POLYPHENOLIC DETERMINATION FROM MEDICINAL PLANTS USED IN VETERINARY MEDICINE BY AN UHPLC-LC-MS/MS METHOD

ERZSÉBET VARGA 1, IBOLYA FÜLÖP 2*, LÉNÁRD FARCZÁDI 3, MIRCEA DUMITRU CROITORU 2

The University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Faculty of Pharmacy, 38 Gheorghe Marinescu Street, 540142, Târgu Mureș, Romania
1Department of Pharmacognosy and Phytotherapy,
2Department of Toxicology and Biopharmacy,
3Centre for Advanced Medical and Pharmaceutical Research, Laboratory of Chromatography LC/MS
*corresponding author: fulop.ibolya@umfts.ro

Manuscript received: November 2019

Abstract

Flavonoids and polyphenols are known for positive health effects and are used for their medicinal properties. They are considered functional foods and are widely distributed in plants having an important role in health benefits. In this study, several phenolic compounds have been determined quantitatively from eighteen medicinal plants. Chromatographic separation of analytes was performed using a NUCLEODUR C18 Gravity, 3 µm, 150 x 3 mm column using a mobile phase consisting of 0.2% formic acid in water and methanol with gradient elution and a flow rate of 0.6 mL/min. Detection was performed in multiple reaction monitoring (SRM) mode for chlorogenic acid, caffeic acid, quercitrin, luteolin, quercetin, apigenin, and kaempferol. Plant extracts with methanol and ethanol (70⁰) were prepared. The studied medicinal plants revealed richness in flavonoids and polyphenols. The present study serves as a contribution to the characterization of phenols and flavonoids from medicinal plants traditionally used in human and veterinary medicine.

Keywords: medicinal plants, polyphenols, flavonoids, LC-MS/MS

Introduction

Flavonoids and phenols are widely distributed in plants and play an important role in health-promoting effects, such as: anti-inflammatory effect, antiproliferative activity, reducing the risk of cancer and cardiovascular diseases, skin conditions, mainly based on their spin trapping properties, not only in phytotherapy, but also in veterinary medicine as well [12, 18, 28, 36]. There are many assumptions and a general belief regarding the dietary benefits of these compounds [6]. However, the epidemiological evidence shows that a diet rich in polyphenolics reduces the risk of several illnesses. Polyphenol administration decreases bowel inflammation, gastrointestinal inflammation in animal models [8, 11]. Some medicinal plants rich in polyphenols and with their commercial formulas were experimentally successful in chicken coccidiosis [30]. Many medicinal plants are known to be particularly diverse in their contents of chlorogenic acids [7, 9], kaempferol, and other flavonoids or their glycosides forms [5, 15, 20, 21]. All plants contain significant levels of flavonoids and phenolic acids. Several phenolic compounds have been identified and quantified in medicinal plants [3, 19, 23, 34]. The following plants, such as Achillea millefolium L. (Asteraceae) (yarrow), Agrimonia eupatoria L. (Rosaceae) (agrimony), Allium sativum L. (Alliaceae) (garlic), Arctium lappa L. (Asteraceae) (greater burdock), Artemisia absinthium L. (Asteraceae) (wormwood), Betula pendula...
Roth (Betulaceae) (silver birch), Calendula officinalis L. (Asteraceae) (marigold), Convulvulus arvensis L. (Convulvulaceae) (bindweed), Equisetum arvense L. (Equisetaceae) (horsetail), Hypericum perforatum L. (Hypericaceae) (St John's wort), Lythrum salicaria L. (Lythraceae) (purple loosestrife), Origanum vulgare L. (Lamiaceae) (oregano), Plantaginis lanceolata L. (Plantaginaceae) (narrowleaf plantain), Polygonum aviculare L. (Polygonaceae) (common knotgrass), Potentilla anserina (L.) Rydb. (Rosaceae) (silverweed), Symphytum officinale L. (Boraginaceae) (comfrey), Thymus serpyllum L. (Lamiaceae) (wild thyme), Urtica dioica L. (Urticaceae) (common nettle) are widely used in human and veterinary medicine with similar indications in both fields.

