Search for 70 µeV Dark Photon Dark Matter with a Dielectrically-Loaded Multi-Wavelength Microwave Cavity

R. Cervantes, G. Carosi, C. Hanretty, S. Kimes, B. H. LaRoque, G. Leum, P. Mohapatra, N. S. Oblath, R. Ottens, Y. Park, G. Rybka, J. Simnis, and J. Yang

1 University of Washington, Seattle, WA 98195, USA
2 currently Fermi National Accelerator Laboratory, Batavia IL 60510
3 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
4 currently Microsoft Quantum, Microsoft, Redmond, WA 98052, USA
5 Pacific Northwest National Laboratory, Richland, WA 99354, USA
6 currently Joby Aviation, San Carlos, CA 94063, USA
7 currently NASA Goddard Space Flight Center Greenbelt, MD, United States
8 currently University of California, Berkeley, CA 94720
9 currently Pacific Northwest National Laboratory, Richland, WA 99354, USA

(Dated: November 10, 2022)

Microwave cavities have been deployed to search for bosonic dark matter candidates with masses of a few µeV. However, the sensitivity of these cavity detectors is limited by their volume, and the traditionally-employed half-wavelength cavities suffer from a significant volume reduction at higher masses. ADMX-Orpheus mitigates this issue by operating a tunable, dielectrically-loaded cavity at a higher-order mode, which allows the detection volume to remain large. The ADMX-Orpheus inaugural run excludes dark photon dark matter with kinetic mixing angle \(\chi > 10^{-13} \) between 65.5 µeV (15.8 GHz) and 69.3 µeV (16.8 GHz), marking the highest-frequency tunable microwave cavity dark matter search to date.

Introduction.—There is overwhelming evidence that 84.4% of the matter in the universe is made out of dark matter (DM) [1,7]. The ΛCDM model describes dark matter as feebly interacting, non-relativistic, and stable on cosmological timescales. Not much else is known about the nature of dark matter, particularly what makes up dark matter.

The dark photon (DP) is a compelling dark matter candidate. It is a vector boson associated with an added Abelian U(1) symmetry, the simplest possible extension to the Standard Model (SM) [8-10]. The dark photon, having the same quantum numbers as the SM photon, interacts with the SM photon through kinetic mixing [11] [12] described by the Lagrangian

\[
\mathcal{L} = -\frac{1}{4} (F_{\mu
u}^\prime F_{1\mu\nu} + F_{2\mu\nu}^\prime F_{2\mu\nu} - 2\chi F_{\mu\nu}^\prime F_{\mu\nu} - 2m_A^2 A'^2),
\]

where \(F_{\mu\nu}^\prime \) is the electromagnetic field tensor, \(F_{2\mu\nu}^\prime \) is the dark photon field tensor, \(\chi \) is the kinetic mixing, \(m_A^\prime \) is the DP mass, and \(A' \) is the DP gauge field. The photon frequency \(f \) is related to the dark photon energy \(E_A^\prime \) by the relationship \(f = E_A^\prime \) (using natural units). For non-relativistic dark photons, \(f \approx m_A^\prime \).

If \(\chi \) is sufficiently small, then it is stable on cosmological timescales. The lifetime is about the same as the age of the universe if \(m_A^\prime (\chi^2 \alpha)^{1/9} < 1 \text{ keV} \) [13], where \(\alpha \) is the fine structure constant. This condition is easily met if \(m_A^\prime \approx 10^{-4} \text{ eV} \) and \(\chi < 10^{-12} \).

Several mechanisms could produce cosmic dark photons, the simplest being through quantum fluctuations during inflation [17]. These fluctuations seed excitations in the dark photon field, resulting in the cold dark matter observed today in the form of coherent oscillations of this field. The predicted mass from this mechanism is \(m_A^\prime \approx 10 \mu \text{eV} (10^{14} \text{ GeV}/H_I)^3 \), where \(H_I \) is the Hubble constant during inflation. Measurements of the cosmic microwave background tensor to scalar ratio constrain \(H_I < 10^{14} \text{ GeV} \) [15], which makes the search for \(m_A^\prime > 10^{-5} \text{ eV} \) well-motivated. Other mechanisms are possible and are described in [10] [16].

