Theoretical study of C\textsubscript{60} as catalyst for dehydrogenation in LiBH\textsubscript{4}

Ralph H Scheicher1, Sa Li2, C Moyses Araujo1,4, Andreas Blomqvist1,5, Rajeev Ahuja1,3 and Puru Jena2

1 Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
2 Physics Department, Virginia Commonwealth University, Richmond, VA 23284, USA
3 Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
E-mail: ralph.scheicher@physics.uu.se

Received 11 February 2011, in final form 17 June 2011
Published 26 July 2011
Online at stacks.iop.org/Nano/22/335401

Abstract

Complex light metal hydrides possess many properties which make them attractive as a storage medium for hydrogen, but typically catalysts are required to lower the hydrogen desorption temperature and to facilitate hydrogen uptake in the form of a reversible reaction. The overwhelming focus in the search for catalysing agents has been on compounds containing titanium, but the precise mechanism of their actions remains somewhat obscure. A recent experiment has now shown that fullerenes (C\textsubscript{60}) can also act as catalysts for both hydrogen uptake and release in lithium borohydride (LiBH\textsubscript{4}). In an effort to understand the involved mechanism, we have employed density functional theory to carry out a detailed study of the interaction between this complex metal hydride and the carbon nanomaterial. Considering a stepwise reduction of the hydrogen content in LiBH\textsubscript{4}, we find that the presence of C\textsubscript{60} can lead to a substantial reduction of the involved H-removal energies. This effect is explained as a consequence of the interaction between the BH\textsubscript{x} complex and the C\textsubscript{60} entity.

1. Introduction

Hydrogen possesses many features which make it a highly attractive option as a future energy carrier [1–4]. While such a transition is certainly not going to be easy, it is nonetheless inevitable to explore feasible alternatives to our fossil fuel resources which are finite and might even become exhausted within this century, and which furthermore involve carbon dioxide emissions linked to harmful global climate change. Before one could even begin to realise such an envisioned hydrogen economy, a number of formidable technological problems need to be solved first. One of these issues is hydrogen storage [1–4]. Pressurised gas tanks and cryostatic storage of hydrogen as a liquid do not seem ideal for mobile (vehicular) applications. Rather, storage of hydrogen inside solid materials appears to be the most feasible solution. In this context, complex light metal hydrides are very promising as a suitable hydrogen storage medium. On the plus side, the gravimetric hydrogen content in these materials can be quite large, but a significant drawback is the generally high temperature required for hydrogen desorption and the fact that the reactions are often not reversible, i.e. hydrogen can be released, but the direct rehydrogenation is difficult or even impossible. To address this issue, catalysts are commonly added to the metal hydride systems, and particularly titanium has been shown to lower hydrogen desorption temperatures and enable reversibility [5], albeit the precise mechanism remains a topic of debate (for a discussion, see [6, 7]).

Studies of transition-metal-catalysed hydrogen storage properties of sodium alanate (NaAlH\textsubscript{4}) went beyond Ti, and also considered Sc, Zr and other early transition metals [8–13]. Still, a fundamental understanding of how these catalysts, and in particular Ti, function has not been achieved yet [14–17]. It is widely believed that a better insight into how a catalyst works could facilitate the rational design of novel catalysts for alanates, borohydrides and amides.

Carbon nanomaterials have recently been added to the list of materials that could potentially act as ‘true catalysts’ in the sense that they retain their structure and are not consumed...
in the reaction, and furthermore would be conceptually much simpler to understand in their action [18–23]. Besides this function as catalysts [24–31], carbon nanomaterials have also been considered for their role in nanoconfinement [27, 32–38] to aid in the hydrogen desorption process.

Previously, we presented the results of our study combining experiment and theory to demonstrate and understand the catalytic effects of various carbon nanomaterials on hydrogen release and uptake in NaAlH4 [23]. We found that the electron affinity of the studied carbon nanomaterials is mainly determined by the surface curvature and directly affects the hydrogen sorption mechanism of NaAlH4. One mechanism identified by us considers the higher electron affinity causing Na to donate more of its electronic charge to the carbon substrate, thus destabilising the AlH4 complex, which ultimately leads to a reduction in the H-removal energy. More recently, the experimental studies were expanded to also cover hydrogen sorption in LiBH4, for which it was found again that carbon nanomaterials, and in particular fullerenes (C60), are excellent in their function as a catalyst [39].

