Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation

Santiago Cuevas1 · Van Anthony M. Villar2 · Pedro A. Jose2

Received: 19 October 2017 / Revised: 19 October 2018 / Accepted: 21 December 2018 / Published online: 6 February 2019
© Springer Nature Limited 2019

Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.

Introduction
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure [1], but the prevention and treatment of hypertension are still a challenge [2–4]. According to the 2017 High Blood Pressure Clinical Practice Guidelines, in adults (≥20 years of age), a “doctor’s office” reading of 120–129 mmHg for systolic blood pressure (SBP) even with <80 mmHg for diastolic blood pressure (DBP), is considered as elevated BP [2, 3]. An SBP of 130–139 mmHg or a DBP of 80–89 mmHg is now considered as Stage 1 hypertension, while the previous definition of hypertension ≥140 mmHg SBP or ≥90 mmHg DBP is now considered as Stage 2 hypertension. In the general population, only about 50% of treated patients achieve adequate blood pressure control [2, 4]. The poor efficacy of hypertension treatment and the inter-individual variations in the response to antihypertensive medications have many causes, including non-compliance, but genetic variations could be important contributory factors [4, 5].

Reactive oxygen species (ROS) are inevitable by-products of aerobic existence [6]. Disturbance in the normal redox state of cells, either due to the overproduction of ROS or low production of antioxidants, can lead to oxidative stress and specific types of oxygen radicals, such as superoxide anion, hydrogen peroxide (H2O2), and hydroxyl radical, may damage all components of the cell, including proteins, lipids, and DNA [7, 8].

The deleterious effects of ROS and their role in the pathogenesis of hypertension have been extensively demonstrated in experimental models [8–10], but the benefits of antioxidant drug treatment in human hypertension are not clear [8, 10–12]. This may be related to the fact that ROS are not always harmful; ROS are able to regulate the activity of cellular signaling pathways such as Ca2+ signaling [13, 14], and are involved in the regulation of several cell functions such as phenotypic modulation, migration and adhesion, vascular tone, apoptosis, and sodium reabsorption between others [13–18]. The oxidative environment in the cell influences gene transcription, post-transcription, translation, and post-translation of proteins. Modifications of the oxidative status may eventually regulate the expression and activity of many proteins such as nuclear factor-κB, Nrf2, p38 mitogen-activated protein kinase, NH(2)-terminal Jun kinases/stress-activated protein kinases, hexosamines, and

*Santiago Cuevas
scuevas@childrensnational.org

1 Center for Translational Science, Children’s National Health System, 111 Michigan Avenue, NW, Washington, DC 20010, USA

2 Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC 20052, USA
others [13, 19–27], evidencing that ROS may be essential for the normal function of cells and biological systems.

Pharmacogenomics aims to individualize therapy based on the individual’s genetic profile. There are numerous endogenous oxidants and antioxidant proteins (Fig. 1) in different organs, including the kidney, brain, and cardiovascular system, that keep a normal redox balance in the body. Genetic polymorphisms that affect the expression and activity of some of these pro-oxidant or antioxidant genes are associated with human hypertension (Table 1). These polymorphisms could influence the response to anti-hypertensive drugs, that is, pharmacogenomics. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of anti-hypertensive drugs.

Mechanisms by which ROS regulate blood pressure

The role of oxidative stress in hypertension has been extensively studied and several mechanisms have been described by which ROS regulate blood pressure (Fig. 1).

Endothelial damage

ROS cause endothelial dysfunction in blood vessels, including renal afferent arterioles and enhance the renal arteriolar vasoconstrictor response to angiotensin II [9, 10, 12, 13, 22]. Some of the benefits of superoxide scavengers in hypertension are caused by enhancement of vasodilation and an increase in renal arterial perfusion [23].

Stiffening of vessels

Recent studies in humans have shown that aortic stiffening precedes the development of hypertension [24]. Mice with smooth muscle overexpression of p22phox, a component of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase, develop renal inflammation, fibrosis, and renal dysfunction, prior to the increase in blood pressure, supporting the notion that arterial stiffening induced by oxidative stress and inflammation causes hypertension [25].

Glomerular damage

Glomerulonephritis without renal insufficiency can be associated with hypertension [26]. ROS can produce glomerular injury by damaging the podocytes, as has been described in Dahl salt-sensitive hypertensive rats [27]. The antioxidant tempol reduces glomerular sclerosis and proteinuria in these animals, supporting a role of ROS in the glomerular injury in Dahl salt-sensitive rats [28].

Renin–angiotensin system

The development and progression of hypertension due to increased production of ROS have been related to renal vasoconstriction caused by an increase in renal afferent nerve activity and myogenic response and secretion of vasoconstrictor hormones, such as angiotensin II, endothelin-1 (ET-1), and thromboxane [29]. Angiotensin II increases ROS production, inflammation, and renal tubular ion and water transport, and decreases dopamine receptor expression and function, resulting in hypertension [4, 5, 8, 15–17, 29–34]. Increasing oxidative stress is one mechanism by which angiotensin II causes renal dysfunction and tissue damage [1, 9, 10, 12, 13, 22, 23, 31–38].

NaCl retention

ROS can regulate ion transport [16–18, 23, 35–63]. Superoxide, produced by NADPH oxidase (NOX), enhances NaCl transport in the renal proximal tubule [16, 17, 39, 44, 45, 58], thick ascending limb of Henle [41, 46, 48], and collecting duct [18, 47, 48]. The voltage-gated proton channel participates in the increased production of superoxide in the renal outer medulla of Dahl salt-sensitive rats [46]. It should be born in mind, however, that ROS can inhibit Na+/K+-ATPase and NHE3 activity in the renal proximal tubule [17, 48, 50–52].

Inflammation

ROS activate pro-inflammatory transcription factors, such as nuclear factor-κB and activator protein-1 and
Genes associated with oxidative stress	Associated with hypertension in animal models	SNPs	Associated with hypertension in humans
Polymorphisms of pro-oxidant genes			
Activating transcription factor 1 (ATF1)	rs11169571	[72]	
Aminopeptidase-A (APA)	Aminopeptidase-A (stop), rs2290105	[83, 84]	
Angiotensinogen (AGT)	−6G > A, −20A > C, −152A > G, −217G > A, rs5050 M235T (rs699)	[77–82]	
Angiotensin II type 1 receptor (AGTR1)	rs5186 (1166A > C)	[83]	
Arachidonate 15-lipoxygenase (ALOX1)	rs261R > Q	[348]	
Cyclooxygenase-2 (COX2, PTGS2)	−765G > C, rs2143417	[87–90]	
DNA-binding factor NFkB			
Endothelin-I	rs5335 (70C > G), rs5370 (198G > T)	[104, 357]	
Hemojuvelin (HJV)	rs16827043, rs7536827	[105]	
Interleukin-6 (IL-6)	rs1800795 (−174G > C), rs1800796 (−572C > G)	[107–110]	
Interleukin-17A (IL-17A)	rs2275913 (G > A)	[112]	
Iron regulatory protein (HFE)	rs1799945 (63H > D)	[113]	
Leptin (LEP)	II/I tetra nucleotide repeat, rs799039(G2548A)	[116, 117]	
Leptin receptor (LEPR)	rs1137101 (223Q > R), rs1137100 (109K > R)	[116–118]	
Myeloperoxidase (MPO)	rs2333227 (−463G > A)	[119–123]	
NADPH oxidase p22phox (CYBA)	rs9932581 (930A > G), rs78935588 (640A > G)	[126–138]	
NADPH oxidase 1 (NOX1)			
NADPH oxidase 2 (NOX2)			
NADPH oxidase 4 (NOX4)			
Neutrophil cytosol factor 2 (NCF2)	rs12094228, rs16861188, and rs12066019	[147]	
Nitric oxide synthase 3 (NOS3)	894G > T (rs1799983)	[149, 150]	
RAC1	rs6967221	[151]	
Xanthine dehydrogenase/oxidase (XDH)	rs11904439, rs148756340	[239]	
Polymorphisms of antioxidant genes			
Catalase (CAT)	rs769214 (−844G > A), rs1001179 (−262C > T), −20C > T, rs769217	[153, 154, 156]	
Cystathione γ-lyase (CSE)	rs482843	[160]	
DJ-1 (PARK7)			
Dopamine 1 receptor (DRD1)	(−48A > G, −94G > A rs1799914, rs4867798)	[165–169]	
Dopamine 2 receptor (DRD2)	rs6276, rs6277, rs1800497	[170–175]	
Dopamine 3 receptor (DRD3)	rs9880168	[168]	
Dopamine 4 receptor (DRD4)	−521C > T, DRD4 long allele	[181–183]	
Dopamine 5 receptor (DRD5)	No associations published	[191, 192, 199]	
Fibroblast growth factor 5 (FGF5)	rs16998073	[194]	
Glutathione			
Glutathione peroxidase (GPX1, GPX3, GPX4)	rs713041 (718C > T) rs3828599	[194, 195]	
increase the expression of pro-inflammatory proteins [64]. ROS cause the activation, adhesion, and infiltration of inflammatory cells in tissues and organs, including the adipose tissue [8, 10, 65]. Immune cells, such as macrophages and granulocytes, release ROS to destroy engulfed bacterial or fungal pathogens and this could trigger oxidative stress [66, 67]. Vascular stretch is associated with hypertension that could be related to an increase in ROS production and inflammation [8, 10, 25, 68, 69].

Sympathetic nervous system

Renal ROS induce sympathetic activation in renovascular hypertension [70]: chronic antioxidant treatment reduces blood pressure in hypertension characterized by sympathoexcitation and renal oxidative stress [70]. Oxidative stress in the brain, specifically in the cardiovascular-regulating center, causes hypertension [71].

Genes associated with oxidative stress and blood pressure regulation

Table 1 lists the genes involved in redox balance that have been associated with hypertension. Table 1 also lists the single-nucleotide polymorphisms (SNPs) that are associated with human hypertension, as well as the genes associated with oxidative stress and hypertension in animal models [72–251].

Effects of antihypertensive drugs on oxidative stress

Table 2 lists the antioxidant drugs shown to reduce blood pressure in humans and animal models of hypertension [228, 252–326]. These antioxidants have different mechanisms of action and various combinations may have synergistic effects on the regulation of blood pressure. For example, the antihypertensive effect of the combination of zinc sulfate, ascorbic acid, α-tocopherol, and β-carotene

Genes associated with oxidative stress	Associated with hypertension in animal models	SNPs	Associated with hypertension in humans
Glutathione S-transferase Alpha 1 (GSTA1)	GSTA1*B allele GSTA1*B allele + GSTM1 null	[372]	
Glutathione S-transferase Mu 1 (GSTM1)	GSTM1 null GSTM1 + GSTT1 null	[197, 198, 201, 372]	
Glutathione S-transferase Mu 3 (GSTM3)	−63A > C	[202]	
Glutathione S-transferase Pi 1 (GSTP1)	A313	[200]	
Glutathione S-transferase Theta 1 (GSTT1)	GSTT1 null	[197]	
Heme oxygenase-1 (HO-1)	<27 GT repeats rs9607267	[205]	
Heme oxygenase-2 (HO-2)			
Kidney androgen-regulated protein (KAP)			
Methylene tetrahydrofolate reductase (MTHFR)	677C > T	[200, 210]	
Nuclear factor (erythroid-derived 2)-like 2, also known as NFE2L2 (NRF2)			
Paraoxonase 1 (PON1)	192Q > R, −108C > T	[211, 212]	
Paraoxonase 2 (PON2)			
Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-α)	482G > S, 482G > S + 1704A > G haplotype	[214–216]	
Sestrin 2 (SESN2)			
Superoxide dismutase 1 (Cu-Zn SOD)			
Superoxide dismutase 2 (Mn SOD)			
Superoxide dismutase 3 (EC SOD)	rs13306703 + rs2536512 + rs1799895	[189, 229]	
Thioredoxin (TXN)	rs2301241 (−793T > C)	[229]	
Thioredoxin interacting protein (TXNIP)			
Thioredoxin reductase (TXNRD2)			
Uncoupling protein 2 (UCP2)	−866 G/A	[238]	
Antioxidant	Species	Mechanism of action	References
---------------------	--------------------	---	------------
N-acetyl cysteine	Human, mouse, rat	Direct antioxidant, precursor of cysteine reduced glutathione, breaks disulfides	[242–246]
Apocynin	Mouse, rat	Prevents NADPH oxidase assembly	[247–251]
Allicin/Alin/S-allylcysteine (garlic)	Human	Reduces 8-hydroxy-2′deoxyguanosine, malondialdehyde, angiotensin II-generated ROS	[252–255]
L-Arginine	Human, mouse, rat	Substrate for NO production	[256–258]
Bardoxolone	Human, mouse, rat	Nrf2 inducer	[259, 260]
L-Carnitine	Human, mouse, rat	Key compound in the transport of long-chain fatty acids into mitochondria for β-oxidation	[261, 263–265]
Catechins			
Black tea (theaflavin-polyphenol)	Rat	Stimulates NO and H2S production, decreases endothelin-1 and angiotensin II	[266]
Green tea (polyphenols)	Human	Antioxidant, inhibits catechol-O-methyl transferase, NO release	[266–268]
Coenzyme Q10	Human, mouse, rat	Reduces mitochondrial superoxide production by increasing the efficiency of electron transfer from Complexes I and II down the mitochondrial electron transport chain	[269–272]
Curcumin	Human, mouse, rat	A herbal supplement used as a food additive with antioxidant properties at low concentrations, induces HO-1	[273–276]
Hemin	Mouse, rat	HO-1 inducer (can induce mitochondrial dysfunction)	[277–279]
Hesperidin	Human, rat	Free radical scavenger and enhancer of antioxidant pathways via ERK/Nrf2, inhibits RAS	[280–282]
α-Lipoic acid	Human, mouse, rat	Free radical scavenger and activator of antioxidant recycling	[283–285]
Melatonin	Human, rat	Free radical scavenger and up-regulator of antioxidant enzymes.	[286–289]
Quercetin	Human, mouse, rat	Free radical scavenger	[290–293, 417, 418]
Resveratrol	Human, mouse, rat	Activator of sirtuins and PGC-1α, involved in stress response, and Nrf2	[294, 295, 419]
Tempol	Human, mouse, rat	Redox-cycling nitroxide and SOD mimetic	[9, 16, 28, 29, 34, 296, 419]
Troxerutin	Mouse, rat	Flavonoid (hydroxyethylrutoside) with antioxidant properties	[297, 298]
Vitamin C	Human, mouse, rat	Free radical scavenger	[11, 299–305]
Vitamin D	Human, mouse, rat	Inhibits iron-dependent liposomal lipid peroxidation	[10, 306–318]
Vitamin E	Human, mouse, rat	Free radical scavenger, impairs ROS signaling	[11, 302, 319–322]
may be due to an increase in the bioavailability of NO [323]. By contrast, antioxidant drugs such as vitamin E, under certain conditions, can also increase the blood pressure in mice [324]. Vitamin E at doses greater than 150IU daily increases the risk of all-cause mortality in humans [325]. The combination of vitamin C and polyphenols has also been reported to increase blood pressure variability [228], and the antioxidant properties observed in vitro may not be observed in vivo [326]. The effect of chemicals on ROS production and blood pressure is complex and not easily predictable.

