EXPLICIT ESTIMATES ON A MIXED NEUMANN-ROBIN-CAUCHY PROBLEM

LUISA CONSIGLIERI

Abstract. We deal with the existence of weak solutions for a mixed Neumann-Robin-Cauchy problem. The existence results are based on global-in-time estimates of approximating solutions, and the passage to the limit exploits compactness techniques. We investigate explicit estimates for solutions of the parabolic equations with nonhomogeneous boundary conditions and distributional right hand sides. The parabolic equation is of divergence form with discontinuous coefficients. We consider a nonlinear condition on a part of the boundary that the power laws (and the Robin boundary condition) appear as particular cases.

1. Introduction

The existence of solutions to partial differential equations (PDE) is not sufficient whenever the main objective is their application to other branches of the science. In industrial applications, the physical fields (such as temperature or potentials) verify PDE in divergence form with a nondifferentiable leading coefficient. Thus, they do not correspond to the classical solutions. There is a growing demand for the existence of quantitative estimates with explicit constants due to the application of fixed point arguments [14, 17, 26]. The knowledge of the values of the involved constants in the estimates is crucial.

The study of the Dirichlet-Cauchy problem is vast in the literature, [2, 6, 15, 19, 21, 23, 28] to mention a few. It is known that Dirichlet boundary conditions roughly approximate the reality. As a consequence, the study of the Cauchy problem under Neumann or Robin boundary conditions has its actuality in the works [1, 4, 9, 16, 18, 24, 25, 29].

This work is devoted to the determination of the involved constants for the boundary value problems concerned in the presence of radiative-type conditions on the boundary which are typical of thermodynamic models evolved from engineering practice [3, 13].

The derivation of the estimates is not unique. It depends on the mathematical choice of what are the most relevant data. Of course, the most relevant data do not come from a mathematical choice, but from a bio-chemico-geo-physical choice. With this state of mind, we detail the proofs in order to be easily changed for other requisites.

The steady-state study can be found in [11, 12].

Let $[0, T] \subset \mathbb{R}$ be the time interval with $T > 0$, and $\Omega \subset \mathbb{R}^n$ $(n \geq 2)$ be a bounded domain of class $C^{0,1}$. The boundary $\partial \Omega$ is decomposed into two disjoint open subsets,
namely Γ and $\partial \Omega \setminus \tilde{\Gamma}$. Moreover we set $Q_T = \Omega \times [0,T]$, and $\Sigma_T = \Gamma \times [0,T]$. Here, we consider the nonlinear boundary condition version of the Cauchy problem studied in \cite{7}

\begin{equation}
\partial_t u - \nabla \cdot (A \nabla u) = -\nabla \cdot (uE) \quad \text{in} \quad Q_T; \tag{1}
\end{equation}

\begin{equation}
(A \nabla u - uE) \cdot n = 0 \quad \text{on} \quad (\partial \Omega \setminus \tilde{\Gamma}) \times [0,T]; \tag{2}
\end{equation}

\begin{equation}
(A \nabla u - uE) \cdot n + b(u)u = h \quad \text{on} \quad \Gamma \times [0,T], \tag{3}
\end{equation}

for matrix and vector valued functions A and E, respectively. Here, n is the outward unit normal to the boundary $\partial \Omega$. For the sake of simplicity, we handle with no right hand side data, namely $\nabla \cdot f + f$. We refer that these data can be clearly included in our main results, as well as some lower order terms in the differential operator.

The function b satisfies a $(\ell - 2)$-growth condition that includes

- Neumann: $b(u) \equiv 0$;
- Robin: $b(u) = b_r$ which constant stands for whether the heat convective transfer coefficient either the Rayleigh-Jeans radiation approximation;
- Blackbody radiation: $b(u) = \sigma |u|^3$, with σ representing the Stefan-Boltzmann constant;
- Wien displacement law: $b(u) = b_r u^4$.

2. MAIN RESULTS

Let us introduce the following Banach spaces, for $p,q > 1$, in the framework of Bochner, Sobolev and Lebesgue functional spaces:

\begin{align*}
V_{p,q} &= \{v \in W^{1,p}(\Omega) : v|_\Gamma \in L^q(\Gamma)\};

L^{p,q}(Q_T) &= L^q(0,T;L^p(\Omega));

L^{p,q}(\Sigma_T) &= L^q(0,T;L^p(\Gamma));

W^{1,q}(0,T;X,Y) &= \{v \in L^q(0,T;X) : v' \in L^q(0,T;Y)\},
\end{align*}

where X and Y denote Banach spaces such that $X \hookrightarrow Y$.

Remark 2.1. If there exists a Hilbert space H such that $X \hookrightarrow H = X' \hookrightarrow Y = X'$ then (see, for instance, \cite[p. 106]{27})

\begin{equation}
W^{1,2}(0,T;X,Y) \hookrightarrow C([0,T];H).
\end{equation}

Moreover, if $u,v \in W^{1,2}(0,T;X,X')$ then $(u(t),v(t))_H$ is absolutely continuous on $[0,T]$, and

\begin{equation}
\frac{d}{dt} (u(t),v(t))_H = (u'(t),v(t)) + (v'(t),u(t)), \quad \text{a.e.} \ t \in [0,T]. \tag{4}
\end{equation}

Throughout this paper, the hypothesis on the coefficients A and b are

(A): the $(n \times n)$ matrix-valued function $A = [A_{ij}]_{i,j=1,\ldots,n}$ is measurable, uniformly elliptic, and uniformly bounded:

\begin{align*}
\exists a_# > 0, \quad &A_{ij}(x)\xi_i\xi_j \geq a_# |\xi|^2, \quad \text{a.e.} \ x \in \Omega, \forall \xi \in \mathbb{R}^n; \tag{5}

\exists a_# > 0, \quad &\|A\|_{\infty,\Omega} \leq a_# , \tag{6}
\end{align*}
exists a function u in the sense that 1 $\theta < \ell$ for every v with Theorem 2.1.

Lemma 3.2\]).

Remark continuity under the $S_{\ell/p}$-norm ($1/(\ell/p)$: b has $(\ell - 2)$-growth property, and it is monotone with respect to the last variable:

$$\exists b\#, b\# \geq 0, \quad b\# |\xi|^{\ell-2} \leq b(x, \xi) \leq b\# |\xi|^{\ell-2};$$ (7)

$$(b(x, \xi) - b(x, \eta)) (\xi - \eta) \geq 0,$$ (8)

for a.e. $x \in \Gamma$, and for all $\xi, \eta \in \mathbb{R}$.

Let us state our first existence result (the Dirichlet problem is established in [7, Lemma 3.2]).

Theorem 2.1. Let $E \in L^{2/(1-n/q-\theta)}(0, T; L^q(\Omega))$ with $\theta = 0$ if $n > 2$ and any $0 < \theta < 1 - 2/q$ if $n = 2$, $h \in L^{\ell'}(\Sigma_T)$, with ℓ' standing for the conjugate exponent $\ell' = \ell/(\ell - 1)$, and $u_0 \in L^2(\Omega)$. Under the assumptions (A)-(B) with $b\# > 0$, there exists a function u in $L^2,\infty(Q_T) \cap L^2(0, T; (V_2,\ell') \cap L^\ell(\Sigma_T)$, which is solution of $[1]-[3]$ in the sense that

$$\langle \partial_t u, v \rangle + \int_{Q_T} A\nabla u \cdot \nabla v dxdt + \int_{\Sigma_T} b(u) uv dsdt =$$

$$= \int_{Q_T} u E \cdot \nabla v dxdt + \int_{\Sigma_T} hv dsdt,$$ (9)

for every $v \in L^2(0, T; V_2,\ell') \cap L^\ell(\Sigma_T)$. Here, $\partial_t u$ belongs to $L^2(0, T; (V_2,\ell') \cap L^\ell(\Sigma_T)$.

In particular, we have

$$\|u\|_{2,\infty,Q_T}^2 \leq \left(\|u_0\|^2_{2,\Omega} + \frac{2}{\ell\|b\#_{1/(\ell-1)}} \|h\|_{\ell',\Sigma_T}^\ell \right) \exp [Q];$$ (10)

$$a\# \|\nabla u\|_{2,Q_T}^2 + b\# \|u\|_{\ell,\Sigma_T}^\ell \leq \left(\|u_0\|^2_{2,\Omega} + \frac{2}{\ell\|b\#_{1/(\ell-1)}} \|h\|_{\ell',\Sigma_T}^\ell \right) \left(Q \exp [Q] + 1\right),$$ (11)

with

$$Q = \frac{2}{a\#} S_{(2+\theta q)/(1+\theta q)}^{2(n+\theta q)/q} |\Omega|^{\theta} \|E\|^2_{q,2,Q_T} +$$

$$+[4/(a\#)^2]^{q+n+\theta q} S_{(2+\theta q)/(1+\theta q)}^{2(n+\theta q)/q} |\Omega|^{\theta(q-n-\theta q)} - 1 \int_0^T \|E\|^2_{q,\Omega} \|E\|^2_{q,\Omega} dt.$$

Remark 2.2. Observe that Theorem [2.7] remains true if $E \in L^{r}(0, T; L^q(\Omega))$ with $2/r + n/q \leq 1$ if $n > 2$, and $2/r + 2/q < 1$ if $n = 2$.

