Development of an edutainment shaft garden for integrated waste management in the UGM green campus

Pita Asih Bekti Cahyanti¹, Kurnia Widiastuti¹, Cahyono Agus²³*, Pipit Noviyani³, Kemas Ridwan Kurniawan⁴

1 Department of Architecture and Planning, Faculty of Engineering UGM Yogyakarta 55281 Indonesia
2 Faculty of Forestry UGM Yogyakarta 55281 Indonesia
3 Centre of Agro-technology Innovation UGM Yogyakarta 55285 Indonesia
4 Department of Architecture Universitas Indonesia Jakarta Indonesia
Email: cahyonoagus@gadjahmada.edu, pita.asih.b@mail.ugm.ac.id

Abstract. Biomass productivity and organic cycles in tropical regions are the highest in the world because of increased temperature, rainfall, humidity, and sunlight year-round. Organic waste not only comes from the agricultural sector (agriculture, horticulture, plantation, forest, livestock, and fisheries), but also from non-agricultural entities (cities, market, offices, households, campuses, industries, and other sectors). Organic waste volume from the integrated campus UGM yard reached 30 tons/day, requiring the support of adequate self-managed waste management facilities. Various experimental approaches were used in designing the Waste Management Centre at UGM as part of an edutainment (education and recreation) program. The problems at the Waste Management Centre included (1) an integrated system of recreational functions in biogas and compost processing; (2) high operational costs; and (3) space efficiency for productivity and processing. Development of a ‘Shaft Garden’ was chosen a solution for (1) creating visual attraction and space experiences from biogas and compost management; (2) utilizing gravitational force as a utility distribution system; and (3) creating a sequence of spaces according to the function. Integrated organic-cycle management by empowering the 9R (Reuse, Reduce, Recycle, Refill, Replace, Repair, Replant, Rebuild, Reward) framework with a multi-function and multi-product approach has provided higher value-addition to environmental, economic, socio-cultural, and health aspects.

1. Introduction
In Indonesia, natural resources are considered ancestral heritage, and resource development is carried out primarily by relying on natural resource manipulation [1,2,3]. Therefore, a new paradigm to empower land resources (soil, water, mineral), biological resources (plants, animals, human), and environmental resources [4,5] is required. Knowledge-based development should be supported through innovative science and technology, labours, and invention, in addition to smart, innovative, broad, profound, and futuristic concepts of sustainable development [1,6,7].

Environmental protection and waste management are two complementary ideas to understand the nature of action and its consequences [5,8]. Municipal Solid Waste (MSW) is a complex environmental problem source and also a potential source of renewable energy [9]. Indonesia, with a
population of approximately 242 million, consists of 34 provinces, 17,500 islands, and a total area of 1,890,000 km², and is vulnerable to environmental impacts. The average municipal solid waste production increased from 0.8 to 2.1 kg per capita during the last decade with almost 550 solid landfills [9]. The increase in the amount of municipal waste could be overcome by optimizing the 3Rs (Reduce, Reuse, and Recycle) and with WTE (Waste to Energy) programs simultaneously [10].

Currently used waste management practices are inadequate to handle the waste produced. Today’s global economic crisis also demands a solution that does not only address the business sustainability, but also the political, environmental, social, and cultural sustainability [11]. Multi-stakeholder participation, support from top management, and industry collaborations are key factors encouraging the development of sustainable waste management models in the campus [12].

Sustainable Blue Earth Concept offers creative opportunity and novel innovation through the acceleration of natural cycle processes of available natural resources. Even the abandoned resources have added value to the economy, environment, socio-cultural, technological, and sustainability management [1,6]. Blue economy offers investment efficiency, increased innovation, increased funds, more jobs, social capital development, and entrepreneurial stimulation. It is realized by using garbage and abandoned goods and converting them into food, energy, and work. Thus, it transforms poverty into sustainable development, and transforms scarcity into availability [1,5].

In order to support the concept of organic waste management within the learning system of Blue Campus Universitas Gadjah Mada (UGM) Yogyakarta, designing an innovative edutainment for organic waste management in UGM Green Campus is of paramount importance. This study is expected to be a conceptual foundation for planning and designing an integrated innovation framework of both agricultural and non-agricultural sectors in the Green Campus waste management, encompassing the functions of education, research, social empowerment, leadership, and recreation.

2. Materials and methods

![Fig. 1. Diagram of Problem Formulation Integrated Waste Management](image)

The present study was carried out using primary and secondary research data. Primary data were collected from observations and field interviews. Secondary data were obtained from reports, books, journals, and the internet, and included theories, precedents, and standards used in the field (Fig. 1). Qualitative and quantitative analyses of the collected site data are ongoing to identify solutions for similar problems. The experimental plan may cover the physical experimental design and systematic
experimentation. The experimental plan involves process planning, budgeting, potential marketing, and implementation.

