Learning with Correntropy-induced Losses for Regression with Mixture of Symmetric Stable Noise

Yunlong Feng and Yiming Ying

Department of Mathematics and Statistics, State University of New York at Albany, New York, USA

Abstract

In recent years, correntropy and its applications in machine learning have been drawing continuous attention owing to its merits in dealing with non-Gaussian noise and outliers. However, theoretical understanding of correntropy, especially in the statistical learning context, is still limited. In this study, within the statistical learning framework, we investigate correntropy based regression in the presence of non-Gaussian noise or outliers. To this end, we first introduce mixture of symmetric stable noise, which include Gaussian noise, Cauchy noise, and the mixture of Gaussian noise as special cases, to model non-Gaussian noise and outliers. We demonstrate that under the mixture of symmetric stable noise assumption, correntropy based regression can learn the conditional mean function or the conditional median function well without requiring the finite variance assumption of the noise. In particular, we establish learning rates for correntropy based regression estimators that are asymptotically of type $O(n^{-1})$. We believe that the present study completes our understanding towards correntropy based regression from a statistical learning viewpoint, and may also shed some light on robust statistical learning for regression.

1 Introduction and Motivation

Within the information-theoretic learning framework developed in [44], correntropy was proposed in [48, 36] and serves as a similarity measure between two random variables. Given two scalar random variables U, V, the correntropy V_σ between U and V is defined as $V_\sigma(U, V) = \mathbb{E}K_\sigma(U, V)$ with K_σ a Gaussian kernel given by $K_\sigma(u, v) = \exp\left\{-(u - v)^2/\sigma^2\right\}$, the scale parameter $\sigma > 0$, and (u, v) a realization of (U, V). It is noticed in [36] that the correntropy $V_\sigma(U, V)$ can induce a new metric between U and V. It is argued in [36, 44] that this new metric could be a better option in measuring the distance between U and V than the Euclidean metric when the random variable defined by the residual $U - V$ admits a non-Gaussian distribution which is frequently encountered in applications. During the past several years, the merits of correntropy have been verifying by numerous successful real-world applications across various fields, e.g., signal processing [36, 8, 9, 7, 66], image processing [24, 26, 25, 22, 59, 60, 65, 61], time series forecasting [4, 5, 40], and other machine learning tasks such as regression, classification, and clustering [58, 52, 64]. Noticing that most of the above mentioned problems can be interpreted from a regression viewpoint, recently some understanding towards correntropy based regression in statistical learning has been conducted in [18] and [17], to which the study presented in this paper is closely related. Therefore, we first revisit the conclusions on correntropy based regression drawn in [18] and [17].
1.1 Formulating Correntropy based Regression

We start with the following frequently assumed data-generating model in nonparametric regression

\[Y = f^*(X) + \varepsilon, \]

where \(X \) is the independent variable that takes values in a compact metric space \(\mathcal{X} \subset \mathbb{R}^d \), \(Y \) the dependent variable that takes value in \(\mathcal{Y} = \mathbb{R} \), and \(\varepsilon \) the noise variable. We assume that \(\mathbb{E}(\varepsilon|X) = 0 \) if it exists, otherwise, we assume that median(\(\varepsilon|X \)) = 0. In regression problems, it is typical that we are only accessible to a set of i.i.d observations \(z = \{(x_i, y_i)\}_{i=1}^n \) generated by the above model. Our purpose is to infer the unknown truth \(f^* \) while only referring to the given observations \(z \).

The idea of correntropy based regression is to select the hypothesis from a hypothesis space that maximizes the empirical correntropy estimator between \(\{y_i\}_{i=1}^n \) and \(\{f(x_i)\}_{i=1}^n \) for any \(f : \mathcal{X} \rightarrow \mathbb{R} \), which we term as the Maximum Correntropy Criterion based Regression (MCCR) [18]. With the correntropy induced regression loss \(\ell_\sigma : \mathbb{R} \times \mathbb{R} \rightarrow [0, +\infty) \) defined as

\[\ell_\sigma(t) = \sigma^2 \left(1 - e^{-\frac{t^2}{\sigma^2}}\right), \quad t \in \mathbb{R}, \]

with \(\sigma > 0 \) the scale parameter, MCCR can be formulated into the following empirical risk minimization scheme

\[f_z = \arg \min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell_\sigma(y_i - f(x_i)), \]

where \(\mathcal{H} \) is a hypothesis space and is assumed to be a compact subset of \(C(\mathcal{X}) \).

1.2 MCCR in Statistical Learning

In the literature, correntropy and its applications in various fields have been investigated. However, in the statistical learning context, theoretical understanding of correntropy based regression estimators is still limited. Recently, [18] investigated correntropy based regression when the scale parameter \(\sigma := \sigma(n) \) goes large in correspondence to the sample size \(n \), which was inspired by the studies in [27, 16] on empirical minimum error entropy minimization algorithms. When the scale parameter \(\sigma(n) \) tends to zero, [17] made some efforts in order to understand correntropy in regression problems and assess the performance of the correntropy based regression estimators from a statistical learning viewpoint. The main concerns in [18] and [17] are the learning performance of \(f_z \) when the sample size \(n \) goes to infinity, where different scenarios of the noise variable \(\varepsilon \) and the choices of the \(\sigma \) values were considered. Briefly, the following conclusions were drawn in the above-mentioned two studies:

- By relating the scale parameter \(\sigma \) to the sample size \(n \) (i.e., \(\sigma := \sigma(n) \)) and assuming that the noise variable \(\varepsilon \) is zero-mean, with a diverging and properly chosen \(\sigma \) value, \(f_z \) can learn the conditional mean \(f^* \) robustly. Convergence rates were established in the absence of light-tailed assumptions, which explains the robustness of \(f_z \). Moreover, the scale parameter \(\sigma \), in this case, plays a trade-off role between robustness and approximation ability of the estimator \(f_z \).
By relating the scale parameter σ to the sample size n and assuming a unique zero global mode of the noise ε, with a tending-to-zero and properly chosen scale parameter, f_x can learn the conditional mode function f^\ast. Note that the unique zero global mode assumption on ε allows asymmetric or heavy-tailed noise, which again justifies the robustness of the MCCR estimator f_x.

With a properly chosen scale parameter σ, the correntropy based regression estimator f_x is shown to be equivalent to least squares regression estimator in the presence of symmetric and bounded noise. In this case, the equivalence is claimed in the following two senses: first, similar as that of the least squares regression estimator under the same noise condition, the population version of f_x is the conditional mean function f^\ast. Second, the convergence rates of f_x to the conditional mean function are comparable to that of least squares regression estimator.

