A Dynamical Bogomolov Property

Lukas Pottmeyer

January 14, 2013

Abstract

A field F is said to have the Bogomolov Property related to a height function h if $h(\alpha)$ is either 0 or bounded from below by a positive constant for all $\alpha \in F$. In this paper we prove that the maximal algebraic extension of a number field K, which is unramified at a place $v \mid p$, has the Bogomolov Property related to all canonical heights coming from a Lattès map related to a Tate elliptic curve. To prove this algebraical statement we use analytic methods on the related Berkovich spaces.

In the whole paper h is the standard logarithmic height, p a prime number, K a number field and $K^{nr,v}$ the maximal algebraic extension of K, which is unramified at the place $v \mid p$.

Definition 1.1. Let $\varphi : \mathbb{P}^n \to \mathbb{P}^n$ be a morphism of degree $d \geq 2$. The canonical height associated to φ is the unique height function

$$\hat{h}_\varphi : \mathbb{P}^n \to \mathbb{R}$$

with the properties

$$\hat{h}_\varphi(P) = h(P) + O(1) \quad \text{and} \quad \hat{h}_\varphi(\varphi(P)) = d\hat{h}_\varphi(P).$$

See [Si07], 3.20, for a proof of the existence and uniqueness of this height. In [Si07], 3.22, it is shown that

$$\hat{h}_\varphi(P) = 0 \iff P \text{ is a preperiodic point of } \varphi.$$

We will write $\text{PrePer}(\varphi)$ for the set of all preperiodic points of φ.
Definition 1.2. Let E be an elliptic curve over a field F of characteristic 0, Γ a non trivial subgroup of $\text{Aut}(E)$, φ an endomorphism of E and $\pi : E \to E/\Gamma \cong \mathbb{P}^1_F$ a finite covering. A morphism $f : \mathbb{P}^1_F \to \mathbb{P}^1_F$ is called Lattès map related to E, if we have a commutative diagram

Here T is an isomorphism of E/Γ and \mathbb{P}^1_F.

Remark 1.3. This definition is independent of the choice of the isomorphism T. A change of the isomorphism is equivalent to a change of the coordinate on \mathbb{P}^1_F. So it would just change the representation of the map f but not the map itself. This allows us to consider just the reduced Lattès diagram

with a finite covering $\pi : E \to \mathbb{P}^1_F$.

If f is a Lattès map for a Tate elliptic curve E, then we will prove that $K^{nr,v}$ has the Bogomolov Property related to \hat{h}_f. In a slightly different context the Bogomolov Property for $K^{nr,v}$ is already known. We have the following result.

Theorem 1.4 (Gubler). Let A be an abelian variety over K, which is totally degenerate at v. Further let L be an ample even line bundle and K' be a finite extension of $K^{nr,v}$. Then there is a $\varepsilon > 0$, such that $\hat{h}_L(P) \geq \varepsilon$ for all non-torsion points $P \in A(K')$.

Proof: See [Gu07], Corollary 6.7. \qed

In this theorem \hat{h}_L stands for the canonical height, also called Néron-Tate height, associated to the line bundle L. For details on this height we refer to [BG], Chapter 9.2, and [La], Chapter 5.

One might expect the Bogomolov Property of $K^{nr,v}$ related to \hat{h}_f, for a Lattès map f associated to a Tate elliptic curve, to be a direct consequence of theorem 1.4.
Let \(A \) be a Tate elliptic curve \(y^2 + xy = x^3 + a_4x + a_6 \) over \(K \), which is totally degenerate at \(v \). Notice that the Tate elliptic curves are precisely those with total degeneration at \(v \). Let \(\pi \) be the projection on the \(x \)-coordinate, \(\varphi = [m] \), \(m \in \mathbb{Z} \), be the multiplication by \(m \) map and \(f \) the corresponding Lattès map. (Later we will show that this is the general case.) The multiplication by \([-1]\) on \(A \) is given by \([-1](x, y) = (x, -x - y)\) (for example [BG], Proposition 8.3.8), so we can deduce that the line bundle \(L := \pi^*O(1) \) is even. By 1.1, 1.2 and the universal property of \(\hat{h}_L \) we get the equation

\[
\hat{h}_f \circ \pi = \hat{h}_L.
\] (1)

