A machine-learning-based tool for last closed magnetic flux surface reconstruction on tokamak

Chenguang Wan1,2,*, Zhi Yu1, Alessandro Pau3, Xiaojuan Liu1, and Jiangang Li1,2,*
1. Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2. University of Science and Technology of China, Hefei, 230026, China
3. École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
E-mail: chenguang.wan@ipp.ac.cn and j.li@ipp.ac.cn

Abstract. Nuclear fusion power created by tokamak devices holds one of the most promising ways as a sustainable source of clean energy. One main challenge research field of tokamak is to predict the last closed magnetic flux surface (LCFS) determined by the interaction of the actuator coils and the internal tokamak plasma. This work requires high-dimensional, high-frequency, high-fidelity, real-time tools, further complicated by the wide range of actuator coils input interact with internal tokamak plasma states. In this work, we present a new machine learning model for reconstructing the LCFS from the Experimental Advanced Superconducting Tokamak (EAST) that learns automatically from the experimental data of EAST. This architecture can check the control strategy design and integrate it with the tokamak control system for real-time magnetic prediction. In the real-time modeling test, our approach achieves over 99% average similarity in LCFS reconstruction of the entire discharge process. In the offline magnetic reconstruction, our approach reaches over 93% average similarity.

Keywords: time series, magnetic reconstruction, tokamak Submitted to: Nature Communications
1. Introduction

Thermonuclear fusion power is one of the ideal forms of clean and sustainable energy that has the potential to meet our future energy needs while having inherently secure and deployable in densely populated cities. A tokamak is a leading magnetic confinement fusion device for generating controlled thermonuclear fusion power. One core research of tokamak is controlling strategy development for magnetic field profile, which is a complicated problem since the magnetic field is determined by the interaction of complex, sometimes unpredictable plasma states and a wide range of actuator inputs. Therefore, a high-precision and rapid magnetic field reconstruction [1–3] tool for developing a magnetic control strategy is urgently needed. The conventional approach to this time-varying, non-linear, multiple physical quantities magnetic field reconstruction problem is to solve an inverse problem to per-compute a set of actuator coil (poloidal field coils typically) currents and voltages [3–5]. Then, using a real-time estimate of the tokamak plasma equilibrium from a simulation code [6] modulates the actuator coil voltage. Although these physical simulation codes are usually effective, they require substantial physicist effort, design, and expertise to re-develop a model whenever the tokamak magnetic configuration is changed. A new approach to the estimator is made possible by using deep learning to generate high-precision, high-fidelity and rapid magnetic field estimation results. Complete tokamak proposal estimation is another critical problem to solve. The typical method is “Integrated Modeling” [7], and this approach runs slow. For instance, a few seconds’ discharge process generally take hours to days of computation. Moreover, it is also complicated to build due to the integration of many complicated physical processes. A high-precision and rapid magnetic field estimator based on experimental data-driven integrated with the other 0-D discharge proposal estimation methods [8] to create a complete and fast experimental discharge proposal estimation of a tokamak is also a good alternative.

Various works based on deep learning have been employed in magnetic confinement fusion research to solve a variety of problems recently years, including disruption prediction [9–15], electron temperature profile estimation [16], surrogate model [17–19], plasma tomography [20], radiated power estimation [21], discharge estimation [8, 22], identifying instabilities [23], neutral beam effects estimation [24], classifying confinement regimes [25], determination of scaling laws [26, 27], filament detection [28], coil current prediction with the heat load pattern [29], equilibrium reconstruction [16, 30–34], and equilibrium solver [35], control plasma [36–41], physic-informed machine learning [42], reinforcement learning-informed magnetic field control [3]. The reinforcement learning for magnetic field control work has a different target from our work. That work wants to design a magnetic field profile controller for tokamak discharge that can be used on the flat-top phase. The conventional controller should take it over in the ramp-up and ramp-down phases. There are two general machine learning models to deal with the sequence problem, the RNN [43] and its variants [44], and the Transformer [45] model based on the attention mechanism and its variants.

Modeling the entire tokamak discharge process using machine learning is a challenge, with current tokamak discharge times reaching the order of thousands of seconds [46] and sequence lengths exceeding 1×10^6 if the sampling rate is at $1kHz$. There are two general machine learning models to deal with the sequence problem, the RNN [43] and its variants, and the Transformer [45] model based on the attention mechanism and its variants. For the traditional RNN algorithm, train and inference time of the long sequence will be long. Since RNN is a sequential computation algorithm, the computation is difficult to reach a high parallelism. Moreover, for long sequences long time dependencies are easily lost, using RNN to model the long time series modeling problem is still an outstanding challenge. In case of transformer model based self-attention mechanism, it is
difficult to use it compute long sequence because its computational complexity is $O(n^2d)$, where n is the sequence length. In practice, when the sequence length is over 1000, the train and inference time of transformer is become a bit unacceptable.

