First-principles electronic structure calculations for peanut-shaped C_{120} molecules

Shigeru Tsukamoto^a,*, Tomonobu Nakayama^a,b

^aNanomaterials Laboratory, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
^bSORST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Received 17 December 2003; revised 14 February 2004; accepted 25 February 2004
Available online 2 September 2004

Abstract

Using the first-principles real-space finite-difference method, we have theoretically examined optimized structures and electronic energy levels of three peanut-shaped C_{120} molecules (C_{60} dimers), namely, P55-, P56-, and P66-C_{120} molecules. Our calculations show that as the number of eight-membered rings included in each C_{120} molecule increases, the total energy becomes large and the highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy gap becomes small. For the P56-C_{120} molecule, the LUMO is found to be localized at one C_{60} component, while for the other molecules, the LUMOs are extended over the entire molecule. This fact is understood from the symmetry/asymmetry in the atomic configuration of the three C_{120} molecules.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: First-principles calculation; Electronic structure; Peanut-shaped molecule; Fullerene dimer

1. Introduction

Recently, increasing attention has been focused on polymerized C_{60} in terms of its application to building blocks of nanoscale devices. Since the first report on the polymerization of C_{60} using photolirradiation [1], polymerization has been induced using various techniques, e.g., high-pressure and high-temperature application [2], alkali-metal doping [3], mechanochemical reaction [4], and electron-beam (EB) irradiation [5]. In particular, there is an interesting study reported by Onoe et al., in which a C_{60} film polymerized by EB irradiation is found to consist of peanut-shaped C_{60} polymer with negative curvature [6]. They also measured the resistivity of the polymerized film to be 7 Ω cm which is considerably smaller than that of solid C_{60} (10^8–10^{14} Ω cm). This surprising transition from an insulator to a conductor of the C_{60} film would be useful for developing carbon-based nanodevices. To date, a few theoretical studies on the optimized geometries and IR analyses of peanut-shaped C_{60} dimers as a basic unit of the polymer have been carried out using the tight-binding, MNDO, and AM1 methods [7–9]. However, details regarding the change of electronic structures upon coalescence of two C_{60} molecules have not been sufficiently discussed and clarified.

In this paper, we direct our attention to three types of peanut-shaped C_{120} molecules (C_{60} dimers), P55-, P56-, and P66-C_{120} molecules (see Fig. 1), and investigate the electronic structures of their ground states on the basis of first-principles structural optimizations within the framework of the density functional theory. The P55-C_{120} molecule is found to have the lowest total energy among the three molecules. We also find that the lowest unoccupied molecular orbital (LUMO) of the P56-C_{120} molecule is localized at one C_{60} component with eight-membered rings, while those of P55- and P66-C_{120} molecules extend over the entire molecule. Such localization of electronic orbital is not seen in the highest occupied molecular orbital (HOMO) of the three peanut-shaped C_{120} molecules.

* Corresponding author. Tel.: +81-29-851-3354x8484; fax: +81-29-860-4793.
E-mail address: tsukamoto.shigeru@nims.go.jp (S. Tsukamoto).
2. Calculation method and models

All the computations presented here were carried out using the calculation package based on the real-space finite-difference method, which enables us to determine electronic ground states and optimized atomic structures self-consistently with a high degree of accuracy by the timesaving double-grid technique [10]. The electron–ion interactions for carbon atoms are described in the norm-conserving pseudopotentials [11,12], and the exchange-correlation effects are treated by the local-density approximation (LDA) [13]. We take a cutoff energy of 91 Ry (1 Ry = 13.6 eV), which corresponds to a real-space grid width of 0.33 a.u. (1 a.u. = 0.529 Å).

