The Effects of Manure and Nitrogen Fertilizer Applications on Soil Organic Carbon and Nitrogen in a High-Input Cropping System

Tao Ren1,2, Jingguo Wang1, Qing Chen1,*, Fusuo Zhang1, Shuchang Lu3

1 College of Resources and Environmental Science, China Agricultural University, Beijing, China, 2 College of Resources and Environment, Huazhong Agricultural University, Wuhan, China, 3 Department of Agronomy, Tianjin Agricultural University, Tianjin, China

Abstract

With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn’t increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure.

Introduction

Soil organic matter plays a key role in soil biological and chemical processes, and changes in soil organic matter strongly influence soil N turnover because of the importance of available C for microbial immobilization [1-3]. Soils with higher organic matter contents may immobilize more N and reduce N loss to the environment. Otherwise, the depletion of available C will cause more rapid N turnover and losses [4]. In addition, changes in N availability can also alter soil C turnover [5]. There is no doubt that higher crop production in response to mineral N fertilizer application results in greater root exudates and more crop residues, thereby enhancing SOC sequestration in agricultural soils [6]. In addition increasing N fertilizer application can stabilize organic matter [7] and retard the mineralization of older soil organic matter [8]. N fertilization plays a positive role in enhancing the SOC [7], [9-12]. However, the addition of N fertilizer has also been reported to have a negative or no effect on SOC accumulation [13-17]. Changes in the decomposability of fresh plant litter and soil organic matter fractions, the stability of soil aggregates, and/or shifts in the microbial community can be used to explain the decreases in SOC attributed to N fertilizer addition [13], [15]. Therefore, achieving a better understanding of the interaction between N fertilizer and SOC in agricultural soils is essential for maximizing SOC storage and minimizing potential N losses.

Intensive vegetable production systems in northern China differ from other ecosystems in which excessive nutrients and water are applied, which far exceed the resources needed for vegetable growth [18-19]. As shown in previous studies [20-21], these practices have resulted in serious N losses to the environment. Therefore, more work was done to understand how to reduce N fertilizer input with optimal N and irrigation strategies, along with catch crops in the intensive greenhouse vegetable cropping system [22-24]. Nevertheless, a recent survey of the largest greenhouse vegetable production region in northern China showed that the soil C/N ratio in greenhouse soils was lower than that of the adjacent open field soils because of the high accumulation rate of soil N as a result of an excessive N input [25]. The low soil C/N ratio implied that the C levels were insufficient for the cropping system, which would limit N immobilization by soil microorganisms [2], [26-27] and may lead to high N losses [28]. This finding...
shows that not only optimal N fertilizer management is needed to be studied, but also the soil organic matter content must be improved to enhance soil N retention capacity, which will reduce N losses to the environment and improve N use efficiency.

In a conventional greenhouse vegetable planting system, most of the plant residues are removed at harvest out of fear of infecting the next crop with fungi and other pathogens. Large amounts of organic manure with a low C/N ratio, such as poultry manure and pig manure, are the main soil carbon supplements in the greenhouse vegetable cropping system in northern China [29]. Excessive N fertilizer application is also a significant characteristic of this cropping system. However, it is unclear how the continuous application of poultry manure and excessive mineral N influences the soil organic matter and total N. Whether lower optimized N fertilizer inputs will alter the accumulation of soil organic matter and total N in the greenhouse field? A greenhouse tomato experiment into which different N management strategies were introduced was conducted from 2004 to 2010 in Shouguang county, the largest greenhouse vegetable production region in northern China. In contrast to common farming practice, optimal N management could reduce mineral N fertilizer input by 72% without decreasing the fruit yield [24]. In this experiment, different types of organic manure, including conventional dry chicken manure and wheat straw, were applied. This environment provided an opportunity to gain a better understanding of the influence of organic manure together with mineral N inputs on the SOC and total N pools, and determine if reducing mineral N fertilizer input will alter SOC and TN accumulation. Moreover, it provided an opportunity to analyse the influence of changes in the SOC pool on N losses in the greenhouse vegetable cropping system. Evaluating this system will be of great assistance in improving management practices for maintaining soil fertility and productivity while minimizing potential N losses from the high-input greenhouse vegetable cropping system.

Materials and Methods

Ethics statement

No specific permits were required for these field studies. No specific permissions were required for these locations/activities because they were not carried out on privately owned or protected areas. The field studies did not involve endangered or protected species.

Site description and crop management

The experiment was established in February 2004 in a traditional unheated commercial solar greenhouse (84\times8.5 m) in Luojia (36°55′N, 118°45′E), Shouguang, northern China. The greenhouse was constructed from a vertical clay wall and covered with polyethylene film throughout the year. Thus the air temperature inside greenhouse is higher than in outside. The monthly mean temperature, minimum and maximum temperature inside greenhouse from 2004 to 2010 was showed in Figure 1. Groundwater was used for irrigation with an average of 573 mm over 11 applications for every growing season. During construction in 1999, surface soil in the greenhouse was used to build the clay wall. The silt loam that remained in the field was approximately 60 cm lower than the open field. Chicken manure was applied at 30 t DW ha\(^{-1}\)season\(^{-1}\) for the first 2 years to improve soil fertility. After 2001, chicken manure application was reduced to 15 t DW ha\(^{-1}\)season\(^{-1}\) until the experiment was established in 2004. According to FAO classification, the soil at the outset of the trial had 637 g sand kg\(^{-1}\), 323 g silt kg\(^{-1}\) and 40 g clay kg\(^{-1}\) from 0 to 0.1m soil depth, 620 g sand kg\(^{-1}\), 335 g silt kg\(^{-1}\) and 45 g clay kg\(^{-1}\) from 0.1 to 0.3 soil depth, 662 g sand kg\(^{-1}\), 301 g silt kg\(^{-1}\) and 37 g clay kg\(^{-1}\) from 0.3 to 0.6 soil depth, respectively.

