Neutrino Mixing in a Democratic-Seesaw-Mass-Matrix Model

Yoshio Koide
Department of Physics, University of Shizuoka
52-1 Yada, Shizuoka 422, Japan

Abstract

On the basis of a seesaw-type mass matrix model for quarks and leptons, $M_f \simeq m_L M_F^{-1} m_R$, where $m_L \propto m_R$ are universal for $f = u, d, \nu$ and ν_e (up-quark-, down-quark-, neutrino- and charged lepton-sectors), and M_F has a form [(unit matrix)+(democratic-type matrix)], neutrino masses and mixings are investigated. It is tried to understand a large $\nu_{\mu}-\nu_{\tau}$ mixing, i.e., $\sin^2 2\theta_{23} \sim 1$, with $m_{\nu_1} \ll m_{\nu_2} \sim m_{\nu_3}$, which has been suggested by the atmospheric neutrino data.

* E-mail: koide@u-shizuoka-ken.ac.jp
1. Introduction

The Kamiokande collaboration [1] has recently suggested a possibility of a large neutrino mixing $\nu_\mu - \nu_x$, $\sin^2 2\theta \simeq 1$, with $\Delta m^2 \simeq 1.8 \times 10^{-2} \text{eV}^2$ for $x = e$ ($x = \tau$) from their atmospheric neutrino data. Although their conclusion is still controversial [2], it seems to be worth while to take it seriously. On the other hand, the solar neutrino data [3] with the Mikheyev-Smirnov-Wolfenstein (MSW) effect [4] have suggested a neutrino mixing $\sin^2 2\theta \simeq 7 \times 10^{-3}$ with $\Delta m^2 \simeq 6 \times 10^{-6} \text{eV}^2$. What is of great interest to us is whether we can give a satisfactory explanation of both the data, [1] and [3], on the basis of an extension of a successful quark mass matrix model to the neutrino sector.

Recently, based on a seesaw-type quark mass matrix model [5], Fusaoka and the author [6] have proposed a quark mass matrix model which can naturally understand the observed facts $m_t \gg m_b$ and $m_u \sim m_d$, without bringing such a parameter as a parameter in M_u takes extremely large value compared with that in M_d. They have assumed vector-like heavy fermions F_i in addition to conventional quarks and leptons f_i ($i = 1, 2, 3$) [$f = u$ (up-quarks), $f = d$ (down-quarks), $f = \nu$ (neutrinos) and $f = e$ (charged leptons)]. These fermions belong to $F_L = (1, 1), F_R = (1, 1), f_L = (2, 1)$, and $f_R = (1, 2)$ of SU(2)$_L \times$SU(2)$_R$, respectively. The mass matrix for (f, F) is given by a 6×6 matrix

$$ M = \begin{pmatrix} 0 & m_L \\ m_R & M_F \end{pmatrix} = m_0 \begin{pmatrix} 0 & Z \\ \kappa Z & \lambda O_f \end{pmatrix}, \quad (1.1) $$

where the chiral symmetry breaking terms m_L and m_R are assumed to be $m_L \propto m_R$ and they have a universal structure Z for quarks and leptons f (= u, d, ν, e),

$$ Z = \begin{pmatrix} z_1 & 0 & 0 \\ 0 & z_2 & 0 \\ 0 & 0 & z_3 \end{pmatrix}, \quad (1.2) $$

where z_i are normalized as $z_1^2 + z_2^2 + z_3^2 = 1$. The heavy fermion mass matrix $M_F = m_0 \lambda O_f$ has a structure [7] of [(unit matrix)+(a democratic-type matrix)] and it includes only one complex parameter $b_f e^{i\beta_f}$ which depends on $f = u, d, \nu, e$:

$$ O_f = 1 + 3b_f e^{i\beta_f} X, \quad (1.3) $$
where 1 are a 3×3 unit matrix and X is a democratic-type matrix [8]

$$X = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$ (1.4)

