MATHEMATICAL MODELING OF BATTERY ENERGY STORAGE SYSTEMS IN THE ADDITIONAL SERVICE MARKET OF THE UNITED ELECTRIC POWER SYSTEM OF UKRAINE

P. LEZHNIIK, S. KRAVCHUK, Y. MALOGULKO, I. PROKOPENKO

Department of the power plants and systems, Vinnytsia National Technical University, Vinnytsia, UKRAINE

ABSTRACT The introduction of battery energy storage systems and the subsequent transfer of electricity is a very important task, which is solved in different countries in different ways, based on the types of products that can be provided by battery energy storage systems. The analysis of the structure of generating capacities in the United Electric Power System of Ukraine shows a significant deficit of shunting capacities, among which today there is thermal generation, which has a significant level of wear of the main generating equipment and hydroelectric power plants. Based on the above, it would be logical to assume that with the launch of a new model of the electricity market; market segments will be formed in which price signals will be attractive for investment in new shunting capacity. However, the formation of such signals is limited by the establishment of upper price indices on the additional service market and market day ahead. Thus, to simulate the operation of battery energy storage systems, the additional service market was chosen in which the system operator purchases services from additional service providers. Modeling the operation of battery energy storage systems for the provision of additional services is a multi-criteria task that takes into account both the technical features of the battery energy storage systems and the relevant price indices that have been formed for each type of service. The paper considers the possibility of providing services from the automatic reserve of frequency recovery and the provision of balancing services. Based on statistical data on the additional service market of the integrated power system of Ukraine, developed a mathematical model to assess the effect of the use of battery energy storage systems to provide services for primary, secondary and tertiary frequency control. The relationship between the price indices of additional service market and technical and economic characteristics of the battery energy storage system are determined. The target function is offered in the mathematical model of the operation of the battery energy storage systems, which takes into account the reduced costs for the accumulation of a unit of electricity, maintenance costs and income from the provision of services on the additional service market.

Keywords: additional service market; battery energy storage system; frequency support reserve; frequency recovery reserve

Вступ

Значення приріст генерування відновлювальних джерел енергії (далі – ВДЕ), що значно залежить від мінливих погодних умов, а також значній ступінь
Висока заповненість графіка навантаження об’єднаної електроенергетичної системи України (далі – ОЕС України), базовою генерацією атомних електростанцій (далі – АЕС), при постійному зменшенню обсягів генерації гідроелектростанцій та гідроакумулюваних електростанцій (далі – ГЕС та ГАЕС відповідно), змусить фактичні галузі переглянути структуру генерувальних потужностей енергосистеми України.

Впровадження нового моделі ринку електроенергії, дало змогу поділити товар (електроенергію) на певні продукти, що надаються на різних сегментах ринку, які мають різну ціну в залежності від затребуваності в конкретну годину [2,3]. Від уміння керувати власним джерелом генерування чи споживання значним чином залежить фінансовий результат роботи на ринку [4–7].

Так у [8], відмічено, що на сьогоднішній день для забезпечення операційної безпеки роботи енергосистеми необхідно запровадити щонайменше 400 МВт "гучних" генерувальних потужностей. Як наслідок, Оператор системи передачі (далі – ОСП), запровадив низку аукціонів з закупівлі резервів потужності для первинного, вторинного та третинного регулювання частоти.

Оператори системи передачі визначає обсяги послуг та продуктів на ринку допоміжних послуг (далі – РДП), які необхідні для стабільної роботи електроенергетичної системи. Закон України про ринок електроенергії визначає 5 основних продуктів, що можуть бути відображенні на РДП [9,10], зокрема:
з регулювання частоти та активної потужності в ОЕС України:
– резерв підтримки частоти (РПЧ). Процес підтримки частоти полягає у утриманні частоти та зменшенні відхилення частоти від номінального значення незалежно від причини та місця виникнення небалансу в синхронній зоні, за рахунок активізації резервів підтримки частоти;
– резерв відновлення частоти (РВЧ). Процес відновлення частоти полягає у поверненні частоти до номінального значення при одночасному перевороті міжджережних обміну до планових значень (при синхронній роботі з енергосистемами інших держав) шляхом зведення помилки області регулювання до нуля протягом часу відновлення частоти (не більше 15 хвилин), а також у відновленні активованого РПЧ шляхом активізації резервів відновлення частоти. Час введення в дію (половини активізації) РВЧ не більше 15 хвилин; стійка видача РВЧ не менше 60 хвилин;
– резерв замикання (РЗ). Для підтримання заданих величин РПЧ і РВЧ та відновлення цих резервів у разі їх використання в процесі регулювання частоти в ОЕС України/блоці регулювання/синхронній області має здійснюватися процес замикання резервів і створюватися резерви замикання. Час введення в дію (половини активізації) РЗ не більше 30 хвилин; стійка видача РЗ не обмежується у часі.

