Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Antiviral activity of anisomycin against spring viraemia of carp virus in epithelioma papulosum cyprini cells and zebrafish

Yu-Feng Shen, Yang Hu, Bin Zhu*, Gao-Xue Wang†

College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China

A R T I C L E I N F O

Keywords:
Anisomycin
SVCV
EPC cells
Zebrafish

A B S T R A C T

Spring viraemia of carp (SVC) caused by spring viraemia of carp virus (SVCV) is an acute and highly lethal viral disease of cyprinid fish. However, effective therapy for SVC is still scarce until now. Here we evaluated the inhibition of anisomycin (Ani), a metabolite produced by Streptomyces griseolus, on the replication of SVCV in vitro and in vivo. Our results demonstrated that Ani could suppress SVCV replication with the maximum inhibitory rate > 95% in epithelioma papulosum cyprini (EPC) cells. And the half maximal inhibitory concentrations (IC50) of Ani on SVCV glycoprotein (G), nucleoprotein (N) and phosphoprotein mRNA expressions were 21.79, 13.13 and 12.24 nM, respectively. Besides, Ani decreased SVCV-induced cytopathic effects and nucleus damages. As expected, Ani also showed a strong anti-SVCV activity in vivo, as indicated by inhibiting viral gene expression and increasing the survival rate of zebrafish. Intraperitoneal injection of Ani increased the survival rate of zebrafish by 30% and markedly inhibited the expressions of G and N mRNA by > 60% in kidney and spleen at day 1 and day 4 post-infection. Results so far suggest that Ani as a powerful agent against SVCV can be applied to the control of SVC in aquaculture.

1. Introduction

Along with fish demands increase, it is critical to reduce losses from viral diseases that economically devastate the aquaculture industry (Balmer et al., 2017). Considered as one of the most serious viral threats for cyprinids, spring viremia of carp (SVC) has caused large-scale deaths and serious economic losses in the aquaculture industry in the past decades (Ashraf et al., 2016). The causative agent of SVC is spring viremia of carp virus (SVCV) which is classified as a member of the Rhabdoviridae family (Ashraf et al., 2016; Liu et al., 2019). SVCV is an enveloped, bullet-shaped RNA virus encoding a negative-sense, ssRNA genome. The virus has widely spread over Europe, Asia, North America and South America ever since its first detection in 1971 (Fijan, 1972; Dikkeboom et al., 2004; Garver et al., 2007). Young fish are especially susceptible to SVCV with up to 90% mortality (Baudouy et al., 1980; Ashraf et al., 2016). Given that SVC causes high mortality among cyprinids and large economic losses in aquaculture, it is imperative to develop effective measures to control the outbreaks of SVC.

Traditionally, vaccination of host fish is an effective way to protect them from SVCV infection. New DNA vaccines have been developed against SVCV and are evoking protection even after oral application (Emmenegger and Kurath, 2008; Cui et al., 2015; Embregts et al., 2019). However, there is no commercial vaccine currently available for the disease. In addition, some researches have been conducted to develop anti-SVCV drugs. Previous studies reported that several natural products and their derivatives showed a good anti-SVCV potential (Chen et al., 2018a, b; Liu et al., 2017, 2018; Liu et al., 2019; Shen et al., 2018a, b; Shen et al., 2019). These findings indicate that it is feasible to control SVCV infection by drug treatment.

Microbes have a strong potential to biosynthesize distinct metabolites that are promising drugs (Abt et al., 2012; Martinez et al., 2017; Wang et al., 2018). These metabolites mediate important host-microbe and microbe-microbe interactions and show plentiful biological activities (Wang et al., 2018). For instance, toxin oosporein from pathogenic fungus Beauveria bassiana interacted with gut microbiota to accelerate mosquito mortality (Wei et al., 2017). Additionally, poly-g-glutamic acid, a polypeptide secreted by Bacillus sp. played an antiviral role on SARS coronavirus and hepatitis C virus (Lee et al., 2013). Anisomycin (Ani), a small bioactive drug produced by Streptomyces griseolus, had been verified to possess antiprotocostral and antiviral activities (Ramabhadran and Thach, 1980; Tang et al., 2012). Reportedly, Ani could inhibit the replication of encephalomyocarditis virus (Ramabhadran and Thach, 1980). However, its application to treat viral diseases in aquaculture has not yet been investigated.

