Abstract

Helicobacter pylori (*H. pylori*) infection is highly associated with the occurrence of gastrointestinal diseases, including gastric inflammation, peptic ulcer, gastric cancer, and gastric mucosa-associated lymphoid-tissue lymphoma. Although alternative therapies, including phytotherapies and probiotics, have been used to improve eradication, current treatment still relies on a combination of antimicrobial agents, such as amoxicillin, clarithromycin, metronidazole, and levofloxacin, and antisecretory agents, such as proton pump inhibitors (PPIs). A standard triple therapy consisting of a PPI and two antibiotics (clarithromycin and amoxicillin/metronidazole) is widely used as the first-line regimen for treatment of infection, but the increased resistance of *H. pylori* to clarithromycin and resistance of *H. pylori* to amoxicillin is generally low, an optimized high dose dual therapy consisting of a PPI and amoxicillin can be an effective first-line or rescue therapy. In addition, the concomitant use of alternative medicine has the potential to provide additive or synergistic effects against *H. pylori* infection, though its efficacy needs to be verified in clinical studies.

Yang JC, Lu CW, Lin CJ. Treatment of *Helicobacter pylori* infection: Current status and future concepts. *World J Gastroenterol* 2014; 20(18): 5283-5293 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i18/5283.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i18.5283
acid and increasing the periplasmic pH to 4.0-6.0, thus protecting *H. pylori* from gastric acid\(^{[23]}\).

The exact routes of *H. pylori* transmission remain unclear. However, epidemiologic studies have shown that exposure of food to contaminated water or soil may increase the risk of *H. pylori* infection, suggesting that person-to-person transmission by oral-oral, fecal-oral, or gastro-oral exposure is the most likely path for *H. pylori* infection\(^{[9]}\). Accordingly, improvements in hygiene and living conditions are important factors in decreasing the prevalence of infection\(^{[3]}\). More than 50% of the world’s population has been infected by *H. pylori* and the prevalence of infection in developing countries is greater than 80% in adults over 50 years of age. Infected individuals usually acquire *H. pylori* before 10 years of age and grow up with the infection\(^{[40]}\). In Asia, the prevalence of *H. pylori* infection varies in different countries, the reported overall seroprevalence rates being about 31% in Singapore, 36% in Malaysia, 39% in Japan, 55% in Taiwan, 57% in Thailand, 58% in China, 60% in South Korea, 75% in Vietnam, 79% in India, and 92% in Bangladesh\(^{[7]}\).

H. pylori infection is highly associated with gastrointestinal diseases, including gastric inflammation, peptic ulcer, gastric cancer, and gastric mucosa-associated lymphoid-tissue lymphoma\(^{[6,11]}\). It has been classified as a group 1 carcinogen (i.e., infection with *H. pylori* is carcinogenic in humans) by the International Agency for Research on Cancer consensus group since 1994\(^{[2]}\) and many guidelines have been established for treatment of *H. pylori* infection\(^{[13,18]}\).

TREATMENT OF *H. PYLORI* INFECTION

Treatment of infection relies on a combination of antimicrobial agents and antisecretory agents, the elevation of the gastric pH by antisecretory agents being required for the bactericidal effect of the antimicrobial agents. Alternatively, although the mechanism of action is not yet clear, phytomedicines and probiotics have been used to improve eradication of *H. pylori*.

The effect of antimicrobial agents and antisecretory agents depends not only on their pharmacological activities, but also on their pharmacokinetic properties. Many antimicrobial agents, including amoxicillin, clarithromycin, levofloxacin, metronidazole, tetracycline, rifabutin, and bismuth-containing compounds, have been used for *H. pylori* therapy, while the main antisecretory agents used are proton pump inhibitors (PPIs).

Antimicrobial agents

The effect of most antimicrobial agents used for *H. pylori* treatment, including clarithromycin, levofloxacin, and metronidazole, is concentration-dependent, i.e., their efficacy is proportional to their plasma concentration\(^{[17-19]}\). In the case of clarithromycin, the breakpoint proposed for susceptible strains is 0.25 μg/mL and that for resistant strains > 0.5 μg/mL\(^{[20]}\), while, for levofloxacin and metronidazole, the breakpoints proposed for resistant strains are > 1 μg/mL and > 8 μg/mL, respectively, as determined by the European Committee on Antimicrobial Susceptibility Testing\(^{[21]}\). In contrast to the effects of the concentration-dependent antibiotics, the bactericidal effect of amoxicillin against *H. pylori* is time-dependent, i.e., its efficacy is proportional to the time that the plasma concentration is higher than the MIC\(^{[22-24]}\), and the breakpoint proposed for resistant strains is usually > 0.5 μg/mL, although a more stringent breakpoint (> 0.12 μg/mL) was determined by the European Committee on Antimicrobial Susceptibility Testing for *H. pylori* resistance to amoxicillin\(^{[25]}\). Many bismuth salts are poorly soluble in water and are therefore very weakly absorbed and thus exert their activity by local action in the gastrointestinal tract. The MIC for bismuth to prevent the growth of 90% of *H. pylori* has been reported as 4 to 32 ng/L\(^{[26]}\). A post-antibiotic effect against *H. pylori* has been demonstrated for clarithromycin and levofloxacin\(^{[26,27]}\).

In terms of resistance, a change in the properties of penicillin-binding protein, either a decreased affinity for amoxicillin\(^{[28]}\) or point mutation in the *pbp1A* gene\(^{[29]}\), is the main mechanism leading to amoxicillin resistance of *H. pylori*. Other mechanisms for amoxicillin resistance may include a reduced membrane permeability, leading to low accumulation of amoxicillin\(^{[30]}\). For clarithromycin, the major mechanism for resistance is point mutation in the 23S RNA gene, the most frequent being at A2143G (69.8%), followed by A2142G (11.7%) and A2142C (2.6%)\(^{[31]}\). Point mutation of *gyrA*, coding for DNA gyrase, in the codons coding for amino acid 87, 88, 91, or 97 has been observed in levofloxacin-resistant isolates\(^{[32,33]}\). For metronidazole, null mutations in the *nbcA* gene, which codes for oxygen-insensitive NADPH nitroreductase (RdxA), have been identified in metronidazole-resistant strains of *H. pylori*. Other genes, such as *froA* (coding for NADPH flavin oxidoreductase), and *fxbD* (coding for ferredoxin-like enzyme), also play a role in the mechanisms of resistance to metronidazole\(^{[34,35]}\). For rifabutin, *H. pylori* mutants with mutations in codons 524-545 or codon 585 of the *rpoB* gene are resistant to rifabutin\(^{[35,37]}\). Additionally, cross resistance between rifabutin and rifampin has been reported\(^{[38]}\). The prevalence of rifabutin resistance is 1.3% overall, but can be as high as 31% in post-treatment patients\(^{[40]}\). *H. pylori* resistance to bismuth salts is rare\(^{[41]}\), and colloidal bismuth subcitrate has been reported to prevent the development of *H. pylori* resistance to nitroimidazoles\(^{[42]}\).

