How to Reclaim Your Dragons? A Retrospective Review on Odonatology in West Sumatra, Indonesia

M N Janra¹, H Herwina¹

¹ Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, Indonesia

Corresponding author’s e-mail address: mnjanra@sci.unand.ac.id

Abstract. Dragonflies and damselflies (Odonata) were not really popular subjects for biological studies at least until a decade ago in West Sumatra. In many scientific publications published by Lieftinct, a colonial era odonatologist, not many localities in West Sumatra mentioned as the origin of his odonata specimens. In this study, we intend to review the extent of current odonatological works in West Sumatra to gain perspective on the ongoing scientific aspects of this taxon. We used literature study method to compile data from historical and recent bibliographies, published works and other resources regarding dragonflies in West Sumatra. As result, from around 294 odonate species ever recorded in Sumatra Island, 98 species have been recognized from within the borders of West Sumatra Province with more than half recently re-observed. Albeit most publications are taxonomical and inventorial in their nature, further survey works are still needed to gain thorough insight on West Sumatran odonates. Meanwhile, the current studies and researches indicate the possibilities that dragonflies can also be integrated into the wider aspects, such as ecotourism, pest management, landscaping, environmental impact assessment, aesthetic and many others. Hence, introducing odonates as fascinating study object to the new generation of biologists can help furthering the advance and diversification of odonatological study in West Sumatra.

Keywords: Ecotourism; Lieftinct; Odonatologist; Taxonomical; Universitas Andalas

1. Introduction

More than 6000 Odonata species, consist of dragonflies and damselflies, roam the earth surface and most of them distributed around tropics where abundant aquatic habitats available [1,2]. The Oriental, Australasian and Neotropical regions in the world hold the most diverse odonate species, in which predicted between 1,000 – 1,500 species are still waiting to be described [3]. As part of Oriental region, Indonesia possesses ample amount of odonate species, especially in its big islands such as Borneo, Java and Sumatra. Unfortunately, these islands (especially Sumatra) face tremendous threats during recent decade, mainly from deforestation of its primary forest cover, shifted into various human made landscapes [4]. Dragonflies become one of those biodiversity that seriously impacted in this situation, which might severely result into local to national extinction of the species [5,6].

Indonesian odonates have been studied as early as the second half of eighteenth century, where an officer of the Dutch colonial started collection and description of an array of the insect groups from the archipelago [7]. The colonialism period from seventeenth century until mid-twentieth century became a golden period where many odonate species were described and numerous museum or private specimen collections amounted which later serve as valuable reference materials [8]. Meanwhile in Sumatra, prominent works on odonates shown by Ris and subsequently Lieftinck [9,10]. The latter listed more
than 180 species description based on Sumatran specimens, provided a rigid step for the full coverage of odonate species in this island. Currently, Sumatra is estimated to harbor around 300 odonate species [11].

Last decade was thought to be the emergence of interest among Indonesians to odonatology [8]. Supported with the social media and sophisticated gadgets, many of them that are from young generation diligently document odonates from their surrounding and amass online database for Indonesian Odonata. This positive awakening, however, is seen more pronounced in Java as it is the central region of the country with many supporting factors on its behalf. Including here the existence of many prominent research institutions that contribute in promoting the interest in odonatology. In other parts of the country, especially outside Java, where considered to have much less favorable conditions, it is necessary to assess how odonatology have progressed through time. Hence, in this paper we discuss what have been done up until recent time on West Sumatran odonatology, which in turn helping to determine possible steps to further develop it.

2. Material and Methods
This study reviewed the literatures on dragonflies that consisted of published papers, articles, journal and other scientific materials that related to Odonata and West Sumatra. The materials were sought using keywords such as ‘odonata’, ‘dragonfly(-ies)’, ‘damselflly(-ies)’, ‘capung’, ‘capung jarum’, ‘Anisoptera’, combined with ‘Sumatera Barat’, ‘West Sumatra’, ‘Padang’ and other localities in the province. Literature searching involved the use of online searching engine like Google Scholar and ResearchGate, where Odonata scientific literatures were then downloaded from open-access journals, university repositories as well as using personal copies of Odonata article.