In the present study, the antiviral activity of Ani against SVCV was assessed in vitro and in vivo. To test the anti-SVCV activity in vitro, real-
time quantitative PCR (RT-qPCR), titer test, cytopathic effects (CPE) reduction assay and nucleus damage test were carried out. As a model organism, adult zebrafish (Danio rerio) are easily susceptible to SVCV. Thus it is to be considered as an ideal experimental model for studying the antiviral effect of Ani on SVCV in vivo. The antiviral activity of Ani against SVCV in zebrafish was evaluated by RT-qPCR and survival rate assay. Our results demonstrated the potential application of Ani as anti-SVCV agent in aquaculture.

Table 1
Sequences of primer pairs.

Genes	Accession No.	Forward	Reverse
G	AY527273.1	GCTACATGCGATTCCTTTTGC	GCTGAATTACAGGTTGCCATGAT
	N	AACAGGGCTTTACATGCA	TAAAGGCTAAGGCTACAGC
β-actin	AY222742.1	GCTATGTGGGTCTGTGCTCGA	GCGTGCCAGTCTATAGCT
18s	BX296557	ACCACCCACAGAATCGAGAAA	GCTGGGCTTTTAGACT

“G”: SVCV glycoprotein; “N”: SVCV nucleoprotein.

Fig. 1. Five-point dose-response curves for antiviral activities of Ani in EPC cells. The percent inhibition of Ani in the SVCV of glycoprotein (G), nucleoprotein (N) and phosphoprotein (P) expression assay was shown in red, blue and dark yellow. The maximum percent inhibition observed (Max response) of SVCV were indicated. Data were shown as mean ± SEM of three replicate samples of two independent experiments.
The epithelioma papulosum cyprini (EPC) cells (kindly provided by Prof. Ling-Bing Zeng, Yangtze River Fisheries Research Institute, Wuhan, Hubei, China) were cultured at 25 °C in 5% CO₂ atmosphere in Medium 199 (M199, Hyclone, USA) cell culture with 10% fetal bovine serum (FBS, ZETA LIFE, USA). The strain 0504 SVCV was isolated from Medium 199 (M199, Hyclone, USA) cell culture with 10% fetal bovine serum (FBS, ZETA LIFE, USA). The strain 0504 SVCV was isolated from Medium 199 (M199, Hyclone, USA) cell culture with 10% fetal bovine serum (FBS, ZETA LIFE, USA). The strain 0504 SVCV was isolated from Medium 199 (M199, Hyclone, USA) cell culture with 10% fetal bovine serum (FBS, ZETA LIFE, USA).

Zebrafish (n = 1000, average length was 3.20 ± 0.15 cm) were obtained from the Xi’an Aquarium Market. The fish were acclimatized in five 300 L aquarium with a flow through system of carbon filtered tap water at 28 °C for 4 weeks prior to the beginning of experiments and fed to apparent satiation three times one day (8:00, 14:00 and 20:00) with a diet of commercial fresh blood worms (Aquacube Pet Products CO., LTD, Tianjin, China). Then we moved the aquarium to 17 °C. Then the following treatments were executed for the three groups: (1) For the control group, each zebrafish was injected intraperitoneally with 10 μL PBS and reared for 14 d; (2) For SVCV + PBS and SVCV + Ani groups, SVCV (200 TCID₅₀) was mixed with PBS or Ani in equal volume, then each zebrafish was injected intraperitoneally with 10 μL mixture. The infected fish were fed three times daily with commercial dry feed pellets (Hello Fish Dry Pellets, Beijing, China), and then reared for additional 14 days to monitor mortality.

