Trait specific expression profiling of salt stress responsive genes in diverse rice genotypes as determined by modified significance analysis of microarrays

Hossain, Mohammad R; Bassel, George W; Pritchard, Jeremy; Sharma, Garima P; Ford-Lloyd, Brian V

DOI:
10.3389/fpls.2016.00567
10.3389/fpls.2016.00567

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Hossain, MR, Bassel, GW, Pritchard, J, Sharma, GP & Ford-Lloyd, BV 2016, 'Trait specific expression profiling of salt stress responsive genes in diverse rice genotypes as determined by modified significance analysis of microarrays', Frontiers in Plant Science, vol. 7, 567. https://doi.org/10.3389/fpls.2016.00567, https://doi.org/10.3389/fpls.2016.00567

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 11. Mar. 2020
Trait Specific Expression Profiling of Salt Stress Responsive Genes in Diverse Rice Genotypes as Determined by Modified Significance Analysis of Microarrays

Mohammad R. Hossain1,2,*, George W. Bassel2, Jeremy Pritchard2, Garima P. Sharma2 and Brian V. Ford-Lloyd2

1 Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh, 2 School of Biosciences, University of Birmingham, Birmingham, UK

Stress responsive gene expression is commonly profiled in a comparative manner involving different stress conditions or genotypes with contrasting reputation of tolerance/resistance. In contrast, this research exploited a wide natural variation in terms of taxonomy, origin and salt sensitivity in eight genotypes of rice to identify the trait specific patterns of gene expression under salt stress. Genome wide transcriptomic responses were interrogated by the weighted continuous morpho-physiological trait responses using modified Significance Analysis of Microarrays. More number of genes was found to be differentially expressed under salt stressed compared to that of under unstressed conditions. Higher numbers of genes were observed to be differentially expressed for the traits shoot Na+/K+, shoot Na+, root K+, biomass and shoot Cl−, respectively. The results identified around 60 genes to be involved in Na+, K+, and anion homeostasis, transport, and transmembrane activity under stressed conditions. Gene Ontology (GO) enrichment analysis identified 1.36\% (578 genes) of the entire transcriptome to be involved in the major molecular functions such as signal transduction (>150 genes), transcription factor (81 genes), and translation factor activity (62 genes) etc., under salt stress. Chromosomal mapping of the genes suggests that majority of the genes are located on chromosomes 1, 2, 3, 6, and 7. The gene network analysis showed that the transcription factors and translation initiation factors formed the major gene networks and are mostly active in nucleus, cytoplasm and mitochondria whereas the membrane and vesicle bound proteins formed a secondary network active in plasma membrane and vacuoles. The novel genes and the genes with unknown functions thus identified provide picture of a synergistic salinity response representing the potentially fundamental mechanisms that are active in the wide natural genetic background of rice and will be of greater use once their roles are functionally verified.

Keywords: transcriptomics, significance analysis of microarrays (SAM), rice, salt tolerance, gene ontology enrichment, regulatory network
INTRODUCTION

Abiotic stresses greatly reduce agricultural productivity worldwide. The yield of rice, one of the major food crops that feed the world, can be reduced by up to 50% making it highly sensitive to soil salinity. Salinity causes accumulation of excess Na\(^+\) and Cl\(^-\) in the shoot which is detrimental for plant nutrition and exerts osmotic stress and ionic toxicity that ultimately restricts plant growth (Munns et al., 2006; Flowers and Colmer, 2008; Munns and Tester, 2008). Salinity tolerance, a complex trait both physiologically and genetically, requires a wide range of physiological and biochemical responses by activating a complex network of genes upon exposure to stress (Cotsaftis et al., 2011; Wu et al., 2013). However, the naturally occurring genetic variation across rice varieties, cultivars, landraces and wild species provides the advantage to identify factors such as genes, proteins and metabolites which can be utilized by conventional breeding and genetic engineering technologies for improvement of crops’ tolerance to stresses (Langridge and Fleury, 2011; Horie and Karahara, 2012).

The advances in the high throughput multi-omics techniques along with the progress made in the ever spreading arena of bioinformatics, have given rise to the system biology approaches (Duque et al., 2013). This allows the investigation of the natural genotypic variation holistically to gain deeper biological insight on how the plant functions as a whole by discovering the putative functions of genes, proteins and metabolites in a specific biological context by dissecting the complex regulatory networks of genes, proteins, and metabolites associated with stress adaptation and tolerance (Mochida and Shinozaki, 2011; Shelden and Roessner, 2013).

Recently, there has been a substantial advancements in the technology of whole genome transcriptomic profiling and a number of crop species such as Arabidopsis (Kumari et al., 2008), barley (Close and Wanamaker, 2004), maize (Wang et al., 2003), and wheat (Clarke and Rahaman, 2005) etc., have been studied extensively. In rice, several microarray platforms were used such as cDNA microarrays (Ueda et al., 2006), NSF 45 K 70-mer oligo microarrays (Senadheera et al., 2009), Affymetrix gene chips (Walia et al., 2005; Walia and Wilson, 2007, 2009; Cotsaftis et al., 2011) and Agilent 44 k microarray (Aya et al., 2011) to study the response of plants toward stresses at transcriptome level.

Stress responsive transcripts, in most of the cases, are usually identified based on comparative and differential transcriptomic expression analysis in two to four genotypes showing extremely contrasting levels of tolerance which results in the findings being genotype specific. This ceases the opportunity to analyze the gradient of transcriptomic responses in diverse genotypes at a time and to correlate those with the changes in morpho-physiological responses to identify the significant transcripts and hence, the molecular functions and biological processes that are operating in species level as adaptive mechanisms (Feder and Walser, 2005; Hossain et al., 2015b). The recent advent of powerful and holistic analytical approaches of system biology such as the Significance Analysis of Microarrays (SAM) offer unique possibility in this regard. And such approaches of correlating the transcriptomic and morpho-physiological responses in a wide genetic background of rice under salt stress are yet to be explored.

SAM was first successfully used to identify the significant changes in transcriptional responses in human lymphoblastoid cells under ionizing radiation with a much lower estimated FDR (12%), compared to the higher FDRs (60–84%) of other conventional methods of analysis (Tusher et al., 2001). This study used a slightly modified version of SAM to suit it with the objective of analyzing the gradient of salinity induced transcriptomic and morpho-physiological responses in diverse genotypes of rice. To achieve this diversity, eight rice genotypes were used that are of diverse geographical origins and belong to different sub-species groups (such as indica, japonica, and wild species), different cultivar groups (such as landraces, cultivars, and high yielding varieties) with a reputation of different levels of tolerance to salinity stress (such as susceptible, moderately tolerant, and highly tolerant). Agilent’s 44 k oligo-microarrays were used as it provided less expensive yet reasonably sensitive profiling of the genome-wide transcriptional responses of such higher number of samples.

Thus, a modified SAM approach is used to interrogate the patterns of variation in gene expressions by the gradient of responses in morpho-physiological traits in a wide genetic background of rice represented by eight diverse (in terms of taxonomy, origin and salt sensitivity) genotypes in a way to identify the significant transcripts that is relative to the changes in a particular morpho-physiological trait under salt stress. These identified trait specific salinity induced transcripts are discussed along with their complex regulatory networks and the major biological processes and molecular functions that are operating in the wide genetic background of rice as adaptive mechanisms to cope with the stressed environments.

MATERIALS AND METHODS

Plant Materials

Eight rice genotypes (Table 1) consisting of landraces, cultivars, high yielding varieties (HYVs) and wild species and taxonomically belonging to three different rice sub-species groups namely, Indica, Japonica, and wild species, having diverse geographical origin and showing different levels of tolerance to salt stress were obtained from the International Rice Gene Bank Centre (IRGC) of the International Rice Research Institute (IRRI).

Hydroponic Culture Conditions and Salinity Treatments

Plants were grown twice maintaining the same environmental conditions in growth room. In the first growing, the seedlings in the flasks were challenged with 80 mM NaCl at 14 days after seeding emergence (DAE) and the data for the 14 morpho-physiological traits were collected within the next 7 days. The details of the traits (names of the traits are shown in Figure 1) can be found in Hossain et al. (2015a). In the second growing, 120 mM NaCl stress was used and total RNA from the whole seedlings was extracted after 48 h of stressed period (i.e., at 16 DAE) for whole genome transcriptome profiling. The details...
of the plant growth conditions, salinity treatments, and the collection of morpho-physiological data can be found in Hossain et al. (2015a).

