Dental pathology of the wild Iberian wolf (*Canis lupus signatus*): The study of a 20th century Portuguese museum collection

AE Pires a,b,1, IS Caldeira a,1, F Petrucci-Fonseca c, I Viegas a,2, C Viegas d, C Bastos-Silveira c,e, JF Requicha a,d,∗

a Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
b ArchaeoGenetics group from CIBIO - Research Centre in Biodiversity and Genetic Resources/InBIO - Research Network in Biodiversity and Evolutionary Biology, Porto, Portugal and Laboratório de Arqueociências (LARC) – Direcção Geral do Património Cultural (DGPC), Lisbon, Portugal
c CER - Centre for Ecology, Evolution and Environmental Changes, Sciences Faculty, Lisbon University, Lisbon, Portugal
d Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
e MUHNAC - National Museum of Natural History and Science, University of Lisbon, Portugal

ARTICLE INFO

Keywords:
Dental pathology
Canis lupus signatus
Iberian wolf
Museum collection
Dental radiography

ABSTRACT

For some wild canids, such as the Iberian wolf, there is a lack of in-depth knowledge about dental pathology. We aimed to evaluate it, in a standardized manner, in specimens from a Portuguese museum collection.

Sixty-five deceased specimens of wild Iberian wolves, 61 complete skulls and 4 mandibles, collected in Portugal between 1977 and 1995, were analyzed. Sample comprised 18 females, 24 males and 23 individuals of undetermined sex. Teeth were evaluated by visual observation and dental radiography for tooth wear, periodontitis, fractures and other dental lesions.

We have found several causes for teeth absence: artefactual, secondary to periodontitis and agenesia. About 30% of the teeth showed signs of wear. Only a small (<13%) fraction of maxillary and mandibular teeth did not show periodontitis. The tooth 308 showed periodontitis in all males (*p* = 0.017) and the tooth 104 was significantly affected by this condition in females (*p* = 0.020). A significant relationship was found between females and tooth wear in three teeth. Periodontitis showed a significant association with tooth wear (*p* < 0.001) and fractures (*p* = 0.027). Tooth fractures were more frequent in the maxilla than in the mandible. Seven periapical lesions, seven root fusions and three specimens with malocclusion were identified in the collection.

Results are discussed integrating information from diet, habitat, genetic and spatial behavior.

Dental radiography is here proposed as an approach for the age estimation in archaeological canids. This research contributes to the knowledge of the dental disease in the largest wolf population in Western Europe, a target subspecies of multiple conservation measures.

1. Introduction

The Iberian wolf *Canis lupus signatus* (Cabrera, 1907) is an Iberian Peninsula endemism of the European gray wolf. Currently its population is isolated from its European counterparts (Chapron et al., 2014; Hindrikson et al., 2017) and its distribution spans from the northwestern part of the Iberian Peninsula to south of the Douro river, with an uncertain small group in Sierra Morena (south of Spain) (Álvares, 2011; López-Bao et al., 2015). Demographically, the population reached minimum numbers in the 1970’s, but has expanded to an estimated size of > 2,000 individuals (Álvares, 2011). In Portugal, the conservation status of this sub-species is “endangered” (Cabrál et al., 2005) and it is fully protected by law in Portugal (Decree-Law No. 139/90 regulating Law No. 90/88). In Spain, its protection varies regionally (Trouwborst, 2014). Iberian wolf persists in landscapes with high human densities and, although being a highly mobile mammalian carnivore, the Iberian wolf shows high levels of genetic structure and low levels of admixture between clusters (Silva et al., 2018).

As to diet, wolves are carnivores, but can act as opportunist to adapt to a large variety of ecological conditions in the wild. The world’s gray wolves feeding habits have been recently characterized (Newsome et al., 2016), showing significant differences among...
2.1. Museum collection

The present study was conducted using the Mammal Collection from the National Museum of Natural History and Science (MUHNAC), University of Lisbon, Portugal. Sixty-one complete skulls and four mandibles of Iberian wolves were analyzed (Supplementary Materials, Table S1). These specimens were collected in Portugal between years 1977 and 1995, resulting from scientific research projects, in particular the Portuguese lupine population study (Petrucci-Fonseca, 1990) and monitoring campaigns conducted by the Portuguese Wolf Group (http://www.grupolobo.pt/) within the area of the Iberian wolf geographical distribution in Portugal. These animals were found dead in the wild, mainly by causes including hunting (until 1988), illegal trapping, road killing and poisoning. No animal was sacrificed for the purpose of this investigation.

2.2. Macroscopic analysis

All teeth from the four dental quadrants were assessed for dental alterations according to American Veterinary Dental College nomenclature (AVDC, 2016) and these were annotated in a dental chart according to the modified Triadan system currently used in Veterinary Dentistry (Fig. 1). For the visual evaluation, the following parameters were investigated: absent teeth, periodontal disease and its stages, tooth wear and presence of primary teeth, presence of periodontal lesions, tooth fractures and tooth malformations (Supplementary Materials, Table S2). All museum specimens were handled with care and the observers wore latex gloves during their observations.

