Identification of essential genes in Caenorhabditis elegans through whole genome sequencing of legacy mutant collections

Erica Li-Leger*, Richard Feichtinger†, Stephane Flibotte§, Heinke Holzkamp†**, Ralf Schnabel†,
Donald G. Moerman*

*Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
V6T 1Z3

†Present Address: Secufy GmbH, CoWorking M1, Anni-Eisler-Lehmannstr. 3, 55122 Mainz, Germany

‡Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany

§UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada.

**Present Address: Department of Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
Short running title

Essential genes in *C. elegans*

Key words or phrases

- C. elegans
- Essential genes
- Maternal-effect
- Embryogenesis
- Fertilization
- Legacy mutants
- Whole genome sequencing

Corresponding author:

Name: Donald Moerman

Office mailing address including street name and number:

Department of Zoology
Life Sciences Centre
2350 Health Sciences Mall
Vancouver, B.C. Canada V6T 1Z3

Phone number: 604-822-3365

Email address: moerman@zoology.ubc.ca
It has been estimated that 15-30% of the ~20,000 genes in *C. elegans* are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with putative sperm-specific functions. In total, 58 essential genes were identified on chromosomes III, IV, and V, of which 49 genes are represented by novel alleles in this collection. Of these 49 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalogue of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in *C. elegans* are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.
INTRODUCTION

Essential genes are those required for the survival or reproduction of an organism, and therefore encode elements that are foundational to life. This class of genes has been widely studied for a number of reasons. Essential genes are often well conserved and can offer insight into the principles that govern common biological processes (Hughes 2002; Jordan et al. 2002; Georgi et al. 2013). Researching these genes and their functions has important implications in understanding the cellular and developmental processes that form complex organisms, including humans. Additionally, identifying genes that are lethal when mutated opens up new avenues through which drug development approaches can target parasites, pathogens, and cancer cells (for example, Doyle et al. 2010; Shi et al. 2015; Vyas et al. 2015; Zhang et al. 2018). Finally, the concept of a minimal gene set that is comprised of all genes necessary for life has been the subject of much investigation and has recently been of particular interest in the field of synthetic biology (reviewed in Ausländer et al. 2017).

Studying essential genes in humans is complicated by practical and ethical considerations. Accordingly, model organisms have played a key role in identifying and understanding essential genes, and efforts have been made to identify all essential genes in a few model organisms. Systematic genome-wide studies of gene function in Saccharomyces cerevisiae have uncovered more than 1,100 essential genes, many of which have phylogenetically conserved roles in fundamental biological processes such as cell division, protein synthesis and metabolism (Winzeler et al. 1999; Giaever et al. 2002; Yu et al. 2006; Li et al. 2011). While an important contribution, this is only a fraction of the all the essential genes in multicellular organisms. In
more complex model organisms, identifying all essential genes in the genome has not been so straightforward. The discovery of RNA interference (RNAi; Fire et al. 1998) enabled researchers to employ genome-wide reverse genetic screens to examine the phenotypic effects of gene knockdown (Fraser et al. 2000; Kamath et al. 2003). In general, this has been an effective, high-throughput method for identifying many genes with essential functions (Gönczy et al. 2000; Sönnichsen et al. 2005). However, there are limitations to using RNAi to screen for all essential genes, including incomplete gene knock down, off-target effects, and RNAi resistance in certain tissue or cell types; thus, many genes of biological importance escape identification in high-throughput RNAi screens. This highlights the motivation to obtain null alleles for every gene in the genome, which has been the goal of several model organism consortia (C. elegans Deletion Mutant Consortium 2012; Bradley et al. 2012; Varshney et al. 2013), though it has not yet been achieved for any metazoan.

Caenorhabditis elegans has been an important model in developmental biology for decades, and the ability to freeze and store populations of C. elegans indefinitely allows investigators to share their original mutant strains with others around the world. In the first few decades of C. elegans research, dozens of forward genetics screens were used to uncover mutants in hundreds of essential genes (for example, Herman 1978; Meneely and Herman 1979; Rogalski et al. 1982; Howell et al. 1987; Clark et al. 1988; Johnsen and Baillie 1988; Kemphues et al. 1988; McKim et al. 1988; Howell and Rose 1990; Johnsen and Baillie 1991; McKim et al. 1992; Stewart et al. 1998; Gönczy et al. 1999). These early studies generated what we refer to here as legacy collections. The alleles were often mapped to a region of the genome through deficiency or
linkage mapping. However, the process of identifying the molecular nature of the genetic
mutations one-by-one using traditional methods was slow and laborious before the genome
sequence was complete (The C. elegans Sequencing Consortium 1998) and next-generation
sequencing technologies were developed (reviewed in Metzker 2010; Goodwin et al. 2016).

As whole genome sequencing (WGS) has become widely adopted, methods for identifying
mutant alleles have evolved to take advantage of these technological advances (Sarin et al. 2008;
Smith et al. 2008; Srivatsan et al. 2008; Blumenstiel et al. 2009; Schneeberger et al. 2009;
Doitsidou et al. 2010; Flibotte et al. 2010; Zuryn et al. 2010; Smith et al. 2016). With WGS
becoming increasingly affordable over time, mutant collections can now be mined for data in
efficient ways that were not possible two decades ago. Performing WGS on a single mutant
genome is often insufficient to identify a causal variant due to the abundance of background
mutations in any given strain, particularly one that has been subjected to random mutagenesis
(Denver et al. 2004; Hillier et al. 2008; Sarin et al. 2008; Flibotte et al. 2010). However, when
paired with additional strategies such as deletion or SNP-based mapping or bulk segregant
analysis, WGS becomes a valuable tool to expedite gene identification. Furthermore, if multiple
independently derived allelic mutants exist, an even simpler approach can be taken. By
sequencing two or more mutants within a complementation group and looking for mutations in
the same gene, the need for additional mapping or crossing schemes is greatly reduced
(Schneeberger et al. 2011; Nordström et al. 2013).
In the legacy mutant collections described above, where large numbers of mutants are isolated, it is feasible to obtain complementation groups with multiple alleles for many loci. In addition, the abundance of mutants obtained in these large-scale genetic screens suggests that some legacy mutant collections may harbor strains for which the mutations remain unidentified. If such collections are coupled with thorough annotations, they are valuable resources that can be mined with WGS. Indeed, some investigators have recently used such WGS-based approaches to uncover novel essential genes from legacy collections (Jaramillo-Lambert et al. 2015; Qin et al. 2018). These projects bring us closer to identifying all essential genes in *C. elegans* and also contribute to the ongoing efforts to obtain null mutations in every gene in the genome.

There are currently 3,755 *C. elegans* genes that have been annotated with lethal or sterile phenotypes from RNAi knockdown studies (data from WormBase version WS275). In comparison, the number of genes currently represented by lethal or sterile mutant alleles is 1,885 (data from WormBase version WS275). These numbers should be considered minimums, as the database annotations are not necessarily up to date. The discrepancy in these numbers could be illustrative of the comparatively time-consuming and laborious nature of isolating and identifying mutants. Additionally, some of the genes identified as essential in RNAi screens may belong to paralogous gene families whose redundant functions are masked in single gene knockouts. Although the total number of essential genes in *C. elegans* is unknown, extrapolation from saturation mutagenesis screens has led to estimates that approximately 15-30% of the ~20,000 genes in this organism are essential (Clark et al. 1988; Howell and Rose 1990; Johnsen and Baillie 1997; The C. elegans Deletion Mutant Consortium 2012). This suggests the possibility
that there are many essential genes in *C. elegans* that remain unidentified and/or lack representation by a null allele.

In this study, we use WGS to revisit two *C. elegans* legacy mutant collections isolated more than 25 years ago. These collections are a rich resource for essential gene discovery; they comprise 75 complementation groups in which at least two alleles with sterile or maternal-effect lethal phenotypes have been found. With these collections, we sought to identify novel essential genes and to conduct a preliminary characterization of their roles in fertilization and development. Wild-type male rescue assays are used to attribute some mutant phenotypes to sperm-specific genetic defects. In addition, we examine arrested embryos using differential interference contrast (DIC) microscopy and document their terminal phenotypes. This work comprises a catalogue of 123 alleles with mutations in 58 essential genes on chromosomes III, IV, and V. Of these 58 genes, 49 are represented by novel alleles in this collection. We present several genes which are reported here for the first time as essential genes and mutant alleles for genes that have only previously been studied with RNAi knockdown. The aim of this work is to help accelerate research efforts by identifying essential genes and providing an entry point into further investigations of gene function. Advancing our understanding of essential genes is imperative to reaching a more comprehensive knowledge of gene function in *C. elegans* and may provide insight into conserved processes in developmental biology, parasitic nematology, and human disease.
MATERIALS AND METHODS

Generation of legacy mutant collections

Mutant strains were isolated in screens for maternal-effect lethal and sterile alleles in the early 1990s by Heinke Holzkamp and Ralf Schnabel (unpublished data), and Richard Feichtinger (Feichtinger 1995). Two balancer strains were used for mutagenesis; GE1532: unc-32(e189)/qC1 [dpy-19(1259) glp-1(q339)] III; him-3(e1147) IV and GE1550: him-9(e1487) II; unc-24(e138)/nT1[let(m435)] IV; dpy-11(e224)/nT1[let(m435)] V. These parental strains were subjected to ethyl methanesulfonate (EMS) mutagenesis at 20° as described by Brenner (1974), with a mutagen dose of 50-75 mM and duration between 4 and 6 hours. Following mutagenesis, L4 F1 animals were singled on plates at either 15° or 17°. Animals with homozygous markers in the F2 or F3 generation were transferred to 25° and subsequently screened for the production of dead eggs, unfertilized oocytes, or no eggs laid. The two mutant collections analyzed in this study are summarized in Table 1.

List of strains

The wild-type Bristol N2 derivative PD1074 and strains with the following mutations were used: him-3(e1147), unc-32(e189), qC1[dpy-19(e1259) glp-1(q339)], him-9(e1487), unc-24(e138), dpy-11(e224, e1180), nT1[let(m435)] (IV;V), nT1[unc(n754)let] (IV;V). Strains carrying the following deletions were used for deficiency mapping: nDf16, nDf40, sDf110, sDf125, tDf5, tDf6, tDf7 (III); eDf19, nDf41, sDf2, sDf21, stDf7 (IV); ctDf1, itDf2, nDf32, sDf28, sDf35 (V). All sDfs were kindly provided by D. Baillie’s Lab (Simon Fraser University), and some strains were kindly provided by
Outcrossing, mapping and complementation analysis

All mutant strains were outcrossed at least once to minimize background mutations on other chromosomes. Hermaphrodites of the mutant strains were outcrossed with males of GE1532 for Collection A and males of GE1964: him-9(e1487) II; +/nT1[let(m435)] IV; dpy-11(e1180)/nT1[let(m435)] V for Collection B. Deficiency mapping was used to localize mutations to a chromosomal region using the deletion strains listed above. A detailed description of the outcrossing and mapping schemes for Collection B can be found in Feichtinger (1995).

