Pyrethroid resistance in the New World malaria vector *Anopheles albimanus* is mediated by cytochrome P450 CYP6P5

Michael O. Kusimo a, Lucy Mackenzie-Impoinvil b, Sulaiman S. Ibrahim c, d, *, Abdullahi Muhammad e, Helen Irving c, Jack Hearm c, Audrey E. Lenhart b, Charles S. Wondji a, c

a LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
b Entomology Branch, Division of Parasitic Diseases and Malaria, Centre for Global Health, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
c Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
d Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria
e Centre for Biotechnology Research, Bayero University, PMB 3011 Kano, Nigeria

ARTICLE INFO

Keywords:
Anopheles albimanus
CYP6P5
Metabolic Resistance
α-Cypermethrin

ABSTRACT

Pyrethroid resistance in the malaria vector *Anopheles albimanus* presents an obstacle to malaria elimination in the Americas. Here, *An. albimanus* CYP6P5 (the most overexpressed P450 in a Peruvian population) was functionally characterized. Recombinant CYP6P5 metabolized the type II pyrethroids, deltamethrin and α-cypermethrin with comparable affinities (kcat of 3.3 μM ± 0.4 and 3.6 μM ± 0.5, respectively), but exhibited a 2.7-fold higher catalytic rate for α-cypermethrin (kcat of 6.02 min⁻¹ ± 0.2) versus deltamethrin (2.68 min⁻¹ ± 0.09). Time-course assays revealed progressive depletion of the above pyrethroids with production of four HPLC-detectable metabolites. Low depletion was obtained with type I pyrethroid, permethrin. Transgenic expression in *Drosophila melanogaster* demonstrated that overexpression of CYP6P5 alone conferred type II pyrethroid resistance, with only 16% and 55.3% mortalities in flies exposed to 0.25% α-cypermethrin and 0.15% deltamethrin, respectively. Synergist bioassays using P450 inhibitor piperonylbutoxide significantly recovered susceptibility (mortality = 73.6%, p < 0.001) in synergized flies exposed to 4% piperonylbutoxide, plus 0.25% α-cypermethrin, compared to non-synergized flies (mortality = 4.9%). Moderate resistance was also observed towards 4% DDT. These findings established the preeminent role of CYP6P5 in metabolic resistance in *An. albimanus*, highlighting challenges associated with deployment of insecticide-based control tools in the Americas.

1. Introduction

Significant reduction in the global malaria burden was achieved between 2000 and 2015, through widespread deployment of two key vector control tools: long-lasting insecticide-treated bed net (LLINs) and indoor residual spraying (IRS) (Bhatt et al., 2015; WHO, 2020). However, the spread of insecticide resistance is threatening to reverse this progress (Hemingway et al., 2016), with widespread pyrethroid resistance established in the major malaria vectors in Africa (Hancock et al., 2013; Lucas et al., 2019; Miles et al., 2017). Furthermore, recent studies have detected major metabolic resistance markers, e.g. in *An. funestus*, the GSTε2-119F (Riveron et al., 2014b), CYP6P9α_R (Weedall et al., 2019) and CYP6P9b_R (Mugenzi et al., 2019), and in *An. gambiae*, the GSTε2-119V (Lucas et al., 2019), which allow for detection of resistance alleles and monitoring of their spread in the field. In contrast, little has been done to elucidate drivers of metabolic resistance and detect important markers in resistance genes in malaria mosquitoes from other regions, such as *A. albimanus*, a major vector in the Americas. Most studies on molecular mechanisms of resistance in *An. albimanus* have focused on target site mechanisms, for example, the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (VGSC). These include a report of absence of the kdr mutation in segment 6/domain II of the VGSC in population from Columbia (Orjuela et al., 2019), a report

* Corresponding author at: Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK.
E-mail addresses: michael.kusimo@crid-cam.net (M.O. Kusimo), suleiman.ibrahim@lstmed.ac.uk (S.S. Ibrahim).

https://doi.org/10.1016/j.pestbp.2022.105061
Received 7 December 2021; Received in revised form 11 February 2022; Accepted 19 February 2022
Available online 25 February 2022
0048-3575/ © 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
of mutations in 1014 codon in populations from Mexico (L1014F), Nicaragua and Costa Rica (L1014C) (Loi et al., 2013), as well as a report on Peruvian populations, in which frequencies of 5% and 15–30% of the L1014S kdr mutations was established in deltamethrin- and α-cypermethrin-resistant females (Mackenzie-Impoinvil et al., 2019).

Recently, using genome-wide transcriptional analyses, the P450 CYP6P5 was shown to be 68 times overexpressed in pyrethroid-resistant An. albimanus from Peru, compared to the fully susceptible laboratory colony, Sanarate (Guatemala) (Mackenzie-Impoinvil et al., 2019). However, prior to this study, the functional role of this P450 in pyrethroid metabolism had not been elucidated.

This study aimed to validate the role of the P450, An. albimanus CYP6P5 in insecticide resistance. The in vitro heterologous expression in E. coli, coupled with high-performance liquid chromatography (HPLC), confirmed that the recombinant CYP6P5 metabolize pyrethroids with the production of well-characterised hydroxylated metabolites (Stevenson et al., 2011). Also, the ability of the CYP6P5 to confer insecticide resistance was validated by overexpressing it in transgenic flies (Drosophila melanogaster) followed by insecticide contact bioassays, which confirmed its ability to confer resistance to type II pyrethroids, deltamethrin and α-cypermethrin.

