Investigating the correlations between IceCube high-energy neutrinos and Fermi-LAT γ-ray observations

Rong-Lan Li,1 Ben-Yang Zhu,1 and Yun-Feng Liang1,*

1Laboratory for Relativistic Astrophysics, Department of Physics, Guangxi University, Nanning 530004, China

(Dated: October 18, 2022)

We use 10 years of publicly available IceCube data to investigate the correlations between high-energy neutrinos and various Fermi-LAT gamma-ray samples. This work considers the following gamma-ray samples: the third Fermi-LAT catalog of high-energy sources (3FHL), > 100 GeV Fermi-LAT events, LAT 12-year source catalog (4FGL), the fourth catalog of active galactic nuclei (4LAC) and subsets of these samples. For each sample, both a single-source analysis and a stacking analysis are performed. We find no indication that the sources in these samples produce significant high-energy neutrinos. From the null search results, we infer that each source population can produce no more than $\sim 2.5\%$ (at the 95% confidence level, for a spectral index of ~ 2.5) of the IceCube’s diffuse neutrino flux. Since we are using a larger (10 years) dataset of IceCube neutrinos, the constraints are improved by a factor of ~ 2 compared to those based on 3 years of data.

PACS numbers:

Keywords:

I. INTRODUCTION

The TeV-PeV diffuse astrophysical neutrino emission detected by IceCube [1–7] opens a new window for astrophysics [8–22] and particle physics [23–33]. The origin of these neutrinos, however, remains a mystery. Great efforts have been made to find out the sources of these astrophysical neutrinos [34–43]. The two most likely TeV – PeV neutrino emitters are TXS 0506+056 and NGC 1068 [41, 44, 45]. The TXS 0506+056 is found to have a 3σ (global significance) correlation with a ~ 300 TeV IceCube neutrino event [44]. Furthermore, a neutrino flare was detected in the direction of TXS 0506+056 between 2014 and 2015, with a global confidence of 3.5σ [45]. These two measurements are statistically independent, and a simple combination of the two results yields a significance of $\sim 4.8\sigma$. However, multi-wavelength observations seem to not favor the possibility that the neutrinos are from TXS 0506+056 in a one-zone model, although more complicated two-zone models can solve this problem [46–50]. In a time-integrated analysis using 10 years of IceCube data, radio galaxy NGC 1068 is found to be a potential neutrino point source with a significance greater than 2.9σ (global significance) [41].

Except the two above-mentioned sources (other less significant but promising candidates include: PKS B1424–418 [51], PKS 1424+240 [41, 52], PKS 1502+106 [53], etc), searches for point sources in IceCube data always lead to only upper limits. These two sources contribute only a small fraction of the total flux of the diffuse neutrino emission. The origin of the majority of the diffuse astrophysical neutrinos is still unknown. The high-energy neutrinos observed by IceCube are likely generated by a large number of extragalactic sources. Many astrophysical sources have been proposed as possible sources of the high-energy neutrinos, including gamma-ray bursts [54–57], star-forming galaxies and starburst galaxies [58–60], blazars and non-Blazar active galactic nuclei (AGNs) [61–63], tidal disruption events [64], etc. However, searches towards these sources do not show a strong correlation, they therefore are ruled out as the only primary sources of the IceCube diffuse neutrino flux. For example, the IceCube data from the directions of gamma-ray blazars have been analyzed and this type of sources are found to contribute at most 15% to the diffuse neutrino flux [65–68]. The possible association between radio bright active galactic nuclei and IceCube neutrino events has also been considered [69, 70]. Zhou et al. [71] revisited the correlation between these radio-bright AGN and the TeV–PeV astrophysical neutrinos and found no strong correlation, indicating that no more than 30% of the IceCube neutrino flux could be contributed by these objects.

In this paper, we focus on investigating the correlations between IceCube neutrinos and Fermi-LAT gamma-ray observations. Some previous analyses on Fermi-LAT catalogs using IceCube data include: Refs. [65–67, 72–75]. We search for evidence of neutrino emission in the directions of Fermi-LAT sources of various catalogs and constrain their contributions to the IceCube diffuse neutrino flux. Our motivation is that, astrophysical neutrinos are expected to be produced by a hadronic process, so high-energy gamma rays will be emitted accompanied with the production of neutrinos. Since TeV photons are strongly absorbed by the extragalactic background light, for extragalactic sources the GeV gamma rays observed by Fermi-LAT are the messengers we can receive that are most close to IceCube’s $>$100 TeV neutrinos in energy. As a result, the two are therefore more likely to correlate.

This work utilizes a larger data set of IceCube neutrinos than previous similar analyses [65–67]. The latest (10 year, April 2008 to July 2018) public release of IceCube muon track data [76] are adopted. We will see that we can obtain stronger constraints. No potential neutrino point source is found, and no statistically significant correlation is found between IceCube events and any of considered Fermi-LAT sam-

liangf@gxu.edu.cn
II. ICECUBE DATA AND FERMI-LAT SAMPLES

A. IceCube neutrino data

The IceCube Neutrino Observatory detects neutrinos by detecting the Cherenkov light emitted by relativistic secondary charged particles from neutrino interactions [77]. In this work, we utilize IceCube’s updated public data release of muon tracks from neutrino interactions [77]. This dataset consists of muon tracks observed by IceCube from April 2008 to July 2018. The same data have been used in IceCube’s 10-year time-integrated neutrino point-source search [78]. The data contain both through-going and starting tracks. The former is primarily due to muon neutrino with interaction taking place outside the detector, while the latter are events that start within the instrument. In total, there are 1134450 muon-track events contained in the data set.

Most of the events in the data set are atmospheric muons and neutrinos produced in cosmic-ray air shower interactions which consist of the main background for searches of astrophysical neutrinos [76, 79]. For events from the southern hemisphere, the atmospheric muons can penetrate the ice and reach the IceCube, leading to a background with event rate orders of magnitude higher than the expected rate of astrophysical neutrinos. To reduce the background of atmospheric muons, a more stringent event selection is applied for the data. The latter are events that start within the instrument. In total, there are 1134450 muon-track events contained in the data set.

We use all IC40 to IC86-VII data, with the numbers in the names corresponding to the number of installed detector strings. For each event in the dataset, the arrival time \((t)\), reconstructed muon energy \((E_\mu)\), direction \((\alpha, \delta)\) and directional uncertainty \((\sigma)\) are recorded. The data set also provide binned detector response functions (effective areas, smearing matrices) as a function of declination and neutrino energy that will be used in the data analysis. We consider all neutrinos with \(10^7 < |b| < 87^\circ\).

B. Fermi-LAT gamma-ray samples

The Large Area Telescope (LAT) on board Fermi satellite is a wide field-of-view (FOV) imaging gamma-ray telescope, which observes gamma-ray photons in the energy range from \(\sim 30\) MeV to \(> 300\) GeV [80]. The Fermi-LAT began its observations in 2008 and surveys the entire sky each day. Its observation time and FOV overlap with the 10-year IceCube data considerably. With more than 13 years of observation, a variety of source catalogs of Fermi-LAT have been compiled and released. To investigate the correlations between GeV gamma-ray sources and TeV-PeV neutrinos, we consider the following Fermi-LAT samples.