Hereinafter, S_p denotes the Sobolev constant of continuity under the standard $W^{1,p}(\Omega)$-norm ($1 \leq p < n$). Meanwhile, $S_{p,q}$ denotes the Sobolev constant of continuity under the $V_{p,q}$-norm. Other constants occur in Q if we use the inequality [22]:

$$\|v\|_{p/(n-p),\Omega} \leq S_p \|\nabla v\|_{p,\Omega} + S_{1/p^*}^1 \|v\|_{p,\partial\Omega}.$$
Notice that $V_{p,\ell} = W^{1,p}(\Omega)$ whenever the radiation exponent $\ell \leq p_*=p(n-1)/(n-p)$ if $n>p$.

Next, we establish a maximum principle due to the Moser technique (see, for instance, [5]), with the upper bound being different from the one established in [7, Theorem 2.1] which depends on the data in an exponential form, which is a shortcoming for physical applications.

Theorem 2.2. Under $2/r + n/q < 1$, $h \in L^\infty(\Sigma_T)$, $h \geq 0$ on Σ_T, and $u_0 \in L^\infty(\Omega)$, $u_0 > 0$ in Ω, any solution in accordance with Theorem [2.7] satisfies $0 \leq u \leq M$ in Q_T, and $0 \leq u \leq (M + P_1)/b_#$ on Σ_T, if provided by the smallness condition $P_2 \leq P$, with M, P_1, P_2, and P being explicitly given in Proposition [4.2].

We state the following existence result (see for instance [10, Section 4.4] in where the divergence free E is taken into account). We emphasize that the estimate (16) is not so pleasant as we might expect.

Theorem 2.3. Let $u_0 \in L^1(\Omega)$, $f \in L^1(Q_T)$, $h \in L^1(\Sigma_T)$, and $E \in L^r(0,T;L^q(\Omega))$ for

$$1 < r \left(1 - \frac{n}{q}\right) < 2.$$

Under the assumptions (A)-(B) with $b_# > 0$, there exists a function u in $L^{1,\infty}(Q_T) \cap L^p(0,T;V_{p,\ell-1}) \cap L^{\ell-1}(\Sigma_T)$ such that $\partial_t u \in L^1(0,T;[W^{1,p'}(\Omega)])$, with

$$\frac{n}{q} + \frac{p(n+1) - n}{r} = 1,$$

satisfying the variational problem

$$\langle \partial_t u, v \rangle + \int_{Q_T} A\nabla u \cdot \nabla v dx dt + \int_{\Sigma_T} b(u)uv d\Sigma dt =$$

$$\int_{Q_T} uE \cdot \nabla v dx dt + \int_{Q_T} f v dx dt + \int_{\Sigma_T} hv d\Sigma dt$$

for every $v \in L^\infty(0,T;W^{1,p'}(\Omega))$. For $r(2-p) < 2np$, we have

$$\|u\|_{1,\infty,Q_T} + b_# \|u\|_{\ell-1,\Sigma_T} \leq \|u_0\|_{1,\Omega} + \|f\|_{1,Q_T} + \|h\|_{1,\Sigma_T} := Z;$$

$$\|\nabla u\|_{p,Q_T} \leq \mathcal{B} + \frac{rn^2 ((Z_1)^{2-p}Z^{(2-p)/n} + 1)}{a_#(n+2-p(n+1))(n-1)} \left(\frac{b_#}{Z}\right),$$

with

$$\mathcal{B} = r (T|\Omega| + (Z_2)^pZ^{p(n+1)/n} +$$

$$+ \frac{rn^2}{a_#(n+2-p(n+1))(n-1)} ((Z_1)^{2-p}Z^{2+p} + 1) (T|\Omega| + 2Z) +$$

$$+ \frac{r}{2(a_#)^r} \|E\|_{q,r,Q_T}^2 ((Z_1)^{r-2}Z^{p(r-2)/r} + (Z_1)^{r-2} \mathcal{B}^p + Z^{p(n+1)-2}/n) +$$

$$+ 2^{r-2/2} \|E\|_{q,r,Q_T}^r ((Z_1)^{r-2}Z^{p} + (Z_1)^{p(r-2)/2}Z^{p-r(2-p)/(2n)}),$$
where \(Z_1 = S_p (1 + |\Omega|^{1/n} S_1) \) and \(Z_2 = S_p S_1 T^{1/p} |\Omega|^{1/p+1/n-1} \).

Observe that (12)-(13) mean \(1 < p < (n+2)/(n+1) \).

Under similar proofs, we state the corresponding results of Theorems 2.1 and 2.3 under the assumption (7) with \(b_# = 0 \). In the following, \(K_p \) denotes the constant of continuity of the embedding \(W^{1,p}(\Omega) \hookrightarrow L^{p'}(\Gamma) \) \((p < n) \).

Theorem 2.4. If the conditions of Theorem 2.7 are fulfilled under \(h \in L^{(2*),2}(\Sigma_T) \), where \(2* = 2(n-1)/(n-2) \) if \(n > 2 \) and \(2* \) represents any real number greater than 2, and the assumption (7) with \(b_# = 0 \), and \(2 \leq \ell \leq 3 \), then the variational problem (7) with \(b_# = 0 \) admits at least one solution \(u \in L^{2,\infty}(Q_T) \cap W^{1,2}(0,T; H^1(\Omega); [H^1(\Omega)]') \) satisfying the following estimates

\[
\|u\|_{2,\infty,Q_T} \leq \mathcal{A} \sqrt{\exp[\mathcal{Q} + T]; \quad (17)}
\]

\[
a_# \|\nabla u\|_{2,2,Q_T}^2 \leq 2 \mathcal{A}^2 (\mathcal{Q} + T \exp[\mathcal{Q} + T] + 1), \quad (18)
\]

with \(\mathcal{M} \) according to Theorem 2.7, and

\[
\mathcal{A}^2 = \|u_0\|^2 \Omega + (2/a_# + 1)(K_s)^2 |\Omega|^{2/s-1} \|h\|^2_{(2s)^*}; \quad (19)
\]

where \(s = 2 \) if \(n > 2 \) and \(s = 22*/(2* + 1) \) if \(n = 2 \).

Theorem 2.5. If the conditions of Theorem 2.3 are fulfilled under the assumption (7) with \(b_# = 0 \), then the variational problem (14) admits at least one solution \(u \in L^1(0,T; W^{1,2}(\Omega)), \) under (13) and \(2 \leq \ell \leq p + 1 \), such that \(\partial_t u \in L^1(0,T; [W^{1,p}(\Omega)]') \), satisfying the following estimates

\[
\|u\|_{1,1,Q_T} \leq \|u_0\|_{1,\Omega} + \|f\|_{1,Q_T} + \|h\|_{1,\Sigma_T} := \mathcal{Z}; \quad (19)
\]

\[
\|\nabla u\|_{p,Q_T}^p \leq \alpha_\ell + \beta_\ell \left(B + 2^{\ell-2} \beta \left(S_1^{n(p-1)/p(n-1)} |\Omega|^{n(p-1)^2/(n-p(n-1)p)} + S_1^{n(p-1)/p} \right) \right)^{\ell-1}, \quad (20)
\]

with

\[
\begin{cases}
\alpha_\ell = 0, \quad \beta_\ell = (1 - 2^{p-1} \beta)^{-1} \quad \text{if } \ell = p + 1 \text{ and } \beta < 2^{1-2p} \\
\alpha_\ell = (2^{p-3} \beta)^{p/(p-\ell+1)}, \quad \beta_\ell = p/(p-\ell+1) \quad \text{if } \ell < p + 1
\end{cases}
\]

\[
\beta = b_# T^{1-(\ell-1)/p} |\Gamma|^{1-(\ell-1)/p} \cdot K_p^{\ell-1} \frac{r \mathcal{Z}}{a_#(n+2-p(n+1))(n-1)}.
\]

Remark 2.3. The Neumann problem, i.e. \(b_# = b^# = 0 \), clearly verifies the smallness condition \(\beta = 0 \). Then, (20) is satisfied under \(\alpha_\ell = 0, \quad \beta_\ell = 1, \) and \(\ell = p + 1 \).

Finally, we restrict to the minimum principle (cf. Proposition 4.1). The explicit upper bound correspondent to \(\mathcal{M} \) in Theorem 2.7 is not straightforward, remaining as open problem.

Theorem 2.6. If \(h \in L^2(\Sigma_T), \) \(h \geq 0 \) on \(\Sigma_T, \) and \(u_0 \in L^2(\Omega), \) \(u_0 > 0 \) in \(\Omega, \) any solution in accordance with Theorem 2.7 is nonnegative in \(Q_T, \) and its trace is nonnegative on \(\Sigma_T. \)
3. Proof of Theorem 2.1

The proof of existence is divided into three canonical steps: existence of approximate solutions (regularization), derivation of uniform estimates, and passage to the limit.

