The Impact of Student-Curated Exhibitions about Socio-Scientific Issues on Students’ Perceptions regarding their Competences and the Science Classes

Pedro Reis 1,*, Luís Tinoca 2, Mónica Baptista 3 and Elisabete Linhares 4

1 Instituto de Educação, Universidade de Lisboa; preis@ie.ulisboa.pt
2 Instituto de Educação, Universidade de Lisboa; ltnoca@ie.ulisboa.pt
3 Instituto de Educação, Universidade de Lisboa; mbaptista@ie.ulisboa.pt
4 Escola Superior de Educação, Instituto Politécnico de Santarém; Unidade de Investigação e Desenvolvimento em Educação, Instituto de Educação, Universidade de Lisboa – UIDEF; Elisabete.Linhares@ese.ipsantarem.pt
* Correspondence: preis@ie.ulisboa.pt

Abstract: The IRRESISTIBLE Project (FP7, Grant 612367) had the aim of involving teachers, students and the public in the discussion on Responsible Research and Innovation (RRI), promoting both the construction of knowledge on cutting-edge (and controversial) research topics and the discussion about the criteria that these research/innovation processes should respect in order to be considered as responsible. These criteria also represent a strong contribution to a more sustainable future for all. This quantitative research evaluates the impact of IRRESISTIBLE’s student-curated exhibitions – about the RRI dimensions of cutting-edge research topics (socio-scientific issues) – on students’ perceptions regarding their scientific competences and the science classes. A pre and post-questionnaire was developed, validated and applied to students from 10 countries. The overall results of the statistical analysis indicate that students improved their perceptions regarding their competences for developing exhibitions in science classes as a way of creating awareness on topics relating science-technology-society. This activity reinforced students’ perceptions that in science classes they: a) discuss current issues and how they impact their lives; b) develop socially and relevant projects; and c) learn how to influence other citizens’ decisions about social issues related to science, technology and environment with the aim of assuring a more sustainable future.

Keywords: student-curated exhibitions; socio-scientific issues; responsible research and innovation; science education; sustainable development goals; activism

1. Introduction

The IRRESISTIBLE Project (FP7-SCIENCE-IN-SOCIETY-2013-1, ACTIVITY 5.2.2; Grant agreement no. 612367; more details at http://www.irresistible-project.eu/index.php/en/) had the aim of involving teachers, students and the public in the process of Responsible Research and Innovation (RRI), promoting both the construction of knowledge on cutting-edge (and controversial) research topics and the discussion about the criteria that these research and innovation processes should respect in order to be considered as responsible [1]. Nowadays, humankind face many serious problems such as climate change, pollution caused by plastic waste, oceans’ acidification and food security, all of which can be dealt with responsible manufacturing processes [2].

Each of the twelve partners (from ten different countries) developed a Learning Community – including science teachers, teacher educators, research scientists in selected scientific areas and specialists from science centres and museums – with the aim of supporting students and teachers through an Inquiry Based Science Education (IBSE) strategy centred on a cutting-edge socio-scientific issue. These IBSE strategies – organized accordingly to the 5E teaching model [3]: Engage, Explore, Explain, Elaborate, and Evaluate – allowed students to identify the controversial dimensions of each
research topic, to raise their awareness to RRI and to obtain the necessary knowledge for the development of an interactive scientific exposition on that topic (an extra E – Exchange – added by the IRRESISTIBLE project to the 5E model [4]).

Reflection on the RRI dimensions of each cutting-edge research topic was guided by the aspects defined by Hilary Sutcliffe in her report on Responsible Research and Innovation [5]: a) Engagement – joint participation of researchers, industry and civil society in the research and innovation process; b) Gender equality – equal involvement of both men and women; c) Science education – creative education to foster the future needs of society; d) Ethics – the necessity of respecting fundamental rights and the highest ethical standards; e) Open access – assuring free online access to the results of publicly funded research; f) Governance – the responsibility of policy makers to develop harmonious models for RRI. Several of these aspects represent a strong contribution not only to RRI but also to a better and more sustainable future for all, addressing some of the Sustainable Development Goals proposed by the 2030 Agenda for Sustainable Development [6,7]: Goal 4 – Quality education as a requirement to equip citizens with the tools required to develop and to discuss innovative solutions to the world’s greatest problems; Goal 5 – Gender equality as a fundamental human right assuring women and girls participation in all levels of society; Goal 9 – Technology and innovation, orientated by responsibility, are the foundation of development; Goal 13 – Climate action requires responsible research and innovation orientated towards renewable energy and a low-carbon economy.

According to the Science and Society Action Plan [8], joint and inclusive participation of all social actors is a fundamental condition to assure the compatibility between the processes and products of research and innovation, and the values, needs and expectations of European society. Because of the public funding of many research programs, it is assumed that governments and other entities have the moral responsibility to allow (and promote) their citizens involvement in decision-making processes regarding the meaning and purpose of research and innovation.

