Age Minimization in Outdoor and Indoor Communications With Relay-Aided Dual RIS

Wanting Lyu, Yue Xiu, Yang Zhao, Chadi Assi, Fellow, IEEE, and Zhongpei Zhang, Member, IEEE

Abstract—In this letter, we investigate an outdoor and indoor wireless communication network with the assistance of a relay-aided double-sided reconfigurable intelligent surface (RIS). A scheduling problem is considered at the outdoor access point (AP) to minimize the sum of age of information (AoI). To serve the indoor users and further enhance the wireless link quality, a double-sided RIS with relay is utilized. Since the formulated problem is non-convex with highly-coupled variables, a successive convex approximation (SCA) and penalty based alternating optimization (AO) algorithm with difference of convex (DC) functions is proposed to solve it in an iterative manner. Finally, simulation results show the effectiveness and significant performance improvement in terms of AoI of the proposed algorithm compared with other baselines.

Index Terms—Age of information, reconfigurable intelligent surfaces, relay, scheduling.

I. INTRODUCTION

THE fifth generation (5G) and beyond mobile communication system is to cater services for emerging applications such as ultra-reliable low latency communications (URLLC), enhanced mobile broadband (eMBB) and massive machine-type communications (mMTC) [1]. More recently, some emerging applications (such as industrial control and sensing, cooperative autonomous driving (CAD), etc.) have accelerated the demand for information freshness and real-time status updates [2], [3]. To quantify the freshness of information, a new indicator has emerged, namely the age of information (AoI) [4]. It is defined as the time elapsed since the generation of the last successfully delivered status update packet. Existing works tackled the optimization of the AoI in different application scenarios, such as wireless powered networks [5] and multi-access edge computing (MEC)-assisted Internet of things (IoT) networks [6].

Indeed, a key requirement for enabling the above services is to have a network in place with the corresponding enabling technologies. A variety of such technologies have emerged as enablers for 5G and future networks including non-orthogonal multiple access (NOMA), cloud radio access network (RAN), cellular connected unmanned aerial vehicles (UAVs), etc. They do promise to enhance spectral efficiency, expand coverage and improve the quality of communication links and hence data rates. Nevertheless, electromagnetic wave propagation usually confronts severe attenuation and blockage. To address this issue, reconfigurable intelligent surface (RIS) has emerged as a promising technology to enhance wireless links [7], and has been integrated into real-time networks to optimize the freshness of information [8], [9], [10]. However, these works only considered traditional RIS, which has limitations on coverage space and communication quality.

First, traditional RIS requires the users to be located at the same side of the RIS with only half-space coverage, and cannot serve the outdoor and indoor users simultaneously. Moreover, traditional RIS cannot amplify the incident signal, and thus the communication quality is still limited due to the severe attenuation caused by the double fading effect of RIS. Although the emerged simultaneously transmitting and reflecting (STAR)-RIS is able to extend the coverage range from half-space to full-space [11], the severe fading still exist. Fortunately, the authors in [12] proposed a novel relay-aided RIS architecture, where a full-duplex relay was used to amplify the signal between the two RIS. This model significantly reduces the number of reflecting elements compared with the passive RIS. Following this, in [13], a dual relay and reflection RIS was proposed to maximize the achievable sum rate, showing remarkable performance improvement compared with full-duplex relay and STAR-RIS.

Motivated by the benefits of the dual relay-RIS, we study a real-time outdoor and indoor multi-user wireless network with a relay-aided double-sided RIS. To maintain the information freshness while guaranteeing the data rate, a joint user scheduling, active beamforming and phase shift design problem is formulated to minimize the sum AoI. To tackle the non-convexity with highly coupled variables, we propose an successive convex approximation (SCA) based alternating optimization (AO) algorithm with difference of convex (DC) method to decompose the intractable problem into two sub-problems and solve iteratively. Numerical results show performance improvement of the proposed algorithm compared with other baselines.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink wireless network with a double-sided RIS assisted by an FD AF relay deployed on the building wall as illustrated in Fig. 1(a). Assume that the outdoor access point (AP) is equipped with M antennas serving J outdoor and K indoor single-antenna users, each with a data stream at the AP. The direct links between the AP and the users are assumed to be blocked. The front surface and the back surface of the dual RIS are both equipped with N_e reflecting elements. For the indoor users, the incident signal from the AP is reflected first by the front RIS to the front horn antenna,
Fig. 1. (a) System model for the wireless network. (b) AoI evolution along time slot.

