Edge Detection for Pattern Recognition: A Survey

Alex Pappachen James
School of Engineering
Nazarbayev University
E: apj@ieee.org

Abstract

This review provides an overview of the literature on the edge detection methods for pattern recognition that inspire from the understanding of human vision. We note that edge detection is one of the most fundamental process within the low level vision and provides the basis for the higher level visual intelligence in primates. The recognition of the patterns within the images relate closely to the spatiotemporal processes of edge formations, and its implementation needs a crossdisciplinary approach in neuroscience, computing and pattern recognition. In this review, the edge detectors are grouped in as edge features, gradients and sketch models, and some example applications are provided for reference. We note a significant increase in the amount of published research in the last decade that utilizes edge features in a wide range of problems in computer vision and image understanding having a direct implication to pattern recognition with images.

Keywords: Edge Detection, Gradient Filters, Spatial Filtering, Edge Features

Introduction

Understanding and identifying object features from images in an accurate and computationally efficient way is one of foremost modern challenges in pattern recognition with images(Dell’acqua, Roberto, & Remo, 1998; Grauman & Leibe, 2010; Konash & Dmitri, 1989; Logothetis, 1996; Mamic & Mohammed, 2000; Nguyen, Nebel, & Florez-Revuelta, 2016; Rigelsford & Jon, 2003; Treiber & Marco, 2010; G. Xu & Zhang, 2013). Pixels in an image contain unique information about the objects that once extracted through various mathematical transforms is often referred to as object features(Akagunduz, Erdem, & Ilkay, 2011; C., Rory, Bakker, & Claire, 2011; R. S. T. Lee & Liu, 2003; F. Li, Fangxing, Linyu, & Huafei, 2011). The foundation feature that defines an image is the pixel changes defined as the spatial differences, which in a mathematical sense in an image space can be represented as region wise solutions of differential equations of different orders(Cappellini, 1997; Chou & Wen-Shou, 1999; Gauman & Leibe, 2010; “Object Recognition,” n.d.; Ponce, Hebert, Schmid, & Zisserman, 2007; Rosenfeld, Azriel, Saha, & Akira, 2001; Si & Zhu, 2013).
The primary ideas on these pixel difference calculations originate from the neural studies of human vision processing systems (Bundy, Alan, & Lincoln, 1984; Cheng-en Guo, Cheng-en, Song-Chun, & Wu, 2003; Duperthuy, Christophe, & Jean-Michel, 1997; Lehky & Tanaka, 2016; Lindeberg & Tony, 1994; David Marr & Hildreth, 1979). The early understanding of the vision processing system on primates considers the sensory neural processing mechanisms of the human eye, and how the signals in the eye are generated for a given set of stimulus(Burr, Concetta Morrone, & Donatella, 1989; Erlikhman & Kellman, 2015; Hood & Birch, 1993; Meese & Freeman, 1995; Shapley & Tolhurst, 1973; Tolhurst, 1972; Watt & Morgan, 1983). There are strong evidences that the edge detection is an important phenomenon in human visual system that helps to define the objects and therefore its recognition(Burr et al., 1989; Georgeson, May, Freeman, & Hesse, 2007; Meese & Freeman, 1995; Watt & Morgan, 1983).

The recognition of the patterns offer several practical challenges of detection of edges in the digital images. In practise the digital pixel is square in shape, and its pixel intensity accuracy is restricted by the sensor hardware, digital memory and sampling rates(D. G. Chen, Law, Lian, & Bermak, 2014; Yong Chen, Yong, Fei, & Gul, 2009; Chia-Nan Yeh, Chia-Nan, Yen-Tai, & Jui-Yu, 2008; Fesenmaier & Catrysse, 2008; Gottardi, Sartori, & Simoni, 1993; Ho, Derek, Glenn, & Roman, 2012; Jayaraman, 2011; M.-K. Kim, Hong, & Kwon, 2015; Kleinfelder, Suki-Iwan, Xinqiao, & El Gamal, n.d.; Sarkar & Theuwissen, 2012; Shi, Zhoujuan, & Martin, 2006; Skorka, Orit, & Dileepan, 2014; C. Zhang, Chi, Suying, & Jianglei, 2011; Zhao et al., 2014). These restrictions often leads to information loss within and between the image pixels, and that along the object edges. The continuous edges of the objects no longer looks accurate in space, reflected as missing information in discrete spatial changes. These basic problems in digital image formation process adopted in modern implementations of imaging camera and computers makes the edge detection one of the most scientifically difficult problem to solve. And since edges form the basic sources of features in the objects for a wide range of pattern recognition tasks such as face recognition(Datta, Datta, & Banerjee, 2015; Alex P. James, 2013; Alex Pappachen James & Sima, 2008; Maheshkar, Vikas, Suneeta, Srivastava, & Sushila, 2012; Rodrigues & du Buf, 2009; Yang, Fan, Michel, & Hervé, 1996), iris recognition(Bodade & Talbar, 2014; Burge & Bowyer, 2013; Dori, Dov, & Haralick, 1995; Robinson, n.d.; Wildes & Richard, n.d.), fingerprint recognition(AI-Dulaimi, 2013; Jain, Halici, Hayashi, Lee, & Tsutsui, 1999; Kulshrestha, Megha, Banga, & Sanjeev, 2012; Maltoni, Maio, Jain, & Prabhakar, 2009; Mishra, Parul, Shrivastava, & Amit, 2013; Ratha & Bolle, 2003), activity detection, object detection and tracking(Chartier & Lepage, n.d.; Dollar, Zhuowen, & Belongie, n.d.; Dongcheng Shi, Dongcheng, Liqiang, & Ying, n.d.; Gruen, Armin, & Dirk, 1993; Krammer & Schweinzer, 2006; Mae & Shirai, n.d.; Rodrigues & du Buf, 2009; Shirai, Yoshiaki, Yasushi, & Shin’ya, 1996), this becomes one of the most important topic in applied pattern recognition.

Edge Models

There exists various inter-related theories on edge formation in human eye and subsequent computational models feasible for implementation in a digital computer. The models can be grouped into sketch models, and its deduced forms of edge features and its implementation techniques from gradient filters. Figure 1
shows the grouping of the methods based on the understanding of image edges in the perspective of neuroscience, pattern analysis and signal processing.

![Diagram of Edge Detection Models]

Figure 1: A grouping of edge detection based on the theoretical understanding with respect to neuroscience, pattern analysis and signal processing, that can be used for pattern recognition problems.

Sketch models

The early edge detection schemes inspire from the sketch models (David Marr & Hildreth, 1979) that looks at a physiological model of zero crossing detection. The implementation of the early zero crossing detection methods show a mathematical description of convolution filters (Hildreth, 1980; King, 1985). An early account of edge detection techniques (Argyle & Rosenfeld, 1971) describe the sketching abilities of the human brain, and its translations to computationally feasible models. While these theories are largely attempted to be understood in the neural context and is an interesting topic for vision research, they extend the applications to deep into the very basic understanding of image processing and subsequently the quality of features in pattern recognition.

While, edges are considered as important from the very early days of imaging studies, the deeper understanding of the features themselves serve as an ongoing research problem (Herman M. Gomes & Fisher, 2003; Guo, 2005; Korn, 1989; Lindeberg, 1991; Q. Li & Qi, 2014; Morgan, 2011). The computationally feasible models of the sketches have several possible applications in the pattern recognition (H. M. Gomes & Fisher, n.d.; D. Marr, 1980; Van De Ville & Unser, 2008). The theory of the sketches can be extended to other well known signal processing methods and filters to mimic the various levels of the edge processing (D. Marr, 1980; Van De Ville & Unser, 2008).

Edge features
The inference of the edges from being a descriptor to identify the structure to being a feasible feature for pattern matching requires the understanding of human vision (Georgeson et al., 2007). The edge features of the objects has moved from being a digital only representation to a discrete edge representation in digital images, and often is highly sensitive to variations in natural variability within the images. The most common natural variability that have a significant impact on the quality of the edge features are illumination changes and sensor noises. Whereas, that would affect the recognition of the objects using the feature also depend on the scale and shift sensitivity of the edges, the pose of the objects, the quality and quantity of training image set(Chartier & Lepage, n.d.; Dollar et al., n.d.; Dongcheng Shi et al., n.d.; Gruen et al., 1993; Krammer & Schweinzer, 2006; Lin & Kung, 2000; Mae & Shirai, n.d.; Robinson, n.d.; Shirai et al., 1996).

Computationally efficient implementation of the edges is also a serious issue to consider in the real-time detection and extraction of object edges(Alex, Asari, & Alex, 2013; Dollár & Zitnick, 2015; King, 1985; Latecki, 1998; Mathew & James, 2015). The ability for the edges to become robust to noise is an important issues when the edge features is used to perform pattern recognition tasks such a face and face sketch recognition (Alex, Asari, & Alex, 2012; Alex et al., 2013; R. Hu, Rui, & John, 2013).

