Two-Source Extractors Secure Against Quantum Adversaries

Roy Kasher* Julia Kempe†

October 10, 2018

Abstract

We initiate the study of multi-source extractors in the quantum world. In this setting, our goal is to extract random bits from two independent weak random sources, on which two quantum adversaries store a bounded amount of information. Our main result is a two-source extractor secure against quantum adversaries, with parameters closely matching the classical case and tight in several instances. Moreover, the extractor is secure even if the adversaries share entanglement. The construction is the Chor-Goldreich [CG88] two-source inner product extractor and its multi-bit variant by Dodis et al. [DEOR04]. Previously, research in this area focused on the construction of seeded extractors secure against quantum adversaries; the multi-source setting poses new challenges, among which is the presence of entanglement that could potentially break the independence of the sources.

*Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Supported by JK’s Individual Research Grant of the Israeli Science Foundation.
†Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. Supported by the European Commission under the Integrated Project Qubit Applications (QAP) funded by the IST directorate as Contract Number 015848, by an Alon Fellowship of the Israeli Higher Council of Academic Research, by an Individual Research Grant of the Israeli Science Foundation, by a European Research Council (ERC) Starting Grant, by a Raymond and Beverly Sackler Career Development Chair and by the Wolfson Family Charitable Trust.
1 Introduction and Results

Randomness extractors are fundamental in many areas of computer science, with numerous applications to derandomization, error-correcting codes, expanders, combinatorics and cryptography, to name just a few. Randomness extractors generate almost uniform randomness from imperfect sources, as they appear either in nature, or in various applications. Typically, the imperfect source is modelled as a distribution over n-bit strings whose min-entropy is at least \(k \), i.e., a distribution in which no string occurs with probability greater than \(2^{-k} \) [SV84, CG88, Zac90]. Such sources are known as weak sources. One way to arrive at a weak source is to imagine that an adversary (or some process in nature), when in contact with a uniform source, stores \(n - k \) bits of information about the string (which are later used to break the security of the extractor, i.e. to distinguish its output from uniform). Then, from the adversary’s point of view, the source essentially has min-entropy \(k \).

Ideally, we would like to extract randomness from a weak source. However, it is easy to see that no deterministic function can extract even one bit of randomness from all such sources, even for min-entropies as high as \(n - 1 \) (see e.g. [SV84]). One main approach to circumvent this problem is to use a short truly random seed for extraction from the weak source (seeded extractors) (see, e.g., [Sha02]). The other main approach, which is the focus of the current work, is to use several independent weak sources (seedless extractors) (e.g. [CG88, Vaz87, DEOR04, Bou05, Raz05] and many more).

With the advent of quantum computation, we must now deal with the possibility of quantum adversaries (or quantum physical processes) interfering with the sources used for randomness extraction. For instance, one could imagine that a quantum adversary now stores \(n - k \) qubits of information about the string sampled from the source. This scenario of a bounded storage quantum adversary arises in several applications, in particular in cryptography.

Some constructions of seeded extractors were shown to be secure in the presence of quantum adversaries: König, Maurer, and Renner [RK05, KMR05, Ren05] proved that the pairwise independent extractor of [ILL89] is also good against quantum adversaries, and with the same parameters. König and Terhal [KT08] showed that any one-bit output extractor is also good against quantum adversaries, with roughly the same parameters. In light of this, it was tempting to conjecture that any extractor is also secure against quantum storage. Somewhat surprisingly, Gavinsky et al. [GKK+08] gave an example of a seeded extractor that is secure against classical storage but becomes insecure even against very small quantum storage. This example has initiated a series of recent ground-breaking work that examined which seeded extractors stay secure against bounded storage quantum adversaries. Ta-Shma [Ta-09] gave an extractor with a short (polylogarithmic) seed extracting a polynomial fraction of the min-entropy. His result was improved by De and Vidick [DV10] extracting almost all of the min-entropy. Both constructions are based on Trevisan’s extractor [Tre01].

However, the question of whether seedless multi-source extractors can remain secure against quantum adversaries has remained wide open. The multi-source scenario corresponds to several independent adversaries, each tampering with one of the sources, and then jointly trying to distinguish the extractor’s output from uniform. In the classical setting this leads to several independent weak sources. In the quantum world, measuring the adversaries’ stored information might break the independence of the sources, thus jeopardizing the performance of the extractor. Moreover, the multi-source setting offers a completely new aspect of the problem: the adversaries could potentially share entanglement prior to tampering with the sources. Entanglement between several parties has been known to yield several astonishing effects with no counterpart in the classical world, e.g., non-local correlations [Bel64] and superdense coding [BW92].

We note that the example of Gavinsky et al. can also be viewed as an example in the two-source model; we can imagine that the seed comes from a second source (of full entropy in this case, just like any seeded

1 Such an effect appears also in strong seeded extractors and has been discussed in more detail in [KT08].
Theorem 2. The DEOR-construction is a \((k_1, k_2, \epsilon)\) extractor against \((b_1, b_2)\) non-entangled storage with \(m = (1 - o(1)) \max(k_1 - \frac{b_1}{2}, k_2 - \frac{b_2}{2}) + \frac{1}{2}(k_1 - b_1 + k_2 - b_2 - n) - 9 \log \epsilon^{-1} - O(1)\) output bits, provided \(k_1 + k_2 - \max(b_1, b_2) > n + \Omega(\log^3 (n/\epsilon)).\)

As we show next the extractor remains secure even in the case of entangled adversaries. Notice the loss of essentially a factor of 2 in the allowed storage; this is related to the fact that superdense coding allows to store \(n\) bits using only \(n/2\) entangled qubit pairs.

Theorem 3. The DEOR-construction is a \((k_1, k_2, \epsilon)\) extractor against \((b_1, b_2)\) entangled storage with \(m = (1 - o(1)) \max(k_1 - b_2, k_2 - b_1) + \frac{1}{2}(k_1 - 2b_1 + k_2 - 2b_2 - n) - 9 \log \epsilon^{-1} - O(1)\) output bits, provided \(k_1 + k_2 - 2 \max(b_1, b_2) > n + \Omega(\log^3 (n/\epsilon)).\)

Note that in both cases, when the storage is linear in the source entropy we can output \(\Omega(n)\) bits with exponentially small error. To compare to the performance of the DEOR-extractor in the classical case, note that a source with min-entropy \(k\) and classical storage of size \(b\) roughly corresponds to a source of min-entropy \(k - b\) (see, e.g., [Ta-09] Lem. 3.1). Using this correspondence, the extractor of [DEOR04]
gives $m = \max(k_1,k_2) + k_1 - b_1 + k_2 - b_2 - n - 6 \log \varepsilon^{-1} - O(1)$ output bits against classical storage, whenever $k_1 + k_2 - \max(b_1,b_2) > n + \Omega(\log n \cdot (\log^2 n + \log \varepsilon^{-1}))$. Hence the conditions under which we can extract randomness are essentially the same for DEOR and for our Thm.\ref{thm:1}. The amount of random bits we can extract is somewhat less than in the classical case, even when disregarding storage.

In the non-entangled case, we are able to generalize our result to the stronger notion of guessing entropy adversaries or so called quantum knowledge (see discussion below and Sec.\ref{sec:5} for details). We show that the DEOR-extractor remains secure even in this case, albeit with slightly weaker parameters.

Theorem 4. The DEOR-construction is a (k_1,k_2,ε) extractor against quantum knowledge with $m = (1 - o(1)) \max(k_1,k_2) + \frac{1}{6}(k_1 + k_2 - n) - 9 \log \varepsilon^{-1} - O(1)$ output bits, provided $k_1 + k_2 > n + \Omega(\log^3(n/\varepsilon))$.

Strong extractors: The extractor in Thms.\ref{thm:1} \ref{thm:2} and \ref{thm:3} is a so called weak extractor, meaning that when trying to break the extractor, no full access to any of the sources is given (which is natural in the multi-source setting). We also obtain several results in the so called strong case (see Cor.\ref{cor:15} Lem.\ref{lem:19} Cor.\ref{cor:29} and Lem.\ref{lem:29}). A strong extractor has the additional property that the output remains secure even if the adversaries later gain full access to any one (but obviously not both) of the sources. See Sec.\ref{sec:2} for details and a discussion of the subtleties in defining a strong extractor in the entangled case, and Secs.\ref{sec:3} \ref{sec:4} and \ref{sec:5} for our results in the strong case.

Tightness: In the one-bit output case, we show that our results are tight, both in the entangled and non-entangled setting (see Lem.\ref{lem:17}).