Extraction and Quality Assessment of Total RNA

The total RNA was extracted from the 16 days old seedlings using the QIAGEN RNeasy Plant Mini Kit. For seedlings weighing more than the recommended amount of starting material (100 mg), the sections of root, stem, and leaves were used to represent the whole seedlings. Each sample from each individual seedling represented a replicate. The freshly harvested samples were snap frozen in liquid nitrogen and were immediately ground to a fine powder with pre-chilled mortar and pestle. The RNA was purified using an RNeasy spin column and an on-column DNase treatment. The total RNA was eluted in 30 μl of RNase free water and was immediately aliquoted and stored in a −70°C freezer. Only the eluted total RNA having the 260/280 and 260/230 ratios around 2.0 (as quantified by Nanodrop ND-1000 VIS spectrophotometer v. 3.2.1) and having the RNA integrity (RIN) value >7.0 (as detected by the Agilent 2100 bioanalyzer using the RNA 6000 Nano Labchip kit) were used hybridization.

Microarray Hybridization, Feature Extraction, and Rice Genome Array

The 48 extracted RNA samples were then prepared for microarray hybridization in the Genomics Services Facility of the University of Birmingham where cDNA synthesis, preparation of One-Color Spike-Mix, Cy3 labeling, microarray hybridization on Agilent 4 × 44 K rice oligo microarrays, scanning and feature extraction was carried out using Agilent's one color Quick Amp labeling kit (v.6.5, May 2010). The array represented about 43,803 rice genes with one 60-mer oligonucleotide probe representing each and consists of 32,325 probes corresponding to RAP loci with full-length representative cDNA, 6943 probes to RAP loci with EST support, 2612 probes to gene predicted loci and control probes including false positives and non-rice sequences etc.

All microarray data of this work is available from the NCBI-GEO website (http://www.ncbi.nlm.nih.gov/geo/) under GEO Series entry GSE79043.

Modified Significance Analysis of Microarrays (SAM)

The significance analysis of microarrays (http:// statist.wab.stanford.edu/~tibs/SAM/) was used to identify the salinity induced, trait specific significant transcripts in diverse rice genotypes. The basic principle of SAM includes scoring each of the transcripts based on the changes in both gene expression and response variable. And it uses repeated permutations of the data to determine if the change in the expression of any gene is significantly related to the changes in response variable.

This study adopted a little modification as it analyzed the control and treated data separately. Unlike the unstressed condition, the stressed condition rendered substantial amount of variation in both gene expression and morpho-physiological trait responses in the eight diverse rice genotypes. So, it was only sensible to analyze the treated data separately (which otherwise is analyzed together in a mono-genotypic study) allowing SAM to identify the stress inducible significant transcripts.

For a particular trait (e.g., for shoot Na) under stress condition, firstly the pre-processed (quantile normalized and log transformed) gene expression data of all the treated samples is arranged in a single spreadsheet (transcripts in rows; genotypes in column). The names of the samples (such as genotype-1, replication-1) in column heads are replaced by their corresponding trait responses which is weighted to a scale of 0 to 1. The SAM program is then ran using the response type as “quantitative” based on 100 permutations using SAM version 4.0 software. The significant genes (relative to shoot Na, in this instance) are selected based on the combined criteria of ≤5% FDR and ≥2-fold score. To analyze the same for the rest of the traits, the sample names in the original spreadsheet is replaced by the weighted ranks (0–1) of the trait in question. Further details of the SAM procedure used in this study can be found in Hossain (2014) and in SAM manual.

Gene Ontology (GO) Enrichment Analysis

The list of significant positively and negatively expressed genes were subjected to GO analysis using the AgriGO web-based tool (Du et al., 2010), available from http://bioinfo.cau.edu.cn/agriGO/index.php. Singular Enrichment Analysis (SEA) (Huang et al., 2009) was used to identify the biological processes or
FIGURE 1 | Number of significant positively (blue bars) and negatively (red bars) expressed probes for each of the 14 morpho-physiological traits in the eight rice genotypes representing wide natural variation under unstressed (A) and stressed (B) conditions as determined by the modified SAM approach. The complete lists of the significant probes along with the corresponding fold score (d), q-value and functional annotation can be found in Tables S1a–n, S2a–n.

the molecular functions that are significantly enriched by the identified positively or negatively expressed genes for each of the traits. "Rice TIGR gene model” were used as reference during SEA.

Mapping of the Genes on Chromosomes and the Regulatory Network of Genes

The list of probes was mapped in the 12 chromosomes of rice using the Chromosome Map Tool (http://viewer.shigen.info/oryzavw/maptool/MapTool.do) of GRAMENE genome browser database. The interactions between all the significant probes, as determined by SEA, were determined using the “The Rice Interactions Viewer” web based tool version Interactome 2.0 developed by the Bio-Analytic Resource- the BAR that queries a database of 37472 predicted and 430 confirmed Rice interacting proteins (http://bar.utoronto.ca/welcome.htm). Prior to using the "Rice Interactions Viewer," the RAP-DB gene Ids (e.g., Os06g0699400) were converted into MSU (TIGR) ID (e.g., LOC_Os06g48590) using the RiceXPro: Global gene expression profile web based tool (as shown in Table S4d).

RESULTS AND DISCUSSION

The gene expression data of eight rice genotypes were interrogated with their morpho-physiological data using modified SAM approach to identify the trait specific gene expression pattern in the wide genotypic background of rice under both stressed and unstressed conditions for each of the 14 morpho-physiological traits. The detailed morpho-physiological data (not shown here) are published as a separate article (Hossain et al., 2015a).

Globally, More Genes are Expressed under Salt Stress

In general, higher numbers of probes were found to be significantly expressed, both positively and negatively for most
of the important salinity tolerance related traits viz., shoot Na\(^+\), shoot Na\(^+\)/K\(^+\), Biomass, root K\(^+\), and shoot Cl\(^-\) under salt stress compared to that of unstressed conditions (Figure 1; Tables S1, S2). For example, 1275 and 2391 probes were positively and negatively expressed, respectively for shoot Na\(^+\), the single most important parameter to study salinity tolerance, under stressed condition compared to only 4 and 8 probes being positively and negatively expressed, respectively under unstressed conditions. Interestingly a very high number of genes were negatively expressed under stressed conditions, compared to that of under unstressed condition, for the trait “biomass” (Figure 1; Tables S1g, S2g, S3). All these probably indicate that plants deploy their adaptive mechanism by differentially activating a large number of genes under stressed conditions which otherwise is not activated constitutively.

Nonetheless, it is to keep in mind that these results are obtained by studying the RNA extracted from the whole seedling. And as gene expression, recently, is known to vary depending on cell or tissue types which can even be in opposite directions in some cases (Taylor-Teeples et al., 2011; Otsuki et al., 2014), verification of expression of all the identified genes in each cell or tissue types via in situ analysis will be helpful in revealing their exact roles in salinity tolerance mechanism.

Genes Involved in Ion Homeostasis and Transport

Lists of significant genes were mined manually to identify the putative genes that might be involved in ion transport with particular attention being given to the genes that were found to be significant for shoot Na and shoot Na/K. In total, 60 genes were found to be involved in ion homeostasis and transport processes (Table 2). Among the genes involved in sodium homeostasis, the notables are Na\(^+\)/H\(^+\) exchangers such as Os09g0286400, Os05g0382200, Os11g0648000, and Os12g0641100 and potassium transport related genes such as Os03g0656500, Os07g0102100, Os03g0337500, Os01g0932500, Os02g0519100, Os03g0575200, and Os04g0682800 etc. Genes for other cations such as Ca\(^{2+}\), Mg\(^{2+}\) and anions such as ammonium, nitrate, sulfate, and phosphate were also significantly expressed under salt stress.

Several membrane intrinsic and ion channel related genes having putative roles in ion homeostasis were also found to be significantly expressed e.g., aquaporin (Os09g0541000); membrane transporter (Os01g0704100), tonoplast integral protein (Os01g0975900, Os05g0231700); vesicle associated membrane protein (Os12g039800), and ion channels (Os04g0643600, Os06g0527400, Os02g025500, Os03g0758300, Os02g0117500, and Os01g0588200) etc. The cation transporter family protein (Os06g0701600) and cation/proton exchanger (Os01g0557500) are found to be negatively expressed for shoot Na.