Literature review was the main method used in this research. It has been recognized as reliable tool to analyze and synthesize research problems as mentioned above [12,13]. All gathered materials then sorted and tabulated according criteria such as year, nationality of author(s), locality of study site, research topics and others. Based on the tabulation of these criteria, we analyze the trend in West Sumatran odonatology, what have and have not been done and what can be further done in the future.

3. Results and Discussion
3.1. Current literatures and species inventory for West Sumatran Odonata
There were twenty publications on Odonata that are related, in overall or partially, to West Sumatra region. Six of those publications were authorized by foreign researchers (Figure 1). The earliest publication came from year 1926, discussing about odonata in Mentawai Island [14], along with other four publications [9,10,15,16] belong to the period of pre-2000 publications (Figure 1). One publication by foreigner author [17], along with Indonesian authors’ papers were published post 2000 period [18-31]. Most of Indonesian publications are university-based student thesis, except those published through scientific journals. All Odonata publications for West Sumatra recorded in this paper represent 5.6% of total Odonata publications for Indonesia region [8].

Most of publications are in English, regardless the authors’ citizenship (Figure 1). Language used in publishing a scientific paper will influence the scope of readers it can reach. English is considered as one major language in research and communication despite it may be less globally popular than Mandarin Chinese, Hindi and Spanish [32]. One publication was published in Dutch language [9], however, there might more untraceable publications regarding West Sumatran Odonata from the Dutch colonial era. The keywords used in online searching engines may have limitation in reaching these old literatures nor they have not been digitalized which shortened their traceability through internet network.
The species diversity became the most popular topic observed among West Sumatran Odonata publications (Figure 2). It is understandable, as field exploration to exhaustively record every possible existing species is necessary to reveal total taxa in a certain area. The data is essential to provide a baseline for further advance studies. It can be seen in some recent publications that expanded their fields of study into ‘species ecology’ that discussed the dynamic of odonata community in certain habitat, ‘taxonomy’ where new species described, or into more applicative area such as ecotourism and rearing efforts.

An assessment of the total number of species ever observed within the administrative boundary of West Sumatra was made by combining the historical and current data of Odonata in this province (Table 1). There have been recorded ninety-eight species of dragonflies and damselflies from thirteen families for West Sumatra Province, where more than half of this number was recently re-observed [27-30]. The Odonata species that have not been re-observed in this inventory become imminent tasks for any odonatologist who works in this province to reconfirm them, in addition to keep looking for new species, new distribution record and other pertinent aspects. Some species from historical surveys are also required reconfirmation for their validity as current knowledge and technology may help revealing their actual taxonomic position and identity, something which might not be available in the past.

The current odonatological work in West Sumatra grows involving more aspects other than mere species diversity. It also covers ecological aspects on adult dragonflies and their nymphs [22-26], the possibility to develop ecotourism-based dragonfly-watching [30] and an attempt to rearing damselfly within laboratory setting [31]. Even after such rigorous efforts to do the inventory on Odonata, there is still opportunity to describe new species that might be missed from many previous surveys, including in West Sumatra Province [17].

