Water quality assessment in terms of water quality index (WQI): A case study of the Tigris River, Baghdad, Iraq

Wisam Thamer Al-Mayah¹, Sattar Obaid Maiws Al-Mayyah² and Sarteel Hamid Al-Shammary²
¹ College of Dentistry, Wasit University, Wasit, Iraq
² College of Science, Wasit University, Wasit, Iraq
E-mail: Walmayah@uowasit.edu.iq

Abstract. This work deals with the monitoring and assessment of water quality of the Tigris River within Baghdad. Samples were taken monthly from September 2018 till August 2019 for a year, from eleven sites in Baghdad city. The National Sanitation Foundation Index (NSF-WQI) values of river water deteriorated from “medium” to “bad” to “very bad” in almost all the eleven sampling sites. The water quality is found to be most deteriorate during the summer season with an average NSF-WQI value of 34.9 as compared to spring, winter and autumn seasons, having an average NSF-WQI value of 40.8, 43.1 and 44, respectively. Out of the eleven sampling sites, Al-Wathba site (S7) and Al-Rasheed site (S11) is observed to be the most polluted sites. The metal pollution index (MI) model is categorized the water quality of the Tigris as seriously affected where the Iron (Fe) and Lead (Pb), are prominent parameters and most deteriorated in this model. Based on these indices, it is concluded that industrial facilities, city wastewater and intensive communities that living along the river bank are negatively affecting the water quality of the Tigris River.

Keywords: Water Quality Index, River Pollution, NSF-WQI, MI-WQI and Tigris River.

1. Introduction
The rapid increase in population density and industrial activities, urban activity in the basin of the river, discharge of rural, urban and industrial wastewater, excessive consumption of chemical fertilizers, solid wastes and pesticides has a continuously increasing trend is the main source of river pollution [1][2]. Surface water contamination is an obvious form of pollution. The trash from human consumption, such as plastics, water bottles and other waste products is often evident in water pollution that significantly degrades water quality [3].

The maintenance of safe and clean water sources will encourage the existence of an appropriate water body of living the organisms that required high-quality water quality. According to this concept, determining the factors through which water quality can be identified is important for diagnosing the quality, condition and level of water pollution, and because of the large number of factors and variables through which water quality can be recognized and overlapping among them, it has become necessary to find scientific methods to interpret the huge amount of data on water quality to be easy to understand and clear and give quick results without the need to go into the interpretation of factors and variables indicating water quality separately, so the simplest ways to assess the state of water quality are used water quality indices (WQIs),[4][5].

Alobaidy et al. [6] had used water quality index (WQI) and cluster analysis (CA) based on thirteen parameters to evaluate the Tigris river water quality at seven stations. Concluded in their study that there are the needs for intensive studies on WQI and also the needs more consideration of the water treatment plants along Tigris river for years to come. Hadi [7] applied the Canadian and Bhargava methods for calculating WQI in Tigris River. The study results revealed that water quality classification according to Bhargava is more appropriate than the water quality classification according to the Canadian method. Ismail [8] have studied the use of a overall index of pollution (OIP) for the prediction of water quality parameters in Tigris river. He selected seven sites along the river to
be used for samples collection within Baghdad city. OIP-WQI values of river water deteriorated from “acceptable” to “slightly polluted” to “heavily polluted” in almost all the seven sampling sites. However, it was noticed that the OIP is not quite applicable in assessment of Tigris river quality. Ewaid et al. [9] find the WQI for Tigris River water quality within Baghdad, for 10 different sites, and concluded that the water is unsuitable for drinking at almost all the sites of sampling. They proved WQI is an important tool for the assessment of water quality. Al-Mayah and Rabee [10] utilized the water quality index to evaluate the degree of pollution for Al-Gharrar Rivers, where revealed results that the river is not suitable for use as drinking water without elaborate treatment, poor for aquatic life protection and fair for irrigation. Banda and Kumarasamy [11] used various physical, chemical and biological parameters for developing a universal water quality model for South African river catchments. The study revealed that WQIs cannot evaluate the quality of water for all the applications but they are customarily developed to accommodate specific water quality parameters. According to Zotou et al. [12] WQIs are particularly useful tools, in the direction of the qualitative evaluate of aquatic systems, as they provide the opportunity to evaluate existing quality conditions by classifying water bodies into certain quality categories. Al-Mayah [13] found that NSF-WQI is an effective model to assessment drinking water quality and it presents an exact, rapid and modern method to evaluate and monitor the water quality in treatment plants.