For each $m \in \mathbb{N}$, if we consider the truncating function

$$T_m(s) = \min\{m, \max\{-m, s\}\} \quad \text{for } s \in \mathbb{R},$$

then there exists at least a weak solution u_m of

$$
\int_0^T \langle \partial_t u_m, v \rangle dt + \int_{Q_T} (A \nabla u_m + T_m(u_m) E) \cdot \nabla v \, dx \, dt + \int_{\Sigma_T} b(u_m) u_m \, v \, ds \, dt = \int_{\Sigma_T} hv \, ds, \quad \forall v \in L^2(0, T; V_{2, \ell}),
$$

which belongs to $L^{2, \infty}(Q_T) \cap L^2(0, T; V_{2, \ell})$ such that $\partial_t u_m \in L^2(0, T; (V_{2, \ell})')$. The existence is true due to the Faedo-Galerkin method [27, Theorem 4.1, p. 120].

In order to pass to the limit as m tends to infinity, we seek for estimates independent on m.

3.1. Proof of the estimates (10)-(11) for u_m. Let us take $v = \chi(t, \tau) u_m$ as a test function in (22), where $\chi(t, \tau)$ is the characteristic function of the open interval $]0, \tau[$, with τ being a fixed number lesser than T. Applying the assumptions (5) and (7) with $b_\# > 0$, it follows that

$$
\frac{1}{2} \int_{\Omega} \frac{1}{2} |u_m|^2(\tau) \, dx + a_\# \int_{Q_\tau} |\nabla u_m|^2 \, dx \, dt + b_\# \int_{\Sigma_T} |u_m|' \, ds \, dt \leq \frac{1}{2} \|u_0\|^2_{2, \Omega} + \int_0^\tau \|u_m\|_{2q/(q-2), \Omega} \|E\|_{q, \Omega} \|\nabla u_m\|_{2, \Omega} \, dt + \|h\|_{\ell, \Sigma_T} \|u_m\|_{\ell, \Sigma_T} \leq \frac{1}{2} \|u_0\|^2_{2, \Omega} + I + \frac{1}{\ell (b_\#)^{q/(q-2)}} \|h\|_{\ell, \Sigma_T}^{\ell', \Sigma_T} + b_\# \|u_m\|_{\ell, \Sigma_T}^{\ell, \Sigma_T},
$$

by considering the property $|T_m(u)| \leq |u|$, and the Hölder and Young inequalities.

For any $0 < \lambda < 1$ such that

$$
\lambda = \frac{2s}{(s-2)q} \quad \left(\Leftrightarrow \frac{q-2}{2q} = \frac{\lambda}{s} + \frac{1-\lambda}{2} \right),
$$

the Hölder inequality yields

$$
\|u_m\|_{2q/(q-2), \Omega} \leq \|u_m\|_{\ell, \Omega}^{\lambda} \|u_m\|_{2, \Omega}^{1-\lambda}.
$$

Taking $\lambda = n/q + \theta$ with $\theta = 0$ if $n > 2$ and any $0 < \theta < 1 - 2/q$ if $n = 2$ to uniform the Sobolev constants for dimensions $n > 2$ and $n = 2$, we use the Sobolev embedding $W^{1, ns/(s+n)}(\Omega) \hookrightarrow L^s(\Omega)$ followed by the Hölder inequality

$$
\|u_m\|_{s, \Omega} \leq \|u_m\|_{s, \Omega}^{1/(s+1/n-1/2)} \left(\|\nabla u_m\|_{2, \Omega} + \|u_m\|_{2, \Omega} \right),
$$
where \(s = 2(n + \theta q)(n - 2 + \theta q)^{-1} \). Gathering (24) and (25) we deduce

\[
I \leq \frac{a_{\#}}{2} \left\| \nabla u_m \right\|_{2, \Omega}^2 + \int_0^T \left\| u_m \right\|_{2, \Omega}^2 \left(\frac{[S_{n/s}(\Omega)]^{1/2\lambda}}{a_{\#}} + \frac{1 - \lambda}{2} \frac{\left(2(\lambda + 1) \right)^{\frac{\lambda}{\lambda - 1}}}{a_{\#}} \right) \left(S_{n/s}(\Omega) \right)^{1/2\lambda(1-\lambda)} \| E \|_{q, \Omega}^2 \right) dt.
\]

Introducing the above inequality in (23) we find

\[
\| u_m \|_{2, \Omega}^2(\tau) + a_{\#} \left\| \nabla u_m \right\|_{2, \Omega}^2 + b_{\#} \| u_m \|_{\ell, \Sigma_r}^\ell \leq \| u_0 \|_{2, \Omega}^2 + \frac{2}{\ell} t^{\frac{1}{(\ell - 1)}} \left\| h \right\|_{\ell', \Sigma_r}^\ell + \int_0^\tau \left\| u_m \right\|_{2, \Omega}^2 \left(\frac{2}{a_{\#}} S_{2(n/\theta q)/(n+2)}(\Omega)^{\theta/n} \| E \|_{q, \Omega}^2 \right) dt.
\]

By applying the Gronwall inequality, we conclude (10) for \(u_m \), and consequently (11).

3.2. Passage to the limit in (22) as \(m \to \infty \)

According to Section 3.1 we may extract a subsequence of \(\{u_m\} \) still denoted by \(\{u_m\} \) such that \(u_m \rightharpoonup u \) in \(L^2(0, T; V_{2, \ell}) \), and \(u_m \to u \) *-weakly in \(L^\infty(0, T; L^2(\Omega)) \). In particular, \(u_m(T) \rightharpoonup z \) in \(L^2(\Omega) \), and using (7) there exists a positive constant such that

\[
\| b(u_m)u_m \|_{\ell/(\ell-1), \Sigma_T} \leq \| u_m \|_{\ell, \Sigma_T}^{\ell-1} \leq C.
\]

Thus, at least a subsequence \(b(u_m)u_m \) weakly converges to \(w \) in \(L^\ell/(\ell-1)(\Sigma_T) \).

Let us pass to the limit in (22) by (11) (see [27, Theorem 4.1, p. 120]). Indeed, by (4) we have the integration per parts formula for all \(\psi \in C^\infty([0, T]) \) and \(v \in V_{2, \ell} \),

\[
(u_m(T), \psi(T)v) + (u_0, \psi(0)v) = \int_0^T \langle \partial_t u_m(t), \psi(t)v \rangle + \langle \psi(t)v, u_m(t) \rangle dt = -\int_{Q_T} \psi(t)(A \nabla u_m(t) + T_m(u_m(t))E) \cdot \nabla v dx dt + \int_{\Sigma_T} \psi(t)(h(t) - b(u_m(t))u_m(t)) v ds dt + \int_0^T \psi'(t)(v, u_m(t)) dt,
\]

where \((\cdot, \cdot) \) stands for the inner product of \(L^2(\Omega) \).

Passing to the limit as \(m \to \infty \) in the above equality, we see that the triple \((z, u, w)\) satisfies

\[
(z, \psi(T)v) + (u_0, \psi(0)v) = -\int_{Q_T} \psi(t)(A \nabla u(t) + u(t)E) \cdot \nabla v dx dt + \int_{\Sigma_T} \psi(t)(h(t) - w(t)) v ds dt + \int_0^T \psi'(t)(v, u(t)) dt.
\]
If \(\psi(T) = \psi(0) = 0 \), we find
\[
\langle \partial_t u, v \rangle = - \int_\Omega (A \nabla u + uE) \cdot \nabla v \, dx + \int_\Gamma (h - w) v \, ds, \quad \text{a.e. in } [0, T].
\] (26)

If \(\psi(T) = \psi(0) = 0 \), \(u(T) = z \).

It remains to prove that \(w = b(u)u \). Observe that the weak convergences are not sufficient to that, since the argument of the Minty trick fails, although the coercivity \(5 \) of \(A \) and the monotonicity property \(7 \) of \(b \), because the existence of the term \(T_m(u_m)E \cdot \nabla v \). In order to apply the Aubin-Lions Lemma, let us estimate \(\partial_t u_m \) in \(L^1(0, T; (V_2, l)) \).