Proof ideas and tools: To show both of our results, we first focus on the simplest case of one-bit outputs. In this case the DEOR extractor [DEOR04] simply computes the inner product $E(x,y) = x \cdot y \pmod{2}$ of the n-bit strings x and y coming from the two sources. Assume that the two adversaries are allowed quantum storage of b qubits each. Given their stored information they jointly wish to distinguish $E(x,y)$ from uniform, or, in other words, to predict $x \cdot y$. We start by observing that this setting corresponds to the well known simultaneous message passing (SMP) model in communication complexity,\footnote{The connection between extractors and communication complexity has been long known, see, e.g., [Vaz87].} where two parties, Alice and Bob, have access to an input each (which is unknown to the other). They each send a message to a referee, who, upon reception of both messages, is to compute a function $E(x,y)$ of the two inputs. When E is hard to compute, it is a good extractor. Moreover, the entangled adversaries case corresponds to the case of SMP with entanglement between Alice and Bob, a model that has been studied in recent work (see e.g. [GKRdW09] [GKdW06]).

Before we proceed, let us remark, that there are cases, where entanglement is known to add tremendous power to the SMP model. Namely, Gavinsky et al. [GKRdW09] showed an exponential saving in communication in the entangled SMP model, compared to the non-entangled case.\footnote{This result has been shown for a relation, not a function. It is tempting to conjecture that this result can be turned into an exponential separation for an extractor with entangled vs. non-entangled adversaries. It is, however, not immediate how to turn a worst case relation lower bound into an average case function bound, as needed in the extractor setting, so we leave this problem open.} This points to the possibility that some extractors can be secure against a large amount of storage in the non-entangled case, but be insecure against drastically smaller amounts of entangled storage. Our results show that this is not the case for the DEOR extractor, i.e., that this construction is secure against the potentially harmful effects of entanglement.

In the one-bit output DEOR case we can tap into known results on the quantum communication complexity of the inner product problem (IP). Cleve et al. [CvDNT98] and Nayak and Salzman [NS06] have given tight lower bounds in the one-way and two-way communication model, with and without entanglement (which also gives bounds in the SMP model). For instance, in the non-entangled case, to compute IP exactly in the one-way model, n qubits of communication are needed, and in the SMP model, n qubits of communication are needed from Alice and from Bob, just like in the classical case. Note that whereas

\[\text{m} = \max(k_1,k_2) + k_1 - b_1 + k_2 - b_2 - n - 6 \log \varepsilon^{-1} - O(1) \]
in the communication setting typically worst case problems are studied, extractors correspond to average case (w.r.t. to weak randomness) problems. With some extra work we can adapt the communication lower bounds to weak sources and to the average bias which is needed for the extractor result. In fact, the results we obtain hold in the strong case (where later one of the sources is completely exposed), which corresponds to one-way communication complexity.

Tightness of our results comes from matching upper bounds on the one-way and SMP model communication complexity of the inner product. Adapting the work of \cite{CG88} we can obtain tight bounds for any bias ϵ. Somewhat surprisingly, it seems no one has looked at tight upper bounds for IP in the entangled SMP model, where \cite{CvDNT98} give an $n/2$ lower bound for the message length for Alice and Bob. It turns out this bound is tight which essentially leads to the factor 2 separation in our results for the entangled vs. non-entangled case (see Sec. 3).

To show our results for the case of multi-bit extractors, we use the nice properties of the DEOR construction (and its precursors \cite{Vaz87, DO03}). The extractor outputs bits of the form $Ax \cdot y$. Vazirani’s XOR-Lemma allows to reduce the multi-bit to the one-bit case by relating the distance from uniform of the multi-bit extractor to the sum of biases of XOR’s of subsets of its bits. Each such XOR, in turn, is just a (linearly transformed) inner product, for which we already know how to bound the bias. Our main technical challenge is to adapt the XOR lemma to the case of quantum side-information (see Sec. 2). This way we obtain first results for multi-bit extractors, which even hold in the case of strong extractors. Following \cite{DEOR04}, we further improve the parameters in the weak extractor setting by combining our strong two-source extractor with a good seeded extractor (in our case with the construction of \cite{DPVR09}) to extract even more bits. See Sec. 4 for details.

Guessing entropy: One can weaken the requirement of bounded storage, and instead only place a lower bound on the guessing entropy of the source given the adversary’s storage, leading to the more general definition of extractors secure against guessing entropy. Informally, a guessing entropy of at least k means that the adversary’s probability of correctly guessing the source is at most 2^{-k} (or equivalently, that given the adversary’s state, the source has essentially min-entropy at least k). Working with guessing entropy has the advantage that we no longer have to worry about two parameters (min-entropy and storage) instead only working with one parameter (guessing entropy), and that the resulting extractors are stronger (assuming all other parameters are the same), see Sec. 5. In the classical world, a guessing entropy of k is more or less equivalent to a source with k min-entropy; in the quantum world, however, things become less trivial. In the case of seeded extractors, this more general model has been successfully introduced and studied in \cite{Ren05, KT08, FS08, DPVR09, TSSR10}, where several constructions secure against bounded guessing entropy were shown.

In the case of non-entangled two-source extractors, we can show (based on \cite{KT08}) that any classical one-bit output two-source extractor remains secure against bounded guessing entropy adversaries, albeit with slightly worse parameters. Moreover, our XOR-Lemma allow us prove security of the DEOR-extractor against guessing entropy adversaries even in the multi-bit case (Thm. 4, see Sec. 5 for the details).

In the entangled adversaries case, one natural way to define the model is to require the guessing entropy of each source given the corresponding adversary’s storage to be high. This definition, however, is too strong: it is easy to see that no extractor can be secure against such adversaries. This follows from the observation that by sharing a random string $r_1 r_2$ (which is a special case of shared entanglement) and having the first adversary store $r_1 \oplus x, r_2$ and the other store $r_1, r_2 \oplus y$, we keep the guessing entropy of X (resp. Y) relative to the adversary’s storage unchanged yet we can recover x and y completely from the combined storage.

6We thank Ronald de Wolf \cite{dW10} for generously allowing us to adapt his upper bound to our setting.
7Renner \cite{Ren05} deals with the notion of relative min-entropy, which was shown to be equivalent to guessing entropy \cite{KRS09}.
8We are grateful to Thomas Vidick for pointing out that our XOR-Lemma allows us to obtain results also in this setting.
Hence we are naturally lead to consider the weaker requirement that the guessing entropy of each source given the combined storage of both adversaries is high. We now observe that already the DEOR one-bit extractor (where the output is simply the inner product) is not secure under this definition, indicating that this definition is still too strong. To see this, consider uniform n-bit sources X, Y, and say Alice stores $x \oplus r$, and Bob stores $y \oplus r$, where r is a shared random string. Obviously, their joint state does not help in guessing X (or Y), hence the guessing entropy of the sources is still n; but their joint state does give $x \oplus y$.

If, in addition, Alice also stores the Hamming weight $|x| \mod 4$ and Bob $|y| \mod 4$, the guessing entropy is barely affected, and indeed one can easily show it is $n - O(1)$. However, their information now suffices to compute $x \cdot y$ exactly, since $x \cdot y = \frac{1}{2}((|x| + |y| - |x \oplus y|) \mod 4)$. Hence inner product is insecure in this model even for very high guessing entropies, even though it is secure against a fair amount of bounded storage.

In light of this, it is not clear if and how entangled guessing entropy sources can be incorporated into the model, and hence we only consider bounded storage adversaries in the entangled case.

Related work: We are the first to consider two-source extractors in the quantum world, especially against entanglement. As mentioned, previous work on seeded extractors against quantum adversaries [RK05, KMR05, Ren05, KT08, Ta-09, DV10, DPVR09, BT10] gives rise to trivial two-source extractors where one of the sources is not touched by the adversaries. However, the only previous work that allows to derive results in the genuine two-source scenario is the work by König and Terhal [KT08]. Using what is implicit in their work, and with some extra effort, it is possible to obtain results in the one-bit output non-entangled two-source scenario (which hold against guessing entropy adversaries, but with worse performance than our results for the inner product extractor), and we give this result in detail in Sec. 5. Moreover, [KT08] show that any classical multi-bit extractor is secure against bounded storage adversaries, albeit with an exponential decay in the error parameter. This easily extends to the non-entangled two-source scenario, to give results in the spirit of Thm. 2. We have worked out the details and comparison to Thm. 2 in App. A. Note, however, that to our knowledge no previous work gives results in the entangled scenario.

Discussion and Open Problems: We have, for the first time, studied two-source extractors in the quantum world. Previously, only seeded extractors have been studied in the quantum setting. In the two-source scenario a new phenomenon appears: entanglement between the (otherwise independent) sources. We have formalized what we believe the strongest possible notion of quantum adversaries in this setting and shown that one of the best performing extractors, the DEOR-construction, remains secure. We also show that our results are tight in the one-bit output case.

Our results for the multi-bit output DEOR-construction allow to extract slightly less bits compared to what is possible classically. An interesting open question is whether it is possible to obtain matching parameters in the (non-entangled) quantum case. One might have to refine the analysis and not rely solely on communication complexity lower bounds. Alternatively, our quantum XOR-Lemma currently incurs a penalty exponential in either the length of the output or the length of the storage. Any improvement here also immediately improves all three main theorems. In particular, by removing the penalty entirely, Thm. 2 can be made essentially optimal (with respect to the classical case).