Treatments

From February 2004 the treatments included (1) CK, control treatment, where neither organic manure nor mineral fertilizer N was applied. The N from irrigation water was the important source of N input in the CK treatment, ranging from 25 to 177 kg.
N target value is calculated from crop N uptake, the necessary soil to 2007WS. The equation used was as follows: based on an N target value and soil mineral N content in the root zone. From 2004AW to 2007WS only dry chicken manure was used; and the application rates of dry chicken manure were 8, 11, 11, and 5 t ha\(^{-1}\) season\(^{-1}\), with an average of 271 kg N ha\(^{-1}\) season\(^{-1}\). During the autumn-winter season in 2006 (2006AW) and onward, additional chopped wheat straw (1.5 cm long) was added to the soil together with dry chicken manure. From 2006AW to 2009AW the application rates of dry chicken manure were 8, 8, 8, 8, 10 and 8 t ha\(^{-1}\) season\(^{-1}\); and the rates of wheat straw were 2, 2.5, 4, 2, 4 and 4 t ha\(^{-1}\) season\(^{-1}\), with an average of 22 kg N ha\(^{-1}\) season\(^{-1}\). The treatment was also labeled as “MN+S” instead of “MN”. (3) CN, conventional N treatment, organic manure was applied as in the MN treatment (except in 2006AW). N fertilizer was applied as a side-dressing at a rate of 120 kg N ha\(^{-1}\) on 4-6 occasions based on local farmers normal management practice which depended on the weather conditions, tomato cultivar and growth stage. The average mineral N fertilizer input was 633 kg N ha\(^{-1}\) season\(^{-1}\). From 2006AW, the CN treatment plot was split into CN and CN+ S sub-treatments with plot sizes of 21.8 m\(^2\) and 32.8 m\(^2\), respectively. For the CN sub plot only dry chicken manure was applied; and for the CN+S treatment both wheat straw and dry chicken manure were incorporated. The chicken manure and wheat straw were applied at the same rates and timings as in the MN treatment. The mineral N fertilizer application was the same as for the original CN plot. (4) RN, reduced N treatment, chicken manure was applied at the same rate as in the MN and CN treatment, and mineral N fertilizer was applied as a side-dressing based on an N target value and soil mineral N content in the root zone (0-30 cm soil layer) for different growth stages from 2004WS to 2007WS. The equation used was as follows:

\[
\text{Recommended fertilizer N} = \text{N target value} - \text{NO}_3^- - \text{the soil profile} - \text{before the recommendation} - \text{NO}_3^- - \text{N from irrigation water}
\]

N target value is calculated from crop N uptake, the necessary soil \(N_{\text{min}}\) residue and soil net mineralization [30], which reflects the synchronization of crop N requirement and soil N supply. Here the initial N target values were 300 kg N ha\(^{-1}\) for the side-dressing at each stage of fruit cluster development in 2004. From 2005 the target values from transplanting to the third cluster growth stage were changed to 250 and 200 kg N ha\(^{-1}\) for the fourth cluster to the end of harvest in the WS seasons. In the AW season the N target value from transplanting to the fourth cluster growth stage was changed to 200 kg N ha\(^{-1}\), with 250 kg N ha\(^{-1}\) for the fifth and sixth cluster growth stages [24]. Considering crop N uptake in different growth period and soil N supply, N from irrigation water, only 2-4 side-dressing events were applied according to the differences between N target values and soil \(N_{\text{min}}\) content in the root zone. From 2007AW the N recommendation was simplified based on the experiences of preceding years. Three or four side-dressing events with an interval of 7-10 days at a rate of 50 kg N ha\(^{-1}\) were required in April and October. The more detail introduction of optimized N management was reported by Ren et al [24]. Compared with the CN treatment, 71.3% of mineral N fertilizer was reduced without influencing fruit yield, with an average of 182 kg N ha\(^{-1}\) season\(^{-1}\). From 2006AW, the RN treatment plot was split into RN and RN+S sub-treatments with the same straw amendments and plot sizes as in the CN treatment. During 2006AW and 2007WS growing season, the mineral N fertilizer application rates of RN and RN+S treatment were determined based on the N target values and soil \(N_{\text{min}}\) content in the root zone before side-dressing. There were litter differences on mineral N fertilizer application rates between RN and RN+S treatment. Since 2007AW, the mineral N fertilizer application was the same for RN and RN+S treatment.

All treatments were set up in a randomized block design with three replicates. Plots were separated for each other by plastic film at a depth of 30 cm. The exogenous C and N inputs are shown in Table 1. The average N input from chicken manure was 2779 kg C ha\(^{-1}\) season\(^{-1}\), with a range of 1114 to 5445 kg C ha\(^{-1}\) season\(^{-1}\). Beginning in 2006AW, an average of 1119 kg wheat straw C ha\(^{-1}\) season\(^{-1}\) was supplied, and the total C input was as high as 3483 kg C ha\(^{-1}\) season\(^{-1}\). The N sources included mineral N fertilizer, organic manure and irrigation water. In the CK treatment, the N from irrigation water was the only source of N input, with an average of 102 kg N ha\(^{-1}\) season\(^{-1}\). The average exogenous N inputs for the MN, RN and CN treatments were 354, 527 and 984 kg N ha\(^{-1}\) season\(^{-1}\), respectively.

