Na$_3$MgB$_{37}$Si$_9$: an icosahedral B$_{12}$ cluster framework containing \{Si$_8$\} units

Haruhiko Morito,a* Takuji Ikeda,b Yukari Katsurac and Hisanori Yamaned

aInstitute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan, bResearch Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology, 4-2-1, Nigatake, Miyagino-ku, Sendai 983-8551, Japan, cNational Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan, and dInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. *Correspondence e-mail: haruhiko.morito.b5@tohoku.ac.jp

Single crystals of a novel sodium–magnesium boride silicide, Na$_3$MgB$_{37}$Si$_9$ [$a = 10.1630$ (3) Å, $c = 16.5742$ (6) Å, space group $R3m$ (No. 166)], were synthesized by heating a mixture of Na, Si and crystalline B with B$_2$O$_3$ flux in Mg vapor at 1373 K. The Mg atoms in the title compound are located at an interstitial site of the Dy$_2.1$B$_{37}$Si$_9$-type structure with an occupancy of 0.5. The (001) layers of B$_{12}$ icosahedra stack along the c-axis direction with shifting in the $[-a/3, b/3, c/3]$ direction. A three-dimensional framework structure of the layers is formed via B—Si bonds and \{Si$_8$\} units of [Si$_4$]$_3$—Si—Si—[Si$_4$].

1. Chemical context

Boron-rich compounds composed of B$_{12}$ icosahedral clusters are attracting attention as thermoelectric materials because of their low thermal conductivity resulting from their complicated crystal structures (Cahill et al., 1977). In our previous study, a novel ternary borosilicide, Na$_8$B$_{74.5}$Si$_{17.5}$, was synthesized, and its crystal structure (Morito et al., 2010) and electronic structure measured using soft X-ray spectrometry (Terauchi et al., 2018), have been reported. This compound has a three-dimensional framework structure with layers composed of B$_{12}$ icosahedral clusters and Si chains in the channels of the B$_{12}$ clusters. During the investigation of this compound, a new crystalline phase was synthesized in which the stacking sequence of the B$_{12}$ cluster layers differed from that of Na$_8$B$_{74.5}$Si$_{17.5}$. The composition analysis revealed that the new phase contained a small amount of Mg derived from an impurity in the starting material of amorphous B powder. Single crystals of this phase were prepared in the present study by heating a starting mixture of Na, crystalline B, a flux of B$_2$O$_3$, with Mg vapor, and the crystal structure was determined using single-crystal X-ray diffraction.

2. Structural commentary

The crystal structure of the new phase of composition Na$_3$MgB$_{37}$Si$_9$ is trigonal (space group $R3m$, No. 166), and the hexagonal lattice constants are $a = 10.1630$ (3) Å and $c = 16.5742$ (6) Å. The structure is composed of B$_{12}$ icosahedral clusters: the B–B distances of the 30 distinct bonds in the cluster are in the range of 1.791 (3)–1.843 (5) Å and the average distance is 1.811 Å (Table 1). The B$_{12}$ icosahedral clusters are connected by a B$_2$–B$_2$ bond [1.761 (5) Å] on the...
Table 1
Selected geometric parameters (Å, °).

Bond	Length/Angle
Na1—B2’	2.793 (2)
Na1—B1	2.811 (2)
Na1—Si2	2.8621 (4)
Na1—B4’	2.9065 (16)
Mg1—B2ii	2.333 (3)
B1—B3iii	1.791 (3)
B1—B2’	1.798 (3)
Si2—Si3	2.3951 (9)
Mg1—Si1	2.062 (3)
Si2—Si3	2.082 (3)
B1—Si1	2.027 (2)
Si2—Si3	2.043 (2)

Si3x—Si3—Si2x 104.62 (4) Si2x—Si3—Si2xii 113.86 (3)

Symmetry codes: (i) x, y, z; (ii) x, −y, z; (iii) −x, −y, z; (iv) x, −y, z; (v) x, −y, z; (vi) x, y, z; (vii) x, y, z; (viii) x, −y, −z; (x) x, y, z; (xi) y −z, −x + z; (xii) x, −y, z; (xiii) −x, −y, z; (xiv) x, y, z; (xv) −x, −y, z; (xvi) −x, y, z; (xvii) x, y, z; (xviii) x, −y, z; (xix) −x, −y, z; (xx) −x, −y, z; (xxi) x, y, z; (xxii) x, −y, −z; (xxiii) x, y, z; (xxiv) x, −y, z; (xxv) x, y, z; (xxvi) x, −y, z; (xxvii) x, y, z; (xxviii) x, −y, z; (xxix) −x, −y, z; (xxx) −x, −y, z.

(001) plane and form layers that stack along the c axis with a sequence of ABCABC by shifts of [−a/3, b/3, c/3] (Figs. 1 and 2).

Six B12 units in the layers surround [Si6] units of composition [Si21]−Si3−Si3−[Si20]. The bond lengths of 2.304 (3) Å for Si3−Si3 and 2.3951 (9) Å for Si2−Si3 are comparable with the bond length in crystalline silicon (2.35 Å). The bond angles of Si2−Si3−Si2 and Si2−Si3−Si3 are 113.86 (3)° and 104.62 (4)°, respectively, which are distorted from the regular tetrahedral bond angle of 109.47°. The Si2−B1 distance is 2.043 (2) Å, which is close to the Si−B distances (1.973–2.027 Å) found in β-silicon boride, SiB3 (Salvador et al. 2003).

The framework structure of B12 icosahedra and [Si6] units of the title compound has also been reported in the structures of Mg3B90Si6C (Ludwig et al. 2013), RE1−xB12Si3.3−x (RE = Y, Gd–Lu) (0 ≤ x ≤ 0.5, δ ~ 0.3) (Zhang et al. 2003) and RE1−xB12SiC (RE = Y, Gd–Lu) (Ludwig et al. 2013) with the same space group of R3m. The [Si6] units with Si2−B4 bonds [2.082 (3) Å] and Si1/B5−Si1/B5 pairs that bind to the B atoms at B3 connect the B12 layers of Na3MgB2Si3 (Fig. 1). Because the Si1−Si1 distance of 1.460 (10) Å is short for an Si−Si bond and the B5—B5 distance 2.47 (4) Å is long for a B—B bond, it was concluded that disordered pairs of Si1−B5 and B5−Si1 [B−Si = 1.96 (2) Å] are statistically present with equal occupancies. Similar disordered Si/B−Si/B pairs have been reported in Dy2B37Si9 (Zhang et al. 2003). Instead of Si/B−Si/B pairs (Ludwig et al. 2013), Mg6B90Si6C contains SiC−Si/C pairs (Si/C occupancy 0.507/0.493, Si−C length = 1.881 Å).

