Ichthyo-Diversity in different rivers of West Bengal, India: Status and conservation strategy

Sanjay Dey and Ashis Kumar Panigrahi

DOI: https://doi.org/10.22271/fish.2022.v10.i1b.2630

Abstract

West Bengal is surrounded by many rivers. Rivers play a decisive role in freshwater habitat and connects with ocean. But fish diversity knowledge is inadequate in different rivers of West Bengal. West Bengal provides 7.5% of resources of water of the country. West Bengal is fulfilled with many resources of water like, beel, pond, rivers. Freshwater diversity in rivers may loss due to anthropogenic effect and also by pollution. Besides this exploitation and change of climate are another major cause of biodiversity loss. Decreasing trend of fish diversity is an aggregate approach to conservation of fish diversity. For this reason riverine fishes are the threatened taxa. But less effort have been dedicated for conservation of river fishes this review helps to understand fish species in south and north Bengal rivers in West Bengal.

Keywords: Diverse, management, cryopreservation, fish safe zone, keystone, flagship, sustainability

Introduction

Fishes are most common and have diverse group. Lévêque et al., (2008) showed fish related research in India are exploratory stage. Fish base have 34700 species of fish and provides information to the researcher (Fish base). In West Bengal river Ganga is divided into two parts North Bengal and South Bengal. Southern part of West Bengal is called South Bengal. Some districts of South Bengal are Nadia, Howrah, Hooghly, East Midnapore, West Midnapore, etc. Some districts of Northern Bengal are Alipurduar, South Dinajpur, Coochbehar, etc. South Bengal and Northern Bengal have hotspot of fishes. Swain (2008) identified freshwater ornamental habitats in India. Sarkar et al., (2015) studied diversity of ornamental fish in Torsa river and Gargharia river. Agriculture and rivers are directly interlinked in West Bengal. West Bengal act as rivers land. Due to irrigation from tributaries of the river Ganga, number of fish species have been decreased (Payne et al., 2004). Lakra et al., (2010) showed from river Ganga 29 fish species were recorded as threatened category. Freshwater fish species mainly loss due to Industries (Gibbs 2000) and they are the menace group (Darwall and Vie 2005). Management of fish habitats is a challenge now days (Dudgeon et al., 2006). Researcher showed ichthyofaunal diversity in many reservoirs and lakes (Patra 2006, Mahapatra 2003). Different estuarine system provides significant production of fisheries (Sugunan and Sinha 2001). In India conservation and management of rivers have insufficient information. Proper planning of conservation is essential to save freshwater biodiversity (Pusey et al., 2010, Lipsey and Child 2007).

Rivers in West Bengal

Many important river flows inside the West Bengal. Some of them are Bhagirathi Hooghly, Dwarakeshwar, Churni, Barakar, Jaldhaka, Mahananda, Kangsabati, etc. West Bengal consists of many rivers. Bhagirathi Hooghly and Ganga Padma rivers tributaries are the major rivers in West Bengal. Some Himalayan rivers that flows through West Bengal are Tista, Mahananda Jaldhaka, Torsa, etc. From the Chotonagpur plateau some river arises. They are Damodar, Rupnarayan, Ajay, Haldi, Subarnarekha, etc. Some tidal river like Matla flows through West Bengal. In West Bengal tidal rivers are present in Sundarban area like, Gosaba, Kultali, etc. Main problem of tidal river is they overflow bank during the high tide.
Fish diversity in Damodar River
Saha and Patra (2013) [25] showed fish diversity in Damodar river. In Daomodar 46 species of fishes were present during January 2011-2012 (Saha and Patra, 2013) [25]. Saha and Patra (2013) [25] reported 38 % fish belongs to order Cyprinodontiforms, 30% fish belongs to order Perciformes, 26 % fish belongs to order Siluriformes in Damodar river. Highest fish diversity Index was observed in Barsul (0.97) followed by Krisak setu (0.96) and Palla (0.95) (Saha and Patra, 2013) [25]. Ornamenta fish diversity in Damodar river have been identified by Sarkar L (2020) [29].

Fish diversity in Churni river
In river Churni 48 species have been reported which belongs to 18 families, 29 genera, 8 orders (Bhakta and Bandyopadhyay, 2007) [2]. Highest population of fish that were present in river Churni are Oreochromis mossambicus, Cyprinus carpio and lowest population fish is Clarias gariepinus (Bhakta and Banyopadhyay, 2007) [2].

