ON THE DECAY IN $W^{1,\infty}$ FOR THE 1D SEMILINEAR DAMPED WAVE EQUATION ON A BOUNDED DOMAIN

DEBORA AMADORI
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica (DISIM)
University of L’Aquila, L’Aquila, Italy

FATIMA AL-ZAHRÀ AQEL
Department of Mathematics, An-Najah National University
Nablus, Palestine

Abstract. In this paper we study a semilinear wave equation with nonlinear, time-dependent damping in one space dimension. For this problem, we prove a well-posedness result in $W^{1,\infty}$ in the space-time domain $(0,1) \times [0,\infty)$. Then we address the problem of the time-asymptotic stability of the zero solution and show that, under appropriate conditions, the solution decays to zero at an exponential rate in the space $W^{1,\infty}$. The proofs are based on the analysis of the corresponding semilinear system for the first order derivatives, for which we show a contractive property of the invariant domain.

1. Introduction. In this paper we study the initial–boundary value problem for the 2×2 system in one space dimension

\begin{equation}
\begin{aligned}
\partial_t \rho + \partial_x J &= 0, \\
\partial_t J + \partial_x \rho &= -2k(x)\alpha(t)g(J),
\end{aligned}
\end{equation}

where $x \in I = [0,1]$, $t \geq 0$ and

\begin{equation}
\begin{aligned}
(\rho, J)(\cdot, 0) &= (\rho_0, J_0)(\cdot), \\
J(0, t) &= J(1, t) = 0
\end{aligned}
\end{equation}

for $(\rho_0, J_0) \in L^\infty(I)$. About the terms k, α and g in (1.1), let

$k \in L^1(I)$, \quad $k \geq 0$ a.e., \quad $g \in C^1(\mathbb{R})$, \quad $g(0) = 0$, \quad $g'(J) \geq 0$

and

$\alpha \in BV_{loc} \cap L^\infty([0,\infty);[0,1])$, \quad $\alpha(t) \geq 0$.

The problem (1.1)–(1.2) is related to the one-dimensional damped semilinear wave equation on a bounded interval: if $(\rho, J)(x, t)$ is a solution to (1.1), (1.2), then

$$u(x, t) \triangleq - \int_0^x \rho(y, t) \, dy$$

formally satisfies

\begin{equation}
\begin{aligned}
\partial_x u &= -\rho, \\
\partial_t u &= J, \\
\partial_{tt} u - \partial_{xx} u + 2k(x)\alpha(t)g(\partial_t u) &= 0.
\end{aligned}
\end{equation}

2020 Mathematics Subject Classification. Primary: 35L50; Secondary: 35L20, 35B40.

Key words and phrases. Damped wave equation in 1d, space-time dependent relaxation model, time-asymptotic stability, L^∞ error estimates.

Partially supported by Miur-PRIN 2015, "Hyperbolic Systems of Conservation Laws and Fluid Dynamics: Analysis and Applications", # Grant No. 2015YCJY3A_003, and by 2018 INdAM-GNAMPA Project "Equazioni iperboliche e applicazioni".
In the time-independent case, \(\alpha(t) = \text{const.} \), the large time behavior of solutions to (1.1)–(1.2) is governed by the stationary solution

\[
J(x) = 0, \quad \rho(x) = \text{const.} = \int_I \rho_0.
\]

After possibly changing the variable \(\rho \) with \(\rho - \int_I \rho_0 \), it is not restrictive to assume that \(\int_I \rho_0(x) \, dx = 0 \).

The coefficient \(\alpha(t) \) in (1.1), with values in \([0, 1]\), plays the role of a time localization of the damping term. A specific time dependent case is the intermittent damping \([13, 11]\), in which for some \(0 < T_1 < T_2 \) one has

\[
\alpha(t) = \begin{cases}
1 & t \in [0, T_1), \\
0 & t \in [T_1, T_2)
\end{cases}, \quad \alpha(t + T_2) = \alpha(t) \quad \forall t > 0 .
\]

(1.4)

The damped wave equation and its time-asymptotic stability properties have been studied in several papers, see for instance \([14]\) and references therein, in terms of the decay of energy (\(L^2 \) norm of the derivatives of \(u \)). The \(L^p \) framework, with \(p \in [2, \infty] \) was considered in \([10, 1, 6]\).

In this paper we continue the project, that was started in \([1]\), in two directions:

- first, we prove a well-posedness result, global in time, for the initial-boundary value problem (1.1)–(1.2) together with \(L^\infty \) initial data; in turn, this result provides a well-posedness result in \(W^{1, \infty} \) for the equation (1.3). See Theorem 1.1;

- second, we address the time-asymptotic stability of the solution \(\rho = 0 = J \); by following the approach introduced in \([1]\), we obtain a result on the exponential decay of the \(L^\infty \)–norm of the solution to (1.1), under the assumption that the damping term is linear and time-independent; see Theorem 1.2. In this specific context, this result extends the main result obtained in \([1]\), where \(BV \) (Bounded Variation) initial data were assumed; since the constant values in the time-asymptotic estimate were depending on the total variation of the solution, a density argument was not sufficient to extend the result to the class of \(L^\infty \) initial data.

1.1. **Main results.** We introduce the main results of this paper. The first one (Theorem 1.1) concerns the existence and stability of weak solutions to (1.1) with time-dependent source, while the second one (Theorem 1.2) concerns the asymptotic-time decay in \(L^\infty \) of the solution under more specific assumptions.

We use the standard notation \(\mathbb{R}_+ = [0, +\infty) \).

Definition 1.1. Let \((\rho_0, J_0) \in L^\infty(I) \). A weak solution of the problem (1.1)–(1.2) is a function

\[
(\rho, J) : I \times \mathbb{R}_+ \to \mathbb{R}^2
\]

that satisfies the following properties:

(a) the map \(t \mapsto (\rho, J)(\cdot, t) \) is continuous from \(\mathbb{R}_+ \) to \(L^\infty(I; \mathbb{R}^2) \), and it satisfies

\[
(\rho, J)(\cdot, 0) = (\rho_0, J_0);
\]

(b) the equation (1.1)\(_1\) is satisfied in the distributional sense in \([0, 1] \times (0, \infty)\), while the equation (1.1)\(_2\) in the distributional sense in \((0, 1) \times (0, \infty)\).

The boundary condition in (1.2) is taken into account by means of the first part of (b), that is, by requiring that for all test functions \(\phi \in C^1([0, 1] \times (0, +\infty)) \) one has

\[
\int_0^1 \int_0^\infty \{ \rho \partial_t \phi + J \partial_x \phi \} \, dx \, dt = 0 .
\]

Now we state the following well-posedness result.
Theorem 1.1. Assume that
\[k \in L^1(I), \quad k \geq 0 \text{ a.e.}, \quad g \in C^1(\mathbb{R}), \quad g(0) = 0, \quad g'(J) \geq 0 \quad (1.5) \]
and that
\[\alpha \in BV_{loc} \cap L^{\infty}([0, \infty); [0, 1]), \quad \alpha(t) \geq 0. \quad (1.6) \]
Let \((\rho_0, J_0) \in L^{\infty}(I)\) with \(\int_I \rho_0 = 0\). Then there exists a unique function
\[(\rho, J) : I \times \mathbb{R}_+ \to \mathbb{R}^2 \]
which is a weak solution of (1.1)–(1.2) in the sense of Definition 1.1. One has that
- Conservation of mass:
 \[\int_I \rho(x, t) \, dx = 0 \quad \forall t > 0. \quad (1.7) \]
- Invariant domain: define the diagonal variables
 \[f^+ = \frac{\rho + J}{2}, \quad f^- = \frac{\rho - J}{2} \quad (1.8) \]
 and
 \[M = \operatorname{ess sup}_I f_0^+, \quad m = \operatorname{ess inf}_I f_0^+, \quad (1.9) \]
 \[D = [m, M] \times [m, M], \quad D_J = [-(M - m), M - m]. \quad (1.10) \]
Then \(D, D_J\) are invariant domains for \((\rho, J)\) and for \(J\), respectively, in the sense that
\[m \leq f^+ (x, t) \leq M, \quad |J(x, t)| \leq M - m \quad \text{a.e.}. \]

Next, we consider the case of linear damping, that is for \(k(x)\) and \(\alpha(t)\) constant, \(g(J)\) linear. In the next theorem we establish a contractive property of the invariant domain when passing from \(t = 0\) to \(t = 1\).

Theorem 1.2. For \(d > 0\), consider the system
\[
\begin{align*}
\partial_t \rho + \partial_x J &= 0, \\
\partial_t J + \partial_x \rho &= -2dJ,
\end{align*}
\tag{1.11}
\]
where \(x \in I, t \geq 0\), together with initial and boundary conditions (1.2), \((\rho_0, J_0) \in L^{\infty}(I)\), and \(\int_I \rho_0 = 0\).

Then there exists \(d^* > 0\) and a constant \(C(d)\) depending on \(d\) that satisfies
\[0 < C(d) < 1, \quad d \in (0, d^*), \quad (1.12) \]
such that the following holds:
\[\operatorname{ess sup}_I f^+ (x, t) - \operatorname{ess sup}_I f^+ (x, t) \leq C(d) \left(\operatorname{ess sup}_I f_0^+ - \operatorname{ess inf}_I f_0^+ \right) \quad \forall t \geq 1. \quad (1.13) \]

In other words, the estimate (1.13) indicates that the solution trajectory \(t \mapsto f^+ (\cdot, t)\), whose values belong to the invariant domain \(D = [m, M]^2\) for \(t \geq 0\) as in Theorem 1.1, is contained in a smaller domain after time \(T = 1\). The new invariant domain is defined by \(D_1 = [m_1, M_1]^2\), where
\[M_1 = \operatorname{ess sup}_I f^+ (x, 1), \quad \rho_1 = \operatorname{ess inf}_I f^+ (x, 1), \quad (1.14) \]
and the following properties hold:
\[m \leq m_1 \leq 0 \leq M_1 \leq M, \quad M_1 - m_1 \leq C(d)(M - m) < M - m \quad 0 < d < d^*. \]
For the definition of \(C(d)\) see (5.40).
As an application of Theorem 1.2, we show two decay estimates for the system
\[
\begin{align*}
\partial_t \rho + \partial_x J &= 0, \\
\partial_t J + \partial_x \rho &= -2d\alpha(t)J,
\end{align*}
\]
in the following cases, see Theorem 5.3:

(a) \(\alpha(t) \equiv 1\)

(b) \(\alpha(t)\) as in (1.4) with \(T_1 \geq 1\).

In addition, if \((\rho_0, J_0) \in BV(I)\), then the approximate solutions \((\rho^\Delta, J^\Delta)(x, t)\) of (1.11), (1.2) as defined in Section 3.1 satisfies the \(L^\infty\) error estimate (5.30) established in Theorem 5.2.

The paper is organized as follows. In Section 2 we recall some preliminaries on Riemann problems for a hyperbolic system which is a \(3 \times 3\) extended version of (1.1), and prove interaction estimates that take into account of the time change of the damping term. In Section 3 we provide the proof of Theorem 1.1 by following the approach considered in [1], which is readily adapted to the time-varying source term of the system (1.1). In section 4, we study the representation of the approximate solution which turns out to be a vector representation, see Lemma 4.1. In section 5, we prove Theorem 1.2, the proof based in the careful representation of the approximate solution. Finally, we prove Theorem 5.3 that provides some applications of Theorem 1.2.

2. Preliminaries. In terms of the diagonal variables \(f^\pm\), defined by
\[
\rho = f^+ + f^- , \quad J = f^+ - f^- ,
\]
the system (1.1) rewrites as a discrete-velocity kinetic model
\[
\begin{align*}
\partial_t f^- - \partial_x f^- &= k(x)\alpha(t)g(f^+ - f^-), \\
\partial_t f^+ + \partial_x f^+ &= -k(x)\alpha(t)g(f^+ - f^-).
\end{align*}
\]

2.1. The time-independent case: the Riemann problem. In the following we assume that \(\alpha(t) \equiv 1\). Then (1.1) and (2.2) can be rewritten, respectively, as
\[
\begin{align*}
\partial_t \rho + \partial_x J &= 0, \\
\partial_t J + \partial_x \rho + 2g(J)\partial_x a &= 0, \\
\partial_t a &= 0, \quad a(x) = \int_0^x k(y) dy \quad \text{ (2.3)}
\end{align*}
\]
and
\[
\begin{align*}
\partial_t f^- - \partial_x f^- - g(f^+ - f^-)\partial_x a &= 0, \\
\partial_t f^+ + \partial_x f^+ + g(f^+ - f^-)\partial_x a &= 0, \\
\partial_t a &= 0. \quad \text{ (2.4)}
\end{align*}
\]
The characteristic speed of system (2.4) are \(\mp 1, 0\). We call 0-wave curves those characteristic curves corresponding to the speed 0; they are related to the stationary equations for \(f^\pm\), that is
\[
\partial_x f^\pm = -g(f^+ - f^-)\partial_x a. \quad \text{ (2.5)}
\]
We denote either by \((\rho_l, J_l, a_l)\), \((\rho_r, J_r, a_r)\) or by \((f^-_l, f^+_l, a_l)\), \((f^-_r, f^+_r, a_r)\) the left and right states corresponding to Riemann data for (2.3), (2.4) respectively.

Proposition 2.1. [2] Assume that \(k(x) \geq 0\), \(g(J)J \geq 0\) and consider the initial states
\[
U_l = (\rho_l, J_l, a_l), \quad U_r = (\rho_r, J_r, a_r)
\]
with corresponding states \((f^-_l, f^+_l, a_l)\), \((f^-_r, f^+_r, a_r)\) in the \((f^\pm, a)\) variables. Assume \(a_l \leq a_r\) and set
\[
\delta \equiv a_r - a_l \geq 0. \quad \text{ (2.6)}
\]
Then the following holds.
Figure 1. Structure of the solution to the Riemann problem.

(i) The solution to the Riemann problem for system (2.3) and initial data U_{ℓ}, U_{r} is uniquely determined by

$$U(x, t) = \begin{cases}
U_{\ell} & x/t < -1 \\
U_*(\rho_*, J_*, a_*) & -1 < x/t < 0 \\
U_{**} = (\rho_{**}, J_{**}, a_{**}) & 0 < x/t < 1 \\
U_{r} & x/t > 1
\end{cases}$$

(2.7)

with

$$J_* + g(J_*)\delta = f^+_\ell - f^-_r, \quad \rho_{**} - \rho_*= -2g(J_*)\delta,$$

(2.8)

see Figure 1.

