Fatty acid analogue N-arachidonoyl taurine restores function of IKs channels with diverse long QT mutations
Liin, Sara I; Larsson, Johan E; Barro-Soria, Rene; Bentzen, Bo Hjorth; Larsson, H Peter

Published in:
eLife

DOI:
10.7554/eLife.20272

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Liin, S. I., Larsson, J. E., Barro-Soria, R., Bentzen, B. H., & Larsson, H. P. (2016). Fatty acid analogue N-arachidonoyl taurine restores function of IKs channels with diverse long QT mutations. DOI: 10.7554/eLife.20272
Fatty acid analogue N-arachidonoyl taurine restores function of IK_s channels with diverse long QT mutations

Sara I Liin1,2,*, Johan E Larsson2, Rene Barro-Soria1, Bo Hjorth Bentzen3,4, H Peter Larsson1

1Department of Physiology and Biophysics, University of Miami, Miami, United States; 2Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; 3The Danish Arrhythmia Research Centre, University of Copenhagen, Copenhagen, Denmark; 4Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract About 300 loss-of-function mutations in the IK_s channel have been identified in patients with Long QT syndrome and cardiac arrhythmia. How specific mutations cause arrhythmia is largely unknown and there are no approved IK_s channel activators for treatment of these arrhythmias. We find that several Long QT syndrome-associated IK_s channel mutations shift channel voltage dependence and accelerate channel closing. Voltage-clamp fluorometry experiments and kinetic modeling suggest that similar mutation-induced alterations in IK_s channel currents may be caused by different molecular mechanisms. Finally, we find that the fatty acid analogue N-arachidonoyl taurine restores channel gating of many different mutant channels, even though the mutations are in different domains of the IK_s channel and affect the channel by different molecular mechanisms. N-arachidonoyl taurine is therefore an interesting prototype compound that may inspire development of future IK_s channel activators to treat Long QT syndrome caused by diverse IK_s channel mutations.

DOI: 10.7554/eLife.20272.001

Introduction Long QT syndrome (LQTS) is a condition of the heart which in most cases is caused by a mutation in cardiac ion channels (Hedley et al., 2009; Morita et al., 2008). In LQTS, the action potential of the heart is prolonged, which is observed as a prolonged QT interval in the electrocardiogram. LQTS patients have an increased risk of developing ventricular tachyarrhythmias called torsades de pointes when exposed to triggers such as adrenergic stress (Morita et al., 2008; Cerrone et al., 2012). These arrhythmias can cause palpitation, syncope or sudden death due to ventricular fibrillation. To improve the clinical outcome of LQTS patients, it is therefore critical to prevent these LQTS-induced life-threatening arrhythmias.

Most mutations causing LQTS are located in the KCNQ1 gene (Hedley et al., 2009). KCNQ1 codes for the potassium channel $\text{K}_v7.1$, which in the heart co-assembles with the beta-subunit KCNE1 to form the slowly-activating, voltage-dependent potassium channel IK_s (Barhanin et al., 1996; Sanguinetti et al., 1996). The IK_s channel provides one of the important delayed rectifier outward potassium currents that repolarizes the cardiomyocyte and terminates the cardiac action potential (Nerbonne and Kass, 2005). Reduced IK_s function therefore tends to delay cardiomyocyte repolarization, thereby causing prolonged cardiac action potential durations and a prolonged QT interval. The cardiac IK_s channel consists of four $\text{K}_v7.1$ subunits and two to four KCNE1 subunits (Nakajo et al., 2010; Plant et al., 2014; Murray et al., 2016). Throughout this work, we will refer to
the I_{Ks} channel as $K_{V}7.1+KCNE1$. $K_{V}7.1$ has six transmembrane segments named S1-S6 (Liin et al., 2015) (Figure 1a). S1-S4 of each $K_{V}7.1$ subunit forms a voltage-sensing domain where S4 is the voltage sensor with three positive gating charges. S5 and S6 from all four $K_{V}7.1$ subunits form the pore domain with a putative gate in S6 that needs to move to open the ion-conducting pore of the channel. KCNE1 has a single-transmembrane segment (Figure 1a) and is proposed to be localized in the otherwise lipid-filled space between two voltage-sensing domains of neighbouring $K_{V}7.1$ subunits (Nakajo and Kubo, 2015). Upon cardiomyocyte depolarization, the voltage sensor of $K_{V}7.1$ moves outward in relation to the membrane. It has been proposed that this movement of the voltage sensor is transferred to the pore domain via the S4-S5 linker and induces channel opening by moving the S6 gate (Liin et al., 2015).

Altogether, about 300 mutations in KCNQ1 and KCNE1 have been identified in patients suffering from LQTS (Hedley et al., 2009) (http://www.fsm.it/cardmoc/). These mutations are distributed throughout the channel sequence and are therefore likely to cause channel dysfunction by different mechanisms, which are, however, largely unknown. Potential mechanisms for $K_{V}7.1+KCNE1$ channel loss of function by a mutation could, for example, be interference with voltage sensor movement, gate opening, or membrane expression. LQTS is today treated with drugs that prevent the triggering of arrhythmic activity, such as beta-blockers, or with arrhythmia-terminating implantable cardioverter defibrillator (Hedley et al., 2009). A different treatment strategy for LQTS caused by loss-of-function mutations in the $K_{V}7.1+KCNE1$ channel would be to pharmacologically augment the $K_{V}7.1+KCNE1$ channel function of these LQTS mutants, thereby shortening the prolonged QT interval and lower the risk of arrhythmia development. However, there is currently no clinically approved $K_{V}7.1+KCNE1$ channel activator.

In this study, we investigate the biophysical properties and potential mechanism of action of LQTS-associated $K_{V}7.1+KCNE1$ channel mutations and test the ability of the fatty acid analogue N-arachidonoyl taurine (N-AT) to restore the function of these mutants.

We selected eight mutations of residues mutated in patients with LQTS located in different segments of the $K_{V}7.1+KCNE1$ channel and that were previously shown to form active channels (Bianchi et al., 2000; Yamaguchi et al., 2003; Eldstrom et al., 2010; Henrion et al., 2009;
We measure the movement of the S4 voltage sensor in selected mutants using voltage clamp fluorometry to further our understanding of the molecular mechanisms underlying the defects caused by the diverse mutations. We find that the eight LQTS-associated mutations affect the voltage dependence and/or closing kinetics, in some cases by different molecular mechanisms. Moreover, we find that N-AT restores much of the channel activity in these eight LQTS-associated Kv7.1+KCNE1 mutants. This suggests

Figure 1. Biophysical properties of LQTS and LQTS-like Kv7.1+KCNE1 channel mutants expressed in Xenopus oocytes. (a) Topology of Kv7.1 and KCNE1, and position of tested LQTS and LQTS-like mutants. (b) $G(V)$ midpoints (V_{50}) from the Boltzmann fits for mutants co-expressed with KCNE1. $n = 5–11$. Data as mean ± SEM. The statistics represent one-way ANOVA with Dunnet's Multiple Comparison Test to compare the mutants to wild-type Kv7.1+KCNE1; **p<0.01; ns is p≥0.05. # denotes lowest estimate. Dashed line denotes wild-type V_{50}. (c) Representative example of Kv7.1/S225L+KCNE1 opening kinetics and Kv7.1+KCNE1/K70N closing kinetics (black lines) compared to wild-type Kv7.1+KCNE1 (blue lines).

The following figure supplements are available for figure 1:

Figure supplement 1. Kv7.1/F351S mutant expressed in Xenopus oocytes.

DOI: 10.7554/eLife.20272.004

Figure supplement 2. V_{50} of LQTS and LQTS-like Kv7.1 mutants expressed in Xenopus oocytes.

DOI: 10.7554/eLife.20272.005

Figure supplement 3. Kv7.1/R583C mutant expressed in Xenopus oocytes.

DOI: 10.7554/eLife.20272.006

Figure supplement 4. Comparison of current amplitude of wild-type Kv7.1+KCNE1 and LQTS and LQTS-like mutants when expressed in Xenopus oocytes.

DOI: 10.7554/eLife.20272.007

Yang et al., 2013; Yang et al., 2002; Harmer et al., 2010; Splawski et al., 1997). We measure the movement of the S4 voltage sensor in selected mutants using voltage clamp fluorometry to further our understanding of the molecular mechanisms underlying the defects caused by the diverse mutations. We find that the eight LQTS-associated mutations affect the voltage dependence and/or closing kinetics, in some cases by different molecular mechanisms. Moreover, we find that N-AT restores much of the channel activity in these eight LQTS-associated Kv7.1+KCNE1 mutants. This suggests
that N-AT may function as a general activator of Kv7.1+KCNE1 channels with diverse mutational defects.

