.1016/j.chom.2015.11.002.

Wang YD, Tan XY, and Zhang K. 2009. Correlation of plasma MMP-1 and TIMP-1 levels and the colonic mucosa expressions in patients with ulcerative colitis. *Mediators Inflamm* 2009:275072 DOI 10.1155/2009/275072.

Wang YD, and Yan PY. 2006. Expression of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in ulcerative colitis. *World J Gastroenterol* 12:6050-6053.

Wettenhall JM, and Smyth GK. 2004. limmaGUI: a graphical user interface for linear modeling of microarray data. *Bioinformatics* 20:3705-3706 DOI 10.1093/bioinformatics/bth449.

Wu F, Dassopoulos T, Cope L, Maitra A, Brant SR, Harris ML, Bayless TM, Parmigiani G, and Chakravarti S. 2007. Genome-wide gene expression differences in Crohn's disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. *Inflamm Bowel Dis* 13:807-821 DOI 10.1002/ibd.20110.

Wynn TA, and Ramalingam TR. 2012. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. *Nat Med* 18:1028-1040 DOI 10.1038/nm.2807.

Xie D, Zhang Y, and Qu H. 2018. Crucial genes of inflammatory bowel diseases explored by gene expression profiling analysis. *Scand J Gastroenterol* 53:685-691 DOI 10.1080/00365521.2018.1461923.

Yan S, Wang W, Gao G, Cheng M, Wang X, Wang Z, Ma X, Chai C, and Xu D. 2018. Key genes and functional coexpression modules involved in the pathogenesis of systemic lupus erythematosus. *J Cell Physiol* 233(11):8815-8825 DOI 10.1002/jcp.26795.
Yashiro M. 2014. Ulcerative colitis-associated colorectal cancer. *World J Gastroenterol* 20:16389-16397. DOI 10.3748/wjg.v20.i44.16389.

Zahn A, Moehle C, Langmann T, Ehehalt R, Autschbach F, Stremmel W, and Schmitz G. 2007. Aquaporin-8 expression is reduced in ileum and induced in colon of patients with ulcerative colitis. *World J Gastroenterol* 13:1687-1695.

Zhang B, and Horvath S. 2005. A general framework for weighted gene co-expression network analysis. *Stat Appl Genet Mol Biol* 4:Article17 DOI 10.2202/1544-6115.1128.

Zhao GX, Dong PP, Peng R, Li J, Zhang DY, Wang JY, Shen XZ, Dong L, and Sun JY. 2016. Expression, localization and possible functions of aquaporins 3 and 8 in rat digestive system. *Biotech Histochem* 91:269-276 DOI 10.3109/10520295.2016.1144079.
Table 1 Summary of those 14 genome-wide gene expression datasets involving UC patients

Dataset Name	Number of Patients	Description
Dataset A	100	Genes A
Dataset B	200	Genes B
Dataset C	150	Genes C
Dataset D	120	Genes D

(Note: Table continued on next page.)
Table 1 Summary of those 14 genome-wide gene expression datasets involving UC patients

Gene Expression Omnibus Series (GSE) number	Samples (UC patients/controls)	Source types	Gene Expression Omnibus Platform (GPL)	Data file type	PMID
GSE9452	8 / 5	colonic biopsies	GPL570	Raw data(.CEL)	19177426
GSE10714	3 / 3	colonic biopsies	GPL570	Raw data(.CEL)	20087348
GSE13367	16 / 20	colonic biopsies	GPL570	Raw data(.CEL)	19834973
GSE14580	24 / 6	colonic biopsies	GPL570	Raw data(.CEL)	19700435
GSE22619	10 / 10	sigmoid colon	GPL570	Raw data(.CEL)	21621540
GSE36807	15 / 7	colon pinch biopsies	GPL570	Raw data(.CEL)	24155895
GSE38713	22 / 13	colonic biopsies	GPL570	Raw data(.CEL)	23135761
GSE47908	45 / 15	colonic biopsies	GPL570	Raw data(.CEL)	25358065
GSE73661	67 / 12	colonic biopsies	GPL6244	Raw data(.CEL)	27802155
GSE59071	74 / 11	colonic biopsies	GPL6244	Raw data(.CEL)	26313692
GSE48958	7 / 8	colonic biopsies	GPL6244	Raw data(.CEL)	25546151
GSE6731	5 / 4	Cecum, Sigmoid, Rectum colon	GPL8300	Raw data(.CEL)	17262812
GSE53306	16 / 12	Colon tissue	GPL14951	Matrix File (non-normalized.txt)	26034135
GSE65114	16 / 12	colonic biopsies	GPL16686	Raw data(.CEL)	NULL
Table 2 Pathway and Process Enrichment Analysis of those functional coexpression modules in UC
Table 2 Pathway and Process Enrichment Analysis of those functional coexpression modules in UC

