Using Model-based Overlapping Seed Expansion to detect highly overlapping community structure.

Aaron F. McDaid · Neil J. Hurley

Abstract As research into community finding in social networks progresses, there is a need for algorithms capable of detecting overlapping community structure. Many algorithms have been proposed in recent years that are capable of assigning each node to more than a single community. The performance of these algorithms tends to degrade when the ground-truth contains a more highly overlapping community structure, with nodes assigned to more than two communities. Such highly overlapping structure is likely to exist in many social networks, such as Facebook friendship networks. In this paper we present a scalable algorithm, MOSES, based on a statistical model of community structure, which is capable of detecting highly overlapping community structure, especially when there is variance in the number of communities each node is in. In evaluation on synthetic data MOSES is found to be superior to existing algorithms, especially at high levels of overlap. We demonstrate MOSES on real social network data by analyzing the networks of friendship links between students of five US universities.

Keywords Social networks analysis · Statistical modelling · Community finding · Computer science

1 Introduction

In this paper we introduce MOSES, a Model-based Overlapping Seed ExpansIon¹ algorithm, for finding overlapping communities in a graph. The algorithm is designed to work well in applications, such as social network analysis, in which the graph is expected to have a complex, highly-overlapping community structure.

This research was supported by Science Foundation Ireland (SFI) Grant No. 08/SRC/11407.

Aaron McDaid
clique research cluster, UCd Dublin, Ireland
E-mail: aaronmcdaid@gmail.com

Neil Hurley
clique research cluster, UCd Dublin, Ireland
E-mail: neil.hurley@ucd.ie

¹ Our C++ implementation of MOSES is available at http://sites.google.com/site/aaronmcdaid/moses.
Fig. 1 Four communities of a single user (the node in black) of Facebook, as determined by MOSES. Two other users (red) have been assigned to both the blue and purple communities. A typical user, like many of those in this diagram, will be a member of several communities, which we have not attempted to visualize here. See section 5.7

Many of the algorithms for finding communities in graphs have been limited to *partitionings*, where each node is assigned to exactly one community. While there are still very many open questions about the basic structure of empirical graphs, it is difficult to accept that a partition is an appropriate description of the complete community structure in a graph. Reid (2010) show that partitions will break many large cliques in empirical networks, and hence we cannot assume that partitioning will preserve much community structure.

In recent years, many algorithms have been proposed to detect overlapping communities. We repeat experiments similar to those carried out in Lee et al. (2010), which show that many such algorithms are only capable of detecting weakly overlapping community structure, where a typical node is in just two communities. If we are to be able to make reasonable inferences about the community structure in empirical graphs, we need algorithms capable of detecting highly overlapping communities, if only so that we can credibly rule out highly overlapping community structure for a given graph.

Leskovec et al. (2008) claim that large scale community structure may not exist in typical empirical graphs, by showing that it is difficult or impossible to find subgraphs with good *conductance*, a measure comparing the number of edges inside a cluster to the number of edges which travel from inside to the outside of a cluster. However, in this paper we will show that such structure may indeed exist, and be detectable, even when the *conductance* suggests otherwise.

The method presented here is similar in spirit to many existing algorithms, in that a global objective function is defined to assign a score to each proposed community assignment. The algorithm proceeds by using simple heuristics to search for communities.
in the graph, greedily finding a (local) maximum of our objective function. This allows for scalability as the MOSES objective function can be efficiently updated throughout.

1.1 Structure of this paper

We first briefly consider related work in the field on overlapping community finding. Then, in sections 3 and 4 we introduce our objective function and describe the algorithm.

Next, we consider the network community profile of Leskovec et al. (2008) and show, perhaps surprisingly, that large values of conductance are not incompatible with the existence of strong, easily detectable, community structure. We conclude with an analysis of a Facebook friendship network from five US universities.

Then, there is an evaluation of the algorithm with two types of synthetic benchmark data, the LFR benchmarks proposed in Lancichinetti et al. (2008), and a second model that allows for greater variance in the community overlap structure.

Notation In this paper we consider the community assignment problem on an unweighted, undirected graph G, with vertices V and edges E and no self-loops. Boldcase letters, such as Z, z denote column vectors with the uppercase Z referring to a random vector variable and the lowercase z referring to a particular realization of Z. We use capital Roman letters, such as Z to denote random matrices and their realizations. The components of random matrices are denoted by the corresponding uppercase letter e.g. Z_{ij}, while the components of matrix realizations are denoted by the corresponding lowercase letter e.g. z_{ij}. The notation used in the description of the MOSES model is summarized in table 1.

2 Related Work

While there is no single generally accepted definition of a community within a social network, most definitions try to encapsulate the concept as a sub-graph that has few external connections to nodes outside the sub-graph, relative to its number of internal connections. We find the following distinctions useful in characterizing commonly-used community definitions:

1. **Structural communities**: A deterministic set of properties or constraints that a sub-graph must satisfy in order to be considered a community is given and thus a decision can be made on whether any particular sub-graph is, or is not, a community, e.g. we may consider all maximal cliques to be communities. Thus finding such communities is a process of searching the graph for all sub-graph instances that satisfy the defining properties.

2. **Evaluated communities**: Every sub-graph is considered to be a community to a certain extent, given by the value of a community fitness function. The fitness function may be local or global in nature and sometimes is associated with the entire community decomposition rather than with each single community.

3. **Algorithmic communities**: As pointed out in Fortunato (2010), often there is no explicit definition of a community, other than as the sub-graphs that result from some community extraction algorithm. A good example of this is the edge-betweenness algorithm of Newman & Girvan (2004).
Table 1 Basic definitions. In this table, $(0, 1)$ means a real number between zero and one. \{(0, 1)\} means the set with just two elements, zero and one.

Range	Description
N	Number of vertices in G.
X_{ij}, x_{ij}	Adjacency matrix of a simple, undirected, unweighted graph, G. $X_{i,j} = 0$, $X_{ij} = X_{ji}$.
Q	Number of communities. Sometimes called K in related work.
α	Vector of length Q giving the memberships proportions. For partitioning, $\sum_{1\leq i\leq Q} \alpha_i = 1$
Z_{iq}, z_{iq}	Community assignment matrix, one if node i in community q, zero otherwise.
π	Connection probabilities between pairs of clusters. Most models use a different or simplified form. In MOSES, p_{in} and p_o take the place of π.

