Retrospective Study

Predictive factors for early clinical response in community-onset Escherichia coli urinary tract infection and effects of initial antibiotic treatment on early clinical response

Young Jun Kim, Jeong-Mi Lee, Jae-Hoon Lee

ORCID number: Young Jun Kim 0000-0003-3824-0184; Jeong-Mi Lee 0000-0003-0878-5802; Jae-Hoon Lee 0000-0002-0897-2838.

Author contributions: Kim YJ designed the study and collected the data and drafted the article; Lee JM analyzed the data; Lee JH supervised the study and revised the manuscript; all authors have read and approved the final manuscript.

Institutional review board statement: This study was approved by the institutional review board of WKUH 2020-03-023.

Informed consent statement: This study only was a review of non-identified existing recordings. So, the informed consent was exempt from IRB.

Conflict-of-interest statement: All authors declare no conflict of interest.

Data sharing statement: No additional data.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external

Young Jun Kim, Department of Internal Medicine, Wonkwang University College of Medicine, Iksan 54538, South Korea

Jeong-Mi Lee, Department of Public Health, Wonkwang University College of Medicine, Iksan 54538, South Korea

Jae-Hoon Lee, Department of Internal Medicine and Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan 54538, South Korea

Corresponding author: Jae-Hoon Lee, MD, PhD, Doctor, Professor, Department of Internal Medicine and Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, 460, Iksandaero, Iksan 54538, South Korea. john7026@wku.ac.kr

Abstract

BACKGROUND
Urinary tract infection (UTI) is a common disease. It often requires hospitalization, and severe presentations, including sepsis and other complications, have a mortality rate of 6.7%-8.7%.

AIM
To evaluate the predictive factors for early clinical response and effects of initial antibiotic therapy on early clinical response in community-onset Escherichia coli (E. coli) urinary tract infections (UTIs).

METHODS
This retrospective study was conducted at Wonkwang University Hospital in South Korea between January 2011 and December 2017. Hospitalized patients (aged ≥ 18 years) who were diagnosed with community-onset E. coli UTI were enrolled in this study.

RESULTS
A total of 511 hospitalized patients were included. 66.1% of the patients had an early clinical response. The mean length of hospital stay in patients with an early clinical response were each 4.3 d shorter than in patients without an early clinical response. In the multiple regression analysis, initial appropriate antibiotic therapy (OR = 2.449, \(P = 0.006 \)), extended-spectrum \(\beta \)-lactamase (ESBL)-producing E. coli
Urinary tract infection (UTI) is a common disease. It often requires hospitalization, and severe presentations, including sepsis and other complications, have a mortality rate of 6.7%-8.7%.[1-3] It was reported that poor clinical response after 72 h of antibiotic therapy was related to clinical failure.[4] It is necessary to evaluate the clinical response after 72 h of antibiotic therapy in patients with UTIs. There has been an increase in the incidence of community-onset UTIs due to extended-spectrum β-lactamase (ESBL) producing Escherichia coli (E. coli).[5,6] These findings have increased the use of initial broad-spectrum antimicrobials in patients with UTIs. However, use of broad-spectrum antimicrobials result in nosocomial acquisition of antimicrobial-resistant bacteria or occurrence of Clostridium difficile infections.[7]

In this study, we investigated the predictive factors for early clinical response in community onset E. coli UTIs and the impact of severe presentations and initial antibiotic therapy on this early clinical response.

MATERIALS AND METHODS

This retrospective study was conducted at Wonkwang University Hospital in South Korea between January 2011 and December 2017. Hospitalized patients (aged ≥ 18 years) who were diagnosed with community-onset E. coli UTI were enrolled in this study. Patients who were transferred to another hospital during treatment and those who had other concurrent infectious diseases were excluded. Community-onset UTI was defined as an infection that was diagnosed within 48 h of hospital admission.
UTIs with anatomical urinary tract modifications, including any urinary diversion procedure, obstruction, pregnancy, or renal transplant, were defined as complicated UTIs\(^9\). Septic shock was defined as sepsis with hypotension (systolic blood pressure less than 90 mmHg or 40 mmHg less than the patient’s baseline blood pressure) for at least 1 h despite adequate fluid resuscitation\(^8\). A concurrent bacteremia was defined as the isolation of *E. coli* with identical antibiotic susceptibility patterns from both urine and blood cultures simultaneously.

