THE Hα GALAXY SURVEY. VIII. CLOSE COMPANIONS AND INTERACTIONS, AND THE DEFINITION OF STARBURSTSS

JOHAN H. KNAPEN1 AND PHILIP A. JAMES2

1 Instituto de Astrofísica de Canarias, E-38200 La Laguna, Spain; jhk@iac.es
2 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK

Received 2008 October 24; accepted 2009 April 14; published 2009 June 1

ABSTRACT

We consider the massive star formation properties, radial profiles, and atomic gas masses of those galaxies in our Hα Galaxy Survey that have close companion galaxies, in comparison with a matched control sample of galaxies without companions. Our analysis is based on Hα and continuum images of 327 disk galaxies that form a representative sample of the local universe. We find that the presence of a close companion raises the star formation rate by a factor of just below two, while hardly at all increasing the equivalent width of the Hα emission. This means that although statistically galaxies with close companions form stars at a higher rate, they do this over extended periods of time and not as bursts. We find no significant increase in the central concentration of the star formation as a result of the presence of a close companion. The fraction of truly interacting or merging galaxies is very small in the local universe, at around 2%, and possibly 4% of bright galaxies. Most of these interacting galaxies currently have unremarkable star formation properties. We also study the properties of the galaxies in the survey with the most extreme values for star formation indicators such as rate, equivalent width, star formation rate per area, and gas-depletion timescale. We find that each of these indicators favors a different subset of galaxies, and use this information to discuss critically the possible definitions of the term starburst to describe galaxies with enhanced star formation activity. We conclude that no one starburst definition can be devised that is objective and generally discriminant. Unless one restricts the use of the term “starburst” to a very small number of galaxies indeed, the term will continue to be used for a heterogeneous and wide-ranging collection of objects with no physical basis for their classification as starburst. Our overall conclusions are that (1) whereas the rare interacting and merging galaxies may have enhanced star formation, and vice versa, those galaxies with the highest star formation are often interacting or merging; the influence of the presence of a close companion on the star formation in galaxies is in general very small, and long lasting; and (2) the term “starburst” cannot be easily defined objectively and generally in physical terms.

Key words: galaxies: general – galaxies: interactions – irregular galaxies: spiral – galaxies: starburst

Online-only material: general – galaxies: interactions – irregular galaxies: spiral – galaxies: starburst

1. INTRODUCTION

Ample anecdotal evidence exists for a causal connection between galaxy interactions and enhanced star formation (SF), the latter often referred to by the generic term starburst. Practically all of the most luminous infrared sources, thought to be powered mainly by extreme starbursts (e.g., Genzel et al. 1998), occur in galaxies which show clearly disturbed morphologies, and which are presumably interacting or merging. This is in particular the case for the ultraluminous infrared galaxies (ULIRGs, with $L_{IR} \sim L_{[8-1000\mu m]} > 10^{12} L_{\odot}$; see, e.g., Joseph & Wright 1985; Armus et al. 1987; Sanders et al. 1988; Clements et al. 1996; Sanders & Mirabel 1996) and the luminous infrared galaxies (LIRGs, $10^{11} < L_{IR} < 10^{12} L_{\odot}$; see, e.g., Scoville et al. 2000; Arribas et al. 2004; Sanders & Ishida 2004; Alonso-Herrero et al. 2006). But these kinds of galaxies are indeed extreme, and very rare, at least at low redshifts. In addition, the much enhanced star formation rates (SFRs) seen in these objects may be the result of mergers, rather than premerger interactions (or interactions not leading to mergers at all).

In order to assess the more general impact of interactions and mergers on SF in galaxies, one must thus look beyond the (U)LIRGs, and there the picture is much less clear. In a classical paper, Larson & Tinsley (1978) constructed stellar population models to explain the significantly larger scatter in the $(U - B, B - V)$ diagram for peculiar galaxies from the Arp catalog (Arp 1966) as compared to normal galaxies from the Hubble atlas. They inferred that this behavior can be explained by large variations in the SFR on short timescales, called bursts of SF, and noted that such bursts can in particular be identified with galaxies undergoing violent dynamical phenomena—interacting galaxies.

Although many studies corroborated the basic conclusion from the important work of Larson & Tinsley (1978) that galaxy interactions cause an increase in the SFR (see, e.g., Bushouse 1987; Kennicutt et al. 1987; and the reviews by Keel 1991; Struck 1999, 2007), there are dissenting views. For instance, Bergvall et al. (2003) find that the optical colors are very similar in matched samples of merging/interacting and noninteracting galaxies, and Brosch et al. (2004) find that the SFR is not significantly enhanced in interacting dwarf galaxies.

From simulations, we know that although galaxy interactions can lead to enhanced SFRs, they certainly do not do so in all circumstances, and the SFR is often only enhanced by a factor of 2, or a few (e.g., Milos & Henriques 1996; Kapferer et al. 2005; Di Matteo et al. 2007; Cox et al. 2008). Di Matteo et al. (2008) find from many sets of simulations of interacting and merging galaxies obtained with different numerical codes that in by far most cases the SFR is only enhanced by factors of a few, and that the duration of this enhancement is limited to a few hundred million years. The limited increase in the SFR had been reported as early as 1987 by Bushouse (1987); who found that the overall SFR as derived from Hα was enhanced by a factor of 2.5 in interacting galaxies, a factor which rose to 6
when he considered the SFR as derived from IR observations), and seems to agree with new observational results by, among others, Smith et al. (2007), Woods & Geller (2007), Li et al. (2008), and Jogee et al. (2009). In this paper, we will present further affirmative evidence.

In the present paper, we focus on two related questions, namely what the role of interactions and close companions is in determining the SFR of local galaxies, and how we can define the term “starburst.” We use the sample of galaxies from the Hα Galaxy Survey (HαGS; James et al. 2004, hereafter Paper I) for this purpose, a statistically meaningful sample of 327 local galaxies, many of them dwarfs and/or irregulars. From Paper I, we have at our disposal the integrated SFR and Hα equivalent width (EW) measured across each galaxy, as well as the radial variations in these quantities. Because merging and interacting galaxies are very rare in the local universe, we widen the scope somewhat and consider also galaxies that have a close companion.

Our sample of 327 galaxies is small compared to samples derived from surveys such as the Sloan Digital Sky Survey (SDSS), and we need to discuss the pros and cons of using the HαGS for this. To illustrate the power of the SDSS, we mention two examples of recent work in this area. First, Li et al. (2008) use a sample of 10^5 galaxies selected from the SDSS to find that SF is indeed enhanced by tidal interactions, and that this enhancement depends strongly on the separation in the distance between the galaxies, but, surprisingly, only very weakly on the relative luminosity of the companions. This latter fact is of interest because below we will use a lower limit in difference of 3 mag to identify companions to the HαGS sample galaxies. As a second example, Ellison et al. (2008) select 1716 galaxies with close companions (pair velocity difference Δv < 500 km s^{-1}, pair separation r < 80 h^{-1} 100 kpc, and mass ratio between 1 and 10) from the SDSS and find an enhancement of the SFR for close pairs (r < (30–40) h^{-1} 100 kpc), stronger for pairs of galaxies of approximately equal mass.

SDSS-selected samples have the obvious advantage of larger size over our HαGS sample. This implies that either very large numbers of galaxies can be studied, such as in the work of Li et al. (2008), or that rather strict selection criteria can still yield samples of large size, as in Woods & Geller (2007) or Ellison et al. (2008). But use of Hα imaging of local galaxies such as in HαGS has at least two important advantages that can be offset against the disadvantage of a smaller sample size. These are, first, that HαGS yields measures of the SFR and Hα EW integrated over the whole galaxy, and, second, that we can trace the detailed behavior of these quantities within galaxies, using the images (with a typical resolution of 1.5 or 150 pc), or using radial profiles (see Section 4.3). In contrast, SDSS studies are based on the fiber-fed spectra obtained in the SDSS survey, which are limited to a single 3 arcsec aperture centered on a target galaxy. This means that the SFR information deduced from the SDSS is that of the central area only for nearby galaxies, and it thus ignores SF activity in the disk (a particularly important point in late-type galaxies; see the HαGS paper by James et al. 2009, Paper VII). Measurements for individual galaxies may also be influenced by nonstellar emission from the nuclear region. In addition, whereas the HαGS galaxies are all within a redshift of 0.01 (v_{sys} < 3000 km s^{-1}; see Section 2.1), the galaxies considered by Ellison et al. (2008) and Li et al. (2008) span a much larger range in distance (up to z ~ 0.16 and 0.30, respectively). As galaxies with very high SFRs (> 10 M_☉ yr^{-1}) are extremely rare in at least the local universe, they are much more prominent in the SDSS-based studies than in ours. We quantify this further in Section 2.1.

The advantages of using Hα imaging to study the SF properties of local galaxies must be offset by the main disadvantage which is that the Hα line is located in a region of the spectrum where dust attenuation is not negligible. Comparing SFR values derived from the Hα line with extinction-free measures in the radio continuum (e.g., van der Hulst et al. 1988) or far-IR (e.g., Rosa-González et al. 2002) wavelength domains yields factors of a few by which the Hα line alone will underestimate the true SFR. As reviewed by Calzetti (2008), brighter galaxies are more extinguished. Even though most of our sample galaxies will be affected less because they are faint dwarfs and irregulars, the effect of dust on our SFR determinations is a caveat worth noting. Our main conclusions, however, are all based on comparisons of subsamples and/or individual galaxies selected from the same overall HαGS data set, rather than on the absolute values of the SFRs, thus extenuating any dust effects.

In the present paper, we first discuss the origin of our observational data (Section 2) and how exactly we define whether a sample galaxy has a close companion (Section 3). In Section 4, we present the measured values of the SFR and Hα EW in the subsamples of galaxies with and without a close companion, and discuss possible sample biases, the radial dependence of the SFR and EW, and the gas content. In Section 5, we highlight the interacting and merging galaxies, and the infrared-luminous galaxies in our sample. In Section 6, we discuss those galaxies which have the highest values of the SFR, EW, and central and overall SFR per unit area, and those that have the lowest gas-depletion timescales. We use these results to discuss critically the possible definitions of the term “starburst” in Section 7, where we also address the implications of our results for the evolution of galaxies, and in particular the effects of close companions and interactions on the SF in galaxies. We summarize our conclusions in Section 8.