Antisecretory agents-PPI

Although H+-receptor antagonists can be used as antisecretory agents, PPIs are more effective in increasing the gastric pH. PPIs inhibit the gastric acid pump (H+/K+ATPase), which is responsible for the secretion of hydrochloric acid and is located in the canalicular membrane of gastric parietal cells\(^{[38]}\). At low pH, PPIs are protonated, then undergo cyclization to form a tetracyclic sulfonamide, which binds irreversibly to cysteines in the α subunit of the H+/K+ATPase and inhibits the H+/-
K⁺ATPase[46]. Thus, the accumulation and action onset of PPIs rely on their acid ionization constant (pK_a), with a higher pK_a allowing greater conversion to the active sulfonamide. Of the PPIs, rabeprazole has the highest pK_a ($pK_a = 4.9$), followed by omeprazole ($pK_a = 4.13$), lansoprazole ($pK_a = 4.01$), and pantoprazole ($pK_a = 3.96$)[45].

Most PPIs are primarily metabolized by the hepatic cytochrome P450 enzymes CYP2C19 and CYP3A4. Thus, their pharmacological effects are influenced by endogenous (e.g., pharmacogenetic polymorphism) and exogenous (e.g., drug–drug interaction) factors. The CYP2C19 genotype is known to influence the pharmacokinetic properties of PPIs. The ratios of the half-life ($t_{1/2}$) value in CYP2C19 poor metabolizers to that in extensive metabolizers (EMs) is 2.2, 2.1, 1.9, and 1.4 for omeprazole, pantoprazole, lansoprazole, or rabeprazole, respectively, and the corresponding ratios of the area under the curve (AUC) values are 7.4-6.3, 10.7-2.5, 4.3-1.9, and 1.8-1.2[50-53]. While most PPIs are used as racemic mixtures of two optical isomers, esomeprazole, the S-isomer of omeprazole, is available on the market, and in vitro studied showed that, compared to omeprazole, it is metabolized to a greater extent by CYP3A4 and to a lesser extent by CYP2C19 and that esomeprazole itself is mainly metabolized by CYP3A4[53]. However, in patients receiving esomeprazole, the CYP2C19 genotype still plays an important role in the acid-inhibitory effect and $H. pylori$ eradication[53,54], and this also applies to patients taking dexlansoprazole, the R-isomer of lansoprazole[53].

PPIs also have a direct antimicrobial activity against $H. pylori$. Nakao and Malfertheiner[55] compared the growth inhibitory activity of omeprazole, lansoprazole, and pantoprazole against 58 clinical isolates of $H. pylori$, and found that the MIC$_{50}$ for lansoprazole was 6.25 µg/mL, lower than that of omeprazole (25 µg/mL) or pantoprazole (100 µg/mL). Kawakami et al[55] compared the anti-$H. pylori$ activity of rabeprazole, lansoprazole, esomeprazole, and three antibiotics (amoxicillin, clarithromycin, and metronidazole) and found MIC$_{50}$ values of 0.5 µg/mL for rabeprazole, 0.25 µg/mL for lansoprazole thioester, 1 µg/mL for lansoprazole, 16 µg/mL for omeprazole, 0.031 µg/mL for amoxicillin, 1 µg/mL for clarithromycin, and 16 µg/mL for metronidazole.

ALTERNATIVE THERAPIES FOR $H. PYLORI$ INFECTION

While antibiotics are the main agents used in the therapy of $H. pylori$ infection, the development of resistance has limited their application. Also, administration of antibiotics perturbs the microbiota, the microorganisms that colonize the human gastrointestinal tract, and thus causes side effects, such as diarrhea. Because of this, alternative therapies, including the use of phytomedicines and probiotics, have been used for the treatment of $H. pylori$ infection.

Phytomedicines

There is increasing evidence that traditional Chinese medicines (TCMs) are efficacious in the treatment of various diseases. The efficacy and safety of TCMs for the treatment of $H. pylori$ have been reviewed and the average eradication rate was found to be about 72%[58], suggesting that TCMs may not be a stand-alone therapy for $H. pylori$ infection. Nevertheless, the role of TCMs in $H. pylori$ treatment remains to be clarified. In addition to TCMs, other phytomedicines that have been used for the treatment of $H. pylori$ infection are green tea catechins, garlic extract, cranberry juice, and propolis[59]. For example, it has been demonstrated that a combination of catechins and sialic acid can effectively prevent $H. pylori$ infection in animals and improve the eradication rate[60,61]. As catechins and sialic acid have different anti-bacteria actions, the additive or synergistic effects caused by such a combination may provide a potential strategy for treating $H. pylori$ infection. However, since most studies have been carried out in vitro or in animals, the efficacy of phytotherapy in humans needs to be verified by suitable clinical trials.

Probiotics

Probiotics are living organisms that are administered orally to confer a health benefit on the host. In recent years, the application of probiotics in the treatment of $H. pylori$ infection has become an active research field. Several probiotics, including *Saccharomyces boulardii* (S. boulardii) and *Lactobacillus* strains, have been combined with antibiotic-containing therapies to treat infection. Compared to standard triple therapy, although addition of *S. boulardii* significantly reduced the incidence of antibiotic-associated diarrhea, it did not significantly improve the eradication rate of $H. pylori$[62-64]. Likewise, addition of *Lactobacillus GG* significantly reduced the incidence of diarrhea, but did not improve the eradication rate of triple therapy[63,65]. Addition of *Lactobacillus acidophilus* was reported to significantly increase treatment outcome of triple therapy[66], but, in another study, addition of the combination of *Lactobacillus acidophilus* and *Bifidobacterium lactis* failed to show an improvement in $H. pylori$ eradication[67]. Intriguingly, in contrast to the capsule/sachet-based probiotic preparations, fermented milk-based probiotics have been reported to improve $H. pylori$ eradication rates by about 5%-15%[67], possibly because some of contain additional components (e.g., lactoferrin and glycomacropeptide) that may inhibit $H. pylori$.

GUIDELINES AND THERAPEUTIC REGIMENS

Various combinations of PPIs and antimicrobial agents have been designed to treat $H. pylori$ infection. These regimens include triple therapy, bismuth-containing quadruple therapy, sequential therapy, and concomitant...
therapy (non-bismuth quadruple therapy). The Maastricht I Consensus Report recommended that treatment regimens should achieve an eradication rate of at least 80% and proposed a standardized report card to be used to evaluate the outcome of new therapeutic regimens for *H. pylori* infection[68], on which the efficacy of an anti-*H. pylori* regimen is graded as A or excellent if the eradication rate is 95%-100% in the intention-to-treat analysis, while an eradication rate of 90%-95% is considered as B or good, 85%-89% as C or fair, 81%-84% as D or poor, and ≤ 80% as F or unacceptable.

