Breast cancer is the most frequently diagnosed malignancy amongst females worldwide. In recent years the management of this disease has transformed considerably, including the administration of chemotherapy in the neoadjuvant setting. Aside from increasing rates of breast conserving surgery and enabling surgery via tumour burden reduction, use of chemotherapy in the neoadjuvant setting allows monitoring of in vivo tumour response to chemotherapeutics. Currently, there is no effective means of identifying chemotherapeutic responders from non-responders. Whilst some patients achieve complete pathological response (pCR) to chemotherapy, a good prognostic index, a proportion of patients derive little or no benefit, being exposed to the deleterious effects of systemic treatment without any knowledge of whether they will receive benefit. The identification of predictive and prognostic biomarkers could confer multiple benefits in this setting, specifically the individualization of breast cancer management and more effective administration of chemotherapeutics. In addition, biomarkers could potentially expedite the identification of novel chemotherapeutic agents or increase their efficacy. Micro-RNAs (miRNAs) are small non-coding RNA molecules. With their tissue-specific expression, correlation with clinicopathological prognostic indices and known dysregulation in breast cancer, miRNAs have quickly become an important avenue in the search for novel breast cancer biomarkers. We provide a brief history of breast cancer chemotherapeutics and explore the emerging field of circulating (blood-borne) miRNAs as breast cancer biomarkers for the neoadjuvant treatment of breast cancer. Established molecular markers of breast cancer are outlined, while the potential role of circulating miRNAs as chemotherapeutic response predictors, prognosticators or potential therapeutic targets is discussed.

Breast cancer is the most frequently diagnosed cancer among women worldwide, accounting for 23% of total cancer cases. In 2012, worldwide 1.7 million women were diagnosed with breast cancer.

Key words: miRNA, micro-RNA, neoadjuvant chemotherapy, breast cancer, circulating

Abbreviations: ER: oestrogen receptor; Her2: Erbb2 receptor; miRNA: micro-RNA; NAC: neo-adjuvant chemotherapy; NICE: National Institute for Health and Care Excellence; pCR: complete pathological response; PR: progesterone receptor

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

ORCID: 0000-0002-3155-0334

This article was published online on 30 January 2016. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected on 4 February 2016.

Grant sponsor: Breast Cancer Research (BCR)

DOI: 10.1002/ijc.29985

History: Received 11 June 2015; Accepted 22 Dec 2015; Online 12 Jan 2016

Correspondence to: James Andrew Lawrence Brown, Discipline of Surgery, School of Medicine, National University of Ireland Galway, Costello Road, Galway, Ireland, Tel.: +353 91 493041, E-mail: james.brown@nuigalway.ie or Michael J. Kerin, Discipline of Surgery, School of Medicine, Clinical Science Institute, National University of Ireland Galway, Costello Road, Galway, Ireland, Tel.: +353 91 524390, E-mail: michael.kerin@nuigalway.ie

cancer, representing a >20% increase in incidence since 2008. Concurrently, worldwide more than 520,000 women died from breast cancer, representing a 14% increase in annual breast cancer related mortality and confirming breast cancer as the most common cause of cancer-related deaths amongst women. Within developed countries the incidence of breast cancer continues to rise. This is likely due to the implementation of screening programs and improved imaging techniques, leading to many breast cancers being diagnosed at an earlier stage. Furthermore, our improved molecular understanding of breast cancer and the use of increasingly effective chemotherapeutics has resulted in improved patient outcomes, with mortality decreasing by 2 to 3% per year in developed countries.

Historically, neoadjuvant chemotherapy (NAC) was reserved for locally advanced breast carcinoma, converting technically inoperable tumours into candidates for mastectomy. With the increasing trend toward breast conserving surgery, however, the use of primary systemic therapy was extended to include patients with invasive, early-stage operable tumours. The adoption of NAC has led to increasing rates of breast conserving surgery and provides an opportunity to assess in vivo tumour responsiveness to chemotherapeutics. Although previous studies failed to identify any improvement in disease free and overall survival between neoadjuvant and adjuvant therapies, it has been established that patients achieving complete pathological response (pCR) to NAC therapy experience improved outcomes, while unresponsive patients or patients with progressive disease during NAC experience worse outcomes. Supporting this, it has been shown that the early response to neoadjuvant treatment can predict pCR and therefore may serve as a predictor of long-term outcome.
Unfortunately at present there is no reliable, clinically validated, method for predicting chemotherapeutic responders from non-responders. While the likelihood of achieving pCR varies greatly by breast cancer subtype (from 7.5% in luminal cancers to 45% in HER2/Triple negative cancers), many patients are exposed to the potential morbidity and mortality associated with chemotherapy, without any certainty of benefit from treatment. This has resulted in global efforts to discover breast cancer biomarkers that can predict and detect response to neoadjuvant therapy. Such biomarkers could confer multiple benefits, including tailored patient-care programs, reduced chemotherapy-induced morbidity or mortality and potentially expedite the identification of effective new therapies for the treatment of breast carcinoma. At present, circulating micro-RNAs (miRNAs) represent an important avenue in the search for a non-invasive biomarker for Breast Cancer Response prediction and monitoring for neoadjuvant chemotherapy. The evidence for this is discussed further in the following sections.

Micro-RNAs

Micro-RNAs are a naturally-occurring class of short, non-coding RNA molecules ~19 to 25 nucleotides in length. miRNAs have been demonstrated to regulate gene expression at the post-transcriptional level, via binding primarily to 3' or 5' untranslated regions of target messenger RNAs (mRNA), leading to inhibition of translation or mRNA degradation. Interestingly in addition to their inhibitory role, miRNAs have recently been demonstrated to facilitate increases in transcript levels, under certain conditions.

Since their discovery in 1993, knowledge of the role of miRNAs in regulating gene expression across a spectrum of pathological processes has grown exponentially. It is now recognized that certain miRNAs are highly specific for tissue and developmental stages, exerting a regulatory effect on a myriad of cellular processes including cell development, differentiation, proliferation and apoptosis. Many miRNA are expressed in tissue- and disease-specific patterns and are known to correlate with clinicopathological features and prognostic indices across a spectrum of pathologies. However, to date few studies have investigated the effect of neoadjuvant chemotherapy on miRNA expression patterns in breast cancer.

miRNA biosynthesis and mechanisms of action

miRNA generation is a complex process that commences in the nucleus. miRNA genes are transcribed by RNA polymerase II/III as primary miRNAs (pri-miRNAs). These pri-miRNAs are processed by the Drosha-DGCR8 complex, becoming pre-miRNAs. Pre-miRNAs are transported into the cell cytoplasm by the nuclear export protein Exportin 5, where they are cleaved by the RNase III enzyme Dicer, with either TRBP (Trans-activator RNA-binding protein) or PACT (protein activated by transforming growth factor β) bound to argonaute-2 (Ago2) containing complexes, with only a ‘un-encapsulated’ miRNA or miRNA protected inside membranes. The miRNA remains unconfirmed. It appears there are two, complimentary, sources of circulating miRNA: (i) miRNA released passively into the bloodstream following tissue injury and cell death and (ii) miRNA actively exported from cells into the bloodstream. However, in both cases miRNA could be either protein bound “un-encapsulated” miRNA or miRNA protected inside membrane coated vesicles (such as exosomes). Of note, it has been demonstrated that an estimated >90% of circulating miRNAs are bound to argonaute-2 (Ago2) containing complexes, with only a minority being transported packaged in vesicles. However, controversy regarding the proportions of free and membrane-bound circulating miRNA remains, due to a lack of standardization of sample processing techniques, preventing data from individual studies from being directly compared.

