COMMUTING CATEGORIES FOR BLOCKS AND FUSION SYSTEMS

ADAM GLESSER AND MARKUS LINCKELMANN

Abstract. We extend the notion of a commuting poset for a finite group to \(p \)-blocks and fusion systems, and we generalize a result, due originally to Alperin and proved independently by Aschbacher and Segev, to commuting graphs of blocks, with a very short proof based on the \(G \)-equivariant version, due to Thévenaz and Webb, of a result of Quillen.

Let \(k \) be a field of prime characteristic \(p \). A block of a finite group \(G \) is a primitive idempotent \(b \) in \(\mathbb{Z}(kG) \). A \(b \)-Brauer pair is a pair \((Q, e)\) consisting of a \(p \)-subgroup \(Q \) of \(G \) and a block \(e \) of \(C_G(Q) \) satisfying \(\text{Br}_Q(b)e \neq 0 \), where \(\text{Br}_Q : (kG)^Q \to kC_G(Q) \) is the Brauer homomorphism; the set of \(b \)-Brauer pairs is a \(G \)-poset with respect to the conjugation action of \(G \) (see [10] for more details and background material on block theory). We denote by \(\mathcal{A}(b) \) the \(G \)-poset containing all \(b \)-Brauer pairs \((Q, e)\) such that \(Q \) is nontrivial and elementary abelian.

Two subgroups \(R, R' \) of \(G \) are said to commute if they commute elementwise; that is, if \([R, R'] = 1\). For any nonempty set \(\kappa \) of pairwise commuting subgroups of \(G \) we denote by \(\Pi \kappa \) the product in \(G \) of all subgroups belonging to \(\kappa \); this is clearly a subgroup of \(G \). If all elements of \(\kappa \) are \(p \)-subgroups (respectively, abelian subgroups) of \(G \), then \(\Pi \kappa \) is a \(p \)-subgroup (respectively, abelian subgroup) of \(G \). For any abelian subgroup \(Q \) of \(G \) we denote by \(c(Q) \) the set of subgroups of order \(p \) of \(Q \).

Definition 1. Let \(G \) be a finite group and \(b \) a block of \(G \). The commuting poset of \(b \) is the \(G \)-poset \(\mathcal{K}(b) \) whose elements are pairs \((\kappa, e)\), where \(\kappa \) is a nonempty set of pairwise commuting subgroups of order \(p \) of \(G \) and where \(e \) is a block of \(C_G(\Pi \kappa) \) such that \((\Pi \kappa, e)\) is a \(b \)-Brauer pair for \(\Pi \kappa \).
pair, with partial order given by

\[(\lambda, f) \leq (\kappa, e), \text{ if } \begin{cases}
\lambda \subseteq \kappa, \\
(\Pi \lambda, f) \leq (\Pi \kappa, e)
\end{cases}\]

for \((\kappa, e), (\lambda, f) \in \mathcal{K}(b)\).

If \(b\) is the principal block of \(G\) then \(\mathcal{K}(b)\) is the clique complex \(\mathcal{K}_p(G)\) of the commuting graph \(\Lambda_p(G)\), where the notation is as in [3]. For nonprincipal blocks, however, \(\mathcal{K}(b)\) need not be the clique complex of a graph (e.g., see Example 5).

Given a \(G\)-poset \(\mathcal{X}\) we denote by \(\Delta \mathcal{X}\) the \(G\)-simplicial complex whose set of \(n\)-simplices consists of all chains of \(n\) proper inclusions in \(X\), where \(n \geq 0\). For any simplicial complex \(Y\), we denote the geometric realization of \(Y\) by \(|Y|\). Two \(G\)-spaces \(X\) and \(Y\) are called \(G\)-homotopically equivalent if there are \(G\)-equivariant maps \(f : X \to Y, g : Y \to X\) and \(G\)-equivariant homotopies \(h : I \times X \to X, h' : I \times Y \to Y\) such that \(h(0, -) = \text{Id}_A, h(1, -) = f, h'(0, -) = \text{Id}_Y,\) and \(h'(1, -) = g\), where the unit interval \(I = [0, 1]\) is viewed as a \(G\)-space with the trivial \(G\)-action. Two \(G\)-posets \(\mathcal{X}\) and \(\mathcal{Y}\) are called \(G\)-homotopically equivalent if the \(G\)-spaces \(|\Delta \mathcal{X}|\) and \(|\Delta \mathcal{Y}|\) are \(G\)-homotopically equivalent. By the \(G\)-equivariant version [11, (1.1)] of [9, 1.3], in order to show that \(\mathcal{X}\) and \(\mathcal{Y}\) are \(G\)-homotopically equivalent, it suffices to find \(G\)-equivariant functors \(\Phi : \mathcal{X} \to \mathcal{Y}\) and \(\Psi : \mathcal{Y} \to \mathcal{X}\) such that there is a natural transformation between \(\text{Id}_{\mathcal{X}}\) and \(\Psi \circ \Phi\) (in either direction) and a natural transformation between \(\text{Id}_{\mathcal{Y}}\) and \(\Phi \circ \Psi\).

