Fasting and High-Fat Diet Alter Histone Deacetylase Expression in the Medial Hypothalamus

Hiromasa Funato*, Satoko Oda, Junko Yokofujita, Hiroaki Igarashi, Masaru Kuroda

Department of Anatomy, Toho University School of Medicine, Tokyo, Japan

Abstract

Increasing attention is now being given to the epigenetic regulation of animal and human behaviors including the stress response and drug addiction. Epigenetic factors also influence feeding behavior and metabolic phenotypes, such as obesity and insulin sensitivity. In response to fasting and high-fat diets, the medial hypothalamus changes the expression of neuropeptides regulating feeding, metabolism, and reproductive behaviors. Histone deacetylases (HDACs) are involved in the epigenetic control of gene expression and alter behavior in response to a variety of environmental factors. Here, we examined the expression of HDAC family members in the medial hypothalamus of mice in response to either fasting or a high-fat diet. In response to fasting, HDAC3 and -4 expression levels increased while HDAC10 and -11 levels decreased. Four weeks on a high-fat diet resulted in the increased expression of HDAC5 and -8. Moreover, fasting decreased the number of acetylated histone H3- and acetylated histone H4-positive cells in the ventrolateral subdivision of the ventromedial hypothalamus. Therefore, HDACs may be implicated in altered gene expression profiles in the medial hypothalamus under different metabolic states.

Introduction

A growing number of studies have shown that environmental factors including stress, maternal care, and exposure to psycho-stimulants epigenetically modulate gene expression through chromosomal modification, resulting in altered behavior [1–3]. Consistent with the role of epigenetic control in a variety of behaviors, the time-scale of epigenetic regulation varies widely, from circadian changes of histone acetylation in the promoter regions of clock genes [4] to long-term memory formation [5].

Epigenetic factors also regulate feeding behavior and metabolic phenotypes such as obesity and insulin sensitivity. Many human and animal studies have shown that maternal metabolic abnormalities have long-term effects on the metabolic characteristics of offspring [6,7]. In addition to maternal factors, it has been reported recently that paternal epigenetics influence pancreatic islet growth and glucose metabolism in female offspring [8].

Feeding behavior and body-weight homeostasis are regulated by a neural network within the hypothalamus and brain stem [9,10]. The hypothalamic arcuate nucleus (ARH) contains two populations of neurons crucial for feeding behavior regulation. One of these populations expresses anorexigenic, α-melanocyte stimulating hormone processed from pro-opiomelanocortin (POMC), whereas the second population expresses orexigenic neuropeptides, including neuropeptide Y (NPY) and agouti-related peptide (AgRP). Both POMC neurons and NPY/AgRP-expressing neurons receive direct and indirect inputs from orexin neurons located in the lateral hypothalamic area (LHA) and send their fibers to the paraventricular hypothalamic nucleus (PVH) to regulate feeding behavior [11]. The ventromedial hypothalamic nucleus (VMH) has close fiber connections with the ARH, and is involved in body weight regulation [12,13] as well as aggression and sexual behaviors [14]. In response to fasting and a high-fat diet, the expression levels of genes regulating feeding and reproductive behaviors in the hypothalamus are modified so that animals behave according to different energy needs [15–19].

The mechanisms by which gene expressions are modulated in the hypothalamus under different metabolic conditions have recently attracted considerable attention [20–22]. The histone deacetylase (HDAC) family is comprised of the following protein classes: class I (HDAC1, HDAC2, HDAC3, and HDAC8), class IIa (HDAC4, HDAC5, HDAC7, and HDAC9), class IIb (HDAC6 and HDAC10) and class IV (HDAC11) [23–25]. HDACs regulate histone acetylation in a sequence-specific and more global manner to repress, and in some cases enhance, gene transcription. Recently, HDACs have received increased attention due to the fact that they have been shown to play important roles in altered behavior in response to stress, chronic cocaine exposure, and energy metabolism [26,27]. These findings suggest that the HDAC family may be involved in the changes in hypothalamic gene expression that occur under different metabolic conditions.

In the present study, we examined the expression levels of HDAC family members in the medial hypothalamus in response to fasting or a high-fat diet. We further performed...
immunohistochemical examination of histone acetylation within the medial hypothalamus.

Results

We first examined the expression of HDAC in the medial hypothalamus of fed adult mice. All HDAC transcripts, from HDAC1 to HDAC11, were detected in the medial hypothalamus with differing levels of expression. The expressions of HDAC10 and -11 were significantly higher than those of other HDACs (Figure 1).

