Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Decontamination of common healthcare facility surfaces contaminated with SARS-CoV-2 using peracetic acid dry fogging

T. Cutts, S. Kasloff, D. Safronetz, J. Krishnan*
National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada

ARTICLE INFO

Article history:
Received 5 December 2020
Accepted 26 December 2020
Available online 5 January 2021

Keywords:
COVID-19
SARS-CoV-2
Decontamination
Dry fogging
Peracetic acid

SUMMARY

Background: The SARS-CoV-2 pandemic has highlighted the urgent need for safe and effective surface decontamination methods, particularly in healthcare settings.
Aim: To evaluate the effectiveness of peracetic acid (PAA) dry fogging in decontaminating healthcare facility surfaces experimentally contaminated with SARS-CoV-2.
Methods: Nine materials (stainless steel, latex painted wood, unsealed hardwood, melamine countertop, vinyl flooring, clear plastic, faux leather, computer keyboard button, and smartphone touch screen) were surface contaminated with >10^6 median tissue culture infectious dose (TCID₅₀) of SARS-CoV-2, and allowed to dry before exposing to PAA dry fogging.
Findings: When fumigated with PAA dry fog for 1 h, no infectious SARS-CoV-2 virus was recovered from any of the experimentally inoculated surface types. By contrast, high titres of infectious virus were recovered from corresponding untreated drying controls of the same materials.
Conclusion: Standard surface decontamination processes, including sprays and wipes, are laborious and frequently cannot completely decontaminate sensitive electronic equipment. The ease of use, low cost, and overall effectiveness of a PAA dry fogging suggest that it should be considered for decontaminating healthcare settings, particularly intensive care units where severely ill SARS-CoV-2 patients are cared for.

* Corresponding author. Address: National Microbiology Laboratory, 1015 Arlington Street, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3P6, Canada. Tel.: +1-204-789-7082.
E-mail address: jay.krishnan@canada.ca (J. Krishnan).

Introduction

The burden of COVID-19 among healthcare workers has been enormous during the ongoing COVID-19 pandemic [1–5]. Environmental sampling has demonstrated the presence of SARS-CoV-2, the causative agent of COVID-19, in indoor air and on various surfaces in healthcare settings [6–8]. SARS-CoV-2 may persist on common surfaces for several weeks [9–11]. Such contaminated surfaces could pose a significant risk of infection to healthcare workers and visitors [12]. Surface decontamination using a variety of liquid disinfectants is routinely employed to disinfect various surfaces in healthcare facilities [13,14]. Disinfectants are generally applied as a spray or wipe, which is labour intensive even on readily accessible surfaces and difficult, if not impossible, to apply on hard-to-reach surfaces. Employees who undertake liquid disinfectant application often are exposed to the hazardous chemicals in them [15,16].

https://doi.org/10.1016/j.jhin.2020.12.016
0195-6701/Crown Copyright © 2021 Published by Elsevier Ltd on behalf of The Healthcare Infection Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Decontamination by fumigation using a gas, vapour, or fine mist is effective on all surfaces including those in the hard-to-reach areas; in addition, fumigation decontaminates the air in the room [17]. The objective of this study was to validate the efficacy of peracetic acid (PAA) dry fogging fumigation in decontaminating two rooms, and a variety of SARS-CoV-2 contaminated surfaces placed in them. Here we report the successful decontamination of two rooms and nine healthcare facility surfaces experimentally contaminated with SARS-CoV-2 using PAA dry fogging.

Methods

Peracetic acid disinfectant

Liquid PAA is a strong oxidant and an excellent microbicide; its microbicidal capability has been known for more than a century and it can inactivate bacterial spores, fungi, and viruses [18–21]. It is widely used in the food production/processing industry because of its lack of toxic by-products [22–24]. In the healthcare field, it has been used to disinfect endoscopes, sterilize bone allograft, and decontaminate surfaces to control nosocomial infections, especially the ones caused by spore-forming bacteria [25–28]. A number of PAA formulations have been registered with US Environmental Protection Agency and Health Canada as general disinfectants and as COVID-19 specific disinfectants [29, 30].