Complementation analysis of legacy mutants was performed by crossing 10 males of one mutant strain to 4 hermaphrodites of another strain. The presence of males with homozygous markers indicated successful crossing, and homozygous hermaphrodite progeny were transferred to new plates to determine whether viable offspring were produced and thus complementation occurred. Failure to complement was verified with additional homozygous animals or by repeating the cross. Complementation tests between CRISPR-Cas9 deletion strains and legacy mutants were performed by crossing heterozygous CRISPR-Cas9 deletion (GFP/+) males to heterozygous legacy mutant hermaphrodites. Twenty GFP hermaphrodite F1s were singled on new plates and those segregating viable Dpy and/or Unc progeny indicated complementation between the two alleles.
DNA extraction

Balanced heterozygous strains were grown on 100 mm nematode growth medium (NGM) agar plates (standard recipe with 3 times concentration of peptone) seeded with OP50 and harvested at starvation. Genomic DNA was extracted using a standard isopropanol precipitation technique previously described (Au et al. 2019). DNA quality was assessed with a NanoDrop 2000c Spectrophotometer (Thermo Scientific) and DNA concentration was measured using a Qubit 2.0 Fluorometer and dsDNA Broad Range Assay kit (Life Technologies).

Whole genome sequencing and analysis pipeline

DNA library preparation and whole genome sequencing were carried out by The Centre for Applied Genomics (The Hospital for Sick Children, Toronto, Canada). Between 20 and 33 C. elegans mutant strains were run together on one lane of an Illumina HiSeq X to generate 150-bp paired-end reads.

Sequencing analysis was done using a modified version of a previously designed custom pipeline (Flibotte et al. 2010; Thompson et al. 2013). Reads were aligned to the C. elegans reference genome (WS263; wormbase.org) using the short-read aligner BWA version 0.7.16 (Li and Durbin 2009). Single nucleotide variants (SNVs) and small insertions or deletions (indels) were called using SAMtools toolbox version 1.6 (Li et al. 2009). To eliminate unreliable calls, variants at genomic locations for which the canonical N2 strain has historically had low read depth or poor quality (Thompson et al. 2013) were removed as potential candidates. The variant calls were annotated with a custom Perl script and labeled heterozygous if represented by 20-80% of the...
reads at that location. The remaining candidates were then subjected to a series of custom filters. Any variants that appeared in more than three strains from the same collection were removed. The remaining list was filtered to only include heterozygous mutations affecting coding exons (indels, missense and nonsense mutations) and splice sites (defined as the first two and last two base pairs in an intron). Finally, the list of candidate mutations was trimmed to include only mutations on the chromosome to which the mutation had originally been mapped.

For each pair of strains belonging to a complementation group, the final list of candidate mutations was compared and the gene or genes in common were identified. In cases where there was only one gene in common on both lists, this gene was designated the candidate essential gene. For complementation groups with multiple candidate genes in common, additional information such as the nature of the mutations and existing knowledge about the genes was used to select a single candidate gene, when possible. When there was no gene candidate in common within a pair of strains, the list of variants was reanalyzed to look for larger deletions and rearrangements. If available, two additional alleles were sequenced to help identify the gene.

Validation of gene identities

To validate the candidate gene identities derived from whole genome sequencing analysis, the genomic position of each candidate gene was corroborated with the legacy data from deficiency mapping experiments. Approximate boundaries for the deletions were estimated from the map.
coordinates of genes known to lie internal or external to the deletions according to data from WormBase (WS275).

For further validation of select gene candidates, deletion mutants were generated in an N2 wild-type background using a CRISPR-Cas9 genome editing strategy previously described (Norris et al. 2015; Au et al. 2019). Two guide RNAs were used to excise the gene of interest and replace it with a selection cassette expressing G418 drug resistance and pharyngeal GFP (loxP + Pmyo-2::GFP::unc-54 3′UTR + Prps-27::neoR::unc-543′UTR + loxP vector, provided by Dr. John Calarco, University of Toronto, Canada). Guide RNAs were designed using the C. elegans Guide Selection Tool (genome.sfu.ca/crispr) and synthesized by Integrated DNA Technologies (IDT). Repair templates were generated by assembling homology arms (450-bp gBlocks synthesized by IDT) and the selection cassette using the NEBuilder Hifi DNA Assembly Kit (New England Biolabs).

Cas9 protein (generously gifted from Dr. Geraldine Seydoux) was assembled into a ribonucleoprotein (RNP) complex with the guide RNAs and tracrRNA (IDT) following the manufacturer’s recommendations. PD1074 animals were injected using standard microinjection techniques (Mello et al. 1991; Kadandale et al. 2009) with an injection mix consisting of: 50 ng/µl repair template, 0.5 µM RNP complex, 5 ng/µl pCFJ104 (Pmyo-3::mCherry), and 2.5 ng/µl pCFJ90 (Pmyo-2::mCherry). Injected animals were screened according to the protocol described in Norris et al. (2015) and genomic edits were validated using the PCR protocol described in Au et al. (2019). Complementation tests between CRISPR-Cas9 alleles and legacy mutant alleles were performed to verify gene identities, as described above.
Analysis of orthologs, gene ontology, and expression patterns

Previously reported phenotypes from RNAi experiments or mutant alleles were retrieved from WormBase (WS275) and GExplore (genome.sfu.ca/gexplore; Hutter et al. 2009; Hutter and Suh 2016). Life stage-specific gene expression data from the modENCODE project (Hillier et al. 2009; Gerstein et al. 2010, 2014; Boeck et al. 2016) were also accessed through GExplore. Visual inspection of these data revealed genes with maternal expression patterns (high levels of expression in the early embryo and hermaphrodite gonad) as well as those predominantly expressed in males.

Human orthologs of C. elegans genes were determined using Ortholist 2 (ortholist.shaye-lab.org; Kim et al. 2018). For maximum sensitivity, the minimum number of programs predicting a given ortholog was set to one. NCBI BLASTp (blast.ncbi.nlm.nih.gov; Altschul et al. 1990) was used to examine distributions of homologs across species and potential nematode-specificity in genes with no human orthologs. Protein sequences from the longest transcript of each gene were used to query the non-redundant protein sequences (nr) database, with default parameters and a maximum of 1,000 target sequences. The results were filtered with an E-value threshold of 10^{-5}.

Gene Ontology (GO) term analysis was performed using PANTHER version 16.0 (Thomas et al. 2003). The list of 58 candidate genes was used for an overrepresentation test, with the set of all C. elegans genes as a background list. Overrepresentation was analyzed with a Fisher’s Exact test and p-values were adjusted with the Bonferroni multiple testing correction.
Temperature sensitivity and mating assays

To assay temperature sensitivity, heterozygous strains were propagated at 15°C and homozygous L4 animals were isolated on 60 mm NGM plates (2 x 6/plate or 3 x 3/plate). After one week at 15°C, plates were screened for the presence of viable homozygous progeny. If present, L4 homozygotes were transferred to new plates at 25°C and screened after three days to confirm lethality or sterility.

Mating assays were carried out using PD1074 males and mutant hermaphrodites. Three L4-stage homozygous mutant hermaphrodites were isolated and crossed with ten PD1074 males on each of three 60 mm NGM plates. Control plates consisted of three L4 hermaphrodite mutants without males. Mating assays were carried out at 25°C and observations were taken after three days, noting the absence or presence of viable cross progeny.

Microscopy

The terminal phenotypes of dead eggs from maternal-effect lethal mutants were observed using DIC microscopy. Young adult homozygous mutants were dissected to release their eggs in either M9 buffer with Triton X-100 (0.5%; M9+TX) or distilled water and embryos were left to develop at 25°C overnight (~16 hours). Embryos were mounted on 2% agarose pads and visualized using a Zeiss Axioplan 2 equipped with DIC optics. Images of representative embryos were captured using a Zeiss Axiocam 105 Color camera and ZEN 2.6 imaging software (Carl Zeiss Microscopy). For embryos incubated in distilled water, an osmotic integrity defective (OID) phenotype was
noted for embryos that burst or swelled and filled the eggshell, as described by Sönnichsen et al. (2005).

Data availability

The raw sequence data from this study have been deposited in the NCBI Sequence Read Archive (SRA; ncbi.nlm.nih.gov/sra) under accession number PRJNA628853. Supplemental material is available at Figshare. File S1 contains sequences and associated information for CRISPR-Cas9 deletion alleles. File S2 contains life stage-specific expression patterns for the Genes of Interest. File S3 contains documentation of the terminal phenotypes for maternal-effect lethal embryos.
RESULTS

Identification of 58 essential genes

Whole genome sequencing was performed on a total of 157 strains, with depth of coverage ranging between 21x and 65x (average = 38x). A minimum of two alleles for each of 75 complementation groups were sequenced and a total of 58 essential genes were identified (Table 2). Literature searches revealed that 43 of these genes have been annotated with lethal or sterile phenotypes from either mutant alleles or RNAi studies. Furthermore, 17 of the 157 alleles had been previously sequenced (Vatcher et al. 1998; Gönczy et al. 2001; Kaitna et al. 2002; Brauchle et al. 2003; Cockell et al. 2004; Delattre et al. 2004; Sonneville et al. 2004; Bischoff and Schnabel 2006; Nieto et al. 2010), and therefore served as a blind test set to validate our analysis approach. Eight of the nine genes represented in this blind test set were correctly identified by our pipeline, whereas one gene escaped identification. This was due to an intronic mutation that did not pass our filtering criteria but was found upon manual inspection of the sequencing data. While the list of 58 genes includes many known essential genes, among the known genes are alleles that are novel genetic variants. Nineteen genes from this collection which were not previously studied or were not represented by lethal or sterile mutants were designated Genes of Interest (GOI; Table 3). These 19 GOI, represented by 40 alleles, were further characterized as part of this study. They include 14 genes (28 alleles) with a maternal-effect lethal phenotype and 5 genes (12 alleles) with a sterile phenotype.

Validation of candidate gene assignments
After isolation, the mutant alleles were each localized to a chromosomal region through deficiency mapping. This data was used to corroborate the candidate gene identities derived from WGS analysis and to resolve complementation groups with more than one gene candidate. For the majority of complementation groups, the genomic position of the assigned gene was in agreement with the deficiency genetic mapping data (Figure 1).

There were some conflicts between the deficiency mapping data and the gene candidates proposed through WGS analysis. Three complementation groups that were found to not map under any of the tested deficiencies were assigned gene candidates whose genomic coordinates fall into regions covered by the tested deficiencies (alleles of *bckd-1A*, *top-3*, and *unc-112*; Figure 1). In addition, two of these groups were assigned the same gene identity as another, purportedly distinct, complementation group (Table 4). From WGS analysis, *bckd-1A* was the initial gene candidate for two different complementation groups, yet only one of these groups had been mapped to a deletion (*tDf5*) that covers the *bckd-1A* locus. Similarly, *top-3* was the assigned gene candidate for three different complementation groups, only one of which was mapped under a deficiency (*tDf5*) encompassing that gene. By performing complementation tests with select alleles (Table 4), we concluded that the two *bckd-1A* groups are not distinct, and indeed they contain mutations in the same gene. One of the groups (gene-35) originally identified as *top-3* is a double mutant which fails to complement gene-15 (*top-3*) and gene-34 (unknown gene).
Three candidate genes (*nstp-2, C34D4.4 and F56D5.2*) were selected for additional validation by generating a deletion of the gene in a wild-type background using CRISPR-Cas9 genome editing (Norris et al. 2015; Au et al. 2019). These genes were chosen because they were expected to be of interest to the broader research community. The deletion alleles have been verified with the PCR protocol described by Au et al. (2019). Guide RNA sequences and deletion-flanking sequences are listed in Supplementary Table S1. Complementation testing between the newly generated CRISPR-Cas9 deletion mutants and the legacy mutant strains confirmed that the mutations are allelic, and the genes assigned to the legacy strains are correct (Supplementary Table S1).

