Crossover of the hypothalamic pituitary–adrenal/interrenal, –thyroid, and –gonadal axes in testicular development

Diana C. Castañeda Cortés1, Valerie S. Langlois2* and Juan I. Fernandino1*

1 Laboratorio de Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín y Consejo Nacional de Investigaciones Científicas y Técnicas, Chascomús, Argentina
2 Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada

Besides the well-known function of thyroid hormones (THs) for regulating metabolism, it has recently been discovered that THs are also involved in testicular development in mammalian and non-mammalian species. THs, in combination with follicle stimulating hormone, lead to androgen synthesis in Danio rerio, which results in the onset of spermatogenesis in the testis, potentially relating the hypothalamic–pituitary–thyroid (HPT) gland to the hypothalamic–pituitary–gonadal (HPG) axes. Furthermore, studies in non-mammalian species have suggested that by stimulating the thyroid-stimulating hormone (TSH), THs can be induced by corticotropin-releasing hormone. This suggests that the hypothalamic–pituitary–adrenal/interrenal gland (HPA) axis might influence the HPT axis. Additionally, it was shown that hormones pertaining to both HPT and HPA could also influence the HPG endocrine axis. For example, high levels of androgens were observed in the testis in Odontesthes bonariensis during a period of stress-induced sex-determination, which suggests that stress hormones influence the gonadal fate toward masculinization. Thus, this review highlights the hormonal interactions observed between the HPT, HPA, and HPG axes using a comparative approach in order to better understand how these endocrine systems could interact with each other to influence the development of testes.

Keywords: thyroid hormone, corticotropin-releasing hormone, gonadotropins, androgen, testis, fish, amphibians

INTRODUCTION
Thyroid hormones (THs) have been implicated in a plethora of physiologic actions, such as metabolism, development, growth, and reproduction [reviewed in Ref. (1–5)]. In the last years, the influence of THs in gonadal development has been intensively studied in rodent species (2, 6–10); however, data remains scarce on the roles of THs in non-mammalian reproduction [reviewed in Ref. (2, 6–12)]. As endocrine axes are well conserved among vertebrates, a comparative approach to review TH function and regulation in gonadal development would help to better understand non-mammalian endocrine systems. Thus, this paper provides a comprehensive review of existing literature on the effects of THs in testicular development in non-mammalian species, highlights the interaction of the hypothalamic–pituitary–thyroid (HPT) gland, –adrenal/interrenal (HPA), and –gonadal (HPG) axes (Table 1), and identifies key areas for future research.

HYPOTHALAMIC REGULATION OF THs
The central nervous system (CNS) is stimulated by environmental factors to regulate TH homeostasis. Thus, the hypothalamic tripeptide thyrotropin-releasing hormone (TRH) stimulates the anterior pituitary to synthesize and secrete the thyroid-stimulating hormone (TSH; Figure 1). The action of TRH has been confirmed in tetrapods [reviewed in Ref. (78, 79)]; however, in fish, mixed effects have been found. In bighead carp (Aristichthys nobilis) and Japanese eel (Anguilla japonica), TRH was shown to increase hypophysial tsh-β expression (80, 81), while in coho salmon (Oncorhynchus kisutch), TRH-treatment did not stimulate TSH release (13). Furthermore, teleost fish have no portal systems that connect the CNS and the pituitary, in which hypothalamic neurons terminate very close to adenohypophysial cells (79). These findings suggest that TRH is not a major TSH-releasing factor in fish.

In addition to TH regulation, it has been suggested that HPT is also involved with the HPA axis [O. kisutch, Rana catesbeiana, Rana pipiens, Xenopus laevis, Pyrgulina scripta, Gallus gallus (see Table 1)]. It is well known that the corticotropin-releasing hormone (CRH, also known as the corticotropin-releasing factor or CRF) is a potent stimulator of the pituitary adrenocorticotropic hormone (ACTH), which stimulates the synthesis and secretion of cortisol, the main stress hormone in vertebrates (86–88). A decade ago, De Groef et al. (23) observed that CRH can induce pituitary TSH secretion in chicken (G. gallus) through the CRH type 2 receptor (CRH-R2) expressed on pituitary thyrotrop cells, linking both of these endocrine axes (Figure 1). Similar results have been observed in fish, amphibians, reptiles, and other bird species [Table 1; reviewed in Ref. [(13, 82, 89–91)]. The dual hypothalamic action of CRH has several effects on the peripheral hormonal function of the HPT axis. In amphibians, metamorphosis is dependent on THs; however, changes in CRH molecular machinery have been observed during this period of development. For example, the expression of both crh and crh-r2 increase significantly throughout frog metamorphosis (92). Noteworthy, crh transcripts start being detected earlier than crh-r2, i.e., during
Table 1 | Summary of studies that shows the interaction between the hypothalamic–pituitary–adrenal/interrenal and thyroid gland axes (HPA–HPT), –adrenal/interrenal and –gonadal axes (HPA–HPG), and –thyroid gland and –gonadal axes (HPT–HPG).

