Gu_{i2}^- and **Gu_{i3}^-**-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes

Sara Dizayee¹, Sonja Kaestner¹, Fabian Kuck², Peter Hein¹, Christoph Klein¹, Roland P. Piekorz², Janos Meszaros¹, Jan Matthes¹, Bernd Nürnberg²,³, Stefan Herzig¹*

¹Department of Pharmacology, University of Cologne, Cologne, Germany, ²Department of Biochemistry and Molecular Biology II, University Hospital and Clinics, University of Düsseldorf, Düsseldorf, Germany, ³Department of Pharmacology and Toxicology, Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, Tübingen, Germany

Abstract

Background: Two pertussis toxin sensitive G proteins, G\textsubscript{i2} and G\textsubscript{i3}, are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous G\textsubscript{i} isoforms are functionally distinct. To test for isoform-specific functions of G\textsubscript{i} proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC).

Methods: Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either G\textsubscript{i2} (G\textsubscript{i2}^-/-) or G\textsubscript{i3} (G\textsubscript{i3}^-/-). mRNA levels of G\textsubscript{i2/3} isoforms and L-VDCC subunits were quantified by real-time PCR. G\textsubscript{i2} and G\textsubscript{i2/3} protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings.

Results: In cardiac tissue from G\textsubscript{i2}^-/- mice, G\textsubscript{i2} mRNA and protein expression was upregulated to 187±21% and 567±59%, respectively. In G\textsubscript{i3}^-/- mouse hearts, G\textsubscript{i3} mRNA (127±5%) and protein (131±10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from G\textsubscript{i3}^-/- mice was lowered (−7.9±0.6 pA/pF, n=22), whereas it was increased in myocytes from G\textsubscript{i2}^-/- mice (−14.3±0.8 pA/pF, n=14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of G\textsubscript{i2} (but not of G\textsubscript{i3}) and following treatment with pertussis toxin in G\textsubscript{i3}^-/-. The pore forming G\textsubscript{i} protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Cav\textsubscript{1.2} and Cav\textsubscript{1.3} subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking G\textsubscript{i2}.

Conclusion: Our data provide novel evidence for an isoform-specific modulation of L-VDCC by G\textsubscript{i} proteins. In particular, loss of G\textsubscript{i2} is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway.

Introduction

G protein-mediated signalling plays a central role in regulation of cardiomyocyte function. Heterotrimeric G proteins consist of three subunits, G\textsubscript{a}, G\textsubscript{b}, and G\textsubscript{g}. Agonist-occupied receptors induce dissociation of GDP from and binding of GTP to the G protein \textsubscript{a} subunit, resulting in G protein activation. Activated G\textsubscript{a} subunits couple to a plethora of effectors, including enzymes and ion channels, and hence are involved in many regulatory processes [1,2]. The role of stimulatory G\textsubscript{s} and inhibitory G\textsubscript{i} proteins in cardiac signalling pathways is well studied [3,4]. Alterations of G\textsubscript{i} protein expression levels are found in heart disease [5], and heart failure in humans leads to upregulation of G\textsubscript{i2} and G\textsubscript{i3} [6,7,8,9]. Whether the upregulation of G\textsubscript{i2} and G\textsubscript{i3} in cardiomyocytes is causative, adaptive, or maladaptive still remains unclear.

Cardiac calcium channels are key components in complex signal transduction pathways and play an essential role in cardiac excitability and in coupling excitation to contraction [10]. One major pathway regulating calcium channels is mediated via G protein-activated signalling. In the heart, the main sarcoplasmic calcium channel is the voltage-dependent L-type calcium channel (L-VDCC). This channel is composed of three different subunits. The \textsubscript{a1} subunit represents the pore forming subunit which contains the voltage sensor and the binding sites for calcium channel modulators [11]. It associates with two auxiliary subunits, \textsubscript{b} and \textsubscript{d} [12]. The functional properties of the pore forming subunit are differentially modified due to interaction with various \textsubscript{b} subunit isoforms [13,14,15,16]. Furthermore, receptor activated G\textsubscript{a} protein stimulates L-VDCCs via adenyl cyclase-mediated increases in cAMP levels and protein kinase A (PKA) activity [3].
Activation of Gi or Go modifies channel function via diverse signal cascades [17]. Thus, G protein signalling pathways are crucial in determining and balancing cardiomyocyte function in vivo.

In a previous study we addressed the role of Ga\textsubscript{i2} in \beta\textsubscript{2}-adrenergic receptor-mediated signalling. Gene deletion of Ga\textsubscript{i2} in mice reduced single L-VDCC activity in \beta\textsubscript{2}-adrenergic receptor-transgenic mice [18], whereas pertussis toxin (PTX) treatment reversed this effect. We speculated that this unexpected effect of PTX may have been caused by inhibiting an upregulated Ga\textsubscript{i3}.

Recently, Zuberi et al. [19] showed that Ga\textsubscript{i2} knockout leads to increased L-VDCC mRNA expression and a propensity towards ventricular arrhythmia. Muscarinic receptor-mediated inhibition of L-VDCC activity has been reported to depend on Ga\textsubscript{i2} but not Ga\textsubscript{i3} [20]. Though strongly suggested by these data, subtype-specific effects on cardiac L-VDCC by the highly homologous Ga\textsubscript{i2} and Ga\textsubscript{i3} isoforms remain unclear so far. Therefore, the present work was undertaken to elucidate whether the effects of these Ga proteins are redundant or distinct. Using cardiomyocytes from mice lacking Ga\textsubscript{i2} or Ga\textsubscript{i3} and wild-type (WT) control animals, we determined structural and functional changes. Further, we examined specific signalling pathways implicated in cardiac L-VDCC modulation by Ga protein. In this work, we provide evidence that the L-VDCC activity and kinetics are regulated in a non-redundant manner and we support this idea by demonstrating subtype-specific activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) signalling cascade.