(ii) If $m < M$ are given real numbers, the square $[m, M]^2$ is invariant for the solution to the Riemann problem in the (f^-, f^+)-plane. That is, the solution $U(x, t)$ given in (2.7) satisfies

$$f^\pm(x, t) \in [m, M]$$

(2.9)

for any $(f^\ell_-, f^\ell_+), (f^-_r, f^+_r) \in [m, M]^2$ and for any $\delta \geq 0$.

(iii) For every pair U_{ℓ}, U_{r} with $(f^-_\ell, f^+_\ell), (f^-_r, f^+_r) \in [m, M]^2$, let $\sigma_{-1} = (J_*-J_\ell)$ and $\sigma_1 = (J_r-J_*)$. Hence,

$$||\sigma_{-1}| - |f^+_\ell - f^-_r|| \leq C_0\delta, \quad ||\sigma_1| - |f^-_r - f^+_r|| \leq C_0\delta,$$

(2.10)

where

$$C_0 = \max\{g(M-m), -g(m-M)\}.$$

(2.11)

We stress that, in (2.10)–(2.11), the quantity C_0 is independent of $\delta \geq 0$.

Here and in the following, we denote by $\Delta \phi(x)$ the difference $\phi(x+) - \phi(x-)$, where ϕ is a real-valued function defined on a subset of \mathbb{R}, and the limits $\phi(x\pm) = \lim_{y \to x\pm} \phi(y)$ exist.

We define the amplitude of ± 1–waves as follows:

$$\sigma_{\pm 1} = \Delta J = \Delta f^\pm = \pm \Delta \rho.$$

(2.12)

In particular, with the notation of Figure 1, we have

$$J_r - J_\ell = \sigma_1 + \sigma_{-1},$$

$$\rho_r - \rho_\ell = \sigma_1 - \sigma_{-1} - 2g(J_*)\delta.$$

2.2. The time-dependent case: interaction estimates. As time evolves, the wave-fronts that stem from $t = 0$ propagate and interact between each other; also the coefficient $\alpha(t)$ changes in time. In order to get a-priori estimates on their total variation and L^∞–norm, we study the interactions of waves in the solutions to (2.4).

In [1, Proposition 3], the multiple interaction of two ± 1 waves with a single 0–wave of size $\delta > 0$ is studied. The following proposition extends such a statement to the case in which the 0–wave changes size at the time of the interaction.
Proposition 2.2. (Multiple interactions, time-dependent case) Assume that at a time $t > 0$ an interaction involving a $(+1)$–wave, a 0–wave and a (-1)–wave occurs, see Figure 2. Let δ be as in (2.6) and $\alpha^\pm \geq 0$ be given, so that $\alpha(t) = \alpha^+$ for $t > \bar{t}$ and $\alpha(t) = \alpha^+$ for $t < \bar{t}$. Assume that

$$ (\sup g') \delta \alpha^\pm < 1. \quad (2.13) $$

Let σ^-_1 be the sizes (see (2.12)) of the incoming waves and σ^+_1 be the sizes of the outgoing ones. Let J^\pm_* be the intermediate values of J (which are constant across the 0–wave), before and after the interaction as in Figure 2, and choose a value $s \in (\min J^\pm_*, \max J^\pm_*)$ such that

$$ g'(s) = \frac{g(J^+_*) - g(J^-_*)}{J^+_* - J^-_*.} \quad (2.14) $$

Then, for $\gamma^\pm \equiv g'(s) \delta \alpha^\pm$, it holds

$$ \left(\begin{array}{c} \sigma^\pm_1 \\ \sigma^+_1 \end{array}\right) = \left(\begin{array}{cc} 1 + \gamma^- & 1 \\ \gamma^- & 1 \end{array}\right) \left(\begin{array}{c} \sigma^-_1 \\ \sigma^-_1 \end{array}\right) + (\alpha^+ - \alpha^-) \delta \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \quad (2.15) $$

and similarly

$$ \left(\begin{array}{c} \sigma^\pm_1 \\ \sigma^+_1 \end{array}\right) = \left(\begin{array}{cc} 1 + \gamma^+ & 1 \\ \gamma^+ & 1 \end{array}\right) \left(\begin{array}{c} \sigma^-_1 \\ \sigma^-_1 \end{array}\right) + (\alpha^+ - \alpha^-) \delta \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \quad (2.16) $$

Moreover,

$$ \sigma^+_1 + \sigma^-_1 = \sigma^-_1 + \sigma^-_1 \quad (2.17) $$

$$ |\sigma^+_1| + |\sigma^-_1| \leq |\sigma^-_1| + |\sigma^-_1| + 2C_0 \delta |\alpha^+ - \alpha^-| \quad (2.18) $$

with $C_0 = \max\{g(M - m), -g(m - M)\}$ as in (2.11), together with

$$ m = \min \{f^\pm_\ell, f^\pm_r\}, \quad M = \max \{f^\pm_\ell, f^\pm_r\}. $$

Remark 2.1. (a) If $\alpha(t)$ is as in (1.4), the ON-OFF time corresponds to $\alpha^- = 1$, $\alpha^+ = 0$ while the OFF-ON time corresponds to $\alpha^- = 0$, $\alpha^+ = 1$.

(b) With the notation of Proposition 2.2, one has

$$ f^\pm_\ell, f^\pm_r \in [m, M], \quad |s| \leq M - m \quad (2.19) $$

where f^\pm_ℓ, f^\pm_r are the intermediate states after the interaction time.

Indeed, as a consequence of Prop. 2.1–(ii), the values f^\pm_ℓ, f^\pm_r belong to $[m, M]$. Using the same argument of the proof of Prop. 2.1 in [2], one can conclude that the same property holds also for the intermediate state before the interaction, that is, $f^\pm_\ell, f^\pm_r \in [m, M]$. As a consequence, both the intermediate values J^\pm_* satisfy

$$ |J^\pm_*| \leq M - m $$

and hence, by the intermediate value theorem used in (2.14), we obtain that $|s| \leq M - m$.

![Figure 2. Multiple interaction, time-dependent case.](image-url)
Proof of Proposition 2.2. Let \(J^-_r, J^+_r \) be the intermediate values of \(J \) before and after the interaction, respectively. By (2.8) these values satisfy
\[
J^+_r + g(J^+_r)\delta \alpha^+ = f^+_\ell - f^-_\ell, \quad J^-_r - g(J^-_r)\delta \alpha^- = f^-_\ell - f^+_\ell.
\]
Since the quantity \(J_r - J_\ell \) remains constant across the interaction, we get
\[
J_r - J_\ell = (J_r - J^-_r) + (J^+_r - J_\ell) = (J_r - J^-_r) + (J^-_r - J_\ell).
\]
Then, by the definition (2.12) of the sizes \(\sigma_{\pm 1} = \Delta J \) we deduce the identity (2.17). Using again (2.8) and (2.12), the same procedure applied to \(\rho_r - \rho_\ell \) and the fact that \(\sigma_{\pm 1} = \pm \Delta \rho \) lead to the following identity:
\[
\sigma^+_1 - \sigma^-_1 - 2g(J^+_r)\delta \alpha^+ = \sigma^-_1 - \sigma^-_1 - 2g(J^-_r)\delta \alpha^-,
\]
that can be rewritten as
\[
\sigma^+_1 - \sigma^-_1 = \sigma^-_1 - \sigma^-_1 + 2 \left[g(J^+_r) - g(J^-_r) \right] \delta \alpha^- + 2g(J^+_r)\delta(\alpha^+ - \alpha^-)
= \sigma^-_1 - \sigma^-_1 + 2g(\ell) \left[J^+_r - J^-_r \right] \delta \alpha^- + 2g(J^+_r)\delta(\alpha^+ - \alpha^-)
\]
for \(s \) as in (2.14). Notice that
\[
J^+_r - J^-_r = (J^+_r - J_r) + (J_r - J^-_r) = -\sigma^+_1 + \sigma^-_1
\]
and, replacing \(J_r \) with \(J_\ell \), one has
\[
J^+_r - J^-_r = \sigma^+_1 - \sigma^-_1.
\]
Since both equations are true, then one can combine them and write
\[
J^+_r - J^-_r = \frac{1}{2} \left(\sigma^+_1 - \sigma^-_1 + \sigma^-_1 - \sigma^-_1 \right).
\]
By substitution into (2.20), we get
\[
\sigma^+_1 - \sigma^-_1 = \sigma^-_1 - \sigma^-_1 + g'(\ell) \left(\sigma^+_1 - \sigma^-_1 + \sigma^-_1 - \sigma^-_1 \right) \delta \alpha^- + 2g(J^+_r)\delta(\alpha^+ - \alpha^-),
\]
which, for \(\gamma^\pm \equiv g'(s)\delta \alpha^- \) leads to
\[
(1 + \gamma^-) \left(\sigma^+_1 - \sigma^-_1 \right) = (1 - \gamma^-) \left(\sigma^-_1 - \sigma^-_1 \right) + 2g(J^+_r)\delta(\alpha^+ - \alpha^-).
\]
In conclusion, recalling (2.17), we have the following 2 \times 2 linear system
\[
\begin{align*}
\sigma^+_1 + \sigma^-_1 &= \sigma^-_1 + \sigma^-_1 \\
\sigma^+_1 - \sigma^-_1 &= \frac{1 - \gamma^-}{1 + \gamma^-} \left(\sigma^-_1 - \sigma^-_1 \right) + 2g(J^+_r)\delta(\alpha^+ - \alpha^-) \frac{1 + \gamma^-}{1 + \gamma^-}
\end{align*}
\]
whose solution is given by (2.15). The proof of (2.16) is completely similar. Finally, by taking the absolute values in (2.15), we get (2.18). This concludes the proof of Proposition 2.2.

\[\square\]

3. Approximate solutions and well-posedness. This section is devoted to the construction of a family of approximate solutions to the problem (1.1), (1.2). In Subsection 3.1 we will describe the algorithm, that follows the approach in [1], while in Subsections 3.2–3.4 we provide a-priori estimates on such approximations.

More generally, the approximation scheme follows the well-balanced approach introduced in [8, 7] and employed in [2, 3, 4] for the Cauchy problem. Also, the approximate solutions that are constructed here, are wave-front tracking solutions (see [5]) of the system (2.3) or, equivalently, (2.4).

Finally, in Subsection 3.5, we prove the convergence of the approximate solutions in the \(BV \) setting and use the stability in \(L^1 \), together with a density argument, to show the existence and stability for \(L^\infty \) initial data \((\rho_0, J_0)\), thus completing the proof of Theorem 1.1.
3.1. Approximate solutions. In this subsection, following [1], we construct a family of approximate solutions for the initial–boundary value problem associated to system (2.3) and initial, boundary conditions (1.2) with
\[
\int_I \rho_0(x) \, dx = 0. \tag{3.1}
\]
Let \(N \in 2\mathbb{N} \) and set
\[
\Delta x = \Delta t = \frac{1}{N}, \quad x_j = j\Delta x \quad (j = 0, \ldots, N), \quad t^n = n\Delta t \quad (n \geq 0).
\]
The size of the 0-wave at a point \(0 < x_j < 1 \) is given by
\[
\delta_j = \int_{x_{j-1}}^{x_j} k(x) \, dx, \quad j = 1, \ldots, N - 1. \tag{3.2}
\]
Assume \(\Delta x = 1/N \) small enough so that
\[
\sup \rho'(J) \|a\|_\infty \cdot \delta_j < 1. \tag{3.3}
\]
We approximate the initial data \(f_0^\pm \) and \(a(x) \) as
\[
(f_0^\pm)^{\Delta x}(x) = f_0^\pm(x_j^+), \quad a^{\Delta x}(x) = a(x_j) = \int_0^{x_j} k, \quad x \in (x_j, x_{j+1}). \tag{3.4}
\]
Recalling that \(\int \rho_0 \, dx = 0 \) and that \(\rho = f^+ + f^- \), we easily deduce the following inequality:
\[
\left| \int_I [(f_0^+)^{\Delta x} + (f_0^-)^{\Delta x}] \, dx \right| \leq \Delta x TV \rho_0. \tag{3.5}
\]
Finally we approximate \(a(t) \) in a natural way as follows:
\[
a_n(t) = \bar{a}_n := a(t^n+) \quad \text{for} \quad t \in [t_n, t_{n+1}), \quad n \geq 0. \tag{3.6}
\]
Beyond the adaptation to the time-dependence of the source term in (1.1), the construction is completely similar to the one in [1, Section 3], leading to the definition of an approximate solution \((f^\pm)^{\Delta x}(x, t) \) and hence of \(\rho^{\Delta x}, J^{\Delta x} \). In the rest of this section, as far as there is no ambiguity in the notation, we will drop the \(\Delta x \) and will refer to \((f^\pm)(x, t) \) as an approximate solution with fixed parameter \(\Delta x > 0 \).

3.2. Invariant domains. Recalling Proposition 2.1-(ii), the set
\[
D = [m, M] \times [m, M], \quad M = \text{ess sup}_I f_0^\pm, \quad m = \text{ess inf}_I f_0^\pm \tag{3.7}
\]
is an invariant domain for the solution to the Riemann problem in the \((f^-, f^+)-\)variables. Let
\[
J_{\max} = M - m, \quad D_J = [-J_{\max}, J_{\max}]. \tag{3.8}
\]
Here \(D_J \) denotes the closed interval which is the projection of \(D \) on the \(J \)-axis.

It is easy to verify that \(D \) is invariant also under the solution to the Riemann problem at the boundary. Indeed, assume that there is a \((-1)-\)wave impinging on the boundary \(x = 0 \) at a certain time \(\bar{t} \) with a \(+1\) reflected wave. Let \((\bar{f}^-, \bar{f}^+)) \in D \) be the state on the right of the impinging/reflecting wave. Hence
- the state between \(x = 0 \) and the impinging wave, for \(t < \bar{t} \), is \((\bar{f}^+, \bar{f}^+)\),
- the state between \(x = 0 \) and the reflected wave, for \(t > \bar{t} \), is \((\bar{f}^-, \bar{f}^-)\),
and both these states belong to \(D \). Finally we claim that \(m \leq 0 \leq M \). Indeed, since \(\int_I \rho_0 = 0 \), then
\[\text{ess inf} \rho_0 \leq 0 \leq \text{ess sup} \rho_0.\]
Using the elementary inequalities $\max\{x + y, x - y\} \geq x \geq \min\{x + y, x - y\}$, and recalling that $f^\pm = (\rho \pm J)/2$, we deduce that

$$2 \text{ ess inf} f_0^\pm \leq \text{ess inf} \rho_0 \leq 0 \leq \text{ess sup} \rho_0 \leq 2 \text{ ess sup} f_0^\pm$$

and hence the claim.