Table 1. Summary of West Sumatran Odonata from historical and current data

No	Family	Species	Source	
1	Devadattidae	*Devadatta argyoides* (Selys, 1859)	10,30	
No	Family	Species	Source	
----	----------------	-----------------------------------	-------------------------	
2	Lestidae	Lestes praemorsus praemorsus Selys	10	
3		Orolestes wallacei Kirby, 1889	10	
4		Podolestes orientalis Selys, 1862	10	
5	Platystictidae	Drepanosticta draco Phan, Karube & Sasamoto, 2018	30, 33	
6		Drepanosticta bispina Fraser, 1932	10, 29	
7	Calopterygidae	Echo uniformis Selys, 1879	10	
8		Neurobasis chinensis (L. 1758)	10, 27, 30	
9		Vestalis luctuosa (Burmeister, 1839)	10, 27, 30	
10	Chlorocyphidae	Heliochypa fenestrata (Burmeister, 1839)	10	
11		Heliocypa vantoli Hämäläinen, 2016	17	
12		Libellago lineata (Burmeister, 1839)	10, 27, 30	
13		Libellago sselmanni Selys	10	
14		Libellago sumatrina Albarda, 1879	10	
15		Rhinocypha selysi Krüger, 1898	10, 30	
16	Euphaidae	Euphaea bocki McLachlan, 1880	10	
17		Euphaea variegata Rambur, 1842	10, 27, 30	
18		Euphaea modigliani Selys, 1898	10, 30	
19		Euphaea aspasia Selys, 1853	10, 30	
20	Platycnemididae	Coeliccia membranipes (Rambur, 1842)	10, 27	
21		Copera acutimargo Kruger	10	
22		Copera annulata Selys, 1863	10	
23		Copera ciliata (Selys, 1863)	10, 27, 30	
24		Copera lobimargo Kruger (=vittata)	10	
25		Copera marginipes (Rambur, 1842)	10, 27, 30	
26		Elatoneura coomansi Lieftinck, 1937	10, 18	
27		Prodaseinea collaris (Selys, 1860)	10, 27, 30	
28		Prodaseinea verticalis (Selys, 1860)	10, 27, 30	
29	Coenagrionidae	Aciagrion bornensee Ris, 1911	10	
30		Agriocnemis femina (Brauer, 1868)	10, 27, 30	
31		Archibasis melancyna Selys, 1877	10	
32		Archibasis viola Lieftinck, 1948	10, 27, 30	
33		Argiocnemis rubescens Selys, 1877	10	
34		Ceriagrion erubescens Selys, 1891	10	
35		Ishnura senegalensis (Rambur, 1842)	10, 27, 30	
36		Onychargia atrocyana Selys, 1865	10	
37		Pericnemis stictica Hagen in Selys, 1863	10, 30	
38		Pseudagrion bengalense Selys, 1876	10	
39		Pseudagrion pruinosum (Burmeister, 1839)	10, 27, 30	
40		Pseudagrion pruinosus ranauense Schmidt	10	
41	Aeshnidae	Anaciaeshna jaspidea Burmeister, 1839	10	
42		Anax gibbosulus Rambur, 1842 subspec fumosus?	10	
43		Anax guttatus (Burmeister, 1839)	10, 29	
No	Family	Species	Source	
----	----------------	---	-----------------	
44	Gynacantha	Gynacantha bayadera Selys, 1891	10	
45	Gynacantha	Gynacantha dohrni Kruger, 1899	10,30	
46	Gynacantha	Gynacantha limbalis Karsch, 1892	10,30	
47	Gynacantha	Gynacantha subinterrupta Rambur, 1842	10	
48	Indaeschna	Indaeschna grubaueri (Forster, 1904)	10,30	
49	Tetracanthagyna	Tetracanthagyna plagiata (Waterhouse, 1877)	10,30	
50	Gomphidae	Gomphidae		
51		Chlorogomphus spec. nov.	10	
52		Ictinogomphus decoratus (Selys, 1854)	10,27,30	
53		Ictinus melaenops Selys ?	10	
54		Gomphidion maclachlani, Selys 1873	10,29	
55		Leptogomphus gracilis Krüger, 1899	10	
56		Megalogomphus sumatranus (Krüger, 1899)	10,30	
57	Macromiidae	Macromia cincta Rambur, 1842	10,30	
58		Macromia westwoodi Selys, 1874	10,30	
59	Corduliidae	Corduliidae		
60		Epophthalmia vittigera Rambur, 1842	10	
61	Libellulidae	Libellulidae		
62		Aceri s panorpoides Rambur, 1842	10,18	
63		Aethriamanta gracilis Brauer, 1878	10	
64		Agrionoptera insignis (Rambur, 1842)	10,27,30	
65		Brachygonia oculata Brauer, 1878	10	
66		Brachythemis contaminata (Fabricius, 1793)	10,18	
67		Camacinia gigantea (Brauer, 1867)	10,27,30	
68		Cratilla lineata (Brauer, 1878)	10,30	
69		Cratilla metallica (Brauer, 1878)	10,30	
70		Crocothemis servilia (Drury, 1770)	10,27,30	
71		Diplacodes nebulosa Fabricius, 1793	10	
72		Diplacodes trivialis (Rambur, 1842)	10,27,30	
73		Lathrecista asiatica (Fabricius, 1798)	10,30	
74		Lyriothemis biappendiculata Selys, 1878	10	
75		Nannophya pygmaea Rabur, 1842	10	
76		Neurothemis fluctuans Fabricius, 1793	10,27,30	
77		Neurothemis ramhurii (Kaup in Brauer, 1866)	10,27,30	
78		Neurothemis terminata Ris, 1911	10,27,30	
79		Onychothemis culminicola Förster, 1914	10,30	
80		Orchthemis pulperrima Brauer, 1878	10	
81		Orthetrum chrysis Selys, 1891	10,30	
82		Orthetrum luzonicum Brauer, 1868	10	
83		Orthetrum pruinum (Burmeister, 1839)	10,27,30	
84		Orthetrum sabina (Drury, 1770)	10,27,30	
85		Orthetrum testaceum (Burmeister, 1839)	10,27,30	
86		Pantala flavescens (Fabricius, 1798)	10,27,30	
No	Family	Species	Source	
----	--------	---------	--------	
86		Pornothemis serrata	Krüger, 1902	10
87		Potamarcha congener	(Rambur, 1842)	10
88		Rhodothemis rufa	Rambur, 1842	10
89		Rhyothemis obsolescens	Kirby, 1889	10
90		Rhyothemis triangularis	Kirby, 1889	10
91		Tholymis tillarga	(Fabricius, 1798)	10,27,30
92		Tramea transmarina	Selys, 1878	10,27,30
93		Trithemis festiva	(Rambur, 1842)	10,27,30
94		Trithemis aurora	Burmeister, 1839	10,18
95		Tyriobapta torrida	Kirby, 1889	10
96		Zyxomma obtusum	(Albarda, 1881)	10,27,30
97		Zyxomma petiolatum	Rambur 1842	10,29
98		Zygonyx ida	Hagen, 1867	10,30

