Assessment of genomic prediction reliability and optimization of experimental designs in multi-environment trials

Simon Rio1 · Deniz Akdemir2 · Tiago Carvalho1 · Julio Isidro y Sánchez1

Received: 24 April 2021 / Accepted: 8 October 2021 / Published online: 22 November 2021 © The Author(s) 2021

Abstract

Key message New forms of the coefficient of determination can help to forecast the accuracy of genomic prediction and optimize experimental designs in multi-environment trials with genotype-by-environment interactions.

Abstract In multi-environment trials, the relative performance of genotypes may vary depending on the environmental conditions, and this phenomenon is commonly referred to as genotype-by-environment interaction (GxE). With genomic prediction, GxE can be accounted for by modeling the genetic covariance between trials, even when the overall experimental design is highly unbalanced between trials, thanks to the genomic relationship between genotypes. In this study, we propose new forms of the coefficient of determination (CD, i.e., the expected model-based square correlation between a genetic value and its corresponding prediction) that can be used to forecast the genomic prediction reliability of genotypes, both for their trial-specific performance and their mean performance. As the expected prediction reliability based on these new CD criteria is generally a good approximation of the observed reliability, we demonstrate that they can be used to optimize multi-environment trials in the presence of GxE. In addition, this reliability may be highly variable between genotypes, especially in unbalanced designs with complex pedigree relationships between genotypes. Therefore, it can be useful for breeders to assess it before selecting genotypes based on their predicted genetic values. Using a wheat population evaluated both for simulated and phenology traits, and two maize populations evaluated for grain yield, we illustrate this approach and confirm the value of our new CD criteria.

Introduction

In plant breeding, the best performing genotypes for a given trait are identified through field trials. Depending on the environmental conditions (e.g., temperature or rainfall), the relative performance of genotypes may vary, and this phenomenon is commonly referred to as genotype-by-environment interaction (GxE, see Malosetti et al. (2013) and van Eeuwijk et al. (2016) for reviews). The characterization of GxE involves the evaluation of genotypes in a set of environments representing the cultivation area: the so-called multi-environment trials (METs). If the GxE landscape is stable over the years, environments can be clustered into mega-environments that can be used to select genotypes with local adaptations (Gauch and Zobel 1997). Over the last decades, dedicated statistical methodologies have been developed to study GxE including: (i) the regression proposed by Finlay and Wilkinson (1963), (ii) the additive main effect and multiplicative interaction (AMMI) model (Gauch and Zobel 1988; van Eeuwijk 1995), (iii) the genotype main effect and GxE (GGE) model (Yan et al. 2000), (iv) the factorial regression modeling environmental covariates (Denis 1988; van Eeuwijk and Elgersma 1993), or (v) the random modeling of trial-specific genotype performances (Denis et al. 1997; Smith et al. 2005).

The advent of high-throughput genotyping has revolutionized the methods used to select for quantitative traits by enabling the genomic prediction of the genetic value of...
unobserved genotypes (Meuwissen et al. 2001). Regarding METs, genomic data can help to account for G×E without the need to replicate genotypes within and across trials, as well as to predict the performance of genotypes in environments in which they have not been observed (Burgueño et al. 2012; Guo et al. 2013; Endelman et al. 2014; Ankamah-Yeboah et al. 2020; Jarquin et al. 2020). Several approaches have been proposed to account for G×E in genomic prediction including adaptations of the GBLUP model based on linear (Burgueño et al. 2012; Jarquin et al. 2013; Lopez-Cruz et al. 2015; Cussa et al. 2016a) or non-linear kernels (Cuevas et al. 2016b), approaches integrating crop growth models and genomic data (Heslot et al. 2013; Technow et al. 2015; Rincent et al. 2019), or deep learning methods (Montesinos-López et al. 2018).

In genomic selection, the ability to identify the best genotypes is closely related to the precision with which genetic values are predicted. This precision is most often evaluated using the correlation between the true and the predicted genetic values (then defined as the accuracy) or using the same correlation squared (then defined as reliability, here R_G^2). This precision can be assessed before the experiment using deterministic formulas based on population parameters (Daetwyler et al. 2008; Goddard et al. 2011) or other indicators like the coefficient of determination (CD) (Van-Raden, 2008) which corresponds to the expected model-based R_G^2. In the context of GBLUP, CD depends only on variance parameters and the structure of the covariance (i.e., the genomic relationship matrix for genetic values and the identity matrix for errors). It has been used to forecast the R_G^2 using simulations (Goddard et al. 2011), animal (Hayes et al. 2009), or plant data (He et al. 2016). Adaptations of CD to complex covariance structures have been proposed and evaluated in the context of multi-group (Wientjes et al. 2015; Schopp et al. 2017; Rio et al. 2019) or multi-trait predictions (Ben-Sadoun et al. 2020). Such a statistical framework is also well suited to forecast R_G^2 in METs with G×E, but to the best of our knowledge, it was not the subject of previous studies.

When designing METs, an important question is how to assign genotypes to plots to identify those that are best in each environment or for the overall cultivation area (i.e., regarding the mean performance). Several studies have focused on the allocation of genotypes to plots in one (de S. Bueno Filho and Gilmour, 2003; de S. Bueno Filho and Gilmour, 2007; Piepho and Williams, 2006; Butler et al. 2014) or more environments (Feoktistov et al. 2017; Rincent et al. 2017b; González-Barrios et al. 2019; Cullis et al. 2020) in presence of known kinship between genotypes. The ability of CD to forecast the R_G^2 makes it a valuable criterion to optimize experimental designs. A simple application is the selection of the genotypes to be included in a training set (TRS) among a large set of candidates using the mean of individual CDs (Rincent et al. 2012; Isidro et al. 2015; Rincent et al. 2017a; Akdemir and Isidro-Sánchez, 2019; Isidro-Sánchez and Akdemir, 2021). However, this scenario does not assume the existence of several environments for which genetic values may be different but correlated due to G×E. In this context, an important question is whether accounting for this heterogeneity of genetic values between trials in the optimization procedure helps to obtain MET experimental designs that maximize the R_G^2 in presence of G×E.

The objectives of this study were to (i) confirm the value of multivariate genomic prediction models in the context of METs with G×E, (ii) present new CD criteria derived from those multivariate models and evaluate their ability to forecast the R_G^2 of both the trial-specific performance and the mean performance, (iii) evaluate the ability of new criteria to rank and optimize experimental designs based on the R_G^2.

Note that the experimental designs tested in this study did not aim at evaluating the impact of the allocation of genotypes according to spatial characteristics within trials. Large publicly available wheat and maize datasets were used to address those objectives using both simulated and real traits.

