Synthesis and spectroscopic studies of new leucine acid derivative with their metal complexes.

Muhammed.A.Awaad* Basima M.Sarhan** Abdul Sattar Z.Khalaf*

*University of Anbar- Collage of Education for pure sciences ** University Of Baghdad-Ibn-Al-Haitham Education collage.

ARTICLE INFO
Received: 6 / 5 /2012 Accepted: 16 / 11 /2012 Available online: 30/11/2013 DOI: 10.37652/juaps.2013.83185

Keywords:
Leucine, acetyl isothiocyanate, Transition metals.

ABSTRACT
A new ligand N-[(acetyl amino)-thioxo methyl]leucine(ATL) are synthesized by reaction of acetyl-isothio cyanate with leucine acid. The ligand is characterized by elemental analysis, FT-IR and NMR spectra, some transition metal complex of this ligand were prepared and characterized by FT-IR, UV-visible spectra, conductively measurements, magnetic suscexibility, atomic absorption and determination of molar ration(M:L). from results obtained, the following formaula [M(Atl)2] where M+= (Mn, Fe, Co, Ni, Cu, Zn, Cd and Hg) and the proposed molecular structure for these complexes as tetrahedral geometry.

Introduction
Complexes of amino acids play an essential role for exploring various bio chemical processes or to remove metal toxicity from biological systems[1] Nasser and coworkers[2] reported the synthesis and characterization of Schiff base complexes derived from [2.acetyl pyridine] and leucine with Cu(II), Co(II), Ni(II), Cr(III) and Fe(III). Shaesta and coworkers[3] study the determination of the formation constant of Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II) with N-acetylcysteine by using potentialmetric method. the molar[4] enthalpies of formation of the crystalline form of bis(glycinate)lead(II), bis(DL-alaninate)lead(II), bis(DL-valinate)lead(II), bis(DL-valinate)zinc(II) and bis(DL-valinate)cadmium(II) were determined. Saafa and coworkers[5] were reported the synthesis and characterization of glycine derivative of bis(phenol) amine ligand and its complexes with iron(III) and also[6] new β-aminoacrylic acid Ni(II) complex has been developed and used for the synthesis of α-alkyl-β amino acids via alkylation with alkyl halides under operation ally convenient conditions. We have investigated in this paper the preparation and properties of some new metal ion complexes with new ligand N-[(acetylamino)-thioxomethyl]leucine(ATL).

Experimental
Chemicals
Metal salts (MnCl2.4H2O, FeCl2, CoCl2.6H2O, NiCl2.6H2O, CuCl2.2H2O, CdCl2.H2O and HgCl2) were obtained from fluka, Mercke, leucine acid, acetyl chloride and ammoniumthiocyanate(Fluka).

Instrumentsations
1H NMR was recorded using Ultra Shield 300 MHz Switzerland,at university of Al al-Bayt, Jordan, melting point was recorded by using Stuart-Melting point apparatus, FTIR spectra were recorded as KBr discs using 3800 shimadzu in the range of 4000-400cm-1. Electronic spectra were obtained using uv-160 shimadzu spectrophotometer at 25°C in 10-3M DMSO. Conductivity were measured by using Philips pw.Digital. Elemental analyses C.H.N.S were performed using acarlo Erba 1106 elemental analyzer. Magnetic susceptibility measurements were obtained by Balance magnetic susceptible by model MSB-MKI. Metal contents of the complexes were determined by atomic absorption technique by using Shimadzu (AA680G).

preparation of the ligand(ATL)

a) preparation of the acetyl isothiocyanate[7]
Mixture of acetyl Chloride(2ml,1mmole) and ammoniumthiocyanate(2gm,1mmole) in 25ml acetone was refluxed with stirring for 3hours and then filtered, the filtrate was used for further reaction.

b)preparation of[N-(acetyl amino)-thioxo methyl] leucine(ATL) (3.41gm , 1mmole) of leucine acid in

*Corresponding author at: University of Anbar- Collage of Education for pure sciences;
E-mail address: sattar_az@yahoo.com
20ml acetone were rapidly added to the solution to the solution was refluxed for 6 hours, The resulting solid was collected, washed with acetone and recrystallized from ethanol(m.p=150-152)°C, yield=80% scheme(1) %C (46.97) while calc 46.55, %H found (6.94) while calculate 6.89, %N found (12.65) while calculate 12.06 and %S found (14.22) while calculate 13.79.

