DEBoost: A Python Library for Weighted Distance Ensembling in Machine Learning

Wei Hao Khoong
Department of Statistics and Applied Probability
National University of Singapore
Blk S16, Level 7, 6 Science Drive 2, Singapore 117546

Abstract

In this paper, we introduce deboost, a Python library devoted to weighted distance ensembling of predictions for regression and classification tasks. Its backbone resides on the scikit-learn library for default models and data preprocessing functions. It offers flexible choices of models for the ensemble as long as they contain the predict method, like the models available from scikit-learn. deboost is released under the MIT open-source license and can be downloaded from the Python Package Index (PyPI) at https://pypi.org/project/deboost. The source scripts are also available on a GitHub repository at https://github.com/weihao94/DEBoost.

Keywords: ensemble learning, machine learning, Python, spatial distance, statistical distance, weighted ensemble

1. Introduction

Ensemble learning usually refers to methods that involve the combination of several models to perform a prediction, either in classification or regression problems. In many cases, ensembles perform better than a single model. They also reduce the likelihood of the selection of a model with poor performance [Dietterich (2000)]. In recent years, most of the research on ensemble learning was done on classification problems which unfortunately are not entirely applicable to regression problems [Mendes-Moreira et al. (2012)].

Some commonly used ensemble algorithms are bagging (bootstrap aggregating), boosting (an ensemble of models by resampling the data, which are then combined by majority voting) and stacking (a combination of models via a meta-classifier or meta-regressor). There have been recent research done on ensemble of model predictions via spatial and statistical techniques such as Bayesian model averaging, geostatistical output perturbation and spatial Bayesian model averaging (a combination of the two) [Berrocal et al. (2007)]. Distance weighting measures on predictions were also researched upon, for example the usage of inverse distance weighting to improve predictions in one-dimensional time series analysis with singular spectrum analysis [Awichi and Müller (2013)]. In our deboost Python library, we utilize existing distance metrics to obtain weighted ensembles of model predictions, for the classification and regression tasks. The library also utilizes well-known regression and classification models as default models. Users are able to make their own configuration to the set of default models used in the ensemble.
In the subsequent sections, we first introduce the distance metrics available in the initial release of the library, describe the computations of the weighted ensemble, introduce the library and finally present experimental results on some publicly available datasets.

2. Distance Metrics

In the version of the library’s initial release, the available distance metrics for computation of the ensembles of predictions in regression, and prediction class probabilities in classification are: Bray-Curtis, Canberra, Chebyshev, City Block (Manhattan), correlation, Cosine, Euclidean, Hamming and Jaccard-Needham dissimilarity. Other non-distance metrics made available are the mean, median and Bhattacharyya distance. We now formally define each of the available spatial and statistical distance metrics.

Suppose for a regression context, that we have m regression models $m_1, \ldots, m_m \in M$, where the models’ predictions are $n \times 1$ matrices Y_1, \ldots, Y_m respectively. Here, the kth observation of Y_i is denoted as Y_{ik}, where $k \in \{1, \ldots, n\}$. Define $d(Y_i, Y_j)$ as the number of elements in Y_i and Y_j that differ at the same index. Also define $A_{11}, A_{01}, A_{10}, A_{00}$ respectively as the total number of attributes where Y_i and Y_j both contain the value 1, the attribute of Y_i is 0 and the attribute of Y_j is 1, the attribute of Y_i is 1 and the attribute of Y_j is 0, and where Y_i and Y_j both have a value of 0. Then between any Y_i and Y_j for $i \neq j$, the Bray-Curtis distance, Canberra distance, Chebyshev distance, City Block (Manhattan) distance, correlation distance, Cosine distance, Euclidean distance, Hamming distance and Jaccard-Needham dissimilarity are respectively:

$$d_{BC} = \frac{\sum_{k=1}^{n} |Y_{ik} - Y_{jk}|}{\sum_{k=1}^{n} |Y_{ik} + Y_{jk}|},$$