Species	Treatment	Response	Reference
HPA–HPT			
Fish			
Oncorhynchus kisutch	In vitro CRH	↑ TSH	Larsen et al. (13)
Amphibians			
Rana catesbeiana	In vitro CRH	↑ TSH	Ito et al. (14), Kaneko et al. (15)
	In vitro antisauvagine-30	↓ TSH	Okada et al. (16)
Rana pipiens	In vitro ovine CRH	↑ TSH	Denver (17)
Xenopus laevis	In vivo and in vitro Xenopus CRH	↑ T4, TSH	Boorse and Denver (18)
Reptiles			
Pygulina scripta	In vitro Ovine CRH	↑ TSH	Denver and Licht (19, 20)
Birds			
Gallus gallus	In vivo ovine CRH	↑ T4, T3	Meeuwis et al. (21)
	In vivo ovine CRH	↑ T4, T3, TSH	Geris et al. (22)
	In vivo CRH-R2	↑ TSH	De Groef et al. (23)
HPA–HPG			
Fish			
Odontesthes bonariensis	In vitro cortisol	Masculinization ✷ 11-KT, ar	Fernandino et al. (24), Hattori et al. (25)
Paralichthys olivaceus	High temperature and cortisol	Masculinization ✷ cyp19α1a	Yamaguchi and Kitano (26)
Oryzias latipes	In vitro cortisol	Masculinization ✷ cyp19α1a	Yamaguchi et al. (27)
	High temperature	Masculinization	Hayashi et al. (28)
Pseudocrenilabrus multicolor victoriae	Hipoxia	↑ T, male-based sex ratio	Friesen et al. (29)
Oreochromis niloticus	High temperature	Masculinization ✷ cyp19α1a, masculinization	Baroiller et al. (30)
Oncorhynchus mykiss	In vitro cortisol	↑ 11-KT	Shulz (31)
Mammals			
Cavia aperea	Early social stress	Masculinization	Kaiser et al. (32)
HPT–HPG			
Fish			
Verasper moseyi	In vivo, in vitro sbGnRH	↑ T4	Chiba et al. (33)
Oncorhynchus masou	In vivo GnRH	↑ T4	Roy et al. (34)
Carassius auratus	In vivo GnRH	↑ T4	MacKenzie et al. (35)
Channa gachua	In vivo, in vitro T3	↓ cyp19α1a	Nelson et al. (36)
Catla catla	In vivo Testosterone	↓ T3	Leatherland et al. (37)
Carassius auratus	In vivo T3	↑ Proliferation	Morais et al. (38)
		↑ Proliferation type A spermatogonia	
	In vitro TH + FSH	↑ 11-KT	Swapa et al. (39)
Clarias gariepinus	In vitro thiourea	↓ 11-KT	Rasheed et al. (40)
Oreochromis niloticus	In vivo T3	↑ GnRH cells	Parhar et al. (41)
Anabas testudineus	In vivo T3	↑ 3ß-hsd	Nagendra Prasad et al. (42)

(Continued)
Table 1 | Continued

Species	Treatment	Response	Reference
Amphibians			
Rana catesbeiana	In vitro mGnRH	↑ TSH, ↑T4	Denver (17)
Ambystoma mexicanum	In vivo LHRR	↑ T4	Jacobs and Kuhn (43)
Rana ridibunda			
Rana temporaria			
Rana escuelita			
Rana pipiens	In vitro mGnRH	↑ TSH	Okada et al. (45)
	In vivo T3	↓ cyp19	Hogan et al. (48)
Physalaemus pustulosus	In vivo T3	↑ ar, ↓ cyp19, ↓ srd5a1	Duarte-Guterman et al. (47)
Silurana tropicalis	In vivo T3	↑ ar, srd5a1, srd5a2	Duarte-Guterman and Trudeau (48)
Lithobates sylvaticus	In vivo, potassium perchlorate	↑ srd5a2, ↓ ar	Flood and Langlois (151)
Reptiles			
Podarcis sicula	In vivo T3	↑ ar	Cardone et al. (60)
Birds			
Gallus gallus	In vivo T3	↓ LH	Jacquet et al. (51)
	In vivo propylthiouracil	↑ T	Akhlaghi and Zamiri (52)
	In vivo T3	↓ cyp19	Sechman (53)
Coturnix japonica	In vivo thiourea	↓ T	Weng et al. (54)
Mammals			
Rattus norvegicus	In vitro T3, T3 + FSH	↑ Proliferation	Arambepola et al. (55)
	In vitro T3	↑ AR	Panno et al. (56)
	In vivo T3	↑ Proliferation	Marchlewksa et al. (57)
		Sertoli cells	
		↑ Proliferation	Germ cells
	In vitro T3	↓ CYP19	Ulisse et al. (58)
		↓ CYP19	Ando et al. (59)
		↓ CYP19, Cyp19	Pezzi et al. (60)
	In vivo propylthiouracil	↑ Cyp19	Hapon et al. (61)
	Thyroidectomy	↓ 3ß-Hsd, 17ß-Hsd	Antony et al. (62)
	In vivo T4	↑ SDR5a	Kala et al. (64)
		↑ Srd5a	Ram and Waxman (65)
Methimazole		↓ Srd5a1, Srd5a2	Anbalagan et al. (66)
Hypothyroid conditions		↓ LH	Romano et al. (67)
Propylthiouracil		↓ T	Chiao et al. (88)
In vivo methimazole		↓ LH	Valle et al. (69)
In vivo		↑ T	Jahan et al. (70)
2,8-Dimercapto-6-hydroxypurine	In vivo hypothyroid conditions	↑ GnRH, ↓ T, LH	Maran et al. (2), Wagner et al. (8)
	In vivo T4 thyroidectomy	↑ GnRH, ↓ T, LH	Chiao et al. (71)
Mus musculus	In vitro T3	↓ CYP19, Cyp19	Catalano et al. (72)
	In vitro T4 thyroidectomy	↑ Cyp17	Manna et al. (73)
Sus scrofa domestica	In vitro T4, T3	FSH-induced aromatase activity	Chan and Tan (75)
	In vitro T3	↓ CYP19	Gregoraszczuk et al. (76)
Ovis aries	Thyroidectomy	↑ FSH	Anderson et al. (77)

An upward pointing arrow indicates an increase in gene expression, hormone concentration, or enzyme activity; whereas a downward pointing arrow indicates a decrease.
premetamorphosis, while the expression of cbr-2 only begins to be detected later during prometamorphosis (92). Furthermore, it has been observed that treatment with corticosteroids synergizes with THs, leading to an accelerated metamorphosis (93). Thus, Denver (91) hypothesized that both CRH and corticosteroids act on THs in order that tadpoles may respond quickly to environmental cues early in development and metamorphose according to their environment. This crosstalk between HPA and HPT axes may produce the following actions: (i) CRH acts as a common neuroregulator of the thyroidal and adrenalpheral axes in non-mammalian species; (ii) the HPA and HPT axes may perform concerted actions on energy metabolism and development; and (iii) the regulation, inhibition, or stimulation of CRH on the TH axis could be dependent on both stage of life and the nature of the tissues being analyzed.