2. Materials and methods

2.1. Amplification and cloning of full-length An. albimanus CYP6P5

The RNA utilized for amplification of CYP6P5 from cDNA was from field populations described from a previous study (Mackenzie-Impoinvil et al., 2019). This field populations, collected in 2015 (from Puerto Pizarro, Tumbes, Peru, 3° 30′ 10S, 80° 23′ 38 W) were resistant to deltamethrin and α-cypermethrin. Also, the fully insecticide susceptible, laboratory colony, Sanarate (originally from Guatemala) were used for RNA extraction. Total RNA was extracted from three replicates each of mosquitoes resistant to deltamethrin and α-cypermethrin.

2.2. Genetic variability of An. albimanus CYP6P5

To identify genetic variants in An. albimanus CYP6P5 from Peru, data from a differential gene expression analysis (NCBI BioProject PRJNA498810) (Mackenzie-Impoinvil et al., 2019) was re-analyzed. In that experiment, three replicates each of mosquitoes resistant to deltamethrin, α-cypermethrin and unexposed (control), collected in Puerto Pizarro, Tumbes, Peru in October 2015 were compared with the susceptible Sanarate (Guatemala) colony of An. albimanus. Here, data from replicates for each treatment were combined into a single sample per treatment. A total of 30 haploid genomes were included per treatment as each replicate in (Mackenzie-Impoinvil et al., 2019) consisted of five mosquitoes. Reads were aligned to the An. albimanus STECLA genome (VectorBase v54) with BWA, v0.7.17 (Li, 2013), sorted with picard tools, v2.26.4 (https://broadinstitute.github.io/picard/), and variants called with freebayes, v1.3.5 (Garrison and Marth, 2012) for the CYP6P5 gene, and a flanking region of 1000 bp. Freebayes predicted variants were filtered to remove indels and keep biallelic variants with a minimum phred-scaled quality of 20, using vcfll v1.0.2 (Garrison et al., 2021).

Remaining variants were annotated using SnpEff v5.0 (Cingolani et al., 2012) and used to create a lollipop plot in the R package ggplot2 (Wickham, 2011) of variants with a frequency greater than 5% across the gene-body of CYP6P5 for each of the four treatments included. As established by (Mackenzie-Impoinvil et al., 2019), CYP6P5 was overexpressed in the Peru population versus Sanarate, meaning variant prediction was based on unbalanced read-depths (File S1, for examples from missense mutations). This was offset by the intention to identify variants prevalent in the Peru population.

2.3. Sequence characterization and in silico prediction of insecticide-metabolizing activity of An. albimanus CYP6P5

The amino acid coding sequence of CYP6P5 (section 2.1) was mapped to the sequence of Pseudomonas putida CYP101A (P450cam) (Gotoh, 1992b; Poulos et al., 1985), to establish putative substrate recognition sites 1 to 6 (SRS 1–6), compared with the sequences from An. funestus CYP6P5, An. gambiae CYP6P5 and the human CYP3A4 (Yano et al., 2004).

The homology model and energy minimization of CYP6P5 sequences was built using MODELLER 10.1 (Sali and Blundell, 1993) with the crystal structure of human CYP3A4 (PDB ID: 1TQN, ~34.8% similarity, 1e⁻⁷⁵) (Yano et al., 2004) as a template. A total of 20 models were generated for the predominant sequence of CYP6P5 and assessed externally using Errat (version 2), to identify the best model from statistical patterns of non-bonded interaction between different atom types (Colovos and Yeates, 1993). Overall quality scores were 53.36% for the highest ranked model. The virtual ligand structures for α-cypermethrin (PubChem ID: 93357) were downloaded from PubChem database (https://pubchem.ncbi.nlm.nih.gov/compound/101618973), while deltamethrin (ZINC01997854), 1R-cis permethrin (ZINC01850374) and DDT (ZINC01530011) were retrieved from the library in ZINC² database (https://zinc.docking.org/) (Irwin and Shoichet, 2005). Preparation of the receptor and ligand and docking were carried out using the Molegro Virtual Docker version 7.0 (Thomsen and Christensen, 2006). Five cavities were detected for the CYP6P5 model, with the biggest having a volume of 1880.06 Å. Docking was carried out with MolDock scoring function, with the above cavity as a constraint, targeting a binding site of 20 Å radius above the heme iron, and pose clustering of 12 solutions.

2.4. In vitro characterization of metabolic activity of AaCYP6P5

2.4.1. Cloning of recombinant AaCYP6P5 and heterologous expression in E. coli

The AaCYP6P5 cDNA of the predominant allele from the Peru sample (sequenced in section 2.1) was prepared for expression using a previously described protocol (Pritchard et al., 1997) by fusing bacterial ompA-2 leader sequences to the 5′ of CYP6P5, using primers provided in Table S1. The PCR products were cleaned, digested with restriction enzymes NdeI and XbaI and ligated into the expression vector pCWori+
already linearized with the same restriction enzymes, to create a construct pB13::ompA-2AaCYP6P5. This recombinant plasmid was co-transformed together with An. gambiae CYP450 reductase (pACYC-AgCPR) into E. coli JM109 (Pritchard et al., 1997). The recombinant AaCYP6P5 was expressed optimally at 21.5 °C, with shaking at 150 rpm for 72 h, following induction with 0.5 mM α-methilenevinolic acid (6-ALA) and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The P450 content in the membrane was determined spectrophotometrically (Omura and Sato, 1964) and cytochrome P450 reductase activity was determined using the cytochrome c reduction assay (Guengerich et al., 2009).