Breast Cancer and Neoadjuvant Chemotherapy

The first successful chemotherapeutic regimen for operable breast cancer was described in 1976 by Bonadonna et al. The combination adjuvant therapy with cyclophosphamide, methotrexate and fluorouracil (CMF) was shown to significantly reduce post-operative recurrence rates. By the early 1990s, anthracycline-containing regimens were introduced and are now recognized as superior to treatment with CMF alone. Importantly, it was during this time that administration of chemotherapy in the preoperative or neoadjuvant period began. The National Surgical Adjuvant Breast and Bowel Project B-27 and the Aberdeen trial recognized the addition of a taxane to an anthracycline-based chemotherapy further reduced the risk of recurrence, and in the neoadjuvant setting improved the rates of complete pathological remission and therefore overall outcome.

In recent years, it is recognized that breast cancer is a heterogeneous disease characterised by discrete breast cancer subtypes. While the exact number of subtypes remains to be elucidated, in a landmark paper, Sorlie et al. described
Luminal A, Luminal B, Basal (also known as “triple negative” tumours) and HER2 over-expressing (Table 1). More recently, 10 distinct breast cancer subtypes have been proposed, although this stratification is not yet applied clinically. Recently, 10 distinct breast cancer subtypes have been proposed, although this stratification is not yet applied clinically.45 Currently utilized breast cancer subtypes have known distinct clinical behaviors and responses to therapy and are stratified according to presence or absence of the oestrogen receptor (ER), progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2) (discussed further in Current and Potential Molecular Markers Used to Guide the Administration of Chemotherapy section). While no gold-standard chemotherapeutic regimen currently exists for breast cancer, it is generally accepted that an anthracycline-based regimen be utilized, with the addition of a taxane.46,47 For patients with breast cancer overexpressing the HER2 receptor, targeted therapy with the humanized monoclonal antibody Trastuzumab is recommended by NICE clinical guidelines48 (Fig. 2; Table 2).

Current and Potential Molecular Markers Used to Guide the Administration of Chemotherapy
The current gold standard molecular markers for Breast Cancer Response prediction are the ER, PR and HER2 receptors and the proliferation marker Ki67. The American Society of Clinical Oncology guidelines mandate that the immunohistochemical markers ER, PR and HER2 be assessed in all cases of invasive breast carcinoma to guide management decisions, including choice of chemotherapeutic regimen.53 Further markers such as Claudin and specific miRNAs have been proposed and are presently undergoing further validation (Fig. 3).54
Figure 2. Breast cancer biomarkers in the neoadjuvant chemotherapy setting. Currently used clinical biomarkers (solid lines); new potentially clinically relevant biomarkers (dotted lines).

ER/PR receptor

ER/PR expression, as identified by immunohistochemistry, provides an index for sensitivity to endocrine treatment and acts as a marker of chemosensitivity. Approximately two thirds of tumours display ER-positivity, correlating with improved responsiveness to endocrine therapy and improved patient outcomes. PR expression is strongly dependent on ER expression, with <1% of breast cancers displaying sole PR-positivity. In this instance, limited benefits from endocrine therapy have been described.\(^5^5\) Associating chemotherapeutic treatments and ER/PR status, ER positivity correlates with poor tumour response.\(^5^6\) However, ER-negative tumours are more likely to achieve complete pathological remission and thus experience improved outcomes with chemotherapy.\(^5^7\)

HER2 (ERBB2)

HER2 is a membrane tyrosine kinase receptor that upon activation affects cell proliferation and survival.\(^5^8\) It is located on chromosome 17q12 and is an oncogene, amplified in \(~15\) to \(20\)% of breast cancer cases. Initially identified as a prognostic marker, HER2 overexpression is associated with increased relapse rates, increased incidence of metastases and worse overall survival.\(^5^9,6^0\) However, the development of therapies specifically targeting HER2 has resulted in significant improvements in outcomes for patients with HER2-positive breast cancer.\(^6^1\) Risk of relapse and death are reduced by approximately 50% and 30% respectively, improving disease-free and overall survival.\(^6^2\) In 2013 the addition of Trastuzumab to neoadjuvant chemotherapy in patients with HER2-positive tumours was found to double complete pathological remission rates (compared to chemotherapy alone) and was associated with a longer event free survival.\(^6^3\) Most recently, use of neoadjuvant followed by adjuvant HER2 has demonstrated sustained benefit in event-free survival and a strong association with complete pathological remission.\(^6^4\)

Basal/triple negative breast cancers

“Basal” and “triple negative (TNBC)” breast cancer subtypes overlap greatly in terms of their immunophenotype (ER, PR & HER2 negative), aggressive clinical behavior and increased prevalence in younger, African-American patients. However, they are not synonymous, as not all basal cancers determined by gene expression analysis lack ER, PR and HER2 and not all triple-negative cancers show a basal phenotype by expression array analysis.\(^6^5\) Due to a more aggressive clinical pathology, both of these subtypes are associated with a higher risk of mortality. Both subtypes lack all known effective biomarkers and therefore targeted therapies. However, both subtypes are highly sensitive to neoadjuvant chemotherapy.\(^6^6–6^8\) The highest rates of complete pathological remission have been achieved in TNBC tumours utilising a neoadjuvant regimen of doxorubicin and cyclosphosphamide, while the addition of bevacizumab is expected to increase this rate further.\(^5^3\)

Ki67

Ki67 is a nuclear non-histone protein utilized as a marker of proliferation, as it is absent in quiescent cells, yet universally expressed among proliferating cells. Immunohistochemical staining of Ki67 expression levels is associated with the percentage of tumour cell nuclei positively stained and are used to determine a Ki67 score. In early and advanced breast cancer the Ki67 score can predict the response to chemotherapy.\(^6^9\) A high pre-treatment score is associated with a good chance of complete pathological remission to therapy and therefore improved long-term outcome.\(^7^0\) Lee et al.\(^7^1\) describe a significant decrease in Ki67 index following neoadjuvant chemotherapy, a finding that is recognized as a strong predictor of recurrence-free and overall survival. Of concern regarding the use of Ki67 is the lack of standardization of analytical practice, with laboratories utilising differing cut-off points to differentiate between “high” and “low” Ki67. Further to this, as with all of the above described markers, determination of expression levels requires tumour tissue, mandating invasive sampling techniques, which further emphasizes the need for a non-invasive breast cancer biomarker.