Pharmacogenomics of antioxidant drugs

Increased ROS production is involved in the pathogenesis of many [1, 5, 8, 17, 22, 23, 25, 28–44, 48, 56, 59, 61–63, 67, 70, 71, 85, 88, 91, 103, 137, 139–153, 161, 162, 172, 188, 196, 209, 213, 217, 218, 220–232, 235–243, 245–251, 261, 262, 269–272, 277–279, 294, 304, 327–329], but not all cases [231–233] of hypertension. Deletion of the gene that encodes thioredoxin reductase 2 increases ROS production, but blood pressure is actually decreased [234]. Nevertheless, genetic polymorphisms in pro-oxidant or antioxidant genes may affect the redox balance in the kidney, cardiovascular system, and brain (Fig. 1), among others. Therefore, genetic polymorphisms may be involved in the inter-individual variability of the effects of anti-hypertensive medications. Many genes involved in ROS production and their polymorphisms associated with hypertension have been identified (Table 1).

Polymorphisms in pro-oxidant genes

Angiotensinogen (AGT) is converted to angiotensin I by renin and angiotensin 1 to angiotensin II by angiotensin-converting enzyme (ACE); angiotensin II induces oxidative stress by stimulation of NOX activity [15, 22, 23, 29–31, 36, 37, 42, 47, 48, 55, 56]. Polymorphisms in AGT are associated with hypertension in humans [77–82]; a haplotype of human AGT gene containing −217A or −6G increases blood pressure in transgenic mice [75, 76].

The NOX family has seven members that are classified into three groups: group 1 is comprised of NOX1, NOX2, NOX3, NOX4; group 2 has NOX5 as the only member; and group 3 is comprised of DOUX1 and DOUX2 [48, 330]. Increased NOX activity is implicated in many disease states, including hypertension and renal disease [5, 10, 15, 23, 25, 29–32, 36, 47, 48, 55, 56, 72, 124–146, 330–341].

p22phox (CYBA, cytochrome B-245 α-chain) is a membrane-associated protein that plays a crucial role in the activation of NOX1, NOX2, NOX4 [48], and NOX5 [331]. Mutations of CYBA lead to autosomal recessive forms of chronic granulomatous disease [332]. Germline deletion of CYBA in mice [333] or silencing of CYBA in Sprague-Dawley rats does not affect basal blood pressure, but ameliorates angiotensin II-induced hypertension [124, 125]. However, smooth muscle-specific overexpression of p22phox in mice increases blood pressure that is normalized in the offspring of dams crossed with Rag1−/− mice [25]. Polymorphisms in the CYBA promoter in the spontaneously hypertensive rat increase the gene expression of CYBA [334]. Several polymorphisms of CYBA that could affect the production of ROS have also been reported in humans [332]. Some other CYBA gene variants are associated with decreased NOX2-dependent ROS generation, but their association with blood pressure has not been studied [127]. Other CYBA gene variants are associated with increased ROS production and hypertension in several ethnic groups [128–130, 133–135, 335]. However, although CYBA 242C >T is associated with endothelial dysfunction, it is not associated with hypertension in an Asian-Indian population [336]. A meta-analysis found no association of CYBA 242C >T with hypertension [133]. CYBA 242C >T may be protective of coronary artery disease in an Asian population [131], but increases the risk of diabetes mellitus [132]. In an Asian-Indian population, the haplotypes rs8854A/rs9932581G/rs4873C and rs8854G/rs9932581G/rs4873C are positively associated with increased blood pressure and oxidative stress while the haplotype rs8854G/rs9932581A/rs4873T is inversely correlated with blood pressure and oxidative stress [337].

NOX5 gene, which is present in humans but not rodents, is expressed to a greater degree than the other isoforms in renal proximal tubule cells from hypertensive humans [338]. Certain NOX5 SNPs have been reported to be associated with decreased (NOX5 77M > K) activity and ROS production [339]. However, mice with podocyte-specific human NOX5 expression develop renal disease and high blood pressure [340]. Genes that interact with NOXs have polymorphisms that may also be associated with increased ROS production and hypertension. For example, a polymorphism in the 3′-untranslated region (rs11169571 [T > C]) of the activating transcription factor 1 (ATF) may be involved in essential hypertension by induction of NOX1 and increase in ROS production [72].

The minor T allele of rs6967221 in RAC1, one of the cytosolic components of NOX1, NOX2, and NOX3, is associated with a decreased SBP response to high sodium intake [151].

ET-1 is a potent vasoconstrictor that can increase ROS production by stimulation of NOX activity [341]. A polymorphism of type A endothelin-1 receptor (rs5335, 70C > G) is associated with increased night-time blood pressure [104]. Polymorphism at rs9349379 in PHACTR1, a distal regulator of EDN1, is associated with a lower risk of hypertension [342].
Myeloperoxidase (MPO) produces hypochlorous acid and chloride anion (or equivalent) from H₂O₂ during the neutrophil’s respiratory burst. MPO released during chronic inflammation produces tissue damage and high MPO levels may exacerbate diseases associated with atherosclerosis. However, MPO-deficient mice unexpectedly have increased atherosclerosis, relative to their wild-type littermates [343], indicating that the role of MPO in cardiovascular disease is still unclear or that this murine model may not reflect human disease. The −463G > A polymorphism located in the promoter region of the MPO gene has been associated with hypertensive nephrosclerosis in patients on dialysis [119] and hypertension with or without carotid atherosclerosis in Chinese [120, 121]. However, this polymorphism has been associated with a decreased risk of hypertension in Russian females [122].

Xanthine dehydrogenase (XDH), aka xanthine oxidoreductase (XOR) and xanthine oxidase (XO) are interconvertible single gene products. XDH is the primary form but is converted to XO irreversibly by proteolysis or reversibly by oxidation of Cys residues. XO catalyzes hypoxanthine or xanthine to form hydrogen peroxide and uric acid while XDH produces NADH [344]. In the blood, XDH exists mainly as XO [241]. XO is extensively expressed in body organs, such as the liver, muscle, brain, and kidney [345]. XDH-mediated increase in ROS has been described in salt-sensitive hypertension and glucocorticoid induced hypertension [241]. In a Spanish cohort, −337G > A and 565 + 64T > C and their haplotypes were found to be associated with higher systolic and diastolic blood pressures and malondialdehyde [241]. The variation in uric acid production, as related to polymorphisms of XDH, increases the risk of hypertension [239].

Lipoxygenases catalyze the dioxygenation of polyunsaturated fatty acids to their corresponding hydroperoxy derivatives. Arachidonate 15-lipoxygenase (ALOX15) gene rs2664593 has been reported to be associated with air pollution and increased left ventricular mass [346]. A non-synonymous polymorphism in ALOX12, 261R > Q, has been reported to be associated with essential hypertension and urinary levels of 12-hydroxyeicosatetraenoic acid (12(S)-HETE) [347]. Mice lacking macrophage 12/15-lipoxygenase are resistant to l-NAME (NO-l-nitro-arginine methyl ester) and DOCA (deoxycorticosterone acetate)-salt hypertension [348].

Cyclooxygenase-2 (COX2, PTGS2) can produce ROS, which can increase COX expression and activity [91]. −765GC + CC genotypes of PTGS2 are inconsistently associated with chronic obstructive pulmonary disease that could be related to increased ROS production [89, 90]. PTGS2 SNPs have been associated with increased high blood pressure in humans [349]. Germline deletion of Cox-2 in mice increases blood pressure [350].

The mitochondrion, which is one of the most important sources of ROS, has been extensively associated with oxidative stress and hypertension [8, 12, 13, 144, 227]. ROS-induced hypertension could involve the mitochondria in the brain [71] and in the kidney [351–353]. Cytochrome P450 genes are important sources of ROS in the mitochondria, endoplasmic reticulum, and plasma membrane. P450 proteins are a family of hemoproteins that catalyze the oxygenation of a wide variety of compounds and, in general, is the terminal oxidase enzyme in the electron transfer chain in the mitochondria [94]. The efficiency of electron transfer depends on many conditions. For example, SNPs in the gene encoding cytochrome P450 affect the regulation of ROS production and the redox balance [354, 355]. SNPs in the cytochrome P450 gene family have also been associated with high blood pressure in several different populations [95, 97, 357, 358] but protective in a North American-nitroarginine methyl esters [96]. CYP epoxygenase decreases renal sodium transport, in part, by inhibition of ENaC activity in the cortical collecting duct [359]. CYP17A1 (rs11191548) is associated with increased left ventricular mass in patients with hypertension and preserved left ventricular ejection fraction [360].

Polymorphisms of antioxidant genes

Oxidative stress can occur not only from an increase in prooxidant activity but also from impaired antioxidant activity. SNPs of genes that decrease antioxidant gene function/expression could induce oxidative stress and increase blood pressure. Our group and others have provided evidence for the importance of the antioxidant properties of dopamine receptors in the kidney in the regulation of renal sodium transport and blood pressure, as well as dopamine receptor-mediated non-renal mechanisms in the regulation of blood pressure [5, 16, 32, 38–40, 61, 63, 164, 169, 172, 173, 177–187, 361–364]. Germline deletion of the DRD2 results in oxidative stress-dependent hypertension [251]. DJ-1 (Park7) and paraoxonase 2 [145, 162] are involved in the antioxidant properties of the D3R in the kidney. Polymorphisms associated with deficiency of DRD2 expression are associated with essential hypertension in different populations [170, 171, 173]. PON1 SNPs (e.g., −108C > T, 192Q > R) are risk factors for endothelial dysfunction and hypertension [211, 212]. Genetic depletion of DJ-1, a mitochondrial antioxidant [365], results in renal oxidative stress and high blood pressure in mice [162]. Dysfunction of mitochondrial proteins that decrease ROS production (e.g., SOD2, uncoupling protein 2 (UCP2) [vide infra]) may be involved in the target-organ damage associated with hypertension [366].

Polymorphisms in UCP2, a mitochondrial gene with antioxidant properties, are associated with an increased risk
for diabetic kidney disease [367]. In addition, a common human polymorphism of the UCP2 gene, $−866G>A$, has been associated in hypertension [238].

Glutathione (GSH) is another antioxidant enzyme that plays a role in blood pressure regulation [368]. GSH S-transferases (GSTs) catalyze the conjugation of the reduced form of GSH. The GST superfamily constitutes up to 10% of the cytosolic protein in some mammalian organs [369]. Low blood level of GST-π concentration is predictive of the time of the onset of stroke [370]. The GSTA1*B allele is considered as a genetic risk factor for hypertension in Japanese [371]. The association between the GSTT1 null and hypertension was reported in Italian women but not men [197] and GSTM1-null genotype with hypertension in Korean men and women [198]. The GST P1b-1b genotype causes prolonged exposure to ROS and increased risk of pre-eclampsia [372]; GSTP1 313A > G with pre-eclampsia in Maya-Mestizo women [200]. However, a meta-analysis showed no association of GSTM1 and GSTT1 polymorphisms and the risk of hypertension [373].

GSH peroxidases (GPxs) are important in the reduction of lipid hydroperoxides and H$_2$O$_2$ to water; GPX4 rs713041 (718T > C) may be a predictor of cerebral stroke in hypertensive Russians [195]. GPX3 s3828599 (T > C) is associated with hypertension in Han Chinese [194].

Heme oxygenase catalyzes the degradation of heme, resulting in the formation of iron, carbon monoxide, and biliverdin, which is subsequently converted to bilirubin by biliverdin reductase [187]. HO-1 short repeats (<25) are associated with lower risk of cardiovascular disease; HO-1 long repeats are associated with increased HO-1 activity [205].

Extracellular superoxide dismutase (EC SOD, aka SOD3, Cu-Zn SOD) protects the tissues from oxidative stress by converting the toxic superoxide anion into less toxic H$_2$O$_2$ [8–10, 12, 13, 221, 223, 230–232, 374]. The T-A or T-A-C haplotype, rs13306703 and rs2536512 with or without 17998895 in SOD3 gene increases the risk for essential hypertension in a Japanese population [189]. By contrast, 172G > A (rs2536512) polymorphism, by itself, is associated with a decreased risk for hypertension in Spaniards [229], but is not associated with hypertension in other populations [232]. Germline global deletion of SOD3 in mice causes oxidative stress and hypertension [188]. However, an earlier and later study by others did not find SOD3-knockout mice to be hypertensive, but found them to have increased hypertensinogenic response to NO inhibition or angiotensin II infusion [230, 231].

Catalase (CAT) catalyzes the conversion of H$_2$O$_2$ to water and oxygen. SNPs in the CAT gene promoter region, CAT-844 AA and CAT-262 CT or TT, have been associated with essential hypertension among Chinese [156], smoking Russians [153], Greeks [154], but not African-Americans and Caucasians [155]. However, CAT haplotype $[−844G, −89A, −20T]$ relative to the CAT haplotype $[−844A, −89T, −20C]$ was predictive of a decrease in diastolic blood pressure after bariatric surgery in a French population [375]. In individuals with low-level lead exposure, CAT rs769217, C > T, is associated with increased blood markers of oxidative stress and hypertension [376]. By contrast, CAT rs1049982, −20C > T, is associated with lower blood pressure [229]. In individuals with a family history of hypertension, 20–35% of the variation of plasma hydrogen peroxide may be due to genetic factors [377, 378].