Around 15 genes such as Os01g0298000, Os01g0356000, Os01g0609200, Os01g0609300, Os01g0966100 etc., were found to be involved in ABC transport (not shown in table). The ABC-transporter proteins are believed to transport various substrates such as ions, amino acids, sugars and peptides across cellular membranes besides their role in detoxification, plant growth and developmental processes (Martinova et al., 2002; Davidson et al., 2008). In yeast, ABC transporters are found to be involved in cation homeostasis but their role in plants is yet to be identified (Rea, 1999; Kang et al., 2010).

Global Regulation of Biological Processes (BP) under Salt Stress

More biological processes (BP) are significantly enriched by the induced genes (Table 3; Tables S4a,c, S5a,c) compared to that of by the constitutive genes (Tables S5b,c) as determined by the Singular Enrichment Analysis (SEA). Under unstressed conditions, no BPs were significantly enriched by the genes that are expressed for shoot Na\(^+\) and shoot Na\(^+\)/K\(^+\) (Table S5b1), whereas most of the BPs were enriched by the genes that are expressed for these tissue ion traits under stressed conditions (Table 3; Table S4b1). This clearly shows that salt stress activates a series of genes which enrich different BPs in response to the stress across the range of genotypes. The major BPs that are activated under stressed conditions are Apoptosis, Stress Response, Signaling process, Transport, Metabolic and Catabolic process, Cellular, and Developmental processes etc (Table 3). The role of individual genes is not described in detail in this section, instead is discussed according to the molecular functions enriched by these genes in the next section.

Global Regulation of Molecular Functions (MF) under Salt Stress

Salt stress significantly enriches more molecular functions (MF) in the wide genetic background of rice compared to unstressed conditions as determined by the SEA (Table 4; Tables S4a,c, S5a,c). Significant positively and negatively expressed transcripts under salt stress enriched a number of MF that includes signal transducer activity, transcription, and translation factory activity, serine hydrolase and metallooxepinase activity etc., (Table 4). The individual genes of important molecular functions are discussed below and the detailed discussion of all MFs can be found in Hossain (2014).

Signal Transducer Activity

Stress is first sensed by the receptors in membranes, which then generates secondary signal messengers like calcium, reactive oxygen species, kinases, and phosphates followed by the activation of transcription factor genes that eventually coordinates the plant's adaptive biochemical and physiological responses (Huang et al., 2012; Proietti et al., 2013). This study indentified 107 up-regulated and 54 down-regulated transcripts that are involved in signaling (Table 5).

Transcripts of three receptor like kinases (RLK) such as Os08g0442700, Os07g0134200, and Os06g0334300 are up-regulated. RLKs are known to play roles in stress defense by sensing the extracellular signals and activating downstream pathways by phosphorylating target proteins (Marshall et al., 2012; Tanaka et al., 2012). Very recently, in rice, a putative RLK gene, OsSIK1, with extracellular leucine-rich repeats (Ouyang et al., 2010) and a cysteine-rich repeat (CRR) RLK sub-family...
TABLE 2 | Lists of genes (among the significant genes for (a) shoot Na\(^+\) and (b) shoot Na\(^+\)/K\(^+\)) involved in ion homeostasis and transports under salinity stress in wide natural variation of rice genotypes.

Probe Name	Annotation	(a) among the significant genes for shoot Na\(^+\)	(b) among the significant genes for shoot Na\(^+\)/K\(^+\)
Os01g0557500	Cation/proton exchanger 1a.	−2.48	3.03
Os01g0645200	Bile acid:sodium symporter family protein.	−2.35	3.35
Os05g0382200	Na\(^+\)/H\(^+\) exchanging protein-like.	−2.11	4.88
Os06g0152200	Salt-tolerance protein.		
Os06g0701600	Cation transporter family protein.	−2.96	1.30
Os08g0503700	Sodium/sulfate symporter family protein.	−2.26	2.61
Os09g0286400	Sodium/hydrogen exchanger family protein.	2.25	2.34
Os09g0299400	Sodium-and chloride-activated ATP-sensitive potassium channel.	−2.72	1.79
Os09g0484900	Sodium-dicarboxylate cotransporter-like.	−2.01	3.89
Os10g0436900	Sodium/calcium exchanger family protein.	−2.13	4.88
Os11g0648000	Sodium/hydrogen exchanger subfamily protein.	2.13	2.61
Os12g0170300	Bile acid:sodium symporter family protein.	2.20	2.34
Os12g0641100	Sodium/hydrogen exchanger family protein.	−2.64	1.79
Os01g0210700	Potassium channel (Fragment).	−2.08	4.88
Os01g0369300	Potassium transporter 1 (AtPOT1) (AtKUP1) (AtKT1).	−2.11	4.88
Os01g0648000	Potassium channel.	2.84	1.36
Os01g0696100	K\(^+\) channel, two pore protein family.	2.33	1.79
Os01g0932500	K\(^+\) potassium transporter family protein.	2.65	1.36
Os02g0519100	K\(^+\) potassium transporter family protein.	2.40	1.79
Os02g0612700	K\(^+\) channel tetramerisation domain containing protein.	−2.52	2.51
Os03g0337500	K\(^+\) potassium transporter family protein.	−3.57	0.71
Os03g0575200	K\(^+\) potassium transporter family protein.	1.88	3.89
Os03g0656500	K-exchanger-like protein.	−2.24	3.62
Os04g0401700	Potassium transporter 5 (AtPOT5) (AtHAK1) (AtHAK5).	−2.15	3.29
Os04g0682800	Potassium efflux system protein family protein.	−2.28	2.81
Os06g0625900	Potassium transporter 8 (AtPOT8) (AtHAK8).	−2.94	1.44
Os06g0671000	Potassium transporter 1 (AtPOT1) (AtKUP1) (AtKT1).	−2.22	2.61
Os07g0102100	K\(^+\) potassium transporter family protein.	2.85	1.92
Os07g0669700	Potassium transporter 4 (AtPOT4) (AtKUP3) (AtKT4).	−3.17	0.93
Os01g0678500	Two-pore calcium channel.	−2.15	4.88
Os01g0908500	Mg\(^2+\) transporter protein, CorA-like family protein.	−2.13	4.88
Os02g0138900	Low affinity calcium antiporter CAX2.	−2.54	2.51
Os02g0720700	Cl\(^−\) channel, voltage gated family protein.	1.99	3.29
Os04g0605500	Calcium-transporting ATPase 8, plasma membrane-type	−2.93	1.44
Os04g0653200	Low affinity calcium transporter CAX2 (Fragment).	1.88	3.89
Os05g0594200	Calcium/proton exchanger superfamily protein.	2.65	3.03
Os03g0150800	High affinity phosphate transporter 2 (Phosphate transporter).	2.91	0.88
Os03g0161200	Sulfate transporter 3.1 (AST12) (AtST1).	−2.96	1.30
Os03g0165800	High affinity sulfate transporter.	3.62	0.38
Os03g0838400	Ammonium transporter.	−2.99	1.30
Os04g0185600	Phosphate transporter 6.	−3.65	0.71
Os05g0477800	High-affinity sulfate transporter HvST1.	2.69	1.09
Os08g0155400	Nitrate transporter (Fragment).	−2.67	2.15
Os08g0406400	Sulfate transporter (Fragment).	2.67	2.51
Os09g0240500	Sulfate transporter 4.1, chloroplast precursor (AST82).	−2.26	3.62
Os10g0444600	Phosphate transporter (Fragment).	−2.50	2.51
Os01g0588200	Voltage-dependent anion channel.	2.78	1.09

(Continued)
gene, ARCK1 (Tanaka et al., 2012) was reported to be induced by salt and drought stresses.

Transcripts of 5 Ethylene receptor genes such as Os05g0155200, Os07g0259100, Os03g0701700, Os04g0169100, and Os02g0820900 were found to be positively expressed under salt stress. The role of ethylene in salt stress response is reported to be equivocal (Achard et al., 2006) and In tobacco, an ethylene receptor gene, NTHK1 was reported to promote leaf growth (Cao et al., 2006), which demonstrated the significance of these ethylene receptor genes to be studied further in determining their role in salt tolerance.

Among the unscine-rich repeat containing transcripts, three (Os01g0239700, Os08g0446400, and Os01g0140400) and two (Os06g0172000 and Os11g0514500) were found to be negatively regulated in this study, respectively. Cheng et al. (2009) reported a leucine-rich-repeat type receptor-like protein kinase, OsRPK1 to be induced by multiple stresses in plasma membrane of cortex cells in rice roots and Lorenzo et al. (2009) reported an increased expression of leucine-rich gene, Srlk in Medicago truncatula roots upon exposure to salt stress. The Srlk gene also had a homolog, Os05g0414700, which was also found to be positively expressed in this study.