TH Regulation by Gonadotropins

The HPG axis controls signaling and biosynthesis by the sex steroids. The hypothalamic peptide gonadotropin-releasing hormone (GnRH) regulates the biosynthesis and secretion of both gonadotropins; luteinizing hormone (LH) and follicle stimulating hormone (FSH). Besides the well-known function of GnRH in regulating gonadotropins, GnRH treatment has been shown to significantly increase TSH secretion in amphibians (17, 45), suggesting that GnRH can modulate THs at the pituitary level. Several studies have also observed that GnRH can increase thyroxine (3, 3′, 5′-triiodothyronine or T4) levels in fish (33, 34) and in amphibians (44, 99). However, no changes in triiodothyronine (3, 3′, 5-triiodo-1-thyronine or T3) concentrations were observed in plasma after injections of a superactive analog of GnRH in goldfish [Carassius auratus; (35)]. Thus, additional work should investigate the possible targets of GnRH in the TH axis.

Luteinizing hormone and FSH are the main regulators of various physiological processes related to formation and maintenance of the gonadal structures (12, 100). In males, FSH is involved in the paracrine control and the structural and nutritional support of germ cell development of the Sertoli cells, while LH regulates androgen production in the Leydig cells (101, 102). The level of both gonadotropins, as well as related gene expression, can be altered by hyper- and hypothyroidic conditions in fish. The hypothalamic-pituitary-thyroidal axis controls signaling and biosynthesis of both THs (T3 and T4), as well as other thyroid hormones (T2 and T2′), which are involved in the regulation of various physiological processes (103). The activation of the HPG axis by GnRH leads to the release of LH and FSH, which stimulate the production of THs by the pituitary gland. The THs, in turn, inhibit the production of GnRH and regulate the activity of the HPG axis, thereby maintaining homeostasis.

FIGURE 1 | Schematic representation of hypothalamic–pituitary–thyroid gland (blue), –adrenal/interrenal (purple), and –gonadal interactions (green). Dashed arrows represent the points of interaction between the different axes highlighted in this review. (1) Corticotropin-releasing factor (CRF) could induce the pituitary-thyroid stimulating hormone (TSH) secretion in fish (13), amphibians (15, 16, 82), and birds (23). (2) Triiodothyronine (T3) could increase the expression of type 1 α-reductase and androgen receptor (ar) in amphibians (93). (3) Exposure to cortisol results in the increase of the androgen-related machinery and subsequent masculinization in fish (25–27, 84), and mammals (32). (4) Exposure of thyroid hormones could inhibit the aromatase (P450arom) activity or expression in fish (16, 85), amphibians (46, 87), and mammals (58, 59, 79). TSH, thyroid-stimulating hormone; Dio1, deiodinase type 1; Dio2, deiodinase type 2; Dio4, thyroxine; ACTH, pituitary adrenocorticotropic hormone; T (testosterone) 11-KT, 11-beta-hydroxysteroid dehydrogenase; 11-KT, 11-ketotestosterone; 5α-DHT, 5α-dihydrotestosterone; 5α-AR, 5α-androgen receptor; T4, thyroxine; Dio2, deiodinase type 2; Dio4, thyroxine; TSH, thyrotropin-releasing hormone; Dio1, deiodinase type 1; Dio2, deiodinase type 2; Dio4, thyroxine; ACTH, pituitary adrenocorticotropic hormone; T (testosterone) 11-KT, 11-beta-hydroxysteroid dehydrogenase; 11-KT, 11-ketotestosterone; 5α-DHT, 5α-dihydrotestosterone.
partially mediates the effects of THs in male sexual development in *D. rerio*.

Fluctuations in circulating TH levels lead to subsequent changes in the synthesis, secretion, circulation levels, metabolism, and physiological action of androgens. LH induces steroidogenesis in the Leydig cells, which are responsible for the production of androgens. Like FSH, the biosynthesis of LH is subject to the influence of the anterior pituitary gland, which secretes LH-bioactivity in several vertebrates [e.g., cockerel of THs. Hypothyroid conditions decrease circulating LH concentrations; therefore, the Leydig cells, which are responsible for the production of androgens, decrease steroidogenesis. LH induces steroidogenesis in the synthesis, secretion, circulation levels, metabolism, and ultimate, spermatogenesis. The crosstalk between both gonadotropins and THs suggests the existence of a vertebrate-wide interaction between the HPT and HPG axes.

TH-RELATED MACHINERY WITHIN GONADAL TISSUES

Distribution of TH-related machinery in gonadal tissue is highly sex-specific. TSH stimulates the thyroid gland to synthesize and secrete T4, which is mainly converted into T3 by different types of deiodinases [Dios; (111–113)]. Thus, deiodinases (type 1, 2, and 3) play a major role in achieving the levels of intracellular T3 in target tissues by the deiodination of T4. THs have been identified in the testes of vertebrate species [e.g., rainbow trout, *Oncorhyncus mykiss* (114), Western clawed frog, *Silurana tropicalis* (48), *Gallus gallus* (115), and *R. norvegicus* (116)]. The roles of deiodinases in the mammalian testes have been reviewed in detail (9). In developing *R. norvegicus*, the activity of Dio1 and Dio2 is higher in the testes than in the ovaries, whereas Dio3 activity is greater in the ovary tissue (116). Moreover, deiodinase activity (Dio1, Dio2, and Dio3) is predominant during developmental periods (neonatal and weaning), and subsequently declines in the adult life of *R. norvegicus* (116). Similar observations have been confirmed in teleosts. For example, testes of striped parrotfish (*Scarus iseri*) are characterized by higher levels of Dio2 and Dio3 mRNA than in ovaries (117). The transcripts encoding Dio2 mRNA in *O. mykiss* reach their highest levels in the testes during stage II (beginning of spermatogenesis); a period characterized by the differentiation of somatic testicular cells, active proliferation of spermatogonia, and the formation of spermatocytes. At this point, Dio2 expression progressively decreases to later stages of spermatogenesis (114). These results support the idea that TH availability is highly regulated in testicular development and during spermatogenesis by deiodinase activity.

