The genome of the live-bearing fish *Heterandria formosa* implicates a role of conserved vertebrate genes in the evolution of placental fish

Henri van Kruistum 1,2*, Joost van den Heuvel 3, Joseph Travis 4, Ken Kraaijeveld 5,6, Bas J. Zwaan 3, Martien A. M. Groenen 1, Hendrik-Jan Megens 1† and Bart J. A. Pollux 2†

Abstract

Background: The evolution of complex organs is thought to occur via a stepwise process, each subsequent step increasing the organ’s complexity by a tiny amount. This evolutionary process can be studied by comparing closely related species that vary in the presence or absence of their organs. This is the case for the placenta in the live-bearing fish family Poeciliidae, as members of this family vary markedly in their ability to supply nutrients to their offspring via a placenta. Here, we investigate the genomic basis underlying this phenotypic variation in *Heterandria formosa*, a poeciliid fish with a highly complex placenta. We compare this genome to three published reference genomes of non-placental poeciliid fish to gain insight in which genes may have played a role in the evolution of the placenta in the Poeciliidae.

Results: We sequenced the genome of *H. formosa*, providing the first whole genome sequence for a placental poeciliid. We looked for signatures of adaptive evolution by comparing its gene sequences to those of three non-placental live-bearing relatives. Using comparative evolutionary analyses, we found 17 genes that were positively selected exclusively in *H. formosa*, as well as five gene duplications exclusive to *H. formosa*. Eight of the genes evolving under positive selection in *H. formosa* have a placental function in mammals, most notably endometrial tissue remodelling or endometrial cell proliferation.

Conclusions: Our results show that a substantial portion of positively selected genes have a function that correlates well with the morphological changes that form the placenta of *H. formosa*, compared to the corresponding tissue in non-placental poeciliids. These functions are mainly endometrial tissue remodelling and endometrial cell proliferation. Therefore, we hypothesize that natural selection acting on genes involved in these functions plays a key role in the evolution of the placenta in *H. formosa*.

Keywords: *Heterandria formosa*, Poeciliidae, Placenta, Matrotrophy, Positive selection, Gene duplication, Molecular evolution, Whole genome sequencing

* Correspondence: henri.vankruistum@wur.nl
†Hendrik-Jan Megens and Bart J.A. Pollux shared last author.
1Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands
2Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
Full list of author information is available at the end of the article.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
placenta has evolved independently at least eight times in the live-bearing fish family Poeciliidae. First, the closely related species. Second, intermediate stages of placental development have been identified in the family Poeciliidae [4]. The MI can act as a proxy for placental complexity, because species with a high MI have a more complex placenta compared to species with a low or intermediate MI [12–15]. The main differences lie in the structure of the maternal follicular epithelium. The unspecialized follicular wall of lecithotrophic (non-placental, MI < 1) species is very thin and plays no role in maternal provisioning [15, 16]. In matrotrophic (placental) species the follicular epithelium is much thicker, more extensively folded and features specialized adaptations that facilitate maternal-to-embryo nutrient transfer, such as a high vascularization, a high density of microvilli, and the presence of specialized cytoplasmic organelles [12, 14]. Given the co-occurrence of these structural tissue features with a high MI, it is likely that these adaptations facilitate extensive matrotrrophy.

Early studies on natural selection at the molecular level in the family Poeciliidae have compared genes of one or more poeciliid species to genes of other more distantly-related teleosts [17–19], or the analysis was limited to one or only a few genes known to be involved in placenta development in mammals [18, 20]. Exhaustively identifying genes responsible for placentaition is impossible in such approaches, because large differences in placental complexity exist within the family Poeciliidae. In the present study, therefore, natural selection is investigated between more closely related species, focusing on the genomic differences between lecithotrophic and matrotrophic species within the family Poeciliidae.

Here, we investigate the genomic basis of placental complexity by exploring the genome of a highly matrotrophic poeciliid: the least killifish, Heterandria formosa. This species has a MI of around 35, and morphological analysis has shown that it has a highly complex placenta [14]. Specifically, we aim to, (1) sequence the genome of H. formosa, providing the first whole genome sequence of a matrotrophic poeciliid, and (2) compare this
The genome to published reference genomes of three related lecithotrophic species: the Trindadian guppy (*Poecilia reticulata*) [21], the Amazon molly (*Poecilia formosa*) [17], and the Platypush (*Xiphophorus maculatus*) [18]. These latter three species are lecithotrophic (MI < 1), and lack a placenta. Such large difference in placentation in closely related species may suggest the involvement of natural selection, which should be visible in associated signatures of selection in the genome. Comparing genes evolving under positive selection to their orthologs in three non-placental species allows prioritization of genes related to placentation; genes showing evidence of positive selection in *H. formosa*, but not in any of its lecithotrophic relatives are likely enriched for involvement in placentation. Additionally, we identified genes that have likely been duplicated in the genome of *H. formosa*, using a combination of breakpoint and read-depth based methods. Gene duplications are known to be an important driving force of adaptive evolution, so it is plausible that an increased placental complexity is associated with distinct gene duplications [22]. Through these methods we identify a number of genes that have likely contributed to phenotypic variation in, and evolution of, placentation in the family Poeciliidae.

