Reduction of couplings in the MSSM

George Tsamis

National Technical University of Athens
School of Applied Mathematics and Physical Sciences
Athens, Greece

based on

N.D. Tracas, G.T., N.D. Vlachos, G. Zoupanos, Phys. Lett. B 710 (2012) 623
Outline

• Introduction.

• General Method of Reduction.

• Application in the MSSM.

• Summary.
• To reduce the number of independent couplings of a theory one can impose a symmetry.

• Also we can adopt a more general approach.

• We reduce this number by imposing relations between the couplings.

• The relations between the dimensionless couplings are such that renormalizability is preserved and are independent of the renormalization point.

• The method is developed for the reduction from \(n+1 \) coupling parameters \(g_0, g_1, ..., g_n \) to a description in terms of \(g_0 \) only. (W. Zimmermann, 1985)
Our aim is to express $g_1, g_2, ..., g_n$ as functions of g_0 so that a model involving a single coupling parameter λ_0 is obtained which is again invariant under the renormalization group. They can be written as

$$g_j = g_j(g_0) \quad j = 1, ..., n$$

(1)

Invariance of the Green’s functions of the original system under renormalization group implies

$$\left(M \frac{\partial}{\partial M} + \sum_{j=0}^{n} \beta_j \frac{\partial}{\partial g_j} + \gamma \right) G(p_i, M, g_0, g_1, ..., g_n) = 0$$

where M, β_j, γ are the renormalization mass, the beta functions and the anomalous dimension correspondingly.
And for the reduced system
\[
\left(M \frac{\partial}{\partial M} + \beta' \frac{\partial}{\partial g_0} + \gamma' \right) G'(p_i, M, g_0, g_1(g_0), ..., g_n(g_0)) = 0
\]

We can see that \(G' \) is obtained from \(G \) by substituting the functions (1)
\[
G' = G(g_0, g_1(g_0), ..., g_n(g_0))
\]

Differentiating with respect to \(g_0 \)
\[
\frac{dG'}{dg_0} = \frac{\partial G}{\partial g_0} + \sum_{j=1}^{n} \frac{\partial G}{\partial g_j} \frac{dg_j}{dg_0}
\]

From the above equations we have
\[
\beta' = \beta_0, \gamma' = \gamma, \beta' \frac{dg_j}{dg_0} = \beta_j
\]

So the functions (1) must satisfy the following differential equations, the Reduction Equations
\[
\beta_j = \beta_0 \frac{dg_j}{dg_0}
\]
For simplicity we assume that the original system has two coupling parameters, g_0 and g_1. The beta-functions can be written

$$\beta_0 = b_0 g_0^2 + \ldots$$

$$\beta_1 = c_1 g_1^2 + c_2 g_0 g_1 + c_3 g_0^2 \ldots$$

The reduction equation is

$$\beta_1 = \beta_0 \frac{dg_1}{dg_0}$$

Assuming power series solution:

$$g_1 = p_0^{(1)} g_0 + \sum_{n=1} \sum p_n^{(1)} g_0^{(n+1)}$$

at lowest order we end up with a quadratic equation:

$$c_1 p_0^2 + (c_2 - b_0) p_0 + c_3 = 0$$
Assuming that α_2 gauge coupling can be related with the α_1 gauge coupling ($\alpha_i = \frac{g_i^2}{4\pi}$) we have the following reduction equation

$$\beta_2 = \beta_1 \frac{d\alpha_2}{d\alpha_1}$$ \hspace{1cm} (2)$$

where

$$\beta_2 \equiv \frac{d\alpha_2}{dt} = \frac{b_2}{2\pi} \alpha_2^2, \quad \beta_1 \equiv \frac{d\alpha_1}{dt} = \frac{b_1}{2\pi} \alpha_1^2,$$

and

$$b_2 = 1, \; b_1 = 11$$
We can write α_2 in lowest order in perturbation theory as

$$\alpha_2 = c_0 \alpha_1$$

Substituting this relation to the reduction equation (2)

$$c_0 = \frac{\beta_2}{\beta_1} = \frac{b_2 \alpha_2^2}{b_1 \alpha_1^2} = \frac{b_2 c_0^2 \alpha_1^2}{b_1 \alpha_1^2} \Rightarrow$$

$$c_0 = 11$$

Hence α_2 can be written as

$$\alpha_2 = 11 \alpha_1$$
We can check now if this result is compatible with the experimental values.

\[
\frac{1}{\alpha_{em}} = \frac{1}{\alpha_1} + \frac{1}{\alpha_2} \Rightarrow \\
\alpha_{em} = \frac{11}{12}\alpha_1
\]

We know that

\[
\sin^2 \theta_w = \frac{\alpha_{em}}{\alpha_2} \Rightarrow \\
\sin^2 \theta_w = \frac{11}{12 \cdot 11\alpha_1} = \frac{1}{12} = 0.08333
\]

which is unacceptable because

\[
\sin^2 \theta_w^{\exp} = 0.23146 \pm 0.00017
\]
• Following the same procedure we assume that \(\alpha_{top} \) Yukawa coupling can be related with the \(\alpha_{bottom} \) Yukawa coupling, so they must satisfy the reduction equation

\[
\beta_{top} = \beta_{bottom} \frac{d\alpha_{top}}{d\alpha_{bottom}} \Rightarrow
\]

\[
\frac{d\alpha_{top}}{d\alpha_{bottom}} = \frac{\beta_t}{\beta_b} = \frac{\alpha_t(6\alpha_t + \alpha_b - \frac{13}{15}\alpha_1 - 3\alpha_2 + \frac{16}{3}\alpha_3)}{\alpha_b(6\alpha_b + \alpha_t + \alpha_\tau - \frac{7}{15}\alpha_1 - 3\alpha_2 + \frac{16}{3}\alpha_3)}
\]