General method for preparation of the complexes

(0.464g,2mmole) of the ligand(ATAL) was dissolved in (25ml) of ethanol containing (0.112g,2mmole) of KOH, a solution(5ml) of (1mmole) metal salte (MnCl2.4H2O, FeCl2, CoCl2.6H2O, NiCl2.6H2O, CuCl2.2H2O, CdCl2.H2O and HgCl2) (0.2g, 0.126g, 0.236g, 0.236g, 0.17g, 0.2g and 0.270g) respectively. In ethanol(10ml) was added dropwise to the mixture, and the precipitate formed immediately, after stirring the mixture at room temperature for 3hours, the precipitate was collected by filtration, washed with ethanol and dried.

Results and Discussion

The physical properties of the ligand(ATAL) with their metal complexes are given in table (1) the lower value of molar conductivity in DMSO, indicates the non electrolyte behavior of these complexes.

Spectral studies

1H NMR spectrum for the ligand(ATAL) fig(1) showed the following signals: doublet(d) at δ(0.9)ppm for (6H,2CH3), triplet(t) at δ(1.3)ppm for (2H,CH2), multiplet(m) at δ(1.4-2)ppm for (1H,CH(CH3)2), singlet(s) at δ(2.1)ppm for (3H,CH3CO), quartet(q) at δ(2.3-2.5)ppm for (1H,CHOOH), doublet(d) at δ(4.2)ppm for (1H,NHamine), singlet(s) at δ(7.27)ppm for impurity of solvent(CDC13), singlet(s) at δ(8.9)ppm for(1H,NH sec. amide), singlet(s) at δ(10.7)ppm for (1H,COOH).

Infrared spectra

The characteristic vibrations and assignments of ligand(ATAL) and their complexes as KBr disc are described in table(2). The spectrum of free ligand(ATAL) fig(2) exhibited astron band at(3332)cm-1 this could be attributed to u(N-H) overlap with u(OH). While the strong band at(1701)cm-1, which belong to u(COO)asy and the other bands v(OCC)sym and v(C=S) were found at(1385)cm-1 and (1165)cm-1 respectively [8][9]. The FT-IR spectra of the prepared complexes fig(3) exhibited u(N-H) in the range of (3527-3360)cm-1 which shows ashifted to the higher frequencies by (195-28)cm-1 in compared with free ligand suggested. The possibility of the coordination of ligand through the nitrogen atom at the amine group[10][11]. Absorption assigned for u(OCC)sym was noticed at the range (1473-1408)cm-1 shifted to higher frequencies by(88-23)cm-1. While the band caused by u(OCC)asym appeared between (1627-1583)cm-1 Shifted to lower frequencies by(74-118)cm-1 which indicates the carboxylic group to the central metal ion[12][13]. The stretching vibration bands u(C=S) and u(C=O) carboxyl group either show no change or very little in their frequencies therefore indicating do not coordinate to the metal ion[14]. Metal-nitrogen and metal-oxygen bands were confirmed by the presence of the stretching vibration of u(M-O) and u(M-N) in the range (415-445)cm-1 and (474-441)cm-1 respectively.

The electronic spectra

The spectrum of free ligand(ATAL) fig(4) show bands at (288nm) and (329nm) which are attributed to δ→π* and n→π* respectively [15].

-[Mn(ATAL)2] complex
The yellow complex of Mn(II) shows band at (35714) cm⁻¹, which belongs to charge transfer and another band at (30211) cm⁻¹ which is caused by the electronic transition 6A₁→4T₂(p)[16].

-[Fe(ATL)₂] complex

The spectrum of the yellow complex of Fe(II) fig(5) show bands at (35714) cm⁻¹ and (30211) cm⁻¹ due to change transfer (C.T) and another band at(12406) cm⁻¹, which is caused by the electronic transition 5E→5T₂ [17].

-[Co((ATL)₂] complex

The brown complex of Co(II) shows three bands at (30864) cm⁻¹, (16051) cm⁻¹ and (12195) cm⁻¹ which attributed to 4A₂(f) → 3T₁(P) mixed with(C.T), 4A₂(F) → 3T₁(F) and 4A₂→4T₂(F) transition respectively and the rach interelectronic repulsion parameter B₃ was found to be (688.66) cm⁻¹ from the relation(β=B₃/BO), β was found to be equal(0.71). These parameters are accepted to Co(II) tetrahedral complex[18].