In this study, two water quality indices (NSF-WQI & MI-WQI) were used along with the extent of the Tigris River in Baghdad city for evaluate the condition of water quality, based on the available physical, biological and chemical parameters for one year. And also, to generate pave ways for future management and action plans that can be used by the public and decision makers to protect the water resources.

2. Materials and methods

2.1. Study area and Sampling analysis

This research is conducted in the Tigris River, which is the largest rivers in the Middle East, stretching for over 1900 km, of which 1415 km are within Iraq. Eleven sites were selected for this study namely Al-Karkh (Site.1), Sharq Dijla (Site.2), Al-Sader (Site.3), Al-Baldiat (Site.4), Al-Kadhimiya (Site.5), Al-Karama (Site.6), Al-Wathba (Site.7), Al-Qadisiya (Site.8), Al-Dora (Site.9), Al-Wahda (Site.10) and Al-Rasheed (Site.11), these sites were chosen to cover all the distance of Tigris River within Baghdad city is about 110 km, as presented in Figure (1). Monthly samples were collected from these sites from September, 2018 to August, 2019 for a year, by using clean polyethylene bottles and it was preserved in ice box and analyzed in the laboratory. Physical, chemical and biological properties were determined by Standard methods of American Public Health Association [14], in the central environmental laboratory within 24hrs with three replications per sample.

2.2. Calculate NSF-WQI.

NSF-WQI is a mathematical model used to determine of the water quality based on the results nine parameters such as: pH, DO, BOD5, NO3, PO4, TSS, turbidity, temperature and fecal coliform. The model’s value calculates manually by following equation that proposed by Abbasi and Abbasi [15]:

\[
WQI = \sum_{i=1}^{n} Qi.Wi
\]

Where: Qi= Quality parameters (value of 0 to 100), Wi= Unit weighting parameter (value 0 – 1); n=Number of parameters as presented Table 2. The values of Qi and Wi can be calculated from formula proposed by Al-Mayah [16].

Furthermore, can calculate the model’s value by following link online: http://www.water-research.net/watrqualindex/index.htm. Finally, the water quality of the Tigris River is classified according to USGS [17], as shown in Table 1.
2.3. Metal pollution Index (MI-WQI)

The MI-WQI model is intended to point out drinking water contamination level. Caeiro et al.[18] applied maximum allowed concentration (MAC) in assessing the value of MI-WQI model and expressed by following equation:

$$MI = \sum_{i=1}^{n} \frac{Ci}{(MAC)i}$$

Where, MI: Metal Pollution Index, Ci: Mean concentration of each metal, Table (8), and MACi: Maximum allowed concentration of each studied metals, as presented Table (8). Moreover, to assess the water quality of the Tigris River for drinking water, the value of MI model can be divided into six categories Table 2.

![Figure 1: All Sampling Sites in Tigris River in the Baghdad City.](image)

Table 1: The illustrated the NSF-WQI categories.

NSF-WQI values	Water quality	Class
0-25	Very bad	I
26-50	Bad	II
51-70	Medium	III
71-90	Good	IV
91-100	Excellent	V

Table 2: MI-WQI Ranks Water Quality in 6 Categories.

