On the Topological Centre Problem for Weighted Convolution Algebras

Matthias Neufang

Abstract

Let G be a locally compact non-compact group. We show that under a very mild assumption on the weight function w, the weighted group algebra $L_1(G, w)$ is strongly Arens irregular in the sense of [Dal–Lam–Lau 01]. To this end, we first derive a general factorization theorem for bounded families in the $L_\infty(G, w^{-1})^*$-module $L_\infty(G, w^{-1})$.

1 Introduction

Let G be a locally compact group, and let $w : G \to (0, \infty)$ be a weight function, i.e., a positive continuous function on G such that $w(st) \leq w(s)w(t)$ for all $s, t \in G$; for convenience we shall assume that $w(e) = 1$, where e is the neutral element of G. We will consider the following spaces, normed in such a way that multiplication resp. division by the weight becomes an isometry between the unweighted and the corresponding weighted space (whose norm we will denote by $\| \cdot \|_w$):

- $L_1(G, w) = \{ f \mid wf \in L_1(G) \}$
- $L_\infty(G, w^{-1}) = \{ f \mid w^{-1}f \in L_\infty(G) \}$
- $LUC(G, w^{-1}) = \{ f \mid w^{-1}f \in LUC(G) \}$
- $C_0(G, w^{-1}) = \{ f \mid w^{-1}f \in C_0(G) \}$
- $M(G, w) = \{ \mu \mid w\mu \in M(G) \}$

Then we have $L_\infty(G, w^{-1}) = L_1(G, w)^*$ and $M(G, w) = C_0(G, w^{-1})^*$. For every $y \in G$, we define $\tilde{\delta}_y := w(y)^{-1} \delta_y$, which is an element of norm one in $M(G, w)$.

Our aim is to show that for all locally compact non-compact groups, the weighted group algebra $L_1(G, w)$ is strongly Arens irregular in the sense of Dales–Lamb–Lau (see [Dal–Lam–Lau 01]), provided the weight satisfies some very mild boundedness condition. Here, strong Arens irregularity means that the topological centre of the bidual algebra $(L_1(G, w)^{**}, \circ)$, equipped with the first Arens product, precisely equals the algebra $L_1(G, w)$ itself, i.e., it is extremally small. This is a generalization of the main result, Thm. 1, of [Lau–Los 88], where the corresponding assertion is proved for the (unweighted) group algebra $L_1(G)$, to the weighted situation. Although covering a

2000 Mathematics Subject Classification: 22D15, 43A20, 43A22.

Key words and phrases: locally compact group, weighted group algebra, left uniformly continuous functions, Arens product, topological centre.

The author is currently a PIMS Postdoctoral Fellow at the University of Alberta, Edmonton, where this work was accomplished. The support of PIMS is gratefully acknowledged.
by far more general case, our proof is not of higher complexity, if not even simpler, than the one given in [LAU–LOS 88].

In the following, we shall always regard $L_1(\mathcal{G}, w)^{**}$ as endowed with the first Arens multiplication. Let us briefly recall the three step construction of the latter, arising from the convolution product (denoted by “$*$”) in $L_1(\mathcal{G}, w)$ via various module actions. – For $m, n \in L_1(\mathcal{G}, w)^{**}$, $h \in L_1(\mathcal{G}, w)^*$ and $f, g \in L_1(\mathcal{G}, w)$ one defines:

$$
\langle h \circ f, g \rangle := \langle h, f * g \rangle \\
\langle n \circ h, f \rangle := \langle n, h \circ f \rangle \\
\langle m \circ n, h \rangle := \langle m, n \circ h \rangle.
$$

A fairly comprehensive exposition of the basic theory of Arens products is given in [PAL 94], §1.4. As for topological centres, an excellent source is [LAU–ÜLG 96]. We shall only need the definition of the latter, which we briefly recall here:

$$Z_t(\mathcal{L}_1(\mathcal{G}, w)^{**}) := \{m \in \mathcal{L}_1(\mathcal{G}, w)^{**} \mid n \mapsto m \circ n \text{ is } w^* - w^* - \text{continuous on } \mathcal{L}_1(\mathcal{G}, w)^{**}\}.$$