We next examined whether fasting alters the expression of HDAC family members in the medial hypothalamus. After 16-hours of fasting, HDAC3 and -4 expression levels were significantly increased compared to those of normally-fed mice, whereas HDAC10 and -11 expressions were decreased (Figure 2). Fasting did not alter the expression of HDAC1, -2, -5, -6, -7, -8 or, -9. Fasting also increased the expression of the orexigenic peptide Agrp as previously reported [19].

To further examine whether metabolic status affects the expression of HDAC genes in the medial hypothalamus, we determined HDAC expression levels in mice with high-fat diet-induced obesity. After 4-weeks of high-fat feeding, mice displayed a significantly larger body weight than mice fed a low-fat diet (high-fat diet n = 8, 7.2 ± 0.7; low-fat diet n = 10, 2.2 ± 0.8; p<0.01). Among all HDACs examined, a high-fat diet significantly increased the expression of HDAC5 and −8 (p<0.05; Figure 3). HDAC4 tended to decrease, but did not reach significance (p = 0.10).

We next performed immunohistochemical analyses of HDAC proteins in the hypothalamus using antibodies against HDAC3, -4, -5, -8, -10, and -11. HDAC3-immunostaining showed weak and diffuse immunostaining throughout the gray matter. HDAC4-immunoreactive cells were found throughout the hypothalamus including the ARH, dorsomedial subdivision of VMH (VMHdm), ventrolateral subdivision of the VMH (VMHvl), and dorsomedial hypothalamic nucleus (DMH) of fed mice. The numbers of HDAC4-immunoreactive cells in the ARH, VMHdm, VMHvl, and DMH of fed mice were similar to those of fasting or high-fat feeding mice (Figure 4G). The numbers of HDAC4-immunoreactive cells in the ARH, VMHdm, VMHvl, and DMH of fed mice were similar to those of mice under fasting and high-fat diet feeding. Weakly HDAC5-immunoreactive cells were also found in the ARH and DMH. Small numbers of HDAC3-positive cells were found in the anterior parvicellular and periventricular subdivisions of the PVH (Figure 4C, D), VMHdm, and LHA. The cytoplasmic localization of HDAC3 is consistent with a previous report on HDAC8 in muscular cells [28]. No HDAC3-positive cells were found in the ARH or VMH. Both fasting and a high-fat diet increased the number of HDAC3-positive cells in the PVH (Figure 4C, D, G) but not in the VMHdm and LHA. A small number of HDAC10-immunoreactive cells were seen in the DMH and LHA (Figure 4E, F), but not in the PVH, VMH, or ARH of mice fed normal chow. HDAC10-immunoreactivities were observed in the cytoplasm and proximal portion of the dendrites (Figure 4E, F). The numbers of HDAC10-positive cells in the DMH and LHA of mice fed normal chow was similar to those of mice under fasting or a high-fat diet (Figure 4G). HDAC11-immunostaining showed weak cytoplasmic and nuclear and intensity of HDAC5-immunoreactivity in the PVH of mice fed normal chow was similar to those of mice under fasting and high-fat diet feeding. Weakly HDAC5-immunoreactive cells were also detected in the ARH and DMH. After 16-hours of fasting, the expression levels of HDAC3, -4, and Agrp in the medial hypothalamus were increased, and HDAC10 and -11 levels decreased when compared with levels measured under fed conditions (8–10 mice per group). Data are presented as the expression level relative to the fed condition. *p<0.05.

![Figure 1](image1.png)

Figure 1. Expression of HDACs in the medial hypothalamus of fed mice. The medial hypothalamus of fed mice showed similar expression levels of HDAC1, -2, -3, -4, -5, -6, -7, -8, and -9. The expressions of HDAC10 and -11 were significantly higher than those of other HDACs. HDAC expression levels (n = 10) were normalized using GAPDH (gray bars) or β-actin expression levels (black bars). Reference gene selection did not affect the measurements of normalized HDAC levels. HDAC expression was also normalized based on the average of all HDAC levels. *p<0.05.

doi:10.1371/journal.pone.0018950.g002

![Figure 2](image2.png)

Figure 2. Fasting affects the expression of certain HDAC members family in the medial hypothalamus. After 16-hours of fasting, the expression levels of HDAC3, -4, and Agrp in the medial hypothalamus were increased, and HDAC10 and -11 levels decreased when compared with levels measured under fed conditions (8–10 mice per group). Data are presented as the expression level relative to the fed condition. *p<0.05.