Urea was the main mineral N fertilizer. All plots received P\(_2\)O\(_5\) as calcium monophosphate (12% P\(_2\)O\(_5\)) and K\(_2\)O as potassium sulfate (50% K\(_2\)O) during each growing season. The average input during the past 12 growing seasons were 350 kg P\(_2\)O\(_5\) ha\(^{-1}\) season\(^{-1}\) on average of 1119 kg wheat straw C ha\(^{-1}\) season\(^{-1}\) was supplied, and the total C input was as high as 3483 kg C ha\(^{-1}\) season\(^{-1}\). The N sources included mineral N fertilizer, organic manure and irrigation water. In the CK treatment, the N from irrigation water was the only source of N input, with an average of 102 kg N ha\(^{-1}\) season\(^{-1}\). The average exogenous N inputs for the MN, RN and CN treatments were 354, 527 and 984 kg N ha\(^{-1}\) season\(^{-1}\), respectively.

Soil sampling and analysis

Soil organic carbon and total N concentrations. Three soil cores (3.5 cm in diameter) were taken from each plot to a depth of 0.6 m and subdivided into 0-0.1, 0.1-0.3 and 0.3-0.6 m increments on April 18, 2004, and January 20, 2010. Fresh soil cores were taken to the lab immediately, mixed thoroughly to provide a composite sample from each plot, sieved through a 2 mm mesh and then air-dried and stored in plastic bottles. After removing any carbonates with 1 M HCl, the SOC and total N concentrations were determined using a C and N analyzer (vario MACRO CN, Elementar, Germany). At the same time, soil bulk density in different soil layers was measured by the cutting ring method. In 2004, three samples were collected from the whole greenhouse and the average soil bulk densities were 1420 kg m\(^{-3}\), 1450 kg m\(^{-3}\) and 1490 kg m\(^{-3}\) for the 0-10 cm, 10-30 cm and 30-60 cm soil layers, respectively. The bulk density of each plot monitored in 2010 is shown in Table 2 and no significant differences were observed among the different treatments.

Soil organic carbon fraction. Changes in the quantity and quality of the SOM pool are generally difficult to detect in the short term following agricultural management. Labile and recalcitrant SOM separated by different methods provide a more sensitive indicator for evaluating the effect of different management strategies on SOM dynamics [31-33]. Here, soil organic carbon fractionation procedures were carried out as described by Blair et al [31]. Air-dried soil samples containing approximately 15 mg of C were oxidized with 25 mL of 333 mmol L\(^{-1}\) KMnO\(_4\) for 1 h at 25°C on a shaker at 180 rpm. The samples were then
Table 1. Exogenous C and N inputs in the greenhouse tomato production system in Shouguang, northern China (kg ha\(^{-1}\) season\(^{-1}\)).

Growing season	C\(^1\)	N\(^1\)										
	CK	MN(MN+S)\(^3\)	RN	RN+S	CN	CN+S	CK	MN(MN+S)	RN	RN+S	CN	CN+S
2004WS\(^2\)	0	2860	2860	-	2860	-	56	316	644	-	1186	-
2004AW\(^2\)	0	5445	5445	-	5445	-	118	478	638	-	1198	-
2005WS	0	3476	3476	-	3476	-	54	370	497	-	1000	-
2005AW	0	3902	3902	-	3902	-	177	435	636	-	1155	-
2006WS	0	1114	1114	-	1114	-	165	327	465	-	927	-
2006AW	0	4095	4095	5135	5807	133	456	651	671	1200	1212	
2007WS	0	2258	2258	1698	2258	144	308	509	486	838	848	
2007AW	0	4806	4806	3406	4806	82	417	492	517	872	897	
2008WS	0	2110	2110	1606	2110	25	180	321	330	771	780	
2008AW	0	3052	3052	1606	3052	39	202	382	402	782	802	
2009WS	0	4205	4205	2592	4205	135	441	605	641	1105	1141	
2009AW	0	3857	3857	2214	3857	99	322	489	523	769	802	
Average	0	3432	2779	3483	2921	3728	102	354	527	510	984	926

\(^1\)C input from chicken manure and wheat straw; N input from mineral fertilizer, organic manure and irrigation water;

\(^2\)WS: winter-spring growing season, AW: autumn-winter growing season;

\(^3\)Since 2006AW chopped wheat straw and dry chicken manure was broadcast as a basal fertilizer and the treatment was labeled as “MN+S” instead of “MN”;

doi:10.1371/journal.pone.0097732.t001
centrifuged, diluted and spectrophotometrically measured at 565 nm. The oxidized carbon was considered labile C, and the remainder represented the non-labile C.

