Spin-triplet proton–neutron pair in spin-dipole excitations

Kenichi Yoshida

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

Yusuke Tanimura

Department of Physics, Tohoku University, Sendai, 980-8578, Japan
Graduate Program on Physics for the Universe, Tohoku University, Sendai 980-8578, Japan
(Dated: April 15, 2021)

Background: Spin-triplet ($S = 1$) proton–neutron (pn) pairing in nuclei has been under debate. It is well known that the dynamical pairing affects the nuclear matrix element of the Gamow–Teller (GT) transition and the double beta decay.

Purpose: We investigate the effect of the pn-pair interaction in the $T = 0, S = 1$ channel on the low-lying spin-dipole (SD) transition. We then aim at clarifying the distinction of the role in between the SD and GT transitions.

Method: We perform a three-body model calculation for the transition $^{80}\text{Ni} \rightarrow ^{80}\text{Cu}$, where ^{78}Ni is taken as a core. The strength of the pair interaction is varied to see the effect on the SD transition-strength distribution. To fortify the finding obtained by the three-body model, we employ the nuclear energy-density functional method for the SD transitions in several nuclei, where one can expect a strong effect.

Results: The effect of the $S = 1$ pn-pair interaction depends on the spatial overlap of the pn pair and the angular momentum of the valence nucleons; the higher the angular momentum of the orbitals, the more significant the effect.

Conclusions: The dynamical $S = 1$ pairing is effective even for SD states although the spatial overlap of the pn pair can be smaller than GT states. The SD transition involving high-ℓ orbitals with the same principal quantum number is strongly affected by the dynamical $S = 1$ pairing.

I. INTRODUCTION

Pairing is a ubiquitous many-body correlation emerging in various systems, including a nuclear system [1]. The superfluidity or superconductivity is mostly understood by the spin-singlet pairing [2]. New facets of the nuclear pairing show up as a spatially-correlated two-neutron in dilute and weak-binding systems [3][10]. The spatial localization of two neutrons has been confirmed experimentally [11][12]. Meanwhile, there has been an enduring discussion on another type of exotic unconventional pairing in nuclei: the $^{3}\text{S}_{1}$ correlation of isoscalar (IS) proton–neutron (pn) pairs in $N \sim Z$ nuclei [13]. The emergence of the $S = 1$ pn-pair condensation is still controversial.

The fluctuation of the $S = 1$ pair field and its effect on the observables has been discussed recently by investigating, e.g., the pn-pair transfer-type modes of excitation [14][16] and the spin susceptibility [17]. Furthermore, it has been known that the dynamical $S = 1$ pairing lowers the Gamow–Teller (GT) states in energy and thus shortens the β-decay half-lives of neutron-rich nuclei [18] including deformed nuclei [19]. The nuclear matrix elements of the double beta decay are also affected by the $S = 1$ pn-pair interaction [20].

The effects of the $S = 1$ pair interaction on the GT transition strengths have been thoroughly studied in $N = Z$ odd-odd nuclei with a three-body model of two nucleons around a spherical core [21][23]. A remarkable feature found in $N = Z$ odd-odd nuclei with an LS-closed core ($^{4}\text{He}, ^{16}\text{O}, ^{40}\text{Ca}$) is the appearance of the low-energy state with a strong GT strength. A similar finding is obtained by employing a nuclear energy-density functional (EDF) method [23]. The low-energy GT states have been indeed identified experimentally in the transitions of $^{18}\text{O} \rightarrow ^{18}\text{F}$ [25] and $^{42}\text{Ca} \rightarrow ^{42}\text{Sc}$ [26][27].

The spin-dipole (SD) excitation is induced by the spin operator, similarly to the GT excitation. The principal quantum numbers of the single-particle orbital of a proton and a neutron differ by one unit contrary to $\Delta N = 0$ in the GT transition. The spatial overlap is thus weaker, and an effect of the pn-pair interaction has been overlooked. The high-energy first-forbidden β decay occurs in neutron-rich nuclei due to the imbalanced Fermi levels of neutrons and protons [28]. To describe well the β-decay properties, needed is examining a role of the dynamical $S = 1$ pairing in the forbidden transitions as well.

Therefore, in this article, we are going to investigate the role of the $S = 1$ pn-pair interaction in the SD transitions. To this end, we employ a three-body model to obtain an essential feature of the $S = 1$ pairing in the SD excitations. To make what we find in the three-body model analysis solid and secure, we further perform the nuclear density-functional theory (DFT) calculation; a nuclear EDF method is utilized, which is a theoretical model being capable of handling nuclides with arbitrary mass numbers in a single framework [29][30].
This paper is organized in the following way: three-body model analysis is performed in Sec. II, where the low-lying SD 1− state in ⁸⁰Cu is studied; Sec. III is devoted to the discussion by employing the nuclear EDF method to fortify the findings obtained by the three-body model calculation; then, a summary is given in Sec. IV.