Hydrogen desorption from LiBH4 takes place in two steps:

\[2\text{LiBH}_4 \rightarrow 2\text{LiH} + 2\text{B} + 3\text{H}_2 \]

(1)

\[2\text{LiH} \rightarrow 2\text{Li} + 3\text{H}_2 \]

(2)

Step (1) occurs above 400 °C and releases 13.8 wt% hydrogen, while step (2) releases 18.4 wt% hydrogen and takes place at about 950 °C, which is too high a temperature to be considered practical (see [39] and references therein).

Here, we present the results from our first-principles analysis of the catalysing mechanism that enables C60 to enhance the hydrogen desorption from LiBH4. In our previous work on NaAlH4, we had only considered the removal of a single hydrogen atom [23], but in the present study we went further and explored the stepwise removal of up to three hydrogen atoms from LiBH4. This approach has led us to identify some new features in the C60-catalysed desorption reactions of LiBH4 as compared to NaAlH4.

2. Computational methods

Total energy calculations were carried out within the framework of the generalised gradient approximation (GGA) [40] to density functional theory [41, 42] by using the projector augmented wave (PAW) method [43] as implemented in the Vienna ab initio simulation package (VASP) [44]. PAW potentials with the valence states 1s for H, 2s for Li, 2s2p for B and 2s2p for C were employed. The calculations under periodic boundary conditions utilised a cubic supercell box with a side length of 20 Å, which prevented any unphysical interaction between repeated images and allowed us to consider only the Γ-point for Brillouin zone sampling. Atomic positions were relaxed with respect to minimum forces using a conjugate gradient algorithm. To ensure that we identify indeed the ground state structure, we initiated the relaxation process from several different starting configurations which saw the LiBH4 unit (for x = 4, 3, 2 and 1) located at various potential trapping sites on the fullerene surface (such as on top of a C atom, on a C–C bridge or a hollow site) and in various orientations.

Figure 1. This plot shows the energy gain when adding a hydrogen atom to the respective clusters of BH4−n (left-side green bars), BH3−n (central red bars) and LiBH4−n (right-side yellow bars).

3. Results and discussion

3.1. BH4−n−

Before introducing C60, we calculated the energetics for isolated BH4−n units (x = 0–3), both in the charge-neutral state (BH4−) and with one extra electron added (BH0−), and for the corresponding isolated LiBH4 units. From this data, we calculated the gain in energy when a hydrogen atom is added and compared the results within each of these three systems, i.e. charged and neutral BH−n and LiBH4−. The findings from this analysis are summarised in figure 1. Quite analogous to our earlier published analysis for AlH0−-C60 [23], it is seen that the largest stabilisation due to the extra electron occurs for the complex containing four hydrogen atoms, i.e. BH4−.

We now turn to the main part of our investigation, namely the stepwise dehydrogenation in LiBH4 when supported on C60. In the following, we present and discuss the results from our density functional calculations for each of the LiBH4−x + C60 entities where x takes on the values 0–3.

3.2. LiBH4

The most stable configuration has Li of the LiBH4 unit centred above a C–C bridge (figure 2(a)). Other configurations which had LiBH4 located at different sites on C60 were tested, but were found to yield higher energies. For example, a 90° rotation of the LiBH4 unit (so that both Li and B would have roughly comparable distances to the fullerene surface) results in a drastic increase in energy by nearly 1 eV. Also, placing the LiBH4 unit directly above the centre of the hexagon yields a state about 0.25 eV higher in energy. The binding energy of LiBH4 to C60 is calculated as 0.50 eV, implying that the interaction is rather weak. A Bader analysis of the charge
density shows that lithium has completely lost its electron. But this charge does not appear to have been transferred to the fullerene; rather, LiBH₄ as a whole is charge-neutral, so here the electron seems to have been used to stabilise the BH₄⁻ unit, in line with what one would expect based on the results from our analysis of the energetics of the charged and neutral BH₃ units above. In addition, partial density of states (PDOS) calculations show that the B–H bonds in the BH₃⁻ unit are of covalent nature, while the interaction between Li⁺ and BH₃⁻ is of ionic nature.