We will use the fact (cf. [GR0 90], Prop. 1.3) that, with the natural module operation stemming from the construction of the first Arens product on $\mathcal{L}_1(\mathcal{G}, w)^{**}$, the equality $L_\infty(\mathcal{G}, w^{-1}) \odot \mathcal{L}_1(\mathcal{G}, w) = \text{LUC}(\mathcal{G}, w^{-1})$ holds. Hence, a natural module operation of $\text{LUC}(\mathcal{G}, w^{-1})^*$ on $L_\infty(\mathcal{G}, w^{-1})$ is given by

$$\langle m \circ h, g \rangle = \langle m, h \circ g \rangle,$$

where $m \in \text{LUC}(\mathcal{G}, w^{-1})^*$, $h \in L_\infty(\mathcal{G}, w^{-1})$, $g \in \mathcal{L}_1(\mathcal{G}, w)$. It is readily verified that we have $m \circ h = \bar{m} \odot h$, where \bar{m} is an arbitrary Hahn-Banach extension of m to $L_\infty(\mathcal{G}, w^{-1})^*$.

In the sequel, we shall denote by $\mathfrak{c}(\mathcal{G})$ the compact covering number of the group \mathcal{G}, i.e., the least cardinality of a compact covering of \mathcal{G}. For the sake of brevity, we further introduce the following terminology (the first part of the definition also appears in [DAL–LAM–LAI 01]).

Definition 1.1. (i) A subset S of \mathcal{G} will be called dispersed if S is not contained in any union of a family of compact subsets of \mathcal{G}, the family having cardinality strictly less than $\mathfrak{c}(\mathcal{G})$.

(ii) For a subset $S \subseteq \mathcal{G}$, we say that the weight w is diagonally bounded on S if we have:

$$\sup_{s \in S} w(s)w(s^{-1}) < \infty.$$

Now we can formulate the main result of the present note; we remark that it has very recently also been obtained independently by Dales–Lamb–Lau in [DAL–LAM–LAI 01], though with a different proof. In particular, our factorization result, Theorem 2.2, does not appear in [DAL–LAM–LAI 01].

Theorem 1.2. Let \mathcal{G} be a locally compact non-compact group with compact covering number $\mathfrak{c}(\mathcal{G})$. Suppose that there is a dispersed set $S \subseteq \mathcal{G}$ on which the weight function w is diagonally bounded. Then $L_1(\mathcal{G}, w)$ is strongly Arens irregular.

We wish to stress the following important points regarding our approach:

• We prove a (formal) sharpening of the interesting inclusion contained in Theorem 1.2. Namely, we will show that for an element $m \in L_\infty(\mathcal{G}, w^{-1})^*$ in order to belong to $L_1(\mathcal{G}, w)$, it suffices that left multiplication by m be w^*-w^*-continuous on the w^*-closure of the set of all Hahn-Banach extensions of functionals in $\overline{\delta_{\mathcal{G}}w} \subseteq \text{Ball}(\text{LUC}(\mathcal{G}, w^{-1})^*)$ to $L_\infty(\mathcal{G}, w^{-1})^*$. Instead, the definition of the topological centre demands w^*-continuity on all of $L_\infty(\mathcal{G}, w^{-1})^*$.

2
• The proof is direct and follows, once the necessary prerequisites are established (section 2), a purely Banach algebraic pattern (section 3). Our global procedure is similar to the one presented in [NEU 01a] and may thus be considered as having the same merits as the latter.

2 A factorization theorem for families of functions in \(L_\infty (\mathcal{G}, w^{-1}) \)

In the proof of our main result we will use the following two results, which are of independent interest.

