Current trend in the development of biotechnology of a specialized dairy product for nutrition of athletes

N B Gavrilova¹, N L Chernopolskaya¹, A G Bukharev¹, N A Pogorelova¹, I A Doltmatova² and S A Salekhov³

¹Omsk State Agrarian University named after P. A. Stolypin, 1 Institutskaya sq., Omsk, Russian Federation
²Nosov Magnitogorsk State Technical University, 38 Lenin ave., Magnitogorsk, Chelyabinsk region, Russian Federation
³Yaroslav-the-Wise Novgorod State University, 41, ul. B. St. Petersburgskaya, Veliky Novgorod, Russian Federation

E-mail: nl.chernopolskaya@omgau.org

Abstract. The paper presents the analysis of modern domestic and foreign scientific and technical literature that addresses organization of healthy nutrition for athletes. The results obtained allow us to conclude that most of the studies and experiments have been performed in accordance with the target activities of athletes in a particular sport with different physical loads and specific diseases that reduce effectiveness of their training cycle. Relevance and significance of the development of the biotechnology for specialized food products for nutrition of athletes and professionals, as well as amateurs and the population regularly engaged in physical exercises is defined. The aim of the study is formulated, study objects and methods are described, scientific substantiation is provided, and a current trend in the development of biotechnological parameters of a specialized dairy (curd) product recommended for nutrition of athletes is determined. The study optimized the elemental composition of a new type of specialized product with two species of starter culture with probiotic cultures and special ingredients (concentrate of Milki land-WPC 80 whey proteins, glutamine, pollen) used to enrich the new product with free irreplaceable amino acids, vitamins, and minerals. This increased its digestibility and stability of the athlete’s gastrointestinal tract due to a specialized product that contains immobilized probiotic cultures in an amount of at least \(1 \cdot 10^8\) CFU. Chemical, amino-acid and vitamin composition of specific ingredients is presented, characteristics of their macro- and microelement composition are provided, and the relevance of their use is substantiated. Technological parameters for manufacturing a new product are determined, and a block diagram of the technology for manufacturing a curd product for the nutrition of athletes is presented.

1. Introduction

In complicated conditions of the incidence of COVID-19 throughout the world, in Russia, in countries of America, the European Union, Canada, Australia, and the Kingdom of Norway, the population shows an increased practical interest in a healthy lifestyle. A healthy lifestyle implies regular exercise, professional, amateur sports, fitness, and organization of regular balanced and specialized meals [1, 2]. Technological innovations in the development of food products for functional purposes and specialized food products are reported in numerous publications [3–10]. Both in Russia and abroad, scientists, specialists and nutritionists are engaged in the study of the effect of specialized nutrition on actual achievements.
of athletes [11]. However, commercially available supplements can be roughly divided into three different categories: health supplements, sports nutrition, performance supplements. Athletes and coaches choose medical supplements and sports nutrition with reliable information on their composition and purpose [12]. Most athletes’ diets are planned with regard to the tasks faced by the athlete in particular sport.

D. Sekulic et al. [13] believe that feeding has a significant impact on physical form and success of an athlete. Canadian athletes, of whom 88.4% use dietary supplements (DSU), vitamin C, protein, multivitamins and minerals, show consistent success [14]. In England, bodybuilding, where an athlete strives to acquire aesthetics, that is, muscle size, proportions and appearance, is very popular with professionals and amateurs. To keep fit, during the competition period, in addition to the usual diet, professionals consume foods rich in protein and calories, more carbohydrates and less fat to build and maintain the muscle mass [15]. In 2015–2017, G.L. Trakman et al. [16] developed a nutritional system, including the Nutrition for Sport Knowledge Questionnaire (NSQK) and Abridged Nutrition for Sport Knowledge Questionnaire (ANSQK), which aroused great interest among specialists. The study of the characteristics and properties of milk and dairy products expands the range of products for special purposes [17–20]. To obtain specific recommendations for improving the diet of athletes, scientists, together with specialists in dietitians of athletes, most often study the effect of milk, dairy products and milk proteins on performance and health of people, including athletes [21–30]. Analysis of foreign scientific and technical literature on healthy nutrition of athletes allows us to conclude that most studies and experiments have been performed in accordance with the target activities of athletes in a particular sport, who are exposed to different physical loads and have specific diseases that reduce the effectiveness of their training cycle. In this case, a healthy lifestyle program should imply that a person engaged in both professional and amateur sports must be healthy and physically resilient; his body must be resistant to stressful situations and immune to unfavorable environmental factors and nervous stress. The microbiota of an athlete must be healthy to withstand varying levels of nutrient intake during training and competition periods.

