Effects of 3He impurities on the mass decoupling of 4He films

Kenji Ishibashia, Jo Hiraideb, Junko Taniguchic, Tomoki Minoguchib, and Masaru Suzukid

a Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
b Institute of Physics, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.

(Dated: January 1, 2020)

We carried out quartz crystal microbalance experiments of a 5 MHz AT-cut crystal for superfluid 3He films on Grafoil (exfoliated graphite) with a small amount of 3He up to 0.40 atoms/nm2. We found that the mass decoupling from oscillating substrate is considerable sensitive even in a small amount of 3He doping. In a 3He film of 29.3 atoms/nm2, we observed a small drop in resonance frequency at T_3 of \sim0.4 K for a small amplitude, which is attributed to sticking of 3He atoms on the 4He solid atomic layer. For a large amplitude, the 4He solid layer shows a reentrant mass decoupling at T_R close to T_3. This decoupling can be explained by the suppression of the superfluid counterflow due to the adsorption of 3He atoms on edge dislocations. As the 4He areal density increases, T_R shifts to the lower temperature, and vanishes around a 4He film of 39.0 atoms/nm2.

I. INTRODUCTION

It is well known that the surface of graphite is atomically flat and helium film on graphite grows up layer-by-layer to more than five-atom thick film in layers.1,6 Because of both the quantum nature of helium and the ideal two-dimensional system, helium film on graphite has been attracting the attention of many researchers. The adsorbed structure,1,3 the magnetism,4,5 and the superfluidity6,7 are extensively studied experimentally and theoretically.

Lately the nano friction of films, or the mass decoupling of films from oscillation, has been widely discussed.8 Several films on metal substrates show a partial mass decoupling.9 In addition, it is reported that the film takes place the pinning-depinning transition against the driving force of oscillating substrates.10

In response to the study on nano friction, we started to study the mass decoupling of helium films on graphite using the quartz crystal microbalance (QCM) technique. Up to the present, we have reported the following observations above two-atom thick films:11–14

(a) When the oscillation amplitude is large enough, the solid layer of 4He films undergoes partial mass decoupling below a certain temperature T_S.
(b) This decoupling brings a low-friction metastable state when the overlayer is normal fluid. The solid layer after the reduction in amplitude remains in the low-friction state with a finite life time.
(c) When the overlayer is superfluid, the mass decoupling suddenly vanishes at T_D below T_S.
(d) For 3He films, the mass decoupling shows a similar behavior up to five-atom-thick films without an abrupt suppression due to superfluid.

The inhomogeneity of films plays an important role in this decoupling. We proposed the following scenario:13 The motion of the edge dislocation in the solid layer is responsible for mass transport. The mass decoupling occurs when the edge dislocation overcomes the potential barriers of the substrate (Peierls potential). This explains the external force threshold for mass decoupling and the low-friction state being metastable. In addition, the sudden vanishment below T_D can be explained by the cancellation of mass transport due to the superfluid counterflow of the overlayer.

The mass decoupling of helium films has shown various interesting behaviors. In the present experiments, we confine ourselves to 3He impurity effects of 4He films on Grafoil (exfoliated graphite) when the overlayer is superfluid. In this Paper we report a systematic study on the mass decoupling using a MHz range AT-cut crystal.

After a brief explanation on the experimental setup in II, we show in III.1 the 3He areal density dependence for a four-atom thick film for various oscillation amplitudes. By adding a small amount of 3He, it was found that the mass decoupling appears again at a certain temperature T_R below T_D for a large amplitude. In III.2, we show the 4He areal density dependence for a fixed amount of 3He. T_R decreases with increasing the 4He areal density, and disappears above a certain 4He areal density. In addition to these observations, we discuss a possible mechanism of the reentrant mass decoupling at T_R.

II. EXPERIMENTAL SETUP

We used the QCM technique with an AT-cut crystal to measure the mass decoupling. In the QCM technique, the coupled mass to the oscillating substrate is obtained from the change in the resonance frequency Δf as

$$\Delta f = - \frac{m}{M}$$

where m is the coupled mass of film, M is the oscillating mass of the crystal, and f is the resonance frequency. When the film is decoupled from the oscillation, the coupled mass decreases and the resonance frequency increases.

