Phylogenetic Analysis of Endophytic Bacteria from Nakshtra Trees

Priya Dnyandeo Kakade¹* and Sushma Ravindra Chaphalkar²

Vidya Pratishthan’s School of Biotechnology, Vidyanagar, Baramati, Pune-413133, India

*Corresponding author:

A B S T R A C T

Endophytic bacteria were inhabitant microflora of plant part. This association was presumably long term and they were mostly commensalisms. The microorganisms which were living within the plant cell without causing any harmful effect on the plant tissue. These bacteria were secrets the plant growth promoting hormones like indole acetic acid which helps for growth of plant. In the present study the endophytic bacteria was isolated from medicinal plants of nakshtra udyan and screened out for the different characteristics of these microorganisms. The isolates were identified by 16s r DNA technique and the phylogenetic analysis was done for the 96 isolates from Nakshtra Udyan plant. The isolates were grouped into 23 different types of group of species and subspecies of microorganisms in which Bacillus species are more predominant than Pseudomonas sp, Enterobacter sp, Alcaligene spp, Arthrobacter sp, Micrococcus sp, Klebsiella pneumoniae and kocuria sp. These bacteria were important for different properties like antimicrobial peptides, plant growth promoting hormones and used as biocontrol agent.

Keywords: Endophytic bacteria, 16 s rDNA technique, Phylogenetic analysis, Antimicrobial Peptides, Biocontrol agent.

Article Info

Accepted: 18 November 2016
Available Online: 10 December 2016

Introduction

A niche environment previously untapped has been explored for study of bacterial population within leaf portions of huge medicinal trees. This study has yielded into isolation of a few peculiarly characterized as endophytic bacteria hosting an unique culture collection at VSBI. This culture collection of endophytic bacteria has yielded into phylogenetic patterns.

They are known to secrete different types of secondary metabolites like antimicrobial peptides, growth promoting hormones and bioactive compounds which are used as biocontrol agent, in pharmacology used as antimicrobial drugs preparation, in food industry and agriculture (Dhanya et al., 2013 Susheel kumar et al., 2013). These endophytic bacteria play an important role for improvement in growth and health of plant and it has several mechanisms for it (Taghavi et al., 2009). Endophytes may directly produce chemical defense in plants through the production of secondary compounds which inhibit insects and pathogenic organisms. The in vitro secretion of substances by endophytes that limit the growth of other microbial species, including pathogens (Vania Specian et al., 2012). The many of endophytes re poorly investigated group of microorganisms that produces secondary metabolites which is used in modern medicine and about 40% of the prescription of drugs are based on them.
The endophytic bacteria produce hormones such as Indole Acetic acid (IAA) (Pedraza et al., 2004), cytokinin (Ergun et al., 2002) and Gibberellic acid (GA) (Kharwar et al., 2008) required for plant growth. In the 70's, endophytes were considered neutral, neither causing benefits nor showing detrimental influence on plants, but from the results of more recent studies, it has been possible to show that in many cases, they have an important role in plant protection against pathogens. Several studies have shown that the interaction between plants and endophytic bacteria is associated with beneficial effects such as plant growth promotion and biocontrol potential against plant pathogens (Lalande et al., 1989; Bashan et al., 1990; Chen et al., 1995; Hallmann et al., 1997).

Materials and Methods

Selection of medicinal plants and Explants collection

For the isolation of bacteria, the explants were collected from different parts of medicinal plants from Nakshtra Udyan located at Vidya Pratishthan’s school of biotechnology. The cultivation of these plants was strictly maintained in organic package and the age of plants was fourteen years.

Pretreatment and surface sterilization of explants

The explants used for the isolation were leaves, stem, and root of the plants. The collected explants were brought to the laboratory and washed under running tap water. After this, they were thoroughly washed with distilled water. Surface sterilization protocol was standardized which contained surface sterilizing agents like 1% phenolic compounds containing solution for 5 min followed by 0.1% sodium hypochlorite treatment for 5 min. Afterwards, the explants were washed with sterile distilled water.

