X-RAY SPECTROSCOPY OF THE CORE OF THE PERSEUS CLUSTER WITH SUZAKU: ELEMENTAL ABUNDANCES IN THE INTRAcluster MEDIUM

T. Tamura1, Y. Maeda1, K. Mitsuda1, A. C. Fabian2, J. S. Sanders2, A. Furuzawa3, J. P. Hughes4, R. Izuka5, K. Matsushita6, and T. Tamagawa7

1 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan
2 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
3 Department of Particle and Astrophysics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
4 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019, USA
5 Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
6 Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
7 RIKEN (Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Received 2009 August 28; accepted 2009 September 25; published 2009 October 14

ABSTRACT

The results from Suzaku observations of the central region of the Perseus cluster are presented. Deep exposures with the X-ray Imaging Spectrometer provide high-quality X-ray spectra from the intracluster medium. X-ray lines from helium-like Cr and Mn have been detected significantly for the first time in clusters. In addition, elemental abundances of Ne, Mg, Si, S, Ar, Ca, Fe, and Ni are accurately measured within 10′ (or 220 kpc) from the cluster center. The relative abundance ratios are found to be within a range of 0.8–1.5 times the solar value. These abundance ratios are compared with previous measurements, those in extremely metal-poor stars in the Galaxy, and theoretical models.

Key words: galaxies: clusters: general – galaxies: clusters: individual (Perseus) – X-rays: galaxies

1. INTRODUCTION

Heavy elements (or metals) in the universe are created in stars and supernovae (SNe). These metals enrich the interstellar medium and are recycled into generations of stars. Some part of these should have been transported into intergalactic space via galactic winds or ram pressure stripping. Indeed, the intracluster medium (ICM) contains an amount of metals comparable to the total amount of metals found in galaxies (e.g., Tsuru 1991). The distribution of these metals can be measured exclusively by X-ray spectroscopy. This constrains the total number of SNe in galaxies and the efficiency of the mass transport from galaxies to the ICM. These elements (e.g., Si/Fe ratio) are used to identify their origins (e.g., Renzini et al. 1993).

ASCA and BeppoSAX observations provided the first systematic measurements of Si, S, and Fe abundances and their spatial distributions (e.g., Mushotzky et al. 1996). XMM-Newton has allowed more detailed studies including the O abundance determination (e.g., Tamura et al. 2004). Recent Suzaku data have further improved measurements of elements such as O and Mg (e.g., Matsushita et al. 2007). Mostly, observed abundance patterns are explained by some combinations of origins from Type Ia and Type II SNe (e.g., Fukazawa et al. 1998). Note that the nature of these SNe and hence their total metal products have not completely been understood. In addition, some authors claim that the observed metal abundances require an alternative source such as hypernovae in early generations of stars (Loewenstein 2001; Baumgartner et al. 2005). However, measurements are still limited to abundant elements and even for those elements, statistical and systematic errors are large. See Böhringer & Werner (2009) for a recent review on X-ray spectroscopy of clusters.

Here, we present Suzaku X-ray Imaging Spectrometer (XIS) spectroscopy of the central region of the Perseus cluster of galaxies, which is the brightest cluster in X-rays. This is a calibration target of the XIS and hence has been observed regularly. We used all available data from several exposures. The deep exposure of this unique object along with the high sensitivity of the XIS provides one of the best quality X-ray spectra from clusters. We have detected X-ray line emission from ionized Cr and Mn for the first time from an extragalactic source. Furthermore, we accurately measured elemental abundances of Ne, Mg, Si, S, Ar, Ca, Fe, and Ni.

Throughout this Letter, we assume cosmological parameters as follows: $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$, and $\Omega_{\Lambda} = 0.7$. At the cluster redshift of 0.0183, 1 arcmin corresponds to 22.2 kpc at the cluster distance. We use the 90% confidence level.

