Clinical Study of Acupotomy for Knee Osteoarthritis Based on the Meridian-Sinew Theory: A Randomized Controlled Clinical Trial

Zhijuan Hua,1 Han Deng,2 Huang Tang,3 Zhizhong Ruan,4 Pei Wang,5 Min Zhang,6 Hui Ma,7 Ping Wang,8 Can Dong,4 Zhilan Huang,4 Hanqing Hong,9 Quan Zhou,1 He Zhou,1 Changcheng Cheng,2 Wanqi Lin,2 Cairong Zhang,4 and Dechun Chen1

1Daishan Community Health Service Center, Nanjing, Jiangsu 210042, China
2Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, China
3Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
4Department of Acupuncture and Moxibustion, Nanjing Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, China
5Taihu Sanatorium of Jiangsu Province, Wuxi, Jiangsu 214100, China
6School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
7Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210017, China
8Nanjing First Hospital, Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210006, China
9Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu 210014, China

Correspondence should be addressed to Cairong Zhang; njszyzycr@163.com and Dechun Chen; chen114661260@163.com

Received 2 June 2021; Revised 8 October 2021; Accepted 27 October 2021; Published 18 November 2021

Academic Editor: Mohammad Hashem Hashempur

Copyright © 2021 Zhijuan Hua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study was performed to compare the effectiveness of acupotomy based on the meridian-sinew theory with acupotomy based on the anatomical theory in the treatment of knee osteoarthritis (KOA). A total of 124 patients with knee osteoarthritis were randomized into the meridian-sinew (MS) group (63 patients) and anatomy group (61 patients). In the MS group, acupotomy based on the meridian-sinew theory was performed. In the anatomy group, acupotomy based on anatomy was applied. Patients were subgrouped by TCM Constitutions. The Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index and visual analog scale (VAS) were used to evaluate treatment effectiveness. The results showed that VAS ($F=22.61, p<0.01$) and WOMAC ($F=24.84, p<0.01$) scores declined with time, and there was no significant difference between the two groups nor subgroups (Yang deficiency subgroup, Yin-Yang harmony subgroup, and the subgroup of the others). A total of 5 patients reported 6 cases of the minor adverse effect, and all patients achieved complete recovery without medical intervention. This study indicates that the effectiveness and safety of acupotomy based on the meridian-sinew theory are equivalent to that of acupotomy based on anatomy in KOA treatment.

1. Introduction

Knee osteoarthritis (KOA) is a chronic, progressive, and degenerative disease of the bone and joint characterized by cartilage degeneration, osteosclerosis, and hyperostoeogeny. KOA is usually caused by aging, trauma, congenital joint abnormality, joint deformity, biomechanical factors, and endocrine metabolism [1]. KOA commonly occurs in people over 40 years old and can occur on both knees [2]. Epidemiological survey showed that KOA hared a high incidence in Chinese population aged over 60 (23.97%), and the incidence surged to 31.27% in people over 70 years old [3]. The prevalence of KOA was significantly higher in post-menopausal women [4, 5]. At present, the treatments of KOA mainly include pharmacologic options (such as nonsteroidal anti-inflammatory drugs [6], glucosamine
Evidence-Based Complementary and Alternative Medicine

shows that taking Tregocel® (containing curcuminoid and extracts of the herbs Harpagophytum procumbens, Boswellia serrata, Apium graveolens, and Zingiber officinale) is helpful for mild knee osteoarthritis [9]. However, such medicines could cause undesirable drug-related adverse reaction in the skin, upper gastrointestinal tract, brain, and kidney and increase risk of cardiovascular disease, while intraarticular injection and surgery may lead to infection and trauma [10, 11].

Acupotomy is a modern type of acupuncture that uses a needle knife combined with a flat scalpel at its tip and has been widely used in the treatment of KOA in China, especially in primary hospitals. The previous research studies and systematic evaluations also confirmed its effectiveness as an external treatment for KOA [12, 13]. In acupotomy therapy based on anatomy, a physician may use a “meridian-sinew scope” to observe local tissue and simultaneously use a needle knife to loosen and release adhesions [14]. It can relieve the pain, slow down the degeneration of articular cartilage, and maintain and improve joint function [14]. However, the meridian-sinew scope requires corresponding devices and accompanies with superior cost-burden. Whereas, acupotomy based on the meridian-sinew theory would shake off those limitations.