Some merits of MCCR can be observed from the above statements. For example, MCCR can learn f^\ast well in the absence of light-tailed noise assumptions where the learnability of least squares regression estimators is insufficient. On the other hand, it can also perform comparable with least squares regression in the presence of bounded and symmetric noise where the latter one achieves its optimal performance. We refer to Section 6 in [17] for a general picture of existing understanding on correntropy based regression in statistical learning.

1.3 Motivation and Contribution

The prominent advantages of MCCR estimator lie in its resistance ability to heavy-tailed noise and outliers. As stated above, the conducted theoretical assessments on MCCR estimators in [18] and [17] justify its superior performance in dealing with heavy-tailed noise. However, several problems related to understanding MCCR estimator in statistical learning still remain unclear. For instance:

Problem I: Learning performance of MCCR in the presence of Gaussian noise. When Gaussian noise is present, least squares regression estimator is known to achieve its optimal performance and optimal learning rates of type $O(n^{-1})$ have been established in [57] and [19]. Under this noise assumption, asymptotic learning rates of type $O(n^{-2/3})$ can be concluded from [18], which are not comparable with that of least squares regression. Notice that the correntropy induced loss ℓ_σ is Lipschitz continuous and bounded on \mathbb{R}, and the fact that ℓ_σ approximates the least squares loss when σ is large enough. Therefore, it is natural to conjecture that optimal learning rates of MCCR estimator may be also achievable as in least squares regression in the presence of Gaussian noise.

Problem II: Learning performance of MCCR with heavy-tailed noise. In the presence of heavy-tailed noise with finite variance, from [18] we know that asymptotic learning rates of type $O(n^{-2/3})$ for MCCR can be established under moment assumptions. If the heavy-tailed noise has infinite variance (such as Cauchy noise), asymptotic learning rates of type $O(n^{-2/5})$ were established in [17] under mild assumptions. However, both of the above two types of learning rates are far from the optimal learning rates of type $O(n^{-1})$, which are regarded as optimal in statistical learning.

Problem III: Understanding MCCR in the presence of outliers. When outliers are presented, how MCCR estimator learns the unknown truth function f^\ast still remains unclear,
although empirically its superior performance in dealing with outliers has been observed. As mentioned above, this is, in fact, one of the most prominent advantages of MCCR estimator over other regression estimators. The main barrier to understanding MCCR in the presence of outliers lies in the modeling of outliers in analysis. This is because for the time being there exists no general definition of outlier and more frequently, outliers are defined in association with concrete distributions, see e.g., [23, 46, 1].

The present study aims to address the above three concerns on correntropy based regression, especially the concern of understanding MCCR in the presence of outliers. We start with the following motivating observation: a very frequently employed technique of generating outliers in robust statistics [56, 28, 31, 29, 20], machine learning [49, 21], as well as many engineering applications [32, 34] is as follows

\[\varepsilon \sim \lambda_1 N(\mu_1, \sigma_1^2) + \lambda_2 N(\mu_2, \sigma_2^2), \]

where \(\lambda_1 + \lambda_2 = 1, \lambda_1 \gg \lambda_2, \sigma_1^2 \ll \sigma_2^2, \) and \(N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2) \) are two Gaussian distributions with mean \(\mu_1, \mu_2 \) and variance \(\sigma_1^2, \sigma_2^2 \), respectively. In (3), \(N(\mu_1, \sigma_1^2) \) is usually considered as background noise while \(N(\mu_2, \sigma_2^2) \) is regarded as the contaminating noise that generates outliers since \(\sigma_2^2 \) is far larger than \(\sigma_1^2 \). In some cases, other distributions that have heavier tails than Gaussian (such as Cauchy noise) may be also employed in (3) as contaminating noise. On the other hand, we notice that both Gaussian noise and Cauchy noise belong to the type of symmetric stable noise. These observations remind us to impose the mixture of symmetric stable noise assumption on \(\varepsilon \) and study the performance of MCCR in this case. In fact, as we shall see later, mixture of symmetric stable distributions have been frequently employed in many engineering applications to model impulsive noise. Another nice property of mixture of symmetric stable noise lies in that it can approximate the distribution of any noise arbitrarily well.

With the introduction of mixture of symmetric stable distributions in modeling heavy-tailed noise or outliers, in this paper, we make a step forward in understanding correntropy based regression in statistical learning. More detailed speaking, concerning the study of correntropy based regression estimators, in this work, we make the following contributions:

- We introduce the mixture of symmetric stable distributions to model the noise \(\varepsilon \). The family of mixture of symmetric stable noise includes the Gaussian noise, the mixture Gaussian noise, the Cauchy noise, and many other kinds of mixture noise, and so is capable of modeling heavy-tailed noise and outliers. We notice that within the statistical learning framework, we make some first attempts in modeling outliers via mixture of symmetric stable distributions.

- Under the mixture of symmetric stable noise assumption, we demonstrate that MCCR estimators can learn the unknown truth function \(f^* \) in an unbiased way in that the population version of \(f_x \) is exactly \(f^* \). Recall that \(f^* \) is the conditional mean function or the conditional median function, and the mixture of symmetric stable noise consists of a large family of noise from light-tailed to heavy-tailed. This indicates that MCCR could be employed to learn \(f^* \) after seeing enough observations without resorting to the sub-Gaussianity of the noise.

- We establish asymptotic learning rates of type \(O(n^{-1}) \) which are comparable with those of least squares regression estimators under the sub-Gaussianity noise assumption. As
stated above, the mixture of symmetric stable noise include Gaussian noise and Cauchy noise as two special cases, and can be used to model outliers. Therefore, the present study provides direct answers to the three problems stated above. In fact, establishing almost sure convergence rates of type $O(n^{-1})$ in learning theory without appealing to finite variance assumption of the noise may be of independent interest.

The rest of this paper is organized as follows. In Section 2, we provide the definitions of symmetric stable distributions and mixture of symmetric stable distributions and introduce some of their applications. Section 3 is concerned with the assessments of correntropy based regression in the presence of mixture of symmetric stable noise. The performance of MCCR, in this case, will be studied in this section, and results on learning rates of MCCR estimators will be presented here. We will also give some comments on the obtained learning rates and the MCCR estimator in this section. The paper is concluded in Section 4.

2 Mixture of Symmetric Stable Distributions and Its Applications

In this section, we introduce the mixture of symmetric stable distributions and its applications. To this end, we shall first introduce the symmetric stable distribution.

