Packing and Covering Properties of Rank Metric Codes

Maximilien Gadouleau and Zhiyuan Yan
Department of Electrical and Computer Engineering
Lehigh University, PA 18015, USA
E-mails: {magc, yan}@lehigh.edu

Abstract

This paper investigates packing and covering properties of codes with the rank metric. First, we investigate packing properties of rank metric codes. Then, we study sphere covering properties of rank metric codes, derive bounds on their parameters, and investigate their asymptotic covering properties.

I. INTRODUCTION

Although the rank has long been known to be a metric implicitly and explicitly (see, for example, [1]), the rank metric was first considered for error control codes by Delsarte [2]. The potential applications of rank metric codes to wireless communications [3], public-key cryptosystems [4], and storage equipments [5], [6] have motivated a steady stream of works [2], [5]–[19], described below, that focus on their properties.

The majority [2], [5]–[7], [12], [13], [15], [17], [18] of previous works focus on rank distance properties, code construction, and efficient decoding of rank metric codes. Some previous works focus on the packing and covering properties of rank metric codes. Both packing and covering properties are significant for error control codes, and packing and covering radii are basic geometric parameters of a code, important in several respects [20]. For instance, the covering radius can be viewed as a measure of performance: if the code is used for error correction, then the covering radius is the maximum weight of a correctable error vector [21]; if the code is used for data compression, then the covering radius is a measure of the maximum distortion [21]. The Hamming packing and covering radii of error control codes have been extensively studied (see, for example, [22], [23]), whereas the rank packing and covering radii have received relatively little attention. It was shown that nontrivial perfect rank metric codes do not exist in
In [10], a sphere covering bound for rank metric codes was introduced. Generalizing the concept of rank covering radius, the multi-covering radii of codes with the rank metric were defined in [11]. Bounds on the volume of balls with rank radii were also derived [19].

In this paper, we investigate packing and covering properties of rank metric codes. The main contributions of this paper are:

- In Section III we study the packing properties of rank metric codes.
- In Section IV we establish further properties of elementary linear subspaces [18], and investigate properties of balls with rank radii. In particular, we derive both upper and lower bounds on the volume of balls with given rank radii, and our bounds are tighter than their respective counterparts in [19].
- In Section V we first derive both upper and lower bounds on the minimal cardinality of a code with given length and rank covering radius. Our new bounds are tighter than the bounds introduced in [10]. We also establish additional sphere covering properties for linear rank metric codes, and prove that some classes of rank metric codes have maximal covering radius. Finally, we establish the asymptotic minimum code rate for a code with given relative covering radius.

II. PRELIMINARIES

A. Rank metric

Consider an n-dimensional vector $x = (x_0, x_1, \ldots, x_{n-1}) \in \mathbb{F}_q^m$. The field \mathbb{F}_q^m may be viewed as an m-dimensional vector space over \mathbb{F}_q. The rank weight of x, denoted as $\text{rk}(x)$, is defined to be the maximum number of coordinates in x that are linearly independent over \mathbb{F}_q [7]. Note that all ranks are with respect to \mathbb{F}_q unless otherwise specified in this paper. The coordinates of x thus span a linear subspace of \mathbb{F}_q^m, denoted as $\mathcal{S}(x)$ or $\mathcal{S}(x_0, x_1, \ldots, x_{n-1})$, with dimension equal to $\text{rk}(x)$. For any basis B_m of \mathbb{F}_q^m over \mathbb{F}_q, each coordinate of x can be expanded to an m-dimensional column vector over \mathbb{F}_q with respect to B_m. The rank weight of x is hence the rank of the $m \times n$ matrix over \mathbb{F}_q obtained by expanding all the coordinates of x. For all $x, y \in \mathbb{F}_q^m$, it is easily verified that $d_R(x,y) = \text{rk}(x-y)$ is a metric over \mathbb{F}_q^m [7], referred to as the rank metric henceforth. The minimum rank distance of a code C, denoted as $d_R(C)$, is simply the minimum rank distance over all possible pairs of distinct codewords. When there is no ambiguity about C, we denote the minimum rank distance as d_R.

Both the matrix form [2], [6] and the vector form [7] for rank metric codes have been considered in the literature. Following [7], in this paper the vector form over \mathbb{F}_q^m is used for rank metric codes.
although their rank weight can be defined by their corresponding \(m \times n \) code matrices over \(\text{GF}(q) \) [7]. The vector form is chosen in this paper since our results and their derivations for rank metric codes can be readily related to their counterparts for Hamming metric codes.

B. Sphere packing and sphere covering

The sphere packing problem we consider is as follows: given a finite field \(\text{GF}(q^m) \), length \(n \), and radius \(r \), what is the maximum number of non-intersecting balls with radius \(r \) that can be packed into \(\text{GF}(q^m)^n \)? The sphere packing problem is equivalent to finding the maximum cardinality of a code over \(\text{GF}(q^m) \) with length \(n \) and minimum distance \(d \geq 2r + 1 \): the spheres of radius \(r \) centered at the codewords of such a code do not intersect one another. Furthermore, when these non-intersecting spheres centered at all codewords cover the whole space, the code is called a perfect code.

The covering radius \(\rho \) of a code \(C \) with length \(n \) over \(\text{GF}(q^m) \) is defined to be the smallest integer \(\rho \) such that all vectors in the space \(\text{GF}(q^m)^n \) are within distance \(\rho \) of some codeword of \(C \) [23]. It is the maximal distance from any vector in \(\text{GF}(q^m)^n \) to the code \(C \). That is, \(\rho = \max_{x \in \text{GF}(q^m)^n} \{d(x, C)\} \).

Also, if \(C \subset C' \), then the covering radius of \(C \) is no less than the minimum distance of \(C' \). Finally, a code \(C \) with length \(n \) and minimum distance \(d \) is called a maximal code if there does not exist any code \(C' \) with the same length and minimum distance such that \(C \subset C' \). A maximal code has covering radius \(\rho \leq d - 1 \). The sphere covering problem for the rank metric can be stated as follows: given an extension field \(\text{GF}(q^m) \), length \(n \), and radius \(\rho \), we want to determine the minimum number of balls of rank radius \(\rho \) which cover \(\text{GF}(q^m)^n \) entirely. The sphere covering problem is equivalent to finding the minimum cardinality of a code over \(\text{GF}(q^m) \) with length \(n \) and rank covering radius \(\rho \).

III. PACKING PROPERTIES OF RANK METRIC CODES

It can be shown that the cardinality \(K \) of a code \(C \) over \(\text{GF}(q^m) \) with length \(n \) and minimum rank distance \(d_R \) satisfies \(K \leq \min \{q^{m(n-d_R+1)}, q^{n(m-d_R+1)}\} \). We refer to this bound as the Singleton bound\(^1\) for codes with the rank metric, and refer to codes that attain the Singleton bound as maximum rank distance (MRD) codes.

For any given parameter set \(n, m, \) and \(d_R \), explicit construction for linear or nonlinear MRD codes exists. For \(n \leq m \) and \(d_R \leq n \), generalized Gabidulin codes [13] can be constructed. For \(n > m \) and \(d_R \leq m \), an MRD code can be constructed by transposing a generalized Gabidulin code of length \(m \).

\(^1\)The Singleton bound in [6] has a different form since array codes are defined over base fields.
and minimum rank distance d_R over $\text{GF}(q^n)$, although this code is not necessarily linear over $\text{GF}(q^m)$. When $n = lm$ ($l \geq 2$), linear MRD codes of length n and minimum distance d_R can be constructed by a cartesian product G^l of an (m, k) generalized Gabidulin code G. Although maximum distance separable codes, which attain the Singleton bound for the Hamming metric, exist only for limited block length over any given field, MRD codes can be constructed for any block length n and minimum rank distance d_R over arbitrary fields $\text{GF}(q^m)$. This has significant impact on the packing properties of rank metric codes as explained below.

For the Hamming metric, although nontrivial perfect codes do exist, the optimal solution to the sphere packing problem is not known for all the parameter sets [22]. In contrast, for rank metric codes, although nontrivial perfect rank metric codes do not exist [8], [9], MRD codes provide an optimal solution to the sphere packing problem for any set of parameters. For given n, m, and r, let us denote the maximum cardinality among rank metric codes over $\text{GF}(q^m)$ with length n and minimum distance $d_R = 2r + 1$ as $A_R(q^m, n, d_R)$. Thus, for $d_R > \min\{n, m\}$, $A_R(q^m, n, d_R) = 1$ and for $d_R \leq \min\{n, m\}$, $A_R(q^m, n, d_R) = \min\{q^m(n-d_R+1), q^n(m-d_R+1)\}$. Note that the maximal cardinality is achieved by MRD codes for all parameter sets. Hence, MRD codes admit the optimal solutions to the sphere packing problem for rank metric codes.

IV. TECHNICAL RESULTS

A. Further properties of elementary linear subspaces

The concept of elementary linear subspace was introduced in our previous work [18]. It has similar properties to those of a set of coordinates, and as such has served as a useful tool in our derivation of properties of Gabidulin codes (see [18]). Although our results may be derived without the concept of ELS, we have adopted it in this paper since it enables readers to easily relate our approach and results to their counterparts for Hamming metric codes.

If there exists a basis set B of vectors in $\text{GF}(q)^n$ for a linear subspace $V \subseteq \text{GF}(q^m)^n$, we say V is an elementary linear subspace and B is an elementary basis of V. We denote the set of all ELS’s of $\text{GF}(q^m)^n$ with dimension v as $E_v(q^m, n)$. The properties of an ELS are summarized as follows [18]. A vector has rank $\leq r$ if and only if it belongs to some ELS with dimension r. For any $V \in E_v(q^m, n)$, there exists $\bar{V} \in E_{n-v}(q^m, n)$ such that $V \oplus \bar{V} = \text{GF}(q^m)^n$, where \oplus denotes the direct sum of two subspaces. For any vector $x \in \text{GF}(q^m)^n$, we denote the projection of x on V along \bar{V} as x_V, and we remark that $x = x_V + x_{\bar{V}}$.

May 8, 2008 DRAFT
In order to simplify notations, we shall occasionally denote the vector space $\text{GF}(q^m)^n$ as F. We denote the number of vectors of rank u ($0 \leq u \leq \min\{m, n\}$) in $\text{GF}(q^m)^n$ as $N_u(q^m, n)$. It can be shown that $N_u(q^m, n) = [n]_q \alpha(m, u)$ [7], where $\alpha(m, 0) \overset{\text{def}}{=} 1$ and $\alpha(m, u) \overset{\text{def}}{=} \prod_{i=0}^{u-1}(q^m - q^i)$ for $u \geq 1$. The $[n]_q$ term is often referred to as a Gaussian polynomial [24], defined as $[n]_q = \alpha(n, u)/\alpha(u, u)$. Note that $|E_u(q^m, n)| = [n]_q$ does not depend on m.