2. OBSERVATIONS

As a calibration target, the Perseus cluster has been observed twice a year in various operation modes. Here, we use the data obtained from 2006 February to 2009 February in the normal window mode. Sequence numbers of the data are 800010010, 101012010, 101012020, 102011010, 102012010, 103004010, 103005010, and 103004020. The central galaxy, NGC 1275, has been located at the CCD center. The detector covers a central 17′ × 17′ square region. The XIS 2 sensor was available only until 2006. The cumulative exposure time in the spaced-row charge injection off mode is 300 ks times sensors (XIS 0, XIS 2, and XIS 3; front-illuminated (FI)). Those in the spaced-row charge injection on mode are 580 ks times sensors (FI) and 265 ks (XIS 1; back-illuminated (BI)). Detailed descriptions of the Suzaku observatory, the XIS instrument, and the X-ray telescope are found in Mitsuda et al. (2007), Koyama et al. (2007), Serlemitsos et al. (2007), respectively.

3. ANALYSIS AND RESULTS

3.1. Method

We started the analysis from archived cleaned event files, which were filtered with the standard selection criteria. We used...
the latest calibration file as of 2009 May. We examined light curves excluding the central bright region events ($R < 6'$) for stable-background periods. There was no flaring event in all data. The instrumental (non-X-ray) background was estimated using the night earth observation database and the software xisnbgen (Tawa et al. 2008). The cosmic X-ray background was estimated to be well below 1% of the source over almost the entire energy band. We therefore ignore this cosmic background in the following analysis.

We extracted spectra from three annulus regions with boundary radii of 0.5', 2', 4', and 10' centered on the X-ray maximum. The central region ($R < 0.5'$) is excluded to avoid the contribution from the central galaxy.

We prepared an X-ray telescope response function for each spectrum using the XIS ARF builder software xissimarfgen (Ishisaki et al. 2007), assuming an ICM surface brightness distribution based on an XMM-Newton public image of the cluster as a source image. We simulated events so that the relative error of the response at each energy bin is smaller than 0.25% (using a parameter accuracy). To make the XIS energy response function, we used the software xisarfgen.

To describe the thermal emission from a collisional ionization equilibrium plasma, we used the APEC model (Smith & Brickhouse 2001) with the solar metal abundances taken from Anders & Grevesse (1989). The Galactic absorption is described by the photoelectric absorption of Wisconsin cross sections (wabs model in XSPEC) with the reported neutral hydrogen column density of 1.5×10^{-21} cm$^{-2}$ toward the cluster.

3.2. Spectral Fitting and Elemental Abundances

We fit the data to constrain the thermal nature and metal abundances. To describe the complex thermal structure of the central cooling core, projection effect, and photon mixing due to the point spread function, we introduced two thermal components. Temperatures and iron abundances of the two components were made independently free. In contrast, other abundances of Ne, Mg, Si, S, Ar, Ca, and Ni are coupled between the two components, e.g., \(\text{Ne}_1 = \text{Ne}_2 \). A power-law component with a fixed photon index of 1.8 is also included. This describes a combination of scattering of the central galaxy emission and the possible distributed hard X-ray emission suggested by Sanders et al. (2004). In some spectra, we found line emission at the position of He-like Cr. Because there is no line from Cr included in the APEC model, here, we added a Gaussian component for the Cr line into the fitting model. A detailed analysis of this line is given in the next subsection.

To avoid calibration errors, we ignored energy ranges around the Si K edge (1.6–1.95 keV) and the Au M edge (2.2–2.4 keV). To compensate errors of the energy–pulse-invariant (PI) relation, redshifts of the two APEC components are allowed to be different. In $0.5'–2'$ regions, we used the FI and BI spectra simultaneously. In the $4'–10'$ region, we used only the FI spectrum, since the BI spectrum has a relatively low signal to background ratio at higher energies, >5 keV.

The fitting result is given in Table 1. Statistical errors of elemental abundances are 5%–10% of the best-fit value.