The Na1 site in the title compound is located around the [Si6] unit between the B12 cluster layers. The Na1−Si2 distance is 2.8620 (4) Å and the Na1−B1 and Na1−B2 distances are 2.811 (2) and 2.793 (2) Å, respectively. These distances are almost the same as the Na−Si distance of Na3Si4 [2.878 (3) Å; Morito et al. 2015] and Na−B distance of NaB13 (2.798 Å; Naslain & Kasper, 1970). The Mg1 atom is situated above and below the [Si6] unit along the c-axis direction with an occupancy of 0.5. The Mg1−Si3 and Mg1−B2 distances are 2.403 (4) Å and 2.333 (3) Å, respectively, which are close to the Mg−Si (2.436 Å) and Mg−B distances (2.353 Å) in MgB12Si2 (Ludwig & Hillebrecht, 2006). The Na1−Mg1 distance in the title compound is 3.0389 (9) Å, which is close to the Na−Mg distance (3.120 Å) reported in Na4Mg4Sn3 (Yamada et al. 2015). The site corresponding to the location of Mg1 in the title compound does not exist in Mg3B90Si6C (Ludwig et al. 2013), RE1−xB12Si3.3−x (RE = Y, Gd–Lu) (0 ≤ x ≤ 0.5, δ ~ 0.3) (Zhang et al. 2003) and RE1−xB12SiC (RE = Y, Gd–Lu) (Ludwig et al. 2013).

The number of electrons provided from Na and Mg to the framework of B7Si3 is five in Na3MgB7Si3. In related compounds, the Mg atom in Mg6B90Si6C and the Dy atom in Dy2B37Si9 (Dy2.1B37Si9) provide six and 6.3 electrons, respectively, and approximately six electrons are supplied from RE in RE1−xB12Si3.3−x (RE = Y, Gd–Lu) (0 ≤ x ≤ 0.5, δ ~ 0.3) and RE1−xB12SiC (RE = Y, Gd–Lu). The lattice constants and unit-cell volume of Mg3B90Si6C are a = 10.0793 Å, c = 16.372 Å, and V = 1400.4 Å³ (Ludwig et al. 2013).
2013), those of $RE_{1-x}B_{12}Si_{35-x,y}$ ($RE = Y, Gd–Lu$) ($0 \leq x \leq 0.5, \delta \sim 0.3$) are $a = 10.046–10.095$ Å, $c = 16.298–16.467$ Å, and $V = 1429–1454$ Å3 (Zhang et al. 2003) and those of $RE_{1-x}B_{36}Si_{9}C$ ($RE = Y, Gd–Lu$) are $a = 10.000–10.096$ Å, $c = 16.225–16.454$ Å, and $V = 1405–1452$ Å3 (Ludwig et al. 2013). Thus, it may be seen that the lattice constants of $Na_3MgB_{37}Si_9$ are larger than those of related compounds and the unit-cell volume of $Na_3MgB_{37}Si_9$ is approximately 2% larger than the maximum unit-cell volume of 1454 Å3 for the $RE_{1-x}B_{12}Si_{35-x,y}$ series with $RE = Yb$ (Zhang et al. 2003). This increase in the lattice constants could be related to the occupancy of the Mg1 site, which is not found in other compounds.

Table 2 compares the interatomic distances for $Na_3MgB_{37}Si_9$, $Dy_2B_2Si_6$, and MgB_2Si_5C.

Table 2

	$Na_3MgB_{37}Si_9$	$Dy_2B_2Si_6$	MgB_2Si_5C
a	10.1630 (3)	10.078	10.079
c	16.5742 (6)	16.465	16.372
V	1482.54 (10)	1448.3	1440.4
$B – B_{av}$ of B_{12} icosahedron	1.811	1.805	1.794
$Si_3 – Si_3$	2.304 (3)	2.343	2.341
$Si_2 – Si_2$	2.3951 (9)	2.366	2.362
$Si_1 – B_{5/C}$	1.96 (2)	1.84	1.88
$Si_2 – B_4$	2.082 (3)	2.032	2.035
$Si_3 – B_4$	2.079 (2)	2.032	2.035
$Na_1 – B_4$	2.8620 (4)	2.835	2.832

Notes:

(a) Zhang et al. (2003); (b) Ludwig et al. (2013).

3. Database survey

In space group $R3m$, the framework structures of B_{12} icosahedral clusters containing Si_8 units similar to $Na_3MgB_{37}Si_9$ have been reported for $MgB_{36}Si_9C$ (Ludwig et al. 2013), $RE_{1-x}B_{12}Si_{35-x,y}$ ($RE = Y, Gd–Lu$) ($0 \leq x \leq 0.5, \delta \sim 0.3$) (Zhang et al. 2013) and $RE_{1-x}B_{36}Si_9C$ ($RE = Y, Gd–Lu$) (Ludwig et al. 2013).

4. Synthesis and crystallization

Na metal pieces (purity 99.95%, Nippon Soda Co., Ltd.), crystalline B powder (99.9%, FUJIFILM Wako Pure Chemical Industries Co., Ltd.) and Si powder (99.999%, Kojundo Chemical Lab. Co., Ltd.) were weighed in a BN crucible, which was stacked on another BN crucible containing 30 mg of Mg powder (99.9%, rare metallic), and these crucibles were encapsulated in a stainless steel container (SUS316, outer diameter = 12.7 mm, inner diameter = 8.5 mm, length 80 mm) with Ar gas. The container was heated at 1373 K for 24 h using an electric furnace. After cooling, the crucible was taken out from the reaction container, and any Na and NaSi remaining in the crucible were reacted and removed with 2-propanol and ethanol. Then, the sample was washed with pure water to remove water-soluble compounds such as sodium borate and alkoxide produced by the reaction of Na and alcohol to leave black plates of the title compound. An electron probe microanalyzer (EPMA; JEOL Ltd., JXA-8200) was used to analyze the composition of the obtained single crystal as Na.
5.49 (8), Mg 2.37 (7), B 74.8 (7), Si 17.3 (4) atom %, which is nearly matched by Na$_3$MgB$_{37}$Si$_9$ (Na 6.0, Mg 2.0, B 74.0, Si 18.0 atom %). Other elements such as O were not found.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The occupancy of the Mg1 site in the analysis of the initial model was 0.506 (10), whereas the occupancy of the B5 and Si1 sites was 0.519 (15) and 0.481, respectively. These occupancies were fixed at 0.5, and the composition formula was determined to be Na$_3$MgB$_{37}$Si$_9$. The crystal structure was refined by considering (001) twinning, which reduced the R-value (all data) from 0.0651 to 0.0380.