Gradient Filters

The implementation of the method for extraction of the edge features and calculation of the edges in digital computers are done by applying convolution filtering techniques. The most common approach is gradient filtering with different window coefficients representing implementation of different types of the discrete pixel difference equations(Dasarathy & Dasarathy, n.d.; Douglas, n.d.-a, n.d.-b; “Edge filters,” n.d., “Gradient Filters,” n.d.; Mathews & Xie, n.d.; Terol-Villalobos, 1996). The preservation of the edges in noisy images is the most challenging task under such filtering schemes(Bachy & Zaidi, 2015; Bourne, 2010; Burger & Burge, 2012; Faghih & Smith, 2002; Hornberg, 2007; Jacob & Unser, 2004; Kerre & Nachtegaele, 2013; Y. Lee & Yunwoo, 2000; Nezhadarya & Ward, 2011; O’Gorman, Sammon, & Seul, 2008; Ren, Lei, Dai, & Li, 2015; Sinha & Dougerry, 1998).

The methods such as (Alex et al., 2012, 2013; R. Hu et al., 2013; Mathew & James, 2015; Van De Ville & Unser, 2008) making use of the psychological mechanism of human mind and brain tends to outperform the gradient only approaches indicating the benefit of drawing inspiration from the neuroscience studies to the benefit of image processing and pattern recognition studies. Another frequent and useful approach to generate useful features from the gradients is to combine the different filters to achieve fused features having several aspects of the edge information useful for pattern matching (George & Unnikrishnan, 2016; Ghantous, Milad, Soumik, & Magdy, 2008; Ghassemian, n.d.; J. Hu, Jianwen, & Shutao, 2012; Kwon Lee, Kwon, & Simon, 2015; Petrovic & Xydeas, 2004; Pritika, Pritika, & Sumit, 2015; Stathaki, 2011; Stienne, Reboul, Azmani, Choquel, & Benjelloun, 2014; X. Wang, 1992; Woo, 1998; X. Xu, Xin, Qiang, & Deshen, 2010; Zeng, Tao, Changyu, & Fei, 2012; Z. Zhang, Zhike, Weiqiang, & Ke, 2014; Zulkifley, Moran, & Rawlinson, 2012).
Applications

The most common application of the edge detection in the recognition of the patterns from the images are that for segmentation (Dasarthy & Dasarthy, n.d.), region identification(Akram, Kim, Lee, & Choi, 2015; Sen, Debashis, & Pal, 2010; K. Zhang, Kedai, Hanqing, Miyi, & Qi, 2006), feature detection(Georgeson et al., 2007; Ren et al., 2015), object searching(Frintrop, 2006; Kmieć, Marcin, & Andrzej, 2015; Leeds, Daniel, & Michael, 2015; P. Wang & Ping, 2010), object tracking(Gao, Parslow, & Tan, n.d.; Wei Jyh Heng & Ngan, 2001; W. J. Heng & Ngan, n.d.; Y. Liu, Ya, Haizhou, & Guang-you, 2001; Mukherjee, Potdar, & Potdar, 2010; “Object Detection and Tracking,” 2013; Shen, Pankanti, & Wang, 2001; P. Wang & Ping, 2010) on various problems in medical imaging(Avramovic & Aleksej, 2011; Dua & Sumeet, 2010; Guddanti, 1997; Leondes, 2003; “Mean Curvature Flows, Edge Detection, and Medical Image Segmentation,” n.d.; Riste-Smith, 1990), biometrics(Drahansky & Martin, 2011; Pflug & Busch, 2012; J. Wang et al., 2011; D. Zhang & Jain, 2006) and object recognition(Kmieć et al., 2015; Robinson, n.d.; Rodrigues & du Buf, 2009).

Biometric recognition

Face images contain distinct biometric information from the boundaries of eyes, nose, mouth, and jaw shape, that can be represented with image edges (Rodrigues & du Buf, 2009; Yang et al., 1996). The features inspired from the spatial change detection (Alex Pappachen James & Sima, 2008) that results in feature edges have shown high robustness to natural variabilities(Alex P. James, 2013; Pappachen James, James, & Sima, 2010). The noise that usually makes the feature extraction of the edges extremely difficult task would lead to poor performance of face recognition (Alex et al., 2012, 2013; R. Hu et al., 2013; Mathew & James, 2015). The use of psychometric measures in the calculation of edges have shown to improve the robustness to the face recognition (Mathew & James, 2015).

Optimisation techniques to enhance the edges in the images is another open issue in pattern recognition (Setayesh, Mahdi, Mengjie, & Mark, 2011). The use of fractal imaging techniques and particle swarm optimisation techniques have shown to improve the edge detection results (Demers & Matthew, 2012; Setayesh, Mahdi, Mengjie, & Mark, 2010).

The importance of a good edge detection method is of paramount importance to problems such as fingerprint recognition (L. Zhang & Liang, 2014). In a fingerprint, the features can encoded in a binary form or as in a transformed domain to extract the minutiae (Bigun & Josef, 2014; L. Zhang & Liang, 2014). There are several mathematical transforms used to extract the edge features or the coordinates of the features for its matching (“A Robust Fingerprint Matching System Using Orientation Features,” 2015; Balti, Ala, Mounir, & Farhat, 2012, 2014; Yi Chen, Yi, & Jain, 2007; Chung et al., 2005; Dale & Joshi, 2008; He, Tian, Li, He, & Yang, 2007; Kumar, Ajay, & Yingbo, 2011; Tachaphetpiboon & Amornraksa, 2007, n.d.; Tang & Ting, 2012; Xie Meihua, Xie, & Wang, n.d.).
Object recognition

The boundary of the objects in movements represented as directional edges have important cues for the recognition and tracking (Das, Dipankar, Yoshinori, & Yoshinori, 2009; G. Wang, Guangwei, Zenggang, Yihua, & Conghuan, 2013). The objects detected can be used for various application such as video retrieval (Yutaka & Yutaka, 2012), change detection (Niemeyer, Marpu, & Nussbaum, n.d.), segmentation (P. Wang & Ping, 2010), in perception of motion(Hock & Nichols, 2013) and category level detection (Hock & Nichols, 2013; Ponce et al., 2007). Local edge features and region based methods seems to indicate a better quality of edge features (Hock & Nichols, 2013; Ponce et al., 2007; Tang Xusheng et al., 2009). The the edge detection methods on color cue has proved to be a useful tool for object recognition in images (Jiqiang Song, Jiqiang, Min, & Lyu, n.d.; Tsang & Tsang, n.d.). Grouping and fusion of edge features have also a positive impact on the detection of objects (Amit, 2002; Antoniu & Eduard, 1994; Chunxin, Wang, & Xu, 2009; J. Kim & Chen, 2003; Mednieks & Ints, 2008; Meurant, 1992; Mu, Nan, Xin, & Ziheng, 2015; Srikantha, Abhilash, & Juergen, 2014; Stathaki, 2011; Torralba, Antonio, Murphy, & Freeman, 2006).

Object tracking is another important area in object detection research that make use of a wide range of edge detection techniques(Chunxin et al., 2009; Gao et al., n.d.; Wei Jyh Heng & Ngan, 2001; Mukherjee et al., 2010). In tracking problems, the speed of tracking and detection of edges become an important problem, and that leads to development of hardware friendly approaches (W. J. Heng & Ngan, n.d.). Optical flow algorithms have been used along with particle filters to implement real-time tracking(Mae & Shirai, n.d.; Shirai et al., 1996).

Medical Imaging

Medical images contain several structural and texture details that relate to identifying the health of an individual(Ardeshir Goshtasby & Stavri, 2007; Bourne, 2010; Alex Pappachen James & Dasarathy, 2014; Singh & Khare, 2013). Like object detection, the structural information can be used to segment areas with images created with different modalities: MRI (Laishram, Romesh, Kumar, Anshuman, & Prakash, 2014; Taghizadeh, Moslem, & Mahboobeh, 2011), CT (Leondes, 2003), and ultrasound (Hopp, Zapf, & Ruiter, 2014; Leondes, 2003). Gradient filters such as based on canny operator (Zheng, Zhou, Zhou, & Gong, 2015), and active shape models (Arámbula Cosío, Acosta, & Edgar, 2015) find use in ultrasounds. In radiology images, use of knowledge (Riste-Smith, 1990), curvatures(Leondes, 2003), surface fitting (Hopp et al., 2014), and gradients (Hopp et al., 2014; Zheng et al., 2015) are used in combination with edge detectors for implementing segmentation algorithms.