Results

Ga\textsubscript{i2} deficiency decreases, while Ga\textsubscript{i3} deficiency increases L-VDCC current density

To assess consequences of selective deletion of Ga\textsubscript{i2} or Ga\textsubscript{i3} genes, we measured whole-cell L-VDCC currents in cardiomyocytes from WT, Ga\textsubscript{i2}-/-, and Ga\textsubscript{i3}-/- mice. Currents recorded at different test potentials are shown as representative original recordings and current-voltage diagrams of summarized data in Fig. 1A and B, respectively. In cardiomyocytes of Ga\textsubscript{i2}-/- mice, the calcium current density at 0 mV was slightly but significantly reduced (−7.9±0.6 pA/pF, n = 11, p < 0.05) compared to WT (−10.7±0.5 pA/pF, n = 22). In contrast, current density in cardiomyocytes from Ga\textsubscript{i3}-/- mice was increased (to −14.3±0.8 pA/pF, n = 14, p < 0.05 vs. WT). Of note, the peak current in Ga\textsubscript{i2}-/- cardiomyocytes is shifted towards higher voltages. Comparison of time-dependent inactivation by fitting revealed no alterations of fast and slow time constants in all genotypes (e.g. at 0 mV, \(t_f\) : WT = 18.4±1.0 ms, Ga\textsubscript{i2}-/- = 26.9±4.0 ms and Ga\textsubscript{i3}-/- = 15.1±2.1 ms; \(t_s\) : WT = 95.3±4.2 ms, Ga\textsubscript{i2}-/- = 97.5±17 ms and Ga\textsubscript{i3}-/- = 94.9±9.9 ms; n = 10–13). To test whether changes in

![Figure 1](https://www.plosone.org/Attachment/10.1371/journal.pone.0024979.g001)
gating account for the observed differences in current density, we examined kinetic and steady state properties of activation and inactivation.

L-VDCC kinetics are altered by G\(\alpha_2\) deletion, but not by G\(\alpha_3\) deletion

The steady-state inactivation properties (Fig. 1C) in G\(\alpha_2\)-/- cardiomyocytes were altered compared to WT cells as reflected by a significant leftward shift of \(V_{0.5}\) (G\(\alpha_2\)-/-: -23.4±1.0 mV, n = 11, WT: -19.2±0.7 mV, n = 18) and an increased slope factor (Table 1). In addition, recovery from inactivation was slowed in cardiomyocytes from mice lacking G\(\alpha_2\) (t: 207±21 ms, n = 9, p<0.05) in comparison to WT animals (t: 213±14 ms, n = 16; Fig. 1D). In contrast, whole-cell currents in cells form G\(\alpha_2\)-/- mice were indistinguishable from WT regarding both steady state inactivation (\(V_{0.5}\): -18.2±0.9 mV, n = 13, Table 1) and recovery from inactivation (t: 203±24 ms, n = 9). Thus, currents from G\(\alpha_2\)-/- mice show altered kinetic properties and this might explain the decreased current density described above (Fig. 1). Despite increased current density no alteration of current kinetics in G\(\alpha_3\)-/- myocytes was visible. Thus we analyzed single-channel activity to elucidate the opposing effects seen on whole-cell currents in G\(\alpha_2\)-/- and G\(\alpha_3\)-/- cardiomyocytes.

No major changes in gating properties of single L-VDCC in G\(\alpha_3\)-/- cardiomyocytes

Single-channel current recordings in G\(\alpha_3\)-/- cardiomyocytes revealed a trend towards increased peak ensemble average currents (Fig. 2B) and higher open probability (Fig. 2C) when compared to WT cardiomyocytes (Table 2). These effects are based on a significant reduction of the mean closed time (3.8±0.5 ms vs. 6.6±0.9 ms, n = 6-7, p<0.05; Fig. 2D). Together with a significantly decreased slow time constant of the closed state and by trend a reduced first latency (Table 2) our single-channel data suggest that in G\(\alpha_3\)-/- exit from deeper closed states of L-VDCC is facilitated. Given that single-channel activity in G\(\alpha_2\)-/- mice was decreased by trend [18], our findings presented here suggest that G\(\alpha_2\)-/- or G\(\alpha_3\)-/- knockout leads to distinct changes of cardiac L-VDCC properties. Yet, these only slight functional changes alone do not elucidate the more remarkable augmentation of calcium current density in G\(\alpha_3\)-/-. Since the remaining G\(\alpha_3\) isofom might have compensated for effects of G\(\alpha_3\) deficiency we next checked the expression levels of G\(\alpha_3\) in G\(\alpha_3\)-/- knockout and vice versa.

Enhanced expression levels of remaining G\(\alpha_3\) isofom

If the generally accepted assumption holds true that G\(\alpha_2\) and G\(\alpha_3\) proteins are functionally redundant in the heart, we could expect a compensatory upregulation of the remaining G\(\alpha_3\) subunit after knockout of the other. We first determined mRNA expression levels for G\(\alpha_2\), G\(\alpha_2\), G\(\alpha_3\), and G\(\alpha_3\) in samples from WT, G\(\alpha_2\)-/-, and G\(\alpha_3\)-/- mice using real-time PCR. In ventricular tissue from WT mice, transcripts for all G\(\alpha\) protein isoforms and G\(\alpha_2\) were found in different amounts (Fig. 3A). While G\(\alpha_2\) and G\(\alpha_3\) are known to be expressed in cardiomyocytes - with G\(\alpha_3\) mRNA being clearly less abundant -, G\(\alpha_2\) and G\(\alpha_3\) are likely transcribed in non-cardiomyocyte ventricular cells [21]. Deletion of G\(\alpha_3\) enhanced the mRNA level of G\(\alpha_3\) (to 187±21%, n = 3, p<0.05 vs. WT), as expected [6,22]. In cardiac tissue of G\(\alpha_2\)-/- mice G\(\alpha_2\) mRNA levels were upregulated to only 127±5% (n = 4, p<0.05 vs. WT). No significant changes in G\(\alpha_2\) or G\(\alpha_3\) mRNA expression levels were detected, which is in line with the assumption, that these G proteins are not expressed in cardiomyocytes (see above and Fig. 3B).