Results

LQTS mutants show altered biophysical properties

We first study the biophysical properties of six point mutations in Kv7.1 (F193L, V215M, S225L, L251P, F351S, R583C), and two in KCNE1 (K70N, S74L) identified in patients with LQTS (Yamaguchi et al., 2003; Yang et al., 2002; Slawski et al., 1997; Priori et al., 1999; Napolitano et al., 2005; Lai et al., 2005) (Figure 1a). As L251P and F351S did not produce functional channels (Napolitano et al., 2005; Deschenes et al., 2003) (Figure 1—figure supplement 1), we engineered the milder L251A and F351A mutants instead. L251A and F351A will be referred to as ‘LQTS-like mutants’. When expressed alone in Xenopus oocytes, all investigated Kv7.1 mutants, except F193L and V215M, display a shifted conductance versus voltage curve (G(V)) compared to the wild-type Kv7.1 channel (Figure 1—figure supplement 2; Supplementary file 1). S225L, L251A and F351A shift the G(V) towards positive voltages compared to wild-type Kv7.1. In contrast, R583C shifts the half-maximal activation, V50 ~10 mV towards negative voltages compared to wild-type Kv7.1. This apparent negative shift is likely caused by the pronounced inactivation of the R583C mutant (Figure 1—figure supplement 3a), which is seen to a considerable smaller extent in the other Kv7.1 mutants and wild-type Kv7.1 (inset in Figure 1—figure supplement 3a). When a fraction of the channels are released from inactivation, by introducing a brief hyperpolarizing pulse between the test pulse and the tail pulse, R583C has a V50 fairly comparable to wild-type Kv7.1 (Figure 1—figure supplement 3b).

When the Kv7.1 mutants are co-expressed with KCNE1, all Kv7.1 and KCNE1 mutants except K70N, F193L+KCNE1 have a G(V) that is shifted towards positive voltages compared to the wild-type Kv7.1+KCNE1 channel (Figure 1b). K70N, F193L+KCNE1 causes the most dramatic change by shifting V50 more than +30 mV. We are therefore only able to record the foot of the G(V) curve of K70N, F193L+KCNE1, and a shift in V50 of +30 mV is a lower estimate of the change in V50 (ΔV50). One of the other mutants with dramatically shifted G(V) is K70N/S225L+KCNE1. V50 for K70N/S225L+KCNE1 is shifted almost +30 mV compared to wild-type Kv7.1+KCNE1 (Figure 1c; Supplementary file 1). S225L also slows down Kv7.1+KCNE1 channel opening kinetics (p<0.01; Figure 1d; Supplementary file 1). All mutations, except for L251A, accelerate channel closing kinetics compared to wild-type Kv7.1+KCNE1 (Supplementary file 1). K70N has the most dramatic effect on Kv7.1+KCNE1 channel closing by accelerating the closing kinetics by approximately a factor of 5 (Figure 1e; Supplementary file 1). When comparing the amplitude of K+ currents generated by these mutants with the current amplitude of the wild-type Kv7.1+KCNE1 channel in the same batch of oocytes, we note that all mutants generate smaller currents than wild-type over a large voltage range (Figure 1—figure supplement 4). Although defective trafficking may contribute to these reduced currents in Xenopus oocytes, the current amplitudes for most mutants matches fairly well with the predicted current amplitude from channels with G(V) curves shifted towards positive voltages as observed for these mutants (Figure 1—figure supplement 4a), suggesting that the reduced current amplitudes in Xenopus oocytes are mainly a result of gating defects (and not trafficking defects).

To summarize, all mutations change channel function by altering the voltage dependence of opening and/or the kinetics of opening and/or closing. Reduced function of the Kv7.1+KCNE1 channel induced by these LQTS and LQTS-like mutations may largely be explained by the right-shifted G(V) and the faster closing kinetics caused by these mutations. F193L does not alter the G(V), but speeds up Kv7.1+KCNE1 channel closing by a factor of 2 (Supplementary file 1). These results are consistent with previous reported findings for some of these mutants (Bianchi et al., 2000; Yamaguchi et al., 2003; Eldstrom et al., 2010; Henrion et al., 2009; Yang et al., 2013; Yang et al., 2002; Harmer et al., 2010).

Heterozygous expression reduces LQTS mutant severity

Patients with LQTS mutations can be either homozygous or heterozygous for the mutation. To mimic heterozygous expression, we co-inject the mutated Kv7.1 subunit and KCNE1 subunit together with...
Figure 2. Comparison of homozygous and heterozygous expression of LQTS and LQTS-like mutants. (a–b) Representative example of kinetics (middle panel) and G(V) (right panel) for homozygous expression and heterozygous expression of S225L (a) and K70N (b). Currents in response to steps from –80 mV to +40 mV (a, middle pane) and from +40 mV to –20 mV (b, middle panel). Homozygous expression (black), heterozygous expression (gray), and Kv7.1+KCNE1 wild-type (blue). n = 7–13. (c–d) Summary of V_{50} (c) and T_{50} for closing (d) for homozygous and heterozygous expression. Data as mean ± Standard Error of the Mean.
the wild-type Kv7.1 subunit (or wild-type KCNE1 subunit for KCNE1 mutants) (cartoon in Figure 2). We refer to this as heterozygous expression. Figure 2a–b compares the homozygous expression (Kv7.1wt+KCNE1mut or Kv7.1mut+KCNE1wt) with heterozygous expression (Kv7.1wt+Kv7.1mut+KCNE1wt or Kv7.1wt+KCNE1wt+KCNE1mut) for Kv7.1/S225L (Figure 2a) and KCNE1/K70N (Figure 2b). Both of these examples show that heterozygous expression generates channels with more wild-type like opening or closing kinetics and G(V) compared to homozygous expression of the mutant subunit. A milder biophysical phenotype upon heterozygous expression is generally seen for the LQTS and LQTS-like mutants in terms of G(V), current amplitude, and/or closing kinetics (Figure 2c–d, Figure 1—figure supplement 4, Supplementary file 2). This milder phenotype indicates that the wild-type subunit can partly restore Kv7.1+KCNE1 function. Alternatively, for mutants with a G(V) that is very shifted to positive voltages (e.g. F351A), it may be that channel complexes that contain the mutated subunits are largely out of the physiological voltage range and therefore do not contribute substantially to the recorded current. Also, for mutants with low membrane expression (e.g. possibly F193L [Yamaguchi et al., 2003]), it may be that channels containing the wild-type subunit are favoured so that in most Kv7.1+KCNE1 channel complexes the majority (or all) of the subunits will be wild-type subunits.

Different mutants display different fluorescence versus voltage profiles

Although most of the mutations shift channel voltage dependence and affect channel closing kinetics, the underlying mechanism of mutation-induced changes in Kv7.1+KCNE1 channel function is most likely different for different mutations. For instance, mutations located in S5 and S6 (e.g. F351A) may mainly affect gate movement, while mutations in S1–S4 (e.g. S225L) are more likely to affect voltage sensor movement. To explore whether different mutations interfere with different gating transitions, we use voltage clamp fluorometry, in which the movement of the voltage sensor in Kv7.1 can be tracked by the fluorescence change from the fluorescent probe Alexa-488-maleimide attached to G219C in the S3–S4 loop (referred to as G219C*) (Barro-Soria et al., 2014; Osteen et al., 2010; Osteen et al., 2012). Voltage sensor movement (measured by fluorescence) and gate movement (measured by ionic currents) are then monitored under two-electrode voltage clamp. The Kv7.1/G219C* construct by itself or co-expressed with KCNE1 gives voltage-dependent fluorescence changes (Figure 3a). As previously reported, the fluorescence versus voltage (F(V)) curve of Kv7.1/G219C* correlates well with the G(V) curve (Figure 3a, left panel), while the F(V) curve of Kv7.1/G219C*+KCNE1 is divided into two components (Figure 3a, right panel) (Barro-Soria et al., 2014; Osteen et al., 2010; Osteen et al., 2012). For Kv7.1/G219C*+KCNE1, the first fluorescence component (F1) has been suggested to represent the main voltage sensor movement and the second fluorescence component (F2) to be correlated with gate opening (Barro-Soria et al., 2014). We introduce G219C into Kv7.1/S225L and Kv7.1/F351A. The G(V) curves of both Kv7.1/G219C*/S225L and Kv7.1/G219C*/F351A are shifted towards more positive voltages compared to the wild-type channel, but the F(V) curves are differentially affected by the two mutations (Figure 3b–c, left panels). For Kv7.1/G219C*/S225L, the F(V) curve is shifted to a similar extent as the G(V) curve, while for Kv7.1/G219C*/F351A, the F(V) curve is shifted to a considerably smaller extent (Osteen et al., 2010). When these mutants are co-expressed with KCNE1, we observe different effects on the voltage dependence of the two fluorescent components F1 and F2 induced by the mutations. The S225L mutation primarily shifts F1 towards positive voltages so that F1 and F2 of Kv7.1/G219C*/S225L+KCNE1 are hardly distinguishable in the F(V) curve (Figure 3b, right panel). In contrast, the F351A mutation primarily shifts F2 towards positive voltages so that F1 and F2 are clearly separated (Figure 3c, right panel). Thus, S225L and F351A seem to shift the G(V) curve of Kv7.1+KCNE1 towards positive voltages by interfering with different gating transitions.
Kinetic modeling recapitulates experimental findings