2.4.2. Pyrethroid metabolic assays

The ability of recombinant AaCYP6P5 to metabolize pyrethroids was investigated using substrate depletion assays with permethrin, deltamethrin and α-cypermethrin. The protocols for incubation and high-performance liquid chromatography (HPLC) analyses for the above insecticides followed procedures previously published (Ibrahim et al., 2018) with modifications. The depletion assay mix contained 0.225 μM membrane expressing recombinant AaCYP6P5, 1.8 μM cytochrome b5 (originally from An. gambiae), 20 μM insecticide, diluted to 100 μM with water. The reaction was started by adding 100 μL of 1 mM final concentration of either NADPH or NADPH regeneration buffer. The NADPH regeneration buffer contained 1 mM glucose-6-phosphate, 0.1 mM NADP⁺, 0.25 mM MgCl₂ and 1 unit/mL glucose-6-phosphate dehydrogenase. The negative reactions contained the same regeneration buffer mix but without the NADP⁺ (equal volume of buffer added in place of the amount of the buffer containing NADP⁺). The depletion assay with NADPH was carried out using NADPH dissolved in 50 mM phosphate buffer, pH 7.4. The negative reactions contained water alone, added to 50 mM phosphate buffer at pH 7.4, without NADPH. Reactions were conducted in triplicate for positive and negative incubations, for each insecticide. Following incubation for 2 h at 30 °C and 1200 rpm, reactions were quenched with 200 μL of ice-cold acetoneitrile and samples were incubated for an additional 10 min to dissolve the insecticides, before centrifugation at 20,000 g for 20 min. The supernatants (150 μL each) were loaded into the HPLC vials for analysis. The quantity of insecticide remaining in the samples was determined by reverse-phase HPLC, with UV absorbance of 226 nm, using a C18 column (Acclaim 120Å, Dionex). From the vials, 100 μL of sample was loaded with a flow rate of 1 mL/min at 23 °C into an isocratic mobile phase of 80% acetonitrile and 20% water. The retention times for deltamethrin, α-cypermethrin and permethrin were 10.19 min, 9.78 min, and 11.21 min (trans), 12.5 min (cis), respectively. A paired t-test was used to compare positive reactions (+NADPH) vs negative reactions (–NADPH) for the depletion of the substrates.

Time course depletion assays of the insecticides were carried out in 200 μL reaction mix containing 20 μM of either deltamethrin or α-cypermethrin, 0.1 μM AaCYP6P5 membrane, 0.8 μM cytochrome b5, and NADPH. Incubation conditions were as above, between 0–120 min. Steady state kinetic parameters were determined with α-cypermethrin and deltamethrin, by measuring the rate of reaction for 1 h while varying the substrate concentrations (0–20 μM) in the presence of NADPH, 0.1 μM AaCYP6P5 membrane and 0.8 μM cytochrome b5. Reactions were performed in triplicate both for +NADPH and −NADPH, for each concentration. Values of K_M and V_max were calculated from the Michaelis-Menten plot using the least squares, non-linear regression in the GraphPad Prism 5.0 (GraphPad Inc., La Jolla, CA, USA).

2.5. In vivo characterization of the role of AaCYP6P5 in resistance

2.5.1. Transgenic expression of AaCYP6P5

To confirm if over-expression of CYP6P5 alone can confer resistance to the pyrethroid insecticides, transgenic flies expressing this gene were generated using GALA/UAS system. The preparation of the transgenic flies followed the protocols described previously (Riveron et al., 2013).

The full-length CYP6P5 was amplified from the predominant allele used for in vitro analyses, with Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific, MA, USA) using primers bearing BglII and XbaI restriction sites (Table S1). The PCR products were cleaned and cloned into the pUASattB vector linearised with the above restriction enzymes. Using the PhiC31 system, clones were injected into the germ-line of a D. melanogaster line carrying the attP40 docking site, 25C6 on chromosome 2 (y w M[eGFP, vas-int, dmRFP]Z1–Z1; P(CaryP)attP40). Microinjection and balancing of US stock to remove integrase was carried out by Fly Facility (Cambridge, UK) generating a UAS-CYP6P5 transgenic line. Ubiquitous expression of the transgene in adult F₁ progeny (experimental group) was obtained after crossing virgin females from the GAL4-Actin driver strain Act5C-GAL4, B25374 ([y1] w [+]; P(Act5C-GAL4-w)E1/CyO, 1;2) (Bloomington, IN, USA) with the UAS-CYP6P5 males. Similarly, adult F₂ control progeny (control group) with the same genetic background as the experimental group but without the CYP6P5 insert were obtained by crossing virgin females from the driver strain Act5C-GAL4 and US stock recipient males with white eyes (not carrying the pUASattB-CYP6P5 insertion).

2.5.2. Drosophila contact bioassays

For the contact bioassay, 2 to 4-day old experimental and control F₁ females were exposed to 0.25% α-cypermethrin (5 × the recommended dose of 0.05% for Anopheles mosquitoes), 0.15% deltamethrin, 2% permethrin and 4% DDT-impregnated papers, prepared in acetone and Dow Corning 556 Silicone Fluid (BHD/Merck, Hesse, Germany). These papers were rolled and introduced into 45 cc plastic vials to cover the entire wall. The vials were plugged with cotton soaked in 10% sucrose. Minimum of 25 flies were placed in each vial, and the mortality plus knockdown was scored after 1 h, 3 h, 6 h, 12 h and 24 h. For each insecticide, assays were performed in four replicates and Student’s t-test used to compare the mortalities between the experimental groups and the control. A synergist bioassay was also conducted using four replicates of 25 females, which were exposed to 4% PBO for 1 h, followed by exposure to papers impregnated with 0.25% α-cypermethrin.