MI-WQI values	Rating	Class
> 6.0	Seriously Affected	VI
4.0 - 6.0	Strongly Affected	V
2.0 - 4.0	Moderately Affected	IV
1.0 - 2.0	Slightly Affected	III
3. Results and Discussions

3.1. Estimating Water Quality Parameters

The examination of the water quality variables and their properties is an important part of the environmental monitoring and estimate the quality of the water. The annual mean values of various biological and physical-chemical variables for calculation of water quality index (WQI) and Iraqi international standards are presented in Table 3. All physical-chemical and biological parameters are exceeding allowable limit values recommended by the World Health Organization [19], and Iraqi drinking water standards [20], except for pH and NO3. The highest water temperature values recorded in July (30°C) and the lowest value recorded in January (15°C). Hydrogen ion concentration of study sites ranged between lowest value 6.83 in site1 at August and highest value 8.43 in site3 in September. Totally solid and turbidity levels showed differences between sites during the study period, it was ranged between 250 to 915 mg/L and 43 to 295 NTU respectively. The results were revealed that the DO in studying sites was ranged between 3.9 mg/L in site11 in August to 8.5 mg/L in site1 in January. While, BOD5 value ranged from 2.9 to 16.8 mg/L, in the same in studied sites and time of sampling. Data of nitrate level was ranged from 5.2 to 47 mg/L. Whereas, phosphate ranged between 0.11 to 3.9 mg/L. MPN of faecal coliform bacteria of study sites ranged between 2700 CFU/100 mL in site1 in October to 71000 CFU/100 mL in site11 in July. Moreover, statistical analysis that all water quality parameters except temperature showed that there were significant differences (p<0.05) were observed between studied sites and time of sampling. On the other hand, the main reason for the deterioration of water quality parameters (WQPs) and it exceed the Iraqi and international criteria in most sites and seasons are due to drainage the domestic and effluents of Baghdad city, also industrial and commercial companies which are increasing in trend from north to south. This agrees with studies of Banda and Kumarasamy [11] who referred to these factors as the main reasons for deteriorated water quality parameters.

Table 3: Summary annual mean of the water quality data of Tigris River at different locations.

ID	Name of station	WT°C	PH unit	TUR. NTU	TS mg/L	DO mg/L	BOD5 mg/L	NO3 mg/L	PO4 mg/L	FC CFU
S1	Al-Karkh	21.5	8.05	72.85	360	8.2	3.6	12.31	0.42	8587
S2	Sharq Dijla	21.5	7.8	112.5	473	7.6	5.12	21.56	0.55	11975
S3	Al-Sader	21	8.00	97.5	384.5	7.8	4.545	20.87	0.53	10525
S4	Al-Baldiat	21.5	7.91	101.3	428	7.6	5.12	21.56	0.55	11975
S5	Al-Kadhimiya	21.8	7.85	105.2	459	7.5	5.68	25.11	0.72	13625
S6	Al-Karama	21.5	7.79	117.8	499	7.3	5.63	28.18	0.78	15750
S7	Al-Wathba	21.7	7.09	216	639.5	5.8	8.89	36.42	1.8	28500
S8	Al-Qadisyia	21.3	7.68	138.8	507.3	6.9	6.03	27.78	0.77	18850
S9	Al-Dora	21	7.4	168	568	6.7	7.48	33.5	1.19	20800
S10	Al-Wahda	21	7.78	151.5	462	7.0	5.6	28.9	0.70	16825
S11	Al-Rasheed	22.5	7.04	235	696	5.2	11.43	44.8	2.34	43250
WHO standard/2011	35	8.5-6.5	5	25	>5	<5	45	0.1	0	
Iraqi standard/2009	25	8.5-6.5	<10	25	-	0-5	50	0.4	0	