Apparent N losses. The nutrient balance is often used to estimate potential environmental risks [34-35]. The apparent N losses were calculated according to Equation (2), as described by Ren et al [24], as follows:

\[
N_{\text{loss}} = N_{\text{min \ initial}} + N_{\text{manure}} + N_{\text{fert}} + N_{\text{irri}} - N_{\text{crop}} - N_{\text{min \ harvest}}
\]

(2)

where \(N_{\text{min \ initial}}\) = apparent N loss, \(N_{\text{min \ initial}}\) = soil \(N_{\text{min}}\) content at 0-0.6 m before transplanting, \(N_{\text{manure}}\) = total N input from organic manure, \(N_{\text{fert}}\) = N from mineral fertilizer, \(N_{\text{irri}}\) = \(\text{NO}_3^-\) N from irrigation water, \(N_{\text{crop}}\) = total N uptake by tomato aboveground parts, and \(N_{\text{min \ harvest}}\) = soil \(N_{\text{min}}\) content at 0-0.6 m at the end of the harvest.

The parameters were calculated as follows:

Three soil cores (3.5 cm in diameter) were collected from each plot at a depth of 0.6 m and then subdivided into 0-0.3 m and 0.3-0.6 m increments before transplanting and at the end of the harvest for each season. Fresh soil cores were mixed thoroughly to give a composite sample from each plot and then passed through a 2 mm sieve. Next, 12 g subsamples were weighed and extracted by shaking with 100 mL of 1 mol L\(^{-1}\) KCl for 1 h. The extract was stored at -18°C until an analysis of the \(\text{NO}_3^-\) N and \(\text{NH}_4^+\)-N concentrations could be carried out with a continuous flow analyzer (TRAACS Model 2000). The water content of the soil concentrations could be carried out with a continuous flow analyzer (TRAACS Model 2000). The water content of the soil

Results

Soil organic carbon and total N concentrations

Soil organic carbon (SOC) and total soil N (TN) concentrations in soil profiles to a depth of 60 cm are shown in Figure 2. The highest SOC concentration was seen in the 0-10 cm layer, below which it decreased for all treatments. In April of 2004, the SOC of the soil profile was similar across all N treatments, except there were some variations in the 30-60 cm layer associated with uneven soil fertility. After 6 years, SOC in the CK treatment was significantly lower than that of the other treatments in the 0-10 cm soil layer. However, there were no significant differences among the other treatments. In the 10-30 cm layer, SOC differed significantly between the RN and CN treatments. In comparison to the initial value, SOC decreased significantly in all CK treatment layers after 6 years of cultivation, but the only significant change in SOC for the CN treatment was an increase in the 0-10 cm layer.

Patterns in total N in the soil profile followed a similar pattern to that of the SOC (Figure 1). In January 2010, soil TN in the CK treatment was significantly lower than that of the other treatments in the 0-10 cm layer. In addition, no significant differences were observed among the MN, RN and CN treatments. The TN values did not show significant differences across N treatments in the 10-60 cm layer in 2010.

Soil organic carbon and total N pool

Total SOC and TN pool in the profile above 60 cm were 46.6-55.1 t C ha\(^{-1}\) and 6.8-8.3 t N ha\(^{-1}\), respectively (Table 3). After 6 years of cultivation, approximately 13.1 t C ha\(^{-1}\) and 2.2 t C ha\(^{-1}\) were lost from the CK and MN treatments, respectively. The decreased bulk density was mainly attributed to the decreased SOC in the MN treatment (Table 2). The SOC pool increased to 0.8 t C ha\(^{-1}\) and 1.7 t C ha\(^{-1}\) in response to the RN and CN treatments, respectively. For the N pool, the only reduction occurred in the CK treatment. Approximately 0.63 t N ha\(^{-1}\) was lost over the last 6 years. Average accumulation rates of SOC and TN in the 0-60 cm layer were -2.17, -0.37, 0.14 and 0.28 t C ha\(^{-1}\) a\(^{-1}\) and -0.10, 0.14, 0.00 and 0.06 t N ha\(^{-1}\) a\(^{-1}\) for the CK, MN,
RN and CN treatments, respectively. The addition of straw over 4 years made little difference to SOC and TN concentration.

Soil organic carbon fractions

Figure 3 shows the distribution of labile and non-labile carbon in different soil layers. In April 2004, the labile C concentrations were similar across all N treatments in the same layer. However, in January 2010, the soil labile C concentration in the CK treatment was significantly lower than that of the other treatments in the 0-30 cm layer. Compared with the initial values in 2004, the soil labile C concentration in the CK treatment did not decrease significantly according to paired-sample T test; however, labile C increased significantly in the RN and CN treatments for the 0-10 cm layer.

Changes in the concentration of the non-labile C fraction in the soil profile were similar to those of the SOC. In January 2010, the soil non-labile C concentration in the 0-10 cm layer increased as the N application increased. When compared with April 2004, it decreased significantly in the CK treatment. Nevertheless, it increased significantly in the CN treatment. For all other treatments, no significant changes were observed in the soil profile.

Apparent N losses

Figure 4 shows the annual apparent N losses from 2004 to 2009 as obtained estimated from the nitrogen balance. For the CN treatment, the average annual mean apparent N losses were as high as 1529 kg N ha⁻¹ a⁻¹, accounting for 77% of the annual exogenous N input. A significant decrease in the annual apparent N losses of 633 kg N ha⁻¹ a⁻¹ occurred in the RN treatment because the rate of N fertilization had been reduced to less than one-third of that in the CN treatment. For the CK treatment, soil N and nitrate in the irrigation water were the major sources of N, which were less input than N removed by plant uptake, resulting in a negative N balance. These changes could indirectly explain the decreased TN in the CK treatment. Although the straw treatments led to the addition of C, the apparent N losses from treatments with and without straw amendments did not differ significantly.