Lemma 1: Any vector $x \in \text{GF}(q^m)^n$ with rank r belongs to a unique ELS $V \in E_r(q^m, n)$.

Proof: The existence of $V \in E_r(q^m, n)$ has been proved in [18]. Thus we only prove the uniqueness of V, with elementary basis $\{v_i\}_{i=0}^{r-1}$, where $v_i \in \text{GF}(q)^n$ for all i. Suppose x also belongs to \mathcal{W}, where $\mathcal{W} \in E_r(q^m, n)$ has an elementary basis $\{w_j\}_{j=0}^{r-1}$, where $w_j \in \text{GF}(q)^n$ for all j. Therefore, $x = \sum_{i=0}^{r-1} a_i v_i = \sum_{j=0}^{r-1} b_j w_j$, where $a_i, b_j \in \text{GF}(q^m)$ for $0 \leq i, j \leq r - 1$. By definition, we have $\mathbb{G}(x) = \mathbb{G}(a_0, \ldots, a_{r-1}) = \mathbb{G}(b_0, \ldots, b_{r-1})$, therefore b_j’s can be expressed as linear combinations of a_i’s, i.e., $b_j = \sum_{i=0}^{r-1} c_{j,i} a_i$ where $c_{j,i} \in \text{GF}(q)$. Hence $x = \sum_{i=0}^{r-1} a_i u_i$, where $u_i = \sum_{j=0}^{r-1} c_{j,i} w_j$ for $0 \leq i \leq r - 1$ form an elementary basis of \mathcal{W}. Considering the matrix obtained by expanding the coordinates of x with respect to the basis $\{a_i\}_{i=0}^{m-1}$, we obtain $v_i = u_i$, and hence $V = \mathcal{W}$. \(\blacksquare\)

Lemma 1 shows that an ELS is analogous to a subset of coordinates since a vector x with Hamming weight r belongs to a unique subset of r coordinates, often referred to as the support of x.

In [18], it was shown that an ELS always has a complementary elementary linear subspace. The following lemma enumerates such complementary ELS’s.

Lemma 2: Suppose $V \in E_r(q^m, n)$ and $A \subseteq V$ is an ELS with dimension a, then there are $q^{a(v-a)}$ ELS’s B such that $A \oplus B = V$. Furthermore, there are $q^{a(v-a)} \binom{v}{a}$ such ordered pairs (A, B).

Proof: First, remark that $\dim(B) = v - a$. The total number of sets of $v - a$ linearly independent vectors over $\text{GF}(q)$ in $\mathcal{W} \setminus A$ is given by $N = (q^v - q^a)(q^v - q^{a+1})\cdots(q^v - q^{v-1}) = q^{a(v-a)}\alpha(v-a, v-a)$. Note that each set of linearly independent vectors over $\text{GF}(q)$ constitutes an elementary basis set. Thus, the number of possible B is given by N divided by $\alpha(v-a, v-a)$, the number of elementary basis sets for each B. Therefore, once A is fixed, there are $q^{a(v-a)}$ choices for B. Since the number of a-dimensional subspaces A in \mathcal{V} is $\binom{v}{a}$, the total number of ordered pairs (A, B) is hence $q^{a(v-a)} \binom{v}{a}$. \(\blacksquare\)

Puncturing a vector with full Hamming weight results in another vector with full Hamming weight. Lemma 3 below shows that the situation for vectors with full rank is similar.

Lemma 3: Suppose $V \in E_v(q^m, n)$ and $u \in V$ has rank v, then $\text{rk}(u_A) = a$ and $\text{rk}(u_B) = v - a$ for any $A \in E_a(q^m, n)$ and $B \in E_{v-a}(q^m, n)$ such that $A \oplus B = V$.

Proof: First, $u_A \in A$ and hence $\text{rk}(u_A) \leq a$ by [18, Proposition 2]; similarly, $\text{rk}(u_B) \leq v - a$. Now suppose $\text{rk}(u_A) < a$ or $\text{rk}(u_B) < v - a$, then $v = \text{rk}(u) \leq \text{rk}(u_A) + \text{rk}(u_B) < a + v - a = v$. \(\blacksquare\)
It was shown in [18] that the projection u_A of a vector u on an ELS A depends on both A and its complement B. The following lemma further clarifies the relation: changing B always modifies u_A, provided that u has full rank.

Lemma 4: Suppose $V \in E_v(q^m, n)$ and $u \in V$ has rank v. For any $A \in E_a(q^m, n)$ and $B \in E_{v-a}(q^m, n)$ such that $A \oplus B = V$, define the functions $f_u(A, B) = u_A$ and $g_u(A, B) = u_B$. Then both f_u and g_u are injective.

Proof: Consider another pair (A', B') with dimensions a and $v - a$ respectively. Suppose $A' \neq A$, then $u_{A'} \neq u_A$. Otherwise u_A belongs to two distinct ELS's with dimension a, which contradicts Lemma 1. Hence $u_{A'} \neq u_A$ and $u_{B'} = u - u_{A'} \neq u - u_A = u_B$. The argument is similar if $B' \neq B$. \qed

B. Properties of balls with rank radii

We refer to all vectors in $\GF(q^m)^n$ within rank distance r of $x \in \GF(q^m)^n$ as a ball of rank radius r centered at x, and denote it as $B_r(x)$. Its volume, which does not depend on x, is denoted as $V_r(q^m, n) = \sum_{u=0}^{r} N_u(q^m, n)$. When there is no ambiguity about the vector space, we denote $V_r(q^m, n)$ as $v(r)$.

Lemma 5: For $0 \leq r \leq \min\{n, m\}$, $q^{r(m+n-r)} \leq V_r(q^m, n) < K_q^{-1} q^{r(m+n-r)}$, where $K_q \overset{\text{def}}{=} \prod_{j=1}^{\infty} (1 - q^{-j})$ [18].

Proof: The upper bound was derived in [18, Lemma 13], and it suffices to prove the lower bound. Without loss of generality, we assume that the center of the ball is 0. We now prove the lower bound by constructing $q^{r(m+n-r)}$ vectors $z \in \GF(q^m)^n$ of rank at most r. Let $x \in \GF(q^m)^n$ let a subspace \mathcal{I} of $\GF(q^m)$ such that $\dim(\mathcal{I}) = r$ and $\mathcal{S}(x) \subseteq \mathcal{I}$. We consider the vectors $y \in \GF(q^m)^{n-r}$ such that $\mathcal{S}(y) \subseteq \mathcal{I}$. There are q^{mr} choices for x and, for a given x, $q^{r(n-r)}$ choices for y. Thus the total number of vectors $z = (x, y) \in \GF(q^m)^n$ is $q^{r(m+n-r)}$, and since $\mathcal{S}(z) \subseteq \mathcal{I}$, we have $\rk(z) \leq r$. \qed

We remark that both bounds in Lemma 5 are tighter than their respective counterparts in [19, Proposition 1]. More importantly, the two bounds in Lemma 5 differ only by a factor of K_q, and thus they not only provide a good approximation of $V_r(q^m, n)$, but also accurately describe the asymptotic behavior of $V_r(q^m, n)$.

The diameter of a set is defined to be the maximum distance between any pair of elements in the set [22, p. 172]. For a binary vector space $\GF(2)^n$ and a given diameter $2r < n$, Kleitman [25] proved that balls with Hamming radius r maximize the cardinality of a set with a given diameter. However, when the underlying field for the vector space is not $\GF(2)$, the result is not necessarily valid [23, p. 40]. We show below that balls with rank radii do not maximize the cardinality of a set with a given diameter.
Proposition 1: For $2 \leq 2r \leq n \leq m$, any $S \in E_{2r}(q^m, n)$ has diameter $2r$ and cardinality $|S| > V_r(q^n, n)$.

Proof: Any $S \in E_{2r}(q^m, n)$ has diameter $2r$ and cardinality q^{2mr}. For $r = 1$, we have $V_1(q^m, n) = 1 + \frac{(q^m - 1)(q^{m-1})}{(q-1)} < q^{2m}$. For $r \geq 2$, we have $V_r(q^m, n) < K_q^{-1}q^{r(n+m)-r^2}$ by Lemma 5. Since $r^2 > 2 > -\log_q K_q$, we obtain $V_r(q^m, n) < q^{r(n+m)} \leq |S|$.

The intersection of balls with Hamming radii has been studied in [23, Chapter 2], and below we investigate the intersection of balls with rank radii.

Lemma 6: If $0 \leq r, s \leq n$ and $c_1, c_2 \in GF(q^m)^n$, then $|B_r(c_1) \cap B_s(c_2)|$ depends on c_1 and c_2 only through $d_r(c_1, c_2)$.

Proof: This follows from the fact that matrices in $GF(q)^{m \times n}$ together with the rank metric form an association scheme [2].

Proposition 2: If $0 \leq r, s \leq n$, $c_1, c_2, c_1', c_2' \in GF(q^m)^n$ and $d_r(c_1, c_2) > d_r(c_1', c_2')$, then $|B_r(c_1) \cap B_s(c_2)| \leq |B_r(c_1') \cap B_s(c_2')|$.

Proof: It suffices to prove the claim when $d_r(c_1, c_2) = d_r(c_1', c_2') + 1 = e + 1$. By Lemma 6, we can assume without loss of generality that $c_1 = c_1' = 0$, $c_2' = (0, c_1, \ldots, c_e, 0, \ldots, 0)$ and $c_2 = (c_0, c_1, \ldots, c_e, 0, \ldots, 0)$, where $c_0, \ldots, c_e \in GF(q^m)$ are linearly independent.

We will show that an injective mapping ϕ from $B_r(c_1) \cap B_s(c_2)$ to $B_r(c_1') \cap B_s(c_2')$ can be constructed. We consider vectors $z = (z_0, z_1, \ldots, z_{n-1}) \in B_r(c_1) \cap B_s(c_2)$. We thus have $rk(z) \leq r$ and $rk(u) \leq s$, where $u = (u_0, u_1, \ldots, u_{n-1}) = z - c_2 = (z_0 - c_0, z_1 - c_1, \ldots, z_{n-1})$. We also define $\bar{z} = (z_1, \ldots, z_{n-1})$ and $\bar{u} = (u_1, \ldots, u_{n-1})$. We consider three cases for the mapping ϕ, depending on \bar{z} and \bar{u}.