2.5. Antiviral activity of Ani in zebrafish

2.5.1. Survival rate assay

According to our previous studies (Shen et al., 2018b, 2019), healthy zebrafish were divided into three groups: SVCV-free PBS control group, SVCV + PBS group and SVCV + Ani group (each group, one tank, n = 30). The rearing temperatures of each aquaria were kept at 17 °C. Then the following treatments were executed for the three groups: (1) For the control group, each zebrafish was injected intraperitoneally with 10 μL PBS and reared for 14 d; (2) For SVCV + PBS and SVCV + Ani groups, SVCV (200 TCID₅₀) was mixed with PBS or Ani in equal volume, then each zebrafish was injected intraperitoneally with 10 μL mixture. The infected fish were fed three times daily with commercial dry feed pellets (Hello Fish Dry Pellets, Beijing, China), and then reared for additional 14 days to monitor mortality.

2.6. RNA isolation, cDNA synthesis and RT-qPCR assays

To test the anti-SVCV activity of Ani in zebrafish, EPC cells were cultured in 12-well plates to a monolayer and infected with SVCV (1 × 10⁶ TCID₅₀) for 2 h at 25 °C with 5% CO₂. Then the media was removed, cells were washed three times and further incubated in 5% FBS M199 containing DMEM as a control or Ani (7.82 ± 125.00 nM) as treatments for 48 h. Afterwards, the media was removed, RNA extracted, cDNA obtained and RT-qPCR carried out as below indicated.

2.7. Statistical analysis

The data were analyzed by probit analysis which was used for calculating the inhibitory concentration at half-maximal activity (IC₅₀) of the compound using SPSS 18.0 for Windows (SPSS Inc. an IBM Company). The data were analyzed by an unpaired, two-tailed Student's t-test to determine significance (SPSS 18.0), and were presented as mean ± standard error (SEM). A p-value of < 0.05 was considered statistically significant.

3. Results

3.1. Antiviral activity of Ani against SVCV infection in EPC cells

To determine the anti-SVCV activity of Ani in EPC cells, the
expressions of SVCV glycoprotein (G), phosphoprotein (P) and nucleoprotein (N) were analyzed by RT-qPCR. As shown in Fig. 1, the 48 h IC50 for Ani on G, N and P were 21.79, 13.13 and 12.24 nM, respectively. Moreover, SVCV was dramatically inhibited after its exposure to 125 nM Ani, with the maximum inhibitory rate > 95%. It should be noted that Ani at 125 nM had no significant toxicity on EPC cells by trypan blue exclusion dye staining test (data not shown).

In addition, we further evaluated the titer of SVCV after Ani treatment (Fig. 2). In consistency with the results of RT-qPCR, significant inhibition of SVCV was also shown in Ani-treated EPC cells in the measurement of the viral titer. SVCV titers were 10^{4.95} (24 h post-infection (hpi)), 10^{12.98} (48 hpi) and 10^{15.63} (72 hpi) TCID_{50}/0.1 mL; whereas SVCV titers were 10^{1.03} (24 hpi), 10^{4.70} (48 hpi) and 10^{6.85} (72 hpi) TCID_{50}/0.1 mL in Ani-treated group. The results above indicated that SVCV replication could be significantly inhibited by Ani treatment in vitro.

3.2. Morphologically protective effect of Ani on EPC cells

SVCV infection could induce morphological damages in EPC cells (Liu et al., 2018; Shen et al., 2018a, b; Shen et al., 2019). The results in Fig. 3 showed that SVCV infection induced significant CPE and cell death in EPC cells. In accordance with the viral mRNA expressions, CPE of SVCV-infected cells in presence of 125 nM Ani was decreased significantly at 48 h (Fig. 3A).