Now we see that the Bogomolov Property of \(K^{nr,v} \) related to \(\hat{h}_f \) would be a direct consequence of Theorem 1.4 if \([K^{nr,v}(\pi^{-1}(\mathbb{P}_K^1(K^{nr,v}))) : K^{nr,v}] \) is finite. But in general this is not the case. A counterexample for \(K = \mathbb{Q} \) is the Tate elliptic curve \(y^2 + xy = x^3 + 6 \) when we choose \(p = 3 \). To see this one needs a lot of algebraic number theory, but the proof will not be shown here. After this short justification we will prove our main theorem.

Theorem 1.5. Let \(f \) be a Lattès map related to a Tate elliptic curve over \(K^{nr,v} \) and let \(\hat{h}_f \) be the canonical height associated to \(f \). Then \(K^{nr,v} \) has the Bogomolov Property related to \(\hat{h}_f \). In other words:

There is a \(C > 0 \), such that for all \(P \in K^{nr,v} \setminus \text{PrePer}(f) \) we have \(\hat{h}_f(P) > C \).

Moreover there are just finitely many points \(a \in K^{nr,v} \) with \(\hat{h}_f(a) = 0 \).

Let \(w \mid v \) be an absolute value on \(K^{nr,v} \). By \(\mathbb{K} \) we denote the completion of the algebraic closure of the completion of \(K^{nr,v} \) by \(w \). We denote the unique extension of \(w \) to \(\mathbb{K} \) also by \(w \). Notice that \(\mathbb{K} \) is algebraically closed ([BGR], Proposition 3.4.3). Let \(E : y^2 + xy = x^3 + a_4x + a_6 \) be a Tate elliptic curve over \(\mathbb{K} \) and \(\pi : E \to \mathbb{P}_\mathbb{K}^1 \) be a finite covering. Further we take a Lattès map \(f \) with the commutative diagram

\[
\begin{array}{ccc}
E & \xrightarrow{\varphi} & E \\
\downarrow{\pi} & & \downarrow{\pi} \\
\mathbb{P}_\mathbb{K}^1 & \xrightarrow{f} & \mathbb{P}_\mathbb{K}^1 \\
\end{array}
\]

where \(\varphi \) is the multiplication by \(m \in \mathbb{Z} \) with \(|m| \geq 2 \). The GAGA-functor on Berkovich spaces (see [Ber], Chapter 3.4) leads us to the commutative diagram
By E^{an} and $(\mathbb{P}^1_K)^{an}$ we denote the Berkovich spaces related to E, respectively \mathbb{P}^1_K, and by φ^{an}, π^{an} and f^{an} we denote the analytification (in the sense of Berkovich) of the respective map.

We will work with the valuation function on $(\mathbb{P}^1_K)^{an}$

$$\text{val} : (\mathbb{P}^1_K)^{an} \to \mathbb{R} \cup \{\pm \infty\} ; \ y \mapsto -\log |X|_y,$$

where X is the variable in the ring of polynomials $\mathbb{K}[X]$. As an analytic group E is isomorphic to \mathbb{K}^*/q^Z for a $q \in \mathbb{K}$ with $|q|_w < 1$. So there is a canonical valuation function val on $E^{an} = (G_m)^{an}/q^Z$

$$\text{val} : (G_m)^{an}/q^Z \to \mathbb{R}/w(q)Z ; \ \bar{y} \mapsto -\log |X|_{\bar{y}}.$$

Obviously we have $\text{val}(E^{an}) = \mathbb{R}/w(q)Z$.