Explanation: Numbers in column ‘Source’ refer to publication number in References section of this article. Species without year of publication or with question mark are either doubtful or unconfirmed.

Family Lestidae consisted of damselflies with typical feature of spread wings during perching [10]. None of the members of this family have been re-observed in modern works and papers from West Sumatra. On the hand, there were two new species added into the list; *Heliocypha vantoli* and *Drepanosticta draco* [17,33]. The first species was described from Mentawai Island, while the second from North Sumatra region. Individuals with similar features described for *Drepanosticta draco* were recently observed in the forested area of Universitas Andalas [30], hence this species was then included into West Sumatran list.

3.2. Ongoing and future direction of West Sumatran Odonatology

The historical and modern literatures on Odonata not only give basis to construct species inventory, they help to determine which locality had been surveyed and how well it was surveyed. In the past, Padang Panjang (mentioned as ‘Padangsche Bovenlanden’ in Dutch or ‘Padang Highlands’ in English) and Pasaman Barat (‘Ophir District’) became the most prominent localities for Odonata records in the mainland [10], while Mentawai Islands despite the harshness of environment to survey during the colonial era still had 53 species recorded [14,17]. A locality named as ‘Kaloeng’ where *Anaciaeshna jaspidea* (*Aeshnidae*) ever recorded, cannot be traced its whereabouts in the modern map. On the other hand, Padang becomes the locality in modern day with most recorded species. This is in large part due to the existence of Universitas Andalas as scientific institutional that harbors researchers and faculty staffs responsible for investigating the natural resources therein, which include the organisms such as dragonflies. As the continuous survey work is still demanded, it can be effectively directed to survey localities with poor or having no previous records.

