The ins and outs of the caudal nucleus of the solitary tract: An overview of cellular populations and anatomical connections

Marie K. Holt

Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK

Correspondence
Marie K. Holt, University College London, Department of Neuroscience, Physiology and Pharmacology, Gower Street, London WC1E 6BT, UK.
Email: m.holt@ucl.ac.uk

Funding information
British Heart Foundation, Grant/Award Number: FS/IPBSRF/20/27001

Abstract
The body and brain are in constant two-way communication. Driving this communication is a region in the lower brainstem: the dorsal vagal complex. Within the dorsal vagal complex, the caudal nucleus of the solitary tract (cNTS) is a major first stop for incoming information from the body to the brain carried by the vagus nerve. The anatomy of this region makes it ideally positioned to respond to signals of change in both emotional and bodily states. In turn, the cNTS controls the activity of regions throughout the brain that are involved in the control of both behaviour and physiology. This review is intended to help anyone with an interest in the cNTS. First, I provide an overview of the architecture of the cNTS and outline the wide range of neurotransmitters expressed in subsets of neurons in the cNTS. Next, in detail, I discuss the known inputs and outputs of the cNTS and briefly highlight what is known regarding the neurochemical makeup and function of those connections. Then, I discuss one group of cNTS neurons: glucagon-like peptide-1 (GLP-1)-expressing neurons. GLP-1 neurons serve as a good example of a group of cNTS neurons, which receive input from varied sources and have the ability to modulate both behaviour and physiology. Finally, I consider what we might learn about other cNTS neurons from our study of GLP-1 neurons and why it is important to remember that the manipulation of molecularly defined subsets of cNTS neurons is likely to affect physiology and behaviours beyond those monitored in individual experiments.

KEYWORDS
afferent, anatomy, efferent, glucagon-like peptide-1, neuropeptides, nucleus of the solitary tract

1 | INTRODUCTION

Our emotional and physical well-being is carefully monitored by the brain through multimodal pathways. Hormonal input is carried to the brain from the body via the blood, whereas the spinal cord and cranial nerves, including the vagus nerve, carry electrical signals from the periphery to the brain.\(^1,2\) The afferent (sensory) vagus terminates, among other brainstem nuclei, in the dorsal vagal complex in the lower brainstem. The dorsal vagal complex comprises the nucleus of the solitary tract (NTS), the area postrema (AP) and the dorsal motor nucleus of the vagus (DMV) (Figure 1A,B), with the bulk of the vagal input terminating on second-order neurons in the caudal part of the NTS (cNTS).\(^2\) This makes the cNTS anatomically unusual: it receives direct sensory input from the afferent vagus and spinal cord, as well as descending inputs from higher brain regions. This configuration places the cNTS in an ideal position to integrate cognitive information with interoceptive input. Indeed, the cNTS is activated following both interoceptive and psychogenic stimuli.\(^3\) In turn, the cNTS modulates multiple processes...
from autonomic outflow to motivated behaviour.1,4 Unfortunately, much of the anatomical organization uncovered in the last century is often forgotten in contemporary neuroscience reports, perhaps as a result of the lack of easily accessible, recent overviews. This review is intended to provide exactly that: an overview of the efferent and afferent connections of the NTS, as well as the current state of knowledge regarding the neuropeptidergic cell types residing within the cNTS.

First, I briefly describe the architecture of the cNTS and its resident cell types. Then, I review the anatomical configuration of the inputs and outputs of the cNTS. Finally, as perhaps the best studied peptidergic population of cNTS neurons, glucagon-like peptide-1 (GLP-1)-expressing neurons will be used as an example of second-order neurons, which receive substantial vagal sensory input, as well as input from both forebrain and hindbrain regions. This review will not cover the function of the cNTS in detail, and readers are referred to excellent available reviews on the subject.1,3–6

An important note on species is warranted: this review covers only preclinical data, most of which was collected in rodents. Indeed, most of the anatomical data that will be discussed were collected in rat. A small number of tracing and cytoarchitecture studies have been conducted in rabbit,7 hamster8 and cat,9 and, more recently, presumably as a result of the increased popularity of the mouse as an experimental model, reports of the anatomy of the mouse NTS have been added to the literature.10–12 For clarity and to emphasize the idea that not all species can be reasonably assumed to be anatomically and functionally identical, I will indicate the species that the data were collected from.

\section{NTS Architecture}

In rodents, the NTS is traditionally, if somewhat arbitrarily, divided into two parts, sometimes three,13 based on their relative rostrocaudal location.10,14 The rostral or gustatory part of the NTS buds dorsolaterally from the spinal trigeminal nucleus to the level of the closure of the fourth ventricle and formation of the AP. It is termed gustatory, because this part of the NTS is the first relay in the central taste neuraxis. The caudal or visceral NTS, which receives vagal afferent input originating in the viscera, extends from the opening of the fourth ventricle to the
FIGURE 2 Known peptidergic cell types of the caudal nucleus of the solitary tract (cNTS). Cell types with approximate locations based on published studies referenced in Table 1. Highlighted in green are cell types that have been manipulated chemically or optogenetically to investigate their function as indicated in Table 1. There is conflicting evidence on the location of cocaine- and amphetamine-regulated transcript (CART) neurons, possibly as a result of species differences. For details, see Table 1. Abbreviations are indicated in Table 2.

junction between the spinal cord and the lower brainstem (Figure 1C). In coronal sections, the NTS is oval in appearance at more rostral levels (Figure 1D) but takes a triangular shape at the level of the AP, with the DMV situated at its ventral border. At its rostral extreme, the NTS is at its most lateral and gradually moves more medial until it finally surrounds the midline at the very caudal end of the nucleus (Figure 1D).

