An inventory-location optimization model for equitable influenza vaccine distribution in developing countries during the COVID-19 pandemic

Mehdi Rastegara, Madjid Tavanab,c,*, Afshin Merajd, Hassan Minae

aSchool of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
bBusiness Systems and Analytics Department, Distinguished Chair of Business Analytics, La Salle University, Philadelphia, PA 19141, United States
cBusiness Information Systems Department, Faculty of Business Administration and Economics, University of Paderborn, D-33098 Paderborn, Germany
dDepartment of Management, University of Tehran, Tehran, Iran
eSchool of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran

\section*{ARTICLE INFO}

Article history:
Received 5 October 2020
Received in revised form 23 November 2020
Accepted 7 December 2020
Available online 9 December 2020

Keywords:
Vaccine supply chain
Healthcare equitability
Inventory-location problem
Mixed-integer linear programming
Influenza virus

\section*{ABSTRACT}

The addition of other respiratory illnesses such as flu could cripple the healthcare system during the coronavirus disease 2019 (COVID-19) pandemic. An annual seasonal influenza vaccine is the best way to help protect against flu. Fears of coronavirus have intensified the shortage of influenza shots in developing countries that hope to vaccinate many populations to reduce stress on their health services. We present an inventory-location mixed-integer linear programming model for equitable influenza vaccine distribution in developing countries during the pandemic. The proposed model utilizes an equitable objective function to distribute vaccines to critical healthcare providers and first responders, elderly, pregnant women, and those with underlying health conditions. We present a case study in a developing country to exhibit efficacy and demonstrate the optimization model’s applicability.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The emergence and spread of diseases, such as Middle East Respiratory Syndrome, influenza, and Ebola have threatened people’s health and lives. Vaccines increase the likelihood of preventing the spread of these diseases and save the lives of millions of people, including children and the elderly \cite{1}. Unfortunately, many countries, especially developing countries, often encounter a shortage of vaccines \cite{2}. Many factors can cause a vaccine shortage. Production monopoly, complex production processes, increased oversight of manufacturing facilities, unforeseen fluctuations in demand, and reduced producers are the most frequently cited reasons for vaccine shortage \cite{3–6}.

There are four components in the vaccine supply chain: product (what type of vaccine is needed?), production (how many vaccines should be produced and when?), allocation (who should receive the vaccine?), and distribution (how should the vaccine be distributed?) \cite{7}. An effective vaccine distribution chain used to distribute vaccines from producers to consumers requires an efficient overall structure, an examination of the demand rate and inventory requirements, and identifying suitable vaccine distribution locations. Jacobson et al. \cite{2} proposed a stochastic inventory model for evaluating pediatric vaccine supply. This model aimed to examine the inventory of pediatric vaccines to combat production interruptions in the United States. Their model showed that if the disruption in production is less than six months, the vaccine’s stockpile level would be sufficient; otherwise, some shortages leading to disease spread would occur. Uscher-Pines et al. \cite{8} proposed a systematic analysis for proposing policies to deal with the influenza vaccine shortage in the United States. Using the brainstorming method and Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis, they developed a framework for purchasing, producing, and distributing vaccines.

Straetemans et al. \cite{9} investigated the distribution prioritization of influenza vaccine in 27 European Union countries and four non-European Union countries. They utilized experts in the distribution planning department and collected data via telephone, email, and fax. Their findings showed that 26 states had considered at least one high-priority group for vaccination. According to their research, essential service providers, healthcare workers, and high-risk individuals were the most common high-priority groups for...
vaccination. Shrestha et al. [10] studied pediatric vaccine storage and proposed a model for supply shortages, cost, and health impacts. Their model examined the shortage cost of 14 pediatric vaccines and their health impacts using scenario analysis. Samii et al. [11] developed an inventory control model for reserving and allocating the influenza vaccine. Abrahams and Ragsdale [12] presented a decision support system for minimizing total vaccination scheduling costs based on a binary integer programming model and genetic algorithm. Meshkini et al. [13] studied the opportunities and threats associated with vaccine production in Iran required by the world trade organization (WTO). The results showed that the main challenges for joining the WTO were the absence of firm internal intellectual property rules, the use of old equipment, and the lack of cooperation with global vaccine companies. Privett and Gonsalvez [14] identified and prioritized vaccine supply chain challenges in developing countries through interviews and surveys. A multi-objective possibilistic programming model was proposed by Pishvaee et al. [15] to design a sustainable medical supply chain network. They considered the economic, social, and environmental aspects of the needle and syringe supply chain in Iran to validate their model. Lydon et al. [16] analyzed vaccine outsourcing by analyzing data from a vaccine supply chain in South Africa. The results showed that the outsourcing of some parts of the vaccine supply chain could reduce costs and increase supply chain efficiency.