Other important components of the HPT axis are the thyroid receptors (TRs). THs mediate TR signaling and are crucial for testis development and function. The expression of *trs* in testicular tissue and the physiological implications in mammalian species have been reviewed thoroughly (118, 119). Thus, *trα* and *trβ* code for a number of *tr*-isoforms, including: *trα1*, *trα2*, *trα3*, *trβ1*, *trβ2*, and *trβ3*, which have been identified in the testes of several vertebrates: fish (114, 117), amphibians (47, 83, 120), reptiles (50), and mammals (104, 121–125). In all vertebrate classes, TRs have been localized in Sertoli cells indicating that this cell-type is an evolutionary-conserved target for THs (38, 126); however, the presence of TRs in other types of testicular cells has been debated (8, 126).

For example, both Leydig and Sertoli cells have been shown to express *trβ* in *D. rerio*; whereas *trα* was only observed in Sertoli cells (38). In *R. norvegicus* testes, *tra* mRNA was detected at all testis stages, whereas *trβ* could not be amplified at any of the stages studied (127, 128). Moreover, the fetal and prepubertal periods represent the highest expression of *trα* in mammals, predominantly *tra* (123), coinciding with high levels of Dio2 expression during these particular periods of testis development (116).

The expression of *trα* in testes is dependent on circulating TH concentrations. Recent studies in *S. iseri* and *R. norvegicus* demonstrated that *trα* mRNA levels fluctuate with TH production within gonadal tissues (117, 129). Moreover, the analysis of the promoter of TRα and TRβ showed putative thyroid response elements (TREs) in mice (*M. musculus*) and medaka (*Oryzias latipes*) (12), reinforcing the auto-regulation of TRs by THs. Also, it has been found that *tra* and *trβ* transcript levels vary in testis tissue of the Brook trout (*Salvelinus fontinalis*) according to the
seasons, with constant expression throughout spermatogenesis, and higher mRNA levels after spawning season (130). In addition, extra-thyroidal expression of TSH-receptors and TRH-receptors has been identified in the testes (D. labrax (131); fathead minnow, Pimephales promelas (132); Japanese quail, Coturnix japonica (133); M. musculus; R. norvegicus; Guinea pig, Cavia porcellus; and O. aries and Homo sapiens [reviewed in Ref. (125)]). However, the regulatory role of TSH and TRH-receptors in the male gonad remains unclear.

Transmembrane transport of THs in the gonads is facilitated by the monocarboxylate transporter (Mct) family, specifically the solute carrier family 16 member 2 (Sc16a2 or Mct8) and the solute carrier family member 16 member 10 (Sc16a10 or Mct10) (134–136). Muzzio et al. (137) found gender differences in transmembrane transporters, specifically mct8, in the gonads of the fathead minnow (P. promelas). The ovarian mct8 mRNA levels were nearly twofold higher than testicular levels. However, mct8 presented an antagonistic response with the goitrogen methimazole and T3 treatment. Similarly, in P. promelas, hypothroid-induced condition up-regulates the expression of mct8; whereas hyperthyroidism condition decreases mct8 transcripts (137). Therefore, it is important to include the regulation of the transmembrane proteins when studying the roles of THs in male reproduction.

THs AND ANDROGENS IN THE GONADS

Thyroid hormones modulate androgen biosynthesis through direct and indirect regulation of the expression and activity of the steroidogenic enzymes involved in their synthesis [reviewed in-depth by Ref. (2, 6–12, 122)]. Recently, Flood et al. (12) performed an in silico analysis of the promoter of several enzymes and receptors involved in both the androgen and TH axes. It was found that several putative TREs and androgen responsive elements (AREs) were present in all of the androgen and TH treatments. For example, in air-breathing catfish males (Clarias gariepinus), thiourea-treatment (TH inhibitor) led to selective down-regulation of the expression of the cyp17 and cyp11b1 genes (40). In the same species, hypothyroidism-induction resulted in a reduction of 11-KT levels in serum and testis tissue (39). Moreover, in a D. rerio testis tissue culture, T3 alone stimulated the proliferation of both Sertoli cells and type A undifferentiated spermatogonia, resulting in newly formed spermatogonial cysts (38). However, T3 exposure alone produces no change in release of 11-KT; whereas when exposed to T3 in combination with FSH, a significant increase in 11-KT synthesis was observed (38). These results support the existence of a cross-regulation between THs (HPT axis) and androgens (HPG axis).

Thyroid hormone availability in the testes can be modulated at different levels of the HPG axis. Aforementioned, GnRH treatment increased TSH and T4 secretion in fish and amphibians (17, 33, 44, 45, 99); however, no changes in T3 were observed in C. auratus (35). These discrepancies in TH responses suggest that GnRH and gonadotropins can modulate the baseline of TH levels in plasma, but deiodinase activity would have to be stimulated in order to increase the concentration of the active T3. Thus, the expression of dios has been shown to respond to androgen signaling. Treatment with flutamide (an androgen receptor antagonist) produced a down-regulation of trb in testes of P. promelas males (138). Additionally, androgens modulate TH synthesis and peripheral metabolism in fish. In O. mykiss, it was observed that T treatment had no effect on the plasma concentrations of T4, but reduced the levels of T3 (139). In tetrapods, androgen receptors (ar) have been identified in the thyroid gland of reptiles [American alligator, Alligator mississippiensis; (140)], and several mammals (141–143). These observations reinforce the idea that a direct crosstalk between HPG and HPT is possible.