The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is an important regulator of energy control [379] and is a master regulator of manganese SOD2 and UCP2, both of which are mitochondrial proteins with antioxidant properties [380]. Polymorphisms in PGC-1α gene have been associated with hypertension in several studies, in males with Gly482Ser + A1704G haplotype, but the 482SS is protective of hypertension in Caucasian males in two studies and females in one study [214–216].

These aforementioned studies show that SNPs of genes involved in redox balance are involved in blood pressure regulation.

Treatment of oxidative stress in humans with hypertension

Despite the numerous studies demonstrating a role of oxidative stress in cardiovascular diseases and the beneficial effects of antioxidants in the treatment of hypertension in animal models (Table 2), it has been difficult to demonstrate a role of oxidative stress in the pathogenesis and treatment of hypertension in humans [304, 381]. Indeed, oxidative stress may be the consequence and not the cause of hypertension in humans [382].

Several antioxidant drugs, such as vitamin C, vitamin D, vitamin E, and bardoxolone alone or in combination [301–306, 309–311, 313–316, 318, 319, 323, 381, 383] with other antioxidants have been shown to prevent the deleterious effects of oxidative stress or hypoxia in different cardiovascular and renal diseases, including hypertension but some with undesirable side effects [228, 307, 308, 317, 324, 325, 384, 385]. A meta-analysis in 135,967 participants in 19 clinical trials showed that high doses of vitamin E increased mortality [384]. The authors of a more recent meta-analysis concluded that supplements with vitamin E decreased cardiovascular mortality risk and folic acid decreased the risk for cardiovascular disease, while β-carotene, eicosapentanoic acid, magnesium, selenium, vitamins D and K, and zinc did not show significant risk reduction of cause-specific death or cardiovascular disease [385].
Thiosulfate, a hydrogen sulfide donor, which can decrease oxidative stress, has been reported to improve vascular endothelial function in hypertensive humans [386, 387]. Bardoxolone, a Nrf2 agonist that increases the expression of several antioxidants, was initially shown to improve renal function in humans with advanced chronic kidney disease and type 2 diabetes [388]. However, it was withdrawn from further clinical trials because of serious adverse events, including heart failure and cardiovascular events, and mortality [389, 390].

Antioxidant treatment with ascorbic acid was initially shown to lower blood pressure in a limited number of patients with hypertension [391, 392]. However, larger studies have not found a clear beneficial effect of antioxidant vitamins on the development or control of blood pressure [393, 394]. The combination of ascorbic acid and polyphenols actually resulted in a higher blood pressure variation [228]. Therefore, there is insufficient evidence to support the use of dietary supplements in the primary prevention of cardiovascular diseases [385]. However, the period of treatment and doses [395] could be crucial in the beneficial or deleterious effects of antioxidant therapy. What is evident from these published data is that the effect of the ROS on the cardiovascular system is more complex than expected and innovative approaches must be formulated to resolve these discrepant results.

Antioxidant effect of antihypertensive drugs

The ability of some angiotensin II type 1 receptor blockers [304, 396] and ACE inhibitors [304, 397] to reduce ROS production and oxidative stress is well known. The classical renin–angiotensin system increases ROS production [22, 23, 31, 34–37, 55, 56, 63], and thus, the beneficial effects of some of the antihypertensive drugs may be due to their ability to inhibit NADPH activity. The sulfhydrated ACE inhibitors (e.g., captopril, epicaptopril, and S-zofenopril, but not enalaprilat, perindoprilat, or quinaprilat [398, 399]) contain a thiol radical that per se has antioxidant properties and may prefer to scavenge general radicals rather than superoxide radicals [397, 398]. Although, the antioxidant effect of sulfhydrated ACE inhibitors has been ascribed to the thiol group, the vasodilatory effect of S-zofenopril may be due to hydrogen sulfide [400]. The antioxidant effects of other antihypertensive drugs, such as β-adrenoceptor blockers [304, 401, 402] and calcium channel blockers [304, 403] have been reported, as well. Hypertension and oxidative stress associated with chronic ethanol intake can be prevented by the β-adrenoceptor blocker, nebivolol [404]. Therefore, part of the beneficial effects of some antihypertensive drugs may due to their ability to decrease ROS production. However, a novel angiotensin II type 1 receptor blocker has been reported to induce oxidative stress in a hepatocellular cell line HepG2 [405].

These disparate effects of antihypertensive drugs on ROS production and blood pressure regulation may be related to the fact that, as aforementioned, ROS have beneficial effects on cell function [10, 13–21]. Antioxidants at high concentrations may have pro-oxidant effects [406] and the excessive antioxidation could have deleterious consequences. For example, a small but continuous production of ROS expression during physical exercise enhances antioxidant defenses and induces the expression of antioxidant enzymes; vitamin C supplementation decreases the endurance capacity in humans and rats [407] and diminishes some of the increased skeletal muscle adaptations following acute exercise [408]. While physiological doses of antioxidants may be beneficial, excessive antioxidation could have deleterious consequences because the “remodeling” of skeletal muscles with exercise is dependent on reactive oxygen and nitrogen signaling [409]. The duration of the antioxidant effects may also be transient. For example, the biomarkers of oxidative DNA damage were attenuated by daily consumption of blueberries for 4 weeks in prehypertensive and stage 1-hypertensive postmenopausal women; however, these effects were not found after 8 weeks [410].

Increased production of mitochondrial ROS plays a role in the pathogenesis of diabetic nephropathy [411] and hypertension [352]. However, ROS produced by NOX4 can induce endothelial angiogenesis and protect against chronic cardiac overload [412]. Moreover, diabetic complications are associated with a decrease in mitochondrial ROS production, but may help in the preservation of renal glomerular function during hyperglycemia [413, 414]. Therefore, “normal” physiological levels of mitochondrial superoxide are important for healthy mitochondrial function [415].

The amount of ROS formed, type of ROS formed, that is, superoxide versus H$_2$O$_2$, source, duration, and their subcellular locations may be determinants on the consequences of ROS production on cell function. It is universally accepted that a redox imbalance induced by an excessive and uncontrolled ROS production could have deleterious consequences on blood pressure regulation. However, the excessive intake or expression of antioxidants could also have deleterious consequences on the cardiovascular system.

Conclusion

Several genetic polymorphisms that affect pro-oxidant and antioxidant systems, directly or indirectly, are associated with hypertension. Antioxidants can reduce the blood pressure in humans and animal models of hypertension.
Antihypertensive drugs can also have antioxidant effects. However, an indiscriminate decrease in ROS production can have deleterious consequences. ROS are involved in the regulation of essential cellular processes. Thus, the long-term administration of drugs with antioxidant properties may impair vital cellular function, resulting in undesirable side effects. Studies are needed to elucidate the role of pharmacogenomics in redox balance in the treatment of hypertension.

Funding These studies were supported in part by grants from the NIH, 5P01HL074940-11, 7R01DK039308-31, 5P01 HL068686-15, 5R01HL023081-35, and 2R01HL092196-10.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cifkova R, Dominiczak AF, et al. Hypertension. Nat Rev Dis Prim. 2018;4:18014.
2. Muntner P, Carey RM, Gidding S, Jones DW, Taler SJ, Wright JT Jr, et al. Potential U.S. Population Impact of the 2017 ACC/AHA High Blood Pressure Guideline. J Am Coll Cardiol. 2018;71:109–18.
3. Greenland P, Peterson E. The New 2017 ACC/AHA Guidelines “Up the Pressure” on Diagnosis and Treatment of Hypertension. JAMA. 2017;318:2083–4.
4. Cooper-DeHoff RM, Johnson JA. Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol. 2016;12:110–22.
5. Armando I, Villar VA, Jose PA. Genomics and pharmacogenomics of salt-sensitive hypertension. Curr Hypertens Rev. 2015;11:49–56.
6. Holterman CE, Thibodeau JF, Kennedy CR. NADPH oxidase 5 and renal disease. Curr Opin Nephrol Hypertens. 2015;24:81–87.
7. Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules. 2015;15:472–84.
8. Loperena R, Harrison DG. Oxidative stress and hypertensive diseases. Med Clin N Am. 2017;101:169–93.
9. Wilcox CS. Asymmetric dimethylarginine and reactive oxygen species: unwelcome twin visitors to the cardiovascular and kidney disease tables. Hypertension. 2012;59:375–81.
10. Sorrentino D, De Luca N, Trimarco B, Iacarino G. The anti-oxidant therapy: new insights in the treatment of hypertension. Front Physiol. 2018;9:258.
11. Roberts JM, Myatt L, Spong CY, Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network, et al. Vitamins C and E to prevent complications of pregnancy-associated hypertension. N Engl J Med. 2010;362:1282–91.
12. Montezano AC, Dulak-Lis M, Tsirigopoulou S, Harvey A, Briones AM, Touyz RM. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 2015;31:631–41.
13. Brown DL, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res. 2015;116:531–49.
14. Ma R, Chaudhari S, Li W. Canonical transient receptor potential 6 channel: a new target of reactive oxygen species in renal physiology and pathology. Antioxid Redox Signal. 2016;25:732–48.
15. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25:119–46.
16. Banday AA, Lokhandwala MF. Transcriptional regulation of renal dopamine D1 receptor function during oxidative stress. Hypertension. 2015;65:1064–72.
17. Yan Y, Shapiro AP, Hailer S, Katragadda V, Liu L, Tian J, et al. Involvement of reactive oxygen species in a feed-forward mechanism of Na/K-ATPase-mediated signaling transduction. J Biol Chem. 2013;288:34249–58.
18. Lu X, Wang F, Liu M, Yang KT, Nau A, Kohan DE, et al. Activation of ENaC in collecting duct cells by prorenin and its receptor PRR: involvement of Nox4-derived hydrogen peroxide. Am J Physiol Ren Physiol. 2016;310:F1243–50.
19. Silva-Islas CA, Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res. 2018;134:92–99.
20. Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res. 2013;112:382–92.
21. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003;52:1–8.
22. Wang D, Chen Y, Chabrashvili T, Aslam S, Borrego Conde LJ, Umans JG, et al. Role of oxidative stress in endothelial dysfunction and enhanced responses to angiotensin II of different arterioles from rabbits infused with angiotensin II. J Am Soc Nephrol. 2003;14:2783–9.
23. Kopkan L, Castillo A, Navar LG, Majid DS. Enhanced superoxide generation modulates renal function in ANG II-induced hypertensive rats. Am J Physiol Ren Physiol. 2006;290:F80–6.
24. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.
25. Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest. 2016;126:50–67.
26. Zhuang G, Zuccarelli C, Mancini E. Hypertension in primary glomerulonephritis without renal insufficiency. Nephrol Dial Transplant. 1989;4:605–10.
27. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. 2006;47:1084–93.
28. Meng S, Cason GW, Gannon AW, Racusen LC, Manning RD Jr. Oxidative stress in Dahl salt-sensitive hypertension. Hypertension. 2003;41:1346–52.
29. Araujo M, Wilcox CS. Oxidative stress in hypertension: role of the kidney. Antioxid Redox Signal. 2014;20:73–101.
30. Lerman LO, Nath KA, Rodriguez-Porcel M, et al. Increased oxidative stress in experimental renovascular hypertension. Hypertension. 2001;37:541–6.
31. Li C, Lin Y, Luo R, Chen S, Wang F, Zheng P, et al. Intrarenal renin–angiotensin system mediates fatty acid-induced ER stress in the kidney. Am J Physiol Ren Physiol. 2016;310:F351–63.
32. Cuevas S, Villar VA, Jose PA, Armando I. Renal dopamine receptors, oxidative stress, and hypertension. Int J Mol Sci. 2013;14:17553–72.

33. Rukavina Mikusic NL, Kravetz MC, Kouyoumdzian NM, Della Penna SL, Rosón MI, Fernández BE, et al. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. J Signal Transduct. 2014;2014:731530.

34. Stec DE, Juncos LA, Granger JP. Renal intramedullary infusion of tempol normalizes the blood pressure response to intrarenal blockade of heme oxygenase-1 in angiotensin II-dependent hypertension. J Am Soc Hypertens. 2016;10:346–51.

35. Silva GB, Garvin JL. Angiotensin II-dependent hypertension increases Na transport-related oxygen consumption by the thick ascending limb. Hypertension. 2008;52:1091–8.

36. Luo H, Wang X, Chen C, Wang J, Zou X, Li C, et al. Oxidative stress causes imbalance of renal renin angiotensin system (RAS) components and hypertension in obese Zucker rats. J Am Heart Assoc. 2015;4:e001559.

37. Ramkumar N, Kohan DE. Proximal tubule angiotensinogen modulation of arterial pressure. Curr Opin Nephrol Hypertens. 2013;22:32–36.

38. Labandeira-Garcia JL, Rodríguez-Pallares J, Villar-Cheda B, Rodríguez-Perez AI, Garrido-Gil P, Guerra MJ. Aging, Angiotensin system and dopaminergic degeneration in the substantia nigra. Aging Dis. 2011;2:257–74.

39. Escano CS, Armando I, Wang X, Asico LD, Pascua A, Yang Y, et al. Renal dopaminergic deficit in C57Bl/6j mice. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1660–9.

40. Chugh G, Lokhandwalla MF, Asghar M. Altered functioning of both renal dopamine D1 and angiotensin II type 1 receptors causes hypertension in old rats. Hypertension. 2012;59:1029–36.

41. Ortiz PA, Garvin JL. Superoxide stimulates NaCl absorption by the thick ascending limb. Am J Physiol Ren Physiol. 2002;283:F957–962.

42. Persson P, Hansell P, Palm F. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes. Am J Physiol Regul Integr Comp Physiol. 2012;302:R1443–1449.

43. Cowley AW Jr, Abe M, Mori T, O’Connor PM, Ohsaki Y, etc. Renal dopaminergic modulation of arterial blood pressure. Curr Opin Nephrol Hypertens. 2010;21:262–6.

44. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10:709–17.

45. Nikinmaa M, Bogdanova A, Lecklin T. Oxygen dependency of the adrenergic Na/H exchange in rainbow trout erythrocytes is diminished by a hydroxyl radical scavenger. Acta Physiol Scand. 2003;178:149–54.

