Цель исследования — изучение влияния полиморфизма A118G μ-опиоидного рецептора OPRM1 на течение тотальной внутривенной анестезии.

Материалы и методы. Выборку составила 161 пациентка гинекологического профиля, которым были выполнены оперативные вмешательства в плановом порядке в условиях стандартной схемы тотальной внутривенной анестезии. Всем обследованным осуществляли мониторинг частоты сердечных сокращений (ЧСС), нонинвазивного среднего артериального давления (САД), пульсоксиметрии (SpO2), биспектрального индекса и соматосенсорных вызванных потенциалов до и после введения индукционной дозы анестетика, интраоперационно и в раннем послеоперационном периоде. Полиморфные варианты изучаемого гена определяли методом аллель-специфической ПЦР.

Результаты. В зависимости от выявленного генотипа пациентки были распределены на три группы: I группа — носительницы генотипа 118A/A (n=101 пациентка), II группа — носительницы генотипа 118A/G (n=48 пациенток), III группа — носительницы генотипа 118G/G (n=12 пациенток). Интраоперационно у носительниц генотипа 118G/G отмечали склонность к гипертензии, более высокий расход фентанила и дроперидола по сравнению с носительницами генотипов 118A/A и 118A/G. Межгрупповая разница значений биспектрального индекса была статистически недостоверной во время операции. В раннем послеоперационном периоде у гомозигот 118G/Г аллелей отмечали более глубокий уровень седации, что коррелировало с достоверно более низкими значениями биспектрального индекса (p<0,01) и увеличением частоты развития побочных реакций (p<0,01). При этом латентность и амплитуда соматосенсорных вызванных потенциалов у носительниц генотипа 118G/G имели наименьшие колебания, по сравнению с гомор и гетерозиготами по G аллелию (p<0,01).

Заключение. Полиморфизм A118G μ-опиоидного рецептора OPRM1 влияет на течение тотальной внутривенной анестезии. Пациентки с генотипом 118G/G нуждались в больших дозах наркотических анальгетиков, что требовало более длительного наблюдения в раннем послеоперационном периоде.

Ключевые слова: тотальная внутривенная анестезия, полиморфизм, μ-опиоидный рецептор, соматосенсорные вызванные потенциалы.

Objective: to investigate the influence of the A118G polymorphism of the μ-opioid receptor gene (OPRM1) on the course of total intravenous anesthesia.

Subjects and methods. A sample consisted of 161 gynecological patients who had undergone elective surgery under conventional total intravenous anesthesia. Heart rate, noninvasive mean blood pressure, peripheral oxygen saturation, bispectral index, and somatosensory evoked potentials were monitored in all the examinees before and after administration of the induction dose of an anesthetic, in the intraoperative and early postoperative period. The polymorphic variants of the gene in question were determined by allele-specific PCR. Results. According to the identified genotype, the patients were divided into 3 groups: 1) 118A/A genotype carriers (n=101); 2) 118A/G genotype carriers (n=48); 3) 118G/G genotype carriers (n=12). It was intraoperatively found that the 118G/G genotype carriers tended to have hypertension and to consume higher quantities of fentanyl and droperidol than the 118A/A and 118A/G carriers. The intergroup difference in the bispectral index was statistically insignificant during surgery. In the early postoperative period, the 118G/allele homozygotes showed a deeper level of sedation, which correlated with the significantly lower values of the bispectral index (p<0.01) and the higher incidence of adverse reactions (p<0.01). At the same time, the latency and amplitude of somatosensory evoked potentials in the 118G/G genotype carriers showed the least variations as compared to the A-allele homozygotes and heterozygotes (p<0.01). Conclusion. The A118G polymorphism of the μ-opioid receptor gene (OPRM1) affects the course of total intravenous anesthesia. The 118G/G genotype patients needed larger.
Совершенствование способов обезболивания при проведении хирургических вмешательств является актуальной проблемой анестезиологии [1—4]. Восприятие и ответ на один и тот же нециничтый стимул у пациентов происходит по-разному [5—7]. Генетические особенности индивиду играют в этом немаловажную роль [8—12]. Так, полиморфизм гена глутаминазы может приводить к развитию когнитивной дисфункции и формированию хронического болевого синдрома [13, 14]. Генетический полиморфизм серотониновых рецепторов существенно влияет на восприятие боли, связанной с термическим раздражением. Низкая экспрессия гена транспортера серотонина приводит к формированию гипоалгезии в ответ на пороговую термическую боль и к формированию гипералгезии в ответ на надпороговый термический нециничтный стимул [15—17]. У пациентов со сниженной активностью катехолорометилтрансферазы отмечается более высокой болевой порог в ответ на повторный нециничтый стимул [18—20]. Применительно к антнихозиционной системе установлено, что у носителей изоформы опиоидного рецептора MOR-1K существенно снижена эффективность наркотических анальгетиков [21, 22]. Ряд исследователей показал, что у носителей генотипов 118A/G, 118G/G опиоидного рецептора OPRM1 снижается ответ на введение фентанила и альфентанила и такие пациенты нуждались в больших дозах наркотических анальгетиков в раннем послеоперационном периоде [23—25]. У гомозиготных носительниц минорной аллели в раннем послеоперационном периоде чаще отмечались побочные эффекты в виде тошноты и рвоты, связанные с введением наркотических анальгетиков [26, 27]. Однако другие авторы не выявили каких-либо статистически достоверных различий в расходе наркотических анальгетиков среди носительниц различных генотипов OPRM1 [24].

Цель работы — оценка влияния полиморфизма A118G опиоидного рецептора OPRM1 на течение тотальной внутривенной анестезии.