Theorem 2. Let \(b\) be a block of a finite group \(G\). The maps:

\[\Phi : \begin{cases}
\mathcal{A}(b) \to \mathcal{K}(b) \\
(Q, e) \mapsto (c(Q), e)
\end{cases}\]

\[\text{and} \quad \Psi : \begin{cases}
\mathcal{K}(b) \to \mathcal{A}(b) \\
(\kappa, e) \mapsto (\Pi \kappa, e)
\end{cases}\]

are inverse \(G\)-homotopy equivalences.

Proof. The maps \(\Phi, \Psi\) are obviously order preserving and \(G\)-equivariant. We have \(\Psi \circ \Phi = \text{Id}_{\mathcal{A}(b)}\). There is a natural transformation \(\text{Id}_{\mathcal{K}(b)} \to \Phi \circ \Psi\) given by \((\kappa, e) \leq (c(\Pi \kappa), e)\), which shows that \(\Psi\) is a \(G\)-homotopy inverse of \(\Phi\). \(\square\)

Applied to principal blocks, this theorem yields, in particular, a proof of the fact, due independently to Alperin [1] Theorem 3] and to Aschbacher and Segev [4, 9.7], that \(\mathcal{K}_p(G)\) and \(\mathcal{A}_p(G)\) have the same homotopy type (see also [3, 5.2]). The \(G\)-orbit space of \(\mathcal{K}(b)\) admits a generalization to fusion systems and, in fact, to arbitrary categories on finite \(p\)-groups (cf. [7, 2.1]).
Definition 3. Let \mathcal{F} be a category on a finite p-group P. The commuting category of \mathcal{F} is the category $\mathcal{K}(\mathcal{F})$ whose objects are the nonempty sets of pairwise commuting subgroups of P of order p, and for objects $\kappa, \lambda \in \mathcal{K}(\mathcal{F})$,

$$\text{Hom}_{\mathcal{K}(\mathcal{F})}(\kappa, \lambda) = \{ \psi \in \text{Hom}_F(\Pi\kappa, \Pi\lambda) \mid \text{if } Q \in \kappa, \text{ then } \psi(Q) \in \lambda. \}$$

The composition of morphisms in $\mathcal{K}(\mathcal{F})$ is induced by the usual composition of group homomorphisms. We denote by $[\mathcal{K}(\mathcal{F})]$ the poset consisting of the isomorphism classes $[\kappa]$ of objects κ of $\mathcal{K}(\mathcal{F})$ with partial order given by

$$[\kappa] \leq [\lambda], \text{ if } \text{Hom}_{\mathcal{K}(\mathcal{F})}(\kappa, \lambda) \neq \emptyset$$

for $\kappa, \lambda \in \mathcal{K}(\mathcal{F})$.

Clearly $\mathcal{K}(\mathcal{F})$ is an EI-category. As a consequence of results in [2], any choice of a maximal b-Brauer pair (P, e) of a block b of a finite group G determines a category $\mathcal{F}(P, e)(G, b)$ on P that, if k is large enough, is a saturated fusion system (see e.g., [6, §3.3] for details and further references).

Theorem 4. Let b be a block of a finite group G, let (P, e) be a maximal b-Brauer pair and let $\mathcal{F} = \mathcal{F}(P, e)(G, b)$. We have an isomorphism of posets

$$[\mathcal{K}(\mathcal{F})] \cong \mathcal{K}(b)/G$$

mapping the isomorphism class of an object $\kappa \in \mathcal{K}(\mathcal{F})$ to the G-conjugacy class of the unique Brauer pair $(P\kappa, e)$ contained in (P, e).