We mainly consider the sources contained in the Third Catalog of Hard Fermi-LAT Sources (3FHL sample)\(^2\) [81]. This catalog represents the hardest population of GeV gamma-ray sources, which are therefore more likely to be a hadronic origin. The 3FHL is constructed based on 7 years of Fermi-LAT data in the 10 GeV-2 TeV energy range [81]. Besides the 3FHL, other samples considered in this work include, the gamma-ray sources of the fourth Fermi-LAT catalog (4FGL-DR3, for Data Release 3)\(^3\) [82, 83] and the fourth catalog of active galactic nuclei (4LAC-DR2, for Data Release 2)\(^4\) [84, 85]. All these samples are summarized in Table I. For each sample, we exclude the sources categorized as pulsars (PSRs) from the catalog. To avoid the complexity of the Galactic Plane, we only select \(|b| > 10^\circ\) sources from the catalogs.

Additionally, we search for excess neutrino emissions in the directions of \(> 100\) GeV high-energy Fermi-LAT events (HEE sample). This sample is used as a proxy of emissions from all hard sources including those too faint to be resolved from the background. The HEE events are extracted from the all-sky weekly Fermi-LAT data\(^5\). We consider 12 years of Fermi-LAT data from 2008-08-04 to 2020-10-26 (MET 239557417-62539779). We select events of Pass 8 SOURCE event class (evclass=128, evtype=3) with energies \(> 1\) GeV. Events with zenith angles \(\zeta_{\text{max}} > 90^\circ\) are removed to avoid the contamination from the Earth’s limb. We also use the filter (DATA_QUAL>0 && LAT_CONFIG==1) to select events within good time intervals. After these selections, we obtain 13335 events of the HEE sample.

III. ANALYSIS METHOD

We perform an unbinned likelihood analysis on the neutrino data to derive the significance of neutrino signal from the direction of target source, using the neutrino events data together with the public instrument response functions of IceCube. We refer to Ref. [71, 86] for the analysis method used in this work.

\(^1\) DOI: http://doi.org/DOI:10.21234/sxvs-mt83

\(^2\) https://fermi.gsfc.nasa.gov/ssc/data/access/lat/3FHL/

\(^3\) https://fermi.gsfc.nasa.gov/ssc/data/access/lat/12yr_catalog/

\(^4\) https://fermi.gsfc.nasa.gov/ssc/data/access/lat/4LACDR2/

\(^5\) http://heasarc.gsfc.nasa.gov/FTP/fermi/data/lat/weekly/ photon/
all events within a region of interest (ROI), for which we observed neutrinos within the ROI, respectively. The uncertainty of the neutrino event. For background PDF, the angle of the 5° distribution across the ROI, we are able to assume the background neutrinos are uniformly distributed. For a small ROI, it is thus reasonable, we also neglect the time related PDF term. As a result, the analysis that take into account the energy PDF term for potential by almost a factor of two. We leave the further analyses that take into account the energy PDF term for potential future work. Since we are doing a time-integrated analysis, we also neglect the time related PDF term. As a result, the PDFs contain only the spatial distribution.

For the signal PDF, it is described by a two-dimensional Gaussian:

$$S_i(\theta_i, \sigma_i) = \frac{1}{2\pi\sigma_i^2} \exp\left(-\frac{\theta_i^2}{2\sigma_i^2}\right),$$ \hspace{1cm} (2)

where θ_i is the angular separation to the source for the i-th neutrino in the ROI, and σ_i is the directional reconstruction uncertainty of the neutrino event. For background PDF, the slight declination (δ) dependence of the atmospheric neutrino background can be ignored in a small ROI. It is thus reasonable to assume the background neutrinos are uniformly distributed across the ROI, $B_i(\sin\delta_i) = 1/\Omega$, where Ω is the solid angle of the 5° ROI.

The n_i in Eq. (1) is the model-predicted number of signal neutrinos, given by

$$n_i = T \times \int A_{\text{eff}}(E, \sin\delta_i) \Phi(E) dE$$ \hspace{1cm} (3)

for a total detector uptime of T and a signal flux model of the form

$$\Phi(E) = \Phi_0 \left(\frac{E}{100 \text{ TeV}}\right)^\Gamma.$$ \hspace{1cm} (4)

The A_{eff} above is the effective area of the detector in the declination of δ_i.

By maximizing the likelihoods of Eq. (1) for both signal model, $L(n_i)$ (with n_i free to vary), and background-only model, $L(n_i = 0)$, the test statistics (TS) of the signal can be derived by comparing the likelihood values between the two,

$$TS = 2\log \frac{L(\hat{n}_i)}{L(n_i = 0)},$$ \hspace{1cm} (5)

where the n_i with a hat (\hat{n}_i) denote the best-fit quantity. If the background hypothesis is true, the probability distribution for \sqrt{TS} is approximately a standard normal distribution (i.e., χ^2 distribution with one degree of freedom) [87]. A significant deviation from the normal distribution indicate the null hypothesis is rejected (i.e., the presence of excess neutrinos over the background).

A. Single-source analysis

The unbinned likelihood for neutrino data is evaluated over all events within a region of interest (ROI), for which we choose a 5° circle surrounding the target. The likelihood reads

$$L(\Phi_0, \Gamma) = \prod_i \left[\frac{n_i(\Phi_0, \Gamma)}{N} S_i + \left(1 - \frac{n_i(\Phi_0, \Gamma)}{N}\right) B_i \right],$$ \hspace{1cm} (1)

where n_i and N are the numbers of signal neutrinos and total observed neutrinos within the ROI, respectively. The S (B) is the signal (background) probability density function (PDF). For a generic likelihood analysis, the PDF is the product of independent space, energy and time probability terms. In this work we ignore the energy term of the PDF. As is suggested in [86], the use of energy information would improve discovery potential by almost a factor of two. We leave the further analyses that take into account the energy PDF term for potential future work. Since we are doing a time-integrated analysis, we also neglect the time related PDF term. As a result, the PDFs contain only the spatial distribution.

For the signal PDF, it is described by a two-dimensional Gaussian:

$$S_i(\theta_i, \sigma_i) = \frac{1}{2\pi\sigma_i^2} \exp\left(-\frac{\theta_i^2}{2\sigma_i^2}\right),$$ \hspace{1cm} (2)

where θ_i is the angular separation to the source for the i-th neutrino in the ROI, and σ_i is the directional reconstruction uncertainty of the neutrino event. For background PDF, the slight declination (δ) dependence of the atmospheric neutrino background can be ignored in a small ROI. It is thus reasonable to assume the background neutrinos are uniformly distributed across the ROI, $B_i(\sin\delta_i) = 1/\Omega$, where Ω is the solid angle of the 5° ROI.

The n_i in Eq. (1) is the model-predicted number of signal neutrinos, given by

$$n_i = T \times \int A_{\text{eff}}(E, \sin\delta_i) \Phi(E) dE$$ \hspace{1cm} (3)

for a total detector uptime of T and a signal flux model of the form

$$\Phi(E) = \Phi_0 \left(\frac{E}{100 \text{ TeV}}\right)^\Gamma.$$ \hspace{1cm} (4)

The A_{eff} above is the effective area of the detector in the declination of δ_i.