In the present experiments, the resonator is a 5.0 MHz AT-cut crystal. The crystal was commercially available, and no special treatment was applied to the Ag electrode. At first, Grafoil was baked in a vacuum at 900°C.
for 3 h, and a 300-nm-thick film of Ag was deposited onto it. The crystal and Ag-plated Grafoil were pressed together and were heated in a vacuum at 350°C for 2 h. Then, Grafoil was bonded on both sides of the Ag electrode. After bonding, the excess amount of Grafoil was removed to increase the Q value of the crystal. To keep good thermal contact, the crystal was fixed to the metal holder with electrically conductive adhesive. After these processes, the Q value remained better than 10⁴, and the areal density of Grafoil was 7.30 g/m². After being heated in 2 × 10⁻⁶ Pa at 130°C for 5 h, the crystal was mounted in the sample cell. In the present experiments, the mass loading of ³He is 3.8 Hz·atoms⁻¹·nm².

The resonance frequency was measured using a transmission circuit. In the circuit, the crystal was placed in series with a coaxial line connecting a 50 Ω cw signal generator and a RF lock-in amplifier. The frequency of the signal generator was then controlled in order to keep the inphase output zero, and was locked to the resonance frequency. The quadrature output at this frequency is the resonance amplitude.

In the present experiments, the ³He areal density is at most up to 0.4 atoms/nm², which corresponds to 5% of the areal density of ⁴He one-atomic layer.

III. RESULTS AND DISCUSSION

III.1. ³He areal density dependence

We carried out temperature sweep experiments of a four-atom thick ⁴He film for various oscillation amplitudes by changing the ³He areal density (Run A).

Figure 1 shows the variation in resonance frequency for ⁴He of 29.3 atoms/nm² with several ³He areal densities. The overlay of these films undergoes superfluid at low temperatures. All data were taken during cooling with the oscillation amplitude being fixed at 0.018 nm. In this amplitude, the superfluid onset of a pure ⁴He film was clearly observed at T_C of 0.80 K, although it is hardly seen in the scale of Fig. 1. As the ³He areal density increases, T_C decreases gradually. For a ⁴He film with ³He of 0.30 atoms/nm², T_C is shifted down to 0.75 K. By adding ³He, it was found that a small additional drop in resonance frequency appears at T_3 below T_C. As the ³He areal density increases, this drop becomes clear. However, T_3 does not depend strongly on the ³He areal density above 0.1 atoms/nm².

In the inset, we compare the variation in resonance frequency and Q-value between the pure ⁴He film and the ⁴He film with ³He of 0.20 atoms/nm². For the pure ⁴He film, the superfluid onset is observed at T_C of 0.80 K, accompanied with a small increase in ∆(1/Q). When ³He is added by 0.20 atoms/nm², T_C is slightly shifted down to 0.76 K. The resonance frequency is deviated downwards at T_3 of 0.41 K from the extrapolated curve from high temperatures. The difference from this extrapolated curve increases gradually down to the lowest attainable temperature ~0.1 K, and becomes ~1.5 Hz. On the other hand, the anomaly in ∆(1/Q) was not observed at T_3 within the present accuracy.

It is natural that the drop below T_3 is connected to the addition of ³He. The mass loading of ³He is estimated to be 2.9 Hz·atoms⁻¹·nm² from that of ⁴He. The drop of ~1.5 Hz at low temperature corresponds to ~0.5 atoms/nm² for ³He. This value is about the double of ³He dopant. Thus, it is concluded that the drop below T_3 is caused not only by the sticking of ³He atoms on the ⁴He solid layer, but also by preventing ³He atoms from decoupling. Furthermore, it was found that T_3 does not depend strongly on the ³He areal density above 0.1 atoms/nm², which means that a number of adsorption sites for ³He atoms is on the order of 0.1 nm⁻².

