Weak gravitational lensing shear measurement with FPFS: analytical mitigation of noise bias and selection bias

Xiangchong Li 1,2,3,*, Yin Li 4,1, Richard Massey 5

1 Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan
2 Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
3 Department of Physics, McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
4 Center for Computational Astrophysics & Center for Computational Mathematics, Flatiron Institute, 162 5th Avenue, 10010, New York, NY, USA
5 Department of Physics, Institute for Computational Cosmology, Durham University, South Road, Durham, DH1 3LE, UK

Received Month XX, YYYYY; accepted Month XX, YYYYY

ABSTRACT

Dedicated ‘Stage IV’ observatories will soon observe the entire extragalactic sky, to measure the ‘cosmic shear’ distortion of galaxy shapes by weak gravitational lensing. To measure the apparent shapes of those galaxies, we present an improved version of the Fourier Power Function Shapelets (FPFS) shear measurement method. This now includes analytic corrections for sources of bias that plague all shape measurement algorithms: including noise bias (due to noise in nonlinear combinations of observable quantities) and selection bias (due to sheared galaxies being more or less likely to be detected). Crucially, these analytic solutions do not rely on calibration from external image simulations. For isolated galaxies, the small residual $\sim 10^{-3}$ multiplicative bias and $\lesssim 10^{-4}$ additive bias now meet science requirements for Stage IV experiments. FPFS also works accurately for faint galaxies and robustly against stellar contamination. Future work will focus on deblending overlapping galaxies. The code used for this paper can process >1000 galaxy images per CPU second and is available from https://github.com/ni-supersonion/FPFS.

Key words: gravitational lensing: weak; cosmology: observations; techniques: image processing.

1 INTRODUCTION

The images of distant galaxies appear weakly but coherently distorted because light from them is deflected by the gravity of intervening matter along our line of sight (for reviews, see Bartelmann & Schneider 2001; Kilbinger 2015). The anisotropic stretch of galaxy images is termed weak gravitational lensing shear, denoted by parameters γ_1 and γ_2. This observable distortion depends upon, and can be used to map, the distribution of baryonic and dark matter in the Universe (for a review, see Massey et al. 2010).

Dedicated ‘Stage IV’ weak-lensing surveys such as the LSST1 (Ivezić et al. 2019), Euclid2 (Laureijs et al. 2011), and NGRST3 (Spergel et al. 2015) are being designed to constrain cosmology with unprecedented precision. To ensure that systematic biases are within statistical uncertainty, they require estimators of the applied shear

$$\hat{\gamma}_{1,2} = (1 + m)\gamma_{1,2} + c_{1,2}$$

(1)

to be measured from the noisy image of each galaxy, with multiplicative bias $|m| \lesssim 0.003$ and additive bias $c_{1,2} \lesssim 10^{-4}$ (Cropper et al. 2013; Massey et al. 2013; The LSST Dark Energy Science Collaboration et al. 2018). In addition, these surveys will take a large amount of data, e.g. the LSST will produce about 20 terabytes (TB) of raw data per night. Here we develop a shear estimator that is both accurate and fast enough to process the data from these surveys.

A practical shear measurement method must overcome many challenges to work on real astronomical imaging: including the detection and selection of distant galaxies, correction of detector effects and the wavelength-dependent point-spread function (PSF), and the combination of noisy pixelated data (for a review, see Mendelbaum 2018). Some methods (Mandelbaum et al. 2018b; Kannawadi et al. 2019; Li et al. 2021; Hoekstra 2021) advocate empirical calibration of shear estimators such as reGauss (Hirata & Seljak 2003) and lensfit (Miller et al. 2007; Fenech Conti et al. 2017) using simulated images. That merely shifts the challenge to one of accurate simulation. The various processes interact in complex ways, and it can be difficult to disentangle their effects.

In this paper, we extend the Fourier Power Function Shapelets (FPFS; Li et al. 2018) method for shear measurement. We use analytic features of the method to eliminate bias for isolated well-sampled images of isolated galaxies, when the PSF is accurately known and independent of wavelength. This is only one more step towards a full pipeline, but the tests in this paper already separate out and require control of

- ‘model bias’ (Bernstein 2010), due to incorrect assumptions about galaxy morphology,
- ‘noise bias’ (Refregier et al. 2012), where noise terms in a nonlinear expression for $\hat{\gamma}$ are now removed up to second order, and
- ‘selection bias’ (Kaiser 2000) due to the detection of galaxies based on their appearance after both a shear and instrument PSF have been applied.

© 2021 The Authors

Table 1. Table for accent notations. The examples are for the ellipticity, but the notations also apply to other FPFS quantities in Sec. 2.

Ellipticity with different accents	Definition
$\hat{\epsilon}_{1,2}$	intrinsic ellipticity of galaxies
$\epsilon_{1,2}$	ellipticity of lensed galaxies
$\hat{\epsilon}_{1,2}$	ellipticity of noisy lensed galaxies
$\tilde{\epsilon}_{1,2}$	ellipticity after noise bias correction

The FPFS shear estimator uses four shapelet modes (Refregier 2003) of a galaxy’s Fourier power function (Zhang 2008) to estimate shear distortion. It avoids the need to artificially truncate the shapelet series and thus is free from ‘model bias’ (Li et al. 2018). A weighting parameter is introduced so that the ‘noise bias’ is proportional to the inverse square of this free parameter for faint galaxies, and ‘noise bias’ can be controlled by tuning the weighting parameter. In this work, we further correct the second-order ‘noise bias’ in the FPFS shear estimator and remove the ‘selection bias’. In addition, we show that FPFS shear estimator is robust to stellar contamination in the galaxy sample if the PSF is well determined.

Several other existing methods also meet the Stage IV weak-lensing surveys’ requirement on systematics control for isolated galaxies, including MetaCalibrator (Huff & Mandelbaum 2017; Sheldon & Huff 2017), Fourier_Quad (Zhang et al. 2017; Li & Zhang 2021), BFD (Bernstein & Armstrong 2014; Bernstein et al. 2016) without relying on calibration using external image simulations. Continuing to develop several methods simultaneously remains a useful mitigation of risk. Among these, FPFS remains promising because it requires no prior information about galaxy morphologies, is more than 100 times faster than MetaCalibrator, processing over a thousand galaxy images per CPU second.

This paper is organized as follows: In Section 2, we review the previous formalism of the FPFS method, and analytically derive the second-order correction for nonlinear noise bias and the correction for selection bias. In Section 3, we introduce simulated images of galaxies used to verify (not calibrate) the performance of the proposed shear estimator on isolated galaxies. In Section 4, we present the results of the tests. In Section 5, we summarize and discuss future work.

2 METHOD

The Li et al. (2018) implementation of FPFS measures shear from four shapelet coefficients (Refregier 2003) of each galaxy’s Fourier power function (Zhang 2008). We review that method in Section 2.1. However, the noise bias is proportional to the inverse square of a tuning parameter for faint galaxies. In addition, it assumes galaxies selected to be in a sample have (isotropically) random intrinsic orientations, and the measurement error from photon noise does not prefer any direction. We correct nonlinear noise bias to second-order in Section 2.2, then correct two selection biases in Section 2.3. Throughout this section, we use accents to denote measurable quantities under different conditions and at different stages of image processing; this notation is summarized for reference in Table 1. We will introduce shear responses of observables and selections, our notation for which is summarized for reference in Table 2.