Acknowledgements

We thank T. Kamaya for his help with the EPMA analysis.

Funding information

Funding for this research was provided by: the Japan Science and Technology Agency (JST) CREST (grant No. JPMJCR19J1).

References

Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA.

Cahill, D. G., Fischer, H. E., Watson, S. K., Pohl, R. O. & Slack, G. A. (1989). Phys. Rev. B, 40, 3254–3260.

Ludwig, T. & Hillebrecht, H. (2006). J. Solid State Chem. 179, 1623–1629.

Ludwig, T., Pediaditakis, A., Sagawe, V. & Hillebrecht, H. (2013). J. Solid State Chem. 204, 113–122.

Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.

Morito, H., Eck, B., Dronskowski, R. & Yamane, H. (2010). Dalton Trans. 39, 10197–10202.

Morito, H., Momma, K. & Yamane, H. (2015). J. Alloys Compd. 623, 473–479.

Naslain, R. & Kasper, J. S. (1970). J. Solid State Chem. 1, 150–151.

Salvador, J. R., Bic, D., Mahanti, S. D. & Kanatzidis, M. G. (2003). Angew. Chem. Int. Ed. 42, 1929–1932.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Terauchi, M., Morito, H., Yamane, H., Koshiya, S. & Kimoto, K. (2018). Microscopy, 67, i72–i77.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yamada, T., Ishiyama, R. & Yamane, H. (2015). Jpn. J. Appl. Phys. 54, 07J, C04.

Zhang, F. X., Xu, F. F., Mori, T., Liu, Q. L. & Tanaka, T. (2003). J. Solid State Chem. 170, 75–81.
Na$_3$MgB$_{37}$Si$_9$: an icosahedral B$_{12}$ cluster framework containing \{Si$_8$\} units

Haruhiko Morito, Takuji Ikeda, Yukari Katsura and Hisanori Yamane

Computing details

Data collection: Instrument Service (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

3 sodium 1 magnesium 37 boron 9 silicon

Crystal data

Na$_3$MgB$_{37}$Si$_9$

$M_r = 746.06$

Trigonal, $R\overline{3}m$

$a = 10.1630 (3)$ Å

c = 16.5742 (6) Å

$V = 1482.54 (10)$ Å3

$Z = 3$

$F(000) = 1068$

$D_v = 2.507$ Mg m$^{-3}$

Mo Kα radiation, $\lambda = 0.71073$ Å

Cell parameters from 6032 reflections

$\theta = 3.7$–41.2°

$\mu = 0.72$ mm$^{-1}$

$T = 298$ K

Plate, black

0.20 × 0.16 × 0.02 mm

Data collection

Bruker, D8 QUEST
diffractometer

Detector resolution: 10 pixels mm$^{-1}$

ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2018)

$T_{\text{min}} = 0.911$, $T_{\text{max}} = 1.000$

8352 measured reflections

562 independent reflections

540 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.035$

$wR(F^2) = 0.076$

$S = 1.31$

562 reflections

57 parameters

0 restraints

$w = 1/[\sigma^2(F_o^2) + 11.3797P]$

where $P = (F_o^2 + 2F_c^2)/3$

($\Delta\sigma$)max < 0.001

$\Delta\rho_{\text{max}} = 0.58$ e Å$^{-3}$

$\Delta\rho_{\text{min}} = -0.53$ e Å$^{-3}$

Extinction correction: SHELXL2014/7

(Sheldrick 2015),

$Fc^2 = kFc[1+0.001xFc^2\lambda^2/\sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.0030 (6)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃	Occ. (<1)
Na1	0.500	0.000	0.000	0.0179(5)						
Mg1	0.000	0.000	0.2855(2)	0.0074(7)						0.5
B1	0.3002(3)	0.0065(2)	0.11511(13)	0.0064(4)						
B2	0.0027(3)	0.1787(3)	0.19610(13)	0.0072(4)						
B3	0.7591(2)	0.2409(2)	0.2315(2)	0.0116(7)						
B4	0.47839(19)	0.52161(19)	0.39743(19)	0.0079(6)						
B5	0.0000	0.0000	0.0744(12)	0.026(5)						0.5
Si1	0.0000	0.0000	0.0441(3)	0.0103(9)						0.5
Si2	0.46499(5)	0.53501(5)	0.27264(5)	0.0056(2)						
Si3	0.0000	0.0000	0.43049(10)	0.0120(3)						

Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Na1	0.0137(7)	0.0265(11)	0.0178(8)	0.0132(6)	0.0027(4)	0.0054(8)
Mg1	0.0060(9)	0.0060(9)	0.0102(15)	0.0030(5)	0.000	0.000
B1	0.0064(9)	0.0041(9)	0.0080(8)	0.0020(8)	−0.0004(7)	0.0001(8)
B2	0.0054(9)	0.0053(9)	0.0102(9)	0.0022(8)	−0.0005(8)	−0.0009(8)
B3	0.0087(10)	0.0087(10)	0.0116(13)	0.0001(12)	0.0035(7)	−0.0035(7)
B4	0.0050(9)	0.0050(9)	0.0116(13)	0.0009(11)	−0.0004(6)	0.0004(6)
B5	0.033(8)	0.033(8)	0.012(9)	0.017(4)	0.000	0.000
Si1	0.0061(11)	0.0061(11)	0.019(3)	0.0031(5)	0.000	0.000
Si2	0.0044(3)	0.0044(3)	0.0073(4)	0.0015(3)	0.00040(14)	−0.00040(14)
Si3	0.0055(4)	0.0055(4)	0.0249(8)	0.0028(2)	0.000	0.000

