AN ANALYTIC FUNCTION FIT TO MONTE CARLO X-RAY AND γ-RAY SPECTRA FROM THOMSON THICK THERMAL/NONTHERMAL HYBRID PLASMAS

M. Böttcher, 1,2 R. Saxena, 3,4 A. W. Crider, 1,5 E. P. Liang, 1 I. A. Smith, 1 and M. Kusunose 6

Received 2000 September 14; accepted 2001 February 16

ABSTRACT

We suggest a simple fitting formula to represent Comptonized X-ray and γ-ray spectra from a hot ($kT_{e} \gtrsim 10$ keV), Thomson thick ($\tau_T \gtrsim 5$) hybrid thermal/nonthermal plasma in spherical geometry with homogeneous soft-photon injection throughout the Comptonizing region. We have used this formula to fit a large database of Monte Carlo generated photon spectra and provide correlations between the physical parameters of the plasma and the fit parameters of our analytic fit function. These allow us to construct Thomson thick Comptonization spectra without performing computer intensive Monte Carlo simulations of the high-τ_T hybrid-plasma Comptonization problem. Our formulae can easily be used in data analysis packages such as XSPEC, thus rendering rapid χ^2 fitting of such spectra to real data feasible.

Subject headings: gamma rays: observations — methods: analytical

1. INTRODUCTION

Compton upscattering of soft (optical, UV or soft X-ray) radiation by hot ($kT_{e} \gtrsim 10$ keV) plasma is believed to play an important role in the formation of high-energy (hard X-ray and γ-ray) spectra of many astrophysical objects. Some examples are Galactic X-ray binaries (for recent reviews see Tanaka & Lewin 1995; Liang 1998), supernova remnants (e.g., Hillas et al. 1998; Aharonian 1999), Seyfert galaxies (for recent reviews see Mushotzky et al. 1993; Zdziarski 1999), blazars (Maraschi et al. 1992; Dermer et al. 1992), the intergalactic medium (Sunyaev & Zeldovich 1980; Rephaeli 1995), and possibly also γ-ray bursts (Liang 1997; Liang et al. 1999).

Comptonization in purely thermal plasmas is fairly well understood, and analytical solutions for the emerging hard X-ray and γ-ray spectra for a wide range of Thomson depths and plasma temperatures have been developed (Sunyaev & Titarchuk 1980; Titarchuk 1994; Titarchuk & Lubarskij 1995; Hua & Titarchuk 1995). However, the currently known solutions cannot be applied to hybrid thermal/nonthermal or even purely nonthermal plasmas, which are believed to be the primary source of hard X-ray radiation in many astrophysical objects. For example, Li, Kusunose, & Liang (1996) have shown that the high-energy spectrum of Cyg X-1 can be plausibly reproduced by Comptonization in a quasi thermal plasma with a small fraction of electrons in a nonthermal tail. Thermal/nonthermal hybrid models have also been discussed in the context of the high-energy spectra of Seyfert galaxies (e.g., NGC 4151, Zdziarski et al. 1994; Zdziarski, Johnson, & Magdziarz 1996). The development of such nonthermal tails has been confirmed by Böttcher & Liang (2001) by detailed Monte Carlo/Fokker-Planck simulations of radiation transport and electron dynamics in magnetized hot plasmas, e.g., in accretion flows onto compact objects.

We need to point out that the combination of soft- to medium-energy X-ray spectra (typically integrated over a few kiloseconds) with hard X-ray/soft γ-ray OSSE spectra (typically integrated over hundreds of kiloseconds or even several days) could introduce artificial spectral signatures due to the superposition of thermal Comptonization spectra from different emission regions, possibly at different times. However, the detailed Fokker-Planck simulations of the dynamics of electron acceleration and cooling in coronal plasmas in the vicinity of accreting compact objects (e.g., Li et al. 1996; Böttcher & Liang 2001) clearly demonstrate that nonthermal tails in the electron distributions are very likely to be produced in such environments. It is thus desirable to have simple, analytical expressions for the Comptonization spectra arising in this case.