Материал и методы

Исследование одобрило локальным независимым этическим комитетом при Государственном бюджетном образовательном учреждении высшего профессионального образования «Ростовский государственный медицинский университет» Министерства здравоохранения Российской Федерации (протокол No20112 от 20.12.2012). Работа выполнена в рамках рандомизированного, двойного слепого клинического исследования. В исследование были включены 161 пациентка (европейцы и монголы) в возрасте от 20 до 45 лет (средний возраст 33,25±6,26 лет), проживающие в Ростовской области, госпитализированные в отделение гинекологии МБУЗ «Городская больница №6» г. Ростова-на-Дону, которым выданы разрешение на проведение хирургических вмешательств.

The improving pain relief strategies in surgery is a challenging problem in contemporain anesthesiology-reanimatology [1—4]. The perception and response to the sample nociceptive stimulus in patients occurs in different ways [5—7]. Genetic characteristics of an individual might play important role in this process [8—12]. For example, gene polymorphism of glutaminase leads to the development of cognitive dysfunction and formation of chronic pain syndrome [13—14]. Genetic polymorphism of serotonin receptors significantly affects the perception of pain associated with thermal irritation. Low expression of the serotonin transporter leads to the formation of hypalgesia to a threshold heat pain and above-threshold thermal nociceptive stimuli [15—17]. Patients with reduced activity of catechol-O-methyltransferase possess higher pain threshold to repeated nociceptive stimuli [18—20]. In relation to the antinociceptive system the native isoforms of opioid receptor MOR-1K significantly reduce the effect-iveness of narcotic analgesics [21, 22]. Carriers of genotypes of 118A/G, 118G/G of μ-opioid receptor gene OPRM1 are characterized by reduced responses to the fentanyl and alfentanil resulted in a need in higher doses of narcotic analgesics in early postoperative period [23—25]. Side effects such as nausea and vomiting associated with the administration of narcotic analgesics were reported more frequently in post-surgery homoygous carriers of the minor alleles [26, 27]. However, other authors did not reveal any statistically significant differences in the consumption of narcotic analgesics among the different carriers of the OPRM1 genotypes [28].

The aim of our study was to evaluate the effect of the A118G polymorphism in μ-opioid receptor OPRM1 gene on total intravenous anesthesia.

Materials and Methods

The study was approved by the local independent ethics committee of the Rostov state medical university (Protocol No.20112 from 20.12.2012). The work was performed as two randomized, double-blind clinical studies. Study enrolled 161 patients (European and Asian population) of 20 to 45 years old (mean age 33.25±6.26 years) who were residents of the Rostov region, hospitalized in the Department of gynecology, City Hospital №6, Rostov-on-Don. All patients received total intravenous anesthesia during gynaecological operations.

Criteria for inclusion in the study:
1. Age of patients (20—45 years).
2. No comorbidity in patients on addmittance.
3. Patients with chronic bronchitis, chronic pharyngitis, chronic gastritis with remission for at least 3 months and more (patients with diseases of central nervous system, liver and kidneys without failure were excluded from the study).
4. No history of alcohol, drug, nicotine addiction, or durable medication.

www.reanimatology.com GENERAL REANIMATOLOGY, 2015, 11; 1
поляли тотальную внутреннюю анестезию при операциях гинекологического профиля. Критерии включения в исследование:

- Возраст пациенток 20-45 лет
- Отсутствие текущей патологии
- При наличии в анамнезе хронического бронхита, хронического фарингита, хронического гастрита вне обострения и т.д., период ремиссии составлял не менее 3 месяцев
- Отсутствие в анамнезе алкоголой, наркотической, никотиновой зависимости, а также длительного приема каких-либо лекарственных средств
- Индекс массы тела до 27,5 кг/м2
- Плановые оперативные вмешательства

Критерии исключения из исследования:

- Наличие в анамнезе сахарного диабета;
- Наличие в анамнезе ВИЧ-инфекции;
- Наличие в анамнезе заболеваний почек;
- Наличие в анамнезе патологии печени и желчевыводящих путей;
- Наличие в анамнезе заболеваний, аллергии;
- Индекс массы тела до 27,5 кг/м2.

Всем больным были выполнены оперативные вмешательства в плановом порядке. Результаты тотальной внутренней анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, эктопия матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Оценку адекватности общей анестезии проводили со следующих этапов: преднаркозная подготовка, которая подразумевала назначение сибазона в дозе 10 мг в/м в ночь накануне операции и за два часа до поступления в операционную. Интубационный период. При поступлении пациенток в операционную им вводили внутривенно атропин в дозе 0,5 мг, сибазон 10 мг («Москов эндокрин плант»), промедол 20 мг и кетамина 0,4 мг/кг («ФГУП «Москов эндокрин плант»). Индукцию проводили внутривенным ступенчатым введением пропофола (PropofolщLipuro, B.Braun, Germany), 10 мг каждые 5 секунд, до тех пор, пока уровень биспектрального индекса не опускался до уровня менее 60. Интубацию трахеи производили через 3—5 минут после индукции анетезии в дозе 0,06—0,007 мг/кг/мин и/или 0,2 мг/кг/час. Мониторировались следующие параметры: частота сердечных сокращений и/или среднее артериальное давление (САД — неинвазивно), данные по изменению сегмента ST, неинвазивное мониторирование электроуровня (интегральная активность, частота, пульсоксиметрия) и анальгезия. Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, эктопия матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Схема тотальной внутренней анестезии была стандартной и включала следующие этапы:

- Пределаркозная подготовка, которая подразумевала назначение сибазона в дозе 10 мг в/м в ночь накануне операции и за два часа до поступления в операционную. Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.

