DIRAC OPERATORS AND COHOMOLOGY FOR THE GENERAL LINEAR SUPERALGEBRA

WEI XIAO

Abstract. Vogan raised the idea of Dirac cohomology to study representations of semisimple Lie groups and Lie algebras. He conjectured that the infinitesimal character of Harish-Chandra modules are determined by their Dirac cohomology. Huang and Pandžić proved this conjecture and initiated the research on Dirac cohomology for Lie superalgebras based on Kostant’s results. The aim of the present paper is to study Dirac cohomology of unitary representations for the general linear superalgebra and its relation to nilpotent Lie superalgebra cohomology.

Introduction

After Dirac discovered a matrix-valued first-order differential operator and had a remarkable success in the understanding of elementary particles, there have been various analogues of differential operators called Dirac operators. One striking example is the Dirac operator used to construct discrete series representations by Parthasarathy [P] and Atiyah-Schmid [AS]. Relative to Parthasarathy’s geometric setting, Vogan introduced an algebraic version of the Dirac operator; and conjectured that the infinitesimal character of \((g, K)\)-modules is determined by their Dirac cohomology [V]. The conjecture was proved in [HP1]. During the past twelve years, there have been many results of this nature. The Dirac cohomology turned out to be involved deeply with a few classical subjects of representation theory, like the discrete series and branching laws (see [HP3, HPZ]). The relation between Dirac cohomology and nilpotent Lie algebra cohomology (Kostant’s \(u\)-cohomology [Ko1]) is also interesting. It was shown in [HPR] that the Dirac cohomology of unitary modules is up to a twist isomorphic to \(u\)-cohomology for Hermitian types. Similar isomorphisms were obtained by Huang and Xiao in [HX] for all the simple highest weight modules in the setting of cubic Dirac operator (see [Ko2, Ko4]).

On the other hand, Kac’s foundational papers [Ka1, Ka2, Ka3] about Lie superalgebras and their representations had led to an enormous amount of work involving a growing list of researchers. A distinguished feature of the representation theory of Lie superalgebras is that Lie superalgebras have typical and atypical irreducible finite dimensional representations. The nilpotent Lie superalgebra cohomology groups play important roles in the determination of formal character of atypical representations (see [Sc1, Sc2, B, SZ]). Dirac cohomology for Lie superalgebras was introduced by Huang and Pandžić in [HP2]. They defined Dirac cohomology for Lie superalgebras of Riemannian type (see [Ko3]) and proved an analogue of Vogan’s conjecture in the case of basic classical Lie superalgebras.

2010 Mathematics Subject Classification. 17B10.

This work is supported by NSFC Grant No. 11326059.
The aim of this paper is to study Dirac cohomology of unitary representations for the general linear superalgebra $\mathfrak{gl}(m|n)$ and its relation to nilpotent Lie superalgebra cohomology. More precisely, let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a complex Lie superalgebra with the even part \mathfrak{g}_0 and the odd part \mathfrak{g}_1. For $\mathfrak{gl}(m|n)$, the odd part \mathfrak{g}_1 can be written as $\mathfrak{g}_1 = \mathfrak{g}_+ \oplus \mathfrak{g}_-$. Let V be an irreducible unitary $(\mathfrak{g}, \mathfrak{g}_0)$-module. Then we have a Hodge decomposition and the Dirac cohomology of V is up to a twist equal to \mathfrak{g}_+-cohomology and \mathfrak{g}_--homology. Note that in this setting Cheng and Zhang found an explicit formula for the \mathfrak{g}_+-cohomology of unitarizable tensor representations. Therefore their calculation also gives the Dirac cohomology of the associated representations.

An outline of this paper is as follows. In Sect. 2 and 3, we recall the basic notions and properties of Lie superalgebras and corresponding Dirac cohomology. In Sect. 4, a correspondence between Weil representation and related polynomial algebra for $\mathfrak{gl}(m|n)$ is proved. A Hodge decomposition for \mathfrak{g}_+-cohomology and \mathfrak{g}_--homology of unitary representations of $\mathfrak{gl}(m|n)$ is given in Sect. 5.

I wish to thank Prof. J.-S. Huang, for his encouragement and inspiring discussions.

1. Lie Superalgebras of Riemannian Type

In this section we outline the fundamental results on Lie superalgebras used in this paper, referring to [Ko3] and [HP3] for full details. Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a complex Lie superalgebra with a bracket $[\cdot, \cdot]$. A bilinear form B on \mathfrak{g} is called supersymmetric if it is symmetric on \mathfrak{g}_0 and skew-symmetric on \mathfrak{g}_1, and \mathfrak{g}_0 and \mathfrak{g}_1 are orthogonal. The form B is called invariant if $B([X, Y], Z) = B(X, [Y, Z])$ for all $X, Y, Z \in \mathfrak{g}$. We say \mathfrak{g} is of Riemannian type if there exists a nondegenerate supersymmetric invariant bilinear form B on \mathfrak{g}.

