FROBENIUS CONDITION ON A PRETRIANGULATED CATEGORY, AND TRIANGULATION ON THE ASSOCIATED STABLE CATEGORY

HIROYUKI NAKAOKA

Abstract. As shown by Happel, from any Frobenius exact category, we can construct a triangulated category as a stable category. On the other hand, it was shown by Iyama and Yoshino that if a pair of subcategories $D \subseteq Z$ in a triangulated category satisfies certain conditions (i.e., (Z, Z) is a D-mutation pair), then Z/D becomes a triangulated category. In this article, we consider a simultaneous generalization of these two constructions.

1. Introduction and Preliminaries

Throughout this article, we fix an additive category C. Any subcategory of C will be assumed to be full, additive and replete. A subcategory is called replete if it is closed under isomorphisms.

When we say Z is an exact category, we only consider an extension-closed subcategory of an abelian category.

For any category K, we write abbreviately $K \in K$, to indicate that K is an object of K. For any $K, L \in K$, let $K(K, L)$ denote the set of morphisms from K to L. If M, N are full subcategories of K, then $K(M, N) = 0$ means that $K(M, N) = 0$ for any $M \in M$ and $N \in N$. Similarly, $K(K, N) = 0$ means $K(K, N) = 0$ for any $N \in N$.

If K is an additive category and L is a full additive replete subcategory which is closed under finite direct summands, then K/L denotes the quotient category of K by the ideal generated by L. The image of $f \in K(X, Y)$ will be denoted by $f \in K/L(X, Y)$.

As shown by Happel [H], If we are given a Frobenius exact category E, then the stable category E/I, where I is the full subcategory of injectives, carries a structure of a triangulated category.

On the other hand, it was shown by Iyama and Yoshino that if $D \subseteq Z$ is a pair of subcategories in a triangulated category C such that (Z, Z) is a D-mutation pair, then the quotient category Z/D becomes a triangulated category. By definition, (Z, Z) is a D-mutation pair if it satisfies

(1) $C(Z, D[1]) = C(D, Z[1]) = 0,$

(2) For any object $X \in Z$, there exists a distinguished triangle

$$X \to D \to Z \to \Sigma X$$

The author wishes to thank Professor Toshiyuki Katsura for his encouragement.

The author wishes to thank Professor Kiriko Kato and Professor Osamu Iyama for their useful comments and advices.
with \(D \in \mathcal{D} \) and \(Z \in \mathcal{Z} \),

(3) For any object \(Z \in \mathcal{Z} \), there exists a distinguished triangle

\[
X \to D \to Z \to \Sigma X
\]

with \(X \in \mathcal{Z} \) and \(D \in \mathcal{D} \).

In this article, we make a simultaneous generalization of these two constructions, by using a slight modification of a \textit{pretriangulated category} in [BR]. To emphasize this modification, we call it a ‘pseudo-triangulated category. As in Definition 3.3, a \textit{pseudo-triangulated} category is an additive category \(\mathcal{C} \) with a \textit{pseudo-triangulation} \((\Sigma, \Omega, \triangleright, \langle, \psi\rangle)\).

As in Example 4.5, a pseudo-triangulated category \(\mathcal{C} \) is abelian if and only if \(\Sigma = \Omega = 0 \), and \(\mathcal{C} \) is triangulated if and only if \(\Sigma \cong \Omega^{-1} \). An \textit{extension} in \(\mathcal{C} \) is a simultaneous generalization of a short exact sequence in the abelian case, and a distinguished triangle in the triangulated case (Definition 4.1). For an extension-closed subcategory \(\mathcal{Z} \subseteq \mathcal{C} \), we define the \textit{Frobenius condition} on it (Definition 5.9). This is equivalent to the ordinary Frobenius condition in the case of \(\Sigma = \Omega = 0 \), and related to the existence of a mutation pair in the triangulated case (Example 5.10 and Corollary 5.16). As a main theorem, in Theorem 6.17, we show if \(\mathcal{Z} \) is Frobenius, then the associated stable category becomes a triangulated category. In the above two cases, this recovers the Happel’s and Iyama-Yoshino’s constructions, respectively.

Pretriangulated	\(\Sigma = \Omega = 0 \)	\(\Sigma \cong \Omega^{-1} \)
Extension	short exact sequence	distinguished triangle
Frobenius condition	Frobenius condition	Corollary 5.16
Theorem 6.17	Happel’s construction	Iyama-Yoshino’s construction

2. \textbf{ONE-SIDED TRIANGULATED CATEGORIES}

\textbf{Definition 2.1} (right triangulation cf. [BM], [BR]). Let \(\Sigma: \mathcal{C} \to \mathcal{C} \) be an additive endofunctor, and let \(\mathcal{R}T(\mathcal{C}, \Sigma) \) be the category of diagrams of the form

\[
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A.
\]

A morphism from \(A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \) to \(A' \xrightarrow{f'} B' \xrightarrow{g'} C' \xrightarrow{h'} \Sigma A' \) is a triplet \((a, b, c)\) of morphisms \(a \in \mathcal{C}(A, A') \), \(b \in \mathcal{C}(B, B') \) and \(c \in \mathcal{C}(C, C') \), satisfying

\[
b \circ f = f' \circ a, \quad c \circ g = g' \circ b, \quad \Sigma a \circ h = h' \circ c.
\]

A pair \((\Sigma, \triangleright)\) of \(\Sigma \) and a full replete subcategory \(\triangleright \subseteq \mathcal{R}T(\mathcal{C}, \Sigma) \) is called a \textit{right triangulation} on \(\mathcal{C} \) if it satisfies the following conditions. Remark that \(\Sigma \) is not necessarily an equivalence.

(RTR1) For any \(A \in \mathcal{C}, 0 \to A \xrightarrow{id_A} A \to \Sigma 0 = 0 \) is in \(\triangleright \). For any morphism \(f \in \mathcal{C}(A, B) \), there exists an object \(A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \) in \(\triangleright \).

(RTR2) If \(A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \) is in \(\triangleright \), then \(B \xrightarrow{g} C \xrightarrow{h} \Sigma A \xrightarrow{\Sigma f} \Sigma B \) is also in \(\triangleright \).

(RTR3) If we are given two objects \(A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \) and \(A' \xrightarrow{f'} B' \xrightarrow{g'} C' \xrightarrow{h'} \Sigma A' \) in \(\triangleright \) and two morphisms \(a \in \mathcal{C}(A, A') \) and \(b \in \mathcal{C}(B, B') \) satisfying \(b \circ f = f' \circ a \), then there exists \(c \in \mathcal{C}(C, C') \) such that \((a, b, c)\) is a morphism in \(\triangleright \).
(RTR4) Let
\[
\begin{align*}
A & \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A, \\
A & \xrightarrow{\ell} M \xrightarrow{m} B' \xrightarrow{n} \Sigma A, \\
A' & \xrightarrow{\ell'} M \xrightarrow{m'} B \xrightarrow{n'} \Sigma A'
\end{align*}
\]
be objects in \triangleright, satisfying $m' \circ \ell = f$.
Then there exist $g' \in C(B', C)$ and $h' \in C(C, \Sigma A')$ such that
\[
h' \circ g = n', \quad h \circ g' = n,
\]
\[
g' \circ m = g \circ m', \quad (\Sigma \ell) \circ h + (\Sigma \ell') \circ h' = 0,
\]
and
\[
A' \xrightarrow{f'} B' \xrightarrow{g'} C' \xrightarrow{h'} \Sigma A'
\]
is an object in \triangleright. Here we put $f' = m \circ \ell'$.

If (Σ, \triangleright) is a right triangulation on \mathcal{C}, we call $(\mathcal{C}, \Sigma, \triangleright)$ a right triangulated category.

Caution 2.2. Conditions (RTR4) is slightly different from that in [BM].

Definition 2.3 (left triangulation). Let $\Omega: \mathcal{C} \to \mathcal{C}$ be an additive endofunctor, and let $\mathcal{LT}(\mathcal{C}, \Omega)$ be the category of diagrams of the form
\[
\begin{align*}
A & \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A, \\
A & \xrightarrow{\ell} M \xrightarrow{m} B' \xrightarrow{n} \Sigma A, \\
A' & \xrightarrow{\ell'} M \xrightarrow{m'} B \xrightarrow{n'} \Sigma A'
\end{align*}
\]
A morphism in $\mathcal{LT}(\mathcal{C}, \Omega)$ is defined similarly as in Definition 2.1. A pair (Ω, \triangleleft) satisfying conditions (LTR1), (LTR2), (LTR3) and (LTR4) which are dual to (RTR1), (RTR2), (RTR3) and (RTR4) respectively, is called a left triangulation on \mathcal{C}, and $(\mathcal{C}, \Omega, \triangleleft)$ is called a left triangulated category.

