Questionnaire for Construction Worker Risk Taking (Q-CWRT) in Hong Kong

B anus K.L. Low (kllow2-c@my.cityu.edu.hk), Alan H. S. Chan (meachan@cityu.edu.hk)

1Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Hong Kong

ABSTRACT

Accident prevention is a major health and safety concern in the construction sector and understanding risk-taking behavior plays an essential role in this initiative. The efficient measurement of workers’ risk-taking propensity would be a pragmatic approach. Several instruments can be used for measuring risk-taking behavior, but instruments pertinent for construction workers are rare. This study aims to establish a questionnaire for construction workers’ risk taking (Q-CWRT) by adapting the explained theory of planned behavior (ETPB), which consists of organizational, workplace and individual-related factors. This questionnaire includes 188 valid samples (156 male and 32 female), and 12 factors with 41 items were extracted based on the results of exploratory factor analysis. The Q-CWRT goodness-of-fit results were achieved (CMIN = 1.4, CFI = 0.925, TLI = 0.912, RMSEA = 0.046, SRMR = 0.0625, and $p < 0.05$) using confirmatory factor analysis. This study demonstrated the potential of the proposed new and prominent instrument that would help employers in acquiring better understanding of factors that contribute to improving safety performance.

Keywords: Risk taking, Construction workers, Questionnaire, Factor analysis, ESK-JES

1. Introduction

Risk taking is highly correlated with occupational accidents and injuries (Yule & Flin, 2007) and construction incident on the other hand has a prominent contribution to the overall industrial accidents in Hong Kong. As risk-taking behavior can vary with respect to the different domain-related situation (Johnson, Wilke, & Weber, 2004), a risk-taking measurement tool for the construction industry was eagerly proposed; however, such development in the allusion of construction workers’ risk behaviors is extremely rare. The present study was designed to focus on this aspect and aimed to enact an easy-for-site-use instrument for surveying construction workers’ risk-taking propensity so as to enable safety scientists and stakeholders to timely deploy due mitigation measures.

Massive literature was reviewed, the Questionnaire for Construction Worker Risk Taking (Q-CWRT) was thereby based on the theory of planned behavior (TPB) with due expansion to suit the attributes of the construction workers. Subfactors relating to workers’ behavioral-based safety were identified and shown in Table 1. Organizational, workplace, and individual-related factors were also categorized. Seventy items (including 8 items for demographic concerns) for the 16 subfactors were initially used for the commencement of the questionnaire design in accordance with previous studies.

2. Aims and Objective of this Study

The aims of this study were to evaluate the factor structures of the Q-CWRT through the exploratory factor analysis and to determine its validity, reliability, and goodness of fit by means of the confirmatory factor analysis.
The objective of this study was to develop an alternative measurement tool for the industry to precisely survey the risk-taking propensity of the construction workers to facilitate the timely deployment of relevant arrangements for the improvement of the site safety performance accordingly.

Table 1. Factors regarding construction workers’ behavioral-based safety and accident.

Categorized factors	Subfactors	Source
Individual-related factors	Family influence (FI)	(Shappell & Wing, 1997)
	Financial needs (FN)	(Reale, 2007)
	Lifestyle and SES (L & SES)	(Shappell & Wing, 1997)
	Attitude towards safety in cases & procedures (ATSM P)	(Cavazza & Serpe, 2009)
	Risk perception (RP)	(Palich & Bagby, 1995)
	Cognitive bias (CB)	(Palich & Bagby, 1995)
	Perceived behavioral control (PBC)	(Kim & Helweg-Larsen, 2002)
	Personality trait (PT)	(Zuckerman, 1990)
Organizational factors	Safety supervision & inspection (SSI)	(Fung, Tan, & Au, 2005)
	Safety culture (SC)	(Fung, Tan, & Au, 2005)
	Work Kend & workplace (WKWP)	(Fung, Tan, & Au, 2005)
	Social influence (SI)	(Zohar & Luria, 2005)
	Safety reward & punishment policy (SRPP)	(Smith, Roe, Burke, & Landis, 2005)
Workplace factors	Workplace conditions (WC)	(Ghosn, 1992)
	Safety equipment availability & design (SEAD)	(Ghosn, 1992)