In our study, we identified and quantified flavonoid aglycons (kaempferol, luteolin, quercetin, apigenin), flavonoid glycoside (quercitrin), and phenolic acids (chlorogenic acid, caffeic acid) in the above listed plants using ultra performance liquid chromatography with diode array detector and quadrupole time of flight mass spectrometer (UHPLC-DAD-QTOF-MS).

The aim of this paper is to highlight the polyphenol content of the many medicinal plants used in veterinary medicine with a large effect in many veterinary illnesses.

Materials and Methods

Reagents and apparatus

HPLC grade methanol (Merck, Darmstadt, Germany) and formic acid 98 - 100% (analytical grade, Scharlauf, Barcelona, Spain) were used. A Millipore Direct-Q 3 Water purification system (Millipore - Milford, USA) was used to obtain ultrapure water. Chlorogenic acid, caffeic acid, quercetin, luteolin, quercetin, apigenin and kaempferol analytical standards were purchased from Extrasynthese-SAS (France).

Digital ultrasonic bath (Nahita, China) was used for extracts and filtered using nylon micropore 0.45 µm filters (Roth, Germany). A Perkin-Elmer (Waltham, USA) Flexar FX-10 HPLC system composed of two single pumps with inline degasser, auto-sampler and column thermostat coupled with an AB Sciex (Framingham, USA) QTOF 4600 mass spectrometer was used for analytical separation and detection.

Plant material

Several plants, such as Achillea millefolium L. (aerial parts), Agrimonia eupatoria L. (aerial parts), Allium sativum L. (bulbs), Arctium lappa L. (roots), Artemisia absinthium L. (aerial parts), Betula pendula Roth (leaf), Calendula officinalis L. (flower), Convovulus arvensis L. (aerial parts), Equisetum arvense L. (aerial parts), Hypericum perforatum L. (aerial parts), Lythrum salicaria L. (aerial parts), Origanum vulgare L. (aerial parts), Plantaginis lanceolata L. (leaf), Polygonum bistorta (L.) Samp. (aerial parts), Potentilla anserina (L.) Rydb. (aerial parts), Symphytum officinale L. (roots), Thymus serpyllum L. (aerial parts), Urtica dioica L. (aerial parts) were sampled from the spontaneous flora in Mureș County, Romania, during the summer of 2015. The plants were harvested in July and August and were stored at Larix Com Impex SRL manufacturing company Sovata, Mureș County, Romania.

Extraction procedure

Plant extracts with methanol or ethanol (70%) were prepared. The harvested medicinal plants were ground and 5 g were extracted with 50 mL solvent for 30 minutes in an ultrasonic bath at a temperature of 25°C. Extracts were filtered through filter and diluted to 50 mL solvent in volumetric flasks.

Liquid chromatography tandem mass spectrometry conditions

Chromatographic separation of analytes was performed using a NUCLEODUR C18 Gravity, 3 μm, 150 x 3 mm (Macherey-Nagel) column with a mobile phase consisting of 0.2% formic acid in water and methanol with gradient elution and a flow rate of 0.6 mL/min. Detection was done in multiple reaction monitoring (SRM) mode for chlorogenic acid, caffeic acid, quercetin, luteolin, quercetin, apigenin and kaempferol, monitoring the following transitions: chlorogenic acid: ion 191.10 m/z derived from ion 353.08 m/z at a collision energy of 20 V; caffeic acid: ion 135.08 m/z derived from ion 179.00 m/z at a collision energy of 20 V; quercetin: sum of ions 300.10 m/z and 301.10 m/z derived from ion 447.03 m/z at a collision energy of 30 V; luteolin: ion 133.06 m/z derived from ion 285.00 m/z at a collision energy of 40 V; quercetin: ion 151.04 m/z derived from ion 300.99 m/z at a collision energy of 30 V; apigenin: ion 117.07 m/z derived from ion 269.01 m/z at a collision energy of 40 V; kaempferol: ion 93.06 m/z derived from ion 285.03 m/z at a collision energy of 41 V.

The proposed structures and negative ion MS data of the studied components are presented in Figure 1. Ionization of analytes was performed using negative electrospray ionization mode. Ionization parameters used for the ionization source were: Spray voltage: 2500 V, vaporizer temperature: 350°C, Ion Gas Source 1: 25, Ion Gas Source 2: 25, Curtain Gas: 10, Declustering Potential: 100, Ion Release Delay: 30, Ion Release Width: 15. Sample run-time was 30 minutes.