3.3. LiBH₃

Upon removal of the first hydrogen atom, we arrive at LiBH₃ supported on C₆₀. Remarkably here, a configuration of the LiBH₃ unit similar to the upright one for LiBH₄ is not the most stable configuration. Instead, a ‘sideways’ orientation (figure 2(b)) yields the ground state (0.86 eV lower in energy than the ‘upright’ orientation). This enables the boron of the BH₃ unit to interact with one carbon atom of the fullerene, thus allowing it to preserve an approximate tetrahedral structure in the form of BH₃C. One can even notice that the carbon atom has been slightly ‘pulled out’ by the boron, distorting the hexagon somewhat. Indeed, PDOS calculations show that a bond of covalent nature is formed between B and this particular C atom. In a sense, this interaction of BH₃ with C₆₀ compensates for the loss of a hydrogen and substantially lowers the energy, as can also be seen from the greatly enhanced binding energy of LiBH₃ on C₆₀ (2.09 eV), and this plays a crucial role for the low H-removal energy of 2.82 eV in the first step (figure 3). However, it should be noted that the actual energy cost for removing the hydrogen atom is higher than that, due to a reaction barrier which was calculated by us with the nudged elastic band method [45] to be 4.3 eV high. As for the charge state, it is seen that lithium retains about 10% of its electron, but the LiBH₃ unit as a whole is missing −0.7e, so here a substantial charge transfer to the C₆₀ has indeed taken place. In fact, the carbon atom closest to boron carries an excess −0.37e. The rest of the charge is distributed over the other 59 carbon atoms of the fullerene. Thus, a complex cooperative process is at work here, in which the extra electron that stabilised the BH₃⁻ unit is no longer needed in BH₃ following the H atom removal, and can now instead facilitate the formation of a bond between B and C.

3.4. LiBH₂

Removal of the second hydrogen atom leads to LiBH₂ which, just like LiBH₃, prefers a ‘sideways’ orientation that is found to be more stable than the ‘upright’ orientation (figure 2(c)). The difference in energy between these two possible configurations amounts even in this case to 3.5 eV, apparently due to the now possible stronger interaction of boron with two carbon atoms of the fullerene. The binding energy of LiBH₂ to C₆₀ is 4.40 eV, about twice as much as in the case for LiBH₃, reflecting that B interacts with two C atoms now. This is also seen from the PDOS, showing the formation of two covalent bonds between B and the two C atoms. The tetrahedral structure is again approximately preserved in the BH₂C₂ configuration that is formed. Thus the two carbon atoms act again as substitutes for the removed hydrogen atoms and are seen to be ‘pulled up’, away from the C₆₀, towards the boron, without actually breaking the C₆₀ framework. The lowering of the total energy through this form of interaction between BH₂ and the fullerene is once again responsible for the even further lowered H-removal energy of 2.38 eV in the second step (figure 3). The charge state situation is somewhat similar to the previous case of LiBH₃, in the sense that lithium is charged positively with +0.88e, but the LiBH₂ now carries an even higher positive charge of +1.4e, twice as much as in the previous case. Of course, here, boron is interacting with two carbon atoms and indeed it is seen that they both receive about −0.5e in excess charge.

3.5. LiBH

After the third hydrogen atom has been removed, it is no longer possible for boron to easily preserve the preferred tetrahedral arrangement of binding partners as seen in the previous three cases. Instead, the BH unit continues to interact with two carbon atoms and only to a weaker extent with lithium.
(figure 2(d)). As a consequence, the H-removal energy in the third step is found to be not lowered but, quite oppositely, increased with respect to the situation of an isolated LiBH unit where no C60 is present (figure 3). The binding energy of LiBH to C60 amounts to 3.66 eV, similar to the value for LiBH2, due to both having B effectively interact with two C atoms, but reduced perhaps because of the strained non-tetrahedral configuration in which B finds itself. The PDOS again shows the formation of two covalent bonds between B and the two C atoms. We also tested the possibility of H attaching to Li rather than B, but the relaxation results indicate that H does indeed prefer to bind to B in this cluster.