All these properties are summarized in the following proposition.

Proposition 3.1. Under the assumptions of Theorem 1.1, one has that

$$m \leq f^\pm(x, t) \leq M.$$ \hspace{1cm} (3.9)

Moreover for every $t \geq 0$ the following holds:

$$m \leq f^\pm(x, t) \leq M$$ \hspace{1cm} (3.10)

and hence, by means of (2.1),

$$2m \leq \rho(x, t) \leq 2M, \quad |J(x, t)| \leq M - m$$ \hspace{1cm} (3.11)

with m, M given in (3.7).

As a consequence of the properties above, the solution satisfies $J(x, t) \in D_J$ outside discontinuities.

Remark 3.1. We remark that, given $m < M$, the bounds (3.10), (3.11) hold

- for every choice of source term coefficients $k(x), g(J), \alpha(t)$ as in (1.5), (1.6);
- for every (approximate) solution such that the initial data satisfies (3.7).

We also remark that, in case of no source term (for instance if $k(x) \equiv 0$), by the analysis of the Riemann problems one finds that the invariant domain is smaller than the square D, being the rectangle $[m^-, M^-] \times [m^+, M^+]$:

$$m^\pm \leq f^\pm(x, t) \leq M^\pm,$$

where

$$m^\pm = \inf_I f_0^\pm, \quad M^\pm = \sup_I f_0^\pm.$$

3.3. Conservation of mass

In this subsection we prove that the total mass of $\rho^{\Delta x}$ is conserved in time.

Proposition 3.2. In the previous assumptions, one has

$$\frac{d}{dt} \int_I \rho^{\Delta x}(x, t) \, dx = 0,$$ \hspace{1cm} (3.12)

and

$$\left| \int_I \rho^{\Delta x}(x, t) \, dx \right| \leq \Delta x \cdot \text{TV} \rho_0.$$ \hspace{1cm} (3.13)

Proof. Let

$$y_1(t) < y_2(t) < \ldots < y_{2N}(t) \quad \forall t > 0, \ t \neq t^n, \ t \neq t^{n+1/2}$$ \hspace{1cm} (3.14)

be the location of the ± 1 waves at time t, that is, the location of all the possible discontinuities (see Figure 3). Note that the $y_j(t)$ does not necessarily correspond to a discontinuity. Observe that, by the Rankine-Hugoniot condition of the first equation in (1.1), which is satisfied in the approximate solution, we have

$$\Delta J(y_j(t)) = \Delta \rho(y_j(t)) \dot{y}_j, \quad j = 1, \ldots, 2N.$$ \hspace{1cm} (3.15)

Now observe that the function
Figure 3. Illustration of the polygonals $y_j(t)$ and of the wave strengths $\sigma_j(t)$

$$t \mapsto \int_I \rho(x,t) \, dx;$$

is continuous and piecewise linear on \mathbb{R}_+, and that its derivative is given by

$$\frac{d}{dt} \int_I \rho(x,t) \, dx = -\sum_{j=1}^{2N} \Delta \rho(y_j) \dot{y}_j$$

$$= -\sum_{j=1}^{2N} \Delta J(y_j(t)) = -J(1-, t) + J(0+, t) = 0 \quad (3.16)$$

for every $t \neq t^n, t^{n+1/2}$, where we used (3.15) and the boundary conditions $J(1-, t) = J(0+, t) = 0$, which are satisfied exactly for every $t \neq t^n$. Hence (3.12) is proved.

Finally, the inequality (3.13) follows from (3.12), (3.5) and recalling that $\rho = f^+ + f^-$. The proof is complete.

3.4. Uniform bounds on the Total Variation. We define

$$L_\pm(t) = \sum_{(\pm 1)-waves} |\Delta f^\pm|, \quad (3.17)$$

$$L_0(t) = \frac{1}{2} \left(\sum_{0-waves} |\Delta f^+| + |\Delta f^-| \right) \quad (3.18)$$

that by (2.12) are related to ρ and J as

$$L_\pm(t) = TV J(\cdot, t), \quad L_\pm(t) + L_0(t) = TV \rho(\cdot, t).$$

As in the case of the Cauchy problem [2] and as in [1], the functional $L_\pm(t)$ may change only at the times t^n, due to the interactions with the $(\pm 1) - waves$ with the $0 - waves$. Let evaluate the total possible increase of L_\pm. At each time t^n, by using the inequality (2.18), we get

$$L_\pm(t^n+) \leq L_\pm(t^n-) + 2C_0 |\bar{\alpha}_n - \bar{\alpha}_{n-1}| \sum_{j=1}^{N-1} \delta_j \leq L_\pm(t^n-) + 2C_0 |\bar{\alpha}_n - \bar{\alpha}_{n-1}| \|k\|_{L^1}.$$

Summing up the previous inequality, one gets

$$L_\pm(t^n+) \leq L_\pm(0+) + 2C_0 TV \{\alpha; [0, t^n]\} \|k\|_{L^1}. \quad (3.19)$$
Hence for every $T > 0$ the function $[0, T] \ni t \mapsto L_\pm(t)$ is uniformly bounded in t and Δx. Moreover one has
\[
L_\pm(0+) \leq TV f^+(\cdot, 0) + TV f^-(\cdot, 0) + |J_0(0+)| + |J_0(1-)| + 2C_0\alpha(0+)\|k\|_{L^1},
\]
(3.20)
\[
L_0(t) \leq \|\alpha\|_\infty \sum_j |g(J_\ast(x_j))\Delta a(x_j) | \leq C_0\|\alpha\|_\infty\|k\|_{L^1}.
\]
In conclusion,
\[
TV f^+(\cdot, t) + TV f^-(\cdot, t) = L_\pm(t) + 2L_0(t)
\]
\[
\leq TV f^+(\cdot, 0) + TV f^-(\cdot, 0) + |J_0(0+)| + |J_0(1-)|
\]
\[
+ 4C_0\left(\|\alpha\|_\infty + TV \{\alpha; [0, T]\}\right)\|k\|_{L^1}
\]
and hence the total variation of $t \mapsto (\rho^{\Delta x}, J^{\Delta x})(\cdot,t)$ is uniformly bounded on all finite time intervals $[0, T]$, with $T > 0$, uniformly in Δx.

3.5. Strong convergence as $\Delta x \to 0$ and proof of Theorem 1.1. In this Subsection we prove Theorem 1.1, and we start by proving it for $(\rho_0, J_0) \in BV(I)$.

In this case, for every $T > 0$, a standard application of Helly’s theorem implies that there exists a subsequence $(\Delta x)_j \to 0$ such that $f^{\pm(\Delta x)_j} \to f^\pm$ in $L_{loc}^1(0,1) \times (0, \infty)$ and that $f^\pm : (0,1) \times (0, \infty) \to \mathbb{R}$ is a weak solution to (2.2). In terms of $\rho^\Delta x$, $J^{\Delta x}$, the identity
\[
\int_0^1 \int_0^\infty \left\{ \rho^\Delta x \partial_t \phi + J^{\Delta x} \partial_x \phi \right\} dx dt = 0
\]
holds for every $\phi \in C^1([0, 1] \times (0, T))$ (that is, up to the boundaries of I) since $J^{\Delta x}(0+, t) = 0 = J^{\Delta x}(1-, t)$ for every $t \neq t^n$. Hence the identity (3.21) is satisfied by the strong limit (ρ, J). Moreover, by passing to the limit as $(\Delta x)_j \to 0$ in (3.13) one obtains that (1.7) holds, that is
\[
\int_I \rho(x, t) \, dx = 0 \quad \forall t > 0.
\]
To obtain the stability in L^1 with respect to the initial data, one can observe that the coupling in system (2.2) is quasimonotone, in the sense that the equations
\[
\partial_t f^\pm \pm \partial_x f^\pm = \mp G, \quad G(x, t, f^\pm) = k(x)\alpha(t) g(f^+ - f^-)
\]
satisfy, thanks to the assumptions (1.6) and (1.5),
\[
\mp \frac{\partial G}{\partial f^\pm} \leq 0.
\]
By adaptation of the arguments in [9], which rely on Kružkov techniques, one can prove the following stability estimate: for any pair of initial data (f_0^-, f_0^+) and $(\tilde{f}_0^-, \tilde{f}_0^+)$, the corresponding solutions f^\pm, \tilde{f}^\pm on $(0, 1) \times (0, T)$ satisfy
\[
\|f^-(\cdot, t) - \tilde{f}^-(\cdot, t)\|_{L^1(I)} \leq \|f^0_0 - \tilde{f}^0_0\|_{L^1(I)}.
\]
(3.22)
Therefore the weak solution to (1.1)–(1.2) is unique on $(0,1) \times (0, T)$ and can be prolonged for all times, $t \in \mathbb{R}^+$. Finally, let $(\rho_0, J_0) \in L^\infty(I)$. Then there exists a sequence $\{(\rho_n, J_0)_n\} \subset BV(I)$ such that $(\rho_n, J_0)_n \to (\rho_0, J_0) \in L^1(I)$. By the L^1 stability estimate (3.22), the limit in L^1 of $f^\pm_n(\cdot, t)$ is well defined and hence also for $(\rho, J)(\cdot, t)$. Since the identity
\[
\int_0^1 \int_0^\infty \left\{ \rho_n \partial_t \phi + J_n \partial_x \phi \right\} dx dt = 0
\]
(3.23)
holds for every \(\phi \in C^4([0, 1] \times (0, \infty)) \) and for every \(n \), then (3.23) is valid also for the strong limit \((\rho, J)\), as well as (1.7). This completes the proof of Theorem 1.1.

4. A finite-dimensional representation of the approximate solutions. In this section we will study the evolution in time of the approximate solution by means of a finite-dimensional evolution system of size \(2N = 2\Delta x^{-1} \).

4.1. The transition matrix. Let’s introduce a vector representation of the approximate solution that will be the basis of our subsequent analysis. Define

\[T = \{ t \geq 0 : t = t^n = n\Delta t \text{ or } t = t^{n+\frac{1}{2}} = \left(n + \frac{1}{2}\right)\Delta t \}, \quad n = 0, 1, \ldots \]

the set of possible interaction times. At every time \(t \notin T \), we introduce the vector of the sizes

\[\sigma(t) = (\sigma_1, \ldots, \sigma_{2N}) \in \mathbb{R}^{2N}, \quad N \in 2\mathbb{N} \tag{4.1} \]

where, recalling (2.12) and the notation in Prop. 3.2, especially (3.14) and (3.15), one has

\[\sigma_j = \Delta J(y_j) = \Delta \rho(y_j) \hat{y}_j. \tag{4.2} \]

Let’s examine its evolution in the following steps.

1. At time \(t = 0^+ \), \(\sigma(0+) \) is given by the size of the waves that arise at \(x_j = j\Delta x \), with \(j = 0, \ldots, N \). In particular, a (+1) wave arises at \(x = 0 \), two \((\pm 1)\) waves arise at each \(x_j \) with \(j = 1, \ldots, N - 1 \) and finally a (-1) wave arises at \(x = 1 \).

2. At every time \(t^{n+\frac{1}{2}}, n \geq 0 \), the vector \(\sigma(t) \) evolves by exchanging positions of each pair \(\sigma_{2j-1} \), \(\sigma_{2j} \):

\[(\sigma_{2j-1}, \sigma_{2j}) \mapsto (\sigma_{2j}, \sigma_{2j-1}) \tag{4.3} \]

that results into

\[\sigma(t^+) = B_1 \sigma(t^-), \quad B_1 \doteq \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 1 & 0 \\
\end{bmatrix} \tag{4.4} \]

3. At each time \(t^n = n\Delta t, n \geq 1 \), the interactions with the Dirac masses at each \(x_j \) of the source term occur, and we have to take into account the relations introduced in Proposition 2.2. We will rely on the identity (2.16).

For each \(j = 1, \ldots, N - 1 \), define the transition coefficients \(\gamma_j^n \) as follows:

\[\gamma_j^n = g'(s_j^n)\delta_j \tilde{\alpha}_n, \quad j = 1, \ldots, N - 1, \quad n \geq 1, \tag{4.5} \]

where \(\delta_j \) is given in (3.2), that is

\[\delta_j = \int_{x_{j-1}}^{x_j} k(x) dx, \quad j = 1, \ldots, N - 1, \]

\(\tilde{\alpha}_n \) in (3.6) and \(s_j^n \) satisfies a relation as in (2.14); more precisely

\[g'(s_j^n) = \frac{g(J(x,t^n+)) - g(J(x,t^n-))}{J(x,t^n+) - J(x,t^n-)}. \]

Moreover introduce the terms

\[p_{j,n} = g(J(x_j,t^n-)) \frac{\delta_j}{1 + \gamma_j^n}, \quad j = 1, \ldots, N - 1, \quad n \geq 1. \tag{4.6} \]
Then, the local interaction is described as follows:

\[
\begin{pmatrix}
\sigma_{2j} \\
\sigma_{2j+1}
\end{pmatrix} \mapsto \frac{1}{1 + \gamma_j^n} \left(\gamma_j^n \sigma_{2j} + \sigma_{2j+1} \right) + (\bar{\alpha}_n - \bar{\alpha}_{n-1}) p_{j,n} \left(\frac{-1}{1 + \gamma_j^n} \right).
\]

(4.7)

To recast it in a global matrix form, we define

\[\gamma^n = (\gamma_1^n, \ldots, \gamma_{N-1}^n) \in \mathbb{R}^{N-1}\]

and set

\[
B_2(\gamma^n) = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
\hat{A}_1 & 1 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots \\
0 & \cdots & \hat{A}_{N-1} & 1
\end{bmatrix},
\]

(4.9)

The matrix \(B_2(\gamma) \) is tridiagonal with diagonal components as follows,

\[
\begin{pmatrix}
1, \frac{\gamma_1^n}{1 + \gamma_1^n}, \frac{\gamma_2^n}{1 + \gamma_2^n}, \cdots, \frac{\gamma_{N-2}^n}{1 + \gamma_{N-2}^n}, \frac{\gamma_{N-1}^n}{1 + \gamma_{N-1}^n}
\end{pmatrix} \in \mathbb{R}^{2N}
\]

and subdiagonals

\[
\begin{pmatrix}
0, \frac{1}{1 + \gamma_1^n}, 0, \frac{1}{1 + \gamma_2^n}, 0, \cdots, 1 \frac{1}{1 + \gamma_{N-1}^n}, 0
\end{pmatrix} \in \mathbb{R}^{2N-1}.
\]

Hence \(\sigma(t) \) evolves according to

\[\sigma(t^n+) = B_2(\gamma^n) \sigma(t^n-) + (\bar{\alpha}_n - \bar{\alpha}_{n-1}) G_n\]

with

\[G_n = (0, -p_{1,n}, +p_{1,n}, \ldots, -p_{N-1,n}, +p_{N-1,n}, 0)^t.\]

(4.10)

We summarize the previous identities to get the following statement.

