A QUADRUPLE-PHASE STRONG Mg II ABSORBER AT z ~ 0.9902 TOWARD PG 1634+7061,2

JIE DING, JANE C. CHARLTON,3 NICHOLAS A. BOND, STEPHANIE G. ZONAK, AND CHRISTOPHER W. CHURCHILL.4

Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802; ding@astro.psu.edu, charlton@astro.psu.edu, bond@astro.psu.edu, szonak@astro.psu.edu, cwc@astro.psu.edu

Received 2002 June 21; accepted 2002 December 20

ABSTRACT

The z = 0.9902 system along the quasar PG 1634+706 line of sight is a strong Mg II absorber \([W_\lambda(\lambda 2796) > 0.3 \text{ Å}]\) with only weak C IV absorption (it is “C IV-deficient”). To study this system, we used high-resolution spectra from both the Hubble Space Telescope Imaging Spectrograph (STIS) and the Keck I telescope High Resolution Echelle Spectrometer (HIRES). The STIS spectrum has a resolution of \(R = 30,000\) and covers key transitions such as Si II, C II, Si III, C III, Si IV, and C IV. The HIRES spectrum, with a resolution of \(R = 45,000\), covers the Mg I, Mg II, and Fe II transitions. Assuming a Haardt & Madau extragalactic background spectrum, we modeled the system with a combination of photoionization and collisional ionization. Based on a comparison of synthetic spectra with the data profiles, we infer the existence of the following four phases of gas:

1. Seven Mg II clouds have sizes of 1–1000 pc and densities of 0.002–0.1 cm\(^{-3}\), with a gradual decrease in density from blue to red. The Mg II phase gives rise to most of the C IV absorption and resembles the warm, ionized intercloud medium of the Milky Way.
2. Instead of arising in the same phase as Mg II, Mg I is produced in separate, narrow components with \(b \approx 0.75 \text{ km s}^{-1}\). These small Mg I pockets (\(\sim 100 \text{ AU}\)) could represent a denser phase (\(\sim 200 \text{ cm}^{-3}\)) of the interstellar medium (ISM), analogous to the small-scale structure observed in the Milky Way ISM.
3. A “broad phase” with a Doppler parameter \(b \approx 60 \text{ km s}^{-1}\) is required to consistently fit Ly\(\alpha\), Ly\(\beta\), and the higher order Lyman series lines. A low metallicity (\(\log Z \leq -2\)) for this phase could explain why the system is C IV-deficient” and also why N V and O VI are not detected. This phase may be a galactic halo, or it could represent a diffuse medium in an early-type galaxy.
4. The strong absorption in Si IV relative to C IV could be produced in an extra, collisionally ionized phase with a temperature of \(T \approx 60,000 \text{ K}\). The collisional phase could exist in cooling layers that are shock heated by supernova-related processes.

Subject headings: galaxies: evolution — galaxies: halos — quasars: absorption lines

On-line material: color figures

1. INTRODUCTION

Quasar absorption lines provide a unique and intriguing way to determine the kinematics, chemical composition, and ionization state of gas in intervening galaxies. For most galaxies, a multiphase interstellar medium (ISM) (i.e., a medium with different densities and temperatures) is likely to exist (McKee & Ostriker 1977; Giroux, Sutherland, & Shull 1994). Thus, it follows that any random line of sight passing through a galaxy is likely to encounter several phases of gas.

Strong Mg II absorbers \([W_\lambda(\lambda 2796) > 0.3 \text{ Å}]\) are almost always found within an impact parameter of 35 h\(^{-1}\) kpc of a luminous galaxy (>0.05L\(^*\)), where \(L^*\) is the Schechter luminosity (Bergon & Boissé 1991; Bergeron, Cristiani, & Shaver 1992; Le Brun et al. 1993; Steidel, Dickinson, & Persson 1994; Steidel 1995; Steidel et al. 1997). In addition, the strong C IV absorption that is characteristic of most such absorbers is thought (Churchill et al. 1999, 2000) to arise in a corona similar to that surrounding the Milky Way disk (Savage, Sembach, & Lu 1997).

We study the z = 0.9902 system along the line of sight to the quasar PG 1634+706 (\(z_{em} = 1.335\)). This system is a strong Mg II absorber with at least five blended components and with a deficiency of C IV relative to other systems with similar \(W_\lambda(\text{Mg II})\) (Churchill et al. 2000). In a previous study, Charlton et al. (2000) derived constraints on the physical properties of the system based on a combination of low-resolution data from the Faint Object Spectrograph (FOS) on board the Hubble Space Telescope (HST) and high-resolution data from the High Resolution Echelle Spectrometer (HIRES) on the Keck I telescope. At that time, only low-resolution data were available for many key transitions, including low-ionization tracers (Si II and C II), high-ionization tracers (Si IV and C IV), and the Lyman series lines. However, the HIRES profiles of Mg I, Mg II, and Fe II were used to form a template that was applied to model the low-resolution data.

Based on the FOS and HIRES data, Charlton et al. (2000) came to the following conclusions: (1) The metallicity (expressed in solar units) of the Mg II phase would be low \((-1.5 < \log Z \leq -1\) if it were to produce a full Lyman
and the Lyα profile. (3) An additional broad component also appeared to be needed to produce C iv. (4) Si iv could not fully arise in the inferred low- or high-ionization phases, which suggested the existence of a blend or an additional component.

However, some important issues still remained unresolved: (1) whether the Mg i could be produced in the same clouds as Mg ii, (2) whether the ionization conditions vary across the profiles, (3) whether C iv is produced by a single, broad phase or by several separate, narrower clouds, and (4) whether Si iv is affected by a blend, and if not, how it is produced.

The first issue is important because Mg i is underproduced by the Mg ii phase in many strong Mg ii absorption systems (Churchill 1997; Churchill, Vogt, & Charlton 2003). In addition, Mg i absorption is often very strong in the environment where damped Lyα absorbers (DLAs) arise and therefore could be used to trace the origin of the strongest H i absorption. A resolution to the Mg i/Mg ii issue in the case of the $z = 0.9902$ Mg ii system could serve as a basis for solving these more general problems.

The third issue is of particular interest because this system is C iv–deficient (Churchill et al. 2000). Most strong Mg ii absorbers have comparable strong C iv absorption, which is likely to arise in a corona similar to that surrounding the Milky Way. Although C iv is detected in the low-resolution FOS spectrum, it is relatively weak. Therefore, the additional component suggested by Charlton et al. (2000) may not be analogous to a corona. The C iv profiles could be resolved to determine whether the “corona phase” is absent or just weak in C iv. Either low-metallicity or high-ionization conditions could lead to weak C iv absorption from a corona.