Dark photon dark matter (DPDM) can be detected through their mixing with the SM photon. If dark photons oscillate into SM photons inside a microwave cavity with a large quality factor, then a feeble EM signal accumulates inside the cavity, which can be read by ultra-low noise electronics. This type of detector is called a haloscope and is often deployed to search for axionic DM [17]. The dark photon signal power is \(P_S \), in natural units,

\[
P_S = \eta \chi^2 m_A^\prime \rho_A V_{\text{eff}} Q_L \frac{\beta}{\beta + 1} L(f, f_0, Q_L)
\]

\[
V_{\text{eff}} = \int dV e_{\vec{x}} |A(\vec{x})|^2 \left| A'(\vec{x}) \right|^2
\]

where \(\eta \) is a signal attenuation factor, \(\rho_A \) is the local density of dark matter, \(V_{\text{eff}} \) is the effective volume of the cavity, \(Q_L \) is the loaded quality factor, and \(\beta \) is the cavity coupling coefficient. The Lorentzian term is \(L(f, f_0, Q_L) = 1/(1 + 4\Delta^2) \), where \(\Delta \equiv Q_L (f - f_0)/f_0 \) is a detuning factor that depends on the SM photon frequency \(f \), cavity resonant frequency \(f_0 \), and \(Q_L \).
is the overlap between the dark photon field $\mathbf{A}'(\vec{x})$ and the dark photon-induced electric field $\mathbf{E}(\vec{x})$. Equation 2 assumes the cavity size is much smaller than the DP de Broglie wavelength and the cavity bandwidth is much larger than the dark matter velocity dispersion, $Q_L \ll Q_{DM}$ [18, 19].

The dark photon mass is unknown, so haloscopes must be tunable to search through the χ vs. m_A^\prime parameter space. The scan rate for halo experiments is a key figure of merit that is strongly dependent on the signal-to-noise ratio (SNR). The SNR for a halo's signal is $SNR = (P_S/P_n)\sqrt{b\Delta f}$ [20 21], where P_n is the noise power, b is the frequency bin width and Δt is the integration time. P_n is the combination of the cavity's blackbody radiation and the receiver’s Johnson noise. The noise power can be written as $P_n = Gk_bT_n$, where k_b is the Boltzmann constant, G is the system gain, T_{cav} is the cavity temperature, and T_n is the system noise temperature referenced to the cavity. If $Q_L < Q_{DM}$, a halo is sensitive to dark matter within its cavity bandwidth $\Delta f = f_0/Q_L$. The instantaneous scan rate is then

$$\frac{df}{dt} = \frac{\Delta f}{\Delta t} = \frac{f_0Q_L}{b} \left(\frac{\eta\chi^2m_A^\prime\rho_AV_{eff}\beta}{SNR T_n (\beta + 1)} \right)^2. \tag{4}$$

Traditional haloscopes, such as those implemented by the Axion Dark Matter eXperiment (ADMX), have consisted of a right-cylindrical cavity operating at the TM$_{010}$ mode as this mode often maximizes V_{eff}. ADMX currently uses this halo design to look for axions around a few μeV with great success [22–24]. Unfortunately, this design becomes increasingly difficult to implement at higher frequencies. Increasing mass corresponds to higher-frequency photons. Operating at the TM$_{010}$ mode would require smaller-diameter cavities. The volume scales by $V_{eff} \propto f^{-3}$ for a fixed aspect ratio, and consequently $P_S \propto f^{-3}$. This problem can be addressed by combining many cavities, as ADMX plans to do for future runs [25]. However, if the ADMX cavity’s $V_{eff} = 54L$ at an operating frequency $f_0 = 740$ MHz [23], then it would be about 5.4 mL at an operating frequency $f_0 = 16$ GHz. Combining enough cavities to be sensitive enough to the QCD axion is challenging. This unfavorable frequency scaling motivates the design of more sophisticated resonators.

The volume can remain large if the cavity operates at a higher-order mode (as is done by the ORGAN experiment [26] to implement a 26.5 GHz non-tunable haloscope). But higher-order modes would not couple well to dark photons since the spatial oscillations in $\mathbf{E}(\vec{x})$ would overlap poorly with the DP field, i.e., $\int \mathbf{E}(\vec{x}) \cdot \mathbf{A}'dV \approx 0$. However, dielectrics suppress electric fields and can be placed strategically to shape the electric field and increase V_{eff}. With a periodic dielectric structure, the cavity can be made arbitrarily large and operate at a higher-order mode while maintaining coupling to the dark photon. This makes dielectric cavities well-suited for higher frequency dark photon searches. Because of their potential, other collaborations are developing experiments with dielectric haloscopes. Examples include MADMAX [27 28], LAMPOST [29 30], MuDhi [31], and DBAS [32 33].

This Letter reports results from the highest-frequency tunable microwave cavity dark matter search to date. The results exclude DPDM between 65.5 μeV and 69.3 μeV with kinetic mixing $\chi > 10^{-13}$ at a 90% confidence limit. A more detailed description of the experimental design, implementation, operation, and data analysis can be found in the companion paper [34].