II. THREE-BODY MODEL ANALYSIS

In this section, we employ the three-body model to make a qualitative analysis on the effect of the $S = 1$ pn-pair interaction on the low-lying SD 1− states. Based on the analytic form of the matrix element of the $S = 1$ interaction, we discuss the relation between the quantum numbers of single-particle states involved in the transition and the gain of energy due to the $S = 1$ interaction.

A. Three-body model

The details of the model are described in Refs. [1, 9, 21]. We thus briefly recapitulate the basic equations relevant to the present study. The Hamiltonian of the present model is given as

$$ H = \sum_{i=1,2} \left[\frac{p_i^2}{2m} + V_{Nc}(r_i) \right] + \frac{1}{2} \sum_{i \neq j} V_{NN}(r_i, r_j),$$ \hspace{1cm} (1)

where m is the mass of a nucleon, $r = |r|$, and the recoil motion of the core is neglected. The potential between the nucleon (N) and the core nucleus (c), V_{Nc}, is given by

$$ V_{Nc}(r) = \left[V_0 + V_{ls}(\ell \cdot s) \frac{1}{r} \frac{d}{dr} \right] f(r) + V_C(r)$$ \hspace{1cm} (2)

with $f(r) = [1 + \exp(r - R/a)]^{-1}$ and the Coulomb potential $V_C(r)$ for a proton. The interaction between nucleons, V_{NN}, is given by

$$ V_{nn}(r, r′) = v_s P_s [1 - x_s f(r)] \delta(r - r′),$$ \hspace{1cm} (3)

$$ V_{nn}(r, r′) = v_s P_s [1 - x_s f(r)] \delta(r - r′) + v_t P_t [1 - x_t f(r)] \delta(r - r′)$$ \hspace{1cm} (4)

for neutron–neutron and proton–neutron, respectively, where P_s and P_t is a projector onto the $S = 0$ and $S = 1$ two-nucleon state, respectively.

B. Numerical procedures

The parameters of the Woods–Saxon potential are the standard one given in p.239 of Ref. [31]. The Coulomb potential for a proton is obtained for the uniform charge distribution with the radius R. The single-particle states in the Woods–Saxon potential are obtained in a spherical box of 30 fm. The continuum states are then discretized. When diagonalizing the Hamiltonian (1), the single-particle states are truncated with a cut-off energy at 10 MeV, which is enough to cover a few major shells above the Fermi level that are relevant to low-lying states. The strength of the $S = 0$ pair interaction v_s is set as $−500$ MeV fm3 for the qualitative discussion. We note that, with the present set up, the ground-state binding energy of the three-body system $⁷⁸Ni + 2n$ is 4.0 MeV, which is comparable to the estimated value of 4.5 MeV [32, 33]. To see the effect of the $S = 1$ pair interaction, v_t is varied by multiplying a factor f_{NN} as $v_t = f_{NN} \times v_s$. The parameters x_s and x_t are set as 0.5, corresponding to the so-called mixed-type pair interaction.

Shown in Fig. 1 are the single-particle states near the Fermi levels relevant to the discussion below.

C. Low-lying SD states in ⁸⁰Cu

We consider the response to the SD operator in the (p, n) channel defined by

$$ F_K^p = \frac{1}{\sqrt{2}} \sum_{s' \neq s} \int drr' \psi^*(r's') \psi(rs') \times$$

$$ \langle s'| [Y_1 \otimes \sigma] K^p |s \rangle \langle t'| \tau \rangle |t \rangle, \hspace{1cm} (5)$$

![Graph](image_url)
where σ and $\tau = (\tau_{+1}, \tau_0, \tau_{-1})$ denote the spherical components of the Pauli matrix of spin and isospin, and $\psi^{(rst)}$, $\psi^{(rst)}$ represent the nucleon field operators. The reduced transition probability is given as

$$B(SD, J; J_i \rightarrow J_f) = \frac{1}{2J_i + 1} |\langle f | F^J | i \rangle|^2.$$

We show in Fig. 2(a) the calculated SD $J = 1$ transition strengths in 80Ni $\rightarrow ^{80}$Cu. One can see a prominent peak around $E_T = -12$ MeV and several states with a small transition strength. The prominent state corresponds to the low-lying 1^- state appearing at -11.5 MeV in the self-consistent calculation based on the nuclear EDF method [34]; see Fig. 5(b) there. This correspondence shows that the present three-body model describes well the low-lying states in a nucleus with a spherical core plus two valence nucleons. It is noted that the 1^- state around -12 MeV plays a crucial role in the isotopic dependence of the β-decay half-lives in the Ni isotopes. We are thus going to look into the microscopic structure of this 1^- state.

