Genetic Characterization of Two Human Cases Infected with the Avian Influenza A (H5N6) Viruses — Guangxi Zhuang Autonomous Region, China, 2021

Fuyin Bi1; Lili Jiang2; Lihua Huang1; Jingguang Wei1; Xiaowen Pan2; Yu Ju1; Jianjun Mo1; Minmei Chen1; Ning Kang1; Yi Tan1; Yonghong Li1; Jing Wang1,*

Summary

What is known about this topic?
H5N6 has replaced H5N1 as a dominant avian influenza virus (AIV) subtype in southern China. The increasing genetic diversity and geographical distribution of H5N6 pose a serious threat to the poultry industry and human health.

What is added by this report?
A total of 2 cases of H5N6 that occurred from February 2021 to July 2021 in Guangxi, China were reported in this study. Phylogenetic analysis of gene was constructed, and some mutations of HA gene, PB2 gene, PA gene, M1 gene, NS1 gene, the receptor-binding site were detected. The evolutionary origins of the internal genes were different.

What are the implications for public health practice?
As a multi-source reassortant virus, the H5N6 highly pathogenic AIV is continuously evolving. There is an urgent need to strengthen the surveillance of drug-resistant strains and novel variants.

INVESTIGATION AND RESULTS

We reported 2 cases infected with the H5N6 virus belonging to genetic clade 2.3.4.4b and clade 2.3.4.4h in Guangxi, China in 2021. These 2 cases occurred in two different cities. A case was admitted to the intensive care unit (ICU) due to severe clinical symptoms and was subsequently tested positive for H5N6. The other case was detected from the influenza-like illness (ILI) surveillance system. When a case is found, the local CDC immediately conducts epidemiological and environmental investigations.

On February 16, 2021, a 50-year-old male (Patient A) developed a fever with chest tightness, tightness of breath, headache, cough, sputum, and pneumonia, and was transferred to the Respiratory Department of Hechi People’s Hospital for hospitalization on February 21. Patient A had suffered from rheumatoid arthritis for more than 10 years, and he was found to be H5N6 influenza virus positive on February 26. He had a history of exposure to infected poultry 9 days before the onset of illness and died on March 2.

On July 6, 2021, a 61-year-old female (patient B) developed a fever with a maximum temperature of 38.5 °C and was admitted to the Second People’s Hospital of Guangxi for treatment on July 9. After 6 days, she was confirmed to be positive for H5N6 by Guangxi CDC. She had a history of chronic gastritis and denied having contact with live poultry.

Viral RNA from the throat swabs of the two patients was extracted using the QIAamp® Viral RNA Mini Kit (Qiagen, Germany), according to the manufacturer’s instructions. Specific real-time reverse transcriptase polymerase chain reaction (RT-PCR) assays with specific primer and probe sets for detecting avian influenza A (H5N6). The viral genomes were reverse-transcribed and amplified using Easy-Fast FluA whole
Through sequencing and splicing, 8 gene fragments of the virus were successfully extracted. Some mutations related to viral replication, receptor-binding, mammalian virulence-related markers and drug-resistance related markers were detected. The PB2 and MP genes of GX01 virus showed high homology with H9N2 viruses, and the following genes showed high homology with H5N6 viruses. The HA and NP genes of GX11151 virus showed high homology with H5N8 and H9N2 viruses, respectively, and the following genes showed high homology with H5N6 viruses (Table 1).

Virus	Segment	Length (bp)	Strain with the highest similarity	GISAD ID	Similarity (%)
GX01	PB2	2348	A/goose/Fujian/3.15_FZH0011-0/2018 (H9N2)	EPI1816470	92.21
	PB1	2341	A/Guangxi/31906/2018 (H5N6)	EPI1352803	100.00
	PA	2229	A/chicken/Miyazaki/2-4C/2017 (H5N6)	EPI1891595	96.55
	HA	1773	A/chicken/Anhui/8.28_YHZGS017-0/2018 (H5N6)	EPI1825343	97.68
	NP	1565	A/Guangxi/31906/2018 (A/H5N6)	EPI1352798	98.98
	NA	1431	A/Env/Guangdong/Qingyuan/C18285099/2018 (H5N6)	EPI1366600	98.25
	MP	1027	A/chicken/Shanxi/06.28_TGRL001-0/2018 (H9N2)	EPI1833450	98.64
	NS	875	A/Env/Guangdong/Dongguan/C172863577/2017 (H5N6)	EPI1366948	98.86
GX11151	PB2	2342	A/Env/Guangdong/zhanjiang/C17277335/2017 (H5N6)	EPI1366759	96.63
	PB1	2344	A/Env/Guangdong/zhanjiang/C18277136/2018 (H5N6)	EPI1366684	97.78
	PA	2233	A/chicken/Miyazaki/2-4C/2017 (H5N6)	EPI891595	97.08
	HA	1775	A/chicken/Omsk/0112/2020 (H5N8)	EPI1833454	99.44
	NP	1565	A/duck/Hunan/5.29_YYGK90P3-OC/2018 (H9N2)	EPI1835016	98.72
	NA	1433	A/Env/Guangdong/Qingyuan/C18285099/2018 (H5N6)	EPI1366600	97.77
	MP	1027	A/Sichuan/06681/2021 (A/H5N6)	EPI1883262	99.51
	NS	875	A/Env/Guangdong/Huizhou/C17280804/2017 (A/H5N6)	EPI1366935	98.86