Definition 1 (Symmetric Stable Distribution [47]). A univariate distribution function is symmetric stable if its characteristic function takes the following form

$$
\phi(t) = \exp \left\{ i\mu t - \gamma |t|^\alpha \right\}, \text{ for any } t \in \mathbb{R},
$$

where $-\infty < \mu < \infty$, $\gamma > 0$, $0 < \alpha \leq 2$, and i is the imaginary unit.

More precisely, the symmetric stable distribution defined in Definition 1 is said to be α-stable and symmetric about the location μ. As shown in Definition 1, a symmetric stable distribution has three parameters, namely, the location parameter μ, the scale parameter γ, and the characteristic exponent α. The characteristic exponent α is a shape parameter and measures the thickness of the tails of the density function. Two typical examples of symmetric stable distributions are Gaussian distribution ($\alpha = 2$) and Cauchy distribution ($\alpha = 1$). A symmetric stable distribution with $0 < \alpha < 2$ only admits absolute moments of order less than α. Therefore, all symmetric stable distributions do not have finite variance except for the Gaussian distribution. For more properties of symmetric stable distributions, we refer to [14, 41, 47].

When a distribution consists of different components with each of which a symmetric stable distribution and can be expressed as a convex combination of these components, it is called a mixture of symmetric stable distributions [38].

Definition 2 (Mixture of Symmetric Stable Distributions). A univariate distribution P with density p is a mixture of symmetric stable distributions if it is a convex combination of symmetric stable distributions $\{P_i\}_{i=1}^K$ with density function $\{p_i\}_{i=1}^K$ and K a positive integer, i.e., there exists $\lambda_1, \cdots, \lambda_K$ with $\lambda_i > 0$ for $i = 1, \ldots, K$, and $\sum_{i=1}^K \lambda_i = 1$, such that

$$
P(t) = \sum_{i=1}^K \lambda_i P_i(t), \quad \text{and} \quad p(t) = \sum_{i=1}^K \lambda_i p_i(t), \quad \text{for any } t \in \mathbb{R}.
$$
In Definition 2, $\lambda_1, \ldots, \lambda_K$ are called the mixing weights and p_1, \ldots, p_K are component densities. It is obvious that when $K = 1$, a mixture of symmetric stable distributions is reduced to a symmetric stable distribution. In particular, if p_1, \ldots, p_K are normal densities, then p is a mixture of Gaussian. A nice property of the mixture of Gaussian density is that it can approximate any density function to arbitrary accuracy with suitable choice of parameters and enough components K [55, 38].

Symmetric stable distributions have been drawing continuous attention in the statistics literature [14, 15, 12, 41, 10]. The mixture of symmetric stable distributions, which includes the mixture of Gaussian and symmetric stable distributions as special cases, has been extensively applied into many applications. As mentioned above, in robust statistics, it has been employed to mimic perturbed or heavy-tailed distributions, see e.g., [29]. In many engineering applications, especially applications in the field of signal processing, image processing, and wireless communications, it has been frequently applied to model impulsive noise [50, 2, 42, 30, 35, 13, 33, 6, 37, 53, 45, 43] or outliers [3, 1].

3 MCCR with Mixture of Symmetric Stable Noise

The noise is mixture of symmetric stable noise if its distribution is a mixture of symmetric stable distributions. As stated in the above section, it can be employed to model non-Gaussian noise and outliers. In this section, we study MCCR from a statistical learning viewpoint in the presence of mixture of symmetric stable noise ε. We start with the introduction of several notations and assumptions.

3.1 Notations and Assumptions

We denote the unknown probability distribution over $\mathcal{X} \times \mathcal{Y}$ as ρ and ρ_X as the marginal distribution of ρ over \mathcal{X}. For any $f \in \mathcal{H}$, the empirical error in (2) is denoted as $\mathcal{E}_n^\sigma(f)$, that is,

$$\mathcal{E}_n^\sigma(f) = \frac{1}{n} \sum_{i=1}^{n} \ell_\sigma(y_i - f(x_i)),$$

and its population version $\mathcal{E}^\sigma(f)$ is defined as

$$\mathcal{E}^\sigma(f) = \int_{\mathcal{X} \times \mathcal{Y}} \ell_\sigma(y - f(x))d\rho.$$

The distance between f and f^* in $L^2_{\rho_X}$ is denoted as $\|f - f^*\|_{\rho_X}^2$. Besides, for any two quantities a, b, we denote $a \preceq b$ if there exists a positive constant c such that $a \leq cb$.

Assumption 1 (Mixture of Symmetric Stable Noise). The distribution of the noise ε is a mixture of symmetric stable distributions with location parameter 0, i.e., the density $p_{\varepsilon,x}$ of the noise variable ε for any $x \in \mathcal{X}$ takes the following form

$$p_{\varepsilon,x}(t) = \sum_{i=1}^{K} \lambda_i p_{\varepsilon,x,i}(t), \text{ for any } t \in \mathbb{R},$$

where K is a positive integer, $\lambda_i > 0$ for $i = 1, \ldots, K$, $\sum_{i=1}^{K} \lambda_i = 1$, and $p_{\varepsilon,x,i}$ is the density function of the symmetric stable distribution $P_{\varepsilon,x,i}$ that is centered around 0 for $i = 1, \ldots, K$.

6
The second assumption is on the complexity of \mathcal{H} in terms of the ℓ^2-empirical covering number $\mathcal{N}_2(\mathcal{H}, \eta)$, see e.g., [63, 51] for the definition.

Assumption 2 (Complexity Assumption). There exist positive constants s and c such that
\[
\log \mathcal{N}_2(\mathcal{H}, \eta) \leq c\eta^{-s}, \quad \forall \eta > 0.
\]

Throughout this paper, we also assume that there exists a positive constant M such that $\sup_{f \in \mathcal{H}} \|f\|_{\infty} \leq M$, and $\|f\|_{\infty} \leq M$.

3.2 Unbiasedness of MCCR with Mixture of Symmetric Stable Noise

In the presence of mixture of symmetric stable noise, in this part, we first show that MCCR can learn f^* in an unbiased way. This is stated in the sense of the following theorem, which is established by applying techniques proposed in [16].