Isolation of endophytic bacteria

The samples were aseptically ground in a motor and pestle in potassium dihydrogen phosphate buffer (pH 6.8) and inoculated into sterile nutrient broth medium with negative and positive control i.e. sterilized medium without inoculation of explants and uncrushed surface sterilized explants. The broth was incubated for 24 hrs at 30°C on rotary shaker incubator at 120 rpm. The grown culture was plated onto sterile nutrient agar plates. The plates were incubated at 37°C for 24 hrs. The isolated bacteria were plated onto selective medium after their morphological, biochemical and molecular identification and preserved by lyophilization.

Biochemical characterization of isolates

The standard tests for the characterization were done according to the Beregey’s Manual of Determinative Bacteriology. The isolates were characterized for colony characterization which includes size, shape, color, consistency, opacity, Gram’s nature, Capsule staining and presence of endospores. The biochemical characterization was done for IMViC test, starch hydrolysis, gelatin liquefaction, and different sources of carbon utilization, Oxidase and catalase tests by standard methods.

Molecular Characterization of isolates

The isolated strains were identified by using 16 s r DNA techniques. The genomic DNA of endophytic bacteria was isolated by using,
CTAB method. The amplification of template DNA was done by using universal primes, R1 forward (5’AGTTTGAT CCTGGCTCAG 3’) and R2 reverse (5’ GGACTACCAGGGTATCTAAT3’). The 50 ul PCR reaction contains Mgcl₂ (0.45mM), dNTPs (0.2mM), forward primer (10 pmol), reverse primer (10pmol), Taq polymerase (0.5U) having 10X assay buffer (1X), genomic DNA(1 ug/ul) and sterile MilliQ water is used. Amplification of DNA was done in automated thermocycle machine provided by applied biosystem and product was checked on 1% agarose gel. The gel was eluted by using SIGMA gel elution kit.

The sequencing reaction was carried out in 3130 genetic analyzer at VSCT. The BLAST of the sequences was done for sequences of bacteria to NCBI GeneBank.

Phylogenetic tree analysis

The phylogenetic tree was constructing by using MEGA software. The neighbor-joining method was used to construct the phylogenetic tree. The bootstrap resampling test with 100 replications was also applied.

Results and Discussion

These observation form one of the most significant and comparable account of endophytic bacteria in tropical tree species (Table.1). This high through put isolation followed by classification and identification of endophytic bacteria using biochemical and 16 s rDNA techniques has culminated into reliable unique culture collection center at our center. Biochemical preferences of these bacteria has shown acetate as preferred carbon source only to put forth a heavy duty of acetate scavenging function in tree species in longest longitude. The phylogeny study specifies an almost ubiquitous presence of *Bacillus sp*. Among 96 endophytic bacterial isolates 34 were from the same group i.e. *Bacillus sp.* (Table.2).

Table.1 Plants used for isolation of endophytic bacteria.

Sr. No.	Name of the plant	Botanical Name	Plant family	Image of plant
1	Adulsa	*Adhatoda vasica*	Acanthaceae	![Image](image1.png)
2	Arjun	*Terminalia arjuna*	Combretaceae	![Image](image2.png)
		Scientific Name	Family	
---	---	-----------------	-----------------	
3	Awla	Emblica officinalis	Euphorbiaceae	
4	Bakul	Mimusops elengi	Sapotaceae	
5	Bel	Aegle marmelos	Rutaceae	
6	Chandan	Santalum album	Santalaceae	
7	Jai	Jasminum auriculatum	Oleaceae	
8	Jamun	Eugenia jambolina	Myrtaceae	
---	---	------------------------	------------------------	
9		**Kadamb**	**Anthocephalus kadamba**	
10		**Khair**	**Acacia catechu**	
11		**Kuchala**	**Strychnos nuxvomica**	
12		**Mango**	**Mangifera indica**	
13		**Moha**	**Madhuca indica**	