Similarly to the triangulated case, the following are satisfied.

Proposition 2.4. Let \mathcal{C} be an additive category.

1. If (Σ, \triangleright) is a right triangulation on \mathcal{C}, then for any object $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ in \triangleright and for any $E \in \mathcal{C}$, the induced sequence
\[
\begin{align*}
\mathcal{C}(A, E) & \xleftarrow{\cdot} \mathcal{C}(B, E) \xleftarrow{\cdot} \mathcal{C}(C, E) \xleftarrow{\cdot} \mathcal{C}(\Sigma A, E) \xleftarrow{\cdot} \mathcal{C}(\Sigma B, E) \xleftarrow{\cdots}
\end{align*}
\]
is exact.
2. Dually for a left triangulation.

Proof. Left to the reader.
3. PSEUDO-TRIANGULATED CATEGORY

In this section, we introduce a notion unifying triangulated categories and abelian categories. We make a slight modification of the pretriangulated category in [BR], for the sake of Example 4.5. We call it a ‘pseudo-’triangulated category, to make the reader beware of this modification. Roughly speaking, a pseudo-triangulated category is an additive category endowed with right and left triangulated triangulations, satisfying some gluing conditions (Definition 3.3).

Definition 3.1. Let (Σ, \triangleright) be a right triangulation on \mathcal{C}, and let $f : A \to B$ be any morphism in \mathcal{C}.

1. f is Σ-null if it factors through some object in $\Sigma \mathcal{C}$.
2. f is Σ-epic if for any $B' \in \mathcal{C}$ and any $b \in \mathcal{C}(B, B')$, $b \circ f = 0$ implies b is Σ-null.

For a left triangulation (Ω, \triangleleft), dually we define Ω-null morphisms and Ω-monic morphisms.

Remark 3.2. For any morphism $f \in \mathcal{C}(A, B)$, the following are equivalent.

1. f is Σ-epic.
2. There exists an object in \triangleright

\[
A \xrightarrow{f} B \xrightarrow{g} C \to \Sigma A
\]

such that g is Σ-null.
3. For any object in \triangleright

\[
A \xrightarrow{f} B \xrightarrow{g} C \to \Sigma A,
\]

g becomes Σ-null.

Dually for Ω-monics.

Definition 3.3. A pseudo-triangulation $(\Sigma, \Omega, \triangleright, \triangleleft, \psi)$ on \mathcal{C} is a pair (Σ, \triangleright) and (Ω, \triangleleft) of right and left triangulations, together with an adjoint natural isomorphism

\[
\psi_{A,B} : \mathcal{C}(\Omega A, B) \xrightarrow{\cong} \mathcal{C}(A, \Sigma B) \quad (A, B \in \mathcal{C}),
\]

which satisfies the following gluing conditions (G1) and (G2).

(G1) If $g \in \mathcal{C}(B, C)$ is Σ-epic, then for any objects

\[
\Omega C \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C \in \triangleleft,
\]

\[
A \xrightarrow{f} B \xrightarrow{g'} C' \xrightarrow{h'} \Sigma A \in \triangleright,
\]

there exists an isomorphism $c \in \mathcal{C}(C', C)$ such that

\[
c \circ g' = g \quad \text{and} \quad -\psi(e) \circ c = h'.
\]

Roughly speaking, this means that any Σ-epic morphism agrees with the ‘cokernel’ of its ‘kernel’.
(G2) Dually, if \(f \in \mathcal{C}(A, B) \) is \(\Omega \)-monic, then for any objects

\[
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \quad \in \triangleright,
\]

\[
\Omega C \xrightarrow{\epsilon} A' \xrightarrow{f'} B \xrightarrow{g} C \quad \in \triangleleft,
\]

there exists an isomorphism \(a \in \mathcal{C}(A, A') \) such that

\[
f' \circ a = f \quad \text{and} \quad -a \circ \psi^{-1}(h) = e'.
\]

If we are given a pseudo-triangulation \((\Sigma, \Omega, \triangleright, \triangleleft, \psi) \) on \(\mathcal{C} \), then we call the 6-tuple \((\mathcal{C}, \Sigma, \Omega, \triangleright, \triangleleft, \psi) \) a pseudo-triangulated category. We often represent a pseudo-triangulated category simply by \(\mathcal{C} \).

Example 3.4. Let \((\mathcal{C}, \Sigma, \Omega, \triangleright, \triangleleft, \psi) \) be a pseudo-triangulated category.

1. \(\mathcal{C} \) is an abelian category if and only if \(\Sigma = \Omega = 0 \).
2. \(\mathcal{C} \) is a triangulated category if and only if \(\Sigma \) is the quasi-inverse of \(\Omega \) and \(\psi \) is the one induced from the isomorphism \(\Sigma \circ \Omega \cong \text{Id}_\mathcal{C} \).

Proof. (1) We only show that \(\Sigma = \Omega = 0 \) implies the abelianess of \(\mathcal{C} \). The converse is confirmed by a routine work. Since \(\Sigma = 0 \), Proposition 2.4 means \(g = \text{cok}(f) \) holds for any object

\[
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A
\]

in \(\triangleright \).

Thus (RTR1) implies the existence of a cokernel for each morphism. Dually for the existence of \(\ker(f) \). Moreover, in this case \(f \) is \(\Sigma \)-null if and only if \(f = 0 \), and \(f \) is \(\Sigma \)-epic if and only if it is epimorphic. Thus (G1) means that any epimorphism \(g \) agrees with \(\text{cok}(\ker(g)) \). Dually for monomorphisms.

(2) In this case, any morphism is at the same time \(\Sigma \)-null and \(\Sigma \)-epic, and \(\Omega \)-null and \(\Omega \)-monic. Moreover, \(\triangleright \) and \(\triangleleft \) agree. We only show \(\triangleleft \subseteq \triangleright \).

By (LTR2), for any object

\[
(3.1) \quad \Omega C \xrightarrow{\epsilon} A \xrightarrow{f} B \xrightarrow{g} C
\]

in \(\triangleleft \), the shifted one

\[
\Omega B \xrightarrow{-\Omega g} \Omega C \xrightarrow{\epsilon} A \xrightarrow{f} B
\]

is also in \(\triangleleft \). By (G1), we obtain an object in \(\triangleright \)

\[
\Omega C \xrightarrow{\epsilon} A \xrightarrow{f} B \xrightarrow{\psi(\Omega g)} \Sigma \Omega C,
\]

which is isomorphic to (3.1). \(\square \)
4. Extensions

In this section, \mathcal{C} is a pseudo-triangulated category with pseudo-triangulation $(\Sigma, \Omega, \triangleright, \triangleleft, \psi)$. We define the notion of an extension which generalizes a short exact sequence in an abelian category, and a distinguished triangle in a triangulated category.

Definition 4.1. A sequence in \mathcal{C}

$$\Omega \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$$

is called an *extension* if it satisfies

$$(A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A) \in \triangleright,$$

$$(\Omega \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C) \in \triangleleft,$$

$$h = -\psi_{\mathcal{C},A}(e).$$

Since e and h determines each other, we sometimes omit one of them.

A *morphism of extensions* from

$$\Omega \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$$

to

$$\Omega' \xrightarrow{e'} A' \xrightarrow{f'} B' \xrightarrow{g'} C' \xrightarrow{h'} \Sigma A'$$

is a triplet (a, b, c) of $a \in \mathcal{C}(A, A')$, $b \in \mathcal{C}(B, B')$ and $c \in \mathcal{C}(C, C')$ satisfying

$$b \circ f = f' \circ a, \quad c \circ g = g' \circ b, \quad (\Sigma a) \circ h = h' \circ c.$$

Remark that $(\Sigma a) \circ h = h' \circ c$ is equivalent to $a \circ e = e' \circ (\Omega c)$. Thus, a morphism of extensions is essentially the same as a morphism in \triangleright or \triangleleft.

Remark 4.2. Consider a diagram in \mathcal{C}

(4.1) $$\Omega \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$$

satisfying $h = -\psi(e)$. By (G1) and (G2) (and (RTR1) and (LTR1)), the following are equivalent.

