Movement and joints: effects of overuse on anuran knee tissues

Miriam Corina Vera 1, Virginia Abdala Corresp. 2, Ezequiel Aráoz 3, María Laura Ponssa Corresp. 1

1 Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
2 Instituto de Biodiversidad Neotropical (IBN). UNT-CONICET, San Miguel de Tucumán, Argentina
3 Instituto de Ecología Regional, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina

Corresponding Authors: Virginia Abdala, María Laura Ponssa
Email address: virginia@webmail.unt.edu.ar, mlponssa@hotmail.com

Movement plays a main role in the correct development of joint tissues. In tetrapods, changes in normal movements produce alterations of such tissues during the ontogeny and in adult stages. The knee-joint is ideal for observing the influence of movement disorders, due to biomechanical properties of its components, which are involved in load transmission. We analyze the reaction of knee tissues under extreme exercise in juveniles and adults of five species of anurans with different locomotion modes. We use anurans as the case study because they undergo great mechanical stress during locomotion. We predicted that a) knee tissues subjected to overuse will suffer a structural disorganization process; b) adults will experience deeper morphological changes than juveniles; and c) morphological changes will be higher in jumpers compared to walkers. To address these questions, we stimulated specimens on a treadmill belt during two months. We performed histological analyses of the knee of both treated and control specimens. As we expected, overuse caused structural changes in knee tissues. These alterations were gradual and higher in adults, and similar between jumpers and walkers species. This study represents a first approach to the understanding of the dynamics of anuran knee tissues during the ontogeny, and in relation to locomotion. Interestingly, the alterations found were similar to those observed in anurans subjected to reduced mobility and also to those described in joint diseases (i.e., osteoarthritis and tendinosis) in mammals, suggesting that among tetrapods, changes in movement generate similar responses in the tissues involved.
Movement and joints: effects of overuse on anuran knee tissues

Miriam Corina Vera¹, Virginia Abdala ²,* Ezequiel Araoz ³ and María Laura Ponssa ¹,*

¹ Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251, San Miguel de Tucumán, Argentina.
² Instituto de Biodiversidad Neotropical. UNT-CONICET, San Miguel de Tucumán, Argentina.
³ Instituto de Ecología Regional, Universidad Nacional de Tucumán, Yerba Buena, Tucumán, Argentina

* Corresponding authors: María Laura Ponssa (mlponssa@hotmail.com) Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251, San Miguel de Tucumán, Argentina, and Virginia Abdala (virginia@webmail.unt.edu.ar) Instituto de Biodiversidad Neotropical, UNT-CONICET, Miguel Lillo 205, San Miguel de Tucumán, Argentina.
Abstract

Movement plays a main role in the correct development of joint tissues. In tetrapods, changes in normal movements produce alterations of such tissues during the ontogeny and in adult stages. The knee-joint is ideal for observing the influence of movement disorders, due to biomechanical properties of its components, which are involved in load transmission. We analyze the reaction of knee tissues under extreme exercise in juveniles and adults of five species of anurans with different locomotion modes. We use anurans as the case study because they undergo great mechanical stress during locomotion. We predicted that a) knee tissues subjected to overuse will suffer a structural disorganization process; b) adults will experience deeper morphological changes than juveniles; and c) morphological changes will be higher in jumpers compared to walkers. To address these questions, we stimulated specimens on a treadmill belt during two months. We performed histological analyses of the knee of both treated and control specimens. As we expected, overuse caused structural changes in knee tissues. These alterations were gradual and higher in adults, and similar between jumpers and walkers species. This study represents a first approach to the understanding of the dynamics of anuran knee tissues during the ontogeny, and in relation to locomotion. Interestingly, the alterations found were similar to those observed in anurans subjected to reduced mobility and also to those described in joint diseases (i.e., osteoarthritis and tendinosis) in mammals, suggesting that among tetrapods, changes in movement generate similar responses in the tissues involved.
INTRODUCTION

The mechanical load raised by movement is a key factor determining the correct morphogenesis of tetrapod joints (Drachman & Sokoloff, 1966; Roddy, Prendergast & Murphy, 2011; Nowlan et al., 2010; Abdala & Ponssa, 2012; Shwartz, Blitz & Zelzer, 2013; Ponssa & Abdala, 2016). Since the joint is a structure adapted for motion, the requirement of movement for its correct development is expected (Drachman & Sokoloff, 1966). Previous studies have demonstrated that alterations in the correct movement of limbs can produce severe malformations during the ontogeny, including adult pathologies (Hosseini & Hogg, 1991; Arokoski et al., 2000; Pitsillides, 2006; Nowlan et al., 2010, 2012, 2014; Abdala & Ponssa, 2012; Kim et al., 2015; Ponssa & Abdala, 2016; Ford et al., 2017; Verbruggen et al., 2016). The absence or reduction of movement in early stages of development produce similar phenotypical alterations both in free-living organisms, such as anurans (Abdala & Ponssa, 2012), or in organisms living in "controlled" environments, such as mice (Coutinho et al., 2002; Kahn et al., 2009) or chicken (Sullivan, 1966; Murray & Drachman, 1969; Hall, 1975; Hall & Herring, 1990; Quinn et al., 1998; Pitsillides, 2006). Likewise, joint-tissues that are subject to extreme mechanical loads caused by overuse can suffers similar consequences (Shwartz, Blitz & Zelzer, 2013) as was studied in bones and articular cartilage (Shwartz, Blitz & Zelzer, 2013) tendons (Sharma & Maffulli, 2005; Maeda et al., 2011), and menisci (Adirim & Cheng, 2003).

The knee-joint is one of the largest synovial joints in the tetrapod body, and the most vulnerable to pathologies (Tidke & Tidke, 2013). Each of its components, including bones, ligaments, tendons, meniscii and articular cartilage, are involved in load transmission, thus the proper functioning of each structure is essential for the correct functioning of the joint (Clark & Ogden, 1983; Ralph & Benjamin, 1994).
Tendons are pieces of connective tissue linking muscles to bones that generate the movement initiated by muscle contraction (Kjær et al., 2006; Zelzer et al., 2014). These elements are excellent biological models to study the biomechanical and morphological adaptations of connective tissues to movement (Vilarta & Vidal, 1989; Feitosa, Vidal & Pimentel, 2002). The biochemical properties of tendons and other collagenous connective tissues vary with age (Thampatty & Wang, 2017), and seem to be correlated with morphological changes (Viidik, 1982; Shadwick, 1990). Previous studies usually focused on the differences in tendon properties related to age (Viidik, 1982), and on the effects of mechanical load on tendons at different ages in rats (Ingelmark, 1948), mice (Michna, 1984), humans (Kannus et al., 1997) and horses (Edwards et al., 2005). Ingelmark (1948) observed that the thickness of collagen fibers did not vary in rats of different age, but found differences in younger individuals subjected to physical training. At every age, tendon cells are able to react to changes in mechanical loads, and to alter the composition of their extracellular matrix, forming a fibrocartilaginous matrix (Benjamin & Ralph, 1998). The fibrocartilage usually occurs where tendons wrap and insert bones (Benjamin, Tyers & Ralphs, 1991; Vogel, 2003), and is maintained due to the mechanical stimuli acting on the joint (Ralph & Benjamin, 1994; Carvalho & Felisbino, 1999). Although tendons show good ability to adapt to loading and movement (Kannus et al., 1997), if the tissue does not have time to repair itself it may not adjust, leading to injuries (Selvanetti, Cipolla & Puddu, 1997; Sharma & Maffulli, 2005). Tendon pathologies have been often studied in the human Aquilles tendon (Kader et al., 2002; Cook et al., 2004; Maffulli et al., 2008) and are evident in animals subjected to great mechanical loads, such as physical exercises (Kannus et al., 1997; Kraushaar & Nirshl, 1999; Thampatty & Wang, 2017). Other structures vulnerable to age and mechanical alteration of the joint environment are the menisci and the articular cartilages, that also play a key role in
the correct functioning of the knee-joint (Poole et al., 2001; Tomkoria, Patel & Mao, 2004; Senan et al., 2011; Sun et al., 2012). The articular cartilage in conjunction with the synovial fluid provides a frictionless articulation, and absorbs and dissipates load (Poole et al., 2001). The properties of the articular cartilage are provided by the extracellular matrix and its chondrocytes (Senan et al., 2011). Within the articular cartilage, different zones can be recognized, with different properties according to the mechanical requirements (Tomkoria et al., 2004). These biomechanical properties provide perfect support for the normal movement of the synovial joints, but also make it vulnerable to extreme mobility or immobilization (Ni et al., 2015). The menisci also play a mechanical role as stabilizers and weight-transmitters in the knee (Clark & Ogden, 1983; Senan et al., 2011). The normal functioning of the menisci depends on their correct biochemical composition, ultrastructural organization, matrix composition and cellularity (Senan et al., 2011; Pauli et al., 2011). The number of cells in the articular cartilage and the menisci are important parameters for inferring their degree of alteration (Tomkoria, Patel & Mao, 2004) and the capacity to heal the tissue (Pauli et al., 2011). Also, both structures are functionally related; indeed, magnetic resonance images revealed that degeneration in the menisci is a potential risk factor of osteoarthritis due to its close relationship with the articular cartilage (Sun et al., 2012).

Different exercises have distinctive mechanical requirements (Ebben et al., 2011) with specific effects over the skeletal tissue (Frost, 1994; Sharma & Maffulli, 2005; Ebben et al., 2011). The saltatory locomotion mode of anurans is one of the most challenging among tetrapods, due to the mechanical stress raised (Lutz & Rome, 1994; Peplowski & Marsh, 1997; Bennet, 2001; Nauwelaerts, Stamhuis & Aerts, 2005; Přikryl et al., 2009; Astley et al., 2013, 2015; Astley & Roberts 2012, 2014). Although jumping is the dominant locomotion mode in anurans (Přikryl et al., 2009), hopping, swimming and/or walking are also present (Emerson,
In these animals, locomotion has been studied from a biomechanical and anatomical perspective of the pectoral and pelvic girdles (Emerson, 1979; Přikryl et al., 2009; Jorgensen & Reilly, 2013; Fabrezi et al., 2014) and limbs (Kargo, Nelson & Rome, 2002; Nauwelaerts & Aerts, 2003, 2006). Specific studies of the knee-joint and the dynamics of its tissue are scarce (Hebling et al., 2014; Ponsa & Abdala, 2016; Abdala, Vera & Ponssa, 2017) despite its important role supporting great mechanical loads. Accordingly, the knee-joint of anurans is an excellent study case to observe the dynamics of knee connective tissues (tendons, fibrocartilage and articular cartilage) subjected to intense exercise.

