DRUG-INDUCED ACUTE TUBULOINTERSTITIAL NEPHRITIS

Daniela Rădulescu
“St. John” Emergency Clinical Hospital, Bucharest, Romania
“Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
Correspondence address: danielaradulescu64@yahoo.com

Rezumat
Nefritele tubulointerstțiale alergic medicamentoase sunt afecțiuni tot mai frecvente în practica curentă ca urmare a accesului crescut al pacienților la o varietate de medicamente. Tabloul clinico-biologic asociază injurie renală acută cu fenomene de hipersensibilitate. Considerate clasic reversibile după sistarea medicamentului încriminat, nefritele tubulointerstțiale alergic medicamentoase și-au modificat în ultimele decenii caracterele evolutive, chiar sub tratament. Articolul de față prezintă caracteristicile clinico-biologice, terapeutice și evolutive ale nefritelor tubulointerstțiale alergic medicamentoase.

Cuvinte cheie: nefrite tubulointerstțiale acute; medicamente; injuria acută a rinichiului.

Abstract
Nowadays, incidence of drug-induced acute tubulointerstitial nephritis is on the rise due to increased access of the patients to a variety of both prescribed and over-the-counter drugs. Acute kidney injury and hypersensitivity manifestations are the main features of acute tubulointerstitial nephritis. Classically considered reversible after prompt withdrawal of the offending medication, recent decades revealed potential for evolution to chronic kidney disease. This article presents the challenges in the diagnosis and treatment and also evolutive features of allergic acute tubulointerstitial nephritis induced by drugs.

Keywords: acute tubulointerstitial nephritis, medication, hypersensitivity, acute kidney injury.
Introduction

The offer of drugs on the pharmaceutical market is constantly growing. The diversity of the drug supply covers a wide range of conditions from common intercurrent diseases such as colds to advanced stages of cancer.

A considerable number of medications can be purchased by the patients without physicians' prescription (over-the-counter). The kidney, a richly vascularized organ and equipped with a urine concentration system, is highly susceptible to a myriad of drug-induced side effects. If some of these adverse reactions can be considered iatrogenic (eg acute tubular necrosis after gentamicin) or "accidents" (eg contrast nephropathy after iodate contrast agent absolutely necessary to be used) being dose-dependent, allergic drug-induced acute tubulointerstitial nephritis (DI-ATIN) are part of the renal side effects difficult to prevent.

More than 150 drugs are reported to induce DI-ATIN, but the most involved are therapeutic classes recommended in current practice in all specialties: antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs) and proton pump inhibitors. The classic clinical-biological picture of DI-ATIN is characterized by the association of acute kidney injury (AKI) with allergic phenomena occurring a few days after the administration of a drug. Unfortunately, in current practice, the typical clinical picture is rarely present, often these conditions being classified as AKI of unknown cause.

Epidemiology, etiology, risk factors

Acute tubulointerstitial nephritis (ATIN) represent the third leading cause of AKI after prerenal azotemia and acute tubular necrosis. The exact incidence of ATIN is probably underestimated, because the definitive diagnosis is established by renal biopsy which is not performed, for various reasons, in all cases. From the reports of different national registries of renal biopsy, the prevalence of bioptic detection of ATIN varies between 1 and 10% of total biopsies performed for various indications and between 6.5 and 35% of biopsied cases to elucidate the cause of AKI.

Depending the cause, ATIN can be classified as drug-induced, infectious-associated, associated with systemic diseases or idiopathic; over 70% of cases are attributed to drugs. The frequency of DI-ATIN is higher in developed countries due to increased access to a wide range of drugs. Over 150 drugs have been reported in the literature as potential inducers of ATIN (Table 1). The list is constantly growing by the introduction, in recent decades, of various alternatives for conditions considered classically without therapeutic resources, such as immune checkpoint inhibitors used now successfully for advanced neoplasm. However, despite the diversification of drug offer on the market, the most involved offending drugs are the same classes (obviously enriched with new molecules) as 40 years ago: antibiotics and...
Table 1. Drugs that can induce acute allergic tubulo-interstitial nephritis

Legend: PD-1, programmed cell death protein-1; PD-L1, programmed death ligand 1; CTLA-4, cytotoxic T-lymphocyte antigen-4;