Proof. For $(\kappa, e) \in \mathcal{K}(b)$, let $[(\kappa, e)]$ denote its G-conjugacy class. For elements $(\kappa, e), (\lambda, f) \in \mathcal{K}(b)$, one has $[(\kappa, e)] = [(\lambda, f)]$ if and only if there exists $g \in G$ such that $\kappa^g = \lambda$ and $e^g = f$. Define a poset map $\eta : \mathcal{K}(b)/G \to [\mathcal{K}(\mathcal{F})]$ by setting $\eta([(\kappa, e)]) = [\kappa^g]$, where $g \in G$ such that $(P\kappa, e)^g \leq (P, e)$. One verifies that this map is the inverse of the given map in the statement. \qed

Example 5. The following example was communicated to the authors by R. Kessar. Suppose $p = 2$. Set $G = S_n$, where $n \geq 6$ is an integer such that kG has a block b with a dihedral defect group $P \cong D_8$ of order 8. By results in [3], b is of principal type; that is, for any 2-subgroup Q of G either $\text{Br}_Q(b) = 0$ or $\text{Br}_Q(b)$ is a block of $kC_G(Q)$. Moreover, P may be chosen as a Sylow 2-subgroup of S_4, canonically embedded into G and such that P contains the involutions $x = (1 \ 2), y = (3 \ 4)$. Setting $z = (5 \ 6)$, we have $x, z \in P^{(3 \ 5)(4 \ 6)}$ and $y, z \in P^{(1 \ 5)(2 \ 6)}$. Since b is of principal type, there are unique blocks e_x, e_y, e_z of $kC_G(x), kC_G(y), kC_G(z)$, respectively, and unique blocks
e_{xy}, e_{xz}, e_{yz} of $kC_G(\langle x, y \rangle)$, $kC_G(\langle x, z \rangle)$, $kC_G(\langle y, z \rangle)$, respectively, giving the following inclusions of b-Brauer pairs:

\[
\begin{array}{ccc}
(\langle x, y \rangle, e_{xy}) & (\langle x, z \rangle, e_{xz}) & (\langle y, z \rangle, e_{yz}) \\
(\langle x \rangle, e_x) & (\langle y \rangle, e_y) & (\langle z \rangle, e_z) \\
(1, b)
\end{array}
\]

Suppose that Γ is a graph whose clique complex is $K(b)$. The b-Brauer pairs $(\langle x \rangle, e_x)$, $(\langle y \rangle, e_y)$, and $(\langle z \rangle, e_z)$ are minimal in the poset $K(b)$ and are pairwise contained in a common b-Brauer pair, implying that the graph Γ has a clique of the form:

\[
\begin{array}{ccc}
(\langle x \rangle, e_x) & (\langle y \rangle, e_y) & (\langle z \rangle, e_z)
\end{array}
\]

However, the corresponding clique is not an element of the poset $K(b)$ because the group $\langle x, y, z \rangle$ is not contained in a defect group of b. This contradiction shows that there is no graph whose clique complex yields $K(b)$ and explains why we have refrained from defining a commuting graph of b in this way.

References

[1] J. L. Alperin, *A Lie approach to finite groups*, Lecture Notes in Math. **1456**, Springer, Berlin (1990), 1–9.

[2] J. Alperin, M. Broué, *Local methods in block theory*, Ann. Math. **110** (1979), 143–157.

[3] M. Aschbacher, *Simple connectivity of p-group complexes*, Israel J. Math. **82** (1993), 1–43.

[4] M. Aschbacher, Y. Segev, *The uniqueness of groups of Lyons type*, J. Amer. Math. Soc. **5** (1992), 75–98.

[5] C. Broto, R. Levi, B. Oliver, *The homotopy theory of fusion systems*, J. Amer. Math. Soc. **16** (2003), 779–856.
[6] R. Kessar, *Introduction to Block Theory*, in: Group Representation Theory (edts. M. Geck, D. Testerman, J. Thévenaz), EPFL Press, Lausanne (2007), 47–77.

[7] M. Linckelmann, *Introduction to Fusion systems*, in: Group Representation Theory (edts. M. Geck, D. Testerman, J. Thévenaz), EPFL Press, Lausanne (2007), 79–113.

[8] L. Puig, *The Nakayama conjecture and the Brauer pairs*, Séminaire sur les groupes finis, Tome III, ii, 171189, Publ. Math. Univ. Paris VII, 25, Univ. Paris VII, Paris (1986).

[9] D. Quillen, *Homotopy properties of the Poset of Nontrivial p-Subgroups of a Group*, Advances Math. 28 (1978), 101–128.

[10] J. Thévenaz, *G-Algebras and Modular Representation Theory*, Oxford Science Publications, Clarendon Press, Oxford (1995).

[11] J. Thévenaz, P. J. Webb, *Homotopy equivalence of posets with a group action*, J. Combin. Theory Ser. A 56 (1991), no. 2, 173–181.

Suffolk University, 8 Ashburton Place, Boston, MA 02108, USA
E-mail address: aglessers@suffolk.edu

Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, UK
E-mail address: m.linckelmann@abdn.ac.uk