Topological Interpretation of Function Spaces Stable under a General Operation

Eliahu Levy
Department of Mathematics
Technion – Israel Institute of Technology, Haifa 32000, Israel
email: eliahu@techunix.technion.ac.il

Abstract

Function (linear) spaces E on which some arbitrary real or complex continuous function operates (in other words, E is stable under the unary operation defined by this function) were studied by K. de Leeuw, Y. Katznelson, Y. Sternfeld and Y. Weit, showing, e.g. that for a complex function space E consisting of bounded functions, containing the constants and closed w.r.t. the sup-norm, if some non-affine continuous function operates on E then every analytic function operates on E: E is an algebra, and if further some non-analytic continuous function (say, complex conjugation) operates on E then any continuous function does so: E is a self-adjoint algebra.

In this note we approach this issue from a different point of view. Our scalars are any field K, and the functions are defined on an abstract set I, with both K and I, at the outset, without a topology. It turns out that the very fact that the function space E is stable w.r.t. a non-affine operation (no continuity required) allows it to induce a topology on I, while the space of functions which operate on it induces topologies on K^n, $n = 1, 2, \ldots$. The topologized I is used to prove a density property for such E. Also, these topologies allow us, in some cases, to investigate general “homomorphisms” between function spaces w.r.t. to non-affine operations under which they are stable.

0 Definitions

Let K be a field. We refer to any $f : K^n \to K$ as an operation and say that it is additively affine if it can be written as a sum of a constant and a homomorphism of the additive groups.

Let I be a set, and let $E \subset K^I$ be a (linear) subspace (a function space). We call E unital if it contain the constant functions, which we always assume. Let $f : K^n \to K$ be an operation. We say that E is stable w.r.t. the operation f or that f operates on E, if for any $\xi_1, \ldots, \xi_n \in E$ also $t \in I \mapsto f (\xi_1(t), \ldots, \xi_n(t))$ is in E. We say that E is stable w.r.t. a set of functions (operations) if it is stable w.r.t. each member.

We shall say that E separates points in I if for any different $t_1, t_2 \in I$ and any $a_1, a_2 \in K$ \(\exists \) a $\xi \in E$ with $\xi(t_1) = a_1, \xi(t_2) = a_2$. Equivalently, for no different t_1 and t_2, $\xi(t_1)$ and $\xi(t_2)$ are proportional for the $\xi \in E$.

1
1 Function spaces stable under a non-additively-affine operation induce a topology

We try to make E define a topology on I. Call a subset $S \subset I$ closed if for any $t \in I \setminus S \exists$ a $\xi \in E$ vanishing on S but not at t. It is clear that \emptyset and I are closed and that any intersection of closed sets is closed (if $t \notin \cap S_\alpha$ then $t \notin S_\alpha$ for some α and a ξ as above for S_α will serve also for $\cap S_\alpha$). Closed sets can also be defined as sets of solutions of (possibly infinite) sets of equations of the form $\xi(t) = 0$ with $\xi \in E$.

Definition 1 Suppose the subspace $E \subset K^I$ is unital, i.e. contains the constants. We say that E is topology-inducing if the union of any two closed subsets of I (defined as above) is closed, so one has a topology on I, which we call the topology induced by E.

Note that if E is topology-inducing and separates points, then the induced topology is T_1 (i.e. every singleton is closed).

Note also that a general subspace need not be topology-inducing. For example, for the hyperplane

$$E = \left\{ \xi \in K^{\{1, \ldots, n\}} \mid \sum_{i=1}^{n} \lambda_i \xi_i = 0 \right\}$$

with all $\lambda_i \neq 0$ and $\sum_i \lambda_i = 0$ (making E unital), the closed sets are the subsets $S \subset \{1, \ldots, n\}$ whose number of elements is different from $n - 1$.

Of course, for $I = K^n$, $E = \{\text{the polynomials}\}$ is topology-inducing and we obtain the Zariski topology, while for $K = \mathbb{R}$ (the reals), I a Hausdorff compact topological space and $E = \{\text{the continuous functions}\}$ we obtain the original topology on I.

