Nakayama automorphism of quasi-commutative skew PBW extensions over AS-regular algebras

Héctor Suárez∗†
Oswaldo Lezama ‡
Armando Reyes §

Abstract

Graded quasi-commutative skew PBW extensions are isomorphic to graded iterated Ore extensions of endomorphism type, whence graded quasi-commutative skew PBW extensions with coefficients in AS-regular algebras are skew Calabi-Yau and the Nakayama automorphism exists for these extensions. With this in mind, in this paper we give a description of Nakayama automorphism for these non-commutative algebras using the Nakayama automorphism of the ring of the coefficients.

Key words and phrases. Quasi-commutative skew PBW extensions, AS-regular algebras, Nakayama automorphism.

2010 Mathematics Subject Classification. 16W50, 16S37, 16W70, 16S36, 13N10.

1 Introduction

Skew PBW extensions and quasi-commutative skew PBW extensions were defined in [7]. In [26] and [1], respectively, the automorphisms and derivations of skew PBW extensions were studied. Another properties of skew PBW extensions have been studied (see for example [1], [4], [9], [10], [12], [13], [14], [15], [16], [17], [18], [19], [21], [22], [23], [24] and [25]). It is known that quasi-commutative skew PBW extensions are isomorphic to iterated Ore extensions of endomorphism type ([10], Theorem 2.3). For \mathbb{K} a field, in [21], the first author defined graded skew PBW extensions and showed that if R is a finite presented Koszul \mathbb{K}-algebra, then every graded skew PBW extension of R is Koszul (note that every graded iterated Ore extension of an Artin-Schelter Regular algebra, AS-regular for short, is AS-regular, see [11]). Since every graded quasi-commutative skew PBW extension is isomorphic to a graded iterated Ore extension of endomorphism type (see Proposition 2.11), we have that if A is a graded quasi-commutative skew PBW extension of an AS-regular algebra R, then A is AS-regular (see

∗Seminario de Álgebra Constructiva - SAC2, Universidad Nacional de Colombia - Sede Bogotá.
†Escuela de Matemáticas y Estadística, Universidad Pedagógica y Tecnológica de Colombia - Sede Tunja.
‡Seminario de Álgebra Constructiva - SAC2, Departamento de Matemáticas, Universidad Nacional de Colombia - Sede Bogotá.
§Seminario de Álgebra Constructiva - SAC2, Departamento de Matemáticas, Universidad Nacional de Colombia - Sede Bogotá.
Proposition 3.1. Now, for B a connected algebra, B is AS-regular if and only if B is skew Calabi-Yau (see [20]), and hence the Nakayama automorphism of AS-regular algebras exists. Therefore, if R is an AS-regular algebra with Nakayama automorphism ν, then the Nakayama automorphism μ of a graded quasi-commutative skew PBW extension A exists, and we compute it using the Nakayama automorphism ν together some especial automorphisms of R and A (see Theorem 4.11). Note that a skew Calabi-Yau algebra is Calabi-Yau if and only if its Nakayama automorphism is inner.

2 Graded skew PBW extensions

Definition 2.1 ([7], Definition 1). Let R and A be rings. We say that A is a *skew PBW extension over R*, if the following conditions hold:

(i) $R \subseteq A$;

(ii) there exist elements $x_1, \ldots, x_n \in A$ such that A is a left free R-module, with basis the basic elements $\text{Mon}(A) := \{x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n\}$. In this case, it is said also that A is a left polynomial ring over R with respect to $\{x_1, \ldots, x_n\}$ and $\text{Mon}(A)$ is the set of standard monomials of A. Moreover, $x_1^{n_1} \cdots x_n^{n_n} := 1 \in \text{Mon}(A)$.

(iii) For each $1 \leq i \leq n$ and any $r \in R \setminus \{0\}$, there exists an element $c_{i,r} \in R \setminus \{0\}$ such that $x_i r - c_{i,r} x_i \in R$.

(iv) For any natural elements $1 \leq i, j \leq n$, there exists $c_{i,j} \in R \setminus \{0\}$ such that

$$x_j x_i - c_{i,j} x_i x_j \in R + Rx_1 + \cdots + Rx_n.$$ \hfill (2.1)

Under these conditions, we will write $A := \sigma(R)\langle x_1, \ldots, x_n \rangle$.

Remark 2.2. Let $A = \sigma(R)\langle x_1, \ldots, x_n \rangle$ be a skew PBW extension with endomorphisms σ_i, $1 \leq i \leq n$, as in the Proposition 2.3. We establish the following notation (see [7], Definition 6): $\alpha := (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$; $\sigma^n := (\sigma_1^{\alpha_1} \cdots \sigma_n^{\alpha_n})$; $|\alpha| := \alpha_1 + \cdots + \alpha_n$; if $\beta := (\beta_1, \ldots, \beta_n) \in \mathbb{N}^n$, then $\alpha + \beta := (\alpha_1 + \beta_1, \ldots, \alpha_n + \beta_n)$; for $X = x^\alpha = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$, $\exp(X) := \alpha$ and $\deg(X) := |\alpha|$.

We have the following properties whose proofs can be found in [7], Remark 2 and Theorem 7.

(i) Since $\text{Mon}(A)$ is a left R-basis of A, the elements $c_{i,r}$ and $c_{i,j}$ in Definition 2.1 are unique. In Definition 2.1 (iv), $c_{i,i} = 1$. This follows from $x_i^2 - c_{i,i} x_i^2 = s_0 + s_1 x_1 + \cdots + s_n x_n$, with $s_j \in R$, which implies $1 - c_{i,i} = 0 = s_j$, for $0 \leq j \leq n$.

(ii) Each element $f \in A \setminus \{0\}$ has a unique representation as $f = c_1 X_1 + \cdots + c_t X_t$, with $c_i \in R \setminus \{0\}$ and $X_i \in \text{Mon}(A)$, for $1 \leq i \leq t$.

(iii) For every $x^\alpha \in \text{Mon}(A)$ and every $0 \neq r \in R$, there exist unique elements $r_\alpha := \sigma^\alpha(r) \in R \setminus \{0\}$ and $p_{\alpha,r} \in A$ such that $x^\alpha r = r_\alpha x^\alpha + p_{\alpha,r}$, where $p_{\alpha,r} = 0$ or $\deg(p_{\alpha,r}) < |\alpha|$, if $p_{\alpha,r} \neq 0$.

(iv) For every x^α, $x^\beta \in \text{Mon}(A)$ there exist unique elements $c_{\alpha,\beta} \in R$ and $p_{\alpha,\beta} \in A$ such that $x^{\alpha} x^{\beta} = c_{\alpha,\beta} x^{\alpha + \beta} + p_{\alpha,\beta}$ where $c_{\alpha,\beta}$ is left invertible, $p_{\alpha,\beta} = 0$ or $\deg(p_{\alpha,\beta}) < |\alpha + \beta|$, if $p_{\alpha,\beta} \neq 0$.