Proposition 4.1. At time \(t = t^n \) let \(B_1, B_2(\gamma^n), G_n \) be defined by (4.4), (4.9), (4.10) respectively. Define

\[B(\gamma^n) := B_2(\gamma^n) B_1.\]

(4.11)

Then the following relation holds,

\[\sigma(t^n+) = B(\gamma^n) \sigma(t^{n-1}+) + (\bar{\alpha}_n - \bar{\alpha}_{n-1}) G_n, \quad n \geq 1.\]

(4.12)

Remark 4.1. We give a couple of remarks about the use of the local interaction estimates (2.15), (2.16).

(a) If, in place of (2.16), the relation (2.15) is used, the quantities (4.5) and (4.6) are defined by

\[\gamma_j^n = g'(s_j^n) \delta_j \bar{\alpha}_{n-1} \quad \text{and} \quad p_{j,n} = g(J(x_j, t^n+)) \frac{\delta_j}{1 + \gamma_j^n}.\]

(b) Notice that, in (4.7), we consider the space order instead of the family order, that was used in (2.15). That is,

\[(\sigma_{2j}, \sigma_{2j+1}) = \begin{cases} (\sigma_{-1}, \sigma_{-1}) & \text{before the interaction} \\
(\sigma_{-1}, \sigma_{+1}) & \text{after the interaction}. \end{cases}\]
4.2. Properties of the transition matrix. As observed in [1], the matrix B in (4.11) is doubly stochastic for every vector γ; we will call it transition matrix. Notice that it is non-negative provided that all the γ_j^0 (see (4.5)) are non-negative, which relies on the assumption that $g' \geq 0$. Let’s summarize some properties:

(i) its eigenvalues λ_j satisfy $|\lambda_j| \leq 1$ for all $j = 1, \ldots, 2N$;
(ii) if $\gamma_j \cdot \gamma_{j+1} > 0$ for some j, then the eigenvalues with maximum modulus are exactly two ($\lambda = \pm 1$) and they are simple.
(iii) The values $\lambda = \pm 1$ are eigenvalues with corresponding (left and right) eigenvectors

\[
\begin{align*}
\lambda_- &= -1, & v_- &= (1, -1, -1, 1, \ldots, -1, 1), \\
\lambda_+ &= 1, & e &= (1, 1, \ldots, 1).
\end{align*}
\]

Moreover $B(0)$ is a normal matrix, since it is a permutation and hence $B(0)^t B(0) = B(0)B(0)^t = I_{2N}$. This property does not hold if $\gamma \neq 0$.

Remark 4.2. The properties established in Subsections 3.2–3.4 can be rewritten in terms of the vectorial representation of the solution (4.1), as follows.

(a) (Boundary conditions) From equation (3.16) it follows that

\[
\sigma(t) \cdot e = 0
\]

for every $t \notin T$. Indeed,

\[
\sigma(t) \cdot e = \sum_{j=1}^{2N} \sigma_j(t) = \sum_{j=1}^{2N} \Delta J(y_j(t)) = J(1-, t) - J(0+, t) = 0.
\]

(b) (Total variation) The quantity $L_\pm(t)$ coincides with $\|\sigma(t)\|_{\ell_1}$. In particular, from (3.19)–(3.20) we obtain

\[
\|\sigma(0+)\|_{\ell_1} \leq TV f^+(\cdot, 0) + TV f^-(\cdot, 0) + |J_0(0+)| + |J_0(1-)| + 2C_0 \alpha(0+)\|k\|_{L^1},
\]

\[
\|\sigma(t)\|_{\ell_1} \leq \|\sigma(0+)\|_{\ell_1} + 2C_0 TV \{\alpha; [0, t_n]\}\|k\|_{L^1}, \quad t^n < t < t^{n+1}.
\]

(c) The following property holds

\[
|\sigma(t) \cdot v_-| \leq |\sigma(0+) \cdot v_-| \leq TV \{\bar{J}_0; [0, 1]\} \quad \forall t \notin T
\]

where v_- is the eigenvector corresponding to $\lambda = -1$, see (4.13), and

\[
\bar{J}_0(x) = \begin{cases} J_0(x) & x \in (0, 1) \\ 0 & x \in 0 \text{ or } 1. \end{cases}
\]

Indeed, the second inequality in (4.16) follows from [1, (77)]. To prove the first inequality in (4.16), we first consider $t \in (t^n, t^{n+1/2})$ and use the iteration formula (4.12) to obtain

\[
\sigma(t) \cdot v_- = \sigma(t^n) \cdot v_- = B(\gamma^n)\sigma(t^{n-1}+) \cdot v_- + G_n \cdot v_-.
\]

By recalling the definition of (4.10), we immediately deduce that

\[
G_n \cdot v_- = 0 \quad \forall n,
\]

and therefore that

\[
\sigma(t) \cdot v_- = \sigma(t^{n-1}+) \cdot B(\gamma^n)^t v_- = -\sigma(t^{n-1}+) \cdot v_- = (-1)^n \sigma(0+) \cdot v_-,
\]
from which (4.16) follows for \(t \in (t^n, t^{n+1/2}) \). Secondly, for \(t \in (t^{n+1/2}, t^{n+1}) \), by using (4.4) we have that
\[
\sigma(t) = \sigma(t^{n+1/2+}) = B_1 \sigma(t^{n+1/2-}) = B_1 \sigma(t^n), \quad t \in (t^{n+1/2}, t^{n+1})
\]
and hence
\[
\sigma(t) \cdot v = \sigma(t^n) : B_1 v = -\sigma(t^n) \cdot v -
\]
from which it follows again (4.16).

(d) The undamped equation: \(k(x) \equiv 0 \).

In this case, each vector \(\pmb{G}_n \) vanishes and \(\gamma^n = 0 \). Therefore from (4.12) and (4.3) we obtain
\[
\sigma(t) = \begin{cases} B(0)^n \sigma(0+) & t^n < t < t^{n + \frac{1}{2}} \\ B_1 B(0)^n \sigma(0+) & t^{n + \frac{1}{2}} < t < t^{n+1}. \end{cases}
\]
Since every wave-front issued at \(t = 0 \) reflects on the two boundaries and gets back to the initial position after a time \(T = 2 = 2N \Delta t \), it is clear that
\[
B(0)^{2N} = I_{2N}
\]
that is, \(B(0)^{2N} \) coincides with the identity matrix in \(M_{2N} \). As a consequence, the powers of \(B(0) \) are periodic with period \(2N \):
\[
B(0)^{n+2N} = B(0)^n, \quad n \in \mathbb{Z}.
\]
With a similar argument one can prove that
\[
(B(0)^N)_{ij} = \begin{cases} 1 & \text{if } i + j = 2N + 1 \\ 0 & \text{otherwise}, \end{cases}
\]
that is, \(B(0)^N \) is the matrix with component 1 on the antidiagonal positions \((i, 2N + 1 - i) \) and 0 otherwise. It is clear that \((B(0)^N)^2 = B(0)^{2N} = I_{2N} \).

4.3. A representation formula for \(\rho \) and \(J \). In this subsection we provide a pointwise representation of \(\rho(x,t) \), \(J(x,t) \) by means of the vectorial quantity \(\sigma(t) \). It is based on the key properties (4.2) and (2.8), that we recall here for convenience: for \(y_j \) given in (3.14),
\[
\begin{align*}
\sigma_j = \Delta J(y_j) = \Delta \rho(y_j) \dot{y}_j & \quad x = y_j(t), \\
\Delta \rho(x_j) = -2g(J(x_j)) \delta_j & \quad x = x_j = j \Delta x
\end{align*}
\]
(4.19)
Therefore we can reconstruct the functions \(x \to \rho(x,t) \) and \(x \to J(x,t) \) as stated in the following Proposition. We define
\[
v_0 = 0_{2N}, \quad v_\ell = (1, \ldots, 1, 0, \ldots, 0) \in \mathbb{R}^{2N}, \quad \ell = 1, \ldots, 2N
\]
(4.20)
and
\[
H = \{ v_\ell \in \mathbb{R}^{2N}, \quad \ell = 0, \ldots, 2N \}.
\]
(4.21)

Lemma 4.1. (Representation formula for \(\rho \), \(J \), \(f^\pm \))
For every \((x,t) \) with \(x \neq y_j(t) \) and \(t \in (t^n, t^{n+1}) \), the following holds.

1. There exists \(v = v(x) \in H \) such that
\[
J(x,t) = \sigma(t) \cdot v(x).
\]
(4.22)

In particular
\[
v(x_j) = v_{2j}, \quad j = 0, \ldots, N.
\]
(4.23)
2. If moreover \(x \neq x_j \), then
\[
\rho(x, t) = \bar{\sigma}(t) \cdot \mathbf{v}(x) + \rho(0+, t) - 2\Delta_n \sum_{j: \, x_j < x} g(J(x_j, t)) \delta_j ,
\] (4.24)
with
\[
\bar{\sigma}(t) = \pm \Pi \sigma(t) = \begin{cases}
\Pi \sigma & \text{for } t \in (t^n, t^{n+1/2}) \\
-\Pi \sigma(t) & \text{for } t \in (t^{n+1/2}, t^{n+1})
\end{cases}
\] (4.25)
and
\[\Pi = \text{diag}(1, -1, 1, -1, \ldots, 1, -1) \in M_{2N} . \] (4.26)

3. Finally, for \(j = 0, \ldots, N - 1 \) one has that
\[
f^\pm(x_j^+, t) = \sigma(t) \cdot \mathbf{v}_{2j}^\pm + \frac{1}{2} \rho(0+, t) - \bar{\alpha}_n \sum_{0 \leq \ell \leq j} g(J(x_{\ell}, t)) \delta_{\ell}
\] (4.27)
where
\[
\mathbf{v}_{2j}^+ = \frac{1}{2} (\Pi + I_{2N}) \mathbf{v}_{2j} = (1, 0, \ldots, 1, 0, 0, \ldots, 0, 0)
\] (4.28)
and
\[\mathbf{v}_{2j}^- = \frac{1}{2} (\Pi - I_{2N}) \mathbf{v}_{2j} = -(0, 1, \ldots, 1, 0, 0, \ldots, 0, 0) . \]

Proof. (1) About (4.22), it is enough to observe that
\[
J(x, t) = J(0+, t) + \sum_{y_\ell(t) < x} \Delta J(y_\ell) = \sum_{y_\ell < x} \sigma_\ell(t) .
\]
Hence
\[J(x, t) = \sigma(t) \cdot \mathbf{v}_{\tilde{\ell}} \]
with \(\tilde{\ell} \in \{0, 1, \ldots, 2N - 1\} \) such that
\[y_{\tilde{\ell}} < x < y_{\tilde{\ell} + 1} . \] (4.29)

In particular, if \(x_j = j \Delta x \), then
\[
J(x_j, t) = J(0+, t) + \sum_{y_\ell(t) < x_j} \Delta J(y_\ell) = \sum_{\ell=1}^{2j} \sigma_\ell(t) = \sigma(t) \cdot \mathbf{v}_{2j} .
\]
Hence (4.23) is proved.

(2) To prove (4.24), let’s write \(\rho(x, t) \) for \(x \neq x_j \) and \(x \neq y_\ell \) as follows:
\[
\rho(x, t) = \rho(0+, t) + \sum_{y_\ell < x} \Delta \rho(y_\ell, t) + \sum_{x_j < x} \Delta \rho(x_j, t) .
\]
Indeed, differently from \(J \), the component \(\rho \) varies also along the 0-waves. About (a), by recalling the first relation in (4.19), we get
\[
\sum_{y_\ell < x} \Delta \rho(y_\ell, t) = \sum_{y_\ell < x} \sigma_\ell \dot{y}_\ell .
\]
Now, notice that (see Figure 3)
\[
\dot{y}_j(t) = \begin{cases}
1 & j \text{ odd} \\
-1 & j \text{ even}
\end{cases} \quad t \in \left(t^n, t^{n+1} + \frac{\Delta t}{2}\right) .
\]
as well as
\[\dot{y}_j(t) = \begin{cases} -1 & j \text{ odd} \\ 1 & j \text{ even} \end{cases} \quad t \in \left(t^n + \frac{\Delta t}{2}, t^{n+1} \right). \]

Therefore (a) is of the form
\[\sum_{y_i < x} \Delta \rho(y_i, t) = \tilde{\sigma}(t) \cdot \nu_{\ell}. \]

Concerning (b), since \(\Delta \rho(x_j) = -2g(J(x_j))\delta_j \) we immediately get
\[\sum_{x_j < x} \Delta \rho(x_j, t) = -2\alpha_n \sum_{x_j < x} g(J(x_j, t))\delta_j. \]

Therefore the proof of (4.24) is complete.