For the general case of arbitrary Thomson depth, average electron energy (i.e., temperature), nonthermal fraction of electrons in the hybrid plasma, and nonthermal electron spectral parameters, the most reliable and often fastest method for computing Comptonization spectra is the Monte Carlo method (Pozdnyakov et al. 1983). However, Monte Carlo simulations of Comptonization problems become extremely time consuming in the case of very high Thomson depth, τ_T, since the number of scatterings that need to be simulated, increases $\propto \tau_T^2$. To date, there are no simple, analytic approximations to the problem of optically thick Comptonization in hot, thermal/nonthermal hybrid plasmas. This has made χ^2 minimization fitting of such models to real data infeasible until now.

Using our linear Monte Carlo Comptonization codes, we have built up a database of more than 300 Comptonization spectra from hot, Thomson thick, thermal/nonthermal hybrid plasmas with different Thomson depths, temperatures, nonthermal electron fractions, spectral indices and maximum electron energies of nonthermal electrons. In this paper, we propose a simple analytic representation, consisting of an exponentially cut-off power law plus a smoothly connected double power law (Band et al. 1993) to fit all individual spectra in our database. We find correlations between the physical parameters of the Monte Carlo calculations and the parameters of our analytical representation, which can be used to construct Comptonization spectra of high-τ_T plasmas with arbitrary nonthermal elec-

1 Department of Physics and Astronomy, Mail Stop 108, Rice University, 6100 South Main Street, Houston, TX 77005-1892.
2 Chandra Fellow.
3 Clements High School, Sugar Land, TX.
4 Current address: University of California, Berkeley, Berkeley, CA.
5 Current address: American University, Washington, D.C.
6 Department of Physics, School of Science, Kwansei Gakuin University, Nishinomiya 662-8501, Japan.
tions, i.e.,

Here, the normalization factors N_{th} and N_{nt} and the transition energy γ_1 are determined by the normalization, $\int_1^\gamma f_d(\gamma)d\gamma = 1$, by the requirement of continuity of the distribution function at γ_1, and by the fraction a_{maxw} of thermal particles, i.e., $\int_1^{\gamma_1} f_d(\gamma)d\gamma = a_{\text{maxw}}$.

Soft photons with characteristic energy $E_s \ll 1$ keV are injected uniformly throughout the Comptonizing region (we assume that they have a thermal blackbody spectrum with $kT_s \ll 1$ keV; the specific shape of the soft photon distribution is irrelevant for multiple Compton scattering problems). The Comptonizing plasma is assumed to be fully ionized. The Comptonization spectra are calculated with our Monte Carlo codes, which use the full Klein-Nishina cross section for Compton scattering, $\gamma\gamma$ absorption, pair production, and other induced processes (e.g., free-free absorption and induced Compton scattering events) have been neglected in our Monte Carlo simulations.

We have created a database of more than 300 simulations, spanning values of $\tau_T \leq 28$, 5 keV $\leq kT_s \leq 200$ keV, 0.2 $\leq a_{\text{maxw}} \leq 1$, 2.5 $\leq p \leq 6.5$, and $10 \leq \gamma_2 \leq 10^3$.

We here propose a fit function to optically thick Comptonization spectra from thermal/nonthermal hybrid plasmas as the sum of an exponentially cut-off power law plus a band GRB function (defined here, for convenience, in energy flux units to match the units of the output spectra of our Monte Carlo simulations):

$$ F_d(E) = N_{\text{PL}} E^{-\Gamma} e^{-E/E_0} $$

$$ + A \left[\frac{E^\delta e^{-E/E_0}}{BE^\gamma} \right] $$

with $B = [(\delta - \epsilon)E_0]^d - \epsilon^{-d}$ and E in keV. F_d is the energy flux in units of ergs cm$^{-2}$ s$^{-1}$ keV$^{-1}$.