The ADMX-Orpheus Cavity—Orpheus implements this dielectric halo concept to search for dark photons around 70 μeV. Orpheus [35] is a dielectrically-loaded Fabry-Perot open cavity. The cavity operates at the TEM$_{00-18}$ mode (19 antinodes across the cavity axis), and dielectrics are placed on every fourth antinode to increase the mode’s coupling to the dark photon (Fig. 1a).

The dielectrics, purchased from Superior Technical Ceramics, consist of 99.5% alumina sheets. Their dimensions are 15.2 cm \times 15.2 cm \times 3 mm. The dielectric constant is $\epsilon_r = 9.8$ and the loss tangent is tan $\delta < 0.0001$ [36]. A 3 mm thickness is chosen because it is approximately half a wavelength at 16.5 GHz.

![Image](image-url)
room-temperature stepper motor (Applied Motion Products STM23S-2EE [40]). The scissor jacks constrain the inner two dielectric plates so that they are evenly spaced between the top and bottom dielectric plate (Fig. 1b). Thus the cavity has three degrees of freedom.

Power is extracted from the cavity via aperture coupling connected to a WR-62 waveguide 20 dB crossguide coupler [41]. The aperture is 5.4 mm in diameter and 3.8 mm thick. This was empirically determined to have an acceptable β without too much detriment to the mechanical stability or unloaded Q (Q₀). β ~ 1 under cryogenic conditions. β = 2 would optimize the scan rate, but this is not attainable without making the aperture unreasonably large.

There are two sets of measurements and simulations relevant for this Letter: a room-temperature tabletop measurement that measures the cavity spectrum and the cryogenically-cooled DPDM haloscope search. These measurements differ in two major aspects. First, the dielectric dissipation is substantially reduced in the cryogenic search, the dielectric plate positions deviated from the evenly-spaced configuration. This deviation where the dielectric plates were evenly-spaced in the cryogenic measurement, which increases κ eff (Equation 2) overestimates the effect of the mode crossing, possibly because the mode crossing requires more resolution to simulate accurately. Regardless, the mode crossing was mitigated in the cryogenic dark photon search because the dielectric plates deviated from the evenly-spaced configuration.

Orpheus’s sensitivity to the dark photon is determined from the cavity’s f₀, Vₑff, Q₀, β (Equation 2). The crux of the Orpheus experiment is to increase Vₑff using the dielectric structure. Since E cannot be measured directly, E is simulated using Finite Element Analysis simulation software (specifically, ANSYS® HFSS 2021 R1). The field is simulated for the cryogenic search and used to calculate Vₑff (Equation 3). Because of the orientation of the WR-62 waveguide, the receiver is only sensitive to Eₓ (one of the transverse coordinates), so Vₑff = (∫ dV Eₓ(x))² / (∫ dV e₀ Eₓ(x)²) (cos²θ)₁, where θ is the angle between the electric field along y and the dark photon field. θ is unknown, but (cos²θ)₁ = 1/3 if the dark photon is randomly polarized [8, 10, 16].

The simulated field is shown in Fig. 1a and cryogenic simulation of Vₑff and Q₀ is shown in Fig. 3 Vₑff(cos²θ)₁ ~ 55 mL for much of the tuning range, which is about a factor of 10 times larger than the ADMX cavity rescaled to operate the same frequency. After the dark photon search concluded, it was discovered that deviations from the evenly-spaced configuration serendipitously increased Vₑff and mitigated a problematic mode crossing (more detail in [12]). The relative uncertainty in Vₑff is 7.14%. This uncertainty is determined by simulating how Vₑff is affected by possible misalignments of the mirrors and dielectric plates, uncertainty in dielectric constant and loss tangent, and the effects of the mechanical structure [12]. Simulating these perturbations also caused the simulated Q₀ to vary by 50%. Fig. 3 shows that within the uncertainty of the cryogenic simulation, Q₀ matches the measured Q₀ determined from the measured Q₀ and β, Q₀ = Q₀(1 + β). This matching Q₀ corroborates the simulated Vₑff.

The measured Q₀ drops off below 16 GHz and above 16.2 GHz, suggesting Orpheus has a natural bandwidth. This is because the fixed dielectric thickness and mirror radius of curvature are optimal for a small range of frequencies. These parameters can be adjusted to allow Orpheus to scan for dark matter at different frequencies.