The possible candidate of the adsorption site on the ⁴He solid layer is the edge dislocation core. Because of the adsorption potential of graphite, the first solid atomic layer is about 20% denser than the second one. Due to the density difference between the solid layers, it is naturally assumed that the top solid atomic layer consists of commensurate domains separated by domain walls to the first solid atomic layer. Since domain walls have the same motif as edge dislocations, we here call them edge dislocations. The local areal density of the top solid atomic layer becomes small at the edge dislocation. From the difference in the zero-point energy, it is thought that ³He atom is adsorbed on the edge dislocation core from
the liquid overlayer. Here, it should be noted that the thickness of the liquid overlayer is at most one atomic layer and that 3He atoms may not be bounded on the free surface in contrast to bulk 4He.[18] In fact, it is revealed that 3He atoms are trapped on the dislocation core with the adsorption potential of 0.7 K in the case of 3He-4He solids.[17]

Figure 2 shows that the amplitude dependence for a 4He film with 3He of 0.20 atoms/nm2. All data were taken during cooling. As shown in Fig. 1, for the amplitude of 0.018 nm, the superfluid onset and the drop in frequency are observed at T_C of 0.76 K and T_S of 0.41 K, respectively. As the amplitude increases, the increase in resonance frequency due to the superfluid onset is smeared out. In contrast, for the amplitudes of 0.18, 0.25 and 0.56 nm, the resonance frequency increases clearly at T_S, and this increase is terminated abruptly at T_D.

As shown in the inset, these behaviors are also observed for a pure 4He film, which is attributed to the decoupling and sticking of the 4He solid layer. By adding a small amount of 3He, a new phenomenon appears. Below T_D, the resonance frequency rises up at a certain temperature T_R, which means that the 4He solid layer undergoes decoupling again. It was found that the reentrant mass decoupling temperature T_R is close to T_3, i.e., the temperature where 3He atoms are trapped at the adsorption site on the 4He solid layer. For the amplitude of 0.56 nm, T_D and T_R disappear and the decoupling of the 4He solid layer remains at low temperatures.

To clarify the 3He areal density dependence of T_S, T_D and T_R, we carried out temperature sweep experiments with the amplitude of 0.25 nm for several 3He areal densities. Figure 3 shows the variation in resonance frequency. All data were taken during warming. When 3He of 0.05 atoms/nm2 is added, the decoupling and stick-
ing behaviors are drastically changed from the pure ^4He film. T_S is lowered down to 0.69 K from 0.74 K of the pure ^4He film. In contrast, T_D of 0.50 K does not change greatly. As the temperature decreases, the resonance frequency increases gradually below 0.4 K, and rises up at T_R of 0.33 K. With further decreasing temperature down to 0.2 K, it decreases gradually again. Above ^3He of 0.10 atoms/nm2, the increase in frequency at T_R becomes sharp. As the ^3He areal density increases, T_R increases gradually and T_D does not change greatly.

The inset shows a phase diagram of decoupling and sticking behaviors. This diagram is divided into four regions. At high temperature, the ^4He solid layer sticks to the oscillating substrate (stick I). As the temperature decreases, this layer undergoes decoupling below T_S (slip I), and sticks suddenly at T_D (stick II), regardless whether or not the film contains ^3He. By adding ^3He, the reentrant mass decoupling appears below T_R (slip II).

We discuss a possible mechanism of the reentrant mass decoupling. It should be noted that T_D and T_R show up when the overlayer of these films becomes superfluid. For the pure ^4He film, the sticking at T_D can be explained by a mechanism in which the mass transport caused by the motion of edge dislocations is cancelled by the superfluid counterflow of the overlayer. [13]

In developing this scenario, we can explain the reentrant mass decoupling. A cartoon for $^3\text{He}-^4\text{He}$ mixture films is shown in Fig. 4. Since ^3He atoms are dissolved, or are spread over the fluid overlayer at high temperature, the ^4He solid atomic layer shows the decoupling at T_S and the sticking at T_D as the same manner as pure ^4He film (Figs. 4(a) and (b)). As above-mentioned, the sticking at T_D means that the superfluid counterflow between edge dislocations cancels the mass transport. As the temperature decreases, ^3He atoms start to adsorb on the edge dislocation at around T_3, and prevent the exchange between liquid and solid ^4He atoms (Fig. 4(c)), i.e., the superfluid counterflow is ceased. Then, the ^4He solid atomic layer undergoes decoupling again at T_R.