Fish diversity in Kangsabati River
In Kangsabati river, 46 fish species have been recorded including 17 families, 29 genera, 8 orders during August 2013 to January 2015 (Kar et al., 2016) [12]. According to Kar et al., (2016) [12] in Kangsabati river 41 % fish species were Cypriniformes, 18% fish species were Perciformes, 28% fish species were Siluriformes. Highest fish diversity Index was observed in Pathra River Bank (3.30) followed by Sal Dahari river bank (3.26), Balishira river bank (3.04), Payraguri river bank (2.92), Najargunj (2.66) (Kar et al., 2016) [12].

Table 1: Annual estimated discharge (mcm) of some rivers in West Bengal (Rudra, 2016) [24]

River	Estimated discharge (mcm)
Teesta	29947
Mahananda	23129
Jaldhaka	17212
Torsa	23097
Ganga at Farakka	513100

Table 2: List of fish species found in Hooghly river (Nath and Patra, 2015) [18]

Scientific name	Frequency occurrence
Rhinomugil corsula	30-40% in the catch
Sicamugil cascasia	Occur very occasionally
Channa Punctatus	5-10 % in the catch
Channa orientalis	5-10 % in the catch
Pseudambassis ranga	1-5 % in the catch
Jhontius gureticus	5-10 % in the catch
Trichogaster fasciatus	5-10 % in the catch
Glossogobius giuris	30-40% in the catch
Periophthalmodon sp.	Occur very occasionally
Pseudaprocryptes lanceolatus	30-40% in the catch
Odontamblyopus rubicundus	30-40% in the catch
Apocryptes bato	5-10 % in the catch
Platyccephalus indicus	30-40% in the catch
Datnioides quadrifasciata	Occur very occasionally
Macroganthis aral	Occur very occasionally
Macrognathus pancalus	Occur very occasionally
Mastacembelus armatus	Occur very occasionally
Sillaginopsis panijus	10-30% in the catch
Badis badis	Occur very occasionally
Eleotris fusca	10-30% in the catch
Acanthopagrus latus	Occur very occasionally
Nandus nandus	Occur very occasionally
Polynemus paradiseus	Occur very occasionally
Scatophagus argus	Occur very occasionally
Tilapia nylotica	Occur very occasionally
Etroplus suratensis	Occur very occasionally
Lates calcarifer	Occur very occasionally
Ompok pabda	Occur very occasionally
Walilago alta	Occur very occasionally
Mystus cavasi	10-30% in the catch
Mystus vittatus	1-5% in the catch
Mystus bleekari	Occur very occasionally
Mystus vittatus	Occur very occasionally
M gulo	1-5% in the catch
Sperata aor	1-5% in the catch
Sperata seeghala	1-5% in the catch
Rita rita	5-10% in the catch
Rita gogra	30-40% in the catch
Gagata gagata	Occur very occasionally
Gagata sexualis	Occur very occasionally
Gagata cenia	Occur very occasionally
Bagarius bagarius	Occur very occasionally
Glyptothorax telechitta	Occur very occasionally
Entropichthys vacha	30-40% in the catch
Silonia silonida	1-5% in the catch
Eutropichthys murius	Occur very occasionally
Fish Species	Percentage in the Catch
--------------------------------------	--------------------------
Ailia colia	30-40% in the catch
Clupisoma garua	30-40% in the catch
Neotropius atherinoides	1-5% in the catch
Secutor ruconis	5-10% in the catch
Heteropeustes fossilis	5-10% in the catch
Pangasius pangasius	Occur very occasionally
Gerres oyena	1-5% in the catch
Eomus damicrus	Occur very occasionally
Amblypbyngodon mola	1-5% in the catch
Puntius conchonius	5-10% in the catch
Puntis ticto	Occur very occasionally
Ostebroma coto coto	Occur very occasionally
Laubuca laubuca	Occur very occasionally
Cirrhina reba	Occur very occasionally
Cirrhina miriata	10-30% in the catch
Salmpohiasa phalo	10-30% in the catch
Salmpohiasa bacaila	10-30% in the catch
Labeo caiba	5-10% in the catch
Hypophthalmicryx molitrix	Occur very occasionally
Labeo rohiita	Occur very occasionally
Labeo bats	5-10% in the catch
Catla catla	Occur very occasionally
Rasbora sp.	Occur very occasionally
Chaquinius chagunio	Occur very occasionally
Lepidocephalichthyx guntea	Occur very occasionally
Tenualosa lisa (juvenile)	30-40% in the catch
Tenualosa tisa (adult)	1-5% in the catch
Gadusia chapra	5-10% in the catch
Corcia soborna	30-40% in the catch
Setipinna phasa	30-40% in the catch
Xenentodon concila	Occur very occasionally
Hemiramphus far	Occur very occasionally
Aplocheilus panchax	Occur very occasionally
Pisodonophis boro	10-30% in the catch
Anguilla bengalensis bengalensis	5-10% in the catch
Amphipnous cuchia	Occur very occasionally
Cynoglossus cynoglossus	5-10% in the catch
Euryglossa orientalis	10-30% in the catch
Microphus cuniculus	Occur very occasionally
Tetradon cutucia	Occur very occasionally
Notopterus noopterus	Occur very occasionally
Notopterus chitala	Occur very occasionally
Crocodile fish Pterygoplichthyx sp.	Occur very occasionally