Figure 1. Shapelet basis functions $\chi_{c\nu}$. The indices ‘c’ and ‘s’ refer to the real part and imaginary part of the complex shapelet basis functions. The FPFS shear estimator combines projections on four shapelet basis functions: $\chi_{00}, \chi_{22c}, \chi_{22s},$ and χ_{40}. The linear gray color map ranges from -0.18 (black) to 0.18 (white).

2.1 Li et al. (2018)’s FPFS shear estimator

Starting with a noiseless galaxy image f_x in an $N \times N$ postage stamp, we first calculate its 2D Fourier transform

$$f_k = \int f_x e^{-i k \cdot x} \, d^2 x, \quad (2)$$

and its Fourier power function

$$F_k = f_k^* f_k = |f_k|^2, \quad (3)$$

where the asterisk denotes a complex conjugate. We focus on the well-sampled case for ground-based telescope, in which the pixel size is less than the Nyquist sampling rate; therefore, we can approximate signals in configuration space as a continuous form. To compute the Fourier transform, we assume periodic boundary conditions. Consequently, k is enumerable, and f_k is in a discrete form. Note that the Fourier power function is always Hermitian symmetric and the centroid of the galaxy power function is always at $k = 0$. This will eliminate bias due to anisotropic mis-centering on the intrinsic source plane, caused by noise or PSF.

In Fourier space, the effect of blurring by a PSF can be removed by dividing F_k by the PSF’s Fourier power function, G_k (Zhang 2008).

4 To avoid bias, Li et al. (2018) found that the radius of a circular postage stamp around an isolated galaxy should be at least four times the galaxy’s radius determined by its reGauss moments (Hirata & Seljak 2003). In this paper, we use a large postage stamp with $N = 32$ pixels. The optimal postage stamp size, which adapts to the size of each galaxy and the presence of neighbours, will be discussed in future work.

5 We choose not to normalize the power function by the area of the image as in the power spectral density, as the information from an isolated galaxy does not scale as the image size. We shall later adopt the same convention for the noise power for consistency.
Table 2. Table for notations of responses that will be introduced in Sec. 2.

Linear response to small distortion	Definition
R^e_g	shear (y) response of FPFS ellipticity (e) at single galaxy level
R^e_A	shear (y) response of average FPFS ellipticity (e) for a galaxy population
R^e_B	shear (y) response of a selection from a galaxy population

We decompose the result into shapelets\(^6\) (Massey & Refregier 2005)

\[
M_{mn} = \sum_k \chi_{mn}(k) \frac{F_k}{G_k},
\]

(4)

where, to remove a negative sign later, we use complex conjugates of the polar shapelet basis functions (Figure 1)

\[
\chi_{mn}(\rho, \phi) = (-1)^{|m|} e^{-\pi |m|/2} \frac{\pi^{|m|/2}}{\pi (|n| + |m|)!} \left(\frac{r}{r_F} \right)^{|m|/2} e^{-|m|/4} e^{-\rho^2/2r_F^2} e^{-i\phi},
\]

(5)

where L^m_n are the Laguerre Polynomials, n is the radial number and m is the spin number, and r_F determines the scale of shapelet functions in Fourier space. In addition to k, we use polar coordinates (ρ, ϕ) to denote discrete locations in 2D Fourier space. The scale size of shapelets used to represent the galaxy, r_F, should be less than the scale radius of PSF’s Fourier power, r_p, to avoid boosting small-scale noise during PSF deconvolution. In this paper, we fix $r_F/r_p = 0.75$.

To first order in shear, the shear distortion operator correlates a finite number of shapelet modes (separated by $|\Delta n| = 2$ and $|\Delta m| = 2$ Massey & Refregier 2005). It is therefore possible to estimate an applied shear signal using a finite number of shapelet modes. The Li et al. (2018) FPFS algorithm uses four shapelet modes to construct its shear estimator, with FPFS ‘ellipticity’,

\[
e_1 \equiv \frac{M_{221}}{M_{00} + C}, \quad e_2 \equiv \frac{M_{222}}{M_{00} + C},
\]

(6)

where M_{221} and M_{222} refer to the real (‘cos’) and imaginary (‘sin’) components of the complex shapelet mode M_{22} respectively. The positive constant parameter C adjusts the relative weight between galaxies of different luminosities. A large value of C puts more weight on bright galaxies, and suppresses noise bias, while a small value of C weights galaxies more uniformly. We similarly define a few useful spin $m = 0$ FPFS quantities:

\[
\sigma_{0,2.4} \equiv \frac{M_{00,0,2.4}}{M_{00} + C}.
\]

(7)

In principle, the value of C can be different in each of these quantities; however, here we set them all to $2.5 \sigma_{M_{00}}$ for simplicity, where $\sigma_{M_{00}}$ is the standard deviation of measurement error on M_{00} caused by photon noise on galaxy images. The details of tuning the weighting parameter is shown in Sections 4.1 and 4.2. The ‘flux ratio’ σ_0 was suggested by Li et al. (2018) as a criterion to select a galaxy sample, helping to remove faint galaxies and spurious detections, etc.

When the image of a galaxy is distorted by shear γ, its ellipticity transforms to first order in γ as

\[
\tilde{e}_a \rightarrow e_a = \tilde{e}_a + \sum_{\beta=1,2} \gamma_{\beta} (R^e_{\beta})_{af},
\]

(8)

where components $\alpha \in \{1, 2\}$ and $\beta \in \{1, 2\}$, and the ‘shear responsivity’ $(R^e_{\beta})_{af}$ is $\partial e_a/\partial \gamma_{\beta}$ (Sheldon & Hu 2017). The shear responsivity of the FPFS ellipticity for an individual galaxy is a scalar quantity:

\[
R^e_{\beta} = \frac{1}{\sqrt{2}} \left(s_4 - s_0 - e_1^2 - e_2^2 \right),
\]

(9)

plus terms involving spin $m = 4$ modes — which all average to zero when we now average R^e_{β} over all galaxies in a sample, to obtain a population responsivity (denoted with curly letters) $\mathcal{R}^e_{\beta} \equiv \langle R^e_{\beta} \rangle$. We intend to investigate in future work $O(\gamma^2)$ terms in \mathcal{R}^e_{β} that may not necessarily be small near galaxy clusters. Since the difference between (\tilde{e}_1^2) and (\tilde{e}_2^2) is negligible, we define the shear response as the average responses of two shear components and do not distinguish between the responses of two shear components.

Assuming that the galaxy population is selected such that $\langle \tilde{e}_a \rangle = 0$ in the absence of shear, equation (8) suggests a shear estimator (Li et al. 2018)

\[
\hat{\gamma}_a \equiv \langle e_a \rangle = \langle \tilde{e}_a \rangle + \gamma_a = \gamma_a.
\]

(10)

The population variance of $\hat{\gamma}_a$ is known as the intrinsic shape noise.

2.2 Nonlinear noise bias

2.2.1 Effect of observational noise

In real observations the galaxy image is contaminated by photon noise and read noise. We denote the total image noise in Fourier space as n_k, i.e. the observed galaxy image is

\[
f_k = f_k + n_k,
\]

(11)

and the observed galaxy Fourier power function is

\[
F_k = f_k^2 = |F_k|^2.
\]

(12)

We shall assume that the source and image noise do not correlate, i.e. $\langle f_k n_k \rangle = 0$. We shall also assume that the noise is dominated by background and read noise, so that we can neglect photon noise

\footnote{Equation (9) differs by a minus sign from that in Li et al. (2018), who defined the shear response with respect to the shear distortion in Fourier space. All the shear responses in this paper are defined with respect to the shear distortion in configuration space.}

\footnote{Since the shapelet basis vectors are orthogonal (Refregier 2003), and not convolved with the PSF (as in Massey & Refregier 2005), shapelet modes can be estimated by a direct projection following equation (4) — we do not need to know the projections on any other shapelet basis vectors to estimate one shapelet mode, and avoid the need to artificially truncate the shapelet series.}
on the galaxy flux\(^8\). This makes the noise a mean zero homogeneous Gaussian random field that, averaged over different noise realizations, has Fourier power function with expectation value

\[N_k = \langle n_k n_k^* \rangle. \tag{13} \]

Note that this is different from \(F_k \) which is defined for each galaxy, and we differentiate them with different fonts. Using Isserlis’ theorem (also known as Wick’s theorem in quantum field theory), its 4-point correlation function is

\[\langle n_k n_k' n_k' n_k'' \rangle = (1 + \delta^s(k - k') + \delta^s(k + k')) N_k N_{k''}, \tag{14} \]

where \(\delta^s \) denotes the Kronecker delta function.