The N surpluses were 490 and 1285 kg N ha⁻¹ a⁻¹ for RN+S and CN+S, respectively.

Interactions between C and N in soil

Figure 5 shows the relationship between the changes in SOC and TN concentration after 6 years of cultivation, as well as annual apparent N losses and average N inputs. The SOC and TN concentrations increased in response to N addition but showed a negative response to excessive N application (Figure 5a, b). The total N in the soil did not increase linearly with the increase in applied mineral N, which might be explained by changes in the SOC and its fractions (Figure 5c). The minor changes in SOC in response to the current type and amount of organic manure application, limited N storage in soil and N was close to saturation. With the increase in fertilizer N application, the apparent N losses linearly increased and conventional N fertilizer management caused the highest apparent N losses (Figure 5d).

Discussion

Effect of N fertilizer on SOC

Greater root exudates and more crop residues in response to mineral N fertilizer application were the dominant reasons why N fertilizer application improved the SOC [6]. In this experiment, although 71.3% of mineral N fertilizer was cut down in the RN treatment compared with the CN treatment, there were no
Distribution of the soil organic C and N pools in the soil profile of a greenhouse tomato production system in Shouguang, northern China.

N pool (t ha⁻¹)	SOC pool (t ha⁻¹)	N pool (t ha⁻¹)	SOC pool (t ha⁻¹)
	MN pool (t ha⁻¹)	MN pool (t ha⁻¹)	MN pool (t ha⁻¹)
0-10 cm		12.2±2.2	
10-20 cm		18.5±2.2	
20-30 cm		19.8±2.1	
30-40 cm		21.2±2.1	
40-50 cm		23.7±2.1	
50-60 cm		25.2±2.1	
60-70 cm		27.1±2.1	
70-80 cm		29.0±2.1	
80-90 cm		31.1±2.1	
90-100 cm		33.1±2.1	
100-120 cm		35.1±2.1	
120-140 cm		37.1±2.1	
140-160 cm		39.1±2.1	
160-180 cm		41.1±2.1	
180-200 cm		43.1±2.1	
200-220 cm		45.1±2.1	
220-240 cm		47.1±2.1	
240-260 cm		49.1±2.1	
260-280 cm		51.1±2.1	
280-300 cm		53.1±2.1	
300-320 cm		55.1±2.1	
320-340 cm		57.1±2.1	
340-360 cm		59.1±2.1	
360-380 cm		61.1±2.1	
380-400 cm		63.1±2.1	
400-420 cm		65.1±2.1	
420-440 cm		67.1±2.1	
440-460 cm		69.1±2.1	
460-480 cm		71.1±2.1	
480-500 cm		73.1±2.1	
500-520 cm		75.1±2.1	
520-540 cm		77.1±2.1	
540-560 cm		79.1±2.1	
560-580 cm		81.1±2.1	
580-600 cm		83.1±2.1	
600-620 cm		85.1±2.1	
620-640 cm		87.1±2.1	
640-660 cm		89.1±2.1	
660-680 cm		91.1±2.1	
680-700 cm		93.1±2.1	
700-720 cm		95.1±2.1	
720-740 cm		97.1±2.1	
740-760 cm		99.1±2.1	
760-780 cm		101.1±2.1	
780-800 cm		103.1±2.1	
800-820 cm		105.1±2.1	
820-840 cm		107.1±2.1	
840-860 cm		109.1±2.1	
860-880 cm		111.1±2.1	

Table 3. Distribution of the soil organic C and N pools in the soil profile of a greenhouse tomato production system in Shouguang, northern China.

Effect of organic manure on SOC

Organic manure application brought lots of N, with the average of 252 kg N ha⁻¹ season⁻¹. In contrast to the CK treatment, significant increments on fruit yields were achieved; yet there were no differences on fruit yields and plant biomass between MN+S treatment and RN, CN treatment in most growing seasons [24], demonstrating that N from organic manure was important N source for crop growth and excessive mineral N fertilizer application was wasteful without considering N from organic manure. In addition, Organic manure application is considered to be a consistent method for maintaining soil fertility over the long-term [10], [37]. In this unique production system, the major source of organic carbon is organic manure. If the input of organic manure is excluded, only 44-146 kg C ha⁻¹ season⁻¹ from residual roots is incorporated [38]. If no organic manure is applied, SOC concentration, especially for stable organic carbon, will decline significantly (Figure 2, 3). These results are similar to those of another long-term greenhouse tomato experiment [39].