THs AND TESTICULAR DEVELOPMENT

Thyroid hormones have considerable influence in the sexual ontogeny of male vertebrates, through direct interactions with genes involved in sex-determination and gonadal development in the HPG axis (12). It is known that THs play an important role in testicular development and function. In mammals, the genomic and non-genomic actions of THs during testicular development have been extensively reviewed (8, 10, 12). As described above, THs regulate proliferation and differentiation for both Sertoli and Leydig cells (104, 144). In rodent neonates, hypothyroidism and hyperthyroidism conditions affect the number of Sertoli cells by either extending or shortening their period of proliferation, respectively (145–149). Additionally in testes, TH-related machinery has distinct patterns of spatiotemporal expression with developmental stages. The expressions of tpo, tshb, and dio2 decrease with gonadal maturation, suggesting that THs play a crucial role in early testis development and that cessation of TH signaling could be responsible for testis maturation [O. mykiss (114); D. rerio (150); S. tropicalis (83, 151); and R. norvegicus (121–123, 127, 152)]. Interestingly, in situ hybridization studies in D. rerio have shown that dio1 and dio2 mRNA levels were highest and concentrated at the rostral and caudal regions in the somite stages 6 through 18 (153), which are the stages at which gonadal development starts (154). The expression of dio3 was first found in the 6-somite stage, with an increasing area and intensity through 22–24 h post-fertilization – the period at which sex differentiation occurs (153, 154). Altogether, these results demonstrate that maintenance of a baseline level of active T3 by deiodinases, as well as the TH machinery, could be necessary to vertebrate testis development.

In D. rerio testes, T3 in combination with FSH results in newly formed spermatogonial cysts and induces an increase in the synthesis of 11-KT (38). Moreover, it was observed in pejerrey fish (Odontesthes bonariensis), Japanese flounder (Paralichthys olivaceus), and O. latipes that environmental stressors, and/or cortisol treatment, induce 11-KT synthesis (25, 27, 28). It was suggested that the measured elevation of 11-KT could be explained through different mechanisms of action, including: the up-regulation of hsd11b2 transcript [gene that codes for 11β-HSD; (84)], the inhibition of aromatase [enzyme that converts T to estradiol; (27)], and/or through the hepatic catabolism of cortisol (31, 155). Thus, the elevation of cortisol increases androgen biosynthesis.
with the concomitant masculinization of larvae (156). In summary, the crosstalk between HPT and HPG in the environmental sex-determination of fish has been heavily studied; however, due to the potential for interaction between HPT, HPA, and HPG axes, further studies are needed to clarify the role of the THs in the environmental sex-determination process.

CONCLUSION

This review on the interaction of HPT, HPA, and HPG axes illustrates our present understanding on the relationship between these endocrine axes and testicular development in different species of vertebrates, although it is necessary to confirm this hypothesis in other species (Figure 3). Some key points can be highlighted: (i) THs could have an important influence in gonadal development, especially on reproduction; (ii) there could be a relationship between T3, in combination with FSH, and induced androgen production, which is required to initiate spermatogenesis; (iii) the availability of deiodinases and TRs during testicular and early developmental stages could be crucial to exert TH action and to regulate testicular development; and (iv) the dual action of CRH on HPT and HPA axes could explain, at least in part, the high levels of androgens during the period of environmental sex-determination. Thus, we hypothesize that these hormonal axis interactions direct the gonadal fate toward masculinization.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant to Valerie S. Langlois, and CONICET Grant D731, and Agencia Nacional de Promoción Científica y Tecnológica Grant 2012 No 0366 to Juan I. Fernandino. Also, Juan I. Fernandino is a member of the scientific researchers at the CONICET.