Claudins

More recently, a potential fifth subtype of breast cancer has been described, classified as “Claudin-low.”\(^7^2,7^3\) Claudins are a family of proteins that function in tight-junctions and cell-cell adhesion, including Claudin 3, 4, 7 and E-cadherin. A new subtype of breast cancer, “Claudin-low” has recently been described, characterised by lack of expression of the Claudin proteins.\(^7^2,7^4\) Claudin-low tumours are typically triple-negative and display high expression of epithelial-to-mesenchymal transition (EMT) markers.\(^7^5\) The expression of EMT markers has known associations with resistance to therapeutics and higher metastatic potential.\(^7^6\) Claudin-low cancers display lower complete pathological remission rates following NAC. Overall Claudin-low cancers were found to

Notes:

1. Casey et al. 2016. *Int. J. Cancer*: 139, 12–22 (2016) © 2016 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC
have an intermediate prognosis, worse than basal-like breast cancer, but better than luminal cancer. However, the “Claudin-low” breast cancer subtype remains poorly described. Further definitive characterization is required before it is fully accepted into clinical practice.

miRNA

In 2005, genome-wide miRNA expression analysis enabled identification of miRNAs that were differentially expressed in breast cancer tissue. The panel of 29 miRNAs identified differentiated tumours from normal tissues with an accuracy of 100%. Importantly, miRNA expression correlated with distinct tumour phenotypes, ER and PR expression and tumour stage. More recently, a miRNA expression pattern of 31 miRNAs evaluated in 93 tumour samples was found to predict hormone receptor status, and thus classify tumours by genetic subtype. These findings were independently corroborated by Lowery et al. who profiled 453 miRNAs in 29 early-stage breast cancer specimens, identifying a distinct panel of miRNAs corresponding to expression of ER, PR and HER2.

Translating these tissue findings into the circulation, it was found that miR-195 expression was significantly elevated in breast cancer patients (n = 148) compared to controls (n = 44), and that these levels reduced postoperatively. Furthermore, high levels of circulating miR-21 and miR-10b were found to be associated with ER negativity, thus a poorer prognosis. In a further study, elevated miR-155 expression was associated with PR positivity.

The ability of miRNA expression profiles to classify breast tumours by biopathologic variables currently utilized to determine responsiveness to neoadjuvant chemotherapy highlights the potential of miRNA signatures as novel predictive and prognostic biomarkers that could allow individualization of breast cancer treatment and improved selection of patients for neoadjuvant chemotherapy (Fig. 3).

miRNA as Novel Biomarkers of NAC Response

The role of miRNA in neoadjuvant chemotherapeutic response prediction and monitoring has been investigated across a variety of pathologies. In colorectal carcinoma an association between miRNAs and tumour response to neoadjuvant chemoradiotherapy was proposed. This association was confirmed by identification of a distinct miRNA expression signature that could effectively predict colorectal cancer response to neoadjuvant chemoradiotherapy. In human gastric cancer, decreased let-7i expression was found to have a significant association with a poorer response to chemotherapy and shorter overall survival. In breast cancer the ability of a panel of miRNAs to predict response of triple negative breast carcinoma to neoadjuvant chemotherapy was investigated. Although study numbers were limited (11 patients), results indicated higher miR-200b-3p and miR-190a expression and lower miR-512-3p expression was associated with a better pathologic response to chemotherapy.

While all the above findings involved miRNA analysis from tumour samples, some peri-neoadjuvant studies of circulating miRNA have also been conducted. One study investigated miRNA extracted from the sera of stage II-III locally advanced and inflammatory breast carcinoma patients preneoadjuvant chemotherapy. A two-gene signature of miR-375 and miR-122 was identified with the ability to predict metastatic disease relapse with a sensitivity of 80% and specificity of 100%. Patients relapsing following neoadjuvant chemotherapy were found to have significantly up-regulated expression of miR-122 while patients with higher circulating miR-375 experienced a good clinical outcome. Fluctuation within a panel of miRNA was also found in patients with primary operable or locally advanced breast cancer receiving neoadjuvant chemotherapy. Of a panel of eight miRNAs, miR-221, miR-195 and miR-21 were noted to decrease most significantly with the administration of chemotherapeutics, although correlation with response to systemic therapy was not conducted. A further study recognized expression of two particular miRNAs to be induced by treatment with chemotherapeutics, namely miR-34a and miR-122. Elevated expression of these miRNAs was detected both in tumour tissue and serum, and was particularly associated with anthracycline-based regimens in patients achieving partial response to neoadjuvant chemotherapy.

Some interesting in vitro findings that show promise for translation to the clinical setting have been conducted. Investigating targeted therapies for triple negative breast cancers, the overexpression of miR-181a/b was found to associate with more aggressive breast cancer subtypes. Utilizing a range of cell lines (MDA-MB-231, HEK 293GP, MDA-MB-468, SUM159PT, OVCAR, HT29, PANC1 and Sk-BR-3) the overexpression of miR-181a/b was found to dampen the DNA damage response, thus increasing the sensitivity of the triple negative cells in which it was expressed to poly (ADP-Ribose) polymerase-1 (PARP-1) inhibition. It was proposed that profiling miR-181a/b expression in patients with triple negative breast cancer could identify patients for PARP-1 inhibition or platinum-based chemotherapy.

miRNA and chemoresistance

It is recognized that specific miRNA expression signatures are associated with resistance to all forms of breast cancer treatment, including chemotherapy, anti-endocrine therapy and radiotherapy. Regarding chemotherapeutic...
resistance, several recent reports have revealed the key regulatory role of miRNAs affecting drug resistance proteins and targeting proteins involved in apoptosis (Table 3, Fig. 3).

In the circulation, an association between serum miR-125b levels from patients with invasive ductal breast carcinoma receiving NAC and chemoresistance has been described.105 Increased expression of miR-125b was found to have a significant association (p = 0.008) with non-response to chemotherapy. Further to this, forced miR-125b overexpression in breast cancer cells in vitro increased chemotherapeutic resistance, with subsequent reduction in miR-125b levels sensitizing the cells to chemotherapy once more. Similar results were observed regarding miR-210, where increased plasma miR-210 levels correlated with a reduced sensitivity of HER2 breast carcinoma to Trastuzumab therapy. High pre-treatment circulating mir-210 was found to be associated with lower pCR rates and lymph node metastasis. Recently the radiological and clinical response of breast cancer to either neoadjuvant chemotherapy or hormonal therapy was assessed using a low density miRNA array. Significantly increased Let-7a was found in the plasma of patients achieving a radiological response following neoadjuvant chemotherapy, but not hormonal therapy.117

In breast cancer tissue, down-regulation of miR-200c was found in patients who were non-responsive to NAC.110 Subsequently, up-regulation of miR-200c in human breast cancer cell lines enhanced chemosensitivity and decreased expression of multi-drug resistance (MDR) proteins P-glycoprotein (P-gp) and MDR-associated protein (MRP-1).