Before the start of this experiment, about 210 t ha⁻¹ chicken manure had been applied across the whole greenhouse during 1999-2003; and the high organic manure application might build higher soil organic carbon pool in a short time. Therefore, in contrast to the treatments with organic manure application, there was the lack of a big difference on SOC in the CK treatment for the next 6 years. As well, no observable changes in soil organic C was found over 6 years of successive chicken manure applications. Whether it implied the soil organic carbon pool in our study was saturated? Although the coarse-textured soil has lower capacity for C and N stabilization, the saturated soil organic carbon pool in 0-30 cm soil layer could be high to 75.6-96.8 t ha⁻¹ according to Hassink [40] and Six's C-saturation model [41]. These values were higher than it reported in our study, indicating that soil organic carbon could be improved with optimum management. Quantity and quality of input organic manure significantly influenced soil organic C dynamics. In contrast to farmers' normal manure application, the application rate of chicken manure in the next 6 years. As well, no observable changes in soil organic C could be improved with optimum management. Quantity and quality of input organic manure significantly influenced soil organic C dynamics. In contrast to farmers' normal manure application rate increase? Indeed, high rates of organic manure application were conducive to enhanced SOC and TN accumulation. All these findings indicate that when organic manure is used, optimizing N fertilizer input over a continuous 6-year period would not affect the SOC or TN contents in the greenhouse vegetable cropping system; but it was helpful in reducing the environmental risks without influencing fruit yields (Figure 4).
the soil organic matter content from 24 g kg⁻¹ to 30–40 g kg⁻¹ in the greenhouse vegetable soil. However, environmental pressures associating with excessive application of organic manure were serious [44]; and in Europe the applications of organic manure are restricted to not exceed 170 kg N ha⁻¹ y⁻¹ by the legislation. In our experiment N input from organic manure averaged 252 kg N ha⁻¹ season⁻¹, with 335 kg N ha⁻¹ y⁻¹ apparent N loss. Obviously it will not be an effective way to enhance SOC relying on the increments of organic manure application rate in greenhouse vegetable cropping system. Changing the type of organic manure input might be an important way to heighten SOC. For chicken and pig manure with high proportions of water-soluble C and easily biodegradable organic compounds, approximately 45–62% of C is evolved as CO₂-C within 30 days [45–46]. Plaza et al [47] reported a significant decrease in the total organic C in soils amended with pig manure slurry. However, manure with a greater ratio of C/N, or high content of recalcitrant C could reduce mineralization of bio-labile compounds, thereby enhancing soil organic matter [48-49]. Long term field experiments showed that the benefits in SOC content were higher from application of rice straw and compost than that from pig manure [42], [50].

To improve soil organic carbon content, wheat straw was added from in 2006AW. However, no significant increase in the SOC or the SOC fraction was observed after 4 years of cultivation. This result was similar to that of Antil’s study [51], which found that the SOC in bulk soil decreased or was not affected by a slurry + straw treatment in both fallow and cropped plots, even after 28 and 38 yrs. According to the mechanisms of real and apparent priming effects [52], it is assumed that when chicken manure and wheat straw are applied together, microorganisms may first use the C from chicken manure to activate the microbial community; however, when the easily decomposed organic carbon is consumed, activated microorganisms will use the wheat straw carbon. Most of added straw carbon is then utilized by microorganisms, perhaps explaining why there was no effect on SOC when chicken manure and wheat straw were incorporated together. The short duration might be another important reason why no differences were seen. Additional long-term studies should be conducted to determine if the application of a mixture of wheat straw and chicken manure is an effective method of enhancing soil organic carbon in the greenhouse vegetable cropping systems over the long run. Overall, developing an optimum organic manure management system to enhance soil fertility is now one of the important issues in greenhouse vegetable cropping systems in China. In comparison to increasing the application rate, shifting the type of organic manure from pig and chicken manure to manure with a wider ratio of C/N or high content of recalcitrant C may be more practical for enhancing soil organic matter in greenhouse vegetable cropping system.

Effect of soil organic carbon content on the fate of N

Similar to the results from 2004 to 2007 [24], approximately 77% of the exogenous N input was surplus in the CN treatment. With the exception of immobilized N in soil clays, N leaching [53] and N₂O emissions [21] were the major N loss processes in these vegetable cropping systems. Furthermore, warm and moist conditions with sufficient available nitrate and labile carbon can lead to denitrification loss, which might also be an important N loss process [54]. In any case, an excessive N surplus would lead to high potentially N losses. Therefore, most studies on the prevention of N losses have focused on reducing the N input and on irrigation strategies [24], [55] and catch crops [56].

Figure 3. The distribution of the soil labile and non-labile carbon concentrations in the soil profile with different N treatments in the year-round greenhouse tomato planting system in Shouguang, northern China. Note: Note: *, ** and *** indicate significant differences at P<0.05, P<0.01 and P<0.001, ns denotes no significant difference. doi:10.1371/journal.pone.0097732.g003
experiment, the rate of N fertilization in the RN treatment had been reduced to less than one-third of that in the CN treatment and apparent N losses were also decreased. Other than that, SOC plays an important role in regulating soil N turnover and the improvement of SOC is beneficial to increase potential rates of N immobilization and reduce N losses [57]. Yang et al [58] showed that the rate of absolute N change increased linearly with changes in the size of the C pool change and organic N capital was determined by long-term carbon sequestration. A similar tendency was observed in the present study (Figure 3c). In our experiment, SOC concentration was not increased even though high amounts of organic manure were applied during a 6 year period; Changes in organic N were similarly limited. Moreover, the mineralization rate of total organic N might be greater than the retention of exogenous N to soil organic N pool because of the great amount of organic manure applied within several years before the experiment started. Thus more exogenous N was lost to the environment. The low soil C/N ratio indirectly revealed that there was insufficient C in the cropping system would limiting N immobilization by soil microorganisms [2], [26] and leading to high N losses [28]. Therefore, improving soil organic matter content and enhancing potential rates of soil N immobilization according to optimal organic manure management was crucial, as well reducing N fertilizer input, to lower N losses in greenhouse vegetable cropping system.