In addition, SVCV infection induced nuclear fragmentation in EPC cells (Fig. 3B). By contrast, Ani treatment slowed down this critical condition induced by SVCV to some extent. All these results

Fig. 3. Morphologically protective effect of Ani on SVCV in EPC cells. EPC cells cultured in 12 well plates were exposed to 10^3 TCID_{50} SVCV for 2 h and then the medium with SVCV was removed and cells were incubated in fresh medium containing Ani for 48 h. After incubation periods, cytopathic effects (A) and nucleus damage (B) in EPC cells were observed. Cytopathic effects were shown in red ovals and nucleus damage was detected as arrows indicating.
demonstrated that Ani showed highly efficient inhibition of SVCV replication in EPC cells.

3.3. Anti-SVCV activity of Ani in zebrafish

Based on pre-test of toxicity, we determined the injection concentration of Ani was 500 nM. As shown in Fig. 4A, the cumulative mortality and the expressions of G and N in brain, spleen and kidney were evaluated. Fig. 4B showed that zebrafish died within 3th and 13th days post-infection (dpi) and died with a high speed within 3th dpi and 5th dpi. The cumulative morality of SVCV-infected zebrafish reached up to 76.7% at 13th dpi. Due to the anti-SVCV activity of Ani in zebrafish, the cumulative mortality of zebrafish was reduced to 46.7% after Ani treatment.

To further confirm the anti-SVCV activity of Ani in vivo, the expressions of G and N in brain, spleen and kidney were also evaluated. Fig. 4C showed that Ani had significant inhibition on SVCV replication at 1 st and 4 th dpi. The expression levels of G gene were decreased by 88.96 and 67.92, 79.31 and 48.27, and 71.88 and 76.15% in brain, spleen and kidney at 1 st and 4 th dpi, respectively. At 7 th dpi, Ani did not show any anti-SVCV activity in zebrafish. Altogether, these results implied that Ani was highly effective in the treatment of SVCV infection in zebrafish.

4. Discussion

Severe diseases in aquatic animals caused by rhabdovirus have inflicted heavy economic losses on aquaculture industry. As one of the most lethal pathogens of the isolated rhabdovirus, SVCV has profoundly threatened the lives of cyprinids (Ashraf et al., 2016). A number of researches have been conducted to probe into its pathogenic mechanisms and develop new vaccines for its prevention (Zhao et al., 2018; Embregts et al., 2019). However, the use of vaccine in aquaculture is still restricted due to the handling stress on fish, as well as high laboring and production costs (Life, 2008). In addition, effective drugs for controlling SVCV in aquaculture is still scarce up to now (Ashraf et al., 2016; Shen et al., 2019). To address the urgent need for therapeutics for the treatment of SVCV, in the present study, we explored the anti-SVCV activity of Ani. Our results indicated that Ani was an effective drug for SVCV infection in vitro and in vivo.

Up to now, only a few studies have provided valuable insights into discovering antiviral agents against SVCV. Our recent studies reported that four synthesized coumarins inhibited SVCV with IC$_{50}$ 2.2, 3.2, 0.6 and 2.4 mg/L (Liu et al., 2017; Chen et al., 2018b; Shen et al., 2018b). In addition, arctigenin (IC$_{50}$ = 0.29 mg/L) and its two derivatives (IC$_{50}$ = 0.08 and 0.10 mg/L) were found with anti-SVCV activities (Chen et al., 2018a; Shen et al., 2018a). As natural products, bavachin and saikosaponin D showed efficient inhibition on SVCV infection with IC$_{50}$ 0.46 and 0.21 mg/L (Chen et al., 2018a; Shen et al., 2019). In the present study, the IC$_{50}$ of Ani on SVCV G mRNA expression is only 21.79 nM (0.06 mg/L). Ani is more effective to inhibit SVCV infection in EPC cells, compared with the previously reported compounds. Previous study reported that Ani significantly inhibited the proliferation of T cells in mice (Xing et al., 2008), which indicated that Ani had a
suppressive effect on specific cellular immunity. Several immunosuppressive agents have also been confirmed to possess antiviral activities. For instance, dexamethasone, a classic immunosuppressive agent, has been reported with antiviral activity against human immunodeficiency virus and Paramyxovirus (Bourinbaiar and Leehuang, 1995; Liliana et al., 2003). Rapamycin, the third-generation immunosuppressive agent, was found with antiviral activity against infectious hematopoietic necrosis virus, rift valley fever virus and so on (Bell et al., 2017; Ko et al., 2017; Zhao et al., 2017). In addition, these immunosuppressive agents usually possess anti-inflammatory activity and can improve pathological features (Attur et al., 2000; Liliana et al., 2003; Song et al., 2015). Here, we speculated that the suppressive effect of Ani on specific cellular immunity might induce the anti-inflammatory activity and contribute to its protective effect on SFCV-infected zebrafish, which needs further studies.