Multimodal fusion of medical images also utilize several edge feature detection methods to combine and enhance the quality of features. The spatial structural cues (Jia, Huang, & Wang, 2014; Zheng et al., 2015), clustering methods (Ergen, 2014), and image registration (Wein, Röper, & Navab, 2005) are some of applications of edge features applied in image fusion at feature and decision levels.
Discussions

Edge detectors have a long history of research in neural understanding for translations to realistic computer algorithms. The inspiration of the edge detectors originate from the understanding of primate brain, and is understood to be a very complex process. While there have been several works that try to understand the basic mechanisms of edge formation in human brain aiming to model the spatiotemporal process (Erlikhman & Kellman, 2015; McIvor, 1988); (Cantoni, 2013; Rosenfeld, 2014). In image processing, majority of the edge detection research pursue under the assumption of static conditions (Canny & John, 1987; Davies, 2012; Pau, 1990), and do not have any dependency on the time. In dynamic situations, when the edge changes are spatiotemporal the edge information echoes the cues of early vision, and is closely linked to the ability of the human to identify objects and cluster them that form the basis of intelligent vision systems.

A majority of the real-time implementation of edge detection involves convolution operator in a basic moving window spatial filtering approach (“Gradient Filters,” n.d.; Y. Lee & Yunwoo, 2000; Mathews & Xie, n.d.). In such filters, the speed of processing closely depends on the hardware architecture and complexity of the method to improve it against the robustness to the noise. The speedup can be achieved using FPGA (Maheshwari, S.S.S.P., & Poonacha, n.d.; Qi, Haibing, Jianlan, & Song, 2010; Szlachetko, Boguslaw, & Andrzej, 2007) or custom made VLSI architectures (Bayoumi, 2012; Serrano-Gotarredona, 1997; Yuschik, Matthew, & Hideaki, 1985). There also exists a class of memory based approaches that inspire from neural architectures that can implemented with digital memory, flash cells (Alex Pappachen James, Pachentavida, & Sugathan, 2014) or memristors (Y.-J. Liu et al., 2009; Maan, Kumar, Sherin, & James, 2015; Mousse, Cina, & Ezin, 2015; Rajendran, Jeyavijayan, Harika, Ramesh, & Rose, 2012; Weaver, 1975).

Figure 2 provides the histogram of the published works that relate to the development and use of edge detection methods from 1980 till 2015. In the last decade the growth has been significant due to the increase in the computational capabilities and the compounding need to have intelligent vision systems and to gain a deeper understanding of the working of human vision.
Figure 2: The indicative growth of literature based on the edge detection techniques and its applications. *Source: Scopus.*

Conclusions

In summary, there exists a wide range of ideas emerging from the foundational studies in perception to neuroscience to that of signal processing, that aim to decode the concepts of edge information in images. The practical implementation of the edge detectors that are immune to variabilities in noise remains a major problem in image recognition. Edges in the images remain to be the most distinct and useful information for pattern recognition, and its encoding in different forms encourage the development of high speed techniques that can be used in real-time applications. The list of applications where edge detectors will be applied in pattern recognition are only set to grow since the camera based automation for monitoring and intelligent processing are on rise supported through the growing maturity of the technological computing and communication infrastructure.

References

Akagunduz, E., Erdem, A., & Ilkay, U. (2011). 3D Object Registration and Recognition using Range Images. In *Object Recognition*. http://doi.org/10.5772/14599
Akram, F., Kim, J. H., Lee, C.-G., & Choi, K. N. (2015). Segmentation of Regions of Interest Using Active Contours with SPF Function. *Computational and Mathematical Methods in Medicine, 2015*, 710326. http://doi.org/10.1155/2015/710326

Al-Dulaimi, K. A. (2013). *Fingerprint Recognition System Using Image Processing Technique*. LAP Lambert Academic Publishing. Retrieved from http://books.google.kz/books/about/Fingerprint_Recognition_System_Using_Imag.html?hl=&id=NN2LmqEACAAJ

Alex, A. T., Asari, V. K., & Alex, M. (2012). Local Alignment of Gradient Features for Face Sketch Recognition. In *Lecture Notes in Computer Science* (pp. 378–387). http://doi.org/10.1007/978-3-642-33191-6_37

Alex, A. T., Asari, V. K., & Alex, M. (2013). Gradient feature matching for in-plane rotation invariant face sketch recognition. In *Image Processing: Machine Vision Applications VI*. http://doi.org/10.1117/12.2005750

Amit, Y. (2002). *2D Object Detection and Recognition: Models, Algorithms, and Networks*. MIT Press. Retrieved from http://books.google.kz/books/about/2D_Object_Detection_and_Recognition.html?hl=&id=3gJIX_NmNG4C

Antoniou, E., & Eduard, A. (1994). Trends in Edge Detection Techniques. In *From Object Modelling to Advanced Visual Communication* (pp. 224–273). http://doi.org/10.1007/978-3-642-78291-6_8

Arámbula Cosío, F., Acosta, H. G., & Edgar, C. (2015). Improved edge detection for object segmentation in ultrasound images using Active Shape Models. In *10th International Symposium on Medical Information Processing and Analysis*. http://doi.org/10.1117/12.2070559

Ardeshir Goshtasby, A., & Stavri, N. (2007). Image fusion: Advances in the state of the art. *An International Journal on Information Fusion, 8*(2), 114–118.
Argyle, E., & Rosenfeld, A. (1971). Techniques for edge detection. *Proceedings of the IEEE, 59*(2), 285–287. http://doi.org/10.1109/proc.1971.8136

A Robust Fingerprint Matching System Using Orientation Features. (2015). *Journal of Information Processing Systems*. http://doi.org/10.3745/jips.02.0020

Avramovic, A., & Aleksej, A. (2011). Lossless compression of medical images based on gradient edge detection. In *2011 19th Telecommunications Forum (TELFOR) Proceedings of Papers*. http://doi.org/10.1109/telfor.2011.6143765

Bachy, R., & Zaidi, Q. (2015). Asymmetries and spatial gradients in color and brightness induction. *Journal of Vision, 15*(12), 398. http://doi.org/10.1167/15.12.398

Balti, A., Ala, B., Mounir, S., & Farhat, F. (2012). Improved features for fingerprint identification. In *2012 16th IEEE Mediterranean Electrotechnical Conference*. http://doi.org/10.1109/melcon.2012.6196569

Balti, A., Ala, B., Mounir, S., & Farhat, F. (2014). Fingerprint characterization using SVD features. In *International Image Processing, Applications and Systems Conference*. http://doi.org/10.1109/ipas.2014.7043292

Bayoumi, M. (2012). *VLSI Design Methodologies for Digital Signal Processing Architectures*. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/VLSI_Design_Methodologies_for_Digital_Si.html?hl=&id=5D_SBwAAQBAJ

Bigun, J., & Josef, B. (2014). Fingerprint Features. In *Encyclopedia of Biometrics* (pp. 1–13). http://doi.org/10.1007/978-3-642-27733-7_50-3

Bodade, R. M., & Talbar, S. (2014). *Iris Analysis for Biometric Recognition Systems*. Springer. Retrieved from
Bourne, R. (2010). *Fundamentals of Digital Imaging in Medicine*. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Fundamentals_of_Digital_Imaging_in_Medicine.html?hl=&id=Fd-BixYzukMC

Bundy, A., Alan, B., & Lincoln, W. (1984). Primal Sketch. In *Catalogue of Artificial Intelligence Tools* (pp. 100–101). http://doi.org/10.1007/978-3-642-96868-6_191

Burge, M. J., & Bowyer, K. (2013). *Handbook of Iris Recognition*. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Handbook_of_Iris_Recognition.html?hl=&id=VVVHAAAAQBAJ

Burger, W., & Burge, M. J. (2012). *Digital Image Processing: An Algorithmic Introduction Using Java*. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Digital_Image_Processing.html?hl=&id=jCEi9MVfxD8C

Burr, D. C., Concetta Morrone, M., & Donatella, S. (1989). Evidence for edge and bar detectors in human vision. *Vision Research*, 29(4), 419–431. http://doi.org/10.1016/0042-6989(89)90006-0

Canny, J., & John, C. (1987). A Computational Approach to Edge Detection. In *Readings in Computer Vision* (pp. 184–203). http://doi.org/10.1016/b978-0-08-051581-6.50024-6

Cantoni, V. (2013). *Human and Machine Vision: Analogies and Divergencies*. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Human_and_Machine_Vision.html?hl=&id=YqoACAAAQBAJ