Dark Photon Search Experimental Setup—The cavity is cooled down to liquid helium temperatures. The power

FIG. 2. Orpheus mode map with the simulated TEM₀₀⁻₁₈ mode overlaid. Both measurement and simulation correspond to a room-temperature tabletop setup in which the dielectrics maintained even spacing throughout the cavity. This configuration suffers from a mode crossing at about 16.4 GHz. This mode crossing was mitigated in the dark photon search by deviating from the evenly-spaced configuration.

The cavity spectrum is measured with the room-temperature setup and is visualized with a mode map,
of the cavity is first amplified by a cryogenic heterostructure field effect transistor (HFET) amplifier (LNF-LNC6 20C [43]) and then is processed by the superheterodyne receiver in Fig. 4.

The search strategy is to tune the cavity to scan for dark photons with different m_{ψ}. For each cavity length, a series of ancillary measurements are taken to extract a noise power calibration and expected dark photon signal power. These measurements include the cavity length, dielectric positions, cavity temperature, transmission coefficient, and reflection coefficient. The cavity temperature is used to determine the noise power, and the transmission and reflection coefficients are used to extract f_0, Q_L, and β. The power spectrum is then measured out of the cavity for either 30 s or 100 s, depending on the desired SNR. The dark matter signal would be observed in the power spectra as a spectrally-narrow power excess over the noise floor.

Analysis and Results—For a critically-coupled Orpheus cavity operating in the Rayleigh-Jeans limit ($k_BT_{cav} >> hf$), the system noise temperature is modeled as $T_n = T_{cav} + T_{rec}$, where T_{cav} is the physical temperature of the cavity, and T_{rec} is the noise temperature of the receiver chain from the output of the cryogenic amplifier outward (see [42] for more details). T_{cav} is measured using a pair of calibrated Cernox resistors and is typically 4.7(1) K. T_{rec} is dominated by output noise temperature of the 1st stage amplifier T_{amp}, and is more accurately obtained by the Friis cascade equation [44] (future runs will incorporate an in-situ measurement of T_{rec}). From the manufacturer’s calibration [43], $T_{rec} = 5.0(5)$ K. This results in $T_n \sim 9.7$ K.

The cavity length and position of the dielectrics were calculated using the motor encoder values. However, there is a systematic offset between measured and simulated resonant frequency for a given cavity length. This frequency offset is removed by adding 0.7 mm to the measured cavity length derived from the motor encoder values. This systematic bias may be caused by mechanical contractions during cooldown or by tuning hysteresis. After accounting for the systematic bias, the measured f_0 matches the simulated f_0 often by less than one part per thousand.

The data collected between 9/3/2021 and 9/7/2021 are used to search for dark photons between 65.5 μeV (15.8 GHz) and 69.5 μeV (16.8 GHz). The system noise temperature T_n is used to calibrate the power excess. All measured power excesses are consistent with Gaussian noise, so a 90% confidence level exclusion limit is placed on the kinetic mixing χ in this mass range. The procedure for deriving the exclusion limits follows the procedure developed by ADMX and HAYSTAC [45, 47], and is adapted for dark photon searches [9, 10, 42, 48]. The analysis for this measurement is described in more detail in the companion paper [42].

The derived 90% exclusion of dark photons is plotted in Fig. 5 assuming dark photons are randomly polarized $\langle \cos^2 \theta \rangle_T = 1/3$. If dark photons are polarized across elements, the scenario implies $\langle \cos^2 \theta \rangle \geq 0.076$ for a 90% confidence limit, and the results can be appropriately rescaled [9, 10].

Conclusion and Discussion—Orpheus has excluded DPDM higher in frequency than other haloscope experiments while also having a respectable tuning range. Orpheus also demonstrates the potential advantages of a cylindrical haloscope operating at similar frequencies...
Kinetic mixing, such as ORGAN [50]. Orpheus has three times microwave cavity haloscopes. Figure adapted from [49].

With more experimental iterations with different dielectric thicknesses and mirror radius of curvatures, Orpheus can potentially scan the axion and dark photon parameter space higher than $\sim 10\,\text{GHz}$.

Orpheus lays the groundwork for other future dielectric array experiments such as MADMAX. It demonstrates the feasibility and tolerance of the tuning mechanism. Orpheus can also become sensitive to the QCD axion by making it larger and colder. With the same integration time, Orpheus can achieve Kim-Shifman-Vainshtein-Zakharov (KSVZ) sensitivity if $V_{eff} \sim 120\,\text{mL}$ and $Q_L \sim 2 \times 10^4$, $T_n \sim 1\,\text{K}$, and $B_0 = 10\,\text{T}$. That would require the electromagnetic optimizations that increase V_{eff} and reduce diffraction losses, cooling the cavity with a dilution refrigerator, quantum noise limited amplifiers, and technological advances in winding superconducting dipole magnets. Dine-Fischler-Srednicki-Zhitnitsk (DFSZ) sensitivity may be reached by increasing the cavity size to $V_{eff} \sim 600\,\text{mL}$. Detection mechanisms that subvert the Standard Quantum Limit, such as vacuum squeezing [51] and superconducting qubit photon counters [52] would be advantageous in this frequency range for increasing sensitivity.