Acute renal failure was defined as an increase in the serum creatinine levels by more than 300% than the baseline values or serum creatinine ≥ 4.0 mg/dL with an acute increase of at least 0.5 mg/dL\(^9\). An early clinical response was defined as meeting the following criteria 72 h after initial antibiotic therapy: defervescence, recovery from hypotension, decrease in white blood cell count compared to baseline values, and improvement of urinary tract symptoms or signs. Initial antibiotic therapy was defined as antimicrobials received within 24 h after admission. Initial antibiotic therapy was considered appropriate if *E. coli* was susceptible to initial antimicrobials based on *in vitro* antimicrobial susceptibility testing using Clinical Laboratory and Standards Institute guidelines. Improper broad-spectrum antibiotic therapy was defined as use of carbapenem, fourth-generation cephalosporin, piperacillin/tazobactam or ceftoperazone/sublactam to third-generation cephalosporin-susceptible *E. coli*.

We compared participants’ medical and laboratory data using \(\chi^2\) or Fisher’s exact tests for categorical variables, and independent \(t\)-tests or Mann–Whitney tests for continuous variables. A backward stepwise multiple logistic regression analysis was performed to evaluate the effect of independent variables on early clinical response. A \(P\) value of < 0.05 (two-sided) was considered statistically significant. SPSS version 22.0 for Windows (SPSS Inc., Chicago, IL, United States) was used for the statistical analyses. This study was approved by the institutional review board (WKUH 2020-03-023).

RESULTS

A total of 511 patients were included in this study. The mean age of the patients was 63 ± 17.8 years. Among them, 89.1% of the patients were women, 23.7% resided in a healthcare-associated facility before admission, and 66.1% had an early clinical response. The mean length of hospital stay for patients with an early clinical response was 6.8 days, 4.3 d shorter than for patients without an early clinical response. The mean time to defervescence in patients with an early clinical response was 36.9 h, 64 h earlier than in patients without an early clinical response. About a quarter [23.1% (118/511)] of patients initially presented with septic shock. Initial septic shock more frequently occurred in patients without an early clinical response than in patients with an early clinical response [28.3% (49/173) vs 20.4% (69/338), \(P = 0.045\)]. Concurrent bacteremia was observed in 45% (230/511) of patients. The patients without an early clinical response more frequently had concurrent bacteremia than the patients with early clinical response [51.4% (89/173) vs 41.7% (141/338), \(P = 0.039\)]. Acute renal failure were more frequent in patients without an early clinical response; however it was not statistically significant [13.4% (23/173) vs 8.6% (29/338), \(P = 0.121\)]. Renal and perirenal abscesses occurred in 6.7% (34/511) of patients but had no significant effect on early clinical response. Patients with an early clinical response more frequently received initial appropriate antibiotic therapy than patients without an early clinical response [90.8% (307/338) vs 81.5% (141/173), \(P = 0.002\)]. Initial broad-spectrum antibiotic therapy was more frequently used in patients without an early clinical response than in patients with an early clinical response [32.9% (57/173) vs 16.3% (55/338), \(P < 0.001\)]. The rate of improper use of broad-spectrum antimicrobials was higher in patients without an early clinical response than in patients with one [32.9% (57/173) vs 13.6% (46/338), \(P < 0.001\)] (Table 1). In the multiple regression analysis, initial appropriate antibiotic therapy (OR = 2.449, 95%CI: 1.294–4.637, \(P = 0.006\)), ESBL-producing *E. coli* (OR = 2.112, 95%CI: 1.020–4.374, \(P = 0.044\)), a stay in a healthcare facility before admission (OR = 0.562, 95%CI: 0.331–0.954, \(P = 0.033\)) and improper broad-spectrum antibiotic therapy (OR = 0.411, 95%CI: 0.220–0.765, \(P = 0.006\)) were factors associated with an early clinical response (Table 2).
Table 1 Characteristics of patients with community-onset urinary tract infection caused by *Escherichia coli*