Proposition 2.1. For an arbitrary locally compact group \(\mathcal{G} \), the space \(L_1(\mathcal{G}, w) \) enjoys Mazur’s property of level \(\mathfrak{f}(\mathcal{G}) \cdot \aleph_0 \). – This means that a functional \(m \in L_1(\mathcal{G}, w)^{**} \) actually belongs to \(L_1(\mathcal{G}, w) \) if it carries bounded \(w^* \)-converging nets of cardinality at most \(\mathfrak{f}(\mathcal{G}) \cdot \aleph_0 \) into converging nets.

Proof. This follows from Thm. 4.4 in [NEU 01], which states the above property for the space \(L_1(\mathcal{G}) \), and the fact that the latter is stable under isomorphism (cf. [NEU 01], Remark 4.3). \(\square \)

Next we present our crucial tool, which is a general factorization theorem for bounded families in \(L_\infty (\mathcal{G}, w^{-1}) \); it provides a generalization of Thm. 2.2 in [NEU 01a] to the weighted situation.

Theorem 2.2. Let \(\mathcal{G} \) be a locally compact non-compact group with compact covering number \(\mathfrak{f}(\mathcal{G}) \). Suppose that there exists a family \((\psi_\alpha)_{\alpha \in I} \), \(|I| = \mathfrak{f}(\mathcal{G}) \), of functionals in \(\delta_\mathcal{G}^{w^*} \subseteq \text{Ball} \left(\text{LUC}(\mathcal{G}, w^{-1})^* \right) \) such that whenever \((h_\alpha)_{\alpha \in I} \subseteq L_\infty (\mathcal{G}, w^{-1}) \) is a bounded family of functions, there exists a function \(h \in L_\infty (\mathcal{G}, w^{-1}) \) such that the factorization formula

\[
h_\alpha = \psi_\alpha \circ h
\]

holds for all \(\alpha \in I \).

Proof. For \(y \in \mathcal{G} \), we denote by \(r_y \) the operator of right translation, i.e., \((r_y f)(x) = f(xy) \) whenever \(f \) is a function on \(\mathcal{G} \) and \(x \in \mathcal{G} \).

There is a covering of \(\mathcal{G} \) by open sets whose closure is compact, of minimal cardinality, i.e., of cardinality \(\mathfrak{f}(\mathcal{G}) \), and closed under finite unions; we denote the corresponding family of compacta by \((K_\alpha)_{\alpha \in I} \). Set \(\tilde{I} := I \times I \). For \(\tilde{\alpha} = (\alpha, i) \in \tilde{I} \), put \(K_{\tilde{\alpha}} = K_{(\alpha,i)} := K_\alpha \). Then \((K_{\tilde{\alpha}})_{\tilde{\alpha} \in \tilde{I}} \) is a covering of \(\mathcal{G} \) having the same properties than the original one. Since the set \(S \) is dispersed, by the same reasoning as in Lemma 3 of [Lau–Los 88], we see that there exists a family \((y_{\tilde{\alpha}})_{\tilde{\alpha} \in \tilde{I}} \subseteq S \) such that

\[
K_{\tilde{\alpha}}y_{\tilde{\alpha}}^{-1} \cap K_{\tilde{\beta}}y_{\tilde{\beta}}^{-1} = \emptyset \quad \forall \tilde{\alpha}, \tilde{\beta} \in \tilde{I}, \tilde{\alpha} \neq \tilde{\beta}.
\] (1)

Set \(S' := \{ y_{\tilde{\alpha}} | \tilde{\alpha} \in \tilde{I} \} \). We define, for \((\alpha, i), (\beta, j) \in \tilde{I} \):

\[
(\alpha, i) \preceq (\beta, j) \iff K_{(\alpha, i)} \subseteq K_{(\beta, j)} \iff K_\alpha \subseteq K_\beta \iff \alpha \preceq' \beta.
\] (2)

Let \(\mathfrak{F} \) be an ultrafilter on \(I \) which dominates the order filter. Define, for \(j \in I \),

\[
\psi_j' := w^* - \lim_{\beta \to \mathfrak{F}} y_{(\beta,j)}^{-1} \in \delta_\mathcal{G}^{w^*} \subseteq \text{Ball} \left(\text{LUC}(\mathcal{G}, w^{-1})^* \right),
\]
and let ψ_j be arbitrary Hahn-Banach extensions of ψ_j' to $L_\infty(G, w^{-1})^*$.