Here, we present new data of the effect of the mechanical stress in the anuran knee’ joints in species with different locomotion modes. Since the mechanical environment of limb joints constantly changes with growth (Hamrick, 1999), we analyze these histological changes at different ontogenetic stages, from metamorphs to adults in order to record the effects that overuse causes on the tissues. To address these issues, juvenile and adult frog specimens were trained on a treadmill belt on a daily basis for 2 months. Based on previous work we predict (a) that knee tissues of frogs subjected to excessive exercise will deviate from the normal and healthy state, (b) higher morphological damage in adults than in juveniles, considering that younger tissues are presumably more adaptable (Brack et al., 2007; Bailey, 2001; Clark & Ogden, 1983; Senan et al., 2011, Thampatty & Wang, 2017) and (c) more alteration in tissues in jumper species compared to walkers ones.

MATERIAL AND METHODS

Specimens
Sixty-seven specimens of five frog species were analyzed: ten juveniles and ten adults of *Leptodactylus mystacinus* Burmeister 1861, seven juveniles and twelve adults of *Rhinella arenarum* Hensel 1867, seven adults of *Melanophryniscus rubriventris* Vellard 1947, six juveniles and five adults of *Leptodactylus latinasus* Jiménez de la Espada 1875 and four juveniles and six adults of *Phyllomedusa sauvagii* Boulenger 1882. The juveniles were recognized as individuals who have completed the metamorphosis, because they exhibit traits that indicate the completion of the metamorphosis (See Gosner, 1960, characters of the mouth and complete tail reabsorption), but they have not reached the adulthood size or sexual maturity indicated by secondary sexual characteristics. Thus, assessment of sexual maturity and identification of adult males were based on the presence of secondary sexual characters (e.g., colored vocal sacs, nuptial excrescences); sexual maturity of females was based on examination of the gonads. Previous experimental studies were performed with laboratory animals (e.g. Vilarta & Vidal, 1989; Ni et al., 2015; Nagai et al., 2016), which allows the use of a high number of specimens. However, laboratory animal’s exhibit restricted movements during their lives due to generally being confined to a box. In the present study, we used animals collected in the field, thus allowing us to assume that their histomorphology was determined by their normal conditions of mobility. The disadvantage is that the number of collected specimens is restricted, thus deriving in a small sample size. Specimens were collected during summer in Tucumán (Res. No.13-16), Salta (Res. No. 0308/14) and Jujuy (Res. No. 21/2012) provinces, Argentina. They were housed at Instituto de Herpetología of the Fundación Miguel Lillo, in individual terrariums (30cm x 20cm x 25cm), where they moved freely, and under laboratory controlled conditions (temperature 24–29°C). They were fed ad libitum with living insects (ants, crickets, cockroaches and worms). All the specimens were healthy and without signs of previous injuries. Animals
were weighed with a digital scale (Cen-Tech; ± 0.01 gr) and sized (snout–vent length, SVL) with a digital caliper (Mitutoyo CD-30C and CD-15B; ± 0.01 mm) before and after the experiments. Since both SVL and weight were similar before and after the trials (± 6 mm), we inform only the initial data (Table 1). Specimens of each species with both weight and snout vent length similar to those used for experiments were selected as control.

Experimental design

To observe the effect of the mechanical stress provoked by overuse of knee tissues, trials were performed on a treadmill belt, following the current protocols designed to this end (Kovanen, Suominen, & Peltonen, 1989; Birch et al., 1999; Ni et al., 2015; Gao et al., 2017; Thampatty & Wang, 2017). We defined “overuse” as the excessive use of the joint when the frog is “over-stimulated” to move. In nature, they often stay still (Reilly et al., 2015) unless they need to move to escape from predators, find food, defend territories, or find couple to mate (Nauwelaerts, Stamhuis & Aerts, 2005). The treadmill belt is one meter long and exhibits a flat surface. It is covered with a transparent polycarbonate box to prevent the escape of animals, while its lateral wall is covered with scaling paper (Fig. 1). The specimens were kept in captivity for two days before the performance trials. Specimens were stimulated to jump (jumper species: *Leptodactylus latinasus* and *Leptodactylus mystacinus*, Jorgensen & Reilly, 2013; Fabrezi et al., 2014) or walk (walker species: *Melanophryniscus rubriventris*, *Phyllomedusa sauvagii*, *Rhinella arenarum*; Manzano et al., 2013; Fabrezi et al., 2014) by the contact with an elastic band crossed on the treadmill belt (Fig. 1), avoiding the stress that human contact could generate. Thirty-four specimens were arbitrarily chosen to perform the trials and the remaining specimens were used
as control (i.e., did not undergo the exercise routine, Table 1). Trials were performed twice a day, during up to 10 minutes unless the frog reached the fatigue earlier. Fatigue was defined as the failure to maintain force of a muscle that has been under load, and that is relieved by rest (Johnson et al., 1996). During muscular fatigue, a cascade of physiological mechanisms occurs (Gibson & Edwards, 1985), provoking muscular pain and dyspnea, which are the principal reasons to stop motion (Güell, Casan & Giménez, 1996). After a series of previous trials, the velocity of the treadmill belt was settled at 2.73 cm/sec (± 0.25 cm/sec), being this the maximum value allowing normal movement of specimens. These preliminary trials showed that velocity could be kept constant for all the animals. Juveniles and adults were exercised at the same velocity allowing to evaluate the effect of the same mechanical stimulus over the joint at different stages. The time and distance of the trials are detailed in table 1. Experimental and control animals were sacrificed with xylocaine viscous (Lidocaine Hydrochloride 10%), fixed in a 10% formaldehyde solution for 24 hours, preserved in alcohol 70%. Selected species for our study are composed by organisms whose life history is subject to r selection, often referred to as r-strategists. They inhabit temporary ponds, which are unstable and unpredictable environments. They have ability to reproduce quickly, produce many offspring, each of which has a relatively low probability of surviving to adulthood. In the case of Melanophryniscus rubriventris, that left not so many offspring, we used fewer specimens. The actual population trends of the species used for this study are LESS CONCERN according to the IUCN red list of threatened species (www.iucnredlist.org version 2017-3). Apart from softly inducing them to move twice a day, specimens in captivity were maintained clean, healthy, with enough water and food (according to the Amphibian Husbandry Resource Guide, 2012). In addition, we pay attention to ARRIVE guidelines and to Guidelines for Ethical Conduct in the Care and Use of Nonhuman Animals in
Research (CARE). Experiments were approved by the Ethical Committee of Facultad de Medicina, Universidad Nacional de Tucumán (Res. No. 81962-2014).

Histological analysis

Sixty-seven knees, thirty-four from treated and thirty-three from control specimens corresponding both to juveniles (N=27) and adults (N=40) (Table 1, Supp Mat S1) were extracted and decalcified with a 50% citrate sodium-50% formic acid solution. Samples were immersed in sodium sulfate for 24 hours, and then immersed in a mixture of glycerin and acetic acid for 48 hours. The material was afterwards dehydrated in a graded ethanol series and embedded in Histoplast embedding medium. 7-µm thick serial sagittal sections were cut with a rotary microtome (Microm HM 325) and stained with Hematoxiline-Eosine and Masson Trichrome, the latter allowing to identify collagen fibers. Histological samples were observed under an optical microscope (Leica ICC 50 HD) and photographed with a Nikon Coolpix P6000 digital camera for the diagnosis. The focus was put on the following tissues that integrate the knee-joint: tendons, fibrocartilage, menisci and articular cartilage. Additionally, the growth zone in the diaphysis was examined.

Tissue Alterations Score

To assess the effect of the experiments on the connective tissues, five parameters were considered: (i) collagen fibers of the fibrocartilage (ii) collagen fibers of the tendons (iii) roundness of the nuclei of the fibrocartilage (iv) arrangement of the collagen fibers of the menisci and (v) hypertrophic chondrocytes. The structural changes observed were categorized in a scoring system. Histological Scoring is a technique widely used in orthopedic research and clinical veterinary (Movin 1997; O’Driscoll et al. 2001; Pritzker et al., 2006; Maffulli, 2008;
Pauli et al., 2011). It is commonly used to show structural qualitative changes of tissue owed to any factor (Movin et al., 1997; Ameye et al., 2002; Pritzker et al., 2006; Maffulli et al., 2008; Pauli et al., 2011). In this study, two levels of structural or morphological changes were identified, namely, Score 1 for slight changes and Score 2 for severe changes. Score 0 was assigned to those tissues that showed a normal morphology. The tissue scoring is described in table 2. This grading system is arbitrary and it does not represent fixed stages, however it is a simple and direct, way to represent the effect of the experiments (Pritzker et al., 2006). Since it is as accurately as possible, is one of the most used systems in this context (see quotations above). Tissues were considered normal following Carvalho (1995) and Franchi et al. (2007) for tendons; Benjamin et al. (1991), Benjamin and Ralph (1998), and Carvalho and Felisbino (1999) for fibrocartilages; Pauli et al. (2011) and Senan et al. (2011) for menisci and Pacifici et al. (1990) for hypertrophic chondrocytes. For an overview of the alteration state of each specimen, scores of each trait were summed up. Specimens with Score 10 were those whose connective tissues exhibited the highest levels of abnormality.

The association of the score of each trait with the treatment, the locomotor mode, the species identity and the stage of the individual were assessed by using multinomial ordinal logistic regression. The multinomial ordinal logistic regression is used for describing and testing hypotheses about associations between an ordered categorical variable (i.e., the alteration tissues) and one or more categorical or continuous predictor variables (i.e., treatment, locomotor mode, stages and species) to predict the probability of occurrence of each category (Peng, Lee & Ingersoll, 2002). In the case of the shape of the hypertrophic chondrocyte where only two classes were observed (0 and 2) we used a simple logistic regression that is adequate to model binomial responses. In all the cases we proposed a set of biologically sensitive models (e.g. lineal...
combinations of predictors) and we compared to what extent they were supported by our data. The set of competing models were increasingly complex; they included an intercept model, which assumes that the probability of observing any category is identical for all the individuals, a model that only considered the treatment, different lineal combinations of the treatment with the stage, the species and the locomotor mode and the interaction between treatment and the other predictors. Locomotor mode and species were not included in the same model due to their nestedness. The models were compared using their Akaike information criterion (AIC, Symonds & Moussalli 2011. The AIC simultaneously evaluates the level of adjustment of a model (maximum likelihood) with the number of parameters (i.e, an indicator of the the complexity of the model). The AIC is not informative by itself and only has utility for compare different models. ΔAIC (delta of AIC) is used as a measurement of the distance of all the models that explain a variable with respect to the model with the best AIC. Due to the nature of our data, we used an AIC corrected by small samples (Burnham & Anderson 2002). The best logistic models were identified by minimum AIC (Burnham, Anderson & Huyvaert, 2011). All the statistics analyses were performed with the R studio software (version 0.99.903, 2016).