Geometric parameters (Å, °)

Na1—B2i 2.793(2) B3—Si1iv 1.888(4)
Na1—B2ii 2.793(2) B3—B5xxx 3.343(19)
Na1—B2iii 2.793(2) B3—Na1vxxx 4.123(3)
Na1—B2iv 2.793(2) B3—Na1vxxxii 4.123(3)
Na1—B1v 2.811(2) B3—Na1vxxxii 4.605(3)
Na1—B1vi 2.811(2) B4—B3viii 1.799(5)
Na1—B1vii 2.811(2) B4—B1viii 1.815(3)
Na1—B1 2.811(2) B4—B1iv 1.815(3)
Na1—Si2viii 2.8620(4) B4—B2xv 1.824(4)
Na1—Si2ix 2.8620(4) B4—B2iv 1.824(4)
Na1—Si2i 2.8621(4) B4—Si2 2.082(3)
Na1—Si2ii 2.8621 (4) B4—Mg1iv 2.568 (3)
Na1—B4viii 2.9604 (16) B4—Na1xviii 2.9605 (16)
Na1—B4ix 2.9604 (16) B4—Na1xxiii 2.9605 (16)
Na1—B4i 2.9605 (16) B4—B5xxx 3.319 (3)
Na1—B4iv 2.9605 (16) B4—B5i 4.031 (12)
Na1—Mg1 3.0389 (9) B4—B5xv 4.117 (16)
Na1—Mg1ii 3.0389 (9) B5—Si1 0.503 (18)
Mg1—B2x 2.333 (3) B5—B3viii 1.689 (7)
Mg1—B2xi 2.333 (3) B5—B3xxiii 1.96 (2)
Mg1—B2xii 2.333 (3) B5—B5xxiv 2.47 (4)
Mg1—B2xiii 2.333 (3) B5—B2xxv 2.705 (16)
Mg1—Si3 2.403 (4) B5—B2xxvi 2.705 (16)
Mg1—B4xv 2.568 (3) B5—B2xxvii 2.705 (16)
Mg1—B4xvi 2.568 (3) B5—B2xxviii 2.705 (16)
Mg1—B4xvii 2.568 (3) B5—B2xxix 2.705 (16)
Mg1—Si2xx 2.933 (2) Si1—Si1xxi 1.460 (10)
Mg1—Si2xxi 2.933 (2) Si1—B3viii 1.887 (4)
B1—B3viii 1.791 (3) Si1—B3xxiv 1.887 (4)
B1—B2xiv 1.806 (4) Si1—B5xxvi 1.96 (2)
B1—B2xiv 1.813 (3) Si1—Na1xxv 5.1337 (7)
B1—B4xx 1.815 (3) Si1—Na1xxvii 5.1337 (7)
B1—Si2i 2.043 (2) Si1—Si1xxviii 5.1337 (7)
B1—B5 3.093 (5) Si1—Si1xxviii 5.1337 (7)
B1—Na1xx 3.954 (2) Si1—Na1xxviii 5.1337 (7)
B1—B5i 4.268 (12) Si1—Na1xxviii 5.1337 (7)
B1—B5iv 4.356 (15) Si2—B1i 2.043 (2)
B1—Na1xxii 4.768 (2) Si2—B1xxvii 2.043 (2)
B2—B2xiii 1.761 (5) Si2—B3ii 2.3951 (9)
B2—B2xiii 1.798 (3) Si2—Si3xxiv 2.8621 (4)
B2—B1xvii 1.798 (3) Si2—Na1xxix 2.8621 (4)
B2—B1xxxiii 1.813 (3) Si2—Si1xxiv 2.8621 (4)
B2—B1xv 1.813 (3) Si2—Na1xxv 5.1337 (7)
B2—B3i 1.816 (4) Si2—Mg1xxv 5.1337 (7)
B2—B4ix 1.824 (4) Si2—B5iv 3.5572 (16)
B2—B4iv 1.843 (5) Si2—B5v 4.197 (11)
B2—B5 2.705 (16) Si2—Na1xxvi 4.5605 (8)
B2—Na1xxiv 2.793 (2) Si2—Na1xxvii 5.3470 (8)
B2—Na1xxv 4.143 (2) Si3—Si3iv 2.304 (3)
B2—B5vii 4.537 (5) Si3—Si2xxvii 2.3951 (9)
B2—Na1x 4.617 (2) Si3—Si2xxvi 2.3952 (9)
B3—B5i 1.689 (7) Si3—Si1ii 2.3952 (9)
B3—B1xxiii 1.791 (3) Si3—Na1xxv 3.3466 (8)
B3—B1xxxiii 1.791 (3) Si3—Na1xxiv 3.3467 (8)
B3—B4xxiv 1.799 (5) Si3—Na1xiii 3.3467 (8)
B3—B2i 1.816 (4) Si3—Na1xii 5.1337 (7)
B3—B2xxxix 1.816 (4) Si3—Na1viii 4.8918 (14)
Bond	Angle (°) (E78)	Bond	Angle (°) (E78)
B2—Na1—B2i	180.00 (5)	B1iv—B3—B2xxix	60.33 (12)
B2—Na1—B2ii	143.25 (9)	B4xxiii—B3—B2xxix	109.8 (2)
B2—Na1—B2iii	36.75 (9)	B2i—B3—B2xxix	60.99 (18)
B2—Na1—B2iv	36.75 (9)	B5i—B3—Si1i	14.9 (6)
B2—Na1—B2v	143.25 (9)	B1xxviii—B3—Si1i	123.43 (12)
B2—Na1—B2vi	180.00 (11)	B1iv—B3—Si1i	123.43 (12)
B2—Na1—B1v	109.34 (7)	B4xxiii—B3—Si1i	129.2 (2)
B2—Na1—B1vi	70.66 (7)	B2i—B3—Si1i	113.5 (2)
B2—Na1—B1vii	37.43 (6)	B2xxix—B3—Si1i	113.5 (2)
B2—Na1—B1viii	142.57 (6)	B5i—B3—B5xxx	45.3 (8)
B2—Na1—B1ix	37.43 (6)	B1xxviii—B3—B5xxx	112.55 (16)
B2—Na1—B1x	142.57 (6)	B1iv—B3—B5xxx	112.55 (16)