Material and methods

Genomic prediction models

In this study, we considered a general multivariate model where response variables corresponded to the same trait in different trials. This multivariate model is presented here in a vectorized form:

$$y = X\beta + Zg + e$$

where $y = \begin{bmatrix} y_1 & \ldots & y_T \end{bmatrix}$ is the concatenated vector of phenotypes in T trials, $\beta = (\mu_1, \ldots, \mu_T)^T$ is the vector of fixed trial means, X is the design matrix for fixed effects, $g = \begin{bmatrix} g_1 & \ldots & g_T \end{bmatrix}$ is the concatenated vector of random trial-specific genetic values with $g \sim N(0, G)$ and G being the covariance matrix of g, Z is the incidence matrix linking phenotypic observations to trial-specific genetic values, e is the vector of errors with $e \sim N(0, R)$ and R being the covariance matrix of e. Independence is assumed between g and e.

Let us assume $G = \Omega_G \otimes K$ where K is the genomic relationship matrix between genotypes (or any relationship matrix between them), and Ω_G is the genetic covariance matrix between trials. Similarly, let us assume $R = \Omega_E \otimes I_p$ where I_p is the identity matrix of dimension...
The prediction of the genetic value of a genotype \(g_i \) in a trial \(t \) can be defined as:

\[
CD_t = \frac{\text{Cor}(\hat{g}_i, \hat{g}_i')^2}{\hat{g}_i' \hat{g}_i},
\]

Similarly, the CD associated with the prediction of the mean genetic value over all trials can be defined as:

\[
CD_i = \frac{\sum_{t=1}^{T} \sum_{t'=1}^{T} [GZ_t' MZ_t]^2_{it, it'}}{\sum_{t=1}^{T} \sum_{t'=1}^{T} G_{it, it'}}.
\]

The derivation of \(CD_t \) and \(CD_i \) may also be done based on Henderson’s mixed model equations (Henderson 1973) when the dimension of \(\Sigma \) is larger than that of \(G \), and/or using genetic correlations and variance ratios rather than the covariances matrices \(\Omega_G \) and \(\Omega_E \) (see Supplementary Note 1).

Three versions of \(CD_t \) and \(CD_i \) were defined depending on the assumptions on \(\Omega_G \) and \(\Omega_E \) in the three genomic prediction models previously presented:

- Standard \(CD^S_t \) associated to SGBLUP model for which \(CD^S_{it} = CD^S_{it'} = CD^S_t \) for all \(t, t' \).
- Within-trial \(CD^W_t \) and \(CD^W_{it} \) associated to WGBLUP for which \(CD^W_{it} = \frac{1}{T} \sum_{t'=1}^{T} CD^W_{it'} \).
- Multi-trial \(CD^M_t \) and \(CD^M_{it} \) associated to MGBLUP for which \(CD^M_{it} > \frac{1}{T} \sum_{t'=1}^{T} CD^M_{it'} \) when there exists a pair of trial for which \(\rho_{it, it'} \neq 0 \).

Datasets

The first dataset considered in this study is a CIMMYT Iranian wheat population of 2,374 wheat inbred lines that have been genotyped for 40K SNPs (Crossa et al. 2016b; Montesinos-López et al. 2018; Montesinos-López et al. 2019). This population has been evaluated for days to heading (DTH) and days to maturity (DTM) in a drought trial and a heat trial at the CIMMYT experiment station (near Ciudad Obregon, Sonora, Mexico) in 2010–2011. Each trial was a grid-check field design with three randomized checks distributed along rows and columns (Crossa et al. 2016b).
Comparison of genomic prediction models

Using the wheat dataset and simulated traits, the three genomic prediction models (SGBLUP, WGBLUP, and MGBBLUP) were compared for their R_G^2. The cross-validation (CV) procedure consisted of defining a TRS of 500 genotypes observed once in each trial, with all other genotypes forming the test set (TS). For each of the 30 CV replicates, new phenotypes were generated (i.e., new errors were sampled to generate phenotypes). The R_G^2 was then computed as the square correlation between predicted and true genetic values for both the trial-specific and the mean performances.

Link between the coefficient of determination and the genomic prediction reliability

Using the wheat dataset and simulated traits, the ability of CD_i and CD_d criteria to forecast the R_G^2 was investigated based on the CV procedure presented in the previous subsection. To show how the CD associated with a genomic prediction is connected to the observed R_G^2, groups of predictions with homogeneous CD were defined according to the following procedure. For each CV sample and simulated trait, CD_i and CD_d were computed for each genotype according to the design and the parameter estimates. Genotypes were then grouped according to sliding intervals of CD values: $[x - 0.05, x + 0.05]$ where $x \in \{0.05, 0.10, ..., 0.90, 0.95\}$. When two genotypes showed a kinship coefficient superior to 0.2 within an interval, one out of the two genotypes was discarded. This deletion procedure was applied iteratively until only "unrelated" genotypes remained within each interval. This procedure helped to limit the degree of correlation between the observations used to compute the observed R_G^2. Also, intervals containing less than 50 values were discarded from the analysis. For each interval, the corresponding R_G^2 was computed and compared to the reference value of the interval of x.

Evaluation and optimization of experimental designs

Using the wheat dataset and simulated traits, all CD criteria were evaluated for their ability to forecast the R_G^2 that can be achieved by different experimental designs. To do so, the mean of each type of CD (CD_i for the trial-specific performance and CD_d for the mean performance) was computed over the set of genotypes to be predicted and compared to the R_G^2 obtained for the same set using the MGBBLUP model. The CV procedure to compare experimental designs consisted of separating the genotypes into a TS of 374 genotypes and a set of 2000 candidate genotypes from which the design of the experiment was defined.

Table 1 Trial-specific parameters considered to simulate traits for $T = 2$ and $T = 5$ trials

Trial	1	2	3	4	5
Mean (μ_t)	20	10	50	30	40
Genetic variance (σ^2_G)	1	2	3	4	5
Plot heritability (h^2_p)	0.2	0.8	0.6	0.4	0.5

Note that for $T = 2$ trials, only the two first columns were used.

The other datasets are two CIMMYT maize populations of 843 and 453 maize inbred lines that have been genotyped for 70K SNPs (Jarquin et al. 2020). The individuals of each population have been crossed to a different tester: T1 for the first population and T2 for the second population (T1 and T2 are further used to name each population). Both populations have been evaluated for grain yield in three trials (Drought, Kiboko, and Kmega) in Kenya, each being an incomplete block design.