By maximizing the likelihoods of Eq. (1) for both signal model, $L(n_i)$ (with n_i free to vary), and background-only model, $L(n_i = 0)$, the test statistics (TS) of the signal can be derived by comparing the likelihood values between the two,

$$TS = 2\log \frac{L(\hat{n}_i)}{L(n_i = 0)},$$ \hspace{1cm} (5)

where the n_i with a hat (\hat{n}_i) denote the best-fit quantity. If the background hypothesis is true, the probability distribution for \sqrt{TS} is approximately a standard normal distribution (i.e., χ^2 distribution with one degree of freedom) [87]. A significant deviation from the normal distribution indicate the null hypothesis is rejected (i.e., the presence of excess neutrinos over the background).

B. Stacking analysis

To improve sensitivity, all the sources in each Fermi-LAT sample are combined into a single stacking analysis. In such a case, the signal PDF is composed of the contributions from all sources (indexed by j):

$$S_i = \sum_j \omega_{j,\text{model}}(\omega_{j,\text{acc}}) S_{ij},$$ \hspace{1cm} (6)

where $\omega_{j,\text{model}}$ and $\omega_{j,\text{acc}}$ are the model weights and the accumulation factors, respectively.

Table I: Fermi-LAT samples considered in this work.

Catalog Name	Energy Rangea	Time intervalb	N_{src}	j_{UL} for $\Gamma = -2.5^c$	TS$_{\text{max}}$
4FGL-DR3	50 MeV-1 TeV	12 years	4689	18.0% / 5.8%	0.00
4FGL-DR3 Blazars	50 MeV-1 TeV	12 years	3339	20.6% / 5.5%	0.00
4FGL-DR3 BL Lacs	50 MeV-1 TeV	12 years	1354	36.1% / 9.9%	2.38
4FGL-DR3 FSRQs	50 MeV-1 TeV	12 years	757	6.7% / 2.5%	0.02
4LAC-DR2	50 MeV-1 TeV	10 years	3128	23.8% / 5.7%	0.00
4LAC-DR2 Blazars	50 MeV-1 TeV	10 years	3060	21.4% / 5.3%	0.00
4LAC-DR2 BL Lacs	50 MeV-1 TeV	10 years	1236	34.5% / 9.9%	2.29
4LAC-DR2 FSRQs	50 MeV-1 TeV	10 years	707	7.7% / 2.4%	0.02
3FHL Blazar	10 GeV-2 TeV	7 years	1215	21.6% / 8.0%	0.35
3FHL BL Lacs	10 GeV-2 TeV	7 years	1078	21.0% / 7.5%	0.42
3FHL FSRQs	10 GeV-2 TeV	7 years	697	25.4% / 6.6%	2.13
HEE	>100 GeV	12 years	165	5.2% / 3.6%	0.01

a The energy range and time interval of the Fermi-LAT data that used to construct the catalogs.

b Number of sources / events included in the sample. The sources categorized as pulsars or in the $|b| < 10^\circ$ region have been excluded.

c Upper limit on the fraction of the IceCube diffuse neutrino flux that originates from the sources in the corresponding catalogs. The first (second) value is for equal weighting (flux weighting) scheme. For the HEE sample, the second value uses the N_{events} in each pixel as the weighting.

Number of sources

Energy Range	Time	Value
10 MeV-1 TeV	7 years	13335
100 MeV-1 TeV	12 years	3128
>100 GeV	12 years	165

Table II: Number of sources and events in each Fermi-LAT sample.

Energy Range	Time	Event
10 MeV-1 TeV	7 years	13335
100 MeV-1 TeV	12 years	3128
>100 GeV	12 years	165
where \(S_{ij} \) is the signal PDF of single source and is just the above two-dimensional Gaussian PDF:

\[
S_{ij} = S(x_i, \sigma_i, x_j) = \frac{1}{2\pi\sigma_i^2} \exp\left(-\frac{(x_i - x_j)^2}{2\sigma_i^2}\right)
\]

(7)

Here \(x_i \) and \(x_j \) are the directions of the neutrino event \(i \) and source \(j \), and \(\theta(x_i, x_j) \) is the angular separation between the source and event. The \(\omega_j \) in Eq. (6) are weighting factors of source \(j \). The spectral index \(\Gamma \) of the signal neutrinos is assumed to be the same for all the sources in our analysis. Thus, the \(\omega_{j, \text{acc}} \) term is mainly related to the detector’s acceptance,

\[
\omega_{j, \text{acc}}(\delta_j) = T \times \int A_{\text{eff}}(E, \delta_j) E^\Gamma dE.
\]

(8)

For the \(\omega_{j, \text{model}} \) we consider two weighting schemes. The first one assumes that the high-energy neutrino flux of the source is independent of its gamma-ray flux, \(\omega_{j, \text{model}} = 1 \). For the second scheme, we assume that the high-energy neutrino flux is proportional to the gamma-ray band flux \(f_j \) reported in the catalogs, \(\omega_{j, \text{model}} = f_j \). In this scheme, those sources brighter in the gamma-ray band contribute more to the signal PDF.

The majority of the background for astrophysical neutrinos are muons and neutrinos produced from CRs interaction in the Earth’s atmosphere. The background PDF is derived directly from IceCube neutrino data,

\[
B_i(\delta_i) = \frac{N_{\delta_i \leq 35}}{N_{\text{tot}} \Omega_{\delta_i \leq 35}},
\]

(9)

where \(N_{\delta_i \leq 35} \) and \(N_{\text{tot}} \) are the number of neutrino events in the \(\delta_i \pm 3^\circ \) region and the total number of all-sky events, respectively; \(\Omega_{\delta_i \leq 35} \) is the solid angle of the \(\delta_i \pm 3^\circ \) region.

The 10-year IceCube data contains neutrino events from 10 data seasons: IC40, IC59, IC79, IC86-I, IC86-II to IC86-VII. The total likelihood combining 10 data samples is

\[
L(\Phi_0, \Gamma) = \prod_k L_k(\Phi_0, \Gamma; T_k, A_{\text{eff}, k}, \{\alpha, \delta, \sigma\}_k),
\]

(10)

where \(L_k \) is the likelihood for each data sample \(k \) calculated through the above-described procedure and \(\{\alpha, \delta, \sigma\}_k \) is the neutrino list of the data sample \(k \).

IV. RESULTS

Using the method described in Section III, we search for the correlations between the neutrino data and the GeV observations from Fermi-LAT.

A. 3FHL

We first consider the sources included in the third Fermi-LAT catalog of high-energy sources (3FHL). The 3FHL represents a population of sources with relatively hard energy spectra, and according to the extrapolation of the spectrum, they are more likely to have observable neutrino emission. The catalog contains a total of 1497 gamma-ray sources, of which 1212 are classified as Blazars, including 172 flat-spectrum radio quasars (FSRQs) and 750 BL Lacs. In our analysis, we do not consider the sources in the region of \(|b| < 10^\circ\) to avoid the uncertainty from the Galactic Plane. The sources in the regions of \(|\text{Dec}| > 87^\circ\) are excluded since the background PDF cannot be reliably determined. We also remove PSRs from the sample because of their leptonic origin. The number of sources finally used for analysis is listed in Table I.