- Case I: $rk(\bar{u}) \leq s - 1$. In this case, $\phi(z) \overset{\text{def}}{=} z$. We remark that $rk(z - c_2') \leq rk(\bar{u}) + 1 \leq s$ and hence $\phi(z) \in B_r(c_1') \cap B_s(c_2')$.

- Case II: $rk(\bar{u}) = s$ and $rk(\bar{z}) \leq r - 1$. In this case, $\phi(z) \overset{\text{def}}{=} (z_0 - c_0, z_1, \ldots, z_{n-1})$. We have $rk(\phi(z)) \leq rk(\bar{z}) + 1 \leq r$ and $rk(\phi(z) - c_2') = rk(z - c_2) \leq s$, and hence $\phi(z) \in B_r(c_1') \cap B_s(c_2')$.

- Case III: $rk(\bar{u}) = s$ and $rk(\bar{z}) = r$. Since $rk(\bar{u}) = s$, we have $z_0 - c_0 \in \mathcal{S}(\bar{u})$. Similarly, since $rk(z) = r$, we have $z_0 \in \mathcal{S}(\bar{z})$. Denote $\dim(\mathcal{S}(\bar{u}, \bar{z}))$ as d ($d \geq s$). For $d > s$, let $\alpha_0, \ldots, \alpha_{d-1}$ be a basis of $\mathcal{S}(\bar{u}, \bar{z})$ such that $\mathcal{S}(\bar{u}, \bar{z}) = \mathcal{S}(\bar{u})$. This basis is fixed for all vectors z having the same \bar{z}, i.e., it is fixed for all values of z_0. Note that $c_0 \in \mathcal{S}(\bar{u}, \bar{z})$, and may therefore be uniquely expressed as $c_0 = c_u + c_z$, where $c_u \in \mathcal{S}(\alpha_0, \ldots, \alpha_{s-1}) = \mathcal{S}(\bar{u})$ and $c_z \in \mathcal{S}(\alpha_s, \ldots, \alpha_{d-1}) \subseteq \mathcal{S}(\bar{z})$. If $d = s$, then $c_z = 0 \in \mathcal{S}(\bar{z})$. In this case, $\phi(z) \overset{\text{def}}{=} (z_0 - c_z, z_1, \ldots, z_{n-1})$. Remark that $z_0 - c_z \in \mathcal{S}(\bar{z})$ and hence $rk(\phi(z)) = r$. Also, $z_0 - c_z = z_0 - c_0 + c_u \in \mathcal{S}(\bar{u})$ and hence $rk(\phi(z) - c_2') = s$. Therefore $\phi(z) \in B_r(c_1') \cap B_s(c_2')$.

May 8, 2008
It can be easily verified that \(\phi \) is injective, hence \(|B_r(c_1) \cap B_s(c_2)| \leq |B_r(c'_1) \cap B_s(c'_2)|. \)

Corollary 1: If \(0 \leq r, s \leq n, c_1, c_2, c'_1, c'_2 \in GF(q^m)^n \) and \(d_k(c_1, c_2) \geq d_k(c'_1, c'_2) \), then \(|B_r(c_1) \cup B_s(c_2)| \geq |B_r(c'_1) \cup B_s(c'_2)|. \)

Proof: The result follows from \(|B_r(c_1) \cup B_s(c_2)| = v(r) + v(s) - |B_r(c_1) \cap B_s(c_2)|. \)

We now quantify the volume of the intersection of two balls with rank radii for some special cases, which will be used in Section V-B.

Proposition 3: If \(c_1, c_2 \in GF(q^m)^n \) and \(d_k(c_1, c_2) = r \), then \(|B_r(c_1) \cap B_1(c_2)| = 1 + (q^m - q^r) \left[\frac{1}{q} \right] + (q^r - 1)^n \).

Proof: By Lemma 1, the vector \(c_1 \) belongs to a unique ELS \(V \in E_r(q^m, n) \). First of all, it is easy to check that \(y = 0 \in B_r(c_1) \cap B_1(0) \). We now consider a nonzero vector \(y \in B_1(0) \) with rank 1. We have \(d_k(y, c_1) = r + 1 \) if and only if \(y \notin V \) and \(S(y) \notin S(c_1) \). There are \(\frac{(q^m-q^r)(q^m-q^r)}{q-1} \) such vectors. Thus, \(|B_r(c_1) \cap B_1(c_2)| = 1 + N_1(q^m, n) - \frac{(q^m-q^r)(q^m-q^r)}{q-1} = 1 + (q^m - q^r) \left[\frac{1}{q} \right] + (q^r - 1)^n. \)

Proposition 4: If \(c_1, c_2 \in GF(q^m)^n \) and \(d_k(c_1, c_2) = r \), then \(|B_s(c_1) \cap B_{r-s}(c_2)| = q^{s(r-s)} \left[\frac{r}{s} \right] \) for \(0 \leq s \leq r \).

Proof: By Lemma 6, we can assume that \(c_1 = 0 \), and hence \(\text{rk}(c_2) = r \). By Lemma 1, \(c_2 \) belongs to a unique ELS \(V \in E_r(q^m, n) \). We first prove that all vectors \(y \in B_s(0) \cap B_{r-s}(c_2) \) are in \(V \). Let \(y = y_V + y_W \), where \(W \in E_{n-r}(q^m, n) \) such that \(V \oplus W = GF(q^m)^n \). We have \(y_V + (c_2 - y)_V = c_2 \), with \(\text{rk}(y_V) \leq \text{rk}(y) \leq s \) and \(\text{rk}((c_2 - y)_V) \leq \text{rk}(c_2 - y) \leq r - s \). Therefore, \(\text{rk}(y_V) = \text{rk}(y) = s \), \(\text{rk}((c_2 - y)_V) = \text{rk}(c_2 - y) = r - s \), and \(S(y_V) \cap S((c_2 - y)_V) = \emptyset \). Since \(\text{rk}(y_V) = \text{rk}(y) \), we have \(S(y_W) \subseteq S(y_V) \); and similarly \(S((c_2 - y)_W) \subseteq S((c_2 - y)_V) \). Altogether, we obtain \(S(y_W) \cap S((c_2 - y)_W) = \emptyset \). However, \(y_V + (c_2 - y)_W = 0 \), and hence \(y_W = (c_2 - y)_W = 0 \). Therefore, \(y \in V \).

We now prove that \(y \) is necessarily the projection of \(c_2 \) onto some ELS \(A \) of \(V \). If \(y \in V \) satisfies \(\text{rk}(y) = s \) and \(\text{rk}(c_2 - y) = r - s \), then \(y \) belongs to some ELS \(A \) and \(c_2 - y \in B \) such that \(A \oplus B = V \). We hence have \(y = c_{2,A} \) and \(c_2 - y = c_{2,B} \).

On the other hand, for any \(A \in E_s(q^m, n) \) and \(B \in E_{r-s}(q^m, n) \) such that \(A \oplus B = V \), \(c_{2,A} \) is a vector of rank \(s \) with distance \(r-s \) from \(c_2 \) by Lemma 3. By Lemma 4, all the \(c_{2,A} \) vectors are distinct. There are thus as many vectors \(y \) as ordered pairs \((A, B) \). By Lemma 2, there are \(q^{s(r-s)} \left[\frac{r}{s} \right] \) such pairs, and hence \(q^{s(r-s)} \left[\frac{r}{s} \right] \) vectors \(y \).

The problem of the intersection of three balls with rank radii is more complicated since the volume of the intersection of three balls with rank radii is not completely determined by the pairwise distances between the centers. We give a simple example to illustrate this point: consider \(GF(2^2)^3 \) and the vectors.
\(c_1 = c'_1 = (0, 0, 0), \ c_2 = c'_2 = (1, \alpha, 0), \ c_3 = (\alpha, 0, 1), \) and \(c'_3 = (\alpha, \alpha + 1, 0), \) where \(\alpha \) is a primitive element of the field. It can be verified that \(d_R(c_1, c_2) = d_R(c_2, c_3) = d_R(c_3, c_1) = 2 \) and \(d_R(c'_1, c'_2) = d_R(c'_2, c'_3) = d_R(c'_3, c'_1) = 2. \) However, \(B_1(c_1) \cap B_1(c_2) \cap B_1(c_3) = \{(\alpha + 1, 0, 0)\}, \) whereas \(B_1(c'_1) \cap B_1(c'_2) \cap B_1(c'_3) = \{(1, 0, 0), (0, \alpha + 1, 0), (\alpha, \alpha, 0)\}. \) We remark that this is similar to the problem of the intersection of three balls with Hamming radii discussed in [23, p. 58], provided that the underlying field is not \(\text{GF}(2). \)

V. COVERING PROPERTIES OF RANK METRIC CODES

A. The sphere covering problem

We denote the minimum cardinality of a code of length \(n \) and rank covering radius \(\rho \) as \(K_R(q^m, n, \rho). \) We remark that if \(C \) is a code over \(\text{GF}(q^m) \) with length \(n \) and covering radius \(\rho, \) then its transpose code \(C^T \) is a code over \(\text{GF}(q^m) \) with length \(m \) and the same covering radius. Therefore, \(K_R(q^m, n, \rho) = K_R(q^m, m, \rho), \) and without loss of generality we shall assume \(n \leq m \) henceforth in this section. Also note that \(K_R(q^m, n, 0) = q^{mn} \) and \(K_R(q^m, n, n) = 1 \) for all \(m \) and \(n. \) Hence we assume \(0 < \rho < n \) throughout this section. Two bounds on \(K_R(q^m, n, \rho) \) can be easily derived.

Proposition 5: For \(0 < \rho < n \leq m, \frac{q^{mn}}{v(\rho)} < K_R(q^m, n, \rho) \leq q^{m(n-\rho)}. \)

Proof: The lower bound is a straightforward generalization of the bound given in [10]. Note that the only codes with cardinality \(\frac{q^{mn}}{v(\rho)} \) are perfect codes. However, there are no nontrivial perfect codes for the rank metric [8]. Therefore, \(K_R(q^m, n, \rho) > \frac{q^{mn}}{v(\rho)}. \) The upper bound follows from \(\rho \leq n - k \) for any \((n,k)\) linear code (see [23] for a proof in the Hamming metric), and hence any linear code with covering radius \(\rho \) has cardinality \(\leq q^{m(n-\rho)}. \)

We refer to the lower bound in **Proposition 5** as the sphere covering bound.