A mixed-integer linear programming (MILP) model was developed by Saif and Elhedhli [17] to design a vaccine supply chain by including environmental considerations. They used a novel hybrid simulation–optimization approach to solve and validate their model. Cernuschi et al. [18] studied the balance between supply and demand for the Bacillus Calmette-Guérin vaccine by examining global demand, global supply, product registration, vaccine shortage, and global demand–supply balance. Gooding et al. [19] conducted a study to investigate vaccine stockouts’ effect on immunization. They presented a conceptual model that showed the relationship between routine immunization and vaccine availability. Their model considered economic status, ethnicity, cultural and religious belief by examining the national immunization supply chain data. Vaccines are highly sensitive to temperature, and their transportation at unfavorable temperatures significantly affects their quality. Lin et al. [20] developed a vaccine transportation model by utilizing a cold supply chain network. Their model analyzed how the inspection policy of the retailer influences the distributor’s decision. Zandkarimkhani et al. [21] proposed a bi-objective MILP model for distributing Avonex (prefilled syringe for multiple sclerosis disease) under uncertainty. Their distribution model simultaneously minimizes total costs and lost demands. They used a fuzzy goal programming approach to solve and validate their model with data collected from Iran's Avonex distribution chain. Enayati and Özaltın [22] introduced a mathematical programming model for equitable influenza vaccine distribution in a heterogeneous population. Their model minimizes the vaccine doses allocated to subgroups for preventing the disease outbreak at the early stages of the epidemic. They divided the population into different subgroups and distributed the vaccine justifiably to varying subgroups according to an equity constraint.

This study proposes a mathematical model for equitable influenza vaccine distribution, similar to Enayati and Özaltın [22]. However, we go one step further and introduce a new concept for equitable vaccine distribution using a customizable objective function applicable to the COVID-19 vaccine. In addition, unlike the Enayati and Özaltın’s [22] model, we consider the location of distribution centers and storage facilities, vaccine shortage, and budget constraints in the proposed model. In summary, this study addresses the following questions:

- How can an optimization model address the need for an equitable influenza vaccine distribution to a heterogeneous population?
- Which distribution centers should be included in an equitable vaccine distribution model?
- How many vaccine doses should be stored in each distribution center?
- How many vaccine doses should be made available to each group?

The contributions of this study are threefold. We (i) propose an equitable model to classify heterogeneous populations for influenza vaccine distribution during the COVID-19 pandemic; (ii) propose a novel MILP model for equitable influenza vaccine distribution considering inventory-location problems; and (iii) demonstrate the applicability and efficacy of the proposed vaccine distribution model with real-world data.

The remainder of the paper is organized as follows. In Section 2, we define the problem and formulate the model. In Section 3, we present a case study to demonstrate the applicability of the method proposed in this study. In Sections 4 and 5, we propose sensitivity analysis and managerial implications, respectively. In Section 6, we conclude with our conclusions and future research directions.

2. Problem definition and proposed model

The prevalence of the seasonal flu virus starts every year with the arrival of the year's cold seasons (i.e., fall and winter) and the spread of infectious diseases. The seasonal flu affects over five million people annually and leads to 290,000–650,000 deaths annually [23]. Due to the outbreak of coronavirus disease 2019 (COVID-19), the world’s population will experience difficult fall and winter this year (i.e., 2020) since the seasonal flu virus will spread in parallel with COVID-19. Although the flu virus has many mutations, and the mutated virus's vaccine is produced and distributed each year [24], one of the problems is accessibility to this vaccine as it is produced and distributed by a limited number of countries.

On the other hand, many countries cannot supply the flu vaccine to the entire population due to seasonal shortages. Therefore, it is crucial to develop a practical approach to equitable distribution of vaccines in these countries. Equitable distribution does not always mean equal distribution among individuals, but rather a distribution in which more needy people have a higher priority than less needy people. Accordingly, this paper presents a mixed-integer linear programming model for equitable distribution of the influenza vaccine among different groups of people with varying priorities. The prioritization model requires a balance between helping society and protecting an individual’s health. The supply chain consists of two levels: a supply point (i.e., distribution center) and multiple demand points (i.e., city, state, province, etc.). The health experts group residents in each demand point according to pre-determined criteria. This grouping will determine the need for vaccination in each demand point. The proposed model is used to distribute the vaccines equitably among the demand points according to the following assumptions:

- The proposed model is a single product multi-period distribution model.
- The model determines the optimal location for the distribution center.
- The distribution center is capacitated.
- The demand point (warehouse) has storage facilities for future periods.
- The model considers the possibility of a shortage.
3. Mathematical model

3.1. Indices

	Demand point (Province)
p	
i	Group type
k	Distribution center
t	Time-period

3.1.1. Parameters

- POP_p: The total demand of group i for influenza vaccine in province p.
- ST_k: Cost of setting up the distribution center k.
- PR: The per-dose purchasing cost of the influenza vaccine.
- TR_{kp}: The per-dose transportation cost of the influenza vaccine from distribution center k to province p.
- HL_p: The per-dose holding cost of the influenza vaccine in province p warehouse for each time-period.
- θ_i: The minimum percentage of group i to be covered (coverage rate).
- β_k: The maximum capacity of distribution center k for supplying influenza vaccine in time-period t.
- BG: Budget.
- M: A big number.

3.1.2. Variables

- ω_k: Binary If distribution center k is set up.
- y_{ipt}: Integer Number of influenza vaccines allocated to group i in province p in time-period t.
- w_{pt}: Integer Number of influenza vaccines stored in province p warehouse in time-period t.
- x_{ipt}: Integer Number of influenza vaccines shipped from distribution center k to province p warehouse in time-period t.

3.1.3. Objective function

$$\text{Max } Z = \text{Min} \left\{ \frac{y_{ipt}}{\text{POP}_p} \right\}$$
\hspace{1cm} (1)

s.t.

$$\sum_{t} y_{ipt} \geq \theta_i \times \text{POP}_p \quad \forall i, p$$
\hspace{1cm} (2)

$$w_{pt} = \sum_{k} x_{ipt} - \sum_{i} y_{ipt} \quad \forall p, t = 1$$
\hspace{1cm} (3)

$$w_{pt} = w_{p(t-1)} + \sum_{k} x_{ipt} - \sum_{i} y_{ipt} \quad \forall p, t > 1$$
\hspace{1cm} (4)

$$\sum_{p} x_{ipt} \leq \beta_k \quad \forall k, t$$
\hspace{1cm} (5)

$$\sum_{k} ST_k \times \omega_k + \sum_{k,p,t} PR \times X_{ipt} + \sum_{p} TR_{p} \times X_{ipt} + \sum_{p} HL_p \times w_{pt} \leq BG$$
\hspace{1cm} (7)

The objective function distributes vaccines equitably by maximizing the minimum delivery-to-demand ratio per group in each province and each time-period. This objective function is a novel and new concept for equitable vaccine distribution. The objective function's underlying premise is the demand at each node, and the trade-off between the nodes, are established according to a delivery-to-demand ratio. To this end, equitability is enforced at each node by maximizing the minimum delivery-to-demand ratio.

Constraint (2) guarantees that vaccines are assigned to each group, at least at the coverage rate. The inventory balance in the provinces’ warehouses is given in Constraints (3) and (4) for the first and the subsequent periods. Constraint (5) ensures the capacity of distribution centers is not violated. Constraint (6) ensures the distribution center is already set up and ready to receive vaccines from the distribution center. Constraint (7) ensures that the total cost of the vaccine supply chain, including setting up cost, purchasing cost, and transportation cost, do not exceed the budget.

3.2. Linearization process

The objective function of the proposed model is nonlinear and requires linearization. This linearization is accomplished by introducing a new free variable (μ) to replace $\text{Min} \left\{ \frac{y_{ipt}}{\text{POP}_p} \right\}$ in the objective function. Therefore, the following holds true:

$$\mu = \text{Min} \left\{ \frac{y_{ipt}}{\text{POP}_p} \right\}$$
\hspace{1cm} (8)

Based on Eq. (8), the following formula always holds true:

$$\mu \leq \frac{y_{ipt}}{\text{POP}_p} \quad \forall i, p, t$$
\hspace{1cm} (9)

Therefore, according to Eqs. (8) and (9), the proposed nonlinear model is converted into a linear model as follows:

$$\text{Max } Z = \mu$$
\hspace{1cm} (10)

s.t.

$$\mu \leq \frac{y_{ipt}}{\text{POP}_p} \quad \forall i, p, t$$
\hspace{1cm} (11)

Constraints (2) to (7)