4. Concluding remarks

Carbon nanomaterials certainly show great promise as catalysts for hydrogen sorption in complex light metal hydrides. In the present theoretical study, we have concentrated on the fullerene C60 acting on the borohydride LiBH4, motivated by definitive experimental evidence for the catalysing effects in this particular combination [39]. But as we had shown earlier [23], a similar outcome was seen for the alanate earlier [23]. Contrary to that, we did not find any theoretical evidence here in our calculations for charge transfer occurring from LiBH4 to C60. Instead, the mechanism, which led to a sizeable reduction in the energy required to remove the first hydrogen atom in LiBH4 relies on an increased stabilisation of the product state, namely by formation of a ‘substitutional’ bond between the B atom of LiBH4 and a C atom of C60. That bond is, however, facilitated by a charge transfer reaction; hence electron affinity comes into the equation again. An analogous mechanism, now involving two C atoms, is responsible for the even further reduced hydrogen removal energy when going from LiBH4 to LiBH2. These are the main findings of this theoretical investigation.

Obviously, there are ways in which the present study could be improved. For example, our cluster approach only considered a single LiBH4 unit interacting with C60. Although often, such minimal clusters mirror many of the important qualitative properties of the parent solid that they stand for [46], it might still be worthwhile to expand the cluster to include more than one LiBH4 unit. Of course, this will significantly increase the complexity of the investigation, but could be the only way to identify overlooked mechanisms in which a cooperative interaction between several LiBH4 units on the surface of a C60 leads to a reduction in hydrogen removal energy. Certainly, there are many more questions to be answered before we have a complete understanding of the catalysing effects of carbon nanomaterials on complex light metal hydrides, and we hope that the present work has not merely contributed some new insights to this field but, perhaps more importantly, will also stimulate fresh theoretical and experimental investigations.

Acknowledgments

RHS, CMA, AB and RA thank the Swedish Research Council, Formas and Futura Foundation for financial support. SL and PJ thank the US Department of Energy and the Office of Basic Energy Science for funding. Computational facilities for this project were provided by the Swedish National Infrastructure for Computing (SNIC) and by the Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX).

References

[1] Schlapbach L and Züttel A 2001 Nature 414 353
[2] Schlapbach L 2009 Nature 460 809
[3] Liu C, Li F, Ma L P and Cheng H M 2010 Adv. Mater. 22 E28
[4] Jena P 2011 J. Phys. Chem. Lett. 2 206
[5] Bogdanovic B and Schwickardi M 1997 J. Alloys Compounds 253/254 1
[6] Araújo C M, Ahuja R, Osorio-Guillén J M and Jena P 2005 Appl. Phys. Lett. 86 251913
[7] Araújo C M, Li S, Ahuja R and Jena P 2005 Phys. Rev. B 72 165101
[8] Zidan R A, Takara S, Hee A G and Jensen C M 1999 J. Alloys Compounds 285 119
[9] Sandrock G, Gross K and Thomas G 2002 J. Alloys Compounds 339 299
[10] Anton D L 2002 J. Alloys Compounds 356/357 400
[11] Bogdanovic B, Felderhoff M, Pommerin A, Schüth F and Spielkamp N 2006 Adv. Mater. 18 1198
[12] Sakintuna B, Lamari-Darkrim F and Hirschler M 2007 Int. J. Hydrog. Energy 32 1121
[13] Blomqvist A, Araújo C M, Jena P and Ahuja R 2007 Appl. Phys. Lett. 90 141904
[14] Balde C P, Stil H A, van der Eerden A M J, de Jong K P and Bitter J H 2007 J. Phys. Chem. C 111 2797
[15] Haiduc A G, Stil H A, Schwarz M A, Paulus P and Geerlings J J C 2005 J. Alloys Compounds 393 252
[16] Majzoub E H and Gross K J 2003 J. Alloys Compounds 356/357 363
[17] Léon A, Kircher O, Rössner H, Décamps B, Leroy E, Fichtner M and Percheron-Guéган A 2006 J. Alloys Compounds 414 190
[18] Cento C, Gislon P, Bilgili M, Masci A, Zheng Q and Prosimi P P 2007 J. Alloys Compounds 437 360
[19] Dehouchez Z, Lafi M, Grimand N, Gayotte J and Chahine R 2005 Nanotechnology 16 402
[20] Zaluska A, Zaluski L and Strom-Olsen J O 2000 J. Alloys Compounds 298 125
[21] Pukazhselvan D, Gupta B K, Srivastava A and Srivastava O N 2005 J. Alloys Compounds 403 312
[22] Wang J, Ebner A D and Ritter J A 2006 J. Phys. Chem. B 110 17353
[23] Berseth P A, Harter A G, Zidan R, Blomqvist A, Araújo C M, Scheicher R H, Ahuja R and Jena P 2009 Nano Lett. 9 1501
[24] Liu C, Chen Y, Wu C Z, Xu S T and Cheng H M 2010 Carbon 48 452
[25] Amirkhiz B S, Danaie M, Barnes M, Simard B and Mitlin D 2010 J. Phys. Chem. C 114 3265
[26] Hudson M S L, Raghubanshi H, Pukazhselvan D and Srivastava O N 2010 Int. J. Hydrog. Energy 35 2083
[27] Wu C Z and Cheng H M 2010 J. Mater. Chem. 20 5390
[28] Teprovich J A Jr, Knight D A, Wellons M S and Zidan R 2011 J. Alloys Compounds at press
[29] Ismail M, Zhao Y, Yu X B, Ranjar A and Dou S X 2011 Int. J. Hydrog. Energy 36 3593
[30] Raghubanshi H, Hudson M S L and Srivastava O N 2011 \textit{Int. J. Hydrog. Energy} \textbf{36} 4482