To further explore the different effects of S225L and F351A in the voltage-clamp fluorometry experiments, we use two kinetic models previously developed to reproduce the currents and fluorescence from $\text{K}_7.1/\text{G219C}^*$ (Osteen et al., 2012) and $\text{K}_7.1/\text{G219C}^*+\text{KCNE1}$ channels (Barro-Soria et al., 2014), respectively. The $\text{K}_7.1/\text{G219C}^*$ model is an allosteric model with 10 states (Figure 3—figure supplement 1a), where the horizontal transition is the main S4 movement (which generates the main
fluorescence component F1) and the vertical transition is channel opening accompanied by an additional smaller S4 movement (that generates a smaller additional fluorescence component F2) (Osteen et al., 2012; Zaydman et al., 2014). The K\textsubscript{\textit{V}.7.1/G219C* model allows for channel opening after only a subset of four S4s are activated, which thereby generates F(V) and G(V) that are close in the voltage dependence (reference (Osteen et al., 2012); and Figure 3—figure supplement 2a).

The K\textsubscript{\textit{V}.7.1/G219C*+KCNE1 model has 6 states (Figure 3—figure supplement 1b), where the horizontal transition is the main S4 movement (which generates the main fluorescence component F1) and the vertical transition is channel opening accompanied by an additional smaller S4 movement (that generates a smaller additional fluorescence component F2) (Osteen et al., 2012; Zaydman et al., 2014). The K\textsubscript{\textit{V}.7.1/G219C*+KCNE1 model only allows for channel opening after all four S4s are activated, which thereby generates F(V) and G(V) that are separated in voltage dependence (reference [Barro-Soria et al., 2014]; and Figure 3—figure supplement 2a).

Using these models, we can reproduce the main features of the fluorescence and currents from K\textsubscript{\textit{V}.7.1/G219C*/S225L and K\textsubscript{\textit{V}.7.1/G219C*/S225L+KCNE1 by only shifting the main voltage sensor movement by +50 mV in both models (Figure 3—figure supplement 2b), as if the S225L mutation mainly affects the main S4 movement. In the K\textsubscript{\textit{V}.7.1 model, shifting the main voltage sensor movement by +50 mV shifts both the G(V) and F(V) curves by +35–40 mV, similar to the effect induced by the S225L mutation in the experimental data. In the K\textsubscript{\textit{V}.7.1+KCNE1 model, shifting the main voltage sensor movement by +50 mV results in that the F1 and F2 components overlap in voltage, such that it is hard to distinguish the two components, and that the G(V) is shifted by +10 mV. Both effects are similar to the effects induced by the S225L mutation in the experimental data (cf. Figure 3b).

We can reproduce the main features of the fluorescence and currents from K\textsubscript{\textit{V}.7.1/G219C*/F351A and K\textsubscript{\textit{V}.7.1/G219C*/F351A+KCNE1 by only shifting the voltage dependence of the opening transition by +140 mV in both models (Figure 3—figure supplement 2c), as if the F351A mutation mainly affects the opening transition. In the K\textsubscript{\textit{V}.7.1 model, shifting the opening transition by +140 mV shifts the G(V) by +100 mV whereas the F(V) is shifted less and has a shallower slope, similar to the effects induced by the F351A mutation in the experimental data. In the K\textsubscript{\textit{V}.7.1+KCNE1 model, shifting the opening transition by +140 mV results in that the F1 and F2 components are further separated in voltage and that the G(V) is shifted by +100 mV. Both effects are similar to the effects induced by the F351A mutation in the experimental data (cf. Figure 3c).

In summary, our voltage-clamp fluorometry experiments together with kinetic modeling are compatible with a model in which the S225L mutation primarily interferes with the main S4 movement, whereas the F351A mutation interferes with later gating transitions associated with pore opening. One note of caution is that the interpretation of the mutational effects is dependent on the models used for the wild-type channels. Other models for K\textsubscript{\textit{V}.7.1 and K\textsubscript{\textit{V}.7.1+KCNE1 channels have been proposed (Zaydman et al., 2014; Ruscic et al., 2013), but these have not been as extensively tested or developed as our models. Although other alternative mechanisms for the effects of these mutations are possible, the different impacts of S225L and F351A on the fluorescence versus voltage relationships suggest that these mutations introduce distinct molecular defects.

N-AT enhances the activity of all tested LQTS and LQTS-like mutants

We previously observed that the effect of regular polyunsaturated fatty acids, such as docosahexaenoic acid, on K\textsubscript{\textit{V}.7.1 is impaired by co-expression with the KCNE1 subunit (Liin et al., 2015). In contrast, we found that the PUFA analogue N-arachidonoyl taurine (N-AT, structure in Figure 4) retained its ability to activate the K\textsubscript{\textit{V}.7.1 channel also in the presence of KCNE1. N-AT activated the wild-type K\textsubscript{\textit{V}.7.1+KCNE1 by shifting the G(V) roughly −30 mV (Liin et al., 2015) (Figure 4—figure supplement 1). The magnitude of this N-AT-induced shift is comparable to, but in the opposite direction, to the G(V) shifts observed for several of the LQTS and LQTS-like mutants. Therefore we here test the ability of N-AT to enhance the function of the eight K\textsubscript{\textit{V}.7.1+KCNE1 mutant channels. Figure 4a–b shows representative effects of 7–70 μM N-AT on K\textsubscript{\textit{V}.7.1/S225L+KCNE1. 70 μM N-AT increases current amplitude by a factor of 16 at +20 mV (Figure 4a) and shifts the G(V) curve by about −50 mV (Figure 4b, Supplementary file 3). Steady state of N-AT effects is reached within a few minutes (Figure 4—figure supplement 2). We note a small instantaneous ‘leak’ component in the 70 μM N-AT trace of K\textsubscript{\textit{V}.7.1/S225L+KCNE1 (Figure 4a). This leak component in K\textsubscript{\textit{V}.7.1/S225L +KCNE1 is observed also in the absence of N-AT, but at more positive voltages (Figure 4—figure supplement 3). We do not observe this leak component in wild-type K\textsubscript{\textit{V}.7.1+KCNE1 upon application
Figure 4. Effect of N-AT on LQTS and LQTS-like mutants. All these experiments are done in the presence of KCNE1. Structure of N-AT is shown. (a–b) Representative effect of 7–70 μM N-AT on current amplitude (a) and G(V) (b) of Kᵥ7.1/S225L+KCNE1. Dashed line in (a) denotes 0 μA. (c) Representative currents generated by Kᵥ7.1/S225L+KCNE1 during pulsing at 1 Hz and +28°C in control solution (black) and after the cell had been bathed continuously in 70 μM N-AT (light to dark green, # denotes sweep order). Inset: corresponding currents from wild-type Kᵥ7.1+KCNE1 scaled similarly as Kᵥ7.1/S225L.

Figure 4 continued on next page
Figure 4 continued

+ KCNE1. Light grey trace denotes sweep #1, grey trace denotes sweep #2, and dark grey trace denotes sweep #20. (d) Summary of V_{50} for LQTS and LQTS-like mutants before and after 70 μM N-AT application. Dashed line denotes V_{50} for wild-type $K_{v7.1}$+KCNE1, (e-f) Summary of ΔV_{50} (e) and ΔΔG_o (f) for LQTS and LQTS-like mutants induced by 70 μM N-AT. # denotes an approximation. Dashed lines denote corresponding ΔV_{50} and ΔΔG_o induced by 70 μM N-AT for wild-type $K_{v7.1}$+KCNE1. The statistics in (f) represent one-way ANOVA with Dunnett’s Multiple Comparison Test to compare the N-AT-induced change in ΔΔG_o of mutants to N-AT-induced change in ΔΔG_o of wild-type $K_{v7.1}$+KCNE1, *p<0.05. Only significant differences shown in (f), other comparisons have p>0.05. (g) Estimate of the ability of 70 μM N-AT to restore LQTS and LQTS-like mutant current amplitude at +40 mV. The mean N-AT induced increase in current amplitude for each mutant (from Figure 4—figure supplement 4b) is multiplied with the control amplitude for each mutant (from Figure 1—figure supplement 4d). Not determined (nd). Data as mean ± SEM. n = 5–12. Dashed line denotes relative wild-type $K_{v7.1}$+KCNE1 current amplitude in control solution (i.e. without N-AT).