-[Ni(ATL)₂] complex

The electronic spectra of deep-green complex of Ni(II) has revealed the following electronic transition 3T₁(F)→3T₁(P) with C.T, 3T₁(F)→3A₂(F) and 3T₁(F)→3T₂(F) transition at (30959) cm⁻¹, (12195)cm⁻¹ and (10214)cm⁻¹ respectively. The B₃ value found to be (834)cm⁻¹ while β was equal to 0.80 . These are the characteristics for tetrahedral complexes of Ni(II)[19].

-[Cu(ATL)₂] complex

The spectrum of deep-brown complex of Cu(II) shows two bands at (30769) cm⁻¹ and (27624) cm⁻¹ which belongs to the charge transfer. The band found in the visible region at(14347) cm⁻¹ was attributed to the electronic transition 2T₂→2E[20].

Study of complexes formation in solution:

Complexes of ligand(ATL) with metal ions were studied in solution using ethanol as solvent in order to determine [M / L] ratio in complexes follow molar ratio method[22], A series of solutions were prepared having a constant concentration(10-3M) of metal ion and ligand. The [M / L] ratio determined from the relationship between the absorption of the absorbed light and the mole ratio of [M / L]. The results of complexes in ethanol suggest that the metal to ligand ratio was [1:2] for all complexes which were similar to that obtained from solid state study.

Magnetic properties

The magnetic moment μeff for complexes of Mn²⁺(d5), Fe²⁺(d6) and Co²⁺(d7) were found to be (5.69)B.M, (5.16)B.M and (4.82)B.M respectively, which within the expected spin-only values [23]. The higher value of μeff of the Ni²⁺(d8) complex (3.47)B.M may be due to the orbital contribution[24][25]. The magnetic moment μeff of the Cu²⁺(d9) complex was found to be 1.75B.M which within the expected value for one electron[26]. All the data and remarks are found in table(4). According to spectral data as well as those obtained from elemental analyses the chemical structure of the complexes may be suggested as tetrahedral for [M(ATL)₂] where M²⁺=(Mn, Fe, Co, Ni, Cu, Cd and Hg).

Fig(6)suggested structure of the complexes [M(ATL)₂] where M²⁺=(Mn,Fe,Co, Ni, Cu, Cd and Hg).

References

1. Dalia Nayak,Devdeep.M:Aparn A.B and Jhumpa. M;"Studies on complexation of cobalt with bio ligand" J.Radioonal,Nucl.Chem, (2010), 283, 477-480.
2. Nasser M.Hosny and Farid I.El-Dosoki; "Schiff base complexes derived from 2-acyd pyridine,Leucine and some metal chlorides:Their preparation, characterization, and physical properties" J. Chem. Enj. Data, (2008), 53(11) pp 2567-2572.

3. Shaesta Quyoom and Badr-din khan; "poteniiometric and UV spectral studies of Binary and Ternary complexes of some metal ions with N-acetyl cysteine and amino acids": E-Journal of Chemistry, (2009), 6(51), 5117-5122.

4. Manuel A.V.Rieiro Dasilva,Luis M.B.F.Santos,Ana C.P.Faria and Filipa A.Sistelo; "Energetics of Lead(II), Cadmium(II) and zinc(II) complexes with amino acids": J. of Thermal Analysis and Calorimetry", (2010), 100(2), 475-482.

5. SafaEl E, Shexkhi H, Wojtczak A, and aglicic j; "Synthesis and characterization of an iron(III) complex of glycine derivative of bis(phenol)amine ligand irredevance to catechol dioxygenase active site" Journal of polyhedron;(2011), 30(7) 1219-1224.

6. Daizong Lin, Lilv, Jian wang, Xiao Ding, Hui liang Jiang and Hong Liu; "Preparation of α-Alkyl-β-amino acids via β-Alanine Ni(II) complex; J.Org.Chem (2011), 76(16) pp 6649-6656.

7. kabbani A.T, H.Ramadan, Hammud H.H, hanuoum A.M.G and Mounicme,Y; "Synthesis of some metal complexes of N-(benzoyl amino)-[thioxo methyl]-amino acid(II):Journal of the University of Chemical Technology and Metallurgij" (2005), 40(4) 339-344.

8. Silverstein, Bassler R.M.G.C and Movrrl T.C;(1981), "Spectroscopic Identification of organic compound", 4th ed.,Wiley, New York.