з підтримання параметрів надійності та якості електричної енергії в ОЕС України:
– послуга з регулювання напруги та реактивної потужності. Метою Регулювання напруги та реактивної потужності в режимі синхронного компенсатора (СК) є підтримка рівні напруги в контрольних точках системи передачі в зв'язку з виникненням КСП допустимих межах з метою підтримання стійкості та безпеки енергосистеми (области регулювання) шляхом забезпечення та використання резерву реактивної потужності генеруючих одиниць, здатних переходити в режим СК;
– послуга із забезпечення відновлення функціонування ОЕС України після системних аварій. Метою послуги є можливість пуску одиниці генерації в умовах відсутності напруги в зовнішній мережі та електрично розташування в мережі, що дозволяє здійснити передачу виробленої енергії на власні потреби АЕС (ТЕС) з урахуванням втрат електричної енергії в мережі, а також наявність одиниці генерації у плані відновлення «ОЕС України»/«острову Бурштинської ТЕС» після особливої системної аварії (та/або регіональних планах відновлення). Потенційно, одним з основних учасників на РДП в частині постачальників послуг з регулювання частоти та активної потужності в ОЕС України можуть бути оператори системи накопичення енергії (далі – СНЕ).

Проте, на сьогоднішній день нормативними актами не врегулюване питання присудження електроустановок такого типу до мереж операторів систем, а також відсутні визначення – система накопичення енергії. В рамках цієї статті, посилання на Проект Закону про внесення змін до Закону України «Про ринок електричної енергії» (щодо енергетичної безпеки, балансування енергосистеми та системи накопичення енергії), розуміємо, що:
– система накопичення енергії – технологічний комплекс, присуджений до системи передачі чи розподілу з метою відбору, накопичення, у тому числі шляхом перетворення (фізичні, інерційні, хімічні, водневі та інші технології) раніше виробленої електричної енергії, її зберігання та подальшого відпуску;
– оператор системи накопичення енергії – суб’єкт господарювання, який використовує систему накопичення електричної енергії для купівлі-продажу електричної енергії на ринку електричної енергії, та надає допоміжні послуги і є відповідальним за безпечну експлуатацію та технічне обслуговування такої системи накопичення енергії.

Таким чином, на сьогоднішній день, для реалізації нового суб’єкта на ринку електроенергії – оператора системи накопичення, актуально є задача розробки математичної моделі роботи СНЕ на ринку. Дана задача є техніко-економічною, що повинна враховувати зміну ціни на ринку допоміжних послуг ОЕС України та визначати такий графік роботи СНЕ
на ринку, що принесе максимальну рентабельність його власнику та мінімізує штрафні санкції при невідповідності виконання команд диспетчера ОСП.

Мета роботи

Метою статті є розробка математичної моделі роботи системи накопичення енергії на ринку допоміжних послуг, що забезпечить максимальну рентабельність роботи системи накопичення енергії.

Виклад основного матеріалу

Відповідно до положень Закону України «Про ринок електричної енергії» ст. 8 господарська діяльність з виробництва, передачі, розподілу електричної енергії, поставання електричної енергії споживачам, трейдерська діяльність, здійснення функцій оператора ринку та гарантованого покупця проводиться на ринку електричної енергії за умови отримання відповідної ліцензії.

Пункт 1.6 Ліцензійних умов провадження господарської діяльності з виробництва електричної енергії, затвердженних постановою НКРЕКП від 27 грудня 2017 р. № 1467 (далі – Ліцензійні умови) передбачено, що заяви про отримання ліцензії здобувачем ліцензії надається, зокрема відмість про місця та засоби проведення господарської діяльності з виробництва електричної енергії.

При цьому, згідно із пунктом 1.4. Ліцензійних умов:
– електрогенеруюче обладнання – комплекс функціонально взаємопов’язаного устаткування, що здійснює виробництва електричної енергії та складається з одного або більше кількості генераторів чи іншого обладнання, що використовується для перетворення енергетичних ресурсів будь-якого походження на електричну енергію;
– засоби провадження господарської діяльності – електрогенеруюче обладнання, розташоване на об’єкти електроенергетики, та інше функціонально взаємопов’язане з ним устаткування і споруди що призначені для виробництва електричної енергії.

Також слід зазначити, що система накопичення енергії є електрохімічною системою, в яких реалізуються функції накопичувачів електричної енергії. Системи накопичення енергії, як джерело електричної енергії застосовуються в пристроях, апаратах або системах, дія яких заснована на автономному принципі функціонування, тобто незалежно від наявності у безпосередній близькості електричної мережі. В акумуляторах під час зарядки електрична енергія перетворюється в хімічну і система знаходиться в рівновазі доти, доки між електродами протикає навіть дуже маленький струм. При підключенні контактів системи накопичення енергії до споживача електричної енергії (елементу з кінцевим електричним оператор) відбувається зворотний процес: хімічна енергія перетворюється в електричну – при цьому частина її перетворюється в тепло.