The analysis on the data collected from historical and current bibliography was then furthered to see landscapes and habitats where the studies ever implemented. Most literatures were based on the studies conducted in the mainland of West Sumatra Province. The accessibility was presumed to be a reason for this opted survey location beside more odonata diversity can be found in the mainland given the size of landmass. The offshore islands, on the other hand, offered possibility to observe unique yet undescribed species as the harsh environment and difficult access might have preserved them from so far scientific exploration. Some studies used comprehensive landscape approach, i.e. by including both mainland and offshore islands to gain holistic inventory on the species and their distribution beyond the boundary of West Sumatra Province.
Table 2. Localities of Odonata surveys in West Sumatra and respective recorded species

Localities	No. Species	Source
Alahan Panjang	2	10
Kaloeng	1	10
Lake Singkarak	4	10
Mentawai Islands	53	14,17
Padang	50	10,27,29,30
Padang Panjang (Padang Highlands)	34	10
Pasaman Barat (Airbangis)	1	10
Pasaman Barat (Lubuk Sikaping)	2	10
Pasaman Barat (Ophir district)	18	10
Payakumbuh (Harau)	8	10
Sawahlunto (Kandi)	15	18
Solok Selatan (Muaralabuh)	3	10
Tanah Datar and Lubuk Tarap	1	10

Numbers in column ‘Source’ refer to publication number in References section of this article.

In similar way to the landscape, the literatures also pointed out types of habitat where the researches and studies conducted. Forested habitat, in its various successive stages, promised the highest species diversity that have attracted many researchers and scientists to come and explore it. The dynamics of Odonata community in habitats affected by human activity currently provided interesting insight in understanding how dragonflies perceive to the environmental dynamics imposed by human. Hence, researches on dragonflies in habitats such as paddy field, human settlements, and other human activities got more attention this lately. The mountain habitat, which is common feature in Sumatra, as result from the existence of Bukit Barisan mountainous chain also provide interesting insight when studying Odonata. The typical features in mountain habitat are thought to be factors in setting the speciation for many wildlife [34], which is also the case for insects such as dragonflies. Nevertheless, despite its extreme altitude and weather, the peak of Mount Talamau at approximate 2,912 m elevation in Pasaman Barat of West Sumatra Province still contains a unique species of Corduliidae [28]. Similar to what described above for the offshore islands, mountains are frequently with unease access and extreme environmental conditions which in most of the time limits people from visiting it.

Figure 3. Landscape and habitat where the West Sumatran Odonata studies undertaken

The odonatology in West Sumatra is in needs for more works to catch up with the current state of global odonatology. It does, of course, require tremendous efforts to achieve this objective. The natural habitats where dragonflies live are still massive in this province that have not been yet fully explored, while some species are currently labelled as Data Deficient albeit their validity were confirmed (e.g. Drepanosticta bispina from Harau in Payakumbuh). The existence of Universitas Andalas as a
prominent education and research institution in this province should be seen as a solid factor to attract many odonatological researches and exploration in the region in the future. The university can serve as the home base for research cooperation as well as home for storing specimens produced from the fieldworks across Sumatra, beyond the border of the province. Therefore, Universitas Andalas may need to promote this among its scholars and students it houses as well as extending it to people outside campus, by doing attempts such as holding odonatology lectures or establishing scientific cooperation with other domestic and foreign institutes. It is believed that the more aspects revealed from conducting Odonata researches, the better understanding will be gained and in turn provides more steady foundation for future conservation and management needed for this insect group.