3. Results and discussions

3.1. Development of university farm

UGM Yogyakarta with the support of The Rockefeller Foundation in 1975 has built a 35 ha University Farm (Figure 2a) for agricultural education, research, and development [5]. Agus [1,5] developed the integrated bio-cycle farming system (IBFS) through an in-depth study by considering the following aspects: integrated plant, nutrient, pest, and water management [1,5]. An integrated organic cycle management facilitates the independent and qualified closed cycle system. Integrated landscape ecology management and the agropolitan concept are strategies for self-reliance and common participation, and they do not lead to competition or conflicts among individual sectors, and instead synergize them [1,5].

Both, the integrated cycle management and nature, tend to prioritize aspects related to the environment—aesthetics, society, culture, and economic values—so that they are in harmony and balance. Cultivation of life gold on Earth is designed to produce multiple products from a single unit of land in the form of life gold that is not assessed and neglected, including brown gold (wooden boards), yellow gold (rice grains, and corn as carbohydrate sources), and black gold (organic fertilizer and compost). Besides producing blue gold (biomass energy and biogas) and green gold (green vegetables, feed, and environment), it also produces white gold (milk, and fish), red gold (beef, chicken, pork, and duck meat), and clear gold (living water). Moreover, transparent gold (oxygen) and colour gold in the form of herbal medicines are very important for human health and for leading a dignified life [1,5,6].

Integrated waste management for the independent campus has been strengthened by constructing the Waste Recycling Laboratory in the University Farm at UGM as an integrated and sustainable waste management model to support zero waste in the UGM Blue Campus [1]. UGM performs separation,
sorting, composting of organic waste, and in situ/ex situ waste management using the 9R program (Reuse, Reduce, Recycle, Refill, Replace, Repair, Replant, Rebuild, Reward) through the development of decomposers, vermicompost, bio-gas, liquid fertilizers from livestock urine, and liquid fertilizer leachate, in addition to processing waste for energy, processing plastic waste for accessories, carbon emission, waste characterization, and composite waste management [1,13]. However, UGM waste management has still not been effective and efficient, as evidenced by the large amount of garbage dispatched to the final landfill site in Piyungan [13]. An effort to redesign the University Farm is required to enhance its role in Tri-darma (the three pillars of mandatory tasks) of Higher Education, which consists of education, research, and community service.

The plan to develop the spatial pattern of UGM University Farm can be divided into 15 zones as follows: (i) Archipelago Orchid Innovation zone (IAN), (ii) Archipelago Fruit Innovation (IBN), (iii) Energy Garden Innovation (IKE), (iv) Farming Organic Innovation (IOF) (v) Animal Feed Innovation (IPT), (vi) Critical Land Recovery Innovation (IPLK), (vii) Food Agricultural Innovation (IPP), (viii) Recycle Innovation (IRC) Waste Recycling Laboratory (LDUS), (ix) Exotic Animal Innovation (ISE), (x) Water Resource Management Innovation (IWRM), (xi) Post Harvest Laboratory (LPP), (xii) Teaching Research Farm (TRF), (xiii) Edupark-outbound, (xiv) Conservation Plant Development, and (xv) Green Belts located on the banks of Opak River (Fig. 2).

3.2. Case study

3.2.1. Sydhavns Recycling Centre Copenhagen, Denmark
The 1500 m² waste and recycling management centre has been designed with utilitarian facilities that are located far from the industrial city area. These facilities are designed by Bjarke Ingels Group by developing the concept of ‘Attractive and Lively Urban Space’ in an urban environment [14]. The activity zone in this design consists of a recycling centre existing under the fitness facility, a running track, and a picnic area. The shape of the building takes the form of a circle, which is space-efficient, as the curved area could be used for circulation and parking.

3.2.2. Pig City di Maasvlakte, Rotterdam, Holland
Pig City’s design focuses on combining organic farming and production activities, so that there will be enough space for other activities [15]. The unified production house design may minimize transportation and distribution needs, in order to reduce operational costs and the spread of disease. The building is vertical with a smaller footprint, and the design of the animal farm is not always horizontal and conventional.

3.2.3. Super market Sanya Lake Park di Sanya, Hainan, China
The design of the 2000 m² building includes the main attraction of the landscape—a large park as the corridor in each floor. The supermarket facade is closer with smaller shops that are more lively and conveniently located underground [16]. The landscape area is the main attraction to visitors and is arranged in tiers. The building has a bulge in the garden levelling located on the roof top with a special provision for a prospective super-market as visitors pass through the area.