Таким чином, особливості систем накопичення енергії є те, що в залежності від режиму роботи, вона може бути, як споживачем електричної енергії так і здійснювати відпуск електричної енергії в мережу, а отже однозначно віднести систему накопичення енергії до генеруючої одиниці не вбачається можливим.

Враховуючи зазначене, Законом України «Про ринок електричної енергії» діяльність пов’язана із накопиченням, зберіганням та подальшою реалізацією електричної енергії системи накопичення електричної енергії чітко не визначена. Відповідно до діючих Ліцензійних умов, ліцензування господарської діяльності системи накопичення електричної енергії не передбачено. Крім цього, згідно Кодексів систем розподілу та передачі затверджених постановами НКРЕКП від 14.03.2018 р. № 309 та № 310 надання оператором системи розподілу, або передачі послуг з приєднання до електричних мереж системи накопичення енергії не передбачено, що, в свою чергу, унеможлижує діяльність таких систем на ринку електричної енергії та надання відповідних послуг.

Законодаче забезпечення впровадження систем накопичення електричної енергії є здійснюватися з дотриманням принципів Європейської політики та законодавства. Так, при прийнятті у грудні 2018 р. загальних рекомендацій щодо політики цілей на 2030 рік для Договірних Сторін Енергетичного Співтовариства, однією з яких є Україна, Радою Міністрів Енергетичного Співтовариства затверджено цю рекомендацію. Вона аналогічна для транспозиції зі стандартизації мереж системи накопичення енергії.

Математична модель роботи СНЕ на організованих сегментах ринку

З урахуванням положень Директиви ключовим при орієнтованій питання законодавчого забезпечення впровадження систем накопичення електричної енергії: безпосереднє дотримання ринкових принципів розвитку та участі систем накопичення електричної енергії на ринку електричної енергії, уніфікація створення для таких систем необхідних інструментів та регуляторних переваг.
Цільова функція має бути спрямована на досягнення максимального прибутку за звітний період. Загальний прибуток в загальному складається з доходів та витрат та формується таким чином, щоб визначити оптимальні умови роботи СНЕ при різних сценаріях формування ціни на послуги, що надаються:

$$P_{new,t} = \sum_{s} p_{s} \left(\min \left(\sum \left(R_{s,t}^{\text{pp}}, C_{s}^{\text{pp}}, C_{s}^{\text{om}} \right) \right) \right) \rightarrow \max$$ \hspace{1cm} (1)

де p_{s} - імовірність виникнення сценарію s з відповідною ціною на послуги СНЕ; R_{s}^{pp} - дохід від надання послуг на РДН у сценарії s в годину t; R_{s}^{pp} - дохід від надання послуг на РДП у сценарії s в годину t; C_{s} - вартість завантаження на РДН/ВДР та РДП. C_{s}^{pp} - вартість деградації глибини розряду при допустимій глибині розряду та нижче допустимого рівня; C_{s}^{om} - витрати на сервісне обслуговування.

Таким чином, оператор накопичення може заздалегідь передбачити низку сценаріїв s ринкової ціни та оцінити різні ймовірності виникнення таких сценаріїв p_{s}, використовуючи дані попередніх та поточного розрахункового періоду t. Такий підхід дає можливість прогнозувати техніко-економічні показники роботи системи накопичення енергії.

Дохід від реалізації електроенергії на ринку на добу наперед або внутрішньодобовому ринку R_{s}^{pp} досягається за рахунок закупівлі електроенергії в нічний час доби, коли ринок має профіцит генерації (тобто ціна низька) та реалізації в деньний час доби коли ціна висока. Це одним джерелом надходження є надання послуг РДП R_{s}^{pp}, що зображає дохід від реалізації послуг з первинного, вторинного та третинного регулювання відповідного сценарію s за годину t, відповідно.

Витратна частина (1) складається з вартості завдання накопичувача на РДН/ВДР та РДП - C_{s}^{pp} при наданні відповідних послуг, вартості деградації накопичувача при допустимій глибині розряду та нижче допустимого рівня C_{s}^{om}, а також витрат на сервісне обслуговування - C_{s}^{om}.