Modules	GO	Category	Description	Count	%	Log10(P)	Log10(q)
Blue	GO:0030198	GO Biological Processes	extracellular matrix organization	121	7.05	-49.41	-45.10
module	GO:0046649	GO Biological Processes	lymphocyte activation	177	10.31	-48.76	-44.75
	GO:0048514	GO Biological Processes	blood vessel morphogenesis	166	9.67	-45.01	-41.40
	GO:0050900	GO Biological Processes	leukocyte migration	123	7.16	-35.59	-32.42
	GO:0006954	GO Biological Processes	inflammatory response	152	8.85	-29.70	-26.66
	GO:0001816	GO Biological Processes	cytokine production	143	8.33	-28.99	-25.98
	GO:0019221	GO Biological Processes	cytokine-mediated signaling pathway	145	8.44	-27.99	-25.04
	GO:0009611	GO Biological Processes	response to wounding	132	7.69	-25.97	-23.19
	R-HSA-109582	Reactome Gene Sets	Hemostasis	126	7.34	-25.06	-22.31
	GO:0002250	GO Biological Processes	adaptive immune response	121	7.05	-23.43	-20.72
Salmon	R-HSA-913531	Reactome Gene Sets	Interferon Signaling	39	31.71	-50.63	-46.32
module	GO:0051607	GO Biological Processes	defense response to virus	30	24.39	-32.91	-29.64
	hsa05168	KEGG Pathway	Herpes simplex infection	21	17.07	-21.50	-18.36
	GO:0001817	GO Biological Processes	regulation of cytokine production	29	23.58	-18.62	-15.55
	R-HSA-1280218	Reactome Gene Sets	Adaptive Immune System	29	23.58	-16.47	-13.54
	GO:0060759	GO Biological Processes	regulation of response to cytokine stimulus	16	13.01	-15.40	-12.52
	GO:0045088	GO Biological Processes	regulation of innate immune response	17	13.82	-11.07	-8.37
	hsa04621	KEGG Pathway	NOD-like receptor signaling pathway	12	9.76	-9.95	-7.35
	GO:0035455	GO Biological Processes	response to interferon-alpha	6	4.88	-9.15	-6.62
	GO:0019883	GO Biological Processes	antigen processing and presentation of endogenous antigen	6	4.88	-9.01	-6.49
Green	R-HSA-1640170	Reactome Gene Sets	Cell Cycle	100	35.46	-82.79	-78.48