$$d_{CB} = \frac{\sum_{k=1}^{n} |Y_{ik} - Y_{jk}|}{|Y_{ik}| + |Y_{jk}|},$$

$$d_{CH} = \max_{k} |Y_{ik} - Y_{jk}|,$$

$$d_{MAN} = \sum_{k=1}^{n} |Y_{ik} - Y_{jk}|,$$

$$d_{CORR} = 1 - \frac{\langle Y_i - \sum_{k=1}^{n} Y_{ik}/n, Y_j - \sum_{k=1}^{n} Y_{jk}/n \rangle}{\|Y_i - \sum_{k=1}^{n} Y_{ik}/n\|_2 \|Y_j - \sum_{k=1}^{n} Y_{jk}/n\|_2},$$

$$d_{COS} = 1 - \frac{\langle Y_i, Y_j \rangle}{\|Y_i\|_2 \|Y_j\|_2},$$

$$d_{EU} = \|Y_i - Y_j\|_2,$$

$$d_{HAM} = \frac{\delta(Y_i, Y_j)}{n},$$
Next, we have the Bhattacharyya distance between Y_i and Y_j defined as:

$$d_{BHC} = -\ln \sum_{k=1}^{2n} \sqrt{p(Y_k)q(Y_k)}$$

where $2n$ is the total number of observations in Y_i and Y_k combined, and $p(\cdot), q(\cdot)$ are the histogram probabilities of the distribution of Y_i and Y_j respectively, and $p(Y_k), q(Y_k)$ are the histogram probabilities of the kth observation in the sequence of values in ascending order formed by concatenating the prediction arrays of Y_i and Y_j, which we denote as \mathcal{Y}. Finally, we have the mean and median of the predictions to be defined respectively as:

$$\overline{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i,$$

$$\hat{Y} = (m(Y_{11}, \ldots, Y_{1m}), \ldots, m(Y_{mn}, \ldots, Y_{mn})), $$

where $m(\cdot)$ is a function that finds the median of the values.

Note that for the task of classification, the outputs of the predictions are the class probabilities. The spatial and statistical distance metrics introduced above are applied in a similar fashion for the classification task, but to each class across the models.

3. Weighted Ensemble

In this section, we describe the process of obtaining weighted ensembles using the distances computed in the metrics introduced in the previous section. There are two types of weighted ensembles in the initial release of the library, namely an assignment of higher weights to model predictions with smaller sum of distances to other models’ predictions, and conversely an assignment of smaller weights. The mean and median are excluded from weighted ensembling as they are not computed via distance similarity methods.

For each model i’s prediction Y_i, without loss of generality, suppose that a distance metric $d(\cdot)$ is used to compute the (spatial or statistical) distance between Y_i and Y_j (model j’s prediction) for all $j = 1, \ldots, m$. Denote the distance computed as d_{ij}. For each model $i, i = 1, \ldots, m$, obtain the sum of distances of its predictions D_i to all other models $j = 1, \ldots, i - 1, i + 1, \ldots, m$. This sum can be computed by

$$D_i = \sum_{j=1, i \neq j}^{m} d_{ij}$$

At this junction, there are two methods at which the weights can be assigned. The first method involves assigning a higher weight to model predictions with smaller D_i. The weight of model i’s prediction Y_i is given by

$$w_i = \frac{\sum_{i=1}^{m} D_i - D_i}{\sum_{i=1}^{m} D_i} = 1 - \frac{D_i}{\sum_{i=1}^{m} D_i}$$

$$d_{JAC} = \frac{A_{01} + A_{10}}{A_{01} + A_{10} + A_{11}}. \quad (9)$$
and the ensembled prediction (for the regression case) is
\[\hat{Y}_{\text{pred}} = w_1 Y_1 + \cdots + w_m Y_m. \]
(15)