Category	Drugs
Antibiotics	β-Lactam (penicillin, cephalosporins)
	Fluoroquinolones (ciprofloxacin)
	Sulfonamides (sulfamethoxazole/trimethoprim, nitrofurantoin)
	Rifampicin
	Macrolides (clarithromycin, telithromycin)
	Vancomycin, etc.
Non-steroidal anti-inflammatory drugs	All agents, including aspirin, including selective COX-2 inhibitors
Antisecretory agents	Proton pump inhibitors: omeprazole, lansoprazole, pantoprazole, esomeprazole
	H2-receptor antagonists: cimetidine, famotidine, ranitidine
5-aminosalicylates	Sulfasalazine, mesalazine
Diuretics	Furosemide, bumetanide, thiazides
Immune check point inhibitors	PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab, cemiplimab, atezolizumab)
	CTLA-4 inhibitors (ipilimumab, tremelimumab)
Angiogenesis inhibitors	Tyrosine kinase inhibitors (sorafenib, sunitanib)
Others	Antiviral drugs (Aciclovir, Indinavir); Antiepileptics (phenytoin, phenobarbital, carbamazepine), Allopurinol, Amlodipine, Captopril, etc.
NSAIDs\(^{17}\). In addition, increased number of ATIN after proton pump inhibitors are reported\(^ {15,18,19}\). Also, comparing to the 80’ reports\(^ {20}\), there are described ATIN after 5-aminosalicylates and new chemotherapeutic agents\(^ {10,21-23}\).

Except avoidance of polypharmacy, there is no prevention for DI-ATIN because the mechanism of this condition is allergic, so unpredictable. A higher frequency of DI-ATIN is reported in the literature in the elderly, but this does not seem to be related to age-specific immune changes, but to the increased number of drugs that the elderly take\(^ {24}\).

Pathogenesis

The pathogenic mechanism of NTIAM is allergic, most often involving cellular immunity\(^ {12,14,25}\) in the form of T-cell-mediated type-4 delayed hypersensitivity reaction. Drugs can act through different mechanisms\(^ {5,14,26}\):

- by acting as hapten, which is binding to a protein component of the tubular basement membrane (TBM), turning it into a neo-antigen;
- through mimicry: resemblance to an antigen in TBM or interstitium, thus inducing a cross-immune response;
- by acting as a “planted” antigen in TBM or in the interstitium with production of antibodies against it.

There are also described cases in which humoral immune response is involved: the drug induces production of circulating antibodies, and the circulating immune complexes are subsequently deposited in the interstitium.

Clinic and biologic manifestations

Histological findings in DI-ATIN are represented by diffuse or focal interstitial inflammatory infiltrate\(^ {14,27}\), consisting mainly of T-type lymphocytes, monocytes, macrophages, sometimes eosinophils and even neutrophils. Occasionally, granulomatous infiltrate with giant cells can be noticed.

The manifestations of ATIN are the result of the extension of the inflammatory infiltrate and of the interstitial edema to the adjacent tubules that present inflammatory lesions (appearance of tubulitis) or even of necrosis with variable extension.

Most often no glomerular lesions are present, and if they do occur (most often in ATIN after NSAIDs), they are usually in the form of minimal changes disease, which appear normal on examination with light microscope\(^ {14}\).

The classic clinical picture of DI-ATIN was first described after methicillin administration\(^ {5,28}\) and consists in the acute onset, a few days after the administration of a drug, of oliguric AKI associated with the classical triad: fever, maculopapular rash and eosinophilia. Other nonspecific manifestations may be present, such as chills, arthralgias, myalgias, dull low back pain, nausea, asthenia and general malaise.

Edema and hypertension are absent. Urine exam shows tubulointerstitial-type changes:
low urine density; tubular proteinuria with low molecular weight proteins; microscopic hematuria, with isomorphic red blood cells and usually without erythrocyte casts; leukocyturia with white cells casts and, specifically, increased eosinophiluria. Clinic and biologic manifestations are dose-independent and recur if the same drug or even a related drug is administered \(^{(28,30)}\).

Nowadays, the classic presentation is rarely seen. The interval between drug administration and onset of symptoms can vary from 1 day (typically for rifampicin, especially after re-administration) to a few days (typically for methicillin, amoxicillin), a few weeks (immune checkpoint inhibitors) or even months (for NSAIDs or proton pump inhibitors), which makes it difficult to establish a cause-effect relationship between AKI and the culprit drug \(^{(25,31-33)}\).