In this paper, our work reports two 1d shifting window transformer models, a real-time version and an offline version that can use on long time series in which computational complexity is linearly proportional to the sequence length n. Moreover, these models can be efficient from high parallelism since these models are based on the attention mechanism and discard the sequential algorithm. We built the models using experimental data-driven method. These models can use for the tokamak entire discharge process, from the ramp-up flat top to ramp-down phases. The models do not directly control the tokamak magnetic field but provide a highly accurate estimator of the magnetic field. The real-time model can be integrated with the tokamak’s real-time magnetic control system to assist the high-precision magnetic control by predicting the next step magnetic field. The offline model can be used to develop plasma magnetic field control strategies. Moreover, the offline model can also provide complete predicted proposal results by coupling with zero-dimensional discharge modeling methods [8]. For the real-time version model, the average similarity is over 99%, and the inference time is 0.7 ms (<1 ms in accordance with the control system requirements). For the offline version model, the average similarity is over 93%, and the inference time is ~0.22 s for sequence length 1×10^6.

In practical, according to the principle of magnetic field control [2], the machine learning model data set consists of the magnetic surface probes, in-vessel current, poloidal field coils, plasma current reference, shape reference, and flux loop data.

Our contributions are summarized as follows:
(i) We propose a generalized 1d shifting window transformer architecture that can compute long time series.
(ii) One of the models can be integrated into tokamak control for real-time estimating of the magnetic field in advance.
(iii) One of the models can also be combined with a 0-dimensional proposal validation model to give a complete prediction for experimental proposal results.
(iv) The validity of the proposed models is demonstrated using a practical data set.

2. Results and discussion

In this section, we use the similarity and MSE loss to quantitative measures of the magnetic field reconstruction accuracy.

$$S(x, y) = \max \left(\frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}, 0 \right),$$ \hspace{1cm} (1)

$$\text{MSE}(x, y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2,$$

where x is experimental data, y is modeling result, \bar{x}, \bar{y} are the means of the vector x and vector y, x_i, y_i are the point values of the vector x, y. The MSE is the mean ($\frac{1}{n} \sum_{i=1}^{n}$) of the squares of the errors $(x_i - y_i)^2$. MSE is easily affected by the outlier but it can more accurately measure the difference of values. Similarity measures tendency of two curve but it cannot measure the difference in value.
A machine-learning-based tool for last closed magnetic flux surface reconstruction on tokamak

Figure 1. Representation of the components of our machine learning model design and usage. a, The conventional controller working loop. The controller measurements difference between targets and the magnetic probe measurement values at the current time. According to the difference, the controller sends actions to the actuator coils. b, Depiction of the learning loop. The learner reads the measurements and targets from the HDF5 data store, and then computes the loss between the predicted magnetic field and the target magnetic field. Finally, using the loss as the criterion to train the learner. c, The online usage for the tokamak control. Our model can predict the tokamak outermost magnetic, the controller reads the estimation to generate the next control action sent to magnetic coils.

We trained, validated, and tested two version models on the dataset during the 2016-2020 EAST campaigns and the discharge shot number in the range #52804-88283 [47–49] and the input and output signals can be found in section 3.3.

2.1. Offline model results

Figure 2 shows that our offline version model predicted the last closed flux surface (LCFS). The discharge time of this shot is longer than 70s, so the sequence length is greater than 7×10^4, which is a typical long sequence modeling problem. The LCFS shown in the figure is generated from the physical equilibrium reconstruction code EFIT [50–52] by inputting the model predicted outputs into EFIT. The equilibrium reconstruction is another main task of tokamak research, and we do not discuss details in this paper. Figure 2 shows the model has wholly reconstructed LCFS not only flat-top phase but also ramp-up and ramp-down phases. The model reconstructs the tokamak start-up “cycle” magnetic shape to a single null shape and finally to a shut-down “cycle” shape. Our model can predict the entire discharge process.
Figure 2. Shot #73678 offline magnetic reconstruction. The LCFS was generated from EFIT. The solid blue lines are the target LCFS the red “star” markers are predicted LCFS.
The average similarity is 0.932

![Graph showing similarity distribution](image)

Figure 3. Similarity distribution of offline model predicted results on the test set.
The test set (see section 3.3) is in shot range #82651-88283 and some long-time shots.