MOSES-specific:

p_o	Probability that two nodes connect, independent of community structure.
p_{in}	Probability that two nodes connect, due to their assignment to a common community.
Q_z	Number of non-empty communities observed in a community assignment C_z.
C_z	A community assignment corresponding to an assignment matrix z.
m	Mean number of communities in G.
n_q	The number of nodes in community q. It is a function of z.
$s_z(i,j)$	Number of communities in Z shared between node i and node j.

The last decade has seen a lot of publications on the topic of community detection in networks. For a good review, see Fortunato (2010). Much work has concentrated on modularity maximization algorithms, that produce partitions of graphs in which each node is assigned to a single community. Modularity defines evaluated communities, where the community fitness is related to its number of internal edges relative to its expected number in a particular ‘null model’. While modularity maximization results in a decomposition of the entire network into a partition of communities, in fact, a more general view of community-finding is from the node perspective as community assignment, i.e. the task is to assign each node in the graph to the communities (if any) it belongs to and we may describe algorithms for community-finding as community assignment algorithms (CAAs).

A number of CAAs that allow overlapping communities have emerged since 2005 Lee et al. (2010); Palla et al. (2005); Clauset (2005); Gregory (2007, 2009b,a); Mishral et al. (2007); Lancichinetti et al. (2009); Baumes et al. (2005); Shen et al. (2009); Ahn et al. (2010). For example GCE Lee et al. (2010), LFM Lancichinetti et al. (2009) and Iterative Scan (IS) Baumes et al. (2005) find evaluated communities. Each uses various local iterative methods to expand (or shrink) proposed communities such that some function of the density of the communities is maximized, but the decision on whether a proposed community is accepted or not depends on somewhat arbitrary criteria. At the other end of the spectrum, the Clique Percolation Method (CPM) of Palla et al. (2005) has proved very influential and is essentially a structural community-finding algorithm, where communities are defined as sub-graphs consisting of a set of connected k-cliques.
With the recent release of the LFR synthetic benchmark graphs Lancichinetti & Fortunato (2009), it has become possible to more thoroughly explore the performance of these different approaches. Studies on this benchmark data have illustrated that performance of the algorithms generally degrades as nodes are shared between larger numbers of communities Lee et al. (2010). It is our contention that real-world social communities can in fact contain rich overlapping structures like those of the overlapping LFR benchmarks and that it is necessary to develop CAAs that perform well when on average each node is assigned to multiple communities. There is need for further extensions of these synthetic benchmarks as, for example, the current LFR model places each overlapping node into exactly the same number of communities.

Model-based CAAs have the advantage of being based on a model which can explain the rationale of the communities found, thus avoiding the often arbitrary criteria which are used in many overlapping CAAs. We develop a scalable, model-based CAA that performs well on highly overlapping community structures. In the next section, we review the model-based network algorithms that are most relevant to our approach.

2.1 Model-Based Community-Finding

In model-based community-finding, the graph G is considered to be a realization of a statistical model. Assuming unweighted, undirected graphs, with no self-loops, the graph edges are represented by a random symmetric adjacency matrix X such that $x_{ij} = x_{ji} = 1$ if an edge connecting nodes i and j exists and zero otherwise. Statistical network models are reviewed in Goldenberg et al. (2009). Of particular interest in the context of the work presented here is the stochastic blockmodel introduced in Nowicki & Snijders (2001) which is also referred to as the Erdos-Renyi Mixture Model for Graphs (ERMG) in Daudin et al. (2008). We will use our notation, as defined in table 1, when describing the related work.

The ERMG assumes a partitioning of the graph into communities, so that community assignments can be described by the vector $\mathbf{z} = (z_1, \ldots, z_N)^T$, where $z_i = q$ if node i is assigned to community q. The graph edges are assumed independent given the node assignments \mathbf{z}, and drawn from a Bernoulli distribution with connection probability dependent on the community assignments of the end-points:

$$P(X_{ij} = 1|\mathbf{z} = \mathbf{z}) = \pi(z_i, z_j) \equiv \pi_{z_i z_j}.$$

Assuming that $\pi_{qr} = \pi_{rq}$, this leads to the conditional probability for X given \mathbf{z},

$$P(X|\mathbf{z}, \Pi) = \prod_{i=1}^N \prod_{j=i+1}^N \pi_{z_i z_j} (1 - \pi_{z_i z_j})^{(1-x_{ij})},$$

(1)

where Π is the $Q \times Q$ matrix of inter-community connection probabilities $\{\pi_{qr}\}$. Each component of \mathbf{z} is modelled as being a single draw from a multinomial $(1; \alpha)$, where α is a vector of length Q describing the memberships probabilities for each cluster.

Ultimately, the goal is to predict the unobserved community assignments \mathbf{z}. In this section we will use parameter to refer to quantities such as Π and α which describe connection probabilities and cluster membership proportions, and we will not refer to
z as a parameter. As discussed in Nowicki & Snijders (2001) parameter estimation is difficult as the observed likelihood:

$$P(X|\alpha, \Pi) = \sum_{z \in \{1, \ldots, Q\}^N} P(X, Z = z|\Pi, \alpha)$$

cannot be simplified and the Expectation Maximization (EM) algorithm requires, among other things, the conditional $P(Z|X, \alpha^{(t)}, \Pi^{(t)})$ when calculating the next estimates $\alpha^{(t+1)}, \Pi^{(t+1)}$, which is also intractable within these types of models.

In Daudin et al. (2008) a variational approach is taken to parameter estimation. In Zanghi et al. (2007) a heuristic algorithm is used to quickly attempt an approximate maximization of the complete-data log-likelihood, $P(x, z|\alpha, \pi)$, searching over (z, π, α) with x fixed equal to the graph which has been observed. An online estimation approach is used where the parameters, and cluster assignments, are incrementally updated using the current value of the parameters and new observations. The algorithm is essentially a greedy maximization strategy. The ERGM assumes a fixed number of communities. To decide between different values of Q, both Daudin et al. (2008) and Zanghi et al. (2007) use an Integrated Classification Likelihood (ICL) criterion to decide between competing models.