For every \(v \in V_2, l \), and for almost all \(t \in [0, T] \), we have
\[
| \langle \partial_t u_m(t), v \rangle | \leq a \# \| \nabla u_m(t) \|_{2, \Omega} \| \nabla v \|_{2, \Omega} +
+ \| b^\# \| u_m(t) \|_{\ell, 1} + \| h(t) \|_{\ell, 1} \| v \|_{\ell, 1} + \| u_m(t) \|_{2q/(q-2), \Omega} \| E(t) \|_{q, \Omega} \| \nabla v \|_{2, \Omega}.
\]

Using \(24 \)-\(25 \), it follows that
\[
| \langle \partial_t u_m(t) \rangle_{(V_2, l)} | \leq a \# \| \nabla u_m(t) \|_{2, \Omega} + \| b^\# \| u_m(t) \|_{\ell, 1} + \| h(t) \|_{\ell, 1} +
+ \| S_{(2+\theta)q/(1+\theta q)}(\Omega)^{\theta/n} (\| \nabla u_m(t) \|_{2, \Omega} \| u_m(t) \|_{\ell, 1} + \| h(t) \|_{\ell, 1} + \| u_m(t) \|_{2, \Omega} \| E(t) \|_{q, \Omega},
\]

where \(\lambda = n/q + \theta \) with \(\theta = 0 \) if \(n > 2 \) and any \(0 < \theta < 1 - 2/q \) if \(n = 2 \). Since the inclusion of the spaces \(L^q(0, T) \subseteq L^2(0, T) \subseteq L^{q/(q-1)}(0, T) \subseteq L^1(0, T) \) holds, applying the Minkowski and Young inequalities we deduce
\[
| \langle \partial_t u_m \rangle_{L^1(0, T; (V_2, l))} | \leq T^{1/2} (a \# + S_{(2+\theta)q/(1+\theta q)}(\Omega)^{\theta/n}) \| \nabla u_m \|_{2, Q_T} +
+ T^{1/2} \| u_m \|_{\ell, Q_T} + \| h \|_{\ell, Q_T} +
+ T^{1/2} \| E \|_{q, Q_T} \| u_m \|_{2, Q_T}.
\]

The sequence on the right-hand side of this last relation is uniformly bounded due to the estimates \(10 \)-\(11 \). By the Aubin-Lions Lemma, \(\{ u_m \} \) is relatively compact into \(L^q(t/(t-1))(Q_T) \) for any \(q < 2n/(n-2) \), and \(L^{q/(q-1)}(\Sigma_T) \) for any \(q < 2n/(n-1) \).

Passing to the limit as \(m \to \infty \) in \(12 \), we see that the function \(u \) satisfies \(9 \).

4. Minimum and maximum principles

The objective of this section is the proof of Theorem 2.2 by making recourse of the minimum and maximum principles. It will be consequence of Propositions 4.1 and 4.2.

Proposition 4.1 (Minimum principle). Let \(u \) solve \(7 \). Under \(b^\# \geq 0 \) in \(7 \), \(h \geq 0 \) on \(\Sigma_T \), and \(u_0 \geq 0 \) in \(\Omega \), we have that \(u \geq 0 \) in \(Q_T \) as well as its trace on \(\Sigma_T \).

Proof. The classical choice of \(v = u^- = \min\{ u, 0 \} \) as a test function in \(22 \) implies that, for almost all values \(\tau \) in \([0, T] \)
\[
\int_\Omega (u^-)^2(\tau) \, dx + \frac{a \#}{2} \int_{Q_T} |\nabla u^-|^2 \, dx \, dt \leq \frac{1}{2a \#} \int_{Q_T} (u^-)^2 \, E^2 \, dx \, dt,
\]

(27)

by considering the assumptions \(5 \) and \(7 \) with \(b^\# \geq 0 \), and the Young inequality. Therefore, by applying the Gronwall inequality, we conclude that \(u^- = 0 \) in \(Q_T \).
Introducing this fact in [27], and letting \(\tau \to T \), it follows that the trace function \(u \geq 0 \) on \(\Sigma_T \).

In order to state our maximum principle, we begin by establishing some preliminary results. The first one deals with the well-known interpolation result, which is a direct consequence of the Hölder inequality.

Lemma 4.1. If \(w \in L^{p,q_1}(Q_T) \cap L^{p,r_1}(Q_T) \), then \(w \in L^{p,p_1}(Q_T) \), where

\[
\frac{1}{p} = \frac{\lambda}{q} + \frac{1-\lambda}{r}, \quad \frac{1}{p_1} = \frac{\lambda}{q_1} + \frac{1-\lambda}{r_1}, \quad (\lambda \geq 1).
\]

Moreover,

\[
\|w\|_{p,p_1,Q_T} \leq \|w\|_{q,q_1,Q_T}^{\lambda} \|w\|_{r,r_1,Q_T}^{1-\lambda}.
\]

We improve in Lemma 4.2 (see also Remark 4.1) a result established in [5].

Lemma 4.2. If \(w \in L^{2,\infty}(Q_T) \cap L^2(0,T;H^1(\Omega)) \), then \(w \in L^{2,q/(q-2),\sigma 2r/(r-2)}(Q_T) \) for all \(q, r > 2 \) and \(1 - 2/q < \sigma \leq 1 + 2(1 - n/q - 2/r)/n \) that satisfy

\[
\sigma \leq n(q-2)/(q(n-2)) \quad (q > 2), \quad (\sigma > 2/q - 2/r \text{ if } n = 2).
\]

Moreover,

\[
\|w\|_{Q,T}^{2,2,\sigma 2r/(r-2),Q_T} \leq T^\nu(\|w\|_{2,\infty,Q_T}^{2} + C_n(\sigma) (\|\nabla w\|_{2,Q_T}^{\sigma} + \|w\|_{2,\Sigma_T}^{\sigma}))
\]

where

\[
\text{if } n > 2 \quad \left\{ \begin{array}{l}
\nu(\sigma) = (1 - n/q - 2/r)/\sigma + n(1/\sigma - 1)/2 \\
C_n(\sigma) = 2(S_{2,2})^2
\end{array} \right.
\]

\[
\text{if } n = 2 \quad \left\{ \begin{array}{l}
\nu(\sigma) = (1 - 1/q - 1/r)/\sigma - 1/2 \\
C_2(\sigma) = 2(S_{2/((s+2),2s/(s+2)})^2 (|\Omega|^{1/s} + |\Gamma|^{1/s})
\end{array} \right.
\]

with \(s = \nu^{-1}(2\sigma^{-1}(1/q - 1/r) + 1) \).

Proof. For any \(\sigma > 1 - 2/q \) and \(s > \sigma 2q/(q-2) \) such that \(\sigma 2r/(r-2) \leq 2/\lambda \), applying successively the Hölder inequality, Lemma 4.1, and the Young inequality, we find

\[
\|w\|_{Q,T}^{2,2,\sigma 2r/(r-2),Q_T} \leq T^\nu(\|w\|_{2,\infty,Q_T}^{2} + \|w\|_{2,\Sigma_T}^{2(1-\lambda)} \|w\|_{2,\infty,Q_T}^{2(1-\lambda)}) \leq T^\nu (\lambda\|w\|_{2,\Sigma_T}^{2} + (1 - \lambda)\|w\|_{2,\infty,Q_T}^{2})
\]

with

\[
\lambda = \frac{2s}{s-2} \left[\frac{1}{2} - \frac{1}{\sigma} \left(\frac{1}{2} - \frac{1}{q} \right) \right] \quad \text{and} \quad \nu = \frac{1}{\sigma} \left(\frac{1}{2} - \frac{1}{r} \right) - \lambda.
\]

If \(n > 2 \), we choose \(s = 2^* = 2n/(n-2) \) then the Sobolev embedding can be applied concluding the desired result.

If \(n = 2 \), we choose \(s = 2 + 4\nu^{-1} \left[\frac{1}{2} - \frac{1}{\sigma} \left(\frac{1}{2} - \frac{1}{q} \right) \right] > 2 \) which implies that \(\lambda = \nu + 2 \left[\frac{1}{2} - \frac{1}{\sigma} \left(\frac{1}{2} - \frac{1}{q} \right) \right] \). Therefore we use the Sobolev embedding \(W^{1,2s/(s+2)}(\Omega) \hookrightarrow L^s(\Omega) \) followed by the Hölder inequality in order to determine the constant \(C_2(\sigma) \), namely,

\[
\|w\|_{s,\Omega}^2 \leq (S_{2s/(s+2),2s/(s+2)})^2 (|\Omega|^{1/s}\|\nabla w\|_{2,\Omega} + |\Gamma|^{1/s}\|w\|_{2,\Gamma})^2,
\]
finishing then the proof of Lemma 4.2.

Remark 4.1. The existence of \(\sigma \) satisfying
\[1 - \frac{2}{q} < \sigma \leq 1 + \frac{2(1 - n/q - 2/r)}{n} \]
is given by \(r > 2 \), while
\[\min\{n(q - 2)/(q(n - 2)), 1 + 2(1 - n/q - 2/r)/n\} = 1 + 2(1 - n/q - 2/r)/n \]
if and only if
\[\frac{n}{q} + \frac{2 - n}{r} \leq 1. \]

For \(n = 2 \), the existence of \(\sigma \) satisfying
\[\max\{2/q - 2/r, 1 - 2/q\} \leq \sigma \leq 2(1 - 1/q - 1/r) \]is guaranteed by \(q, r > 2 \).