REFERENCES

1. Zhang J, Lazar MA. The mechanism of action of thyroid hormones. *Annu Rev Physiol* (2000) 62:439–66. doi:10.1146/annurev.physiol.62.1.439
2. Maran RRM. Thyroid hormones: their role in testicular steroidogenesis. *Arch Androl* (2003) 49:375–88. doi:10.1080/0148501039024968
3. Blanton ML, Specker JL. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. *Crit Rev Toxicol* (2007) 37:97–115. doi:10.1080/104084406001123529
4. Krassas GE, Poppe K, Glinser D. Thyroid function and human reproductive health. *Endocr Rev* (2010) 31:702–55. doi:10.1210/er.2009-0041
5. Yoshihara T. Thyroid hormone and seasonal regulation of reproduction. *Front Neuroendocrinol* (2013) 34:157–66. doi:10.1016/j.yfrne.2013.04.002
6. Cooke PS, Holtsberger JR, Witorsch RJ, Sylvester PW, Meredith JM, Treinen KA, et al. Thyroid hormone, glucocorticoids, and prolactin at the nexus of physiology, reproduction, and toxicology. *Toxicol Appl Pharmacol* (2004) 194:309–35. doi:10.1016/j.taap.2003.09.016
7. Swapan I, Senthilkumaran B. Thyroid hormones modulate the hypothalamo-hypophyseal-gonadal axis in teleosts: molecular insights. *Fish Physiol Biochem* (2007) 33:335–45. doi:10.1007/s10695-007-9165-2
8. Wagner MS, Wajner SM, Maia AL. The role of thyroid hormone in testicular development and function. *J Endocrinol* (2008) 199:351–65. doi:10.1677/JEO-08-00218
9. Wagner MS, Wajner SM, Maia AL. Is there a role for thyroid hormone on spermatogenesis? *Microsc Res Tech* (2009) 72:796–808. doi:10.1002/jemt.20759
10. Zamoner A, Pessoa-Pureur R, Silva FR. Membrane-initiated actions of thyroid hormones on the male reproductive system. *Life Sci* (2011) 89:567–74. doi:10.1016/j.lfs.2011.04.086
11. Habibi HR, Nelson ER, Allan ERO. New insights into thyroid hormone function and modulation of reproduction in goldfish. *Gen Comp Endocrinol* (2012) 175:19–26. doi:10.1016/j.ygcen.2011.11.003
12. Flood DEK, Fernandino JI, Langlois VS. Thyroid hormones in male reproductive development: evidence for direct crosstalk between the androgen and thyroid hormone axes. *Gen Comp Endocrinol* (2013) 192:2–14. doi:10.1016/j.ygcen.2013.02.038
13. Larsen DA, Swanson P, Dickey JT, Rivier J, Dickhoff WW. In vitro thyrotropin-releasing action of corticotropin-releasing hormone-family peptides in coho salmon, Oncorhynchus kisutch. *Gen Comp Endocrinol* (1998) 109:276–85. doi:10.1006/gcen.1997.7933
14. Do Y, Okada R, Mochida H, Hayashi H, Yamamoto K, Kikuyama S. Molecular cloning of bullfrog corticotropin-releasing factor (SCRF): a vest of homologous CRF on the release of TSH from pituitary cells in vitro. *Gen Comp Endocrinol* (2004) 138:218–27. doi:10.1016/j.ygcen.2004.06.006
15. Kaneko M, Fujisawa H, Okada R, Yamamoto K, Nakamura M, Kikuyama S. Thyroid hormones inhibit frog corticotropin-releasing factor-induced thyrotropin release from the bullfrog pituitary in vitro; *Gen Comp Endocrinol* (2005) 144:122–7. doi:10.1016/j.ygcen.2005.05.003
16. Okada R, Miller MF, Yamamoto K, De Groef B, Denver RJ, Kikuyama S. Involvement of the corticotropin-releasing factor (CRF) type 2 receptor in CRF-induced thyrotropin release by the amphibian pituitary gland. *Gen Comp Endocrinol* (2007) 150:437–44. doi:10.1016/j.ygcen.2006.11.002
17. Denver RJ. Several hypothalamic peptides stimulate in vitro thyrotropin secretion by pituitaries of anuran amphibians. *Gen Comp Endocrinol* (1988) 72:383–93. doi:10.1016/0016-6480(88)90160-8
18. Boorse GC, Denver RJ. Expression and hypothalamic actions of corticotropin-releasing factor in *Anaxorhynchus laevis*. *Gen Comp Endocrinol* (2004) 137:272–82. doi:10.1016/j.ygcen.2004.04.001
19. Denver RJ, Licht P. Neuropeptides influencing pituitary hormone secretion in hatching turtles. *J Exp Zool* (1989) 251:306–15. doi:10.1002/jez.1402510307
20. Denver RJ, Licht P. Modulation of neuropeptide-stimulated pituitary hormone secretion in hatching turtles. *Gen Comp Endocrinol* (1990) 77:107–15. doi:10.1016/0016-6480(90)90211-4
21. Meeruw R, Micheielen R, Decuyper E, Kühn ER. Thyrotropic activity of the ovine corticotropin-releasing factor in the chick embryo. *Gen Comp Endocrinol* (1989) 76:567–63. doi:10.1016/0016-6480(89)90310-5
22. Geris KL, Kotanen SP, Berghman LR, Kühn ER, Darras VM. Evidence of a thyrotropin-releasing activity of ovine corticotropin-releasing factor in the domestic fowl (*Gallus domesticus*). *Gen Comp Endocrinol* (1996) 104:139–46. doi:10.1006/gcen.1996.0156
23. De Groef B, Goris N, Arcckens L, Kuhn ER, Darras VM. Corticotropin-releasing hormone (CRH)-induced thyrotropin release is directly mediated through CRH receptor type 2 on thyrotropes. Endocrinology (2003) 144:5537–44. doi:10.1210/en.2003-0526

24. Fernandino J, Popesku I, Paul-Prasanth B, Xiong H, Hattori RS, Oura M, et al. Analysis of sexually dimorphic expression of genes at early gonadogenesis of pejerrey Odontesthes bonariensis using a heterologous microarray. Sex Dev (2011) 5:89–91. doi:10.1007/s11468-012-9089-0

25. Hattori RS, Fernandino JI, Kishi A, Kimura H, Kinno T, Oura M, et al. Cortisol-induced masculinization: does sexual stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination? PLoS One (2009) 4:e6554. doi:10.1371/journal.pone.0006548

26. Yamaguchi T, Kitano T. High temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by increasing cortisol levels during gonadal sex differentiation in Japanese flounder. Biochem Biophys Res Commun (2012) 419:287–92. doi:10.1016/j.bbrc.2012.02.012

27. Yamaguchi T, Yoshihara N, Yazawa T, Gen K, Kitano T. Cortisol involvement in temperature-dependent sex determination in the Japanese flounder. Endocrinology (2010) 151:3900–8. doi:10.1210/en.2010-0228

28. Hayashi Y, Kobira H, Yamaguchi T, Shiraiishi E, Yazawa T, Hirai T, et al. High temperature causes masculinization of genetically female medaka by evaluation of cortisol. Mol Reprod Dev (2010) 77:679–686. doi:10.1002/mrd.21203

29. Friesen CN, Aubin-Horth N, Chapman LJ. The effect of hypoxia on sex hormones in an African cichlid Pseudocrenilabrus multicolor victoricae. Comp Biochem Physiol A Mol Integr Physiol (2012) 162:22–30. doi:10.1016/j.cbpa.2012.01.019

30. Barouillet E, Chourourt D, Fostier A, Jalabert B. Temperature and sex chromosomes govern sex ratios of the mouthbrooding Cichlid fish Oreochromis niloticus. J Exp Zool (1995) 273:216–23. doi:10.1002/jez.1402730306

31. Schulz RW. In vitro metabolism of steroid hormones in the liver and in blood cells of male rainbow trout (Salmo gairdneri Richardson). Gen Comp Endocrinol (1986) 64:312–9. doi:10.1016/0016-6480(86)90019-5

32. Kaiser S, Kruyve FPM, Swaab DF, Sachsen A. Early social stress in female guinea pigs induces a masculinization of adult behavior and corresponding changes in brain and neuroendocrine function. Behav Brain Res (2003) 144:199–210. doi:10.1016/S0166-4328(03)00077-9