Cappellini, V. (1997). *Time-Varying Image Processing and Moving Object Recognition, 4*. Elsevier. Retrieved from
Chartier, S., & Lepage, R. (n.d.). Learning and extracting edges from images by a modified Hopfield neural network. In *Object recognition supported by user interaction for service robots*. http://doi.org/10.1109/icpr.2002.1047940

Chen, D. G., Law, M.-K., Lian, Y., & Bermak, A. (2014). Low-Power CMOS Laser Doppler Imaging Using Non-CDS Pixel Readout and 13.6-bit SAR ADC. *IEEE Transactions on Biomedical Circuits and Systems*. http://doi.org/10.1109/TBCAS.2014.2365515

Cheng-en Guo, Cheng-en, G., Song-Chun, Z., & Wu, Y. N. (2003). Towards a mathematical theory of primal sketch and sketchability. In *Proceedings Ninth IEEE International Conference on Computer Vision*. http://doi.org/10.1109/iccv.2003.1238631

Chen, Y., Yi, C., & Jain, A. K. (2007). Dots and Incipients: Extended Features for Partial Fingerprint Matching. In *2007 Biometrics Symposium*. http://doi.org/10.1109/bcc.2007.4430538

Chen, Y., Yong, C., Fei, Y., & Gul, K. (2009). A wide dynamic range CMOS PFM digital pixel sensor with in-pixel variable voltage reference. *Analog Integrated Circuits and Signal Processing, 61*(3), 287–299. http://doi.org/10.1007/s10470-009-9303-0

Chia-Nan Yeh, Chia-Nan, Y., Yen-Tai, L., & Jui-Yu, C. (2008). A logarithmic CMOS digital pixel sensor. In *TENCON 2008 - 2008 IEEE Region 10 Conference*. http://doi.org/10.1109/tencon.2008.4766851

Chou, W.-S., & Wen-Shou, C. (1999). Classifying image pixels into shaped, smooth, and textured points. *Pattern Recognition, 32*(10), 1697–1706. http://doi.org/10.1016/s0031-3203(98)00180-0

Chung, Y., Yongwha, C., Daesung, M., Sungju, L., Seunghwan, J., Taehae, K., & Dosung, A. (2005). Automatic Alignment of Fingerprint Features for Fuzzy Fingerprint Vault. In *Lecture Notes in Computer Science* (pp. 358–369). http://doi.org/10.1007/11599548_31
Chunxin, L. I., Wang, X., & Xu, X. (2009). Robust Object Tracking with Adaptive Fusion of Color and Edge Strength Local Mean Features Based on Particle Filter. In 2009 International Forum on Information Technology and Applications. http://doi.org/10.1109/ifita.2009.157

C., R., Rory, C., Bakker, H. H. C., & Claire, L. (2011). Object Recognition using Isolumes. In Object Recognition. http://doi.org/10.5772/16140

Dale, M. P., & Joshi, M. A. (2008). Fingerprint matching using transform features. In TENCON 2008 - 2008 IEEE Region 10 Conference. http://doi.org/10.1109/tencon.2008.4766494

Dasarathy, B. V., & Dasaratky, H. (n.d.). Edge Preserving Filters - Aid To Reliable Image Segmentation. In Conference Proceedings Southeastcon '81. http://doi.org/10.1109/secon.1981.673552

Das, D., Dipankar, D., Yoshinori, K., & Yoshinori, K. (2009). Object Detection and Localization in Clutter Range Images Using Edge Features. In Lecture Notes in Computer Science (pp. 172–183). http://doi.org/10.1007/978-3-642-10520-3_16

Datta, A. K., Datta, M., & Banerjee, P. K. (2015). Face Detection and Recognition: Theory and Practice. CRC Press. Retrieved from http://books.google.kz/books/about/Face_Detection_and_Recognition.html?hl=&id=oyfSCgAAQBAJ

Davies, E. R. (2012). Edge Detection. In Computer and Machine Vision (pp. 111–148). http://doi.org/10.1016/b978-0-12-386908-1.00005-7

Dell’acqua, R., Roberto, D., & Remo, J. (1998). Is object recognition automatic? Psychonomic Bulletin & Review, 5(3), 496–503. http://doi.org/10.3758/bf03208828

Demers, M., & Matthew, D. (2012). Edge detection using fractal imaging. International Journal of Mathematical Modelling and Numerical Optimisation, 3(4), 266. http://doi.org/10.1504/ijmmno.2012.049602

Dollar, P., Zhuowen, T., & Belongie, S. (n.d.). Supervised Learning of Edges and Object Boundaries. In
Dollár, P., & Zitnick, C. L. (2015). Fast Edge Detection Using Structured Forests. *IEEE Transactions on Pattern Analysis and Machine Intelligence, 37*(8), 1558–1570. http://doi.org/10.1109/TPAMI.2014.2377715

Dongcheng Shi, Dongcheng, S., Liqiang, H., & Ying, L. (n.d.). A scene matching algorithm based on the knowledge of object edges. In *1997 IEEE International Conference on Intelligent Processing Systems (Cat. No.97TH8335)*. http://doi.org/10.1109/icips.1997.669257

Dori, D., Dov, D., & Haralick, R. M. (1995). A pattern recognition approach to the detection of complex edges. *Pattern Recognition Letters, 16*(5), 517–529. http://doi.org/10.1016/0167-8655(95)00118-z

Douglas, S. C. (n.d.-a). Generalized gradient adaptive step sizes for stochastic gradient adaptive filters. In *1995 International Conference on Acoustics, Speech, and Signal Processing*. http://doi.org/10.1109/icassp.1995.480502

Douglas, S. C. (n.d.-b). Simplified stochastic gradient adaptive filters using partial updating. In *Proceedings of IEEE 6th Digital Signal Processing Workshop*. http://doi.org/10.1109/dsp.1994.379826

Drahansky, M., & Martin, D. (2011). Liveness Detection in Biometrics. In *Advanced Biometric Technologies*. http://doi.org/10.5772/17205

Dua, S., & Sumeet, D. (2010). Region Quad-Tree Decomposition Based Edge Detection for Medical Images. *The Open Medical Informatics Journal, 4*(1), 50–57. http://doi.org/10.2174/1874325001004010050

Duperthuy, C., Christophe, D., & Jean-Michel, J. (1997). Towards a generalized primal sketch. In *Advances in Computer Vision* (pp. 109–118). http://doi.org/10.1007/978-3-7091-6867-7_12

Edge filters. (n.d.). In *Thin-Film Optical Filters*. http://doi.org/10.1887/0750306882/b856c6
Ergen, B. (2014). A fusion method of Gabor wavelet transform and unsupervised clustering algorithms for tissue edge detection. *The Scientific World Journal, 2014, 964870.*
http://doi.org/10.1155/2014/964870

Erlikhman, G., & Kellman, P. J. (2015). Modeling spatiotemporal boundary formation. *Vision Research.*
http://doi.org/10.1016/j.visres.2015.03.016

Faghih, F., & Smith, M. (2002). Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm. *IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 11(9), 1062–1071.*
http://doi.org/10.1109/TIP.2002.802526

Fesenmaier, C. C., & Catrysse, P. B. (2008). Mitigation of pixel scaling effects in CMOS image sensors. In *Digital Photography IV.* http://doi.org/10.1117/12.766045

Frintrop, S. (2006). *VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search.* Springer Science & Business Media. Retrieved from
http://books.google.kz/books/about/VOCUS_A_Visual_Attention_System_for_Obje.html?hl=&id=v9UCRoUGPDUC

Gao, Q., Parslow, A., & Tan, M. (n.d.). Object motion detection based on perceptual edge tracking. In *Proceedings Second International Workshop on Digital and Computational Video.*
http://doi.org/10.1109/dcv.2001.929945

Gauman, K., & Leibe, B. (2010). *Visual Object Recognition.* Morgan & Claypool Publishers. Retrieved from
http://books.google.kz/books/about/Visual_Object_Recognition.html?hl=&id=fYZgAQAAQBAJ

George, D. E., & Unnikrishnan, A. (2016). On the divergence of information filter for multi sensors fusion. *An International Journal on Information Fusion, 27, 76–84.*
http://doi.org/10.1016/j.inffus.2015.05.005
Georgeson, M. A., May, K. A., Freeman, T. C. A., & Hesse, G. S. (2007). From filters to features: Scale-space analysis of edge and blur coding in human vision. *Journal of Vision, 7*(13), 7–7. http://doi.org/10.1167/7.13.7

Ghantous, M., Milad, G., Soumik, G., & Magdy, B. (2008). A gradient-based hybrid image fusion scheme using object extraction. In *2008 15th IEEE International Conference on Image Processing*. http://doi.org/10.1109/icip.2008.4712001

Ghassemian, H. (n.d.). Multi-sensor image fusion using multirate filter banks. In Proceeding 2001 *International Conference on Image Processing* (Cat. No.01CH37205). http://doi.org/10.1109/icicip.2001.959178