Standard solutions

Stock solutions of each analyte having concentrations of 100 µg/mL each were prepared in methanol. These stock solutions were used to obtain a mixture containing a concentration of 10 µg/mL of each analyte, also in methanol. Furthermore, stock solutions with concentrations of 0.1 (lower limit of quantification - LLOQ), 0.25, 0.5, 1 and 10 µg/mL (the mixture itself) of each analyte were prepared using this mix. Calibration curve standard solutions were prepared diluting 100 µL of each stock solution (concentrations 0.1 - 10 µg/mL of each analyte) with 900 µL purified water.
Samples preparation
A volume of 100 µL of each sample and 900 µL purified water in Eppendorf tubes. The mixtures were centrifuged at 10000 rpm for 10 minutes, filtered using 0.45 µm nylon syringe filters. Solutions were transferred to HPLC vials and 5 µL of the samples were injected into the LC-MS system. Each sample from the medicinal plants extracts with methanol or ethanol (70%) used as solvents were diluted as the standards.

Results and Discussion
Method validation
Specificity. Due to the lack of a bank sample, the specificity of the method is assured by the MS/MS technique, which allows the analysis of complex mixtures, since we used a specific fragment derived from the parent compounds as identification method. A total ion chromatogram of a standard solution (5 µg/mL) is shown in Figure 2.

Figure 1.
The proposed structures and negative ion MS data of the studied components

Figure 2.
A total ion chromatogram of a 5 µg/mL standard solution (1-chlorogenic acid, 2-caffeic acid, 3-quercitrin, 4-quercetin, 5-luteolin, 6-kaempferol, 7-apigenin)
Table I

Parameters of the calibration curves and lower limit of quantifications

Compound	Regression equation ($y = ax + b$)	Correlation coefficient	Range of linearity (µg/mL)	LLOQ (µg/mL)
	slope (a) and intercept (b)			
Apigenin	$a = 22943$	$b = 4840$	0.9996	0.11 - 11.0
Kaempferol	$a = 1229$	$b = -168$	0.9998	0.10 - 10.2
Luteolin	$a = 19984$	$b = 350$	0.9995	0.10 - 10.8
Quercetin	$a = 17893$	$b = 406$	0.9999	0.10 - 8.73
Quercitrin	$a = 39529$	$b = 1726$	0.9999	0.10 - 10.2
Chlorogenic acid	$a = 29061$	$b = 1467$	0.9999	0.10 - 10.8
Caffeic acid	$a = 41724$	$b = 5217$	0.9999	0.11 - 11.0

Linearity and LLOQ. Table I shows the parameters of the calibration curves and the LLOQs for all studied compounds. The LLOQ is set at a signal to noise ratio of 10:1. The precision of the LLOQ was acceptable with a CV% < 15%.

Precision. The precision of the method was tested using the spiked sample technique at three concentration levels and was expressed in CV%. The results are presented in Table II.

Compound	Spiked concentration (µg/mL)	CV%
Apigenin	0.550	8.8
	0.275	10.2
	0.110	17.8
Kaempferol	0.514	9.6
	0.257	18.1
	0.102	10.3
Luteolin	0.436	17.7
	0.218	9.0
	0.087	19.0
Quercetin	0.540	17.6
	0.270	16.3
	0.108	14.8
Quercitrin	0.514	2.6
	0.257	1.9
	0.102	5.0
Chlorogenic acid	0.540	5.0
	0.271	19.1
	0.108	17.4
Caffeic acid	0.550	3.4
	0.275	10.3
	0.110	18.9

An extracted ion chromatogram of the Millefoli herba methanolic extract is shown in Figure 3.

An extracted ion chromatogram of the Millefoli herba methanolic extract

The amount of polyphenols and flavonoids found in the studied plant materials are presented in Table III and Table IV.