The mass matrix (1.1) leads to the well-known seesaw form $M_f \simeq m_L M_F^{-1} m_R$ for $\text{Tr} M_F \gg \text{Tr} m_R, \text{Tr} m_L$. Note that the inverse matrix of O_f again takes the form $[(\text{unit matrix})+(\text{democratic-type matrix})]$,

$$O_f^{-1} = 1 + 3 a_f e^{i \alpha_f} X ,$$ (1.5)

with

$$a_f e^{i \alpha_f} = -\frac{b_f e^{i \beta_f}}{1 + 3 b_f e^{i \beta_f}} .$$ (1.6)

The limit $b_f e^{i \beta_f} \rightarrow -1/3$ leads to $|a_f| \rightarrow \infty$. Therefore, a slight difference between b_u and b_d around $b_f \simeq -1/3$ can induce an extremely large difference between m_t and m_b. On the other hand, we can keep $m_u \sim m_d$ because the democratic mass matrix makes only the third family heavy. Thus, they [6] have given a natural explanation of the observed facts $m_t \gg m_b$ and $m_u \sim m_d$.

In order to fix the parameters z_i, they have assumed that $b_e = 0$, i.e.,

$$M_e \simeq m_0 \frac{\kappa}{\lambda} Z^2 ,$$ (1.7)

so that z_i are given by

$$\frac{z_1}{\sqrt{m_e}} = \frac{z_2}{\sqrt{m_\mu}} = \frac{z_3}{\sqrt{m_\tau}} = \frac{1}{\sqrt{m_e + m_\mu + m_\tau}} .$$ (1.8)

By taking $\kappa/\lambda = 0.02$, $b_u = -1/3$ ($\beta_u = 0$) and $b_d = -1$ ($\beta_d = -18^\circ$), they have obtained reasonable quark mass ratios and Kobayashi-Maskawa (KM) [9] matrix parameters.

In their model, the variety of the quark and lepton mass matrices come form the variety of the corresponding heavy fermion mass matrices which are characterized by the parameter $b_f e^{i \beta_f}$. They have concluded that the parameter values $b_u = -1/3$, $b_d = -1$ and $b_e = 0$ are favorable to the observed mass spectra and mixings. However, why the nature chooses such values of b_f is an open question. In order to obtain a clue to such a question, in the present paper, we investigate
what value of b_ν is required from the phenomenological study of neutrino masses and mixings.

2. Neutrino mass matrix

In the model in Ref. [6], the mass matrices of the charged leptons and quarks have been given by (1.1). In order to understand why neutrino masses are so negligibly small, we must consider that a value of the parameter λ in (1.1) in neutrino sector takes extremely large value compared with those in charged lepton and quark sectors, or that a extremely large Majorana mass term causes the so-called seesaw mechanism [10] doubly. The former case is not natural from the standpoint of the unified description of quark and lepton mass matrices. For the latter case, two possibilities are considered: one is that the heavy neutrinos N_{Li} and N_{Ri} have large Majorana masses M_{Mi}, and another is that the right-handed neutrinos ν_{Ri} have large Majorana masses M_{Mi}. Roughly speaking, for $\text{Tr}M_M \gg \text{Tr}M_D$ (for convenience, we denote the Dirac masses M_F in (1.1) as M_D), the former and latter cases lead to mass matrices for the left-handed neutrinos ν_{Li},

$$M_{\nu_i} \simeq -(1/2)^2 m_L M_M^{-1} m_T L ,$$

and

$$M_{\nu_i} \simeq -(1/2)^4 m_L M_D^{-1} m_R M_M^{-1} m_T R (M_D^{-1})^{-1} m_T L ,$$

respectively. In the former case, in order to give neutrino mixings, we must consider some structure of M_M, which may be independent of that of M_D, so that the mass matrix M_{ν_i} cannot be related to the mass matrices of charged leptons and quarks. In the present paper, we investigate the latter possibility.

