A debt behaviour model

Wenjun Zhang, John Holt

Figure 1: This diagram depicts the underlying causal structure of the model. See the text for the definitions of D,Y,B,T,S.

The model concerns the following random variables:

- A discrete Markov process B_t which records the *behavioural state* of the debtor during the time period t - measured in months. The state is measured in the middle of each month.

- A discrete-valued process T_t which records the *strongest debt management intervention* that was applied to the debtor during the time period t.
• \(R \) an entity-specific variable, \(R \) gives the final result of the debtor’s most immediate previous debt case - NA, paid in full, liquidation/bankruptcy, full write-off, partial write-off.

• \(X_t \) is the economic state at time period \(t \). This measure is obtained through clustering a pertinent collection of economic variables: change in CPI, change in unemployment, change in the average weekly wage, etc. The underlying variables for \(X_t \) are varying quarterly, so \(X_t \) will be constant in blocks of three months.

• \(S_t \) is a latent discrete Markov process which categorizes debtors in a time period into the \textit{behavioural scheme} that governs the generation of \(B_t \). The model supposes that \(T_{t-1} \) influences \(S_t \), and hence influences \(B_t \) indirectly.

• \(D_t \) is a positive real-valued variable, given by

\[
D_t = \frac{\text{Debt amount at time } t, \text{ including penalties and interest}}{\text{Largest amount of debt owed up to time } t, \text{ excluding penalties and interest}}
\]

• \(Y_t \) is a categorization of \(D_t \) into \(\{0, 1\} \) - this is governed by a parameter \(\alpha \) that needs to be inferred. The notion is that as a debtor gets closer to being paid in full, its probability of making a large lump-sum payment to clear its debt may change.

We introduce a set of parameters as follows:

• \(\alpha \): defined by \(Y_t := 0 \) if and only if \(D_t \leq \alpha \).

• \(Q_S \): a list of transition matrices, one for each combination of values of \(R, X_t, T_{t-1} \).

• \(\pi_S \): a list of initial probabilities, one for each combination of values of \(R, X_t \).

• \(Q_B \): a list of transition matrices, one for each combination of values of \(Y_{t-1} \) and \(S_t \).

• \(\pi_B \): a list of initial probabilities, one for each value of \(S_1 \).
Figure 2: This diagram depicts the underlying causal structure of the model, including the parameters. Refer to the text for definitions of the parameters $\pi_B, Q_B, \pi_S, Q_S, \alpha$

Figure 2 depicts the causal structure of the variables and the parameters - we have now expressed each of the variables as a vector of length as long as the number of observation periods.

Every debt case begins at a time period u and ends at a time period l. If the debt case is indexed by i, the the beginning is u_i and the end is l_i. There will be observations of T_t, B_t, D_t, X_t from u_i through to l_i.

The log-likelihood of observing a single debt case is maximized when we maximize:

$$l_0 = \sum_{t=u+1}^{t=l} (\ln(Q_{Y_{t-1},S_t}(B_{t-1}, B_t))+\ln(Q_{X_t,R,T_{t-1},S_{t-1}}(S_{t-1}, S_t)))+\ln(\pi_{B_t}(B_u))+\ln(\pi_{S_{u},R}(S_u))$$

We apply the EM algorithm to l_0, taking the expected value of l_0 conditional on $\{B_t, X_t, D_t, T_t, R\}$ and the k-th iteration of the parameters $\{\alpha, Q_B, Q_S, \pi_B, \pi_S\}$.\n
For this we define the responsibilities for each debt case, i, and time t, $t = u_i, \ldots, l_i$:

$$
\gamma_{i,t}(s) := p(S_t = s | T_{u_i}^{l_i-1}, X_{u_i}^{l_i}, B_{u_i}^{l_i}, R_i, D_{u_i}^{l_i-1})
$$

for $t \geq u_i$; and for $t > u_i$,

$$
\Gamma_{i,t}(p,q) := p(S_t = q, S_{t-1} = p | T_{u_i}^{l_i-1}, B_{u_i}^{l_i}, R_i, D_{u_i}^{l_i-1})
$$

It is clear that $\gamma_{i,t}(s) = \sum_p \Gamma_{i,t}(p,s)$, or if $t = u_i$, $\gamma_{i,u_i}(s) = \sum_q \Gamma_{i,u_i+1}(s,q)$ - hence we need only compute $\Gamma_{i,t}$.