1. $\Omega \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ belongs to \triangleleft and g is Σ-epic.
2. $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A$ belongs to \triangleright and f is Ω-monic.
3. (4.1) is an extension.

Corollary 4.3.

1. $g \in \mathcal{C}(B, C)$ is Σ-epic if and only if there exists an extension (4.1), if and only if there exists an object $A \rightarrow B \xrightarrow{g} C \rightarrow \Sigma A$ in \triangleright.
2. $f \in \mathcal{C}(A, B)$ is Ω-monic if and only if there exists an extension (4.1), if and only if there exists an object $\Omega \rightarrow A \xrightarrow{f} B \rightarrow C$ in \triangleleft.
Proof. We show only (1). If there exists an object \(A \xrightarrow{g} C \xrightarrow{\Sigma} \Sigma A \in \triangleright \), then by (RTR2), we have an object in \(\triangleright \)

\[
B \xrightarrow{g} C \xrightarrow{\Sigma} \Sigma A \rightarrow \Sigma B.
\]

Obviously this implies \(g \) is \(\Sigma \)-epic.

Conversely if \(g \) is \(\Sigma \)-epic, then by (LTR1) and Remark 4.2, we obtain an extension (4.1).

\[\square\]

Lemma 4.4. Let \(f \in C(A,B) \), \(m \in C(A,M) \) and \(e \in C(M,B) \) be morphisms satisfying \(e \circ m = f \).

1. If \(f \) is \(\Sigma \)-epic, then so is \(e \).
2. If \(f \) is \(\Omega \)-monic, then so is \(m \).

Proof. (1) By (RTR1) and (RTR3), there exists a morphism in \(\triangleright \)

\[
\begin{array}{cccccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C & \xrightarrow{h} \Sigma A \\
M & \xrightarrow{m} & B & \xrightarrow{g'} & D & \xrightarrow{h'} \Sigma M
\end{array}
\]

Then since \(g \) is \(\Sigma \)-null, so is \(g' \). (2) is shown dually. \[\square\]

Example 4.5. The notion of an extension becomes as follows in the two cases of Example 3.4.

1. If \(\Sigma = \Omega = 0 \) and \(C \) is abelian, then an extension is nothing other than a short exact sequence.
2. If \(C \) is a triangulated category as in Example 3.4, then an extension is nothing other than a distinguished triangle.

Proposition 4.6. For any \(A,B \in C \),

\[
\Omega B \xrightarrow{u} A \xrightarrow{i_A} A \oplus B \xrightarrow{p_B} B \xrightarrow{0} \Sigma A
\]

is an extension, where \(i_A \) and \(p_B \) are the injection and the projection, respectively.

Proof. Let \(p_A \): \(A \oplus B \rightarrow A \) be the projection, and \(i_B \): \(B \rightarrow A \oplus B \) be the inclusion. Since \(\text{id}_B \) is \(\Sigma \)-epic by (RTR1), so is \(p_B \) by Lemma 4.4. Thus by Corollary 4.3, there is an extension

\[
\Omega B \xrightarrow{u} A \xrightarrow{i_B} A \oplus B \xrightarrow{p_B} B \xrightarrow{w} \Sigma C
\]

with some morphisms \(u, v, w \). Since \(p_B \) is the projection and \(w \circ p_B = 0 \) by Proposition 2.4, we have \(w = 0 \), and thus \(u = 0 \). By \(p_B \circ i_A = 0 \), there exists \(r \in C(A,C) \) such that \(v \circ r = i_A \).

Then we have

\[
v \circ (\text{id}_C - r \circ (p_A \circ v)) = v - v \circ r \circ p_A \circ v
\]

\[
= (\text{id}_C - i_A \circ p_A) \circ v
\]

\[
= (i_B \circ p_B) \circ v = 0.
\]
Thus $\text{id}_C - r \circ p_A \circ v$ factors through $u = 0$, which means
\[r \circ (p_A \circ v) = \text{id}_C. \]
Since $(p_A \circ v) \circ r = p_A \circ i_A = \text{id}_A$, this means r is an isomorphism. \hfill \Box

Proposition 4.7. Let
\[
\begin{array}{cccc}
\Omega C & \to & A & \to B & \to C & \to \Sigma A, \\
\Omega B' & \to & A & \to M & \to B' & \to \Sigma A, \\
\Omega B & \to & A' & \to M & \to B & \to \Sigma A',
\end{array}
\]
be extensions, satisfying $m' \circ \ell = f$. Then there exist $g' \in C(B', C)$ and $h' \in C(C, \Sigma A')$ such that
\[
\begin{align*}
h' \circ g &= n' , & h \circ g' &= n , \\
g' \circ m &= g \circ m' , & (\Sigma \ell) \circ h + (\Sigma \ell') \circ h' &= 0,
\end{align*}
\]
and
\[
\Omega C \to A' \xrightarrow{f'} B' \xrightarrow{g'} C \xrightarrow{h'} \Sigma A'
\]
is an extension. Here we put $f' = m \circ \ell'$. Remark if we put $e' = -\psi^{-1}(h')$, then $(\Sigma \ell) \circ h + (\Sigma \ell') \circ h' = 0$ is equivalent to $\ell' \circ e' + \ell \circ e = 0$.

Proof. By (RTR4), there exist $g' \in C(B', C)$ and $h' \in C(C, \Sigma A')$ such that
\[
\begin{align*}
h' \circ g &= n' , & h \circ g' &= n , \\
g' \circ m &= g \circ m' , & (\Sigma \ell) \circ h + (\Sigma \ell') \circ h' &= 0,
\end{align*}
\]
and
\[
\begin{array}{c}
A' \xrightarrow{f'} B' \xrightarrow{g'} C \xrightarrow{h'} \Sigma A'
\end{array}
\]
is an object in \triangleright. Thus by Remark 4.2, it suffices to show f' is Ω-monic. This follows from (LTR4). In fact, applying (LTR4) to objects in \triangleleft
\[
\begin{array}{cccc}
\Omega B & \rightleftharpoons \Omega C \xrightarrow{c} A & \xrightarrow{f} B, \\
\Omega B' & \xrightarrow{k} A & \xrightarrow{\ell} M & \xrightarrow{m} B', \\
\Omega B & \xrightarrow{k'} A' & \xrightarrow{\ell'} M & \xrightarrow{m'} B,
\end{array}
\]

Dual statement also holds.
we obtain an object in
\[\Omega B' \rightarrow \Omega C \rightarrow A' \xrightarrow{f'} B' , \]
which means \(f' \) is \(\Omega \)-monic. \(\square \)

5. Frobenius condition

In this section, we define an extension-closed subcategory \(Z \subseteq C \), and the Frobenius condition on it. This condition generalizes simultaneously the usual Frobenius condition for an exact category, and the the existence of a subcategory \(D \) such that \((Z, Z) \) is a \(D \)-mutation pair in the case of a triangulated category.

Definition 5.1. A subcategory \(Z \subseteq C \) is said to be **extension-closed** if it satisfies the following.

\[(\ast) \text{ For any extension in } C \]
\[\Omega Z \xrightarrow{e} X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X , \]
\[X, Z \in Z \text{ implies } Y \in Z . \]

In the following, we fix an extension-closed subcategory \(Z \subseteq C \).

Remark 5.2. When \(C \) is an abelian category as in Example 4.5, then \(Z \) is an exact category.

Definition 5.3. Let \(Z \subseteq C \) be an extension-closed subcategory as above.

1. A **conflation** is an extension in \(C \)
\[(5.1) \Omega Z \xrightarrow{e} X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X , \]
\[X, Y, Z \in Z \text{ implies } Y \in Z . \]

A morphism of conflations is a morphism of the extensions.
2. A morphism \(f : X \rightarrow Y \) in \(Z \) is an **inflation** if there exists a conflation (5.1).
3. A morphism \(g : Y \rightarrow Z \) in \(Z \) is a **deflation** if there exists a conflation (5.1).

In the following, we fix an extension-closed subcategory \(Z \subseteq C \). For a full additive replete subcategory \(D \subseteq Z \), we consider the following condition (DS).

Condition 5.4.

\((DS) \) \(D \) is closed under finite direct summands in \(Z \), namely, for any \(Z_1, Z_2 \in Z \) and \(D \in D \), \(D \cong Z_1 \oplus Z_2 \) implies \(Z_1, Z_2 \in Z \).

Definition 5.5. Let \(D \subseteq Z \) be a full additive replete subcategory satisfying (DS).