DOI: 10.7554/eLife.20272.013

The following figure supplements are available for figure 4:

Figure supplement 1. N-AT effect on wild-type $K_{v7.1}$+KCNE1 expressed in Xenopus oocytes.
DOI: 10.7554/eLife.20272.014

Figure supplement 2. The time course of N-AT wash-in on $K_{v7.1}$/S225L+KCNE1 expressed in Xenopus oocytes.
DOI: 10.7554/eLife.20272.015

Figure supplement 3. ‘Leak’ component of $K_{v7.1}$/S225L+KCNE1.
DOI: 10.7554/eLife.20272.016

Figure supplement 4. Effect of N-AT on current amplitude of LQTS and LQTS-like mutants.
DOI: 10.7554/eLife.20272.017

of N-AT (Figure 4—figure supplement 1a), which suggests that this phenomenon is associated with the S225L mutation. The human ventricular action potential has a duration of about 300–400 ms and a systolic voltage range of about 0 to +40 mV (O’Hara et al., 2011; Piacentino et al., 2003). To test the behaviour of the S225L mutation during shorter stimulating pulses, we apply repetitive 300 ms pulses to +40 mV at a frequency of 1 Hz and at 28°C (37°C was not tolerated by the oocytes). In response to this protocol, the $K_{v7.1}$/S225L+KCNE1 channel barely opens and thus generates only minor currents (Figure 4c). In contrast, we observe large $K_{v7.1}$/S225L+KCNE1 currents upon application of 70 μM N-AT (Figure 4c). N-AT also restores the gradual increase in current amplitude during repetitive pulsing seen experimentally (inset in Figure 4c) and in computer simulations (Silva and Rudy, 2005) for the wild-type $K_{v7.1}$+KCNE1 channel.

Further testing of N-AT show that 70 μM N-AT shifts the G(V) curve of all tested mutants by 30–50 mV towards more negative voltages (Figure 4d–e, Supplementary file 3). The G(V) curve of wild-type $K_{v7.1}$+KCNE1 is shifted by -27.0 ± 2.5 mV (Liin et al., 2015). Thus, 70 μM N-AT completely corrects the positive G(V) shifts induced by the mutations so that in the presence of N-AT the G(V) is similar to or shifted negative compared to the G(V) of the wild-type $K_{v7.1}$+KCNE1 channel (Figure 4d, F351A homozygous expression was not included in this analysis because of the very shifted G(V) curve of this mutant). The G(V) of mutants is shifted about equally by N-AT for homozygous and heterozygous expression (Figure 4e). The slope of the G(V) curve varies slightly (10.4 to 16.3) among the mutants (Supplementary file 3). To correct for this difference in slope and to better compare the functional effect of N-AT-induced G(V) shifts on the different mutants, we also calculate the change in Gibbs free energy for channel opening (ΔΔG_o) that 70 μM N-AT induces. 70 μM N-AT reduces the energy required to open the channel by 5.3–9.0 kJ/mol depending on mutant (4.9 ± 0.7 kJ/mol (n = 5) for wild-type) (Figure 4f). To estimate the functional effect of N-AT on the $K_{v7.1}$+KCNE1 current amplitude of each mutant, we calculate the ratio of the current amplitude at the end of the 5 s test pulse before and after application of N-AT at +20 and +40 mV. The 5 s voltage pulse to +20 mV (or + 40 mV) at room temperature was chosen to make the $K_{v7.1}$+KCNE1 channel activate to a similar extent as during a ventricular action potential (300–400 ms) at body temperature (note that $K_{v7.1}$+KCNE1 channels have a relatively high Q_{10} of around 5–7.5 [Busch and Lang, 1993; Seebohm et al., 2001]). 70 μM N-AT increases the current amplitude of all mutants at these voltages (Figure 4—figure supplement 4a–b, Supplementary file 3). As expected, current amplitude is most increased for those mutants that have the most shifted G(V) curve towards more positive voltages (e.g. V215M and S225L). This is because these mutants are still at the foot of their G(V) curve at +20 and +40 mV and a N-AT-induced shift towards more negative voltages results in a relatively larger increase in the current amplitude. By multiplying these relative N-AT-
induced increases in current amplitude with the relative current amplitude of each mutant (compared to wild-type Kv7.1+KCNE1 channels, from Figure 1—figure supplement 4c–d), we observe that 70 μM N-AT compensates fairly well (or overcompensates) for the mutation-induced reduction in current amplitude (Figure 4g, Figure 4—figure supplement 4c). Moreover, for all mutant and wild-type Kv7.1+KCNE1 channels, 70 μM N-AT speeds up the opening kinetics at +40 mV by a factor of 1.3–2.5 (Supplementary file 3). 70 μM N-AT also slows down the closing kinetics for most mutants and wild-type Kv7.1+KCNE1 (Supplementary file 3). For F351A heterozygous expression and R583C homozygous expression, 70 μM N-AT restores the closing kinetics so that the closing kinetics is not statistically different (p>0.05) from wild-type Kv7.1+KCNE1 closing kinetics (737 ± 62 ms and 833 ± 74 ms, respectively compared to 967 ± 47 ms for wild-type). In the presence of KCNE1, channels made with F193L heterozygous expression, L251A homozygous expression, and R583C homozygous expression have wild-type like closing kinetics already before application of N-AT.

N-AT affects both S4 movement and gate opening in mutants

We next use voltage clamp fluorometry on Kv7.1/G219C*/S225L+KCNE1 and Kv7.1/G219C*/F351A+KCNE1 to explore the mechanism by which N-AT enhances the activity of two mechanistically different mutants. Surprisingly, N-AT caused a dramatic decrease in the fluorescence from Alexa488-labeled Kv7.1/G219C+KCNE1 channels (Figure 5—figure supplement 1a). In contrast, N-AT did not decrease the fluorescence from Alexa488-labeled Kv7.1/G219C* channels nor did high concentrations of taurine decrease the fluorescence from unbound Alexa488 (even up to concentrations of 0.5 M taurine; Figure 5—figure supplement 1b), suggesting that N-AT is not a collisional quencher of Alexa488. The mechanism of the N-AT-induced decrease of fluorescence from Alexa488-labeled Kv7.1/G219C+KCNE1 channels is not clear, but could be due to N-AT inducing a conformational change in KCNE1 or Kv7.1 that brings a quenching residue close to Alexa488.

Due to the dramatic decrease in the fluorescence signal from Alexa488-labeled Kv7.1/G219C*+KCNE1 channels, we have to normalize the F(V) curves obtained in N-AT to the amplitude of the F(V) in control solutions. With this normalization, voltage clamp fluorometry experiments on Kv7.1/G219C*/S225L+KCNE1 indicate that N-AT shifts both the voltage dependence of the first part (which represents F1) and the second part (which represents F2) of the F(V) curve towards more negative voltages (Figure 5—figure supplement 1c). However, due to the not completely saturating F(V) for Kv7.1/G219C*/F351A+KCNE1, we are unable to reliably normalize the F(V) curves in the presence of N-AT to the control F(V) curves. We instead explore the effect of N-AT on the kinetics of the two fluorescence components: F1, which is seen as a fast fluorescence change at negative voltages, and F2, which is seen as a slow fluorescence change on top of the F1 component at positive voltages (Barro-Soria et al., 2014). F1 correlates with the measured gating currents in Kv7.1+KCNE1 channels (and the initial delay in the Kv7.1+KCNE1 ionic currents), whereas F2 correlates with the opening of Kv7.1+KCNE1 channels (Barro-Soria et al., 2014). For both mutants, 70 μM N-AT speeds up F1 kinetics (Figure 5a,d, measured at −40 mV where virtually no channels open and the fluorescence is mainly composed of F1). Numeric values for N-AT effects on channel kinetics are summarized in Figure 5f. Moreover, N-AT accelerates the channel opening kinetics (Figure 5b,e) and both the F1 and F2 fluorescence components at +80 mV for Kv7.1/G219C*/S225L+KCNE1 (Figure 5f). The change in the F2 component is probably larger than what the fits of a double-exponential function suggest, because the slow part of the fluorescence, mainly F2, overlay nicely on the currents in both the presence and absence of 70 μM N-AT (Figure 5c, upper panel). As a control, we show that the fluorescence in N-AT does not, however, overlay the currents in control solutions and vice versa (Figure 5c, middle and lower panel). For Kv7.1/G219C*/F351A+KCNE1, the G(V) curve and the F2 component are so shifted towards depolarizing voltages that we cannot reliably quantify the F2 component in our fluorescence traces. 70 μM N-AT does, however, speed up Kv7.1/G219C*/F351A+KCNE1 current kinetics (Figure 5e), which suggests that N-AT also speeds up F2 in Kv7.1/G219C*/F351A+KCNE1. Altogether, these results suggest that N-AT accelerates both conformational changes during the main gating charge movement and channel opening.