The following assertion is immediate

Proposition 1 If E is topology-inducing on I and $I' \subset I$, then the space of all the restrictions of members of E to I' is topology-inducing and induces on I' the relative topology from the topology that E induces on I.

QED

Remark 1 Suppose E topology-inducing. Note that if one takes in K the T_1 topology where the closed sets are just the finite ones and the whole space, then all members of E will be continuous, and for this topology in K^I is (mock!) “completely regular” – for any closed set and a point not in it there is a continuous function (even a member of E) vanishing on the closed set but not at the point.

Theorem 1 Suppose the subspace $E \subset K^I$ contains the constants (i.e. is unital) and is stable w.r.t. some $f : K^n \to K$ which is not additively affine. Then E is topology-inducing on I.
Proof Let $S,T \subset I$ be closed and we wish to prove $S \cup T$ closed. Let $t_0 \in I \setminus (S \cup T)$. We have $\xi, \eta \in E$ such that ξ vanishes on S and η on T while both are different from 0 at t_0. We have to show that there exists a function in E vanishing on $S \cup T$ but not at t_0.

Let $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in K^n$. Then

\[
f(a\xi) := [t \mapsto f(a_1\xi(t), \ldots, a_n\xi(t))] \in E
\]

and similarly

\[
f(a\xi + b\eta) \in E.
\]

From $\xi|_S = 0$ and $\eta|_T = 0$ it follows immediately that

\[
f(a\xi + b\eta) = f(a\xi) + f(b\eta) - f(0)1 \quad \text{on } S \cup T
\]

where 1 is the constant function 1.

The difference of the two sides of (1) vanishes on $S \cup T$. If it does not vanish at t_0, we are done. If it does vanish we have:

\[
f(a\xi + b\eta)(t_0) = f(a\xi)(t_0) + f(b\eta)(t_0) - f(0)
\]

that is

\[
f(a\xi(t_0) + b\eta(t_0)) = f(a\xi(t_0)) + f(b\eta(t_0)) - f(0)
\]

Note that $\xi(t_0) \neq 0, \eta(t_0) \neq 0$. Now let $x, y \in E^n$. Taking $a = [\xi(t_0)]^{-1}x, b = [\eta(t_0)]^{-1}y$, one gets:

\[
f(x + y) = f(x) + f(y) - f(0) \quad x, y \in E^n,
\]

making f additively affine, a contradiction.

QED

2 A density property

For topology-inducing function spaces, in particular for those unital and stable for a non-additively-affine operation, we have the following density property:

Theorem 2 Let $E \subset K^I$ be separating points and topology-inducing. If I is finite then E is the whole K^I. Consequently for general I for any finite subset $I' \subset I$ all functions on I' are obtained as restrictions of members of E (density property).

Proof The second assertion follows from the first and from Prop. 1. If I is finite, the topology induced, being T_1, must be discrete. In particular for any $i \in I \setminus \{i\}$ is closed hence E contains a function vanishing outside i but not in i, thus contains the standard basis and therefore is the whole K^I.

QED
3 The spaces of operating functions, operating semigroups

Let E be a unital function space stable w.r.t. some non-additively-affine operation $f : K^n \to K$. For $n = 1, 2, \ldots$ we have the spaces $G_n \subset K^K$ of the functions from K^n to K which operate on E. Clearly, any member of G_m operates on G_n for any m, n, so they induce topologies on K^n, $n = 1, 2, \ldots$, for which all members of the G_m or E are continuous and also all “vector-functions” whose “components” are in G_m or E are continuous. Note that the topology on K^{m+n} is finer than the product topology $K^m \times K^n$, so the continuity of vector-functions is not a consequence of the continuity of each component.

These G_n are an instance of what we call an operating semigroup defined as a sequence of linear subspaces $G_n \subset K^K$, $n = 1, 2, \ldots$ such that G_n contains the constants and the n coordinate functions $K^n \to K$ and every member of G_m operates on G_n for each m, n. The minimal operating semigroup is the sequence of the spaces of affine (i.e. constants + linear functionals). A possibly bigger one consists of all additively affine functions. If some G_n contains a non-additively-affine function, the operating semigroup will induce topologies on the K^n as above.