1. An object \(I \) in \(D \) is **injective** if
\[Z(Y, I) \xrightarrow{-of} Z(X, I) \rightarrow 0 \]
is exact for any inflation \(f : X \rightarrow Y \). We denote the full subcategory of injective objects by \(I_D \subseteq D \). In particular \(I_Z \) is denoted by \(I \).
2. An object \(P \) in \(D \) is **projective** if
\[Z(P, Y) \xrightarrow{g\circ} Z(P, Z) \rightarrow 0 \]
is exact for any deflation \(g : Y \rightarrow Z \). We denote the full subcategory of projective objects by \(P_D \subseteq D \). In particular \(P_Z \) is denoted by \(P \).

Example 5.6.
(1) If $Z \subseteq C$ is an exact category where C is an abelian category as in Example 4.5, then I is equal to the full subcategory of injective objects, and P is equal to the full subcategory of projective objects.

(2) If C is a triangulated category, and if D satisfies $C(\Omega Z, D) = C(D, \Sigma Z) = 0$, then we have $I_D = P_D = D$.

Caution 5.7. The definitions of injective and projective objects are different from those in [B].

Remark 5.8.

1. I_D and P_D are full additive replete subcategories, which are closed under finite direct summands in Z.
2. $I_D = I \cap D$.
3. $P_D = P \cap D$.

Proof. Left to the reader. □

Definition 5.9. Let (C, Z, D) be a triplet as above.

1. (C, Z, D) **has enough injectives** if for any $X \in Z$, there exists an inflation $\alpha: X \to I$ such that $I \in I_D$. When $D = Z$, we simply say “Z has enough injectives”.
2. (C, Z, D) **has enough projectives** if for any $Z \in Z$, there exists a deflation $\beta: P \to Z$ such that $P \in P_D$. When $D = Z$, we simply say “Z has enough projectives”.
3. (C, Z, D) is **Frobenius** if it has enough injectives and projectives, and moreover $I_D = P_D$. When $D = Z$, we simply say “Z is Frobenius”.

Example 5.10.

1. If $Z \subseteq C$ is an exact category as in Example 5.6, then Z is Frobenius if and only if Z is Frobenius as an exact category. In this case the stable category Z/I is triangulated [H].
2. If C is a triangulated category and if (Z, Z) is a D-mutation pair in C (in the definition in [IY]), then (C, Z, D) is Frobenius. In this case $Z/I_D = Z/D$ becomes a triangulated category by Theorem 4.2 in [IY].

C	Happel’s construction [H]	Iyama and Yoshino’s construction [IY]
Z	abelian category	triangulated category
Z	exact subcategory	extension-closed subcategory
D	$Z = D$	$(Z, Z): D$-mutation pair
I_D	injective objects	$I_D = D$
P_D	projective objects	$P_D = D$

In section 6, in a pseudo-triangulated category C satisfying Condition 6.1, we show Z/I_D becomes a triangulated category for any Frobenius triplet (C, Z, D) (Theorem 6.17), which we call the **stable category** associated to (C, Z, D). In particular, if Z is Frobenius, then Z/I becomes a triangulated category. We call Z/I the stable category associated to Z.

Although we have defined the Frobenius condition on a triplet (C, Z, D), it is essentially the same as the Frobenius condition on Z as follows (Corollary 5.13).

Proposition 5.11. Let $D \subseteq D' \subseteq Z$ be full additive replete subcategories satisfying (DS). If (C, Z, D) is Frobenius, so is (C, Z, D'). Moreover, we have $I_{D'} = I_D$.
Proof. This immediately follows from the lemma below. \qed

Lemma 5.12. Let \(D \subseteq D' \subseteq Z \) be as in Proposition 5.11. If \((C, Z, D)\) has enough injectives, then we have \(I_{D'} = I_D \). Similarly for projectives.

Proof. Remark that \(I_D = I_D' \cap D \). Thus it suffices to show \(I_D' \subseteq D \).

Since \((C, Z, D)\) has enough injectives, for any \(I' \in I_{D'} \), there exists a conflation \(\Omega \xrightarrow{e} I' \xrightarrow{f} I \xrightarrow{g} Z \xrightarrow{h} \Sigma I' \), where \(Z \in Z \) and \(I \in I_D \). Since \(I' \in I_{D'} \), there exists \(p \in Z(I, I') \) such that \(p \circ f = \text{id}_{I'} \). By \(f \circ e = 0 \), we have \(e = p \circ f \circ e = 0 \), and thus \(h = 0 \). By \((\text{id}_I - f \circ p) \circ f = 0 \), there exists \(s \in Z(Z, I) \) such that \(s \circ g = \text{id}_I - f \circ p \). Since \((\text{id}_Z - g \circ s) \circ g = 0 \), \(\text{id}_Z - g \circ s \) factors through \(h = 0 \), namely, we have \(\text{id}_Z = g \circ s \). Thus we obtain \(I = I' \oplus Z \). Since \(D \) is closed under finite direct summands in \(Z \), it follows \(I' \in D \). \qed

Thus if \((C, Z, D)\) is a Frobenius triplet, then \(Z \) is Frobenius, and satisfies \(I = I_D \).
In particular, their stable categories are equivalent.

Corollary 5.13. For any extension-closed subcategory \(Z \subseteq C \), the following are equivalent.

1. \(Z \) is Frobenius.
2. There exists a full additive replete subcategory \(D \subseteq Z \) satisfying (DS) such that \((C, Z, D)\) is Frobenius.

Moreover, there exists the minimum one.

Corollary 5.14. If \(Z \) is Frobenius, there exists the minimum \(D \), which makes \((C, Z, D)\) Frobenius.

Proof. We show \(I \) satisfies the desired conditions. By Remark 5.8, \(I \subseteq Z \) is a full additive replete subcategory satisfying (DS). If \(Z \) is Frobenius, it immediately follows that
\[I_I = I = P = P_I, \]
and \((C, Z, I)\) becomes Frobenius. Obviously \(I \) is the minimum one, since any Frobenius triplet \((C, Z, D)\) satisfies \(I = I_D \subseteq D \). \qed

When \(C \) is a triangulated category and if \(D \subseteq Z \) is a full additive replete subcategory satisfying (DS) and
\[C(\Omega Z, D) = C(D, \Sigma Z) = 0, \]
then \((C, Z, D)\) is Frobenius if and only if \((Z, Z)\) is a \(D \)-mutation pair. (We also remark that if there exists one such \(D \), then it is unique and must agree with the full subcategory of \(Z \) consisting of those \(D \in Z \) satisfying \(C(\Omega Z, D) = C(D, \Sigma Z) = 0 \).)

Namely, we have the following.

Claim 5.15. Let \(D \subseteq Z \) be a full additive replete subcategory satisfying (DS). The following are equivalent.

1. \((C, Z, D)\) is Frobenius, and \(C(\Omega Z, D) = C(D, \Sigma Z) = 0 \).
2. \((Z, Z)\) is a \(D \)-mutation pair.

Regarding Corollary 5.13 and Corollary 5.14, we obtain the following.

Corollary 5.16. For any \(Z \), the following are equivalent.
6. Triangulation on the stable category

In this section, as a main theorem, we show give a triangulation on the stable category associated to an extension-closed subcategory of a pseu-dotriangulated category satisfying the following condition. Remark that this condition is trivially satisfied in the two cases of Example 3.4.

Condition 6.1. Let

\[
\Omega C \xrightarrow{e} A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A,
\]

be extensions.

(AC1) If \(e \in C(C, C')\) satisfies \(h \circ c = 0\) and \(c \circ g = 0\), then there exists \(e' \in C(C, B')\) such that \(g' \circ e' = c\).

(AC2) If \(a \in C(A, A')\) satisfies \(f' \circ a = 0\) and \(a \circ e = 0\), then there exists \(a' \in C(B, A')\) such that \(a' \circ f = a\).

Remark 6.2. If we impose the following conditions (1) and (2) on \(C\) (cf. [BR]), then Condition 6.1 is satisfied.

1. There exists an adjoint natural isomorphism

\[\varphi_{A,B} : C(\Sigma A, B) \xrightarrow{\cong} C(A, \Omega B) \quad (A, B \in C).\]

2. Let \(A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A\) and \(\Omega C' \xrightarrow{e'} A' \xrightarrow{f'} B' \xrightarrow{g'} C'\) be any object in \(\triangleright\) and \(<\), respectively.

