Fluidic actuation in soft robots traditionally requires a complex assemblage of pumps, regulators, valves, and sensors, often resulting in large and bulky support systems. This added bulk can often hinder a robot’s ability to be untethered, perform complex tasks, or bring challenges when it comes to maintenance or upgradeability. To address these limitations, herein, a simple and highly modular bidirectional soft robotic appendage is presented that integrates the pump, flow lines, and actuator into a compact, closed hydraulic system, which is driven by an integrated stepper motor, allowing for positional control and fast response times. The actuator can also be swapped in under five seconds, allowing for rapid reconfiguration. Each component has been thoroughly characterized to determine an overall electrical to mechanical efficiency of the system, and from these calculations, it is demonstrated that the actuator utilizes only 1/15th the required energy to achieve a specific bending angle, and is four-fold more power-efficient than similar-sized soft actuators and pumping systems reported in the literature. The integrated actuator and fluidic engine construct presented here thus represents a major departure from previous soft actuator control platforms in that everything is simplified down to a single self-contained unit, demonstrating unparalleled versatility and modularity.

1. Introduction

Consisting of dozens of separate and potentially error-prone components, modern soft robotic prototypes can exhibit staggeringly complex networks of tubes, pumps, valves, and sensors that are required for their successful operation. As a consequence of this multicomponent complexity, most soft robots are bulky and inefficient, are difficult and time-consuming to service and upgrade, exhibit limited modularity, and offer limited rapid prototyping options for quickly exploring novel gaits or multilegged configurations. In contrast, soft robotic prototypes that focus on the integration of customized fluidic systems with their adjacent actuators can offer the potential for increased actuator performance, longer autonomous range, and a more compact form factor.

In an effort to simplify these traditionally complex, bulky, and inefficient fluidic power systems, here we describe the design and fabrication of a compact and fully self-contained peristaltic pump-based fluidic engine with an integrated bidirectional PneuNet actuator (Figure 1). Using a highly customizable manufacturing approach, this fully integrated soft robotic appendage can be fabricated with an embedded peristaltic pump cap, tubing, strain-limiting wire mesh, and removable chamber-defining soft cores, all while being fabricated in a simple one-step injection molding process, with no entrapped air bubbles.

For the design of soft actuators, there are several pros and cons that must be considered when deciding whether to use pneumatic or hydraulic control systems. Gases are routinely used to power soft robots, and with low-cost compressors, valves, and tubing, are by far the most economical. Gases have the advantage of being able to be stored at high pressure, so compressor-based systems only have to run a fraction of the time to store the required energy needed for actuation. There are, however, inherent efficiency losses in any compressed-gas-based system, as a portion of the energy powering the compressor is dissipated as heat. Depending on the application or intended environment, buoyancy from gases can assist a robot (e.g., for buoyancy control) or be detrimental when used under high hydrostatic pressures (e.g., for deep-sea applications). Although actuator response times from gases are rapid, precise gas-actuated control requires sensors and feedback systems. Liquids, in contrast, are for all practical purposes incompressible, and in the right applications, lead to improved dynamic behavior, and higher efficiency as there is no energy loss due to fluid compression. The liquid response time, however, is limited by cavitation, but its control can be significantly more precise than for gas-based systems.
1.1. Limitations in Existing Fluidic Engines

During the prototyping process, we identified a set of fluidic engine design requirements for the successful operation of our bidirectional PneuNet actuator: 1) adequate flow rate and pressure to fully bend the actuator; 2) reversible (i.e., bidirectional) flow control; 3) zero static backflow or leakage between adjacent actuator bellows; 4) sensor-free positional control with achievable accuracies similar to that obtained from using a pressure sensor; 5) minimal fluid volume in the peripheral flow lines; and 6) response times similar to position-controlled pneumatic actuators (up to 36 s⁻¹).

To meet all of these design criteria, a range of fluidic engines was considered all of which could generally be categorized as either stored high-pressure fluid systems or microcompressors.

To achieve high pressures (>10 MPa) or high flow rates (>100 SLM), liquid CO₂ or compressed air canisters can be used. These canisters are beneficial in applications that only require positive pressure, and can be used in an antagonistic actuator pair.

Pressure pumps are also commonly used in these systems and allow ambient fluid to be compressed through the use of electric motors or internal combustion engines (although other methods have also been demonstrated). Pump types include microcompressors, centrifugal, diaphragm, peristaltic, piston, screw, and vane-based designs. Batteries typically power on-board pumping systems, although liquid fuel can also be used, and a number of untethered robots with a wide range of body plans has been successfully developed using these approaches.

Although diaphragm and centrifugal pumps are most often used due to their compact size (fist sized or smaller), low cost (sub-$100), and useful operating pressure range up to 0.2 MPa, both pump types are not capable of running in reverse, and centrifugal pumps cannot prevent fluid backflow in a static state. As a result, most soft robots using these pump types also use valves, or include a second pump to handle stationary or reverse flows.

Although previous studies have compared the energy density of these different soft robotic actuation systems as a function of weight, these calculations do not typically take into consideration the mass of all the necessary hardware for the system to function (tubes, valves, regulators, storage, sensors, etc.).