Proposition 1.6. E has no complex multiplication and the map $\pi : E \to \mathbb{P}^1_K$ is, after a suitable coordinate transformation, explicitly given by $(x, y) \mapsto x$.

Proof: Let $j(E)$ be the j-invariant of E. Then we have the equation

$$|j(E)|_w = |q|^{-1}_w > 1.$$

Since w is an extension of a p-adic absolute value, $j(E)$ is no algebraic integer. That shows the first statement (see [Si99], Theorem II.6.1). Further we know $\text{Aut}(E) = \{id, [-1]\}$ (see [Si07], Proposition 6.26). So there is just one quotient curve of E which is different from E itself, namely $E/\text{Aut}(E) \cong \mathbb{P}^1_K$. The function field of $E/\text{Aut}(E)$ is as the fixed field $\mathbb{K}(x, y)^{\text{Aut}(E)}$ given by $\mathbb{K}(x, y^2 + xy) = \mathbb{K}(x)$. Therefore the projection $\pi : E \to E/\text{Aut}(E)$ is given by $(x, y) \mapsto x$. \qed

Again we take the even ample line bundle $L := \pi^* \mathcal{O}(1)$. We have $\deg(f) = \deg(\varphi) = m^2$ (see [Si07], Theorem 6.51). This leads us to an isomorphism $\Phi : \mathcal{O}(1)^{m^2} \to f^* \mathcal{O}(1)$. L is even and so the theorem of the cube tells us $\varphi^* L \cong L^{m^2}$. We choose the isomorphism $\Psi := \pi^* \Phi$. Notice that, by the commutativity of the Lattès diagram, we have $\varphi^* L = \varphi^* \pi^* \mathcal{O}(1) = \pi^* f^* \mathcal{O}(1)$. There are unique metrics $\|\cdot\|_f$ and $\|\cdot\|_{\varphi}$ on
\(\mathcal{O}(1) \) respectively \(L \) (to be more formal: on the analytifications of these line bundles) with the properties

\[
(\Phi_{\text{an}})^* (f_{\text{an}}^*)^\|_f = \|_f m^2 \quad \text{and} \quad (\Psi_{\text{an}})^* (\varphi_{\text{an}}^*)^\|_\varphi = \|_\varphi m^2.
\]

As usual we denote by \(\Psi_{\text{an}} \) and \(\Phi_{\text{an}} \) the analytifications (in the sense of Berkovich) of \(\Psi \) and \(\Phi \). For the existence of these metrics and further information we refer to [Zh], [Gu98] (especially Theorem 7.12) and [Gu10]. Just using the definitions of the different maps we get

\[
(\Psi_{\text{an}})^* (\varphi_{\text{an}}^*) (\pi_{\text{an}}^*)^\|_f = ((\pi_{\text{an}}^*)^\|_f)^m.
\]

This implies the equation

\[
(\pi_{\text{an}})^* \|_f = \|_\varphi.
\]

(2)

Now we have a look at the canonical measures, also called Chambert-Loir measures, of the arithmetical dynamical systems \((E, \varphi, L) \) and \((\mathbb{P}^1_K, f, \mathcal{O}(1)) \). We denote these measures by \(\mu_{\varphi} = c_1(L, \|_\varphi) \) and \(\mu_f = c_1(\mathcal{O}(1), \|_f) \). For details, we refer to [Ch] and [Gu10]. Using the projection formula (for example [Gu07a], Corollary 3.9 b)) and \([2]\) we deduce

\[
(\pi_{\text{an}})^* \mu_{\varphi} = \text{deg}(\pi) \mu_f.
\]

This leads us to \(\text{supp}(\pi_{\text{an}})^* \mu_{\varphi}) = \text{supp}(\mu_f) \). As \(\mu_{\varphi} \) is a positive measure we get

\[
\pi_{\text{an}}(\text{supp}(\mu_{\varphi})) = \text{supp}(\pi_{\text{an}})^* \mu_{\varphi}) = \text{supp}(\mu_f).
\]