The similarity in the test set is shown in figure 3. The offline model average similarity in the test set is 93.2%, and the similarity is concentrated at around 95%. The test set of this work is experiments in shot range #82651-88283 and some very long time experiments (see details on section 3.3). The similarity is defined on raw signal data instead of the reconstructed LCFS. We checked all experiments with similarity less than 0.85, and got a total of 98 shots. Among them, 89 are disruption shots, and 9 are normal shots. The offline model cannot predict tokamak disruption shots probably because the disruption has some random effects on the magnetic field that are not cover in input signals. The 9 normal shots (0.5% of the test set) are not well estimated, probably due to inherent limitations in the model, or inaccurate measurement of PF coils.

2.2. Real-time model results

The real-time model’s input and inference time requirements differ from the offline model’s input and inference time requirements. (discussed in detail in section 3.2). Figure 4 shows the reconstruction results of the real-time version model for shot #73678. For the real-time version of the model, the actual measurement data of the magnetic field probe at the previous step is fed as input to simulate the actual tokamak control feedback process.

The similarity of the real-time model in the test set is shown in figure 5, which is the same test set as the offline model.
Figure 4. Shot #73678 real-time magnetic reconstruction. The LCFS was generated by the same method with offline magnetic reconstruction. The solid blue lines are the target LCFS and the red “star” markers are predicted LCFS.
Figure 5. Similarity distribution of real-time model predicted results on the test set.
The test set for the real-time model and the offline model are the same.

Although there is almost no difference between the modeling results of shot 73678 in figure 2 and figure 4, comparing figure 3 and figure 5, it can be found that the real-time model results are a bit better than the offline model results. The possible reason is that the plasma magnetic field is not a rapidly changing process, and the actual system output information is a good guide to the current output. However, the offline model is not able to know the actual tokamak output, so even if bigger models are used for the offline task, the offline model results cannot be better than the real-time model results.

3. Method

3.1. Related work

The outermost magnetic field reconstruction has two research two paradigms: physics-driven and data-driven approaches.

Physics-driven approaches in magnetic field reconstruction have been studied for the last decades. They reconstruct physical high-dimensional reality from the bottom up and then reduce them to the low-dimensional physical process. By integrating the different physical processes, simulation codes have developed. A series of simulation codes based on tokamak physics have been developed. Such as Equilibrium Fitting (EFIT)[50–52], LIUQE [53], RAPTOR [54]. These codes must be recalibrated or redeveloped whenever the target plasma configuration or device changes.
Table 1. MLP, RNN, Transformer, Shifting window transformer comparison

Model Type	Computational complexity	Sequential operation	Maximum path length
MLP	$O(knd^2)$	$O(1)$	$O(n/k)$
RNN	$O(nd^2)$	$O(n)$	$O(n)$
Transformer	$O(n^2d)$	$O(1)$	$O(1)$
1D Shifting Window Transformer	$O(w^2nd)$	$O(1)$	$O(n/w)$

Data-driven approaches discover the relationship between low-dimensional quantities from a large amount of data and then construct approximate models of the nonlinear dynamical system [8]. In recent years, various data-driven methods have been adopted in the fusion community to solve different tasks. However, magnetic reconstruction is far behind other applications in the fusion community. To the best of our knowledge, only a few works have been R&D. One representative work is controlling magnetic through deep reinforcement learning [3].

Our model is different from the other works. It can validate experimental proposals or act as a tokamak magnetic shape predictor in existing tokamak feedback control systems. Compared to the model [3], firstly, our model does not require an existing physics code. Secondly, since we used typical regression training, our model is more efficient than the model based on reinforcement learning. Finally, our model can be used from tokamak discharge ramp-up to ramp-down phases, not only in the top-flat phase.

3.2. Machine learning Model

The general architecture of our machine learning models is shown in figure 6. Our architecture uses a customized one-dimensional shifting window attention mechanism inspired by the Swin transformer [55] to get dependency between inputs and outputs. We stack self-attentive blocks to build the machine learning model.

There are four main candidate models for modeling such long-time sequences, which are convolutional neural network (CNN), Recurrent neural network (RNN), Transformer, and our customized 1D shifting window attention transformer. In addition, some critical quantitative criteria should be noted for modeling tokamak magnetic probe data: computational complexity, number of sequential operations, and maximum path length [56]. From the table 1, shifting window attention have the approximate equal sequential operation and computational complexity as MLP. Generally, the attention mechanism can achieve superior performance to MLP in numerous sequence works, such as natural language processing [45, 57].