Всем больным были выполнены оперативные вмешательства в плановом порядке в условиях тотальной внутривенной анестезии (ТВА). Наиболее типичными оперативными вмешательствами были: резекция кисты яичника, лапароскопическая консервативная миомэктомия, надвлагалищная ампутация, экстирпация матки, отделение матки, экстракция плода и др. Операции проводили на первой операционной с использованием общего наркоза.
Таблица 1. Частота генотипов и аллелей гена OPRM1 среди пациенток различных рас, вошедших в исследование.

Parameters	Parameter values in the groups	Parameter values in the groups		
Genotypes	n	%	n	%
118A/A	91	65.94	10	43.48
118A/G	40	28.99	8	34.78
118G/G	7	5.07	5	21.73
Alleles	n	%	n	%
A	222	80.43	28	60.87
G	54	19.57	18	39.13

Note (примечание): Parameters — показатели; parameter values in the groups — значение параметров в группах; Europeans — европейцы; mongoloids — монголоиды; genotypes — генотипы; alleles — аллели; n — число больных.

1. after the patient entered the operating room (start point);
2. after induction and intubation (in 2 minutes), but prior to skin incision;
3. during laparotomy (on a stage of the most significant somatic component of pain);
4. at the stage of removing, amputation of the uterus, excision of the node (at the stage of most significant visceral component of pain);
5. in early postoperative period (15 minutes after the surgery was completed).

The polymorphism of the μ-opioid receptor gene OPRM1 was detected by polymerase chain reaction using specific forward and reverse primers (Biosine Biotechnology Co. Ltd, China) according to the method described previously [27]. Depending on the identified genotype patients were divided into three groups (table 1): group I — 101 carriers genotype 118A/A (carriers of the normal allele, the major variant), group II — 48 carriers 118A/G genotype (heterozygous carriers of the polymorphic alleles), group III — 12 carriers of genotype 118G/G (homozygous carriers of the polymorphic (minor) alleles) (P=0.073 demonstrating not significant difference from the Hardy-Weinberg equilibrium). Genotyping was performed in the laboratory of human geneties, Institute of Biology, Southern Federal University, Rostov-on-Don).

Statistical processing of the obtained data was performed using analysis of variance (ANOVA) and discriminant analysis by SPSS 17.0 and Microsoft Excel. To evaluate the significance of intra-group differences between the original and final values of variables nonparametric Wilcoxon criterion was employed. Statistically significant differences were considered at P<0.05.

Results and Discussion

Statistically significant differences between East Europeans and ethnic Asian carriers of the same genotypes were not identified in consumption of drugs for TIVA, course of anesthesia and early postoperative period (P>0.05).

Comparison of doses of drugs for general anesthesia revealed increased consumption of fentanyl in heterozygous and homozygous carriers of the minor G-allele compared to homozygous carriers of the major A-alleles. Thus in the first hour of operation the dose of fentanyl in the first group (the carriers of the genotype 118A/A) was 0.0045±0.0003 mg/kg, in second group (118A/G) — 0.0054±0.0004 mg/kg, and in the third group (118G/G) — 0.0081±0.0008 mg/kg. The total dose of fentanyl in homozygous carriers of the a-allele was 0.0059±0.0006 mg/kg, heterozygous carriers of the G-allele 0.0073±0.007 mg/kg and in homozygous carriers of the G-allele —
Table 2. The dose of the drugs for anesthesia in carriers of different genotypes of μ-opioid receptor gene (OPRM1) (M±m).

Drug	Induction dose (mg/kg)	Doses on the first hour of surgery (mg/kg)	Total doses (mg/kg)
	118A/A	118A/G	118G/G
	118A/A	118A/G	118G/G
Propofol	3.1±0.16	3.08±0.16	3.33±0.18
Ketamine	0.42±0.014	0.39±0.012	0.41±0.02
Fentanyl	0.0029±0.0003	0.0030±0.004	0.0045±0.005
	0.0004	0.0003	0.0004
Droperidol	0.003	0.004	0.002
Ketamine	0.05±0.01	0.07±0.01	0.06±0.01

Note (намечается): drug — препарат; induction dose (mg/kg) — индукционная доза (мг/кг); doses on the first hour of surgery (mg/kg) — расход препаратов за первый час операции (мг/кг); total doses (mg/kg) — суммарная доза (мг/кг); propofol — пропофол; ketamine — кетамин; fentanyl — фентанил; droperidol — дроперидол; m — the average error. * — p<0.05 (ANOVA); ** — p<0.01(ANOVA).
При сопоставлении межгрупповых различий изменений значений биспектрального индекса мы установили, что на первом, втором, третьем и четвертом этапах исследования межгрупповые различия значения биспектрального индекса были незначительными и статистически недостоверными. Однако на пятом этапе исследования значения биспектрального индекса были достоверно ниже (р<0,05) у носительниц генотипа 118G/G опиоидного рецептора OPRM1 (76,75±4,94), по сравнению со значениями данного показателя у носительниц генотипа 118A/A (82,32±3,48) и 118А/G (82,73±3,95), что указывало на более глубокий уровень седации, и было связано с большей суммарной дозой введенного фентанила и дроперидола.

При сопоставлении динамики изменений амплитуды и латентности соматосенсорных вызванных потенциалов на втором, третьем и четвертом этапах регистрации данных показателей мы установили, что у пациенток III группы колебания значений были менее выражены, чем в I-й и II-й группах, что указывало на повышенную чувствительность к ноцицептивному стимулу, несмотря на больший расход наркотических анальгетиков (табл. 3), что вероятнее всего, связано с замедлением образования циклического адениномононуклеотида [30].