(3)

Remark 1.7. Every disk \((a, r) \) around \(a \in \mathbb{K} \) with radius \(r \in \mathbb{R}^+ \) gives us a multiplicative seminorm on the Tate-algebra \(\mathbb{K}\{X, qX^{-1}\} \), and hence a point of \(E^{\text{an}} \). Explicitly \(|\cdot|_{(a, r)} \) is given by

\[
| \sum_{n \in \mathbb{Z}} a_n X^n |_{(a, r)} = \left| \sum_{n \in \mathbb{Z}} b_n (X - a)^n \right|_{(a, r)} = \max_{n \in \mathbb{Z}} |b_n|_w r^n.
\]

The subdomain of \(E^{\text{an}} \) consisting of all points \((0, r)\), with \(|q|_w < r < 1 \) is called the skeleton of \(E \). We denote the skeleton of \(E \) by \(S(E) \). It is easy to see, that \(\text{val} \) maps \(S(E) \) homeomorphic onto \(\mathbb{R}/w(\mathbb{Q})\mathbb{Z} \). For the general theory of skeletons we refer to [Ber], Chapter 6.5, and for more information on our special case we refer to [Gu10], Example 7.2.

Proposition 1.8. With the same notations as above, we have

\[
\text{supp}(\mu_{\varphi}) = S(E).
\]
Proof: See [Gu10], Corollary 7.3. □

To prove Theorem 1.5 we assume that \(\hat{h}_f \) has no positive lower bound on \(K_{nr,v} \setminus \text{PrePer}(f) \). Then there are elements \(\{P_n\}_{n \in \mathbb{N}} \) in \(K_{nr,v} \setminus \text{PrePer}(f) \), such that

\[
\lim_{n \to \infty} \hat{h}_f(P_n) \to 0.
\]

We will show that this contradicts (3) and Proposition 1.8. In our setting, Yuan’s equidistribution Theorem states the following.

Theorem 1.9 (Yuan). The Galoisorbits of \(\{P_n\} \) are equidistributed in \((\mathbb{P}^1_K)^{an} \). This means:

\[
\mu_f = \lim_{n \to \infty} \frac{1}{|O(P_n)|} \sum_{P' \in O(P_n)} \delta_{P'},
\]

where \(O(P_n) \) denotes the Galoisorbit of \(P_n \) and \(\delta_{P'} \) the Dirac-measure at \(P' \).

Proof: See [Yu], Theorem 3.1. □

Corollary 1.10. If there is a sequence \(\{P_n\}_{n \in \mathbb{N}} \) as above, then

\[
\text{supp}(\mu_f) \subseteq \text{val}^{-1}(\frac{1}{e_v|_p} \mathbb{Z} \cup \{\pm \infty\}),
\]

where \(e_v|_p \) is the ramification index of \(v \) over \(p \).

Proof: Let \(y \in (\mathbb{P}^1_K)^{an} \) with \(\text{val}(y) \notin \frac{1}{e_v|_p} \mathbb{Z} \cup \{\pm \infty\} \). Choose an open neighbourhood \(I \) of \(\text{val}(y) \), such that \(I \) doesn’t contain an element of \(\frac{1}{e_v|_p} \mathbb{Z} \). The value group of \(w \) on \(K_{nr,v} \) is \(\frac{1}{e_v|_p} \mathbb{Z} \) and \(\text{val} \) is continuous, so the open neighbourhood \(U_y := \text{val}^{-1}(I) \) of \(y \) doesn’t contain a rational point of \((\mathbb{P}^1_K)^{an}(K_{nr,v}) \). With (4) we get

\[
\mu_f(U_y) = \lim_{n \to \infty} \frac{1}{|O(P_n)|} \sum_{P' \in O(P_n)} \delta_{P'}(U_y) = 0.
\]