Next, protein expression of G\(\alpha_3\) isofoms was analyzed in cell membrane preparations from WT, G\(\alpha_2\)-/-, and G\(\alpha_3\)-/- ventricles by probing with G\(\alpha_3\)-common antibodies subsequent to high resolution urea/SDS-PAGE-separation of proteins. WT mice expressed both G\(\alpha_2\) and G\(\alpha_3\) subunits with the protein level of G\(\alpha_2\) being much higher than that of G\(\alpha_3\) (Fig. 3C), in line with previous studies (e.g. [22]). As expected, in hearts from G\(\alpha_2\)-/- mice G\(\alpha_3\) was found and G\(\alpha_2\) was absent while in hearts from G\(\alpha_3\)-/- mice, only G\(\alpha_2\) was detectable (Fig. 3C). The specificity of the detected G\(\alpha_2\) and G\(\alpha_3\) protein bands in G\(\alpha_2\)-/-, G\(\alpha_3\)-/- and WT cardiac tissue was confirmed by analyzing the expression of G\(\alpha_3\) isofoms by PTX-mediated [32P]ADP ribosylation [23] (data not shown). These experiments prove that gene deletion indeed led to loss of the G\(\alpha_3\) subunit.

Statistical analysis of relative expression levels obtained from immunoblots (Fig. 3D) show that G\(\alpha_3\) protein is significantly upregulated in ventricles obtained from G\(\alpha_3\)-/- mice (to 131±10%, n = 8, p<0.05 vs. WT). However, G\(\alpha_2\) protein is much more markedly upregulated upon G\(\alpha_2\) deficiency (to 567±59%, n = 8, p<0.05 vs. WT). Taken together, knockout models examined in this study feature a protein upregulation of the respective other G\(\alpha\) isofom. These data, together with quantitative mRNA data reported above, suggest that increased levels of G\(\alpha_2\) or G\(\alpha_3\) may partially compensate for the loss of the deleted other G\(\alpha\) isofom. Hence, any effect seen so far could be caused by the loss of one G\(\alpha\) protein and/or compensatory signalling exerted by the other. Unfortunately, double-deficient (G\(\alpha_2\)-/-/G\(\alpha_3\)-/-) mice are not viable [22] and hence cannot be used to directly address this question. However, all G\(\alpha\) proteins can acutely be inactivated by PTX treatment.

Acute G\(\alpha_3\) inactivation induces L-VDCC kinetic alterations in G\(\alpha_3\)-/- cardiomyocytes

We performed experiments with PTX for acute inactivation of G\(\alpha_3\) proteins in cardiomyocytes of WT and G\(\alpha_3\)-deficient mice. Freshly isolated cardiomyocytes were incubated at 37°C with or without PTX for 3 hours and afterwards maintained and examined at room temperature. It has been shown that this protocol completely ablates G\(\alpha_i\)-mediated signallling, e.g. when triggered by adenosine receptors [24]. Of note, the 3 hours incubation phase - even in the absence of PTX – reduced current density in G\(\alpha_3\)-deficient cells (Fig. 4B). As expected, in hearts from G\(\alpha_3\)-/- mice, only G\(\alpha_2\) was detectable (Fig. 3C). The specificity of the detected G\(\alpha_2\) and G\(\alpha_3\) protein bands in G\(\alpha_2\)-/-, G\(\alpha_3\)-/- and WT cardiac tissue was confirmed by analyzing the expression of G\(\alpha_3\) isofoms by PTX-mediated [32P]ADP ribosylation [23] (data not shown). These experiments prove that gene deletion indeed led to loss of the G\(\alpha_3\) subunit.

Table 1. Steady-state inactivation parameters.

Parameter	WT	G\(\alpha_2\)-/-	G\(\alpha_3\)-/-
\(V_{0.5}\) (mV)	-19.1±0.7	-23.4±1.0	18.2±0.9
Slope factor (mV)	5.2±0.2	8.7±0.6	5.4±0.2

In G\(\alpha_3\)-/- cardiomyocytes \(V_{0.5}\) of the steady-state inactivation is significantly shifted to more negative potentials. In addition, Boltzmann fits revealed a significant flattening of the curves as indicated by increased slope factors.

\(p<0.05\) vs. WT,
\(p<0.05\) vs. G\(\alpha_3\)-/-.

doi:10.1371/journal.pone.0024979.t001
summarize, PTX alters channel regulation in cells from Gαi3/2 but not from Gαi2/2 mice. In Gαi3/2, acute PTX treatment – and thus inactivation of Gαi2/2 – mimics the kinetic changes induced by chronic gene deletion of Gαi2/2. In contrast, the effect of Gαi3 gene deletion appears to be transient and does not interfere with channel kinetics. Because some of the calcium current changes reported here may be caused by (long-term) structural alterations rather than (acute) functional modulation of calcium channels, we next examined channel composition.

No significant structural modification of L-VDCC

To obtain insight into the effects of specific and constitutive Gαi-deficiency on L-VDCC structure and expression, we determined RNA expression levels of the pore forming Ca,α1 subunit and the predominant murine cardiac Ca,β subunit, Ca,β2 [14,16,25], which is involved in calcium channel trafficking and gating [26,27,28]. The Ca,β2 subunit mRNA expression in ventricles from Gαi2/2 and Gαi3/2 animals is not altered compared to WT expression profile (Fig. 5B). In Gαi2/2 and Gαi3/2 ventricles, the pore forming Ca,α1 subunit mRNA (Fig. 5B) and membrane protein (Fig. 5C and D) expression levels exhibit only slight and insignificant changes. Thus, these data do not suffice to explain the Gαi isoform-specific regulation of the current density. Therefore, we next switched to the posttranslational level and addressed signalling pathways that are involved in G protein-mediated action.