Menisci cell quantification

To analyze the density of cells in the menisci, an area of 100 μm² of the knees of fifty-eight specimens (30 treated and 28 control specimens) was selected (Fig. 2). The number of cells was quantified with ImageJ software and the density was calculated (\(\rho = \frac{n}{\text{area}} \)). The normality and homoscedasticity of the data were tested with Shapiro–Wilk and Levene’s tests. Differences in the density of cells between control and treated groups were calculated with a Mann–Whitney–U test using R studio software (version 0.99.903, 2016).
Articular cartilage

To analyze the density of cells in the superficial and tangential zones of the articular cartilage, the knees of twenty-five (13 treated and 12 control) juvenile specimens were used. Adult epiphyses were not analyzed since their articular cartilage was not visible in our samples. The zones of the epiphyses of the femur and tibia-fibula were divided in three areas: internal, medial and external (Fig. 2). The number of chondrocytes was counted in each region with Image J software, and the density was derived (\(\rho= \text{n}^\circ \text{o of chondrocytes/ area}\)). The normality and homoscedasticity of the data were tested with Shapiro – Wilk and Levene’s tests. Differences in the density of cells between control and treated groups were calculated with a Mann–Whitney–U test. A posteriori Kruskal – Wallis test was made to assess for differences among zones and areas. R studio software (version 0.99.903, 2016) was used for the statistical analyses.

RESULTS

Microanatomy of the knee-joint

The normal knee-joint of an anuran juvenile specimen (SVL 22.94 mm) is formed by the joint capsule, the menisci, the epiphyses of the femur and the tibia-fibula, muscles, ligaments, and tendons (Fig. 3A). The joint capsule consists of fibrous and dense connective tissue, i.e. fibrocartilage and tendons. The tendons exhibit parallel collagen fibers with abundant and round nuclei (Fig. 3B). A spindle-shape fibrocartilage is present in the external surface of the knee over the tibia-fibula epiphysis (Fig. 3A). The cells of the fibrocartilage present spherical nuclei,
usually arranged in rows, and collagen fibers arranged in parallel (Fig. 3B). The meniscus is present over and between the two epiphyses; the zones of attachment with the epiphyses (enthesis) are usually fibrocartilaginous (Fig. 3C). The meniscus is fibrocartilaginous, with collagen fibers usually packed or showing a more disordered pattern. The nuclei of the collagen fibers of the meniscus are dispersed or arranged in rows (Fig. 3C). The epiphyses of the femur and the tibia-fibula are cartilaginous and covered by the articular (hyaline) cartilage. The chondrocytes of the articular cartilage are isolated or disposed in isogenous groups. The irrigated osteochondral ligaments are located between the lateral articular cartilage and the periosteal bone of the diaphysis (Fig. 3D). Internally, a cartilaginous graciella sesamoid is found between the femur and the tibia-fibula (Fig. 3E). The m. gracilis major (Fig. 3E), m. extensor cruris brevis, m. vastus internus and m. gastrocnemius are mature at this stage.

The normal knee of an adult specimen of *L. latinasus* (SVL 30.86 mm; Fig. 4) presents a joint capsule with a big fibrocartilage over the surfaces of the tibia-fibula and of the femur (Fig. 4A). The cells of the adult fibrocartilage show round nuclei in rows, and parallel collagen fibers (Fig. 4B), more ordered than in juveniles. Tendons are mature tissues, as evidenced by the parallels fibers and flat nuclei. The menisci are thicker than in juveniles and show areas with packed and laxer collagen fibers (Fig. 4C). The graciella sesamoid is cartilaginous with a center of endochondral ossification. The m. gracilis major is mature (Fig. 4D). The epiphyses are ossified, evidenced by the wide medular cavity with endochondral trabeculae, osteocytes, osteoclasts and blood vessels (Fig. 4E).

Tissue Alterations Scores
Scores are presented in figure 5 and a global overview of the altered tissues in juveniles and adults are showed in figure 6. The first column in figure 5 corresponds to the control specimens and the two right columns correspond to the overuse trials scores.

Normal fibrocartilages were composed by parallel packed collagen fibers between cells (Score 0, Fig. 5A). In treated specimens, there was a gradual separation of the collagen fibers, from a loose (Score 1, Fig. 5B) to a laxer arrangement (Score 2, Fig. 5C). Normal fibrocartilage cells showed round nuclei (Score 0, Fig. 5D). These exhibited a change to oval (Score 1, Fig. 5E) or flattening shape (Score 2, Fig. 5F). Tendons were formed by tightly packed collagen fibers (Score 0, Fig. 5G). Such as in fibrocartilages, tendons showed a gradual disarrangement of their collagen fibers from a loose (Score 1, Fig 5H) to a very loose pattern (Score 2, Fig. 5I). Normal menisci showed a loose pattern with collagen fibers separated from each other (Score 0, Fig. 5J). The menisci of treated specimens showed a slight (Score 1, Fig. 5K) or a maximum packing (Score 2, Fig. 5E) of their collagen fibers. The hypertrophic chondrocytes of the growth area diaphyses of both femur and tibia-fibula, normally showed an oval or round shape (Score 0, Fig. 5M). The cells exhibited a drastic change of shape, adopting a flattened shape (Score 2, Fig. 5O). This last feature was observed only in juvenile specimens because in adults the diaphyses are already ossified.

In the joint capsule of experimental juveniles, the cells of the fibrocartilages were very affected (Fig 7. B), and showed a flat or oval nuclei (Table 3). The fibers of the tendon showed a very lax arrangement (Score 2, Fig. 7C) or a slight disarrangement (Score 1, Fig. 7C, Table 3). The menisci fibers presented a packed arrangement (Score 2, Fig. 7. D). The hypertrophic chondrocytes of the growth area of the diaphyses showed a severe flattening (Score 2, Fig. 7E, Table 3).
Among adults, the fibrocartilaginous tissue showed more extreme changes (Fig. 7, Table 3). There was a noticeable separation of the collagen fibers of the fibrocartilage (Score 2, Fig. 7F) and the nuclei of the fibrocartilage cells were elongated (Score 2, Fig. 7G, Table 3). Tendons also showed a slight abnormal arrangement with a loose pattern of the collagen fibril (Score 1, Fig. 7 H).

The highest total sums of scores were 5 and 7 for one specimen of *L. mystacinus* and one adult specimen of *L. latinasus*, respectively. Both species have a jumper locomotion mode. The walker species also show tissue alterations, but the sum of their scores was 4 in a juvenile and an adult specimen of *P. sauvagii* and 4 in adults of *M. rubriventris*. A juvenile of *Rhinella arenarum* have a total score of 4 and an adult a total score of 6. Scores distribution among species is detailed in Table 3 and figure 7.

In all the analyses the models that included the treatment outperformed the intercept model (more than two units of difference between their AIC). Some of the better models included also the stage (in fibrocartilage collagen fibers), the species (in fibrocartilage nuclei and collagen fiber of the tendon), and the stage and species (in menisci fibers and hypertrophic chondrocytes) (Table 4, Supp Mat S2). Neither the locomotor mode nor the interactions between explanatory variables were included in the winning models in any of the analyses. The probabilities estimated through the best models are detailed in table 5. The probability of finding an alteration in the arrangement of the fibrocartilage fibers (score 1 or 2) increase after the treatment in juveniles and adults. The latter stage doubles the probability of presenting the score 2, from 0.07 to 0.14 (Table 5). The probability of showing a shape change in the nuclei of this tissue varies among the species and the treatment. The probability of showing the highest alteration (score 2) triples in *L. latinasus, P. sauvagii* and *M. rubriventris*. No differences in the
probability were found between the stages. Regarding tendons, the probability of showing alteration after the treatment also varies between species, in *L. latinasus* and *L. mystacinus* the probabilities of showing the score 1 doubles, and in *R. arenarum* the probability of showing the score 2, triples. For menisci fibers arrangement there is a slight effect of the treatment and a strong effect of the stage (e.g. the probability of observing score 2 in *L. mystacinus* doubles between stages, from 0.18 to 0.42). For hypertrophic chondrocytes shape the probability of present alteration after the treatment varies also between stages and species. It is higher in juveniles of *L. mystacinus* and adults of *L. latinasus* and *P. sauvagii* (Table 5)

Menisci cell quantification

The density of cells in the menisci was similar between experimental (i.e., over-exercised) and control individuals, both in juveniles ($U = 136; p = 0.43$) and adults ($U = 280.5; p = 0.98$, Fig. 8). Both in control and experimental specimens, the density of cells in the menisci was lower in adults than in juveniles.

Articular cartilage cell quantification

In the articular cartilage of juvenile stages, there were no significant differences in the density of chondrocytes between control and experimental (over exercised) individuals, neither in the femur ($U = 2578; p = 0.38$) nor in the tibia-fibula ($U = 3269, p = 0.08$) (Table 3).

DISCUSSION
Our results partially sustained the proposed predictions: tissues showed certain degree of deviation from the healthy state. The collagen fibers of the tendon and fibrocartilage were the knee-joint tissues showing phenotypical changes after the overuse trials. The fibers of the menisci and the fibrocartilage showed the highest structural alterations in adults. It should be noted that although evident, all these alterations are gradual. Finally all locomotor modes showed similar response to the trials, contradicting thus our third prediction.

We infer that adults are more vulnerable to suffer morphological changes after experimental trials. Interestingly, some jumper specimens present the highest score. We observed a severe disarrangement of the collagen fibers of the fibrocartilage located over the tibia-fibula among experimental adults, while most experimental juveniles showed only a slight disarrangement. Interestingly, tadpoles with reduced mobility also presented a high disarrangement of the collagen fibers of the fibrocartilage (Abdala & Ponssa, 2012). The distribution and orientation of the collagen fibers are well-adapted to their mechanical role (Ghosh & Taylor, 1987; Aspden, Yarker & Hukins, 1985; Vilarta & Vidal, 1989; Shadwick, 1990) and support high loads (Franchi et al., 2007). Moreover, physical exercise can induce morphological and biochemical modifications that alter the biomechanical properties of the collagen bundles, resulting in tissues supporting higher tensile strength (Vilarta & Vidal, 1989). However, changes in training regime also cause connective tissue alterations that in most cases are clearly pathological (Selvanetti, Cipolla & Puddu, 1997; Kader et al., 2002; Shwartz, Blitz & Zelzer, 2013; Thampatty & Wang, 2017). The shape of the cells of the fibrocartilage located over the tibia-fibula was also affected in treated juveniles and adults. The flattening of their nuclei (typically rounded) was noticeable in *Leptodactylus latinasus* and *Phyllomedusa sauvagii* (Benjamin & Ralph, 1998). The flattening of the fibrocartilage nuclei due to intense stimulus was
already recorded for menisci cells (Benjamin & Evans, 1990), and stressed areas of the tendons (Carvalho & Felisbino, 1999).