For the application presented here, a peristaltic pump met all of our requirements. Many can achieve pressures up to ≈100 kPa, with flow rates determined by tube diameter and...
motor speed. They are easily capable of forward or reverse operation and while pinching the tube to prevent backflow, and when combined with a stepper motor, allow for compact size and positional control.

Peristaltic pumps, however, are not commonly used in soft robotic applications due the limited hydraulic power per unit volume or increased weight compared to equivalently sized diaphragm or centrifugal pumps.[22] This common lack of peristaltic pump implementation in traditional soft robotic fluidic networks is based on the fact that these systems tend to use an accumulator and a valving system to centrally distribute fluid to multiple actuators, instead of dedicating a single pump to each actuator. Despite these limitations, however, highly optimized actuators and fluidic systems, such as the positive displacement cyclic actuator developed by Katzschmann et al. for a robotic fish tail, are able to utilize the hydraulic fluid in a fully closed system, without the need for an accumulator, thereby reducing weight and eliminating the need for other bulky fluidic components.[16]

Inspired by these previous integrated actuator-based systems, we set out to create a highly modular and more energy-efficient alternative. The key design elements of our fully integrated soft robotic appendage (Figure 1) are described in detail as follows. To eliminate the need for bulky barbed fittings, we began by spatially constraining the tubing within the pump housing, which reduced the dead volume of fluid in the tube to just 0.4% of the total system volume by placing the pump head adjacent to the actuator. We eliminated the need for an accumulator by utilizing the actuator’s elastomeric properties within a closed system. We eliminated all valves by using a bidirectional pump that has no static backflow up to 100 kPa. We further eliminated the need for differential pressure feedback for positional control by using a stepper motor matched to a pump head designed for precision dosing. Through the implementation of these novel design elements into a fully integrated closed and easily

Figure 2. Performance quantification of the peristaltic pump using biharmonic interpolation. Solid black dots refer to experimental data points, with a surface plot fit to show trends. A) Results of the peristaltic pump volumetric displacement per revolution at varying angular velocities. Q_e is the effective volumetric flow rate of the peristaltic pump, p is the differential pressure of the pump, and n is the rotational velocity. B) A comparison of experimental flow rate with the pump technical specifications as provided by the manufacturer. C) Characterization of the stepper motor power, P_{SM}. D) The stepper driver’s power, P_{SD} (note that the p and n axes are flipped compared to the other plots to better show the surface). E) The controller’s power consumption, $P_{Controller}$. F) Overall system efficiency of the fluidic engine. G) Measurement schematic showing how the electrical, mechanical, hydraulic, and finite element modeling (FEM) measurements contribute to the overall efficiency.
swappable system, we have achieved a level of design simplicity, modularity, control, and fast response time not seen in traditional soft robotic prototypes.

1.2. Pumping, Storage, Control, and Feedback

Figure 1D displays a traditional minimalist closed hydraulic system to drive a bidirectional hydraulic actuator. A standard liquid rotary diaphragm pump is used with a hydraulic accumulator for the storage of pressurized fluid (similar to that of an electrical capacitor). A 5/3-closed center valve controls three states for each side of the actuator: inflation, stasis, and deflation. Once the actuator begins to inflate, (unloaded) curvature control can be achieved through reading the differential pressure gauge, which is mapped to the curvature of the entire actuator. If positional control is desired with a load, a strain sensor along the surface of the actuator, or pressure/force sensors along the surface, would be required to know where the external loads are being applied.

In contrast, our design shown in Figure 1E focuses on the unique abilities of a peristaltic pump. These types of pumps entrap a fixed amount of fluid per revolution, and a stepper motor allows precise volumetric control of the fluid, even with open-loop control. They are capable of reversing the flow direction simply by reversing the motor rotation, and naturally prevent backflow when idled, with the rotors pinching the tube in one or more positions. Peristaltic pumps can generate moderate pressures (around 100 kPa), are self-priming, and as such, are generally chosen for precise dispensing applications, rather than for high flow rates. As shown in Figure 1E, our highly simplified hydraulic system is condensed to a single peristaltic pump driving the left and right bellow cavities directly.

2. Results

As shown in Figure 2F, the maximum system efficiency was ≈2%, with the smallest bending radius and highest differential pressure ($R = 32$ mm at 86.2 kPa) obtained with a pump speed of 900 RPM. If we compare our results to those reported previously by Padovani et al. for a similar system configuration that incorporated a positive-displacement external gear micropump, our design exhibits a four-fold improvement in efficiency at equivalent RPM and pressure (900 RPM and 90 kPa).[24]

Figure 2A details the effective flow rate of the peristaltic pump, Q_e. Here we see the benefits of a positive displacement pump, where the volumetric displacement per revolution is fairly consistent over the full range of pressures. Although the experimental flow measurements we obtained are within ~15% of those stated by the manufacturer, these minor deviations can likely be attributed to minor differences in tube material, tube wear, lubrication, pumping fluid type, and operating temperature.

In Figure 2A–E we evaluate P_{SM}, P_{SD}, and $P_{\text{Controller}}$. We observe that the stepper motor’s baseline power consumption...
is \(\approx 3.5 \) W at 10 RPM, and at full \(n \), peaks at 7.5 W, as shown in Figure 2C. As expected, the stepper driver power consumption, \(P_{\text{STD}} \), is inversely proportional to the RPM between 0.5 and 1.5 W, as shown in Figure 2D (note that the graph axis values are reversed compared to the other figures). Finally, \(P_{\text{Controller}} \) (Figure 2E) shows a relatively noisy plot but, in general, shows no obvious trend and is roughly constant within the operational ranges recommended by the manufacturer.