Figure 2. Single-channel properties of L-type calcium channels. (A) Exemplary traces of barium currents show increased single-channel activity in ventricular myocytes of Gαi3/2 animals vs. WT mice. (B) The peak ensemble average current is −61 ± 13 fA in Gαi3/− (n = 6) and −44 ± 9 fA in WT mice (n = 7). (C) The open probability within active sweeps is slightly enhanced in Gαi3/− (5.4 ± 1.0% vs. 4.0 ± 0.9% WT) whereas (D) the mean closed time is significantly reduced (Gαi3/− 3.8 ± 0.5 ms vs. 6.6 ± 0.9 ms WT). Unitary amplitude was not different with −0.83 ± 0.02 pA (WT) and −0.79 ± 0.03 pA (Gαi3/−). *p < 0.05 vs. WT. Box-and-whisker plots indicate minimum and maximum values as well as 25th, 50th and 75th percentiles.

doi:10.1371/journal.pone.0024979.g002
Akt activation is unaltered by deletion of G\textsubscript{\alpha12} or G\textsubscript{\alpha13}

Cardiac G\textsubscript{\alpha} is known to activate the PI3-kinase Akt/PKB pathway [29], and Akt-mediated β-subunit phosphorylation prevents G\textsubscript{\alpha,1γ} degradation [30]. A G\textsubscript{\alpha}-isofrom-specific regulation of Akt could explain the calcium current increase in the case of G\textsubscript{\alpha,1γ}−/− and decrease in case of G\textsubscript{\alpha,1β}−/−. To examine the functional significance of G\textsubscript{\alpha}-dependent activation of Akt in vivo, animals were treated with either saline or the muscarinic receptor agonist carbachol (CCh, 0.5 mg/kg body weight) by i.p. injection; 15 min later animals were killed, and signalling activity was assessed in heart preparations. Phosphorylation of Akt and its downstream effector glycogen synthase kinase-3α/β (GSK3α/β), were increased in cardiac tissue from all mouse strains after treatment with CCh (Fig. 6A). Although the basal phosphorylation of Akt in G\textsubscript{\alpha,12}−/− and G\textsubscript{\alpha,13}−/− cardiac tissue was slightly increased compared to WT (to 138±44% and 142±58% of WT, respectively), we could not observe statistically significant differences between CCh stimulated WT (233±14% to basal), G\textsubscript{\alpha,12}−/− (201±27%) and G\textsubscript{\alpha,13}−/− (195±25%) mice (each n = 3). Importantly, the total amount of Akt was not changed in all mice models. Thus, G\textsubscript{\alpha}-isofrom specific channel regulation seems to be independent of Akt phosphorylation in the investigated knockout models.

Lack of G\textsubscript{\alpha12} protein abolishes ERK1/2 activation

Recently, a marked increase of L-type calcium channel density that involved PKC-dependent activation of the ERK1/2 pathway was reported [31]. To determine its involvement, we measured the

Table 2. Single-channel gating in WT and G\textsubscript{\alpha12}−/− myocytes.

Parameter	WT	G\textsubscript{\alpha12}−/−
\(i\) [pA]	−0.81 ± 0.02	−0.80 ± 0.03
\(I_{peak}\) [MA]	−48 ± 13	−61 ± 12
\(f_{active}\) (%)	76 ± 4	83 ± 7
\(P_{open}\) (%)	4.2 ± 1.1	5.4 ± 1.0
\(t_{open}\) [ms]	0.48 ± 0.06	0.29 ± 0.02*
\(t_{open}\) [ms]	0.42 ± 0.05	0.26 ± 0.03*
\(t_{closed}\) [ms]	6.5 ± 0.9	3.8 ± 0.5*
\(t_{closed,1}\) [ms]	0.34 ± 0.02	0.36 ± 0.04
\(t_{closed,2}\) [ms]	15.5 ± 1.5	10.2 ± 1.7*
proportion \(t_{closed,1}/t_{closed,2}\)	2.0 ± 0.4	2.2 ± 0.3
fl [ms]	27.1 ± 4.1	18.6 ± 2.5

Analysis of single-channel gating parameters in ventricular myocytes from WT (n = 7) and G\textsubscript{\alpha12}−/− (n = 6) mice. Recordings with more than one channel were excluded from the analysis. \(i\): unitary current; \(I_{peak}\): peak ensemble average current; \(f_{active}\): fraction of traces showing at least one opening; \(P_{open}\): open probability in active traces; \(t_{open}\): mean duration of openings; \(t_{closed}\): dwell time constant of the fast closed state; \(t_{closed,1}\): dwell time constant of the slow closed component; proportion: ratio of events conferring to either the fast or the slow closed time component; fl: mean latency until the first opening.

* p<0.05 vs. WT.

doi:10.1371/journal.pone.0024979.t002

Figure 3. RNA expression levels of cardiac G\textsubscript{\alpha12} isoforms measured by real-time PCR. GAPDH was used as endogenous control, and WT mice as calibrator (expression = 100%; n = 4). (A) \(2^{−ΔΔCT}\) values were calculated to analyze the relative expression of G\textsubscript{\alpha12} isoforms in WT cardiomyocytes. (B) The relative mean expression (\(2^{−ΔΔCT}\)) reveals a significantly increased G\textsubscript{\alpha12} mRNA content in ventricular tissue of G\textsubscript{\alpha12}−/− mice (n = 3) and significantly increased G\textsubscript{\alpha13} mRNA levels in G\textsubscript{\alpha13}−/− mice (n = 4). (C) Representative example of G\textsubscript{\alpha12} and G\textsubscript{\alpha13} protein expression in murine ventricular tissue from WT, G\textsubscript{\alpha12}−/− and G\textsubscript{\alpha13}−/− mice. Cell membranes were isolated and G\textsubscript{\alpha} proteins were analyzed by immunoblotting using an anti-G\textsubscript{\alpha} common antibody. Shorter exposure times were used to analyse G\textsubscript{\alpha12} protein. (D) Summarized protein expression data show an upregulation of G\textsubscript{\alpha13} in G\textsubscript{\alpha12}−/− mice and an upregulation of G\textsubscript{\alpha12} in G\textsubscript{\alpha13}−/− mice (n = 8). *p<0.05 vs. WT.

