Calcium Spark Detection and Event-Based Classification of Single Cardiomyocyte Using Deep Learning

Shengqi Yang1*, Ran Li1, Jiliang Chen1, Zhen Li1, Zhangqin Huang1 and Wenjun Xie2*

1 Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology, Beijing, China. 2 The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China

Ca^{2+} sparks are the elementary Ca^{2+} release events in cardiomyocytes, altered properties of which lead to impaired Ca^{2+} handling and finally contribute to cardiac pathology under various diseases. Despite increasing use of machine-learning algorithms in deciphering the content of biological and medical data, Ca^{2+} spark images and data are yet to be deeply learnt and analyzed. In the present study, we developed a deep residual convolutional neural network method to detect Ca^{2+} sparks. Compared to traditional detection methods with arbitrarily defined thresholds to distinguish signals from noises, our new method detected more Ca^{2+} sparks with lower amplitudes but similar spatiotemporal distributions, thereby indicating that our new algorithm detected many very weak events that are usually omitted when using traditional detection methods. Furthermore, we proposed an event-based logistic regression and binary classification model to classify single cardiomyocytes using Ca^{2+} spark characteristics, which to date have generally been used only for simple statistical analyses and comparison between normal and diseased groups. Using this new detection algorithm and classification model, we succeeded in distinguishing wild type (WT) vs RyR2-R2474S± cardiomyocytes with 100% accuracy, and vehicle vs isoprenaline-insulted WT cardiomyocytes with 95.6% accuracy. The model can be extended to judge whether a small number of cardiomyocytes (and so the whole heart) are under a specific cardiac disease. Thus, this study provides a novel and powerful approach for the research and application of calcium signaling in cardiac diseases.

Keywords: Ca^{2+} sparks, deep learning, automated detection, classifying single cardiomyocyte, cardiac diseases

INTRODUCTION

Since the discovery of Ca^{2+} sparks in 1993, this elementary sarcoplasmic reticulum (SR) Ca^{2+} release event in cardiomyocytes has attracted enormous attention (Cheng et al., 1993; Cheng and Lederer, 2008). A typical Ca^{2+} spark has small spatial size (~2 µm) and fast kinetics (~20 ms) (Cheng and Lederer, 2008), and high-resolution line-scan imaging is required to accommodate such spatiotemporally defined fluorescent events as Ca^{2+} sparks, thereby resulting in noisy images (Cheng and Lederer, 2008). To date, several tools have been developed to detect Ca^{2+} sparks in line-scan Ca^{2+} images, most of which introduced an arbitrary threshold comprising the mean intensity µ and background standard deviation σ, usually µ + 3.8σ, to distinguish the tiny signals from noises.
proposed an event-based binary classification model to identify Based on the characteristics of Ca$^{2+}$ thresholds and can detect a greater number of weak signals. (2) automated spark detection that is free of arbitrarily defined thresholds and can diseased conditions, we developed a deep-learning method for deeper processing and analyzing Ca$^{2+}$ algorithms can distinguish objects with different characteristics, a deep learning. In addition, improvements in computer hardware and deep learning are increasingly popular in bio/medical fields. Because deep-learning training data to make predictions or decisions on new data. Machine learning builds a mathematical model based on structured data to make predictions or decisions on new data. Deep learning is a subset of machine learning with supervised and unsupervised approaches. It gained attention when a deep-learning-based method won the 2012 ImageNet Large Scale Visual Recognition Challenge. Since then, there has been a major increase in the variety of problems that can be solved with deep learning. In addition, improvements in computer hardware and deep-learning frameworks have placed these tools within reach of the typical software developer, and they are becoming increasingly popular in bio/medical fields. Because deep-learning algorithms can distinguish objects with different characteristics, a deeper processing and analyzing Ca$^{2+}$ spark images is expected.

In this study, we proposed a deep-learning framework for automated Ca$^{2+}$ spark detection, analysis, and event-based classification of single cardiomyocytes, including the following, (1) To better characterize Ca$^{2+}$ sparks in cardiomyocytes under diseased conditions, we developed a deep-learning method for automated spark detection that is free of arbitrarily defined thresholds and can detect a greater number of weak signals. (2) Based on the characteristics of Ca$^{2+}$ sparks detected above, we proposed an event-based binary classification model to identify single cardiomyocytes into normal or diseased groups with promising accuracy.