Utilizing breast cancer cell lines, differential miRNA expression has been noted to correlate with resistance to chemotherapeutics. Using MCF-7/MX100 cell miR-328 was identified as a negative regulator of breast cancer-resistance protein (BCRP), with higher miR-328 levels facilitating an improved Mitoxantrone response.118 Up-regulated miR-19 (in MCF-7/TX200, MCF-7/VP-17, MCF-7/MX100 and MCF-7/WT cell lines) correlated with overexpression of three MDR-related transport proteins (MDR-1, MRP-1 and BCRP). Importantly, miR-19 inhibitors decreased the expression of these MDR proteins.96 MiR-451 was also found to regulate expression of MRP-1, with up-regulation of miR-451 in doxorubicin-resistant MCF-7 cells returning chemotherapeutic sensitivity.92 Mir-326 exhibited the same effect on MRP-1, inducing sensitivity to doxorubicin in MDR MCF-7 cells.119 Further miRNAs noted to target MRP-1 include miR-345 and miR-7, which were found to decrease cellular levels of MRP-1.95

In BT474, SKBR3, and MDA-MB-453 breast cancer cell lines miR-21 conferred resistance to Trastuzumab, via down-regulation of its target PTEN.97 Subsequently, this pathway was also found to modulate resistance to doxorubicin in doxorubicin-resistant MCR-7 cell lines.98 In addition, miR-137 was found to be down-regulated in MDR MCF-7 cells.107 Cells lines can provide conflicting data however. MCF-7 and MDA-MB-231 cells with acquired docetaxel resistance, showed increased expression of miR-34a, with miR-34a inhibition enhancing chemotherapeutic response in docetaxel-resistant MCF-7 cell lines.102 However, decreased levels of miR-34a were described in the Adriamycin-resistant MCF-7 cell line,104 with forced overexpression of miR-34a found to increase chemotherapeutic sensitivity of Adriamycin-resistant MCF-7 cell lines.103 The exact role of miR-34a in breast cancer chemotherapeutic response is not fully understood and requires

Drug class	Mechanism of action	Example	Reference
Anthracyclines	Inhibition of DNA and RNA synthesis Disruption of DNA damage response Inhibition of Topoisomerase II	Doxorubicin Epirubicin Mitoxantrone	49
Taxanes	Disruption of microtubule function	Docetaxel Paclitaxel	50
Alkylation Agent: Nitrogen Mustard	Interference with DNA replication	Cyclophosphamide	40
Anti-metabolites	Prevention of folate use for DNA generation	Methotrexate Fluorouracil Capcitabine	51
Anti-HER2/EGFR	Tyrosine kinase inhibition Arrest of cell cycle Suppression of angiogenesis	Trastuzumab Pertuzumab Lapatinib	52

In breast cancer tissue, down-regulation of miR-200c was found in patients who were non-responsive to NAC.110 Subsequently, up-regulation of miR-200c in human breast cancer cell lines enhanced chemosensitivity and decreased expression of multi-drug resistance (MDR) proteins P-glycoprotein (P-gp) and MDR-associated protein (MRP-1).

Utilizing breast cancer cell lines, differential miRNA expression has been noted to correlate with resistance to chemotherapeutics. Using MCF-7/MX100 cell miR-328 was identified as a negative regulator of breast cancer-resistance protein (BCRP), with higher miR-328 levels facilitating an improved Mitoxantrone response.118 Up-regulated miR-19 (in MCF-7/TX200, MCF-7/VP-17, MCF-7/MX100 and MCF-7/WT cell lines) correlated with overexpression of three MDR-related transport proteins (MDR-1, MRP-1 and BCRP). Importantly, miR-19 inhibitors decreased the expression of these MDR proteins.96 MiR-451 was also found to regulate expression of MRP-1, with up-regulation of miR-451 in doxorubicin-resistant MCF-7 cells returning chemotherapeutic sensitivity.92 Mir-326 exhibited the same effect on MRP-1, inducing sensitivity to doxorubicin in MDR MCF-7 cells.119 Further miRNAs noted to target MRP-1 include miR-345 and miR-7, which were found to decrease cellular levels of MRP-1.95

In BT474, SKBR3, and MDA-MB-453 breast cancer cell lines miR-21 conferred resistance to Trastuzumab, via down-regulation of its target PTEN.97 Subsequently, this pathway was also found to modulate resistance to doxorubicin in doxorubicin-resistant MCR-7 cell lines.98 In addition, miR-137 was found to be down-regulated in MDR MCF-7 cells.107 Cells lines can provide conflicting data however. MCF-7 and MDA-MB-231 cells with acquired docetaxel resistance, showed increased expression of miR-34a, with miR-34a inhibition enhancing chemotherapeutic response in docetaxel-resistant MCF-7 cell lines.102 However, decreased levels of miR-34a were described in the Adriamycin-resistant MCF-7 cell line,104 with forced overexpression of miR-34a found to increase chemotherapeutic sensitivity of Adriamycin-resistant MCF-7 cell lines.103 The exact role of miR-34a in breast cancer chemotherapeutic response is not fully understood and requires

| Figure 3. Mechanisms of chemoresistance. |
further investigation. This seemingly contradictory data highlights the complex nature of miRNAs and their role in chemoresistance, particularly in relation to taxane resistance.120

miRNAs as Targeted Therapies in the Neoadjuvant Setting
The use of miRNAs in the treatment of breast cancer includes using miRNAs as therapeutic treatments and manipulating miRNA expression to enhance existing treatments. As miRNAs function as oncomirs and tumour suppressors, two therapeutic potentials exist: overexpression of targeted miRNAs (miRNA replacement therapy) or down-regulation (silencing) of miRNAs.

Oncomir inhibition
Antisense-inhibition of miRNA activity can be achieved by using miRNA antagonist oligonucleotides (anti-miRs),

Table 3. miRNAs with a validated involvement in chemotherapeutic resistance in breast cancer

miRNA	Expression	Target(s)	Drug Ass	Source (# patient samples)	Reference
miR-7	Down-regulation	MDR-1	Cisplatin	Cell line	95
miR-19	Up-regulation	MDR-1, MRP-1 and BCRP via PTEN	Paclitaxel, Mitoxantrone, VP-16	Cell Line	96
miR-21	Up-regulation	PTEN	Doxorubicin, Trastuzumab	Cell Line	97, 98
miR-25	Up-regulation	Inhibits autophagic cell death	Epirubicin	Cell Line	99
miR-30c	Down-regulation	YWHAZ, TWF1, IL-11	Doxorubicin, Paclitaxel	Cell Line, Human breast tissue (n = 51)	100, 101
miR-34a	Up-regulation	BCL-2, Cyclin D1, Notch-1, E2F3, PXR	Docetaxel, Adriamycin, Doxorubicin	Cell Line, Cell Line, Cell Line	102, 103, 104
miR-125b	Up-regulation	E2F3, Bak 1	5-Fluorouracil, Paclitaxel	Blood Serum, Cell Line	105, 106
miR-137	Down-regulation	P-glycoprotein, via YB-1	Vincristine, Doxorubicin, Paclitaxel	Cell Line	107
miR-149	Down-regulation	NDST1	Adriamycin	Cell Line	108
miR-155	Up-regulation	FOXO3a	Doxorubicin, Paclitaxel	Human Breast Tissue (n = 126)	109
miR-200c	Down-regulation	P-glycoprotein, MDR mRNA, TrkB, Bmi1	Doxorubicin	Human Breast Tissue (n = 39), Cell Line, Cell Line	110, 111
miR-210	Up-regulation	Not studied	Trastuzumab	Blood Serum (n = 43), Cell Lines	91
miR-221	Up-regulation	Not studied	Adriamycin	Blood Plasma (n = 125)	112
miR-288	Down-regulation	MDR-1, P-glycoprotein	Adriamycin	Cell Line	113
miR-320a	Down-regulation	TRPC5, NFATC3	Adriamycin, Paclitaxel	Cell Line	114
miR-345	Down-regulation	MDR-1	Cisplatin	Cell Line	95
miR-451	Down-regulation	P-glycoprotein, MDR-1	Doxorubicin	Cell Line	92
miR-663	Down-regulation	Smad3	Adriamycin	Cell Line	115