If G_n and G'_n are operating semigroups, so is the sequence $G_n \cap G'_n$. Therefore if F is any set of functions $f : K^n \to K$ (possibly with different n for different f’s), then there is a minimal operating semigroup containing F which we call the operating semigroup generated by F and denote by $G(F)$. Since the functions operating on a function space form an operating semigroup, any function space stable under F is stable under $G(F)$.

4 Examples

Proposition 2 Let G_n be an operating semigroup G_n which contains a non-additively-affine function. Then (i)⇒(ii)⇒(iii):

(i) For all n, the topology induced on K^n is the product topology of the one induced on K.

(ii) The topology induced on K^2 is the product topology of the one induced on K.

(iii) The topology induced on K is Hausdorff.

Proof (i)⇒(ii) is trivial, and (ii)⇒(iii) follows from the fact that the diagonal in K^2 is always closed, being defined by a linear equation.

QED

Note that in general (iii) does not imply (i). As an example take $K = \mathbb{R}(u)$ – the field of real rational functions on one variable, and G_n – the set of functions that are continuous on every bounded \mathbb{R}-finite-dimensional set into a bounded \mathbb{R}-finite-dimensional set. This is an operating semigroup. The topology it induces on K^n is the finest topology that gives the usual topology on any \mathbb{R}-finite-dimensional subspace. It is Hausdorff, and as is well-known, (i) is violated.
Proposition 3 Let G_n be an operating semigroup G_n which contains a non-additively-affine function. Then (i)\Rightarrow(ii):

(i) The topology induced on K is not Hausdorff.

(ii) For all n, any two non-empty open sets, w.r.t. the topology induced on K^n, intersect.

Proof Firstly, if $n > 1$ and \exists two non-intersecting non-empty open sets U, V in K^n then \exists two such sets in $K^{(n-1)}$. Indeed, suppose not. Then any $K^{(n-1)}$-section of K^n does not intersect either U or V, which means that projections of U and V on the first coordinate are disjoint, thus, being open (as union of all parallel-to-1st-coordinate sections – we don’t need product topology), one of them is empty hence either U or V is empty.

Therefore it suffices to prove that any two non-empty open sets in K intersect. But if not, then some $x \neq y$ in K would have disjoint neighborhoods, and since the topology is invariant w.r.t. all invertible affine transformations of K, every two points would have disjoint neighborhoods, i.e. the topology is Hausdorff.

QED

The case $K = \mathbb{R}$ (the real numbers) or \mathbb{C} (the complex numbers) is studied, in the context of continuous operations, in [LK], [S-a], [S-ds] and [SW]. As is shown there, for $K = \mathbb{C}$, if E consists of bounded functions and is closed w.r.t. the sup-norm, then if some non-affine continuous function operates on E then every analytic function operates on E: E is an algebra, and if further some non-analytic continuous function (say, complex conjugation) operates on E then any continuous function does so: E is a self-adjoint algebra.\(^1\) Thus in the latter case $G_m, m = 1, 2, \ldots$, the spaces of functions that operate on E, contain all continuous functions, and the topologies that they induce on C^m are finer than the usual complex topologies.

They can be strictly finer. Indeed, if I is infinite and E is the space of all \mathbb{C}-valued bounded functions, then G_m is the set of all $f : \mathbb{C}^m \rightarrow \mathbb{C}$ that map every bounded sequence to a bounded sequence, equivalently are bounded on every bounded set. The topology induced on \mathbb{C}^n is the discrete one. If instead E is the space of all \mathbb{C}-valued functions on I then G_m is the space of all functions $\mathbb{C}^m \rightarrow \mathbb{C}$, while the topology induced on \mathbb{C}^m is again the discrete one.

Remark 2 To quote another example, let K be any ordered field, and suppose E is a lattice with pointwise lattice operations, which can be expressed as: the function $a \mapsto a_+ := \max(a, 0)$ from $K \rightarrow K$ operates on E. In this case the topology induced on K is finer than the order topology, hence is Hausdorff, and of course the topologies on K^n are finer than the products of the order-topology.