33. Chiba H, Amano M, Yamada H, Fujimoto Y, Ojima D, Okuizawa K, et al. Involvement of gonadotropin-releasing hormone in thyroxine release in three different forms of Teleost Fish: Barfin Founder, Masu Salmon and Goldfish. Fish Phys Biochem (2004) 30:267–73. doi:10.1023/b:fisp.0000016905-0003-8676-y

34. Roy P, Datta M, Dasgupta S, Bhattacharjee S. Gonadotropin-releasing hormone stimulates thyroid activity in a freshwater murrel, Salmo gairdneri (Ham.). J Comp Physiol B Mol Integr Physiol (2000) 112:119–25. doi:10.1007/s00360997432

35. MacKenzie DS, Sokolowska M, Peter RE, Berton B. Increased gonadotropin levels in goldfish do not result in alterations in circulating thyroid hormone levels. Gen Comp Endocrinol (1987) 67:202–13. doi:10.1016/0016-6480(87)90149-3

36. Nelson ER, Allan ER, Pang FY, Habibi HR. Thyroid hormone and reproduction: regulation of estrogen receptors in goldfish gonads. Mol Reprod Dev (2010) 77:784–94. doi:10.1002/mrd.21219

37. Leatherland JR, Li M, Barkatsaki S, Stressors, glucocorticoids and ovarian function in teleosts. J Fish Biol (2010) 76:86–111. doi:10.1111/j.1095-8649.2009.02514.x

38. Morais RD, Nobrega RA, Gomez-Gonzalez NE, Schmidt R, Bogerd J, Franca LR, et al. Thyroid hormone stimulates the proliferation of Sertoli cells and single type A spermatagonia in adult zebrafish (Danio rerio) testis. Endocrinology (2013) 154:8365–76. doi:10.1210/en.2013-1308

39. Swapan I, Rajasekhar M, Supriya A, Raghuvier K, Sreenivasulu G, Rasheda MK, et al. Thiourea-induced thyroid hormone depletion impairs testicular recrudescence in the air-breathing catfish, Clarias gariepinus. Comp Biochem Physiol A Mol Integr Physiol (2006) 144:1–10. doi:10.1016/j.cbpa.2006.01.017

40. Rasheda MK, Sreenivasulu G, Swapan I, Raghuvier K, Wang DS, Thangaraj K, et al. Thiourea-induced alteration in the expression patterns of some steroidogenic enzymes in the air-breathing catfish Clarias gariepinus. Fish Physiol Biochem (2005) 31:275–9. doi:10.1016/j.slib.2006-0036-x

41. Parhar IS, Soga T, Sukma Y. Thyroid hormone and estrogen regulated brain region specific messenger ribonucleic acids encoding three gonadotropin-releasing hormone genes in sexually immature male fish, Oreochromis niloticus. Endocrinology (2000) 141:1618–26. doi:10.1210/en.141.5.7460
59. Ando S, Siriani R, Forastieri P, Casaburi I, Lanzino M, Rago V, et al. Aromatase expression in prepuberal Sertoli cells: effect of thyroid hormone. *Cell Endocrinol* (2001) 178:11–21. doi:10.1006/s0303-7207(01)00443-9

60. Pezzi V, Pannol M, Siriani R, Forastieri P, Casaburi I, Lanzino M, et al. Effects of triiodothyronine on alternative splicing events in the coding region of cytochrome P450 aromatase in immature rat Sertoli cells. *J Endocrinol* (2001) 170:381–93. doi:10.1677/joe.0.170388

61. Hapon MB, Gamarra-Luques C, Jahn GA. Short term thyroxin administration affects ovarian function in cycling rat. *Repr Biol Endocrinol* (2010) 8:14. doi:10.18641/1177-7827.8-14

62. Antony FF, Aruldhas MM, Udhayakumar RCR, Maran RRM, Govindarajulu P. Inhibition of follicle-stimulating hormone induction of ovarian theca zona granulosa cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, androgenetic and gametogenic activities in rats. *J Endocrinol* (1994) 140:543–7. doi:10.1677/joe.0.1400343

63. Chiao YC, Cho WL, Wang PS. Inhibition of testosterone production by propylthiouracil in rat Leydig cells. *Biomed Rep* (2012) 67:416–22. doi:10.1016/j. bioreprod.2012.09.2186

64. Valde LB, Oliveira-Silva RM, Romaldini HH, Lara PF. Pituitary testicular axis abnormalities in immature male hypothyroid rats. *J Steroid Biochem Mol Biol* (1985) 23:253–7. doi:10.1016/0022-4731(85)90402-9

65. Jahan S, Ahmed S, Emanuel E, Fatima I, Ahmed H. Effect of an anti-thyroid drug, 2,8-dimercapto-6-hydroxy purine on reproduction in male rats. *J Pharm Sci* (2012) 101:2491–7. doi:10.1002/jps.22465

66. Romano RM, Bardi-Sousa P, Brunetto EL, Goulart-Silva F, Avellar MCW, Embriaco NV, et al. Thyroid hormone inhibition of pituitary thyrotropin gene expression by posttranslational control of thyroid hormone of rat liver cytochrome P450. *J Cell Biochem* (1999) 73:138–45. doi:10.1002/(SICI)1097-0169(19990615)73:2<138::AID-JCB4>3.0.CO;2-A

67. Galliani FA, Cortez-Hernandez V, Abreu JP, Miranda MA, Pires RM, Andrade J, et al. Thyroid hormone effect on the production of testosterone in rats. *Acta Endocrinol* (1990) 123:491–5. doi:10.1530/0001-5132.1990.123.2<491::AID-AEN129>3.0.CO;2-3

68. Chan WK, Tan CH. Inhibition of follicle-stimulating hormone induction of aromatase activity in porcine granulosa cells by thyroxine and triiodothyronine decreases the activity of the proximal promoter (PII) of the aromatase gene in the mouse Sertoli cell line, TM4. *Mol Endocrinol* (2003) 17:923–34. doi:10.1210/me.2002-0102