Protein kinases regulate the phosphorylation and dephosphorylation of other proteins and play a crucial role in stress signal transduction. To date, several plant protein kinases, particularly the mitogen-activated protein (MAPK/MPK) kinase are reported to be activated by osmotic stress (Fujita et al., 2006; Sinha et al., 2011). Five MAP kinases including MAP kinase 2 (Os06g0099400), 6 (Os06g0154500) and MAPK homolog MMK2 (Os10g0533600) were positively regulated and three MAP kinases (Os06g0708000, Os06g0567900, and Os05g0566400) are negatively expressed in wide natural rice variation (Table 5). In addition, Serine/threonine protein kinases have also been known to be involved in multi-stress tolerance in plants (Zhao et al., 2009). Among the serine/threonine kinases, four (Os01g0323000, Os01g0631700, Os10g0136400, and Os07g0537200) was positively expressed and only one (Os06g0496800) was found to be negatively regulated. At least, 33 and 13 protein kinase domain containing proteins were found to be positively and negatively expressed in the wide natural variation of rice genotypes.

Among the many other positively expressed transcripts, notable are heat shock protein, mannose binding, extensins, histidine kinases, NPH3 domain containing protein, and Zn-finger domain containing proteins. These transcripts were found to be located in all the chromosomes except in chromosome 11 and chromosomes 1, 2, 6, and 7 contained most of the genes (Figure S1).

Transcription Factor (TF) Activity

The rice genome is known to have 1772 TFs that generally falls under the family of WRKY, DREB, CBF, MYB, bZIP, ERF, zinc-finger, helix-loop-helix, and NAC (Sreenivasula and Miranda, 2004; Duque et al., 2013). Of the negatively expressed transcripts for shoot Na⁺/K⁺, 81 transcripts were found to significantly enrich the “Transcription factor activity” (Table 6 and Table S4a2). The four bZIP family TFs (Os01g0542700 encoding OsbZIP4, Os03g0770000 encoding OsbZIP32, Os08g0539000 encoding OsbZIP68, and Os11g0154800) that were found to be salt responsive in this study have not been reported before. Some of the identified salt and drought responsive bZIP proteins are OsZ8 (Mukherjee et al., 2006), OsbZIP15 (Zou et al., 2008), OsbZIP23 (Xiang et al., 2008), OsbZIP46 (Tang et al., 2012), OZAREB1 (Jin et al., 2010), and OsbZIP16 (Chen et al., 2012).

Among the 70 identified WRKY genes in rice and Arabidopsis (Goff et al., 2002; Dong et al., 2003), transcripts of 12 TFs were found to be salt stress responsive in this study (Table 6 and Table S4a2). Of these, OsWRKY6 (Os03g0798500) and OsWRKY42 (Os02g0462800) were found to be low phosphorus (Chen et al., 2009) and low boron (Kasajima et al., 2010) responsive, OsWRKY24 (Os01g0826400) stress responsive (Wei...
TABLE 3 | List of significant GO categories of biological process under stressed condition for significant positively and negatively expressed genes for different morpho-physiological traits as determined by Singular Enrichment Analysis.

GO Category: Biological Processes	Positively Expressed Genes	Negatively Expressed Genes						
	Shoot Na⁺	Shoot Na⁺/K⁺	Root K⁺	Shoot Na⁺	Shoot Na⁺/K⁺	Root K⁺		
Apoptosis	Programmed cell death	9						
Stress Response	Response to abiotic stimulus	29	12	29				
	Response to chemical stimulus (response to endogenous, organic substance, and hormone)	110	19	77	6			
	Response to biotic stimulus	8	14	11				
	Cellular response to stimulus	77		46				
Signaling process	Signal transduction, intracellular signaling process; signaling pathway	125						
Transport	Transmembrane transport	35						
	Di-, tri-valent inorganic cation transport; and transition metal ion transport	9	13					
Metabolic processes	Regulation of transcription, gene expression	177						
	Negative regulation of gene expression (silencing)	9						
	Translation	45						
	Cellular nitrogen compound biosynthetic process (amine, amino acid biosynthetic process)	61						
	Protein modification by small protein conjugation or removal	31	19	22				
	Protein amino acid dephosphorylation	16						
	Generation of precursor metabolites and energy (including photosynthesis, light harvesting)	26	43	67				
	Small molecule metabolic process	15		208				
	Cellular lipid metabolic process			51				
	Cellulose metabolic process			17				
	Secondary metabolic process	31	11	34				
Catabolic process	Including protein, polysaccharadie catabolic process	126						
Cellular process	Cell cycle	17	7	23				
	DNA conformation change (DNA packaging)	16						
	DNA recombination			32				
	Microtubule cytoskeleton organization	6						
	Cellular macromolecular complex subunit organization	19						
Developmental process	Multicellular organismal process	8	88	27	31	10		
	Cellular cell wall organization or biogenesis	70	9	13				
	Reproduction	66		18				
	Regulation of anatomical structure size	9						
	Oxidation reduction	29	6	54	12			

The details (GO terms, p-values, FDR values, GO flash charts and schematic diagrams) can be found in Tables S4b1,2.
Table 4: List of significant GO categories of molecular function under stressed condition for significant positively and negatively expressed genes for different morpho-physiological traits as determined by Singular Enrichment Analysis.

GO category: Molecular Functions	Positively expressed genes	Negatively expressed genes	
	Shoot Na⁺	Shoot Na⁺/K⁺ Root K⁺	Shoot Na⁻ Shoot Na⁺/K⁺ Root K⁺ Biomass
Signal transducer activity	107	56	
Transcription factor activity	81	26	
Translation factor activity	36	26	
SNAP receptor activity	6	6	
Chaperone binding	6	6	
Manganese ion binding	8	18	
Alkaline metal ion binding	18	18	
2 iron, 2 sulfur cluster binding	5		
Phosphoprotein phosphatase activity (including protein serine/threonine phosphatase activity)	21		
Protein methytransferase activity	13	5	
Serine O-acetyltransferase activity (including serine O-acetyltransferase activity)	5		
Serine hydrolyase activity	10	55	
Metalloexopeptidase activity	16	9	
Oxidoreductase activity, acting on CH-OH group of donors	25	5	17
Oxidoreductase activity, acting on single donors with incorporation of molecular oxygen	9	39	12
Electron carrier activity	27	125	
	6	48	
	109	17	

The details of the GO terms, p-values, FDR values, GO flash charts and schematic diagrams can be found in Tables S4a1,a2,c.

et al., 2013); OsWRKY34 (Os01g0665500 and Os07g0583700) cold responsive (Zou et al., 2010); OsWRKY34 (Os02g0265200) heat responsive; all in Arabidopsis (Li et al., 2010). However, the TFs WRKY31 (Os01g0750100), WRKY32 (Os02g0770500), WRKY44 (Os04g0276200), WRKY49 (Os01g0730700), WRKY63 (Os06g0158100), and WRKY71 (Os02g0181300) were not reported earlier.

The other important TFs found to be salt responsive in this study include CBF like protein, E2F protein, ethylene responsive TFs, heat shock, and MADS-box proteins and AP2 domain containing proteins (Table 6 and Table S4a2). Chromosome 1, 2, and 3 contain most of the genes while no genes were located in chromosome 10 and 12 (Figure S2). Some of these TFs are reported to play roles in abiotic and biotic stress tolerance in rice and other crops; however, a detailed investigation of the previously unidentified TFs will provide valuable information in explaining salinity tolerance mechanisms in rice.

Translation Factor Activity

The regulation of translation, that facilitates the selective synthesis of required proteins, is one of the versatile strategies plants have evolved to cope with the environmental stresses. Generally, in eukaryotes, eukaryotic initiation factor (eIF4E) recognizes the 5’-cap structure of mRNAs to begin the canonical cap-dependent translation. The eIF4G and eIF4A then interacts with eIF4E to form the eIF4F (cap-binding complex) and the factors eIF4B, eIF3, eIF1, and eIF1A are subsequently recruited that ultimately regulates translation (Echevarría-Zomeño et al., 2013). Under stresses, the eukaryotic cells usually inhibit this translation initiation that affects the activity of initiation factor eIF2 and eIF4E, a mechanism mainly unknown in plants (Wek et al., 2006; Muñoz and Castellano, 2012). In this study, among the significantly positively and negatively expressed genes, 36 and 26 genes, respectively were found to enrich the translation factor activity (Table 7, Table S4a2; Figure S3).

