CONES, RECTIFIABILITY, AND SINGULAR INTEGRAL OPERATORS

DAMIAN DĄBROWSKI

Abstract. Let μ be a Radon measure on \mathbb{R}^d. We define and study conical energies $E_{\mu,p}(x, V, \alpha)$, which quantify the portion of μ lying in the cone with vertex $x \in \mathbb{R}^d$, direction $V \in G(d, d-n)$, and aperture $\alpha \in (0, 1)$. We use these energies to characterize rectifiability and the big pieces of Lipschitz graphs property. Furthermore, if we assume that μ has polynomial growth, we give a sufficient condition for $L^2(\mu)$-boundedness of singular integral operators with smooth odd kernels of convolution type.

1. Introduction

Let $m < d$ be positive integers. Given an m-plane $V \in G(d, m)$, a point $x \in \mathbb{R}^d$, and $\alpha \in (0, 1)$, we define

$$K(x, V, \alpha) = \{y \in \mathbb{R}^d : \text{dist}(y, V + x) < \alpha |x - y|\}.$$

That is, $K(x, V, \alpha)$ is an open cone centered at x, with direction V, and aperture α.

Let $0 < n < d$. It is well-known that if a set $E \subset \mathbb{R}^d$ satisfies for some $V \in G(d, d-n)$, $\alpha \in (0, 1)$, the condition

$$x \in E \implies E \cap K(x, V, \alpha) = \emptyset,$$

then E is contained in some n-dimensional Lipschitz graph Γ, and $\text{Lip}(\Gamma) \leq \frac{1}{\alpha}$, see e.g. [Mat95, Proof of Lemma 15.13].

To what extent can we weaken the condition (1.1) and still get meaningful information about the geometry of E? It depends on what we mean by “meaningful information”, naturally. One could ask for the rectifiability of E, or if E contains big pieces of Lipschitz graphs, or whether nice singular integral operators are bounded on $L^2(E)$. The aim of this paper is to answer these three questions.

1.1. Rectifiability. A measurable set $E \subset \mathbb{R}^d$ is n-rectifiable if there exists a countable number of Lipschitz maps $f_i : \mathbb{R}^n \to \mathbb{R}^d$ such that

$$\mathcal{H}^n\left(E \setminus \bigcup_i f_i(\mathbb{R}^n)\right) = 0,$$

where \mathcal{H}^n denotes the n-dimensional Hausdorff measure. More generally, a Radon measure μ is said to be n-rectifiable if $\mu \ll \mathcal{H}^n$ and there exists an n-rectifiable set $E \subset \mathbb{R}^d$ such that $\mu(\mathbb{R}^d \setminus E) = 0$.

A measure-theoretic analogue of (1.1), well-suited to the study of rectifiability, is that of an approximate tangent plane. We recall the definition below.

For $r > 0$ we define the truncated cone

$$K(x, V, \alpha, r) = K(x, V, \alpha) \cap B(x, r),$$

and for $0 < r < R$ we define the doubly truncated cone

$$K(x, V, \alpha, r, R) = K(x, V, \alpha, R) \setminus K(x, V, \alpha, r).$$

2020 Mathematics Subject Classification. 28A75 (Primary) 28A78, 42B20 (Secondary).

Key words and phrases. rectifiability, cone, singular integral operators, conical density, big pieces of Lipschitz graphs.
Given a Radon measure μ on \mathbb{R}^d and $x \in \text{supp} \mu$, the lower and upper densities of μ at x are defined as

$$\Theta^n_-(\mu, x) = \liminf_{r \to 0} \frac{\mu(B(x, r))}{r^n} \quad \text{and} \quad \Theta^n_+(\mu, x) = \limsup_{r \to 0} \frac{\mu(B(x, r))}{r^n}.$$

Recall that if μ is n-rectifiable, then $0 < \Theta^n_-(\mu, x) = \Theta^n_+(\mu, x) < \infty$ for μ-a.e. $x \in \text{supp} \mu$. In that case we set $\Theta^n(\mu, x) := \Theta^n_+(\mu, x)$.

Definition 1.1. We say that an n-plane $W \subset G(d, n)$ is an approximate tangent plane to a Radon measure μ at $x \in \text{supp} \mu$ if $\Theta^n_-(\mu, x) > 0$ and for every $\alpha \in (0, 1)$

$$\lim_{r \to 0} \frac{\mu(K(x, W^\perp, \alpha, r))}{r^n} = 0. \quad (1.2)$$

The following classical characterization of rectifiable measures holds.

Theorem 1.2 ([Fed47, Theorem 9.1]). Let μ be a finite Radon measure on \mathbb{R}^d satisfying $0 < \Theta^{n, *}(\mu, x) < \infty$ for μ-a.e. $x \in \mathbb{R}^d$. Then, the following are equivalent:

a) μ is n-rectifiable,

b) for μ-a.e. $x \in \mathbb{R}^d$ there is a unique approximate tangent plane to μ at x,

c) for μ-a.e. $x \in \mathbb{R}^d$ there is $W_x \in G(d, n)$ and $\alpha_x \in (0, 1)$ such that

$$\limsup_{r \to 0} \frac{\mu(K(x, W^\perp, \alpha_x, r))}{r^n} < (\alpha_x)^n \varepsilon(n) \Theta^{n, *}(\mu, x), \quad (1.3)$$

where $\varepsilon(n)$ is a small dimensional constant.

The results we prove in this paper are of similar nature. More precisely, we introduce and study conical energies.

Definition 1.3. Suppose μ is a Radon measure on \mathbb{R}^d, and $x \in \text{supp} \mu$. Let $V \in G(d, d - n)$, $\alpha \in (0, 1)$, $1 \leq p < \infty$ and $R > 0$. We define the (V, α, p)-conical energy of μ at x up to scale R as

$$\mathcal{E}_{\mu, p}(x, V, \alpha, R) = \int_0^R \left(\frac{\mu(K(x, V, \alpha, r))}{r^n} \right)^p \, dr.$$

For $E \subset \mathbb{R}^d$ we set also $\mathcal{E}_{E, p}(x, V, \alpha, R) = \mathcal{E}_{K^*|E, p}(x, V, \alpha, R)$.

Note that the definition above depends on the dimension parameter n, so it would be more precise to say that $\mathcal{E}_{\mu, p}(x, V, \alpha, R)$ is the n-dimensional (V, α, p)-conical energy. For the sake of brevity, throughout the paper we will consider n to be fixed, and we will usually not point out this dependence. The same applies to other definitions.

We are ready to state our first result.

Theorem 1.4. Let $1 \leq p < \infty$. Suppose μ is a Radon measure on \mathbb{R}^d satisfying $\Theta^{n, *}(\mu, x) > 0$ and $\Theta^n_-(\mu, x) < \infty$ for μ-a.e. $x \in \mathbb{R}^d$. Assume that for μ-a.e. $x \in \mathbb{R}^d$ there exists some $V_x \in G(d, d - n)$ and $\alpha_x \in (0, 1)$ such that

$$\mathcal{E}_{\mu, p}(x, V_x, \alpha_x, 1) < \infty. \quad (1.4)$$

Then, μ is n-rectifiable.

Conversely, if μ is n-rectifiable, then for μ-a.e. $x \in \mathbb{R}^d$ there exists $V_x \in G(d, d - n)$ such that for all $\alpha \in (0, 1)$ we have

$$\mathcal{E}_{\mu, p}(x, V_x, \alpha, 1) < \infty. \quad (1.5)$$

Remark 1.5. The “necessary” part of Theorem (1.4) improves on Theorem (1.2) in the following way. Existence of approximate tangents means that the conical density simply converges to 0, while (1.5) means that the conical density satisfies a Dini-type condition, and converges to 0 rather fast.
Remark 1.6. Concerning the “sufficient” part of Theorem 1.4, clearly, condition (1.3) is weaker than (1.4). However, Theorem 1.4 has the following advantage over Theorem 1.2: we only require \(\Theta^*(\mu, x) > 0 \) and \(\Theta^*(\mu, x) < \infty \) for our criterion to hold. In particular, we do not assume \(\mu \ll H^n \). It is not clear to the author how to show a criterion involving (1.3) or (1.2) without assuming a priori \(\mu \ll H^n \).

Question 1.7. Suppose \(\mu \) is a Radon measure on \(\mathbb{R}^d \) satisfying \(\Theta^*(\mu, x) > 0 \) and \(\Theta^*(\mu, x) < \infty \) for \(\mu \)-a.e. \(x \in \mathbb{R}^d \). Assume that for \(\mu \)-a.e. \(x \in \mathbb{R}^d \) there is an approximate tangent plane to \(\mu \) at \(x \). Does this imply that \(\mu \) is \(n \)-rectifiable?

Let us mention that in recent years many similar characterizations of rectifiable measures have been obtained. By “similar” we mean: the pointwise finiteness of a square function involving some flatness quantifying coefficients. The most famous coefficients of this type are \(\beta \) numbers, first introduced in [Jon90] and further developed by David and Semmes [DS91, DS93a]. A necessary condition for rectifiability that uses \(\beta_p \) numbers was shown in [Tol15], see Theorem 9.3 for the precise statement. Its sufficiency (under various assumptions on densities of the measure) was proved in [Pa97, AT15, ENV16, BS16]. Measures carried by rectifiable curves are studied using \(\beta \) numbers in [Ler03, BS15, BS16, AM16, BS17, MO18a, Nap20], see also the survey [Bad19].

Finiteness of a square function involving \(\alpha \) coefficients (defined in [Tol09]) is shown to be necessary for rectifiability in [Tol15], The opposite implication is studied in [ADT16, Orp18, ATT20]. In [Dab20a, Dab21] rectifiable measures were characterized using \(\alpha_2 \) numbers, first defined in [Tol12]. Square functions involving centers of mass are studied in [MV09] and [Vil19]. Finally, [TT15, Tol17] are devoted to a square function involving \(\Delta \) numbers, where

\[
\Delta_\mu(x, r) = \frac{|\mu(B(x,r)) - \mu(B(x,2r))|}{2^n r^n}.
\]

For related characterizations of rectifiable measures in terms of tangent measures, see [Mat95, Chapter 16] and [Pre87, Section 5]. For a study of tangent points of Jordan curves in terms of \(\beta \) numbers see [BJ94], and for a generalization of this result for lower content regular sets of arbitrary dimension see [Vil20].

The behaviour of conical densities on purely unrectifiable sets is studied in [CKRS10] and [Kää10, §5]. In [Mat88, KS08, CKRS10, KS11] the relation between conical densities for higher dimensional sets and their porosity is investigated.

Higher order rectifiability in terms of approximate differentiability of sets is studied in [San19]. In [DN19] the authors characterize \(C^{1,\alpha} \)-rectifiable sets using approximate tangents paraboloids, essentially obtaining a \(C^{1,\alpha} \) counterpart of Theorem 1.2. See also [Ghi20] and [GG20] for related results.

We would also like to mention recent results of Badger and Naples that nicely complement Theorem 1.4. In [Nap20, Theorem D] Naples showed that a modified version of (1.2) can be used to characterize pointwise doubling measures carried by Lipschitz graphs, that is measures vanishing outside of a countable union of \(n \)-dimensional Lipschitz graphs. In an even more recent paper [BN21] the authors completely describe measures carried by \(n \)-dimensional Lipschitz graphs on \(\mathbb{R}^d \). They use a Dini condition imposed on the so-called conical defect, and their condition is closely related to (1.4). Note the absence of densities in the assumptions (and conclusion) of their results. If one adds an assumption \(\Theta_\mu^*(\mu, x) < \infty \) for \(\mu \)-a.e. \(x \in \mathbb{R}^d \), then it actually follows from [BN21] that \(\mu \)-a.e. finiteness of their conical Dini function implies that \(\mu \) is \(n \)-rectifiable. We would like to stress however that neither Theorem 1.4 implies the results from [BN21], nor the other way around.

1.2. Big pieces of Lipschitz graphs

Before stating our next theorem, we need to recall some definitions.
Remark 1.13. for all $1 \leq n \leq 4$ D. Dąbrowski

Theorem 1.11. Let $E \subset \mathbb{R}^d$ be an Ahlfors-David regular (abbreviated as n-ADR) if there exist constants $C_0, C_1 > 0$ such that for all $x \in E$ and $0 < r < \text{diam}(E)$

$$C_0 r^n \leq \mathcal{H}^n(E \cap B(x, r)) \leq C_1 r^n.$$

Constants C_0, C_1 will be referred to as ADR constants of E.

Definition 1.9. We say that an n-ADR set $E \subset \mathbb{R}^d$ has big pieces of Lipschitz graphs (BPLG) if there exist constants $\kappa, L > 0$, such that the following holds.

For all balls B centered at E, $0 < r(B) < \text{diam}(E)$, there exists a Lipschitz graph Γ_B with $\text{Lip}(\Gamma_B) \leq L$, such that

$$\mathcal{H}^n(E \cap B \cap \Gamma_B) \geq \kappa r(B)^n.$$

Sets with BPLG were studied e.g. in [Dav88, DS93a, DS93b] as one of the possible quantitative counterparts of rectifiability. Let us point out that the class of sets with BPLG is strictly smaller than the class of uniformly rectifiable sets, introduced in the seminal work of David and Semmes [DS91, DS93a]. An example of a uniformly rectifiable set that does not contain BPLG is due to Hrycak, although he never wrote it down, see [Azz21, Appendix].

Very recently, Orponen characterized the BPLG property in terms of the big projections in plenty of directions property [Orp21], answering an old question of David and Semmes. A little before that, Martikainen and Orponen [MO18a] characterized sets with BPLG in terms of L^2 norms of their projections. Interestingly, the authors use the information about projections of an n-ADR set E to draw conclusions about intersections with cones of some subset $E' \subset E$ with $\mathcal{H}^n(E') \approx \mathcal{H}^n(E)$. This in turn allows them to find a Lipschitz graph intersecting an ample portion of E'. We will use some of their techniques to prove a characterization of sets containing BPLG in terms of the following property.

Definition 1.10. Let $1 \leq p < \infty$. We say that a measure μ has big pieces of bounded energy for p, abbreviated as BPBE(p), if there exist constants $\alpha, \kappa, M_0 > 0$ such that the following holds.

For all balls B centered at supp\,μ, $0 < r(B) < \text{diam(supp}\mu)$, there exist a set $G_B \subset B$ with $\mu(G_B) \geq \kappa \mu(B)$, and a direction $\nu_B \in G(d, d - n)$, such that for all $x \in G_B$

$$E_{\mu,p}(x, \nu_B, \alpha, r(B)) = \left(\frac{\mu(K(x, \nu_B, \alpha, r) \cap E \cap G_B)}{r^n} \right)^p \leq M_0,$$ \hspace{1cm} (1.6)

Theorem 1.11. Let $1 \leq p < \infty$. Suppose $E \subset \mathbb{R}^d$ is n-ADR. Then E has BPLG if and only if $\mathcal{H}^n|_E$ has BPBE(p).

Remark 1.12. In particular, for n-ADR sets, the condition BPBE(p) is equivalent to BPBE(q) for all $1 \leq p, q < \infty$.

Remark 1.13. In fact, one can show that an n-priori slightly weaker condition than BPBE is already sufficient for BPLG. To be more precise, in (1.6) replace $K(x, \nu_B, \alpha, r)$ with $K(x, \nu_B, \alpha) \cap G_B$, so that we get

$$\left(\frac{\mathcal{H}^n(K(x, \nu_B, \alpha, r) \cap E \cap G_B)}{r^n} \right)^p \leq M_0.$$ \hspace{1cm} (1.7)

We show that this “weak” BPBE is sufficient for BPLG in Proposition 10.1. It is obvious that (1.7) is also necessary for BPLG: if E contains BPLG, then choosing $G_B = \Gamma_B$ as in Definition 1.9 one can pick the corresponding ν_B and α so that $K(x, \nu_B, \alpha, r) \cap \Gamma_B = \emptyset$.

It is tempting to consider also the following definition.

Definition 1.14. Let $1 \leq p < \infty$. We say that a measure μ has bounded mean energy (BME) for p if there exist constants $\alpha, M_0 > 0$, and for every $x \in \text{supp} \mu$ there exists a direction $V_x \in G(d, d - n)$, such that the following holds.

For all balls B centered at $\text{supp} \mu$, $0 < r(B) < \text{diam}(\text{supp} \mu)$, we have

$$
\int_B \mathcal{E}_{\mu,p}(x, V_x, \alpha, r(B)) \, d\mu(x) = \int_B \int_0^{r(B)} \left(\frac{\mu(K(x, V_x, \alpha, r))}{r^n} \right)^p \frac{dr}{r} \, d\mu(x) \leq M_0 \mu(B).
$$

In other words we require $\mu(K(x, V_x, \alpha, r))^{p_\gamma} r^{-np} \frac{dr}{r} \, d\mu(x)$ to be a Carleson measure. This condition looks quite natural due to many similar characterizations of uniform rectifiability, e.g. the geometric lemma of [DS91, DS93a] or the results from [Tol09, Tol12].

It is easy to see, using the compactness of $G(d, d - n)$ and Chebyshev’s inequality, that BME for p implies BPBE(p). However, the reverse implication does not hold. In [Dab20b] we give an example of a set containing BPLG that does not satisfy BME. The problem is the following. In the definition above, the plane V_x is fixed for every $x \in \text{supp} \mu$ once and for all, and we do not allow it to change between different scales. This is too rigid.

Question 1.15. Can one modify the definition of BME, allowing the planes V_x to depend on the scale r, so that the modified BME could be used to characterize BPLG, or uniform rectifiability?

It seems likely that every uniformly rectifiable measure would satisfy such relaxed BME (the idea would be similar to what is done in Section 9) but we will use the β-numbers characterization of UR to get an upper bound for β-numbers, and then estimate the measure of cones from above by the β-numbers). It is less clear whether this relaxed BME would imply uniform rectifiability. Perhaps additional control for the oscillation of $V_{x,r}$ would be needed.

1.3. Boundedness of SIOs.

We will be concerned with singular integral operators of convolution type, with odd C^2 kernels $k : \mathbb{R}^d \setminus \{0\} \rightarrow \mathbb{R}$ satisfying for some constant $C_k > 0$

$$
|\nabla^j k(x)| \leq \frac{C_k}{|x|^{n+j}} \quad \text{for } x \neq 0 \quad \text{and} \quad j \in \{0, 1, 2\}.
$$

We will denote the class of all such kernels by $\mathcal{K}^n(\mathbb{R}^d)$. Note that these kernels are particularly nice examples of Calderón-Zygmund kernels (see [Tol14, p. 48] for definition), which will let us use many tools from the Calderón-Zygmund theory. Since the measures we work with may be non-doubling, our main reference will be [Tol14] Chapter 2. For the more classical theory, we refer the reader to [Gra14a, Chapter 5], [Gra14b, Chapter 4].

Definition 1.16. Given a kernel $k \in \mathcal{K}^n(\mathbb{R}^d)$, a constant $\varepsilon > 0$, and a (possibly complex) Radon measure ν, we set

$$
T_\varepsilon \nu(x) = \int_{|x-y| > \varepsilon} k(y-x) \, d\nu(y), \quad x \in \mathbb{R}^d.
$$

For a fixed positive Radon measure μ and all functions $f \in L^1_{\text{loc}}(\mu)$ we define

$$
T_{\mu,\varepsilon} f(x) = T_\varepsilon(f \mu)(x).
$$

We say that $T_{\mu,\varepsilon}$ is bounded in $L^2(\mu)$ if all $T_{\mu,\varepsilon}$ are bounded in $L^2(\mu)$, uniformly in $\varepsilon > 0$. Let $M(\mathbb{R}^d)$ denote the space of all finite real Borel measures on \mathbb{R}^d. When endowed with the total variation norm $\|\cdot\|_{TV}$, this is a Banach space. We say that T is bounded from $M(\mathbb{R}^d)$ to $L^{1,\infty}(\mu)$ if there exists a constant C such that for all $\nu \in M(\mathbb{R}^d)$ and all $\lambda > 0$,

$$
\mu(\{x \in \mathbb{R}^d : |T_\varepsilon \nu(x)| > \lambda\}) \leq \frac{C \|\nu\|_{TV}}{\lambda},
$$
The main motivation for developing the theory of quantitative rectifiability was finding necessary and/or sufficient conditions for boundedness of singular integral operators. David and Semmes showed in [DS91] that, for an n-ADR set, the L^2 boundedness of all singular integral operators with smooth and odd kernels is equivalent to uniform rectifiability. The famous David-Semmes problem asks whether the L^2 boundedness of a single SIO, the Riesz transform, is already sufficient for uniform rectifiability. It was shown that the answer is affirmative for $n = 1$ in [MMV96], for $n = d - 1$ in [NTV14a], and the problem is open for other n.