69. Mana PP, Kero J, Tena-Seppere M, Pakarinen P, Stocco DM, Huhtaniemi IT. Assessment of mechanisms of thyroid hormone action in mouse Leydig cells: regulation of the steroidogenic acute regulatory protein, steroidogenesis, and luteinizing hormone receptor function. *Endocrinology* (2001) 142:2139–41. doi:10.1210/endo.142.1.71900

70. Cecconi S, Rucci N, Scalfaroli ML, Mascellini MP, Rossi G, Moretti C, et al. Thyroid hormone effects on mouse oocyte maturation and granulosa cell aromatase activity. *Endocrinology* (1999) 140:1783–8. doi:10.1210/endo.140.4.8663

71. Chen WK, Tan CH. Inhibition of follicle-stimulating hormone induction of aromatase activity in porcine granulosa cells by thyroxine and triiodothyronine. *Endocrinology* (1986) 119:2353–9. doi:10.1210/endo-110-5-2353

72. Gergoraszczuk EL, Sloczmanska M, Wilk R. Thyroid hormone inhibits aromatase activity in porcine thecal cells cultured alone and in coculture with granulosa cells. *Thyroid* (1998) 8:1157–63. doi:10.1089/thy.1998.8.1157

73. Andersen GM, Hsu Y, Wood KB, Knight PG, Parkinson TJ. The reproductive response of rams to thyroidectomy: mediation by impaired inhibin feedback rather than a change in LH pulsatility. *Reproduction* (2003) 126:3533–64. doi:10.1530/rep.0.1260353

74. Galasa L, Roaout E, Tonob M-C, Okadad R, Jenkse BG, Castejof JP, et al. TRH acts as a multifunctional hypothalamic stress hormone in vertebrates. *Gen Comp Endocrinol* (2009) 164:40–50. doi:10.1016/j.ygcen.2009.05.003

75. Cerdà-Reverter JM, Canosa LF. Neuroendocrine systems of the fish brain. In: Farrell AP, Brauner CG, Van Der Kraak G, Bernier N, editors. The Endocrinology of Growth, Development, and androgen in testes. *Comp Endocrinol* (2010) 174:1–9. doi:10.1006/s0303-7207(01)00392-6

76. Chan WK, Liao IC, Tseng WN, Yu JT. Cloning of the cDNA encoding thyroid stimulating hormone beta subunit of bighead carp *Aristichthys nobilis* and regulation of its gene expression. *Mol Cell Endocrinol* (2001) 174:1–9. doi:10.1016/s0303-7207(01)00392-6

77. Flik G, Klaren PH, Van Den Burg EH, Metz JR, Huising MO. CRF and stress systems. *Ann N Y Acad Sci* (2009) 1163:263–70. doi:10.1111/j.1749-6632.2008.03662.x

78. Bonetti P, Aruldhas MM, Langlois VS, Pauli BD, Trudeau VL. Expression and T3 regulation of thyroid hormone- and steroid-related genes during *Silurus* (*Xenopus*) tropicalis early development. *Gen Comp Endocrinol* (2010) 166:428–35. doi:10.1016/j.ygcen.2009.12.008

79. Fernandino JJ, Hattori RS, Kishi A, Struassmann CA, Somoza GM. The cortisol and androgen pathways cross talk in high temperature induced masculinization: 11β-hydroxysteroid dehydrogenase as a key enzyme. *Endocrinology* (2012) 153:6003–11. doi:10.1210/me.2011.2012-1517

80. Manzon RG, Denver RJ. Regulation of pituitary thyrotropin gene expression during posttesticular sperm maturation in adult rats. *Fertil Steril* (2000) 73:19–7. doi:10.1016/s0015-0262(01)00940-1

81. Romano RM, Bardi-Sousa P, Brunetto EL, Goulart-Silva F, Avellar MCW, Oliveira CA, et al. Hypothyroidism in adult male rats alters posttranscriptional mechanisms of luteinizing hormone biosynthesis. *Thyroid* (2013) 23:497–505. doi:10.1089/thy.2011.0514

82. Chiao YC, Choo WL, Wang PS. Inhibition of testosterone production by propylthiouracil in rat Leydig cells. *Biomed Rep* (2002) 67:416–22. doi:10.1016/j. bioreprod.2002.09.2186

83. De Groef G, Van Der Geyten S, dArras VM, Kuhn ER. Role of corticotropin-releasing hormone as a thyrotropin-releasing factor in non-mammalian vertebrates. *Gen Comp Endocrinol* (2006) 146:62–8. doi:10.1016/j.ygcen.2005.10.014

84. Flik G, Klaeren PH, Van Den Berg EH, Metz JR, Huising MO. CRF and stress in fish. *Gen Comp Endocrinol* (2006) 146:36–44. doi:10.1016/j.ygcen.2005.11.005

85. Manzon RG, Denver RJ. Regulation of pituitary thyrotropin gene expression during silvering of the Japanese eel, *Aristichthys nobilis* during silverying of the Japanese eel, *Aristichthys nobilis* regulation of thyroid hormone- and sex steroid-related genes during *Silurus* (*Xenopus*) tropicalis early development. *Gen Comp Endocrinol* (2010) 166:428–35. doi:10.1016/j.ygcen.2009.12.008

86. Castera Cortés et al. CRH, TRH and androgen in testes.
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 March 2014; accepted: 11 August 2014; published online: 27 August 2014.

Citation: Castañeda Cortés DC, Langlois VS and Fernandino JI (2014) Crossover of the hypothalamic pituitary–adrenal/interrenal, –thyroid, and –gonadal axes in testicular development. Front. Endocrinol. 5:139. doi: 10.3389/fendo.2014.00139

This article was submitted to Experimental Endocrinology, a section of the journal Frontiers in Endocrinology.

Copyright © 2014 Castañeda Cortés, Langlois and Fernandino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.