Nobile & Fearnside (2007) integrate out Q, creating a posterior density mass function defined over all clusterings, regardless of the number of clusters. This means that model selection, such as the BIC and ICL, are unnecessary. This allocation sampler is presented in terms of gaussian mixture models, but this technique is suitable in variety of contexts, including network modelling and for overlapping clusters.

The MOSES model is similar to Nowicki & Snijders (2001), in that the parameters such as α and π are treated as nuisance parameters to be integrated out. They do not integrate out Q. They propose a Gibbs sampler to sample from (z, α, π), effectively allowing them to numerically integrate out α and π. Nobile & Fearnside (2007) point out that this can often be analytically integrated out, allowing the algorithm to focus on estimating the quantities of interest, which are typically the z and Q.

2.1.1 Overlapping Stochastic Block Modeling

In Latouche et al. (2009), the standard ERGM is expanded to allow for overlapping communities and the new model is named the Overlapping Stochastic Blockmodel (OSBM). Now the community assignments of a node i may be described by a vector $Z_i = (Z_{i1}, \ldots, Z_{iQ})^T$, such that

$$Z_{iq} = \begin{cases}
1 & \text{node } i \text{ in community } q \\
0 & \text{otherwise.}
\end{cases}$$

The full latent structure may be described by the $N \times Q$ matrix Z, with i^{th} column Z_i. As with the ERMG, it is assumed that all the edges are independent, given Z and drawn from a Bernoulli distribution, with the probability $\pi(z_i, z_j)$ that an edge exists dependent on the (vector) community assignments z_i and z_j of its end-points, leading to a joint distribution of the same form (1), with $\pi_{z_iz_j}$ replaced by $\pi(z_i, z_j)$.

The authors assume that the connection probabilities, $\pi(z_i, z_j)$ can be written as sigmoid functions of a quadratic form $z_i^T A z_j$ for a parameter matrix A. In a natural
extension of the relationship between z and α used in the (non-overlapping) block models, they choose a prior distribution on Z of the form:

$$P(Z|\alpha) = \prod_{i=1}^{N} \prod_{q=1}^{Q} \alpha_q^{z_iq}(1 - \alpha_q)^{1-z_iq},$$

(2)

for parameters $\alpha_q \in [0, 1]$. The parameters of the model are estimated using a variational strategy similar to that used in Daudin et al. (2008).

While the models of Nowicki & Snijders (2001) and Latouche et al. (2009) allow for a large number of parameters, in practice, when evaluating on real datasets, the parameter space is usually restricted to a much smaller number. In Latouche et al. (2009) for instance, this is done by considering restricted forms of the matrix A, with only two free parameters. The community-finding algorithm of Latouche et al. (2009) is shown to out-perform the Clique Percolation Method of Palla et al. (2005) on synthetic data.

While our model is another form of overlapping SBM, our general approach shares much in common with Nobile & Fearnside (2007) as we have integrated out Q, the number of clusters, and α allowing our algorithm to search over the space of all clusterings, regardless of the number of communities. And our estimation method could be compared with Zангhi et al. (2007), in that it is another method using a fast heuristic algorithm to greedily search over z.

3 The MOSES Model

The model that drives MOSES is essentially an OSBM but with some important differences to that presented in Latouche et al. (2009). In particular:

1. The connection probabilities $\pi(z_i, z_j)$ take a different form to those used in Latouche et al. (2009);
2. The prior takes into account that community assignments that differ only by a relabeling of the communities are equivalent;
3. A distribution is placed on the number of communities Q, allowing Q to be integrated from the prior, in the manner or Nobile & Fearnside (2007).

We elaborate on these differences in the following:

3.1 Connection Probabilities

Let $\pi_{qr} \in [0, 1]$ represent the probability that a node in community q connects to a node in community r and let p_o denote a general underlying probability that nodes connect, independent of community structure. Assume that these probabilities are all mutually independent. Hence, the probability that an edge does not exist is given by:

$$P(X_{ij} = 0|Z, \Pi) = 1 - \pi(z_i, z_j)$$

$$= (1 - p_o) \prod_{q=1}^{Q} \prod_{r=q}^{Q} (1 - \pi_{qr})^{z_iq-z_jr}. $$

(3)
In practice, we use $\Pi = \text{diag}(p_{in})$. Thus, there is a single connection probability p_{in} of within-community connections and there is no tendency for inter-community connections, other than the general tendency of nodes to connect represented by p_o.

With this simplification, (3) becomes,

$$P(X_{ij} = 0|z, p_{in}, p_o) = (1 - p_o)(1 - p_{in})^{s_{z(i,j)}},$$

where $s_{z(i,j)}$ is a count of the number of communities assigned to both node i and node j in Z.

It is also possible to imagine a large community containing every node, which allows one to treat p_o as being the internal connection probability of that community. This can then be used in the appropriate cell of an augmented Π matrix.

3.2 Prior on Z

Assuming a uniform distribution on the parameters $\{\alpha_1, \ldots, \alpha_Q\}$ in (2) and integrating over them, we obtain a prior of the form

$$P(Z|Q) = \frac{1}{(N + 1)^Q} \left(\prod_{q=1}^{Q} \frac{1}{N^{n_q}} \right),$$

where n_q is the number of nodes assigned to community q. Furthermore, while there are 2^{NQ} possible values for Z, any permutation of the columns of Z results in the same community assignment, with just a different labeling on the communities. The 2^{NQ} possible matrices can be partitioned into equivalence classes of matrices that differ only in a permutation of their columns. Let $c_z(Q)$ be the size of the equivalence class that Z belongs to. Using $c_z(Q)$ matrices in this equivalence class, we note that $P(C_z|Q) = c_z(Q)P(Z|Q)$. Let Q_z be the number of non-empty communities observed in Z. If the actual number of communities is $Q_z + k$, then Z should contain k columns of all zeros. It follows that

$$c_z(Q_z + k) = \binom{Q_z + k}{k} c_z(Q_z),$$

since the k communities with no nodes assigned to them must be allocated k labels out of the $Q_z + k$ possible community labels. Furthermore,