For the 1215 sources in the 3FHL sample, we first perform a single-source analysis to search for individual neutrino point sources in the IceCube data. In the upper left panel of Fig. 1, for 1215 sky locations associated with 3FHL sources, we show the distribution of \(\sqrt{\text{TS}} \) value given by the analysis. We compare this histogram with a standard normal distribution (red dashed line), which is an expectation from Gaussian fluctuations of the background. It can be seen that for the 3FHL sources the \(\sqrt{\text{TS}} \) distribution generally follows the standard normal distribution. We note that there is one source showing relatively high significance of TS~22, which seems deviating from the distribution of background fluctuations. After examination, we find that the source is NGC 1068. The presence of a possible neutrino excess in the direction of NGC 1068 has already been reported by the IceCube collaboration [41]. The result of NGC 1068 therefore suggest that our analysis is reliable. Except for NGC 1068, we observe no significant evidence of a deviation from Gaussian fluctuations. According to the Wilks’ theorem [87], this means that the background hypothesis is favored and there is no strong correlation between the diffuse astrophysical neutrinos and the 3FHL catalog.

Next, we perform a stacking analysis of all sources of 3FHL sample to investigate the contribution of such source population to the diffuse neutrino flux observed by IceCube. In the upper right panel of Fig. 1, we show the TS profile as a function of the total neutrino flux from 3FHL sources for the two weighting schemes described in Section III B. The \(\nu_\mu + \bar{\nu}_\mu \) flux relevant to the analysis of muon track data is converted to all six-flavor neutrino flux by multiplying a factor of 3 (i.e., assuming equal flux for all six flavors). Considering that the diffuse astrophysical neutrinos measured by the IceCube has a spectral index of \(\sim -2.3 \) to \(-2.7 \) [7], we take three different spectral indices (\(\Gamma = -2.0, -2.5 \) and \(-3.0 \)) in the analysis. As shown, none of the cases reveals a significant correlation between the sample and IceCube neutrinos. Thus, we place upper limits on the total neutrino emission contributed by these 3FHL sources at a 95% confidence level (corresponding to the horizon line of TS \(\approx -3.84 \)). The limits we obtain are lower than the diffuse flux reported by the IceCube collaboration, indicating that these sources cannot produce all the observed astrophysical neutrinos.

In the lower left panel of Fig. 1, we present the upper limits of neutrino flux derived in our analysis and compare it with IceCube’s diffuse neutrino flux. Here, we adopt the the most up-to-date muon–neutrino flux reported in Ref. [7] for comparison, which is based on 9.5 years of track data and best fitted with a power law of \(d\Phi/dE_\nu = \Phi_0 \times (E_\nu/100\text{ TeV})^{-2.37} \), where \(\Phi_0 \) is the flux normalization. We find that the 3FHL
sample can contribute no more than 55.37% of IceCube’s diffuse neutrino flux ($\int E^{2}dN/dE_{\nu}dE_{\nu}$). In the energy range of 16 TeV-2.6 PeV, this catalog accounts for at most 55.37% ($\Gamma = -2.0$), 21.61% ($\Gamma = -2.5$) and 6.74% ($\Gamma = -3.0$) for equal weighting and at most 19.91% ($\Gamma = -2.0$), 8.04% ($\Gamma = -2.5$) and 2.61% ($\Gamma = -3.0$) for flux weighting.

This work uses the latest 10 years of IceCube neutrino data, so the constraints are effectively improved due to the longer data set used. We have tested that if repeating our analysis with only 3 years of data (IC79, IC86-I, IC86-II), the obtained upper limits would be weakened by a factor of ~2 (see lower right panel of Fig. 1). Since there is currently no similar work (especially focusing on 3FHL sources) based on the 10-year data, the constraints presented here on the contribution from 3FHL sources would be by far the strongest one.

B. 3FHL blazars

The tentative neutrino excess observed in the direction of TXS 0506+056 provide evidence in favor of blazars as sources of high-energy neutrinos. We next separately consider the gamma-ray sources identified as blazars in the 3FHL catalog. We also further divide the blazars into two subclasses to perform the analysis: flat spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs). Again, we find no evidence to support neutrino emission from these source populations and place strong constraints on their contributions to IceCube’s diffuse neutrino flux. We find that the total 3FHL blazars/BL LACs/FSRQs can contribute at most 54.53%/60.28%/15.51% of the diffuse flux (see Table I for the results of $\Gamma = -2.5$, and related figures are shown in the Appendix). As a comparison, the IceCube Collaboration has also performed a stacking analysis to search for neutrino emission from 3FHL blazars...
with 8 years of IceCube northern-sky data [72]. They reported an 90% upper limit of 13.0%-16.7% on the contribution from 3FHL blazar population for $\Gamma = -2$, consistent with the 18.8% upper limit (95% C.L.) obtained in this work for the flux weighting scheme.

Note that our results here consider only the blazars within the 3FHL catalog. The contributions from those blazars that are too far away or too weak to be included in the catalog are not taken into account. To translate the results to apply to all blazars in the Universe, we need to multiply a completeness factor of $1-2$ [66, 67], which would not change the results substantially.

We notice that of all four 3FHL samples (all, blazar, BL Lac, FSRQ), the analysis of BL Lacs gives almost the weakest upper limits on the contribution to the diffuse neutrino flux (especially for the equal weighting scheme), although the BL Lac sample does not contain the largest number of sources (see Table I). Similar results are also revealed (and are more evident) in the below analysis of 4FGL sources (see Section IV D). In addition, in our stacking analysis, the search for neutrino excess from BL Lacs gives the only non-negative TS value ($\text{TS} \sim 2.3$). Note that the 3FHL source catalog does not contain the BL Lac source TXS 0506+056 (the exclusion of TXS 0506+056 in the analysis of the 4FGL sources has a negligible effect on the results). Similar indication has also been discussed in Ref. [67]. All these results support that the BL Lac blazars may have higher contribution to the IceCube’s diffuse neutrinos. However, a statistically significant evidence is still lacking in current analysis.

C. Very-high energy Fermi events (HEE)

According to our analysis above (as well as previous works [65–67]), the diffuse emission of high-energy neutrinos observed by IceCube cannot be entirely accounted for by a small number of bright sources. Only a fraction (no more than 1.2-60.3%, depending on the source populations considered and the different analysis configurations) of the neutrino flux may originate from the resolved 3FHL sources. Most of the astrophysical neutrinos must have been produced by a large number of faint sources. These sources are obscured and cannot be resolved from the gamma-ray background. But it is a reasonable speculation that, in general there will be a higher probability to detect high-energy gamma rays in the directions of neutrino sources. On the other hand, the 3FHL catalog is constructed based on gamma-ray observations of $> 10\text{GeV}$, while it is possible that the gamma-ray emission from TeV-PeV neutrino sources dominates at even higher energies (e.g., $> 100\text{GeV}$). So we directly examine the correlation between IceCube muon-track events and high-energy Fermi-LAT photons. More specifically, we look for neutrino emission in the directions of $> 10\text{GeV}$ Fermi-LAT events with the method of Section III. To avoid contamination from the Galactic Plane, we only use the events with $|b| > 10^\circ$, which includes 13335 photon events.