3.2. Calculation of NSF-WQI

NSF-WQIs is a method developed to evaluate surface water contamination in any water system based on major nine variables, such as WT, pH, NTU, TS, DO, BOD5, NO3, PO4, and FC [21]. The parameters are used to classify the Tigris river in Baghdad city. The calculated factors, resulting NSF-WQI of different stations and seasons are listed in Tables (4, 5, 6 & 7). The increase in NSF-WQI value in this site (Al-Karkh site) is due to decreasing of the values of turbidity (less than 75NTU),...
biological oxygen demand (less than 3.8 mg/L), nitrate (less than 12.5 mg/L), phosphate (less than 0.45 mg/L), and fecal coliform (less than 9000 CFU), as result decrease of anthropogenic activities such as untreated domestic sewage from city near the banks of the Tigris river. While the decrease in NSF-WQI value is a reflection of the shortage of water level of the river, as well as water contains high concentrations of the above water quality parameters (WQPs). A big change occurs in site Al-Wathba (S7) and Al-Rasheed (S11) during June, July, and August in year, 2019. The water quality classification changed from bad, NSF-WQI (26-50) during the autumn, 2018 winter, 2019 and spring, 2019 to very bad, NSF-WQI (0-25) during the summer 2019. The real reason for deterioration of these two sites result from intensive human activities such as sewage and industrial effluents of Baghdad city, subsequently increase concentrations of BOD5 (more than 11 mg/l), TS (more than 690 mg/l), NO3 (more than 40 mg/l), PO4 (more than 2 mg/l) and FC (more than 43000 CFU). For the same reasons that previously mentioned, it was noticed from Figure (2), that the NSF-WQI values of Tigris river water deteriorated from “medium” in site1 (Al-Karkh) at upstream, to “bad” in site2, site3, site4, site5, site6, site8, site9 and site10 respectively and to “very bad” in site7 and site11 (Al-Rasheed) at downstream for most seasons of year. This comes in accordance with the findings of [22] and [23].

Table 4: The calculate NSF-WQI of Tigris River during Autumn (September, October, November, 2018).

ID	Name of station	WT C°	PH unit	TUR. NTU	TS mg/L	DO% mg/L	BOD5 mg/L	NO3 mg/L	PO4 mg/L	FC CFU	NSF-WQI value	NSF-WQI scale	Water Quality Rating
S1	Al-Karkh	18	84	39	20	78	69	49	71	17	51	51-70	Medium
S2	Sharq Dijla	19	80	32	20	66	49	51	63	10	44	26-50	Bad
S3	Al-Sader	19	82	36	34	70	57	62	57	11	49	26-50	Bad
S4	Al-Kadhimiya	18	90	31	20	68	56	49	55	10	45	26-50	Bad
S5	Al-Baldiat	20	61	43	40	68	55	64	64	11	48	26-50	Bad
S6	Al-Karama	19	80	39	20	72	60	55	60	9	47	26-50	Bad
S7	Al-Wathba	18	89	5	20	53	41	37	35	7	35	26-50	Bad
S8	Al-Qadisiya	19	87	19	20	72	48	53	51	8	44	26-50	Bad
S9	Al-Dora	22	92	5	20	56	46	44	45	8	39	26-50	Bad
S10	Al-Wahda	19	91	17	20	70	56	53	63	9	46	26-50	Bad
S11	Al-Rasheed	18	89	5	20	52	34	26	27	7	32	26-50	Bad

Wi = 0.10 0.11 0.08 0.07 0.17 0.11 0.10 0.10 0.16 \[\sum Wi = 1\]

Table 5: The calculate NSF-WQI of Tigris River during Winter (December, January, February, 2019).

ID	Name of station	WT C°	PH unit	TUR. NTU	TS mg/L	DO% mg/L	BOD5 mg/L	NO3 mg/L	PO4 mg/L	FC CFU	NSF-WQI value	NSF-WQI scale	Water Quality Rating
S1	Al-Karkh	31	84	17	47	81	63	59	77	15	54	51-70	Medium
S2	Sharq Dijla	29	89	5	20	73	64	24	54	14	44	26-50	Bad
S3	Al-Sader	31	83	5	20	75	73	26	79	18	48	26-50	Bad
S4	Al-Kadhimiya	29	84	5	20	68	60	19	46	15	41	26-50	Bad
S5	Al-Baldiat	29	82	5	20	75	61	26	59	17	44	26-50	Bad
S6	Al-Karama	26	87	5	20	72	61	13	52	13	42	26-50	Bad
S7	Al-Wathba	27	92	5	20	64	61	21	34	10	38	26-50	Bad
S8	Al-Qadisiya	29	91	5	20	70	60	22	58	12	43	26-50	Bad
S9	Al-Dora	29	93	5	20	68	57	15	41	13	40	26-50	Bad
S10	Al-Wahda	31	85	5	20	73	64	18	69	15	45	26-50	Bad
S11	Al-Rasheed	26	92	5	20	59	40	12	31	9	35	26-50	Bad