There should be some differences between the real-time and offline model-building strategies. The real-time model requires that the single-step inference is fast enough. That is, the one-step inference time of the model should be less than the response time required by the control system, and the actual system output of the previous step can be fed back as the model’s input. The model inference time should be less than 1ms required by the EAST magnetic control system. For a typical transformer model, single-step input is complex. If the preset control commands are modified, the whole sequence needs to be recalculated, which makes the inference time exceed the control system requirements. In our work, we let “window size” = 1, which makes our model calculate the attention only in the channel axis, and single-step input become easy; furthermore, the one-step inference time is $\sim 0.7ms$. For the offline model, the actual system output from the previous step should not
be fed back as input unless it is trained using the teaching force trick. The time requirement of the offline mode can be reduced, but it should generally be within one hour. Otherwise, the advantage of the machine learning model over the integrated modeling model will be diminished. If we use the teaching force, we have to recompute all the past sequences step-by-step, so the inference time of the entire sequence will be in the order of 1×10^5 s for the reason of the computational complexity. This paper’s offline model does not use the teaching force trick since the inference time requirement is shorter than one hour.
Signal	Physical meaning	Number of Channels	Meaning of channels
Output	Signals	73	
BP	Equilibrium magnetic probes	38	35 magnetic probes data
FL	Flux loops	35	38 flux loops data
Input signals		57	
Ref. I_p	Reference of plasma current	1	Plasma current reference
IC1	In-vessel coil no.1 current	1	In-vessel coil no.1 current
PF	Poloidal field coils current	12	Poloidal field no.1-12 coil current
Ref. PF	Nominal current of poloidal field coils	12	Nominal current of poloidal field no.1-12 coil
Ref. Shape	Shape reference	20	11 groups of control points

3.3. Dataset

In this paper, a total of 16609 shots of data with EAST discharge range between #56804-96915 were selected to construct the total dataset. The training set, validation set, and test set are divided in chronological order. The training set has 14732 shots, the validation set has 200 shots, and the test set has 1677 shots. In this experimental range, there are only 30 long discharge shots (discharge time >50s), of which 10 shots are included in the training set, and the remaining 20 shots are included in the test set. As shown in table 2, we have selected the reference of plasma current, the in-vessel current IC1, the poloidal field coils current, the reference of poloidal field coils, the shape reference as the input signal, and the output signal including all magnetic probe signals of the magnetic field. Since the in-vessel current IC1 could not be obtained in advance at the experimental proposal stage, the input signal of the offline model did not include IC1, and the output signal previous step data of the system was not input to the offline model for efficiency reasons. All data are sampled at the same sampling rate, 1kHz from the time zero to the end of the discharge, and the time axes of all signals are aligned. All data were saved to HDF5 files shot-by-shot, and for fast and robust training, each discharge experiment was saved as a separate HDF5 file, with 209GB of original data.

3.4. Model training

Before the model is trained, each signal’s mean, variance, and presence flag are calculated for each shot, and then the data is stored in a MongoDB database. Then the data is normalized for each shot and finally fed into the machine learning model for training. The inputs are different for the offline model and the real-time model. As analyzed 3.2, the real-time model input dimension is 130, which includes the system output at the previous step and the current IC1 signal. We can use
A machine-learning-based tool for last closed magnetic flux surface reconstruction on tokamak

Table 3. Our model Hyperparameters. Model architecture can be found in figure 6

Hyperparameter	Explanation	Best value of real-time model	Best value of offline model
η	Learning rate	1×10^{-4}	1.5×10^{-4}
Optimizer	Optimizer type	SGD	SGD
Loss	Loss function	MaskedMSELoss	MaskedMSELoss
Epoch	Number of epochs	40	35
Scheduler	Scheduler type	OneCycle[60]	OneCycle
Window_size	Window size	1	12
C	Input Channel	130	56
E	Embedded dimension	60	36
[D0, D1, D2, D3]	Depth list for layers	[2,2,4,2]	[2,2,4,2]

The teaching force for training, and IC1 can be got on real-time experimental. The input dimension is 56 since the IC1 and the system output at the previous step are not used as the offline model’s input.