To account for image noise (following Zhang et al. 2015), the expectation value of the noise power (13) can be measured from blank patches of sky, and subtracted from an observed galaxy’s Fourier power function. Using a tilde to label corrected quantities, this yields

\[\tilde{F}_k = F_k - N_k, \tag{15} \]

from which \(\tilde{e}_k, \tilde{s}_0, \) etc. can be defined similarly as in (6), (7), and (4). Note the accent notation of FFPS flux ratio, \(s \), follows that of FFPS ellipticity, \(e_{1,2} \), shown in Table 1. However, compared to the noiseless image power function \(F_k \), this now contains residual noise power

\[e_k \equiv F_k - N_k = n_k n_k^* - N_k + f_k n_k^* + f_k n_k. \tag{16} \]

Across a galaxy population, the expectation value of residual noise is zero, \(\langle e_k \rangle = 0 \). For any individual galaxy, the residual noise power includes contributions from the individual realisation of noise, and any correlation between that noise and the galaxy flux (see also Li & Zhang 2021). Combining equations (14) and (16), the two-point correlation function of the residual noise power is

\[\langle e_k e_k^* \rangle = (\delta^s(k - k') + \delta^s(k + k')) (N_k^2 + 2F_k N_k). \tag{17} \]

During shape measurement, the galaxy power function (which now includes residual noise) is divided by the PSF power and decomposed into shapelets (equation 4). The shapelet modes of the residual noise are

\[E_{\text{sum}} \equiv \sum_k X_{\text{sum}}(k) e_k G_k. \tag{18} \]

Again, their expectation values \(\langle E_{\text{sum}} \rangle \) vanish because \(\langle e_k \rangle = 0 \). For an individual galaxy however, the their covariance is

\[V_{\text{sum} m n} \equiv \langle E_{\text{sum}}^m E_{\text{sum}}^n \rangle = \sum_k X_{\text{sum}}^m X_{\text{sum}}^{n^*} G_k^2 \langle N_k^2 + 2F_k N_k \rangle. \tag{19} \]

The shapelet modes thus become correlated \((V_{\text{sum} m n} \neq 0) \) due to inhomogeneous and anisotropic residual noise, and anisotropy in the PSF. The covariances can be measured from nearby blank patches of sky, the galaxy itself, and the PSF model.

2.2.2 Correction for noise bias

Propagating the contribution of residual noise into FFPS ellipticity estimators yields an expectation values

\[\langle \delta e \rangle \equiv \left(\frac{M_{22} + \epsilon_{22}}{M_{00} + C + \epsilon_{00}} \right), \quad \langle \delta \epsilon \rangle \equiv \left(\frac{M_{22} + \epsilon_{22}}{M_{00} + C + \epsilon_{00}} \right). \tag{20} \]

Expanding the FFPS ellipticity as Taylor series of \(\epsilon_{00}/M_{00} \), about the point \(\epsilon_{00} = 0 \) and inserting the covariance of shapelet modes (equation (19)), this is

\[\langle \delta e \rangle \equiv \epsilon_1 + \frac{\epsilon_{000}}{M_{00} + C}\left[1 + \frac{\epsilon_{002}}{M_{00} + C} \right] + O\left(\frac{\epsilon_{000}}{M_{00} + C} \right)^2, \tag{21} \]

where \(\epsilon_{002}, \epsilon_{002} \) refers to the covariance between \(\epsilon_{00} \) and \(\epsilon_{22} \) \(\epsilon_{22} \). One can notice immediately that the second-order terms are in the form of additive and multiplicative biases, proportional to the inverse square of \(M_{00} + C \). And we shall neglect terms of fourth-order and higher.

Therefore one version of the FFPS ellipticity suitably corrected for noise bias up to second-order is

\[\tilde{e}_1 = \frac{1}{T} \left(\tilde{e}_1 + \frac{\epsilon_{000}}{M_{00} + C} \right), \tag{22} \]

\[\tilde{e}_2 = \frac{1}{T} \left(\tilde{e}_2 + \frac{\epsilon_{002}}{M_{00} + C} \right), \]

where \(T = 1 + \frac{\epsilon_{000}}{M_{00} + C} \). Similarly, the FFPS flux ratio measured from a noisy image, \(\tilde{s}_0 \), is also subject to noise bias, but can be corrected as

\[\tilde{s}_0 = \frac{1}{T} \left(\tilde{s}_0 + \frac{\epsilon_{000}}{M_{00} + C} \right). \tag{23} \]

The corrected shear responsivity for a single, noisy galaxy becomes

\[\tilde{R}_c = \frac{1}{\sqrt{2}} \left(\tilde{e}_1 - \tilde{s}_0 - \tilde{e}_1^2 \right), \tag{24} \]

where corrected versions of the other FFPS quantities are listed in Appendix A.

Once again, we average responsivity across a galaxy sample to obtain population response \(\hat{R}_c \). Assuming that \(\langle \tilde{e}_1 \rangle = 0 \), and now also that \(\langle \delta e_n \rangle = 0 \), where

\[\delta e_n \equiv \tilde{e}_1 - e_n \tag{25} \]

is measurement error due to image noise, we obtain a new shear estimator

\[\hat{R}_c^\Lambda \equiv \frac{\langle \tilde{e}_1 \rangle}{R_c} = \frac{0}{R_c} + \frac{0}{R_c} + \gamma_n = \gamma_n \tag{26} \]

that corrects for nonlinear noise bias to second order. We label this first estimator ‘A’ because we shall next propose more complications. The performance of this shear estimator will be tested in Section 4.1.

2.3 Selection bias

For a complete sample of galaxies, the assumptions that \(\langle \tilde{e}_1 \rangle = 0 \) and \(\langle \delta e_n \rangle = 0 \) are statistically correct. For an incomplete sample, perhaps restricted to galaxies above a threshold in FFPS flux ratio.

\(^8\) Li & Zhang (2021) present a formalism to include galaxy photon noise, but we proceed here on the assumption that it is negligible for the faint galaxies that are most affected by noise bias, and verify the validity of this in Section 4.3.
\(\hat{s}_0 \), this assumption can be broken — creating a shear estimation bias known as selection bias. We correct for the selection bias due to anisotropic intrinsic shape noise, \(\langle \hat{e}_s \rangle \neq 0 \), in Section 2.3.1, and for the selection bias due to anisotropic measurement error, \(\langle \delta e_a \rangle \neq 0 \), in Section 2.3.2.