B2—Na1—B1xi	109.34 (7)	B4xxiii—B3—B5xxx	98.8 (3)
B2—Na1—B1xii	70.66 (7)	B2i—B3—B5xxx	136.96 (19)
B2—Na1—B1xiii	85.53 (9)	B2xxix—B3—B5xxx	136.96 (19)
B2—Na1—B1xiv	142.57 (6)	Si1i—B3—B5xxx	30.4 (3)
B2—Na1—B1xv	37.43 (6)	B5i—B3—Na1xxx	122.5 (5)
B2—Na1—B1xvi	70.66 (7)	B1xxviii—B3—Na1xxx	99.85 (16)
B2—Na1—B1xvii	109.34 (7)	B1iv—B3—Na1xxx	33.59 (11)
B2—Na1—B1xviii	94.47 (9)	B4xxiii—B3—Na1xxx	39.37 (5)
B2—Na1—B1xix	180.00 (6)	B2i—B3—Na1xxx	133.94 (17)
B2—Na1—B1xx	70.66 (7)	B2xxix—B3—Na1xxx	93.92 (11)
B2—Na1—B1xxi	109.34 (7)	Si1i—B3—Na1xxx	111.86 (14)
B2—Na1—B1xxii	142.57 (6)	B5xxx—B3—Na1xxx	88.28 (16)
B2—Na1—B1xxiii	37.43 (6)	B5i—B3—Na1xxx	122.5 (5)
B2—Na1—B1xxiv	180.00 (6)	B1xxviii—B3—Na1xxx	33.59 (11)
B2—Na1—B1xxv	94.47 (9)	B1iv—B3—Na1xxx	99.85 (16)
B2—Na1—B1xxvi	85.53 (9)	B4xxiii—B3—Na1xxx	39.37 (5)
B2—Na1—B1xxvii	78.17 (5)	B2i—B3—Na1xxx	93.92 (11)
B2—Na1—Si2iii	101.83 (5)	B2xxix—B3—Na1xxx	133.94 (17)
B2—Na1—Si2iv	76.28 (5)	Si1i—B3—Na1xxx	111.86 (14)
B2—Na1—Si2v	103.72 (5)	B5xxx—B3—Na1xxx	88.28 (16)
B2—Na1—Si2vi	73.21 (5)	Na1xxx—B3—Na1xxx	76.09 (7)
B2—Na1—Si2vii	42.21 (5)	B5i—B3—Na1	101.0 (6)
B2—Na1—Si2viii	137.79 (5)	B1xxviii—B3—Na1	57.83 (11)
B1—Na1—Si2vi	106.79 (5)	B1iv—B3—Na1	111.50 (15)
B2—Na1—Si2ix	101.83 (5)	B4xxiii—B3—Na1	108.78 (14)
B2—Na1—Si2x	78.17 (5)	B2i—B3—Na1	3.02 (8)
B2—Na1—Si2yi	103.72 (5)	B2xxix—B3—Na1	63.98 (11)
B2—Na1—Si2zi	76.28 (5)	Si1i—B3—Na1	113.12 (15)
B1—Na1—Si2xi	106.79 (5)	B5xxx—B3—Na1	135.32 (13)
B1—Na1—Si2xii	137.79 (5)	Na1xxx—B3—Na1	134.78 (8)
B1—Na1—Si2xiii	42.21 (5)	Na1xxx—B3—Na1	91.40 (4)
B1—Na1—Si2xiv	73.21 (5)	B5i—B3—Na1xxi	101.0 (6)
B1—Na1—Si2xv	180.00 (3)	B1xxviii—B3—Na1xxi	111.50 (15)
B2—Na1—Si2i	103.71 (5)	B1iv—B3—Na1xxi	57.83 (11)
B2—Na1—Si2ii	76.29 (5)	B4xxiii—B3—Na1xxi	108.78 (14)
B2—Na1—Si2iii	101.83 (5)	B2i—B3—Na1xxxii	63.98 (11)
Bond	Distance (Å)	Standard Deviation (Å)	
--------------	--------------	------------------------	
B2ii—Na1—Si2i	78.17 (5)		
B1—Na1—Si2i	137.79 (5)		
B1iv—Na1—Si2i	106.80 (5)		
B1—Na1—Si2i	73.20 (5)		
Si2v—Na1—Si2i	42.21 (5)		
Si2v—Na1—Si2i	89.06 (3)		
Si2iv—Na1—Si2i	90.94 (3)		
B2i—Na1—Si2i	76.29 (5)		
B2iv—Na1—Si2ii	103.71 (5)		
B2iv—Na1—Si2ii	78.17 (5)		
B2ii—Na1—Si2ii	101.83 (5)		
B1—Na1—Si2ii	42.21 (5)		
B1iii—Na1—Si2ii	73.20 (5)		
B1—Na1—Si2ii	106.80 (5)		
B1—Na1—Si2ii	137.79 (5)		
Si2v—Na1—Si2ii	90.94 (3)		
Si2iv—Na1—Si2ii	89.06 (3)		
Si2v—Na1—Si2ii	90.94 (3)		
Si2iv—Na1—Si2ii	90.94 (3)		
Si2i—Na1—Si2ii	180.00 (3)		
B2i—Na1—B4viii	109.24 (8)		
B2ii—Na1—B4viii	70.76 (8)		
B2iii—Na1—B4viii	36.82 (8)		
B2iv—Na1—B4viii	143.18 (8)		
B1—Na1—B4viii	36.55 (7)		
B1iii—Na1—B4viii	72.94 (8)		
B1—Na1—B4viii	107.06 (8)		
B1—Na1—B4viii	143.45 (7)		
Si2v—Na1—B4viii	41.86 (6)		
Si2iv—Na1—B4viii	138.14 (6)		
Si2i—Na1—B4viii	107.63 (6)		
Si2iv—Na1—B4viii	72.37 (6)		
Si2i—Na1—B4viii	109.24 (8)		
B2i—Na1—B4viii	143.18 (8)		
B2ii—Na1—B4viii	36.82 (8)		
B1—Na1—B4viii	143.45 (7)		
B1—Na1—B4viii	107.06 (8)		
B1—Na1—B4viii	137.79 (5)		
B2iv—Na1—B4viii	109.24 (8)		
B1—Na1—B4viii	107.06 (8)		