METHODS

Animal

All experimental protocols were approved by the Institutional Animal Care and Use Committee of Xi’an Jiaotong University and conformed to the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health. Five-month-old male mice harboring CPVT mutation RyR2-R2474S$^{±}$ (RS) (Shan et al., 2012; Xie et al., 2013) or wild-type littermates (WT) were anesthetized with an intraperitoneal injection of sodium pentobarbital (80 mg/kg) and then euthanized by cervical dislocation.

Data Acquisition

Adult murine cardiomyocytes were isolated and subjected to line-scan Ca$^{2+}$ imaging as described previously (Xie et al., 2015; Huang et al., 2021; Zhang et al., 2021). For Ca$^{2+}$ spark measurement, cardiomyocytes were preloaded with 5-µmol/L fluo-4 AM (Thermofisher) for 15 min and subjected to line-scan imaging at a speed of 400 lines/s on a Leica TCS SP8 confocal microscope with 40× magnification and a 1.3-NA oil immersion objective. The scan zoom was adjusted to fit the cells, and the scan line was along their long axis. The excitation for Fluor-4 was 488 nm, and emission was collected at 505–530 nm. Ca$^{2+}$ spark detection and analysis were performed using either the traditional method (Cheng et al., 1999) or the algorithms described in the Results section.

Deep Learning Method Architecture

The deep learning method architecture is composed of several major processes, including image pre-processing and labeling, feature map extraction, region proposal network, spark classification and characterization, and classification of sparks and single cardiomyocytes (Figure 1). A detailed description of each process please refers to the supplementary materials.

Statistics

Data are reported as mean ± standard error. Student’s t-test (for two groups) or one-way ANOVA with Tukey’s multiple comparison test (for three or more groups) was carried out using GraphPad Prism (version 6.00). Differences were considered statistically significant at $P < 0.05$.

RESULTS

We performed the test for spark detection in cardiomyocytes from RS and WT mice using the proposed deep-learning method with the traditional method (Cheng et al., 1999) as the control. RyR2-R2474S is a typical human CPVT-linked RyR2 mutation. Previous studies have shown that cardiomyocytes from RS mice displayed obviously increased frequency and reduced amplitude...
of Ca2+ sparks compared to the WT group (Shan et al., 2012; Xie et al., 2013, 2015). The training data set included 3611 Ca2+ sparks from line-scan Ca2+ images of 100 WT and 100 RS cardiomyocytes. The test data set comprised line-scan Ca2+ images from 108 WT and 52 RS cardiomyocytes. Many signals with low peak $F/F_0 (<3.8\sigma)$ that were omitted by the traditional method were detected by the proposed deep-learning method, especially in RS cardiomyocytes (Figure 2A), resulting in a statistically lower amplitude of events (Figure 2B), while the spatiotemporal characteristics remained similar between both methods, indicating that these low-amplitude events were also Ca2+ sparks and not noises (Figures 2C–H).

Furthermore, we attempted to classify single cardiomyocytes as “WT” or “RS” using the logistic regression and classification model trained with the characteristics of Ca2+ sparks detected above. In the independent test dataset including 46 WT and 30 RS cardiomyocytes, 74.71% of the “WT” and 79.19% of the “RS” Ca2+ sparks were classified correctly (Figures 2I,J). The lowest
FIGURE 2 | Application of proposed method for spark detection and event-based classification of single cardiomyocytes using Ca\(^{2+}\) spark characteristics. (A) An example of Ca\(^{2+}\) sparks in a line-scan image of an RS cardiomyocyte detected by deep-learning methods. All detected sparks are labeled with rectangles, and the arrowheads indicate low-amplitude events (peak \(F/F_0 < \mu + 3.8\sigma\)). (B) Statistics and distributions of Ca\(^{2+}\) spark amplitude in WT and RS cardiomyocytes using conventional (3.8\(\sigma\)) and deep learning (DL) method. (C) Raw (gray)/Gaussian fitting (red) spatial traces of a representative Ca\(^{2+}\) spark. FWHM is calculated from the fitting curve as illustrated. (D) Statistics of FWHM of Ca\(^{2+}\) sparks in each group. (E) Raw (black)/fitting (Lacampagne et al., 1999) (red) time courses of a representative Ca\(^{2+}\) spark. Rise time, \(t_{50}\), and FDHM are calculated from the fitting curve as illustrated. (F–H) Statistics of temporal parameters of Ca\(^{2+}\) sparks in each group. \(n = 1353\) (DL)/1281 (3.8\(\sigma\)) or 1061 (DL)/807 (3.8\(\sigma\)) events in 108 WT or 52 RS cardiomyocytes. (I) An example of spark classification in a line-scan Ca\(^{2+}\) image of an RS cardiomyocyte and (J) statistics of event- and cell-classification accuracy in the independent test dataset comprising 46 WT and 30 RS cardiomyocytes, respectively. Each spark is first classified as being in the “WT” (red) or “RS” (cyan) group, then a cardiomyocyte with more (resp. fewer) “WT” events is classified as a “WT” (resp. “RS”) one.