doi:10.1371/journal.pone.0018950.g002

![Figure 3](image3.png)

Figure 3. A high-fat diet affects the expression of certain HDAC family members in the medial hypothalamus. After 4-weeks of high-fat diet, the expression levels of HDAC5 and -8 increased when compared to those measured from mice fed a low-fat diet (8–10 mice per group). Data are presented as an expression level relative to the low-fat diet condition. *p<0.05.

doi:10.1371/journal.pone.0018950.g002
suggests that HDAC3 and increased in the gene expression of the hypothalamus has not been clarified. Several signal transduction pathways [20–22], the role of HDACs fasting alters the gene expression profile of the hypothalamus via exploration for food and to utilize the appropriate amount of energy behaviors [16,30]. These behavioral changes encourage animals to increased anxiety behaviors, and suppressed sexual and reproductive behaviors [19,29]. This increased expression of HDAC3 and –4, along with the reduced expression of HDAC10, may result in altered expression of genes related to feeding behavior.

HDAC3 was expressed in a subset of neurons in the anterior parvicellular and periventricular subdivisions of the PVH and the expression level was decreased upon fasting. Interestingly, the anterior parvicellular and periventricular subdivisions of the PVH are rich in neurons expressing TRH [37] whose expression was decreased upon fasting [29], and a recently identified satiety neuropeptide, nesfatin–1 [38]. This suggests the possibility that HDAC3 may link energy condition to gene expression change of a subset of PVN neurons. Future studies will be required to characterize HDAC3-high expressing cells and to elucidate the role of HDAC3 in animal behavior.

We did not find any change in HDACs- or acetylated histone-immunoreactivities of the whole ARH as well as POMC neurons in response to fasting or a high-fat diet. However, it is important to note that our findings do not exclude altered histone acetylation of the promoter region of the POMC gene in POMC neurons, because an antibody for acetylated histone detects general histone acetylation status, not that of a specific gene.

Our immunohistochemical study also determined that fasting decreased the histone acetylation status in the VMHvl, which plays a crucial role in aggression and reproductive behaviors [14,39–42]. Increased expressions of HDAC3, and –4 in the medial hypothalamus during fasting suggest the role of HDAC3 and –4 in promoting deacetylated status in the VMHvl, resulting in altered gene expression and function.

Materials and Methods

Animals

C57BL/6J male mice were used in this study. Mice were provided food and water ad libitum, maintained on a 12-hour light/dark cycle and housed under controlled temperature and humidity conditions. All procedures were approved by the Institutional Animal Care and Use Committee of Toho University [Approved protocol ID #10-51-81]. To examine the effects of fasting, mice were removed from food at Zeitgeber time 20 (ZT20) and sacrificed at ZT12. Another group of mice was fed a high-fat diet (D12451; Research Diet) starting at 8 weeks of age. A low-fat diet, or normal chow, [MF; Oriental Yeast] provided 3.6 kcal/g of energy (61% carbohydrate, 26% protein, and 13% fat), whereas a high-fat diet provided 4.7 kcal/g of energy (35% carbohydrate, 20% protein, and 45% fat). After 4-week of high-fat feeding, mice were sacrificed at ZT12.
Quantitative PCR

Mice were sacrificed by cervical dislocation while deeply anesthetized using sodium pentobarbital. Then, the brain was rapidly removed and the medial hypothalamus was dissected on ice, rostrally at the optic chiasm, caudally at the mammillary bodies, 1 mm bilateral from the midline and 1.5 mm dorsal of the ventral surface. This dissected tissue included the ARH, VMH, DMH, and a part of the LHA. Total RNA was isolated using the RNeasy Lipid Tissue Mini kit (Qiagen, Chatsworth, CA) and used for cDNA synthesis with oligo d(T) primers and a PrimeScript reverse transcriptase kit (TaKaRa Bio, Otsu, Japan). Real-time quantitative PCR reactions were performed on cDNA with ABI Prism 7000 Sequence Detection System using SYBR GREEN PreMix Ex Taq (TaKaRa) according to the manufacturer’s manual. The number of cycles required to reach a threshold fluorescence level was scored and used for generating standard curves and interpolating mRNA concentration levels. A relative quantification method was employed for quantification of target molecules by calculating the ratio between the amount of the target molecule and a reference molecule within the same sample, according to the manufacturer’s protocol. Amplification of a single PCR product was confirmed by monitoring the dissociation curve. The averages of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA concentration in each tissue were calculated.

