\(B_d - \bar{B}_d \) mixing vs. \(B_s - \bar{B}_s \) mixing with the anomalous \(Wtb \) couplings

Jong Phil Lee
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea

Kang Young Lee
Department of Physics, Korea University, Seoul 136-713, Korea
(Dated: September 29, 2008)

We explore the effects of the anomalous \(tbW \) couplings on the \(B_d - \bar{B}_d \) mixing and recently measured \(B_s - \bar{B}_s \) mixing. The combined analysis of mixings via box diagrams with penguin decays provides strong constraints on the anomalous top quark couplings. We find the bound from the \(B_d - \bar{B}_d \) mixing data is stronger than that from the \(B_s - \bar{B}_s \) mixing.

I. INTRODUCTION

Expected is the production of a large number of top quark pairs at the CERN Large Hadron Collider (LHC), which allows us to probe the top quark couplings [1,2]. The \(tbW \) coupling will be directly tested with high precision through the dominant \(t \rightarrow bW \) decays at the LHC and other top decay channels are highly suppressed by small mixing angles. The present value of \(|V_{tb}| \) is determined at the Tevatron to be \(|V_{ts}| > 0.78 \) [3] and \(|V_{tb}| > 0.89 \) [4] at 95\% C. L. with assuming the Cabibbo-Kobayashi-Maskawa (CKM) unitarity. The direct determination of \(|V_{tb}| \) without assuming unitarity is performed through the single top quark production and the CDF [5] and the D0 [6] obtained the limit \(|V_{tb}| > 0.74 \) at 95\% C. L.

The standard model (SM) of electroweak and strong interactions has been successful in describing a wide range of experimental data so far. The only unobserved ingredient of the SM is the Higgs boson and a few coupling constants are not precisely tested yet. The present measurements on \(|V_{ts}, V_{tb}| \) mixing involves the t\(\gamma \) and \(t\mu \) decays at the LHC and other top decay channels are highly suppressed by small mixing angles. The \(B_s - \bar{B}_s \) mixing arises through the box diagrams with internal lines of \(W \) boson and \(u \)-type quarks in the SM. Since the top quark loop dominates, the box diagrams are sensitive to the anomalous top couplings. The current average of the \(B_d - \bar{B}_d \) mixing is found to be [7]

\[
\Delta M_d = (0.507 \pm 0.005) \text{ ps}^{-1}.
\]

Recently the measurements of the \(B_s - \bar{B}_s \) mixing by the CDF [8] and D0 [9] collaborations are reported to be

\[
\Delta M_s = \begin{cases}
(17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1} & \text{(CDF)}, \\
(18.53 \pm 0.93 \pm 0.30) \text{ ps}^{-1} & \text{(D0)},
\end{cases}
\]

where the first error is statistical and the second is systematic.

Effects of the anomalous top quark couplings have been widely studied in direct and indirect ways [10,11,12,13,14,15,16]. Without specifying the underlying model, we use an effective lagrangian in this work by introducing two complex parameters such that

\[
\mathcal{L} = -\frac{g}{\sqrt{2}} \sum_{q=d,s,b} V_{tq}^{\text{eff}} \bar{t} \gamma^\mu (P_L + \xi_q P_R) q W^\mu_+ + H.c.,
\]