2. SAMPLE SELECTION, OBSERVATIONS, AND DATA TREATMENT

2.1. HαGS Data

All optical imaging data used in this paper were taken as part of the HαGS, which is a survey of 334 nearby galaxies, imaged in the Hα line and in R-band continuum with the 1 m Jacobus Kapteyn Telescope (JKT) on La Palma. The narrow-band filters used were wide enough that what we refer to here as Hα emission is in fact a combination of that in the Hα and neighboring [NII] lines, although in Paper I we corrected the derived SFR and EW width values for this.

The HαGS sample was selected from the Uppsala Galaxy Catalogue (UGC; Nilson 1973). The HαGS selection criteria are described in detail in Paper I, but can be summarized as follows: type S0/a (T = 0) or later; diameters between 1.7 and 6.0; recession velocities less than 3000 km s^{-1}; and declinations greater than −2.5. As discussed in more detail by James et al. (2008a, hereafter Paper IV), the UGC provides an optically selected sample with excellent completeness over the luminosity and distance range of the galaxies considered.

To quantify this further, in particular, to confirm that our sample is not biased against galaxies with high SFRs, we calculate how many such galaxies might be expected within the HαGS. We used the Hα luminosity functions (LFs) in Ly et al. (2007, their Figure 10) and Shioya et al. (2008, their Figure 4) to estimate the expected numbers of galaxies of
different SFRs within the HaGS volume. We first chose to check galaxies with SFR > 30 M_{\odot} yr$^{-1}$, and find that one might expect (2–8) $\times 10^{-5}$ galaxies dex$^{-1}$ Mpc$^{-3}$ (using the Ha–SFR conversion factor of 7.9 $\times 10^{-42}$ from Kennicutt et al. 1994; the range in the result stems from the different lines fitted to the above figures). Selecting the SFR range 20–40 M_{\odot} yr$^{-1}$, i.e., 0.3 dex in the SFR, the predicted number density is (0.6–2.4) $\times 10^{-5}$ galaxies dex$^{-1}$ Mpc$^{-3}$.

The HaGS survey volume is $\pi \times 40^3 \times (1.39/4)$ Mpc$^3 = 7 \times 10^4$ Mpc3 (Paper IV), but we only sample approximately a third of this so the effective volume is 2.3 $\times 10^4$ Mpc3.

In the HaGS sample, we should thus expect only 0.14–0.55 galaxies with an SFR of 20–40 M_{\odot} yr$^{-1}$ (and far fewer above this range). In fact, we have none, but we have three in the range 10–20 M_{\odot} yr$^{-1}$, which is exactly in line with the above predictions.

We additionally checked around the “knee” in the LF, which is where the dominant contributors to the total SFR density lie. This is about 4.4 M_{\odot} yr$^{-1}$, so we derived the expected numbers in the range 2–10 M_{\odot} yr$^{-1}$, getting predictions of 26 (using the Ly et al. 2007 LF) and 44 (Shioya et al. 2008), whereas we in fact have 33 HaGS galaxies in this range. We thus conclude that the HaGS does accurately sample the star-forming galaxy population. HaGS is not just a survey of low-luminosity galaxies, and the luminous and strongly star-forming galaxies which one finds in many studies based on larger volume surveys like the SDSS really are very rare. To illustrate this further, we point out that the two most famous and well studied luminous mergers, Arp 220 and NGC 6240, lie at 80 and 100 Mpc distance, respectively, well outside our survey volume.

Of the 334 galaxies reported in Paper I, we use 327 in this paper (as explained in Paper IV, the remaining seven were serendipitously observed). The values for the SFR, EW, and distance for each sample galaxy were taken from Table 3 of Paper I. In that paper, reliable distances were calculated using a Virgocentric model for the local Hubble flow. Absolute magnitudes were calculated using the distance and the B_I magnitude values from the NASA/IPAC Extragalactic Database (NED).

The criteria used for determining which galaxies have close companions or are interacting are described in Section 3.

We use the primary Hα data products SFR (in units of solar masses per year) and EW (in units of nm). In addition, we use a number which we call the gas-depletion timescale, τ, and which we obtain by simply dividing the total amount of gas in a galaxy (derived from the total H I content, see Section 2.2), in units of solar masses, by the SFR. Thus, τ would be the time needed to deplete the gas reservoir in a galaxy if the SF were to continue at a constant rate equal to the current SFR. Below, and especially in Section 7.1, we will discuss the validity of using this measure to relate the SFR in a galaxy to its available fuel, as has been proposed in the literature in relation to defining starbursts.

In Section 4.3, we use the radial profiles of SF and Hα EW we derived in Paper VII. These are mean normalized light profiles, which relate the flux within elliptical annuli, but, unlike in traditional surface brightness or equivalent profiles, not corrected for the increasing area in the annuli as the apertures grow. This procedure yields curves in which the area under a profile within a given range of radius is directly proportional to the amount of light contributed to the total luminosity of the galaxy. These curves are normalized, both in radial scale (in units of the 24 mag arcsec$^{-2}$ isophotal semimajor axis of the galaxy) and in intensity (where the area under the curve is set to unity). The profiles are thus shape functions, indicating the radial distribution of flux.

2.2. Atomic Gas Data

Data on the atomic gas for the sample galaxies were collected from the HyperLeda database (Paturel et al. 2003), which contains data for all but six of our galaxies. Using the distance (Paper I), we transformed the H I flux, f, given in HyperLeda, to units of solar masses using the standard formula $M_{\text{HI}} = 235.6 D^2 f$. For three very close pairs of galaxies, and due to the beam sizes used in the original surveys, only one H I flux measurement is given. We made no attempt to separate such measurements, because our goals for the use of H I data are purely statistical, as described in Section 4.4.

In order to calculate the gas-depletion timescales we use later in this paper, we first multiply the atomic gas mass by a factor of 2.3 to include an estimate of the molecular part of the hydrogen gas reservoir as well as the helium (analogous to HaGS Paper V by James et al. 2008b, who in turn took the factor of 2.3 from Meurer et al. 2006), and divide this by a factor of ($1 - 0.4) = 0.6$, where 0.4 is assumed to be the mass fraction of the stars formed which is recycled to the interstellar medium (ISM; see Paper V). We finally divide the resulting number (in solar masses) by the SFR (in solar masses per year) to get the gas-depletion timescale, τ, in units of years.

We make an independent estimate of gas masses by following the suggestion of Bigiel et al. (2008) that molecular masses scale roughly linearly with the SFR, adding the H I mass (corrected for H I self-absorption) and multiplying the total by 1.35 to account for helium. This results in gas masses which are, after the correction for the recycling, smaller than our original estimates by 45% (probably a reasonable reflection of the systematic uncertainties in absolute gas masses), with a standard deviation of 14%. This latter figure represents the relative uncertainty in gas-depletion time from galaxy to galaxy, and does not substantially affect our comparisons of this parameter between galaxies, or between subsets of our sample.

3. PRESENCE OF COMPANION GALAXIES

To decide whether a galaxy has a close companion or not, we used a number of criteria that have evolved from those used by Schmitt (2001), Laine et al. (2002), and Knapen (2005), and that were used previously by us in Knapen et al. (2006). Using the HyperLEDA database and the NED, we search the neighborhood of all HaGS galaxies for companion galaxies that are not only in the close vicinity, but also have sufficient mass, so we can expect them to have some gravitational impact on the HaGS galaxy. Such close companions must satisfy each of the following three criteria. They must (1) be within a radius of five times the diameter of the galaxy under consideration, or $r_{\text{comp}} < 5 \times D_{25}$, where D_{25} is taken from the RC3, (2) have a recession velocity within a range of ± 200 km s$^{-1}$ of the sample galaxy, and (3) be not more than 3 mag fainter.

We find that 48 of our 327 HaGS galaxies (some 15%) have a close companion following these criteria, and digital sky survey (DSS) images of these 48 galaxies and their companions are shown in Figure 1. The criteria should be robust and allow us to make a complete search of close companions, except possibly in the case of very faint HaGS galaxies. For these, companions which are another 3 mag fainter will not all be cataloged, and may thus be missed. In order to check that this does not jeopardize our results, we have made a
number of robustness tests, for instance by considering only the bright half of our HαGS sample. This is described in Section 4.2.

The low number of galaxies with close companions does not allow us to make the criteria even more stringent while maintaining a statistically meaningful interpretation of our results. Because of the interest of studying companions closer than the limits used in our criteria, though, we discuss below the small number of galaxies which can in fact be considered to be interacting or merging (Section 5). But we will first, in Section 4, explore the effect of close companions on the SFR and Hα EW in local galaxies.

4. RESULTS: CLOSE COMPANIONS AND MASSIVE STAR FORMATION

4.1. Star Formation Rates and Equivalent Widths

The question we wish to answer here is whether the presence of close companions enhances the SFR and/or the EW of a galaxy. We compare the mean SFR and EW values of galaxies with a close companion to those of galaxies without one. For each of the former group of galaxies, we divide its SFR by the mean SFR for the HαGS galaxies without a close companion; we then determine the statistical parameters (mean, standard deviation, standard error) on the SFRs normalized in this way,
and analogously for the EWs. If galaxies with close companions were to have enhanced massive SF (higher SFR and/or EW), these values should be higher than unity. If, on the other hand, massive SF were suppressed in galaxies with close companions as compared to those without, the value would be smaller than 1. The results are shown in Table 1 for the complete sample of 327 HαGS galaxies, and for three smaller subsamples of different morphological type.

Table 1 shows, first, that the presence of a close companion in galaxies is accompanied by a significantly higher SFR, but by only a marginally higher EW. This effect is particularly driven by those galaxies of intermediate morphological types.

We interpret this as due to an enhanced R-band continuum luminosity, which cancels the increased Hα emission due to the higher SFR. This implies that the SFR, which is increased in relation to the presence of the close companion, must have been enhanced over a long enough timescale to allow the formed stars to evolve to a stage where they emit significant quantities of light in the R band, or a few hundred million years.