Results

Whole genome sequencing of Heterandria formosa

We sequenced the genome of *H. formosa* to an average coverage of 40X, yielding 90 Gb data containing 182 million 150 bp paired-end reads. The genome was assembled using SPAdes assembler [23], resulting in a draft assembly with a size of 722 Mb. *H. formosa* genome size estimation based on k-mer analysis showed an estimated genome size of 670 Mb, which is slightly lower than the assembly size. This is possibly a result of the relatively high heterozygosity of the sample leading to redundant contigs, as the sequenced individual was not from an inbred population. To reduce this redundancy, redundans [24] was run on the assembly to remove heterozygous contigs, and rescaffold the assembly based on paired-read information. This reduced the assembly size to 608 Mb, which is slightly lower than the estimated genome size, and also lower than other poeciliid genome assemblies [17, 18, 21]. Additionally, scaffold N50 increased from 11 Kb to 26.5 Kb by the rescaffolding procedure. The lower assembly size compared to the estimated genome size can be explained by the fact that this assembly was based on short reads, and some repetitive sequences will likely be collapsed in the assembly, leading to a somewhat smaller assembly size. Summary statistics of this genome assembly are listed in Table 1.

The genome of *H. formosa* was aligned to the reference genome of *P. reticulata* using LAST [25] . The majority of the scaffolds of the *H. formosa* assembly aligned to one linkage group in *P. reticulata* (Fig. 1b), suggesting extensive synteny between the two species. For some smaller contigs, no match to *P. reticulata* linkage groups was found (Fig. 1a). All *P. reticulata* linkage groups were covered roughly equally by the *H. formosa* contigs, covering around 80% of the bases in *P. reticulata* (Fig. 1c). This means that around 20% of the *P. reticulata* bases were not covered by any *H. formosa* sequence, which may be because the *H. formosa* assembly is smaller than the *P. reticulata* assembly, or because there is high sequence divergence in these regions.

The coverage drops at the edges of the linkage groups, likely reflecting the underrepresentation of repetitive sequences in the *H. formosa* assembly due to it being assembled from paired-end reads only. A portion of the *H. formosa* contigs (23% base fraction) was split in the alignment to two *P. reticulata* linkage groups (Fig. 1b). For a minority (10%) of these contigs, alignment length was longer than 1000 bp for both linkage groups to which the contig aligned. This observation suggests that some genomic rearrangements may have occurred. For contigs aligning to three or more linkage groups, alignments were generally very short for all but one linkage group, indicating that this is most likely a result either of contigs aligning to ambiguous regions in the genome, or assembly errors.

Positive selection

We identified 8,056 1:1:1 gene orthologs between *P. reticulata*, *P. formosa* and *X. maculatus* using ProtelnOrtho [26]. From these genes, we retrieved the complete coding sequences of 6,774 genes in *H. formosa* through the whole genome alignment with *P. reticulata*. Using the codeml program of the PAML package [27], we tested these genes for both positive selection across all investigated poeciliid species, and positive selection in *H. formosa*. At 10% FDR, we found 104 genes to be positively selected across the whole phylogeny and 29 genes to be positively selected in *H. formosa*. Eleven genes were significant for both tests, leaving 18 genes exclusively positively selected in the *H. formosa* lineage (Table 2). In one

| Table 1 Summary statistics for the *H. formosa* genome assembly |
|---------------------|-----------------|
| **Assembly size** | 608 Mb |
| **Contig N50** | 6108 bp |
| **Largest contig** | 77373 bp |
| **Scaffold N50** | 26563 bp |
| **Largest scaffold**| 226934 bp |
| **GC content** | 38.56% |
| **Heterozygosity** | 1 in 203 sites |

- Contig N50 is the length of the longest contig in the assembly.
- GC content is the percentage of the genome that consists of guanine and cytosine bases.
- Heterozygosity is the frequency of heterozygous sites in the genome.
case, a stop-gained mutation was observed inside the first exon, so this protein was left out of the final results.

A substantial number of these genes have placental functions in mammals. First, \textit{Pla2g2a} was isolated from human placenta [28], and evidence found in horse points to a function in placental steroid metabolism [29]. However, activity of this protein is not limited to placenta, and has been linked to the immune system as well [30]. Second, a matrix metalloproteinase and a matrix metalloproteinase inhibitor (\textit{Mmp15} and \textit{Timp4}) were both positively selected in \textit{H. formosa}. Both proteins are involved in endometrial tissue remodelling and placental labyrinth formation [31, 32]. Third, \textit{Rbl1} and \textit{Kiaa1324} gene expression has been linked to endometrial cell proliferation [33, 34]. Fourth, two claudin proteins (\textit{Cldnd} and \textit{Cldn4}) were found to be positively selected in this analysis. Claudins are cell-cell adhesion proteins known to be essential in placental tight junctions, regulating ion transport [35, 36]. Interestingly, claudins are also involved in tissue remodelling by interacting with matrix metalloproteinases [37, 38]. Finally, \textit{Btbd7} is involved in tissue remodelling of embryonic epithelial cells by interacting with cell-cell adhesion proteins [39], and is associated with preeclampsia in humans [40]. We searched for expression of these genes in the human protein atlas