3.2.4. De Wilde Plek di Delft, Germany
De Wilde Plek is a kindergarten designed for children in the ground floor [17]. The concept of ‘Flying Carpet’ is used to give an interesting touch, and this is the most attractive area beneath the curved field. The building is shaped in the form of a curved field in an abstract manner and supported by columns with irregular locations and directions, and it meets the existing structural guidelines.
3.3. Redesign of integrated waste management Park of UGM

Table 1 Key characteristics of various types of integrated park

Precedent	Function	Concept	Zonation and Mass Management	Circulation	Morphology	Building Uniqueness	Reference
Sydhavns Recycling Centre	Waste Management	Attractive and Lively Urban Space	Based on Activities	Linear	Simple Form of Circle	Building as part of Landscape	[14]
PIG City	Pig Farm	Experimental Farming	Based on Needs	Grid	Vertical Orientation	Building as system	[15]
Super Market Sanya Lake Park	Super Market + Communal Space	Blind Super Market	Based on Functions	Mix	Terracing Form	Building as artificial landscape	[16]
De Wilde Plek	Kindergarten	Flying Carpet	Based on Functions	Mix	Form	Building components as attraction	[17]
PIAT UGM	Integrated waste management	Shaft Garden	Mix	Shaft Form	Multifunction, edutainment, This paper		

The design concept of the Waste Management Park is as follows: (1) the need to make a sequence of spaces according to the level of activity, (2) the best shape to blend with the surrounding environment but still be interesting (different), and (3) consideration of exterior design to spark interests. A Waste Management Park integrated with livestock and agriculture must be used as a recreational education place (Table 1). For this reason, the concept proposed is a ‘Shaft Garden’; an experiment on the waste management area using the shaft that becomes the point of view of a building (Fig. 3). Shaft is a continuous channel connecting all the floors so that a utility pipeline can be installed. Shafts can be found in multi-storey buildings, either in houses or buildings. The garden refers to an area containing the components of hard and soft materials that support each other and are intentionally constructed by humans for relaxation.

Fig. 3 Layout and design of Integrated Waste Management Park UGM
The concept of ‘Shaft Garden’ makes the shaft a pleasant attraction for the visitors of the Waste Management Park by promoting the ‘Learning based on Experiences’ learning system. The concept transformation is practiced by creating visual attractions and spatial experiences from the management of bio-gas and compost [18] through (i) Ecorium that utilizes the shafts as shaft rotations, (ii) educational spaces that feature the shafts as a learning media, (iii) utilizing gravity as a utility distribution system, and (iv) creating a sequence of spaces according to function (Fig. 3). Integrated bio-cycle management and education for sustainable development (ESD) could stimulate sustainable economic, environment and socio-cultural aspect for sustainable environment and life [20,21].

4. Conclusions
The integrated organic waste management in the integrated bio-cycle system concept is carried out by developing a ‘Shaft Garden’ that combines the organic waste management from the agricultural and non-agricultural sectors. This concept is based on nature, natural norms, green, gravity, natural light, sun, mass flow, water flow, functional, diversified, multi-sector, multi-product, multi-functional, multi-use, edutainment, efficient, effective, attractive, economical, environmentally friendly, socio-cultural, energy cycle, organic, and low energy.

5. References
[1] Agus C 2018 Development of Blue Revolution Through Integrated Bio-cycles System on Tropical Natural Resources Management. In: Filho WL, Pociovalisteanau D, Borges de Brito P, Borges de Lima I. (eds). World Sustainability Series: Towards a Sustainable Bioeconomy: Principles, Challenges and Perspectives. Springer, Cham. pp 155-172.
[2] Agus C, Wulandari D, Primananda E, Hendryan A, Harianja V 2017 The Role of Soil Amendment on Tropical Post Tin Mining Area in Bangka Island Indonesia for Dignified and Sustainable Environment and Life. IOP Conf. Ser.: Earth Environ. Sci. 83 012030
[3] Agus C, Putra PB, Faridah E, Wulandari D, Napitupulu RNP 2016 Organic Carbon Stock and Their Dynamics in Rehabilitation Ecosystem Areas of Post Open Coal Mining at Tropical Region Procedia Engineering 159: 329–337.
[4] Agus C, Karyanto O, Kita S, Haibara K., Toda H, Hardiwinoto S, Supriyo H, Na’iem M, Wardana W, Sipayung M, Khomsatun and Wijoyo S 2004 Sustainable site productivity and nutrient management in a short rotation Gmelina arborea plantation in East Kalimantan, Indonesia. New Forest J. 28: 277-285
[5] Agus C 2013 Management of Tropical Bio-geo-resources through Integrated Bio-Cycle Farming System for Healthy Food and Renewable Energy Sovereignty: Sustainable Food, Feed, Fibre, Fertilizer, Energy, Pharmacy for marginalized communities in Indonesia. Proceeding of 2013 IEEE Global Humanitarian Technology Conference (GHTC). www.ieeeghtc.org. San Jose, California USA October 20 - 23, 2013
[6] Cahyanti PAB and Agus C 2017 Development of Landscape Architecture through Geo-Eco-tourism in Tropical Karst Area to Avoid Extractive Cement Industry for Dignified and Sustainable Environment and Life. IOP Conf. Ser.: Earth Environ. Sci. 83 012028
[7] Cahyanti PAB, Hatmoko AU, Rizak A, Agus C and KR Kurniawan 2018 Development of Betawi Local Unique Architecture for Tropical Sub-urban Business Centre in Greater Jakarta. IJSCER 8(1): 54-58.
[8] Popescu D, Bungau C, Prada M, Domuta C, Bungau S, Tit DM 2016 Waste management strategy at a public university in smart city context. Journal of environmental protection and ecology. 17. 1011-1020.
[9] Dian A, Budi P 2015 A Glance at the World: Current Status of Waste Management in Indonesia. https://www.researchgate.net/publication/292986690_A_Glance_at_the_World_Current_Status_of_Waste_Management_in_Indonesia
[10] Farizal, Aji R, Rachman A, Nasruddin and Mahlia TMI 2017 Indonesia’s Municipal Solid Waste 3R and Waste to Energy Programs. Makara J. Technol. 21/3 (2017), 153-159. doi: 10.7454/mst.v21i3.3536