In both datasets, each genotype has one reference phenotypic value after adjusting for spatial effects within trials. The genomic relationship matrices were computed following VanRaden (2008) and scaled so that the mean of diagonal elements is equal to 1. Note that, for both datasets, genotype-by-location and genotype-by-management interactions are probably confounded in the G×E interaction. However, the various levels of genetic correlation between trials obtained for these real traits make them valuable data to illustrate the methodology presented in this study.

Simulated traits

Using the wheat dataset only, traits were simulated for $T = 2$ and $T = 5$ trials based on the MGBBLUP model and the set of parameters indicated in Table 1. Different levels of G×E were simulated by adjusting the genetic correlation between trials: $\rho_{i,j} \in \{0.2, 0.5, 0.8\}$. For a given simulated scenario (characterized by T and $\rho_{i,j}$), the same $\rho_{i,j}$ was considered between all pairs of trials. For each trial, genetic values were simulated as the sum between the trial-specific means μ_t and a deviation specific to each trial-specific genotype effect g_{it}. The vectors of correlated deviations were generated using the product between the Cholesky decomposition of G (scaled with corresponding $\rho_{i,j}$ and σ^2_G for all trials) and a vector of independent draws from a standard normal distribution. For each simulated scenario, 30 traits were simulated as replicates.

For each simulated MET experimental design, phenotypes were simulated by adding independent errors drawn from normal distributions with variance $\sigma^2_{Ei} = \frac{1-h^2_p}{h^2_p} \sigma^2_{Gi}$.

© Springer
Different MET experimental designs were considered that are illustrated in Fig. 1:

- Incomplete and unreplicated design (I) where a given genotype is only observed once in a single trial,
- Complete design with \(k \) replicates (\(C_k \)) where a given genotype is observed \(k \) times in each trial.

These MET experimental designs were compared to optimized experimental designs (Opt) obtained by maximizing either the mean of \(CD_{it} \) over trials and genotypes, or the mean of \(CD_i \) over genotypes. These criteria were computed over the total set of candidates, excluding the genotypes of the TS. To limit the size of the set of possible solutions, experimental designs with replicates within trials were not considered in the optimization procedure. All CD criteria were computed for contrasted configurations of variance parameters \(\Omega_G \) and \(\Omega_E \) (Table 2) that matched the different genomic prediction models and CD types presented in previous subsections. The configuration S resumes to a standard univariate optimization based on the mean of \(CD_i^S \). The configuration W corresponds to a multivariate optimization based on the mean of \(CD_{it}^W \) (or equivalently \(CD_i^W \) as \(CD_i^W = \frac{1}{T} \sum_{t=1}^{T} CD_{it}^W \)). Note that the latter configuration resumes applying a standard univariate optimization based on \(CD_i^S \) within each trial. The last configuration M corresponds to a multivariate optimization based on \(CD_{it}^M \) or \(CD_i^M \) (not equivalent when there exists a pair of trials for which \(\rho_{it,ir} \neq 0 \)).

The optimization procedure was implemented using the R-package “TrainSel”\(^2\) (Akdemir et al. 2021). The optimization algorithm implemented is a combination between a genetic algorithm (GA) and a simulated annealing algorithm (SAA). The algorithm is first initiated by a set of random designs. For each GA iteration, a population of 200 designs is generated from the elite set of designs obtained from the previous iteration. Such a step involves the recombination between elite designs and random mutations at the plot level. The best 20 designs are then selected according to the CD optimization approach based on CD criteria for the Opt design. Note that optimized designs do not allow for a genotype to be replicated within each trial, but they do allow a genotype to be replicated across trials.

![Diagram illustrating the procedure to allocate candidate set genotypes to MET experimental designs (Opt, I, C1, and C2) and predict the genetic value of test set individuals. Genotypes are allocated at random for designs I, C1, and C2, while they are allocated using an optimization approach based on CD criteria for the Opt design. Note that optimized designs do not allow for a genotype to be replicated within each trial, but they do allow a genotype to be replicated across trials.](image)

Table 2 Trait parameters considered for the optimization according to the configuration: S, W or M. For a given configuration, the same variances (\(\sigma^2_G \) and \(\sigma^2_E \)) were chosen for all trials, and the same genetic correlation (\(\rho_{it,ir} \)) was chosen for all pairs of trials.

Configuration	S	W	M
Genetic variance (\(\sigma^2_G \))	1	1	1
Error variance (\(\sigma^2_E \))	1	1	1
Genetic correlation (\(\rho_{it,ir} \))	1	0	0.5

\(^2\) Available at https://github.com/TheRocinante-lab/TrainSel
Fig. 2 Comparison of the genomic prediction reliability (R^2_G or phenotype-based R^2_Y) of different genomic prediction models (SGBLUP, WGBLUP, and MGBLUP) using maize and wheat datasets. For all datasets, the average R^2_G (or R^2_Y) was illustrated for the trial-specific performance and the mean performance of the test set: A the wheat dataset with simulated traits (two trials: $h^2_1 = 0.2$ and $h^2_2 = 0.8$), B the wheat dataset with phenology traits (two trials: Drought and Heat), and C the maize dataset with grain yield (three trials: Drought and Kiboko and Kmega). For simulated traits, the average R^2_G was computed over 30 simulated traits and 30 cross-validation replicates for each level of genetic correlation $\rho_{t,t'}$, and ± the standard error of the 30 CV replicates averaged over the 30 traits are indicated by a bar. For real traits, the average R^2_Y is computed over 30 cross-validation replicates and ± the standard error is indicated by a bar.
criterion and go through additional SAA iterations to limit the risk of finding a local optimum. A total of 2,000 iterations were considered for the GA and 10 iterations for the SAA at each iteration of the GA. Other parameters were default parameters. The convergence of the optimization algorithm was investigated by replicating the optimization procedure on the whole population 30 times.

Application to real traits

Using the wheat and maize datasets and real traits, genomic prediction models and experimental designs were compared using the same CV procedure as for simulated traits, except that the same phenotypes were used for all CV replicates. For the comparison of models and experimental designs using the maize datasets, TSs of 138 and 53 genotypes were defined in populations T1 and T2. All remaining individuals were used as TRS for the comparison of models or as candidates for the comparison of experimental designs (50 plots per trial). The phenotype-based reliability of genomic prediction (R^2_G) was computed as the square correlation between predicted genetic values and the reference phenotypic values.