Human orthologs, gene ontology, and expression patterns

Of the 58 essential genes identified, 47 genes have predicted human orthologs (Table 2). Many of these genes in humans have been implicated in disease and are associated with OMIM disease phenotypes (Online Mendelian Inheritance in Man; omim.org). BLASTp searches revealed that the set of 19 GOI contains three nematode-specific genes (*F56D5.2, perm-5, and T22B11.1*) that have homologs in parasitic species, and two uncharacterized genes (*D2096.12* and *Y54G2A.73*) that do not have significant homology outside the *Caenorhabditis* genus.

To gain insight into the functions of the identified essential genes, an overrepresentation test was used to elucidate the most prominent gene ontology (GO) terms associated with them. The Biological Process terms overrepresented in the set of 58 essential genes include such terms as organelle organization (GO:0006996), nuclear division (GO:0000280), cellular metabolic process
(GO:0044237), and DNA repair (GO:0006281), as shown in Figure 2. In the Molecular Function category, binding (GO:0005488) and catalytic activity (GO:0003824) are overrepresented by 41 genes (adjusted p=1.2E-07) and 28 genes (adjusted p=1.8E-03), respectively.

To examine the timing of gene expression throughout the life cycle, gene expression data from the modENCODE project (Hillier et al. 2009; Gerstein et al. 2010, 2014; Boeck et al. 2016) was retrieved from GExplore (genome.sfu.ca/gexplore; Hutter et al. 2009; Hutter and Suh 2016) for the 19 GOI (Supplementary Appendix S2). These data show a U-shaped expression pattern for ten of the GOI, with high expression occurring in the early embryonic stages as well as in adulthood, and particularly in the hermaphrodite gonad. This U-shaped pattern is characteristic of a maternal-effect gene, for which gene products are passed on to the embryo from the parent. Five genes have a maternal gene expression pattern as well as expression throughout other stages of the life cycle, indicating an additional, zygotic role for the gene. Seven genes have elevated expression levels in males and L4-stage hermaphrodites. These genes are suspected to be involved in sperm production or fertilization, and the associated strains were subjected to mating assays (see below).

Temperature sensitivity and mating assays for genes of interest

The 40 alleles associated with the 19 GOI were further examined to gain insight into the phenotypic consequences of their mutations. Each allele was assayed for temperature sensitivity, as some of the original mutant screening was carried out at 25°C. Five alleles (marked with a [ts] phenotype in Table 3) were deemed temperature sensitive and could proliferate as
homozygotes at a permissive temperature of 15°C, while being maternal-effect lethal or sterile at a restrictive temperature of 25°C. Curiously, four of these temperature sensitive alleles were the results of stop codons, not missense mutations.

Seven candidate genes (16 alleles) were hypothesized to be involved in male fertility, based on the production of unfertilized oocytes by hermaphrodites and/or predominantly male gene expression patterns. These 16 strains were assayed for their ability to be rescued through mating with wild-type males. 14 of the strains were rescued by the mating assay, while two strains failed to rescue (Table 5). Phenotypic rescue through mating was consistent among alleles of the same gene in five of the seven genes, while two genes had conflicting results among the pair of alleles in their complementation groups (F56D5.2 and nstp-2).

Terminal phenotypes of maternal-effect lethal embryos

Using DIC microscopy, the terminal phenotypes of 28 maternal-effect lethal strains (a subset of the 40 GOI strains) were observed. Representative images were selected and compiled into a catalogue of terminal phenotypes (Supplementary Appendix S3). Ten strains showed an osmotic integrity defective (OID) phenotype (as described in Sönnichsen et al. 2005) in nearly all embryos after incubation in distilled water, while three additional strains had only some embryos that exhibited this phenotype (Table 3). The OID phenotype was evident in embryos that filled the eggshell completely (for example, dgtr-1(t2043), Figure 3A) and eggs that burst in their hypotonic surroundings. Early embryonic arrest was observed in embryos from the two dlat-1 mutant strains (t2035 and t2056), which arrested most often with only one to four cells (for
example, Figure 3B). Eleven strains had embryos that terminated with approximately 100-200
cells (for example, ZK688.9(t1433), Figure 3C); while four strains developed into two- or three-
fold stage embryos that did not hatch and exhibited clear morphological defects, such as nstp-
2(t1835) with a lumpy body wall and constricted nose tip (Figure 3D).
Revisiting legacy mutant collections with whole genome sequencing

In this study, we focused on reexamining legacy collections of *C. elegans* mutants isolated before the complete genome sequence was published (The *C. elegans* Sequencing Consortium 1998) and long before massively parallel sequencing was widely available. With major advances in sequencing technology in the past 30 years (reviewed in Goodwin *et al.* 2016), WGS has become affordable and accessible, making it possible to revisit past projects with new approaches and advanced capabilities. We have sequenced paired alleles from 75 complementation groups on chromosomes III, IV, and V, from which we identified 58 essential genes (Table 2).

While WGS is a powerful tool, it does not stand alone as a solution to identifying mutant alleles. This study has shown the power of having multiple alleles in a complementation group when faced with the abundance of genomic variants found in WGS analysis. Indeed, when we sequenced four single alleles, which had no complementation pairs, we were unable to designate a single mutation as the variant responsible for maternal-effect lethality (data not shown). Our approach to gene identification proved to be effective and was validated by a combination of different methods. The blind test set of 17 previously sequenced alleles from which eight of nine genes were readily identified serves as an important validation of our analysis pipeline and gives confidence in the results we obtained. In addition, the deficiency mapping data, gene expression patterns from the modENCODE project, GO term analysis, and phenotypes documented from previous experiments provide evidence to support the gene identities we assigned in these mutant collections.
The CRISPR-Cas9 deletion alleles we generated for selected gene candidates provide additional validation and will be made available to the research community to serve as useful tools for future studies. While the mutant alleles from the original study have been outcrossed, the genetic balancer background and additional mutations that persist can complicate phenotypic analysis. In contrast, these new CRISPR-Cas9 deletion strains were made in a wild-type background, which makes it much easier to handle them and interpret their mutant phenotypes.

Furthermore, the pharyngeal GFP expression introduced by the gene editing approach acts as a dominant and straightforward marker for tracking the alleles in a heterozygous population. This is useful as the homozygous animals do not produce viable progeny.

The complementation groups that could not be assigned gene identities in our analysis may have been complicated by variants in noncoding regions, poor sequencing coverage, or inaccurate complementation pairing, among other possibilities. In future work, tracking down the genes we were unable to identify will require repeating complementation tests and re-tooling the analysis approach.

Gene ontology analysis reveals common themes and gaps in our knowledge

The underlying biological themes of the 58 essential genes were revealed by examining their GO terms. The biological processes represented in Figure 2 help to confirm the nature of this set, as a collection of genes that are required for essential functions such as cell division, metabolism, and development. Performing GO-term analysis also revealed that a number of the genes in this
collection lacked sufficient annotation to be interpreted this way. We found four genes about which there is little to nothing known (D2096.12, F56D5.2, T22B11.1, and Y54G2A.73). For example, F56D5.2 is a gene with no associated GO terms, no known protein domains, and no orthologs in other model organisms. These wholly uncharacterized genes are intriguing candidates which may help uncover new biological processes and biochemical pathways that are evidently fundamental to life for this organism.

Examining expression patterns leads to discovery of genes involved in male fertility

The life stage-specific expression patterns (Supplementary Appendix S2) provide some insight into the roles the genes in this collection play in development. 15 of the 19 GOI are highly expressed in the early embryo and hermaphrodite gonad, which suggests that the gene product is passed on to the embryo from the parent. Five of these maternal genes also have elevated expression during late embryonic and larval stages, which suggests they are pleiotropic. The zygotic functions of these genes must be non-essential or else a zygotic lethal, rather than maternal-effect lethal, phenotype would be observed.

We also identified four genes that are most highly expressed in males and L4 hermaphrodites, as well as three genes that have prominent male expression in addition to characteristic maternal expression patterns. Mating assays confirmed that these male-expressed genes have an essential role in male fertility. Studies have shown that genes expressed in sperm are largely insensitive to RNAi (Fraser et al. 2000; Gönczy et al. 2000; Reinke et al. 2004; del Castillo-Olivares et al. 2009; Zhu et al. 2009; Ma et al. 2014), making these types of genes particularly difficult to identify in
high-throughput RNAi screens. With the availability of RNA-seq data across different life stages for nearly every gene in the *C. elegans* genome (Hillier *et al.* 2009; Gerstein *et al.* 2010, 2014; Boeck *et al.* 2016; Tintori *et al.* 2016; Packer *et al.* 2019), screening for characteristic gene expression patterns may be a useful approach for identifying sterile and maternal-effect lethal genes that remain to be discovered.

We propose that the seven male-expressed genes are involved in sperm production and/or function (see Table 5). These genes are mostly uncharacterized, and this is the first reporting of their involvement in male fertility. While the mutant hermaphrodites lay unfertilized oocytes (5 genes) or dead eggs (2 genes), this phenotype could be rescued in 14 of the 16 alleles by the introduction of wild-type sperm through mating. The two alleles that could not be rescued had allele pairs in the same complementation groups that were rescued in the mating assay. One of these discrepancies, between *F56D5.2(t1744)* and *F56D5.2(t1791)*, was resolved when we found a second mutation in a nearby essential gene that was likely responsible for the inability of one strain to be rescued (data not shown). The presence of additional lethal mutations in the genome is unsurprising given the nature of chemical mutagenesis, and it reinforces the advantage of having multiple alleles for a gene when interpreting mutant phenotypes.

Interpreting terminal phenotypes of maternal-effect lethal mutants

The catalogue of terminal phenotypes (Supplementary Appendix S3) created in this study provides a window into the roles the maternal-effect genes play in development. Some of these phenotypes corroborate previously observed phenotypes from RNAi studies. For example, RNAi
knockdown experiments have shown that DLAT-1 is an enzyme involved in metabolic processes required for cell division in one-cell *C. elegans* embryos (Rahman *et al.* 2014). We uncovered two alleles of *dlat-1* in this study (*t2035* and *t2056*) in which most embryos arrest at the one- to four-cell stage (Figure 3B). The mutant alleles presented here can confirm previously reported phenotypes and serve as new genetic tools for continuing the study of essential gene function.

We also identified alleles for six genes that exhibit an osmotic integrity defective (OID) phenotype, resulting in embryos that filled the eggshell completely or burst in distilled water. More than 100 genes have been identified in RNAi screens as important for the osmotic integrity of developing embryos (reviewed in Stein and Golden 2018). Some of these genes have roles in lipid metabolism (Rappleye *et al.* 2003; Benenati *et al.* 2009), cellular trafficking (Rappleye *et al.* 1999), and chitin synthesis (Johnston *et al.* 2006). Four of the six genes identified with OID mutants in this study have been previously implicated in osmotic sensitivity: *dgtr-1* is involved in lipid biosynthesis (Carvalho *et al.* 2011; Olson *et al.* 2012), *trcs-1* is involved in lipid metabolism and membrane trafficking (Green *et al.* 2011); *perm-5* is predicted to have lipid binding activity; and *F21D5.1* is an ortholog of human PGM3, an enzyme involved in the hexosamine pathway which generates substrates for chitin synthase. We found OID mutants for two additional genes that were not previously characterized with this phenotype, *bckd-1A* and *D2096.12*. *bckd-1A* is a component of the branched-chain alpha-keto dehydrogenase complex, which is involved in fatty acid biosynthesis (Kniazeva *et al.* 2004); this may be indicative of a role in generating or maintaining the lipid-rich permeability barrier. *D2096.12* is a *Caenorhabditis*-specific gene with no known protein domains. Elucidating the function of this uncharacterized gene may lead to
new insights about the biochemistry of eggshell formation and permeability in *C. elegans* embryos.

