The Determinant Factors of Omnichannel Service Adoption in Jakarta

Wenny Rukmana	extsuperscript{1*}, Hermawan Susyanto	extsuperscript{1}, Antonio	extsuperscript{1} and Ina Agustini Murwani	extsuperscript{1}

	extsuperscript{1}Department of Management, Creative Marketing Program, BINUS Business School Master Program, Bina Nusantara University, Jakarta, 11480, Indonesia.

Authors' contributions
This work was carried out in collaboration among all authors. Authors WR and HS designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors WR, HS, Antonio and IAM managed the analyses of the study. Author Antonio managed the literature searches. All authors read and approved the final manuscript.

ABSTRACT
Along with the development of technology in retail, consumers have increased their expectation about experience convenience in retail. Starting with the growth of various platform, the next development is the experience that combined both offline and online service known as Omnichannel. The Omnichannel Service Adoption is explained by Wixom Model shows the relationship of object-based beliefs, channel integration quality, perceived fluency, and internal and external usage experience as moderating effects of perceived fluency. The adoption of Omnichannel is important to deliver a consistency of data and user experience compared to multichannel. The research uses quantitative approach with Structural Equation Model (SEM) PLS for data analytic. The population is referred to Berrybenka, a prominent fashion e-commerce in Jakarta, customers. The result shows that Breadth Channel Choice, Channel Service Transparency, Content Consistency and Process Consistency have a significant and positive influence on perceived fluency. The implication and limitation of the research are also highlighted.
Keywords: Omnichannel; fashion retailer; perceived fluency; service usage; channel integration quality.

1. INTRODUCTION

Nowadays consumers are familiar with the existence of various platforms (such as website/smartphone) as the place to shop. It has become common practice that consumers can get any information through various channels to make good purchase decisions. For example, they search for information through internet and make purchases offline [1,2]. But along with the development of times and technology, consumers expect to experience convenience in transaction and interaction with retailers. However, the existing channels are managed and designed individually. Therefore, the data received across channels are inconsistent and incompatible. When multi channels move to omnichannel, information integration across channel become priorities for retailers [3]. In recent years, advances in technology have enabled further digitalization in retailing, while also posing certain challenges. More specifically, the evolution of interactive media has made selling to consumers truly complex [4,5].

73% of customers are multi-channel shopper, and consumers expect that they can shop in real-time, anywhere and anytime in various channel. Omnichannel itself has become a good opportunity for retailers and one of the major research priorities at Marketing Science Institute 2018-2020 [6]. Hence, the element of “the integration of quality channels and customer’s perceived fluency of cross-channel service” must be able to differentiate between omnichannel and multichannel [3].

This study is adapted from [3] and, tested on Indonesia fashion industry mostly in Jakarta. The previous study is tested on catering industry in China. The previous studies in Indonesia about omnichannel, mostly investigate about consumer engagement path as well as consumer experience from several brick and mortar companies, such as PT. Indomarco Prismatama, PT. Mitra Adiperkasa Tbk and PT. Matahari Department Store Tbk [7,8,3] use the Wixom & Todd models to understand the impact of channel integration quality and perceived fluency towards omnichannel services usage, as well as the integration of various channels and consumer perceptions of behavioral belief that moderate the role usage experience internally and external to catering in China. While other research of omnichannel study use purchase intention and TAM models as the measurement, this study uses Wixom & Todd model to measure omnichannel service usage in fashion retail industry in Jakarta which has implemented omnichannel services. This research is expected to expand the research of omnichannel in Indonesia, as Indonesia has the largest economy in South East Asia (World Bank 2018).

The purpose of this study is to examine omnichannel service adoption of fashion industry in Jakarta and its impact on increasing its sales. This research will seek the determinant factors of omnichannel service adoption be a guidance for retail industry to build omnichannel services.

2. LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT

2.1 Wixom and Todd Models

Shen et al. [3] differentiate object-based beliefs from behavioral beliefs in interaction research model by implemented Wixom & Todd model. Application of Wixom & Todd model in Indonesia has been widely used, especially by Indonesian National Library for measuring integrated library system. According to Wixom and Todd [9], user experience is considered as object-based beliefs which will act as an external variable influencing intention and behavior with behavioral beliefs and attitudes as the mediation variable. Object-based is considered as the technological features and functionalities while behavioral simply reflects how the user felt after experiencing IT product [9]. Channel integration quality itself is considered as an object-based belief because it measures the capacity of Omnichannel to connect many channels thus reflecting the customers’ beliefs about the technology [10]. Perceived fluency is considered as behavioral beliefs since it measures on how customers feel about when they use different channel and reflecting customer belief on omnichannel technology [11].

2.2 Perceived Fluency

Lennon [12] explained that definition of fluency means fluent (error-free), proficiency, smoothness (easily to function). Perceived fluency itself can be interpreted as an action built from the efficiency of a process based on the fluency of someone using something. According
to Shen et al. [3], concept of fluency refers to the ease of information processing, which were regarded as key factors that shapes users’ trust, and the choice outcome judgements in online shopping context, while in cross-platform play the important role which refers to transition and task migrations. Several researches in IT define fluency as an unchanged role that has a close relationship to cross-platform transition to measure the experience of the user [11].

According to Majrashi and Hamilton [11], perceived fluency is classified into 5 attributes, such as task fluency, content fluency, interaction fluency, cognition fluency, and feeling fluency. Task fluency leads to the level where customers feel comfortable when switching from one to another view. Content fluency leads to the process after channel switching. Customers experience a continuous process which they respond to available content and information. Interaction fluency used to measure the interaction between continuous service channels and connect with each other. Cognition fluency represents customer’s response to the omnichannel service remains unchanged after the channel transition and the last, feeling fluency measures whether the customer still has the same feeling towards the service after the transition.

2.3 Channel Integration Quality

Channel integration quality is described as the capability of a system to deliver a smoothly continuous service experience across the channel [3]. [13] found that channel integration quality increases the value customers feel when shopping online. To measure channel integration, [10] propose a framework where service quality and integrated interaction were included together. Channel choice refers to the level of customers’ freedom to access information [14].

2.4 Omnichannel Service Usage

Omnichannel is the next level form of multichannel retailing where the consumer could easily cross the existing channel in one transaction process [15]. Multichannel refers to a group of different channel that works separately while in omnichannel those separated channel works together, that’s why the customer could experience the same idea when they use either digital channel or visiting the store directly. The channels are managed in the same time and got the same result whenever customers interact with the company [13].

The dominant characteristic of the omnichannel retailing phenomenon is that the strategy is centered on the customer and the customer’s shopping experience, with a view to offering the shopper a holistic experience. In Omnichannel, everything including the strategy is based on the consumer’s experience on shopping with a broader view of offering a more seamless shopping [16].

2.5 Hypothesis

2.5.1 Perceived fluency to omnichannel service usage

The emergence of new digital technologies, especially mobile channels, has an impact on disruptive retail environments. Compared with multi-channel phase, omnichannel involves quite a number of channels. The change that quite important is each different channel becomes blurred because the boundaries between channels are gone. In addition, in the omnichannel phase, showrooming is quite important, because online purchase can’t satisfy the customer’s desire to see and feel the product or service that they want to purchase (see and feel experience). With showrooming, customers are reassured by their experience of seeing and feeling the product to be purchased [17].

This is also corroborated by statement of [3] where in the context of the omnichannel, customers expect unlimited and integrated services in a variety of different channels and can be used simultaneously. In addition, online shopping experience will provide positive responses from the customers. In the previous study by Shen et al. [3], perceived fluency was considered as behavioral belief. When customers experience unhindered cross-channel experience, they will tend to increase the behavior of using their omnichannel. Based on the description above, the hypothesis of this study is:

H1: Perceived Fluency is positively associated with omnichannel service usage.

2.5.2 Channel integration quality and perceived fluency

Wixom and Todd Model shows that channel integration quality increases the value customers
feel when shopping online [18]. In the channel choice breadth, the broader the channel, the more alternative could be available to the customers, meaning that the channel are highly integrated which enables consumers to review the products or services they want to purchase at one channel without missing any information [19]. Based on the theory, the hypothesis is:

H2a: Channel Integration quality is positively associated with perceived fluency.