Data availability statement

The wheat dataset (genotypic and phenotypic data) is available at: http://hdl.handle.net/11529/10548141 (file: "Data_Wheat_Iranian_Set_3.RData.gz"). The maize datasets (genotypic and phenotypic data) are available at: http://hdl.handle.net/11529/10548369. Supplemental figures and tables are available in: "Supplementary file 1". R code is provided to apply the MGBLUP model, compute all CD criteria, and apply the optimization: "R_code.R" and "R_functions.R".

Results

Genomic prediction models comparison

Based on the wheat dataset, the R^2_G of three genomic prediction models (SGBLUP, WGBLUP, and MGBLUP) was evaluated using traits simulated under different scenarios defined by the number of trials and the levels of genetic correlation between trials (see Fig. 2A for $T = 2$ and Supplementary Fig. S1 for $T = 5$). The average R^2_G of genomic prediction models were compared for both the trial-specific performance and the mean performance. For the mean performance, the average R^2_G was very similar between models regardless of the genetic correlation between trials, even though a slight advantage from using MGBLUP could often be observed (e.g., for $\rho_{t,t'} = 0.5$, the average R^2_G was 0.22, 0.23 and 0.24 for SGBLUP, WGBLUP and MGBLUP, respectively). Regarding the trial-specific performance, the ranking of models was variable depending on the trial (each characterized by a specific

Ind.	Trial-1	Trial-2	Coef. of Determination		
			CD_{i1}	CD_{i2}	CD_i
A	✓	✓	✓	✓	0.69 0.69 0.75
	–	–	–	–	0.00 0.00 0.00
	–	–	–	–	0.00 0.00 0.00
B	–	–	–	–	0.00 0.00 0.00
	✓	✓	✓	✓	0.69 0.69 0.75
	–	–	–	–	0.17 0.17 0.19
C	✓	–	✓	✓	0.54 0.68 0.69
	–	✓	–	–	0.50 0.12 0.33
	–	–	–	–	0.13 0.03 0.08
D	✓	–	✓	✓	0.53 0.53 0.60
	–	✓	✓	✓	0.51 0.22 0.39
	–	–	–	✓	0.22 0.51 0.46

Each experimental design consisted of $T = 2$ trials of $P = 2$ plots each, with observed genotypes indicated by a cross (✓). The following parameters were considered: $K = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{bmatrix}$, $\Omega_G = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 2 \end{bmatrix}$, and $\Omega_E = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, which resumes to consider a genetic correlation between trials $\rho_{1,2} \approx 0.5$ and a trial-specific heritability of $h^2_t = 0.5$ for both trials. For this example, fixed effects were assumed to be known which resumes to replacing the M matrix by Σ^{-1} in Eq. (2, 3)

Supplementary table 3: Comparison of simple experimental designs based on the new coefficient of determination (Coef. of Determination) criteria: CD_{it} and CD_i.
heritability \(h^2 \), and the level of genetic correlation between trials. In general, SBGLUP achieved a lower average \(R^2_G \) compared to other models, in particular for scenarios with a low genetic correlation between trials (e.g., for \(\rho_{t,t'} = 0.2 \) in trial-2, the average \(R^2_G \) was 0.17, 0.27 and 0.27 for SGBLUP, WGBLUP and MGBLUP, respectively). For most scenarios, WGBLUP achieved a similar average \(R^2_G \) compared to MGBLUP. A notable exception consisted of trials with a low heritability and a high genetic correlation to other trials where both SGBLUP and MGBLUP outperformed WGBLUP (e.g., for \(\rho_{t,t'} = 0.8 \) in trial-1 characterized by \(h^2_1 = 0.2 \), the average \(R^2_G \) was 0.25, 0.21 and 0.26 for SGBLUP, WGBLUP and MGBLUP, respectively).

Using the wheat dataset and real phenology traits, the phenotype-based \(R^2_Y \) of the same three models was compared (Fig. 2B). As for simulated traits, the average \(R^2_Y \) for the mean performance was very similar between models for both traits. Regarding the trial-specific performance, the \(R^2_Y \) was similar between MGBLUP and WGBLUP for all trials, while SGBLUP achieved a lower average \(R^2_Y \) (e.g., for DTH in the drought trial, the average \(R^2_Y \) was 0.42, 0.47, and 0.47 for SGBLUP, WGBLUP, and MGBLUP, respectively). The same observations could be made using the two maize datasets evaluated for grain yield (Fig. 2C).

New CD criteria - simple example

The properties of the new CD criteria (\(CD^H \) and \(CD^M \)) were illustrated based on a simple example (Table 3). Different experimental designs with two trials (\(T = 2 \)), two plots per trial (\(P = 2 \)), and three genotypes (only genotypes 2 and 3 are related to each other) were considered. For design A, only individual 1 is observed in both trials, leading to a high CD associated with both the trial-specific performances (\(CD^H \)) and the mean performance (\(CD^M \)). Conversely, null \(CD^H \) and \(CD^M \) are obtained for genotypes 2 and 3, as none of them are observed in any trials and none of them are related to genotype 1. A higher \(CD^M \) compared to the mean of \(CD^H \) results here from the positive covariance between trials. For design B, only genotype 2 is observed in both trials, resulting in high \(CD^H \) and \(CD^M \) for genotype 2 but null for genotype 1. As genotype 3 is related to genotype 2, both \(CD^H_3 \) and \(CD^M_3 \) takes small but non-null values. For design C, genotypes 1 and 2 are observed in trial-1, while only genotype 1 is observed in trial-2. As a result, genotype 2 has a high \(CD^H_2 \) but a low \(CD^M_2 \). Because genotype 3 is related to genotype 2, \(CD^H_3 \) is small but non-null, and because of the positive covariance between trials, \(CD^M_2 \) is very small but also non-null. The last design D is one of the possible optimal designs as it allows for the highest average \(CD^H \) or \(CD^M \) over the three genotypes. The higher \(CD^M \) obtained for genotype 3 compared to genotype 2 results from the larger genetic variance in trial-2 compared to trial-1. Note that another optimal design would consist of switching genotypes 2 and 3 between trial-1 and trial-2.
Fig. 4 Observed genomic prediction reliability (R_{G}^{2}) obtained with MGBLUP against expected R_{G}^{2} of the test set according to the experimental design: complete with k replicates (Ck), incomplete and unreplicated (I), and optimized based on CD_{it} with the M configuration (Opt, see Table 2), for 30 simulated traits ($\rho_{t,r} = 0.5$ and $T = 2$, with different h_{t}^{2}, see Table 1) and 30 design replicates. Expected R_{G}^{2} is based on the mean over test set individuals of CD_{it} for the trial-specific performances and CD_{i} for the mean performance. For a given type of design, the average observed R_{G}^{2} against the average expected R_{G}^{2} is represented by a big dot.