and then amplified by the relay. Before being reflected to the indoor users, the signal is emitted to the back-RIS by the back-horn antenna. The time axis is divided into time slots, lasting for T slots in total. The spectral resources for different users are assumed to be orthogonal so that the mutual interference is avoided. The channel state information (CSI) is assumed to be perfectly known, where the channel estimation methods can be found in [14], [15]. The channels from the AP to the front-RIS, from the front-RIS to the outdoor front-user k, and from the back-RIS to the indoor back-user k are denoted as $G(t) \in \mathbb{C}^{N_s \times M}$, $(h_{Fj}^k(t))^H$ and $(h_{Bk}^j(t))^H \in \mathbb{C}^{1 \times N_s}$, respectively. The channels between the RIS and front- and back-horn antennas are $g_{Fj}^k(t) \in \mathbb{C}^{1 \times N_s}$ and $g_{Bk}^j(t) \in \mathbb{C}^{N_s \times 1}$, respectively. We define phase shift matrices $\Phi_j(t) = \text{diag}(e^{j\theta_{Fj}^k(t)}, e^{j\theta_{Bk}^j(t)}, \ldots, e^{j\theta_{N_s}^j(t)})$ for the front-RIS, and $\Phi_b(t) = \text{diag}(e^{j\theta_{Fj}^k(t)}, e^{j\theta_{Bk}^j(t)}, \ldots, e^{j\theta_{N_s}^j(t)})$ for the back-RIS, where $\theta_{Fj}^k(t), \theta_{Bk}^j(t) \in [0, 2\pi]$.

At each time slot, the users are scheduled at the AP with the indicator $a_{Fj}^k(t) \in \{0, 1\}$, where $a_{Fj}^k(t) = 1$ means stream j is scheduled to transmit a packet to front-user j at slot t, and those for back-users are defined similarly. The number of total available channels is assumed to be E, which can be expressed as

$$
\sum_{j=1}^{E} a_{Fj}^k(t) + \sum_{k=1}^{K} a_{Bk}^j(t) \leq E. \quad (1)
$$

The transmit symbols at the AP are denoted as $s_{Fj}^k(t), s_{Bk}^j(t) \sim \mathcal{CN}(0, 1)$. The transmit beamforming vectors for front-user j and back-user k are $w_{Fj}^k(t)$ and $w_{Bk}^j(t) \in \mathbb{C}^{M \times 1}$. The transmit power budget is P_b, and thus the active beamforming vectors are constrained as

$$
\sum_{j=1}^{E} ||w_{Fj}^k(t)||^2 + \sum_{k=1}^{K} ||w_{Bk}^j(t)||^2 \leq P_b. \quad (2)
$$

The received signal of back-user k can be expressed as

$$
y_{Bk}^j(t) = \sqrt{\chi} (h_{Bk}^j(t))^H \Phi_b(t) g_{Bk}^j(t) (g_{Fj}^k(t))^H \Phi_j(t) g_{Fj}^k(t) G(t) w_{Bk}^j(t) + n_{Bk}^j(t), \quad (3)
$$

where the amplification gain χ is assumed to be a known constant, the thermal noise is denoted as $n_{Bk}^j(t) \sim \mathcal{CN}(0, \sigma^2_{Bk})$, and the additive white Gaussian noise (AWGN) is denoted as $n_{Bk}^j(t) \sim \mathcal{CN}(0, \sigma^2_{Bk})$.