The effect of the $S = 1$ pair interaction is investigated. To this end, we vary the strength of the interaction. The result obtained with $f_{NN} = 0, 1.0,$ and 1.7 is depicted by the dotted, dashed, and solid line, respectively, in the figure. The role of the $S = 1$ pair interaction depends on the state; the low-lying state is weakly affected by the interaction compared with the second peak. Looking into the details of these states, we try to understand the role of the $S = 1$ pair interaction in the SD excitations.

The lowest and second peaks are constructed mainly by the $\nu 2d_{5/2} \otimes \pi 2p_{3/2}$ and $\nu 2d_{5/2} \otimes \pi 1f_{5/2}$ configurations, respectively. The shift in the energy and the enhancement in the transition strength are governed by the two-body matrix element:

$$\langle a'b', J | V_{S=1} | ab, J \rangle = R_{a'b'ab} A_{a'b'ab}^J,$$

$$R = v_0 \int d\tau \frac{1}{2\pi} \left[1 - x_1 f(r) u_a^*(r) u_a(r) u_b^*(r) u_b(r) \right],$$

$$A^J = \frac{1}{8\pi} \sum_{\ell_1, \ell_2, j, j'} \delta_{\ell_1, \ell_2} \delta_{j, j'} \left[\begin{pmatrix} j' & j' & J \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} j & j & J \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix} \right]$$

$$+ \delta_{\ell_1, \ell_2} \delta_{j, j'} \left[\begin{pmatrix} j' & j' & J \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix} \begin{pmatrix} j & j & J \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix} \right],$$

where $\ell = \sqrt{2J + 1}$, and $u_a(r)$ is the radial wave function of the single-particle orbital. The diagonal matrix element $(R \times A^J)$ of the $\nu 2d_{5/2} \otimes \pi 2p_{3/2}$ and $\nu 2d_{5/2} \otimes \pi 1f_{5/2}$ configurations is $-5.60 \times 0.05 = -0.27$ MeV and $-3.60 \times 0.12 = -0.44$ MeV, respectively in the case of $f_{NN} = 1.7$. The difference in the diagonal matrix element accounts for a stronger effect of the $S = 1$ pair interaction seen on the second peak. The angular part

\[A' \] of the diagonal matrix element for $J^\pi = 1^-$ reads

$$A'^J (\ell_{j>}, (\ell - 1)_{j>}; \ell_{j<}, (\ell - 1)_{j<}) = \frac{1}{8\pi} \frac{\ell (\ell + 1)}{2\ell + 1},$$

$$A'^J (\ell_{j<}, (\ell - 1)_{j>}; \ell_{j<}, (\ell - 1)_{j<}) = \frac{1}{8\pi} \frac{\ell (\ell + 1)}{2\ell + 1},$$

where $\ell_{j>}$ denotes the orbital angular momentum satisfying $j = \ell \pm \frac{1}{2}$. The proton–neutron configuration involving the $j_>$ and $j_<$ orbitals, Eq. (10b), have the largest matrix element as far as ℓ of the configurations is the same. Thus, we see a more substantial effect of the $S = 1$ pair interaction for the $\nu 2d_{5/2} \otimes \pi 1f_{5/2}$ configuration though the spatial part R is slightly smaller due to the difference in the number of nodes. Notice that the spatial part is larger in the GT excitation because the GT operator does not change the spatial structure, and the angular part is as large as the SD excitations as given in the Appendix, leading to a stronger effect of the $S = 1$ pair interaction in the GT excitation.

Another feature seen in Eq. (10) is that the configu-
ration involving a high-ℓ orbital acquires a large matrix element. Thus, we can expect that the $S = 1$ pair interaction significantly affects the configuration composed of the $\nu 1g_{7/2}$ orbital. We are going to investigate this in the following subsection.

D. Role of a high-ℓ orbital

With the present parameters, the $\nu 1g_{7/2}$ orbital is located far above the Fermi level and embedded in the continuum states. To see the role of this high-ℓ orbital in the SD excitations, we deepen the potential so that the $\nu 1g_{7/2}$ orbital appears near the Fermi level. The single-particle levels with the shifted potential is also shown in Fig. 1.

Figure 2(b) shows the SD transition strengths. A prominent state in low energies is constructed mainly by the $\nu 1g_{7/2} \otimes \pi 1f_{5/2}$ configuration. As expected, we see a strong effect of the $S = 1$ pair interaction. Since the $\nu 1g_{7/2}$ and $\pi 1f_{5/2}$ orbitals have the same number of nodes, the spatial part is also large. The second peak in Fig. 2(b) is also strongly affected by the $S = 1$ pair interaction. This state is generated predominantly by the $\nu 2d_{5/2} \otimes \pi 1f_{5/2}$ configuration, corresponding to the second peak in Fig. 2(a).

