Synthesis and Antimicrobial Activity of Arylazopyrazole Pyrimidone Clubbed Heterocyclic Compounds

Nikulsinh Sarvaiya¹, Dr. Sheetal Gulati², Dr. H. Patel³

Dept. of Chemistry, Rabindranath Tagore University, Bhopal (M.P.), India¹,²
Ex-Head and Professor, Dept. of Chemistry, S.P. University, VV Nagar, Gujarat, India³

Abstract: Ethyl-3-oxo-2-(4-sulfamoylphenyl)hydrazono butanoate (2) on condensation with 6-methyl-2-oxo-4-substituted phenyl-1,2,3,4-tetrahydro pyrimidine-5-carbohydrazide (3a-e) to gave 4-(2-(3-methyl-1-(6-methyl-2-oxo-4-substituted phenyl-1,2,3,4-tetrahydro pyrimidine -5-carbonyl)-5-oxo-1H-pyrazol-4(5H)-ylidene) hydrazine) benzene sulfonamide (4a-e), which on reaction with benzaldehyde gives 4-(2-(1-(4-(1-[1,1'-biphenyl]-4-yl)-3-(hydroxyl (phenylaryl) -6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carbonyl)-3-methyl-5-oxo-1H-pyrazol-4(5H)-ylidene)hydrazinyl) benzenesulfonamide(5a-e).The structures of all these compounds (4a-e) were recognized by analytical and spectral studies. The synthesized compounds were evaluated for their antimicrobial activity against various bacteria and fungi.

Keywords: Sulphadrug, Pyrazole and Antimicrobial Activity

I. INTRODUCTION

Sulpha drugs are bacteriostatic and are also referred to as antibacterial. The sulphonamides are synthetic antimicrobial agents with a wide spectrum encompassing most Gram-positive and many Gram-negative organisms.¹ ³ The heterocyclic compound, pyrimidinones shows various antimicrobial, hypnotic, antiviral, sedative, antineoplastic, anticonvulsant, analgesic and anti-inflammatory. ⁴⁻⁹ The nitrogen containing pyrazole and its derivatives is show application in medicinal chemistry like antibacterial,antifungal,analgesic, anti-inflammatory, antipyretic, antiparasitic and antimalarial.¹⁰⁻¹⁴ The arylazopyrazoles are generally prepared by combination of aryl-azo-ethyl actoacetate derivatives and hydrazine derivatives, which shows biological activities including antibacterial, antifungical, analgesic, anti-inflammatory properties.¹⁵⁻¹⁷ These heterocyclic systems find wide use in medicine, agriculture and industry. Merging of both of arylazopyrazole and pyrimidone moieties into one molecule may enhance the drug activity to some extent, or may class of drug. Thus the objective of the present work is to explore new derivatives of pyrimidone containing arylazopyrazole of sulfa drug. The present communication comprises such concepts. So the whole synthetic approach is shown in scheme-1.
II. EXPERIMENTAL

The IR spectra were recorded in KBr pellets on a Nicolet 400D spectrometer. 1H NMR spectra were recorded in DMSO with TMS as internal standard on a Bruker spectrometer at 400 MHz. LC-MS of selected samples taken on LC-MSD-Trap-SL_01046. Purity of compound was checked by TLC on silica gel plates and the spots were visualized by UV lamp. 6-methyl-2-oxo-4-substitutedphenyl-1,2,3,4-tetrahydro pyrimidine-5-carbonylhydrazide (3a-e) were synthesis by reported method. The yields, melting points and other characterization data of these compounds are given in Table -1.

Synthesis of 4-(2-(3-methyl-1-(6-methyl-2-oxo-4-substituted phenyl-1,2,3,4-tetrahydro pyrimidine -5-carbonyl)-5-oxo-1H-pyrazol-4(5H)-ylidene) hydrazinyl) benzene sulfonamide (4a-e)
A mixture of ethyl-3-oxo-2-(2-(4-sulfamoylphenyl)hydrazono)butanoate (2) and 6-methyl-2-oxo-4-substitutedphenyl-1,2,3,4-tetrahydro pyrimidine-5-carboxyhydrazide (3a-e)\(^\text{19,20}\) were mixed with glacial acetic acid and then refluxed for appropriate time. Then cooled and resulting solid was filtered off dried and crystallized from alcohol. The yields, melting points and other characterization data of these compounds are given in Table -2.