Set
\[\|w\|_{\infty, Q_T} = \lim_{N \to \infty} \|w\|_{p \chi^N, q \chi^N, Q_T}, \quad \forall w \in \cap_{1 \leq p,q < \infty} L^{p,q}(Q_T), \tag{28} \]
where \(p, q \geq 1, \) and \(\chi > 1. \)

Next we improve the technical result, which involves an additional term.

Lemma 4.3. Let \(p, q > 1, \) and \(\chi < 1. \) If \(w \in \cap_{1 \leq p,q < \infty} L^{p,q}(Q_T) \) verifies
\[\|w\|_{p(1/\chi)^m, q(1/\chi)^m, Q_T} \leq (P \chi^{-2m}) \chi^m \|w\|_{p(1/\chi)^m, q(1/\chi)^m, Q_T} + P_1 \chi^m, \tag{29} \]
for some constants \(P \geq 1, P_1 \geq 0, \) and \(0 < P_2 \leq P, \) and for any \(m \in \mathbb{N}_0, \) then
\[\operatorname{ess sup}_{Q_T} |w| \leq P_1 \chi^{-1} \|w\|_{p,q, Q_T} + P_1 \sum_{i \geq 0} P_\chi^{i+1} \chi^{i+1} \chi^{i+1} \chi^{i+1} P_2 \chi^i. \tag{30} \]

Proof. By induction, we have for all \(N \in \mathbb{N} \)
\[\|w\|_{p \chi^{-N}, q \chi^{-N}, Q_T} \leq D_{a_0, N} \chi^{-b_0, N} \|w\|_{p,q, Q_T} + P_1 \sum_{i=0}^{N-1} P_{a_i+1, N} \chi^{-b_{i+1}, N} \chi_i, \]
where
\[a_{j_0, N} = \sum_{j=j_0}^{N-1} \chi^j = \frac{\chi^{j_0} - \chi^N}{1 - \chi}; \]
\[b_{j_0, N} = \sum_{j=j_0}^{N-1} j \chi^j = \frac{j_0 \chi^{j_0} + (1 - j_0) \chi^{j_0+1} - N \chi^N + (N - 1) \chi^{N+1}}{(1 - \chi)^2}. \]

Using d’Alembert’s ratio criterium, the second series in (30) is convergent if \(P_2 \chi^{(i+1)} \chi^{i+1} < P \chi^{i+1} \). Indeed, this inequality is true for all \(i \in \mathbb{N}_0, \) for \(\chi \leq 1, \) \(0 < P_2 \leq P, \) and \(P \geq 1. \)

Letting \(N \to \infty, \) we find (30) by the definition (28). \(\square \)

Finally, we are in position to establish the upper bound of any solution of (22), if
\[2/r + n/q < 1. \]
Proposition 4.2 (Maximum principle). Let u solve (3). Under $b_\# > 0$ in (7), and $2/r + n/q < 1$, we have

$$u \leq P \frac{\tau}{\sigma} T^{\frac{\sigma - 1}{\sigma}} P_2^{-1} (\|u\|_{2,\Sigma_T} + C_n(1) (\|\nabla u\|_{2,Q_T} + \|u\|_{2,\Sigma_T}^2))^{1/2}$$

$$+ P_1 \sum_{i \geq 0} P \frac{\tau}{\sigma} T^{\frac{\sigma - 1}{\sigma}} P_2^{-1} \sigma_{i+1}^{\frac{1}{\sigma - 1}} P_2^{-1} := M \text{ in } Q_T;$$

$$u \leq \frac{1}{b_\#} (M + P_1) \text{ on } \Sigma_T,$$

if provided by the smallness condition $P_2 \leq P$, with

$$P = \left(\frac{2 \tau^{\nu(\sigma)} \max\{1,C_n(\sigma)\}}{a_\# \min\{1,a_\#, b_\#\}} \right)^{1/2} \|E\|_{q,r,Q_T} \geq 1;$$

$$P_1 = \left(\max\{1,\|u_0\|_{\infty,\Omega}, \|h\|_{\infty,\Sigma_T}\} \right)^{1/2};$$

$$P_2 = \left(\frac{\tau^{\nu(\sigma)} \max\{1,C_n(\sigma)\}}{\min\{1,a_\#, b_\#\}} \right) \left(|\Omega| + \left(b_\#(\ell - 2) + \max\{1/b_\#\}|\Sigma_T|\right) \right)^{1/2};$$

$$\sigma = 1 + \frac{2}{n} \left(1 - \frac{2}{r} - \frac{n}{q}\right),$$

where ν and C_n are introduced in Lemma 4.3.

Proof. Set $\theta = 1 - 2/r - n/q > 0$. Arguing as in [5], the first step involves showing that, for almost all values τ in $]0, T[$

$$\frac{1}{\beta + 1} \int_\Omega (u^+)\beta+1(\tau)dx + \frac{a_\#}{2} (-1) \int_{Q_T} (u^+)\beta-1|\nabla u|^2dxdt +$$

$$+ \frac{b_\#}{\beta + 1} \int_{Q_T} (u^+)\beta+1dsdt \leq \frac{\ell - 2}{\beta + \ell - 1} b_\# |\Sigma_T| + \frac{1}{\beta + 1} \int_\Omega (u^+)\beta+1(0)dx +$$

$$+ \frac{\beta}{2a_\#} \int_{Q_T} |u^+|^2 |E|^2 dx dt + \frac{|\Sigma_T|}{(\beta + 1)(b_\#)\beta} \|h\|_{\infty,\Sigma_T}^{\beta+1},$$

where $\beta \geq 1$, and $u^+ = \max\{u,0\}$. Let us take $v = \chi(t,\tau)\mathcal{G}(u)$ as a test function in (22), where $\chi(t,\tau)$ is the characteristic function of the open interval $]0, \tau[$, with τ being a fixed number lesser than T, and

$$\mathcal{G}(u) = \begin{cases} (u^+)^\beta & \text{for } -\infty < u \leq M \\ M^{\beta-1}u & \text{for } M \leq u < +\infty \end{cases}.$$
with \(\mathcal{H}'(u) = \mathcal{G}(u) \), and considering Remark \[2.1\] As the last boundary integral in the above inequality is new, we analyze it separately. Applying the Hölder and Young inequalities, we deduce
\[
\int_{\Sigma_r} h(u^+)^{\beta} \, dsdt \leq \frac{\lvert \Sigma_r \rvert}{(\beta + 1)(b_\#)^\beta} \lVert h \rVert^\beta_{\infty, \Sigma_r} + \frac{b_\#^\beta}{\beta + 1} \int_{\Sigma_r} (u^+)^{\beta + 1} \, dsdt.
\]
Letting the parameter \(M \) tend to infinity (since \(\mathcal{G}'(u) \leq \beta(u^+)^{\beta - 1} \)), and applying (7) with \(b_\# > 0 \), we compute the boundary integral on the left-hand side as follows
\[
\int_{\Sigma_r} (u^+)^{\beta + 1} \, dsdt \leq \frac{\ell - 2}{\beta + \ell - 1} \lvert \Sigma_r \rvert + \int_{\Sigma_r} (u^+)^{\beta + \ell - 1} \, dsdt,
\]
finding (33).

The second step involves showing that (33) implies
\[
\lVert w^\sigma \rVert^2_{\Sigma_r, \Sigma_r} \leq \frac{T^\nu}{\min\{1, a_\#, b_\#\}} \left(\lVert \Omega \rVert u_0 \rVert^{\beta + 1}_{\infty, \Omega} + \frac{(\beta + 1)^2}{2a_\#} \lVert \mathbf{E} \rVert^2_{q,r,\Omega} \lVert w \rVert^2_{q_0, q_0, \Omega} + (\ell - 2)b_\# \lvert \Sigma_T \rvert + \frac{\lvert \Sigma_T \rvert}{(b_\#)^\beta} \lVert h \rVert^\beta_{\infty, \Sigma_T} \right),
\]
with \(w = (u^+)^{(\beta + 1)/2} \).

Multiplying (33) by \(\beta + 1 \) we have
\[
\lVert w \rVert^2_{2, \Omega, \Omega} + a_\# \lVert \nabla w \rVert^2_{2, \Omega} + b_\# \lVert w \rVert^2_{2, \Sigma_r} \leq \lVert \Omega \rVert u_0 \rVert^{\beta + 1}_{\infty, \Omega} + \frac{(\beta + 1)^2}{2a_\#} \lVert \mathbf{E} \rVert^2_{q,r,\Omega} \lVert w \rVert^2_{q_0, q_0, \Omega} + (\ell - 2)b_\# \lvert \Sigma_T \rvert + \frac{\lvert \Sigma_T \rvert}{(b_\#)^\beta} \lVert h \rVert^\beta_{\infty, \Sigma_T}.
\]

On the other hand, by taking \(\sigma = 1 + 2\theta/n \) \((n \geq 2)\), that is \(\nu = 0 \), Lemma 4.2 guarantees that (34) holds.