\begin{table}[h]
\centering
\begin{tabular}{l l l}
\hline
\textbf{Gene symbol} & \textbf{gene name} & \textbf{p-value} \\
\hline
\textit{Pla2g2a} & Phospholipase A2 Group IIA & 3.32E-07 \\
\textit{Timp4} & Tissue Inhibitor Of Metalloproteinases 4 & 2.92E-06 \\
\textit{Rbl1} & Retinoblastoma-Like 1 & 1.63E-05 \\
\textit{Cldnd} & Claudin d & 2.28E-05 \\
\textit{Tmem230} & Transmembrane Protein 230 & 3.34E-05 \\
\textit{Kiaa1324/Eig121} & Estrogen Induced Gene 121 & 3.43E-05 \\
\textit{Pnkd} & Paroxysmal Nonkinesigenic Dyskinesia & 6.96E-05 \\
\textit{Mmp15} & Matrix metalloproteinase 15 & 2.50E-04 \\
\textit{Gpr34} & G Protein-Coupled Receptor 34 & 2.55E-04 \\
\textit{Btbd7} & BTB Domain Containing 7 & 2.68E-04 \\
\textit{Glpi} & Glucagon-like peptide 1 & 2.84E-04 \\
\textit{Clkn4} & Claudin 4 & 3.04E-04 \\
\textit{Slc35d3} & Solute Carrier 35 Member d3 & 3.27E-04 \\
\textit{Pcdh10} & Protocadherin-10 & 4.05E-04 \\
\textit{Loc103465290} & Uncharacterized protein & 4.51E-04 \\
\textit{Allc} & Allantoicase & 4.58E-04 \\
\textit{Slc20a1} & Solute Carrier Family 20 Member a1 & 5.60E-04 \\
\hline
\end{tabular}
\caption{positively selected genes in \textit{H. formosa} (10\% FDR)}
\end{table}
and the tissue-specific transcriptome of the closely related *Poeciliopsis prolifica* [42]. All of these proteins are expressed in the human placenta, except for *Kiaa1324*, which is more active in the endometrium (Additional file 1: Table S1). In *P. prolifica*, we found expression of all of these genes in either placental or ovarian tissue, except for *Pla2g2a* (Additional file 1: Table S1).

As for the remaining nine positively selected genes in *H. formosa*, most are neuron associated (*Pnkd, Tmem230, Pcdh10, Gpr34, Slc35d3*) [43–47], which suggests ongoing selection on behavioural traits as observed earlier in poeciliids and teleost fish in general [48, 49]. The four remaining genes evolving under positive selection in *H. formosa* have varying or unknown functions. For a further elaboration on all genes found to be evolving under positive selection in *H. formosa*, see Additional file 1: Table S1.

To assess the function of positively selected genes in a quantitative manner, GO term enrichment analysis was performed using GOrilla [50]. The enriched GO terms with the lowest p-value were associated with cell-cell adhesion. Other enriched GO terms of interest were negative regulation of endopeptidase activity, dopamine and catecholamine metabolism, positive regulation of cytosolic calcium ion concentration, and cell migration. For all results of the GO enrichment analysis, see Additional file 2: Table S2.

The evolution of complex structures may also involve changes in gene function and to investigate this possibility in *H. formosa*, we employed Bayes Empirical Bayes (BEB) analysis with PAML to infer which codons in the coding sequence are most likely subject to positive selection and thereby obtain information about a possible change of function. Two examples of this inference are shown for the *Timp4* and *Mmp15* genes (Figs. 2 and 3). As shown in the figure, positive selection in *H. formosa* *Timp4* is widespread throughout the protein, as 20 out of 224 codons are predicted to be under positive selection (p > 80%). Positively selected sites interfere with residues of both the metzincin- as well as the hemopexin-binding domain, although most residues of these domains remain conserved. This may indicate a change in function, for instance in the type of metalloproteinases the protein binds to. Positively selected sites in *Mmp15* are located next to and in between the catalytic and hemopexin (metal binding) domains, but do not overlap with the active residues. Little is known about these regions of the protein, but its catalytic function is not likely affected.

Gene duplications

Potential gene duplications were identified by mapping reads from *H. formosa* to the *P. reticulata* genome, and identifying potential breakpoints by running Lumpy [51] on the alignment. Combining the breakpoints with a read depth signal allowed for identifying potential duplications. Using this method, we identified 46 potentially duplicated segments. However, after manual evaluation (see methods) only six of these segments were retained as likely true duplications, reflecting the difficulty to identify true duplications using short reads. These segments are given in Table 3.

Although not many genes were found to be duplicated in *H. formosa*, the results are concordant with the results from the positive selection analysis. Firstly, the gene coding for 5-hydroxyisourate hydrolase (*Urah*) was duplicated. This gene belongs to the same uric acid degradation pathway as the positively selected gene allantoicase (*Allc*). Secondly, *Pla2g2a*, which we showed above to be evolving under positive selection, is duplicated completely. Thirdly, a cadherin protein (*Cdhl*)
appeared partially duplicated, in addition to Pcdh10 evolving under positive selection. Cdh1 expression is also known to be regulated by Btbd7 [52], a gene found to be positively selected in H. formosa. Finally, a relatively large duplication containing the majority of the Camk2g gene and a small part of the Ccdc88a gene was observed. Both of these genes are involved in neural development [53].

Discussion
In this study, we sequenced and assembled the genome of H. formosa, a matrotrophic poeciliid. We aimed to use this information to gain insight in the evolution of the placenta in H. formosa, by looking for signatures of natural selection in its genome. One difficulty in identifying genes responsible for placentation is that natural selection in poeciliids is not limited to matrotrrophy associated genes. For instance, immunity-related genes are consistently fast evolving in most vertebrate species, as a consequence of an evolutionary “arms race” between host immunity and pathogens (for instance [54, 55]). Furthermore, it is known that courtship behaviour is selected for in the family Poeciliidae [48, 56], which implies that many genes associated with behaviour are likely under the influence of sexual selection. These and other ongoing processes will cause coinciding genomic signatures of selection when considering selection acting on matrotrrophy associated genes. We selected against these coinciding signatures of selection by distinguishing between positive selection across all investigated poeciliids and positive selection only observed in H. formosa, assuming that genes which are positively selected in both matrotrrophic and lecithotrophic poeciliids are not likely responsible for the differences in placentation between the two groups.