Six pressure and radius of curvature values are plotted in Figure 3, showing changing curvature as the bellow actuates from near rest (\(R = 247 \) mm/0 kPa) to fully curved (32 mm/86.2 kPa). For reference, Table 1 includes achievable numerical ranges for each subsystem.

Figure 3 shows the key efficiency data at six notable bending radii. These estimates clearly demonstrate that efficiency is mainly limited by \(\eta_{\text{SM}} \) and \(\eta_{\text{Pump}} \), which are directly correlated to RPM and differential pressure as described by Equations (S3.4) and (S3.6). Supporting Information, respectively. \(\eta_{\text{Bellow}} \) is the third limiting factor and is directly correlated to the energy expended during the deformation of the bellow’s elastomeric material.

Because, to our knowledge, there is no existing information regarding whole system efficiency for soft robotic appendages (from electrical input power to mechanical output power), we can take a compartmentalized approach for comparing the performance metrics of our system to similar bellow actuators described previously. Figure 4 compares Marchese et al.’s bellow design to our own, both of which exhibit similar dimensions and operating pressures, as shown in Table 2. As seen from these comparative studies, our bellow is capable of nearly double the bending angle, for only half the required pumping energy, results which may be related to minor design element differences, including bellow angle, wall thickness, and width of the central axis, between the two systems.

Table 1. Efficiency ranges of all subsystems.

Efficiency range	Min	Max
\(\eta_{\text{Controller}} \)	0.810	0.981
\(\eta_{\text{ID}} \)	0.706	0.957
\(\eta_{\text{SM}} \)	\(\leq 0.001 \)	0.312
\(\eta_{\text{Pump}} \)	0.013	0.252
\(\eta_{\text{Bellow}} \)	0.287	0.595

Figure 4. Performance comparison between the actuator described in this study and a similar design reported previously by Marchese et al.\(^{[19]}\)
reduce the positional accuracy of the system, and also limit the maximum motor speed, up to either a motor torque or fluid cavitation limit. 3) Increasing the motor speed, which would require a different stepper motor, or replacement of the stepper motor with a DC motor and encoder. This modification could also entail adding a gear box to the stepper motor to increase the RPM, while reducing torque, which could directly increase the volumetric flow rate of the fluid, up to either its torque or fluid cavitation limit.

Because of its highly modular and self-contained architecture, we envision that our integrated soft appendage could be used for the rapid development of application-specific soft robots designed to navigate a wide range of different terrains.

Since the self-contained fluidic engine directly translates electrical signals into bellow movement through a closed fluidic system, retrofitting existing robotic arms would not require additional plumbing or the installation of additional pneumatic or hydraulic hardware.

Further refinements to our design to favor specific performance metrics, such as applied load or minimum bending radius of curvature, could provide the basis for a set of performance-optimized and geometrically standardized components for a soft robotic toolkit, where fully interchangeable elements could be tiled together and quickly exchanged to explore task-specific gaits or manipulator configurations.

As such, this fluidic engine could be used in the development of multifinger grippers with interchangeable units for shape-specific grasping, or in the prototyping of new robotic platforms such as the example shown in Figure 5, where five of these appendages are arranged in a radially symmetrical echinoderm-inspired architecture.

As demonstrated by these examples, the fully integrated soft appendage described here thus offers several unique opportunities for the creation of more energy-efficient multifinger and multilegged robotic prototypes that exhibit intrinsic robustness and high modularity, and helps lay the groundwork for the design and development of customized task- and environment-specific soft actuators and fully adaptable, customizable, and versatile robotic research platforms for a wide range of emerging applications.

4. Experimental Section

Bidirectional PneuNet Actuator Integration: Although traditional soft, pleated, PneuNet actuators are designed to have maximum curvature in one direction, which is induced by a positive pressure differential, limited bending can also be achieved in the opposite direction by applying a vacuum. This reverse bending is highly limited by the angle of the bellow segments (as shown in Figure 1), where a bellow angle close to zero corresponds to minimal bending. As the bellow angle increases, the amount of reverse bending also increases, which can be effectively leveraged when designing a bidirectional actuator, consisting of back-to-back PneuNet bellows, which were used in this study. As shown in Figure 1E, one of the major advantages of using a peristaltic pump for controlling the bending of a bidirectional PneuNet actuator is that during pumping, the convex actuator is inflated, while the concave actuator is simultaneously evacuated, both at constant rates, significantly reducing bending resistance, increasing efficiency, and minimizing achievable bending radius.

Design: The actuator was designed to integrate directly into the removable cap of a peristaltic pump. The two main factors for pump selection included a pumping rate that could achieve the desired bending rate of the actuator and the maximum achievable pressure differential. In addition, there were other peristaltic pump-specific design features that needed to be explored that could directly influence system performance. For example, although fewer tube rollers in a peristaltic pump would increase the volumetric flow rate, this modification would reduce the resolution of the volumetric flow control. To thus explore these trade-offs in an application-specific context, the ability to swap out rotors with different roller quantities was a key consideration. To meet the aforementioned performance metrics, a Boxer 9QQ pump (Boxer GmbH, Ottobeuren, Germany) was selected due to its robust and removable cap system, U-shaped tube routing design, a configurable number of rollers (3/4/6 rollers corresponding to 400/340/230 μL per revolution), and motor selection options (AC versus DC, and traditional versus stepper). After extensive evaluation of these different pump options, a high flow rate, three roller, stepper motor version was chosen for the final design (Boxer 9600 930).

