with MDD (42 depressed and 10 remitted; DSM-IV) and 54 matched controls. Significant differences were found in four amino acid concentrations between the depressed patients and controls. After Bonferroni correction, only ethanolamine (EA) levels remained significantly reduced in depressed patients (nominal P=0.000011). A substantial proportion of the depressed patients (40.5%) showed abnormally low CSF EA levels (<12.1 μM) (P=0.000033; OR=11.6, 95% CI: 3.1–43.2). When patients with low EA and those with high EA levels were compared, the former had higher scores for overall depression severity (P=0.0033) and ‘Somatic Anxiety’ symptoms (P=0.0026). In unmedicated subjects, CSF EA levels showed a significant positive correlation with levels of homovanillic acid (P=0.0030) and 5-hydroxyindoleacetic acid (P=0.019). To our knowledge, this is the first study showing that patients with MDD have significantly lower CSF EA concentrations compared with control subjects. CSF EA could be a state-dependent biomarker for a subtype of MDD. Further replication studies are currently under way.

PS196

Alterations of the cortisol and dehydroepiandrosterone in perinatal depression

_Ho-Suk Suh_1, _Ryun-Sup Ahn_2, _Chan-Hyung Kim_1, _Kang-Soo Lee_1

1School of Medicine, CHA university, Republic of Korea, 2Yonsei University College of Medicine, Republic of Korea

Abstract

Objectives: The purpose of this study is to investigate the alterations of the hypothalamic-pituitary-adrenal axis hormones, especially salivary cortisol and dehydroepiandrosterone (DHEA) in perinatal depression.

Methods: 44 patients with depression and 217 normal subjects in perinatal period were included in this study. Edinburgh Postnatal Depression Scale (EPDS) and Beck Depression Inventory II (BDI-II) were performed. The subjects below 10 points of EPDS score or below 13 points of BDI-II score were classified to normal subjects. Among the subjects more than 11 points of EPDS score or more than 14 points of BDI-II score were diagnosed depression by DSM-IV TR by psychiatrists. All subjects were to collect their saliva in each 4 collecting tubes, immediately upon awakening (IA), 30 minutes after awakening (30A), 60 minutes after awakening (60A) and before bedtime (BB).

Results: The number of subjects in antenatal period were 103, and antenatal depression (AD) patients were 21, antenatal normal (AN) subjects were 82. The number of subjects in postnatal period were 114, and postnatal depression (PD) patients were 23, postnatal normal (PN) subjects were 91. Salivary cortisol levels in subjects with AD collected IA, 30A and 60A were lower than with AN subjects significantly except BB. Salivary cortisol levels in subjects with PD collected 60A only were lower than with PN subjects significantly. Salivary DHEA levels in subjects with both AD and PD were lower than with normal subjects significantly. Also cortisol/DHEA ratio (F/D ratio) in subjects with both AD and PD were much higher than with normal subjects significantly.

Conclusions: These results suggest that the blunted response was shown in AD, and the characteristics between AD and PD are different. Also the differences of salivary DHEA levels and F/D ratio between subjects with PD and normal subjects are suggested the one of the key points of difference among both groups.

PS197

Low level of perineuronal nets in the medial prefrontal cortex predicts vulnerability to stress

_Na Chen_1, _Die Hu_1, _Lin Lu_1, _Jie Shi_1

1National Institute on Drug Dependence, Peking University, Beijing, China; 2Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Ministry of Health, Beijing, China; 3Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research;

Abstract

Perineuronal nets (PNNs) are extracellular matrix structures enwrapping parvalbumin-positive γ-aminobutyric acid (GABA)-ergic interneurons which are crucial for modulating anxiety and depressive-like behaviors. Perineuronal nets have recently been implicated in experience-dependent neuroplastic changes in central nervous system, but it is poorly understood that whether PNNs modulates the neural maladaptation after repeated exposure to stress. We found that adolescent rats with vulnerability to chronic unpredictable mild stress (CUMS) showed decreased level of PNNs, tenascin-R and aggrecan in the medial prefrontal cortex (mPFC). Degradation of PNNs in mPFC produced vulnerability to stress in adult rats. Elevating PNNs in the mPFC through environment enrichment prevented CUMS-induced depressive and anxiety-like behavior. Fluoxetine reversed the stress vulnerability in adolescent rats and increased PNNs levels. Lower level of PNNs rendered GABAergic neurons susceptible to CUMS, manifesting as decreases in expression of glutamic acid decarboxylase 67 (GAD67) and frequency and amplitude of inhibitory postsynaptic current (IPSC) after CUMS. The organization of PNNs coincided with the developmental switch in stress vulnerability to resilience. These findings indicate a role of PNNs in mPFC in predicting and modulating vulnerability to stress-induced depressive-like behavior, and the effect may be produced though regulating GABAergic functions.

Keywords: perineuronal nets; stress vulnerability; GABAergic neuron

PS198

Pathological analysis of refractory depression using fetal alcohol and adolescent corticosterone double stress model

_Kengo Furuse_1, _Hanako Tsujino_1, _Yoshiyasu Kigawa_1, _Masaya Tayama_1, _Takao Ishii_1, _Tomo Iwamoto_1, _Masaki Shiraiishi_1, _Seiju Kobayashi_1, _Eri Hashimoto_1, _Chiaki kawanishi_1

1Department of Neuropsychiatry, Sapporo Medical University, School of Medicine 2 Psychiatry Institute, Hokujinkai Medical Corporation

Abstract

The clinical strategy for treatment-resistant depression which includes overlap between bipolar disorder remains inadequate. Establishment of a diagnostic method and understanding of the detailed pathogenesis of those patients are urgently needed. In this study, we performed comparative analysis of depressive-like behaviors and variations of depression-related molecules in the brain and peripheral blood between controls and refractory depression model animals established by the combined stress of fetal period alcohol and adolescent chronic corticosterone (CORT) treatment. With a part of this model animal, we have also administered antidepressants (SSSRI) for the purpose of investigation of possible treatment method and molecular pathogenesis in refractory type of depression. Focusing on the report of region specific BDNF activity in the pathogenesis of