Second, considering galaxies of different morphological types, we find that the SFR and EW are suppressed, but not significantly so, in early-type galaxies with a close companion. The EW is also suppressed (though not significantly so)
Figure 1. (Continued)

Figure 2. Logarithm of the SFR, in units of solar masses per year, as a function of the absolute magnitude of the sample galaxies. HαGS galaxies with a close companion are identified as open circles, whereas those without a close companion are marked as filled dots.

Figure 3. As Figure 2, but now for the EW (in units of nm).

The figure shows how the galaxies with a close companion are located preferentially on the right-hand side of the diagram, indicating that they tend to be more massive than the median across the whole sample, but that their SFRs are not enhanced with respect to the median of the distribution at their absolute magnitude. This provides a qualitative manner of visualizing our main result: the SFR of the galaxies with a close companion is enhanced with respect to the parent sample mainly because they are big (luminous, massive) galaxies.

Since the EW measures in some way the SFR normalized by the underlying galaxy continuum emission, or mass, the gradual rise of SFR with M as seen in the diagram is divided out, and the EW of those galaxies with a close companion is hardly enhanced at all with respect to those that do not have a close companion. This is shown graphically in Figure 3, where the EW is seen to remain constant across the whole range sampled, of some 11 magnitudes in M. In Paper I we already showed such a figure for the HαGS galaxies, and noted that the effect of constant EW with magnitude had been published before in the literature, but not over such a large range (see, e.g., Kennicutt & Kent 1983). Lee et al. (2007) present a similar figure as based on data from the 11 HUGS (Kennicutt et al. 2008), and code the data points by morphological type. The downturn in EW at the high M end of the distribution is due to massive, early-type, spirals with little current massive SF but large masses.
normalizing the SFR by the area of the galaxy within the radius r_{24} (see also Section 6.3), behaves as a function of the SFR. Kennicutt et al. (2005) use such a diagram to locate starburst galaxies with a close companion are identified as open circles, whereas those without a close companion are marked as filled dots.

Figure 4 shows how the SFR per unit area, Σ, as calculated by normalizing the SFR by the area of the galaxy within the radius r_{24}, behaves as a function of the SFR. Kennicutt et al. (2005) use such a diagram to locate starburst galaxies, but our emphasis here is again to show the relative location of those galaxies with and without a close companion. We see once again that the galaxies with a close companion are inconspicuous, except for the dozen or so galaxies located in the top right corner of the diagram, and which are mostly there because of their high SFRs. As we have noted before, galaxies with close companions tend to be on the right-hand side of the diagram, with many showing SFRs above the median value for the sample. Their Σ values, though, are not different on average from those of the galaxies without a close companion.

but a contribution of dust extinction in these high-mass galaxies cannot be excluded—this would diminish the SFR and thus the EW. From the numbers given above, we already know that the EWs of those galaxies with and without a close companion are comparable in the median, and this result is confirmed nicely in Figure 3, where the former are sprinkled throughout the diagram (though with a slight preference to the right, high-mass side of the diagram, as we noted before).

Figure 4 shows how the SFR per unit area, Σ, as calculated by normalizing the SFR by the area of the galaxy within the radius r_{24} (see also Section 6.3), behaves as a function of the SFR. Kennicutt et al. (2005) use such a diagram to locate starburst galaxies, but our emphasis here is again to show the relative location of those galaxies with and without a close companion. We see once again that the galaxies with a close companion are inconspicuous, except for the dozen or so galaxies located in the top right corner of the diagram, and which are mostly there because of their high SFRs. As we have noted before, galaxies with close companions tend to be on the right-hand side of the diagram, with many showing SFRs above the median value for the sample. Their Σ values, though, are not different on average from those of the galaxies without a close companion.

but a contribution of dust extinction in these high-mass galaxies cannot be excluded—this would diminish the SFR and thus the EW. From the numbers given above, we already know that the EWs of those galaxies with and without a close companion are comparable in the median, and this result is confirmed nicely in Figure 3, where the former are sprinkled throughout the diagram (though with a slight preference to the right, high-mass side of the diagram, as we noted before).

4.2. Possible Sample Biases

Our method is, in principle, susceptible to a number of systematic issues, and in this section we describe a number of tests performed to ascertain to what degree these issues might influence our final results. The first effect we consider is that of apparent brightness of the sample galaxies. For the faintest H$_{\alpha}$GS galaxies, it is possible that our criterion that companion galaxies need to be at most 3 mag fainter than the sample galaxies fails, in the sense that the faintest possible companions will be below the brightness cutoff level of the main galaxy catalogs. This would mean that a faint galaxy can have a very faint companion, but the latter would not be registered by us.

The second effect is that of the distance. For nearby galaxies, fainter companions will generally be included in the catalogs (unless they are very faint, see the preceding paragraph), but for distant ones this may be less true.

Because any specific test will diminish the number of galaxies in the subsample considered, we opted for a series of simple tests that maintain the maximum number of galaxies in the subsamples to be tested. We thus split the overall sample in two halves with equal numbers of galaxies (163 and 164), taking as criteria the apparent magnitude (faint-half versus bright-half) and the distance (close versus far). The results of these tests on the mean SFR and EW of galaxies with and without a close companion are listed in Table 2.

The values in Table 2 are the mean and standard error of the SFR and H$_{\alpha}$ EW for those galaxies with a close companion as compared to those without. They were calculated by taking the SFR and EW values for each of the former galaxies, and dividing them by the mean value for galaxies of their type, and in their half of the sample (near versus far, bright versus faint). The large value for the “faint” SFR is caused by two Im galaxies with a close companion in the faint-half which have an SFR six and eight times higher than the mean over all Im galaxies in the faint-half. The EW appears to be more robust than the SFR against such large excursions. Using a series of KS tests to ascertain whether any of the differences, between near and far, or between bright and faint, are statistically meaningful, we confirm the impression one gains from the errors cited in the table that this is not the case—none of the differences is significant to the 90% level.

Type	Ratio	Std. Error	$N_{cl\,comp}$	N_{int}	KS-test P
SFR:					
All	1.85	0.30	48	279	0.008
0–2	0.52	0.12	7	29	ND
3–8	2.23	0.39	33	141	0.006
9–10	1.43	0.60	8	109	ND
EW:					
All	1.16	0.11	48	279	0.005
0–2	0.85	0.24	7	29	ND
3–8	1.31	0.14	33	141	0.001
9–10	0.82	0.21	8	109	ND

Notes. This is shown for all galaxies in the sample, and separately for galaxies of certain morphological-type groups (Column 1). The ratio is shown in Column 2, and the standard error on this number is shown in Column 3. A ratio larger than unity means that the SFR/EW is enhanced in galaxies with a close companion as compared to those without. The number of galaxies in each subsample with and without a close companion is shown in Columns 4 and 5, respectively. Results (P value) from a KS test which indicates whether differences are statistically significant are shown in Column 6, where “ND” means no difference ($P > 0.05$).
The conclusion we can draw from this test, as summarized in Table 2, is that neither the distance nor the brightness significantly affect the final results of our study. The numbers for the SFR are consistent in the far/bright subsamples, but not in the near/faint ones, presumably because of the small numbers of galaxies. The EW values can be considered equal for the four subsamples under consideration.

4.3. Radial Dependence within Galaxies

In this section, we describe the results of a more detailed analysis of the Hα emission from HzGS galaxies with and without a close companion, namely how their Hα emission is distributed radially within the galaxies. We do this specifically to shed light on the question of whether the presence of a close companion causes a central concentration of the massive SF activity, as identified, in more extreme cases, with (circum)nuclear starbursts. For instance, Bushouse (1987) found that the star-forming activity in interacting galaxies is indeed concentrated near their nuclei, as expected as a result of inflow either by the interaction itself, or by bars induced by the interaction.

First, we consider the SFR and EW of the inner as compared to the outer halves of each HzGS galaxy, comparing those with and without a close companion.

Of the 48 galaxies with close companions, HzGS provides usable profiles for 45. Of these 45, 22 galaxies, or 49% ± 13%, have a higher EW inside the half-light radius than outside. For the rest of the HzGS sample, those galaxies without a close companion, this is the case for 100 out of 269, or 37% ± 4%.

We thus find a trend for enhanced central SF in galaxies with close companions, although this trend is not statistically significant. To explore whether the study of smaller subsamples, or of galaxies of specific morphological type, can shed further light on this, we perform a more detailed study of the radial distribution of SF.

As a second test, we thus study the radial flux profiles, as described in detail in Paper VII and as summarized in Section 2 of this paper, of the Hα emission of all HzGS galaxies of a particular morphological class with and without a close companion. We express the results of this test as the fraction of galaxies in which the Hα EW is higher inside 0.2 × r_{24} than within 1.0 × r_{24}. For the complete sample, we find that

Subsample	SFR Mean	SFR Error	EW Mean	EW Error	N
Near	0.58	0.21	1.15	0.17	12
Far	1.69	0.27	1.20	0.14	36
Faint	1.78	0.42	1.14	0.16	17
Bright	1.88	0.37	1.25	0.16	31

The conclusion we can draw from this test, as summarized in Table 2, is that neither the distance nor the brightness significantly affect the final results of our study. The numbers for the SFR are consistent in the far/bright subsamples, but not in the near/faint ones, presumably because of the small numbers of galaxies. The EW values can be considered equal for the four subsamples under consideration.
36% ± 11% (16/45) of the galaxies with a close companion have such centrally concentrated Hα EW, versus 30% ± 4% (80/268) or those without a close companion. For galaxies of morphological types $T = 3 - 8$, the numbers are 31% ± 13% (10/32) and 21% ± 5% (29/138), respectively, and for galaxies of type $T = 3, 50% ± 49% (3/6)$ and $41% ± 22% (7/17)$.

We find that in all these subsamples there is a small increase in the central SF which is linked to the presence of a close companion, but in no case this is significant, even at the 1σ level. The $T = 3$ galaxies (whether they have a close companion or not) show more central concentration than other galaxies—this is the effect of the $T = 3$ barred galaxies discussed in more detail in Paper VII. As an example of the kind of profiles we find for the interacting/merging galaxies identified here (Section 5), we show in Figure 5 the radial flux profiles for six of these. The profiles can be compared with the average ones for the relevant morphological type as published in Paper VII, but apart from a central concentration in a few galaxies (such as UGC 12699) there are no obvious significant differences.