The above allows us to consider the development of the specialized food products biotechnology for nutrition of athletes, professionals, amateurs and the population regularly engaged in physical exercises relevant and significant.

The aim of the study is to develop a specialized dairy product biotechnology for nutrition of athletes.

2. Materials and methods

The main object of the study was raw cow’s milk in accordance with GOST 31449-2013. Starter cultures were used as biological objects:

- Probat 576 FRO500 DCU, Lactobacillus acidophilus, Lactococcus lactis, Lactococcus cremoris, Lactococcus biovar diacetilactis, and Leuconostoc mesenteroides cremoris cultures;
- AKO-1, the main cultures of Lactobacillus bulgaricus and Streptococcus thermophilus;
- Howaru Bifido FRO 100 DCU, culture of Bifidobacterium lactis;
- biopolymers: gelatin, pectin.

Special ingredients used were:
- whey protein concentrate Milkiland-WPC 80;
- glutamine in accordance with the current regulatory documentation;
- pollen in accordance with GOST 28887-90.

In experimental studies, standard research methods were used.

Immobilization experiments were carried out in a special box in the following sequence:
- activation of the biomass of cells of probiotic cultures in skim milk sterilized and cooled to a temperature of (38±1) °C, since the optimal temperature of the monocultures included in the association is (38±1) °C;
- preparation of a mixture of biopolymers performed at 20 °C;
- in the reactor, the association of the activated probiotic cultures was combined at a temperature of (33±1) °C with gel of biopolymers stirred for (15±5) min;
- the resulting mixture was dispensed into sterile forms;
- the forms were held in a special box is 15–20 minutes. As a result, thin films (membranes) were generated in the forms. Membrane were stored at a temperature of (4±2) °C.

The experiments were carried out in five repetitions. The results were processed by methods of mathematical statistics using standard MathCAD-14 professional software.

3. Results and discussion

Specialized food products should be considered as an essential addition to the diet of athletes or a standard diet of the population who are regularly engaged in sports and experience increased physical activity. It should be noted that an important and necessary component of the daily diet of all age groups of the population, including athletes, is milk and dairy products, whereas fermented dairy products prevail, including drinks, cottage cheese, curd products, and soft and semi-hard cheese [11].

Based on the above, low-fat cottage cheese was chosen as the milk base for production of a new product. Cottage cheese is a useful, dietary food product of high biological value, since it contains a large amount of proteins, essential amino acids, minerals, including calcium and phosphorus, and water-soluble vitamins [12].

The biological value and special properties of the curd product are due to the functional and special ingredients used. These ingredients increase immunity and endurance during training and competitive periods, contribute to a rapid recovery of the athlete’s body after exertion and to a stable work of the gastrointestinal tract owing to probiotics in the immobilized form. During development of biotechnological parameters for the new curd product, whole milk was heated up to (45±5) °C, subjected to bacterofugation and separated using a cream separator to produce skim milk with a mass fraction of dry substances of (9.5–9.8)% and cream with a mass fraction of fat of (15.0±0.5) and (20.0±0.5)%.

Skim milk was pasteurized at (90.0±2) °C, cooled to (30.0 ± 2) °C, and then low-fat cottage cheese was produced by the acid-rennet method with separation of the milk-protein base using a curd separator. The base had the following chemical composition,%; moisture (78–80); proteins (18.2–18.5); fat (1.0–1.1); carbohydrates (1.6–1.8); mineral substances (1.20–1.22).

Cream was pasteurized at (95±2) °C with an exposure time of 5 minutes and cooled to the fermentation temperature of (37±1) °C. Probat 576, ARO-1 and Howaru Bifido probiotics were added to the cooled mixture in a 1:1 ratio. After that, the cream was stirred for 30 minutes and left for fermentation.

The purpose of this stage of the study is to determine the type of cream and starter culture for subsequent use in production of a specialized curd product.

The process of cream fermentation was studied with regard to the following criterion requirements: fermentation time, active acidity (pH=4.6±0.5), pure creamy taste and low-viscosity consistency for uniform distribution in skim curd. The results of the study of cream fermentation are presented in tables 1 and 2.