We call a subspace of \mathfrak{g}_1 a Lagrangian subspace if it is maximal isotropic. Fix a pair of complementary Lagrangian subspaces with bases ∂_1, x_i for $i = 1, \cdots, n$, such that

$$B(\partial_i, x_j) = \frac{1}{2} \delta_{ij}.$$

This notation is chosen so that the Weyl algebra $W(\mathfrak{g}_1)$ is generated by ∂_i and x_i, with commutation relations:

$$[x_i, x_j]_W = 0; \quad [\partial_i, \partial_j]_W = 0; \quad [\partial_i, x_j]_W = \delta_{ij}.$$

The subscript W is used to distinguish the commutators in $W(\mathfrak{g}_1)$ from the (totally different) bracket in \mathfrak{g}. With $\partial_i = \partial/\partial x_i$, we see that $W(\mathfrak{g}_1)$ can be identified with the algebra of differential operators with polynomial coefficients in variables x_i.

For the basis $\partial_1, \cdots, \partial_n, x_1, \cdots, x_n$ of \mathfrak{g}_1, the dual basis with respect to B is $2x_1, \cdots, 2x_n, -2\partial_1, \cdots, -2\partial_n$. The Casimir element of \mathfrak{g} can then be defined as

$$\Omega_\mathfrak{g} = \sum_k W_k^2 + 2 \sum_i (x_i \partial_i - \partial_i x_i),$$

where W_k is an orthonormal basis of \mathfrak{g}_0 with respect to B. It is easy to check that $\Omega_\mathfrak{g}$ is contained in the center $Z(\mathfrak{g})$ of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}.

The adjoint action of \mathfrak{g}_0 on \mathfrak{g}_1 defines a map

$$\nu : \mathfrak{g}_0 \rightarrow \mathfrak{sp}(\mathfrak{g}_1).$$

We can embed $\mathfrak{sp}(\mathfrak{g}_1)$ into the Weyl algebra $W(\mathfrak{g}_1)$ as a Lie subalgebra consisting of quadratic elements. Start with the symmetrization map $\sigma : S(\mathfrak{g}_1) \rightarrow W(\mathfrak{g}_1)$,
Then we apply Lie algebra morphism α. Since α is a linear isomorphism obtained by first embedding $S(\mathfrak{g}_1)$ into the subset of symmetric tensors in the tensor algebra $T(\mathfrak{g}_1)$, and then projecting to $W(\mathfrak{g}_1)$. Next we show that $\sigma(S^2(\mathfrak{g}_1))$ is isomorphic to $\mathfrak{sp}(\mathfrak{g}_1)$. In fact, one can verify that

\begin{align*}
(1) \quad & \sigma(x_i x_j) = x_i x_j, \quad \sigma(\partial_i \partial_j) = \partial_i \partial_j, \quad \sigma(\partial_i x_j) = \partial_i x_j - \frac{1}{2} \delta_{ij} x_j \partial_i + \frac{1}{2} \delta_{ij} \partial_j
\end{align*}

in the basis (∂_i, x_j). Considering the action of $\sigma(S^2(\mathfrak{g}_1))$ on $\mathfrak{g}_1 \subset W(\mathfrak{g}_1)$ by commutators $[\cdot, \cdot]_W$ in $W(\mathfrak{g}_1)$, the associated matrices in the basis (∂_i, x_j) are

\begin{align*}
\sigma(x_i x_j) & \leftrightarrow -E_{n+i, j} - E_{n+j, i}; \\
\sigma(\partial_i \partial_j) & \leftrightarrow E_{i, n+j} + E_{j, n+i}; \\
\sigma(\partial_i x_j) & \leftrightarrow -E_{ij} - E_{n+i, n+j},
\end{align*}

where E_{kl} is the matrix with 1 in the k-th row and l-th column and 0 elsewhere. Therefore $\sigma(S^2(\mathfrak{g}_1)) \simeq \mathfrak{sp}(\mathfrak{g}_1)$. In view of the map ν mentioned above, we obtain a Lie algebra morphism

$$\alpha : \mathfrak{g}_0 \rightarrow W(\mathfrak{g}_1).$$

Since $\alpha(\mathfrak{g}_0) \subset \sigma(S^2(\mathfrak{g}_1))$, one can assume that

$$\alpha(X) = \sum_{i,j} a_{ij} \sigma(x_i x_j) + \sum_{i,j} b_{ij} \sigma(\partial_i \partial_j) + \sum_{i,j} c_{ij} \sigma(\partial_i x_j), \quad X \in \mathfrak{g}_0.$$

To determine the coefficients, we apply $[\cdot, \partial_k]_W$ to both sides and get

$$[\alpha(X), \partial_k]_W = [X, \partial_k] = -\sum_i a_{ik} x_i - \sum_j a_{kj} x_j - \sum_i c_{ik} \partial_i.$$