To confirm overexpression of CYP6P5 in the experimental group three replicates each of 6 F₁ females were used for qRT-PCR, using a previously established protocol (Riveron et al., 2014a). Total RNA was extracted, and cDNA was synthesized as described above, and the relative expression levels of the transgene were assessed using the experimental F₁ progeny as well as two controls [(i) parental, white-eye flies with no CYP6P5 insertion, crossed with GAL4/UAS driver lines, and (ii) parental, red-eyed, UAS-CYP6P5 flies not crossed with GAL4/UAS lines], with normalization using the RPL11 housekeeping gene. The primers used are provided in Table S1.

3. Results

3.1. DNA and amino acid sequences characterization of AaCYP6P5

Analysis of the polymorphism patterns of the CYP6P5 gene and 1 kb flanking regions (total 3.8 kb) in RNASeq data from the Sanarate and field pyrethroid resistant population from Peru, revealed moderate polymorphism. There were 22 coding sequence variants, including 12 non-synonymous variants, and two intrinsic variants. When plotted by frequency across the gene (lollipop chart, Fig. 1), higher-frequency variants occurred together across deltamethrin, α-cypermethrin and unexposed treatments, and more commonly, than in Sanarate, which is not surprising given the close proximity of the STECLA reference sequence (from El Salvador) and the susceptible Sanarate strain (from Guatemala). Two of the twelve missense mutations occurred at high frequency in Peru (71–86%) and 67–87%, File S1), the first changes asparagine to histidine at amino acid 264 (N264H) and the second lysine to asparagine at position 437 (K437N).

Five of the Sanarate clones sequenced had introns. AaCYP6P5, located on the chromosome 2R, has two exons and one intron, and only
one splice variant. Two of the Sanarate clones, manually spliced and aligned to the full-length \textit{AaCYP6P5} had nucleotide insertions that distorted the open reading frame, causing protein truncation when translated. The alignment of the amino acid sequences of the cloned \textit{AaCYP6P5} samples from Peru showed four of the sequences had a mutation at position 437 (K437N), as above for the RNASeq data (Fig. S1). The sequence of this dominant allele has been deposited in GenBank (Accession number MW629015). After removing the intron, the manually trimmed Sanarate sequences were translated and aligned with the sequences from Peru (Fig. S2). This alignment revealed only one amino acid change, the same as that of the variant allele with the K437N mutation observed in the Peru sample (Fig. S1).

The amino acid sequences of \textit{AaCYP6P5} were compared with those of \textit{An. gambiae} and \textit{An. funestus}, the two major African malaria vectors (Fig. S3). The six conserved substrate recognition sites (SRS) of the P450s showed more mutational changes in the \textit{An. albimanus} amino acid sequence in SRS-2 and -3 compared to those of \textit{An. gambiae} and \textit{An. funestus} (Fig. S3). A percentage identity matrix revealed that \textit{An. albimanus} \textit{CYP6P5} is 76.03% and 74.80% identical to \textit{An. gambiae} and \textit{An. funestus}, respectively.

3.2. Prediction of insecticide-metabolizing ability of \textit{AaCYP6P5} using molecular docking simulation

Molecular docking predicted metabolism of the pyrethroid insecticides, particularly type II class. The α-cypermethrin docked (1st
ranked pose, Table S2) productively into the active site of CYP6P5 model, with the 4′ spot of phenoxy ring oriented at 3.79 Å from the heme iron (Fig. 2A), suggesting ring hydroxylation to produce 4′-hydroxy-α-cypermethrin. The 4′-hydroxy is known to be a major route of pyrethroid metabolism in recombinant An. gambiae CYP6M2 (Stevenson et al., 2011), and other organisms (Gilbert and Gill, 2010). Intermolecular interactions include two hydrogen bonds (Fig. 2A, inset): (i) donated by the α-cyano nitrogen atom to SRS-5 Pro379 (2.97 Å distance and –1.07 kcal/mol), and (ii) donated by the ester oxygen (2.58 Å distance and –2.36 kcal/mol) to Val216 from SRS-2. Electrostatic interaction was also predicted between the α-cyano group and Glu381, as well as steric interactions with Thr318, Val380, Glu381 and Pro379.

The 1st ranked pose of deltamethrin also docked productively but with a lower score than α-cypermethrin Fig. 2B, Table S2). The C-4′ spot of phenoxy ring was oriented above the heme, at 5.36 Å, suggesting ring hydroxylation to 4′-hydroxy-deltamethrin as the major metabolic route. Intermolecular interactions include three hydrogen bonds (Fig. 2B, inset): (i) donated by the α-cyano nitrogen to Val216 (2.50 Å and –1.64 kcal/mol), (ii) donated by the ester oxygen (2.59 Å and –2.49 kcal/mol) to Val383, and (iii) the ester oxygen to Glu381 (2.97 Å and –1.19 kcal/mol); as well as electrostatic interaction with Val380, Glu381, Val383, Val216 and Leu696.

Permethrin docked with the cis-/trans-methyl group of cyclopropane ring oriented above the heme at 3.78 Å (Fig. 2C) suggesting cis-/trans-methyl hydroxy metabolite, known to be a minor pathway for pyrethroid metabolism (Stevenson et al., 2011; Gilbert and Gill, 2010). Neither hydrogen bonding, nor electrostatic interactions contributed to the binding energetics of permethrin (Fig. 2C, inset). However, an extensive network of steric interactions was observed between permethrin and Ala215 and Val216 of SRS-2, Leu313, Glu317, Thr318, Val380 and Pro379.