In the left panel of Fig. 2, we present the result of the single-point-source analysis (i.e., the distribution of Fermi events with $E_\gamma > 10 \text{GeV}$ and with $|b| > 10^\circ$). Overall, the TS distribution is consistent with that predicted from Gaussian fluctuations of the background. We note that in the part of $\sqrt{\text{TS}} > 3$, there appears to be an excess in the number of large TS values compared to the uniform background expectation. To quantify the significance of the excess, we adopt the formalism in Ref. [41] (see Eq. (1) therein),

$$p_{\text{bkg}} = \sum_{i=k}^N P_{\text{binom}}(i \mid p_k, N) = \sum_{i=k}^N \binom{N}{i} (1 - p_k)^{N-i} \cdot (11)$$

We find that the most significant p_{bkg} corresponds to $k = 50$ (i.e., the excess is contributed by 50 most significant Fermi events) with a significance of $\sim 4.8\sigma$. However, further examination reveals that 24 of the 50 events are from the direction of the source PKS 1424+240. Relatively high significance ($\sim 3.2\sigma$, pre-trial) of this source to be a potential neutrino
source has already been reported [41]. Removing the events spatially associated with this source from the analysis results in a significance of only $\sim 1.7\sigma$ (pre-trial). Therefore, we do not find any new evidence of excess neutrino emission in this analysis. In the right panel of Fig. 2, we perform a stacking analysis of all these > 100 GeV events (treat each event as a source), which shows no evidence in support of excess neutrino emission.

Above we show that the overlaps of events from the same source will bias the results. We therefore alternatively using another way to compare the correlation between the HEEs and the high-energy neutrinos. We pixelate the 13335 HEEs into a HEALPix skymap (Fig. 7) with NPixels=49152 (i.e., NSide=64, corresponding to a pixel size of $\sim 0.9^\circ$). Considering that the mean angular uncertainty of the IceCube events is also $\sim 0.9^\circ$, we think this choice is fine enough to not loose too much sensitivity. Then, we treat pixels of the skymap with non-zero event numbers as point sources. We also use the number of events in each pixel as the weighting (t_{pixel}).

The results with this method are shown in Fig. 3. We still do not find a significant correlation between the HEE map and the IceCube data. At most, only $\sim 39\%$ of the IceCube diffuse neutrino flux can be come from the directions of these HEEs.

D. 4FGL and 4LAC

Finally, we consider the 4FGL and 4LAC samples. Previously, there have been many works that searched for neutrino emissions from sources belonging to Fermi-LAT AGN catalogs (2LAC [65], 3LAC [66], 4LAC [67]). Compared to the 4LAC, the 4FGL catalog contains additional unassociated point sources. The majority of the unassociated sources at high latitudes are also AGN origins. The overlaps between different samples tested in this work are summarized in Table II. As seen in the table, the 4FGL and 3FHL have only a small fraction of overlapping sources and they can be regarded as roughly independent samples. However, the 4FGL and 4LAC have more source overlap, so these two samples cannot be regarded as completely independent. However for completeness, we also present results based on both catalogs.

Here we adopt the latest 4FGL-DR3 [82, 83] and 4LAC-DR2 [84, 85] catalogs, as well as 10 years of IceCube data. The same as the 3FHL analysis (Section IV B), we exclude sources with $|b| < 10^\circ$ and $|\text{Dec}| > 87^\circ$. The searches in the directions of individual 4FGL sources give results shown in Fig. 4. Like the above 3FHL and HEE searches, the distribution is consistent with Gaussian fluctuations, with no sign of statistically significant neutrino emission. We note there are 7 sources with TS $>$ 9, they are (the numbers in parentheses are TS values): NGC 1068 (22.3), J1210.3+3928 (13.6), J0006.40+0135 (12.9), J0940.3-7610 (12.7), J1543.0+6130 (10.3), J0118.7-0848 (10.0), PKS 1424+240 (9.7). The 4FGL sample contains a total of 4689 sources, statistically ~ 12 (~ 2)

FIG. 3: We pixelate the HEEs into skymap first and then treat pixels as point sources to perform the likelihood analysis. Left: Change of the TS value as a function of the total neutrino flux for the HEE sample. Right: The 95% confidence level upper limits on the total neutrino flux from the directions of the HEEs. We notice that for the two weighting schemes nearly the same results are obtained in the right panel, which is in fact a coincidence. From the left panel, we can see that they have different likelihood profiles.
TABLE II: Number of overlap sources between samples.

Catalog Name	N_{overlap}	N_{exc}
4FGL	(2496 in 4LAC)	4689
	(610 in 3FHL)	
4FGL Blazars	(2495 in 4LAC)	3399
	(554 in 3FHL)	
4FGL BL Lacs	(1010 in 4LAC)	1354
	(385 in 3FHL)	
4FGL FSRQs	(570 in 4LAC)	757
	(77 in 3FHL)	
4LAC Blazars	(586 in 3FHL)	3128
	(555 in 3FHL)	
4LAC BL Lacs	(386 in 3FHL)	1236
4LAC FSRQs	(77 in 3FHL)	707
3FHL Blazar		1215
3FHL BL Lacs		1078
3FHL FSRQs		697

* The 4FGL refers to 4FGL-DR3 and 4LAC refers to 4LAC-DR2.
** Two sources in different catalogs are regarded as an overlap source if their spatial positions are consistent within an error circle of 0.1°.

sources are expected to have TS values greater than 9.0 (12.0). Therefore, our results here are consistent with the expectation from statistical fluctuations. The 4LAC sample is roughly a subset of the 4FGL sample, so the individual-source search for this sample the same gives null results.

In the stacking analyses of neutrino emission from 4FGL or 4LAC sources, for any combination of spectral indices and weighting schemes (see Section III), we are not able to identify any evidence of neutrino emission (see the Appendix for related figures). The sources in the 4FGL and 4LAC contribute at most 42.78% and 57.69% of the diffuse neutrino flux, respectively. Finally, we repeat our analysis for 3 subsets (Blazar, BL Lac, FSRQ). These analyses, again, show no evidence of neutrino emission. The relevant results are presented in the Appendix.

V. SUMMARY AND CONCLUSIONS

High-energy astrophysical neutrinos provide a crucial window to study the Universe. However, at present, we know little about the origins of these neutrinos. Great efforts have been paid to find out the sources of the astrophysical neutrinos. Encouraging results that have been reported include the discovery of tentative neutrino excesses in the directions of TXS 0506+056 and NGC 1068. However, this is just the tip of the iceberg. These two sources, even if robustly confirmed as high energy neutrino emitters, contribute a very small fraction of the total high-energy neutrinos observed by the IceCube. Most of the diffuse astrophysical neutrinos remain unexplained.