Proposition 2.3 ([7], Proposition 3). Let A be a skew PBW extension of R. For each $1 \leq i \leq n$, there exist an injective endomorphism $\sigma_i : R \to R$ and a σ_i-derivation $\delta_i : R \to R$ such that $x_i r = \sigma_i(r)x_i + \delta_i(r)$, $r \in R$.

The notation $\sigma(R)(x_1, \ldots, x_n)$ and the name of the skew PBW extensions are due to the Proposition 2.3. In the following definition we recall some sub-classes of skew PBW extensions. Examples of these sub-classes of algebras can be found in [25].

Definition 2.4. Let A be a skew PBW extension of R, $\Sigma := \{\sigma_1, \ldots, \sigma_n\}$ and $\Delta := \{\delta_1, \ldots, \delta_n\}$, where σ_i and δ_i $(1 \leq i \leq n)$ are as in Proposition 2.3

(a) A is called pre-commutative, if the conditions (iv) in Definition 2.1 are replaced by:

For any $1 \leq i, j \leq n$, there exists $c_{i,j} \in R \setminus \{0\}$ such that $x_j x_i - c_{i,j} x_i x_j \in R x_1 + \cdots + R x_n$.

(b) A is called quasi-commutative, if the conditions (iii) and (iv) in Definition 2.1 are replaced by

(iii') for each $1 \leq i \leq n$ and all $r \in R \setminus \{0\}$, there exists $c_{i,r} \in R \setminus \{0\}$ such that

$$x_i r = c_{i,r} x_i,$$

(2.2)

(iv') for any $1 \leq i, j \leq n$, there exists $c_{i,j} \in R \setminus \{0\}$ such that

$$x_j x_i = c_{i,j} x_i x_j.$$

(2.3)

(c) A is called bijective, if σ_i is bijective for each $\sigma_i \in \Sigma$, and $c_{i,j}$ is invertible for any $1 \leq i < j \leq n$.

(d) If $\sigma_i = id_R$, for every $\sigma_i \in \Sigma$, we say that A is a skew PBW extension of derivation type.

(e) If $\delta_i = 0$, for every $\delta_i \in \Delta$, we say that A is a skew PBW extension of endomorphism type.

(f) Any element r of R such that $\sigma_i(r) = r$ and $\delta_i(r) = 0$ for all $1 \leq i \leq n$, will be called a constant. A is called constant if every element of R is constant.

(g) A is called semi-commutative if A is quasi-commutative and constant.

As we said in the Introduction, the letter K denotes a field, and if it is not said otherwise, every algebra is a K-algebra. The symbol \mathbb{N} will be used to denote the set of natural numbers including zero.

The next proposition was proved by the first author in [21].

Proposition 2.5. Let $R = \bigoplus_{m \geq 0} R_m$ be a \mathbb{N}-graded algebra and let $A = \sigma(R)(x_1, \ldots, x_n)$ be a bijective skew PBW extension of R satisfying the following two conditions:

(i) σ_i is a graded ring homomorphism and $\delta_i : R(-1) \to R$ is a graded σ_i-derivation for all $1 \leq i \leq n$, where σ_i and δ_i are as in Proposition 2.3.

(ii) $x_j x_i - c_{i,j} x_i x_j \in R_2 + R_1 x_1 + \cdots + R_1 x_n$, as in (2.1) and $c_{i,j} \in R_0$.

3
For $p \geq 0$, let A_p the \mathbb{K}-space generated by the set
$$\left\{ r_t x^\alpha \mid t + |\alpha| = p, \ r_t \in R_t \text{ and } x^\alpha \in \text{Mon}(A) \right\}.$$

Then A is a \mathbb{N}-graded algebra with graduation $A = \bigoplus_{p \geq 0} A_p$.

Proof. It is clear that $1 = x^0_1 \cdots x^0_n \in A_0$. Let $f \in A \setminus \{0\}$, then by Remark 2.2-(ii), f has a unique representation as $f = r_1 X_1 + \cdots + r_s X_s$, with $r_i \in R \setminus \{0\}$ and $X_i := x^\alpha_1 \cdots x^\alpha_n \in \text{Mon}(A)$ for $1 \leq i \leq s$. Let $r_t = r_{t_1} + \cdots + r_{t_m}$ with the unique representation of r_t in homogeneous elements of R. Then $f = (r_{t_1} \cdots + r_{t_{q+1}}) x_{ij}^{\sigma_1} \cdots x_{ij}^{\sigma_n} + \cdots + (r_{s_{q+1}} \cdots + r_{s_q}) x_{ij}^{\sigma_1} \cdots x_{ij}^{\sigma_n} = r_{t_1} x_{ij}^{\sigma_1} \cdots x_{ij}^{\sigma_n} + \cdots + r_{t_{q+1}} x_{ij}^{\sigma_1} \cdots x_{ij}^{\sigma_n} + \cdots + r_{s_q} x_{ij}^{\sigma_1} \cdots x_{ij}^{\sigma_n}$ is the unique representation of f in homogeneous elements of A. Therefore A is a direct sum of the family $\{A_p\}_{p \geq 0}$ of subspaces of A.

Now, let $x \in A_p A_q$. Without loss of generality we can assume that $x = (r_{t_1} x^\alpha)(r_{t_2} x^\beta)$ with $r_t \in R_t, r_s \in R_s, x^\alpha, x^\beta \in \text{Mon}(A)$, $t + |\alpha| = p$ and $s + |\beta| = q$. By Remark 2.2-(iii), we have that for r_s and x^α there exist unique elements $\sigma^\alpha(r_s) \in R \setminus \{0\}$ and $p_{a, \beta} \in A$ such that
$$x = r_t r_{t_1} x^\alpha + p_{a, \beta} x^\beta = r_t r_{t_1} x^\alpha + r_t p_{a, \beta} x^\beta,$$
where $p_{a, \beta} = 0$ or $\deg(p_{a, \beta}) < |\alpha|$ if $p_{a, \beta} \neq 0$. Now, by Remark 2.2-(iv), we have that for x^α, x^β there exist unique elements $c_{a, \beta} \in R$ and $p_{a, \beta} \in A$ such that
$$x = r_t r_{t_1} c_{a, \beta} x^\alpha + p_{a, \beta} x^\beta = r_t r_{t_1} c_{a, \beta} x^\alpha + r_t p_{a, \beta} x^\beta,$$
where $c_{a, \beta}$ is left invertible, $p_{a, \beta} = 0$ or $\deg(p_{a, \beta}) < |\alpha + \beta|$ if $p_{a, \beta} \neq 0$. We note that:

1. Since σ_i is graded for $1 \leq i \leq n$, then σ^α_i is graded and therefore σ^α is graded. Then
$$r_{t_1} := \sigma^\alpha(r_s) \in R_s$$
and $\sigma^\alpha_i(r_s) \in R_s + \alpha_i$, for $1 \leq i \leq n$ and $\alpha_i \geq 0$.