Table III

The amount (µg/g) of the studied compounds in the tested plants (using methanol as extraction solvent)

Plant	Apigenin	Kaempferol	Quercetin	Luteolin	Quercitrin	Chlorogenic acid	Caffeic acid
Achillea millefolium	104.24 ±	16.13 ±	BLQ*	18.69 ±	6512.60 ±	365.56 ±	18.9
(a.p.)	50.44	1.57		35.78	1454.21		
Agrimonia eupatoria	22.93 ±	16.71 ±	BLQ	9.63 ±	740.20 ±	10.51 ±	234.88 ±
(a.p.)	0.81	3.82		2.16	1901.79	3.31	48.13
Allium sativum (bulbs)	23.69 ±	16.71 ±	BLQ	16.81 ±	6512.60 ±	365.56 ±	18.9
Arctium lappa (root)	BLD	16.81 ±	BLQ	26.21 ±	1454.21		
Artemisia absinthium (a.p.)	BLD	22.93 ±	BLQ	9.63 ±	740.20 ±	10.51 ±	234.88 ±

1132
In recent few studies involving some medicinal plants, such as aerial parts of Achillea millefolium for caffeic acid, luteolin and apigenin [14, 35], bulb of Allium sativum for chlorogenic acid, caffeic acid, caffeic acid, luteolin, quercetin and apigenin [11, 12], Betula pendula leaves for chlorogenic acid [13], and aerial parts of lyophilized Polygonum aviculare for quercetin, quercetin and kaempferol [17, 25] from methanolic extracts had higher concentrations of polyphenols and flavonoids than our Romanian methanolic extract samples. In another studies on aerial parts of Agrimonia eupatoria with chlorogenic acid [32], roots of Arctium lappa with chlorogenic acid, caffeic acid, quercetin, quercetin and luteolin for chlorogenic acid content [32], aerial parts of Convulvulus arvensis for chlorogenic acid and caffeic acid [16], aerial parts of Hypericum perforatum for quercetin and quercitrin [1, 24], chlorogenic acid from aerial parts of Lythrum salicaria [2], aerial parts of Origanum vulgare with caffeic acid, chlorogenic acid, luteolin, apigenin, quercetin and kaempferol [31], aerial parts of Potentilla anserina with kaempferol, quercetin and caffeic acid [33] and the roots of Symphytum officinale with chlorogenic acid, caffeic acid, luteolin, quercetin, kaempferol and apigenin [29] had lower concentrations of polyphenols and flavonoids than in our Romanian samples.

Plant	Apigenin (µg/g)	Kaempferol (µg/g)	Quercetin (µg/g)	Luteolin (µg/g)	Quercitrin (µg/g)	Chlorogenic acid (µg/g)	Caffeic acid (µg/g)
Betula pendula (leaf)	207.1 ± 71.78	27.35 ± 3.14	124.02 ± 22.58	BLQ	131.12 ± 38.28	1443.64 ± 424.36	91.14 ± 22.25
Calendula officinalis (flower)	BLQ	24.99 ± 6.51	50.70 ± 5.38	25.86 ± 7.03	23.20 ± 4.58	2638.51 ± 326.81	325.56 ± 86.59
Convulvulus arvensis (a.p.)	16.83 ± 1.27	18.89 ± 4.18	BLQ	BLQ	BLQ	2377.70 ± 605.50	309.66 ± 49.46
Equisetum arvense (a.p.)	15.32 ± 0.24	16.35 ± 1.45	BLQ	BLQ	BLQ	145.07 ± 18.05	395.91 ± 7.92
Hypericum perforatum (a.p.)	47.03 ± 5.96	386.76 ± 35.80	5771.86 ± 1075.22	221.58 ± 4.74	3717.98 ± 60.88	1210.32 ± 99.02	40.65 ± 1.27
Lythrum salicaria (a.p.)	BLD	16.64 ± 1.17	BLQ	12.79 ± 4.83	535.89 ± 182.29	35.39 ± 2.63	20.10 ± 29.16
Origanum vulgare (a.p.)	70.67 ± 22.46	24.43 ± 0.75	BLQ	25.02 ± 46.46	92.55 ± 30.56	348.22 ± 22.81	402.52 ± 31.17
Plantaginis lanceolata (leaf)	26.14 ± 6.84	32.17 ± 1.43	BLQ	BLQ	BLQ	237.99 ± 22.56	56.88 ± 12.88
Polygonum aviculare (a.p.)	13.74 ± 2.80	19.13 ± 1.85	BLD	BLQ	147.35 ± 23.07	114.21 ± 12.88	120.52 ± 31.17
Potentilla anserina (a.p.)	15.94 ± 1.09	45.10 ± 2.40	71.06 ± 16.40	13.11 ± 2.47	829.83 ± 40.79	65.86 ± 11.10	114.21 ± 12.88
Symphytum officinale (roots)	13.78 ± 3.94	19.78 ± 0.98	BLQ	BLQ	BLQ	90.53 ± 4.84	286.91 ± 56.18
Thymus serpyllum (a.p.)	28.45 ± 0.52	17.29 ± 0.90	13.86 ± 2.73	BLQ	BLQ	160.29 ± 5.68	230.64 ± 35.74
Urtica dioica (leaf)	14.96 ± 0.83	29.20 ± 2.31	BLQ	16.83 ± 1.10	3569.69 ± 106.13	200.32 ± 29.16	186.75 ± 56.18