We have shown that inner product based constructions are necessarily insecure in two reasonable models of entangled guessing entropy adversaries (and hence that bounded storage adversaries are the more appropriate model in the entangled case). It should be noted that it is possible that other extractor constructions (not based on inner product) could remain secure in this setting, and this subject warrants further exploration.

As pointed out, it is conceivable that entanglement could break the security of two-source extractors. Evidence for this is provided by the communication complexity separation in the entangled vs. non-entangled SMP-model, given in [GKRdW09]. A fascinating open problem is to turn this relational separation into an extractor that is secure against non-entangled quantum adversaries but completely broken when entanglement is present.
Our work leaves several other open questions. It would be interesting to see if other multi-source extractors remain secure against entangled adversaries, in particular the recent breakthrough construction by Bourgain [Bou05] which works for two sources with min-entropy \((1/2 - \alpha)n\) each for some small constant \(\alpha\), or the construction of Raz [Raz05], where one source is allowed to have logarithmic min-entropy while the other has min-entropy slightly larger than \(n/2\). Both extractors are based on the inner product and output \(\Omega(n)\) almost uniform bits.

And lastly, it would be interesting to see other application of secure multi-source extractors in the quantum world. One possible scenario is multi-party computation. Classically, Kalai et al. [KLR09] show that extractors against quantum storage if it is generated by two non communicating parties, Alice and Bob, in the following way. Alice and Bob share an arbitrary 2-qubit state. Alice receives \(b_1\) of his qubits (and discards the rest), and Bob stores \(b_2\) of his qubits, giving the state \(\rho_{xy}\).

We denote by \(\rho_{xy}^A\) the state obtained when Alice stores her entire state, whereas Bob stores only \(b_2\) qubits of his, and similarly for \(\rho_{xy}^B\).

We say \(\rho_{xy}\) is \((b_1, b_2)\) non-entangled storage if \(\rho_{xy} = \rho_x \otimes \rho_y\) for all \(x \in X, y \in Y\).

The security of the extractor is defined relative to the storage.

Definition 6. A \((k_1, k_2, \varepsilon)\) 2-source extractor against \((b_1, b_2)\) (entangled) quantum storage is a function \(E : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^m\) such that for any independent \(n\)-bit weak sources \(X, Y\) with respective min-entropies \(k_1, k_2\), and any \((b_1, b_2)\) (entangled) storage \(\rho_{XY}\), \(|E(X, Y)\rho_{XY} - U_m\rho_{XY}|_{tr} \leq \varepsilon\).

The extractor is called X-strong if \(|E(X, Y)\rho_{XY}X - U_m\rho_{XY}X|_{tr} \leq \varepsilon\), and X-superstrong when \(\rho_{XY}\) is replaced by \(\rho_{XY}^A\). It is called (super)strong if it is both X- and Y- (super)strong.

A note on the definition: A strong extractor is secure even if at the distinguishing stage one of the sources is completely exposed. A superstrong extractor is secure even if, in addition, the matching party’s entire state
is also given. Without entanglement, the two are equal, as the state can be completely reconstructed from the source. In the communication complexity setting the model of strong extractors corresponds to the SMP model where the referee also gets access to one of the inputs, whereas the model of superstrong extractors corresponds to the one-way model, where one party also has access to its share of the entangled state.

To prove E is an extractor, it suffices to show that it is either X-strong or Y-strong. All our proofs follow this route.

Flat sources: It is well known that any source with min-entropy k is a convex combination of flat sources (i.e., sources that are uniformly distributed over their support) with min-entropy k. In what follows we will therefore only consider such sources in our analysis of extractors, as one can easily verify that

$$|E(X, Y)\rho_{XY} - U_m\rho_{XY}|_{tr} \leq \max_{i,j} |E(X_i, Y_j)\rho_{X_iY_j} - U_m\rho_{X_iY_j}|_{tr},$$

where $X = \sum \alpha_i X_i$ and $Y = \sum \beta_i Y_i$ are convex combinations of flat sources.

The DEOR construction: The following (strong) extractor construction is due to Dodis et al. [DEOR04].

Every output bit is a linearly transformed inner product, namely $A_i x \cdot y$ for some full rank matrix A_i, where x and y are the n-bit input vectors. Here $x \cdot y := \sum_{i=1}^n x_i y_i \pmod 2$. The matrices A_i have the additional property that every subset sum is also of full rank. This ensures that any XOR of some bits of the output is itself a linearly transformed inner product.

Lemma 7 ([DEOR04]). For all $n > 0$, there exist an efficiently computable set of $n \times n$ matrices A_1, A_2, \ldots, A_n over $GF(2)$ such that for any non-empty set $S \subseteq [n]$, $A_S := \sum_{i \in S} A_i$ has full rank.

Definition 8 (strong blender of [DEOR04]). Let $n \geq m > 0$, and let $\{A_j\}_{j=1}^m$ be a set as above. The DEOR-extractor $E_D : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^m$ is given by $E_D(x, y) = A_1 x \cdot y, A_2 x \cdot y, \ldots, A_m x \cdot y$.

The XOR-Lemma: Vazirani’s XOR-Lemma [Vaz87] relates the non-uniformity of a distribution to the non-uniformity of the characters of the distribution, i.e., the XOR of certain bit positions. For the DEOR-extractor it allows to reduce the multi-bit output case to the binary output case.

Lemma 9 (Classical XOR-Lemma [Vaz87, Gol95]). For every m-bit random variable Z

$$|Z - U_m|^2 \leq \sum_{0 \neq S \in \{0,1\}^m} |(S \cdot Z) - U_1|^2.$$

This lemma is not immediately applicable in our scenario, as we need to take into account quantum side information. For this, we need a slightly more general XOR-Lemma.

Lemma 10 (Classical-Quantum XOR-Lemma). Let $Z\rho_Z$ be an arbitrary cq-state, where Z is an m-bit classical random variable and ρ_Z is of dimension 2^d. Then

$$|Z\rho_Z - U_m\rho_Z|^2 \leq 2^{\min(d,m)} \cdot \sum_{0 \neq S \in \{0,1\}^m} |(S \cdot Z)\rho_Z - U_1\rho_Z|^2.$$

Proof. Following the proof of the classical XOR-Lemma in [Gol95], we first relate $\|Z\rho_Z - U_m\rho_Z\|_1$ to $\|Z\rho_Z - U_m\rho_Z\|_2$, and then view $Z\rho_Z - U_m\rho_Z$ in the Hadamard (or Fourier) basis, giving us the desired result. We need the following simple claim.

Claim 11. For any Boolean function f, $\|f(Z)\rho_Z - U_1\rho_Z\|_1 = \|\sum_z (-1)^{f(z)}p(z)\rho_Z\|_1$.

*We thank Thomas Vidick for pointing out that we can also have a bound in terms of m and not only d.}
Proof. Denote $\rho_b = \sum_{z: f(z) = b} p(z) \rho_z$ for $b = 0, 1$. Then $\rho_Z = \rho_0 + \rho_1$ and
\[
\|f(Z) \rho_Z - U_1 \rho_Z\|_1 = \left\| |0\rangle \langle 0| \otimes \rho_0 + |1\rangle \langle 1| \otimes \rho_1 - \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|) \otimes (\rho_0 + \rho_1) \right\|_1
\]
\[
= \frac{1}{2} \| |0\rangle \langle 0| \otimes (\rho_0 - \rho_1) + |1\rangle \langle 1| \otimes (\rho_1 - \rho_0)\|_1
\]
\[
= \|\rho_0 - \rho_1\|_1 = \left\| \sum_z (-1)^{f(z)} p(z) \rho_z \right\|_1.
\]
(1)

Let $\chi_S(z) = (-1)^{S \cdot z}$ for $S \in \{0, 1\}^m$. Denote $D = 2^d$, $M = 2^m$, and $\sigma_z = p(z) \rho_z - \frac{1}{M} \rho_z$. Then
\[
\|Z \rho_Z - U_m \rho_Z\|_1^2 = \left\| \sum_z |z\rangle \langle z| \otimes \sigma_z \right\|_1^2 = \left\| (H^\otimes m \otimes I_D) \left(\sum_z |z\rangle \langle z| \otimes \sigma_z \right) (H^\otimes m \otimes I_D) \right\|_1^2
\]
\[
= \frac{1}{M^2} \left\| \sum_{z,y,S} |y\rangle \langle S| \otimes \chi_S(z) \chi_y(z) \sigma_z \right\|_1^2 \leq \frac{D}{M} \left\| \sum_{z,y,S} |y\rangle \langle S| \otimes \chi_S(z) \chi_y(z) \sigma_z \right\|_2^2,
\]
(2)

where H is the Hadamard transform.