2. If $W[i \sigma^\alpha_i - \nu]$ represents the sum of the possible words that can be constructed with the alphabet composed of ν times the symbol δ_i and $\alpha_i - \nu$ times the symbol σ_i, then
$$x^\alpha_i r_s = \sum_{\nu=0}^{\alpha_i} W[i \sigma^\alpha_i - \nu](r_s) x^\alpha_i - \nu \in A_{s + \alpha_i},$$
since each summand in the above expression is in $A_{s + \alpha_i}$.

3. From condition (ii), we have that for $1 \leq i < j < k \leq n$, $x x_j x_i = c x_j x_i + r_0 x_j + r_1 x_j x_i + \cdots + r_{n_i} x_j x_i$. Then, for $1 \leq i < j < k \leq n$, we have that
$$x_k x_j x_i = x_k (c_{ij} x_i x_j + r_0 x_j + r_1 x_j x_i + \cdots + r_{n_j} x_i)$$
$$= (\sigma_k(c_{ij}) x_k x_j + \delta_k(c_{ij}) x_j x_i + (\sigma_k(r_0) x_j + \delta_k(r_0))) + (\sigma_k(r_1) x_k x_j + \delta_k(r_1) x_j x_i) + \cdots + (\sigma_k(r_{n_j}) x_k x_i + \delta_k(r_{n_j}) x_i).$$
are graded skew PBW extensions. If we assume that Proposition 2.7.

\[x \in \text{Mon}(A) \] and \(rx \in A_3 \), we have that \(x_k x_j x_i \in A_3 \). Following this procedure we get in general that \(x_i, x_{i_2} \cdots x_{i_m} \in A_m \) for \(1 \leq i_k \leq n, 1 \leq k \leq m, m \geq 1 \).

4. In a similar way and following the proof of Theorem 7, in [7], we obtain that \(p_{0, r} \in A_{[\alpha]+s} \) and \(p_{0, \beta} \in A_{[\alpha]+[\beta]} \). Then \(rt_r s_n c_{r, \beta} x_{\alpha+\beta} \in A_{t+s+[\alpha]+[\beta]} \), \(r_t r_s p_{0, \beta} \in A_{t+s+[\alpha]+[\beta]} \) and \(r_t p_{0, r} x_{\beta} \in A_{t+[\alpha]+s+[\beta]} \), i.e., \(x \in A_{p+q} \).

\[\square \]

Definition 2.6 ([21], Definition 2.6). Let \(A = \sigma(R)\langle x_1, \ldots, x_n \rangle \) be a bijective skew PBW extension of a \(\mathbb{N} \)-graded algebra \(R = \bigoplus_{n \geq 0} R_n \). We say that \(A \) is a **graded skew PBW extension** if \(A \) satisfies the conditions (i) and (ii) in Proposition 2.5.

Note that the family of graded iterated Ore extensions is strictly contained in the family of graded skew PBW extensions (see [21], Remark 2.11).

Proposition 2.7. Quasi-commutative skew PBW extensions with the trivial graduation of \(R \) are graded skew PBW extensions. If we assume that \(R \) has a different graduation to the trivial graduation, then \(A \) is a graded skew PBW extension if and only if \(\sigma_i \) is graded and \(c_{i, j} \in R_0 \), for \(1 \leq i, j \leq n \).

Proof. Let \(R = R_0 \) and \(r \in R = R_0 \). From (2.2) we have that \(x_i r = c_{i, r} x_i = \sigma_i(r)x_i \). So, \(\sigma_i(r) = c_{i, r} \in R = R_0 \) and \(\delta_i = 0 \), for \(1 \leq i \leq n \). Therefore \(\sigma_i \) is a graded ring homomorphism and \(\delta_i : R(-1) \to R \) is a graded \(\sigma_i \)-derivation for all \(1 \leq i \leq n \). From (2.3) we have that \(x_j x_i - c_{i, j} x_i x_j = 0 \in R_2 + R_1 x_1 + \cdots + R_1 x_n \) and \(c_{i, j} \in R = R_0 \). If \(R \) has a nontrivial graduation, then the result is obtained from de relations (2.2), (2.3) and Definition 2.6. \(\square \)

Examples 2.8. We present some examples of graded quasi-commutative skew PBW extensions.

1. The **Sklyanin algebra** is the algebra \(S = \mathbb{K}\langle x, y, z \rangle / \langle ayx + bxy + cz^2, axz + bzx + cy^2, azy + byz + cz^2 \rangle \), where \(a, b, c \in \mathbb{K} \). If \(c \neq 0 \) then \(S \) is not a skew PBW extension. If \(c = 0 \) and \(a, b \neq 0 \) then in \(S \): \(xy = \frac{b}{a} xy \); \(zx = \frac{c}{b} zx \) and \(zy = \frac{b}{a} yz \), therefore \(S \cong \sigma(\mathbb{K})\langle x, y, z \rangle \) is a skew PBW extension of \(\mathbb{K} \), and we call this algebra a **particular Sklyanin algebra**. The particular Sklyanin algebra is graded quasi-commutative skew PBW extension of \(\mathbb{K} \).
2. Let \(h \in \mathbb{K} \). The algebra of shift operators is defined by \(S_h := \mathbb{K}[t][x_h; \sigma_h] \), where \(\sigma_h(p(t)) := p(t - h) \). Notice that \(x_h t = (t - h)x_h \) and for \(p(t) \in \mathbb{K}[t] \) we have \(x_h p(t) = p(t - ih)x_h \). Thus, \(S_h \cong \sigma(\mathbb{K}[t])[x_h] \) is a graded quasi-commutative skew PBW extension of \(\mathbb{K}[t] \), where \(\mathbb{K}[t] \) is endowed with trivial graduation.

3. For a fixed \(q \in \mathbb{K} - \{0\} \), the algebra of linear partial q-dilation operators \(H \), with polynomial coefficients, is the free algebra \(\mathbb{K}(t_1, \ldots, t_n, H_1^{(q)}, \ldots, H_m^{(q)}) \), \(n \geq m \), subject to the relations:

\[
\begin{align*}
 t_j t_i &= t_i t_j, \quad 1 \leq i < j \leq n; \\
 H_i^{(q)} t_i &= q t_i H_i^{(q)}, \quad 1 \leq i \leq m; \\
 H_j^{(q)} t_i &= t_i H_j^{(q)}, \quad i \neq j; \\
 H_j^{(q)} H_i^{(q)} &= H_i^{(q)} H_j^{(q)}, \quad 1 \leq i < j \leq m.
\end{align*}
\]

The algebra \(H \) is a graded quasi-commutative skew PBW extension of \(\mathbb{K}[t_1, \ldots, t_n] \), where \(\mathbb{K}[t_1, \ldots, t_n] \) is endowed with usual graduation.