Synthesis of 4-(2-(1-(4-((1,1’-biphenyl)-4-yl)-3-hydroxy(phenyl)aryl)-6-methyl-2-oxo-1,2,3,4-tetrahydro pyrimidine-5-carbonyl)-3-methyl-5-oxo-1H-pyrazol-4(5H)-ylidene)hydrazinyl)benzenesulfonamide (5a-e)

In a round bottom flask a solution of 4-(2-(3-methyl-1-(6-methyl-2-oxo-4-substitutedphenyl)-1,2,3,4-tetrahydro pyrimidine -5-carbonyl)-5-oxo-1H-pyrazol-4(5H)-ylidene) hydrazinyl) benzene sulfonamide (4a-e) (0.10mmol) and benzaldehyde (0.020mmol) in DMF(50ml) was taken and stirred by placing on magnetic stirrer at room temperature for 4 hours. The product was checked by TLC. The mixture was poured on crushed ice. The precipitates fell out. Filtered, Washed and air-dried. Repurified by ethanol. The yield was 65%. The details are given in Table-3.

Table-1 Physical and Analytical Data of the Compounds Synthesized (3a-e)

Comp. No.	Molecular Formula (Mol.wt.)	LC-MS Data	M.P.\(^\circ\)C	Yield %	Elemental Analysis
3a	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\) (246)	248	135-137	78	C%
					Found
3b	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\) (260)	263	142-144	82	H%
					Found
3c	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\)Cl (280)	295	130-132	76	N%
					Found
3d	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\) (291)	306	124-126	80	S%
					Found
3e	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\) (276)	280	120-121	69	

* Uncorrected

Table-2 Physical and Analytical Data of the Compounds Synthesized (4a-e)

Comp. No.	Molecular Formula (Mol.wt.)	LC-MS Data	M.P.\(^\circ\)C	Yield %	Elemental Analysis
4a	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\)S (495)	502	192-194	62	C%
					Found
4b	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\)S (509)	512	197-199	65	H%
					Found
4c	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\) (529)	536	198-201	60	N%
					Found
4d	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\) (540)	558	191-193	63	S%
					Found
4e	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\) (552)	528	195-198	67	

* Uncorrected

Table-3 Physical and Analytical Data of the Compounds Synthesized (5a-e) as per reported method\(^{21}\)

Comp. No.	Molecular Formula (Mol.wt.)	LC-MS Data	M.P.\(^\circ\)C	Yield %	Elemental Analysis
5a	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\)S (601)	614	196-198	60	C%
					Found
5b	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\)S (615)	627	202-203	59	H%
					Found
5c	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\)S (635)	650	204-205	57	N%
					Found
5d	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\)S (646)	666	214-215	61	S%
					Found
5e	C\(_{13}\)H\(_{20}\)N\(_{2}\)O\(_{2}\)S (631)	649	208-209	64	

* Uncorrected

III. BIOLOGICAL SCREENING
Antibacterial activities: Antibacterial activities of prepared compounds were studied against gram-positive Bacteria and gram-negative Bacteria at a concentration of 50μg/ml by agar cup plate method. Methanol system was used as control in this method. Under similar conditions, using tetracycline as a standard for comparison. The percentage area of inhibition of measured. Compounds 5e and 4e were found more toxic for microbes. Other compounds found to be less or moderate active than tetracycline. (Table -4)

Comp. No.	Zone of Inhibition(mm)				
	Bacillus Subtilis	Staphylococcus aureus	Klebsiella promiae	Salmonella Typh	E.coli
4a	58	43	58	46	58
4b	54	48	62	58	60
4c	57	47	73	45	59
4d	69	44	78	64	62
4e	70	50	81	72	66
5a	60	44	60	47	59
5b	55	49	63	59	61
5c	59	49	74	46	62
5d	70	47	80	66	63
5e	72	51	82	74	69
Tetracycline	79	55	87	76	72

Antifungal activity: The fungicidal activity of prepared compounds (5a-e) and (4a-e) was studied at 1000 ppm concentration in vitro plant pathogenic organisms listed in Table-4. The antifungal activities of all the samples were measured on each of these plant pathogenic strains on potato dextrose agar (PDA) medium. Such a PDA medium contained potato 200 gms, dextrose 20gms, agar 20 gms and water 1 litre five days old cultures were employed. The compounds to be tested were suspended (1000ppm) in a PDA medium and autoclaved at 120° C for 15 min. at 15 atm pressure. These medium were poured into sterile Petri plate and the organisms were inoculated after cooling the Petri plate. The percentage inhabitation for fungi was calculated after 5 days using the formula given below.