event classification accuracy in single cardiomyocytes was 65.0 or 64.3% for the WT or RS group, respectively. Thus, according to the major event classification in each cardiomyocyte, the accuracy for cell classification into the WT and RS groups is 100% (Figures 2I,J).

Compared to specific genetic mutation, overactivation of the sympato-β-adrenergic receptors (β-ARs) system is a common and important mechanism of various cardiac diseases. In vitro application of isoprenaline is a typical model mimicking β-AR stimulation in cardiomyocytes. We also tested the effectiveness of the present method in classifying cardiomyocytes under 0.1-μmol/L isoprenaline (ISO) stimulation or vehicle (VEH) treatment. The amplitude and rise time of the detected Ca\(^{2+}\) sparks differed significantly between the ISO and VEH groups, while the other parameters were similar (Figures 3A–E). Our method achieved 65.51 and 66.81% accuracy for event classification, and 97.8 and 100% accuracy for cardiomyocyte classification, respectively (Figure 3F).

DISCUSSION

As elementary SR Ca\(^{2+}\) release events in cardiomyocytes, Ca\(^{2+}\) sparks were widely used as readouts to distinguish
normal and diseased cardiomyocytes (Shan et al., 2012; Santulli et al., 2015; Xie et al., 2015; Huang et al., 2021; Kansakar et al., 2021; Zhang et al., 2021). Despite various alterations of Ca$^{2+}$ spark characteristics in diverse diseases, in most cases only simple statistical analyses and comparison have been performed for using Ca$^{2+}$ sparks (e.g., as a readout for diastolic SR Ca$^{2+}$ leakage), whereas attempts at deep digging and how to use these learnt data have rarely been reported. In the present study, we proposed an event-based logistic regression and binary classification model to classify single cardiomyocytes using Ca$^{2+}$ spark characteristics. With deep learning, our classification model succeeded in distinguishing WT and CPVT-mutated cardiomyocytes with 100% accuracy, and it distinguished isoprenaline-insulted WT cardiomyocytes from vehicle ones with 95.6% accuracy. Chronic overactivation of the β-AR system is a common and important mechanism of various cardiac diseases (e.g., HF). Therefore, the proposed classification model should work well to identify whether a heart is under a specific disease or quantify the disease development of various cardiac diseases (e.g., HF). As how to detect the low-amplitude Ca$^{2+}$ sparks remains to be solved for this fields, the labeling process of Ca$^{2+}$ sparks in the training set is done manually with the assistance of a spark characterization tool set to exclude false positive events, which could not guarantee that all low-amplitude events in the training images have been included and might lead to false negative detection. However, with these labeled low-amplitude events in the training set, our network can detect many more low-amplitude events in the test set, which is expected to improve further toward the final resolution of detecting low-amplitude Ca$^{2+}$ sparks by self-adaption training procedure. Our training set included experimental line-scan Ca$^{2+}$ spark images with a signal-to-noise ratio (SNR) of between ∼1.75 and ∼3.30, thereby allowing our model to detect spark events from images with SNR values in the same range. As our proposed approach is currently much slower than the traditional threshold-based algorithms, a further optimization in our algorithms will be required.

Taken together, the present study provides a novel and powerful approach for the research and application of calcium signaling in diseased hearts.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://github.com/BJUT-XJTU-DigitalCell/Software.

ETHICS STATEMENT

The animal study was reviewed and approved by Institutional Animal Care and Use Committee of Xi’an Jiaotong University.

AUTHOR CONTRIBUTIONS

SY and WX designed the research. SY, RL, JC, ZL, and WX performed the research. SY, RL, JC, and WX analyzed the data.