This table presents an overview of miRNAs that have a validated role in chemotherapeutic resistance, referencing the drug and source examined and the identified miRNA targets.

Abbreviations: HSPG2: heparin sulfate proteoglycan 2; Smad3: mothers against decapentaplegic homolog 3; NDST1: GlcNAc N-deacetylase/N-sulfotransferase-1; TRPC5: transient receptor potential channel C5; NFATC3: nuclear factor of activated T-cells isoform C3; YWHAZ: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta; PXR: pregnane X receptor; BCL-2: B-cell lymphoma 2; YB-1: Y-box binding protein-1; MRP-1: multidrug resistance-associated protein-1; BCRP: breast cancer resistance protein; TWF1: Twinfilin 1; IL-1: interleukin-1; TrkB: tyrosine receptor kinase type 2; Bmi1: B-cell-specific Moloney murine leukemia virus integration site 1; Bak 1: Bcl-2 antagonist killer 1.
locked-nucleic acids (LNA), or targeted miRNA silencing (antagomirs). The efficacy of this targeted therapy has been demonstrated by several studies. MCF-7 cells transfected with anti-miR-21 oligonucleotides were grown in vitro and in a xenograft murine model. Anti-miR-21 suppressed both cell growth in vitro and tumour growth in the mouse model. In addition, cell growth inhibition was associated with increased apoptosis and decreased cell proliferation.

In the chemotherapeutic setting, down-regulation of mir-21 was seen to increase sensitivity of MCF-7 cells to taxol therapy, with miR-203 knockdown increasing cisplatin sensitivity. Increased sensitivity in response to miRNA knockdown has also been demonstrated, in HS578T cells whereby by miR-155 down-regulation (using antisense-miR-155 oligonucleotides) increased apoptosis in response to treatment with Paclitaxel, Doxorubicin and VP-16.

miRNA replacement therapy
This strategy involves the reintroduction of function of a tumour suppressing miRNA.

In NOD/SCID (nonobese diabetic/severe combined immunodeficient) mice, SK-3rd cells over-expressing Let-7 or miR-30 displayed significantly reduced tumourigenicity and lung and liver metastasis. In a further study in chemoresistant MDA-MB-231 and BT-549 cells, overexpression of miR-200c was found to restore chemosensitivity to microtubule-directed agents.

Although rapid and continual advancements are being made regarding the manipulation of miRNAs for the treatment of breast cancer, this area of research remains in its infancy, with many obstacles to overcome prior to mainstream implementation in breast cancer therapeutics. The majority of studies conducted to date are in vitro, examining miRNAs and their effects in various cell lines. To validate these studies, large clinical trials are required to support these preliminary findings. Present obstacles to overcome include the identification of optimal delivery methods and the prevention of off-target effects and safety optimization.

Discussion
The management of breast cancer, in terms of diagnosis, chemotherapy and surgical intervention, continues to adapt in line with translational research and evidence. Whilst the use of chemotherapy in the neoadjuvant setting is now acceptable for any patient considered a candidate for adjuvant therapy, there currently exists no clinically validated means of differentiating chemotherapeutic responders from non-responders. While miRNA expression analysis holds significant promise in this setting, further studies investigating miRNAs in the neoadjuvant breast cancer setting are undoubtedly warranted. Presently, as per ClinicalTrials.gov, two clinical trials are currently recruiting breast cancer patients undergoing neoadjuvant chemotherapy for miRNA profiling and analysis.

A further challenge affecting the use of circulating miRNA as breast cancer biomarkers is the lack of accepted standardized protocols for sample collection, handling and processing. As a consequence, many previous studies cannot be easily compared. This is due to intrinsic differences in: Patient cohorts (treatment regimes, timing of sample collection), Bio-fluid collected and analyzed (whole blood, plasma, serum), Collection methods (EDTA, Paxgene tubes, sample handling), Processing/extraction techniques (diverse extraction kits, timing of extraction), Investigation of miRNA pool (total, free or membrane bound), Use of multiple non-standardized endogenous controls and Detection methods utilized [arrays (which are constantly being updated) or different RQ-PCR platforms]. The development and adoption of a standardized set of operating and technical protocols would facilitate study comparison, improved reproducibility and the development of improved targeted future studies.

The use of miRNAs as targeted therapies, although in its infancy, holds immense promise, although further evaluation and validation of current findings are required. The identification of a biomarker that could predict or potentially monitor tumour response to neoadjuvant chemotherapy could revolutionize the manner in which chemotherapeutics are administered, bringing us ever closer to personalized breast cancer management.

Future directions
In addition to miRNAs, dysregulation of miRNA machinery can play a crucial role in cancer initiation and progression. miRNA-binding proteins mediate miRNA-dependent cleavage or degradation of target mRNAs, with all miRNAs studied to date assembling into miRNA-silencing complexes. Studies have shown that genes involved in miRNA biogenesis are dysregulated in various breast cancer subtypes. Down-regulation of Drosha and Dicer, two key elements of the miRNA machinery, has been associated with more aggressive breast cancer subtypes. Furthermore, increased expression of exportin-5, a pre-miRNA transporting nuclear receptor, has been associated with increased breast cancer susceptibility. In addition, expression of the key miRNA-binding protein Argonaute-2 protein (Ago2), required for miRNA extracellular transport, is elevated in basal-like breast cancer subtypes, with elevated Ago2 levels producing enhanced proliferation, reduced cell-cell adhesion and increased migratory ability, implicating Ago2 in more aggressive breast cancer subtypes. Further to this, single-nucleotide polymorphisms of Ago2 have been associated with disease free and overall survival in breast cancer.

The use of miRNA machinery genes as breast cancer biomarkers is still in its infancy, however, with further investigation required to fully elucidate mechanisms of miRNA maturation, miRNA-machinery gene regulation and the cancer-specific functions of these miRNA machinery genes and their resultant proteins.