In 1968, PAA in vapour form was used to inactivate bacterial spores [31]; in 2001 a fogger that created fine PAA particles smaller than 10 μm was used for decontaminating hospital rooms and operation theatres [32]. Unlike regular spray, the ultrafine particles of a fog fail to settle readily on surfaces and cause dampness, hence the name dry fog. The dry fog behaves like a vapour: it fills the entire space, and diffuses into all areas; in addition, fumigation decontaminates the air in the rooms and operation theatres [33]. In the air, the PAA has a half-life of 22 min, followed by breakdown to water, oxygen, and carbon dioxide [40].

Cell culture

African green monkey Vero E6 cells (ATCC CRL 1586; American Type Culture Collection, Manassas, VA, USA) were maintained at 37°C + 5% CO₂ in Cell Culture Medium (CCM) consisting of Dulbecco’s modified Eagle cell culture medium (DMEM; HyClone SH30243022) supplemented with 10% fetal bovine serum (FBS; Gibco 12484028) and 1% v/v penicillin/streptomycin (PS, Gibco 10378016). Medium for virus cultures (VCM) consisted of DMEM supplemented with 2% FBS and 10 units per millilitre of PS.

Stock virus preparation

Low passage SARS CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020, GISAID accession# EPI_ISL_425177, kindly provided by the Vaccine and Infectious Disease Organization, VIDO, Saskatoon, Saskatchewan, Canada) was used to prepare concentrated stocks by infecting T-175 flasks of confluent Vero E6 cells at 0.01 multiplicity of infection. The health of the cell monolayer of the infected flask was compared to a non-infected Vero E6 flask over the course of the incubation. On day 3–4, cytopathic effect, as defined by cell detachment and cell rounding, became evident where ≥90% of the cell monolayer was lifted in infected flasks. At this point, the supernatant was aspirated and pooled with a clarification step at low-speed centrifugation (4500 g) for 10 min. The clarified supernatant was overlaid on to a 20% (w/v) sucrose cushion in Tris–NaCl–EDTA buffer and centrifuged at 134,000 g for 2 h. The resulting viral pellet was suspended in VCM by repeat pipetting and aliquots stored in cryovials at −70°C until needed. Stock virus preparation was carried out in a BSL-3 laboratory at the Canadian Science Centre for Human and Animal Health.

Preparation of coupons

Nine surfaces that are commonly found in healthcare settings were identified and used for this study: stainless steel, latex painted wood, unsealed hardwood flooring, melamine countertop, vinyl flooring, clear plastic, faux leather, computer keyboard button, and smartphone touch screen. Small blackberry smartphones with touch-sensitive screens were used to represent the omnipresent touch-sensitive screens in healthcare facilities. Prior to use, all coupons were sterilized using gamma irradiation (1 Mrad, Cobalt-60 source), whereas the test surfaces of the smart phones were decontaminated using 70% ethanol wipes.

To prepare SARS-CoV-2-contaminated test surfaces, we followed an American Society for Testing and Materials (ASTM) International standard disinfectant testing method, ASTM E2197 [41]. High titre SARS-CoV-2 virus (~ 5 x 10⁶ TCID₅₀/mL) was mixed in a tripartite soil load to create the test virus inoculum [42]. The tripartite matrix — which consisted of BSA, tryptone, and mucin — represents the organic soil load: secretions/excretions within which the virus is released from an infected person. The inoculum was prepared fresh for each test replicate performed. Using a positive displacement pipette, 10 μL of inoculum was deposited on to the coupon surfaces and air-dried for 45–60 min in a biological safety cabinet.

Dry fog fumigation assay

Fumigation experiments were carried out in a 164 m³ animal cubicle in BSL-4 containment; the cubicle consisted of two rooms with a door in between. The dry fogging system used for this study has been described elsewhere [34]. Briefly, a portable dry fogger equipped with three AKIMist® E nozzles that produce 7.5 μm sized droplets (Ikeuchi USA, Inc., Blue Ash, OH, USA) was used to represent the omnipresent touch-sensitive screens in healthcare facilities. The chemical mixture, Minncare Cold Sterilant (Mar Cor Purification, Skippack, PA, USA), contained 4.5% PAA, which was diluted appropriately to achieve 1.6 mL/m³ at 80% relative humidity (RH). Initial temperature and relative humidity levels of the rooms were measured using Professional Thermo-Hygrometer (TFA Dostmann Product #30.3039) and were used to calculate the amount of chemical and deionized water needed to be mixed to
Geobacillus stearothermophilus fumigation and three as unexposed controls. Three independent fumigation trials were performed, each of the rooms; biological indicators and test surface coupons were retrieved for processing. Biological indicators were incubated on plates for 14 days for colony formation to ensure that cell death observed at the neat dilutions of the inoculated coupons that had been exposed to PAA dry fog (exposed test coupons) were eluted into 1 mL of VCM by repeat pipetting, each of which was then ten-fold serially diluted in VCM. Inoculated touch screens were eluted in a total volume of 1 mL of VCM by repeat washing of the inoculated area with 200 μL VCM at a time. Media from the previously seeded 80% confluent Vero E6 cells were replaced with 150 μL of fresh VCM prior to addition of the diluted virus inoculum. In replicates of five per dilution series, 50 μL of diluted virus was added to Vero E6 cells and incubated at 37 °C +5% CO₂ for 5 days. Plates were examined for cytopathic effect under a light microscope and compared to a negative control to determine viral titre in TCID₅₀ by the Reed Muench procedure [43].