Next, returning to \(u^+ \), (34) becomes
\[
\varphi_{N+1} = \lVert u^+ \rVert_{\sigma^{N+1} q_0, \sigma^{N+1} q_0, \Omega} \leq \lVert P \sigma^N \rVert_{\sigma^n, \varphi_N} + P_1 P_2^{\sigma^{-N}},
\]
with \(N \in \mathbb{N} \) and \((\beta + 1)/2 = \sigma^N \) stand for the iterative argument (cf. Lemma 4.3). Therefore, we conclude (31) making recourse of Lemma 4.2 with \(\sigma = 1 \).

Finally, introducing the upper bound \(\mathcal{M} \) in (35) we find
\[
b_\# \lVert u^+ \rVert_{\sigma, \Sigma_T} \leq \sigma^{N\sigma^{-N}} \left(\frac{\lvert \Sigma_T \rvert}{2a_\#} \lVert \mathbf{E} \rVert^2_{q,r,\Omega} \right)^{\sigma^{-N}} \mathcal{M} + P_1 P_2^{\sigma^{-N}}.
\]
Applying directly the definition (28) we conclude (32). \(\square \)

5. PROOF OF THEOREM 2.3

Let us reformulate Lemma 4.2 under exponents \(p \) being lesser or equal than \(n/(n-1) \).

Lemma 5.1. If \(w \in L^{1,\infty}(\Omega) \cap L^{p_1}(0, T; W^{1,p}(\Omega)) \), then \(w \in L^{p,q}(Q_T) \) for all \(1 \leq p \leq n/(n-1), 1 \leq p_1 < q \) and
\[
\frac{1}{p} + \frac{p_1}{q} \left(1 + \frac{1}{n} - \frac{1}{p} \right) = 1.
\]

(36)
For \(\lambda = p_1/\bar{q} < 1 \) we have
\[
\|w\|_{p,q,Q_T} \leq (S_p(1 + |\Omega|^{1/n}S_1))^\lambda \|\nabla w\|_{p,p_1,Q_T}^{\lambda} \|w\|_{1,\infty,Q_T}^{1-\lambda} + (S_pS_1)^{\lambda}T^{1/q}|\Omega|^{\lambda(1/p+1/n-1)}\|w\|_{1,\infty,Q_T}.
\] (37)

Proof. Let us begin by establishing the following correlation between the Sobolev constants, for all \(1 \leq p \leq n/(n-1) \),
\[
\|w\|_{p,(n-p),\Omega} \leq S_p \left(\|\nabla w\|_{p,\Omega} + |\Omega|^{1/p-(n-1)/n}\|w\|_{n/(n-1),\Omega} \right) \leq S_p \left((1 + |\Omega|^{1/n}S_1)\|\nabla w\|_{p,\Omega} + |\Omega|^{1/p-(n-1)/n}S_1\|w\|_{1,\Omega} \right).
\]

Thanks to Lemma 4.1 with the above inequality we conclude (37). \(\square \)

As in the proof of Theorem 2.1 let us first take the existence of approximate solutions \(u_m \) in \(L^{2,\infty}(Q_T) \cap L^2(0,T;V_{2,\ell}) \) such that \(\partial_t u_m \in L^2(0,T;V_{2,\ell})' \), for each \(m \in \mathbb{N} \), of the variational problem
\[
\int_0^T \langle \partial_t u_m, v \rangle dt + \int_{Q_T} (A\nabla u_m + T_m(u_m)E) \cdot \nabla v dxdt + \int_{\Sigma_T} b(u_m)u_m vdsdt = \int_{Q_T} \frac{mf}{m + |f|}v dxdt + \int_{\Sigma_T} hvdsdt,
\] (38)

for all \(v \in L^2(0,T;V_{2,\ell}) \).

Next, we deal to the derivation of uniform estimates, and the passage to the limit in (38).

5.1. \(L^{1,\infty}(Q_T) \) - and \(L^{\ell-1}(\Sigma_T) \)-estimates (15) for \(u_m \). Let \(\varepsilon \in]0, m[\) be arbitrary. Choosing \(v = \chi(t,\tau)T_1(u_m/\varepsilon) \) as a test function in (22), where \(\chi(t,\tau) \) is the characteristic function of the open interval \(]0,\tau[\), with \(\tau \) being a fixed number lesser than \(T \), and \(T_1 \) is the truncating function (21) with \(m = 1 \), we obtain
\[
\int_0^\tau \frac{d}{dt} \int_\Omega \left[\int_0^{u_m} T_1(z/\varepsilon)dz \right] dxdt + b_\# \int_{\Sigma_T \|u_m\|>\varepsilon} |u_m|^{\ell-1}dsdt \leq \int_{Q_T} |E||\nabla u_m| dxdt + \int_{\Omega} |f| dxdt + \int_{\Sigma_T} |h| dsdt,
\]

taking (5) and (7) into account. Passing to the limit as \(\varepsilon \) tends to zero, (15) holds.

5.2. \(L^p \)-estimate (16) to the gradient of \(u_m \). Thanks to the estimate [10] Lemma 4.4.5
\[
\|\nabla u_m\|_{p,Q_T}^p \leq \left(\int_{Q_T} \frac{|\nabla u_m|^2}{(1 + |u_m|)^{\delta+1}} dxdt \right)^{p/2} \left(|Q_T|^{\frac{n}{p(n+1)}} + \|u_m\|_{p(n+1)/n,Q_T} \right)^{\frac{p(n+1)(2-p)}{2n}} + \|u_m\|_{p(n+1)/n,Q_T}^{\frac{p(n+1)}{n}},
\]

for any \(1 < p < (n+2)/(n+1) \), and \(\delta = (2-p)(n+1)/n-1 \in]0,1[\), considering that by Lemma 5.1 with \(\bar{p} = \bar{q} = p(n+1)/n \) and \(p_1 = p < (n+2)/(n+1) \), implies
\[
\|u_m\|_{p(n+1)/n,Q_T}^{\frac{n}{n+1}} \leq (Z_1)^{n/(n+1)}\|\nabla u_m\|_{p,Q_T}^{\frac{n}{n+1}} Z_1^{1/(n+1)} + (Z_2)^{n/(n+1)} Z,
\] (39)
we deduce
\begin{equation}
\frac{p}{2} \|\nabla u_m\|_{p,Q_T}^p \leq \frac{p}{2} (Z_1)^{2-p} \left(\int_{Q_T} \frac{|\nabla u_m|^2}{(1 + |u_m|)^{\delta+1}} \, dx \, dt \right)^{2-p} + \left(\int_{Q_T} \frac{|\nabla u_m|^2}{(1 + |u_m|)^{\delta+1}} \, dx \, dt \right)^{p/2} \left(|Q_T| \frac{n}{p(n+1)} + (Z_2)^{n/(n+1)} \right)^{p(n+1)/(2n)},
\end{equation}

observing that the term in LHS is rearranged by using \((a + b)^\alpha \leq a^\alpha + b^\alpha\) with \(\alpha = p(n+1)(2-p)/(2n) < 1\), and the Young inequality \(ab \leq pa^{2/p}/2 + (1-p/2)b^{2/(2-p)}\).

Reusing the Young inequality, and using \((a + b)^\alpha \leq 2(a^\alpha + b^\alpha)\) with \(\alpha = p(n+1)/n < 2\), we rewrite the above inequality as
\begin{equation}
\|\nabla u_m\|_{p,Q_T}^p \leq \left(\int_{Q_T} \frac{|\nabla u_m|^2}{(1 + |u_m|)^{\delta+1}} \, dx \, dt \right)^{2-p} \left(|Q_T| + (Z_2)^{n/(n+1)} \right)^{p(n+1)/(2n)} .
\end{equation}

Thus, it remains to estimate the integral term. From \(L^1\)-data theory (see, for instance, [8,10] and the references therein), let us choose
\begin{equation}
v = -\text{sign}(u_m)(1 + |u_m|)^{-\delta} \in L^2(0, T; W^{1,2}(\Omega)) \cap L^\infty(Q_T), \quad \text{for } \delta > 0,
\end{equation}
as a test function in (22). Using (5) and (7), it follows that
\begin{equation}
a_\# \int_{Q_T} \frac{\delta |\nabla u_m|^2}{(1 + |u_m|)^{\delta+1}} \, dx \, dt \leq \frac{1}{1-\delta} (|Q_T| + \|u_m\|_{1,\infty,Q_T}) + \|f\|_{1,Q_T} + \|h\|_{1,\Sigma_T} + b^\# \int_{\Sigma_T} |u_m|^{\ell-1} \, ds \, dt + \frac{\delta}{2a_\#} \|u_m\|_{1,\Sigma_T}^{\delta+1} \left(\frac{\delta}{2q/(q-2),2r/(r-2),Q_T} \|E\|_{q,Q_T}^2 + \frac{a_\# \delta}{2} \|\nabla u_m\|_{2,Q_T}^2 \right).
\end{equation}