Conclusion

Organic manure represents a major organic C source in conventional greenhouse vegetable cropping systems in China. Without additions of organic manure, SOC, particularly stable C is likely to decline. However, no significant increment in SOC was observed with the addition of high amounts of low C/N ratio organic manure or plant residues. Shifting the type of manure from chicken manure to manures with a wider ratio of C/N, or high content of recalcitrant may be more effective in enhancing soil fertility in greenhouse vegetable production. On the basis of organic manure application, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses.

The SOC concentration was a dominant limiting factor for soil total N enhancement. Given the current type and quantity of organic manure application, the SOC concentration was unchanged and most applied N was in excess and was lost to the environment. Therefore, integrating nutrient management, including optimized N fertilizer input, as well as enhanced the soil

Figure 4. Apparent N loss with different treatments in the year-round greenhouse tomato planting system from 2004 to 2009 in Shouguang, northern China.

doi:10.1371/journal.pone.0097732.g004
organic matter content, should be considered to maintain soil fertility and productivity, minimize potential N losses and achieve sustainable development in greenhouse vegetable cropping systems.

References

1. Bird JA, van Kessel C, Horwath WR (2002) Nitrogen dynamics in humic fractions under alternative straw management in temperate rice. Soil Sci Soc Am J 66: 478-488.

2. Accoe F, Beeckx P, Buschert J, Hofman G, Van Cleemput O (2004) Gross N transformation rates and net N mineralization rates related to the C and N contents of soil organic matter fractions in grassland soils of different age. Soil Biol Biochem 36: 2073-2087.

3. Parié MC, Bedard-Haughn A (2013) Soil organic matter quality influences mineralization and GHG emissions in cryosols: a field-based study of sub-to high Arctic. Global Change Biol 19: 1126-1140.

4. Compton JE, Boone KD (2002) Soil nitrogen transformation and the role of light fraction organic matter in forest soils. Soil Biol Biochem 34: 933-943.

5. Neff JC, Townsend AR, Gleixner G, Lehman SJ, Turnbull JT, et al. (2002) Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419: 915-917.

6. Christopher SF, Lal R (2007) Nitrogen management affects carbon sequestration in North American Cropland soils. Grit Rev Plaunt Sci 26: 43-64.

7. Swanston C, Homann PS, Caldwell BA, Myrold DD, Ganio L, et al. (2004) Long-term effects of elevated nitrogen on forest soil organic matter stability. Biogeochemistry 70: 227-250.

8. Hagedorn F, Spindler D, Siegwolf R (2003) Increased N deposition retards mineralization of old soil organic matter. Soil Biol Biochem 35: 1683-1692.

9. Muller SS, Harapiak JT, Nyborg M, Gill KS, Monreal CM, et al. (2003) Total and light fraction organic C in a thin Black Chernozem grassland soil as affected by 27 annual application of six rates of fertilizer N. Nutr Cycl Agroecosyst 66: 33-41.

10. Blair N, Faulkner RD, Till AR, Poulton PR (2006) Long-term management impacts on soil C, N and physical fertility part I: Broadbalk experiment. Soil Till Res 91: 30-38.

11. Jagadamma S, Lal R, Hoefl RG, Naftzger ED, Ade EA (2007) Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil Till Res 95: 340-356.

12. Lenke RL, VandenBeyaart AJ, Campbell CA, Laford GP, Grant B (2010) Crop residue removal and fertilizer N: effects on soil organic carbon in a long-term crop rotation experiment on a Udic Boroll. Agr Ecosyst Environ 135: 42-51.

13. Mack MC, Schuur EAG, Brei-Harte MS, Shaver GR, Chapin III FS (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431: 440-443.

14. Dolan MS, Clapp CE, Allmaras RR, Baker JM, Molina JA (2006) Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Till Res 89: 221-231.

15. Fonte SJ, Yeboah E, Ofiari P, Quansah GW, Vanlauwe B, et al. (2009) Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Biol Biochem 73: 961-966.