where \(\xi_q \) are complex parameters measuring effects of the anomalous right-handed couplings while \(V_{tq}^{\text{eff}} \) measures the SM-like left-handed couplings. The \(B_d - \bar{B}_d \) mixing involves the \(tdW \) and \(tbW \) couplings while the \(B_s - \bar{B}_s \) mixing involves the \(tsW \) and \(tbW \) couplings. On the other hand, the radiative \(B \rightarrow X_s \gamma \) decay also provides strict constraints on the \(tbW \) and \(tsW \) couplings. If we consider all possible anomalous top quark couplings, there are too many parameters, \(3(d,s,b) \times 2(L - R) \times 2(\text{complex}) = 12 \), and it is hard to get meaningful informations. Thus we
concentrate on the couplings for only one flavour by keeping the other couplings to be zero. In the Ref. [11], we have probed the tsW couplings through $B_s - B_d$ mixing and $B \rightarrow X_s \gamma$ decay. We probe the anomalous tbW couplings in this work, and the $B_d - \bar{B}_d$ mixing should be incorporated since tbW couplings are common to the $B_d - \bar{B}_d$ and $B_s - \bar{B}_s$ mixings. Actually the effects of the anomalous right-handed coupling ξ_b in $B \rightarrow X_s \gamma$ decay are enhanced by m_t/m_b due to the structure of the penguin diagram in the presence of the right-handed couplings, but no such enhancements exist for the box diagram. Consequently the ΔM_q constrain only the anomalous left-handed coupling V_{tb}^{eff}, while the penguin diagrams constrain both of V_{tb}^{eff} and ξ_b. Thus the combined analysis of $B - \bar{B}$ mixing and $B \rightarrow X_s \gamma$ decay provides a synergy in probing the anomalous top couplings. This paper is organized as follows: In section II, the $B \rightarrow X_s \gamma$ constraints on the anomalous tbW couplings is given. In section III, the analysis of the $B_d - \bar{B}_d$ mixing and the $B_s - \bar{B}_s$ mixing with anomalous tbW couplings is presented. Finally we conclude in section IV.

II. $B \rightarrow X_s \gamma$ DECAYS

The $\Delta B = 1$ effective Hamiltonian for $b \rightarrow s \gamma$ process is given by

$$\mathcal{H}_{e,f}^{\Delta B=1} = -\frac{4G_F}{\sqrt{2}} V_{ts}V_{tb} \sum_{i=1}^{8} C_i(\mu)O_i(\mu),$$

where the dimension 6 operators O_i constructed in the SM are given in the Ref. [17]. Matching the effective Hamiltonian and our model given in Eq. (3) at $\mu = m_W$ scale, we obtain the Wilson coefficients $C_i(\mu = m_W)$

$$C_2(m_W) = C_2^{\text{SM}}(m_W),$$

$$C_7(m_W) = C_7^{\text{SM}}(m_W) + \xi_b \frac{m_t}{m_b} F_R(x_t),$$

$$C_8(m_W) = C_8^{\text{SM}}(m_W) + \xi_b \frac{m_t}{m_b} G_R(x_t),$$

and otherwise coefficients are zeros, where $C_2(m_W) = -1$, $C_7(m_W) = F(x_t)$, and $C_8(m_W) = G(x_t)$ with the well-known Inami-Lim loop functions $F(x)$ and $G(x)$ found in [17, 18] and the new loop functions

$$F_R(x) = -\frac{20 + 31x - 5x^2}{12(x - 1)^2} + \frac{x(2 - 3x)}{2(x - 1)^3} \ln x,$$

$$G_R(x) = -\frac{4 + x + x^2}{4(x - 1)^2} + \frac{3x}{2(x - 1)^3} \ln x,$$

agree with those in Ref. [19]. We note that the anomalous right-handed coupling ξ_b involves an enhancement factor m_t/m_b.

We obtain the branching ratio of $B \rightarrow X_s \gamma$ process at next-leading-order (NLO) in terms of ξ_b as

$$\text{Br}(B \rightarrow X_s \gamma) = \text{Br}^{\text{SM}}(B \rightarrow X_s \gamma) \left(\frac{|V_{ts}^*V_{tb}^{\text{eff}}|}{0.0404} \right)^2 \left[1 + \text{Re}(\xi_b) \frac{m_t}{m_b} \left(0.68 \frac{F_R(x_t)}{F(x_t)} + 0.07 \frac{G_R(x_t)}{G(x_t)} \right) + \frac{|\xi_b|^2 m_t^2}{m_b^2} \left(0.112 \frac{F_R^2(x_t)}{F^2(x_t)} + 0.002 \frac{G_R^2(x_t)}{G^2(x_t)} + 0.025 \frac{F_R(x_t)G_R(x_t)}{F(x_t)G(x_t)} \right) \right],$$

of which numerical coefficients depends on the kinematic cut of the photon energy spectrum. We take the cut $E_\gamma > 1.6$ GeV and the numerical values are obtained in the Ref. [20]. The SM branching ratio is predicted to be \begin{equation}
\text{Br}(B \rightarrow X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}
\end{equation}
with the same photon energy cut at next-to-next-to-leading order (NNLO) [21].

