Results of the WMT16 Tuning Shared Task

Bushra Jawaid
Amir Kamran
Miloš Stojanović
Ondřej Bojar

1ILLC, University of Amsterdam
2MFF UFAL, Charles University in Prague

WMT16, Aug 11, 2016
Overview

• Summary of Tuning Task

• Updates in 2016 edition

• Results
Tuning Task

\[\hat{t} = \arg\max_{t \in T(s)} \lambda \phi(s, t) \]
Tuning Task

\[\hat{t} = \arg\max_{t \in T(s)} \lambda \phi(s, t) \]
Tuning Task

\[\hat{t} = \arg \max_{t \in T(s)} \lambda \phi(s, t) \]
Tuning Task

\[\hat{t} = \arg\max_{t \in T(s)} \lambda \phi(s, t) \]
Tuning Task

\[\hat{t} = \arg \max_{t \in T(s)} \lambda \phi(s, t) \]

So many things to choose in tuning:
Tuning Task

\[
\hat{t} = \underset{t \in T(s)}{\text{argmax}} \lambda \phi(s, t)
\]

So many things to choose in tuning:

- Metric
- Algorithm
- Data
- Features
- ...
Tuning Task

\[
\hat{t} = \arg\max_{t \in T(s)} \lambda\phi(s, t)
\]

So many things to choose in tuning:

- Metric
- Algorithm
- Data
- Features
- ...

This task is organized to explore the tuning options in a controlled settings
System for Tuning

- Moses phrase-based models trained both for English-Czech and Czech-English.
System for Tuning

- Moses phrase-based models trained both for English-Czech and Czech-English.

- This year we used large dataset to train the models and aligned the data using fast-align.
System for Tuning

- Moses phrase-based models trained both for English-Czech and Czech-English.

- This year we used large dataset to train the models and aligned the data using fast-align.

- In constrained version 2.5K sentence pairs were available for tuning.
System for Tuning

• Moses phrase-based models trained both for English-Czech and Czech-English.

• This year we used large dataset to train the models and aligned the data using fast-align.

• In constrained version 2.5K sentence pairs were available for tuning.

• Constrained version allowed only dense features.
System for Tuning

- Moses phrase-based models trained both for English-Czech and Czech-English.
- This year we used large dataset to train the models and aligned the data using fast-align.
- In constrained version 2.5K sentence pairs were available for tuning.
- Constrained version allowed only dense features.
- Any tuning algorithm or metric tuning was allowed (even manually setting weights)
Data used for training

Source	Sentences	Tokens	Types
LM Corpora			
Europarl v7, News Commentary v11, News Crawl (2007-15), News Discussion v1	54M	900M	2.1M
	206M	4409M	3.2M
TM Corpora			
CzEng 1.6 pre for WMT16	44M	501M	1.8M
		20.8M	1.2M
Dev Set			
newstest2015	2656	51K	19K
		60K	13K
Test Set			
newstest2016	2999	56.9K	15.1K
		65.3K	8.8K
Data used for training

Comparison of data sizes (# of sentence pairs) 2015 vs 2016
Participants

- From 6 research groups we received, 4 submissions for Czech-English, 8 submissions for English-Czech
- 2 Baselines

System	Participant
bleu-MIRA, bleu-MERT	Baselines
AFRL	United States Air Force Research Laboratory
DCU	Dublin City University
FJFI-PSO	Czech Technical University in Prague
ILLC-UvA-BEER	ILLC – University of Amsterdam
NRC-MEANT, NRC-NNBLEU	National Research Council Canada
USAAR	Saarland University
Czech-English Results

System Name	True Skill Score	BLEU
BLEU-MIRA	0.114	22.73
AFRL	0.095	22.90
NRC-NNBLEU	0.090	23.10
NRC-MEANT	0.073	22.60
ILLC-UvA-BEER	0.032	22.46
BLEU-MERT	0.000	22.51
Czech-English Results

System Name	True Skill Score	BLEU
BLEU-MIRA	0.114	22.73
AFRL	0.095	22.90
NRC-NNBLEU	0.090	23.10
NRC-MEANT	0.073	22.60
ILLC-UvA-BEER	0.032	22.46
BLEU-MERT	0.000	22.51

- Manual evaluation of tuning systems can draw only very few clear division lines.
Czech-English Results