Meridian-sinew is one of the meridian subsystems. The word “meridian sinew” was translated from Jingjīn, which also translated as “the 12 meridian sinews,” “muscle channels,” and “sinew channels.” In modern anatomy, meridian sinews are an accessory part of meridians and collaterals and is a system of deeply nourishing sinews, muscles, and joints. It can be viewed on the meaning of meridian sinews that the meridian-sinew system maintains the dynamic and static balance of joint motion. Physiologically, meridian sinews have the functions of connection, restraint, maintenance, and so on. Pathologically, the pathological changes of meridian sinews include sinew tension, sinew overrestricion, sinew cramp, sinew pain, and so on. The objective of this study is to provide a practical acupotomy method based on the meridian-sinew theory and exam the effectiveness and safety of this method in KOA treatment compared with that of acupotomy based on anatomy.

The health status of a person is strongly related to his or her constitution, which is a stable form of body structure and function as well as psychological state formed by the combination of innate endowment and acquired environment [15, 16]. It has been suggested that TCM constitution can reveal the sensitivity of patients to diseases, infer the regression of diseases, and use it to develop individualized treatment plans for patients [17].

In the previous study, the research group found that there were significant differences in the curative effects of patients. Most patients had reduced pain immediately after needle knife treatment, but some patients had increased pain after needle knife treatment and needed lidocaine injection to improve [18]. To seek the difference, this study added...
2.2. Study Design Flowchart. Figure 1 shows the recruitment process, group allocation, and participation in the two interventions. All participants who completed a follow-up were included in the corresponding analysis.

2.3. Interventions

2.3.1. Patients in the MS Group. Body position: the patients were asked as supine position for the anterior, medial, and lateral release, with the knee joint flexion of about 30° and a soft pillow under the knee; the prone position was adopted for the posterior release, with a soft pillow in front of the ankle. Point locating: selected tender point and cord-like node along the three Yang meridians of the foot and three Yin meridians of the foot as positive reaction points, select sub-BL40, sub-KI10, sub-GB34, sub-LR8, sub-LR7, and up-SP9 (standard tendons disease lesions) if tender point and cord-like node were absent, and mark the selected points with a marker (see Figures 2 and 3). Disinfection and anesthesia: operators used iodophor to disinfect the treatment area and 0.5% lidocaine (1ml) for local infiltration anesthesia on each point. Operation: the operator inserted the disposable needle knife (0.8mm × 40mm No. 4, Hanzhang, Figure 4) until it reached the surface of the bone and released the adhesions mainly with vertical movements and then with subcutaneous weeping motion. Local pressing hemostasis was applied right after removal of needle knife, and then bandages in the same position. This was performed once a week for 4 weeks. Assessment on week 2 and week 4 were done after acupotomy.
2.3.2. **Anatomy Group.** Body position: the patients were asked as the same positions as the MS group. Point locating: attachments of medial and lateral collateral ligament, attachments of patellar ligament, tendon insertion of quadriceps femoris, and anserine bursa (8 points in total) were selected according to Foundations of Acupotomy and Clinical Acupotomy [21]. Disinfection and anesthesia: the operator used iodophor to disinfect the treatment area; and 0.5% lidocaine (1 ml) for local infiltration anesthesia on each point. Operation: needle knives were inserted perpendicularly and then follow the four-step procedure of acupotomy—location, orientation, pressing-releasing, and puncture. Local pressing hemostasis was applied right after removal of the needle knife and then bandages in the same position.

This was performed once a week for 4 weeks. Assessment on week 2 and week 4 was done after acupotomy.

The causes of acupotomy-related adverse reactions, including hemorrhage, subcutaneous hemorrhage, hematoma,
Comparisons of categorical data between the two groups will be assessed using the independent sample t-test. Continuous variables between the MS and anatomy groups of observation samples of the research group is 124 cases. Considering practical operability, and 20% sample loss, the final number will be 104 cases. According to the clinical research purpose, the excellent clinical effectiveness in the treatment of KOA [23]. Specialist could use a “meridian-sinew scope” to make the treatment easier by observing the inner structure of the knee joint directly. Though such scope may not be available in some sites, the cost could be expensive. In primary hospitals, specialists usually conduct acupotomy on the basis of the anatomy theory (without a scope) or traditional meridian-sinew theory. The meridian-sinew theory was first seen in the meridian-sinew chapter of the Yellow Emperor’s Internal Classic (Huangdi Neijing). Previous studies have shown that this theory has been applied to relieve knee joint pain in the treatment of KOA [14, 24]. One study [14] treatment time was too short, while the total duration of the study was 12 weeks and the duration of treatment was 4 weeks. The sample size was also too small to assess overall changes in the disease state, while the meridian-sinew release group, acupuncture group, and control group are, respectively, 27 cases, 26 cases, and 26 cases. Another study [24] compared