III.2. ^4He areal density dependence

In a different series of experiments from III.1., we carried out temperature sweep experiments for a fixed amount of ^3He by changing the ^4He areal density (Run B). Figure 5 shows the variation in resonance frequency for several ^4He areal densities with ^3He of 0.20 atoms/nm2. The data are shifted vertically. (Run B)

![Graph showing variations in the resonance frequency](image)

FIG. 5. Variations in the resonance frequency at the amplitudes of (a) 0.18 nm and (b) 0.018 nm for various ^4He areal densities with ^3He of 0.20 atoms/nm2. The data are shifted vertically. (Run B)

remains. As further increasing the ^4He areal density, T_R shifts to the lower temperature and vanishes at around ^4He of 39.0 atoms/nm2.

In the amplitude of 0.018 nm, all data were taken during cooling. For ^4He of 28.5 atoms/nm2, it is difficult to definitely determine T_3, i.e., the sticking temperature of ^3He atoms, while it is observed at T_3 of 0.40 K for ^4He of 29.0 atoms/nm2. As the ^4He areal density increases, T_3 shifts to the lower temperature. Above ^4He of 35.0 atoms/nm2, it is difficult to determine T_3 again. Here, it should be noted that T_3 has the same ^4He areal density dependence as T_R, although T_3 is observed in the limited range. On the other hand, the superfluid onset is also observed for these areal densities. As the ^4He areal density increases, T_C moves to the higher temperature and reaches 1.23 K at ^4He of 39.0 atoms/nm2.

Figure 6 shows the phase diagram of the sticking and decoupling behaviors for ^3He of 0.20 atoms/nm2. T_S,
T_D and T_R are obtained from the amplitudes of 0.18 nm, while T_C and T_3 at the amplitudes of 0.018 nm. In contrast to the phase diagram of Fig. 3, both regions of Stick I and II and of Slip I and II connect continuously. As mentioned above, T_3 is close to T_R. This supports strongly the scenario mentioned in III.1., i.e., the adsorption of 3He atoms on the edge dislocation causes the reentrant mass decoupling.

Furthermore, the vanishment of T_R at a high 4He areal density may be explained by the competition between the adsorption on the edge dislocation and on the free surface. For bulk 4He, it is well known that 3He atoms are bounded on the free surface at low temperature.\[18\] The bound energy primarily comes from the difference in the zero-point energy between in bulk 4He liquid and on the free surface. Thus, we can propose the following scenario: In the case of an atomic-thin overlayer, 3He atoms are located on the 4He solid layer because of no advantage of the zero-point energy on the free surface. As the 3He areal density increases, i.e., the overlayer becomes thick, 3He atoms move to the free surface, and the adsorption of 3He atoms no longer occurs.

III.3. The model calculation for 3He adsorption

We discuss whether the 3He areal density dependence of T_3 can be explained by a simple adsorption model. To build the model, we can refer to the previous experiments for 3He-4He mixture thin films.\[19, 20\]

Saunders and co-workers have carried out heat capacity experiments of 3He above 0.4 atoms/nm2 in a 4He film of 33.5 atoms/nm2 on Grafoil. They have reported that 3He atoms in a thin 4He film behave as the two-dimensional (2D) Fermi gas.\[19\] On the other hand, Hallock and co-workers have carried out NMR experiments for 0.1 monolayer of 3He in thin 4He films on Nuclepore.\[20\] They have reported that a part of 3He atoms are immobile below a critical 4He areal density. As the 3He areal density increases, 3He atoms experience a mobility edge.

The present observations are quite similar to those of Hallock and co-workers’ experiments, i.e., a small amount of 3He atoms are localized in thin 4He films, and this localization vanishes at a certain 4He areal density. Sanders and co-workers concluded that 3He atoms in a thin 4He film are not adsorbed on Grafoil and are extended. We think, however, that there is a possibility that a small amount of 3He atoms are adsorbed because the heat capacity is independent of the areal density of the 2D Fermi gas.