Patients with an early clinical response (n = 338)	Patients without an early clinical response (n = 173)	P value
Age, mean (yr)		
63.3 ± 18.3	66.19 ± 15.4	0.061
Male patients (%)		
33 (9.8)	23 (13.3)	0.227
Mortality (%)		
0	6 (3.5)	0.001
Comorbidities (%)		
Diabetes mellitus		
108 (31.9)	63 (36.4)	0.312
Chronic kidney disease		
25 (7.4)	11 (6.3)	0.664
Type of residence before hospital admission;		
Community (%)		
269 (79.6)	121 (69.9)	0.021
Length of hospital stay (d)		< 0.001
6.8 ± 3.4	11.1 ± 6.0	
Time to defervescence (h)		< 0.001
36.9 ± 18.0	100.5 ± 42.3	
Infection presentation (%)		
Initial septic shock¹		0.047
69 (20.4)	49 (28.3)	
Concurrent bacteremia		0.039
141 (41.7)	89 (51.4)	
Acute renal failure²		0.121
29 (8.6)	23 (13.4)	
Renal and perirenal abscesses		0.527
22 (6.5)	12 (6.9)	
Complicated UTI (%)		0.347
99 (29.3)	56 (32.4)	
ESBL producing *E. coli* (%)		0.117
69 (20.4)	25 (14.5)	
Initial appropriate antibiotic therapy (%)		0.002
283 (83.7)	116 (67.0)	
Initial broad-spectrum antibiotic therapy (%)		< 0.001
55 (16.3)	57 (32.9)	
Improper use of broad-spectrum antimicrobials (%)		< 0.001
46 (13.6)	57 (32.9)	
Laboratory features		
White blood cells (per microliter of blood)		0.637
13480 ± 6350	13180 ± 7380	
Platelet (per microliter of blood)		0.005
197850 ± 89250	175950 ± 65510	
C-reactive protein (mg/L)		0.072
131.0 ± 81.3	146.9 ± 100	
Albumin (g/dL)		0.096
3.62 ± 1.1	3.48 ± 0.5	

¹Septic shock was defined as sepsis with hypotension (systolic blood pressure less than 90 mmHg or 40 mmHg less than the patient’s baseline blood pressure) for at least 1 h despite adequate fluid resuscitation.

²Acute renal failure was defined as an increase in the serum creatinine levels by more than 30% than the baseline values or serum creatinine ≥ 4.0 mg/L with an acute increase of at least 0.5 mg/dL.

DISCUSSION

In this study, 66.1% of the patients with community-onset *E. coli* UTIs had an early clinical response. The patients with early clinical response had a 4.3 day shorter stay, and a 64 h shorter time to defervescence. The overall mortality rate was 1.2%; the deceased were all patients without an early clinical response. Severe presentations, including initial septic shock, concurrent bacteremia and acute renal failure complications, were associated with high morbidity and mortality. In this study, initial septic shock and concurrent bacteremia were significantly higher in patients without an early clinical response; however, initial septic shock, concurrent bacteremia, and acute renal failure were not associated with an early clinical response. Inappropriate antibiotic therapies to treat UTIs had poorer clinical outcomes, such as a lower cure rate, longer hospital stays, and higher relapse rates. As expected, our study observed that patients who received initial, appropriate antimicrobials had a 2.4-fold increase in developing an early clinical response. ESBL-producing *E. coli* is a major obstacle to initial, appropriate UTI antibiotic therapy and an important reason for the use of initial broad-spectrum antimicrobials. In this study, more than 20% of patients...
Table 2 Identification of predictive factors of early clinical response in using multiple logistic regression analysis

Predictive factors of early clinical response	OR	95%CI	P value
Appropriate initial antibiotic therapy	2.449	1.294-4.637	0.006
Residence in a healthcare-associated facility before hospital admission	0.562	0.331-0.954	0.033
Initial septic shock	0.701	0.398-1.233	0.218
Concurrent bacteremia	0.730	0.459-1.162	0.185
Complications due to acute renal injury	0.920	0.426-1.986	0.831
ESBL-producing E. coli	2.112	1.020-4.374	0.044
Improper use of broad-spectrum antibiotic therapy	0.411	0.220-0.765	0.006
Initial broad-spectrum antibiotic therapy	0.614	0.330-1.141	0.123

ESBL: Extended-spectrum β-lactamase; E. coli: Escherichia coli.

received an initial broad-spectrum antibiotic therapy. However, initial broad-spectrum antibiotic therapy did not correlated with an early clinical response (OR = 0.614, 95%CI: 0.330-1.141, P = 0.123). Moreover, 63.4% of cases of initial broad-spectrum antibiotic therapy were considered unnecessary based on *in vitro* antimicrobial susceptibility testing. This finding suggests that the use of broad-spectrum antimicrobials must be limited to patients suspected of having UTIs caused by multidrug resistant *E. coli*. The clinical features and the antibiotic susceptibility pattern of the causative pathogens differ from patients residing in a healthcare facility and those living at home. In this study, the proportion of patients with an early clinical response was significantly different according to the type of residence before admission, and residence in a healthcare facility before admission was a poor predictive risk for an early clinical response. A previous study reported that ESBL production alone was not associated with adverse treatment outcomes in patients with community-associated UTIs. Similarly, our study showed that ESBL producing *E. coli* was not a poor predictive factor for an early clinical response.