Each of our two tests thus reveals that there is a statistical tendency for galaxies with a close companion to have a higher degree of central concentration of their SF than galaxies without a close companion, but none of the tests returns a difference between these samples which is significant—not even at the level of 1σ. This may well be because most of our close companion galaxies are far from mergers, and because it is in the advanced merger stage where one might expect enhanced SF in the central region. Another reason may be that in galaxies which are not mergers, bars are the most efficient drivers of gaseous inflow, and thus of central SF. But as two-thirds of galaxies have bars anyway, any incremental effect due to interactive effects can only be limited. In addition, bar triggering by interactive events only happens primarily in prograde, and less in retrograde, encounters (e.g., Gerin et al. 1990; Berentzen et al. 2004; Romano-Díaz et al. 2008), limiting any effect even more. We conclude that there is no evidence for the presence of a close companion leading to centrally concentrated SF.

4.4. The Role of Atomic Gas

An important property of galaxies in the context of SF is the amount of gas they contain. Ideally, one would like to know the morphological distribution of both the molecular and the atomic components of the gas, but this has not been observed for even a small part of the HαGS sample. What is available for all but a handful of galaxies is the total atomic gas mass, which we obtained in the way described in Section 2.2. Subdivided by morphological type, the results are shown in Table 3. There, we list for each T-class, and separately for all galaxies and only for those with a close companion, the total H1 mass in units of solar masses, and the H1 mass normalized to the R-band luminosity, in units of solar mass per solar luminosity. The latter can be compared to the EW as employed in most of the rest of the current study, and can be interpreted as a measure of the unused gas—gas that is in principle available for SF.

We removed the galaxy UGC 6781 (=NGC 3896) from the $T = 0$ class in Table 3. The galaxy has been classified as SB0/a: pec in the RC3 ($T = 0$), but this is in fact a misclassification. Buta et al. (2007) reclassify it as either Im pec (Magellanic irregular) or I0 pec (they compare it to NGC 5253 in this category). Buta et al. (2007) note a smooth outer disk and a central area of strong recent SF. UGC 6781 has a close companion in the HαGS galaxy UGC 6778 (=NGC 3893), and although we do not classify these galaxies as interacting under our criteria, Buta et al. (2007) note that the slight asymmetry
in UGC 6778 could be the result of an interaction. UGC 6778 has an H\textsc{i} mass which is anomalously high for a T = 0 galaxy, which is further evidence for its misclassification in the RC3. Several interesting results show up in Table 3, which we describe briefly here.

4.4.1. Total and Normalized H\textsc{i} Mass versus T-type

The total H\textsc{i} mass is highest in galaxies of intermediate types, T = 4 and 5. It is lower in galaxies of earlier and later types, with the lowest gas masses measured in the latest-type galaxies, those of type Sm and Im. This has been well known for a long time, and has been reviewed, for instance, by Roberts & Haynes (1994).

Normalizing the H\textsc{i} mass by R-band luminosity yields a rather different picture. This parameter is much higher in the latest-type galaxies (T = 9 and 10, or Sm and Im), and there is now a gradual trend of increasing M_{H}/L_R with increasing T-type (see also Roberts & Haynes 1994). This confirms that the gas fraction increases with morphological type throughout the Hubble sequence, most probably as a consequence of pronounced SF activity in the history of the galaxies of earlier morphological type, offset by those of late types which have not been able to transform much of their gas reservoir into stars. Further discussion of these results, and of the important consequences for galaxy formation and evolution they imply, is beyond the scope of this paper.

4.4.2. Gas-depletion Timescales

Median gas-depletion timescales, τ, as defined in Section 2.2, are given for each morphological type in Table 3. Because the number of galaxies per type bin which have a close companion is too small, and because τ varies with type, we could not produce reliable numbers for the subsample of galaxies with a close companion. Across the whole sample, the median gas-depletion timescales are of order 10^9–10^{10} yr. They are shorter for galaxies of type $T = 2$–5 (Sab–Sc) and longer for galaxies of earlier and later types: presumably because of a lower SFR in the former, and because of higher gas quantities in the latter. If the galaxies of type $T = 2$–5 in our sample would continue to form stars at their current rate, and without any gas infall, they would deplete their gas in $(4$–$5) \times 10^9$ yr.

4.4.3. H\textsc{i} and the Presence of Close Companions

Table 3 also shows the H\textsc{i} mass and M_{H}/L_R separately for those galaxies with close companions. Although the numbers of galaxies in many of the T bins are very small, we have chosen not to make larger bins because of the obvious changes in the H\textsc{i} parameters with morphological type. Nonetheless, it is clear that Table 3 does not provide significant evidence for different H\textsc{i} mass, whether total or normalized to L_R, in those galaxies with close companions compared to the overall population. This can be compared with the results of Bushouse (1987), who found that the median atomic gas content of interacting galaxies is not different from that of isolated galaxies, and also that the H\textsc{i} content and the SFR do not correlate.

We note a subtle effect in the following sense, through.

4.4.4. H\textsc{i} and the Presence of Close Companions

Median gas-depletion timescales, τ, as defined in Section 2.2, are given for each morphological type in Table 3. Because the number of galaxies per type bin which have a close companion is too small, and because τ varies with type, we could not produce reliable numbers for the subsample of galaxies with a close companion. Across the whole sample, the median gas-depletion timescales are of order 10^9–10^{10} yr. They are shorter for galaxies of type $T = 2$–5 (Sab–Sc) and longer for galaxies of earlier and later types: presumably because of a lower SFR in the former, and because of higher gas quantities in the latter. If the galaxies of type $T = 2$–5 in our sample would continue to form stars at their current rate, and without any gas infall, they would deplete their gas in $(4$–$5) \times 10^9$ yr.
in relation to the EW measurements. The differences are not statistically significant, however, and we conclude that the presence or the absence of a close companion has no relation to the total or normalized H\textsc{ii} mass in galaxies.

5. INTERACTING AND MERGING GALAXIES IN THE SAMPLE

Although interacting galaxies and ongoing mergers are too rare in the H\textalpha\ Galaxy Survey (H\textalpha\ GS) sample to base our study exclusively on their properties, we can identify a number of such galaxies from the sample of those which have close companions. We thus made a visual check of the images as presented in Figure 1 to select those galaxies which are interacting or merging. In order to be classified as such, an H\textalpha\ GS galaxy must form a pair in which the galaxies must either be overlapping or very close, and must show signs of either physical contact or tidal disruption as a result of the collision with a companion galaxy.

A number of close pairs (galaxies separated by around one diameter) where the latter signs were absent have not been classified as “interacting.” This category includes the galaxies UGC 858 (whose famous friend is the shell galaxy NGC 474), UGC 7523, UGC 12447, and the M51-lookalike system composed of UGC 6778 and UGC 6781. The galaxy UGC 3740 looks tidally distorted but has not been selected as “interacting” because the companion is not close enough. In addition, a galaxy such as UGC 5786 (NGC 3310 or Arp 217) is in H\textalpha\ GS but cannot be included here because it does not qualify as having a close companion under the criteria set out in Section 3 (it is a more advanced merger). The latter two galaxies do have high values for both the SFR (13.5 and 11.2 \(M_\odot\) yr\(^{-1}\)) for UGC 3740 and 5786, respectively) and the EW (6.1 and 10.9 nm); see Section 6.

The strict set of criteria we employed reduces the list of interacting/merging systems among the H\textalpha\ GS sample to six systems (eight H\textalpha\ GS galaxies) listed in Table 4, but does ensure that these galaxies are without reasonable doubt interacting or merging. H\textalpha\ images of these galaxies, plus of the advanced merger UGC 5786, are shown in Figure 6. All systems but one have been classified by Arp (1966) as interacting systems, and their Arp numbers are given in Table 4. We can use our H\textalpha\ GS sample to make a very rough estimate of how many galaxies in the local universe are interacting (in Section 3 we already saw that just under 15% of the sample galaxies have a close companion). Using all of H\textalpha\ GS, we thus find that only 2% of nearby galaxies are interacting. Even ignoring the 117 galaxies in H\textalpha\ GS that are fainter than \(M_R = -17.5\) mag, and counting UGC 3740 and 5786 (see above) as interacting, the fraction is still only 4%. So interacting galaxies are indeed rare.

5.1. LIRGs and ULIRGs

There are no ULIRGs in H\textalpha\ GS, confirming their rarity in the local universe. Only one LIRG is included in H\textalpha\ GS, namely UGC 3429 or NGC 2146. The galaxy has a total IR luminosity of \(\log L_{\text{IR}} = 11.07\) \(L_\odot\) (Sanders et al. 2003), does not have a close companion, and has an SFR of 2.7 \(M_\odot\) yr\(^{-1}\), an EW of 2.5 nm, and a gas-depletion timescale \(\tau = 0.86 \times 10^9\) yr (H\textalpha\ GS values). This galaxy has been widely studied, but we just mention the rather recent paper by Greve et al. (2006) in which the interested reader can find a comprehensive list of other work on this LIRG.

Table 5 lists the total IR luminosities of those galaxies for which a value is given by Sanders et al. (2003). For the pairs UGC 9576 + 5797 and UGC 12699 + 12700, the large IRAS beam yields only one measurement for each pair. UGC 5786, in H\textalpha\ GS but not in Table 5 (see above), has a log \(L_{\text{IR}} = 10.61\) \(L_\odot\).

The numbers presented here illustrate how rare IR-luminous galaxies are in the local universe. Sanders et al. (2003) list only 28 LIRGs (11 < log \(L_{\text{IR}} < 12\)) with \(v_{\text{sys}} < 4000\) km s\(^{-1}\), and of these, 19 have log \(L_{\text{IR}} \leq 11.1\), and only two (NGC 3256 and NGC 3690) have log \(L_{\text{IR}} > 11.5\) (only two ULIRGs have \(v_{\text{sys}} < 10000\) km s\(^{-1}\)). UGC 9913 being the closest at \(v_{\text{sys}} = 5450\) km s\(^{-1}\). So although these may represent luminous starbursts in the best definable way (see Section 7), their role in at least the local universe is limited purely because of their rarity.