Наиболее значимое снижение амплитуды N19, по сравнению с исходными данными, было зарегистрировано у гомозиготных носительниц А-аллелей OPRM1: на 2-ом этапе на 34,71±1,29% (р<0,01), на 3-ем этапе на 32,74±2,89% (р<0,01), на 4-м этапе на 29,78±2,12% (р<0,01). У гетерозиготных носительниц G-аллелей OPRM1 изменение амплитуды N19 было менее выраженным: 2-й этап — уменьшалась на 30,86±3,38% (р=0,05), 3-й на 32,72±2,93% (р<0,05), 4-й на 27,62±3,13% (р<0,05). У гомозиготных носительниц G-аллелей исследуемого гена OPRM1 амплитуда данного компонента уменьшалась только на 7,93±0,64% (2-й этап), на 10,87±0,26% (3-й этап) и на 10,96±0,78% (4-й этап), что было достоверно ниже, по сравнению с носительницами генотипов 118А/А и 118А/G (р<0,01).

При сопоставлении значений N19 в раннем послеоперационном периоде с исходными данными, установлено, что у носительниц мажорного генотипа отмечалось увеличение латентности N19 на 15,24±0,32% с одновременным снижением амплитуды N19 на 34,14±1,82% (р<0,01). У носительниц генотипа 118A/G латентность N19 была больше исходных значений на 11,18±0,92%, а амплиту-

Таблица 3. Динамика показателей компонентов соматосенсорных вызванных потенциалов на этапах исследования у носительниц различных генотипов OPRM1 (М±m).

Генотип	Соматосенсорные потенциалы (M±m)	
118A/A	Latency (nsec)	Amplitude (mV)
III	27,72±2,77	12,63±0,87
IV	29,14±3,02	10,96±0,78
V	31,45±3,34	9,32±0,56
VI	33,77±3,68	7,78±0,42
VII	36,10±3,99	6,23±0,31
VIII	38,43±4,30	4,78±0,20
IX	40,76±4,60	3,34±0,10

Примечание: | genotype — генотип; indicators of SSEP (somatosensor enoked potentials) nsec/mV — показатели соматосенсорные вызванные потенциалы нс/мВ; value of indicators in the stages of the study — значение показателей на этапах исследования; latency (nsec) — латентность (нс); amplitude (mV) — амплитуда (мВ); 118АА — генотип 118А/А, 118AG — генотип 118A/G; 118GG — генотип 118G/G. N19, P23 и N32 — основные компоненты соматосенсорных вызванных потенциалов. * — р<0,05 (ANOVA); ** — р<0,01 (ANOVA).
Вопросы обезболивания

(3rd stage) and to 10.96±0.78% (4th stage), which was significantly lower compared with carriers of genotypes 118A/A and 118A/G (P<0.01).

In early postoperative period carriers of major genotype had increased latency of N19 (15.24±0.32%) with a simultaneous decrease of the amplitude of N19 (34.14±1.82%, P<0.01) in comparison with the original data (start point). Carriers of the genotype 118A/G had higher latency of N19 in comparison with original values (11.18±0.92%), and the amplitude was lower in comparison with original values (18.34±2.27%, P<0.05). Carriers of the minor genotype exhibited an increased latency of N19 (4.37±0.06%), with a simultaneous decrease of the amplitude of N19 (5.26±0.16%). Thus in homozygous carriers of the polymorphic alleles of μ-opioid receptor gene OPRM1 the latency and amplitude of SSEP differed in comparison with the original data, which indicated almost complete recovery of conduction of nociceptive impulse, while the carriers of the genotype 118A/A genotype 118A/G were characterized by slower speed of the impulse conduction (residual analgesia).

Significant differences were not revealed among groups in heart rate at any stage of the study (Fig. 1—2).

At the same time, medium arterial pressure (NIMBP) was significantly higher in homozygous carriers of the minor G-allele at 3—5—m phases of the study, compared to homozygous carriers of the major A-allele (P<0.05). At the third stage medium arterial pressure of homozygous carriers of the major allele was 77.29±3.43 mm Hg, in heterozygous carriers of the minor allele — 84.31±5.38 mm Hg, and in homozygous carriers of the minor allele it was 91.25±8.37 mm Hg.

At the fourth stage in homozygous carriers of the A-allele NIMBP value was 76.14±3.32 mm Hg, in heterozygous carriers of the G-allele it was 81.35±5.62 mm Hg and in homozygous carriers of the G-allele OPRM1 — 91.02±6.34 mm Hg.

In early postoperative period (the fifth stage) NIMBP in carriers of genotype 118A/A OPRM1 was 73.93±3.36 mm Hg, in carriers of the genotype 118A/G OPRM1 was 81.15±4.67 mm Hg, and in carriers of the genotype 118G/G was 85.33±5.52 mm Hg (Fig. 2).

Homozygous carriers of the major allele began execute verbal commands on 6.63±3.11 minutes, the extubation in that group was made on 9.7±3.46 minutes after surgery. Heterozygous carriers of the minor alleles began execute verbal commands on 9.27±3.69 minute, and extubation was performed on 14.69±4.42 minute. In homozygous carriers of the minor allele execution start time of verbal commands were 27.75±8.23 minutes, and the time of extubation was 34.08±11.13 minutes after surgery, which was significantly higher (P<0.01) in comparison with the patients of first and second groups.