doi:10.1371/journal.pone.0024979.g003
Figure 4. Effects of acute inactivation of G_{α_i} proteins by PTX incubation of isolated cardiac myocytes. (A) Effects of PTX on peak L-VDCC current density. PTX treatment by itself did not affect calcium current density. (B) Effects of PTX on steady-state inactivation, as gauged by the midpoint voltage $V_{0.5}$ of a Boltzmann function. No change is seen after 3 hours of drug-free incubation compared to 0 hour. PTX leads to a significant leftward shift of $V_{0.5}$ in WT (from -19.2 ± 0.7 mV to -21.0 ± 0.7 mV, $n=7\sim18$) and G_{α_i3-} (from -18.2 ± 0.7 mV to -22.7 ± 1.1 mV, $n=11\sim13$). (C) PTX affects the recovery of the L-VDCC from inactivation. PTX inhibits the channel recovery in G_{α_i3-} (τ from 189 ± 12 ms to 350 ± 26 ms, $n=5\sim11$). $^*p<0.05$ vs. WT, $^p<0.05$ vs. G_{α_i3-}, $^{+}p<0.05$ vs. G_{α_i3-}, $^{+}p<0.05$ vs. 3 h without PTX. doi:10.1371/journal.pone.0024979.g004
activation of ERK1/2 protein in total cardiac tissue. Ga2/2 and Ga3/2 mice demonstrated a significantly blunted increase of ERK1/2 phosphorylation in CCh-stimulated animals (128 ± 6% to basal, n = 3) compared to WT (268 ± 6%, n = 3) and Ga2/2 and Ga3/2 cardiomyocytes. Of note, in Ga2/2 and Ga3/2 cardiac tissues, the basal ERK1/2 phosphorylation levels were increased compared to WT basal phosphorylation (Fig. 6B), while the total amount of ERK1/2 in the heart was the same in all mouse models tested. These results indicate a Ga2-dependent ERK1/2 phosphorylation and strongly suggest that ERK1/2 plays an important role in isoform-specific Ga protein signalling.

Discussion

The two inhibitory G protein isoforms Ga2 and Ga3 are both upregulated in heart failure [6,7,8]. One functionally important target of Ga protein signalling is the L-VDCC, the crucial trigger of cardiac excitation-contraction coupling. Ga-protein-mediated inhibition of L-VDCC has been demonstrated for β2-adrenergic [4] and muscarinic [20] receptor signalling. In this context, we previously provided single-channel evidence that Ga2 does not confer the L-VDCC inhibition observed in mice with chronic overexpression of the β2-adrenergic receptor [18]. On the other hand, cardiac Ga2 (but not Ga3) seems necessary and sufficient to mediate the muscarinic receptor-mediated L-VDCC inhibition [20], presumably through the classical adenylyl cyclase pathway. So far, no isoform-specific function could be assigned to cardiac Ga2; however, Ga3 has been shown to be an exclusive and specific regulator of autophagy in the liver [22,32].

The different behaviour of L-VDCC currents obtained with isolated myocytes from Ga2/2 and Ga3/2 mice shown here and previously [18] demonstrates contrasting functional roles of these two Ga isoforms. Although the issue has also been addressed by others [19,20,33], our study is the first to demonstrate small but significant changes of basal whole-cell current density: a reduction in myocytes from Ga2/2 mice and an increase in myocytes from Ga3/2 mice. The altered steady-state inactivation and recovery observed with Ga2/2 under basal conditions (Fig. 1C and D), and with Ga3/2 myocytes after PTX treatment (Fig. 4B and C), point to a modulation of gating properties specific to Ga2. In contrast to data presented here, Nagata et al. [20] did not detect a significant difference in L-VDCC activity between myocytes from WT, Ga2/2 and Ga3/2 mice. With respect to Ga2/2, this finding can be explained by the different prepulse potentials: the prepulse voltages (−50 mV used by Nagata and co-workers vs. −40 mV in our case) - intended to inactivate primarily sodium currents - lie within the descending part of steady-state inactivation (Fig. 1C). This likely translates into the more reduced peak in the
Ga Isoform-Specific Regulation of Ca2+ Channels

(A) RasGAP, pAkt, pGSK-3α/β, Akt

CCh - + + - + + - + +

(B) RasGAP, pERK1/2, ERK1/2

CCh - + + - + + - + +

Akt phosphorylation (% of WT NaCl)

WT NaCl WT CCh Ga\textsubscript{α12}−/− NaCl Ga\textsubscript{α12}−/− CCh Ga\textsubscript{α13}−/− NaCl Ga\textsubscript{α13}−/− CCh

ERK phosphorylation (% of WT NaCl)

WT NaCl WT CCh Ga\textsubscript{α12}−/− NaCl Ga\textsubscript{α12}−/− CCh Ga\textsubscript{α13}−/− NaCl Ga\textsubscript{α13}−/− CCh

*
current voltage plot in our study. Interestingly, Zuberi et al. [19] compared G\(_{a_{i2}}\)-/- mice with G\(_{a_{i2}}\)+/+ and G\(_{a_{i3}}\)-/- double knockout mice and found distinct effects on surface ECGs: in G\(_{a_{i2}}\)-/- animals (but not in the double knockout mice), the effective refractory period was reduced and ventricular arrhythmias were induced more clearly. In summary, G\(_{a_{i2}}\) protein deletion showed dramatic consequences on channel regulation in vivo and ex vivo.