With the release of grating E230M spectra from the Space Telescope Imaging Spectrograph (STIS) on board the HST, we now have high-resolution coverage of the Lyman series, Si ii, C ii, Si iii, C iii, Si iv, and C iv transitions. In this paper, we present the results from photo/collisional ionization modeling of the $z \approx 0.9902$ Mg ii system. Combining the newer data with those on Mg i, Mg ii, and Fe ii from Keck/HIRES, we determine the minimum number of phases required to produce the observed absorption in the many detected chemical transitions. For each phase, we place constraints on physical properties such as densities, temperatures, and sizes of the various environments that give rise to the absorption features displayed in the observed spectral profiles.

In § 2 we briefly describe the data that we use to constrain our models. A summary of our modeling techniques is presented in § 3, and our major results are outlined in § 4. Finally, in § 5 we summarize and give a physical interpretation of the system.

2. DATA AND ANALYSIS

2.1. Keck/HIRES

The HIRES spectrum was reduced with the IRAF APEXTRACT package for echelle data and was extracted using the optimal extraction routine of Horne (1986) and Marsh (1989). The wavelengths were calibrated to vacuum using the IRAF task ECIDENTIFY and shifted to heliocentric velocities. Continuum fitting was based on the formalism of Sembach & Savage (1992).

Voigt profiles were used to simultaneously fit Mg i, Mg ii, and Fe ii, with free parameters of the redshift, column density, and Doppler parameter b for each component. The program MINFIT (Churchill 1997), using a χ^2 formalism, found the minimum number of components required to fit the system. The Mg i $\lambda 2853$, Mg ii $\lambda 2796$, 2803, and Fe ii $\lambda 2600$ transitions, covered by HIRES, are shown in velocity space in Figure 1. Other Fe ii transitions were also covered, but Fe ii $\lambda 2600$ has the highest signal-to-noise ratio.

The fitting procedure was summarized in Churchill & Vogt (2001) and described in detail in Churchill (1997). Components are dropped from the fit unless retaining them produces a χ^2 value that is significantly better (97% by the F-test). Errors in redshifts, column densities, and Doppler parameters were determined using the diagonal elements of the covariance matrix, determined from the curvature matrix. Components were rejected if their total fractional errors exceeded 1.5.

2.2. HST/FOS

Before the release of the STIS data, low-resolution UV spectra were obtained using the G190H and G270H gratings of HST/FOS. These spectra were presented in Impey et al. (1996) and Bahcall et al. (1996). Since the higher resolution STIS spectrum covers most of the key transitions for the $z = 0.9902$ system, we used only the FOS spectra to study the Lyman limit break at 1830 Å, which implies a neutral hydrogen column density $\log N(H i) \geq 18$. The data reduction, wavelength calibration, fluxing, and continuum fitting of the FOS spectra were performed as part of the QSO Absorption Line Key Project (Bahcall et al. 1996).

2.3. HST/STIS

Two high-resolution ($R = 30,000$) data sets, with different wavelength coverage, were obtained with HST/STIS and retrieved from the HST data archive. The E230M spectrum, obtained by S. Burles (2000 May and June), has a wavelength coverage of 1865–2673 Å and a total exposure time of 29,000 s. The E230M spectrum, provided by B. T. Jannuzi (2000 June), has a wavelength coverage of 2303–3111 Å and a total exposure time of 26,435 s. The Lyman series, Si ii, C ii, Si iii, C iii, Si iv, and C iv are all covered by the E230M STIS spectra. A G230M spectrum, covering 1830–1870 Å, was also obtained by S. Burles (2000 May), but it did not cover any key transitions for our analysis of the system.

The STIS spectra were reduced using the standard pipeline (Brown et al. 2002). The extracted spectra were averaged between different exposures, and the continuum fitting was performed with standard IRAF tasks (Churchill & Vogt 2001).

The spectra of various transitions are shown in Figure 1. Lyγ is apparently blended with another feature, based on its asymmetry relative to the other Lyman series transitions. Lyδ is not shown because of its noisy spectrum and its contamination by a blend. Si ii $\lambda 1190$ is blended with N v $\lambda 1243$.
from the $z = 0.9056$ system. C II $\lambda 1335$ is contaminated by Si iv $\lambda 1394$ from the $z = 0.9056$ system, but based on Si iv $\lambda 1403$, the contribution from Si iv $\lambda 1394$ would be negligible. A relatively strong, unidentified feature is apparent to the red of the C II $\lambda 1335$ profile. Si iii $\lambda 1260$ is blended with Si ii $\lambda 1260$ from the $z = 0.9056$ system. Only N v $\lambda 1239$ is shown, because no absorption is detected in either of the N v $\lambda 1238, 1242$ profiles and N v $\lambda 1239$ is the strongest of the two. O vi $\lambda 1032$ is not shown. It is clearly inconsistent with the undetected O vi $\lambda 1038$.

3. METHODS FOR MODELING

The goal of the present study was to determine the physical conditions under which the spectra shown in Figure 1 were produced. To begin, we applied a Voigt profile fit to the Mg II transitions to determine the locations, column densities, and Doppler parameters of the components required to reproduce the observed absorption. We assumed that each one of these components was produced by an individual "cloud," and we modeled each one of these
clouds with the photoionization code CLOUDY, version 90.4 (Ferland 1998).

The clouds were assumed to be constant-density, plane-parallel slabs in photoionization equilibrium. They were ionized by a z = 1 Haardt & Madau (1996) extragalactic background spectrum, normalizing with an ionizing photon density of \(\log n_e = -5.2 \). Alternative input spectra were also briefly explored, as discussed in \(\S \) 4.5. To simulate these clouds, the required input parameters were (1) the column density of Mg ii, \(N(\text{Mg} \, \text{ii}) \), (2) the metallicity \(Z \) (expressed in solar units), (3) the ionization parameter \(U \) (defined as the ratio of the number density of photons capable of ionizing hydrogen, \(n_e \), to the number density of hydrogen, \(n_H \)), and (4) the abundance pattern. The column density of Mg ii was obtained from the Voigt profile fit. Both the metallicity and the ionization parameter were chosen from a range reasonable for interstellar and intergalactic clouds (i.e., \(-3 \leq \log Z \leq 0 \) and \(-5 \leq \log U \leq 0 \)), with the initial assumption of a solar abundance pattern. If a simultaneous fit to all transitions was not possible with solar abundances, alternatives were explored.

