Supporting Information

Pathfinder – Navigating and Analyzing Chemical Reaction Networks with an Efficient Graph-based Approach

Paul L. Türtscher¹ and Markus Reiher²

Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland

¹ORCID: 0000-0002-7021-5643
²Corresponding author; e-mail: markus.reiher@phys.chem.ethz.ch; ORCID: 0000-0002-9508-1565
1 Detailed Chemoton Exploration Settings

1.1 Elementary-step Trial and NT1 Job Settings

NT1 options employed for generating the associative elementary-step trials are summarized in Table 1.

Table 1: Options for the generation of associative elementary-step trials employing the NT1 algorithm. For further explanations consider Ref. 1 and the documentation of the Chemoton code.\(^2\) (\(^*\): for trials involving HIO\(_3\) and H\(_2\)O)

Setting	Value
Molecularity	
Bimolecular	
# rotamers	3
Max. bond distance per fragment	1
Unimolecular	
Max. bond distance per fragment	4 (5\(^*\))

Additional settings used for elementary-step trials are given in Table 2.

Table 2: Settings employed during structure optimizations and elementary-step trial calculations. For further explanations consider the manuals and source codes of Scine ReaDuct\(^3,4\) and Puffin.\(^5\)

Calculation Type	Setting	Value
Initial Structure Optimization	max_scf_iterations	500
	convergence_max_iterations	200
	convergence_step_max_coefficient	2.0e-3
	convergence_step_rms	1.0e-3
	convergence_gradient_max_coefficient	2.0e-4
	convergence_gradient_rms	1.0e-4
	convergence_delta_value	1.0e-6
	convergence_requirement	3
	bfgs_use_trust_radius	True
	bfgs_trust_radius	0.2
	geoopt_coordinate_system	internal
Elementary Step Trial Calculation	max_scf_iterations	2000
	convergence_max_iterations	600
	sd_factor	1.0
	nt_use_micro_cycles	True
	nt_fixed_number_of_micro_cycles	True
	nt_filter_passes	10
NT1 Scan - General	nt_total_force_norm	0.1
NT1 Scan - Bimolecular	nt_number_of_micro_cycles	10
Association		
Model	Parameter	Value
------------------------------	---	---------
NT1 Scan - Unimolecular	nt_convergence_repulsive_stop	1.5
Dissociation	nt_total_force_norm	0.1
	nt_number_of_micro_cycles	10
NT1 Scan - Unimolecular	nt_convergence_attractive_stop	0.8
Association	nt_total_force_norm	0.05
	nt_number_of_micro_cycles	10
Transition State	convergence_max_iterations	300
Optimization	convergence_step_max_coefficient	2.0e-3
	convergence_step_rms	1.0e-3
	convergence_gradient_max_coefficient	2.0e-4
	convergence_gradient_rms	1.0e-4
	convergence_requirement	3
	convergence_delta_value	1e-6
	optimizer	Bofill
	bofill_trust_radius	0.2
	geoopt_coordinate_system	cartesianWithoutRotTrans
IRC	convergence_max_iterations	40
	sd_factor	0.6
	sd_use_trust_radius	True
	sd_trust_radius	0.1
	sd_dynamic_multiplier	1.4
	irc_initial_step_size	0.3
	stop_on_error	False
	convergence_step_max_coefficient	2.0e-3
	convergence_step_rms	1.0e-3
	convergence_gradient_max_coefficient	2.0e-4
	convergence_gradient_rms	1.0e-4
	convergence_delta_value	1.0e-6
	irc_coordinate_system	internal
IRC Endpoint	convergence_max_iterations	500
Optimization	convergence_step_max_coefficient	2.0e-3
	convergence_step_rms	1.0e-3
	convergence_gradient_max_coefficient	2.0e-4
	convergence_gradient_rms	1.0e-4
	convergence_requirement	3
	convergence_delta_value	5e-6
	bfgs_use_trust_radius	True
	bfgs_trust_radius	0.2
	geoopt_coordinate_system	internal
Product Optimization	convergence_max_iterations	500
	convergence_step_max_coefficient	2.0e-3
	convergence_step_rms	1.0e-3
	convergence_gradient_max_coefficient	2.0e-4
	convergence_gradient_rms	1.0e-4
	convergence_requirement	3
	convergence_delta_value	1e-6
	bfgs_use_trust_radius	True
	bfgs_trust_radius	0.4
	geoopt_coordinate_system	internal
1.2 Chemoton: Compound Filters and Exploration Protocol

The following compound filters with stated settings were always combined and employed:

- TrueMinimumFilter with imaginary_frequency_threshold: -5e-5
- ElementSumCountFilter with atom_type_count: {'H': 7, 'O': 8, 'I': 3}

The SelfReactionFilter, which enables bimolecular associative trials of a compound with itself, was combined as stated in Table 3.