Using this strategy, we identified 18 genes evolving under positive selection exclusively in H. formosa. Additionally, we identified six duplicated segments affecting a small number of genes. Significantly, mammalian orthologs of a substantial number of these genes are known to be involved in placental function and development, although most of these genes have different functions as well. For instance: protocadherin-10 (Pcdh10) is positively selected in H. formosa, and expressed in the human placenta [45]. Cadherins are known to be important for placental cell-cell adhesion [36]. However, Pcdh10 is also involved in certain parts of the brain associated with visual and olfactory function [57], thus selective pressure on this gene could also occur because of selection on behavioural traits. Distinguishing between significance in placenta functioning or other functions was further evaluated by comparing gene function to the morphological differences between the placenta of H. formosa and that of its lecithotrophic relatives.

Table 3 Duplicated regions in H. formosa
Duplicated area (position on P. reticulata genome)
NC_024349.1:9797934-9803865
NC_024331.1:4200605-4202283
NC_024355.1:30069829-30071128
NC_024338.1:15595450-15598894
NC_024345.1:3814448-3869038
NC_024333.1:20591856-20595250

![Fig. 3 Likelihood of positive selection for each codon in H. formosa Mmp15. Active residues are plotted on the bottom panel. Color codes for probability of positive selection: Red > 95% > blue > 80% > light blue > 50% > grey](image-url)
The main morphological differences in the placenta between matrotrophic and lecithotrophic poeciliids are found in the follicular epithelium, which is thicker and more extensively folded in matrotrophic species [12]. For a number of genes found to be positively selected in *H. formosa* it is possible they play a role in this change in tissue structure, most notably *Mmp15* and *Timp4*. Matrix metalloproteinases and their inhibitors are responsible for tissue remodelling [58], and both *Mmp15* and *Timp4* are active in the mammalian placenta [31, 32]. Therefore, it is plausible that positive selection acting on these genes could result in a difference in placental morphology. Similarly, claudins are also involved in endometrial tissue remodelling, by activating matrix metalloproteinases [37, 38]. Two claudin genes found to be positively selected are *Clnd1* and *Clnd4*. Yet another protein family involved in tissue remodelling are the cadherins, as these cell-cell adhesion proteins are involved in transducing the mechanical tension that regulates tissue remodelling [59, 60]. We found one cadherin (*Pcdh10*) to be positively selected in *H. formosa*, and another cadherin (*Cdh1*) to be partially duplicated in *H. formosa*. Because the duplicated *Cdh1* is a modular protein, consisting of six similar cadherin domains, a partial duplication could result in a functional protein. Both of these cadherins are expressed in the mammalian placenta, with *Cdh1* being essential for placental development in mice [36, 45, 61]. Finally, *Btdb7* is involved in tissue remodelling as a key regulator of cleft formation in branching morphogenesis [39]. In mammals, branching morphogenesis is an important mechanism in placental development [62]. As for poeciliids, much less is known about the mechanisms that regulate placenta formation, although cleft-like structures can be observed inside the folds of the follicular epithelium and branched microvilli in extensive matrotrophs [12, 63]. GO terms associated with these genes were also significantly enriched in positively selected genes in *H. formosa*, most notably “cell-cell adhesion via plasma-membrane adhesion molecules”, and “negative regulation of endopeptidase activity” (SI 2).

Molecular pathways other than those involved in tissue remodelling will also have played a role in placental development. For instance, a thicker follicular epithelium may result from an increased proliferation of the epithelial cells in *H. formosa*. Two of the positively selected genes identified are involved in endometrial cell proliferation in humans, namely *Rbl1* and *Kiaa1324* [33, 34].

Previous studies have shown that matrotrophic species carry an increased number of vesicles in their placental epithelial cells that are involved in trafficking nutrients from mother to embryo [13]. We found one gene involved in the regulation of vesicle trafficking to be positively selected in *H. formosa*, *Tmem230*. The involvement of *Tmem230* in vesicle trafficking, however, has so far only been assessed in the brain [64]. *Tmem230* is expressed in the human placenta [41], but there is no literature on the function of *Tmem230* in this tissue.

These results give us a first insight into the genes that may be involved in the evolution of the placenta in *H. formosa*. Future studies should focus on generating genomic information for more species from different matrotrophic lineages in the family Poeciliidae [4]. Since the statistical power to detect positive selection is directly related to the number of species from different independent evolutionary lineages, adding genome information of more matrotrophic species and their closely related lecithotrophic ‘sister-species’ is likely to allow the detection of more matrotrophy-associated genes under positive selection. For example, an earlier study detected positive selection on the poeciliid *Igf2* gene using the protein-coding sequence of 38 teleost species (including 26 poeciliids), of which eight are extensive matrotrophs [20]. In our study, positive selection was not shown for *Igf2* (*p* = 0.12). This result may be a consequence of a different role of *Igf2* in *H. formosa* compared to other placental taxa, as it was shown that variation in *Igf2* expression is not correlated with changes in offspring size in *H. formosa* [65]. However, this different result may also be because using less (matrotrophic) species in the comparison reduces statistical power. In any case, genomic information for additional species will likely reveal other genes subject to positive selection that may have gone undetected in the present study. Additionally, this could also yield new insights into whether placental evolution in the different independent matrotrophic lineages is the result of selection on related or even the same genes, which would be an example of parallel evolution.

Finally, the low number of true duplications found in *H. formosa* reflects the difficulty of identifying duplicated segments using short read data only. To increase the amount of gene duplications that can be found, a reference genome of a matrotrophic poeciliid using long read or scaffolding information would be highly beneficial. Nevertheless, we were able to identify 18 genes that are exclusively selected in a highly matrotrophic species. Of these genes a high proportion is important in mammalian placenta function, suggesting convergence in the genetic building blocks of placental development between distantly related vertebrate lineages.