Phylogenetic analysis of HA gene was constructed according to the World Health Organization (WHO) reference sequence. Their nucleotide sequence showed a similarity of 90.7% between each other. The HA gene of GX01 falls into clade 2.3.4.4h, while GX11151 falls into clade 2.3.4.4b (Figure 1).

The HA cleavage site of two viruses possessed a multiple basic amino acids motif, indicating potentially high pathogenicity in chickens. The receptor-binding site at the 222–224 motif was QGG of GX01 virus and QRG of GX11151 virus, respectively, suggesting that these viruses preferred binding to avian-like receptors (α 2,3 SA) (5). However, D94N (6), S133A (7), and T156A (8) mutations in GX01 HA gene, S133A, D155N (8), T156A, and T188I (7) mutations in the GX11151 HA gene increased virus binding to human-like receptors (α 2-6 SA). GX01 virus exhibited 8 potential glycosylation sites at 27, 39, 70, 140, 180, 301, 498, and 557 (H5 numbering). GX11151 virus exhibited seven potential glycosylation sites at 27, 39, 180, 209, 301, 498, and 557 (Table 2).

A263T mutation in HA gene was detected in both strains, suggesting that the virulence was enhanced. However, there was no mutation associated with resistance to NA inhibitors in the NA gene of the two strains. K389R, V598T/I mutations of PB2 gene, and N409S mutation of PA gene, which could increase virus replicative ability in mammals, were observed in both strains. Some mutations increasing virulence in...
FIGURE 1. Phylogenetic relationships of A (H5) clade 2.3.4.4 HA genes using the maximum likelihood method with 1,000 bootstrap.

Note: The two Guangxi strains were indicated by black dots.
mice were detected in our strains, such as N30D, T139A, and T215A of M1 gene and P42S and 80–84 deletion of NS1 gene. The M2 gene of GX01 had the mutations of D21G and S31N, suggesting that the strain was resistant to amantadine, but GX11151 was not observed (Table 2).

DISCUSSION

The previous study showed H5N6 has replaced H5N1 as one of the dominant AV subtypes in southern China (9). The avian influenza A (H5N6) virus continues to threaten human life and health.

Table 2. Molecular features of the genes of H5N6 viruses isolated from humans.

Gene	GX01	GX11151	SC26221	GX31906	GZ39715	HB29578	
HA (H5 no.)							
D94N	N	S	N	N	N	N	Increased virus binding to α2-6 SA
S133A	A	A	A	A	A	A	Increased pseudovirus binding to α2-6 SA
D155N	D	N	D	D	D	D	Increased virus binding to α2-6 SA
T156A	A	A	A	A	T	A	
T188I	T	I	T	A	T	T	Increased pseudovirus binding to α2-6 SA
A263T	T	T	T	T	T	T	
222-224	QGG	QRG	QRG	QRG	QRG	QSG	222–224 QS(R)G avian-like α2–3 receptor binding preference
Cleavage peptides	RERRKR	REKRRKR	REKRRKR	RERRKR	RERRKR	RERRKR	Highly pathogenic avian influenza
NA (N6 no.)							
E119D/V	E	E	E	E	E	E	
A247V	A	A	A	A	A	A	Antiviral oseltamivir resistance
H274Y	H	H	H	H	H	H	
R293K	R	R	R	R	R	R	
R372K	R	R	R	R	R	R	
PB2							
K389R	R	R	R	R	R	K	Enhanced growth capacity in human and mammalian cells
V598T/I	T	T	T	T	T	V	
PB1							
I368V	I	I	I	I	I	V	Transmissible among ferrets
PA							
N409S	S	S	S	S	S	N	Increased virus replicative ability in mammalian systems
M1							
N30D	D	D	D	D	D	D	
T139A	A	A	T	T	T	A	Increased virulence in mice
T215A	A	A	A	A	A	A	
M2							
D21G	G	D	D	D	D	G	
L26F/I	L	L	L	L	L	L	
A30T	A	A	A	A	A	A	Antiviral amantadine resistance
S31N	N	S	S	S	S	N	
G34E	G	G	G	G	G	G	
NS1							
P42S	S	S	S	S	S	S	
80-84Del	Yes	Yes	Yes	Yes	Yes	No	Increased virulence in mice
L98F	M	M	M	M	M	M	
From January to July 2021, 2 cases were reported in Guangxi Zhuang Autonomous Region. Compared with 4 H5N6 infections reported from 2016 to 2019, and the number of infections cases was slightly higher than that in previous years. It is necessary to sequence and analyze the virus. The case infected with GX01 had obvious clinical symptoms and a history of exposure to dead poultry. Homology analysis showed that GX01 virus was a recombinant virus of H5N6 and H9N2, while GX11151 was a recombinant virus of H5N8, H5N6, and H9N2. Previous study showed H5N6 lineage has been co-circulating in different regions in China (10–11). The mutations in the important sites of proteins of avian influenza virus may change the adaptivity, virulence, tissue tropism, and infectivity. The cleavage between HA1 and HA2 proteins of HA gene of these two viruses were multiple continuous basic amino acids motif (RERRRRK), indicating that they possessed potentially high pathogenicity in chickens. The 222–224 receptor binding site of HA gene suggested that the viruses were avian-like receptors (α 2,3 SA). Studies have shown that the sensitivity of viruses carrying H274Y mutation in NA protein to oseltamivir decreased 1,000 times. In addition, when the NA protein of the virus carries E119A/D/V, A247V, R293K, and R372K mutations, it will cause different degrees of resistance to oseltamivir and zanamivir (12–13). Fortunately, these mutations were not found in our virus. Therefore, using NA inhibitors to treat the 2 cases infected with avian influenza A (H5N6) was still a good choice.