Table 1

Region (Radii)	XIS	χ^2/dof	T1 (keV) (Solar)	Fe1 Norm1a	T2 (keV) (Solar)	Fe2 Norm2a	P-Normb		
0.5'–2'	FI+BI	1246/471	4.2 ± 0.04	0.62 ± 0.01	0.37 ± 0.01	2.2 ± 0.1	0.71 ± 0.02	0.13 ± 0.01	3.1 ± 0.1
2'–4'	FI+BI	1207/471	5.0 ± 0.04	0.53 ± 0.01	0.39 ± 0.01	2.5 ± 0.05	0.83 ± 0.04	0.12 ± 0.01	2.5 ± 0.1
4'–10'	FI	485/239	5.7 ± 0.1	0.45 ± 0.01	0.56 ± 0.01	2.9 ± 0.1	1.5 ± 0.5	0.036 ± 0.01	4.9 ± 0.2

Notes.

a Normalization of VAPEC component in the unit used in XSPEC.

b Normalization of the power-law component in unit of 10^{-2} photons keV$^{-1}$ s$^{-1}$ at 1 keV.

Figure 1. (a) Elemental abundance ratios determined from the two temperature fits. X/Fe (X = Ne, Mg, Si, S, Ar, Ca, and Ni) are shown relative to those of the solar value (i.e., $(X/Fe)/(X/Fe)_{\odot}$). Typical errors are given for the $2'–4'$ region. The Fe abundance is calculated by averaging over those of the two components. (b) Relative differences of the best-fit parameters. Filled circles components. (c) Comparison with previous X-ray measurements. Results of the Fornax cluster (Matsushita et al. 2003), A1060 (Sato et al. 2007), average values of 22 clusters (de Plaa et al. 2007), and M87 (Matsushita et al. 2003) are shown along with the present result of the Perseus cluster ($2'–4'$ region). The two vertical lines indicate "photospheric" (1.0) and "meteoritic" (1.44) solar abundances, corresponding to iron number density, Fe/H, of 4.68 × 10$^{-5}$ and 3.24 × 10$^{-5}$, respectively. (d) Same for (c), but with abundances in extremely metal-poor stars in the Galaxy (Cayrel et al. 2004). Predictions from Type Ia and Type II SNe are also shown in solid and dashed lines, respectively. Model yields are taken from Iwamoto et al. (1999) (W7 model for the Type Ia).
Obtained abundances are shown in Figure 1(a). Here, we use the Fe abundance averaged over those of the two components by weighting by the emission measure.

Examples of the spectral fitting are shown in Figure 2. There are two types of systematic residuals. The first type is that found around strong lines, such as the Fe K line at \(\sim 6.5 \) keV in the 0’5–2’ spectral fit. Limited accuracies in the energy response could cause these discrepancies. Furthermore, uncertainties in the modeling of the Fe K line structure could be larger than the statistics of the current data. The second type of residual can be seen in the energy range of 5.5–7.5 keV only in the 4’0–10’ fit. This could be related to instrumental background. At this energy band, the background is dominated by line emission such as Mn K\(_\alpha\) (5.9 keV), Mn K\(_\beta\) (6.5 keV), and Ni K\(_\alpha\) (7.5 keV). Time variations in line fluxes and changes in the line spread function create errors on the background estimation (Tawa et al. 2008). Nevertheless, each model describes the data with residuals smaller than 5% in most energy bins.

To estimate systematic errors associated with the instrumental calibration, we fit the FI and BI spectra separately and compared the results with those obtained from the combined (FI and BI) fits above. In these fits, statistical errors on abundances are about 5%–10% and 10%–15% for the FI and BI spectra, respectively. As shown in Figure 1(b), relative differences between the separate and combined fits are mostly within 20% and within 30% in all cases. By this comparison and the current calibration status of the XIS, we suppose that the possible systematic errors on the abundances are about \(\pm (20\%–30\%) \) of the best-fit values.

In the core of the Perseus cluster, resonant scattering may redistribute some Fe line photons spatially from the core to the outer region. We examined this effect by following Churazov et al. (2004). The resonant scattering should be relatively significant on the resonance transition of He-like Fe (1s\(^2\)–1s2p) at 6.70 keV. Then, we excluded this line energy band (6.3–6.8 keV) and fit the data again. This fit gives consistent abundances of Fe and Ni with the previous one. This indicates that the scattering is insignificant in our data. Using XMM-Newton data, Churazov et al. (2004) and Gastaldello & Molendi (2004) independently reported consistent results and suggested that the scattering effect is reduced because of gas motions in the core.