 For any \(a \in C(A, \Omega C')\) and \(b \in C(B, A')\) satisfying \(b \circ f = e' \circ a\), there exists \(c \in C(C, B')\) such that \(c \circ g = f' \circ b\) and \(\varphi_{A,C'}^{-1}(a) \circ h = g' \circ c\).

 For any \(c \in C(C, B')\) and \(d \in C(\Sigma A, C')\) satisfying \(d \circ h = g' \circ c\), there exists \(b \in C(B, A')\) such that \(c \circ g = f' \circ b\) and \(b \circ f = e' \circ \varphi_{A,C'}(d)\).

\[
\begin{array}{c}
A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} \Sigma A \\
\circ \downarrow \circ \downarrow \circ \downarrow \\
\Omega C' \xrightarrow{e'} A' \xrightarrow{f'} B' \xrightarrow{g'} C'
\end{array}
\]

In the rest, \(C\) is assumed to satisfy Condition 5.14. First, we construct the shift functor.

Lemma 6.3. Let

\[
\begin{array}{cccc}
\Omega Z \xrightarrow{e} X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X, & \Omega Z \xrightarrow{e} X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X, \\
\circ \downarrow \circ \downarrow \circ \downarrow \circ \downarrow \circ \downarrow \circ \downarrow & \circ \downarrow \circ \downarrow \circ \downarrow \circ \downarrow \\
\Omega S \xrightarrow{g} M \xrightarrow{\alpha} I \xrightarrow{\beta} S \xrightarrow{\gamma} \Sigma M, & \Omega S \xrightarrow{g} M \xrightarrow{\alpha} I \xrightarrow{\beta} S \xrightarrow{\gamma} \Sigma M,
\end{array}
\]

be morphisms of conflations, with \(I \in \mathcal{I}_D\). Then \(x = x'\) in \(Z/I_D\) implies \(z = z'\) in \(Z/I_D\).
Proof. Obviously, it suffices to show that $x = 0$ implies $x = 0$ in the first diagram. Since $x = 0$, there exist $I_0 \in \mathcal{I}_D$, $x_1 \in \mathcal{Z}(X, I_0)$ and $x_2 \in \mathcal{Z}(I_0, M)$ such that $x = x_2 \circ x_1$. Since $I_0 \in \mathcal{I}_D$ and f is an inflation, there exists $x_3 \in \mathcal{Z}(Y, I_0)$ such that $x_3 \circ f = x_1$. Thus we have $x \circ e = x_2 \circ x_3 \circ f \circ e = 0$, which implies

$$((\Sigma x) \circ h = -((\Sigma x) \circ \psi(e)) = -\psi(x \circ e) = 0.$$

Put $\eta = y - \alpha \circ x_2 \circ x_3$. By $\eta \circ f = 0$, there exists $s \in \mathcal{Z}(Z, I)$ such that $s \circ g = \eta$. Thus we have

$$\gamma \circ (z - \beta \circ s) = \gamma \circ z = (\Sigma x) \circ h = 0,$$
$$z - \beta \circ s) \circ g = z \circ g - \beta \circ y = 0.$$

By (AC1), there exists $t \in \mathcal{Z}(Z, I)$ such that $z - \beta \circ s = \beta \circ t$, namely $z = \beta \circ (s + t)$. □

Construction 6.4. Assume $(\mathcal{C}, \mathcal{Z}, \mathcal{D})$ has enough injectives. For any $X \in \mathcal{Z}$, take a conflation

$$\Omega S_X \xrightarrow{\delta_X} X \xrightarrow{\alpha_X} I_X \xrightarrow{\beta_X} S_X \xrightarrow{\gamma_X} \Sigma X$$

with $I_X \in \mathcal{I}_D$. Define $S(X) = SX$ to be the image of S_X in $\mathcal{Z}/\mathcal{I}_D$.

For any morphism $f \in \mathcal{Z}(X, Y)$, take a conflation

$$\Omega S_Y \xrightarrow{\delta_Y} Y \xrightarrow{\alpha_Y} I_Y \xrightarrow{\beta_Y} S_Y \xrightarrow{\gamma_Y} \Sigma Y$$

similarly for Y. Since α_X is an inflation and $I_Y \in \mathcal{I}_D$, there exists $I_f \in \mathcal{Z}(I_X, I_Y)$ such that $I_f \circ \alpha_X = \alpha_Y \circ f$. By (RTR3), there exists $S_f \in \mathcal{Z}(S_X, S_Y)$ such that (f, I_f, S_f) is a morphism of conflations.

For any $f \in \mathcal{Z}/\mathcal{I}_D(X, Y)$, define S_f to be the image S_f of S_f in $\mathcal{Z}/\mathcal{I}_D$. This is well-defined by Lemma 6.3, and the following proposition holds.

Proposition 6.5. $S: \mathcal{Z}/\mathcal{I}_D \to \mathcal{Z}/\mathcal{I}_D$ gives an additive functor.

Proof. This immediately follows from Lemma 6.3. □

Remark 6.6. Dually, if $(\mathcal{C}, \mathcal{Z}, \mathcal{D})$ has enough projectives, then we have an additive functor $S^*: \mathcal{Z}/\mathcal{P}_D \to \mathcal{Z}/\mathcal{P}_D$, defined by a conflation

$$\Omega X \to S^*X \to P_X \to X \to \Sigma S^*X$$

for any $X \in \mathcal{Z}$, where $P_X \in \mathcal{P}_D$.

Proposition 6.7. If $(\mathcal{C}, \mathcal{Z}, \mathcal{D})$ is Frobenius, then S and S^* are quasi-inverses.

Proof. This follows immediately from the definitions of S and S^*. □

In the rest, $(\mathcal{C}, \mathcal{Z}, \mathcal{D})$ is assumed to be Frobenius. Next, we define the class of distinguished triangles on $\mathcal{Z}/\mathcal{I}_D$.

Definition 6.8. Let $\Omega \xrightarrow{\xi} X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$ be any conflation, and take a conflation $\Omega S_X \xrightarrow{\delta} X \xrightarrow{\alpha_X} F_X \xrightarrow{\beta_X} S_X \xrightarrow{\gamma_X} \Sigma X$ where $I_X \in \mathcal{I}_D$.

If there exist $p \in \mathcal{Z}(Y, I_X)$ and $q \in \mathcal{Z}(Z, S_X)$ satisfying

$$p \circ f = \alpha_X, \quad q \circ g = \beta_X \circ p, \quad \gamma_X \circ q = h$$

(namely, (id, p, q) is a morphism of conflations)

\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow & \circ & \downarrow \circ \\
X & \xrightarrow{\alpha_X} & I_X \\
\end{array} \xrightarrow{g} \quad \begin{array}{ccc}
Z & \xrightarrow{h} & \Sigma X \\
\downarrow & \circ & \downarrow \circ \\
S_X & \xrightarrow{\gamma_X} & \Sigma X \\
\end{array}
\]

then we call the sequence

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{q} S X$$

a **standard triangle**. Remark that by (RTR3) and the injectivity of I_X, there exists at least one such pair of morphisms (p, q). We define the class of distinguished triangles Δ to be the category of triangles (6.1)

$$X \to Y \to Z \to S Z$$

in $\mathcal{Z}/\mathcal{I}_D$, which are isomorphic to standard triangles.

In the rest, we show that $(\mathcal{Z}/\mathcal{I}_D, S, \Delta)$ is a triangulated category.

Proposition 6.9. $(\mathcal{Z}/\mathcal{I}_D, S, \Delta)$ satisfies (TR1).

Proof.

1. By definition, every diagram (6.1) isomorphic to an object in Δ also belongs to Δ.
2. Let $f \in \mathcal{Z}(X, Y)$ be any morphism. Take a conflation

$$\Omega S_X \xrightarrow{\delta} X \xrightarrow{\alpha_X} F_X \xrightarrow{\beta_X} S_X \xrightarrow{\gamma_X} \Sigma X$$

with $I_X \in \mathcal{I}_D$, and put $f_X = (f, -\alpha_X)$. By Corollary 4.3, Lemma 4.4 and Proposition 4.7, $f_X : X \to Y \oplus I_X$ becomes an inflation. In fact, by Corollary 4.3 and Lemma 4.4, there exists an extension

$$\Omega C_f \to X \xrightarrow{f_X} Y \oplus I_X \xrightarrow{c_f} C_f \xrightarrow{\ell_f} \Sigma X,$$

and applying Proposition 4.7 to the following diagram (6.2) of extensions, we obtain an extension

$$\Omega S_X \to Y \xrightarrow{c} \Sigma X \to S Y,$$
and thus $C_f \in \mathcal{Z}$ by the extension-closedness of \mathcal{Z}.