Доходи з реалізації послуг на РДП та РДН визначаються за формулами 2 та 3 відповідно.

$$R_{s}^{\text{pp}}(t) = p_{s} W_{s} \Delta t$$ \hspace{1cm} (2)

де p_{s} - ймовірність виникнення сценарію s; W_{s} - фінансовий результат з купівлі-продажу електроенергії на ринку в часовий проміжок Δt.

$$R_{s}^{\text{pp}}(t) = b_{s}^{\text{pv}} + R_{s}^{\text{pp}}(t)$$ \hspace{1cm} (3)

де b_{s}^{pv} - загальний обсяг електроенергії, що продається/купується на ринку допоміжних послуг; $R_{s}^{\text{pp}}(t)$ - ціна електроенергії на РДП у сценарії s в годину t; $R_{s}^{\text{pp}}(t)$ - плата за готовність надання послуги на ринку допоміжних послуг; b_{s}^{v} - плата за обсяг електроенергії, що був реалізований на ринку допоміжних послуг.

Вартість завдання потужностей СНЕ на ринках на РДН/ВДР та РДП C_{s}^{pp} при наданні відповідних послуг, що пропорційна обсягу електроенергії, яка була використана накопичувачем (як в режимі заряду так і розряду), згідно (5).

$$C_{s}^{\text{pp}} = C_{s}^{\text{om}} \left(b_{s}^{\text{v}} + b_{s}^{\text{pv}} \right) \Delta t$$ \hspace{1cm} (5)

де C_{s}^{pp} - ціна завдання СНЕ при купівлі-продажу одиниці електроенергії; b_{s}^{v} - електроенергія, що була продана на ринку електроенергії за проміжок часу Δt; b_{s}^{pv} - електроенергія, що була куплена на ринку електроенергії за проміжок часу Δt.

Вартість, що враховує погіршення стану v-того накопичувача, яким керує оператор розподіленого СНЕ - C_{s}^{om}, визначається відповідно до виразів (6-9):

$$Y_{v}(t) = p_{v} \sigma_{v}$$ \hspace{1cm} (6)

$$\sigma_{v} = \frac{p_{v}}{\eta_{v}}$$ \hspace{1cm} (7)

$$C_{v}^{\text{pp}} = \sum_{s} C_{s}^{\text{pp}}$$ \hspace{1cm} (8)

$$C_{v}^{\text{om}} = \sum_{s} \left[\frac{\left(C_{s}^{\text{pp}} - C_{s}^{\text{om}} \eta_{v} \sigma_{v} \right)}{\eta_{v}} \right]$$ \hspace{1cm} (9)

де E_{v} - повна ємність СНЕ, кВт*год; η_{s} та η_{v} - ефективність заряду та розряду v-того накопичувача, відповідно; p_{v} - команда на регулювання (розряду/заряду) в період t; p_{v}^{om} - потужність при який за час v-тий СНЕ повністю зарядиться; p_{v}^{pp} - потужність при який за час v-тий СНЕ повністю зарядиться; σ_{v} - обсяг електроенергії, відповідно до команди на розвантаження, яким заряджають v-тий СНЕ, в період часового ряду t; Y_{v} - обсяг електроенергії, відповідно до команди на завантаження, яким заряджають v-тий СНЕ, в період часового ряду t; C_{s}^{om} - вартість v-того накопичувача, що враховує рівень його деградації - M_{v}. Вартість сервісного обслуговування v-того СНЕ C_{v}^{om} залежить від ціни обслуговування одиниці
Потужності СНЕ та сумарної потужності розподілених СНЕ – P_{max} визначаються як

$$C^{\text{OM}} = c_{\text{om}} P_{\text{max}},$$ \hspace{1cm} (10)$$
$$P_{\text{max}} = \sum_{\text{ref}} P_{\text{c,max}} \hspace{1cm} \text{(11)}$$

де c_{om} – ціна обслуговування одиниці потужності СНЕ, грн; $P_{\text{c,max}}$ – номінальна потужність i-того накопичувача.

Загальна ціна за електроенергію визначається продаюрою та купленою електроенергією, що проілюстровано у виразі (11). i-тій накопичувачів протягом певного періоду часового ряду t не можна одночасно заряджати та розряджати, отже $P_{\text{c,reg}}$ та $P_{\text{c,chg}}$ не можуть обидва бути позитивними. Однак, через те, що існує багато розподілених СНЕ, технічно можливо, щоб оператор системи накопичення продавав і купував електроенергію одночасно, при умові що за певний період часового ряду t, одна частина накопичувачів буде заряджатися, а інша – розряджатися. В оптимальному варіанті загальна ціна на електроенергію повинна розподілятися між накопичувачами, як показано в (12) та (13). Загальний обсяг торгів на РДП наведено в (14).