In addition, the analysis of the occurrence of postoperative nausea and vomiting showed that this complication was observed in twelve (11.88%) patients in the first group, eight (16.7%) patients in the second group and seven (58.3%) in the third group that corresponded to

Рис. 1. Динамика изменения частоты сердечных сокращений у пациенток различных генотипов.
Fig. 1. Dynamics of changes in heart rate of patients included in the study.

Рис. 2. Динамика изменений среднего артериального давления у пациенток различных генотипов.
Fig. 2. Dynamics of changes of NIBP (noninvasive mean arterial pressure).

ОБЩАЯ РЕАНИМАТОЛОГИЯ, 2015, 11; 1 www.reanimatology.com 59
В раннем послеоперационном периоде (пятый этап) средние значения САД у носительниц генотипа 118А/А OPRM1 составили 73,93±3,36 мм рт. ст., у носительниц генотипа 118А/G OPRM1 81,15±4,67 мм рт. ст., а у носительниц генотипа 118G/G — 85,33±5,52 мм рт. ст. (рис. 2).

Среднее время начала выполнения вербальных команд составило в пределах 6,63±3,11 мин. у гомозиготных носительниц мажорной аллели, а среднее время экстубации у пациенток, вошедших в данную группу, составило 9,74±3,46 мин. после оперативного вмешательства. Гетерозиготные носительницы минорной аллели начинали выполнять вербальные команды на 9,27±3,69 минуте, а экстубация выполнялась в среднем на 14,69±4,42 минуте. У гомозиготных носительниц минорной аллели время начала выполнения вербальных команд составило 27,75±8,23 мин., а время экстубации колебалось в пределах 34,08±11,13 минут, что было достоверно выше (р<0,01) в сравнении с пациентками первой и второй групп. Помимо этого, анализ встречаемости послеоперационной тошноты и рвоты показал, что данное осложнение отмечалось у двенадцати (11,88%) пациентов в первой группе, у восьми (16,7%) пациентов во второй группе и у семи (58,3%) пациентов в третьей группе, что схоже с результатами, полученными другими авторами [26, 27]. Таким образом, это осложнение значительно чаще встречалось у носительниц генотипа 118G/G μ-опиоидного рецептора (р<0,01).

Применение дискриминантного анализа позволило выявить наиболее значимые критерии прогнозирования течения анестезии у носительниц полиморфных результатов, отмеченных другими авторами [26, 27]. Это осложнение значительно чаще встречалось у носительниц генотипа 118G/G μ-опиоидного рецептора (р<0,01).

The application of discriminant analysis allowed to identify the most important criteria for predicting the course of anesthesia in carriers of the polymorphic variants of the gene OPRM1. Standardized coefficients that determine the value (weight) in the discrimination of the studied groups (Table. 4) were established. Analysis of the results showed that the important value in predicting the course of anesthesia and early postoperative period depending on the OPRM1 genotype were: latency and amplitude of somatosensory evoked potentials (primarily the amplitude N19 on 2nd, 3rd phases of the study, the latency N19 and N32 on 5th stage) and extubation time.

Таблица 4. Стандартизированные коэффициенты для канонических переменных в дискриминантной модели.

Parameters	Root 1	Root 2
Latency of N19 (4th stage)	-0,030	-0,822
Amplitude of N19 (2nd stage)	-0,389	0,198
Amplitude of N19 (3rd stage)	-0,546	0,382
Amplitude of N19 (5th stage)	-0,372	-0,575
Latency of N32 (5th stage)	0,596	-0,107
NIMBP (2nd stage)	0,124	-0,285
Extubation time	0,309	-0,676
Time start of verbal commands execution	-0,799	0,916
Eigen values	15,490	7,913
Cumulative proportion	0,662	1,000

Note (примечание). Here and in table 5 (здесь и в табл. 5): parameters — показатели; latency of N19 (4th stage) — латентность 19 (4 этап); amplitude of N19 (2nd stage) — амплитуда 19 (2 этап); amplitude of N19 (3rd stage) — амплитуда 19 (3 этап); amplitude of N19 (5th stage) — амплитуда 19 (5 этап); latency of N32 (5th stage) — латентность 32 (5 этап); NIMBP (noninvasive mean blood pressure) — неинвазивное среднее артериальное давление; extubation time — время экстубации; time start of verbal commands execution — время начала выполнения вербальных команд; eigen values — собственные значения; cumulative proportion — кумулятивная доля; R — компонента соматосенсорных вызванных потенциалов.

В нем подсчете приведены значения САД у носительниц генотипа 118А/А OPRM1 с результатами 73,93±3,36 мм рт. ст., у носительниц генотипа 118А/G OPRM1 с результатами 81,15±4,67 мм рт. ст., а у носительниц генотипа 118G/G — 85,33±5,52 мм рт. ст. (рис. 2).

Среднее время начала выполнения вербальных команд составило в пределах 6,63±3,11 мин. у гомозиготных носительниц мажорной аллели, а среднее время экстубации у пациенток, вошедших в данную группу, составило 9,74±3,46 мин. после оперативного вмешательства. Гетерозиготные носительницы минорной аллели начали выполнять вербальные команды на 9,27±3,69 минуте, а экстубация выполнялась в среднем на 14,69±4,42 минуте. У гомозиготных носительниц минорной аллели время начала выполнения вербальных команд составило 27,75±8,23 мин., а время экстубации колебалось в пределах 34,08±11,13 минут, что было достоверно выше (р<0,01) в сравнении с пациентками первой и второй групп. Помимо этого, анализ встречаемости послеоперационной тошноты и рвоты показал, что данное осложнение отмечалось у двенадцати (11,88%) пациентов в первой группе, у восьми (16,7%) пациентов во второй группе и у семи (58,3%) пациентов в третьей группе, что схоже с результатами, полученными другими авторами [26, 27]. Таким образом, это осложнение значительно чаще встречалось у носительниц генотипа 118G/G μ-опиоидного рецептора (р<0,01).