The 6×6 mass matrix which is sandwiched by (ν_L, ν_R, N_L, N_R) and $(\nu_L^c, \nu_R^c, N_L^c, N_R^c)^T$ is given by

$$M = \begin{pmatrix} 0 & 0 & 0 & \frac{1}{2} m_L \\ 0 & M_M & \frac{1}{2} m_T R & 0 \\ 0 & \frac{1}{2} m_R & 0 & M_D \\ \frac{1}{2} m_T L & 0 & M_D^T & 0 \end{pmatrix} ,$$

so that the 3×3 light-neutrino mass matrix is given by (2.2). We assume that M_M is simply given by $M_M = m_0 \xi 1$, while M_D is given by a universal structure $M_D = m_0 \lambda O_f = m_0 \lambda (1 + 3b_\nu e^{i\beta} X)$ as well as those in quark sectors. Then, we obtain

$$M_{\nu_i} \simeq \frac{1}{16} \frac{\kappa^2 m_0}{\lambda^2 \xi} Z O^{-1}_\nu Z \cdot Z O^{-1}_\nu Z .$$
In Fig. 1, we illustrate the behavior of the neutrino masses versus the parameter \(b_\nu \), which is similar to that of the quark masses (see Fig. 1 in Ref. [6]). For the case of \(\beta_\nu = 0 \), at \(b_\nu = -1/2 \) (\(b_\nu = -1 \)), the mass levels \(m_{\nu_3} \) and \(m_{\nu_2} \) (\(m_{\nu_3} \) and \(m_{\nu_1} \)) degenerate each other. Therefore, we can expect that large neutrino mixings occur at \(b_\nu = -1/2 \) and \(b_\nu = -1 \). For the case of \(\beta_\nu \neq 0 \), the degeneracies between \(m_{\nu_i} \) and \(m_{\nu_j} \) disappear, so that the large mixings \(\sin^2 2\theta_{ij} \approx 1 \) become mild.

3. Masses and mixings for typical three cases of \(b_\nu \)

Let us show the neutrino masses \(m_i \) and mixing matrix \(U_{\nu L} \) for typical three cases of \(b_\nu \): \(b_\nu \approx -1/3 \), \(b_\nu \approx -1/2 \) and \(b_\nu \approx -1 \). Here, the mixing matrix \(U_{\nu L} \) is defined by

\[
\nu_\alpha = \sum_{i=1}^{3} (U_{\nu L})_{\alpha i} \nu_i ,
\]

where \(\nu_\alpha (\alpha = e, \mu, \tau) \) are flavor eigenstates and \(\nu_i (i = 1, 2, 3) \) are mass eigenstates. For simplicity, we consider the case of \(\beta_\nu = 0 \). Then, we obtain the following approximate expressions:

\[
m_{\nu_1} \approx \left(\frac{3}{4} \frac{m_e}{m_\tau} \right)^2 m_0^\nu , \quad m_{\nu_2} \approx \left(\frac{m_\mu}{m_\tau} \right)^2 m_0^\nu , \quad m_{\nu_3} \approx \left(\frac{\sqrt{2}}{27|\varepsilon|} \right)^2 m_0^\nu ,
\]

(3.2)

\[
U_{\nu L} \approx \begin{pmatrix}
1 & \frac{1}{2} \sqrt{m_e/m_\mu} & \frac{1}{2} \sqrt{m_e/m_\tau} \\
-\frac{1}{2} \sqrt{m_e/m_\mu} & 1 & -\frac{1}{2} \sqrt{m_\mu/m_\tau} \\
-\frac{1}{2} \sqrt{m_e/m_\tau} & \frac{1}{2} \sqrt{m_\mu/m_\tau} & 1
\end{pmatrix} ,
\]

(3.3)

for \(b_\nu \approx -1/3 \) (\(\varepsilon \equiv b_\nu + 1/3 \)),

\[
m_{\nu_1} \approx \left(\frac{m_e}{m_\tau} \right)^2 m_0^\nu , \quad m_{\nu_2} \approx m_{\nu_3} \approx \left(\frac{1}{2} \sqrt{m_\mu/m_\tau} \right)^2 m_0^\nu ,
\]