Apart from the overall normalization, there are five parameters in this fit function: the spectral indices Γ, δ, and ϵ, the turnover energy E_0 (corresponding to a $c\nu_p$ peak energy of $E_{pk} = (1 + \delta)E_0$), and the relative normalization of the two components, A/N_{PL}. We have developed a code using a combination of a coarse grid in the six-dimensional parameter space with a χ^2 forward folding method to fit this function to our simulated Compton spectra. Figure 1 shows two typical examples of the resulting fits.

3. CORRELATIONS BETWEEN PHYSICAL AND FIT PARAMETERS

We have fitted the function (2) to the energy range 1 keV $\leq E \leq 10$ MeV of all simulated Comptonization spectra in our database. In order to be able to use our fit function for physically meaningful fitting, one has to establish a unique correlation between the physical parameters of the Monte Carlo simulation and the best-fit parameters of our fit function. First of all, we note that in the low-energy range, dominated by the power-law part of the spectrum, $F_d \propto E^{-\Gamma}$, the influence of the nonthermal population is negligible, and we can use the standard result for thermal plasmas in spherical geometry in the case of homogeneous photon injection throughout the Comptonizing region,

$$ \Gamma = -\frac{3}{2} \left[1 - \sqrt{1 + \frac{4\pi^2}{27\Theta_e (\tau_T + 2/3)^2}} \right] $$

(Sunyaev & Titarchuk 1980), where $\Theta_e = kT_e/(m_e c^2)$. This relation is valid in the limit of high Thomson depth, $\tau_T \gtrsim 5$, and moderate electron temperature, $kT_e \lesssim 250$ keV (Sunyaev & Titarchuk 1980; Pozdnyakov et al. 1983). A fully analytical solution for the power-law index Γ for all values of τ_T and Θ_e has been derived by Titarchuk & Lubarskij (1995). In the parameter range in which our analytical representation is applicable, the simple expression (3) is sufficiently accurate.

A second, obvious correlation exists between the νF_ν peak of an optically thick Comptonization spectrum and the average particle energy. In the thermal case, the Wien spectrum peaks at $E_{pk} \approx 3 kT_s$. However, near the νF_ν peak of the spectrum, the influence of the nonthermal particle population can become important. Generalizing the E_{pk} versus kT_s correlation, one would expect that $E_{pk} \approx 2 \langle \gamma - 1 \rangle m_e c^2$, where the brackets denote the ensemble average. We find that this generally provides a reasonable
fit to the simulated E_{pk} values. However, in some cases (especially for hard power-law tails, $p \lesssim 3$), the onset of the nonthermal population (at γ_1) is at too high an energy and the normalization of the nonthermal population is too small for nonthermal electrons to make a strong contribution to photons scattered into the Wien peak. We find significant deviations from the above E_{pk} versus $\langle \gamma - 1 \rangle$ correlation for values of $\gamma_1 > 6 \Theta_e + 1$. An approximate correction for this effect can be found in the following empirical correlation, which provides a reasonable description of the simulated E_{pk} values:

$$E_{pk} = \begin{cases}
1.022 \langle \gamma - 1 \rangle \text{ MeV} & \text{for } \gamma_1 < 6 \Theta_e + 1, \\
\frac{a_{\text{mxw}} \langle \gamma - 1 \rangle_{\text{in}} + (1 - a_{\text{mxw}}) \langle \gamma - 1 \rangle_{\text{nt}} 2^{-p/8}}{a_{\text{mxw}} + (1 - a_{\text{mxw}}) 2^{-p/8}} \text{ MeV} & \text{for } \gamma_1 \geq 6 \Theta_e + 1,
\end{cases}$$