We can for simplicity neglect the contribution from the \(\tau \) and the small difference between \(\frac{13}{15} \) and \(\frac{7}{15} \), so

\[
\frac{\beta_t}{\beta_b} = \frac{\alpha_t(6\alpha_t + \alpha_b - \frac{13}{15}\alpha_1 - 3\alpha_2 + \frac{16}{3}\alpha_3)}{\alpha_b(6\alpha_b + \alpha_t - \frac{13}{15}\alpha_1 - 3\alpha_2 + \frac{16}{3}\alpha_3)} \tag{3}
\]
Assuming again power series solution of the reduction equation we can write

\[\alpha_t = d_0 \alpha_b \]

The derivative of the ratio of the two Yukawa couplings must be zero

\[
\frac{d}{dt} \left(\frac{\alpha_t}{\alpha_b} \right) = 0 \Rightarrow
\]

\[
\frac{1}{\alpha_t^2} (\alpha_b \beta_t - \alpha_t \beta_b) = 0 \Rightarrow
\]

\[
\frac{\alpha_t}{\alpha_b} = \frac{\beta_t}{\beta_b}
\]
Eqn. (3) becomes

\[
\frac{\alpha_t}{\alpha_b} = \frac{\alpha_t \left(6\alpha_t + \alpha_b - \frac{13}{15} \alpha_1 - 3\alpha_2 + \frac{16}{3} \alpha_3\right)}{\alpha_b \left(6\alpha_b + \alpha_t - \frac{13}{15} \alpha_1 - 3\alpha_2 + \frac{16}{3} \alpha_3\right)} \Rightarrow \\
6\alpha_t + \alpha_b - \frac{13}{15} \alpha_1 - 3\alpha_2 + \frac{16}{3} \alpha_3 = 6\alpha_b + \alpha_t - \frac{13}{15} \alpha_1 - 3\alpha_2 + \frac{16}{3} \alpha_3 \Rightarrow \\
\alpha_t = \alpha_b
\]
The next thing to do is to solve numerically the one-loop coupled differential equations of top and bottom Yukawa couplings taken account the τ contribution and the difference between the numerical factors, to see if such a relation like the previous one can exist.

First, we solve the differential equations for the gauge and Yukawa couplings in the SM. And then at M_{SUSY} we impose the next boundary conditions for some values of $\tan \beta$

\begin{align*}
\alpha_t(SM) &= \alpha_t(MSSM) \sin^2 \beta \\
\alpha_b(SM) &= \alpha_b(MSSM) \cos^2 \beta \\
\alpha_\tau(SM) &= \alpha_\tau(MSSM) \cos^2 \beta
\end{align*}
Application in the MSSM

Graphs showing the relationship between h_t / h_b and Log$_{10} (E/\text{GeV})$ for different values of $\tan \beta$.

Graphs showing the derivative $d(\frac{h_t}{h_b})/dt$ as a function of Log$_{10} (E/\text{GeV})$ for different values of $\tan \beta$.

- $\tan \beta = 10$
- $\tan \beta = 52.25$
- $\tan \beta = 56$
- $\tan \beta = 58.5$

George Tsamis (National Technical University of Athens School of Applied Mathematics and Physical Sciences Athens, Greece) based on N.D. Tracas, G.T., N.D. Vlachos, G. Zoupanos, Phys. Lett. B 710 (2012) 623
Application in the MSSM

Reduction of couplings in the MSSM

George Tsamis (National Technical University of Athens School of Applied Mathematics and Physical Sciences Athens, Greece) based on N.D. Tracas, G.T., N.D. Vlachos, G. Zoupanos, Phys. Lett. B 710 (2012) 623.
Summary

- No possible reduction between the gauge couplings.
- Assuming $\tan \beta = 56$ we can relate top and bottom Yukawa couplings.
- The idea of reduction of couplings in a field theory is very appealing, since it increases its predictive power. This method has led to Finite Unified Theories with successful calculation of top quark mass.

- R. Oehme, W. Zimmermann, Commun. Math. Phys. 97 (1985), 569.
- R. Oehme, K. Sibold and W. Zimmermann, Phys. Lett. 147B (1984), 115.
- W. Zimmermann, Commun. Math. Phys. 97 (1985), 211.
- R. Oehme, K. Sibold and W. Zimmermann, Phys. Lett. 153B (1984), 142.
- J. Kubo, K. Sibold and W. Zimmermann, Nucl. Phys. B259 (1985), 331.
- R. Oehme, Prog. Theor. Phys. Suppl. 86 (1986), 215.
- J. Kubo, M. Mondragon and G. Zoupanos, Nucl. Phys. B424 (1994), 291.