Table 1. Results of the study of fermentation of cream with fat content of 15.0 and 20.0% using Probat 576 and Howaru Bifido leaven.

Duration of fermentation, h	Active acidity, pH	
	cream with fat content of 15 %	cream with fat content of 20 %
0	6.5	6.55
1	6.3	6.40
2	6.1	6.20
3	5.5	5.55
4	4.8	4.75
5	4.6	4.50
Table 2. Results of the study of fermentation of cream with fat content of 15.0 and 20.0% using ARO-1 and Howaru Bifido leaven.

Duration of fermentation, h	Active acidity, pH	Fat content, %	Viscosity, mPa·s
	cream with fat content of 15 %	cream with fat content of 20 %	
0	6.50	6.55	
1	6.30	6.40	
2	6.10	6.20	
3	6.00	6.10	
4	5.80	5.85	
5	5.50	5.53	
6	4.90	4.95	
7	4.70	4.80	
8	4.65	4.60	

Sensory properties of the tested products indicate that cream with fat content of 20% is more viscous and exhibits stable consistency compared to cream with fat content of 15%, which is more applicable to further product.

To confirm the results, the rheological properties of the tested products were studied on a RheomatR180 rotational viscometer at 10 ºC. The viscometer measures the torque resistance of the test product to rotation of the spindle of the measuring device at different rotation speeds and calculates the dynamic viscosity (table 3).

Table 3. Results of determination of the viscosity in fermented cream with fat content of 15 and 20 %.

Experimental group No.	Leaven	Fat content, %	Viscosity, mPa·s
Experimental 1	Probat 576 + Howaru Bifido	20	900
Experimental 2	ARO-1 + Howaru Bifido	20	850
Experimental 3	Probat 576 + Howaru Bifido	15	750
Experimental 4	ARO-1 + Howaru Bifido	15	740

Microbiological indicators of fermented cream with fat content of 15.0 and 20.0% are shown in figure 1.

Analysis of the experimental data of fermentation of cream with fat content of 15 and 20% and processing of the mathematical data show that it is more efficient to use milk cream with fat content of 20%, which is fermented with a two-component starter culture that consists of Probat 576 manufactured by Danisco (France) and Howaru Bifido.
To improve the protein composition of the product, we chose Milkiland-WPC80 whey protein obtained by ultrafiltration. The concentrate increases biological value of the product since it contains almost all essential amino acids. In addition, essential amino acids (Milkiland-WPC80) immediately enter the muscles for synthesis of new muscle tissue upon entering the human body. Milkiland-WPC80 has a positive effect on the immune system and optimizes insulin secretion (tables 4, 5 and 6).

Table 4. Chemical composition of whey protein concentrate.

Component	Content, %
Protein	80
Fat	8
Carbohydrates	6

Table 5. Characterization of macro- and micronutrient composition of whey protein concentrate.

Component	Content, mg
Vitamins	
D, meg	2.050
F	0.052
Macronutrients	
K	384.000
Ca	383.000
Mg	56.400
Ph	264.000
Trace elements	
Zn	0.430

Table 6. Amino acid composition of whey protein concentrate.

Essential amino acids	Content g/100
Arginine	2.71
Valine	5.71
Histidine
Isoleucine
Leucine
Lysine
Methionine
Threonine
Phenylalanine

Essential amino acids

Alanine
Aspartic acid
Glycine
Proline
Serine
Tyrosine
Cysteine

The use of glutamine promotes synthesis of protein and glycogen in the human body, reduces the catabolic effect of glucocorticoids on muscles, and has a positive effect on the body’s recovery after physical exertion, which makes the product functional. The introduction of pollen increases the prophylactic effect since it is rich in dietary fiber and A, E, C, D, K vitamins, which have a positive effect on the immunity and contributes to the accelerated recovery of the body after physical exertion. In addition, introduction of vitamin-rich pollen increases the nutritive value of the product, which has a positive effect on the immunity and contributes to the accelerated recovery of the body after physical exertion (Table 7).

Table 7. Vitamin composition of flower pollen.