The geometrical structures of the three peanut-shaped C₁₂₀ molecules are illustrated in Fig. 1. These peanut-shaped molecules can be modeled by (i) making a hexagon of one C₆₀ molecule face to a hexagon of another C₆₀ molecule, (ii) breaking three of the six bonds composing each hexagon for the creation of dangling bonds, and (iii) combining the dangling bonds of one C₆₀ molecule with those of the other C₆₀ molecule. There are two kinds of bonds within a C₆₀ molecule; one is the bond shared by two hexagons (h–h bond), and another is the bond shared by a hexagon and a pentagon (h–p bond). Then, in step (ii), there are two ways of cutting the three bonds of a hexagon in each C₆₀ molecule, namely, by breaking three h–h bonds and by breaking three h–p bonds. When the h–p bonds in both of the two C₆₀ molecules are broken to form a dimer, six seven-membered rings consequently appear in the junction region with negative curvature. As shown in Fig. 1, we define this peanut-shaped product as P₅₅-C₁₂₀ molecule. There is twofold symmetry with respect to the z axis. In the case of coalescence of one C₆₀ molecule with broken h–h bonds and another one with broken h–p bonds, three eight-membered rings and three seven-membered rings are formed in the junction region. This peanut-shaped product is called P₅₆-C₁₂₀ molecule, which has no symmetry with respect to the z axis. When a peanut-shaped molecule is formed from two C₆₀ molecules with broken h–h bonds, one can see six eight-membered rings in the junction region. This coalescence product is defined as P₆₆-C₁₂₀ molecule, and it also has twofold symmetry the same as the P₅₅-C₁₂₀ molecule. In all computations, the unit cell containing a C₁₂₀ molecule has the dimensions of 24, 15, and 15 a.u. in the directions of x, y, and z, respectively (see Fig. 1). To determine the optimized geometries of the three C₁₂₀ molecules, structural relaxations have been carried out until the remaining forces acting on the atoms are less than 0.004 Ry/A.

3. Results and discussions

The electronic and geometrical properties of P₅₅-, P₅₆-, and P₆₆-C₁₂₀ molecules are listed in Table 1. Here, total energies E₀ of the C₁₂₀ molecules are measured from the total energy of two C₆₀ molecules separated infinitely. The trend of the total energy is in agreement with the results of a tight-binding study by Esfarjani et al. [7]; the total energy of three C₁₂₀ molecules increases as the number of eight-membered rings included in the molecules increases, and the P₆₆-C₁₂₀ molecule is higher in energy than two isolated C₆₀ molecules. However, the dispersion of the total energies determined by our calculations is smaller than that determined by the tight-binding calculations reported previously.

![Fig. 1. Atomic geometries of P₅₅- (top), P₅₆- (middle), and P₆₆-C₁₂₀ (bottom) molecules. The numbers of atoms composing some rings are indicated in figures.](image-url)
Energy gap, E_{gap}, is given by the difference in energy between HOMO and LUMO shown in Fig. 2. In comparison with the isolated C$_{60}$ molecule, the three coalescent C$_{120}$ molecules show smaller E_{gap}, as shown in Table 1. Since LDA generally underestimates the energy gap, we do not present a more detailed discussion on the absolute values of the energy gaps in this paper.

Also shown in Table 1 are intersphere distances d_0 in the peanut-shaped C$_{120}$ molecules, that is, the distance between the centers of mass of the respective C$_{60}$ components. All the intersphere distances for P55-, P56-, and P66-C$_{120}$ molecules are approximately 8.6 Å, which are about 14% shorter than the center-to-center distance of 10.0 Å in a face-centered-cubic (fcc) C$_{60}$ crystal [14]. This suggest that polymerization of C$_{60}$ in an fcc crystal causes a decrease in volume. Moreover, the reduction rate of the volume is found to be negligibly dependent on the difference in atomic geometry around the junction regions (see Fig. 1).

Fig. 2 shows electronic energy levels of the three C$_{120}$ molecules. In all cases of the C$_{120}$ molecules, the fivefold-degenerated HOMO of an isolated C$_{60}$ molecule is decomposed into a doubly degenerated HOMO and other states as two C$_{60}$ molecules coalesce. For the LUMO of the C$_{120}$ molecules, we can see a difference between the P55-C$_{120}$ molecule and others: In the case of the P55-C$_{120}$ molecule, the threefold-degenerated LUMO of an isolated C$_{60}$ molecule is decomposed into a nondegenerated LUMO and other states, and in the cases of P56- and P66-C$_{120}$ molecules, the LUMO of the C$_{60}$ molecule is found to be decomposed into a twofold-degenerated LUMO and other states.

Fig. 3 shows spatial density distributions of HOMO and LUMO of the peanut-shaped C$_{120}$ molecules. Electrons are seen to distribute on the cage surface of each molecule. In the figures of HOMO (Fig. 3b, d and f), we can observe that the HOMO expands over the entire molecule. While for P55- and P66-C$_{120}$ molecules, the HOMOs are found to have twofold symmetry with respect to the z axis, for the P56-C$_{120}$ molecule, the HOMO is not found to have such a symmetry. This tendency is also observed in the figures of LUMO (Fig. 3a, c and e), and is considered to reflect the respective atomic geometries of the molecules. It is interesting to point out that the degenerated LUMO of the P56-C$_{120}$ molecule is completely localized at one C$_{60}$ component while the LUMO of the other molecule is delocalized over the molecule. If we consider a linear chain of P56-C$_{120}$ molecules, and if the observed localization in the P56-C$_{120}$ molecule is retained even after the formation of the linear chain, the LUMO of the molecule will be a single electron state of the C$_{60}$ component.
of the chain, we would expect poor conductivity along the chain. On the other hand, linear chains formed by P55- or P66-C_{120} molecules are expected to be conductive upon electron doping to the LUMO-derived conduction band.