4. Case study

Every year, the seasonal flu virus spreads in Iran and other parts of the world with the arrival of cold seasons. The Iranian government annually buys the flu vaccine from the producing countries in limited quantities, proportional to the population. In 2020, the country’s demand for influenza vaccine has increased sharply due to the outbreak of COVID-19. According to the statistics released by the Iran Ministry of Health and Medical Education (MOHME), this amount has increased ten times compared to that in the last year (http://ird.behdasht.gov.ir). The rising demand, on the one hand, and sanctions, on the other hand, has resulted in a shortage of flu vaccine in Iran. Consequently, MOHME needed an efficient and effective vaccine distribution model to cope with the flu vaccine shortage during the cold season and the COVID-19 pandemic. In this case study, we present a prototype model developed for the MOHME for an equitable and fair distribution of the flu vaccine during the fall and winter flu season.
are generally distributed according to factors such as medical risks, ethics, public health, equity, economic impact, and logistics, among others. The MOHME considers age, pre-existing medical conditions, pregnancy, and healthcare-related jobs to group potential vaccine recipients into the following eight categories:

- **Group 1**: Infants and toddlers aged 6 to 35 months
- **Group 2**: Pregnant women with pre-existing medical conditions
- **Group 3**: Adults aged 65 years and older with pre-existing medical conditions
- **Group 4**: Critical healthcare providers and first responders
- **Group 5**: Pregnant women without pre-existing conditions
- **Group 6**: Adults aged 65 years and older without pre-existing medical conditions
- **Group 7**: People with pre-existing medical conditions
- **Group 8**: Other people

The demand for each group in each province and each group’s coverage rate are presented in Tables 1 and 2, respectively. The MOHME considers age, pre-existing medical conditions, pregnancy, and healthcare-related jobs to group potential vaccine recipients into the following eight categories among others. The MOHME considers age, pre-existing medical conditions, pregnancy, and healthcare-related jobs to group potential vaccine recipients into the following eight categories among others.

The optimal number of vaccine doses assigned to Group 1 and each province in each time-period is presented in Table 5. Similarly, the optimal number of vaccine doses assigned to groups 2–8 in each province for each time-period is presented in the Appendix (See Table A).

The value 8678 in the first row of this table asserts if Tehran is used as a distribution center, the cost of transporting each dose of vaccine from Tehran to East Azerbaijan is $0.61. This cost is considered as a function of distance due to the lack of actual transportation costs data in the planning phase.

The GAMS software with BARON solver is used to run the proposed model. The optimal values of the objective function and decision variables are calculated as follows:

- The optimal value of the objective function is equal to 0.029.
- Distribution center 1 (Tehran) was selected among the four potential distribution centers.
- A total of 15,398,713 influenza vaccines were purchased with the available budget of $270,000,000.
- The number of vaccine doses shipped from the Tehran distribution center to other provinces is presented in Table 4.

The value 121,686 in the first row and the first column of Table 4 represents that number of flu vaccine doses shipped from distribution center 1 in Tehran to province 1 in East Azerbaijan in time-period 1. Similarly, this table shows the number of vaccine doses shipped to each province in each time-period.

The value 8678 in the first row and the first column of Table 5 indicates that 8678 flu vaccine doses have been allocated to Group 1 (Infants and toddlers aged 6 to 35 months) in Province 1 (i.e., East Azerbaijan) in time-period 1. The remaining number of vaccine doses are determined accordingly and presented in Table 5.