3. Method

The questionnaire survey with quantitative analysis was adopted in this research to reflect the construction workers’ risk-taking propensity. A seven-point Likert scale was used and was ranked from 1 to 7 for all of the items, except that of the demographical measurements. A method used in the lower bounds on the sample size for structural equation models formulas (Westland, 2010; Soper, 2016) were adopted to estimate the minimum but acceptable sample size. The anticipated effect size was taken as 0.3 for medium (Jo & Muthén, 2009), and the desired statistical power level was set at 0.8. The latent variable was originally 12, and the observed variables were 41 in pursuit of a hypothesized model. The probability level was set at 0.05. A recommended minimum sample size of 147 was then calculated according to the A-Priori Sample Size Calculator (Westland, 2010).

In sampling adequacy, the Kaiser–Meyer–Olkin (KMO) test was initially applied to measure the suitability of the harvested primary data during the factor analysis. Maximum likelihood factor analysis (MLFA) was also employed. In this questionnaire, the eigenvalue of the individual factor should be >1 during extraction, and the maximum iterations for convergence was set at 25. Promax oblique rotation was also employed for data transformation as it is comparatively fast and conceptually simple. Besides, IBM® Amos® 22 was used for confirmatory factor analysis (CFA) after the pattern matrix. Goodness-of-fit indices, such as the chi-square ratio, , and degree of freedom (df), were employed for determination. An acceptable chi-square distribution is obtained if the /df ratio is below 2. The comparative fit index (CFI) and the Tucker–Lewis index (TLI) reaffirmed the factors of the goodness of fit. These figures were advanced as the measured values of CFI and TLI that should not be less than the cutoff criterion of 0.90, particularly when /df is <3 (Iacobucci, 2010). The root mean square error of approximation (RMSEA) and standardized root mean residual (SRMR) were used for mirroring the model by virtue of determining the cutoff value, which are lesser than 0.06 and 0.08, respectively (Harrington, 2009).

4. Results

188 valid dataset were collected from several representative construction projects in Hong Kong and the total sample size harvested was higher than the minimum level of 119. Of the construction workers, 156 male and 32 female participated in this study for quantitative research. Other demographic results are illustrated in Figure 1 which can be downloaded in this website: [Please inform us for password through email](https://docs.google.com/forms/d/e/1BZ5Ryg5GViAaYHxNiyxOb-ry1Pcyhlmh9ZCQ/edit?usp=sharing). In line with the requirements of data reliability and validity, all items were evaluated using IBM® SPSS® Statistics 22.0 to assess several criteria. Construct validity analysis includes convergent...
and discriminant validities. Convergent validity was reflected by the average variance extracted (AVE) values of the constructs. The values were measured from 0.509 to 0.742. Acceptable AVE values were acquired because all of them were higher than the 0.5 threshold. Apropos to the discriminant validity test, the square root of AVE (SRAVE) of the constructs were estimated and all the SRAVE values were larger than the AVE values of the same constructs. These results indicated that the discriminant validity was achieved properly. All factor loading values for each item were estimated over the moderate level (0.6), except that of item FNLS01 with a marginal level (0.488). This factor loading pattern remains acceptable because it was at least over 0.4. Similarly, reliability was estimated using the Cronbach’s α and composite reliability (CR) of all constructs. Cronbach’s α and CR were calculated from 0.723 to 0.883 and from 0.747 to 0.870, respectively. The values of these two criteria were above 0.7, which means that reliable data with acceptable internal consistency were obtained appropriately. The KMO value of this Q-CWRT was 0.821, which shows that a meritorious result was obtained because it was >0.5. In addition, Bartlett’s test of sphericity yielded a p value (Sig.) of 0.000 < 0.05. In the total variance analysis, over 59.85% of the variability in Q-CWRT can be explained for the first 10 subfactors (see Table 2) which had eigenvalues above 1.