Accordingly, the received SNR of back-user k can be expressed as

$$
\gamma_{Bk}^j(t) = \frac{\left| h_{Bk}^j(t) G(t) w_{Bk}^j(t) \right|^2}{\chi \left| (h_{Bk}^j(t))^H \Phi_b(t) g_{Bk}^j(t) \right|^2 \sigma^2_{Bk} + \sigma^2_{Bk}}. \quad (4)
$$

The received SNR of front-user k is the same as the traditional RIS, which can be written as

$$
\gamma_{Fk}^j(t) = \frac{\left| (h_{Fj}^k(t))^H \Phi_j(t) G(t) w_{Fj}^k(t) \right|^2}{\sigma_{Fj}^2}. \quad (5)
$$

A successful delivery of a packet requires the received SNR to be greater than or equal to the SNR threshold γ_{th}, namely

$$
\gamma_{Fj}^k(t) \geq \gamma_{th}, \quad \gamma_{Bk}^j(t) \geq \gamma_{th}. \quad (6)
$$

In this system, we introduce the concept of the AoI to quantify the freshness of information. We take front-user j as an example to elaborate the definitions for the parameters, where those for back-users are defined in the same manner.

The packets arrive randomly in queue at the AP, where only the latest packet of each data stream can be stored. Define a packet arrival indicator $p_{Fj}^k(t) \in \{0, 1\}$ with $p_{Fj}^k(t) = 1$ suggesting that a new packet of data stream j arrives at the AP at the beginning of time slot t. The system time $z_{Fj}^k(t)$ is defined as in [8], which will be set as 0 when a new packet arrives at the queue, and otherwise it will increase linearly with time. Hence, it can be expressed as

$$
z_{Fj}^k(t) = \begin{cases} 0, & \text{if } p_{Fj}^k(t) = 1, \\ z_{Fj}^k(t - 1) + 1, & \text{otherwise}. \end{cases} \quad (7)
$$

The instantaneous AoI is represented as $A_{Fj}^k(t), j \in \{1, \ldots, J\}$, whose value will be updated if a new status update data packet is successfully received by the user, and otherwise it will increase linearly. Indicator $\eta_{Fj}^k(t) \in \{0, 1\}$ suggests whether stream j has an available packet to be delivered, which is expressed as in [8].

$$
\eta_{Fj}^k(t) = p_{Fj}^k(t) + \eta_{Fj}^k(t - 1)(1 - a_{Fj}^k(t - 1))(1 - p_{Fj}^k(t)). \quad (8)
$$

Accordingly, $A_{Fj}^k(t)$ can be expressed as

$$
A_{Fj}^k(t) = \begin{cases} z_{Fj}^k(t - 1) + 1, & \text{if } a_{Fj}^k(t - 1)\eta_{Fj}^k(t - 1) = 1 \\
A_{Fj}^k(t - 1) + 1, & \text{otherwise}. \end{cases} \quad (9)
$$

Fig. 1(b) illustrates the AoI evolution along the time slot, where the stream is scheduled by the AP at time slot t and successfully received by the user at $t + 1$.

The problem is formulated to minimize the sum AoI by jointly optimizing the user scheduling with active and passive beamforming design. Therefore, the corresponding optimization problem can be expressed as

$$
\begin{align*}
\min_{s_{Fj}^k(t), s_{Bk}^j(t), w_{Fj}^k(t), \Phi_j(t), \Phi_b(t)} \sum_{t=1}^{T} \left(\sum_{j=1}^{E} A_{Fj}^k(t) + \sum_{k=1}^{K} A_{Bk}^j(t) \right) \\
\text{s.t.} & \quad (1), (2), \\
& \quad a_{Fj}^k(t) \in \{0, 1\}, \quad a_{Bk}^j(t) \in \{0, 1\}, \quad (10a) \\
& \quad \gamma_{Fj}^k(t) \geq \gamma_{th} a_{Fj}^k(t) \eta_{Fj}^k(t), \quad (10b) \\
& \quad \gamma_{Bk}^j(t) \geq \gamma_{th} a_{Bk}^j(t) \eta_{Bk}^j(t), \quad (10c) \\
& \quad \theta_{Fj}^k \in [0, 2\pi], \quad \theta_{Bk}^j \in [0, 2\pi]. \quad (10d)
\end{align*}
$$