In the non-ADR setting less is known. A necessary condition for the boundedness of SIOs in $L^2(\mu)$, where μ is Radon and non-atomic, is the polynomial growth condition:

$$\mu(B(x, r)) \leq C_1 r^n$$

for all $x \in \text{supp} \mu$, $r > 0$, \hspace{1cm} (1.9)

see [Dav91] Proposition 1.4 in Part III]. Eiderman, Nazarov and Volberg showed in [ENV14] that if μ is a measure on \mathbb{R}^2, $H^1(\text{supp} \mu) < \infty$, and μ has vanishing lower 1-density, then the Riesz transform is unbounded. Their result was generalized to SIOs associated to gradients of single layer potentials in [CAMT19]. Nazarov, Tolsa and Volberg proved in [NTV14b] that if $E \subset \mathbb{R}^{n+1}$ satisfies $H^n(E) < \infty$ and the n-dimensional Riesz transform is bounded in $L^2(H^n|_E)$, then E is n-rectifiable. That the same is true for gradients of single layer potentials was shown by Prat, Puliafito and Tolsa in [PPT21].

Concerning sufficient conditions for boundedness of SIOs, in [ATT15] Azzam and Tolsa estimated the Cauchy transform of a measure using its β numbers. Their method was further developed by Girela-Sarrión [GS19]. He gives a sufficient condition for boundedness of singular integral operators with kernels in $K^n(\mathbb{R}^d)$ in terms of β numbers. We use the main lemma from [GS19] to prove the following criterion involving 2-conical energy.

Theorem 1.17. Let μ be a Radon measure on \mathbb{R}^d satisfying the polynomial growth condition (1.9). Suppose that μ has BPBE(2). Then, all singular integral operators T_μ with kernels $k \in K^n(\mathbb{R}^d)$ are bounded in $L^2(\mu)$, with norm depending only on BPBE constants, the polynomial growth constant C_1, and the constant C_k from (1.8).

Remark 1.18. A similar result, with BPBE(2) condition replaced by BPBE(1) condition, has already been shown in [CT20] Theorem 10.2]. It is easy to see that for measures satisfying polynomial growth (1.9) we have

$$E_{\mu,2}(x, V, \alpha, R) \leq C_1 E_{\mu,1}(x, V, \alpha, R),$$

and so BPBE(2) is a weaker assumption than BPBE(1). Moreover, in [Dąb20b] we show that the measure constructed in [JM00] does not satisfy BPBE(1), but it trivially satisfies BPBE(2). Hence, Theorem 1.17 really does improve on [CT20] Theorem 10.2].

Remark 1.19. Recall that for n-ADR sets the condition BPBE(p) was equivalent to BPLG, regardless of p. By the remark above, it is clear that if we replace the n-ADR condition with polynomial growth (i.e. if we drop the lower regularity assumption), then the condition BPBE(p) is no longer independent of p. In general we only have one implication: for $1 \leq p < q < \infty$

$$\text{BPBE}(p) \Rightarrow \text{BPBE}(q).$$

Remark 1.20. Theorem 1.17 is sharp in the following sense. If one tried to weaken the assumption BPBE(2) to BPBE(p) for some $p > 2$, then the theorem would no longer hold. The reason is that for any $p > 2$ one may construct a Cantor-like probability measure μ, uniformly in $\varepsilon > 0$.
say on a unit square in \mathbb{R}^2, that has linear growth and such that for all $x \in \text{supp} \mu$

$$\int_0^1 \left(\frac{\mu(B(x,r))}{r} \right)^p \frac{dr}{r} \lesssim 1,$$

(that is, a much stronger version of $\text{BPBE}(p)$ holds), but nevertheless, the Cauchy transform is not bounded on $L^2(\mu)$. See [To14] Chapter 4.7.

Sadly, the implication of Theorem 1.17 cannot be reversed. Let $E \subset \mathbb{R}^2$ be the previously mentioned example of a 1-ADR uniformly rectifiable set that does not contain BPLG. In particular, by Theorem 1.11 E does not satisfy $\text{BPBE}(p)$ for any p. Nevertheless, by the results of David and Semmes [DS91], all nice singular integral operators are bounded on $L^2(E)$.

1.4. Cones and projections. Let us note that [CT20] Theorem 10.2] was merely a tool to prove the main result of [CT20]: a lower bound on analytic capacity involving 1-ADR uniformly rectifiable sets. Chang and Tolsa proved also an interesting inequality showing the connection between 1-conical energy and L^2 norms of projections. We introduce additional notation before stating their result.

Definition 1.21. Suppose $V \in G(d, d-n)$, $\alpha \in (0,1)$, and $1 \leq p < \infty$. Let B be a ball. The (V, α, p)-conical energy of μ in B is

$$\mathcal{E}_{\mu,p}(B, V, \alpha) = \int_B \int_0^{r(B)} \left(\frac{\mu(K(x, V, \alpha, r))}{r^n} \right)^p \frac{dr}{r} d\mu(x).$$

We define also

$$\mathcal{E}_{\mu,p}(\mathbb{R}^d, V, \alpha) = \int_{\mathbb{R}^d} \int_0^{\infty} \left(\frac{\mu(K(x, V, \alpha, r))}{r^n} \right)^p \frac{dr}{r} d\mu(x).$$

We will often suppress the arguments V, α, and write simply $\mathcal{E}_{\mu,p}(B)$, $\mathcal{E}_{\mu,p}(\mathbb{R}^d)$.

Remark 1.22. For $p = 1$ we have

$$\int_0^{\infty} \frac{\mu(K(x, V, \alpha, r))}{r^n} \frac{dr}{r} = n^{-1} \int_K \frac{1}{|x-y|^n} d\mu(y),$$

and so

$$\mathcal{E}_{\mu,1}(\mathbb{R}^d, V, \alpha) = n^{-1} \int_{\mathbb{R}^d} \int_K \frac{1}{|x-y|^n} d\mu(y)d\mu(x).$$

In their paper Chang and Tolsa were working with the expression from the right hand side above.

Given $V \in G(d, m)$ we will denote by $\pi_V : \mathbb{R}^d \to V$ the orthogonal projection onto V, and by $\pi_{V^\perp} : \mathbb{R}^d \to V^\perp$ the orthogonal projection onto V^\perp. We endow $G(d, m)$ with the natural probability measure $\gamma_{d,m}$, see [Mat95] Chapter 3], and with a metric $d(V, W) = \|\pi_V - \pi_W\|_{\text{op}}$, where $\|\|_{\text{op}}$ is the operator norm. We write $\pi_{V, \mu}$ to denote the image measure of μ by the projection π_V. If $\pi_{V, \mu} \ll \mathcal{H}^m|_V$, then we identify $\pi_{V, \mu}$ with its density with respect to $\mathcal{H}^m|_V$, and $\|\pi_{V, \mu}\|_{L^2(V)}$ denotes the L^2 norm of this density. Otherwise, we set $\|\pi_{V, \mu}\|_{L^2(V)} = \infty$.

Proposition 1.23 ([CT20 Corollary 3.11]). Let $V_0 \in G(d, n)$ and $\alpha > 0$. Then, there exist constants $\lambda, C > 1$ such that for any finite Borel measure μ in \mathbb{R}^d,

$$\mathcal{E}_{\mu,1}(\mathbb{R}^d, V_0^\perp, \alpha) \lesssim \int_{\mathbb{R}^d} \int_{K(x, V_0^\perp, \alpha)} \frac{1}{|x-y|^n} d\mu(y)d\mu(x) \leq C \int_{B(V_0, \lambda\alpha)} \|\pi_{V, \mu}\|_{L^2(V)}^2 d\gamma_{d,n}(V).$$
Let us note that a variant of this estimate was also proved in [MO18b], for a measure of the form $\mu = \mathcal{H}^n|_E$, with E a suitable set.

The inequality converse to that of Proposition 1.23 in general is not true, but it is not far off. Additional assumptions on μ are necessary, and one has to add another term to the left hand side. See [CT20] Remark 3.12, Appendix A.

In the light of results mentioned above, as well as the characterization of sets with BPLG from [MO18b], the connection between L^2 norms of projections and cones is quite striking.

Note that the proof of the Besicovitch-Federer projection theorem also involves careful analysis of measure in cones, see [Mat95] Chapter 18. Exploring further the relationship between cones and projections would be very interesting.

Question 1.24. Is it possible to obtain an inequality similar to that of Proposition 1.23, but with $E_{\mu,2}$ on the left hand side, and some quantity involving $\pi_V \mu$ on the right hand side?

1.5. **Organization of the article.** In Section 2 we introduce additional notation, and recall the properties of the David-Mattila lattice D_μ. In Section 3 we state our main lemma, a corona decomposition-like result. Roughly speaking, it says that if a measure μ has polynomial growth, and for some $V \in G(d, d-n), \alpha \in (0,1)$ we have $E_{\mu, p}(\mathbb{R}^d, V, \alpha) < \infty$, then we can decompose D_μ into a family of trees such that:

- for every tree, μ is “well-behaved” at the scales and locations of the tree,
- we have a good control on the number of trees (see (3.2)).

We prove the main lemma in Sections 4–6. Let us point out that in the case $p = 1$ an analogous corona decomposition was already shown in [CT20] Lemma 5.1. Our proof follows the same general strategy, but some key estimates had to be done differently (most notably the estimates in Section 5).

In Section 7 we show how to use the main lemma and results from [GST19] to get Theorem 1.17. Sections 8 and 9 are dedicated to the proof of Theorem 1.4. The “sufficient part” follows from our main lemma, while the “necessary part” is deduced from the corresponding β_2 result of Tolsa [Tol15]. Finally, we prove Theorem 1.11 in Sections 10 and 11. To show the “sufficient part” we use the results from [MO18b], whereas the “necessary part” follows from a simple geometric argument.

Acknowledgements. I would like to thank Xavier Tolsa for all his help and patience. I am also grateful to the anonymous referee for carefully reading the article, and for many helpful suggestions.

I received support from the Spanish Ministry of Economy and Competitiveness, through the María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0445), and also partial support from the Catalan Agency for Management of University and Research Grants (2017-SGR-0395), and from the Spanish Ministry of Science, Innovation and Universities (MTM-2016-77635-P).

2. **Preliminaries**

2.1. **Additional notation.** We will write $A \lesssim B$ if there exists some constant C such that $A \leq CB$. $A \approx B$ means that $A \lesssim B \lesssim A$. If the constant C depends on some parameter t, we will write $A \lessapprox_t B$. We usually omit the dependence on n and d.

$B(x,r)$ stands for the open ball $\{y \in \mathbb{R}^d : |y-x| < r\}$. On the other hand, if B is a ball, then $r(B)$ denotes its radius.

A characteristic function of a set $E \subset \mathbb{R}^d$ will be denoted by 1_E.

Given a Radon measure μ and a ball $B = B(x, r)$, we set

$$\Theta_{\mu}(B) = \Theta_{\mu}(x, r) = \frac{\mu(B)}{r^n},$$
If T is a singular integral operator as in Definition 1.16 then the associated maximal operator T_\ast is defined as

$$T_\ast \nu(x) = \sup_{\epsilon > 0} |T_\epsilon \nu(x)| \quad \text{for } \nu \in M(\mathbb{R}^d), \ x \in \mathbb{R}^d.$$

Given an n-plane L, π_L will denote the orthogonal projection onto L, and π_L^\perp will denote the orthogonal projection onto L^\perp

Given two bounded sets $E, F \subset \mathbb{R}^d$, $\text{dist}_H(E, F)$ will stand for the Hausdorff distance between E and F.

2.2. David-Mattila lattice. In the proof of Theorem 1.17 we will use the lattice of “dyadic cubes” constructed by David and Mattila [DM00]. Their construction depends on parameters $C_0 > 1$ and $A_0 > 5000 C_0$. The parameters can be chosen in such a way that the following lemmas hold.

Lemma 2.1 ([DM00, Theorem 3.2, Lemma 5.28]). Let μ be a Radon measure on \mathbb{R}^d, $E = \text{supp} \mu$. There exists a sequence of partitions of E into Borel subsets Q, $Q \in D_{\mu, k}$, $k \geq 0$, with the following properties:

(a) For each integer $k \geq 0$, E is the disjoint union of the “cubes” Q, $Q \in D_{\mu, k}$, and if $k < l$, $Q \in D_{\mu, l}$, and $R \in D_{\mu, k}$, then either $Q \cap R = \emptyset$ or else $R \subset Q$.

(b) The general position of the cubes Q can be described as follows. For each $k \geq 0$ and each cube $Q \in D_{\mu, k}$, there is a ball $B(Q) = B(x_Q, r(Q))$, such that

$$x_Q \in Q, \ A_0^{-k} \leq r(Q) \leq C_0 A_0^{-k},$$

$$E \cap B(Q) \subset Q \subset E \cap 28B(Q) = E \cap B(x_Q, 28r(Q)),$$

and the balls $5B(Q), Q \in D_{\mu, k}$, are disjoint.

(c) Denote by D_{μ}^{db} the family of doubling cubes, i.e. $Q \in D_{\mu} = \bigcup_{k \geq 0} D_{\mu, k}$ satisfying

$$\mu(100B(Q)) \leq C_0 \mu(B(Q)).$$ \hspace{1cm} (2.1)

Then, for any $R \in D_{\mu}$ there exists a family $\{Q_i\}_{i \in I} \subset D_{\mu}^{db}$ such that $Q_i \subset R$ and $\mu(R \setminus \bigcup_{i \in I} Q_i) = 0$.

For any $Q \in D_{\mu}$ we denote by $D_{\mu}(Q)$ the family of $P \in D_{\mu}$ such that $P \subset Q$. Given $Q \in D_{\mu, k}$ we set $J(Q) = k$ and $\ell(Q) = 56 C_0 A_0^{-k}$. Note that $r(Q) \approx \ell(Q)$.

We define $B_Q = 28B(Q) = B(x_Q, 28r(Q))$, so that

$$E \cap \frac{1}{28} B_Q \subset Q \subset B_Q.$$

Note that if $Q \subset P$, then $B_Q \subset B_P$.

Lemma 2.2 ([AT15, Lemma 2.4]). Suppose the cubes $Q \in D_{\mu}$, $R \in D_{\mu}$, $Q \subset R$, are such that all the intermediate cubes $Q \subset S \subset R$ are non-doubling, i.e. $S \notin D_{\mu}^{db}$. Then

$$\Theta_{\mu}(100B(Q)) \leq (C_0 A_0)^d A_0^{-9d(J(Q)-J(R)-1)} \Theta_{\mu}(100B(R)), \hspace{1cm} (2.2)$$

and

$$\sum_{S \in D_{\mu} : Q \subset S \subset R} \Theta_{\mu}(100B(S)) \lesssim \Theta_{\mu}(100B(R)).$$

Let us remark that the constant $9d$ in the exponent of (2.2) could be replaced by any other positive constant, if C_0 and A_0 are chosen suitably, see [DM00] (5.30).

Lemma 2.3 ([CT20, Lemma 4.5]). Let $R \in D_{\mu}^{db}$. Then, there exists another doubling cube $Q \subset R$, $Q \in D_{\mu}^{db}$, such that

$$\mu(Q) \approx \mu(R) \quad \text{and} \quad \ell(Q) \approx \ell(R).$$
From now on we will treat C_0 and A_0 as absolute constants, and we will not track the dependence on them in our estimates.

3. Main lemma

In order to formulate our main lemma we need to introduce some vocabulary.

Let μ be a compactly supported Radon measure with polynomial growth (1.9). Suppose D_{μ} is the associated David-Mattila lattice, and assume that $R_0 = \text{supp}\mu \in D_{\mu}$ is the biggest cube.

Given a family of cubes $\text{Top} \subset D_{\mu}^{db}$ satisfying $R_0 \in \text{Top}$ we define the following families associated to each $R \in \text{Top}$:

- $\text{Next}(R)$ is the family of maximal cubes $Q \in \text{Top}$ strictly contained in R,
- $\text{Tr}(R)$ is the family of cubes $Q \in D_{\mu}$ contained in R, but not contained in any $P \in \text{Next}(R)$.

Clearly, $D_{\mu} = \bigcup_{R \in \text{Top}} \text{Tr}(R)$. Define

$$\text{Good}(R) = R \setminus \bigcup_{Q \in \text{Next}(R)} Q.$$

Lemma 3.1 (main lemma). Let μ be a compactly supported Radon measure on \mathbb{R}^d. Suppose there exists $r_0 > 0$ such that for all $x \in \text{supp}\mu$, $0 < r \leq r_0$, we have

$$\mu(B(x, r)) \leq C_1 r^n.$$ \hfill (3.1)

Assume further that for some $V \in G(d, d-n)$, $\alpha \in (0,1)$, and $1 \leq p < \infty$, we have $E_{\mu,p}(\mathbb{R}^d, V, \alpha) < \infty$.

Then, there exists a family of cubes $\text{Top} \subset D_{\mu}^{db}$, and a corresponding family of Lipschitz graphs $\{\Gamma_R\}_{R \in \text{Top}}$, satisfying:

(i) the Lipschitz constants of Γ_R are uniformly bounded by a constant depending on α,
(ii) μ-almost all $\text{Good}(R)$ is contained in Γ_R,
(iii) for all $Q \in \text{Tr}(R)$ we have $\Theta_{\mu}(2B_Q) \lesssim \Theta_{\mu}(2B_R)$.

Moreover, the following packing condition holds:

$$\sum_{R \in \text{Top}} \Theta_{\mu}(2B_R)^p \mu(R) \lesssim_{\alpha} (C_1)^p \mu(\mathbb{R}^d) + E_{\mu,p}(\mathbb{R}^d, V, \alpha).$$ \hfill (3.2)

The implicit constant does not depend on r_0.

We prove the lemma above in Sections 4-6. From this point on, until the end of Section 6, we assume that μ is a compactly supported Radon measure satisfying the growth condition (3.1), and that there exist $V \in G(d, d-n)$, $\alpha \in (0,1)$, $1 \leq p < \infty$, such that

$$E_{\mu,p}(\mathbb{R}^d, V, \alpha) < \infty.$$ \hfill (3.3)

For simplicity, in our notation we will suppress the parameters V and α. That is, we will write $E_{\mu,p}(\mathbb{R}^d) = E_{\mu,p}(\mathbb{R}^d, V, \alpha)$, as well as $K = K(0, V, \alpha)$, $K(x) = K(x, V, \alpha)$, and $K(x, r) = K(x, V, \alpha, r)$. Finally, given $0 < r < R$, set

$$K(x, r, R) = K(x, R) \setminus K(x, r).$$
Parameters. In the proof of Lemma 4.1 we will use a number of parameters. To make it easier to keep track of what depends on what, and at which point the parameters get fixed, we list them below. Recall that “$C_1 = C_1(C_2)$” means that “the value of C_1 depends on the value of C_2.”

- $A = A(p) > 1$ is the “HD” constant, it is fixed in Lemma 5.1.
- $\tau = \tau(\alpha, t)$ is the “LD” constant, it is fixed in (5.1).
- $M = M(\alpha) > 1$ is the “key estimate” constant, it is chosen in Lemma 4.3.
- $\eta = \eta(M, t) \in (0, 1)$ is the constant from the definition of $\mathcal{E}_{\mu,p}(Q)$ in (4.1), it is fixed in the proof of Lemma 5.4.
- $t = t(M, \alpha) > M$ is the “t-neighbour” constant, see Section 4.3. It is fixed just below (5.4), but depends also on Lemma 4.5 and Lemma 4.7.
- $\Lambda = \Lambda(M) > 2M$ is the constant from Lemma 4.8.
- $\varepsilon = \varepsilon(\tau, \alpha, \eta) \in (0, 1)$ is the “BCE” constant, it is fixed in Lemma 5.4.