So \(y \) is no point of \(\text{supp}(\mu_f) \). This proves the Corollary. □

With Proposition 1.8 and (3) we conclude

\[
\pi^{an}(S(E)) \subseteq \text{val}^{-1}(\frac{1}{e_v|_p} \mathbb{Z} \cup \{\pm \infty\}).
\]

(5)

As \(\pi^{an} \) and \(\text{val} \) are continuous, \(\frac{1}{e_v|_p} \mathbb{Z} \cup \{\pm \infty\} \) is discrete and \(S(E) \) is not, this is very likely to be impossible. But to prove this we need a better understanding of the map \(\pi^{an} \).
In rigid geometry, Tate has described the isomorphism between $\mathbb{K}^*/q^\mathbb{Z}$ and $E^\text{an}(\mathbb{K})$. The x and y coordinate in $E^\text{an}(\mathbb{K})$ of an element $\zeta \in \mathbb{K}^*/q^\mathbb{Z}$ are explicitly given by

$$x(\zeta) = \sum_{n=-\infty}^{\infty} \frac{q^n \zeta}{(1-q^n \zeta)^2} - 2 \sum_{n=1}^{\infty} \frac{nq^n}{(1-q^n)},$$

$$y(\zeta) = \sum_{n=-\infty}^{\infty} \frac{q^{2n} \zeta^2}{(1-q^n \zeta)^2} + \sum_{n=1}^{\infty} \frac{nq^n}{(1-q^n)}.$$

For a proof and further information on this isomorphism we refer to [Si99], V.3 and V.4.

Thus π^an is defined on rational points of $(G_1^m)^\text{an}/q^\mathbb{Z}$ by

$$\pi^\text{an}(\zeta) = \sum_{n=-\infty}^{\infty} \frac{q^n X}{(1-q^n X)^2} - 2 \sum_{n=1}^{\infty} \frac{nq^n}{(1-q^n)}.$$

As a morphism of strict \mathbb{K}-affinoid spaces π^an is induced by a homomorphism $(\pi^\text{an})^\sharp: \mathbb{K}[X] \to \mathbb{K}\{X, qX^{-1}\}$ of the related \mathbb{K}-affinoid algebras (see [Ber], Chapter 2 and [Bo]). With Tate’s isomorphism we know

$$(\pi^\text{an})^\sharp(X) = \sum_{n=-\infty}^{\infty} \frac{q^n X}{(1-q^n X)^2} - 2 \sum_{n=1}^{\infty} \frac{nq^n}{(1-q^n)}.$$

Thus for any $f(X) \in \mathbb{K}[X]$ and any $y \in E^\text{an}$ we have

$$|f(X)|_{\pi^\text{an}(y)} = \left| f \left(\sum_{n=-\infty}^{\infty} \frac{q^n X}{(1-q^n X)^2} - 2 \sum_{n=1}^{\infty} \frac{nq^n}{(1-q^n)} \right) \right|_y.$$

In order to compute $\text{val}(\pi^\text{an}(0, r)) = -\log|X|_{\pi^\text{an}(0, r)}$ for an element $(0, r) \in S(E)$ we have to compute $|((\pi^\text{an})^\sharp(X))_{(0, r)}|$. It holds $|q^n X|_{(0, r)} = |q^n|_0 r < 1$ for all $n \geq 0$ and hence

$$\left| \frac{q^n X}{(1-q^n X)^2} \right|_{(0, r)} = |q^n X|_{(0, r)}$$

for all $n \geq 0$. Obviously we have also

$$r = |X|_{(0, r)} = |q^0 X|_{(0, r)} > |q^1 X|_{(0, r)} > \cdots$$

leading us to

$$\sum_{n=0}^{\infty} \frac{q^n X}{(1-q^n X)^2} \bigg|_{(0, r)} = r.$$ (6)
For all negative integers n, we have $|q^n X|_{(0, r)} > 1$, and hence

$$\left| \frac{q^n X}{(1 - q^n X)^2} \right|_{(0, r)} = \left| \frac{1}{q^n X} \right|_{(0, r)}$$

for all $n < 0$. With the trivial inequalities

$$\left| \frac{1}{q^{-1} X} \right|_{(0, r)} > \left| \frac{1}{q^{-2} X} \right|_{(0, r)} > \cdots$$

we conclude

$$\sum_{n=1}^{\infty} \frac{q^{-n} X}{(1 - q^{-n} X)^2} = \left| \frac{1}{q^{-1} X} \right|_{(0, r)} = |q|_w r^{-1}. \quad (7)$$