On the other hand, the second method involves an assignment of lower weights to model predictions with smaller \(D_i \). The weight of model \(i \)'s prediction \(Y_i \) for this method is thus
\[\tilde{w}_i = \frac{D_i}{\sum_{i=1}^m D_i} \]
(16)

and the ensembled prediction (for the regression case) is
\[\hat{Y}_{\text{pred}} = \tilde{w}_1 Y_1 + \cdots + \tilde{w}_m Y_m. \]
(17)

The way at which the weighted distance ensemble is being carried out for the classification task is similar, where instead of the distances \(D_i \) we have \(D_{ic} \) for each class \(1, \ldots, C \), i.e. the distances of model \(i \)'s class \(c \) prediction probabilities to all the other models’ class \(c \) prediction probabilities.

4. The deboost Library

The library utilizes SciPy [Virtanen et al. (2020)] in computing the spatial distances and Scikit-learn [Pedregosa et al. (2011)] for its models and evaluation metrics. The code for computing Bhattacharyya distance was taken from Eric P. Williamson’s GitHub repository at https://github.com/EricPWilliamson/bhattacharyya-distance In the initial release of the library, only the continuous distribution method for computing Bhattacharyya distance was made available.

The models available as defaults in the program for regression are Ridge, Lasso, Elastic net, AdaBoost Regressor, Gradient Boosting Regressor, Random Forest Regressor, Support Vector Machine Regressor, LightGBM Regressor and XGBoost Regressor. For the classification task, the models are AdaBoost Classifier, Gradient Boosting Classifier, Gaussian Naive Bayes, K-Nearest Neighbors Classifier, Logistic Regression, Random Forest Classifier, Support Vector Machine Classifier, Decision Tree Classifier, LightGBM Classifier and XGBoost Classifier. These are also the models that had their ensembles evaluated in our experiments with a select few datasets.

5. Experimental Results

In our experiments, the datasets used for regression are the Boston housing prices dataset from Scikit-learn and the red/white wine quality datasets from the University of California, Irvine (UCI) Machine Learning Repository [Pedregosa et al. (2011), Cortez et al. (2009)]. The datasets used for classification are the aggregated Titanic dataset from Kaggle\(^1\), breast cancer\(^2\) and heart disease\(^3\) datasets from UCI’s Machine Learning repository [Dua and

\(^1\) Obtained from https://www.kaggle.com/heptapod/titanic
\(^2\) Obtained from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
\(^3\) Originally from UCI, obtained from https://www.kaggle.com/ronitf/heart-disease-uci
Graff (2017)]. As the objective of the experiments were to illustrate the performance gains in using the distance metrics in the library for ensembling model predictions, the default hyperparameters of each model was used.

The results obtained in our experiments can be found in the Appendix, in Tables 1 & 2 for regression and classification respectively. The Mode column indicates which method of assigning weights to a model’s prediction was used. If a value ‘SDHW’ is present, it means that a test involving an assignment of higher weights to predictions with smaller distances was carried out. The error metric used for regression is mean-squared error (MSE) and classification accuracy (accuracy_score in Scikit-learn) for the classification task. For experiments excluding the mean and median as metrics, it can be observed that most test cases with ‘SDHW’ in the regression task have lower MSE than those without ‘SDHW’. The results are similar as well for the classification task, though the difference seems much smaller or in many classes negligible.

6. Future Work

The available distance metrics in the library in its initial release are by no means the only ones that can be used in the weighted ensemble. Over time, we will continuously update the library to contain more distance metrics and possibly include additional features that will be beneficial to its users.

Acknowledgments

We would like to thank UCI and Kaggle for their datasets, and the developers of Python for continuously maintaining and implementing new features in the language.
Appendix A.