For DDT (which exhibited the lowest MolDock Score), binding in the first 3 top ranked poses were unproductive. The C-1 of the trichloroethyl group is 9.4 Å from the heme iron, in the top ranked pose (Fig. 2D). One of the chlorine atoms of the dichlorophenyl rings is projected above the heme, at 3.72 Å. As was the case with permethrin, neither hydrogen bonds nor electrostatic interactions were observed in this pose (Fig. 2D, inset) but a network of steric interactions was seen with Ala215, Val216, Val383, Thr318, Thr321, Glu317 and Pro379.

3.3. Validation of recombinant AaCYP6P5 metabolism of pyrethroids

3.3.1. Substrate depletion assays

The recombinant AaCYP6P5 expressed with concentration of15 μM of purified membrane, and with cytochrome P450 reductase activity of 285 nmol of cytochrome c reduced per min/mg protein (Figs. S4). To compare the efficiency of electron transfer to recombinant CYP6P5, metabolic assays were conducted with pyrethroids using both the NADPH regeneration system and NADPH alone. The AaCYP6P5 metabolized permethrin moderately with 30.6% ± 2.8 depletion when electrons were supplied from the NADPH regeneration system (p < 0.05 versus NADP- incubation), and 21.8% ± 5.3 (p < 0.05) when using 1 mM NADPH (Fig. 3A). It metabolized the type II pyrethroids α-cypermethrin and deltamethrin with depletion of 57.4% ± 3.8 (p < 0.01) and 56.8% ± 1.3 (p < 0.01), respectively, when the NADPH regenerating system was used and 65.7% ± 2.4 (p < 0.01) and 48.1% ± 0.3 (p < 0.01) respectively, when electrons were supplied by NADPH.

3.3.2. Estimation of steady-state kinetic parameters and identification of HPLC metabolites

The steady state kinetics for depletion of type II pyrethroids followed Michaelis-Menten pattern (Fig. 2B and -C). Recombinant CYP6P5 had
comparable affinity for α-cypermethrin and deltamethrin, with K_M of 3.64 μM ± 0.47 and 3.26 μM ± 0.40, respectively. However, it had 2.7-fold higher turnover for α-cypermethrin compared to deltamethrin, with a maximum k_{cat} of 6.02 min$^{-1}$ ± 0.21 and 2.68 min$^{-1}$ ± 0.09, respectively. This resulted in catalytic efficiencies of 1.65 min$^{-1}$ μM$^{-1}$ and 0.82 min$^{-1}$ μM$^{-1}$ for α-cypermethrin and deltamethrin, respectively.

Time-course assays revealed progressive production of four metabolites from α-cypermethrin and deltamethrin (Figs. S5 and S6). The pattern of the retention times for these metabolites are similar for both insecticides (Table S3). However, the higher turnover rate of the metabolism of α-cypermethrin compared to deltamethrin was also reflected by depletion starting earlier with α-cypermethrin (Fig. 4A). The major and most abundant metabolite (M$_c$4) appeared within 5 min of incubation for α-cypermethrin, with M$_c$3 produced 20 min into the reaction, while M$_c$2 and M$_c$1 both appeared 30 min into the reaction. However, the metabolic reaction did not start until after 10 min for deltamethrin, with the production of M$_d$4 and M$_d$3 metabolites. Interestingly, M$_d$1 appeared 20 min earlier for deltamethrin metabolism (at 20 min) compared to M$_c$2 which appeared at 40 min. These are hydroxylated metabolites previously described for the recombinant CYP6M2 from An. gambiae (Stevenson et al., 2011). The primary sites of P450 hydroxylation of pyrethroids are shown in Fig. S7 with bold arrows at the 2′ and 4′ positions, while the minor routes of hydroxylation are shown with open arrows (Kambay and Jewess, 2004).

3.4. Validation of the role of AaCYP6P5 in pyrethroid resistance using transgenic flies

Contact bioassays carried out using 0.25% (5× the discriminating dose for the Anopheles mosquitoes) α-cypermethrin revealed a significantly high resistance in the experimental flies (transgenic Act5C-CYP6P5 females) compared to control flies, at all five different times, spanning 1 h – 24 h (mean mortality = 9.7% in Act5C-CYP6P5 flies vs 75.8% in control flies, $p < 0.001$) (Fig. 5A). Specifically, at 1 h, mortality in the experimental flies was 3.1% compared to 46.9% for control flies ($p < 0.001$). These mortalities increased for the experimental flies to 5.2%, 7.5%, 16.3% and 16.3% at 3 h, 6 h, 12 h and 24 h, respectively, compared with the control flies which exhibited mortalities of 66.5%, 89.5%, 86.4% and 89.5% for the respective times ($p < 0.001$).

Significant differences were also observed from exposure to 0.15% deltamethrin (Fig. 5A), with transgenic flies over-expressing CYP6P5 exhibiting mortality of only 17.3% at 1 h compared with 55.3% for control flies ($p < 0.01$). Mortalities increased to 44.1%, 59%, 78% and 78% at 3 h, 6 h, 12 h and 24 h for the experimental flies compared with 100% mortalities obtained from control flies, for the rest of the times. Mean mortality for the experimental flies was 55.3% compared to 91.1% for the control flies ($p < 0.001$).

No resistance was observed when experimental flies were exposed to 2% permethrin. The mortalities obtained were similar between the experimental and the control flies, with average mortalities of 82% and 83%, respectively (Fig. 5B). The mortalities increased linearly from ~55% for both experimental and control flies at 1 h, to 87.5% and 92.5% by 3 h, reaching 100% by the 12th hour.