46. Simão S, Gomes P, Pinho MJ, Soares-da-Silva P. Oxidative stress and the genomic regulation of aldosterone-stimulated NHE1 activity in SHR renal proximal tubular cells. Mol Cell Biochem. 2008;310:191–201.

47. Croajinaos RO, Lessa LM, Carraro-Lacroix LR, Davel AP, Pacheco BP, Rossoni LV, et al. Posttranslational mechanisms associated with reduced NHE3 activity in adult vs. young pre-hypertensive SHR. Am J Physiol Ren Physiol. 2010;299:F872–81.

48. Boer PA, Morelli JM, Figueiredo JF, Gontijo JA. Early altered renal sodium handling determined by lithium clearance in spontaneously hypertensive rats (SHR): role of renal nerves. Life Sci. 2005;76:1805–15.

49. Pinto V, Pinho MJ, Hopfer U, Jose PA, Soares-da-Silva P. Oxidative stress and the genomic regulation of aldosterone-stimulated NHE3 activity in SHR renal proximal tubular cells. Mol Cell Biochem. 2008;310:191–201.

50. Huang WH, Wang X, Askari A. (Na+/K+-ATPase: inactivation and degradation induced by oxygen radicals. Int J Biochem. 1992;24:621–6.

51. Bender PA, Lokhandwalla MF. Transcription factor Nrf2 protects renal dopamine D1 receptor function during oxidative stress. Hypertension. 2013;62:512–7.

52. Zou L, Linck V, Zhai YJ, Galarza-Paez L, Li L, Yue Q, et al. Knockout of mitochondrial voltage-dependent anion channel type 3 increases reactive oxygen species (ROS) levels and alters renal sodium transport. J Biol Chem. 2018;293:1666–75.

53. Chugh G, Lokhandwalla MF, Asghar M. Oxidative stress alters renal D1 and AT1 receptor functions and increases blood pressure in old rats. Am J Physiol Ren Physiol. 2011;300:F13–138.

54. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10:709–20.

55. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

56. Thayer TC, Delano M, Liu C, Padgett LE, Tse HM, et al. Superoxide production in the thick ascending limb by activating NOX4. Am J Physiol Cell Physiol. 2012;303:C781–8.

57. Rukavina Mikusic NL, Kravetz MC, Kouyoumdzian NM, Della Penna SL, Rosón MI, Fernández BE, et al. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. J Signal Transduct. 2014;2014:731530.

58. Andreoli SP, McAtear JA, Seifert SA, Kempson SA. Oxidant-induced alterations in glucose and phosphate transport in LLC-PK1 cells: mechanisms of injury. Am J Physiol. 1993;265:F377–3784.

59. Pinto V, Pinho MJ, Hopfer U, Jose PA, Soares-da-Silva P. Oxidative stress and the genomic regulation of aldosterone-stimulated NHE3 activity in SHR renal proximal tubular cells. Mol Cell Biochem. 2008;310:191–201.

60. Huang WH, Wang X, Askari A. (Na+/K+-ATPase: inactivation and degradation induced by oxygen radicals. Int J Biochem. 1992;24:621–6.

61. Banday AA, Lokhandwalla MF. Transcription factor Nrf2 protects renal dopamine D1 receptor function during oxidative stress. Hypertension. 2013;62:512–7.

62. Zou L, Linck V, Zhai YJ, Galarza-Paez L, Li L, Yue Q, et al. Knockout of mitochondrial voltage-dependent anion channel type 3 increases reactive oxygen species (ROS) levels and alters renal sodium transport. J Biol Chem. 2018;293:1666–75.

63. Chugh G, Lokhandwalla MF, Asghar M. Oxidative stress alters renal D1 and AT1 receptor functions and increases blood pressure in old rats. Am J Physiol Ren Physiol. 2011;300:F13–138.

64. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10:709–20.

65. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

66. Thayer TC, Delano M, Liu C, Padgett LE, Tse HM, et al. Superoxide production by macrophages and T cells is critical for the induction of autoreactivity and type 1 diabetes. Diabetes. 2011;60:2144–51.

67. Cachofeiro V, Goicochea M, de Vinuesa SG, Oubiña P, Lahera V, Lufio J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008;111:S4–9.

68. Manning AM, Bell FP, Rosenblum CL, Chosay JG, Simmons CA, Northrup JL, et al. NF-kappa B is activated during acute inflammation in vivo in association with elevated endothelial cell adhesion molecule gene expression and leucocyte recruitment. J Inflamm. 1995;45:283–96.

69. Theuer J, Dechend R, Muller DN, Park JK, Fiebeler A, Barta P, et al. Angiotensin II induced inflammation in the kidney and in
the heart of double transgenic rats. BMC Cardiovasc Disord. 2002;2:3.
70. Nishi EE, Oliveira-Sales EB, Bergamaschi CT, Oliveira TG, Boim MA, Campos RR. Chronic antioxidant treatment improves arterial renovascular hypertension and oxidative stress markers in the kidney in Wistar rats. Am J Hypertens. 2010;23:473–80.
71. Hurr C, Young CN. Neural control of non-vasomotor organs in hypertension. Curr Hypertens Rep. 2016;18:30.
72. Yang S, Gao Y, Liu G, Li J, Shi K, Du B, et al. The human AT1r11169571 polymorphism increases essential hypertension risk through modifying miRNA binding. FEBS Lett. 2015;589:2087–93.
73. Zhang L, Miyaki K, Araki J, Song Y, Kimura T, Omae K, et al. Interaction of angiotensin I-converting enzyme insertion–deletion polymorphism and daily salt intake influences hypertension in Japanese men. Hypertens Res. 2006;29:751–8.
74. Todoroki M, Minami J, Ishimitsu T, Ohnri M, Matsuoka H. Relation between the angiotensin-converting enzyme insertion/deletion polymorphism and blood pressure in Japanese male subjects. J Hum Hypertens. 2003;17:713–8.
75. Jain S, Vinukonda G, Fiering SN, Kumar A. A haplotype of human angiotensinogen gene containing −217A increases blood pressure in transgenic mice compared with −217G. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1849–1857.
76. Jain S, Tillinger A, Mopidevi B, Pandey VG, Chauhan CK, Fiering SN, et al. Transgenic mice with −6A haplotype of the human angiotensinogen gene have increased blood pressure compared with −6G haplotype. J Biol Chem. 2010;285:41172–86.
77. Kayima J, Liang J, Natanzon Y, Nankabirwa J, Ssinaibulya I, Nakibuuka J, et al. Association of genetic variation with blood pressure traits among East Africans. Clin Genet. 2017;92:487–94.
78. Kumar A, Li Y, Patil S, Jain S. A haplotype of the angiotensinogen gene is associated with hypertension in African americans. Clin Exp Pharmacol Physiol. 2005;32:495–502.
79. Zeng R, Wang QP, Fang MX, Zhuang J, Fan RX. Association of A-20C polymorphism in the angiotensinogen gene with essential hypertension: a meta-analysis. Genet Mol Res. 2015;14:12984–92.
80. Norat T, Bowman R, Ruben L, Welch A, Khaw KT, Warahem N, et al. Blood pressure and interactions between the angiotensin polymorphism AGT M235T and sodium intake: a cross-sectional population study. Am J Clin Nutr. 2008;88:392–7.
81. Purkait P, Halder K, Thakur S, Ghosh Roy A, Raychaudhuri P, Bhattacharya S, et al. Association of angiotensinogen gene SNPs and haplotypes with risk of hypertension in eastern Indian population. Clin Hypertens. 2017;23:12.
82. Sethi AA, Nordergaard BG, Tybjærg-Hansen A. Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: a meta-analysis. Arterioscler Thromb Vasc Biol. 2003;23:1269–75.
83. Forman JP, Fisher ND, Pollak MR, Cox DG, Tonna S, Curhan GC. Renin–angiotensin system polymorphisms and risk of hypertension: influence of environmental factors. J Clin Hypertens. 2008;10:459–66.
84. Sano M, Kuroi N, Nakayama T, Sato N, Izumi Y, Soma M. Association study: the aminopeptidase a gene and essential hypertension. Int J Biomed Sci. 2005;1:16–22.
85. Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH. Hypertension: renin–angiotensin–aldosterone system alterations. Circ Res. 2015;116:960–75.
86. Van Haaster MC, McDonough AA, Gurlay SB. Blood pressure regulation by the angiotensin 1 receptor in the proximal tubule. Curr Opin Nephrol Hypertens. 2018;27:1–7.
87. Cipollone F, Toniato E, Martinotti S, Fazia M, Iezzi A, Cucurullo C, et al. A polymorphism in the cyclooxygenase 2 gene as an inherited protective factor against myocardial infarction and stroke. JAMA. 2004;291:2221–8.
88. Martínez-Revelles S, Avendaño MS, García-Redondo AB, Alvarez Y, Aguado A, Pérez-Girón JV, et al. Reciprocal relationship between reactive oxygen species and cyclooxygenase-2 and vascular dysfunction in hypertension. Antioxid Redox Sign. 2013;18:51–65.
89. Iwai N, Tago N, Yasui N, Kokubo Y, Inamoto N, Tomoike H, et al. Genetic analysis of 22 candidate genes for hypertension in the Japanese population. J Hypertens. 2004;22:1119–26.
90. Fava C, Ricci M, Melander O, Minuz P. Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: a sex-specific relationship? Prostaglandins Other Lipid Mediat. 2012;98:75–85.
91. Jennings BL, Montanez DE, May ME Jr, Estes AM, Fang XR, Yaghini FA, et al. Cytochrome P450 1B1 contributes to increased blood pressure and cardiovascular and renal dysfunction in spontaneously hypertensive rats. Cardiovasc Drugs Ther. 2014;28:145–61.
92. Savas Ü, Wei S, Hsu MH, Falcük JR, Guengerich FP, Capdevila JH, et al. 20-Hydroxyicosatetraenoic acid (HETE)-dependent hypertension in human cytochrome P450 (CYP) 4A11 transgenic mice: normalization of blood pressure by sodium restriction, hydrochlorthiazide, or blockade of the type 1 angiotensin II receptor. J Biol Chem. 2016;291:16904–19.
93. Jennings BL, Moore JA, Pingilik AK, Estes AM, Fang XR, Kanu A, et al. Disruption of the cytochrome P-450 1B1 gene exacerbates renal dysfunction and damage associated with angiotensin II-induced hypertension in female mice. Am J Physiol Ren Physiol. 2015;308:F981–992.
94. Denmerlein S, Rehling P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J Cell Sci. 2015;128:833–7.
95. Polonokov AV, Ivanov VP, Solodilova MA, Khoroshaya IV, Kozhubuhova MA, Ivakin VE, et al. A common polymorphism G-50T in cytochrome P450 2J2 gene is associated with increased risk of essential hypertension in a Russian population. Dis Markers. 2008;24:119–26.
96. King LM, Gainer JV, David GL, Dai D, Goldstein JA, Brown NJ, et al. Single nucleotide polymorphisms in the CYP2J2 and CYP2C8 genes and the risk of hypertension. Pharm Genom. 2005;15:7–13.
97. Zhang L, Miyaki K, Wang W, Muramatsu M. CYP3A5 polymorphism and sensitivity of blood pressure to dietary salt in Japanese men. J Hum Hypertens. 2010;24:345–50.
98. Tzveova R, Naydenova G, Yaneva T, Dimitrov G, Vandeva S, Matro佐va Y, et al. Gender-specific effect of CYP2C8*3 on the risk of essential hypertension in Bulgarian patients. Biochem Genet. 2015;53:319–33.
99. Bochud M, Eap CB, Elston RC, Bovet P, Maillard M, Schild L, et al. Association of CYP3A5 genotypes with blood pressure and renal function in African families. J Hypertens. 2006;24:923–9.
100. Plenty NL, Faulkner JL, Cotton J, Spencer SK, Wallace K, LaMarca B, et al. Arachidonic acid metabolites of CYP4A and CYP4F4 are altered in women with preeclampsia. Prostaglandins Other Lipid Mediat. 2018;136:15–22.
101. Fu Z, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Shindo A, et al. Haplotype of the CYP4A11 gene associated with essential hypertension in Japanese men. J Hum Hypertens. 2010;24:345–50.
102. Tzveova R, Naydenova G, Yaneva T, Dimitrov G, Vandeva S, Matro佐va Y, et al. Gender-specific effect of CYP2C8*3 on the risk of essential hypertension in Bulgarian patients. Biochem Genet. 2015;53:319–33.
103. Chang R, Li X, Guan Y, Liou H, Zhang X, Lin Y, et al. Genetic variation in the type A endothelin-1 receptor is associated with increased blood pressure in non-diabetic hypertensive patients. J Hum Hypertens. 2003;17:713–8.
104. Rahman T, Baker M, Hall DH, Avery PJ, Keavney B. Common genetic variation in the type A endothelin-1 receptor is associated with...
109. Riikola A, Sipilä K, Kähönen M, Jula A, Nieminen MS, Moi-112. Shuang L, Li Z, Chen F, Cui X, Ning Y, Su Y, et al. Association 113. Lu X, Wang L, Lin X, Huang J, Charles Gu C, He M, et al. 111. Saleh MA, Norlander AE, Madhur MS. Inhibition of interleukin 119. Doi K, Noiri E, Maeda R, Nakao A, Kobayashi S, Tokunaga K, 114. Huby AC, Otvos L Jr, Belin de Chantemèle EJ. Leptin induces 112. Rosmond R, Chagnon YC, Holm G, Chagnon M, Pérusse L, 115. do Carmo JM, da Silva AA, Wang Z, Fang T, Shang XM, Li YQ, Liu XK, Liu CQ, et al. Association of 116. Li YX, Zhang Q, Shang XM, Li YQ, Liu XK, Liu CQ, et al. 117. Bayoumy NM, Al-Sharaidh AS, Babay ZH, Abdulgader AM. 118. Cuba-Kosiorz S, Balcerzyk A, Cubeddu LX. 114. Nouri P, Gill P, Li M, Wilcox CS, Welch WJ. p22phox in the macula densa regulates single nephron GFR during angiotensin II infusion in rats. Am J Physiol Heart Circ Physiol. 2007;292: H1685–1689. 115. Modlinger P, Chabrashvili T, Gill PS, Mendonca M, Harrison DG, Griendling KK, et al. RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension. 2006;47:238–44. 116. Kumar R, Kohli S, Ali Z, CYBA (p22phox) variants associate with blood pressure and oxidative stress markers in hypertension: a replication study in populations of diverse altitudes. Hypertens Res. 2015;38:498–506. 117. Bedark D, Attar H, Bonnefont J, Jaquet V, Borel C, Plastre O, et al. Three common polymorphisms in the CYBA gene form a haplotype associated with decreased ROS generation. Hum Mutat. 2009;30:1123–33. 118. Petrović D. Association of the −262C/T polymorphism in the catalase gene promoter and the C242T polymorphism of the NADPH oxidase P22phox gene with essential arterial hypertension in patients with diabetes mellitus type 2. Clin Exp Hypertens. 2014;36:36–39. 119. Schreiber R, Bellinazzi VR, Sposito AC, Mill JG, Krieger JE, Pereira AC, et al. Influence of the C242T polymorphism of the p22-phox gene (CYBA) on the interaction between urinary sodium excretion and blood pressure in an urban Brazilian population. PLoS ONE. 2013;8:e81054. 120. Castejon AM, Bracero J, Hoffmann IS, Aliferi AB, Cubeddu LX. NAD(P)H oxidase p22phox gene C242T polymorphism, nitric oxide production, salt sensitivity and cardiovascular risk factors in Hispanics. J Hum Hypertens. 2006;20:772–9. 121. Di Castelnuovo A, Soccio M, Iacovelli L, Evangelista V, Consoli A, Vanuzzo D, et al. The C242T polymorphism of the p22phox gene component of NADPH oxidase P22phox gene with essential arterial hypertension in patients with diabetes mellitus type 2. Curr Gene Ther. 2006;6:395–400. 122. Sun Q, Yin Y, Zhu Z, Yan Z. Association of the C242T polymorphism in the NADPH oxidase p22 phox gene with type 2 diabetes mellitus risk: a meta-analysis. Curr Med Res Opin. 2014;30:415–22. 123. Qin YW, Peng J, Liang BY, Su L, Chen Q, Xie JJ, et al. The A930G polymorphism of p22phox (CYBA) gene but not C242T variation is associated with hypertension: a meta-analysis. PLoS ONE. 2013;8:e82465. 124. Nowak T, Niemiec P, Górczyńska-Kosiorz S, Balcerzyk A, Iwanicki T, Krauze J, et al. The CYBA gene (α) 49A>G polymorphism (rs7195830) is associated with hypertension in patients with coronary artery disease. Biomed Res Int. 2016;2016:1539671. 125. Moreno MU, San José G, Fortuño A, Belouqi O, Redón J, Chaves FJ, et al. A novel CYBA variant, the −675A/T polymorphism, is associated with essential hypertension. J Hypertens. 2007;25:1620–6. 126. Niemiec P, Zak I, Emich-Widera E, Balcerzyk A, Kopyta I, Nowak T, et al. The C242T polymorphism of the gene encoding cytochrome b-245 alpha is not associated with paediatri
ischaemic stroke: family-based and case–control study. Neurol Neurochir Pol. 2010;44:453–8.