The median age of the two cases was over 50 years old. Like other studies previously reported, the elderly people may be more vulnerable to avian influenza (3). One case was reported through ILI surveillance system (14), indicating that the ILI system was beneficial for the detection of avian influenza cases to a certain extent. However, this may be just the tip of the iceberg, and perhaps many mild cases have not been detected.

This study has certain limitations. Sampling of the environment exposed by the cases, and poultry around the living environment were missing, resulting in lacking of laboratory tests. One reason was that the period from onset to reporting was too long for sampling, in spite of dead poultry found in epidemiology survey, and another reason was that patient B had no clear history of exposure to poultry.

At present, coronavirus disease (COVID-19) has caused a worldwide pandemic (15), and over 200 million people have been infected. Meanwhile, the increasing trend of human infection with avian influenza virus has become an important public health issue that cannot be ignored, alerting us that COVID-19 and avian influenza may be simultaneously prevalent in some regions.

Acknowledgments: Dr. Yu Lan and Dr. William J. Liu.

Funding: Supported by the Self-Funded Scientific Research Project of Guangxi Health and Family Planning Commission (Z2015457, Z2016433).

doi: 10.46234/ccdw2021.199

* Corresponding author: Jing Wang, wangjing0630@126.com.

1. Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, Guangxi Zhuang Autonomous Region, China; 2. Guilin Center for Disease Control and Prevention, Guilin, Guangxi Zhuang Autonomous Region, China; 3. Hechi Center for Disease Control and Prevention, Hechi, Guangxi Zhuang Autonomous Region, China.

Joint first authors.

Submitted: August 25, 2021; Accepted: September 02, 2021
Bi YH, Chen QJ, Wang QL, Chen JJ, Jin T, Wong G, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China. Cell Host Microbe 2016;20(6):810−21. http://dx.doi.org/10.1016/j.chom.2016.10.022.

Bi YH, Mei K, Shi WF, Liu D, Yu XL, Gao ZM, et al. Two novel reassortants of avian influenza A (H5N6) virus in China. J Gen Virol 2015;96(Pt 5):975−81. http://dx.doi.org/10.1099/vir.0.000056.

Xiao CK, Xu JA, Lan Y, Huang ZP, Zhou LJ, Guo YX, et al. Five independent cases of human infection with avian influenza H5N6—Sichuan Province, China, 2021. China CDC wkly 2021;3(36):751−6. http://dx.doi.org/10.46234/ccdcw2021.187.

Liu WJ, Wu Y, Bi YH, Shi WF, Wang DY, Shi Y, et al. Emerging HxNy influenza A viruses. Cold Spring Harb Perspect Med 2020;a038406. https://doi.org/10.1101/cshperspect.a038406.

Fan SF, Deng GH, Song JS, Tian GB, Suo YB, Jiang YP, et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 2009;384(1):28−32. http://dx.doi.org/10.1016/j.virol.2008.11.044.

Ip DKM, Liao QH, Wu P, Gao ZC, Cao B, Feng LZ, et al. Detection of mild to moderate influenza A/H7N9 infection by China’s national sentinel surveillance system for influenza-like illness: case series. BMJ 2013;346:f3693. http://dx.doi.org/10.1136/bmj.f3693.

World Health Organization. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/. [2021-9-2].