Critical in this model, student-curated exhibitions took place in different contexts – schools, universities, science centres, museums and public places – and were assumed as a strategy for activism. Through these exhibitions, students informed and alerted the community about the socio-scientific issue they have researched, and triggered discussion on the necessary conditions to assure responsible research and innovation practices in those areas. The exhibitions took place as collective actions of democratic problem solving, enabling students as critics and producers of knowledge, instead of placing them in the simple role of knowledge consumers [9-13].

Socio-scientific issues can be defined as hot science, focused on the symmetry between various interests or perspectives related to controversial issues [14-16]. Exhibitions about socio-scientific issues are a consequence of the shift in scientific literacy meaning from (1) the understanding of the products and processes of science to (2) the understanding of the complex interactions between science, technology and society that allows citizens’ critical analysis and engagement in socio-scientific issues and informed decision-making processes [17-21]. These exhibitions represent a challenge for those involved in their development [22]. Their emphasis in the understanding of complex issues and in decision-making competences require exhibitions questioning the social, economic, political and ethical impacts of scientific and technological proposals in visitors’ daily life and presenting the opinions of different social stakeholders regarding those issues [23]. Visitors are invited to engage actively in the development of their own critical perspectives and challenged to participate in collective action [16,22,24-27]. This type of exhibition doesn’t provide correct answers; it raises questions, in-depth discussion and critical thinking [16, 25, 27,28]. It represents a context and a pretext for discussion between curators, visitors and other social stakeholders, transforming all of them into learners [29].

Asking students to curate an exhibition on a socio-scientific issue can be particularly useful in terms of: a) learning about the contents, the processes and the nature of science and technology [30, 31]; b) highlighting a borderline science, that is controversial, preliminary, uncertain and under debate [32]; c) developing students’ skills of inquiry, questioning, discussion, collaboration, autonomy, creativity, communication, project management and media production [33,34]; d) promoting students’ cognitive, social, political, moral and ethical development [31,35,36]; e) creating an opportunity for students to participate in (and to instigate) community action on socio-scientific
issues [9] – a major dimension of scientific literacy [18,37]; f) moving assessment from a product to a process [9,38].

During the last twenty-years, several studies have focused on how to develop socio-scientific issues based exhibitions, suggesting some design guidelines or principles such as raising curiosity, presenting an interesting narrative, challenging the visitors and stimulating their participation [15,26,27,39,40]. Within the IRRESISTIBLE project, and having in mind the novelty of exhibition development for the majority of the partners, a guide was developed through a design-based research approach. This methodology was used with the aim of developing a tool that could help improving educational practices, through iterative analysis, design, development, and implementation, based on collaboration among researchers and practitioners – the project members – in real-world settings [41]. Along this process, a sequence of several iterations – literature analysis; testing and evaluation of the different interactive scenarios proposed in the guide’s prototype during a workshop with science educators, science teachers and science museum experts from the different countries involved in the project; testing and evaluation of the guide’s prototype by all the IRRESISTIBLE partners – led from a prototype to the final version of the guide [42]. Each iteration allowed to gather feedback and suggestions of improvement. The final version – made available in several formats: pdf, electronic magazine and e-book – was organized around the following sections: 1) The potential of student-curated exhibits about Responsible Research and Innovation; 2) Different stages in developing an exhibition; 3) Characteristics of an interactive exhibition and of an interactive object; 4) Possible interactivity scenarios for exhibits; 5) General guidelines for all scenarios; 6) How to evaluate the impact of IRRESISTIBLE exhibitions on teachers, students and visitors.

The concept of interactivity used in this project does not, necessarily, require the presence of technology, but, instead, does certainly require the interaction between the visitors within the exhibit and between them and the objects that are being exhibited [43-45]. This interaction does not require any physical movement – the interaction between the visitor and the object exists even if the visitor is only thinking and reflecting on the stimulus from the object [46,47].

2. Materials and Methods

This quantitative research was aimed to evaluate the impact of IRRESISTIBLE’s student-curated exhibitions – about the RRI dimensions of cutting-edge research topics (socio-scientific issues) – on students’ perceptions regarding their scientific competences and the science classes. A pre and post-questionnaire was developed, validated and applied to the students participating in the project [48]. The questionnaire was answered by a total of 3368 students on the pre-test (applied before the development of the student-curated exhibitions) and 2433 on the post-test (applied after the entire process of student-curated exhibitions’ development) (see table 1), from a total of 7340 students involved in IRRESISTIBLE. Turkey, Poland and Greece were the most represented countries, but Italy and Portugal also had more than 500 respondents each.