In this paper, we study the correlations between IceCube high-energy neutrinos and gamma-ray observations by the Fermi-LAT telescope. We use the muon-track neutrino data of ten years recently released by the IceCube collaboration and search for excess neutrino emission for various Fermi-LAT samples. The gamma-ray samples considered in the work include: 3FHL, HEE, 4FGL, 4LAC and several subsets of these samples. For each sample, both a single-source analysis and a stacking analysis are performed. Compared to previous works of the same type, one of the major improvements in our analysis is that we utilize a larger (10 years) data set of IceCube neutrino observations.

No neutrino point source with large significance is found in our analysis. The stacking analysis also shows no statistically significant correlation between IceCube events and any of considered Fermi-LAT samples. From the null searching results, we place upper limits on their contributions to the IceCube diffuse neutrino flux. We conclude that in the case of $\Gamma = -2.5$ each of these source populations accounts for no more than $-2.5\%-36\%$ of IceCube diffuse neutrino flux between 16 TeV and 2.6 PeV. Since we are using the latest 10 years of IceCube neutrino data, we obtain upper limits a factor of 2 stronger than those based on 3 years of data. We also note that the analyses of BL Lacs usually give less restrictive constraints among all the samples we have considered; together with the tentative excess in the direction of TXS 0506+056, this suggests BL Lacs may contribute non-negligible fraction of the astrophysical flux observed by IceCube. This possibility could be tested with future neutrino telescopes such as IceCube-Gen2 [88, 89].

Acknowledgments

We thank for the valuable suggestion from the anonymous referee. We thank Bei Zhou for helpful discussions. This work is supported by the Guangxi Science Foundation (grant No. 2019AC20334) and Bagui Young Scholars Program (LHJ).

[1] M. G. Aartsen et al. (IceCube Collaboration), “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector,” Science 342, 1242856 (2013), arXiv:1311.5238.
[2] M. G. Aartsen et al. (IceCube Collaboration), “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data,” Phys. Rev. Lett. 113, 011101 (2014), arXiv:1405.5303.
[3] M. G. Aartsen et al. (IceCube Collaboration), “A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube,” Astrophy. J. 809, 98 (2015), arXiv:1507.03991.
[4] M. G. Aartsen et al. (IceCube Collaboration), “Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data,” Astrophy. J. 833, 3 (2016), arXiv:1607.08006.
[5] M. G. Aartsen et al. (IceCube Collaboration), “Characteristics
of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data,” Phys. Rev. Lett. 125, 121104 (2020), arXiv:2001.09520.

[6] R. Abbasi et al. (IceCube Collaboration), “The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data,” Phys. Rev. D 104, 022002 (2021), arXiv:2011.03545.

[7] R. Abbasi et al. (IceCube Collaboration), “Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data,” Astrophys. J. 928, 50 (2022), arXiv:2111.10299.

[8] M. D. Kistler and J. F. Beacom, “Guaranteed and Prospective Galactic TeV Neutrino Sources,” Phys. Rev. D 74, 063007 (2006), arXiv:astro-ph/0607082.

[9] J. F. Beacom and M. D. Kistler, “Dissecting the Cygnus Region with TeV Gamma Rays and Neutrinos,” Phys. Rev. D 75, 083001 (2007), arXiv:astro-ph/0701751.

[10] K. Murase, T. A. Thompson, B. C. Lacki, and J. F. Beacom, “New Class of High-Energy Transients from Crashes of Supernova Ejecta with Massive Circumstellar Material Shells,” Phys. Rev. D 84, 043003 (2011), arXiv:1012.2834.

[11] K. Murase and K. Ioka, “TeV–PeV Neutrinos from Low-Power Gamma-Ray Burst Jets inside Stars,” Phys. Rev. Lett. 111, 121102 (2013), arXiv:1306.2274.

[12] K. Murase, M. Ahlers, and B. C. Lacki, “Testing the Hadron-number Neutrinos at Water Ice detectors with IceCube,” Phys. Rev. D 88, 121301 (2013), arXiv:1306.3417.

[13] M. Ahlers and F. Halzen, “Pinpointing Extragalactic Neutrino Sources in Light of Recent IceCube Observations,” Phys. Rev. D 90, 043005 (2014), arXiv:1406.2160.

[14] I. Tamborra, S. Ando, and K. Murase, “Star-forming galaxies as the origin of diffuse high-energy backgrounds: Gamma-ray and neutrino connections, and implications for starburst history,” JCAP 09, 043 (2014), arXiv:1404.1189.

[15] K. Murase, Y. Inoue, and C. D. Dermer, “Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence,” Phys. Rev. D 90, 023007 (2014), arXiv:1403.4089.

[16] K. Bechtol, M. Ahlers, M. Di Mauro, M. Ajello, and J. Vandenbroucke, “Evidence against star-forming galaxies as the dominant source of IceCube neutrinos,” Astrophys. J. 836, 47 (2017), arXiv:1511.00688.

[17] M. D. Kistler and R. Laha, “Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance,” Phys. Rev. Lett. 120, 241105 (2018), arXiv:1605.08781.

[18] I. Bartos, M. Ahrens, C. Finley, and S. Marka, “Prospects of Establishing the Origin of Cosmic Neutrinos using Source Catalogs,” Phys. Rev. D 96, 023003 (2017), arXiv:1611.03861.

[19] T. Sudoh, T. Totani, and N. Kawanaka, “High-energy gamma-ray and neutrino production in star-forming galaxies across cosmic time: Difficulties in explaining the IceCube data,” Publ. Astron. Soc. Jap. 70, Publications of the Astronomical Society of Japan, Volume 70, Issue 3, 1 June 2018, 49, doi:10.1093/pasj/psy039 (2018), arXiv:1801.09683.

[20] I. Bartos, D. Veske, A. Keivani, Z. Marka, S. Countryman, E. Blaufuss, C. Finley, and S. Marka, “Bayesian Multi-Messenger Search Method for Common Sources of Gravitational Waves and High-Energy Neutrinos,” Phys. Rev. D 100, 083017 (2019), arXiv:1810.11467.

[21] M. Bustamante and M. Ahlers, “Inferring the flavor of high-energy astrophysical neutrinos at their sources,” Phys. Rev. Lett. 122, 241101 (2019), arXiv:1901.10087.

[22] T. Hovatta et al., “Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsähovi Radio Observatories,” Astron. Astrophys. 650, A83 (2021), arXiv:2009.10523.

[23] J. F. Beacom, N. F. Bell, D. Hooper, S. Pakvasa, and T. J. Weiler, “Decay of High-Energy Astrophysical Neutrinos,” Phys. Rev. Lett. 90, 181301 (2003), arXiv:hep-ph/0211305.

[24] M. C. Gonzalez-Garcia, F. Halzen, and M. Maltoni, “Physics reach of high-energy and high-statistics iccube atmospheric neutrino data,” Phys. Rev. D 71, 093010 (2005), arXiv:hep-ph/0502223.

[25] D. Hooper, D. Morgan, and E. Winstanley, “Lorentz and CPT invariance violation in high-energy neutrinos,” Phys. Rev. D 72, 065009 (2005), arXiv:hep-ph/0506091.