This is done using the Forward-Backward algorithm:

1 Calculating $\Gamma_{i,t}$

This calculation is standard, but we present it for completeness.

Define the following four sets of probabilities:

- $\pi_t(s) = p(S_t = s | T_u^l, X_u, D_u, B_u)$
- $\pi'_t(s) = p(S_t = s | T_u^l, X_u, D_u, B_u), t \geq u$.
- $F_t(p,q) = p(S_{t-1} = p, S_t = q | T_u^{l-1}, X_u, R, D_u, B_u), t > u$
- $\Gamma_t(p,q) = p(S_{t-1} = p, S_t = q | T_u^{l-1}, X_u, R, D_u, B_u), t > u$.

Then

$$
F_t(p,q) \propto Q_B^{q,Y_{t-1}}(B_{t-1}, B_t) Q_S^{T_{t-1},X_{t-1}}(p,q) \pi_{t-1}'
$$

$$
= (Q_B^{q,0}(B_{t-1}, B_t) I_{[0,\alpha]}(D_{t-1}) + Q_B^{q,1}(B_{t-1}, B_t) I_{(\alpha,\infty)}(D_{t-1})) Q_S^{T_{t-1},X_{t-1}}(p,q)
$$

and

$$
\pi'_t(q) = \sum_p F_t(p,q)
$$

with $\pi'_u(s) \propto \pi_B^{\alpha}(B_u) \pi_S^{X_u,R}(s)$. The normalizing constants can be found by noting that $\sum_{p,q} F_t(p,q) = 1$ and $\sum_s \pi'_t(s) = 1$.

Having obtained $F_t(p,q)$ (the forward matrices) we can calculate the backward matrices Γ_t as follows:
Set $\Gamma_t = F_t$.

For $t < l$,

$$
\Gamma_t(p, q) = p(S_{t-1} = q) \gamma_{i,t}(s) = p(S_{t-1} = q) \frac{\pi_t(p)}{\pi_t(q)}
$$

2 Update equations for the M-step

The formulas that follow are the result of straightforward calculations.

$$
Q_{B}^{s,y}(b, c) = \frac{\sum_{i} \sum_{t=1}^{l_{i}} \delta(B_{i,t} - c)\delta(B_{i,t-1} - b)\delta(Y_{i,t} - y)\gamma_{i,t}(s)}{\sum_{i} \sum_{t=1}^{l_{i}} \delta(B_{i,t-1} - b)\delta(Y_{i,t} - y)\gamma_{i,t}(s)}
$$

$$
\pi_{B}^{s}(b) = \frac{\sum_{i} \delta(B_{i,u} - b)\gamma_{i,u}(s)}{\sum_{i} \gamma_{i,u}(s)}
$$

$$
Q_{S}^{T,R,X}(p, q) = \frac{\sum_{i} \sum_{t=1}^{l_{i}} \delta(T_{i,t} - T)\delta(R_{i} - R)\delta(X_{t} - X)\gamma_{i,t}(p)\gamma_{i,t+1}(q)}{\sum_{i} \sum_{t=1}^{l_{i}} \delta(T_{i,t} - T)\delta(X_{t} - X)\delta(R_{i} - R)\gamma_{i,t}(p)}
$$

$$
\pi_{S}^{R,X}(s) = \frac{\sum_{i} \delta(R_{i} - R)\delta(X_{u} - X)\gamma_{i,u}(s)}{\sum_{i} \delta(R_{i} - R)\delta(X_{u} - X)}
$$

Note that Q_{B} depends on an unknown value of α. The approach will be to fit Q_{B} for a range of values of α, and to choose the α that gives the maximum value to:

$$
l_{1} = \sum_{i} \sum_{t=u+1}^{l_{i}} \sum_{s} \ln(Q_{B}^{s,0}(B_{i,t-1}, B_{i,t})I_{[0,\alpha]}(D_{i,t-1})+Q_{B}^{s,1}(B_{i,t-1}, B_{i,t})I_{(\alpha,\infty)}(D_{i,t-1}))\gamma_{i,t}(s)
$$