Wi = 0.10 0.11 0.08 0.07 0.17 0.11 0.10 0.10 0.16 \[\sum Wi = 1\]

Table 6: The calculate NSF-WQI of Tigris River during Spring (March, April, May, 2019).

ID	Name of station	WT C°	PH unit	TUR. NTU	TS mg/L	DO% mg/L	BOD5 mg/L	NO3 mg/L	PO4 mg/L	FC CFU	NSF-WQI value	NSF-WQI scale	Water Quality Rating
S1	Al-Karkh	24	84	18	63	68	67	35	95	17	54	51-70	Medium
S2	Sharq Dijla	26	92	5	44	55	52	22	67	13	42	26-50	Bad
S3	Al-Sader	26	82	5	58	62	62	25	86	17	47	26-50	Bad
The site was obtained as presented in Table (9). It was noticed from MI-WQI values that highest value was found in site7 (MI=13.34), site9 (MI=12.24) and site11 (MI=15.59), as a result to intensives discharges of municipal sewage, industrial wastes at this site, this results coincided with Al-Mayah and Al-Azzawi [24] and Matta et al. [25]. While the lower MI-WQI values were found in site1 (MI=6.073), site3 (MI=6.315), site4 (MI=6.679) and site5 (MI=7.082), this may refer to the dilution factors due to reducing the discharges of city wastewater and other forms of anthropogenic activities. Moreover, the results revealed that the Tigris river quality deteriorate in in trend from north to south this is due to the same reasons that were mentioned previously, it can be noticed in Figure 3.

ID	Name of station	WT	PH unit	TUR.	TS	BOD5	DO%	NO3	PO4	FCU	NSF-WQI value	NSF-WQI scale	Water Quality Rating
S1	Al-Karkh	11	77	43	66	56	37	48	46	8	44	26-50	Bad
S2	Sharq Djila	10	93	30	55	40	42	33	30	7	36	26-50	Bad
S3	Al-Sader	11	88	36	71	46	51	43	41	7	42	26-50	Bad
S4	Al-Kadhimia	11	90	33	57	39	44	40	40	7	39	26-50	Bad
S5	Al-Baldiat	10	92	35	44	48	41	41	41	7	40	26-50	Bad
S6	Al-Karama	11	93	29	52	41	45	30	31	6	37	26-50	Bad
S7	Al-Wathba	10	80	5	43	24	20	17	22	5	24	0-25	Very Bad
S8	Al-Qadisyaya	10	93	23	50	37	37	29	31	6	34	26-50	Bad
S9	Al-Dora	10	92	21	48	31	29	26	30	6	31	26-50	Bad
S10	Al-Wahda	11	92	27	55	39	36	31	32	6	35	26-50	Bad
S11	Al-Rasheed	10	84	5	35	16	19	12	17	5	22	0-25	Very Bad

Figure 2: NSF-WQI values at values at study area.

3.3. Calculate of MI-WQIs

Metal pollution Index (MI-WQI) can give suggestion assessing the water quality based on concentration of heavy metals and therefore can be taken action to improve water quality. Based on the MI-WQI analysis, classification of the Tigris river at each site was obtained as presented in Table (9).
Table 8: Mean MI-WQI of Tigris River during four seasons.

Heavy metals (ppm)	Mean Concentrations (Ci)	Highest permitted value (MAC)i	MI
Cd	0.00426	0.003	1.42
Ni	0.0395	0.02	1.975
Fe	0.7640	0.3	2.546
Pb	0.0592	0.01	5.92
Zn	0.658	3	0.219
Cu	0.859	1	0.859

\[\Sigma \text{MI} = 12.94 \]

Table 9: The MI-WQI recorded at different sampling stations.