4. Conclusion
Our study summarized twenty bibliographies on West Sumatran Odonata to identify the current condition of odonatology in this province. Ninety-eight species were confirmed from various localities therein, with more than half of this number recently re-observed. The strength and lack on the aspects such as research topics, habitat and landscape covered in the odonata studies were also recognized in order to give perspective on what can be done in this field in the future.

Acknowledgements
The authors would like to thank Irviandi Yonanta for his assistance during fieldwork. This work was made possible by financial support provided by the 2020 Fundamental Research Grant from Faculty of Mathematics and Natural Science, Universitas Andalas with contract number 27/UN.16.03.D/PP/FMIPA/2020 (on behalf Muhammd Nazri Janra).

References
[1] Silsby J 2001 Dragonflies of the World (Washington DC: Smithsonian Institution Press)
[2] Orr AG 2006 Odonata in Bornean tropical rain forest formations: diversity, endemcity and implications for conservation management, p: 51-78. In: Cordero-Rivera A (ed) Forest and Dragonflies (Sofia-Moscow: Pensoft Publisher)
[3] Kalkman VJ, Clausnitzer V, Dijkstra KB, Orr AG, Paulson DR and van Tol J 2008 Global diversity of dragonflies (Odonata) in freshwater Hydrobiologia 595 351-363
[4] Margono BA, Potapov PV, Turubanova S, Stolle F and Hansen MC 2014 Primary forest cover loss in Indonesia over 2000-2012 Nat. Clim. Chang. 4 730-735.
[5] Simaika JP and Samways MJ 2015 Predicted range shifts of dragonflies over a wide elevation gradient in the southern hemisphere Freshw. Sci. 34 1133-1143
[6] Goertzzen D and Suhling F 2018 Urbanization versus other land use: Diverging effects on dragonfly communities in Germany Divers. Distr. 25 38-47.
[7] Drury U 1773 Illustrations of natural history. (London: White)
[8] Lupiyaningdyah P 2019 The past, present and future of dragonfly research in Indonesia. BIO Web of Conferences 19: 1-5.
[9] Ris F 1927 Odonaten von Sumatra, gesammelt von Edward Jacobson Zool. Meded. Leiden 10 1-49
[10] Lief tinck MA 1935 A synopsis of the Odonata (dragonflies) of Sumatra Miscellanea Zoologica Sumatranana 92–93 1–23
[11] Buchori D, Ardhian D, Salaki LD, Pirnanda D, Agustina M, Pradana EW, Rahadi WS and Nazar L 2019 Capung KELOLA Sendang: Mengumpulkan Yang Terserak, Merawat Yang Tersisa. (Indonesia: Zoological Society of London)
[12] Ramdhani A, Ramdhani MA and Amin AS 2014 Writing a literature review research paper: A step-by-step approach. Int. J. Sci.: Basic Appl. 03(01) 47-56
[13] Snyder H 2019 Literature review as a research methodology: An overview and guidelines Journal of Business Research 104 333-339
[14] Laidlaw FF 1926 Spolia Mentawiensia: Dragonflies (Odonata) J. Malays. Branch R. Asiat. Soc.
[15] Lieftinck MA 1948 The Odonata of Enggano with a survey of the dragonfly-fauna of the West Sumatran chain of islands Treubia 19 279-304

[16] Lieftinck MA 1954 Handlist of Malaysian Odonata. A catalogue of the dragonflies of the Malay Peninsula, Sumatra, Java and Borneo, including the adjacent small islands Treubia (Suppl.) 22 i–xiii + 1–202 (1 folded map excl)

[17] Hämäläinen M 2016 Description of Heliocypha vantoli spec. nov. from Siberut in the Mentawai Islands (Odonata: Chlorocyphidae) Zootaxa 4079(4) 495-500

[18] Hanum SO, Salmah S and Dahelmi 2013 Jenis-jenis capung (Odonata) di kawasan Taman Satwa Kandi Kota Sawahlunto, Sumatera Barat JBio. Unand. 2(1) 71-76