Fig. 5 Average phenotype-based genomic prediction reliability (R_{Y}^{2}) of a days-to-heading (DTH) and days-to-maturity (DTM) for the wheat dataset and b grain yield for the two maize populations (T1 and T2), obtained with MGBLUP of the trial-specific and the mean performance of the test set according to the experimental design: complete with one replicate (C1), incomplete and unreplicated (I) and optimized based on CD_{it} with the M configuration (Opt, see Table 2). The average R_{Y}^{2} was computed over 30 design replicates and ± the standard error is indicated by a bar.
Expected and observed genomic prediction reliability

The ability of the new CD criteria to forecast the R^2_G of MGLUP was investigated based on the CV replicates obtained for simulated traits with $\rho_{Yr} = 0.5$ (see Fig. 3 for $T = 2$ and Supplementary Fig. S2 for $T = 5$). The expected R^2_G based on CD_{11} and CD_t was generally a good indication of the level of observed R^2_G for both the TRS and the TS. A substantial variability could be observed between the expected and observed R^2_G, especially for the TS.

For real traits, the expected R^2_G was compared to the observed phenotype-based R^2_G for DTH and DTM (see Fig. S3). Those quantities are not expected to be equal, but a clear trend could be observed in that the expected R^2_G was correlated to the observed R^2_G.

Comparison and optimization of experimental designs

The ability of the new CD criteria to forecast the R^2_G achieved by standard experimental designs was investigated using MGLUP and simulated traits (see Fig. 4 for $T = 2$ and Supplementary Fig. S4 for $T = 5$ using $\rho_{Yr} = 0.5$). The R^2_G achieved by complete designs with replicates (Cr) were in general lower with an increasing number of replicates. The R^2_G achieved by the incomplete design (I) was either comparable to that of C1 for $T = 2$ or higher than that of C1 for $T = 5$. On average, the expected R^2_G based on the mean of CD_{11} or CD_t was a good indication of the level of observed R^2_G.

Those standard experimental designs were compared to optimized experimental designs obtained based on CD_{11} or CD_t, with the contrasted parameter configurations S, W and M presented in Table 2. The algorithm did not converge as optimized designs were not identical between different initializations (Supplementary Table S1). However, each criterion clearly reached a plateau indicating very similar expected R^2_G between design replicates (Supplementary Fig S5). The optimization configuration had little impact on the observed R^2_G of experimental designs for simulated traits regardless of the simulated genetic correlation between trials, although designs optimized with configuration S generally achieved the lowest R^2_G (see Supplementary Table S2). For the configuration M, using the mean of CD_{11} as a criterion is different from using the mean of CD_{11}, but did not allow for any improvement. Optimized designs based on CD_t with configuration M were compared to standard experimental designs and showed an average improvement in expected R^2_G that translated into an average gain in observed R^2_G (for $\rho_{Yr} = 0.5$, see Fig. 4 for $T = 2$ and Supplementary Fig. S4 for $T = 5$).

For real traits in all datasets, optimized experimental designs were obtained based on CD_{11} with the configuration M generally allowed for higher phenotype-based R^2_G compared to standard designs, both for the trial-specific performance and the mean performance (Fig. 5). Like for simulated traits, the impact of the optimization configuration was limited for both traits, except for designs optimized with configuration S, which generally achieved the lowest R^2_G (see Supplementary Table S3 for the wheat dataset and Supplementary Table S4 for the maize datasets).

Discussion

Accounting for G×E in genomic prediction

In METs, G×E can be seen as resulting from QTL showing specific allele effects depending on the environmental conditions. This specificity of QTL allele effects results in genetic values that are also specific to environmental conditions. The use of a multivariate mixed model with an unstructured genetic covariance matrix between trials (here \mathbf{Q}_G) is a flexible approach to capture G×E in genomic prediction. The modeling of trial-specific genetic variances enables to account for differences in genetic variability between trials. It may result from the convergence/divergence of genetic values according to environmental gradients (Malosetti et al. 2013). In addition, modeling the genetic correlations between trials can take into account differences in genotype ranking between trials. This phenomenon is commonly referred to as crossovers in the G×E literature (Malosetti et al. 2013). Note that the advantage of an unstructured modeling of \mathbf{Q}_G is illustrated here for a small number of trials (from $T = 2$ to $T = 5$) compared to what can be observed in large METs. The main drawback of this modeling is the difficulty associated with estimating parameters correctly when the number of trials becomes large (Burgueño et al. 2012). For larger datasets, factor analysis approaches can help to structure the covariance matrix \mathbf{Q}_G and reduce the number of parameters to estimate (Smith et al. 2001; de los Campos and Gianola, 2007). Compared to MGLUP, applying a GBLUP model implies either (i) considering a common genetic variance for all trials and a genetic correlation $\rho_{Yr} = 1$ between trials when applied to the whole design (here SGBLUP), or (ii) considering a specific genetic variance in each trial but with a genetic correlation $\rho_{Yr} = 0$ between trials when applied separately in each trial (here WGBLUP).

In our study, accounting for G×E using MGLUP was more beneficial for the prediction of trial-specific performances compared to the mean performance over trials. When the set of trials represents the targeted environment, the mean performance is the variable of interest for a breeder. However, on a broader scale, breeding programs...
are divided into agroclimatic zones (AGZs). In this context, it is possible to apply genomic prediction jointly to all AGZs and focus on the prediction specific to each AGZ. For environments with low heritability, this joint modeling helps to improve the accuracy of genomic prediction using the information from correlated environments, as shown here based on simulated traits (see the comparison between WGBLUP and MGBLUP for trial-1 and \(\rho_{t,\rho} = 0.8 \) in Fig. 2 and Fig. S1). For the wheat dataset, despite a significant genetic correlation between drought and heat trials, no such gains could be observed for DTH and DTM which could be explained by the relatively high plot heritabilities obtained for both traits in both trials (Supplementary Table S5). The absence of gains observed for both maize datasets probably resulted from the low genetic correlations between all trial pairs (Supplementary Table S6). However, as shown with simulations and real traits, MGBLUP always enabled the highest (or close to the highest) \(R^2_G \), and is thus our recommended model to apply genomic prediction for a wide range of G×E scenarios.