The final factor structure was successfully acquired by analyzing pattern matrix. 41 items were adopted corresponding to the 10 subfactors extracted. The information for the content of the items and the full names of the factors can be referred to in Appendix 1 which can be downloaded from this website: https://docs.google.com/forms/d/1XXNoJ2VZD-Qgv8p-pAeTkRbVBMGWcDCBmN7fYtop5Uw/edit?usp=sharing (Please inform us for password through email). In Table 2, the factors for “RB & ATR” and “RP & ATSMP” were subsequently regrouped into four factors, RB, ATR, RP, and ATSMP, in this study owing to the concern about the theoretical differences between them. In this regard, 12 out of the original 16 factors were eventually used for further analysis in structural equation modelling.

A goodness-of-fit model was acquired after the examination of CFA processed by IBM® Amos™ 22. The ratio (CMIN) of chi-square, χ², to the df was 1.40. This values was small enough, <3. Thus, a better fitting model was thereby obtained. Additionally, CFI and TLI were estimated in at 0.925 and 0.912, respectively, and a goodness-of-fit result of the Q-CWRT model in the sample size was achieved as CFI and TLI that were smaller than 0.9. RMSEA was 0.046, which is lower than 0.06. SRMR was 0.0625, which is smaller than 0.08. In summary, all these estimates indicated a goodness-of-fit result accordingly.

Table 2. Factor loadings of the Q-CWRT adopted from the construction worker sample (RB = Risk Behavior and RI = Risk Intention; for other abbreviations, see Table 1).

Sub-factors	RH & ATR	SI	SSRC	WC	SEAD	PT	FI	CR	RI	FNLS	RP & ATSMP
RB1	.755										
RB2	.754										
RB3	.746										
RB4	.723										
ATR1	.619										
ATR2	.658										
SI1	.901										
SI4	.869										
SI1	.664										
SI2	.651										
SSRC2	.788										
SSRC3	.770										
SSRC1	.716										
SSRC4	.529										
WCSEAD2	.886										
WCSEAD3	.799										
WCSEAD1	.756										
WCSEAD5	.544										
WCSEAD4	.477										
PT1	.917										
PT3	.807										
FT1	.808										
FT2	.608										
FT1	.755										
FT2	.694										
CI2	.871										
CI3	.871										
CI1	.654										
CI2	.829										
CI1	.768										
CI2	.747										
FNLS01	.850										
FNLS02	.679										
FNLS03	.564										
RP1	.591										
RP3	.464										
RP2	.317										
ATSMP2	.590										
ATSMP3	.525										
ATSMP1	.525										

5. Discussion and Conclusion

The Q-CWRT factor structure was evaluated according to Table 2. This finding satisfied one of the aims of this study in search for factor structure, and 41 items with 8 demographic questions were also enacted for Q-CWRT. 70 original items exist, but 21 items were excluded owing
to the non-significant cross-loadings during the EFA. This achievement forged the Q-CWRT to become more succinct and pertinent for construction workers. The findings finally proved that these 12 factors of Q-CWRT prevailed in the pursuit of the goodness-of-fit test. Two organizational subfactors (safety reward & punishment policy, SRPP and workload & work pace, WLWP) and one individual-related subfactor (PBC) were statistically abandoned, but safety supervision and inspection (SSI) and safety culture (SC) were suggested to combine during the EFA. The quantities of Q-CWRT items were efficiently reduced to 41, which is close to that of SSS (40 items) and DOSPERT (40 statements). The overall duration for the Q-CWRT operation was counted within an acceptable period of 40 minutes on average and its coverage is prominently broad and high for the industry to operate measurement at the site environment.

Acknowledgments

This work was sponsored by Development Bureau of the Hong Kong Special Administrative Region Government [WQ/020/15] and the authors wish to take this opportunity to acknowledge other research team members, namely, Junde S. Z. Li, Kiwi H. M. Wong, and S. S. Man, for their contributions to this study.

Reference

Brealey, Richard A.; Myers, Stewart C.; Allen, Franklin.. Chapter 17 - Does Debt Policy Matter? In R. A. Brealey, S. C. Myers, & F. Allen, Principles of Corporate Finance (12 Ed. ed., pp. P. 436 - 443). New York: McGraw-Hill Education, 2014.