Let $C(f)$ denote the image of C_f in $\mathcal{Z}/\mathcal{I}D$. Then the above diagram means

$$X \xrightarrow{f} Y \oplus I_X \xrightarrow{c_f} C_f \xrightarrow{\ell_f} \Sigma X$$

is a standard triangle. If we put $g = c_f \circ i_Y$ where $i_Y : Y \to Y \oplus I_X$ is the inclusion, then $X \xrightarrow{f} Y \xrightarrow{g} C(f) \xrightarrow{\ell_f} SX$ becomes isomorphic to this standard triangle.

(3) By (RTR1), (RTR2) and (LTR1),

$$0 = \Omega 0 \to X \xrightarrow{id} X \to 0 \to \Sigma X$$

is a conflation, and it immediately follows that the triangle

$$X \xrightarrow{id} X \to 0 \to SX$$

belongs to \triangle.

\[\Box\]

Proposition 6.10. $(\mathcal{Z}/\mathcal{I}D, S, \triangle)$ satisfies (TR2).

Proof. It suffices to show, for any distinguished triangle

$$X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} SX$$

arising from a morphism of conflations

$$\begin{array}{ccc}
\Omega Z & \xrightarrow{e} & X \\
\downarrow \Omega q & & \downarrow \Omega p \\
\Omega SX & \xrightarrow{\delta_X} & I_X
\end{array} \xrightarrow{\gamma_X} \begin{array}{ccc}
Y & \xrightarrow{g} & Z \\
\downarrow f & & \downarrow h \\
\Sigma X & & \end{array} \xrightarrow{\Sigma \gamma} \begin{array}{ccc}
\Sigma X & \xrightarrow{\gamma_X} & \Sigma X \\
\downarrow p & & \downarrow q \\
I_X & \xrightarrow{\beta_X} & \Sigma X
\end{array},

the shifted triangle

$$Y \xrightarrow{g} Z \xrightarrow{h} SX \xrightarrow{-Sf} SY$$

also becomes a distinguished triangle.

We may replace $\Omega Z \xrightarrow{e} X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$ by the conflation $\Omega C_f \to X \xrightarrow{f_X} Y \oplus I_X \xrightarrow{c_f} C_f \xrightarrow{\ell_f} \Sigma X$ constructed in the proof of Proposition 6.9. Recall that $f_X = (f, -\alpha_X) = i_Y \circ f - i_{I_X} \circ \alpha_X$ where i_Y and i_{I_X} are the inclusions into $Y \oplus I_X$.
Take conflations

\[
\begin{align*}
\Omega S_X & \xrightarrow{\delta_X} X \xrightarrow{\alpha_X} I_X \xrightarrow{\beta_X} S_X \xrightarrow{\gamma_X} \Sigma X, \\
\Omega I_X & \xrightarrow{0} Y \xrightarrow{\iota_Y} Y \oplus I_X \xrightarrow{-p I_X} I_X \xrightarrow{0} \Sigma Y.
\end{align*}
\]

By Proposition 4.7, there exists \(k \in C(\Omega S_X, Y)\) and \(\nu \in Z(C_f, S_X)\) such that

\[
\Omega S_X \xrightarrow{k} Y \xrightarrow{\mu} C_f \xrightarrow{\nu} S_X \rightarrow \Sigma Y
\]

is a conflation, where \(\mu = c_f \circ i_Y\), and

\[
\begin{align*}
\nu \circ c_f &= -\beta_X \circ p I_X, & \gamma_X \circ \nu &= \ell_f, \\
-\psi_{S_X,Y}(k) \circ \beta_X &= 0, & f_X \circ \delta_X + iv \circ k &= 0.
\end{align*}
\]

Claim 6.11. We have a morphism of conflations

\[
\begin{align*}
\Omega S_X & \xrightarrow{\delta_X} X \xrightarrow{\alpha_X} I_X \xrightarrow{\beta_X} S_X \xrightarrow{\gamma_X} \Sigma X, \\
\Omega I_X & \xrightarrow{-id} Y \xrightarrow{\iota_Y} I_X \xrightarrow{p} S_X \xrightarrow{\mu} C_f \xrightarrow{\nu} \Sigma Y.
\end{align*}
\]

Proof of Claim 6.11. This immediately follows from

\[
\begin{align*}
f \circ \delta_X &= p_Y \circ f_X \circ \delta_X = -p_Y \circ i_Y \circ k = -k, \\
c_f \circ i_{I_X} \circ \alpha_X &= c_f \circ i_{I_X} \circ (-p I_X) \circ f_X \\
&= c_f \circ (i_Y \circ p_Y \circ f_X - f_X) \\
&= c_f \circ i_Y \circ f, \\
\nu \circ c_f \circ i_{I_X} &= -\beta_X \circ p I_X \circ i_{I_X} = -\beta_X.
\end{align*}
\]

\(\square\)

If we take a conflation \(\Omega S_Y \xrightarrow{\delta_Y} Y \xrightarrow{\alpha_Y} I_Y \xrightarrow{\beta_Y} S_Y \xrightarrow{\gamma_Y} \Sigma Y\) where \(I_Y \in \mathcal{I}_D\), then there exist \(u \in Z(C_f, I_Y)\) and \(v \in Z(S_X, S_Y)\) such that \((id_Y, p, q)\) is a morphism
of conflations.

\[
\begin{align*}
&\Omega S_X \xrightarrow{k} Y \xrightarrow{\mu} C_f \xrightarrow{\nu} S_X \xrightarrow{\Sigma Y} \\
&\Omega S_Y \xrightarrow{\delta_Y} Y \xrightarrow{\alpha_Y} I_Y \xrightarrow{\beta_Y} S_Y \xrightarrow{\gamma_Y} \Sigma Y
\end{align*}
\]

(6.3)

By definition, we have a standard triangle in \(\Delta\)

\[
Y \xrightarrow{\mu} C(f) \xrightarrow{\nu} S_X \xrightarrow{\beta_Y} SY.
\]

Composing (6.3) with the morphism obtained in Claim 6.11, we obtain the following morphism of conflations, which means \(Sf = -v\).

\[
\begin{align*}
&\Omega S_X \xrightarrow{\delta_X} X \xrightarrow{\alpha_X} I_X \xrightarrow{\beta_X} S_X \xrightarrow{\gamma_X} \Sigma X \\
&\Omega S_Y \xrightarrow{\delta_Y} Y \xrightarrow{\alpha_Y} I_Y \xrightarrow{\beta_Y} S_Y \xrightarrow{\gamma_Y} \Sigma Y
\end{align*}
\]

\(\square\)

Lemma 6.12. Let

\[
X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{q} SX
\]

and

\[
X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{q'} S_X'
\]

be standard triangles in \(\mathbb{Z}/\mathcal{I}_D\) obtained from

\[
\begin{align*}
&\Omega Z \xrightarrow{e} X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X \\
&\Omega S_X \xrightarrow{\delta_X} X \xrightarrow{\alpha_X} I_X \xrightarrow{\beta_X} S_X \xrightarrow{\gamma_X} \Sigma X
\end{align*}
\]

and

\[
\begin{align*}
&\Omega Z' \xrightarrow{e'} X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} \Sigma X' \\
&\Omega S_{X'} \xrightarrow{\delta_{X'}} X' \xrightarrow{\alpha_{X'}} I_{X'} \xrightarrow{\beta_{X'}} S_{X'} \xrightarrow{\gamma_{X'}} \Sigma X'
\end{align*}
\]

If we are given a morphism of conflations

\[
\begin{align*}
&\Omega Z \xrightarrow{e} X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X \\
&\Omega Z' \xrightarrow{e'} X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} \Sigma X'
\end{align*}
\]

then we obtain the following morphism in \(\Delta\).

\[
\begin{align*}
&X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{q} SX \\
&X' \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{q'} S_X'
\end{align*}
\]
Proof. It suffices to show \(q' \circ z = (S_x) \circ q \). By the definition of \(S_x \), we have
\[
(S_x) \circ q = S_x \circ q = (\gamma_X \circ g - \gamma_X \circ q' \circ z - \beta_X \circ s)
\]
there exists \(s \in \mathcal{Z}(Z, I_{X'}) \) such that \(s \circ g = I_x \circ p - p' \circ y \). If we put \(\zeta = S_z \circ q - q' \circ z - \beta_X \circ s \), then \(\zeta \) satisfies
\[
\gamma_{X'} \circ \zeta = (\Sigma) \circ q - \gamma_X \circ q - h' \circ s \circ g
\]
and
\[
\zeta \circ g = S_z \circ q \circ g - q' \circ z \circ g - \beta_X \circ s \circ g
\]
Thus by (AC1), there exists \(t \in \mathcal{Z}(Z, I_{X'}) \) such that \(\zeta = \beta_{X'} \circ t \), i.e.,
\[
S_z \circ q - q' \circ z = \beta_{X'} \circ (s + t).
\]

Proposition 6.13. \((\mathcal{Z}/\mathcal{I}_D, S, \triangle)\) satisfies (TR3).