Both the classic triad fever-rash-eosinophilia and each of its components are quite rare today.

A frequently cited meta-analysis in the literature shows that out of 128 patients diagnosed with ATIN of whom 70% had DI-ATIN, the rash was present in only 14.8%, fever in 27.3%, eosinophilia in 23.3 %, and the entire triad in only 10% of patients \(^{(34)}\). There are also cases that show no signs of hypersensitivity \(^{(35)}\), many being considered AKI of unknown cause.

Regarding urinary findings, here too the profile of abnormalities can often be nonspecific for ATIN. Thus, in 50% of cases, AKI manifests with preserved diuresis; hematuria is present in less than half of patients \(^{(36)}\). Changes in fractional urinary excretion of sodium and urea can be both prerenal AKI-type and intrinsic AKI-type \(^{(14,37)}\). Eosinophiluria (more than 1% of leukocytes in the urine), considered classically highly suggestive for DI-ATIN, is not routinely searched because it requires special staining that is not widely available. Eosinophilia can also occur in AKI from other causes: thromboembolic kidney disease, acute tubular necrosis, etc. \(^{(38,39)}\). Proteinuria may be of nephrotic range, especially in NSAIDs-induced ATIN \(^{(30)}\).

Except kidney biopsy, there are no laboratory or imaging tests that would provide definitive diagnosis in DI-ATIN. Renal ultrasound is useful to rule out an obstructive AKI, as the kidneys often look normal or are slightly enlarged due to interstitial edema \(^{(8,40)}\). Imaging the kidney with \(^{67}\)Gallium scan shows diffuse increase uptake by the kidneys, but similar changes may occur in other types of AKI or in glomerular diseases \(^{(14,41-43)}\).

Although it provides the definitive diagnosis, kidney biopsy is often not routinely performed; in the presence of high clinical suspicion and rapid improvement after cessation of the offending drug, biopsy is often no longer necessary. However, in cases where there are several potentially responsible drugs, when kidney function does not recover after stopping the drug or after starting glucocorticoid treatment, biopsy is recommended \(^{(30)}\). Biopsy not only establishes the etiology of AKI, but is particularly useful for the detection of interstitial fibrosis and its extension, a situation that indicates the evolution towards chronicity and the uselessness of continuing corticosteroid treatment \(^{(30)}\).

Evolution and prognosis

Classically, DI-ATIN was considered completely reversible after discontinuation of the drug associated or not with corticosteroid treatment \(^{(30,34)}\).

Nowadays, there is evidence of the potential for chronicity of this condition, probably as a result of increased number of potentially offending drugs and also as a result of polypharmacy. Complete recovery of renal function after DI-ATIN is cited in about 60-65% of patients, while incomplete recovery occurs in 10-20% of patients and lack of recovery with chronic dialysis dependence in 5-10% \(^{(12,44)}\).

The risk of chronicity is higher in patients with severe forms of AKI requiring renal
replacement therapy, prolonged AKI, more than 3 weeks or NSAIDs-induced AKI\(^{(38,45)}\). Histologic markers suggestive for evolution toward chronic kidney disease are presence of extensive interstitial fibrosis and tubular atrophy\(^{(30,36)}\).

Treatment of drug-induced acute allergic tubulointerstitial nephritis

Stopping the potentially responsible drug is the main measure and sometimes it is sufficient for the recovery of renal function\(^{(12)}\). In patients with multiple potentially offending drugs, it is recommended sequential discontinuation and renal biopsy as soon as possible, in the absence of contraindications\(^{(30)}\).

In severe forms of AKI necessitating dialysis, it is advisable to discontinue all drugs at risk, unless one of them is absolutely necessary for a severe disease\(^{(30)}\). Lack of recovery of renal function within a few days of discontinuation of the drug requires treatment with corticosteroids. Usually short courses of orally prednisone 1 mg/kg/day are administered for 1-2 weeks until renal function begin to recover, then the doses are progressively decreased in a few weeks. The use of intravenous methylprednisolone as pulse therapy 500 mg -1g/day, 3 consecutive days before oral prednisone may be required in severe cases of AKI requiring dialysis.

