Random-Walk Statistics and the Spherical Harmonic Representation of CMB Maps

Andrew Stannard & Peter Coles
School of Physics & Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

ABSTRACT
We investigate the properties of the (complex) coefficients obtained in a spherical harmonic representation of temperature maps of the cosmic microwave background (CMB). We study the effect of the coefficient phase only, as well as the combined effects of phase and amplitude. The method used to check for anomalies is to construct a “random walk” trajectory in the complex plane where the step length and direction are given by the amplitude and phase (respectively) of the harmonic coefficient. If the fluctuations comprise a homogeneous and isotropic Gaussian random field on the sky, the path so obtained should be a classical “Rayleigh flight” with very well known statistical properties. We illustrate the use of this random-walk representation by using the net walk length as a test statistic, and apply the method to the coefficients obtained from a Wilkinson Microwave Anisotropy Probe (WMAP) preliminary sky temperature map.

Key words: Cosmology: theory – galaxies: clustering – large-scale structure of the Universe.

1 INTRODUCTION
The process of gravitational instability initiated by small primordial density perturbations is a vital ingredient of cosmological models that attempt to explain how galaxies and large-scale structure formed in the Universe. In the standard cosmological model, a period of accelerated expansion (“inflation”) generated density fluctuations with simple statistical properties through quantum processes (Starobinsky 1979, 1980, 1982; Guth 1981; Guth & Pi 1982; Albrecht & Steinhardt 1982; Linde 1982). In this scenario the primordial density field is assumed to form a statistically homogeneous and isotropic Gaussian Random Field (GRF). Over years of observational scrutiny this paradigm has strengthened its hold in the minds of cosmologists and has survived many tests, culminating in those furnished by the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al. 2003; Hinshaw et al 2003).

Since the release of the first (preliminary) WMAP data set it has been subjected to a number of detailed independent analyses that have revealed some surprising features. Eriksen et al. (2004) have pointed out the existence of a North-South asymmetry suggesting that the cosmic microwave background (CMB) revealed by the WMAP data is not statistically homogeneous over the celestial sphere. This is consistent with the results of Coles et al. (2004) who found evidence for phase correlations in the WMAP data; see also Hajian & Souradeep (2003) and Hajian, Souradeep & Cornish (2004). The low–order multipoles of the CMB also display some peculiarities (de Oliveira-Costa et al. 2004a; Efstathiou 2004). Vielva et al. (2004) found significant non–Gaussian behaviour in a wavelet analysis of the same data, as did Chiang et al. (2004), Larson & Wandelt (2004) and Park (2004). Other analyses of the statistical properties of the WMAP have yielded results consistent with the standard form of fluctuation statistics (Komatsu et al. 2003; Colley & Gott 2003). These unusual properties may well be generated by residual foreground contamination (Banday et al. 2003; Naselsky et al. 2003; de Oliveira-Costa et al. 2004; Dineen & Coles 2004) or other systematic effects, but may also provide the first hints of physics beyond the standard cosmological model.

In order to tap the rich source of information provided by future CMB maps it is important to devise as many independent statistical methods as possible to detect, isolate and diagnose the various possible causes of departures from standard statistics. One particularly fruitful approach is to look at the behaviour of the complex coefficients that arise in a spherical harmonic analysis of CMB maps. Chiang et al. (2004), Chiang, Naselsky & Coles (2004), and Coles et al. (2004) have focussed on the phases of these coefficients on the grounds that a property of a statistically homogeneous and isotropic GRF is that these phases are random. Phases can also be used to test for the presence of primordial magnetic fields (Chen et al. 2004; Naselsky et al. 2004)
or evidence of non-trivial topology (Dineen, Rocha & Coles 2004). In this paper we suggest an extension of this idea which involves viewing the entire set of harmonics (both amplitude and phase) in the complex plane.

We describe the basic harmonic description in the next Section. In Section 3 we show how to represent the spherical harmonics as random-walks in the complex plane and give some simple analytic results. We apply the idea to the preliminary WMAP 1-year data in Section 4 and briefly discuss the results in Section 5.