Proof. Suppose we are given distinguished triangles
\[
\begin{align*}
X & \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} SX \\
X' & \xrightarrow{f'} Y' \xrightarrow{g'} Z' \xrightarrow{h'} SX'
\end{align*}
\]
and morphisms \(x \in \mathcal{Z}(X, X') \) and \(y \in \mathcal{Z}(Y, Y') \) satisfying \(y \circ f = f' \circ x \). We want to find \(z \in \mathcal{Z}(Z, Z') \) which satisfies \(z \circ q = g' \circ y \) and \(S_z \circ q = q' \circ z \).

We may assume these triangles are standard, arising from morphisms of conflations:
\[
\begin{align*}
\begin{array}{ccc}
\Omega Z & \xrightarrow{f} & X \\
\downarrow & & \downarrow \\
\Omega S_Z & \xrightarrow{S_X} & SX
\end{array}
\quad
\begin{array}{ccc}
\Omega X & \xrightarrow{f} & \Omega Y \\
\downarrow & & \downarrow \\
\Omega S_X & \xrightarrow{S_Y} & SY
\end{array}
\end{align*}
\]

\qed
Since \(y \circ f = f' \circ x \), there exist \(I \in \mathcal{I}_\mathcal{D}, s_1 \in Z(X, I) \) and \(s_2 \in Z(Y, I') \) such that \(s_2 \circ s_1 = y \circ f - f' \circ x \). By the injectivity of \(I \), there exists \(s_3 \in Z(Y, I) \) such that \(s_3 \circ f = s_1 \). Then we have \((y - s_2 \circ s_3) \circ f = f' \circ x \), and there exists \(z \in Z(Z, Z') \) such that \(z \circ g = g' \circ (y - s_2 \circ s_3) \) and \((\Sigma x) \circ h = h' \circ z \) by (RTR3). Thus Proposition 6.13 follows from Lemma 6.12.

\[\begin{array}{c}
\Omega Z \xrightarrow{f} X' \xrightarrow{g'} Y' \xrightarrow{h'} Z' \rightarrow \Sigma X' \\
\end{array} \]

\[\Omega S_X \xrightarrow{f} X' \xrightarrow{g'} Y' \xrightarrow{h'} Z' \rightarrow \Sigma X' \]

Proposition 6.14. \((\mathcal{Z}/\mathcal{I}_\mathcal{D}, S, \triangle)\) satisfies (TR4).

Proof. Let

\[\begin{align*}
\text{(6.4)} & \quad X \xrightarrow{f} M \xrightarrow{m'} Y' \xrightarrow{q'} SX \\
\text{(6.5)} & \quad X' \xrightarrow{f'} M \xrightarrow{m'} Y \xrightarrow{q} SX' \\
\text{(6.6)} & \quad X \xrightarrow{f} Y \xrightarrow{q} Z \xrightarrow{g} SX,
\end{align*} \]

be distinguished triangles in \((\mathcal{Z}/\mathcal{I}_\mathcal{D})\) satisfying \(m' \circ f = f \). It suffices to show there exist \(g' \in Z(Y', Z) \) and \(g' \in Z(Z, S_X') \) such that \(X' \xrightarrow{f'} Y' \xrightarrow{g'} Z \xrightarrow{g} S_X' \) is a standard triangle, where \(f' = m \circ f' \), and satisfy

\[\begin{align*}
& g' \circ m = q \circ m', \\
& g' \circ q = q', \\
& q \circ g' = q, \\
& S_X' \circ q' + S_X \circ q = 0.
\end{align*} \]

\[\begin{array}{c}
X \xrightarrow{f} Y \xrightarrow{q} Z \xrightarrow{g} S_X' \\
\text{\textcircled{}} \end{array} \]

\[\begin{array}{c}
X' \xrightarrow{f'} Y' \xrightarrow{g'} Z \xrightarrow{g} S_X' \\
\text{\textcircled{}} \end{array} \]

We may assume (6.4), (6.5), (6.6) are standard triangles, arising from the following morphisms of conflations.

\[\begin{array}{c}
\Omega Y' \xrightarrow{\ell} X \xrightarrow{f} M \xrightarrow{m} Y' \xrightarrow{q} \Sigma X \\
\Omega S_X \xrightarrow{\ell} X \xrightarrow{f} M \xrightarrow{m} Y' \xrightarrow{q} \Sigma X' \\
\end{array} \]

\[\begin{array}{c}
\Omega Y \xrightarrow{\ell} X \xrightarrow{f} M \xrightarrow{m} Y' \xrightarrow{q} \Sigma X \\
\Omega Y' \xrightarrow{\ell} X \xrightarrow{f} M \xrightarrow{m} Y' \xrightarrow{q} \Sigma X' \\
\end{array} \]
Claim 6.15. We may assume $m' \circ \ell = f$.

Proof of Claim 6.15. Since $m' \circ \ell = f$, there exist $I \in \mathcal{I}_D$, $f_1 \in Z(X,I)$ and $f_2 \in Z(I,Y)$ such that $f_2 \circ f_1 = f - m' \circ \ell$. Let $i_M : M \to M \oplus I$ and $p_M : M \oplus I \to M$ be the inclusion and the projection, respectively. By Corollary 4.3 and Lemma 4.4, we have extensions

$$
\begin{align*}
\Omega Q &\to X \xrightarrow{(f, f_1)} M \oplus I \to Q \to \Sigma X, \\
\Omega M &\to I \to M \oplus I \xrightarrow{p_M} M \to \Sigma I.
\end{align*}
$$

By Proposition 4.7, we obtain the following morphisms of extensions by Lemma 6.12.

Thus we have $Q \in Z$, and obtain an isomorphism of distinguished triangles:

$$
\begin{align*}
X \xrightarrow{(f, f_1)} M \oplus I &\to Q \to \Sigma X \\
\alpha \xleftarrow{\cong} \beta \xleftarrow{\cong} \gamma &\to \Sigma X.
\end{align*}
$$

Dually, there exist morphisms of extensions

$$
\begin{align*}
\Sigma R &\to Y \xrightarrow{m' + f_2} M \oplus I \xrightarrow{\exists R} \Omega X' \\
\Sigma X' \xrightarrow{-} \Sigma M &\to Y' \xrightarrow{\exists} \Omega X'.
\end{align*}
$$
which implies \(R \in \mathcal{Z} \) and yields an isomorphism of distinguished triangles

\[
\begin{array}{c}
X' \xrightarrow{\ell'} M \xrightarrow{m'} Y \xrightarrow{S} SX' \\
\cong \; \cong \; \cong \; \cong \; \cong \; \cong \\
R \xrightarrow{} M \oplus I \xrightarrow{m'+f_2} Y \xrightarrow{} SR
\end{array}
\]

Thus, replacing \(\ell \) by \((\ell, f_1)\) and \(m' \) by \(m' + f_2 \), we may assume \(m' \circ \ell = f \). \(\square \)

By Claim 6.15, assume \(m' \circ \ell = f \). Then by Proposition 4.7, there exist \(g' \in \mathcal{Z}(Y', Z) \) and \(h' \in \mathcal{C}(Z, \Sigma X') \) such that

\[
\Omega Z \rightarrow X' \xrightarrow{f'} Y' \xrightarrow{g'} Z \xrightarrow{h'} \Sigma X'
\]

is a conflation, and make the following diagram commutative.