6. CHARACTERISTICS OF H\textalpha\ GS GALAXIES WITH ENHANCED STAR FORMATION

In this section, we discuss the characteristics of those H\textalpha\ GS galaxies that have, by one or other measure, enhanced SF. To illustrate the properties of these galaxies as defined under different sets of parameters, we therefore select the top 10 of H\textalpha\ GS galaxies which have the highest overall SFR, EW, and SF per unit area (E), as well as the 10 galaxies with the highest central \(\Sigma\), measured over the central 20% of \(r_{24}\) only (where \(r_{24}\) is the radius corresponding to the \(R = 24\) isophote), and the 10 galaxies with the lowest gas-depletion timescale. The results presented here will be used in Section 7.1 to discuss critically the possible definition of the term “starburst,” where we will show that no reasonable definition leads to a well defined group of objects.

6.1. Top 10 SFR Galaxies

To understand better what the characteristics are of those galaxies that show particularly high values of their SFR, we list in Table 5 the top 10 H\textalpha\ GS galaxies with the highest SFR. From the top 10 in SFR, we can make the following observations.

1. All galaxies except one have NGC numbers; three have been listed as Arp objects.
2. All galaxies are of morphological type 3–5, and nine of the 10 are of types 4 (bc) or 5 (c).
3. Two of the 10 galaxies have an H\textalpha\ EW below the median in the sample (which is 3.0 nm; the average EW is 3.5 nm), several others are not far off the median.
4. Gas-depletion timescales \(\tau\) are rather short, and below 1 Gyr for all except UGC 9579 and UGC 12447. For comparison, the median value for \(\tau\) across the H\textalpha\ GS sample is \(1.1 \times 10^{10}\) yr, and across all Sc-type galaxies it is \(4.0 \times 10^9\) yr.
5. All galaxies are more distant and brighter than the mean or median value in H\textalpha\ GS (mean values for \(D\) and \(M\) are 17.3 Mpc and \(-17.3\) mag, respectively, median values are 17.3 Mpc and \(-17.6\) mag).
6. Galaxies with close companions, interacting, or showing morphological evidence for advanced merging activity are common in the top 10.

We thus find predominantly large and bright spirals, a significant fraction of which are interacting or merging.

6.2. Top 10 EW Galaxies

In contrast, we can make rather different observations for our top 10 EW galaxies (Table 6). We note that UGC 3847, although cataloged individually as a galaxy, is in fact an H\textsc{ii} region on
NGC 5962 SAc 6
NGC 7479 SBc 6
NGC 3310, Arp 217 SABbc 11 see Section 5; UGC 11604: Sy, circumnuclear ring.

α repeated from Table 5): UGC 3847: H

Columns as in Table 5, except Column 13 which now shows the rank number in the list as sorted on the SFR. Comments for individual galaxies (not

We list UGC, NGC, and Arp numbers (Columns 1, 2); morphological type from the RC3 (Column 3); SFR (in units of \(\text{M}_\odot \text{yr}^{-1} \)) across the disk out to \(1 \text{kpc} \) (Column 4); and the SFR per unit area \((\Sigma) \) across the disk out to \(r_{25} \), and in the central region out to 0.2 \(r_{25} \) (\(\Sigma_{20} \); Columns 9 and 10); and the log of the total IR luminosity in solar units (from Sanders et al. 2003; Column 11; note that values are given for the combined systems UGC 9576+9579 and UGC 12699+12700). Where no values can be calculated a field is indicated by “–.” We also list the rank number of the galaxy in the lists of all 327 sample galaxies as sorted on SFR, H\(_z\) EW, \(\Sigma\), \(\Sigma_{20} \), and \(r \) (Columns 12–16). Data on SFR and EW are from Paper I.

Table 5

UGC	Other Names	Type	SFR	EW	\(\alpha \)	\(\Sigma \)	\(\Sigma_{20} \)	\(D \)	\(M \)	Co.	Int.	Rank
3740	NGC 2276, Arp 25	SABc	13.5	6.1	1.3	0.022	0.089	33.2	–20.7	–	–	31
5786	NGC 3310, Arp 217	SABc	11.2	10.9	1.2	0.060	1.010	18.2	–20.2	–	–	8
2855	SABc	9.8	3.4	1.7	0.032	0.11	17.5	–17.7	–	–	129	
12699	NGC 7714, Arp 284	SBb	7.8	9.6	1.8	0.031	0.61	31.0	–19.5	Y	Y	9
12343	NGC 7479	Sbc	6.6	3.5	1.9	0.010	0.040	26.9	–20.6	–	–	121
9926	NGC 5962	SAc	6.4	3.3	1.8	0.012	0.070	31.2	–20.5	–	–	134
6778	NGC 3893	SAbc	5.6	5.0	2.9	0.013	0.075	18.5	–20.2	Y	Y	56
9579	NGC 5774	Sbc	5.0	2.5	6.7	0.0081	0.054	28.8	–20.2	Y	Y	193
12447	NGC 7541	SBbc	4.4	3.4	5.0	0.0028	0.018	29.9	–20.0	Y	Y	130
11604	NGC 6951	SAbc	4.3	1.6	2.1	0.010	0.066	20.2	–19.9	–	–	258

Notes. We list UGC, NGC, and Arp numbers (Columns 1, 2); morphological type from the RC3 (Column 3); SFR (in units of \(\text{M}_\odot \text{yr}^{-1} \)), H\(_z\) EW (nm), gas depletion time \((10^9 \text{yr}) \), SFR per unit area \((\Sigma) \) across the disk out to \(r_{25} \), and in the central region out to 0.2 \(r_{25} \) \((\Sigma_{20}) \); Columns 4–8); distance in Mpc (Column 9); absolute magnitude (calculated from NED B2 magnitudes converted to absolute magnitudes using the distance \(D \); Column 10); whether the galaxy has a close companion or not (following Section 3; Column 11) and is interacting or not (Section 5; Column 12); the rank number of the galaxy in the lists of all 327 sample galaxies as sorted on H\(_z\) EW, \(\Sigma\), \(\Sigma_{20}\), and \(r \) (Columns 13–16). Data on SFR, EW, distance, and absolute magnitude are from Paper I. Comments for individual galaxies: UGC 3740: tidally distorted; UGC 5786: advanced merger; UGC 2855: possibly a pair with UGC 2866; UGC 12699: LINER, interacting, see Section 5; UGC 12343: LINER/Sy; UGC 9579: interacting, see Section 5; UGC 12447: close pair, see Section 5; UGC 11604: Sy, circumnuclear ring.

Table 6

UGC	Other Names	Type	SFR	EW	\(\alpha \)	\(\Sigma \)	\(\Sigma_{20} \)	\(D \)	\(M \)	Co.	Int.	Rank
3847	NGC 2363	Im	0.02	33.9	–	0.041	0.24	2.9	–11.8	–	–	220
3851	NGC 2366	Im	0.2	23.6	5.1	0.033	0.017	2.9	–15.9	–	–	185
2302	Sbm	0.3	20.5	19.1	0.0042	0.023	12.8	–16.4	–	–	172	
8098	NGC 4861, Arp 266	Sbm	1.1	18.2	2.7	0.0020	0.0073	11.0	–17.3	–	–	73
6833	NGC 3930	SAbc	1.6	13.5	3.8	0.011	0.022	17.6	–18.1	–	–	48
5829	Im	0.3	12.3	9.1	0.0065	0.029	8.6	–15.9	–	–	177	
5786	NGC 3310, Arp 217	SAbbc	11.2	10.9	1.2	0.060	1.010	18.2	–20.2	–	–	2
12699	NGC 7714, Arp 284	SBB	7.8	9.6	1.8	0.031	0.61	31.0	–19.5	Y	Y	4
9018	NGC 5477	SAm	0.03	9.2	23.0	0.010	0.063	4.3	–13.8	–	–	271
12732	Sm	0.12	8.8	27.5	0.0033	0.0033	8.9	–16.0	–	–	212	

Notes. Columns as in Table 5, except Column 13 which now shows the rank number in the list as sorted on the SFR. Comments for individual galaxies (not repeated from Table 5): UGC 3847: H\(_z\) complex in UGC 3851; UGC 8098: BCD galaxy; UGC 9018: M101 satellite.

the outskirts of UGC 3851. As a combined system, they top the EW ranking list with a combined SFR of \(0.22 \text{M}_\odot \text{yr}^{-1} \) and EW of 24.2 nm (both numbers dominated by UGC 3851 which is some 3 mag brighter). Some observations are as follows.
1. Three galaxies have been listed as Arp objects, and two of them (UGC 5786 and UGC 11699) are also in the top 10 SFR list. Three galaxies do not have an NGC designation.

2. All but three of the galaxies are of very latest morphological types ($T = 9, 10$), and two of the remaining three are UGC 5786 (advanced merger) and UGC 11699 (interacting).

3. Only four of the 10 galaxies have an SFR larger than the mean and even the median SFR in HαGS (which are 0.9 and $3 M_\odot$ yr$^{-1}$, respectively). All except one (the well known starburst and blue compact dwarf [BCD] UGC 8098, aka NGC 4861 or Arp 266) of the late-type galaxies (9 or 10) are below the mean and median SFR.

4. Gas-depletion timescales τ are rather long for most galaxies. The median value for τ across the HαGS sample is 1.1×10^{10} yr, and across all m-type galaxies ($T = 8-10$) it is 1.9×10^{10} yr.

5. The seven late-type galaxies are all closer than the mean/median distance in HαGS, and are also all fainter in absolute magnitude than the mean/median across the whole sample. Only three of the 10 galaxies are more distant and brighter.

6. Only the two galaxies that are also in the SFR top 10 are interacting or merging. None of the other galaxies has a close companion (see Section 3), although a few may be in groups (but we cannot judge whether this would be more often the case for these galaxies than across the whole HαGS sample).

Galaxies with high Hα EW are thus predominantly galaxies with very small amounts of R-band continuum emission rather than very large amounts of Hα emission, and thus predominantly star-forming late-type dwarf or irregular galaxies.