The step-wise generation of elementary-step trials with selected compounds was achieved by altering the settings of the IDFilter. The step-wise generation of elementary-step trials followed the following workflow:

1. Remove and add compound ID’s based on their compound cost to the IDFilter
2. Start the CHEMOTON engine for generating trials
3. Wait until all generated trials and resulting calculations are complete
4. Stop the CHEMOTON engine for generating trials
5. Analyze the resulting CRN with PATHFINDER to determine the compound cost of all compounds
6. Repeat

For the exploration with I₂ and H₂O as starting conditions, a chronological list of the compound IDs with details on which trials were enabled and added to the IDFilter are given in Table 3. The stated IDs were added to the filter in blocks, as can be seen in Table 3. The blocks were formed based on the stated compound cost threshold. If the identical compound cost threshold is stated again in Table 3, the compound cost of the affected IDs dropped below the threshold in the previous exploration step.

Table 3: Protocol for the exploration with I₂ and H₂O as starting conditions. Blocks of compound IDs with compound cost threshold and action to indicate how they were included in the IDFilter.

Compound Cost [arbitrary unit]	Action	Compound ID

4
Condition	Description	Initial State	Final State
0.45	Starting conditions - Always in IDFilter	614b303c2a814a60bb4e696a	614b30322a814a60bb4e6968
< 100	Always in IDFilter	614b3d952a814a60bb4e6968	614fda422a814a1c224a4efb
	SelfReactionFilter inactive	614fda422a814a1c224a4efb	614fda422a814a1c224a4efb
< 200	In IDFilter until all trials of this block are complete	614b671d2a814a3532259307	614b671d2a814a353225930f
	SelfReactionFilter active	614b671d2a814a353225930f	614b671d2a814a353225930f
	Only trials with starting compounds and compound with a cost < 100	614b671d2a814a353225930f	614b671d2a814a353225930f
< 225	In IDFilter until all trials of this block are complete	6155e1cc2a814a4a57c0b8e	614e2232a814a1c224a4ee7
	SelfReactionFilter active	614e2232a814a1c224a4ee7	614e2232a814a1c224a4ee7
	Only trials with starting compounds and compound with a cost < 100	614e2232a814a1c224a4ee7	614e2232a814a1c224a4ee7
< 232	In IDFilter until all trials of this block are complete	615509712a814a0cd81e42e0	6177c87e2a814a399675f5b14
	Actions identical to compounds with a cost < 225	6177c87e2a814a399675f5b14	6177c87e2a814a399675f5b14
< 242	In IDFilter until all trials of this block are complete	617c76f42a814a225b1a7ea5	617c76f42a814a225b1a7ea5
	Actions identical to compounds with a cost < 225	617c76f42a814a225b1a7ea5	617c76f42a814a225b1a7ea5
< 246	In IDFilter until all trials of this block are complete	616f6902a814a1c224a4f00	617a9052a814a702b39352a
	Actions identical to compounds with a cost < 225	617a9052a814a702b39352a	617a9052a814a702b39352a
< 250 \text{ In IDFilter until all trials of this block are complete}

Actions identical to compounds with a cost $< 225
6179b1742a814a702b393232
6168ff2a814a55aa49b5f7
61519b62a814a1c224a4ff1
6144fb52a814a1c224a4eeb
615c9e72a814a4b6d933
6154a0482a814a0ed81e42cb

< 253 \text{ In IDFilter until all trials of this block are complete}

Actions identical to compounds with a cost $< 225
6178e2862a814a399675b24
6178d5592a814a399675b22
614bf20d2a814a3532259319
617cc5a2a814a225b1a7eb
616599682a814a55aa49b5cc

