Rare Parenchyma Meningioma in an Adolescent Female With Cheek Tingling
A Case Report
Wenjie Liang, MD and Meirong Li, MD

Abstract: The following is a report on a rare parenchyma meningioma and the computed tomography (CT) and magnetic resonance imaging (MRI) findings. To our knowledge, this was the first characterization of magnetic resonance spectroscopy (MRS) in a parenchyma meningioma.

Three days after initial presentation, a 14-year-old female student reported feeling tingling in her cheek, grading 3 to 4 points. Two hours later, the tingling had disappeared. The patient was admitted to hospital with stable vital signs and no abnormal presentations upon physical examination. A routine CT scan of the brain showed a quasicircular region of the left occipital lobe homogenous hyperdense and an arcualia calcification was found on the lesion’s margin and the boundary was ill-defined. Further MRI and contrast-enhanced scanning of the brain showed that a lobulated nidus with abnormal signaling was present in the left occipital lobe and was approximately 1.9 x 2.0 cm. Hypointensity on T1-weighted imaging and a slight hyperintensity on T2-weighted imaging was also observed. A short T2 signal appeared on the margin and a few longer T2 edema zones appeared around the nidus, whereas the lesion showed homogenous enhancement. MRS was characterized by a slight or moderate increase of a choline (Cho) peak and a small reduction of the N-acetyl aspartate (NAA) peak. After completing the preoperative preparation, the excision of the supratentorial deep lesions was performed on the patient. The pathology led to a diagnosis of a left occipital lobe meningioma, WHO I. The patient was followed-up for 14 months postoperation, and had no recurrences.

Intraparenchymal meningioma rarely occurs in brain parenchyma, and is characterized by lesions with abundant blood supply and requires a glioma to be identified. MRS is a potential tool for preoperative diagnosis of intraparenchymal meningioma.

(Abdomen 95(15):c3408)

Abbreviations: Ala = alanine, Cho = choline, Cr = creatine, CT = computed tomography, DWI = diffusion weighted imaging, Glx = glutamine and glutamate, Lac = lactic acid, Lip = lipid, ml = myo-inositol, MRI = magnetic resonance imaging, MRS = magnetic resonance spectroscopy, NAA = N-acetyl aspartate, TIWI = T1-weighted imaging, T2WI = T2-weighted imaging, TE = time echo.

INTRODUCTION
Meningioma is the second most common intracranial tumor, accounting for approximately 20% of male and 38% of female intracranial tumors.1 Tumors originate from the meningotheelial cells on the arachnoid layer and are typically benign. Meningioma can be grouped into fibrous, syncytial, and transitional tumors.1 Epidemiological research shows the incidence of meningioma in both males and females increases with advancing age,6,7 but rarely occurs in juveniles, accounting for only 5% of intracranial tumors in this age group.1,2 Pediatric meningioma is characterized by a lack of meningeal adhesions, cystic and sarcomatous changes, and high intraventricular incidence with a high prevalence among males.3 Furthermore, intraventricular meningiomas and parenchyma meningiomas (very rare) may appear if meningeal adhesion is lacking. The following study reports a case of pediatric meningioma occurring in the left occipital lobe, and the clinical and imaging presentations. To our knowledge, this is the first report of MRS findings for parenchyma meningioma.

CONSENT
Written, informed consent was obtained from the patient’s father to use the content and imaging material for publication.

CASE REPORT
A 14-year-old female student presented with cheek tingling grading 3 to 4 points, which self-resolved 2 hours later with no radiating pain. The patient was admitted to the people’s hospital for treatment and a routine magnetic resonance imaging (MRI) scan of the brain suggested a nidus in the left occipital lobe, which was initially thought to be a glioma. The patient was then admitted to the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China, for further treatment. When the patient was admitted, she had no obvious discomfort, stable vital signs, and her physical examination was normal. A routine computed tomography (CT) scan of the brain revealed a quasicircular mass in the left occipital lobe with a homogenous hyperdense. Arcualia calcification was also found on the lesion’s margin and the boundary was ill-defined (Figure 1). Moreover, a routine MRI scan and diffusion-weighted imaging (DWI) sequence suggested a lobulated nidus with no abnormal signal in the left occipital lobe approximately 1.9 x 2.0 cm in size. A slight hypointensity was observed on T1-weighted images (TIWI) and a slight hyperintensity on T2-weighted images (T2WI). A short T2 signal appeared on the margin and, a few long T2 edema zones appeared around the nidus, with a slight hypointensity on the DWI sequence. The