$$W_{\text{OM}}(t) = b_{\text{c,reg}}^t - b_{\text{c,chg}}^t$$ \hspace{1cm} (11)$$
$$b_{\text{c,reg}}^t = \sum_{\text{ref}} P_{\text{c,reg}}^t$$ \hspace{1cm} (12)$$
$$b_{\text{c,chg}}^t = \sum_{\text{ref}} P_{\text{c,chg}}^t \hspace{1cm} \text{(13)}$$
$$b_{\text{c,reg}}^t = \sum_{\text{ref}} P_{\text{c,reg}}^t$$ \hspace{1cm} (14)$$

Моделювання роботи СНЕ на РДП

При присвячні СНЕ до мереж ОСР та участі в балансуючому ринку та ринку допоміжних послуг основне використання потужностей оператора СНЕ буде спрямовано на надання симетричної послуги аРВЧ 80%. Даний співвідношення прийнято з урахуванням технічних характеристик акумуляторів на основі LiFePO4 для них глибин розряду (Depth of Discharge, DOD) приймається на рівні 80%, що забезпечує оптимальну кількість циклів.

Загальний принцип балансування збурень ОС з використанням ДП наведено на рис. 1.

Рис. 1 – Принцип балансування збурень системи з використанням різних видів резервів

На сьогоднішній день на сайті НЕК «Укренерго» опубліковано аналіз роботи ринку електроенергії за серпень 2020 р. На рис. 2 наведено результати роботи РДП. В ОЕС України закупівля резервів підтримки частоти (РТЧ) в середньому 21 МВт на одну годину. Закупівлі аРВЧ (автоматичних резервів відновлення частоти) протягом місяця була волатильною через недостатній рівень пропозицій учасників даного ринку. В середньому, аРВЧ на розвантаження було закуплено 31% – 71% від аукціонної потреби (у середньому 53%), на розвантаження – від 10% до 95% (в середньому – 58%) [11].
Виходячи з вище наведеної інформації, СНЕ задовільно буде привідати участь на РДП з використанням ± 0,4S*, для надання послуги з аРВЧ. При подачі заявки на симетричні послуги РПЧ та аРВЧ, обсяг вказується лише в одному з напрямків, при цьому ціна не має перевищувати величину, яка визначає собою синус гранічних цін на завантаження та на розвантаження (512,27 + 289,27 = 801,54). Враховуючи, що на сьогоднішній день недостатній рівень пропозицій по аРВЧ, ціна за дану послугу приймається максимальна, 801,54 грн/МВт*год без ПДВ.

Купівля та продаж електроенергії буде здійснюватися на балансовому ринку [12, 13] відповідно до Правил ринку електричної енергії України [14, 15], за цінами небалансу, IMSP (грн/МВт*год) [12], плати за передачу та розподіл (Вінницька область) складає 24 та 15 коп/кВт*год відповідно.

Передбачається що СНЕ ємністю 5 МВт*год та DOD 80% буде працювати на симетричних послугах наступним чином:

1. 00:00–01:00 при першому включення в мережу СНЕ з «пустим» акумуляторами відбувається заряд установки шляхом купівлі електроенергії на БР 3,255 МВт*год. В результаті ємність СНЕ буде складати 3,1 МВт.

2. 3,255 МВт*год складається з

 2.1 2 МВт*год – симетрична електроенергія при DOD 80%, тобто 5*0.8/2=2 МВт*год, яка буде використана для задіяння резерву аРВЧ;

 2.2 1 МВт*год – для забезпечення залишкової електроенергії в акумуляторах при DOD 80%, тобто 3,1–2=1 МВт*год;

 2.3 0,155 кВт*год – 5% втрати від 3,1 МВт*год в режимі заряду.

3. 01:00–02:00 за командою диспетчера відбувається заряд резерву аРВЧ у мережу СНЕ виділає 2 МВт*год по вартості БР з отриманням плати за готовність. З врахуванням 5% втрат в інвенторі з СНЕ буде використано 2,1 МВт*год. В результаті ємність СНЕ складатиме 1 МВт*год.

4. 02:00–03:00 відбувається заряд установки шляхом купівлі електроенергії на БР 2,205 МВт*год (0,105 МВт*год складають 5%). У результаті ємність СНЕ складає 3,1 МВт*год.

В наступній годині СНЕ працює до кінця доби циклічно з погодним розрядом/зарядом аналогічно періоду, описаного з 01:00 до 03:00 год. Повний розрахунок наведено на рис. 3.

Рис. 2 – Результати роботи РДП за серпень 2020 року

Рис. 3 – Розрахунок добового графіку роботи СНЕ
Салдо перетоків за перший день складає – 3,51 МВт*год, а за другий і всі наступні дні – 2,46 МВт*год. У зв'язку з тим, що СНЕ у перший день починає працювати з нуля.

Для СНЕ даної потужності та ємності дохід за добу складає 19 114,90 грн з урахуванням ПДВ (рис.4). Відповідно до проведенних розрахунків середньодобове сальдо перетоків складає 2,495 МВт*год.