In rodents, the NTS can be subdivided into a number of subnuclei based on the location, size, shape, density, and staining intensity of neuronal cell bodies following Nissl, silver or Golgi staining. Following this approach, Ganchrow et al. thoroughly mapped the cytoarchitecture of the mouse NTS and compared this to previous reports in hamster and rat, which were largely similar. Because Ganchrow et al. provides such an excellent and exhaustive description of the subnuclear organization of the rodent NTS, this particular aspect of NTS anatomy will not be described in detail here. However, for convenience Figure 1E presents an overview of the subnuclear division of the cNTS.

3 | CELL TYPES OF THE CNTS

The cNTS is cellularly heterogeneous with a multitude of neuropeptides (Figure 2), small-molecule neurotransmitters and receptors expressed in distinct or overlapping neuronal populations (Table 1). Not all have been investigated in detail beyond demonstrating their expression in the cNTS and only few have been selectively targeted to study their physiological roles (Figure 2, Table 1). In the last decade, advances in chemo- and optogenetic manipulation have made it possible to selectively activate or inhibit cells in an anatomically and genetically defined manner. These advances will not be discussed in detail here, but are highlighted with appropriate references in Figure 2 and Table 1. It is important to note that not all of the listed molecules have been confirmed to be expressed exclusively by neurons. Indeed, astrocytes express both leptin receptors and GLP-1 receptors.

3.1 | NTS glia in the modulation of information flow in the NTS

In addition to neurons, astrocytes contribute heavily to the function of the cNTS. Based on immunolabelling for glial-fibrillary protein (GFAP), astrocytes appear to be more densely packed in the rat NTS than in the mouse NTS, although, to this author’s knowledge, a direct, quantitative comparison has not been made. Of note, in both species, the densest expression of GFAP is found in the border region between the AP and the cNTS, where astrocytes may regulate transport of molecules across the border and thus modulate the flow of information from the blood into the NTS. In addition to forming a selectively permeable diffusion barrier between the AP and the NTS, astrocytes in the rat NTS form part of tripartite synapses, specialized synaptic arrangements consisting of a synaptic cleft containing the pre- and postsynaptic terminals covered by astrocytic processes. Interestingly, NTS astrocytes are activated in response to vagal stimulation in rats and NTS gliotrasmion modulates the synaptic transmission of second-order NTS neurons in rats.

In addition to astrocytes, microglia and oligodendrocytes express neurotransmitter receptors and microglial in the NTS are altered in response to varied stimuli, including removal of vagal input (rat), obesity (rat), and hypoxia (mouse). A detailed discussion of NTS glial function is beyond the scope of this review, and readers are referred to a recent comprehensive review on the subject.

4 | AFFERENT CONNECTIONS OF THE CNTS

Input to the cNTS arises from widespread regions in the brain, as well as peripheral sites (Figure 3), comprising an anatomical organization that is reminiscent of the significant variety of physiological and psychogenic stimuli, which modulate the activity of the NTS. These inputs have been reported predominantly in rats, although studies using mice, rabbits, and cats are also included here. Studies mapping the monosynaptic input to the NTS take on two of two forms: (1) injection of an anterograde tracer (typically phaseolus vulgaris leucoagglutinin [PHA-L], choleratoxin subunit B [CTb], or adeno-associated virus [AAV]) from a hypothesized source of input to the NTS and subsequent validation of the presence of labelled axons in the NTS or (2) injection of a retrograde tracer (typically wheatgerm agglutinin-horseradish peroxidase [WGA-HRP], fluorogold, or a retrograde AAV) into the NTS and subsequent mapping of retrogradely labelled brain regions. In addition, a few studies have mapped inputs to molecular defined subpopulations of cNTS neurons using cell-type specific mono- and polysynaptic retrograde tracing.
Neuronal population	Detected in species	Response to cell type-specific manipulations	References
Neuropeptides			
Bombesin-like peptides (BB)	Mouse, rat		15,16
Cocaine- and amphetamine-regulated transcript (CART)	Mouse, rat		17-20
Cholecystokinin-8 (CCK)	Mouse, rat	Chemogenetic activation (whole population): food intake; conditioned place avoidance; condition taste avoidance	19,21-27
		Optogenetic activation (fibres in parabrachial nucleus [PBN]): food intake; real-time place avoidance	
		Optogenetic activation (fibres in paraventricular nucleus [PVN]): food intake; real-time place preference	
Corticotropin-releasing hormone (CRH)	Mouse, rat	Chemogenetic activation: novel flavour preference	27,30,31
Dynorphin (Dyn)	Rat		27,30
Enkephalin (Enk)	Rat, mouse	Chemogenetic activation: food intake; heart rate; locomotion; glucose production; drug reward; Chemogenetic inhibition: fast-refeed; stress-induced hypophagia	35-44
Galanin (Gal)	Rat, mouse		26,32-34
Glucagon-like peptide-1 (GLP1)	Mouse, rat	Optogenetic activation (whole population and fibres in PVN): food intake; Chemogenetic activation: food intake; heart rate; locomotion; glucose production; drug reward; Chemogenetic inhibition: fast-refeed; stress-induced hypophagia	35-44
Neuratin (Nnat)	Rat		45
Neuropeptide Y (NPY)	Mouse, rat	Chemogenetic activation: food intake	19,27,46,47
Neurotensin (Nts)	Mouse, rat		31,48,49
Nesfatin-1 (Nfat)	Mouse, rat		19,50-53
Proopiomelanocortin (POMC)	Mouse, rat	Optogenetic activation: heart rate; breathing; Chemogenetic activation: nociception; food intake; Ablation: food intake	17,54-57
Prolactin-releasing peptide (PrRP)	Mouse, rat	Chemogenetic activation: food intake; Chemogenetic inhibition: fast-refeed; Ablation: diet-induced obesity	19,58-60
Tachykinin/substance P (Tac)	Rat		27,61
Small molecules			
GABA	Mouse, rat	Chemogenetic activation: blood glucose	62-65
Glutamate	Mouse, rat	Optogenetic activation: renal and phrenic sympathetic nerve activity	66
Noradrenaline (NA)	Mouse, rat	Chemogenetic activation (NET-Cre; DBH-Cre): food intake; Optogenetic activation (DBH-cre; fibres in PBN): food intake; Optogenetic activation (TH-cre; fibres in Arc): food intake	22,47,67
Intracellular proteins			
Brain-derived neurotrophic factor (BDNF)	Mouse, rat		19,68,69
11β-hydroxysteroid dehydrogenase 2 (HSD2)	Mouse	Ablation: sodium appetite; Chemogenetic activation: sodium appetite; Optogenetic activation (fibres in bed nucleus of the stria terminalis): sodium appetite	70
Phox2B	Mouse, rat	Chemogenetic activation: breathing; food intake; Ablation: breathing	71,72
Neuronal nitric oxide synthase (nNOS)	Rat		73
4.1 | Sensory inputs to the cNTS

