Case Study

Low-level laser therapy for the treatment of superficial thrombophlebitis after chemotherapy in breast cancer patients: a case study

WOON TAEK HWANG, BS, PT1), SIN HO CHUNG, PhD, PT3), HYUNHEE KIM, PhD, PT2)

1) Department of Physical Medicine and Rehabilitation Medicine, Hanyang University Medical Center: 222-1 Wangsimni-ro, Seongdong-gu, Seoul 133-792, Republic of Korea
2) Department of Physical Therapy, Shinsung University: 1 Daehack-ro, Jeongmi-myeon, Dangjin-si, Chungcheongnam-do, Republic of Korea

Abstract. [Purpose] We report the case of a breast cancer patient with superficial thrombophlebitis treated with low-level laser therapy. [Case] The patient was a 66-year-old woman who developed superficial thrombophlebitis in the left upper limb after chemotherapy. She was administered 6 sessions of low-level laser therapy. [Result] Her pain score decreased by 8 points. Her scores on the Patient and Observer scar Assessment Scale decreased by 18 points for the observer portion and by 26 points for the patient portion. [Conclusion] Low-level laser therapy is effective for the reduction of pain and the size of scar tissue in patients with superficial thrombophlebitis.

Key words: Superficial thrombophlebitis, Low-level laser therapy, Pain

INTRODUCTION

Superficial thrombophlebitis (ST) refers to an inflammatory alteration or infection in the wall of the superficial vein and is characterized by a progressive blood clot formation. The symptoms of ST are severe pain, skin erythema, hot flush, local edema, thickening, and painful tendon cords along the invaded vein1, 2). The main cause of ST is intubation of the vein3), vasospasm and pain are induced by anti-cancer agents4). Injection of anti-cancer agents through an intravenous lock results in blood vascular side effects, including thrombophlebitis5). Regarding the treatment for ST, medicinal therapy is chiefly used, whereas mild exercise, such as walking, is recommended. For alleviation of pain and symptoms, hot packs and compression using a bandage or stocking are often applied3).

Because low-level laser therapy (LLLT) has stimulating effects on the body, it is effective for the stimulation of blood circulation, for the expansion of blood vessels, as an inflammatory reaction therapy, scar healing5, 6), and for pain reduction in inflammatory diseases7, 8). Although no previous studies have been explored the effects of physiotherapy on ST, LLLT has been proved effective for the treatment of inflammatory diseases that are similar to ST. Here, we report the effects of LLLT on ST after injection of an anti-cancer in a patient with breast cancer.

CASE REPORT

A 66-year-old woman underwent right mastectomy at H hospital on July 29, 2014. She developed ST after chemotherapy (CTx) was performed on the left accessory cephalic vein in September 2014. She did not receive any specific therapy for ST until January 2015. The patient showed understanding of the study purpose and provided written informed consent. The study was performed in accordance with the ethical principles of the Declaration of Helsinki. The patient visited the physiotherapy department on January 27, 2015. The level of pain, scar tissue, and circumference of the scar tissue were evaluated; furthermore, a bioimpedence analysis (BIA) of the ST site was performed. Pain was assessed using the Visual Analog Scale (VAS), and the pain score was 8. The scar tissue was assessed using the Patient and Observer Scar Assessment Scale (POSAS), and a score of 51 was obtained for the observer portion and a score of 48 was obtained for the patient portion. The circumference measurements were obtained using a tapeline; axillary, 10 cm above the elbow, at the elbow, 10 cm below the elbow, at the wrist, and at the palm9). The measurements at the above mentioned sites were 27, 24, 21, 18, 14.5 and 18 cm, respectively, in the left upper limb, and 21 cm at the center of the ST site.

Regarding the BIA, the amount of moisture and moisture percentage were measured using Inbody S10 (Biospace, Seoul, Korea). The amount of moisture was 1,090 mL and the moisture percentage was 0.384% in the left upper limb. The patient received LLLT twice during the hospitalization (January 27 and 28). LLLT enabled vertical examination of the ST spot by using SUPER LIZER HA-2200 (Tokyo...
and in the results of BIA among the revaluations, ST was to the follow-up evaluation on June 10. Considering that no thought have an impact on edema.

The circumference measurements and the BIA results did not differ significantly among the revaluations. In particular, the effects of LLLT on the level of pain and scar tissue persisted up to the follow-up evaluation on June 10. Considering that no difference was observed in the circumference measurements and in the results of BIA among the revaluations, ST was thought not have an impact on edema.