Then we apply $B(\cdot, \partial_k)$ and obtain $B([X, \partial_k], \partial_l) = 1/2(a_{lk} + a_{kl})$, that is,

$$a_{lk} + a_{kl} = 2B(X, [\partial_k, \partial_l]).$$

Similarly, we get

$$b_{lk} + b_{kl} = 2B(X, [x_k, x_l])$$

and

$$c_{kl} = -2B(X, [x_k, \partial_l]).$$

With \mathfrak{g}_0 in hand, the explicit formula for α is

\begin{align*}
\alpha(X) &= \sum_{i,j} (B(X, [\partial_i, \partial_j]) x_i x_j + B(X, [x_i, x_j]) \partial_i \partial_j) \\
&\quad - \sum_{i,j} 2B(X, [x_i, \partial_j]) x_j \partial_i - \sum_i B(X, [\partial_i, x_i]), \quad X \in \mathfrak{g}_0.
\end{align*}

Now we can define a diagonal embedding

$$\mathfrak{g}_0 \rightarrow U(\mathfrak{g}) \otimes W(\mathfrak{g}_1)$$

given by

$$X \mapsto X \otimes 1 + 1 \otimes \alpha(X) = X_\Delta.$$

We denote by $\mathfrak{g}_0\Delta$ the image of \mathfrak{g}_0. Denote by $U(\mathfrak{g}_0\Delta)$ the image of $U(\mathfrak{g}_0)$ and by $Z(\mathfrak{g}_0\Delta)$ the image of the center $Z(\mathfrak{g}_0)$ of $U(\mathfrak{g}_0)$. Let $\Omega_{\mathfrak{g}_0}$ be the Casimir element for \mathfrak{g}_0. We denote by $\Omega_{\mathfrak{g}_0\Delta}$ the image of $\Omega_{\mathfrak{g}_0}$. Then

$$\Omega_{\mathfrak{g}_0\Delta} = \sum_{k} (W_k^2 \otimes 1 + 2W_k \otimes \alpha(W_k) + 1 \otimes \alpha(W_k)^2).$$
Kostant [Ko3] proved that $C := \sum_k \alpha(W_k)^2$ is a constant which equal to $1/8$ of the trace of Ω_0 on \mathfrak{g}_1.

2. DIRAC COHOMOLOGY FOR $(\mathfrak{g}, \mathfrak{g}_0)$

In this section, we present the definition and fundamental results on Dirac cohomology for Lie superalgebras ([HP2], [HP3]).

The Dirac operator D is defined to be the following element of $U(\mathfrak{g}) \otimes W(\mathfrak{g}_1)$:

$$D = 2 \sum_{i=1}^n (\partial_i \otimes x_i - x_i \otimes \partial_i).$$

Then D is independent of the choice of basis of \mathfrak{g}_1 and is \mathfrak{g}_0-invariant. The property of this Dirac operator is analogous to the case of reductive Lie algebras.

Proposition 1 ([HP3], Proposition 10.2.2). Let $D \in U(\mathfrak{g}) \otimes W(\mathfrak{g}_1)$ be the Dirac operator. Then

$$D^2 = -\Omega_\mathfrak{g} \otimes 1 + \Omega_{\mathfrak{g}_0 \Delta} - C,$$

where C is the constant mentioned above.

Recall that the Weyl algebra $W(\mathfrak{g}_1)$ can be identified with the algebra of differential operators with polynomial coefficients in the x_i’s, where $i = 1, \cdots, n$. Then we have a natural representation of $W(\mathfrak{g}_1)$ on the polynomial algebra $\mathbb{C}[x_1, \cdots, x_n]$. This is the Weil (or metaplectic) representation which we denote by $M(\mathfrak{g}_1)$. Note that $M(\mathfrak{g}_1)$ is \mathbb{Z}_2-graded. Let $M^+(\mathfrak{g}_1)$ and $M^-(\mathfrak{g}_1)$ be the submodules of $M(\mathfrak{g}_1)$ generated by homogeneous polynomials of even and odd degrees respectively.

Definition 1. Let V be a representation of \mathfrak{g}. Consider the action of $D \in U(\mathfrak{g}) \otimes W(\mathfrak{g}_1)$ on $V \otimes M(\mathfrak{g}_1)$:

$$D : V \otimes M(\mathfrak{g}_1) \rightarrow V \otimes M(\mathfrak{g}_1)^\pm$$

The Dirac cohomology of V is the \mathfrak{g}_0-module

$$H_D(V) := \text{Ker}D/\text{Ker}D \cap \text{Im}D$$

In particular, the \mathbb{Z}_2-grading of $M(\mathfrak{g}_1)$ implies a \mathbb{Z}_2-grading of $H_D(V)$, that is, $H_D(V) = H_D^0(V) \oplus H_D^1(V)$ with even part $H_D^0(V)$ and odd part $H_D^1(V)$.