9. Dyer R.G,"Application of absorption spectroscopy of organic compounds" prentice Hall Inc.Engl Wood Cliffs, N.J.London, (1965).

10. Nakamoto K;"Infrared spectra of Inorganic and coordination compounds" 4th ed. John wiley and sons.New York, (1996).

11. Nakamoto K and kleft J;"Infrared spectra of some platinum(II)glycine complexes "J.Inor.Nucl.Chem;(1967), 29, 2561-2567.

12. Sadiaa.M. Al Hashimi, Sarhan B.M and Salman A.W;(2002), "Synthesis and characterization of complexes of N-acetyl-DL Tryptophane with some metal ions Iraq.J.Chem.28 pp 1-11.

13. Jackovitz J.F, Durkin J.A and Lwalter J;"Infrared absorption spectra of meta-amino acid complexes "Spectra Chem.Acta,(1967),23A pp67-80.

14. Dhaif M.H.A- Mudhaffa, Dawoods. Al-Ednai and Suma M.Dawood;"Synthesis characterization and Biological activity of some complexes of some new amino acid derivatives N-[(Benzoyl amino)Thioxo methyl]amino acid(II): Journal of the korean Chemical Society;(2010) 54(5) pp (506-514).

15. Nichllis D;"complexes and first-row transition elements" Macmilolan Chemistry, Text pp73-79(1979).

16. Heidt L.I, Koster G.F. and Johnson A.M;"Absorption spectrum of manganese(II) di ethylene tri amine complexes"J. Am.Chem. Soc; (1958),80 pp 6471.

17. Lever A.B.P;"Inorganic electronic spectroscopy"Elsevier publishing company. Amsterdam, London, New York.(1968).

18. Hanna,W.A.and Moaeed M.M;"Synthesys and characterization and anti microbialo activity of Co(II),Ni(II)and Cu(II) complexes with new asymmetrical Schicff base ligand"Transition metal Chemistry;(2002),7 pp 140-144.

19. Al Hashimi S.M, Sarhan B.M and Aj jarad;"Synthesis and Identification of complexes of N-acetyl glycine with some metal salts"(2004), Ibn-Al-Haitham.J.for Pure and App.Sci, 17(2).

20. Musa F.H, AL-Rawi A. and Sarhan B.M;"Synthesis, Biological, Activites studies of prol inyl phenyl isothio cyanato"cystenyl phenyl isothiocyanate and their complexes "Iraq.J. Chem (2000), 26(4) pp 722-732.

21.Huheey,J.E;(1983)"Inorganic chemistry, principle of structure and reactivity,3rd Edition,Harper,International SI. Edition;Maryland.

22. Doglas, S; Donald W. Holler F, and Grouch; "Fundamentals of Analytical Chemistry" 8thed saunders college, New York(2004).

23. Nicholls,D;(1984)"complexes and first Row transition elements"

24. Day M.C. and selbin,(1983)"Theoretical Inorganic chemistry Transition elements"

25. Cotton F.A.and G.wllkinson, (1998)"Advanced Inorganic chemistry" wiley-Inter science, New York.
26. Sanja O. Podunavac-Kuzmanovic sinisa L.Markov and Ljilianas.Vojinovi; (2004), "Physico Chemical characterization and antimicrobial activity of copper(II) complexes with 2- amino and 2- methyl benzimidazole Derivatives" 35 pp 280.

Complexes	\(\nu(CO)_{\text{asym}}\)	\(\nu(CO)_{\text{sym}}\)	\(\nu(NH)\)	\(\nu(NO)\)	\(\nu(M-O)\)
Ligand (ATL)	1710	1485	3332	2	
[Mn(ATL)]	1620	1417	3372	445	474
[Fe(ATL)]	1625	1408	3411	420	472
[Co(ATL)]	1625	1411	3411	420	472
[Ni(ATL)]	1625	1408	3411	420	472
[Cu(ATL)]	1583	1473	3452	426	472
[Cd(ATL)]	1612	1408	3527	426	472
[Hg(ATL)]	1583	1473	3527	426	472

\(s=\text{strong, } m=\text{medium, } w=\text{weak, } b=\text{broad}\)

d= decompose

Table(1): Physical properties of the ligand and its complexes.