3. Results

3.1. Subjects. One hundred twenty-four patients aged from 40 to 74 were enrolled in this study, including 41 men (33.1%) and 83 women (66.9%). 44 patients’ TCM constitution were identified as Yin-Yang harmony (35.5%), 43 as Yang deficiency (34.7%), and 37 as others (39.8%). Demographic information and TCM constitutions of each group are given in Table 1, and several patients’ data were absent in the “knee joint degeneration” and “age at first onset” sets.

3.2. Primary and Secondary Outcomes. VAS (F=22.61, p < 0.01) and WOMAC (F=24.84, p < 0.01) scores declined with time in both the MS and anatomy groups. Compared with the anatomy group, there was no statistically significant difference in VAS or WOMAC scores at baseline or during treatment (p > 0.05) (Table 2 and Figure 5).

Similarly, no significant differences were observed in VAS and WOMAC between different constitution subgroups of each group (Table 3 and Figure 6).

At the end of the treatment, VAS decreased by 1.7 and 1.8 in the MS group and anatomy group, respectively, and there was no statistically significant difference (t=0.28, p = 0.78). WOMAC decreased by 12.3 and 13.0 in the MS group and anatomy group, and no significant differences between the two groups (t=0.28, p = 0.78) (Table 4).

3.3. Adverse Reactions. Five patients reported adverse reactions related to acupotomy, including 5 cases of subcutaneous hemorrhage at the acupotomy site and 1 case of tingling after acupotomy. All adverse reactions were reported as mild and did not require special medical intervention. All patients recovered completely from the adverse reactions and completed the trial.

4. Discussion

KOA is one of the most common diseases among the elderly. Acupotomy as a traditional Chinese treatment showed excellent clinical effectiveness in the treatment of KOA [23]. Specialist could use a “meridian-sinew scope” to make the treatment easier by observing the inner structure of the knee joint directly. Though such scope may not be available in some sites, the cost could be expensive. In primary hospitals, specialists usually conduct acupotomy on the basis of the anatomy theory (without a scope) or traditional meridian-sinew theory. The meridian-sinew theory was first seen in the meridian-sinew chapter of the Yellow Emperor’s Internal Classic (Huangdi Neijing). Previous studies have shown that this theory has been applied to relieve knee joint pain in the treatment of KOA [14, 24]. One study [14] treatment time was too short, while the total duration of the study was 12 weeks and the duration of treatment was 4 weeks. The sample size was also too small to assess overall changes in the disease state, while the meridian-sinew release group, acupuncture group, and control group are, respectively, 27 cases, 26 cases, and 26 cases. Another study [24] compared
Table 1: Demographic information and TCM constitutions of the MS and anatomy groups.

Group	Total number	MS (patients (%))	Anatomy (patients (%))	χ^2	P
Age (year)					
\leq 60	41	25 (44.6)	31 (55.4)	1.722	0.189
>60	83	26 (57.8)	19 (42.2)		
Gender					
Man	41	23 (56.1)	18 (43.9)	0.686	0.407
Woman	83	40 (48.2)	43 (51.8)		
Constitutional type					
Yin-Yang harmony	44	23 (52.3)	21 (47.7)	0.511	0.774
Yang deficiency	43	20 (46.5)	23 (53.5)	0.511	0.774
Others	37	20 (54.1)	17 (45.9)		
Knee joint degeneration					
Left knee	31	17 (54.8)	14 (45.2)	0.024	0.988
Right knee	41	22 (53.7)	19 (46.3)	0.024	0.988
Both knees	19	10 (52.6)	9 (47.4)		
Age at first onset					
\leq 60	68	35 (51.5)	33 (48.5)	0.535	0.465
>60	25	15 (60.0)	10 (40.0)		

*MS, meridian-sinew; TCM, traditional Chinese medicine.

Table 2: Repeated measures of VAS and WOMAC in different treatment groups ($\bar{x} \pm s$).