There are no changes of cardiac L-VDCC composition regarding the main cardiac L-VDCC subunits, C\(_{a_{i1}}\), C\(_{a_{i2}}\), and C\(_{a_{i3}}\) (Fig. 5B and D) that would explain the obtained effects on current density. Furthermore, because of the compensatory upregulation of the remaining G\(_{a_{i}}\) isoform in case of either G\(_{a_{i2}}\) or G\(_{a_{i3}}\) deficiency (Fig. 3B and D), it is difficult to attribute the observed changes in L-VDCC regulation/function to the higher expression of one G\(_{a_{i}}\) isoform or to the loss of the other or to both. Therefore, given the novel functional effects reported here for cardiac G\(_{a_{i2}}\) and G\(_{a_{i3}}\), we have to consider a number of molecular pathways. For instance, activation of Stim1 [34] may lead to altered L-VDCC function and subcellular distribution. Enhanced endocytosis and degradation of calcium channels can also be mediated by activation of PIKfyve [35] and subsequent C\(_{a_{i}}\) targeting to lysosomes. Further, the RGK proteins Rad and Rem expressed in the heart [36] are appealing candidates, because they negatively regulate both membrane expression and gating of L-VDCC [37,38] while little is known about how these small GTP-binding proteins are regulated themselves [39]. In our present study, we focused on two other important molecular pathways since they are significantly regulated by G\(_{i}\)-signalling. First, PI3-kinase Akt/PKB signalling is known to be activated by cardiac G\(_{i}\) [29], and Catalucci et al. [30] revealed a mechanism through which the PI3-kinase Akt/PKB pathway modulates C\(_{a_{i}}^{2+}\) entry in cardiac cells via L-VDCC. Our data showed a CCh-induced Akt phosphorylation independent of the deletion of either G\(_{a_{i2}}\) isoform (Fig. 6A). Second, it was demonstrated that deactivation of G\(_{i}\) leads to a significant reduction in ERK1/2 phosphorylation and that this effect was G\(_{a_{i1}}\) and G\(_{a_{i3}}\) independent [29,40]. In the present study, we have shown that G\(_{a_{i2}}\) deletion prevents phosphorylation of ERK1/2. Recently, Smani et al. [31] found a leftward shift and a marked increase in L-VDCC density induced by urocortin, which involved PKC-dependent activation of the MAPK-ERK1/2 pathway. Based on these findings we propose that loss of activation of L-VDCC by ERK1/2 might be a mechanism involved in functional regulation of calcium current in G\(_{a_{i2}}\)-deficient mice. A change of G\(_{a_{i}}\) mediated signalling might account for altered calcium currents when a G\(_{a_{i}}\) is lacking. With this caveat in mind, we demonstrated in our previous study that G\(_{a_{i2}}\) protein expression remained unaffected in hearts from mice deficient in the major isoform G\(_{a_{i2}}\) [18]. Yet, possible changes in associated proteins like GP\(_{i}\)/subunits might indirectly affect G\(_{a_{i}}\) mediated signalling [41]. Indeed, we observed that expression of GP\(_{i,2}\) was slightly reduced in G\(_{a_{i2}}\)-/-, but not G\(_{a_{i3}}\)-/- (data not shown). In any case, our single-channel analysis (in particular, the decrease in open time) does not support the idea of enhanced G\(_{a_{i}}\) mediated, cAMP-mediated signalling in G\(_{a_{i3}}\)-deficient hearts (Table 2).

The data presented here could not elucidate all effects seen in the knockout animals. Thus, eventually, G\(_{a_{i3}}\)’s role in L-VDCC regulation remains unclear, mainly in light of the absence of acute PTX effects in G\(_{a_{i2}}\)-/- mice. However, due to the effects seen by incubation without PTX, our findings suggest that the increment in channel activity observed in the absence of G\(_{a_{i2}}\) might be driven by an in vivo mechanism, which is not preserved ex vivo (Fig. 4A). It has also to be pointed out that the immunoblot data reveal total cardiac membrane channel protein levels, which does not necessarily match up the fraction of functional channels located in the sarcotendinous. Given our currently available methods to analyze the subcellular localization of calcium channels and their regulation, all of these ideas require further work, which for technical reasons has to be done in recombinant systems.

Taken together, our data reported here and in a previous paper [18] point to the (patho-) physiological importance of subtype-specific G\(_{i}\) protein signalling in the heart. In particular, in terminal heart failure, G\(_{a_{i2}}\) upregulation now appears as an attractive mechanism linked to remodelling of L-VDCC [13,14,15,16]. Therefore, the present study provides new insights into potential mechanisms linking modulation of L-VDCC to the inhibitory G\(_{i}\) protein isoform G\(_{a_{i2}}\) in cardiomyocytes, and highlights G\(_{a_{i2}}\)-specific signalling via ERK1/2. Further research needs to focus on detailed signalling pathways involving ERK1/2.

Methods

Ethic statement

Animal breeding, maintenance and experiments were approved by the responsible federal state authority (Landesamt für Natur-, Umwelt- und Verbraucherschutz Nordrhein-Westfalen; reference No. K 27, 24/04 and 8.67-51.05.20.09.232) and the local authorities. Animals were bred and experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996).

Animals

Generation, breeding and characterization of G\(_{a_{i1}}\)- or G\(_{a_{i3}}\)-deficient mice have been described previously [18,22,42,43,44]. All G\(_{a_{i}}\)-deficient mouse strains used were backcrossed onto a C57BL6 background for >10 generations. Knockout and WT control mice were maintained at the animal facilities of the Heinrich-Heine-University, Düsseldorf, and of the Department of Pharmacology at the University of Cologne. Mice analyzed in this study were of both sexes, 3–9 months of age and weighted 20–35 g.

Genotyping

Tail-clip analysis was performed on 3–4 weeks old mice. Genomic DNA was prepared and genotyping PCR for G\(_{a_{i1}}\) and G\(_{a_{i3}}\) was performed as described previously [18,43].