2.3. Radiographic analysis

The intraoral radiographic analysis has been useful in carnivore companion animals for the diagnosis and treatment of tooth and periodontal conditions (Bannon, 2013). Dental x-rays also offer the possibility to estimate specimens' age at death (Park et al., 2014). Based on dogs' radiographic dental anatomy, if there was a wide pulp chamber and if the root apices were opened the specimen was considered younger than 18 months old (Gorrel, 2004).

In the present study, a portable dental x-ray generator (Port-X II, Genoray, South Korea) and an indirect digital system (VistaScan Mini View, Durr Dental, Germany) were used to perform the dental radiographs, whenever there was a need to further characterize any identified alteration. For mandibular premolars and molars teeth, the parallel technique was carried out. For canines, incisors and maxillary premolars and molars teeth, the bisecting technique was used (Bannon, 2013).

2.4. Statistical analysis

For the statistical analysis we used the software SPSS, version 22.0 (IBM, USA). For the studied parameters the descriptive statistics was based on a frequency analysis. The inferential statistical analysis was based on chi-square tests, when relationships between the parameters were established. We considered a p value as significant when its value is ≤ the significance level of α = 5%.

All the postmortem lesions, or marks derived from specimen preparation and preservation, were registered, but not included in the statistical analysis. In artefactual exfoliated teeth it was possible to evaluate and classify some of the studied parameters, such as the tooth wear, tooth fractures and tooth malformations.

3. Results

In the present study, a total of 61 complete skulls and 4 mandibles were observed, resulting in 1,280 maxillary and 1,309 mandibular teeth screened for dental lesions.

Only five (7.69%) of the studied specimens were considered young animals, less than 8 months old, as adult teeth eruption was ongoing. In contrast, 60 individuals (92.31%) were considered to be adults due to
the observation of permanent dentition. Eighteen specimens were females, 24 were males and 23 had no data regarding sex identification. Hereafter, data are reported per tooth and not per specimen.

Fig. 2 illustrates the usefulness of dental radiography as a tool for evaluating the morphology of endodontic system, namely the width of root canals and the apex appearance.

3.1. Absent teeth

One hundred and forty teeth, approximately 11% (10.9%) of the maxillary teeth were artefactually absent (Figs. 3.A and 4.A). The acquired absence of teeth, most likely due to periodontitis, amounts to 16 (1.3%) (Fig. 3.D and 4.B). A minute fraction of two teeth (0.2%) were under eruption.

Regarding the mandibular teeth, 126 (9.6%) were artefactually absent (Fig. 4.C,E), 10 (0.8%) refers to acquired absence due to periodontitis, four (0.3%) were agenesic (Figs. 3.B-C and 4.D) and five (0.4%) were erupting. The teeth 306, 311 and 411 were the most frequently absent by agenesia (1, 1.7%; 2, 3.3% and 1, 1.7%, respectively). In this study, artefactual absence was the most frequent cause of tooth absence.

3.2. Tooth wear

We were able to evaluate dental wear in 1,122 of maxillary teeth, and 635 presented signs of wear. The tooth 208 showed dental wear in 51 cases (81%). In contrast, tooth 105 exhibited dental wear in 22 cases - the lowest frequency (40.8%). In a small fraction of 70 teeth (6.7%), it was not possible to estimate dental wear stage due to tooth absence. The remaining 412 teeth (36.7%) showed dental wear stage 0, 266 (23.7%) stage 1, 167 (14.9%) stage 2, 150 (13.4%) stage 3 and 52 (4.6%) stage 4. In the maxillary teeth, tooth wear stage 1 was the mostly detected. The tooth with a higher wear grade (grade 4) was tooth 109, followed by teeth 108, 209 and 208, in a frequency of 10.0% (6), 10.0% (6), 8.5% (5) and 8.1% (4), respectively (Figs. 3.D and 5.E-F).

In a total of 1,161 mandibular teeth, in which dental wear analysis was possible, 672 teeth (61.7%) showed signs of wear. In 72 of these teeth (6.2%), it was not possible to assess the dental wear stage. In 417 (35.9%) teeth, we found evidence of dental wear stage 0, 302 (26.0%) stage 1, 184 (15.8%) stage 2, 134 (11.5%) stage 3 and 52 (4.5%) stage 4. The mandibular teeth that showed the highest and lowest frequency of dental wear were tooth 409 (50, 83.6%) and tooth 401 (18, 32.6%), respectively. Stage 1 was the most observed dental wear stage. The mandibular teeth most affected by dental wear stage 4 (severe) were the mandible carnassial teeth 409 (11, 18.2%) and 309 (8, 15.5%) (Figs. 3.E-F, 4.D-F and 5.G-H).