A common challenge with the fabrication of fluidic elastic actuators and soft robots is the robust connection of the soft and rigid components. In the example discussed here, a method was needed by which a robust connection could be created between the soft fluidic elastic actuators and the rigid cap of the Boxer 9QQ peristaltic pump. To increase the available surface area for bonding and to distribute potential interfacial stresses between the modulus-mismatched components, a modified cap (shown in Figure 1 and 6), was designed with a 14.0 mm × 38.5 mm × 22.5 mm porous region along the connecting edge, consisting of 2.0 mm diameter holes spaced 4.0 mm on center, and arranged in a square grid pattern. During the fabrication process, high-pressure injected silicone impregnated this region and formed a robust mechanical connection between the two materials.

Typical PneuNet actuators frequently incorporate an inextensible fiber or mesh to favor bending overextension during inflation. Although there are many different materials that are likely suitable for such applications, fabrics such as cheesecloth have fibers that are challenging to restrain during molding, limiting fabrication reproducibility. To eliminate problems encountered through the use of cloth fibers, a thin metal mesh
(RadioScreen, Less EMF Inc., Latham, NY, USA) was inserted down the full length of the neutral axis, as shown in Figure 6C.

Another fabrication challenge was the comolding of the tube through the peristaltic pump cap, and into the actuator. To resolve this issue, a modified cap was created to hold a small length of tubing while slightly pinching it near the cut ends to reduce the likelihood of pull-out during pumping. A number of tube materials were evaluated for robust adhesion to Smooth-Sil 945 (Smooth-on, Macungie, PA, USA), and platinum-cured silicone tubing manufactured for Boxer Pumps (Boxer 9000.508) was eventually selected for its highest adhesion strength to the elastomer.

To produce the integrated soft appendage in a single fabrication step, a high-pressure liquid silicone injection molding process was used. To create the internal cavities within the actuator, removable soft cores were suspended inside the mold using 2 mm stainless steel rods, which protruded through the exterior mold on both sides. The two soft cores (for the right and left internal bellows) also contained a ribbed plug-like feature that was inserted into two ends of the tubing, which created seals and prevented the liquid silicone from ingress. During fabrication, the tubing was first inserted into the modified peristaltic pump cap, and a specially designed plug for the soft cores was then inserted into the tubing openings to prevent silicone from entering (Figure 6B). The soft core and cap assemblies were then inserted into the bottom mold. The metal support rods were then inserted through the mold and soft cores, and the locations of the soft cores were adjusted directly on top of the embedded cap (due to the higher forces needed to impregnate all of the cap’s porosity), and vent holes were located throughout the mold where air was likely to be trapped.

Fabrication: Due to the structural complexity and small feature sizes of the bellows, coupled with the required elastomer impregnation of the modified peristaltic pump cap, and the integration of the tubing and wire mesh, the entire appendage assembly was designed to be injection molded. This approach allows for sufficiently high injection pressures on the cartridge gun’s pistons (830 kPa/120 PSI) to flow the elastomer through the myriad of small openings and cavities. As shown in Figure 6A, the white top and bottom molds, soft cores, and rods were first sprayed with Smooth-On Ease Release 200 to allow for ease of removal. The soft cores were also manufactured through a similar injection molding process, but instead used True Skin 30 silicone (CHT Germany GmbH, Tübingen, Germany), which has an elongation to break that is three times that of the bellow’s elastomer, thus permitting ease of removal after molding.

During fabrication, the tubing was then inserted into the mold and soft cores, and the locations of the soft cores were adjusted directly on top of the embedded cap (due to the higher forces needed to impregnate all of the cap’s porosity), and vent holes were located throughout the mold where air was likely to be trapped.

Fabrication: Due to the structural complexity and small feature sizes of the bellows, coupled with the required elastomer impregnation of the modified peristaltic pump cap, and the integration of the tubing and wire mesh, the entire appendage assembly was designed to be injection molded. This approach allows for sufficiently high injection pressures on the cartridge gun’s pistons (830 kPa/120 PSI) to flow the elastomer through the myriad of small openings and cavities. As shown in Figure 6A, the white top and bottom molds, soft cores, and rods were first sprayed with Smooth-On Ease Release 200 to allow for ease of removal. The soft cores were also manufactured through a similar injection molding process, but instead used True Skin 30 silicone (CHT Germany GmbH, Tübingen, Germany), which has an elongation to break that is three times that of the bellow’s elastomer, thus permitting ease of removal after molding.