Forecasting the reliability of genomic prediction using CD

When applying genomic prediction in METs with G×E, the precision with which each genetic value is predicted may be highly variable depending on the genotype. For instance, if one aims to predict the genetic value of a genotype in a given trial, the precision will not only depend on the number of observations for this genotype in the targeted trial and correlated trials, but also on the number of observations for other related genotypes in those trials. In unbalanced experimental designs with complex pedigree relationships between genotypes, this heterogeneity in \(R^2_G \) can be very high. A breeder can be interested in assessing the \(R^2_G \) associated with each genotype as it will have an impact on the selection (e.g., a genotype associated with a low \(R^2_G \) is not likely to be selected using truncation selection).

As MGBLUP is a multivariate linear mixed model, it is possible to derive CD criteria that can be used to forecast and assess the \(R^2_G \) prior to any validation. Our \(CD_G \) criterion quantifies the expected \(R^2_G \) associated with the prediction of a genetic value in a given trial. It consists of the adaptation of the criterion originally presented by Wienk et al. (2015) for genomic prediction in structured populations, or Ben-Sadoun et al. (2020) for multi-trait genomic prediction, to the context of genomic prediction in METs with G×E. In addition, we propose a new indicator (\(CD_G \)) that quantifies the expected \(R^2_G \) associated with the prediction of the mean genetic value of a genotype over a set of trials. When genetic values are correlated between trials, the precision with which the mean genetic value is predicted is superior to the mean of the precision achieved in each trial, and such a gain in precision is accounted for by \(CD_G \) (see Table 3 for an illustration).

In our study, we showed based on simulations that the expected \(R^2_G \) of the prediction of both the trials-specific performance and the mean performance based on \(CD_G \) were good indications of the level of observed \(R^2_G \).

In our study, we showed based on simulations that the expected \(R^2_G \) based on CD criteria, may poorly forecast the \(R^2_G \) for a specific trait (Rabier et al. 2016; Schopp et al. 2017; Rincent et al. 2017a; Rio et al. 2019). This is because CD only accounts for genetic and error variances that are not sufficient to reflect the variability in trait genetic architectures (e.g., number, genome location, and effect size of QTL). An additional source of error consists of the differences between the true genomic relationship matrix based on QTL and the one estimated based on SNPs, as previously pointed by Goddard et al. (2011). In our simulations, where an infinitesimal model was assumed, the variability of observed \(R^2_G \) for a given level of expected \(R^2_G \) (see Fig. 3 and Supplementary Fig. S2) could also be explained by (i) the uncertainty on \(\Omega_G \) and \(\Omega_E \) estimates, (ii) the uncertainty on the correlation estimate due to limited sample size, and (iii) the lack of independence between the observations used to compute the correlation due to relatedness. The latter is of high importance as it tells us that CD criteria may poorly forecast the observed \(R^2_G \) when complex pedigree relationships are found in the TS. An extreme example would be a TS of genotypes that all have a high CD but are strongly related to each other so that it is difficult to predict which of them performs the best. An alternative consists of using generalized CD criteria associated with contrasts between genetic values (Laloë 1993; Rincent et al. 2012, 2017a).

Optimizing multi-environment trials experimental designs using CD

While the cost of genotyping is becoming cheaper and should continue to decrease over the next decades, the cost of phenotyping is likely to remain expensive. These costs translate into constraints on the number of plots to which genotypes can be allocated. It is therefore important to select the genotypes whose evaluation will allow accurate prediction of the entire breeding germplasm available.

In genomic prediction, phenotypic observations for a genotype can help to predict the genetic value of other genotypes to which it is related. In this context, it is often more favorable not to replicate genotypes within and across trials, but to observe as many genotypes as possible in the overall design, as illustrated here (see Fig. 4 and Supplementary Fig. S4) and as previously shown by Endelman et al. (2014), Moehring et al. (2014), González-Barrios et al. (2019), Jarquin et al. (2020). A common related statement is that one should aim at replicating
alleles rather than genotypes so that all QTL effects can be well estimated to accurately predict genetic values (Lorenz 2013). Interestingly, the interest of limiting replicates can be predicted using our new CD criteria averaged over TS genotypes (see Fig. 4 and Supplementary Fig. S4). These criteria can even be used to rank designs according to their expected R^2_{G}, which on average was shown to be consistent with their ranking according to the observed R^2_{G}.

Thanks to this consistency, optimization criteria based on CD_{a} or CD_{l} can be used to optimize experimental designs that allow for higher R^2_{G} compared to standard designs where genotypes are selected randomly from the set of candidates. The most difficult parts of this optimization procedure consist of (i) the choice of an efficient optimization algorithm and (ii) the choice of parameters Ω_{C} and Ω_{E} to be used in CD-based criteria. For the optimization algorithm, we have opted for an algorithm implemented in the R-package "TrainSel" that is a combination of GA and SAA algorithms that allows one to efficiently prospect the set of solutions while preventing local optimaums. Regarding the choice of parameters, our simulation results show that experimental designs obtained from the contrasted genetic configuration S, W, and M were similar in terms of R^2_{G}, regardless of the level of genetic correlation between trials. It suggests that the choice of trait parameters has a relatively low impact on the optimization procedure, as previously shown for univariate optimizations based on CD with the impact of the heritability parameter (Rincent et al. 2012). However, the S configuration generally led to the lowest R^2_{G} for simulated traits, and to a larger extent the lowest R^2_{G} for real traits. Assuming perfectly correlated genetic values between trials may thus be a too simplistic hypothesis when G×E is expected in the experiment, and supports the use of new CD criteria (with configuration W or M depending on the importance of G×E). While the CD is associated with the prediction of genetic values R^2_{G}, it is generally lower than the fine characterization of a small set of individuals rather than the fine characterization of a small set of individuals for which several observations in all trials remain needed.

Conclusion

In this study, we demonstrated the value of a genomic prediction model that accounts for G×E by modeling the genetic covariance between trials. We derived new CD criteria from this model and showed how they can help to assess and forecast the R^2_{G} associated with the prediction of genetic values for both the trial-specific and the mean performance. We also showed how MET experimental designs could be optimized based on these new CD criteria and enabled higher R^2_{G} compared to standard experimental designs.

From a plant breeding perspective, we propose the following guidelines when setting up and analysing a MET experiment with genomic information available: (i) analyse data from trials jointly by accounting for G×E in the modeling, (ii) use indicators like CD to assess the reliability of each prediction before any validation, (iii) limit the replication of genotypes within trials and between trials (provided that genotypes are carefully allocated between trials), and (iv) allocate genotypes to trials using genomic information as well as prior information on the level of G×E and heritability (e.g., using the procedure described in this study). Note that the latter guideline may be more adapted to the context of screening within a large set of individuals rather than the fine characterization of a small set of individuals for which several observations in all trials remain needed.