ID	Name of station	Cd ppm	Ni ppm	Fe ppm	Pb ppm	Zn ppm	Cu ppm	\(\Sigma \text{MI-WQI} \)	MI-WQI scale	Water Quality Rating
S1	Al-Karkh	0.934	1.05	1.096	2.28	0.159	0.554	6.073	> 6.0	Seriously affected
S2	Sharq Dijla	1.13	1.42	1.38	4.42	0.218	0.771	9.339	> 6.0	Seriously affected
S3	Al-Sader	1.034	1.15	1.13	2.46	0.114	0.427	6.315	> 6.0	Seriously affected
S4	Al-Baladiat	1.066	1.19	1.15	2.55	0.165	0.558	6.679	> 6.0	Seriously affected
S5	Al-Kadhimiya	1.1	1.12	1.22	2.85	0.163	0.629	7.082	> 6.0	Seriously affected
S6	Al-Karama	1.233	1.84	1.58	4.75	0.278	0.622	10.30	> 6.0	Seriously affected
S7	Al-Wathba	1.62	2.06	2.195	6.24	0.311	0.916	13.34	> 6.0	Seriously affected
S8	Al-Qadiya	1.27	1.57	1.79	5.24	0.244	0.783	10.89	> 6.0	Seriously affected
S9	Al-Dora	1.4	1.78	1.96	5.93	0.296	0.871	12.24	> 6.0	Seriously affected
S10	Al-Wahda	1.3	1.53	1.76	4.31	0.237	0.755	9.892	> 6.0	Seriously affected
S11	Al-Rasheed	1.7	2.1	2.39	8.1	0.318	0.984	15.59	> 6.0	Seriously affected

Total MI value = 107.74

Figure 3: MI-WQI values at various sampling points.

4. Conclusions
In this research, NSF-WQI provided realistic results in comparison to the raw data, they are useful models in evaluating surface water quality based on water quality parameters. Quality of water has decreased along the river from Al-Karkh station (S1) to Al-Rasheed station (S11) due to the discharge of the city wastewater and industrial wastes on both sides of the river, as well as other forms of the anthropogenic activities which are increasing in trend from north to south. On other hand, the results
of MI-WQIs indicates that the selected water samples from the Tigris river are seriously contaminated with respect to heavy metals.