Factor D: Using the fact that the $\|\cdot\|_2^2$ of a matrix is the sum of $\|\cdot\|_2^2$ of its $(D \times D)$ sub-blocks, together with $\chi_S(z) \chi_y(z) = \chi_{y+S}(z)$ and $\|\cdot\|_2 \leq \|\cdot\|_1$, (2) gives
\[
\|Z \rho_Z - U_m \rho_Z\|_1^2 \leq \frac{D}{M} \sum_s \left\| \sum_z \chi_{y+S}(z) \sigma_z \right\|_2^2 = D \sum_s \left\| \sum_z \chi_S(z) \sigma_z \right\|_2^2 \leq D \sum_s \left\| \sum_z \chi_S(z) \sigma_z \right\|_1^2.
\]
(3)

Using Claim(1) with $f(Z) = S \cdot Z$, we get
\[
\sum_{s \neq 0} \| (S \cdot Z) \rho_Z - U_1 \rho_Z \|_1^2 = \sum_{s \neq 0} \left\| \sum_z \chi_S(z) p(z) \rho_z \right\|_1^2 = \sum_{s \neq 0} \left\| \sum_z \chi_S(z) \sigma_z \right\|_1^2 = \sum_s \left\| \sum_z \chi_S(z) \sigma_z \right\|_1^2,
\]
(4)

where the second equality holds since χ_S is balanced, and the third since $\sum_z \sigma_z = 0$. Combining Eqs. (3) and (4) gives the desired result.

Factor M: Restarting from the next-to-last step of (2), using again $\chi_S(z) \chi_y(z) = \chi_{y+S}(z)$ and the triangle inequality, we obtain
\[
\|Z \rho_Z - U_m \rho_Z\|_1^2 \leq \frac{1}{M^2} \left\| \sum_s \left\| \sum_y |y\rangle \langle S + y| \otimes \left(\sum_z \chi_S(z) \sigma_z \right) \right\|_1^2
\]
\[
\leq \frac{1}{M} \sum_s \left\| \sum_y |y\rangle \langle S + y| \otimes \left(\sum_z \chi_S(z) \sigma_z \right) \right\|_1^2 = M \cdot \sum_s \left\| \sum_z \chi_S(z) \sigma_z \right\|_1^2,
\]
where the last step follows from the observation that the matrices inside the norms are of the form $P \otimes B$ where P is a permutation matrix. In this case $\|P \otimes B\|_1 \leq \dim(P) \cdot \|B\|_1 = M \cdot \|B\|_1$. As before, combining this with Eq. (4) gives the desired bound. □
Lemma 13. To not cancel out the (small) amplitude of the correct state.

The main challenge is to carefully treat the error terms so as to not cancel out the (small) amplitude of the correct state.

Theorem 12 ([NS06], Thm 1.3 and discussion thereafter). Let X be an n-bit random variable with min-entropy k, and suppose Alice wishes to convey X to Bob over a one-way quantum communication channel using b qubits. Let Y be the random variable denoting Bob’s guess for X. Then

1. $\Pr[Y = X] \leq 2^{-(k-b)}$, if the parties don’t share prior entanglement, and
2. $\Pr[Y = X] \leq 2^{-(k-2b)}$.

Revisiting Cleve et al.’s reduction, we now show how to adapt it to flat sources, to the average case error and to the linearly transformed inner product. The main challenge is to carefully treat the error terms so as to not cancel out the (small) amplitude of the correct state.

Lemma 13. Let X, Y be flat sources over n bits with min-entropies k_1, k_2, and A, B full rank n by n matrices over $GF(2)$. Let P be a two qubit one-way protocol for $(AX) \cdot (BY)$ with success probability $\frac{1}{2} + \epsilon$. Then

(a) $\epsilon \leq 2^{-(k_1+k_2-2b-n+2)/2}$, if the parties share prior entanglement and
(b) $\epsilon \leq 2^{-(k_1+k_2-2b-n+2)/2}$ otherwise.

Proof. Let us first consider the case $A = B = I$. Assume w.l.o.g. Bob delays his operations until receiving the message from Alice and that in his first step he copies his input, leaving the original untouched throughout. Further assume Bob outputs the result in one of his qubits.

For a fixed x, denote the success probability of P by $\frac{1}{2} + \epsilon_x$ (ϵ_x might be negative). Denote Bob’s state after receiving the message as $|y\rangle|0\rangle|\sigma_x\rangle$, where σ_x is taken to contain Alice’s message and Bob’s prior entangled qubits as required by the protocol (if present). The rest of the protocol is now performed locally by Bob. We denote this computation P_B. After applying P_B, Bob’s state is of the form

$$|a_{x,y}, y\rangle|x \cdot y\rangle|J_{x,y}\rangle + |\beta_{x,y}, y\rangle|\overline{x \cdot y}\rangle|K_{x,y}\rangle,$$

and by assumption, $E_y\beta_{x,y}^2 = \frac{1}{2} - \epsilon_x$. Following the analysis in [CvDNT98], using clean computation, where the output is produced in a new qubit (the leftmost), gives the state

$$|z + x \cdot y\rangle|y\rangle|0\rangle|\sigma_x\rangle + \sqrt{2}\beta_{x,y}|M_{x,y,z}\rangle,$$

where $|M_{x,y,z}\rangle = \left(\frac{1}{\sqrt{2}}|z + x \cdot y\rangle - \frac{1}{\sqrt{2}}|z + x \cdot y\rangle\right)P_B^\dagger|y\rangle|\overline{x \cdot y}\rangle|K_{x,y}\rangle$. Observe the following properties of M: 1. $|M_{x,y,0}\rangle = -|M_{x,y,1}\rangle$. 2. As $y \in Y$ varies, the states $|M_{x,y,z}\rangle$ are orthonormal. 3. Since P_B^\dagger does not affect the first n (so called input) qubits, $|M_{x,y,z}\rangle$ is orthogonal to states of the form $|a\rangle|y\rangle \otimes |\cdot\rangle$ for all $a \in \{0,1\}$, $y \in Y$, $y' \notin Y$.

We now use the following steps to transfer X from Alice to Bob:

1. Bob prepares the state $\sqrt{2^{-k_2-1}} \cdot \sum_{y \in Y, a \in \{0,1\}} (-1)^a |a\rangle|y\rangle$.
2. Alice and Bob execute the clean version of P.

3 Communication Complexity and One-Bit Extractors

3.1 Average case lower bound for inner product

Cleve et al. [CvDNT98] give a lower bound for the worst case one-way quantum communication complexity of inner product with arbitrary prior entanglement. It is achieved by first reducing the problem of computing the inner product to that of transmitting one input over a quantum channel, and then using an extended Holevo bound. Nayak and Salzman [NS06] obtained an optimal lower bound by replacing Holevo with a more “mission-specific” bound:

Theorem 12 ([NS06], Thm 1.3 and discussion thereafter). Let X be an n-bit random variable with min-entropy k, and suppose Alice wishes to convey X to Bob over a one-way quantum communication channel using b qubits. Let Y be the random variable denoting Bob’s guess for X. Then

1. $\Pr[Y = X] \leq 2^{-(k-b)}$, if the parties don’t share prior entanglement, and
2. $\Pr[Y = X] \leq 2^{-(k-2b)}$.
3. Bob performs the Hadamard transform on each of his first $n + 1$ qubits and measures in the computational basis.

After the second step, Bob’s state is $|\psi\rangle = |\psi\rangle + \bar{\epsilon}$ where

$$|\psi\rangle = \sqrt{2^{-k_2-1}} \sum_{y, a \in \{0,1\}} (-1)^{a+x} |a\rangle \langle y| / \sqrt{2^{-k_2-1}} \sum_{y, a \in \{0,1\}} (-1)^{a} \sqrt{2 \beta_{x,y}} |M_{x,y,a}\rangle.$$

By the properties of $|M_{x,y,z}\rangle$, $||\bar{\epsilon}|| = 2 \sqrt{E_{x}^2} = 2 \sqrt{1 - \epsilon_x}$. Since $|\psi\rangle + \bar{\epsilon}$ and $|\psi\rangle$ are normalized states, we can easily derive $\langle \psi | (|\psi\rangle + \bar{\epsilon}) = 2\epsilon_x$. Define

$$|\psi_0\rangle = H^{\otimes n+1} |1x\rangle \otimes |0\rangle |\sigma_x\rangle = \sqrt{2^{k_2-n}} |\psi\rangle + \sqrt{2^{-n-1}} \sum_{y, a \in \{0,1\}} (-1)^{a+x} |a\rangle \langle y| / \sqrt{2^{-n-1}} \sum_{y, a \in \{0,1\}} (-1)^{a} \sqrt{2 \beta_{x,y}} |M_{x,y,a}\rangle,$$

and note that the second term is orthogonal to both $|\psi\rangle$ and $\bar{\epsilon}$. It follows that $\langle \psi | \psi_0\rangle = \sqrt{2^{k_2-n+2} \epsilon_x}$.