137. Feariheller DL., Brown MD., Park JY., Brinkley TE., Basu S., Hagberg JM., et al. Exercise training, NADPH oxidase p2phox gene polymorphisms, and hypertension. Med Sci Sports Exerc. 2009;41:1421–8.

138. Schreiber R., Ferreira-Sae MC., Ronchi JA., Pio-Magalhães JA., Cipolli JA., Matos-Souza JR., et al. The C242T polymorphism of the p22-phox gene (CYBA) is associated with higher left ventricular mass in Brazilian hypertensive patients. BMC Med Genet. 2011;12:114.

139. Gavazzi G., Banti B., Deffert C., Fiette L., Schappi M., Herrmann F., et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 2006;580:497–504.

140. Sirokmaný G., Donkó Á., Geiszt M., Nox/Duox family of NADPH oxidases: lessons from knockout mouse models. Trends Pharmacol Sci. 2016;37:318–27.

141. Zhang A., Jia Z., Wang N., Tidwell TJ., Yang T., et al. Role of gp91phox-containing NADPH oxidase in the deoxyribose tolerance of mouse salivary glands. Eur J Pharmacol. 2006;552:131–4.

142. Haque MZ., Majid DS., High salt intake delayed angiotensin II-induced hypertension in mice with a genetic variant of NADPH oxidase. Am J Hypertens. 2011;24:114–8.

143. Murdoch CE., Alom-Ruiz SP., Wang M., Zhang M., Walker S., Yu B., et al. Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol. 2011;106:527–38.

144. Zhang A., Jia Z., Wang N., Tievel TJ., Yang T., Relative contributions of mitochondria and NADPH oxidase to deoxyribose tolerance of mouse salivary glands. Microbiol. 2011;80:51–60.

145. Yang Y., Zhang Y., Cuevas S., Escano C., Asico L., et al. Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-activated inhibition of NADPH oxidase. Free Radic Biol Med. 2012;53:437–46.

146. Ray R., Murdoch CE., Wang M., Santos CX., Zhang M., Alom-Ruiz S., et al. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol. 2011;31:1368–76.

147. Li H., Han X., Hu Z., Huang J., Chen J., Hixon JE., et al. Associations of NADPH oxidase-related genes with blood pressure changes and incident hypertension: The GenSalt Study. J Hum Hypertens. 2018;32:287–93.

148. Lai EY., Wellstein A., Welch WJ., Wilcox CS., Superoxide modulates myogenic contractions of mouse afferent arterioles. Hypertension. 2011;58:650–6.

149. Hsueh YM., Lin P., Chen HW., Shiue HS., Chung CJ., Tsai CT., et al. Genetic polymorphisms of oxidative and antioxidant enzymes and arsenic-related hypertension. J Toxicol Environ Health A. 2005;68:1471–84.

150. Conen D., Glynn RJ., Buring JE., Ridker PM., Zee RY., Association of renin–angiotensin and endothelial nitric oxide synthase gene polymorphisms with blood pressure progression and incident hypertension: Prospective Cohort Study. J Hypertens. 2008;26:1780–6.

151. Han X., Hu Z., Chen J., Huang J., Huang C., Liu F., et al. Associations between genetic variants of NADPH oxidase-related genes and blood pressure responses to dietary sodium intervention: The GenSalt Study. Am J Hypertens. 2017;30:327–34.

152. Godin N., Liu F., Lau GJ., Brezniceanu ML., Chénier I., Filep JG., et al. Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int. 2010;77:1086–97.

153. Bushueva OY., Ivanov VP., Ryzhava VN., Ponomarenko IV., Churnosov MI., Polonikov AV., Association of the −844G>A polymorphism in the catalase gene with the increased risk of essential hypertension in smokers. Ter Arkh. 2016;88:50–54.

154. Kouremenos N., Zacharopolou IV., Triantafylidhi H., Zacharopoulos GV., Mornos C., Filippatos G., et al. Genes and genetic variations involved in the development of hypertension: focusing on a Greek patient cohort. Hell J Cardiol. 2014;55:9–16.

155. Zhou XF., Cui J., DeStefano AL., Chazaro I., Farrer LA., Manolis AJ., et al. Polymorphisms in the promoter region of catalase gene and essential hypertension. Dis Markers. 2005;21:3–7.

156. Jiang Z., Akemy JM., Shi J., Xiong M., Wang Y., Shen Y., et al. A polymorphism in the promoter region of catalase is associated with blood pressure levels. Hum Genet. 2001;109:95–8.

157. Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322:587–90.

158. Ishii I., Akahoshi N., Yamada H., Nakano S., Izumi T., Suematsu M., Cystathionine gamma-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem. 2010;285:26358–68.

159. Gupta V., Kapopara PR., Khan AA., Arige V., Subramanian L., Sonawane PJ., et al. Functional promoter polymorphisms direct the expression of cystathionine gamma-lyase gene in mouse models of essential hypertension. J Mol Cell Cardiol. 2017;102:61–73.

160. Mrozikiewicz PM., Bogacz A., Omielanowicz M., Wolski H., Bartkowiak-Wiezorek J., Grzeskowiak E., et al. The importance of rs1021737 and rs482643 polymorphisms of cystathionine gamma-lyase in the etiology of preeclampsia in the Caucasian population. Ginekol Pol. 2015;85:119–25.

161. Cuevas S., Zhang Y., Yang Y., Escano C., Asico L., Jones JE., et al. Role of renal DJ-1 in the pathogenesis of hypertension associated with increased reactive oxygen species production. Hypertension. 2012;59:446–52.

162. Cuevas S., Yang Y., Konkalmatt P., Asico LD., Feraniel J., Jones J., et al. Role of renal DJ-1 in the pathogenesis of hypertension associated with increased reactive oxygen species production. Hypertension. 2012;59:446–52.

163. Yamane T., Murao S., Kozuka M., Shimizu M., Suzuki K., Kubo C., et al. Serum DJ-1 level is positively associated with improvements in some aspects of metabolic syndrome in Japanese women through lifestyle intervention. Nutr Res. 2014;34:851–5.

164. Albrecht FE., Drago J., Felder RA., Printz MP., Eisner GM., et al. Role of the D1A dopamine receptor in the pathogenesis of hypertension in mice with deletion of cystathionine gamma-lyase. J Clin Invest. 1996;97:2283–8.

165. Sato M., Soma M., Nakanoya T., Kannamatsu K., Dopamine D1 receptor gene polymorphism is associated with essential hypertension. Hypertension. 2000;36:183–6.

166. Orun O., Nacer C., Cabadak H., Tiber PM., Dogan Y., Güneyesel Ö., et al. Investigation of the association between dopamine D1 receptor gene polymorphisms and essential hypertension in a group of Turkish subjects. Clin Exp Hypertens. 2011;33:418–21.

167. Zhang H., Sun ZQ., Liu SS., Yang LN., Association between GRK4 and DRD1 gene polymorphisms and hypertension: a meta-analysis. Clin Interv Aging. 2015;11:17–27.

168. Yang H., Zhong L., Bai S., Dong Y., Wang Y., Li Q., et al. Association of dopamine D1 and D3 receptor gene polymorphisms with essential hypertension in 3 ethnic groups in China. Med Sci Monit Basic Res. 2017;23:234–9.

169. Staessen JA., Kuznetsova T., Zhang H., Maillard M., Bochud M., et al. Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int. 2010;77:1086–97.
Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation

170. Rosmond R, Rankinen T, Chagnon M, Pérusse L, Chagnon YC, Bouchard C, et al. Polymorphism in exon 6 of the dopamine D2 receptor gene (DRD2) is associated with elevated blood pressure and personality disorders in men. J Hum Hypertens. 2001;15:553–8.

171. Jiang X, Konkalmatt P, Yang Y, Gildea J, Jones JE, Cuevas S, et al. Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells. Hypertension. 2014;63:e74–80.

172. Choi MR, Kouyoumdzian NM, Rukavina Mikusic NL, Rodriguez Ferminet M, et al. Renal dopaminergic system: pathophysiological implications and clinical perspectives. World J Nephrol. 2015;4:196–212.

173. Fang YJ, Thomas GN, Xu ZL, Fang JQ, Critchley JA, Tomlinson B. An affected pedigree member analysis of linkage between the dopamine D2 receptor gene TaqI polymorphism and obesity and hypertension. Int J Cardiol. 2005;102:111–6.

174. Duan J, Wainwright MS, Comerom JM, Saitou N, Sanders AR, Gelembeter J, et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet. 2003;12:205–16.

175. Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK, et al. D2 dopamine receptor gene (DRD2) TaqI A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997;7:479–84.

176. Rayner B, Ramesar R. The importance of G protein-coupled receptor kinase 4 (GRK4) in pathogenesis of salt sensitivity, salt sensitive hypertension and response to antihypertensive treatment. Int J Mol Sci. 2015;16:5741–9.

177. Johnson TL, Tulis DA, Keeler BE, Virag JA, Lust RM, Clemens S. The dopamine D3 receptor knockout mouse mimics aging-related changes in autonomic function and cardiac fibrosis. PLoS ONE. 2013;8:e74116.

178. Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro K, et al. Disruption of the dopamine D3 receptor gene (DRD3) results in renal hypertension. J Am Soc Nephrol. 2011;22:826–34.

179. Asico LD, Asico EA, Clynes M, Rosén MI, Rodríguez Fernímen M, et al. Renal dopaminergic system: pathophysiological implications and clinical perspectives. World J Nephrol. 2015;4:196–212.

180. Vaziri ND, Wang XQ, Oveisi F, Rad B. Induction of oxidative stress by glutathione depletion causes severe hypertension in rural Han Chinese in Fuxin, Liaoning, China. Chin Med J (Engl). 2011;124:2113–6.

181. Polonikov AV, Vialykh EK, Charnosov MI, Ilić T, Freidin MB, Vasiľeva OV, et al. The C718T polymorphism in the 3′ untranslated region of glutathione peroxidase-4 gene is a predictor of cerebral stroke in patients with essential hypertension. Hypertens Res. 2012;35:507–12.

182. Vaziri ND, Wang XQ, Oveisf F, Rad B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension. 2000;36:142–6.

183. Poli Imiant R, Piacentini S, Lazzarin M, Re MA, Manfellotto D, Poli I, et al. Single-nucleotide polymorphisms of the dopamine D2 receptor gene (DRD2) is associated with increased sympathetic tone and are hypertensive. J Neurol. 2002;22:10801–10.

184. Zhang Y, Asico LD, Yu P, Wang Z, Jones JE, Escano CS, et al. D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2006;290:R96–R104.

185. Lu Q, Yang Y, Villar VA, Asico L, Jones JE, Yu P, et al. D5 dopamine receptor decreases NADPH oxidase, reactive oxygen species and blood pressure via heme oxygenase-1. Hypertens Res. 2013;36:684–90.

186. Kawakami T, Puri N, Sodhi K, Beller N, Takahashi T, Morita K, et al. Reciprocal effects of oxidative stress on heme oxygenase expression and activity contributes to reno-vascular abnormalities in EC-SOD knockout mice. Int J Hypertens. 2012;2012:740203.

187. Naganuma T, Nakayama T, Sato N, Fu Z, Soma M, Aoi N, et al. A haplotype-based case–control study examining human extra-cellular superoxide dismutase gene and essential hypertension. Hypertens Res. 2008;31:1533–40.