[26] K. Ioka and K. Murase, “IceCube PeV–EeV neutrinos and secret interactions of neutrinos,” PTEP 2014, 061E01 (2014), arXiv:1404.2279.

[27] K. C. Y. Ng and J. F. Beacom, “Cosmic neutrino cascades from secret neutrino interactions,” Phys. Rev. D 90, 065035 (2014), [Erratum: Phys.Rev.D 90, 089904 (2014)], arXiv:1404.2288.

[28] M. G. Aartsen et al. (IceCube Collaboration), “Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption,” Nature 551, 596 (2017), arXiv:1711.08119.

[29] M. Bustamante and A. Connolly, “Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers,” Phys. Rev. Lett. 122, 041101 (2019), arXiv:1711.11043.

[30] B. Zhou and J. F. Beacom, “Neutrino-nucleus cross sections for W-boson and trident production,” Phys. Rev. D 101, 036011 (2020), arXiv:1910.08090.

[31] B. Zhou and J. F. Beacom, “W-boson and trident production in TeV–PeV neutrino observatories,” Phys. Rev. D 101, 036010 (2020), arXiv:1910.10720.

[32] B. Zhou and J. F. Beacom, “Dimuons in neutrino telescopes: New predictions and first search in IceCube,” Phys. Rev. D 105, 093005 (2022), arXiv:2110.02974.

[33] M. G. Aartsen et al. (IceCube Collaboration), “Detection of a particle shower at the Glashow resonance with IceCube,” Nature 591, 220 (2021), [Erratum: Nature 592, E11 (2021)], arXiv:2110.15051.

[34] R. Abbasi et al. (IceCube Collaboration), “Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector,” Astrophys. J. 732, 18 (2011), arXiv:1012.2137.

[35] M. G. Aartsen et al. (IceCube Collaboration), “Search for Time-independent Neutrino Emission from Astrophysical Sources with 3 yr of IceCube Data,” Astrophys. J. 779, 132 (2013), arXiv:1307.6669.

[36] M. G. Aartsen et al. (IceCube Collaboration), “Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data,” Astrophys. J. 796, 109 (2014), arXiv:1406.6757.

[37] S. Adrian-Martinez et al. (ANTARES, IceCube Collaboration), “The First Combined Search for Neutrino Point-sources in the Southern Hemisphere With the Antares and Icecube Neutrino Telescopes,” Astrophys. J. 823, 65 (2016), arXiv:1511.02149.

[38] M. G. Aartsen et al. (IceCube Collaboration), “All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data,” Astrophys. J. 835, 105 (2017), arXiv:1609.04981.

[39] M. G. Aartsen et al. (IceCube Collaboration), “Search for astrophysical sources of neutrinos using cascade events in IceCube,” Astrophys. J. 846, 136 (2017), arXiv:1705.02383.

[40] M. G. Aartsen et al. (IceCube Collaboration), “Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data,” Eur. Phys. J. C 79, 234 (2019), arXiv:1811.07979.
et al., “Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events,” Astrophys. J. 886, 12 (2019), arXiv:1907.06714.

[43] M. G. Aartsen et al. (IceCube Collaboration), “IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae,” Astrophys. J. 898, 117 (2020), arXiv:2003.12071.

[44] M. G. Aartsen et al. (IceCube), Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanos, Kippen, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403 Collaboration, “Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A,” Science 361, eaat1378 (2018), arXiv:1807.08816.

[45] M. G. Aartsen et al. (IceCube Collaboration), “Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert,” Science 361, 147 (2018), arXiv:1807.08794.

[46] A. Keivani et al., “A Multimessenger Picture of the Flaring Blazar TXS 0506+056: implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration,” Astrophys. J. 864, 84 (2018), arXiv:1807.04537.

[47] R.-Y. Liu, K. Wang, R. Xue, A. M. Taylor, X.-Y. Wang, Z. Li, and H. Yan, “Hadrornuclear interpretation of a high-energy neutrino event coincident with a blazar flare,” Phys. Rev. D 99, 063008 (2019), arXiv:1807.05113.

[48] S. Gao, A. Fedynitch, W. Winter, and M. Pohl, “Modelling the coincident observation of a high-energy neutrino and a bright blazar flare,” Nature Astron. 3, 88 (2019), arXiv:1807.04275.

[49] R. Xue, R.-Y. Liu, M. Petropoulou, F. Oikonomou, Z.-R. Wang, K. Wang, and X.-Y. Wang, “A two-zone model for blazar emission: implications for TXS 0506+056 and the neutrino event IceCube-170922A,” Astrophys. J. 886, 23 (2019), arXiv:1908.10190.

[50] R. Xue, R.-Y. Liu, Z.-R. Wang, N. Ding, and X.-Y. Wang, “A Two-zone Blazar Radiation Model for “Orphan” Neutrino Flares,” Astrophys. J. 906, 51 (2021), arXiv:2011.03681.

[51] M. Kadler et al., “Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event,” Nature Phys. 12, 807 (2016), arXiv:1602.02012.

[52] P. Padovani, B. Boccardi, R. Falomo, and P. Giommi, “PKS 1422+240: yet another masquerading BL Lac object as a possible IceCube neutrino source,” Mon. Not. Roy. Astron. Soc. 511, 4692 (2022), arXiv:2202.04363.

[53] X. Rodrigues, S. Garrappa, S. Gao, V. S. Paliya, A. Franchiwick, and W. Winter, “Multiwavelength and Neutrino Emission from Blazar PKS 1502+106,” Astrophys. J. 912, 54 (2021), arXiv:2009.04026.

[54] E. Waxman and J. N. Bahcall, “High-energy neutrinos from cosmological gamma-ray burst fireballs,” Phys. Rev. Lett. 78, 2292 (1997), arXiv:astro-ph/9701231.

[55] R. Abbasi et al. (IceCube Collaboration), “Search for muon neutrinos from Gamma-Ray Bursts with the IceCube neutrino telescope,” Astrophys. J. 710, 346 (2010), arXiv:0907.2227.

[56] H.-N. He, R.-Y. Liu, X.-Y. Wang, S. Nagataki, K. Murase, and Z.-G. Dai, “Icecube Nondetection of Gamma-Ray Bursts: Constraints on the Fireball Properties,” Astrophys. J. 752, 29 (2012), arXiv:1204.0857.

[57] M. G. Aartsen et al. (IceCube Collaboration), “Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube,” Astrophys. J. Lett. 805, L5 (2015), arXiv:1412.6510.

[58] A. Loeb and E. Waxman, “The Cumulative background of high energy neutrinos from starburst galaxies,” JCAP 05, 003 (2006), arXiv:astro-ph/0601695.

[59] H.-N. He, T. Wang, Y.-Z. Fan, S.-M. Liu, and D.-M. Wei, “Diffuse PeV neutrino emission from ultraluminous infrared galaxies,” Phys. Rev. D 87, 063011 (2013), arXiv:1303.1253.