4. Construction of a Lipschitz graph Γ_R.

Suppose $R \in \mathcal{D}_r$. In this section we will construct a corresponding tree of cubes $\text{Tree}(R)$, and a Lipschitz graph Γ_R that “approximates μ at scales and locations from $\text{Tree}(R)$”; see Lemma 4.8.

4.1. Stopping cubes. Consider constants $A \gg 1$, $0 < \varepsilon \ll \tau \ll 1$, and $0 < \eta \ll 1$, which will be fixed later on. Given $Q \in \mathcal{D}_\mu$ we set

$$\mathcal{E}_{\mu,p}(Q) = \frac{1}{\mu(Q)} \int_{2B_Q} \int_{\eta r(Q)}^{r(Q)} \left(\frac{\mu(K(x, r))}{r^n} \right)^p \frac{dr}{r} d\mu(x). \quad (4.1)$$

For any $R \in \mathcal{D}_r$ we define the following families of cubes:

- $\text{BCE}_0(R)$, the family of big conical energy cubes, consisting of $Q \in \mathcal{D}_\mu(R)$ such that
 $$\sum_{Q \subset P \subset R} \mathcal{E}_{\mu,p}(P) > \varepsilon \Theta_\mu(2B_R)^p.$$

- $\text{HD}_0(R)$, the high density family, consisting of $Q \in \mathcal{D}_r \setminus \text{BCE}_0(R)$ such that
 $$\Theta_\mu(2B_Q) > A \Theta_\mu(2B_R).$$

- $\text{LD}_0(R)$, the low density family, consisting of $Q \in \mathcal{D}_\mu(R) \setminus \text{BCE}_0(R)$ such that
 $$\Theta_\mu(2B_Q) < \tau \Theta_\mu(2B_R).$$

We denote by $\text{Stop}(R)$ the family of maximal (hence, disjoint) cubes from $\text{BCE}_0(R) \cup \text{HD}_0(R) \cup \text{LD}_0(R)$, and we set $\text{BCE}(R) = \text{BCE}_0(R) \cap \text{Stop}(R)$, $\text{HD}(R) = \text{HD}_0(R) \cap \text{Stop}(R)$, $\text{LD}(R) = \text{LD}_0(R) \cap \text{Stop}(R)$.

Note that the cubes in $\text{HD}(R)$ are doubling (by the definition), while the cubes from $\text{LD}(R)$ and $\text{BCE}(R)$ may be non-doubling.

We define $\text{Tree}(R)$ as the family of cubes from $\mathcal{D}_\mu(R)$ which are not strictly contained in any cube from $\text{Stop}(R)$ (in particular, $\text{Stop}(R) \subset \text{Tree}(R)$). Note that it may happen that $R \in \text{BCE}(R)$, in which case $\text{Tree}(R) = \{R\}$.

Basic properties of cubes in $\text{Tree}(R)$ are collected in the lemma below.

Lemma 4.1. Suppose $Q \in \text{Tree}(R)$. Then,

$$\Theta_\mu(2B_Q) \lesssim A \Theta_\mu(2B_R). \quad (4.2)$$
Moreover, for $Q \in \text{Tree}(R) \setminus \text{Stop}(R)$
\begin{equation}
\tau \Theta_\mu(2B_R) \leq \Theta_\mu(2B_Q),
\end{equation}
\begin{equation}
\sum_{Q \subset P \in R} E_{\mu,p}(P) \leq \varepsilon \Theta_\mu(2B_R)^p.
\end{equation}

Finally, for every $Q \in \text{Tree}(R)$ there exists a doubling cube $P(Q) \in \text{Tree}(R) \cap D^\mu_{db}$ such that
\[Q \subset P(Q) \text{ and } \Theta_\mu(P(Q)) \lesssim_{A,\tau} \ell(Q). \]
If $R \not\in \text{Stop}(R)$, we have $P(Q) \in \text{Tree}(R) \cap D^\mu_{db} \setminus \text{Stop}(R)$.

\textbf{Proof.} First, note that if $R \in \text{Stop}(R)$, then $\text{Tree}(R) = \{R\}$ and the lemma above is trivial. Assume that $R \not\in \text{Stop}(R)$.

Inequalities (4.3) and (4.4) are obvious by the definition LD(R) and BCE(R).

Concerning (4.2), note that for $Q \in \text{Tree}(R) \cap D^\mu_{db} \setminus \text{Stop}(R)$ we have $\Theta_\mu(2B_Q) \leq A \Theta_\mu(2B_R)$ by the high density stopping condition. In general, given $Q \in \text{Tree}(R)$, let $P(Q)$ be the smallest doubling cube containing Q, other than Q. Since $R \in D^\mu_{db}$ and $R \not\in \text{Stop}(Q)$, we certainly have $P(Q) \in \text{Tree}(R) \cap D^\mu_{db} \setminus \text{Stop}(R)$, and so $\Theta_\mu(2B_{P(Q)}) \leq A \Theta_\mu(2B_R)$.

Denote by P_1, P_2, \ldots, P_k all the intermediate cubes, so that $Q \subset P_1 \subset \cdots \subset P_k \subset P(Q)$. Since P_j are non-doubling, we have by Lemma 2.2
\[\Theta_\mu(2B_Q) \lesssim \Theta_\mu(2B_{P_1}) \lesssim \Theta_\mu(100B(P_1)) \leq (C_0 A_0)^d A_0^{-9d(k-1)} \Theta_\mu(100B(P(Q))) \lesssim \Theta_\mu(2B_{P(Q)}) \leq A \Theta_\mu(2B_R), \]
which proves (4.2).

Finally, to see that $\ell(P(Q)) \lesssim_{A,\tau} \ell(Q)$, note that $P_1 \in \text{Tree}(R) \setminus \text{Stop}(R)$, and so $\tau \Theta_\mu(2B_R) \leq \Theta_\mu(2B_{P_1})$. On the other hand, a minor modification of the computation above shows that
\[\Theta_\mu(2B_{P_1}) \lesssim_{C_0, A_0} A_0^{-9d(k-1)} A \Theta_\mu(2B_R). \]

It follows that $k \lesssim_{A,\tau} 1$. \hfill \qed

The following estimate of the measure of cubes in BCE(R) will be used later on in the proof of the packing estimate (4.2).

\textbf{Lemma 4.2.} We have
\begin{equation}
\sum_{Q \in \text{BCE}(R)} \mu(Q) \leq \frac{1}{\varepsilon \Theta_\mu(2B_R)^p} \sum_{P \in \text{Tree}(R)} E_{\mu,p}(P) \mu(P).
\end{equation}

\textbf{Proof.} We use the fact that for $Q \in \text{BCE}(R)$ we have
\[\sum_{Q \subset P \in R} E_{\mu,p}(P) > \varepsilon \Theta_\mu(2B_R)^p \]
to conclude that
\begin{align*}
\Theta_\mu(2B_R)^p \sum_{Q \in \text{BCE}(R)} \mu(Q) &\leq \frac{1}{\varepsilon} \sum_{Q \in \text{BCE}(R)} \mu(Q) \sum_{P \in \mathcal{D}_\mu \atop Q \subset P \in R} E_{\mu,p}(P) \\
&= \frac{1}{\varepsilon} \sum_{P \in \text{Tree}(R)} E_{\mu,p}(P) \sum_{Q \in \text{BCE}(R) \atop Q \subset P} \mu(Q) \leq \frac{1}{\varepsilon} \sum_{P \in \text{Tree}(R)} E_{\mu,p}(P) \mu(P).
\end{align*}
\hfill \qed
4.2. Key estimate. We introduce some additional notation. Given \(x \in \mathbb{R}^d \) and \(\lambda > 0 \) set
\[
K^\lambda(x) = K(x, V, \lambda \alpha).
\]

For \(Q \in \mathcal{D}_\mu \), we denote
\[
K^\lambda_Q = \bigcup_{x \in Q} K^\lambda(x).
\]

If \(\lambda = 1 \), we will write \(K_Q \) instead of \(K^1_Q \).

Lemma 4.3. There exists a constant \(M = M(\alpha) > 1 \) such that, if \(Q \in \text{Tree}(R) \) and \(P \in \mathcal{D}_\mu(R) \) satisfy
\[
P \cap K^{1/2}_Q \setminus MB_Q \neq \emptyset
\]
and
\[
dist(Q, P) \geq Mr(P),
\]
then \(P \not\in \text{Tree}(R) \).

Proof. Taking \(M = M(\alpha) > 1 \) big enough, we can choose cubes \(P', Q' \in \mathcal{D}_\mu(R) \) such that
- \(P \subset P' \subset R \), \(P' \subset K^3/4_Q \), and \(\ell(P') \approx \text{dist}(P', Q) \),
- \(Q \subset Q' \subset R \), \(\ell(Q') \approx M^{-1} \ell(P') \), and \(\text{dist}(P', Q') \approx \ell(P') \).

Moreover, if \(M \) is taken big enough, we have for all \(x \in 2B_{Q'} \)
\[
2B_{P'} \subset K(x).
\]

Thus, if \(\eta \) is taken small enough (say, \(\eta \ll M^{-1} \)), we have
\[
\left(\frac{\mu(2B_{P'})}{\ell(P')^n} \right)^p \mu(2B_{Q'}) \lesssim \eta \int_{2B_{Q'}} \int_{r(Q')}^{\eta^{-1} r(Q')} \left(\frac{\mu(K(x, r))}{r^n} \right)^p \frac{dr}{r} d\mu(x) = \mathcal{E}_{\mu,p}(Q') \mu(Q'). \tag{4.7}
\]

Since \(Q \in \text{Tree}(R) \) and \(Q \subset Q' \), we have \(Q' \in \text{Tree}(R) \setminus \text{Stop}(R) \), and so
\[
\Theta_{\mu}(2B_{P'}) \approx \left(\frac{\mu(2B_{P'})}{\ell(P')^n} \right)^p \lesssim \eta \frac{\mu(Q')}{\mu(2B_{Q'})} \mathcal{E}_{\mu,p}(Q') \leq \mathcal{E}_{\mu,p}(Q') \leq \epsilon \Theta_{\mu}(2B_R)^p.
\]

It follows that, for \(\epsilon \) small enough, \(P' \in \text{LD}_0(R) \). Since \(P \subset P' \), we get that \(P \not\in \text{Tree}(R) \). \(\square \)

We set
\[
G_R = R \setminus \bigcup_{Q \in \text{Stop}(R)} Q \quad \text{and} \quad \tilde{G}_R = \bigcap_{k=1}^\infty \bigcup_{Q \in \text{Tree}(R)} 2MB_Q. \tag{4.8}
\]

Note that \(G_R \subset \tilde{G}_R \).

Lemma 4.4. For all \(x, y \in \tilde{G}_R \) we have \(y \not\in K^{1/2}(x) \). Thus, \(\tilde{G}_R \) is contained in an \(n \)-dimensional Lipschitz graph with Lipschitz constant depending only on \(\alpha \).

Proof. Proof by contradiction. Suppose that \(x, y \in \tilde{G}_R \) and \(x - y \in K^{1/2} \). Let \(Q, P \in \text{Tree}(R) \) be such that \(x \in 2MB_Q \), \(y \in 2MB_P \), with sidelength so small that \(P \cap (K^{1/2}_Q \setminus MB_Q) \neq \emptyset \) and \(\text{dist}(Q, P) \geq Mr(P) \) (note that this can be done because \(K^{1/2} \) is an open cone, and so \(x' - y' \in K^{1/2} \) also for \(x' \in B(x, \epsilon') \) and \(y' \in B(y, \epsilon') \), assuming \(\epsilon' > 0 \) small enough). It follows by Lemma 4.3 that \(P \not\in \text{Tree}(R) \), and so we reach a contradiction. \(\square \)
4.3. Construction of Γ_R. The Lipschitz graph from Lemma 4.4 can be thought of as a first approximation of Γ_R. It contains the “good set” \tilde{G}_R, but we would also like for Γ_R to lie close to cubes from $\text{Tree}(R)$. In this subsection we show how to do it.

Given $t > 1$, we say that cubes $Q, P \in D_\mu$ are t-neighbours if they satisfy

$$t^{-1}r(Q) \leq r(P) \leq tr(Q) \quad (4.9)$$

and

$$\text{dist}(Q, P) \leq t(r(Q) + r(P)) \quad (4.10)$$

If at least one of the conditions above does not hold, we say that Q and P are t-separated. We will also say that a family of cubes is t-separated if the cubes from that family are pairwise t-separated.

Consider a big constant $t = t(M, \alpha) > M$ which will be fixed later on. We denote by $\text{Sep}(R)$ a maximal t-separated subfamily of $\text{Stop}(R)$ (it exists by Zorn’s lemma). Clearly, for every $Q \in \text{Stop}(R)$ there exists some $P \in \text{Sep}(R)$ which is a t-neighbour of Q.

Furthermore, we define $\text{Sep}^*(R)$ as the family of all cubes $Q \in \text{Sep}(R)$ satisfying the following two conditions:

$$2MB_Q \cap \tilde{G}_R = \emptyset, \quad (4.11)$$

and for all $P \in \text{Sep}(R)$, $P \neq Q$, we have

$$2MB_P \not\subset 2MB_Q \quad (4.12)$$

Lemma 4.5. Suppose $t = t(M)$ is big enough. Then, for all $Q, P \in \text{Sep}^*(R)$, $Q \neq P$, we have $Q \not\subset 1.5MB_P$.

Proof. Suppose $Q \in \text{Sep}^*(R)$, and $Q \subset 1.5MB_P$. We will show that $P \notin \text{Sep}^*(R)$.

Firstly, if $r(Q) > t^{-1}r(P)$, then $Q \subset 1.5MB_P$ implies that Q and P are t-neighbours (for t big enough), and so $P \notin \text{Sep}^*(R)$. On the other hand, if $r(Q) \leq t^{-1}r(P)$, then (if t is big enough) $Q \subset 1.5MB_P$ implies $2MB_Q \subset 2MB_P$, contradicting (4.12). \qed

Lemma 4.6. For every $Q \in \text{Sep}(R)$ at least one of the following is true:

(a) $2MB_Q \cap \tilde{G}_R \neq \emptyset$,

(b) there exists $P \in \text{Sep}^*(R)$ such that $2MB_P \subset 2MB_Q$.

Proof. If $Q \in \text{Sep}^*(R)$, then of course (b) holds (with $P = Q$). Suppose that $Q \notin \text{Sep}^*(R)$, and that (a) does not hold (i.e. $2MB_Q \cap \tilde{G}_R = \emptyset$). We will find $P \in \text{Sep}^*(R)$ such that $2MB_P \subset 2MB_Q$.

Since $Q \notin \text{Sep}^*(R)$ and (4.11) holds, condition (4.12) must be false. Thus, we get a cube $Q_1 \in \text{Sep}(R)$ such that $2MB_{Q_1} \subset 2MB_Q$. If $Q_1 \in \text{Sep}^*(R)$, we get (b) with $P = Q_1$.

Otherwise, we continue as follows.

Reasoning as before, $Q_1 \in \text{Sep}(R) \setminus \text{Sep}^*(R)$ and $2MB_{Q_1} \cap \tilde{G}_R = \emptyset$ ensures that there exists a cube $Q_2 \in \text{Sep}(R)$ such that $2MB_{Q_2} \subset 2MB_{Q_1}$. Iterating this process, we get a (perhaps infinite) sequence of cubes $Q_0 := Q$, Q_1, Q_2, ... satisfying $2MB_{Q_{j+1}} \subset 2MB_{Q_j}$.

If the algorithm never stops, then $\bigcap_{j=0}^{\infty} 2MB_{Q_j} \neq \emptyset$. But, by the definition of \tilde{G}_R (4.8), we have $\bigcap_{j=0}^{\infty} 2MB_{Q_j} \subset \tilde{G}_R$, and so we get a contradiction with $2MB_Q \cap \tilde{G}_R = \emptyset$. Thus, the algorithm stops at some cube Q_m, which means that $Q_m \in \text{Sep}^*(R)$. Setting $P = Q_m$ finishes the proof. \qed

Lemma 4.7. Suppose $t = t(M)$ is big enough. Then:

(a) for all $Q, P \in \text{Sep}^*(R)$, $Q \neq P$, we have

$$Q \cap K_P^{1/2} = P \cap K_Q^{1/2} = \emptyset, \quad (4.13)$$
(b) for all $x \in \tilde{G}_R$ and for all $Q \in \text{Sep}^*(R)$ we have
\[x \notin K^{1/2}_Q \quad \text{and} \quad Q \cap K^{1/2}(x) = \emptyset. \] (4.14)

Proof of (a). Proof by contradiction. Suppose $Q \cap K^{1/2}_Q \neq \emptyset$ (which by symmetry of cones implies $P \cap K^{1/2}_Q \neq \emptyset$). Without loss of generality, assume $r(Q) \leq r(P)$. Since Q and P are t-separated, at least one of the conditions (4.9), (4.10) fails, i.e.
\[r(Q) \leq t^{-1}r(P) \quad \text{or} \quad \text{dist}(Q, P) > t(r(Q) + r(P)). \]

We know by Lemma 4.3 that $Q \not\subset 1.5MB_P$. It is easy to see that in either of the cases considered above, this implies $Q \cap 1.2MB_P = \emptyset$. It follows that $Q \cap (K^{1/2}_P \setminus MB_P) \neq \emptyset$ and $r(Q) \leq r(P) \leq M^{-1}\text{dist}(Q, P)$. Hence, we can use Lemma 4.3 to conclude that $Q \not\in \text{Tree}(R)$. This contradicts $Q \in \text{Sep}^*(R)$.

Proof of (b). Proof by contradiction. Suppose $x \in K^{1/2}_Q$. We have $x \not\in 2MB_Q$ by (4.11). Since $x \in \tilde{G}_R$, we can find an arbitrarily small cube $P \in \text{Tree}(R)$ such that $x \in 2MB_P$. Taking $r(P)$ small enough we will have $r(P) \leq M^{-1}\text{dist}(Q, P)$ and $P \cap K^{1/2}_Q \setminus MB_Q \neq \emptyset$ (because $x \in K^{1/2}(x') \setminus 2MB_Q$ for some $x' \in Q$, and $K^{1/2}(x')$ is an open set). Lemma 4.3 yields $P \not\in \text{Tree}$, a contradiction.

Lemma 4.8. There exists a Lipschitz graph Γ_R, with Lipschitz constant depending only on α, such that
\[\tilde{G}_R \subset \Gamma_R. \]

Moreover, there exists a big constant $\Lambda = \Lambda(M, t) > 1$ such that for every $Q \in \text{Tree}(R)$ we have
\[\Lambda B_Q \cap \Gamma_R \neq \emptyset. \] (4.15)

Proof. Recall that for each cube $Q \in \mathcal{D}_\mu$ we have a “center” denoted by $x_Q \in Q$. Set $F = \{x_Q : Q \in \text{Sep}^*(R)\} \cup \tilde{G}_R$. It follows by Lemma 4.4 and Lemma 4.7 that for any $x, y \in F$ we have $x - y \notin K^{1/2}$. Thus, there exists a Lipschitz graph Γ_R, with slope depending only on α, such that $F \subset \Gamma_R$.

Concerning the second statement, it is clearly true for $Q \in \text{Sep}^*(R)$ (even with $\Lambda = 1$). For $Q \in \text{Sep}(R)$, we have by Lemma 4.6 that either $2MB_Q \cap \tilde{G}_R \neq \emptyset$ or there exists $P \in \text{Sep}^*(R)$ with $2MB_P \subset 2MB_Q$. Thus, (4.15) holds if $\Lambda \geq 2M$.