Применение дискриминантного анализа позволило выявить наиболее значимые критерии прогнозирования течения анестезии у носительниц полиморфных
1. Kozlov I.A. Agonist OPRM1 of μ-opioid receptor OPRM1, primarily 118G/G are more tolerant to narcotic analgesics (P<0.01) and required higher doses of narcotic analgesics to achieve adequate analgesia during surgery.

2. Homozygous carriers of the minor allele had deeper level of sedation, and they recovered the spontaneous breathing later demonstrating that the patients with 118A/G and 118G/G genotypes needed more attention in early postoperative period (P<0.01). This fact could be connected to higher doses of narcotic analgesics, which were administered during surgery.

All of the indicators included in the model have a high statistical significance (table 5)

Conclusion

1. The carrier genotypes 118A/G and 118G/G μ-opioid receptor OPRM1, primarily 118G/G are more tolerant to narcotic analgesics (P<0.01) and required higher doses of narcotic analgesics to achieve adequate analgesia during surgery.

2. Homozygous carriers of the minor allele had deeper level of sedation, and they recovered the spontaneous breathing later demonstrating that the patients with 118A/G and 118G/G genotypes needed more attention in early postoperative period (P<0.01). This fact could be connected to higher doses of narcotic analgesics, which were administered during surgery.

All of the indicators included in the model have a high statistical significance (table 5)

References

1. Kozlov I.A. Agonist OPRM1 of μ-opioid receptor OPRM1, primarily 118G/G are more tolerant to narcotic analgesics (P<0.01) and required higher doses of narcotic analgesics to achieve adequate analgesia during surgery.

2. Homozygous carriers of the minor allele had deeper level of sedation, and they recovered the spontaneous breathing later demonstrating that the patients with 118A/G and 118G/G genotypes needed more attention in early postoperative period (P<0.01). This fact could be connected to higher doses of narcotic analgesics, which were administered during surgery.

Выводы

1. Носительницы генотипов 118А/G и 118G/G μ-опиоидного рецептора OPRM1, в первую очередь 118G/G, имеют толерантность к наркотическим анальгетикам (p<0.01), и требуют более высоких доз наркотических анальгетиков для достижения адекватной аналgesии во время операции.

2. У гомозиготных носительниц минорной аллели восстановление дыхания и уровня сознания наступило значительно позже (p<0.01), что требовало большего контроля за этими пациентками и, возможно, связано с большими дозами наркотических анальгетиков, вводимых во время операции.

Таблица 5. Статистическая значимость переменных, включенных в дискриминантную модель.

Параметры	t-уровень
Латентность N19 (4 этап)	0,000000
Амплитуда N19 (2 этап)	0,000004
Амплитуда N19 (3 этап)	0,000000
Латентность N19 (5 этап)	0,000000
Латентность N32 (3 этап)	0,000600
NIMBP (2 этап)	0,004911
Время экстубации	0,016137
Время начала выполнения вербальных команд	0,000111

Все показатели, включенные в модель, обладают высокой статистической значимостью (табл. 5).

Высокая значимость переменных позволяет применить полученные результаты моделирования к другим выборкам пациентов.

Литература

1. Kozlov I.A. Agonist OPRM1 of μ-opioid receptor OPRM1, primarily 118G/G are more tolerant to narcotic analgesics (P<0.01) and required higher doses of narcotic analgesics to achieve adequate analgesia during surgery.

2. Homozygous carriers of the minor allele had deeper level of sedation, and they recovered the spontaneous breathing later demonstrating that the patients with 118A/G and 118G/G genotypes needed more attention in early postoperative period (P<0.01). This fact could be connected to higher doses of narcotic analgesics, which were administered during surgery.

Вопросы обезболивания

1. The carrier genotypes 118A/G and 118G/G μ-opioid receptor OPRM1, primarily 118G/G are more tolerant to narcotic analgesics (P<0.01) and required higher doses of narcotic analgesics to achieve adequate analgesia during surgery.

2. Homozygous carriers of the minor allele had deeper level of sedation, and they recovered the spontaneous breathing later demonstrating that the patients with 118A/G and 118G/G genotypes needed more attention in early postoperative period (P<0.01). This fact could be connected to higher doses of narcotic analgesics, which were administered during surgery.

All of the indicators included in the model have a high statistical significance (table 5)

Conclusion

1. The carrier genotypes 118A/G and 118G/G μ-opioid receptor OPRM1, primarily 118G/G are more tolerant to narcotic analgesics (P<0.01) and required higher doses of narcotic analgesics to achieve adequate analgesia during surgery.

2. Homozygous carriers of the minor allele had deeper level of sedation, and they recovered the spontaneous breathing later demonstrating that the patients with 118A/G and 118G/G genotypes needed more attention in early postoperative period (P<0.01). This fact could be connected to higher doses of narcotic analgesics, which were administered during surgery.

All of the indicators included in the model have a high statistical significance (table 5)

References

1. Kozlov I.A. Agonist OPRM1 of μ-opioid receptor OPRM1, primarily 118G/G are more tolerant to narcotic analgesics (P<0.01) and required higher doses of narcotic analgesics to achieve adequate analgesia during surgery.