Both versions of the model use Centos OS executing on 8 P100 GPU cards. During the training of our model, we used a custom masked mean square error (MSE) loss function (MaskedMSELoss).

$$l(x, y) = L = \frac{\sum_{i=0}^{N} \{l_1, l_2, \ldots, l_N\}}{N}, (2)$$

$$l_i = \sum_{j=0}^{\text{len}} f_i \cdot (x_i^j - y_i^j)^2, (3)$$

where x is batch experimental sequence data, y is batch predicted sequence result, x_i^j, y_i^j are the jth point values of the ith experimental sequence and predicted sequence. f_i is a signals data existence vector of ith experimental sequence, f_i equals to 1 when the sequence exists and 0 when it does not. f_i is used to mask a signal that does not have original data. The $\sum_{j=0}^{\text{len}}$ is another mask for the invalid length of the sequence. This term prevent training on the zeros padding of the sequence. The use of existence masks and length masks can prevents models from being trained on sequences without actual target values and meaningless zeros padding tails, which can improve the accuracy and speed of training. In the training process, we used the bucketing algorithm [58] for training acceleration, and finally we used the Tree of Parzen Estimator algorithm [59] for the architectural hyperparameter search, and we also tried various optimizers and regulators, and finally obtained the optimal set of hyperparameters as shown in table 3.

4. Discussion

In the current work, we propose a one-dimensional shifting window Transformer model that can perform long sequences (10^6 sequence length for LCFS reconstruction), which reduces the computational complexity of the transformer model from being squarely related to the sequence length to being linearly related to the sequence length, and which can form a general sequence processing backbone network for real-time sequence modeling or offline sequence modeling. To be best of our knowledge, we have achieved the first data-driven modeling of LCFS of a tokamak from the ramp-up, flat-top to ramp-down phases. The inference time for the real-time modeling
is $\sim 0.7ms$ with an average similarity of $>99\%$, and the inference time for the offline modeling is $0.22s$ with an average similarity of $>93\%$.

From the machine learning point of view to the best of our knowledge, we are the first to propose an attention-based mechanism for modeling long sequences. From the point of view of tokamak physics research, we have achieved high precision and fast tokamak magnetic field modeling, which can be used for real-time tokamak magnetic field control and offline validation of tokamak’s experimental proposals. If integrated with the existing discharge modeling model [8], it can also support the development of the tokamak running scenario. In the future, we will realize a real connection with tokamak magnetic field control instead of testing in a tokamak magnetic field simulation environment. Further validation of the full proposal is also one of the directions for future work. Testing of 1D shifting window models in general areas of machine learning such as NLP is also one of the next directions of work.

5. Data availability

The data that supports the findings of this study belongs to the EAST team and is available from the corresponding author upon reasonable request.

6. Code availability

The model code is open-source and can be found in github https://github.com/chgwan/1DSwin. The other codes for model training, data acquisition, and generate figures belongs to EAST team and is available from the corresponding author upon reasonable request.

Acknowledgments

The model training in this paper were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics, Chinese Academy of Sciences. The authors would like to thank all the members of EAST Team for providing such a large quantity of tokamak experimental data. And specially thank Prof. Qiping Yuan, Dr. Ruirui Zhang, Prof. Jinping Qian, Dr. Heru Guo, and other members of EAST Division of Control and Computer Application for explaining the experimental data.

This work was supported by the National Key R&D project under Contract No.Y65GZ10593, the National MCF Energy R&D Program under Contract No.2018YFE0304100, and the Comprehensive Research Facility for Fusion Technology Program of China under Contract No. 2018-000052-73-01-001228.

References

[1] John Wesson and David J Campbell. *Tokamaks*, volume 149. Oxford university press, 2011.
[2] Gianmaria De Tommasi. Plasma Magnetic Control in Tokamak Devices. *Journal of Fusion Energy*, 38(3-4):406–436, aug 2019.
[3] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli,
Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Koray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of tokamak plasmas through deep reinforcement learning. *Nature*, 602(7897):414–419, feb 2022.

[4] M. L. Walker and D. A. Humphreys. Valid Coordinate Systems for Linearized Plasma Shape Response Models in Tokamaks. *Fusion Science and Technology*, 50(4):473–489, nov 2006.

[5] Jacques Blum, Holger Heumann, Eric Nardon, and Xiao Song. Automating the design of tokamak experiment scenarios. *Journal of Computational Physics*, 394:594–614, oct 2019.

[6] J.R R. Ferron, M.L L. Walker, L.L L. Lao, H.E. St E.S.T. S T John, D.A A. Humphreys, and J.A A. Leuer. Real time equilibrium reconstruction for tokamak discharge control. *Nuclear Fusion*, 38(7):1055–1066, jul 1998.