CONCLUSION

This study has some limitations. First, it is a retrospective study performed in a single university hospital. Second, this study included a high proportion of patients with severe UTIs, which may limit the generalization of our results to UTIs in outpatient clinics. The patients with an early clinical response in community-onset *E. coli* UTIs had a shorter length of stay and a faster time to defervescence. Residence in a healthcare facility before admission was significantly related to a poor early clinical response. Appropriate initial antibiotic therapy was significantly related to an early clinical response. But, initial broad-spectrum antibiotic therapy or improper use of broad-spectrum antimicrobials was not associated with an early clinical response. And, severe presentations such as initial septic shock, concurrent bacteremia, and acute renal failure, were not associated with an early clinical response in community-onset UTIs.

ARTICLE HIGHLIGHTS

Research background

Urinary tract infection (UTI) often requires hospitalization, and patients with severe presentations, including sepsis and other complications, have a mortality rate of 6.7%-8.7%. It is necessary to evaluate the clinical response of patients with UTIs after 72 h of antibiotic therapy as poor clinical response after 72 h of antibiotic therapy has been related to clinical failure. There has been an increase in the incidence of community-onset UTIs due to extended-spectrum β-lactamase (ESBL)-producing *Escherichia coli* (*E. coli*). These findings have increased the use of initial broad-spectrum antimicrobials in patients with UTIs. However, use of broad-spectrum antimicrobials result in
nosocomial acquisition of antimicrobial-resistant bacteria or occurrence of *Clostridium difficile* infections.

Research motivation
The assessment of predictive factors for early clinical response may be helpful in the treatment of community-onset UTIs.

Research objectives
The primary aim of this study was to evaluate the clinical significance of early clinical response in community-onset *E. coli* UTIs and the impact of severe presentations and initial antibiotic therapy on this early clinical response.

Research methods
This retrospective study was conducted at Wonkwang University Hospital in South Korea between January 2011 and December 2017. Hospitalized patients (aged ≥ 18 years) who were diagnosed with community-onset *E. coli* UTI were enrolled in this study. Patients who were transferred to another hospital during treatment and those who had other concurrent infectious diseases were excluded.

Research results
A total of 511 hospitalized patients were included. Among them, 66.1% of the patients had an early clinical response. Patients with an early clinical response had a shorter length of hospital stay (4.3 d) and an earlier defervescence (64 h) than those without an early clinical response. An appropriate initial antibiotic therapy (OR = 2.449, \(P = 0.006 \)), ESBL-producing *E. coli* (OR = 2.112, \(P = 0.044 \)), and a stay in a healthcare facility before admission (OR = 0.562, \(P = 0.033 \)) were the factors associated with an early clinical response. However, the initial broad-spectrum antibiotic therapy or initial severe presentations such as initial septic shock, concurrent bacteremia, and acute renal failure did not impact early clinical response.

Research conclusions
Patients with an early clinical response to community onset *E. coli* UTI had a shorter length of hospital stay and an earlier defervescence. Appropriate initial antibiotic therapy was a good predictive factor for an early clinical response. However, initial broad-spectrum antibiotic therapy or initial severe presentation did not impact early clinical response. Physicians need to restrictively use initial broad-spectrum antimicrobials to treat patients suspected of having multi-drug resistant pathogens.

Research perspectives
Initial appropriate antibiotic therapy was a good predictive factor for an early clinical response. However, both the initial use of broad-spectrum antimicrobials and improper broad-spectrum antibiotic therapy did not improve the early clinical response in patients with community-onset UTI. The study results suggest that initial broad-spectrum antimicrobials should be used to treat patients suspected with multi-drug resistant pathogenic infection, instead of patients with septic shock, concurrent bacteremia, and acute renal failure.

REFERENCES

1. Marschall J, Zhang L, Foxman B, Warren DK, Henderson JP; CDC Prevention Epicenters Program. Both host and pathogen factors predispose to *Escherichia coli* urinary-source bacteremia in hospitalized patients. *Clin Infect Dis* 2012; 54: 1692-1698 [PMID: 22431806 DOI: 10.1093/cid/cis252]

2. Eliakim-Raz N, Babitch T, Shaw E, Addy I, Wiegand I, Vank C, Torre-Vallejo L, Joan-Miquel V, Steve M, Grier S, Stoddart M, Nienke C, Leo VDH, Vuong C, MacGowan A, Carratala J, Leibovici L, Pujol M; RESCUING Study Group. Risk Factors for Treatment Failure and Mortality Among Hospitalized Patients With Complicated Urinary Tract Infection: A Multicenter Retrospective Cohort Study (RESCUING Study Group). *Clin Infect Dis* 2019; 68: 29-36 [PMID: 29788118 DOI: 10.1093/cid/ciy418]