188. Park SY, Lee HJ, Ji SM, Kim ME, Jigden B, Lim JE, et al. ANTXR2 is a potential causative gene in the genome-wide association study of the blood pressure locus 4q21. Hypertens Res. 2014;37:811–7.

189. Rhee MY, Yang SJ, Oh SW, Park Y, Kim CI, Park HK, et al. Novel genetic variations associated with salt sensitivity in the Korean population. Hypertens Res. 2011;34:606–11.

190. Ren Y, Jiao X, Zhang L. Expression level of fibroblast growth factor 5 (FGF5) in the peripheral blood of primary hypertension and its clinical significance. Saudi J Biol Sci. 2018;25:469–73.

191. Ardanza N, Yang XP, Cifuentes ME, Haurani MJ, Jackson KW, Liao TD, et al. Lack of glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in angiotensin II hypertension. Hypertension. 2010;55:116–23.

192. Hao Y, Wu BG, Shi J, Chen YL, Sun ZQ, Zheng LQ, et al. Association of tag SNPs of GPx3 with essential hypertension in rural Han Chinese in Fuxin, Liaoning, China. Chin Med J (Engl). 2011;124:2113–6.

193. Bolouk A, Vialykh E, Charnosov MI, Ilić T, Freidin MB, Vasiľevová O, et al. The C718T polymorphism in the 3′ untranslated region of glutathione peroxidase-4 gene is a predictor of cerebral stroke in patients with essential hypertension. Hypertens Res. 2012;35:507–12.

194. Vaziri ND, Wang XQ, Oveisf F, Rad B. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension. 2000;36:142–6.

195. Poli Imiant R, Piacentini S, Lazzarin M, Re MA, Manfellotto D, Fuciarelli M. Glutathione S-transferase variants as risk factor for essential hypertension in Italian patients. Mol Cell Biochem. 2011;357:227–33.

196. Han JH, Lee HJ, Choi HJ, Yun KE, Kang MH. Lymphocyte DNA damage and plasma antioxidant status in Korean subclinical hypertensive patients by glutathione S-transferase-polymerase chain reaction study examining human extra-cellular superoxide dismutase gene and essential hypertension. Hypertens Res. 2011;34:606–11.

197. Naganuma T, Nakayama T, Sato N, Fu Z, Soma M, Aoi N, et al. A haplotype-based case–control study examining human extra-cellular superoxide dismutase gene and essential hypertension. Hypertens Res. 2008;31:1533–40.
203. Ndisang JF, Zhao W, Wang R. Selective regulation of blood pressure by heme oxygenase-1 in hypertension. Hypertension. 2002;40:315–21.

204. Wenzel P, Rossmann H, Müller C, Kossmann S, Oelze M, Schulz A, et al. Heme oxygenase-1 suppresses a pro-inflammatory phenotype in monocytes and determines endothelial function and arterial hypertension in mice and humans. Eur Heart J. 2015;36:3437–46.

205. Daenen KE, Martens P, Bammens B. Association of HO-1 (GT)n promoter polymorphism and cardiovascular disease: a reanalysis of the literature. Can J Cardiol. 2016;32:160–8.

206. Stout JM, Goussut MU, Drummond HA, Gray W 3rd, Pruett BE, Stec DE. Sex-specific effects of heme oxygenase-2 deficiency on renovascular hypertension. J Am Soc Hypertens. 2013;7:328–35.

207. Tornavaca O, Pascual G, Barreiro ML, Grande MT, Carretero A, Riera M, et al. Kidney androgen-regulated protein transgenic mice show hypertension and renal alterations mediated by oxidative stress. Circulation. 2009;119:1908–17.

208. de Quixano BB, Villena JA, Aranda M, Brils GI, Cuevas A, Hespel T, et al. Kidney androgen-regulated protein (KAP) transgenic mice are protected against high-fat diet induced metabolic syndrome. Sci Rep. 2017;7:16102.

209. Tornavaca O, Pascual G, Barreiro ML, Grande MT, Carretero A, Riera M, et al. Kidney androgen-regulated protein transgenic mice show hypertension and renal alterations mediated by oxidative stress. Circulation. 2009;119:1908–17.

210. Cheng J, Tao F, Liu Y, Venners SA, Hsu YH, Jiang, et al. Increased oxidative stress, the renin-angiotensin system, and sympathetic overactivation induce hypertension in kidney androgen-regulated protein transgenic mice. Free Radic Biol Med. 2011;51:1831–39.

211. Yang Y, Cuevas S, Yang S, Villar VA, Escano C, Asico L, et al. PGC-1α overexpression preserves blood pressure levels in Chinese population with essential hypertension. Hypertension. 2014;64:825–32.

212. Tong Y, Zhao Q, Zhang J, Wang H. PGC-1α overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice. Biosci Rep. 2015;35:024211. pii.

213. Öster H, Höhl Z, Esterbauer H, Xie M, Iglseder B, Pfeuffer H, Hölzl B, et al. Peroxisome proliferator-activated receptor-gamma coactivator-1 gene is associated with hypertension in type 2 diabetic men. Oxid Med Cell Longev. 2015;2016:3686829.

214. Collister JP, Taylor-Smith H, Drebos D, Nahey D, Tian J, Zimmerman MC. Angiotensin II-induced hypertension is attenuated by overexpressing copper/zinc superoxide dismutase in the brain organum vasculosum of the lamina terminals. Oxid Med Cell Cardiol. 2016;2016:3959087.

215. Andersen G, Wegner L, Jensen DP, Glümer C, Tarnow L, Cheurfa N, Reis AF, et al. Kidney androgen-regulated protein transgenic mice are protected against high-fat diet induced metabolic syndrome. Sci Rep. 2017;7:16102.

216. Andersen G, Wegner L, Jensen DP, Glümer C, Tarnow L, Cheurfa N, Reis AF, et al. Kidney androgen-regulated protein transgenic mice are protected against high-fat diet induced metabolic syndrome. Sci Rep. 2017;7:16102.

217. Wang H, PGC-1α overexpression preserves blood pressure levels in Chinese population with essential hypertension. Hypertension. 2014;64:825–32.
Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation

236. Liu L, Liu J, Tian XY, Wong WT, Lau CW, Xu A, et al. Uncoupling protein-2 mediates DPP-4 inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress. Antioxid Redox Signal. 2014;21:1571–81.

237. Di Castro S, Scarpino S, Marchitti S, Bianchi F, Stanzione R, Cotugno M, et al. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet. Hypertension. 2013;61:534–41.

238. Ji Q, Ikegami H, Fujisawa T, Kawabata Y, Ono M, Nishino M, et al. A common polymorphism of uncoupling protein 2 gene is associated with hypertension. J Hypertens. 2004;22:97–102.

239. Scheepers LE, Wei FF, Stolarz-Skrzypek K, Malyutina S, Armando I, Wang X, Villar VA, Jones JE, Asico LD, Escano C, et al. Reactive oxygen species-dependent hypertension in dopamine D2 receptor-deficient mice. Hypertension. 2007;49:672–8.

240. Wang HP, Yang J, Qin LQ, Yang XJ. Effect of garlic on blood pressure: a meta-analysis. J Clin Hypertens (Greenwich). 2015;17:223–31.

241. Ried K. Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: an updated meta-analysis and review. J Nutr. 2016;146:389S–396S.

242. Dhawan V, Jain S. Garlic supplementation prevents oxidative DNA damage in essential hypertension. Mol Cell Biochem. 2005;275:85–94.

243. Castro C, Lorenzo AG, González A, Cruzado M. Garlic components inhibit angiotensin II-induced cell-cycle progression and migration: involvement of cell-cycle inhibitorp27(Kip1) and mitogen-activated protein kinase. Mol Nutr Food Res. 2010;54:781–7.

244. Siani A, Pagano E, Iacone R, Iacoviello L, Scopacasa F, Strazzullo P. Blood pressure and metabolic changes during dietary L-arginine supplementation in humans. Am J Hypertens. 2000;13:547–51.

245. Rajapakse NW, Karim F, Evans RG, Kaye DM, Head GA. Augmented endothelial-specific L-arginine transport blunts the contribution of the sympathetic nervous system to obesity induced hypertension in mice. PLoS ONE. 2015;10:e0131424.

246. Vanhoutte PM, Zhao Y, Xu A, Leung SW. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res. 2016;119:375–96.

247. Zoja C, Corna D, Nava V, Locatelli M, Abbate M, Gaspari F, et al. Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. Am J Physiol Ren Physiol. 2013;304:F808–819.

248. Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al., BEACON Trial Investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503.

249. Blanca AJ, Ruiz-Armenta MV, Zambrano S, Miguel-Carrasco JL, Arias JL, Arévalo M, et al. Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: protective role of L-carnitine. Toxicol Lett. 2016;241:9–18.

250. Graham D, Huyyn NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, et al. Mitochondria-targeted antioxidant MitolQ10 improves endothelial function and attenuates cardiac hyper trophy. Hypertension. 2009;54:322–8.

251. Ruggenenti P, Cattaneo D, Loriga G, Ledda F, Motterlini R, Gherardi G, et al. Ameliorating hypertension and insulin resistance in subjects at increased cardiovascular risk: effects of acetyl-L-carnitine therapy. Hypertension. 2009;54:567–74.

252. Serban C, Sahebkar A, Ursoniu S, Andrica F, Banach M. Effect of garlic on blood pressure and markers of cardiovascular risk in non-diabetic patients with chronic kidney disease: a placebo-controlled, randomized, cross-over study. Med Sci Monit. 2010;16:PI13–118.

253. Aldini G, Altomare A, Baron G, Vistoli G, Carimi M, Borsani L, et al. N-acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;https://doi.org/10.1080/10701578.2018.1468564.1–12.

254. Zhang Y, Cuevas S, Asico LD, Escano C, Yang Y, Pascua AM, et al. Deficient dopamine D2 receptor function causes renal inflammation independently of high blood pressure. PLoS ONE. 2012;7:e38745.

255. Potje SR, Troiano JA, Graton ME, Ximenes VF, Nakamune AC, Antoniali C. Hypotensive and vasorelaxant effect of diacapycin in normotensive rats. Free Radic Biol Med. 2017;106:148–57.

256. Bhattacharya KA, Elrenessy AB, Sullivan JC. Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2012;302:R274–282.

257. Li Z, Wang Y, Man RJ, Vanhoutte PM. Upregulation of heme oxygenase-1 potentiates EDH-type relaxations in the mesenteric artery of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2013;305:H1471–1483.

258. Wang WP, Yang J, Qin LQ, Yang XJ. Effect of garlic on blood pressure: a meta-analysis. J Clin Hypertens (Greenwich). 2015;17:223–31.

259. Ried K. Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: an updated meta-analysis and review. J Nutr. 2016;146:389S–396S.

260. Dhawan V, Jain S. Garlic supplementation prevents oxidative DNA damage in essential hypertension. Mol Cell Biochem. 2005;275:85–94.

261. Castro C, Lorenzo AG, Gonzalez A, Cruzado M. Garlic components inhibit angiotensin II-induced cell-cycle progression and migration: involvement of cell-cycle inhibitor p27(Kip1) and mitogen-activated protein kinase. Mol Nutr Food Res. 2010;54:781–7.

262. Siani A, Pagano E, Iacone R, Iacoviello L, Scopacasa F, Strazzullo P. Blood pressure and metabolic changes during dietary L-arginine supplementation in humans. Am J Hypertens. 2000;13:547–51.

263. Rajapakse NW, Karim F, Evans RG, Kaye DM, Head GA. Augmented endothelial-specific L-arginine transport blunts the contribution of the sympathetic nervous system to obesity induced hypertension in mice. PLoS ONE. 2015;10:e0131424.

264. Vanhoutte PM, Zhao Y, Xu A, Leung SW. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res. 2016;119:375–96.

265. Zoja C, Corna D, Nava V, Locatelli M, Abbate M, Gaspari F, et al. Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. Am J Physiol Ren Physiol. 2013;304:F808–819.

266. Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al., BEACON Trial Investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503.

267. Blanca AJ, Ruiz-Armenta MV, Zambrano S, Miguel-Carrasco JL, Arias JL, Arévalo M, et al. Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: protective role of L-carnitine. Toxicol Lett. 2016;241:9–18.

268. Graham D, Huyyn NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, et al. Mitochondria-targeted antioxidant MitolQ10 improves endothelial function and attenuates cardiac hyper trophy. Hypertension. 2009;54:322–8.

269. Ruggenenti P, Cattaneo D, Loriga G, Ledda F, Motterlini R, Gherardi G, et al. Ameliorating hypertension and insulin resistance in subjects at increased cardiovascular risk: effects of acetyl-L-carnitine therapy. Hypertension. 2009;54:567–74.

270. Takahashi R, Asai T, Murakami H, Murakami R, Tsuzuki M, Numaguchi Y, et al. Pressure overload-induced cardiomyopathy in heterozygous carrier mice of carnitine transporter gene mutation. Hypertension. 2007;50:497–450.

271. Mingorance C, Duluc L, Chalopin M, Simard G, Ducluzeau PH, Herrera MD, et al. Propionyl-L-carnitine corrects metabolic and cardiovascular alterations in diet-induced obese mice and improves liver respiratory chain activity. PLoS ONE. 2012;7:e34268.

272. San Cheang W, Yuen Ngai C, Yen Tam Y, Yu Tian X, Tak Wong W, Zhang Y, et al. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress. Sci Rep. 2015;5:10340.

273. Serban C, Sahebkar A, Urosionu S, Andrica F, Banach M. Effect of sour tea (Ribesca sabadariifl.) on arterial hypertension: a systematic review and meta-analysis of randomized controlled trials. J Hypertens. 2015;33:1119–27.

274. Sugita M, Kapoor MP, Nishimura A, Okubo T. Influence of green tea catechins on oxidative stress metabolites at rest and during exercise in healthy humans. Nutrition. 2016;32:321–31.
269. Burke BE, Neuenschwander R, Olson RD. Randomized, double-blind, placebo-controlled trial of coenzyme Q10 in isolated systolic hypertension. South Med J. 2001;94:1112–7.

270. Singh RB, Niaz MA, Rastogi SS, Shukla PK, Thakur AS. Effect of hydroxysoluble coenzyme Q10 on blood pressures and insulin resistance in hypertensive patients with coronary artery disease. J Hum Hypertens. 1999;13:203–8.