References
[1] Darvishi Gh., Kootenaei F G, Ramezani M, Lotfi E, Asgharnia H 2016 Comparative Investigation of River Water Quality by OWQI, NSFWQI and Wilcox Indexes (Case study: the Talar River – IRAN). Archives of Environmental Protection. 42(1):41–8.
[2] Lkr A, Singh M R, Puro N 2020. Assessment of water quality status of Doyang River, Nagaland, India, using Water Quality Index. Applied Water Science. 10:46.
[3] Le Th., Zeunert Z, Lorenz M, Meon G 2020 Multivariate statistical assessment of a polluted river under nitrification inhibition in the tropics. Environ Sc. Pollut. Res. 24:13845–62.
[4] Al-Mayah W Th, Rabee A M 2018. Application of Overall Index of Pollution (OIP) for the Evaluating of the Water Quality in Al-Gharraf River southern of Iraq. Iraqi Journal of Science. 59 (2A):660-9.
[5] Abazi A M, Durmishi B H, Sallaku F S, Cadraku H S, Fetoshi O B, Ymeri P H and Bytec P S 2020. Assessment of Water Quality of Sitnica River by Using Water Quality Index (WQI). Rasayan J.Chem., 13(1):146 - 59.
[6] Alobaidy A H M J, Maulood B K and Kadhem A J, 2010. Evaluating Raw and Treated Water Quality of Tigris River within Baghdad by Index Analysis. J. Water Resource and Protection, 2, 629-635. doi:10.4236/jwarp.2010.27072.
[7] Hadi N Sh 2012 Comparison between the results of applications of the Canadian and Bhargava methods for irrigation water quality index at multi locations in Tigris River. (A Case Study of Al-amarah Region). Journal of K erbala University, 10(4) Scientific.
[8] Ismail AH, Abed BS, Abdul-Qader S 2014. Application of multivariate statistical techniques in the surface water quality assessment of Tigris river at Baghdad stretch. Journal of Babylon University 22(2):450- 62.
[9] Ewaid SH, Abed SA and Kadhum SA 2018. Predicting the Tigris River water quality within Baghdad, Iraq by using water quality index and regression analysis. Environ Technol Inno11:390-8.
[10] Al-Mayah W Th and Rabee A M 2018. Evaluation of Water Quality Using Water Quality Index (WQI) Method and GIS in Al-Gharraf River Southeren of Iraq. Journal of Global Pharma Technology. 10(07):196-202.
[11] Banda T D, Kumarasamy M V 2020. Development of Water Quality Indices (WQIs): A Review. Pol. J. Environ. Stud. 29(3):2011-21.
[12] Zotou I, Tsihrintzis V A and Gikas G D 2018. Comparative Assessment of Various Water Quality Indices (WQIs) in Polyphytos Reservoir-Aliakmon River, Greece. Proceedings 2, 611; doi:10.3390/proceedings211061.
[13] Al-Mayah W Th. (2021).Chemical and microbial health risk assessment of drinking water treatment plants in Kut City, Iraq.Materials Today: Proceedings 42 (2021) 3062–3067.
[14] APHA and WFF 2005 Standard Methods for the Examination of Water and wastewater, 21th ed., edited by Eaton, A. D American Water Work Association and Water Environment Federation, USA.
[15] Abbasi T and Abbasi S 2012 Water Quality Indices. Chinnakalapet, Puducherry, India: Elsevier.
[16] Al-Mayah W Th 2018. Evaluating of Water Quality in Al-Gharraf River Southern of Iraq Using Different Environmental Indices, Remote Sensing Technique and Geographical Information System, Ph.D. Thesis, College of Science, University of Baghdad, Iraq: 43p.
[17] USGS (United States Geological Survey) 2015. National field manual for the collection of water quality data, techniques of water resources, book 9, handbooks for water resources investigations, pp 1539.
[18] Caerio S, Costa M H, Ramos T B, Fernandes F, Silveira N, Coimbra A and Painho M 2005. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators 5, 155-169.

[19] WHO (World Health Organization) 2011 Guidelines for drinking-water quality. 4th edition.

[20] Iraqi standard criteria for drinking water.NO. 417 at 2009. for chemical and physical limits.

[21] Samantray P, Mishra BK and Panda CR 2009. Assessment of Water Quality Index in Mahanadi and Tharabanki rivers and Taldanda canal in Paradip area, India. Hum Ecol 26:153-6.

[22] Al-Fatlawy Y F K 2007 Study of the quality of drinking water for some water liquefaction projects Baghdad. Ph.D. Thesis, College of Science, University of Baghdad, Iraq.

[23] Noori M D 2020 Comparative analysis of weighted arithmetic and CCME Water Quality Index estimation methods, accuracy and representation. IOP Conf. Series: Materials Science and Engineering 737 (2020) 012174. doi:10.1088/1757-899X/737/1/012174.

[24] Al-Mayah W T and Al-Azzawi M N 2013 Monthly variations of some physical and chemical properties for Al- Ghraarf River one of the main Tigris River branches at Al-Haay city. J. of Wassit for science and medicine. 17 (1): 190-205.

[25] Matta G, Kumar A, Kumar A, Naik P K, Kumar A, Srivastava N 2018. Assessment of Heavy Metals Toxicity and Ecological Impact on Surface Water Quality Using HPI in Ganga River. INAE Letters 3:123–129.

Acknowledgments
This work was supported by the Iraqi Ministry of Environment, Central Environmental Laboratory and the Iraqi Ministry of Water Resources