Once the input parameters were specified, we ran CLOUDY to optimize on the column density of a selected species, such as Mg ii. During the run, CLOUDY used an initial guess of \(N(\text{H} \, \text{i}) \) and calculated the corresponding \(N(\text{Mg} \, \text{ii}) \). The output \(N(\text{Mg} \, \text{ii}) \) was compared with the value measured from the Voigt profile fit, and the value of \(N(\text{H} \, \text{i}) \) was adjusted accordingly for the next iteration. This process was repeated until the difference between the output \(N(\text{Mg} \, \text{ii}) \) and the designated one was negligible.

On the completion of the final iteration, the following parameters were retrieved for the resulting cloud: the column density of every species with spectral coverage, the size of the cloud, and the temperature. The temperature was used to calculate the thermal component of the Doppler parameter of each ion, according to \(b^{2}_{\text{therm}} = 2kT/m \), where \(m \) is the atomic weight of the ion. The turbulent component of \(b \), which is due to the bulk motion of the gas and is the same for all the ions, was calculated from the measured \(b(\text{Mg}) \) using \(b^{2}_{\text{turb}} = b^{2}(\text{Mg}) - b^{2}_{\text{therm}}(\text{Mg}) \). Combining the turbulent and thermal components, we obtained the Doppler parameter of all other individual ions.

CLOUDY was run for all five Mg ii clouds, each time calculating \(N \) and \(b \) for each species. A “pure” spectrum was then produced for each transition from the \(N \) and \(b \) of all five components. Then, we generated a synthetic spectrum by convolving the “pure” spectrum with the instrumental spread function. Finally, the synthetic spectrum was superimposed on the observed one for comparison.

We experimented with various metallicities and ionization parameters and attempted to obtain a synthetic spectrum that displayed minimal discrepancy with the observed one. A visual comparison of goodness of fit was used to reject models, as illustrated in Charlton et al. (2000) and Rigby, Charlton, & Churchill (2002). This was adequate to confidently constrain parameters to a relatively narrow range within the very large parameter space. The \(\log U \) and \(\log Z \) values given below are accurate to about 0.1 dex. We considered using a quantitative \(\chi^2 \) approach but found it to be impractical because a single pixel or group of pixels for a particular transition often dominated the assessment.

We encountered several issues that were unresolvable using a single phase of gas. Mg i was underproduced for any choice of \(U \), the shape of the Ly\(\alpha \) profile could not be fitted, the velocity centroids of Si iv and C iv were offset from that of Mg ii, and the Si iv and C iv transitions could not be fitted simultaneously. Additional clouds were included in the Mg ii phase to account for the offset Si iv and C iv absorption. The resolution of the other three issues requires the inclusion of independent phases: A colder, denser phase is needed to produce the observed absorption in Mg i. A broad, low-metallicity component is needed to account for the shape of the Ly\(\alpha \) profile. Finally, a collisionally ionized phase is needed to fit Si iv without overproducing C iv. Each of these phases is explained in detail in \(\S \) 4.

4. RESULTS

Here we present constraints on each of the four phases required to fit the z = 0.9902 system, beginning with the lowest ionization phase. Table 1 provides a summary of the cloud properties for all four phases in a plausible model that satisfies all constraints.

4.1. Mg i Phase

The five Mg ii clouds from the original Voigt profile fit could not produce the observed equivalent width of Mg i, regardless of the choice of ionization parameter. The ratio \(N(\text{Mg} \, \text{i})/N(\text{Mg} \, \text{ii}) \) is nearly constant at \(\approx 0.01 \) over a large range of ionization parameters \(U \) and for the range of metallicity appropriate for this system.

In order to obtain the observed equivalent width ratio \(W_r(\lambda 2853)/W_r(\lambda 2796) \), a difference in the curve of growth between the two transitions was used, as shown in Figure 2. In general, when an absorption profile is unsaturated, its equivalent width \(W_r \) increases linearly with its column density \(N \) (i.e., on the linear part of the curve of growth). However, when the absorption becomes saturated, \(W_r \) stays almost constant with \(N \), at a value that depends only on the Doppler parameter \(b \) (i.e., on the flat part of the curve of growth).

In Figure 2, our typical \(N(\text{Mg} \, \text{ii}) \) is on the flat part of the curve of growth, while \(N(\text{Mg} \, \text{i}) \) is on the linear part.

![Figure 2](image-url)
Cloud	v (km s\(^{-1}\))	Z (Z\(_{\odot}\))	\(n_H\) (cm\(^{-3}\))	Size (pc)	T (K)	\(N_{\text{col}}(\text{H})\) (cm\(^{-2}\))	\(N(\text{H})\) (cm\(^{-2}\))	\(N(\text{Mg i})\) (cm\(^{-2}\))	\(N(\text{Mg ii})\) (cm\(^{-2}\))	\(N(\text{Fe ii})\) (cm\(^{-2}\))	\(N(\text{Si iv})\) (cm\(^{-2}\))	\(N(\text{C iv})\) (cm\(^{-2}\))	\(b(\text{H})\) (km s\(^{-1}\))	\(b(\text{Mg})\) (km s\(^{-1}\))	\(b(\text{Fe})\) (km s\(^{-1}\))	
Mg i																
Mg i 1	-22	0.16	-7.5	200	0.0008	500	17.7	17.7	11.1	12.4	11.9	0	0	3.7	0.75	0.5
Mg i 2	-10	0.16	-7.5	200	0.0003	700	17.3	17.3	10.4	12.1	11.7	0	0	3.7	0.75	0.5
Mg i 3	1	0.16	-7.5	200	0.0005	600	17.5	17.5	10.8	12.2	11.7	0	0	3.7	0.75	0.5
Mg i 4	12	0.16	-7.5	200	0.0005	600	17.5	17.5	10.8	12.2	11.7	0	0	3.7	0.75	0.5
Mg i 5	24	0.16	-7.5	200	0.0005	600	17.5	17.5	10.8	12.2	11.7	0	0	3.7	0.75	0.5
Mg ii																
Mg ii 1																
Mg ii 2																
Mg ii 3																
Mg ii 4																
Mg ii 5																
Mg ii 6																
Mg ii 7																
Broad H i																
H i 1																
Collisional Ionization Phase																
Si iv 1	17	0.16		

Note.—Column densities are listed in logarithmic units.
Thus, we could produce a larger $W_r(\lambda 2853)/W_r(\lambda 2796)$ using a smaller b, in an "Mg i phase."