$$P(Z|Q_z + k) = \frac{1}{(N + 1)^k} P(Z|Q_z).$$

Now, choosing a Poisson distribution for Q with mean value m, using (4) and (5), and summing over Q to obtain a prior on C_z that is independent of Q, we get

$$P(C_z) = \sum_{k=0}^{\infty} P(C_z|Q = Q_z + k) e^{-m} \frac{m^{Q_z + k}}{(Q_z + k)!}$$

$$= \frac{c_z(Q_z)}{(N + 1)^N} \left(\prod_{q=1}^{Q_z} \frac{1}{N^{n_q}} \right) e^{-\frac{m}{N+1}} \frac{m^{Q_z}}{Q_z!}.$$
Finally, if there are \(p \) unique non-zero columns in \(Z \), which occur with multiplicity \(\omega_1, \ldots, \omega_p \), such that \(Q_z = \sum_{k=1}^{p} \omega_k \), we note that \(c_z(Q_z) \) is the multinomial coefficient:

\[
c_z(Q_z) = \frac{Q_z!}{\omega_1! \cdots \omega_p!}
\]

With (6) and (1), letting \(\mathcal{L}(.) = \log P(.) \), it is now possible to write down the complete data log likelihood as

\[
F(C_z, p_{in}, p_o) = \mathcal{L}(X|Z, p_o, p_{in}) + \mathcal{L}(C_z).
\]

Strictly speaking, this might not be considered the complete data, as we have integrated out \(\alpha \) in a Bayesian manner. For our purposes however, \(z, p_o, p_{in} \) will be referred to as the complete data.

As methods such as Daudin et al. (2008) that attempt to find the maximum likelihood estimators from the observed likelihood \(\mathcal{L}(X) \) are too computationally expensive for large-scale networks, and because we are more interested in estimating the clustering than in estimating the parameters, we follow an approach similar to Zanghi et al. (2007) that seek the \((C_z, p_{in}, p_o) \) that maximizes (7). Maximization of the complete data likelihood has been shown to result in good clusterings in practice in the context of Gaussian mixture models. In the remainder of the paper, we will simply write \(F(C_z) \), rather than \(F(C_z, p_{in}, p_o) \), to emphasize our primary objective of finding an optimal \(C_z \).

We have integrated out \(\alpha \), the cluster membership proportions. If it was easy to analytically integrate out \(p_{in} \) and \(p_o \), giving us

\[
F^*(C_z) = \int_0^1 \int_0^1 F(C_z, p_{in}, p_o) P(p_{in}) P(p_o) dp_{in} dp_o,
\]

then this would allow us to consider \(p_{in} \) and \(p_o \) as nuisance parameters and to totally disregard them in our algorithm, in the manner of Nobile & Fearnside (2007). However, it does not yet appear possible to do so. For convenience we chose to search for the triple \((C_z, p_{in}, p_o) \) that maximizes \(F(C_z) \). Another alternative would be to sample these parameters in the manner of Nowicki & Snijders (2001).

4 The MOSES Maximization Algorithm

MOSES, similarly to algorithms based on modularity, is driven by a global objective function, \(F(C_z) \). Except in the smallest of networks, it is not feasible to exhaustively search every possible community assignment, calculating \(F(C_z) \) for each, and then remembering which got the best score. In order to handle graphs with millions of edges, we use a greedy maximization strategy in which communities are created and deleted, and nodes are added or removed from communities, in a manner that leads to an increase in the objective function.

The change in the objective when an entire community is added or removed can be decomposed into a set of single node updates. A single node update, adding it to, or removing it from, a community, changes \(z_{iq} \) to \(z'_{iq} = 1 - z_{iq} \). In order to avoid considering a node being connected to itself in the following expression, which is not allowed in this model, \(\psi_{in} = 1 - p_{in} \) and \(\psi_o = 1 - p_o \).
The objective, $F(C_z)$, changes where node i is being added to community q, where j iterates over the set of nodes already within q,

$$
\Delta F(C_z) = n_q \log \psi_{in} - \sum_{z^q=1} x_{ij} \log \psi_{in}
+ \sum_{z^q=1} x_{ij} \log \left(\frac{1 - \psi_0 \psi_{in} s_z(i,j)}{1 - \psi \psi_{in} s_Z(i,j)} \right) + \log \frac{1}{N^q} - \log \frac{1}{N^q},
$$

where $s_z(i, j) = (-1)^{s_{in} + s_Z(i, j)}$ is the number of common communities between i and j after the node update has taken place. We note that we need the values of s_Z only for those pairs of nodes that are connected, the edges.

The change in a priori probability of C_z, $\Delta P(C_z)$, is more complicated as it depends on whether the node update results in a change to Q_z, or not. We estimate m, the mean value of Q to be $\hat{m} = Q_z$, which allows us to simplify and approximate (6) when considering small changes to Q_z. m is fixed but unknown, and hence $e^{-\frac{N}{N+1}m}$ is a constant we can ignore for proportionality. A small change in Q_z, increasing or decreasing it by 1, will make little change in the ratio $m Q_z Q_z!$, as m has been estimated to approximate Q_z.

Moreover, changes to $c_z(Q_z)$ depend on whether the node update results in a change to the number or multiplicity of unique columns in Z. In MOSES, we assume that all the communities we have found are unique, estimating $c_z = Q_z!$. This introduces an overestimate of the multinomial c_z, and we would expect that this would introduce a bias towards finding duplicate communities. However, we have not yet observed a duplicate community in the output of the algorithm.

We use a combination of heuristics in an attempt to find good communities. These are edge-expansion, community-deletion and single-node fine-tuning. In the following, it is more useful to think of a community assignment C_z as a set of communities, with each community consisting of a set of nodes. We will use $C_z \cup C$ for $C \subseteq V$ to denote the addition of a new community to C_z.

Edge expansion In the initial phase of the algorithm, edges are selected at random from the graph and a community is expanded around each selected edge in turn. Initially the community consists of two nodes $C = \{v, w\}$. New nodes are added to C from its frontier i.e. the set of nodes not in C but directly connected to nodes in C. Nodes are added in a greedy manner, selecting the node v^* in the frontier that maximizes $F(C_z \cup \{C \cup v^*\})$. Expansion continues while the objective is the highest found so far.