Due to the highly efficient inhibition of SFCV replication mediated by Ani in vitro, we further explored whether Ani was also effective to SFCV infection in vivo. Based on the results of previous studies which performed an efficacy comparison between bath infection and intraperitoneal injection of viral infection (Sanders et al., 2003; Enncinas et al., 2013), we chose the intraperitoneal injection as the way of SFCV infection. Our previous study indicated that SFCV replicated quickly in zebrafish within 2th and 5th dpi (Shen et al., 2018b). In accordance with this study, zebrafish died with a high speed within 3th and 5th dpi, which suggested SFCV replication sharply expanded in zebrafish within a short period. It should be noted that Ani could inhibit SFCV replication at 4th dpi. This indicated that Ani reduced SFCV replication in fish body to delay virus infection at the peak of virus replication. Thus, Ani as an antiviral agent showed an effective protection on SFCV-infected zebrafish. Take the example of our recently synthesized coumarin derivatives, statistics showed that they increased the survival rates of zebrafish by 17.5 and 22.5% and inhibited the G mRNA expression by about 50% in kidney and spleen at the first four days (Shen et al., 2018b; Liu et al., 2019). Compared with these two coumarin derivatives, Ani with an inhibitory percentage of > 60% was more effective in the treatment of SFCV infection in zebrafish. Given the above, Ani has been identified with antiviral activity against SFCV in vivo and can be an alternative anti-SFCV agent in aquaculture.

In conclusion, this study demonstrated that Ani inhibited SFCV replication and blocked SFCV-induced morphological damages in EPC cells. More importantly, Ani injection could suppress SFCV infection in vivo and prolong the survival time of zebrafish. Altogether, Ani is expected to be used as a therapeutic agent in aquaculture.

Acknowledgment

The authors thank Prof. Ping-bing Zeng in Yangtze River Fisheries Research Institute for providing EPC cells and Professor Qiang Li in Key Laboratory of Mariculture, Agriculture Ministry for providing SFCV strains. This work was supported by the National Natural Science Foundation of China (No. 31772873).