Theorem 1. Suppose that Assumption 1 holds and $f^* \in \mathcal{H}$. Then for any $f \in \mathcal{H}$, it holds that
\[
f^* = \arg\min_{f \in \mathcal{H}} \mathcal{E}^{\sigma}(f),
\]
and
\[
c_{\sigma, \gamma, \alpha} \|f - f^*\|_p^2 \leq \mathcal{E}^{\sigma}(f) - \mathcal{E}^{\sigma}(f^*) \leq \|f - f^*\|_p^2,
\]
where $c_{\sigma, \gamma, \alpha}$ is a positive constant that will be given explicitly in the proof.

Proof. From the definitions of the notions, we know that
\[
\mathcal{E}^{\sigma}(f) - \mathcal{E}^{\sigma}(f^*) = \sigma^2 \int_{\mathcal{X}} [F_x(f(x) - f^*(x)) - F_x(0)]d\rho_X(x),
\]
where $F_x : \mathbb{R} \rightarrow \mathbb{R}$ is denoted as
\[
F_x(u) := 1 - \int_{-\infty}^{+\infty} \exp \left\{ -\frac{(t-u)^2}{\sigma^2} \right\} p_{\epsilon,x}(t)dt, \quad x \in \mathcal{X}.
\]
From the Taylor’s theorem, we know that
\[
F_x(f(x) - f^*(x)) - F_x(0) = F_x'(0)(f(x) - f^*(x)) + \frac{F_x''(\zeta_x)}{2} (f(x) - f^*(x))^2,
\]
where for any $x \in \mathcal{X}$, $0 < \zeta_x < f(x) - f^*(x)$. Due to the symmetry assumption of the noise, for any $x \in \mathcal{X}$, we have
\[
F_x'(0) = -2 \int_{-\infty}^{+\infty} \exp \left\{ -\frac{t^2}{\sigma^2} \right\} \left(\frac{t}{\sigma^2} \right) p_{\epsilon,x}(t)dt = 0,
\]
and
\[
F_x''(\zeta_x) = 2 \int_{-\infty}^{+\infty} \exp \left\{ -\frac{(t-\zeta_x)^2}{\sigma^2} \right\} \left(\frac{\sigma^2 - 2(t-\zeta_x)^2}{\sigma^4} \right) p_{\epsilon,x}(t)dt, \quad x \in \mathcal{X}.
\]
It is obvious that for any \(x \in \mathcal{X} \), the following inequality
\[
F''(u) \leq \frac{2}{\sigma^2}
\]
holds uniformly for \(0 < u < f(x) - f^*(x) \). Therefore, we have
\[
\mathcal{E}^\sigma(f) - \mathcal{E}^\sigma(f^*) = \sigma^2 \int_{\mathcal{X}} |F_x(f(x) - f^*(x)) - F_x(0)| d\rho_X(x)
\]
\[
= \frac{\sigma^2}{2} \int_{\mathcal{X}} |F_x(\zeta_x)(f(x) - f^*(x))|^2 d\rho_X(x)
\]
\[
\leq \int_{\mathcal{X}} (f(x) - f^*(x))^2 d\rho_X(x).
\]

On the other hand, with simple computations, we have
\[
\mathcal{E}^\sigma(f) - \mathcal{E}^\sigma(f^*) = \sigma^2 \int_{\mathcal{X}} f_x^2 \exp \left(-\frac{t^2}{\sigma^2} - \exp \left(-\frac{(t - [f(x) - f^*(x)])^2}{\sigma^2} \right) \right) p_{\epsilon,x}(t) dt d\rho_X(x)
\]
\[
= \sigma^2 \int_{\mathcal{X}} f_x^2 \exp \left(-\frac{t^2}{\sigma^2} - \exp \left(-\frac{(t - [f(x) - f^*(x)])^2}{\sigma^2} \right) \right) p_{\epsilon,x}(t) dt d\rho_X(x)
\]
\[
= \sigma^2 \int_{\mathcal{X}} f_x^2 \exp \left(-\frac{(t + u_x)^2}{\sigma^2} - \exp \left(-\frac{t^2}{\sigma^2} \right) \right) p_{\epsilon,x}(t) dt d\rho_X(x)
\]
where for any \(x \in \mathcal{X} \), \(u_x = f(x) - f^*(x) \). From Assumption \(1 \) on the noise and recalling the linearity property of the Fourier transform, we have
\[
\hat{p}_{\epsilon,x}(\xi) = \sum_{i=1}^{K} \lambda_i \hat{p}_{\epsilon,x,i}(\xi),
\]
where \(\hat{p}_{\epsilon,x} \) is the Fourier transform of \(p_{\epsilon,x} \), and \(\hat{p}_{\epsilon,x,i} \) is the Fourier transform of \(p_{\epsilon,x,i} \), \(i = 1, \ldots, K \). Moreover, for \(i = 1, \ldots, K \), since \(p_{\epsilon,x,i} \) is a symmetric stable distribution with the location parameter \(0 \), we know that there exist \(\gamma_i > 0 \) and \(0 < \alpha_i \leq 2 \) such that
\[
\hat{p}_{\epsilon,x,i}(\xi) = e^{-\gamma_i |\xi|^{\alpha_i}}.
\]
Applying the Plancherel formula, we obtain
\[
\mathcal{E}^\sigma(f) - \mathcal{E}^\sigma(f^*) = \frac{\sigma^3}{2\sqrt{\pi}} \int_{\mathcal{X}} \int_{-\infty}^{+\infty} \exp \left(-\frac{\sigma^2 \xi^2}{4} \right) \hat{p}_{\epsilon,x}(\xi) \left[1 - e^{i\xi u_x} \right] d\xi d\rho_X(x)
\]
\[
= \frac{\sigma^3}{2\sqrt{\pi}} \sum_{i=1}^{K} \lambda_i \int_{\mathcal{X}} \int_{-\infty}^{+\infty} \exp \left(-\frac{\sigma^2 \xi^2}{4} \right) \hat{p}_{\epsilon,x,i}(\xi) \sin^2 \left(\frac{\xi(f(x) - f^*(x))}{2} \right) d\xi d\rho_X(x)
\]
\[
= \frac{\sigma^3}{2\sqrt{\pi}} \sum_{i=1}^{K} \lambda_i \int_{\mathcal{X}} \int_{-\infty}^{+\infty} \exp \left(-\frac{\sigma^2 \xi^2}{4} - \gamma_i |\xi|^{\alpha_i} \right) \sin^2 \left(\frac{\xi(f(x) - f^*(x))}{2} \right) d\xi d\rho_X(x),
\]
where the second equality is due to the fact that \(\mathcal{E}^\sigma(f) - \mathcal{E}^\sigma(f^*) \) is real for any \(f \in \mathcal{H} \). For any \(x \in \mathcal{X} \), \(|u_x| = |f(x) - f^*(x)| \leq 2M \). When \(|\xi| \leq \frac{\pi}{2M} \), from Jordan’s inequality, it holds that
\[
\sin^2 \left(\frac{\xi(f(x) - f^*(x))}{2} \right) \geq \frac{2 \xi^2(f(x) - f^*(x))^2}{\pi^2}.
\]
As a result, we come to the following inequality

\[E^\sigma(f) - E^\sigma(f^*) \geq \frac{2\sigma^3}{\pi^{5/2}} \int_X \sum_{i=1}^K \lambda_i \int_{-\infty}^{\infty} \xi^2 \exp \left(-\frac{\sigma^2 \xi^2}{4} - \gamma_i |\xi|^{\alpha_i} \right) (f(x) - f^*(x))^2 \, d\rho d\rho_X(x) \]