The current world average value of the measured branching ratio is given by [22]

$$\text{Br}(B \rightarrow X_s \gamma) = (3.55 \pm 0.24^{+0.09}_{-0.10} \pm 0.03) \times 10^{-4},$$

with the same E_γ cut.

III. $B - \bar{B}$ MIXING
A neutral B^0_q meson can oscillate into its antiparticle \bar{B}^0_q via flavour-changing processes of $B_q - \bar{B}_q$ mixing. The oscillation is described by a Schrödinger equation,

$$i \frac{d}{dt} \begin{pmatrix} B_q(t) \\ \bar{B}_q(t) \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2} \Gamma \end{pmatrix} \begin{pmatrix} B_q(t) \\ \bar{B}_q(t) \end{pmatrix},$$

(9)

where M is the mass matrix and Γ the decay matrix. The $\Delta B = 2$ transition amplitudes given by

$$\langle B^0_q | H^{\Delta B=2}_{\text{eff}} | \bar{B}^0_q \rangle = M^q_{12},$$

(10)

is related to the mass difference between the heavy and the light mass eigenstates,

$$\Delta M_q \equiv M^q_H - M^q_L = 2|M^q_{12}|,$$

(11)

where M^q_H and M^q_L are the mass eigenvalues for the heavy and the light eigenstates respectively. Correspondingly the total decay width difference is defined by

$$\Delta \Gamma_q \equiv \Gamma^q_L - \Gamma^q_H.$$

(12)

The SM predicts the small $\Delta \Gamma_d/\Gamma_d < 1\%$ and the relatively large $\Delta \Gamma_s/\Gamma_s \sim 10\%$. Since the decay matrix elements Γ^q_{12} is derived from the SM decays $b \to c\bar{c}q$ at tree level, it is hardly affected by the new physics. We ignore the new effects of the anomalous top couplings on $\Delta \Gamma_q$ and just consider the mass differences in this analysis.

The box diagrams are calculated to obtain the transition amplitudes M^q_{12}. Inclusion of the odd number of right-handed couplings in the box diagram vanishes due to vanishing the loop integrals of the odd number of momentum. Thus the leading contribution of the anomalous right-handed top couplings to the $B_s - \bar{B}_s$ mixing is quadratic order of ξ_b.

$$M^q_{12} = \frac{G_F m_b^2}{12\pi} m_{B_s} \bar{B}_s B_{s} f^2_{B_s} S_0(x_t) \left(V^*_{tb} V_{tb}^{\text{eff}} \right)^2 \left(1 + \frac{S_2(x_t) \xi_b^2}{S_0(x_t)} \right) \frac{\langle B^0_q | (\bar{b}P_L q)(\bar{b}P_L q) | B^0_q \rangle}{4 \langle B^0_q | (b\gamma P_L q)(b\gamma P_L q) | B^0_q \rangle},$$

(13)
FIG. 2: The bounds on the complex $V_{td}V_{tb}^{\text{eff}}$ plane. The yellow (light gray) region is allowed by $B \to X_s \gamma$ and ΔM_s and the green (dark gray) region by $B \to X_s \gamma$ and ΔM_d. The sin 2β measurements constrain the phase of the $V_{td}V_{tb}^{\text{eff}}$ with the two-fold ambiguity and the allowed regions are denoted by black regions.

where η_q are the perturbative QCD corrections to the $B_q - B_{\bar{q}}$ mixings [22]. The Inami-Lim loop functions are given by

$$S_0(x) = \frac{4x - 11x^2 + x^3}{4(1 - x)^2} - \frac{3x^3}{2(1 - x)^3}\log x,$$

$$S_3(x) = 4x^2 \left(\frac{2}{(1 - x)^2} + \frac{1 + x}{(1 - x)^3}\log x \right).$$