Conclusions

We found 18 genes that show evidence of positive selection exclusively for the branch leading to the matrotrophic species *Heterandria formosa*, and not in any of the three lecithotrophic species in the family Poeciliidae that were used for comparison. Additionally, five (partial) gene duplications
were identified in *H. formosa*. A substantial portion of these genes is involved in endometrial tissue remodelling and endometrial cell proliferation, consistent with morphological changes in the placenta of *H. formosa*. Based on these results, we hypothesize that the differences in placental morphology between lecithotrophic and (extensively) matrotrophic poeciliids are at least partly due to positive selection on genes involved in tissue remodelling and endometrial cell proliferation.

Methods

Whole genome sequencing of *Heterandria formosa*

H. formosa individuals were caught from Wakulla Springs under state permit number 07040111, after which they were transported to Leiden, the Netherlands, where they were kept in population tanks. An F3-generation female was sacrificed using a lethal dose of ms-222. DNA was isolated from the liver using the DNeasy kit from Qiagen, according to the manufacturers’ protocol. 1000 ng of DNA was sheared to a 100–800 bp range using a Covaris S-series sonicator. Genomic fragments were fit with adapters using the Paired-End DNA Sample Preparation Kit PE-102-1002 (Illumina Inc.) and size-selected for 500 bp. Concentration and size profiles were determined on a Bioanalyzer 2100 using a High Sensitivity DNA chip. Paired-end sequencing was performed on an Illumina HiSeq 2000 sequencing system (Illumina Inc.) using the HiSeq Paired-End Cluster Generation Kit (PE-401-1001) and HiSeq Sequencing kit (FC-401-1001), yielding ~40X coverage of paired-end sequencing data.

Heterandria formosa genome assembly

A de novo assembly of the genome of *H. formosa* was made using SPAdes 3.10.0 [23], with default settings. To estimate the genome size and heterozygosity beforehand, we performed k-mer counting (k = 20) using the Jellyfish estimate the genome size and heterozygosity beforehand, zygosity by mapping back the reads to the assembly with After finishing of the assembly, we recalculated heterozygosity by mapping back the reads to the assembly with BWA 0.7.15 [67], removing PCR duplicates using SAMtools 1.5 [68], realigning using GATK 4.0 [69], before variant calling using the SAMTools mpileup and bcftools call commands [68], using default settings.

Coding sequence alignments

Published reference genomes of *Poecilia reticulata*, *Poecilia formosa* and *Xiphophorus maculatus* were downloaded from the NCBI ftp server. A scan for orthologs between these genomes was performed using ProteinOrtho 5.16 [26], with settings -p = blastn+ and -sim = 0.8. We chose to only select 1:1 orthologs, of which we found 8, 056. In order to locate these genes in the genome of *H. formosa*, a 1:1 alignment of the *H. formosa* assembly to the *P. reticulata* genome was created using LAST 810 [25], meaning that every nucleotide from the *H. formosa* genome can align to no more than one nucleotide of the *P. reticulata* genome, and vice versa. For all selected orthologs, the *H. formosa* sequence was then retrieved via this alignment. Only genes for which the coding sequence was completely covered by the whole genome alignment were selected for further analysis, which was the case for 6,774 genes. For these genes, four-way codon alignments of the coding sequence were made using PRANK v.170427 [70].

Detecting positive selection

To detect positive selection, the codeml program of the PAML [27] package was used. This program provides a number of methods to detect positive selection, based on the ratio of non-synonymous versus synonymous substitutions (d_{ns}/d_s), in the context of a known phylogenetic framework. A phylogenetic tree of the four species was constructed based on a PRANK alignment of the mitochondrial cytochrome b gene. For a neutrally evolving sequence, no distinction between synonymous and non-synonymous mutations is expected, and the d_{ns}/d_s ratio would approach 1. Protein-coding genes however, are expected to be conserved, so purifying selection against non-synonymous mutations is expected (d_{ns}/d_s < < 1). Indeed, on average, protein-coding genes have a d_{ns}/d_s ratio far below 1. However, certain situations can favour synonymous changes in a protein, for instance when a protein acquires a new (sub)function. This phenomenon is called positive selection and can lead to elevated d_{ns}/d_s ratios at some sites in the sequence, or branches in the phylogeny. PAML provides a number of models to test for the hypothesis that a gene is evolving under positive selection. For all analyses, we deleted columns with gaps in the alignment prior to analysis by using the PAML “cleandata” function. Although this leads to somewhat conservative results, it reduces false positives due to alignment gaps.

For this study, we use two models. Firstly, we use the site model to detect genes, which contain sites subject to positive selection across the entire phylogeny. For this, we compare the fit of a model allowing d_{ns}/d_s > 1 at certain codons in the coding sequence (model = 0, NSsites = 2) to a model where d_{ns}/d_s is not allowed to go above 1 (model = 0, NSsites = 1). The assumption is that genes subject to positive selection across the whole phylogeny are not likely to be matrotrophy-associated, as three out of four investigated species are lecithotrophic. Secondly, we use the branch-site model to test for positive selection in the phylogenetic branch leading to *H. formosa*. Here, again, a model allowing d_{ns}/d_s > 1 was compared
to a model in which this is not the case, with d_{3S}/d_{3S} able to vary within both amino acid positions and phylogenetic branches (model = 2, NSsites = 2, fix_omega = 0 for the selection model, model = 2, NSsites = 2, fix_omega = 1 for the neutral model). We chose *H. formosa* as the foreground branch, testing positive selection for this phylogenetic branch only.