If we take a morphism of conflations

\[
\Omega Z \rightarrow X' \xrightarrow{f'} Y' \xrightarrow{g'} Z \xrightarrow{h'} \Sigma X'
\]

then by Lemma 6.12, we obtain morphisms of standard triangles

\[
\begin{array}{c}
X' \xrightarrow{\ell'} M \xrightarrow{m'} Y \xrightarrow{\alpha} SX' \\
\cong \; \cong \; \cong \\
X' \xrightarrow{f'} Y' \xrightarrow{\beta} Z \xrightarrow{\gamma} SX'
\end{array}
\]

and

\[
\begin{array}{c}
X \xrightarrow{f} M \xrightarrow{m} Y \xrightarrow{s} SX \\
\cong \; \cong \; \cong \\
X \xrightarrow{} Y \xrightarrow{q} Z \xrightarrow{q'} SX
\end{array}
\]

Thus it remains to show \(St' \circ g' + S \ell \circ q = 0 \).

Claim 6.16. There exist morphisms of conflations

\[(6.8)\]

\[
\begin{array}{c}
\Omega Z \rightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X \\
\cong \; \cong \; \cong \; \cong \; \cong \\
\Omega S_M \rightarrow M \xrightarrow{\alpha_M} I_M \xrightarrow{\beta_M} S_M \xrightarrow{\gamma_M} \Sigma M
\end{array}
\]

\[(6.9)\]

\[
\begin{array}{c}
\Omega Z \rightarrow X' \xrightarrow{f'} Y' \xrightarrow{g'} Z \xrightarrow{h'} \Sigma X' \\
\cong \; \cong \; \cong \; \cong \; \cong \\
\Omega S_M \rightarrow M \xrightarrow{\alpha_M} I_M \xrightarrow{\beta_M} S_M \xrightarrow{\gamma_M} \Sigma M
\end{array}
\]
such that\[r \circ m' + r' \circ m = \alpha_M.\]

Moreover, \(s\) and \(s'\) satisfy
\[
(6.10) \quad s = S\ell \circ q \quad \text{and} \quad s' = S\ell' \circ q'.
\]

Suppose Claim 6.16 is shown. Then by
\[
(s + s') \circ g \circ m' = s \circ g \circ m' + s' \circ g' \circ m = \beta_M \circ r \circ m' + \beta_M \circ r' \circ m = \beta_M \circ \alpha_M = 0,
\]
there exists \(w' \in C(\Sigma X', S_M)\) such that \(w' \circ n' = (s + s') \circ g\). Thus by \(((s + s') - w' \circ h') \circ g = 0\), there exists \(w \in C(\Sigma X, S_M)\) such that \(w \circ h = s + s' - w' \circ h'\), namely
\[s + s' = w \circ h + w' \circ h'. \]

Take a conflation
\[\Omega Z \to X_0 \to I_0 \xrightarrow{\beta_0} Z \xrightarrow{\gamma_0} \Sigma X_0 \]
with \(I_0 \in \mathcal{I}_D\). We have morphisms of conflations
\[
\begin{align*}
\Omega Z & \to X_0 \to I_0 \xrightarrow{\beta_0} Z \xrightarrow{\gamma_0} \Sigma X_0, \\
\Omega Z & \to X' \to Y' \to Z \xrightarrow{h} \Sigma X.
\end{align*}
\]
and thus obtain
\[s + s' = (w \circ \xi + w' \circ \xi') \circ \gamma_0. \]
Since \(\gamma_M \circ (s + s') = (\Sigma \ell) \circ h + (\Sigma \ell') \circ h' = 0\), we can conclude that \(s + s'\) factors through \(I_M\) by (AC1).

\[
\Omega Z \to X_0 \to I_0 \xrightarrow{\beta_0} Z \xrightarrow{\gamma_0} \Sigma X_0
\]
\[
\Omega S_M \to M \xrightarrow{\alpha_M} I_M \xrightarrow{\beta_M} S_M \xrightarrow{\gamma_M} \Sigma M
\]
By (6.10), this means \(S\ell' \circ q' + S\ell \circ q = 0\), and Proposition 6.14 can be shown. Thus it suffices to show Claim 6.16.

Proof of Claim 6.16. By \(I_M \in \mathcal{I}_D\), there exists \(r \in \mathcal{Z}(Z, I_M)\) such that \(r \circ f = \alpha_M \circ \ell\). By \((\alpha_M - r \circ m') \circ \ell = 0\), there exists \(r' \in \mathcal{Z}(Y', I_M)\) such that \(r' \circ m = \alpha_M - r \circ m'\).

By (RTR3), there exist \(s', s' \in \mathcal{Z}(Z, S_M)\) such that (6.8) and (6.9) are morphisms of conflations.

By definition, \(S_I\) is a morphism which gives a morphism of conflations as follows.

\[
\begin{align*}
\Omega S_X & \to X \xrightarrow{\alpha_X} I_X \xrightarrow{\beta_X} S_X \xrightarrow{\gamma_X} \Sigma X, \\
\Omega S_M & \to M \xrightarrow{\alpha_M} I_M \xrightarrow{\beta_M} S_M \xrightarrow{\gamma_M} \Sigma M.
\end{align*}
\]
Composing with (6.7), we obtain a morphism of conflations

\[
\begin{array}{cccccc}
\Omega Z & \longrightarrow & X & \overset{f}{\longrightarrow} & Y & \overset{g}{\longrightarrow} & Z \\
\circ & \circ & \circ & \circ & \circ & \circ & \circ \\
\Omega S & \longrightarrow & M & \overset{\alpha}{\longrightarrow} & I & \overset{\beta}{\longrightarrow} & S & \overset{\gamma}{\longrightarrow} & \Sigma M \\
\end{array}
\]

Thus, comparing with (6.8), we obtain \(s = S\ell \circ q \) by Lemma 6.3. Similarly for \(s' \).

By the above arguments, we obtain the following.

Theorem 6.17. Let \(C \) be a pseudo-triangulated category satisfying Condition 6.1, and let \(Z \subseteq C \) be an extension-closed subcategory, and let \(D \subseteq Z \) be a full additive replete subcategory closed under finite direct summands in \(Z \). If \((C, Z, D)\) is Frobenius, then \(Z/\mathcal{I}D \) becomes a triangulated category.

In particular, if \(Z \) is Frobenius, then the stable category \(Z/\mathcal{I} \) becomes a triangulated category.

7. Possibility of further generalizations

In [B], for any triangulated category \(C \), Beligiannis showed that if we are given a proper class of triangles \(\mathcal{E} \) on \(C \) satisfying some conditions similar to the Frobenius condition discussed in section 5, then \(C/P(\mathcal{E}) \) becomes triangulated (Theorem 7.2 in [B]). Here, \(P(\mathcal{E}) \) is the subcategory of ‘projectives’, defined in a similar, but different manner (Definition 4.1 in [B]). With that definition, \(P(\mathcal{E}) \) becomes closed under \(\Sigma \), but this conflicts with Iyama-Yoshino’s construction, in which the factoring category \(D \) satisfies \(C(D, \Sigma D) = 0 \). We wonder if there exists a general construction unifying the construction in [B] and that in section 6.

We also remark that there is another very general construction of a triangulated stable category. In [BM], Beligiannis and Marmaridis constructed a left triangulated category (in the sense of [B] or [BM]) from a pair \((C, \mathcal{X})\) of an additive category \(C \) and a contravariantly finite subcategory \(\mathcal{X} \) assuming some existence condition on kernels (Theorem 2.12 in [BM]). Therefore if \(\mathcal{X} \) is functorially finite and satisfies some nice properties, it is expected that this resulting category becomes triangulated. In fact, Happel’s construction is one of these cases (Remark 2.14 in [BM]). Although this existence condition is not satisfied by a triangulated category \(C \) unless we replace it by some ‘pseudo’ one, we hope some unifying construction will be possible.

References

[B] Beligiannis, A: *Relative homological algebra and purity in triangulated categories*. J. Algebra 227 (2000), no. 1, 268–361.

[BM] Beligiannis, A; Marmaridis, N: *Grothendieck groups arising from contravariantly finite subcategories*. Comm. Algebra 24 (1996), no. 14, 4415–4438.

[BR] Beligiannis, A; Reiten, I: *Homological and homotopical aspects of torsion theories*. (English summary) Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207 pp.

[H] Happel, D: *Triangulated categories in the representation theory of finite-dimensional algebras*. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208 pp.
[IY] Iyama, O; Yoshino, Y: *Mutation in triangulated categories and rigid Cohen-Macaulay modules*. (English summary) Invent. Math. **172** (2008), no. 1, 117–168.

Graduate School of Mathematical Sciences, The University of Tokyo 3-8-1 Komaba, Meguro, Tokyo, 153-8914 Japan

E-mail address, Hiroyuki NAKAOKA: deutache@ms.u-tokyo.ac.jp