[7] Gloria L. Falchetto, David Coster, Rui Coelho, B. D. Scott, Lorenzo Figini, Denis Kalupin, Eric Nardon, Silvana Nowak, Luis Lemos Alves, Jean-François F. Artaud, V. Basnik, João P.S. Bizarro, C. Boulbe, A. Dinklage, D. Farina, B. Faugeras, J. Ferreira, A. Figueiredo, Ph Huynh, F. Imbeaux, I. Ivanova-Stanik, T. Jonsson, H. J. Klingshirn, C. Konz, A. Kus, N. B. Marushchenko, G. Parvez, E. Poli, Y. Peysson, R. Reimer, J. Signoret, O. Sauter, R. Stankiewicz, P. Strand, I. Voitsekhovitch, E. Westerhof, T. Zok, and W. Zwingmann. The European Integrated Tokamak Modelling (ITM) effort: Achievements and first physics results. *Nuclear Fusion*, 54(4):43018, 2014.

[8] Chenguang Wan, Zhi Yu, Feng Wang, Xiaojuan Liu, and Jianguang Li. Experiment data-driven modeling of tokamak discharge in EAST. *Nuclear Fusion*, 61(6):066015, jun 2021.

[9] Julian Kates-Harbeck, Alexey Svyatkovskiy, and William Tang. Predicting disruptive instabilities in controlled fusion plasmas through deep learning. *Nature*, 568(7753):526–531, apr 2019.

[10] W.H. H. Hu, Cristina Rea, Q.P. P. Yuan, K.G. G. Erickson, D.L. L. Chen, Biao Shen, Yao Huang, J.Y. Y. Xiao, J.J. J. Chen, Y.M. M. Duan, Yang Zhang, H.D. D. Zhuang, J.C. C. Xu, K.J. J. Montes, R.S. S. Granetz, Long Zeng, J.P. P. Qian, B.J. J. Xiao, and J.G. G. Li. Real-time prediction of high-density EAST disruptions using random forest. *Nuclear Fusion*, 61(6):066034, jun 2021.

[11] Bihao H Guo, Dalong L Chen, Biao Shen, Cristina Rea, Robert S Granetz, Long Zeng, Wenhui H Hu, Jiping P Qian, Youwen W Sun, and Bingjia J Xiao. Disruption prediction on EAST tokamak using a deep learning algorithm. *Plasma Physics and Controlled Fusion*, 63(11):115007, nov 2021.

[12] B. Cannas, A. Fanni, P. Sonato, and M.K. Zedda. A prediction tool for real-time application in the disruption protection system at JET. *Nuclear Fusion*, 47(11):1559–1569, nov 2007.

[13] Barbara Cannas, Rita Sabrina Delogu, ALESSANDRA Fanni, P Sonato, MARIA KATIUSCIA Zedda, and JET-EFDA Contributors. Support vector machines for disruption prediction and novelty detection at JET. *Fusion engineering and design*, 82(5-14):1124–1130, 2007.

[14] Barbara Cannas, Alessandra Fanni, G Pautasso, G Sias, and P Sonato. An adaptive real-time disruption predictor for ASDEX Upgrade. *Nuclear Fusion*, 50(7):075004, jul 2010.

[15] R Yoshino. Neural-net disruption predictor in JT-60U. *Nuclear Fusion*, 43(12):1771–1786, dec 2003.
[16] D. J. Clayton, K. Tritz, D. Stutman, R. E. Bell, A. Diallo, B P LeBlanc, and M. Podestà. Electron temperature profile reconstructions from multi-energy SXR measurements using neural networks. Plasma Physics and Controlled Fusion, 55(9):095015, sep 2013.

[17] M. Honda and E. Narita. Machine-learning assisted steady-state profile predictions using global optimization techniques. Physics of Plasmas, 26(10), 2019.

[18] O Meneghini, S P Smith, P B Snyder, G M Staebler, J Candy, E Belli, L Lao, M Kostuk, T Luce, T Luda, J M Park, and F Poli. Self-consistent core-pedestal transport simulations with neural network accelerated models. Nuclear Fusion, 57(8):s6034, jul 2017.

[19] O Meneghini, G Snoep, B C Lyons, J McClenaghan, C S Imai, B Grierson, S P Smith, G M Staebler, P B Snyder, J Candy, E Belli, L Lao, J M Park, J Citrin, T L Cordemiglia, A Tema, and S Mordijck. Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with {ITER} {IMAS}. Nuclear Fusion, 61(2):26006, dec 2020.

[20] Diogo R Ferreira, Pedro J Carvalho, and J E T Contributors. Deep Learning for Plasma Tomography in Nuclear Fusion. pages 1–5, 2020.