If $Q \in \text{Stop}(R)$, there exists some $P \in \text{Sep}(R)$ which is a t-neighbour of Q, so that for some $\Lambda = \Lambda(t, M) > 1$ we have $\Lambda B_Q \supset 2MB_P$, and $2MB_P$ intersects Γ_R. Finally, for a general $Q \in \text{Tree}(R)$, either Q contains some cube from $\text{Stop}(R)$, or $Q \subset \tilde{G}_R$. In any case, $\Lambda B_Q \cap \Gamma_R \neq \emptyset$.

Remark 4.9. Note that while for a general cube $Q \in \text{Tree}(R)$ we only have $\Lambda B_Q \cap \Gamma_R \neq \emptyset$, we have a better estimate for the root R:
\[B_R \cap \Gamma_R \neq \emptyset. \] (4.16)

Indeed, (4.16) is clear if the set \tilde{G}_R is non-empty. If $\tilde{G}_R = \emptyset$, then $\text{Sep}^*(R) \neq \emptyset$, so that for some $P \in \text{Sep}^*(R)$ we have $x_P \in \Gamma_R \cap B_R$.

5. Small measure of cubes from $LD(R)$

In the proof of the packing estimate (3.2) it will be crucial to have a bound on the measure of low density cubes.
Lemma 5.1. We have
\[\sum_{Q \in \text{LD}(R)} \mu(Q) \lesssim_{t, \alpha} \tau \mu(R). \]

In particular, for \(\tau \) small enough we have
\[\sum_{Q \in \text{LD}(R)} \mu(Q) \leq \tau^{1/2} \mu(R). \] (5.1)

We begin by defining some auxiliary subfamilies of \(\text{LD}(R) \).

Lemma 5.2. There exists a \(t \)-separated family \(\text{LD}_{\text{Sep}}(R) \subset \text{LD}(R) \) such that
\[\sum_{Q \in \text{LD}(R)} \mu(Q) \lesssim_{t} \sum_{Q \in \text{LD}_{\text{Sep}}(R)} \mu(Q). \]

Proof. We construct the family \(\text{LD}_{\text{Sep}}(R) \) in the following way. Define \(\text{LD}_1(R) \) as a maximal \(t \)-separated subfamily of \(\text{LD}(R) \). Next, define \(\text{LD}_2(R) \) as a maximal \(t \)-separated subfamily of \(\text{LD}(R) \setminus \text{LD}_1(R) \). In general, having defined \(\text{LD}_j(R) \), we define \(\text{LD}_{j+1}(R) \) to be a maximal \(t \)-separated subfamily of \(\text{LD}(R) \setminus \left(\bigcup_{k=1}^{j} \text{LD}_k(R) \right) \).

We claim that there is only a bounded number of non-empty families \(\text{LD}_j(R) \), with the bound depending on \(t \). Indeed, if \(Q \in \text{LD}_j(R) \), then \(Q \) has at least one \(t \)-neighbour in each family \(\text{LD}_k(R) \), \(k \leq j \). It follows easily from the definition of \(t \)-neighbours that the number of \(t \)-neighbours of any given cube is bounded by a constant \(C(t) \). Hence, \(j \leq C(t) \).

Set \(\text{LD}_{\text{Sep}}(R) \) to be the family \(\text{LD}_j(R) \) maximizing \(\sum_{Q \in \text{LD}_j(R)} \mu(Q) \). Then,
\[\sum_{Q \in \text{LD}(R)} \mu(Q) \leq C(t) \sum_{Q \in \text{LD}_{\text{Sep}}(R)} \mu(Q). \]

We define also a family \(\text{LD}^*_{\text{Sep}}(R) \subset \text{LD}_{\text{Sep}}(R) \) in the following way: we remove from \(\text{LD}_{\text{Sep}}(R) \) all the cubes \(P \) for which there exists some \(Q \in \text{LD}_{\text{Sep}}(R) \) such that
\[1.1B_Q \cap 1.1B_P \neq \emptyset \quad \text{and} \quad r(Q) < r(P). \] (5.2)

Lemma 5.3. For each \(Q \in \text{LD}_{\text{Sep}}(R) \) at least one of the following is true:
(a) \(1.2B_Q \cap G_R \neq \emptyset \)
(b) There exists some \(P \in \text{LD}^*_{\text{Sep}}(R) \) such that \(1.2B_P \subset 1.2B_Q \).

Proof. Suppose \(Q \in \text{LD}_{\text{Sep}}(R) \), and that (a) does not hold. We will find \(P \) such that (b) is satisfied.

If \(Q \notin \text{LD}^*_{\text{Sep}}(R) \), then there exists some cube \(Q_1 \in \text{LD}_{\text{Sep}}(R) \) such that
\[1.1B_Q \cap 1.1B_{Q_1} \neq \emptyset \quad \text{and} \quad r(Q_1) < r(Q). \] (5.3)

Since \(Q \) and \(Q_1 \) are \(t \)-separated, and (5.3) holds, it follows that \(t r(Q_1) < r(Q) \). Thus, \(Q_1 \) is tiny compared to \(Q \) and we have \(1.2B_{Q_1} \subset 1.2B_Q \). If \(Q_1 \in \text{LD}^*_{\text{Sep}}(R) \), we set \(P = Q_1 \) and we are done. Otherwise, we iterate as in Lemma 5.3 (with \(2M \) replaced by \(1.2 \)) to find a finite sequence \(Q_1, Q_2, \ldots, Q_m \) satisfying \(1.2B_{Q_{j+1}} \subset 1.2B_{Q_j} \), and such that \(Q_m \in \text{LD}^*_{\text{Sep}}(R) \).

Lemma 5.4. For each \(Q \in \text{LD}^*_{\text{Sep}}(R) \) we have
\[\mu \left(Q \cap \bigcup_{P \in \text{LD}^*_{\text{Sep}}(R)} (K^{1/2}_P \setminus MB_P) \right) \lesssim_{\tau, \alpha, \eta} \varepsilon \mu(Q). \] (5.4)

In particular, if \(\varepsilon \) is small enough, then for each \(Q \in \text{LD}^*_{\text{Sep}}(R) \) we can choose a point
\[w_Q \in Q \setminus \bigcup_{P \in \text{LD}^*_{\text{Sep}}(R)} (K^{1/2}_P \setminus MB_P). \] (5.5)
Proof. Suppose \(Q \in \text{LD}^*_\text{Sep}(R) \) and that we have \(Q \cap K_{P}^{1/2} \setminus MB_P \neq \emptyset \) for some \(P \in \text{LD}^*_\text{Sep}(R) \). Note that if we had \(Mr(Q) \leq \text{dist}(Q, P) \), then the assumptions of Lemma 4.3 would be satisfied, and we would arrive at \(Q \not\in \text{Tree}(R) \), a contradiction. Thus,

\[
\text{dist}(Q, P) \leq Mr(Q) < tr(Q).
\] (5.6)

It follows that \([4.10]\) – one of the \(t \)-neighbourhood conditions – is satisfied. Since \(Q \) and \(P \) are \(t \)-separated, we necessarily have \(tr(Q) \leq r(P) \) or \(tr(P) \leq r(Q) \).

If we had \(tr(Q) \leq r(P) \), then \((5.6)\) implies \(\text{dist}(Q, P) \leq r(P) \). Hence, \(1.1B_Q \cap 1.1B_P \neq \emptyset \).

But this cannot be true, by the definition of \(\text{LD}^*_\text{Sep}(R) \). It follows that

\[
tr(P) \leq r(Q). \tag{5.7}
\]

Let \(S \supset P \) be the biggest ancestor of \(P \) satisfying \(r(S) \leq \delta r(Q) \) for some small constant \(\delta = \delta(\alpha) \) which will be fixed in a few lines. If \(t \) is big enough, then \(S \neq P \). Thus, \(r(S) \approx r(Q) \), and \(S \in \text{Tree}(R) \setminus \text{Stop}(R) \). Recall that by the definition of \(\text{LD}^*_\text{Sep}(R) \) we have \(1.1B_Q \cap 1.1B_P = \emptyset \). It follows that if \(\delta < 0.001 \), then \(4B_S \cap 1.05B_Q = \emptyset \). Now, using this separation, it is not difficult to check that for \(\delta = \delta(\alpha) \) small enough, for any \(x \in K_{P}^{1/2} \cap Q \) we have

\[
2B_S \subset K(x).
\]

Observe also that, due to \((5.6)\) and the fact that \(r(S) \leq \delta r(Q) \), we have

\[
2B_S \subset B(x, r) \quad \text{for } r \in \left(\frac{\eta^{-1}}{2}r(Q), \eta^{-1}r(Q) \right),
\]

provided that \(\eta \) is small enough (say, \(\eta^{-1} \gg t \)). Putting together the two estimates above, we get that

\[
\mu(2B_S) \leq \mu(K(x, r))
\]

for any \(x \in K_{P}^{1/2} \cap Q \supset Q \cap K_{P}^{1/2} \setminus MB_P \) and all \(r \in (\eta^{-1}r(Q))/2, \eta^{-1}r(Q) \).

Integrating the above over all \(x \in A \), where \(A \subset Q \cap K_{P}^{1/2} \setminus MB_P \) is an arbitrary measurable subset, yields

\[
\mu(A)\Theta_\mu(2B_R)^p \leq \tau^{-1}\mu(A)\Theta_\mu(2B_S)^p \approx_{\tau, \alpha} \mu(A) \left(\frac{\mu(2BS)}{r(Q)^n} \right)^p \lesssim_\eta \int_A \int_{\eta r(Q)} \left(\frac{\mu(K(x, r))}{r^n} \right)^p \frac{dr}{r} d\mu(x). \tag{5.8}
\]

Now, let \(P_i \) be some ordering of cubes \(P \in \text{LD}^*_\text{Sep}(R) \) satisfying \(Q \cap K_{P}^{1/2} \setminus MB_P \neq \emptyset \). We define \(A_1 = Q \cap K_{P_1}^{1/2} \setminus MB_{P_1} \), and for \(i > 1 \)

\[
A_i = Q \cap K_{P_i}^{1/2} \setminus \left(MB_{P_i} \cup \bigcup_{j=1}^{i-1} A_j \right).
\]

Observe that \(A_i \) are pairwise disjoint and their union is \(Q \cap \bigcup_{P \in \text{LD}^*_\text{Sep}(R)} (K_{P}^{1/2} \setminus MB_P) \).

Thus,

\[
\mu \left(Q \cap \bigcup_{P \in \text{LD}^*_\text{Sep}(R)} K_{P}^{1/2} \setminus MB_P \right) \Theta_\mu(2B_R)^p = \sum_i \mu(A_i) \Theta_\mu(2B_R)^p \lesssim_{\tau, \alpha, \eta} \int_{A_i} \int_{\eta r(Q)} \left(\frac{\mu(K(x, r))}{r^n} \right)^p \frac{dr}{r} d\mu(x) \leq \mathcal{E}_{\mu, p}(Q)\mu(Q).
\] (5.8)
Note that since $Q \notin \text{BCE}(R)$, we have $E_{\mu,p}(Q)\mu(Q) \leq \varepsilon \Theta_\mu(2B_R)\mu(Q)$. So the estimate (5.4) holds.

Lemma 5.5. There exists an n-dimensional Lipschitz graph Γ_{LD} passing through all the points w_P, $P \in \text{LD}_{\text{Sep}}^e(R)$. The Lipschitz constant of Γ_{LD} depends only on α.

Proof. It suffices to show that for any $Q, P \in \text{LD}_{\text{Sep}}^e(R)$, $Q \neq P$, we have

$$w_Q - w_P \notin K^{1/2}. \quad (5.9)$$

Without loss of generality assume $r(P) \leq r(Q)$. By (5.5) we have

$$w_Q \notin K^{1/2} \setminus MB_P. \quad (5.10)$$

In particular,

$$w_Q \notin K^{1/2}(w_P) \setminus MB_P.$$

So, to prove (5.9), it is enough to show that

$$w_Q \notin MB_P. \quad (5.10)$$

Assume the contrary, i.e. $w_Q \in MB_P$. Then,

$$\text{dist}(Q, P) \leq CMr(P) \leq t(r(Q) + r(P)).$$

That is, (5.10) holds. But Q and P are t-separated, and so (4.9) must fail. Hence,

$$r(P) \leq t^{-1}r(Q).$$

Q and P belong to $\text{LD}_{\text{Sep}}^e(R)$, so by (5.2) we have $1.1B_Q \cap 1.1B_P = \emptyset$. Thus,

$$\text{dist}(w_Q, B_P) \geq 0.1r(B_P) \geq Ct r(B_P) > Mr(B_P).$$

So (5.10) holds.

We can finally finish the proof of Lemma 5.1.

Proof of Lemma 5.1. By Lemma 5.2 it suffices to estimate the measure of cubes from $\text{LD}_{\text{Sep}}(R)$. Let G denote an arbitrary finite subfamily of $\text{LD}_{\text{Sep}}(R)$. We use the covering lemma [Tol14, Theorem 9.31] to choose a subfamily $F \subset G$ such that

$$\bigcup_{Q \in G} 1.5B_Q \subset \bigcup_{Q \in F} 2B_Q,$$

and the balls $\{1.5B_Q\}_{Q \in F}$ are of bounded superposition.

The above and the LD stopping condition give

$$\sum_{Q \in G} \mu(Q) \leq \sum_{Q \in F} \mu(2B_Q) \lesssim \tau \Theta_\mu(2B_R) \sum_{Q \in F} r(B_Q)^n. \quad (5.11)$$

Now, it follows from Lemma 5.3 and Lemma 5.5 that for each $Q \in G \subset \text{LD}_{\text{Sep}}(R)$ there exists either $w_Q \in \Gamma_{\text{LD}} \cap 1.2B_Q$ or $x \in \hat{G}_R \cap 1.2B_Q \subset \Gamma_R \cap 1.2B_Q$. Hence,

$$H^n(1.5B_Q \cap (\Gamma_{\text{LD}} \cup \Gamma_R)) \approx_\alpha r(B_Q)^n.$$

Now, using the bounded superposition property of F we get

$$\sum_{Q \in F} r(B_Q)^n \approx_\alpha \sum_{Q \in F} H^n(1.5B_Q \cap (\Gamma_{\text{LD}} \cup \Gamma_R)) \lesssim H^n \left(\bigcup_{Q \in F} 1.5B_Q \cap (\Gamma_{\text{LD}} \cup \Gamma_R) \right)$$

$$\lesssim H^n(2B_R \cap (\Gamma_{\text{LD}} \cup \Gamma_R)) \approx_\alpha r(R)^n \approx \mu(2B_R)\Theta_\mu(2B_R)^{-1} \approx_\alpha \mu(R)\Theta_\mu(2B_R)^{-1}.$$

Together with (5.11), this gives

$$\sum_{Q \in G} \mu(Q) \lesssim_\alpha \tau \mu(R).$$
Since \(\mathcal{G} \) was an arbitrary finite subfamily of \(\text{LD}_{\text{sep}}(R) \), we finally arrive at
\[
\sum_{Q \in \text{LD}_{\text{sep}}(R)} \mu(Q) \lesssim \tau \mu(R).
\]
\(\square \)

6. Top cubes and packing estimate

6.1. Definition of Top. In order to define the Top family, we need to introduce some additional notation. Given \(Q \in \mathcal{D}_\mu \), let \(\mathcal{M}D(Q) \) denote the family of maximal cubes from \(\mathcal{D}_{\mu}^d(Q) \setminus \{Q\} \). It follows from Lemma 2.1 (c) that the cubes from \(\mathcal{M}D(Q) \) cover \(\mu \)-almost all of \(Q \).

Given \(R \in \mathcal{D}_\mu \) set
\[
\text{Next}(R) = \bigcup_{Q \in \text{Stop}(R)} \mathcal{M}D(Q).
\]

Since we always have \(\mathcal{M}D(Q) \neq \{Q\} \), it is clear that \(\text{Next}(R) \neq \{R\} \).

Observe that if \(P \in \text{Next}(R) \), then by Lemma 4.1 and Lemma 2.2 we have for all intermediate cubes \(S \in \mathcal{D}_\mu \), \(P \subset S \subset R \),
\[
\Theta_{\mu}(2B_S) \lesssim_A \Theta_{\mu}(2B_R). \tag{6.1}
\]

We are finally ready to define Top. It is defined inductively as \(\text{Top} = \bigcup_{k \geq 0} \text{Top}_k \). First, set
\[
\text{Top}_0 = \{R_0\},
\]
where \(R_0 \) was defined as \(\text{supp} \mu \). Having defined \(\text{Top}_k \), we set
\[
\text{Top}_{k+1} = \bigcup_{R \in \text{Top}_k} \text{Next}(R).
\]

Note that for each \(k \geq 0 \) the cubes from \(\text{Top}_k \) are pairwise disjoint.

6.2. Definition of ID. We distinguish a special type of Top cubes. We say that \(R \in \text{Top} \) is increasing density, \(R \in \text{ID} \), if
\[
\mu\left(\bigcup_{Q \in \text{HD}(R)} Q \right) \geq \frac{1}{2} \mu(R).
\]

Lemma 6.1. If \(A \) is big enough, then for all \(R \in \text{ID} \)
\[
\Theta_{\mu}(2B_R)^p \mu(R) \leq \frac{1}{2} \sum_{Q \in \text{Next}(R)} \Theta_{\mu}(2B_Q)^p \mu(Q). \tag{6.2}
\]

Proof. The definition of ID and the HD stopping condition imply that for any \(R \in \text{ID} \)
\[
\Theta_{\mu}(2B_R)^p \mu(R) \leq 2 \Theta_{\mu}(2B_R)^p \sum_{Q \in \text{HD}(R)} \mu(Q) \leq 2A^{-p} \sum_{Q \in \text{HD}(R)} \Theta_{\mu}(2B_Q)^p \mu(Q).
\]

Note that all \(Q \in \text{HD}(R) \) are doubling, and so by Lemma 2.3
\[
\Theta_{\mu}(2B_Q)^p \mu(Q) \lesssim \sum_{P \in \mathcal{M}D(Q)} \Theta_{\mu}(2B_P)^p \mu(P) = \sum_{P \in \text{Next}(R): P \subset Q} \Theta_{\mu}(2B_P)^p \mu(P).
\]

If \(A \) is taken big enough, then the estimates above yield (6.2). \(\square \)
6.3. Packing condition. We will now establish the packing condition \[(6.3) \]. For \(S \in \Top \) set \(\Top_k(S) = \Top \cap D_\mu(S) \) and \(\Top_j(S) = \Top_j \cap D_\mu(S) \). For \(k \geq 0 \) we also define

\[
\Top_0^k(S) = \bigcup_{0 \leq j \leq k} \Top_j(S),
\]

\[
ID_k^j(S) = ID \cap \Top_0^k(S).
\]

Recall that \(\mu \) satisfies the following polynomial growth condition: there exist \(C_1 > 0 \) and \(r_0 > 0 \) such that for all \(x \in \supp \mu, \ 0 < r \leq r_0 \), we have

\[
\mu(B(x, r)) \leq C_1 r^n.
\]

\[(6.3) \]

Lemma 6.2. For all \(S \in \Top \) we have

\[
\sum_{R \in \Top_0^k(S)} \Theta_\mu(2B_R)^p \mu(R) \lesssim_{\varepsilon, \eta, \tau} (C_1)^p \mu(S) + \int_{2B_S} \int_0^{\eta^{-1}C_0r(S)} \left(\frac{\mu(K(x, r))}{r^n} \right)^p \frac{dr}{r} d\mu(x). \quad (6.4)
\]

The implicit constant does not depend on \(r_0 \).