Figure 5. Fasting decreases the number of acetylated histone-positive cells in the VMHvl. A) Schematic illustration of the ARH, VMHdm, VMHvl, and DMH (right) and Nissl-stained section (left) of the coronal section of the medial hypothalamus. The third ventricle is in the midline. B–G) Immunoreactive cells for acetylated histone H3 on lysine 14 (AcH3; B, C, D) and acetylated histone H4 on lysine 12 (AcH4; E, F, G) under fed (B, E), fasting (C, F), and high-fat feeding (D, G), were visualized using DAB. The third ventricle is to the left. In mice fed a low-fat diet (B, E) or a high-fat diet (D, G), most cells in the ARH, VMH, and DMH were positive for AcH3 (B, D) and AcH4 (E, G). In fasting mice, a small numbers of cells in the VMHvl were positive for AcH3 (C) and AcH4 (F). H) A graph showing the number of AcH3- and AcH4-positive cells in the ARH, VMHdm, VMHvl, DMH, and LHA. The numbers of AcH3- and AcH4-positive cells in the VMHvl of fasting mice were significantly smaller than those of fed mice (n = 6). Scale bar: 250 μm. *P<0.05.

doi:10.1371/journal.pone.0018950.g005
Figure 6. Expressions of HDAC4, AcH3, and AcH4s in POMC neurons in the ARH. A, B, C) HDAC4-positive nuclei were found in POMC-positive cells (arrow in B) and POMC-negative cells (arrowhead in B) in the ARH of a high-fat fed mouse. D, E, F) HDAC5-immunoreactivities were found in the cytoplasm of POMC-positive cells (arrows in E) of a fed mouse. G, H, I) AcH3-positive nuclei were found in POMC-positive cells (arrows in H) of a fed mouse. J, K, L) AcH4-immunoreactivities were found in the nuclei of strongly POMC-positive cells (arrows in K), scattered moderate POMC-positive cells (open arrow in K), and POMC-negative cells (arrowhead in K) of a high-fat fed mouse. Scale bars: 50 μm.
doi:10.1371/journal.pone.0018950.g006
and β-actin mRNA levels were used for normalization. Primer sets used included 5-tggtggagaaaagacacac-3 and 5-aagctgaga-aggcttctca-3 for HDAC1, 5-tcatcaacgtcctggg-3 and 5-ttttgtgtcttggtcagta-3 for HDAC2, 5-ccggatagacaattcgac-3 and 5-acctctggagacagcg-3 for HDAC5, 5-tctgggagaaactggg-3 and 5-tctccaatcctgagagctac-3 for HDAC6, 5-tgcagctcattgtctgc-3 and 5-caggttcctctttccttc-3 for HDAC7, 5-agctgatggagagac-3 and 5-tcaagtactgctgtcaggtc-3 for HDAC8, 5-agcctcgcatacaaacaagc-3 and 5-aaggtgctgtcagtactc-3 for HDAC9, 5-ttttgtgtcttggtcagta-3 and 5-tggttgagagcagcg-3 for HDAC10, 5-gcagcagatccacatgaaca-3 and 5-ctccatcctccttcaac-3 for HDAC11, 5-ccgagcagatccacatgaaca-3 and 5-ctccatcctccttcaac-3 for HDAC11, 5-ggcgggtcaacagctgc-3 and 5-pcttgtgcagctgctgtc-3 for Agrp, 5-pcgagggctgctgctcttc-3 and 5-agaggctgctctgtcttcca-3 for Mch1, and 5-ggatgtcaacgtcacactt-3 for GAPDH.