Guidelines for the management of *H. pylori* infection are still evolving and, depending on the geographic areas, first-line, alternative first-line, second-line, or even third-line therapies have been proposed. Recent guidelines proposed for Asia-Pacific regions, developing countries, Europe, and United States are summarized in Table 1. Despite these guidelines being proposed for different areas, the regimens suggested for first-line and rescue treatments are generally similar.

First line treatments

According to current guidelines, standard triple therapy containing a PPI and two antibiotics, clarithromycin and amoxicillin/metronidazole, is the first-line regimen for treatment of *H. pylori* infection[13-16]. The recommended therapeutic duration of standard triple therapy is 7 d in Europe and Asia, but 10-14 d in the United States. Although triple therapy is considered to be a standard first-line therapy, the most recent data show that the efficacy of standard triple therapy is decreasing and that the eradication rate of standard triple therapy in some areas is less than 80%[72,74]. To improve the eradication rate of triple therapy, Furuta *et al*[70] proposed a tailored regimen based on *CYP2C19* genotype and bacterial susceptibility to clarithromycin, and showed a 96% intention-to-treat eradication rate. Although this pharmacogenomics-based strategy is promising, it requires genotype testing in advance and the cost-effectiveness remains to be verified. Alternatively, the new version of the Maastricht IV/Flor- ence Consensus Report[15] has updated the recommendations for first-line therapy, and bismuth-containing quadruple therapy has been officially substituted for standard triple therapy in areas in which the clarithromycin resistance rate is over 15%-20%. However, due to side effects, bismuth is no longer available in many countries, including Japan, Malaysia, and Australia, and, as a result, bismuth-containing therapy is not used in these areas, so sequential therapy or a non-bismuth quadruple therapy (concomitant treatment) is recommended as the alternative first-line treatment in high clarithromycin resistance area.

Ten-day sequential therapy, with an eradication rate of 98%, was proposed in 2000[71]. It consists of 5-d dual therapy (PPI plus amoxicillin), followed by 5-d triple therapy [PPI plus clarithromycin and a nitronidazole (metronidazole or tinidazole)]. Compared to 7-d standard triple therapy, sequential therapy was found to result in higher eradication rates (intention-to-treat 92% vs 75%; per-protocol 95% vs 77%)[72]. A meta-analysis of 10 randomized controlled trials with 3011 patients calculated eradication rates of 91.0% (95%CI: 89.6-92.1) for sequential therapy and 75.7% (95%CI: 73.6-77.7) for standard triple therapy[73]. Using the suggested report card classification, sequential therapy was scored as B or good, while standard triple therapy was only scored as an F or unacceptable[66]. Sequential therapy is therefore recommended as an alternative to standard triple therapy for *H. pylori* infection[14-16]. Nonetheless, a study conducted at 7 Latin American sites demonstrated that 14-d triple therapy was superior to 10-d sequential therapy in eradication of *H. pylori* infection[74], suggesting that the application of

Table 1 Treatment regimens proposed for the management of *Helicobacter pylori* infection in different geographic areas

Treatment	Asia-Pacific region[13]	Developing countries[14]	Europe[15]	United States[14]
First-line	Triple therapy (PPI + CLA + AMO/MET)	Triple therapy (PPI + CLA + AMO/FUR)	Triple therapy (PPI-CLA-containing regimen)	Triple therapy (PPI + CLA + AMO/MET)
	BIS-based quadruple therapy (PPI + BIS + AMO/MET or PPI + BIS + MET + TET)	Sequential therapy (PPI + AMO and PPI + CLA + NIT)	BIS-based quadruple therapy (for high clarithromycin resistance)	Sequential therapy (PPI + AMO and PPI + CLA + TIM)
Second-line	BIS-based quadruple therapy (PPI + BIS + MET + TET)	BIS-based quadruple therapy (PPI + BIS + TET + MET/FUR)	Sequential therapy (BIS-based quadruple therapy)	Sequential therapy (PPI + TET + BIS + MET)
	LEV-based triple therapy (PPI + LEV + AMO)	LEV-based triple therapy (PPI + LEV + BIS/FUR/AMO)	LEV-based triple therapy	LEV-based triple therapy (PPI + AMO + LEV)
	RIF-based triple therapy (PPI + RIF + AMO)	(PPI + RIF + AMO)		
Third-line	Rifabutin-based triple therapy (PPI + RIF + AMO)	LEV-based or FUR-based triple therapy	Guided by antimicrobial susceptibility testing	

AMO: Amoxicillin; BIS: Bismuth; CLA: Clarithromycin; FUR: Furazolidone; LEV: Levofloxacin; MET: Metronidazole; NIT: Nitronidazole; RAN: Ranitidine; RIF: Rifabutin; TET: Tetracycline; TIM: Timidazole; PPI: Proton pump inhibitor.
sequential therapy as first-line therapy still requires validation in certain areas.

Although containing two dosing periods, sequential therapy is basically a quadruple therapy consisting of one PPI and three antibiotics. In 1998, before sequential therapy was proposed, two groups of investigators reported the use of a non-bismuth based quadruple therapy (i.e., concomitant quadruple therapy) containing omeprazole, amoxicillin, metronidazole, and clarithromycin/roxithromycin for 5 d or 1 wk and showed an eradication rate higher than 90%.[75,76] The result of meta-analysis of randomized controlled trials conducted during 1998 and 2007 showed that concomitant quadruple therapy was superior to standard triple therapy in terms of intention-to-treat and per-protocol[77]. Compared to sequential therapy, concomitant quadruple therapy has been demonstrated to be safe and equally effective in eradication of H. pylori infection[78], and the same study demonstrated that dual resistance to clarithromycin and metronidazole did not influence the eradication rate of concomitant quadruple therapy, but did significantly affect that of sequential therapy.

Rescue therapy

After failure of first-line therapy for H. pylori infection, in addition to bismuth-containing quadruple therapy, levofloxacin-based triple therapy is recommended as rescue therapy. The efficacy of one-week levofloxacin-based triple therapy containing a PPI plus levofloxacin and amoxicillin/nitroimidazole (metronidazole or tinidazole) was first evaluated as a first-line treatment in 2000, and a high eradication rate of 90%-92% was observed[79]. However, when it was compared to 7-d clarithromycin-based triple therapy as either a first-line or rescue therapy in a cross-over design study[80], when used as first-line treatment, clarithromycin-based triple therapy gave a significantly higher eradication rate than levofloxacin-based triple therapy (83.7% vs 74.2%, p = 0.015); however, when used as rescue treatment, levofloxacin-based triple therapy achieved a higher eradication rate than clarithromycin-based triple therapy (76.9% vs 60%, P = 0.154). In addition, the overall eradication rate of clarithromycin-based triple therapy followed by levofloxacin-based triple therapy was significantly higher than that achieved using the reverse sequence (93.0% vs 85.3%, P = 0.01). These findings suggest that levofloxacin-based triple therapy should be used as second-line treatment, rather than first-line treatment.