(3.4)

\[
U_{\nu L} \approx \begin{pmatrix}
1 & \frac{1}{\sqrt{2}} \left(\sqrt{m_\mu/m_\mu} + \eta \sqrt{m_\mu/m_\tau} \right) & \frac{1}{\sqrt{2}} \left(\sqrt{m_\mu/m_\mu} - \eta \sqrt{m_\mu/m_\tau} \right) \\
-\sqrt{m_e/m_\mu} & \frac{1}{\sqrt{2}} & -\frac{\eta}{\sqrt{2}} \\
-\sqrt{m_e/m_\tau} & \frac{\eta}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{pmatrix} ,
\]

(3.5)

for \(b_\nu \approx -1/2 \), and

\[
m_{\nu_1} \approx m_{\nu_2} \approx \left(\frac{1}{2} \sqrt{m_e m_\mu/m_\tau^2} \right)^2 m_0^\nu , \quad m_{\nu_3} = \left(\frac{1}{4} \right)^2 m_0^\nu ,
\]

(3.6)
\[U_{\nu L} \approx \left(\begin{array}{ccc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -\eta \frac{1}{\sqrt{2}} \\ \eta \frac{1}{\sqrt{2}} \left(m_\mu / m_\tau \right) & \frac{1}{\sqrt{2}} \left(m_e / m_\tau \right) & -\sqrt{m_\mu / m_\tau} \\ \eta \frac{1}{\sqrt{2}} \left(m_\mu / m_\tau \right) & -\sqrt{m_e / m_\tau} & -\sqrt{m_\mu / m_\tau} \end{array} \right), \]

for \(b_\nu \approx -1 \), where \(m_0^\nu \) is defined by

\[m_0^\nu = \left(\frac{\kappa}{2\lambda} \right)^2 \frac{m_0}{\xi}. \]

Here, in (3.5) [(3.7)], the factor \(\eta \) is defined as \(\eta = \pm 1 \) for \(b_\nu = b_{23}^{0 \pm} \) and \(\sim -1/2 \) \((1 \gg \varepsilon > 0) \) \(b_\nu = b_{23}^{0 \pm} \) \(\varepsilon \sim -1 \) \((\varepsilon > 0) \), where \(b_{23}^{0 \pm} \) is the value of \(b_\nu \) at which the values of \(m_2 \) and \(m_3 \) exactly degenerate. As shown in (3.5) and (3.7), the mixing elements \((U_{\nu L})_{a2} \) and \((U_{\nu L})_{a3} \) \((|U_{\nu L}|_{a1} \text{ and } (U_{\nu L})_{a2} \text{ } \right) \) are exchanged each other at \(b_\nu = b_{23}^{0 \pm} \) \(b_\nu = b_{12}^{0 \pm} \), because the mass levels of \(m_2 \) and \(m_3 \) \(\nu_1 \text{ and } \nu_2 \) cross each other at \(b_\nu = b_{23}^{0 \pm} \) \(b_\nu = b_{12}^{0 \pm} \) as seen in Fig. 1.

The result (3.3) for the case \(b_\nu \sim -1/3 \) has been reported in Ref. [11]. The mixing matrix element \(U_{\nu e} \equiv \sin \theta_{e2} \) leads to \(\sin^2 2\theta_{e2} \approx m_e / m_\mu = 4.8 \times 10^{-3} \), which is in good agreement with the MSW solution of solar neutrino data [3] \(\sin^2 2\theta \approx 7 \times 10^{-3} \). However, in this paper, we will direct our attention to the atmospheric neutrino data [1] as well as the solar neutrino data [3].

4. Numerical study

We consider that the atmospheric neutrino data [1] show \(\nu_\mu - \nu_\tau \) mixing, while the solar neutrino data [3] show \(\nu_e - \nu_\mu \) mixing.