Country	Pre-test	Post-test	Total per country
Finland	277	90	367
Germany	226	206	432
Greece	617	483	1100
Israel	153	59	212
Italy	513	185	698
Netherlands	36	85	121
Poland	607	501	1108
Portugal	269	276	545
Romania	47	43	90
Turkey	623	505	1128
Total	3368	2433	5801
Participants were distributed across all age groups as is illustrated by table 2, with the majority being 15 or 16 years old, but also with very large numbers from ages 11, 12, 13, 14 and 17.

Country	Age	8-	9	10	11	12	13	14	15	16	17	18+
Finland	0	0	0	0	0	20	173	34	0	0	2	4
Germany	0	0	0	0	0	0	15	67	57	110	106	75
Greece	0	0	0	1	256	176	76	95	203	156	100	8
Israel	0	0	0	0	0	0	10	2	30	118	31	0
Italy	0	0	0	0	0	0	0	19	211	120	137	196
Netherlands	0	0	0	0	0	0	0	23	47	14	26	5
Poland	0	0	0	0	7	88	199	183	230	234	100	
Portugal	41	7	30	14	3	104	83	142	93	12	1	
Romania	0	0	0	0	0	0	0	3	39	16	28	
Turkey	0	0	8	116	310	217	132	150	124	64	7	
Total	41	7	59	507	669	544	620	1026	1007	728	424	

The online pre and post-questionnaire comprised 16 items, to be evaluated by students through a five point Likert scale (ranging from totally agree to totally disagree):
1. I’m capable of planning and constructing a science exhibit about a current and relevant scientific theme
2. Planning and constructing a science exhibit is motivating
3. The development of a science exhibit about a given subject allows me to learn more about that subject
4. The construction of science exhibits improves the relationships amongst students
5. The construction of science exhibits improves the relationship between students and teacher
6. ICTs are great tools to support the development of science exhibits
7. I’m capable of creating science exhibits as a way to raise awareness in the community for current and relevant scientific issues
8. Through the development of science exhibits I can influence the decisions and behaviours of other citizen’s related to social issues concerning science, technology and environment
9. In my science classes I discuss about current problems and how they affect my life
10. In my science classes I develop competencies that allow me to have a more active role in society
11. In my science classes I’m encouraged to ask questions
12. In my science classes I carry out projects that I consider important and socially relevant
13. In my science classes I learn to act in a socially responsible way
14. In my science classes I learn to respect my colleagues’ opinions
15. In my science classes I learn about ways to influence other people’s decisions about social issues related to science, technology and society
16. In my science classes I’m responsible for initiatives that allow me to influence other people’s decisions about social issues related to science, technology and society

The questionnaire was organized in two sections, each one with eight questions: the first section about the student-curated exhibitions (items 1 to 8); the second section about the students’ science classes (items 9 to 16). In order to validate the developed sections, the Cronbach’s Alpha Index was calculated for both. The attained values for Cronbach’s Alpha on the sections was respectively .853
and .876, indicating that the internal consistency of both topics was high (Cronbach’s Alpha larger than .8) and illustrating the reliability of the proposed topics [48].

The overall improvement of the sample was calculated – ANOVA test – in order to detect significant statistical differences between the students’ perceptions before and after the participation in the project.

3. Results

3.1. Student-curated exhibitions

Within the three years span of the IRRESISTIBLE project a total of 218 exhibitions were developed by the partners, centred on different cutting-edge (and controversial) research topics: a) Nanotechnology (N=131); b) Plastic Pollution in Oceans (N=32); c) Carbohydrates in breast milk (N=21); d) Climate change (N=13); e) Oceanography (N=7); f) Polar Science (N=7); g) Climate Geoengineering (N=6); h) Extension of Portuguese Continental Shelf (N=1). These exhibitions took place mainly in schools and science centres: a) School (N=139); b) Science Centre/Museum (N=70); c) University (N=3); d) Other (N=5). A total of 7340 students were involved in the development of the exhibitions.

Regarding the type of exhibition, and taking into account also the interactivity scenarios presented in the IRRESISTIBLE Exhibition Development Guide that was used by all partners, a great variety of artefacts were produced. Some exhibitions were more homogeneous concerning the type of artefacts; others more eclectic. Table 3 presents the type of artefacts produced within the 218 developed exhibitions.