Applying the Hadamard transform in Step 3. does not affect the inner product, and so Bob will measure $|1x\rangle$ with probability $2^{k_2-n+2} \epsilon_x^2$. Applying Thm. [121] and [122] along with Jensen’s inequality now completes the proof.

For the general case where $A \neq I$ or $B \neq I$, we modify Step 3. of the transmission protocol. Instead of the Hadamard transform, Bob applies the inverse of the unitary transformation $|1\rangle |\sigma_x\rangle \mapsto \sqrt{2^{k_2-n}} |\psi\rangle + \sqrt{2^{-n-1}} \sum_{y, a \in \{0,1\}} (-1)^{a+x} |a\rangle \langle y| / \sqrt{2^{-n-1}} \sum_{y, a \in \{0,1\}} (-1)^{a} \sqrt{2 \beta_{x,y}} |M_{x,y,a}\rangle$. It is easy to check that this gives the desired result.

3.2 One bit extractor

When the extractor’s output is binary, distinguishing it from uniform is equivalent to computing the output on average. This was shown by Yao [Yao82] when the storage is classical and is trivially extended to the quantum setting. With this observation, reformulating Lem. [13] in the language of trace distance yields a one bit extractor.

Corollary 14. The function $E_{IP}(x,y) = x \cdot y$ is a (k_1, k_2, ϵ) extractor against (b_1, b_2) (entangled) quantum storage provided

(a) (entangled) $k_1 + k_2 - 2 \min(b_1, b_2) \geq n - 2 + 2 \log \epsilon^{-1}$,

(b) (non-entangled) $k_1 + k_2 - \min(b_1, b_2) \geq n - 2 + 2 \log \epsilon^{-1}$.

Proof. With Yao’s equivalence, Lem. [13] immediately gives

$$|\langle AX \cdot Y | \rho_{XY} X - U \rho_{XY} X \rangle|_{tr} \leq 2^{-(k_1+k_2-2b_2-n+2)/2}$$

(5)

$$|\langle AX \cdot Y | \rho_{XY} Y - U \rho_{XY} Y \rangle|_{tr} \leq 2^{-(k_1+k_2-2b_1-n+2)/2}$$

(6)

for any full rank matrix A, and specifically for $A = I$. By the assumption on ϵ, E_{IP} is either Y-strong or X-strong. Repeating this argument with Lem. [13] gives the non-entangled case.

Recall (see Def. 6 and discussion thereafter) that one-way communication corresponds to the model of superstrong extractors. It is not surprising then that Lem. [13] actually implies a superstrong extractor. By choosing ϵ in the above proof of Cor. [14] such that both inequalities (5) and (6) are satisfied, where we replace ρ_{XY} by ρ_{XY}^b to include Alice’s complete state as well as Bob’s entangled qubits and similarly for ρ_{XY}^a, we obtain:

Corollary 15. The function $E_{IP}(x,y) = x \cdot y$ is a (k_1, k_2, ϵ) superstrong extractor against (b_1, b_2) (entangled) quantum storage provided
(a) (entangled) \(k_1 + k_2 - 2 \max(b_1, b_2) \geq n - 2 + 2 \log \varepsilon^{-1} \),
(b) (non-entangled) \(k_1 + k_2 - \max(b_1, b_2) \geq n - 2 + 2 \log \varepsilon^{-1} \).

We now show that the parameters of all our extractors are tight up to an additive constant. For simplicity, assume first that the error \(\varepsilon \) is close to 1/2, the sources are uniform and \(b_1 = b_2 := b \). Cor. 14 then states that \(E_{IP} \) is an extractor as long as \(b < n \) in the non-entangled case and \(b < n/2 \) in the entangled case. Indeed, in the non-entangled case it is trivial to compute the inner product in the SMP model (i.e., break the extractor) when \(b \geq n \). With entanglement, \(b \geq n/2 \) suffices as demonstrated by the following protocol, adapted from a protocol by de Wolf [dW10].

Claim 16. The inner product function for \(n \) bit strings is exactly computable in the SMP model with entanglement with \(n/2 + 2 \) qubits of communication from each party.

Proof. Let \(x, y \in \{0, 1 \}^n \) be Alice and Bob’s inputs. Since \(x \cdot y = \frac{1}{2} \left((|x| + |y| - |x \oplus y|) \mod 4 \right) \), it suffices to show that the referee can compute \(x \oplus y \) with \(n/2 \) qubits of communication from each party, or simply \(x_1 x_2 \oplus y_1 y_2 \) with one qubit of communication each.

Denote the Pauli matrices \(\sigma_{00} = I, \sigma_{01} = Z, \sigma_{10} = X, \sigma_{11} = ZX \). Given a shared EPR pair, Alice applies \(\sigma_{x_1 x_2} \) to her qubit and sends it to the referee, and Bob does the same with \(\sigma_{y_1 y_2} \). Note that applying \(\sigma_{b_1 b_2} \) to the first qubit has the same effect as applying it to the second qubit. Further, \(X \) is applied iff \(b_1 = 1 \) and \(Z \) is applied iff \(b_2 = 1 \). Since two applications of \(X \) (\(Z \)) cancel each other out, we have that \(X \) is applied to the first qubit iff \(x_1 + y_1 = 1 \) and \(Z \) is applied to the first qubit iff \(x_2 + y_2 = 1 \). The net effect on the EPR state is \(\sigma_{x_1 x_2 \oplus y_1 y_2} \otimes I \). For each value of \(x_1 x_2 \oplus y_1 y_2 \) this gives one of the orthogonal (completely distinguishable) Bell states. □

Showing that our results are tight for arbitrary \(\varepsilon \) is trickier. We show

Lemma 17. If \(E_{IP} = x \cdot y \) is a \((k_1, k_2, \varepsilon)\) extractor against \((b_1, b_2)\) (entangled) storage then

(a) (entangled) \(k_1 + k_2 - 2 \min(b_1, b_2) > n - 9 + 2 \log \varepsilon^{-1} \),
(b) (non-entangled) \(k_1 + k_2 - \min(b_1, b_2) > n - 5 + 2 \log \varepsilon^{-1} \).

If \(E_{IP} \) is superstrong, then

(a) (entangled) \(k_1 + k_2 - 2 \max(b_1, b_2) > n - 9 + 2 \log \varepsilon^{-1} \),
(b) (non-entangled) \(k_1 + k_2 - \max(b_1, b_2) > n - 5 + 2 \log \varepsilon^{-1} \).

Proof. We give a slightly modified version of Proposition 10 in [CG88], taking into account quantum side information. We need the following theorem.

Theorem 18 ([CG88, Theorem 3]). There exist independent random variables \(X, Y \) on \(l \) bits with min-entropy \(l - 3 \) each\(^{10}\) such that \(\Pr[X \cdot Y = 0] > \frac{1}{2} + 2^{-(l-1)/2} \).

We start in the weak extractor setting with entanglement. We construct sources \(X, Y \) with min-entropy \(k_1, k_2 \) and \((b_1, b_2)\) entangled quantum storage \(\rho_{XY} \) for which the error will be "large". Let \(b = 2(\min(b_1, b_2) - 2) \), and let \(\Delta = k_1 + k_2 - n \). If \(\Delta \leq b \), we pick \(X \) to be uniform on the first \(k_1 \) bits and 0 elsewhere, \(Y \) uniform on the last \(k_2 \) bits and 0 elsewhere. The inner product of \(X, Y \) is then the inner product of at most \(b \) bits, and can be computed exactly using the SMP protocol in Claim 16 with \(\min(b_1, b_2) \) qubits from each.

In the case \(\Delta > b \), we define \(X = X_1 X_2 X_3 X_4 \) as follows: \(X_1 \) is uniform on \(b \) bits, \(X_2 \) is uniform on \(k_1 - \Delta - 3 \) bits, \(X_3 \) is the first \((\Delta + 6 - b, \Delta + 3 - b)\) source promised by Thm. 18 (for \(l = \Delta + 6 - b \)), and \(X_4 \) is constant \(0^{n-k_1-3} \). Analogously, \(Y = Y_1 Y_2 Y_3 Y_4 \) is defined as: \(Y_1 \) is uniform on \(b \) bits, \(Y_2 \) is

\(^{10}\) [CG88] prove the claim with slightly different parameters for arbitrary Boolean functions. Our modification is trivial.
constant 0^{n-k_2-3}, Y_3 is the second $(\Delta + 6 - b, \Delta + 3 - b)$ source promised by Thm.\[18] and Y_4 is uniform on $k_2 - \Delta - 3$ bits. It is easily verified that $H_{\infty}(X) \geq k_1$ and $H_{\infty}(Y) \geq k_2$. Finally, we set ρ_{XY} to be the entangled $(\min(b_1, b_2), \min(b_1, b_2))$ storage of the SMP protocol in Claim\[16] allowing us to compute $x_1 \cdot y_1$ exactly, and M the measurement strategy of the referee. Applying Thm.\[18]

$$\Pr[M(\rho_{XY}) = X \cdot Y] = \Pr[X_1 \cdot Y_1 = X \cdot Y] = \Pr[X_3 \cdot Y_3 = 0] > \frac{1}{2} + 2^{-(\Delta + 5 - b)/2}$$

and $|\langle X \cdot Y \rangle \rho_{XY} - U \rho_{XY} X|_F > 2^{-(k_1 + k_2 - b - n + 5)/2}$.

