Supplemental information

Pain recognition and pain empathy
from a human-centered AI perspective

Siqi Cao, Di Fu, Xu Yang, Stefan Wermter, Xun Liu, and Haiyan Wu
Supplementary Information

Pain Recognition and Pain Empathy from A Human-centered AI Perspective

Siqi Cao¹ ², Di Fu¹ ² ⁴, Xu Yang³, Stefan Wermter⁴, Xun Liu¹ ², Haiyan Wu⁵ ⁶*

¹CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
²Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
³State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
⁴Department of Informatics, University of Hamburg, Hamburg, Germany
⁵Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, Macau
⁶Lead Contact:
*Correspondence: haiyanwu@um.edu.mo, liux@psych.ac.cn
Database	Type	Modality	Subjects	Reference	Description
UNBC-McMaster Shoulder Pain Expression Archive	spontaneous	video	129 adults shoulder pain patients	Lucey et al.	All videos record the faces of participants with shoulder pain. Participants are instructed to perform a sequence of tests that require motions of limbs in two different scenarios.
STOIC database	acted	video	10 actors (age 20-45)	Roy et al.	All videos include basic emotions, painful and neutral expressions.
EmoPain	spontaneous	video, audio, sEMG	50 subjects (22 chronic low back pain patients and 28 healthy subjects with no history of chronic low back pain)	Aung et al.	A multimodal dataset that is completely marked.
Binghamton–Pittsburgh 4D Spontaneous Facial Expression Database (BP4D)	elicited	videos	41 healthy adults (age 18-29)	Zhang et al.	Social or non-social stimuli are used to elicit pain. All facial expressions are recorded during natural social contact.
Database	Method	Age Range	Participants	Description	
--	-------------------------	-----------------	--------------	---	
The "Multimodal Intensity Pain" database	elicited	video	20 healthy adults (age 22-42)	Painful expressions of participants are elicited by electrical pain stimulation. Each video frame is labeled with five pain levels.	
"Mintpain"					
The Biovid heat pain database (BioVid)	elicited	video, SCL, ECG, EMG, EEG	90 healthy adults (age 20-65)	The pain stimuli that participants received is customized. Total five levels of pain intensity are annotated.	
The Infant COPE Database	spontaneous elicited	image	26 neonates (age 18-36 hours)	Twenty-six neonates experience the pain of heel lancing as well as three non-pain stressors.	
The Infant COPE Database					
YouTube Dataset	elicited	video	142 infants (age 0-12 months)	Face, body, and sounds are recorded.	
The SenseEmotion Database	elicited	video, audio, SCL, ECG, EMG, RSP	45 healthy subjects	Pain is induced by heat stimulation. Five classes from no pain to pain.	
The SenseEmotion Database					
Dataset	Modality Elicited	Participants	Method	Reference	
---------------------------------------	------------------	--------------	--	-----------	
X-ITE Pain Database	video, ECG, SCL, EMG	134 healthy adults (age 18-50)	Specific pain thresholds (from low to intolerable pain) in the record are determined based on the previous calibration.	Gruss et al. 10	
Duesseldorf Acute Pain (DAP) Corpus	audio	80 subjects (age 18-70)	Pain is induced using a cold pressor test while participants perform different reading and free-form speech tasks.	Ren et al. 11	
The iCOPEvid dataset	video	49 neonates	A series of neonatal facial expressions videos are included.	Brahnam et al. 12	

Skin Conductance Level (SCL), Electrocardiogram (ECG), Electromyogram (EMG), surface Electromyographic study (sEMG), Respiration (RSP), and Electroencephalogram (EEG).
Title	Reference	Journal	Performance
Using AI to Detect Pain through Facial Expressions: A Review	De Sario et al. 13	Bioengineering	Pain detection: 80.9% to 89.59%; Pain intensity estimation: 51.7% to 96%; Distinguishing real and faked pain: 85% to 88%
Artificial intelligence to evaluate postoperative pain based on facial expression recognition	Fontaine et al. 14	European Journal of Pain	Predicting pain intensity: 53% with a mean error of 2.4 points; Sensitivity to detect pain ≥4/10: 89.7%; Sensitivity to detect pain ≥7/10: 77.5%
Incorporation of 'Artificial Intelligence' for Objective Pain Assessment: A Comprehensive Review	El-Tallawy et al. 15	Pain and Therapy	Sensitivity in pain detection (Fontaine et al.): 89.7%; Sensitivity for severe pain detection (Fontaine et al.): 77.5%; Accuracy for pain intensity estimation (Fontaine et al.): 53%; Accuracy for shoulder pain estimation (Bargshady et al.): 89% to 94%; Accuracy for self-induced shoulder pain estimation (Barua et al.): 95.57%
Pain Assessment based on fNIRS using Bi-LSTM RNNs	Rojas et al. 16	IEEE	Bi-LSTM model achieved the highest accuracy: 90.6%
Identification of potentially painful disc fissures in magnetic resonance images using machine-learning modeling	Kerstin et al. 17	European Spine Journal	Mean accuracy for pain classification: 69%; Precision: 71%
The Analysis of Pain Research through the Lens of Artificial Intelligence and Machine Learning	Nagireddi et al. 18	Pain Physician	No specific accuracy or AUC mentioned; summary of various studies.
References