Index	Group	Baseline	Week 2	Week 4	Week 8	Week 12	F_{time} (p)	F_{group} (p)	$F_{time \times group}$ (p)
VAS	MS	5.1 ± 1.7	4.1 ± 1.2	3.7 ± 1.1	3.5 ± 1.0	3.3 ± 1.1	22.61 (<0.01)	0.61 (0.43)	1.35 (0.25)
	Anatomy	5.0 ± 1.3	3.9 ± 1.7	3.3 ± 1.6	3.3 ± 1.2	3.3 ± 1.3			
WOMAC	MS	17.8 ± 12.1	10.6 ± 8.9	7.8 ± 7.8	6.6 ± 7.7	5.4 ± 7.3	24.84 (<0.01)	0.40 (0.81)	0.06 (0.81)
	Anatomy	18.6 ± 12.6	10.8 ± 11.6	7.1 ± 9.3	5.3 ± 7.0	4.6 ± 6.6			

*MS, meridian-sinew; TCM, traditional Chinese medicine; VAS pain score, 0–10; lower score = better outcome. WOMAC pain score, 0–20. It was assessed with the following five items: pain during walking, stair climbing, resting, weight bearing, and pain at night. Each subscale used the following descriptors: none (0 points), mild (1 point), moderate (2 points), severe (3 points), and extreme (4 points).

Figure 5: VAS and WOMAC scores at baseline and week 12 of the MS and anatomy groups.

Table 3: Repeated measures of VAS and WOMAC in patients with different constitution of traditional Chinese medicine ($\bar{x} \pm s$).

Subgroup	Baseline	Week 2	Week 4	Week 8	Week 12	F_{time} (p)	F_{group} (p)	$F_{time \times group}$ (p)	
VAS	Yin-Yang harmony	5.1 ± 1.5	3.8 ± 1.0	3.3 ± 1.1	3.3 ± 1.1	3.3 ± 1.1	31.27 (<0.01)	1.86 (0.16)	0.83 (0.58)
	Yang deficiency	4.7 ± 1.5	3.6 ± 1.6	3.0 ± 1.5	3.0 ± 1.1	2.9 ± 1.2	31.27 (<0.01)	1.86 (0.16)	0.83 (0.58)
	Others	5.0 ± 1.5	4.2 ± 1.9	3.5 ± 1.6	3.4 ± 1.3	3.2 ± 1.3			
WOMAC	Yin-Yang harmony	15.4 ± 11.5	7.0 ± 5.5	5.4 ± 5.5	5.1 ± 5.0	4.3 ± 4.7	28.22 (<0.01)	0.94 (0.40)	0.78 (0.62)
	Yang deficiency	19.6 ± 13.9	11.0 ± 11.9	7.1 ± 10.2	5.3 ± 8.7	4.5 ± 7.9	28.22 (<0.01)	0.94 (0.40)	0.78 (0.62)
	Others	17.4 ± 12.6	10.6 ± 10.8	7.1 ± 8.2	5.4 ± 7.1	4.4 ± 6.9			

VAS, visual analog scale/score; VAS pain score, 0–10; lower score = better outcome. WOMAC pain score, 0–20. It was assessed with the following five items: pain during walking, stair climbing, resting, weight bearing, and pain at night. Each subscale used the following descriptors: none (0 points), mild (1 point), moderate (2 points), severe (3 points), and extreme (4 points).
the efficacy of sinew acupuncture with sham acupuncture. In their study, they used needle noninsertion as the control, which may produce a smaller, nonspecific effect compared to needle-insertion sham controls. This trial will expand their knowledge of whether sinew acupuncture will reduce pain intensity, improve the symptoms and movements of KOA patients, and improve QOL. Our previous study [18] is to study safety and effectiveness of the treatment of knee osteoarthritis with acupotomy therapy. We found both acupotomy therapies guided by the meridian sinew theory and by the anatomy theory of Western medicine have a good curative effect on knee osteoarthritis, but acupotomy guided by the meridian-sinew theory has more superiorities in operability, safety, and effectiveness, which is easy to be generalized in grass-roots and community hospitals. Our study combined acupotomy with the meridian-sinew theory and added Identification Scale of TCM Constitutions.

This study was conducted to explore the effectiveness of acupotomy based on the meridian-sinew theory in the treatment of KOA compared with acupotomy based on anatomy theory. We found both acupotomy therapies guided by the meridian sinew theory and by the anatomy theory of Western medicine have a good curative effect on knee osteoarthritis, but acupotomy guided by the meridian-sinew theory has more superiorities in operability, safety, and effectiveness, which is easy to be generalized in grass-roots and community hospitals. Our study combined acupotomy with the meridian-sinew theory and added Identification Scale of TCM Constitutions.