From these considerations, we consider the following model: 3He atoms in the overlayer behave as the 2D Fermi gas with the hydrodynamic effective mass m^*_3. In addition, there exits a surface binding state with the adsorption site density N_a and the binding energy ε_a measured from the bottom of the 2D Fermi gas. In this model, the adsorption density n is obtained as

$$ n = N_a e^{-\beta(-\varepsilon_a-\mu)} + \frac{2}{(2\pi)^2} \int_0^{\infty} \frac{2nk \, dk}{e^{\beta(-\varepsilon_a-\mu)} + 1}, $$

where $\beta = 1/k_BT$ is the inverse temperature, $\varepsilon = \hbar^2K^2/2m^*_3$ is the kinetic energy of the Fermi gas, and μ is the chemical potential which is determined from the 3He areal density.

Here, we may adopt $m^*_3/m_3 \sim 1.5$ from heat capacity experiments for a 4He film of 33.5 atoms/nm2.\[19\] Although m^*_3 in thinner 4He films is still unknown. The inset of Fig. 7 shows a typical calculation of n as a
function of temperature for several 3He areal densities with $m_3^*/m_3 = 1.5$, $N_a = 0.06$ sites/nm2 and $\varepsilon_a = 1.268$ K. Here, the parameters were chosen where $n = 0.05$ atoms/nm2 at 0.43 K for 3He of 0.20 atoms/nm2. For comparison, we plotted a curve of $m_3^*/m_3 = 10$ at 0.20 atoms/nm2.

As seen in the inset, n increases gradually from high temperature and becomes nearly equal to N_a below a certain temperature. As the 3He areal density increases, n shifts to the higher temperature. Although it is not clear that which value of n corresponds to T_3, it is assumed here that $n_c = 0.05$ atoms/nm2 is T_3. We plotted the temperature where $n = 0.05$ atoms/nm2 as a function of 3He areal density in Fig. 7. It was found that the calculated lines has a stronger 3He areal density dependence than that of the observations. This behavior does not depend strongly on the parameters of N_a, ε_a and n_c. Thus, we may conclude that the simple adsorption model does not explain the areal density dependence of T_3. Here, we would like to make a comment on the model. As shown in Fig. 7, when we choose $m_3^*/m_3 = 10$, n varies rapidly in a small temperature range and the areal density dependence of T_3 becomes weaker, i.e., when the number of density just above the surface binding state is large enough, T_3 does not depend strongly on 3He areal density. This may suggest that 3He atoms in a very thin overlayer are nearly localized on Grafoil. Although it was reported that m_3^* is enhanced with decreasing 3He areal density for Nuclepore, this is only speculation for Grafoil. Furthermore, when there exists an attractive interaction between the adsorption sites, n varies more rapidly. These are for future study.

Here, we make a comment on a thicker overlayer. T_3 was not observed clearly above 4He of 33.0 atoms/nm2. It is, however, natural that T_3 is nearly equal to T_R. This means that T_3 tends to zero around 4He of 39.0 atoms/nm2. As mentioned in III.2, 3He atoms are bounded on the free surface of bulk 4He. The binding energy ε_S was obtained to be 2.22±0.03 K. This means that ε_a in the simple adsorption model is smaller than ε_S if the model explains the 3He adsorption.

IV. SUMMARY

We report quartz crystal microbalance experiments using a 5 MHz AT-cut crystal for 3He-4He mixture films on Grafoil. In the present experiments, the 3He areal density is at most up to 0.4 atoms/nm2. In a four-atom thick 4He film of 29.3 atoms/nm2, we observed following behaviors: (a) For a small amplitude of 0.018 nm, a small drop in resonance frequency occurs at T_3. (b) For a large amplitude of 0.25 nm, the mass decoupling at T_3 and sticking at T_D was observed as the same manner as pure 3He films. In addition to T_S and T_D, a reentrant mass decoupling occurs at T_R close to T_3. Here, it was found that both of T_3 and T_R do not depend strongly on the 3He areal density above 0.1 atoms/nm2, and are ~0.4 K.

From our previous study for pure 4He films, we have proposed the following scenario: the mass decoupling below T_S results from the motion of edge dislocations between the first and second solid layers. The mass sticking at T_D is caused by the cancellation of mass transport due to the superfluid counterflow of the overlayer. As an extension of this scenario, the observed behaviors can be explained as follows. 3He atoms which are mobile at high temperature are localized on the edge dislocation at T_3. These 3He atoms prevent the exchange between liquid and solid 4He atoms, and the reentrant mass decoupling occurs by the cease of the superfluid counterflow.