Gomes, H. M., & Fisher, R. B. (2003). Primal sketch feature extraction from a log-polar image. *Pattern Recognition Letters, 24*(7), 983–992. http://doi.org/10.1016/s0167-8655(02)00222-2

Gomes, H. M., & Fisher, R. B. (n.d.). Learning and extracting primal-sketch features in a log-polar image representation. In *Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing*. http://doi.org/10.1109/sibgrapi.2001.963074

Gottardi, M., Sartori, A., & Simoni, A. (1993). POLIFEMO: An Addressable CMOS 128 X 128 - Pixel Image Sensor with Digital Interface. Retrieved from http://books.google.kz/books/about/POLIFEMO.html?hl=&id=1RbwPgAACAAJ

Gradient Filters. (n.d.). In *Field Guide to Image Processing* (pp. 13–14). http://doi.org/10.1117/3.923354.ch12

Grauman, K., & Leibe, B. (2010). *Visual Object Recognition*. Morgan & Claypool Publishers. Retrieved from http://books.google.kz/books/about/Visual_Object_Recognition.html?hl=&id=lAQGBvdm3UsC

Gruen, A., Armin, G., & Dirk, S. (1993). High-accuracy matching of object edges. In *Videometrics*. http://doi.org/10.1117/12.141370
Guddanti, V. (1997). *Edge Detection of Medical Images for 3D Rendering*. Retrieved from http://books.google.kz/books/about/Edge_Detection_of_Medical_Images_for_3D.html?hl=&id=jpVF

Guo, C.-E. (2005). *A Mathematical Theory of Textons and Primal Sketch: Integrating Generative and Descriptive Methods*. Retrieved from http://books.google.kz/books/about/A_Mathematical_Theory_of_Textons_and_Pri.html?hl=&id=KzuG

Heng, W. J., & Ngan, K. N. (2001). An Object-Based Shot Boundary Detection Using Edge Tracing and Tracking. *Journal of Visual Communication and Image Representation, 12*(3), 217–239. http://doi.org/10.1006/jvci.2001.0457

Heng, W. J., & Ngan, K. N. (n.d.). The implementation of object-based shot boundary detection using edge tracing and tracking. In *ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349)*. http://doi.org/10.1109/iscas.1999.780036

He, X., Tian, J., Li, L., He, Y., & Yang, X. (2007). Modeling and analysis of local comprehensive minutia relation for fingerprint matching. *IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 37*(5), 1204–1211. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17926703

Hildreth, E. C. (1980). *Implementation of a Theory of Edge Detection*. Retrieved from http://books.google.ch/books/about/Implementation_of_a_Theory_of_Edge_Detec.html?hl=&id=7V

Hock, H. S., & Nichols, D. F. (2013). The perception of object versus objectless motion. *Attention, Perception & Psychophysics, 75*(4), 726–737. http://doi.org/10.3758/s13414-013-0441-1

Ho, D., Derek, H., Glenn, G., & Roman, G. (2012). CMOS 3-T digital pixel sensor with in-pixel shared comparator. In *2012 IEEE International Symposium on Circuits and Systems*.
Hood, D. C., & Birch, D. G. (1993). Light adaptation of human rod receptors: the leading edge of the human a-wave and models of rod receptor activity. *Vision Research, 33*(12), 1605–1618. http://doi.org/10.1016/0042-6989(93)90027-t

Hopp, T., Zapf, M., & Ruiter, N. V. (2014). Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting. In *Medical Imaging 2014: Ultrasonic Imaging and Tomography*. http://doi.org/10.1117/12.2044376

Hornberg, A. (2007). *Handbook of Machine Vision*. John Wiley & Sons. Retrieved from http://books.google.kz/books/about/Handbook_of_Machine_Vision.html?hl=&id=HEy4UBoGF2UC

Hu, J., Jianwen, H., & Shuitao, L. (2012). The multiscale directional bilateral filter and its application to multisensor image fusion. *An International Journal on Information Fusion, 13*(3), 196–206. http://doi.org/10.1016/j.inffus.2011.01.002

Hu, R., Rui, H., & John, C. (2013). A performance evaluation of gradient field HOG descriptor for sketch based image retrieval. *Computer Vision and Image Understanding: CVIU, 117*(7), 790–806. http://doi.org/10.1016/j.cviu.2013.02.005

Jacob, M., & Unser, M. (2004). Design of steerable filters for feature detection using canny-like criteria. *IEEE Transactions on Pattern Analysis and Machine Intelligence, 26*(8), 1007–1019. http://doi.org/10.1109/TPAMI.2004.44

Jain, L. C., Halici, U., Hayashi, I., Lee, S. B., & Tsutsui, S. (1999). *Intelligent Biometric Techniques in Fingerprint and Face Recognition*. CRC Press. Retrieved from http://books.google.kz/books/about/Intelligent_Biometric_Techniques_in_Fing.html?hl=&id=NxDTSR5ZIz4C

James, A. P. (2013). One-sample face recognition with local similarity decisions. *International Journal of Applied Pattern Recognition, 1*(1), 61. http://doi.org/10.1504/ijapr.2013.052340
James, A. P., & Dasarathy, B. V. (2014). Medical image fusion: A survey of the state of the art. *An International Journal on Information Fusion, 19*, 4–19. http://doi.org/10.1016/j.inffus.2013.12.002

James, A. P., Pachentavida, A., & Sugathan, S. (2014). Edge detection using resistive threshold logic networks with CMOS flash memories. *International Journal of Intelligent Computing and Cybernetics, 7*(1), 79–94. http://doi.org/10.1016/j.ijicc-06-2013-0032

James, A. P., & Sima, D. (2008). Face Recognition Using Local Binary Decisions. *IEEE Signal Processing Letters, 15*, 821–824. http://doi.org/10.1109/lsp.2008.2006339

Jayaraman. (2011). *Digital Image Processing*. Tata McGraw-Hill Education. Retrieved from http://books.google.kz/books/about/Digital_Image_Processing.html?hl=&id=JeDGn6Wmf1kC

Jia, X., Huang, H., & Wang, R. (2014). A novel edge detection in medical images by fusing of multi-model from different spatial structure clues. *Bio-Medical Materials and Engineering, 24*(1), 1289–1298. http://doi.org/10.3233/BME-130931

Jiqiang Song, Jiqiang, S., Min, C., & Lyu, M. R. (n.d.). Edge color distribution transform: an efficient tool for object detection in images. In *Object recognition supported by user interaction for service robots*. http://doi.org/10.1109/icpr.2002.1044814

Kerre, E. E., & Nachtegael, M. (2013). *Fuzzy Techniques in Image Processing*. Physica. Retrieved from http://books.google.kz/books/about/Fuzzy_Techniques_in_Image_Processing.html?hl=&id=wgyrCAAQAQBAJ

Kim, J., & Chen, T. (2003). Combining static and dynamic features using neural networks and edge fusion for video object extraction. *IEE Proceedings - Vision, Image, and Signal Processing, 150*(3), 160. http://doi.org/10.1049/ip-vis:20030361

Kim, M.-K., Hong, S.-K., & Kwon, O.-K. (2015). A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs. *Sensors*, *16*(1). http://doi.org/10.3390/s16010027
King, D. A. (1985). *Implementation of the Marr-Hildreth Theory of Edge Detection*. Retrieved from http://books.google.ch/books/about/Implementation_of_the_Marr_Hildreth_Theo.html?hl=&id=mjXYPgAACAAJ

Kleinfelder, S., Suki-Iwan, L., Xinqiao, L., & El Gamal, A. (n.d.). A 10 kframe/s 0.18 μm CMOS digital pixel sensor with pixel-level memory. In *2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177)*. http://doi.org/10.1109/isscc.2001.912558

Kmieć, M., Marcin, K., & Andrzej, G. (2015). Object detection in security applications using dominant edge directions. *Pattern Recognition Letters*, 52, 72–79. http://doi.org/10.1016/j.patrec.2014.09.018

Konash, D., & Dmitri, K. (1989). Object recognition gets in focus. *Sensor Review*, 9(3), 140–142. http://doi.org/10.1108/eb060033

Korn, A. F. (1989). Towards a Primal Sketch of Real World Scenes in Early Vision. In *Neural Computers* (pp. 119–128). http://doi.org/10.1007/978-3-642-83740-1_14

Krammer, P., & Schweinzer, H. (2006). Localization of object edges in arbitrary spatial positions based on ultrasonic data. *IEEE Sensors Journal*, 6(1), 203–210. http://doi.org/10.1109/jsen.2005.860359