The cNTS is directly sensitive to blood-borne signals, including changes in glucose, leptin and angiotensin II. In addition, visceral sensory information is transmitted via the afferent vagus and glossopharyngeal nerves to the cNTS where glutamatergic terminals synapse onto second-order neurons. Peripheral chemo- and baroreceptors sense changes in blood pressure, as well as the pH, temperature and composition of the arterial blood. This information is relayed by the afferent glossopharyngeal and vagus nerves to the NTS. In addition to the continuous monitoring of cardiovascular and pulmonary function, the cNTS receives information from the abdominal viscera via the afferent vagus nerve. Vagal sensory neurons express a range of receptors and signalling molecules, recently mapped in detail by Bai et al. using RNA sequencing data. Ultimately, this transcriptomic and anatomical specificity facilitates appropriate information flow from the viscera to the cNTS.

4.2 | Central inputs to the cNTS

Central inputs to the NTS, which appear to be similar in rats and mouse, are depicted in Figure 3 alongside efferent outputs. Below, I
describe, in some detail, our current state of knowledge of the central inputs to the NTS. Of note, few studies have been able to limit the injection of retrograde tracers to the cNTS without significant leakage to more rostral areas or to the AP and DMV. This limitation makes it difficult to conclude with certainty which regions provide input to the cNTS specifically. In addition, many retrograde tracers, including the widely used CTb, are taken up by fibres of passage. In the case of the NTS, this could mean any descending projections to the spinal cord not terminating in the NTS may take up and transport CTb.

For a few brain regions, those limitations have been addressed by combining anterograde and retrograde tracing.

4.2.1 Telencephalic inputs

The insular, prelimbic and infralimbic cortices all provide significant bilateral input to the NTS in mice and rats. In rats, infralimbic neurons directly synapse onto catecholaminergic neurons in the NTS. These descending inputs appear to mediate cortical modulation of sympathetic and parasympathetic activity and, as such, may represent a functional link between emotional processing and autonomic outflow.

Subcortically, several regions of the extended amygdala innervate the NTS, including the central amygdala and bed nucleus of the stria terminalis of rat and mouse. Interestingly, all of these extended amygdala inputs appear to be exclusively ipsilateral. Most input from the central amygdala arises from the medial subdivision in both rats and mice, although the lateral subnucleus also provides some synaptic input. In the rat cNTS, central amygdala inputs terminate mostly in the medial and dorsomedial subnuclei and not only are predominantly GABAergic, but also may release a range of neuropeptides.
of neuropeptides as co-transmitters, including nociceptin in mice,111 and somatostatin, neurotensin and vasoactive intestinal polypeptide in rats.112