Editor: Kavindra Nath.
Received: December 31, 2015; revised: March 11, 2016; accepted: March 23, 2016.
From the Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China.
Correspondence: Wenjie Liang, Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, 79# Qingchun road, Hangzhou City, Zhejiang province 310003, China (e-mail: baduen.c@163.com).
The authors report no conflicts of interest.
Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.
This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0, where it is permissible to download, share and reproduce the work in any medium, provided it is properly cited. The work cannot be changed in any way or used commercially.
ISSN: 0025-7974
DOI: 10.1097/MD.0000000000003408
contrast-enhanced scan of the lesion found significant homogeneous enhancement (Figure 1).

Further characterization of the lesion through magnetic resonance spectroscopy (MRS) indicated the agglomerate nidus had abnormal signaling occurring in the left occipital lobe. Short time echo (TE) spectrum suggested a small reduction of the N-acetyl aspartate (NAA) peak and a slight or moderate increase of the choline (Cho) peak; the values, including Creatine (Cr), were as follows: Cho/Cr = 1.19, NAA/Cr = 2.09, no increase of myo-inositol (mI) peak, and mI/Cr = 0.53. Lactic acid (Lac) or lipid (Lip) peaks in 0.9 to 1.4 ppm could be found. The long TE suggested an increase of the Cho peak, Cho/Cr = 1.60, NAA/Cr = 2.28. The short TE, glutamine, and glutamate (Glx) peak did not increase, but the alanine (Ala) peak did increase (Figure 2). Multivoxel proton MRS including the nidus and normal structure area suggested the Cho peak in the central zone was 1.5 to 2.1 times greater than normal; no obvious increase of the Cho peak occurred near the edema area, and pseudocolor images showed a specific value of 1.3. Pseudocolor images also showed a slight increase of the Cho peak in the nidus area and a relevant area of another side (Figure 3). The abundant blood supply to the lesion in the left occipital lobe and MRS was characterized by a slight or moderate increase in the Cho peak and small reduction of the NAA peak. The imaging diagnosis did not exclude the possibility of a benign neoplastic lesion. The following structures required further identification: outer ventricle ependymoma; ganglieneuroma; and part of the neurogliocyte mixed tumors derived from oligodendroglioma.

After completing the preoperative preparation, the excision of the supratentorial deep lesions was performed. The tumor was found on a deep surface of the left occipital lobe and had a hard texture, abundant blood supply, and there was a boundary with the brain tissue. An intraoperative frozen-section showed the tumor was rich in spindle cell tumors with psammoma bodies. In pathologic histology, the tumor cell appeared as a long fusiform, some were also observed as sarciniform and swirling, with more disseminated intravascular coagulation in a thick wall, and the potential presence of collagen and psammoma bodies. Immunohistochemistry included: GFAP(−), S-100(−), epithelial membrane antigen (partial þ), progesterone receptor (small nidus +), Ki-67 (＜5%/+, E-cadherin(−), β-Catenin(+), CD34(−), SMA(−), and Desmin(−) (Figure 4). The pathological findings led to the diagnosis of a left occipital lobe meningioma, WHO I. The patient was followed-up for 14 months after the operation, with no reoccurrence.

DISCUSSION

At present, the origin of parenchyma meningiomas is controversial. Some research suggest parenchyma meningiomas originate from arachnoid cells near the pia mater, and travel

FIGURE 1. A routine CT scan of the brain showed the left occipital lobe had a hyperdense mass, and aracelia calcification was found on the lesion’s margin (A, arrow). A routine and contrast-enhanced MRI scan of the brain showed a lobulated nidus with an abnormal signal occurring in the left occipital lobe and slight hypointensity in T1WI (B) and slight hyperintensity in T2WI; a short T2 signal appeared on the margin, with some longer T2 edema zones with a stripe shape appearing around the nidus (C, arrow), and slight hypointensity in the DWI sequence (D). The lesion was homogenous with significant enhancement (E, F). CT = computed tomography, DWI = diffusion weighted imaging, MRI = magnetic resonance imaging, T1WI = T1-weighted imaging, T2WI = T2-weighted imaging.
deep into the brain along blood vessels. Conversely, it has been suggested that they originate from arachnoid cells that stop at the transport process. The morbidity of parenchyma meningioma is unknown and is primarily reported by East Asians. The age of onset ranges from 5 months to 60 years with an average age of onset of 21 years. Incidence of parenchyma meningioma is higher in men with the male to female ratio being 3:2. Approximately 90% of cases occur in the frontal supratentorium. The most common symptom of parenchyma meningioma is seizures. Other symptoms include: motor weakness,
has only been reported once before.7 The manifestation of the tentorium of the occipital lobe in a young female patient; this case, the parenchyma meningioma occurred in the supraventricular region, which is similar to past parenchyma meningioma image reports in the literature.