4. The quantum polynomial ring \(\mathcal{O}_n(\lambda_{ji}) \) is the algebra generated by \(x_1, \ldots, x_n \) subject to the relations: \(x_j x_i = \lambda_{ji} x_i x_j \), \(1 \leq i < j \leq n \), \(\lambda_{ji} \in \mathbb{K} \setminus \{0\} \). Thus \(\mathcal{O}_n(\lambda_{ji}) \cong \sigma(\mathbb{K})\langle x_1, \ldots, x_n \rangle \cong \sigma(\mathbb{K}[x_1])\langle x_2, \ldots, x_n \rangle \).

5. Let \(n \geq 1 \) and \(q \) be a matrix \((q_{ij})_{n \times n}\) with entries in a field \(\mathbb{K} \) where \(q_{ii} = 1 \) and \(q_{ij}q_{ji} = 1 \) for all \(1 \leq i, j \leq n \). Then multi-parameter quantum affine n-space \(\mathcal{O}_q(\mathbb{K}^n) \) is defined to be \(\mathbb{K} \)-algebra generated by \(x_1, \ldots, x_n \) with the relations \(x_j x_i = q_{ij} x_i x_j \), for all \(1 \leq i, j \leq n \).

Examples of graded skew PBW extensions over commutative polynomial rings \(R \) which are not quasi-commutative, and where \(R \) has the usual graduation, can be found in [21].

Remark 2.9 ([21], Remark 2.10). Let \(A = \sigma(R)\langle x_1, \ldots, x_n \rangle \) be a graded skew PBW extension. Then we have the following properties:

(i) \(A \) is a \(\mathbb{N} \)-graded algebra and \(A_0 = R_0 \).

(ii) \(R \) is connected if and only if \(A \) is connected.

(iii) If \(R \) is finitely generated then \(A \) is finitely generated.

(iv) For (i), (ii) and (iii) above, we have that if \(R \) is a finitely graded algebra then \(A \) is a finitely graded algebra.

(v) If \(R \) is locally finite, then \(A \) as \(\mathbb{K} \)-algebra is a locally finite.

(vi) \(A \) as \(R \)-module is locally finite.

(vii) If \(A \) is quasi-commutative and \(R \) is concentrate in degree 0, then \(A_0 = R \).

(viii) If \(R \) is a homogeneous quadratic algebra then \(A \) is a homogeneous quadratic algebra.

(ix) If \(R \) is finitely presented then \(A \) is finitely presented.
Proposition 2.10 ([10], Theorem 2.3). Let A be a quasi-commutative skew PBW extension of a ring R.

(i) A is isomorphic to an iterated Ore extension of endomorphism type $R[z_1; \theta_1] \cdots [z_n; \theta_n]$, where $\theta_1 = \sigma_1$; $\theta_j : R[z_1; \theta_1] \cdots [z_{j-1}; \theta_{j-1}] \to R[z_1; \theta_1] \cdots [z_{j-1}; \theta_{j-1}]$ is such that $\theta_j(z_i) = c_{i,j}z_i$ $(c_{i,j} \in R$ as in (2.1)), $1 \leq i < j \leq n$ and $\theta_i(r) = \sigma_i(r)$, for $r \in R$.

(ii) If A is bijective, then each θ_i in (i) is bijective.

The following proposition establishes the relation between graded skew PBW extensions and graded iterated Ore extensions.

Proposition 2.11. Let $A = \sigma(R)\langle x_1, \ldots, x_n \rangle$ be a graded quasi-commutative skew PBW extension of R. Then A is isomorphic to a graded iterated Ore extension of endomorphism type.

Proof. By Proposition 2.10-(i) we have that A is isomorphic to an iterated Ore extension of endomorphism type $R[z_1; \theta_1] \cdots [z_n; \theta_n]$, where $\theta_1 = \sigma_1$,

$$\theta_j : R[z_1; \theta_1] \cdots [z_{j-1}; \theta_{j-1}] \to R[z_1; \theta_1] \cdots [z_{j-1}; \theta_{j-1}]$$

is such that $\theta_j(z_i) = c_{i,j}z_i$ $(c_{i,j} \in R$ as in (2.1)), $1 \leq i < j \leq n$ and $\theta_i(r) = \sigma_i(r)$, for $r \in R$. Since A is bijective then by Proposition 2.10-(ii) θ_i is bijective. Since A is graded then σ_i is graded and $c_{i,j} \in R_0$. Moreover, since $\theta_j(r) = \sigma_i(r)$, then θ_i is a graded automorphism for each i. Note that z_i has graded 1 in A, for all i. Thus, $A \cong R[z_1; \theta_1] \cdots [z_n; \theta_n]$ is a graded iterated Ore extension. \qed

3 AS-Regular and Koszul algebras

Let $B = \mathbb{K} \oplus B_1 \oplus B_2 \oplus \cdots$ be a finitely presented graded algebra over \mathbb{K}. The algebra B will be called AS-regular, if B has the following properties:

(i) B has finite global dimension d: every graded B-module has projective dimension $\leq d$.

(ii) B has finite GK-dimension.

(iii) B is Gorenstein, meaning that $\text{Ext}^i_B(\mathbb{K}, B) = 0$ if $i \neq d$, and $\text{Ext}^d_B(\mathbb{K}, B) \cong \mathbb{K}$

Proposition 3.1 ([23], Theorem 17). Let $A = \sigma(R)\langle x_1, \ldots, x_n \rangle$ be a graded quasi-commutative skew PBW extension. If R is AS-regular, then A is AS-regular.

Let B be a finitely graded algebra and let M, N be \mathbb{Z}-graded B-modules. Then there is a natural inclusion $\underline{\text{Hom}}_B(M, N) \to \text{Hom}_B(M, N)$. If M is an B-module finitely generated, then $\underline{\text{Hom}}_B(M, N) \cong \text{Hom}_B(M, N)$ and $\underline{\text{Ext}}^i_B(M, N) \cong \underline{\text{Ext}}^i_B(M, N)$. A graded algebra B is quadratic if $B = T(V)/\langle R \rangle$ where V is a finite dimensional \mathbb{K}-vector space concentrated in degree 1, $T(V)$ is the tensor algebra on V, with the induced grading and $\langle R \rangle$ is the ideal generated by a subspace $R \subseteq V \otimes V$. The dual of such a quadratic algebra is $B^! := T(V^*)/\langle R^! \rangle$, where $R^! = \{ \lambda \in V^* \otimes V^* \mid \lambda(r) = 0 \text{ for all } r \in R \}$. We identify $(V \otimes V)^*$ with $V^* \otimes V^*$ by defining $(\alpha \otimes \beta)(u \otimes v) := \alpha(u)\beta(v)$ for $\alpha, \beta \in V^*$ and $u, v \in V$.