Vacuum insertions to the hadronic matrix elements lead to

$$\frac{\langle B_q^0 | (\bar{b}P_L q)(\bar{b}P_L q) | \bar{B}_q^0 \rangle}{\langle B_q^0 | (\bar{b}\gamma^\mu P_L q)(\bar{b}\gamma^\mu_P L q) | \bar{B}_q^0 \rangle} = \frac{5}{8} \left(\frac{m_{B_q}}{m_b + m_q} \right)^2,$$

and

$$\langle B_q^0 | (\bar{b}\gamma^\mu P_L q)(\bar{b}\gamma^\mu_P L q) | \bar{B}_q^0 \rangle = \frac{8}{3} m_{B_q}^2 \hat{B}_{B_q} f_{B_q}^2,$$

where \hat{B}_{B_q} are the Bag parameters and f_{B_q} the decay constants. The SM predictions of the $B - \bar{B}$ mixings are given by $\Delta M_s = 19.3 \pm 6.74 \text{ ps}^{-1}$ and $\Delta M_d = 0.53 \pm 0.02 \text{ ps}^{-1}$ [23].

We show the allowed parameter sets ($|\xi_b|, |V_{tb}^{\text{eff}}|$) at 95% C. L. in Fig. 1. The black region is allowed by $\text{Br}(B \to X_s \gamma)$ and ΔM_s while the green (gray) region allowed by $\text{Br}(B \to X_s \gamma)$ and ΔM_s. We have the conservative bounds $|V_{tb}| > 0.93$ and $|\xi_b| < 0.027$ in Fig. 1. Since ξ_b and V_{tb}^{eff} are complex parameters, the new physics effects arise in both magnitude and phase of M_{12}^s in general. Effects of the phase and CP violation in M_{12}^s have been measured [24], although not very accurately, and discussed in several literatures [23, 25]. The CP phase of the $B_d - \bar{B}_d$ mixing is measured through the $B \to J/\psi K_s$ and has been tested in many B decay processes [26]. The recent world average value of the weak phase defined by

$$\sin 2\beta = -\frac{V_{td}V_{tb}^*}{V_{td}V_{tb}}$$

is given by

$$\sin 2\beta = 0.680 \pm 0.025$$

(17)
through the time-dependent CP asymmetries into all charmonium states. Figure 2 shows the allowed values of $V_{td}^\ast V_{tb}^{\text{eff}}$ on the complex plane. The yellow (light gray) region denotes the allowed region by $B \to X_s \gamma$ and ΔM_s, and the green (dark gray) region by $B \to X_c \gamma$ and ΔM_d. The allowed region by the sin2β measurements has the two-fold ambiguity on the complex $V_{td}^\ast V_{tb}^{\text{eff}}$ plane. The black region denotes the allowed regions additionally by the world average values of sin2β measurements.

IV. CONCLUDING REMARKS

The neutral B_d^0 meson systems are of great use for search for the new physics effects in top quark couplings. We consider the anomalous tbW couplings parametrized by V_{tb}^{eff} and ξ_b. Combined analysis of $B_s - \bar{B}_s$ mixing, $B_d - \bar{B}_d$ mixing and $B \to X_s \gamma$ penguin decay provides strong constraints on the parameters of V_{tb}^{eff} and ξ_b. We find that the bounds from $B_d - \bar{B}_d$ mixing is better than that from $B_s - \bar{B}_s$ mixing. It is because the SM prediction of ΔM_d is more precise than that of ΔM_s.

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund KRF-2007-C00145) and the BK21 program of Ministry of Education (K.Y.L.).