From experiments changing the 4He areal density for 3He of 0.2 atoms/nm2, it was found that T_R decreases with increasing 4He areal density and vanishes above 3He of 29.0 atoms/nm2. This behavior can be interpreted by the competition of the adsorption between on the edge dislocation and on the free surface.

The above explanation about the reentrant mass decoupling below T_R naturally leads to the model that 3He atoms adsorb on the 4He solid layer. However, this model cannot explain a weak 3He areal density dependence of T_R using the known hydrodynamic effective mass of 3He in the overlayer. This is for future study.

ACKNOWLEDGMENTS

One of the authors (TM) wishes to express his thanks for the financial support of Yamaguchi Educational and Scholarship Foundation.

[1] S. Greywall and P. A. Busch, Phys. Rev. Lett. 67, 3535 (1991); D. S. Greywall, Phys. Rev. B 47, 309 (1993).
[2] M. Pierce and E. Manousakis, Phys. Rev. B 59, 3802 (1999).
[3] P. Corboz, M. Boninsegni, L. Pollet and M. Troyer, Phys. Rev. B 78, 245414 (2008).
[4] M. Neumann, J. Nye’ki, B. Cowan and J. Saunders, Science 317, 1356 (2007).
[5] H. Fukuyama, J. Phys. Soc. Jpn. 77, 111013 (2008).
[6] A. Crowell and J. D. Reppy, Phys. Rev. B 53, 2701 (1996).
[7] J. Nyeki, A. Phillips, A. Ho, D. Lee, P. Coleman, J. Parpia, B. Cowan and J. Saunders, Nat. Phys. 13, 455 (2017).
[8] J. Krim, Adv. Phys. 61, 155 (2012).
[9] A. Dayo, W. Alnassrallah, and J. Krim, Phys. Rev. Lett. 80, 1690 (1998); M. Highland and J. Krim, Phys. Rev. Lett. 96, 226107 (2006).
[10] L. Bruschi, A. Carlin, and G. Mistura, Phys. Rev. Lett.
[88] 046105 (2002); A. Carlin, L. Bruschi, M. Ferrari, and G. Mistura, Phys. Rev. B 68, 045420 (2003).
[11] N. Hosomi, A. Tanabe, M. Suzuki, and M. Hieda, Phys. Rev. B 75, 064513 (2007).
[12] N. Hosomi, M. Suzuki, Phys. Rev. B 77, 024501 (2008).
[13] N. Hosomi, J. Taniguchi, M. Suzuki, and T. Minoguchi, Phys. Rev. B 79, 172503 (2009).
[14] N. Hosomi, M. Suzuki, J. Low Temp. Phys. 148, 773 (2007).
[15] G. A. Csáthy and M. H. W. Chan, Phys. Rev. Lett. 87, 045301 (2001).
[16] N. Hosomi, J. Taniguchi, M. Suzuki, and T. Minoguchi, J. Phys: Conference Series 150, 032031 (2009).
[17] F. Souris, A. D. Fefferman, H. J. Maris, V. Dauvois, P. Jean-Baptiste, J. R. Beamish, and S. Balibar, Phys. Rev. B 90, 180103(R) (2014).
[18] D. O. Edwards and W. F. Saam, Progress in Low Temperature Physics VIIa (ed. D. F. Brewer) pp. 283-369, North Holland, Amsterdam.
[19] M. Dann, J. Nyéki, B. Cowan, and J. Saunders, J. Low Temp. Phys. 110, 627 (1998).
[20] D. T. Strague, N. Alikacen, and R. B. Hallock, Phys. Rev. Lett. 74, 4479 (1995); P. A. Sheldon and R. B. Hallock Phys. Rev. Lett. 77, 2973 (1996).
[21] K. Okamura, J. Taniguchi, M. Hieda, and M. Suzuki, Phys. Rev. B to be published.
[22] F. Nihei, K. Ideura, H. Kobayashi, J. Taniguchi, M. Suzuki, J. Low Temp. Phys. 162, 559 (2011).