To produce the integrated soft appendage in a single fabrication step, a high-pressure liquid silicone injection molding process was used. To create the internal cavities within the actuator, removable soft cores were suspended inside the mold using 2 mm stainless steel rods, which protruded through the exterior mold on both sides. The two soft cores (for the right and left internal bellows) also contained a ribbed plug-like feature that was inserted into two ends of the tubing, which created seals and prevented the liquid silicone from ingress. The outer mold was produced on a Connex500 3D printer (Stratasys, Eden Prairie, MN, USA) using VeroClear (RC2D10) material. The modified pump cap was produced on an HP Multijet Fusion printer from thermally sintered nylon (HP Inc., Palo Alto, CA). The mold was designed with an injection gate directly on top of the embedded cap (due to the higher forces needed to impregnate all of the cap’s porosity), and vent holes were located throughout the mold where air was likely to be trapped.

Fabrication: Due to the structural complexity and small feature sizes of the bellows, coupled with the required elastomer impregnation of the modified peristaltic pump cap, and the integration of the tubing and wire mesh, the entire appendage assembly was designed to be injection molded. This approach allows for sufficiently high injection pressures on the cartridge gun’s pistons (830 kPa/120 PSI) to flow the elastomer through the myriad of small openings and cavities. As shown in Figure 6A, the white top and bottom molds, soft cores, and rods were first sprayed with Smooth-On Ease Release 200 to allow for ease of removal. The soft cores were also manufactured through a similar injection molding process, but instead used True Skin 30 silicone (CHT Germany GmbH, Tübingen, Germany), which has an elongation to break that is three times that of the bellow’s elastomer, thus permitting ease of removal after molding.

To produce the integrated soft appendage in a single fabrication step, a high-pressure liquid silicone injection molding process was used. To create the internal cavities within the actuator, removable soft cores were suspended inside the mold using 2 mm stainless steel rods, which protruded through the exterior mold on both sides. The two soft cores (for the right and left internal bellows) also contained a ribbed plug-like feature that was inserted into two ends of the tubing, which created seals and prevented the liquid silicone from ingress. The outer mold was produced on a Connex500 3D printer (Stratasys, Eden Prairie, MN, USA) using VeroClear (RC2D10) material. The modified pump cap was produced on an HP Multijet Fusion printer from thermally sintered nylon (HP Inc., Palo Alto, CA). The mold was designed with an injection gate directly on top of the embedded cap (due to the higher forces needed to impregnate all of the cap’s porosity), and vent holes were located throughout the mold where air was likely to be trapped.

Fabrication: Due to the structural complexity and small feature sizes of the bellows, coupled with the required elastomer impregnation of the modified peristaltic pump cap, and the integration of the tubing and wire mesh, the entire appendage assembly was designed to be injection molded. This approach allows for sufficiently high injection pressures on the cartridge gun’s pistons (830 kPa/120 PSI) to flow the elastomer through the myriad of small openings and cavities. As shown in Figure 6A, the white top and bottom molds, soft cores, and rods were first sprayed with Smooth-On Ease Release 200 to allow for ease of removal. The soft cores were also manufactured through a similar injection molding process, but instead used True Skin 30 silicone (CHT Germany GmbH, Tübingen, Germany), which has an elongation to break that is three times that of the bellow’s elastomer, thus permitting ease of removal after molding.

During fabrication, the tubing was then inserted into the mold and soft cores, and the locations of the soft cores were adjusted directly on top of the embedded cap (due to the higher forces needed to impregnate all of the cap’s porosity), and vent holes were located throughout the mold where air was likely to be trapped.

Fabrication: Due to the structural complexity and small feature sizes of the bellows, coupled with the required elastomer impregnation of the modified peristaltic pump cap, and the integration of the tubing and wire mesh, the entire appendage assembly was designed to be injection molded. This approach allows for sufficiently high injection pressures on the cartridge gun’s pistons (830 kPa/120 PSI) to flow the elastomer through the myriad of small openings and cavities. As shown in Figure 6A, the white top and bottom molds, soft cores, and rods were first sprayed with Smooth-On Ease Release 200 to allow for ease of removal. The soft cores were also manufactured through a similar injection molding process, but instead used True Skin 30 silicone (CHT Germany GmbH, Tübingen, Germany), which has an elongation to break that is three times that of the bellow’s elastomer, thus permitting ease of removal after molding.

During fabrication, the tubing was then inserted into the mold and soft cores, and the locations of the soft cores were adjusted directly on top of the embedded cap (due to the higher forces needed to impregnate all of the cap’s porosity), and vent holes were located throughout the mold where air was likely to be trapped.

Fabrication: Due to the structural complexity and small feature sizes of the bellows, coupled with the required elastomer impregnation of the modified peristaltic pump cap, and the integration of the tubing and wire mesh, the entire appendage assembly was designed to be injection molded. This approach allows for sufficiently high injection pressures on the cartridge gun’s pistons (830 kPa/120 PSI) to flow the elastomer through the myriad of small openings and cavities. As shown in Figure 6A, the white top and bottom molds, soft cores, and rods were first sprayed with Smooth-On Ease Release 200 to allow for ease of removal. The soft cores were also manufactured through a similar injection molding process, but instead used True Skin 30 silicone (CHT Germany GmbH, Tübingen, Germany), which has an elongation to break that is three times that of the bellow’s elastomer, thus permitting ease of removal after molding.

During fabrication, the tubing was then inserted into the mold and soft cores, and the locations of the soft cores were adjusted directly on top of the embedded cap (due to the higher forces needed to impregnate all of the cap’s porosity), and vent holes were located throughout the mold where air was likely to be trapped.