Proof. First, we deal with ID cubes. Note that

\[
\sum_{R \in ID_k^j(S)} \Theta_\mu(2B_R)^p \mu(R) \lesssim_{\varepsilon, \eta, \tau} \frac{1}{2} \sum_{R \in ID_k^j(S)} \sum_{Q \in \next(R)} \Theta_\mu(2B_Q)^p \mu(Q) \leq \frac{1}{2} \sum_{Q \in \Top_0^k(S)} \Theta_\mu(2B_Q)^p \mu(Q),
\]

where the last inequality follows from the fact that \(\bigcup_{R \in \Top_0^k(S)} \next(R) = \Top_0^{k+1} \). Now, observe that for \(Q \in \Top_k^{k+1} \) we have \(r(Q) \leq C_0 A_0^{-k} r(R_0) \), and so if \(k \) is big enough, then \(r(2B_Q) \leq r_0 \). Thus, by \((6.3) \)

\[
\Theta_\mu(2B_Q) \leq C_1. \quad (6.5)
\]

Hence,

\[
\sum_{R \in \Top_0^k(S)} \Theta_\mu(2B_R)^p \mu(R) = \sum_{R \in \Top_0^k(S) \setminus ID} \Theta_\mu(2B_R)^p \mu(R) + \sum_{R \in ID_k^j(S)} \Theta_\mu(2B_R)^p \mu(R) \leq \sum_{R \in \Top_0^k(S) \setminus ID} \Theta_\mu(2B_R)^p \mu(R) + \frac{1}{2} \sum_{R \in \Top_0^k(S)} \Theta_\mu(2B_R)^p \mu(R) \leq \sum_{R \in \Top_0^k(S) \setminus ID} \Theta_\mu(2B_R)^p \mu(R) + \frac{1}{2} \sum_{R \in \Top_0^k(S)} \Theta_\mu(2B_R)^p \mu(R) + \frac{(C_1)^p}{2} \mu(S). \quad (6.6)
\]

Note that for small cubes \(Q \in \Top_k^j(S) \) (i.e. satisfying \(r(2B_Q) \leq r_0 \)) we have \((6.3) \), while for big cubes the trivial estimate \(\Theta_\mu(2B_Q) \leq \mu(2B_S) r_0^{-n} \) holds. It follows that

\[
\sum_{R \in \Top_0^k(S)} \Theta_\mu(2B_R)^p \mu(R) \leq (k + 1) \left((C_1)^p + \mu(2B_S) r_0^{-np} \right) \mu(S) < \infty,
\]

and so we may deduce from \((6.6) \) that

\[
\sum_{R \in \Top_0^k(S)} \Theta_\mu(2B_R)^p \mu(R) \leq 2 \sum_{R \in \Top_0^k(S) \setminus ID} \Theta_\mu(2B_R)^p \mu(R) + (C_1)^p \mu(S).
\]

Letting \(k \to \infty \) we arrive at

\[
\sum_{R \in \Top(S)} \Theta_\mu(2B_R)^p \mu(R) \leq 2 \sum_{R \in \Top(S) \setminus ID} \Theta_\mu(2B_R)^p \mu(R) + (C_1)^p \mu(S). \quad (6.7)
\]
Now, we need to estimate the sum from the right hand side. By the definition of \(\text{ID} \) we have for all \(R \in \text{Top}(S) \setminus \text{ID} \)

\[
\mu \left(R \setminus \bigcup_{Q \in \text{HD}(R)} Q \right) \geq \frac{1}{2} \mu(R),
\]

and so by Lemma 2.11(c) we get

\[
\mu(R) \leq 2 \mu \left(R \setminus \bigcup_{Q \in \text{Stop}(R)} Q \right) + 2 \mu \left(\bigcup_{Q \in \text{Stop}(R) \setminus \text{HD}(R)} Q \right)
= 2 \mu \left(R \setminus \bigcup_{Q \in \text{Next}(R)} Q \right) + 2 \sum_{Q \in \text{LD}(R)} \mu(Q) + 2 \sum_{Q \in \text{BCE}(R)} \mu(Q).
\]

The measure of low density cubes is small due to (5.1), and so for \(\tau \) small enough we have

\[
\mu(R) \leq 3 \mu \left(R \setminus \bigcup_{Q \in \text{Next}(R)} Q \right) + 3 \sum_{Q \in \text{BCE}(R)} \mu(Q).
\]

Thus,

\[
\sum_{R \in \text{Top}(S) \setminus \text{ID}} \Theta_{\mu}(2B_R)^p \mu(R) \leq 3 \sum_{R \in \text{Top}(S)} \Theta_{\mu}(2B_R)^p \mu \left(R \setminus \bigcup_{Q \in \text{Next}(R)} Q \right)
+ 3 \sum_{R \in \text{Top}(S) \setminus \text{ID}} \Theta_{\mu}(2B_R)^p \sum_{Q \in \text{BCE}(R)} \mu(Q). \tag{6.8}
\]

Concerning the first sum, notice that if \(\mu \left(R \setminus \bigcup_{Q \in \text{Next}(R)} Q \right) > 0 \), then we have arbitrarily small cubes \(P \) belonging to \(\text{Tree}(R) \). In particular, by (4.3) and (6.3), we have \(\Theta_{\mu}(2B_R) \leq \tau^{-1} \Theta_{\mu}(2B_P) \leq \tau^{-1}C_1 \), taking \(P \in \text{Tree}(R) \setminus \text{Stop}(R) \) small enough. Recall also that for \(R \in \text{Top}(S) \), the sets \(R \setminus \bigcup_{Q \in \text{Next}(R)} Q \) are pairwise disjoint. Hence,

\[
\sum_{R \in \text{Top}(S)} \Theta_{\mu}(2B_R)^p \mu \left(R \setminus \bigcup_{Q \in \text{Next}(R)} Q \right) \leq (\tau^{-1}C_1)^p \mu(S). \tag{6.9}
\]

To estimate the second sum from (6.8), we apply (4.3) to get

\[
\sum_{R \in \text{Top}(S)} \Theta_{\mu}(2B_R)^p \sum_{Q \in \text{BCE}(R)} \mu(Q) \leq \frac{1}{\varepsilon} \sum_{R \in \text{Top}(S)} \sum_{P \in \text{Tree}(R)} \varepsilon_{\mu,p}(P) \mu(P)
\leq \frac{1}{\varepsilon} \sum_{P \in \varepsilon_{\mu,p}(S)} \varepsilon_{\mu,p}(P) \mu(P)
\]

By the definition of \(\varepsilon_{\mu,p}(P) \), and the bounded intersection property of the balls \(2B_P \) for cubes \(P \) of the same generation, we have

\[
\sum_{P \in \varepsilon_{\mu,p}(S)} \varepsilon_{\mu,p}(P) \mu(P) = \sum_{k} \sum_{P \in \varepsilon_{\mu,p}(S)} \int_{2B_P} \int_{0}^{r^{-1}r(P)} \left(\frac{\mu(K(x,r))}{r^n} \right)^p \frac{dr}{r}
\leq \sum_{k} \int_{2B_S} \int_{0}^{r^{-1}C_0 A_0^{-k}} \left(\frac{\mu(K(x,r))}{r^n} \right)^p \frac{dr}{r}
\leq \eta \int_{2B_S} \int_{0}^{r^{-1}C_2 r(S)} \left(\frac{\mu(K(x,r))}{r^n} \right)^p \frac{dr}{r} d\mu(x).
\]
Consequently,
\[\sum_{R \in \text{Top}(S)} \Theta_{\mu}(2B_R)^p \sum_{Q \in \mathcal{B} \in \mathcal{E}(R)} \mu(Q) \lesssim_{\epsilon,n} \int_{2B_S} \int_0^{n-1 \text{Cor}(S)} \left(\frac{\mu(K(x,r))}{r^n} \right)^p \frac{dr}{r} d\mu(x). \]
Together with (6.7), (6.8), and (6.9), this gives (6.4). \qed

Let us put together all the ingredients of the proof of the main lemma.

Proof of Lemma 7.1. Let \(\text{Top} \subset \mathcal{D}_\mu^{db} \) be as above, and \(\{ \Gamma_R \}_{R \in \text{Top}} \) be as in Lemma 4.8. Then, properties (i) and (ii) are ensured by Lemma 4.8. Property (iii) follows from (6.1).

We get the packing estimate (3.2) from (6.4) by taking \(S = R_0 \). \qed

7. Application to singular integral operators

To prove Theorem 1.17, we will use geometric characterizations of boundedness of operators from \(\mathcal{K}^n(\mathbb{R}^d) \) shown in [GS19, Sections 4, 5, 9]. For \(n = 1, d = 2 \), a variant of this characterization valid for the Cauchy transform was already proved in [Tol05].

For \(Q, S \in \mathcal{D}_\mu, Q \subset S \), we set
\[\delta_\mu(Q,S) = \int_{2B_S \setminus 2B_Q} \frac{1}{|y - x_Q|^n} d\mu(y). \]

The notation \(\text{Good}(R), \text{Tr}(R), \text{Next}(R) \) used below was introduced in Section 3.

Lemma 7.1 ([GS19]). Let \(\mu \) be a compactly supported Radon measure on \(\mathbb{R}^d \) satisfying the growth condition (1.9). Assume there exists a family of cubes \(\text{Top} \subset \mathcal{D}_\mu^{db} \), and a corresponding family of Lipschitz graphs \(\{ \Gamma_R \}_{R \in \text{Top}} \), satisfying:

(i) Lipschitz constants of \(\Gamma_R \) are uniformly bounded by some absolute constant,
(ii) \(\mu \)-almost all \(\text{Good}(R) \) is contained in \(\Gamma_R \),
(iii) for all \(Q \in \text{Tr}(R) \) we have \(\Theta_{\mu}(2B_Q) \lesssim \Theta_{\mu}(2B_R) \),
(iv) for all \(Q \in \text{Next}(R) \) there exists \(S \in \mathcal{D}_\mu, Q \subset S \), such that \(\delta_\mu(Q,S) \lesssim \Theta_{\mu}(2B_R) \), and \(2B_S \cap \Gamma_R \neq \emptyset \).

Then, for every singular integral operator \(T \) with kernel \(k \in \mathcal{K}^n(\mathbb{R}^d) \) we have
\[\sup_{\epsilon > 0} \| T_{\epsilon} \|_{L^2(\mu)}^2 \lesssim \sum_{R \in \text{Top}} \Theta_{\mu}(2B_R)^2 \mu(R), \]
with the implicit constant depending on \(C_1 \) and the constant \(C_k \) from (1.8).

The result above is not explicitly stated in [GS19], but it is essentially [GS19, Section 5, Lemma 1]. The “corona decomposition” assumptions of Lemma 7.1 come from [GS19, Lemma D], which is treated there as a black-box. The proof of [GS19, Lemma 1] is concluded in [GS19, Section 9], and it is evident from its last line that we may replace the \(\beta \)-number right hand side of [GS19, Lemma 1] by the sum-over-\text{Top}-cubes right hand side of Lemma 7.1.

We are going to use Lemma 3.1 together with Lemma 4.8 and Lemma 7.1 to get the following.

Lemma 7.2. Let \(\mu \) be a compactly supported Radon measure on \(\mathbb{R}^d \) satisfying the growth condition (1.9). Assume further that for some \(V \in G(d,d - n), \alpha \in (0,1) \), we have \(\mathcal{E}_{\mu,2}(\mathbb{R}^d, V, \alpha) < \infty \).

Then, for every singular integral operator \(T \) with kernel \(k \in \mathcal{K}^n(\mathbb{R}^d) \) we have
\[\sup_{\epsilon > 0} \| T_{\epsilon} \|_{L^2(\mu)}^2 \lesssim \mu(\mathbb{R}^d) + \mathcal{E}_{\mu,2}(\mathbb{R}^d, V, \alpha), \quad (7.1) \]
with the implicit constant depending on \(C_1, \alpha \) and the constant \(C_k \) from (1.8).
Proof. Using Lemma 3.1 (with $p = 2$), it is clear that the assumptions (i)-(iii) of Lemma 7.1 are satisfied. We still have to check if (iv) holds. Once we do that, the packing estimate \(3.2\) together with Lemma 7.1 will ensure that \(7.1\) holds.

Suppose \(R \in \text{Top}, Q \in \text{Next}(R)\). We are looking for \(S \in \mathcal{D}_\mu\) such that \(\delta_\mu(Q, S) \lesssim \Theta_\mu(2B_R)\), and \(2B_S \cap \Gamma_R \neq \emptyset\). Let \(P \in \text{Stop}(R)\) be such that \(Q \subset P\). By Lemma 4.8 we have some constant \(\Lambda\) such that

\[AB_P \cap \Gamma_R \neq \emptyset.\]

Together with \(4.16\), this implies that there exists \(S \in \text{Tree}(R)\) such that \(P \subset S\), \(r(S) \approx_\Lambda r(P)\), and

\[2B_S \cap \Gamma_R \neq \emptyset.\]

We split

\[\delta_\mu(Q, S) = \int_{2B_S \setminus 2B_P} \frac{1}{|y - x_Q|} \, d\mu(y) + \int_{2B_P \setminus 2B_Q} \frac{1}{|y - x_Q|} \, d\mu(y).\]

Concerning the first integral, for \(y \in 2B_S \setminus 2B_P\) we have \(|y - x_Q| \approx r(S) \approx_\Lambda r(P)\), and so

\[\int_{2B_S \setminus 2B_P} \frac{1}{|y - x_Q|} \, d\mu(y) \lesssim \Theta_\mu(2B_S) \lesssim_\Lambda \Theta_\mu(2B_R).\]

To deal with the second integral, observe that there are no doubling cubes between \(Q\) and \(P\). Then, it follows from Lemma 2.2 that

\[\int_{2B_P \setminus 2B_Q} \frac{1}{|y - x_Q|} \, d\mu(y) \lesssim \Theta_\mu(100B(P)).\]

If \(P = R\), then \(P\) is doubling and we have \(\Theta_\mu(100B(P)) \lesssim \Theta_\mu(2B_R)\). Otherwise, the parent of \(P\), denoted by \(P'\), belongs to \(\text{Tree}(R) \setminus \text{Stop}(R)\). Since \(100B(P) \subset 2B_{P'}\), we get

\[\Theta_\mu(100B(P)) \lesssim \Theta_\mu(2B_{P'}) \lesssim_\Lambda \Theta_\mu(2B_R).\]

Either way, we get that \(\delta_\mu(Q, S) \lesssim_\Lambda \Theta_\mu(2B_R)\), and so the assumption (iv) of Lemma 7.1 is satisfied.

Lemma 7.2 allows us to use the non-homogeneous \(T1\) theorem of Nazarov, Treil and Volberg [NTV97] to prove a version of Theorem 1.17 in the case of a fixed direction \(V\), i.e. if for all \(x \in \text{sup \mu}\) we have \(V_x \equiv V\).

Lemma 7.3. Let \(\mu\) be a Radon measure on \(\mathbb{R}^d\) satisfying the polynomial growth condition \(1.9\). Suppose that there exist \(M_0 > 1, \alpha \in (0, 1), V \in G(d, d - n)\), such that for every ball \(B\) we have

\[\mathcal{E}_{\mu, 2}(B, V, \alpha) \leq M_0 \mu(B).\]

Then, all singular integral operators \(T_\mu\) with kernels in \(\mathcal{K}^n(\mathbb{R}^d)\) are bounded in \(L^2(\mu)\). The bound on the operator norm of \(T_\mu\) depends only on \(C_1, \alpha, M_0\), and the constant \(C_k\) from \(1.8\).

Proof. We apply Lemma 7.2 to \(\mu|_B\), where \(B\) is an arbitrary ball, and get that

\[\sup_{\varepsilon > 0} \|T_\varepsilon(\mu|_B)\|_{L^2(\mu|_B)} \lesssim C_1, \alpha, C_k \mu(B) + \mathcal{E}_{\mu|_B, 2}(\mathbb{R}^d, V, \alpha).\]

It is easy to see that, using the assumptions \(1.9\) and \(7.2\), we have

\[\mathcal{E}_{\mu|_B, 2}(\mathbb{R}^d, V, \alpha) \lesssim \mathcal{E}_{\mu, 2}(B, V, \alpha) + C_1^2 \mu(B) \leq (M_0 + C_1^2) \mu(B).\]

Hence,

\[\sup_{\varepsilon > 0} \|T_\varepsilon(\mu|_B)\|_{L^2(\mu|_B)} \lesssim C_1, \alpha, C_k, M_0 \mu(B).\]

(7.3)
The L^2 boundedness of T_μ follows by the non-homogeneous $T1$ theorem from [NTV97]. The condition (1.3) is slightly weaker than the original assumption in [NTV97], but this is not a problem, see the discussion in [Tol14 §3.7.2]. \qedhere

We are ready to finish the proof of Theorem 1.17.

Proof of Theorem 1.17. Let B be an arbitrary ball intersecting $\text{supp}\mu$. Recall that, by the definition of BPBE(2), there exist $M_0 > 1$, $\kappa > 0$, $V_B \in G(d, d-n)$, and $G_B \subset B$ such that $\mu(G_B) \geq \kappa \mu(B)$ and for all $x \in G_B$

$$
\int_{0}^{r(B)} \left(\frac{\mu(K(x, V_B, \alpha, r))}{r^n} \right)^2 \frac{dr}{r} \leq M_0.
$$

By the polynomial growth condition (1.9) we also have

$$
\int_{r(B)}^{\infty} \left(\frac{\mu(K(x, V_B, \alpha, r))}{r^n} \right)^2 \frac{dr}{r} \leq \int_{r(B)}^{\infty} \frac{\mu(B)^2}{r^{2n+1}} \frac{dr}{r} \lesssim \frac{\mu(B)^2}{r(B)^{2n}} \leq C_1^2.
$$

Hence, for all $x \in G_B$

$$
\int_{0}^{\infty} \left(\frac{\mu(K(x, V_B, \alpha, r))}{r^n} \right)^2 \frac{dr}{r} \lesssim_{C_1, M_0} 1.
$$

Set $\nu = \mu|_{G_B}$. The estimate above implies that for all balls $B' \subset \mathbb{R}^d$ we have

$$
\mathcal{E}_{\nu, 2}(B', V_B, \alpha) = \int_{B'} \int_{0}^{r(B')} \left(\frac{\nu(K(x, V_B, \alpha, r))}{r^n} \right)^2 \frac{dr}{r} d\nu(x) \lesssim_{C_1, M_0} \nu(B').
$$

Clearly, $\nu = \mu|_{G_B}$ has polynomial growth, and so we may apply Lemma 7.3 to conclude that all singular integral operators T_ν with kernels in $\mathcal{K}^n(\mathbb{R}^d)$ are bounded in $L^2(\nu)$. Thus, the corresponding maximal operators T_\ast are bounded from $M(\mathbb{R}^d)$ to $L^{1, \infty}(\nu)$, see [Tol14 Theorem 2.21].

Recall that for all balls B we have $\mu(G_B) \approx \kappa \mu(B)$. For any fixed T, the operator norm of $T_{\nu|_{G_B}} : L^2(\mu|_{G_B}) \to L^2(\mu|_{G_B})$ is bounded uniformly in B and ε, and so the same is true for the operator norm of $T_\ast : M(\mathbb{R}^d) \to L^{1, \infty}(\mu|_{G_B})$. Hence, we may use the good lambda method [Tol14 Theorem 2.22] to conclude that T_μ is bounded in $L^2(\mu)$. \qedhere

8. SUFFICIENT CONDITION FOR RECTIFIABILITY

The aim of this section is to prove the following sufficient condition for rectifiability.

Proposition 8.1. Suppose μ is a Radon measure on \mathbb{R}^d satisfying $\Theta^{n, *}(\mu, x) > 0$ and $\Theta^{n, *}(\mu, x) < \infty$ for μ-a.e. $x \in \mathbb{R}^d$. Assume further that for μ-a.e. $x \in \mathbb{R}^d$ there exists some $V_x \in G(d, d-n)$ and $\alpha_x \in (0, 1)$ such that

$$
\int_{0}^{1} \left(\frac{\mu(K(x, V_x, \alpha_x, r))}{r^n} \right)^p \frac{dr}{r} < \infty. \quad (8.1)
$$

Then, μ is n-rectifiable.