Family:
- Rubiaceae
- Mimosaceae
- Loganiaceae
- Anacardiaceae
- Sapotaceae
| | | | |
|---|---|---|---|
| 14 | Nagkeshar | *Messua ferrea* | Clusiaceae |
| 15 | Nagchapha | *Michelia Champaka* | Mangoleaceae |
| 16 | Palas | *Butea frondosa* | Fabaceae |
| 17 | Payar | *Ficus infectoria* | Aricaceae |
| No. | Name | Scientific Name | Family |
|-----|--------|----------------------------------|----------|
| 18 | Phanas | Artocarpus iniegrifolia | Moraceae |
| 19 | Pimpal | Ficus religiosa | Articaceae|
| 20 | Raal | Veteria indica | Dipterocarpaceae |
| 21 | Rui | Calotropis gigantea | Asclepiadiaceae |
| 22 | Savar | Salmalia malabarica | Malvaceae |
| | | | |
|----|----|--------------------------------|--------------------------------|
| 23 | Shami | *Prosopis spicigera* | Mimoceae |
| 24 | Umbar | *Ficus racemosa* | Articaceae |
| 25 | Vad | *Ficus bengahalensis* | Articaceae |
| 26 | Velu | *Bambusa arundinacea* | Garminae |
| 27 | Vet | *Calamus roteng* | Palmae |
Table 2 Classification of endophytic bacteria on the basis of identification:

Name of isolated bacterial species	Total number of new strains	Code of isolate	Endo Code	Name of plant and plant part used	Sequence length
Bacillus subtilis	02	VCC.16.SB	Endo_25	Messua ferrea Stem	776
		VCC.5.S	Endo_1	Acacia catechu Stem	776
Bacillus megaterium	03	VCC.4.RA,	Endo_7	Eugenia jambolina Stem,	789
		VCC.22.LD	Endo_35	Anthocephalus kadamba leaf	799
		VCC.4.SB	Endo_21	Eugenia jambolina Stem	793
Bacillus licheniformis	02	VCC.8.SA	Endo_12	Ficus religiosa Stem	701
		VCC.15.LE	Endo_82	Terminalia arjuna leaf	754
Bacillus axarequiensis	01	VCC.22.LC	Endo_81	Anthocephalus kadamba leaf	773
Bacillus safensis	02	VCC.7.LC	Endo_71	Bambusa arundinacea leaf	751
		VCC.21.L	Endo_83	Prosopis spicigera leaf	766
Bacillus firmus	01	VCC.26.LB	Endo_86	Calamus roteng leaf	768
Bacillus pumilus	01	VCC.22.LG	Endo_50	Anthocephalus kadamba leaf	700
Bacillus aryabhattai	01	VCC.16.SC	Endo_9	Messua ferrea Stem	780
Bacillus niacin	01	VCC.16.SA	Endo_20	Messua ferrea Stem	786
Bacillus cereus	20	VCC.8.SB	Endo_19	Ficus religiosa Stem	778
		VCC.22.LF	Endo_45	Anthocephalus kadamba leaf	736
		VCC.15.LG	Endo_41	Terminalia arjuna leaf	780
		VCC.25.LF	Endo_80	Madhuca indica leaf	774
		VCC.25.LE	Endo_75	Madhuca indica	762
Microorganism	Collection Code	Culture Code	Species	Part	Plate Number
-------------------------------	-----------------	--------------	----------------------------------	----------	--------------
Klebsiella pneumonia	VCC.18.RT	Endo_16	Salmalia malabarica	Root	648
Alcaligens species	VCC.15.LB	Endo_93	Terminalia arjuna	Leaf	773
	VCC.25.LB	Endo_94	Madhuca indica	Leaf	763
	VCC.24.LA	Endo_96	Azadirachta indica	Leaf	660
	VCC.20.LC	Endo_67	Calotropi gigantean	Leaf	778
VCC.27.LD	Endo_74	Arthrocarpus integrifolia	Leaf	775	
VCC.27.LC	Endo_69	Arthrocarpus integrifolia	Leaf	771	
VCC.27.LB	Endo_73	Arthrocarpus integrifolia	Leaf	769	
VCC.14.LC	Endo_76	Aegle marmelos	Leaf	775	
VCC.26.LD	Endo_88	Calmus roteng	Leaf	769	
VCC.26.LC	Endo_87	Calmus roteng	Leaf	769	
VCC.26.LE	Endo_89	Calmus roteng	Leaf	688	
VCC.18.L	Endo_84	Salmalia malabarica	Leaf	776	
VCC.2.LB	Endo_51	Emblica officinalis	Leaf	791	
VCC.24.LD	Endo_54	Aegle marmelos	Leaf	786	
VCC.24.LE	Endo_59	Azadirachta indica	Leaf	780	
VCC.23.LD	Endo_60	Mangifera indica	Leaf	770	
VCC.7.LB	Endo_66	Bambusa arundinacea	Leaf	703	
VCC.1a.LB	Endo_72	Adhatoda vasica	Leaf	783	
Enterobacter spp	02	VCC.19.S, Endo_2	VCC.8.RA, Endo_30	F. religiosa Stem, 677	
-----------------	----	-----------------	------------------	----------------------	
Arthrobacter globiformis and Arthrobacter protophormiae	02	VCC.15.SA, Endo_23	VCC.24.LC, Endo_449	T. arjuna Stem, 751	
Kocuria sediminis and Kocuria rosea	02	VCC.4.SD, Endo_91	VCC.4.RB, Endo_21	E. jambolina Stem, 749	
Micrococcus luteus Micrococcus luteae and Micrococcus sp	03	VCC.11.SC, Endo_14	VCC.13.SA, Endo_15	J. auriculatum Stem, 724	
Pantoea dispersa	01	VCC.15.SB, Endo_10	VCC.13.RB, Endo_31	T. arjuna Stem, 724	
Psychrobacter spp	02	VCC.2.LC, Endo_56	VCC.14.LB, Endo_52	E. marmelos leaf, 768	
Ochrobacterium spp	04	VCC.2.LA, Endo_46	VCC.23.LB, Endo_57	M. indica leaf, 872	
Pseudomonas spp	01	VCC.3.RC, Endo_22	VCC.22.LB, Endo_58	A. kadamba leaf, 704	
Staphylococcus hemolyticus	01	VCC.CLIED, Endo_92	VCC.27.LE, Endo_79	A. integrifolia leaf, 720	
No significant sequence matching	17	VCC.5.R, Endo_3	VCC.15.SC, Endo_6	T. arjuna Stem, 764	
Strain ID	Endo Code	Organism Name			
-----------	-----------	---------------------			
VCC.16.R,	Endo_8	*Messua ferrea* root,			
VCC.13.RA,	Endo_11	*Jasminum auriculatum* Root,			
VCC.3.RB,	Endo_18	*Ficus racemosa* root,			
VCC.3.RA,	Endo_29	*Ficus racemosa* root,			
VCC.11.SB,	Endo_33	*Butea frondosa* stem,			
VCC.1a.LA	Endo_38	*Adhatoda vasica* leaf,			
VCC.25.LI,	Endo_44	*Madhuca indica* leaf,			
VCC.23.LC,	Endo_55	*Mangifera indica* leaf,			
VCC.25.L,	Endo_63	*Madhuca indica* leaf,			
VCC.25.LC,	Endo_65	*Madhuca indica* leaf,			
VCC.27.LA	Endo_68	*Artocarpus integrifolia* root,			
VCC.20.L,	Endo_78	*Calotropis gigantean* leaf,			
VCC.13.SB,	Endo_90	*Jasminum auriculatum* stem,			
VCC.4.SD,	Endo_91	*Eugenia jambolina* Stem,			
VCC.24.LB	Endo_95	*Azadirachta indica* leaf			