A unique Voigt profile fitted to Mg i could not be obtained. We assumed five clouds at the same velocities as the broader Mg ii cloud components, with a constant Doppler parameter and a constant ionization parameter. The Doppler parameter is constrained to be $b \lesssim 1 \text{ km s}^{-1}$ in order for Mg ii to not be overproduced by the combination of this Mg i phase and the Mg ii cloud phase (see § 4.2). However, the ionization parameter has to be $\log U \lesssim -8$ for $b = 1 \text{ km s}^{-1}$ in order for O i to not be overproduced. Alternatively, $\log U \lesssim -7.5$ if $b = 0.75 \text{ km s}^{-1}$ (O i is on the flat part of the curve of growth). Column densities for a sample model with $b(\text{Mg}) = 0.75 \text{ km s}^{-1}$ and $\log U = -7.5$ are listed in Table 1. With $b(\text{Mg}) = 0.75 \text{ km s}^{-1}$, the temperature is constrained to be lower than 800 K. CLOUDY yields an effective temperature close to this value for the clouds in our sample model. An ionization parameter of $\log U = -7.5$ corresponds to a cloud density of $n(\text{H}) \approx 200 \text{ cm}^{-3}$. The cloud sizes are quite small, ranging from 60 to 160 AU.

If the b-parameter is small, the Mg i phase will make a trivial contribution to the overall equivalent width of any high-ionization metal transition. In Figure 3 the dotted lines represent the contribution from the Mg i phase for the model listed in Table 1. The contribution to Mg ii is negligible; therefore, Mg ii has to be entirely produced by the Mg ii cloud phase (see § 4.2).

Assuming the five Mg i clouds have the same metallicity, the metallicity of this phase is constrained to be $\log Z \gtrsim -0.8$ by the Lyα profile. At $\log Z = -0.8$, the H i column densities of the five Mg i clouds are in the range of 0 to 100 cm$^{-2}$.

![Figure 3](image_url)

Fig. 3.—Various key metal transitions plotted in velocity space. The STIS and HIRES data are histograms, with model curves superposed. The dotted curves represent the Mg i clouds. The dashed curves show the contribution from the Mg ii phase. The dot-dashed curves represent the broad H i phase. The solid curves show the contribution from the collisional component. [See the electronic edition of the Journal for a color version of this figure.]
17.3 \leq \log N(H \text{ i}) \leq 17.7$, as listed in Table 1, yielding an effective total of $\log N(H \text{ i}) \approx 18.1$. Thus, at this metallicity, the Mg i phase will give rise to the full Lyman limit break detected in the FOS spectrum, which requires $\log N(H \text{ i}) \geq 18$.

4.2. Mg ii Phase

The column densities and b-parameters of the five Mg ii clouds were obtained from a Voigt profile fitted to the residuals in Mg ii unaccounted for by the Mg i phase. The five clouds in this phase have considerably larger b-parameters [$6 \text{ km s}^{-1} \leq b([\text{Mg}]) \leq 15 \text{ km s}^{-1}$] than the Mg i clouds, as listed in Table 1.

With the detection of strong Fe ii in clouds Mg ii,$_1$, Mg ii,$_2$, and Mg ii,$_3$, the ionization parameters of these clouds are constrained by $N(\text{Fe} \text{ ii})/N(\text{Mg} \text{ ii})$. The remaining two clouds (Mg ii,$_4$ and Mg ii,$_5$) must have higher ionization parameters, since Fe ii is very weak. Si iv was used to determine their ionization states, with the assumption that Si iv transitions arise in the same phase as Mg ii. Thus, the five clouds have ionization parameters of $\log U \approx -3.7$, -4.0, -3.5, -3.0, and -2.5, respectively, as listed in Table 1.

The Si iv and C iv profiles are not aligned with the bulk of the absorption seen in Mg ii, Mg ii, and the other low-ionization transitions. Thus, additional offset clouds with higher ionization parameters are needed. A Voigt profile fitted to Si iv yielded two additional clouds (Mg ii,$_6$ and Mg ii,$_7$) at $v \approx 42$ and 55 km s^{-1}, respectively. Again, column densities and b-parameters of these two clouds are listed in Table 1. Ionization parameters are constrained to be $\log U \approx -2.5$ and -2.7 by $N(\text{Si iv})/N(\text{C iv})$. This is also consistent with the weak absorption displayed in the red wings of the Mg ii and Si ii profiles.

A wide range of ionization states ($-4.0 \leq \log U \leq -2.5$) is displayed in this Mg ii phase, with a tendency for an increase in the ionization stage from blue to red in the spectrum. Therefore, most of the absorption in both low-ionization transitions, such as Mg ii, Fe ii, Si ii, and C ii, and high-ionization transitions, such as Si iii, C iii, and C iv, is produced in this phase, as shown in Figure 3. However, the substantial underproduction of Si iv suggests the existence of an extra component, as discussed in § 4.4.

Assuming that all seven clouds in the Mg ii phase have the same metallicity, the metallicity is constrained to be $\log Z \approx -0.65$ by the Lyman series. However, even at the lower limit of $\log Z = -0.65$, with $14.9 \leq \log N(H \text{ i}) \leq 17.1$, the Mg ii phase contributes insignificantly to the observed full Lyman limit break. Alternatively, if the Mg i and Mg ii phases are assumed to have the same metallicities, a metallicity of $\log Z \approx -0.8$ is required by the Ly\(\alpha\) profile (Fig. 4). As mentioned in § 4.1, at this metallicity the five Mg i clouds will give rise to the observed full Lyman limit break (see Table 1).

4.3. Broad H i Phase

The Ly\(\alpha\) profile is too broad to be fully produced by the Mg i and Mg ii clouds, as is shown in Figure 4. However, if the metallicity was decreased to give rise to more Ly\(\alpha\), the narrower Ly\(\gamma\) would be overproduced. The curve of growth of the Lyman series lines (Churchill & Charlton 1999) allows for a centered, broad component that can resolve this dilemma (i.e., it accounts for the broader, deeper Ly\(\alpha\) profile, as well as the wing structure in Ly\(\beta\), without overproducing the narrower Ly\(\gamma\) profile).

A Voigt profile fitted to Ly\(\alpha\) yielded the column density and b-parameter of the broad phase. If $b(\text{H} \text{ i}) \approx 70 \text{ km s}^{-1}$ and $N(\text{H} \text{ i}) \approx 10^{15} \text{ cm}^{-2}$, we can produce the saturated absorption from 100 to $+120 \text{ km s}^{-1}$, but the wings will be overproduced; if $b(\text{H} \text{ i}) \approx 50 \text{ km s}^{-1}$ and $N(\text{H} \text{ i}) \approx 10^{16} \text{ cm}^{-2}$, we can produce the range of the saturated absorption, but the wings will be underproduced. The best fit was found to be with $N(\text{H} \text{ i}) \approx 10^{15.5} \text{ cm}^{-2}$ and $b(\text{H} \text{ i}) \approx 58 \text{ km s}^{-1}$.

In principle, the broad component could be either photoionized or collisionally ionized. In both cases, the metallicity is constrained so as not to overproduce any of the high-ionization transitions (i.e., C iv, N v, and O vi). N v and O vi are not detected, and C iv is fully produced in the Mg ii phase (as required by the structure appearing in the C iv profiles).