Table IV

Plant	Apigenin (µg/g)	Kaempferol (µg/g)	Quercetin (µg/g)	Luteolin (µg/g)	Quercitrin (µg/g)	Chlorogenic acid (µg/g)	Caffeic acid (µg/g)
Finally, some papers revealed similar or appropriate concentration values to our results, like aerial parts of *Artemisia absinthium* for caffeic acid [22], aerial parts of *Equisetum arvense* for chlorogenic acid (except for caffeic acid with lower concentrations than in Romanian samples) [26], aerial parts of *Thymus serpyllum* [4] for caffeic-chlorogenic acid, apigenin and quercetin from methanolic extracts. Caffeic acid from leaves of *Urtica dioica* showed similar concentration with the Romanian *Urticae* leaf concentrations, whereas flavonoids such as kaempferol and quercetin were not detectable. However, in our samples with methanolic extracts these compounds were present [27]. The caffeic acid from leaves of *Plantago major* in ethanolic extracts 26% was not detectable according to Meinhart *et al.* similarly to our Romanian methanolic extracts from leaves of *Plantaginis lanceolata* [22].

Regarding the differences between extraction efficiency of the two solvents used, a high variability of the extracted polyphenol and flavonoid amounts was observed: neither the type of the drug nor the used solvent explains the highest extracted polyphenol and/or flavonoid. Statistically, no significant differences were observed between the two sets of data using the Wilcoxon matched paired; two-tailed test at 95% confidence interval and p = 0.05 significance level. The observed differences in flavonoid concentration are determined by the solvents used as well as by the matrix. The high variability in flavonoid content in the studied plants can be explained by the different extractability for these active ingredients dependent on the solvent used and the complexity of the sample matrix.

Conclusions

The results of our study show that the developed UHPLC-DAD-QTOF-MS/MS method is a fast and suitable method for the determination of polyphenolic profiles of medicinal plants. Using methanolic extracts, we determined high concentrations of chlorogenic acid from aerial parts of *Achillea millefolium*, flower of *Calendula officinalis*, aerial parts of *Convolvulus arvensis*, aerial parts of *Hypericum perforatum*, aerial parts of *Origanum vulgare*, leaf of *Plantaginis lanceolata* and aerial parts of *Thymus serpyllum*. Caffeic acid was in higher concentration in methanolic extracts from leaves of *Betula pendula*, flower of *Calendula officinalis*, aerial parts of *Lythrum salicaria*, aerial parts of *Origanum vulgare*, aerial parts of *Thymus serpyllum*. Flavonoid aglycon concentrations were in higher in methanolic extracts of aerial parts of *Agrimonia eupatoria*, aerial parts of *Origanum vulgare* and aerial parts of *Potentilla anserina*. In some cases, ethanolic extraction is more effective for flavonoid aglycons compared with methanol, like in cases of aerial parts of *Achillea millefolium*, bulbs of *Allium sativum*, roots of *Arctium lappa*, flower of *Calendula officinalis*, aerial parts of *Hypericum perforatum*. Therefore, these constituents explain the richness of medicinal plants in flavonoids and polyphenolics. The present study serves as a contribution to the characterization of phenolics and flavonoids from medicinal plants traditionally used in veterinary medicine.

Acknowledgement

This work was supported by the University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș and SC Promedivet SRL, under internal research grant number 17972/07.12.2016.

Conflict of interest

The authors declare no conflict of interest.