3.3. Periodontal disease

Periodontitis, which includes the periodontal disease stages 2 to 4, was present in 908 of the 1,123 maxillary teeth analyzed for this parameter (92.1%). For 91 teeth (8.1%), it was not possible to determine the stage of the periodontal disease (avulsed or extruded teeth). In the assessed teeth, 124 (11.0%) presented periodontal disease stage 0–1 (absence of periodontitis), 830 (73.9%) stage 2 (mild periodontitis), 72 (6.4%) stage 3 (moderate periodontitis) and only six (0.5%) stage 4 (severe periodontitis) (Fig. 3.G-H and 5.A-B, Table 1).

Periodontitis was found in 876 (88%) of 1164 mandibular teeth. In a fraction of 109 (9.4%) of the mandibular teeth, periodontal disease was not possible to be assessed due to artefactual dental avulsion or extrusion from the alveolus. In the remaining teeth, 179 (15.4%) did not show signs of disease, 792 (68.0%) stage 2, 80 (6.9%) stage 3 and 4 (0.3%) stage 4 (Figs. 3.I-J, 4.E-F and 5.C-D, Table 1).
3.4. Tooth fracture

Regarding the presence of tooth fractures, among the 1,124 maxillary teeth analyzed for this parameter, only 52 (4.5%) showed fractures. Twenty of the latter (1.8% from the total) were enamel fractures, 16 (1.4%) complicated crown fractures, 5 (0.4%) complicated crown-root fractures, 6 (0.5%) uncomplicated crown fractures and in 5 (0.4%) uncomplicated crown-root fractures. The maxillary tooth with the highest fracture frequency was tooth 203 (6, 10.3%), followed by 104 (5, 9.1%) and 107 (5, 9.1%). Teeth 102 and 210 never revealed fractures.

Considering the 1,164 mandibular teeth available to be evaluated, only 35 (3.0% from the total) presented fractures, among which 15 of them (1.3%) were enamel fractures, 7 (0.6%) were complicated crown fracture, 7 (0.6%) uncomplicated crown fracture and 6 (0.5%) classified as complicated crown-root fractures. The mandibular teeth with highest frequency of fracture were the 203 (6, 10.3%), followed by 104 (5, 9.1%) and 107 (5, 9.1%). Teeth 102 and 210 never revealed fractures.

3.5. Other observed abnormalities

Seven periapical lesions were also identified in the collection by visual observation of a bone defect (Fig. 3.M-N) and further confirmed by X-ray analysis (Fig. 4.B).

Three wolves were identified with mandibular distoclusion, a skeletal malocclusion, and tooth wear (stages 3–4 in two specimens and stages 1–2 in the third) was observed possibly secondary to attrition. Persistence of deciduous teeth was not observed in the studied collection.

Regarding tooth malformations, seven individuals, two males and five females, presented teeth with fused roots in the 206 tooth (5 times), 406 tooth (3), and in 206, 210 and 110 teeth (3 for each) (Figs. 3.O and 4.C).

3.6. Significant associations

A significant relationship between the presence of periodontitis and sex was detected for tooth 308 in males ($p = 0.017$) and tooth 104 in females ($p = 0.020$). All 104 teeth analyzed in females ($n = 15$) exhibited periodontal disease from stage 2 to 4. A significant relationship
was found between females and tooth wear in the following teeth: 305 ($p = 0.031$), 404 ($p = 0.018$) and 406 ($p = 0.019$).

We have found another statistically significant association, between tooth wear and periodontitis, in both maxilla and mandible ($p < 0.001$). Periodontitis and fractures were also positively correlated ($p = 0.027$), but restricted to the maxilla (association not verified for the mandible, $p = 0.095$).

4. Discussion

Natural history collections are an important source of information about extant and extinct organisms and constitute valuable foundations for research on several scientific domains. The National Museum of Natural History and Science (MUHNAC) is the institution responsible for holding the national collection of wolves resulting from the “Monitoring System for dead Iberian wolves” conducted by the Portuguese Nature Conservation Institute since 1999. With more than 100 specimens, comprising skulls, skins, complete skeletons and mounted specimens, MUHNAC holds the largest Iberian wolf collection at national level. The analysis of museum collections allows the characterization of normal and pathological anatomy of different animal species. Therefore, this work contributes to this objective, namely, in the assessment of dental pathology in the Iberian wolf.

4.1. Absent teeth

In our study, the most frequent cause for tooth absence seems to be artefactual and two factors may explain that. First, tooth absence could be the result of longer exposure, of the carcass, to adverse environment conditions before being collected. Secondly, effects of the taxidermic process during specimen preparation cannot be discarded. The teeth that showed congenital absence were the 306, 311 and 411. Lacerda and colleagues (2000) observed that, in 100 skulls obtained from dead dogs, only two showed absence of both left and right third mandibular teeth (teeth 311 and 411, respectively) and one specimen also showed a congenital absence of both right and left 2nd maxillary molars (teeth 110 and 210, respectively) (Lacerda, Oliveira, and Queiroz, 2006). The high frequency of congenital absence of mandibular third molars (311...
The distinction between both types of wear is important when evaluating wild wolves. In the present study, we followed this methodology but document the presence of any unerupted or retained tooth bone filling in the alveolus.