2 SPHERICAL HARMONICS AND GAUSSIAN FLUCTUATIONS

We can describe the distribution of fluctuations in the microwave background over the celestial sphere using a sum over a set of spherical harmonics:

\[\Delta (\theta, \phi) = \frac{T(\theta, \phi) - \bar{T}}{\bar{T}} = \sum_{l=1}^{\infty} \sum_{m=-l}^{l} a_{l,m} Y_{l,m}(\theta, \phi). \tag{1} \]

Here \(\Delta (\theta, \phi) \) is the departure of the temperature from the average at angular position \((\theta, \phi)\) on the celestial sphere in some coordinate system, usually galactic. The \(Y_{l,m}(\theta, \phi) \) are spherical harmonic functions which we define in terms of the Legendre polynomials \(P_{l,m} \) using

\[Y_{l,m}(\theta, \phi) = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_{l,m}(\cos \theta) e^{im\phi}, \tag{2} \]

i.e. we use the Condon-Shortley phase convention. In Equation (1), the \(a_{l,m} \) are complex coefficients which can be written

\[a_{l,m} = x_{l,m} + iy_{l,m} = |a_{l,m}| \exp[i\psi_{l,m}]. \tag{3} \]

Note that, since \(\Delta \) is real, the definitions (2) and (3) requires the following relations between the real and imaginary parts of the \(a_{l,m} \): if \(m \) is odd then

\[x_{l,m} = \Re(a_{l,m}) = -\Re(a_{l,-m}) = -x_{l,-m}, \]
\[y_{l,m} = \Im(a_{l,m}) = \Im(a_{l,-m}) = y_{l,-m}; \tag{4} \]

while if \(m \) is even

\[x_{l,m} = \Re(a_{l,m}) = \Re(a_{l,-m}) = x_{l,-m}, \]
\[y_{l,m} = \Im(a_{l,m}) = -\Im(a_{l,-m}) = -y_{l,-m}; \tag{5} \]

and if \(m \) is zero then

\[\Im(a_{l,m}) = y_{l,0} = 0. \tag{6} \]

From this it is clear that the \(m = 0 \) mode always has zero phase, and there are consequently only \(l \) independent phase angles describing the harmonic modes at a given \(l \). Without loss of information we can therefore restrict our analysis to \(m \geq 0 \).

If the primordial density fluctuations form a Gaussian random field in space the temperature variations induced across the sky form a Gaussian random field over the celestial sphere. This means that

\[\langle a_{l,m} a_{l',m'} \rangle = C_l \delta_{l,l'} \delta_{m,m'}, \tag{7} \]

where \(C_l \) is the angular power spectrum, the subject of much scrutiny in the context of the cosmic microwave background (e.g. Hinshaw et al. 2003), and \(\delta_{l,l'} \) is the Kronecker delta function. Since the phases are random, the stochastic properties of a statistically homogeneous and isotropic Gaussian random field are fully specified by the \(C_l \), which determines the variance of the real and imaginary parts of \(a_{l,m} \) both of which are Gaussian:

\[\sigma^2(x_{l,m}) = \sigma^2(y_{l,m}) = \sigma_l^2 = \frac{1}{2}C_l. \tag{8} \]

3 RANDOM WALKS IN HARMONIC SPACE

To begin with, we concentrate on a simple measure based on the distribution of total displacements. Consider a particular realization of a spherical harmonic coefficient described in the previous section and define it in the context of space the temperature variations induced at angular position \((\theta, \phi)\) on the celestial sphere in some coordinate system, usually galactic. The \(Y_{l,m}(\theta, \phi) \) are spherical harmonic functions which we define in terms of the Legendre polynomials \(P_{l,m} \) using

\[Y_{l,m}(\theta, \phi) = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_{l,m}(\cos \theta) e^{im\phi}, \tag{2} \]

i.e. we use the Condon-Shortley phase convention. In Equation (1), the \(a_{l,m} \) are complex coefficients which can be written

\[a_{l,m} = x_{l,m} + iy_{l,m} = |a_{l,m}| \exp[i\psi_{l,m}]. \tag{3} \]