6.3. Top 10 SFR per Unit Area Galaxies

A variation on using the SFR to measure the SF activity of a galaxy is to normalize the SFR to the size of the galaxy, or its area. Such a distinction may help separate large galaxies that form stars throughout (most of) their disk (such as UGC 12343 = NGC 7479 in Table 5) from smaller galaxies where the SFR per unit area is much higher. We have calculated this for the HαGS galaxies using the radius r_{24} for the normalization, and show the 10 galaxies with the highest values of the SFR per unit area (Σ) in Table 7. We can observe the following characteristics.

1. Only three of the top 10 Σ galaxies are also in the top 10 SFR list (Table 5), and most have SFRs below the median across HαGS. The latter obviously have large Σ values because of their small size, and not because of their large SFRs.

2. Most galaxies have also modest EW values, although in all cases above the median EW across HαGS. So Σ correlates better with the EW than with the SFR.

3. Most galaxies in the top 10 Σ list are of late morphological type, one $T = 8$ and five $T = 10$, and these galaxies are all nearby and of very modest absolute magnitude.

4. Two of our by now familiar merger/interaction galaxies have large Σ values as well as the high SFR and EW that we already noted before.

5. Gas-depletion timescales are not particularly noteworthy, although in all but one cases shorter than the median value across HαGS.

6.4. Top 10 Central SFR per Unit Area Galaxies

A variation on the use of Σ, the SFR per unit area across a galaxy, is to use Σ_{20}, which we defined as the central SFR per unit area, or Σ determined only for the area enclosed in the inner 20% of r_{24}. The 10 galaxies with highest Σ_{20} values are listed in Table 8. We make the following comments.

1. Four of these 10 galaxies have SFRs below the median across HαGS, three have below-median EWs, and none has below-median Σ values.

2. The majority (6/10) of the top 10 Σ_{20} galaxies are also in the top 10 Σ. The Σ and Σ_{20} parameters are vaguely related, and Σ_{20} appears to possess less discriminating power in identifying powerful SF in galaxies than might have been expected.

3. In comparison with the Σ top 10 list, fewer galaxies of late morphological type, and more with evidence for nuclear activity appear in the Σ_{20} list (the latter not surprisingly).

4. The single IR-luminous galaxy in HαGS, the LIRG UGC 3429, makes its one and only appearance in the top 10 lists in the Σ_{20} table. In all other parameters considered, it is entirely unremarkable, and in terms of EW in fact even below the median of the whole HαGS sample.

6.5. Ten Galaxies with the Lowest Gas-depletion Timescale

Our final top 10 list (or rather bottom 10, in this case; Table 9) lists the 10 HαGS galaxies with the shortest gas-depletion timescales, as defined in Section 2.2. This timescale indicates how many years a galaxy can continue forming stars at its current SFR before it exhausts its total gas content. This is a very rough estimate, ignoring any inflow into the galaxy, and assuming all gas can take part in the SF, but does give a useful indication of the relation between SF and “fuel.” Variations on this parameter have been proposed in the literature to define starburst galaxies, as discussed in the following section. Some facts to note from Table 9 are as follows.

1. With one exception (the advanced merger UGC 5786), none of the 10 shortest τ galaxies has above-median EW values. Two galaxies have below-median SFRs, and most have very modest Σ values.

2. Half of the galaxies (and four out of the five in the top half of Table 9) are of the earliest morphological types, $T = 0$ or 1. None is of type later than Sc ($T = 5$). This is correlated with the low EW values in many of these galaxies.

3. For most of the galaxies in this list, the short gas-depletion timescales seem to be the result of a low gas mass rather than a high SFR, reflected in the prominent places occupied in the table by early-type galaxies. The broad dependence of the median value of τ on morphological type can also be seen in Table 3, although the very lowest values are, apparently, concentrated among the galaxies of earliest morphological type.

Only one galaxy consistently appears among the top in each category we considered. This is the advanced merger UGC 5786, discussed already earlier in this paper. Even so, it barely makes it into the top 10 tables for EW (8th) and Σ_{20} and τ (10th place in each). Any other galaxy in HαGS, including the starburst BCD UGC 8098 (NGC 4861; Arp 266), the LIRG UGC 3429 (NGC 2146) or the interacting Arp system 284 (UGC 12699 + 12700; NGC 7714 + 7715) fail to make it into the top 10 for at least one of the categories (in fact, as noted before, in all but one in the case of the LIRG).
Figure 7 shows where the various top 10 galaxies are located in the diagram of the SFR versus absolute magnitude, as shown in Figure 2 for all sample galaxies. Obviously, the top 10 SFR galaxies are in the upper right corner of the diagram because that is where the galaxies with largest SFRs are located. The galaxies with the highest EW are, with one exception, located near the upper envelope of the cloud of points, yet they do not pick out galaxies with the very highest SFRs at their absolute magnitude. In broad agreement with the analogies between these groups of galaxies we noted before, the galaxies with the highest Σ and central Σ values are located in an area similar to that of the high EW galaxies. Galaxies with lowest gas-depletion times are all on the right side of the diagram (having $M_{\text{abs}} < -17$) but by no means trace the upper part of the distribution in SFR. Finally, the eight interacting galaxies, denoted by black open hexagons in Figure 2, show the spread in the SFR discussed before. Some have SFRs among the highest in our sample, whereas others are near or even below the median SFR for their absolute magnitude.
7. DISCUSSION

7.1. Effects of Close Companions and Interactions on Star Formation and Starbursts

As shown in Table 1 and described in Section 4, across the whole sample of 327 HoGS galaxies that we analyzed the SFR is significantly enhanced in those galaxies that have a close companion (as defined in Section 3), whereas the EW is not significantly enhanced. Galaxies that are gravitationally interacting or merging are rare, and there are not enough of them in a sample of local galaxies such as ours to allow a statistically meaningful analysis of their properties. But as Table 4 and Section 5 show, whereas some interacting/merging galaxies have high SFRs and/or Ho EWs, at least as many others are unremarkable in these properties.

7.1.1. Close Companions

Our main result is that the SFR is enhanced in galaxies which have a close companion, but that the Ho EW is not. This implies that the presence of a companion stimulates massive SF in a galaxy, presumably because of tidal effects causing stirring and inflow of the gas in the disk, but that the SFR is increased continuously, rather than in the form of a “burst.” In an instantaneous burst of SF, both the Ho line emission and the Ho EW drop off rather abruptly after some 10^7 yr, roughly the lifetime of the massive O stars that power the Ho emission (see, e.g., Leitherer et al. 1999, their Figure 83). If the SF is continuous, however, as illustrated in Figure 84 of Leitherer et al., the Ho EW remains at a significantly higher level for timescales of 10^8 and even up to 10^9 yr. During this continuous episode of SF, the Ho line emission remains at the same, high, level throughout, and the fact that the EW decreases slowly with time is not, as in the case of an instantaneous burst of SF, due to the Ho emission decreasing, but rather to the continuum emission slowly being enhanced, due to the slow but steady buildup of an underlying stellar population.

So in the galaxies with companions in our sample, the SF must be enhanced but continuously so: enhanced because we measure enhanced Ho emission and thus the SFR as compared to galaxies without a close companion, and continuously so because the Ho EW is much less enhanced.

The episode of massive SF which appears to have been triggered by the presence of a close companion must have been continuous during a time of order 10^8 yr minimum. This continuously enhanced SFR is not what one would prefer the term starburst to mean, and we must thus conclude that the presence of a close companion indeed stimulates the formation of massive stars, but does this not in the form of a “starburst,” but continuously over rather long timescales. The reason for this may be that the galaxies with close companions are located in regions of the local universe where they regularly merge with small gas-rich galaxies, or even gas clouds. These continuous (very) minor mergers may provide the fuel to enhance their SFR, and do this over extended periods of time. The presence of a close companion by our criteria may in that case be a tracer of the presence of gas-rich galaxies or gas clouds in the near vicinity.

As we noted elsewhere in this paper, it might have been more interesting to study galaxies that are undergoing a proper interaction or merger, rather than the ones we study here, which are honored by the presence of a close companion. But we also noted that interacting galaxies are too rare to perform the kind of statistical study we present here, so let us consider the properties of the sample of close companion galaxies that our HoGS survey has yielded. Images of all these galaxies are shown in Figure 1, which shows clearly that this is a mixed bag. Some pairs are of roughly equal luminosity (and thus, one may assume, mass), many other HoGS galaxies are accompanied by a galaxy that is much brighter or fainter than itself. Some pairs are very close indeed, and we selected some of these as “interacting,” but most are separated by a distance of a few times their diameter.

Making the selection criteria more restrictive will yield results which lack statistical significance, but we need to take into account that the results we obtain cannot be easily compared with others presented in the literature, e.g., those by Barton et al. (2000) and Barton Gillespie et al. (2003). These authors study galaxies at larger distances than ours which are in pairs with in most cases a smaller separation than our HoGS-selected galaxies. Some of their results, such as an enhanced Ho EW, indeed occur mostly among galaxies with separations of at most a few tens of kpc. We reiterate here some of the advantages of using a sample such as HoGS, as already discussed in the introductory section of this paper, such as the availability of well resolved Ho images for the complete disks of our galaxies; the completeness of our sample, including the important components of dwarf and irregular galaxies which are usually missing from studies of interacting or close-pair galaxies; or the robust selection criteria applied to select our galaxies with close companions, which naturally leads to the availability of a well matched and comparable control sample.

Our result of a moderate increase in the SFR among galaxies with a close companion is not in contradiction to those reported by Di Matteo et al. (2008), who find from an analysis of two large data sets of numerical simulations that galaxy interactions and mergers at low redshifts trigger only moderate SF enhancements. In the large majority of cases, the SFR is enhanced by less than a factor of 5, and only in a few galaxies is the duration of this enhancement larger than 500 Myr. An important difference is that our study targets not only interacting and merging galaxies but also those with close companions. Nonetheless, it seems clear that major starbursts are not necessarily the result of an interaction, as also reported on the basis of observations by e.g., Bergvall et al. (2003), Li et al. (2008), and Jogee et al. (2009).