Theorem 2 ([HP3], Corollary 10.3.4 and Theorem 10.4.7). Let \mathfrak{g} be a basic classical Lie superalgebra with a Cartan subalgebra $\mathfrak{h}_0 \subseteq \mathfrak{g}_0$. Let W be the Weyl group of $(\mathfrak{g}, \mathfrak{h}_0)$. For any $z \in Z(\mathfrak{g})$, there exists an algebra homomorphism $\zeta : Z(\mathfrak{g}) \rightarrow Z(\mathfrak{g}_0) \cong Z(\mathfrak{g}_0, \Delta)$ and a \mathfrak{g}_0-invariant $a \in U(\mathfrak{g}) \otimes W(\mathfrak{g}_1)$, such that

$$z \otimes 1 - \zeta(z) = Da + aD.$$

Moreover, ζ fits into the following commutative diagram:

$$\begin{array}{ccc}
Z(\mathfrak{g}) & \xrightarrow{\zeta} & Z(\mathfrak{g}_0) \\
\gamma \downarrow & & \gamma_0 \downarrow \\
S(\mathfrak{h}_0)^W & \xrightarrow{\text{id}} & S(\mathfrak{h}_0)^W,
\end{array}$$

where the vertical maps γ and γ_0 are Harish-Chandra monomorphism and isomorphism respectively.
For \(\lambda \in \mathfrak{h}_0^\ast \), denote by \(\chi_\lambda : \mathbb{C}(\mathfrak{g}) \to \mathbb{C} \) the character \(\chi_\lambda(z) = \lambda(\gamma(z)) \) for \(z \in \mathbb{C}(\mathfrak{g}) \). Similarly, denote by \(\chi_\lambda^0 : \mathbb{C}(\mathfrak{g}_0) \to \mathbb{C} \) the character \(\chi_\lambda^0(z_0) = \lambda(\gamma_0(z_0)) \) for \(z_0 \in \mathbb{C}(\mathfrak{g}_0) \).

Corollary 3 (HP3, Corollary 10.4.8). Let \(V \) be a representation of a basic classical Lie superalgebra \(\mathfrak{g} \), with infinitesimal character \(\chi_\lambda \). Suppose that a \(\mathfrak{g}_0 \)-module with \(\mathbb{C}(\mathfrak{g}_0) \)-infinitesimal character \(\chi_\mu^0 \) for \(\mu \in \mathfrak{h}_0^\ast \) is contained in the Dirac cohomology \(H^D(V) \). Then \(\chi_\lambda(z) = \chi_\mu^0(\xi(z)) \).

3. The Weil representation

From now on, assume that \(\mathfrak{g} = \mathfrak{gl}(m|n) \) and \(E_{ij} \) is the matrix in \(\mathfrak{gl}(m|n) \) having 1 in the \((i,j)\) position and 0 elsewhere. Let

\[
\mathfrak{g}_0 := \sum_{i,j \leq m} \mathbb{C} E_{ij} + \sum_{k,l > m} \mathbb{C} E_{ki}
\]

be the even part of \(\mathfrak{g} \) with Cartan subalgebra \(\mathfrak{h}_0 := \sum_i \mathbb{C} E_{ii} \subseteq \mathfrak{g}_0 \). Denote

\[
\mathfrak{g}_+ := \sum_{i \leq m < k} \mathbb{C} E_{ik} \quad \text{and} \quad \mathfrak{g}_- := \sum_{i \leq m < k} \mathbb{C} E_{ki}.
\]

Both of them are \(\mathfrak{g}_0 \)-invariant super commutative subalgebras of \(\mathfrak{g} \). The odd space \(\mathfrak{g}_1 = \mathfrak{g}_+ \oplus \mathfrak{g}_- \). We also have the standard Borel subalgebra \(\mathfrak{b} := \sum_{i \leq j} \mathbb{C} E_{ij} \).

Denote

\[
n^+ := \sum_{i < j} \mathbb{C} E_{ij} \quad \text{and} \quad n^- := \sum_{i > j} \mathbb{C} E_{ij}.
\]

Then \(n^+ \) and \(n^- \) are invariant under the adjoint action of \(\mathfrak{h}_0 \). We have

\[
\mathfrak{g} = n^+ \oplus \mathfrak{h}_0 \oplus n^- \quad \text{and} \quad \mathfrak{b} = \mathfrak{h}_0 \oplus n^+.
\]

Thus the Harish-Chandra homomorphism \(\gamma : \mathbb{C}(\mathfrak{g}) \to \mathfrak{S}(\mathfrak{h}_0) \) can be defined in the standard way.