2.3.1 Selection bias due to anisotropic intrinsic shape noise

Here we derive a correction for the selection bias that is introduced if \(\langle \hat{e}_s \rangle \neq 0 \) in a galaxy population. This can occur if the population is selected according to some quantity that is changed by shear. For example, although unbiased selection could be based upon galaxies’ intrinsic FFPS flux ratios \(\hat{s}_0 \), it would in practice be based upon their lensed flux ratios \(s_0 \). To first order in \(\gamma \), these transform under shear as

\[
\hat{s}_0 \rightarrow s_0 = \hat{s}_0 + \sum_{\alpha=1,2} \frac{\partial s_0}{\partial \gamma} \hat{s}_0 \gamma_\alpha.
\tag{27}
\]

The difference may cause individual galaxies to cross selection thresholds, or to change weight. This effect was first studied in Kaiser (2000) and is referred to as Kaiser flow. In the following discussion, we shall neglect terms \(O(\gamma^2) \), and temporarily also neglect shape measurement noise.

First consider a complete population of galaxies, whose intrinsic FFPS flux ratio, \(\hat{s}_0 \), and intrinsic ellipticity, \(\hat{e}_s \) are distributed with probability density function (PDF) \(P(\hat{s}_0, \hat{e}_s) \). Because there is no preferred direction in the Universe, the expectation value of intrinsic galaxy ellipticity (\(\hat{e}_s \)) is \(0 \).

Next let us identify a subset of the population. In the absence of shear, this can be selected via a cut \(s_0^{\text{low}} < \hat{s}_0 < s_0^{\text{upp}} \) between lower and upper bounds on the intrinsic FFPS flux ratio. Because the selection criterion is a spin-0 quantity without preferred direction, the expectation value of intrinsic galaxy ellipticity must be preserved

\[
\langle \hat{e}_s \rangle_{\gamma=0} = \int_{s_0^{\text{low}}}^{s_0^{\text{upp}}} P(\hat{s}, \hat{e}_s) \hat{e}_s \, d\hat{e}_s = 0.
\tag{28}
\]

However, if a shear has been applied, the selection \(\hat{s}_0^{\text{low}} < \hat{s}_0 < \hat{s}_0^{\text{upp}} \) must be between limits on \textit{lensed} quantities

\[
\langle \hat{e}_a \rangle = \int_{\hat{s}_0^{\text{low}}}^{\hat{s}_0^{\text{upp}}} P(\hat{s}, \hat{e}_a) \hat{e}_a \, d\hat{e}_a.
\tag{29}
\]

Using equation (27), this selection is equivalent to modified bounds on the \textit{intrinsic} source plane

\[
\langle \hat{e}_a \rangle = \int_{s_0^{\text{low}}}^{s_0^{\text{upp}}} \frac{\partial s_0}{\partial \gamma} \hat{s}_0 \frac{\partial s_0}{\partial \gamma} \hat{e}_s \, ds \, d\hat{e}_a,
\tag{30}
\]

which can have spurious anisotropy \(\langle \hat{e}_a \rangle \neq 0 \). We define the shear response of the galaxy selection on the galaxy sample level, \(\mathcal{R}_{\gamma a} \), as the ratio between this anisotropy versus the shear that caused it:

\[
\mathcal{R}_{\gamma a} \equiv \langle \hat{e}_a \rangle_{\gamma=0} \gamma_a = \frac{\langle \hat{e}_a \rangle}{\gamma_a}.
\tag{31}
\]

where \(P(s_0^{\text{upp}}) \) and \(P(s_0^{\text{low}}) \) are the marginal probability distributions of \(s_0 \) at \(s_0^{\text{upp}} \) and \(s_0^{\text{low}} \), respectively. Those marginal probability distributions can be estimated approximately by the average marginal probability distributions in \([s_0^{\text{low}}-0.01, s_0^{\text{low}}+0.01] \) and \([s_0^{\text{low}}-0.01, s_0^{\text{low}}+0.01] \), respectively. Note that in real observations, we are only able to estimate the marginal probability distributions from noisy, lensed galaxies instead of from noiseless, intrinsic galaxies. We take the assumption that the difference between the intrinsic, noiseless marginal probability distributions and lensed, noisy probability distributions is negligible. Using equation (18) of Li et al. (2018),

\[
\left. \frac{\partial s_0}{\partial \gamma_a} \right|_{\gamma=0} = \frac{\sqrt{2} \langle (\alpha^2_a)(1-s_a) \rangle_{\gamma=0}}{\langle \hat{s}_0 \rangle_{\gamma=0}},
\tag{32}
\]

we can obtain the shear response of the selection from measurable quantities.

A shear estimator incorporating this selection responsivity

\[
\hat{\gamma}_a^B \equiv \frac{\langle \hat{e}_a \rangle}{\mathcal{R}_{\gamma a} + \mathcal{R}_{\gamma a}^\text{sel}} = \frac{\langle \delta e_a \rangle}{\mathcal{R}_{\gamma a} R + \mathcal{R}_{\gamma a}^\text{sel}} + \frac{\langle \hat{e}_a \rangle}{\mathcal{R}_{\gamma a} R + \mathcal{R}_{\gamma a}^\text{sel}} = \gamma_a
\tag{33}
\]

should then be immune to selection bias due to anisotropic intrinsic shape noise. Its performance will be tested on galaxy image simulations in Section 4.3.

2.3.2 Selection bias due to anisotropic measurement error

Here we re-introduce image noise, and derive a correction for the selection bias that is introduced if \(\langle \delta e_a \rangle \neq 0 \) in a galaxy population. This can occur if image noise leads to measurement error in a galaxy’s FFPS ellipticity \(\epsilon_a \), which correlates with measurement error in a quantity used for sample selection, e.g. the FFPS flux ratio \(s_0 \).

Consider first a population of galaxies with a PDF of noiseless \textit{but now lensed} quantities \(P(\epsilon_a, s_0) \). In this lensed plane, measurement error on the FFPS flux ratio is (c.f. equation (25))

\[
\frac{\delta s_0}{\gamma} \equiv \hat{s}_0 - s_0.
\tag{34}
\]

The definitions of \(s_0 \) and \(e_a \) ensure that, if the image noise is Gaussian, the noise on \(s_0 \) and \(e_a \) will both be close to Gaussian. In this case, the contribution of image noise to the population variances is

\[
\sigma^2_a = \langle (\delta s_0)^2 \rangle,
\tag{35}
\]

\[
\sigma^2_{e_a} = \langle (\delta e_a)^2 \rangle,
\tag{35}
\]

both of which can be estimated from observed galaxy images (see equations (A3)) using the covariance of measurement errors on shapelet modes (c.f. equation (19)). The accuracy of the variance estimate will be tested in Section 4.2. Furthermore, the correlation between the measurement errors is

\[
\rho_{\epsilon_e} \equiv \frac{\langle \delta e_a \delta s_0 \rangle}{\sigma_{\epsilon_a} \sigma_{s_0}},
\tag{36}
\]

which can also be estimated from noisy galaxy images (see equations (A4)). As indicated by equations (A4) and (19), \(\rho_{\epsilon_e} \neq 0 \) in this lensed plane if either the PSF or the noise power function is anisotropic.