Table 1

Province	p	Group	1	2	3	4	5	6	7	8
East Azerbaijan	1	285,487	2250	19,557	19,157	20,252	36,324	10,040	3,516,585	
West Azerbaijan	2	209,236	842	8678	13,061	15,889	42,596	4657	2,970,260	
Ardabil	3	96,045	396	7059	4955	5482	21,125	2275	1,133,083	
Isfahan	4	543,628	2436	18,826	28,165	26,241	86,471	10,745	4,404,338	
Alborz	5	444,378	1129	8504	15,732	8602	32,469	4360	2,197,166	
Ilam	6	50,992	99	1744	4230	5103	12,473	2630	963,169	
Bushehr	7	92,676	543	2366	3490	4962	12,693	3585	1,043,085	
Tehran	8	1,112,514	4598	18,135	79,606	73,328	192,077	35,476	1,171,903	
Chaharmahal and Bakhtiari	9	80,727	345	4360	2749	3068	14,210	2709	839,392	
South Khorasan	10	91,541	416	1747	2922	4373	10,038	1653	656,208	
Khorasan Razavi	11	555,165	1477	9157	32,173	34,646	77,489	15,706	5,708,688	
North Khorasan	12	70,181	423	1830	3884	4974	13,524	1615	766,661	
Khuzestan	13	461,497	1286	19,525	16,958	30,037	50,966	8352	4,121,888	
Zanjan	14	66,876	296	2684	4230	5103	12,473	2630	963,169	
Semnan	15	59,558	385	710	2388	4214	11,302	1399	622,408	
Sistan and baluchestan	16	348,982	1449	16,537	7770	18,719	43,922	5316	2,336,819	
Fars	17	467,381	1066	17,138	24,256	20,367	60,885	10,672	4,249,508	
Qazvin	18	97,577	379	6997	5095	6727	18,116	3773	1,135,098	
Qom	19	74,038	481	2939	5815	8902	14,176	3328	1,181,505	
Sanandaj	20	140,126	1059	2123	4809	5664	19,047	4993	1,425,195	
Kerman	21	295,505	796	4290	14,241	11,478	33,045	7671	2,797,687	
Kermanshah	22	116,921	851	2222	5272	7752	21,035	2369	1,796,012	
Kohgiluyeh va Boyer Ahmad	23	57,172	377	3845	2068	2955	7176	1350	638,116	
Golestan	24	166,533	1242	8662	6915	8929	19,549	3770	1,653,194	
Gilan	25	268,028	1671	12,551	10,123	7828	31,173	7962	2,189,354	
Lorestan	26	123,254	385	9002	5282	11,349	17,077	5613	1,588,669	
Mazandaran	27	266,866	1129	9352	14,119	21,881	32,984	10,038	2,927,211	
Markazi	28	95,074	226	3773	6433	8111	22,186	3320	1,290,355	
Hormozgan	29	150,240	845	7141	5329	7426	23,181	2580	1,579,688	
Hamadan	30	156,808	258	1993	6953	7755	17,034	5286	1,542,147	
Yazd	31	72,962	494	3263	5123	7948	11,166	2923	1,034,656	
The number of flu vaccine doses stored in the warehouses at provinces in each time-period is reported in Table 6.

The proposed model equitably distributes the vaccine doses to all provinces. Fig. 2 presents the vaccine distribution from the Tehran distribution center to East Azarbaijan province for all four time-periods.

As shown in Figure 2, 121,686, 479,059, and 121,801 vaccine doses are shipped from the Tehran distribution center to the East Azarbaijan warehouse in time-periods 1, 2, and 4, respectively. However, no vaccine doses are shipped in time-period 3 since the need for vaccine in this time-period is covered by the available vaccines from time-period 2. Among the 121,686 flu vaccine doses shipped in the first time-period, 8678 doses have been assigned to Group 1 (Infants and toddlers aged 6 to 35 months), 70 doses to Group 2 (Pregnant women with pre-existing medical conditions), 601 doses to Group 3 (Adults aged 65 years and older with pre-existing medical conditions), 594 doses to Group 4 (Critical healthcare providers and first responders), 612 doses to Group 5 (Pregnant women without pre-existing conditions), 1116 doses to Group 6 (Adults aged 65 years and older without pre-existing medical conditions), 311 doses to Group 7 (People with pre-existing medical conditions), and 109,704 doses have been assigned to Group 8 (Other people).

In summary, the optimal solution selected Tehran as a distribution center considering a total budget of $270,000,000) and purchased 15,398,713 doses of the vaccines. The remaining question is the number of vaccine doses that should be bought and distributed if other centers were set up? If the Isfahan distribution center is set up, 15,301,903 doses of vaccine can be purchased and distributed considering the available budget. If the East Azarbaijan is set up, the number of vaccine doses will be reduced to 14,882,527. Finally, if the Kerman is selected as the distribution center, 14,771,554 vaccine doses are purchased and distributed. Therefore, the results show that Tehran is the optimal distribution center. Besides, suppose the decision-makers’ policy is to use the maximum capacity of the distribution center. In that case, the question is how much budget is needed to set up a network with the maximum capacity? This distribution center’s capacity is equal to 18,000,000 vaccine doses for a total of four time-periods, where the amount of $309,933,087 is required for a chain with this capacity. Thus, for an additional $40,000 budget, it is possible to distribute 2,601,287 more vaccine doses in the chain. It is noteworthy that the value of the objective function changes from 0.029 to 0.03 in this case.
Table 3
The transportation cost for each vaccine dose from the potential distribution centers to the warehouses (provinces).