7
Let $B = \mathbb{K} \oplus B_1 \oplus B_2 \oplus \cdots$ be a locally finite graded algebra and $E(B) = \bigoplus_{s,p} E^{s,p}(B) = \bigoplus_{s,p} \text{Ext}^{{s,p}}_{B}(\mathbb{K}, \mathbb{K})$ the associated bigraded Yoneda algebra, where s is the cohomology degree and $-p$ is the internal degree inherited from the grading on B. Let $E^s(B) = \bigoplus_p E^{s,p}(B)$. B is said to be Koszul if the following equivalent conditions hold:

(i) $\text{Ext}^{s,p}_{B}(\mathbb{K}, \mathbb{K}) = 0$ for $s \neq p$;

(ii) B is one-generated and the algebra $\text{Ext}^*_{B}(\mathbb{K}, \mathbb{K})$ is generated by $\text{Ext}^1_{B}(\mathbb{K}, \mathbb{K})$, i.e., $E(B)$ is generated in the first cohomological degree;

(iii) The module \mathbb{K} admits a linear free resolution, i.e., a resolution by free B-modules

$$\cdots \to P_2 \to P_1 \to P_0 \to \mathbb{K} \to 0,$$

such that P_i is generated in degree i.

(iv) $\text{Ext}^*_{B}(\mathbb{K}, \mathbb{K}) \cong B^!$ as graded \mathbb{K}-algebras.

The following theorem was proved by the first author in [21].

Theorem 3.2. Let $A = \sigma(R)(x_1, \ldots, x_n)$ be a graded skew PBW extension.

(i) The graded iterated Ore extension $A := R[x_1; \sigma_1, \delta_1] \cdots [x_n; \sigma_n, \delta_n]$ is Koszul if and only if R is Koszul ([21], Proposition 3.1).

(ii) If A is quasi-commutative, then R is Koszul if and only if A is Koszul ([21], Proposition 3.3).

(iii) Let R be a finitely presented algebra. If R is a PBW algebra then A is Koszul algebra ([21], Corollary 4.4).

(iv) If R is a finitely presented Koszul algebra, then A is Koszul ([21], Theorem 5.5).

4 Skew Calabi-Yau algebras and Nakayama automorphism

The enveloping algebra of a ring B is defined as $B^e := B \otimes B^{op}$. We characterize the enveloping algebra of a skew PBW extension in [16]. If M is an B-bimodule, then M is an B^e module with the action given by $(a \otimes b) \cdot m = amb$, for all $m \in M$, $a, b \in B$. Given automorphisms $\nu, \tau \in \text{Aut}(B)$, we can define the twisted B^e-module $\nu^* M^\tau$ with the rule $(a \otimes b) \cdot m = \nu(a)m\tau(b)$, for all $m \in M$, $a, b \in B$. When one or the other of ν, τ is the identity map, we shall simply omit it, writing for example M^ν for $1^* M^\nu$.

Proposition 4.1 ([6], Lemma 2.1). Let ν, σ and ϕ be automorphisms of B. Then

(i) The map $\nu^* B^\sigma \to \phi^* B^{\sigma\phi}$, $a \mapsto \phi(a)$ is an isomorphism of B^e-modules. In particular,

$$\nu^* B^\sigma \cong B^{\nu^{-1}\sigma} \cong \sigma^{-1}\nu B$$

and $B^\sigma \cong \sigma^{-1} B$.

(ii) $B \cong B^\sigma$ as B^e-modules if and only if σ is an inner automorphism.
An algebra B is said to be homologically smooth, if as an B^e-module, B has a finitely generated projective resolution of finite length. The length of this resolution is known as the Hochschild dimension of B.

Definition 4.2. A graded algebra B is said to be skew Calabi-Yau of dimension d if

(i) B is homologically smooth.

(ii) There exists an algebra automorphism ν of B such that

$$\text{Ext}^i_{B^e}(B, B^e) \cong \begin{cases} 0, & i \neq d; \\ B^e(l), & i = d. \end{cases}$$

as B^e-modules, for some integer l. If ν is the identity, then B is said to be Calabi-Yau.

Sometimes condition (ii) is called the skew Calabi-Yau condition.

The skew Calabi-Yau condition appears to have first been explicitly defined in [3] under the term rigid Gorenstein. The automorphism ν is called the Nakayama automorphism of B, and is unique up to inner automorphisms of B. As a consequence of Proposition 4.1, we have that a skew Calabi-Yau algebra is Calabi-Yau if and only if its Nakayama automorphism is inner. If B is a Calabi-Yau algebra of dimension d, then the Hochschild dimension of B (that is, the projective dimension of A as an A-bimodule) is d (see [2], Proposition 2.2). Moreover, the Hochschild dimension of B coincides with the global dimension of B (see [2], Remark 2.8).

Proposition 4.3. Let B be a skew Calabi-Yau algebra with Nakayama automorphism ν. Then ν is unique up to an inner automorphism, i.e., the Nakayama automorphism is determined up to multiplication by an inner automorphism of B.

Proof. Let B be a skew Calabi-Yau algebra with Nakayama automorphism ν and let μ another Nakayama automorphism, i.e., $\text{Ext}^d_{B^e}(B, B^e) \cong B^e$, then $\text{Ext}^d_{B^e}(B, B^e) \cong B^e \cong B^e$ as B^e-modules. By Proposition 4.1-(i), $B \cong B^\nu^{-1}\mu$; by Proposition 4.1-(ii), $\nu^{-1}\mu$ is an inner automorphism of B. Let $\nu^{-1}\mu = \sigma$ where σ is an inner automorphism of B, so $\mu = \nu\sigma$ for some inner automorphism σ of B. \qed

Proposition 4.4 ([20], Lemma 1.2). Let B be a connected graded algebra. Then B is skew Calabi-Yau if and only if it is AS-regular.

Proposition 4.5. Let R be a Koszul Artin-Schelter regular algebra of global dimension d with Nakayama automorphism ν.

(i) ([8], Theorem 3.3) The skew polynomial algebra $B = R[x; \nu]$ is a Calabi-Yau algebra of dimension $d + 1$.

(ii) ([28], Remark 3.13) There exists a unique skew polynomial extension B such that B is Calabi-Yau.

(iii) ([28], Theorem 3.16) If σ is a graded algebra automorphism of R, then $B = R[x; \sigma]$ is Calabi-Yau if and only if $\sigma = \nu$.

9
The following theorem can also be found in [23].

Theorem 4.6. Every graded quasi-commutative skew PBW extension \(A = \sigma(R)(x_1, \ldots, x_n) \) of a finitely presented skew Calabi-Yau algebra \(R \) of global dimension \(d \), is skew Calabi-Yau of global dimension \(d + n \). Moreover, if \(R \) is Koszul and \(\theta_i \) is the Nakayama automorphism of \(R[x_1; \theta_1] \cdots [x_{i-1}; \theta_{i-1}] \) for \(1 \leq i \leq n \), then \(A \) is Calabi-Yau of dimension \(d + n \) (\(\theta_i \) as in Proposition 2.11-(ii), \(x_0 = 1 \)).

Proof. Since \(R \) is connected and skew Calabi-Yau, then by Proposition 4.4 we know that \(R \) is Artin-Schelter regular. From Proposition 3.1 we have that \(A \) is Artin-Schelter regular and, in particular, connected. Thus, using again Proposition 4.4, we have that \(A \) is a skew Calabi-Yau algebra. By the proof of Proposition 3.1 we have that the global dimension of \(A \) is \(d + n \).