For a code over \(\text{GF}(q^m) \) with length \(n \) and covering radius \(0 < \rho < n, \) we have \(K_R(q^m, n, \rho) \leq K_H(q^m, n, \rho), \) where \(K_H(q^m, n, \rho) \) is the minimum cardinality of a (linear or nonlinear) code over \(\text{GF}(q^m) \) with length \(n \) and Hamming covering radius \(\rho. \) This holds because any code with Hamming covering radius \(\rho \) has rank covering radius \(\leq \rho. \) Since \(K_H(q^m, n, \rho) \leq q^{m(n-\rho)} \) [23], this provides a tighter bound than the one given in **Proposition 5**.

Proposition 6: For \(0 < \rho < n \leq m, K_R(q^m, n, \rho) \geq 3. \)

Proof: Suppose there exists a code \(C \) of cardinality 2 and length \(n \) over \(\text{GF}(q^m) \) with covering radius \(\rho < n. \) Without loss of generality, we assume \(C = \{0, c\}. \) Since \(|B_\rho(0) \cup B_\rho(c)| \) is a non-decreasing function of \(\text{rk}(c) \) by Corollary [1] we assume \(\text{rk}(c) = n. \) The code \(G = \{c\} \) is hence an
\((n, 1, n)\) linear MRD code over \(\text{GF}(q^m)\). Therefore, any codeword in \(G \setminus C\) is at distance \(n\) from \(C\). Thus \(\rho = n\), which contradicts our assumption. \(\blacksquare\)

Lemma 7: \(K_r(q^m, n + n', \rho + \rho') \leq K_r(q^m, n, \rho)K_r(q^m, n', \rho')\) for all \(m > 0\) and nonnegative \(n, n', \rho,\) and \(\rho'\). In particular, \(K_r(q^m, n + 1, \rho + 1) \leq K_r(q^m, n, \rho)\) and \(K_r(q^m, n + 1, \rho) \leq q^nK_r(q^m, n, \rho)\).

Proof: For all \(x, y \in \text{GF}(q^m)^n\) and \(x', y' \in \text{GF}(q^m)^{n'}\), we have \(d_r((x, x'), (y, y')) \leq d_r(x, y) + d_r(y, y')\). Therefore, for any \(C \in \text{GF}(q^m)^n, C' \in \text{GF}(q^m)^{n'}\), we have \(\rho(C \oplus C') \leq \rho(C) + \rho(C')\) and the first claim follows. In particular, \((n', \rho') = (1, 1)\) and \((n', \rho') = (1, 0)\) yield the other two claims respectively. \(\blacksquare\)

B. Lower bounds for the sphere covering problem

We now derive two nontrivial lower bounds on \(K_r(q^m, n, \rho)\). For \(0 \leq d \leq n\), we denote the volume of the intersection of two balls in \(\text{GF}(q^m)^n\) with rank radii \(\rho\) and a distance \(d\) between their respective centers \(d\) as \(I(q^m, n, \rho, d)\). When there is no ambiguity about the vector space considered, we simply denote it as \(I(\rho, d)\). \(I(\rho, d)\) is well defined by Lemma 6 and obviously \(I(\rho, d) = 0\) when \(d > 2\rho\).

Proposition 7: For \(0 < \rho < n \leq m\) and \(0 \leq l \leq \lfloor \log_{q^m} K_r(q^m, n, \rho) \rfloor\),

\[
K_r(q^m, n, \rho) \geq q^{mn} - q^lI(\rho, n - l) + \sum_{a=\max(1, n-2\rho+1)}^{l} (q^{am} - q^{(a-1)m})I(\rho, n - a + 1) - \frac{v(\rho) - I(\rho, n - l)}{\rho - 1}.
\]

Proof: Let us denote \(\lfloor \log_{q^m} K_r(q^m, n, \rho) \rfloor\) as \(\lambda\) for convenience. Let \(C = \{c_i\}_{i=0}^{K-1}\) be a code of length \(n\) and covering radius \(\rho\) over \(\text{GF}(q^m)\). Define \(C_j^{(i)} = \{c_j\}_{i=0}^{j}\) for \(0 \leq j \leq K - 1\). For \(1 \leq a \leq n\) and \(q^{m(a-1)} \leq j < q^ma\), we have \(d_r(c_j, C_{j-1}) \leq n - a + 1\) by the Singleton bound. The codeword \(c_j\) hence covers at most \(v(\rho) - I(\rho, n - a + 1)\) vectors that are not previously covered by \(C_{j-1}\). For \(1 \leq l \leq \lambda\), the number of vectors covered by \(C\) thus satisfies

\[
q^{mn} \leq v(\rho) + \sum_{a=1}^{l} (q^{am} - q^{(a-1)m})[v(\rho) - I(\rho, n - a + 1)] + (K - q^l)[v(\rho) - I(\rho, n - l)].
\]

Since \(I(\rho, n - a + 1) = 0\) for \(a \leq n - 2\rho\), (2) reduces to (1). \(\blacksquare\)

Note that the RHS of (1) is a non-decreasing function of \(l\), thus the bound is tightest when \(l = \lfloor \log_{q^m} K_r(q^m, n, \rho) \rfloor\). We obtain a lower bound by using the largest \(l\) such that the RHS of (1) is less than \(q^{l+1}m\).

Corollary 2: For \(0 < \rho < n \leq m\), \(K_r(q^m, n, \rho) \geq \frac{q^{mn} - q^{l+1}m}{v(\rho) - I(\rho, n)}\).

Proof: This is a special case of Proposition 7 for \(l = 0\). \(\blacksquare\)

Corollary 3: For all \(m, n,\) and \(0 < \rho \leq \lfloor n/2 \rfloor\), \(K_r(q^m, n, \rho) \geq \frac{q^{mn} - q^{m(n-2\rho)+\rho^2}[2^\rho]}{v(\rho) - q^\rho [2^\rho]}\).

Proof: Since the balls of rank radius \(\rho\) around the codewords of a code with minimum rank distance \(2\rho + 1\) do not intersect, we have \(K_r(q^m, n, \rho) \geq A_r(q^m, n, 2\rho + 1) = q^{mn-2\rho}\), and hence
The proof is completed by realizing that integer.

Note that by Proposition 4 we have $8\] = \log C + 1 > \rho$.

Let C be a code with length q^m and rank covering radius ρ, the excess on V by C is defined to be $E_C(V) \equiv \sum_{c \in C} \|B_\rho(c) \cap V\| - |V|$. Then $E_C(\bigcup_i W_i) = \sum_i E_C(W_i)$. Suppose $Z \equiv \{z \in GF(q^m)^n|E_C(\{z\}) > 0\}$, i.e., Z is the set of vectors covered by at least two codewords in C. Let $E \equiv C \cap Z$.

For all $V \subset GF(q^m)^n$ and a code C with covering radius ρ, the excess on V by C is defined to be $E_C(V) \equiv \sum_{c \in C} |B_\rho(c) \cap V| - |V|$. If $\{W_i\}$ is a family of disjoint subsets of $GF(q^m)^n$, then $E_C(\bigcup_i W_i) = \sum_i E_C(W_i)$. Suppose $Z \equiv \{z \in GF(q^m)^n|E_C(\{z\}) > 0\}$, i.e., Z is the set of vectors covered by at least two codewords in C.

Note that $z \in Z$ if and only if $|B_\rho(z) \cap C| \geq 2$. It can be shown that $|Z| \leq E_C(Z) = E_C(GF(q^m)^n) = |C|V_\rho(q^m, n) - q^{mn}$.

Before deriving the second nontrivial lower bound, we need the following adaptation of [29, Lemma 8]. Let C be a code with length n and rank covering radius ρ over $GF(q^m)$. We define $A \equiv \{x \in GF(q^m)^n|d_k(x, C) = \rho\}$.

Lemma 8: For $x \in A \setminus Z$ and $0 < \rho < n$, we have that $E_C(B_1(x)) \geq \epsilon$, where

$$
\epsilon \equiv \left(\frac{(q^m - q^\rho)(\frac{n}{1}) - \left(\frac{q^\rho}{1}\right)}{q^\rho\left(\frac{\rho + 1}{1}\right)}\right) + (q^m - q^\rho) \left[\frac{n}{1}\right] - \left[\frac{n}{1}\right].
$$

Proof: Since $x \notin Z$, there is a unique $c_0 \in C$ such that $d_k(x, c_0) = \rho$. By Proposition 3 we have $|B_\rho(c_0) \cap B_1(x)| = 1 + (q^m - q^\rho) \left[\frac{\rho}{1}\right] + (q^\rho - 1) \left[\frac{n}{1}\right]$. For any codeword $c_1 \in C$ satisfying $d_k(x, c_1) = \rho + 1$, by Proposition 4 we have $|B_\rho(c_1) \cap B_1(x)| = q^\rho \left[\frac{\rho + 1}{1}\right]$. Finally, for all other codewords $c_2 \in C$ at distance $\rho + 1$ from x, we have $|B_\rho(c_2) \cap B_1(x)| = 0$. Denoting $N \equiv \{|c_1 \in C|\text{ }d_k(x, c_1) = \rho + 1\}$, we obtain

$$
E_C(B_1(x)) = \sum_{c \in C} |B_\rho(c) \cap B_1(x)| - |B_1(x)|
$$

$$
= (q^m - q^\rho) \left[\frac{\rho}{1}\right] + Nq^\rho \left[\frac{\rho + 1}{1}\right] - \left[\frac{n}{1}\right] (q^m - q^\rho)
$$

$$
\equiv (q^m - q^\rho) \left[\frac{\rho}{1}\right] - \left[\frac{n}{1}\right] \mod \left(q^\rho \left[\frac{\rho + 1}{1}\right]\right).
$$

The proof is completed by realizing that $(q^m - q^\rho) \left(\frac{n}{1}\right) - \left[\frac{n}{1}\right] < 0$, while $E_C(B_1(x))$ is a non-negative integer.

For $\rho = n - 1$, Lemma 3 is improved to:

Corollary 4: For $x \in A \setminus Z$ and $\rho = n - 1$, $E_C(B_1(x)) = \phi$, where $\phi \equiv q^{n-1} \left[\frac{n}{1}\right]|C|^{-q^{n-1}} (q^m + \left[\frac{n-1}{1}\right])$.

May 8, 2008 DRAFT
Thus, May 8, 2008 DRAFT

Furthermore, dependence for simplicity of notation. This function vectors, by applying Remark that 6 and is based on the concept of excess reviewed in Section II-B. The lower bounds in Propositions 7 and 8, when applicable, are at least as tight as the sphere covering bound. For \(\rho = n - 1 \), Proposition 8 is refined into the following.