Discussion

We show that all studied LQTS and LQTS-like mutations i) shift the G(V) of Kv7.1+KCNE1 towards more positive voltages, and/or ii) accelerate Kv7.1+KCNE1 closing. This suggests that at least part
of the mechanism underlying the reduced ability of these mutants to generate K⁺ currents is by altering these biophysical properties of the Kᵥ7.1+KCNE1 channel. Using voltage clamp fluorometry in combination with kinetic modeling, we further suggest that these altered biophysical properties in mutants may be caused by interference with different gating transitions. Our experimental data and kinetic modeling are consistent with a model in which Kᵥ7.1/S225L primarily causes the reduced channel function by altering the main voltage sensor movement, while Kᵥ7.1/F351A alters later gating transitions associated with pore opening. The different effects of S225L and F351A on the fluorescence versus voltage relationships in Kᵥ7.1/G219C* and Kᵥ7.1/G219C*+KCNE1 suggest that

![Figure 5](https://example.com/figure5.png)

Figure 5. Effect of 70 µM N-AT on S4 movement and gate opening in S225L and F351A mutants. (a–c) Representative example of the effect of 70 µM N-AT on F1 kinetics (a), current opening kinetics (b), and F2 kinetics (c) in Kᵥ7.1/G219C*/S225L+KCNE1. Control fluorescence (red) and current (black). N-AT fluorescence (magenta) and current (green). Top in (c) shows an overlay of the later part of the fluorescence (after most of F1 has occurred) and the later part of the currents (after the initial delay) before and after application of N-AT. Middle and lower (c) show that there is not a great overlap of the fluorescence in the presence of N-AT and the current in control solution (middle) or the fluorescence in control solution and the current in the presence of N-AT (lower). (d–e) Representative example of effect of 70 µM N-AT on F1 kinetics (d) and current opening kinetics (e) in Kᵥ7.1/G219C*/F351A+KCNE1. Same colouring as in (a–b). Dashed line in (b) and (e) denotes 0 µA. Fluorescence traces and all traces in (c) have been normalized to better allow temporal comparison. (f) Summary of the effect of 70 µM N-AT on the kinetic parameters of Kᵥ7.1/G219C*/S225L+KCNE1 and Kᵥ7.1/G219C*/F351A+KCNE1. Ratios of time constants (t_N-AT/t_Ctrl) were calculated pair-wise (control compared to N-AT) in each oocyte and analysed using two-tailed one sample t-test where ratios were compared with a hypothetical value of 1. Data as mean ± SEM. n = 4 (3 for fluorescence kinetics for Kᵥ7.1/G219C*/F351A+KCNE1). *p<0.05; **p<0.01. nd = not determined.

DOI: 10.7554/eLife.20272.018

The following figure supplement is available for figure 5:

Figure supplement 1. Effect of N-AT on the F(V) of Kᵥ7.1/G219C*/S225L mutant co-expressed with KCNE1 in Xenopus oocytes.

DOI: 10.7554/eLife.20272.019
these mutations cause channel dysfunction via different molecular mechanisms. Note that we used the LQTS-like F351A mutant, because the LQTS mutant F351S did not generate any currents (Figure 1—figure supplement 1). However, during the review process of this manuscript a new LQTS mutation, F351L, was found (Vyš et al., 2016). The current and fluorescence of this LQTS mutant is very similar to the current and fluorescence of F351A (Figure 3—figure supplement 3), suggesting that our conclusions on the LQTS-like F351A is also relevant for the LQTS mutant F351L.

One of the mutations, F193L, has only minor effects on the biophysical properties of Kv7.1 + KCNE1. This mutant was previously reported to have reduced current amplitude compared to the wild-type Kv7.1+KCNE1 channel and a mild clinical phenotype (Yamaguchi et al., 2003). The F193L mutation may therefore cause loss of function by faster deactivation kinetics and lower current density. Heterozygous expression of mutated subunits and wild-type subunits in equal molar ratios results in general in a milder biophysical phenotype (more close to the wild-type phenotype). This is in line with a milder clinical phenotype generally reported for heterozygous carriers of LQTS mutations compared to individuals with homozygous genotypes (Priori et al., 1998; Jackson et al., 2014; Zhang et al., 2008). Moreover, for different mutations different biophysical effects of the mutations could be dominant or recessive: For S225L and L251A, heterozygous expression in the presence of KCNE1 partially or completely restores wild-type like V50, whereas heterozygous expression does not improve closing kinetics compared to homozygous expression. For KCNE1/K70N and KCNE1/S74L, co-expression with wild-type KCNE1 subunits also restores wild-type like V50, whereas wild-type like closing kinetics is only partially restored. In contrast, for Kv7.1/R583C, heterozygous expression restores wild-type like closing kinetics, but not wild-type like V50. However, because of uncertainties regarding the stoichiometry of mutant to wild-type subunits in assembled Kv7.1 + KCNE1 channels (as mentioned in the Results section), further studies will be required to understand the mechanisms underlying these apparent dominant or recessive effects and to evaluate possible physiological impact of these effects.

Our results show that all tested mutants respond to N-AT. This is in contrast to previously reported Kv7 channel activators on disease-causing Kv7 mutants, for which mutants show markedly different sensitivity (Seebohm et al., 2003; Xiong et al., 2007; Leitner et al., 2012). 70 µM N-AT shifts the G(V) curve of the wild-type Kv7.1+KCNE1 channel and of all LQTS and LQTS-like mutants by approximately ∼50−30 mV, accelerates channel opening and slows down channel closing. In the presence of 70 µM N-AT, the V50 of all LQTS and LQTS-like mutants are similar to or more negative than V50 for the wild-type Kv7.1+KCNE1 channel. For most mutants, 70 µM N-AT overcompensates for the shift in G(V) and reduction in current amplitude caused by the mutations, indicating that a lower N-AT concentration or a less potent N-AT analogue could be used to restore wild-type like G(V) and current amplitudes. Moreover, Kv7.1+KCNE1 opening and closing kinetics are partially or completely restored by N-AT. Also, although the disease aetiology of the F193L mutant is likely mainly reduced channel expression, the N-AT induced augmentation caused by a shift in G(V) and increased currents may at least in part overcome the reduction in currents caused by the reduced channel expression. This general ability of N-AT to, at least partly, compensate for the reduced function of mutants with mutations in different parts of the Kv7.1+KCNE1 channel complex and with seemingly different molecular defects, as long as a population of these mutant channels reaches the plasma membrane, suggests that N-AT is an interesting model compound for development of future anti-arrhythmics to treat LQTS caused by diverse Kv7.1 mutations.
currents in Xenopus oocytes may largely be explained by the shifted G(V) of mutants. Trafficking defects could be disguised in Xenopus oocytes that are cultured at low temperatures that may rescue some trafficking defects (Anderson et al., 2014; Delisle et al., 2004). These current amplitude experiments should therefore be interpreted with caution until trafficking of specific K\textsubscript{\textit{v}}7.1 and KCNE1 LQTS mutants in mammalian systems has been explored. Previous studies show that membrane expression of trafficking-defect channel mutants (e.g. for K\textsubscript{\textit{v}}11.1 and CFTR) can be pharmacologically rescued using compounds that are suggested to stabilize channel conformation during folding and trafficking (Anderson et al., 2014; Delisle et al., 2004; Sato et al., 1996). However, rescue of membrane expression may only partially compensate for mutation-induced loss of function, if these mutants also suffer from defective gating (Perry et al., 2016). Our proposed N-AT model for pharmacological correction of ‘G(V)’ LQTS mutants could therefore potentially complement pharmacological correction of trafficking-defect LQTS mutants to improve the outcome of patients suffering from LQTS.

We previously suggested that polyunsaturated fatty acids and their analogues (such as N-AT) attract the voltage sensor S4 in K\textsubscript{\textit{v}}7.1 by an electrostatic mechanism and thereby shift the G(V) towards more negative voltages and speed up channel opening (Liin et al., 2015). We therefore initially hypothesized that N-AT only would restore the function of those LQTS mutations with altered S4 movement. We were pleasantly surprised when N-AT seems to be able to restore the function of many LQTS and LQTS-like mutants, with diverse mutational defects (such as S225L and F351A). Using voltage clamp fluorometry, we have previously shown that both the main gating charge movement and the gate opening of K\textsubscript{\textit{v}}7.1+KCNE1 channels are accompanied by fluorescence signals from fluorophores attached to S4 (Barro-Soria et al., 2014). This suggests that S4 moves both during the main gating charge movement and during the subsequent channel opening in K\textsubscript{\textit{v}}7.1+KCNE1 channels (Barro-Soria et al., 2014), which is similar to observations in Shaker K\textsubscript{\textit{v}} channels (Börjesson and Elinder, 2011; Pathak et al., 2005; Phillips and Swartz, 2010). Therefore, N-AT could affect both the main gating charge movement and gate opening by acting on the S4 voltage sensor, as has been shown for hanatoxin which targets the voltage-sensing domain in the Shaker K\textsubscript{\textit{v}} channel (Milescu et al., 2013). This hypothesis is supported by our voltage-clamp fluorometry experiments using K\textsubscript{\textit{v}}7.1/S225L and K\textsubscript{\textit{v}}7.1/F351A in which N-AT accelerates the fluorescence components associated with both the main S4 movement (F1) and gate opening (F2), as well as accelerates the kinetics of channel opening. This proposed mechanism would explain why N-AT can restore the function of mutations that mainly target either the main S4 movement or gate opening. However, the dramatic decrease in the fluorescence signal caused by N-AT makes it hard for us to completely determine the effect of N-AT on the F(V) of mutants. Therefore, the complete mechanism of N-AT in the different mutations is not clear.