For the second part, we know that graded Ore extensions of Koszul algebras are Koszul algebras and, as a particular case of Proposition 3.1, we have that a graded Ore extension of an Artin-Schelter regular algebra is an Artin-Schelter regular algebra. Now, by Proposition 2.11-(ii) we have that \(A \) is isomorphic to a graded iterated Ore extension \(R[x_1; \theta_1] \cdots [x_n; \theta_n] \).

It is known that if \(A \) is a Calabi-Yau algebra of dimension \(d \), then the global dimension of \(A \) is \(d \) (see for example [2], Remark 2.8). Then, using Proposition 4.5-(i) and applying induction on \(n \) we obtain that \(A \) is a Calabi-Yau algebra of dimension \(d + n \). \(\Box \)

Corollary 4.7. Let \(R \) be an Artin-Schelter regular algebra of global dimension \(d \). Then every graded quasi-commutative skew PBW extension \(A = \sigma(R)(x_1, \ldots, x_n) \) is skew Calabi-Yau of global dimension \(d + n \).

There are two notions of Nakayama automorphisms: one for skew Calabi-Yau algebras and one for Frobenius algebras. In this paper, we focus ourselves on skew Calabi-Yau algebras, or equivalently, AS-regular algebras in the connected graded case (Proposition 4.4). In this case, the two notions of Nakayama automorphisms will coincide in the sense of the Koszul duality (see [28], Proposition 1.4). Let \(B = T(V)/(R) \) be a Koszul algebra. For a graded automorphism \(\sigma \) of \(B \), we define a map \(\sigma^*: V^* \rightarrow V^* \) by \(\sigma^*(f)(x) = f(\sigma(x)) \), for each \(f \in V^* \) and \(x \in V \). Note that \(\sigma^* \) induces a graded automorphism of \(B^1 \) because \(\sigma \) is assumed to preserve the relation space \(R \). We still use the notation \(\sigma^* \) for this algebra automorphism (see [28]). Suppose that \(\{x_1, x_2, \ldots, x_n\} \) is a \(\mathbb{K} \)-linear basis of \(V \) and \(\{x_1^*, x_2^*, \ldots, x_n^*\} \) is the corresponding dual basis of \(V^* \). If \(\sigma(x_i) = \sum_j c_{ij} x_j \), for \(c_{ij} \in \mathbb{K} \), \(1 \leq i, j \leq n \), then we have \(\sigma^*(x_i^*) = \sum_j c_{ji} x_j^* \). Moreover, for each \(i, j = 1, 2, \ldots, n \), we have \(\sigma^*(x_i^*)(x_j) = x_j^*(\sigma(x_i)) \). Let \(B \) be a Koszul AS-regular algebra of dimension \(d \). Then, the Nakayama automorphism \(\nu \) of \(B \) is equal to \(\epsilon^{d+1} \mu^* \), where \(\mu \) is the Nakayama automorphism of the Frobenius algebra \(B^1 \) and \(\epsilon \) is the automorphism of \(B \) defined by \(a \mapsto (-1)^{\deg a} a \), for each homogeneous element \(a \in B \) ([28], Proposition 1.4). Let \(B \) be a Koszul AS-regular algebra of global dimension \(d \), with Nakayama automorphism \(\nu \). Suppose that \(\sigma \) is a graded automorphism of \(B \) and \(\sigma^* \) is its corresponding dual graded automorphism of the dual algebra \(B^1 \). The **homological determinant**, denoted \(\text{hdet} \), is a homomorphism from the graded automorphism group \(\text{GrAut}(B) \) to the multiplicative group \(\mathbb{K} \setminus \{0\} \) such that \(\sigma^*(u) = (\text{hdet}\sigma)u \), for any \(u \in \text{Ext}^d_B(\mathbb{K}, \mathbb{K}) \) ([27], Proposition 1.11).

Proposition 4.8 ([28], Proposition 3.15). Suppose that \(R \) is a Koszul AS-regular algebra with Nakayama automorphism \(\nu \), \(\sigma \) is a graded algebra automorphism of \(R \) and \(A = R[x; \sigma] \). The
Nakayama automorphism μ of A is given by:

$$\mu(a) = \begin{cases} \sigma^{-1}\nu(a), & a \in R; \\ \text{hdet}(\sigma)a, & a = x. \end{cases}$$

Theorem 4.9 ([11], Theorem 3.3). Let K be a unital commutative ring and let R be a projective K-algebra and $A = R[x; \sigma, \delta]$ be an Ore extension. Suppose that R is a skew Calabi-Yau algebra of dimension d with Nakayama automorphism ν. Then A is a skew Calabi-Yau of dimension $d+1$ and the Nakayama automorphism ν' of A satisfies that $\nu'|_R = \sigma^{-1}\nu$ and $\nu'(x) = ux + b$ with $u, b \in A$ and u invertible.

Remark 4.10 ([11], Remark 3.4). $\nu'(x) = x + b$ if $\sigma = Id$, and $\nu'(x) = ux$ if $\delta = 0$.

Let $A = \mathbb{K}(x, y)/(yx - xy - x^2)$ be the Jordan plane, which is an AS-regular algebra of dimension 2. Note that $A = \mathbb{K}[x][y; \delta_1]$ with $\delta_1(x) = x^2$. It follows that A is skew Calabi-Yau, with the Nakayama automorphism given by $\nu(x) = x$ and $\nu(y) = 2x + y$. Thus, A is not Calabi-Yau. On one hand, $B = A[z; \nu]$ is an Ore extension of Jordan plane. Then A is skew Calabi-Yau with the Nakayama automorphism ν' such that $\nu'(x) = x$ and $\nu'(y) = y$. On the other hand, $A = \mathbb{K}[x, z][y; \delta]$ where δ is given by $\delta(x) = x^2$ and $\delta(z) = -2xz$. So, $\nu'(z) = z$. It follows that A is Calabi-Yau (see [11]).

Theorem 4.11. Let R be an Artin-Schelter regular algebra with Nakayama automorphism ν. Then the Nakayama automorphism μ of a graded quasi-commutative skew PBW extension $A = \sigma(R)[x_1, \ldots, x_n]$ is given by

$$\mu(r) = (\sigma_1 \cdots \sigma_n)^{-1}\nu(r), \text{ for } r \in R, \text{ and}$$

$$\mu(x_i) = u_i \prod_{j=i}^n c_{i,j}^{-1}x_i, \text{ for each } 1 \leq i \leq n,$$

where σ_i is as in Proposition 2.3, $u_i, c_{i,j} \in \mathbb{K}\setminus\{0\}$, and the elements $c_{i,j}$ are as in Definition 2.1.