Most of the mutant strains we examined with DIC microscopy arrested around the 100- to 200-cell stage as a seemingly disorganized group of cells (for example, Figure 3C). Others developed into two-fold or later stage embryos that moved inside the eggshell but did not hatch (for example, Figure 3D). The terminal phenotypes documented here reveal how long the embryo can persist without the maternal contribution of gene products, and the developmental defects that ensue. Future studies might make use of fluorescent markers and automated cell lineage tracking (for example, Thomas *et al.* 1996; Schnabel *et al.* 1997; Bao *et al.* 2006; Wang *et al.* 2019) as well as single-cell transcriptome data (Tintori *et al.* 2016; Packer *et al.* 2019) to further investigate these essential genes.

Relevance beyond *C. elegans*

In this collection of 58 essential genes, there are 47 genes (81%) with human orthologs; a two-fold enrichment when compared to all *C. elegans* genes, 41% of which have human orthologs (Kim *et al.* 2018). This is in line with previous findings that essential genes are more often phylogenetically conserved than non-essential genes (Hughes 2002; Jordan *et al.* 2002; Georgi *et al.* 2013). Essential genes in model organisms are often associated with human diseases (Culetto and Sattelle 2000; Silverman *et al.* 2009; Dickerson *et al.* 2011; Qin *et al.* 2018), making the alleles identified in this study potentially relevant to understanding human health. Indeed, there are OMIM disease phenotypes associated with a number of the human orthologs identified in
Table 2. Novel mutant alleles in *C. elegans* may help us better understand genetic disorders by providing new opportunities to interrogate gene function, explore genetic interactions, and screen prospective therapeutics.

Nematode-specific genes that are essential are important to nematode biology in general and are particularly relevant in parasitic nematology. We found three genes in our GOI list (*F56D5.2*, *perm-5*, and *T22B11.1*) that have orthologs in parasitic nematode species and not in other phyla. With growing anthelminthic drug resistance around the world (Jabbar *et al.* 2006), novel management strategies are needed to combat parasitic nematodes, which infect crops, livestock, and people worldwide (Nicol *et al.* 2011; Wolstenholme *et al.* 2004; Hotez *et al.* 2008). Essential genes are desirable targets for drug development, yet identifying such genes in parasites experimentally is difficult (Kumar *et al.* 2007; Doyle *et al.* 2010). Thus, as a free-living nematode, *C. elegans* is a widely used model for genetically intractable parasitic species (Bürglin *et al.* 1998; Hashmi *et al.* 2001). Our identification of novel essential genes with orthologs in parasitic nematodes may provide new opportunities to explore management strategies.

It is our hope that the alleles and phenotypes presented here will serve as a starting point and guide future research to elucidate the specific roles these genes play in embryogenesis. All of the alleles presented in this study are available to the research community through the Caenorhabditis Genetics Center (cgc.umn.edu) and we anticipate they will serve as a valuable resource in the years to come. The wealth of material uncovered in this specific legacy collection will hopefully inspire similar explorations of other frozen mutant collections.
The authors thank Mark L. Edgley for advice and help with strain maintenance, as well as Negin Khosravi, who replicated some of the nematode assays and conducted PCR assays with \textit{F56D5.2}^{(t1744)} to reveal an additional mutation in a nearby an essential gene. This work was supported by a CIHR Canada Graduate Scholarship-Master’s (awarded to EL) and CIHR grant PJT-148549 (awarded to DGM). This work was also supported by a grant from NSERC to DGM and an R24 NIH grant 5R24D023041 (awarded to Ann Rougvie, Paul Sternberg, Geraldine Seydoux and DGM).
Table 1. Summary of mutant collections

Collection	Number of Complementation Groups with ≥2 alleles	Chromosome	Mutant Genotypes
A	32	III	unc-32(e189) let(t...)/qC1 III; him-3(e1147) IV
B	25	IV	him-9(e1487) II; unc-24(e138) let(t...)/nT1 [let(m435)] IV; dpy-11(e224)/nT1 [let(m435)] V
	18	V	him-9(e1487) II; unc-24(e138)/nT1 [let(m435)] IV; dpy-11(e224) let(t...)/nT1 [let(m435)] V
Table 2. List of 58 essential genes with associated maternal-effect lethal or sterile alleles

Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change	Mutation	Mutation Type	Amino Acid Change\(\dagger\)	Protein Size (Amino Acids)\(\ddagger\)	Human Ortholog(s)	Associated OMIM phenotype(s)\(\ddagger\)
Y	GE2430	t2135	air-1	V	8221773	C	T	SNV	missense R62C	326	AURKA, AURKB, AURKC, STK36	Colorectal cancer, susceptibility to [114500]; Spermatogenic failure 5 [243060]
	GE2337	t2095	air-1	V	8223169	CAT	C	deletion frameshift	-			
x	GE2314	t1724	aptf-2	IV	13414105	A	G	SNV	missense L244P	367	TFAP2A, TFAP2B, TFAP2C, TFAP2D, TFAP2E	Char syndrome [169100]; Patent ductus arteriosus 2 [617035]; Branchiooculofacial syndrome [113620]
	GE2289	t1836	aptf-2	IV	13414263	G	T	SNV	nonsense C191*			
H	GE1958	t1726	atg-7	IV	11079764	G	A	SNV	nonsense Q367*	647	ATG7	
	GE1936	t1738	atg-7	IV	11079973	C	T	SNV	nonsense W311*			
T	GE2449	t2143	atl-1	V	9635587	C	T	SNV	nonsense W2346*	2531	ATR, PRKDC	
	GE2467	t2155	atl-1	V	9637978	C	T	SNV	missense E1710K			
gene-28	GE2200	t1480	bckd-1A	III	12969933	G	A	SNV	nonsense Q174*	432	BCKDHA, TMEM91, AC011462.1	Maple syrup urine disease [248600]
	GE1742	t1461	bckd-1A	III	12971429	G	A	SNV	nonsense Q109*			
gene-17	GE2206	t1514	bckd-1A	III	12971273	G	A	SNV	nonsense Q161*			
	GE2627	t1603	bckd-1A	III	12971305	C	T	SNV	nonsense W150*			
vz	GE2890	t1821	C34D4.4	IV	7150054	G	A	SNV	nonsense W101*	205	TVP23A, TVP23B, TVP23C, TVP23C-CDRT4	(none)
	GE2840	t1860	C34D4.4	IV	7150143	G	A	SNV	nonsense W131*			
a	GE2734	t2029	C56A3.8	V	13560728	G	A	SNV	missense G62E	402	PI4K2A, PI4K2B	(none)
	GE2886	t2055	C56A3.8	V	13560787	G	A	SNV	missense E243K			
	GE2487	t2149	C56A3.8	V	13561369	C	T	SNV	missense PB2L			
V	GE2142	t2074	ccz-1	V	13679756	T	A	SNV	nonsense Y248*	528	CCZ1, CCZ1B	(none)
	GE2304	t2129	ccz-1	V	13680792	C	T	SNV	nonsense Q361*			
Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change	Mutation	Mutation Type	Amino Acid Change†	Protein Size (Amino Acids)†	Human Ortholog(s)	Associated OMIM phenotype(s)†
-------	--------	-----------	------	------	----------	-------------	----------	---------------	---------------------	--------------------------	-----------------	-------------------------------
b	GE2047	t2021	cept-2	V	14349388	G A	SNV	nonsense	W128*	424	CEPT1, CHPT1, SELENOI	Spastic paraplegia 81, autosomal recessive [618768]
	GE2122	t2007	cept-2	V	14349747	G A	SNV	splice site	-	1023	CLASP1, CLASP2	(none)
	GE2275	t1517	cls-2	III	9055405	G A	SNV	missense	R102Q	337	CTSF, CT5K, CTS, CT5S, CT5V	Pycnodysostosis [265800]; Ceroid lipofuscinosis, neuronal, 13 [615362]
gene-4												
R	GE2082	t2053	cpl-1	V	16593886	G A	SNV	missense	S148F	337	CLASP1, CLASP2	(none)
	GE2451	t2144	cpl-1	V	16595201	G A	SNV	nonsense	Q49*	958	NAA25	(none)
A	GE2447	t1879	ctp-2	IV	11180120	C T	SNV	nonsense	Q141*	646	CPT2	Carnitine palmitoyltransferase II deficiency [600649, 608836, 255110]; Encephalopathy, acute, infection-induced, susceptibility to, 4 [614212]
	GE1938	t1742	ctp-2	IV	11180603	G A	SNV	nonsense	W194*	1030	(none)	
gene-24												
	GE2657	t1704	cra-1	III	6867181	G A	SNV	nonsense	Q525*	958	NAA25	(none)
gene-24												
D	GE1929	t1729	csr-1	IV	7960467	T A	SNV	missense	N708K	1030	(none)	(none)
	GE1929	t1729	csr-1	IV	7961246	G A	SNV	missense	G922E	1030	(none)	(none)
	GE2452	t1897	csr-1	IV	7959252	G A	SNV	splice site	-	668	MCOLN1, MCOLN2, MCOLN3	Mucolipidosis IV [252650]
gene-25												
	GE2595	t1662	cup-5	III	7585568	C T	SNV	nonsense	R263*	668	(none)	(none)
gene-25												
	GE2355	t1528	cup-5	III	7590536	G A	SNV	splice site	-	1178	USP15, USP32, USP6	(none)
gene-30												
J	GE2345	t1525	cyk-3	III	6020590	C T	SNV	nonsense	Q98*	763	(none)	(none)
	GE2352	t1535	cyk-3	III	6022863	G A	SNV	nonsense	W723*	763	(none)	(none)
	GE2499	t1877	D2096.12	IV	8363937	C T	SNV	nonsense	Q126*	763	(none)	(none)
	GE2407	t1906	D2096.12	IV	8365654	T A	SNV	nonsense	L638*	359	(none)	(none)
O	GE2135	t2043	dgtr-1	V	6497335	G A	SNV	splice site	-	359	(none)	(none)
	GE2063	t2042	dgtr-1	V	6498186	G A	SNV	missense	G310R	359	(none)	(none)
Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change	Mutation	Mutation Type	Amino Acid Change†	Protein Size (Amino Acids)†	Human Ortholog(s)	Associated OMIM phenotype(s)‡
-------	--------	-----------	------	------	----------	-------------	----------	---------------	------------------	-----------------------------	----------------	--------------------------------
C	GE2028	t1801	dif-1	IV	7552230	A C	SNV	nonsense	Y187*	312	SLC25A20	Carnitine-acylcarnitine translocate deficiency [212138]
	GE1932	t1732	dif-1	IV	7552641	C T	SNV	missense	G75D	581	POLA2	(none)
gene-13	GE2612	t1676	div-1	III	10245480	G A	SNV	nonsense	Q489*	507	DLAT	Pyruvate dehydrogenase E2 deficiency [245348]
d	GE2335	t2056	dlat-1	V	14445907	G A	SNV	nonsense	Q419*	550	PGM3	Immunodeficiency 23 [615816]
u	GE2402	t1940	F21D5.1	IV	8727315	C T	SNV	missense	A436V	(none)	(none)	(none)
t	GE2837	t1791	F56D5.2	IV	9397791	G A	SNV	nonsense	Q214*	385	(none)	(none)
gene-26	GE1715	t1436	gsp-2	III	7337087	C T	SNV	nonsense	R95*	333	PPP1CA, PPP1CB, PPP1CC	Noonan syndrome-like disorder with loose anagen hair 2 [617506]
	GE2360	t1481	gsp-2	III	7337383	G A	SNV	missense	S107F	473	GSR, TXNRD1, TXNRD2, TXNRD3	Hemolytic anemia due to glutathione reductase deficiency [618660]; Glucocorticoid deficiency 5 [617825]
gene-32	GE2545	t1577	gsr-1	III	3652401	G A	SNV	missense	G335R	288	CENPA	(none)
	GE2644	t1594	gsr-1	III	3652407	C T	SNV	nonsense	R337*	(none)	(none)	(none)
gene-31	GE2583	t1654	hcp-3	III	9615498	G A	SNV	missense	R269C	932	KIF15	Mental retardation, X-linked 100 [300923]
G	GE2455	t1914	klp-18	IV	7040335	T C	SNV	missense	Y42H	1083	KIF4A, KIF4B	(none)
	GE2000	t1795	klp-18	IV	7041203	G A	SNV	missense	E316K	698	(none)	(none)
gene-6	GE2367	t1563	klp-19	III	13306451	A T	SNV	missense	L230H	312	(none)	(none)
	GE2367	t1563	klp-19	III	13306457	G A	SNV	missense	A228V	581	POLA2	(none)
	GE2264	t1628	klp-19	III	13306872	C T	SNV	missense	G90R	507	DLAT	(none)
l	GE2003	t1817	let-99	IV	12569291	C T	SNV	nonsense	Q447*	550	PGM3	Immunodeficiency 23 [615816]
	GE2514	t1912	let-99	IV	12570199	C T	SNV	missense	L617F	(none)	(none)	(none)
Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change	Mutation	Mutation Type	Amino Acid Change†	Protein Size (Amino Acids)†	Human Ortholog(s)	Associated OMIM phenotype(s)†
-------	--------	-----------	------	------	----------	-------------	----------	---------------	----------------	--------------------------	----------------	--------------------------------
gene-22	GE2730	t1550	lis-1	III	13375376	C T	SNV	nonsense	W92*	404	PAFAH1B1	Lissencephaly 1; Subcortical laminar heterotopia [607432]
	GE2653	t1698	lis-1	III	13375401	C T	SNV	splice site	-			
z	GE2130	t1765	mbk-2	IV	13033086	C T	SNV	missense	R533C	817	DYRK2, DYRK3, DYRK4	(none)
	GE2503	t1888	mbk-2	IV	13033644	C T	SNV	missense	P701L			
gene-10	GE2740	t1576	mel-32	III	6440655	C T	SNV	missense	G395R	507	SHMT1, SHMT2	(none)
	GE1731	t1456	mel-32	III	6440831	C T	SNV	missense	G336E			
M	GE1999	t1793	mex-5	IV	13354014	T G	SNV	nonsense	Y79*	468		(none)
	GE2093	t1800	mex-5	IV	1335478	T A	SNV	nonsense	L219*			
S	GE2511	t2162	mom-2	V	8356808	T G	SNV	missense	C80G	362	WNT11, WNT9A, WNT9B	(none)
	GE2523	t2180	mom-2	V	8357121	T C	SNV	missense	C139R			
W	GE2497	t2137	mre-11	V	10735712	G A	SNV	missense	H269Y	728	MRE11	Ataxia-telangiectasia-like disorder 1 [604391]
	GE2103	t2092	mre-11	V	10736080	A G	SNV	missense	F146S			
v	GE2091	t1772	nstp-2	IV	6604731	A T	SNV	missense	L277H	324	SLC35B4	(none)
	GE2288	t1835	nstp-2	IV	6605266	C T	SNV	missense	G131R			
F	GE2391	t1932	perm-5	IV	5699631	A T	SNV	missense	C454S	518		(none)
	GE2453	t1900	perm-5	IV	5698096	A G	SNV	missense	S323P			
gene-21	GE2237	t1614	pod-1	III	13518266	G A	SNV	missense	A912V	1136	CORO7, CORO7-PAM16	(none)
	GE2605	t1674	pod-1	III	13518357	G A	SNV	nonsense	R882*			
U	GE3128	t2177	pos-1	V	8414544	G A	SNV	splice site	-	264		(none)
	GE2101	t2080	pos-1	V	8414579	T A	SNV	missense	V145D			
Z	GE2517	t2175	rad-50	V	12247914	T A	SNV	nonsense	L350*	1312	RAD5, AC116366.3	Nijmegen breakage syndrome-like disorder [613078]
	GE2476	t2147	rad-50	V	12250324	T A	SNV	missense	L1101N			
Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change	Mutation	Mutation Type	Amino Acid Change	Protein Size (Amino Acids)	Human Ortholog(s)	Associated OMIM phenotype(s)
-------	--------	-----------	------	------	----------	-------------	----------	--------------	-----------------	-------------------------	----------------	--------------------------------
E	GE2189	t1750	rad-51	IV	10282013	A	T	SNV	missense	I384N		
	GE2433	t1885	rad-51	IV	10282328	C	T	SNV	missense	V323I		
gene-11	GE2347	t1519	rmd-1	III	9759805	G	A	SNV	missense	G89R		
	GE2219	t1501	rmd-1	III	9759929	G	A	SNV	missense	R130H		
gene-18	GE2211	t1476	sas-1	III	12710102	C	T	SNV	missense	P419S		
	GE2343	t1521	sas-1	III	12710202	G	A	SNV	missense	G452E		
f	GE2078	t2033	sas-5	V	11612449	C	T	SNV	missense	R397C		
	GE2134	t2079	sas-5	V	11612449	C	T	SNV	missense	R397C		
P	GE2469	t2173	spn-4	V	6783986	A	T	SNV	nonsense	L259*		
	GE2317	t2098	spn-4	V	6784646	A	T	SNV	missense	V55D		
g	GE2386	t2165	sqv-4	V	10660827	G	A	SNV	missense	P182L		
	GE2059	t2025	sqv-4	V	10661143	G	A	SNV	missense	S93L		
gene-5	GE2277	t1496	such-1	III	11515520	G	A	SNV	missense	L686F		
	GE2277	t1496	such-1	III	11515883	G	A	SNV	missense	H565Y		
	GE2666	t1693	such-1	III	11515540	C	T	SNV	missense	R679K		
q	GE2827	t1786	T22B11.1	IV	4692945	G	A	SNV	nonsense	W35*		
	GE2895	t1866	T22B11.1	IV	4696017	G	A	SNV	nonsense	W356*		
gene-12	GE1734	t1438 t1477	tlk-1	III	9707175	C	T	SNV	nonsense	Q412*		
	GE2613	t1677	tlk-1	III	9708080	G	A	SNV	missense	A694T		