In the tendinous tissue, the separation of the collagen fibers was similarly accentuated in treated juveniles and adults. Our model shows that the probability to present more changes is remarkable on *Rhinella arenarum*. Tendon alteration has been described as one of the traits characterizing the tendinosis syndrome in mammals (Selvanetti, Cipolla & Puddu, 1997; Kraushaar & Nirshl, 1999; Maffulli et al., 2008; Kim et al., 2015; Thampatty & Wang, 2017). It has been reported that exercise tends to increase collagen cross-links (Kannus et al., 1997). However, when training is extreme, collagen fibers damage, delaying collagen maturation and inhibiting such links (Kannus et al., 1997). Interestingly, the collagen cross-link can suffer a similar pattern of degradation and rupture when the tissue is immobilized (Selvanetti et al., 1997), which could explain the similar phenotypes between the tendinous tissue of our treated specimens and those reported by Abdala and Ponsa (2012) in the reduced mobility trials (Fig. 6B in Abdala & Ponsa, 2012).

Collagen fibers arrangement in the menisci was also affected in the experimental groups. The packed arrangement pattern found in adults (both in control and treated specimens) was also found in tadpoles with reduced mobility (Abdala & Ponsa, 2010). In humans, a normal meniscus is characterized by packed collagen fibers (Pauli et al., 2011), with a high disorganization associated to aging and osteoarthritis (Pauli et al., 2011). The histological structure of the menisci appears to be adapted to the weight-bearing function (Clark & Ogden, 1983). Our results allow us to suggest that the disarrangement of the collagen fibers of the menisci is not due to injury, but is instead due to young tissue developing a more packed configuration when mechanical stress increases, as it was observed in both treated juvenile and
adult specimens. Likewise, in the human menisci, a higher number of cells is common in young
tissues (Senan et al., 2011), and it decreases with age (Clark & Ogden, 1983).

A severe flattening of the hypertrophic chondrocytes was found in treated juveniles of
Leptodactylus mystacinus. The observed injuries did not reach the magnitude of those described
in some specimens of anurans raised under reduced mobility (Abdala & Ponssa, 2012; Ponssa &
Abdala, 2016). These immobilized frogs presented irregularly-shaped cells, with large lacunae,
interlacunar matrix with thin boundaries and flatter than normal, resulting in a characteristic net-
like appearance (Abdala & Ponssa, 2012). The deformation of cartilaginous cells has been
reported as a response to mechanical stress (Quinn et al., 1998), but is also related to an
unhealthy tissue (Cook et al., 2004). Hypertrophic chondrocytes are large and round due to the
mineralization of the matrix during endochondral ossification (Pacifici et al., 1990). Thus, the
observed change in their shape could present interesting consequences for the normal process of
endochondral ossification.

The similar characteristics of tissues subjected to overuse trials observed in this study and
tissues of reduced-mobility tadpoles (Kim, Olson & Hall, 2009; Abdala & Ponssa, 2012; among
others), suggests that the knee-joint tissues suffer the same kind of alterations under abnormal
movement stimuli (i.e. either overuse or disuse of the joints). Even considering the elastic
properties of tendons, fibrocartilages and articular cartilages (Carvalho, 1995; Kannus et al.,
1997), limbs overuse or disuse still cause alterations or changes in the biomechanical properties
of the connective tissue of the joints (Kannus et al., 1997; Järvinen et al., 1997; Cook & Purdan,
2009) conducting to pathologies such as osteoarthritis or tendinosis. Our results agree with the
great amount of evidence associating pathologies to joint overuse, e.g. jumper knee, runner knee,
golfer and tennis elbow, among others (Engebretsen & Bahr, 2007). Surprisingly, the alteration
of the knee tissue was similar in jumper than in walker species, in spite of the profound effect of
the sudden and abrupt contact between the long bones epiphyses during the jump. It should be
considered, however the applied mechanical test could have been either too challenging or
unsuitable, thus preventing the identification of differences between locomotor modes.

Both knee-joint morphology and locomotion of anurans differ from those of mammals
(Kargo, Nelson & Rome, 2002). Indeed, in rats, the range of motion is up to 145° (Nagai et al.,
2016); while in frogs it is about 155° (Kargo, Nelson & Rome, 2002). The hind limb bones of
anurans do not lie in a single plane throughout the jump, and joint rotations are more prominent
than joint extensions (Gans & Parsons, 1966), while in mammals the kinematics of the knee
consist of flexion-extension movements (Fischer et al., 2002). Despite these differences, the
effects of overuse and immobility trials over the connective tissues of anurans are similar than
those reported in mammals (pigs, rabbits, rats and men) and chicken (Cook et al.; 2004; Kannus,
1997). This implies that anurans could be a good model for studying abnormalities in the
development caused by epigenetical stimuli, such as movement alterations (Ponssa & Abdala,
2016).

Our study provides a first approximation for the understanding of tissue dynamics of the
knee-joints in anurans, taking ontogeny and the different locomotors modes into account. These
new data constitute a deeper approximation to the comprehension of the effect of mechanical
load in the development and maintenance of knee tissues in tetrapods, which could contribute to
the engineering of skeletal tissues (Nowlan et al., 2010). Knee alteration and pathologies are
caused by an interaction between excessive load (immobilization or excessive movement) (Ni et
al., 2015) and intrinsic factors, such as genes, age, circulating and local cytokine production, sex,
bio mechanics and body composition (Cook & Purdan, 2009; Zamli & Sharif, 2011). Therefore,
studies taking these variables into account are necessary for a better understanding of the knee-tissues behavior in tetrapods, and therefore for the treatment and prevention of knee-joint pathologies.

CONCLUSIONS

Our data showed that anuran knee tissues suffer gradual pathological structural changes when subjected to overuse, especially in adults. The changes observed include disarrangement of the collagen fibers of tendons and fibrocartilage, packaging of the collagen fibers of the menisci and the flattening of the fibrocartilage and the diaphysis cells. Similar effects were found in anurans subjected to immobilization trials, and in joints diseases such as tendinosis and osteoarthritis in mammals. Taken together, these results suggest that the knee tissues of tetrapods tend to react similarly even when subjected to different types of stimuli (i.e., overuse or disuse).

This work represents one of the first approaches to the study of knee tissues dynamics when subjected to overuse trials in anurans.

Acknowledgements

We are very grateful to Esteban J. Vera for building the treadmill belt; and to Adriana Manzano (CCyTP, CONICET, Diamante, Argentina) and Gladys Hermida (UBA, Buenos Aires, Argentina), Daniela Miotti and Marcela Hernandez (Fundación Miguel Lillo, Tucuman, Argentina) for their help in the preparation and interpretation of the histological samples. Helpful criticism and suggestions of the reviewers improved our work in many ways.
References

Abdala V, Ponssa ML. 2012. Life in the slow lane: the effect of reduced mobility on tadpole limb development. The Anatomical Record 295:5–17.

Abdala V, Vera MC, Ponssa ML. 2017. On the presence of the patella in frogs. The Anatomical Record 300:1747–1755.

Adirim TA, Cheng TL. 2003. Overview of Injuries in the Young Athlete. Sports Medicine 33, 75–81.

Arokoski JPA, Jurvelin JS, Väätäinen U, Helminen HJ. 2000. Normal and pathological adaptations of articular cartilage. Scandinavian Journal of Medicine & Science in Sports 10:186–198.

Aspden RM, Yarker YE, Hukins DW. 1985. Collagen orientations in the meniscus of the knee-joint. Journal of Anatomy 140:371–80.

Astley HC, Roberts TJ. 2012. Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping. Biol. Lett. 8:386–389.

Astley HC, Haruta A, Roberts TJ. 2015. Robust jumping performance and elastic energy recovery from compliant perches in tree frogs. Journal of Experimental Biology 218: 3360–3363.
Bailey AJ. 2001. Molecular mechanisms of ageing in connective tissues. *Mechanisms of Ageing and Development* 122: 735–755.

Benjamin M, Evans EJ. 1990. Fibrocartilage. *Journal of Anatomy* 171:1–15.

Benjamin M, Tyers RN, Ralphs JR. 1991. Age-related changes in tendon fibrocartilage. *Journal of Anatomy* 179:127–36.

Benjamin M, Qin S, Ralphs JR. 1995. Fibrocartilage associated with human tendons and their pulleys. *Journal of Anatomy* 187:625–33.

Benjamin M, Ralphs JR. 1998. Fibrocartilage in tendons and ligaments — an adaptation to compressive load. *Journal of Anatomy* 193:481–494.

Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA. 2007. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. *Science* 317: 807–810.

Burnham, K. P., and D. P. Anderson. 2002. Model selection and multimodel inference: a practical information theoretic approach. Academic Press, New York, New York, USA.

Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology : some background, observations, and comparisons. *Behavioral Ecology and Sociobiology*, 65:23–35.

Carvalho HF. 1995. Understanding the biomechanics of tendon fibrocartilages. *Journal of Theoretical Biology* 172:293–297.
Carvalho HF, Felisbino SL. 1999. The development of the pressure-bearing tendon of the bullfrog, Rana catesbeiana. Anatomy and Embryology 200:55–64.

Clark CR, Ogden JA. 1983. Development of the menisci of the human knee-joint. Morphological changes and their potential role in childhood meniscal injury. The Journal of bone and Joint Surgery 65:538–47.

Congdon KA, Hammond AS, Ravosa MJ. 2012. Differential limb loading in miniature pigs (Sus scrofa domesticus): a test of chondral modeling theory. Journal of Experimental Biology 215:1472–1483.

Cook JL, Feller JA, Bonar SF, Khan KM. 2004. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. Journal of Orthopaedic Research 22:334–8.

Cook JL, Purdam CR. 2009. Is tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. British Journal of Sports Medicine 43:409–416.

Coutinho EL, Gomes ARS, França CN, Salvini TF. 2002. A new model for the immobilization of the rat hind limb. Brazilian Journal of Medical and Biological Research 35:1329–1332.