Parenchyma meningioma typically presents as a solid mass and hypointensity or equal intensity of T1WI, and occasionally calcification or cystic lesions. MRS of parenchyma meningioma showed that the Cho peak and the Ala peak are increased, but the NAA peak has no obvious reduction. This observation could contribute to identifying it from other brain tumors.

CONCLUSIONS

Parenchyma meningioma is characterized by a young age of onset (approximately 21 years) and patients typically present with seizures. Imaging indicates abundant blood supply to the lesions lacking mass effect, with hyperdense via CT, hypointensity of T1WI and T2WI, and occasionally calcification or cystic lesions. MRS of parenchyma meningioma showed that the Cho peak and the Ala peak are increased, but the NAA peak has no obvious reduction. This observation could contribute to identifying it from other brain tumors.

REFERENCES

1. Claus EB, Bondy ML, Schildkraut JM, et al. Epidemiology of intracranial meningioma. *Neurosurgery*. 2005;57:1088–1095.

2. Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of intracranial meningioma. *Neurosurgery*. 2010;99:307–314.

3. Kohama I, Sohma T, Nunomura K, et al. Intraparenchymal meningioma in an infant-case report. *Acta Neurochir (Wien).* 2000;142:209–213.

4. Wada T, Suzuki M, Beppu T, et al. A case of subcortical meningioma. *Acta Neurol Chir (Wien).* 2000;142:209–213.
6. Shinbo D, Kato T, Takeda M, et al. Intraparenchymal meningioma in a child. *Neurol Med Chir (Tokyo).* 2011;51:793–797.

7. Zhang J, Chi LY, Meng B, et al. Meningioma without dural attachment: case report, classification, and review of the literature. *Surg Neurol.* 2007;67:535–539.

8. Werbrouck C, Florin D, Van Holsbeeck B, et al. Intraparenchymal meningioma in a child. *JBR-BTR.* 2014;97:46.

9. Nayil K, Makhdoumi R, Malik R, et al. Intraparenchymal anaplastic meningioma in a child: A rare entity. *Asian J Neurosurg.* 2015;10:111–113.

10. Zhao SL, Li Y, Tian XY, et al. Intraparenchymal cystic chordoid meningioma: a case report and review of the literature. *Neuropathology.* 2011;31:648–653.

11. Xi S, Zhang Y, Lin S, et al. Intraparenchymal chordoid meningioma: a case report and review of the literature. *Int J Surg Pathol.* 2012;20:600–605.

12. Schroeder BA, Samaraweera RN, Starshak RJ, et al. Intraparenchymal meningioma in a child: CT and MR findings. *J Comput Assist Tomogr.* 1987;11:192–193.

13. Kohama I, Sohna T, Nunomura K, et al. Intraparenchymal meningioma in an infant—case report. *Neurol Med Chir (Tokyo).* 1996;36:598–601.

14. Sanli M, Altinors N, Demiralp O. Intraparenchymal meningioma: an unusual radiologic and anatomic presentation of a meningioma. Case report. *Neurosurg Rev.* 1996;19:285–287.

15. Shimizu K, Furuhata S, Sasai S, et al. Intracerebral cystic meningioma-case report. *Neurol Med Chir (Tokyo).* 1999;39:530–533.

16. Mut M, Soylemezoglu F, Firat MM, et al. Intraparenchymal meningioma originating from underlying meningioangiomatosis. Case report and review of the literature. *J Neurosurg.* 2000;92:706–710.

17. Karadereler S, Aker F, Berkman Z. Intraparenchymal meningioma in a child. Case report and review of the literature. *J Neurosurg.* 2004;101:112–115.

18. Yamada SM, Fujimoto Y, Kawanishi Y, et al. A cystic meningioma misdiagnosed as malignant glioma by radiologic and intraoperative histological examinations. *Brain Tumor Pathol.* 2010;27:111–115.