Future studies are required to assess the clinical utility of PUFA analogues in cardiomyocytes and animal models. We see channel specificity of PUFA analogues as one major challenge and recognize the need to improve PUFA analogue affinity to K\textsubscript{\textit{v}}7.1+KCNE1 to reduce required therapeutic concentrations and minimize potential adverse effects. Despite these challenges, our data show that the magnitude of the N-AT-induced voltage shifts are in a similar range as the shifts induced by several LQTS mutations, thereby serving as proof of concept that this PUFA analogue, at least partly, restores channel function in diverse LQTS and LQTS-like mutants.

Materials and methods

Experiments were approved by The Linköping Animal Ethics Committee at Linköping University and The Animal Experiments Inspectorate under the Danish Ministry of Food, Agriculture and Fisheries (University of Copenhagen).

Experiments on *Xenopus laevis* oocytes

Molecular biology

Expression plasmids human K\textsubscript{\textit{v}}7.1 (GenBank Acc.No. NM_000218) in pXOOM and KCNE1 (NM_000219) in pGEM have been previously described (Jespersen et al., 2002; Schmitt et al., 2007). LQTS and LQTS-like point mutations and G219C were introduced into K\textsubscript{\textit{v}}7.1 or KCNE1 using site-directed mutagenesis (QuikChange Stratagene, CA). All newly generated constructs were sequenced to ensure integrity (Genewiz, NJ). cRNA was prepared from linearized DNA using the T7
mMessage mMachine transcription kit (Ambion, TX). RNA quality was checked by gel electrophoresis, and RNA concentrations were quantified by UV spectroscopy.

Two-electrode voltage-clamp electrophysiology
Xenopus laevis oocytes (from EcoCyte Bioscience, TX, or prepared in house) were isolated and maintained as previously described (Börjesson et al., 2010). 50 nl cRNA (~50 ng K\textsubscript{7.1} for K\textsubscript{7.1-only expression, 25 ng K\textsubscript{7.1} + 8 ng KCNE1 for homozygous expression, or 12.5 ng K\textsubscript{7.1}wt + 12.5 ng K\textsubscript{7.1}mut + 8 ng KCNE1wt alternatively 25 ng K\textsubscript{7.1}wt + 4 ng KCNE1wt + 4 ng KCNE1mut for heterozygous expression) was injected into each oocyte. Currents were measured at room temperature 2–5 days after injection with the two-electrode voltage-clamp technique (CA-1B amplifier, Dagan, MN).

For the current amplitude experiments presented in Figure 1—figure supplement 4, the current amplitude of mutants were normalized to the current amplitude of wild-type K\textsubscript{7.1}+KCNE1 expressed in the same batch of oocytes and incubated under identical conditions for the same time period. Currents were sampled at 1–3.3 kHz, filtered at 500 Hz, and not leakage corrected. The control solution contained (in mM): 88 NaCl, 1 KCl, 15 HEPES, 0.4 CaCl\textsubscript{2}, and 0.8 MgCl\textsubscript{2} (pH adjusted to 7.4 using NaOH). The holding voltage was generally set to –80 mV. Activation curves were generally elicited by stepping to test voltages between –110 and +60 mV (3–5 s durations and 10 mV increments) followed by a tail voltage of ~20 mV. Voltage clamp fluorometry experiments were performed as previously described on oocytes labeled for 30 min with 100 μM Alexa-488-maleimide (Molecular Probes) at 4°C (Barro-Soria et al., 2014; Osteen et al., 2010; Osteen et al., 2012). For voltage clamp fluorometry experiments on K\textsubscript{7.1}/G219C*, the holding voltage was –80 mV, the pre-pulse –120 mV for 2 s, and test voltages ranging between –140 and +80 mV for 3 s in 20 mV increments. The tail voltage was –80 mV. For K\textsubscript{7.1}/G219C*/KCNE1, the holding voltage was –80 mV, the pre-pulse –160 mV for 5 s, and test voltages ranging between –160 and +80 mV for 5 s in 20 mV increments. The tail voltage was –40 mV. N-arachidonoyl taurine was purchased from Cayman Chemical (MI, USA) and stored, diluted and applied to the oocyte chamber as previously described (Liin et al., 2015). Control solution was added to the bath using a gravity-driven perfusion system.

Electrophysiological analysis
To quantify effects on the G(V), tail currents (measured shortly after initiation of tail voltage) were plotted against the pre-pulse (test) voltage. The following Boltzmann relation was fitted to the data

$$G_k(V) = G_{max} / (1 + \exp((V_{50} - V) / s)),$$

where V_{50} is the midpoint (i.e. the voltage at which the conductance is half the maximal conductance estimated from the fit) and s the slope factor (shared slope for control and N-AT curves within the same cell). In figures showing I_{tail} vs voltage, the curves are normalized to the fitted G_{max}. The same single Boltzmann relation was used to fit the F(V) from voltage clamp fluorometry recordings of K\textsubscript{7.1} without KCNE1 co-expression, where fluorescence at the end of the test pulse was plotted versus the test voltage (Barro-Soria et al., 2014). For voltage-clamp fluorometry recordings of K\textsubscript{7.1} with KCNE1 co-expression (and F351A without KCNE1), a double Boltzmann relation was used (Barro-Soria et al., 2014). For experiments where conductance or fluorescence did not clearly show signs of saturation in the experimental voltage range, these fits should be considered as an approximation. To estimate the effect of N-AT on Gibbs free energy, the following relation was used:

$$\Delta \Delta G_o = z * \Delta V_{50} * F,$$

Where z is the gating charge of each channel deduced from the slope of the Boltzmann fits according to $z = 2s / \Delta V_{50}$, ΔV_{50} is the N-AT induced shift in the V_{50} values from the Boltzmann fits, and F is Faraday’s constant (Li-Smerin and Swartz, 2001; Monks et al., 1999; DeCaen et al., 2008). This analysis assumes a two-state model and tends to underestimate the z (Chowdhury and Chanda, 2012). The calculated $\Delta \Delta G_o$ should therefore be seen as an approximation. For opening and closing kinetics, $T_{50,open}$ was defined as the time it takes to reach 50% of the current in the end of a 3 s (5 s for KCNE1 co-expression) long test pulse to +40 mV. $T_{50,close}$ was defined as the time it takes to reduce the amplitude (instantaneous tail current – steady state tail current) of the tail current by 50% when stepping to a tail pulse to –20 for 5 s. To analyze the effect of N-AT on fluorescence and
current kinetics, single or double exponentials were fitted to the fluorescence or current traces. The ratios of time constants before and after application of N-AT were then calculated.

Modeling

Fluorescence and currents from the Kv7.1+KCNE1 models were simulated using Berkeley Madonna (Berkeley, CA).

Statistics

Average values are expressed as mean ± SEM. Mutant parameters (e.g. \(V_{50} \) and \(\Delta \Delta G_o \)) were compared to wild-type parameters using one-way ANOVA with Dunnett’s Multiple Comparison Test. Comparison of homozygous and heterozygous expression was done using one-way ANOVA with pair-wise Bonferroni’s Test. The effects of N-AT on fluorescence and current kinetics were analysed using two-tailed one sample t-test where ratios were compared with a hypothetical value of 1. \(p<0.05 \) is considered as statistically significant.

Acknowledgements

We thank Frida Starck Härlin (Linköping University) and Briana Watkins (University of Miami) for help with some experiments and Drs. Fredrik Elinder (Linköping University), Laura Bianchi and Feng Qiu (University of Miami), Nicole Schmitt, Mark Skarsfeldt and Federico Denti (University of Copenhagen) for valuable comments.

Additional information

Competing interests

SIL, HPL: A patent application (62/032,739) based on these results has been submitted by the University of Miami with SIL and HPL identified as inventors. The other authors declare that no competing interests exist.