Type of Artefact	Number of exhibitions with this type of artefact	% of exhibitions with this type of artefact	
Game	Physical (e.g., table-game, soccer table)	66	38
	Digital (e.g., quizzes)	14	8
Poster	Physical	67	39
	Physical but 3D (cubes, objects...)	37	22
	Digital	13	8
Multimedia presentations (e.g., video, audio)		37	22
Web-integrated exhibit /website/Blog		10	6
Cartoons (digital or printed)		6	3
Models		32	19
Experiments/demonstrations/simulations		32	19
Digital application		3	2
Newspaper		1	1
Book		6	3
Play		1	1
Hologram		1	1
Prototype		1	1
IKEA bookshelf (EXPOneer system)		31	18

As we can see from table 3, the prevalence of posters, games, multimedia presentations, models and experiments/demonstrations/simulations as the main types of artefacts presented within the
exhibitions is clear. The most frequent type of artefact produced within IRRESISTIBLE exhibitions was the poster (on its physical format – 2D and also 3D). When we think of a poster, what comes into our minds is something static, that does not imply manipulation by the reader, full of text, with some images – thinking of a poster as something interactive is, perhaps, a hard task. Nevertheless, with the help of the IRRESISTIBLE Exhibitions Development Guide in combination with students’ remarkable creativity, the posters developed within the IRRESISTIBLE exhibitions were, indeed, interactive and fulfilled the goal of actively engaging the visitors. Indeed, these posters assumed several formats and required from the visitor different responses (e.g., write opinions/comments, organize pictures and sentences in groups).

The option for developing physical games was chosen by many students involved in the development of the interactive exhibitions. Indeed, games can be a very powerful strategy for stimulating the participation of visitors, allowing for their interaction and creating an atmosphere where discussion and reflection about important issues can be accomplished in a more playful manner.

Multimedia presentations, such as videos or other presentations were also chosen by many students involved in the project. Although this type of artefacts requires a dispositive (PC screen, tablet or other) for their visualization (and that may not be a valid option for some schools), their development is normally felt by students as a very enjoyable task, contributing for their motivation towards the exhibition production.

The development of models was another popular option for some students especially when their exhibitions focused on physical and chemical concepts and phenomena.

3.2. The impact of the exhibitions’ development on students’ perceptions regarding their competences and the science classes

The impact of the exhibitions’ development on students’ perceptions regarding their competences and the science classes was calculated comparing students’ answers to the pre and post-test. The overall progression of the sample was calculated. Table 4 shows the average mean score and standard deviation for each of the analysed questions (both pre and post-test), as well as the ANOVA results indicating if there is a significant difference between pre and post-test results. As can be illustrated by this table almost all questions (with the exception of questions number 3 and 6) showed a significant raise in their scores favouring the post-test results (considering \(p < .05 \)). The results of items 3 and 6 in the pre and post-test were not statistically different, probably because the average mean score was very high in both tests producing a ceiling effect. In reality, these two items attained the highest average mean scores from all items, showing a very high perception of students regarding: a) the positive impact of the exhibitions’ development on their learning about scientific topics; and b) the importance of Information and Communications Technology (ICT) tools in the development of exhibitions.

Questions	Pre-test	Post-test	F	Sig.				
	N	Mean	Std. Deviation	N	Mean	Std. Deviation		
1. I can plan and develop a scientific exhibit about a current and relevant science topic	3117	3.41	1.128	2283	3.90	1.020	269.261	.000*
2. To plan and develop a scientific exhibit is something that motivates me	3128	3.824	1.0980	2281	3.952	1.0762	18.208	.000*
---	---							
3. Developing a scientific exhibit about a given topic allows me to learn more about it	3110 4,225 0.9714 2270 4,254 0.9806 1,129 0.282							
4. Developing a scientific exhibit improves the relationships among students	3120 3,874 1.0693 2272 4,015 1.0631 23,196 0.000*							
5. Developing a scientific exhibit improves the relationship between students and teacher	3119 3,916 1.0428 2272 4,033 1.0560 16,464 0.000*							
6. ICT (Information and Communication Technologies) are a good tool to support the development of scientific exhibits	3106 4,101 0.9583 2268 4,116 0.9508 0.351 0.554							
7. I am able to develop scientific exhibits that raise awareness in the community to current and relevant scientific issues	3105 3,455 1.1143 2268 3,784 1.0510 119,516 0.000*							
8. Through the development of scientific exhibits I am able to influence other citizens decisions and behaviours about issues related to science, technology and the environment	3112 3,545 1.0697 2267 3,732 1.0468 40,732 0.000*							
9. In my science classes I discuss current issues and how they impact my life	3100 3,345 1.1853 2259 3,534 1.1504 34,343 0.000*							
10. In my science classes I develop competencies that allow me to have a more active role in society	3106 3,496 1.1282 2264 3,652 1.0830 25,790 0.000*							
11. In my science classes I am encouraged to ask questions	3097 3,628 1.1600 2264 3,738 1.1238 12,059 0.001*							
12. In my science classes I develop important and socially relevant projects	3097 3,265 1.1768 2258 3,561 1.1281 85,368 0.000*							
13. In my science classes I learn how to act in a socially responsible manner	3089 3,604 1.1470 2259 3,796 1.0756 38,639 0.000*							
14. In my science classes I learn how to respect my colleagues’ opinions	3097 3,931 1.1201 2256 4,015 1.0414 7,877 0.005*							
15. In my science classes I learn how to influence other citizens’ decisions about social issues related to science, technology and the environment

16. In my science classes I am responsible for initiatives that allow me to impact other citizens’ decisions about social issues related to science, technology and the environment

* Significant difference between pre and post-test results.