When a proposed community is very small, its contribution to the objective may be negative even if it is a clique. This is because, for a small community, $P(C_z)$ dominates $P(X|C_z, p_{in}, p_0)$ in $F(C_z)$. Hence, we use a small lookahead, whereby expansion of a community will continue, even if it would decrease the objective, unless l consecutive expansions fail to raise the objective. In practice, we use $l = 2$ and have found that
large values of l slow down the algorithm, without any significant improvement to the quality of the results.

Edges are chosen randomly with replacement to be subject to expansion. Note that each subsequent time an edge is selected, it may expand into a different community, as, with each addition of a new community, the overlap counts $s_Z(i,j)$ change. For the first community expansion v^* is simply the node with most connections to C. Then, as more expansions are performed, and more and more edges are ‘claimed’ by found communities, and $s_Z(i,j)$ increases, the expansion will favour edges with lower $s_Z(i,j)$. Informally, we can say that $F(C_z)$ favours finding communities of nodes which are densely connected by edges, and that it has a preference for edges not already contained within other communities.

Community Deletion Periodically all the communities are scanned to see if the removal of an entire community will result in a positive change in the objective. This check occurs after each 10% of the edges have been expanded and after the single-node fine tuning phase, so will happen 11 times. The output of the algorithm will be the assignments after the last community deletion phase.

$$F(C_z \setminus \{C\}) > F(C_z)$$

Single-Node Fine Tuning The fine tuning phase takes place at the end of the edge expansion phase. It is inspired by the method of Blondel et al. (2008). In this phase, each node is examined in turn by removing it from all the communities it is assigned to and then considering adding it to the communities to which it is connected by an edge. As always, the decision to insert a node into a neighbouring community depends on whether it results in a positive change to $F(C_z)$.

Estimating p_{in} and p_o The MOSES algorithm does not require the user to specify the two connection probability parameters. The algorithm estimates these itself as it proceeds. Only one input, the graph, is supplied to the MOSES software. It can be shown that, for a given z and x, and as a function of p_{in} and p_o, the value of $F(C_z, p_{in}, p_o)$ depends on simple summary quantities such as the frequency of various values of $s_Z(i,j)$ across the edges. This allows us to efficiently select the values of p_{in} and p_o, given the current estimate of the communities, which maximize $F(C_z)$.

5 Evaluation

5.1 Do empirical networks have highly overlapping community structure?

Having described the model and the corresponding objective function, and the algorithm we propose, there are a number of experiments we performed. Some of these experiments tell us about the suitability of the objective function, others tell us about the performance of the algorithm. Firstly, we discuss a question which is not specific to MOSES. Namely, whether or not a typical empirical graph has highly overlapping structure, and whether or not an algorithm could ever exist to reliably detect that structure.

A cluster of nodes with low conductance with respect to the rest of the graph can be informally described as a cluster with large internal density and/or few edges which
point out of the cluster. Leskovec et al. (2008) analyzed a variety of empirical graphs and searched for clusters with low conductance. For a given cluster size, k, a variety of heuristics are used to search for the single cluster with lowest conductance. If the conductance values are high for all values of k, Leskovec et al. (2008) argues that this can be interpreted as ruling out community structure at that scale.

In fig. 2, we see the network community profile (NCP) plot for a synthetic dataset generated by the LFR software. The conductance is greater than 0.4 for all k. This value is higher than found by Leskovec et al. (2008) in a variety of empirical graphs, where values of 0.001 are not uncommon for some values of k. By the reasoning of Leskovec et al. (2008), we might (incorrectly) interpret this as proving that community structure does not exist at any scale. However, this data was generated with highly overlapping community structure where each node is placed in five communities. Also, the MOSES algorithm is able to detect this structure with high accuracy, achieving 92.6% accuracy according to the overlapping extension to NMI.

One relevant hypothesis is that many empirical networks might contain highly overlapping, and easily detectable, community structure and that such structure may exist at the large scale as well as at the small scale. fig. 2 shows us that large conductance values are compatible with detectable community structure at small scales, and suggests that large scale structure cannot be ruled out at larger scales. The hypothesis is not ruled in, but nor can it be ruled out by the NCP.

We do not propose that the MOSES model is a complete description of how empirical networks form, nor that the MOSES algorithm is the only way to detect such structure. Instead, our aim in this NCP experiment is to show that empirical networks
might have strong, highly overlapping structures at small and large scales, and that current or future algorithms may be able to reliably detect these communities.

5.2 Data from the MOSES model

In many of our experiments, data was generated from the LFR model as that is becoming quite common in the community finding literature. But we can also generate data from the MOSES model directly.

As currently formulated, the MOSES model specifies that, \textit{a priori}, the community sizes are drawn uniformly between zero and \(N \), the number of nodes in the graph. But that is not very realistic, so instead we select community sizes between 15 and 60 in order to be consistent with the LFR experiments which we will discuss in sections 5.3 and 5.5.

We created ten networks, where the average overlap increased from one to 10. We define the \textit{average overlap} by considering each node and the number of communities that it is in, then taking the mean. The average overlap is referred to as \(\alpha_m \) in the LFR manual, but we used our own software for the experiment described in this subsection. The densities (\(p_{in} \) and \(p_{out} \)) were chosen such that the average degrees would match those of the networks used in fig. 7 – average degree \(15 \times \alpha_m \) where 20\% of a typical node’s edges are not inside any community. Again, there were 2000 nodes in each network. To generate the data, we create the required number of communities by selecting nodes randomly, with replacement, and joining them with probability \(p_{in} \). Finally we add extra “background” edges between every pair of nodes with probability \(p_{out} \).

In table 2 we see that the algorithm can achieve around 85\% NMI, and a good estimate of the number of communities, up to approximately 10 communities per node. This accuracy can be increased by increasing \(p_{in} \) but we chose \(p_{in} = 0.33 \) as this is where its performance starts to fall on these synthetic networks, and because it matches the density used in our LFR experiments.