Among the up-regulated genes the most noticeable fall under the category of translation initiation factors such as Os02g0146600 (eIF4A), Os03g0566800 (eIF4A-3), Os05g0566500 (eIF3 zeta), Os07g0124500 (eIF3 p110), Os07g0555200 (eIF4G), Os07g0597000 (eIF-5A), Os03g0758800, and Os12g0507200 (eIF-5A) (eIF-4D), Os05g0592600 (eIF 2 family protein), Os02g0101100 (eIF 3 family protein) and Os02g0557600, and Os05g0498400 (IF SUI1 family protein); transcription elongation factors such as Os03g0196900 (TFIIB), Os11g0166800 (TFII-I), Os03g0441000 and Os01g0846900 (TFIIF), Os07g0662500 (EF-1-beta), Os06g0571400 (EF-1-gamma), Os01g0742200 (EF-2), and Os03g0565500 (mEF-G-1) etc.

Several elongation factors e.g., Os03g0177400 and Os03g0178000 (EF-1 alpha), Os11g0116400 (EF-P), Os12g0541500
TABLE 5 | Lists of positively (a) and negatively (b) expressed significant transcripts (for shoot Na⁺/K⁺) that are involved in the Molecular Function “Signal transducer activity” as determined by the Singular Enrichment Analysis (SEA).

Name	Annotation
(a) Positively expressed transcripts (107)	
Os08g0442700, Os07g0134200, Os06g0334300	Receptor-like kinase, Receptor-like protein kinase 3
Os07g0107800	Phytosulfokine receptor precursor (EC 2.7.1.37)
Os05g0155200, Os07g0259100, Os03g0701700, Os04g0168100, Os02g0820900	Ethylene receptor, Ethylene receptor homolog, Ethylene receptor-like protein 2
Os07g0132500	Lectin-like receptor kinase 7:2
Os01g0239700, Os08g0445400, Os01g0140400	Leucine-rich receptor-like protein kinase
Os01g0383600	Lung seven transmembrane receptor family protein
Os07g0522600	Metabotropic γ-aminobutyric acid receptor, type B family protein
Os02g0131600	Mitochondrial import receptor subunit TOM22, TOM9 homolog
Os02g0117500	Glutamate receptor 3.2 precursor (AtGluR2)
Os02g0245100	Peroxisomal targeting signal type 2 receptor
Os06g0225200	Brassinosteroid insensitive 1-associated receptor kinase 1 precursor
Os01g0665200	Mitogen-activated protein kinase, Blast and wounding induced
Os06g0699400	MAP kinase 2
Os05g0576800	MAP kinase homolog
Os06g0154500	Mitogen-activated protein kinase (MAP kinase 6)
Os10g0533600	Mitogen-activated protein kinase homolog MMK2 (EC 2.7.1.37)
Os09g0349800, Os09g0349600, Os08g0493800, Os04g0540900, Os02g0111800, Os08g0693200, Os02g0153200, Os04g0658700, Os03g0791700, Os05g0525600, Os08g0203700, Os02g0151100, Os01g0976900, Os10g0155800, Os01g0960400, Os10g0497600, Os01g0666200, Os01g0110500, Os01g0741200, Os02g0218400, Os02g0277700, Os02g0153100, Os03g0148700, Os06g0693000, Os01g0514700, Os01g0114900, Os01g0738300, Os05g0414700, Os06g0654600, Os10g0533800, Os07g0131100, Os03g0772600, Os12g0562500, Os01g0323000, Os01g0631700, Os10g0136400, Os07g0537200, Os01g0223900, Os02g0527900, Os02g0150800, Os12g0256000, Os05g0407500, Os07g0613300, Os03g0284100, Os03g0637600, Os08g0332800, Os08g0230300, Os06g0199800, Os06g0111400, Os06g0163000, Os01g0923700, Os01g0114700, Os07g0584200, Os04g0477000, Os06g0625300, Os06g0687800, Os07g0130700, Os08g0376700, Os02g0618200, Os06g0654300, Os09g0532400, Os03g0224200, Os07g0537900, Os05g0525000	Protein kinase family protein, Serine/threonine kinase, Ser Thr specific protein kinase-like protein, Curculin-like (mannose-binding) lectin domain containing protein, Cyclin-like F-box domain containing protein, Esterase/lipase/thioesterase domain containing protein, Exportin-1, Expressed protein (Pseudo-response regulator 9) (Timing of CAB expression 1-like protein), Extensin protein-like, F7018.23 protein (SWP1) (Struwwelpeter 1 protein), Galactose oxidase, central domain containing protein, GPCR, family 2, secretin-like protein, Guanine nucleotide binding protein, alpha subunit family protein, Heat shock protein STI (Stress inducible protein) [GmSTI], Histidine kinase-like protein, LRK33, NPH3 domain containing protein, Peptidoglycan-binding LysM domain containing protein, Pincher, Resistance protein candidate (Fragment), Response regulator 1, Response regulator receiver domain containing protein, SRK3 gene, TMK protein precursor

(Continued)
Name	Annotation
Os01g0904700, Os06g0183100	Two-component response regulator ARR1. Splice isoform 2
Os06g0574200, Os02g0218600	UspA domain containing protein
Os09g0416700	Vesicle transport v-SNARE family protein
Os02g0205400	WD40-like domain containing protein
Os02g0830200, Os04g0524300	ZmRR2 protein (Response regulator 2)
Os05g0112000, Os03g0974400, Os03g0275300	Zn-finger, RING domain containing protein
Os06g0716000, Os04g0433600	Protein of unknown function DUF668 family protein
Os09g0573200, Os07g0501800, Os04g0631900, Os01g0690900	Conserved hypothetical protein
Os03g0738800, Os07g0501800, Os04g0631900, Os01g0690900	Hypothetical protein

(b) Negatively expressed transcripts (54)

Name	Annotation
Os10g0346600	BP-80 vacuolar sorting receptor
Os11g0473000	ER lumen protein retaining receptor (HDEL receptor)
Os05g0529300	ER lumen protein retaining receptor (HDEL receptor)
Os06g080500	Glutamate receptor 3.1 precursor (Ligand-gated ion channel) (AtGLR2)
Os06g0717200	Leucine-rich repeat/receptor protein kinase precursor
Os11g0514500	Leucine-rich repeat-containing extracellular glycoprotein precursor
Os03g0343400	Photolyase/blue-light photoreceptor (PHR2)
Os01g0176400	Photoreceptor-interacting protein-like
Os01g0114600	Receptor-like kinase ARK1AS (Fragment)
Os06g0498800	Serine/threonine kinase receptor precursor
Os08g0480100	Signal recognition particle receptor protein (Fragment)
Os05g0103700, Os08g0174700	Somatic embryogenesis receptor kinase-like protein
Os06g0708000	MAP kinase homolog
Os06g0367900	Mitogen-activated protein kinase homolog
Os05g0566400	Mitogen-activated protein kinase homolog
Os01g0208800, Os08g0203400, Os05g0588300, Os05g0258400, Os01g0118300, Os11g0514500, Os01g0779300, Os02g0106900	Protein kinase domain containing protein
Os11g0678000, Os01g0111400	Protein kinase family protein
Os01g0121100	AR401
Os01g0958100	Cell division transporter substrate-binding protein, FtsY family protein
Os03g0284100	Expressed protein (Pseudo-response regulator 9) (Timing of CAB expression 1-like protein)
Os03g0637600	Extensin protein-like
Os07g0535700	F-box protein interaction domain containing protein
Os06g0111400	Guanine nucleotide binding protein (G-protein), alpha subunit family protein
Os11g0296700	Guanine nucleotide binding protein (G-protein)
Os05g0186100	Histidine-containing phosphotransfer protein 4
Os01g0855600	Hs1pro-1 protein
Os02g0259100	Hypothetical protein
Os02g0459600	Legume lectin, beta chain containing protein
Os11g0102200	NPH1-1
Os03g026700, Os12g0117600, Os11g0118300, Os03g0347700, Os11g0118600	NPH3 domain containing protein
Os05g0127200	Phosphoinositide-specific phospholipase C (PLC) family protein
Os07g0694000	Phosphoinositide-specific phospholipase C
Os07g0695100	Response regulator receiver domain containing protein
Os02g0272900	Rhodanese-like domain containing protein
Os12g0117400	RPT2-like protein
Os11g0143300	Type-A response regulator
Os01g0560200, Os01g0707300	Vesicle transport v-SNARE family protein

The chromosomal distribution of the positively expressed genes is shown in Figure S1.
TABLE 6 | Lists of significant transcripts (for shoot Na+/K+) that are involved in transcription factor activity as determined by the Singular Enrichment Analysis (SEA).