2. Homozygous carriers of the minor allele had deeper level of sedation, and they recovered the spontaneous breathing later demonstrating that the patients with 118A/G and 118G/G genotypes needed more attention in early postoperative period (P<0.01). This fact could be connected to higher doses of narcotic analgesics, which were administered during surgery.

All of the indicators included in the model have a high statistical significance (table 5)

Table 5: Statistical significance of the variables included in the discriminant model.

Parameters	t-value
Latency of N19 (4th stage)	0.000000
Amplitude of N19 (2nd stage)	0.000004
Amplitude of N19 (3rd stage)	0.000000
Latency of N19 (5th stage)	0.000000
Latency of N32 (3rd stage)	0.000600
NIMBP (2nd stage)	0.004911
Time start of verbal commands execution	0.016137
Extubation time	0.000111

All of the indicators included in the model have a high statistical significance (table 5)

References

1. Kozlov I.A. Agonist OPRM1 of μ-opioid receptor OPRM1, primarily 118G/G are more tolerant to narcotic analgesics (P<0.01) and required higher doses of narcotic analgesics to achieve adequate analgesia during surgery.

2. Homozygous carriers of the minor allele had deeper level of sedation, and they recovered the spontaneous breathing later demonstrating that the patients with 118A/G and 118G/G genotypes needed more attention in early postoperative period (P<0.01). This fact could be connected to higher doses of narcotic analgesics, which were administered during surgery.

All of the indicators included in the model have a high statistical significance (table 5)
Problems of anesthesia

Общая реаниматология. 2013; 9 (1): 58—62. http://dx.doi.org/10.15360/1813-9779-2013-9-1-58

4. Жемчугова О.М., Воробьева А.И., Коротченко В.Г. Влияние польофосфата на переносимость и фармакокинетику анестетиков. Общая реаниматология. 2014; 10 (1): 58—67. http://dx.doi.org/10.15360/1813-9779-2014-1-58

5. Махмудханов М.М. Вторичная болевая реакция — новый параметр болевой чувствительности. Бюл. 2009: 2; 19—23.

6. Яхно Н.Н., Психонико М.Г., Попков М.Ф., Смирнова Е.С., Кукушкин М.Л. Изменение устойчивости к развитию неврологического синдрома на фоне стресса у крыс различных генетических линий: роль катехоламинов. Мат-лы 18-го Росс. науч.-практ. конф. «Хро- наческая боль». Кисловодск: 2012: 22—23.

7. Карамазов А.Е., Яхнин Н.Н., Ляховцев Л. Б. Клинические рекомендации. Применение нестероидных противовоспалительных препара- тов. Н.М. ИММА ПРЕСС; 2009.

11. Оппенюк А.Р. Психология и перспективы использования боту- линума в клинической практике. PMR: 2006; 14 (23): 1700—1708.

12. LaCroix-Fralish ML, Mogil J.S. Progress in genetic studies of pain and analgesia. Annu. Rev. Pharmacol. Toxicol. 2009; 49: 97—121. http://dx.doi.org/10.1146/annurev.pharmtox.060108.163222. PMID: 19834308

13. Шацмер А.А. Новый взгляд на проблему послеоперационной ко- питной дисфункции. Острые и неотложные состояния в практике аnestезиолога. 2008; 2: 64—67.

14. Яхнин Н.Н. Руководство для врачей и студентов. М.: Мед-прес — Новосибирск; 2009.

15. Nezir A.Y., Scaramozzino P., Andersen O.K., Dickenson A.H., Arendt-Nielsen L, Curatolo M. Reference values of mechanical and thermal pain tests in a pain-free population. Eur. J. Pain. 2011; 15 (4): 376—383. http://dx.doi.org/10.1016/j.ejpain.2010.08.011. PMID: 20932788

16. Bar K.J., TERHAR J., Boettger M.K., Boettger S., Berger S., Weiss T. Pseudohypoalgesia on the skin: a novel view on the paradox of pain perception. J. Clin. Pharmacol. 2010; 50 (9): 1111/j.1742-7843.2009.00481.x. PMID: 19912167

17. Jovancic H., Perski A., Bergland H., Savic I. Chronic stress is linked to 5-HT1A receptor changes and functional disintegration of the limbic networks. Neuroimage. 2011; 53 (3): 1178—1188. http://dx.doi.org/10.1016/j.neuroimage.2010.12.060. PMID: 21215157

18. Anderson S.E. Drug dispensing errors in a ward stock system. Basic Clin. Pharmacol. Toxicol. 2010; 106 (2): 100—105. http://dx.doi.org/10.1111/j.1742-7849.2009.00481.x. PMID: 19912167

19. Nicholl B.I., Holliday K.L., Macfarlane G.J., Thompson K., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macfarlane G.J., Thomson W., Davies K.A., Nicholl B.I., Holliday K.L., Macf...
Вопросы обезболивания