Рис. 4 – Графік зміни цін на балансуючому ринку (права вісь) та зміни грошового потоку (ліва вісь) за добу

Висновки

Передумовами впровадження систем накопичення енергії є постійний ріст обсягів негарантованої генерації ВДЕ та фактичне спрацювання свого першого ресурсу значною частиною теплової генерації, що на сьогоднішній день, разом з гідроелектростанціями є основними засобами балансування енергосистеми. Такі фактори значно впливають на операційну безпеку роботи ОЕС України.

Оскільки впровадження нових технологій потребує капіталовкладень, в розробці розроблено математична модель функціонування накопичувача на ринку на добу наперед, балансиючому та ринку допоміжних послуг, що дає змогу визначити термін окупності такого проекту під час надання допоміжних послуг оператору системи передачі.

Список літератури

1. Лежнюк П. Д., Комар В. О., Кравчук С. В., Котилко І. В., Прокопенко І. О. Оцінювання якості електропостачання в локальних електричних системах з різноманітними відновлювальними джерелами енергії. Вісник Харківського національного технічного університету сільського господарства ім. Петра Василівича. 2018. Вип. 195. С. 23–25.
2. Бланов І. В., Парус С. В., Іванов Г. А. Дослідження організації конкурентної моделі ринку електроенергії України з урахуванням мережевих обмежень в ОЕС України. Пр. Інституту електротехніки НАН України. 2016. Вип. 45. С. 34–39.
3. Кириленко О. В., Бланов І. В., Парус С. В. Оцінка роботи електростанції при наданні допоміжних послуг з первинного та вторинного регулювання частоти в ОЕС України. Технічна електротехніка. 2013. № 5. С. 55–60.
4. Feng L., Zhang J. N., Li G. J. [et al]. Cost reduction of a hybrid energy storage system considering correlation between wind and PV power. Prot Control Mod Power Syst. 2016. 1(1). doi: 10.1186/s41601-016-0021-1.
5. Chen Q., Liu D., Lin J. et al. Business models and market mechanisms of energy internet. Power Syst Technol. 2015. 11(39). doi: 10.1109/HICSS.2001.927035
6. Li H., Abinet T. E., Zhang J. H. et al. Optimal energy management for industrial microgrids with high-penetration renewables. Prot Control Mod Power Syst. 2017. 2(1). doi:10.1186/s41601-017-0040-6.
7. Vatanparvar K., Al Faruque M. A. Design Space Exploration for the Profitability of a Rule-Based Aggregator Business Model Within a Residential Microgrid. IEEE Transactions on Smart Grid. 2015. Vol. 6. No. 3. P. 1167–1175. doi: 10.1109/TSG.2014.2380318.
8. Hidalgo-León R. et al. A survey of battery energy storage system (BESS), applications and environmental impacts in power systems. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). 2017. P. 1–6. doi: 10.1109/ETCM.2017.8247485.
9. Wu D., Gui Q., Zhao W., Wang J., Shi S., Zhou Y. Battery Energy Storage System (BESS) Sizing Analysis of Bess-Assisted Fast-Charge Station Based on Double-Layer optimization Method. 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS). 2020. P. 658–662. doi: 10.1109/SCEMS48876.2020.9352324.
10. Актуальні Гранчні ціни на ДП на 2020 рік. НЕК Украєнерго. URL: https://ua.energy/wp-content/uploads/2020/04/Granichni-tsiny_2020_red3.pdf (дата звернення 26.04.2021).
11. Реєстр одиниць надання допоміжних послуг на 30.09.2020. НЕК Украєнерго. URL: https://ua.energy/wp-content/uploads/2020/09/Reestr-PDP_30.09.2020.pdf (дата звернення 26.04.2021).
12. Деталі аукціонів згідно Графіка проведення аукціонів. НЕК Украєнерго. URL: https://ua.energy/uchasnikam_rinki/balansuyuchyj-rynok-NEK/ (дата звернення 26.04.2021).
13. Результати ринку допоміжних послуг за серпень 2020 року (ОЕС України + Бурштин). НЕК Украєнерго: URL: https://ua.energy/peredacha-i-
28

СЕРІЯ "НОВІ РІШЕННЯ В СУЧАСНИХ ТЕХНОЛОГІЯХ"

ISSN 2079-5459 (print)
ISSN 2413-4295 (online)

VІСНИК НТУ "ХПІ" № 2 (8)

References (transliterated)

1. Lezhnyuk P. D., Komar V. O., Kravchuk S. V., Kotylko I. V., Prokopenko I. O. Os'inyuvannya yakosti elektropostachannya v mismyvkykh elektrichnykh systemakh z riznotropynymy vidnovlyuv'nym dzerelami energii [Evaluation of power supply quality in local electrical systems with different types of renewable energy sources] Visnyk Kharkivskogo natsional'noho tekhnichnogo universytetu sil's'koho hospodarstva imeni Petra Vasylenka, 2018, Iss. 195, pp. 23–25.