Immunohistochemistry

Animals were deeply anesthetized with sodium pentobarbital and perfused transcardially with phosphate-buffered saline (PBS) followed by phosphate-buffered 4% paraformaldehyde (PFA). Brains were removed, post-fixed overnight in phosphate-buffered 4% PFA and equilibrated in 30% sucrose for two days. Brains were sectioned on a cryostat at 35 μm. Sections were stored in a cryoprotective tissue collection solution (25% glycerol, 30% ethylene glycol, 0.05 M phosphate buffer) at -20°C until use. Immunohistochemistry using immunoperoxidase was performed using a free-floating method. After pretreated with 0.3% hydrogen peroxide in PBS for 15 minutes, sections were preincubated for 1 hour in blocking solution (0.1 M phosphate buffer, 0.25% Triton X-100, and 5% normal donkey serum). Brain sections were incubated with primary antibodies for histone H3 acetylation on lysine 14 (AcH3, 1:3000, rabbit monoclonal, 04-1044, Millipore, Billerica, MA), histone H4 acetylation on lysine 12 (AcH4, 1:10,000, rabbit monoclonal, 04-119, Millipore), HDAC3 (1:100, rabbit monoclonal, ab32969, Abcam, Cambridge, MA), HDAC4 (1:100, rabbit polyclonal, ab79521, Abcam), HDAC5 (1:100, rabbit polyclonal, ab5403, Abcam), HDAC8 (1:250, rabbit polyclonal, ab39664, Abcam), HDAC10 (1:50, rabbit polyclonal, ab53906, Abcam), and HDAC11 (1:100, rabbit polyclonal, ab18973, Abcam) followed by incubation with biotinylated anti-rabbit IgG (1:400, BA1000, Vector Laboratories, Burlingame, CA). Sections were then incubated in avidin-biotin-horseradish peroxidase conjugate (Elite ABC kit, Vector Laboratories, Burlingame, CA). Detection was performed using 3,3′-diaminobenzidine (DAB). Immunoreactivity was visualized using 3,3′-diaminobenzidine (DAB). Images were captured by a CCD camera (DP70, Olympus) using 10x objective lens and DP controller software. Microscopic images were captured at the focal plane in which the maximum number of immunoreactive cells was recognized. The captured images were processed using Image J software (National Institutes of Health). After running threshold and watershed tools, particles with the size between 100–1000 pixels were counted. The area for positive cell count was 250 μm x 250 μm, except for ARH, for which the count area was 150 μm x 150 μm. Immunoreactive cells from two sections per animal (5–6 mice per group) were counted by observers blinded to the animal's group. The average number of cells counted in each mouse was taken for statistical comparisons.

To assess the double immunofluorescence data of the ARH, we randomly selected 100 of POMC-positive cells in the ARH from 3–5 optical views per animal (5 mice per group). The percentage of double-labeled cells was determined.

Data Analysis

Data are presented as means ± standard error of the mean (SEM). mRNA expression levels were determined by quantitative PCR, and the number of positive cells on the immunohistochemical examination was assessed using one-way analysis of variance followed by a Tukey’s post hoc test.

Acknowledgments

We thank H. Arai and A. Iijima for excellent technical support.

Author Contributions

Conceived and designed the experiments: HF. Performed the experiments: HF SO JY HI. Analyzed the data: HF SO HI. Contributed reagents/materials/analysis tools: HF JY. Wrote the paper: HF MK.

References

1. Dulac C (2010) Brain function and chromatin plasticity. Nature 465: 728–733. Available: http://www.nature.com/doifinder/10.1038/nature09231.
2. Meaney MJ, Ferguson-smith AC (2010) Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nature Publishing Group 13: 1313–1318. Available: http://dx.doi.org/10.1038/nn.2678.
3. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nature reviews. Neuroscience 8: 355–67. Available: http://www.ncbi.nlm.nih.gov/pubmed/17453016.
4. Etchegaray J-pierre, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421: 177–182. doi:10.1038/nature01282.1.
Korzas E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42: 961–72. Available: http://www.ncbi.nlm.nih.gov/pubmed/15207240.

Galbo-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54: 1089-906. Available: http://www.ncbi.nlm.nih.gov/pubmed/15983188.

Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. British medical bulletin 69: 5–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/11809615.

Ng SF, Lin RCY, Laydert DR, Barres R, Owens JA, et al. (2010) Chronic high-fat diet in female mating disrupts cell dysfunction in female rat offspring. Nature 467: 963–966. Available: http://www.nature.com/doifinder/10.1038/nature09491.

Horvath TL (2005) The hardship of obesity: a soft-wired hypothaluse. Nature neuroscience 8: 561–3. Available: http://www.ncbi.nlm.nih.gov/pubmed/15356063.

Myers MG, Cowley MA (2008) Mechanisms of Leptin Action and Leptin Resistance. Annual Review of Physiology. pp 1–20. doi:10.1146/annurev.physiol.70.113006.100707.

Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, et al. (2005) Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 123: 493–505. Available: http://www.ncbi.nlm.nih.gov/pubmed/16269939.