GO:0044770	GO Biological Processes	cell cycle phase transition	65	23.05	-44.07	-40.36
GO:0051301	GO Biological Processes	cell division	66	23.40	-43.83	-40.22
GO:0006281	GO Biological Processes	DNA repair	53	18.79	-31.28	-28.20
GO:0045787	GO Biological Processes	positive regulation of cell cycle	40	14.18	-24.29	-21.50
GO:0051983	GO Biological Processes	regulation of chromosome segregation	24	8.51	-23.76	-21.00
GO:0051321	GO Biological Processes	meiotic cell cycle	30	10.64	-20.87	-18.24
GO:0045786	GO Biological Processes	negative regulation of cell cycle	43	15.25	-20.64	-18.02
GO:0071103	GO Biological Processes	DNA conformation change	30	10.64	-19.39	-16.81
GO:1990778	GO Biological Processes	protein localization to cell periphery	16	7.66	-8.45	-4.38
GO:0002446	GO Biological Processes	neutrophil mediated immunity	19	9.09	-6.86	-3.29
GO:0030029	GO Biological Processes	actin filament-based process	23	11.00	-6.76	-3.29
R-HSA-9006934	Reactome Gene Sets	Signaling by Receptor Tyrosine Kinases	18	8.61	-6.76	-3.29
hsa04141	KEGG Pathway	Protein processing in endoplasmic reticulum	10	4.78	-5.56	-2.59
GO:0071407	GO Biological Processes	cellular response to organic cyclic compound	18	8.61	-5.30	-2.38
GO:1903829	GO Biological Processes	positive regulation of cellular protein localization	13	6.22	-5.28	-2.38
hsa05200	KEGG Pathway	Pathways in cancer	14	6.70	-4.83	-2.02
GO:0033120	GO Biological Processes	positive regulation of RNA splicing	5	2.39	-4.77	-1.98
hsa04810	KEGG Pathway	Regulation of actin cytoskeleton	10	4.78	-4.63	-1.88
GO:0002274	GO Biological Processes	myeloid leukocyte activation	55	35.26	-45.62	-41.31
GO:0006954	GO Biological Processes	inflammatory response	50	32.05	-35.05	-31.69
GO:0009617	GO Biological Processes	response to bacterium	40	25.64	-28.23	-25.09
GO:0001816	GO Biological Processes	cytokine production	42	26.92	-27.52	-24.41
ID	Type	Description	Count	Min	Mean	Max
R-HSA-449147	Reactome Gene Sets	Signaling by Interleukins	33	21.15	-23.78	-20.76
GO:0097529	GO Biological Processes	myeloid leukocyte migration	24	15.38	-22.95	-19.96
hsa04380	KEGG Pathway	Osteoclast differentiation	19	12.18	-19.58	-16.80
GO:0030099	GO Biological Processes	myeloid cell differentiation	22	14.10	-13.46	-10.91
hsa04657	KEGG Pathway	IL-17 signaling pathway	13	8.33	-13.26	-10.73
R-HSA-6785807	Reactome Gene Sets	Interleukin-4 and Interleukin-13 signaling	13	8.33	-12.40	-9.89
GO:0055086	GO Biological Processes	nucleobase-containing small molecule metabolic process	128	9.23	-27.65	-23.33
GO:0044282	GO Biological Processes	small molecule catabolic process	89	6.42	-24.66	-21.35
hsa00280	KEGG Pathway	Valine, leucine and isoleucine degradation	25	1.80	-17.79	-14.86
GO:0090407	GO Biological Processes	organophosphate biosynthetic process	100	7.21	-17.71	-14.80
hsa00071	KEGG Pathway	Fatty acid degradation	21	1.51	-14.05	-11.23
hsa01200	KEGG Pathway	Carbon metabolism	32	2.31	-13.09	-10.39
GO:0033865	GO Biological Processes	nucleoside bisphosphate metabolic process	35	2.52	-12.91	-10.25
hsa04146	KEGG Pathway	Peroxisome	26	1.87	-11.98	-9.35
GO:0005975	GO Biological Processes	carbohydrate metabolic process	79	5.70	-11.64	-9.04
GO:0008610	GO Biological Processes	lipid biosynthetic process	87	6.27	-10.22	-7.69
GO:0006954	GO Biological Processes	inflammatory response	19	20.0	-9.68	-5.37
GO:0006959	GO Biological Processes	humoral immune response	13	13.68	-8.73	-4.78
GO:0002366	GO Biological Processes	leukocyte activation involved in immune response	17	17.89	-8.52	-4.78
GO:0050878	GO Biological Processes	regulation of body fluid levels	12	12.63	-6.04	-3.05
GO:0030162	GO Biological Processes	regulation of proteolysis	14	14.74	-5.47	-2.56
GO:0045785	GO Biological Processes	positive regulation of cell adhesion	10	10.53	-5.39	-2.51
R-HSA-6785807	Reactome Gene Sets	Interleukin-4 and Interleukin-13 signaling	6	6.32	-5.27	-2.42
----------------	---------------------	--	---	------	-------	-------
GO:0010817	GO Biological Processes	regulation of hormone levels	11	11.58	-5.10	-2.31
GO:0045766	GO Biological Processes	positive regulation of angiogenesis	7	7.37	-4.74	-2.06
GO:0001666	GO Biological Processes	response to hypoxia	8	8.42	-4.41	-1.81

‘Count’ is the number of genes contained in enriched pathway. ‘%’ is the proportion of the total number of genes in each module. ‘Log10(P)’ is the p-value in log base 10. ‘Log10(q)’ is the multi-test adjusted p-value in log base 10.
Figure 1

Figure 1 Top 50 up-regulated and top 50 down-regulated genes in UC.

The vertical axis shows the gene symbols and the horizontal axis represents dataset or merged datasets from same platform. Yellow indicates decreased expression (logFC < 0) and purple indicates increased expression (logFC > 0), the darker the color, the greater the difference; numbers in the figure show the logFC of DEGs, which was calculated by the limma package of R.
Figure 2

Figure 2 Heat map of the FPKM of the top 100 DEGs from GPL570 samples.

The vertical axis lists the gene symbols and the horizontal axis shows the sample grouping, with orange representing the UC group and blue representing the control group. The gradual change in color from green to red in the heat map shows a gradual increase in FPKM of genes. The heat map can roughly distinguish the UC group from the control group.
Figure 3

Figure 3 Plots in the WGCNA analysis using gene expressions in 328 UC patients and 138 controls from GPL570 datasets.

(A) Displayed the influence of soft-threshold power on scale-free topology fit index. (B) Showed the influence of soft-threshold power on the mean connectivity. (C) Cluster dendrogram of coexpression genes and functional modules in UC. More than 15 modules were identified by Dynamic Tree Cutting method with a medium sensitivity (minModuleSize=30, deepSplit=2) to branch splitting. Merged Dynamic shows the 7 functional modules obtained by merging similar modules in Dynamic Tree Cut (Height>0.3). (D) The construction of co-expression modules by WGCNA. Each module was assigned a unique color identifier. The progressively saturated red colors indicated the higher overlap among these functional modules.
Manuscript to be reviewed