Channel service transparency deals with the awareness of customers towards the availability of any existing channels. The increasing knowledge towards channel could reduce the uncertainty and increase the efficiency [10]. According to this statement, the hypothesis for the following attributes will be:

H2b: Channel Service Transparency is positively associated with perceived fluency.

Content consistency deals with the similarity of the context within different channels [10]. Customers are more likely to think that channel as the smaller part within a natural switching channel resulting in a more fluid channel transition without leaving the importance of the similarity of information behind. Therefore, the hypothesis will be as follows:

H2c: Content consistency is positively associated with perceived fluency.

Process consistency refers to the attributes in the process which has a similar characteristic [3]. When service process in different channel is consistent, the examination of customers will have a positive result when the service kept being consistent. In this regard, the hypothesis will be:

H2d: Process consistency is positively associated with perceived fluency.

2.5.3 Different moderating roles to user experience

This study examines the usage experience as the moderating variable. The omnichannel service usage is divided into internal and external usage. Internal usage experience is defined as a limit where users have experience with certain IT products. In the context of omnichannel customers who have no experience, they will be unfamiliar with omnichannel services and will have more willingness to rely on trust that comes from the actual use of omnichannel services to determine subsequent use [18]. For customers who have a lot of experience from omnichannel services, reuse will motivate them to reuse the service without doubting the smooth service between channels [20]. Based on the statement above, the study believes that perceived fluency will leave a stronger influence for customers with fewer internal experiences.

External usage experience is defined as a limit where users have experience with the same omnichannel service. Unlike internal usage, previous use of the same technology will not make users more familiar with existing technology, but the external usage experience will provide a benchmark or reference to better assess existing technologies [21]. As the external usage experience increases, customer...
assessment of existing technology can become clearer and will be easier to use while awareness of omnichannel will be increase. In other words, perceived fluency will have a stronger effect on omnichannel service usage for customers with higher external usage. Therefore, the hypothesis of this study is:

H3a: Internal usage experience weakens the effect of perceived fluency towards omnichannel service usage.
H3b: External usage experience strengthen the effect of perceived fluency towards omnichannel service usage.

3. METHODOLOGY APPROACH

Data in this study is collected by distributing online questionnaire. Berrybenka is selected as the context as it was one of fashion retailers in Jakarta that adopted omnichannel as channel services. The measurement is adapted from the previous study and slightly modified to fit the research scope and context. All indicators in the research variable is referred to [3].

The population in this study is BerryBenka customers in Jakarta. Since the quantities in detailed is unknown, this study uses a non-probability sampling method that gives an unequal opportunity to each population to be selected as a sample. The type of non-probability sampling used is convenience sampling where samples are selected based on several categories that meet the requirements to be used as research samples. The questionnaire is distributed to 135 respondents Berrybenka's customers in Jakarta. The measurement uses a five-point Likert scale from 1 as strongly disagree to 5 as strongly agree. This sample size is calculated as the number of indicators (27 measurements) multiplied by 5 [22].

The analysis was carried out using the Structural Equation Model (SEM) method using the Partial Least Square (PLS). SEM PLS technique was used to measure the relationship among the existing variables and to test the hypothesis (e.g., object-based beliefs, channel integration quality, perceived fluency, internal and external usage) in this study.

4. RESULTS AND DATA ANALYSIS

SEM technique was used to measure the relationship among the existing variables and PLS analysis approach was used to examine the hypothesis (e.g., object-based beliefs, channel integration quality, perceived fluency, internal and external usage) in this study.

4.1 Measurement Model

Validity and reliability tests were conducted as the fundamental step by reviewing the convergent validity and composite reliability. According to Garson [23], Composite Reliability (CR) is applied to measure the reliability of Convergent Validity (CV) since Cronbach's Alpha could deliver an exaggerated result and vice-versa towards existing reliability scales. The recommended score for reliability test needs to be at least 0.7 [24]. [23] adds Average Variance Extracted (AVE) to test Convergent Validity where AVE is the reflection of average impact toward each of latent variables and suggested number should be higher than 0.5 where that score could explain more than half of the variant in the existing indicator.

Shen et al. [3] of problems in multicollinearity and the recommended value is at the threshold of 10.

4.1.1 Convergent validity

Outer loading or Loading factor is used to test Convergent Validity and it could be accepted if Convergent Validity score is greater than 0.7.