Fabrication: Due to the structural complexity and small feature sizes of the bellows, coupled with the required elastomer impregnation of the modified peristaltic pump cap, and the integration of the tubing and wire mesh, the entire appendage assembly was designed to be injection molded. This approach allows for sufficiently high injection pressures on the cartridge gun’s pistons (830 kPa/120 PSI) to flow the elastomer through the myriad of small openings and cavities. As shown in Figure 6A, the white top and bottom molds, soft cores, and rods were first sprayed with Smooth-On Ease Release 200 to allow for ease of removal. The soft cores were also manufactured through a similar injection molding process, but instead used True Skin 30 silicone (CHT Germany GmbH, Tübingen, Germany), which has an elongation to break that is three times that of the bellow’s elastomer, thus permitting ease of removal after molding.

During fabrication, the tubing was then inserted into the mold and soft cores, and the locations of the soft cores were adjusted directly on top of the embedded cap (due to the higher forces needed to impregnate all of the cap’s porosity), and vent holes were located throughout the mold where air was likely to be trapped.
During loading, the pressure was tracked in each chamber while the mold was placed in an oven at 65 °C for 30 min until fully cured. The rods and screws and the top and bottom molds were then removed. Compressed air was blown between the soft core and molded bellows to loosen the soft cores, which were then removed with parallel jaw pliers, through the opening seen in the left of Figure 6E.

To cap the tip of the molded bellow with additional elastomer, a small cap mold was used, as shown in Figure 6. First, the distal opening of the bellow, which was created following removal of the soft core, was cleaned with isopropanol, and the bellow was placed into the cap mold. Two luer lock fittings (for the left and right bellow openings) were screwed into the cap mold, and a syringe filled with mixed Smooth-Sil 945 was inserted into the fittings, while the bellow was oriented vertically, with the mold side facing down. A precise volume (0.75 mL) of silicone (calculated in CAD to completely seal the bellow tips) was then injected into each side of the bellows and capped. The bellow and its associated cap mold was then placed, still hanging in a vertical orientation, into a 65 °C oven for 30 min until fully cured. The cap mold was then removed and the remaining flashing was trimmed, as shown on the right in Figure 6.

Finally, the bellow was filled with water, primarily chosen due to convenience and compatibility for underwater use, but other liquids such as glycerol or vegetable oil could provide different fluidic properties, but which at this point have not been explored. Bellow filling started by inserting 1/8" plastic plugs into the rod holes located under the pump cap (Figure 6F). Two nozzles were next inserted between the top left and top right plugs and holes, and a syringe was used to inject water, while the opposite nozzle allowed air to escape (Figure 6G). Once all of the air had escaped and only water was flowing from the venting nozzle, the venting nozzle was removed. With the plug remaining in place, the syringe was used to further inflate the bellow with an additional 26 mL of water, and when full, the fill nozzle was removed.

FEM Characterization: Due to challenges associated with the development of analytical models for accurately simulating the behavior of structurally complex soft actuators such as the bidirectional design described here, finite element (FE) analysis was instead used to explore the energetic efficiency of the system.

The performance of the bidirectional PneuNet actuator, excluding the pumping system, was investigated using the FE method with the commercial software ABAQUS (Dassault Systèmes). The CAD geometry was used to further inflate the bellow with a neutral axis, and a least-squares circle was fitted to the bending deformation shown in the inset of Figure 7A.

Efficiency: Soft robot efficiencies are generally poor, ranging from 10% for jumping, 0.1% for swimming, and less than 0.001% for earthworm-like movements. Dramatically improving these efficiencies is of critical importance for increasing the functional lifespans of untethered soft robots, and the results reported here make significant advances toward achieving this goal.

The efficiency of the total system was characterized from the DC electrical input power to the power required to bend the actuator at a given speed, and to a given radius (or equivalent differential pressure as mapped in Figure 7). Figure 2G shows the methods and measurement points of the system. The efficiency of the total system, \(\eta \), is the product of the efficiency of the controller (\(\eta_{\text{Controller}} \)), stepper driver (\(\eta_{\text{SD}} \)), stepper motor (\(\eta_{\text{SM}} \)), and hydraulic efficiency (\(\eta_{\text{H Pump}} \)), and hydraulic bending efficiency of the bellow (\(\eta_{\text{Bending}} \)).

Efficiency Equations: The controller’s efficiency can be estimated as

\[
\eta_{\text{Controller}} = \frac{P_{\text{SD}}}{P_{\text{Controller}}} = \frac{I_{\text{SD}} \cdot V_{\text{SD}}}{I_{\text{Controller}} \cdot V_{\text{Controller}}}
\]

where \(I_{\text{SD}}, V_{\text{SD}} \), \(I_{\text{Controller}}, \) and \(V_{\text{Controller}} \) are the stepper driver’s measured current and voltage, and the controller’s measured current and voltage. The stepper driver’s efficiency can be calculated at a given RPM as

\[
\eta_{\text{SD}} = \frac{P_{\text{SM}}}{P_{\text{SD}}} = \frac{i_{\text{SM}} \cdot V_{\text{SM}}}{i_{\text{SD}} \cdot V_{\text{SD}}}
\]

where \(i_{\text{SM}}, V_{\text{SM}}, i_{\text{SD}}, \) and \(V_{\text{SD}} \) are the instantaneous electrical values of the stepper motor’s current and voltage, and the stepper driver’s current and voltage, over a full step cycle. The efficiency of the stepper motor can be calculated as

\[
\eta_{\text{SM}} = \frac{P_{\text{Pump}}}{P_{\text{SM}}} = \frac{T_{\text{SM}} \cdot n}{i_{\text{SM}} \cdot V_{\text{SM}}}
\]

where \(P_{\text{Pump}} \) is the effective torque (\(T_{\text{SM}} \)) times the angular velocity (\(n \)), and \(P_{\text{SM}} \) is the instantaneous current (\(i_{\text{SM}} \)) times the instantaneous voltage.
The peristaltic pump’s volumetric efficiency can be defined as

\[\eta_v = \frac{Q_e}{Q_{th}} = \frac{Q_e}{D \cdot n} \]