Sterruno SM, Shepherd GMG, Friedman JM (2005) Topographic mapping of VMH – arcuate nucleus microcircuits and their reorganization by fasting. Nature neuroscience 8: 1356–63. Available: http://www.ncbi.nlm.nih.gov/pubmed/16172801.

Dhallon H, Zigman JM, Ye C, Lee CE, McGovern Ra, et al. (2006) Leptin directly activates SFI neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49: 191–203. Available: http://www.ncbi.nlm.nih.gov/pubmed/16423694.

Liu D, Boyle MP, Dollar P, Lee H, Lin ES, et al. (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470: 221–226. Available: http://www.nature.com/doifinder/10.1038/nature09736.

Crown A, Clifton DK, Steiner R (2007) Neuropeptide signaling in the integration of metabolism and reproduction. Neuronurobiology 86: 175–82. Available: http://www.ncbi.nlm.nih.gov/pubmed/17898535.

Schneider JE (2004) Energy balance and reproduction. Physiology & behavior 81: 209–317. Available: http://www.ncbi.nlm.nih.gov/pubmed/15159173.

Enriori PJ, Evans AE, Sinayah P, Jobst EE, Tonelli-Lemos L, et al. (2007) Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell metabolism 5: 181–94. Available: http://www.ncbi.nlm.nih.gov/pubmed/17339026.

Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, et al. (2009) Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell metabolism 9: 64–76. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2630400&tool=pmcentrer&rendertype=abstract.

Swart I, Jahng JW, Overton JM, Houpst Ta (2002) Hypothalamic NPY, AGRP, and POMC mRNA responses to leptin and refeeding in mice. American journal of physiology. Regulatory, integrative and comparative physiology 283: R1020–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/11786666.

Kao H-Y, Lee C-H, Komarov A, Han CC, Evans RM (2002) Isolation and characterization of a novel histone deacetylase, HDAC10. The Journal of biological chemistry 277: 6656–66. Available: http://www.ncbi.nlm.nih.gov/pubmed/11793933.

Guardiola AR, Yao T-P (2002) Molecular cloning and characterization of a novel histone deacetylase HDAC10. The Journal of biological chemistry 277: 3550–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/11726666.

McKinsey Ta, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 409: 106–11. Available: http://www.ncbi.nlm.nih.gov/pubmed/11081517.

Fischle W, Dequiedt F, Hendzel MJ, Guruntha MG, Lazar Ma, et al. (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Molecular cell 9: 43–57. Available: http://www.ncbi.nlm.nih.gov/pubmed/11804585.

Radunovic A, Kim J, Lee S, Bedard CL, Accili D (2000) Estrogen receptor-α regulates systemic energy balance. Cell 123: 493–505. Available: http://www.ncbi.nlm.nih.gov/pubmed/100707.

Shahbazian MD, Grenstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annual review of biochemistry 76: 75–100. Available: http://www.ncbi.nlm.nih.gov/pubmed/17362198.

Yang X-J, Seto E (2008) The Rpd3/ Hdac1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature reviews. Molecular cell biology 9: 206–18. Available: http://www.ncbi.nlm.nih.gov/pubmed/18292776.

Rohal B, Genei M, Krishan V, Covington HE, Xiao G, et al. (2007) Histone deacetylation 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56: 517–29. Available: http://www.ncbi.nlm.nih.gov/pubmed/17985934.

Enhance T, Meyers K, Mullican SE, Leitner K, Adeniji-Adelé A, et al. (2008) Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456: 997–1000. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2742159&tool=pmcentrer&rendertype=abstract.

Wallrey M, De Local L, Gräns W, Ly Tran N, Berth J, et al. (2004) Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. The American journal of pathology 165: 553–64. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1618575&tool=pmcentrer&rendertype=abstract.

Lechan RM, Ferhat C (2006) The TRH neuron: a hypothalamic integrator of energy metabolism. Progress in brain research 153: 209–35. Available: http://www.ncbi.nlm.nih.gov/pubmed/16767577.

Fischer DD, Cai R, Bhattia U, Aselbergs FA, Song C, et al. (2002) Isolation and characterization of a novel class II histone deacetylase, HDAC10. Cell metabolism 5: 181–94. Available: http://www.ncbi.nlm.nih.gov/pubmed/17339026.

Snider A, Roeling TA, Gregg TR, Kruk MR (1999) Neuropharmacology of estrogen receptor-α. Annual review of physiology. pp 1–20. doi:10.1146/annurev.physiol.70.113006.100707.