\(\alpha_m \)	#true communities	#edges	#found communities	NMI	Estimates from MOSES	\(p_{in} \)	\(p_{out} \)
1	53	17041	50	0.885581	0.228	0.00156947	
2	107	33042	112	0.918681	0.316	0.00358442	
3	160	48441	169	0.937397	0.333	0.00477787	
4	213	64573	234	0.919665	0.334	0.00596004	
5	267	78931	306	0.885562	0.335	0.00732818	
6	320	94846	342	0.901794	0.336	0.00659871	
7	373	110539	389	0.886371	0.336	0.0116144	
8	427	127609	412	0.881646	0.336	0.0127759	
9	480	143526	448	0.85636	0.335	0.0154588	
10	533	157471	461	0.843449	0.336	0.0170047	
12	640	185298	514	0.795805	0.338	0.0226332	
15	800	229450	462	0.699846	0.337	0.0400962	
20	1067	299020	316	0.451244	0.338	0.0859107	

Table 2: Graphs from the MOSES model. \(p_{in} = 0.33 \), \(p_{out} = 0.0015 \times \alpha_m \), \(N = 2000 \)
5.3 The algorithm or the model?

Parameter	Description	Value
N	number of nodes	2000
k	average degree	15 $\times O_m$ (in fig. 7(a)) or 45 $\times O_m$ (in fig. 7(b))
k_{max}	max degree	15
C_{min}	minimum community size	15
C_{max}	maximum community size	60
τ_1	degree exponent	-2
τ_2	community size exponent	0
μ	mixing parameter	0.2
O_m	overlapping nodes	0 . . . N
O_m	communities per node	1, 1.2, 1.4, . . . , 2.0, 3.0, . . . 10

Table 3 Parameter values used for the experiments described in sections 5.3 and 5.5. Where $O_m = 1.4$, for example, we put 40% of the nodes, i.e. 800 of them, each into two communities.

As discussed in section 4 the MOSES algorithm is a heuristic optimisation strategy, targeted at finding the set of communities that maximises the posterior density $P(z, p_{in}, p_{out}|x)$ under our proposed stochastic model. We have seen good performance on a number of synthetic benchmarks, but it is worth asking, whenever MOSES fails, is this due to a failure of the heuristic optimisation strategy to find a good fit to the model, or is this due to a failure of the model to properly capture the characteristics of the underlying community structure. To investigate this, we looked again at the experiments where the performance of MOSES breaks down, at 10 or more communities-per-node. In the case where there are no communities in z, the MOSES model is identical to the Erdos-Renyi model. If we optimize $p_{out} = \frac{2 \# edges}{N \times (N-1)}$ then we can use this model as a “baseline” value for the objective function. Then, the ratio of the logs of this quantity to $P(z, p_{out}, p_{in}|x)$ gives a value between 0 and 1. The MOSES algorithm attempts to minimize this quantity.

$$f(z) = \frac{\log P_{MOSES}(z, \hat{p}_i, \hat{p}_o|x)}{\log P_{Erdos-Renyi}(x|\hat{p})}$$

where \hat{p}_i, \hat{p}_o are optimized for z under the MOSES model.

Table 4 What does the MOSES algorithm target?

Overlap	$f(z_{ground truth})$	$f(z_{MOSES})$	Δf	NMI
1	0.640671	0.641113	0.000442	0.813046
2	0.704139	0.715620	0.011481	0.735667
3	0.735461	0.738797	0.003336	0.721188
4	0.785880	0.793339	0.007559	0.664248
5	0.810475	0.814468	0.003993	0.638435
6	0.832514	0.829670	-0.002844	0.613011
7	0.849016	0.841034	-0.007982	0.600076
8	0.861816	0.848052	-0.013764	0.590137
9	0.882812	0.864082	-0.018730	0.561496
10	0.895454	0.870607	-0.024847	0.547616
In table 4, the value of $f()$ is computed for the communities found by the MOSES algorithm and also for the ground truth communities. In all cases, the difference in $f()$ is relatively small, suggesting that the MOSES algorithm has found communities which are of as good quality as the ground truth communities, according to the MOSES model. At the end of table 4, among the most highly-overlapping datasets, we see that the MOSES algorithm is achieving values of $f()$ which are slightly better than that of the ground truth. This suggests that although the MOSES model is not the ideal model for these datasets, the MOSES algorithm is quite effective at targeting communities that fit the MOSES model when the amount of overlap is high. In order to improve the overall results (the NMI column in table 4), it will likely be necessary to consider a new model.

It should be noted that the MOSES algorithm is a generic algorithm and its heuristics are not restricted to the MOSES model. Hence the algorithm could perhaps be applied to other objectives.

5.4 Evaluation on benchmark data with variable overlap

To evaluate the accuracy of MOSES and other algorithms, we created a set of simple benchmark graphs with increasing levels of overlap. To generate the graphs, we begin with a graph with 2,000 nodes and no edges. We then assign a number of communities. For each community, 20 nodes are selected at random, without regard to whether those nodes have already been assigned to other communities. A note on terminology: in this we use highly overlapping to mean nodes that are members of many communities. It is worth considering whether alternative terminology is more appropriate, especially when looking at the intersection of two communities where the intersection may contain many nodes.

We then add edges with reference to these communities. For each community, we add edges until every node is joined to every other node in that community. This gives us a graph with a large number of 20-cliques.

These communities are referred to as the ground truth communities. Finally, every pair of nodes is joined with probability 0.005 to add a number of non-community edges. We further confirmed that, in our evaluation, all graphs generated are connected graphs, even those with the smallest number of communities.

We then apply MOSES, and other algorithms, to these graphs to find communities. We use a recently published extension of normalized mutual information (NMI) to calculate how similar the ground truth communities are to the communities found by the various algorithms, as this measure has been popular in the recent literature. \(^2\)

Results on these synthetic graphs are shown in fig. 3. We plot the accuracy, as measured by NMI, of a variety of overlapping CAAs. On the horizontal axis, we plot the average overlap, or average number of communities that a single node is in, within the benchmark graph. For example, where the average overlap is 1.0, this means there were 100 communities, each of 20 nodes, placed in the 2,000-node graph.