For reference, in Fig. 2, we illustrate \(\Delta m_{21}^2 \equiv m_{\nu_2}^2 - m_{\nu_1}^2 \) versus \(\sin^2 2\theta_{e2} \equiv 4|U_{e2}|^2(1 - |U_{e2}|^2) \) and \(\Delta m_{32}^2 \equiv m_{\nu_3}^2 - m_{\nu_2}^2 \) versus \(\sin^2 2\theta_{\mu 3} \equiv 4|U_{\mu 3}|^2(1 - |U_{\mu 3}|^2) \) in the case of \(\beta_\nu = 0 \). Note that the value of \(\sin^2 2\theta_{e2} \) is discontinuous at \(b_\nu \sim -1/2 \) because the value of \(b_\nu \) crosses the value \(b_{0 \pm} \sim -1/2 \).

We interests in the case of \(b_\nu \sim -1/2 \), because the case yields \(\sin^2 2\theta_{\mu 3} \approx 1 \) with \(m_{\nu_1} \ll m_{\nu_2} \approx m_{\nu_3} \). In Fig. 3, we illustrate the behaviors of \(\sin^2 2\theta_{e2} \) and \(\sin^2 2\theta_{\mu 3} \) versus \(b_\nu \). For reference, we also illustrate the ratio \(\Delta m_{32}^2 / \Delta m_{21}^2 \) in the figure. The observed values \(\Delta m_{32}^2 \approx 1.6 \times 10^{-2} \text{ eV}^2 [1] \) and \(\Delta m_{21}^2 \approx 6 \times 10^{-6} \text{ eV}^2 [3] \) give the ratio \(\Delta m_{32}^2 / \Delta m_{21}^2 \approx 2.7 \times 10^3 \). As seen in Fig. 3, there is no solution which gives \(\sin^2 2\theta_{\mu 3} \approx 1 \), \(\sin^2 2\theta_{e2} \approx 0.007 \) and \(\Delta m_{32}^2 / \Delta m_{21}^2 \approx 3 \times 10^3 \) simultaneously. If we reduce the requirement of the maximal mixing \(\sin^2 2\theta_{\mu 3} \approx 1 \), for example, to \(\sin^2 2\theta_{\mu 3} \approx 0.4 \), we can find satisfactory solutions of \(b_\nu \). For the case of \(\beta_\nu = 0 \), the choice \(b_\nu \sim -0.41 \) can give the plausible values of \(\sin^2 2\theta_{\mu 3}, \sin^2 2\theta_{e2} \)
and $\Delta m_{32}^2/\Delta m_{21}^2$ as seen in Fig. 3. For the case of $\beta_\nu \neq 0$, we take $b_\nu = -1/2$ by way of trial, because the value is a simple fractional number which gives $b_\nu \sim -0.5$. Then, the choice $\beta_\nu \simeq 22^\circ$ can give favorable predictions. We list numerical results for some special cases of (b_ν, β_ν) in Table 1.

In Table 1, the values ξm_0 have been estimated as follows: from (1.7), we obtain

$$m_0 \kappa/\lambda = m_\tau + m_\mu + m_e = 1.883 \text{ GeV},$$

so that from the definition (3.8), we obtain

$$\xi m_0 = (m_\tau + m_\mu + m_e)^2/4m_\nu^\nu.$$ \hspace{1cm} (4.1)

Here, the values of m_ν^ν have been obtained from $(\Delta m_{21}^2)_{\text{theory}}/(\Delta m_{21}^2)_{\text{input}}$ with $(\Delta m_{21}^2)_{\text{input}} = 6 \times 10^{-6} \text{ eV}^2$. We find that the Majorana masses of ν_R are of the order of 10^9 GeV.

5. Discussions

As seen in Fig. 3 and Table 1, if we want a solution which gives the largest possible ν_μ-ν_τ mixing with $\Delta m_{32}^2 \geq 10^{-2} \text{ eV}^2$ (for the input $\Delta m_{21}^2 = 6 \times 10^{-6} \text{ eV}^2$), the solution $b_\nu = -0.41$ with $\beta_\nu = 0$ is favorable rather than the case of $\beta \neq 0$: the mixing matrix U_{ν_L} and neutrino masses m_{ν_i} are given by

$$U_{\nu_L} = \begin{pmatrix} 0.9988 & 0.0387 & 0.0310 \\ -0.0484 & 0.9061 & 0.4203 \\ -0.0117 & -0.4212 & 0.9069 \end{pmatrix},$$ \hspace{1cm} (5.1)

$m_{\nu_1} = 2.4 \times 10^{-8} \text{ eV}$, $m_{\nu_2} = 0.0024 \text{ eV}$ and $m_{\nu_3} = 0.099 \text{ eV}$, respectively.