Name	Annotation
Os01g00952800	Basic helix-loop-helix dimerisation region bHLH domain containing protein
Os01g0542700	Basic-leucine zipper (bZIP) transcription factor domain
Os03g0770000	containing protein
Os08g0543900	BZIP transcription factor RF2b
Os11g0154800	DNA-binding factor of bZIP class (Fragment)
Os01g0862400	WRKY transcription factor 24
Os01g0750100	WRKY transcription factor 31
Os02g0770500	WRKY transcription factor 32
Os01g0665500	WRKY transcription factor 34
Os07g0583700	
Os02g0265200	WRKY transcription factor 39
Os02g04682800	WRKY transcription factor 42 (Transcription factor WRKY02)
Os08g0276200	WRKY transcription factor 44 (WRKY DNA-binding protein 44)
Os01g0730700	WRKY transcription factor 49
Os03g0798500	WRKY transcription factor 6
Os06g0158100	WRKY transcription factor 63
Os02g0181300	WRKY transcription factor 71 (Transcription factor WRKY09)
Os03g0680800	BEL1-related homeotic protein 14 (Fragment)
Os03g0762000	Casin kinase II alpha subunit
Os06g0127100	CBF-like protein
Os02g0203000	Concanavalin A-like lectin/glucanase domain containing protein
Os04g0597300	DNA-binding WRKY domain containing protein
Os01g0678700	DP protein
Os01g0165000	DRE binding protein 2
Os03g0152100	E2F dimerization factor
Os02g0537500	E2F homolog
Os04g0689200	Ethylene response factor 3
Os05g0497200	Ethylene responsive element binding factor 4 (AtERF4)
Os05g0497300	Ethylene responsive element binding factor 5 (AtERF5)
Os06g0194000	
Os02g0655200	Ethylene responsive element binding factor 3 (OsERF3)
Os01g0934300	Flowering-time protein isoform beta
Os01g0658900	G-box binding factor 1
Os03g0640800	HD-Zip protein (Homeodomain transcription factor) (ATHB-14)
Os03g0745000	Heat shock factor (HSF)-type, DNA-binding domain containing protein
Os02g0232000	Heat shock transcription factor 29 (Fragment)
Os03g0854500	Heat shock transcription factor 31 (Fragment)
Os06g0603000	Heme oxygenase 1 (Fragment)
Os02g0147800	Homeo protein (Fragment)
Os01g08118400	Homeobox domain containing protein
Os03g0109400	
Os04g0541700	
Os04g0548700	
Os05g0129700	Homeobox protein rough sheath 1
Os03g0188900	Homeobox-leucine zipper protein ATHB-6 (Homeodomain transcription factor ATHB-6) (HD-ZIP protein ATHB-6)
Os09g0528200	Homeodomain leucine zipper protein (Fragment)
Os03g0224700	HSP protein (Fragment)

(Continued)

The chromosomal distribution of the positively expressed genes is shown in Figure S2.

(Continued)

TABLE 6 | Continued

Name	Annotation
Os03g0673000	Knotted1-type homeobox protein OS10 (Fragment)
Os03g0727200	Knotted1-type homeobox protein OS9
Os01g0201700	MADS box protein
Os06g0712700	MADS-box protein SPW1
Os05g0437700	OSE2-like protein (Fragment)
Os02g0797100	Pathogenesis-related transcriptional factor and ERF domain containing protein
Os04g0547600	
Os04g0610400	
Os05g0549800	
Os06g0691100	
Os07g0227600	
Os08g0408500	
Os08g0532100	
Os11g0129700	
Os01g0883100	PISTILLATA-like MADS box protein
Os01g01744000	Protein HY5 (AtbZIP56)
Os06g0712600	Protein of unknown function DUF702 family protein
Os02g0649300	Short highly repeated, dispersed DNA (Fragment)
Os06g0252300	TF-like protein (Fragment)
Os01g0899800	ANT (Ovule development protein aintegumenta)
Os06g0067500	
Os02g0341000	AP2 domain containing protein RAP2.2 (Fragment)
Os03g0191900	AP2 domain family transcription factor homolog (AP2 domain transcription factor)
Os09g0369000	AP2 domain transcription factor RAP2.3 (Related to AP2 protein 3)
Os02g0657000	AP2 domain-containing protein RAP211
Os09g0423800	AP2-1 protein (Fragment)
Os02g0548600	AP2-domain DNA-binding protein
Os04g0539500	AtGATA-3 protein (GATA transcription factor 3)
Os03g0313100	BABY BOOM
Os08g0442400	
Os08g0472400	Conserved hypothetical protein
Os09g0456700	
Os01g0203000	Hypothetical protein
Os03g0263000	

(EF-Ts), Os07g0614500 (EF-1-beta), and Os02g0220500 and Os02g0220600 (EF-1-gamma) etc., and several translation initiation factors e.g., Os02g0300700 (EIF-1A), Os07g0681000 (eIF-2-beta) (P38), Os01g0120800 (eIF-3 theta), Os07g0167000 (eIF-3 p48), Os01g0970400 (eIF4E-1), Os02g0794400 (IF-3 family protein), Os05g0107700 (TFIIF-3 family protein), and Os07g0639800 (IF6 family protein) etc., were also found to be negatively expressed.

SNAP Receptor and Chaperone Activity

SNAP receptor activity is regulated by a super family of proteins known as SNAREs [soluble N-ethylmaleimide-sensitive-sensitive factor (NSF) attachment protein receptors] that act as a marker to identify a membrane and selectively interact with SNAREs on other membrane surfaces to mediate membrane fusion thus providing a continuous flux of membranes via transport vesicles. This vesicle traffic is believed to be involved in cell homeostasis,
growth, and development of plants (Tyrrell et al., 2007; Kim and Brandizzi, 2012). In this study, among the genes that are negatively expressed for shoot Na/K, six genes that significantly enriched the SNAP receptor activity in wide rice genotypes under salt stress were identified (Table S4a2). The bet like SNARE-AtBS14a (Os02g0820700 and Os08g0563300) that were found to be significant was reported to control cell growth in Arabidopsis (Tai and Banfield, 2001). The syntexin identified is AtSYP52 (encoded by Os02g0119400) was very recently described to act as t-SNARE when distributed in membrane TGN/PVC and plays a putative inhibitory role when present on the tonoplast in Arabidopsis (Benedictis et al., 2013). Another syntexin, OSM1/SYP61, was also reported to be involved in osmotic stress tolerance in Arabidopsis (Zhu et al., 2002). However, three other syntexins encoded by Os07g0164300, Os01g0254900, and Os06g0168500 that were found to be significant in this study might be novel syntexin and it would be of interest to know their specific role in future.

Chaperones are proteins involved in non-covalent folding or unfolding of other proteins and are believed to be expressed in response to high temperature and other cellular stresses. Yamada et al. (2002) identified a cytosolic chaperonin-containing TCP-1α (CCTα) homolog that displayed enhanced salt tolerance in the mangrove plant, Bruguiera sexangularia. In this study, six transcripts that significantly enriched chaperone binding
activity under salt stress were identified. These are GrpE type 2 (Os08g0338700), GrpE protein family protein (Os04g0431100 and Os09g0284400), DRF2 (Os12g0456200) and one protein of unknown function (Os12g0456200) and another conserved hypothetical protein (Table S4a2).

Interacting Network of Genes under Salt Stress

The interactive networks analysis of all the significant genes (in total 578), as determined by SEA, revealed two networks (Figure 2). In the larger network, LOC_Os03g08050 (Os03g0177400) seemed to be the central protein which encodes for “Protein elongation factor (EF-1 alpha).” Most of the proteins in this network seem to be localized mainly in nucleus (blue), cytoplasm (pink), and mitochondria (light blue) and encode mainly for the translation factors such as LOC_Os02g56740 (protein translation initiation factor eIF-2B subunit epsilon, LOC_Os05g51500 (protein eukaryotic translation initiation factor 5B), LOC_Os07g44620 (protein eukaryotic translation initiation factor 6), LOC_Os05g41900 (protein translation initiation factor SUI1), LOC_Os02g19770 (protein eukaryotic translation initiation factor 1A), LOC_Os07g36940 (protein eukaryotic translation initiation factor 4G) etc., and transcription factors such as LOC_Os06g14190 (protein NF-XI-type zinc finger protein). On the contrary, only a few proteins are located in the chloroplast (green) and plasma membrane (brown) and vacuole (yellow). The proteins localized in the chloroplast (green) are mainly catalytic proteins such as LOC_Os12g13390 (protein aspartyl aminopeptidase, putative), LOC_Os01g13190 (protein histidinol dehydrogenase, chloroplast precursor), LOC_Os02g10120 (protein lipoxygenase) and LOC_Os07g42180 (protein exportin 1). Proteins expressed in the vacuole includes LOC_Os06g23160 (protein bacterial transferase hexapeptide domain containing protein), LOC_Os01g12870 (protein eukaryotic translation initiation factor 3 subunit E-interacting protein), and LOC_Os02g39350 (protein eukaryotic translation initiation factor 2A) etc.