Corollary 5: Let us denote the coefficients \(q^{n-1} \binom{n}{1} \) and \(q^{n-1} (q^m + \binom{n-1}{1}) \) as \(\alpha \) and \(\beta \), respectively. \(K_r(q^m, n, n-1) \) satisfies \(aK_r(q^m, n, n-1)^2 - bK_r(q^m, n, n-1) + c \geq 0 \), where \(a \overset{\text{def}}{=} v(n-1) + v(n-2) \), \(b \overset{\text{def}}{=} v(n-1) \left(q^{n-2} \binom{n-1}{1} - v(1) + \beta + 1 \right) + 2\alpha q^m + \beta v(n-2) \), and \(c \overset{\text{def}}{=} q^m \{ 2\beta + 1 + q^{n-2} \binom{n-1}{1} - v(1) \} \).

The proof of Corollary 5 is given in Appendix B.

C. Upper bounds for the sphere covering problem

From the perspective of covering, the following lemma gives a characterization of MRD codes in terms of ELS’s.

Lemma 9: Let \(C \) be an \((n, k)\) linear code over \(GF(q^m) \) \((n \leq m)\). \(C \) is an MRD code if and only if \(C \oplus V = GF(q^m)^n \) for all \(V \in E_{n-k}(q^m, n) \).

Proof: Suppose \(C \) is an \((n, k, n - k + 1)\) linear MRD code. It is clear that \(C \cap V = \{0\} \) and hence \(C \oplus V = GF(q^m)^n \) for all \(V \in E_{n-k}(q^m, n) \). Conversely, suppose \(C \oplus V = GF(q^m)^n \) for all \(V \in E_{n-k}(q^m, n) \). Then \(C \) does not contain any nonzero codeword of weight \(\leq n - k \), and hence its minimum distance is \(n - k + 1 \).

For \(1 \leq u \leq \rho \), let \(\alpha_0 = 1, \alpha_1, \ldots, \alpha_{m-u+1} \in GF(q^{m+u}) \) be a basis set of \(GF(q^{m+u}) \) over \(GF(q) \), and let \(\beta_0 = 1, \beta_1, \ldots, \beta_{m-1} \) be a basis of \(GF(q^m) \) over \(GF(q) \). We define the linear mapping \(f \) between two vector spaces \(GF(q^m) \) and \(\mathbb{G}_m \overset{\text{def}}{=} \mathbb{G}(\alpha_0, \alpha_1, \ldots, \alpha_{m-1}) \) given by \(f(\beta_i) = \alpha_i \) for \(0 \leq i \leq m-1 \). We remark that \(\alpha_0 = \beta_0 = 1 \) implies that \(f \) maps \(GF(q) \) to itself. This can be generalized to \(n \)-dimensional vectors, by applying \(f \) componentwise. We thus define \(\tilde{f} : GF(q^m)^n \rightarrow GF(q^{m+u})^n \) such that for any \(v = (v_0, \ldots, v_{n-1}) \), \(\tilde{f}(v) = (f(v_0), \ldots, f(v_{n-1})) \). Note that \(\tilde{f} \) depends on \(u \), but we omit this dependence for simplicity of notation. This function \(\tilde{f} \) is a linear bijection from \(GF(q^m)^n \) to its image \(\mathbb{G}_m^n \), and hence \(\tilde{f} \) preserves the rank. \(\tilde{f} \) also introduces a connection between ELS’s as shown below.

Lemma 10: For \(u \geq 1 \), \(r \leq n \), and any \(V \in E_r(q^m, n) \), \(\tilde{f}(V) \subset \mathcal{W} \), where \(\mathcal{W} \in E_r(q^{m+u}, n) \). Furthermore, \(\tilde{f} \) induces a bijection between \(E_r(q^m, n) \) and \(E_r(q^{m+u}, n) \).

Proof: Let \(B = \{ b_i \} \) be an elementary basis of \(V \in E_r(q^m, n) \). Then, \(b_i \in GF(q)^n \) and \(b_i = \tilde{f}(b_i) \). Thus, \(\{ \tilde{f}(b_i) \} \) form an elementary basis, and hence \(\tilde{f}(V) \subset \mathcal{W} \), where \(\mathcal{W} \in E_r(q^{m+u}, n) \) with \(\{ \tilde{f}(b_i) \} \)
as a basis. It is easy to verify that \(\bar{f} \) induces a bijection between \(E_r(q^m, n) \) and \(E_r(q^{m+u}, n) \).

Proposition 9: Let \(C \) be an \((n, n - \rho, \rho + 1)\) MRD code over \(GF(q^m) \) \((n \leq m)\) with covering radius \(\rho \). For \(0 \leq u \leq \rho \), the code \(\bar{f}(C) \), where \(\bar{f} \) is as defined above, is a code of length \(n \) over \(GF(q^{m+u}) \) with cardinality \(q^{m(n-\rho)} \) and covering radius \(\rho \).

Proof: The other parameters for the code are obvious, and it suffices to establish the covering radius. Let \(\mathcal{T}_{u} \) be a subspace of \(GF(q^{m+u}) \) with dimension \(u \) such that \(\mathcal{S}_{m} \oplus \mathcal{T}_{u} = GF(q^{m+u}) \). Any \(u \in GF(q^{m+u})^{n} \) can be expressed as \(u = v + w \), where \(v \in \mathcal{S}_{m}^{n} \) and \(w \in \mathcal{T}_{u}^{n} \). Hence \(\text{rk}(w) \leq u \), and \(w \in \mathcal{W} \) for some \(\mathcal{W} \in E_{\rho}(q^{m+u}, n) \) by Lemma [1]. By Lemmas [9] and [10], we can express \(v \) as \(v = \bar{f}(c + e) = \bar{f}(c) + \bar{f}(e) \), where \(c \in \mathcal{C} \) and \(e \in \mathcal{V} \), such that \(\bar{f}(\mathcal{V}) \subset \mathcal{W} \). Eventually, we have \(u = \bar{f}(e) + \bar{f}(e) + w \), where \(\bar{f}(e) + w \in \mathcal{W} \), and thus \(d(u, \bar{f}(e)) \leq \rho \). Thus \(\bar{f}(C) \) has covering radius \(\leq \rho \). Finally, it is easy to verify that the covering radius of \(\bar{f}(C) \) is exactly \(\rho \).

Corollary 6: For \(0 < \rho < n \leq m \), \(K_{\rho}(q^{m}, n, \rho) \leq q^{\max\{m-\rho, n\}(n-\rho)} \).

Proof: We can construct an \((n, n - \rho)\) linear MRD code \(C \) over \(GF(q^{\mu}) \) with covering radius \(\rho \), where \(\mu = \max\{m - \rho, n\} \). By Proposition [9], \(\bar{f}(C) \subset GF(q^{\mu})^{n} \), where \(\bar{f} \) is a rank-preserving mapping from \(GF(q^{\mu})^{n} \) to a subset of \(GF(q^{m})^{n} \) similar to \(\bar{f} \) above, has covering radius \(\leq \rho \). Thus, \(K_{\rho}(q^{m}, n, \rho) \leq |\bar{f}(C)| = |C| = q^{\mu(n-\rho)} \).

We use the properties of \(K_{\rho}(q^{m}, n, \rho) \) in Lemma [7] in order to obtain a tighter upper bound when \(\rho > m - n \).

Proposition 10: Given fixed \(m \), \(n \), and \(\rho \), for any \(0 < l \leq n \) and \((n_{i}, \rho_{i})\) for \(0 \leq i \leq l - 1 \) so that \(0 < n_{i} \leq n \), \(0 \leq \rho_{i} \leq n_{i} \), and \(n_{i} + \rho_{i} \leq m \) for all \(i \), and \(\sum_{i=0}^{l-1} n_{i} = n \) and \(\sum_{i=0}^{l-1} \rho_{i} = \rho \), we have

\[
K_{\rho}(q^{m}, n, \rho) \leq \min_{\{n_{i}, \rho_{i}: 0 \leq i \leq l-1\}} \left\{ q^{m(n-\rho)-\sum_{i=0}^{l-1} \rho_{i}(n_{i}-\rho_{i})} \right\}.
\] \((3) \)

Proof: By Lemma [7], we have \(K_{\rho}(q^{m}, n, \rho) \leq \prod_{i} K_{\rho}(q^{m}, n_{i}, \rho_{i}) \) for all possible sequences \(\{\rho_{i}\} \) and \(\{n_{i}\} \). For all \(i \), we have \(K_{\rho}(q^{m}, n_{i}, \rho_{i}) \leq q^{(m-\rho_{i})(n_{i}-\rho_{i})} \) by Corollary [6] and hence \(K_{\rho}(q^{m}, n, \rho) \leq q^{\sum_{i}(m-\rho_{i})(n_{i}-\rho_{i})} = q^{m(n-\rho) - \sum_{i} \rho_{i}(n_{i}-\rho_{i})} \).

It is clear that the upper bound in \((3) \) is tighter than the upper bound in Proposition [5]. It can also be shown that it is tighter than the bound in Corollary [6].

The following upper bound is an adaptation of [23, Theorem 12.1.2].

Proposition 11: For \(0 < \rho < n \leq m \), \(K_{\rho}(q^{m}, n, \rho) \leq \frac{1}{\log_{q^{m}}(q^{m-\nu}(\rho))} + 1 \).

Our proof, given in Appendix [C], adopts the approach used to prove [23, Theorem 12.1.2]. Refining [23, Theorem 12.2.1] for the rank metric, we obtain the following upper bound.
\textbf{Proposition 12:} For \(0 < \rho < n \leq m\) and \(a = \min\{n, 2\rho\},\)
\[
K_r(q^m, n, \rho) \leq k_{v(\rho)} \left(\frac{1}{\min\{s, j\}} - \frac{1}{v(\rho)} \right) + \frac{q^{mn}}{v(\rho)} H_{\min\{s, j\}},
\]
where \(k_{v(\rho)} = q^{mn} - v(\rho)q^{m(n-a)}, j = \lceil v(\rho) - v(\rho)^2q^{-ma} \rceil, s = v(\rho) - \sum_{i=a-\rho}^{\rho} q^{i(a-i)} \left[\frac{n}{i} \right],\) and \(H_k = \sum_{i=1}^{k} \frac{1}{i}\) is the \(k\)-th harmonic number.