We reduce the proposition above to the following lemma.
Lemma 8.2. Suppose μ is a Radon measure on $B(0,1) \subset \mathbb{R}^d$, and assume that there exists a constant $C_* > 0$ such that $\Theta^0(\mu, x) \leq C_*$ and $\Theta^{n,*}(\mu, x) > 0$ for μ-a.e. $x \in \mathbb{R}^d$. Assume further that there exist $M_0 > 0$, $V \in G(d, d-n)$ and $\alpha \in (0,1)$ such that for μ-a.e. $x \in \mathbb{R}^d$

$$
\int_0^1 \left(\frac{\mu(K(x, V, \alpha, r))}{r^n} \right)^p \frac{dr}{r} \leq M_0.
$$

Then, μ is n-rectifiable.

Proof of Proposition [8.1] using Lemma [8.2]. To show that μ is rectifiable, it suffices to prove that for any bounded $E \subset \text{supp} \, \mu$ of positive measure there exists $F \subset E$, $\mu(F) > 0$, such that $\mu|_F$ is rectifiable. Given any such E we may rescale it and translate it, so without loss of generality $E \subset B(0,1)$.

Since $0 < \Theta^{n,*}(\mu, x)$ and $\Theta^*(\mu, x) < \infty$ for μ-a.e. $x \in E$, choosing $C_* > 1$ big enough, we get that the set

$$
E' = \{ x \in E : \Theta^{n,*}(\mu, x) > 0, \Theta^*(\mu, x) \leq C_* \}
$$

has positive μ-measure.

Let $\{V_k\}_{k \in \mathbb{N}}$ be a countable and dense subset of $G(d, d-n)$. It is clear that for any $\alpha \in (0,1)$, $V \in G(d, d-n)$, there exists $k \in \mathbb{N}$ such that $K(0, V_k, k^{-1}) \subset K(0, V, \alpha)$. Set

$$
E_k = \left\{ x \in \mathbb{R}^d : \left(\int_0^1 \left(\frac{\mu(K(x, V_k, k^{-1}, r))}{r^n} \right)^p \frac{dr}{r} \leq k \right) \right\}.
$$

It is a simpel exercise to check that for each $k \in \mathbb{N}$ the set E_k is Borel. Moreover, it follows from (8.1) that $\mu(\mathbb{R}^d \setminus \bigcup_k E_k) = 0$. Pick any $k \in \mathbb{N}$ with $\mu(E' \cap E_k) > 0$ and set $F = E' \cap E_k$. Using the Lebesgue differentiation theorem and (8.3), it is easy to see that for μ-a.e. $x \in F$ we have $\Theta^{n,*}(\mu|_F, x) = \Theta^{n,*}(\mu, x) > 0$ and $\Theta^*(\mu|_F, x) = \Theta^*(\mu, x) \leq C_*$. Hence, $\mu|_F$ satisfies the assumptions of Lemma [8.2] and so it is n-rectifiable. \hfill \Box

8.1. Proof of Lemma [8.2] for $\mu \ll \mathbb{H}^n$. First, we will prove Lemma [8.2] under the additional assumption $\Theta^{n,*}(\mu, x) < \infty$ for μ-a.e. $x \in \mathbb{R}^d$ (which is equivalent to $\mu \ll \mathbb{H}^n$).

Using similar tricks as in the proof of Proposition [5.1] it is easy to see that we may actually replace $\Theta^{n,*}(\mu, x) < \infty$ by a stronger condition: without loss of generality, we can assume that there exist $C_1 > 0$ and $r_0 > 0$ such that for all $x \in \text{supp} \, \mu$ and all $0 < r \leq r_0$ we have

$$
\mu(B(x, r)) \leq C_1 r^n.
$$

Then, the assumptions of Lemma [8.3] are satisfied, and we get a family of cubes $\text{Top} \subset D^b_\mu$ and an associated family of Lipschitz graphs Γ_R, $R \in \text{Top}$. The cubes from Top satisfy the packing condition

$$
\sum_{R \in \text{Top}} \Theta_\mu(2B_R)^p \mu(R) \lesssim \mu(\mathbb{R}^d) + \mathcal{E}_{\mu, \bar{\mu}}(\mathbb{R}^d, V, \alpha) \leq (1 + M_0)\mu(B(0,1)).
$$

It follows that for μ-a.e. $x \in \mathbb{R}^d$ we have

$$
\sum_{R \in \text{Top}, R \ni x} \Theta_\mu(2B_R)^p < \infty.
$$

Fix some x for which the above holds. Denote by $R_0 \supset R_1 \supset \ldots$ the sequence of cubes from Top containing x. We claim that for μ-a.e. x this sequence is finite.

Indeed, if the sequence is infinite, we have $\Theta_\mu(2B_{R_i}) \to 0$. On the other hand, let $i \geq 0$ and $r(R_{i+1}) \leq r \leq r(R_i)$. Since $R_{i+1} \in \text{Next}(R_i)$, we get from (8.1)

$$
\Theta_\mu(x, r) \lesssim A \Theta_\mu(2B_{R_i}).
$$
In consequence,
\[\Theta^{n,*}(\mu, x) \lesssim_{A} \limsup_{i \to \infty} \Theta_{\mu}(2B_{R_i}) = 0, \]
which may happen only on a set of \(\mu \)-measure 0 because \(\Theta^{n,*}(\mu, x) > 0 \) for \(\mu \)-a.e. \(x \in \mathbb{R}^d \).

Hence, for \(\mu \)-a.e. \(x \in \mathbb{R}^d \) the sequence \(\{ R_i \} \) is finite. This means that if \(R_k \) denotes the smallest Top cube containing \(x \), then \(x \in \text{Good}(R_k) \). It follows that
\[\mu \left(\mathbb{R}^d \setminus \bigcup_{R \in \text{Top}} \text{Good}(R) \right) = 0. \]
By Lemma 3.1 (ii) we have \(\mu(\text{Good}(R_k) \setminus \Gamma_{R_k}) = 0 \). Hence,
\[\mu \left(\mathbb{R}^d \setminus \bigcup_{R \in \text{Top}} \Gamma_R \right) = 0, \]
and so \(\mu \) is \(n \)-rectifiable.

8.2. **Proof of Lemma 8.2 in full generality.** Thanks to the partial result from the preceding subsection, it is clear that to prove Lemma 8.2 in full generality, it suffices to show that for \(\mu \) satisfying the assumptions of Lemma 8.2 we have
\[M_{\mu}(x) = \sup_{r > 0} \frac{\mu(B(x, r))}{r^n} < \infty \quad \text{for } \mu \text{-a.e. } x \in B(0, 1). \]
To do that, we will use techniques from [Tol19, Section 5].

Lemma 8.3 ([Tol19, Lemma 5.1]). Let \(C > 2 \). Suppose that \(\mu \) is a Radon measure on \(\mathbb{R}^d \), and that \(\Theta^{n,*}_{\mu}(x) \leq C_* \) for \(\mu \)-a.e. \(x \in \mathbb{R}^d \). Then, for \(\mu \)-a.e. \(x \in \mathbb{R}^d \) there exists a sequence of radii \(r_k \to 0 \) such that
\[\mu(B(x, Cr_k)) \leq 2C^d \mu(B(x, r_k)) \leq 20 C_* C^{n+d} r_k^n. \]

Let \(\lambda < \frac{1}{2} \) be a small constant depending on \(\alpha \), to be chosen later. By the lemma above (used with \(C = \lambda^{-1} \)) and Vitali’s covering theorem (see [Mat95, Theorem 2.8]), there exists a family of pairwise disjoint closed balls \(B_i, i \in I \), centered at \(x_i \in \text{supp } \mu \subset B(0, 1) \), which cover \(\mu \)-almost all of \(B(0, 1) \), and which satisfy
\[\mu(B_i) \leq 2\lambda^{-d} \mu(\lambda B_i) \leq 20 C_* \lambda^{-d} r(B_i)^n, \]
and
\[r(B_i) \leq \rho \]
for some arbitrary fixed \(\rho > 0 \). We may assume that (8.2) holds for all the centers \(x_i \). Choose \(I_0 \subset I \) a finite subfamily such that
\[\mu(B(0, 1) \setminus \bigcup_{i \in I_0} B_i) \leq \varepsilon \mu(B(0, 1)), \]
where \(\varepsilon > 0 \) is some small constant. Clearly, \(I_0 = I_0(\rho, \varepsilon) \).

For each \(i \in I_0 \) we consider an \(n \)-dimensional disk \(D_i \), centered at \(x_i \), parallel to \(V^\perp \in G(d, n) \), with radius \(\lambda r(B_i) \). We define an approximating measure
\[\nu = \sum_{i \in I_0} \frac{\mu(B_i)}{\mathcal{H}^n(D_i)} \mathcal{H}^n|_{D_i}. \]
Note that
\[\nu(D_i) = \mu(B_i) \approx_{\lambda} \mu(\lambda B_i) \lesssim_{\lambda} C_* r(B_i)^n. \]

(8.6)
Moreover, since I_0 is a finite family, the definition of ν and (8.6) imply that ν satisfies the polynomial growth condition (3.1) with $r_0 = \min_{i \in I_0} r(B_i)/2$ and $C_1 = C(\lambda)C_x$, i.e. for $0 < r < r_0$ and $x \in \text{supp} \nu$,

$$\nu(B(x,r)) \leq C(\lambda)C_x r^n. \quad (8.7)$$

Lemma 8.4. For $\lambda = \lambda(\alpha) < \frac{1}{2}$ small enough, we have

$$E_{\nu,p}(\mathbb{R}^d, V, \frac{1}{2}\alpha) \lesssim_{\lambda,p} (M_0 + \mu(B(0,1))^p)\mu(B(0,1)).$$

The implicit constant does not depend on ρ, ε.

Proof. Let $i \in I_0$ and $x \in D_i$. We will estimate the ν-measure of $K(x, V, \frac{1}{2}\alpha, r)$.

First, note that $\nu(K(x, V, \frac{1}{2}\alpha, r)) = \nu(K(x, V, \frac{1}{2}\alpha, r) \setminus B_i)$. Indeed, $B_i \cap \text{supp} \nu = D_i$, and $D_i \cap K(x, V, \frac{1}{2}\alpha) = \emptyset$ because D_i is parallel to V^\perp. Thus, $\nu(K(x, V, \frac{1}{2}\alpha, r) \setminus B_i) = 0$. It follows immediately that for $r \leq (1 - \lambda)r(B_i)$ we have $\nu(K(x, V, \frac{1}{2}\alpha, r)) = 0$.

Concerning $r > (1 - \lambda)r(B_i)$, if $\lambda = \lambda(\alpha)$ is small enough, then

$$K(x, V, \frac{1}{2}\alpha, r) \setminus B_i \subset K(x, V, \frac{3}{2}\alpha, 2r) \setminus B_i$$

because $x \in \lambda B_i$. Thus, it suffices to estimate $\nu(K(x, V, \frac{3}{2}\alpha, 2r) \setminus B_i)$.

Suppose $r > (1 - \lambda)r(B_i)$ and $j \in I_0$ is such that $D_j \cap K(x, V, \frac{3}{2}\alpha, 2r) \setminus B_i \neq \emptyset$. Since B_i and B_j are disjoint, we have

$$r(B_j) + r(B_i) + \text{dist}(B_i, B_j) \leq 3r \quad \text{and} \quad \text{dist}(D_i, D_j) \geq \frac{r(B_j)}{2} + \frac{r(B_i)}{2}.$$

It follows easily that, for $\lambda = \lambda(\alpha)$ small enough, we get $\lambda B_j \subset K(x, V, \alpha, 4r)$. Thus,

$$\nu(K(x, V, \frac{3}{2}\alpha, 2r)) = \nu(K(x, V, \frac{3}{2}\alpha, 2r) \setminus B_i) \leq \sum_{j \in I_0 : \lambda B_j \subset K(x, V, \alpha, 4r)} \nu(D_j) \leq \sum_{j \in I_0 : \lambda B_j \subset K(x, V, \alpha, 4r)} \mu(\lambda B_j) \leq \mu(K(x, V, \alpha, 4r)).$$

Hence,

$$\int_0^{1/4} \left(\frac{\nu(K(x, V, \frac{3}{2}\alpha, 2r))}{r^n} \right)^p \frac{dr}{r} \lesssim_{\lambda,p} \int_0^1 \left(\frac{\mu(K(x, V, \alpha, r))}{r^n} \right)^p \frac{dr}{r} \leq M_0.$$

This gives

$$\int_{D_i} \int_0^\infty \left(\frac{\nu(K(x, V, \frac{1}{2}\alpha, r))}{r^n} \right)^p \frac{dr}{r} d\nu(x) \leq \int_{D_i} \int_0^\infty \left(\frac{\nu(K(x, V, \frac{3}{2}\alpha, r))}{r^n} \right)^p \frac{dr}{r} d\nu(x) \leq C(\lambda)M_0 \nu(D_i) + \nu(\mathbb{R}^d)^p \nu(D_i) \leq M_0 \mu(B_i) + \mu(B(0,1))^p \mu(B_i).$$

Summing over $i \in I_0$ yields

$$E_{\nu,p}(\mathbb{R}^d, V, \frac{1}{2}\alpha) \lesssim_{\lambda,p} (M_0 + \mu(B(0,1))^p)\mu(B(0,1)).$$

Lemma 8.5. For $\lambda = \lambda(\alpha) < \frac{1}{2}$ small enough, we have

$$\int M_n \nu(x)^p \, d\nu(x) \lesssim_{\alpha, \lambda,p} ((C_x)^p + M_0 + \mu(B(0,1))^p)\mu(B(0,1)).$$

The constants on the right hand side do not depend on ρ, ε.

Hence, for all x

Recall that I

Integrating both sides of the inequality with respect to μ

Proof. By (8.7) and Lemma 8.4, we may use Lemma 3.1 to get a family of cubes Top_ν satisfying properties (i)-(iii) of Lemma 3.1 and such that

$$
\sum_{R \in \text{Top}_\nu} \Theta_\nu(2BR)^p \nu(R) \lesssim_{\alpha, \lambda, p} (C_\nu \nu(\mathbb{R}^d) + C(\mu)(M_0 + \mu(B(0, 1))^p) \mu(B(0, 1))
$$

$$
\lesssim_{\alpha, \lambda, p} ((C_\nu)^p + M_0 + \mu(B(0, 1))^p) \mu(B(0, 1)). \quad (8.8)
$$

Now, the property (iii) of Lemma 3.1 lets us estimate $M_n \nu(x)$. Indeed, suppose $x \in \text{supp} \nu$, and let $r_1 > 0$ be such that

$$
M_n \nu(x) \leq \frac{\nu(B(x, r_1))}{r_1^n}.
$$

Since $\text{supp} \nu \subset B(0, 2)$, we have $r_1 \leq 4$. Let $Q \in \text{D}_\nu$ be the smallest cube satisfying $x \in Q$ and $B(x, r_1) \cap \text{supp} \nu \subset 2BQ$ (such a cube exists because the largest cube $Q_0 := \text{supp} \nu$ clearly satisfies $\text{supp} \nu \subset 2BQ_0$). Let $R \in \text{Top}_\nu$ be the top cube such that $Q \in \text{Tr}(R)$. Clearly, $\ell(Q) \approx r_1$. By Lemma 3.1 (iii), we have

$$
\frac{\nu(B(x, r_1))}{r_1^n} \lesssim \Theta_\nu(2BQ) \lesssim \Theta_\nu(2BR).
$$

Thus, $M_n \nu(x)^p \lesssim \sum_{R \in \text{Top}_\nu} \mathbf{1}_R(x) \Theta_\nu(2BR)^p$. Integrating with respect to ν and applying (8.8) yields the desired estimate. \hfill \square

Lemma 8.6. We have

$$
\int M_n \mu(x)^p \, d\mu(x) \lesssim_{\alpha, \lambda, p} (C_\mu + M_0 + \mu(B(0, 1))^p) \mu(B(0, 1)).
$$

In particular, $M_n \mu(x) < \infty$ for μ-a.e. $x \in B(0, 1)$.

Proof. Denote

$$
M_{n, \rho} \mu(x) = \sup_{r \geq \rho} \frac{\mu(B(x, r))}{r^n}.
$$

Recall that $I_0 = I_0(\rho, \varepsilon)$ and set

$$
E_{\varepsilon, \rho} = \text{supp} \mu \cap \bigcup_{i \in I_0} B_i.
$$

We claim that

$$
\int_{E_{\varepsilon, \rho}} M_{n, \rho}(\mathbf{1}_{E_{\varepsilon, \rho}} \mu)(x)^p \, d\mu(x) \lesssim \int M_{n, \rho} \nu(x)^p \, d\nu(x). \quad (8.9)
$$

Indeed, let $x, x' \in B_j, j \in I_0, r \geq \rho$. Then, using repeatedly the fact that $r(B_i) \leq \rho \leq r$ for $i \in I_0$,

$$
\mu(B(x, r) \cap E_{\varepsilon, \rho}) \leq \mu(B(x', 3r) \cap E_{\varepsilon, \rho}) \leq \sum_{i \in I_0: B_i \cap B(x', 3r) \neq \emptyset} \mu(B_i) = \sum_{i \in I_0: B_i \cap B(x', 3r) \neq \emptyset} \nu(D_i) \leq \nu(B(x', 5r)).
$$

Hence, for all $x \in B_j, j \in I_0$,

$$
M_{n, \rho}(\mathbf{1}_{E_{\varepsilon, \rho}} \mu)(x) \leq 5^n \inf_{x' \in B_j} M_{n, \rho} \nu(x').
$$

Integrating both sides of the inequality with respect to μ in $E_{\varepsilon, \rho}$ yields (8.9).

Lemma 8.5 and (8.9) give

$$
\int_{E_{\varepsilon, \rho}} M_{n, \rho}(\mathbf{1}_{E_{\varepsilon, \rho}} \mu)(x)^p \, d\mu(x) \leq C(\alpha, \lambda, p) \left((C_\mu + M_0 + \mu(B(0, 1))^p \right) \mu(B(0, 1)) =: K,
$$
where K is independent of ρ and ε.

Set $\varepsilon_k = 2^{-k}$. Observe that, for a fixed $\rho > 0$, we have $\mu(\mathbb{R}^d \setminus \liminf_k E_{\varepsilon_k,\rho}) = 0$, where

$$
\liminf_k E_{\varepsilon_k,\rho} = \bigcup_{j=1}^{\infty} G_j \quad \text{and} \quad G_j = \bigcap_{k=j}^{\infty} E_{\varepsilon_k,\rho}.
$$

The inclusion $G_j \subset E_{\varepsilon_j,\rho}$ gives

$$
\int_{G_j} M_{n,\rho}(1_{G_j}\mu)(x)^p \, d\mu(x) \leq \int_{E_{\varepsilon_j,\rho}} M_{n,\rho}(1_{E_{\varepsilon_j,\rho}}\mu)(x)^p \, d\mu(x) \leq K.
$$

Since the sequence of sets G_j is increasing, we easily get that for μ-a.e. $x \in B(0,1)$

$$
\mathbb{1}_{G_j}(x) M_{n,\rho}(1_{G_j}\mu)(x) \xrightarrow{j \to \infty} M_{n,\rho}\mu(x),
$$

and the convergence is monotone. Hence, by monotone convergence theorem,

$$
\int M_{n,\rho}\mu(x)^p \, d\mu(x) \leq K.
$$

The estimate is uniform in ρ, and so once again monotone convergence gives

$$
\int M_n\mu(x)^p \, d\mu(x) \leq K.
$$

\[\square\]

Taking into account Lemma 8.6 and Section 8.1, the proof of Lemma 8.2 is finished.

9. Necessary condition for rectifiability

In this section we will prove the following.

Proposition 9.1. Suppose μ is an n-rectifiable measure on \mathbb{R}^d, and $1 \leq p < \infty$. Then, for μ-a.e. $x \in \mathbb{R}^d$ there exists $V_x \in G(d, d - n)$ such that for any $\alpha \in (0, 1)$ we have

$$
\int_0^1 (\frac{\mu(K(x, V_x, \alpha, r))}{r^n})^p \frac{dr}{r} < \infty.
$$

First, we recall the definition of β_2 numbers, as defined by David and Semmes [DS91].