The decision to initiate corticosteroid therapy and perform a biopsy should be made rapidly, within a few days in severe cases of AKI, due to the risk of chronicity\(^{(12,44)}\). In case of lack of response to corticosteroid therapy initiated without histological confirmation, renal biopsy is essential; corticoids do not alter histologic findings of DI-ATIN.

There are reports in the literature on the use of other immunosuppressive treatments (mycophenolate mofetil, cyclosporine, cyclophosphamide) in DI-ATIN that do not respond to corticosteroids and in which biopsy shows acute inflammatory infiltrate, but these include a small number of patients and experience is limited\(^{(47)}\). These alternatives are cited especially in NSAIDS-induced ATIN which usually has a poor response to corticoids or requires long-term corticotherapy with related specific side effects.

Particular forms of DI-ATIN

ATIN to proton pump inhibitors

Proton pump inhibitors (PPIs) are frequently recommended in long-term regimens by physicians of various specialties, often to counteract the possible gastric side effects of other drugs, but they are also administered without prescription by patients\(^{(48)}\). They are drugs that generally have few side effects\(^{(48)}\). PPIs-induced ATIN occurs in less than 1% of patients using PPIs, but due to the fact that they are the most widely used class of drugs in current practice, they are listed as the third leading cause of DI-ATIN.

The first cited in this class was omeprazole\(^{(49)}\), but afterwards other PPIs were reported: lanzoprazole\(^{(50)}\), esomeprazole\(^{(51)}\), rabepra-
zole52, pantoprazole53. The clinical presentation of PPIs-induced ATIN is often atypical: AKI, usually without accompanied systemic hypersensitivity symptoms, has a subacute or progressive onset after a time interval that may vary between a few days and several months after administration of PPIs54,55. It is cited higher incidence in the elderly15,17,30,56, increased risk of incomplete recovery of renal function57 and progression to chronicity54, even with prompt corticosteroid treatment applied after biopsy confirmation. Eosinophilia is usually seen58, but other specific manifestations of ATIN are inconsistent59, so many cases are classified as AKI of unknown cause until a biopsy is obtained. In some non-Caucasian races, a genetic predisposition for PPIs-induced ATIN has been described60; because PPIs are metabolized by the cytochrome P450 enzyme system, patients with CYT P450 genetic polymorphism appear to be at risk for ATIN due to the interstitial accumulation of PPIs and/or their metabolites where they elicit an immune-mediated inflammatory response19.\!

ATIN after rifampicin

Rifampicin-induced ATIN usually occurs in re-treatment regimens, being less frequently cited during continuous treatment14,29,30. The clinical picture is characterized by a severe, oliguric AKI, often requiring dialysis therapy61, but with good recovery under treatment62. AKI associates fever and digestive symptoms (nausea, vomiting, diarrhea, abdominal cramps); manifestation of hypersensitivity (skin rash, eosinophilia) are rarely noticed14,62. Characteristic features associated with AKI are hemolytic anemia, thrombocytopenia and acute hepatitis14. Anti-rifampicin antibodies are detected in the serum and can be deposited in the glomerulus, interstitium or intrarenal vessels63; therefore, rifampicin-induced ATIN should be differentiated by biopsy from other types of rifampicin-induced AKI such as glomerulonephritis or acute tubular necrosis29,64. In most cases, the presence of clinical and laboratory signs of interstitial involvement are sufficient to establish the diagnosis of DI-ATIN; biopsy is performed in cases with significant proteinuria or if renal function does not recover after rifampicin discontinuation63. Histologically, rifampicin-induced ATIN typically associates severe tubular lesions in addition to interstitial inflammatory infiltrate65. Interstitial deposition of antirifampicin antibodies is not found in the case of ATIN occurred during continuous treatment with rifampicin, which shows that, in these cases, tubulointerstitial impairment is produced by a cellular immune mechanism14.\!