Acknowledgements—This work was supported by the U.S. Department of Energy through Grants No. DE-SC0011665 and by the Heising-Simons Foundation. Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the DOE under Contract No. DE-AC05-76RL01830. Prepared by LLNL under Contract DE-AC52-07NA27344 with release #: LLNL-JRNL-834494. Many parts were fabricated by the University of Washington Physics Machine Shop and CENPA machine shop. CENPA administration and engineers helped develop the infrastructure to commission the Orpheus test stand. Finally, we thank M. Baryakhtar for helpful discussions and clarification on dark photon cosmology.

References:

[1] V. C. Rubin, W. K. Ford, Jr., N. Thonnard, and D. Burstein, Rotational properties of 23 SB galaxies, Astrophys. J. 261, 439 (1982)
[2] K. G. Begeman, A. H. Broeils, and R. H. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics, Monthly Notices of the Royal Astronomical Society 249, 523 (1991)
[3] A. N. Taylor, S. Dye, T. J. Broadhurst, N. Benitez, and E. van Kampen, Gravitational lens magnification and the mass of abell 1689, The Astrophysical Journal 501, 539 (1998)
[4] P. Natarajan, U. Chadayammuri, M. Jauzac, J. Richard, J.-P. Kneib, H. Ebeling, F. Jiang, F. van den Bosch, M. Limousin, E. Jullo, H. Atek, A. Pilleppich, C. Popa, F. Marinacci, L. Hernquist, M. Meneghetti, and M. Vogelsberger, Mapping substructure in the HST Frontier Fields cluster lenses and in cosmological simulations, Monthly Notices of the Royal Astronomical Society 468, 1962 (2017), https://academic.oup.com/mnras/article-pdf/468/2/1962/11210742/stw3386.pdf
[5] M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, W. Forman, C. Jones, S. Murray, and W. Tucker, Direct constraints on the dark matter self-interaction cross section from the merging galaxy cluster 1e 0657-56, The Astrophysical Journal 606, 819 (2004)
[6] N. Aghanim, Y. Akrami, M. Aslakson, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, and et al., Planck 2018 results, Astronomy & Astrophysics 641, A6 (2020)
[7] P. Żyła et al., Review of Particle Physics, PTEP 2020, 083C01 (2020)
[8] R. Essig, J. A. Jaros, W. Wester, P. H. Adrian, S. Andreas, T. Averett, O. Baker, B. Batell, M. Battaglieri, J. Beacham, T. Beranek, J. D. Bjorken, F. Bossi, J. R.
Boyce, G. D. Cates, A. Celentano, A. S. Chou, R. Cowan, F. Curciarello, H. Davoudiasl, P. deNiverville, R. D. Vita, A. Denig, R. Dharmapalan, B. Dongwi, B. D"obrich, B. Echenard, D. Escriu, S. Fegan, P. Fisher, G. B. Franklin, A. Gasparian, Y. Gershtein, M. Graham, P. W. Graham, A. Haas, A. Hatzikoutelis, M. Holtop, I. Iras- torza, E. Izaguirre, J. Jaeckel, Y. Kahn, N. Kalantar- ians, M. Kohl, G. Kranjac, V. Kubarovskiy, H.-S. Lee, A. Lindner, A. Lobanov, W. J. Marciano, D. J. E. Marsh, T. Maruyama, D. McKeen, H. Merkel, K. Moffit, P. Monaghan, G. Mueller, T. K. Nelson, G. R. Neil, M. Oriummo, Z. Pavlovic, S. K. Phillips, M. J. Pivo- varoff, R. Poltis, M. Pospelov, S. Rajendran, J. Re- dondo, A. Ringwald, A. Ritz, J. Ruz, K. Saeboon- ruang, P. Schuster, M. Shinn, T. R. Slatyer, J. H. Stef- fen, S. Stepanyan, D. B. Tanner, J. Thaler, M. E. To- bar, N. T"or"o, A. Upadye, R. V. de Water, B. Vlahovic, J. K. Vogel, D. Walker, A. Weltman, B. Wojtsekhowski, S. Zhang, and K. Ziotas, Dark sectors and new, light, weakly-coupled particles (2013), arXiv:1311.0029 [hep- ph].

