1. INTRODUCTION

The spin structure of a nucleon is one of the most interesting problems to be resolved within the framework of (nonperturbative) Quantum Chromodynamics (QCD). In particular, the singlet part \(\Sigma(x, Q^2) \) of the parton distribution functions

\[
\Sigma(x, Q^2) = \sum_{f} f_{q}(x, Q^2),
\]

where \(f \) is a number of active quarks, is intensively studied, because there is strong disagreement between the experimental data for its first Mellin moment and corresponding theoretical predictions. This disagreement is usually called a spin crisis (see, for example, reviews in [1]).

Here we consider only the non-singlet (NS) part, which the fundamental Bjorken sum rule (BSR) holds for [2]

\[
\Gamma_{1}^{p-n}(Q^2) = \int_{0}^{1} [\hat{g}_{1}^{q}(x, Q^2) - \hat{g}_{1}^{\bar{q}}(x, Q^2)] dx.
\]

It deals with the first moment \((n = 1) \) of NS part of the structure function (SF) \(g_{1}(x, Q^2) \). For the case \(n = 1 \), the corresponding anomalous dimension of Wilson operators is zero and all the \(Q^2 \)-dependence of \(\Gamma_{1}^{p-n}(Q^2) \) is encoded in the coefficient function.

Usually, BSR is represented in the form

\[
\Gamma_{1}^{p-n}(Q^2) = \frac{G_{A}}{6} E_{NS}(Q^2) + \sum_{i=2}^{\infty} \frac{1}{2i-2} \hat{g}_{2i-2}^{p-n}(Q^2),
\]

where the first term in the r.h.s. is a twist-two part and the second one is a contribution of higher twists (HTs).

At high \(Q^2 \) values the experiment data for \(\Gamma_{1}^{p-n}(Q^2) \) and the theoretical predictions [1] are well compatible with each other. Here we will focus on low \(Q^2 \) values, at which there presently exist the very precise CLAS [3, 4] and SLAC [5] experimental data for BSR. On the other hand, there also is a great progress in theoretical calculations: recently, the terms \(-\alpha_s^4\) are evaluated in [6].

2. BASIC FORMULAE

In our analysis we will mostly follow the analyses done by the Dubna-Gomel group [7, 8]. We try, however, to resum the twist-two part with the purpose of reducing a contribution coming from the HT terms. Indeed, there is an interplay

• between HTs and higher orders of perturbative QCD corrections (see, for example, [9], where the SFs \(xF_3 \) was analyzed).

• between HTs and resummations in the twist-two part (see, for example, application of the Grunberg approach [10] in [11] to the study of SFs \(F_2 \) and \(F_L \)).

The twist-two part of BSR has the following form (see, for example, [7])

\[
E_{NS}(Q^2) = 1 - 4\Delta(Q^2),
\]

where the term \(\Delta(Q^2) \) looks like

\[
\Delta(Q^2) = \alpha_s(Q^2) \left(1 + \sum_{k=1}^{\infty} C_k a_s^k(Q^2) \right)
\]

The first three coefficients \(C_1, C_2 \) and \(C_3 \) are already known (see [6, 12] and references therein).

We will replace the above representation (2) by the following one

\[
E_{NS}(Q^2) = \frac{1}{1 + 4\Delta(Q^2)},
\]
where

$$\tilde{\Delta}(Q^2) = \alpha_s(Q^2) \left(1 + \sum_{k=1}^{\infty} \tilde{C}_k a_k^i(Q^2)\right) \quad (4)$$

and \tilde{C}_k can be obtained from the known C_k:

$$\tilde{C}_1 = C_1 + 4, \quad \tilde{C}_2 = C_2 + 8C_1 + 16,$$
$$\tilde{C}_2 = C_1 + 8C_2 + 4C_1^1 + 48C_1 + 64. \quad (5)$$