< 255 \text{ In IDFilter until all trials of this block are complete}

Actions identical to compounds with a cost $< 225
61503242a814a44a57c0b3
615508092a814a0ed81e42df
6157ecc2d814a55aa49b5d4
6177c928a814a399675b0c
618101122a814a72610d3c19

< 255 \text{ In IDFilter until all trials of this block are complete}

Actions identical to compounds with a cost $< 225
61813b342a814a72610d3c1b
61548dd42a814a0ed81e42c8
6181df62a814a72610d3c24
6158c7772a814a44a57c0bbf
617c5fde2a814a225b1a7eb1
6154a2ba2a814a0ed81e42cc
614482572a814a1ec224a4ec9

< 260 \text{ In IDFilter until all trials of this block are complete}

Actions identical to compounds with a cost $< 225
61535a9d2a814a1ba66a2003
6151dc502a814a44bde5d935
617b76702a814a702b393535
6155b59f2a814a44a57c0b89
618475d2a814a2fbfffe4
617f8b0a2a814a7cc75a86eb
615db1a2a814a1e224a4f12

< 260 \text{ In IDFilter until all trials of this block are complete}

Actions identical to compounds with a cost $< 225
6159f79d2a814a44a57c0b7c
618aca9d2a814a7e8e392691
6189b1d2a814a7e8e392683

< 268 \text{ In IDFilter until all trials of this block are complete}

Actions identical to compounds with a cost $< 225
615494662a814a0cd81e42ca
614be8ab2a814a3532259317
615018ba2a814a1ec224a4f01
61501c532a814a1c224a4f02
614af5992a814a2fbfffe4
615195492a814a47a7671a05
61785df2a814a399675b18
6155555a2a814a0ed81e42f3
6150c52a2a814a1c224a4f0d
Cost

< 268
268
< 280
280
< 295
295
< 299
299
< 308 In IDFilter until all trials of this block are complete
Actions identical to compounds with a cost < 225

< 308 In IDFilter until all trials of this block are complete
Actions identical to compounds with a cost < 225

< 310 In IDFilter until all trials of this block are complete
Actions identical to compounds with a cost < 225

< 314 In IDFilter until all trials of this block are complete
Actions identical to compounds with a cost < 225

< 316 In IDFilter until all trials of this block are complete
Actions identical to compounds with a cost < 225
For the exploration with HIO$_3$ and H$_2$O as starting conditions, the list of when and how the compound IDs were added to the **IDFilter** are given in Table 4. The stated IDs were added to the filter as block defined by the given compound cost threshold. If the identical compound cost threshold is stated again in Table 3, the compound cost of the affected IDs dropped below the threshold in the previous exploration step.
Table 4: Protocol for the exploration with HIO₃ and H₂O as starting conditions. Blocks of compound IDs with compound cost threshold and action to indicate how they were included in the IDFilter.

Compound Cost [arbitrary unit]	Action	Compound ID
0.45	Starting compound - Always in IDFilter	614b303c2a814a600bb4e696a
1.0	In IDFilter until all trials of this block are complete	616722872a814a55aa49b5e6
< 28	In IDFilter until all trials of this block are complete	61deb5052a814a044c297012
	SelfReactionFilter inactive	61dc88c32a814a044c29701b
	Only trials with starting compound (H₂O)	61de012a814a044c297006
		61dcba8d02a814a044c297013
		61dca078a814a044c297010
		61dcb7172a814a044c297016
		61dce51a32a814a044c29701a
		61dcc22b2a814a044c297018
< 28	In IDFilter until all trials of this block are complete	61dcd2a2a814a044c297021
	SelfReactionFilter active	61de96d32a814a1b90216277
	Only trials with starting compound (H₂O)	61ebac612a814a28c66cbe67
		61ef50f2a814a28c66cbe25
		61eaf972a814a044c297019
		61e0e7742a814a28c66cbe0c
		61e102832a814a28c66cbe0e
< 34	In IDFilter until all trials of this block are complete	61e10982a814a28c66cbe0f
	SelfReactionFilter active	61dcb8ad2a814a044c297020
	Only trials with starting compound (H₂O)	61ecb5c0a2a814a28c66cbe06
		61e09b062a814a28c66cbe04
		61ecc99a32a814a28c66cbe34
		61e0e7742a814a28c66cbe0c
< 34	In IDFilter until all trials of this block are complete	61e222382a814a28c66cbe1d
	SelfReactionFilter active	620b28f62a814a0c263b4f38
	Only trials with starting compound (H₂O)	620060c8f2a814a0c263b4f27
		620ba9952a814a0c263b4f2d
		620a9892a814a0c263b4f34
		62005ead2a814a0d205ef67
2 Details on Paths for the Disproportionation and Comproportionation