The PDF of noisy lensed quantities can thus be approximated by

\[
\hat{P} \approx P \otimes P^\dagger
\tag{37}
\]

where \(\otimes \) refers to the convolution operation and

\[
P^\dagger(e_a, s_0) \equiv \frac{1}{2\pi \sigma_{\epsilon_a} \sigma_{s_0}} \exp \left(-\frac{e^2_a}{2\sigma_{\epsilon_a}^2} - \frac{s^2_0}{2\sigma_{s_0}^2} + \rho_{\epsilon_e} e_a s_0 \frac{\sigma_{\epsilon_a}}{\sigma_{s_0}} \right).
\tag{38}
\]
noise can bias the average ellipticity such that \(\langle \delta e_a \rangle \neq 0 \), if the measurement errors \(\delta e_a \) and \(\delta x_0 \) are correlated. The resulting change in ellipticity is
\[
eq \int_{\xi}^{\theta} e_a \left(\hat{P} - P \right) d e_a d x_0 ,
\]
which we propose to estimate from measurable quantities
\[
\hat{e}_a \approx \int_{\xi}^{\theta} e_a \left(\hat{P} \otimes P^\prime - P \right) d e_a d x_0 .
\]
For simplicity, we do not recover \(P \) by deconvolving \(\hat{P} \); instead, we take the approximation \(\hat{P} \equiv P \).

A final shear estimator correcting for noise bias and both types of selection bias is thus
\[
\hat{\gamma} = \frac{\langle \hat{e}_a \rangle - \hat{e}^2}{\hat{R}^2 + R^2} = \gamma_a .
\]
The performance of all shear estimators will be tested in Section 4.3.

3 IMAGE SIMULATION

3.1 Galaxies, PSF and noise

We test the FPFS shear estimators by running them on mock astronomical images that have been sheared by a known amount. Our mock data are very similar to sample 2 of Mandelbaum et al. (2018b), replicating the image quality and observing conditions of the Hyper-Suprime Cam (HSC) survey on the 8m ground-based Subaru telescope, whose deep coadded i-band images of the extragalactic sky resolve \(\sim 20 \) galaxies per arcminute\(^2\) brighter than \(i = 24.5^\text{m} \) (Mandelbaum et al. 2018a; Li et al. 2021). The pixel scale is \(0'.168 \).

Galaxy images are generated using the open-source package GalSim (Rowe et al. 2015). We randomly select \(8 \times 10^4 \) galaxies without repetition from the COSMOS HST Survey catalogue\(^10\) (Leauthaud et al. 2007), which has limiting magnitude \(F814W = 25.2 \). All galaxies have known photometric reshifts. The galaxy shapes are approximated with the best-fitting parametric (de Vaucouleurs 1948 or Sérsic 1963) profile, sheared, convolved with a model of the HSC PSF, then rendered in \(64 \times 64 \) pixel postage stamp images (including a border around the \(32 \times 32 \) pixel region used for shear measurement). The pixel values are finally multiplied by 2.858 to rescale the units, so their \(i = 27 \) photometric zeropoint matches that of real HSC pipeline data (Li et al. 2021).

The image PSF is modelled as a Moffat (1969) profile,
\[
g_n(x) = \left[1 + c[(x/r_p)^2]^{3.5} \right]^{-1},
\]
where \(c = 2^{\beta + 1} - 1 \) is a constant parameter and \(r_p \) is adjusted such that the Full Width Half Maximum (FWHM) of the PSF is \(0'6 \), matching the mean seeing of the HSC survey (Li et al. 2021). The profile is truncated at a radius four times larger than the FWHM. The PSF is then sheared so that it has ellipticity \(e_0 = 0.02, e_2 = -0.02 \).

We add image noise from a constant sky background and read noise. This includes anisotropic (square-like) correlation between adjacent pixels matching the autocorrelation function of a third-order Lanczos kernel, i.e. \(a = 3 \)
\[
L(x,y) = \begin{cases}
\sin(x/a) & \text{if } |x|, |y| < a \\
0 & \text{otherwise}
\end{cases}
\]
where \(\sin(x) = \sin(\pi x)/\pi x \). This kernel was used to warp and co-add images taken during the first-year HSC survey (Bosch et al. 2018). Ignoring pixel-to-pixel correlations, our resulting noise variance is \(7 \times 10^{-3} \), which is about two times of the average noise variance in HSC data shown in (Li et al. 2021). In this paper, we do not include photon noise on the galaxy fluxes. This is to increase efficiency because the same realisation of noise can be used in multiple images (see below). However, it means that our tests on the effectiveness of correction for selection bias are an optimistic limit. In Section 4.3 we present tests that bracket the performance achievable if photon noise were to be included.

Our simulated images thus include galaxies with a realistic range of signal-to-noise ratios, SNR, greater than \(-10\) (Figure 2). We measure a galaxy’s SNR using CModel (Lupton et al. 2001), which fits each image with a linear combination of an exponential and a de Vaucouleurs (de Vaucouleurs 1948) model, as implemented in the HSC pipeline (Bosch et al. 2018). Writing the FPFS ellipticity as a weighted dimensionless quantity \(e_1 \equiv w M_{22}/M_{00} \), where \(w = (1 + C/M_{00})^{-1} \), we find that a value of \(C = 2000 \) reduces the effective contribution of the faintest galaxies by a factor \(-3\) (dotted line in Figure 2). However, shear measurements from faint galaxies are noisier, and we shall find in Section 4.2 that this weighting also optimises overall SNR.

3.2 Shape noise cancellation

To efficiently reduce intrinsic shape noise in our shear measurements, we generate images of each galaxy in pairs (following Massey et al. 2007), where the intrinsic ellipticity of one is rotated by 90 deg (flipping its sign) before applying shear. We then generate three images of each pair with three different shears: \((\gamma_1 = 0.02, \gamma_2 = 0), (\gamma_1 = -0.02, \gamma_2 = 0) \) and \((\gamma_1 = 0, \gamma_2 = 0) \), but all with

\(^9\) A cut at \(i < 24.5 \) is applied to the real HSC shear catalog, to remove faint galaxies and false detections. For the simulations in this paper, we force a measurement for each input galaxy and do not apply a magnitude cut.

\(^{10}\) https://zenodo.org/record/3242143#_YPBdGaRyQV
exactly the same realisation of image noise (following Pujol et al. 2019; Sheldon et al. 2020). All images are convolved with the same PSF.

To measure the shear measurement bias (equation (1)) of an estimator \(\hat{\gamma} \), we calculate

\[
c_1 = \frac{\langle \hat{e}_1^2 \rangle}{\langle \hat{R}_{\gamma}^2 \rangle},
\]

and

\[
m_1 = \frac{\langle \hat{e}_1^2 - \hat{e}_1^2 \rangle}{0.02(\langle \hat{R}_{\gamma}^2 + \langle \hat{R}_{\gamma}^2 \rangle \rangle) - 1},
\]

where \(\hat{e}_1^2 \) and \(\hat{R}_{\gamma}^2 \) are the first component of ellipticity and shear response estimated from the images with positive shear, \(\hat{e}_1 \) and \(\hat{R}_{\gamma} \) from images with negative shear, and \(\hat{e}_1^2 \) and \(\hat{R}_{\gamma}^2 \) from undistorted images. We repeat this whole process 250 times with different noise realizations. For these very well-sampled images, we expect the multiplicative bias and additive bias are comparable on component \(\hat{\gamma}_1 \).

4 RESULTS

In this section, we test the shear estimators derived in Section 2 using the image simulation described in Section 3. The shear estimators that will be tested include the original Li et al. (2018) shear estimator, \(\hat{\gamma}_a \) (defined in equation (10)), the shear estimator after correcting the second-order noise bias, \(\hat{\gamma}_a^n \) (equation (26)), the shear estimator after correcting the selection bias from anisotropic shape noise, \(\hat{\gamma}_{a}^b \) (equation (33)), and anisotropic measurement error, \(\hat{\gamma}_{c}^b \) (equation (41)). We first test the correction for noise bias in Section 4.1 and the measurement of shape measurement error from noisy galaxy images in Section 4.2. Then we test the correction for selection bias in Section 4.3. Subsequently, we check the redshift dependence of the calibration biases in Section 4.4. Finally, we test the performance of FPFS on poorly resolved galaxies in Section 4.5 and on stellar contamination in Section 4.6.