The equation

$$2 \sum_{n=1}^{\infty} \frac{nq^n}{(1 - q^n)} = 2 \sum_{n=1}^{\infty} \frac{nq^n}{(1 - q^n)} = 2|q|_w \quad (8)$$

similarly follows with elementary properties of non-archimedean absolute values. Since $(0, r)$ is an element of the skeleton, we know $|q|_w < r < 1$. So $\mathbf{[6], [7]}$ and $\mathbf{[8]}$ leads us to

$$|X|_{\pi^n(0, r)} = \left| \sum_{n=-\infty}^{\infty} \frac{q^n X}{(1 - q^n X)^2} - 2 \sum_{n=1}^{\infty} \frac{nq^n}{(1 - q^n)} \right|_{(0, r)} \leq \max\{r, |q|_w r^{-1}\}. \quad (9)$$

If we choose now $(0, r) \in S(E)$ with $1 < r^2 < |q|_w$ and $\log r \not\in \frac{1}{e_{cl} |p|} \mathbb{Z}$, then the value in $\mathbf{[9]}$ is equal to r. So there is an element with

$$\text{val}(\pi^n((0, r))) = -\log |X|_{\pi^n(0, r)} = -\log r \not\in \frac{1}{e_{cl} |p|} \mathbb{Z}.$$

This contradicts $\mathbf{[5]}$. We have shown, that there are no elements $\{P_n\} \in K^{nr,v} \setminus \text{PrePer}(f)$ with $\hat{h}_f(P_n) \to 0$. The finiteness of points $a \in K^{nr,v}$ with $\hat{h}_f(a) = 0$ follows with the same proof, when we assume the existence of infinitely many pairwise distinct points $\{P_n\}_{n \in \mathbb{N}}$ with $\hat{h}_f(P_n) = 0$. This is equivalent to the finiteness of $\text{PrePer}(f) \cap K^{nr,v}$ and proves theorem 1.5. \hfill \Box

Remark 1.11. The finiteness statement in Theorem 1.5 doesn’t hold if we start with an elliptic curve with (potential) good reduction at v. In this case the criterion of Néron-Ogg-Shafarevich states, that infinitely many torsion points are unramified over v. This means, that there are infinitely many torsion points P in $E(K^{nr,v})$. With $\mathbf{[1]}$ we get for these points $P \in E(K^{nr,v})$ the property $\hat{h}_f \circ \pi(P) = 0$. As $\pi(P)$ is obviously unramified over v and $\deg(\pi) = 2$, we have infinitely many elements $a \in K^{nr,v}$ with $\hat{h}_f(a) = 0$.
The next proposition shows, that also the Bogomolov Property in Theorem 1.5 in general fails if we start with an elliptic curve with potential good reduction at \(v \).

Proposition 1.12. Let \(E \) be an elliptic curve over \(K \) with potential good reduction at \(v \parallel p \). Let \(f \) be a Lättès map associated to \(E \) and \([m] \). If \(p \nmid m \) then there is a finite extension \(K' | K \) endowed with a non-archimedean place \(w | v \) and a sequence \(\{q_n\}_{n \in \mathbb{N}_0} \) in \(K^{nr,w} \) with

\[
\hat{h}_f(q_n) \to 0.
\]

Proof: Choose \(K' | K \) endowed with a non-archimedean absolute value \(w | v \) such that \(E \) over \(K' \) has good reduction at \(w \) and there is at least one non-torsion point in \(E(K^{nr,w}) \). Let \(\mathcal{E} \) be the Néron-model of \(E \) over the valuation ring \(R_w \) of \(K' \). Since \(E \) has good reduction at \(w \) and \(p \nmid m \), we know that the map \([m] : \mathcal{E} \to \mathcal{E} \) is étale (see [BLR], 7.3 Lemma 2b) and [Si99], Example IV.3.1.4). Especially \([m] \) is unramified.