Note that, since \(\Delta \) is real, the definitions (2) and (3) requires the following relations between the real and imaginary parts of the \(a_{l,m} \): if \(m \) is odd then

\[x_{l,m} = \Re(a_{l,m}) = -\Re(a_{l,-m}) = -x_{l,-m}, \]
\[y_{l,m} = \Im(a_{l,m}) = \Im(a_{l,-m}) = y_{l,-m}; \tag{4} \]

while if \(m \) is even

\[x_{l,m} = \Re(a_{l,m}) = \Re(a_{l,-m}) = x_{l,-m}, \]
\[y_{l,m} = \Im(a_{l,m}) = -\Im(a_{l,-m}) = -y_{l,-m}; \tag{5} \]

and if \(m \) is zero then

\[\Im(a_{l,m}) = y_{l,0} = 0. \tag{6} \]

From this it is clear that the \(m = 0 \) mode always has zero phase, and there are consequently only \(l \) independent phase angles describing the harmonic modes at a given \(l \). Without loss of information we can therefore restrict our analysis to \(m \geq 0 \).

If the primordial density fluctuations form a Gaussian random field in space the temperature variations induced across the sky form a Gaussian random field over the celestial sphere. This means that

\[\langle a_{l,m} a_{l',m'} \rangle = C_l \delta_{l,l'} \delta_{m,m'}, \tag{7} \]

where \(C_l \) is the angular power spectrum, the subject of much scrutiny in the context of the cosmic microwave background (e.g. Hinshaw et al. 2003), and \(\delta_{l,l'} \) is the Kronecker delta function. Since the phases are random, the stochastic properties of a statistically homogeneous and isotropic Gaussian random field are fully specified by the \(C_l \), which determines the variance of the real and imaginary parts of \(a_{l,m} \) both of which are Gaussian:

\[\sigma^2(x_{l,m}) = \sigma^2(y_{l,m}) = \sigma_l^2 = \frac{1}{2}C_l. \tag{8} \]

This is a particularly simple example of a random walk (Mccrea & Whipple 1940; Chandrasekhar 1943; Hughes 1995). Since the displacements in \(x \) and \(y \) are independently Gaussian the net displacement after \(l \) steps is itself Gaussian with variance \(\sigma_l^2 \). The total displacement \(R_l \) is given by

\[R_l = \sqrt{X_l^2 + Y_l^2}. \tag{11} \]

The probability density of \(|R_l| \) to be in the range \((r,r+dr)\) is then itself a Rayleigh distribution of the form

\[p_r = \frac{r}{\sigma_r^2} \exp \left(-\frac{r^2}{2\sigma_r^2} \right). \tag{12} \]

The result (12) only obtains if the steps of the random walk are independent and Gaussian. If the distribution of the individual steps is non-Gaussian, but the steps are independent, then the result (11) will be true for large \(l \) by virtue of the Central Limit Theorem. Exact results for finite \(l \) for example non-Gaussian distributions are given by Hughes (1995).

A slightly different approach is to keep each step length constant. The simplest way of doing this is to define

\[\tilde{R}_l = \sum_{m>0} \frac{\hat{a}_{l,m}}{|a_{l,m}|} = \sum_{m>0} \hat{a}_{l,m}, \tag{13} \]

so that each step is of unit length but in a random direction.
This is precisely the problem posed in a famous letter by Pearson (1905) and answered one week later by Rayleigh (1905). In the limit of large numbers of steps the result maps into the previous result (12) with \(\sigma^2 = 1 \) by virtue of the Central Limit Theorem. For finite values of \(l \) there is also an exact result which can be derived in integral form using a method based on characteristic functions (Hughes 1995).