III. DISCUSSION USING NUCLEAR DFT

We have found that the collective shift in the low-lying SD states due to the residual interactions is mostly governed by the diagonal matrix element. The larger the spatial and angular parts of the matrix element, the more strongly the $S = 1$ pair interaction affects the SD states. For a larger spatial overlap, the orbitals should have the same number of nodes. High-ℓ orbitals acquire a large matrix element in the angular part. Since the SD states are generated by not only the pair interactions but the spin–isospin interactions discarded in the model study above, we employ nuclear density-functional theory (DFT) as a realistic calculation and try to fortify the finding obtained by the three-body model. Here we extend our discussion to SD 0$^-$ and 2$^-$ states.

A. Nuclear EDF method

We perform a self-consistent Kohn–Sham–Bogoliubov (KSB) and the proton–neutron quasiparticle-random-phase approximation (pnQRPA) calculation. The details of the calculation scheme are found in Refs. 35 and 19 for the KSB and pnQRPA, respectively. In brief, we solve the KSB equation in the coordinate space using cylindrical coordinates $\mathbf{r} = (\rho, z, \phi)$ with a mesh size of $\Delta \rho = \Delta z = 0.6$ fm and a box boundary condition at $(\rho_{\text{max}}, z_{\text{max}}) = (14.7, 14.4)$ fm. The quasiparticle (qp) states are truncated according to the qp energy cutoff at 60 MeV, and the qp states up to the magnetic quantum number $\Omega = 23/2$ with positive and negative parities are included, with Ω being the z-component of the angular momentum. We introduce the truncation for the two-quasiparticle (2qp) configurations in the QRPA calculations, in terms of the 2qp-energy as 60 MeV. For the normal (particle–hole) part of the EDF, we employ the SGII functional. For the pairing (particle–particle, p–p) energy, we adopt the one in Ref. 37 that depends on both the IS and IV densities, in addition to the pair density, with the parameters given in Table III of Ref. 37. The same pairing EDF is employed for the $S = 0$ pn-pairing in the pnQRPA calculation, while the linear term in the IV density is dropped. The strength of the $S = 1$ pn-pair interaction is varied by multiplying by a factor f_{NN}. The SD transition matrix elements are calculated as in Ref. 38.

B. SD 0$^-$ state in 132,134Nb

Among the SD excitations, the angular part of the diagonal matrix element is the largest in the $J = 0$ transition; see Eq. (12) in the Appendix. Therefore, we can expect a strong effect of the $S = 1$ pair interaction to appear in the SD 0$^-$ state involving such as $\nu 1g_{7/2} \otimes \pi 1f_{7/2}$ or $\nu 1h_{9/2} \otimes \pi 1g_{9/2}$ configuration. They correspond to the neutron-rich regions around Sc and Nb isotopes near the drip line. Since the neutron 1g$_{7/2}$ orbital is located above the 2d$_{5/2}$ orbital with the SGII functional, 78Ca is a candidate for the study. However, we find it unbound. Therefore, we are going to investigate the neutron-rich 132Zr isotopes as an example.

The ground state of 132,134Zr is calculated to be spherical, though we have local minima at finite deformation. The neutron occupation probability of the $1h_{9/2}$ orbital is 0.04 and 0.06 in 132Zr and 134Zr, respectively. Figure 3 shows the SD 0$^-$ transition-strength distribution in the thus calculated 132,134Zr. The low-energy peak is predominantly constructed by the $\nu 1h_{9/2} \otimes \pi 1g_{9/2}$ configuration. Due to the repulsive character of the spin–isospin residual interactions, the 2qp excitation of $\nu 1h_{9/2} \otimes \pi 1g_{9/2}$ is shifted higher in energy when $f_{NN} = 0$. However, a tiny difference between the QRPA energy and the unperturbed one indicates the weak collectivity of the low-lying state at $E_T = -15.2(-16.0)$ MeV in 132Zr (134Zr). The transition strengths in a low-energy region are reduced due to the spin–isospin residual interactions, and they are brought into the giant resonance.

Since the pairing matrix elements entering into the QRPA equation are approximately proportional to $uuuu$ or $wwww$ of the Bardeen–Cooper–Schrieffer amplitude, the p–p type or hole–hole type excitation acquires a large matrix element. Therefore, the low-lying SD 0$^-$ state here is strongly affected by the dynamical pair interaction. Indeed, the $S = 1$ pair interaction lowers the energy and enhances the strength of the SD 0$^-$ state, as predicted based on the finding above. We can expect the
β-decay rate in the Zr isotopes near the drip line is sensitively determined by the $S = 1$ pair interaction through the first-forbidden transition because the positive-parity states, involving the $\pi h_{11/2}$ orbital, show up in relatively higher excitation energy. It should be noted that extracting the details of nuclear-structure information from the β-decay rate with such a high Q_β value requires a careful treatment of the Coulomb potential [40].