Conclusion
Whilst breast cancer management continues to improve the requirement of a breast cancer biomarker that is both predictive and prognostic remains. Investigation of the potential for
miRNAs to fulfill this role holds much promise, although further clinical studies are required, particularly in the neoadjuvant chemotherapeutic setting.

Acknowledgement
We thank all the members of Prof Kerin’s group for stimulating discussions.

References
1. International Agency for Research on Cancer. Latest world cancer statistics: Global cancer burden rises to 14.1 million new cases in 2012. Marked increase in breast cancers must be addressed 2013. Lyon, France: World Health Organization.
2. Levi F, Bosetti C, Lucchini F, et al. Monitoring clinical studies are required, particularly in the neoadjuvant setting.
3. Boughey JC, McCall LM, Ballman KV, et al. Tumor biology correlates with rates of breast-conserving surgery and pathologic complete response after neoadjuvant chemotherapy for breast cancer: findings from the ACOGOG Z1071 (Alliance)Prospective Multicenter Clinical Trial. Ann Surg 2014; 260:608–14. discussion 614-16.
4. Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 2008; 26:778–85.
5. Mastr D, Pavlidis N, Ioannidis JP., Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 2005; 97:188–94.
6. von der Hagen JA, van de Velde CJ, Julien JP., Neoadjuvant chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 2001; 19:2244–37.
7. Fisher B, Brown A, Mamounas E, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol 1997; 15:2483–93.
8. von Minckwitz G, Blohmuer JU, Raab G, et al. In vivo chemosensitivity-adapted preoperative chemotherapy in patients with early-stage breast cancer: the GEPARTRIO pilot study. Ann Oncol 2005; 16:56–63.
9. von Minckwitz G, Kummel S, Vogel P, et al. Intensified neoadjuvant chemotherapy in early responding breast cancer: phase III randomized GeparTrio study. J Natl Cancer Inst 2008; 100:552–62.
10. Zambetti M, Mansutti M, Gomez P, et al. Pathological complete response rates following different adjuvant chemotherapy regimens for operable breast cancer according to ER status, in two parallel, randomized phase II trials with an adaptive study design (ECTO II). Breast Cancer Res Treat 2012; 132:843–51.
11. Bonnello H, Litieri S, Piccart M, et al. Pathological complete response after neoadjuvant chemotherapy is an independent predictive factor irrespective of simplified breast cancer intrinsic subtypes: a landmark and two-step approach analyses from the IORTC 10994/BIG 1-00 phase III trial. Ann Oncol 2014; 25:1128–36.
12. Bartel DP. Micro-RNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116:281–97.
13. Vasudevan S, Tong Y, Steitz JA., Switching from repression to activation: micro-RNAs can up-regulate translation. Science 2007; 318:1931–4.
14. Place RF, Li LC, Pookot D, et al. Micro-RNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 2008; 105:1608–13.
15. Casey MC, Kerin MJ, Brown JA, et al. Evolution of a research field-a micro (RNA) example. PeerJ 2015; 3:e829.
16. Filipowicz W, Bhatattacharyya SN, Sonenberg N., Mechanisms of post-transcriptional regulation by micro-RNAs: are the answers in sight? Nat Rev Genet 2009; 8:102–14.
17. Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific micro-RNAs from mouse. Curr Biol 2002; 12:735–9.
18. Liang Y, Ridzon D, Wong L, et al. Characterization of micro-RNA expression profiles in normal human tissues. BMC Genomics 2007 Jun 12; 8:166.
19. Yanaihara N, Caplen N, Bowman E, et al. Unique micro-RNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 19:918–98.
20. Lowery AJ, Miller N, Devaney A, et al. Micro-RNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 2009; 11: R27.
21. Schetter AJ, Okamy A, Harris CC. The role of micro-RNAs in colorectal cancer. Cancer J 2012; 18:244–52.
22. Dvinge H, Git A, Graf S, et al. The shaping and functional consequences of the micro-RNA landscape in breast cancer. Nature 2013; 497:378–82.
23. He L, Hannon GJ., Micro-RNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5:522–31.
24. Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and micro-RNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9:654–9.
25. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulat- ing micro-RNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 2011; 108:5003–8.
26. EL-Hefnawy T, Raj A, Kelly L, et al. Characteri- zation of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem 2004; 50:564–73.
27. Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated micro- RNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 2008; 141:671–5.
28. Mitchell PS, Parkin RK, Kroh EM, et al. Circu- lating micro-RNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105:10513–18.
29. Vickers KC, Palmisano BT, Shoucri BM, et al. Micro-RNAs are transported in plasma and delivered to recipient cells by high-density lipo- proteins. Nat Cell Biol 2011; 13:423–33.
30. Turchinovich A, Weitl I, Langheinrich A, et al. Characterization of extracellular circulating micro-RNA. Nucleic Acids Res 2011; 39:7223–33.
31. Caby MP, Lankar D, Vincendeau-Scherrier C, et al. Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005; 17: 879–87.
32. Thery C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 2011; 3:15.
33. Weilner S, Schraml E, Redl H, et al. Secretion of microvesicular miRNAs in cellular and organ- ismal aging. Exp Gerontol 2013; 48:626–33.
34. Maun SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010; 107: 1047–57.
35. Creemers EE, Tijssen AJ, Pinto YM. Circulating micro-RNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 2012; 110:483–95.
36. Turchinovich A, Samatov TR, Tovetinys AG, et al. Circulating miRNAs: cell-cell communica- tion function? Front Genet 2013; 4:119.
37. Zhu H, Fan GC., Extracellular/circulating micro- RNAs and their potential role in cardiovascular disease. Am J Cardiovase Dis 2014; 1:13:9.
38. Bonadonna G, Brusamolino E, Valagusa P, et al. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N Engl J Med 1976; 294:405–10.
39. Fisher B, Brown AM, Dimitrov NV, et al. Two months of doxorubicin-cyclophosphamide with and without interval reinduction therapy compared with 6 months of cyclophosphamide, methotrexate, and fluorouracil in positive-node breast cancer patients with tamoxifen- nonresponsive tumors: results from the National Surgical Adjuvant Breast and Bowel Project B-15. J Clin Oncol 1990; 8:683–96.
40. Bear HD, Anderson S, Brown A, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubi- cin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 2003; 21:465–74.
41. Heys SD, Hutchison AW, Sarkar TK, et al. Neo- adjuvant docetaxel in breast cancer: 3-year sur- vival results from the Aberdeen trial. Clin Breast Cancer 2002; 3:569–74.
42. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406:747–52.
43. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distin- guish tumor subclasses with clinical implica- tions. Proc Natl Acad Sci USA 2001; 98:10869– 74.
44. American Cancer Society Breast Cancer Facts & Figures 2013–2014. Atlanta: American Cancer Society, Inc 2013.
45. Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346–52.
40. Verrill M. Chemotherapy for early-stage breast cancer: a brief history. Br J Cancer 2009; 101:2104–12.
41. Levine MN, Pritchard KL, Bramwell VH, et al. Randomized trial comparing cyclophosphamide, etoposide, and fluorouracil with cyclophosphamide, methotrexate, and fluorouracil in premenopausal women with node-positive breast cancer: update of National Cancer Institute of Canada Clinical Trials Group Trial MAS. J Clin Oncol 2005; 23:5166–70.
42. Early and Locally Advanced Breast Cancer Diagnosis and Treatment. NICE Clinical Guidelines, No. 80. 2009. Cardiff, UK: National Collaborating Centre for Cancer (UK). Feb.
43. Blumenthal RD. Chemosensitivity: vol. II: in molecular biology, vol. III, vol. II. Totowa, NJ: Humana Press, 2005. 127–144.
44. McGrogan BT, Gilmartin B, Carney DN, et al. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 2008; 1785:86–132.
45. Kave SB. New antiestrogenables in cancer chemotherapy and their clinical impact. Br J Cancer 1998; 78:1–7.
46. Roy V, Perez EA., Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer. Onco接听 2009; 14:1061–9.
47. Harris I, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007; 25(32):5287–312.
48. Blumenthal RD. Chemosensitivity: vol. II. In vivo models, imaging, and molecular regulators. In: Blumenthal RD, editor. Methods in molecular medicine, vol. III, vol. II. Totowa, NJ: Humana Press, 2005. 127–144.
49. Ring AE, Smith IE, Ashley S, et al. Oestrogen receptor status, pathological complete response and progression in patients receiving neoadjuvant chemotherapy for early breast cancer. Br J Cancer 2004; 91:2012–7.
50. Colleoni M, Minchella I, Mazzarol G, et al. Response to primary chemotherapy in breast cancer patients with tumors not expressing estrogen and progesterone receptors. Ann Oncol 2000; 11:1057–9.
51. Park JW, Neve RM, SlossoI J, et al. Unraveling the biologic and clinical complexities of HER2. Clin Breast Cancer 2008; 8:392–401.
52. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer - correlation of relapse and survival with amplification of the Her-2 Neu oncoprotein. Science 1987; 235:177–82.
53. Owens MA, Horton BC, Da Silva MM. HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin Breast Cancer 2004; 5:63–9.
54. Perez EA, Reinholt HM, Hillm W, et al. HER2 and chromosome 17 effect on patient outcome in the N9831 adjuvant trastuzumab trial. J Clin Oncol 2010; 28:4307–15.
55. Smith I, Procter M, Gelber RD, et al. Year 2 follow-up of trastuzumab after adjuvant chemo-therapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 2007; 369:29–36.
56. von Minckwitz G, Fontanella C, Selvaggi E, et al. Neoadjuvant therapy by molecular subtype: how to maximize the benefit? Breast 2013; 22: S149–51.
57. Gianni L, Eiermann W, Semiglazov V, et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): follow-up of a randomly controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol 2014; 15: 640–7.
58. Bertucci F, Finetti P, Cervera N, et al. How basal are triple-negative breast cancers? Int J Cancer 2008; 123:236–40.
59. Moreno-Aspita A, Perez EA., Treatment options for breast cancer resistant to anthracycline and taxane. Mayo Clin Proc 2009; 84:533–45.
60. Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitiv-ity of breast cancer subtypes. Clin Cancer Res 2007; 13:2329–34.
61. Rouzier R, Perou CM, Symmans WF, et al. Breast cancer molecular subtypes respond differ-ently to preoperative chemotherapy. Clin Cancer Res 2005; 11:5678–85.
62. Faneyte IF, Schrama JG, Peterse JL, et al. Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome. Br J Cancer 2003; 88:406–12.
63. Jones RL, Salter J, A’Hern R, et al. The prognostic significance of Ki67 before and after neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat 2009; 116:53–68.
64. Lee HC, Ko H, Seol H, et al. Expression of immunohistochemical markers before and after neoadjuvant chemotherapy in breast carcinoma, and their use as predictors of response. J Breast Cancer 2013; 16:395–403.
65. Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12:R88.
66. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist 2010; 15:39–48.
67. Herschkowitz JJ, Simin k, Weigman VJ, et al. Identification of conserved gene expression fea-tures betweenmurine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8(5):R76.
68. Peddi PF, Ellis MJ, Ma C, Molecular basis of triple negative breast cancer and implications for therapy. Int J Breast Cancer 2012; 2012: 217185.
69. Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating fea-tures. Proc Natl Acad Sci USA 2008; 106:13820–25.
70. Sabatier R, Finetti P, Guille A, et al. Claudin-low breast cancers: clinical, pathological, molecu-lar and prognostic characterization. Mol Cancer 2014; 13:228.
71. Iorio MV, Ferracin M, Liu CG, et al. Micro-RNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65:7605–70.
72. Blenkiron C, Goldstein LD, Thorne NP, et al. Micro-RNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2007; 8(R214).
73. Henehan GM, Miller N, Lowery AJ, et al. Circulating micro-RNAs as novel minimally inva-sive biomarkers for breast cancer. Ann Surg 2010; 251:499–505.
74. Zhu W, Qin W, Atasoy U, et al. Circulating micro-RNAs in breast cancer and healthy sub-jects. BMC Res Notes 2009; 2:89.
75. Iorio MV, Ferracin M, Liu CG, et al. Micro-RNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol 2012; 7:195.
76. Kheireisid EA, Miller N, Chang KH, et al. miRNA expressions in rectal cancer as predictors of response to neoadjuvant chemoradiation therapy. Int J Colorectal Dis 2013; 28:247–60.
77. Liu K, Qian T, Lang L, et al. Decreased expres-sion of micro-RNA let-71 and its association with chemotherapeutic response in human gas-tic cancer. World J Surg Oncol 2012; 10:225.
78. Kolačinska A, Morawiec J, Fendler W, et al. Association of micro-RNAs and pathologic response to preoperative chemoradiotherapy in triple negative breast cancer: preliminary report. Mol Biol Rep 2014; 41:2851–7.
79. Wu X, Sombo G, Yu Y, et al. De novo sequenc-ing of circulating miRNAs in breast cancer patients fluctuate considerably during neoadjuvant chemoradiotherapy. Onc Lett 2014; 8:485–488.
80. Freres P, Josse C, Bory N, et al. Neoadjuvant chemotherapy in breast cancer patients induces miR-34a and miR-122 expression. J Cell Physiol 2014; 230(2):473–81.
81. Bisso A, Faleschini M, Zampa F, et al. Oncogenic mir-181ab affect the DNA damage response in aggressive breast cancer. Cell Cycle 2013; 12:1679–87.
82. Li H, Yang BB., Friend or foe: the role of micro-RNA in chemotherapy resistance. Acta Pharmacol Sin 2013; 34:870–7.