Strain ID	Endo Code	Organism Name		
Unculturable bacteria	02	VCC.4.SC,	Endo_17	*Eugenia jambolina* Stem,
VCC.14.L	Endo_42	*Aegle marmelos* leaf		

Terribacillus saccharophilus 01 | VCC.4.SA | Endo_7 | *Eugenia jambolina* Stem |

576
Table 3: No significant sequence matching

Code of endophytic bacteria	Name of the plant and plant part used	Gram’s Nature	Capsule	Endospore
VCC.5.R	*Acacia catechu* root,	Gram positive cocci	+	-
VCC.15.SC	*Terminalia arjuna* Stem,	Gram positive cocci	_	_
VCC.16.R	*Messua ferrea* root,	Gram negative cocci	+	_
VCC.13.R	*Jasminum auriculatum* Root,	Gram positive cocci	+	_
VCC.3.RB	*Ficus racemosa* root,	Gram positive cocci	_	_
VCC.3.RA	*Ficus racemosa* root,	Gram positive cocci	+	_
VCC.11.SB	*Butea frondosa* stem,	Gram negative cocci	+	_
VCC.1a.LA	*Adhatoda vasica* leaf,	Gram negative rod	+	_
VCC.25.LI	*Madhuca indica* leaf,	Gram positive rod	+	_
VCC.23.LC	*Mangifera indica* leaf,	Gram positive rod	+	+
VCC.25.L	*Madhuca indica* leaf,	Gram negative rod	+	_
VCC.25.LC	*Madhuca indica* leaf,	Gram positive rod	+	+
VCC.27.LA	*Artocarpus iniegrifolia* root,	Gram negative rod	+	+
VCC.20.L	*Calotropis gigantean* leaf,	Gram negative rod	+	+
VCC.13.SB	*Jasminum auriculatum* stem,	Gram positive cocci	+	+
VCC.4.SD	*Eugenia jambolina* Stem,	Gram positive cocci	+	+
VCC.24.LB	*Azadirachta indica* leaf	Gram positive rod	+	+

(Note: +=Present, _= Absent)
Fig. 1 PCR amplification for 16 s rDNA

Lane L Marker, lane 1: VCC.5.S., lane 2: VCC.19.S., lane 3: VCC.5.R, lane 4: VCC.4.RA, lane 5: 11.SA, lane 6: VCC.15.SC, lane 7: VCC.4.SA, lane 8: VCC.16.R, lane 9: VCC.16.SC, lane 10: VCC.15.SB, lane 11: VCC.13.RA, lane 12: VCC.8.SA, lane 13: VCC.3.SA, lane 14: VCC.11.SC, lane 15: VCC.13.SA, lane 16: VCC.18.RT, lane 17: VCC.4.SC, lane 18: VCC.3.RB, lane 19: VCC.8.SB, lane 20: VCC.16.SA, lane 21: VCC.4.SB, lane 22: VCC.3.RC, lane 23: VCC.15.SA, lane 24: VCC.4.SD, lane 25: VCC.9.SB, lane 26: VCC.27.S, lane 27: VCC.27.R, lane 28: VCC.3.SB, lane 29: VCC.3.RA, lane 30: VCC.8.RA, lane 31: VCC.13.RB, lane 32: VCC.4.RB, lane 33: VCC.11.SA, lane 34: VCC.25.LG, lane 35: VCC.22.LD, lane 36: VCC.15.LF, lane 37: VCC.26.L, lane 38: VCC.1a.LA, lane 39: VCC.25.LH, lane 40: VCC.22.LE, lane 41: VCC.15.LG, lane 42: VCC.14.L, lane 43: VCC.15.L, lane 44: VCC.25.LI, lane 45: VCC.22.LF, lane 46: VCC.2.LA, lane 47: VCC.23.LA, lane 48: VCC.15.LC.