1. Lucey P, Cohn JF, Prkachin KM, et al. Painful data: The UNBC-McMaster shoulder pain expression archive database. *Face and Gesture 2011*. IEEE; 2011:57-64.

2. Roy S, Roy C, Éthier-Majcher C, et al. STOIC: A database of dynamic and static faces expressing highly recognizable emotions. *J Vis*. 2007;7:944.

3. Aung MS, Kaltwang S, Romera-Paredes B, et al. The automatic detection of chronic pain-related expression: requirements, challenges and the multimodal EmoPain dataset. *IEEE transactions on affective computing*. 2015;7:435-451.

4. Zhang X, Yin L, Cohn JF, et al. Bp4d-spontaneous: a high-resolution spontaneous 3d dynamic facial expression database. *Image and Vision Computing*. 2014;32:692-706.

5. Haque MA, Bautista RB, Noroozi F, et al. Deep multimodal pain recognition: a database and comparison of spatio-temporal visual modalities. *2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)*. IEEE; 2018:250-257.

6. Walter S, Gruss S, Ehleiter H, et al. The biovid heat pain database data for the advancement and systematic validation of an automated pain recognition system. *2013 IEEE international conference on cybernetics (CYBCO)*. IEEE; 2013:128-131.

7. Brahnam S, Chuang CF, Shih FY, et al. Machine recognition and representation of neonatal facial displays of acute pain. *Artificial Intelligence in Medicine*. 2006;36:211-222.

8. Harrison D, Sampson M, Reszel J, et al. Too many crying babies: a systematic review of pain management practices during immunizations on YouTube. *BMC Pediatrics*. 2014;14:134.

9. Velana M, Gruss S, Layher G, et al. The SenseEmotion Database: A Multimodal Database for the Development and Systematic Validation of an Automatic Pain- and Emotion-Recognition System. In: *Lecture Notes in Computer Science*. Springer International Publishing; 2017:127-139.

10. Gruss S, Geiger M, Werner P, et al. Multi-Modal Signals for Analyzing Pain Responses to Thermal and Electrical Stimuli. *Journal of visualized experiments: JoVE*. 2019;146.

11. Ren Z, Cummins N, Han J, et al. Evaluation of the Pain Level from Speech: Introducing a Novel Pain Database and Benchmarks. *Speech Communication; 13th ITG-Symposium*. 2018:1-5.

12. Brahnam S, Nanni L, McMurtrey S, et al. Neonatal pain detection in videos using the iCOPEvid dataset and an ensemble of descriptors extracted from Gaussian of Local Descriptors. *Applied Computing and Informatics*. 2020.

13. De Sario GD, Haider CR, Maita KC, et al. Using AI to detect pain through facial expressions: a review. *Bioengineering*. 2023;10:548.

14. Fontaine D, Vielzeuf V, Genestier P, et al. Artificial intelligence to evaluate postoperative pain based on facial expression recognition. *European Journal of Pain*. 2022;26:1282-1291.
15. El-Tallawy SN, Pergolizzi JV, Vasiliu-Feltes I, et al. Incorporation of “Artificial Intelligence” for Objective Pain Assessment: A Comprehensive Review. *Pain and Therapy*. 2024:1-25.

16. Rojas RF, Romero J, Lopez-Aparicio J, et al. Pain assessment based on fnirs using bi-lstm rnns. *2021 10th International IEEE/EMBS Conference on Neural Engineering (NER)*. IEEE; 2021:399-402.

17. Kerstin L, Hanna H, Helerna B. Identification of potentially painful disc fissures in magnetic resonance images using machine-learning modelling. *European Spine Journal*. 2021:1-8.

18. Nagireddi JN, Vyas AK, Sanapati MR, et al. The analysis of pain research through the lens of artificial intelligence and machine learning. *Pain Physician*. 2022;25:E211.