83. Jung EJ, Santarpia L, Kim J, et al. Plasma miR-210 levels correlate with sensitivity to Trastuzu-mab and tumour presence in breast cancer patients. Cancer 2012; 118:2603–14.
84. Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of micro-RNA-451 in resistance of the MCF-7 breast cancer cells to chemothera-peutic drug doxorubicin. Mol Cancer Ther 2008; 7:2152–9.
85. Ward A, Shukla K, Balwierz A, et al. Micro-RNA-519a is a novel oncomir conferring tamox-ifen resistance by targeting a network of tumour-suppra. (2013) 3:1125–20.
86. Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of micro-RNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008; 7:2152–9.
87. Pogribny IP, Filkowski JN, Tryndyak VP, et al. Alterations of micro-RNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 2010; 127:1785–94.
88. Jiang Z, Li Y, Huang K, et al. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res 2011; 28: 3091–100.
97. Gong C, Yao Y, Wang Y, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 2011; 286:19127–37.
98. Wang Z, Lu BB, Wang H, et al. Micro-RNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res 2011; 42:281–90.
99. Wang Z, Wang N, Liu P, et al. Micro-RNA-25 regulates chemoresistance-associated autophagy in breast cancer cells, a process modulated by the natural autophagy inducer isoliquiritigenin. Oncotarget 2014; 5:7013–26.
100. Fang Y, Shen H, Cao Y, et al. Involvement of miR-320c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells. Braz J Med Biol Res 2014; 47:696–700.
101. Bockhorn J, Dalton R, Nwachukwu C, et al. Micro-RNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 expression. Mol Cancer 2014; 5:1327.
102. Kastl L, Brown I, Schofield AC. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 2012; 131:445–54.
103. Li XJ, Ren ZJ, Tang JH. Micro-RNA-34a: a potential therapeutic target in human cancer. Cell Death Dis 2014; 5:e1327.
104. Chen GQ, Zhao ZW, Zhou HY, et al. Systematic analysis of micro-RNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol 2010; 27:406–15.
105. Wang HJ, Tian G, Dong L, et al. Circulating MiR-125b as a Marker Predicting Chemoresistance in Breast Cancer. PLoS One 2012; 7(4):e34210.
106. Zhou M, Liu ZX, Zhao YH, et al. Micro-RNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 2010; 285:21496–507.
107. Zha X, Li Y, Shen H, et al. mir-137 restoration sensitizes multidrug-resistant MCF-7/ADCM cells to anticancer agents by targeting YB-1. Acta Biochim Biophys Sin (Shanghai) 2013; 45:80–9.
108. He DX, Gu XT, Li YR, et al. Methylation-regulated miR-149 modulates chemoresistance by targeting GlicNac N-deacetylase/N-sulfotransferase-1 in human breast cancer. Feb 2014; 281:4718–30.
109. Kong W, He LL, Coppola M, et al. Micro-RNA-155 regulates cell cycle, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 2010; 285:17869–79.
110. Chen JQ, Tian W, Cai HK, et al. Down-regulation of micro-RNA-200c is associated with drug resistance in human breast cancer. Med Oncol 2012; 29:2527–34.
111. Kopp F, Oah PS, Wagner E, et al. miR-200c Sensitizes Breast Cancer Cells to Doxorubicin Treatment by Decreasing TrkB and Bmi1 expression. PLoS One 2014; 9:e90469.
112. Zhao RH, Wu JN, Jia WJ, et al. Plasma miR-221 as a predictive biomarker for chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy. Oncology 2011; 34:675–80.
113. Bao LL, Hazari S, Mehra S, et al. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol 2012; 180:2490–503.
114. He DX, Gu XT, Jiang L, et al. A methylation-based regulatory network for micro-RNA-320a in chemoresistant breast cancer. Mol Pharmacol 2014; 86:536–47.
115. Jiang L, He DX, Yang DT, et al. MI-R-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Lett 2014; 588:2009–15.
116. Hu HY, Li SQ, Cui XY, et al. The overexpression of hypomethylated miR-663 induces chemotherapy resistance in human breast cancer cells by targeting hepatocyte growth factor (HGF). J Transl Med 2013; 11:189-77.
117. Palmieri C, Cleator S, Kilburn LS, et al. NEOPENT: a randomised feasibility and translational study comparing neoadjuvant endocrine therapy with chemotherapy in ER-rich postmenopausal primary breast cancer. Breast Cancer Res Treat 2014; 148:581–90.
118. Pan YZ, Morris ME, Yu AM, et al. Micro-RNA-328 negatively regulates the expression of breast cancer cell resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 2009; 75:1374–9.
119. Liang ZX, Wu H, Xia J, et al. Involvement of miR-326 in chemoresistance associated with drug resistance. Am J Pathol 2010; 178:1614–26.
120. Cui SY, Wang R, Chen LB. Micro-RNAs: key players of taxane resistance and their therapeutic potential in human cancer. J Cell Mol Med 2013; 17:1207–17.
121. Landrigan Y, Cocker FG, Buske C, et al. Targeted therapies through micro-RNAs: pulp or fiction? Ther Adv Hematol 2012; 3:97–104.
122. Si ML, Zha S, Wu H, et al. miR-21-mediated tumor growth. Oncogene 2007; 26:2799–803.
123. Mei M, Ren Y, Zhou X, et al. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat 2010; 9:77–86.
124. Ru P, Steele R, Huash EG, et al. Anti-miR-203 upregulates SOCS3 expression in breast cancer cells and enhances cisplatin chemosensitivity. Genes Cancer 2011; 2:720–7.
125. Yu F, Deng H, Yao H, et al. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010; 29:4194–204.
126. Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131:1109–23.
127. Cochrane DR, Spreostra NH, Howe EN, et al. Micro-RNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Therap 2009; 8:1055–66.
128. Kaufmann M, von Minckwitz G, Mamounas EP, et al. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol 2012; 19:1508–16.
129. Zou X, Qian LX, and Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost 2012; 108:592–8.
130. Nelson PT, Wang WX, Wilfred BR, et al. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. Biochim Biophys Acta 2008; 1779:758–65.
131. Koshiol J, Wang E, Zhao Y, et al. Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidemiol Biomarkers Prev 2010; 19:907–11.
132. Sourvinou IS, Markou A, Lianidou ES, et al. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagn 2013; 15:827–34.
133. Huang JT, Wang J, Srivastava V, et al. Micro-RNA machinery genes as novel biomarkers for cancer. Front Oncol 2014; 4:113.
134. Dedes KJ, Natrajan R, Lambros MB, et al. Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur J Cancer 2011; 47:138–50.
135. Averly-Kiejda KA, Braye SG, Forbes JF, et al. The expression of Dicer and Drosha in matched normal tissues, tumours and lymph node metastases in triple negative breast cancer. BMC Cancer 2014; 14:253.
136. Leaderer D, Hoffman AE, Zheng T, et al. Genetic and epigenetic association studies suggest a role of micro-RNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int J Mol Epidemiol Genet 2011; 2:9–18.
137. Adams BD, Claffey KP, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 2009; 150:14–23.
138. Sung H, Jeon S, Lee KM, et al. Common genetic polymorphisms of micro-RNA biogenesis pathway genes and breast cancer survival. BMC Cancer 2012; 12:195.