3.3. Cr and Mn Line Emission

As mentioned above, we detected X-ray line emission from Cr. Next to Cr, we expect line emission from Mn from a subsolar metallicity plasma. Note that the Cr and Mn solar abundances are about 1% and 0.5% of that of Fe, respectively. To search for these lines, we used the FI spectra integrated over a 0’5–10’ region in spaced-row charge injection on and off modes together. As shown in Figure 3(a), by comparing the data with a bremsstrahlung continuum model, we have detected a line from He-like Cr clearly and that from He-like Mn. Note that in the model used in this fit, the Si-escape line associated with the He-like Fe K\(_\alpha\) line is included. This Si-escape line has a peak at 4.8 keV with a flux of about 1% of the data at that position. Using the same data above and Gaussian line fitting, we measured these line positions and fluxes as given in Table 2. The detection of the Cr line is more than 99.9% confidence level, while that of the Mn line is more than 98% level. The fluxes are measured with respect to that of the He-like Fe K\(_\alpha\) line included. This Si-escape line has a peak at 4.8 keV with a flux of about 1% of the data at that position.

Using the same data above and Gaussian line fitting, we measured these line positions and fluxes as given in Table 2. The detection of the Cr line is more than 99.9% confidence level, while that of the Mn line is more than 98% level. The fluxes are measured with respect to that of the He-like Fe K\(_\alpha\) line at 6.70 keV. The resonance transitions of He-like Cr and Mn are at 5.682 keV and 6.181 keV, respectively (Hwang et al. 2000). The obtained line positions are fully consistent with those of redshifted resonance positions. The equivalent widths of the Cr and Mn lines are about 5 eV and 2 eV, respectively.

9 To assess possible uncertainties in the Fe K line modeling, we compared the APEC with the MEKAL model implemented in the XSPEC. After convolving models with the XIS response, we found differences between the two of 5%–10%. A similar level of model uncertainties is expected.

10 See “The Suzaku Technical Description” available at http://www.astro.isas.jaxa.jp/suzaku/doc/suzaku_td/.
In a similar way as above, we examined spectra from the three regions separately. The significances of the Cr line detections are $>99.9\%$, $>99.9\%$, and 94% confidence from the $0'5–2'$, $2'–4'$, and $4'–10'$ spectra, respectively. The Mn line detection is significant ($>90\%$ confidence) only from the $0'5–2'$ spectrum. In Table 2, we show the obtained line positions and fluxes.

To check if these features are instrumental, we examined the Crab nebula and instrumental background data obtained with the XIS. The Crab has a bright power-law X-ray emission and is a standard calibration source for X-ray instruments. In the Crab spectra, there is no structure at the line positions of Cr and Mn detected above. We found no structure at the same positions in the instrumental background. There are lines from neutral Mn K_{α} (5.895 keV) and K_{β} (6.490 keV). However, these positions are away from those of He-like Cr or Mn. Moreover, we confirmed that the Chandra deep spectrum (\sim1 Ms exposure) shows a line feature at the same Cr position with a flux consistent with the Suzaku data. These facts, redshifted line positions, and the obtained flux as expected from a subsolar metallicity plasma (as calculated in discussion) indicate that we detected the Cr and Mn line emission from the cluster.

To our knowledge, this is the first significant detection of X-ray line emission of Cr and Mn ions from an extragalactic source. Werner et al. (2006) reported the detection of the same Cr line from the cluster 2A 0335+096 at the 2σ level.

4. SUMMARY AND DISCUSSION

Suzaku XIS observations of the Perseus cluster provided one of the best quality X-ray spectra from clusters. We have detected the He-like Cr and Mn lines. Furthermore, we measured the radial distribution of abundances of Ne, Mg, Si, S, Ar, Ca, Fe, and Ni. There is no strong radial variation in relative abundance ratios such as Mg/Fe and Si/Fe. The abundance ratios are within a range of 0.8–1.5 times the solar value.