[31] Hudson M S L, Raghubanshi H, Pukazhselvan D and Srivastava O N 2011 \textit{Int. J. Hydrog. Energy} at press doi:10.1016/j.ijhydene.2011.03.006

[32] Verkuijlen M H W, Gao J B, Adelhelm P, van Bentum P J N, de Jongh P E and Kentgens A P M 2010 \textit{J. Phys. Chem. C} \textbf{114} 4683

[33] Gao J B, Adelhelm P, Verkuijlen M H W, Rongeat C, Herrich M, van Bentum P J M, Gutfleisch O, Kentgens A P M, de Jong K P and de Jongh P E 2010 \textit{J. Phys. Chem. C} \textbf{114} 4675

[34] Adelhelm P, Gao J B, Verkuijlen M H W, Rongeat C, Herrich M, van Bentum P J M, Gutfleisch O, Kentgens A P M, de Jong K P and de Jongh P E 2010 \textit{Chem. Mater.} \textbf{22} 2233

[35] de Jongh P E and Adelhelm P 2010 \textit{ChemSusChem} \textbf{3} 1332

[36] Ngene P, van Zwienen M and de Jongh P E 2010 \textit{Chem. Commun.} \textbf{46} 8201

[37] Li Y, Zhou G, Fang F, Yu X, Zhang Q, Ouyang L, Zhu M and Sun D 2011 \textit{Acta Mater.} \textbf{59} 1829

[38] Nielsen T K, Polanski M, Zasada D, Javadian P, Besenbacher F, Bystrzycki J, Skibsted J and Jensen T R 2011 \textit{ACS Nano} \textbf{5} 4056

[39] Wellons M S, Berseth P A and Zidan R 2009 \textit{Nanotechnology} \textbf{20} 204022

[40] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 \textit{Phys. Rev. B} \textbf{46} 6671

[41] Hohenberg P and Kohn W 1964 \textit{Phys. Rev.} \textbf{136} B864

[42] Kohn W and Sham L J 1965 \textit{Phys. Rev.} \textbf{140} A1133

[43] Blöchl P E 1994 \textit{Phys. Rev. B} \textbf{50} 17953

[44] Kresse G and Furthmüller J 1996 \textit{Phys. Rev. B} \textbf{54} 11169

[45] Henkelman G, Uberuaga B P and Jönsson H 2000 \textit{J. Chem. Phys.} \textbf{113} 9901

[46] Jena P and Castleman A W Jr (ed) 2011 \textit{Nanoclusters—A Bridge Across Disciplines} (Amsterdam: Elsevier)