supporting information

Acta Cryst. (2022). E78, 203-206

sup-5
B1vi—Na1—B4i 143.45 (7) Mg1v—B4—B5xx 176.9 (4)
B1v—Na1—B4i 36.55 (7) Na1xxv—B4—B5xx 112.64 (15)
B1—Na1—B4i 72.94 (8) Na1xxiii—B4—B5xx 112.64 (15)
Si2iii—Na1—B4i 107.63 (6) B3viii—B4—B5i 55.0 (3)
Si2iv—Na1—B4i 72.37 (6) B1xxix—B4—B5i 87.8 (2)
Si2v—Na1—B4i 41.85 (6) B1xxiv—B4—B5i 87.8 (2)
Si2vi—Na1—B4i 138.15 (6) B2xxv—B4—B5i 146.20 (15)
B4vii—Na1—B4i 96.65 (12) B2xxv—B4—B5i 146.20 (15)
B4iv—Na1—B4i 83.35 (12) Si2—B4—B5i 61.8 (3)
B2—Na1—B4iv 36.83 (8) Mg1v—B4—B5i 139.3 (3)
B2ii—Na1—B4iv 143.17 (8) Na1xxiv—B4—B5i 95.59 (14)
B2iii—Na1—B4iv 109.24 (8) Na1xxiii—B4—B5i 95.59 (14)
B2iv—Na1—B4iv 70.76 (8) B5xx—B4—B5i 37.6 (6)
B1v—Na1—B4iv 72.94 (8) B3viii—B4—B5iv 108.0 (2)
B1v—Na1—B4iv 36.55 (7) B1xxiv—B4—B5iv 82.20 (16)
B1—Na1—B4iv 143.45 (7) B1xxv—B4—B5iv 82.20 (16)
Si2v—Na1—B4iv 107.06 (8) B2xxv—B4—B5iv 30.37 (9)
Si2iv—Na1—B4iv 72.37 (6) B2xxv—B4—B5iv 30.37 (9)
Si2v—Na1—B4iv 120.47 (6) Si1—B5—B3 v 105.6 (7)
Si2v—Na1—B4iv 59.53 (4) B3xx—B5—B3v 105.6 (7)
Si2v—Na1—B4iv 120.47 (6) B3xx—B5—B3v 113.0 (6)
B4iv—Na1—B4iv 83.35 (12) B3xx—B5—B3v 113.0 (6)
B4iv—Na1—B4iv 96.65 (12) Si1—B5—Si1xiv 0.0
B4—Na1—B4iv 180.00 (13) B3xx—B5—B3v 113.0 (6)
B2—Na1—Mgiv 46.93 (7) B3xx—B5—B3v 105.6 (7)
B2ii—Na1—Mgiv 133.07 (7) Si1—B5—B3xiv 105.6 (7)
B2iii—Na1—Mgiv 133.07 (7) B3xx—B5—B3v 105.6 (7)
B2iv—Na1—Mgiv 46.93 (7) Si1—B5—B3xiv 113.0 (6)
B1v—Na1—Mgiv 101.34 (6) B3xx—B5—B3v 113.0 (6)
B1v—Na1—Mgiv 78.66 (6) Si1—B5—B3xiv 113.0 (6)
B1—Na1—Mgiv 101.34 (6) B5xiv—B5—B2 138.2 (3)
B1—Na1—Mgiv 78.66 (6) B5xiv—B5—B2 101.35 (6)
B2—Na1—Mgiv 129.34 (6) B5xiv—B5—B2 111.1 (9)
B2ii—Na1—Mgiv 50.66 (6) B5xiv—B5—B2 111.0 (9)
B2iii—Na1—Mgiv 129.34 (6) B3xx—B5—B2 111.0 (9)
B2iv—Na1—Mgiv 50.66 (6) B3xx—B5—B2 111.0 (9)
B2v—Na1—Mgiv 133.07 (7) B3xx—B5—B2 111.0 (9)
B2vi—Na1—Mgiv 46.93 (7) B3xx—B5—B2 111.0 (9)
B2vii—Na1—Mgiv 133.07 (7) B3xx—B5—B2 111.0 (9)
B1v—Na1—Mgiv 78.66 (6) B3xx—B5—B2 111.0 (9)
B1v—Na1—Mgiv 101.34 (6) B3xx—B5—B2 111.0 (9)
B1v—Na1—Mgiv 78.66 (6) B3xx—B5—B2 111.0 (9)
Bond	1st Atom	2nd Atom	3rd Atom	Bond Angle (°)	Thermal Parameter (Å²)
Si2viii—Na1—Mg1ii	59.53 (4)	B3i—B5—B2viii	77.9 (5)		
Si2—Na1—Mg1ii	120.47 (4)	Si1xvi—B5—B2viii	138.2 (3)		
Si2v—Na1—Mg1ii	59.53 (4)	B5xxi—B5—B2viii	138.2 (3)		
B4vii—Na1—Mg1iv	120.47 (4)	B2—B5—B2viii	38.0 (2)		
B4v—Na1—Mg1ii	50.66 (6)	Si1—B5—B2xiv	138.2 (3)		
B4—Na1—Mg1ii	129.34 (6)	B3viii—B5—B2xiv	41.2 (4)		
B4vii—Na1—Mg1iv	50.66 (6)	B3xxvi—B5—B2xiv	77.9 (5)		
Mg1i—Na1—Mg1iv	180.00 (13)	B3—B5—B2xiv	111.1 (9)		
B2v—Mg1—B2vii	44.34 (12)	B3viii—B5—B2xi	111.0 (9)		
B2v—Mg1—B2vii	46.53 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	83.96 (13)	B3—B5—B2xi	41.2 (4)		
B2v—Mg1—B2vii	101.12 (17)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	83.96 (13)	B3xxvi—B5—B2xi	41.2 (4)		
B2v—Mg1—B2vii	129.34 (6)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	44.34 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	46.53 (12)	B3—B5—B2xi	41.2 (4)		
B2v—Mg1—B2vii	83.96 (13)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	101.12 (17)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	44.34 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	46.53 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	83.96 (13)	B3—B5—B2xi	41.2 (4)		
B2v—Mg1—B2vii	101.12 (17)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	83.96 (13)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	129.34 (6)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	44.34 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	46.53 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	83.96 (13)	B3—B5—B2xi	41.2 (4)		
B2v—Mg1—B2vii	101.12 (17)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	83.96 (13)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	129.34 (6)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	44.34 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	46.53 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	83.96 (13)	B3—B5—B2xi	41.2 (4)		
B2v—Mg1—B2vii	101.12 (17)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	83.96 (13)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	129.34 (6)	Si1—B5—B2xi	138.2 (3)		
B2v—Mg1—B2vii	44.34 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	46.53 (12)	B3xxvi—B5—B2xi	77.9 (5)		
B2v—Mg1—B2vii	83.96 (13)	B3—B5—B2xi	41.2 (4)		
B2v—Mg1—B2vii	101.12 (17)	Si1—B5—B2xi	138.2 (3)		
Bond	Angle (°)				
-----------------------	------------				
B3viii—B1—B5	26.44 (12)				
B2vi—B1—B5	134.42 (13)				
B1xx—B1—B5	118.8 (4)				
B2iv—B1—B5	60.4 (4)				
Si2—B1—B5	85.06 (18)				
Na1—B1—B5	124.6 (4)				
B3viii—B1—Na1xx	99.62 (14)				
B2vi—B1—Na1xx	99.93 (10)				
B1xx—B1—Na1xx	39.67 (11)				
B2iv—B1—Na1xx	39.15 (8)				
B4—B1—Na1xx	139.11 (13)				
Si2—B1—Na1xx	93.52 (7)				
Na1—B1—Na1xx	134.55 (7)				
B5—B1—Na1xx	94.3 (3)				
B3viii—B1—B5i	102.63 (12)				
B2vi—B1—B5i	23.0 (2)				
B1xx—B1—B5i	39.4 (2)				
B2iv—B1—B5i	86.6 (2)				
B4—B1—B5i	72.9 (2)				
Si2—B1—B5i	146.89 (9)				
Na1—B1—B5i	92.17 (19)				
B5—B1—B5i	127.32 (17)				
Na1xx—B1—B5i	78.9 (2)				
B3viii—B1—B5xi	45.13 (19)				
B2vi—B1—B5xxi	127.76 (14)				
B1xx—B1—B5xxi	151.4 (2)				
B2iv—B1—B5xxi	93.9 (2)				
B4—B1—B5xxi	67.63 (14)				
Si2—B1—B5xxi	71.88 (9)				
Na1—B1—B5xxi	91.1 (2)				
B5—B1—B5xxi	33.5 (6)				
Na1xx—B1—B5xxi	124.81 (18)				
B5—B1—B5xxi	138.30 (13)				
B3viii—B1—Na1xxii	58.43 (12)				
B2vi—B1—Na1xxii	59.13 (9)				
B1xx—B1—Na1xxii	105.05 (8)				
B2iv—B1—Na1xxii	105.67 (11)				
B4—B1—Na1xxii	4.27 (10)				
Si2—B1—Na1xxii	130.00 (8)				
Na1—B1—Na1xxii	79.66 (5)				
B5—B1—Na1xxii	80.33 (15)				
Na1xx—B1—Na1xxii	134.85 (5)				
B5—B1—Na1xxii	70.00 (18)				
B5xxi—B1—Na1xxii	69.77 (5)				
B2viii—B2—B1xxii	131.14 (10)				
B2viii—B2—B1x	111.97 (10)				
B1xxii—B2—B1x	60.00 (14)				