The AoI will keep increasing linearly without newly decoded packet, resulting in undesired AoI throughout the given period. So, to minimize the sum AoI in the total period, it is effective to maximize the sum AoI reduction in each time slot as shown in Fig. 1(b). Hence, the problem can be reformulated as (P2) at the bottom of the next page. To solve the highly-coupled non-convex problem, we decouple the variables by AO algorithm and the solutions are provided in section III.
III. PROPOSED SOLUTIONS

In this section, the proposed AO algorithm is elaborated as follows. First, the channel is rewritten in a more tractable form by defining vectors \(\psi_f(t) \) and \(\psi_b(t) \), with \(\psi_f(t) = [e^{j\theta_1(t)}, \ldots, e^{j\theta_L(t)}] \) and \(\psi_b(t) = [e^{j\theta_1(t)}, \ldots, e^{j\theta_B(t)}] \), respectively. This results in unit modulus constraints for each element in \(\psi_f^H(t) \) and \(\psi_b^H(t) \), namely

\[
|\psi_{fn}(t)| = 1, \quad |\psi_{bn}(t)| = 1. \tag{12}
\]

In this way, the received SNR constraints can be reformulated as (13) and (14), shown at the bottom of the page.

Since the active and passive beamforming vectors are strongly coupled, the formulated problem is decomposed into two sub-problems to be alternately solved.

A. Active Beamforming and User Scheduling Design

Given \(\psi_f(t) \) and \(\psi_b(t) \), the problem becomes

\[
\text{(P3.1)} \quad \max_{a_f^c(t), a_b^c(t), w_f(t), w_b(t)} \mathcal{G}(a_f^c(t), a_b^c(t))
\]

s.t. (1), (2), (10a), (10b), (10c), (10d).

\[
\gamma_f^c(t) = \frac{\lambda|\psi_f^H(t)\text{diag}(\{h_f^c(t)\})\mathbf{G}(t)w_f(t)|^2}{\sigma_f^2} \geq \gamma_{th}a_f^c(t)\eta_f^c(t)\sigma_f^2, \tag{13}
\]

\[
\gamma_b^c(t) = \frac{\lambda|\psi_b^H(t)\text{diag}(\{h_b^c(t)\})\mathbf{G}(t)w_b(t)|^2}{\sigma_b^2} \geq \gamma_{th}a_b^c(t)\eta_b^c(t)\sigma_b^2. \tag{14}
\]

The lower bound of the left hand side (LHS) of (17) is approximated by its first Taylor expansion, given as

\[
2\mathcal{R}\left\{\left(h_f^c(t)\right)^H(w_f(t))^{(i-1)}h_f^c(t)+w_f(t)\right\}^2 \geq \gamma_{th}a_f^c(t)\eta_f^c(t)\sigma_f^2. \tag{18}
\]

where the superscript \((i - 1)\) means the value in the \((i-1)\)th iteration.

Similarly, for the back-user k, defining the equivalent cascaded channel \(h_b^c(t)^H = \psi_b^H(t)\text{diag}(\{h_b^c(t)\})\hat{\mathbf{g}}_b(t)\psi_b^H(t)\text{diag}(\{h_b^c(t)\})\mathbf{G}(t) \), (14) becomes, as shown at the bottom of the page.

Therefore, in the \((i)\)th iteration, problem (P3.1) becomes

\[
\text{(P3.2)} \quad \max_{a_f^c(t), a_b^c(t), w_f(t), w_b(t)} \mathcal{G}(a_f^c(t), a_b^c(t))
\]

s.t. (1), (2), (16), (18), (19), which is a convex problem that can be efficiently solved by standard solvers such as CVX.

B. RIS Phase Shifts Design and User Scheduling Updating

Given the active beamforming vectors, (P2) becomes

\[
\text{(P4.1)} \quad \max_{a_f(t), a_b(t)} \mathcal{G}(a_f(t), a_b(t))
\]

s.t. (1), (10a), (12), (13), (14).