Lane L Marker, lane 49: VCC.24.LC, lane 50: VCC.22.LG, lane 51: VCC.2.LB, lane 52: VCC.1.4.LB, lane 53: VCC.22.LA, lane 54: VCC.24.LD, lane 55: VCC.23.LC, lane 56: VCC.2.LC, lane 57: VCC.23.LB, lane 58: VCC.22.LB, lane 59: VCC.24.LE, lane 60: VCC.23.LD, lane 61: VCC.7.LA, lane 62: VCC.23.LB, lane 63: VCC.25.L, lane 64: VCC.12.L, lane 65: VCC.25.LC, lane 66: VCC.7.LB, lane 67: VCC.20.L, lane 68: VCC.27.LC, lane 69: VCC.27.LC, lane 70: VCC.25.LD, lane 71: VCC.7.LC, lane 72: VCC.1a.LB
Fig. 2 Phylogenetic tree analysis
Other genera found to contribute to these humongous tree genomes are *Klebsiella pneumoniae*, *Alcaligens* species, *Enterobacter* spp *Arthrobacter globiformis* and *Arthrobacter protophormiae*, *Kocuria sediminis* and *Kocuria rosea*, *Micrococcus luteus*, *Micrococcus lalae* and *Micrococcus sp*, *Pantoea dispersa*, *Psychrobacter* spp, *Unculturable bacteria*, *Terribacillus saccharophilus* in tree *Salmalia malabarica* root, *Terminalia arjuna* leaf, *Madhuca indica* leaf, *Azadirachta indica* leaf, *Calotropis gigantea* leaf, *Vetiveria indica* Stem, *Ficus religiosa* Stem, *Terminalia arjuna* Stem, *Azadirachta indica* leaf, *Eugenia jambolina* Stem, *Eugenia jambolina* Root, *Butea frondosa* Root, *Jasminum auriculatum* Stem, *Jasminum auriculatum* Root, *Strychnos mujvoica*, *Eugenia jambolina* Stem, *Aegle marmelos* leaf, *Eugenia jambolina* Stem. An interesting finding of these endophytic bacterial isolation is as many as 17 isolates are amongst those which could not have significant matching with any of the known sequences on NCBI. Further biochemical investigation to characterize them shall provide a novel appendage to the present culture collection. Bioprospecting through these endophytic bacteria producing useful metabolites would make a valid value addition to the whole process of culture collection.

Acknowledgment

The authors are very thankful to Department of Biotechnology, New Delhi for financial support and also to VSBT for providing laboratory for experiments.

References

Andréa Cristina Bogas, et al. 2015. Endophytic bacterial diversity in the phyllosphere of Amazon *Paulinia cupana* associated with asymptomatic and symptomatic anthracnose. *Springer Plus*, 4:258.

Anping Peng, et al. 2015. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites. *Scientific Reports* | 5: 12173.

Bashan, Y., Holguin, G. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growthpromoting bacteria) and PGPB. *Soil Biol. Biochem.*, 30, 1225-1228.

Chen, C., Bauske, E.M., Musson, G., Rodríguez-Kábana, R. and Kloeppler, J.W. 1995. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. *Biol. Control*, 5: 83–91.

Ergun, N., S.F. Topcuoglu and A. Yildiz. 2002. Auxin (Indole-3-acetic acid), gibberellic acid (GA3), abscisic acid (ABA) and cytokinin (Zeatin) Production by some species of mosses and lichens. *Turk. J. Bot.*, 26: 13-19.

Eu Jin Chung, et al. 2015. *Bacillus oryzicola* sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice. *Plant Pathol. J.*, 31(2): 152-164.

Gunter Brader, et al. 2014. Metabolic potential of endophytic bacteria. *Curr. Opinion in Biotechnol.*, 27:30-37.