Percentage of inhibition = 100(X-Y) / X

Where, X: Area of colony in control plate
Y: Area of colony in test plate

The fungicidal activity all compounds (5a-e) and (4a-e) are shown in Table-5.

Comp. No.	Botrydepladia Thiobromine	Nigrospora Sp.	Penicillium Expansum	Rhizopus Nigricans
4a	62	73	74	54
4b	73	67	63	71
4c	56	65	55	72
4d	67	68	68	67
4e	74	80	74	76
5a	63	75	76	55
5b	75	69	66	73
5c	58	66	57	74
5d	69	69	69	69
5e	75	82	76	78

IV. RESULTS AND DISCUSSIONS

The ethyl-3-oxo-2-(2-(4-sulfamoylphenyl)hydrazono)butanoate (2) react with 6-methyl-2-oxo-4-substitutedphenyl-1,2,3,4-tetrahydro pyrimidine-5-carboxyhydrazide (3a-e) to give 4-(2-(3-methyl-1-(6-methyl-2-oxo-4-substitutedphenyl-1,2,3,4-tetrahydro pyrimidine -5-carbonyl)-5-oxo-1H-pyrazol-4(5H)-ylidene) hydrazinyl) benzene sulfonamide (4a-e), which gives 4-(2-(4-(1,1′-biphenyl)-4-yl)-3-(hydroxy(phenyl)aryl)-6-methyl-2-oxo-1,2,3,4-tetrahydroprymidine-5-carbonyl)-3-methyl-5-oxo-1H-pyrazol-4(5H)-ylidene) hydrazinyl) benzenesulfonamide (5a-e) on reaction with benzaldehyde.
The structures of (3a-e) were confirmed by elemental analysis and IR spectra showing an absorption bands at 3500(N-H), 3030-3080 cm⁻¹(C-H of Ar), 1680 cm⁻¹(CONH), 2950, 1370 cm⁻¹(-CH₃, CH₂), 1080(-Cl),1555, 1375(-NO₂),1695-1750 cm⁻¹(C=O).¹H NMR (400MHz , DMSO - δ , δ / ppm) : 11.8-11.9(s,3H,NH),2.52(t,3H,CH₂), 5.42(s,1H,CH) (3a): 7.23-7.37 (s,5H,ArH); (3b): 1.26 (s,3H,CH₃) , 7.20-7.29 (s,4H,ArH); (3c): 7.19-7.22(s,4H,ArH);(3d):7.18-7.24(s,4H,ArH); (3e): 4.21(s,3H,CH₃), 7.22-7.26(s,4H,ArH).The C, H, N analysis data of all compounds are presented in Table-1.

The IR spectra of (4a-e) are 1620-1630 cm⁻¹(C=N),3420 cm⁻¹(OH), 3030-3080 cm⁻¹ (C-H of Ar.), 2960, 1370 cm⁻¹(-CH₃), 1710-1760(C=O),1380, 1160(SO₂), 1080(-Cl),1555, 1375(-NO₂), 3330 and 3155 cm⁻¹(NH) and 1585, 1548, and 1530 cm⁻¹(C=C).¹H NMR (400MHz , DMSO - δ , δ / ppm): 11.8-11.9,8.4(s,3H,NH), 7.58 (s,2H,NH₂), 2.52-240(s,6H,CH₂), 5.42(s,1H,CH), 7.01-7.20(m,4H,Ar-H), (4a): 7.23-7.37 (s,5H,ArH); (4b): 1.26 (s,3H,CH₃) , 7.20-7.29 (s,4H,ArH); (4c): 7.19-7.22(s,4H,ArH); (4d): 7.18-7.24(s,4H,ArH); (4e): 4.21(s,3H,CH₃).7.22-7.26(s,4H,ArH).The C, H, N analysis data of all compounds are presented in Table -2.

The IR spectra of (5a-e) are 1620-1630 cm⁻¹(C=N),3420 cm⁻¹(OH), 3030-3080 cm⁻¹ (C-H of Ar.), 2960, 1370 cm⁻¹(-CH₃), 1710-1760(C=O),1380, 1160(SO₂), 1080(-Cl),1555, 1375(-NO₂), 3330 and 3155 cm⁻¹(NH) and 1585, 1548, and 1530 cm⁻¹(C=C).¹H NMR (400MHz , DMSO - δ , δ / ppm) : 11.8-11.9,8.4(s,2H,NH), 7.58 (s,2H,NH₂), 2.52-240(s,6H,CH₂), 5.42(s,1H,CH), 7.01-7.20(m,9H,Ar-H),6.67(s,1H,CH),3.72(s,1H,OH), (5a): 7.23-7.37 (s,5H,ArH); (5b): 1.26 (s,3H,CH₃) , 7.20-7.29 (s,4H,ArH); (5c): 7.19-7.22(s,4H,ArH); (5d): 7.18-7.24(s,4H,ArH); (5e): 4.21(s,3H,CH₃),7.22-7.26(s,4H,ArH).The C, H, N analysis data of all compounds are presented in Table -3.