From the analysis of 500 gray wolf skulls, Vilà et al. (2008) described 101 cases with acquired missing teeth associated to periodontitis (61 located in the maxilla and 40 in the mandible). Alveolar bone resorption was more frequent in premolars, followed by those of molars. In nine cases, authors observed anodonty of uncertain origin. The Alveolar sockets, after adult teeth exfoliation, were filled by trabecular bone during the process of bone regeneration (Vilà et al., 2008). The bone resorption was more frequent in premolars, followed by those of molars (periodontitis, periodontal disease stages 2–3) (Albuquerque et al., 2010). Considering that only three specimens were observed with a mandibular dislocation which causes attrition between teeth, we can affirm that the majority of the tooth wear identified in the collection (ca. 60% of the teeth) was due to abrasion possibly caused, for example, by inadequate handling of abrasive objects.

Given the above, the association between teeth wear and increasing age is not an easy task and needs further investigation. However, Gipson and collaborators (2000) mention that the carnassial teeth, in gray wolves, starts to show signs of dental wear in animals older than 6 years old. Considering that in our study the most frequently observed tooth wear grade was grade 1, we can infer that the analyzed MUHNAC skulls analyzed belonged to animals that died with less than 6 years old, and therefore were young adults. This is in accordance with data from Petrucci Fonseca (1990), who estimated the age of these specimens of MUHNAC collection, based on cementum aging analysis of 81 teeth and also on baculum morphology.

Table 1

Periodontal disease	Maxilla (n = 1,123)	Mandible (n = 1,164)
Stages 0–1	124; 11%	179; 15.4%
Stage 2	830; 73.9%	792; 68.0%
Stage 3	72; 6.4%	80; 6.9%
Stage 4	6; 0.5%	4; 0.3%
Not possible to evaluate	91; 8.1%	109; 9.4%

Table 2

Tooth fracture	Maxilla (n = 1,124)	Mandible (n = 1,164)
Uncomplicated crown fracture	6; 0.5%	7; 0.6%
Complicated crown fracture	16; 1.4%	7; 0.6%
Uncomplicated crown root fracture	5; 0.4%	0; 0%
Complicated crown and root fracture	5; 0.4%	6; 0.5%
Enamel fracture	20; 1.8%	15; 1.3%

and 411 teeth) maybe related to their small sized roots and less alveolar bone support at mandible. These teeth, as well as both the mandibular and maxillary first and second premolars (teeth 108 and 208) are the most frequently reported to be missing in Terrier dogs (Pavlja, Erjavec, and Petelin, 2001).

From the analysis of 500 gray wolf skulls, Vilà et al. (2008) described 101 cases with acquired missing teeth associated to periodontitis (61 located in the maxilla and 40 in the mandible). Alveolar bone resorption was more frequent in premolars, followed by those of molars. In nine cases, authors observed anodonty of uncertain origin. Alveolar sockets, after adult teeth exfoliation, were filled by trabecular bone during the process of bone regeneration (Vilà et al., 2008). The present study also showed similar results, as the teeth with a higher bone during the process of bone regeneration (Vilà et al., 2008). The tooth with periodontitis (Hoffmann and Gaengler, 1996). Other authors referred that periodontal disease has a higher prevalence in small and miniature breeds (Harvey, 1998). Different frequencies were already reported in Yorkshire Terrier (25.2%), Cocker Spaniel (12.8%), cross-breeds (9.2%), Labrador Retriever (3.2%) and Staffordshire Bull Terrier (2.4%) (O Neill, Church, McGreevy, Thomson, and Brodbelt, 2014). Domestication factors, such as stress, longer mean life span and chemical and mechanical aspects of the diet, in addition to the genetics, could justify the higher incidence of the disease in dogs comparing to wild canids (Harvey, 1998). In our study, ~90% of the analyzed teeth showed signs of periodontitis (periodontal disease stages 2 to 4). It is important to note that, some wolves which did not show clinical or radiographic signs of periodontitis, such as alveolar bone lysis, may have suffered from periodontal disease stage 1 (gingivitis). This condition leaves no marks on the skulls, because the gingival insertion at the cementoenamel junction can only be assessed when soft tissue is present (Janssens et al., 2016). Thus, an important management measure would be to assess gingivitis, through the visualization of the oral tissues, during medical intervention on Iberian wolves individuals.
which are under monitoring programs. The fact that wild Iberian wolf can scavenge and feed on dumpsters (David Mech and Boitani, 2007), could lead an extra load of oral microorganisms that predisposes this subspecies to periodontal disease. Our results show that maxillary tooth 108, used to break bones and grind small fragments, showed the highest frequency of periodontitis, and in mandible the tooth showing the highest frequency of periodontitis was the 402. The higher frequency of periodontitis in a maxillary carnassial tooth (108) could be justified by the significative mechanical stress caused during mastication that can justify the nonbacterial etiology of periodontal lesions and the observed changes in alveolar bone mineral density (Tsutsumi et al., 2018).