- GE2138: t1501, rad-51, IV, 10282328, C, T, SNV, missense, V323I, Protein Size: 395, Human Ortholog(s): (none) Associated OMIM phenotype(s): Fanconi anemia, complementation group R, group O [617244, 613390]; Mirror movements 2 [614508]; Breast-ovarian cancer, familial, susceptibility to, 3 [613399].
- GE2211: t1476, sas-1, III, 12710102, C, T, SNV, missense, P419S, Protein Size: 570, Human Ortholog(s): (none) Associated OMIM phenotype(s): (none).
- GE2277: t1496, such-1, III, 11515520, G, A, SNV, missense, L686F, Protein Size: 798, Human Ortholog(s): ANAPCS, (none).
- GE2433: t1885, rad-51, IV, 10282328, C, T, SNV, missense, V323I, Protein Size: 395, Human Ortholog(s): (none) Associated OMIM phenotype(s): (none).
- GE2469: t2173, spn-4, V, 6783986, A, T, SNV, nonsense, L259*, Protein Size: 351, Human Ortholog(s): RBFOX1, RBFOX2, RBFOX3, (none).
- GE2386: t2165, sqv-4, V, 10660827, G, A, SNV, missense, P182L, Protein Size: 481, Human Ortholog(s): UGDH, Epileptic encephalopathy, early infantile, 84 [618792].
- GE2613: t1677, tlk-1, III, 9708080, G, A, SNV, missense, A694T, Protein Size: 965, Human Ortholog(s): TLK1, TLK2, TLK2PS1, Mental retardation, autosomal dominant 57 [618050].
| Group | Strain | Allele(s) | Gene | Chr. | Position | Base Change | Mutation | Mutation Type | Amino Acid Change† | Protein Size (Amino Acids)† | Human Ortholog(s) | Associated OMIM phenotype(s)‡ |
|-------|--------|-----------|--------|------|----------|-------------|----------|---------------|------------------|--------------------------|------------------|--------------------------------|
| gene-15 | GE2399 | t1559 | top-3 | III | 11951381 | G A | SNV | nonsense | Q602* | 759 | TOP3A | Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 5 [618098]; Microcephaly, growth restriction, and increased sister chromatid exchange 2 [618097] |
| gene-15 | GE2220 | t1516 | top-3 | III | 11958680 | C T | SNV | missense | G59R | 428 | (none) | |
| gene-35 | GE1735 | t1470 | top-3 | III | 11957925 | C T | SNV | nonsense | W114* | 720 | FERMT1, FERMT2, FERMT3 | Kindler syndrome [173650]; Leukocyte adhesion deficiency, type III [612840] |
| gene-35 | GE2958 | t1464 | top-3 | III | 11951669 | C T | SNV | missense | G506R | 603 | VPS33A, VPS33B, AC048338.1 | Mucopolysaccharidosis-plus syndrome [617303]; Arthrogryposis, renal dysfunction [208085] |
| L | GE2512 | t1909 | trcs-1 | IV | 9587541 | C T | SNV | missense | E373K | 926 | VPS39 | (none) |
| c | GE1939 | t1745 | trcs-1 | IV | 9587985 | G A | SNV | nonsense | Q242* | 748 | WAPL | (none) |
| gene-27 | GE2112 | t2037 | unc-112| V | 14692219 | C T | SNV | missense | R669Q | 581 | (none) | |
| gene-27 | GE2326 | t2106 | unc-112| V | 14696546 | C T | SNV | splice site | - | 380 | (none) | (none) |
| gene-27 | GE1722 | t1435 | vps-33.1| III | 8701605 | C T | SNV | nonsense | R159* | 620 | (none) | |
| gene-27 | GE2366 | t1561 | vps-33.1| III | 8702923 | G A | SNV | nonsense | W536* | 400 | (none) | |
| Q | GE2292 | t2114 | vps-39 | V | 14035713 | G A | SNV | nonsense | Q754* | 926 | VPS39 | (none) |
| Q | GE1937 | t2189 | vps-39 | V | 14036143 | G A | SNV | nonsense | W626* | 926 | VPS39 | (none) |
| Q | GE2056 | t2016 | vps-39 | V | 14037839 | G C | SNV | nonsense | Y122* | 926 | VPS39 | (none) |
| N | GE2153 | t1773 | wapl-1 | IV | 4444446 | C T | SNV | nonsense | W348* | 748 | WAPL | (none) |
| N | GE2305 | t1867 | wapl-1 | IV | 4442749-| - | - | - | - | 380 | (none) | (none) |
| p | GE2738 | t1833 | Y54G2A.73| IV | 3000662 | A T | SNV | nonsense | L341* | 380 | (none) | (none) |
| p | GE2387 | t1913 | Y54G2A.73| IV | 3001767 | G A | SNV | nonsense | R252* | 380 | (none) | (none) |
| p | GE2884 | t1755 | Y54G2A.73| IV | 3008481 | C T | SNV | splice site | - | 380 | (none) | (none) |
| gene-23 | GE1713 | t1433 | ZK688.9| III | 7882477 | C T | SNV | nonsense | W135* | 281 | TIPRL | Lissencephaly, X-linked, 1; Subcortical laminar heterotopia, X-linked [300067] |
| gene-23 | GE2621 | t1587 | ZK688.9| III | 7882717 | C T | SNV | splice site | - | 281 | TIPRL | (none) |
| gene-14 | GE2348 | t1518 | zyg-8 | III | 12063671 | C T | SNV | nonsense | R312* | 802 | DCLK1, DCLK2, DCLK3, DCX | |
| gene-14 | GE2362 | t1547 | zyg-8 | III | 12063832 | G A | SNV | splice site | - | 802 | DCLK1, DCLK2, DCLK3, DCX | Lissencephaly, X-linked, 1; Subcortical laminar heterotopia, X-linked [300067] |
†Amino acid position and size derived from the longest transcript (wormbase.org, version WS275)
‡Phenotypes retrieved from omim.org
| Strain | Allele | Gene Name | Protein Function† | Amino Acid Change‡ | RNAi Phenotype‡ | Mutant Phenotype | Embryonic Osmotic Integrity Defect |
|--------|--------|-----------|-------------------|--------------------|----------------|-----------------|----------------------------------|
| GE1936 | t1738 | atg-7 | E1 ubiquitin-activating-like enzyme orthologous to the autophagic budding yeast protein Apg7p | W311* | growth variant; dauer body morphology variant; pathogen induced death increased; P granule localization defective; dauer development variant; protein aggregation variant; shortened life span; transgene subcellular localization variant; transgene expression variant; necrotic cell death variant; autophagy variant; antibody staining reduced | dead embryos | no |
| GE1958 | t1726 | | | Q367* | | dead embryos | no |
| GE2627 | t1603 | | | W150* | shortened life span; small | dead embryos | yes |
| GE2206 | t1514 | | | Q161* | | dead embryos | yes |
| GE2840 | t1860 | | | W131* | | unfertilized oocytes | N/A |
| GE2890 | t1821 | | | W101* | | unfertilized oocytes | N/A |
| GE2734 | t2029 | C56A3.8 | Predicted to have the following domain: Golgi apparatus membrane protein TVP23-like | G62E | larval lethal; accumulated germline cell corpses; germ cell compartment morphology variant; germline nuclear positioning variant; larval arrest; cell membrane organization biogenesis variant; embryonic lethal; rachis narrow; apoptosis variant; maternal sterile; reduced brood size | unfertilized oocytes | N/A |
| GE2886 | t2055 | | | E243K | | unfertilized oocytes | N/A |
| GE2122 | t2007 | cept-2 | Predicted to have diacylglycerol cholinephosphotransferase activity and ethanolaminephosphotransferase activity | splice site | fat content reduced; embryonic lethal; long | dead embryos | no |
| GE2047 | t2021 | | | W128* | | no eggs laid (dead embryos) [ts] | some |
| GE2275 | t1517 | cls-2 | Member of the CLASP family of microtubule-binding proteins | R102Q | locomotion variant; mitosis variant; univalent meiotic chromosomes; no polar body formation; chromosome segregation variant karyomeres early emb; mitotic chromosome segregation variant; mitotic spindle defective early emb; chromosome segregation variant; embryonic lethal; meiotic spindle defective; meiotic progression during oogenesis variant; exploded through vulva; reduced brood size; antibody subcellular localization variant; meiotic chromosome segregation variant | dead embryos | N/T |
| GE2357 | t1527 | | | G114R | | dead embryos | no |
| GE1938 | t1742 | cpt-2 | Carnitine palmitoyl transferase | W194* | embryonic lethal | dead embryos | no |
| GE2447 | t1879 | | | Q141* | | dead embryos | no |
| Strain | Allele | Gene Name | Protein Function | Amino Acid Change | RNAi Phenotype | Mutant Phenotype | Embryonic Osmotic Integrity Defect |
|--------|--------|-----------|----------------|------------------|----------------|-----------------|----------------------------------|
| GE2407 | t1906 | D2096.12 | -- | L638* | locomotion variant | dead embryos | some |
| GE2499 | t1877 | | | Q126* | | dead embryos | yes |
| GE2063 | t2042 | dgtr-1 | Acyl chain transfer enzyme | G31OR splice site | sterile; sick; oocyte number decreased; germline nuclear positioning variant; oocyte septum formation variant; embryonic lethal; embryo osmotic integrity defective early emb; oocyte morphology variant; pachytene region organization variant; reduced brood size; germ cell compartment expansion variant; oogenesis variant | dead embryos | some |
| GE2135 | t2043 | | | G31OR splice site | sterile; sick; oocyte number decreased; germline nuclear positioning variant; oocyte septum formation variant; embryonic lethal; embryo osmotic integrity defective early emb; oocyte morphology variant; pachytene region organization variant; reduced brood size; germ cell compartment expansion variant; oogenesis variant | dead embryos | yes |
| GE2541 | t2035 | dlat-1 | Predicted to have dihydrolipoyllysine-residue acetyltransferase activity | P83L splice site | embryonic lethal; slow growth; receptor mediated endocytosis defective; pattern of transgene expression variant; sterile progeny; transgene expression increased; general pace of development defective early emb | dead embryos | no |
| GE2335 | t2056 | | | Q419* | | dead embryos | no |
| GE2402 | t1940 | F21D5.1 | Predicted to have phosphoacetyl-glucosamine mutase activity | A436V splice site | sterile; germ cell compartment size variant; rachis wide; rachis morphology variant; accumulated germline cell corpses; germ cell compartment morphology variant; germline nuclear positioning variant; embryonic lethal; embryo osmotic integrity defective early emb; apoptosis variant; reduced brood size; oogenesis variant | dead embryos | yes |
| GE2445 | t1935 | | | L539F | | dead embryos | yes |
| GE2881 | t1744 | F56D5.2 | -- | S107F | | unfertilized oocytes | N/A |
| GE2837 | t1791 | | | Q214* | | unfertilized oocytes | N/A |
| GE2091 | t1772 | nstp-2 | Predicted to have UDP-N-acetylglucosamine and UDP-xylose transmembrane transporter activity | L277H splice site | lysosome-related organelle morphology variant; transgene subcellular localization variant; RAB-11 recycling endosome localization variant; RAB-11 recycling endosome morphology variant | dead embryos | no |
| GE2288 | t1835 | | | G131R | | dead embryos | no |
| GE2391 | t1932 | perm-5 | Predicted to have lipid binding activity | C454S splice site | sterile; apoptosis reduced; oocytes lack nucleus; oocyte number decreased; germ cell compartment morphology variant; germline nuclear positioning variant; germ cell compartment anucleate; oocyte septum formation variant; cell membrane organization biogenesis variant; embryonic lethal; embryo osmotic integrity defective early emb; oogenesis variant; diplotene region organization variant | dead embryos | yes |
| GE2453 | t1900 | | | S323P | | dead embryos | yes |
| GE2827 | t1786 | T22B11.1 | -- | W35* | | unfertilized oocytes [ts] | N/A |
| GE2895 | t1866 | | | W356* | | unfertilized oocytes [ts] | N/A |
| Strain | Allele | Gene Name | Protein Function† | Amino Acid Change† | RNAi Phenotype‡ | Mutant Phenotype | Embryonic Osmotic Integrity Defect |
|----------|--------|-----------|-------------------|-------------------|----------------|----------------|----------------------------------|
| GE2399 t1559 | top-3 | Exhibits DNA topoisomerase type I (single strand cut, ATP-independent) activity | G59R | chromosome morphology variant; hermaphrodite germline proliferation variant; antibody staining increased; somatic gonad development variant; gonad degenerate; chromosome instability; germ cell mitosis variant; gonad arm morphology variant; meiosis variant; oocyte morphology variant; nuclear appearance variant; fewer germ cells; oogenesis variant | dead embryos | no |
| GE2220 t1516 | Q602* | | | | dead embryos | no |
| GE2512 t1909 | trcs-1 | Putative arylacetamide deacetylase and microsomal lipase | E373K | apoptosis reduced; diplotene absent during oogenesis; oocyte number decreased; embryo osmotic integrity defective early emb; rachis narrow; chromosome condensation variant; pachytene region organization variant; membrane trafficking variant; pachytene progression during oogenesis variant; apoptosis fails to occur; egg laying variant; germ cell compartment expansion absent; embryonic lethal; cell membrane organization biogenesis variant; no oocytes; germ cell compartment expansion variant | dead embryos [leaky ts] | yes |
| GE1939 t1745 | Q242* | | | | no eggs laid (dead embryos) [ts] | yes |
| GE2848 t1755 | Y54G2A.73 | splice site | -- | | unfertilized oocytes | N/A |
| GE2387 t1913 | R252* | | | | unfertilized oocytes | N/A |
| GE2738 t1833 | L341* | | | | unfertilized oocytes | N/A |
| GE1713 t1433 | ZK688.9 | Predicted to have the following domain: TIP41-like protein (TOR signaling pathway regulator) | W135* | egg laying variant; locomotion variant | dead embryos | no |
| GE2621 t1587 | splice site | | | | dead embryos | no |

[†] From WormBase (WS275; wormbase.org); amino acid position derived from the longest transcript
‡] Phenotypes retrieved from GExplore (genome.sfu.ca/gexplore)

[ts] = temperature sensitive
N/A = not applicable
N/T = not tested
-- = no information available
Original Complementation Group	Strain	Allele	Preliminary Gene Candidate	Mapped Under	Complement Test Results	Final Gene Assignment
gene-28	GE1742	t1461	bckd-1A	None of tested deficiencies	Fails to complement: GE2206, GE2627	bckd-1A
gene-17	GE2627	t1603	bckd-1A	tDf5	Fails to complement: GE2206, GE1742	bckd-1A
	GE2206	t1514		tDf5	Fails to complement: GE2627, GE1742	
gene-15	GE2220	t1516	top-3	tDf5	Fails to complement: GE2399, GE1735, Complements: GE2278	top-3
	GE2399	t1559		tDf5	Fails to complement: GE2220	
gene-34	GE2278	t1502	top-3	None of tested deficiencies	Fails to complement: GE1735, Complements: GE2220	unknown gene
gene-35	GE1735	t1470	top-3	None of tested deficiencies	Fails to complement: GE2278, GE2220	double mutant: top-3 + unknown gene