2. Blinov I. V., Parus Ye. V., Ivanov H. A. Doslidzhennya orhanizatsiyi konkurentynoi modeli rynku elektroenerhiy Ukrayiny z urakhuvannya meryzhovykh obmezhen [Investigation of the competitive model of the electricity market of Ukraine taking into account network restrictions in the UES of Ukraine]. Pr. Institu tetroenergetiki NAN Ukrayyny, 2016, Iss. 45, pp. 34–39.

3. Krylylenko O. V., Blinov I. V., Parus Ye. V. Otsinka roboty elektrostantsiy pri nadannya dopomizhnykh poslugh z povynnoho ta vtornymo rehulyuvannya chasto v OES Ukrayiny [Evaluation of power plants in the provision of ancillary services for primary and secondary frequency control in the UES of Ukraine]. Tekhnichna elektrodynamika, 2013, no. 5, pp. 55–60.

4. Feng L., Zhang J. N., Li G. J. [et al]. Cost reduction of a hybrid energy storage system considering correlation between wind and PV power. Prot Control Mod Power Syst., 2016, 1(1), doi: 10.1186/s41601-016-0021-1.

5. Chen Q., Liu D., Lin J. [et al]. Business models and market mechanisms of energy internet. Power Syst Technol., 2015, 11(39), doi: 10.1109/HCSS.2015.927035.

6. Li H., Abine T.E., Zhang J.H. [et al] Optimal energy management for industrial microgrids with high-penetration renewables. Prot Control Mod Power Syst., 2017, 2(1), doi:10.1186/s41601-017-0040-6.

7. Vatanparvar K., Al Faruque M. A. Design Space Exploration for the Profitability of a Rule-Based Aggregator Business Model Within a Residential Microgrid. IEEE Transactions on Smart Grid, 2015, Vol. 6, no. 3, pp. 1167–1175, doi: 10.1109/TSG.2014.2380318.

8. Hidalgo-León R. [et al.] A survey of battery energy storage system (BESS) applications and environmental impacts in power systems. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), 2017, pp. 1–6, doi: 10.1109/ETCM.2017.8247485.

9. Wu D., Gui Q., Zhao W., Wang J., Shi S., Zhou Y. Battery Energy Storage System (BESS) Sizing Analysis of Bess-Assisted Fast-Charge Station Based on Double-Layer optimization Method. 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), 2020, pp. 658–662, doi: 10.1109/SCEMS48876.2020.9352324.

10. Faktynchi hryvni tyuli na DP na 2020 rik [Actual Marginal prices for SOEs for 2020] NEK Ukrenerho. Available at: https://ua.energy/wp-content/uploads/2020/04/Granchyi-tsyni_2020_red3.pdf (accessed 26.04.2021).

11. Reyestr odnyts' nadannya dopomizhnykh poslugh na 30.09.2020 [Register of ancillary services units on 30.09.2020] NEK Ukrenerho. Available at: https://ua.energy/wp-content/uploads/2020/09/Reyestr-PDP-30.09.2020.pdf (accessed 26.04.2021).

12. Detali auktsioniv za dopomohoyu Hrafika provedennya auktsioniv [Details of auctions according to the Schedule of auctions]. NEK Ukrenerho. Available at: https://ua.energy/uchasnikam_rinku/balansuyuchyi-rynok-dopomizhnyh-poslug/dopomizhni-poslugy/auktsiony-na-dopomizhni-poslugy-2020-j-rik/ (accessed 26.04.2021).

13. Rezul'taty rynku dopomizhnykh poslugh za serpen' 2020 roku (OES Ukrayiny + Burshtyn) [Results of the market of ancillary services for August 2020 (UES of Ukraine + Amber)]. NEK Ukrenerho. Available at: https://ua.energy/peredacha-i-dyspetcheryzatsiya/dyspetcherska-informatsiya/dopomizhni-poslugy(accessed 26.04.2021).

14. Faktynchi tsyny nebalansiv [Actual imbalance prices]. NEK Ukrenerho. Available at: https://ua.energy/uchasnikam_rinku/rezultaty-balansuyuchogo-rynku-2/#159047945816-2c212666-d2fa (accessed 26.04.2021).

15. Robota rynku elektroenerhiy za serpen' 2020 roku https://www.slideshare.net/Ukrenergo/2020-238748424 (accessed 26.04.2021).