271. Luna-Sánchez M, Hidalgo-Gutiérrez A, Hildebrandt TM, Chaves-Serrano J, Barriocanal-Casado E, Santos-Fandilá Á, et al. CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome. EMBO Mol Med. 2017:9:78–95.

272. Ankola DD, Viswanad B, Bhardwaj V, Ramarao P, Kumar MN. Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? Eur J Pharm Biopharm. 2007;67:361–9.

273. Nakmareong S, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Kongyingyoes B, Donpunha W, et al. Tetrahydrocurcumin alleviates hypertension, aortic stiffening and oxidative stress in rats with nitric oxide deficiency. Hypertens Res. 2012;35:418–25.

274. Kukongviriyapan U, Pannangpetch P, Kukongviriyapan V, Donpunha W, Sompson K, Surawattanawan P. Curcumin protects against cadmium-induced vascular dysfunction, hypertension and tissue cadmium accumulation in mice. Nutrients. 2014;21:1194–208.

275. Cicero AFG, Fogacci F, Colletti A. Food and plant bioactives for cardiovascular disease: effect on endothelial dependent relaxation and NO production. Chem Biol Interact. 2014;223:109–17.

276. Wang S, Ye Q, Tu J, Zhang M, Ji B. Curcumin protects against hypertension and tissue cadmium accumulation in mice. Nutrients. 2014;21:1194–208.

277. Wang S, Ye Q, Tu J, Zhang M, Ji B. Curcumin protects against hypertension aggravated retinal ischemia/reperfusion in a rat stroke model. Clin Exp Hypertens. 2017;39:711–7.

278. El-Bassossy HM, Hassan N, Zakaria MN. Heme oxygenase-1 deficiency and tissue cadmium accumulation in mice. Nutrients. 2014;21:1194–208.

279. Lu Q, Yang Y, Villar VA, Asico L, Jones JE, Yu P, et al. D5-Lipoic acid reduces neurogenic hypertension by blunting oxidative stress-mediated increase in ADAM17. Am J Physiol Heart Circ Physiol. 2015;309:H926–934.

280. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vasc Health Risk Manag. 2011;7:577–84.

281. Rahman MM, Kwon HS, Kim MJ, Go HK, Oak MH, Kim DH. Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus. Biomed Pharmacother. 2017;92:606–14.

282. Klimentova J, Cébova M, Barta A, Matuskova Z, Vrankova S, Rehakova R, et al. Effect of melatonin on blood pressure and nitric oxide generation in rats with metabolic syndrome. Physiol Res. 2016;65:S373–380.

283. Qiao YF, Guo WJ, Li L, Shao S, Qiao X, Shao JJ, et al. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats. Mol Med Rep. 2016;13:21–26.

284. Plotnikov MB, Aliev OI, Sidekshenova AV, Shamanaev AY, Anisichenko AM, Nosarev AV, et al. Modes of hypotensive action of dihydroquercetin in arterial hypertension. Bull Exp Biol Med. 2017;162:353–6.

285. Gormaz JG, Quintemil S, Rodrigo R. Cardiovascular disease: a target for the pharmacological effects of quercetin. Curr Top Med Chem. 2015;15:1735–42.

286. Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, et al. Quercetin reduces systolic blood pressure and plasma oxidised lowdensity lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr. 2009;102:1065–74.

287. Ko WC, Shih CM, Chen MC, Lai YH, Chen JH, Chen CM, et al. Suppressive effects of 3-O-methylquercetin on ovalbumin-induced airway hyperresponsiveness. Planta Med. 2004;70:1123–7.

288. Dolinsky VW, Chakrabarti S, Pereira TJ, Oka T, Levasseur J, Beker D, et al. Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim Biophys Acta. 2013;1832:1723–33.

289. Tain YL, Lin YJ, Sheen JM, Lin JC, Yu HR, Huang LT, et al. Resveratrol prevents the combined maternal plus postweaning high-fat-diets-induced hypertension in male offspring. J Nutr Biochem. 2017;48:120–7.

290. Diao Z, Asico LD, Villar VAM, Zheng X, Cuevas S, Armando I, et al. Increased renal oxidative stress in salt-sensitive human GRK4/46V transgenic mice. Free Radic Biol Med. 2017;106:80–90.

291. Geetha R, Yogalakshmi B, Sreeja S, Bhavani K, Anuradha CV. Troxerutin suppresses lipid abnormalities in the heart of high-fat-high-fructose diet-fed mice. Mol Cell Biochem. 2014;387:123–34.

292. Yu Y, Zheng G. Troxerutin protects against diabetic cardiomyopathy through NF-κB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep. 2017;15:3473–8.

293. Jaja SI, Ogungbeni SI, Kehinde MO. Electrocardiographic and blood pressure changes in apparently healthy male subjects following oral, chronic, low-dose vitamin C supplementation and/or change in posture. Nig Q J Hosp Med. 2008;18:96–100.

294. Chen X, Touyz RM, Park JB, Schiffrin EL. Antioxidant effects of melatonin supplement regulate blood pressure? A systematic review of randomized, double-blind placebo-controlled clinical trials. Int J Prev Med. 2017;8:33.

295. de Queiroz TM, Xia H, Filipeanu CM, Braga VA, Lazartigues E. α-Lipoic acid reduces neurogenic hypertension by blunting oxidative stress-mediated increase in ADAM17. Am J Physiol Heart Circ Physiol. 2015;309:H926–934.

296. Grossman E, Laudon M, Zisapel N. Effect of melatonin on nocturnal blood pressure: meta-analysis of randomized controlled trials. Vasc Health Risk Manag. 2011;7:577–84.
Vitamin D and cardiovascular disease. Am J Clin Nutr. 2012;96:302–8.

302. Rodrigo R, Prat H, Passalaqua W, Araya J, Bächler JP. Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patients with essential hypertension. Clin Sci (Lond). 2008;114:625–34.

303. Donpuna W, Kukongviriyapan U, Sommapit K, Pakdeechee P, Kukongviriyapan V, Pannangpetch P. Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals. 2011;24:105–15.

304. Ahmad KA, Yuan Yuan D, Nawaz W, Ze H, Zhuo CX, Talal B, et al. Antioxidant therapy for management of oxidative stress induced hypertension. Free Radic Res. 2017;51:428–38.

305. Juraschek SP, Guallar E, Appel LJ, Miller ER 3rd. Effects of vitamin D supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;95:1079–88.

306. Witham MD, Nadir MA, Struthers AD. Effect of vitamin D on blood pressure: a systematic review and meta-analysis. J Hypertens. 2009;27:1948–54.

307. Mirhosseini NZ, Knaus SJ, Bohaychuk K, Singh J, Vanparanast HA, Weber LP. Both high and low plasma levels of 25-hydroxy vitamin D increase blood pressure in a normal rat model. Br J Nutr. 2016;116:1889–1900.

308. Pilz S, Gakusch M, Kienreich K, Grübler M, Verheyen N, Fahrleitner-Pammer A, et al. Effects of vitamin D receptor in vascular endothelial cells alters vascular function. Hypertension. 2014;64:1290.

309. Ni W, Watts SW, Ng M, Chen S, Glenn DJ, Gardner DG. Elimination of vitamin D receptor in vascular endothelial cells alters vascular function. Hypertension. 2014;64:1290–96.

310. Pelham CJ, Drews EM, Agrawal DK. Vitamin D controls resistance artery function through regulation of perivascular adipose tissue hypoxia and inflammation. J Mol Cell Cardiol. 2016;98:1–10.

311. Franczyk A, Stolarz-Skrzypek K, Wesolowska A, Czarnecka D. Vitamin D and vitamin D receptor activators in treatment of hypertension and cardiovascular disease. Cardiovasc Hematol Disord Drug Targets. 2014;14:34–44.

312. Faulkner JL, Amaral LM, Cornelius DC, Cunningham MW, Ibrahim T, Heep A, et al. Vitamin D supplementation reduces some AT1-Aα-induced downstream targets implicated in pre-eclampsia including hypertension. Am J Physiol Regul Integr Comp Physiol. 2017;32:R125–131.

313. Beveridge LA, Struthers AD, Khan F, Jorde R, Scragg R, Macdonald HM, et al., D-PRESSURE Collaboration. Effect of vitamin D supplementation on blood pressure: a systematic review and meta-analysis incorporating individual patient data. JAMA Intern Med. 2015;175:745–54.

314. Trehan N, Afonso L, Levine DL, Levy PD. Vitamin D deficiency, supplementation, and cardiovascular health. Crit Pathw Cardiol. 2017;16:109–18.

315. Al Mheid I, Quyyumi AA. Vitamin D and cardiovascular disease: controversy unresolved. J Am Coll Cardiol. 2017;70:89–100.

316. Legarth C, Grimm D, Wehland M, Bauer J, Krüger M. The impact of vitamin D in the treatment of essential hypertension. Int J Mol Sci. 2018;19:E4455.

317. Mirhosseini NZ, Knaus SJ, Bohaychuk K, Singh J, Vanparanast HA, Weber LP. Both high and low plasma levels of 25-hydroxy vitamin D increase blood pressure in a normal rat model. Br J Nutr. 2016;116:1889–1900.

318. Oh J, Riek AE, Zhang RM, Williams SAS, Darwech I, Bernal-Mizrachi C. Deletion of JNK2 prevents vitamin-D-deficiency-induced hypertension and atherosclerosis in mice. J Steroid Biochem Mol Biol. 2018;177:179–86.

319. Bosham M, Rafiei M, Sadeghi K, Sarraf-Zadegan N. Vitamin D can reduce blood pressure in mild hypertensives. Int J Vitam Nutr Res. 2002;72:309–14.

320. Barbagallo M, Dominguez LJ, Tagliamonte MR, Resnick LM, Paolillo G. Effects of vitamin E and glutathione on glucose metabolism: role of magnesium. Hypertension. 1999;34:1002–6.

321. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. Vitamin E as a potential interventional treatment for metabolic syndrome: evidence from animal and human studies. Front Pharmacol. 2017;8:444.

322. Azzi A. Many tocophorins, one vitamin E. Mol Asp Med. 2018;61:92–103.

323. Galley HF, Thornton J, Howdle PD, Walker BE, Webster NR. Combination oral antioxidant supplementation reduces blood pressure. Clin Sci (Lond). 1997;92:361–5.

324. Wigley RD, Vlieg M. Alpha tocopherol and blood pressure in PN/m mice. Aust J Exp Biol Med Sci. 1978;56:631–7.

325. Saremi A, Arora R. Vitamin E and cardiovascular disease. Am J Ther. 2010;17:e56–65.

326. Konety BR, Leman E, Vietmeier B, Arlotti J, Dhir R, Getzenberg RH. In vitro and in vivo effects of vitamin D (calcitriol) administration on the normal neonatal and prepubertal prostate. J Urol. 2000;164:1812–8.

327. Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxes, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20:164–82.

328. Ando K, Fujita M. Reactive oxygen species and the central nervous system in salt-sensitive hypertension: possible relationship with obesity-induced hypertension. Clin Exp Pharmacol Physiol. 2012;39:111–6.

329. Giordano FJ. Oxygens, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005;115:500–8.

330. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.

331. Montezano AC, Tsiroupanos S, Dulak-Lis M, Harvey A, Camargo Lde L, Touyz RM. Redox signaling, Nox5 and vascular remodeling in hypertension. Curr Opin Nephrol Hypertens. 2015;24:425–33.

332. Stasij MJ. CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiology. Gene. 2016;586:27–35.

333. Wang H, Albadawi H, Siddiquie Z, Stone JM, Panchenko MP, Watkins MT, et al. Altered vascular activation due to deficiency of the NADPH oxidase component p22phox. Cardiovasc Pathol. 2014;23:35–42.

334. Zalba G, San José G, Beaumont FJ, Fortuño MA, Fortuño A, Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.

335. Schreiber R, Ferreira-Sae MC, Tuncuðuva AC, Mill JG, Costa FO, Krieger JE, et al. CYBA C242T polymorphism is associated with obesity and diabetes mellitus in Brazilian hypertensive essential systemic hypertension. Mol Med Rep. 2014;9:1857.

336. Zalba G, San José G, Beaumont FJ, Fortuño MA, Fortuño A, Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4:181–9.

337. Kumar R, Kohli S, Ali Z, Duhan K, Ram R, Gupta M, et al. CYBA (p22phox) variants associate with blood pressure and oxidative stress markers in hypertension: a replication study in populations of diverse altitudes. Hypertens Res. 2015;38:498–506.
338. Yu P, Han W, Villar VA, Yang Y, Lu Q, Lee H, et al. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol. 2014;2:570–9.

339. Wang Y, Chen F, Le B, Stepp DW, Fulton DJ. Impact of Nox5 polymorphisms on basal and stimulus-dependent ROS generation. PLoS ONE. 2014;9:e100102.

340. Holterman CE, Thibodeau JF, Towaij C, Gutsol A, Montezano AC, Parks RJ, et al. Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J Am Soc Nephrol. 2014;25:784–97.

341. Heimlich JB, Speed JS, O’Connor PM, Pollock JS, Townes TM, Meiller SE, et al. Endothelin-1 contributes to the progression of renal injury in sickle cell disease via reactive oxygen species. Br J Pharmacol. 2016;173:386–95.

342. Gupta RM, Hadaya J, Trehan A, Zekavat SM, Roselli C, Klarin D, et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell. 2017;170:522–33.

343. Brennan ML, Anderson MM, Shih DM, Xu D, Wang X, Mehta AC, et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest. 2001;107:419–30.

344. Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T. Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 2008;275:3278–89.

345. Wright RM, Vaitaitis GM, Wilson CM, Repine TB, Terada LS, Repine JE. cDNA cloning, characterization, and tissue-specific expression of human xanthine dehydrogenase/xanthine oxidase. Proc Natl Acad Sci USA. 1993;90:10690–4.

346. Van Hee VC, Adar SD, Szipro AA, Barr RG, Diez Roux A, Bluemke DA, et al. Common genetic variation, residential proximity to traffic exposure, and left ventricular mass: the multi-ethnic study of atherosclerosis. Environ Health Perspect. 2012;130:1686.