(5)

where

\[c_{\sigma,\gamma,\alpha} = \frac{2\sigma^3}{\pi^{5/2}} \sum_{i=1}^K \lambda_i \int_{-\infty}^{\infty} \xi^2 \exp \left(-\frac{\sigma^2 \xi^2}{4} - \gamma_i |\xi|^{\alpha_i} \right) \, d\xi. \]

(6)

The positiveness of \(c_{\sigma,\gamma,\alpha} \) implies that for any \(f \in \mathcal{H} \), we have \(E^\sigma(f) \geq E^\sigma(f^*) \). That is,

\[f^* = \arg \min_{f \in \mathcal{H}} E^\sigma(f). \]

To prove the second assertion, we combine inequalities (4) and (5), and obtain

\[c_{\sigma,\gamma,\alpha} \|f - f^*\|_\rho^2 \leq E^\sigma(f) - E^\sigma(f^*) \leq \|f - f^*\|_\rho^2, \]

where \(c_{\sigma,\gamma,\alpha} \) is a positive constant given in (6). This completes the proof of Theorem 1.

Theorem 1 states that in the presence of mixture of symmetric stable noise, the population version of the MCCR estimator \(f_x \) learned in \(\mathcal{H} \) is exactly the underlying unknown truth function \(f^* \) as long as \(f^* \) belongs to \(\mathcal{H} \). Therefore, in this sense, \(f_x \) can be regarded as an unbiased estimator of \(f^* \). Another implication of Theorem 1 is that under the mixture of symmetric stable noise assumption, the excess risk of MCCR can be upper and lower bounded by the \(L^2_\rho \)-distance between the MCCR estimator \(f_x \) and the unknown truth \(f^* \). As we shall see later, this leads to fast convergence rates of the MCCR estimator \(f_x \) to \(f^* \).

3.3 Performance of MCCR with Mixture of Symmetric Stable Noise

We are now in a position to investigate the learning performance of MCCR in the presence of mixture of symmetric stable noise by developing convergence rates of \(\|f_x - f^*\|_\rho^2 \).

Theorem 2. Suppose that Assumption 1 and Complexity Assumption with \(s > 0 \) hold. Let \(f_x \) be produced by (2) and \(f^* \in \mathcal{H} \). For any \(0 < \delta < 1 \), with confidence \(1 - \delta \), it holds that

\[\|f_x - f^*\|_\rho^2 \lesssim \log(1/\delta) n^{1-\frac{s}{4+s}}. \]

When functions in \(\mathcal{H} \) are sufficiently smooth, the index \(s \) could be arbitrarily small. Therefore, it is immediate to see that the convergence rates established in Theorem 2 are asymptotically of type \(O(n^{-1}) \). Recall that in Theorem 2, the noise \(\varepsilon \) is only assumed to be mixture of symmetric stable noise which include the mixture Gaussian and the Cauchy noise, and can be applied to model outliers. It is interesting to see that in this case the MCCR estimator \(f_x \) can learn the conditional mean function or the conditional median function \(f^* \) well. This, in fact, explains the merits of MCCR in dealing with heavy-tailed noise or outliers. Moreover, as far as we are aware, within the statistical learning framework, we present some first results on the optimal convergence rates of regression estimator without imposing finite variance conditions on the noise. To prove Theorem 2, we need the following lemma established in [63].
Lemma 1. Let \mathcal{F} be a class of measurable functions on \mathcal{Z}. Assume that there are constants $B, c > 0$ and $\theta \in [0, 1]$ such that $\|f\|_{\infty} \leq B$ and $\mathbb{E}f^2 \leq c(\mathbb{E}f)^\theta$ for every $f \in \mathcal{F}$. If for some $a > 0$ and $s \in (0, 2)$,

$$\log \mathcal{N}_2(\mathcal{F}, \eta) \leq a\eta^{-s}, \quad \forall \eta > 0,$$

then there exists a constant α_p depending only on p such that for any $t > 0$, with probability at least $1 - e^{-t}$, there holds

$$\mathbb{E}f - \frac{1}{m} \sum_{i=1}^{m} f(z_i) \leq \frac{1}{2} \gamma^{1-\theta} (\mathbb{E}f)^\theta + \alpha_p \gamma + 2 \left(\frac{ct}{m} \right) \frac{1}{\gamma^{1-\theta}} + \frac{18Bt}{m}, \quad \forall f \in \mathcal{F},$$

where

$$\gamma := \max \left\{ c \left(\frac{2^{-\theta}}{\gamma^{1-\theta}} \frac{2}{m} \right)^{\frac{1}{\theta}} \left(\frac{2}{\gamma^{1-\theta}} \frac{1}{m} \right)^{\frac{1}{1-\theta}}, B \right\}.$$

Proof of Theorem 2. To prove Theorem 2, we apply Lemma 1 to the function set \mathcal{F}_H defined below

$$\mathcal{F}_H = \left\{ g \mid g(z) = -\sigma^2 \exp \left\{ -\frac{(y - f(x))^2}{\sigma^2} \right\} + \sigma^2 \exp \left\{ -(y - f^*(x))^2 / \sigma^2 \right\}, f \in \mathcal{H}, z \in \mathcal{Z} \right\}.$$