Gusmaini, Sandra Ariffin Aziz, et al. 2013. Isolation and Selection of Endophytic bacteria consortia From Medicinal Plant (*Andrographis Paniculata*) As
Plant Growth Promoting Agents. J. Agronomy, 12 (3): 113-121.

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., and Kloeper, J. W. (1997). Bacterial endophytes in agricultural crops. Can. J. Microbiol., 43: 895-914.

Huawei Zhang, Chen Ying and Xuelian Bai. 2014. Advancement in Endophytic Microbes From Medicinal Plants. IJPSR, Vol. 5 (5): 1589-1600.

Jasim, B. et al. 2013. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech., 4: 197–204.

Jeyanthi, V., P. Ganesh. 2013. Production, Optimization and Characterization of Phytohormone Indole Acetic Acid by Pseudomonas fluorescence. Int. J. Pharmaceutical & Biol. Arch., 4(2): 514 – 520.

Kartikeya Tiwari and Haresh Kumar Thakur. 2014. Diversity and Molecular Characterization of Dominant Bacillus amyloliquefaciens (JNU-001) Endophytic Bacterial Strains Isolated from Native Neem Varieties of Sanganer Region of Rajasthan. J. Biodivers Biopros. Dev., 1: 115.

Kharwar, R.N., V.C. Verma, G. Strobel and D. Ezra. (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr. Sci., 95: 228-233.

Lalande, R., Bissonnette, N., Coutlée D. and Antoun, H. 1989. Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil, 115, 7–11.

Maria Bintang, et al. 2014).Analysis of 16S rRNA Sequence of Endophytic Bacteria Isolate. BS1 from Piper betle [L.] Stem. International Conference on Agricultural, Environmental and Biological Sciences (AEBS-2014), 69-70.

Maroof Ahmed, muzaffer Hussain, manoj K. Dhar and Sanjana Kaul. 2012. Isolation of microbial endophytes from some ethnomedicinal plants of Jammu and Kashmir. J. Nat. Prod. Plant Resour., 2(2): 215-220.

Mbai, F.N., et al. 2013. Isolation and Characterisation of Bacterial Root Endophytes with Potential to Enhance Plant Growth from Kenyan Basmati Rice. American Int. J. Contemporary Res., Vol. 3 No. 4:25-40.

Nascimento, S.B., A.M. Lima, B.N. Borges and C.R.B. de Souza. 2015. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.) Genetics and Mol. Res., 14(3): 7567-7577.

Pedraza, R.O., Ramirez-Mata, A., Xiqui, M.I. and Baça Be. 2004. Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. FEMS Microbiol. Lett., 233: 15–21.

Rhoden, S.A., et al. 2015. Phylogenetic analysis of endophytic bacterial isolates from leaves of the medicinal plant Trichilia elegans A. Juss. (Meliacae). Genet. Mol. Res., 14(1): 1515-1525.

Shukla, S.T. et al. 2014. Endophytic microbes: A novel source for biologically/pharmacologically active secondary metabolites. Asian J. Pharmacol. Toxicol., 02(03): 01-16.

Susheel Kumar, Nutan Kaushik and Peter Proksch. 2013. Identification of antifungal principle in the solvent extract of an endophytic fungus
Chaetomium globosum from Withania somnifera. Springerplus, 2: 37.

Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., et al. 2009. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl. Environ. Microbiol., 75: 748–757.

Vania Specian, Maria Helena Sarragiotto, João Alencar Pamphile and Edmar Clemente. 2012. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata. Braz. J. Microbiol., 43(3): 1174–1182.

How to cite this article:

Priya Dnyandeo Kakade and Sushma Ravindra Chaphalkar. 2016. Phylogenetic Analysis of Endophytic Bacteria from Nakshtra Trees. Int.J.Curr.Microbiol.App.Sci. 5(12): 565-582. doi: http://dx.doi.org/10.20546/ijcmas.2016.512.062