NSAIDs-induced ATIN

NSAIDs-induced ATIN may occur after any class of NSAIDs, including selective COX2 inhibitors or topic preparations30,66-69. The interstitial accumulation of arachidonic acid metabolites causes immune-mediated stimulation of T lymphocytes which explains both predominance of T-type lymphocytes in the inflammatory infiltrate and the concomitant glomerular involvement70; granulomatous infiltrates are frequently described71. NSAID-induced ATIN should be differentiated from other forms of AKI secondary to NSAID, especially AKI produced by hemodynamic mechanism14,70. NSAIDs-induced ATIN may occur after several months of NSAIDs use14,72; recurrence after re-administration of the same drug or a related drug from the same class is reported73,74. In most cases, NSAIDs-induced ATIN associate nephrotic syndrome in context of minimal lesions or membranous glomerulopathy30,66,75,76. The clinical picture rarely includes manifestations of hypersensitivity, usually isolated, but nephrotic edema is almost present. AKI remits in many cases spontaneously after discontinuation of NSAIDs usually slowly, within a few weeks14,30,77. However, in about 25% of cases,
recover of renal function is incomplete and corticosteroid treatment is not as effective as in other DI-ATIN.

Conclusions

Drug-induced acute tubulointerstitial nephritis represent common causes of acute renal injury. Given the immunoallergic nature of these conditions, there are no prophylaxis measures except to avoiding polypharmacy. Suspicion is crucial for diagnosis because clinical manifestations and laboratory abnormalities are often atypical. Renal biopsy provides a definite diagnosis, but is not performed in all cases. Discontinuation of the offending drug with or without short course of corticosteroids are required to be applied promptly, because, although considered classically reversible, there is evidence that acute allergic nephritis induced by drugs bear a considerable risk of chronicity.

This article has not been published or sent for publishing in other magazines or publications. I declare NO conflict of interests.