[9] S. Ghosh, E. P. Ruddy, M. J. Jewell, A. F. Leder, and R. H. Maruyama, Searching for dark photons with existing halooscope data, Phys. Rev. D 104, 092001 (2021).

[10] A. Caputo, A. J. Millar, C. A. J. O'Hare, and E. Vitagliano, Dark photon limits: A handbook, Phys. Rev. D 104, 092002 (2021).

[11] B. Holdom, Searching for \(e\) charges and a new \(u(1)\), Physics Letters B 178, 65 (1986).

[12] B. Holdom, Two \(u(1)\)'s and \(e\) charge shifts, Physics Letters B 166, 196 (1986).

[13] M. Pospelov, A. Ritz, and M. Voloshin, Bosonic superwimps as kev-scale dark matter, Phys. Rev. D 78, 115012 (2008).

[14] P. W. Graham, J. Mardon, and S. Rajendran, Vector dark matter from inflationary fluctuations, Phys. Rev. D 93, 103520 (2016).

[15] P. A. R. Ade, N. Aghanim, M. Arnaud, F. Arroja, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, and et al., Planck2015 results, Astronomy & Astrophysics 594, A20 (2016).

[16] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Re- dondo, and A. Ringwald, WISPy cold dark matter, Journal of Cosmology and Astroparticle Physics 2012 (06), 013.

[17] P. Sikivie, Experimental tests of the “invisible” axion, Phys. Rev. Lett. 51, 1415 (1983).

[18] L. Krauss, J. Moody, F. Wilczek, and D. E. Morris, Calculations for cosmic axion detection, Phys. Rev. Lett. 55, 1797 (1985).

[19] D. Kim, J. Jeong, S. Youn, Y. Kim, and Y. K. Semertzidis, Revisiting the detection rate for axion haloscopes, Journal of Cosmology and Astroparticle Physics 2020 (03), 066.

[20] R. H. Dicke, The measurement of thermal radiation at microwave frequencies, Review of Scientific Instruments 17, 268 (1946), https://doi.org/10.1063/1.1770483.

[21] H. Peng et al., Cryogenic cavity detector for a large scale cold dark-matter axion search, Nucl. Instrum. Meth. A 444, 569 (2000).

[22] N. Du, N. Force, R. Khatiwada, E. Lentz, R. Ottens, L. J. Rosenberg, G. Rybka, G. Carosi, N. Woollett, D. Bowring, A. S. Chou, A. Sonnenschein, W. Wester, C. Boutan, M. S. Oblath, R. Bradley, E. J. Daw, A. V. Dixit, J. Clarke, S. R. O’Kelley, N. Crisosto, J. R. Gleason, S. Jois, P. Sikivie, I. Stern, N. S. Sullivan, D. B. Tanner, and G. C. Hilton (ADMX Collaboration), Search for invisible axion dark matter with the axion dark matter experiment, Phys. Rev. Lett. 120, 151301 (2018).

[23] T. Braine, R. Cervantes, N. Crisosto, N. Du, S. Kimes, L. J. Rosenberg, G. Rybka, J. Yang, D. Bowring, A. S. Chou, R. Khatiwada, A. Sonnenschein, W. Wester, G. Carosi, N. Woollett, L. D. Duffy, R. Bradley, C. Boutan, M. Jones, B. H. LaRoque, N. S. Oblath, M. S. Taubman, J. Clarke, A. Dove, A. Eddins, S. R. O’Kelley, S. Nawaz, I. Siddiqi, N. Stevenson, A. Agrawal, A. V. Dixit, J. R. Gleason, S. Jois, P. Sikivie, J. A. Solomon, N. S. Sullivan, D. B. Tanner, E. Lentz, E. J. Daw, J. H. Buckley, P. M. Harrington, E. A. Henriksen, and K. W. Murch (ADMX Collaboration), Extended search for the invisible axion with the axion dark matter experiment, Phys. Rev. Lett. 124, 101303 (2020).

[24] C. Bartram, T. Braine, E. Burns, R. Cervantes, N. Crisosto, N. Du, H. Korandlia, G. Leum, P. Mohapatra, T. Nitta, L. J. Rosenberg, G. Rybka, J. Yang, J. Clarke, I. Siddiqi, A. Agrawal, A. V. Dixit, M. H. Awida, A. S. Chou, M. Hollister, S. Krueck, A. Sonnenschein, W. Wester, J. R. Gleason, A. T. Hipp, S. Jois, P. Sikivie, N. S. Sullivan, D. B. Tanner, E. Lentz, R. Khatiwada, G. Carosi, N. Robertson, N. Woollett, L. D. Duffy, C. Boutan, M. Jones, B. H. LaRoque, N. S. Oblath, M. S. Taubman, E. J. Daw, M. G. Perry, J. H. Buckley, C. Gaikwad, J. Hoffman, K. W. Murch, M. Goryachev, B. T. McAllister, A. Quiskamp, C. Thomson, and M. E. Tobar (ADMX Collaboration), Search for invisible axion dark matter in the 3.3 – 4.2 µeV mass range, Phys. Rev. Lett. 127, 261803 (2021).