References

1. Bagdonaitė E, Martonfi P, Repcăk M, Labokas J, Variation in concentrations of major bioactive compounds in *Hypericum perforatum* L. from Lithuania. *Ind Crop Prod.*, 2012; 35(1): 302-308.
2. Bencsik T, Comparative histological, phytochemical, microbiological, and pharmacological characterization of some *Lythrum salicaria* L. populations [dissertation]. Pécs: University of Pécs, 2014.
3. Bonta RK, Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). *J Pharmaceut Analys.*, 2017; 7(6): 349-364.
4. Boros B, Jakabova S, Dornyei A, Horvath Gy, Pfihar Zs, Kilar F, Felinger A, Determination of polyphenolic compounds by liquid chromatography–mass spectrometry in *Thymus* species. *J Chromatogr A*, 2010; 1217: 7972-7980.
5. Brito A, Ramirez JE, Areche C, Sepúlveda B, Simárgiotis MJ, UPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in northern Chile. *Molecules*, 2014; 19: 17400-17421.
6. Campa C, Rakotomalala JJ, De Kochko A, Hamon S, Chlorogenic acids: diversity in green beans of wild coffee species. *Adv Plant Physiol.*, 2008; 10: 421–437.
7. Clifford MN, Kuhnner WZ, Profiling the chlorogenic acids of Aster by HPLC-MS. *Phytochem Analys.*, 2006; 17(6): 384-393.
8. Combet E, Polyphenols, inflammation and colorectal cancer. *The Global Fruit & Veg Newsletter.*, 2016; 8: 3.
9. Epure A, Oniga I, Benedec D, Hangau D, Gheldiu A-M, Toiu A, Vlase L, Chemical analysis and antioxidant activity of some Rooibos tea products. *Farmacia*, 2019; 67(6): 963-966.
10. FERRACANE R, Graziani G, Gallo M, Fogliano V, RITIENI A, Metabolic profile of the bioactive compounds of burdock (*Arctium lappa*) seeds, roots and leaves. *J Pharmaceut Biomed Anal.*, 2010; 51(2): 399–404.
11. FOGARASI E, CRITORU MD, FÜLÖP I, FALIBOGA L, VLASE L, JUNG A, HOHMAN J, BALABANOVA B, IVANOVA-PETROPOULOS V, MITREV S, MUNTEAN DL, Chemical properties of several...
red wines available on Romanian and also on the international market. Farmacia, 2018; 66(2): 309-315.

12. Fratianni F, Ombra MN, Cozzolino A, Riccardi R, Spigno P, Tremonte P, Coppola R, Nazzaro F. Phenolic constituents, antioxidant, antimicrobial and anti-inflammatory activities of different endemic Italian varieties of garlic (Allium sativum L.). J Funct Foods, 2016; 21: 240-248.

13. Germano MP, Cacciola F, Donato P, Dugo P, Certo G, D’Angelo V, MondoLlo, Rapisarda A. Betula pendula leaves: Polyphenolic characterization and potential innovative use in skin whitening products. Fitoterapia, 2012; 83(5): 877-882.

14. Gradolatto A, Canivenc-Lavier MC, Basly JP, Siess MH, Teyssier C. Metabolism of apigenin by rat liver phase I and phase II enzymes and by isolated perfused rat liver. Drug Metab Dispos. 2004; 32(1): 58-65.

15. Han L, Liu E, Kojo A, Zhao J, Li W, Zhang Y, Wang T, Gao X. Qualitative and quantitative analysis of Eclipta prostrata L. by LC/MS. Sci World J., 2015; 2015: 98098: 1-16.

16. Hegad MM, Ghareib HR. Methanol Extract Potential of Field Bindweed (Convolvulus arvensis L.) for Wheat Growth Enhancement. Int J Botany, 2010; 6(30): 334-340.

17. Huang Y, Sun HY, Qin XL, Li YJ, Liao SG, Gong ZP, Lu Y, Wang YL, Wang AM, Lan YY, Zheng L, A UPLC-MS/MS method for simultaneous determination of free and total forms of a phenolic acid and two flavonoids in rat plasma and its application to comparative pharmacokinetic studies of Polygonum capitatum extract in rats. Molecules, 2017; 22: E353: 1-13.