Funding

Funder	Grant reference number	Author
National Institutes of Health	R01GM109762	H Peter Larson
American Heart Association	16GRNT30990060	H Peter Larson
Svenska Sällskapet för Medicinsk Forsknings	524-2011-6806	Sara I Liin
Vetenskapsrådet	524-2011-6806	Sara I Liin
Northwest Lions Foundation		Sara I Liin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

SIL, JEL, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; RB-S, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; BHB, Conception and design, Drafting or revising the article; HPL, Conception and design, Analysis and interpretation of data, Drafting or revising the article

Author ORCIDs

Sara I Liin, http://orcid.org/0000-0001-8493-0114

Ethics

Animal experimentation: Experiments were performed in strict accordance with the recommendations of The Linköping Animal Ethics Committee at Linköping University and The Animal Experiments Inspectorate under the Danish Ministry of Food, Agriculture and Fisheries. Protocols were approved by The Linköping Animal Ethics Committee at Linköping University (#53-13) and The
Additional files

Supplementary files
- Supplementary file 1. Summary of biophysical properties of LQTS and LQTS-like mutations for single injection (left panel) and homozygous co-injection (right panel).
 DOI: 10.7554/eLife.20272.020
- Supplementary file 2. Summary of biophysical properties of LQTS and LQTS-like mutations for homozygous (left panel) and heterozygous expression (right panel).
 DOI: 10.7554/eLife.20272.021
- Supplementary file 3. Summary of effect of 70μM N-AT on WT and LQTS and LQTS-like mutants for homozygous (left panel) and heterozygous.
 DOI: 10.7554/eLife.20272.022
- Supplementary file 4. Parameters for KV7.1 model (a) andKV7.1+KCNE1 model (b) in Figure 3—figure supplement 1.
 DOI: 10.7554/eLife.20272.023

References

Anderson CL, Kuzmicki CE, Childs RR, Hintz CJ, Delisle BP, January CT. 2014. Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nature Communications 5:5535. doi: 10.1038/ncomms6535, PMID: 25417810
Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G. 1996. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80. doi: 10.1038/384078a0, PMID: 8900828
Barro-Soria R, Perez ME, Larsson HP. 2015. KCNE3 acts by promoting voltage sensor activation in KCNQ1. PNAS 112:E7286–E7292. doi: 10.1073/pnas.1516238112
Barro-Soria R, Rebolloso S, Liin SJ, Perez ME, Sampson KJ, Kass RS, Larsson HP. 2014. KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps. Nature Communications 5:3750. doi: 10.1038/ncomms4750, PMID: 24769622
Bianchi L, Priori SG, Napolitano C, Surewicz KA, Dennis AT, Memmi M, Schwartz PJ, Brown AM. 2000. Mechanisms of I(Ks) suppression in LQT1 mutants. American Journal of Physiology Heart and Circulatory Physiology 279:H3003–3011., PMID: 11087258
Busch AE, Lang F. 1993. Effects of [Ca2+]i and temperature on minK channels expressed in Xenopus oocytes. FEBS Letters 334:221–224. doi: 10.1016/0014-5793(93)81715-C, PMID: 8003103
Börjesson SI, Elinder F. 2011. An electrostatic potassium channel opener targeting the final voltage sensor transition. The Journal of General Physiology 137:563–577. doi: 10.1085/jgp.201110599, PMID: 21624947
Börjesson SI, Parkkari T, Hammarström S, Elinder F. 2010. Electrostatic tuning of cellular excitability. Biophysical Journal 98:396–403. doi: 10.1016/j.bpj.2009.10.026, PMID: 20141752
Cerrone M, Cummings S, Alansari T, Priori SG. 2012. A clinical approach to inherited arrhythmias. Circulation 5:581–590. doi: 10.1161/CIRCGENETICS.110.959429, PMID: 23074337
Chowdhury S, Chanda B. 2012. Estimating the voltage-dependent free energy change of ion channels using the median voltage for activation. The Journal of General Physiology 139:3–17. doi: 10.1085/jgp.201110722, PMID: 22155736
DeCaen PG, Yarov-Yarovoy V, Zhao Y, Scheuer T, Catterall WA. 2008. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. PNAS 105:15142–15147. doi: 10.1073/pnas.0806486105, PMID: 18809926
Delisle BP, Anson BD, Rajamani S, January CT. 2004. Biology of cardiac arrhythmias: ion channel protein trafficking. Circulation Research 94:1418–1428. doi: 10.1161/01.RES.0000128561.28701.eu, PMID: 15192037
Deschênes D, Acharfi S, Pouliot V, Hegele R, Krahn A, Daleau P, Chahine M. 2003. Biophysical characteristics of a new mutation on the KCNQ1 potassium channel (L251P) causing long QT syndrome. Canadian Journal of Physiology and Pharmacology 81:129–134. doi: 10.1139/y02-162, PMID: 12710526
Eldstrom J, Xu H, Werry D, Kang C, Loewen ME, Degenhardt A, Sanatani S, Tibeitks GF, Sanders C, Fedida D. 2010. Mechanistic basis for LQT1 caused by S3 mutations in the KCNQ1 subunit of Iks. Journal of General Physiology 135:433–448. doi: 10.1085/jgp.200910351, PMID: 20421371
Harmer SC, Wilson AJ, Aldridge R, Tinker A. 2010. Mechanisms of disease pathogenesis in long QT syndrome type S. AJP: Cell Physiology 298:C263–C273. doi: 10.1152/ajpcell.00308.2009
Hedley PL, Jørgensen P, Schlamowitz S, Wangari R, Moolman-Smook J, Brink PA, Kanters JK, Corfield VA, Christiansen M. 2009. The genetic basis of long QT and short QT syndromes: a mutation update. Human Mutation 30:1486–1511. doi: 10.1002/humu.21106, PMID: 19682363

Henriou R, Strutz-Seebohm N, Duzenko M, Lang F, Seebohm G. 2009. Long QT syndrome-associated mutations in the voltage sensor of I(Ks) channels. Cellular Physiology and Biochemistry 24:11–16. doi: 10.1159/000227828, PMID: 19590198

Jackson HA, McIntosh S, Whitcombe B, Asuri S, Casey B, Kerr C, Tang A, Arbour LT. 2014. LQTS in Northern BC: homozygosity for KCNQ1 V205M presents with a more severe cardiac phenotype but with minimal impact on auditory function. Clinical Genetics 86:85–90. doi: 10.1111/cge.12325, PMID: 23844633

Jepersen T, Grunnet M, Angelo K, Klaerke DA, Olesen SP. 2002. Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. BioTechniques 32:536–538., PMID: 11911656

Lai LP, Su YN, Hsieh FJ, Chiang FT, Juang JM, Liu YB, Ho YL, Chen WJ, Yeh SJ, Wang CC, Ko YL, Wu TJ, Ueng KC, Lei MH, Tsao HM, Chen SA, Lin TK, Wu MH, Lo HM, Huang SK, et al. 2005. Denaturing high-performance liquid chromatography screening of the long QT syndrome-related cardiac sodium and potassium channel genes and identification of novel mutations and single nucleotide polymorphisms. Journal of Human Genetics 50:490–496. doi: 10.1080/10038-005-0283-3, PMID: 16155735

Leitner MG, Feuer A, Ebers O, Schreiber DN, Halasovich CR, Oliver D. 2012. Restoration of ion channel function in deafness-causing KCNQ4 mutants by synthetic channel openers. British Journal of Pharmacology 165:2244–2259. doi: 10.1111/j.1476-5381.2011.01697.x, PMID: 21951272

Li-Smerin Y, Swartz KJ. 2001. Helical structure of the COOH terminus of S3 and its contribution to the gating modifier toxin receptor in voltage-gated ion channels. Journal of General Physiology 117:205–218. doi: 10.1085/jgp.117.3.205, PMID: 11222626

Liin SI, Barro-Soria R, Larsson HP. 2015. The KCNQ1 channel - remarkable flexibility in gating allows for functional versatility. Journal of Physiology 593:2605–2615. doi: 10.1113/physiol.2014.287607, PMID: 25653179

Liin SI, Silverà Ejney M, Barro-Soria R, Skarsfeldt MA, Larsson JE, Starck Härlin F, Parkkari T, Bentzen BH, Schmitt N, Larsson HP, Elinder F. 2015. Polysaturated fatty acids analogs act antiarrhythmically on the cardiac Iks channel. PNAS 112:5714–5719. doi: 10.1073/pnas.1503488112, PMID: 25901329

Milescu M, Lee HC, Bae CH, Kim Ji, Swartz KJ. 2013. Opening the shaker K+ channel with hanatoxin. Journal of General Physiology 141:203–216. doi: 10.1085/jgp.201210914, PMID: 23359298

Monks SA, Needleman DJ, Miller C. 1999. Helical structure and packing orientation of the S2 segment in the Shaker K+ channel. Journal of General Physiology 113:415–423. doi: 10.1085/jgp.113.3.415, PMID: 10051517