FACTORS THAT AFFECT THE MANAGEMENT OF H. PYLORI INFECTION

In addition to patient adherence, a number of other factors can influence treatment outcome; these include antibiotic resistance, genotypes [CYP2C19 and IL-1β polymorphisms], and intragastric acidity. Since PPIs and antibiotics are the major agents used to eradicate H. pylori, factors that affect the pharmacokinetics (e.g., CYP2C19 polymorphism for PPIs) or pharmacodynamics (e.g., drug resistance or time/concentration-dependency of antibiotics) of these drugs can determine the evolution of the management of H. pylori infection (Figure 1). The impact of CYP2C19 genotype on the pharmacokinetics and pharmacodynamics of PPIs in H. pylori treatment has been reviewed previously[81].

The major effect of PPIs in the treatment of H. pylori infection is to increase the intragastric pH, as the intragastric pH is important not only for the efficacious effect of antibiotics, but also for the growth of H. pylori. In two studies[81,82], the mean percentage of time that the intragastric pH was higher than 4 was found to be longer in patients cured of H. pylori infection than in those who were not cured (84% ± 11% vs 58% ± 9%, P < 0.001), and patients who were cured had a mean 24-h intragastric pH higher than 5.5. Factors that can influence the intragastric pH include CYP2C19 genotype, IL-1β genotype,
and dose frequency of PPIs. When 40 mg rabeprazole was given once daily, the median intragastric pH was 4.3, 4.7, and 5.9 in patients who were CYP2C19 EMs, intermediate metabolizers (IMs), and PMs, respectively[83]. On the other hand, a regimen of rabeprazole 10 mg four times daily maintained the intragastric pH at a value higher than 6.5 regardless of CYP2C19 genotype[83,84], showing that a dose frequency of four times daily is beneficial in providing sufficient inhibition of acid production in patients whose CYP2C19 genotype is not known. However, CYP2C19 polymorphism is not the only factor to consider, as it has been shown that H. pylori-infected patients with the IL-1β-511 T/T genotype have higher mucosal levels of IL-1β[85], a potent inhibitor of gastric acid secretion, which leads to an increase in the gastric pH, which plays a role in the therapy of H. pylori infection. The IL-1β-511 T/T genotype has been found to be related to a better outcome of standard triple therapy using omeprazole, lansoprazole, or rabeprazole[86,87].

In terms of the effects of antibiotics, as described in previous sections, the dose and frequency of dosing of antimicrobial agents should be determined by whether their efficacy is time- or concentration-dependent. For time-dependent antibiotics (e.g., amoxicillin), it is more important to prolong the time that the plasma concentration is higher than the MIC, rather than achieve higher drug levels. On the other hand, for concentration-dependent antibiotics (e.g., clarithromycin, levofloxacin, and metronidazole), it is more important to achieve higher plasma levels, within a reasonable range. A regimen chosen by considering these characteristics can improve treatment outcome. In addition to the dosing regimen, the increase in H. pylori resistance to antibiotics has also become an important factor in the efficacy of therapeutic regimens. The resistant rates of H. pylori to amoxicillin, clarithromycin, metronidazole, and levofloxacin are different among geographic areas (Table 2). Among these, the most important one is probably the resistance to clarithromycin, which is the key component of many regimens. The prevalence of clarithromycin resistance is more than 20% in China, Japan, and most countries in Europe[89,90,91]. Between 1998 and 2008, the clarithromycin resistance rates in Europe and Japan increased, respectively, from 9% to 17.5% and from 6.4% to 27.1%[89,92]. A meta-analysis showed that clarithromycin resistance caused a 66% reduction in the eradication rate of standard triple therapy containing a PPI, clarithromycin, and amoxicillin[85].

In addition to clarithromycin resistance, resistance to metronidazole is also important. The metronidazole resistance rate varies greatly in different geographical areas, being 92.4% in Africa, 44.1% in America, 37.1% in Asia, and 17.0% in Europe[90]. The prevalence of metronidazole resistance in developing countries is much higher than in developed countries, possibly due to the common use of metronidazole to treat parasitic infections in developing countries[93]. Metronidazole resistance also affects the efficacy of standard triple therapy containing a PPI, clarithromycin, and metronidazole. In metronidazole-susceptible strains, the eradication rate of triple therapy was found to be 97%, much higher than the value of 72.6% for metronidazole-resistant strains[94]. In contrast to clarithromycin and metronidazole resistance, the prevalence of amoxicillin resistance is usually less than 1%[95] and the impact of amoxicillin resistance on treatment outcome is still unclear. On the other hand, although the use of quinoline antibiotics, such as levofloxacin, has resulted in sufficiently satisfactory therapeutic outcomes to allow its use instead of clarithromycin in standard triple therapy regimen, the rapid acquisition of levofloxacin resistance may reduce its effectiveness and should be taken into account[95].

PAST AND FUTURE USE OF HIGH DOSE DUAL THERAPY

The high resistance rate of H. pylori to clarithromycin and metronidazole can significantly affect the efficacy of any regimens containing these medications. In contrast, worldwide primary amoxicillin resistance of H. pylori is generally low and secondary resistance to amoxicillin is also rare, even though it is a common medication in standard triple therapy[96,97], and it is therefore advantageous to use amoxicillin in the treatment of H. pylori infection. Dual therapy using the combination of a PPI (omeprazole) and amoxicillin was first investigated in 1989 and resulted in a better eradication rate (62.5%) than treatment with either PPI alone (0%) or amoxicillin alone (14.2%)[86]. High dose dual therapy consisting of 40 mg omeprazole and 750 mg amoxicillin given three times daily was first proposed in 1995 and gave an eradication rate for H. pylori infection greater than 90%[98]. In contrast to regular dual therapy, in high dose dual therapy, the PPI is given three or four times daily, rather than once or twice daily (Table 3). High dose dual therapy also seems to ameliorate the impact of CYP2C19 genotype. Furuta et al.[99] evaluated the eradication rate for H. pylori in patients with different CYP2C19 genotypes receiving rabeprazole (10 mg) and amoxicillin (500 mg) four times daily and found eradication rates of 100% in both the EM and IM groups.