18. Jang GH, Kim HW, Lee MK, Jeong SY, Bak AR, Lee DJ, Kim JB. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J Biol Sci., 2018; 25(8): 1622-1631.

19. Janeiro P, Silva J, Bento J, Marques A, Sousa S, Marques L, Santos I. Simultaneous determination of kaempferide, kaempferol and isorhamnetin in rat plasma by ultra-high performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study. J Braz Chem Soc., 2018; 29(3): 535-542.

20. Karatoprak GS, Paşayeva L, Sefak EK, Göger F, Tugay O, Koşar M. Chemical composition and anti-inflammatory activity of Kitaibelis balansae Boiss. Farmacia, 2019; 67(6): 1054-1059.

21. Luciana A, Tiberi, Janete H, Yariwaké, Ndjoko K, Hostettmann K. On-line LC/UV/MS analysis of flavonoids in the three apple varieties most widely cultivated in Brazil. J Braz Chem Soc., 2007; 18(1): 100-105.

22. Meinhart AD, Damin FM, Caldeirão L, da Silveira TFF, Filho JT, Godoy HT. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res Int., 2017; 99(1): 522-530.

23. Mradu G, Saumyakanti S, Sohini M, Arup M. HPLC profiles of standard phenolic compounds present in medicinal plants. J I P P R., 2012; 4(3): 162-167.

24. Napoli E, Siracusa L, Ruberto G, Carrubba A, Lazzara S, Speciale A, Cimino F, Saija A, Cristani M. Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species - A comparative study. Phytochemistry, 2018; 152: 162-173.

25. Nugroho A, Kim EJ, Choi JS, Park HJ. Simultaneous quantification and peroxynitrite-scavenging activities of flavonoids in Polygonum aviculare L. Herb. J Pharmaceut Biomed., 2014; 89: 93-98.

26. Oniszczuk A, Podgórski R, Oniszczuk T, Zakiewicz-Sobczak W, Nowak R, Waksmundzka-Hajnos M. Extraction methods for the determination of phenolic compounds from Equisetum arvense L. Herb. Ind Crop Prod., 2014; 61: 377-381.

27. Orčić D, Francišković M, Bekvalac K, Svirčev E, Beara I, Lesjak M, Mimica-Dukić N. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem., 2014; 143: 48-53.

28. Paret S, Alechuga E, Nguyen O, Saurina J, Hernandez-Cassou S, Puignou L. Ultra-high pressure liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry for the determination of polyphenolic profiles in the characterization and classification of cranberry-based pharmaceutical preparations and natural extracts. Anal Methods UK, 2016; 8(22): 4363-4378.

29. Paun G, Neagu E, Litescu SC, Rotinberg P, Radu GL. Application of membrane processes for the concentration of Symphytum officinale and Geranium robertianum extracts to obtain compounds with high anti-oxidative activity. J Serb Chem Soc., 2012; 77(9): 1191-1203.

30. Pop LM, Varga E, Coroian M, Nedişan ME, Mircean V, Dumitrache MO, Farcăză L, Fülpö I, Croitoru MD, Fazakas M, Gőrke A. Efficacy of a commercial herbal formula in chicken experimental coccidiosis. Parasites and Vectors, 2019; 12: 343: 1-9.

31. Skendi A, Irakli M, Chatzopoulou P. Analysis of phenolic compounds in Greek plants of Lamiales family by HPLC. J App Res Med Anim Plants, 2017; 6: 62-69.

32. Sytar O, Hemmerich I, Zivcak M, Brestic M. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J Biol Sci., 2018; 25(4): 631-641.

33. Tomovic MT, Cupar SM, Popovc-Milenkovic MT, Ljubic BT, Kostic MJ, Jankovic SM. Antioxidant and anti-inflammatory activity of Potentilla reptans L. Acta Pol Pharm., 2015; 72(1): 137-145.

34. Wang J, Mahajani B, Jackson SL, Yanga Y, Chen M, Ferreirac EM, Linb Y, Yana Y. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Metab Eng., 2017; 44: 89-99.

35. Willems JL, Khamis MM, Saeid WM, Purves RW, Katselis G, Low NH, El-Aneed A. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal Chim Acta, 2016; 933: 164-74: 1-26.

36. Wojdylo A, Oszmianski J, Czerny R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem., 2007; 105(3): 940-949.