The overall results indicate that students improved their perceptions in what regards:

- Their competences for developing exhibitions in science classes as a way of creating awareness on topics relating science-technology-society-environment: at the end of the project, they feel capable of attaining this goal;
- The strong motivational impact of student-curated exhibitions;
- The positive impact of student-curated exhibitions on the relationships among students and between them and the teachers;
- Their competences of influencing other citizens’ decisions and behaviours about issues related to science, technology and the environment, through the development of scientific exhibits.

Concerning their science classes, the project contributed to students’ improved perceptions that in that context:

- They discuss current issues and how they impact their lives;
- They develop important and socially relevant projects;
- They are encouraged to ask questions and to respect their colleagues’ opinions;
- They are empowered to have a more active and responsible role in society, developing initiatives that allow them to influence other citizens’ decisions about social issues related to science, technology and the environment.

An analysis per country was also conducted in order to identify possible differences. Table 5 summarizes the ANOVA results for every country identifying the questions where there was a significant difference between pre and post-test (p < .05).

Table 5. ANOVA significant results for all participating countries (only statistically significant results are reported).
3. Developing a scientific exhibit about a given topic allows me to learn more about it.

4. Developing a scientific exhibit improves the relationships among students.

5. Developing a scientific exhibit improves the relationship between students and teacher.

6. ICT (Information and Communication Technologies) are a good tool to support the development of scientific exhibits.

7. I am able to develop scientific exhibit that raise awareness in the community to current and relevant scientific issues.

8. Through the development of scientific exhibits I am able to influence other citizens decisions and behaviours about issues related to science, technology and the environment.

9. In my science classes I discuss current issues and how they impact my life.

10. In my science classes I develop competencies that allow me to have a more active role in society.

11. In my science classes I am encouraged to ask questions.

12. In my science classes I develop important and socially relevant projects.

13. In my science classes I learn how to act in a socially responsible manner.

14. In my science classes I learn how to respect my colleagues’ opinions.

15. In my science classes I learn how to influence other citizens’ decisions about social issues related to science, technology and the environment.

16. In my science classes I am responsible for initiatives that allow me to impact other citizens’ decisions about social issues related to science, technology and the environment.

	4	7	9	14	2	1	6	7	16	14	
3				0.02					0.000	0.000	
4				0.008	0.004			0.000	0.000	4	
5				0.001	0.001			0.003	0.012	5	
6							0.031		0.013	2	
7				0.000	0.010	0.002	0.003	0.000	0.038	0.000	8
8				0.018	0.003			0.000	0.002	4	
9				0.013	0.033	0.009	0.011	0.021	0.000	0.000	8
10				0.017				0.000	0.000	4	
11				0.002	0.002		0.005	0.002	0.000	0.000	6
12							0.000	0.005	0.000	0.000	4
13				0.024				0.000	0.000	4	
14				0.027	0.000		0.001	0.038	0.000	0.000	6
15				0.020	0.000		0.000	0.000	0.000	5	

It becomes clear from this analysis by country that participants from different contexts had diverse perceptions regarding the topics covered by the questionnaire. Romania, Israel and Turkey were noticeably the ones were more significant differences were observed (16-14 out of possible 16). Greece, Portugal, Germany and Poland also had several questions with significant differences (9-6). The Netherlands, Italy and Finland were the countries with the least significant differences (1-4).
These results indicate different reactions to the development of scientific exhibitions, suggesting that this kind of activity – in spite of the global positive evaluation by the students – didn’t constitute a complete innovation for the students from some countries. Possibly, the impact on students’ perceptions was low in those countries were this activity didn’t represent a novelty.

From the analysis of table 5 it also becomes clear that questions 1, 7 and 9 were the ones with more significant statistical differences in this group of countries (9-8 out of possible 10). Questions 5, 12, 15 and 16 were also questions with an important number of countries with statistical differences (5-6 out of possible 10). Questions 6 and 11 were the ones with the least amount of differences (only 2 countries each). So, the highest impact shared by IRRESISTIBLE countries was perceived in: a) the competence to plan and develop a scientific exhibit about a current and relevant science topic that can raise the community’s awareness regarding that issue; and b) the students’ recognition that in science classes they discuss current issues and the ways they impact their lives.