The algorithms used are LFM by Lancichinetti et al. (2009), COPRA by Gregory (2009a), Iterative Scan (IS) by Baumes et al. (2005), clique percolation, and GCE

\(^2\) For creating the LFR graphs with fixed overlap-per-node and measuring overlapping NMI, we use the implementations provided by the authors, both of which are freely available at http://sites.google.com/site/andrealancichinetti/software. For the specification of overlapping NMI, see the appendix of Lancichinetti et al. (2009).
Fig. 3 NMI of various algorithms as average overlap increases. Mean +/- standard deviation of twenty realizations of the graph. Iterative Scan (Baumes et al. (2005)) was run just once, due to time constraints.

by Lee et al. (2010). We include the Louvain method Blondel et al. (2008) as an example of a popular partitioning algorithm. We have used implementations supplied by the authors, except for clique percolation. For clique percolation, we used our own implementation as existing implementations by Kumpula et al. (2008) and Palla et al. (2005) were slow on many of the datasets. The LFM community finding algorithm, and the LFR synthetic network creation software, are not to be confused with each other but they do share authors. The LFM software creates many complete collections from a graph, each of which is a complete community assignment. As recommended by the authors, we select the first such community assignment for use in this comparison. However, we have noticed that the results obtained from LFM when selecting the last collection, instead of the first, can be better. For completeness, we have included this in our comparison.
In fig. 4, we plot the average overlap found by the various algorithms. Only MOSES is able to obtain good estimates of the average overlap, up to an average overlap of 15 communities-per-node.

Fig. 4 Estimated overlap of various algorithms as average overlap increases.

In fig. 5, we consider graphs with a lower probability, 0.001, for the probability of a non-community edge between two nodes. This will assign approximately two non-community edges, on average, to each node. This improves the performance of many algorithms as the number of noisy edges has significantly decreased. We should note that these graphs are not necessarily connected, and some algorithms operate only on the largest connected component. For each of these sparser graphs, at least 90% of the nodes are in the largest connected component.

In the benchmarks described so far, each community was a clique, rendering it simple for MOSES to detect. To investigate further, we generated a series of benchmarks where the edges inside communities are connected with a lower probability. As expected, the performance of all algorithms dropped as the internal edge density decreased. These are presented in fig. 6. MOSES can detect communities at up to 15 communities per node, even as p_{in} drops below 0.4. At $p_{in}=0.3$ however, all algorithms tested, including MOSES, have poor performance.

Considering the broader implications of these experiments, especially fig. 4, we see that existing algorithms may underestimate the number of communities. This echoes our earlier hypothesis, that many empirical networks may have very highly overlapping community structure, which is missed by existing algorithms.

We also note that the synthetic graphs just discussed are particularly suited to the MOSES model, as all the communities are created with the same edge density. This homogenous edge density across all communities is a good match for the p_{in} parameter.
In order to investigate performance where the density varies across the ground truth communities, we next look at LFR benchmark graphs.

5.5 Evaluation on LFR Graphs

The LFR benchmark generation software Lancichinetti et al. (2008) can be used to generate more interesting datasets than those just analyzed. Above, we looked at communities of a fixed size with a constant internal edge density. The LFR software can generate graphs with a variety in community size, and a variety in node degree, each of which will create variance in the internal edge density. Such variety of density provides a challenge to MOSES, as the p_{in} parameter in the MOSES model is such that all communities are assumed to be equally dense.

One drawback of the LFR graphs is that all the overlapping nodes must be assigned to the same number of communities. This is why we created our own benchmarks, with varying overlap, in section 5.4. We used the LFR software to generate graphs not unlike those analyzed in the last section. The number of nodes is again 2,000. The community sizes range uniformly from 15 to 60. The mixing parameter, μ, is 0.2 meaning that 80% of the edges are between nodes that share a community.
We varied the overlap to range from one community per node to ten communities per node. Then the degree of all the nodes was fixed to be 15 times the overlap. We present these results in fig. 7(a), where the horizontal axis is logarithmic. LFR can create graphs where only a portion of the nodes are assigned to more than one community, we use this feature to investigate graphs with on average 1.2, 1.4, 1.6, 1.8 communities-per-node. Our parameters are summarized in table 3.

In any one of these graphs, each overlapping node is in exactly the same number of communities, making the structure relatively simple. It is not surprising therefore that many algorithms, such as LFM and the partitioning algorithm by Blondel et al. (2008), perform well when the overlap is low.

In the previous section we saw that a partitioning algorithm, such as Blondel et al. (2008), can fail on graphs with low average levels of overlap. This demonstrates that, even in empirical graphs where overlapping communities are not expected to be major feature, it may not be wise to use a partitioning algorithm. Partitioning algorithms might succeed only where each node is known to be in exactly one community. This is an unrealistic assumption in many empirical datasets.

The LFR software can generate networks with a power law degree sequence. In fig. 7(b) we analyzed the same datasets as in fig. 7(a) but where the maximum degree was set to be three times the average degree. The slope of the power-law is set it to 2.0. In these datasets, when the overlap is low, MOSES does not perform as well as GCE, LFM or clique percolation. On the other hand, MOSES is the only algorithm capable of detecting significant structure when the overlap approaches 10 communities per node. The NMI of the community assignments found by MOSES is consistently above 60% whereas the other algorithms’ scores are well below 40% when there are more than six communities per node.

The MOSES model does not explicitly model degree distribution, nor does it explicitly model different within-community densities for different communities and this may explain its failure to get the highest NMI scores in fig. 7(b). This may be an area for future development of these models. The superior community model of MOSES enables it to detect some structure in the graphs with heaviest overlap.
Fig. 8 Run time, in seconds, as overlap increases in the LFR benchmarks.

5.6 Scalability

In fig. 8 we investigated the run time of these algorithms. The graphs are the same as in fig. 7, but instead we plot the logarithm of the running time on the y-axis. GCE is the fastest of all the algorithms on the less overlapping data. While there are many algorithms faster than MOSES and LFM, the only one of those algorithms capable of getting reasonable NMI scores is GCE. The high quality NMI scores of MOSES do not carry a significant penalty in performance. MOSES is as fast as many scalable algorithms on overlapping data, and gets the highest quality results on the very highly overlapping data.