Despite the advantage of the low resistance rate to amoxicillin, the eradication rate of high dose dual therapy has been found to vary in different studies. There have only been a few randomized, large scale prospective studies examining the efficacy, adverse events, and patient ad-

Table 2 Prevalence of antibiotic resistance in different regions[89,95,101-109]

	Africa	Asia	Europe	United States
Amoxicillin	17.8%	1.9%	0.5%	2.2%
Clarithromycin	13.4%	21.0%	11.1%	29.3%
Metronidazole	86.2%	38.1%	17.0%	44.1%
Levofloxacin	NA	14.0%	24.1%	NA

NA: Not available.
herence of high dose dual therapy as first-line or rescue regimen for *H. pylori* eradication and more are required to explain the discrepancies in the eradication rate; factors to be considered may include intragastric pH and dose frequency. As described above, an intragastric pH of 5 or higher is important for treatment outcome, and this is controlled by a number of factors, including PPI dose frequency, CYP2C19 genotype, and IL-1β genotype. In addition, since the bactericidal effect of amoxicillin is time-dependent, the strategy for therapy is to increase duration of exposure, rather than increase the maximum concentration. Thus, for maximal pharmacodynamic effect, it is better to give amoxicillin in smaller and more frequent doses (e.g., 500 mg four times daily), rather than higher and less frequent doses. In this regard, an optimized high dose dual therapy (e.g., both PPI and amoxicillin given four times daily) has the potential to be used as first-line or rescue therapy for treatment of *H. pylori* infection. Alternatively, to improve patient compliance, sustained-release dosage forms could be used.

CONCLUSION

Eradication of *H. pylori* infection is important because of its high prevalence and implications in other diseases. Combinations of antisecretory agents and antimicrobial agents have been proposed as first-line or second-line therapy for its treatment. However, treatment outcome depends on many factors, including intragastric acidity and resistance to antimicrobial agents. While intragastric acidity can be controlled by PPIs, resistance to various antimicrobial agents is increasing. Of the antimicrobial agents frequently used to treat *H. pylori* infection, resistance to amoxicillin is generally low. Although dual therapy containing a PPI and amoxicillin has been reported to result in different eradication rates, its efficacy can be improved by adjusting the dose and dose frequency. In addition, although clinical use of alternative medicines has still to be evaluated, phytomedicines or probiotics may have the potential to provide additive or synergistic effects against *H. pylori* because they exert different effects. Further studies are required to examine the application of optimized high dose dual therapy and alternative medicines as first-line or rescue treatment for *H. pylori* infection.

REFERENCES

1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. *Lancet* 1984; 1: 1311-1315 [PMID: 6145023 DOI: 10.1016/S0140-6736(84)91816-6]
2. Amieva MR, El-Omar EM. Host-bacterial interactions in Helicobacter pylori infection. *Gastroenterology* 2008; 134: 306-323 [PMID: 18166359 DOI: 10.1053/j.gastro.2007.11.009]
3. Scott D, Weeks D, Melchers K, Sachs G. The life and death of Helicobacter pylori. *Gut* 1998; 43 Suppl 1: 556-560 [PMID: 9764042 DOI: 10.1136/gut.43.2008.556]
4. Brown LM. Helicobacter pylori: epidemiology and routes of transmission. *Epidemiol Rev* 2000; 22: 283-297 [PMID: 11218379 DOI: 10.1093/oxfordjournals.epirev.a018040]
5. Vale FF, Vitor JM. Transmission pathway of Helicobacter pylori: does food play a role in rural and urban areas? *Int J Food Microbiol* 2010; 138: 1-12 [PMID: 20122750 DOI: 10.1016/j.ijfoodmicro.2010.01.016]
6. Peura DA, Crowe CE. Helicobacter pylori. In: Feldman M Fl, Brandt Lj, editors. Feldman: Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. 9th ed. Philadelphia: Saunders, 2010: 833-845 [DOI: 10.1086/B978-1-4160-6189-2-0050-0]
7. Fock KM, Ang TL. Epidemiology of Helicobacter pylori infection and gastric cancer in Asia. *J Gastroenterol Hepatol* 2010; 25: 479-486 [PMID: 20370726 DOI: 10.1111/j.1440-1746.2009.06188.x]
8. Waterspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. *Lancet* 1991; 338: 1175-1176 [PMID: 1682595 DOI: 10.1016/0140-6736(91)92035-Z]
9. Kuipers EJ. Helicobacter pylori and the risk and management of associated diseases: gastritis, ulcer disease, atrophic gastritis and gastric cancer. *Aliment Pharmacol Ther* 1997; 11 Suppl 1: 71-88 [PMID: 9146793 DOI: 10.1046/j.1365-2036.11.s1.5.x]
10. Sipponen P, Hyvärinen H. Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer. *Scand J Gastroenterol Suppl* 1993; 196: 3-6 [PMID: 8341988 DOI: 10.3109/0036552930909833]
11. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. *N Engl J Med* 2001; 345: 784-789 [PMID: 11556297]
Infection with Helicobacter pylori. In: IARC monographs on the evaluation of the carcinogenic risks to humans. Vol. 61. Schistosomes, liver flukes and Helicobacter pylori. Lyon, France: International Agency for Research on Cancer, 1994: 177-240.

Fock KM, Katelaris P, Sugano K, Ang TL, Hunt R, Talley NJ, Lam SK, Xiao SD, Tan HJ, Wu CY, Jung HC, Hoang BH, Kachintorn U, Goh KL, Chiba T, Rani AA. Second Asia-Pacific Consensus Guidelines for Helicobacter pylori infection. J Gastroenterol Hepatol 2009; 24: 1587-1600 [PMID: 19788600 DOI: 10.1111/j.1440-1746.2009.05982.x]

World Gastroenterology Organisation. World Gastroenterology Organisation Global Guideline: Helicobacter pylori in developing countries. J Clin Gastroenterol 2011; 45: 383-388 [PMID: 21415768 DOI: 10.1097/MCG.0b013e31820bfa86]

Malferttheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazzoli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ. Management of Helicobacter pylori infection—the Maastricht IV / Florence Consensus Report. Gut 2012; 61: 646-664 [PMID: 22491499 DOI: 10.1136/gutjnl-2012-302884]

Chey WD, Wong BC. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol 2007; 102: 1808-1825 [PMID: 17680875 DOI: 10.1111/j.1572-0241.2007.01393.x]

Iwao E, Yokoyama Y, Yamamoto K, Hirayama F, Haga K. In vitro and in vivo anti-Helicobacter pylori activity of Y-904, a new fluoroquinolone. J Infect Chemother 2003; 9: 165-171 [PMID: 12825117 DOI: 10.1007/s10156-003-0204-z]}

Irie Y, Tateda K, Matsumoto T, Miyazaki S, Yamaguchi K. Antibiotic MICS and short time-killing against Helicobacter pylori: therapeutic potential of kanamycin. J Antimicrob Chemother 1997; 40: 235-240 [PMID: 9301899 DOI: 10.1093/jac/40.2.235]

Hoffman PS, Goodwin A, Johnson J, Magee K, Veldhuyzen van Zanten SJ. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J Bacteriol 1996; 178: 4822-4829 [PMID: 8758944]

Mégraud F, Lehours P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin Microbiol Rev 2007; 20: 280-322 [PMID: 17428887 DOI: 10.1128/CMR.00033-06]

The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICS and zone diameters. Version 3.1, 2013. Available from: URL: http://www.eucast.org

Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26: 1-10; quiz 11-2 [PMID: 9455502 DOI: 10.1086/516284]