4. Conclusions

Employing the first-principles real-space finite-difference method, we have calculated and analyzed the optimized geometries and electronic structures of three types of peanut-shaped C_{120} molecules. Our calculations of the total energies and electronic energy levels for the molecules show that the P55-C_{120} molecule has the lowest total energy, and that the P66-C_{120} molecule has the smallest HOMO–LUMO energy gap. Energy gaps of the three C_{120} molecules are also shown to be small in comparison with that of an isolated C_{60} molecule. We observe the clear localization of LUMO only for the P56-C_{120} molecule, whereas the LUMO for the other two molecules and the HOMO for all the molecules are extended over the entire molecule. We surmise that the linear chain of peanut-shaped C_{120} molecules may exhibit conductivity depending on the atomic geometry of C_{120} molecules composing the chain.

Acknowledgements

The authors thank Dr. T. Ono and Prof. K. Hirose for providing the calculation package used here and for helpful advice. All the computations presented here were performed using HITACHI SR8000 supercomputing facilities at The Institute for Solid State Physics, University of Tokyo.

References

[1] A.M. Rao, P. Zhou, K.-A. Wang, G.T. Hager, J.M. Holden, Y. Wang, W.-T. Lee, X.-X. Bi, P.C. Ekland, D.S. Cornett, D.S. Duncan, J.J. Amster, Photoinduced polymerization of solid C_{60} films, Science 259 (1993) 955–957.
[2] H. Yamawaki, M. Yoshida, Y. Kakudate, S. Usuda, H. Yokoi, S. Fujiwara, K. Aoki, R. Ruoff, R. Malhotra, D. Lorents, Infrared study of vibrational property and polymerization of C_{60} and C_{70} under pressure, J. Phys. Chem. 97 (1993) 11161–11163.
[3] P.W. Stephens, G. Bortel, G. Faigel, M. Tagze, A. Jánossy, S. Pekker, G. Oszlanyi, L. Forró, Polymeric fullerene chains in RbC_{60} and KC_{60}, Nature (London) 370 (1994) 636–639.
[4] G.-W. Wang, K. Komatsu, Y. Murata, M. Shiroy, Synthesis and X-ray structure of dumb-bell-shaped C_{120}, Nature (London) 387 (1997) 583–586.
[5] T. Hara, J. Onoe, H. Tanaka, Y. Li, K. Takeuchi, In situ Fourier-transform infrared study of electron-irradiation-induced reaction in a C_{60} film, Jpn. J. Appl. Phys. 39 (2000) 1872–1876.
[6] J. Onoe, T. Nakayama, M. Aono, T. Hara, Structural and electric properties of an electron-beam-irradiated C_{60} film, Appl. Phys. Lett. 82 (2003) 595–597.
[7] K. Esfarjani, Y. Hashi, J. Onoe, K. Takeuchi, Y. Kawazoe, Vibrational modes and IR analysis of neutral photopolymerized C_{60} dimers, Phys. Rev. B 57 (1998) 223–229.
[8] D.L. Strout, R.L. Murry, C. Xu, W.C. Eckhoff, G.K. Odum, G.E. Scuseria, A theoretical study of buckminsterfullerene reaction products: C_{60}+C_{60}, Chem. Phys. Lett. 214 (1993) 576–582.
[9] T. Hara, J. Onoe, Vibrational analysis of peanut-shaped C_{120} fullerenes, Eur. Phys. J. D 24 (2003) 389–392.
[10] T. Ono, K. Hirose, Timesaving double-grid method for real-space electronic-structure calculations, Phys. Rev. Lett. 82 (1999) 5016–5019.
[11] N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43 (1991) 1993–2006.
[12] We used the norm-conserving pseudopotentials NCP97 constructed by K. Kobayashi; see K. Kobayashi, Norm-conserving pseudopotential database (NCP97), Comput. Mater. Sci. 14 (1999) 72–76.
[13] J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981) 5048–5079.
[14] S. Saito, A. Oishiya, Cohesive mechanism and energy bands of solid C_{60}, Phys. Rev. Lett. 66 (1991) 2637–2640.