Definition 9.2. Given a Radon measure μ, $x \in \text{supp } \mu$, $r > 0$, and an n-plane L, define

$$
\beta_{\mu,2}(x, r) = \inf_L \left(\frac{1}{r^n} \int_{B(x,r)} \left(\frac{\text{dist}(y, L)}{r} \right)^2 \, d\mu(y) \right)^{1/2},
$$

where the infimum is taken over all n-planes intersecting $B(x, r)$.

Tolsa showed the following necessary condition for rectifiability in terms of β_2 numbers.

Theorem 9.3 (Tol15). Suppose μ is an n-rectifiable measure on \mathbb{R}^d. Then, for μ-a.e. $x \in \mathbb{R}^d$ we have

$$
\int_0^1 \beta_{\mu,2}(x, r)^2 \frac{dr}{r} < \infty.
$$

Remark 9.4. When showing that rectifiable sets have approximate tangents almost everywhere one uses the so-called linear approximation properties, see [Mat95, Theorems 15.11 and 15.19]. The theorem of Tolsa improves on the linear approximation property, and that allows us to improve on the classical approximate tangent plane result.
For a fixed n-rectifiable measure μ, let $L_{x,r}$ denote a plane minimizing $\beta_{\mu,2}(x,r)$ (it may be non-unique, in which case we simply choose one of the minimizers).

Recall that in Definition 1.1 we defined the approximate tangent to μ to be an n-plane $W'_x \in G(d,n)$. Let $W_x := x + W'_x$, whenever the approximate tangent exists and is unique (that is for μ-a.e. x, by Theorem 1.2). In order to apply Tolsa’s result in our setting, we need the following intuitively clear result.

Lemma 9.5. Let μ be a rectifiable measure. Then for μ-a.e. $x \in \text{supp} \mu$ we have

$$\text{dist}_H(L_{x,r} \cap B(x,r), W_x \cap B(x,r)) \to_0 0.$$

(9.2)

A relatively simple (although lengthy) proof can be found in Appendix A.

Before proving Proposition 9.7 we need one more lemma. Recall that if $\alpha > 0$, W is an n-plane, and $0 < r < R$, then $K(x, W^\perp, \alpha, r, R) = K(x, W^\perp, \alpha, R) \setminus K(x, W^\perp, \alpha, r)$.

Lemma 9.6. Let $\alpha, \varepsilon \in (0,1)$ be some constants satisfying $\eta := 1 - \alpha - 3\varepsilon > 0$. Let $x \in \mathbb{R}^d$, $r > 0$, and suppose that W and L are n-planes satisfying $x \in W$ and

$$\text{dist}_H(L \cap B(x, r), W \cap B(x, r)) \leq \varepsilon r.$$

Then

$$K(x, W^\perp, \alpha, r, 2r) \subset B(x, 2r) \setminus B_{\eta r}(L).$$

Proof. Suppose $y \in K(x, W^\perp, \alpha, r, 2r)$, so that $r < |x - y| < 2r$ and $|x - \pi_W(y)| < \alpha|x - y|$. We need to show that $\text{dist}(y, L) > \eta r$.

Set $y' = \pi_L(y)$, $x' = \pi_L(x)$. Then

$$\text{dist}(y, L) = |y - y'| \geq |x - y| - |x' - y'| - |x - x'|$$

$$= |x - y| - |x' - y'| - \text{dist}(x, L) \geq |x - y| - |x' - y'| - \varepsilon r.$$

Let $\tilde{\pi}_W$ and $\tilde{\pi}_L$ denote the orthogonal projections onto the n-planes parallel to W and L passing through the origin. It follows from (9.2) that $\|\tilde{\pi}_W - \tilde{\pi}_L\|_{\text{op}} \leq \varepsilon$. Thus,

$$|x' - y'| = |\tilde{\pi}_L(x - y)| \leq |\tilde{\pi}_W(x - y)| + \|\tilde{\pi}_W - \tilde{\pi}_L\|_{\text{op}}|x - y| \leq |\tilde{\pi}_W(x - y)| + 2\varepsilon r.$$

Hence, using the fact that $|\tilde{\pi}_W(x - y)| = |x - \pi_W(y)| < \alpha|x - y|$, we get from the two estimates above

$$\text{dist}(y, L) \geq |x - y| - |\tilde{\pi}_W(x - y)| - 3\varepsilon r \geq (1 - \alpha)|x - y| - 3\varepsilon r \geq (1 - \alpha - 3\varepsilon)r = \eta r.$$

□

Proof of Proposition 9.7. Let μ be n-rectifiable. For $r > 0$ and $x \in \text{supp} \mu$ let $L_{x,r}$ be the n-plane minimizing $\beta_{\mu,2}(x,r)$. We know that for μ-a.e. $x \in \text{supp} \mu$ we have (9.1) and (9.2) (in particular, the approximate tangent plane W_x exists). Fix such x. Set $V_x = W_x^\perp$, let $\alpha \in (0, 1)$ be arbitrary, and for $0 < r < R$ set $K(r) = K(x, V_x, \alpha, r)$, $K(r, R) = K(x, V_x, \alpha, r, R)$. We will show that

$$\int_0^1 \left\{ \frac{\mu(K(r))}{r^n} \right\}^p \frac{dr}{r} < \infty.$$

(9.4)

Let $\varepsilon > 0$ be a constant so small that $\eta := 1 - \alpha - 3\varepsilon > 0$. Use Lemma 9.6 to find $r_0 > 0$ such that for $0 < r \leq r_0$ we have

$$\text{dist}_H(L_{x,r} \cap B(x, r), W_x \cap B(x, r)) \leq \varepsilon r.$$

Then, it follows from Lemma 9.5 that for all $0 < r \leq r_0$

$$K(r, 2r) \subset B(x, 2r) \setminus B_{\eta r}(L_{x,r}).$$
Note that by Chebyshev’s inequality
\[\mu(B(x, 2r) \setminus B_{\eta r}(L_{x,r})) \leq \eta^{-2} \int_{B(x,2r)} \left(\frac{\text{dist}(y, L_{x,r})}{r} \right)^2 \, d\mu(y) = \eta^{-2}(2r)^n \beta_{\mu,2}(x, 2r)^2. \]
Hence, for \(0 < r \leq r_0\) we have
\[\frac{\mu(K(r, 2r))}{r^n} \lesssim \eta \beta_{\mu,2}(x, 2r)^2, \]
and so
\[\int_0^{r_0} \frac{\mu(K(r, 2r))}{r^n} \, dr \lesssim \eta \int_0^{2r_0} \beta_{\mu,2}(x, r)^2 \, \frac{dr}{r} \lesssim \infty. \tag{9.5} \]
Now, observe that for any integer \(N > 0\)
\[\int_{2^{-N}r_0}^{r_0} \frac{\mu(K(r))}{r^n} \, dr \lesssim (r_0)^{-n} \sum_{k=0}^N \mu(K(2^{-k}r_0)) 2^{kn} \]
\[\leq 2^n(r_0)^{-n} \sum_{k=0}^N \mu(K(2^{-k}r_0)) 2^{kn} - (r_0)^{-n} \sum_{k=0}^N \mu(K(2^{-k}r_0)) 2^{kn} \]
\[= (r_0)^{-n} \sum_{k=0}^N \mu(K(2^{-k}r_0)) 2^{(k+1)n} - (r_0)^{-n} \sum_{k=0}^N \mu(K(2^{-k}r_0)) 2^{kn} \]
\[= (r_0)^{-n} \sum_{k=1}^{N+1} (\mu(K(2^{-k+1}r_0)) - \mu(K(2^{-k}r_0))) 2^{kn} + \mu(K(2^{-(N+1)}r_0)) - \mu(K(r_0)) \]
\[\lesssim \int_0^{r_0/2} \frac{\mu(K(r, 2r))}{r^n} \, dr + \Theta_\mu(x, 2^{-(N+1)}r_0) = 0. \]
Letting \(N \to \infty\), we get from the above and [9.5] that
\[\int_0^{r_0} \frac{\mu(K(r))}{r^n} \, dr \lesssim \eta \int_0^{2r_0} \beta_{\mu,2}(x, r)^2 \, \frac{dr}{r} + \Theta_{\mu,n}^*(\mu, x) < \infty, \]
for \(\mu\)-a.e. \(x \in \text{supp} \mu\), where we also used the fact that \(\Theta_{\mu,n}^*(\mu, x) < \infty\) \(\mu\)-almost everywhere (because \(\mu\) is \(n\)-rectifiable). The integral \(\int_{2r_0}^{r_0} \frac{\mu(K(r))}{r^n} \, dr\) is obviously finite, and so we get that
\[\int_0^{1} \frac{\mu(K(r))}{r^n} \, dr < \infty, \]
which is precisely [9.4] with \(p = 1\). To get the same with \(p > 1\), note that since \(\Theta_{\mu,n}^*(\mu, x) < \infty\) for \(\mu\)-a.e. \(x\), we have
\[\int_0^{1} \left(\frac{\mu(K(r))}{r^n} \right)^p \, dr \leq \int_0^{1} \frac{\mu(K(r))}{r^n} \Theta_\mu(x, r)^{p-1} \, dr \leq \sup_{0 < r < 1} \Theta_\mu(x, r)^{p-1} \int_0^{1} \frac{\mu(K(r))}{r^n} \, dr < \infty. \]
\[\Box \]

10. Sufficient Condition for BPLG

In this section we prove the “sufficient part” of Theorem 1.1. After a suitable translation and rescaling, it suffices to show the following:

Proposition 10.1. Suppose \(p \geq 1\), \(E \subset \mathbb{R}^d\) is \(n\)-AD-regular, and \(0 \in E\). Let \(\alpha > 0\), \(M_0 > 1\), \(\kappa > 0\), and assume that there exist \(F \subset E \cap B(0,1)\) and \(V \in G(d,d-n)\), such that \(\mathcal{H}^n(F) \geq \kappa\), and for all \(x \in F\)
\[\int_0^{1} \left(\frac{\mathcal{H}^n(K(x,V,\alpha,r) \cap F)}{r^n} \right)^p \, dr \leq M_0. \tag{10.1} \]
Then there exists a Lipschitz graph Γ, with Lipschitz constant depending on α, n, d, such that
\[
\mathcal{H}^n(F \cap \Gamma) \gtrsim 1,
\]
with the implicit constant depending on $\kappa, p, M_0, \alpha, n, d$, and the AD-regularity constants of E.

To prove the above we will use techniques developed in [MO18b]. Fix $V \in G(d, d - n)$. Let $\theta > 0$ and $M \in \{0, 1, 2, \ldots \}$. In the language of Martikainen and Orponen, a set $E \subset \mathbb{R}^d$ has the n-dimensional (θ, M)-property if for all $x \in E$
\[
\# \{ j \in \mathbb{Z} : K(x, V, \theta, 2^{-j}, 2^{-j+1}) \cap E \neq \emptyset \} \leq M.
\]
It is easy to see that if E has the n-dimensional $(\theta, 0)$-property, then E is contained in a Lipschitz graph with Lipschitz constant bounded by $1/\theta$, see [MO18b, Remark 1.11].

The main proposition of [MO18b] reads as follows.

Proposition 10.2 ([MO18b, Proposition 1.12]). Assume that E is n-AD-regular, and assume that $F_1 \subset E \cap B(0, 1)$ is an \mathcal{H}^n-measurable subset with $\mathcal{H}^n(F_1) \approx_C 1$. Suppose further that F_1 satisfies the n-dimensional (θ, M)-property for some $\theta > 0, M \geq 0$. Then there exists and \mathcal{H}^n-measurable subset $F_2 \subset F_1$ with $\mathcal{H}^n(F_2) \approx_{C, \theta, M} 1$ which satisfies the $(\theta/b, 0)$-property. Here $b \geq 1$ is a constant depending only on d.

Remark 10.3. It follows immediately from the proposition above that if we construct $F_1 \subset E \cap B(0, 1)$ with $\mathcal{H}^n(F_1) \approx \kappa$ satisfying the n-dimensional $(\alpha/2, M)$-property, then we will get a Lipschitz graph Γ such that (10.2) holds. Hence, we will be done with the proof of Proposition 10.1.

To construct F_1 we will use another lemma from [MO18b].

Lemma 10.4 ([MO18b, Lemma 2.1]). Let E be an n-AD-regular set with $\mathcal{H}^n(E) \geq C > 0$, let $F \subseteq E \cap B(0, 1)$ be an \mathcal{H}^n-measurable subset, and let
\[
F_\varepsilon = \{ x \in F : \mathcal{H}^n(F \cap B(x, r_x)) \leq \varepsilon r_x^n \text{ for some radius } 0 < r_x \leq 1 \}.
\]
Then $\mathcal{H}^n(F_\varepsilon) \lesssim \varepsilon$ with the bound depending only on C and the AD-regularity constant of E.

Note that the set $F \setminus F_\varepsilon$ does not have to be AD-regular. Nevertheless, we gain some extra regularity that will prove useful.

Now, let E and $F \subset E \cap B(0, 1)$ be as in the assumptions of Proposition 10.1. We apply Lemma 10.4 to conclude that for some ε, depending on κ and the AD-regularity constant of E, we have
\[
\mathcal{H}^n(F \setminus F_\varepsilon) \geq \frac{\kappa}{2}.
\]
Set $F_1 = F \setminus F_\varepsilon$.

Lemma 10.5. There exists $M = M(M_0, \varepsilon, \alpha, n)$ such that F_1 satisfies the n-dimensional $(\alpha/2, M)$-property.

Proof. Denote by $F_{\text{Bad}} \subset F_1$ the set of $x \in F_1$ such that
\[
\# \{ j \in \mathbb{Z} : K(x, V, \alpha/2, 2^{-j}, 2^{-j+1}) \cap F_1 \neq \emptyset \} > M.
\]
We will show that, if M is chosen big enough, the set F_{Bad} is empty.

Let $x \in F_{\text{Bad}}$ and $j \in \mathbb{Z}$ be such that there exists $x_j \in K(x, V, \alpha/2, 2^{-j}, 2^{-j+1}) \cap F_1$. It is easy to see that for some $\lambda = \lambda(\alpha)$, independent of j, we have
\[
B(x_j, 2^{\lambda-j}) \subset K(x, V, \alpha, 2^{-j-1}, 2^{-j+2}).
\]
Since \(x_j \in F_1 = F \setminus F_o \), it follows that
\[
\mathcal{H}^n(F \cap B(x_j, \lambda 2^{-j})) > \varepsilon (\lambda 2^{-j})^n.
\]
The two observations above give
\[
\mathcal{H}^n(F \cap K(x, V, \alpha, 2^{-j+2})) \geq \mathcal{H}^n(F \cap K(x, V, \alpha, 2^{-j-1}, 2^{-j+2})) \gtrsim_{\alpha, \lambda} \varepsilon.
\]
By (10.3), there are more than \(M \) different scales (i.e. \(j \)'s) for which the above holds. Thus, for \(x \in F_{\text{Bad}} \) we have
\[
\int_0^1 \left(\frac{\mathcal{H}^n(K(x, V, \alpha, r) \cap F)}{r^n} \right)^p \frac{dr}{r} \gtrsim_{\alpha, \lambda} M \varepsilon^p.
\]
Taking \(M = M(M_0, \varepsilon, \alpha, n, p) \) big enough we get a contradiction with (10.1). Thus, \(F_{\text{Bad}} \) is empty. Now, it follows trivially by the definition of \(F_{\text{Bad}} \) that \(F_1 \) satisfies the \(n \)-dimensional \((\alpha/2, M)\)-property. \(\square \)

By Remark (10.3) this finishes the proof of Proposition (10.1).

11. Necessary Condition for BPLG

In this section we prove the “necessary part” of Theorem (1.11). After rescaling, translating, and using the BPLG property, it is clear that it suffices to show the following:

Proposition 11.1. Suppose \(E \subset \mathbb{R}^d \) is \(n \)-AD-regular, and \(0 \in E \). Let \(p \geq 1 \). Assume there exists a Lipschitz graph \(\Gamma \) such that \(\mathcal{H}^n(\Gamma \cap E \cap B(0, 1)) \geq \kappa \). Then there exists \(\alpha = \alpha(\text{Lip}(\Gamma)) > 0 \), \(V \in G(d, d-n) \), and a set \(F \subset \Gamma \cap E \cap B(0, 1) \), such that \(\mathcal{H}^n(F) \gtrsim \kappa \), and for \(x \in F \)
\[
\int_0^1 \left(\frac{\mathcal{H}^n(K(x, V, \alpha, r) \cap E)}{r^n} \right)^p \frac{dr}{r} \leq M_0,
\]
where \(M_0 > 1 \) is a constant depending on \(p, \text{Lip}(\Gamma), \kappa \) and the AD-regularity constant of \(E \).

We begin by fixing some additional notation. Set \(\mu = \mathcal{H}^n|_E \). We will denote the AD-regularity constant of \(E \) by \(C_0 \), so that for every \(x \in E \), \(0 < r < \text{diam}(E) \),
\[
C_0^{-1} r^n \leq \mu(B(x, r)) \leq C_0 r^n.
\]

Remark 11.2. Since we assume that \(E \) is AD-regular, the exponent \(p \) in (11.1) does not really matter. For any \(p > 1 \) we have
\[
\left(\frac{\mathcal{H}^n(K(x, V, \alpha, r) \cap E)}{r^n} \right)^p \leq C_0^{p-1} \mathcal{H}^n(K(x, V, \alpha, r) \cap E),
\]
and so it is enough to prove (11.1) for \(p = 1 \).

Set \(L = \text{Lip}(\Gamma) \). Let \(V \in G(d, d-n) \) be such that \(\Gamma \) is an \(L \)-Lipschitz graph over \(V^\perp \), and let \(\theta = \theta(L) > 0 \) be such that
\[
K(x, V, \theta) \cap \Gamma = \emptyset \quad \text{for all } x \in \Gamma.
\]
Set \(\alpha = \text{min}(\theta^2, 0.1, \frac{1}{M_0}) \).

For every \(x \in E \cap B(0, 1) \setminus \Gamma \) consider the ball \(B_x = B(x, 0.01 \text{dist}(x, \Gamma)) \). We use the 5r-covering lemma to choose a countable subfamily of pairwise disjoint balls \(B_j = B(x_j, r_j) \), \(r_j = 0.01 \text{dist}(x_j, \Gamma) \), \(j \in \mathbb{Z} \), such that
\[
E \cap B(0, 1) \setminus \Gamma \subset \bigcup_{j \in \mathbb{Z}} 5B_j.
\]
Observe that
\[
\sum_{j \in \mathbb{Z}} r_j^n \leq C_0 \sum_{j \in \mathbb{Z}} \mu(B_j) = C_0 \mu\left(\bigcup_{j \in \mathbb{Z}} B_j \right) \leq C_0 \mu(B(0,2)) \lesssim C_0^2. \tag{11.2}
\]
For each \(j \in \mathbb{Z} \) set
\[
K_j = \bigcup_{y \in 5B_j} K(y, V, \alpha), \quad K_j(r) = \bigcup_{y \in 5B_j} K(y, V, \alpha, r).
\]

Lemma 11.3. For each \(j \in \mathbb{Z} \) we have
\[
\mathcal{H}^n(K_j \cap \Gamma) \lesssim_L r_j^n. \tag{11.3}
\]
Moreover,
\[
K_j(r) \cap \Gamma = \emptyset \quad \text{for } r < r_j. \tag{11.4}
\]

Proof. \((11.3)\) is very easy – observe that for \(r < r_j \) we have \(K_j(r) \subset 6B_j \), and so for \(y \in K_j(r) \)
\[
\text{dist}(y, \Gamma) \geq \text{dist}(x_j, \Gamma) - 6r_j = (1 - 0.06) \text{dist}(x_j, \Gamma) > 0.
\]

Concerning \((11.3)\), we claim that since \(\Gamma = \text{graph}(F) \) for some \(L \)-Lipschitz function \(F : V^\perp \to V \), and since \(\alpha \) is sufficiently small, for all \(x \in \mathbb{R}^d \) we have
\[
K(x, V, \alpha) \cap \Gamma \subset B(x, C \text{dist}(x, \Gamma)), \tag{11.5}
\]
where \(C = C(L) > 1 \). Indeed, if \(\text{dist}(x, \Gamma) = 0 \), then \(K(x, V, \alpha) \cap \Gamma = \emptyset \) and there is nothing to prove. Suppose \(\text{dist}(x, \Gamma) > 0 \), \(y \in K(x, V, \alpha) \cap \Gamma \), and let \(z \in \Gamma \) be the image of \(x \) under the projection onto \(\Gamma \) orthogonal to \(V^\perp \), i.e. \(z = \pi^\perp_V(x) + F(\pi^\perp_V(x)) \).