[21] O Barana, A Murari, P Franz, L C Ingesson, and G Manduchi. Neural networks for real time determination of radiated power in JET. Review of scientific instruments, 73(5):2038–2043, 2002.

[22] Chenguang Wan, Zhi Yu, Alessandro Pau, Xiaojuan Liu, and Jiangang Li. EAST discharge prediction without integrating simulation results. oct 2021.

[23] A Murari, P Arena, A Buscarino, L Fortuna, and M Iachello. On the identification of instabilities with neural networks on JET. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 720:2–6, 2013.

[24] M D Boyer, S Kaye, and K Erickson. Real-time capable modeling of neutral beam injection on {NSTX}-U using neural networks. Nuclear Fusion, 59(5):56008, mar 2019.

[25] A Murari, D Mazon, N Martin, G Vagliasindi, and M Gelfusa. Exploratory Data Analysis Techniques to Determine the Dimensionality of Complex Nonlinear Phenomena: The L-to-H Transition at JET as a Case Study. IEEE Transactions on Plasma Science, 40(5):1386–1394, may 2012.

[26] A Murari, J Vega, D Mazon, D Patané, G Vagliasindi, P Arena, N Martin, N F Martin, G Rattá, and V Caloone. Machine learning for the identification of scaling laws and dynamical systems directly from data in fusion. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 623(2):850–854, 2010.

[27] P Gaudio, A Murari, M Gelfusa, I Lupelli, and J Vega. An alternative approach to the determination of scaling law expressions for the L\{-H\} transition in Tokamaks utilizing classification tools instead of regression. Plasma Physics and Controlled Fusion, 56(11):114002, oct 2014.

[28] B Cannas, S Carcangiu, A Fanni, T Farley, F Militello, A Montisci, F Pisano, G Sias, and N Walkden. Towards an automatic filament detector with a Faster R-CNN on MAST-U. Fusion Engineering and Design, 146:374–377, 2019.
REFERENCES

[29] Daniel Böckenhoff, Marko Blatzheim, Hauke Hölbe, Holger Niemann, Fabio Pisano, Roger Labahn, and Thomas Sum Pedersen. Reconstruction of magnetic configurations in W7-X using artificial neural networks. *Nuclear Fusion*, 58(5):56009, mar 2018.

[30] E Coccorese, C Morabito, and Raffaele Martone. Identification of noncircular plasma equilibria using a neural network approach. *Nuclear Fusion*, 34(10):1349, 1994.

[31] Chris M Bishop, Paul S Haynes, Mike E U Smith, Tom N Todd, and David L Trotman. Fast feedback control of a high temperature fusion plasma. *Neural Computing & Applications*, 2(3):148–159, 1994.

[32] Young-Mu Jeon, Yong-Su Na, Myung-Rak Kim, and Y S Hwang. Newly developed double neural network concept for reliable fast plasma position control. *Review of Scientific Instruments*, 72(1):513–516, 2001.

[33] S. Y. Wang, Z. Y. Chen, D. W. Huang, R. H. Tong, W. Yan, Y. N. Wei, T. K. Ma, M. Zhang, G. Zhuang, Huang D W Tong R H Yan W Wei Y N Ma T K Zhang M Wang S Y Chen Z Y, Zhuang G, S. Y. Wang, Z. Y. Chen, D. W. Huang, R. H. Tong, W. Yan, Y. N. Wei, T. K. Ma, M. Zhang, and G. Zhuang. Prediction of density limit disruptions on the j-TEXT tokamak. *Plasma Physics and Controlled Fusion*, 58(5), apr 2016.

[34] Semin Joung, Jaewook Kim, Sehyun Kwak, J. G. Bak, S. G. Lee, H. S. Han, H. S. Kim, Geunho Lee, Daeho Kwon, and Y.-C. C. Ghim. Deep neural network Grad-Shafranov solver constrained with measured magnetic signals. *Nuclear Fusion*, 60(1):16034, dec 2020.

[35] B Ph. van Milligen, V Tribaldos, and J A Jiménez. Neural Network Differential Equation and Plasma Equilibrium Solver. *Phys. Rev. Lett.*, 75(20):3594–3597, nov 1995.

[36] Chris M Bishop, Paul S Haynes, Mike E U Smith, Tom N Todd, and David L Trotman. Real-time control of a tokamak plasma using neural networks. *Neural Computation*, 7(1):206–217, 1995.

[37] Bin Yang, Zhenxing Liu, Xianmin Song, and Xiangwen Li. Design of {HL}-2A plasma position predictive model based on deep learning. *Plasma Physics and Controlled Fusion*, 62(12):125022, nov 2020.