C. SD 2^- state in 120,122Sb and 68,70Cu

The SD 2^- states appear in low energy widely in the nuclear chart [11]. It has thus been investigated as a unique first-forbidden β decay [12], and is proposed as a probe of the physics beyond the Standard Model [13]. A neutron intruder orbital plays a decisive role in the occurrence of the low-lying 2^- state. From Eq. (13c), we can expect a strong effect of the $S = 1$ pair interaction for the configurations such as $\nu 1f_{7/2} \otimes \pi 1d_{3/2}$, $\nu 1g_{9/2} \otimes \pi 1f_{5/2}$, $\nu 1h_{11/2} \otimes \pi 1g_{7/2}$, and $\nu 1l_{13/2} \otimes \pi 1h_{9/2}$.

Around 126Sn, the $\nu 1h_{11/2}$ and $\pi 1g_{7/2}$ orbitals are located near the Fermi level. The neutron occupation probability of the $1h_{11/2}$ orbital is calculated to be 0.28 (0.37) in 120Sn (122Sn). Similarly, the $\nu 1g_{9/2}$ and $\pi 1f_{5/2}$ orbitals are placed near the Fermi level around 68Ni. The neutron occupation probability of the $1g_{9/2}$ orbital is 0.09 (0.23) in 66Ni (70Ni) in the present calculation.

Figure 4 shows the calculated transition-strength distribution in 120,122Sb and 68,70Ni. The low-lying SD 2^- state is dominantly generated by a p-p type excitation of $\nu 1h_{11/2} \otimes \pi 1g_{7/2}$ and $\nu 1g_{9/2} \otimes \pi 1f_{5/2}$ in 120,122Sn and 68,70Ni, respectively. We can see the strongest effect in 68Ni among these examples. This is because the 2qp excitation constructing the SD 2^- state is the most p-p type excitation; the amplitude $uuuu$ is the largest, giving a large diagonal matrix element.

IV. SUMMARY

We have investigated the effect of the pn-pair interaction in the $T = 0, S = 1$ channel on the low-lying spin-dipole (SD) transitions. We aimed at clarifying the distinction of the role in between the SD and GT transitions. To this end, we have performed a three-body model calculation for the transition 80Ni → 80Cu, where 80Ni = 78Ni + n + n and 80Cu = 78Ni + p + n. The strength of the $S = 1$ pn-pair interaction was varied to see the effect on the SD transition-strength distributions. The depth of the mean-field potential was also changed to study the shell effect. The effect of the $S = 1$ pn-pair interaction depends on the spatial overlap of the pn pair and the angular momentum of the valence nucleons. The $S = 1$ pn-pair interaction in the SD excitations is active even if the spatial overlap of the pn pair is weak, where the principal quantum numbers of the single-particle orbitals are different by up to one unit, while only the $\Delta N = 0$ excitation is allowed for the GT transition. The effect of the $S = 1$ pn-pair interaction on the SD transition is thus weaker than on the GT transition.

To fortify the finding obtained by the three-body model analysis, we have performed the nuclear DFT calculations. In nuclei where the high-ℓ orbitals are located close to the Fermi level, we have found a strong effect of the $S = 1$ pn-pair interaction. In neutron-rich nuclei, the negative-parity states appear in low energies and thus the β-decay rate can be sensitive to the $S = 1$ pn-pair interaction, similarly for the GT transition. A careful analysis of the forbidden β decay is thus needed.

FIG. 3. Similar to Fig. 2 but obtained by employing the Skyrme-KSB+pnQRPA with the SGH functional for the SD 0^+ transition in 132,134Zr → 132,134Nb. The results obtained with $f_{NN} = 0$ and 1.0 are depicted by the dashed and solid lines, respectively. Shown is also the unperturbed strengths by the dotted line.

FIG. 4. Same as Fig. 3 but for the SD 2^- transition in 120,122Sn → 120,122Sb and 80,70Ni → 68,70Cu.
ACKNOWLEDGMENTS

Discussions with K. Hagino and H. Sagawa are acknowledged. This work was supported by the JSPS KAKENHI (Grants No. JP19K03824, No. JP19K03861, and No. JP19K03872) and the JSPS/NRF/NSFC A3 Foresight Program “Nuclear Physics in the 21st Century.” The nuclear DFT calculations were performed on Yukawa-21 at the Yukawa Institute for Theoretical Physics, Kyoto University.

APPENDIX: ANGULAR PART OF DIAGONAL MATRIX ELEMENT

We summarize here the angular part [9] of the diagonal matrix element of the $S = 1$ pair interaction [4]. For the GT operator, we have
\begin{align}
A^+_{\ell_j,\ell_j;\ell_j,\ell_j} &= \frac{1}{4\pi} \frac{(\ell + 1)[2(\ell + 1)^2 + 1]}{(2\ell + 3)(2\ell + 1)}, \quad (11a) \\
A^+_{\ell_j,\ell_j;\ell_j,\ell_j} &= \frac{3}{8\pi} \frac{\ell(\ell + 1)}{2\ell + 1}, \quad (11b)
\end{align}