Fig 1: Basin area (sq. km.) of Bhagirathi (Nabadwip), Mayurakshi, Ajoy, Damodar (Jamalpur), Dwarakeswar, Silai, Kansai (Rudra. 2016) [24]
Conservation Strategy

Conservation of fish species in Guadiana River was reported by Filipe et al., (2004) [8]. Cooke et al., (2012) [3] showed some factors that hampers the conservation of endangered fish species in rivers. According to Madhavi et al., (2012) [16] some conservation strategy are

a) For conservation of gene by cryopreservation method gene bank plays a pivotal role.

b) Mass awareness among the common people must be increased.

c) For conservation of fish species application of Geographic information system must be expanded.

Freshwater Fish Safe Zone is an idea for maintenance of biodiversity and conservation (Gupta et al., 2014) [10]. Some important strategy for Freshwater Fish Safe Zone is as follows
(Gupta et al., 2014) [10]
a) To protect the habitat of fish species Freshwater Fish Safe Zone must be carefully maintained.
b) Freshwater Fish Safe Zone should be outlined into two parts; core area and buffer area.
c) Deforestation and agricultural practice should be stopped in the terrestrial area near the river.
d) Research and field study should meticulously maintain.
e) To identify the connection between Keystone and Flagship species with Freshwater Fish Safe Zone for Conservation purpose.

Conclusions
In this study we found many fish species in different rivers of Wet Bengal. Wet Bengal’s river is regarded as hot spot of fish species. But due to pollution, flood fish diversity has been reduced. Besides this indiscriminate killing is another cause for threatening of freshwater biodiversity. Conservation helps to maintain freshwater biodiversity. So there is a need for conservation strategy to protect the freshwater diversity. In situ conservation is an key step for sustainability. Beside this proper planning and people’s awareness are the important step to conserve biodiversity.

Acknowledgements
The Authors would like to show thanks to the authorities of Department of Zoology, University of Kalyani for their cordial support in carrying out the research.