4. Discussion

With the help of the IRRESISTIBLE Exhibitions Development Guide, students were quite competent in the development of interactive exhibitions that fulfilled the goal of actively engaging the visitors as proposed by literature [47,48]. The student-curated exhibitions developed within IRRESISTIBLE confirmed that interactivity doesn’t, necessarily, require the presence of technology. Several artefacts, like physical posters, table-games and models, were quite effective in promoting the interaction between the visitors within the exhibit and between them and the objects that are being exposed [49] – all fundamental aspects of an interactive exhibition proposed by literature [44-46].

According to the students involved in IRRESISTIBLE, their participation in the curation of an exhibition on a socio-scientific issue was particularly useful in strengthening: a) their knowledge about those issues and how they impact their lives; b) their relationships with other students and the teachers; and c) their perceptions about the social relevance of science classes, allowing the discussion of important current issues.

Student-curated exhibitions were assumed by students as a strategy of activism, allowing them to have a more active and responsible role in society, influencing other citizens’ decisions and behaviours about controversial issues related to science, technology and the environment that are relevant to society. The attained results, support the power of student-curated exhibitions on cutting-edge (and controversial) research topics as a context for students’ empowerment as decision-makers and activists regarding the process of Responsible Research and Innovation. Through these exhibitions, students felt more competent in (1) informing other citizens about the socio-scientific issue they have investigated, (2) engaging them in discussion on the necessary conditions to assure responsible research and innovation practices in those areas, and even (3) challenging them to participate in collective action aimed at promoting those responsible practices. This way, the IRRESISTIBLE student-curated exhibitions constituted an opportunity for students to participate in (and to instigate) community action on socio-scientific issues – a major characteristic of exhibitions on controversial issues [16,22,24-27] and a major dimension of scientific literacy [11,12,18,37,50,51].

The student-curated exhibitions developed within the IRRESISTIBLE project represent an educational approach adequate for the promotion of sustainable development, enabling students to understand (and to cope with) the complexities and uncertainties of socio-scientific issues [52]. They also contribute to students’ reflection on their personal responsibilities regarding a responsible research and innovation, capable of assuring a sustainable development and a sustainable future.

Author Contributions: Conceptualization, P.R.; methodology, P.R., L.T. and M.B.; validation, P.R., L.T., M.B. and E.L.; investigation, P.R., L.T., M.B. and E.L.; writing – original draft preparation, P.R.; writing – review and editing, P.R., L.T., M.B. and E.L.; data curation, P.R. and L.T.; project administration, P.R. All authors have read and agreed to the published version of the manuscript.

Funding: The project IRRESISTIBLE was funded by the European Union as FP-7 project number 612367; more details at http://www.irresistible-project.eu/index.php/en/
Acknowledgments: We would like to thank to all the partners, scientists, science education experts, teachers and students who participated in the development of the Irresistible EU project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Apotheker, J.; Blonder, R.; Akaygun, S.; Reis, P.; Kampschulte, L.; Laherto, A. Responsible Research and Innovation in secondary school science classrooms: experiences from the project Irresistible. *Pure and Applied Science Education* 2017, 89, 211-219. DOI: 10.1515/pac-2016-0817

2. Ratslani, I.; Kähkönen, A.-L.; Lindell, A. Pupils’ Understanding about Responsible Research and Innovation. *International Journal of Environmental and Science Education* 2018, 13, 143-154.

3. Bybee, R. Scientific Inquiry, Student Learning, and the Science Curriculum. In *Learning science and the science of learning;* R. W. Bybee, Ed.; NSTA Press: Arlington, VA, USA, 2002; pp. 25-35.

4. Blonder, R.; Rosenfeld, S.; Rap, S.; Apotheker, J.; Akaygun, S.; Reis, P.; Kampschulte, L.; Laherto, A. Introducing Responsible Research and Innovation (RRI) into the Secondary School Chemistry Classroom: The Irresistible Project. *Daruna* 2017, 44, 36-43.

5. Sutcliffe, H. A report on responsible research and innovation; Matter: Brussels, Belgium, 2011.

6. Rieckmann, M. *Education for sustainable development goals: Learning objectives*; UNESCO: Paris, France, 2017.

7. United Nations. *Transforming our World: The 2030 Agenda for Sustainable Development;* United Nations: New York, USA, 2015.

8. European Commission. *Science and Society Action Plan;* Office for official publications of the European Communities: Luxembourg, Luxembourg, 2002.