We examined the effects of LLLT on ST in a breast cancer patient after therapy with an anti-cancer agent. LLLT decreased the pain score by 8 points; the observer portion of the POSAS, by 18 points in the scar tissue; and the patient portion of the POSAS, by 26 in the scar tissue. Circumference measurements and the BIA results did not differ significantly among the revaluations. In particular, the effects of LLLT on the level of pain and scar tissue persisted up to the follow-up evaluation on June 10. Considering that no difference was observed in the circumference measurements and in the results of BIA among the revaluations, ST was thought not have an impact on edema.

No direct previous studies have explored the effects of LLLT on ST. However, on examination of the previous literature on the effects of LLLT on inflammatory disease, we found a report by Jastiifer et al. 7 that showed pain reduction after application of LLLT to patients with plantar fasciitis. Furthermore, Eslamian et al. 8 reported significant pain reduction, with the VAS score decreasing from 7,28 (0–10) to 3.12 after implementation of traditional physiotherapy and LLLT for patients with rotator cuff tendinitis. In this study, LLLT also reduced the level of pain although our patient presented with a different inflammatory disease, i.e., ST. Moreover, although no researcher has explored the effects of LLLT on scar tissue due to ST, Dirican et al. 10 examined the impact of LLLT on the scar tissues of patients with breast cancer and showed that the of POSAS scores decreased in 76.4% of the research subjects. Moreover, LLLT has been thought to have similar effects on scar tissue due to ST. Although a clear mechanism is not clarified yet, factors such as mitochondria activation, adenosine triphosphate synthesis, protein synthesis stimulation, pH control inside and outside of a cell, and cell metabolism activation 11 could have affected the results.

Here, we report the individual therapy results of a single ST patient. Because this study included only 1 case without a control group, the correlation between LLLT therapy and ST was not clearly investigated. Moreover, even though the scar tissue in ST was evaluated using POSAS, the evaluation method is not yet standardized. In the current situation, where specific research on physiotherapy for patients with ST is scarce, we experienced that LLLT was helpful for the reduction of pain and scar tissue. Confirmation of the sustained effects of LLLT on ST in a follow-up 5 months after the patient’s first examination was particularly meaningful. Although the present study included only 1 case, we believe that it will open the doors for future large-scale studies on this topic; moreover, this study yielded positive research results.

REFERENCES

1) Cesareo MR, Belcario G, Aquino G, et al.: Management of superficial vein thrombosis and thrombophlebitis: status and expert opinion document. Angiology, 2007, 58: 78–145, discussion 145–155. [Medline] [CrossRef]
2) Di Nisco M, Wickevich FM, Middeldorp S.: Treatment for superficial thrombophlebitis of the leg. Cochrane Database Syst Rev, 2013, 4: CD004982. [Medline]
3) Eisenberg S: Intravenous drug compatibility: a challenge for the oncology nurse. Oncol Nurs Forum, 1997, 24: 859–869. [Medline] [CrossRef]
4) Dorr RT: Infradusen drug compatibility: a challenge for the oncology nurse. Oncol Nurs Forum, 1997, 24: 859–869. [Medline] [CrossRef]
5) Maegawa Y, Itoh T, Hosokawa T, et al.: Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med, 2000, 27: 427–437. [Medline] [CrossRef]
6) Sakurai Y, Yamaguchi M, Akiho Y: Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci, 2000, 108: 29–34. [Medline] [CrossRef]
7) Jastiifer JR, Catena F, Doty JF, et al.: Low-level laser therapy for the treatment of chronic plantar fasciitis: a prospective study. Foot Ankle Int, 2014, 35: 566–571. [Medline] [CrossRef]
8) Eslamian F, Shakouri SK, Ghojazadeh M, et al.: Effects of low-level laser therapy in combination with physiotherapy in the management of rotator cuff tendinitis. Lasers Med Sci, 2012, 27: 951–958. [Medline] [CrossRef]
9) Hwang WT, Chang SH, Lee J: Complex decongestive physical therapy and low-level laser therapy for the treatment of pediatric congenital lymphedema: a case report. J Phys Ther Sci, 2015, 27: 2021–2022. [Medline] [CrossRef]
10) Dirican A, Andacaglo O, Johnson R, et al.: The short-term effects of low-level laser therapy in the management of breast-cancer-related lymphedema. Support Care Cancer, 2011, 19: 685–690. [Medline] [CrossRef]
11) Parekh SG, Trauner KB, Zarins B, et al.: Photodynamic modulation of wound healing with BPD-MA and CASP. Lasers Surg Med, 1999, 24: 375–381. [Medline] [CrossRef]