Since w is diagonally bounded on S', we have:

$$\sup_{s \in S'} \| w \left(s^{-1} \right) \delta_s \|_w = \sup_{s \in S'} w(s)w \left(s^{-1} \right) < \infty.$$

Thus, the family of functions

$$H_{(\alpha,i)} := \left(w \left(y_{(\alpha,i)}^{-1} \right) \delta_{(y_{(\alpha,i)}, h_i)} \right) = w \left(y_{(\alpha,i)}^{-1} \right) r_{y_{(\alpha,i)}} \left(\chi_{K_{(\alpha,i)}} h_i \right)$$

is bounded in $L_\infty(G, w^{-1})$, whence $(w^{-1} H_{(\alpha,i)})$ is a bounded family in $L_\infty(G)$. By (1), the projections $r_{y_{(\alpha,i)}} \chi_{K_{(\alpha,i)}} = \chi_{K_{(\alpha,i)}(y_{(\alpha,i)}^{-1})}$ are pairwise orthogonal, so that

$$H := \sum_{\alpha \in I} \sum_{i \in I} w^{-1} H_{(\alpha,i)} \quad (w^* \text{ - limits})$$

defines a function in $L_\infty(G)$. Hence, we have

$$h := \sum_{\alpha \in I} \sum_{i \in I} H_{(\alpha,i)} \in L_\infty(G, w^{-1}).$$

Using (1), we obtain for all $(\alpha,i), (\beta,j), (\gamma,k) \in \overline{I}$, where $(\gamma,k) \preceq (\beta,j)$:

$$\chi_{K_{(\gamma,k)}} r_{y_{(\beta,j)}} r_{y_{(\alpha,i)}} \left(\chi_{K_{(\alpha,i)}} h_i \right) = \chi_{K_{(\gamma,k)}} \chi_{K_{(\beta,j)}} r_{y_{(\beta,j)}} r_{y_{(\alpha,i)}} \left(\chi_{K_{(\alpha,i)}} h_i \right)$$

$$= \chi_{K_{(\gamma,k)}} \left[r_{y_{(\beta,j)}} \left(r_{y_{(\beta,j)}} \chi_{K_{(\beta,j)}} \right) r_{y_{(\alpha,i)}} \left(\chi_{K_{(\alpha,i)}} h_i \right) \right]$$

$$= \chi_{K_{(\gamma,k)}} r_{y_{(\beta,j)}} \chi_{K_{(\gamma,k)}} h_j.$$

Taking into account (2), we deduce that for all $j \in I$ and $(\gamma,k) \in \overline{I}$:

$$\chi_{K_{(\gamma,k)}} \left(\psi_j \circ h \right) = w^* - \lim_{\beta \to \overline{\beta}} \sum_{\alpha \in I} \sum_{i \in I} w \left(y_{(\alpha,i)}^{-1} \right) w \left(y_{(\beta,j)}^{-1} \right)^{-1} \chi_{K_{(\gamma,k)}} r_{y_{(\beta,j)}} r_{y_{(\alpha,i)}} \left(\chi_{K_{(\alpha,i)}} h_i \right)$$

$$= \chi_{K_{(\gamma,k)}} h_j,$$

whence the desired factorization formula follows.

\[\square \]