In the smaller network, all the proteins are SNAREs type proteins (SNAP receptor activity) with three localized in the vacuole encoding syntaxin (LOC_Os01g15110), vesicle transport v-SNARE protein (LOC_Os01g51120), and SNARE domain containing protein (LOC_Os02g02720) and one localized in the plasma membrane encoding vesicle transport v-SNARE protein (LOC_Os01g37980).

These finding probably points toward the hypothesis that in the wide natural gene pool, transcription and translation...
factor genes are the main regulators under salt stress and these genes are probably the initial defense response that co-regulates in an interactive manner which ultimately cascades to induce the downstream genes that are essential for adaptation to environmental stresses.

CONCLUSION

The genes that are identified here provide a synergistic global salinity response picture representing the mechanisms that are active in the wide natural variation of rice genotypes which may not be referred back to individual genotypes in the context of this study (as gene expression responses of all the genotypes were analyzed together) but might be of interest to look at their specific role in individual rice genotypes in future. Besides, the gene expression profile of these genes in different cell or tissue types may also needed to be studied in a way to verify the pathways they are involved in via in situ analysis that will help to better understand their roles in salinity tolerance mechanism. Nonetheless, the products of these genes may hold the key to the evolutionary adaptive mechanism to cope with saline environments. Several of the identified genes were reported before either in rice or in other crop species, however, the novel genes and the genes with unknown function may enhance our understanding of stress adaptation once the role of these genes are functionally verified.

AUTHOR CONTRIBUTIONS

MH, GB, JP, and BF jointly conceptualized and designed the project. MH has conducted all experiments, generated, and analyzed the data and prepared the draft script. GS helped in lab work, analysis and in finalizing the draft. JP, GB, and BL supervised the work, interpreted the results, and finalized the manuscript.

ACKNOWLEDGMENTS

This research and MRH was sponsored by The Commonwealth Scholarship Commission in the United Kingdom. GWB was supported by BBSRC grants BB/L010232/1, BB/J017604/1 and BB/N009754/1. We thank Dr. Glenn Gregorio and Flora de Guzman (IRRI) for providing the rice seeds and Dr. Gillian Kingston (Facility for Environmental Nanoscience Analysis and Characterization, the University of Birmingham, UK) for technical assistance with the ion analysis and the Genomic Services Facility team of the University of Birmingham, UK for their support during the entire processes of microarray experiment.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/pls.2016.00567

Figure S1 | The chromosomal distribution of the 107 positively expressed genes across the 12 chromosomes that significantly enriched the “signal transducer activity.” The chromosome map is obtained by submitting the list of genes to the web based “Chromosome Map Tool” http://viewer.sigen.info/oryzaw/maptool/MapTool.do (see Materials and Methods Section for details).

Figure S2 | The chromosomal distribution of the 81 negatively expressed genes across the 12 chromosomes that significantly enriched the “transcription factor activity.”

Figure S3 | The chromosomal distribution of the 36 positively (A) and 26 negatively (B) expressed genes for shoot Na/K that significantly enriched translation factor activity in wide natural rice genotypes under salt stress.

Table S1 | (a–n) Positively and negatively regulated significant probes for each of the 14 morpho-physiological traits in the eight rice genotypes representing wide natural variation in terms of salinity tolerance and genetic diversity under unstressed condition determined by Significance Analysis of Microarrays (SAM). Significant probes were selected based on the criteria of FDR <5% (q-value) and fold score >2.0 (d) and are presented along with the corresponding Locus ID and annotation.

Table S2 | (a–n) Positively and negatively regulated significant probes for each of the 14 morpho-physiological traits in the eight rice genotypes representing wide natural variation in terms of salinity tolerance and genetic diversity under stressed condition determined by Significance Analysis of Microarrays (SAM). Significant probes were selected based on the criteria of FDR <5% (q-value) and fold score >2.0 (d) and are presented along with the corresponding Locus ID and annotation.

Table S3 | Lists of probes along with the corresponding functional annotation and fold scores that commonly regulated for the trait Biomass under unstressed and stressed conditions in wide natural variation of rice genotypes.

Table S4 | Lists of significant GO categories of molecular functions and biological processes along with GO terms, p-values, FDR values, GO flash charts and schematic diagrams under unstressed condition for differentially regulated (positive and negative) genes for different morpho-physiological traits (determined by SEA analysis).

Table S5 | Lists of significant GO categories of molecular functions and biological processes along with GO terms, p-values, FDR values, GO flash charts and schematic diagrams under stressed condition for differentially regulated (positive and negative) genes for different morpho-physiological traits (determined by SEA analysis).

REFERENCES

Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schouteten, H., Moritz, T., et al. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94. doi: 10.1126/science.1118642
Aya, K., Suzuki, G., Suwabe, K., Hobo, T., Takahashi, H., Shiono, K., et al. (2011). Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS ONE 6:e26162. doi: 10.1371/journal.pone.0026162