The reason behind this transformation is as follows: the CLAS experimental data [3, 4] demonstrate that $\Gamma_{1}^{p-n}(Q^2) \rightarrow 0$. Therefore, in the case when the HT corrections produce small contributions at $Q^2 \rightarrow 0$ we see that

$$E_{NS}(Q^2 \rightarrow 0) \rightarrow 0. \quad (6)$$

Since the strong coupling constant $\alpha_s(Q^2 \rightarrow \Lambda^2) \rightarrow \infty$, it is seen that the form (3) behaves much like the CLAS experimental data. Indeed,

$$E_{NS}(Q^2 \rightarrow \Lambda^2) = \frac{1}{1 + 4\Delta(Q^2 \rightarrow \Lambda^2)} \rightarrow 0. \quad (7)$$

As $\Lambda_{QCD}^2 \sim 0.01$ is rather small, one can conclude that the above representation (7) agrees with experiment at very low Q^2 values.

Note, however, that we have a very small coefficients of $\Delta(Q^2)$ and $\tilde{\Delta}(Q^2)$. Thus, for small but non-zero Q^2 values the above representations (1) and (3) lead to similar results (see Fig. 1, where we restricted our consideration to the next-to-next-to-leading order (NNLO) accuracy). As is seen in Fig. 1, the theoretical predictions are not too close to the shape of the experimental data.

3. GRUNBERG APPROACH

At $Q^2 \sim 0$, the value of the strong coupling constant is very large. Thus, in our approach it is better to avoid the usage of series like

$$\sum_{k=1}^{\infty} C_k a_k^i(Q^2), \quad (8)$$
as in Eqs. (2) and (4).

Instead, it is convenient to use the Grunberg method of effective charges [10], i.e. to consider the variables $\Delta(Q^2)$ and $\tilde{\Delta}(Q^2)$ as new effective “coupling constants”, which have the following properties:

$$Q^2 \rightarrow Q^2/D_k, \quad Q^2 \rightarrow Q^2/\tilde{D}_k \quad (9)$$

for the variables $\Delta(Q^2)$ and $\tilde{\Delta}(Q^2)$, respectively, with

$$D_k = e^{\frac{C_i}{\beta_0}}, \quad \tilde{D}_k = e^{\tilde{C}_i/\beta_0}, \quad (10)$$

which are in turn responsible for the vanishing of the coefficients C_k and \tilde{C}_k in a series similar to (8). Moreover, these shifted arguments (9) provide also a strong reduction in the magnitudes of the coefficients C_k and \tilde{C}_k ($k \geq 2$).

- new β_i ($i \geq 2$) coefficients of the corresponding β-functions, which are responsible for the vanishing of the coefficients C_k and \tilde{C}_k ($k \geq 2$).

However, a straightforward application of the Grunberg approach to the variables $\Delta(Q^2)$ and $\tilde{\Delta}(Q^2)$ is not as convenient, because the coefficients C_1 and \tilde{C}_1 are positive and the Q^2 values are very small. It is in contrast with its direct applications, where the coefficients C_1 and \tilde{C}_1 are negative [14] and/or the Q^2 values are not so small [11, 15].

So, the new arguments Q^2/D_k and Q^2/\tilde{D}_k have now very small values and, as a result, we have to use the Grunberg approach associated with something else. One of the ways is to use a so-called “frozen” coupling constant.
1.5
1.5
2.0
2.0
28
1.5
1.5
2.0
2.0

It is compatible with the observation steps: small of experimental data are close enough to each other at that the shape of theoretical predictions and the form standard coupling constant (see Fig. 1), we observe well consistent with each other.

(1) and theoretical predictions obtained with
ences can be found in [17]:
following replacement should be done (a list of refer-
mally ,
altering its argument corrections is in progress.