This study showed that the VAS and WOMAC score improved in both groups, and there were no significant differences between MS and anatomy groups nor between subgroups of TCM constitutions.

In the health management of KOA patients, TCM constitution identification and TCM intervention are introduced. Under the guidance of the theory of “prevention of disease,” personalized TCM health management schemes are formulated for different TCM constitution types, and health management modes suitable for China’s national conditions and with TCM characteristics are discussed to achieve the purpose of active prevention and reduce the risk of KOA. It can consolidate the therapeutic effect. This study revealed that Yin-Yang harmony and Yang deficiency were prone to knee osteoarthritis, and the curative effect after acupuncture was better. Several cases of postacupuncture pain were also relieved quickly after rest, while the pain of Yin deficiency patients increased after needle knife treatment, and the rest time was about 2 hours. However, because there was only one patient with Yin deficiency, it could not be concluded that Yin deficiency patients could not use needle knife.

However, this study has several limitations. First, results of a small sample size and a short treatment and follow-up period cannot represent a long-term efficacy or adverse effect profile. Second, the WOMAC and VAS estimated in the study both represent subjective perceptions of the
patients, though indicators such as interleukin, tumor necrosis factor, and matrix metalloproteinases levels could reflect objective responses. Third, the results of subscales (pain, stiffness, and physical function) of WOMAC between two interventional groups have not been reported, and we will report in our future research.

5. Conclusion

According to the WOMAC and VAS results of this study, acupotomy based on the meridian-sinew theory has an equivalent effectiveness to acupotomy based on anatomy theory on pain relief, joint function improvement in spite of patients’ TCM constitution, and has no adverse effects in the treatment of KOA. In summary, acupotomy based on the meridian-sinew theory is a reliable, safe, convenient, and low-cost treatment in KOA treatment.

Data Availability

The datasets generated during the current study are available from the corresponding author upon request.

Ethical Approval

The study protocol was approved by the local ethics committee.

Consent

Written informed consent was obtained from each subject.

Disclosure

The funder did not have any role in the design of the study and collection, analysis, interpretation of data, nor in writing the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Zhang Cairong designed and organized the trial. Chen Dechun, Huang Tang, and Hua Zhijuan supervised the trial. Cheng Changcheng and Lin Wanqi conducted the statistical analysis. Deng Han and Zhang Cairong wrote the first draft of the manuscript. Zhou Quan, Zhou He, and Ruan Zhizhong recruited the participants and managed the trial. Wang Pei, Hong Hanqiang, Ma Hui, and Wang Ping performed acupotomy experiments, Zhou Quan, Zhang Min, and Zhou He undertook past enquiries and data collection. Zhang Cairong, Huang Zhilan, and Dong Can evaluated the scales, arranged the data, and monitored the trial. All authors read and approved the final manuscript. Zhijuan Hua and Han Deng contributed equally to this paper.

Acknowledgments

This study was supported by Third Levels of Training Target Candidates of the Fifth Phase of the Jiangsu “333 Project” ((2016)III-0094), Nanjing Science and Technology (20175070), and Nanjing Famous TCM Physician Studio/ Zhizhong Ruan (RZZ-2019-NJ).