P-values were obtained by performing likelihood ratio tests using a chi-square distribution (df = 2 for the site model, df = 1 for the branch-site model, as suggested in the PAML manual). Correction for multiple testing was performed using the Benjamini-Hochberg procedure [71], with 10% False Discovery Rate (FDR). Genes displaying significant positive selection in the branch leading to *H. formosa* were only kept in the analysis if they did not display significant positive selection for the site model. As an extra check, remaining genes were also tested for positive selection in all other branches of the phylogeny, and excluded from further analysis when this was the case. For positively selected genes belonging to gene families, 1:1 orthology was validated by aligning the *H. formosa* sequence against different *P. reticulata* paralogs of the corresponding gene family, so a false assessment of positive selection due to alignment to paralogs could be ruled out. Expression of identified genes was examined by performing blastn searches against the published transcriptome of the closely related *P. reticulata* [19], searching only against the placental and ovarian transcripts (Additional file 1: Table S1).

GO term enrichment analysis

GO terms enriched in genes subject to positive selection were detected using GOrilla [50]. GOrilla takes a ranked list of genes and looks for GO terms occurring densely at the top of this list. For this, genes were ranked based on their p-value from the branch-site test, using *H. formosa* as foreground branch. We chose this method because the amount of positively selected genes in *H. formosa* was too small to find any enriched GO terms using ‘classical’ enrichment analysis (e.g. enriched GO terms in a list of significant genes compared to a background list).

Detecting gene duplications

H. formosa sequencing reads were mapped on the *P. reticulata* genome using BWA 0.7.15 [67]. Duplicate read removal and realignment was performed using GATK 4.0 [69]. Breakpoints in the genome indicating potential copy number variations (CNVs) were detected by running Lumpy 0.2.13 [51] on the resulting alignment file. Because of the phylogenetic distance between *H. formosa* and *P. reticulata*, regions in the genome containing no mapped reads due to sequence divergence could not be distinguished from regions deleted in *H. formosa*. As a result, deletions could not be reliably assessed. Therefore, we focused on duplicated segments. Potential duplications were validated by comparing the read depth in a potentially duplicated segment to the average read depth of the alignment file, followed by visual evaluation in JBrowse [72]. For the validation of a potential duplication, four criteria were used. First, the read depth signal had to be at least 2 times the average read depth of the genome. Second, the coverage inside the putative duplication had to be even, that is, no coverage spikes because of repetitive elements that increase the average read depth. Third, a clear breakpoint on both sides of the CNV with discordant reads had to be visible. Fourth, only duplications with a minimum length of 1 kb were considered. To generate a set of *H. formosa*-specific duplications, resequencing libraries of *P. reticulata* and swordtail (*Xiphophorus helleri*)) were downloaded from GenBank, and the same analysis was performed for these species. If a putative duplication found in *H. formosa* was also found in one of these species, it was excluded from further analysis. Expression of genes that overlap with a duplication was examined by performing blastn searches against the published transcriptome of the closely related *P. prolifica* [19], searching only against the placental and ovarian transcripts (Additional file 1: Table S1).

Additional files

- Additional file 1: Table S1. Literature study on all genes positively selected exclusively in *H. formosa*. (XLSX 16 kb)
- Additional file 2: Table S2. GO terms significantly enriched in positively selected genes in *H. formosa*, using a list of all tested genes ranked by p-value. (XLSX 11 kb)

Abbreviations

BEB: Bayes Empirical Bayes; FDR: False Discovery Rate; MI: Matroptrophy Index

Acknowledgements

Not applicable.

Authors’ contributions

Study was designed by HJM and BJAP. JT supplied *H. formosa* individuals. JvdH performed sample preparation, supervised by BJZ. KK facilitated the sequencing. HvK performed the analyses in collaboration with JvdH, supervised by HJM and BJAP. HvK wrote the initial manuscript, supervised by HJM and BJAP. JT, JvdH, KK and MAMG critically reviewed the initial manuscript and provided helpful input. All authors approved the final manuscript.

Funding

HvK was supported by a WAS research grant from Wageningen University awarded to HJM and BJAP. JvdH and BJZ were supported by European Union grants Network of Excellence LifeSpan FP6 036894 and IDEAL FP7/2007–2011/259679. In addition, JvdH was supported by a PE & RC research grant from Wageningen University. BJAP was supported by a VIDI grant (864.14.008) from the Netherlands Organisation for Scientific Research (NWO-KNAW). The funding bodies had no role in study design, analysis and interpretation, or writing the manuscript.
Availability of data and materials
The sequence reads generated and analysed during the current study are available in the European Nucleotide Archive, under accession number PRJEB28818.

Ethics approval and consent to participate
This study was approved by the Leiden University Animal Experiments Committee under permit number 12188. H. formosa individuals were caught from Wakulla Springs under state permit number 07040111.

Consent for publication
N/A

Competing interests
The authors declare that they have no competing interests.

Author details
1Animal Breeding and Genomics Group, Wageningen University, Wageningen, The Netherlands. 2Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands. 3Plant Sciences Group, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands. 4Department of Biological Science, Florida State University, Tallahassee, USA. 5Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands. 6Leiden Genome Technology Center Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.