For the SD operators, we have
\begin{align}
A^0_{\ell_j,\ell_j;\ell_j,\ell_j} &= \frac{\ell}{4\pi}, \quad (12) \\
A^2_{\ell_j,\ell_j;\ell_j,\ell_j} &= \frac{1}{8\pi} \frac{[(2\ell + 3)^2 + 6]\ell + 1}{(2\ell + 1)(2\ell + 1)}, \quad (13a) \\
A^2_{\ell_j,\ell_j;\ell_j,\ell_j} &= \frac{1}{8\pi} \frac{\ell(\ell + 1)(\ell - 1)}{(2\ell + 1)(2\ell - 1)}, \quad (13b) \\
A^2_{\ell_j,\ell_j;\ell_j,\ell_j} &= \frac{5\ell(\ell + 1)(\ell - 1)}{8\pi (2\ell + 1)(2\ell - 1)}, \quad (13c) \\
A^2_{\ell_j,\ell_j;\ell_j,\ell_j} &= \frac{1}{8\pi} \frac{[2\ell - 1)^2 + 6]\ell - 1}{(2\ell - 1)(2\ell - 3)} \quad (13d)
\end{align}

for $J = 0$ and $J = 2$, respectively.

[1] D. M. Brink and R. A. Broglia, Nuclear Superfluidity: Pairing in Finite Systems, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press, 2005).
[2] J. Schrieffer, Theory of Superconductivity, Frontiers in physics (W.A. Benjamin, 1964).
[3] A. B. Migdal, Two interacting particles in a potential well, Yad. Fiz. 16, 427 (1972), [Sov. J. Nucl. Phys. 16, 238-241 (1973)].
[4] G. F. Bertsch and H. Esbensen, Pair correlations near the neutron drip line, Ann. Phys. 209, 327 (1991).
[5] M. Zhukov, B. Danilin, D. Fedorov, J. Bang, I. Thompson, and J. Vaagen, Bound state properties of Borromean halo nuclei: 4He and 11Li, Phys. Rep. 231, 151 (1993).
[6] F. V. De Blasio, M. Hjorth-Jensen, O. Elgarøy, L. Engvik, G. Lazzari, M. Baldo, and H. J. Schulze, Coherence length of neutron superfluids, Phys. Rev. C 56, 2332 (1997).
[7] M. Matsuo, K. Mizuyama, and Y. Serizawa, Di-neutron correlation and soft dipole excitation in medium mass neutron-rich nuclei in drip-line, Phys. Rev. C 71, 064326 (2005), arXiv:nucl-th/0408052.
[8] M. Matsuo, Spatial structure of neutron Cooper pair in low density uniform matter, Phys. Rev. C 73, 044309 (2006), arXiv:nucl-th/0512021.
[9] K. Hagino and H. Sagawa, Pairing correlations in nuclei on the neutron-drip line, Phys. Rev. C 72, 044321 (2005), arXiv:nucl-th/0508058.
[10] N. Pillet, N. Sandulescu, and P. Schuck, Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei, Phys. Rev. C 76, 024310 (2007), arXiv:nucl-th/0701086.
[11] T. Nakamura, A. M. Vinodkumar, T. Sugimoto, N. Aoi, H. Baba, D. Bazin, N. Fukuda, T. Gomi, H. Hasegawa, N. Imai, M. Ishihara, T. Kobayashi, Y. Kondo, T. Kubo, M. Miura, T. Motobayashi, H. Otsu, A. Saito, H. Sakurai, S. Shimoura, K. Watanabe, Y. X. Watanabe, T. Yakushiji, Y. Yanagisawa, and K. Yoned, Observation of strong low-lying c1 strength in the two-neutron halo nucleus 11Li, Phys. Rev. Lett. 96, 252502 (2006).
[12] Y. Kubota, A. Corsi, G. Antheelet, H. Baba, C. Caesar, D. Calvet, A. Delbart, M. Dozono, J. Fing, F. Flavigny, J.-M. Gheller, J. Gibelin, A. Gigan, A. Gille, K. Hasegawa, T. Isobe, Y. Kanaya, S. Kawakami, D. Kim, Y. Kikuchi, Y. Kiyokawa, M. Kobayashi, N. Kobayashi, T. Kobayashi, Y. Kondo, Z. Korkulu, S. Koyama, V. Lapoux, Y. Maeda, F. M. Marquès, T. Motobayashi, T. Miyazaki, T. Nakamura, N. Nakatsuka, Y. Nishio, A. Obertelli, K. Ogata, A. Ohtsuka, N. A. Orl, S. Otta, H. Otsu, T. Ozaki, V. Panin, S. Paschalis, E. C. Pollacco, S. Reichert, J.-Y. Rousse, A. T. Saito, S. Sakaguchi, M. Sako, C. Santamaria, M. Sasano, H. Sato, M. Shibata, Y. Shimizu, Y. Shindo, L. Stuhl, T. Sumikama, Y. L. Sun, M. Tabata, Y. Togano, J. Tsubota, Z. H. Yang, J. Yasuda, K. Yoneda, J. Zenihiro, and T. Uesaka, Surface localization of the dineutron in 11Li, Phys. Rev. Lett. 125, 252501 (2020).
[13] S. Frauendorf and A. O. Macchiavelli, Overview of neutron-proton pairing, Prog. Part. Nucl. Phys. 78, 24 (2014), arXiv:1405.1652 [nucl-th].
[14] K. Yoshida, Proton-neutron pairing vibrations in $N = Z$ nuclei: Precursory soft mode of isoscalar pairing condensation, Phys. Rev. C 90, 031303 (2014), arXiv:1409.4884 [nucl-th].
[15] E. Litvinova, C. Robin, and I. A. Egorova, Soft modes in the proton–neutron pairing channel as precursors of deuteron condensate in $N = Z$ nuclei, Phys. Lett. B 776, 72 (2018) [arXiv:1612.09182 [nucl-th]]