Differences were also seen in mortalities from exposure to 4% DDT (Fig. 5C), between the experimental flies and the controls, but only at 1 h (mortalities of 7.4% vs 17.5%, $p < 0.05$) and 3 h (39.1% vs 100%, $p < 0.001$), with overall mean mortality of 66.9% in experimental flies, compared to 83.5% for the control flies ($p < 0.05$).

Taken together, these results confirmed that over-expression of AaCYP6P5 alone is sufficient to confer resistance to type II pyrethroids.
α-cypermethrin to 47.2% at the first 1 h compared to 3.8% in the repeated conventional assay with α-cypermethrin only (p < 0.001) (Fig. 5D). The mortalities in the PBO-synergized flies rapidly increased to 93% at 3 h compared to no mortality in the flies pre-exposed to the PBO with mortalities increasing respectively to 95%, 97% and 93%. All in all, mean mortality for synergised flies was 73.6%, compared to 4.9% in the flies exposed to 4% PBO followed by 0.05% α-cypermethrin. A significant recovery of susceptibility was observed in the flies pre-exposed to the PBO with mortalities increasing to 47.2% at the first 1 h compared to 3.8% in the repeated conventional assay with α-cypermethrin only (p < 0.001) (Fig. 5D). The mortalities in the PBO-synergized flies rapidly increased to 93% at 3 h compared to no change (3.8%) with the flies exposed to the α-cypermethrin alone (p = 0.0001). A moderate increase in mortality (11.7%) in the flies with α-cypermethrin exposure only was seen at 6 h, 12 h and 24 h, while the mortality in the PBO-synergised flies increased respectively to 95%, 97% and 93%. All in all, mean mortality for synergised flies was 73.6%, compared to 4.9% in the flies exposed to α-cypermethrin alone (p < 0.001). No mortality was obtained in flies exposed to PBO only.

The qRT-PCR established the overexpression of the AaCYP6P5 with a fold change (FC) of 598.4 ± 26.95 in the GAL4-UAS-CYP6P5 flies overexpressing the P450, compared with control flies (control I, progenies of crosses between the parental line flies with no CYP6P5 insertion, crossed with GAL4/ UAS driver line). Also, a FC of 488.6 ± 17.22 was obtained from the GAL4-UAS-CYP6P5 flies compared with the second set of control flies (control II, parental UAS-CYP6P5 flies with red eyes, not crossed with GAL4/UAS driver lines).

4. Discussion

The overexpression of CYP6P5 in field caught An. albimanus from Peru has previously been linked to pyrethroid resistance (Mackenzie-Impoinvil et al., 2019). In this study, we functionally validated AaCYP6P5 as a pyrethroid metabolizing P450, able to metabolize type I and II pyrethroids with high efficiency for the type II; and confer type II pyrethroid resistance in transgenic D. melanogaster. Initial reanalysis of RNAseq data and sequencing of CYP6P5 cDNA revealed moderate polymorphism, with no signature of selective sweep, though some non-synonymous mutations were observed when sequences of field population were compared with those of the Sanarate.

The recombinant AaCYP6P5 metabolizes α-cypermethrin and deltamethrin with a high depletion but has low activity for permethrin. Its ortholog from An. gambiae (AgCYP6P5), metabolizes permethrin with 56.8% depletion, but was shown to deplete lower quantities of deltamethrin (47%) (Yunta et al., 2019). The dissimilarity in amino acid composition among these orthologs is observed in all six SRs. P450s have six conserved substrate recognition sites (SRs) (Gotoh, 1992a), with SRS 1, SRS 4, SRS 5 and SRS 6 involved in the substrate access and channelling (Schuler and Berenbaum, 2013). The amino acid sequence of AaCYP6P5 is more closely related to that of AgCYP6P5 than to An. funestus CYP6P5 (AaCYP6P5) in SRs 1, 4, 5 and 6. Since those are the SRs important for catalysis, this could explain why AaCYP6P5 and AgCYP6P5 depleted higher amount of pyrethroids, compared with the AaCYP6P5 (data on this P450 not yet published).

The amount of pyrethroid turned over by the recombinant AaCYP6P5 is higher than observed from AgCYP6M2 and AgCYP6P3, the two well characterised P450s linked with insecticide resistance in An. gambiae. The documented kcat for AgCYP6M2 (Stevenson et al., 2011) and AgCYP6P3 (Müller et al., 2008) are 1.2 min⁻¹ and 1.8 min⁻¹, respectively for deltamethrin, which are lower than the 2.7 min⁻¹ for AaCYP6P5. The specificity constant, which is the measure of the catalytic performance of an enzyme, showed AaCYP6P5 to be 1.4-fold more efficient than AgCYP6M2 and 2.7-fold more efficient than AgCYP6P3 at
metabolizing deltamethrin. The metabolites generated in the deltamethrin time-course assay with recombinant AaCYP6P5 further established similarity in depletion of deltamethrin with AgCYP6M2, which was extensively studied using the LC-MS/MS and NMR to reveal points of hydroxylation (Stevenson et al., 2011). The four metabolites identified in the deltamethrin depletion of AgCYP6M2, arranged in ascending order of hydrophilic property and retention times (RT) on the HPLC, are 4′-hydroxydeltamethrin; trans-hydroxymethyl-deltamethrin; cyano (3-hydroxyphenyl)methyl deltamethane; and deltamethic acid (Stevenson et al., 2011). The chromatograms obtained from these metabolites are similar to those produced by AgCYP6P5. The first two metabolites to appear are hydroxylation reactions and are the primary metabolites. The last two are secondary metabolites from 4′ hydroxydeltamethrin (Stevenson et al., 2011). We did not observe reduction in the rate of the first metabolite (M4) of AaCYP6P5. However, the higher efficiency of over 2-fold metabolism of deltamethrin from AaCYP6P5, compared with AgCYP6M2 and the observed 2-fold rate of first step of depletion producing M4 (which was reduced to 1-fold once the other metabolites appeared 5 min after) indicated continuous production of M4, while some of it are being broken down to produce the secondary metabolites (as established for AgCYP6M2).