(3) Finally, about (4.27), we use the relation \(f^\pm = \frac{\alpha_\pm J}{2} \) to get
\[f^\pm(x_j+, t) = \frac{\tilde{\sigma}(t) \pm \sigma(t)}{2} \cdot v(x_j) + \frac{1}{2} \rho(0+, t) - \alpha_n \sum_{0 \leq \ell \leq j} g(J(x_\ell, t))\delta_\ell. \]

We rewrite the first term as follows,
\[\frac{\tilde{\sigma}(t) \pm \sigma(t)}{2} \cdot v(x_j) = \frac{1}{2} (\Pi \pm I_{2N}) \sigma(t) \cdot v(x_j) = \sigma(t) \cdot \frac{1}{2} (\Pi \pm I_{2N}) v_{2j}, \]

where we used (4.23) and the fact that the matrices \(\Pi \pm I_{2N}, \)
\[\frac{1}{2} (\Pi + I_{2N}) = \text{diag}(1, 0, 1, 0, \ldots, 1, 0), \]
\[\frac{1}{2} (\Pi - I_{2N}) = -\text{diag}(0, 1, 0, 1, \ldots, 0, 1) \]
are symmetric. The proof of (4.27) is complete. \(\square \)

Remark 4.3. Here is a list of remarks about the representation formulas in Lemma 4.1.

(a) The value of \(\rho(0+, t) \) in (4.24) is determined by the conservation of mass identity:
\[\int_J \rho \Delta x(x, t) \, dx = \int_J \rho \Delta x(x, 0) \, dx. \]

(b) By the definitions (4.28), (4.4) of \(v^\pm_{2j} \) and \(B_1 \), respectively, it is immediate to find that
\[B_1 v^\pm_{2j} = -v^\pm_{2j}. \]

(c) The last term in (4.27), which is related to the variation of \(f^\pm \) across the point sources \(x_j \), can be also conveniently expressed as a scalar product with \(v^\pm_{2j} \). Indeed, if we define
\[\tilde{p}_j(t) = g(J(x_j, t))\delta_j \]
\[\tilde{G}(t) = (0, -\tilde{p}_1, \ldots, -\tilde{p}_{N-1}, \tilde{p}_{N-1}, 0)^t \]
then it is immediate to verify the following identity holds:
\[\sum_{0 \leq \ell \leq j} g(J(x_\ell, t))\delta_\ell = \tilde{G}(t) \cdot v^-_{2j} = \tilde{G}(t) \cdot v^+_{2j+2}. \]

Notice the similarity between \(\tilde{G} \), for time \(t = t^n- \), and the vector source term \(G_n \) defined at (4.10). In general, the map \(t \to \tilde{G}(t) \) is nonlinear with respect to \(\sigma(t) \) because of the nonlinearity of \(J \to g(J) \). In the following section, we will analyze in detail the case of \(g \) being linear.
5. The linear case: the telegrapher’s equation. In this section we will assume that, for some \(d > 0 \),

\[
k(x) \equiv d, \quad g'(J) \equiv 1, \quad \alpha(t) \equiv 1
\]

which corresponds to the case of the standard telegrapher’s equation:

\[
\begin{align*}
\partial_t \rho + \partial_x J &= 0, \\
\partial_t J + \partial_x \rho &= -2dJ.
\end{align*}
\]

(5.1)

Then the vector \(\gamma \), defined at (4.8), has all equal components:

\[
\gamma = d \Delta x = \frac{d}{N},
\]

(5.2)

In this case, the iteration formula (4.12) leads to

\[
\sigma(t^{n+}) = B(\gamma)^n \sigma(0^+).
\]

(5.3)

It is clear that, for \(d = 0 \) and hence \(\gamma = 0 \), the sequence in (5.3) corresponds to the undamped linear system

\[
\partial_t \rho + \partial_x J = 0 = \partial_t J + \partial_x \rho,
\]

see (d) in Remark 4.2.

5.1. An expansion formula. In this subsection we provide an expansion formula for (5.3) for the power \(n = N \), that corresponds to the time \(t = 1 \). The expansion is made in terms of the parameter \(\gamma = \frac{d}{N} \), with \(d > 0 \) and \(N \to \infty \).

It is well known that doubly stochastic matrices can be written as a convex combination of permutations by Birkhoff Theorem ([12, Theorem 8.7.2]), which are at most \(4N^2 - 4N + 2 = (2N - 1)^2 + 1 \). If \(\gamma \) is as in (5.2), then the matrix \(B(\gamma) \) can be decomposed as the sum of only two matrices:

\[
B(\gamma) = \frac{1}{1+\gamma} (B(0) + \gamma B_1).
\]

(5.4)

Thanks to this decomposition, we can analyze the powers of \(B(\gamma) \). For a generic \(n \in \mathbb{N} \) one has

\[
B(\gamma)^n = (1 + \gamma)^{-n} [B(0) + \gamma B_1]^n, \quad n \geq 1.
\]

(5.5)

The factor \((1 + \gamma)^{-n}\) provides an exponentially decreasing term with respect to time. Indeed let \(T > 0 \) and recalling that \(\Delta t = N^{-1} \), we have

\[
\left(1 + \frac{d}{N}\right)^{-\lfloor TN \rfloor} \to e^{-dT} \quad N \to \infty.
\]

(5.6)

Let us focus on the second factor in (5.5), that is \([B(0) + \gamma B_1]^n\). In [1, Theorem 10] an expansion formula is provided in terms of \(d \) and \(N \) for the power \(n = 2N \). The following theorem states a similar expansion for the power \(n = N \), which turns out to be a more convenient choice.

Theorem 5.1. Let \(N \in 2\mathbb{N} \) and \(d \geq 0 \). Then the following identity holds

\[
\left[B(0) + \frac{d}{N} B_1 \right]^N = B(0)^N + d\tilde{P} + R_N(d)
\]

where

\[
\tilde{P} = \frac{1}{2N} (e^t e + v^t v_1),
\]

(5.8)

\[
R_N(d) = \sum_{j=0}^{N-1} \zeta_j, N B(0)^{N-2j-1} + \sum_{j=1}^{N-1} \eta_j, N B(0)^{2j-N}.
\]

(5.9)
The coefficients \(\zeta_{j,N} \) and \(\eta_{j,N} \) depend on \(d \) and satisfy the following estimate:

\[
0 \leq \sum_{j=0}^{N} \zeta_{j,N} + \sum_{j=1}^{N} \eta_{j,N} \leq e^{d} - d - 1 + \frac{K}{N} \tag{5.10}
\]

where \(K = K(d) \geq 0 \) is independent on \(N \), and \(K(d) \to 0 \) as \(d \to 0 \).

The proof is deferred to Appendix A. For the definition of \(K = K(d) \) see (A.12).

In the following, the analysis will be based on the equation (5.3) for \(n = N \). Notice that \(t^{N} = N \Delta t = 1 \). By recalling (5.5) and the expansion formula (5.7), we get

\[
\begin{align*}
\sigma(t^{N}+) &= B(\gamma)^{N} \sigma(0+) \\
&= \left(1 + \frac{d}{N}\right)^{-N} \left(B(0)^{N} + d\hat{P} + R_{N}(d)\right) \sigma(0+). \tag{5.11}
\end{align*}
\]

Recalling (4.25), one obtains a similar expression for

\[
\tilde{\sigma}(t^{N}+) = \Pi B(\gamma)^{N} \sigma(0+). \tag{5.12}
\]

We remind that \(\sigma \) is used in the representation formula for \(J \), while \(\tilde{\sigma} \) is used in the one for \(\rho \).

In the formula (5.11), an expansion in powers of \(d \) is obtained, since \(R_{N}(d) \) can be expressed in terms of powers \(d^{\ell} \) with \(\ell \geq 2 \). A key point is the identification of the first order term \(\hat{P} \), that will lead us to a cancellation property stated in the following proposition.

Proposition 5.1. The following identity holds,

\[
\hat{P} \sigma(0+) = \frac{1}{2N} (\sigma(0+) \cdot v_{-}) v_{-}. \tag{5.13}
\]

Proof. By recalling the definition of \(\hat{P} \) in (5.8), one has that

\[
\hat{P} w = \frac{1}{2N} \left((w \cdot e) e + (w \cdot v_{-}) v_{-} \right) \quad \forall w \in \mathbb{R}^{2N}. \tag{5.14}
\]

By setting \(w = \sigma(0+) \), from (4.14) we immediately get (5.13). \(\square \)

5.2. **Contractivity of the "sum" norm.** Next, for a fixed \(T > 0 \), we seek an estimate on \(B(\gamma)^{n} \) as \(n = \lfloor NT \rfloor \) and \(N \to \infty \). In [1, Proposition 11 and (88)], it is proved that the matrix norm induced by \(\| \cdot \|_{\ell_{1}} \) (also called sum norm, [12]) is contractive for \(B(\gamma)^{n} \) on the subspace

\[
E_{-} = \left< e, v_{-} > 1 \right.
\]

which is the linear space generated by all the eigenvectors of those eigenvalues \(\lambda \) such that \(|\lambda| < 1 \).

Here we provide an extension of this property, that leads to an estimate for the time \(T = 1 \).

Proposition 5.2. Let \(N \in 2\mathbb{N} \) and \(d \geq 0 \). There exists a constant \(C_{N}(d) \) (see (5.18) below) such that

\[
C_{N}(d) \to (1 - de^{-d}) \leq C(d) < 1, \quad N \to \infty \tag{5.16}
\]

and that, for all \(w \in \mathbb{R}^{2N} \),

\[
\| B(\gamma)^{N} w \|_{\ell_{1}} \leq C_{N}(d) \| w \|_{\ell_{1}} + d \left(1 + \frac{d}{N} \right)^{-N} (|w \cdot e| + |w \cdot v_{-}|). \tag{5.17}
\]

In particular, for \(N \) large enough such that \(C_{N}(d) < 1 \), the \(\ell_{1} \)-norm is contractive on the subspace \(E_{-} \) defined at (5.15).
Proof. Let $w \in \mathbb{R}^{2N}$. By means of the formula (5.5) and the expansion formula (5.7), we obtain

$$B(\gamma)^N w = \left(1 + \frac{d}{N}\right)^{-N} \left[B(0) + \frac{d}{N} B_1\right]^N w$$

$$= \left(1 + \frac{d}{N}\right)^{-N} \left[B(0)^N w + \frac{d}{2N} (w \cdot e) e + (w \cdot v_-) v_- \right] + R_N(d)w$$

where we used (5.14).

Let $|| \cdot ||$ be a vector norm that is invariant under components permutation of the vectors. Since $B(0)^N$ is permutation matrix and $R_N(d)$ is a linear combination of permutation matrices, we use (5.10) to get that

$$||B(\gamma)^N w|| \leq \left(1 + \frac{d}{N}\right)^{-N} ||w|| \left(1 + e^d - d - 1 + \frac{K}{N}\right) + \left(1 + \frac{d}{N}\right)^{-N} \frac{d}{2N} (|w \cdot e| \cdot ||e|| + |w \cdot v_-| \cdot ||v_-||) .$$

In particular, the above estimate holds for $|| \cdot || = || \cdot ||_{\ell_1}$.

Since $\|e\|_{\ell_1} = \|v_-\|_{\ell_1} = 2N$, if we set

$$C_N(d) = \left(1 + \frac{d}{N}\right)^{-N} \left[e^d - d + \frac{1}{N} K(d)\right]$$

then the estimate (5.17) follows. The proof of Prop. 5.2 is complete.

The formula (5.17) indicates that, as $N \to \infty$, the matrix norm induced by the ℓ_1-norm is asymptotically contractive for the power $B(\gamma)^N$ on the subspace E_-:

$$\|B(\gamma)^N w\|_{\ell_1} \leq C_N(d) \|w\|_{\ell_1}, \quad w \in E_-, \quad (5.19)$$

$$\lim_{N \to \infty} C_N(d) = C(d) < 1.$$

Of course, for d and N fixed, the sequence of matrices $B(\gamma)^n$ will converge to zero as $n \to \infty$ on the subspace E_- (that is, every vector $B(\gamma)^n w$ with $w \in E_-$ converges to zero componentwise). Hence, every matrix norm will become contractive after a sufficiently large number n of iterations.

However, what we state here above is that the contraction property holds for $n = N$, uniformly for large N, and for the specific norm induced by $|| \cdot ||_{\ell_1}$.

In conclusion, thanks to (5.19), we obtain a contractivity estimate for $n = N \to \infty$, that is for $T = 1$. By iteration, as in the proof of [1, Theorem 1, p.204], one can deduce an exponentially decaying estimate, sketched as follows:

- for every integer $h \geq 1$ and every $t \in [h, h+1)$, one has

$$\|J(t, t)\|_{\infty} \leq \frac{1}{2N} TV \tilde{J}_0 + \|B(\gamma)^hN \tilde{w}\|_{\ell_1}$$

where \tilde{w} is the projection of $\sigma(0+)$ on E_- and

$$\tilde{J}_0 : [0, 1] \to \mathbb{R}, \quad \tilde{J}_0(x) = \begin{cases} J_0(x) & 0 < x < 1 \\ 0 & x = 0 \text{ or } x = 1 \end{cases}.$$
Therefore, by means of \((5.19)\), one obtains
\[
\| J(\cdot, t) \|_\infty \leq \frac{1}{2N} TV J_0 + C_N(d) \| \bar{w} \|_{\ell_1} \\
\leq \frac{1}{2N} TV J_0 + C_N(d) \| \bar{w} \|_{\ell_1} e^{-Ct}
\]
for \(N\) large enough so that \(0 < C_N(d) < 1\), and \(C = |\ln\{C_N(d)\}|\).

We remark that the norm \(\| \bar{w} \|_{\ell_1}\) depends on the total variation of the initial data (see \([1, p.205]\)); therefore the estimate above is not suitable to the extension to \(L^\infty\) initial data.

5.3. Contractivity of the invariant domain

Next, under the assumptions \((5.2)\), we prove a contractivity property of the invariant domain \([m, M]_2\) for the approximate solutions.