16. Liu LL, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13: 819-828.
17. Lu M, Zhou XH, Luo YQ, Yang YH, Fang CM, et al. (2011) Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agr Ecosys Environ 140: 234-244.
18. Chen Q, Zhang XS, Zhang HY, Christie P, Li XL (2004) Evaluation of current fertilizer practice and its effects on crop yield and nitrogen use efficiency in vegetable production in the Beijing region. Nutr Cycl Agroecosyst 69: 51-58.
19. He FF, Chen Q, Jiang RF, Chen XP, Zhang FS (2007) Yield and nitrogen balance of greenhouse tomato (Lycopersicon esculentum Mill.) with conventional and no-till specific nitrogen management in Northern China. Nutr Cycl Agroecosyst 77: 1-14.
20. Song XZ, Zhao CX, Wang XL, Li J (2009) Study of nitrate leaching nitrogen fate under intensive vegetable production pattern in northern China. CR Biol Sci 332: 385-392.
21. He FF, Jiang RF, Chen Q, Zhang FS, Su F (2009) Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China. Environ Pollut 157(3): 1666-1672.
22. Mao XS, Liu MY, Wang XY, Liu CM, Hou ZM, et al. (2003) Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agr Water Manage 61(3): 219-229.
23. Guo KY, Li XL, Christie P, Chen Q, Jiang RF, et al. (2008) Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems. Plant Soil 313: 55-70.
24. Ren T, Christie P, Wang JG, Chen Q, Zhang FS (2010) Root zone soil nitrogen management to maintain high tomato yields and minimum nitrogen losses to the environment. Sci Hortic 123: 25-33.
25. Lei BK, Fan MS, Chen Q, Six J, Zhang FS (2010) Conversion of wheat-maize to vegetable cropping systems changes soil organic matter characteristics. Soil Sci Soc Am J 74(4): 1320-1328.
26. Plaza C, Garcia-Gil JC, Polo A (2005) Effects of pig slurry application on soil chemical properties under semiarid conditions. Agrochimica 49: 87-92.
27. Paterson A, Spaccini R, Nieder R, Richter J (2004) Sequestration of a biologically labile organic carbon in soils by humified organic matter. Climatic Change 67: 329-341.
28. Edmeades DC (2003) The long-term effects of manures and fertilizers on soil carbon and nitrogen balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. New Phytol 190(4): 977-989.
29. Zeng XB, Bai LY, Li LF, Su SM (2009) The status and changes of organic matter, nitrogen, phosphorus and potassium under different soil using styles of vegetable cropping systems changes soil organic matter characteristics. Soil Sci Soc Am J 44:505-511.
30. Nyokjaer B, Tingley R, Rieger R, Richter J (2005) The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol Biochem 37: 1726-1737.
31. Ge XG, Zhang EP, Zhang X, Wang XX, Gao H (2004) Studies on changes of soil carbon and nitrogen under different soil using styles of vegetable cropping systems changes soil organic matter characteristics. Agr Ecosys Environ 102: 493-497.
32. Blair GJ, Lefroy RBD, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46: 1459-1466.
33. Six J, Paustian K, Elliott ET, Conbrink C (2000) Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci Soc Am J 64: 681-689.
34. McLaughlin KK, Bobbe S (2004) Comparison of labile soil organic matter fractionation techniques. Soil Sci Soc Am J 68: 1616-1623.
35. Oborn I, Edwards AC, Witter E, Oenema O, Iverson K, et al. (2003) Element balances as a tool for sustainable nutrient management: a critical appraisal of their merits and limitations within an agronomic and environmental context. Environ Sci Technol 37: 211-223.
36. Siebel K, Kage H (2006) N balance as an indicator of N leaching in an oilseed rape-winter wheat-winter barley rotation. Agric Ecosyst Environ 115: 261-269.
37. Edmeades DC (2003) The long-term effects of manures and fertilizers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66: 165-180.
38. Lei BK, Chen Q, Fan MS, Zhang FS, Gan YD (2008) Changes of soil carbon and nitrogen in Shouguang intensive vegetable production fields and their impacts on soil properties. Plant Nutr Sci 14(3): 914-922 (in Chinese).
39. Ge XG, Zhang EP, Zhang X, Wang XX, Gao H (2004) Studies on changes of soil carbon and nitrogen under different soil using styles of vegetable cropping systems changes soil organic matter characteristics. Acta Hortic Sin 31(1): 35-38 (in Chinese).
40. Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191: 77-87.
41. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-sequestration of soils. Plant Soil 241: 153-176.
42. Liu J, Schulz H, Brandt S, Miekhle H, Howse B, et al. (2013) Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J Plant Nutr Soil Sci 175: 698-707.
43. Wang XJ, Jia ZK, Liang LY, Han QF, Ding RX, et al. (2012) Effects of organic manure application on dry land soil organic matter and water stable aggregates. Chin J Appl Ecol 23(1): 159-165 (in Chinese).
44. Xu XT, Kou CL, Zhang FS, Christie P (2006) Nitrogen balance and groundwater nitrate contamination: comparison of three intensive cropping systems on the North China Plain. Environ Pollut 143: 117-125.
45. Aypa HA, Tabatabai MA (1994) Decomposition of different organic materials in soils. Biol Fert Soils 10: 175-182.
46. Cayuela ML, Veldhoof GL, Moshoni C, Saini M, van Groenigen JW (2010) Nitrous oxide and carbon dioxide emissions during initial decomposition of animal by-products applied as fertilizers to soils. Geoderma 157: 235-242.
47. Piccolo A, Scapicini R, Nieder R, Richter J (2004) Sequestration of a biologically labile organic carbon in soils by humified organic matter. Climatic Change 67: 329-341.
48. Adani F, Genovini P, Ricca G, Tambaro F, Montonelli E (2007) Modification of soil humic matter after 4 years of compost application. Waste Manage 27: 319-324.
49. Li ZP, Liu M, Wu XC, Han FX, Zhang TL (2010) Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil Till Res 106: 268-274.
50. Autili RS, Gerzabek MH, Haberhauer G, Eder G (2005) Long-term effects of cropped vs. fallow and fertilizer amendments on soil organic matter. J Plant Nutr Soil Sci 168: 108-116.
51. Blagodatskaya E, Kuyazak Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fert Soils 45:115-131.
52. Lin Y (2010) Solute transportation and soil H⁺ production budgets in a greenhouse vegetable production system. Master Thesis, China Agricultural University, Beijing China (In Chinese).
53. Ryden JC, Lundl JL (1980) Nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units. Soil Sci Soc Am J 44:505-511.
54. Zotarell L, Scholberg JM, Dukes MD, Maroz-Carpema R, Ierem J (2009) Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agr Water Manage 96: 23-34.
55. Constantijn J, Mary B, Laurent F, Aubrion G, Fontaine A, et al. (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agr Ecosyst Environ 135: 268-278.
56. Schimel DS (1986) Carbon and nitrogen turnover in adjacent grassland and forest stand development: a global synthesis. New Phytol 104(4): 977-978.