[25] J. Yang, J. R. Gleason, S. Jois, I. Stern, P. Sikivie, N. S. Sullivan, and D. B. Tanner, Search for 5–9 µeV axions with admx four-cavity array, in Microwave Cavities and Detectors for Axion Research, edited by G. Carosi and G. Rybka (Springer International Publishing, Cham, 2020) pp. 53–62.

[26] B. T. McAllister, G. Flower, E. N. Ivanov, M. Goryachev, J. Bourhill, and M. E. Tobar, The organ experiment: An axion haloscope above 15 ghz, Physics of the Dark Universe 18, 67 (2017).

[27] P. Brun, A. Caldwell, L. Chevalier, G. Dvali, P. Freire, E. Garutti, S. Heyminck, J. Jochum, S. Knirek, M. Kramer, C. Krieger, T. Lasserre, C. Lee, X. Li, A. Lindner, B. Majorovits, S. Martens, M. Matysrek, A. Millar, G. Raffelt, J. Redondo, O. Reimann, A. Ringwald, K. Saikawa, J. Schaffran, A. Schmidt, J. Schütte-Engel, F. Steffen, C. Strahlhagen, G. Wieching, and M. A. D. M. A. X. Collaboration, A new experimental approach to probe qcd axion dark matter in the mass range above 40 µeV, The European Physical Journal C 79, 186 (2019).

[28] A. Caldwell, G. Dvali, B. Majorovits, A. Millar, G. Raffelt, J. Redondo, O. Reimann, F. Simon, and F. Steffen (ADMX Working Group), Dielectric haloscopes: A new way to detect axion dark matter, Phys. Rev. Lett. 118, 091801 (2017).

[29] M. Baryakhtar, J. Huang, and R. Lasenby, Axion and hidden photon dark matter detection with multi-layer optical haloscopes, Phys. Rev. D 98, 035006 (2018).

[30] J. Chiles, I. Charaev, R. Lasenby, M. Baryakhtar, J. Huang, A. Roshko, G. Burton, M. Colangelo, K. V.
Tilburg, A. Arvanitaki, S. W. Nam, and K. K. Berggren, First constraints on dark photon dark matter with superconducting nanowire detectors in an optical haloscope (2021), arXiv:2110.01582 [hep-ex].

[31] L. Manenti, U. Mishra, G. Bruno, H. Roberts, P. Oikonomou, R. Pasricha, I. Sarnoff, J. Weston, F. Arneodo, A. Di Giovanni, A. J. Millar, and K. D. Mora, Search for dark photons using a multilayer dielectric haloscope equipped with a single-photon avalanche diode, Phys. Rev. D 105, 052010 (2022).

[32] A. P. Quiskamp, B. T. McAllister, G. Rybka, and M. E. Tobar, Dielectric-boosted sensitivity to cylindrical azimuthally varying transverse-magnetic resonant modes in an axion haloscope, Phys. Rev. Applied 14, 044051 (2020).

[33] B. T. McAllister, G. Flower, L. E. Tobar, and M. E. Tobar, Tunable supermode dielectric resonators for axion dark-matter haloscopes, Phys. Rev. Applied 9, 014028 (2018).

[34] R. Cervantes, G. Carosi, S. Kimes, C. Hanretty, B. H. LaRoque, G. Leum, P. Mohapatra, N. S. Oblath, R. Otte, Y. Park, G. Rybka, J. Sinnis, and J. Yang, Admx-orpheus first search for 70 μeV dark photon dark matter: Detailed design, operations, and analysis, Phys. Rev. D 106, 102002 (2022).

[35] Orpheus was initially designed to have a spatially alternating magnetic field rather than a periodic dielectric structure [53]. However, this alternating magnetic field design is challenging to scale to many Tesla.

[36] Materials Property Chart Superior Technical Ceramics (2021).

[37] R. N. Clarke and C. B. Rosenberg, Fabry-perot and open resonators at microwave and millimetre wave frequencies, 2-300 GHz, Journal of Physics E: Scientific Instruments 15, 9 (1982).

[38] H. Kogelnik and T. Li, Laser beams and resonators, Proceedings of the IEEE 54, 1312 (1966).