Appendix

Alternative CD derivations

An equivalent derivation of CD_{a} to the one presented in Eq. (2) can be obtained following Henderson’s mixed model equations:

$$CD_{a} = \frac{G - (Z^{T}M_{Z}Z + G^{-1})^{-1}}{G_{a,a}}$$

where $M_{Z} = R^{-1} - R^{-1}X(X^{T}R^{-1}X)X^{T}R^{-1}$. This alternative derivation can be more efficiently calculated when the dimension of G is smaller than that of Σ, due to the size of matrices to be inverted.

Similarly, an equivalent derivation of CD_{l} to the one presented in Eq. (3) can be obtained:

$$CD_{l} = \frac{\sum_{i=1}^{T} \sum_{r=1}^{T} G - (Z^{T}M_{Z}Z + G^{-1})^{-1}}{\sum_{i=1}^{T} \sum_{r=1}^{T} G_{a,a}}$$

All CD formulas can also be considered using variance ratios and genetic correlations between trials where
\(G = \Omega_G \otimes K \) is replaced by \(\tilde{G} = \Psi \otimes K \) with
\[
\Psi = \begin{bmatrix} 1 & \ldots & \rho_{1,T} \\ \vdots & \ddots & \vdots \\ \rho_{T,1} & \ldots & 1 \end{bmatrix}
\]
being the matrix of genetic correlations between trials, and \(R = \Omega_E \otimes I_P \) is replaced by \(\tilde{R} = \Lambda \otimes I_P \)

with \(\Lambda = \begin{bmatrix} \lambda_1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_T \end{bmatrix} \) being the matrix of variance ratios

\(\lambda = \frac{\sigma^2_G}{\sigma^2_E}. \) The latter formalism may be more convenient than using directly error and genetic covariances when one aims to forecast the \(R^2_G \) or optimize the experimental design based on the level of heritability and the importance of G×E.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00122-021-03972-2.

Author Contribution statement SR, DK and JIS conceived the study. SR performed all analyses and wrote the first draft of the manuscript. All authors discussed the results and reviewed the manuscript.

Funding This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 818144, and also the Severo Ochoa Program for Centres of Excellence in R&D from the Agencia Estatal de Educación y Formación Profesional of Spain and the Severo Ochoa Beatriz Galindo Program (BEAGAL18/00115) from the Ministerio de Excellence in R&D. Julio Isidro y Sánchez was supported by the grant No 818144, and also the Severo Ochoa Program for Centres of Excellence in R&D from the Agencia Estatal de Investigación of Spain, grant SEV-2016-0672 (2017-2021) to the CBGP.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval The authors declare that the experiments comply with the current laws of the countries in which the experiments were performed.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akdemir D, Isidro-Sánchez J (2019) Design of training populations for selective phenotyping in genomic prediction. Sci Rep 9(1):1446

Akdemir D, Simon R, Isidro y Sánchez, J. (2021) Trainsel: an r package for selection of training populations. Front Genet, page 12:655287

Ankamah-Yeboah T, Janss LL, Jensen JD, Hjortshøj RL, Rasmussen SK (2020) Genomic selection using pedigree and marker-by-environment interaction for barley seed quality traits from two commercial breeding programs. Front Plant Sci 11:539

Ben-Sadoun S, Rincent R, Auzanneau J, Oury FX, Rolland B, Heuméz E, Ravel C, Charmet G, Bouchet S (2020) Economical optimization of a breeding scheme by selective phenotyping of the calibration set in a multi-trait context: application to bread making quality. Theoretical Appl Genet 133(7):2197–2212

Burgueño J, Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype x environment interaction using pedigree and dense molecular markers. Crop Sci 52(2):707–719

Butler DG, Smith AB, Cullis BR (2014) On the design of field experiments with correlated treatment effects. J Agricultural, Biol Environ Statistics 19(4):541–557

Cassola J, de los Campos G, Maccaferri M, Tuberosa R, Burgueño J, Pérez-Rodríguez P (2016) Extending the marker x environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci 56(5):2193–2209

Crossa J, Jarquin D, Franco J, Pérez-Rodríguez P, Burgueño J, Saint-Pierre C, Vikram P, Sansaloni C, Petroli C, Akdemir D, Sneller C, Reynolds M, Tattaris M, Payne T, Guzman C, Peña RJ, Wenzl P, Singh S (2016b) Genomic prediction of gene bank wheat landraces. G3: Genes, Genomes, Genetics, 6(7):1819–1834

Cuevas J, Crossa J, Montesinos-López OA, Burgueño P, Pérez-Rodríguez P, de los Campos G (2016a) Bayesian genomic prediction with genotype x environment interaction kernel models. G3: Genes, Genom, Gene 7(1):41–53

Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P, de los Campos G, Montesinos-López O. A., and Burgueño J, (2016) Genomic prediction of genotype x environment interaction kernel regression models. The Plant Genom 9(3):1–20

Cullis BR, Smith AB, Cocks NA, Butler DG (2020) The design of early-stage plant breeding trials using genetic relatedness. Journal of Agricultural, Biological and Environmental Statistics

Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3(10):e3395

de los Campos G, Gianola D (2007) Factor analysis models for structuring covariance matrices of additive genetic effects: a bayesian implementation. Genet Selection Evolution 39(5):481

de S. Bueno de S. Bueno Filho JS, Gilmour SG (2007) Planning incomplete block designs. In: Statistics for Agricultural, Biological and Environmental Sciences

de S. Bueno Filho JS, Gilmour SG (2003) Planning incomplete block experiments when treatments are genetically related. Biometrics 59(2):375–381

de S. Bueno Filho JS, Gilmour SG (2007) Block designs for random treatment effects. J Statistical Planning and Inference 137(4):1446–1451

Denis J-B (1988) Two way analysis using covariates. Statistics 19(1):123–132

Denis J-B, Piepho H-P, van Eeuwijk FA (1997) Modelling expectation and variance for genotype by environment data. Heredity 79(2):162–171
Endelman JB, Atlin GN, Beyene Y, Semagn K, Zhang X, Sorrells ME, Jannink J-L (2014) Optimal design of preliminary yield trials with genome-wide markers. Crop Sci 54(1):48–59

Feoktistov V, Pietravalle S, Heslot N (2017) Optimal experimental design of field trials using differential evolution an application in quantitative genetics and plant breeding. ArXiv

Finlay K, Wilkinson G (1963) The analysis of adaptation in a plant-breeding programme. Aust J Agric Res 14:742–754

Gauch HG, Zobel RW (1988) Predictive and postdictive success of statistical analyses of yield trials. Theoretical Appl Genet 76(1):1–10