However, from the phenomenological study [6] of quark masses and KM mixings, we have known that the values $b_u = -1/3$ and $b_d = -1$ for the input $b_e = 0$ are favorable. If we take notice of an empirical rule that $(b_e, Q_e) = (0, -1)$, $(b_d, Q_d) = (-1, -1/3)$ and $(b_u, Q_u) = (-1/3, +2/3)$, where Q_{f_i} is the charge of the fermions f_{i}, we can speculate [12] $(b_\nu, Q_\nu) = (+2/3, 0)$ for the neutrino sector. The value $b_\nu = 2/3$ with $\beta_\nu = 0$ $(\beta_\nu = \pi)$ predicts $\sin^2 2\theta_{e2} = 3.2 \times 10^{-3}$ (0.074), $\sin^2 2\theta_{\mu3} = 0.021$ (0.52) and $\Delta m_{32}^2/\Delta m_{21}^2 = 1.2 \times 10^5$ (4.1 $\times 10^3$). The predicted values of $\sin^2 2\theta_{\mu3}$ and $\Delta m_{32}^2/\Delta m_{21}^2$ in the case of $(b_\nu, \beta_\nu) = (+2/3, \pi)$ [i.e., $(b_\nu, \beta_\nu) = (-2/3, 0)$] are favorable to the observed data, but the predicted value $\sin^2 2\theta_{e2} = 0.074$ is larger by one order than the the MSW-suggested value $\sin^2 2\theta_{e2} \simeq 7 \times 10^{-3}$. If we suppose $b_\nu = 2/3$ with $\beta_\nu \simeq \pi$, we must discard the
neutrino mixing $\sin^2 2\theta_{e2} \simeq 7 \times 10^{-3}$ with $\Delta m_{21}^2 \simeq 6 \times 10^{-6}$ eV2, which is suggested from the solar neutrino data. On the other hand, if we suppose $b_\nu = 2/3$ with $\beta_\nu \simeq 0$, we must discard the neutrino mixing $\sin^2 2\theta_{\mu3} \sim 1$ with $\Delta m_{32}^2 \simeq 1.6 \times 10^{-2}$ eV2, which is suggested from the atmospheric neutrino data. If we want an explanation both for the atmospheric and solar neutrino data, we must accept the choice $(b_\nu, \beta_\nu) \simeq (-0.41, 0)$, but it is an open question how we understand the parameter value $b_\nu \simeq -0.41$ with $\beta_\nu \simeq 0$ from the point of view of a unified description of b_f ($f = \nu, e, u, d$).

Acknowledgments

The authors would like to express their sincere thanks to Professors R. Mohapatra, A. Yu. Smirnov, and H. Minakata for their valuable comments on a preliminary version of the present work. He would also like to thank Professor H. Fusaoka for helpful conversations on the democratic seesaw-mass-matrix model. This work was supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan (No.06640407).

References

[1] Y. Fukuda et al, Phys. Lett. B335 (1994) 237.

Also see, Soudan-2 collaboration, M.Goodman et al., Nucl. Phys. (Proc. Suppl.) B38 (1995) 337;

IMB collaboration, D. Casper et al, Phys. Rev. Lett. 66 (1989) 2561; R. Becker-Szendy et al, Phys. Rev. D46 (1989) 3720.

[2] NUSEX collaboration, M. Aglietta et al., Europhys. Lett. 8 (1989) 611;

Frejus collaboration, Ch. Berger et al., Phys. Lett. B227 (1989) 489; ibid B245 (1990) 305; K.Daum et al., Z. Phys. C66 (1995) 417.