16. Kodeks systemy peredach [Transmission System Code]. Postanova NKREKP of 14.03.2018 no. 309

17. Pravila rynku [Market rules]. Postanova NKREKP of 14.03.2018 no. 307.

Відомості про авторів (About authors)

Лехниук Петро Дем'янович – доктор технічних наук, професор, Вінницький національний технічний університет, завідувач кафедри електричних станцій і систем; Вінниця, Україна; e-mail: lezhdp@gmail.com.

Петро Лехниук – Doctor of Technical Sciences (Ph. D), professor, Vinnitsa National Technical University, assistant of power plants and systems department; Vinnitsa, Ukraine; e-mail: lezhdp@gmail.com.

Кравчук Сергій Васильович – кандидат технічних наук, асистент, Вінницький національний технічний університет, асистент кафедри електричних станцій і систем; Вінниця, Україна; e-mail: sv.kravchuk@ukr.net.

Sergey Kravchuk – Candidate of Technical Sciences (Ph. D), assistant, Vinnitsa National Technical University, assistant of power plants and systems department; Vinnitsa, Ukraine; e-mail: sv.kravchuk@ukr.net.

Малогулько Юлія Володимирівна – кандидат технічних наук, доцент, Вінницький національний технічний університет, асистент кафедри електричних станцій і систем; Вінниця, Україна; e-mail: malogulko.y.v@vntu.edu.ua.
Yulia Malogulko – Candidate of Technical Sciences (Ph. D), Senior Lecturer, Vinnitsa National Technical University, assistant of power plants and systems department; Vinnitsa, Ukraine; e-mail: malogulko.y.v@vntu.edu.ua.

Igor Prokopenko – aspірант, Вінницький національний технічний університет, асистент кафедри електричних станцій і систем; Вінниця, Україна; e-mail: delfin11071994@gmail.com.

Yulia Malogulko – Candidate of Technical Sciences (Ph. D), Senior Lecturer, Vinnitsa National Technical University, assistant of power plants and systems department; Vinnitsa, Ukraine; e-mail: malogulko.y.v@vntu.edu.ua.

Igor Prokopenko – Postgraduate, Vinnitsa National Technical University, assistant of power plants and systems department; Vinnitsa, Ukraine; e-mail: delfin11071994@gmail.com.

Please cite this article as:
Lezhniuk P., Kravchuk S., Malogulko Y., Prokopenko I. Modelowanie pracy wspomagальных систем; Харьков: НТУ «ХПІ». 2021. № 2 (8). С. 21-29. doi:10.20998/2413-4295.2021.02.04.

Пожалуйста, ссылайтесь на эту статью следующим образом:
Lezhniuk P., Kravchuk S., Malogulko Y., Prokopenko I. Mathematical modeling of battery energy storage systems in the additional service market of the united electric power system of Ukraine. Bulletin of the National Technical University "KhPI". Series: New solutions in modern technology. – Kharkiv: NTU"KhPI", 2021, no. 2(8), pp. 21-29, doi:10.20998/2413-4295.2021.02.04.

АННОТАЦИЯ
Внедрение систем накопления и дальнейшего переноса электроэнергии достаточно важная задача, которая решается в разных странах по-разному, исходя из типа продукта, который могут предоставлять системами накопления энергии. Анализ структуры генерирующих мощностей в Объединенной электроэнергетической системе Украины показывает значительный дефицит маневреных мощностей, среди которых на сегодня является теловая генерация, имеет значительный уровень износа основного генерирующего оборудования и гидроэлектростанции. Используя вышеприведенного, логично было бы предположить, что запуском новой модели рынка электроэнергии, будут сформированы такие сегменты рынка, на которых ценовые сигналы станут привлекательными для инвестиций в новые маневреные мощности. Однако, на сегодняшний день, формирование таких сигналов, ограничено установлением верхних ценовых индексов на балансирующем рынке и рынке на сутки вперед. Итак, для моделирования работы систем накопления энергии, был избран рынок вспомогательных услуг, на котором системный оператор закупает услуги у поставщиков вспомогательных услуг. Моделирование работы систем накопления энергии для оказания вспомогательных услуг задача многомерная, учитывающая как технические особенности работы системы накопления энергии, так и соответствующие ценовые индексы, которые были сформированы для каждого вида услуги. В работе рассмотрена возможность предоставления услуг автоматического резерва восстановления частоты и услуг балансировки. На основе статистических данных по работе рынка вспомогательных услуг объединенной электроэнергетической системы Украины разработана математическая модель, позволяющая оценивать эффект от использования систем накопления энергии, для предоставления услуг с первичного, вторичного и третичного регулирования частоты. Определены взаимосвязи между ценовыми индексами на рынке вспомогательных услуг и технико-экономическими характеристиками работы системы накопления энергии.

Ключевые слова: рынок вспомогательных услуг; система накопления энергии; резерв поддержки частоты; резерв восстановления частоты

Надійшла (received) 30.04.2021