Supporting Information

Acta Cryst. (2022). E78, 203-206

sup-9
Bond	Angle (°) (°)
B2xxiii—B2—B3i	106.92 (13)
B1xxiv—B2—B3i	106.68 (18)
B1—B2—B3	59.15 (14)
B2xxiii—B2—B4iv	136.84 (12)
B1xxiv—B2—B4iv	60.14 (13)
B1—B2—B4	108.04 (17)
B3—B2—B4	106.97 (16)
B2xxii—B2—B3i	120.00 (1)
B1xxiv—B2—B2i	107.39 (10)
B1—B2—B2i	107.25 (10)
B3—B2—B2i	59.51 (9)
B4iv—B2—B2i	59.65 (9)
B2xxii—B2—Mg1	67.83 (6)
B1xxiv—B2—Mg1	127.40 (14)
B1—B2—Mg1	171.03 (15)
B3—B2—Mg1	112.01 (15)
B4iv—B2—Mg1	75.16 (13)
B2xxii—B2—Mg1	66.74 (6)
B2xxii—B2—B5	71.01 (12)
B1xxiv—B2—B5	142.0 (3)
B1—B2—B5	83.9 (3)
B3—B2—B5	37.8 (2)
B4iv—B2—B5	129.70 (16)
B2xxii—B2—B5	70.08 (13)
Mg1—B2—B5	87.7 (3)
B2xxii—B2—Na1xxiv	71.62 (5)
B1xxiv—B2—Na1xxiv	71.82 (10)
B1—B2—Na1xxiv	116.66 (12)
B3—B2—Na1xxiv	175.02 (13)
B4iv—B2—Na1xxiv	76.58 (10)
B2xxii—B2—Na1xxiv	125.43 (5)
Mg1—B2—Na1xxiv	72.08 (8)
B5—B2—Na1xxiv	142.00 (18)
B2xxii—B2—Na1xxv	113.62 (3)
B1xxiv—B2—Na1xxv	98.99 (11)
B1—B2—Na1xxv	131.77 (12)
B3—B2—Na1xxv	92.82 (10)
B4iv—B2—Na1xxv	39.10 (9)
B2xxii—B2—Na1xxv	33.32 (3)
Mg1—B2—Na1xxv	46.23 (4)
B5—B2—Na1xxv	96.5 (2)
Na1xxiv—B2—Na1xxv	92.11 (5)
Na1xx—B2—Na1xxv	157.80 (15)
B1xxiv—B2—B5xxvi	29.13 (9)
B1—B2—B5xxvi	69.9 (2)
B3—B2—B5xxvi	93.1 (3)
B4iv—B2—B5xxvi	38.8 (2)
B2xxii—B2—B5xxvi	78.28 (3)