Proof. Note that A is skew Calabi-Yau (see Corollary 4.7) and therefore the Nakayama automorphism of A exists. By Proposition 2.11-(ii) and its proof we have that A is isomorphic to a graded iterated Ore extension $R[x_1; \theta_1] \cdots [x_n; \theta_n]$, where θ_i is bijective; $\theta_1 = \sigma_1$;

$$\theta_j : R[x_1; \theta_1] \cdots [x_{j-1}; \theta_{j-1}] \to R[x_1; \theta_1] \cdots [x_{j-1}; \theta_{j-1}]$$

is such that $\theta_j(x_i) = c_{i,j}x_i$ ($c_{i,j} \in \mathbb{K}$ as in Definition 2.1), $1 \leq i < j \leq n$ and $\theta_i(r) = \sigma_i(r)$, for $r \in R$. Note that $\theta_j^{-1}(x_i) = c_{i,j}^{-1}x_i$. Now, since R is connected then by Remark 2.9, A is connected. So, the multiplicative group of R and also the multiplicative group of A is $\mathbb{K}\setminus\{0\}$, therefore the identity map is the only inner automorphism of A. Let μ_i the Nakayama automorphism of $R[x_1; \theta_1] \cdots [x_i; \theta_i]$.

By Theorem 4.9 and Remark 4.10 we have that the Nakayama automorphism μ_1 of $R[x_1; \theta_1]$ is given by $\mu_1(r) = \sigma_1^{-1}\nu(r)$ for $r \in R$, and $\mu_1(x_1) = u_1x_1$ with $u_1 \in \mathbb{K}\setminus\{0\}$; the Nakayama automorphism μ_2 of $R[x_1; \theta_1][x_2; \theta_2]$ is given by $\mu_2(r) = \sigma_2^{-1}\mu_1(r) = \sigma_2^{-1}\sigma_1^{-1}\nu(r)$, for $r \in R$;
Example 4.12. Let $A = \mathcal{O}_q(\mathbb{K}^n)$ be the quantum affine n-space. $A = \mathcal{O}_q(\mathbb{K}^n)$ is a graded quasi-commutative skew PBW extension of $\mathbb{K}[x_1]$ (see Example 2.8-5), with $\sigma_j(k) = k$ for $k \in \mathbb{K}$ and $\sigma_j(x_1) = q_j x_1$, $j \geq 2$. Therefore, according to Proposition 2.11 and its proof, A is isomorphic to a graded iterated Ore extension $\mathbb{K}[x_1;x_2;\theta_2][x_2;\theta_3]$ for $1 < j < n$, where $\theta_j(k) = k$ for $k \in \mathbb{K}$ and $\theta_j(x_i) = q_j x_i$, for $1 \leq i < j \leq n$. Note that the Nakayama automorphism ν of $\mathbb{K}[x_1]$ is the identity map. Applying Theorem 4.11 we have that the Nakayama automorphism μ of A is given by $\mu(k) = k$ for $k \in \mathbb{K}$, $\mu(x_1) = (\sigma_1 \cdots \sigma_n)^{-1} \cdot \mu(x_1) = (q_1 \cdots q_{n-1}) x_1 = (q_1 \cdots q_2) x_1$, and $\mu(x_i) = u_i q_{i(i+1)}^{-1} q_{i(i+2)}^{-1} \cdots q_{i-1}^{-1} x_i = u_i q_{i(i+1)} q_{i(i+2)} \cdots q_{i-1} x_i = u_i q_{i(i+1)} q_{i(i+2)} \cdots q_{i-1} x_i$, for each $2 \leq i \leq n$. Since μ is unique up to an inner automorphism (see Proposition 4.3) and the invertible elements in $\mathcal{O}_q(\mathbb{K}^n)$ are those nonzero scalars in \mathbb{K}, the identity map is the only inner automorphism of $\mathcal{O}_q(\mathbb{K}^n)$. Therefore, using the same reasoning of [11] in the proof of Proposition 4.1, we have that $u_i = q_1 q_2 \cdots q_{i-1}$. Then, $\mu(x_i) = (\prod_{j=1}^n x_i) x_i$, for $2 \leq i \leq n$.

Example 4.13. Let R be an Artin-Schelter regular algebra of global dimension d, with Nakayama automorphism ν. Let $A = R[x_1,\ldots,x_n;\sigma_1,\ldots,\sigma_n]$ be an iterated skew polynomial ring (see [5], page 23-24), with σ_i graded. A is a skew PBW extension of R with relations $x_it = \sigma_i(t) x_i$ and $x_j x_i = x_i x_j$, for $r \in R$ and $1 \leq i,j \leq n$. As R is graded and $c_{i,j} = 1 \in R_0$, then by Proposition 2.7 we have that A is a graded quasi-commutative skew PBW extension of R. Therefore, A is a skew Calabi-Yau algebra (Corollary 4.7). By Proposition 2.11, $R[x_1,\ldots,x_n;\sigma_1,\ldots,\sigma_n] \cong R[x_1;\theta_1] \cdots [x_n;\theta_n]$, where $\theta_j(r) = \sigma_j(r)$ and $\theta_j(x_i) = x_i$ for $i < j$. Applying Theorem 4.11 we have that the Nakayama automorphism μ of A is given by $\mu(r) = (\sigma_1 \cdots \sigma_n)^{-1} \cdot \nu(r)$, if $r \in R$ and $\mu(x_i) = u_i \prod_{j=1}^n q_{i,j}^{-1} x_i = u_i x_i$, $u_i \in \mathbb{K} \setminus \{0\}$, $1 \leq i \leq n$.

Example 4.14. The algebra of linear partial q-dilation operators H is a graded quasi-commutative skew PBW extension of $\mathbb{K}[t_1,\ldots,t_n]$ (see Example 2.8-3). According to Proposition 2.3, we have that $\sigma_j(t_i) = t_i$ for $i \neq j$, $1 \leq i \leq n$, $1 \leq j \leq m$; $\sigma_j(t_i) = q t_i$ for $i = j$, $1 \leq i,j \leq m$; $\delta_j = 0$, for $1 \leq j \leq m$. By Proposition 2.11, H is isomorphic to a graded iterated Ore extension of endomorphism type $\mathbb{K}[t_1,\ldots,t_n][H^{(q)}_1;\theta_1] \cdots [H^{(q)}_{m-1};\theta_{m-1}] H^{(q)}_m;\theta_m]$, with $\theta_j(t_i) = t_i$ for $i \neq j$, $1 \leq i \leq n$, $1 \leq j \leq m$, $\theta_j(t_i) = q t_i$ for $i = j$, $1 \leq i,j \leq m$; $\theta_j(H^{(q)}_i) = H^{(q)}_i$ for $1 \leq i,j \leq m$. Since $\mathbb{K}[t_1,\ldots,t_n]$ is a Calabi-Yau algebra, then its Nakayama automorphism ν is the identity map. Applying Theorem 4.11, we have that the Nakayama automorphism μ of H is given by