Kulshrestha, M., Megha, K., Banga, V. K., & Sanjeev, K. (2012). Finger Print Recognition: Survey of Minutiae and Gabor Filtering Approach. *International Journal of Computer Applications in Technology*, 50(4), 17–21. http://doi.org/10.5120/7759-0823

Kumar, A., Ajay, K., & Yingbo, Z. (2011). Contactless fingerprint identification using level zero features. In *CVPR 2011 WORKSHOPS*. http://doi.org/10.1109/cvprw.2011.5981823

Kwon Lee, Kwon, L., & Simon, J. (2015). Multi-focus image fusion using energy of image gradient and gradual boundary smoothing. In *TENCON 2015 - 2015 IEEE Region 10 Conference*. http://doi.org/10.1109/tencon.2015.7373007

Laishram, R., Romesh, L., Kumar, W. K., Anshuman, G., & Prakash, K. V. (2014). A Novel MRI Brain Edge Detection Using PSOFCM Segmentation and Canny Algorithm. In *2014 International*
Latecki, L. J. (1998). *Discrete Representation of Spatial Objects in Computer Vision*. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Discrete_Representation_of_Spatial_Objec.html?hl=&id=mHTj881f5OgC

Leeds, D., Daniel, L., & Michael, T. (2015). Mixing hierarchical edge detection and medial axis models of object perception. *Journal of Vision, 15*(12), 1095. http://doi.org/10.1167/15.12.1095

Lee, R. S. T., & Liu, J. N. K. (2003). *Invariant Object Recognition Based on Elastic Graph Matching: Theory and Applications*. Retrieved from http://books.google.kz/books/about/Invariant_Object_Recognition_Based_on_El.html?hl=&id=t-0eAQAAIAAAJ

Lee, Y., & Yunwoo, L. (2000). Multiresolution gradient-based edge detection in noisy images using wavelet domain filters. *Optical Engineering, 39*(9), 2405. http://doi.org/10.1117/1.1287992

Lehky, S. R., & Tanaka, K. (2016). Neural representation for object recognition in inferotemporal cortex. *Current Opinion in Neurobiology, 37*, 23–35. http://doi.org/10.1016/j.conb.2015.12.001

Leondes, C. T. (2003). Mean Curvature Flows, Edge Detection, and Medical Image Segmentation. In *Computational Methods in Biophysics, Biomaterials, Biotechnology and Medical Systems* (pp. 856–870). http://doi.org/10.1007/0-306-48329-7_24

Li, F., Fangxing, L., Linyu, P., & Huafei, S. (2011). Fibre Bundle Models and 3D Object Recognition. In *Object Recognition*. http://doi.org/10.5772/15607

Lindeberg, T. (1991). *Discrete scale-space theory and the scale-space primal sketch*. Retrieved from http://books.google.kz/books/about/Discrete_scale_space_theory_and_the_scal.html?hl=&id=VkJkOgAAIAAJ
Lindeberg, T., & Tony, L. (1994). The scale-space primal sketch. In *Scale-Space Theory in Computer Vision* (pp. 165–186). http://doi.org/10.1007/978-1-4757-6465-9_7

Lin, I.-J., & Kung, S. Y. (2000). *Video Object Extraction and Representation: Theory and Applications*. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Video_Object_Extraction_and_Representati.html?hl=&id=jOtHj9YATFkC

Li, Q., & Qi, L. (2014). A primal sketch based framework for bean-shape contour extraction. *Neurocomputing, 142*, 508–519. http://doi.org/10.1016/j.neucom.2014.04.006

Liu, Y.-J., Ying-jie, L., Ruo-fei, M. A., Wang-fei, Z., Hao, Z., Kun, Z., & Yi-de, M. A. (2009). Moving object detection algorithm based on multi-threshold for PCNN. *Journal of Computer Applications, 29*(3), 739–741. http://doi.org/10.3724/sp.j.1087.2009.00739

Liu, Y., Ya, L., Haizhou, A., & Guang-you, X. (2001). Moving object detection and tracking based on background subtraction. In *Object Detection, Classification, and Tracking Technologies*. http://doi.org/10.1117/12.441618

Logothetis, N. K. (1996). Visual Object Recognition. *Annual Review of Neuroscience, 19*(1), 577–621. http://doi.org/10.1146/annurev.neuro.19.1.577

Maan, A. K., Kumar, D. S., Sherin, S., & James, A. P. (2015). Memristive Threshold Logic Circuit Design of Fast Moving Object Detection. *IEEE Transactions on Very Large Scale Integration Systems, 23*(10), 2337–2341. http://doi.org/10.1109/tvlsi.2014.2359801

Mae, Y., & Shirai, Y. (n.d.). Tracking moving object in 3-D space based on optical flow and edges. In *Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170)*. http://doi.org/10.1109/icpr.1998.711974

Maheshkar, V., Vikas, M., Suneeta, A., Srivastava, V. K., & Sushila, M. (2012). Face Recognition using Geometric Measurements, Directional Edges and Directional Multiresolution Information. *Procedia*
Technology, 6, 939–946. http://doi.org/10.1016/j.protecy.2012.10.114

Maheshwari, R., S.S.S.P., R., & Poonacha, P. G. (n.d.). FPGA implementation of median filter. In Proceedings Tenth International Conference on VLSI Design.

http://doi.org/10.1109/icvd.1997.568194

Maltoni, D., Maio, D., Jain, A., & Prabhakar, S. (2009). Handbook of Fingerprint Recognition. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Handbook_of_Fingerprint_Recognition.html?hl=&id=1Wpx25D8qOwC

Mamic, G. J., & Mohammed, B. (2000). Review of 3D object representation techniques for automatic object recognition. In Visual Communications and Image Processing 2000.

http://doi.org/10.1117/12.386708

Marr, D. (1980). Visual information processing: the structure and creation of visual representations. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 290(1038), 199–218. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6106238

Marr, D., & Hildreth, E. C. (1979). Theory of Edge Detection. Retrieved from http://books.google.ch/books/about/Theory_of_Edge_Detection.html?hl=&id=EvFOHAAACAAJ

Mathew, J. J., & James, A. P. (2015). Spatial Stimuli Gradient Sketch Model. IEEE Signal Processing Letters, 22(9), 1336–1339. http://doi.org/10.1109/lsp.2015.2404827

Mathews, V. J., & Xie, Z. (n.d.). Stochastic gradient adaptive filters with gradient adaptive step sizes. In International Conference on Acoustics, Speech, and Signal Processing.

http://doi.org/10.1109/icassp.1990.115645

McIvor, A. M. (1988). Edge Detection in Dynamic Vision. In Proceedings of the Alvey Vision Conference 1988. http://doi.org/10.5244/c.2.22

Mean Curvature Flows, Edge Detection, and Medical Image Segmentation. (n.d.). In SpringerReference.
Mednieks, I., & Ints, M. (2008). Object detection in grayscale images based on covariance features. In *2008 International Conference on Signals and Electronic Systems*. http://doi.org/10.1109/icses.2008.4673393

Meese, T. S., & Freeman, T. C. A. (1995). Edge computation in human vision: anisotropy in the combining of oriented filters. *Perception, 24*(6), 603–622. http://doi.org/10.1068/p240603

Meurant, G. (1992). *Data Fusion in Robotics & Machine Intelligence*. Academic Press. Retrieved from http://books.google.kz/books/about/Data_Fusion_in_Robotics_Machine_Intellig.html?hl=&id=47kOwU1xvMMC

Mishra, P., Parul, M., Shrivastava, A. K., & Amit, S. (2013). Enhanced Thinning Based Finger Print Recognition. *International Journal on Cybernetics & Informatics, 2*(2), 33–46. http://doi.org/10.5121/ijci.2013.2204

Morgan, M. J. (2011). Features and the “primal sketch.” *Vision Research, 51*(7), 738–753. http://doi.org/10.1016/j.visres.2010.08.002

Mousse, M. A., Cina, M., & Ezin, E. C. (2015). Fast Moving Object Detection from Overlapping Cameras. In *Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics*. http://doi.org/10.5220/0005541402960303

Mukherjee, M., Potdar, Y. U., & Potdar, A. U. (2010). Object tracking using edge detection. In *Proceedings of the International Conference and Workshop on Emerging Trends in Technology - ICWET '10*. http://doi.org/10.1145/1741906.1742064

Mu, N., Nan, M., Xin, X., & Ziheng, L. (2015). Hierarchical Features Fusion for Salient Object Detection in Low Contrast Images. In *Lecture Notes in Computer Science* (pp. 295–306). http://doi.org/10.1007/978-3-319-22186-1_29

Nezhadarya, E., & Ward, R. K. (2011). A new scheme for robust gradient vector estimation in color
images. *IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society*, 20(8), 2211–2220. http://doi.org/10.1109/TIP.2011.2118217