References
1. Acharjee ML, Barat S. Ichthyofauna Diversity of Teesta River in Darjeeling Himalaya of West Bengal, India. Asian Journal of Experimental Biological Sciences, 2013;4(1):112-122.
2. Bhakta JN, Bandyopadhyay PK. Exotic fish biodiversity in Churni River of west Bengal, India. Electronic Journal of Biology. 2007;3(1):13-17.
3. Cooke SJ, Paukert C, Hogan Z. Endangered river fish: factors hindering conservation and restoration. Endangered species research. 2012;17(2):179-191.
4. Darwall WRT, Vie JC. Identifying important sites for conservation of freshwater biodiversity: extending the speciesbased approach. Fish Manag Ecol 2005;12:287-293.
5. Dey A, Sarkar D. In search of Ichthyofauna diversity: A study on Torsa river in Couch Behar district of West Bengal. Int. J. Pure App. Biosci. 2015;3(4):235-241.
6. Dey A, Nur R, Sarkar D, Barat S. Ichthyofauna Diversity of River Kaljani in Couch Behar District of West Bengal, India. Int. J. Pure App. Biosci. 2015;3(1):247-256.
7. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 2006;81:163-182.
8. Filipe AF, Marques TA, Seabra S, Tiago P, Ribeiro F, Da Costa LM et al. Selection of priority areas for fish conservation in Guadiana River Basin, Iberian Peninsula. Conservation Biology. 2004;18(1):189-200.
9. Gibbs JP. Wetland loss and biodiversity conservation. Conserv Biol 2000;14(1):314-317.
10. Gupta N, Raghavan R, Sivakumar K, Mathur VB. Freshwater fish safe zones: a prospective conservation strategy for river ecosystems in India. Current Science, 2014;107(6):949-950.
11. Jana A, Sit G, Maiti K. Ichthyofauna diversity of Keleghai river at Medinipur district in West Bengal. International Research Journal of Basic and Applied Sciences. 2015;1:24-26.
12. Kar A, Bhattacharya M, Ghori M, Patra S, Patra BC. December. Ichthyofauna Diversity of Kangsabati River at Paschim Medinipur District, West Bengal, India. In Proceedings of the zoological society Springer India. 2016;70(2):165-173.
13. Lakra WS, Sarkar UK, Gopalakrishnan A, Pandian AK. Threatened freshwater fishes of India. NBFGR publication, Lucknow. 2010.
14. Lévêque C, Oberdorff T, Paugy D, Stiassny MLJ, Tedesco PA. Global diversity of fish (Pisces) in freshwater. Hydrobiologia. 2008;595:545-567.
15. Lipsey MK, Child MF. Combining the fields of reintroduction biology and restoration ecology. Conserv Biol 2007;21:1387-1388.
16. Madhavi VK, Reddy VDA, Reddy VG. Conservation of Fish Faunastic Diversity–An Indian Perspective. European Journal of Zoological Research. 2012;1(3):80-85.
17. Mahapatra DK. “Present status of fisheries of Hirakund Reservoir, Orissa,” Fishing Chimes, 2003;22(10, 11):76-79.
18. Nath AK, Patra A. Survey on the present status of Fish species diversity in a stretch of Hooghly river of West Bengal, India. International Journal of Fisheries and Aquatic Studies. 2015;3(1):244-250.
19. Patra S. Studies on the biological aspects of Anuspa Lake, Orissa (India) [Ph.D. thesis], Utkal University, Bhubaneswar, India. 2006.
20. Patra AK, Sengupta S, Datta T. Physico-Chemical Properties And Ichthyofauna Diversity In Karala River, A Tributary Of Teesta. 2011.
21. River At Jalpaiguri District of West Bengal, India. International Journal of Applied Biology and Pharmaceutical Technology, ISSN 0976 – 4550. Volume: 2011;2(3).
22. Payne AI, Sinha RK, Singh HR, Haq S. A review of theGanges Basin: its fish and fisheries. In: Welcomme RL, Peter T (eds) Proceedings of the second international symposium on the management of large rivers for Fisheries, FAO Regional Office for Asia and the Pacific, Bangkok, Thailand. 2004;1:229-251.
23. Pusey BJ, Arthington AH, Stewart-Koster B, Kennard MJ, Read MG. Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australian river. J Fish Biol 2010;77:731-753.
24. Rudra K. State of India’s river for India rivers week. 2016.
25. Saha MK, Patra BC. Present status of ichthyofaunal diversity of Damodar river at Burdwan district, West Bengal, India. International journal of scientific research publications. 2013;3(6):1-11.
26. Sarkar D, Dey A, Ray N. Indigenous Ornamental Fish Diversity in Torsa and Gharharia: Nature’s Conservation Strategy. J. Agric. Technol. 2015;2(1, 2):21-27.
27. Sarkar T, Pal J. Diversity and conservation status of Ichthyofauna in the river Jaldhaka, West Bengal. 2018.
28. International Journal of Fisheries and Aquatic Studies 2018;6(2):339-345.
29. Sarkar L. Study of Diversity of Ornamental Fishes from Some Selected Sites of Damodar River System. Journal of Environment and Sociobiology. 2020;17(1):19-26.

30. Sugunan VV, Sinha M. Sustainable capture and culture-based fisheries in freshwaters of India. In: T.J. Pandian. 2001.

31. (Ed.), Sustainable Indian Fisheries, National Academy of Agricultural Sciences, New Delhi. 2001, 43-70.

32. Swain SK. “Indigenous Ornamental Fish and Their Export Potential”, Originally Published as a Research Article in 8th Indian Fisheries Forum Souvenir Article. 2008.

33. www.fishbase.org