[3] GALLEX collaboration, P. Anselmann et al, Phys. Lett. B327 (1994) 377; B357 (1995) 237;

SAGE collaboration, J. N. Abdurashitov et al, Phys. Lett. B328, 234 (1994).

Also see, N. Hata and P. Langacker, Phys. Rev. D50 (1994) 632; D52 (1995) 420.

[4] S. P. Mikheyev and A. Yu. Smirnov, Yad. Fiz. 42 (1985) 1441; [Sov. J. Nucl. Phys. 42 (1985) 913]; Prog. Part. Nucl. Phys. 23 (1989) 41;
L. Wolfenstein, Phys. Rev. D17 (1978) 2369; D20 (1979) 2634;
T. K. Kuo and J. Pantaleon, Rev. Mod. Phys. 61 (1989) 937.
Also see, A. Yu. Smirnov, D. N. Spergel and J. N. Bahcall, Phys. Rev. D49 (1994) 1389.

[5] Z. G. Berezhiani, Phys. Lett. 129B (1983) 99; Phys. Lett. 150B (1985) 177;
D. Chang and R. N. Mohapatra, Phys. Rev. Lett. 58 1600 (1987);
A. Davidson and K. C. Wali, Phys. Rev. Lett. 59 (1987) 393;
S. Rajpoot, Mod. Phys. Lett. A2 (1987) 307; Phys. Lett. 191B (1987) 122;
Phys. Rev. D36 (1987) 1479;
K. B. Babu and R. N. Mohapatra, Phys. Rev. Lett. 62 (1989) 1079; Phys. Rev. D41 (1990) 1286;
S. Ranfone, Phys. Rev. D42 (1990) 3819;
A. Davidson, S. Ranfone and K. C. Wali, Phys. Rev. D41 (1990) 208;
I. Sogami and T. Shinohara, Prog. Theor. Phys. 66 (1991) 1031; Phys. Rev. D47 (1993) 2905;
Z. G. Berezhiani and R. Rattazzi, Phys. Lett. B279 (1992) 124;
P. Cho, Phys. Rev. D48 (1994) 5331;
A. Davidson, L. Michel, M. L, Sage and K. C. Wali, Phys. Rev. D49 (1994) 1378;
W. A. Ponce, A. Zepeda and R. G. Lozano, Phys. Rev. D49 (1994) 4954.

[6] Y. Koide and H. Fusaoka, US-95-03 and AMU-95-04 (1995) [hep-ph/9505201],
to be published in Z. Phys. C (1996).

[7] H. Terazawa, University of Tokyo, Report No. INS-Rep.-298 (1977) (unpublished);
Genshikaku Kenkyu (INS, Univ. of Tokyo) 26 (1982) 33.

[8] H. Harari, H. Haut and J. Weyers, Phys. Lett. B78 (1978) 459;
T. Goldman, in Gauge Theories, Massive Neutrinos and Proton Decays, edited
by A. Perlmutter (Plenum Press, New York, 1981), p.111;
T. Goldman and G. J. Stephenson, Jr., Phys. Rev. D24 (1981) 236;
Y. Koide, Phys. Rev. Lett. 47 (1981) 1241; Phys. Rev. D28 (1983) 252; 39 (1989) 1391;
C. Jarlskog, in Proceedings of the International Symposium on Production and Decays of Heavy Hadrons, Heidelberg, Germany, 1986 edited by K. R. Schubert and R. Waldi (DESY, Hamburg), 1986, p.331;

P. Kaus, S. Meshkov, Mod. Phys. Lett. A3 (1988) 1251; Phys. Rev. D42 (1990) 1863;

L. Lavoura, Phys. Lett. B228 (1989) 245;

M. Tanimoto, Phys. Rev. D41 (1990) 1586;

H. Fritzsch and J. Plankl, Phys. Lett. B237 (1990) 451;

Y. Nambu, in Proceedings of the International Workshop on Electroweak Symmetry Breaking, Hiroshima, Japan, (World Scientific, Singapore, 1992), p.1.

[9] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.