4.2.2 | Diencephalic inputs

Arguably the densest central input to the NTS arises from the paraventricular nucleus of the hypothalamus (PVN), evidenced in rats11,105,113 and mice.11,12 This input is bilateral,11 primarily originates in the more caudal parts of the PVN114 (rat) and appears to represent a distinct parvocellular population, which does not overlap with neuroendocrine magnocellular PVN neurons in mice11 and rats.115 In rats, 60% of NTS-projecting PVN neurons express the stress neuropeptide corticotropin-releasing hormone (CRH),114 and PVN CRH neurons project directly to the NTS in mice.116 Evidence from rats suggests that a much smaller population (6%-10%) of NTS-projecting PVN neurons express oxytocin,114,117 PVN axons in the NTS express oxytocin,118 and electrical stimulation of the PVN leads to release of oxytocin into the dorsal vagal complex.119 In mice, PVN oxytocin cells do not provide significant direct synaptic input to the cNTS, although oxytocinergic fibres are clearly visible in the NTS of mice.120 Finally, a subset of NTS-projecting PVN neurons express the melanocortin 4 receptor.121 Removal of this descending input from the PVN leads to the development of obesity,122 although data from mice suggests this pathway has no effect on ad libitum feeding.123 One possibility is that stress, a powerful stimulus to suppress eating in rodents, activates NTS-projecting PVN neurons in mice,12 which in turn mediate stress-induced activation of cNTS neurons, including those that express catecholamines in rats.124

Other hypothalamic inputs include the arcuate nucleus, the dorsomedial hypothalamus, and the lateral hypothalamus in both mice11,12 and rats.11,105 In addition, neurons in the ventromedial hypothalamus may innervate the NTS in mice,125 although not every comprehensive study reported input from the dorsomedial and ventromedial hypothalamus in mouse.11,12 Interestingly, descending input from the arcuate nucleus does not appear to arise from agouti-related peptide or pro-opiomelanocortin (POMC) neurons in mouse,93 while in rat, evidence suggest a small population of POMC neurons do project to the dorsal vagal complex.126

Finally, the paraventricular nucleus provides heavy, unilateral input to the NTS in mice11,12 and rats,11 a pathway that may mediate fear-induced changes in autonomic outflow,127 although studies of this particular nucleus are scarce. Indeed, the phenotype of these NTS-projecting paraventricular nucleus neurons remains unknown, but may include tachykinin-expressing,128 CRH-expressing129 and/or glutamatergic neurons.127

4.2.3 | Mesencephalic and hindbrain inputs

The periaqueductal grey, Edinger–Westphal nucleus, parabrachial nucleus, Kölliker-Fuse nucleus and Barrington’s nucleus all provide direct input to the NTS in rats and mice.11,12,130,121 Parabrachial input appears to mainly arise from glutamatergic, non-calcitonin-gene related peptide neurons in mice,132 whereas tachykinin-expressing neurons in the periaqueductal grey may be the source of input to the NTS in rats.133,134 We recently found that NTS-projecting Barrington’s nucleus neurons are activated in response to acute restraint stress in mice and express the stress neuropeptide CRH,12 supporting the idea that the NTS is engaged following psychogenic stimuli.

Finally, multiple lower brainstem regions provide input to the NTS in the mouse and rat, including the raphe obscurus, the raphe magnus, the reticular nucleus, the parapyramidal regions, the gigantocellular nucleus11,12 and the DMV135 (rats). Interestingly, input from the raphe magnus nucleus appears to partly mediate activation of cNTS neurons in response to interoceptive stressors, including LiCl,136 and 5-hydroxytryptamine signalling in the NTS (arising from either vagal afferents or the raphe nuclei) is an important modulator of central control of autonomic outflow137 and feeding behaviour.138

5 | EFFERENT CONNECTIONS

Far from being a simple reflex station, which relays information from the afferent to the efferent vagus, the cNTS sends projections throughout the subcortical central nervous system, including to many autonomic control centres.139 I was unable to find a comprehensive, analysis of the efferent connections of the mouse NTS based on injection of an anterograde tracer. However, some retrograde tracing in mouse has been reported for individual target regions and the findings from those studies will be included here when relevant. In addition, the anterograde mapping of specific subpopulations of cNTS neurons in transgenic mouse models does provide us with some idea of the outputs of the cNTS in mouse. One example of this type of anterograde tracing was carried out by Shi et al.,140 who mapped long-range GABAergic inputs from the NTS.

5.1 | Circumventricular organs

Neurons in the cNTS send projections to a number of sensory circumventricular organs: the AP,141 the subfornical organ,142 and the vascular organ of laminar terminalis.143 NTS input to the subfornical organ is inhibitory and may relay signals from peripheral baroreceptors in the rat.144

5.2 | Telencephalic projections

Notably, there is no evidence that the cortex or any of the hippocampal regions receive monosynaptic input from NTS neurons. Subcortically, the entire extended amygdala receives input from NTS neurons: The bed nucleus of the stria terminalis, the nucleus accumbens, the medial septum, the substantia innominata and the central amygdala are all synaptic targets of cNTS neurons in the rat.131,143,145,146 At least a subset of NTS inputs to the bed nucleus of
the stria terminalis in mice are GABAergic, suggesting that this pathway is partly inhibitory, although other NTS cell types are known to project to these regions as well, including GLP-1 neurons in mouse and rat and catecholaminergic neurons in rat, but not NTS POMC neurons in mouse.

5.3 | Diencephalic projections

Diencephalic targets include multiple regions in the hypothalamus. The PVN is a particularly densely innervated region in rats and mice, and the input is at least partly made up of GLP-1 (mouse and rat), catecholaminergic (rat), GABAergic (mouse) and POMC fibres (mouse). Other hypothalamic targets include the dorsomedial hypothalamus, the lateral hypothalamus and the arcuate nucleus. These inputs are at least partly made up of GLP-1 and catecholaminergic projections in the rat and GABAergic and GLP-1 in the mouse. Additional diencephalic targets include the paraventricular thalamus and zona incerta in rat.