Let \(\Delta \subset \mathfrak{h}_0^\ast \) be the root system of \((\mathfrak{g}, \mathfrak{h}_0) \), with positive root system \(\Delta^+ \) corresponding to \(\mathfrak{b} \). The set \(\Delta^+ \) decomposes as \(\Delta_0^+ \cup \Delta_1^+ \), where \(\Delta_0^+ \) and \(\Delta_1^+ \) denote the sets of the even and odd positive roots respectively. Set

\[
\rho_0 = \frac{1}{2} \sum_{\beta \in \Delta_0^+} \beta, \quad \rho_1 = \frac{1}{2} \sum_{\beta \in \Delta_1^+} \beta \quad \text{and} \quad \rho = \rho_0 - \rho_1.
\]

The supertrace function on \(\mathfrak{g} \) can be defined as

\[
\text{str}A = \sum_{i \leq m} a_{ii} - \sum_{j > m} a_{jj},
\]

where \(a_{kl} \) is the \((k,l)\) entry of \(A \in \mathfrak{g} \). Therefore

\[
B(X,Y) := \frac{1}{2} \text{str}(XY)
\]

is a nondegenerate supersymmetric invariant bilinear form on \(\mathfrak{g} \) (see Proposition 1.1.2 in [Ka2]). Therefore \(\mathfrak{g} \) is of Riemannian type. In particular, we can assume that

\[
(3) \quad \partial_{(i-1)n+(k-m)} = E_{ik} \quad \text{and} \quad x_{(i-1)n+(k-m)} = E_{ki}
\]
for all $i \leq m < k$. They form basis of \mathfrak{g}_+ and \mathfrak{g}_- respectively. Let $\mathbb{C}[x_1, \cdots, x_{mn}]$ be the polynomial algebra generated by x_1, \cdots, x_{mn}. Then it is a graded \mathfrak{g}_0-module under the natural adjoint action.

Theorem 4. Let V be a representation of $\mathfrak{g} = \mathfrak{gl}(m|n)$, with $Z(\mathfrak{g})$-infinitesimal character χ_λ for $\lambda \in \mathfrak{h}_0^*$. Suppose that $H_D(V)$ contains a \mathfrak{g}_0-submodule N with $Z(\mathfrak{g}_0)$-infinitesimal character χ_μ^0 for $\mu \in \mathfrak{h}_0^*$. Then $\chi_\lambda = \chi_\mu$.

Proof. An argument similar to the one used in [HP3] (10.3 and 10.4) shows that Theorem 2 and Corollary 3 also hold for $\mathfrak{gl}(m|n)$. Let $v \in N$ represent a nonzero Dirac cohomology class. It follows from Theorem 2 that for all $z \in Z(\mathfrak{g})$, there exists $a \in U(\mathfrak{g}) \otimes W(\mathfrak{g}_1)$ such that

$$z \otimes 1 - \chi_\lambda(z) = (\zeta(z) - \chi_\mu^0(\zeta(z))) + (Da + aD) + (\chi_\mu^0(\zeta(z)) - \chi_\lambda(z)).$$

Applying this identity to v, the left side becomes zero since

$$(z \otimes 1 - \chi_\lambda(z)) \cdot (V \otimes M(\mathfrak{g}_1)) = 0.$$

The right side is $(\chi_\mu^0(\zeta(z)) - \chi_\lambda(z))v \pmod{\text{Im} D}$. Then $(\chi_\mu^0(\zeta(z)) - \chi_\lambda(z))v \in \text{Im} D \subseteq \text{Ker} D$, which is zero in $H_D(V)$. Thus $\chi_\mu^0(\zeta(z)) - \chi_\lambda(z) = 0$. On the other hand, one has

$$\chi_\mu^0(\zeta(z)) = (\mu \circ \gamma_0 \circ \zeta)(z) = (\mu \circ \text{id} \circ \gamma)(z) = \chi_\mu(z).$$

Then we conclude that $\chi_\lambda = \chi_\mu$. \qed

Recall the formula (2) of Lie algebra morphism

$$\alpha : \mathfrak{g}_0 \to W(\mathfrak{g}_1).$$

Put

$$\alpha_1(X) = - \sum_{i,j} 2B(X, [x_i, \partial_j]) x_j \partial_i$$

and

$$\alpha_2(X) = - \sum_i B(X, [\partial_i, x_i]).$$

for $X \in \mathfrak{g}_0$. Since $[\partial_i, \partial_j] = [x_i, x_j] = 0$ in this case, we have

$$\alpha(X) = \alpha_1(X) + \alpha_2(X).$$

Lemma 5. Let f be a polynomial in $\mathbb{C}[x_1, \cdots, x_{mn}]$. Then for any $X \in \mathfrak{g}_0$,

$$\alpha_1(X)f = [X, f],$$

where the left side is given by the action of Weil representation and the right side is given by the usual adjoint action.