Vitamin	Content, mg /100 g dry matter
Carotene (A)	0.66-212.00
Thiamine (B₁)	0.55-1.50
Riboflavin (B₂)	0.50-2.20
Nicotinic acid (B₅, PP)	1.30-2.10
Pantothenic acid (B₃)	0.32-5.00
Pyridoxine (B₆)	0.30-0.90
Biotin (H)	0.06-0.60
Folic acid (B₉)	0.30-0.68
Inositol (B₈)	188.00-228.00

The amount of special ingredients was determined experimentally and then added to the cream before pasteurization. Figure 2 presents a block diagram of the technology for manufacturing a curd product for the nutrition of athletes.
Figure 2. Block diagram of the technology for manufacturing a curd product for the nutrition of athletes.

4. Conclusion
The results of analytical and experimental studies were used to provide scientific substantiation and to determine the current trend in the development of biotechnological parameters of a specialized dairy (curd) product recommended for the nutrition of athletes. The formulation of a new specialized product was optimized by using two types of probiotic cultures and special ingredients, which enriched the product with essential amino acids, vitamins, and minerals. In addition, consumption of a specialized product containing immobilized probiotic culture in an amount $<1 \times 10^8$ CFU/g increased its digestibility and stability of the athlete’s gastrointestinal tract.

References
[1] Gorelova A S 2018 Current trends in the sports nutrition market in Russia Modern Innovation 2 (24) 49–50 [in Russian]
[2] Gavrilova N, Chernopolskaya N, Rebezov M, Schetinina E, Dogareva N, Likhodeevskaya O, Knysh I and Sanova Z 2020 Specialized sports nutrition foods: review International Journal of Pharmaceutical Research 12 (2) 998–1003
[3] Abilmazhinova B, Rebezov M, Fedoseeva N, Belookov A, Belookova O, Mironova I, Nigmatyanov A and Gizatova N 2020 Study of chemical and vitamin composition of horsemeat cutlets with addition of pumpkin International Journal of Psychosocial Rehabilitation 24 (8) 7614–21 DOI: 10.37200/IJPR/V24I8/PR280773
[4] Kassymov S, Amirzhan T, Moldabayeva Zh, Rebezov M, Sharova T, Nikolaeva N, Gribkova V, Gaidarenko L and Karapetyan I 2020 Nutritional and biological value of bakery products with addition of vegetable powders and milk whey International Journal of Psychosocial Rehabilitation 24 (7) 3985–89 DOI: 10.37200/IJPR/V24I7/PR270394

[5] Kazhibayeva G, Issaeva K, Mukhamejanova A, Khayrullin M, Kulikov D, Lebedeva N, Gribkova V and Rebezov M 2019 Development of formulation and production technology of fish pate for therapeutic and prophylactic purposes International Journal of Engineering and Advanced Technology 8 (5C) 1355–59 DOI: 10.35940/ijeat.E1193.0585C19

[6] Varivoda A, Kenijz N, Rebezov M and Okuskanova E 2018 Development of dietary food with the use of soy protein Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 (4) 1005–13 WOS: 000438848100137

[7] Zinina O, Merenkova S, Tazeddinova D, Rebezov M, Stuart M, Okuskanova E, Yessimbekov Zh and Baryshnikova N 2019 Enrichment of meat products with dietary fibers: a review Agronomy Research 17 (4) 1808–22 DOI: 10.15159/AR.19.163

[8] Igenbayev A, Okuskanova E, Nurgazeezova A, Rebezov Ya, Kassymov S, Nurymkhan G, Tazeddinova D, Mironova I and Rebezov M 2019 Fatty acid composition of female turkey muscles in Kazakhstan Journal of World’s Poultry Research 9 (2) 78–81 DOI: 10.36380/jwpr.2019.9

[9] Kulushatayeva B, Rebezov M, Igenbayev A, Kichko Yu, Burakovskyaya N, Kulakov V and Khayrullin M 2019 Gluten-free diet: positive and negative effect on human health Indian Journal of Public Health Research & Development 10 (7) 906–09

[10] Kassymov S, Rebezov M, Ikonnikova A, Fedin I, Rodionov I, Rukhadze S and Bokuchava O 2020 Using of pumpkin and carrot powder in production of meat cutlets: effect on chemical and sensory properties International Journal of Psychosocial Rehabilitation 24 (4) 1663–70 DOI: 10.37200/IJPR/V24I4/PR201274

[11] Burke L M, edited by Rossiter H B and Current B G 2019 Supplements for optimal sports Performance Opinion in Physiology 10 156–65