Results

Eluates obtained from fumigated clean coupons (cytotoxicity controls) showed no signs of cell death, except unsealed wood coupons (3/3 trials) and painted latex coupons (2/3 trials), which showed signs of cell death after overnight incubation when the undiluted eluates were added to Vero E6 cells. Whereas titres of viable virus recovered from unexposed positive control coupons ranged between 10⁴.⁵ and 10⁶.⁵ TCID₅₀/mL, no infectious virus was detected in tissue culture from any of the exposed test coupons in any of the three fumigation trials (Figure 3). Triplicate coupons were tested in each independent fumigation experiment, all of which showed complete inactivation of SARS-CoV-2.

For surface eluates which demonstrated cytotoxic effects to the Vero E6 cells (wood and painted latex), additional sub-passage of supernatants from the TCID₅₀ plates was performed to ensure that cell death observed at the neat dilutions of eluates from inoculated, PAA-treated surfaces was due to cytotoxicity rather than to virus-induced cytopathic effect. Sub-passaging confirmed the lack of detectable infectious SARS-CoV-2 on both surface types in all experimental replicates. Interestingly, high titres of virus were recovered from unexposed control coupons made of non-porous materials whereas porous material coupons such as unsealed wood yielded lower concentrations (Figure 3), which is consistent with previous studies [44, 45].

The biological indicators failed to grow upon incubation for 48 h, demonstrating that the entire two rooms were decontaminated along with the SARS-CoV-2-contaminated test surface coupons.

Discussion

Widespread SARS-CoV-2 nosocomial infections have been reported from hospitals worldwide [46]; according to the World...
Health Organization, healthcare workers accounted for one in seven COVID-19 cases worldwide. SARS-CoV-2 transmission occurs via direct contact with infected persons, small airborne droplets, or larger respiratory droplets, or indirectly through contaminated surfaces/objects (fomite transmission). Heavily contaminated surfaces in environments housing infected patients present multiple sources of infection to healthcare personnel. One recent study showed evidence of widespread contamination on surfaces in patient rooms including toilets, ventilation grills, and even on the floor under the beds without direct patient contact [6]. Therefore, it is critical that the decontamination methods adopted should reach all surfaces in the room, including those in hard-to-reach areas.

Routine surface decontamination processes using liquid sprays/wipes are labor intensive, often hazardous to the decontamination personnel, and cannot reach all hard-to-reach surfaces; whereas fumigation keeps the personnel out of the room being fumigated while decontaminating the entire room including the air and the various surfaces contained within. Infectious agents do not deposit themselves cleanly on the surfaces; they will be in a milieu of patients’ excretions/secretions, which after drying would be a challenge for disinfecting chemicals to inactivate. In this study, the SARS-CoV-2 virus was suspended in a standard tripartite organic soil load to represent such a challenging milieu, and then dried on to the test coupons. As noted before, PAA — both in the liquid and the fumigant form — tolerates organic soil load well, which is consistent with our finding here, where all the surfaces were decontaminated upon a 1 h exposure [34,47]. Expensive electronic equipment is plentiful in modern healthcare settings; they are a necessity to provide modern patient care. A fumigation technology selected to decontaminate such a facility and the equipment in it should not damage electronic equipment; PAA fumigation has previously been shown to be compatible with electronics after repeat exposures in a laboratory setting [34].