References

Aht, M., Osborne, L., Monticelli, L., Doering, T., Amin, A.R., 2000. Dexamethasone prevents virus infection by per-responsiveness via multiple mechanisms. Am. J. Physiol. Lung Cell Mol. Physiol. 280, L451.
Liu, L., Yu, Y., Lu, J.F., Wang, G.X., 2019. An imidazole coumarin derivative enhances the antiviral response to SFCV infection in zebrafish. Virus Res. 263, 112–118.
Liu, L., Shen, Y.F., Wang, G.X., 2017. Evaluation on antiviral activity of coumarin derivatives against SFCV infection in zebrafish. Virus Res. 249, 229–235.
Lee, W., Lee, S.H., Ahn, D.G., Cho, H., Sung, M.H., Han, S.H., Oh, J.W., 2013. The antiviral activity of poly-g-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD4-dependent type I interferon responses. Biomaterials 34, 9700–9708.
Lefevre, D., Dressier, W., Michaud, F., Stroobant, V., Desloovere, C., Vassart, G., 2006. Bovine viral diarrhea virus induces autophagy in the gut of immunodeficient mice. J. Virol. 80, 929–946.
Liu, J., Li, B., Li, L., Wang, J., Wang, G., 2005. The anti-infective effect of an antiviral agent, dexamethasone and indomethacin, by MAP30, the antiviral agent from bitter melon. Biochem. Biophys. Res. Commun. 320, 789–795.
Lee, H., Tsuchiya, T., Suzuki, K., Arai, M., 2017. Vaccination of common carp (Cyprinus carpio) with an oral DNA vaccine or an insect cells-based subunit vaccine. Vaccine 35, 6415–6421.
Liu, Z.H., 2005. Immune response to SFCV in common carp, Cyprinus carpio L., from Hamilton Harbour, Lake Ontario, Canada. J. Fish Dis. 30, 655–671.
Gotsman, M., Soliman, H., Besch, R., El-Matbouli, M., 2015. Inhibition of spring virus of carp replication in an Epitheloma papulosum cyprini cell line by MAP30. J. Fish Dis. 38, 197–202.
Ko, S., Gu, M.J., Lim, C.G., Yee, Y.C., Lim, Y., Lee, J.E., Park, B.C., Chu, H., Han, S.H., Yun, C.H., 2017. Rapamycin-induced autophagy restricts porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells. Antiviral Res. 146, 86–95.
Koutná, M., Veselý, T., Pokorová, D., Boudinot, P., Wiegertjes, G.F., Forlenza, M., 2019. Vaccination of carp against SFCV with an oral DNA vaccine or an insect cells-based subunit vaccine. Fish Shellfish Immunol. 85, 56–65.
Emmenegger, E.J., Kurath, G., 2008. DNA vaccine protects ornamental koi (Cyprinus carpio) against North American spring viremia of carp virus. Vaccine 26, 6415–6421.
Enncinas, P., García-Valtanen, P., Chinchilla, B., Gomez-Casado, E., Estepa, A., Coll, J., 2013. Identification of multipath genes differentially expressed in pathotype-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SFCV) suggest preventive drug candidates. PLoS One 8, e73553.
Fujno, N., 1972. Infectious diseases in carp-a disease complex. Dis. Fish 39–51.
García-Valtanen, P., Martínez-Lopez, A., Ortega-Villalma, M., Perez, L., Coll, J.M., Estepa, A., 2014. In addition to its antiviral and immunomodulatory properties, the zebrafish β-defensin 2 (zfBrD2) is a potent viral DNA vaccine molecular adjuvant. Antivir. Res. 101, 136–147.
Garver, K.A., Diewog, A.L., Richard, J., Booth, T.F., Benacri, D.R., Souter, B.W., 2007. First detection and confirmation of spring viremia of carp virus in common carp, Cyprinus carpio L., from Hamilton Harbour, Lake Ontario, Canada. J. Fish Dis. 30, 655–671.
Gotsman, M., Soliman, H., Behz, R., El-Matbouli, M., 2015. Inhibition of spring virus of carp replication in an Epitheloma papulosum cyprini cell line by MAP30. J. Fish Dis. 38, 197–202.
Ko, S., Gu, M.J., Kim, C.G., Kye, Y.C., Lim, Y., Lee, J.E., Park, B.C., Chu, H., Han, S.H., Yun, C.H., 2017. Rapamycin-induced autophagy restricts porcine epidemic diarrhea virus infectivity in porcine intestinal epithelial cells. Antiviral Res. 146, 86–95.