Real time PCR

Primer for G\(_{a_{i1}}\), G\(_{a_{i2}}\), G\(_{a_{i3}}\) isoforms and C\(_{a_{i1}}\) subunit were described previously [23,46]. Specific primers for the G\(_{a_{i}}\) and C\(_{a_{i,2}}\) subunit were designed using Primer Express Software v3.0.
(Applied Biosystems, Foster City, USA). For Gαi3, 5′-TGCCC-ATCGTAGAAGCC/CCCTTTG-3′ (sense) and 5′-CGACCTCAAA-CAACCTGAAG-3′ (antisense) and for Ca2+/CaM, 5′-GGGAGG-CAGTA/CTAGAAGAGCTTC-3′ (sense) and 5′-TGCAATGTC-CACAAGGGT-3′ (antisense). Total cellular RNA was extracted from murine heart (ventricle) according to the manufacturer’s protocol (Qiagen QIAshredder and RNeasy Mini Kit, Qiagen, Hilden, Germany). For qualitative analysis of RNA integrity, 2 μg of total RNA was separated on a 1% formaldehyde agarose gel. Total RNA was subsequently converted into cDNA by ImProm-II Reverse Transcription Kit (Promega, Mannheim, Germany). Real-time PCR was carried out using the 7500 Real-Time PCR system (Applied Biosystems) under standard conditions with 200 pM PCR primers. Each sample was analyzed in triplets using SYBR green (Applied Biosystems) as fluorescent detector and GAPDH as endogenous control.

Cell membrane preparation

Marine cardiac ventricles were disrupted and homogenised in a lysis buffer containing 10 mM Tris-HCl (pH 7.4), 1 mM EDTA, 0.5 mM DTT, and an EDTA-free protease inhibitor cocktail (Roche, Penzberg, Germany) using an ultra-turrax blender. Cellular membranes were isolated by two steps of centrifugation at 450 g and 30,000 g. Membrane pellets were subsequently dissolved in a buffer consisting of a freezing supplement (70 mM Tris (pH 7.4), 12 mM MgCl2, 60% Glycerol, 240 μg/μl DNase) and the lysis buffer in a ratio of 1:6 in order to stabilize membrane-associated proteins.

Phosphorylation assay

Animals were injected i.p. with 0.5 mg/kg carbachol (CCh) diluted in 0.9% normal saline. Sham injections were performed with 400 μl 0.9% saline per 30 g weight. After 15 min ventricular tissue was harvested and lysed in buffer (50 mM HEPES, 1% Triton, 50 mM NaCl, 10 mM Na2VO4, 0.1% SDS, 0.1 M NaF, 10 mM EDTA, complete mini protease inhibitor, pH 7.4) and left for 30 min at 4°C. Total cell lysates were extracted from the supernatant by centrifugation at 13,500 g for 20 min.

Immunoblotting

Gαi3 and Ca2+/CaM proteins isolated from cell membranes were separated on 6 M urea/9% SDS-PAGE gels (protein content per lane was 90 μg) and on 8% SDS-PAGE gels (protein content per lane was 100 μg), respectively [22]. Protein kinase B/Akt and ERK1/2 in total cell lysates were separated on 10% SDS-PAGE gels (100 μg protein content per lane). Separated proteins were blotted onto nitrocellulose membranes (Hybond C extra; Amersham Bioscience). Gαi3 proteins were detected with an anti-Gαi3 common antibody [45] (1:1000) and Ca2+/CaM with an anti-Ca2+/CaM antibody (1:200; Sigma Aldrich). For detection of phosphorylation, membranes were incubated with phospho-Akt (Ser473), phospho-GSK3β (Ser21/9) and phospho-ERK1/2 (Thr202/Tyr204) antibodies. Membranes were reprobed with Akt and ERK1/2 antibodies (each 1:1000; Cell Signalling) after stripping. Emitted light of stained membranes were captured on films and developed according to different expositions. Protein densities were calculated using Aida Image Analyzer (Raytest, Straubenhardt, Germany) software. The Ras-GTP-activating protein RasGAP, [47] was used as a loading control for Ca2+/CaM. Equal loading on blotting membrane for Gαi3 proteins was controlled by a non-specific protein staining using Ponceau S. Only blots with equal loading were analyzed. To confirm Gαi3 band specificity, we performed ADP ribosylation of PTX-sensitive G proteins as described [23].

Cardiomyocyte isolation

Single ventricular myocytes were isolated from hearts of 3–9 months old mice by enzymatic dissociation using a method described previously [48]. Only rod shaped cardiomyocytes were used for the experiments. Cells were maintained at room temperature and subjected to patch-clamp analysis. If indicated, a fraction of isolated ventricular myocytes was incubated without or with 1.5 μg/ml of PTX (Sigma Aldrich, St. Louis, USA) for 3 hours at 37°C [24].

Single-channel measurements

Single-channel patch clamp recordings were done in the cell-attached configuration as reported [18]. The composition of bath solution was (mM): K-glutamate 120, KCl 25, MgCl2 2, HEPES 10, EGTA 2, CaCl2 1, Na2-ATP 1, glucose 10 (pH 7.4 with KOH). Patch pipettes (7–9 MΩ) contained (mM): BaCl2 70, HEPES 10, sucrose 110 (pH 7.4 with TEA-OH). Barium currents were recorded at room temperature using a holding potential of −100 mV and depolarizing test pulses to +20 mV (duration 150 ms, frequency 1.66 Hz, 180 sweeps per experiment minimum). Data were sampled at 10 kHz and filtered at 2 kHz using an Axopatch 200A amplifier (Axon Instruments, Sunnyvale, CA, U.S.A.). Only experiments with one single active channel in the patch were analyzed (identified by the lack of stacked openings).