Drachman DB, Sokoloff L. 1966. The role of movement in embryonic joint development. Developmental Biology 14:401–420.
Ebben WP, Fauth ML, Kaufman CE, Petushek EJ. 2011. Magnitude and Rate of Mechanical Loading of a variety of exercise modes. *The Journal of Strength & Conditioning Research* 24:213–217.

Edwards LJ, Goodship AE, Birch HL, Patterson-Kane JC. 2005. Effect of exercise on age-related changes in collagen fibril diameter distributions in the common digital extensor tendons of young horses. *American Journal of Veterinary Research* 66:564–568.

Emerson SB. 1979. The ilio-sacral articulation in frogs: form and function. *Biological Journal of the Linnean Society* 11:153–168.

Engebretsen L, Bahr R. 2007. Dolor en la rodilla. In: Bahr R & Maelum S, eds. *Lesiones deportivas*. Buenos Aires: Editorial Medica Panamericana, 340–352.

Fabrezi M, Manzano AS, Abdala V, Lobo F. 2014. Anuran Locomotion: Ontogeny and Morphological Variation of a Distinctive Set of Muscles. *Evolutionary Biology* 4:308–326.

Feitosa V, Vidal BC, Pimentel ER. 2002. Optical anisotropy of a pig tendon under compression. *Journal of Anatomy* 200:105–11.

Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H. 2002. Basic limb kinematics of small therian mammals. *Journal of Experimental Biology* 205:1315–1338.

Ford CA, Nowlan NC, Thomopoulos S, Killian ML. 2017. Effects of imbalanced muscle loading on hip joint development and maturation. *Journal of Orthopaedic Research* 35:1128–1136.

Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V. 2007. Collagen structure of tendon relates to function. *Scientific World Journal* 7:404–20.
Frost HM. 1979. Chondral Modeling Theory. *Calcified Tissue International* 28:181–200.

Frost HM. 1994. Perspectives: A vital biomechanical model of synovial joint design. *The Anatomical Record* 240:1–18.

Gans C, Parsons T. 1966. On the origin of the jumping mechanism in frogs. *Evolution* 20:92–99.

Gao J, Fang J, Gong H, Gao B. 2017. Morphological and Microstructural Alterations of the Articular Cartilage and Bones during Treadmill Exercises with Different Additional Weight-Bearing Levels. *Journal of Healthcare Engineering* 2017: 1–9.

Gibson H, Edwards RH. 1985. Muscular exercise and fatigue. *Sports Medicine* 132:120–132.

Ghosh P, Taylor TK, 1987. The knee-joint meniscus. A fibrocartilage of some distinction. *Clinical Orthopaedics and Related Research* 224:52–63.

Gosner KL. 1960. A simplified table for staging Anuran embryos and larvae with notes on identification. *Herpetologica* 16:183–190.

Güell R, Casan R, Giménez M. 1996. Fatiga muscular periférica y respuesta ventilatoria al esfuerzo en la limitación crónica al flujo aéreo (LCFA). *Archivos de Bronconeumología* 32:79–84.

Hall BK. 1975. A simple, single-injection method for inducing long term paralysis in embryonic chicks, and preliminary observations of growth of the tibia. *The Anatomical Record* 181:767–778.
Hall BK, Herring S. 1990. Paralysis and growth of the musculoskeletal system in the embryonic chick. *Journal of Morphology* 206:45–56.

Hamrick MW. 1999. A chondral modeling theory revisited. *Journal of Theoretical Biology* 201:201–208.

Hebling A, Esquisatto MAM, Aro AA, Gomes L. 2014. Morphological modifications of knee articular cartilage in bullfrogs (*Lithobates catesbeianus*) (Anura: Ranidae) during postmetamorphic maturation. *Zoomorphology* 133:245–256.

Hosseini A, Hogg DA. 1991. The effects of paralysis on skeletal development in the chick embryo. II. Effects on histogenesis of the tibia. *Journal of Anatomy* 177:169–178.

Ingelmark BE. 1948. The structure of tendons at various ages and under different functional conditions. II. *Acta Anatomica* 4:13–15.

Järvinen M, Józsa L, Kannus P, Järvinen TL, Kvist M, Leadbetter W. 1997. Histopathological findings in chronic tendon disorders. *Scandinavian Journal of Medicine & Science in Sports* 7:86–95.

Johnson BD, Aaron EA, Babcock MA, Dempsey JA. 1996. Respiratory muscle fatigue during exercise: implications for performance. Fatigue des muscles respiratoires pendant unexercice physique: implications sur la performance. *Medicine and Science in Sports and Exercise* 28:1129–1137.

Jorgensen ME, Reilly SM. 2013. Phylogenetic patterns of skeletal morphometrics and pelvic traits in relation to locomotor mode in frogs. *Journal of Evolutionary Biology* 1979:1–15.
Kader D, Saxena A, Movin T, Maffulli N. 2002. Achilles tendinopathy: some aspects of basic science and clinical management. *British Journal of Sports Medicine* 36:239–249.

Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountre RB, Kingsley DM, Zelzer E. 2009. Muscle contraction is necessary to maintain joint progenitor cell fate. *Developmental Cell* 16:734–743.

Kannus P, Jozsa L, Natri A, Jarvinen M. 1997. Effects of training, immobilization and remobilization on tendons. *Scandinavian Journal of Medicine & Science in Sports* 20:67–71.

Kargo WJ, Nelson F, Rome LC. 2002. Jumping in frogs: assessing the design of the skeletal system by anatomically realistic modeling and forward dynamic simulation. *Journal of Experimental Biology* 1702:1683–1702.

Kim HT, Olson WM, Hall BK. 2009. Effects of hind limb denervation on the development of appendicular ossicles in the dwarf African clawed frog, *Hymenochirus boettgeri* (Anura: Pipidae). *Acta Zoologica (Stockholm)* 90:352–358.

Kim BS, Joo YC, Choi BH, Kim KH, Kang JS, Park SR. 2015. The effect of dry needling and treadmill running on inducing pathological changes in rat Achilles tendon. *Connective Tissue Research* 56:452–460.

Kjær M, Magnusson P, Krogsgaard M, Møller JB, Olesen J, Heinemeier K, Hansen M, Koskinen S, Esmarck B. 2006. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. *Journal of Anatomy* 208:445–450.
Kovanen V, Suominen H, Peltonen L. 1987. Effects of aging and life-long physical training on collagen in slow and fast skeletal muscle in rats. A morphometric and immuno-histochemical study. *Cell and Tissue Research* 248: 247–55.

Kraushaar B, Nirschl R. 1999. Tendinosis of the elbow (tennis elbow). Clinical features and findings of histological immunohistochemical, and electron microscopy studies. *The Journal Bone and Joint Surgery American* 81:259–78.

Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, Sasaki T, Stavnezer E, Iannotti J, Schweitzer R, Ilinc D, Baskaran H. 2011. Report Conversion of Mechanical Force into TGF- b - Mediated Biochemical Signals. *Current Biology* 21: 933–941.

Manzano A, Abdala V, Ponssa ML, Soliz M. 2013. Ontogeny and tissue differentiation of the pelvic girdle and hind limbs of anurans. *Acta Zoologica (Stockholm)* 94:420–436.

Maffulli N, Longo UG, Franceschi F, Rabitti C, Denaro V. 2008. Movin and bonar scores assess the same characteristics of tendon histology. *Clinical Orthopaedics Related Research* 466:1605–1611.

Michna H. 1984. Morphometric analysis of loading-induced changes in collagen-fibril populations in young tendons. *Cell and Tissue Research* 236:465–470.

Murray PD, Drachman DB. 1969. The role of movement in the development of joints and related structures: the head and neck in the chick embryo. *Journal of Embryology and Experimental Morphology* 22:349–371.
Nagai M, Ito A, Tajino J, Iijima H, Yamaguchi S, Zhang X, Aoyama T, Kuroki H. 2016. Remobilization causes site-specific cyst formation in immobilization-induced knee cartilage degeneration in an immobilized rat model. *Journal of Anatomy* 228:929–939.

Nauwelaerts S, Aerts P. 2003. Propulsive impulse as a covarying performance measure in the comparison of the kinematics of swimming and jumping in frogs. *Journal of Experimental Biology* 206:4341–4351.

Nauwelaerts S, Stamhuis E, Aerts P. 2005. Swimming and jumping in a semi-aquatic frog. *Animal Biology* 55:3–15.

Nauwelaerts S, Aerts P. 2006. Take-off and landing forces in jumping frogs. *The Journal of Experimental Biology* 209:66–77.

Ni GX, Zhou YZ, Chen W, Xu L, Li Z, Liu SY, Lei L, Zhan LQ. 2015. Different responses of articular cartilage to strenuous running and joint immobilization. *Connective Tissue Research* 8207:1–9.

Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. 2010. Developing bones are differentially affected by compromised skeletal muscle formation. *Bone* 46:1275–1285.

Nowlan NC, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. 2012. Biophysical stimuli induced by passive movements compensate for lack of skeletal muscle during embryonic skeletogenesis. *Biomechanics and Modeling Mechanobiology* 11:207–219.
Nowlan NC, Chandaria V, Sharpe J. 2014. Immobilized chicks as a model system for early-onset developmental dysplasia of the hip. *Journal of Orthopaedic Research* 32:777–785.

Pacifici M, Golden EB, Oshima O, Shapiro IM, Leboy PS, Adams SL. 1990. Hypertrophic chondrocytes. The terminal stage of differentiation in the chondrogenic cell lineage? *Annals of the New York Academy of Sciences* 599:45–57.

Pauli C, Grogan SP, Patil S, Otsuki S, Hasegawa A, Koziol J, D’Lima DD. 2011. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. *Osteoarthritis and Cartilage* 19:1132–1141.

Peng C J, Lee K L, Ingersoll GM. 2002. An Introduction to Logistic Regression Analysis and Reporting. *The Journal of Educational Research*, 96: 3–14.

Peplowski M, Marsh R. 1997. Work and power output in the hindlimb muscles of Cuban tree frogs *Osteopilus septentrionalis* during jumping. *The Journal of experimental biology* 200: 2861–70.

Pitsillides AA. 2006. Early effects of embryonic movement: “a shot out of the dark”. *Journal of Anatomy* 208:417–431.

Ponssa ML, Abdala V. 2016. Phenotypical expression of mobility reduction during limb ontogeny in frogs: the knee-joint case. *PeerJ* DOI 10.7717/peerj.1730.

Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S. 2001. Composition and structure of articular cartilage. *Clinical Orthopaedics Related Research* 391:26–33.

Poulet B, Hamilton RW, Shefelbine S, Pitsillides AA. 2011. Characterizing a Novel and Adjustable Noninvasive Murine Joint Loading Model. *Arthritis and Rheumatism* 1:137–147.
Přikryl T, Aerts P, Havelková P, Herrel A, Rocek Z. 2009. Pelvic and thigh musculature in frogs (Anura) and origin of anuran jumping locomotion. *Journal of Anatomy* 214:100–139.

Quinn TM, Grodzinsky AJ, Buschmann MD, Kim Y, Hunziker EB. 1998. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. *Journal of Cell Science* 111: 573–583.

Ralphs JR, Benjamin M. 1994. The joint capsule: structure, composition, ageing and disease. *Journal of Anatomy* 184:503–9.

Reilly S, Essner R, Wren S, Easton L, Bishop P. 2015. Movement patterns in leiopelmatid frogs: Insights into the locomotor repertoire of basal anurans. *Behavioural Processes* 121: 43–53.

Roddy KA, Prendergast PJ, Murphy P. 2011. Mechanical influences on morphogenesis of the knee-joint revealed through morphological, molecular and computational analysis of immobilised embryos. *PLoS One* 6: e17526.

Selvanetti A, Cipolla M, Puddu G. 1997. Overuse tendon injuries: Basic science and classification. *Operative Techniques in Sports Medicine* 5:110–117.

Senan V, Sucheendran J, Prasad KH, Balagopal K. 2011. Histological features of meniscal injury. *Kerala Journal of Orthopaedics* 24:30–36.

Shadwick RE. 1990. Elastic energy storage in tendons: mechanical differences related to function and age. *Journal of Applied Physiology* 68:1033–1040.
Sharma P, Maffulli N. 2005. Tendon Injury and Tendinopathy: Healing and Repair. Current Concepts Review, 87: 17–19.

Shwartz Y, Blitz E, Zelzer E. 2013. One load to rule them all: Mechanical control of the musculoskeletal system in development and aging. Differentiation, 86: 104–111.

Symonds MRE, Moussalli A. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 65:13–21.

Sullivan GE. 1966. Prolonged paralysis of the chick embryo, with special reference to effect on the vertebral column. Australian Journal of Zoology 14:1–17.

Sun Y, Mauerhan DR, Kneisl JS, Norton HJ, Zinchenko N, Ingram J, Hanley Jr EN, Gruber HE. 2012. Histological examination of collagen and proteoglycan changes in osteoarthritic menisci. Open Rheumatology J 6:24–32.

Thampatty BP, Wang JH. 2017. Mechanobiology of young and aging tendons: in vivo studies with treadmill running. Journal of Orthopaedic Research, doi.org/10.1002/jor.23761

Tidke SN, Tidke SS. 2013. Comparative anatomy of knee-joint: class Amphibian (frog) versus class Mamalia (human being). Scholars Journal Applied Medical Sciences 1:560–567.

Tomkoria S, Patel RV, Mao JJ. 2004. Heterogeneous nanomechanical properties of superficial and zonal regions of articular cartilage of the rabbit proximal radius condyle by atomic force microscopy. Medical Engineering & Physics 26:815–822.
Verbruggen SW, Loo JHW, Hayat TTA, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan NC. 2016. Modeling the biomechanics of fetal movements. *Biomechanics and Modeling Mechanobiology* 15:995–1004.

Viidik A. 1982. Age-related changes in connective tissues. In: Viidik A, ed. *Lectures on Gerontology, vol. 1, On Biology of Aging, part A*. London: Academic Press, 173–211.

Vilarta R, Vidal de Campos B. 1989. Anisotropic and biomechanical properties of tendons modified by exercise and denervation: aggregation and macromolecular order in collagen bundles. *Matrix* 9:55–61.

Vogel KG. 2003. Tendon structure and response to changing mechanical load. *Journal of Musculoskeletal Neuronal Interactions* 3:323–325.

Zamli Z, Sharif M. 2011. Chondrocyte apoptosis: A cause or consequence of osteoarthritis? *International Journal Rheumatic Diseases* 14:159–166.

Zelzer E, Blitz E, Killian ML, Thomopoulos S. 2014. Tendon-to-bone attachment: from development to maturity. *Birth Defects Research Part C* 102:101–12.
Figure captions

Fig. 1. (A) Treadmill belt. (B, C) lateral and dorsal view of a specimen of *Phyllomedusa sauvagii* walking on the treadmill. eb: elastic bands; m: motor; s: scale; pb: polycarbonate box. Photograph of M.C.V.

Fig. 2. Schematic representation of the frog knee-joint. Sup. Zone: superficial zone; Tang. Zone: tangential zone; M: menisci; in: internal zone; me: medial zone; ex: external zone.

Fig 3. Histology of the knee-joint of *Leptodactylus latinasus* (A) Knee-joint of a juvenile specimen (SVL 22.94 mm), scale bar 500 µm; (B) detail of the fibrocartilage, scale bar 100 µm; (C) detail of the menisci, scale bar 200 µm; (D) detail of the osteochondral ligament, scale bar 50 µm; (E) detail of the graciella sesamoid, scale bar 200 µm. DP: distal patella; en: enthesis; e: erythrocytes; f: femur; fc: fibrocartilage; gs: graciella sesamoid; lac: lateral articular cartilage; m: menisci; m.g.m: muscle gracilis major; ol: osteochondral ligament; tf: tibia-fibula; t: tendon. In the menisci, black arrows indicate disperse nuclei, and white arrows indicate nuclei in rows. In the enthesis, the black arrow indicates the fibrocartilaginous tissue.

Fig 4. Histology of the knee-joint of *Leptodactylus latinasus* (A) Knee-joint of an adult specimen (SVL 30.86 mm), scale bar 200 µm; (B) detail of the fibrocartilage, scale bar 50 µm; (C) detail of the menisci, scale bar 100 µm; (D) detail of the graciella sesamoid, scale bar 100 µm; (E) detail of the femur epiphyses, scale bar 50 µm. DP: distal patella; en: enthesis; e: erythrocytes; et: endochondral trabeculas; f: femur; fc: fibrocartilage; gs: graciella sesamoid; m: menisci; o: osteocytes; oc: ossification center; PP: proximal patella; tf: tibia-fibula.

Fig 5. Scoring system showing gradual changes. Score 0 correspond to control, while Scores 1 and 2 correspond to overused trials. Scale bar 50 µm. (A) sample of *L. latinasus* (juvenile, SVL
22.94 mm), (B) sample of Phyllomedusa sauvagii (adult, SVL 70.79 mm), (C) sample of L. latinasus (adult, SVL 29.16 mm), (D) sample of L. latinasus (adult, SVL 30.86 mm), (E) sample of L. latinasus (juvenile, SVL 22.94 mm), (F) sample of L. latinasus (adult, SVL 29.16 mm), (G) sample of L. latinasus (adult, SVL 30.41 mm), (H) sample of Rhinella arenarum (juvenile, SVL 52.75 mm), (I) sample of R. arenarum (juvenile, SVL 54.33 mm), (J) sample of Leptodactylus mystacinus (juvenile, SVL 17.58 mm), (K) sample of L. mystacinus (juvenile, SVL 19.58 mm), (L) sample of L. latinasus (juvenile, SVL 22.94 mm), (M) sample of L. mystacinus (juvenile, SVL 16.51 mm), (N) black bar: non observed, (O) sample of L. mystacinus (juvenile, SVL 19.58 mm).

Fig 6. Histology of the knee-joint of treatment specimens of (A) juveniles of L. mystacinus, scale bar 200 µm, (B) detail of the fibrocartilage of L. mystacinus, scale bar 50 µm, (C) detail of the femur diaphysis of L. mystacinus, scale bar 200 µm, (D) tibia-fibula of an adult of L. latinasus, scale bar 100 µm, (E) detail of the fibrocartilage, scale bar 50 µm. DP: distal patella; et: endochondral trabeculas; f: femur; fc: fibrocartilage; gs: graciella sesamoid; hc: hypertrophic chondrocyte; lac: lateral articular cartilage; m: menisci; o: osteocytes; ol: osteochondral ligament; tf: tibia-fibula.

Fig 7. Distribution of the scores in juveniles (A-E) and adults (F-I). (A and F) arrangement of the collagen fibers of the fibrocartilage, (B and G) roundness of the nuclei of the fibrocartilage cells, (C and H) arrangement of the collagen fibers of the tendons, (D and I) arrangement of the collagen fibers of the menisci, (E) shape of the hypertrophic chondrocytes. Light gray bars correspond to control specimens; dark gray bar correspond to treated specimens. X axis: scores, Y axis: number of specimens.
Fig. 8. Boxplot of meniscus cell density in juveniles and adults, in control and treated groups.
Table 1 (on next page)

Specimens used in the over-used experiments.

(ej) experimental juvenile. (cj) control juvenile. (ea) experimental adult. (ca) control adult. SVL: snout-vent length. MCV: field number of Miriam Corina Vera.
Table 1. Specimens used in the over-used experiments. (ej) experimental juvenile. (cj) control juvenile (ea) experimental adult. (ca) control adult. SVL: snout-vent length. MCV: field number of Miriam Corina Vera.