Koutná, M., Veselý, T., Pokorová, D., Boudinot, P., Wiegertjes, G.F., Forlenza, M., 2019. Vaccination of carp against SFCV with an oral DNA vaccine or an insect cells-based subunit vaccine. Fish Shellfish Immunol. 85, 56–65.
Emmenegger, E.J., Kurath, G., 2008. DNA vaccine protects ornamental koi (Cyprinus carpio) against North American spring viremia of carp virus. Vaccine 26, 6415–6421.
Enncinas, P., García-Valtanen, P., Chinchilla, B., Gomez-Casado, E., Estepa, A., Coll, J., 2013. Identification of multipath genes differentially expressed in pathotype-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SFCV) suggest preventive drug candidates. PLoS One 8, e73553.
Fujno, N., 1972. Infectious diseases in carp-a disease complex. Dis. Fish 39–51.
García-Valtanen, P., Martínez-Lopez, A., Ortega-Villalma, M., Perez, L., Coll, J.M., Estepa, A., 2014. In addition to its antiviral and immunomodulatory properties, the zebrafish β-defensin 2 (zfBrD2) is a potent viral DNA vaccine molecular adjuvant. Antivir. Res. 101, 136–147.
Garver, K.A., Diewog, A.L., Richard, J., Booth, T.F., Benacri, D.R., Souter, B.W., 2007. First detection and confirmation of spring viremia of carp virus in common carp, Cyprinus carpio L., from Hamilton Harbour, Lake Ontario, Canada. J. Fish Dis. 30, 655–671.
Gotsman, M., Soliman, H., Behz, R., El-Matbouli, M., 2015. Inhibition of spring virus of carp replication in an Epitheloma papulosum cyprini cell line by MAP30. J. Fish Dis. 38, 197–202.
Saikosaponin D efficiently inhibits SVCV infection in vitro and in vivo. Aquaculture 504, 281–290.
Shen, Y.F., Liu, L., Chen, W.C., Hu, Y., Zhu, B., Wang, G.X., 2018a. Evaluation on the antiviral activity of arctigenin against spring viraemia of carp virus. Aquaculture 483, 252–262.
Shen, Y.F., Liu, L., Feng, C.Z., Hu, Y., Chen, C., Wang, G.X., Zhu, B., 2018b. Synthesis and antiviral activity of a new coumarin derivative against spring viraemia of carp virus. Fish Shellfish Immunol. 81, 57–66.
Song, Y., Xue, H., Liu, T.T., Liu, J.M., Chen, D., 2015. Rapamycin plays a neuroprotective effect after spinal cord injury via anti-inflammatory effects. J. Biochem. Mol. Toxicol. 29, 29–34.
Tang, Z.L., Xing, F.Y., Chen, D., Yu, Y., Yu, C.Y., Di, J.F., Liu, J., 2012. In vivo toxicological evaluation of Anisomycin. Toxicol. Lett. 208, 1–11.
Varela, M., Romero, A., Dios, S., Van, d.V., Figueras, A., Meijer, A.H., Novoa, B., 2014. Cellular visualization of macrophage pyroptosis and interleukin-1β release in a viral hemorrhagic infection in zebrafish larvae. J. Virol. 88, 12026–12040.
Wang, L., Ravichandran, V., Yin, Y., Yin, J., Zhang, Y., 2018. Natural products from mammalian gut microbiota. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.10.003.
Wei, G., Lai, Y., Wang, G., Chen, H., Li, F., Wang, S., 2017. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. U. S. A. 114, 5994–5999.
Xing, F., Yu, Z., Liu, J., Di, J., Zeng, S., Chen, D., Chen, L., Fang, Z., Guo, Z., Pan, S., 2008. Anisomycin inhibits the behaviors of T cells and the allogeneic skin transplantation in mice. J. Immunother. 31, 858–870.
Yang, Y., Huang, J., Li, L., Liu, L., Zhai, Y., Chen, X., Liu, X., Wu, Z., Yuan, J., 2014. Up-regulation of nuclear factor E2-related factor 2 upon SVCV infection. Fish Shellfish Immunol. 40, 245–252.
Zhao, J.Z., Xu, L.M., Liu, M., Zhang, Z.Y., Yin, J.S., Liu, H.B., Lu, T.Y., 2017. Autophagy induced by infectious hematopoietic necrosis virus inhibits intracellular viral replication and extracellular viral yields in epiphelioma papulosum cyprini cell line. Dev. Comp. Immunol. 77, 88–94.
Zhao, L., Qi, L., Li, C., Li, L., Jin, L., Yuan, J., 2018. SVCV impairs mitochondria complex III resulting in accumulation of hydrogen peroxide. Fish Shellfish Immunol. 75, 58–65.