3 Strong Arens irregularity of $L_1(G, w)$

We now come to the proof of Theorem 1.2. – To establish the non-trivial inclusion, let $m \in Z_l (L_1(G, w))^{**}$. The group G being non-compact, we infer from Proposition 2.1 that $L_1(G, w)$ has Mazur’s property of level $\mathfrak{p}(G)$. So in order to prove that $m \in L_1(G, w)$, let $(h_{\alpha})_{\alpha \in I} \subseteq L_\infty(G, w^{-1})$ be a bounded net converging w^* to 0, where $|I| = \mathfrak{p}(G)$. Thanks to Theorem 2.2, we have the factorization

$$h_{\alpha} = \psi_{\alpha} \circ h = \widetilde{\psi}_{\alpha} \circ h \quad (\alpha \in I)$$
with \(\psi_\alpha \in \delta^w (G) \subseteq \text{Ball}(\text{LUC}(G, w^{-1})) \) and \(h \in L_\infty(G, w^{-1}) \). Here, \(\widetilde{\psi}_\alpha \) denotes some arbitrarily chosen Hahn-Banach extension of \(\psi_\alpha \) to \(L_\infty(G, w^{-1})^* \). We have to show that \(a_\alpha := \langle m, h_\alpha \rangle \to 0 \).

Due to the boundedness of \((h_\alpha)_\alpha \), it suffices to prove that every convergent subnet of \((a_\alpha)_\alpha \) tends to 0. Let \((\langle m, h_{\alpha_\beta} \rangle)_\beta \) be such a convergent subnet. Furthermore, let

\[
E := w^* - \lim_{\gamma} \widetilde{\psi}_{\alpha_{\beta_\gamma}} \in \text{Ball} \left(L_\infty(G, w^{-1})^* \right)
\]

be a \(w^* \)-cluster point of the net \(\left(\widetilde{\psi}_{\alpha_\beta} \right)_\beta \subseteq \text{Ball} \left(L_\infty(G, w^{-1})^* \right) \).

We first note that \(E \circ h = 0 \), since for arbitrary \(g \in L_1(G, w) \) we obtain:

\[
\langle E \circ h, g \rangle = \langle E, h \circ g \rangle = \lim_{\gamma} \langle \psi_{\alpha_{\beta_\gamma}}, h \circ g \rangle = \lim_{\gamma} \langle \psi_{\alpha_{\beta_\gamma}} \circ h, g \rangle = \lim_{\gamma} \langle h_{\alpha_{\beta_\gamma}}, g \rangle = 0.
\]

Now we conclude, using the fact that \(m \in Z_\ell (L_1(G, w)^{**}) \):

\[
\lim_{\beta} \langle m, h_{\alpha_\beta} \rangle = \lim_{\gamma} \langle m, h_{\alpha_{\beta_\gamma}} \rangle = \lim_{\gamma} \langle m, \widetilde{\psi}_{\alpha_{\beta_\gamma}} \circ h \rangle = \lim_{\gamma} \langle m \circ \widetilde{\psi}_{\alpha_{\beta_\gamma}}, h \rangle = \langle m \circ E, h \rangle = \langle m, E \circ h \rangle = 0,
\]

which yields the desired convergence.

References

[DALE–LAM–LAU 01] DALES, H. G.; LAMB, D.; LAU, A. T.-M., The second dual of Beurling algebras, preprint.

[GRØ 90] GRØNBÆK, N., Amenability of weighted convolution algebras on locally compact groups, Trans. Amer. Math. Soc. 319 (1990), no. 2, 765–775.

[LAU–LOS 88] LAU, A. T.-M.; LOSERT, V., On the second conjugate algebra of \(L_1(G) \) of a locally compact group, J. London Math. Soc. 37 (1988), 464–470.

[LAU–ÜLG 96] LAU, A. T.-M.; ÜLGER, A., Topological centers of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), no. 3, 1191–1212.

[NEUF 01] NEUFANG, M., On Mazur’s property and property \((X)\), preprint.

[NEUF 01a] NEUFANG, M., A unified approach to the topological centre problem for certain Banach algebras arising in abstract harmonic analysis, preprint.

[PAL 94] PALMER, T. W., Banach algebras and the general theory of *-algebras. Vol. I. Algebras and Banach algebras, Encyclopedia of Mathematics and its Applications, 49. Cambridge University Press, Cambridge, 1994.
AUTHOR’S ADDRESS:
Department of Mathematical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
E-mail: mneufang@math.ualberta.ca