To handle the non-convexity of problem (P4.1), we first relax constraint (11a) as (16). Moreover, define a matrix \(\Psi_x(t) = \psi_x^H(t)\mathbf{P}(t) \), satisfying \(\Psi_x(t) \geq 0, \text{rank}(\Psi_x(t)) = 1, \) where \(x \in \{f, b\} \). Therefore, (13) and (14) can be rewritten as

\[
\text{Tr}(\psi_x^H(t)\mathbf{P}(t)) \geq \gamma_{th}a_x^c(t)\eta_x^c(t)\sigma_x^2, \tag{22}
\]

\[
\chi_{\text{Tr}((\mathbf{P}_b(t))\mathbf{H}_b(t))^2}g_x(t)\eta_x^c(t)\sigma_x^2, \tag{23}
\]

\[
\text{Tr}((\mathbf{P}_b(t))\mathbf{H}_b(t))^2) = \chi_{\text{Tr}((\mathbf{P}_b(t))\mathbf{H}_b(t))^2}g_x(t)\eta_x^c(t)\sigma_x^2, \tag{24}
\]

\[
\Delta_{\gamma}(t) = -\chi_{\text{Tr}((\mathbf{P}_b(t))\mathbf{H}_b(t))) (\psi_f(t)^H+\psi_b(t)^H)^2} \tag{25}
\]

The first and third term of (23) can be transformed as the DC functions (24) and (25), respectively.

\[
\Delta_{\gamma}(t) = \frac{\chi}{2}\|\psi_f(t)\|^2 - \frac{\chi}{2}\|\psi_b(t)\|^2 \tag{26}
\]

\[
\Delta_{\theta}(t) = \frac{\chi}{2}\|\psi_f(t)\|^2 - \frac{\chi}{2}\|\psi_b(t)\|^2 \tag{27}
\]
whose upper bounds can be iteratively approximated by their first Taylor expansions, which are given as (26) and (27), shown at the bottom of the page.

To this end, (23) can be approximated iteratively as

\[
\Delta_{s_1}\left(t\right)_{ab} + \left[\Delta_{s_1}\left(t\right)\right]_{ab} + \sigma_k^{B_k} \gamma_k a_k^B(t) \eta_k^B(t) \leq 0. \tag{28}
\]

Moreover, the non-convex rank 1 constraints for \(\Psi_f(t) \) and \(\Psi_b(t) \) can be equivalently substituted as the following equality constraint (taking \(\Psi_f(t) \) as an example) [17]

\[
\mathcal{F}_1(\Psi_f(t)) = ||\Psi_f(t)||_s - ||\Psi_f(t)||_2 = 0, \tag{29}
\]

where \(||\Psi_f(t)||_s = \sum_i \sigma_{f_i}(t) \) and \(||\Psi_f(t)||_2 = \sigma_{f_1}(t) \) denote the nuclear and spectrum norm of \(\Psi_f(t) \), respectively, and \(\sigma_{f_i}(t) \) denotes the \(i^{th} \) largest singular value of \(\Psi_f(t) \). Since \(\mathcal{F}_1(\Psi_f(t)) \geq 0 \) always holds for any \(\Psi_f(t) \), and the equality holds if and only if rank \((\Psi_f(t)) = 1 \), penalty terms are added to the objective function as

\[
\mathcal{G}(\alpha^F_j(t), \alpha^B_j(t)) = C_f \mathcal{F}_1(\Psi_f(t)) - C_b \mathcal{F}_2(\Psi_b(t)), \tag{30}
\]

where \(C_f \) and \(C_b \) are large positive numbers, and \(\mathcal{F}_2(\Psi_b(t)) \) is defined as the same manner of (29). Note that \(C_f \) and \(C_b \) are first set to a small value to find a good starting point, and in the outer loop, the value of them are growing in each iteration until the rank one condition holds. Then we employ the SCA method to approximate the non-convex \(\mathcal{F}_1(\Psi_f(t)) \) as

\[
\mathcal{F}_1(\Psi_f(t)) \Psi_f^{(i-1)}(t) = ||\Psi_f(t)||_s - \{||\Psi_f^{(i-1)}(t)||_2
\]