Observe that, since \(\Gamma \) is a Lipschitz graph,
\[
|x - z| \lesssim_L \text{dist}(x, \Gamma),
\]
and also \(\pi^\perp_V(x) = \pi^\perp_V(z) \). By the definition of a cone, \(y \in K(x, V, \alpha) \) gives
\[
|\pi^\perp_V(z - y)| = |\pi^\perp_V(x - y)| < \alpha |x - y|.
\]
On the other hand, \(y \in \Gamma \) and the above imply
\[
|\pi_V(z - y)| \leq L|\pi^\perp_V(z - y)| < L \alpha |x - y|.
\]
The three estimates above yield
\[
|x - y| \leq |x - z| + |z - y| \leq C(L) \text{dist}(x, \Gamma) + |\pi^\perp_V(z - y)| + |\pi_V(z - y)|
\leq C(L) \text{dist}(x, \Gamma) + \alpha |x - y| + L \alpha |x - y| \leq C(L) \text{dist}(x, \Gamma) + \frac{1}{2} |x - y|.
\]
Hence, \(|x - y| \lesssim_L \text{dist}(x, \Gamma) \) and \((11.3)\) follows.

Now, going back to \((11.3)\), note that for \(y \in 5B_j \) we have \(\text{dist}(y, \Gamma) \approx r_j \), so that \(K(y, V, \alpha) \cap \Gamma \subset B(y, Cr_j) \) for some \(C = C(L) \). Moreover, \(B(y, Cr_j) \subset B(x_j, 10Cr_j) \).

Therefore, \(K_j \cap \Gamma \subset B(x_j, 10Cr_j) \cap \Gamma \), and \((11.3)\) easily follows. \(\Box \)

Proof of Proposition 11.1. Let \(x \in \Gamma \cap B(0,1) \) and \(0 < r < 1 \). Since \(\{5B_j\}_{j \in \mathbb{Z}} \) cover \(E \cap B(0,1) \setminus \Gamma \), and \(K(x, V, \alpha, r) \cap \Gamma = \emptyset \), we have
\[
\mu(K(x, V, \alpha, r)) \leq \sum_{j \in \mathbb{Z} : 5B_j \cap K(x, V, \alpha, r) \neq \emptyset} \mu(5B_j) \lesssim C_0 \sum_{j \in \mathbb{Z} : 5B_j \cap K(x, V, \alpha, r) \neq \emptyset} r_j^n.
\]
Notice that \(5B_j \cap K(x, V, \alpha, r) \neq \emptyset\) if and only if \(x \in K_j(r)\). Hence, using the above and Lemma 9.3 yields

\[
\int_{\cap B(0,1)} \int_0^1 \frac{\mu(K(x, V, \alpha, r))}{r^n} \frac{dr}{r} d\mathcal{H}^n(x) \lesssim C_0 \int_{\cap B(0,1)} \int_0^1 \frac{1}{r} \sum_{j \in \mathbb{Z}} r_j^n \mathbf{1}_{K_j(r)}(x) \frac{dr}{r} d\mathcal{H}^n(x)
\]

\[
= \sum_{j \in \mathbb{Z}} r_j^n \int_{\cap B(0,1)} \int_0^1 \frac{1}{r} \mathbf{1}_{K_j(r)}(x) \frac{dr}{r} d\mathcal{H}^n(x) \leq \sum_{j \in \mathbb{Z}} r_j^n \int_{\cap B(0,1)} \int_0^1 \frac{1}{r} \frac{dr}{r} d\mathcal{H}^n(x)
\]

\[
\lesssim \sum_{j \in \mathbb{Z}} r_j^n \int_{\cap K_j} \frac{dr}{r} d\mathcal{H}^n(x) \gtrsim L \sum_{j \in \mathbb{Z}} r_j^n \lesssim C_0 1.
\]

We know that \(\mathcal{H}^n(\cap B(0,1) \cap E) \geq \kappa\), and so we can use Chebyshev’s inequality to conclude that there exist \(M_0 = M_0(L, C_0, \kappa) > 1\) and \(F \subset \cap B(0,1) \cap E\) with \(\mathcal{H}^n(F) \geq \frac{\kappa}{2}\) such that for all \(x \in F\)

\[
\int_0^1 \frac{\mu(K(x, V, \alpha, r))}{r^n} \frac{dr}{r} \leq M_0.
\]

\[\square\]

Appendix A. Proof of Lemma 9.5

For reader’s convenience we restate Lemma 9.5 below.

Lemma A.1. Let \(\mu\) be a n-rectifiable measure. For \(x \in \text{supp} \mu\) and \(r > 0\) let \(L_{x,r}\) denote a minimizing plane for \(\beta_{\mu,2}(x,r)\), let \(W'_x\) be the approximate tangent plane to \(\mu\) at \(x\), whenever it exists, and let \(W_x = W'_x + x\). Then for \(\mu\)-a.e. \(x \in \text{supp} \mu\) we have

\[
\frac{\text{dist}_H(L_{x,r} \cap B(x,r), W_x \cap B(x,r))}{r} \to 0.
\]

Proof. Recall that since \(\mu\) is n-rectifiable, the density \(\Theta^n(\mu, x)\) exists and satisfies \(0 < \Theta^n(\mu, x) < \infty\) for \(\mu\)-a.e. \(x\). Let \(M \geq 100\) be some big constant. Define

\[
E_M := \{x \in \text{supp} \mu : M^{-1} \leq \Theta^n(\mu, x) \leq M\}.
\]

Note that \(\mu(\mathbb{R}^d \setminus \bigcup_{M \geq 100} E_M) = 0\), and so it suffices to show that for all \(M \geq 100\) (A.1) holds for \(\mu\)-a.e. \(x \in E_M\). Fix some big \(M\), and set \(\nu = \mu|_{E_M}\). It is well-known that

\[
M^{-1} \leq \Theta^n(\nu, x) = \Theta^n(\mu, x) \leq M \quad \text{for } \nu\text{-a.e. } x \in \text{supp} \nu,
\]

which can be shown e.g. using [Mat95, Corollary 6.3] in conjunction with Lebesgue differentiation theorem. For \(\nu\)-a.e. \(x\) the plane \(W_x\) is well defined by Theorem 1.2 and also by Theorem 9.3

\[
\int_0^1 \beta_{\mu,2}(x,r)^2 \frac{dr}{r} < \infty \quad \text{for } \nu\text{-a.e. } x \in \mathbb{R}^d.
\]

Fix \(x \in E_M\) such that (A.3) and (A.2) hold, and such that \(W_x\) is well-defined. Once we show that (A.1) holds at \(x\), the proof will be finished. From now on we will suppress the subscript \(x\), so that \(L_r := L_{x,r}\), \(W := W_x\). By applying an appropriate translation, we may assume that \(x = 0\).

Given some small \(r > 0\), let \(A_r(y) = \frac{y}{r}\), so that \(A_r(B(0,r)) = B(0,1)\). Set \(L'_r = A_r(L_r)\).

It is easy to see that (A.1) is equivalent to showing

\[
\text{dist}_H(L'_r \cap B(0,1), W \cap B(0,1)) \to 0.
\]

We will prove that the convergence above holds by contradiction. Suppose it is not true, so that there is \(\varepsilon > 0\) and a sequence \(r_k \to 0\) such that for all \(k\) we have

\[
\text{dist}_H(L'_{r_k} \cap B(0,1), W \cap B(0,1)) \geq \varepsilon.
\]

(A.4)
Let \(\eta > 0 \) be some tiny constant. Observe that by (A.3) for \(k \geq k_0(\eta, M) \) large enough we have
\[
\beta_{\mu,2}(0,r_k)^2 \leq \frac{\eta^3}{M}. \tag{A.5}
\]
Indeed, otherwise one could use the simple fact that \(\beta_{\mu,2}(0,r) \lesssim \beta_{\mu,2}(0,2r) \) to conclude that \(\int_0^1 \beta_{\mu,2}(0,r)^2 \, dr/r = \infty \). Moreover, let us remark that for every \(0 < \delta < 1/2 \), if \(k = k(\delta) \) is large enough, then we have \(L'_{r_k} \cap B(0,\delta) \neq \emptyset \). This can be shown easily using the fact that \(\Theta^\perp(\mu, x) \geq M^{-1} \), that \(L_{r_k} \) are minimizers of \(\beta_{\mu,2}(0,r_k) \), and the fact that \(\beta_{\mu,2}(0,r_k) \to 0 \).

We leave checking the details to the reader.

Now, we use the fact that for \(k \) large enough \(L'_{r_k} \cap B(0,\delta) \neq \emptyset \) and the compactness properties of the Hausdorff distance to conclude that there exists some subsequence (again denoted by \(r_k \)) such that \(L'_{r_k} \cap B(0,1) \) converges in Hausdorff distance to a compact set of the form \(V \cap B(0,1) \), where \(V \) is an \(n \)-plane intersecting \(B(0,\delta) \). Since \(\delta > 0 \) can be chosen arbitrarily small, we get that \(V \) passes through \(0 \). Note that by (A.4)
\[
\text{dist}_H(V \cap B(0,1), W \cap B(0,1)) \geq \varepsilon. \tag{A.6}
\]

Let \(B_{\eta r_k}(V) \) denote the \(\eta r_k \)-neighbourhood of \(V \). We will show now that a large portion of measure \(\nu \) in \(B(0,r_k) \) is concentrated at the intersection of \(B_{\eta r_k}(V) \) and \(B_{\eta r_k}(W) \).

Since \(V \) passes through \(0 \), for every \(r > 0 \) we have \(A^{-1}_r(V) = V \). Thus,
\[
\frac{\text{dist}_H(L_{r_k} \cap B(0,r_k), V \cap B(0,r_k))}{r_k} \to_\infty 0. \tag{A.7}
\]

Note that for \(k \) big enough
\[
\frac{1}{\nu(B(0,r_k))} \int_{B(0,r_k)} \left(\frac{\text{dist}(y,V)}{r_k} \right)^2 \, d\nu(y) \leq \frac{1}{\nu(B(0,r_k))} \int_{B(0,r_k)} \left(\frac{\text{dist}(y,L_{r_k})}{r_k} \right)^2 \, d\nu(y) + \left(\frac{\text{dist}_H(L_{r_k} \cap B(0,2r_k), V \cap B(0,2r_k))}{r_k} \right)^2 \leq \frac{r_k n}{\nu(B(0,r_k))} \beta_{\mu,2}(0,r_k)^2 + \eta^3 \leq 2M \beta_{\mu,2}(0,r_k)^2 + \eta^3 \leq 3\eta^3.
\]

It follows from Chebyshev’s inequality and the estimate above that
\[
\nu(B(0,r_k) \setminus B_{\eta r_k}(V)) \leq \eta^{-2} \int_{B(0,r_k)} \left(\frac{\text{dist}(y,V)}{r_k} \right)^2 \, d\nu(y) \leq 3\eta \nu(B(0,r)).
\]
Hence, \(\nu(B(0,r_k) \cap B_{\eta r_k}(V)) \geq (1 - 3\eta r_k) \nu(B(0,r_k)) \). On the other hand, by the definition of the approximate tangent plane \(W \) and (A.2), for any \(0 < \alpha < 1 \) we have
\[
\nu(K(0,W,\alpha,r_k)) = \nu(B(0,r_k)) - \nu(K(0, W^\perp, \sqrt{1 - \alpha^2}, r_k)) \geq \nu(B(0,r_k)) - \frac{\eta}{2M} r_k^n \geq (1 - \eta) \nu(B(0,r_k)),
\]
if \(k \) is large enough (depending on \(\alpha, \eta \) and \(M \)). Note that \(K(0,W,\alpha,r_k) \subset B_{\alpha r_k}(W) \cap B(0,r_k) \). Thus, choosing \(\alpha = \eta \), if we define
\[
S = S(k, \eta) = B(0,r_k) \cap B_{\eta r_k}(V) \cap B_{\eta r_k}(W),
\]
then by the two previous estimates we have
\[
\nu(S) \geq (1 - 4\eta) \nu(B(0,r_k)) \geq \frac{1}{2M} r_k^n, \tag{A.8}
\]
where in the second inequality we used (A.2).
We will show that if \(\eta \) is chosen small enough (depending on \(\varepsilon \), the constant from \(\text{(A.8)} \)), then the estimate above leads to a contradiction. Roughly speaking, \(\text{(A.8)} \) means that a lot of measure is concentrated in the intersection of \(B_{\eta r_k}(V) \) and \(B_{\eta r_k}(W) \), but since \(V \) and \(W \) are somewhat well-separated by \(\text{(A.6)} \), this intersection behaves approximately like an \((n-1)\)-dimensional set.

Let us start by exploiting \(\text{(A.6)} \). By the definition of Hausdorff distance and the fact that \(V \) and \(W \) are \(n \)-planes, it follows from easy linear algebra that there exists some \(w \in W^\perp \) with \(|w| = 1 \) and \(|\pi_V(w)| \geq \varepsilon \). Let \(v_1 = \pi_V(w)/|\pi_V(w)| \), and let \(V_0 \subset V \) be the orthogonal complement of \(\text{span}(v_1) \) in \(V \).

We define \(T = T(k, \eta) \) to be a tube-like set defined as

\[
T = T(k, \eta) = \{ z \in \mathbb{R}^d : |z \cdot v_1| \leq 2\varepsilon^{-1}r_k, |\pi_{V_0}(z)| \leq r_k, |\pi_V(z)| \leq \eta r_k \}.
\]

We claim that \(S(k, \eta) \subset T(k, \eta) \). Indeed, let \(z \in S \). The estimate \(|\pi_{V_0}(z)| \leq r_k \) is trivial since \(S \subset B(0, r_k) \).

The estimate \(|\pi_V(z)| \leq \eta r_k \) follows from the fact that \(z \in B_{\eta r_k}(V) \).

Concerning \(|z \cdot v_1|\), note that since \(z \in B_{\eta r_k}(W) \) and \(w \in W^\perp \), we have \(|z \cdot w| \leq \eta r_k \). We can use our choice of \(w \) and \(v_1 = \pi_V(w)/|\pi_V(w)| \) to get

\[
\eta r_k \geq |z \cdot w| = |z \cdot \pi_V(w) + z \cdot \pi_V^\perp(w)|
\]

\[
\geq |z \cdot \pi_V(w)| - |z \cdot \pi_V^\perp(w)| = |z \cdot v_1||\pi_V(w)| - |\pi_V^\perp(z) \cdot \pi_V(w)|
\]

\[
\geq |z \cdot v_1|\varepsilon - |\pi_V^\perp(z)||\pi_V(w)| \geq |z \cdot v_1|\varepsilon - \eta r_k,
\]

where in the last inequality we used again \(z \in B_{\eta r_k}(V) \). Thus, we have \(|z \cdot v_1| \leq 2\eta^{-1}r_k \), and the proof of \(S(k, \eta) \subset T(k, \eta) \) is finished.

Choose \(\eta = \gamma \varepsilon \) for some tiny \(\gamma = \gamma(M) > 0 \), and let \(k \) be large enough for \(\text{(A.8)} \) to hold. It follows from the definition of \(T \) that we can cover \(T \) with a family of balls \(\{B_i\}_{i \in I} \) such that \(r(B_i) = \eta r_k \) and \(\#I \lesssim \varepsilon^{-1}\eta^{-(n-1)} \). It is well-known that \(\text{(A.2)} \) implies that for all \(y, r \) we have \(\nu(B(y, r)) \lesssim Mr^n \). In particular, for each \(i \in I \) we have \(\nu(B_i) \leq M(\eta r_k)^n \).

Thus,

\[
\frac{1}{2M} \eta r_k^n \lesssim \nu(S) \leq \nu(T) \leq \sum_{i \in I} \nu(B_i) \lesssim \#I M(\eta r_k)^n \lesssim \varepsilon^{-1}\eta^{-(n-1)} M(\eta r_k)^n = \varepsilon^{-1}\eta Mr_k^n.
\]

That is,

\[
M^{-2} \lesssim \varepsilon^{-1}\eta = \gamma.
\]

This is a contradiction for \(\gamma = \gamma(M) \) small enough. Hence, \(\text{(A.4)} \) is false, and so \(\text{(A.1)} \) holds for \(\mu \text{-a.e. } x \in E_M \). Taking \(M \to \infty \) finishes the proof.

\[
\square
\]

References

[ADT16] J. Azzam, G. David, and T. Toro. Wasserstein distance and the rectifiability of doubling measures: part I. Math. Ann., 364(1-2):151–224, 2016. doi:10.1007/s00208-015-1206-z

[AM16] J. Azzam and M. Mourgoglou. A characterization of 1-rectifiable doubling measures with connected supports. Anal. PDE, 9(1):99–103, 2016. doi:10.2140/apde.2016.9.99

[AT15] J. Azzam and X. Tolsa. Characterization of n-rectifiability in terms of Jones’ square function: Part II. Geom. Funct. Anal., 25(5):1371–1412, 2015. doi:10.1007/s00039-015-0334-7

[ATT20] J. Azzam, X. Tolsa, and T. Toro. Characterization of rectifiable measures in terms of \(\alpha \)-numbers. Trans. Amer. Math. Soc., 373(11):7991–8037, 2020. doi:10.1090/tran/8170

[Azz21] J. Azzam. Semi-Uniform Domains and the A_\infty Property for Harmonic Measure. Int. Math. Res. Not. IMRN, 2021(9):6717–6771, 2021. doi:10.1093/imrn/rnz043

[Bad19] M. Badger. Generalized rectifiability of measures and the identification problem. Complex Anal. Symp., 5(1):2, 2019. doi:10.1007/s00039-019-0027-3

[BJ94] C. J. Bishop and P. W. Jones. Harmonic measure, \(L^2 \)-estimates and the Schwarzian derivative. J. Anal. Math., 62(1):77–113, 1994. doi:10.1007/BF02983549

[BJ96] C. J. Bishop and P. W. Jones. Harmonic measure and the geometry of the set of measure.” Trans. Amer. Math. Soc., 348(12):4755–4800, 1996. doi:10.1090/S0002-9947-96-01711-1

[BJS95] C. J. Bishop, P. W. Jones, and W. P. M. Schlag. Rectifiable subsets of \(\mathbb{R}^d \). Adv. Math., 111(2):153–206, 1995. doi:10.1006/aima.1995.1016
[Tol19] X. Tolsa. Rectifiability of measures and the β_p coefficients. *Publ. Mat.*, 63(2):491–519, 2019. doi:10.5565/PUBLMAT6321904.

[TT15] X. Tolsa and T. Toro. Rectifiability via a square function and Preiss’ theorem. *Int. Math. Res. Not. IMRN*, 2015(13):4638–4662, 2015. doi:10.1093/imrn/rnu082.

[Vil19] M. Villa. A square function involving the center of mass and rectifiability. *Preprint*, 2019, arXiv:1910.13747.

[Vil20] M. Villa. Tangent points of d-lower content regular sets and β numbers. *J. Lond. Math. Soc. (2)*, 101(2):530–555, 2020. doi:10.1112/jlms.12275.

Damian Dąbrowski
Departament de Matemàtiques, Universitat Autònoma de Barcelona; Barcelona Graduate School of Mathematics (BGSMath)
Edifici C Facultat de CièNCIES, 08193 Bellaterra, Barcelona, Catalonia, Spain.

Current address: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland
Email address: damian.m.dabrowski "at" jyu.fi