Since (13) implies that \(\bar{p} = (1-\delta)q/(q-2), \bar{q} = (1-\delta)r/(r-2)\), and \(p_1 = p\) satisfy (36), then we compute
\begin{equation}
\|u_m\|_{1,\Sigma_T} \leq \left(Z_1 \right)^{p/(2-\delta)} \|\nabla u_m\|_{p,Q_T}^{p/(2-\delta)} \left((1-\delta)(1-\lambda) + (Z_2)^{p/(2-\delta)} \right) \leq (Z_1)^{p/(2-\delta)} \|\nabla u_m\|_{p,Q_T}^{p/(2-\delta)} \left((1-\delta)(1-\lambda) + (Z_2)^{p/(2-\delta)} \right),
\end{equation}
with $\lambda = p(r - 2)/(1 - \delta)r < 1$ because $r(2 - p) < 2np$. Inserting these two above inequalities into (10), we conclude

$$\frac{2}{r}\|\nabla u_m\|_{p,Q_T}^p \leq \frac{2(2 - p)}{p}(|Q_T| + (Z_2)^p Z^{(n+1)/n}) +$$

$$+ \frac{2}{a\#\delta}
\left((Z_1)^{2-p} Z^{\frac{2-p}{n}} + 1\right)
\left(\frac{|Q_T|}{1 - \delta} + Z((2 - \delta)/(1 - \delta) + b\#/b\#)\right) +$$

$$+ \frac{1}{(a\#)^2}
\left((Z_1)^{2-p} Z^{\frac{2-p}{n}} + 1\right)\|E\|_{q,r,Q_T}^2 Z^{\frac{p(r-2)}{r}(1-\delta)-\frac{p(r-2)}{2}} Z^{1-\delta} +$$

$$+ \frac{2}{r(a\#)^r}
\left((Z_1)^{2-p} Z^{\frac{2-p}{n}} + 1\right)^{r/2}\|E\|_{q,r,Q_T}^r Z^{\frac{p(r-2)}{2}(1-\delta)-\frac{p(r-2)}{2}},$$

and therefore replacing δ by its value (16) holds.

5.3. **Estimate of** $\partial_t u_m$ **in** $L^1(0, T; (W^{1,p'}(\Omega)'))$. For every $v \in W^{1,p'}(\Omega) \hookrightarrow C(\bar{\Omega})$, and for almost all $t \in [0, T]$, we have

$$\|\langle \partial_t u_m(t), v \rangle \| \leq a\#\|\nabla u_m(t)\|_{p,\Omega}\|\nabla v\|_{p',\Omega} +$$

$$+ (b\#\|u_m(t)\|_{\ell-1,\Gamma} + \|h\|_{1,\Gamma})\|v\|_{\infty,\Gamma} + \|u_m(t)\|_{pq/(q-p),\Omega}\|E(t)\|_{q,\Omega}\|\nabla v\|_{p',\Omega}.$$

Similarly to (24)-(25), we have

$$\|u_m\|_{pq/(q-p),\Omega} \leq \|u_m\|_{\frac{mp}{mp+n},\Omega}\|u_m\|_{p,\Omega}^{1-\lambda}, \quad \lambda = \frac{np}{np + p - n} \left(1 - \frac{1}{p} + \frac{1}{q}\right);$$

$$\|u_m\|_{np/(n-p),\Omega} \leq S_{p,\ell-1}(\|\nabla u_m\|_{p,\Omega} + \|u_m\|_{\ell-1,\Gamma}),$$

then it follows that

$$\|\partial_t u_m(t)\|_{W^{1,p'}(\Omega)'} \leq (a\# + S_{p,\ell-1})\|\nabla u_m(t)\|_{p,\Omega} + \|h\|_{1,\Gamma} +$$

$$+ (b\# C_\infty + S_{p,\ell-1})\|u_m(t)\|_{\ell-1,\Gamma} + \|u_m(t)\|_{1,\Omega}\|E(t)\|_{\frac{1}{q},\Omega}^{1/(1-\lambda)},$$

where C_∞ denotes the constant of continuity of the Morrey embedding $W^{1,p'}(\Omega) \hookrightarrow C(\bar{\Omega})$. Since (13) means that $1/(1 - \lambda) = q(p(n + 1) - n)/[p(q - n)] = r/p$, we deduce

$$\|\partial_t u_m\|_{L^1(0, T; W^{1,p'}(\Omega)')} \leq \left(a\# + S_{p,\ell-1}\right)T^{1-1/p}\|\nabla u_m\|_{p,\Omega} + \|h\|_{1,\Sigma_T} +$$

$$+ \left(b\# C_\infty + S_{p,\ell-1}\right)T^{1-1/(\ell-1)}\|u_m\|_{\ell-1,p,\Sigma_T} + \|u_m\|_{1,\infty,\Sigma_T} T^{1-1/p}\|E\|_{q,r,Q_T}^{r/p}.$$

The sequence on the right-hand side of this last relation is uniformly bounded due to the estimates (15)-(16).

5.4. **Passage to the limit in** (22) **as** $m \to \infty$. By Sections 5.1 and 5.2 we may extract a subsequence of $\{u_m\}$ still denoted by $\{u_m\}$ such that $u_m \rightharpoonup u$ in $L^r(0, T; V_{p,\ell-1})$ for $\ell = \min\{p, \ell - 1\}$.

Since $V_{p,\ell-1} \hookrightarrow \hookrightarrow L^q(\Omega) \hookrightarrow L^p(\Omega) \hookrightarrow W^{1,p'}(\Omega)$ for any $q < pn/(n - p)$, and $V_{p,\ell-1} \hookrightarrow \hookrightarrow L^q(\Gamma) \hookrightarrow L^p(\Gamma) \hookrightarrow W^{1,p'}(\Omega)$ for any $q < p(n - 1)/(n - p)$, according to Section 5.3 the Aubin-Lions Lemma yields that $\{u_m\}$ is relatively compact into $L^q(Q_T)$ for any $q < pn/(n - p)$, and $L^q(\Sigma_T)$ for any $q < p(n - 1)/(n - p)$. In particular, $|u_m|^{\ell-2}$ converges to $|u|^{\ell-2}$ a.e. on Σ_T. As the Nemytskii operator b is continuous,
5.1. To show that (20) holds, it suffices to pay attention in (41) to the boundary integral, which obeys the following lemma. The remaining proof follows \textit{mutatis mutandis}.

The estimate (19) is a direct consequence of Section 3. Therefore, we only focus our attention to the quantitative estimates.

6. The Case of \(b_\# = 0 \)

The following proofs pursue the ones that are established in Sections 3 and 5. We apply firstly the H"older inequality, and secondly the trace embedding for \(\ell - 1 \leq p \), to obtain

\[
\| v \|_{\ell-1, \Gamma} \leq |\Gamma|^{1/(\ell-1)-1/p_\star} K_p \| \nabla v \|_{p, \Omega} + \| v \|_{p, \Omega}.
\]

We separately apply the interpolation inequality and after the Sobolev embedding and the H"older inequality, obtaining

\[
\| v \|_{p, \Omega} \leq \| v \|_{n/(n-1), \Omega}^{n/p} \| v \|_{1, \Omega}^{1-\lambda} \quad (\lambda = n(p-1)/p < 1)
\]

\[
\leq S_1^{\lambda} \| v \|_{\Omega}^{\lambda(1-1/p)} \| \nabla v \|_{p, \Omega}^{\lambda} + S_1^{\lambda} \| v \|_{1, \Omega}^{\lambda}.
\]

Thus, inserting this last inequality into the above one, we deduce

\[
\| v \|_{\ell-1, \Gamma} \leq |\Gamma|^{1/(\ell-1)-1/p_\star} K_p \left(2 \| \nabla v \|_{p, \Omega} + (S_1^{\lambda/(1-\lambda)} \| \nabla v \|_{p, \Omega}^{\lambda(1-1/p)} + S_1^{\lambda}) \| v \|_{1, \Omega} \right).
\]

Therefore, we may proceed as Section 3.1 to conclude (17), and subsequently (18). The remaining proof follows \textit{mutatis mutandis}.

6.1. Proof of Theorem 2.4. We observe that (23) reads

\[
\frac{1}{2} \int_{\Omega} |u_m|^2(\tau) dx + a_\# \int_{Q_T} |\nabla u_m|^2 dx dt \leq \frac{1}{2} \| u_0 \|_{2_\Omega}^2 + \int_0^T \| u_m \|_{2q/(q-2), \Omega} \| E \|_{q, \Omega} \| \nabla u_m \|_{2, \Omega} dt + \int_0^T \| h \|_{(2_\star), \Gamma} \| u_m \|_{2_\star, \Gamma} dt.
\]

The last term of RHS is computed as follows

\[
\int_0^T \| h \|_{(2_\star), \Gamma} \| u_m \|_{2_\star, \Gamma} dt \leq K_s |\Omega|^{1/2-1} \int_0^T \| h \|_{(2_\star), \Gamma} (\| \nabla u_m \|_{2, \Omega} + \| u_m \|_{2, \Omega}) dt
\]

\[
\leq \left(\frac{1}{a_\#} + \frac{1}{2} \right) \left(K_s \right)^2 |\Omega|^{2/s-1} \| h \|_{(2_\star), 2, \Sigma_T} + \frac{a_\#}{4} \| \nabla u_m \|_{2, \Sigma_T}^2 + \frac{1}{2} \int_0^T \| u_m \|_{2, \Omega}^2 dt,
\]

where \(s = 2, n/(2_\star + n - 1) \). Thus, we may proceed as Section 3.1 to conclude (17), and subsequently (18). The remaining proof follows \textit{mutatis mutandis}.