Based on the Table 1, it can be seen that each indicator in each variable has an Outer Loading > 0.7, which in this study, the Outer Loading's value ranges from 0.505 - 1.000. It is seen that some indicators have value outer loading < 0.7. According to Ghozali [25] outer loading value between 0.5 - 0.6 is considered enough to fulfill the prerequisite of convergent validity. Thus, it can be concluded that all research variables have a high level of convergent validity and can be used for further analysis.

4.1.2 Discriminant validity

Discriminant validity is alluding to the degree where the construct is contrasting from one to each other considerably. Heterotrait-monotrait (HTMT) correlation ratio is used to measure the discriminant validity. If the value of HTMT ratio is higher than the threshold, it means that there is an absence of discriminant validity [26]. [26] stated that the value of threshold of HTMT should below 0.90.
According from the HTMT results, the values in Table 2 (in bold) shows that there are multicollinearity problems due to some variables are quantified as same which mean the respondents’ perception of the affected variables are enclosed with overlapping items.

4.1.3 Composite reliability

Composite Reliability is used to test the reliability value of indicators on a variable. A variable can be said to meet composite reliability requirements if the reliability of Cronbach Alpha > 0.7. Based on the Table 3, it can be seen that each indicator in each variable has Cronbach Alpha > 0.7, which ranges from 0.866 - 0.960. Thus, it can be concluded that all research variables have a high level of reliability and can be used for further analysis.

4.2 Structural Model (Inner Model)

This study uses path coefficient to determine how strong the influence of the independent variable on the dependent variable. Results that indicated that channel choice breath significantly affected perceived fluency was shown by (β=0.208, t=2.285, p<0.05). The same thing is shown by channel service transparency (β=0.143, t=2.606, p<0.05), content consistency (β=0.425, t=9.765, p<0.05), process consistency (β=0.251, t=4.416, p<0.05) and perceived fluency towards omnichannel service usage (β=0.907, t=34.252, p<0.05). Mediating effect of internal usage integration and external usage integration towards omnichannel service usage did not show positive significant relationship, with β = -0.040, t=0.489, p>0.05 for internal and β=0.041, t=0.419, p>0.05 for external. Therefore, the H2a-H2d hypothesis was supported. However, H3a (internal usage integration) and H3b (external usage integration) are not supported. It means External and Internal Usage Integration do not affect the Perceived Fluency Effect on Omnichannel Service Usage towards Berrybenka’s consumers in Jakarta.

Table 1. Validity and reliability testing results

Construct	Indicator	AVE	Outer Loading	Cronbach Alpha
Channel Choice Breath (CCB)	CCB1	0.691	0.904	0.772
	CCB2	0.638		
	CCB3	0.922		
Channel Service Transparency (CSB)	CST1	0.840	0.906	0.905
	CST2	0.933		
	CST3	0.910		
	CC1	0.505		
Content Consistency (CC)	CC2	0.698	0.958	0.769
	CC3	0.960		
Process Consistency (PC)	PC1	0.735	0.945	0.815
	PC2	0.655		
	PC3	0.940		
Task Fluency (TF)	TF1	0.926		
	TF2	0.867		
	TF3	0.316		
Cognition Fluency (CF)	CF1	0.659	0.818	0.946
	CF2	0.521		
	CF3	0.820		
Interaction Fluency (IF)	IF1	0.922		
	IF2	0.921		
Cognition Fluency (CF)	COF1	0.832		
	COF2	0.902		
Feeling Fluency (FF)	FF1	0.849		
	FF2	0.866		
Omnichannel Service Usage (OSU)	OSU1	0.888	0.917	0.937
	OSU2	0.950		
	OSU3	0.959		
External Usage Integration	External	0.560	1.000	0.939
Internal Usage Integration	Internal	0.535	1.000	0.936
Table 2. HTMT results

	External	Internal	CCB	CST	CC	PC	OSU	PF
External	0.854	0.748						
Internal	0.671	0.459		1.077	0.996			
CCB		0.427						
CST		0.628						
CC		0.462						
PC		0.449						
OSU				1.085	1.004	1.038	1.042	0.977
PF								