5.4 | Mesencephalic and pontine projections

In the midbrain, the ventral tegmental area, the periaqueductal grey all receive input from the NTS in the rat. Further caudal, the Kölliker-Fuse nucleus, parabrachial nucleus, locus coeruleus and Barrington’s nucleus are targets of NTS efferents in rats. Efferents to the parabrachial nucleus are assumed to drive suppression in appetite, and, in the mouse, include input from POMC, GLP-1, CCK and noradrenergic neurons. In the very caudal pons, the rostroventrolateral medulla (cat and DMV (cat and rat) make up a subset of the brain-wide autonomic control centres, which receive dense projections from the NTS. Finally, the neighbouring AP receives light input from the cNTS in the cat.

5.5 | Spinal connections

In cats, the NTS projects to the thoracic ventral horn, the intermediolateral spinal column and phrenic motor neurons in the cervical spinal cord, suggesting some direct modulation of sympathetic outflow through spinal projections. In mice, the trigeminal spinal nucleus and the principle sensory nucleus of the trigeminal receive dense input from GABAergic NTS neurons.

6 | GLP-1 Neurons: A Widely-Projecting Second-Order Population with Diverse Modulatory Roles

Although it is essential that we understand the anatomical connections of the cNTS as a whole, this nucleus is transcriptionally heterogeneous and individual subpopulations of neurons are unlikely to serve identical functions or receive identical inputs (Table 1). In recent decades transgenic mouse models and viral gene transfer tools have facilitated investigations of the anatomy and function of anatomically and molecularly defined cell populations. Transgenic mice expressing Cre recombinase (Cre) under cell-type specific promoters allow selective targeting using cre-dependent viruses. As an example, Cre transgenic mice express Cre under the control of the glucagon (Gcg) promoter. Because GLP-1 is also expressed under the Gcg promoter, this results in Cre expression selectively in GLP-1 neurons in the lower brainstem and olfactory bulb (in addition to glucagon- and GLP-1-expressing cells in the periphery). Injection of a cre-dependent AAV into the dorsal vagal complex of these mice leads to expression of a desired transgene, often a chemogenetic receptor, an anterograde tracer or channelrhodopsin-2 for functional and/or anatomical investigations.

Using these techniques, GLP-1 neurons in the caudal brainstem are now relatively well understood, anatomically, cellurally and functionally. Here, I provide a very brief overview of their function and anatomy. Interested readers are referred to recent reviews on the subject for a more comprehensive discussion.

6.1 | GLP-1 Neurons: Distribution and Innervation

Within the cNTS, GLP-1 is expressed predominantly in glutamatergic neurons in the commissural, medial and ventral subnuclei in mice and rats and GLP-1 neurons innervate widespread autonomic control centres, as well as nuclei involved in modulation of motivated behaviour in rats and mice. Including the rostroventrolateral medulla, the PVN, dorsomedial hypothalamus and the bed nucleus of the stria terminalis. Whether specialized subpopulations of GLP-1 neurons innervate distinct targets is still unknown, although classic tracing studies, demonstrating that 30%-40% of GLP-1 neurons innervate distinct targets, would suggest some level of collateralization. Use of retrogradely transported AAVs to target GLP-1 neurons based on their projection target could reveal the extent of their collateralization. If anatomically distinct subpopulations exist, is it likely these are also functionally distinct? A previous finding indicating that stimulation of GLP-1 receptors in the central amygdala increases anxiety-like behaviour, whereas injection into the PVN decreases food intake without affecting anxiety-like behaviour, would suggest at least some separation of functions. However, it does not necessarily follow that specialized subpopulations exist. GLP-1 neurons could simply modulate a range of diverse processes simultaneously. Future studies selectively manipulating subsets of GLP-1 neurons based on their innervation targets should address these questions.

6.2 | Monosynaptic Inputs to GLP-1 Neurons

Until recently, mapping the monosynaptic inputs to molecularly defined cell populations was not possible. The recent development of Envelope-A pseudotyped, G-deleted Rabies virus (EnvA-ΔG-RABV)
encoding GFP or mCherry represented a significant step forward.155 In combination with Cre-expressing transgenic mice or rats, this genetically modified rabies virus is efficient, exclusively retrograde, strictly monosynaptic and cell-type specific.155 Using such a EnvA-ΔG-RABV we recently mapped the monosynaptic inputs to GLP-1 neurons in the mouse cNTS15 and found that GLP-1 neurons receive dense monosynaptic input from many of the same regions that provide input to the cNTS as a whole. Notable exceptions included cortical regions, the arcuate nucleus, the ventral tegmental area and the linear raphe nucleus.12 We also identified polysynaptic inputs, including the hippocampal formation, the arcuate nucleus and the paraventricular thalamus.12

6.3 | Does anatomy predict function?