Nguyen, T.-H.-C., Nebel, J.-C., & Florez-Revuelta, F. (2016). Recognition of Activities of Daily Living with Egocentric Vision: A Review. *Sensors*, 16(1). http://doi.org/10.3390/s16010072

Niemeyer, I., Marpu, P. R., & Nussbaum, S. (n.d.). Change detection using object features. In *Lecture Notes in Geoinformation and Cartography* (pp. 185–201).

http://doi.org/10.1007/978-3-540-77058-9_10

Object Detection and Tracking. (2013). In *Theory and Practice* (pp. 346–407).

http://doi.org/10.1002/9781118618387.ch4

Object Recognition. (n.d.). In *SpringerReference*. http://doi.org/10.1007/springerreference_62547

O’Gorman, L., Sammon, M. J., & Seul, M. (2008). *Practical Algorithms for Image Analysis with CD-ROM*. Cambridge University Press. Retrieved from

http://books.google.kz/books/about/Practical_Algorithms_for_Image_Analysis.html?hl=&id=8dXkU Pv2DGYC

Pappachen James, A., James, A. P., & Sima, D. (2010). Inter-image outliers and their application to image classification. *Pattern Recognition, 43*(12), 4101–4112. http://doi.org/10.1016/j.patcog.2010.07.005

Pau, L. F. (1990). Edge and Line Detection. In *Computer Vision for Electronics Manufacturing* (pp. 233–241). http://doi.org/10.1007/978-1-4613-0507-1_17

Petrovic, V. S., & Xydeas, C. S. (2004). Gradient-Based Multiresolution Image Fusion. *IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 13*(2), 228–237. http://doi.org/10.1109/tip.2004.823821

Pflug, A., & Busch, C. (2012). Ear biometrics: a survey of detection, feature extraction and recognition methods. *IET Biometrics, 1*(2), 114. http://doi.org/10.1049/iet-bmt.2011.0003

Ponce, J., Hebert, M., Schmid, C., & Zisserman, A. (2007). *Toward Category-Level Object Recognition*.

Pritika, Pritika, & Sumit, B. (2015). Multimodal medical image fusion using modified fusion rules and guided filter. In *International Conference on Computing, Communication & Automation*. http://doi.org/10.1109/ccaa.2015.7148564

Qi, H., Haibing, Q., Jianlan, F., & Song, S. (2010). A Method of FPGA Implementation for Gradient Adaptive Lattice Joint Processing Filter. In *2010 International Conference on Signal Acquisition and Processing*. http://doi.org/10.1109/icsap.2010.46

Rajendran, J., Jeyavijayan, R., Harika, M., Ramesh, K., & Rose, G. S. (2012). An Energy-Efficient Memristive Threshold Logic Circuit. *IEEE Transactions on Computers. Institute of Electrical and Electronics Engineers, 61*(4), 474–487. http://doi.org/10.1109/tc.2011.26

Ratha, N., & Bolle, R. (2003). *Automatic Fingerprint Recognition Systems*. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Automatic_Fingerprint_Recognition_System.html?hl=&id=KdiQC0OtUCIC

Ren, C.-X., Lei, Z., Dai, D.-Q., & Li, S. Z. (2015). Enhanced Local Gradient Order Features and Discriminant Analysis for Face Recognition. *IEEE Transactions on Cybernetics*. http://doi.org/10.1109/TCYB.2015.2484356

Rigelsford, J., & Jon, R. (2003). 2D Object Detection and Recognition: Models, Algorithms and Networks. *Sensor Review, 23*(1). http://doi.org/10.1108/sr.2003.08723aae.001

Riste-Smith, R. (1990). *Edge Detection and Knowledge Based Segmentation of Medical Radiographs*. Retrieved from http://books.google.kz/books/about/Edge_Detection_and_Knowledge_Based_Segme.html?hl=&id=...
Robinson, J. A. (n.d.). Optimal detection of blurred edges. In *Object recognition supported by user interaction for service robots*. http://doi.org/10.1109/icpr.2002.1048152

Rodrigues, J., & du Buf, J. M. H. (2009). Multi-scale lines and edges in V1 and beyond: brightness, object categorization and recognition, and consciousness. *Bio Systems, 95*(3), 206–226. http://doi.org/10.1016/j.biosystems.2008.10.006

Rosenfeld, A. (2014). *Human and Machine Vision II*. Academic Press. Retrieved from http://books.google.kz/books/about/Human_and_Machine_Vision_II.html?hl=&id=F4WoBQAAQBAJ

Rosenfeld, A., Azriel, R., Saha, P. K., & Akira, N. (2001). Interchangeable pairs of pixels in two-valued digital images. *Pattern Recognition, 34*(9), 1853–1865. http://doi.org/10.1016/s0031-3203(00)00105-9

Sarkar, M., & Theuwissen, A. (2012). *A Biologically Inspired CMOS Image Sensor*. Springer. Retrieved from http://books.google.kz/books/about/A_Biologically_Inspired_CMOS_Image_Senso.html?hl=&id=3y5BQAAQBAJ

Sen, D., Debasish, S., & Pal, S. K. (2010). Gradient histogram: Thresholding in a region of interest for edge detection. *Image and Vision Computing, 28*(4), 677–695. http://doi.org/10.1016/j.imavis.2009.10.010

Serrano-Gotarredona, T. (1997). *VLSI Implementation of a Pseudo-Gabor Filter for Edge Extraction*. Retrieved from http://books.google.kz/books/about/VLSI_Implementation_of_a_Pseudo_Gabor_Fi.html?hl=&id=jfjwtgAACAAAJ

Setayesh, M., Mahdi, S., Mengjie, Z., & Mark, J. (2010). Improving edge detection using particle swarm
optimisation. In *2010 25th International Conference of Image and Vision Computing New Zealand*.
http://doi.org/10.1109/ivcnz.2010.6148810

Setayesh, M., Mahdi, S., Mengjie, Z., & Mark, J. (2011). Edge detection using constrained discrete
particle swarm optimisation in noisy images. In *2011 IEEE Congress of Evolutionary Computation (CEC)*. http://doi.org/10.1109/cec.2011.5949625

Shapley, R. M., & Tolhurst, D. J. (1973). Edge detectors in human vision. *The Journal of Physiology*, 229(1), 165–183. http://doi.org/10.1113/jphysiol.1973.sp010133

Shen, J., Pankanti, S., & Wang, R. (2001). *Object detection, classification, and tracking technologies: 22-24 October 2001, Wuhan, China*. SPIE-International Society for Optical Engineering. Retrieved from
http://books.google.kz/books/about/Object_detection_classification_and_trac.html?hl=&id=n_JRAA

Shirai, Y., Yoshiaki, S., Yasushi, M., & Shin’ya, Y. (1996). Object Tracking by Using Optical Flows and Edges. In *Robotics Research* (pp. 440–447). http://doi.org/10.1007/978-1-4471-1021-7_47

Shi, Z., Zhouyuan, S., & Martin, B. (2006). CMOS Digital Pixel Sensor with Multiple Reference,
Multiple Sampling Dynamic Range Enhancement. In *2006 49th IEEE International Midwest
Symposium on Circuits and Systems*. http://doi.org/10.1109/mwscas.2006.382157

Singh, R., & Khare, A. (2013). Multiscale medical image fusion in wavelet domain.
TheScientificWorldJournal, 2013, 521034. http://doi.org/10.1155/2013/521034

Sinha, D., & Dougherty, E. R. (1998). *Introduction to Computer-based Imaging Systems*. SPIE Press.
Retrieved from
http://books.google.kz/books/about/Introduction_to_Computer_based_Imaging_S.html?hl=&id=NLp

Si, Z., & Zhu, S.-C. (2013). Learning AND-OR templates for object recognition and detection. *IEEE
Skorka, O., Orit, S., & Dileepan, J. (2014). CMOS digital pixel sensors: technology and applications. In *Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014*.

http://doi.org/10.1117/12.2044808

Srikantha, A., Abhilash, S., & Juergen, G. (2014). Hough-based object detection with grouped features. In *2014 IEEE International Conference on Image Processing (ICIP)*.

http://doi.org/10.1109/icip.2014.7025331

Stathaki, T. (2011). *Image Fusion: Algorithms and Applications*. Academic Press. Retrieved from http://books.google.kz/books/about/Image_Fusion.html?hl=&id=VmvY4MTMFTwC

Stienne, G., Reboul, S., Azmani, M., Choquel, J. B., & Benjelloun, M. (2014). A multi-temporal multi-sensor circular fusion filter. *An International Journal on Information Fusion, 18*, 86–100.

