Supplementary Information

Flame-retardant MXene/Polyimide Film with Outstanding Thermal and Mechanical Properties Based on the Secondary Orientation Strategy

Yue ZhuI, Qingyu Peng* II, Haowen ZhengI, Fuhua XueI, Pengyang LiI, Zhonghai XuI, Xiaodong HeII and Xingbin ZhaoI

I National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China

II Shenzhen STRONG Advanced Materials Research Institute Co., Ltd., Shenzhen 518000, P. R. China

*Corresponding authors. Email: pengqingyu@hit.edu.cn

\# These authors contributed equally to this work.
Fig. S1 Typical stress-strain curves of PI film and MXene/PI films.

Fig. S2 SEM images of a) MXene/PI film, b) burned MXene/PI film and energy dispersive spectroscopy (EDS) mapping images of C, N, O, F, and Ti elements. EDS element spectrum and atomic percentage of c) MXene/PI and d) burned MXene/PI.
Table S1 Micro-scale Combustion Calorimeter (MCC) data of all samples.

Sample	HR Capacity (J/g-K)	Peak HRR (W/g)	Total HR (kJ/g)	Temperature (℃)
PI	75	47.6	0.9	556
MXene-10/PI	54	37	0.8	562.1
MXene-20/PI	28	22.7	0.8	563.1
MXene-30/PI	27	16.9	0.9	565.7
MXene-40/PI	26	12.8	0.7	572.7

Table S2 Comparison of properties of different PI composite materials.

Materials	Preparation method/condition	Thermal conductivity (W m$^{-1}$ k$^{-1}$)	Tensile strength (MPa)	Literature
BN/PI film	Casting method	1.16	~69.6	1
AIN/BN/PI film	Casting method	0.711	~120.1	2
NH$_2$-rGO/PI film	Knife Coating method	7.13	35.7	3
CNF/hBN/PI film	Dip Coating method	0.627	~70	4
G/PI film	Knife Coating method	0.2275	~127.5	5
PI/GO/BN film	Casting method	11.203	—	6
rGO/PI film	Casting method	2.78	—	7
BN/PI film	Casting method	2.58	—	8
PI/CNNS film	Solution Casting method	2.04	—	9
Hyperbranched PI film	Knife Coating method	—	124.1	10
PI/FGS film	Casting method	—	~122	11
Film Type	Coating Method	T	ΔT	Work Type
-------------------	----------------------	---	-----	-------------
ZnS-MPTMS/PI film	Knife Coating method	—	~87.7	12
FG/PI film	Casting method	—	65.76	13
MXene/PI film	Secondary Orientation Strategy	~5.12	~102	Our work

REFERENCES

[1] Zhang, G.-D.; Fan, L.; Bai, L.; He, M.-H.; Zhai, L.; Mo, S. Mesoscopic Simulation Assistant Design of Immiscible Polyimide/BN Blend Films with Enhanced Thermal Conductivity. *Chinese J. Polym. SCI* 2018, 36 (12), 1394-1402.

[2] Liu, L.; Cao, C.; Ma, X.; Zhang, X.; Lv, T. Thermal conductivity of polyimide/AlN and polyimide/(AlN plus BN) composite films prepared by in-situ polymerization. *J. Macromol. SCI A* 2020, 57 (5), 398-407.

[3] Ruan, K.; Guo, Y.; Lu, C.; Shi, X.; Ma, T.; Zhang, Y.; Kong, J.; Gu, J. Significant Reduction of Interfacial Thermal Resistance and Phonon Scattering in Graphene/Polyimide Thermally Conductive Composite Films for Thermal Management. *Research* 2021, 2021.

[4] Haruki, M.; Tanaka, K. Controlling thermal conductivities and electrical insulation properties of carbon nanofiber/polyimide composites using surface coating techniques. *Polymer Composite* 2020, 41 (8), 2990-2997.

[5] Wang, R.; Chen, M.; Li, Q.; Li, W.; Guo, Y.; Liu, L. Enhanced Mechanical and Thermal Properties of Polyimide Films Based on Functional Groups-Free Few-Layer Graphene. *J. Chem. Eng. JPN* 2019, 52 (6), 570-578.

[6] He, X.; Wang, Y. Highly Thermally Conductive Polyimide Composite Films with Excellent Thermal and Electrical Insulating Properties. *Ind. Eng. Chem. Res.* 2020, 59 (5), 1925-1933.
[7] Wei, S.; Yu, Q.; Fan, Z.; Liu, S.; Chi, Z.; Chen, X.; Zhang, Y.; Xu, J. Fabricating high thermal conductivity rGO/polyimide nanocomposite films via a freeze-drying approach. *RSC Adv.* **2018**, *8* (39), 22169-22176.

[8] Du, B. X.; Xiao, M. Effects of Thermally Conducting Particles on Resistance to Tracking Failure of Polyimide/BN Composites. *IEEE T. Dielect. E. L. In.* **2014**, *21* (4), 1565-1572.

[9] Wang, Y.; Zhang, X.; Ding, X.; Zhang, P.; Shu, M.; Zhang, Q.; Gong, Y.; Zheng, K.; Tian, X. Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. *Compos. B. Eng.* **2020**, *199*.

[10] Lei, X.; Qiao, M.; Tian, L.; Chen, Y.; Zhang, Q. Tunable Permittivity in High-Performance Hyperbranched Polyimide Films by Adjusting Backbone Rigidity (vol 120, pg 2548, 2016). *J. Phys. Chem. C* **2016**, *120* (40), 23304-23304.

[11] Nguyen Dang, L.; Hippi, U.; Korhonen, J. T.; Soininen, A. J.; Ruokolainen, J.; Johansson, L.-S.; Nam, J.-D.; Sinh, L. H.; Seppala, J. Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. *Polymer* **2011**, *52* (23), 5237-5242.

[12] Jeon, H.; Yoon, C.; Song, Y.-G.; Han, J.; Kwon, S.; Kim, S.; Chang, I.; Lee, K. Reducing the Coefficient of Thermal Expansion of Polyimide Films in Microelectronics Processing Using ZnS Particles at Low Concentrations. *ACS Appl. Nano Mater.* **2018**, *1* (3), 1076-1082.

[13] Zhang, P.; Zhang, K.; Chen, X.; Dou, S.; Zhao, J.; Li, Y. Mechanical, dielectric and thermal properties of polyimide films with sandwich structure. *Compos. Struct.* **2021**, *261*.