\textbf{Proof:} We denote the vectors of \(\text{GF}(q^m)^n\) as \(v_i\) for \(i = 0, 1, \ldots, q^mn - 1\) and we consider a \(q^{mn} \times q^{mn}\) square matrix \(A\) defined as \(a_{i,j} = 1\) if \(d_k(v_i, v_j) \leq \rho\) and \(a_{i,j} = 0\) otherwise. Note that each row and each column of \(A\) has exactly \(v(\rho)\) ones. We present an algorithm that selects \(K\) columns of \(A\) with no all-zero rows. These columns thus represent a code with cardinality \(K\) and covering radius \(\rho\).

Set \(A_{v(\rho)} = A\) and \(k_{v(\rho)+1} = q^m\). For \(i = v(\rho), v(\rho) - 1, \ldots, 1\), repeat the following step: First, select from \(A_i\) a maximal set of \(K_i\) columns of weight \(i\) with pairwise disjoint supports; Then, remove these columns and all the \(iK_i = k_{i+1} - k_i\) rows incident to one of them, and denote the remaining \(k_i \times (q^{mn} - K_{v(\rho)} \cdots - K_i)\) matrix as \(A_{i-1}\). The set of all selected columns hence contains no all-zero rows.

For \(2\rho \leq n\), we can select an \((n, n - 2\rho, 2\rho + 1)\) linear MRD code \(C\) for the first step. Since MRD codes are maximal, they satisfy the condition. If \(2\rho > n\), \(C\) is chosen to be a single codeword, and \(K_{v(\rho)} = 1\). Thus \(K_{v(\rho)} = q^{m(n-a)}\) and \(k_{v(\rho)} = q^{mn} - v(\rho)q^{m(n-a)}\), where \(a = \min\{n, 2\rho\}\).

We now establish two upper bounds on \(k_1\) for \(1 \leq i \leq v(\rho)\). First, it is obvious that \(k_i \leq k_{v(\rho)}\). Also, every row of \(A_{i-1}\) contains exactly \(v(\rho)\) ones; on the other hand, every column of \(A_{i-1}\) contains at most \(i - 1\) ones. Hence for \(1 \leq i \leq v(\rho)\), \(v(\rho)k_i \leq (i - 1)(q^{mn} - K_{v(\rho)} \cdots - K_i) \leq (i - 1)q^{mn}\), and thus
\[
k_i \leq (i - 1) \frac{q^{mn}}{v(\rho)}.
\]
Clearly \(k_1 = 0\) by (5). We have \(k_{v(\rho)} \leq (i - 1) \frac{q^{mn}}{v(\rho)}\) if \(i - 1 \geq j \overset{\text{def}}{=} \left\lceil \frac{v(\rho)k_i}{q^{mn}} \right\rceil\).

We now establish an upper bound on \(K = \sum_{i=1}^{v(\rho)} K_i\). For any vector \(x \in \text{GF}(q^m)^n\), we have \(d_r(x, C) \leq 2\rho\). This is trivial for \(2\rho > n\), while for \(2\rho \leq n\) this is because MRD codes are maximal codes. For \(2\rho \leq n\), at least \(q^{\rho^2} \left[\frac{2\rho}{\rho} \right] \) vectors in \(B_\rho(x)\) are already covered by \(C\) by Proposition 4. For \(2\rho > n\), it can be shown that at least \(\sum_{i=n-\rho}^{\rho} q^{i(n-i)} \left[\frac{n}{i} \right] \) vectors in \(B_\rho(x)\) are already covered by \(C\). It follows that after the first step, the column weight is at most \(s = \left[\frac{v(\rho)}{\rho} - \sum_{i=a-\rho}^{\rho} q^{i(a-i)} \left[\frac{n}{i} \right] \right]\). Since \(s \geq \max\{1 \leq i < v(\rho): K_i > 0\}\),
\[
K = K_{v(\rho)} + \sum_{i=1}^{s} K_i = K_{v(\rho)} + \frac{k_{v(\rho)}}{s} + \sum_{i=2}^{s} \frac{k_i}{i(i-1)}.\]
Using the two upper bounds on \(k_i\) above, we obtain \(K \leq k_{v(\rho)} \left(\frac{1}{\min\{s, j\}} - \frac{1}{v(\rho)} \right) + \frac{q^{mn}}{v(\rho)} H_{\min\{s, j\}}\).

Following [23], where [23, Theorem 12.1.2] is referred to as the Johnson-Stein-Lovász theorem, we refer to the algorithm described in the proof of Proposition 12 as the Johnson-Stein-Lovász (JSL)
algorithm. The upper bound in Proposition 12 can be loosened into the following.

Corollary 7: For $0 < \rho < n \leq m$, $K_\rho(q^m, n, \rho) \leq q^{mn} \left(\frac{m}{v(\rho)} \left(\ln v(\rho) + \gamma + \frac{1}{2v(\rho)+1/3}\right)\right)$, where γ is the Euler-Mascheroni constant [30].

Proof: Using (5), we obtain $K = \sum_{i=1}^{v(\rho)} \frac{k_i - k_{i-1}}{i} \leq q^{mn} \rho v(\rho) + \sum_{i=2}^{v(\rho)} \frac{k_i}{i(i-1)} \leq q^{mn} H_{v(\rho)}$. The proof is concluded by $H_{v(\rho)} < \ln v(\rho) + \gamma + \frac{1}{2v(\rho)+1/3}$ [30].

D. Covering properties of linear rank metric codes

Proposition 5 yields bounds on the dimension of a linear code with a given rank covering radius.

Proposition 13: An (n, k) linear code over $\text{GF}(q^m)$ with rank covering radius ρ satisfies $n - \rho - \frac{\rho(n-\rho) - \log_q K_q}{m} < k \leq n - \rho$.

Proof: The upper bound directly follows the upper bound in Proposition 5. We now prove the lower bound. By the sphere covering bound, we have $q^{mk} > \frac{q^{mn}}{v(\rho)}$. However, by Lemma 5 we have $v(\rho) < q^{(m+n-\rho) - \log_q K_q}$ and hence $q^{mk} > q^{mn - \rho(m+n-\rho) + \log_q K_q}$.

We do not adapt the bounds in Propositions 7 and 8 as their advantage over the lower bound in Proposition 13 is not significant. Next, we show that the dimension of a linear code with a given rank covering radius can be determined under some conditions.

Proposition 14: Let C be an (n, k) linear code over $\text{GF}(q^m)$ ($n \leq m$) with rank covering radius ρ. Then $k = n - \rho$ if $\rho \in \{0, 1, n-1, n\}$ or $\rho(n-\rho) \leq m + \log_q K_q$, or if C is a generalized Gabidulin code or an ELS.

Proof: The cases $\rho \in \{0, n-1, n\}$ are straightforward. In all other cases, since $k \leq n - \rho$ by Proposition 13 it suffices to prove that $k \geq n - \rho$. First, suppose $\rho = 1$, then k satisfies $q^{mk} > \frac{q^{mn}}{v(1)}$ by the sphere covering bound. However, $v(1) < q^{m+n} \leq q^{2m}$, and hence $k > n - 2$. Second, if $\rho(n-\rho) \leq m + \log_q K_q$, then $0 < \frac{1}{m} (\rho(n-\rho) - \log_q K_q) \leq 1$ and $k \geq n - \rho$ by Proposition 13. Third, if C is an $(n, k, n-k+1)$ generalized Gabidulin code with $k < n$, then there exists an $(n, k+1, n-k)$ generalized Gabidulin code C' such that $C \subset C'$. We have $\rho \geq d_k(C') = n-k$, as noted in Section II-B and hence $k \geq n - \rho$. The case $k = n$ is straightforward. Finally, if C is an ELS of dimension k, then for all x with rank n and for any $c \in C$, $d_k(x, c) \geq rk(x) - rk(c) \geq n - k$.

A similar argument can be used to bound the covering radius of the cartesian products of generalized Gabidulin codes.

Corollary 8: Let G be an (n, k, d_k) generalized Gabidulin code ($n \leq m$), and let G^l be the code obtained by l cartesian products of G for $l \geq 1$. Then the rank covering radius of G^l satisfies $\rho(G^l) \geq d_k - 1$.

Note that when $n = m$, G^l is a maximal code, and hence Corollary 8 can be further strengthened.
Corollary 9: Let G be an (m, k, d_R) generalized Gabidulin code over $\text{GF}(q^m)$, and let G^l be the code obtained by l cartesian products of G. Then $\rho(G^l) = d_R - 1$.

E. Numerical methods

In addition to the above bounds, we use several different numerical methods to obtain tighter upper bounds for relatively small values of m, n, and ρ. First, the JSL algorithm described in the proof of Proposition 12 is implemented for small parameter values. Second, local search algorithms [23] similar to the ones available for Hamming metric codes are somewhat less complex than the JSL algorithm. Although the complexity for large parameter values is prohibitive, it is feasible. Third, we construct linear codes with good covering properties, because linear codes have lower complexity.

We can verify if a covering radius is achievable by a given code size by brute force verification, thereby establishing lower bounds on $K_R(q^m, n, \rho)$. Obviously, this is practical for only small parameter values.

F. Tables

In Table I we provide bounds on $K_R(q^m, n, \rho)$, for $2 \leq m \leq 7$, $2 \leq n \leq m$, and $1 \leq \rho \leq 6$. Obviously, $K_R(q^m, n, \rho) = 1$ when $\rho = n$. For other sets of parameters, the tightest lower and upper bounds on $K_R(q^m, n, \rho)$ are given, and letters associated with the numbers are used to indicate the tightest bound. The lower case letters a–f correspond to the lower bounds in Propositions 5, 6, and 7, Corollaries 2 and 3, and Proposition 8 respectively. The lower case letter g corresponds to lower bounds obtained by brute force verification. The upper case letters A–E denote the upper bounds in Proposition 5, Corollary 6, and Propositions 10, 11, and 12 respectively. The upper case letters F–H correspond to upper bounds obtained by the JSL algorithm, local search algorithm, and explicit linear constructions respectively.

In Table II we provide bounds on the minimum dimension k for $q = 2$, $4 \leq m \leq 8$, $4 \leq n \leq m$, and $2 \leq \rho \leq 6$. The unmarked entries correspond to Proposition 14. The lower case letters a and e correspond to the lower bound in Proposition 13 and the adaptation of Corollary 3 to linear codes respectively. The lower case letter h corresponds to lower bounds obtained by brute force verification for linear codes. The upper case letter A corresponds to the upper bound in Proposition 13. The upper case letter H corresponds to upper bounds obtained by explicit linear constructions.

Although no analytical expression for $I(\rho, d)$ is known to us, it can be obtained by simple counting for the bounds in Proposition 7 or Corollary 3. In Appendix D we present the values of $I(q^m, n, \rho, d)$ used in calculating the values of the bounds in Proposition 7 and Corollary 2 displayed in Table I.
also present the codes, obtained by the numerical methods in Section V-E, that achieve the tightest upper bounds in Tables I and II.