4.4. Tooth fracture

The observation of fractures at the gingival level of a tooth is reported as very frequent in wild wolves (Vilà et al., 2008), however, in our study, these fractures were not frequently found. Valkenburgh (1988) refers that the most fractured teeth in African carnivores that consume bones, such as hyenas, are the canine teeth, followed by the premolars, first molars and incisive teeth. In Alaskan wolves, canines and premolars were found with fractures teeth in around half of the collection (Döring et al., 2018), in opposition to the data published by Losey, Jessup, Nomokonova, and Sablin (2014) who noted fractures in 27.8% of wolves, mainly in maxillary incisors and canines. The same team refer that male wolves suffered more tooth fracture than females, being the Subarctic Russian wolves those having more females than males affected.

This dental abnormality was recently highlighted in Pleistocene carnivores, being associated with the increase of bone consumption related with intensified interspecific competition when prey availability become scarce (Van Valkenburgh, Peterson, Smith, Stahler, and Vucetich, 2019). A study by Cuesta et al. (1991) report the analysis of stomach content and scats from specimens collected between 1970 and 1985 (partially covering the temporal range of our sampling) and mention that Iberian wolf diet varied much along the Spanish territory. Just the Sierra Morena population (south of Spain), which survival is nowadays uncertain (Álvares, 2011; López-Bao et al., 2015), preyed exclusively on large game. Iberian wolves largely rely on domestic species (Álvares, 2011; Petrucci-Fonseca, 1990), which are abundant in the geographical distribution of the Iberian wolf (meat availability and low levels of bone consumption) and this may contribute to the lower level of teeth fractures we detected in the collection examined.

4.5. Other observed abnormalities

Caries result from a bacterial decay of the tooth structure caused by acids from oral bacteria fermenting carbohydrates (Hale, 2009). Pavlović et al. (2007) observed that, in 34 skulls from wild wolves from Croatia, three animals (8.8%) showed signs of cavities at the mandibular molars. Our data contrasts this findings since cavities were not observed in any of the 1,280 maxillary and 1,309 mandibular teeth screened in this study. In fact, our result support the idea that cavities are rare in carnivores (Kyllar and Witter, 2005). In gray wolves, Döring et al. (2018) have just reported one carious lesion among 392 specimens. Hale (2009) founds that 5.25% of adult canine patients had one or more cavities. This low incidence is justified by the protective alkaline salivary pH and the existence of tooth crowns with secodont morphology (cutting edges on the cusps) where is more difficult to accumulate carbohydrates in the grooves, more typical in human buccal teeth. Wild animals tend to feed on a more fibrous diet. In periods of food scarcity, gray wolves can consume fruits, berries and nuts (Ellis and Sloan, 2006).

Fusion of the teeth roots is a rare case, but we detected seven cases of such abnormality. We were unable to assess if there were adequate environmental conditions for a normal development of the teeth or not. In the studied collection, supernumerary teeth and enamel hypoplasia were not identified, in opposition to data reported by Janssens et al. (2016) from Middle East wild wolves.

Regarding malocclusion, it was referred to be inexistant in Alaskan wolves (Döring et al., 2018), on contrary to the observed in an inbred wolf population from Scandinavia, where Raikkonen, Vucetich, Vucetich, Peterson, and Nelson (2013) found severe forms of malocclusion. Based on genetic data, the Iberian wolf population, in which only three cases of this condition were observed, is highly fragmented as showed by the statistically supported genetic clusters (Silva et al., 2018). Despite the surprisingly low dispersal level of these animals in Iberia, the inbreeding level across clusters is considered to be low, with only the groups South of Douro river and Alto Minho presenting mean relatedness values that would be expected for half-siblings (i.e., $r \geq 0.25$) (Silva et al., 2018).

4.6. Sex related dental alterations

We observed a significant relationship between periodontal disease and the sex of the specimen regarding teeth 104 in females and 308 in males. Canine teeth are most used to capture and tear prey's meat. Ellis and Sloan (2006) refer that in most cases females are the hunters since they are 20–25% smaller than males and therefore can run faster. In our study, no association was observed between tooth wear and sex, except in three teeth, corroborating what Döring et al. (2018) found for Alaskan wolves.

4.7. Tooth wear, fractures and periodontitis

In our study, we detected a significant association between periodontitis and tooth wear or fractures (for maxilla only). The main function of maxillary fourth premolars and mandibular first molars, known as carnassial teeth, is to break prey's large bones and grind fragments. We suggest that the pressure caused between teeth during hunting activities are the most frequent cause for fractures which can worsen dental wear and then cause periodontitis. No association between tooth wear and fracture was found.

In Schnauzer dog breed, periodontitis progression is known to be faster in older specimens (Marshall et al., 2014). As mentioned by Vilà et al. (2008), the number of fractures is related to the periododontal disease and increases with age, mainly as a result of dental mechanical trauma suffered during hunting and feeding behaviours throughout animal's life. Döring et al. (2018) found that periodontitis was significantly more frequent in adult wolves (75.0%) than in young individuals (41.9%).