http://doi.org/10.1016/j.inffus.2013.05.012

Szlachetko, B., Boguslaw, S., & Andrzej, L. (2007). FPGA Implementation of the Gradient Adaptive Lattice Filter Structure for Feature Extraction. In *Advances in Soft Computing* (pp. 824–830).

http://doi.org/10.1007/978-3-540-75175-5_102

Tachaphetpiboon, S., & Amornraksa, T. (2007). Fingerprint features extraction using curve-scanned DCT coefficients. In *2007 Asia-Pacific Conference on Communications*.

http://doi.org/10.1109/apcc.2007.4433498

Tachaphetpiboon, S., & Amornraksa, T. (n.d.). Applying FFT Features for Fingerprint Matching. In *2006 1st International Symposium on Wireless Pervasive Computing*.

http://doi.org/10.1109/iswpc.2006.1613625

Taghizadeh, M., Moslem, T., & Mahboobeh, H. (2011). A hybrid algorithm for segmentation of MRI images based on edge detection. In *2011 International Conference of Soft Computing and Pattern*
Tang, T., & Ting, T. (2012). Fingerprint recognition using wavelet domain features. In *2012 8th International Conference on Natural Computation*. http://doi.org/10.1109/icnc.2012.6234738

Tang Xusheng, Tang, X., Shi, Z., Li, D., Ma, L., & Chen, D. (2009). Learning model for object detection based on local edge features. In *2009 International Conference on Information and Automation*. http://doi.org/10.1109/icinfa.2009.5204987

Terol-Villalobos, I. R. (1996). Nonincreasing filters using morphological gradient criteria. *Optical Engineering, 35*(11), 3172. http://doi.org/10.1117/1.601039

Tolhurst, D. J. (1972). On the possible existence of edge detector neurones in the human visual system. *Vision Research, 12*(5), 797–IN1. http://doi.org/10.1016/0042-6989(72)90006-5

Torralba, A., Antonio, T., Murphy, K. P., & Freeman, W. T. (2006). Shared Features for Multiclass Object Detection. In *Lecture Notes in Computer Science* (pp. 345–361).

Treiber, M., & Marco, T. (2010). Three-Dimensional Object Recognition. In *Advances in Pattern Recognition* (pp. 95–116). http://doi.org/10.1007/978-1-84996-235-3_5

Tsang, P. W. M., & Tsang, W. H. (n.d.). Edge detection on object color. In *Proceedings of 3rd IEEE International Conference on Image Processing*. http://doi.org/10.1109/icip.1996.561021

Van De Ville, D., & Unser, M. (2008). Complex wavelet bases, steerability, and the marr-like pyramid. *IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 17*(11), 2063–2080. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18972650

Wang, G., Guangwei, W., Zenggang, X., Yihua, L., & Conghuan, Y. (2013). Object Detection Using Edge Direction Histogram Features. *Information Technology Journal, 12*(24), 8275–8280.

Wang, J., Jian, W., Zhenqiang, Y., Mingde, Y., Lin, M., Yaojie, Z., … Fangfang, L. (2011). Principles
and Applications of RIDED-2D — A Robust Edge Detection Method in Range Images. In Pattern Recognition, Machine Intelligence and Biometrics (pp. 139–167).

http://doi.org/10.1007/978-3-642-22407-2_6

Wang, P., & Ping, W. (2010). Moving Object Segmentation Algorithm Based on Edge Detection. In 2010 International Conference on Computational Intelligence and Software Engineering.

http://doi.org/10.1109/cise.2010.5677227

Wang, X. (1992). On the gradient inverse weighted filter (image processing). IEEE Transactions on Signal Processing: A Publication of the IEEE Signal Processing Society, 40(2), 482–484.

http://doi.org/10.1109/78.124968

Watt, R. J., & Morgan, M. J. (1983). The recognition and representation of edge blur: Evidence for spatial primitives in human vision. Vision Research, 23(12), 1465–1477.

http://doi.org/10.1016/0042-6989(83)90158-x

Weaver, C. S. (1975). Some Properties of Threshold Logic Unit Pattern Recognition Networks. IEEE Transactions on Computers. Institute of Electrical and Electronics Engineers, C-24(3), 290–298.

http://doi.org/10.1109/t-c.1975.224209

Wein, W., Röper, B., & Navab, N. (2005). Automatic registration and fusion of ultrasound with CT for radiotherapy. Medical Image Computing and Computer-Assisted Intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention, 8(Pt 2), 303–311. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16685973

Wildes, R., & Richard, W. (n.d.). Iris Recognition. In Biometric Systems (pp. 63–95).

http://doi.org/10.1007/1-84628-064-8_3

Woo, H. C. (1998). Improved stochastic gradient adaptive filter with gradient adaptive step size. Electronics Letters, 34(13), 1300. http://doi.org/10.1049/el:19980922

Xie Meihua, Xie, M., & Wang, Z. (n.d.). Fingerprint Enhancement Based on Edge-Directed Diffusion. In
Third International Conference on Image and Graphics (ICIG’04).

http://doi.org/10.1109/icig.2004.68

Xu, G., & Zhang, Z. (2013). Epipolar Geometry in Stereo, Motion and Object Recognition: A Unified Approach. Springer Science & Business Media. Retrieved from

http://books.google.kz/books/about/Epipolar_Geometry_in_Stereo_Motion_and_O.html?hl=&id=ho yrCAAAQBAJ

Xu, X., Xin, X., Qiang, C., & Deshen, X. (2010). Improving Image Enhancement by Gradient Fusion. In 2010 Symposium on Photonics and Optoelectronics. http://doi.org/10.1109/sopo.2010.5504345

Yang, F., Fan, Y., Michel, P., & Hervé, A. (1996). Multiscale Edges Detection by Wavelet Transform for Model of Face Recognition. In Proceedings IWISP ’96 (pp. 415–418).

http://doi.org/10.1016/b978­044482587­2/50091­4

Yuschik, M., Matthew, Y., & Hideaki, K. (1985). Top-down design of a VLSI digital filter bank.

Integration, the VLSI Journal, 3(2), 75–91. http://doi.org/10.1016/0167-9260(85)90026-4

Yutaka, & Yutaka. (2012). Shot Detection Using Genetic Edge Histogram and Object Based Video Retrieval Using Multiple Features. Journal of Computer Science, 8(8), 1364–1371.

http://doi.org/10.3844/jcssp.2012.1364.1371

Zeng, T., Tao, Z., Changyu, D., & Fei, C. (2012). Combining Laplacian Transform and Image Gradient for Focal Stack Image Fusion. In 2012 Fourth International Conference on Computational and Information Sciences. http://doi.org/10.1109/iccis.2012.103

Zhang, C., Chi, Z., Suying, Y., & Jiangtao, X. (2011). Noise in a CMOS digital pixel sensor. Journal of Semiconductors, 32(11), 115005. http://doi.org/10.1088/1674-4926/32/11/115005

Zhang, D., & Jain, A. K. (2006). Advances in Biometrics: International Conference, ICB 2006, Hong Kong, China, January 5-7, 2006, Proceedings. Springer Science & Business Media. Retrieved from http://books.google.kz/books/about/Advances_in_Biometrics.html?hl=&id=qVOznDUCChFIC
Zhang, K., Kedai, Z., Hanqing, L., Miyi, D., & Qi, Z. (2006). Automatic Salient Regions of Interest Extraction Based on Edge and Region Integration. In *2006 IEEE International Symposium on Industrial Electronics*. http://doi.org/10.1109/isie.2006.295531

Zhang, L., & Liang, Z. (2014). Extraction of Direction Features in Fingerprint Image. *Applied Mechanics and Materials, 518*, 316–319. http://doi.org/10.4028/www.scientific.net/amm.518.316

Zhang, Z., Zhike, Z., Weiqiang, W., & Ke, L. (2014). Video Text Extraction Using the Fusion of Color Gradient and Log-Gabor Filter. In *2014 22nd International Conference on Pattern Recognition*. http://doi.org/10.1109/icpr.2014.506

Zhao, W., Wang, T., Pham, H., Hu-Guo, C., Dorokhov, A., & Hu, Y. (2014). Development of CMOS Pixel Sensors with digital pixel dedicated to future particle physics experiments. *Journal of Instrumentation, 9*(02), C02004–C02004. http://doi.org/10.1088/1748-0221/9/02/c02004

Zheng, Y., Zhou, Y., Zhou, H., & Gong, X. (2015). Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator. *Ultrasonic Imaging, 37*(3), 238–250. http://doi.org/10.1177/0161734614554461

Zulkifley, M. A., Moran, B., & Rawlinson, D. (2012). Robust foreground detection: a fusion of masked grey world, probabilistic gradient information and extended conditional random field approach. *Sensors, 12*(5), 5623–5649. http://doi.org/10.3390/s120505623