Data Type	Dataset	Metric	Mode	MSE
		mean		10.6318
		median		8.7526
	Boston Housing Prices	Euclidean	SDHW	10.3659
				14.9022
		Cosine	SDHW	13.0532
		Jaccard	SDHW	10.6403
		Chebyshev	SDHW	9.6182
		Correlation	SDHW	11.6714
		Cityblock	SDHW	14.5186
		Canberra	SDHW	10.1117
		Braycurtis	SDHW	11.916
		Hamming	SDHW	11.9022
		Battacharyya	SDHW	9.6501
	red wine	mean		0.3381
		median		0.3502
		Euclidean	SDHW	0.3369
				0.3695
		Cosine	SDHW	0.3415
		Jaccard	SDHW	0.3448
		Chebyshev	SDHW	0.3489
		Correlation	SDHW	0.3469
		Cityblock	SDHW	0.3575
		Canberra	SDHW	0.3504
		Braycurtis	SDHW	0.3522
		Hamming	SDHW	0.3509
		Battacharyya	SDHW	0.3523
	white wine	mean		0.3502
		median		0.3418
		Euclidean	SDHW	0.3439
				0.3522
		Cosine	SDHW	0.3408
		Jaccard	SDHW	0.3518
		Chebyshev	SDHW	0.3517
		Correlation	SDHW	0.3356
		Cityblock	SDHW	0.3447
		Canberra	SDHW	0.3534
		Braycurtis	SDHW	0.3511
		Hamming	SDHW	0.3536
		Battacharyya	SDHW	0.3576

Table 1: Results for regression
Data Type	Dataset	Metric	Mode	Accuracy
		mean		78.620
		median		78.2443
		Euclidean	SDHW	79.0076
		Cosine	SDHW	78.2443
		Jaccard	SDHW	79.0076
		Chebyshev	SDHW	78.2443
		Correlation	SDHW	76.7176
		Cityblock	SDHW	76.620
		Canberra	SDHW	78.626
		Braycurtis	SDHW	79.3893
		Hamming	SDHW	78.2443
		Battacharyya	SDHW	73.2824
		mean		96.4912
		median		96.4912
		Euclidean	SDHW	96.4912
		Cosine	SDHW	96.4912
		Jaccard	SDHW	96.4912
		Chebyshev	SDHW	96.4912
		Correlation	SDHW	96.4912
		Cityblock	SDHW	96.4912
		Canberra	SDHW	96.4912
		Braycurtis	SDHW	96.4912
		Hamming	SDHW	96.4912
		Battacharyya	SDHW	96.4912
		mean		88.5246
		median		88.5246
		Euclidean	SDHW	88.5246
		Cosine	SDHW	88.5246
		Jaccard	SDHW	88.5246
		Chebyshev	SDHW	88.5246
		Correlation	SDHW	88.5246
		Cityblock	SDHW	88.5246
		Canberra	SDHW	88.5246
		Braycurtis	SDHW	88.5246
		Hamming	SDHW	88.5246
		Battacharyya	SDHW	88.5246

Table 2: Results for classification
References

Richard O. Awichi and Werner G. Müller. Improving ssa predictions by inverse distance weighting. 2013.

Veronica J. Berrocal, Adrian E. Raftery, and Tilmann Gneiting. Combining spatial statistical and ensemble information in probabilistic weather forecasts. *Monthly Weather Review*, 135(4):1386–1402, 2007. doi: 10.1175/MWR3341.1. URL https://doi.org/10.1175/MWR3341.1.

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine preferences by data mining from physicochemical properties. *Decis. Support Syst.*, 47:547–553, 2009.

Thomas G. Dietterich. Ensemble methods in machine learning. In *Multiple Classifier Systems*, pages 1–15, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. ISBN 978-3-540-45014-6.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

João Mendes-Moreira, Carlos Soares, Alípio Mário Jorge, and Jorge Freire De Sousa. Ensemble approaches for regression: A survey. *ACM Comput. Surv.*, 45(1), December 2012. ISSN 0360-0300. doi: 10.1145/2379776.2379786. URL https://doi.org/10.1145/2379776.2379786

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian亨rikS, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nature Methods*, 17:261–272, 2020. doi: https://doi.org/10.1038/s41592-019-0686-2.