Morita H, Wu J, Zipes DP. 2008. The QT syndromes: long and short. Lancet 372:750–763. doi: 10.1016/S0140-6736(08)61307-0, PMID: 18761222

Murray CJ, Westhoff M, Eldstrom J, Thompson E, Emes R, Fedida D. 2016. Unnatural amino acid photo-crosslinking of the Iks channel complex demonstrates a KCNE1:KCNQ1 stoichiometry of up to 4:4. eLife 5: e11815. doi: 10.7554/elife.11815, PMID: 26802629

Nakajo K, Kubo Y. 2015. KCNQ1 channel modulation by KCNE proteins via the voltage-sensing domain. Journal of Physiology 593:2617–2625. doi: 10.1113/physiol.2014.287672, PMID: 25603957

Nakajo K, Ulbrich MH, Kubo Y, Isaccof EE. 2010. Stoichiometry of the KCNQ1 - KCNE1 ion channel complex. PNAS 107:18862–18867. doi: 10.1073/pnas.100354107, PMID: 20962273

Napolitano C, Priori SG, Schwartz PJ, Bloise R, Ronchetti E, Nastoli J, Bottelli G, Cerrone M, Leonardi S. 2005. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA 294:2795–2798. doi: 10.1001/jama.294.23.2797, PMID: 16419494

Nerbonne JM, Kass RS. 2005. Molecular physiology of cardiac repolarization. Physiological Reviews 85:1205–1253. doi: 10.1152/physrev.00002.2005, PMID: 16183911

O’Hara T, Virág L, Varró A, Rudy Y. 2011. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Computational Biology 7:e1002061. doi: 10.1371/journal.pcbi.1002061, PMID: 21637795

Osteen JD, Barro-Soria R, Robey S, Sampson KJ, Kass RS, Larsson HP. 2012. Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels. PNAS 109:7103–7108. doi: 10.1073/pnas.120158209, PMID: 22509038

Osteen JD, Gonzalez C, Sampson KJ, Iyer V, Rebolledo S, Larsson HP, Kass RS. 2010. KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate. PNAS 107:22710–22715. doi: 10.1073/pnas.1016300108, PMID: 21149716

Pathak M, Kurtz L, Tombola F, Isaccof E. 2005. The cooperative voltage sensor motion that gates a potassium channel. Journal of General Physiology 125:57–69. doi: 10.1085/jgp.200409197, PMID: 15623895

Perry MD, Ng CA, Phan K, David E, Steer K, Hunter MJ, Mann SA, Imitiaz M, Hill AP, Ke Y, Vandenberg Jr. 2016. Rescue of protein expression defects may not be enough to abolish the pro-arrhythmic phenotype of long QT type 2 mutations. Journal of Physiology 594:4031–4049. doi: 10.1113/JP271805, PMID: 26958806

Phillips LR, Swartz KJ. 2010. Position and motions of the S4 helix during opening of the Shaker potassium channel. Journal of General Physiology 136:629–644. doi: 10.1085/jgp.201010517, PMID: 2115696

Placental T, Weber CR, Chen X, Weisser-Thomas J, Margules KB, Bers DM, Houser SR. 2003. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circulation Research 92:651–658. doi: 10.1161/01.RES.0000062469.83985.9B, PMID: 12600875

Plant LD, Xiong D, Dai H, Goldstein SA. 2014. Individual Iks channels at the surface of mammalian cells contain two KCN1 accessory subunits. PNAS 111:E1438–1444. doi: 10.1073/pnas.1323548111, PMID: 24591645
Priori SG, Napolitano C, Schwartz PJ. 1999. Low penetrance in the long-QT syndrome: clinical impact. Circulation 99:529–533. doi: 10.1161/01.CIR.99.4.529, PMID: 9927399

Priori SG, Schwartz PJ, Napolitano C, Bianchi L, Dennis A, De Fusco M, Brown AM, Casari G. 1998. A recessive variant of the Romano-Ward long-QT syndrome? Circulation 97:2420–2425. doi: 10.1161/01.CIR.97.24.2420, PMID: 9641694

Ruscin KJ, Miceli F, Villa-Lobos CA, Dai H, Mishina Y, Beazell NM, Goldstein SA. 2013. IKs channels open slowly because KCNE1 accessory subunits slow the movement of S4 voltage sensors in KCNQ1 pore-forming subunits. PNAS 110:E559–566. doi: 10.1073/pnas.1226161110, PMID: 23359697

Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT. 1996. Coassembly of KV LQT1 and minK (Isk) proteins to form cardiac I(Ks) channel potassium channel. Nature 384:80–83. doi: 10.1038/384080a0, PMID: 8900283

Sanguinetti MC. 2010. HERG1 channelopathies. Pflügers Archiv - European Journal of Physiology 460:265–276. doi: 10.1007/s00424-009-0758-8

Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR. 1996. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. Journal of Biological Chemistry 271:635–638. doi: 10.1074/jbc.271.2.635, PMID: 8557666

Schmitt N, Callow K, Nielsen NH, Buschmann M, Speckmann EJ, Schulze-Bahr E, Schwarz M. 2007. The novel C-terminal KCNQ1 mutation M520R alters protein trafficking. Biochemical and Biophysical Research Communications 358:304–310. doi: 10.1016/j.bbrc.2007.04.127, PMID: 17482572

Seebohm G, Lerche C, Busch AE, Bachmann A. 2001. Dependence of I(Ks) biophysical properties on the expression system. Pflügers Archiv European Journal of Physiology 442:891–895. doi: 10.1007/s004240100608, PMID: 11680622

Seebohm G, Pusch M, Chen J, Sanguinetti MC. 2003. Pharmacological activation of normal and arrhythmia-associated mutant KCNQ1 potassium channels. Circulation Research 93:941–947. doi: 10.1161/01.RES.0000012866.67863.2B, PMID: 14576198

Silva J, Rudy Y. 2005. Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. Circulation 112:1384–1391. doi: 10.1161/CIRCULATIONAHA.105.543306, PMID: 16129795

Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. 1997. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nature Genetics 17:338–340. doi: 10.1038/ng1197-338, PMID: 9354802

Vyas B, Puri RD, Namboodiri N, Saxena R, Nair M, Balakrishnan P, Jayakrishnan MP, Udyavar A, Kishore R, Verma IC. 2016. Phenotype guided characterization and molecular analysis of Indian patients with long QT syndromes. Indian Pacing and Electrophysiology Journal 16:8–18. doi: 10.1016/j.ipej.2016.03.003, PMID: 27485560

Wilson AJ, Quinn KV, Graves FM, Bitner-Glindzicz M, Tinker A. 2005. Abnormal KCNQ1 trafficking influences disease pathogenesis in hereditary long QT syndromes (LQT1). Cardiovascular Research 67:476–486. doi: 10.1016/j.cardiores.2005.04.036, PMID: 15935335

Xiong Q, Sun H, Li M. 2007. Zinc pyrithione-mediated activation of voltage-gated KCNQ potassium channels rescues epileptogenic mutants. Nature Chemical Biology 3:287–296. doi: 10.1038/nchembio874, PMID: 17435769

Yamaguchi M, Shimizu M, Ino H, Terai H, Hayashi K, Mabuchi H, Hoshi N, Higashida H. 2003. Clinical and electrophysiological characterization of a novel mutation (F193L) in the KCNQ1 gene associated with long QT syndrome. Clinical Science 104:377–382. doi: 10.1042/cs1040377, PMID: 12653681

Yang P, Kanki H, Drolet B, Yang T, Wei J, Viswanathan PC, Hohnloser SH, Shimizu M, Schwartz PJ, Stanton M, Murray KT, Norris K, George AL, Roden DM. 2002. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation Research 91:1943–1948. doi: 10.1161/01.RES.0000014448.19052.4C, PMID: 11997281

Yang T, Smith JA, Leake BF, Sanders CR, Meiler J, Roden DM. 2013. An allosteric mechanism for drug block of the human cardiac potassium channel KCNQ1. Molecular Pharmacology 83:481–489. doi: 10.1124/mol.112.081513, PMID: 23193163

Zaydman MA, Kasimova MA, McFarland K, Beller Z, Hou P, Kinser HE, Liang H, Zhang G, Shi J, Tarek M, Cui J. 2014. Domain-domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel. eLife 3:e03606. doi: 10.7554/eLife.03606, PMID: 25535795

Zhang S, Yin K, Ren X, Wang P, Zhang S, Cheng L, Yang J, Liu JY, Liu M, Wang QK. 2008. Identification of a novel KCNQ1 mutation associated with both Jervell and Lange-Nielsen and Romano-Ward forms of long QT syndrome in a Chinese family. BMC Medical Genetics 9:24. doi: 10.1186/1471-2350-9-24