Now we choose a non-torsion point \(Q_0 \in E(K^{mr,w}) \), then \(q_0 := \pi(Q_0) \) is no preperiodic point of \(f \). Let \(Q_1 \in E(K^{mr,w}) \) be a pre-image of \(Q_0 \) under \([m] \). Using \([m] : \mathcal{E} \to \mathcal{E} \) is unramified, we get \(Q_1 \in E(K^{mr,w}) \) ([BG], Proposition B.3.6).

By successive repetition of this, when we replace \(Q_n \) by \(Q_{n+1} \) in each step, we get a sequence \(\{Q_n\}_{n \in \mathbb{N}_0} \) in \(E(K^{mr,w}) \) with \([m]^nQ_n = Q_0 \). We set \(q_n := \pi(Q_n) \). By using the Lättès diagram we get \(f^n(q_n) = q_0 \) for all \(n \in \mathbb{N}_0 \). As \(Q_n \) is in \(E(K^{mr,w}) \), \(q_n \) is in \(K^{mr,w} \). So we have found a sequence \(\{q_n\}_{n \in \mathbb{N}_0} \) in \(K^{mr,w} \), such that

\[
\hat{h}_f(q_n) = \left(\frac{1}{m^2} \right)^n \hat{h}_f(q_0) \to 0
\]

(see Definition 1.1). This proves, that the Bogomolov Property cannot hold in this case. \(\square \)

References

[BG] Bombieri, E.; Gubler, W.: *Heights in Diophantine geometry*, New Mathematical Monographs: 4; Cambridge University Press (2006)

[BGR] Bosch, S.; Güntzer, U.; Remmert, R.: *Non-Archipedean analysis. A systematic approach to rigid analytic geometry*, Grundl. Math. Wiss., 261; Springer (1984)

[BLR] Bosch, S.; Lütkebohmert, W.; Raynaud, M.: *Néron Models*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 21; Springer (1980)
REFERENCES

[Bo] Bosch, S.: Zur Kohomologietheorie rigid analytischer Räume, Manuscr. Math. 20, 1-27; Springer (1977)

[Ch] Chambert-Loir, A.: Mesure et équidistribution sur les espaces de Berkovich J. Reine Angew. Math. 595, 215-235 (2006)

[Gu98] Gubler, W.: Local heights of subvarieties over non-archimedean fields, J. Reine Angew. Math. 498, 61-113 (1998)

[Gu07] Gubler, W.: The Bogomolov conjecture for totally degenerate abelian varieties, Invent. Math. 169, No.2, 377-400 (2007)

[Gu10] Gubler, W.: Non-archimedean canonical measures on abelian varieties, Compositio Math. 146, 683-730 (2010)

[La] Lang, S.: Fundamentals of Diophantine Geometry; Springer (1983)

[Si07] Silverman, J. H.: The Arithmetic of Dynamical Systems. Graduate Texts in Mathematics; Springer (2007)

[Si99] Silverman, J. H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics; Springer (1999)

[Yu] Yuan, X.: Big line bundles over arithmetic varieties, Invent. Math. 173, No.3, 603-649 (2008)

[Zh] Zhang, S.: Small points and adelic metrics, J. Algebraic Geometry, No.4, 281-300 (1995)

Lukas Pottmeyer, Fachbereich Mathematik, Universität Tübingen, D-72076 Tübingen, lukas.pottmeyer@uni-tuebingen.de