$$
\mu(t_i) = \sigma_m^{-1} \cdots \sigma_1^{-1}(t_i) = \begin{cases}
\sigma_1^{-1}(t_i) = q^{-1} t_i, & 1 \leq i \leq m; \\
q t_i, & m < i \leq n,
\end{cases}
$$

$$
\mu(H^{(q)}_i) = H^{(q)}_j, \text{ for } 1 \leq j \leq m.
$$
Remark 4.15. If in Example 4.13 R is also a Koszul algebra, then due to the Theorem 3.2-(ii), we have that A is a Koszul algebra. The Nakayama automorphism μ of Example 4.13 is then $\mu(r) = (\sigma_1 \cdots \sigma_n)^{-1} \nu(r)$, if $r \in R$ and $\mu(x_i) = (\text{hdet}\sigma_i)x_i$, $1 \leq i \leq n$ (see [28], Theorem 4.6). Since μ is unique up to an inner automorphism (see Proposition 4.3) and the invertible elements $\text{in} \ R[x_1, \ldots, x_n; \sigma_1, \ldots, \sigma_n]$ are those nonzero scalars in K, the identity map is the only inner automorphism of $R[x_1, \ldots, x_n; \sigma_1, \ldots, \sigma_n]$. Therefore, $(\text{hdet}\sigma_i) = u_i$.

References

[1] V. A. Artamonov, “Derivations of skew PBW extensions”, *Commun. Math. Stat.*, vol. 3, no. 4, 449-457, 2015.

[2] R. Berger and R. Taillefer, “Poincare-Birkhoff-Witt deformations of Calabi-Yau algebras”, *J. Noncommut. Geom.*, vol. 1, pp. 241-270, 2007.

[3] K. A. Brown and J. J. Zhang, “Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras”, *J. Algebra*, vol. 320, pp. 1814-1850, 2008.

[4] N. R. González and Y. P. Suárez, “Ideales en el anillo de polinomios torcidos $R[x; \sigma, \delta]$”, *Revista Ciencia en Desarrollo*, vol. 5, no. 1, pp. 31-37, 2014.

[5] K. R. Goodearl and R. B. Warfield, *An introduction to noncommutative Noetherian rings*, London Mathematical Society Student Texts, 61. Cambridge University Press, Cambridge, 2004.

[6] J. Goodman and U. Krähmer, “Untwisting a twisted Calabi-Yau Algebra”, *J. Algebra*, vol. 406, pp. 271-289, 2014.

[7] C. Gallego and O. Lezama, “Gröbner bases for ideals of σ-PBW extensions”, *Comm. Algebra*, vol. 39, no. 1, pp. 50-75, 2011.

[8] J. W. He, F. Van Oystaeyen and Y. Zhang, “Skew polynomial algebras with coefficients in Koszul Artin-Schelter regular algebras”, *J. Algebra*, vol. 390, pp. 231-249, 2013.

[9] O. Lezama, J. P. Acosta and A. Reyes, “Prime ideals of skew PBW extensions”, *Rev. Un. Mat. Argentina*, vol. 56, no. 2, pp. 39-55, 2015.

[10] O. Lezama and A. Reyes, “Some Homological Properties of Skew PBW Extensions”, *Comm. Algebra*, vol. 42, pp. 1200-1230, 2014.

[11] L.-Y. Liu, S. Wang and Q.-S. Wu, “Twisted Calabi-Yau property of Ore extensions”, *J. Noncommut. Geom.*, vol. 8, no. 2, pp. 587-609, 2014.

[12] A. Reyes and H. Suárez, “Armendariz property for skew PBW extensions and their classical ring of quotients”, *Rev. Integr. Temas Mat.*, vol. 34, no. 2, pp. 147-168, 2016.

[13] A. Reyes and H. Suárez, “A note on zip and reversible skew PBW extensions”, *Bol. Mat.*, vol. 23, no. 1, pp. 71-79, 2016.
[14] A. Reyes and H. Suárez, “Some remarks about the cyclic homology of skew PBW extensions”, *Ciencia en Desarrollo*, vol. 7, no. 2, pp. 99-107, 2016.

[15] A. Reyes and H. Suárez, “Bases for quantum algebras and skew Poincaré-Birkhoff-Witt extensions”, *Momento, Rev. Fis.*, vol. 54, no. 2, pp. 54-75, 2017.

[16] A. Reyes and H. Suárez, “Enveloping algebra and Calabi-Yau algebras over skew Poincaré-Birkhoff-Witt extensions”, *Far East J. Math. Sci. (FJMS)*, vol. 102, no. 2, pp. 373-397, 2017.

[17] A. Reyes and H. Suárez, “A notion of compatibility for Armendariz and Baer properties over skew PBW extensions”, *Rev. Un. Mat. Argentina*, vol. 59, no. 1, pp. 157-178, 2018.

[18] A. Reyes and H. Suárez, “PBW bases for some 3-dimensional skew polynomial algebras”, *Far East J. Math. Sci. (FJMS)*, vol. 101, no. 6, pp. 1207-1228, 2017.

[19] A. Reyes and H. Suárez, “σ-PBW extensions of skew Armendariz rings”, *Adv. Appl. Clifford Algebr.* vol. 27, pp. 3197-3224, 2017.

[20] M. Reyes, D. Rogalski and J. J. Zhang, “Skew Calabi-Yau algebras and homological identities”, *Adv. in Math.*, vol. 264, pp. 308-354, 2014.

[21] H. Suárez, “Koszulity for graded skew PBW extensions”, *Comm. Algebra*, vol. 45, no. 10, pp. 4569-4580, 2017.

[22] H. Suárez, O. Lezama and A. Reyes, “Some relations between N-Koszul, Artin-Schelter regular and Calabi-Yau algebras with skew PBW extensions”, *Ciencia en Desarrollo*, vol. 6, no. 2, pp. 205-213, 2015.

[23] H. Suárez, O. Lezama, and A. Reyes, “Calabi-Yau property for graded skew PBW extensions”, *To appear in Rev. Colombiana Mat.*, 2017.

[24] H. Suárez and A. Reyes, “A generalized Koszul property for skew PBW extensions”, *Far East J. Math. Sci.*, vol. 101, no. 2, pp. 301-320, 2017.

[25] H. Suárez and A. Reyes, “Koszulity for skew PBW extensions over fields”, *JP J. Algebra Number Theory Appl.*, vol. 39, no. 2, pp. 181-203, 2017.

[26] C. Venegas, “Automorphisms for skew PBW extensions and skew quantum polynomial rings”, *Comm. Algebra*, vol. 43, no. 5, pp. 1877-1897, 2015.

[27] Q.-S. Wu, C. Zhu, “Skew group algebras of Calabi-Yau algebras”, *J. Algebra*, vol. 340, pp. 53-76, 2011.

[28] C. Zhu, F. Van Oystaeyen and Y. Zhang, “Nakayama automorphism of double Ore extensions of Koszul regular algebras”, *Manuscripta math.*, vol. 152, no. 3-4, pp. 555-584, 2017.