Berry V, Jennings K, Woodnutt G. Bacterial and morphological effects of amoxicillin on Helicobacter pylori. Antimicrob Agents Chemother 1995; 39: 1859-1861 [PMID: 7486933 DOI: 10.1128/AAC.39.9.1859]

Mégraud F, Trimoulet Pascale H, Boyanova L. Bactericidal effect of amoxicillin on Helicobacter pylori in an in vitro model using epithelial cells. Antimicrob Agents Chemother 1989; 15: 859-862 [PMID: 1854168 DOI: 10.1128/AAC.35.5.859]

Lambert JR, Midolo P. The actions of bismuth in the treatment of Helicobacter pylori infection. Aliment Pharmacol Ther 1997; 11 Suppl 1: 27-33 [PMID: 9146788]

Sörberg M, Hanberger H, Nilsson M, Nilsson LE. Pharmacodynamic effects of antibiotics and acid pump inhibitors on Helicobacter pylori. Antimicrob Agents Chemother 1997; 41: 2218-2223 [PMID: 9333051]

Davis R, Bryson HM. Levofloxacin. A review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 1994; 47: 677-700 [PMID: 7518683 DOI: 10.2165/00003495-19944704-00008]

Dore MP, Osato MS, Reddi G, Mura I, Graham DY, Sepulveda AR. Amoxicillin tolerance in Helicobacter pylori. J Antimicrob Chemother 1999; 43: 47-54 [PMID: 10381100 DOI: 10.1093/jac/43.1.47]

van Zetten AA, Vandenbroeck-Grauls CM, Thijjs JC, van der Wouden EJ, Gerrits MM, Kusters JG. Stable amoxicillin resistance in Helicobacter pylori. Lancet 1998; 352: 1595 [PMID: 9843107 DOI: 10.1016/S0140-6736(98)00664-6]
pharmacology of the gastric acid pump: the H+K+ ATPase.

Anna Rev Pharmacol Toxicol 1995; 35: 277-305 [PMID: 7598495

DOI: 10.1146/aranrev-pa.35.0419(1995)0425]

44 Besançon M, Simon A, Sachs G, Shin JM. Sites of reaction of the gastric H,K-ATPase with extracytoplasmic thiol agents. J Biol Chem 1997; 272: 22438-22446 [PMID: 9278394

DOI: 10.1074/jbc.272.36.22438]

45 Huber R, Kohl B, Sachs G, Senn-Bilfinger J, Simon WA, Sturm E. Review article: the continuing development of proton pump inhibitors with particular reference to pantoprazole. Aliment Pharmacol Ther 1995; 9: 363-378 [PMID: 8527612 DOI: 10.1111/j.1365-2036.1995.tb00394.x]

46 Sohn DR, Kobayashi K, Chiba K, Lee KH, Shin SG, Ishizaki T. Disposition kinetics and metabolism of omeprazole in extensive and poor metabolizers of S-mephenytoin 4'-hydroxylation recruited from an Oriental population. J Pharmac Exp Ther 1992; 262: 1195-1202 [PMID: 1527724]

47 Yasuda S, Horai Y, Tomono Y, Nakai H, Yamato C, Manabe K, Kobayashi K, Chiba K, Ishizaki T. Comparison of the kinetic disposition and metabolism of E3810, a new proton pump inhibitor, and omeprazole in relation to S-mephenytoin 4'-hydroxylation status. Clin Pharmacol Ther 1995; 58: 143-154 [PMID: 7648764 DOI: 10.1016/0009-9236(95)90192-2]

48 Sohn DR, Kwon JT, Kim HK, Ishizaki T. Metabolic disposition of lansoprazole in relation to the S-mephenytoin 4'-hydroxylation phenotype status. Clin Pharmacol Ther 1997; 61: 574-582 [PMID: 9164419 DOI: 10.1016/S0009-9236(97)90157-3]

49 Tanaka M, Ohkubo T, Otani K, Suzuki A, Kaneko S, Suga- wara K, Ryokawa Y, Hakusui H, Yamamori S, Ishizaki T. Metabolic disposition of pantoprazole, a proton pump inhibitor, in relation to S-mephenytoin 4'-hydroxylation phenotype and genotype. Clin Pharmacol Ther 1997; 62: 619-628 [PMID: 9433390 DOI: 10.1016/s0009-9236(97)90081-3]

50 Sakai T, Aoyama N, Kita T, Sakaeda T, Nishiguchi K, Nishitoh Y, Hohda T, Sirasaka D, Tamura T, Tanigawara Y, Kawakami Y, Akahane T, Yamaguchi M, Oana K, Takahashi K. Disposition kinetics and metabolism of omeprazole in extensive and poor metabolizers of S-mephenytoin 4'-hydroxylation recruited from an Oriental population. J Pharmac Exp Ther 1992; 262: 1195-1202 [PMID: 1527724]

51 Tanaka M, Ohkubo T, Otani K, Suzuki A, Kaneko S, Sugawara K, Ryokawa Y, Hakusui H, Yamamori S, Ishizaki T. Stereoselective pharmacokinetics of pantoprazole, a proton pump inhibitor, in extensive and poor metabolizers of S-mephenytoin 4'-hydroxylation phenotype and genotype. Clin Pharmacol Ther 1997; 62: 619-628 [PMID: 9433390 DOI: 10.1016/0009-9236(97)90081-3]

52 Abelö A, Andersson TB, Antonsson M, Naudot AK, Skån LIN J, Huang WW. A systematic review of treating Helicobacter pylori infection with Traditional Chinese Medicine. World J Gastroenterol 2009; 15: 4715-4719 [PMID: 19787835 DOI: 10.3748/wjg.15.4715]

53 Cindoruk M, Erkan G, Karakan T, Dursun A, Unal S. Efficacy and safety of Saccharomyces boulardii in the 14-day triple anti-Helicobacter pylori therapy: a prospective randomized placebo-controlled double-blind study. Helicobacter 2007; 12: 309-316 [PMID: 17669103 DOI: 10.1111/j.1651-2227.2008.00977.x]

54 Hurdur V, Plesca D, Dragomir D, Sajin M, Vandenplas Y. A randomized, open trial evaluating the effect of Saccharomyces boulardii on the eradication rate of Helicobacter pylori infection in children. Acta Paediatr 2009; 98: 127-131 [PMID: 18681892 DOI: 10.1111/j.1651-2227.2008.00977.x]

55 Armuzzi A, Cremonini F, Bartolozzi F, Canducci F, Candelli M, Ojetti V, Cammarota G, Anti M, De Lorenzo A, Pola P, Gasbarrini G, Gasbarrini A. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 2001; 15: 163-169 [PMID: 11148433 DOI: 10.1046/j.1365-2036.2001.00973.x]

56 Armuzzi A, Crostini F, Bartolozzi F, Canducci F, Candelli M, Ojetti V, Cammarota G, Anti M, De Lorenzo A, Pola P, Gasbarrini G, Gasbarrini A. The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 2001; 15: 163-169 [PMID: 11148433 DOI: 10.1046/j.1365-2036.2001.00973.x]