9. Linhares, E. F.; Reis, P. Interactive exhibition on climate geoengineering: empowering future teachers for sociopolitical action. *Siysupply – Journal of Education* 2017, 5, 85-106. DOI: https://doi.org/10.25749/sis.13203

10. Marques, A. R.; Reis, P. Producción y difusión de videos digitales sobre contaminación ambiental. Estudio de caso: Activismo colectivo basado en la investigación. *Revista Eureka sobre Enseñanza y Divulgación de las Ciencias* 2017, 14, 215-226. DOI: http://dx.doi.org/10.25267/Rev_Eureka_ens_divulg_cienc.2017.v14.i1.16

11. Reis, P. Promoting students’ collective socio-scientific activism: Teacher’s perspectives. In *Activism in science and technology education;* Alsop, S.; Bencze, L., Eds.; Springer, London, UK, 2014; pp. 547-574.

12. Reis, P. Environmental Citizenship & Youth Activism. In *Conceptualizing Environmental Citizenship for 21st Century Education;* Hadjichambis, A. Ch., Reis, P.; Paraskeva-Hadjichambis, D., Čincera, J., Boeue-de Pauw, J., Gericke, N., Knippels, M.-C., Eds.; Springer, Cham, Switzerland, 2020; pp. 139-148.

13. Reis, P.; Marques, A. R. *As exposições como estratégia de ação sociopolítica: cenários do projeto IRRESISTIBLE;* Instituto de Educação da Universidade de Lisboa: Lisboa, Portugal, 2016.

14. Delicado, A. Scientific controversies in museums: notes from a semi-peripheral country. *Public Understanding of Science* 2009, 18, 759-767. DOI: https://doi.org/10.1177/09636625080988577

15. Kelly, L. Engaging Museum Visitors in Difficult Topics through Socio-Cultural Learning and Narrative. In *Hot Topics, Public Culture, Museums;* Cameron, F., Kelly, L., Eds.; Cambridge Scholars Publishing, Cambridge, UK, 2010; pp. 194-210.

16. Meyer, M. From cold science to hot research: the texture of controversy. In *Hot Topics, Public Culture, Museums;* Cameron, F., Kelly, L., Eds.; Cambridge Scholars Publishing, Cambridge, UK, 2010; pp. 129-149.

17. Henriksen, E.; Froyland, M. The contribution of museums to scientific literacy: Views from audience and museum professionals. *Public Understanding of Science* 2000, 9, 393-415. DOI: 10.1088/0963-6625/9/4/304

18. Hodson, D. *Teaching and learning science: Towards a personalized approach.* Open University Press: Buckingham, UK, 1998.

19. Koster, E. Evolution of purpose in science museums and science centers. In *Hot Topics, Public Culture, Museums;* Cameron, F., Kelly, L., Eds.; Cambridge Scholars Publishing, Cambridge, UK, 2010; pp. 76-94.

20. Rennie, L.; Stocklmayer, S. (2003). The communication of science and technology: past, present and future agendas. *International Journal of Science Education* 2003, 25, 759-773. DOI: 10.1080/09500690305020

21. Roberts, D. Scientific Literacy/Science Literacy. In *Handbook of Research on Science Education;* Abell, S. K.; Lederman, N. G., Eds.; Routledge, London, UK, 2007; pp. 729-780.

22. Cameron, F. Climate change, agencies and the museum and science centre sector. *Museum Management and Curatorship* 2012, 27, 317-339. DOI: https://doi.org/10.1080/09647775.2012.720183

23. Rodari, P.; Merzagora, M. The role of science centers and museums in the dialogue between science and society. *Journal of Science Communication* 2007, 6, 1-2. DOI: https://doi.org/10.2232/2/06020301
24. Bandelli, A.; Konijn, E. Public participation and scientific citizenship in the science museum in London: Visitors’ perceptions of the museum as a broker. Visitor Studies 2015, 18, 131-149. DOI: 10.1080/10645578.2015.1079089

25. Christensen, J.; Bonnelycke, J.; Mygind, L.; Bentsen, P. Museums and science centers for health: from scientific literacy to health promotion. Museum Management and Curatorship 2016, 31, 17-47. DOI: https://doi.org/10.1080/09647775.2015.1110710

26. Pedretti, E. T.Kuhn meets T.Rex: Critical Conversations and New Directions in Science Centers and Science Museum. Studies in Science Education 2002, 37, 1-41. DOI: https://doi.org/10.1080/0305726020208560176

27. Pedretti, E. Perspectives on Learning through Research on Critical Issues-Based Science Center Exhibition. Science Education 2004, 88, S34-S47. DOI: https://doi.org/10.1002/sce.20019

28. Quistgaard, N.; Kahr-Højland, A. New and innovative exhibition concepts at science centres using communication technologies. Museum Management and Curatorship 2010, 25, 423-436. DOI: https://doi.org/10.1080/09647775.2010.525408

29. Braund, M. & Reiss, M. Learning science outside the classroom; Routledge Falmer: London, UK, 2004.

30. Hammerich, P. Confronting students’ conceptions of the nature of science with cooperative controversy. In The nature of science in science education: Rationales and strategies; McComas, W., Ed.; Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000; pp. 127-136.