In the non-entangled case, we simply set $b = \min(b_1, b_2)$ and replace the SMP protocol with a trivial protocol for IP on b bits.\[17]

In the superstrong case with entanglement, assume w.l.o.g. that $b_1 > b_2$ and choose $b = b_1/2$. We then let ρ_{xy} be the entangled state that appears in the superdense coding protocol for X_1. Thus, exposing Bob’s state allows us to compute $X_1 \cdot Y_1$ exactly. Without entanglement, we set $b = b_1$ and have Alice send X_1 to Bob. \[\Box\]

4 Many Bit Extractors

Here we prove our main Theorems\[2] and \[3]. First, using our quantum XOR-Lemma\[10] we obtain results in the strong case.

Lemma 19. E_D is a (k_1, k_2, ε) X-strong extractor against (b_1, b_2) (entangled) quantum storage provided

(a) (entangled) $k_1 + k_2 - 2b_2 \geq 2m + n - 2 + 2\log \varepsilon^{-1}$,

(b) (non-entangled) $k_1 + k_2 - b_2 \geq 2m + n - 2 + 2\log \varepsilon^{-1}$.

Proof. Recall that $E_D(x, y) = A_1 x \cdot y, A_2 x \cdot y, \ldots, A_m x \cdot y$ (see Def.\[8]). For $0 \neq S \in \{0,1\}^m$, let $A_S = \sum_{i=1}^{S} A_i$ and note that $S \cdot E(x, y) = A_S x \cdot y$. By the XOR-Lemma\[10]

$$|E(X, Y) \rho_{XY} - U \rho_{XY} X|_F \leq \sqrt{\frac{2^m}{S \neq 0} |\langle A_S X \cdot Y \rangle \rho_{XY} X - U \rho_{XY} X|_F^2}.$$

The result then follows by Ineq.\[5] in the proof of Cor.\[14] and its non-entangled analogue. \[\Box\]

In a similar way, we also obtain a Y-strong extractor with analogous parameters. Following\[DEOR04], we now apply a seeded extractor against quantum storage (see Def.\[20]) to the output of an X-strong (Y-strong) extractor to obtain a two-source extractor with more output bits (see Lem.\[21]).

Definition 20 (\[Ta-09\]). A function $E : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ is a (k, ε) seeded extractor against b quantum storage if for any n-bit source X with min-entropy k and any b qubit quantum storage ρ_X,

$$|E(X, U_d) \rho_X - U \rho_X|_F \leq \varepsilon.$$

Lemma 21. Let $E_B : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ be a (k_1, k_2, ε) X-strong extractor against (b_1, b_2) (entangled) quantum storage, and let $E_S : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ and $E(x, y) = E_S(x, E_B(x, y))$.

(a) (entangled) If E_S is a (k_1, ε) seeded extractor against $b_1 + b_2$ quantum storage then E is a $(k_1, k_2, 2\varepsilon)$ extractor against (b_1, b_2) entangled quantum storage.

\[11\]In fact, this shows that our non-entangled extractor is tight even for classical storage.
(b) (non-entangled) If E_S is a (k_1, ϵ) seeded extractor against b_1 quantum storage then E is a $(k_1, k_2, 2\epsilon)$ extractor against (b_1, b_2) non-entangled quantum storage.

Proof. Part (a): $|E_B(X, Y)\rho_{XY} - U_d\rho_{XY}X|_{\text{tr}} \leq \epsilon$ and so $|E_S(X, E_B(X, Y))\rho_{XY} - E_S(X, U_d)\rho_{XY}|_{\text{tr}} \leq \epsilon$. But $|E_S(X, U_d)\rho_{XY} - U_m\rho_{XY}|_{\text{tr}} \leq \epsilon$ by definition of E_S. The result follows from the triangle inequality. For part (b) note that when the storage is non-entangled, $|E_S(X, U_d)\rho_{XY} - U_m\rho_{XY}|_{\text{tr}} = |E_S(X, U_d)\rho_{XY} - U_m\rho_{XY}|_{\text{tr}}$, and it suffices to require that E_S be a seeded extractor against only b_1 quantum storage.

A seeded extractor with almost optimal min-entropy loss is given in [DPVR09]. Their extractor is secure against guessing entropy sources, and so trivially against quantum storage [KT08] (see Sec. 5 for details). We reformulate the seeded extractor in terms of Def. 20.

Corollary 22 ([DPVR09 Corrolary 5.3]). There exists an explicit (k, ϵ) seeded extractor against b quantum storage with seed length $d = O(\log^3(n/\epsilon))$ and $m = d + k - b - 8\log(k - b) - 8\log \epsilon^{-1} - O(1)$ output bits.

The proofs of Thms. 3 and 2 now follow by composing the explicit extractors of Lem. 19 and Cor. 22 as in Lem. 21.

Proof of Theorem 3: E_D is an X-strong extractor against entangled storage with $\frac{1}{2}(k_1 + k_2 - 2b_2 - n - 2\log \epsilon^{-1})$ almost uniform output bits. This is larger than $O(\log^3(n/\epsilon))$ when $k_1 + k_2 - 2b_2 > n + \Omega(\log^3(n/\epsilon))$, allowing us to compose with the seeded extractor secure against $b_1 + b_2$ storage of Cor. 22 on the source X, obtaining $m = \frac{1}{2}(k_1 + k_2 - 2b_2 - n - 2\log \epsilon^{-1}) + (k_1 - b_1 - b_2) - 8\log(k - b) - 8\log \epsilon^{-1} - O(1)$. Similarly, E_D is a Y-strong extractor, and can be composed with the seeded extractor on the source Y. Choosing the better of the two, we prove the desired result.

Proof of Theorem 2: E_D is an X-strong extractor against non-entangled storage with $\frac{1}{2}(k_1 + k_2 - b_2 - n - 2\log \epsilon^{-1})$ almost uniform output bits. This is larger than $O(\log^3(n/\epsilon))$ when $k_1 + k_2 - 2b_2 > n + \Omega(\log^3(n/\epsilon))$. Composing with the seeded extractor secure against b_1 storage of Cor. 22 on the source X gives $m = \frac{1}{2}(k_1 + k_2 - b_2 - n - 2\log \epsilon^{-1}) + (k_1 - b_1) - 8\log(k - b) - 8\log \epsilon^{-1} - O(1)$, and similarly for Y.

5 Guessing Entropy Adversaries

In previous sections, we considered extractors in the presence of quantum adversaries with limited storage. A stronger notion of quantum adversary was also studied in the literature [Ren05] KT08 FS08 DPVR09 TSSR10.

Definition 23 ([KT08]). Let $X \rho_X$ be an arbitrary cq-state. The guessing entropy of X given ρ_X is

$$H_g(X \leftarrow \rho_X) := -\log \max_M \mathbb{E}_{x \leftarrow \rho_X} \text{Tr}(M_x \rho_x),$$

where the maximum ranges over all POVMs $M = \{M_x\}_{x \in X}$.

Considering the probability distribution on the support of X induced by measuring with M on ρ_X (which we denote by $\text{M}(\rho_X)$), the above can be perhaps more easily understood as $H_g(X \leftarrow \rho_X) = -\log \max_M \mathbb{P}[M(\rho_X) = X]$. Renner [Ren05] considered sources with high relative min-entropy, rather than guessing entropy. The two were shown to be equivalent [KRS09].

12 We slightly sacrifice the parameters in the formulation of the theorem to simplify the result.
We can now define two-source extractors secure against non-entangled guessing entropy adversaries. Recall that in the non-entangled case the bounded storage is given by $\rho_X \otimes \rho_Y$ (see Def. 5). Here, we place a limit not on the amount of storage, but on the amount of information, in terms of guessing entropy, the adversaries have on their respective sources. That is, we require that the guessing entropy of X (Y) given ρ_X (ρ_Y) be high. We refer to the state $\rho_X \otimes \rho_Y$ as quantum knowledge, or if ρ_x, ρ_y are classical for every x, y, as classical knowledge.

Definition 24. A (k_1, k_2, ε) two-source extractor against quantum knowledge is a function $E : \{0, 1\}^n \times \{0, 1\}^m \rightarrow \{0, 1\}^n$ such that for any independent sources X, Y and quantum knowledge $\rho_X \otimes \rho_Y$ with guessing entropies $H_\varepsilon(X \leftarrow \rho_X) \geq k_1, H_\varepsilon(Y \leftarrow \rho_Y) \geq k_2$, we have $|E(X, Y)\rho_X \rho_Y - U_{m\rho_X} \rho_Y|_{tr} \leq \varepsilon$.