\(^1\)This is proved by showing that if the function space E is stable w.r.t. some continuous function h, then, being stable also w.r.t. the shifts of h hence w.r.t. its convolution with, say, smooth functions (so one may assume h smooth), one can make a derivative-like limiting process which shows that if h is not affine then E is stable w.r.t. the square function, hence is an algebra, and if h is not analytic – w.r.t. complex conjugation, hence is self-adjoint.
5 Homomorphisms w.r.t. non-affine operations

Fix a set F of functions $f : K^n \to K$ (each possibly with different n), such that F contains a non-additively-affine function. We have the category of unital function spaces $E \subset K^I$ stable under F (equivalently, stable under $G(F)$, hence we may assume at the outset that F is an operating semigroup as defined above), with unital F-homomorphisms, i.e. K-linear mappings φ which commute with the action of every $f \in F$ and preserve 1 (thus preserve all constants).

A unital F-homomorphism from a $E \subset K^I$ to $E' \subset K^{I'}$, both unital and stable under F, has a graph, which may be viewed as a unital function space $\varphi \subset K^{I \coprod I'}$, stable under F. The function spaces E, E' and φ induce topologies on I, I' and $I \coprod I'$, resp. E coincides with the space of restrictions to I of members of φ, therefore the topology on I is that of a subspace of $I \coprod I'$. Moreover, the only member of φ vanishing on I is identically 0. Consequently I is dense in $I \coprod I'$. The topology of I' as a subspace of $I \coprod I'$ is that induced by the image of φ and is coarser than that induced by E'.

Thus we have

Corollary 4 Let φ be a unital F-homomorphism from an $E \subset K^I$ to an $E' \subset K^{I'}$, both unital and stable under F, and suppose F contains a non-additively-affine member. Then for any $n = 1, 2, \ldots$ and $S \subset K^n$ closed w.r.t. the topology induced by $G(F)_n$, if $\xi_1, \ldots, \xi_n \in E$ assume together values in S on I then so do $\varphi(\xi_1), \ldots, \varphi(\xi_n)$ on I'.

(Of course no such thing holds for general linear mappings between function spaces!)

For instance, by Remark 2, we obtain a neat proof of the following fact:

Corollary 5 For any ordered field K, and for any lattice-homomorphism φ, preserving the constants, between two K-valued function spaces E and E' which are lattices w.r.t. pointwise lattice operations, the image in K^n of $(\varphi(\xi_1), \ldots, \varphi(\xi_n))$, $\xi_1, \ldots, \xi_n \in E$ is contained in the closure (w.r.t. the order-topology) of the image of (ξ_1, \ldots, ξ_n).

When the topology induced by $G(F)$ is Hausdorff we have:

Corollary 6 Suppose F is a set of functions $K^n \to K$ (possibly with different n for different functions), such that F contains a non-additively-affine function and the topology that $G(F)$ induces on K is Hausdorff. Then any unital F-homomorphism can be described as follows: take a unital F-stable function space $E \subset K^I$. It induces a topology on I. Embed I as a dense subset of some topological space $I \coprod I'$, such that each $\xi \in E$ has an extension (necessarily unique!) to a function $\xi : I \coprod I' \to K$ continuous when K is endowed with the topology induced by $G(F)$, and map ξ to $\xi|_I$.

References

[LK] De Leeuw, K., Katznelson, Y. Functions that operate on non-self-adjoint algebras, J. Analyse Math, 1963, pp. 207-219.
[SW] Sternfeld, Y., Weit, Y., An approximation theorem for vector valued functions, in: Geometrical Aspects of Functional Analysis (1987-88), pp. 126-137, Lecture Notes in Mathematics, No. 1376, Springer-Verlag, 1989.

[S-a] Sternfeld, Y., Approximation from the Topological Viewpoint, J. Approx. Theory 63 No. 2, pp. 156-169, November 1990.

[S-ds] Sternfeld, Y., Dense subgroups of $C(K)$ (Stone-Weierstrass type theorems for groups), Constr. Approx. 6 No. 4 pp. 339-351, 1990.