Table 3. R-Square result

Variable	R-square
Perceived Fluency	0.964
Omnichannel Service Usage	0.870

Table 4. Hypothesis testing result

	Original sample	T statistics	T-table	P-value	Result
CCB -> PF	0.208	3.385	1.96	0.001	H2a, Supported
CST -> PF	0.143	2.606	1.96	0.009	H2b, Supported
CC -> PF	0.425	9.765	1.96	0.000	H2c, Supported
PC -> PF	0.251	4.416	1.96	0.000	H2d, Supported
PF -> OSU	0.907	34.252	1.96	0.000	H1, Supported
Internal -> OSU	-0.040	0.489	1.96	0.676	H3a, Not Supported
External -> OSU	0.041	0.419	1.96	0.625	H2a, Not Supported

Next, R-Square was used to examine the model in this study. From the Table above, it can be seen that the R-Square value for the Perceived Fluency variable is 0.964. It means that 96.4% perceived fluency can be explained by Channel Choice Breadth, Transparency Service Channel, Content Consistency and Process Consistency. While the R-Square value the Omnichannel Service usage variable is 0.870. It means that the percentage of Omnichannel Service usage can be explained by Perceived Fluency by 87%. These values showed the value for both R-square value showed predictive accuracy value above 0.26 which suggested by Cohen [27] that the value for predictive accuracy must showed above the above threshold value 0.26 to be considered as essential.

In addition, by using blindfolding procedure, Stone-Geisser’s Q^2 was used in this study to examine predictive relevance of the model [28,29]. Blindfolding is a sample re-use technique which can be used to analyze the predictive validity by delete data for certain variables and predict the remaining data points [30,31,32]. Both of Q^2, omnichannel service usage (0.727) and perceived fluency (0.588) indicate predictive relevance which have value above 0 as suggested by Fornell and Cha [33]. These values showed that the model has enough predictive relevance.

5. DISCUSSION AND CONCLUSION

This study refers on Wixom and Todd’s research model, where channel integration quality and perceived quality are used to investigate basic problems as well as factors that affect omnichannel use [3]. Empirical results in this study indicate that perceived fluency has a positive impact on omnichannel service usage. It means that with prior understanding of the future users behavior, the perceived fluency that includes easier access and transition between online and offline services are the core of the omnichannel business should be examined in the
beginning. The more fluent the transition in the omnichannel business services, the more customers will likely to browse online. The importance of perceived fluency shown in this study reflected the importance of smooth transition needed by the consumers. Objectives of this study is to understand omnichannel services usage and perceived fluency in fashion industry especially in Jakarta (Berrybenka in this study context).

This study also provides empirical evidence regarding the effect of channel integration quality on perceived fluency that influences the omnichannel service usage.

(i) Breadth Channel Choice, Channel Service Transparency, Content Consistency and Process Consistency have a significant influence and positive impact on perceived fluency. Where the Channel Choice Breadth, Channel Service Transparency, good Content Consistency and Process Consistency can improve service quality and be able to combine online and offline channels to facilitate customers in getting desired goods or services through omnichannel. These four factors are relevant to the omnichannel service since the basic of omnichannel service is the smooth transition and reliable service by all of the platforms [3].

(ii) Perceived fluency has a significant influence on the omnichannel service usage. Perceived fluency has a positive impact on omnichannel service usage. Once the customer can easily understand the system they are using, they will have a positive influence in making decisions to continue shopping with the omnichannel service usage system. In this study, perceived fluency has huge impact on the omnichannel service usage in the case of the Berrybenka store. It is hard to compare berrybenka omnichannel system with their competitor since omnichannel has not been implemented in most of retail stores in Indonesia especially in the fashion industry. The more seamless and the smoother the access and transition between channels (online and offline stores) the more consumers will be more likely to prefer the services offered [34].

(iii) Internal factors which include previous experience of main technology and External Factors which involve the experience of similar technology do not moderate the relationship between perceived fluency and the omnichannel service usage. It might be because not many industries and companies implementing omnichannel service usage especially on fashion retailers in Jakarta while adoption of omnichannel strategy could boost sales, develop more revenues, and provides efficiency in the store’s operation cost since the system will enable the company to fulfill a wide variety of needs from many consumers segment thus resulting in high consumers loyalty in the retail industry. This study shows the opposite result with a similar study done in China where omnichannel has been introduced and implemented long before the study began, thus the consumer awareness about omnichannel service is higher than Indonesia. Therefore, company especially in retail environment need to implement an innovative technology together with the omnichannel approach to have a better response of consumers’ demands as well as empower their satisfaction and loyalty so the company can increase their sales which leads to higher profits.