(4)

where $f \equiv 2(\gamma_1 - 1)/\Theta_e$. The terms $\langle \gamma - 1 \rangle_{\text{in}}$ and $\langle \gamma - 1 \rangle_{\text{nt}}$ denote the average kinetic energies (normalized to $m_e c^2$) of electrons in the thermal and nonthermal portion of the electron distribution, respectively. The E_{pk} versus $\gamma - 1$ correlation for those cases with $\gamma_1 < 6 \Theta_e + 1$ is illustrated in Figure 2. We note that in most physically relevant cases, we expect the power-law index of nonthermal electrons to be $p \gtrsim 3$ since we do not expect a positive v_F spectral slope at high energies because of the nonthermal portion of the hybrid electron spectra. In the case $p \gtrsim 3$, the upper branch of equation (4) always yields satisfactory results.

The value of $\langle \gamma - 1 \rangle$ depends on the temperature of the thermal population and the parameters of the nonthermal population in a nontrivial way. We find that $\langle \gamma - 1 \rangle$ can be parametrized rather accurately by the fitting function

$$\langle \gamma - 1 \rangle \approx K_1 \Theta_e^{\kappa_1} + K_2 e^{\delta_1/\kappa_2}.$$

(5)

To facilitate the use of our fitting formulae, we list in Table 1 the relevant fit parameters K_1, K_2, κ_1, and κ_2 for a representative value of $\gamma_2 = 10^3$. The dependence of $\langle \gamma - 1 \rangle$ on the thermal plasma temperature and the nonthermal power-law index p is illustrated in Figure 3.

![Figure 2](image2.png)

Figure 2—Correlation between the average electron energy in the plasma, $\langle \gamma - 1 \rangle$, and the vF_p peak energy, E_{pk}, compared with the expected correlation, $E_{pk} = 1022(\gamma - 1)$ keV (solid line). The best-fit linear slope is 973 keV (dot-dashed line).

![Figure 3](image3.png)

Figure 3—Dependence of $\langle \gamma - 1 \rangle$ on plasma temperature and nonthermal spectral index p; example for $a_{\text{mxw}} = 0.6$, $\gamma_2 = 10^3$. Top to bottom: Nonthermal spectral indices are $p = 2.1, 2.23, 2.35, 2.48, 2.61, 2.73, 2.86, 3.11, 3.37, 3.62, \text{ and } 3.87$.

Table 1

a_{mxw}	p	K_1	κ_1	K_2	κ_2
0.28	2.20	2.326	0.60	2.329	3.098
0.28	2.48	1.530	0.45	1.332	3.563
0.28	2.73	0.661	0.30	0.876	1.013
0.28	3.00	0.575	0.35	0.662	0.881
0.28	3.24	0.405	0.40	0.576	0.766
0.28	3.50	0.465	0.10	0.249	0.381
0.44	2.20	1.759	0.45	1.761	0.766
0.44	2.48	1.330	0.40	1.007	0.766
0.44	2.73	2.023	0.75	0.761	2.037
0.44	3.00	1.759	0.75	0.576	3.563
0.44	3.24	1.530	0.70	0.435	3.563
0.44	3.50	1.330	0.75	0.379	2.694
0.60	2.20	2.675	0.75	1.332	0.664
0.60	2.48	2.675	0.80	0.761	0.766
0.60	2.73	2.675	0.80	0.501	1.540
0.60	3.00	2.326	0.80	0.379	2.037
0.60	3.24	2.023	0.85	0.329	1.540
0.60	3.50	1.330	0.70	0.249	0.579
0.76	2.20	2.326	0.70	0.761	0.503
0.76	2.48	2.023	0.75	0.435	0.438
0.76	2.73	2.326	0.90	0.329	0.579
0.76	3.00	2.326	0.95	0.249	0.666
0.76	3.24	2.023	0.90	0.188	0.579
0.76	3.50	2.326	0.95	0.164	2.694
0.92	2.20	2.675	0.95	0.249	0.579
0.92	2.48	2.675	1.00	0.164	1.771
0.92	2.73	2.326	1.00	0.108	0.766
0.92	3.00	2.326	1.00	0.081	3.563
0.92	3.24	1.759	0.95	0.062	0.331
0.92	3.50	2.023	1.00	0.054	0.766

* $\gamma_2 = 10^3$ has been used.