[19] Saputri D, Dahelmi and Safitri E 2013 Jenis-jenis capung (Odonata) di persawahan masyarakat Rimbo Tarok Kelurahan Gunung Sarik, Kecamatan Kuranji Padang Bachelor Thesis in Educational Biology (Padang: STKIP PGRI) Unpublished

[20] Emrades C 2008 Jenis-jenis capung di Hutan Pendidikan dan Penelitian Biologi, Limau Manis Kodya Padang Bachelor Thesis in Biology (Padang: Universitas Andalas) Unpublished

[21] Pertiwi LD 2013 Jenis-jenis Capung (Odonata) di Sekitar Cagar Alam Anai Jaya Kabupaten Andalas Bachelor Thesis in Biology (Padang: Universitas Andalas) Unpublished

[22] Gustia N, Jasmi, Pratiwi P 2014 Kepadatan Populasi Capung Crocothemis servilia (Odonata: Libellulidae) pada Lokasi Persawahan di Kelurahan Anduring Kecamatan Kuranji Padang Sumatera Barat Bachelor Thesis in Educational Biology (Padang: STKIP PGRI) Unpublished

[23] Indah Aulia Gumiati IA, Jasmi, Wahidi I 2015 Komposisi Nimfa Odonata di Batang Tambangan Kenagarian Tambangan Kecamatan X Koto Kabupaten Tanah Datar Bachelor Thesis in Educational Biology (Padang: STKIP PGRI) Unpublished

[24] Harmiko Y, Jasmi, Zeswita AL 2015 Nimfa odonata yang Ditemukan pada Pertanaman Padi Dikampung Ampuan Nagari Lumpo Kecamatan IV Jurai Kabupaten Pesisir Selatan Bachelor Thesis in Educational Biology (Padang: STKIP PGRI) Unpublished

[25] Yuhelfa W, Jasmi, Wahidi I 2015 Kepadatan Nimfa Capung (Odonata) pada Pertanaman Padi Sawah di Kanagarajian Air Bangis Kecamatan Sungai Beremas Kabupaten Pasaman Barat Bachelor Thesis in Educational Biology (Padang: STKIP PGRI) Unpublished

[26] Yolanda, Jasmi, Wahidi I 2017 Komposisi Nimfa Capung (Odonata) di Sungai Jalamu Kenagarajan IV Koto Hilie Kecamatan Batang Kapas Kabupaten Pesisir Selatan Bachelor Thesis in Educational Biology (Padang: STKIP PGRI) Unpublished

[27] Janra MN 2018 Inventory of dragonflies and damselflies (Odonata) in Andalas University's Limau Manis campus complex, Padang: Using photographic approach JN Unsyiah 18(2) 89-96

[28] Janra MN 2020 Procordulia sp. at the peak of Mt. Talamau, West Sumatra, Indonesia Agrion 24(01) 40-44

[29] Janra MN 2020 Some additional records to the inventory of dragonflies and damselflies (Odonata) in Andalas University's Limau Manis Campus Complex, Padang, West Sumatra JN Unsyiah 20(01) 1-5

[30] Janra MN 2020 Conserving Dragonfly Natural Habitat in Andalas University Campus Complex to Develop a Sustainable Thematic Ecotourism Manuscript submitted for publication

[31] Janra MN, Herwina H, Rahmayani H, Sehati DP and Fandesti SR 2020 Defining the rearing cage for Agriocnemis femina damselfly (Odonata, Zygoptera, Coenagrionidae) Jurnal Riset Biologi dan Aplikasinya 2(2) 42-48

[32] Abu-Shanab E and Nor KM 2013 The influence of language on research results Management Research and Practice 4(2) 37-48

[33] Phan QT, Karube H and Sasamoto A 2018 Derpanosticta draco sp. nov., a new damselfly from northern Sumatra, Indonesia (Odonata: Platystictidae) Tombo 60 66-70

[34] Perrigo A, Hoorn C and Antonelli A 2019 Why mountains matter for biodiversity J. Biogeogr. 42(2) 315-325