\[
+ \text{Tr}(u_b^{(i-1)}(t)(\Psi_f^{(i-1)}(t))H(\Psi_f(t) - \Psi_f^{(i-1)}(t)))\}, \tag{31}
\]

where \(u_f^{(i-1)}(t) \) denotes the largest eigenvector of \(\Psi_f^{(i-1)}(t) \). As a result, the problem is reformulated as

\[
(\text{P4.2}) \quad \max_{a^F_j(t), a^B_j(t)} \mathcal{G}(a^F_j(t), a^B_j(t))
\]

\[
\begin{aligned}
\quad & - C_f \mathcal{F}_1(\Psi_f(t))\Psi_f^{(i-1)}(t)
\end{aligned}
\]

\[
- C_b \mathcal{F}_2(\Psi_b(t))\Psi_b^{(i-1)}(t) \\
\text{s.t.} \quad (1), (16), (22), (28), \\
\quad \Psi_f(t) \succeq 0, \quad \Psi_b(t) \succeq 0, \\
\quad [\Psi_f(t)]_{n,n} = 1, \quad [\Psi_b(t)]_{n,n} = 1, \tag{32a}
\]

which is a convex problem that can be solved by standard convex problem solvers.

C. Complexity Analysis

Thus, the overall computational complexity depends on the two algorithms solving (15) and (21). The complexity of solving (15) is mainly caused by iteratively solving (20), which is \(\mathcal{O}(I_W(J + K)M^{3.5}) \), where \(I_W \) denotes the number of iterations. The complexity of solving (21) is \(\mathcal{O}(I_oI_i(2N_s^{3.5})) \), where \(I_o \) and \(I_i \) are the numbers of iteration for the outer and inner loops, respectively. Thus, the overall computational complexity of the proposed algorithm is \(\mathcal{O}(I_{AO}(I_W((J + K)M^{3.5}) + I_oI_i(2N_s^{3.5}))) \).

IV. NUMERICAL RESULTS

In this section, we provide the numerical simulation results to show the performance of the proposed algorithm.

Assume there are 2 front-users and 2 back-users, and the number of available channels is \(E = 2 \). The number of transmit antennas at the AP is set as \(M = 4 \). The distance between the outdoor AP and the RIS is set as \(d_{ar} = 7 \). For simplicity, the distances from the RIS to each outdoor user and each indoor user are set as \(d_{rj} = 20 \) m and \(d_{rk} = 3 \). All the channels follow the Rician fading model. We set the reference path loss as \(-30 \) dB at the distance 1 m. The path loss exponents for the corresponding channels are \(\alpha_{ar} = 3.5, \alpha_{rj} = 2.2 \), and \(\alpha_{rk} = 2.0 \), respectively. The power of thermal noise caused by the active relay \(\sigma_n^2 \) and the AWGN \(\sigma_f^2, \sigma_b^2 \) is \(-80 \) dBm. \(T = 100 \) time slots are simulated.

To begin with, we set the number of RIS elements \(N_s = 30 \) for each side, the transmit power budget \(P_0 = 30 \) dBm, and the amplifier gain of the relay \(\chi = 20 \) dB. In Fig. 2(a), the sum Aol versus the value of SNR threshold \(\gamma_k \) is shown. It can be seen from Fig. 2(a) that the sum Aol in 100 time slots grows with increasing SNR threshold \(\gamma_k \), because successful delivery is more difficult to be satisfied with a higher requirement on communication quality. The distance \(d_{ar} \) between the AP and the RIS changed from 5 m to 3 m, with shorter distance resulting in better Aol performance due to smaller path loss. Compared with the baselines i.e. full duplex (FD) AF relay, random phase shifts (RPS) and random beamforming (RBF)
cases at the distance $d_{ar} = 5 \text{ m}$, the proposed algorithm with an AF relay achieves much better performance in terms of freshness of information.

To demonstrate the effectiveness of RIS, we fix $\gamma_{th} = 20 \text{ dB}$, and $P_0 = 30 \text{ dBm}$, and then it can be observed in Fig. 2(b) that the sum AoI drops drastically with increasing number of RIS elements N_r, since more RIS elements provide higher diversity gain to enhance the wireless link. Also, the proposed algorithm outperforms other baselines significantly.