Received: 31 October 2018 Accepted: 19 July 2019

References
1. Darwin C. On the origin of the species by natural selection; 1859.
2. Blackburn DG. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol. 2015;276:1018–20.
3. Blackburn DG. Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol. 2015;276:1018–20.
4. Reznick DN, Mateos M, Springer MS. Independent origins and rapid evolution of the placenta in the fish genus Poeciliopsis. Science. 2002;298:313:1914–7.
5. Reznick DN, Mateos M, Springer MS. Independent origins and rapid evolution of the placenta in the fish genus Poeciliopsis. Science. 2002;298:313:1914–7.
6. Griffith OW, Wagner GP. The placenta as a model for understanding the origin and evolution of vertebrate organs. Nature ecology & evolution. 2017;1:0072.
7. Rossant J, Cross JC. Placental development: lessons from mouse mutants. Nat Rev Genet. 2001;2:538.
8. Hou Z, Romero R, Uddin M, Than NG, Wildman DE. Adaptive history of single copy genes highly expressed in the term human placenta. Genomics. 2009;593:33–41.
9. Cross J, Baczyk D, Dobric N, Hemberger M, Hughes M, Simmonds D, Yamamoto H. Genes, development and evolution of the placenta. Placenta. 2003;24:123–30.
10. Pollock B, Pires M, Banet A, Reznick D. Evolution of placenta in the fish Poeciliidae: an empirical study of macroevolution. Annu Rev Ecol Evol Syst. 2009;40:271–89.
11. Wourms JP, Grove BD, Lombardi J. I The Maternal-Embryonic Relationship in Viviparous Fishes. In Fish physiology. Volume 11. Elsevier; 1988. 1–134.
12. Kwan L, Shui SM, Wan R, Uddin M, Than NG, Wildman DE. Adaptive history of single copy genes highly expressed in the term human placenta. Genomics. 2009;593:33–41.
13. Olivera-Tlahuel C, Moreno-Mendoza NA, Villagrán-Santa Cruz M, Zúñiga-Vega JJ. Placental strutures and their association with matriotox and superfetation in poeciliid fishes. Acta Zoológica 2018.
14. Grove BD, Wourms JP. Follicular placenta of the viviparous fish, Heterandria formosa. II. Ultrastructure and development of the follicular epithelium. J Morphol. 1994;220:167–184.
15. Turner CL. Pseudoamnion, pseudochorion, and follicular pseudoplacenta in poeciliid fishes. J Morphol. 1940;67:559–89.
16. Jollie WP, Jollie LG. The fine structure of the ovarian follicle of the ovoviviparous poeciliid fish, Lebiasites reticulatus. II. Formation of follicular pseudoplacenta. J Morphol. 1964;114:503–25.
17. Warren WC, Garcia-Pérez R, Xu S, Lampert KP, Chalopin D, Stöck M, Loewe L, Lu Y, Kuderna L, Minx F. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nature ecology & evolution. 2018;1.
18. Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Wulf J-N, Lesch K-P. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet. 2013;45:567.
19. Jue NC, Foley RJ, Reznick DN, O'Neill RJ, O'Neill MJ. Tissue-Specific Transcriptome for Poeciliopsis prolifica Reveals Evidence for Genetic Adaptation Related to the Evolution of a Placental Fish. G3: Genes, Genomes, Genetics 2018;g3.200270.201018.
20. O'Neill MJ, Lawton BR, Mateos M, Carone DM, Ferreri GC, Hrbek T, Meredith RW, Reznick DN, O'Neill RJ. Ancient and continuing Darwinnian selection on insulin-like growth factor II in placental fishes. Proc Natl Acad Sci. 2007;104:12404–9.
21. Künstner A, Hoffmann M, Fraser BA, Kottler VA, Sharma E, Weigel D, Dreyer C. The genome of the Trinidadian guppy, Poecilia reticulata, and variation in the Guanapo population. PLoS One. 2016;11:e0169087.
22. Lynch M. Gene duplication and evolution. Science. 2002;292:9475–7.
23. Bankevich A, Nurb S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prijebesh AD. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
24. Pryszcz LP, Gabałdón T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res 2016;44:e113–e113.
25. Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaprive seeds tame genomic sequence comparison. Genome Res. 2011;21:487–93.
26. Lechner M, Firdeus S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinorth: detection of orthologs in large-scale analysis. BMC bioinformatics. 2011;12:124.
27. Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
28. Buhl W, Eisenlohr L, Preuss I, Gehring U. A novel phospholipase A2 from human placenta. Biochem. 1999;311:1147.
29. Ababneh M, Troedsson M. Ovian steroid regulation of endometrial phospholipase A2 isoforms in horses. Reprod Domest Anim. 2013;48:311–6.
30. Saegusa J, Akakura N, Wu C-Y, Hoogland C, Ma Z, Lam KS, Liu F-T, Takada YK, Takada Y. Pro-inflammtory secretory phospholipase A2 type AII binds to integrins αvβ3 and αvβ1 and induces proliferation of monocytic cells in an integrin-dependent manner. J Biol Chem. 2008;283:26107–15.
31. Yang Q, Wang X-H, Zhao Y-G, Lin H-Y, Zhang H, Wang H-M, Sang Q-X, Zhu C. Expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in endometrium and placenta of thesis monkey (Macaca mulatta) during early pregnancy. Life Sci. 2006;78:2804–11.
32. Szabova L, YK, Takada Y. Pro-inflammatory secretory phospholipase A2 type IIA binds to integrins αvβ3 and αvβ1 and induces proliferation of monocytic cells in an integrin-dependent manner. J Biol Chem. 2008;283:26107–15.
33. Aplin J, Jones C, Harris L: Adhesion molecules in human trophoblast and their role in cytotrophoblast invasion and placental development. J Reprod Immunol. 2010;86:54–9.