24. Huang C.J., Liu H.F., Su N.Y., Hsu Y.W., Yang C.H., Chen C.C., Tsai P.S. Association between human opioid receptor genes polymorphisms and pressure pain sensitivity in females. Anesthesia. 2008; 63 (12): 1288—1295. http://dx.doi.org/10.1011/j.1365-2044.2008.05760.x. PMID: 19032295
25. Ginoar Y., Davidson E.M., Meroz Y., Blotnick S., Shacham M., Caraco Y. Mu-opioid receptor (A118G) single-nucleotide polymorphism affects alfentanil requirements for extracorporeal shock wave lithotripsy: a pharmacokinetic-pharmacodynamic study. Br. J. Anesth. 2009; 103 (3): 420—427. http://dx.doi.org/10.1093/bja/aep192. PMID: 19603407
26. Kolesnikov Y., Gabreits B., Levin A., Vode E., Vode A. Combined catechol-O-methyltransferase and mu-opioid receptor gene polymorphisms affect morphine postoperative analgesia and central side effects. Anesth. Analg. 2011; 112 (2): 448—453. http://dx.doi.org/10.1213/ANE.0b013e318202cde8. PMID: 21127283
27. Zhang W., Chang Y.Z., Kan Q.C., Zhang L.R., Lu H., Chu Q.J., Wang Z.Y., Li Z.S., Zhang J. Association of human micro-opioid receptor gene polymorphism A118G with fentanyl analgesia consumption in Chinese gynaecological patients. Anesthesia. 2010; 65 (2): 130—135. http://dx.doi.org/10.1011/j.1365-2044.2009.06193.x. PMID: 20003118
28. Wieler C., Litsch J. Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain. 2009; 146 (3): 270—275. http://dx.doi.org/10.1016/j.pain.2009.07.013. PMID: 19683391
29. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. Таганрог: изд-во ТРТУ; 1997. [In Russ.]
30. Oertel B.G., Kettner M., Scholich K., Renn C., Roskam B., Geisslinger G., Schmidt P.H., Litsch J. A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J. Biol. Chem. 2009; 284 (10): 6530—6535. http://dx.doi.org/10.1074/jbc.M807030200. PMID: 19116204

Поступила 03.05.14

sensitivity haplotypes in chronic widespread pain. Am. Rheum. Dis. 2010; 60 (11): 2009—2012. http://dx.doi.org/10.1136/ard.2009.126086. PMID: 20570835
20. Vossen H., Kemis G., Batten B., van Os J., Hermes H., Louchberg R. The genetic influence on the cortical processing of experimental pain and the moderating effect of pain status. PLoS One. 2010; 5 (10): e13641. http://dx.doi.org/10.1371/journal.pone.0013641. PMID: 21049025
21. Barlow A.V., Shifman E.M. Farmakogeneticheskie aspekty klinicheskoi anesteziologii. [Pharmacogenetical aspects of clinical anaesthesiology]. Anesteziologiya i Reanimatologiya. 2010; 6: 83—86. PMID: 21400801. [In Russ.]
22. Shabalina S.A., Zaykin D.V., Gris P., Ogurtsov A.Y., Gauthier J., Shibata K., Tchivileva I.E., Belfer I., Mishra B., Kuzhelzhukh C., Wallace M.R., Staed R., Spiridonov N.A., Max M.B., Goldmann D., Fillingim R.B., Miwaer W., Duthelo L. Expansion of the human mu-opioid receptor gene architecture: novel functional variants. Hum. Mol. Genet. 2009; 18 (6): 1037—1051. http://dx.doi.org/10.1093/hmg/ddn439. PMID: 19103668
23. Hayashida M., Nagashima M., Satoh Y., Kato H., Tagami M., Ide S., Kosei S., Nishizawa D., Ogai Y., Hasegawa J., Komatsu H., Soma I., Fukuda K., Koga H., Horikoshi Y., Ieki K. Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype. Pharmacogenomics. 2009; 9 (11): 1605—1616. http://dx.doi.org/10.2217/14622416.9.11.1605. PMID: 19018716
24. Huang C.J., Liu H.F., Su N.Y., Hsu Y.W., Yang C.H., Chen C.C., Tsai P.S. Association between human opioid receptor genes polymorphisms and pressure pain sensitivity in females. Anesthesia. 2008; 63 (12): 1288—1295. http://dx.doi.org/10.1011/j.1365-2044.2008.05760.x. PMID: 19032295
25. Ginoar Y., Davidson E.M., Meroz Y., Blotnick S., Shacham M., Caraco Y. Mu-opioid receptor (A118G) single-nucleotide polymorphism affects alfentanil requirements for extracorporeal shock wave lithotripsy: a pharmacokinetic-pharmacodynamic study. Br. J. Anesth. 2009; 103 (3): 420—427. http://dx.doi.org/10.1093/bja/aep192. PMID: 19603407
26. Kolesnikov Y., Gabreits B., Levin A., Vode E., Vode A. Combined catechol-O-methyltransferase and mu-opioid receptor gene polymorphisms affect morphine postoperative analgesia and central side effects. Anesth. Analg. 2011; 112 (2): 448—453. http://dx.doi.org/10.1213/ANE.0b013e318202cde8. PMID: 21127283
27. Zhang W., Chang Y.Z., Kan Q.C., Zhang L.R., Lu H., Chu Q.J., Wang Z.Y., Li Z.S., Zhang J. Association of human micro-opioid receptor gene polymorphism A118G with fentanyl analgesia consumption in Chinese gynaecological patients. Anesthesia. 2010; 65 (2): 130—135. http://dx.doi.org/10.1011/j.1365-2044.2009.06193.x. PMID: 20003118
28. Wieler C., Litsch J. Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment. Pain. 2009; 146 (3): 270—275. http://dx.doi.org/10.1016/j.pain.2009.07.013. PMID: 19683391
29. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. Таганрог: изд-во ТРТУ; 1997. [In Russ.]
30. Oertel B.G., Kettner M., Scholich K., Renn C., Roskam B., Geisslinger G., Schmidt P.H., Litsch J. A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J. Biol. Chem. 2009; 284 (10): 6530—6535. http://dx.doi.org/10.1074/jbc.M807030200. PMID: 19116204

Submitted 03.05.14