6.2. Proof of Theorem 2.5. The estimate (19) is a direct consequence of Section 3.1. To show that (20) holds, it suffices to pay attention in (11) to the boundary integral, which obeys the following lemma.

Lemma 6.1. If \(p(n-1) < n \) and \(\ell \leq p + 1 \), then

\[
\int_{\Sigma_T} |v|^{\ell-1} ds dt \leq T^{1-(\ell-1)/p} |\Gamma|^{-1-(\ell-1)/p_\star} K_p^{\ell-1} (2 \| \nabla v \|_{p, Q_T} + (S_1^{\frac{a(p-1)}{n(p-1)-1}} |\Omega|^{\frac{n(p-1)}{(n-p(n-1))p}} + S_1^{\frac{a(p-1)}{p}}) \| v \|_{1, p, Q_T})^{\ell-1}.
\]

for every \(v \in L^p(0, T; W^{1,p}(\Omega)) \cap L^{1,p}(Q_T) \).

Proof. We apply firstly the H"older inequality, and secondly the trace embedding for \(\ell - 1 \leq p \), to obtain

\[
\| v \|_{\ell-1, \Gamma} \leq |\Gamma|^{1/(\ell-1)-1/p_\star} K_p \| \nabla v \|_{p, \Omega} + \| v \|_{p, \Omega}.
\]

We separately apply the interpolation inequality and after the Sobolev embedding and the H"older inequality, obtaining

\[
\| v \|_{p, \Omega} \leq \| v \|_{\lambda, n/(n-1), \Omega} \| v \|_{1, \Omega}^{1-\lambda} \quad (\lambda = n(p-1)/p < 1)
\]

\[
\leq S_1^{\lambda} |\Omega|^{\lambda(1-1/p)} \| \nabla v \|_{p, \Omega}^{\lambda} + S_1^{\lambda} \| v \|_{1, \Omega}^{\lambda}.
\]

Thus, inserting this last inequality into the above one, we deduce

\[
\| v \|_{\ell-1, \Gamma} \leq |\Gamma|^{1/\ell-1/p_\star} K_p \left(2 \| \nabla v \|_{p, \Omega} + (S_1^{\lambda/(1-\lambda)} |\Omega|^{\frac{n(p-1)}{(n-p(n-1))p}} + S_1^{\lambda}) \| v \|_{1, \Omega} \right)^{\ell-1}.
\]
Integrating in time, and applying the H"{o}lder inequality, the proof is complete. □

Then, Lemma 6.1 implies that (16) for \(u_m \) is rewritten as

\[
\|\nabla u_m\|_{p,Q}^p \leq B + 2^{2\ell-3} \beta \|\nabla u_m\|_{\ell-1}^{\ell-1} + 2^{\ell-2} \beta \left((S_1^{\frac{n(p-1)}{n(p-1)\ell}} |\Omega|^{\frac{n(p-1)}{n(p-1)\ell}} + S_1^{\frac{n(p-1)}{p}}) T Z \right)^{\ell-1}.
\]

If \(\ell - 1 = p \), supposing that \(\beta < 2^{1-2p} \) then we find (20). If \(\ell - 1 < p \), we conclude (20) by considering the Young inequality. The proof of Theorem 2.5 follows the argument of Section 5.

REFERENCES

[1] G. Akagi, Energy solutions of the Cauchy-Neumann problem for porous medium equations, The Seventh International Conference on Dynamical Systems and Differential Equations, a supplement volume of Discrete and Continuous Dynamical Systems, American Institute of Mathematical Sciences, 2009, pp. 1-10.

[2] H. Amann, Existence and regularity for semilinear parabolic evolution equations, Annali della Scuola Normale Superiore di Pisa 11 (1984), 593-676.

[3] K.T. Andrews, A. Mikelic, P. Shi, M. Shillor, and S. Wright, One-dimensional thermoelastic contact with a stress-dependent radiation condition, SIAM J. Math. Anal. 23:6 (1992), 1393-1416.

[4] W. Arendt and M. Warma, The Laplacian with Robin boundary conditions on arbitrary domains, Potential Anal. 19 (2003), 341-363.

[5] D.G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81-122.

[6] H. Beirão da Veiga, Inhomogeneous evolution equations in Banach spaces with a bounded variation data, Nonlinear Analysis 3 :2 (1979), 249-259.

[7] L. Boccardo, L. Orsina and A. Porretta, Some noncoercive parabolic equations with lower order terms in divergence form, J. Evol. Equ. 3 (2003), 407-418.

[8] L. Boccardo, M.M. Porzio and A. Primo, Summability and existence results for nonlinear parabolic equations, Nonlinear Analysis 71 (2009), 978-990.

[9] J. Choi and S. Kim, Green’s function for second order parabolic systems with Neumann boundary condition, J. Differential Equations 254 (2013), 2834-2860.

[10] L. Consiglieri, Mathematical analysis of selected problems from fluid thermomechanics. The \((p-q) \) coupled fluid-energy systems, Lambert Academic Publishing, Saarbrücken 2011.

[11] L. Consiglieri, Explicit estimates for solutions of mixed elliptic problems, International Journal of Partial Differential Equations 2014 (2014), Article ID 845760, 17 pages.

[12] L. Consiglieri, Explicit estimates for solutions of nonlinear radiation-type problems, arXiv:1312.0625

[13] P.-E. Druet, Existence of weak solutions to the time-dependent MHD equations coupled to the heat equation with nonlocal radiation boundary conditions, Nonlinear Analysis: Real World Applications 10 (2009), 2914-2936.

[14] J. Frehse, J. Málek, M. Ružička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids, Commun. Part. Diff. Equat. 35 :10 (2010), 1891-1919.

[15] M. Giaquinta and M. Struwe, An optimal regularity result for a class of quasilinear parabolic systems, Manuscripta Math. 36 (1981), 223-239.

[16] S. Hofmann and J.L. Lewis, The \(L^p \) Neumann problem for the heat equation in non-cylindrical domains, J. Functional Analysis 220 (2005), 1-54.
[17] D. Hömberg, A mathematical model for induction hardening including mechanical effects, *Nonlinear Analysis - Real World Applications* 5 :1 (2004), 55-90.

[18] N.M. Hung and N.T. Anh, The Cauchy-Neumann problem for parabolic equations in domains with conical points, *Taiwanese Journal of Mathematics* 12 :7 (2008), 1849-1864.

[19] G.I. Laptev. Weak solutions of second-order quasilinear parabolic equations with double nonlinearity. *Mat. Sb.* 188 :9 (1997), 83-112.

[20] G.M. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations, *Annali della Scuola Normale Superiore di Pisa* 13 :3 (1986), 347-387.

[21] W. Liu, Existence and uniqueness of solutions to nonlinear evolution equations with locally monotone operators, *Nonlinear Analysis: Theory, Methods & Applications* 74 :18 (2011), 7543-7561.

[22] F. Maggi and C. Villani, Balls have the worst best Sobolev inequalities, *J. Geom. Anal.* 15 :1 (2005), 83-121.

[23] M. Marino and A. Maugeri, $L^{2,\lambda}$ regularity of the spatial derivatives of the solutions to parabolic systems in divergence form, *Annali di Matematica Pura ed Applicata (IV)* 164 (1993), 275-298.

[24] R. Nittka, Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains, *J. Differential Equations* 251 :4 (2011), 860-880.

[25] R. Nittka, Quasilinear elliptic and parabolic Robin problems on Lipschitz domains, *Nonlinear Differential Equations and Applications NoDEA* 20 :3 (2013), 1125-1155.

[26] Y. Safa, M. Flueck and J. Rappaz, Numerical simulation of thermal problems coupled with magnetohydrodynamic effects in aluminium cell, *Applied Mathematical Modelling* 33 :3 (2009), 1479-1492.

[27] R.E. Showalter, *Monotone operators in Banach space and nonlinear partial differential equations*, Mathematical Surveys and Monographs 49, American Mathematical Soc., Providence RI 1997, 2013.

[28] P. Tolksdorf, On some parabolic variational problems with quadratic growth, *Annali della Scuola Normale Superiore di Pisa* 13 :2 (1986), 193-223.

[29] J. Wang, Global heat kernel estimates, *Pacific Journal of Mathematics* 178 :2 (1997), 377-398.

Luisa Consiglieri, Independent Researcher Professor, European Union

URL: http://sites.google.com/site/luisaconsiglieri