By mapping the inputs and outputs of subpopulations of NTS neurons we improve our understanding of their physiological functions with the interesting question often being: how do subpopulations differ anatomically? Unfortunately, we still have only few whole-brain maps of molecularly defined, anatomically distinct subpopulations of NTS neurons: POMC and GLP-1 neurons.12,93 Based on these maps, we now know that the monosynaptic inputs to cNTS GLP-1 and POMC neurons are similar with a few notable exceptions: There appears to be some, albeit limited, monosynaptic input from cortical regions to POMC neurons in the mouse,93 and, although the lateral subnucleus of the central amygdala provides the majority of the input the GLP-1 neurons,12 POMC neurons receive their input from the medial subnucleus.93 Considering that the lateral and medial subnuclei of the central amygdala have distinct inputs, outputs and expression profiles,110,156 this could suggest POMC and GLP-1 neurons form part of distinct brain circuits. Mapping these circuits is one step, although understanding their role in the modulation of behaviour and physiology is hampered by our difficulty in specifically manipulating subsets of neurons that provide direct synaptic inputs to molecularly defined cell types. The limiting factor has been the toxicity of rabies virus, leading to cell death within weeks of infection.157 Further improvements in the toxicity of rabies viruses have been reported and may allow specific populations of input neurons to be manipulated for behavioural testing.157

Regarding efferent connections, cNTS GLP-1 neuron projections appear to be significantly more widespread than those of NTS POMC neurons in the mouse.93 Although GLP-1 neurons innervate multiple regions in the extended amygdala and hypothalamus,35,143 the only forebrain regions to receive input from cNTS POMC neurons are the PVN, the PSTh, and the medial subnucleus of the central amygdala.93 It will be interesting to determine whether these differences in inputs and outputs are matched by differences in function. Although both populations decrease food intake, an important functional difference appears to be their effect on heart rate: optogenetic activation of cNTS POMC neurons leads to a decrease in heart rate,54 but chemogenetic activation of GLP-1 neurons increases heart rate.37 Interestingly, both GLP-1 and POMC neurons are activated by solitary tract stimulation and CCK,158-160 suggesting at least some overlap in the stimuli that engage them.

6.4 | The importance of remembering the bigger picture in the study of single subpopulations of cNTS neurons

Peptidergic cNTS neurons, and perhaps GLP-1 neurons in particular,92,102 are exquisitely well-positioned to integrate interoceptive or psychogenic signals. It is their anatomical configuration that enables this integration of multimodal signals of physical and mental well-being. In turn, GLP-1 neurons have the ability to impact truly varied processes both autonomic and behavioural (Table 1) and they are activated by both interoceptive (LiCl, gastric distension, large volume of food intake) and psychogenic stimuli (stress).92 It is unknown whether individual GLP-1 neurons drive one, some, or all of these functions (i.e., whether functional subpopulations of GLP-1 neurons exist). Given that GLP-1 neurons likely collateralize significantly (see above on distribution and innervation GLP-1 neurons) we might speculate that individual GLP-1 neurons drive multiple processes simultaneously. Importantly, it is likely that GLP-1 neurons are not the only cNTS neurons with a very broad anatomical and functional profile (Table 1) and, when investigating the function of these other populations, we should keep in mind that they are not unlikely to modulate multiple downstream targets and, as a result, multiple physiological and behavioural processes simultaneously, as discussed for GLP-1 neurons above. Examples of this ability to modulate multiple processes are provided in Table 1. Subpopulations of neurons do not work in isolation in the living organism and their artificial activation through chemo- or optogenetics is likely to have impact beyond the single output measured in most experiments. The cNTS is perhaps particularly sensitive to this as a result of its position as a link between sensory and emotional inputs, as well as its ability to modulate both behaviour and physiology.

7 | CONCLUSIONS AND FUTURE DIRECTIONS

The afferent inputs to the NTS make it ideally suited to respond to both psychogenic and interoceptive stimuli, whereas its efferent connections facilitate widespread modulation of autonomic function and motivated behaviour. However, the specific circuits and cell types contributing to the functions of the NTS are still not fully understood. Future studies should take advantage of recently developed retrograde AAVs and the targeting of ChR2-expressing terminals to selectively manipulate neurons, based on not only their neurochemical phenotype, but also their projection targets. These circuit- and cell type-specific studies will, in combination with previously published classic knife-cut and toxin studies, provide new insights into the functions of subpopulations of cNTS neurons.

ACKNOWLEDGEMENTS

M. K. Holt is supported by a BHF Postdoctoral Fellowship (FS/IPBSRF/20/27001).
REFERENCES

1. Maniscalco JW, Rinaman L. Vagal interoceptive modulation of motivated behavior. *Physiology (Bethesda)*. 2018;33(2):151-167. doi: 10.1152/physiologyonline.00036.2017

2. Berthoud HR, Albaugh VL, Neuhuber WL. Gut-brain communication and obesity: understanding functions of the vagus nerve. *J Clin Invest*. 2021;131(10):e143770. doi: 10.1172/JCI143770

3. Maniscalco JW, Rinaman L. Interoceptive modulation of neuroendocrine, emotional, and hypothalamic responses to stress. *Physiol Behav*. 2017;176:195-206. doi: 10.1016/j.physbeh.2017.01.027

4. Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. *Cell Metab*. 2012;16(3):296-309. doi: 10.1016/j.cmet.2012.06.015

5. MacDonald AJ, Ellacott KLJ. Astrocytes in the nucleus of the solitary tract: contributions to neural circuits controlling physiology. *Physiol Behav*. 2020;223:112982. doi: 10.1016/j.physbeh.2020.112982

6. Spyer KM, Gourine AV. Chemosensory pathways in the brainstem controlling cardiorespiratory activity. *Philos Trans R Soc Lond B Biol Sci*. 2009;364(1529):2603-2610. doi: 10.1098/rstb.2009.0082

7. Schwaber JS, Kapp BS, Higgins GA, Rapp PR. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. *J Neurosci*. 1982;2(10):1424-1438.