34. Ahn C, Yang H, Lee D. An B-s, Jeung E-B: placental claudin expression and its regulation by endogenous sex steroid hormones. Steroids. 2015;101:44–51.
35. Aplin J, Jones C, Harris L: Adhesion molecules in human trophoblast and their role in cytotrophoblast invasion and placental development. J Reprod Immunol. 2010;86:54–9.
36. Miyamori H, Takino T, Kobayashi Y, Tokai H, Itoh Y, Seiki M, Sato H. Claudin-4 and -5 in human placenta. J Biol Chem. 2007;282:31307–15.
37. Gualdiero L, De Luca B, Baldi a, De Luca a: expression of the retinoblastoma-related p107 and Rb2/p130 genes in human placenta: an immunohistochemical study. Histol Histopathol. 2001;16:1057–60.
38. Deng L, Feng J, Broadus R. The novel estrogen-induced gene EGI121 regulates autophagy and promotes cell survival under stress. Cell Death Dis. 2010;1:e32.
39. Ahr C, Yang H, Lee D. An B-s, Jeung E-B: placental claudin expression and its regulation by endogenous sex steroid hormones. Steroids. 2015;101:44–51.
40. Aplin J, Jones C, Harris L: Adhesion molecules in human trophoblast and their role in cytotrophoblast invasion and placental development. J Reprod Immunol. 2010;86:54–9.
40. Jia R-Z, Zhang X, Hu P, Liu X-M, Hua X-D, Wang X, Ding H-J. Screening for differential methylation status in human placenta in preeclampsia using a CpG island plus promoter microarray. Int J Mol Med. 2012;30:133–41.
41. Uhlen M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, von Sexhon A, Kampf C, Šmídlová E, Asplund A. Tissue-based map of the human proteome. Science. 2015;347:1260419.
42. Jue NK, Foley RJ, Reznick DN, O'Neill MJ. Tissue-Specific Transcriptome for Poeciliopsis prolifica Reveals Evidence for Genetic Adaptation Related to the Evolution of a Placental Fish. G3: genes, genomes, Genetics. 2018;8, 2181–2192.
43. Shen Y, Ge W-P, Li Y, Hirano A, Lee H-Y, Rohlmann A, Missler M, Tsien RW, Wei Z-B, Yuan Y-F, Jaouen F, Ma M-S, Hao C-J, Zhang Z, Chen Q, Yuan Z, Yu J, Wolverton T, Lalande M. Identification and characterization of three members of a novel subclass of protocadherins. Genomics. 2001;76:666–72.
44. Zheng Q, Zheng X, Zhang L, Luo H, Qian L, Fu X, Liu Y, Gao Y, Niu M, Meng J, Moller T, Lalande M. Identification and characterization of three members of a novel subclass of protocadherins. Genomics. 2001;76:666–72.
45. Jue NK, Foley RJ, Reznick DN, O'Neill MJ. Tissue-Specific Transcriptome for Poeciliopsis prolifica Reveals Evidence for Genetic Adaptation Related to the Evolution of a Placental Fish. G3: genes, genomes, Genetics. 2018;8, 2181–2192.
46. Shen Y, Ge W-P, Li Y, Hirano A, Lee H-Y, Rohlmann A, Missler M, Tsien RW, Wei Z-B, Yuan Y-F, Jaouen F, Ma M-S, Hao C-J, Zhang Z, Chen Q, Yuan Z, Yu J, Wolverton T, Lalande M. Identification and characterization of three members of a novel subclass of protocadherins. Genomics. 2001;76:666–72.
47. Jue NK, Foley RJ, Reznick DN, O'Neill MJ. Tissue-Specific Transcriptome for Poeciliopsis prolifica Reveals Evidence for Genetic Adaptation Related to the Evolution of a Placental Fish. G3: genes, genomes, Genetics. 2018;8, 2181–2192.
48. Bshary R, Wickler W, Fricke H. Fish cognition: a primate’s eye view. Anim Cogn. 2002;5:1–3.
49. Bshary R, Wickler W, Fricke H. Fish cognition: a primate’s eye view. Anim Cogn. 2002;5:1–3.
50. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and cell death. Mol Biol. 2011;54:4189–200.
51. Layer RM, Chiang Q, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 2014;15:R84.
52. Daley WP, Matsumoto K, Doyle AD, Wang S, DuChez BJ, Holmbeck K, Layer RM, Chiang Q, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 2014;15:R84.
53. Stemmler MP, Bedzhov I. A Cdh1HA knock-in allele rescues the Cdh1 phenotype but shows essential Cdh1 function during placentation. Dev Dyn. 2010;239:499–512.
54. Boller T, He SY. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Trends Plant Sci. 2006;11:232–38.
55. Pollux B, Meredith R, Springer M, Garland T, Reznick D. The evolution of the genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
56. Löytynoja A, Goldman N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008;320:1632–5.
57. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
58. Skinner ME, Uzilov AV, Stein LD, Mungall CJ, Holmes IH. JBrowse: a next-generation genome browser. Genome Res. 2009;19:1630–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, von Sexhon A, Kampf C, Šmídlová E, Asplund A. Tissue-based map of the human proteome. Science. 2015;347:1260419.
2. Stemmler MP, Bedzhov I. A Cdh1HA knock-in allele rescues the Cdh1 phenotype but shows essential Cdh1 function during placentation. Dev Dyn. 2010;239:499–512.
3. Cross JC, Nakano H, Natalie DR, Simmons DG, Watson ED. Branching morphogenesis during development of placental vili. Differentiation. 2006;74:395–407.
4. Grose BD, Womers JP. The follicular placenta of the viviparous fish, Heterandria formosa. I. Ultrastructure and development of the embryonic absorptive surface. J Morphol. 1991;209:265–84.
5. Kim MJ, Deng H-X, Wong YC, Siddique T, Krainc D. The Parkinson’s disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet. 2017;26:729–41.