Province	t = 1	t = 2	t = 3	t = 4
Tehran	0.09	0.39	0.61	0.96
Chaharmahal and Bakhtiari	0.53	0.12	0.99	0.78
South Khurasan	1.01	1.21	1.39	0.81
Khorasan Razavi	0.87	1.13	1.34	0.90
North Khurasan	0.72	1.15	1.31	0.94
Khuzestan	0.81	0.74	0.98	0.77
Zanjan	0.82	0.61	0.82	0.68
Semnan	0.97	0.7	0.82	0.51
Sistan and baluchestan	1.14	1.08	2.05	0.49
Fars	0.88	0.46	1.48	0.77
Qazvin	0.17	0.53	0.46	1.20
Qom	0.22	0.32	0.43	0.98
Kerman	0.96	0.68	0.96	0.08
Kermanshah	0.48	0.64	0.56	1.20
Kohgiluyeh va Buyer Ahmad	0.74	0.70	1.43	1.00
Golestan	0.45	0.63	0.46	1.18
Gilan	0.32	0.71	0.75	0.95
Lorestan	0.50	0.35	0.78	0.97
Mazandaran	0.30	0.64	0.85	1.21
Markazi	0.26	0.29	0.78	0.97
Hormozgan	1.09	0.95	1.91	0.48
Hamedan	0.32	0.45	0.58	1.07
Yazd	0.61	0.30	0.96	0.36

Table 4
The optimal number of vaccines shipped from the Tehran distribution center to other provinces.

Province (p)	t = 1	t = 2	t = 3	t = 4
Tehran	121,686	479,059	0	121,801
Chaharmahal and Bakhtiari	31,914	86,313	32,889	29,507
South Khurasan	28,712	81,766	26,497	23,936
Khorasan Razavi	916,739	0	0	306,312
North Khurasan	26,871	81,371	26,871	28,130
Khuzestan	412,221	370,629	146,667	0
Zanjan	32,797	32,576	258,006	0
Semnan	21,866	65,262	158,116	0
Sistan and baluchestan	420,040	0	0	233,203
Fars	39,656	49,247	149,679	0
Qom	40,161	40,161	13,871	0
Kerman	54,118	53,800	54,116	167,794
Kohgiluyeh va Buyer Ahmad	283,820	14,537	14,537	14,273
Golestan	3027	3014	59,273	2990
Gilan	2283	2284	44,977	2283
Lorestan	231,679	17,380	16,196	123,361
Mazandaran	283,904	16,939	16,852	16,845
Markazi	229,904	13,395	13,831	13,831
Hormozgan	231,679	17,380	16,196	123,361
Hamedan	283,904	16,939	16,852	16,845
Yazd	231,679	17,380	16,196	123,361

Table 5
The optimal number of vaccine doses assigned to Group 1 and each province in each time-period.

Province (p)	t = 1	t = 2	t = 3	t = 4
Tehran	121,686	479,059	0	121,801
Chaharmahal and Bakhtiari	31,914	86,313	32,889	29,507
South Khurasan	28,712	81,766	26,497	23,936
Khorasan Razavi	916,739	0	0	306,312
North Khurasan	26,871	81,371	26,871	28,130
Khuzestan	412,221	370,629	146,667	0
Zanjan	32,797	32,576	258,006	0
Semnan	21,866	65,262	158,116	0
Sistan and baluchestan	420,040	0	0	233,203
Fars	39,656	49,247	149,679	0
Qom	40,161	40,161	13,871	0
Kerman	54,118	53,800	54,116	167,794
Kohgiluyeh va Buyer Ahmad	283,820	14,537	14,537	14,273
Golestan	3027	3014	59,273	2990
Gilan	2283	2284	44,977	2283
Lorestan	231,679	17,380	16,196	123,361
Mazandaran	283,904	16,939	16,852	16,845
Markazi	229,904	13,395	13,831	13,831
Hormozgan	231,679	17,380	16,196	123,361
Hamedan	283,904	16,939	16,852	16,845
Yazd	231,679	17,380	16,196	123,361
5. Sensitivity analysis

In this section, budgeting scenarios are used to evaluate the performance and behavior of the proposed model. The total vaccine doses are expected to increase by increasing the budget. Similarly, the total vaccine doses are expected to decrease by decreasing the budget. Seven scenarios are considered for sensitivity analysis. Scenarios 1 to 3 consider possible budget decreases, and scenarios 5 to 7 consider possible budget increases. The seven scenarios’ results are presented tabularly in Table 7 and depicted graphically in Fig. 3.

As shown in Table 7 and Fig. 3, the total vaccine doses increase with the increase in budget, and the total vaccine doses decrease with the decrease in budget. This sensitivity analysis confirms the expected behavior of the model proposed in this study.