The extractor is called X-strong if $|E(X, Y)\rho_X X - U_{m\rho_X} X|_{tr} \leq \varepsilon$. It is called strong if it is both X-strong and Y-strong.

It was shown that $H_\varepsilon(X \leftarrow \rho_X) \geq H_\infty(X) - \log \dim(\rho_X)$ [KT08]. Thus, we can view adversaries with bounded quantum storage as a special case of general adversaries. In particular, a $(k_1 - b_1, k_2 - b_2, \varepsilon)$ extractor against quantum knowledge is trivially a (k_1, k_2, ε) extractor against non-entangled (b_1, b_2) storage.

One-bit output case: König and Terhal [KT08] show that every classical one-bit output strong seeded extractor is also a strong extractor against quantum knowledge with roughly the same parameters. They reduce the "quantum security" of the extractor to the "classical security", irrespective of the entropy of the seed. Informally, $|E(X, Y)\rho_X Y - U_{1\rho_X} Y|_{tr}$ is small if the statement is also true when ρ_X is classical. We give a version of their Lem. 2 with slightly improved parameters. The lemma shows that it suffices to prove security of an extractor with respect only to classical knowledge obtained by performing a Pretty Good Measurement (PGM) [HW94] on arbitrary quantum knowledge. For a cq-state $Z\rho_Z$, a PGM is a POVM $\mathcal{E} = \{\mathcal{E}_z\}_{z \in Z}$ such that $\mathcal{E}_z = p(z)\rho_Z^{1/2}\rho_z\rho_Z^{-1/2}$.

Lemma 25. Let $Z\rho_Z$ be a cq-state, and f be a Boolean function. Then\(^{13}\)

$$|f(Z)\rho_Z - U\rho_Z|_{tr} \leq \sqrt{\frac{1}{2} |f(Z)\mathcal{E}(\rho_Z) - U\mathcal{E}(\rho_Z)|_{tr}},$$

where $\mathcal{E} = \{\mathcal{E}_z\}_{z \in Z}$ is a Pretty Good Measurement, $\mathcal{E}_z = p(z)\rho_Z^{1/2}\rho_z\rho_Z^{-1/2}$.

Proof. We need the following lemma.

Lemma 26 (Ren05 Lemma 5.1.3). Let S be a Hermitian operator and let σ be a nonnegative operator. Then $|S|_{tr} \leq \frac{1}{2} \sqrt{\text{Tr}(\sigma) \text{Tr}(\sigma^{-1/2} S \sigma^{-1/2} S)}$.

Denote $\rho = \rho_Z, \rho_b = \sum_{z : f(z) = b} p(z)\rho_z$ for $b = 0, 1$. Further define (informally) a POVM M for guessing f from ρ_Z by first applying \mathcal{E} to get z and then computing $f(z)$. Then

$$\Pr[M(\rho_Z) = f(Z)] = \sum_z p(z) \sum_{z' : f(z') = f(z)} \text{Tr}(\mathcal{E}_z\rho_z)$$

$$= \text{Tr}(\sum_{f(z') = f(z)} \rho^{-1/2}(p(z')\rho_z)\rho^{-1/2}(p(z)\rho_z))$$

$$= \text{Tr}(\rho^{-1/2}\rho_0\rho^{-1/2}\rho_0 + \rho^{-1/2}\rho_1\rho^{-1/2}\rho_1),$$

\(^{13}\) $\mathcal{E}(\rho_Z)$ is a classical probability distribution and the trace distance $|f(Z)\mathcal{E}(\rho_Z) - U\mathcal{E}(\rho_Z)|_{tr}$ reduces to the classical variational distance.
and similarly $\Pr[M(\rho_Z) \neq f(Z)] = Tr(\rho^{-1/2}\rho_0\rho^{-1/2}\rho_1 + \rho^{-1/2}\rho_1\rho^{-1/2}\rho_0)$. Hence

$$|\Pr[M(\rho_Z) = f(Z)] - \Pr[M(\rho_Z) \neq f(Z)]| = Tr(\rho^{-1/2}(\rho_0 - \rho_1)\rho^{-1/2}(\rho_0 - \rho_1)) \quad (7)$$

By Eq. (1), $|f(Z)\rho_Z - U\rho_Z|_{tr} = |\rho_0 - \rho_1|_{tr}$, and by Lem. 26 setting $S = \rho_0 - \rho_1$, $\sigma = \rho$,

$$|\rho_0 - \rho_1|_{tr} \leq \frac{1}{2} \sqrt{Tr(\rho^{-1/2}(\rho_0 - \rho_1)\rho^{-1/2}(\rho_0 - \rho_1))}. \quad (8)$$

Combining Eq. (7) with Eq. (8) gives

$$|f(Z)\rho_Z - U\rho_Z|_{tr} \leq \sqrt{\frac{1}{4} |\Pr[M(\rho_Z) = f(Z)] - \Pr[M(\rho_Z) \neq f(Z)]|}.$$

Finally,

$$|\Pr[M(\rho_Z) = f(Z)] - \Pr[M(\rho_Z) \neq f(Z)]| \leq 2 |f(Z)M(\rho_Z) - UM(\rho_Z)|_{tr} \leq 2 |f(Z)E(\rho_Z) - UE(\rho_Z)|_{tr},$$

as the left hand side describes a trivial strategy to guess f from $M(\rho)$, giving the desired result. \hfill \Box

Corollary 27. If E is a classical one-bit output (k_1, k_2, ϵ) two-source extractor, then it is a $(k_1 + \log \epsilon^{-1}, k_2 + \log \epsilon^{-1}, \sqrt{3\epsilon}/2)$ two-source extractor against quantum knowledge.

Proof. By Lem. 25 $|E(X,Y)\rho_X\rho_Y - U\rho_X\rho_Y|_{tr} \leq \sqrt{\frac{1}{2} |E(X,Y)E(\rho_X\rho_Y) - UE(\rho_X\rho_Y)|_{tr}}$. A direct calculation shows that for every x, y, $E(\rho_x \otimes \rho_y) = E_1(\rho_x) \otimes E_2(\rho_y)$, where E_1, E_2 are Pretty Good Measurements on states $X\rho_X, Y\rho_Y$ respectively. In other words, $E(\rho_X \otimes \rho_Y)$ induces a classical distribution $C_X \otimes C_Y$. Thus

$$|E(X,Y)\rho_X\rho_Y - U\rho_X\rho_Y|_{tr} \leq \sqrt{\frac{1}{2} |E(X,Y)C_XC_Y - UC_XC_Y|_{tr}}, \quad (9)$$

where $H_g(X \leftarrow C_X) \geq H_g(X \leftarrow \rho_X)$, and the same for Y.

By the definition of (classical) guessing entropy, one can easily show that a classical (k_1, k_2, ϵ) two-source extractor is a $(k_1 + \log \epsilon^{-1}, k_2 + \log \epsilon^{-1}, 3\epsilon)$ extractor against classical knowledge (for details see Proposition 1 in [KT08]). Ineq. (9) then gives the desired parameters against quantum knowledge. \hfill \Box

By a similar argument and following the proof of Theorem 1 in [KT08], we get

Corollary 28. If E is a classical one-bit output (k_1, k_2, ϵ) X-strong extractor, then it is a $(k_1, k_2 + \log \epsilon^{-1}, \sqrt{\epsilon})$ X-strong extractor against quantum knowledge.

The multi-bit output case: We now show how to apply the results in the one-bit case, together with our XOR-Lemma to show security in the multi-bit case, proving Thm. 4.

By Ineq. (5) in the proof of Cor. 14 inner product is a classical X-strong extractor with error $\epsilon \leq 2^{-(k_1 + k_2 + n/2)/2}$. Plugging this into Cor. 28 we obtain

Corollary 29. The function $E_{IP,A}(x, y) = Ax \cdot y$, for any full rank matrix A, is a (k_1, k_2, ϵ) X-strong (Y-strong) extractor against quantum knowledge provided that $k_1 + k_2 \geq n - 2 + 6\log \epsilon^{-1}$.

We now repeat the steps performed in Sec. 4 in the setting of non-entangled guessing entropy adversaries to obtain a multi-bit extractor against quantum knowledge. In exactly the same fashion as in the proof of Lem. 19 we use the XOR-Lemma to reduce the security of E_D to the strong one-bit case of Cor. 29.
Lemma 30. \(E_D\) is a \((k_1, k_2, \varepsilon)\) X-strong (Y-strong) extractor against quantum knowledge provided that \(k_1 + k_2 \geq 6m + n - 2 + 6\log \varepsilon^{-1}\).

Proof. By the XOR-Lemma \cite{10} and Cor. \cite{29}:

\[
|E(X, Y)\rho_Y X - U_m \rho_Y X|_{tr}^2 \leq \sqrt{2m \sum_{S \neq 0} |(A_S X \cdot Y)\rho_Y X - U_1 \rho_Y X|_{tr}^2} \leq 2^m \cdot 2^{-(k_1 + k_2 - n + 2)/6}.
\]

To obtain our final result, we now compose our strong extractor with a seeded extractor against quantum knowledge.