In the following sections, the output given by PathFinder of the discussed paths is stated. This includes each reaction equation of the path, where the first molecular formula given is the one of the visited compound node. The total length of the path is given as Cost. The overall reaction equation and the corresponding overall reaction energy is stated as well. The reaction barriers represented in the reaction profiles as well as the maximum barrier of the path are listed.

2.1 Disproportionation of I$_2$

2.1.1 Literature6,7 Path

\[
\begin{align*}
I_2(c:0, m:1) + H_2O(c:0, m:1) & \rightarrow HI_0(c:0, m:1) + HI(c:0, m:1) \\
HI_0(c:0, m:1) + HI(c:0, m:1) & \rightarrow I_2O(c:0, m:1) + H_2O(c:0, m:1) \\
I_2O(c:0, m:1) + H_2O(c:0, m:1) & \rightarrow H_2I_2O_2(c:0, m:1) \\
H_2I_2O_2(c:0, m:1) + H_2O(c:0, m:1) & \rightarrow H_3I_2O_3(c:0, m:1) + HI(c:0, m:1) \\
H_3I_2O_3(c:0, m:1) & \rightarrow HIO_2(c:0, m:1) + H_2O(c:0, m:1) \\
HI_0(c:0, m:1) + I_2(c:0, m:1) + H_2O(c:0, m:1) & \rightarrow H_2I_2O_3(c:0, m:1) + HI(c:0, m:1) \\
H_2I_2O_3(c:0, m:1) & \rightarrow HI_3(c:0, m:1) + HI(c:0, m:1)
\end{align*}
\]

Cost [a.u.]: 420.3517271348526
1 $I_2(c:0, m:1) + 1 H_2O(c:0, m:1) + 2 HI_0(c:0, m:1) = 3 HI(c:0, m:1) + 1 HI_0(c:0, m:1)$

Overall Rxn Energy [kJ / mol]: 316.72
Barriers [kJ / mol]: [174.43, 108.3, 204.66, 58.82, 83.22]
Max. Barrier [kJ / mol]: 204.66

2.1.2 PathFinder Path

\[
\begin{align*}
I_2(c:0, m:1) + H_2O(c:0, m:1) & \rightarrow HI_0(c:0, m:1) + HI(c:0, m:1) \\
HI_0(c:0, m:1) + I_2(c:0, m:1) + H_2O(c:0, m:1) & \rightarrow H_2I_2O_2(c:0, m:1) + HI(c:0, m:1) \\
H_2I_2O_2(c:0, m:1) + H_2O(c:0, m:1) & \rightarrow H_3I_2O_3(c:0, m:1) + HI(c:0, m:1) \\
H_3I_2O_3(c:0, m:1) & \rightarrow HI_2(c:0, m:1) + H_2O(c:0, m:1) \\
HI_2(c:0, m:1) + I_2(c:0, m:1) + H_2O(c:0, m:1) & \rightarrow H_2I_2O_3(c:0, m:1) + HI(c:0, m:1) \\
H_2I_2O_3(c:0, m:1) & \rightarrow HI_3(c:0, m:1) + HI(c:0, m:1)
\end{align*}
\]

Cost [a.u.]: 320.80480369274903
3 $I_2(c:0, m:1) + 3 H_2O(c:0, m:1) = 5 HI(c:0, m:1) + 1 HI_3(c:0, m:1)$