G. Asymptotic covering properties

Table II provides solutions to the sphere covering problem for only small values of m, n, and ρ. Next, we study the asymptotic covering properties when both block length and minimum rank distance go to infinity. As in Section III, we consider the case where $\lim_{n \to \infty} \frac{n}{m} = b$, where b is a constant. In other words, these asymptotic covering properties provide insights on the covering properties of long rank metric codes over large fields.

TABLE I

m	n	$\rho = 1$	$\rho = 2$	$\rho = 3$	$\rho = 4$	$\rho = 5$	$\rho = 6$
2	2	e 3 F	1				
3	2	e 4 B	1				
	3	e 11-16 F	g 4 C	1			
4	2	e 7-8 B	1				
	3	e 40-64 B	d 4-7 F	1			
	4	f 293-722F	e 10-48 G	b 3-7 F	1		
5	2	e 12-16 B	1				
	3	e 154-256B	d 6-8 B	1			
	4	e 2267-4096B	e 33-256 C	d 4-8 C	1		
	5	e 34894-217 C	e 233-2881 E	a 9-32 H	b 3-8 C	1	
6	2	e 23-32 B	1				
	3	e 601-1024 B	d 11-16 B	1			
	4	e 17822-215 B	c 124-256 B	d 6-16 C	1		
	5	e 550395-220 B	e 1770-214 C	f 31-256 C	a 3-16 C	1	
	6	f 17318410-226 C	f 27065-413582 E	f 214-4211 E	f 9-181 D	b 3-16 C	1
7	2	e 44-64 B	1				
	3	e 2372-4096 B	d 20-32 B	1			
	4	e 141231-218 B	f 484-1024 B	a 9-16 B	1		
	5	e 8735289-224 B	e 13835-215 B	a 111-1024 C	a 5-16 C	1	
	6	e 549829402-230 B	f 42229-222 C	e 1584-215 C	f 29-734 E	a 3-16 C	1
	7	e 34901004402-237 C	f 13205450-239280759 E	e 23978-586397 E	f 203-5806 E	a 8-242 D	b 3-16 C

BOUNDS ON $K_R(q^m, n, \rho)$, FOR $2 \leq m \leq 7$, $2 \leq n \leq m$, AND $1 \leq \rho \leq 6$.
The asymptotic form of the bounds in Lemma 5 are given in the lemma below.

Lemma 11: For \(0 \leq \delta \leq \min\{1, b^{-1}\}, \lim_{n \to \infty} \left[\log qmn V_{\lceil \delta n \rceil} (q^m, n) \right] = \delta (1 + b - b\delta).

Proof: By Lemma 5 we have \(v(d_R) \leq K_q^{-1} q^m (m + n - d_R)\). Taking the logarithm, this becomes \(\delta (1 + b - b\delta) \leq \log qmn v(\lceil \delta n \rceil) < \delta (1 + b - b\delta) - \frac{\log K_q}{mn}\). The proof is concluded by taking the limit when \(n\) tends to infinity.

Define \(r = \frac{\rho}{n}\) and \(k(r) = \lim_{n \to \infty} \inf \left[\log qmn K_R (q^m, n, \rho) \right]\). The bounds in Proposition 5 and Corollary 7 together solve the asymptotic sphere covering problem.

Theorem 1: For all \(b\) and \(r\), \(k(r) = (1 - r)(1 - br)\).

Proof: By Lemma 11 the sphere covering bound asymptotically becomes \(k(r) \geq (1 - r)(1 - br)\).

Also, by Corollary 7 \(K_R (q^m, n, \rho) \leq \frac{q^m}{v(\rho)} [1 + \ln v(\rho)] \leq \frac{q^m}{v(\rho)} [1 + mn \ln q]\) and hence \(\log qmn K_R (q^m, n, \rho) \leq \log q^m + O((mn)^{-1} \ln mn)\). By Lemma 11 this asymptotically becomes \(k(r) \leq (1 - r)(1 - br)\). Note that although we assume \(n \leq m\) above for convenience, both bounds in Proposition 5 and Corollary 7 hold for any values of \(m\) and \(n\).
APPENDIX

A. Proof of Proposition

We first establish a key lemma.

Lemma 12: If \(z \in \mathbb{Z} \) and \(0 < \rho < n \), then \(|A \cap B_1(z)| \leq v(1) - q^{\rho - 1} \lfloor \frac{\rho}{1} \rfloor \).

Proof: By definition of \(\rho \), there exists \(c \in C \) such that \(d_R(z, c) \leq \rho \). By Proposition 2, \(|B_1(z) \cap B_{\rho - 1}(c)| \) gets its minimal value for \(d_R(z, c) = \rho \), which is \(q^{\rho - 1} \lfloor \frac{\rho}{1} \rfloor \) by Proposition 4. A vector at distance \(\leq \rho - 1 \) from any codeword does not belong to \(A \). Therefore, \(B_1(z) \cap B_{\rho - 1}(c) \subseteq B_1(z) \setminus A \), and hence \(|A \cap B_1(z)| = |B_1(z)| - |B_1(z) \setminus A| \leq v(1) - |B_1(z) \cap B_{\rho - 1}(c)| \).

We now give a proof of Proposition 8.

Proof: For a code \(C \) with covering radius \(\rho \) and \(\epsilon \geq 1 \),

\[
\gamma \overset{\text{def}}{=} \epsilon \left[q^{mn} - |C|v(\rho - 1) \right] - (\epsilon - 1) \left[|C|v(\rho) - q^{mn} \right] \quad (6)
\]
\[
\leq \epsilon |A| - (\epsilon - 1)|Z| \quad (7)
\]
\[
\leq \epsilon |A| - (\epsilon - 1)|A \cap Z| = \epsilon |A \setminus Z| + |A \cap Z|,
\]
where (7) follows from \(|Z| \leq |C|v(\rho) - q^{mn} \), given in Section II-B.

\[
\gamma \leq \sum_{a \in A \setminus Z} E_C(B_1(a)) + \sum_{a \in A \cap Z} E_C(B_1(a)) \quad (8)
\]
\[
= \sum_{a \in A} E_C(B_1(a)),
\]
where (8) follows from Lemma 8 and \(|A \cap Z| \leq E_C(A \cap Z) \).

\[
\gamma \leq \sum_{a \in A} \sum_{x \in B_1(a) \cap Z} E_C(\{x\}) \quad (9)
\]
\[
= \sum_{x \in Z} \sum_{a \in B_1(x) \cap A} E_C(\{x\}) = \sum_{x \in Z} |A \cap B_1(x)| E_C(\{x\}),
\]
where (9) follows the fact that the second summation is over disjoint sets \(\{x\} \). By Lemma 12, we obtain

\[
\gamma \leq \sum_{x \in Z} \left(v(1) - q^{\rho - 1} \left[\frac{\rho}{1} \right] \right) E_C(\{x\})
\]
\[
= \left(v(1) - q^{\rho - 1} \left[\frac{\rho}{1} \right] \right) E_C(Z)
\]
\[
= \left(v(1) - q^{\rho - 1} \left[\frac{\rho}{1} \right] \right) (|C|v(\rho) - q^{mn}) \quad (10)
\]
Combining (10) and (6), we obtain the bound in Proposition 8.

May 8, 2008 DRAFT
B. Proof of Corollary

For \(\rho = n - 1 \), (10) becomes \(\phi [q^m - |C|v(n-2)] - (\phi - 1) [|C|v(n-1) - q^m] \leq (v(1) - q^{n-2} \binom{n-1}{1} |C|v(n-1) - q^m) \). Substituting \(\phi = \alpha |C| - \beta \) and rearranging, we obtain the quadratic inequality in Corollary 5.

C. Proof of Proposition

Given a radius \(\rho \) and a code \(C \), denote the set of vectors in \(\text{GF}(q)^n \) at distance \(> \rho \) from \(C \) as \(P_\rho(C) \). To simplify notations, \(Q \overset{\text{def}}{=} q^m \) and \(p_\rho(C) \overset{\text{def}}{=} Q^{-1}|P_\rho(C)| \). Let us denote the set of all codes over \(\text{GF}(q)^n \) of length \(n \) and cardinality \(K \) as \(S_K \). Clearly \(|S_K| = \binom{Q}{K} \). The average value of \(p_\rho(C) \) for all codes \(C \in S_K \) is given by

\[
\frac{1}{|S_K|} \sum_{C \in S_K} p_\rho(C) = \frac{1}{|S_K|} Q^{-1} \sum_{C \in S_K} |P_\rho(C)| = \frac{1}{|S_K|} Q^{-1} \sum_{C \in S_K} \sum_{x \in F \setminus |d(x,C)| > \rho} 1 \\
= \frac{1}{|S_K|} Q^{-1} \sum_{x \in F} \sum_{C \in S_K} |d(x,C)| > \rho 1 \\
= \frac{1}{|S_K|} Q^{-1} \sum_{x \in F} Q - v(\rho) \\
= \left(Q - v(\rho) \right) / \binom{Q}{K},
\]

Eq. (11) comes from the fact that there are \(\binom{Q-v(\rho)}{K} \) codes with cardinality \(K \) that do not cover \(x \). For all \(K \), there exists a code \(C' \in S_K \) for which \(p_\rho(C') \) is no more than the average, that is:

\[
p_\rho(C') \leq \left(\frac{Q}{K} \right)^{-1} \left(Q - v(\rho) \right) K \leq (1 - Q^{-1}v(\rho))^K.
\]

Let us choose \(K = \left\lfloor \frac{1}{-\log_Q(1-Q^{-1}v(\rho))} \right\rfloor + 1 \) so that \(K \log_Q (1 - Q^{-1}v(\rho)) < -1 \) and hence \(p_\rho(C') = (1 - Q^{-1}v(\rho))^K < Q^{-1} \). It follows that \(|P_\rho(C')| < 1 \), and \(C' \) has covering radius at most \(\rho \).

D. Numerical results

The values of \(I(q^m, n, \rho, d) \), used in calculating the bounds in Proposition 7 or Corollary 2 obtained by counting are \(I(2^4, 3, 2, 3) = 560 \), \(I(2^5, 3, 2, 3) = 1232 \), \(I(2^5, 4, 3, 4) = 31040 \), \(I(2^6, 3, 2, 3) = 2576 \), \(I(2^6, 4, 2, 3) = 2912 \), \(I(2^6, 4, 3, 4) = 756800 \), and \(I(2^7, 3, 2, 3) = 5264 \).