8. Whitehead MC. Neuronal architecture of the nucleus of the solitary tract in the hamster. *J Comp Neurol*. 1988;276(4):547-572. doi: 10.1002/cne.902760409

9. Loewy AD, Burton H. Nuclei of the solitary tract: synaptic inputs to the nucleus of the solitary tract in rats and mice. *Brain Res*. 1990;528(16):2708-2728. doi: 10.1016/0006-8993(90)90183-Z

10. Ganchrow D, Ganchrow JR, Cicchini V, et al. Nucleus of the solitary tract of the rat. *J Comp Neurol*. 1990;293(4):552-570. doi: 10.1002/cne.902930409

11. Gasparini S, Howland JM, Thatcher AJ, Geerling JC. Central afferents to the nucleus of the solitary tract. *J Comp Neurol*. 2019;39(49):9767-9781. doi: 10.1210/ene.2019-1198

12. Holt MK, Pomeranz LE, Beier KT, Reimann F, Gribble FM, Rinaman L. Synaptic inputs to the mouse dorsal vagal complex and its resident preganglionic neurons. *J Neurosci*. 2019;39(49):9767-9781. doi: 10.1523/JNEUROSCI.2145-19.2019

13. Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. *J Comp Neurol*. 1990;293(4):540-580. doi: 10.1002/cne.902930404

14. Saha S, Batten TF, Henderson Z. A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: a combined anterograde tracing and electron microscopic immunohistochemical study. *Neuroscience*. 2000;99(4):613-626.

15. Lynn RB, Hyde TM, Cooperman RR, Miselis RR. Distribution of bombesin-like immunoreactivity in the nucleus of the solitary tract and dorsal motor nucleus of the rat and human: colocalization with tyrosine hydroxylase. *J Comp Neurol*. 1996;369(4):552-570. doi: 10.1002/(SICI)1096-9861(19960610)369:4<552::AID-CNE6>3.0.CO;2-3

16. Li P, Janczewski WA, Yackle K, et al. The peptidergic circuit for sighing. *Nature*. 2016;530(7590):293-297. doi: 10.1038/nature16964

17. Ellacott KLJ, Halatchev IG, Cone RD. Characterization of leptin-responsive neurons in the caudal brainstem. *Endocrinology*. 2006;147(7):3190-3195. doi: 10.1210/en.2005-0877

18. Fekete C, Wittmann G, Liposits Z, Lechan RM. Origin of cocaine- and amphetamine-regulated transcript (CART)-immunoreactive innervation of the hypothalamic paraventricular nucleus. *J Comp Neurol*. 2004;469(3):340-350. doi: 10.1002/cne.10999

19. Garfield AS, Patterson C, Skora S, et al. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract. *Endocrinology*. 2012;153(10):4600-4607. doi: 10.1210/en.2012-1282

20. Zheng H, Patterson LM, Berthoud HR. CART in the dorsal vagal complex: sources of immunoreactivity and effects on Fos expression and food intake. *Brain Res*. 2002;957(2):298-310. doi: 10.1016/S0006-8993(02)020360-5

21. Roman CW, Sloat SR, Palmiter RD. A tale of two circuits: CCKNTS neuron stimulation controls appetite and induces opposing motivational states by projections to distinct brain regions. *Neuroscience*. 2017;358:316-324. doi: 10.1016/j.neuroscience.2017.06.049

22. Roman CW, Derkach VA, Palmiter RD. Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. *Nat Commun*. 2016;7:11905. doi: 10.1038/ncomms11905

23. Cheng W, Gonzalez I, Pan W, et al. Calcitonin receptor neurons in the mouse nucleus tractus solitarius control energy balance via the non-aversive suppression of feeding. *Cell Metab*. 2020;32(1-2):301-312.e5. doi: 10.1016/j.cmet.2019.12.012

24. D’Agostino G, Lyons DJ, Cristiano C, et al. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamic neuropeptide. *Elife*. 2016;5:e12225. doi: 10.7554/eLife.12225

25. Edwards CM, Strother J, Zheng H, Rinaman L. Amphetamine-induced activation of neurons within the rat nucleus of the solitary tract. *Physiol Behav*. 2019;204:355-363. doi: 10.1016/j.physbeh.2019.02.040

26. Herbert H, Saper CB. Cholecystokinin-, galanin-, and corticotropin-releasing factor-like immunoreactive projections from the nucleus of the solitary tract to the parabrachial nucleus in the rat. *J Comp Neurol*. 1990;293(4):581-598. doi: 10.1002/cne.902930405

27. Riche D, De Pommery J, Menetrey D. Neuropeptides and catecholamines in efferent projections of the nuclei of the solitary tract in the rat. *J Comp Neurol*. 1990;293(3):399-424. doi: 10.1002/cne.90293036

28. Merchenthaler I. Corticotropin releasing factor (CRF)-like immunoreactivity in the rat central nervous system. *Extrahypothalamic distribution. Peptides*. 1984;5:53-69. doi: 10.1016/0196-9781(84)90265-1