57 Sachdeva A, Nargal J. Effect of fermented milk-based probiotic preparations on Helicobacter pylori eradication: a systematic review and meta-analysis of randomized-controlled trials. Eur J Gastroenterol Hepatol 2009; 21: 45-53 [PMID: 19060631 DOI: 10.1097/MEG.0b013e32830bffef]

58 Graham DY, Lu H, Yamaoka Y. A report card to grade Helicobacter pylori therapy. Helicobacter 2007; 12: 275-278 [PMID: 17669008 DOI: 10.1111/j.1365-2378.2007.00518.x]

59 Fischbach L. Helicobacter pylori treatment in the era of increasing antibiotic resistance. Gut 2010; 59: 1143-1153 [PMID: 20529691 DOI: 10.1136/gut.2009.192757]

60 Furuta T, Shirai N, Kodaira M, Sugimoto M, Nagaki A, Kuriyama S, Iwaiizumi M, Yamada M, Terakawa I, Ohashi K, Ishizaki T, Hishida A. Pharmacogenomics-based tailored versus standard therapeutic regimen for eradication of H. pylori. Clin Pharmacol Ther 2007; 81: 521-528 [PMID: 17360546]
dual therapy for Helicobacter pylori eradication. \textit{Pharmacotherapy} 2011; 31: 227-238 [PMID: 21361732 DOI: 10.1592/phco.31.3.227]

83 Sugimoto M, Furuta T, Shirai N, Kajimura M, Hishida A, Sakurai A, Ohashi K, Ishizaki T. Different dosage regimens of rabeprazole for nocturnal gastric acid inhibition in relation to cytochrome P450 2C19 genotype status. \textit{Clin Pharmacol Ther} 2004; 76: 290-301 [PMID: 15470328 DOI: 10.1016/j.cpt.2004.06.008]

84 Sugimoto M, Shirai N, Nishino M, Kodaira C, Uotani T, Yamade M, Sakara H, Ichikawa H, Sugimoto K, Miyajima H, Furuta T. Rabeprazole 10 mg q.d.s. decreases 24-h intra-gastric acidity significantly more than rabeprazole 20 mg b.d. or 40 mg o.m., overcoming CYP2C19 genotype. \textit{Aliment Pharmacol Ther} 2012; 36: 627-634 [PMID: 22882464 DOI: 10.1111/apt.12014]

85 Hwang IR, Kodama T, Kikuchi S, Sakai K, Peterson LE, Graham DY, Yamaoka Y. Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. \textit{Gastroenterology} 2002; 123: 1793-1803 [PMID: 12045835 DOI: 10.1053/gast.2002.37043]

86 Furuta T, Shirai N, Xiao F, El-Omar EM, Rakin CS, Sugimura H, Ishizaki T, Ohashi K. Polymorphism of interleukin-1beta affects the eradication rates of Helicobacter pylori by triple therapy. \textit{Clin Gastroenterol Hepatol} 2004; 2: 22-30 [PMID: 15017629 DOI: 10.1016/S1542-3565(05)00288-X]

87 Sugimoto M, Furuta T, Shirai N, Ikuma M, Hishida A, Ishizaki T. Influences of proinflammatory and anti-inflammatory cytokine polymorphisms on eradication rates of clarithromycin-sensitive strains of Helicobacter pylori by triple therapy. \textit{Clin Pharmacol Ther} 2006; 80: 41-50 [PMID: 16815316 DOI: 10.1016/j.cpt.2006.03.007]

88 Horiki N, Omata F, Uemura M, Suzuki S, Ishii N, Iizuka Y, Fukuda K, Fujita Y, Katsurahara M, Ito T, Cesar GE, Imoto I, Takei Y. Annual change of primary resistance to clarithromycin among Helicobacter pylori isolates from 1996 through 2008 in Japan. \textit{Helicobacter} 2009; 14: 86-90 [PMID: 19751432 DOI: 10.1111/j.1523-5378.2009.00714.x]

89 De Francesco V, Giorgio F, Hassan C, Manes G, Vannella L, Panella C, Ierardi E, Zullo A. Worldwide H. pylori antibiotic resistance: a systematic review. \textit{J Gastroinestin Liver Dis} 2010; 19: 409-414 [PMID: 21183333]

90 Wu W, Yang Y, Sun G. Recent Insights into Antibiotic Resistance in Helicobacter pylori Eradication. \textit{Gastroenterol Res Pract} 2012; 2012: 723183 [PMID: 22829809]

91 Glupczynski Y, Megraud F, Lopez-Brea M, Andersen LP. European multicentre survey of in vitro antimicrobial resistance in Helicobacter pylori. \textit{Eur J Clin Microbiol Infect Dis} 2001; 20: 820-823 [PMID: 11783701 DOI: 10.1007/s100960100611]

92 Megraud F, Coenen S, Versporten A, Kist M, Lopez-Brea M, Hirschel AM, Andersen LP, Goossens H, Glupczynski Y. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. \textit{Gut} 2013; 62: 34-42 [PMID: 22850412 DOI: 10.1136/gutjnl-2012-302254]

93 Fischbach L, Evans EL. Meta-analysis: the effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori. \textit{Aliment Pharmacol Ther} 2007; 26: 343-357 [PMID: 17635369 DOI: 10.1111/j.1365-2036.2007.03386.x]

94 Frencik RW, Clemens J. Helicobacter in the developing world. \textit{Microbes Infect} 2003; 5: 705-713 [PMID: 12814771 DOI: 10.1016/S1286-4579(03)0012-6]

95 Gao W, Cheng H, Hu F, Li J, Wang L, Yang G, Xu L, Zheng X. The evolution of Helicobacter pylori antibiotics resistance over 10 years in Beijing, China. \textit{Helicobacter} 2010; 15: 460-466 [PMID: 21083752 DOI: 10.1111/j.1525-5378.2010.00788.x]

96 Murakami K, Fujioka T, Okimoto T, Sato R, Kodama M, Nasu M. Drug combinations with amoxicillin reduce selection of clarithromycin resistance during Helicobacter pylori eradication therapy. \textit{Int J Antimicrob Agents} 2002; 19: 67-70
Yang JC et al. Treatment of Helicobacter pylori infection

97 Toracchino S, Marzio L. Primary and secondary antibiotic resistance of Helicobacter pylori strains isolated in central Italy during the years 1998-2002. Dig Liver Dis 2003; 35: 541-545 [PMID: 14567457 DOI: 10.1016/S1590-8658(03)00265-2]

108 Ungc P, Gad A, Gnape H, Olsson J. Does omeprazole improve antimicrobial therapy directed towards gastric Campylobacter pylori in patients with antral gastritis? A pilot study. Scand J Gastroenterol Suppl 1989; 167: 49-54 [PMID: 2617169 DOI: 10.3109/00365579090131311]