6. Managerial implications

This study proposes a practical model for equitable influenza vaccine distribution in developing countries. Most developing countries, such as Iran, cannot provide the influenza vaccine to the entire population due to the unavailability of production technology, budgetary constraints, and lack of distribution infrastructure. Therefore, developing an equitable vaccine distribution system and providing vaccines to vulnerable groups is a high priority in developing countries. The model proposed in this study is not only applicable to equitable influenza vaccine distribution; it could be modified for other vaccines (e.g., COVID-19 vaccine) where classification and prioritization are pre-requisites for equitable vaccine distribution. For example, the transportation, storage, and application requirements for the COVID-19 vaccine are similar to those of the influenza vaccine. First, both vaccines belong to the cold supply chain, and storing them at an unsuitable temperature affects their quality and can lead to their perishability. Second, both vaccines are used to kill highly contagious viruses with high outbreak rates. Third, disregard for vulnerable groups in the population can lead to catastrophic events. Fourth, the vaccine’s transportation is an important concern in designing a cold supply chain since improper transportation can impact vaccine quality and perishability. Fifth, the transportation cost in the cold supply chain is strongly influenced by the distance between the distribution point and the demand point. In this study, an attempt is made to develop a comprehensive and equitable vaccine distribution model that is easily adaptable to various vaccine distribution and application requirements in developing countries.

7. Conclusion

Influenza and COVID-19 are both respiratory viruses requiring similar supplies and equipment. Hospitals currently accommodating COVID-19 patients may not be able to manage additional flu patients during the flu season [24]. The flu vaccine supply chain’s

![Fig. 2. The assigned vaccines to groups in each time-period in East Azarbaijan Province.](image-url)
role is to ensure that the right product, in the right quantity, is distributed to the right place, at the right time. The risks of inefficient and ineffective flu vaccine supply chains are detrimental to the healthcare sector [25]. In this paper, we proposed a MILP model for the equitable distribution of influenza vaccine doses during the COVID-19 outbreak. The proposed model is a single product multi-period model with distribution centers, storage capabilities, possible shortage, and capacitated distribution centers. According to the MOHME requirements, the population was divided into eight groups according to age, pre-existing medical conditions, pregnancy, and healthcare-related jobs. Each group was allocated an equitable number of vaccine doses according to their coverage rate. The results demonstrate the applicability of the inventory-location optimization model proposed in this study for equitable influenza vaccine distribution during the COVID-19 Pandemic.

The storage and distribution of the influenza vaccine are similar to that of the COVID-19 vaccine. Future research is needed to develop a cold supply chain network for equitable COVID-19 vaccine distribution by considering uncertain, unavailable, or incomplete demand data in developing countries. Moreover, vehicle routing considerations can improve the model’s performance and applicability in rural areas with little or no transportation infrastructure. Finally, the inclusion of other objectives, such as the number of healthcare workers and vaccination stations, may enhance the model’s efficacy in urban areas.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

Dr. Madjid Tavana is grateful for the partial support he received from the Czech Science Foundation (GACR19-13946S) for this research.
Appendix Table A. The optimal number of vaccine doses assigned to groups 2–8 and each province in each time-period

p	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8					
	t = 1	t = 2	t = 3	t = 4	t = 1	t = 2	t = 3	t = 4	t = 1	t = 2	t = 3	t = 4
1	70	1815	70	601	601	601	594	17,373	594	594	612	12,341
2	26	680	26	263	263	263	405	11,486	405	405	405	11,486
3	12	12	320	13	218	218	5695	225	153	153	4495	154
4	74	1973	73	603	2000	567	574	882	25,545	869	869	813
5	35	35	912	257	259	257	6881	487	14,264	494	494	268
6	3	3	3	90	1408	54	54	158	52	52	52	1272
7	3	16	16	439	1911	73	73	3166	108	108	108	3011
8	3	23	23	1042	5570	55	55	124	3526	117	117	154
9	10	10	380	40	595	59	59	680	260	260	260	902
10	33	33	861	33	559	516	516	13,834	754	749	749	22,004
11	12	11	263	11	565	158	158	4621	158	158	158	614
12	14	14	90	119	93	93	93	317	93	93	93	614
13	38	38	1052	32	64	64	64	145	64	64	64	614
14	32	32	856	34	64	64	64	145	64	64	64	614
15	24	24	645	24	100	100	100	455	100	100	100	614
16	22	22	687	26	68	68	68	1798	68	68	68	614
17	13	13	11	305	119	119	119	3104	64	64	64	614
18	15	15	305	119	119	119	119	3104	64	64	64	614
19	38	38	1002	37	268	268	268	60987	273	273	273	274
20	12	12	311	12	276	276	276	72982	272	272	272	274
21	35	35	912	35	290	290	290	7547	290	290	290	274
22	52	52	948	385	378	378	10,555	315	315	315	374	
23	52	52	948	385	378	378	10,555	315	315	315	374	
24	8	8	8	8	209	209	209	628	209	209	209	6321
25	15	15	101	15	101	101	101	154	101	101	101	6321
References

[1] Hartmann K, Pagliusi S, Precioso A. Landscape analysis of pharmacovigilance and related practices among 34 vaccine manufacturers’ from emerging countries. Vaccine 2020;38(34):5490–7.