(5)

which addresses the flow losses of the pump’s theoretical flow rate \(Q_{th} \) to the effective flow rate \(Q_e \), where \(D \) is the pump’s displacement and \(n \) is the shaft’s angular velocity. The peristaltic pump’s mechanical–hydraulic efficiency \(\eta_{Pump} \) can be defined as

\[\eta_{Pump} = \frac{P_{Hyd}}{P_{Pump}} = \frac{Q_e \cdot \Delta p}{T_e \cdot n} = \eta_v \cdot \eta_{mh} \]

(6)

which is a function of the hydraulic power divided by the pump’s mechanical power.

The efficiency of the bellow actuator can be calculated as follows

\[\eta_{bending} = \frac{P_{Bending}}{P_{Hyd}} \]

(7)

where \(P_{Bending} \) is computed from the energy in the FE analysis to bend the actuator to a specified radius over a given time, and mapped to the RPM of the stepper motor. The total system efficiency can be thus calculated as

\[\eta_t = \eta_{Controller} \cdot \eta_{SD} \cdot \eta_{SM} \cdot \eta_{Pump} \cdot \eta_{Bellow} \]

(8)

Experimental Setup: To understand the global efficiency of the system, the efficiencies of each of the individual components were analyzed. The controller used to drive the stepper motor and execute motion commands was a Duet 2 Wifi (Duet 3D, UK), which uses high-efficiency TMC2660 stepper drivers (Trinamic, Hamburg, Germany), which were configured for full
steps, with a maximum current of 1000 mA. Acceleration control was turned off (resulting in the maximum possible acceleration), and a 24 V DC power supply was used to supply power to all electronics through the Duett 2 WiFi.
P_{controller}, P_{ED}, and P_{CM} were measured with a Keysight DSOX3 oscilloscope (Santa Rosa, CA, USA), equipped with Tektronix A622 (Beaverton, OR, USA) current and voltage probes. Adjacent subsystems were measured simultaneously to ensure the chopper drive signal of the stepper driver and stepper motor were synchronized. P_{pump} was measured in situ between the pump head and the stepper motor with a noncontact rotary torque sensor and encoder (Futek Model #TRH605, Irvine, CA, USA), and recorded with a National Instruments USB-6002 DAQ (Austin, TX, USA). P_{Hyd} was measured using analog pressure gauges and a graduated cylinder over a range of pressures and RPMs. P_{binding} was measured with a Vicon MX-CIGANET, six TO40 f = 18 mm/F2 tracking cameras, and Vicon Tracker v3.7.0 software (Vicon Motion Systems Ltd, UK) using five markers spaced evenly down the neutral axis of the bellow. Differential pressure was measured using two ProSense pressure transmitters (Model #SPT25-10-V30D, Oosterhout, The Netherlands) inserted in the integrated peristaltic pump head, and recorded with a USB-6002 DAQ synchronized with the Vicon system.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
The authors gratefully acknowledge support from the Office of Naval Research (award No. N00014-17-1-2063) and the Wyss Institute for Biologically Inspired Engineering.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords
biomimetic robots, fluidic engine, modular soft actuators, pneunet, soft locomotion, soft manipulation

Received: May 13, 2021
Revised: August 10, 2021
Published online: September 24, 2021