Lemma 31. Let \(E_B : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^d\) be a \((k_1, k_2, \varepsilon)\) X-strong extractor against quantum knowledge and let \(E_S : \{0, 1\}^n \times \{0, 1\}^d \rightarrow \{0, 1\}^m\) be a \((k_1, \varepsilon)\) seeded extractor against quantum knowledge. Then \(E(x, y) = E_S(x, E_B(x, y))\) is a \((k_1, k_2, 2\varepsilon)\) extractor against quantum knowledge.

Proof. Immediate from the extractor definitions and the triangle inequality.

Corollary 32 (\cite{DPVR09} Corollary 5.3). There exists an explicit \((k, \varepsilon)\) seeded extractor against quantum knowledge with seed length \(d = O(\log^2 (n/\varepsilon))\) and \(m = d + k - 8\log k - 8\log \varepsilon^{-1} - O(1)\).

Proof of Theorem 4: \(E_D\) is an X-strong extractor against quantum knowledge with \(\frac{1}{6}(k_1 + k_2 - n - 6\log \varepsilon^{-1}) - O(1)\) output bits. This is larger than \(O(\log^3 (n/\varepsilon))\) when \(k_1 + k_2 > n + \Omega(\log^3 (n/\varepsilon))\). Composing with the seeded extractor of Cor. \cite{32} on the source \(X\) gives \(m = \frac{1}{6}(k_1 + k_2 - n - 6\log \varepsilon^{-1}) + k_1 - 8\log k_1 - 8\log \varepsilon^{-1} - O(1)\), and similarly for \(Y\).

Acknowledgments

The authors would like to thank Nir Bitansky, Ashwin Nayak, Oded Regev, Amnon Ta-Shma, Thomas Vidick and Ronald de Wolf for valuable discussions. We are especially indebted to Ronald de Wolf for allowing us to use his exact protocol for IP in the SMP model with entanglement, and to Thomas Vidick for pointing out how to replace \(D\) with \(M\) in our XOR-Lemma, which allowed us to prove Thm. \cite{4}.

References

\cite{Bel64} J. S. Bell. On the Einstein-Podolsky-Rosen paradox. \textit{Physics}, 1:195–200, 1964.

\cite{Bou05} J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. \textit{International Journal of Number Theory}, 1(1):1–32, 2005.

\cite{BT10} A. Ben-Aroya and A. Ta-Shma. Better short-seed extractors against quantum knowledge. \textit{CoRR}, abs/1004.3737, 2010.

\cite{BW92} C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. \textit{Phys. Rev. Lett.}, 69(20):2881–2884, 1992.

\cite{CG88} B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. \textit{SIAM Journal of Computing}, 17(2):230–261, 1988.

\footnote{For a formal definition see \cite{DPVR09}.}
[CvDNT98] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum entanglement and the communication complexity of the inner product function. In *Quantum Computing and Quantum Communications, First NASA International Conference*, pages 61–74. 1998.

[DEOR04] Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz. Improved randomness extraction from two independent sources. In *Proc. 8th International Workshop on Randomization and Computation*, pages 334–344. 2004.

[DO03] Y. Dodis and R. Oliveira. On extracting private randomness over a public channel. In *Proc. 7th International Workshop on Randomization and Approximation Techniques in Computer Science*, pages 252–263. 2003.

[DPVR09] A. De, C. Portmann, T. Vidick, and R. Renner. Trevisan’s extractor in the presence of quantum side information. *CoRR*, abs/0912.5514, 2009.

[DV10] A. De and T. Vidick. Near-optimal extractors against quantum storage. In *Proc. 42nd ACM Symp. on Theory of Computing*. 2010. To appear.

[dW10] R. de Wolf, 2010. Personal communication.

[FS08] S. Fehr and C. Schaffner. Randomness extraction via delta-biased masking in the presence of a quantum attacker. In *Theory of Cryptography, Fifth Theory of Cryptography Conference*, pages 465–481. 2008.

[GKdW06] D. Gavinsky, J. Kempe, and R. de Wolf. Strengths and weaknesses of quantum fingerprinting. In *IEEE Conference on Computational Complexity*, pages 288–298. 2006.

[GKK+08] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de Wolf. Exponential separation for one-way quantum communication complexity, with applications to cryptography. *SIAM Journal of Computing*, 38(5):1695–1708, 2008.

[GKRdW09] D. Gavinsky, J. Kempe, O. Regev, and R. de Wolf. Bounded-error quantum state identification and exponential separations in communication complexity. *SIAM Journal of Computing*, 39(1):1–24, 2009.

[GoI95] O. Goldreich. Three xor-lemmas - an exposition. *Electronic Colloquium on Computational Complexity (ECCC)*, 2(56), 1995.

[HW94] P. Hausladen and W. K. Wootters. A ‘pretty good’ measurement for distinguishing quantum states. 41(12):2385–2390, 1994.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions (extended abstracts). In *Proc. 21st ACM Symp. on Theory of Computing*, pages 12–24. 1989.

[KLR09] Y. T. Kalai, X. Li, and A. Rao. 2-source extractors under computational assumptions and cryptography with defective randomness. In *Proc. 50th Annual Symposium on Foundations of Computer Science*, pages 617–626. 2009.

[KMR05] R. König, U. M. Maurer, and R. Renner. On the power of quantum memory. *IEEE Transactions on Information Theory*, 51(7):2391–2401, 2005.

[KRS09] R. König, R. Renner, and C. Schaffner. The operational meaning of min- and max-entropy. *IEEE Transactions on Information Theory*, 55(9):4337–4347, 2009.
A Many Bit Extractors Against Quantum Storage from Classical Storage

König and Terhal \cite{KT08} prove that any (classical) seeded extractor is secure against non-entangled quantum storage, albeit with exponentially larger (in the storage size) error. Their proof is also valid for X-strong (Y-strong) two-source extractors.

Their Lemma 5 essentially shows that every \((k_1, k_2, \epsilon)\) X-strong extractor has error \(4 \cdot 2^{3b_2} \cdot \epsilon\) against \((b_1, b_2)\) quantum storage (for any \(b_1\)), assuming \(H_\infty(X) \geq k_1\) and \(H_g(Y \leftarrow \rho_Y) \geq k_2 + \log \epsilon^{-1}\). Recall that \(H_g(Y \leftarrow \rho_Y) \geq H_\infty(Y) - b_2\). Adapted to our definitions, their result is
Lemma 33 ([KT08, Lemma 5]). Let E be a (k_1, k_2, ε)-X-strong extractor. Then E is a $(k_1, k_2 + b_2 + \log \varepsilon^{-1}, 4 \cdot 2^{3b_2} \varepsilon)$-X-strong extractor against (b_1, b_2) non-entangled storage.

In particular, this shows that E_D is an X-strong extractor with $m = k_1 + k_2 - 10b_2 - n - 4 - 3\log \varepsilon^{-1}$. For comparison, our Lem. 19 gives $m = \frac{1}{2}(k_1 + k_2 - b_2 - n + 2 - 2\log \varepsilon^{-1})$, which is better when the storage is large, say, $b_2 \geq k_2/19$.

For completeness, we derive an alternate version of Thm. 2 based on Lem. 33 by composing the extractor above with the seeded extractor of [DPVR09].

Theorem 34. The DEOR-construction is a (k_1, k_2, ε) extractor against (b_1, b_2) non-entangled storage with $m = (1 - o(1)) \max(k_1 - 9b_2, k_2 - 9b_1) + k_1 - b_1 + k_2 - b_2 - n - 11\log \varepsilon^{-1} - O(1)$ output bits provided $k_1 + k_2 - 10\max(b_1, b_2) > n + \Omega(\log^3 (n/\varepsilon))$.

Here too we are able to extract more bits than guaranteed by Thm. 2 when the storage is symmetric and constitutes a small fraction ($< 1/19$) of the min-entropy. In particular, the storage must be at least ten times smaller than the min-entropy, whereas no such restriction exist in Thm. 2.

We note that it is not immediately possible to obtain an analogue of Lem. 33 for weak two-source extractors. The proof relates the security of an extractor with respect to quantum side information, to its security with respect to classical side information. In the weak extractor setting, it thus suffices to consider classical side information of the form $F(\rho_X \otimes \rho_Y)$ for some specific POVM F given in the proof. The problem with this approach is that generally $F(\rho_X \otimes \rho_Y)$ might induce a random variable C_{XY} correlated with both X and Y, breaking the independence assumption (i.e., when conditioning on values of C_{XY}, X and Y might not be independent) and rendering the classical extractor insecure. It is not inconceivable that F does have the property $F(\rho_X \otimes \rho_Y) = C_X \otimes C_Y$, but we leave this open.