[12] Gavriloiva N B, Schetinin M P, Moliboga E A 2017 Current status and development prospects for the production of specialized foods for athletes Nutrition issues 86 (2) 100–06 (in Russian)

[13] Sekulic D, Tahiraj E, Marie D, Olujic D, Bianco A and Zalet P 2019 What drives athletes toward dietary supplement use: objective knowledge or self-perceived competence? Cross-sectional analysis of professional team-sport players from southeastern Europe during the competitive season Journal of the International Society of Sports Nutrition 16 (25) 1–9 DOI: 10.1186/s12970-019-0292-9

[14] Chappell A, Simper T and Helms E 2019 Nutritional strategies of British professional and amateur natural bodybuilders during competition preparation Journal of the International Society of Sports Nutrition 16 (31) 1–12 DOI: 10.1186/s12970-019-0302-y

[15] Trakman G, Brown F, Forsyth A and Belski R 2019 Modifications to the nutrition for sport knowledge questionnaire (NSQK) and abridged nutrition for sport knowledge questionnaire (ANSKQ) Journal of the International Society of Sports Nutrition 16 (26) 1–3 DOI: 10.1186/s12970-019-0293-8

[16] Grubic T J, Nevares B E, Jenkins V M, Williamson S L, Reyes A G, Rasmussen C, Greenwood M, Murano P S, Earnest C P and Kreider R B 2019 Comparison of ingesting a food bar containing whey protein and isomaltooligosaccharides to carbohydrate on performance and recovery from an acute bout of resistance-exercise and sprint conditioning: an open label, randomized, counterbalanced, crossover pilot study Journal of the International Society of Sports Nutrition 16 (1) 48 1–17 DOI: 10.1186/s12970-019-0301-z

[17] Jang L-G, Choi G, Kim S-W, Kim B-Y, Lee S and Park H 2019 The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study Journal of the International Society of Sports Nutrition 16 (31) 1–10 DOI: 10.1186/s12970-019-0290-y
[18] Parastaev S A 2018 Nutrition of athletes: recommendations for practical use (for example, football) Moscov 54 (in Russian)
[19] Chernopolskaya N L, Gavrilova N B 2019 Biotechnology of a specialized milk-based food product for athletes Food Industry 10 20–24 (in Russian)
[20] Zobkova Z S, Fursova T P, Zemina D V, Gavrilina A D and Shelaginova I R 2019 Dairy products as a component of functional nutrition Dairy industry 2 44–46 (in Russian)
[21] Chernopolskaya N, Gavrilova N, Rebezov M, Dolmatova I, Zaitseva T, Somova Y, Babaeva M, Ponomarev E and Voskanyan O 2019 Biotechnology of specialized product for sports nutrition International Journal of Engineering and Advanced Technology 8 (4) 40–45 DOI: 10.35940/ijrte.B3158.078219
[22] Gavrilova N, Chernopolskaya N, Molyboga E, Shipkova K, Dolmatova I, Demidova V, Rebezov M, Kuznetsova E and Ponomareva L 2019 Biotechnology application in production of specialized dairy products using probiotic cultures immobilization International Journal of Innovative Technology and Exploring Engineering 8 (6) 642–48
[23] Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peshcherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition International Journal of Pharmaceutical Research 11 (1) 545–50 DOI: 10.35940/ijrte.B3158.078219
[24] Gavrilova N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peshcherov G, Gorelik O and Derkho M 2019 Advanced biotechnology of specialized fermented milk products International Journal of Recent Technology and Engineering 8 (2) 2718–22 DOI: 10.35940/ijrte.B3158.078219
[25] Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Suyazova I, Safronov S, Ivanova V and Sultanova E 2020 Development of specialized food products for nutrition of sportsmen Journal of Critical Reviews 7 (4) 233–36 DOI: 10.31838/jcr.07.04.43
[26] Gorelik O et al. 2017 Study of chemical and mineral composition of new sour milk bio-product with sapropel powder Annual Research & Review in Biology 18 (4) 1–5 DOI: 10.9734/ARRB/2017/36937
[27] Serikova A, Smolnikova F, Rebezov M, Okuskhanova E, Temerbayeva M, Gorelik O, Kharlap S, Baitukenova Sh, Baitukenova S and Tumbasova Y 2018 Development of technology of fermented milk drink with immune stimulating properties Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 (4) 495–500 WOS: 000438848100062
[28] Temerbayeva M et al. 2018 Technology of sour milk product for elderly nutrition research Journal of Pharmaceutical, Biological and Chemical Sciences 9 (1) 291–95
[29] Smolnikova F, Rebezov M, Shadydullin R, Knypsum I, Yudina O, Nikolaeva N, Sorokin A, Zubtsova Yu and Kozlov V 2020 Vegetable stabilizers used in the production of fermented milk drinks and yogurts International Journal of Psychosocial Rehabilitation 24 (6) 7663–67 DOI: 10.37200/IJPR/V24i6/PR260775
[30] Smolnikova F, Toleubekova S, Temerbayeva M, Cherkasova E, Gorelik O, Kharlap S, Derkho M, Rebezov M and Penkova I 2018 Nutritive value of curd product enriched with wheat germ Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 (3) 1003–08 WOS: 000438847100131