29. Peng J, Long B, Yuan J, et al. A quantitative analysis of the distribution of CRH neurons in whole mouse brain. *Front Neuroanat*. 2017;11:11. doi: 10.3389/fnana.2017.00063

30. Lee HS, Basbaum AI. Immunoreactive pre-enkephalin and prodynorphin products are differentially distributed within the nucleus of the solitary tract of the rat. *J Comp Neurol*. 1984;230(4):614-619. doi: 10.1002/cne.902300409

31. Zardetto-Smith AM, Gray TS. Organization of peptidergic and catecholaminergic efferents from the nucleus of the solitary tract to the rat amygdala. *Brain Res Bull*. 1990;25(4):875-887. doi: 10.1016/0361-9230(90)90183-Z

32. Do J, Chang Z, Sekerkova G, McCrimmon DR, Martina M. A leptin-mediated neural mechanism linking breathing to metabolism. *Cell Rep*. 2020;33(6):108358. doi: 10.1016/j.celrep.2020.108358
140. Shi MY, Ding LF, Guo YH, Cheng YX, Bi GQ, Lau PM. Long-range GABAergic projections from the nucleus of the solitary tract. Mol Brain. 2021;14(1):38. doi:10.1186/s13041-021-00751-4

141. Shapiro RE, Miselis RR. The central neural connections of the area postrema of the rat. J Comp Neurol. 1985;234(3):344-364. doi: 10.1002/cne.902340306

142. Zardetto-Smith AM, Gray TS. A direct neural projection from the nucleus of the solitary tract to the subfornical organ in the rat. Neurosci Lett. 1987;80(2):163-166. doi:10.1016/0304-3940(87)90647-1

143. Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18-34. doi: 10.1016/j.brainres.2010.03.059

144. Shioya M, Tanaka J. Inputs from the nucleus of the solitary tract to the paraventricular nucleus in the rat. Brain Res. 1989;483(1):192-195. doi:10.1016/0006-8993(89)90054-1

145. Gerfen CR, Sawchenko PE. An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: Immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res. 1984;290(2):219-238. doi:10.1016/0006-8993(84)90940-5

146. Bienkowski MS, Rinaman L. Common and distinct neural inputs to the medial central nucleus of the amygdala and anterior ventrolateral bed nucleus of stria terminals in rats. Brain Struct Funct. 2013;218(1):187-208. doi:10.1007/s00429-012-0393-6

147. Horst GJT, De Boer P, Luiten PGM, Van Willigen JD. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience. 1989;31(3):785-797. doi:10.1016/0306-4522(89)90441-7

148. Palmiter RD. The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci. 2018;41(5):280-293. doi:10.1016/j.tins.2018.03.007

149. Norgren R. Projections from the nucleus of the solitary tract in the rat. Neuroscience. 1978;3(2):207-218. doi:10.1016/0306-4522(78)90102-1

150. Parker HE, Adriaenssens A, Rogers G, et al. Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. Diabetes. 2012;55:2445-2455. doi:10.2337/db12-02585-2

151. Trapp S, Brierley DI. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment. Br J Pharmacol. 2022;179:557-570. doi:10.1111/bph.15638

152. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology. 2012;153:647-658. doi:10.1210/en.2011-1443

153. Llewellyn-Smith U, Marina N, Manton RN, Reimann F, Gribble FM, Trapp S. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons. Neuroscience. 2015;284:872-887. doi:10.1016/j.neuroscience.2014.10.043

154. Kinzig KP, D’Alessio DA, Herman JP, et al. CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci. 2003;23(15):6163-6170.

155. Wall NR, Wickersham IR, Cetin A, De La Parra M, Callaway EM. Mono-synaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc Natl Acad Sci U S A. 2010;107(50):21848-21853. doi:10.1073/pnas.1011756107

156. McCullough KM, Morrison FG, Hartmann J, Carlezon WA, Ressler KJ. Quantified coexpression analysis of central amygdala subpopulations. eNeuro. 2018;5:ENEURO.0010-18.2018. doi:10.1523/ENEURO.0010-18.2018

157. Chatterjee S, Sullivan HA, Mac Lennan BJ, et al. Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat Neurosci. 2018;21(4):638-646. doi:10.1038/s41593-018-0091-7

158. Hisadome K, Reimann F, Gribble FM, Trapp S. CCK stimulation of GLP-1 neurons involves α1-adrenoceptor-mediated increase in glutamate synaptic inputs. Diabetes. 2011;60:2701-2709. doi:10.2337/db11-0489

159. Hisadome K, Reimann F, Gribble FM, Trapp S. Leptin directly depolarizes preproglucagon neurons in the nucleus tractus solitarius: electrical properties of glucagon-like peptide 1 neurons. Diabetes. 2010;59:1890-1898. doi:10.2337/db10-0128

160. Appleyard SM, Bailey TW, Doyle MW, et al. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J Neurosci. 2005;25(14):3578-3585. doi:10.1523/JNEUROSCI.4177-04.2005

How to cite this article: Holt MK. The ins and outs of the caudal nucleus of the solitary tract: An overview of cellular populations and anatomical connections. Journal of Neuroendocrinology. 2022;34(6):e13132. doi:10.1111/jne.13132