4.1. Cr and Mn Abundances

Based on observed line fluxes of Cr and Mn ions, we estimated abundances of these elements. There is no atomic data in the
The above-estimated values obtained for Cr and Mn along with the Fe and Ni abundances derived in the spectral fitting provide iron-group abundances for the first time in the ICM. We found Cr: Mn: Fe: Ni ratios close to the solar value. These abundance patterns depend on the nature of their origins, SNe. For example, Badenes et al. (2009) propose to reveal the detailed nature of type Ia SN using Mn, Cr, and Fe X-ray lines in SN remnants. In the case of the ICM metals, we can examine SNe averaged over many events in member galaxies. The present result supports the idea that the metals in the ICM and solar neighborhood were produced in a similar way.

4.2. Abundance Pattern

Our derived abundance pattern is compared with relevant observations and theories below. Some comparisons are shown in Figure 1.

First, the Chandra result in the Perseus cluster (Sanders et al. 2007) is compared. We used their abundance pattern obtained from a region (40–80 kpc) similar to our data, but accounted for projection. The Ne/Fe, S/Fe, Ar/Fe, Ca/Fe, and Ni/Fe ratios are consistent with the Suzuki result. In contrast, the Chandra data show lower Mg/Fe (~0.5) and higher S/Fe (1.5–1.8) values than the solar ratio found in the current study. We suppose that these inconsistencies are caused partly by calibration errors used in Sanders et al. (2004) and partly caused by the difference in the spectral extraction method. Indeed, we found that much longer Chandra data (~1 Ms exposure) with the latest calibration and without the projection correction give Mg and S abundances consistent with our results.

Second, we compared our results with measurements in other clusters (Figure 1(c)). Note that including our study, most results are derived from cluster central regions (within a few 100 kpc). In most elements, our results are consistent with those in other clusters. Exceptions are lower Ar and higher Ca abundances in average values over a sample of 22 clusters reported by de Plaa et al. (2007). We cannot find this trend in the Perseus cluster. For all measured elements from Ne to Fe, the cluster abundances are consistent with the solar ratios within uncertainties. The Ni/Fe ratios are relatively high. This may be a sign of a contribution from Type Ia SNe (e.g., Dupke & White 2000). The subsolar value of O/Fe measured in other studies may have a similar origin (e.g., Tamura et al. 2001).

Third, our measurement is compared with that from Galactic stars with extremely low metallicity (Figure 1(c); Cayrel et al. 2004). The latter abundances should be close to those originated from the first generation of stars and SNe in the universe. The patterns are very different. Among elements that we measured, elements lighter than Cr are more abundant in the metal-poor stars, while Cr, Mn, and Ni are more abundant in the ICM. This comparison, regardless of theoretical models, indicates that the ICM is polluted not solely by the first generations of stars but also by additional source(s) significantly. The additional source(s) should add iron-group elements to the ICM. The most likely dominant contributor is Type Ia SNe, as in the Galactic chemical evolution model (e.g., Kobayashi et al. 2006). The abundance pattern in the Perseus cluster is closer to the solar value than to those in extremely low metallicity stars. Therefore, the contribution of the first generations of stars into the ICM metal is not required largely, in contrast to the model proposed in Loewenstein (2001).

Finally, the measured pattern is compared with theoretical predictions from two types of SNe (Figure 1(d)). The observed abundance pattern cannot be produced solely by each type of SNe. All the observed abundance ratios are between the two predictions, except for Cr and Mn, which have relatively large uncertainties. Consequently, we conclude that the metals in the ICM of the Perseus and other clusters were produced by a mix of both types of SNe. Similar conclusions have been obtained from ASCA, Chandra, and XMM-Newton studies (e.g., Fukazawa et al. 1998; Tamura et al. 2001; Sanders & Fabian 2006). The present data strengthen this scenario.

We thank J. S. Kaastra, K. Hayashida, and the anonymous referee for their comments.