The analysis of the Bjorken sum rule performed within the framework of perturbative QCD is presented at low \(Q^2 \). It features the following important steps:

- The new form (3) for the twist-two part was used.
 It is compatible with the observation \(E_{NS}(Q^2 \to 0) \to 0 \),

coming from the experimental data (if HTs are negli-
gible).

- The application of the Grunberg method of effective charges [10] in a combination with a “frozen” coupling constant provides good agreement with experimental data, though with a slightly larger freezing parameter \((1.5 M^2_\rho \text{ instead of } M^2_\rho) \).

Further elaborations to be undertaken include taking into account the \(\alpha_s^2 \) and \(\alpha_s^3 \) corrections to our analysis, as well as the study of HT corrections and their correlations with a freezing parameter \(a \) (in front of \(M^2_\rho \)). We also plan to add to our analysis an analytic coupling constant [18], which has no the Landau pole and leads usually to the results, which are similar to those obtained in the case of the “frozen” coupling constant [17, 19].

ACKNOWLEDGMENTS

A.V.K. thanks the Organizing Committee of 20th International Symposium on Spin Physics (SPIN2012) for invitation and support.

REFERENCES

1. M. Anselmino, A. Efremov, and E. Leader, “The theory and phenomenology of polarized deep inelastic scattering,” Phys. Rept. 261, 1 (1995); S. E. Kuhn, J.-P. Chen, and E. Leader, “Spin structure of the nucleon—status and recent results,” Prog. Part. Nucl. Phys. 63, 1 (2009).
2. J. D. Bjorken, “Applications of the chiral \(U(6)x(6) \) algebra of current densities,” Phys. Rev. 148, 1467 (1966); “Inelastic scattering of polarized leptons from polarized nucleons,” Phys. Rev., Ser. D 1, 1376 (1970).

It seems that the value of the parameter \(a \) depends on the order of perturbation theory. We plan to study this dependence in our forthcoming investigations.
3. K. V. Dharmawardane et al. (CLAS Collaboration), “Measurement of the x- and Q**2-dependence of the asymmetry A(1) on the nucleon,” Phys. Lett., Ser. B 641, 11 (2006); P. E. Bosted et al. (CLAS Collaboration), “Quark-hadron duality in spin structure functions g(1)p and g(1)d,” Phys. Rev., Ser. C 75, 035203 (2007); Y. Prok et al. (CLAS Collaboration), “Moments of the spin structure functions g**2p(1) and g**2d(1) for 0.05 < Q**2 < 3.0-GeV**2,” Phys. Lett., Ser. B 672, 12 (2009).

4. M. Amarian et al. (CLAS Collaboration), “The Q**2 evolution of the generalized Gerasimov-Drell-Hearn integral for the neutron using a He-3 target,” Phys. Rev. Lett. 89, 242301 (2002); 92, 022301 (2004); R. Fatemi et al. (CLAS Collaboration), “Measurement of the proton spin structure function g(1)(x, Q**2) for Q**2 from 0.15 to 1.6 GeV**2 with CLAS,” Phys. Rev. Lett. 91, 222002 (2003); A. Deur et al. (CLAS Collaboration), “Experimental determination of the evolution of the Bjorken integral at low Q**2,” Phys. Rev. Lett. 93, 212001 (2004).

5. K. Abe et al. (E154 Collaboration), “Precision determination of the neutron spin structure function g(1)(n),” Phys. Rev. Lett. 79, 26 (1997); P. L. Anthony et al. (E155 Collaboration), “Measurements of the Q**2 dependence of the proton and neutron spin structure functions g(1)**p and g(1)**n,” Phys. Lett., Ser. B 493, 19 (2000).

6. P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn, “Adler function, Bjorken sum rule, and the Crewther relation to order α_s^4 in a general gauge theory,” Phys. Rev. Lett. 104, 132004 (2010).

7. V. L. Khandramai et al., “Four-loop QCD analysis of the Bjorken sum rule vs. data,” Phys. Lett., Ser. B 706, 340 (2012).