[16] Y. Chazono, K. Yoshida, K. Yoshida, and K. Ogata, Proton induced deuteron knockout reaction as a probe of an isoscalar proton-neutron pair in nuclei, Phys. Rev. C 103, 024609 (2021) [arXiv:2007.06771 [nucl-th]]

[17] K. Yoshida, Isovector susceptibility: Isotopic evolution of collectivity in spin response, (2021), arXiv:2103.16119 [nucl-th]

[18] J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and R. Surman, Beta decay of τ process waiting point nuclei in a selfconsistent approach, Phys. Rev. C 60, 014302 (1999) [arXiv:nucl-th/9902059]

[19] K. Yoshida, Spin–isospin response of deformed neutron-rich nuclei in a self-consistent Skyrme energy-density-functional approach, Prog. Theor. Exp. Phys. 2013, 113D02 (2013) [Erratum: Prog. Theor. Exp. Phys. 2021, 019201 (2021)] [arXiv:1308.0424 [nucl-th]]

[20] J. Engel, P. Vogel, and M. R. Zirnbauer, Nuclear Structure Effects in Double beta Decay, Phys. Rev. C 37, 731 (1988)

[21] Y. Tanimura, H. Sagawa, and K. Hagino, Three-body model calculations for $N = Z$ odd–odd nuclei with $T = 0$ and $T = 1$ pairing correlations, Prog. Theor. Exp. Phys. 2014, 053D02 (2014) [arXiv:1309.3394 [nucl-th]]

[22] Y. Tanimura and H. Sagawa, Three-body model for an isoscalar spin-triplet neutron-proton pair in ^{102}Sb, Phys. Rev. C 93, 064319 (2016) [arXiv:1603.07483 [nucl-th]]

[23] F. Minato and Y. Tanimura, Spin–isospin properties of $N = Z$ odd–odd nuclei from a core+pn three-body model including core excitations, Eur. Phys. J. A 56, 45 (2020) [arXiv:1802.09991 [nucl-th]]

[24] C. L. Bai, H. Sagawa, G. Colò, Y. Fujita, H. Q. Zhang, X. Z. Zhang, and F. R. Xu, Low-energy collective Gamow-Teller states and isoscalar pairing interaction, Phys. Rev. C 90, 054335 (2014)

[25] H. Fujita, Y. Fujita, Y. Utsuno, K. Yoshida, T. Adachi, A. Algora, M. Csatlős, J. M. Deaven, E. Estevez-Aguado, C. J. Guess, J. Gulyás, K. Hatanaka, K. Hirota, R. Hutton, D. Ishikawa, A. Krasznahorkay, H. Matsubara, F. Molina, H. Okamura, H. J. Ong, G. Perdikakis, B. Rubio, C. Scholl, Y. Shimbara, G. Susoy, T. Suzuki, A. Tamii, J. H. Thies, R. G. T. Zegers, and J. Zenihiro, Experimental study of gamow-teller transitions via the high-energy-resolution $^{18}\text{O}(^{4}\text{He},t)^{16}\text{He}$ reaction: Identification of the low-energy “super” -gamow-teller state, Phys. Rev. C 100, 034618 (2019)

[26] Y. Fujita, H. Fujita, T. Adachi, C. L. Bai, A. Algora, G. P. A. Berg, P. von Brentano, G. Colò, M. Csatlős, J. M. Deaven, E. Estevez-Aguado, C. Fransen, D. De Frenne, K. Fujita, E. Gianiòlú, C. J. Guess, J. Gulyás, K. Hatanaka, K. Hirota, M. Homma, D. Ishikawa, E. Jacobs, A. Krasznahorkay, H. Matsubara, K. Matsuyanagi, R. Mehrachand, F. Molina, K. Muto, K. Nakamishi, A. Negret, H. Okamura, H. J. Ong, T. Otsuka, N. Pietralla, G. Perdikakis, L. Popescu, B. Rubio, H. Sagawa, P. Sarriguren, C. Scholl, Y. Shimbara, Y. Shimizu, G. Susoy, T. Suzuki, Y. Tameshige, A. Tamii, J. H. Thies, M. Uchida, T. Wakasa, M. Yosoi, R. G. T. Zegers, K. O. Zell, and J. Zenihiro, Observation of low- and high-energy gamow-teller phonon excitations in nuclei, Phys. Rev. Lett. 112, 112502 (2014)