Benedictis, M., Bleve, G., Faraco, M., Stigliano, E., Grieco, F., Piro, G., et al. (2013). AtSY5P51/52 functions diverge in the post-golgi traffic and differently affect vascular sorting. Mol. Plant 6, 916–930. doi: 10.1093/mp/sss117
Cao, W. H., Liu, J., Zhou, Q. Y., Cao, Y. R., Zheng, S. F., Du, B. X., et al. (2006). Expression of tobacco ethylene receptor NTHKT1 alters plant responses to salt stress. Plant Cell Environ. 29, 1210–1219. doi: 10.1111/j.1365-3040.2006.01501.x
Chen, H., Chen, W., Zhou, J. L., He, H., Chen, L. B., Chen, H. D., et al. (2012). Basic leucine zipper transcription factor OsbZIP16 positively regulates...
drought resistance in rice. Plant Sci. 193, 8–17. doi: 10.1016/j.plantsci.2012.05.003
Chen, Y. F., Li, L. Q., Xu, Q., Kong, Y. H., Wang, H., and Wu, W. H. (2009). The WRKY transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21, 3554–3566. doi: 10.1105/tpc.108.064980
Cheng, Y., Qi, Y., Zhu, Q., Chen, X., Wang, N., Zhao, X., et al. (2009). New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9, 3101–3114. doi: 10.1002/pmic.200800340
Clarke, B., and Rahman, S. (2005). A microarray analysis of wheat grain hardness. Theor. Appl. Genet. 110, 1259–1267. doi: 10.1007/s00122-005-1962-3
Close, T. J., and Wamamaker, S. I. (2004). A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol. 134, 960–968. doi: 10.1104/pp.103.034462
Cota-Robles, O., Platt, D., Johnson, A. A. T., Walia, H., Wilson, C., Ismail, A. M., et al. (2011). Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. Mol. Plant 4, 25–41. doi: 10.1093/mp/spq056
Davidson, A. L., Dassa, E., Orelle, C., and Chen, J. (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. R. 72, 317–364. doi: 10.1128/MMBR.00031-07
Dong, J., Chen, C., and Chen, Z. (2003). Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol. Biol. 51, 21–37. doi: 10.1023/A:1020780022549
Du, Z., Zhou, X., Ling, Y., Zhang, Z. H., and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, W64–W70. doi: 10.1093/nar/gkq310
Duque, A. S., Almeida, A. M., De Silva, A. B., Da Silva, J. M., Farinha, A. P., Santos, D., et al. (2013). “Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive,” in Abiotic Stress - Plant Responses and Applications in Agriculture, eds K. Hvaldati and C. Leslie (Rijeka: InTech), 3–23. doi: 10.5772/52779
Echevarría-Zomeño, S., Yánguez, E., Fernández-Bautista, N., Castro-Sanz, A., Ferrando, A., and Castellano, M. (2013). Regulation of translation initiation under biotic and abiotic stresses. Int. J. Mol. Sci. 14, 4670–4683. doi: 10.3390/ijms14094670
Feder, M. E., and Walser, J. C. (2005). The biological limitations of transcriptomics in elucidating stress and stress responses. J. Evol. Biol. 18, 901–910. doi: 10.1111/j.1420-9101.2005.00921.x
Flowers, T. J., and Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytol. 179, 945–963. doi: 10.1111/j.1469-8137.2008.02531.x
Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Flowers, T. J., and Colmer, T. D. (2008). Salinity tolerance in halophytes. Physiol. Plant. 139, 80–92. doi: 10.1111/j.1399-3054.2010.01349.x
Kim, S. J., and Brandizzi, F. (2012). News and views into the SNARE complexity in Arabidopsis. Front. Plant. Sci. 3:28. doi: 10.3389/fpls.2012.00028
Kumari, M., Taylor, G. J., and Deyholos, M. K. (2008). Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol. Genet. Genom. 279, 339–357. doi: 10.1007/s00442-008-0888-5
Langridge, P., and Fleury, D. (2011). Making the most of ‘omics’ for crop breeding. Trends Biotechnol. 29, 33–40. doi: 10.1016/j.tibtech.2010.09.006
Li, S., Zhou, X., Chen, L., Huang, W., and Yu, D. (2010). Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells 29, 475–483. doi: 10.1007/s10059-010-0059-2
Lorenzo, L., Merchant, F., Laporte, P., Thompson, R., Clarke, J., Sousa, C., et al. (2009). A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21, 668–680. doi: 10.1105/tpc.108.069576
Marshall, A., Aulen, R. B., Audenaert, D., Beeckman, T., Broadley, M. R., Butenko, M. A., et al. (2012). Tackling drought stress: receptor-Like kinases present new approaches. Plant Cell 24, 2262–2278. doi: 10.1105/tpc.112.096677
Martinoia, E., Klein, M., Geisler, M., Bovet, L., Forestier, C., Kolukisaoglu, U., et al. (2002). Multifunctionality of plant ABC transporters–more than just detoxifiers. Planta 214, 345–355. doi: 10.1007/s004250100661
Mochida, K., and Shinozaki, K. (2011). Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol. 52, 2017–2038. doi: 10.1093/pcp/pcr153
Mukherjee, K., Choudhury, A., Gupta, B., Gupta, S., and Sengupta, D. (2006). An ABRE-binding factor, OSBZ4, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of Indica rice. BMC Plant Biol. 6:18. doi: 10.1186/1471-2229-6-18
Munns, R., James, R. A., and Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57, 1025–1043. doi: 10.1093/jxb/erj100
Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911
Muñoz, A., and Castellano, M. M. (2012). Regulation of translation initiation under abiotic stress conditions in plants: is it a conserved or not so conserved process among eukaryotes? Comp. Funct. Genom. 2012;406357. doi: 10.1155/2012/406357
Otsuki, L., Cheetham, S. W., and Brand, A. H. (2014). Freedom of expression: cell-type-specific gene profiling. Wiley Interdiscip. Rev. Dev. Biol. 3, 429–443. doi: 10.1002/wdev.149
Ouyang, S. Q., Liu, Y. F., Liu, P., Lei, G., He, S. J., Ma, B., et al. (2010). Receptor-like kinase OsSKI1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J. 62, 316–329. doi: 10.1111/j.1365-313X.2010.04146.x
Pietroj, S., Bertini, L., Timperio, A. M., Zolla, L., Caporale, C., and Caruso, C. (2013). Crosstalk between salicylic acid and jasmonate in Arabidopsis investigated by an integrated proteomic and transcriptomic approach. Mol. Biosyst. 9, 1169–1187. doi: 10.1039/c3mb25569g
Rea, P. A. (1999). MRP subfamily ABC transporters from plants and yeast. J. Exp. Bot. 50, 895–913. doi: 10.1093/jxb/er42
Senadheera, P., Singh, R. K., and Maathuis, F. J. M. (2009). Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance. J. Exp. Bot. 60, 2553–2563. doi: 10.1093/jxb/erp099
Shelden, M. C., and Roesner, U. (2013). Advances in functional genomics for investigating salinity stress tolerance mechanisms in crops. Front. Plant. Sci. 4:123. doi: 10.3389/fpls.2013.00123
Sinha, A. K., Jaggi, M., Raghuram, B., and Tuteja, N. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal. Behav. 6, 196–203. doi: 10.4161/psb.6.2.14701
Sreenivasulu, N., and Miranda, M. (2004). Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically up-regulated by NaCl in a salt-tolerant line. *Plant Physiol.* 139, 822–835. doi: 10.1109/pcp.14511.1101112

Tai, W. C., and Banfield, D. K. (2001). AtBS1α and AtBS1β, two Bet1/Sft1-like SNAREs from Arabidopsis thaliana that complement mutations in the yeast SFT1 gene. *FEMS Lett.* 500, 177–182. doi: 10.1016/S0168-1605(01)02518-5

Tanaka, H., Osakabe, Y., Katsura, S., Mizuno, S., Maruyama, K., Kusakabe, K., et al. (2012). Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. *Plant Physiol.* 158, 1753–1768. doi: 10.1104/pp.111.194994

Tang, N., Zhang, H., Li, X. H., Xiao, J. H., and Xiong, L. Z. (2012). Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice. *Theor. Appl. Genet.* 126, 501–507. doi: 10.1007/s00122-011-1826-0

Taylor-Teeples, M., Ron, M., and Brady, S. M. (2011). Novel biological insights revealed from cell type-specific expression profiling. *Curr. Opin. Plant Biol.* 14, 601–607. doi: 10.1016/j.pbi.2011.05.007

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. *Proc. Natl. Acad. Sci. U.S.A.* 98, 5116–5121. doi: 10.1073/pnas.090162498

Tyrrell, M., Campanoni, P., Sutter, J. U., Pratelli, R., Paneque, M., Sokolovski, S., et al. (2007). Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments. *Plant J.* 51, 1099–1115. doi: 10.1111/j.1365-313X.2007.03206.x

Ueda, A., Kathiresan, A., Bennett, J., and Takabe, T. (2006). Comparative transcriptome analyses of barley and rice under salt stress. *Frontiers in Plant Science* 7:398. doi: 10.1038/pcs120

Wei, T., Ou, B., Li, J., Zhao, Y., Guo, D., Zhu, Y., et al. (2013). Transcriptional profiling of rice early response to magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. *PLoS ONE* 8:e59720. doi: 10.1371/journal.pone.0059720

Wek, R. C., Jiang, H. Y., and Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. *Biochem. Soc. Trans.* 34, 7–11. doi: 10.1042/BST0340007

Wu, D., Cai, S., Chen, M., Ye, L., Chen, Z., Zhang, H., et al. (2013). Tissue metabolic responses to salt stress in wild and cultivated barley. *PLoS ONE* 8:e55431. doi: 10.1371/journal.pone.0055431

Xiang, Y., Tang, N., Du, H., Ye, H. Y., and Xiong, L. Z. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. *Plant Physiol.* 148, 1938–1952. doi: 10.1104/pp.108.128199

Yamada, A., Sekiguchi, M., Mimura, T., and Ozeki, Y. (2002). The role of plant CCTs in salinity- and osmotic-stress tolerance. *Plant Cell Physiol.* 43, 1043–1048. doi: 10.1093/pcp/pcf120

Zhao, J., Sun, Z., Zheng, J., Guo, X., Dong, Z., Huai, J., et al. (2009). Cloning and characterization of a novel CBL-interacting protein kinase from maize. *Plant Mol. Biol.* 69, 661–674. doi: 10.1007/s11103-008-9445-7

Zhu, J., Gong, Z., Zhang, C., Song, C. P., Damsz, B., Inan, G., et al. (2002). OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. *Plant Cell* 14, 3009–3028. doi: 10.1093/jxb/erq204

Zou, M. J., Guan, Y. C., Ren, H. B., Zhang, F., and Chen, F. (2008). A novel maize WRKY transcription factor mediates cold sensitivity of mature pollen in Arabidopsis. *J. Exp. Bot.* 59, 3901–3914. doi: 10.1093/jxb/erq204

Zou, M. J., Guan, Y. C., Ren, H. B., Zhang, F., and Chen, F. (2008). A bZIP transcription factor, OsaBII5, is involved in rice fertility and stress tolerance. *Plant Mol. Biol.* 66, 675–683. doi: 10.1007/jxb/erq204

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Sreenivasulu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.