In Fig. 2(c), the AoI versus the transmit power P_0 is analyzed by setting $N_r = 20$ and $\gamma_{th} = 28 \text{ dB}$. The sum AoI decreases with the transmit power increasing. Moreover, the effect of the relay amplifier gain χ on the freshness of information can be verified, where a larger χ improves the AoI performance with the proposed algorithm. It is because the received SNR of the indoor users can be amplified with an appropriate phase shift design.

V. CONCLUSION

In this letter, a relay-aided dual RIS was used to assist the outdoor and indoor wireless network. Considering timely update, the proposed algorithm aimed to minimize the sum AoI by optimizing the user scheduling with active and passive beamforming design. The variables were alternatively optimized with DC functions and SCA method to deal with the non-convexity of the decomposed problems. Numerical results illustrated the effectiveness and performance improvement of the proposed algorithm.

APPENDIX

PROOF OF CONVERGENCE OF THE PROPOSED ALGORITHMS

The two algorithms solving (P3.1) and (P4.1) are both based on SCA method in each iteration, which can be similarly proved to converge. Thus, we show the proof of convergence of transmit beamforming, and that of the RIS phase shift design can be proved as the same manner. We define the following functions,

$$
\mathcal{F}_1(w^F_j(t), a^F_j(t)) = \gamma_{th} a^F_j(t) \eta^F_j(t) \sigma^2 F^2 - \|H^F_j(t)B^F_j(t)\|^2,
$$

$$
\mathcal{F}_2(w^B_k(t), a^B_k(t)) = \gamma_{th} a^B_k(t) \eta^B_k(t) \Lambda_d - \Lambda_n(w^B_k(t)),
$$

(33)

where Λ_d and $\Lambda_n(w^B_k(t))$ denote the denominator and numerator of the LHS of (14), respectively. Note that $\mathcal{F}_1(w^F_j(t), a^F_j(t)) \leq 0$, $\mathcal{F}_2(w^B_k(t), a^B_k(t)) \leq 0$ always hold, and can be upper bounded by the following surrogate functions as

$$
\hat{\mathcal{F}}_1(w^F_j(t), a^F_j(t); \{w^F_j(t)\}^{(i-1)}) = \gamma_{th} a^F_j(t) \eta^F_j(t) \sigma^2 F^2 - \hat{\Lambda}_1(w^F_j(t); \{w^F_j(t)\}^{(i-1)}),
$$

(35)

$$
\hat{\mathcal{F}}_2(w^B_k(t), a^B_k(t); \{w^B_k(t)\}^{(i-1)}) = \gamma_{th} a^B_k(t) \eta^B_k(t) \Lambda_d - \hat{\Lambda}_2(w^B_k(t); \{w^B_k(t)\}^{(i-1)}),
$$

where $\hat{\Lambda}_1(w^F_j(t); \{w^F_j(t)\}^{(i-1)})$ and $\hat{\Lambda}_2(w^B_k(t); \{w^B_k(t)\}^{(i-1)})$ are the LHS of (18) and (19), respectively.

In the algorithm of optimizing transmit beamforming and scheduling policy, $\hat{\mathcal{F}}_1(w^F_j(t), a^F_j(t))$, $\hat{\mathcal{F}}_2(w^B_k(t), a^B_k(t))$ are substituted by $\hat{\mathcal{F}}_1(w^F_j(t), a^F_j(t); \{w^F_j(t)\}^{(i-1)})$ and $\hat{\mathcal{F}}_2(w^B_k(t), a^B_k(t); \{w^B_k(t)\}^{(i-1)})$ in each iteration.