Proof. By linearity, it suffices to consider the case when f is a monomial, that is,

$$f = \prod_k x_k^{q_k}, \quad q_k \in \mathbb{Z}_{\geq 0} \text{ for } k = 1, \cdots, mn.$$

Since \mathfrak{g}_- is \mathfrak{g}_0-invariant, we can obtain

$$[X, x_i] = - \sum_j 2B([X, x_i], \partial_j)x_j = - \sum_j 2B(X, [x_i, \partial_j])x_j.$$

Then $\beta_0 = E$. First, we observe that $\alpha_1(X) = \sum_i [X, x_i] \partial_i$. It follows that
\[
\alpha_1(X)f = \sum_i [X, x_i] \partial_i \prod_k x_k^{q_k} = \sum_i [X, x_i] \frac{q_i}{x_i} \prod_k x_k^{q_k} = \sum_i x_i^{q_1} \cdots [X, x_i^{q_i}] \cdots x_i^{q_m} = [X, \prod_k x_k^{q_k}] = [X, f].
\]
\[
\square
\]

Lemma 6. Let $\mathbb{C}_{-\rho_1}$ be the one-dimensional \mathfrak{g}_0-module with weight $-\rho_1$. Given $v \in \mathbb{C}_{-\rho_1}$, then $\alpha_2(X)v = X \cdot v$.

Proof. First, we observe that
\[
\alpha_2(X) = -\sum_i B(X, [\partial_i, x_i]) = -\sum_{i \leq m < j} B(X, E_{ii} + E_{jj}).
\]
If $E_{kl} \in \mathfrak{g}_0$ and $k \neq l$, then $B(E_{kl}, E_{ii} + E_{jj}) = 0$ for all $i \leq m < j$. So $\alpha_2(E_{kl})v = 0 = E_{kl} \cdot v$. If $k = l$, then $E_{kk} \in \mathfrak{g}_0$. Let β_i be the positive root associated with ∂_i. Then $\beta_i \in \Delta^+_1$ and
\[
\alpha_2(E_{kk})v = -\sum_i B(E_{kk}, [\partial_i, x_i])v = -\sum_i B([E_{kk}, \partial_i], x_i)v = -\sum_i \beta_i(E_{kk})B(\partial_i, x_i)v = -\frac{1}{2} \sum_i \beta_i(E_{kk})v = -\rho_1(E_{kk})v = E_{kk} \cdot v.
\]
\[
\square
\]

It follows immediately from Lemma 3 and Lemma 6 that the action of $\alpha(\mathfrak{g}_0)$ on $M(\mathfrak{g}_1)$ and the adjoint action $\text{ad} \mathfrak{g}_0$ on $\mathbb{C}[x_1, \cdots, x_m]$ differ by a twist of the one-dimensional character $\mathbb{C}_{-\rho_1}$. We have

Proposition 7. There exists a \mathfrak{g}_0-module isomorphism
\[
M(\mathfrak{g}_1) \simeq \mathbb{C}[x_1, \cdots, x_m] \otimes \mathbb{C}_{-\rho_1}.
\]

We see that the symmetric algebras $S(\mathfrak{g}_\pm)$ of \mathfrak{g}_\pm are graded with $S(\mathfrak{g}_\pm) = \sum_{i=0}^\infty S^i(\mathfrak{g}_\pm)$, where $S^i(\mathfrak{g}_\pm)$ are homogeneous of degree i in \mathfrak{g}_\pm. We can identify \mathfrak{g}_\pm^* with $\mathfrak{g}_- \otimes \mathbb{C}$ by the pairing $2B(\cdot, \cdot) : \mathfrak{g}_+ \times \mathfrak{g}_- \to \mathbb{C}$. The identification is \mathfrak{g}_0-invariant since B is invariant. Upon identifying $S(\mathfrak{g}_+)$ with $S(\mathfrak{g}_-)$, and then the polynomial algebra $\mathbb{C}[x_1, \cdots, x_m]$, the cohomology group $H^i(\mathfrak{g}_+, V)$ is given by the complex $C = (\mathfrak{g}_- \otimes S^i(\mathfrak{g}_-), \delta)$, where $d = \sum_i \partial_i \otimes x_i$ is \mathfrak{g}_0-invariant (cf. [CZ], 3.7). On the other hand, the homology group $H_i(\mathfrak{g}_-, V)$ is given by the complex $((\mathfrak{g}_- \otimes S^i(\mathfrak{g}_-), \delta)$, with \mathfrak{g}_0-invariant differential operator $\delta = \sum_i x_i \otimes \partial_i$. Then the following lemma is an immediate consequence of Proposition 7.

Proposition 8. If we consider d and δ as operators on $V \otimes M(\mathfrak{g}_1)$, then as \mathfrak{g}_0-modules, the cohomology of d is identified with $H^*(\mathfrak{g}_+, V) \otimes \mathbb{C}_{-\rho_1}$, while the homology of δ is identified with $H_*(\mathfrak{g}_-, V) \otimes \mathbb{C}_{-\rho_1}$.