For photoionization, an upper limit of $\log Z \leq -2$ is placed on the metallicity, regardless of the choice of ionization parameter. Otherwise, either low- or high-ionization transitions would be overproduced. If the metallicity is $\log Z \leq -2.5$, there will be no constraint on the ionization parameter from the metal transitions. None of them is significantly produced at such a low metallicity. However, a rough upper limit of $\log U \leq -1$ can be estimated by the requirement of a reasonable cloud size (less than several
hundred kiloparsecs). A good fit for this phase was obtained for a model with a metallicity of \(\log Z \approx -2.5 \) and an ionization parameter of \(\log U \approx -1.5 \), as listed in Table 1. This model gives a cloud \(\sim 60 \) kpc in size. The fit to the Lyman series is shown by the dot-dashed curve in Figure 4.

For collisional ionization with pure thermal broadening (i.e., no bulk motion), the temperature would be \(T \approx 10^{5.3} \) K, using \(b^2 = 2kT/m \) for \(H \alpha \). At this temperature, the metallicity has to be exceptionally low, \(\log Z \lesssim -3.5 \), in order to not overproduce the high-ionization transitions. If instead bulk motion contributes, the \(b \)-parameter will be larger for each metal species than the one given by pure thermal scaling of \(b(H) \). For example, as the temperature decreases from \(T \approx 10^{5.3} \) K, \(N(C iv) \) increases toward a peak at \(T \approx 10^{4.0} \) K. This, together with a larger \(b(C) \), gives a larger \(C iv \) equivalent width when bulk motion is involved. In order to not overproduce \(C iv \), the metallicity has to be even lower than the pure thermal case. A metallicity as low as \(\log Z \approx -3.5 \) is unlikely. Therefore, collisional ionization is ruled out for this phase. The broad \(H \alpha \) absorption is more likely to arise in a photoionized cloud, but even then the metallicity is constrained to be quite low (\(\log Z \lesssim -2 \)).

4.4. Collisional Ionization Phase

The broad, smooth absorption profiles in the \(Si iv \) transitions are not consistent with the structure apparent in the \(C iv \) profiles. Because \(Si iv \) is offset relative to \(Ly \alpha \), it also cannot be produced by the centered, broad \(H \alpha \) phase. The need to produce \(Si iv \) without contributing a substantial amount of absorption to other transitions suggests the existence of a collisionally ionized phase. A Voigt profile fitted to the residuals in \(Si iv \) yielded a component at \(\nu \approx 17 \) km s\(^{-1} \), with \(N(Si iv) \approx 10^{13.5} \) cm\(^{-2} \) and \(b(Si) \approx 17 \) km s\(^{-1} \). However, for collisional ionization, \(Si iv \) peaks at \(T \approx 4.8 \) (Sutherland & Dopita 1993), which corresponds to \(b_{\text{therm}} \approx 6 \) km s\(^{-1} \). Therefore, bulk motion must also contribute to the overall velocity dispersion. The temperature range was found to be \(10^{4.7} \leq T \leq 10^{4.9} \) K, in order to not overproduce the transitions of higher and lower ionization stages. The metallicity of this phase could be set to the same value as the \(Mg i \) and \(Mg ii \) phases, \(\log Z \approx -0.8 \), but it is not well constrained. A lower limit of \(\log Z \approx -3 \) is placed by the Lyman series lines.

4.5. Effects of Assumed Input Spectrum

For all the previous results, we have used the \(z = 1 \) Haardt & Madau (1996) extragalactic background radiation (EBR) spectrum as the only source of ionizing photons. Here we consider the likelihood of additional stellar contributions and the effect of such alternative spectra in a couple of extreme examples.

At redshift \(z \approx 1 \), the EBR is more likely to dominate stellar contributions than it is at other redshifts. At lower redshifts, the amplitude of the Haardt & Madau EBR is lower (by a factor of 7 at \(z = 0 \); Haardt & Madau 1996). At much higher redshifts, starbursts are common, and the amplitude of the EBR from quasars has leveled off.

Unfortunately, in the case of the PG 1634+459 line of sight, we have no information about the colors or morphologies of the host galaxies. Therefore, we cannot rule out a starburst host for the \(z = 0.9902 \) absorber. Only an extreme starburst would affect the results, and only within \(\sim 6 \) kpc of the center of such a galaxy would the stellar contribution strongly dominate the EBR (1% of the photon flux of \(10^{54} \) s\(^{-1} \) would escape the burst region; Hurwitz, Jelinsky, & Dixon 1997). We would expect the absorption from the central region of a starburst to be stronger than it is for this \(z = 0.9902 \) system (Bond et al. 2001). Furthermore, we would expect to pass through some layers of highly ionized gas, and this absorber is weak in \(C iv \) and undetected in \(N v \) and \(O vi \). Therefore, a strong starburst host galaxy is unlikely, but we still consider here the effect of a couple of modified spectra.

Many different spectral shapes would be possible once we allow a stellar contribution, and it is unrealistic to consider them all, so we choose two extreme cases: (1) a 0.01 Gyr instantaneous burst, which is characterized by the edges of \(H \eta \), \(He i \), and \(He ii \), and (2) a 0.1 Gyr instantaneous burst with an extreme \(H \alpha \) edge but with a relatively flat spectrum above that edge, similar to the Haardt & Madau (1996) shape. Both stellar spectra, assuming solar metallicity and a Salpeter initial mass function, were taken from Bruzual & Charlot (1993). We have run models with the burst contribution set to 10 times that of the EBR, at 1 ryd. We begin with the model in Table 1 and consider how the addition of the burst would affect our conclusions. In a more realistic model, however, the spectral shape would be a function of position, with the EBR likely to be dominant at some locations, but the solution to that case would be in between the extreme starburst models and a pure Haardt & Madau (1996) model.

Stellar contributions from a nonburst model are more likely to dominate the EBR at energies less than 1 ryd. This could affect the ionization balance between the neutral and singly ionized transitions. Because of its extreme Lyman limit break (almost a factor of 1000), the 0.1 Gyr instantaneous burst model can also be used to represent the rough effects in this case.

For the 0.01 Gyr model, because of the softer spectrum (because of the edges of helium), the \(C iv \) is underproduced compared to the pure Haardt & Madau (1996) case. For the same reason, for the clouds optimized on \(Si iv \), the lower ionization transitions are found to be overproduced compared to \(Si iv \). With this spectral shape, we cannot produce even the weak, observed \(C iv \). In principle, this could relate to why this system is \(C iv \)-deficient, but in practice it is difficult to understand how such a strong stellar flux could affect a large enough region to reduce the high-ionization absorption at all velocities. The metallicity that we would infer for the 0.01 Gyr model would be quite similar (within 0.1 dex) to that for the pure Haardt & Madau (1996) case.