This study has similar result with the previous study by Shen et al. [3] for the importance of perceived fluency. Breadth Channel Choice, Channel Service Transparency, Content Consistency and Process Consistency which form the channel integration is positively associated with perceived fluency. With the growth of technology and the rising awareness and usage by the current consumers in Indonesia, consumers now have more exposure to shopping through several market places. The perceived fluency of both offline and online store are proven important. One factor that might influence this is age of the users. In this study, most of the respondents are aged between 25-34 years old with income between 6-10 million and mostly of them has at least a bachelor’s degree, meaning that they will be easier to accept the omnichannel system implemented.

The same result has been shown in the paper by Gong et al. [35] who states that the younger customer who has slightly higher income, and higher level of education will tend to shop online. Since one of the gateways of omnichannel will be online shopping, the acceptance rate of
omnichannel should be higher. Based on the previous research conducted in Indonesia by Hidayatullah et al. [36] and Kementerian [37], Generation Y is the biggest consumer in Indonesia right now and their high rate of acknowledgement of technology will make omnichannel easier to understand and implemented in Indonesia.

This study also confirms the result of [38]. Therefore, whether it is in China or Indonesia as long as technology supported the usefulness of the easiness of shopping, millennials will not hesitate to use it. According to Radzan et al. [39], the growth of retail ecosystem in Indonesia has been shown a positive impact toward purchase via those channels. With the increasing number of convenience retail store that used digital platform, this ecosystem will inevitably trigger more retail store to implement omnichannel retailing system. The study of [38] and [39] shows that young consumers are wealthier and tend to increase their consumption. This fact will trigger the increase of consumption across channel because they tend to spend more as their income increases.

Insight gathered from Zhang and Ke (2004) tells unique opinion that consumer has their own private experience based on trust even when they use conventional method. On one side of the argument, trust is considered as more of a concept rather than a knowledge build from common sense because of the lesser communication involved in process, lack of social participation and organization, and the immature transaction. The low trust in omnichannel process happened in China is caused by the lack of repeated interaction online. The finding is similar with this study where the respondents are the millennials who have higher knowledge about technology and also combined with consumptive behavior, they have sufficient exposure to build higher trust toward omnichannel implemented in Jakarta [40,36].

5.1 Theoretical Implication

The shift from multichannel to omnichannel implementation is an interesting subject. There are limited companies in Indonesia applying omnichannel in their business. Wixom & Todd model itself is used to predict behavior to adopt and use the new information technology, as well as to predict new adoption of technology which lead to customer satisfaction [41,9]. The use of different model (Wixom & Todd instead of TAM) from a previous study has shown different findings, especially about the effect of behavior based traits (both external and internal usage experience) to omnichannel service usage. However, the level of awareness to the type of service should be taken into account for the different result.

5.2 Practical Implications

The results of this study indicate that Breadth Choice Channel, Channel Service Transparency, Content Consistency and Process Consistency have influence on perceived fluency that affects Omnichannel Service Usage in one of the online retail fashions in Jakarta, BerryBenka. Some of the factors that are important for the advancement of omnichannel service usage are perceived fluency, where perceived fluency acts as a mediating factor for omnichannel service usage. Companies that have planned to integrate their online and offline services are expected to be able to create customer experience and travel in shopping in such a way that their customers will get used to and be savvy in using the channels provided by them. The other things that must be considered in the formation of perceived fluency are channel integration quality such as choice breadth channel, channel service transparency, content consistency and process consistency. Companies must also consistently assist customers to achieve their consumption needs by understanding and integrating various channels. Company must also be able to provide consumer trust in omnichannel by doing repeated interaction online.