Note that we force a shear measurement measurement for every simulated galaxy during these tests. For isolated images, the process of source detection influences shear estimation from a population of galaxies, if that population is determined simply by the selection function of the detector. The right panel of Fig. (3) of Li et al. (2018) showed the \(s_0 \) histograms of detected and undetected galaxies in an HSC-like image simulation Mandelbaum et al. (2018b) — most of the undetected galaxies are clustered at small \(s_0 \). Therefore, the influence of the selection function of the detector can be removed by tuning the lower threshold of \(s_0 \). For crowded images, removing the bias from detection is challenging since, as shown in Sheldon et al. (2020), the ability of a detection algorithm to recognize blending depends upon the underlying shear distortion.

4.1 Nonlinear noise bias

This subsection tests the performance of the second-order noise bias correction derived in Section 2.2. To be more specific, we change the weighting parameter, \(C \), and measure the multiplicative bias of our FPFS shear estimator with the second-order noise bias correction, \(\hat{\gamma}^n \), using the simulations described in Section 3. The multiplicative bias in Figure 3 is reduced below the requirement for the LSST survey when the weighting parameter is greater than 200. Since we use all the galaxies in the simulation without any additional selection for the test shown in this subsection, selection bias does not contribute to this result.

We also compare the result of the FPFS shear estimator including the second-order noise bias correction to that of the original FPFS shear estimator without the second-order noise bias correction in Figure 3. As shown, the noise bias is reduced by an order of magnitude after the second-order noise bias correction. The additive bias is constantly below 10^{-4}, and we do not plot the additive bias here. Note, the correction of noise bias in Section 2.2 assumes that noise are homogeneous in configuration space so that noise are not correlated in Fourier space. In our simulation described in Section 3, the input noise is homogeneous. In general, the background photon noise is homogeneous in real observations; however the source photon noise is not homogeneous, although its contributions in ground-based surveys are small. In the presence of galaxy source photon noise, the performance of the second-order noise bias correction is expected to be worse than the solid line in Figure 3; however, it should be better than the dashed line Figure 3 that does not include any second-order noise bias correction.

4.2 Shape noise and shape measurement uncertainty

This subsection calculates the statistical uncertainty in shear estimation from a population of galaxies,

\[
\sigma_{\gamma} = \sqrt{\left(\frac{1}{2} \left(\langle \hat{e}_1^2 + \hat{e}_2^2 \rangle \right) \right)}.
\]

This total uncertainty is a combination of noise due to galaxies’ intrinsic shapes, \(\sigma_{\text{rms}} \), and shape measurement error due to realisations of noise in images of galaxies, \(\sigma_{\epsilon} \). We shall assume these add in quadrature, such that

\[
\left(\frac{1}{2} \left(\langle \hat{e}_1^2 + \hat{e}_2^2 \rangle \right) \right) = \sigma_{\text{rms}}^2 + \sigma_{\epsilon}^2.
\]

The standard error on the mean shear measured from a population of \(N \) galaxies is thus \(\sigma_{\gamma}/\sqrt{N} \). Note, however, that this value depends on which population of galaxies it is averaged over.
To obtain \(\epsilon_{\text{RMS}} \), we measure the intrinsic FPFS ellipticity of each galaxy from a realization of the galaxy image simulation with zero noise and zero input shear (see Section 3). We average the two components of ellipticity, then calculate the RMS across our sample of galaxies. The intrinsic shape noise, \(\epsilon_{\text{RMS}} \), increases with weighting parameter \(C \) (dotted line in Figure 4).

To obtain \(\sigma_\gamma^2 \), we first measure the total uncertainty using a noisy realization of the galaxy image simulation (see Section 3), again averaging the two components of ellipticity. We then subtract \(\epsilon_{\text{RMS}} \), following equation (47). The shape measurement error, \(\sigma_\gamma \), decreases with weighting parameter \(C \) (dashed line in Figure 4).

The total statistical uncertainty on \(\gamma \) is thus a balance between contributions from shape noise (an increasing function of \(C \)) and from measurement error (a decreasing function of \(C \)). Total uncertainty is minimised for \(1000 < C < 2000 \), which is therefore optimal if each galaxy in a sample is equally likely to contain shear signal. In this paper we set \(C = 2000 \) unless otherwise mentioned, which is close to \(2.5 \sigma_B^0 \). The corresponding nonlinear noise bias for this default setup is well below the LSST requirement as shown in Figure 3.

Shape measurement error can be also be estimated independently, using only noisy galaxy images, and without access to noise-free versions – as would be required when handling real astronomical data. Following equation (A2), we estimate \(\sigma_\gamma \) (circles in Figure 4), then use measurements of total noise and equation (47) to estimate intrinsic shape noise \(\epsilon_{\text{RMS}} \) (crosses in Figure 4). These reproduce the measurements from noiseless image simulations with remarkable accuracy.

The total FPFS shear measurement uncertainty is similar to that from the calibrated reGauss shear estimator Mandelbaum et al. (2018b). To demonstrate this, we run the HSC pipeline (hscPipe v7) for source detection and shape measurement on our simulated images (see Bosch et al. 2018 for details on the pipeline), which includes catalogue cuts at \(i < 24.5 \), resolution \(> 0.3 \), and

\[\text{SNR} > 10 \ (\text{Mandelbaum et al. 2018a}) \]. To weight the galaxies, we use fixed \(C = 2000 \) for FPFS. For reGauss, we use the optimal weight of a real galaxy in the first-year HSC shear catalogue, selected as the closest match in the log (SNR)-log (resolution) plane. Since the reGauss algorithm is subject to certain forms of shear estimation bias (e.g. model bias, noise bias), we also use the reGauss ellipticities measured from the simulation with \(\gamma_1 = 0.02 \) and \(\gamma_1 = -0.02 \) to linearly calibrate its shear response. For this galaxy sample, which has higher S/N than the previous sample, we find shear estimation uncertainty of \(\sigma_\gamma = 0.298 \) for FPFS, and \(\sigma_\gamma = 0.288 \) for reGauss.

4.3 Selection bias

This subsection tests the performance of the selection bias correction. Specifically, we adjust the faint-end cut on the FPFS flux ratio, \(s_0 > s_0^{\text{low}} \), and estimate the shear measurement bias in shear estimators \(\hat{\gamma}^B \) (equation (33)) and \(\hat{\gamma}^C \) (equation (41)). Throughout this section, \(s_{\text{upp}} = \infty \), and the weighting parameter is set to \(C = 2000 \).

The measured multiplicative biases (top panel of Figure 5) are within the LSST science requirement, for estimators both with (\(\hat{\gamma}^C \)) and without (\(\hat{\gamma}^B \)) correction for selection bias due to anisotropic measurement error. Estimator \(\hat{\gamma}^C \) improves upon \(\hat{\gamma}^B \) by \(\sim 10^{-3} \) on average, which indicates that the multiplicative bias due to anisotropic measurement error is at about this level.

The measured additive biases (bottom panel of Figure 5) are below \(1.5 \times 10^{-4} \) for \(\hat{\gamma}^B \) and below \(1 \times 10^{-4} \) for \(\hat{\gamma}^C \), which indicates that

![Figure 4](image1.png)
Figure 4. The 1\(\sigma \) statistical uncertainty on shear measurements \(\hat{\gamma}_1 \) for individual galaxies (solid line), as a function of weighting parameter, \(C \). The total uncertainty has contributions due to image noise (dashed line) and intrinsic shape noise (dotted line) – both of which we measure using noiseless galaxy images that would not be available to a real survey. However, the ‘•’ symbols show the same measurement noise (intrinsic shape noise) accurately estimated using equation (35) and noisy galaxy images, which are observable.