[10] M. Gell-Mann, P. Rammond and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Z. Freedman (North-Holland, 1979);

T. Yanagida, in Proc. Workshop of the Unified Theory and Baryon Number in the Universe, edited by A. Sawada and A. Sugamoto (KEK, 1979);

R. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912.

[11] Y. Koide, Mod. Phys. Lett. A8 (1993) 2071.

[12] Y. Koide and H. Fusaoka, US-96-02 and AMU-96-01 (1996) [hep-ph/9602303].
Table 1. Numerical results for special cases of \((b_\nu, \beta_\nu)\). The input value \(\Delta m_{21}^2 \equiv 6 \times 10^{-6} \text{ eV}^2\) is used in order to fix the value of \(m_0^\nu\).

\[
\begin{array}{|c|c|c|c|c|}
\hline
(b_\nu, \beta_\nu) & (-0.41, 0^\circ) & (-0.40, 0^\circ) & (-1/2, 20^\circ) & (-1/2, 22^\circ) \\
\hline
\Delta m_{21}^2 & 6 \times 10^{-6} \text{ eV}^2 \\
\sin^2 2\theta_{e2} & 6.1 \times 10^{-3} & 5.9 \times 10^{-3} & 1.4 \times 10^{-2} & 1.4 \times 10^{-2} \\
\hline
\Delta m_{32}^2 & 0.97 \times 10^{-2} \text{ eV}^2 & 2.7 \times 10^{-2} \text{ eV}^2 & 0.65 \times 10^{-2} \text{ eV}^2 & 1.1 \times 10^{-2} \text{ eV}^2 \\
\sin^2 2\theta_{\mu3} & 0.58 & 0.52 & 0.49 & 0.41 \\
\hline
m(\nu_1) & 2.4 \times 10^{-8} \text{ eV} & 2.6 \times 10^{-8} \text{ eV} & 7.4 \times 10^{-8} \text{ eV} & 8.2 \times 10^{-8} \text{ eV} \\
m(\nu_2) & 2.4 \times 10^{-3} \text{ eV} \\
m(\nu_3) & 0.099 \text{ eV} & 0.16 \text{ eV} & 0.081 \text{ eV} & 0.103 \text{ eV} \\
\hline
m_0^\nu & 0.46 \text{ eV} & 0.50 \text{ eV} & 1.25 \text{ eV} & 1.44 \text{ eV} \\
\hline
\xi m_0 & 1.9 \times 10^9 \text{ GeV} & 1.8 \times 10^9 \text{ GeV} & 0.71 \times 10^9 \text{ GeV} & 0.62 \times 10^9 \text{ GeV} \\
\hline
\end{array}
\]

Figure Captions

Fig. 1. Neutrino masses (in unit of \(m_0^\nu\)) versus the parameter \(b_\nu\). The solid and broken lines correspond to the cases \(\beta_\nu = 0\) and \(\beta_\nu = 20^\circ\), respectively.

Fig. 2. \(\Delta m_{ij}^2\) [in unit of \((m_0^\nu)^2\)] versus \(\sin^2 2\theta_{\alpha i}\): (a) \(\Delta m_{21}^2\) versus \(\sin^2 2\theta_{e2}\) and (b) \(\Delta m_{32}^2\) versus \(\sin^2 2\theta_{\mu3}\). The dots denote points \(b_\nu = +10, +1, +0.1, -0.1, -0.2, -0.3, -0.4, -0.5, -0.6, -0.7, -0.8, -0.9, -1.0, -10\).

Fig. 3. \(\sin^2 2\theta_{e2}, \sin^2 2\theta_{\mu3}\) and \(\Delta m_{32}^2/\Delta m_{21}^2\) versus the parameter \(b_\nu\). The solid and broken lines correspond to the cases \(\beta_\nu = 0\) and \(\beta_\nu = 20^\circ\), respectively.
Fig. 1

Neutrino Mass

$m_{\nu 3}$

$m_{\nu 2}$

$m_{\nu 1}$
Fig. 2
Fig. 3