For the 0.1 Gyr model, there are relatively fewer ionizing photons just above the \(H \alpha \) edge, and so more hydrogen remains neutral. This gives rise to a stronger \(Ly \alpha \) line. To match the observed \(Ly \alpha \) profile, the metallicity would have to be increased, but only by \(\sim 0.3 \) dex. Because of the similar shape to the Haardt & Madau (1996) spectrum above the edge, the ionization conditions are not very different for metal-line transitions. Slightly more \(C iv \) is produced in the 0.1 Gyr model, but this would require an ionization parameter adjustment of only \(\sim 0.1 \) dex. It is also important to note that for neither burst model is our conclusion altered about the need for an additional \(Mg i \) phase. However, the 0.1 Gyr burst model does give rise to a larger amount of \(O i \) in the \(Mg i \) clouds, which would somewhat change constraints on the cloud densities and sizes.
5. SUMMARY AND DISCUSSION

Based on modeling of high-resolution HST/STIS and Keck/HIRES absorption profiles of the z = 0.9902 strong Mg ii absorber toward PG 1634+706, we derived the physical conditions of the phases of gas encountered along the line of sight. Here, we summarize the physical conditions (densities, temperatures, size of structures) that characterize each of the phases. These properties indicate relationships between the gas phases and various structures in the Milky Way, as well as in other galaxies in the local universe.

5.1. Mg ii Clouds

Seven blended components with b-parameters ranging from 4 to 15 km s⁻¹ provide a consistent fit to the Mg ii λλ2796, 2803 profiles, which extend over ~75 km s⁻¹ in velocity. Under the assumption of a Haardt & Madau (1996) ionizing spectrum, these photoionized clouds have densities of 0.002–0.1 cm⁻³ (corresponding to ~40 ≤ log U ≤ 2.5), with a gradual decrease from blue to red, and temperatures of ~10,000 K. C iv was also fully produced in this phase. We infer a metallicity of log Z ∼ −0.8, assuming that these clouds have the same metallicity as those of a separate Mg i phase. The cloud sizes/thicknesses range from parsecs to hundreds of parsecs, as listed in Table 1.

The physical conditions in this phase are similar to those in the warm, ionized intercloud medium of the Milky Way (McKee & Ostriker 1977). They are also similar to most other Mg ii clouds in strong Mg ii absorbers (Churchill et al. 2000). The similarity with the Milky Way disk ISM and the connection between strong Mg ii absorbers and the majority of L* galaxies suggests that the Mg ii absorption comes from the warm ISM of a spiral disk. However, strong Mg ii absorption can also come from early-type galaxies (Churchill, Steidel, & Vogt 1996). In fact, Churchill et al. (2000) found that the three C iv–deficient Mg ii absorbers in their sample had among the reddest B–K colors and the highest luminosities. The similarity of the low-ionization gas properties between “classic” strong Mg ii absorbers and C iv–deficient Mg ii absorbers would then suggest that early-type galaxies house regions with an ISM similar to that in spirals.

5.2. Pockets of Mg i

Perhaps the most interesting and surprising result of our modeling was our inference of the existence of a cold phase (T < 1000 K). It consists of dense [n(H) ~ 200 cm⁻³] pockets that give rise to the bulk of the Mg i absorption in the form of very narrow (b < 1 km s⁻¹) components. This phase also gives rise to the observed Lyman limit break if log Z ∼ −0.8 for all the clouds. These “Mg i pockets” are quite small, only ~100 AU.

From many different techniques, there is conclusive evidence for the existence of small-scale structure in the Milky Way ISM down to scales of 100 AU and lower. The techniques include high-resolution absorption studies toward globular clusters and binary stars (e.g., Andrews, Meyer, & Lauroesch 2001; Meyer & Lauroesch 1999; Watson & Meyer 1996; Meyer & Blades 1996) and H i 21 cm absorption studies toward extragalactic sources and high-velocity pulsars (e.g., Faison et al. 1998; Frail et al. 1994). The highest resolution absorption studies yielded small b-parameters, 1–2 km s⁻¹, for some of the features (Andrews et al. 2001), consistent with our proposed Mg i pockets.

The observed small, high-density structures have been difficult to reconcile with the idea that the ISM is in pressure balance. Their pressures are 2 orders of magnitude larger than the pressure of the warm, ionized intercloud medium. In the context of this z = 0.9902 system, the pressure of these Mg i pockets would be inconsistent with pressure confinement by the Mg ii clouds.

There have been several efforts to reconcile the issue of pressure balance in the ISM. Elmegreen (1997) has investigated a fractal structure model, driven by turbulence, that leads to significant clumping on small scales. Heiles (1997) has considered modifications of the standard cooling paradigms as well as alternative geometries. Walker & Wardle (1998) investigated the idea that the small clouds are self-gravitating. Regardless of the mechanism of formation and stability of these small structures, it is clear that they are pervasive in the disk of the Milky Way. Therefore, it is not surprising that we would see them in absorption through other galaxies such as this one probed by the PG 1634+706 line of sight. We should note, however, that since there is no definitive theory for their existence, our assumption that these clouds are in equilibrium may only be an approximation to a more complex physical situation.

A clue about the spatial arrangement of the cold and warm absorbing gas in the z = 0.9902 system comes from the relative sizes we have derived from the photoionization models. The sizes of the Mg i pockets are 10³–10⁵ times smaller than those of the Mg ii clouds, yet we find several of them along this line of sight. This suggests a sheetlike structure such that the covering factor is large, or perhaps a fractal structure as proposed by Elmegreen (1997). In addition, depending on the geometry, such small Mg i clouds could only partially cover the quasar beam, a phenomenon generally associated with absorbing clouds intrinsic to the quasar (e.g., Barlow & Sargent 1997; Hamann et al. 1997; Ganguly et al. 1999; de Kool, Korista, & Arav 2002). The quasar continuum source beam size would be ~10–100 Schwarzschild radii at the distance of the quasar, ~20–200 AU for a 10⁶ M☉ black hole.

In fact, the large W(Mg i)/W(Mg ii) ratio that led to our proposal of the existence of the Mg i cloud phase is common in strong Mg ii systems. In about half the strong Mg ii clouds, a simultaneous Voigt profile fitted to the Mg i and Mg ii profiles yielded N(Mg i)/N(Mg ii) larger than could be reconciled with a single-phase photoionization model (Churchill 1997; Churchill et al. 2003). In addition, Rauch et al. (2002) found a large Mg i column density for the strong Mg ii system at z = 0.5656 toward Q2237+0305 and found that it implied either an extremely large density or a large N(H i). They favored the latter, suggesting that this is a strong Lyman limit or damped Lyα system. Our results here imply that the former solution, of high-density pockets, is also reasonable.