The result is that the probability density for \(\hat{R}_l \) to be in the range \(r, r + dr \) is

\[
q(r) = r \int_{-\infty}^{\infty} u J_0(\sqrt{r} u) |J_0(u)|^2 du.
\]

The integral is only convergent for \(l > 2 \) but for \(l = 1 \) or \(l = 2 \) straightforward alternative expressions are available (Hughes 1995).

One can use this distribution to test for randomness of the phase angles without regard to the amplitudes. To see how this works, consider the following simple model of phase correlations. Following Watts, Coles & Melott (2003), suppose that the phase difference between adjacent modes has a preferred angle, as modelled by the relation

\[
\hat{a}_{l,m} = \hat{a}_{l,m+1} \cos \theta - u_{l,m+1}.
\]

Here \(u_{l,m} \) is a random variable with \(|u_{l,m}| = |\sin \theta|, \langle u_{l,m} \rangle = 0 \) and \(u_{l,m} \cdot \hat{a}_{l,m} = 0 \), to keep the step length equal to unity. In this model

\[
\langle \hat{a}_{l,m} \cdot \hat{a}_{l,m+n} \rangle = \langle \hat{a}_{l,m+1} \cdot \hat{a}_{l,m} \rangle \cos \theta = \cos^n \theta.
\]

Hence

\[
\langle R_l^2 \rangle = l + 2 \sum_{n > m} \langle \hat{a}_{l,m} \cdot \hat{a}_{l,m+n} \rangle,
\]

which is

\[
\langle R_l^2 \rangle = N + 2 \sum_{n=2}^{l} \sum_{m=1}^{n-1} \cos^{n-m} \theta.
\]

Using the properties of a geometric series this can be seen to be

\[
\langle R_l^2 \rangle = l \left(\frac{1 + \cos \theta}{1 - \cos \theta} \right) = \frac{l}{\xi^2}.
\]

compared with the simple \(\langle R_l^2 \rangle = l \) which obtains if the phases are random. The distribution of total displacements therefore encodes information about phase correlations in the form of a “persistence length”, \(\xi \). The distribution of \(R_l \) therefore encodes information about phase correlations: if there is no preferred direction, \(\cos \theta = 0 \) and the result reduces to the case of a purely random walk with \(\xi = 1 \). Non-zero values of \(\cos \theta \) will alter the mean square displacement relative to this case: it can be either larger if \(\cos \theta \) is positive and steps tend to occur in the same direction in the complex plane (\(\xi > 1 \)), or smaller if \(\xi < 1 \).

So far we have concentrated on fixed \(l \) with a random walk as a function of \(m \). We could instead have fixed \(m \) and considered a random walk as a function of \(l \). Or indeed randomly selected \(N \) values of \(l \) and \(m \). In either case the results above still stand except with \(\sigma^2 \) replaced by an average over all the modes considered:

\[
\sigma^2 = \frac{1}{N} \sum_{l,m} \sigma^2_{l,m}.
\]

We do not consider this case any further in this paper.

4 APPLICATION TO THE WMAP 1 YR DATA

There are many possible ways of using the properties of a random walk to test the hypothesis that the CMB temperature fluctuations are drawn from a statistically homogeneous and isotropic Gaussian random field on the sky could be furnished by comparing the empirical distribution of harmonic random flights with the form (12). This requires an estimate of \(\sigma^2 \). This can either be made using the same data or by assuming a given form for \(C_l \), in which case the resulting test would be of a composite hypothesis that the fluctuations constitute a Gaussian random field with a particular spectrum. For large \(l \) this is can be done straightforwardly, but for smaller values the sampling distribution of \(R_l \) will differ significantly from (12) because of the uncertainty in population variance from a small sample of \(a_{l,m} \). This is the so-called “cosmic variance” problem.