We first verify conditions in Lemma 1. From the definition of \mathcal{F}_H, for any $g \in \mathcal{F}_H$, we have

$$\|g\|_{\infty} \leq \sigma^2 + \sigma^2 = 2\sigma^2,$$

and the following Bernstein condition holds

$$\mathbb{E}g^2 = \int_{\mathcal{Z}} \left(-\sigma^2 \exp \left\{ -\frac{(y - f(x))^2}{\sigma^2} \right\} + \sigma^2 \exp \left\{ -(y - f^*(x))^2 / \sigma^2 \right\} \right)^2 \, d\rho$$

$$\leq \sigma^2 \int_{\mathcal{Z}} ((y - f(x)) - (y - f^*(x)))^2 \, d\rho$$

$$= \sigma^2 \int_{\mathcal{X}} (f(x) - f^*(x))^2 \, d\rho \leq \mathbb{E}g,$$

where the first inequality is a consequence of the mean value theorem and the boundedness of $\|h'\|$ with $h(t) = -\sigma^2 \exp(-t^2 / \sigma^2)$, $t \in \mathbb{R}$, and the second inequality is due to Theorem 1. On the other hand, for any $g_1, g_2 \in \mathcal{F}_H$, there exist $f_1, f_2 \in \mathcal{H}$ such that

$$g_1(z) = -\sigma^2 \exp \left\{ -\frac{(y - f_1(x))^2}{\sigma^2} \right\} + \sigma^2 \exp \left\{ -(y - f^*(x))^2 / \sigma^2 \right\},$$

and

$$g_2(z) = -\sigma^2 \exp \left\{ -\frac{(y - f_2(x))^2}{\sigma^2} \right\} + \sigma^2 \exp \left\{ -(y - f^*(x))^2 / \sigma^2 \right\}.$$

By applying the mean value theorem and noticing again the boundedness of $\|h'\|_{\infty}$, we have

$$\|g_1 - g_2\|_{\infty} \leq \sigma^2 \|f_1 - f_2\|_{\infty}.$$

Under the Complexity Assumption with $0 < s < 2$, the following relation between the ℓ^2-empirical covering numbers of \mathcal{F}_H and \mathcal{H} holds

$$\log \mathcal{N}_2(\mathcal{F}_H, \eta) \leq \log \mathcal{N}_2(\mathcal{H}, \eta / \sigma^2) \lesssim \eta^{-s}.$$
Applying Lemma 1 to the function set $\mathcal{F}_{\mathcal{H}}$, with simple computations, we come to the conclusion that for any $0 < \delta < 1$ with confidence $1 - \delta$, there holds

$$
[\mathcal{E}_z^\sigma(f) - \mathcal{E}_z^\sigma(f^*)] - [\mathcal{E}_z^\sigma(f) - \mathcal{E}_z^\sigma(f^*)] - \frac{1}{2} [\mathcal{E}_z^\sigma(f) - \mathcal{E}_z^\sigma(f^*)] \lesssim \log(1/\delta)n^{-\frac{2}{3+7\alpha}}.
$$

Noticing that $\mathcal{E}_z^\sigma(f_z) \leq \mathcal{E}_z^\sigma(f^*)$, we have

$$
\frac{1}{2} [\mathcal{E}_z^\sigma(f_z) - \mathcal{E}_z^\sigma(f^*)] \leq [\mathcal{E}_z^\sigma(f_z) - \mathcal{E}_z^\sigma(f^*)] - [\mathcal{E}_z^\sigma(f_z) - \mathcal{E}_z^\sigma(f^*)] - \frac{1}{2} [\mathcal{E}_z^\sigma(f_z) - \mathcal{E}_z^\sigma(f^*)].
$$

Therefore, for any $0 < \delta < 1$ with confidence $1 - \delta$, it holds that

$$
\|f_z - f^*\|^2_\rho \lesssim \log(1/\delta)n^{-\frac{2}{3+7\alpha}}.
$$

This completes the proof of Theorem 2. \qed

Remark 1. From the proof of Theorem 2, we see that the boundedness of the loss function ℓ_σ and the Bernstein condition (7) play a crucial role in establishing fast convergence rates of type $\mathcal{O}(n^{-\frac{2}{3+7\alpha}})$. The Bernstein condition holds because of the Lipschitz continuity of the loss function ℓ_σ on \mathbb{R} and the fact that the $L^2_{\rho_X}$-distance between f_z and f^* can be upper bounded by the excess risk $\mathcal{E}_z^\sigma(f_z) - \mathcal{E}_z^\sigma(f^*)$, i.e., conclusions in Theorem 1.

3.4 Comments on MCCR with Mixture of Symmetric Stable Noise

We now give two remarks on MCCR in the presence of mixture of symmetric stable noise.

The first remark is on the convergence rates of the two regression schemes. As shown in Theorem 2, in the presence of mixture of symmetric stable noise and when $f^* \in \mathcal{H}$, f_z can learn the unknown truth function f^* well. The developed learning rates are of the type $\mathcal{O}(n^{-\frac{2}{3+7\alpha}})$ which are optimal in the sense that they are asymptotically of type $\mathcal{O}(n^{-1})$. Moreover, they are comparable with that of least squares regression [62, 11].

Our second remark is on the conditions required to established convergence rates for the two regression schemes. Recalling that for least squares regression, to establish learning theory type convergence rates of $\|f_z - f^*\|^2_\rho$, the noise is frequently assumed to be uniformly bounded [11, 54], which is usually not the case in practice. In recent years, some efforts have been made to relax this assumption [57, 19, 39]. In fact, even in the presence of Gaussian noise, to establish learning theory type convergence rates for least squares regression, it is much involved due to the unboundedness of the response variable, in which case many conventional learning theory arguments and tools are not applicable. Recently, optimal convergence rates were established for least squares regression in [57, 19] under moment conditions of arbitrary order. As far as we know, convergence rates of least squares regression estimators cannot be established without the finite variance condition. Notice that symmetric stable noise with the characteristic exponent parameter $0 < \alpha < 2$ has infinite variance. Thus, convergence rates of least squares regression in this case are not obtained. However, when moving our attention to correntropy based regression, as shown above, in the presence of mixture of symmetric stable noise, optimal learning rates of MCCR estimator are established. It should be remarked again that the mixture of symmetric stable noise with the characteristic exponent $0 < \alpha < 2$ has infinite variance and includes the heavy-tailed Cauchy noise. Moreover, as stated above, it can approximate any density function arbitrarily well with properly chosen K and consequently can be applied to model outliers. In this sense, our study presented here explains the capability of MCCR estimators in dealing with outliers.
4 Conclusion

In this paper, we studied the correntropy based regression within the statistical learning framework by imposing the mixture of symmetric stable noise assumption. The mixture of symmetric stable noise subsume Gaussian noise, Cauchy noise, and mixture of Gaussian noise. In this study, it was introduced to model heavy-tailed noise and outliers, to which the correntropy based regression estimators have been empirically verified to be resistant. In our study, we showed that the empirical risk minimization scheme based on the correntropy induced loss can learn the underlying truth function sufficiently well while allowing the noise to be the mixture of symmetric stable noise. In particular, a learning theory analysis was conducted and the learning performance of MCCR with mixture of symmetric stable noise was assessed. It is interesting to see that in this case optimal asymptotic learning rates of type $O(n^{-1})$ can be established, which are comparable with that of least squares regression under bounded noise assumption. These theoretical findings successfully explain the efficiency and effectiveness of correntropy based regression estimators in the presence of heavy-tailed noise or outliers.