We now present the codes, obtained by computer search, that achieve the tightest upper bounds in Tables II and III The finite fields use the default generator polynomials from MATLAB [31]. First, the linear code used to show that \(K_5(2^5, 5, 3) \leq 32 \) has a generator matrix given by \(G = (1, \alpha, \alpha^2, 0, 0) \),
where α is a primitive element of $\text{GF}(2^5)$. We use the skip-vector form [32] to represent the other codes obtained by computer search. The skip-vector form of a code $C = \{c_i\}_{i=0}^{K-1}$ over $\text{GF}(q^m)^n$ can be obtained as follows. First, each codeword $c_i \in \text{GF}(q^m)^n$ is represented by an integer x_i in $[0, q^{mn} - 1]$ according to the lexicographical order. Second, the integers x_i are sorted in ascending order; the resulting integers are denoted as x_i'. Third, calculate y_i defined as $y_0 = x_0'$ and $y_i = x_i' - x_{i-1}' - 1$ for $1 \leq i \leq K-1$. Fourth, if $y_i = y_{i+1} = \ldots = y_{i+k-1}$, then we write y_i^k.

Below are the codes obtained by the JSL algorithm.

$K_r(2^2, 2, 1) = 3 \quad 0^3$

$K_r(2^3, 3, 1) \leq 16 \quad 5 25 66 21 51 9 20 5 85 21 2 25 49 9 84 5$

$K_r(2^4, 3, 2) \leq 7 \quad 135 689 34 420 477 522 759$

$K_r(2^4, 4, 1) \leq 722 \quad 0 57 308 349 86 125 27 192 18 38 36 95 86 64 157 67 98 7 301 21 131 42$

$39 60 149 97 40 116 20 85 11 90 15 56 19 167 9 137 10 7 75 21 51 18 110 12 82 27 38 15 143 2 24$

$120 5 39 77 223 14 52 27 12 179 42 86 88 100 3 130 34 66 35 5 30 171 210 137 34 29 149 59 69 97$

$26 105 93 286 61 14 30 136 62 0 148 97 132 182 184 3 69 43 31 74 5 190 85 92 85 91 146 58 75 20$

$4 234 292 56 10 40 56 86 37 85 111 80 32 103 69 82 34 106 187 42 44 47 242 220 43 10 144 27 50$

$97 118 60 94 61 297 36 12 222 19 16 88 72 170 19 14 197 20 120 136 54 20 59 47 86 49 37 70 216$

$164^2 92 53 77 83 70 225 73 38 119 33 224 34 316 1 51 36 74 33 19 128 60 52 160 31 62 135 50 135$

$282 19 38 140 80 88 55 65 50 46 22 16 320 15 110 58 183 106 0 30 170 128 82 2 152 189 60 62 61$

$180 30 74 22 15 201 16 184 44 206 59 93 16 148 12 94 33 102 40 68 52 12 114 32 216 45 134 31$

$140 29 324 87 97 206 14 26 42 4 22 48 89 60 85 29 14 203 37 7 300 165 128 58 224 80 95 3 22 98$

$90 4 337 6 25 121 64 54 84 13 109 87 30 49 32 56 26 116 40 126 109 47 27 100 68 14 98 60 167 33$

$90 224 6 229 262 89 48 89 63 157 107 21 28 445 2 13 26 132 7 36 3 81 11 50 43 35 127 89 7 180$

$26 22 89 82 18 113 230 49 278 197 323 24 93 230 144 99 15 8 255 27 9 19 79 80 56 175 107 40 62$

$105 20 115 9 41 95 72 97 109 250 51 166 47 65 94 7 166 133 108 148 56 76 201 69 98 133 33 46 13$

$36 176 12 44 20 23 90 96 98 191 56 90 162 66 39 44 107 198 0 90 124 353 354 242 21 170 161 35$

$211 9 14 5 155 13 20 4 120 24 89 36 73 139 98 114 128 30 64 33 67 132 15 102 105 22 48 161 36$

$35 53 19 102 150 4 30 54 18 119 14 19 0 60 84 2 50 62 40 95 13 33 140 38 28 116 60 0 167 44 104$

$244 366 93 87 9 282 157 158 248 19 7 123 218^2 130 236 178 0 13 12 46 97 67 30 98 25 26 49 111$

$0 40 36 197 2 58 67 18 98 155 21 34 9 93 101 61 8 111 71 68 112 232 69 403 9 148 40 237 248 99$

$93 230 53 171 49 89 131 13 110 27 157 107 58 19 16 19 92 110 366 68 81 198 212 73 57 193 158$

$33 123 129 52 85 23 181 48 85 150 200 73 74 41 36 183 79 72 278 145 240 26 27 144 49 212 99 82$

$173 93 0 221 118 33 108 39 111^2 122 20 4 12 136 177 45 39 51 6 150 30 50 10 228 4 146 77 0 14 78$

May 8, 2008 DRAFT
Below is the code obtained by a local search algorithm.

\[K_r(2^4, 4, 2) \leq 48 \]

```plaintext
1493 1124 265 285 1030 2524 1366 493 6079 968 2145 848 312 473 1307 712
1088 2274 1380 1114 1028 567 422 1462 699 203 180 4669 146 978 3933 1810 2083 345 354 659
1054 2314 1443 2660 2675 1512 756 1229 95 2144 1624 1148
```

REFERENCES

[1] L. Hua, “A theorem on matrices over a field and its applications,” *Chinese Mathematical Society*, vol. 1, no. 2, pp. 109–163, 1951.

[2] P. Delsarte, “Bilinear forms over a finite field, with applications to coding theory,” *Journal of Combinatorial Theory A*, vol. 25, pp. 226–241, 1978.

[3] P. Lusina, E. M. Gabidulin, and M. Bossert, “Maximum rank distance codes as space-time codes,” *IEEE Trans. Info. Theory*, vol. 49, pp. 2757–2760, Oct. 2003.

[4] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Ideals over a non-commutative ring and their application in cryptology,” *LNCS*, vol. 573, pp. 482–489, 1991.

[5] E. M. Gabidulin, “Optimal codes correcting lattice-pattern errors,” *Problems on Information Transmission*, vol. 21, no. 2, pp. 3–11, 1985.

[6] R. M. Roth, “Maximum-rank array codes and their application to crisscross error correction,” *IEEE Trans. Info. Theory*, vol. 37, no. 2, pp. 328–336, March 1991.

[7] E. M. Gabidulin, “Theory of codes with maximum rank distance,” *Problems on Information Transmission*, vol. 21, no. 1, pp. 1–12, Jan. 1985.

[8] N. Suresh Babu, “Studies on rank distance codes,” Ph.D Dissertation, IIT Madras, Feb. 1995.

[9] K. Chen, “On the non-existence of perfect codes with rank distance,” *Mathematische Nachrichten*, vol. 182, pp. 89–98, 1996.

[10] W. B. Vasantha and N. Suresh Babu, “On the covering radius of rank-distance codes,” *Ganita Sandesh*, vol. 13, pp. 43–48, 1999.

[11] W. B. Vasantha and R. J. Selvaraj, “Multi-covering radii of codes with rank metric,” *Proc. IEEE Information Theory Workshop*, p. 215, Oct. 2002.

[12] G. Richter and S. Plass, “Fast decoding of rank-codes with rank errors and column erasures,” *Proc. IEEE Int. Symp. on Information Theory*, p. 398, June 2004.

[13] A. Kshevetskiy and E. M. Gabidulin, “The new construction of rank codes,” *Proc. IEEE Int. Symp. on Information Theory*, pp. 2105–2108, Sept. 2005.

[14] E. M. Gabidulin and P. Loidreau, “On subcodes of codes in the rank metric,” *Proc. IEEE Int. Symp. on Information Theory*, pp. 121–123, Sept. 2005.

[15] P. Loidreau, “A Welch-Berlekamp like algorithm for decoding Gabidulin codes,” *Proc. International Workshop on Coding and Cryptography*, 2005.
[16] M. Gadouleau and Z. Yan, “Properties of codes with the rank metric,” Proc. IEEE Globecom, pp. 1–5, Nov. 2006.
[17] ——, “Decoder error probability of MRD codes,” Proc. IEEE International Theory Workshop, pp. 264–268, Oct. 2006, available at http://arxiv.org/abs/cs/0610148
[18] ——, “On the decoder error probability of bounded rank-distance decoders for maximum rank distance codes,” to appear in IEEE Trans. Info. Theory, available at http://arxiv.org/pdf/cs.IT/0612051
[19] P. Loidreau, “Properties of codes in rank metric,” available at http://arxiv.org/pdf/cs.DM/0610057.
[20] P. Delsarte, “Four fundamental parameters of a code and their combinatorial significance,” Information and Control, vol. 23, pp. 407–438, 1973.
[21] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data Compression, ser. Information and System Sciences Series, T. Kailath, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1971.
[22] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam: North-Holland, 1977.
[23] G. D. Cohen, I. Honkala, S. Litsyn, and A. C. Lobstein, Covering Codes. Elsevier, 1997.
[24] G. E. Andrews, The Theory of Partitions, ser. Encyclopedia of Mathematics and its Applications, G.-C. Rota, Ed. Reading, MA: Addison-Wesley, 1976, vol. 2.
[25] D. J. Kleitman, “On a combinatorial conjecture of Erdős,” Journal of Combinatorial Theory, vol. 1, pp. 209–214, 1966.
[26] P. Delsarte and V. I. Levenshtein, “Association schemes and coding theory,” IEEE Trans. Info. Theory, vol. 44, no. 6, pp. 2477–2504, 1998.
[27] G. D. Cohen, A. C. Lobstein, and N. J. A. Sloane, “Further results on the covering radius of codes,” IEEE Trans. Info. Theory, vol. 32, pp. 680–694, 1986.
[28] G. van Wee, “Improved sphere bounds on the covering radius of codes,” IEEE Trans. Info. Theory, vol. 34, pp. 237–245, 1988.
[29] ——, “Bounds on packings and coverings by spheres in q-ary and mixed Hamming spaces,” Journal of Combinatorial Theory, Series A, vol. 57, pp. 116–129, 1991.
[30] C.-P. Chen and F. Qi, “The best bounds of harmonic sequence,” June 2003, available at arxiv:math.ca/0306233v1.
[31] The MathWorks, Inc., “MATLAB communications toolbox function reference: gf,” available at http://www.mathworks.com/access/helpdesk/help/toolbox/comm/ug/gf.html.
[32] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A new table of constant weight codes,” IEEE Trans. Info. Theory, vol. 36, no. 6, pp. 1334–1380, Nov. 1990.