6. LIMITATION AND FUTURE RESEARCH

The sampling methodology, small sample number (only 135 respondents) and area of research are the limitations of this study. In future, for consistency result, the research should be extended to other industries, add more cities or another country and uses bigger samples. It is worth to try another way of analysis with SEM AMOS or Lisrel. Comparing several level of consumer awareness to the type of omnichannel service will help explaining the internal and external usage moderating effects.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

1. Rangaswamy A, Van Bruggen GH. Opportunities and challenges in multichannel marketing: An introduction to the special issue. Journal of Interactive Marketing. 2005;19(2):5–11. Available: https://doi.org/10.1002/dir.20037

2. Mac Sinkhug, D. App law within: Rights and regulation in the smartphone age. International Journal of Law and Information Technology. 2013;21(2):154-186.

3. Shen XL, Li YJ, Sun Y, Wang N. Channel integration quality, perceived fluency and omnichannel service usage: The moderating roles of internal and external usage experience. Decision Support Systems. 2018;109(2017):61–73. Available: https://doi.org/10.1016/j.dss.2018.01.006

4. Juaneda-Ayensa E, Mosquera A, Sierra Murillo Y. Omnichannel customer behavior: key drivers of technology acceptance and use and their effects on purchase intention. Frontiers in Psychology. 2016;7:1117.

5. Medrano N, Olarte-Pascual C, Pelefrin-Borondo J, Sierra-Murillo Y. Consumer behavior in shopping streets: The importance of the salesperson's professional personal attention. Front. Psychol. 2016;7:125. 10.338.

6. Ternstrand C, Sellin E, Virta N, Linder S. Omni-Channel Retail - a Deloitte Point of View. Deloitte; 2015. Available: https://doi.org/10.1080/03014460.601080983

7. Hendriyani C, Auliana L. Transformation from relationship marketing to electronic customer relationship management: A literature study. Review of Integrative Business and Economics Research. 2018;7(2):116–121.

8. Yanuardi AW, Indah PY, Wahyudi WT, Nainngogon B. Analisis omnichannel customer experience maturity Di Pt. telekomunikasi Indonesia. Journal Manajemen Indonesia. 2017;16(2):81. Available: https://doi.org/10.25124/jmi.v16i2.314

9. Wixom BH, Todd PA. A theoretical integration of user satisfaction and technology acceptance. Information Systems Research. 2005;16(1):85–102. Available: https://doi.org/10.1287/isre.1050.0042

10. Sousa R, Voss CA. Service quality in multichannel services employing virtual channels. Journal of Service Research. 2006;8(4):356–371. Available: https://doi.org/10.1177/1094670506286324

11. Majrashi K, Hamilton M. A cross-platform usability measurement model. Lecture Notes on Software Engineering. 2014;3(2):132–144. Available: https://doi.org/10.7763/inse.2015.v3.179

12. Lennon P. Investigating fluency in EFL: A quantitative approach. Language Learning. 1990;40(3):387–417

13. Zhang W, Ke R. Trust in China: A cross-regional analysis. Srss. 2004:586. Available: https://doi.org/10.2139/ssrn.577781

14. Cheung CMK, Shen XL, Lee ZWY, Chan TKH. Promoting sales of online games through customer engagement. Electronic Commerce Research and Applications, 2015;14(4):241–250. Available: https://doi.org/10.1016/j.elerap.2015.03.001

15. Brynjolfsson E, Hu YJ, Rahman MS. Competing in the age of Omnichannel retailing brought to you by. International Journal of Electronic Commerce. 2013;18(4):5–16. Available: https://doi.org/10.2753/JEC1086-4415180400

16. Gupta S, Lehmann DR, Stuart JA. Valuing customers. Journal of Marketing Research. 2004;41(1):7–18. Available: https://doi.org/10.1509/jmkr.41.1.7.25084

17. Verhoef PC, Kannan PK, Inman JJ. From multi-channel retailing to omni-channel retailing. Introduction to the special issue on multi-channel retailing. Journal of Retailing. 2015;91(2):174–181. Available: https://doi.org/10.1016/j.jretai.2015.02.005

18. Herhausen D, Binder J, Schoegel M, Herrmann A. Integrating bricks with clicks: retailer-level and channel-level outcomes of online-offline channel integration. Journal of Retailing. 2015;91(2):309–325. Available: https://doi.org/10.1016/j.jretai.2014.12.009
19. Berman B, Thelen S. A guide to developing and managing a well-integrated multi-channel retail strategy. International Journal of Retail & Distribution Management. 2004;32(3):147-156. Available:https://doi.org/10.1108/09590550410524939

20. Wang W, Qiu L, Kim D, Benbasat I. Effects of rational and social appeals of online recommendation agents on cognition- and affect-based trust. Decision Support Systems. 2016;66:48–60. Available:https://doi.org/10.1016/j.dss.2016.03.007

21. Shim S, Eastlick MA, Lotz SL, Warrington P. An online purchase intentions model. Journal of Retailing. 2001;77(3):397–416. Available:https://doi.org/10.1016/S0022-4359(01)00051-3.