Especie	Identification number (MCV)	SVL (mm)	Weight (gr)	Mean ± SD time in one day (min)	Total time (min)	Mean ± SD distance in one day (m)	Total distance (m)
Leptodactylus latinasus	382	19.23 (cj)	1.1	0	0	0	0
	262	21.81 (cj)	1.3	0	0	0	0
	305	22.94 (cj)	1.3	0	0	0	0
	109	17.93 (ej)	0.5	6.39±2.45	230.93	10.47±4.02	378.26
	108	20.36 (ej)	1.3	6.02±2.79	216	9.86±4.5	353.58
	110	21.06 (ej)	1.2	6.42±2.02	225.16	10.52±3.3	368.8
	409	26.91 (ca)	2.1	10.10±1.22	681.43	16.55±2	1116.18
	453	30.41 (ca)	2.1	10.15±0.76	789	16.63±1.25	1291.82
	451	30.86 (ca)	2.6	10.15±0.76	789	16.63±1.25	1291.82
	452	27.82 (ea)	2.2	10.10±1.22	681.43	16.55±2	1116.18
	450	29.16 (ea)	2	10.15±0.76	789	16.63±1.25	1291.82
Leptodactylus mystacinus	82	18.9 (cj)	0.6	0	0	0	0
	42	16.51 (cj)	0.7	0	0	0	0
	50	15.99 (cj)	0.6	0	0	0	0
	52	18.53 (cj)	0.5	0	0	0	0
	49	17.61 (cj)	0.5	0	0	0	0
	98	19.58 (ej)	0.6	1.82±0.83	199	2.98±1.36	325.38
	57	19.95 (ej)	0.7	1.55±0.45	35.23	2.55±0.73	57.71
	97	19.58 (ej)	0.7	2.58±1.15	303	4.24±1.89	496.28
	99	18.85 (ej)	0.5	1.61±0.74	151.4	2.65±1.22	248.04
	100	17.58 (ej)	0.6	1.72±0.64	161.1	2.83±1.05	263.88
	537	53.82 (ca)	20	0	0	0	0
	538	56.83 (ca)	20	0	0	0	0
	539	57.48 (ca)	20	0	0	0	0
	540	58.57 (ca)	25	0	0	0	0
---	---	---	---	---	---	---	
541	55.29 (ca)	20	0	0	0	0	
532	58.23 (ea)	20	10	1140	16.38	1867.32	
533	57.13 (ea)	45	10	1140	16.38	1867.32	
534	57.81 (ea)	50	10	1140	16.38	1867.32	
535	57.16 (ea)	45	10	1140	16.38	1867.32	
536	56.8 (ea)	25	10	1140	16.38	1867.32	

Melanophryniscus rubriventris

438	37.60 (ca)	4.6	0	0	0	0
128	37.80 (ca)	3.9	0	0	0	0
434	34.95 (ca)	3.9	0	0	0	0
437	35.66 (ca)	3.6	0	0	0	0
436	33.42 (ea)	3.5	10.04±0.77	826.5	16.45±1.2	1353.8
439	36.21(ea)	3.9	8.13±2.3	794.4	13.32±3.78	1301.28
440	42 (ea)	4.9	10.15±0.38	947.56	16.62±0.6	1552.1

Phyllomedusa sauvagii

76	25.78 (cj)	2.7	0	0	0	0
115	27.66 (cj)	2.5	0	0	0	0
67	25.78 (ej)	2.1	4.91±1.56	247	8.04±2.56	405.03
81	26.85 (ej)	1.8	5.61±1.08	239	9.20±1.78	391.56
78	70.79 (ca)	18.8	0	0	0	0
88	63.87 (ea)	14.7	9.19±1.51	270	16.29±1.61	442.26
107	60 (ea)	16.8	9.79±0.70	416.46	16.04±1.16	1501
444	69.9 (ea)	20.1	9.84±0.64	770.9	12.73±1.06	1262.8
443	70 (ea)	18.9	10.14±0.58	794	16.61±0.96	1300.57

Rhinella arenarum

104	52.75 (cj)	14.5	0	0	0	0
455	49.43 (cj)	7.3	0	0	0	0
456	52.56 (cj)	12.5	0	0	0	0
446	24.85 (ej)	1.7	9.99±1.41	903.08	16.37±2.3	1479.25
445	26.32 (ej)	1.5	10.07±0.23	915.1	16.49±0.38	1498.9
447	43.43(ej)	6	10.04±0.56	914.7	15.79±0.45	1497.7
105	54.33 (ej)	14.4	6.43±1.53	664.6	10.53±2.5	1088.64
526	87.62 (ca)	105	0	0	0	0
527	80.09 (ca)	60	0	0	0	0
---	-----	---	---	---	---	
528	87.79 (ca)	95	0	0	0	
529	90.69 (ca)	95	0	0	0	
530	93.42 (ca)	100	0	0	0	
531	83.45 (ca)	75	0	0	0	
520	85.91 (ea)	55	10	1140	16.38	1867.32
521	91.46 (ea)	80	10	1140	16.38	1867.32
522	109.6 (ea)	100	10	1140	16.38	1867.32
523	82.25 (ea)	60	10	1140	16.38	1867.32
524	101.61 (ea)	95	10	1140	16.38	1867.32
525	80.16 (ea)	55	10	1140	16.38	1867.32
Table 2 (on next page)

Criteria and scores for histological assessment of the connective tissues.
Table 2. Criteria and scores for histological assessment of the connective tissues.

		Score
I. Collagen fiber arrangement of the fibrocartilage		
The collagen fibers are packaged		0
The collagen fibers begin to unpack showing a lax configuration		1
Collagen fibers are more separated showing a very lax configuration		2
II. Roundness of the nuclei of the cells of the fibrocartilage		
Round nuclei of the fibrocartilage		0
The nuclei flattened showing a more ovoid shape		1
The nuclei show a very flat shape		2
III. Collagen fiber arrangement of the tendon		
The collagen fibers are packaged		0
The collagen fibers begin to unpack showing a lax configuration		1
Collagen fibers are more separated showing a very lax configuration		2
IV. Collagen fiber arrangement of the menisci		
Marked separation of fibers		0
Collagen fiber becomes more packed.		1
Collagen fibers show a packed arrangement		2
V. Shape of the hypertrophic chondrocytes of the diaphyses		
The hypertrophic chondrocytes have they typical oval or round shape		0
The hypertrophic chondrocytes become flattening		1
The hypertrophic chondrocytes show a very flat shape		2
Table 3 (on next page)

Distribution of the scores in treated (hypermobilized) and control juveniles and adults

(0) Normal; (1) Slightly abnormal; (2) Abnormal. L.m: Leptodactylus mystacinus; L. l: Leptodactylus latinasus; M.r: Melanophryniscus rubriventris; R.a: Rhinella arenarum; P.s: Phyllomedusa sauvagii. (*) Features that were not observable in all the specimens.
Table 3. Distribution of the scores in treated (hypermobilized) and control juveniles and adults.

Scores: (0) Normal; (1) Slightly abnormal; (2) Abnormal. L.m: Leptodactylus mystacinus; L. l: Leptodactylus latinasus; M.r: Melanophryniscus rubriventris; R.a: Rhinella arenarum; P.s: Phyllomedusa sauvagii. (*) Features that were not observable in all the specimens.
Juveniles	Controls (n=13)	Treated (n=14)	
Scores	0	1	2
Collagen fiber arrangement of the fibrocartilage (*)	8 (L.m, L.l, R.a)	4 (L.m, P.s)	0 (L.m, L.l, R.a)
Roundness of the nuclei of the cells of the fibrocartilage (*)	7 (L.m, L.l, P.s, R.a)	3 (L.l, L.m)	0 (L.m, L.l, P.s, R.a)
Collagen fiber arrangement of the tendon	10 (L.m, L.l, P.s)	3 (R.a)	0 (L.m, L.l, P.s)
Collagen fiber arrangement of the menisci (*)	6 (L.l, L.m, R.a, P.s)	2 (L.m, L.l)	3 (L.m, L.l, P.s)
Shape of the hypertrophic chondrocytes of the diaphyses	13 (L.m, L.l, P.s, R.a)	0 (L.m, L.l, P.s, R.a)	0 (L.m, L.l, P.s, R.a)

Adults	Controls (n=20)	Treated (n=20)	
Scores	0	1	2
Collagen fiber arrangement of the fibrocartilage (*)	9 (L.l, L.m, P.s, R.a, M.r)	10 (L.l, L.m, P.s, R.a, M.r)	0 (L.m, P.s, R.a, M.r)
Roundness of the nuclei of the cells of the fibrocartilage (*)	8 (L.l, L.m, P.s, R.a, M.r)	5 (L.l, L.m, P.s, R.a, M.r)	0 (L.m, P.s, R.a, M.r)
Collagen fiber arrangement of the tendon (*)	10 (L.l, L.m, R.a, M.r)	8 (L.m, R.a, M.r)	0 (L.m, P.s, R.a, M.r)
Collagen fiber arrangement of the menisci (*)	4 (L.l, L.m)	1 (L.m)	14 (L.m, L.m, P.s, R.a, M.r)
Shape of the hypertrophic chondrocytes of the diaphysis (*)	5 (R.a)	0 (R.a)	0 (R.a)
Table 4 (on next page)

Resume of multinomials logistic models and binomial logistic model (for hypertrophic chondrocytes) selections under AICc (Akaike’s Information Criterion, adjusted for small sample size) for the five parameters analyzed.

In bold the model selected. mFFm: fibrocartilage fibers; mNFm: nuclei of the fibrocartilage; mFTM: tendon fibers; mFMm: menisci fibers; mCHm, hypertrophic chondrocytes; st: stage; sp: specie; tr, treatment; md: locomotor mode; int1: intercept sp*tr; int2: intercept st*tr; int3: intercept md*tr; int4: intercept st*sp.
Table 4. Resume of multinomials logistic models and binomial logistic model (for hypertrophic chondrocytes) selections under AICc (Akaike’s Information Criterion, adjusted for small sample size) for the five parameters analyzed. In bold the model selected. mFFm: fibrocartilage fibers; mNFm: nuclei of the fibrocartilage; mFTM: tendon fibers; mFMm: menisci fibers; mCHm, hypertrophic chondrocytes; st: stage; sp: specie; tr, treatment; md: locomotor mode; int1: intercept sp*tr; int2: intercept st*tr; int3: intercept md*tr; int4: intercept st*sp.

Models	mFFm.st.	mFFm.sp.	mFFm	mFFm.md.	mFFm.int	mFFm.md.	mFFm.sp.	mFFm.int3	mFFm.	mFFm.
tr	tr	st.tr	2	tr	st.tr	int1	sp.tr			
dAICc	0.0	2.0	2.0	2.2	2.3	4.3	4.9	5.2	6.0	6.0
df	4	3	2	5	5	5	8	5	11	7

Models	mNFm.sp.	mNFm.sp.	mNFm	mNFm.int	mNFm	mNFm.tr	mNFm.int1	mNFm	mNFm	mNFm.int
tr	st.tr	md.tr	3	md.st.tr						
dAICc	0.0	2.1	4.7	6.1	6.7	9.4	9.7	9.9	11.6	13.6
df	7	8	4	5	5	3	11	2	4	5

Models	mFTm.sp.	mFTm.sp.st.	mFTm.int	mFTm.md	mFTm	mFTm	mFTm.tr	mFTm.	mFTm.	
tr	tr	1	.st.tr	md.tr	int3		st.tr	int2		
dAICc	0.0	0.4	6.8	37.8	39	40.9	45.2	46.1	47.5	49.5
df	7	8	11	5	4	5	2	3	4	5
------------------	---	---	----	---	---	---	---	---	---	---
Models	mFM.m.	mFM.m.sp.tr	mFM.m.	mFM.m.int	mFM.m.	mFM.m.d.	mFM.m.	mFM.m.	mFM.m.tr	
sp.st.tr	md.st.tr	3	st.tr	int2	tr	int1				
dAICc	0.0	2.3	2.5	3.5	3.6	5.9	6.0	6.4	6.9	9.1
df	8	7	5	5	4	5	4	11	2	3
Models	mCH.sp.st	mCH.sp.tr	mCH.tr	mCH.st.tr	mCH.int1	mCH.int4	mCH			
.tr										
dAICc	0.0	1.0	7.1	9.2	10.1	11.5	12.0			
df	6	5	2	3	8	7	1			
Table 5 (on next page)

Estimates of probabilities from the best models of multinomial logistic regression and binomial logistic regression of do not suffer a tissue alteration (score 0), suffer a slightly (score 1) or a high (score 2) issue alteration.