This study was also undertaken in a laboratory that was equipped with a controllable air-handling system; turning the exhaust air on after the fumigation process to evacuate the residual PAA was easily achieved. Entering the room before removing the PAA residues to safe levels would be unsafe since levels >0.4 ppm may cause hazardous health effects [48]. In most healthcare settings, the heating—ventilation—air conditioning system may not be equipped to exhaust a room/sec-

In conclusion, dry fog fumigation using PAA is a low-tech, cost-effective, and portable decontamination technology for decontaminating large areas within a short period. This study shows that PAA fumigation resulted in the complete inactivation of SARS-CoV-2 on all the nine test surfaces as well as the decontamination of the rooms that housed them. Whereas the focus of this work was decontamination of surfaces found in healthcare settings, these materials are common in a variety of structures. There have been reports of COVID-19 outbreaks in cruise ships, schools, sports facilities, and long-term care centres [14,49—52]. Thus, PAA fumigation can be used to
successfully decontaminate not only healthcare facilities, but also a variety of other indoor spaces and facilities.

Acknowledgements

Government of Canada, through the Public Health Agency of Canada.

Conflict of interest statement
None declared.

Funding sources
None.

References
[1] Agren D. Understanding Mexican health worker COVID-19 deaths. Lancet 2020;396(10254):807.
[2] Hughes MM, Groenewold MR, Lessem SE, Xu K, Ussery EN, Wiegand RE, et al. Update: characteristics of healthcare personnel with COVID-19 United States, February 12–July 16 2020. Morb Mortal Wkly Rep 2020;69:1364–8.
[3] Heinzerling A, Stuckey MJ, Scheuer T, Xu K, Perkins KM, Resseler H, et al. Transmission of COVID-19 to healthcare personnel during exposures to a hospitalized patient — Solano County, California, February 2020. Morb Mortal Wkly Rep 2020;69:472–6.
[4] Bellizzi S, Panu Napodano CM, Salaris P, Pichierri G, Sotgiu G. Regional variation in trajectories of healthcare worker infections during the COVID-19 pandemic in Italy. Infect Control Hosp Epidemiol 2020;41:1472–4.
[5] Santos M, Guimaraes TF, Rey HC, Mucillo F, Carvalho A, Bezerra I, et al. Epidemic curve of contamination in a hospital that served as sentinel of the spread of the SARS-CoV-2 epidemic in the city of Rio de Janeiro. medRxiv 2020;2020. https://doi.org/10.1101/2020.10.19.20215079.
[6] Santarpia JL, Rivera DN, Herrera VL, Morwitzer MJ, Creager HM, Santarpia GW, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep 2020;10:12732.
[7] Zhang DX. SARS-CoV-2: air/aerosols and surfaces in laboratory and clinical settings. J Hosp Infect 2020;105:577–9.
[8] Lednicky JA, Lauzard M, Fan ZH, Jutla A, Tilly TB, Gangwar M, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. Int J Infect Dis 2020;100:476–82.
[9] Riddell S, Goldie S, Hill A, Eagles D, Drew TW. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J 2020;17:145.
[10] Kasloff SB, Strong JE, Funk D, Cutts TA. Stability of SARS-CoV-2 on critical personal protective equipment. medRxiv 2020;2020. 06.11.2028884.
[11] van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson B, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020;382:1564–7.
[12] Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int 2020;142:105832.
[13] Boyce JM, Guercia KA, Sullivan L, Havill NL, Fekieta R, Kozakiewicz J, et al. Prospective cluster controlled crossover

Figure 3. Inactivation of SARS-CoV-2 on nine common healthcare facility surfaces by peracetic acid dry fogging. Surface coupons contaminated with 10 μL of virus inoculum were subjected to 1 h dry fogging cycle (N = 3 biological replicates per surface type) followed by elution in virus culture medium. No infectious virus was recovered from dry-fog-exposed coupons; viral titres recovered from the unexposed, dried positive control coupons of the same material type and quantified by end-point titration in Vero E6 cells are also shown. Dotted lines indicate limits of quantification for the TCID₅₀ assay. Results represent means of three independent experiments.
trial to compare the impact of an improved hydrogen peroxide disinfectant and a quaternary ammonium-based disinfectant on surface contamination and health care outcomes. Am J Infect Control 2017;45:1006–10.

[14] Hirotsu Y, Maejima M, Nakajima M, Mochizuki H, Omata M. Environmental cleaning is effective for the eradication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in contaminated hospital rooms: a patient from the Diamond Princess cruise ship. Infect Control Hosp Epidemiol 2020;41:1105–6.