8. R. S. Pasechnik et al., Nucleon spin structure and pQCD frontier on the move,” Phys. Rev., Ser. D 81, 016010 (2010); “Nucleon spin structure at low momentum transfers,” Phys. Rev., Ser. D 82, 076007 (2010); “Bjorken sum rule and pQCD frontier on the move,” Phys. Rev., Ser. D 78, 071902 (2008).

9. A. L. Kataev et al., “Next to next-to-leading order QCD analysis of the CCFR data for xF3 and F2 structure functions of the deep inelastic neutrino—nucleon scattering,” Phys. Lett., Ser. B 388, 179 (1996); “Next to next-to-leading order QCD analysis of the revised CCFR data for xF3 structure function and the higher twist contributions,” Phys. Lett., Ser. B 417, 374 (1998).

10. G. Grunberg, “Renormalization group improved perturbative QCD,” Phys. Lett., Ser. B 95, 70 (1980); “Renormalization scheme independent QCD and QED: the method of effective charges,” Phys. Rev., Ser. D 29, 2315 (1984).

11. G. Parente, A. V. Kotikov, and V. G. Krivokhizhin, “Next to next-to-leading order QCD analysis of DIS structure functions,” Phys. Lett., Ser. B 333, 190 (1994); A. V. Kotikov, G. Parente, and J. Sanchez Guillen, “Renormalization scheme invariant analysis of the DIS structure functions F2 and F(L),” Z. Phys., Ser. C 58, 465 (1993).

12. S. A. Larin and J. A. M. Vermaseren, “The alpha-s**3 corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule,” Phys. Lett., Ser. B 259, 345 (1991).

13. D. V. Shirkov, Massive Perturbative QCD, Regular in the IR Limit, arXiv:1208.2103[hep-th].

14. A. V. Kotikov, “On the behavior of DIS structure function ratio R (x, Q**2) at small x,” Phys. Lett., Ser. B 338, 349 (1994); JETP Lett. 59, 1 (1995).

15. D. I. Kazakov and A. V. Kotikov, “Total alpha-s correction to deep inelastic scattering cross-section ration, R = sigma-/sigma-t in QCD. Calculation of longitudinal structure function,” Nucl. Phys., Ser. B 307, 721 (1988); Nucl. Phys., Ser. B 345 (E), 299 (1990); Yad. Fiz. 46, 1767 (1987); A. V. Kotikov, “Behavior of R = sigma-/sigma-t ratio in QCD at x → 0 and x → 1 and its parametrization,” Sov. J. Nucl. Phys. 49, 1068 (1989).

16. B. Badelek, J. Kwiecinski, and A. Stasto, “A model for F(L) and R = F(L)/F(T) at low x and low Q**2,” Z. Phys., Ser. C 74, 297 (1997).

17. A. V. Kotikov, A. V. Lipatov, and N. P. Zotov, “The longitudinal structure function F(L): perturbative QCD and k(T) factorization versus experimental data at fixed W,” J. Exp. Theor. Phys. 101, 811 (2005).

18. D. V. Shirkov and I. L. Solovtsov, “Analytic model for the QCD running coupling with universal alpha-s(0) value,” Phys. Rev. Lett. 79, 1209 (1997).

19. G. Cvetic et al., “Small-x behavior of the structure function F(2) and its slope partial ln F(2)/partial ln(1/x) for “Frozen” and analytic strong-coupling constants,” Phys. Lett., Ser. B 679, 350 (2009); A. V. Kotikov, V. G. Krivokhizhin, and B. G. Shaikhedanov, “Analytic and “Frozen” QCD coupling constants up to NNLO from DIS data,” Phys. Atom. Nucl. 75, 507 (2012); A. V. Kotikov and B. G. Shaikhedanov, Q2-evolution of parton densities at small x values, Combined H1 and ZEUS F2 Data, arXiv:1212.4582[hep-ph].