[1] M. Beneke et al., [hep-ph/0003033]
[2] W. Bernreuther, J. Phys. G 35, 083001 (2008), arXiv:0805.1335 [hep-ph].
[3] A. Acosta et al., CDF collaboration, Phys. Rev. Lett. 95, 102002 (2005.)
[4] V. M. Abazov et al., D0 collaboration, Phys. Rev. Lett. 100, 192003 (2008).
[5] CDF collaboration, CDF note 8968, contributed to Lepton Photon Symposium 2007, http://www-cdf.fnal.gov/physics/new/top/confNotes/cdf8968STMEpub.pdf.
[6] V. M. Abazov et al., D0 collaboration, Phys. Rev. D 78, 012005 (2008).
[7] Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag/.
[8] A. Abulencia et al., CDF collaboration, Phys. Rev. Lett. 97, 242003 (2006.)
[9] D0 collaboration, D0 Note 5618-CONF.
[10] F. Larios, M.A. Perez, and C.P. Yuan, Phys. Lett. B 457, 334 (1999).
[11] J. P. Lee and K. Y. Lee, Phys. Rev. D 78, 056004 (2008).
[12] K. Y. Lee and W. Y. Song, Phys. Rev. D 66, 057901 (2002); Nucl. Phys. Proc. Suppl. 111, 288 (2002).
[13] J. P. Lee and K. Y. Lee, Euro. Phys. J. C 29, 373 (2003).
[14] K. Y. Lee, Phys. Lett. B 632, 99 (2006).
[15] J. P. Lee, Phys. Rev. D 69, 014017 (2004).
[16] B. Grzadkowski and M. Misiak, arXiv:0802.1413 [hep-ph]; E. Boos, A. Pukhov, M. Sachwitz, and H.J. Schreiber, Phys. Lett. B 404, 119 (1997); E. Boos, M. Dubinin, M. Sachwitz, and H.J. Schreiber, Euro. Phys. J. C 16, 269 (2000); S. D. Rindani, Pramana 54, 791 (2000); A. Abd El-Hady and G. Valencia, Phys. Lett. B 414, 173 (1997); C.-X. Yue, G.-R. Lu, and W.-B. Li, Chinese Phys. Lett. 18, 349 (2001); T. G. Rizzo, Phys. Rev. D 58, 055009 (1998); Z. G. Berezhiani and M. Yu. Khlopov, Sov. J. Nucl. Phys. 51, 739 (1990); ibid. 51, 935 (1990); Z. G. Berezhiani, M. Yu. Khlopov and R. R. Khomeriki, Sov. J. Nucl. Phys. 52, 344 (1990).
[17] A.J. Buras, [hep-ph/0006471] G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[18] T. Inami and C.S. Lim, Prog. Theor. Phys. 65, 297 (1981).
[19] P. Cho and M. Misiak, Phys. Rev. D 49, 5894 (1994).
[20] A.L. Kagan and M. Neubert, Euro. Phys. J. C 7, 5 (1999).
[21] M. Misiak and M. Steinhauser, Nucl. Phys. B764, 62 (2007); M. Misiak et al., Phys. Rev. Lett. 98, 022002 (2007).
[22] A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B347, 491 (1990).
[23] A. Lenz and U. Nierste, JHEP 06, 072 (2007).
[24] V. M. Abazov et al., D0 Collaboration, Phys. Rev. D 76, 057101 (2007); T. Aaltonen et al., CDF Collaboration, Phys. Rev. Lett. 100, 161802 (2008); V. M. Abazov et al., D0 Collaboration, arXiv:0802.2255 [hep-ex].
[25] U. Nierste, Int. J. Mod. Phys. A 22, 5986 (2007); P. Ball, [hep-ph/0703314] A. Lenz, Phys. Rev. D 76, 065006 (2007); M. Blanke, A. J. Buras, S. Recksiegel and C. Tarantino, arXiv:0805.3938 [hep-ph]; J. Hisano and Y. Shimizu, arXiv:0805.3327 [hep-ph]; P. Ko, Nucl. Phys. Proc. Suppl. 163, 185 (2007); J. K. Parry and H. h. Zhang, Nucl. Phys. B802, 63 (2008); F. J. Botella, G. C. Branco and M. Nebot, arXiv:0805.3999 [hep-ph]; J. A. Aguilar-Saavedra, F. J. Botella, G. C. Branco and M. Nebot, Nucl. Phys. B706, 204 (2005); N. Kifune, J. Kubo and A. Lenz, Phys. Rev. D 77, 076010 (2008).
[26] B. Aubert et al., BaBar collaboration, Phys. Rev. Lett. 86, 2515 (2001); K. Abe et al., Belle collaboration, Phys. Rev. Lett. 87, 091802 (2001).