References

[1] E. Yilmaz, “The evaluation of the effectiveness of intra-articular steroid, tenoxicam, and combined steroid-tenoxicam injections in the treatment of patients with knee osteoarthritis,” Clinical Rheumatology, vol. 38, no. 11, pp. 3243–3252, 2019.
[2] T. Neogi and Y. Zhang, “Epidemiology of osteoarthritis,” Rheumatic Disease Clinics of North America, vol. 39, no. 1, pp. 1–19, 2013.
[3] X. Sun, X. Zhen, X. Hu et al., “Osteoarthritis in the middle-aged and elderly in China: prevalence and influencing factors,” International Journal of Environmental Research and Public Health, vol. 16, no. 23, p. 4701, 2019.
[4] S. M. Hussain, F. M. Cicuttini, B. Alyousef, and Y. Wang, “Female hormonal factors and osteoarthritis of the knee, hip and hand: a narrative review,” Climacteric, vol. 21, no. 2, pp. 132–139, 2018.
[5] V. K. Srikanth, J. L. Fryer, G. Zhai, T. M. Winzenberg, D. Hosmer, and G. Jones, “A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis,” Osteoarthritis and Cartilage, vol. 13, no. 9, pp. 769–781, 2005.
[6] M. S. M. Persson, J. Stocks, G. Varadi et al., “Predicting response to topical non-steroidal anti-inflammatory drugs in osteoarthritis: an individual patient data meta-analysis of randomized controlled trials,” Rheumatology, vol. 59, no. 9, pp. 2207–2216, 2020.
[7] M. Anvari, H. Dortaj, B. Hashemiben, and M. Pourentezari, “Application of some herbal medicine used for the treatment of osteoarthritis and chondrogenesis,” Traditional and Integrative Medicine, 2020.
[8] R. L. Taruc-Uy and S. A. Lynch, “Diagnosis and treatment of osteoarthritis,” Primary Care: Clinics in Office Practice, vol. 40, no. 4, pp. 821–836, 2013.
[9] Z. ˙Ze ˛gota, J. Go´zdzik, and J. Głogowska-Szela ˛g, “Prospective, multicenter evaluation of a polyherbal supplement alongside standard-of-care treatment for mild knee osteoarthritis,” Advances in Orthopedics, vol. 2021, Article ID 5589597, 8 pages, 2021.
[10] S. Harirforoosh, W. Asghar, and F. Jamali, “Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications,” Journal of Pharmacy & Pharmaceutical Sciences, vol. 16, no. 5, pp. 821–847, 2013.
[11] F. Marsico, S. Paolillo, and P. P. Filardi, “NSAIDs and cardiovascular risk,” Journal of Cardiovascular Medicine, vol. 18, no. Suppl 1, pp. e40–e43, 2017.
[12] Y. Ding, Y. Wang, X. Shi, Y. Luo, Y. Gao, and J. Pan, “Effect of ultrasound-guided acupotomy vs electro-acupuncture on knee osteoarthritis: a randomized controlled study,” Journal of Traditional Chinese Medicine, vol. 36, no. 4, pp. 450–455, 2016.
[13] C.-Y. Kwon, S.-H. Yoon, and B. Lee, “Clinical effectiveness and safety of acupotomy: an overview of systematic reviews,” Complementary Therapies in Clinical Practice, vol. 36, pp. 142–152, 2019.
[14] S. Wei, Z.-H. Chen, W.-F. Sun et al., “Evaluating meridian-sinew release therapy for the treatment of knee osteoarthritis,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 182528, 9 pages, 2013.

[15] M. Zhou, S. Li, X. Chen, J. Wang, and W. Chen, “Investigation and analysis of TCM constitution of patients with knee osteoarthritis in Gansu,” Chinese Journal of Orthopedics and Traumatology of Traditional Chinese Medicine, vol. 25, no. 1, pp. 19–22, 2017.

[16] Z. Zou and X. Shi, “Study on the distribution of knee osteoarthritis constitution in community population,” Guangming TCM, vol. 31, no. 5, pp. 627–629, 2016.

[17] Chinese Society of Traditional Chinese Medicine, Classification and Determination of TCM Constitution, China Traditional Chinese Medicine Press, Beijing, China, 2009.

[18] P. Wang, C.-R. Zhang, C. De-Chun et al., “A randomized controlled trial on the treatment of knee osteoarthritis with acupotomy therapy based on the meridian sinew theory,” World Journal of Acupuncture-Moxibustion, vol. 28, no. 4, pp. 246–250, 2018.

[19] S. L. Kolasinski, T. Neogi, and M. C. Hochberg, “American college of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee,” Arthritis Care and Research, vol. 72, no. 2, 2020.

[20] W. D. Xu, Y. G. Wu, and C. C. Zhang, Diagnosis and Treatment of Osteoarthritis, Second Milltary Medical University Press, Shanghai, China, 2004.

[21] J. G. Pang, Basic and Clinical of Acupotomy, Haitian Publishing House, Shenzhen, China, 2006.

[22] J. Carlin and L. Doyle, “Sample size,” Journal of Paediatrics and Child Health, vol. 38, no. 3, pp. 300–304, 2002.

[23] Y. W. Song, S. L. Li, L. H. Wang, and G. S. Bai, “Progress in acupotomy treatment of knee osteoarthritis,” China Journal of Traditional Chinese Medicine and Pharmacy, vol. 31, no. 11, pp. 4663–4665, 2016.

[24] K. Y. Au, H. Chen, W. C. Lam et al., “Sinew acupuncture for knee osteoarthritis: study protocol for a randomized sham-controlled trial,” BMC Complementary and Alternative Medicine, vol. 18, no. 1, p. 133, 2018.