Compound	Colour	m.p°C or dec.	%M Found	Molar mass\(g\cdot mol^{-1}\)
Ligand (ATL)	Yellow	150-152	150	52
[Mn(ATL)]	Yellow	141	141	200
[Fe(ATL)]	Drake-green	141	141	250
[Co(ATL)]	Brown	142	142	300
[Ni(ATL)]	Deep-green	183	183	350
[Cu(ATL)]	Deep-brown	190	190	400
[Cd(ATL)]	White	202	202	450
[Hg(ATL)]	White	190	190	500

Table(2): the characteristic infrared band for the ligand and its complexes.

Compound	Colour	m.p°C or dec.	%M Found	Molar mass\(g\cdot mol^{-1}\)
Ligand (ATL)	Yellow	150-152	150	52
[Mn(ATL)]	Yellow	141	141	200
[Fe(ATL)]	Drake-green	141	141	250
[Co(ATL)]	Brown	142	142	300
[Ni(ATL)]	Deep-green	183	183	350
[Cu(ATL)]	Deep-brown	190	190	400
[Cd(ATL)]	White	202	202	450
[Hg(ATL)]	White	190	190	500

Table(3): Uv- visible spectra of free ligand and their complexes in 10-3M in DMSO.
Table 4: The magnetic properties of the complexes at 25°C

Complexes	μeff	No. of electron	No. of unpaired electron	Orbital contrib.	
[Cu(ATL)_2]	1.79	3.47	4.82	5.16	5.62
[Ni(ATL)_2]	3.47	3.47	4.82	5.16	5.62
[Co(ATL)_2]	4.82	4.82	5.16	5.62	
[Fe(ATL)_2]	5.62	5.62			
[Mn(ATL)_2]	5.62	5.62			

d^0
d^1
d^2
d^3
d^4

Complexes	λ_{max}(nm)	Δν_{max} cm⁻¹	Remarks		
[Cu(ATL)_2]	5.16	3.47	4.82	5.16	5.62
[Ni(ATL)_2]	3.47	3.47	4.82	5.16	5.62
[Co(ATL)_2]	4.82	4.82	5.16	5.62	
[Fe(ATL)_2]	5.62	5.62			
[Mn(ATL)_2]	5.62	5.62			

Fig (1) 1H NMR Spectrum for ligand leucine (ATL).
Fig (2) FT-IR Spectrum for ligand (ATL).

Fig (4) UV-visible spectrum of ligand (ATL).

Fig (5) UV-visible spectrum of complex [Fe(ATL)2].

Fig (3) FT-IR Spectrum for complex [Mn (ATL)2].
تحضير ودراسة طيفيه لمشتق حامض الليوسين الجديد مع معقداته الفلزيه

محمد احمد عواد
ясمه محسن سرحان
عبدالستار زيدان خلف

E.mail: sattar_az@yahoo.com

الخلاصة:
حضرر الليوانرر اليا ررا N-أستريل أمينو(ثايموسوميل) لوسرن ومختصره (ATL) وذلك من خلال محاكهة نسائل اتزويلويوسيات مع الحامض ascii
الأميني (الليوسين) وشخص الليكاد بالطرق الطيفيه ومنها طيف الزمن التوحي المغناطيسي. تحاليل I H NMR، تحاليل C.H.N.S، طيف الاشعه تحت الحماراء IR وطياف الاشعه فوق البنفسجيه-المرئيه UV. كما حضرت بعض المعقدات الفلزية الجديده لأيونات (المنغنيز، الحديد، الكوبالت، النيكلا، النحاس، الكادميوم والرنيوب) التايليك مع الليكاد (ATL) وشخصت هذه المعقدات المحضره بالطرق الطيفيه المتوفره ومنها طيف الاشعه تحت الحماراء IR وطياف الاشعه فوق البنفسجيه-المرئيه UV. إضافة إلى تعنيف نسبة الفلز في المعقدات بواسطة طيف الامتصاص الذري، قياس التوصيله المولاريه للمحاليل المعقدات في مذيب ثاني مثل سلفوكسيد (DMSO) إضافة إلى تحديد النسبه الموليه من الليكاد: فاز، فضلا عن قياس الحساسية المغناطيسيه للمعقدات المحضره، ومن نتائج هذه الدراسات أعطى الصيفجه العامة لهذه المعقدات وكالاتي [MALT]2 متمل M+2 Mn+2, Fe+2, Co+2, Ni+2, Cu+2, Cd+2 and Hg+2 (Ni+2, Cu+2, Cd+2and Hg+2)