[15] Ghapure R, Hunter CM, Schnall AH, Barrett CE, Kirby AE, Kunz J, et al. Knowledge and practices regarding safe household cleaning and disinfection for COVID-19 prevention — United States, May 2020. Morb Mortal Wkly Rep 2020;69:705–9.

[16] Chang A, Schnall AH, Law R, Bronstein AC, Marraffa JM, Spiller HA, et al. Cleaning and disinfectant chemical exposures and temporal associations with COVID-19 — National Poison Data System, United States, January 1 2020–March 31 2020. Morb Mortal Wkly Rep 2020;69:496–8.

[17] Hsu CS, Lu MC, Huang DJ. Disinfection of indoor air microorganisms in stack room of university library using gaseous chlorine dioxide. Environ Monit Assess 2015;187:17.

[18] Freer PC, Novy FG. On the formation, decomposition and germicidal action of benzoyl acetyl and diacetyl peroxides. Am Chem J 1902;27:161–92.

[19] Hussaini SN, Ruby KR. Sporicidal activity of peracetic acid against B anthracis spores. Vet Rec 1976;98:257–9.

[20] Gregersen JP, Roth B. Inactivation of stable viruses in cell culture facilities by peracetic acid fogging. Biologicals 2012;40:282–7.

[21] Greenspan FP, MacKellar DG. The application of peracetic acid germicidal washes to mold control of tomatoes. Food Technol 1951;5:95–7.

[22] Ramirez-Hernandez A, Brashears MM, Sanchez-Plata MA. Efficacy of lactic acid, lactic acid—acetic acid blends, and peracetic acid to reduce salmonella on chicken parts under simulated commercial processing conditions. J Food Prot 2018;81:17–24.

[23] Melo EF, Clı´ maco WLS, Triginelli MV, Vaz DP, de Souza MR, Baia˜o NC, et al. An evaluation of alternative methods for sanitizing hatching eggs. Poult Sci 2019;98:2466–73.

[24] Kumar S, Singh M, Cosby DE, Cox NA, Thippareddi P, Akkus O, et al. Scalable in-hospital decontamination of N95 filtering facepiece respirator with a peracetic acid room disinfection system. medRxiv 2020;2020.04.24.20073973.

[25] GreenSPAN FP, MocKELLAR DG. The application of peracetic acid germicidal washes to mold control of tomatoes. Food Technol 1951;5:95–7.

[26] Sattar SA, Ansari SA. The fingerprint protocol to assess hygienic hand antiseptics against viruses. J Virol Methods 2002;103:171–81.

[27] Reed LJ, Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidmiol 1938;27:493–7.

[28] Edmonds JM, Sabol JP, Rastogi VK. Decontamination efficacy of peracetic acid-based surface disinfectant. Infect Control Hosp Epidemiol 2020;25:48–52.

[29] Kumar A, Kasloff SB, Leung A, Cutts T, Strong JE, Hills K, et al. N95 Mask decontamination using standard hospital sterilization technologies. medRxiv 2020;2020.04.05.20049346.

[30] Atrubin D, Wiese M, Bohinc B. An outbreak of COVID-19 associated with use of a defective N95 respirator with a peracetic acid room disinfection system. medRxiv 2020;2020.04.24.20073973.

[31] Richterman A, Meyerowitz EA, Cevik M. Hospital-acquired SARS-CoV-2 infection: lessons for public health. JAMA 2020.https://doi.org/10.1001/jama.2020.21399 [online ahead of print].

[32] CalOSHA. Draft substance summary for the December 12 2017 HEAC meeting: peracetic acid. 2017.

[33] Moriarty LF, Plucinski MM, Marston BJ, Kurbatova EV, Knust B, Murray EL, et al. Public health responses to COVID-19 outbreaks on cruise ships — worldwide, February—March 2020. Morb Mortal Wkly Rep 2020;69:347–52.

[34] Anonymous. COVID-19 Outbreak among college students after a spring break trip to Mexico — Austin, Texas, March 26—April 5 2020. Morb Mortal Wkly Rep 2020;69:830–5.

[35] McMichael TM, Clark S, Pogosjans S, Kay M, Lewis J, Baer A, et al. COVID-19 in a long-term care facility — King County, Washington, February 27—March 9 2020. Morb Mortal Wkly Rep 2020;69:339–42.