The higher α-cypermethrin metabolism efficiency byAaCYP6P5 (compared with deltamethrin) is probably due to the high level of α-cypermethrin resistance detected in An. albimanus from Peru. Only 20% mortality was recorded following exposure to α-cypermethrin, in contrast to 80% mortality from deltamethrin bioassays (Mackenzie-Impoinvil et al., 2019). This is not surprising since α-cypermethrin has been a major pyrethroid component in pesticides commonly used in agriculture in Peru (Large, 2006), and the potential contamination of the larval habitats of malaria vectors (Quiniones et al., 2015) may result in the routine exposure of An. albimanus to this insecticide, accelerating selection pressure.

In the recombinant protein metabolic assays, contrasting differences were observed in the percentage depletion of pyrethroids when electrons were supplied by the NADPH-regeneration buffer or the NADPH directly (with higher depletion of deltamethrin, compared with α-cypermethrin when regeneration buffer was used). However, these minor differences were not significant and suggest that either the regeneration buffer or the NADPH can be used as a source of electron for metabolic assays.

This present study has validated the overexpression of CYP6P5 from Peruvian An. albimanus as a principal detoxification enzyme causing resistance to α-cypermethrin, deltamethrin, and potentially DDT. Though recombinant enzyme metabolic assays have shown this P450 to moderately metabolize permethrin, transgenic analysis using D. melanogaster, as well as molecular docking indicated that it does not confer resistance to this type I pyrethroid. However, it may possibly contribute cross resistance to other insecticides not characterised in this study. Indeed, its ortholog, AgCYP6P5 has been confirmed to metabolize other insecticides, including the juvenile hormone analogue, pyriproxyfen (Yunta et al., 2019).

5. Conclusion

This study has demonstrated and functionally validated AaCYP6P5 as an important P450 which metabolizes key insecticides used in malaria vector control, enhancing our understanding of metabolic resistance in An. albimanus, a major malaria vector from the Americas. However, both in vitro and in vivo characterization utilized indicated that this P450 specializes in metabolism of the type II pyrethroids, suggesting the contrasting pattern of metabolic resistance. Further characterization of this P450, for example, analysis of the role of the mutations observed in its coding sequences and characterization of its 5′ regulatory elements is recommended. These may lead to identification of genetic markers linked with its overactivity, which can be used to create tests for the diagnostic markers, in the future. Such information will be important for vector control programmes and stakeholders for management of resistance in the An. albimanus. Supplementary data to this article can be found online at https://doi.org/10.1016/j.pestbp.2022.105061.

Availability of data

DNA sequences reported in this paper were deposited at GenBank (Accession No. MW629015). RNAseq data were deposited under NCBI BioProject PRJNA49810 by Mackenzie-Impoinvil et al., 2019.

Funding

This work was supported by a Wellcome Trust Senior Research Fellowship in Biomedical Sciences to CSW (101893/Z/13/Z) and 217188/Z/19/Z) and from CDC’s Advanced Molecular Detection (AMD) program.

Authors contribution

Conceived and designed by CSW, AEL and MOK. LMI, carried out field collection of mosquitoes. MOK, LMI, SSI and AM carried out molecular analyses, with contribution from HI. MOK, SSI and JH conducted in vitro and in vivo characterization utilized. MOK, LMI, SSI and AM carried out molecular analyses, with contribution from HI. MOK, SSI and JH conducted in vitro and in vivo characterization utilized. MOK, LMI, SSI and AM carried out molecular analyses, with contribution from HI. MOK, SSI and JH conducted in vitro and in vivo characterization utilized. All authors read and approved final version of the manuscript.

Declaration of Competing Interest

The authors declare no competing or financial interests. The findings and conclusions in this paper are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC).

References

Bhatt, S., Weiss, D., Cameron, E., Bishai, D., Mappin, B., Dalitymple, U., Battle, K., Myres, C., Henry, A., Eckhoff, P., 2015. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207. https://doi.org/10.1016/S0140-6736(15)00408-9.

Cingolani, P., Platts, A., Wang, L.E., Coon, M., Nguyen, T., Wang, L., Land, S.J., Liu, X. & Ruden, D. M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80-92. https://doi.org/10.1111/j.1751-4813.2011.00369.x.

Colovos, C., Yeates, T.O., 1993. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 2, 1511–1519. https://doi.org/10.1002/pro.5660020914.

Garrison, E., Marth, G., 2012. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907. https://arxiv.org/abs/1207.3907.

Garrison, E., Knennenberg, Z.N., Dawson, E.T., Pedersen, B.S., Prins, P., 2021. Vcfbl and tools for processing the Vcf variant call format. bioRxiv, 2021.05.21.445151. https://doi.org/10.1101/2021.05.21.445151.

Gilbert, L.I., Gill, S.S., 2010. Insect Control: Biological and Synthetic Agents. Academic Press. https://www.elsevier.com/incontrol-book.

Gotob, O., 1992a. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267, 83–90. https://www.jbc.org/article/S0021-9258(18)48462-1/pdf.