Overall Rxn Energy [kJ / mol]: 585.75
2.2 Comproportionation of HIO$_3$ and HI

2.2.1 Literature6,7 Path

\begin{align*}
\text{HIO}_3(c:0, m:1) + \text{HI}(c:0, m:1) & \rightarrow \text{HIO}_2(c:0, m:1) + \text{HIO}(c:0, m:1) \\
\text{HIO}_2(c:0, m:1) + \text{HIO}(c:0, m:1) + \text{HIO}(c:0, m:1) & \rightarrow \text{I}_2\text{O}(c:0, m:1) + \text{H}_3\text{IO}_3(c:0, m:1) \\
\text{I}_2\text{O}(c:0, m:1) + \text{H}_2\text{O}(c:0, m:1) & \rightarrow \text{HIO}(c:0, m:1) + \text{HIO}(c:0, m:1) \\
\text{HIO}(c:0, m:1) + \text{HI}(c:0, m:1) & \rightarrow \text{I}_2(c:0, m:1) + \text{H}_2\text{O}(c:0, m:1)
\end{align*}

Cost [a.u.]: 159.00697318658905

1 $\text{HIO}_3(c:0, m:1) + 2 \text{HI}(c:0, m:1) = 1 \text{H}_3\text{IO}_3(c:0, m:1) + 1 \text{I}_2(c:0, m:1)$

Overall Rxn Energy [kJ / mol]: -209.99

Barriers [kJ / mol]: [30.93, 46.13, 119.79, 39.91]

Max. Barrier [kJ / mol]: 119.79

2.2.2 Pathfinder Path

\begin{align*}
\text{HIO}_3(c:0, m:1) + \text{HI}(c:0, m:1) & \rightarrow \text{H}_2\text{IO}_3(c:0, m:1) \\
\text{H}_2\text{IO}_3(c:0, m:1) + \text{HI}(c:0, m:1) & \rightarrow \text{I}_2(c:0, m:1) + \text{H}_2\text{O}(c:0, m:1) + \text{HIO}_2(c:0, m:1)
\end{align*}

Cost [a.u.]: 24.695543461067764

1 $\text{HIO}_3(c:0, m:1) + 2 \text{HI}(c:0, m:1) = 1 \text{I}_2(c:0, m:1) + 1 \text{H}_2\text{O}(c:0, m:1) + 1 \text{HIO}_2(c:0, m:1)$

Overall Rxn Energy [kJ / mol]: -186.81

Barriers [kJ / mol]: [19.23, 24.23]

Max. Barrier [kJ / mol]: 24.23

References

[1] Unsleber, J. P.; Grimmel, S. A.; Reiher, M. Chemoton 2.0: Autonomous Exploration of Chemical Reaction Networks. *J. Chem. Theory Comput.* **2022**, DOI: 10.1021/acs.jctc.2c00193.

[2] Bensberg, M.; Grimmel, S. A.; Simm, G. N.; Sobez, J.-G.; Steiner, M.;
Türtscher, P. L.; Unsleber, J. P.; Weymuth, T.; Reiher, M. Qcscine/Chemoton: Release 2.0.0. Zenodo, 2022; DOI: 10.5281/zenodo.6695584.

[3] Vaucher, A. C.; Reiher, M. Minimum Energy Paths and Transition States by Curve Optimization. *J. Chem. Theory Comput.* **2018**, *14*, 3091–3099.

[4] Brunken, C.; Csizi, K.-S.; Grimmel, S. A.; Gugler, S.; Sobez, J.-G.; Steiner, M.; Türtscher, P. L.; Unsleber, J. P.; Vaucher, A. C.; Weymuth, T.; Reiher, M. Qcscine/Readuct: Release 3.0.0. Zenodo, 2021; DOI: 10.5281/zenodo.5782849.

[5] Bensberg, M.; Brunken, C.; Csizi, K.-S.; Grimmel, S. A.; Gugler, S.; Sobez, J.-G.; Steiner, M.; Türtscher, P. L.; Unsleber, J. P.; Weymuth, T.; Reiher, M. Qcscine/Puffin: Release 1.0.0. Zenodo, 2022; DOI: 10.5281/zenodo.6695462.

[6] Schmitz, G. Cinétique de la réaction de Bray. *J. Chim. Phys.* **1987**, *84*, 957–965.

[7] Kolar-Anić, L.; Misljenović, D.; Anić, S.; Nicolis, G. Influence of the Reduction of Iodate Ion by Hydrogen Peroxide on the Model of the Bray-Liebhafsky Reaction. *React. Kinet. Catal. Lett.* **1995**, *54*, 35–41.