REFERENCES

Brochet, D. X., Xie, W., Yang, D., Cheng, H., and Lederer, W. J. (2011). Quarky calcium release in the heart. Circ. Res. 108, 210–218. doi: 10.1161/circresaha.110.312528

Cheng, H., and Lederer, W. J. (2008). Calcium sparks. Physiol. Rev. 88, 1491–1545. Cheng, H., Lederer, W. J., and Cannell, M. B. (1993). Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744. doi: 10.1126/science.8235994

Cheng, H., Song, L. S., Shirokova, N., Gonzalez, A., Lakatta, E. G., Rios, E., et al. (1999). Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys J 76, 606–617. doi: 10.1016/S0006-3495(99)77229-2

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118. doi: 10.1038/nature21056

Huang, Y., Lei, C., Xie, W., Yan, L., Wang, Y., Yuan, S., et al. (2021). Oxidation of ryanodine receptors promotes Ca(2+) leakage and contributes to right ventricular dysfunction in pulmonary hypertension. Hypertension 77, 59–71. doi: 10.1161/HYPERTENSIONAHA.120.15561

Kasnakar, U., Varzideh, F., Jankauskas, S. S., Gambardella, J., Trambaro, B., and Santulli, G. (2021). Advances in the understanding of excitation-contraction coupling: the pulsing quest for drugs against heart failure and arrhythmias. Eur. Heart J. Cardiovasc. Pharmacother. [Epub ahead of print]. doi: 10.1093/ehjcvp/pvab069

Lacampagne, A., Ward, C. W., Klein, M. G., and Schneider, M. F. (1999). Time course of individual Ca2+ sparks in frog skeletal muscle recorded at high time resolution. J. Gen. Physiol. 113, 187–198. doi: 10.1085/jgp.113.2.187

Pichot, E., Zima, A. V., Blatter, L. A., and Bers, D. M. (2007). SparkMaster: automated calcium spark analysis with ImageJ. Am. J. Physiol. Cell Physiol. 293, C1073–C1081. doi: 10.1152/ajpcell.00586.2006

Santulli, G., Xie, W., Reiken, S. R., and Marks, A. R. (2015). Mitochondrial calcium overload is a key determinant in heart failure. Proc. Natl. Acad. Sci. U. S. A. 112, 11389–11394. doi: 10.1073/pnas.1513047112

Shan, J., Xie, W., Betzenhauser, M., Reiken, S., Chen, B. X., Wronska, A., et al. (2012). Calcium leak through ryanodine receptors leads to atrial fibrillation in 3 mouse models of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 111, 708–717. doi: 10.1161/CIRCRESAHA.112.273342

SY, ZH, and WX wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the National Natural Science Foundation of China (11672226 and 31971045) and the Natural Science Basic Research Plan in Shaanxi Province of China (2020J-001).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2021.770051/full#supplementary-material

Steele, E. M., and Steele, D. S. (2014). Automated detection and analysis of Ca(2+) sparks in x-y image stacks using a thresholding algorithm implemented within the open-source image analysis platform ImageJ. Biophys. J. 106, 566–576. doi: 10.1016/j.bpj.2013.12.040

Wegner, F. V., Both, M., and Fink, R. H. (2006). Automated detection of elementary calcium release events using the a trous wavelet transform. Biophys. J. 90, 2151–2163.

Xie, W., Santulli, G., Guo, X., Gao, M., Chen, B. X., and Marks, A. R. (2013). Imaging atrial arrhythmic intracellular calcium in intact heart. J. Mol. Cell. Cardiol. 64, 120–123. doi: 10.1016/j.yjmcc.2013.09.003

Xie, W., Santulli, G., Reiken, S. R., Yuan, Q., Osborne, B. W., Chen, B. X., et al. (2015). Mitochondrial oxidative stress promotes atrial fibrillation. Sci. Rep. 5:11427.

Zhang, X., Jiang, L., Yang, D., Yan, J., and Lu, X. (2019). Urine sediment recognition method based on multi-view deep residual learning in microscopic image. J. Med. Syst. 43:325.

Zhang, Y., Qi, Y., Li, J. J., He, W. J., Gao, X. H., Zhang, Y., et al. (2021). Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts. Cardiovasc. Res. 117, 1091–1102. doi: 10.1093/cvr/cvaa163

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Yang, Li, Chen, Li, Huang and Xie. This is an open-access article published under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.