[2] Jacobson SH, Sewell EC, Proano RA. An analysis of the pediatric vaccine supply shortage problem. Health Care Management Science 2006;9(4):371–89.

[3] Jacobson SH, Sewell EC, Jokela JA. Survey of vaccine distribution and delivery issues in the USA: from pediatrics to pandemics. Expert review of vaccines 2007;6(6):981–90.

[4] Peter, G., Arvin, A. M., Davis, J. P., & Decker, M. D. (2003). Strengthening the supply of routinely recommended vaccines in the United States: recommendations from the National Vaccine Advisory Committee. JAMA, 290(23), 3122-3122.

[5] Lane KS, Chu SY, Santoli JM. The United States pediatric vaccine stockpile program. Clin Infect Dis 2006;42(Supplement_3):S125–9.

[6] Rodewald LE, Orenstein WA, Mason DD, Cochi SL. Vaccine supply problems: a perspective of the Centers for Disease Control and Prevention. Clin Infect Dis 2006;42(Supplement_3):S104–10.

[7] Duijzer LE, van Jaarsveld W, Dekker R. Literature review: The vaccine supply chain. Eur J Oper Res 2018;268(1):174–92.

[8] Uscher-Pines L, Barnett DJ, Sapsin JW, Bishai DM, Balicer RD. A systematic analysis of influenza vaccine shortage policies. Public Health 2008;122(2):183–91.

[9] Stratemanns M, Buchholz U, Reiter S, Haas W, Krause G. Prioritization strategies for pandemic influenza vaccine in 27 countries of the European Union and the Global Health Security Action Group: a review. BMC Public Health 2007;7(1):236.

[10] Shrestha SS, Wallace GS, Meltzer MI. Modeling the national pediatric vaccine stockpile: Supply shortages, health impacts and cost consequences. Vaccine 2010;28(38):5235–37.

[11] Samisi AB, Pibernik R, Yadav P, Vereecke A. Reservation and allocation policies for influenza vaccines. Eur J Oper Res 2012;222(3):495–507.

[12] Abrahams AS, Ragsdale CT. A decision support system for patient scheduling in travel vaccine administration. Decis Support Syst 2012;54(1):215–25.

[13] Meshkini AH, Kebriaezadeh A, Dinarvand R, Nikfar S, Habibzadeh M, Vazirian I. Assessment of the vaccine industry in Iran in context of accession to WTO: a survey study. DARU Journal of Pharmaceutical Sciences 2012;20(1):19.

[14] Privett N, Consalver D. The top ten global health supply chain issues: perspectives from the field. Operations Research for Health Care 2014;3(4):226–30.

[15] Pichvaee MS, Razmi J, Torabi SA. An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain. Transportation Research Part E: Logistics and Transportation Review 2014;67:14–38.

[16] Lydon P, Raubenheimer T, Arnet-Krüger M, Zaffran M. Outsourcing vaccine logistics to the private sector: the evidence and lessons learned from the Western Cape Province in South-Africa. Vaccine 2015;33(29):3429–34.

[17] Sait A, Elhedhli S. Cold supply chain design with environmental considerations: A simulation-optimization approach. Eur J Oper Res 2016;251(1):274–87.

[18] Cernuschi T, Malvolti S, Nickels E, Friede M. Bacillus Calmette-Guérin (BCG) vaccine: a global assessment of demand and supply balance. Vaccine 2018;36(4):498–506.

[19] Gooding E, Spirotopoulou E, Yadav P. Impact of vaccine stockouts on immunization coverage in Nigeria. Vaccine 2019;37(35):5104–10.

[20] Lu Q, Zhao Q, Lev B. Cold chain transportation decision in the vaccine supply chain. Eur J Oper Res 2020;283(1):182–95.

[21] Zandkarimkhani S, Mina H, Biukk M, Govindan K. A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design. Ann Oper Res 2020;1–28.

[22] Enayati S, Derzhtn DD. Optimal influenza vaccine distribution with equity. Eur J Oper Res 2020;283(2):714–25.

[23] World Health Organization, Influenza (seasonal), November https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal), (2018), Accessed date: 9 May 2020.

[24] Grech V, Borg M. Influenza vaccination in the COVID-19 era. Early Human Dev 2020;148:105116.

[25] Jarrett S, Yang L, Pagliusi S. Roadmap for strengthening the vaccine supply chain in emerging countries: Manufacturers’ perspectives. Vaccine-X 2020;100068.