[18] Parastaev S A 2018 Nutrition of athletes: recommendations for practical use (for example, football) Moscov 54 (in Russian)
[19] Chernopolskaya N L, Gavrilova N B 2019 Biotechnology of a specialized milk-based food product for athletes Food Industry 10 20–24 (in Russian)
[20] Zobkova Z S, Fursova T P, Zemina D V, Gavrilina A D and Shelaginova I R 2019 Dairy products as a component of functional nutrition Dairy industry 2 44–46 (in Russian)
[21] Chernopolskaya N, Gavrilova N, Rebezov M, Dolmatova I, Zaitseva T, Somova Y, Babaeva M, Ponomarev E and Voskanyan O 2019 Biotechnology of specialized product for sports nutrition International Journal of Engineering and Advanced Technology 8 (4) 40–45 DOI: 10.35940/ijrte.B3158.078219
[22] Gavrilova N, Chernopolskaya N, Molyboga E, Shipkova K, Dolmatova I, Demidova V, Rebezov M, Kuznetsova E and Ponomareva L 2019 Biotechnology application in production of specialized dairy products using probiotic cultures immobilization International Journal of Innovative Technology and Exploring Engineering 8 (6) 642–48
[23] Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peshcherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition International Journal of Pharmaceutical Research 11 (1) 545–50 DOI: 10.35940/ijrte.B3158.078219
[24] Gavrilova N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peshcherov G, Gorelik O and Derkho M 2019 Advanced biotechnology of specialized fermented milk products International Journal of Recent Technology and Engineering 8 (2) 2718–22 DOI: 10.35940/ijrte.B3158.078219
[25] Gavrilova N, Chernopolskaya N, Rebezov M, Shchetinina E, Suyazova I, Safronov S, Ivanova V and Sultanova E 2020 Development of specialized food products for nutrition of sportsmen Journal of Critical Reviews 7 (4) 233–36 DOI: 10.31838/jcr.07.04.43
[26] Gorelik O et al. 2017 Study of chemical and mineral composition of new sour milk bio-product with sapropel powder Annual Research & Review in Biology 18 (4) 1–5 DOI: 10.9734/ARRB/2017/36937
[27] Serikova A, Smolnikova F, Rebezov M, Okuskhanova E, Temerbayeva M, Gorelik O, Kharlap S, Baitukenova Sh, Baitukenova S and Tumbasova Y 2018 Development of technology of fermented milk drink with immune stimulating properties Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 (4) 495–500 WOS: 000438848100062
[28] Temerbayeva M et al. 2018 Technology of sour milk product for elderly nutrition research Journal of Pharmaceutical, Biological and Chemical Sciences 9 (1) 291–95
[29] Smolnikova F, Rebezov M, Shadydullin R, Knypsum I, Yudina O, Nikolaeva N, Sorokin A, Zubtsova Yu and Kozlov V 2020 Vegetable stabilizers used in the production of fermented milk drinks and yogurts International Journal of Psychosocial Rehabilitation 24 (6) 7663–67 DOI: 10.37200/IJPR/V24i6/PR260775
[30] Smolnikova F, Toleubekova S, Temerbayeva M, Cherkasova E, Gorelik O, Kharlap S, Derkho M, Rebezov M and Penkova I 2018 Nutritive value of curd product enriched with wheat germ Research Journal of Pharmaceutical, Biological and Chemical Sciences 9 (3) 1003–08 WOS: 000438847100131