In practice the most convenient way to assess the significance of departures from the relevant distribution would be to perform Monte Carlo experiments of the null hypothesis. For statistical measures more complicated than the net displacement, the best way to set up a statistical test is to use Monte-Carlo re-orderings of the individual steps to establish the confidence level of any departure from Gaussianity. This also enables one to incorporate such complications as galactic cuts.

The WMAP team released an Internal Linear Combination (ILC) map that combined five original frequency band maps in such a way to maintain unit response to the CMB whilst minimising foreground contamination. The construction of this map is described in detail in Bennett et al. (2003). The weighted map is produced by minimizing the variance of the temperature scale such that the weights add to one. To further improve the result, the inner Galactic...
The most discrepant mode turns out to be the CMB temperature maps. Indeed, the main result of this paper is the construction of two-dimensional walks as discussed in Section 3. In order to illustrate the method in the simplest way we performed a simple statistical test on the net displacement of the random walks for different l modes. The results of this analysis do not provide conclusive evidence for departures from a homogeneous and isotropic GRF. For example, two modes are discrepant at 99.9 per cent confidence, compared with the 0.6 expected by chance. In a series of independent random skies with an expectation of 0.6 modes, Poisson statistics give a probability of 88 per cent that less than two modes would be discrepant. The detection of two modes is therefore not an indication of a strong departure from chance.

5 DISCUSSION AND CONCLUSIONS

We have presented a novel representation of the behaviour of spherical harmonic coefficients obtained in the representation of CMB temperature maps. The results show that this simple test does not strongly falsify the null hypothesis, which is not surprising given the simplicity of the measure we have used. The number of modes outside the accepted range is close to that which would be expected if the null hypothesis were true. Notice that slightly more modes show up in the net length case than in the other, perhaps indicating that the phase correlations that are known to exist in this data (Chiang et al. 2003 and Chiang et al. 2004) are masked if amplitude information is also included. These results are obtained for the TOH map so we do not discuss the TOH map here. For both variable-length (9) and unit-length (13) versions of the random-walk we generated 100000 Monte Carlo skies assuming Gaussian statistics. These were used to form a distribution of \hat{R}_l over the ensemble of random-generates skies. A rejection of the null hypothesis (of stationary Gaussianity) at the α per cent level occurs when the measured value of the test statistic lies outside the range occupied by \hat{R}_l. Long runs of directed steps or regular features in the observed structure could be manifestations of phase correlation (Coles et al. 2004). For example, the presence of a primordial magnetic field contribution to the CMB fluctuations would manifest itself in the shape of the random walk. To put this another way, there are many possible paths with the same net displacement, and these will have different shapes depending on the correlations between step size and direction. These phase correlations would manifest themselves at fixed m (Chen et al. 2004). Examples of how similar effects might be produced by foregrounds, galactic cuts and so on are discussed by Naselsky et al. (2005). These phase correlations would manifest themselves in higher-order statistics of the random walk as a function of l. It will also be useful, say, to combine random walks as functions of m for different l: correlations between the net displacements of such walks would indicate the presence of phase correlations too; see Coles et al. (2004). The graphical representation of the set $\{a_{l,m}\}$ in the form illustrated by Figure 1 provides an elegant way of visualizing the behaviour of the harmonic modes and identifying any oddities. These could be quantified using a variety of statistical shape measures: moment of inertia (Rudnick, Beldjennia & Gaspari 1987), fractal dimension, first-passage statistics, shape statistics (e.g. Kuhn & Uson 1982), or any of the methods use to quantify the shape of minimal spanning trees (Barrow, Bhavsar & Sonoda 1985). It would be interesting to try these more sophisticated measures on subsequent releases of the WMAP data.

confidence level	95	99	99.9
unit length	33	6	2
variable length	20	4	1
null	30	6	0.6

Table 1. Results for random-walks with variable step-length and unit step-length for the WMAP ILC data. The columns show the number of l modes for which the test statistic lies outside the α percent confidence limit for the Monte Carlo skies. The final row shows the number of modes that would be expected, on average, to lie outside this range if the null hypothesis were true.
ACKNOWLEDGMENTS

We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. We are grateful to Patrick Dineen for supplying us with the spherical harmonic coefficients for the WMAP ILC. Andrew Stannard received a Mary Cannell summer studentship while this work was being done.