References

1. Raghavan R, Shawar S. Mechanisms of Drug-Induced Interstitial Nephritis. Adv Chronic Kidney Dis. 2017; 24(2): 64-71.
2. Perazella MA. Renal Vulnerability to Drug Toxicity. CJASN. 2009; 4(7): 1275-1283.
3. Perazella MA. Drug-induced nephropathy: an update. Expert Opin Drug Saf. 2005; 4(4): 689-706.
4. Markowitz GS, Perazella MA. Drug-induced renal failure: a focus on tubulointerstitial disease. Clin Chim Acta. 2005; 351(1-2): 31-47.
5. Rossert J. Drug-induced acute interstitial nephritis. Kidney Int. 2001; 60(2): 804-817.
6. Perazella MA, Markowitz GS: Drug-induced acute interstitial nephritis. Nat Rev Nephrol. 2010; 6(8): 461-470.
7. Wilson DM, Turner DR, Cameron JS, Ogg CS, Brown CB, Chantler C. Value of renal biopsy in acute intrinsic renal failure. Br Med J. 1976; 2(6033): 459-461.
8. Perazella MA. Diagnosing drug-induced AIN in the hospitalized patient: a challenge for the clinician. Clin Nephrol. 2014; 81(6): 381-388.
9. Nussbaum EZ, Perazella MA. Diagnosing acute interstitial nephritis: considerations for clinicians. Clin Kidney J. 2019; 12(6): 808-813.
10. Nast CC. Medication-Induced Interstitial Nephritis in the 21st Century. Adv Chronic Kidney Dis. 2017; 24(2): 72-79.
11. Stillman IE Lima EQ Burdmann EA. Renal biopsies in acute kidney injury: who are we missing? Clin J Am Soc Nephrol. 2008; 3(3): 647-648.
12. Raghavan R, Eknoyan G. Acute interstitial nephritis - a reappraisal and update. Clin Nephrol. 2014; 82(3): 149-162.
13. Farrington K, Levison DA, Greenwood RN, Cattell WR, Baker LR. Renal biopsy in patients with unexplained renal impairment and normal kidney size. Q J Med. 1989; 70(263): 221-233.
14. Rossert JA, Fischer EA. Acute Interstitial Nephritis. In: Feehally J, Floege J, Tonelli M, Johnson RJ (editors): Comprehensive Clinical Nephrology, edibia a 6-a, Elsevier. 2019; pag. 729-737.
15. Muriithi AK, Leung N, Valeri AM, Cornell LD, Sethi S, Fidler ME, Nasr SH. Biopsy-proven acute interstitial nephritis, 1993-2011: a case series. Am J Kidney Dis. 2014; 64(4): 558-566.
16. Moledina DG, Perazella MA. Drug-induced acute interstitial nephritis. Clin J Am Soc Nephrol. 2017; 12(12): 2046-2049.
17. Praga M, Sevillano A, Auñón P, González E. Changes in the aetiology, clinical presentation and management of acute interstitial nephritis, an increasingly common cause of acute kidney injury. Nephrol Dial Transplant. 2015; 30(9): 1472-1479.
18. Blank ML, Parkin L, Paul C, Herbison P. A nationwide nested case-control study indicates an increased risk of acute interstitial nephritis with proton pump inhibitor use. Kidney Int. 2014; 86(4): 837-844.
19. Brewster UC, Perazella MA. Proton pump inhibitors and the kidney: critical review. Clin Nephrol. 2007; 68(2): 65-72.
20. Pusey CD, Saltissi D, Bloodworth L, Rainford DJ, Christie JL. Drug associated acute interstitial nephritis: clinical and pathological features and the response to high dose steroid therapy. Q J Med. 1983; 52(206): 194-211.
21. Nussbaum EZ, Perazella MA. Update on the nephrotoxicity of novel anticancer agents. Clin Nephrol 2018; 89(3): 149-165.
22. Perazella MA, Shirali AC. Nephrotoxicity of cancer immunotherapies: past, present and future. J Am Soc Nephrol; 29(8): 2039-2052.
23. Airy M, Raghavan R, Truong LD, Eknoyan G. Tubulointerstitial nephritis and cancer chemotherapy: update on a neglected clinical entity. Nephrol Dial Transplant. 2013; 28(10): 2502-2509.
24. Murithi AK, Leung N, Valeri AM, Cornell LD, Sethi S, Fidler ME, Nasr SH. Clinical characteristics, causes and outcomes of acute interstitial nephritis in the elderly. Kidney Int. 2015; 87(2): 458-464.
25. Neilson EG. Pathogenesis and therapy of interstitial nephritis. Kidney Int. 1989; 35(5): 1257-1270.
26. Krishnan N, Perazella MA. Drug-induced acute interstitial nephritis: pathology, pathogenesis, and treatment. Iran J Kidney Dis. 2015; 9(1): 3-13.
27. Galpin JE, Shinaberger JH, Stanley TM, Blumenkrantz MJ, Bayer AS, Friedman GS, Montgomery JZ, Guze LB, Coburn JW, Glassock RJ. Acute interstitial nephritis due to metilmecain. Am J Med. 1978; 65(5): 756-765.