347. Heimlich JB, Speed JS, O’Connor PM, Pollock JS, Townes TM, Meiller SE, et al. Targeting of splice variants of human cytochrome P450 epoxygenase 2 pathway. Hypertension. 2009;54:1077–83.

348. Zhang MZ, Harris RC. Antihypertensive mechanisms of 12-lipoxygenase inhibitors. Curr Opin Nephrol Hypertens. 2013;22:163–9.

349. Huber M, Lezious S, Reibis R, Treszl A, Kujawinska D, Jakob S, et al. A single nucleotide polymorphism near the CYP17A1 gene is associated with left ventricular mass in hypertensive patients under pharmacotherapy. Int J Mol Sci. 2015;16:17456–68.

350. Yao B, Harris RC, Zhang MZ. Intrarenal dopamine attenuates doxycorticosterone acetate/high-salt-induced blood pressure elevation in part through activation of a medullary cyclooxygenase 2 pathway. Hypertension. 2009;54:1077–83.

351. Huber M, Lezious S, Reibis R, Treszl A, Kujawinska D, Jakob S, et al. Single nucleotide polymorphism near the CYP17A1 gene is associated with left ventricular mass in hypertensive patients under pharmacotherapy. Int J Mol Sci. 2015;16:2845–54.

352. Zhang MZ, Yao B, Gewin L, Wei S, Capdevila JH, et al. Role of epoxysesatrienoic acids (EETs) in mediation of dopamine’s effects in the kidney. Am J Physiol Ren Physiol. 2013;305:F1680–8.

353. Wright RM, Vaitaitis GM, Wilson CM, Repine TB, Terada LS, Repine JE. cDNA cloning, characterization, and tissue-specific expression of human xanthine dehydrogenase/xanthine oxidase. Proc Natl Acad Sci USA. 1993;90:10690–4.

354. Van Hee VC, Adar SD, Szipro AA, Barr RG, Diez Roux A, Bluemke DA, et al. Common genetic variation, residential proximity to traffic exposure, and left ventricular mass: the multi-ethnic study of atherosclerosis. Environ Health Perspect. 2012;101:962–9.

355. Quintana LF, Guzmán B, Collado S, Claria J, Poch E. A coding polymorphism in the 12-lipoxygenase gene is associated to essential hypertension and urinary 12(S)-HETE. Kidney Int. 2006;69:526–30.

356. Kriska T, Cepura C, Magier D, Sienkiewicz L, Gauthier K, Campbell WB. Mice lacking macrophage 12/15-lipoxygenase are resistant to experimental hypertension. Am J Physiol Heart Circ Physiol. 2012;302:H2428–2438.

357. Huan T, Esko T, Peters MJ, Pilling LC, Schramm K, Schurmann FP, et al. Targeting of splice variants of human cytochrome P450 epoxygenase 2 pathway. Hypertension. 2009;54:1077–83.

358. Zhang MZ, Harris RC. Antihypertensive mechanisms of 12-lipoxygenase inhibitors. Curr Opin Nephrol Hypertens. 2013;22:163–9.

359. Huber M, Lezious S, Reibis R, Treszl A, Kujawinska D, Jakob S, et al. Single nucleotide polymorphism near the CYP17A1 gene is associated with left ventricular mass in hypertensive patients under pharmacotherapy. Int J Mol Sci. 2015;16:17456–68.

360. Huber M, Lezious S, Reibis R, Treszl A, Kujawinska D, Jakob S, et al. Single nucleotide polymorphism near the CYP17A1 gene is associated with left ventricular mass in hypertensive patients under pharmacotherapy. Int J Mol Sci. 2015;16:2845–54.

361. Zhang MZ, Yao B, Gewin L, Wei S, Capdevila JH, et al. Role of epoxysesatrienoic acids (EETs) in mediation of dopamine’s effects in the kidney. Am J Physiol Ren Physiol. 2013;305:F1680–1686.

362. Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA. 2007;104:14807–12.

363. de Souza BM, Michels M, Sortica DA, Bouças AP, Rheinheimer C, Mennuni S, et al. Role of epoxyeicosatrienoic acids (EETs) in mediation of dopamine’s effects in the kidney. Am J Physiol Ren Physiol. 2013;305:F1680–8.

364. Zhang MZ, Yao B, Wang S, Fan X, Wu G, Yang H, et al. Intrarenal dopamine deficiency leads to hypertension and decreased longevity in mice. J Clin Invest. 2011;121:2845–54.

365. Zhang MZ, Yao B, Gewin L, Wei S, Capdevila JH, et al. Role of epoxysesatrienoic acids (EETs) in mediation of dopamine’s effects in the kidney. Am J Physiol Ren Physiol. 2013;305:F1680–1686.

366. Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA. 2007;104:14807–12.

367. de Souza BM, Michels M, Sortica DA, Bouças AP, Rheinheimer J, Buffon MP, et al. Polymorphisms of the UCP2 gene are associated with glomerular filtration rate in type 2 diabetic patients and with decreased UCP2 gene expression in human kidney. PLoS ONE. 2015;10:e0132938.

368. Rybka J, Kupczyk D, Kędziora-Kornatowska K, Motyl J, Czuczecjo K, Szewczyk-Golec K, et al. Glutathione-related enzymes of ethnicity, endothelin-1 gene, and everyday discrimination upon nocturnal ambulatory blood pressure. Ann Behav Med. 2013;45:377–86.

369. Hermann M, Hellermann JP, Quitzau K. CYP4A11 polymorphism correlates with coronary endothelial dysfunction in patients with coronary artery disease—the ENCORE Trials. Atherosclerosis. 2009;207:476–9.

370. Polonikov AV, Ivanov VP, Solodilova MA. CYP2E1 gene promoter polymorphism –129G>C increases the risk of essential hypertension in men with alcohol abuse. Bull Exp Biol Med. 2013;155:734–7.

371. Oniki K, Hori M, Takata K, Yocoyama T, Mihara S, Maruyuma T, et al. Association between glutathione S-transferase A1, M1 and T1 polymorphisms and hypertension. Pharm Genom. 2008;18:275–277.
Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation

372. Zusterzeel PL, Visser W, Peters WH, Merkus HW, Nelen WL, Steegers EA. Polymorphism in the glutathione S-transferase P1 gene and risk for preeclampsia. Obstet Gynecol. 2000;96:50–54.

373. Ge B, Song Y, Zhang Y, Liu X, Wen Y, Guo X, et al. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) null polymorphisms and the risk of hypertension: a meta-analysis. PLoS ONE. 2015;10:e0118897.

374. Wang Y, Branicky R, Noé A, Hekimi S. Peroxidase dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217:1915–28.

375. Allié R, Nivet-Antoine V, Saldmann A, Golmard JL, Cottart CH, Laguillier C, et al. Human catalase gene promoter haplotype and cardiometabolic improvement after bariatric surgery. Gene. 2018;656:17–21.

376. Kasperczyk S, Kasperczyk J, Ostalowska A, Zalejska-Fiolka J, Wielkoszyński T, Świetochowska E, et al. The role of the antioxidant enzymes in erythrocytes in the development of arterial hypertension among humans exposed to lead. Biol Trace Elem Res. 2009;130:95–106.

377. Lacy F, O’Connor DT, Schmid-Schönbein GW. Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J Hypertens. 1998;16:291–303.

378. Lacy F, Kailasam MT, O’Connor DT, Schmid-Schönbein GW, Parner RJ. Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension. 2000;36:878–84.

379. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.

380. Chen SD, Yang DI, Lin TK, Shaw FZ, Chuang YC. Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci. 2011;12:7199–215.

381. Togliatto G, Lombardo G, Brizzi MF. The future challenge of reactive oxygen species (ROS) in hypertension: from bench to bed side. Int J Mol Sci. 2017;18:E1898.

382. Mihalj M, Tadzic R, Vucev A, Rucevic S, Drenjancevic I. Blood pressure-lowering effect: a review of available randomized clinical trials and their meta-analyses. Br J Clin Pharmacol. 2017;83:163–71.

383. Ahmadian E, Khosroushahi AY, Eftekhari A, Farajnia S, Babaei M, Dietrich S, Arregui M, et al. Dietary supplements and risk of cardiovascular disease. Curr Pharm. 2003;9:751–9.

384. Czernichow S, Bertrais S, Blacher J, Galan P, Favier A, et al. Effect of supplementation with antioxidants upon long-term risk of hypertension in the SU.VI.MAX study: association with plasma antioxidant levels. J Hypertens. 2005;23:2013–8.

385. Cuervo AM. The role of the antioxidant enzyme manganese superoxide dismutase in the development of age-related neurodegenerative diseases. Biochem Soc Trans. 1998;26:1184–5.

386. Dalbeth N, Edwards J, Fairchild S, Callan M, Hall FC. The non-thiol antioxidant lipoic acid protects against low-density lipoprotein oxidation. Biochim Biophys Acta. 1999;1404:138–47.

387. de Zeeuw D, Akizawa T, Audiya P, Bakris GL, Chin M, Christ-Schmidt H, et al. BEACON Trial Investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369:2492–503.

388. Rossing P. Diabetic nephropathy: could problems with bardoxolone methyl have been predicted? Nat Rev Nephrol. 2013;9:128–30.

389. Himmelfarb J, Tuttle KR. Bardoxolone methyl in type 2 diabetes and advanced chronic kidney disease. N Engl J Med. 2014;370:1768–9.

390. Mullan BA, Young IS, Fee H, McCance DR. Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension. 2002;40:804–9.

391. Kim MK, Sasaki S, Sazazuki S, Okubo S, Hayashi M, Tsugane S. Lack of long-term effect of vitamin C supplementation on blood pressure. Hypertension. 2002;40:797–803.

392. Borghi C, Cicero AF. Nutraceuticals with a clinically detectable blood pressure-lowering effect: a review of available randomized clinical trials and their meta-analyses. Br J Clin Pharmacol. 2017;83:163–71.

393. Kamper M, Tsimpoukádi O, Chatzigeorgiou A, Lymbéri M, Kamper EF. The antioxidant effect of angiotensin II receptor blocker, losartan, in streptozotocin-induced diabetic rats. Transl Res. 2010;156:26–36.

394. Molteni A, Ward WF, Ts’ao CH, Taylor J, Small W Jr, Brizio-Molteni L, et al. Cytostatic properties of some angiotensin I converting enzyme inhibitors and of angiotensin II type I receptor antagonists. Curr Pharm. 2003;9:751–61.

395. Chopra M, McMurray J, Stewart J, Dargie HJ, Smith WE. Free radical scavenging: a potentially beneficial action of thiol-containing angiotensin converting enzyme inhibitors. Biochem Soc Trans. 1990;18:1184–5.

396. Dalbeth N, Edwards J, Fairchild S, Callan M, Hall FC. The non-thiol angiotensin-converting enzyme inhibitor quinapril suppresses inflammatory arthritis. Rheumatology (Oxf). 2005;44:24–31.

397. Bucci M, Vellecco V, Cantalupo A, Brancalone V, Zhou Z, Evangelista S, et al. Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition. Cardiovasc Res. 2014;102:138–47.

398. Moser M, Frishman W. Results of therapy with carvedilol, a beta-blocker vasodilator with antioxidant properties, in hypertensive patients. Am J Hypertens. 1998;1:215–22S.

399. Gomes A, Costa D, Lima JL, Fernandes E, Antioxidant activity of beta-blockers: an effect mediated by scavenging reactive oxygen species in isolated aortic smooth muscle cells. Cardiovasc Res. 1998;37:1768–9.

400. Ahmadian E, Khosroushahi AY, Eftekhari A, Farajnia S, Babaei M, Dietrich S, Arregui M, et al. Dietary supplements and risk of cardiovascular disease. Curr Pharm. 2003;9:751–9.

401. Moser M, Frishman W. Results of therapy with carvedilol, a beta-blocker vasodilator with antioxidant properties, in hypertensive patients. Am J Hypertens. 1998;1:215–22S.

402. Gomes A, Costa D, Lima JL, Fernandes E. Antioxidant activity of beta-blockers: an effect mediated by scavenging reactive oxygen species in isolated aortic smooth muscle cells. Cardiovasc Res. 1998;37:1768–9.
406. Yang CS, Ho CT, Zhang J, Wan X, Zhang K, Lim J. Antioxidants: differing meanings in food science and health science. J Agric Food Chem. 2018;66:3063–68.

407. Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87:142–49.

408. Morrison D, Hughes J, Della Gatta PA, Mason S, Lamon S, Russell AP, et al. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med. 2015;89:852–62.

409. Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol. 2016;594:5135–47.

410. Johnson SA, Feresin RG, Navaei N, Figueroa A, Elam ML, Akhavan NS, et al. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre-and stage 1-hypertension: a randomized controlled trial. Food Funct. 2017;8:372–80.

411. Guo K, Lu J, Huang Y, Wu M, Zhang L, Yu H, et al. Protective role of PGC-1α in diabetic nephropathy is associated with the inhibition of ROS through mitochondrial dynamic remodeling. PLoS ONE. 2015;10:e0125176.

412. Zhang M, Brewer AC, Schröder K, Santos CX, Grieve DJ, Wang M, et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci USA. 2010;107:18121–26.

413. Coughlan MT, Sharma K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. Kidney Int. 2016;90:272–79.

414. Towler DA. Mitochondrial ROS deficiency and diabetic complications: AMP[K]-lyzing the adaptation to hyperglycemia. J Clin Invest. 2013;123:4573–76.

415. Craige SM, Chen K, Pei Y, Li C, Huang X, Chen C, et al. NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation. 2011;124:731–40.

416. Brüll V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Müller C, et al. Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomized double-blinded placebo-controlled cross-over trial. Br J Nutr. 2015;114:1263–77.

417. Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem. 2018;155:889–904.

418. Tain YL, Lee WC, Wu KLH, Leu S, Chan JYH. Resveratrol prevents the development of hypertension programmed by maternal plus post-weaning high-fructose consumption through modulation of oxidative stress, nutrient-sensing signals, and gut microbiota. Mol Nutr Food Res. 2018:e1800066. https://doi.org/10.1002/mnfr.201800066.

419. Banday AA, Lokhandwala MF. Oxidative stress impairs cGMP-dependent protein kinase activation and vasodilator-stimulated phosphoprotein serine-phosphorylation. Clin Exp Hypertens. 2018;9:1–9.