Gauch HG, Zobel RW (1997) Identifying mega-environments and targeting genotypes. Crop Sci 37(2):311–326

Goddard M, Hayes B, Meuwissen T (2011) Using the genomic relationship matrix to predict the accuracy of genomic selection. J Animal Breed Gene 128(6):409–421

González-Barrios P, Díaz-García L, Gutiérrez L (2019) Mega-environmental design: using genotype x environment interaction to optimize resources for cultivar testing. Crop Sci 59(5):1899–1915

Guo Z, Tucker DM, Wang D, Basten CJ, Ersoz E, Briggs WH, Lu J, Li M, Gay G (2013) Accuracy of across-environment genome-wide prediction in maize nested association mapping populations. G3: Genes, Genom, Genet 3(2):263–272

Hayes BJ, Bowman PJ, Chamberlain AC, Verbyla K, Goddard ME (2009) Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution, 41(1)

He S, Schulltsw AW, Minida V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theoretical Appl Genet 129(3):641–651

Henderson CR (1973) SIRE EVALUATION AND GENETIC TRENDS. Journal of Animal Science, 1973(Symposium):10–41

Heslot N, Akdemir D, Sorrells ME, Jannink J-L (2013) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theoretical Appl Genet 127(2):463–480

Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theoretical Appl Genet 128(1):145–158

Isidro-Sánchez J, Akdemir D (2021) Training set optimization for sparse phenotyping in genomic selection: A conceptual overview. Frontiers in Plant Science, page 12:715910

Jarquin D, Crossa J, Lacaze X, Cheyron PD, Daucourt J, Lorgeou J, Martin-Jolivet C, Piraux F, Guerreiro L, Pérez P, de los Campos G (2013) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theoretical Appl Genet 127(3):595–607

Jarquin D, Howard R, Crossa J, Beyene Y, Gowda M, Martini JWR, Covarrubias Pazaraz G, Burgueño J, Pacheo A, Grondona M, Wimmer V, Prasanna BM (2020) Genomic prediction enhanced sparse testing for multi-environment trials. G3: Genes, Genom, Genet 10(8):2725–2739

Laloë D (1993) Precision and information in linear models of genetic evaluation. Genet Selection Evol 25(6):557

Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, Jannink J-L, Singh RP, Autrique E, de los Campos G (2015) Increased prediction accuracy in wheat breeding trials using a marker x environment interaction genomic selection model. G3: Genes, Genom, Genet 5(4):569–582

Lorenz AJ (2013) Resource allocation for maximizing prediction accuracy and genetic gain of genomic selection in plant breeding: a simulation experiment. G3: Genes, Genom, Genet 3(3):481–491

Malosetti M, Ribaut J-M, van Eeuwijk FA (2013) The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Front Physiol 4:44

Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

Moehring J, Williams ER, Piepho H-P (2014) Efficiency of augmented p-rep designs in multi-environmental trials. Theoretical Appl Genet 127(5):1049–1060

Montesinos-López A, Montesinos-López OA, Gianola D, Crossa J, Hernández-Suárez CM (2018) Multi-environment genomic prediction of plant traits using deep learners with dense architecture. G3: Genes, Genom, Genet 8(12):3813–3828

Montesinos-López OA, Montesinos-López A, Crossa J, Cuevas J, Montesinos-López JC, Gutiérrez ZS, Lillemo M, Philomín J, Singh R (2019) A bayesian genomic multi-output regressor stacking model for predicting multi-trait multi-environment plant breeding data. G3: Genes, Genom, Genet 9(10):3381–3393

Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the bglr statistical package. Genetics 198(2):483–495

Piepho HP, Williams ER (2006) A comparison of experimental designs for selection in breeding trials with nested treatment structure. Theoretical Appl Genet 113(8):1505–1513

Rabier C-E, Barre P, Asp T, Charmet G, Mangin B (2016) On the accuracy of genomic selection. PLOS ONE 11(6):e0150686

Rincent R, Charcosset P, Moreau L (2017a) Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations. Theoretical Appl Genet 130(1):2231–2247

Rincent R, Kuhn E, Monod H, Oury F-X, Rousset M, Allard V, Gouis JL (2017b) Optimization of multi-environment trials for genomic selection based on crop models. Theoretical Appl Genet 130(8):1735–1752

Rincent R, Lalöe D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodríguez V, Moreno-González J, Melching J, Bauer E, Schöen C-C, Meyer N, Gauffret C, Bauland C, Jamin P, Laborde J, Monod H, Flament P, Charcosset A, Moreau L (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: Comparison of methods in two diverse groups of maize inbreds (zea mays L.). Genetics 192(2):715–728

Rincent R, Malosetti M, Ababaei B, Touzy G, Mini A, Bogard M, Martre P, Le Gouis J, van Eeuwijk F (2019) Using crop growth model stress covariates and ammi decomposition to better predict genotype-by-environment interactions. Theoretical Appl Genet 132(12):3399–3411

Rio S, Mary-Huard T, Moreau L, Charcosset A (2019) Genomic selection efficiency and a priori estimation of accuracy in a structured dent maize panel. Theoretical Appl Genet 132(1):81–96

Schopp P, Müller D, Wientjes YCJ, Melching AE (2017) Genomic prediction within and across biparental families: means and variances of prediction accuracy and usefulness of deterministic equations. G3: Genes, Genom, Genet 7(11):3571–3586

Smith A, Cullis B, Thompson R (2001) Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57(4):1138–1147

Smith AB, Cullis BR, Thompson R (2005) The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. J Agricultural Sci 143(6):449–462

Technow F, Messina CD, Totir LR, Cooper M (2015) Integrating crop growth models with whole genome prediction through approximate bayesian computation. PLOS ONE 10(6):e0130855

van Eeuwijk FA (1995) Linear and bilinear models for the analysis of multi-environment data: I. an inventory of models. Euphytica 84(1):1–7
van Eeuwijk FA, Bustos-Korts DV, Malosetti M (2016) What should students in plant breeding know about the statistical aspects of genotype x environment interactions? Crop Sci 56(5):2119–2140
van Eeuwijk FA, Elgersma A (1993) Incorporating environmental information in an analysis of genotype by environment interaction for seed yield in perennial ryegrass. Heredity 70(5):447–457
VanRaden P (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91(11):4414–4423
Wientjes Y, Veerkamp RF, Bijma P, Bovenhuis H, Schrooten C, Calus M (2015) Empirical and deterministic accuracies of across-population genomic prediction. Genet Selection Evol 47(1):5
Yan W, Hunt L, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40(3):597–605

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.