![Figure 5](image2.png)
Figure 5. The multiplicative bias (top panel) and additive bias (bottom panel) as a function of lower limit on the FPFS flux ratio. The gray region indicates the LSST science requirement.
the additive bias due to the anisotropic measurement error is at the level of 10^{-3}.

4.4 Redshift dependence of bias

This subsection tests whether the shear measurement biases depend upon galaxy redshift. We divide simulated galaxies into three bins ($0 \leq z < 0.6, 0.6 \leq z < 1.2, 1.2 \leq z < 1.8$) according to the photometric redshift of the input COSMOS galaxies (Ilbert et al. 2009). The average reGauss resolution and CModel SNR as functions of redshift are shown in Figure 6.

First, we test shear estimator γ^A without selecting by any observables other than the COSMOS redshift. Since the COSMOS redshifts are from input galaxies and are not influenced by shear distortion or image noise, the redshift binning does not lead to selection bias. In addition, γ^A does not account for selection bias; therefore, this test measures any redshift-dependence of the nonlinear noise bias. We find multiplicative bias $|m| < 1 \times 10^{-3}$, and additive bias $|c| < 1 \times 10^{-4}$ at all redshifts (solid lines in Figure 7).

Second, we test shear estimator γ^B on a galaxy sample selected with $s_0 > s_{0w}^\text{low} = 0.2$. The estimator does not account for the selection bias due to anisotropic measurement error, so this test isolates the performance of its correction for selection bias due to anisotropic shape noise. We find multiplicative bias $|m| \approx 2 \times 10^{-3}$ for redshift $z < 1$, increasing to 6×10^{-3} at high redshift $1.2 \leq z < 1.8$. The additive bias is 2σ consistent with zero at all redshifts (dashed lines in Figure 7).

Finally, we test shear estimator γ^C on the same galaxy sample with $s_0 > s_{0w}^\text{low} = 0.2$. This estimator accounts for selection bias due to both anisotropic shape noise and anisotropic measurement error. It produces multiplicative bias consistently $< 1 \times 10^{-3}$, and additive bias that is 2σ consistent with zero (dotted lines in Figure 7). Comparing the multiplicative biases of γ^B and γ^C, we find that the amplitude of the selection bias due to the anisotropic measurement error is a few part in 10^4. For these isolated galaxies, our final FPFS shear estimator meets the science requirement of the LSST survey, shown as a gray region in Figure 7.

4.5 Performance with very small source galaxies

Since our fiducial image simulation is based on a training sample of galaxies resolved by HST and with magnitude $i < 25.2$, it does not include the smallest galaxies that a future survey might have ambition to measure. To test the accuracy of FPFS on galaxies that are barely resolved (especially by ground-based observations), we use GalSim to simulate small galaxies composed of 20 points randomly distributed (Zhang et al. 2015) to follow a 2D Gaussian profile with input half light radius ranging from 0'.07 to 0'.2. The flux of each knot is the same. The measured reGauss resolutions range from 0.12 to 0.27 as shown in Table 3. Each galaxy sample has 4×10^7 galaxies and with an average CModel SNR ~ 15, and each galaxy is rotated by 45 deg four times to reduce shape noise from both spin $m = 2$ and spin $m = 4$ quantities. Here we do not add any additional selection, so that selection bias is not present. As shown in Table 3, FPFS can accurately measure shear from even extremely small and
faint galaxies. If mixed with bigger and brighter galaxies, they will receive a low weight and contribute little to the signal. Crucially, they will not bias it.

4.6 Stellar contamination

In real observations, stars may not be perfectly removed from the galaxy sample. To test the performance of our FPFS shear estimator with such stellar contamination, we simulate 1×10^7 star images with an average SNR 17.8. This corresponds to an extreme situation that the object’s reGauss resolution equals zero. Then we measure the FPFS ellipticity and FPFS response from these stars. Again, we neglect the PSF model errors and assume that we know the two-point correlation function of noise.

Measurements stars yield mean values $\langle e_1 \rangle = (1.0 \pm 1.1) \times 10^{-5}$ and $R_\gamma = \langle 1.8 \pm 2.0 \rangle \times 10^{-5}$ (Figure 8). That the expectation value of both is consistent with zero (and much smaller than the mean response of simulated HST COSMOS galaxies, $R_\gamma \sim 0.18$), ensures that FPFS is robust to stellar contamination, so long as the PSF is well determined. Stellar contamination of $n\%$ will reduce the numerator and denominator of equation (41) by $n\%$, leaving the shear estimator unbiased. This is the same good property as \texttt{METACALIBRATION}, demonstrated in Figure 5 of Sheldon & Huff (2017).

5 SUMMARY AND OUTLOOK

In this paper, we improve the FPFS weak lensing shear estimator, by implementing corrections for two dominant biases. First, with an assumption that noise in an image is a homogeneous Gaussian random field, we correct for shear measurement noise bias to second order. Second, we derive analytic expressions to remove selection biases due to both anisotropic shape noise and anisotropic measurement error. Crucially, the analytic corrections that we implement in FPFS do not rely upon slow and computationally expensive iterative processes, or upon calibration via external simulations. Our publicly-available code (https://github.com/mr-superonion/FPFS) can process more than a thousand galaxy images per CPU second.

Using mock imaging of isolated SNR\geq10 galaxies with known shear, we demonstrate that we have improved the method’s accuracy by an order of magnitude. FPFS now meets the science requirements for a Stage IV weak lensing survey (e.g. Cropper et al. 2013; The LSST Dark Energy Science Collaboration et al. 2018).

Future work should revisit this paper’s assumption that galaxies are isolated. Li et al. (2018) and MacCrann et al. (2022) report that the blending of light between neighboring galaxies on the projected plane causes a few percent multiplicative bias for deep ground-based imaging surveys e.g. the HSC\footnote{Hyper Suprime-Cam: https://hsc.mtk.nao.ac.jp/ssp/} Survey (Aihara et al. 2018), DES\footnote{Dark Energy Survey: https://www.darkenergysurvey.org/} (DES; Dark Energy Survey Collaboration et al. 2016), and the future LSST. The bias from blending includes shear-dependent blending identification (Sheldon et al. 2020) and bias related to redshift-dependent shear distortion (MacCrann et al. 2022). \texttt{METADETECTOR} (Sheldon et al. 2020) is an improved version of \texttt{METACALIBRATION}, able to correct for bias due to shear dependent blending identification. Correction for biases related to blending in FPFS should be the next effect to be tackled. After that, we also intend to explore the use of shapelet modes of order > 2, which should contain independent information on the shear signal.

ACKNOWLEDGEMENTS

We thank Jun Zhang, Daniel Gruen for their helpful comments. XL thanks people in IPMU and UTokyo — Minxi He, Nobuhiko Katayama, Wentao Luo, Masamune Oguri, Masahiro Takada, Naoki Yoshida, Chenghan Zha — and people in the HSC collaboration — Robert Lupton, Rachel Mandelbaum, Hironao Miyatake, Surhud More — for valuable discussions. In addition, we thank the anonymous referee for feedback that improved the quality of the paper.

XL was supported by the Global Science Graduate Course (GSGC) program of the University of Tokyo and JSPS KAKENHI (JP19J22222). RM is supported by the UK Space Agency through grant ST/W002612/1. The Flatiron Institute is supported by the Simons Foundation.