N/T = not tested
Table 5. Putative male fertility genes

Strain	Allele	Gene	Observed Mutant Phenotype	Successful WT Male Rescue
GE2627	t1603	bckd-1A	dead embryos	yes
GE2206	t1514		dead embryos	yes
GE2840	t1860	C34D4.4	unfertilized oocytes	yes
GE2890	t1821		unfertilized oocytes	yes
GE2734	t2029	C56A3.8	unfertilized oocytes	yes
GE2487	t2149		unfertilized oocytes	yes
GE2886	t2055		unfertilized oocytes	yes
GE2881	t1744	F56D5.2	unfertilized oocytes	no
GE2837	t1791		unfertilized oocytes	yes
GE2091	t1772	nstp-2	dead embryos	no
GE2288	t1835		dead embryos	yes
GE2827	t1786	T22B11.1	unfertilized oocytes [ts]	yes
GE2895	t1866		unfertilized oocytes [ts]	yes
GE2884	t1755		unfertilized oocytes	yes
GE2387	t1913	Y54G2A.73	unfertilized oocytes	yes
GE2738	t1833		unfertilized oocytes	yes

[ts] = temperature sensitive
Figure 1 Schematic of gene assignments and deficiency mapping. Genes and deficiencies are shown with their relative positions on chromosomes III, IV, and V. Approximate boundaries of each deficiency were determined by the coordinates of the closest gene known to lie outside of the deletion, when possible (indicated by a faded edge). If no such genes with physical coordinates are known, the outermost gene known to lie inside the deletion was used as the boundary (indicated by a sharp edge). Gene names are coloured according to the deficiency under which the alleles were mapped. Genes names assigned to alleles that did not map under any of the tested deficiencies are highlighted in grey. *top-3* and *bckd-1A* on chromosome III are represented by multiple complementation groups with conflicting results from deficiency mapping.

Figure 2 Biological Process GO terms overrepresented in the set of 58 identified essential genes. Bar length represents the number of genes in the set associated with each GO term. Overrepresentation was analyzed using PANTHER version 16.0 (Thomas *et al.* 2003) and p-values were adjusted with the Bonferroni multiple testing correction. Results were filtered to include terms with adjusted p<0.05 and edited to exclude redundant terms.

Figure 3 Embryonic arrest visualized with DIC microscopy for select maternal-effect lethal mutants. Eggs were dissected from homozygous mutants and imaged immediately (A) or incubated in distilled water overnight before imaging (B, C, and D). (A) Eggs dissected from *dgtr*-
1(t2043) homozygotes exhibit signs of an osmotic integrity defect, by filling the eggshell completely. (B) dlat-1(t2035) embryos exhibit early embryonic arrest, with most embryos consisting of four cells or less. (C) ZK688.9(t1433) embryos arrest with approximately 100 cells. (D) Terminal embryos of nstp-2(t1835) have a lumpy body wall morphology and constricted nose; most animals were moving inside the eggshell but did not hatch. All scale bars represent 10 μm.
Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman, 1990 Basic local alignment search tool. J. Mol. Biol. 215: 403-410.

Au, V., E. Li-Leger, G. Raymant, S. Flibotte, G. Chen et al., 2019 CRISPR/Cas9 methodology for the generation of knockout deletions in Caenorhabditis elegans. G3: Genes, Genomes, Genet. 9: 135-144.

Ausländer, S., D. Ausländer and M. Fussenegger, 2017 Synthetic biology—the synthesis of biology. Angew. Chem. Int. Ed. 56: 6396-6419.

Bao, Z., J. I. Murray, T. Boyle, S. L. Ooi, M. J. Sandel et al., 2006 Automated cell lineage tracing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 103: 2707-2712.

Benenati, G., S. Penkov, T. Müller-Reichert, E. V. Entchev and T. V. Kurzchalia, 2009 Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo. Mech. Dev. 126: 382-393.

Bischoff, M., and R. Schnabel, 2006 A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo by a Wnt-dependent relay mechanism. PLoS Biol. 4: e396.

Blumenstiel, J. P., A. C. Noll, J. A. Griffiths, A. G. Perera, K. N. Walton et al., 2009 Identification of EMS-induced mutations in Drosophila melanogaster by whole-genome sequencing.

Genetics 182: 25-32.

Boeck, M. E., C. Huynh, L. Gevirtzman, O. A. Thompson, G. Wang et al., 2016 The time-resolved transcriptome of C. elegans. Genome Res. 26: 1441-1450.
Bradley, A., K. Anastassiadis, A. Ayadi, J. F. Battey, C. Bell et al., 2012 The mammalian gene function resource: The international knockout mouse consortium. Mammalian genome 23: 580-586.

Brauchle, M., K. Baumer and P. Gönczy, 2003 Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr. Biol. 13: 819-827.

Brenner, S., 1974 The genetics of Caenorhabditis elegans. Genetics 77: 71-94.

Bürglin, T. R., E. Lobos and M. L. Blaxter, 1998 Caenorhabditis elegans as a model for parasitic nematodes. Int. J. Parasitol. 28: 395-411.

C. elegans Deletion Mutant Consortium, 2012 Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3: Genes, Genomes, Genet. 2: 1415-1425.

Carvalho, A., S. K. Olson, E. Gutierrez, K. Zhang, L. B. Noble et al., 2011 Acute drug treatment in the early C. elegans embryo. PloS one 6: e24656.

Clark, D. V., T. M. Rogalski, L. M. Donati and D. L. Baillie, 1988 The unc-22 (IV) region of Caenorhabditis elegans: Genetic analysis of lethal mutations. Genetics 119: 345-353.

Cockell, M. M., K. Baumer and P. Gönczy, 2004 Lis-1 is required for dynein-dependent cell division processes in C. elegans embryos. J. Cell. Sci. 117: 4571-4582.

Culetto, E., and D. B. Sattelle, 2000 A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum. Mol. Genet. 9: 869-877.
del Castillo-Oliveres, A., M. Kulkarni and H. E. Smith, 2009 Regulation of sperm gene expression by the GATA factor ELT-1. Dev. Biol. 333: 397-408.

Delattre, M., S. Leidel, K. Wani, K. Baumer, J. Bamat et al., 2004 Centriolar SAS-5 is required for centrosome duplication in C. elegans. Nat. Cell Biol. 6: 656-664.

Denver, D. R., K. Morris, M. Lynch and W. K. Thomas, 2004 High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430: 679-682.

Dickerson, J. E., A. Zhu, D. L. Robertson and K. E. Hentges, 2011 Defining the role of essential genes in human disease. PloS one 6: e27368.

Doitsidou, M., R. J. Poole, S. Sarin, H. Bigelow and O. Hobert, 2010 C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy. PloS one 5: e15435.

Doyle, M. A., R. B. Gasser, B. J. Woodcroft, R. S. Hall and S. A. Ralph, 2010 Drug target prediction and prioritization: Using orthology to predict essentiality in parasite genomes. BMC Genomics 11: 222.

Feichtinger, R. E., 1995 Quantitative Analysis of Maternal Gene Functions of Caenorhabditis Elegans. Ph.D. Thesis, University of Vienna, Austria.

Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver et al., 1998 Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.

Flibotte, S., M. L. Edgley, I. Chaudhry, J. Taylor, S. E. Neil et al., 2010 Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics 185: 431-441.
Fraser, A. G., R. S. Kamath, P. Zipperlen, M. Martinez-Campos, M. Sohrmann et al., 2000 Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325-330.

Georgi, B., B. F. Voight and M. Bućan, 2013 From mouse to human: Evolutionary genomics analysis of human orthologs of essential genes. PLoS genet. 9: e1003484.

Gerstein, M. B., J. Rozowsky, K. Yan, D. Wang, C. Cheng et al., 2014 Comparative analysis of the transcriptome across distant species. 512: 445-448.

Gerstein, M. B., Z. J. Lu, E. L. Van Nostrand, C. Cheng, B. I. Arshinoff et al., 2010 Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330: 1775-1787.

Giaever, G., A. M. Chu, L. Ni, C. Connelly, L. Riles et al., 2002 Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387-391.

Gönczy, P., H. Schnabel, T. Kaletta, A. D. Amores, T. Hyman et al., 1999 Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. J. Cell Biol. 144: 927-946.

Gönczy, P., J. Bellanger, M. Kirkham, A. Pozniakowski, K. Baumer et al., 2001 Zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. Dev. Cell. 1: 363-375.
Gönczy, P., C. Echeverri, K. Oegema, A. Coulson, S. J. Jones et al., 2000 Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408: 331-336.

Goodwin, S., J. D. McPherson and W. R. McCombie, 2016 Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17: 333.

Green, R. A., H. Kao, A. Audhya, S. Arur, J. R. Mayers et al., 2011 A high-resolution C. elegans essential gene network based on phenotypic profiling of a complex tissue. Cell 145: 470-482.

Hashmi, S., W. Tawe and S. Lustigman, 2001 Caenorhabditis elegans and the study of gene function in parasites. Trends Parasitol. 17: 387-393.

Herman, R. K., 1978 Crossover suppressors and balanced recessive lethals in Caenorhabditis elegans. Genetics 88: 49-65.

Hillier, L. W., V. Reinke, P. Green, M. Hirst, M. A. Marra et al., 2009 Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Res. 19: 657-666.

Hillier, L. W., G. T. Marth, A. R. Quinlan, D. Dooling, G. Fewell et al., 2008 Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5: 183.

Hotez, P. J., P. J. Brindley, J. M. Bethony, C. H. King, E. J. Pearce et al., 2008 Helminth infections: The great neglected tropical diseases. J. Clin. Invest. 118: 1311-1321.

Howell, A. M., S. G. Gilmour, R. A. Mancebo and A. M. Rose, 1987 Genetic analysis of a large autosomal region in Caenorhabditis elegans by the use of a free duplication. Genetics Research 49: 207-213.
Howell, A. M., and A. M. Rose, 1990 Essential genes in the hDf6 region of chromosome I in Caenorhabditis elegans. Genetics 126: 583-592.

Hughes, T. R., 2002 Yeast and drug discovery. Funct. Integr. Genomics 2: 199-211.

Hutter, H., and J. Suh, 2016 GExplore 1.4: An expanded web interface for queries on Caenorhabditis elegans protein and gene function. Worm 5: e1234659.

Hutter, H., M. Ng and N. Chen, 2009 GExplore: A web server for integrated queries of protein domains, gene expression and mutant phenotypes. BMC Genomics 10: 529.

Jabbar, A., Z. Iqbal, D. Kerboeuf, G. Muhammad, M. N. Khan et al., 2006 Anthelmintic resistance: The state of play revisited. Life Sci. 79: 2413-2431.

Jaramillo-Lambert, A., A. S. Fuchsman, A. S. Fabritius, H. E. Smith and A. Golden, 2015 Rapid and efficient identification of Caenorhabditis elegans legacy mutations using Hawaiian SNP-based mapping and whole-genome sequencing. G3: Genes, Genomes, Genet. 5: 1007-1019.

Johnsen, R. C., and D. L. Baillie, 1997 Mutation, pp. 79-95 in C. Elegans II, edited by Riddle, D.L., Blumenthal, T., Meyer, B.J., Priess, J.R. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY).

Johnsen, R. C., and D. L. Baillie, 1991 Genetic analysis of a major segment [LGV (left)] of the genome of Caenorhabditis elegans. Genetics 129: 735-752.