The best models include: the treatment and the stage (in fibrocartilage collagen fibers), the treatment and the species (in fibrocartilage nuclei and collagen fiber of the tendon), and the treatment, stage and species (in menisci fibers and hypertrophic chondrocytes).
Table 5. Estimates of probabilities from the best models of multinomial logistic regression and binomial logistic regression of do not suffer a tissue alteration (score 0), suffer a slightly (score 1) or a high (score 2) issue alteration. The best models include: the treatment and the stage (in fibrocartilage collagen fibers), the treatment and the species (in fibrocartilage nuclei and collagen fiber of the tendon), and the treatment, stage and species (in menisci fibers and hypertrophic chondrocytes).
Stage	Treatment	species	Prob. Score 0	Prob. Score 1	Prob. Score 2
Collagen fiber arrangement of the fibrocartilage	juvenile	Control	0.76	0.20	0.02
		Treated	0.59	0.35	0.05
	adult	Control	0.52	0.40	0.07
		Treated	0.32	0.52	0.14
Roundness of the nuclei of the cells of the fibrocartilage	Control	L. latinasus	0.44	0.48	7.63e-02
		L. mystacinus	0.92	6.89e-02	5.23e-03
		R. arenarum	1.00	7.95e-09	5.60e-10
		P. sauvagii	0.36	0.53	0.10
		M. rubriventris	0.41	0.50	8.58e-02
	Treated	L. latinasus	0.16	0.58	0.25
		L. mystacinus	0.75	0.22	2.09e-02
		R. arenarum	1.00	3.23e-08	2.27e-09
		P. sauvagii	0.12	0.56	0.31
		M. rubriventris	0.14	0.57	0.27
Collagen fiber arrangement of the tendon	Control	L. latinasus	0.89	0.10	1.58e-10
		L. mystacinus	0.95	4.77e-02	6.95e-11
		R. arenarum	2.41e-08	0.94	5.43e-02
		P. sauvagii	1.00	7.39e-10	0.00
	Treated	L. latinasus	0.52	0.47	1.26e-09
		L. mystacinus	0.71	0.28	5.54e-10
		R. arenarum	3.03e-09	0.68	0.31
		P. sauvagii	1.00	5.88e-09	0.00
Collagen fiber arrangement of the menisci	juvenile	Control	0.29	0.21	0.48
		L. mystacinus	0.64	0.17	0.18
		R. arenarum	0.25	0.20	0.54
		P. sauvagii	0.25	0.20	0.54
	Treated	L. latinasus	0.29	0.21	0.49
		L. mystacinus	0.64	0.17	0.18
		R. arenarum	0.25	0.20	0.54
		P. sauvagii	0.25	0.20	0.54
	adult	Control	0.11	0.12	0.75
		L. mystacinus	0.35	0.21	0.42
		R. arenarum	9.52e-02	0.10	0.79
		P. sauvagii	9.52e-02	0.10	0.79
		M. rubriventris	1.20e-08	1.75e-08	1.00
	Treated	L. latinasus	0.11	0.12	0.76
		L. mystacinus	0.35	0.21	0.42
		R. arenarum	9.42e-02	0.10	0.79
		P. sauvagii	9.43e-02	0.10	0.79
		M. rubriventris	1.19e-08	1.73e-08	1.00
----------------	--------	--------	----------------		
	juvenil	Control			
L. latinasus	1.00	-	1.93e-20		
L. mystacinus	1.00	-	3.51e-10		
R. arenarum	1.00	-	1.76e-38		
P. sauvagii	1.00	-	5.59e-10		
Treated					
L. latinasus	1.00	-	8.23e-39		
L. mystacinus	0.2	-	0.80		
R. arenarum	1.00	-	2.02e-28		
P. sauvagii	1.00	-	6.46e-10		
adult					
Control					
L. latinasus	0.98	-	0.02		
L. mystacinus	0.000	-	1.00		
R. arenarum	1.000	-	3.00e-20		
P. sauvagii	0.91	-	0.08		
Treated					
L. latinasus	0.000	-	1.00		
L. mystacinus	0.000	-	1.00		
R. arenarum	1.000	-	3.45e-10		
P. sauvagii	0.000	-	1.00		
Figure 1

(A) Treadmill belt, (B, C) Lateral and dorsal view of a specimen of *Phyllomedusa sauvagii* walking on the treadmill. Photograph of M.C.V.

eb, elastic bands; m, motor; s, scale; pb, polycarbonate box.
Figure 2

Schematic representation of the frog knee joint.

Sup. Zone, superficial zone; Tang. Zone, tangential zone; M, menisci; in, internal zone; me, medial zone; ex, external zone.

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
Figure 3

Histology of the knee-joint of *Leptodactylus latinasus*.

(A) Knee-joint of a juvenile specimen (SVL 22.94 mm), scale bar 500 μm; (B) detail of the fibrocartilage, scale bar 100 μm; (C) detail of the menisci, scale bar 200 μm; (D) detail of the osteochondral ligament, scale bar 50μm; (E) detail of the graciella sesamoid, scale bar 200 μm. DP: distal patella; en: enthesis; e: erythrocytes; f: femur; fc: fibrocartilage; gs: graciella sesamoid; lac: lateral articular cartilage; m: menisci; mgm: muscle gracilis major; ol: osteochondral ligament; tf: tibia-fibula; t: tendon. In the menisci, black arrows indicate disperse nuclei, and white arrows indicate nuclei in rows. In the enthesis, the black arrow indicates the fibrocartilaginous tissue.
Figure 4

Histology of the knee-joint of *Leptodactylus latinasus*.

(A) Knee-joint of an adult specimen (SVL 30.86 mm), scale bar 200 μm; (B) detail of the fibrocartilage, scale bar 50 μm; (C) detail of the menisci, scale bar 100 μm; (D) detail of the graciella sesamoid, scale bar 100 μm; (E) detail of the femur epiphyses, scale bar 50 μm. DP: distal patella; en: enthesis; e: erythrocytes; et: endochondral trabeculas; f: femur; fc: fibrocartilage; gs: graciella sesamoid; m: menisci; o: osteocytes; oc: ossification center; PP: proximal patella; tf: tibia-fibula.
Figure 5

Scoring system showing gradual changes.

Score 0 correspond to control, while Scores 1 and 2 correspond to overused trials. Scale bar 50 μm. (A) sample of *L. latinasus* (juvenile, SVL 22.94 mm), (B) sample of *Phyllomedusa sauvagii* (adult, SVL 70.79 mm), (C) sample of *L. latinasus* (adult, SVL 29.16 mm), (D) sample of *L. latinasus* (adult, SVL 30.86 mm), (E) sample of *L. latinasus* (juvenile, SVL 22.94 mm), (F) sample of *L. latinasus* (adult, SVL 29.16 mm), (G) sample of *L. latinasus* (adult, SVL 30.41 mm), (H) sample of *Rhinella arenarum* (juvenile, SVL 52.75 mm), (I) sample of *R. arenarum* (juvenile, SVL 54.33 mm), (J) sample of *Leptodactylus mystacinus* (juvenile, SVL 17.58 mm), (K) sample of *L. mystacinus* (juvenile, SVL 19.58 mm), (L) sample of *L. latinasus* (juvenile, SVL 22.94 mm), (M) sample of *L. mystacinus* (juvenile, SVL 16.51 mm), (N) black bar: non observed, (O) sample of *L. mystacinus* (juvenile, SVL 19.58 mm).
Parameters	Control	Overuse trials	
Arrangement of the collagen fiber of the fibrocartilage	Packed	Loose	Very loose
Roundness of the nuclei of the fibrocartilage cells	Rounded	Oval	Flattened
Arrangement of the collagen fiber of the tendon	Packed	Loose	Very loose
Arrangement of the collagen fiber of the menisci	Loose	Slightly packed	Packed
Shape of the hypertrophic chondrocytes	Oval	Flattened	Very flattened

G: Packed; H: Loose; I: Very loose; J: Loose; K: Slightly packed; L: Packed; M: Oval; N: Flattened; O: Very flattened.
Figure 6

Histology of the knee-joint of treatment specimens.

(A) knee-joint of juvenil of *Leptodactylus mystacinus*, scale bar 200 μm, (B) detail of the fibrocartilage of *L. mystacinus*, showing the disarrangement of the collagen fibers and oval and flatted nucleus, scale bar 50 μm, (C) detail of the femur diaphysis of *L. mystacinus*, showing flatted hypertrophic chondrocytes, scale bar 200 μm, (D) tibia-fibula of an adult of *L. latinasus*, scale bar 100 μm, (E) detail of the an altered fibrocartilage of an adult of *L. latinasus*, scale bar 50 μm. DP: distal patella; et: endochondral trabeculas; f: femur; fc: fibrocartilage; gs: graciella sesamoid; hc: hypertrophic chondrocyte; lac: lateral articular cartilage; m: menisci; o: osteocytes; ol: osteochondral ligament; tf: tibia-fibula.
Figure 7

Distribution of the scores in juveniles.

A-E) and adults (F-I). (A and F) arrangement of the collagen fibers of the fibrocartilage, (B and G) roundness of the nuclei of the fibrocartilage cells, (C and H) arrangement of the collagen fibers of the tendons, (D and I) arrangement of the collagen fibers of the menisci, (E and F) shape of the hypertrophic chondrocytes. Light gray bars correspond to control specimens and dark gray bar correspond to treated specimens. X axis: scores, Y axis: number of specimens.
Arrangement of the collagen fibers of the fibrocartilage

Roundness of the nuclei of the fibrocartilage cells

Arrangement of the collagen fibers of the tendon

Arrangement of the collagen fibers of the menisci

Shape of the hypertrophic chondrocytes
Figure 8

Boxplot of the meniscus cell density in juvenile and adults, in control and treated groups.