Our result that the enhancement of the SFR as a result of the presence of a close companion must be due to continuous SF, with a duration of order 10^8–10^9 yr, rather than to a burst of instantaneous SF seems, at face value, less easy to reconcile with the findings of Di Matteo et al. (2008), of generally “short-lived” merger-driven SF episodes. Only in roughly half of their simulated cases does the SF episode last longer than a few times 10^8 yr, and no more than 15% last longer than 5 × 10^9 yr. It is probable that interactions and mergers lead to shorter episodes of enhanced SF than the presence of a close companion as investigated statistically by us, and that the galaxies in our sample are not yet in the more advanced interactive stages. On the other hand, the few interacting/merging galaxies in our sample do not show a hugely different behavior. Further detailed study into the statistical properties of local interacting/merging galaxies is clearly needed, but given the paucity of such systems the challenge is significant.

7.1.2. Interactions and Mergers

We now come back to the interacting galaxies already introduced in the first paragraph of this section. Only for the
purpose of the specific test we are about to describe, we add the advanced merger UGC 5786 to the list of eight interacting galaxies in Table 4. In analogy to what we calculated in Table 1 and discussed in Section 4.1, we now find that the mean SFR for those nine interacting galaxies, normalized by the mean for the same morphological type, is 1.90 ± 0.67, whereas the equivalent number for the EW is 1.59 ± 0.46. Although the ratios are larger than unity, indicating enhanced SF activity in the interacting galaxies, this is not a very strong effect (especially as compared to the values listed in Table 1 for the type 3–8 galaxies), nor is it statistically significant.

This test confirms that although, as we saw before, some interacting/merging galaxies indeed show a high SFR and EW, these few are mostly offset by other interacting galaxies with unremarkable SFRs and EWs. So statistically, even full-blown interactions and mergers do not cause a strong enhancement in the SF activity. Since the shocks and general upheaval in the ISM of merging/interacting galaxies might be expected to lead to enhanced SF, as evidenced in the extreme by the fact that practically all (ULIRGs) or most (LIRGs) of the most extremely star-forming galaxies known are interacting, it is worth considering why interacting galaxies may not have an enhanced SFR. We can identify a number of reasons, including the timescale of the events, the geometry of the merger, and the internal structure of the merger (e.g., the presence/absence of a bulge, or of gas).

The body of observational evidence that one or several of these processes are involved includes the statistical studies reported above, and the fact that a pair of interacting galaxies sometimes shows enhanced SF in only one of the two galaxies, with the other essentially quiescent (UGC 12700 in Table 4 is a good example). It is hard to pinpoint observationally which mechanism is at work exactly, but numerical simulations are ideal to shed more light on these issues. Indeed, Mihos & Hernquist (1996) find that major mergers always lead to strong gaseous inflows, and to “moderate to intense starburst activity.” The structure of the interacting galaxies, more than the orbital geometry of the encounter, is found to influence the level of SF activity, with, e.g., galaxies with dense central bulges reaching higher starburst activity, but at a later stage in the merging than in the case of bulgeless galaxies. The period of enhanced SFR is relatively short, a result also found by Mihos & Hernquist (1994) in an earlier paper on minor mergers.

Further clues emerge from the statistical study of Di Matteo et al. (2007) who study the SF efficiency in numerical simulations of just over 200 galaxy interactions, with varying galaxy parameters, such as bulge-to-disc ratio and gas mass, and different orbital geometries. The galaxy and orbit parameters are found to affect greatly the outcome of the interaction in terms of the SF history. Di Matteo et al. (2007) conclude that mergers are not in all cases triggers of starburst activity (defined as SFRs 10 times higher than those occurring in isolated galaxies), and that, partly because of the short duration of the phase of very high SFR, “galaxy interactions are not a sufficient condition for converting large quantities of gas mass into new stars.” They also find that the enhanced SF occurs mainly in the form of nuclear starbursts, which would be in contradiction to our results on the radial distribution of enhanced SFR and EW (Section 4.3) if the behavior of interactions and mergers and galaxies with close companions were comparable.

We conclude that our general findings on the few interacting/merging galaxies in HzGS are not contradicted by numerical results in the literature, but also that further observational study of individual cases and especially statistically meaningful samples of interacting and merging galaxies are needed to proceed. The scarcity of such systems in the local universe, as highlighted elsewhere in this paper, is an obvious impediment to such progress, though.

7.2. Definitions of Starbursts

Although starbursts are by broad consensus assumed to be important in shaping the universe as we know it, it is not easy to define an all-encompassing and generally applicable set of criteria to define whether a galaxy, or a zone within it, is a starburst. A number of families of overlapping definitions can be found in the literature, which have been reviewed by e.g., Gallagher (2005); Heckman (2005), and Kennicutt et al. (2005), and which can be summarized as follows.

1. Temporarily high SFR, or a substantially higher SFR at the present day (or during the starburst phase) than on average during the past. Essentially, this is what one measures with the EW as used in this paper by making the reasonable assumption that the integrated R-band emission, used as the denominator in the EW measure, summarizes the past SF activity by tracing the total quantity of evolved stars in a galaxy.

2. Exceptionally high SFR. In the extreme, this kind of definition will pick up objects like the LIRGs and ULIRGs, or other objects that are detected in surveys mainly or only because of their extreme SFR (the so-called SCUBA sources may well fall into this category, see Smail et al. 2002).

3. Unsustainably high SFR, for instance compared to the amount of available fuel. Heckman (2005) defines a starburst as a galaxy that is forming stars near the maximum possible rate set by causality, a rate so high that all the gas would be consumed within one dynamical time.

The important point is that although each of these three families of definitions has substantial merit and can be defended individually, they are not mutually inclusive. As seen in Section 6 and in particular in Tables 5 and 6, galaxies which would qualify as a starburst under one of the definitions might not even come close under others.

The galaxies in our sample with the highest EW (definition Class 1, above), those with the highest SFRs (Class 2), and those with the shortest gas-depletion timescales (Class 3) are very different indeed. The list of top 10 EWs is dominated by small late-type galaxies with insignificant SFRs, the top 10 SFR by massive, bright, and relatively distant mid-type spirals, often with evidence for interactions and/or nuclear activity, and the top (bottom, in fact) 10 gas-depletion timescale by early-type galaxies with extremely little Hα but with a nonzero SFR. The question is whether all or only some of these are “starbursts”?

At least for the purpose of this paper, we discard the third family of definitions, as exemplified above by the gas-depletion timescale. Because our sample contains galaxies with a wide variation in the gas content, partly but not exclusively a function of morphological type (see Section 4.4.1), among the galaxies with the lowest gas-depletion times are many with very little gas in the first place, but with some (usually also very little compared across our sample) massive SF. This has nothing to do with starbursts in any sense of the word, even when only considering galaxies of a narrow range of morphological types. Of course, galaxies with high SFRs may also have low gas-depletion timescales, but the point here is that whereas a
low \(\tau\) is often a property of a starburst, it cannot be used to define it.

The two remaining families of definitions each have their merit, and we propose here to use them side by side, noting that they do mean different things. The first category, in which the SFR is now higher than it has, on average, been in the past of a galaxy or region, can be represented by the EW. Lee et al. (2009) use this definition to define global starbursts in dwarf galaxies in the local universe, selecting as such those galaxies which, within their broad morphological type class, have an EW more than 3\(\sigma\) above the median of the log(EW) of the distribution. For the later types, their limit corresponds to an EW of some 10 nm, and under this definition most of the galaxies in our list of top 10 EWs (Table 6) would thus be classed as starburst. This would be a literal interpretation of the term, since these galaxies indeed undergo bursts of SF, with much higher SFR than they have had in the past (as judged by their \(R\)-band continuum light). Note, again, the low absolute SFRs and long gas-depletion timescales of most of these galaxies, with the exceptions (with values \(\tau < 1\) Gyr and SFR $> 1 M_\odot\) \(\text{yr}^{-1}\)) being the well known BCD UGC 8098, and two systems with evidence for merging/interaction.

Most of the “starbursts” as defined by a high EW are \(m\)-type galaxies with very faint absolute magnitude, low mass, and low SFR. The energies involved and integrated masses of stars formed in bursts in such galaxies will thus be limited, although Garnett (2002) shows that they may play an important role in the enrichment of the intergalactic medium (IGM) because small galaxies lose most of their supernova-driven outflowing gas, where massive galaxies will retain it. Also, as we showed in Paper IV, galaxies of these very late types (as well as those of the earliest types, some of which have the lowest gas-depletion timescales as we saw above) make only a very small contribution to the overall current SFR density in the local universe, which is completely dominated by bright galaxies of type 3–5.

The second category, then, is that of galaxies which simply have high current massive SFRs. These are listed in Table 5 and, as discussed above, include three well known Arp systems with evidence of morphological features related to recent or ongoing interaction/merger activity. Most of the other galaxies in this top 10 are large Sc-type spirals. Two of the Arp systems have EWs high enough to make it also into our top 10 EW. The remaining top 10 SFR galaxies have unremarkable EW values, in most cases near or even below the median value for the H\(z\)GS sample. The gas-depletion timescales for all but two of the top 10 SFR galaxies are smaller than the median value across H\(z\)GS, but they are still rather unremarkable, and only that of the advanced merger UGC 5786 (as noted above, the only galaxy to make it into all of our 10 top lists) is in the list of the 10 galaxies with the shortest \(\tau\) values (albeit at number 10).

So are these high-EW galaxies “starbursts”? We do not think so. Some are, and in particular the three Arp systems may qualify (high SFR and EW, low \(\tau\)). But others, such as NGC 7479, are “merely” well known big, bright, star-forming, spiral galaxies.

We now consider the alternative SFR criterion which we denote as \(\Sigma\): the SFR per unit area, and a variation, \(\Sigma_{20}\), which is the central \(\Sigma\) as measured over the central 20% of the 24 mag radius of the galaxy. The top 10 galaxies in these categories are listed in Tables 7 and 8. As we saw in Sections 6.3 and 6.4, most of the galaxies which score highly on \(\Sigma\) or \(\Sigma_{20}\) have in fact unremarkable and in many cases even below-median SFR and EW values, and many are faint and nearby. Whereas one justification for introducing the \(\Sigma\) measures might have been an expectation that they pick up galaxies that form very large numbers of stars across limited spatial areas, in fact small galaxies generally turn out to have the highest values.