[1] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, X. Chen, M. Wang, G. M. Whitesides, Proc. Natl Acad. Sci. 2011, 108, 51 20400.
[2] M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner, M. Karpelson, R. J. Wood, G. M. Whitesides, Soft Robotics 2014, 1, 213.
[3] M. T. Tolley, R. F. Shepherd, M. Karpelson, N. W. Bartlett, K. C. Galloway, M. Wehner, R. Nunes, G. M. Whitesides, R. J. Wood, in IEEE Int. Conf. on Intelligent Robots and Systems, IEEE, Piscataway, NJ 2014 pp. 561–566.
[4] H.-Y. Chen, R. S. Diteesawat, A. Haynes, A. J. Partridge, M. F. Simons, E. Werner, M. Garrad, J. Rossiter, A. T. Conn, Front. Robot. AI 2019, 6.
[5] Y. Zhang, L. Ge, J. Zou, H. Xu, G. Gu, in 2019 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE/RSJ, Macau, 2019, pp. 3343–3348.
[6] M. Bell, I. Pestovski, W. Scott, K. Kumar, M. Jawed, D. Paley, C. Majidi, J. Weaver, R. Wood, IEEE Robot. Automat. Lett. 2018, 3, 1.
[7] M. Bell, T. Paschal, J. Spery, S. Sieniewicz, R. Wood, J. Weaver, IEEE Robot. Automat. Lett. 2019, 4, 4.
[8] M. A. Bell, L. Cattani, B. Gorissen, K. Bertoldi, J. C. Weaver, R. J. Wood, in IROS 2020, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA 2020, 6529, http://doi.org/10.1109/IROS45743.2020.9341138.
[9] P. Boyraz, G. Runge, A. Raatz, High-Throughput 2018, 7, 3.
[10] C. D. Onal, D. Rus, Bioinspir. Biomimet. 2013, 8, 2.
[11] M. Luo, Y. Pan, E. H. Skorina, W. Tao, F. Chen, S. Ozel, C. D. Onal, Bioinspir. Biomimet. 2015, 10, 5.
[12] V. W. Oguntosin, S. J. Nasuto, Y. Hayashi, in Proc. - UKSim-AMSS 17th Int. Conf. on Computer Modelling and Simulation, UKSim 2015, IEEE, Piscataway, NJ 2016, pp. 242–247.
[13] Z. Zhang, X. Wang, S. Wang, D. Meng, B. Liang, IEEE Access 2019, 7 134301.
[14] Z. Shen, J. Na, Z. Wang, IEEE Robot. Automat. Lett. 2017, 2, 2217.
[15] T. Hainsworth, L. Smith, S. Alexander, R. MacCurdy, IEEE Robot. Automat. Lett. 2020, 5, 4118.
[16] R. K. Katzschmann, A. D. Marchese, D. Rus, in Springer Tracts In Advanced Robotics, Vol 109, Springer Verlag, Berlin, 2016, pp. 405–420.
[17] A. D. Marchese, C. D. Onal, D. Rus, Exper. Robot. 2013, 41.
[18] A. D. Marchese, C. D. Onal, D. Rus, Soft Robot. 2014.
[19] A. D. Marchese, R. K. Katzschmann, D. Rus, Soft Robot. 2015, 2, 7.
[20] A. D. Marchese, D. Rus, Int. j. Robot. Res. 2016, 35, 840.
[21] D. Rus, M. T. Tolley, Nature 2015, 521, 467.
[22] M. Wehner, M. T. Tolley, Y. Mengüç, Y.-L. Park, A. Mozeika, Y. Ding, C. Onal, R. F. Shepherd, G. M. Whitesides, R. J. Wood, Soft Robot. 2014, 1, 263, http://doi.org/10.1089/soro.2014.0018.
[23] K. C. Galloway, K. P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchemnov, R. J. Wood, D. F. Gruber, Soft Robot. 2016, 3, 23.
[24] D. Padovani, E. J. Barth, IEEE Int. Conf. on Soft Robotics (RoboSoft), New Haven, CT, USA, 2020, 345, http://doi.org/10.1109/RoboSoft48309.2020.9116049.
[25] P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, C. J. Walsh, in Robotics And Autonomous Systems, Vol. 73, Elsevier, Amsterdam 2015, pp. 135–143.
[26] P. Polygerinos, K. C. Galloway, E. Savage, M. Herman, K. O. Donnell, C. J. Walsh, in Int. Conf. on Robotics and Automation (ICRA), 2015, Seattle, WA, USA 2015 pp. 2913–2919, http://doi.org/10.1109/ICRA.2015.7139597.
[27] M. Adami, A. Seibel, On-Board Pneumatic Pressure Generation Methods for Soft Robotics Applications, 2019, 8, 2, https://doi.org/10.3390/act8010002.
[28] Y. Kim, Y. Cha, Front. Bioeng. Biotechnol. 2020, 8.
[29] M. Bryant, J. Fitzgerald, S. Miller, J. Saltzman, S. Kim, Y. Lin, E. Garcia, in Active and Passive Smart Structures and Integrated Systems 2014 Vol. 9057, SPIE, San Diego, California, United States 2014, p. 90570H, https://doi.org/10.1117/12.2046368 (accessed: March 2014).
[30] B. Gorissen, W. Vincentie, F. Al-Bender, D. Reynaerts, M. De Volder, J. Micromech. Microeng. 2013, 23, 4.
[31] G. Gu, D. Wang, L. Ge, X. Zhu, Soft Robot. 2020, 8, 462, http://doi.org/10.1089/soro.2020.0039.
[32] Z. Zhang, Q. Zhang, M. Dai, X. Ding, Z. Xia, 24th Inter. Conf. on Mechatronics and Machine Vision in Practice (M2VIP) Auckland, New Zealand 2017, 1, 10.1109/M2VIP.2017.8211482.

[33] L. Shui, L. Zhu, Z. Yang, Y. Liu, X. Chen, Soft Matter 2017, 13, 8223.

[34] S. I. Rich, R. J. Wood, C. Majidi, Nat Electron, 2018, 1, 102.

[35] L. Chen, Y. Xue, W. Chen, M. Zhang, X. Chen, X. Cao, Z. Zhang, G. Li, T. Li, J. Appl. Phys. 2018, 124, 16.

[36] L. Zhu, Y. Cao, Y. Liu, Z. Yang, X. Chen, Soft Matter 2017, 13, 4441.

[37] T. Ren, Y. Li, M. Xu, Y. Li, C. Xiong, Y. Chen, Soft Robot. 2020, 7, 130.