The assessment of data predicts that the elemental contents are consistence with the predicted structure shown in Scheme -1. The IR data also direct for assignment of the predicted structure. The LC-MS of compounds shows the peak of M⁺ ion which is consistent of molecular weight of respect sample. All these facts confirm the structures 5a-e & 4a-e.

CONCLUSION

The examination of antibacterial activity data reveals that the compounds 4e and 5e found more active against the gram-positive and gram-negative bacteria.

REFERENCES

[1]. J. Feng, S. Zhang, W. Shi and Y. Zhang, Antibiotics,6(1),10 (2017).
[2]. J.Shaah, B.Patel and S. Patel, Journal of Saudi Chemical Society, 17,307 (2013).
[3]. M. S. Mohamed, S. M. Awad, Y.M.Zöhn and Z. M. Mohamed, Pharmapharmac, 3(1) , 6217(2012).
[4]. H.Alsharifi and H.S. Patel, International Journal of Science Innovations and Discoveries, 5(2), 408(2012).
[5]. P.A. Patil, R. P. Bhole, R. V. Chikhal and K. P. Bhusari, Int.J.Chem Tech Res., 1(2),373 (2009).
[6]. G.Malhotra and Y.K. Srivastava, J.Chem.Bio.Phys.Sci., 1(1),45, (2011).
[7]. J.Shaah, B.Patel and S. Patel, Bulgarian Chemical Communications, 42(4), 474(2010).
[8]. L. M. El-Deeb, S. H. Lee, Bioorg. Med. Chem., 18,3860, (2010).
[9]. T. Yang, H. He, W. Ang, Y. Yang, J. Yang, Y. Lin, H. Yang, W. Pi, Z. Li, Y. Zhao, Y. Luo and H. Wei, Molecules, 17,2351, (2012).
[10]. C. Li, J.K. Dutra, B. Rast, M.R. Crosson, K.M. Callaghan, S.B. Seibel and A. Silvia,
[11]. Bioorg Med Chem Lett.,14, 95,(2004).
[12]. A.A. Bekht and H.T. Fahmy, Arch Pharm (Weinheim), 336,111, (2003).
[13]. S.B. Katvar, K. Srivastava, S.K. Puri and P.M. Chauhan, Bioorg Med Chem Lett., 16, 4957(2015).
[14]. S. Kuttel, A. Zambon, M. Kaiser, R. Brun, L. Scapoza and R. Perrozio, J Med Chem., 50,5833(2017).
[15]. S. J.Shah, Heterocyclic Letters,7(2),405,(2017).
[16]. S. Genua, G. Kukreta, M. Persico, M. Romano, M. Altarelli, L. Savini, G. Campioni, E. Fattorusso and N. Basilico, Bioorg. Med. Chem. Lett.,16., 5384,(2006).
[17]. M. R. Shiradkar, K. K. Murahari, C. C. Kalyan, D. Panchal, R. Kaur, P. Burange, J. Ghogare, V. Mokale, M. Raut, Bioorg. Med. Chem.,15,3997,(2017).
[18]. M. R. Rao, K. Kaur, N. Devanna and K. B. Chandrasekhar, Asian J Chem.,20,1402, (2018).
[19]. P. Patel, “Synthesis, Characterization and Antimicrobial Screening of Novel Arylazopyrazoles dissertation,Sardar Patel University, V.V. Narga,(2013).
[20]. R. Tayebee and M. Ghadhamghai, Arabian J. of Chemistry, 10(1),5757-5764(2017).
[21]. Sanakasraw R. Shaikh and G. M. Nazeruddin, J. Chem. Phara. Res., 6(12),505-534, (2014).
[22]. 21.Nafisa Anjum, Bangladesh Uni.of Eng. & Tech. Dhaka-1000. Development of facile synthetic routes for the synthesis of dihydropyrimidone derivatives, 23 march 2017,Lib. Buet. Ac. Bé.
[23]. A.L. Barry,The Antimicrobial Susceptibility Test:Principal and Practices,4th ed., edited by Illuslea and Feger,Philadelphia,180(1976).