References

[1] Charu C. Aggarwal. Outlier Analysis. Springer, 2016.

[2] Sachin Ambike, Jacek Ilow, and Dimitrios Hatzinakos. Detection for binary transmission in a mixture of Gaussian noise and impulsive noise modeled as an α-stable process. IEEE Signal Processing Letters, 1(3):55–57, 1994.

[3] Vic Barnett and Toby Lewis. Outliers in Statistical Data. Wiley New York, 1994.

[4] Ricardo J. Bessa, Vladimiro Miranda, and Joao Gama. Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting. IEEE Transactions on Power Systems, 24(4):1657–1666, 2009.

[5] Ricardo J. Bessa, Vladimiro Miranda, José C. Príncipe, Audun Botterud, and Jun Wang. Information theoretic learning applied to wind power modeling. In Neural Networks, The 2010 International Joint Conference on, pages 1–8. IEEE, 2010.

[6] Ramon F. Brcich, Robert D. Iskander, and Abdelhak M. Zoubir. The stability test for symmetric α-stable distributions. IEEE Transactions on Signal Processing, 53(3):977–986, 2005.

[7] Badong Chen, Xi Liu, Haiquan Zhao, and José C. Príncipe. Maximum correntropy Kalman filter. Automatica, 76:70–77, 2017.

[8] Badong Chen and José C. Príncipe. Maximum correntropy estimation is a smoothed MAP estimation. IEEE Signal Processing Letters, 19(8):491–494, 2012.

[9] Badong Chen, Lei Xing, Haiquan Zhao, Nanning Zheng, and José C. Príncipe. Generalized correntropy for robust adaptive filtering. IEEE Transactions on Signal Processing, 64(13):3376–3387, 2016.

[10] Zhiqiang Chen and David E. Tyler. On the behavior of Tukey’s depth and median under symmetric stable distributions. Journal of Statistical Planning and Inference, 122(1):111–124, 2004.
[11] Felipe Cucker and Ding-Xuan Zhou. Learning Theory: An Approximation Theory Viewpoint. Cambridge University Press, 2007.

[12] William H. DuMouchel. Stable distributions in statistical inference: 1. Symmetric stable distributions compared to other symmetric long-tailed distributions. Journal of the American Statistical Association, 68(342):469–477, 1973.

[13] Yonina C. Eldar and Arie Yeredor. Finite-memory denoising in impulsive noise using Gaussian mixture models. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(11):1069–1077, 2001.

[14] Eugene F. Fama and Richard Roll. Some properties of symmetric stable distributions. Journal of the American Statistical Association, 63(323):817–836, 1968.

[15] Eugene F. Fama and Richard Roll. Parameter estimates for symmetric stable distributions. Journal of the American Statistical Association, 66(334):331–338, 1971.

[16] Jun Fan, Ting Hu, Qiang Wu, and Ding-Xuan Zhou. Consistency analysis of an empirical minimum error entropy algorithm. Applied and Computational Harmonic Analysis, 41(1):164–189, 2016.

[17] Yunlong Feng, Jun Fan, and Johan A.K. Suykens. A statistical learning approach to modal regression. arXiv preprint arXiv:1702.05960, 2017.

[18] Yunlong Feng, Xiaolin Huang, Lei Shi, Yuning Yang, and Johan A.K. Suykens. Learning with the maximum correntropy criterion induced losses for regression. Journal of Machine Learning Research, 16:993–1034, 2015.

[19] Zheng-Chu Guo and Ding-Xuan Zhou. Concentration estimates for learning with unbounded sampling. Advances in Computational Mathematics, 38(1):207–223, 2013.

[20] Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel. Robust Statistics: The Approach Based on Influence Functions. John Wiley & Sons, 2011.

[21] Jiawei Han, Jian Pei, and Micheline Kamber. Data Mining: Concepts and Techniques. Elsevier, 2011.

[22] Erion Hasanbelliu, Luís Sanchez Giraldo, and José C. Príncipe. Information theoretic shape matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(12):2436–2451, 2014.

[23] Douglas M. Hawkins. Identification of Outliers. Springer, 1980.

[24] Ran He, Bao-Gang Hu, Wei-Shi Zheng, and Xiang-Wei Kong. Robust principal component analysis based on maximum correntropy criterion. IEEE Transactions on Image Processing, 20(6):1485–1494, 2011.

[25] Ran He, Tieniu Tan, Liang Wang, and Wei-Shi Zheng. $\ell_{2,1}$-regularized correntropy for robust feature selection. In IEEE Conference on Computer Vision and Pattern Recognition, 2012, pages 2504–2511. IEEE, 2012.

[26] Ran He, Wei-Shi Zheng, and Bao-Gang Hu. Maximum correntropy criterion for robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8):1561–1576, 2011.
[27] Ting Hu, Jun Fan, Qiang Wu, and Ding-Xuan Zhou. Learning theory approach to minimum error entropy criterion. *Journal of Machine Learning Research*, 14:377–397, 2013.

[28] Peter J. Huber. Robust estimation of a location parameter. *The Annals of Mathematical Statistics*, 35(1):73–101, 1964.

[29] Peter J. Huber and Elvezio Ronchetti. *Robust Statistics*. Wiley, 2009.

[30] Jacek Ilow and Dimitrios Hatzinakos. Analytic α-stable noise modeling in a poisson field of interferers or scatterers. *IEEE Transactions on Signal Processing*, 46(6):1601–1611, 1998.

[31] Jana Jurečková and Jan Picek. *Robust Statistical Methods with R*. CRC Press, 2005.

[32] Saleem A. Kassam and Vincent H. Poor. Robust techniques for signal processing: A survey. *Proceedings of the IEEE*, 73(3):433–481, 1985.