The existence of these tiny “Mg i pockets” may also provide a hint about the nature of DLAs, especially those at relatively low redshifts. Unlike strong Mg ii absorbers, which almost always have an L > 0.05L∗ galaxy within 40 h⁻¹ kpc (Bergeron & Boissé 1991; Bergeron et al. 1992; Le Brun et al. 1993; Steidel et al. 1994, 1997; Steidel 1995), DLAs have a variety of types of galaxy hosts (Rao & Turnshek 2000), including dwarfs and low surface brightness galaxies (LSBGs) (Steidel et al. 1997; Turnshek et al. 2001; Kulkarni...
The Mg i/C0 row components (2–3 km s$^{-1}$) would not occur in a relatively large annulus surrounding the central regions of dwarfs and LSBGs. However, if the DLA is produced in small, high-density pockets of material, it is plausible that the surrounding regions could be evacuated of gas in galaxies with small potential wells. Thus, dwarfs and LSBGs could give rise to DLA absorption but not to a significant fraction of ordinary Lyman limit systems.

The idea that DLAs come from small pockets is supported by other observations. Lane (2000) has resolved narrow components (2–3 km s$^{-1}$) in an H i 21 cm absorption profile of the DLA at $z = 0.0912$ toward B0738+313. With some thermal scaling, it would be expected that the associated Mg i components would be even narrower, consistent with what we have found in our $z = 0.9902$ absorber. Furthermore, the DLAs with larger Mg i equivalent widths tend to be the ones with many components in their 21 cm absorption profiles (S. M. Rao 2002, private communication), and many of these components are also quite narrow (Lane 2000). Finally, the high-ionization association with DLAs is similar to that of classic strong Mg ii absorbers, as if it were due to parts of the galaxy that are unrelated to the DLA region (Churchill et al. 2000). DLAs could simply be small concentrations of gas that exist in large numbers in many kinds of environments. Our strong Mg ii absorber at $z = 0.9902$ could be a less extreme [in its N(H i)] and more common version of the same sort of structure.

5.3. Alternatives to Separate Mg i and Mg ii Phases

In our favored model, the Mg ii phase [with 6 km s$^{-1} < b$(Mg) < 15 km s$^{-1}$] severely underproduces Mg i, while the Mg i phase (with $b \sim 0.75$ km s$^{-1}$) produces only negligible Mg ii. This might suggest that there would be an alternative model with intermediate b-values so that Mg i and Mg ii can be produced in the same clouds. However, we find that this is not the case. Although with a smaller value of b the observed equivalent-width ratio of Mg i to Mg ii can be matched, the fit to Mg ii is unsatisfactory (too deep and too narrow).

Alternatively, we could relax our assumption that the Mg ii profile is fitted with the minimum number of component clouds that produce an adequate fit to the data. A larger number of clouds could be used, with smaller b-values (perhaps 2–3 km s$^{-1}$). It would seem that we could increase the number of clouds [thus decreasing the maximum N(Mg ii) for a cloud] so that Mg ii is no longer on the flat part of its curve of growth. With Mg ii on the linear part of its curve of growth, W(Mg i)/W(Mg ii) would be increased. In fact, this is not an acceptable solution for this system. As the number of clouds is increased, there is a competing effect that reduces W(Mg i)/W(Mg ii). Increased blending of the superposed clouds affects the Mg i more significantly than the Mg ii. This effect dominates so that we are unable to fit a model with many moderate-b clouds to fit the data.

We conclude that a two-phase model, with separate phases producing the Mg i and Mg ii absorption, is the simplest suitable model that can fit both the Mg i and Mg ii profiles and those of other intermediate-ionization transitions.

5.4. Broad H i Phase

A broad H i component, with $b \sim 60$ km s$^{-1}$, was proposed to produce a self-consistent fit to the Lyα, Lyβ, and Lyγ profiles. In order for this component to not overproduce any of the high-ionization metal-line transitions, it must have a low metallicity, log $Z \lesssim -2$. It is consistent with a photoionization model, but the ionization parameter is poorly constrained (since this phase does not give rise to metals). The size of this cloud is therefore also poorly constrained. If log $U = -2.5$, the size would be ~ 60 kpc.

In most other strong Mg ii absorbers, the C iv absorption is too strong, and the components too broad, for it to arise in the same phase as the Mg ii (Churchill et al. 2000). These absorbers also typically require an additional phase to self-consistently fit the Lyman series, and it is possible to produce both the high-ionization absorption and the additional H i absorption with the same phase. The need for a broad, high-ionization phase is especially evident in cases such as the “double” strong Mg ii absorber at $z = 0.9276$ toward PG 1206+459, in which C iv, N v, and O vi absorption are all very strong (Churchill & Charlton 1999; Ding et al. 2003). Such strong, broad, high-ionization absorption also characterizes the corona that surrounds the disk of the Milky Way (Savage et al. 1997, 2000).

The broad H i phase of the $z = 0.9902$ absorber resembles the H i component of the broad phases proposed for those other strong Mg ii absorbers. However, in this case no high-ionization metal-line absorption is produced by the broad phase, which led us to the conclusion that it has very low metallicity. With such a low metallicity, log $Z \lesssim -2$, as compared to its Mg ii clouds (log $Z \sim -0.8$), it seems unlikely that this system is analogous to the Milky Way corona. In fact, the low metallicity is more suggestive of a halo structure. The b-parameter of ~ 60 km s$^{-1}$ could also be consistent with such an interpretation.

This leads back to why the system is “C iv–deficient” (and N v– and O vi–deficient as well). It is more likely that this absorber is produced by a galaxy without a significant corona. The alternative, a low-metallicity corona, is less likely since a relatively high metallicity ($Z \sim 0.8$ for the Mg i and Mg ii phases) would be indicated for the disk that would produce the corona. An early-type galaxy would be consistent with this interpretation but is certainly not a unique solution. It may be only a coincidence that the broad H i component in this C iv–deficient absorber resembles those needed to fit the Lyman series in most other strong Mg ii absorbers.

5.5. Collisionally Ionized Phase

Another unusual feature of the $z = 0.9902$ system is the relatively strong, smooth Si iv profile, fitted with $b \sim 17$ km s$^{-1}$. Since the cloud structure apparent in the C iv profile matches the Mg ii clouds, we infer collisional ionization with a temperature close to the peak for Si iv production, $T \sim 60,000$ K.