Johnsen, R. C., and D. L. Baillie, 1988 Formaldehyde mutagenesis of the eT1 balanced region in Caenorhabditis elegans: Dose—response curve and the analysis of mutational events. Mutat. Res. 201: 137-147.
Johnston, W. L., A. Krizus and J. W. Dennis, 2006 The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C. elegans embryo. BMC biology 4: 35.

Jordan, I. K., I. B. Rogozin, Y. I. Wolf and E. V. Koonin, 2002 Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12: 962-968.

Kadandale, P., I. Chatterjee and A. Singson, 2009 Germline transformation of Caenorhabditis elegans by injection, pp. 123-133 in Microinjection. Springer.

Kaitna, S., H. Schnabel, R. Schnabel, A. A. Hyman and M. Glotzer, 2002 A ubiquitin C-terminal hydrolase is required to maintain osmotic balance and execute actin-dependent processes in the early C. elegans embryo. J. Cell. Sci. 115: 2293-2302.

Kamath, R. S., A. G. Fraser, Y. Dong, G. Poulin, R. Durbin et al., 2003 Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231-237.

Kemphues, K. J., M. Kusch and N. Wolf, 1988 Maternal-effect lethal mutations on linkage group II of Caenorhabditis elegans. Genetics 120: 977-986.

Kim, W., R. S. Underwood, I. Greenwald and D. D. Shaye, 2018 OrthoList 2: A new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics 210: 445-461.

Kniazeva, M., Q. T. Crawford, M. Seiber, C. Wang and M. Han, 2004 Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS biology 2: e257.

Kumar, S., K. Chaudhary, J. M. Foster, J. F. Novelli, Y. Zhang et al., 2007 Mining predicted essential genes of Brugia malayi for nematode drug targets. PloS one 2: e1189.
Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754-1760.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079.

Li, Z., F. J. Vizeacoumar, S. Bahr, J. Li, J. Warringer et al., 2011 Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat. Biotechnol. 29: 361.

Ma, X., Y. Zhu, C. Li, P. Xue, Y. Zhao et al., 2014 Characterisation of Caenorhabditis elegans sperm transcriptome and proteome. BMC Genomics 15: 168.

McKim, K. S., M. F. Heschl, R. E. Rosenbluth and D. L. Baillie, 1988 Genetic organization of the unc-60 region in Caenorhabditis elegans. Genetics 118: 49-59.

McKim, K. S., T. Starr and A. M. Rose, 1992 Genetic and molecular analysis of the dpy-14 region in Caenorhabditis elegans. Mol. Gen. Genet. 233: 241-251.

Mello, C. C., J. M. Kramer, D. Stinchcomb and V. Ambros, 1991 Efficient gene transfer in C. elegans: Extrachromosomomal maintenance and integration of transforming sequences. EMBO J. 10: 3959-3970.

Meneely, P. M., and R. K. Herman, 1979 Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. Genetics 92: 99-115.

Metzker, M. L., 2010 Sequencing technologies—the next generation. Nat. Rev. Genet. 11: 31-46.
Nicol, J. M., S. J. Turner, D. L. Coyne, L. Den Nijs, S. Hockland et al., 2011 Current nematode threats to world agriculture, pp. 21-43 in Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer.

Nieto, C., J. Almendinger, S. Gysi, E. Gómez-Orte, A. Kaech et al., 2010 Ccz-1 mediates the digestion of apoptotic corpses in C. elegans. J. Cell. Sci. 123: 2001-2007.

Nordström, K. J., M. C. Albani, G. V. James, C. Gutjahr, B. Hartwig et al., 2013 Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat. Biotechnol. 31: 325.

Norris, A. D., H. Kim, M. P. Colaiacovo and J. A. Calarco, 2015 Efficient genome editing in Caenorhabditis elegans with a toolkit of dual-marker selection cassettes. Genetics 201: 449-58.

Olson, S. K., G. Greenan, A. Desai, T. Müller-Reichert and K. Oegema, 2012 Hierarchical assembly of the eggshell and permeability barrier in C. elegans. J. Cell Biol. 198: 731-748.

Packer, J. S., Q. Zhu, C. Huynh, P. Sivaramakrishnan, E. Preston et al., 2019 A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science 365: eaax1971.

Qin, Z., R. Johnsen, S. Yu, J. S. Chu, D. L. Baillie et al., 2018 Genomic identification and functional characterization of essential genes in Caenorhabditis elegans. G3: Genes, Genomes, Genet. 8: 981-997.

Rahman, M. M., S. Rosu, D. Joseph-Strauss and O. Cohen-Fix, 2014 Down-regulation of tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. U.S.A. 111: 2602-2607.
Rappleye, C. A., A. Tagawa, N. Le Bot, J. Ahringer and R. V. Aroian, 2003 Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC developmental biology 3: 8.

Rappleye, C. A., A. R. Paredez, C. W. Smith, K. L. McDonald and R. V. Aroian, 1999 The coronin-like protein POD-1 is required for anterior–posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev. 13: 2838-2851.

Reinke, V., I. San Gil, S. Ward and K. Kazmer, 2004 Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development 131: 311-323.

Rogalski, T. M., D. G. Moerman and D. L. Baillie, 1982 Essential genes and deficiencies in the unc-22 IV region of Caenorhabditis elegans. Genetics 102: 725-736.

Sarin, S., S. Prabhu, M. M. O’meara, I. Pe’er and O. Hobert, 2008 Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat. Methods 5: 865-867.

Schnabel, R., H. Hutter, D. Moerman and H. Schnabel, 1997 Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: Variability of development and regional specification. Dev. Biol. 184: 234-265.

Schneeberger, K., and D. Weigel, 2011 Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci. 16: 282-288.

Schneeberger, K., S. Ossowski, C. Lanz, T. Juul, A. H. Petersen et al., 2009 SHOREmap: Simultaneous mapping and mutation identification by deep sequencing. Nat. Methods 6: 550-551.
Shi, J., E. Wang, J. P. Milazzo, Z. Wang, J. B. Kinney et al., 2015 Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33: 661-667.

Silverman, G. A., C. J. Luke, S. R. Bhatia, O. S. Long, A. C. Vetica et al., 2009 Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr. Res. 65: 10-18.

Smith, D. R., A. R. Quinlan, H. E. Peckham, K. Makowsky, W. Tao et al., 2008 Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res. 18: 1638-1642.

Smith, H. E., A. S. Fabritius, A. Jaramillo-Lambert and A. Golden, 2016 Mapping challenging mutations by whole-genome sequencing. G3: Genes, Genomes, Genet. 6: 1297-1304.

Sonneville, R., and P. Gönczy, 2004 Zyg-11 and cul-2 regulate progression through meiosis II and polarity establishment in C. elegans. Development 131: 3527-3543.

Sönnichsen, B., L. B. Koski, A. Walsh, P. Marschall, B. Neumann et al., 2005 Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434: 462-469.

Srivatsan, A., Y. Han, J. Peng, A. K. Tehranchi, R. Gibbs et al., 2008 High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet. 4: e1000139.

Stein, K. K., and A. Golden, 2018 The C. elegans eggshell in *WormBook: The Online Review of C. Elegans Biology.* The C. elegans Research Community.
Stewart, H. I., N. J. O'Neil, D. L. Janke, N. W. Franz, H. M. Chamberlin et al., 1998 Lethal mutations defining 112 complementation groups in a 4.5 mb sequenced region of Caenorhabditis elegans chromosome III. MGG 260: 280-288.

The C. elegans Sequencing Consortium, 1998 Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 2012-2018.

Thomas, C., P. DeVries, J. Hardin and J. White, 1996 Four-dimensional imaging: Computer visualization of 3D movements in living specimens. Science 273: 603-607.

Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak et al., 2003 PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 13: 2129-2141.

Thompson, O., M. Edgley, P. Strasbourger, S. Flibotte, B. Ewing et al., 2013 The million mutation project: A new approach to genetics in Caenorhabditis elegans. Genome Res. 23: 1749-1762.

Tintori, S. C., E. O. Nishimura, P. Golden, J. D. Lieb and B. Goldstein, 2016 A transcriptional lineage of the early C. elegans embryo. Dev. Cell 38: 430-444.

Varshney, G. K., J. Lu, D. E. Gildea, H. Huang, W. Pei et al., 2013 A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Res. 23: 727-735.

Vatcher, G. P., C. M. Thacker, T. Kaletta, H. Schnabel, R. Schnabel et al., 1998 Serine hydroxymethyltransferase is maternally essential in Caenorhabditis elegans. J. Biol. Chem. 273: 6066-6073.

Vyas, V. K., M. I. Barrasa and G. R. Fink, 2015 A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci. Adv. 1: e1500248.
Wang, S., S. D. Ochoa, R. N. Khaliullin, A. Gerson-Gurwitz, J. M. Hendel et al., 2019 A high-content imaging approach to profile C. elegans embryonic development. Development 146: dev174029.

Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson et al., 1999 Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis.

Science 285: 901-906.

Wolstenholme, A. J., I. Fairweather, R. Prichard, G. von Samson-Himmelstjerna and N. C. Sangster, 2004 Drug resistance in veterinary helminths. Trends Parasitol. 20: 469-476.

Yu, L., L. P. Castillo, S. Mnaimneh, T. R. Hughes and G. W. Brown, 2006 A survey of essential gene function in the yeast cell division cycle. Mol. Biol. Cell 17: 4736-4747.

Zhang, M., C. Wang, T. D. Otto, J. Oberstaller, X. Liao et al., 2018 Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis.

Science 360: eaap7847.

Zhu, G., G. Salazar, S. A. Zlatic, B. Fiza, M. M. Doucette et al., 2009 SPE-39 family proteins interact with the HOPS complex and function in lysosomal delivery. Mol. Biol. Cell 20: 1223-1240.

Zuryn, S., S. Le Gras, K. Jamet and S. Jarriault, 2010 A strategy for direct mapping and identification of mutations by whole-genome sequencing. Genetics 186: 427-430.
Figure 1.
Annotation	Number of Genes
DNA repair (GO:0006281)	~10
nucleobase-containing compound metabolic process (GO:0006139)	~10
regulation of cell cycle (GO:0051726)	~10
DNA recombination (GO:0006310)	~10
organelle disassembly (GO:1903008)	~10
regulation of cellular component organization (GO:0051128)	~10
establishment of mitotic spindle localization (GO:0040001)	~10
anatomical structure homeostasis (GO:0060249)	~10
cell division (GO:0051301)	~10
cellular metabolic process (GO:0044237)	~10
chromosome segregation (GO:0007059)	~10
embryo development (GO:0009790)	~10
meiotic cell cycle process (GO:1903046)	~10
organelle assembly (GO:0070925)	~10
spindle organization (GO:0007051)	~10
reproductive process (GO:0022414)	~10
nuclear division (GO:0000280)	~10
chromosome organization involved in meiotic cell cycle (GO:0070192)	~10
cytoskeleton organization (GO:0007010)	~10
microtubule–based process (GO:0007017)	~10
mitotic cell cycle process (GO:1903047)	~10
organelle organization (GO:0006996)	~10
cell cycle (GO:0007049)	~10

The graph shows the number of genes associated with various biological processes, with the y-axis representing the number of genes and the x-axis showing the level of significance (p-adjusted) ranging from 0.01 to 0.04.
Figure 3.