In partitioning, the most popular and scalable methods can be trivially applied to a variety of objective functions. The Louvain method, and variants, have been used for both modularity maximization and to maximize the map equation of Rosvall et al. (2009). It might be best to think of the Louvain method not as a modularity maximization algorithm, but as a fast method to maximize any simple partitioning objective function.

For overlapping community finding, we hope to see progress on such “multi-objective” algorithms in future. The MOSES algorithm is not restricted to the MOSES model. And it is also valid to consider very scalable algorithms which are not based on the MOSES algorithm, but which do target the MOSES model.

5.7 Evaluation on a real-world social network.

Traud et al. (2010) gathered data on Facebook users and friendships in five US universities.

The degree distributions of all five appears to be very approximately log-normal, as can be seen in the logarithmic histograms of fig. 9(b). The distribution does not fit the power law distributions often assumed as an approximation for the degree distribution of empirical graphs. The relative narrowness of this (logged) degree distribution may improve the results of MOSES as it is a more reasonable fit for the MOSES model than a strict power law distribution would be. The average degree ranges from 43.3 to...
A summary of the results is presented in table 5. It suggests that a Facebook user is, on average, a member of seven communities. In an analysis of one of their own Facebook ego-networks, Salter-Townshend & Murphy (2009) found it divided into six groups. MOSES assigns nodes each to a different number of communities, and to communities of varying size. In fig. 1, we present the communities of a student at Georgetown. MOSES assigns this student to four communities, and we visualized the subgraph based on all the nodes in those four communities.
6 Conclusions

MOSES detects overlapping community structure in large networks where nodes may belong to many communities. Existing algorithms find only relatively low levels of overlapping community structure. It is necessary to be able to detect highly overlapping structure, if only to rule it out for a given observed network. For instance, our analysis on Facebook data has shown that a typical Facebook user can be a member of seven communities. This demonstrates the need for further research into such community structure. Existing algorithms work best where each node is in the same number of communities. But this is not a realistic assumption for social networks and we have demonstrated that MOSES can accurately detect communities in networks where typical nodes are in many communities, and where there is variance in the number of communities a node is in.

Acknowledgements

Thanks to Prof. Brendan Murphy for providing feedback on the MOSES model.

References

Ahn, Y.Y., Bagrow, J.P. & Lehmann, S. (2010). Link communities reveal multiscale complexity in networks. *Nature*, **466**, 761–764.

Baumes, J., Goldberg, M., Krishnamoorthy, M., Magdon-Ismail, M. & Preston, N. (2005). Finding communities by clustering a graph into overlapping subgraphs. In *International Conference on Applied Computing (IADIS 2005)*.

Blondel, V., Guillaume, J., Lambiotte, R. & Lefebvre, E. (2008). Fast unfolding of communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment*, **2008**, P10008.

Clauset, A. (2005). Finding local community structure in networks. *Physical Review E*, **72**, 26132.

Daudin, J., Picard, F. & Robin, S. (2008). A mixture model for random graphs. *Statistical Computing*, **18**, 173–183.

Fortunato, S. (2010). Community detection in graphs. *Physics Reports*, **486**, 75 – 174.

Goldenberg, A., Zhang, A.X., E.Fienberg, S. & Airoldi, E.M. (2009). A survey of statistical network models.

Gregory, S. (2007). An algorithm to find overlapping community structure in networks. *Lecture Notes in Computer Science*, **4702**, 91.

Gregory, S. (2009a). Finding overlapping communities in networks by label propagation. *Arxiv preprint arXiv:0910.5516*.

Gregory, S. (2009b). Finding Overlapping Communities Using Disjoint Community Detection Algorithms. In *Complex Networks: Results of the 1st International Workshop on Complex Networks (CompleNet 2009)*, 47, Springer.

Kumpula, J.M., Kivelä, M., Kaski, K. & Saramäki, J. (2008). A sequential algorithm for fast clique percolation.

Lancichinetti, A. & Fortunato, S. (2009). Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. *Physical Review E*, **80**, 16118.
Lancichinetti, A., Fortunato, S. & Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. *Physical Review E*, **78**.

Lancichinetti, A., Fortunato, S. & Kertész, J. (2009). Detecting the overlapping and hierarchical community structure in complex networks. *New J. Phys.*, **11**, 033015+.

Latouche, P., Birmelé, E. & Ambroise, C. (2009). Overlapping stochastic block models. Lee, C., Reid, F., McDaid, A. & Hurley, N. (2010). Detecting highly overlapping community structure by greedy clique expansion. *Poster at KDD 2010*.

Leskovec, J., Lang, K.J., Dasgupta, A. & Mahoney, M.W. (2008). Statistical properties of community structure in large social and information networks. 695–704, ACM.

Mishral, N., Schreiber, R., Stanton, I. & Tarjan, R.E. (2007). Clustering social networks. *Lecture notes in computer science*, **4863**, 56.

Newman, M. & Girvan, M. (2004). Finding and evaluating community structure in networks. *Phys Rev E*, **69**, 026113.

Nobile, A. & Fearnside, A. (2007). Bayesian finite mixtures with an unknown number of components: The allocation sampler. *Statistics and Computing*, **17**, 147–162.

Nowicki, K. & Snijders, T.A.B. (2001). Estimation and prediction for stochastic block-structures. *Journal of the American Statistical Association*, **96**, 1077–1087.

Palla, G., Derenyi, I., Farkas, I. & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. *Nature*, **435**, 814–818.

Reid, F. (2010). Partitioning considered harmful. *Submitted to NIPS 2010*.

Rosvall, M., Axelsson, D. & Bergstrom, C.T. (2009). The map equation.

Salter-Townshend, M. & Murphy, T.B. (2009). Variational Bayesian Inference for the Latent Position Cluster Model.

Shen, H., Cheng, X., Cai, K. & Hu, M. (2009). Detect overlapping and hierarchical community structure in networks. *Physica A: Statistical Mechanics and its Applications*, **388**, 1706–1712.

Traud, A.L., Kelsic, E.D., Mucha, P.J. & Porter, M.A. (2010). Comparing Community Structure to Characteristics in Online Collegiate Social Networks. *to appear in SIAM Review, arXiv preprint arXiv:0809.0690*.

Zanghi, H., Ambroise, C. & Miele, V. (2007). Fast online graph clustering via erdos-renyi mixture.