It is interesting to note that a similar situation was found in the case of the $z = 1.04$ multicolor weak Mg ii absorber along this same quasar line of sight (Zonak et al. 2002). In that case, the Si ii profile was smooth and featureless and also much stronger than expected from photoionization models of the other phases inferred for that system. In that case, a somewhat smaller temperature of 40,000 K provided an adequate fit.
The temperatures of these additional, collisionally ionized phases place them on an efficient part of the cooling curve, so they would have to be quite common to be detected during a relatively brief interval. However, it is reasonable to think that cooling layers heated by supernova shocks could provide an appropriate environment. More complex models than pure collisional ionization have been considered to explain the ratios of high-ionization metal-line transitions in the Milky Way disk (Savage et al. 1997). Certainly, more complex processes than pure collisional ionization could be involved in this case as well. If strong, smooth profiles for one particular transition are commonly found in strong MgII absorbers, they could be compared in more detail with supernova models and used to track the evolution of the ensemble of supernova remnants in the universe.

REFERENCES

Andrews, S. M., Meyer, D. M., & Lauroesch, J. T. 2001, ApJ, 552, L73
Andrews, S. M., Meyer, D. M., & Lauroesch, J. T. 1996, ApJ, 457, 19
Barlow, T. A., & Sargent, W. L. W. 1997, AJ, 113, 136
Bergeron, J., & Boissé, P. 1991, A&A, 243, 344
Bergeron, J., Cristiani, S., & Shaver, P. A. 1992, A&A, 257, 417
Bond, N. A., Churchill, C. W., Charlton, J. C., & Vogt, S. S. 2001, ApJ, 562, 641
Bouchez, N., Lowenthal, J. D., Charlton, J. C., Bershady, M. A., Churchill, C. W., & Steidel, C. C. 2001, ApJ, 550, 585
Bowen, D. V., Tripp, T. M., & Jenkins, E. B. 2001, AJ, 121, 1456
Brown, T., et al. 2002, in HST STIS Data Handbook, Version 4.0, ed. B. Mobasher (Baltimore: STScI)
Bruzual A., G., & Charlot, S. 1993, ApJ, 405, 538
Churchill, C. W., Mellon, R. R., Rigby, J. R., & Churchill, C. W. 2000, ApJ, 545, 635
Churchill, C. W., Mellon, R. R., Rigby, J. R., Charlton, C. W., & Steidel, C. C. 2001, ApJ, 559, L43
Churchill, C. W. 1997, Ph.D. thesis, Univ. California, Santa Cruz
Churchill, C. W., & Charlton, J. C. 1999, AJ, 118, 59
Churchill, C. W., Mellon, R. R., Charlton, J. C., Jannuzi, B. T., Kirhakos, S., Steidel, C. C., & Schneider, D. P. 1999, ApJ, 519, L43
Churchill, C. W., Steidel, C. C., & Vogt, S. S. 1996, ApJ, 471, 164
Churchill, C. W., & Vogt, S. S. 2001, AJ, 122, 679
Churchill, C. W., Vogt, S. S., & Charlton, J. C. 2003, AJ, 125, 98
de Kool, M., Korista, K. T., & Arav, N. 2002, ApJ, 580, 54
Ding, J., Charlton, J. C., Churchill, C. W., & Palma, C. 2003, ApJ, submitted
Elmegreen, B. G. 1997, ApJ, 477, 196
Faison, M. D., Goss, W. M., Diamond, P. J., & Taylor, G. B. 1998, AJ, 116, 2916
Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., & Verner, E. M. 1998, PASP, 110, 761
Frail, D. A., Weisberg, J. M., Cordes, J. M., & Mathers, C. 1994, ApJ, 436, 144
Ganguly, R., Eracleous, M., Charlton, J. C., & Churchill, C. W. 1999, AJ, 117, 2594
Giroux, M. L., Sutherland, R. S., & Shull, J. M. 1994, ApJ, 435, L97
Haardt, F., & Madau, P. 1996, ApJ, 461, 20
Hamann, F., Barlow, T. A., Junkkarinen, V., & Burbidge, E. M. 1997, ApJ, 478, 80
Heiles, C. 1997, ApJ, 481, 193
Horne, K. 1986, PASP, 98, 609
Hurwitz, M., Jelinsky, P., & Dixon, W. V. D. 1997, ApJ, 481, L31
Impey, C., Petry, C. E., Malkan, M. A., & Webb, W. 1996, ApJ, 463, 473
Kulkarni, V. P., Hill, J. M., Schneider, G., Weymann, R. J., Starrie-Lombardi, L. J., Rieke, M. J., Thompson, R. I., & Jannuzi, B. T. 2001, ApJ, 551, 37
Lane, W. M. 2000, Ph.D. thesis, Univ. Groningen
Le Brun, V., Bergeron, J., Boissé, P., & Christian, C. 1993, A&A, 279, 33
Marsh, T. 1989, PASP, 101, 1032
McKee, C. F., & Ostriker, J. P. 1977, ApJ, 218, 148
Meyer, D. M., & Blades, J. C. 1996, ApJ, 464, L179
Meyer, D. M., & Lauroesch, J. P. 1999, ApJ, 520, L103
Rao, S. M., & Turnshek, D. A. 2000, ApJS, 130, 1
Rauch, M., Sargent, W. L. W., Barlow, T. A., & Simcoe, R. A. 2002, ApJ, 576, 45
Rigby, J. R., Charlton, J. C., & Churchill, C. W. 2002, ApJ, 565, 743
Savage, B. D., Sembach, K. R., & Liu, L. 1997, AJ, 113, 2158
Savage, B. D., et al. 2000, ApJ, 538, L27
Sembach, K. R., & Savage, B. D. 1992, ApJS, 83, 147
Steidel, C. C. 1995, in QSO Absorption Lines, ed. G. Meylan (Garching: Springer), 139
Steidel, C. C., Dickinson, M., Meyer, D. M., Adelberger, K. L., & Sembach, K. R. 1997, ApJ, 480, 586
Steidel, C. C., Dickinson, M., & Persson, E. 1994, ApJ, 437, L75
Turnshek, D. A., Rao, S., Nestor, D., Lane, W., Monier, E., Bergeron, J., & Smette, A. 2001, ApJ, 553, 288
Vogt, S. S., Mateo, M., Olszewski, E. W., & Keane, M. J. 1995, AJ, 109, 151
Walker, M., & Wardle, M. 1998, ApJ, 498, L125
Watson, J. K., & Meyer, D. M. 1996, ApJ, 473, L127
Zonak, S. G., Charlton, J. C., Ding, J., & Churchill, C. W. 2002, ApJ, submitted

No. 2, 2003 STRONG Mg II ABSORBER TOWARD PG 1634+706 561