The connections of the remaining fit parameters, e, δ, and A/Np_{PL} with the physical parameters of the Comptonizing plasma, are less obvious, and the correlations that we have found on the basis of the fit results to our database, are purely empirical. In an optically thin ($\tau_{\gamma} \ll 1$), purely nonthermal plasma, the high-energy spectral index e would be...
related to the nonthermal particle index \(p \) through
\[\epsilon = -\frac{p - 1}{2} - (a_c + b_c T_e), \]
(6)

with
\[a_c = 0.78 e^{-1.49 a_{\text{maxw}l}} \],
(7)
\[b_c = 3.25 a_{\text{maxw}l}^{-0.7}. \]
(8)

Two examples of the correlation (6) are shown in Figure 4.

The low-energy power-law slope of the Wien hump, added to the low-energy power-law (the \(F_E \propto E^3 \) part of our fitting function), approaches \(\delta \to 2 \) for very high Thomson depth. We find that the correlation between \(\delta \) and \(T_e \) can be well parametrized by a functional form
\[\delta = 2 \left(\frac{T_e}{T_e^{\text{fit}}} \right)^{q(T_e)} \]
(9)
which is virtually independent of \(a_{\text{maxw}l} \) and the specifications of the nonthermal population. The parameters in equation (9) depend on the thermal electron temperature as
\[T_e^{\text{fit}} = 5.6 T_e^{0.13}, \]
(10)
\[q(T_e) = 2 \left(\ln(200 T_e) \right)^{-1.7}. \]
(11)

Finally, we expect the ratio of power in the Wien hump (band function section of our fit function) to the power in the low-energy power-law part of the Comptonization spectrum to be positively correlated with the plasma temperature \(T_e \) and Thomson depth \(T_T \). The above mentioned power ratio can be expressed as the term
\[C_{A/N_{PL}} = (A/N_{PL}) E_p^{\gamma} e^{-(\delta + 1)}. \]
(12)

To first order, this power ratio should not strongly depend on the specifications of the nonthermal component. Figure 5 shows some examples of the correlation between \(C_{A/N_{PL}} \) and \(T_T \) for various plasma temperatures, where we have neglected any dependence on \(a_{\text{maxw}l} \) and \(p \). We find that this correlation can be parametrized as
\[C_{A/N_{PL}} = C_0 \left(\frac{T_T}{20} \right)^{a_c} + C_1, \]
(13)
with
\[C_0 = C_0^{0.1}, \]
(14)
\[C_1 = 5, \]
(15)
\[a_c = T_e^{0.05}. \]
(16)

However, comparing the analytic spectra calculated using equation (13) with the Monte Carlo generated spectra, we do find significant \(a_{\text{maxw}l} \)-dependent deviations from the best-fit values of \(A/N_{PL} \). We thus introduce a correction \(C_{A/N_{PL}}' \), such that
\[C_{A/N_{PL}} = C_{A/N_{PL}}' C_{A/N_{PL}}', \]
(17)
and find this correction term as
\[C_{A/N_{PL}}' = (2.1 \times 10^{-2} T_e^{-2.3} + 1.8) a_{\text{maxw}l}^{-2.1} T_T^{\lambda(T_e)}, \]
(18)
with
\[\lambda(T_e) = 2.8 \times 10^{-2} T_e^{-0.95}. \]
(19)

Since we know \(E_p \), \(\delta \) and \(\Gamma \) from equations (4), (9), and (3), we can easily use equations (3), (9), (6), (4), and (13) to construct the resulting photon spectrum. Thus, our representation can be