[33] Bart Kosko and Sanya Mitaim. Robust stochastic resonance: Signal detection and adaptation in impulsive noise. *Physical Review E*, 64(5):051110, 2001.

[34] Richard J. Kozick and Brian M. Sadler. Maximum-likelihood array processing in non-gaussian noise with gaussian mixtures. *IEEE Transactions on Signal Processing*, 48(12):3520–3535, 2000.

[35] Ercan E. Kuruoglu, William J. Fitzgerald, and Peter J.W. Rayner. Near optimal detection of signals in impulsive noise modeled with a symmetric α-stable distribution. *IEEE Communications Letters*, 2(10):282–284, 1998.

[36] Weifeng Liu, Puskal P. Pokharel, and José C. Príncipe. Correntropy: properties and applications in non-Gaussian signal processing. *IEEE Transactions on Signal Processing*, 55(11):5286–5298, 2007.

[37] Marco J. Lombardi and Simon J. Godsill. On-line Bayesian estimation of signals in symmetric α-stable noise. *IEEE Transactions on Signal Processing*, 54(2):775–779, 2006.

[38] Geoffrey J. McLachlan and Kaye E. Basford. *Mixture Models: Inference and Applications to Clustering*. Marcel Dekker, 1988.

[39] Shahar Mendelson. Learning without concentration. *Journal of the ACM*, 62(21), 2015.

[40] Joana Mendes, Ricardo J. Bessa, Hrvoje Keko, Jean Sumaili, Valdimiro Miranda, Carlos Ferreira, Joao Gama, Audun Botterud, Zhi Zhou, and Jianhui Wang. Development and testing of improved statistical wind power forecasting methods. Technical report, Argonne National Laboratory (ANL), 2011.

[41] Grady Miller. Properties of certain symmetric stable distributions. *Journal of Multivariate Analysis*, 8(3):346–360, 1978.

[42] Chrysostomos L. Nikias and Min Shao. *Signal Processing with Alpha-Stable Distributions and Applications*. Wiley-Interscience, 1995.

[43] Jintae Park, Georgy Shevlyakov, and Kiseon Kim. Maximin distributed detection in the presence of impulsive α-stable noise. *IEEE Transactions on Wireless Communications*, 10(6):1687–1691, 2011.
[44] José C. Príncipe. *Information Theoretic Learning: Rényi’s Entropy and Kernel Perspectives*. Springer Science & Business Media, 2010.

[45] Adithya Rajan and Cihan Tepedelenlioglu. Diversity combining over Rayleigh fading channels with symmetric α-stable noise. *IEEE Transactions on Wireless Communications*, 9(9):2968–2976, 2010.

[46] Peter J. Rousseeuw and Annick M. Leroy. *Robust Regression and Outlier Detection*. John Wiley & Sons, 2005.

[47] Gennady Samorodnitsky and Murad S. Taqqu. *Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance*. CRC press, 1994.

[48] Ignacio Santamaría, Puskal P. Pokharel, and José C. Príncipe. Generalized correlation function: definition, properties, and application to blind equalization. *IEEE Transactions on Signal Processing*, 54(6):2187–2197, 2006.

[49] Bernhard Schölkopf and Alexander J. Smola. *Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond*. MIT Press, 2001.

[50] Min Shao and Chrysostomos L. Nikias. Signal processing with fractional lower order moments: stable processes and their applications. *Proceedings of the IEEE*, 81(7):986–1010, 1993.

[51] Lei Shi, Yunlong Feng, and Ding-Xuan Zhou. Concentration estimates for learning with ℓ^1-regularizer and data dependent hypothesis spaces. *Applied and Computational Harmonic Analysis*, 31(2):286–302, 2011.

[52] Abhishek Singh, Rosha Pokharel, and José C. Príncipe. The C-loss function for pattern classification. *Pattern Recognition*, 47(1):441–453, 2014.

[53] Michael R. Souryal, Erik G. Larsson, Bojan Peric, and Branimir R. Vojcic. Soft-decision metrics for coded orthogonal signaling in symmetric α-stable noise. *IEEE Transactions on Signal Processing*, 56(1):266–273, 2008.

[54] Ingo Steinwart and Andreas Christmann. *Support Vector Machines*. Springer, New York, 2008.

[55] Michael D. Titterington, Adrian F.M. Smith, and Udi E. Makov. *Statistical Analysis of Finite Mixture Distributions*. Wiley,, 1985.

[56] John W. Tukey. A survey of sampling from contaminated distributions. *Contributions to Probability and Statistics*, 2:448–485, 1960.

[57] Cheng Wang and Ding-Xuan Zhou. Optimal learning rates for least squares regularized regression with unbounded sampling. *Journal of Complexity*, 27(1):55–67, 2011.

[58] Jim Jing-Yan Wang, Xiaolei Wang, and Xin Gao. Non-negative matrix factorization by maximizing correntropy for cancer clustering. *BMC Bioinformatics*, 14(1):107, 2013.

[59] Lingfeng Wang and Chunhong Pan. Robust level set image segmentation via a local correntropy-based K-means clustering. *Pattern Recognition*, 47(5):1917–1925, 2014.
[60] Ying Wang, Chunhong Pan, Shiming Xiang, and Feiyen Zhu. Robust hyperspectral unmixing with correntropy-based metric. *IEEE Transactions on Image Processing*, 24(11):4027–4040, 2015.

[61] Yulong Wang, Yuan Yan Tang, and Luoqing Li. Correntropy matching pursuit with application to robust digit and face recognition. *IEEE Transactions on Cybernetics*, 47(6):1354–1366, 2017.

[62] Qiang Wu, Yiming Ying, and Ding-Xuan Zhou. Learning rates of least-square regularized regression. *Foundations of Computational Mathematics*, 6(2):171–192, 2006.

[63] Qiang Wu, Yiming Ying, and Ding-Xuan Zhou. Multi-kernel regularized classifiers. *Journal of Complexity*, 23(1):108–134, 2007.

[64] Guibiao Xu, Bao-Gang Hu, and José C. Príncipe. Robust C-loss kernel classifiers. *IEEE Transactions on Neural Networks and Learning Systems*, in press.

[65] Fei Zhu, Abderrahim Halimi, Paul Honeine, Badong Chen, and Nanning Zheng. Correntropy maximization via ADMM: Application to robust hyperspectral unmixing. *IEEE Transactions on Geoscience and Remote Sensing*, 55(9):4944–4955, 2017.

[66] Cuiming Zou and Kit Ian Kou. Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion. *Mechanical Systems and Signal Processing*, 104:279–289, 2018.