31. Kolstø, S. Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socio-scientific issues. Science Education 2001, 85, 291-310. DOI: https://doi.org/10.1002/sce.1011

32. Levinson, R. Towards a theoretical framework for teaching controversial socio-scientific issues. International Journal of Science Education 2006, 28, 1201–1224. DOI: https://doi.org/10.1080/09500690600560753

33. Kampschulte, L.; Parchmann, I. The student-Curated Exhibition – A new approach to getting in touch with science. LUMAT 2015, 3, 462–482.

34. Sleeper, M.; Sterling, R. The in-class science exhibition. Science Scope 2004, 27, 49-52.

35. Millar, R. Science education for democracy: What can the school curriculum achieve? In Science today: Problem or crisis?; Levinson, R., Thomas, J., Eds.; Routledge, London, UK, 1997; pp. 87-101.

36. Sadler, T. D. Informal reasoning regarding socio-scientific issues: A critical review of research. Journal of Research in Science Teaching 2004, 41, 513-536. DOI: https://doi.org/10.1002/tea.20009

37. Roth, W.-M. Scientific literacy as an emergent feature of collective human praxis. Journal of Curriculum Studies 2003, 35, 9-23. DOI: https://doi.org/10.1080/00220270210134600

38. Blonder, R. Student-Curated Exhibitions: Alternative Assessment in Chemistry Education in Israel. In International Perspectives on Chemistry Education Research and Practice; Cox, C., Schatzberg, W.E., Eds.; American Chemical Society, Washington DC, USA, 2018; pp. 39-55.

39. Cooks, R. Is there a way to make controversial exhibits that work? Journal of Museum Education 1998, 23, 18-20.

40. Skydsgaard, M.; Andersen, H.; King, H. Designing museum exhibits that facilitate visitor reflection and discussion. Museum Management and Curatorship 2016, 31, 48-68. DOI: https://doi.org/10.1080/09647775.2015.1117237

41. Wang, F.; Hannafin, M.J. Design-based research and technology-enhanced learning environments. Educational Technology Research & Development 2005, 53, 5-23. DOI: http://dx.doi.org/10.1007/BF02504682

42. Reis, P.; Marques, R. IRRESISTIBLE Exhibitions: a development guide; Instituto de Educação, Universidade de Lisboa: Lisboa, Portugal, 2015.

43. Heath, C.; von Lehm, D.; Osborne, J. Interaction and interacitives: collaboration and participation with computer-based exhibits. Public Understanding of Science 2005, 14, 91-101. DOI: https://doi.org/10.1177/0963664705047343

44. Tsitoura, A. Socio-cultural visions of Interactivity within Museums. Cadernos de Sociomuseologia 2010, 38, 89-102.

45. Wagensberg, J. Principios fundamentales de la museología científica moderna. Cuaderno Central 2001, 55, 22-24.

46. Bilda, Z.; Edmonds, E.; Candy, L. Design for Creative Engagement. Design Studies 2008, 29, 525-540. DOI: https://doi.org/10.1016/j.destud.2008.07.009

47. Hindmarsh, J.; Heath, C.; von Lehm, D.; Cleverly, J. Creating Assemblies in Public Environments: Social interaction, interactive exhibits and CSCW. Journal of Computer Supported Collaborative Work 2005, 14, 1-41. DOI: 10.1007/s10606-004-1814-8
48. IRRESISTIBLE Portuguese Team *Case studies about the impact of the project on teachers’ personal and professional development and on students’ skills*; Technical Report for the European Commission: Lisboa, Portugal, 2016.

49. Marques, R.; Reis, P. *O desenvolvimento de exposições científicas como estratégia de ativismo em contexto escolar.* In *Questões sócio-científicas: fundamentos, propostas de ensino e perspectivas para ações sociopolíticas*; Conrado, D. M., Nunes-Neto, N., Orgs.; EDUFBA, Salvador, Brasil, 2018; pp. 491-514. Salvador: EDUFBA.

50. Alsop, S.; Bencze, L. *Activism in science and technology education*; Springer: London, UK, 2014.

51. Conceição, T.; Baptista, M.; Reis, P. *La contaminación de los recursos hídricos como punto de partida para el activismo socio-científico.* *Revista Eureka sobre Enseñanza y Divulgación de las Ciencias* 2019, 16, 1502. DOI: 10.25267/Rev_Eureka_ensen_divulg_cien.2019.v16.i1.1502

52. Tilbury, D.; Wortman, D. *Engaging People in Sustainability.* Commission on Education and Communication; IUCN: Gland, Switzerland, 2004.