Exceptionally large IR luminosity is often used to select those rare galaxies in which copious amounts of SF (in some cases accompanied by nonstellar activity) are hidden behind large quantities of dust, which is heated by the illumination from the SF. We will not comment in detail on the merit of using IR-based definitions to define starbursts (though noting that the IR emission will depend on the properties of the ISM close to the sites of SF), but the H\(z\)GS study does allow us to make two observations. The first is an obvious and well known one, which is that extreme IR emitters (LIRGs and especially ULIRGs) are extremely rare in the local universe. Using such sources to trace the SF patterns in the early universe, while attractive because the sources may be observed with relative ease, implies the caveat that one will only be studying the absolute tip of the iceberg, the very extremes of the overall population of star-forming galaxies.

The second comment is that our study illustrates how badly correlated the IR luminosity and the optical SF parameters can be in the case of dust obscuration. The one LIRG in our H\(z\)GS sample (UGC 3429 = NGC 2146) is an example to note here: it is unremarkable in most of its optical SF properties, and only makes it into one of our top 10 lists (the \(\Sigma_{20}\) one). Its SF is indeed very heavily obscured.

We must draw the rather unsatisfactory overall conclusion from this discussion that it is very difficult indeed to come up with a comprehensive, physically meaningful, and objective definition of a starburst galaxy. We reject definitions based on gas-depletion timescales or comparable parameters, because they will be biased toward gas-poor systems which have nothing to do with starbursts. Definitions based on EW or other parameters which compare current with average past SFRs are sensitive to galaxies that “burst” in the literal sense of the word, but will be biased toward galaxies with very small past SFRs, which tend to be small galaxies whose starbursts will make little impact beyond the galaxy. Finally, we have seen that a large SFR does not exclusively select starburst systems, but also galaxies that are simply large, luminous, and bright, and that normalizing the SFR to area favors small and otherwise unremarkable galaxies.

We can see no obvious solution. Adopting some kind of definition based on IR, submillimeter, or radio emission will introduce other problems, mainly to do with ensuring that the measured emission in fact always traces the starburst activity one wishes to define, and the outcome will in many cases not be directly related to what we see in the UV/optical/near-IR regime where traditionally a lot of “starburst”-oriented work has been performed. Another solution is to restrict the term “starburst” to the handful of galaxies which are beyond doubt special systems, forming copious amounts of stars (such as UGC 5786 which scores highly in all parameters we considered). A final, fairly unattractive, alternative is to continue using the term “starburst” as a rather meaningless adjective to denote a wide-ranging collection of objects (galaxies, regions within galaxies, H\(\text{II}\) regions, etc.) which have little more in common than that they form massive stars at some rate which by some measure can be called enhanced with respect to something else. Apart from leading to inflation in the use of the definition, this makes it almost impossible to use the term to denote that important class of objects which help the universe evolve by injecting significant amounts of mechanical and radiation energy and matter into the ISM and IGM over relatively short timescales. Its
use should in such cases be limited to the clearly defined scientific question that one is attempting to study, for instance, using enhanced EW to define global starbursts in dwarf galaxies, or using an enhanced IR-measured SFR to locate dust-obscured star-forming galaxies in the early universe.

8. CONCLUSIONS

We use the SFR and EW measures of a statistically meaningful sample of local galaxies from our HαGS survey (Paper I) to study to what extent the presence of a close companion affects the massive SF properties of galaxies. To do this, we first define which galaxies can be considered to have a close companion, and then refine our criteria to select the few galaxies which are interacting or merging. We compare the SFR and EW values of those galaxies with a close companion to those of galaxies without companion. In the second part of the paper, we consider which galaxies from our sample have the highest values for SFR parameters such as SFR, EW, or SFR normalized by area, or the lowest values for gas-depletion time. We use this information as input data for a critical discussion of how one can define a “starburst.” Our main conclusions can be summarized as follows.

1. We find that the presence of a close companion significantly raises the SFR, while only very slightly increasing the EW of the Hα emission. This means that although statistically galaxies with close companions form stars at a higher rate, they do this over extended periods of time. A number of tests confirm that this result is robust and not due to sample selection biases. Across our whole sample, and driven mainly by disk galaxies of intermediate Hubble types, the SFR in galaxies with a close companion is enhanced by a factor of around 2 compared to those galaxies without companion, whereas the EW enhancement is barely larger than unity. This implies that the SFR increase triggered by the presence of a companion does not occur in the form of an instantaneous “burst” of massive SF, but rather as a continuous SF period with a duration of order 10^{8}–10^{9} yr.

2. We find a tendency for increased central concentration of the SFR as a result of the presence of a close companion, but none of our tests yields a statistically significant result.

3. We confirm the strong dependence of total and normalized atomic gas mass and of gas-depletion timescale on morphological type, but find no relation between the absence of a companion and the total or normalized H1 mass of a galaxy.

4. The fraction of truly interacting or merging galaxies is very small in the local universe, at around 2%, and possibly 4% of bright galaxies. Most of these interacting galaxies have unremarkable star formation properties.

5. A study of the properties of those galaxies in the survey with the most extreme values for SF indicators such as rate, EW, SFR per area, and gas-depletion timescale yields that each of these indicators favors a different subset of galaxies. We use this information to discuss critically the possible definitions of the term starburst to describe galaxies with enhanced SF activity. We conclude that no one starburst definition can be devised which is objective and generally discriminant. Unless one restricts the use of the term “starburst” to a very small number of galaxies indeed, the term will continue to be used for a heterogeneous and wide-ranging collection of objects with no physical basis for their classification as starburst.

We acknowledge University of Hertfordshire students Robert Dean and Matthew Chenery for their help with the data collection. We thank Elias Brinks and Gerhardt Meurer for advice on the H1 data, and Isaac Shlosman, Janice Lee, John Beckman, Nils Bergvall, Paola Di Matteo, and Rob Kennicutt for constructive comments on an earlier version of the manuscript.

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr).

REFERENCES

Alonso-Herrero, A., Rieke, G. H., Rieke, M. J., Colina, L., Pérez-González, P. G., & Ryder, S. D. 2006, ApJ, 650, 835

Arms, L., Heckman, T., & Miley, G. 1987, AJ, 94, 831

Arp, H. 1966, ApJS, 14, 1

Arribas, S., Bushouse, H., Lucas, R. A., Colina, L., & Borne, K. D. 2004, AJ, 127, 2522

Barton, E. J., Geller, M. J., & Kenyon, S. J. 2000, ApJ, 530, 660

Barton Gillespie, E., Geller, M. J., & Kenyon, S. J. 2003, ApJ, 582, 668

Berentzen, I., Athanassoula, E., Heller, C. H., & Fricke, K. J. 2004, MNRAS, 347, 220

Bergvall, N., Laurikainen, E., & Aalto, S. 2003, A&A, 405, 31

Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2846

Brosch, N., Almgrenito, E., & Heller, A. B. 2004, MNRAS, 349, 357

Bushouse, H. A. 1987, ApJ, 320, 49

Buta, R. J., Corwin, H. G., & Odewahn, S. C. 2007, The de Vaucouleurs Atlas of Galaxies (Cambridge: Cambridge Univ. Press)

Calzetti, D. 2008, in ASP Conf. Ser. 390, Pathways Through an Eclectic Universe, ed. J. H. Knapen, T. J. Mahoney, & A. Vazdekis (San Francisco, CA: ASP), 121

Clements, D. L., Sutherland, W. J., McMahon, R. G., & Saunders, W. 1996, MNRAS, 279, 477

Cox, T. J., Jonsson, P., Somerville, R. S., Primack, J. R., & Dekel, A. 2008, MNRAS, 384, 386

di Matteo, P., Combes, F., Melchior, A.-L., & Semelin, B. 2007, A&A, 466, 61

di Matteo, P., Bournaud, F., Martig, M., Combes, F., Melchior, A.-L., & Semelin, B. 2008, A&A, 492, 31

Ellison, S. L., Patton, D. R., Simard, L., & McConnell, A. W. 2008, AJ, 135, 1877

Gallagher, J. S., III, 2005, in Starbursts: From 30 Doradus to Lyman Break Galaxies, ed. R. de Grijs & R. M. González Delgado (Astrophys. Space Sci. Library, Vol. 329; Dordrecht: Springer), 11

Garnett, D. R. 2002, ApJ, 581, 1019

Genzel, R., et al. 1998, ApJ, 498, 579

Gerin, M., Combes, F., & Athanassoula, E. 1990, A&A, 230, 37

Greve, A., Neininger, N., Sievers, A., & Tarchi, A. 2006, A&A, 459, 441

Heckman, T. M. 2005, in Starbursts: From 30 Doradus to Lyman Break Galaxies, ed. R. de Grijs & R. M. González Delgado (Astrophys. Space Sci. Library, Vol. 329; Dordrecht: Springer), 3

James, P. A., Bretherton, C. F., & Knapen, J. H. 2009, A&A, in press (arXiv:0904.4261) (Paper VII)

James, P. A., Knapen, J. H., Shane, N. S., Baldry, I. K., & de Jong, R. S. 2008a, A&A, 482, 507 (Paper IV)

James, P. A., Prescott, M., & Baldry, I. K. 2008b, A&A, 484, 703 (Paper V)

James, P. A., et al. 2004, A&A, 414, 23 (Paper I)

Jogee, S., et al. 2009, ApJ, 697, 1971

Joseph, R. D., & Wright, G. S. 1985, MNRAS, 214, 37

Kapferer, W., Knapp, A., Schindler, S., Kimeswenger, S., & van Kampen, E. 2005, A&A, 438, 87

Keel, W. C. 1991, in Dynamics of Galaxies and Their Molecular Cloud Distributions, ed. F. Combes & F. Casoli (Dordrecht: Kluwer), 243

Kennicutt, R. C., Jr., Lee, J. C., Funes, S. J. J. G., Sakai, S., & Akiyama, S. 2005, in Starbursts: From 30 Doradus to Lyman Break Galaxies, ed. R. de Grijs & R. M. González Delgado (Astrophys. Space Sci. Library, Vol. 329; Dordrecht: Springer), 187

Kennicutt, R. C., Jr., & Kent, S. M. 1993, AJ, 88, 1094

Kennicutt, R. C., Jr., Lee, J. C., Funes, S. J., José, G., Sakai, S., & Akiyama, S. 2008, ApJS, 178, 247