REFERENCES

Albrecht A., Steinhardt P. J., 1982, Phys. Rev. Lett., 48, 1220
Banday A.J., Dickinson C., Davies R.D., Davies R.J., Górski K.M., 2003, MNRAS, 345, 897
Bardeen J.M., Bond J.R., Kaiser N, Szalay A.S., 1986, ApJ, 304, 15
Barrow J.D., Bhavsar S.P., Sonoda D.H., 1985, MNRAS, 216, 17
Bennett C., et al. 2003, ApJS, 148, 1
Chandrasekhar S., 1943, Rev. Mod. Phys., 15, 1
Chen G., Mukherjee P., Kahlaiashvili T., Ratra B., Wang Y., 2004, ApJ, 611, 655
Chiang L.-Y., Naselsky P.D., Coles P., 2004, ApJ, 602, L1
Chiang L.-Y., Naselsky P. D., Verkhodanov O. V., Way M. J., 2003, ApJ, 599, L65
Coles P., Dineen P., Earl J., Wright D., 2004, MNRAS, 350, 989
Colley W.N., Gott J.R., 2003, MNRAS, 344, 686
de Oliveira-Costa A., Tegmark M., Zaldarriaga M., Hamilton A.J.S., 2004, Phys. Rev. D., 69, 063516
de Oliveira-Costa A., Tegmark M., Davies R.D., Gutierrez C.M., Lasenby A.N., Rebolo R., Watson R.A., 2004, ApJ, 606, L89
Dineen P., Coles P., 2004, MNRAS, 348, 52
Dineen P., Rocha G., Coles, P., 2005, MNRAS, 358, 1285
Efstathiou G., 2004, MNRAS, 348, 885
Eriksen H. K., Hansen F. K., Banday A. J., Gorski K. M., Lilje P. B., 2004, ApJ, 605, 14
Guth A. H., 1981, Phys. Rev. D., 23, 347
Guth A. H., Pi S.-Y., 1982, Phys. Rev. Lett. 49, 1110
Hajian A., Souradeep T., 2003, ApJ, 597, L5
Hajian, Souradeep T., Cornish N., 2004, preprint, astro-ph/0406354
Hinshaw G. et al. 2003, ApJ, 148,
Hughes B.D., 2004, Random Walks and Random Environments. Volume I: Random Walks. Oxford University Press, Oxford.
Komatsu E. et al. 2003, ApJ, 148, 119
Kuhn J.R., Uson J.M., 1982, ApJ, 263, L47
Larson D.L., Wandelt B.D., 2004, ApJ, 613, L85
Linde, A.D., 1982, Phys. Lett. B., 117, 175
Tegmark M., de Oliveira-Costa A., Hamilton A.J.S., 2003, Phys. Rev. D., submitted, astro-ph/0505011
Park, C.-G., 2004, MNRAS, 349, 313
Pearson K., 1905, Nature, 72, 294
Rayleigh, 1905, Nature, 72, 318
Rudnick J., Beldjenna A., Gaspari G., 1987, J. Math. Phys. A, 20, 971
Smoot G.F. et al. 1992, ApJ, 396, L1
Starobinsky A. A., 1979, Pis’ma Zh. Eksp. Teor. Fiz., 30, 719
Starobinsky A. A., 1980 Phys. Lett. B., 91, 99
Starobinsky A. A., 1982, Phys. Lett. B., 117, 175
Tegmark M., de Oliveira-Costa A., Hamilton A.J.S., 2003, Phys. Rev. D., 68, 123523
Vielva P., Martínez-Gonzalez E., Barreiro R.B., Sanz J.L., Cayon L., 2004, ApJ, 609, 22
Watts P.I.R., Coles P., Melott A.L., 2003, ApJ, 589, L61