Proposition 5.3. Given \(\bar{w} \in \mathbb{R}^{2N}\) such that \(\bar{w} \cdot v_{2N} = 0\), and given \(d \geq 0\), let
\[
w(d) = \bar{w} + \frac{d}{N} \left(1 + \frac{d}{N}\right)^{-1} \Phi(\bar{w})
\]
where
\[
\Phi(w) = (w \cdot v_{2N}, -w \cdot v_2, w \cdot v_2, \ldots, -w \cdot v_{2N-2}, w \cdot v_{2N-2}, -w \cdot v_{2N}) , \quad w \in \mathbb{R}^{2N}
\]
for \(v_{2\ell}, \ell = 0, \ldots, N\) defined as in \((4.20)\). Then one has
\[
\bar{w} = w(d) - \frac{d}{N} \Phi(w(d))
\]
and
\[
B(0)^N \bar{w} = B(0)^N w(d) - \frac{d}{N} \Phi(B(0)^N w(d)) .
\]

Moreover, let \(m \leq 0 \leq M\) be such that
\[
m \leq \bar{w} \cdot v_{2\ell}^+ \leq M \quad \ell = 0, \ldots, N.
\]

Then one has, for every \(d_1 \geq 0\), \(d > 0\) and \(j, k:\)
\[
B(d_1) \bar{w} \cdot (v_{2j}^+ - v_{2k}^+) \leq M - m ,
\]
\[
w(d) \cdot (v_{2j}^+ - v_{2k}^+) \leq (1 + d)(M - m) ,
\]
\[
B(d_1) w(d) \cdot (v_{2j}^+ - v_{2k}^+) \leq (1 + d)(M - m) .
\]

Proof. To prove \((5.22)\), by the definition of \(w(d)\), we need to prove that
\[
\Phi(w(d)) = \left(1 + \frac{d}{N}\right)^{-1} \Phi(\bar{w}) .
\]

Thanks to the definition of \(v_{2\ell}\),
\[
v_0 = 0 , \quad v_{2\ell} = (1, \ldots, 1, 0, \ldots, 0) \quad \ell = 1, \ldots, N ,
\]
we easily find that
\[
\Phi(w) \cdot v_{2\ell} = \sum_{j=1}^{2\ell} \Phi(w)_j = -w \cdot v_{2\ell} , \quad \ell = 1, \ldots, N .
\]

Then we claim that the map \(\Phi\) satisfies the following property:
\[
\Phi(\Phi(w)) = -\Phi(w) .
\]
Indeed
\[
\Phi(\Phi(w)) = \begin{pmatrix} 0, -\Phi(w) \cdot v_2, \Phi(w) \cdot v_2, \ldots, -\Phi(w) \cdot v_{2N-2}, \Phi(w) \cdot v_{2N-2}, 0 \end{pmatrix}
\]
\[= -\Phi(w).\]

Since \(\Phi \) is linear, one has
\[
\Phi(w(d)) = \Phi(w) + \frac{d}{N} \left(1 + \frac{d}{N}\right)^{-1} \Phi(\Phi(w))
\]
\[= \Phi(\bar{w}) \left[1 - \frac{d}{N} \left(1 + \frac{d}{N}\right)^{-1}\right] = \left(1 + \frac{d}{N}\right)^{-1} \Phi(\bar{w}).
\]

This proves (5.28) and hence (5.22). To prove (5.23), it is sufficient to prove that
\[
\Phi(B(0)^N w(d)) = B(0)^N \Phi(w(d)). \tag{5.29}
\]

Indeed, if (5.29) holds, from (5.22) we find immediately that
\[
B(0)^N \bar{w} = B(0)^N w(d) - \frac{d}{N} B(0)^N \Phi(w(d)) = B(0)^N w(d) - \frac{d}{N} \Phi(B(0)^N w(d)),
\]

hence (5.23) holds.

To prove (5.29), let \(w \) any vector in \(\mathbb{R}^{2N} \) such that \(w \cdot v_{2N} = 0 \). We recall (4.18) to find that
\[
B(0)^N w \cdot v_{2\ell} = w \cdot B(0)^N v_{2\ell}
\]
\[= w \cdot (v_{2N} - v_{2N-2\ell}) = w \cdot v_{2N} - w \cdot v_{2N-2\ell}
\]
\[= -w \cdot v_{2N-2\ell}
\]
and hence
\[
\Phi(B(0)^N w) = (0, w \cdot v_{2N-2}, -w \cdot v_{2N-2}, \ldots, w \cdot v_2, -w \cdot v_2, 0) = B(0)^N \Phi(w).
\]

Since \(w(d) \cdot v_{2N} = 0 \) for every \(d \geq 0 \), the previous identity applies and (5.29) holds.

To prove (5.25), recall (5.4), then we have
\[
B(d_1)\bar{w} \cdot (v_{2j}^+ - v_{2k}^+) = \frac{1}{1 + d_1} \left(B(0)\bar{w} \cdot (v_{2j}^+ - v_{2k}^+) + d_1 B_1 \bar{w} \cdot (v_{2j}^+ - v_{2k}^+)\right) \tag{I}
\]

Estimate of (I),
\[
(I) = \bar{w} \cdot B(0)^t (v_{2j}^+ - v_{2k}^+),
\]

and one can check that the following holds true
\[
B(0)^t (v_{2j}^+ - v_{2k}^+) = v_{2j-2}^+ - v_{2k-2}^+
\]
\[
B(0)^t (v_{2j}^- - v_{2k}^-) = v_{2j+2}^- - v_{2k+2}^-.
\]

Therefore, by (5.24), we get
\[
(I) = \begin{cases} \bar{w} \cdot (v_{2j-2}^- - v_{2k-2}^-) \leq M - m \\
\bar{w} \cdot (v_{2j+2}^+ - v_{2k+2}^+) \leq M - m \end{cases}
\]
Estimate of (II), one has the following

\[(II) = \tilde{w} \cdot B_1(v_{2j}^\pm - v_{2k}^\pm)\]

\[= -\tilde{w} \cdot (v_{2j}^\pm - v_{2k}^\pm)\]

\[\leq M - m,\]

the last inequality holds by (5.24). Hence,

\[B(d)\tilde{w} \cdot (v_{2j}^\pm - v_{2k}^\pm) \leq \frac{1}{1 + d_1}((M - m) + d_1(M - m)) = M - m.\]

The proof of (5.25) is complete. To prove (5.26), one has that

\[w(d) \cdot v_{2j}^\pm = \tilde{w} \cdot v_{2j}^\pm + \frac{d}{N} \left(1 + \frac{d}{N}\right)^{-1} \Phi(\tilde{w}) \cdot v_{2j}^\pm,\]

where the map \(\Phi\) satisfies

\[\Phi(\tilde{w}) \cdot v_{2j}^\pm = \sum_{\ell=1}^j \tilde{w} \cdot v_{2\ell}\]

\[\Phi(\tilde{w}) \cdot v_{2j}^{\pm} = \sum_{\ell=1}^j \tilde{w} \cdot v_{2\ell-2}^\pm.\]

By (5.24) we find that

\[\tilde{w} \cdot v_{2\ell} = \tilde{w} \cdot (v_{2\ell}^+ - v_{2\ell}^-) \leq M - m,\]

and hence we have

\[w(d) \cdot (v_{2j}^- - v_{2k}^-) = \tilde{w} \cdot (v_{2j}^- - v_{2k}^-) + \frac{d}{N} \left(1 + \frac{d}{N}\right)^{-1} \sum_{\ell=k+1}^j \tilde{w} \cdot v_{2\ell}\]

\[\leq (M - m) + \frac{d}{N} \left(1 + \frac{d}{N}\right)^{-1} \sum_{\ell=k+1}^j (j - k)(M - m)\]

\[\leq (M - m)(1 + d)\]

from which (5.26) follows, in the case of the \(v^-\) vectors. The estimate for \(w(d) \cdot (v_{2j}^+ - v_{2k}^+)\) is completely similar and we omit it.

The proof of (5.27) is a consequence of (5.26) and is similar to the proof of (5.25).

Theorem 5.2. Let \(f^\pm\) be the approximate solution corresponding to the linear problem (5.1). Let \(N \in 2\mathbb{N}\) and let \(m \leq 0 \leq M\) be the constant values defined at (3.7).

Then there exist constants \(C_N(d)\) and \(\hat{C} > 0\), such that

\[\sup f^\pm(\cdot, t^N) - \inf f^\pm(\cdot, t^N) \leq C_N(d)(M - m) + \frac{\hat{C}}{N}.\]

(5.30)

Proof. The proof employs the representation formula (4.27) for \(f^\pm\) and the expansion formula (5.11).

- We start from the representation formula (4.27) for \(t = t^N\). Thanks to the assumptions (5.2), it reads as:

\[f^\pm(x_j + t) = \sigma(t) \cdot v_{2j}^\pm + \frac{1}{2} \rho(0^+, t) - \frac{d}{N} \sum_{0 \leq \ell \leq j} J(x_\ell, t), \quad j = 0, \ldots, N - 1\]

(5.31)

where \(x_j = j\Delta x = \frac{j}{n}\) and \(v_{2j}^\pm\) are defined at (4.28).
We remark that \(f^\pm \) is possibly discontinuous only at \(x = x_j \) and along \((\pm 1)^-\) waves, and hence their image is given by the values at \(x = 0^+, \) \(x = 1^- \) and \(x = x_j \pm \) with \(j = 1, \ldots, N - 1. \) At \(x = x_j - \) one has that
\[
 f^\pm(x_j-, t) = \sigma(t) \cdot v^\pm_{2j} + \frac{1}{2} \rho(0^+, t) - \frac{d}{N} \sum_{0 \leq \ell < j} J(x_\ell, t), \quad j = 1, \ldots, N
\]
and hence
\[
 |f^\pm(x_j+, t) - f^\pm(x_j-, t)| \leq \sup |J(\cdot, t)| \frac{d}{N} \leq (M - m) \frac{d}{N}
\]
that vanishes as \(N \to \infty. \)

Therefore, in the following we will consider only the values of \(f^\pm \) at \(x = x_j +. \)

- Recalling the identity (4.31) for the variation of \(f^\pm \) across the point sources \(x_j, \) we find that
\[
 \tilde{p}_{j,n} = \frac{d}{N} J(x_j, t) = \frac{d}{N} \sigma(t) \cdot v_{2j}, \quad \tilde{G}_n = \frac{d}{N} \Phi(\sigma(t))
\]
where \(\Phi : \mathbb{R}^{2N} \to \mathbb{R}^{2N} \) is the linear map defined at (5.21). The map \(\Phi \) has the following property:
\[
 \sum_{\ell = 1}^{j} w_\ell \cdot v_{2\ell} = \Phi(w) \cdot v_{2j} = \Phi(w) \cdot v_{2j+2}, \quad j \geq 1
\]
where \(v_{2\ell} \) is defined as in (4.20). Therefore, as in (4.31), we can write
\[
 \sum_{0 \leq \ell \leq j} J(x_\ell, t) = \Phi(\sigma(t)) \cdot v^-_{2j} = \Phi(\sigma(t)) \cdot v^+_{2j+2}.
\]

- Let \(j, k \in \{0, \ldots, N - 1\}, j > k. \) We combine (5.31) and (5.34) to get
\[
 (a) \quad f^-(x_j+, t) - f^-(x_k+, t) = \left(\sigma(t) - \frac{d}{N} \Phi(\sigma(t)) \right) \cdot (v^-_{2j} - v^-_{2k})
\]
\[
 (b) \quad f^+(x_j+, t) - f^+(x_k+, t) = \sigma(t) \cdot (v^+_{2j} - v^+_{2k}) - \frac{d}{N} \Phi(\sigma(t)) \cdot (v^+_{2j+2} - v^+_{2k+2})
\]
We claim that the following inequalities hold:
\[
 f^\pm(x_j+, t) - f^\pm(x_k+, t) \leq \left(\sigma(t) - \frac{d}{N} \Phi(\sigma(t)) \right) \cdot (v^\pm_{2j} - v^\pm_{2k}) + 2d/(M - m).
\]
Indeed, from the identity \((a)\) above we immediately get (5.35) for the "−". On the other hand, to prove (5.35) for the "+" sign, it is enough to check that
\[
 |\Phi(\sigma(t)) \cdot (v^+_{2j+2} - v^+_{2j} - v^+_{2k+2} + v^+_{2k})| \leq 2(M - m),
\]
which is true since
\[
 |\Phi(\sigma(t)) \cdot (v^+_{2j+2} - v^+_{2j})| = |\sigma(t) \cdot v^+_{2j}| = |J(x_j, t)| \leq M - m.
\]
Therefore the claim is proved.

Next, we proceed with the analysis of the term
\[
 \left(\sigma(t) - \frac{d}{N} \Phi(\sigma(t)) \right) \cdot (v^\pm_{2j} - v^\pm_{2k}) = (*)
\]
that appears in (5.35).

By applying the identity (5.11), the expression above can be written as a sum of three terms, corresponding to \(B(\mathbf{0})^N, \) \(\tilde{P} \) and \(R_N(d) \) respectively:
\[
 (*) = \left(1 + \frac{d}{N} \right)^{-N} [A_1 + A_2 + A_3]
\]
where
\[A_1 = \left[B(0)^N \sigma(0+) - \frac{d}{N} \Phi \left(B(0)^N \sigma(0+) \right) \right] \cdot (v_2^j - v_{2k}^j) \]
\[A_2 = d \left[\hat{P} \sigma(0+) - \frac{d}{N} \Phi \left(\hat{P} \sigma(0+) \right) \right] \cdot (v_2^j - v_{2k}^j) \]
\[A_3 = \left[R_N(d) \sigma(0+) - \frac{d}{N} \Phi \left(R_N(d) \sigma(0+) \right) \right] \cdot (v_2^j - v_{2k}^j) . \]

Estimate for \(A_2 \). We claim that
\[|A_2| \leq \frac{d}{N} |\sigma(0+) \cdot v_-| . \]
To prove this claim, it is sufficient to prove that
\(i \) \(\hat{P} \sigma(0+) \cdot (v_2^j - v_{2k}^j) \in \{ \pm 1, 0 \} , \)
\(ii \) \(\Phi \left(\hat{P} \sigma(0+) \right) \cdot (v_2^j - v_{2k}^j) = 0 . \)

To prove (i), we use (5.13) to write that
\(\hat{P} \sigma(0+) \cdot v_{2\ell}^j = \frac{1}{2N} \left(\sigma(0+) \cdot v_- \right) \left(v_- \cdot v_{2\ell}^j \right) , \)
where \(v_- \) is the eigenvector in (4.13):
\[v_- = (1, -1, -1, 1, \ldots, 1, -1, -1, 1) . \]
From (4.28), it is immediate to check that
\[v_- \cdot v_{2\ell}^+ = (1, -1, -1, 1, \ldots, 1, -1, -1, 1) \cdot (1, 0, \ldots, 1, 0, 0, \ldots, 0) \in \{ 0, 1 \} , \]
and similarly
\[v_- \cdot v_{2\ell}^- = -(1, -1, -1, 1, \ldots, 1, -1, -1, 1) \cdot (0, 1, \ldots, 0, 1, 0, \ldots, 0) \in \{ 0, 1 \} . \]
More precisely,
\[v_- \cdot v_{2\ell}^+ = v_- \cdot v_{2\ell}^- = \begin{cases} 1 & \text{if } \ell \text{ odd} \\ 0 & \text{if } \ell \text{ even} . \end{cases} \]
Therefore, it is immediate to conclude that (i) holds.