[11] Gören S & Akkuçük U 2014 Sustainable Waste Management. 10.4018/978-1-4666-6635-1.ch009.

[12] Sumiani Y. Toward integrated and sustainable waste management system in University of Malaya: UM zero waste campaign. IWGM 2018. E3S Web of Conferences 48, 04007 (2018)https://doi.org/10.1051/e3sconf/20184804007

[13] Setyowati M, Kusumawanto A and Prasetya A 2018 Study of waste management towards sustainable green campus in Universitas Gadjah Mada. J. Phys.: Conf. Ser. 1022, 012041

[14] COWI. 2019. Sydhavn Recycling Centre, Denmark. A Major leap towards Circular Economy. https://www.cowi.com/solutions/environment/recycling-centre-arc-denmark. Access 30 April 2019

[15] Ludwig. 2010. Pig City: A Nice view for Pork. https://futureprospects.wordpress.com/2010/05/25/pig-city-a-nice-view-for-pork/ Access 30 April 2019

[16] Sian. 2013. Stepped pavilion in Sanya Lake Park tops underground supermarket by NL Architects https://www.worldarchitecturenews.com/article/1512815/market-market. Access 30 April 2019

[17] nlarchitects. 1999. Wilde Plek. http://www.nlarchitects.nl/slideshow/146?slide=1 Access 30 April 2019

[18] Agus C, Hendryan A, Harianja V, Faridah E, Atmanto WD, Cahyanti PA, Wulandari D, Pertiwiningrum A, Suhartanto B, Bantarara I, Hutahaean BP, Suparto B, Lestari T. 2019. Role of organic soil amendment of paramagnetic humus and compost for rehabilitation of post tinmined tropical land. International Journal of Smart Grid and Clean Energy (IJSGCE) 8 (5): 556-561.

[19] Agus, C. E. Primananda, E. Faridah, D. Wulandari, T Lestari. 2019. Role of Arbuscular Mycorrhizal Fungi and Pongamia Pinnata for Revegetation of Tropical Open-Pit Coal Mining Soils. International Journal of Environmental Science and Technology (IJEST) 16:3365–3374 DOI: 10.1007/s13762-018-1983-5

[20] Agus C., Cahyanti P.A.B., Widodo B., Yulia Y., Rochmiyati S. (2019) Cultural-Based Education of Tamansiswa as a Locomotive of Indonesian Education System. In: Leal Filho W. et al. (eds) Universities as Living Labs for Sustainable Development. World Sustainability Series. Springer, Cham. https://www.springer.com/gp/book/9783030156039

[21] Agus, C., F. F. Azmi, Z. R. Illana, Widyatno, D. Wulandari, M. K. Harun and T. W. Yuwati. 2018. The impact of Forest Fire on Their Biodiversity and Soil Characteristic on Tropical Peatland. In Walter Leal Filho (editor): Climate Change Management Book series: "Handbook of Climate Change and Biodiversity". Springer. Zug Switzerland, pp 287-303. DOI: 10.1007/978-3-319-98681-4_18

Acknowledgments
The authors are grateful for the financial support provided by The Ministry of Research, Technology and Higher Education RI, Centre of Agro-technology Innovation (PIAT UGM) and Universitas Gadjah Mada Yogyakarta Indonesia. We gratefully acknowledge the publication funding from USAID through the SHERA program- Centre for Development of Sustainable Region (CDSR).