4. SUMMARY AND CONCLUSIONS

We have developed an analytical representation of Comptonization spectra from optically thick, hot, thermal/nonthermal hybrid plasmas in spherical geometry with homogeneous soft-photon injection. Starting from the physical parameters of the problem at hand, one can easily use equations (3), (9), (6), (4), and (13) to construct the resulting photon spectrum. Thus, our representation can be
Two typical examples of the analytical representation for Thomson thick Comptonization spectra, using eqs. (3), (9), (6), (4), and (13) (solid and dot-dashed curves), compared with the Monte Carlo simulated output spectra (symbols; same simulations as shown in Fig. 1). In both simulations, $p = 3.5$ and $\gamma_2 = 10^3$ were used.

used in χ^2 minimization software packages to scan through the physical parameter space of the thermal/nonthermal hybrid plasma and fit the emerging Comptonization spectra to observed photon spectra. Figure 6 shows two representative examples of the analytical spectra, using the correlations presented in the previous section, and the output spectra from the corresponding Monte Carlo simulations.

Our results are valid for electron temperatures $10 \, \text{keV} \lesssim kT_e \lesssim 150 \, \text{keV}$, Thomson depths $\tau_T \gtrsim 5$, Maxwellian electron fractions $0.5 \lesssim a_{\text{maxw}} \lesssim 0.95$ (for purely thermal plasmas, $a_{\text{maxw}} = 1$, the analytical solutions of Hua & Titarchuk 1995 may be used), nonthermal electron spectral indices $p \gtrsim 3$, and seed photon energies $E_s \lesssim 1 \, \text{keV}$. The results have been obtained for homogeneous photon injection in spherical geometry and should not be used for other geometries.

The work of M. B. is supported by NASA through Chandra Postdoctoral Fellowship Award PF 9-10007, issued by the Chandra X-Ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS 8-39073. This work was partially supported by NASA grant NAG 5-7980.

REFERENCES

Aharonian, F. A. 1999, Astropart. Phys., 11, 225
Band, D., et al. 1993, ApJ, 413, 281
Böttcher, M., & Liang, E. P. 2001, ApJ, 551, 248
Dermer, C. D., Schlickeiser, R., & Mastichiadis, A. 1992, A&A, 256, L27
Hillas, A. M., et al. 1998, ApJ, 503, 744
Hua, X.-M., & Titarchuk, L. 1995, ApJ, 449, 188
Li, H., Kusunose, M., & Liang, E. P. 1996, ApJ, 460, L29
Liang, E. P. 1997, ApJ, 491, L15

———. 1998, Phys. Rep., 302, 67
Liang, E. P., et al. 1999, ApJ, 519, L21
Maraschi, L., Ghisellini, G., & Celotti, A. 1992, ApJ, 397, L5
Mushotzky, R. F., Done, C., & Pounds, K. A. 1993, ARA&A, 31, 717
Pozdnyakov, L. A., Sobol, I. M., & Sunyaev, R. A. 1983, Soviet Sci. Rev. E, 2, 189
Rephaeli, Y. 1995, ARA&A, 33, 541
Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics (New York: Wiley)
Sunyaev, R. A., & Titarchuk, L. G. 1980, A&A, 86, 121
Sunyaev, R. A., & Zel’dovich, Y. B. 1980, ARA&A, 18, 537
Tanaka, Y., & Lewin, W. H. G. 1995, in X-Ray Binaries, ed. W. H. G. Lewin (Cambridge: Cambridge Univ. Press), 126
Titarchuk, L. 1994, ApJ, 434, 570
Titarchuk, L., & Ljubarskij, Y. 1995, ApJ, 450, 876
Zdziarski, A. A. 1999, in ASP Conf. Ser. 161, ed. J. Poutanen, & R. Svensson (San Francisco: ASP), 16
Zdziarski, A. A., Fabian, A. C., Nandra, K., Celotti, A., Rees, M. J., Done, C., Coppi, P. S., & Madejski, G. M. 1994, MNRAS, 269, L55
Zdziarski, A. A., Johnson, W. N., & Magdziarz, P. 1996, MNRAS, 283, 193