4. HODGE DECOMPOSITION FOR \mathfrak{g}_+-COHOMOLGY

Now we consider Hermitian forms on $V \otimes M(\mathfrak{g}_1)$ for unitarizable module V. Let ω be the antilinear anti-involution of $U(\mathfrak{g})$ defined by

$$E_{ij} \mapsto E_{ji}, \quad 1 \leq i, j \leq m + n.$$

In general, for any $a, b \in U(\mathfrak{g})$, we have $\omega(ab) = \omega(b)\omega(a)$. Recall that we say a \mathbb{Z}_2-graded \mathfrak{g}-module V is unitary if it admits a positive definite contravariant Hermitian form $\langle \cdot, \cdot \rangle_V$, where contravariance means that $\langle av, v' \rangle_V = \langle v, \omega(a)v' \rangle_V$ for all $a \in \mathfrak{g}$ and $v, v' \in V$. On the other hand, there is a unique positive definite contravariant Hermitian form $\langle \cdot, \cdot \rangle_M$ on $M(\mathfrak{g}_1)$, with $\langle 1, 1 \rangle_M = 1$, where contravariance means that $\langle af, f' \rangle_M = \langle f, \omega(a)f' \rangle_M$ for all $a \in \mathfrak{g}$ and $f, f' \in M$. Here, we should emphasize that the form is given explicitly by

$$\left(\prod_k x_k^{p_k} \right) \left(\prod_k x_k^{q_k} \right)_M = \prod_k p_k! \quad \text{if } p_k = q_k \text{ for all } k,$$

$$= 0 \quad \text{otherwise},$$

where $p_k, q_k \in \mathbb{Z}_{\geq 0}$.

Let V be a $(\mathfrak{g}, \mathfrak{g}_0)$-module, that is, viewed as a \mathfrak{g}_0-module, V is a direct sum of finite dimensional simple modules with finite multiplicities. We consider the tensor product Hermitian forms on $V \otimes M(\mathfrak{g}_1)$; this form will be denoted by $\langle \cdot, \cdot \rangle$.

Lemma 9. Let V be a unitary $(\mathfrak{g}, \mathfrak{g}_0)$-module. With respect to the form $\langle \cdot, \cdot \rangle$ on $V \otimes M(\mathfrak{g}_1)$, the operators d and δ are adjoints of each other. Hence the Dirac operator $D = 2(d - \delta)$ is anti self-adjoint.

Proof. In view of [3], we have $\omega(\partial_i) = x_i$ and $\omega(x_i) = \partial_i$. Then the lemma follows from the fact that $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_M$ are contravariant. \hfill \Box

Recall that $D^2 = -\Omega_\mathfrak{g} \otimes 1 + \Omega_{\mathfrak{g}_+} - C$. Suppose that $\Omega_\mathfrak{g}$ acts on V by a constant. Since $\Omega_{\mathfrak{g}_+}$ acts by a scalar on each irreducible \mathfrak{g}_0-submodules in $V \otimes M(\mathfrak{g}_1)$, the same is true for D^2.

Lemma 10. If the $(\mathfrak{g}, \mathfrak{g}_0)$-module V has infinitesimal character, then $V \otimes M(\mathfrak{g}_1) = \text{Ker } D^2 \oplus \text{Im } D^2$.

Proof. Both V and $M(\mathfrak{g}_1)$ are direct sums of finite dimensional irreducible \mathfrak{g}_0-modules, so is the tensor product $V \otimes M(\mathfrak{g}_1)$. Then $V \otimes M(\mathfrak{g}_1)$ is a direct sum of eigenspaces for $D^2 = -\Omega_\mathfrak{g} \otimes 1 + \Omega_{\mathfrak{g}_+} - C$. The zero eigenspace is $\text{Ker } D^2$ and the sum of all the nonzero eigenspaces is $\text{Im } D^2$. \hfill \Box

Lemma 11. For Dirac operator D, we have

(i) $\text{Ker } D^2 = \text{Ker } D = \text{Ker } d \cap \text{Ker } \delta$;

(ii) With respect to the form $\langle \cdot, \cdot \rangle$, $\text{Im } d$ is orthogonal to $\text{Ker } \delta$ and $\text{Im } \delta$, $\text{Im } \delta$ is orthogonal to $\text{Ker } d$.

Proof. (i) For any $a \in V \otimes M(\mathfrak{g}_1)$, it follows from $\langle Da, Da \rangle = \langle -D^2a, a \rangle$ that $Da = 0$ if and only if $D^2a = 0$. On the other hand, $\text{Ker } d \cap \text{Ker } \delta \subseteq \text{Ker } D$ since $D = 2(d - \delta)$. Conversely, if $Da = 0$, then $da = \delta a$ and $\delta da = \delta^2a = 0$. So $\langle da, da \rangle = \langle a, \delta da \rangle = 0$. Hence $da = 0$. Similarly we get $\delta a = 0$. (ii) It is an easy consequence of the fact that d and δ are adjoints of each other. \hfill \Box

Theorem 12. Let V be an irreducible unitary $(\mathfrak{g}, \mathfrak{g}_0)$-module. Then
(i) $V \otimes M(g_1) = \text{Ker} D \oplus \text{Im} d \oplus \text{Im} \delta$;
(ii) $\text{Ker} d = \text{Ker} D \oplus \text{Im} d$;
(iii) $\text{Ker} \delta = \text{Ker} D \oplus \text{Im} \delta$.