Gotob, O., 1992b. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267, 83–90. https://www.jbc.org/article/S0021-9258(18)48462-1/pdf.

Guengerich, F.P., Martin, M.V., Sohl, C.D., Cheng, Q., 2009. Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4, 1245. https://doi.org/10.1038/nprot.2009.121.

Hancock, P.A., Wiebe, A., Gleave, K.A., Bhatt, S., Cameron, E., Trett, A., Weetman, D., Smith, D.L., Hemingway, J., Coleman, M., Gething, P.W., Moyes, C.L., 2018. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc. Natl. Acad. Sci. 115, 5938–5943. https://doi.org/10.1073/pnas.1801826115.

Hemingway, J., Ranson, H., Magill, A., Kolaczinski, J., Fornadel, C., Gimnig, J., Coetzee, M., Simard, F., Roch, D.K., Hinzoumbe, C.K., Pickett, J., Schellenberg, D., Gething, P., Hoppie, M., Hamon, N., 2016. Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet (London, England) 387 (10029), 1785–1788. https://doi.org/10.1016/S0140-6736(15)00417-1.
Ibrahim, S.S., Amvongo-Adja, N., Wondji, M.J., Irving, H., Riveron, J.M., Wondji, C.S., 2018. Pyrethroid resistance in the major malaria vector Anopheles funestus is exacerbated by overexpression and overactivity of the P450 CYP6AA1 across Africa. Genes 9, 140. https://doi.org/10.3390/genes9030140.

Irwin, J.J., Shoichet, B.K., 2005. ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182. https://doi.org/10.1021/ci049714z.

Klamhøy, B., Jewess, P., 2004. In: Gilbert, L.I., Ituarte, K., Gill, S.S. (Eds.), Pyrethroids. Comprehensive Molecular Insect Science. Pergamon Press. Oxford.

 Lange, G., 2006. Pesticide Use in Rice Cultivation in Tarapoto, Peru. https://stud.epsilon.laporta.g.z/Laporta, G.Z., Linton, Y.-M., Wilkerson, R.C., Bergo, E.S., Nagaki, S.S., Sant Khambay, B., Jewess, P., 2004. In: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Pyrethroids. Comprehensive Molecular Insect Science. Pergamon Press. Oxford.

Poulos, T.L., Finzel, B.C., Gunsalus, I.C., Wagner, G.C., Kraut, J., 1985. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J. Biol. Chem. 260, 16122-16130 https://www.jbc.org/article/S0021-9258(17)33629-9/pdf.

Pritchard, M.P., Osentain, R., Li, D.N., Henderson, C.J., Burchell, B., Wolf, C.R., Friedberg, T., 1997. A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides: expression of CYP3A4, CYP2A6, and CYP2E1. Arch. Biochem. Biophys. 345, 342–354. https://doi.org/10.1006/abbi.1997.0265.

Quinones, M.L., Norris, D.E., Conn, J.E., Moreno, M., Burkot, T.R., Bugoro, H., Reen, J.B., Cooper, R., Yan, G., Rosas, A., 2015. Insecticide resistance in areas under investigation by the International Centers of Excellence for Malaria Research: a challenge for malaria control and elimination. Am. J. Trop. Med. Hygiene 93, 69–78. https://doi.org/10.4269/ajtmh.14-0884.

Riveron, J.M., Irving, H., Ndula, M., Barnes, K.G., Ibrahim, S.S., Faine, M.J., Wondji, C. S., 2013. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus. Nat. Commun. 11, 250–257. https://doi.org/10.1038/ncomms12611.

Susanna, D., Pratiwi, D., 2022. Current status of insecticide resistance in malaria vectors in the Asian countries: a systematic review (version 2; peer review: 1 approved, 2 approved with reservations). F1000Research 11, 200. https://doi.org/10.12688/f1000research.8198.1.

Thomsen, R., Christensen, M.H., 2006. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49, 3135–3131. https://doi.org/10.1021/jm051157s.

Weedall, G.D., Mungeti, L.M., Menze, B.D., Tchouaouki, M., Ibrahim, S.S., Amvongo-Adja, N., Irving, H., Wondji, M.J., Tchoupo, M., Djozua, R., 2019. A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci. Transl. Med. 11, 2164-15-817.

Who, 2020. World Malaria Report. 20 years of global progress and challenges. World Health Organization, Geneva, Switzerland. ISBN 978-92-4-001579-1. https://apps.who.int/iris/handle/10665/327560. License: CC BY-NC-SA 3.0 Iga.

Wickham, H., 2011. ggplot2: WIREs Computational Statistics. 3, pp. 180–185. https://doi.org/10.1002/wics.147.

Yano, J.K., Wester, M.R., Schoch, G.A., Griffin, K.J., Stout, C.D., Johnson, E.F., 2004. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J. Biol. Chem. 279, 38091–38094. https://doi.org/10.1074/jbc.M409293200.

Yunta, C., Hemmings, K., Stevenson, B., Koekemoer, L.L., Matambo, T., Pignatelli, P., Vizcaino, L., Dzuris, N., Lange, G., 2006. Pesticide Use in Rice Cultivation in Tarapoto, Peru. https://stud.epsilon.laporta.g.z/Laporta, G.Z., Linton, Y.-M., Wilkerson, R.C., Bergo, E.S., Nagaki, S.S., Sant Khambay, B., Jewess, P., 2004. In: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Pyrethroids. Comprehensive Molecular Insect Science. Pergamon Press. Oxford.

M. O. Kusimo et al.

Pesticide Biochemistry and Physiology 183 (2022) 105061

105061