99 Bayerdorffer E, Mielhke S, Mannes GA, Sommer A, Höchter W, Weingart J, Heldwein W, Klann H, Simon T, Schmitt W. Double-blind trial of omeprazole and amoxicillin to cure Helicobacter pylori infection in patients with duodenal ulcers. Gastroenterology 1995; 100: 1412-1417 [PMID: 772663] DOI: 10.1016/0016-5085(95)90689-4

100 Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Ngagawa K, Sugimura H, Ohashi K, Ishizaki T. Effects of genotypic differences in CYP2C19 status on cure rates for Helicobacter pylori infection by dual therapy with rabeprazole plus amoxicillin. Pharmacogenetics 2003; 11: 341-348 [PMID: 11434512 DOI: 10.1097/00008571-200016000-00009]

104 Asrat D, Kassa E, Mengistu Y, Nilsson I, Wadström T. Antimicrobial susceptibility pattern of Helicobacter pylori strains isolated from adult dyspeptic patients in Tikur Anbessa University Hospital, Addis Ababa, Ethiopia. Ethiop Med J 2004; 42, 79-85 [PMID: 16695024]

105 Chung JW, Lee GH, Jeong JY, Lee SM, Jung JH, Choi KD, Song HJ, Jung HY, Kim JH. Resistance of Helicobacter pylori strains to antibiotics in Korea with a focus on fluorquinolone resistance. J Gastroenterol Hepatol 2012; 27: 493-497 [PMID: 21793912 DOI: 10.1111/j.1440-1746.2011.06874.x]

106 Debets-Ossenkopp YJ, Reyes G, Mulder J, aan de Stegge BM, Peters JT, Savelkoul PH, Tanca J, Peña AS, Vandenbroucke-Grauls CM. Characteristics of clinical Helicobacter pylori strains from Ecuador. J Antimicrob Chemother 2003; 51: 81-87 [PMID: 12493799 DOI: 10.1093/jac/dkg023]

107 Lwai-Lume L, Ogutu EO, Amayo EO, Karuki S. Drug susceptibility pattern of Helicobacter pylori patients in dyspepsia at the Kenyatta National Hospital, Nairobi. East Afr Med J 2005; 82: 603-608 [PMID: 16619703]

108 Mendonça S, Ecclissato C, Sartori MS, Godoy AP, Guerzoni RA, Degger M, Pedrazzoli J. Prevalence of Helicobacter pylori resistance to metronidazole, clarithromycin, amoxicillin, tetracycline, and furazolidone in Brazil. Helicobacter 2000; 5: 79-85 [PMID: 10849055 DOI: 10.1046/j.1525-1378.2000.00011.x]

109 Ndip RN, Malange Takang AE, Ojongokpoko JE, Luma MN, Malangeu A, Akoachere JF, Ndip LM, MacMillan M, Weaver LT. Helicobacter pylori isolates recovered from gastric biopsies of patients with gastro-duodenal pathologies in Cameroon: current status of antibiogram. Trop Med Int Health 2008; 13: 848-854 [PMID: 18384777 DOI: 10.1111/j.1365-3156.2008.02062.x]

110 Sherif M, Mohran Z, Fathy H, Rockabrand DM, Rozmajzl PJ, French RW. Universal high-level primary metronidazole resistance in Helicobacter pylori isolated from children in Egypt. J Clin Microbiol 2004; 42: 4832-4834 [PMID: 15472354 DOI: 10.1128/JCM.42.10.4832-4834.2004]

111 Smith SI, Oyedeji KS, Arigbabu AO, Atimomo C, Coker AO. High amoxicillin resistance in Helicobacter pylori isolated from gastritis and peptic ulcer patients in western Nigeria. J Gastroenterol 2001; 36: 67-68 [PMID: 11212116 DOI: 10.1007/s005350170158]

112 Tanbih NF, Okeleye BI, Naidoo N, Clarke AM, Mkwetshana N, Greer E, Ndip LM, Ndip RN. Marked susceptibility of South African Helicobacter pylori strains to ciprofloxacin and amoxicillin: clinical implications. S Afr Med J 2010; 100: 49-52 [PMID: 20429489]

113 Mielhke S, Kirsch C, Schneider-Brachter W, Haferland C, Neumeyer M, Bästlein E, Papke J, Jacobs E, Vieth M, Stolte M, Lehn N, Bayerdorffer E. A prospective, randomized study of quadruple therapy and high-dose dual therapy for treatment of Helicobacter pylori resistant to both metronidazole and clarithromycin. Helicobacter 2003; 8: 310-319 [PMID: 12950604 DOI: 10.1046/j.1523-5378.2003.00158.x]

114 Furuta T, Shirai N, Takashima M, Xiao F, Hanai H, Sugimura H, Ohashi K, Ishizaki T, Kaneko S, Efecto de genotypic differences in CYP2C19 in cure rates for Helicobacter pylori infection by triple therapy with a proton pump inhibitor, amoxicillin, and clarithromycin. Clin Pharmacol Ther 2001; 69: 158-168 [PMID: 11240980 DOI: 10.1067/mcp.2001.113959]

115 Shirai N, Sugimoto M, Kodaira C, Nishino M, Ikuma M, Kajimura M, Ohashi K, Ishizaki T, Hishida A, Furuta T. Dual therapy with high doses of rabeprazole and amoxicillin versus triple therapy with rabeprazole, amoxicillin, and metronidazole as a rescue regimen for Helicobacter pylori infection after the standard triple therapy. Eur J Clin Pharmacol 2007; 63: 743-749 [PMID: 17565490 DOI: 10.1007/s00228-007-0302-8]

116 Graham DY, Javed SU, Kehilanian S, Abudayyeh S, Opekon AR. Dual proton pump inhibitor plus amoxcillin as an empiric anti-H. pylori therapy: studies from the United States. J Gastroenterol 2010; 45: 816-820 [PMID: 20195646 DOI: 10.1007/s00535-010-0221-x]

117 Kim SY, Jung SW, Kim JH, Koo JS, Yim HJ, Park JJ, Chun HJ, Lee SW, Choi JH. Effectivness of three times daily lanoprazole/amoxicillin dual therapy for Helicobacter pylori infection in Korea. Br J Clin Pharmacol 2012; 73: 140-143 [PMID: 21698141 DOI: 10.1111/j.1365-2125.2011.04048.x]

118 Goh KL, Manikam J, Qua CS. High-dose rabeprazole-amoxicillin dual therapy and rabeprazole triple therapy with amoxicillin and levofloxacin for 2 weeks as first and second line rescue therapies for Helicobacter pylori treatment failures. Aliment Pharmacol Ther 2012 Mar 8; Epub ahead of print [PMID: 22404486]

P-Reviewers: Ananthakrishnan N, Chong VH, Jonaitis L, Sugimoto M
S-Editor: Gou SX L-Editor: A E-Editor: Ma S