4.8. Tooth and age estimation

Geiger and colleagues estimates dental maturity, according to completed eruption of permanent dentition, of 10 to 11 months in domestic dogs and 10 to 12 months in wolves (Geiger et al., 2016). However, dental maturation continues throughout the dog's life, even after eruption of permanent dentition, through secondary dentin deposition by odontoblasts leading to increased dentin thickness and decreased endodontic space width (Gorrel, 2004). As opposed to the histological evaluation of dentin layers, the analysis of dental radiographic images is not an invasive method, allowing to ascertain with great precision the age of the individuals, namely, by measuring the pulp canal vs root width ratio (PCR) (Kershaw, Allen, Lisle, and Withers, 2005), a method already applied by members of this team in mandibular first molars of client-owned Yorkshire Terrier dogs (Pereira et al., 2019).

Using data and approach implemented by the above-mentioned works (Gorrel, 2004; Pereira et al., 2019) we evaluated the age of some of the specimens screened for dental lesions. Based on the radiographic visualization of a single wide-open apex (ongoing rizogenesis) we
estimate that the specimens represented by Fig. 2 A-D are younger than 7 months old. For specimens shown on Figs. 2 E-H and 2 I-L, a confirmed apexogenesis and their wide root canals (PCR = 0.68 and 0.25, respectively) lead to estimate that these individuals are younger than 2 years old. On Fig. 2 M-H we can find adult wolves between 2 and 8 years old, as we can observe the presence of narrower canals (PCR = 0.11).

These results encourage future studies focusing on the analysis of the pulp canal vs root width ratio and its relationship with specimens’ age in archeological specimens -historic and prehistoric. Considering that determination of the age in archeological remains is of major importance in Zooarchaeology, this non-destructive method for the tooth sample can generate baseline information for age estimation in archeological specimens -historic and prehistoric Canis, when teeth with roots are preserved.

5. Conclusion

Museum collections can provide access to crucial information about wild species concerning their oral health condition, especially in cases where individuals are difficult to capture or handle in the wild. Additionally, due to their time-series and cross-taxa collections, specimens from museums allow researchers to be able to evaluate the epidemiology of the certain pathologies across time and between related species.

Observed dental and periodontal abnormalities, like severe periodontitis or tooth fractures could be a cause of pain and discomfort which possibly led do difficulties in feeding and a general bad health condition in some wolves. The Iberian wolves studied revealed high frequency of periodontitis, although not severe on their majority and high frequency of tooth wear, which is in accordance to their food habits and feeding behavior, at least within the time range of almost 20 years interval (1977–1995) considered in the present work.

Our results showed that the application of dental radiography in the evaluation of museum specimens is of great relevance because it allows for a better diagnosis and classification of the dental pathology, specially from a historical perspective. Additionally, as highlighted in this study, it can be an important tool for zooarchaeologists in the identification of the approximate age of the Canis specimens when teeth roots are present.

To our knowledge, the present study is the first to be applied to the wild Iberian wolf population. The achieved results contribute to pave the way to identify a set of dental parameters to be assessed in live specimens when photos from the oral cavity are available. Since oral health has an impact in the global welfare of individuals, it would be important to include the studied parameters on the ongoing monitoring programs for this endangered species. The data collected, when analyzed in conjunction with ecological and genetic data, provides crucial information for wildlife and captive populations of wolves.

Author contributions

AEP and JFR conceived the idea; ISC, CV and JFR registered the dental abnormalities in the studied specimens; FFP and CBS were responsible for the selection of the museum collection; IV performed the statistical analysis; AEP, ISC and JFR wrote the paper with input from all authors.

Acknowledgments

The research leading to these results has received funding from the National Portuguese Foundation for Science and Technology (FCT grant 29545-02/SAICT/2017 - PTDC/HAR-ARQ/29545/2017). We thank Dr. Cleia Detry from UNIRARQ - Centro de Arqueologia, Faculdade de Letras from Lisbon University (Lisbon, Portugal) for her insights and expertise in the analyses of museum specimens and to Mr. Rui Escudeiro from Dentalvet-iM3 company for his support in the radiographic analysis. We also thank Dulce Silva Gould and Robert William Gould for the English revision of this manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.vas.2020.100100.