[60] C. Lunardini, G. S. Vance, K. L. Emig, and R. A. Windhorst, “Are starburst galaxies a common source of high energy neutrinol and cosmic rays?” JCAP 10, 073 (2019), arXiv:1902.09663.

[61] F. W. Stecker, C. Done, M. H. Salamon, and P. Sommers, “High-energy neutrinos from active galactic nuclei,” Phys. Rev. Lett. 66, 2697 (1991), [Erratum: Phys.Rev.Lett. 69, 2738 (1992)].

[62] F. Halzen and E. Zas, “Neutrino fluxes from active galaxies: A Model independent estimate,” Astrophys. J. 488, 669 (1997), arXiv:astro-ph/9702193.

[63] A. Atoyan and C. D. Dermer, “High-energy neutrinos from photomeson processes in blazars,” Phys. Rev. Lett. 87, 221102 (2001), arXiv:astro-ph/0108053.

[64] X.-Y. Wang and R.-Y. Liu, “Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos,” Phys. Rev. D 93, 083005 (2016), arXiv:1512.08596.

[65] M. G. Aartsen et al. (IceCube Collaboration), “The contribution of Fermi-2LC blazars to the diffuse TeV-PeV neutrino flux,” Astrophys. J. 835, 45 (2017), arXiv:1611.03874.

[66] D. Hooper, T. Linden, and A. Viergell, “Active Galactic Nuclei and the Origin of IceCube’s Diffuse Neutrino Flux,” JCAP 02, 012 (2019), arXiv:1810.02823.

[67] D. Smith, D. Hooper, and A. Viergell, “Revisiting AGN as the source of IceCube’s diffuse neutrino flux,” JCAP 03, 031 (2021), arXiv:2007.12706.

[68] C. Yuan, K. Murase, and P. Mészáros, “Complementarity of Stacking and Multiplet Constraints on the Blazar Contribution to the Cumulative High-Energy Neutrino Intensity,” Astrophys. J. 890, 25 (2020), arXiv:1904.06371.

[69] A. Plavin, Y. Y. Kovalev, Y. A. Kovalev, and S. Troitsky, “Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies,” Astrophys. J. 894, 101 (2020), arXiv:2001.00930.

[70] A. V. Plavin, Y. Y. Kovalev, Y. A. Kovalev, and S. V. Troitsky, “Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars,” Astrophys. J. 908, 157 (2021), arXiv:2009.08914.

[71] B. Zhou, M. Kamionkowski, and Y.-f. Liang, “Search for High-Energy Neutrino Emission from Radio-Bright AGN,” Phys. Rev. D 103, 123018 (2021), arXiv:2103.12813.

[72] M. Huber (IceCube Collaboration), “Searches for steady neutrino emission from 3FHL blazars using eight years of IceCube data from the Northern hemisphere,” PoS ICRC2019, 916 (2020), arXiv:1908.08458.

[73] J.-W. Luo and B. Zhang, “Blazar-IceCube neutrino association revisited,” Phys. Rev. D 101, 103015 (2020), arXiv:2004.09686.

[74] R. Abbasi et al. (IceCube Collaboration), “Search for Multi-flare Neutrino Emissions in 10 yr of IceCube Data from a Catalog of Sources,” Astrophys. J. Lett. 920, L45 (2021), arXiv:2109.05818.

[75] R. Abbasi et al. (IceCube Collaboration), “Search for Astrophysical Neutrinos from 1FHL Blazars with IceCube,” (2022), arXiv:2207.04946.

[76] R. Abbasi et al. (IceCube Collaboration), “IceCube Data for Neutrino Point-Source Searches Years 2008-2018,” (2021), arXiv:2207.04946.
[77] A. Achterberg et al. (IceCube Collaboration), “First Year Performance of The IceCube Neutrino Telescope,” Astropart. Phys. 26, 155 (2006), arXiv:astro-ph/0604450.

[78] M. G. Aartsen et al. (IceCube Collaboration), “Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data,” Phys. Rev. Lett. 124, 051103 (2020), arXiv:1910.08488.

[79] M. G. Aartsen et al. (IceCube Collaboration), “The IceCube Neutrino Observatory: Instrumentation and Online Systems,” JINST 12, P03012 (2017), arXiv:1612.05093.

[80] W. B. Atwood et al. (Fermi-LAT Collaboration), “The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission,” Astrophys. J. 697, 1071 (2009), arXiv:0902.1089.

[81] M. Ajello et al. (Fermi-LAT Collaboration), “3FHL: The Third Catalog of Hard Fermi-LAT Sources,” Astrophys. J. Suppl. 232, 18 (2017), arXiv:1702.00664.

[82] S. Abdollahi et al. (Fermi-LAT Collaboration), “Fermi Large Area Telescope Fourth Source Catalog,” Astrophys. J. Suppl. 247, 33 (2020), arXiv:1902.10045.

[83] S. Abdollahi et al. (Fermi-LAT Collaboration), “Incremental Fermi Large Area Telescope Fourth Source Catalog,” (2022), arXiv:2201.11184.

[84] M. Ajello et al. (Fermi-LAT Collaboration), “The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope,” Astrophys. J. 892, 105 (2020), arXiv:1905.10771.

[85] B. Lott, D. Gasparini, and S. Ciprini, “The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope – Data Release 2,” (2020), arXiv:2010.08406.

[86] J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle, and T. Montaruli, “Methods for point source analysis in high energy neutrino telescopes,” Astropart. Phys. 29, 299 (2008), arXiv:0801.1604.

[87] S. S. Wilks, “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses,” Annals Math. Statist. 9, 60 (1938).

[88] M. G. Aartsen et al. (IceCube-Gen2 Collaboration), “IceCube-Gen2: the window to the extreme Universe,” J. Phys. G 48, 060501 (2021), arXiv:2008.04323.

[89] B. Clark (IceCube-Gen2 Collaboration), “The IceCube-Gen2 Neutrino Observatory,” JINST 16, C10007 (2021), arXiv:2108.05292.
FIG. 5: The change of the TS value as a function of the total neutrino flux from the sources in different samples. The left, middle and right columns are for the 3FHL, 4FGL and 4LAC samples, respectively. The first row is for all sources in each catalog, while from the second to the fourth rows, the plots are for the subsets of blazars, BL Lacs and FSRQs, respectively. For each source sample, we consider three different choices of the neutrino spectral index (solid, dashed and dotted lines) and two weighting schemes (red and blue lines). The vertical green band in each plot is the all-sky diffuse astrophysical neutrino flux measured by IceCube.

Appendix A: Figures for all samples
FIG. 6: The 95% confidence level upper limits on the total neutrino flux from the sources in different samples. The constraints are compared to the all-sky diffuse neutrino flux measured by IceCube (green band). The number above each line displays the maximum fraction that the corresponding sample can contribute to the total diffuse neutrino flux. For each sample, we consider three different choices of the neutrino spectral index (solid, dashed and dotted lines) and two weighting schemes (red and blue lines).
Appendix B: Sky map for the Fermi-LAT high-energy events

FIG. 7: Sky map for the Fermi-LAT high-energy (> 100 GeV) events in equatorial coordinates. The Galactic plane of |b| < 10° will be masked in our HEE analysis.