sup-10

Acta Cryst. (2022). E78, 203-206
Bond	Value 1	Value 2	Value 3
Mg1—B2—B5_{xxvi}	113.9 (2)	Si2_{xvi}—Si3—Na1_{xlii}	67.76 (3)
B5—B2—B5_{xvi}	130.32 (9)	Si2_{xvi}—Si3—Na1_{xlii}	119.48 (4)
Na1_{xxvi}—B2—B5_{xxvi}	87.6 (2)	Si2_{xvi}—Si3—Na1_{xlii}	119.48 (4)
Na1_{xxv}—B2—B5_{xxvi}	73.92 (14)	Mg1—Si3—Na1_{xlii}	143.149 (12)
B2_{ii}—B2—Na1_{x}	111.07 (3)	Na1_{xvi}—Si3—Na1_{xlii}	155.61 (4)
B1_{ii}—B2—Na1_{x}	57.51 (9)	Na1_{xvi}—Si3—Na1_{xlii}	97.015 (14)
B1—B2—Na1_{x}	3.84 (8)	Na1_{xiv}—Si3—Na1_{xlii}	97.015 (14)
B3—B2—Na1_{x}	62.97 (11)	Si3_{xli}—Si3—Na1_{xlii}	36.852 (12)
B4_{xvi}—B2—Na1_{x}	107.75 (13)	Si2_{xv}—Si3—Na1_{xlii}	119.48 (4)
B2_{ii}—B2—Na1_{x}	110.53 (3)	Si2_{xv}—Si3—Na1_{xlii}	119.48 (4)
Mg1—B2—Na1_{x}	174.62 (10)	Si2_{xvii}—Si3—Na1_{xlii}	67.76 (3)
B5—B2—Na1_{x}	87.0 (3)	Mg1—Si3—Na1_{xlii}	143.148 (12)
Na1_{xxv}—B2—Na1_{x}	118.32 (6)	Na1_{xvi}—Si3—Na1_{xlii}	97.015 (14)
Na1_{xxv}—B2—Na1_{x}	133.76 (6)	Na1_{xvi}—Si3—Na1_{xlii}	155.61 (4)
B5_{xvi}—B2—Na1_{x}	69.2 (2)	Na1_{xvi}—Si3—Na1_{xlii}	97.016 (14)
B5_{x}—B3—B1_{xvii}	125.38 (12)	Na1_{xx}—Si3—Na1_{xlii}	62.58 (2)
B5—B3—B1_{xv}	125.38 (12)	Si3_{xli}—Si3—Na1_{xlii}	36.852 (12)
B1_{xvii}—B3—B1_{xv}	109.1 (2)	Si2_{xvi}—Si3—Na1_{xlii}	119.48 (4)
B5—B3—B4_{xvii}	144.1 (7)	Si2_{xvi}—Si3—Na1_{xlii}	67.76 (3)
B1_{xvii}—B3—B4_{xvii}	60.74 (14)	Si2_{xv}—Si3—Na1_{xlii}	119.48 (4)
B1_{x}—B3—B4_{xvii}	60.74 (14)	Mg1—Si3—Na1_{xlii}	143.148 (12)
B5_{x}—B3—B2_{x}	101.0 (6)	Na1_{xvi}—Si3—Na1_{xlii}	97.015 (14)
B1_{xvii}—B3—B2_{x}	60.33 (12)	Na1_{xvi}—Si3—Na1_{xlii}	97.016 (14)
B1_{x}—B3—B2_{x}	109.4 (2)	Na1_{xvi}—Si3—Na1_{xlii}	155.61 (4)
B4_{xvii}—B3—B2_{x}	109.8 (2)	Na1_{xvi}—Si3—Na1_{xlii}	62.58 (2)
B5_{x}—B3—B2_{xxi}	101.0 (6)	Na1_{xvi}—Si3—Na1_{xlii}	62.58 (2)
B1_{xvii}—B3—B2_{xxi}	109.4 (2)	Mg1—Si3—Na1_{xlii}	143.148 (12)

Symmetry codes: (i) −x+2/3, −y+1/3, −z+1/3; (ii) x+1/3, y−1/3, z−1/3; (iii) −x+y+1/3, y−1/3, z−1/3; (iv) x−y+2/3, −y+1/3, −z+1/3; (v) −x+1, −y, −z; (vi) −x+y+1, y, z; (vii) x−y, −y, −z; (viii) x−y+2/3, x−2/3, −z+1/3; (ix) −x+y+1/3, −x+2/3, z−1/3; (x) −y, x−y, z; (xi) y, −x, z; (xii) x, y, z; (xiii) −x+y, y, z; (xiv) −x+y, −z, z; (xv) x−y+1/3, −x+2/3; (xvi) y−2/3, −x+y−1/3, −z+2/3; (xvii) x−y+1/3, x−1/3, −z+2/3; (xviii) x−y−1/3, x−2/3, −z+1/3; (xix) −x+2/3, −x+y+1/3, −z+1/3; (xx) −x+y+2/3, −x+1/3, z+1/3; (xxi) x, −y, −z; (xxii) −x+y+1, −x+1, z; (xxiii) x−y−1/3, −x+1/3, −z+1/3; (xxiv) x−1/3, y+1/3, z+1/3; (xxv) −y+1/3, x−y+2/3, z+1/3; (xxvi) y−1/3, −x+y+1/3, −z+1/3; (xxvii) y+2/3, −x+y+1/3, −z+1/3; (xxviii) y+4/3, −x+y+2/3, −z+2/3; (xxix) y+2/3, x+1/3, −z+1/3; (xxx) x+2/3, y+1/3, z+1/3; (xxxx) −y+2/3, x+1/3, −z+1/3; (xxxxi) −y+1, x−y, z; (xxxxii) −y+1, x−y, z; (xxxxiii) −y+2/3, x+1/3, z+1/3; (xxxxiv) −y+2/3, y+1/3, z+1/3; (xli) −x, −y, −z+1; (xlii) −x+y+1/3, −x+2/3, z+2/3; (xliii) −y+1/3, x−y−1/3, z+2/3; (xliii) x−2/3, y−1/3, z+2/3.