To prove (ii), we use the identity (5.33) to find that
\[\Phi \left(\hat{P} \sigma(0+) \right) \cdot v_{2\ell}^j = \sum_{\ell=1}^{j} \hat{P} \sigma(0+) \cdot v_{2\ell} \]
\[= \frac{1}{2N} \left(\sigma(0+) \cdot v_- \right) \sum_{\ell=1}^{j} v_- \cdot v_{2\ell} \]
\[= 0 . \]
Here above we used the fact that \(v_- \cdot v_{2\ell} = v_- \cdot (v_{2\ell}^+ - v_{2\ell}^-) = 0 . \) The proof for
\[\Phi \left(\hat{P} \sigma(0+) \right) \cdot v_{2\ell}^j = \sum_{\ell=1}^{j-1} \hat{P} \sigma(0+) \cdot v_{2\ell} \]
is totally analogous. The claim is proved.
Towards an estimate for A_1 and A_3. Consider the initial-boundary value problem with the same initial data and boundary condition as the one corresponding to $\sigma(t)$, but for $k(x) \equiv 0$. Hence the problem is linear and undamped.

The corresponding evolution vector, that we denote with $\tilde{\sigma}(t)$, is defined inductively by

$$
\begin{align*}
\tilde{\sigma}(t^n +) &= B(0)^n \tilde{\sigma}(0+) , \\
\tilde{\sigma}(t^{n+\frac{1}{2}} +) &= B_1 \tilde{\sigma}(t^n +) ,
\end{align*}
$$

About $\tilde{\sigma}(0+)$ we claim that

$$
\tilde{\sigma}(0+) = \sigma(0+) - \frac{d}{N} \Phi(\sigma(0+))
$$

where

$$
\Phi(\sigma(0+)) = (0, -\sigma(0+) \cdot v_2, \sigma(0+) \cdot v_2, \ldots, -\sigma(0+) \cdot v_{2N-2}, \sigma(0+) \cdot v_{2N-2}, 0) = (0, -J(x_1, 0+), +J(x_1, 0+), \ldots, -J(x_{N-1}, 0+), +J(x_{N-1}, 0+), 0)^t .
$$

To prove the claim,

- we observe that $\tilde{\sigma}_1 = \sigma_1$ and $\tilde{\sigma}_{2N} = \sigma_{2N}$, it is obvious since $\Phi_1(\sigma(0+)) = 0$ and $\Phi_{2N}(\sigma(0+)) = 0$.

- at every x_j, $j = 1, \ldots, N - 1$ we compare $(\tilde{\sigma}_{2j}, \tilde{\sigma}_{2j+1})$ with $(\sigma_{2j}, \sigma_{2j+1})$. In the notation of Prop. 2.2, let J_* the middle value for J in the solution to the Riemann problem with $d = \bar{k} > 0$ and $J_m = f_1^+ - f_1^-$ the middle value for J when $k = 0$. Using (2.8), we have the following identity:

$$
J_* + \frac{d}{N} J_* = J_m ,
$$

from which we deduce

$$
\tilde{\sigma}_{2j} = J_m - J_\ell = (J_* - J_\ell) + \frac{d}{N} J_* = \sigma_{2j} + \frac{d}{N} J(x_j, 0+) .
$$

Similarly one has

$$
\tilde{\sigma}_{2j+1} = J_r - J_m = (J_* - J_r) - \frac{d}{N} J_* = \sigma_{2j+1} - \frac{d}{N} J(x_j, 0+) .
$$

Therefore (5.38) holds. The claim is proved.

It is easy to check that (5.38) can be inverted as follows:

$$
\sigma(0+) = \tilde{\sigma}(0+) + \frac{d}{N} \left(1 + \frac{d}{N}\right)^{-1} \Phi(\tilde{\sigma}(0+)) ,
$$

see Prop. 5.3.

Estimate for A_1. We apply (5.23) to find that

$$
A = B(0)^N \tilde{\sigma}(0+) \cdot (v_{2j}^\pm - v_{2k}^\pm) \leq M - m .
$$
• **Estimate for \(A_3 \).** By using (5.9) we get
\[
R_N(d)\sigma(0+) - \frac{d}{N}\Phi(R_N(d)\sigma(0+))
= \sum_{j=0}^{N-1} \zeta_{j,N} \left\{ B_1B(0)^{N-2j-1}\sigma(0+) - \frac{d}{N}\Phi(B_1B(0)^{N-2j-1}\sigma(0+)) \right\}
+ \sum_{j=1}^{N-1} \eta_{j,N} \left\{ B(0)^{2j-N}\sigma(0+) - \frac{d}{N}\Phi(B(0)^{2j-N}\sigma(0+)) \right\}.
\]
By (5.27) for \(d_1 = 0 \), we have
\[
B(0)^n\sigma(0+) - \frac{d}{N}\Phi(B(0)^n\sigma(0+)) \leq (1 + d)(M - m) + d(1 + d)(M - m)
= (1 + d)^2(M - m)
\]
The same hold for the term containing \(B_1 \). Therefore, by (5.10),
\[
C \leq (1 + d)^2 \left(e^d - d - 1 + \frac{K}{N} \right) (M - m)
\]
Finally, by recalling (5.36) and collecting the bounds on the terms \(A_1, A_2 \) and \(A_3 \), and using (4.16), we get
\[
(*) \leq C_N(d)(M - m) + \frac{d}{N} \left(1 + \frac{d}{N} \right)^{-N} \text{TV} \bar{J}_0
\]
where
\[
C_N(d) = \left(1 + \frac{d}{N} \right)^{-N} \left(1 + (1 + d)^2 \left(e^d - d - 1 + \frac{K}{N} \right) \right). \tag{5.39}
\]
Therefore, putting together (5.32) and (5.35), we conclude that
\[
0 \leq \sup f^\pm(\cdot, t^N) - \inf f^\pm(\cdot, t^N) \leq C_N(d)(M - m) + \frac{\hat{C}}{N}
\]
for \(\hat{C} \) that can be chosen to be independent on \(N \) as follows:
\[
\hat{C} = d \left[\text{TV} J_0 + 2(M - m) \right].
\]
The proof of Theorem 5.2 is now complete.

Now we are ready to complete the proof of Theorem 1.2.

Proof. The proof of Theorem 1.2 is a consequence of (5.30) in Theorem 5.2.

Indeed, given \((f^\pm)^{\Delta x} \), the convergence of a subsequence towards \(f^\pm \) holds in \(L^1(I) \) for all \(t > 0 \) and hence, possibly up to a subsequence, almost everywhere. Hence we can pass to the limit in (5.30) and get that
\[
\text{ess sup } f^\pm(\cdot, 1) - \text{ess inf } f^\pm(\cdot, 1) \leq C(d)(M - m)
\]
where
\[
C(d) \rightarrow e^{-d} \left(1 + (1 + d)^2 \left(e^d - d - 1 \right) \right) =: C(d), \quad N \rightarrow \infty. \tag{5.40}
\]
Since \(C(0) = 1, C'(0) = -1 \) and \(C(d) \rightarrow +\infty \) as \(d \rightarrow +\infty \), then there exists a value \(d^* > 0 \) such that \(C(d^*) = 1 \) and
\[
0 < C(d) < 1, \quad 0 < d < d^* \tag{5.41}
\]
This completes the proof of (1.13) for initial data \((\rho_0, J_0) \in BV(I) \).
On the other hand, if \((\rho_0, J_0) \in L^\infty(I)\), then there exists a sequence \((\rho_{0,n}, J_{0,n}) \in BV(I)\) that converges to \((\rho_0, J_0)\) in \(L^1(I)\), and hence the limit solution satisfies the same \(L^\infty\) bounds. Therefore (1.13) holds. The proof of Theorem 1.2 is complete.

5.4. Applications. Next, we give some applications of Theorem 1.2.

Theorem 5.3. For \(d \in (0, d^*)\), consider the system

\[
\begin{aligned}
\partial_t \rho + \partial_x J &= 0, \\
\partial_t J + \partial_x \rho &= -2\alpha(t)J,
\end{aligned}
\]

where \(x \in I, t \geq 0\), together with initial and boundary conditions (1.2), \((\rho_0, J_0) \in L^\infty(I)\), and \(\int_I \rho_0 = 0\).

(a) If \(\alpha(t) \equiv 1\), there exist constant values \(C_j > 0, j = 1, 2, 3\), that depend only on the equation and on the initial data, such that

\[
\|J(\cdot, t)\|_{L^\infty} \leq C_1 e^{-C_3 t} \\
\|\rho(\cdot, t)\|_{L^\infty} \leq C_2 e^{-C_3 t}
\]

with

\[C_3 = |\ln (C(d))|\,.
\]

(b) For \(\alpha(t)\) of type "on-off" as in (1.4), with \(T_1 \geq 1\), one has (5.43) with

\[C_3 = \frac{[T_1]}{T_2} |\ln (C(d))|\]

where \([T_1] \geq 1\) denotes the integer part of \(T_1\).

Proof. (a) Assume that \(\alpha(t) \equiv 1\).

We start by observing that the invariance domain property in Theorem 1.1 holds also for every \(\bar{t} > 0\): if

\[M(\bar{t}) = \text{ess sup}_I f^\pm(\cdot, \bar{t}), \quad m(\bar{t}) = \text{ess inf}_I f^\pm(\cdot, \bar{t}), \quad \bar{t} > 0\]

then

\[m(\bar{t}) \leq f^\pm(x, t) \leq M(\bar{t}) \quad \text{for a.e. } x, \quad t > \bar{t},\]

and the functions \(-m(\bar{t}), M(\bar{t})\) are monotone non-increasing.

Let’s define \(M_0 = M, m_0 = m\) and, for \(h \in \mathbb{N}\),

\[M_h = \text{ess sup}_I f^\pm(\cdot, h), \quad m_h = \text{ess inf}_I f^\pm(\cdot, h) \quad h \geq 1.\]

By the monotonicity property above, the two sequences satisfy

\[m_0 \leq m_1 \leq \ldots \leq 0 \leq \ldots \leq M_1 \leq M.\]

(5.44)

We claim that the two sequences converge both to 0. Indeed, by applying (1.13) iteratively, we obtain

\[M_h - m_h \leq C(d) (M_{h-1} - m_{h-1}), \quad h \geq 1\]

and therefore

\[M_h - m_h \leq C(d)^h (M - m), \quad h \geq 1.\]

(5.45)

Hence, by means of (5.44) and recalling that \(C(d) < 1\), we conclude that \(M_h\) and \(m_h \to 0\) as \(h \to \infty\).

Therefore we obtain the bound

\[m_h \leq f^\pm(x, t) \leq M_h \quad \text{for a.e. } x, \quad t \in [h, h + 1),\]
Recalling the relation (2.1) between \(\rho \), \(J \) and \(f^\pm \), we find that
\[
|J(x,t)| = |f^+(x,t) - f^-(x,t)| \leq M_h - m_h,
\]
\[
|\rho(x,t)| = |f^+(x,t) + f^-(x,t)| \leq 2 \max\{M_h,|m_h|\} \leq 2(M_h - m_h)
\]
for \(t \in [h, h+1) \).

Now we observe that one has, for \(h \leq t < h+1 \):
\[
C(d)^h < C(d)^{t-1} = \frac{1}{C(d)} e^{-C_3 t}
\]
where
\[
C_3 = |\ln (C(d))|.
\]
Therefore, if we define
\[
C_1 = \frac{M - m}{C(d)}, \quad C_2 = 2C_1
\]
and use (5.45), we obtain
\[
\|J(\cdot, t)\|_{L^\infty} \leq C_1 e^{-C_3 t},
\]
\[
\|\rho(\cdot, t)\|_{L^\infty} \leq C_2 e^{-C_3 t}
\]
which is (5.43). Hence the proof of part (a) is complete.

(b) In this case, recalling (1.4), for \(0 < T_1 < T_2 \) one has
\[
\alpha(t) = \begin{cases} 1 & t \in [0, T_1), \\ 0 & t \in [T_1, T_2) \end{cases}
\]
and \(\alpha(t) \) is \(T_2 \)-periodic. Therefore the damping term is "active" in every time interval of the form \([hT_2, hT_2 + T_1] \) with \(h \in \mathbb{N} \).