28. Baldwin DS, Levine BB, McCluskey RT, Gallo GR. Renal failure and interstitial nephritis due to penicillnin and metilmecain. N Engl J Med. 1968; 279(23): 1245-1252.
29. Schubert C, Bates WD, Moosa MR. Acute tubulointerstitial nephritis related to antituberculous drug therapy. Clin Nephrol. 2010; 73(6): 413-.
30. Praga M, Appel GB. Clinical manifestations and diagnosis of acute interstitial nephritis. UPTODATE 2018. Disponibil la: https://www.uptodate.com, accesat aprilie 2020.
31. Ten RM, Torres VE, Milliner DS, Schwab TR, Holley KE, Gleich GJ. Acute interstitial nephritis: immunologic and clinical aspects. Mayo Clin Proc. 1988; 63(9): 921-930.
32. Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N Engl J Med. 1984; 310(9): 563-572.
33. Belliere J, Meyer N, Mazieres J, Ollier S, Boulinguez S, Delas A, Ribes D, Faguier S. Acute interstitial nephritis related to immune checkpoint inhibitors. Br J Cancer. 2016; 115(12): 1457-146.
34. Baker Rj, Pusey CD. The changing profile of acute tubulointerstitial nephritis. Nephrol Dial Transplant. 2004; 19(1): 8-11.
35. Kodner CM, Kudrimoti A. Diagnosis and management of acute interstitial nephritis. Am Fam Physician. 2003; 67(12): 2527-2534.
36. Praga M, González E. Acute interstitial nephritis. Kidney Int. 2010; 77(11): 956-961.
37. Saha H, Mustonen J, Helin H, Pasternack A. Limited value of the fractional excretion of sodium test in the diagnosis of acute renal failure. Nephrol Dial Transplant. 1987; 2(2): 79-82.
38. Muriithi AK, Nasr SH, Leung N. Utility of urine eosinophils in the diagnosis of acute interstitial nephritis. Clin J Am Soc Nephrol. 2013; 8(11): 1857-1862.
39. Espejo B, Herrero JC, Torres A, Martínez A, Gutiérrez E, Morales E, González E, Bueno B, Valentín MO, Praga M. Immunoallergic interstitial nephritis vs. cholesterol atheroembolism. Differentiating characteristics. Nefrologia. 2003; 23(2): 125-130.
40. Hiraoka M, Hori C, Tsuchida S, Tsukahara H, Sudo M. Ultrasonographic findings of acute tubulointerstitial nephritis. Am J Nephrol. 1996; 16(2): 154-158.
41. Linton AL, Richmond JM, Clark WF, et al. Gallium67 scintigraphy in the diagnosis of acute renal disease. Clin Nephrol. 1985; 24(2): 84-87.
42. Koselj M, Kveder R, Bren AF, Rott T. Acute renal failure in patients with drug-induced acute interstitial nephritis. Ren Fail. 1993; 15(1): 69-72.
43. Graham F, Lord M, Froment D, Cardinal H, Bollée G. The use of gallium-67 scintigraphy in the diagnosis of acute interstitial nephritis. Clin Nephrol. 2016; 9(1): 76-81.
44. Eknoyan G, Raghavan R. Acute tubulointerstitial nephritis. In: Coffman T, Falk F, Molitoris B, Neilson E, Schrier RW (editors). Schrier’s Diseases of the Kidney. Edição a 9-a. Philadelphia, PA: Lippincott, Williams & Wilkins. 2013; pag. 994-1017.
45. Schwarz A, Krause PH, Kunzendorf U, Keller F, Distler A. The outcome of acute interstitial nephritis: risk factors for the transition from acute to chronic interstitial nephritis. Clin Nephrol. 2000; 53(4): 179-190.
46. Fernandez-Juarez G, Perez JV, Caravaca-Fontán F, Quintana L, Shabaka A, Rodríguez E, Gadola L, de Lorenzo A, Cobo MA, Oliet A, Sierra M, Cobelo C, Iglesias E, Blasco M, Galeano C, Cordon A, Oliva J, Praga M, Spanish Group for the Study of Glomerular Diseases (GLOSEN). Duration of treatment with corticosteroids and recovery of kidney function in acute interstitial nephritis. Clin J Am Soc Nephrol. 2018; 13(12): 1851-1858.
47. Predidie DC, Markowitz GS, Radhakrishnan J, Nikolas Tl, D’Agati Vd, Schwimmer J, Gardenswartz M, Rosen R, Appel GB. Mycophenolate mofetil for the treatment of interstitial nephritis. Clin J Am Soc Nephrol. 2006; 1(4): 718-722.
48. Forgacs I, Loganayagam A. Overprescribing proton pump inhibitors. BMJ. 2008; 336(7634): 2-3.
49. Ruffenach SJ, Siskind MS, Lien YH. Acute interstitial nephritis due to atheroembolism. Differentiating characteristics. Nephrol Dial Transplant. 2004; 19(6): 1441-1446.
50. Geevasinga N, Kairaitis L, Rangan GK, Coleman PL. Acute interstitial nephritis related to antituberculous drug therapy. Clin Nephrol; 29(8): 2039-2052.