REFERENCES

Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Badenes, C., Bravo, E., & Hughese, J. P. 2009, ApJ, 680, L33
Baumgartner, W. H., Loewenstein, M., Horner, D. J., & Mushotzky, R. F. 2005, ApJ, 620, 680
Böhringer, H., & Werner, N. 2009, arXiv:0907.4277
Cayrel, R., et al. 2004, A&A, 416, 1117
Churazov, E., Forman, W., Jones, C., Sunyaev, R., & Böhringer, H. 2004, MNRAS, 347, 29
de Plaa, J., Werner, N., Bleecker, J. A. M., Vink, J., Kastra, J. S., & Méndez, M. 2007, A&A, 465, 345
Dupke, R. A., & White, R. E., III 2000, ApJ, 528, 139
Fukazawa, Y., Makishima, K., Tamura, T., Ezawa, H., Xu, H., Ikebe, Y., Kikuchi, K., & Ohashi, T. 1998, PASJ, 50, 187
Gastaldello, F., & Molendi, S. 2004, ApJ, 600, 670
Hwang, U., Petre, R., & Hughes, J. P. 2000, ApJ, 532, 970
Ishisaki, Y., et al. 2007, PASJ, 59, S113
Iwamoto, K., Brachwitz, F., Nomoto, K., Kishimoto, N., Umeda, H., Hix, W. R., & Thielemann, F.-K. 1999, ApJS, 125, 439
Kaastra, J. S. 1992, An X-Ray Spectral Code for Optically Thin Plasmas (Internal SRON-Leiden Report, updated version 2.0)
Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N., & Ohkubo, T. 2006, ApJ, 653, 1145
Koyama, K., et al. 2007, PASJ, 59, S23
Loewenstein, M. 2001, ApJ, 557, 573
Matsushita, K., Finoguenov, A., & Böhringer, H. 2003, A&A, 401, 443
Matsushita, K., et al. 2007, PASJ, 59, S27
Mitsu, K., et al. 2007, PASJ, 59, S1
Mushotzky, R., Loewenstein, M., Arnaud, K. A., Tamura, T., Fukazawa, Y., Matsushita, K., Kikuchi, K., & Hatsukade, I. 1996, ApJ, 466, 680
Renzini, A., Ciotti, L., D’Ercolino, A., & Pellegrini, S. 1993, ApJ, 419
Sanders, J. S., & Fabian, A. C. 2006, MNRAS, 371, 1483
Sanders, J. S., Fabian, A. C., Allen, S. W., & Schmidt, R. W. 2004, MNRAS, 349, 952
Sato, K., et al. 2007, PASJ, 59, 299
Serlemitsos, P., et al. 2007, PASJ, 59, S9
Smith, R. K., & Brickhouse, N. S. 2001, ApJ, 556, L91
Tamura, T., Bleecker, J. A. M., Kastra, J. S., Ferrigno, C., & Molendi, S. 2001, A&A, 379, 107
Tamura, T., Kastra, J. S., den Herder, J. W. A., Bleecker, J. A. M., & Peterson, J. R. 2004, A&A, 420, 135
Tawa, N., et al. 2008, PASJ, 60, 11
Tsuru, T. 1991, PhD thesis, Univ. of Tokyo
Werner, N., et al. 2006, A&A, 449, 475

ATOMDB (Smith & Brickhouse 2001) nor MEKAL (Kastra 1992) providing X-ray emissivities of these lines. Then, following Hwang et al. (2000), we used line emissivities of elements (Si, S, Ar, Ca, Fe, and Ni) available from the ATOMDB and estimate those of Cr and Mn. Here, we assumed that emissivities per single ion of these elements at a given temperature is a smooth function of the atomic number. We interpolated the function using spline fits, as shown in Figure 3(b). We used temperatures (Table 2) calculated by averaging over the two thermal components in the best-fit model obtained in Section 3.2. Errors introduced by the interpolation would be smaller than 10%–20%. This estimation along with observed fluxes gives Cr and Mn abundances consistent with our results.