In particular, there exists g_0-module isomorphisms:

$$H_D(V) \simeq H^*(g_+, V) \otimes \mathbb{C}_{\rho_1} \simeq H_*(g_-, V) \otimes \mathbb{C}_{\rho_1}.$$

Proof. (i) In view of Lemma 11, we see that Ker D, Im d and Im δ are disjoint subspaces of $V \otimes M(g_1)$. Since $D = 2(d - \delta)$, one has $\text{Im} D^2 \subseteq \text{Im} D \subseteq \text{Im} d \oplus \text{Im} \delta$. It follows from Lemma 10 and Lemma 11 that

$$V \otimes M(g_1) = \text{Ker} D^2 \oplus \text{Im} D^2 \subseteq \text{Ker} D \oplus \text{Im} d \oplus \text{Im} \delta.$$

Then (i) follows and $\text{Im} D^2 = \text{Im} D = \text{Im} d \oplus \text{Im} \delta$. The formula (ii) is an obvious consequences of (i) and Lemma 11, so is (iii). Thus

$$H_D(V) = \text{Ker} D \simeq \text{Ker} d/\text{Im} d \simeq \text{Ker} \delta/\text{Im} \delta.$$

The theorem is now evident from Proposition 8. \[\square\]

References

[AS] M. Atiyah, W. Schmid, *A geometric construction of the discrete series for semisimple Lie groups*, Invent. Math. 42 (1977), 1-62.

[B] J. Brundan, *Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n)*, J. Amer. Math. Soc. 16 (2003) 185-231.

[CZ] S.-J. Cheng, R.B. Zhang, *An analogue of Kostant’s u-cohomology formula for the general linear superalgebra*, Int. Math. Res. Not. 1 (2004), 31-53.

[HP1] J.-S. Huang, P. Pandžić, *Dirac cohomology, unitary representations and a proof of a conjecture of Vogan*, J. Amer. Math. Soc. 15 (2002), 185-202.

[HP2] J.-S. Huang, P. Pandžić, *Dirac cohomology for Lie superalgebras*, Transform. Groups 10 (2005), 201-209.

[HP3] J.-S. Huang, P. Pandžić, *Dirac operator in Representation Theory*, Math. Theroy Appl., Birkhäuser, 2006.

[HPR] J.-S. Huang, P. Pandžić, D. Renard, *Dirac operators and Lie algebra cohomology*, Represent. Theory 10 (2006), 299-313.

[HX] J.-S. Huang, W. Xiao, *Dirac cohomology of highest weight modules*, Selecta Math.(N.S.) 18 (2012), 803-824.

[HPZ] J.-S. Huang, P. Pandžić, F.-H Zhu, *Dirac cohomology, K-characters and branching laws*, Amer. J. Math. 135 (2013), 1253-1269.

[Ka1] V. Kac, *Classification of simple Lie superalgebras*, Funct. Anal. Appl. 9 (1975), 263-265.

[Ka2] V. Kac, *Lie Superalgebras*, Adv. Math. 26 (1977), 8-96.

[Ka3] V. Kac, *Characters of typical representations of classical Lie superalgebras*, Comm. Algebra. 5 (1977), 889-907.

[Ko1] B. Kostant, *Lie algebra cohomology and the generalized Borel-Weil theorem*, Ann. of Math. (2) 74 (1961), 329-387.

[Ko2] B. Kostant, *A cubic Dirac operator and the emergence of Euler number multiplets for representations of equal rank subgroups*, Duke Math. J. 100 (1999) 447-501.

[Ko3] B. Kostant, *The Weyl algebra and the structure of all Lie superalgebras of Riemannian type*, Transform. Groups 6 (2001), 215-226.

[Ko4] B. Kostant, *Dirac cohomology for the cubic Dirac operator*, Studies in Memory of Issai Schur, Progr. Math. 210 (2003) 69-93.

[P] R. Parthasarathy, *Dirac operator and the discrete series*, Ann. of Math. 96 (1972), 1-30.

[Se1] V. Serganova, *Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra gl(m|n)*, Selecta Math. (N.S.) 2 (1996), 607-651.

[Se2] V. Serganova, *Characters of irreducible representations of simple Lie superalgebras*, in: Proceedings of the International Congress of Mathematicians, vol. II, Berlin, 1998, Doc. Math. (1998) 583-593, Journal der Deutschen Mathematiker-Vereinigung.
[SZ] Y. Su, R.B. Zhang, *Character and dimension formulae for general linear superalgebra*, Adv. Math. **211**(2007) 1-33.

[V] D. Vogan Jr., *Dirac operators and unitary representations*, 3 talks at MIT Lie groups seminar, Fall 1997.

College of Mathematics and Computational Science, Shenzhen University, Shenzhen, 518060, Guangdong, China

E-mail address: xiaow@szu.edu.cn