22. Noor J. Metodologi penelitian: Skripsi, Tesis, Disertasi & Karya Ilmiah. Prenada Media; 2011.

23. Garson DG. Partial Least Squares (PLS-SEM); 2016.

24. Hair JF, Ringle CM, Sarstedt M. Partial least squares structural equation Modeling: rigorous applications, Better Results and Higher Acceptance. Long Range Planning. 2013;46(1–2):1–12. Available:https://doi.org/10.1016/j.lrp.2013.01.001

25. Ghozali I. Structural equation modeling, metode alternatif dengan Partial Least Square (PLS) (4th ed.). Semarang: Badan Penerbit Universitas Diponegoro; 2014.

26. Gold AH, Malhotra A, Segars AH. An organizational capabilities perspective. Journal of Management Information System. 2001;18(1):185-214.

27. Cohen J. Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

28. Geisser S. A predictive approach to the random effect model. Biometrika. 1974;61(1):101-107.

29. Stone M. Cross-validation and multinomial prediction. Biometrika. 1974;61(3):509–515.

30. Chin WW. The partial least squares approach to structural equation modeling. In GA Marcoulides (Ed.), Modern methods for business research Mahwah, NJ: Lawrence Erlbaum Associates. 1998;295–358.

31. Henseler J, Ringle CM, Sinkovics RR. The use of partial least squares path modeling in international marketing. Advances in International Marketing. 2009;20:277-319.

32. Tenenhaus M, Vinzi VE, Chatelin YM, Lauro C. PLS path modeling. Computational Statistics and Data Analysis. 2005;48(1):159–205.

33. Fornell C, Cha J. Partial least squares. In RP Bagozzi (Ed.), Advanced methods of Marketing Research. Cambridge, England: Blackwell. 1994:52-78.

34. Mosteller J, Donthu N, Eroglu S. The fluent online shopping experience. Journal of Business Research. 2014;67(11):2486-2493. Available:http://dx.doi.org/10.1016/j.jbusres.2014.03.009

35. Gong W, Maddox LM, Stump RL. Attitudes toward online shopping: A comparison of online consumers in China and the US. International Journal of E-Business Development (IJED) IJED World Academic Publishing. 2012;2(1):28–35.

36. Hidayatullah S, Waris A, Devianti RC. Jurnal Manajemen & Kewirausahaan: Perilaku Generasi Milenial dalam Menggunakan Aplikasi Go-Food; 2018. Available:https://doi.org/10.26905/jmdk.v6i2.2560

37. Kementerian Pemberdayaan Perempuan dan Perlindungan Anak. Profil Generasi Milenial Indonesia. Kementerian Pemberdayaan Perempuan dan Perlindungan Anak; 2018.

38. Milewski P. Here comes the young! Changing consumption behavior in China. Retrieved from 6th Annual China; 2015. Investment Conference website: https://www.credit-suisse.com/corporate/en/articles/news-and-expertise/here-comes-the-young-changing-consumption-behavior-in-china-201511.html

39. Radzan R, Das M, Sohoni A. The evolving Indonesian consumer. 2014. Available:https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/the-evolving-indonesian-consumer
40. Yuliani Ayu (n.d.). Pandai Memanfaatkan Teknologi Digital. Available: https://kominfo.go.id/content/detail/12360/pandai-memanfaatkan-teknologi-digital/0/sorotan_media

41. Nelson RR, Todd PA, Wixom B. Antecedents of information and system quality: An empirical examination within the context of data warehousing. Journal of Management Information System. 2015;21(4):199-236. Available: https://doi.org/10.1080/07421222.2005.11045823

© 2019 Rukmana et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/50091