References

Albuquerque, C., Morinha, F., Requicha, J., Martins, T., Dias, I., Guedes-Pinto, H., et al. (2012). Canine periodontitis: the dog as an important model for periodontal studies. The Veterinary Journal, 191(3), 299–305.
Álvares, F. (2011). Ecologia e conservação do lobo (Canis lupus, L.) no Noroeste de Portugal. Lisboa: Faculdade de Ciências, University of Lisbon193 PhD Thesis Conservation Biology.
Arthur, C., Watt, K., Nussey, D. H., Pemberton, J. M., Pilkington, J. G., & Herman, J. S. (2015). Osteoarthritosis of the temporomandibular joint in free-living Soay sheep on St Kilda. The Veterinary Journal, 204(1) 120-105.
AVDC. (2016). American veterinary dental college AVDC nomenclature [WWW document]. URL: http://www.avdc.org/Names/Nomenclature/Nomen-inro.html.
Bannon, K. M. (2013). Clinical canine dental radiography. Veterinary Clinics of North America: Small Animal Practice, 43(3), 507–532.
Barber-Meyer, S. (2012). Severe maxillary osteomyelitis in a gray wolf (Canis lupus). Canadian Field-Naturalist, 126(3), 238–241.
Binder, W. J., & Van Valkenburgh, B. (2010). A comparison of tooth wear and breakage in Rancho La Brea sabertooth cats and dire wolves across time. Journal of Vertebrate Paleontology, 30(1), 255–261.
Cabra, M. J., Almeida, J., Almeida, P. B., Dellinger, T., Ferrand de Almeida, N., Oliveira, M., et al. (2005). Livro vermelho dos vertebrados de Portugal. Lisboa: Instituto da Conservação da Natureza (ICNF).
Cabrera, A. (1907). Los lobos de España. Boletín de la Real Sociedad Española de Historia Natural, 7, 193–197.
Chapron, G., Kazczenzy, P., Linnell, J. D. C., von Arx, M., Huber, D., Andrén, H., et al. (2014). Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science, 346(6216), 1517–1519.
Collados, J., Garcia, C., & Rice, C. A. (2018). Dental pathology of the Iberian lynx (Lynx pardinus, Part I: Congenital, developmental, and traumatic abnormalities. Journal of Veterinary Dentistry, 35(3), 195–208.
Cuesta, L., Barcena, F., Palacios, F., & Regis, S. (1991). The trophic ecology of the Iberian wolf (Canis lupus signatus, cabrera, 1907): A new analysis of stomach’s data. Mammalia, 52(2), 239–254.
Mech, L. D., & Boitani, L. (2007). Wolves – Behavior, ecology, and conservation (2nd ed.). Chicago: University of Chicago Press.
de Lacerda, M. S., de Oliveira, S. T., & Queiroz, D. N. (2000). Anatomical variations in the dentition of mongrel domestic dogs. Ciência Rural, 30(4), 655–659.
Döring, S., Arzì, B., Winer, J. N., Kass, P. H., & Verstraete, F. J. M. (2018). Dental and temporomandibular joint pathology of the grey wolf (Canis lupus). Journal of Comparative Pathology, 160, 56–70.
Ellis, S., & Sloan, M. (2006). Spirit of the Wolf (3rd ed.). New York: Barnes and Noble.
Geiger, M., Gendron, K., Willimitzer, F., & Sánchez-Villagra, M. R. (2016). Unaltered sequence of dental, skeletal, and sexual maturity in domestic dogs compared to the wild. Zoological Letters, 2(1), 16.
Gisp, P. S., Ballard, W. B., Nowak, R. M., & Mech, L. D. (2000). Accuracy and precision of estimating age of gray wolves by tooth wear. The Journal of Wildlife Management, 64(3), 752–758.
Gorel, C. (2004). Anatomy of the teeth and periodontium. In C. Gorel (Ed.). Veterinary dentistry for general practitioners (pp. 30–33). Philadelphia: W.B. Saunders.
Hale, F. A. (2009). Veterinary dentistry: dental caries in the dog. Canadian Veterinary Journal, 50(12), 1301–1304.
Harvey, C. E. (1998). Periodontal disease in dogs. Etiopathogenesis, prevalence, and significance. Veterinary Clinics of North America: Small Animal Practice, 28(5), 111–1128.
Hindrikson, M., Remm, J., Pilot, M., Godinho, R., Stronen, A. V., Baltrūnaitė, L., et al. (2017). Wolf population genetics in europe: A systematic review, meta-analysis and significance. Veterinary Clinics of North America: Small Animal Practice, 43(5), 1111–1128.
Janssens, L., Verhaert, L., Berkovich, D., & Adriaens, D. (2016). A standardized framework for examination of oral lesions in wolf skulls (Canis lupus). Journal of Mammalogy, 97(4), 1111–1124.
Kershaw, K., Allen, L., Lisle, A., & Withers, K. (2005). Determining the age of adult wild dogs (Canis lupus dingo, C. l. domesticus and their hybrids). I. pulp cavity:Tooth width ratios. Wildlife Research, 32(6), 581–585.
Kyllar, M., & Witter, K. (2005). Prevalence of dental disorders in pet dogs. Veterinární Medicína – Czech. 40(11), 496–505.
Llaneza, L., López-Bao, J. V., & Sazatornil, V. (2012). Insights into wolf presence in human-dominated landscapes: The relative role of food availability, humans and landscape attributes. Diversity and Distributions, 18(5), 459–469.
López-Bao, J. V., Blanco, J. C., Rodríguez, A., Godinho, R., Sazatornil, V., Álvares, F., et al. (2020). Vulcanismo e conservação do lobo (Canis lupus dingo, C. l. domesticus e suas híbridos). Zoologica, 1–7.
(2015). Toothless wildlife protection laws. *Biodiversity and Conservation, 24*(8), 2015–2018.

Losey, R. J., Jessup, E., Nomokonova, T., & Sablin, M. (2014). Cranio-mandibular trauma and tooth loss in northern dogs and wolves: Implications for the archaeological study of dog husbandry and domestication. *PloS ONE, 9*, e99746.