The proposed SCA based algorithm converges to a Karush-Kuhn-Tucher (KKT) point of (P3.1) if the following conditions are met,

$$
\mathcal{F}_1(w^F_j(t), a^F_j(t)) \leq \hat{\mathcal{F}}_1(w^F_j(t), a^F_j(t); \{w^F_j(t)\}^{(i-1)})
$$

$$
\mathcal{F}_2(w^B_k(t), a^B_k(t)) \leq \hat{\mathcal{F}}_2(w^B_k(t), a^B_k(t); \{w^B_k(t)\}^{(i-1)})
$$

$$
\frac{\partial \mathcal{F}_1(w^F_j(t), a^F_j(t))}{\partial w^F_j(t)} = \frac{\partial \hat{\mathcal{F}}_1(w^F_j(t), a^F_j(t); \{w^F_j(t)\}^{(i-1)})}{\partial w^F_j(t)},
$$

(37)

$$
\frac{\partial \mathcal{F}_2(w^B_k(t), a^B_k(t))}{\partial w^B_k(t)} = \frac{\partial \hat{\mathcal{F}}_2(w^B_k(t), a^B_k(t); \{w^B_k(t)\}^{(i-1)})}{\partial w^B_k(t)},
$$

(38)

(39)

(40)

which can be verified by deriving the first-order derivative of the corresponding functions. Thus, the algorithm of solving (P3.1) can converge to its KKT point. The similar proof can be given solving (P4.1). Hence, convergence of the proposed algorithm is proved.

REFERENCES

[1] Y. Liu et al., “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1546–1577, 3rd Quart., 2021.

[2] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-class queueing system,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015, pp. 1681–1685.

[3] J. Kim et al., “Parallel scheduling for cyber-physical systems: Analysis and case study on a self-driving car,” in Proc. ACM/IEEE 4th Int. Conf. Cyber-Phys. Syst., Apr. 2013, pp. 31–40.

[4] S. Kaul et al., “Real-time status: How often should one update?” in Proc. IEEE INFOCOM, Mar. 2012, pp. 2731–2735.

[5] I. Krikidis, “Average age of information in wireless powered sensor networks,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 628–631, Apr. 2019.

[6] A. Muhammad et al., “Minimizing age of information in multiaccess-edge-computing-assisted IoT networks,” IEEE Internet Things J., vol. 9, no. 15, pp. 13052–13066, Aug. 2022.

[7] A. Abrardo et al., “Intelligent reflecting surfaces: Sum-rate optimization based on statistical position information,” IEEE Trans. Commun., vol. 69, no. 10, pp. 7121–7136, Oct. 2021.

[8] A. Muhammad et al., “Leveraging reconfigurable intelligent surface to minimize age of information in wireless networks,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2022, pp. 2525–2530.

[9] W. Liu et al., “Optimizing the age of information in RIS-aided SWIPT networks,” IEEE Trans. Veh. Technol., early access, Sep. 22, 2022, doi: 10.1109/TVT.2022.3208612.

[10] A. Muhammad et al., “Optimizing information freshness in RIS-assisted NOMA-based IoT networks,” 2022, arXiv:2202.13572.

[11] Y. Liu et al., “STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces,” IEEE Wireless Commun., vol. 28, no. 6, pp. 102–109, Dec. 2021.

[12] X. Ying et al., “Relay aided intelligent reconfigurable surfaces: Achieving the potential without so many antennas,” 2020, arXiv:2006.06644.

[13] Y. Ma et al., “Reflection and relay dual-functional RIS assisted MIMO systems,” in Proc. IEEE Wireless Commun. New. Conf. (WCNC), Apr. 2022, pp. 387–392.

[14] X. Guan et al., “Anchor-assisted channel estimation for intelligent reflecting surface aided multiuser communication,” IEEE Trans. Wireless Commun., vol. 21, no. 6, pp. 3764–3778, Jun. 2022.

[15] Q. Wu et al., “Intelligent reflecting surface-aided wireless energy and information transmission: An overview,” Proc. IEEE, vol. 110, no. 1, pp. 150–170, Jan. 2022.

[16] Z. Wei et al., “Sum-rate maximization for IRS-assisted UAV OFDMA communication systems,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2530–2550, Apr. 2021.

[17] T. Jiang and Y. Shi, “Over-the-air computation via intelligent reflecting surfaces,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.