Whole-cell current measurements

Conventional whole-cell patch clamp recordings were performed with cells maintained at room temperature in bath solution containing (mM): NaCl 137, CsCl 5.4, CaCl2 2, MgCl2 1, glucose 10, HEPES 10 (pH 7.4 with NaOH). Pipettes (2–3 MΩ) solution was composed of (mM): CsCl 120, MgCl2 1, Mg-ATP 4, EGTA 10, HEPES 5 (pH 7.2 with CsOH). Giga-Ohm seals (resistance 2–5 GΩ) were formed by gentle suction. At the beginning of each experiment, membrane capacitance was measured by means of fast depolarizing ramp pulses from −80 to −85 mV over 25 ms. Cells were depolarized from a holding potential of −80 mV to a 50 ms prepulse to −40 mV in order to inactivate sodium channels. This was followed by test pulse voltages ranging from −40 to +30 mV in 10 mV steps (pulse duration 150 ms). For time-dependent inactivation, the declining raw currents at −10, 0, +10, +20 and +30 mV were fitted by a double-exponential function, yielding fast and slow time constant. For investigation of gating kinetics, standard two-pulse protocols were used: the voltage-dependent inactivation was measured after a prepulse of variable amplitude and 250 ms duration, followed by a test pulse of fixed amplitude for 50 ms. The midpoint voltage V0.5 was determined by fitting a Boltzmann function to the data. Recovery from inactivation was measured after two 200 ms depolarizing voltage pulses to 0 mV. The interpulse interval at a holding potential of −45 mV was increased from 50 to 375 ms in 25 ms steps. Recovery was fitted by a mono-exponential function, yielding the recovery time constant t.

Statistical analysis

Data are presented as means ± SEM. Patch-clamp data were analyzed using pClamp software (CLAMPEX 6 and FETCHAN, Axon Instruments). Analysis of L-VDCC kinetics was performed as described previously [49] using GraphPad Prism 4. A one-sample t-test was used to analyze normalized data. Differences between genotypes were analyzed by one-way ANOVA followed by Dunnett’s or Tukey’s post test, and between treatments within one given genotype by two-tailed Student’s t tests. For electrophysiological statistics, number of cardiomyocytes from a minimum of 3
animals, and for molecular biology statistics, number of animals was evaluated. P values <0.05 were considered statistically significant.

Acknowledgments
The authors wish to thank Olga Felda and Sigrid Kirchmann-Hecht for excellent technical assistance, Jens Reifenrath for help with animal breeding, and Christian Fabisch, Andreas Markl, Katja Pexa, Markus Schubert and Oliver Stöhr for discussion and support.

References
1. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273: 669-672.
2. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415: 206-212.
3. Lohse MJ, Engelandt S, Eschenhagen T (2003) What is the role of β-adrenergic signaling in heart failure? Circ Res 93: 896-906.
4. Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA, et al. (1999) Coupling of β2-adrenoreceptor to G proteins and its physiological relevance in murine cardiac expression of β2-protein. J Cell Biol 145: 53-62.
5. Bohm M, Gierschik P, Knoer A, Larisch K, Weismann K, et al. (1992) Desensitization of adenylate cyclase and increase of Gα in cardiac hypertrophy due to acquired hypertension. Hypertension 20: 105-112.
6. Eschenhagen T (1993) G proteins and the heart. Circ Res 72: 723-749.
7. Feldman AM, Cates AE, Veeze WH, Bieringer RE, Brinton MR, et al. (1998) Increase of the 40,000-Mr wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 102: 189-197.
8. Neumann J, Fritsch E, Scholz H, von Mutius L, Doring V, et al. (1990) Increase in myocardial Gβ-proteins in heart failure. Lancet 1: 936-937.
9. Mittmann C, Pinkepang K, Stamatelopoulou S, Wieland T, Nurnberg B, et al. (2003) Differential coupling of m-cholinoceptors to Gα/γ-proteins in failing human myocardium. J Mol Cell Cardiol 35: 1241-1249.
10. Schroeder EA, Wei Y, Satin J (2006) The developing cardiac myocyte: maturation of excitability and excitation-contraction coupling. Ann N Y Acad Sci 1080: 65-73.
11. Averbuch DR, Schwartz JB (1999) Calcium-antagonist drugs. N Engl J Med 341: 1447-1457.
12. Xu X, Colecrlraft HM (2009) Engineering proteins for custom inhibition of Ca(V) channels. Physiology (Bethesda) 24: 210-218.
13. Gonzales-Gutierrez G, Miranda-Laferte E, Nothmann D, Schmidt S, Neely A, et al. (2009) Engineering proteins for custom inhibition of Ca(V) channels. J Cell Biol 184: 923-933.
14. Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, et al. (2009) Cloning and expression of a cardiac/brain β subunit of the L-type calcium channel. J Biol Chem 284: 1792-1797.
15. Chelsey A, Landberg MS, Asai T, Xiao RP, Ohtani S, et al. (2006) The β2-adrenergic receptor delivers an antiparotopic signal to cardiac myocytes through Gβ-dependent coupling to phosphatidylinositol 3-kinase. Circ Res 57: 1172-1179.
16. Schubert and Oliver Stöhr for discussion and support.

Author Contributions
Conceived and designed the experiments: SD SK RPP BN SH. Performed the experiments: SD SK FK CK. Analyzed the data: SD SK FK PH CK RPP J. Matthes J. Meszaros SH. Wrote the paper: SD PH J. Matthes RPP BN SH. Critical revisions of the manuscript: SD PH J. Matthes RPP BN SH.
48. Heubach JF, Trebess I, Wettwer E, Himmel HM, Michel MC, et al. (1999) L-type calcium current and contractility in ventricular myocytes from mice overexpressing the cardiac beta 2-adrenoceptor. Cardiovasc Res 42: 173–182.

49. Meszaros J, Coutinho JJ, Bryant SM, Ryder KO, Hart G (1997) L-type calcium current in catecholamine-induced cardiac hypertrophy in the rat. Exp Physiol 82: 71–83.