[27] Y. Fujita, H. Fujita, T. Adachi, G. Susoy, A. Algora, C. L. Bai, G. Colò, M. Csatlős, J. M. Deaven, E. Estevez-Aguado, C. J. Guess, J. Gulyás, K. Hatanaka, K. Hirota, M. Homma, D. Ishikawa, A. Krasznahorkay, H. Matsubara, R. Mehrachand, F. Molina, H. Nakada, H. Okamura, H. J. Ong, T. Otsuka, G. Perdikakis, B. Rubio, H. Sagawa, P. Sarriguren, C. Scholl, Y. Shimbara, E. J. Stephenson, T. Suzuki, A. Tamii, J. H. Thies, K. Yoshida, R. G. T. Zegers, and J. Zenihiro, High-resolution study of gamow-teller excitations in the $^{42}\text{Ca}(^{4}\text{He},t)^{40}\text{Sc}$ reaction and the observation of a “low-energy super-gamow-teller state”, Phys. Rev. C 91, 064316 (2015)

[28] K. Yoshida, Charge-exchange dipole excitations in neutron-rich nuclei: $-I_{\text{chow}}$, anti- analog pygmy and anti- analog giant resonances, Phys. Rev. C 96, 051302 (2017) [arXiv:1709.10272 [nucl-th]]

[29] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75, 121 (2003)

[30] T. Nakatsukasa, K. Matsuynaghi, M. Matsuuo, and K. Yabana, Time-dependent density-functional description of nuclear dynamics, Rev. Mod. Phys. 88, 045004 (2016) [arXiv:1606.04717]

[31] A. Bohr and B. Mottelson, Nuclear Structure: Single-particle motion, Nuclear Structure (Benjamin, 1969)

[32] W. Huang, M. Wang, F. Kondiev, G. Audi, and S. Naimi, The AME 2020 atomic mass evaluation (I): Evaluation of input data, and adjustment procedures, Chin. Phys. C 45, 030002 (2021)

[33] M. Wang, W. Huang, F. Kondiev, G. Audi, and S. Naimi, The AME 2020 atomic mass evaluation (II), Tables, graphs and references, Chin. Phys. C 45, 030003 (2021)

[34] K. Yoshida, Suddenly shortened half-lives beyond ^{77}Ni: $N = 50$ magic number and high-energy non-unique first-forbidden transitions, Phys. Rev. C 100, 024316 (2019) [arXiv:1903.03310 [nucl-th]]

[35] H. Kasuya and K. Yoshida, Hartree-Fock-Bogoliubov theory for odd-mass nuclei with a time-odd constraint and application to deformed halo nuclei, Prog. Theor. Exp. Phys. 2021, 013D01 (2021) [arXiv:2005.03276 [nucl-th]]

[36] N. van Giay and H. Sagawa, Spin-isospin and pairing properties of modified Skyrme interactions, Phys. Lett. B 106, 379 (1981)

[37] M. Yamagami, Y. R. Shimizu, and T. Nakatsukasa, Optimal pair density functional for description of nuclei with large neutron excess, Phys. Rev. C 80, 064301 (2009) [arXiv:0812.3197 [nucl-th]]

[38] K. Yoshida, Charge-exchange dipole excitations in deformed nuclei, Phys. Rev. C 102, 054336 (2020) [arXiv:2008.03947 [nucl-th]]

[39] P. Ring and P. Schuck, The Nuclear Many-body Problem, Texts and monographs in physics (Springer-Verlag, 1980)

[40] W. Horiuchi, T. Sato, Y. Uesaka, and K. Yoshida, Beta-decay formulas revisited (I): Gamow–Teller and spin-dipole contributions to allowed and first-forbidden transitions, (2021), arXiv:2103.16815 [nucl-th]

[41] K. Didierjean and W. Walter, Distribution of log ft values for allowed, first and second forbidden beta transitions ($10 \leq A \leq 100$) (1994).

[42] H. Homma, E. Bender, M. Hirsch, K. Muto, H. V. Klapdor-Kleingrothaus, and T. Oda, Systematic study
of nuclear beta decay, Phys. Rev. C 54, 2972 (1996).

[43] A. Glick-Magid, Y. Mishnayot, I. Mukul, M. Hass, S. Vaintraub, G. Ron, and D. Gazit, Beta spectrum of unique first-forbidden decays as a novel test for fundamental symmetries, Phys. Lett. B 767, 285 (2017), arXiv:1609.03268 [nucl-ex].