induced acute interstitial nephritis. CMAJ. 185(1): 56-59.
54. Moledina DG, Perazella MA. PPIs and kidney disease: from AIN to CKD. J Nephrol. 2016; 29(5): 611-616.
55. Sampathkumar K, Ramalingam R, Prabakar A, Abraham A. Acute interstitial nephritis due to proton pump inhibitors. Indian J Nephrol. 2013; 23(4): 304-307.
56. Antoniou T, Macdonald EM, Hollands S, Gomes T, Mamdani MM, Garg AX, Paterson M, Juurlink DN. Proton pump inhibitors and the risk of acute kidney injury in older patients: a population-based cohort study. CMAJ. 2015; 3(2): E166-E171.
57. Simpson Jj, Marshall MR, Pilmore H, Manley P, Williams L, Thein H, Voss D. Proton pump inhibitors and acute interstitial nephritis: report and analysis of 15 cases. Nephrology (Carlton). 2006; 11(5): 381-385.
58. Geevasinga N, Coleman PL, Webster AC, Roger SD. Proton pump inhibitors and acute interstitial nephritis. Clin Gastroenterol Hepatol. 2006; 4(5): 597-604.
59. Morschel CF, Mafra D, Eduardo JCC. The relationship between proton pump inhibitors and renal disease. J Bras Nefrol. 2018; 40(3): 301-306.
60. Ball S, Cook T, Hulme B, Palmer A, Taube D. The diagnosis and racial origin of 394 patients undergoing renal biopsy: An association between Indian race and interstitial nephritis. Nephrol Dial Transplant. 1997; 12(1): 71-77.
61. Manika K, Tasiopoulou K, Vlogiariis L, Lada M, Papaemmanouil S, Zarogoulidis K, Kiousis I. Rifampicin-associated acute renal failure and hemolyisis: a rather uncommon but severe complication. Ren Fail. 2013; 35(8): 1179-1181.
62. De Vriese AS, Robberecht DL, Vanholder RC, Vogelaers DP, Lameire NH. Rifampicin-associated acute renal failure: pathophysiologic, immunologic, and clinical features. Am J Kidney Dis. 1998; 31(1): 108-115.
63. Muthukumar T, Jayakumar M, Fernando EM, Muthusethupathi MA. Acute renal failure due to rifampicin: a study of 25 patients. Am J Kidney Dis. 2002; 14(4): 690-696.
64. Ortiz A, Barat A, Oliva H. Acute kidney failure induced by rifampicin. Nefrologia. 2001; 21(1): 92-94.
65. Min HK, Kim EO, Lee SJ, Chang YK, Suh KS, Yang CW, Kim SY, Hwang HS. Rifampin-associated tubulointerstitial nephritis and Fanconi syndrome presenting as hypokalemic paralysis. BMC Nephrol. 2013; 14:13.
66. Alper AB Jr, Meleg-Smith S, Krane NK. Nephrotic syndrome and interstitial nephritis associated with celecoxib. Am J Kidney Dis. 2002; 40(5): 1086-1090.
67. Andrews PA, Sampson SA. Topical non-steroidal drugs are systemically absorbed and may cause renal disease. Nephrol Dial Transplant. 1999; 14(1): 187-189.
68. Krummel T, Dimitrov Y, Moulin B, Hannedouche T. Drug points: Acute renal failure induced by topical ketoprofen. BMJ; 2000; 320(7227): 93.
69. Kikuchi H, Aoyagi M, Nagahama K, Yajima Y, Yamamura Co, Arai Y, Hirasawa S, Aki S, Inaba N, Tanaka H, Tamura T. Case Report: Nephrotic-range Proteinuria and Interstitial Nephritis Associated with the Use of a Topical Locoxaprofen Patch. Intern Med. 2014; 53(11): 1131-1135.
70. Lucas GNC, Leitão ACC, Alencar RL, Xavier RMF, Daher EF, Silva Junior GBD. Pathophysiological aspects of nephropathy caused by non-steroidal anti-inflammatory drugs. J Bras Nefrol. 2019; 41(1): 124-130.
71. Jung JH, Kang KP, Kim W, Park SK, Lee S. Nonsteroidal antiinflammatory drug induced acute granulomatous interstitial nephritis. BMC Res Notes. 2015; 8:793.
72. Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N Engl J Med. 1984; 310(9): 563-572.
73. Mohammed EP, Stevens JM. Recurrence of Arthrotec-associated nephrotic syndrome with re-challenge. Clin Nephrol. 2000; 53(6): 483-485.
74. Erazo P, Bhagani K, Joshi VR. NSAIDs and kidney. JAPI. 2004; 52: 632-640.
75. Nawaz FA, Larsen CP, Troxell ML. Membranous Nephropathy and Nonsteroidal Anti-inflammatory Agents. AJKD. Kidney Biopsy Teaching Case. 2013; 62(5): 1012-1017.
76. Feinfeld DA, Olesnick L, Pirani CL, Appel GB. Nephrotic syndrome associated with use of the nonsteroidal anti-inflammatory drugs. Case report and review of the literature. Nephron. 1984; 37(3): 174-179.
77. Harirforoosh S, Asghar W, Jamali F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci. 2013; 16(5): 821-847.