System Name	True Skill Score	BLEU
BLEU-MIRA	0.114	22.73
AFRL	0.095	22.90
NRC-NNBLEU	0.090	23.10
NRC-MEANT	0.073	22.60
ILLC-UvA-BEER	0.032	22.46
BLEU-MERT	0.000	22.51

- Manual evaluation of tuning systems can draw only very few clear division lines.
- KBMIRA turns out to consistently be better than MERT.
English-Czech Results

System Name	True Skill Score	BLEU
BLEU-MIRA	0.160	15.12
ILLC-UvA-BEER	0.152	14.69
BLEU-MERT	0.151	14.93
AFRL2	0.139	14.84
AFRL1	0.136	15.02
DCU	0.134	14.34
FJFI-PSO	0.127	14.68
USAAR-HMM-MERT	-0.433	7.95
USAAR-HMM-MIRA	-1.133	0.82
USAAR-HMM	-1.327	0.20
Comparison with main translation task

#	score	range	system
1	0.62	1	UEDIN-NMT
2	0.32	2	JHU-PBMT
3	0.21	3	ONLINE-B
4	0.11	4-6	TT-BLEU-MIRA
	0.10	4-7	TT-AFRL
	0.09	4-7	TT-NRC-NNBLEU
	0.07	5-8	TT-NRC-MEANT
	0.03	7-10	TT-BEER-PRO
	0.00	8-10	PJATK
	0.00	8-10	TT-BLEU-MERT
5	-0.07	11	ONLINE-A
6	-1.48	12	CU-MRGTREES

#	score	range	system
1	0.619	1	ONLINE-B
2	0.574	2	UEDIN-JHU
3	0.532	3-4	UEDIN-SYNTAX
	0.518	3-4	MONTREAL
4	0.436	5	ONLINE-A
5	-0.125	6	CU-TECTO
6	-0.182	7-9	TT-BLEU-MIRA-D
	-0.189	7-10	TT-ILLC-UVA
	-0.196	7-11	TT-BLEU-MERT
	-0.210	8-11	TT-AFRL
	-0.220	9-11	TT-USAAR-TUNA
7	-0.263	12-13	TT-DCU
	-0.297	13-15	TT-METEOR-CMU
	-0.320	13-15	TT-BLEU-MIRA-SP
	-0.320	13-15	TT-HKUST-MEANT
	-0.358	15-16	ILLINOIS
Comparison with main translation task

English–Czech

#	score	range	system
1	0.59	1	UEDIN-NMT
2	0.43	2	NYU-MONTREAL
3	0.34	3	JHU-PBMT
4	0.30	4-5	CU-CHIMERA
	0.30	4-5	CU-TAMCHYNA
5	0.22	6-7	UEDIN-CU-SYTX
	0.19	6-7	ONLINE-B
6	0.16	8-11	TT-BLEU-MIRA
	0.15	8-12	TT-BEER-PRO
	0.15	8-13	TT-BLEU-MERT
	0.14	9-14	TT-AFRL2
	0.14	9-14	TT-AFRL1
	0.13	9-14	TT-DCU
	0.13	11-14	TT-FJFI
7	0.08	15	ONLINE-A
8	-0.03	16	CU-TECTOTMT
9	-0.43	17	TT-USAAR-HMM-MERT
10	-0.54	18	CU-MRGTREES
11	-1.13	19	TT-USAAR-HMM-MIRA
12	-1.33	20	TT-USAAR-HARM

English–Czech

#	score	range	system
1	0.686	1	CU-CHIMERA
2	0.515	2-3	ONLINE-B
	0.503	2-3	UEDIN-JHU
3	0.467	4	MONTREAL
4	0.426	5	ONLINE-A
5	0.261	6	UEDIN-SYNTAX
6	0.209	7	CU-TECTO
7	0.114	8	COMMERCIAL1
8	-0.342	9-11	TT-DCU
	-0.342	9-11	TT-AFRL
	-0.346	9-11	TT-BLEU-MIRA-D
9	-0.373	12	TT-USAAR-TUNA
10	-0.406	13	TT-BLEU-MERT
11	-0.563	14	TT-METEOR-CMU
12	-0.808	15	TT-BLEU-MIRA-SP
Conclusion

• The task was much larger this year.

• Task attracted good participation like last year.

• The quality of most submitted systems is hard to distinguish manually.

• With large models, the few parameters are most likely not powerful enough (and sadly nobody tried discriminative features).

• The results confirm that KBMIRA with the standard features optimized towards BLEU should be preferred over MERT.