[39] D. P. Dunseith, S. Truppe, R. J. Hendricks, B. E. Sauer, E. A. Hinds, and M. R. Tarbutt, A high quality, efficiently coupled microwave cavity for trapping cold molecules, Journal of Physics B: Atomic, Molecular and Optical Physics 48, 045001 (2015).

[40] Applied Motion Products, STM23S-2EE - NEMA 23 Integrated Drive+Motor w/ Ethernet & Encoder, Tech. Rep. (2022).

[41] Pasternack, WR-62 20 dB Waveguide Crossguide Coupler, UG- 419/U Square Cover Flange, 12.4 GHz to 18 GHz, Tech. Rep. (2022).

[42] R. Cervantes, G. Carosi, C. Hanretty, S. Kimes, B. H. LaRoque, G. Leum, P. Mohapatra, N. S. Oblath, R. Otte, Y. Park, G. Rybka, J. Sinnis, and J. Yang, Admx-orpheus first search for 70 μeV dark photon dark matter: Detailed design, operations, and analysis (2022), arXiv:2204.09475

[43] LNF-LNC6_20C 6-20 s/n 1556ZGHz Cryogenic Low Noise Amplifier, Low Noise Factory (2020).

[44] K. Blattenberger, Cascaded noise figure & noise temperature (2021).

[45] S. Asztalos, E. Daw, H. Peng, L. J. Rosenberg, C. Hagemann, D. Kinion, W. Stoeffil, K. van Bibber, P. Sikivie, N. S. Sullivan, D. B. Tanner, F. Nezrick, M. S. Turner, D. M. Moltz, J. Powell, M.-O. Andre, J. Clarke, M. Muck, and R. F. Bradley, Large-scale microwave cavity search for dark-matter axions, Phys. Rev. D 64, 092003 (2001).

[46] B. M. Brubaker, L. Zheng, S. K. Lamoreaux, K. W. Lehnert, and K. A. van Bibber, Haystac axion search analysis procedure, Phys. Rev. D 96, 123008 (2017).

[47] C. Bartram, T. Braine, R. Cervantes, N. Crisosto, N. Du, G. Leum, L. J. Rosenberg, G. Rybka, J. Yang, D. Bowering, A. S. Chou, R. Khatiwada, A. Somenschein, W. Wester, G. Carosi, N. Woollett, L. D. Duffy, M. Goryachev, B. McAllister, M. E. Tobar, C. Boutan, M. Jones, B. H. LaRoque, N. S. Oblath, M. S. Taubman, J. Clarke, A. Dove, A. Eddins, S. R. O’Kelley, S. Nawaz, I. Siddiqi, N. Stevenson, A. Agrawal, A. V. Dixit, J. R. Glason, S. Jois, P. Sikivie, J. A. Solomon, N. S. Sullivan, D. B. Tanner, E. Lentz, E. J. Daw, M. G. Perry, J. H. Buckley, P. M. Harrington, E. A. Henriksen, and K. W. Murch (ADMX Collaboration), Axion dark matter experiment: Run 1b analysis details, Phys. Rev. D 103, 032002 (2021).

[48] R. Cervantes, A search for wavelike dark matter with dielectrically-loaded multimode cavities (2021), arXiv:2112.04542 [hep-ex].

[49] C. O’Hare, cajohare/axionlimits: Axionlimits (2020).

[50] A. Quiskamp, B. T. McAllister, P. Altin, E. N. Ivanov, M. Goryachev, and M. E. Tobar, Direct search for dark matter axions excluding alp coge

[51] K. M. Backes, D. A. Palken, S. A. Kenany, B. M. Brubaker, S. B. Cahn, A. Droster, G. C. Hilton, S. Ghosh, H. Jackson, S. K. Lamoreaux, A. F. Leder, K. W. Lehnert, S. M. Lewis, M. Malnou, R. H. Maruyama, N. M. Rapidis, M. Simanovskaia, S. Singh, D. H. Speller, I. Urdinaran, L. R. Vale, E. C. van Asdendelft, K. van Bibber, and H. Wang, A quantum enhanced search for dark matter axions, Nature 590, 238 (2021).

[52] A. V. Dixit, S. Chakram, K. He, A. Agrawal, R. K. Naik, D. I. Schuster, and A. Chou, Searching for dark matter with a superconducting qubit, Phys. Rev. Lett. 126, 141302 (2021).

[53] G. Rybka, A. Wagner, K. Patel, R. Percival, K. Ramos, and A. Brill, Search for dark matter axions with the orpheus experiment, Phys. Rev. D 91, 011701(R) (2015)}