3. Lee JH, Lee YM, Cho JH. Risk factors of septic shock in bacteremic acute pyelonephritis patients admitted to an ER. *J Infect Chemother* 2012; 18: 130-133 [PMID: 21861118 DOI: 10.1007/s10156-011-0289-z]

4. Wie SH, Ki M, Kim J, Cho YK, Lim SK, Lee JS, Kwon KT, Lee H, Cheong HJ, Park DW, Ryu SY, Chung MH, Pai H. Clinical characteristics predicting early clinical failure after 72 h of antibiotic treatment in women with community-onset acute pyelonephritis: a prospective multicentre study. *Clin Microbiol Infect* 2014; 20: O721-O729 [PMID: 24330047 DOI: 10.1111/1469-0691.12500]

5. Kang CI, Cha MK, Kim SH, Ko KS, Wi YM, Chung DR, Peck KR, Lee NY, Song JH. Clinical and molecular epidemiology of community-onset bacteremia caused by extended-spectrum \(\beta \)-lactamase-
producing Escherichia coli over a 6-year period. J Korean Med Sci 2013; 28: 998-1004 [PMID: 23853481 DOI: 10.3346/jkms.2013.28.7.998]

6 Kim YJ, Lee JM, Cho J, Lee J. Change in the Annual Antibiotic Susceptibility of Escherichia coli in Community-Onset Urinary Tract Infection between 2008 and 2017 in a Tertiary Care Hospital in Korea. J Korean Med Sci 2019; 34: e228 [PMID: 31456383 DOI: 10.3346/jkms.2019.34.e228]

7 Wiens J, Snyder GM, Finlayson S, Mahoney MV, Celi LA. Potential Adverse Effects of Broad-Spectrum Antimicrobial Exposure in the Intensive Care Unit. Open Forum Infect Dis 2018; 5: ofx270 [PMID: 29479546 DOI: 10.1093/ofid/ofx270]

8 Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644-1655 [PMID: 1303622 DOI: 10.1378/chest.101.6.1644]

9 Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 2007; 11: R31 [PMID: 17331245 DOI: 10.1186/cc5713]

10 Chen Y, Nitzan O, Saliba W, Chazan B, Colodner R, Raz R. Are blood cultures necessary in the management of women with complicated pyelonephritis? J Infect 2006; 53: 235-240 [PMID: 16434102 DOI: 10.1016/j.jinf.2005.12.005]

11 Hsiao CY, Yang JH, Hsiao MC, Hung PH, Wang MC. Risk Factors for Development of Acute Kidney Injury in Patients with Urinary Tract Infection. PLoS One 2015; 10: e0133835 [PMID: 26213991 DOI: 10.1371/journal.pone.0133835]

12 Shin J, Kim J, Wie SH, Cho YK, Lim SK, Shin SY, Yeo JS, Lee JS, Kweon KT, Lee H, Cheong HJ, Park SH, Park DW, Ryu SY, Chung MH, Yoo S, Pai H. Fluoroquinolone resistance in uncomplicated acute pyelonephritis: epidemiology and clinical impact. Microb Drug Resist 2012; 18: 169-175 [PMID: 22400491 DOI: 10.1089/mdr.2011.0139]

13 Bosch-Nicolau P, Falcó V, Viladó B, Andreu A, Len O, Almirante B, Pigrau C. A Cohort Study of Risk Factors That Influence Empirical Treatment of Patients with Acute Pyelonephritis. Antimicrob Agents Chemother 2017; 61 [PMID: 28971876 DOI: 10.1128/AAC.01317-17]

14 Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, Lamm W, Clark C, MacFarquhar J, Walton AL, Keller LB, Sexton DJ. Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 2002; 137: 791-797 [PMID: 12435215 DOI: 10.7326/0003-4819-137-10-20021190-00007]

15 Park SH, Choi SM, Lee DG, Cho SY, Lee HJ, Choi JK, Choi JH, Yoo JH. Impact of extended-spectrum β-lactamase production on treatment outcomes of acute pyelonephritis caused by escherichia coli in patients without health care-associated risk factors. Antimicrob Agents Chemother 2015; 59: 1962-1968 [PMID: 25587222 DOI: 10.1128/AAC.04821-14]