Cavazza, N., & Serpe, A.. Effects of safety climate on safety norm violations: exploring the mediating role of attitudinal ambivalence toward personal protective equipment. Journal of Safety Research, 40 (2009), P. 277 - 283, 2009

Cestac, J., Paran, F., & Delhomme, P.. Young drivers' sensation seeking, subjective norms, and perceived behavioral control and their roles in predicting speeding intention: How risk-taking motivations evolve with gender and driving experience. Safety Science, 49, P. 424 - 432, 2011

Flin, R., Mears, K., O'Connor, P., & Bryden, R. Measuring safety climate: identifying the common features. Safety Science, 34, P. 177 - 192, 2000

Fung, I., Tam, C., Tung, K., & Man, A. Safety cultural divergences among management, supervisory and worker groups in Hong Kong construction industry. International Journal of Project Management, 23 (2005), P. 504 - 512, 2005

Ghosh, Dipankar; Ray, Manash R.. Risk Attitude, Ambiguity Intolerance and Decision Making: An Exploratory Investigation. Decision Sciences, 23(2), P. 431 - 444, 1992

Harrington, D., Ch4 - Assessing Confirmatory Factor Analysis Model Fit and Model Revision. In T. Tripodi, P. Dattalo, B. Thyer, & E. Danto (Eds.), Confirmatory Factor Analysis: Pocket Guides to Social Work Research Methods (pp. P. 50 - 77). New York: Oxford University Press, 2009

Iacobucci, D.. Structural equations modeling: Fit Indices, sample size, and advanced topics. Journal of Consumer Psychology, 20, Pg. 90 - 98., 2010

Jo, B., & Muthén, B.. Ch 3 Modeling of Intervention Effects With Noncompliance: A Latent Variable Approach for Randomized Trials. In G. Marcoulides, & R. Schumacker, New Developments and Techniques in Structural Equation Modeling (pp. P. 57 - 87). Mahwah, New Jersey & London: Lawrence Erlbaum Associates, Publishers , 2009

Johnson, J., Wilke, A., & Weber, E.. Beyond a trait view of risk taking: A domain-specific scale measuring risk perceptions, expected benefits, and perceived-risk attitudes in German-speaking populations. Polish Psychological Bulletin, 35(3), P. 153 - 163, 2004

Klein, C., & Helweg-Larsen, M.. PERCEIVED CONTROL AND THE OPTIMISTIC BIAS: A META-ANALYTIC REVIEW. Psychology and Health, 17(4), P. 437 - 446., 2002

Palich, L., & Bagby, D.. Using Cognitive Theory to Explain Entrepreneurial Risk-taking: Challenging Conventional Wisdom. Journal of Business Venturing, 10, P. 425 - 438, 1995

Shappell, S., & Wiegmann, D.. A Human Error Approach to Accident Investigation: The Taxonomy of Unsafe Operations. The International Journal of Aviation Psychology, 7(4), P. 269 - 291, 1997

Smith-Crowe, K., Burke, M., & Landis, R.. Organizational climate as a moderator of safety knowledge-safety performance relationships. Journal of Organizational Behavior, 24, P. 861 - 876, 2003

Soper, D.. A-priori Sample Size Calculator for Structural Equation Models [Software]. Retrieved from http://www.danielsoper.com/statcalc, 2016

Westland, J.. Lower bounds on sample size in structural equation modeling, Electronic Commerce Research and Applications, 9(6), P. 476 - 487, 2010

Yule, S., & Flin, R.. The role of management and safety climate in preventing risk-taking at work. International Journal of Risk Assessment and Management, 7(2), P. 137 - 151, 2007

Zohar, D., & Luria, G. A Multilevel Model of Safety Climate: Cross-Level Relationships Between Organization and Group-Level Climates. Journal of Applied Psychology, 90(4), P. 616 - 628, 2005

Zuckerman, Marvin; Kuhlman, D. Michael.. Personality and Risk-taking: Common Biosocial Factors. Journal of Personality, 68(6), P. 999 - 1029, 2000