DATA AVAILABILITY

The code used for image processing and galaxy image simulation in this paper is available from https://github.com/mr-superonion/FPFS.
REFERENCES

Aihara H., et al., 2018, PASJ, 70, S8
Bartelmann M., Schneider P., 2001, Physics Reports, 340, 291
Bernstein G. M., 2010, MNRAS, 406, 2793
Bernstein G. M., Armstrong R., 2014, MNRAS, 438, 1880
Bernstein G. M., Armstrong R., Krawiec C., March M. C., 2016, MNRAS, 459, 4467
Bosch J., et al., 2018, PASJ, 70, S5
Cropper M., et al., 2013, MNRAS, 431, 3103
Dark Energy Survey Collaboration et al., 2016, MNRAS, 460, 1270
Fenech Conti I., Herbonnet R., Hoeft H., Merten J., Miller L., Viola M., 2017, MNRAS, 467, 1627
Hirata C., Seljak U., 2003, MNRAS, 343, 459
Hoekstra H., 2021, A&A, 656, A135
Huff E., Mandelbaum R., 2017, preprint, (arXiv:1702.02606)
Ilbert O., et al., 2009, ApJ, 690, 1236
Ivezic Z., et al., 2019, ApJ, 873, 111
Kaiser N., 2000, The Astrophysical Journal, 537, 555
Kannawadi A., et al., 2019, A&A, 624, A92
Kilbinger M., 2015, Reports on Progress in Physics, 78, 086901
Laureijs R., et al., 2011, preprint, (arXiv:1110.3193)
Leauthaud A., et al., 2007, ApJS, 172, 219
Li H., Zhang J., 2021, ApJ, 911, 115
Li X., et al., 2021, preprint, (arXiv:2107.00136)
Massey R., et al., 2013, MNRAS, 429, 661
Massey R., Kitching T., Richard J., 2010, Reports on Progress in Physics, 73, 086901
Massey R., et al., 2013, MNRAS, 429, 661
Miller L., Kitching T. D., Heymans C., Heavens A. F., Van Waerbeke L., 2007, Monthly Notices of the Royal Astronomical Society, 382, 315
Moffat A. F. J., 1969, A&A, 3, 455
Pujol A., Kilbinger M., Sureau F., Bobin J., 2019, A&A, 621, A2
Refregier A., 2003, MNRAS, 338, 197
Refregier A., et al., 2007, MNRAS, 376, 13
Massey R., Kitching T., Richard J., 2010, Reports on Progress in Physics, 73, 086901
Massey R., et al., 2013, MNRAS, 429, 661
Miller L., Kitching T. D., Heymans C., Heavens A. F., Van Waerbeke L., 2007, Monthly Notices of the Royal Astronomical Society, 382, 315
Moffat A. F. J., 1969, A&A, 3, 455
Pujol A., Kilbinger M., Sureau F., Bobin J., 2019, A&A, 621, A2
Refregier A., 2003, MNRAS, 338, 35
Refregier A., Kacprzak T., Amara A., Bridle S., Rowe B., 2012, MNRAS, 425, 1951
Rowe B. T. P., et al., 2015, Astronomy and Computing, 10, 121
Sérsic J. L., 1963, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 6, 41
Sheldon E. S., Huff E. M., 2017, ApJ, 841, 24
Sheldon E. S., Becker M. R., MacCrann N., Jarvis M., 2020, ApJ, 902, 138
Spergel D., et al., 2015, preprint, (arXiv:1503.03757)
The LSST Dark Energy Science Collaboration et al., 2018, arXiv e-prints, p. arXiv:1809.01669
Zhang J., 2008, MNRAS, 383, 113
Zhang J., Luo W., Foucaud S., 2015, ICAP, 1, 24
Zhang J., Zhang P., Luo W., 2017, ApJ, 834, 8
de Vaucouleurs G., 1948, Annales d’Astrophysique, 11, 247

APPENDIX A: SECOND-ORDER REVISION FOR NONLINEAR NOISE BIAS

Here we present the expectation values of noisy, measurable quantities (indicated with a tilde), relative to those of the unobservable, noiseless quantities (without a tilde). We only keep to the second-order terms of noise residuals and neglect the higher-order terms.

First, we obtain the expectation for δ_0 and \hat{s}_1:

$$
\langle \delta_0 \rangle = \left(\frac{M_0 + C}{\langle V_{0000} \rangle} \right)^2
- \frac{V_{0000}}{\langle V_{0000} \rangle}.
$$

(A1)

Then we use the covariance matrix of the shapelet modes (equation (19)) to derive the expectation for $\hat{s}_{1,2}$, s_0, and $\hat{s}_{1,2}\delta_0$:

$$
\langle \hat{s}_{i,0} \rangle = \frac{\hat{e}_i}{\langle V_{0000} \rangle}
+ \left(\frac{V_{2222} - 4\hat{e}_i}{{\langle V_{0022} \rangle}} \right)
- \frac{V_{0022}}{\langle V_{0000} \rangle}.
$$

(A2)

These quantities are used to derive the variance of measurement error on FPFS ellipticity $\delta e_{1,2}$ defined in equation (25) and flux ratio δ_0 defined in equation (34) due to the photon noise on galaxy images where noise terms of fourth order and higher are neglected.
\(\delta s_0 \) is given by

\[
\langle \delta s_0 \delta e_1 \rangle = \left(\hat{\delta}_1 \hat{s}_0 - s_0 e_1 \right)
\]

\[
= \left\{ \hat{\delta}_1 \hat{s}_0 - \frac{V_{0000}}{(M_{00} + C)^2} + \frac{V_{0022}}{(M_{00} + C)^2} \right\}
\]

\[
- \left\{ \frac{V_{0000}}{(M_{00} + C)^2} + \hat{\delta}_1 - \frac{V_{0000}}{(M_{00} + C)^2} \right\},
\]

\[
\langle \delta s_0 \delta e_2 \rangle = \left(\hat{\delta}_2 \hat{s}_0 - s_0 e_2 \right)
\]

\[
= \left\{ \hat{\delta}_2 \hat{s}_0 - \frac{V_{0000}}{(M_{00} + C)^2} + \frac{V_{0022}}{(M_{00} + C)^2} \right\}
\]

\[
- \left\{ \frac{V_{0000}}{(M_{00} + C)^2} + \hat{\delta}_2 - \frac{V_{0000}}{(M_{00} + C)^2} \right\}.
\]

Finally we derive expectation for the noisy quantities related to the selection shear response:

\[
\langle (e_1)^2 \hat{s}_0 \rangle = \left\{ (e_1)^2 \hat{s}_0 \left(1 + \frac{6}{(M_{00} + C)^2} \right) \right\}
\]

\[
- 3 \left\{ (e_1)^2 \frac{V_{0000}}{(M_{00} + C)^2} + \hat{s}_0 - \frac{V_{0022}}{(M_{00} + C)^2} \right\}
\]

\[
+ 2e_1 (1 - 3s_0) - \frac{V_{0022}}{(M_{00} + C)^2} \right\}, \tag{A5}
\]

\[
\langle (e_2)^2 \hat{s}_0 \rangle = \left\{ (e_2)^2 \hat{s}_0 \left(1 + \frac{6}{(M_{00} + C)^2} \right) \right\}
\]

\[
- 3 \left\{ (e_2)^2 \frac{V_{0000}}{(M_{00} + C)^2} + \hat{s}_0 - \frac{V_{0022}}{(M_{00} + C)^2} \right\}
\]

\[
+ 2e_2 (1 - 3s_0) - \frac{V_{0022}}{(M_{00} + C)^2} \right\}.