Here we are assuming that \(T_1 \geq 1 \). For \(h \in \mathbb{N} \), define
\[
M_h = \esssup_i f^+(\cdot, hT_2), \quad m_h = \essinf_i f^-(\cdot, hT_2) \quad h \geq 1.
\]
As in (a), by applying (1.13) iteratively, we obtain for \(h \geq 1 \)
\[
M_h - m_h \leq C(d)^{[T_1]} (M_{h-1} - m_{h-1}) .
\]
Therefore
\[
M_h - m_h \leq C(d)^{[T_1]} (M - m), \quad h \geq 1.
\]
If \(hT_2 \leq t < (h+1)T_2 \), then
\[
C(d)^{[T_1]} = C(d)^{(h+1)[T_1]-[T_1]} < C(d)^{-[T_1]}C(d)^{\frac{T_1}{T_2}} = \frac{1}{C(d)^{[T_1]}} e^{-C_3 t}
\]
with
\[
C_3 = \frac{[T_1]}{T_2} |\ln (C(d))|.
\]
Proceeding as in (a) we obtain
\[
\|J(\cdot, t)\|_{L^\infty} \leq C_1 e^{-C_3 t},
\]
\[
\|\rho(\cdot, t)\|_{L^\infty} \leq C_2 e^{-C_3 t}
\]
with
\[
C_1 = \frac{M - m}{C(d)^{[T_1]}}, \quad C_2 = 2C_1.
\]
The proof of part (b) is complete. \(\square \)
Appendix A. Proof of Theorem 5.1. In this Appendix we prove Theorem 5.1. The expansion of the following power gives

\[[B(0) + \gamma B_1]^n = \sum_{k=0}^{n} \gamma^k S_k(B(0), B_1), \]

(A.1)

where each term \(S_k(B(0), B_1) \) is the sum of all products of \(n \) matrices which are either \(B_1 \) or \(B(0) \), and in which \(B_1 \) appears exactly \(k \) times, that is

\[
\begin{align*}
S_k(B(0), B_1) &= \sum_{(\ell_1, \ldots, \ell_{k+1})} B(0)^{\ell_1} \cdot B_1 \cdot B(0)^{\ell_2} \cdot B_1 \cdots B(0)^{\ell_k} \cdot B_1 \cdot B(0)^{\ell_{k+1}} \\
&= 0 \leq \ell_j \leq n - k, \quad \sum_{j=1}^{k+1} \ell_j = n - k.
\end{align*}
\]

(A.2)

The terms \(S_k \) can be handled, as in [1], by means of the following identity:

\[B(0)^{\pm \ell} B_1 = B_1 B(0)^{\mp \ell} \quad \forall \ell \in \mathbb{N}. \]

(A.3)

By means of (A.3) and using that \(B_1^2 = I_{2N} \), the generic term \(S_k \) in (A.2) can be conveniently rewritten: for \(k = 1, 3, \ldots, n - 1 \) odd we have

\[
S_k(B(0), B_1) = \sum_{j=\frac{n-k}{2}}^{n-k} {j \choose \frac{n-k}{2}} {n - j - 1 \choose k - 1} B(0)^{2j-n} B_2(0)
\]

(A.4)

and for \(k = 2, 4, \ldots, n \) even we have

\[
S_k(B(0), B_1) = \sum_{j=\frac{n-k}{2}}^{n-k} {j \choose \frac{n-k}{2}} {n - j - 1 \choose k - 1} B(0)^{2j-n}.
\]

(A.5)

In (A.4), it is convenient to rewrite the term \(B(0)^{2j-n} B_2(0) \) as follows. Recalling that \(B(0) \) is given by \(B(0) = B_2(0) B_1 \), we obtain

\[B_2(0) = B_2(0) B_1^2 = B(0) B_1 \]

and hence, by means of (A.3),

\[B(0)^{2j-n} B_2(0) = B(0)^{2j-n+1} B_1 = B_1 B(0)^{n-2j-1}. \]

Therefore, we can write (A.1) for any \(n \) as the following

\[
[B(0) + \gamma B_1]^n = B(0)^n + \gamma \sum_{j=0}^{n-1} B_1 B(0)^{n-2j-1} + \sum_{j=0}^{n-1} \zeta_{j,n} B_1 B(0)^{n-2j-1} + \sum_{j=1}^{n-1} \eta_{j,n} B(0)^{2j-n},
\]

(A.6)

where \(\gamma = \frac{d}{N} \) and

\[
\zeta_{j,n} = \sum_{\ell=1}^{\min\{j,n-j-1\}} \gamma^{2\ell+1} {j \choose \ell} {n - j - 1 \choose \ell},
\]

(A.7)

\[
\eta_{j,n} = \sum_{i=1}^{\min\{j,n-j\}} \gamma^{2i} {j \choose i} {n - j - 1 \choose i - 1}.
\]

(A.8)

In the expansion above, the term with the \(\zeta_{j,n} \) accounts for the odd powers, \(\geq 3 \), of \(\gamma \) while the term with the \(\eta_{j,n} \) accounts for the even powers \(\geq 2 \) of \(\gamma \).
From now on, we assume that \(n = N \). We recall the identity \([1, (100)]\),
\[
\frac{1}{N} \sum_{j=0}^{N-1} B(0)^{2j} = \frac{1}{2N} (e^t e + v_- v) = \tilde{P},
\]
and some immediate identities,
\[
\tilde{P} B_2(0) = \tilde{P}, \quad B(0)^2 \tilde{P} = \tilde{P} B(0)^2 = \tilde{P}.
\]
Therefore
\[
\sum_{j=0}^{N-1} B_1 B_1 B_1(0)^{N-2j-1} = B_1 \sum_{j=0}^{N-1} B(0)^{N-2j-1} = N \tilde{P},
\]
and the identity (A.6) rewrites as
\[
[B(0) + \gamma B_1]^N = B(0)^N + d \tilde{P} + R_N(d)
\]
\[
R_N(d) = \sum_{j=0}^{N-1} \zeta_{j,N} B_1 B(0)^{N-2j-1} + \sum_{j=1}^{N-1} \eta_{j,N} B(0)^{2j-N}.
\]
To complete the proof, we need to estimate the sums of \(\zeta_{j,N} \), \(\eta_{j,N} \). We claim that
\[
0 \leq \sum_{j=0}^{N} \zeta_{j,N} \leq \sinh(d) - d + \frac{1}{N} f_0(d) \tag{A.10}
\]
\[
0 \leq \sum_{j=1}^{N} \eta_{j,N} \leq \cosh(d) - 1 + \frac{1}{N} f_1(d) \tag{A.11}
\]
where
\[
f_0(d) = \sum_{\ell=1}^{\infty} \left(\frac{1}{2} \right)^{2\ell} \frac{d^{2\ell+1}}{(\ell)!^2} = d [I_0(d) - 1]
\]
\[
f_1(d) = \sum_{i=1}^{\infty} \left(\frac{1}{2} \right)^{2i-1} \frac{(d)^{2i}}{i!(i-1)!} = d I_1(d),
\]
and
\[
I_\alpha(2x) = \sum_{m=0}^{\infty} \frac{x^{2m+\alpha}}{m!(m+\alpha)!}, \quad \alpha = 0, 1
\]
is a modified Bessel function of the first type. It is clear that, once that the claim above is proved, then it follows that (5.10) holds with
\[
K(d) = f_0(d) + f_1(d). \tag{A.12}
\]
We start with \(\zeta_{j,N} \) defined in (A.7). Using the inequality
\[
\binom{n}{k} \leq \frac{n^k}{k!}, \quad 0 \leq k \leq n
\]
and the definition \(\gamma = d/N \), we find that
\[
\zeta_{j,N} \leq \frac{1}{N} \sum_{\ell=1}^{\infty} \frac{(d)^{2\ell+1}}{(\ell)!^2} \frac{j^\ell}{N^\ell} \frac{(N-j-1)^\ell}{N^\ell} \tag{A.13}
\]
Then we introduce the change of variable
\[
x_j = \frac{j}{N}, \quad j = 0, \ldots, N-1. \tag{A.14}
\]
Thanks to the inequality (A.13) we get

\[0 \leq \zeta_{j,N} \leq \frac{1}{N} \sum_{\ell=1}^{\infty} \frac{(d)^{2\ell+1}}{(\ell!)^2} x_j^\ell \left(1 - x_j - \frac{1}{N} \right)^\ell \]

\[\leq \frac{1}{N} \sum_{\ell=1}^{\infty} \frac{(d)^{2\ell+1}}{(\ell!)^2} x_j^\ell (1 - x_j)^\ell. \]

As a consequence, we deduce an estimate for the sum of the \(\zeta_{j,N} \):

\[
0 \leq \sum_{j=0}^{N-1} \zeta_{j,N} \leq \frac{1}{N} \sum_{j=0}^{N-1} \sum_{\ell=1}^{\infty} \frac{d^{2\ell+1}}{(\ell!)^2} x_j^\ell (1 - x_j)^\ell
\leq \sum_{\ell=1}^{\infty} \frac{d^{2\ell+1}}{(\ell!)^2} \left\{ \frac{1}{N} \sum_{j=0}^{N-1} x_j^\ell (1 - x_j)^\ell \right\}
\]

Using the definition (A.14), we observe that

\[
\frac{1}{N} \sum_{j=0}^{N-1} x_j^\ell (1 - x_j)^\ell \to \int_0^1 x_j^\ell (1 - x_j)^\ell \, dx \quad \text{as } N \to \infty, \quad \ell \geq 1;
\]

more precisely the following estimate holds,

\[
\frac{1}{N} \sum_{j=0}^{N-1} x_j^\ell (1 - x_j)^\ell = \frac{1}{N} \left(\sum_{j=0}^{(N/2)-1} + \sum_{j=(N/2)+1}^{N-1} \right) x_j^\ell (1 - x_j)^\ell + \frac{1}{N} \left(\frac{1}{2} \right)^{2\ell}
\leq \int_0^1 x_j^\ell (1 - x_j)^\ell \, dx + \frac{1}{N} \left(\frac{1}{2} \right)^{2\ell}.
\]

(A.15)

It is easy to check the following identities

\[
\int_0^1 x_j^\ell (1 - x_j)^\ell \, dx = \frac{(\ell!)^2}{(1 + 2\ell)!}, \quad \ell \geq 1.
\]

(A.16)

By plugging the previous estimates into the sum of the \(\zeta_{j,n} \) we get

\[
0 \leq \sum_{j=0}^{N-1} \zeta_{j,n} \leq \sum_{\ell=1}^{\infty} \frac{d^{2\ell+1}}{(\ell!)^2} \frac{(\ell!)^2}{(1 + 2\ell)!} + \frac{1}{N} \sum_{\ell=1}^{\infty} \left(\frac{1}{2} \right)^{2\ell} \frac{d^{2\ell+1}}{(\ell!)^2}
\leq \frac{1}{N} \sum_{\ell=1}^{\infty} \frac{d^{2\ell+1}}{(\ell!)^2} \frac{(\ell!)^2}{(1 + 2\ell)!} + \frac{1}{N} f_0(d)
\leq \frac{1}{N} \sum_{\ell=1}^{\infty} \frac{d^{2\ell+1}}{(\ell!)^2} \frac{(\ell!)^2}{(1 + 2\ell)!} + \frac{1}{N} f_0(d)
\]

\[
= \sinh(d) - d + \frac{1}{N} f_0(d).
\]

Therefore (A.10) follows.

Similarly to the estimate (A.13) for \(\zeta_{j,N} \) and using the change of variables (A.14), for \(\eta_{j,N} \) defined in (A.8) we find that

\[
\eta_{j,N} \leq \frac{1}{N} \sum_{i=1}^{\infty} \frac{d^{2i}}{(i - 1)!} x_j^i \left(1 - x_j - \frac{1}{N} \right)^{i-1}
\leq \frac{1}{N} \sum_{i=1}^{\infty} \frac{d^{2i}}{(i - 1)!} x_j^i (1 - x_j)^{i-1}.
\]
The sum of the $\eta_{j,N}$ can be estimated as follows,
\[\sum_{j=1}^{N-1} \eta_{j,N} \leq \sum_{i=1}^{\infty} \frac{d^{2i}}{i!(i-1)!} \left\{ \frac{1}{N} \sum_{j=1}^{N-1} x_j^i (1-x_j)^{-i-1} \right\} . \]
while by (A.15) with $\ell = i - 1$ and by (A.16) we find that
\[\frac{1}{N} \sum_{j=1}^{N-1} x_j^i (1-x_j)^{-i-1} \leq \int_0^1 x_j^i (1-x_j)^{-i-1} \, dx + \frac{1}{N} \left(\frac{1}{2} \right)^{2i-1} \]
\[= \frac{(i-1)!(i)!}{(2i)!} + \frac{1}{N} \left(\frac{1}{2} \right)^{2i-1} . \]
Therefore
\[\sum_{j=1}^{N-1} \eta_{j,N} \leq \sum_{i=1}^{\infty} \frac{d^{2i}}{i!(i-1)!} \frac{(i-1)!(i)!}{(2i)!} + \frac{1}{N} \sum_{i=1}^{\infty} \left(\frac{h}{2} \right)^{2i-1} \frac{d^{2i}}{i!(i-1)!} \]
\[= \frac{1}{1} \sum_{i=1}^{\infty} \frac{d^{2i}}{2i!} + \frac{1}{N} \frac{1}{1} \sum_{i=1}^{\infty} \frac{d^{2i}}{2i!} \]
\[= f_1(d) \]
\[= \cosh(d) - 1 + \frac{1}{N} f_1(d) , \]
that leads to (A.11). This completes the proof of Theorem 5.1.

REFERENCES

[1] D. Amadori, E. Dal Santo, F. Aqel. Decay of approximate solutions for the damped semilinear wave equation on a bounded 1d domain, *J. Math. Pures Appl.* 132 (2019), 166–206
[2] D. Amadori, L. Gosse. Error estimates for Well-Balanced and Time-Split schemes on a locally damped semilinear wave equation, *Math. Comp.* 85 (2016), 601–633
[3] D. Amadori, L. Gosse. *Error Estimates for Well-Balanced Schemes on Simple Balance Laws. One-Dimensional Position-Dependent Models*, SpringerBriefs in Mathematics, 2015
[4] D. Amadori, L. Gosse. Stringent error estimates for one-dimensional, space-dependent 2×2 relaxation systems, *Ann. Inst. H. Poincaré (C) Anal. Non Linéaire* 33 (2016), 621–654
[5] A. Bressan. *Hyperbolic Systems of Conservation Laws – The one-dimensional Cauchy problem*, Oxford Lecture Series in Mathematics and its Applications 20, Oxford University Press, 2000
[6] Y. Chitour, S. Marx, C. Prieur. L^p–asymptotic stability analysis of a 1D wave equation with a nonlinear damping, *J. Differential Equations* 209 (10), 8107–8131, 2020
[7] L. Gosse, *Computing Qualitatively Correct Approximations of Balance Laws*, SIMAI Springer Series, Vol. 2, Springer (2013)
[8] L. Gosse, G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations *C. R. Acad. Sci Paris, Ser. I.* 334 (2002) 337–342
[9] B. Hanouzet, R. Natalini. Weakly coupled systems of quasilinear hyperbolic equations. *Diff. Integral Eq.* 9 (1996), 1279–1292
[10] A. Haraux. L^p estimates of solutions to some non-linear wave equations in one space dimension. *Int. J. Mathematical Modelling and Numerical Optimisation* 1 (2009), 146–152
[11] A. Haraux, P. Martinez, J. Vancostenoble. Asymptotic stability for intermittently controlled second-order evolution equations. *SIAM J. Control Optim.* 43 (2005), no. 6, 2089–2108
[12] R.A. Horn, C.R. Johnson. *Matrix Analysis*, Cambridge University Press, 2nd edition, 2013
[13] P. Martinez, J. Vancostenoble. Stabilization of the wave equation by on-off and positive-negative feedbacks. *ESAIM Control Optim. Calc. Var.* 7 (2002), 335–377
[14] E. Zuazua. Propagation, Observation, and Control of Waves Approximated by Finite Difference Methods *SIAM Rev.* 47(2) (2005), 197–243

E-mail address: debora.amadori@univaq.it
E-mail address: fatimaaqel@najah.edu