Mackinnon, M. (2010). ‘Sick as a dog’: Zooarchaeological evidence for pet dog health and welfare in the Roman world. *World Archaeology, 42*(2), 290–309.

Marshall, M. D., Wallis, C. V., Milella, L., Golyer, A., Tweedie, A. D., & Harris, S. (2014). A longitudinal assessment of periodontal disease in 52 miniature schnauzers. *BMVC Veterinary Research, 1*(10), 166.

Newsome, T. M., Boitani, L., Chapron, G., Ciucci, P., Dickman, C. R., Dellinger, J. A., Lopez-Bao, J. V., Peterson, R. O., Stores, C. R., Wirsing, A. J., & Ripple, W. J. (2016). Food habits of the world’s grey wolves. *Mammal Review, 46*, 259–269.

Niemiec, B. A. (2008). Oral pathology. *Top Companion Animal Medicine, 23*(2), 59–71.

O Neill, D. G., Church, D. B., McGreevy, P. D., Thomson, P. C., & Brodbelt, D. C. (2014). Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. *PloS ONE, 9*(3), e90501.

Park, K., Ahn, J., Kang, S., Lee, E., Kim, S., Park, S., et al. (2014). Determining the age of cats by pulp cavity/tooth width ratio using dental radiography. *Journal of Veterinary Science, 15*, 557–561.

Pavlović, D., Gomerčić, T., Gužvica, G., Kusak, J., & Huber, D. (2007). Prevalence of dental pathology in wolves (*Canis lupus*) in Croatia: A case report. *Veterinarats Arhiv, 77*(3), 291–297.

Pereira, J., Viegas, I., Venturini, M., Ferro, D., Corrêa, H., Matos, R., et al. (2019). Evaluating the relationship between age and pulp canal: dental root ratio on dental X-rays of 53 yorkshire terrier dogs. In European Veterinary Dental Society (Ed.). *Proceedings book of the XXVIII European Veterinary Dental Forum* (pp. 147). Utrecht.

Petrucci-Fonseca, F. (1990). *O lobo (Canis lupus signatus Cabrera, 1907) em Portugal. Problematica da sua conservaçao*. Lisbon: Faculdade de Ciências, University of Lisbon.

Petrucci-Fonseca, F. (1990). *O lobo (Canis lupus signatus Cabrera, 1907) em Portugal. Problematica da sua conservaçao*. Lisbon: Faculdade de Ciências, University of Lisbon.

Pinto, M. (2014). *Toothless wildlife protection laws*. *Biodiversity and Conservation, 24*(8), 2015–2018.

Raikkonen, J., Vucetich, J. A., Vucetich, L. M., Peterson, R. O., & Nelson, M. P. (2013). What the inbred Scandinavian wolf population tells us about the nature of conservation. *PloS ONE, 8*, e67218.

Rosenberg, H. M., Rehfeld, C. E., & Emmering, T. E. (1966). A method for the epidemiologic assessment of periodontal health-disease state in a beagle hound colony. *Journal of Periodontology, 37*(3), 208–213.

Shelbourne, T. (2010). *Life and behaviour of wolves. Wolf teeth: dentition disease*. [WWW document]. UKWCT Wolf Print URL https://ukwct.org.uk/files/education/WPEd39-wolf-teeth-dentition-and-disease.pdf.

Silva, P., Lopes-Bao, J. V., Llanera, L., Álvares, F., Lopes, S., & Blanco, J. C. (2018). *Scientific Reports, 8*, 14108.

Szuma, E. (2014). Dental abnormalities in the red fox *Vulpes vulpes* from Poland. *Acta Theriologica, 44*(4), 393–412.

Trouwborst, A. (2014). The EU habitats directive and wolf conservation and management on the Iberian Peninsula: A legal perspective. *Galápagos: Spanish Journal of Mammology, 26*, 5–30.

Tsutsumi, T., Kajiya, H., Tsuzuki, T., Goto, K. T., Okabe, K., & Takahashi, Y. (2018). Micro-computed tomography for evaluating alveolar bone resorption induced by hyperocclusion. *Journal of Prosthodontic Research, 62*(3), 298–302.

van Valkenburgh, B. (1988). Incidence of tooth breakage among large, predatory mammals. *The American Naturalist, 131*(2), 291–302.

Valkenburgh, B., Peterson, R. O., Smith, D. W., Stahler, D. R., & Vucetich, J. A. (2019). Tooth fracture frequency in gray wolves reflects prey availability. *Eli*s, 8, e48628.

Vilà, C., Urios, V., & Castroviejo, J. (2008). Tooth loss and anomalies in the wolf (*Canis lupus*). *Canadian Journal of Zoology, 75*(1), 968–971.

Winet, J. N., Liang, S. M., & Verstraete, F. J. M. (2013). The dental pathology of southern sea otters (*Enhydra lutris nereis*). *Journal of Comparative Pathology, 149*(2-3), 346–355.