[38] T Wakatsuki, T Suzuki, N Hayashi, N Oyama, and S Ide. Safety factor profile control with reduced central solenoid flux consumption during plasma current ramp-up phase using a reinforcement learning technique. *Nuclear Fusion*, 59(6), may 2019.

[39] H. Rasouli, C. Rasouli, and A. Koohi. Identification and control of plasma vertical position using neural network in Damavand tokamak. *Review of Scientific Instruments*, 84(2), 2013.

[40] Bin Yang, Zhenxing Liu, Xianmin Song, Xiangwen Li, and Yan Li. Modeling of the HL-2A plasma vertical displacement control system based on deep learning and its controller design. *Plasma Physics and Controlled Fusion*, 62(7):75004, jul 2020.

[41] Jaemin Seo, Y.-S. Na, B. Kim, C.Y. Lee, M.S. Park, S.J. Park, and Y.H. Lee. Feedforward beta control in the KSTAR tokamak by deep reinforcement learning. *Nuclear Fusion*, 61(10):106010, oct 2021.

[42] Abhilash Mathews, Manaure Francipezquez, Jerry Hughes, David Hatch, Ben Zhu, and Barrett Rogers. Uncovering turbulent plasma dynamics via deep learning from partial observations. sep 2020.

[43] D E Rumelhart, G E Hinton, and R J Williams. *Learning Internal Representations by Error Propagation*, pages 318–362. MIT Press, Cambridge, MA, USA, rumelhart edition, 1986.
REFERENCES

[44] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. (Cd), feb 2014.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 2017-Decem(Nips):5999–6009, 2017.

[46] Institute Of Plasma Physics Chinese Academy Of Science. 1,056 Seconds, another world record for EAST.

[47] Baonian Wan, Jiangang Li, Houyang Guo, Yunfeng Liang, Guosheng Xu, Liang Wang, and Xianzu Gong. Advances in H-mode physics for long-pulse operation on {EAST}. Nuclear Fusion, 55(10):104015, jul 2015.

[48] Baonian Wan, Jiangang Li, Houyang Guo, Yunfeng Liang, Guosheng Xu, and Xianzhu Gong. Progress of long pulse and H-mode experiments in EAST. Nuclear Fusion, 53(10), 2013.

[49] Jiangang Li, Baonian Wan, EAST Team, and Int Collaborators. Recent progress in RF heating and long-pulse experiments on EAST. Nuclear Fusion, 51(9, SI), sep 2011.

[50] L.L. Lao, H. St. John, R.D. Stambaugh, A.G. Kellman, and W. Pfeiffer. Reconstruction of current profile parameters and plasma shapes in tokamaks. Nuclear Fusion, 25(11):1611–1622, nov 1985.

[51] L.L. Lao, J.R. Ferron, R.J. Groebner, W. Howl, H. St. John, E.J. Strait, and T.S. Taylor. Equilibrium analysis of current profiles in tokamaks. Nuclear Fusion, 30(6):1035–1049, jun 1990.

[52] L. L. Lao, H. E. St. John, Q. Peng, J. R. Ferron, E. J. Strait, T. S. Taylor, W. H. Meyer, C. Zhang, and K. I. You. MHD Equilibrium Reconstruction in the DIII-D Tokamak. Fusion Science and Technology, 48(2):968–977, oct 2005.

[53] F. Hofmann and G. Tonetti. Tokamak equilibrium reconstruction using Faraday rotation measurements. Nuclear Fusion, 28(10):1871–1878, oct 1988.

[54] F. Felici, O. Sauter, S. Coda, B.P. Duval, T.P. Goodman, J-M. Moret, and J.I. Paley. Real-time physics-model-based simulation of the current density profile in tokamak plasmas. Nuclear Fusion, 51(8):083052, aug 2011.

[55] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. mar 2021.

[56] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. Advances in Neural Information Processing Systems, 4(January):3104–3112, 2014.

[57] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. oct 2018.

[58] Zhiheng Huang, Geoffrey Zweig, Michael Levit, Benoît Dumoulin, Barlas Oguz, and Shawn Chang. Accelerating recurrent neural network training via two stage classes and parallelization. In 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pages 326–331. IEEE, dec 2013.

[59] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter Optimization. In J Shawe-Taylor, R Zemel, P Bartlett, F Pereira, and K Q Weinberger, editors, Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.
[60] Leslie N. Smith and Nicholay Topin. Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates. Aug 2017.