Abstract

Implantation of the embryo in the uterus is a critical and complex event and its failure is widely considered an impediment to improved success in assisted reproduction. Depending on whether placentation is invasive or superficial (epitheliochorial), the embryo may interact transiently or undergo a prolonged adhesive interaction with the uterine epithelium. Numerous candidate interactions have been identified, and there is good progress on identifying gene networks required for early placentation. However no molecular mechanisms for the epithelial phase are yet firmly established in any species. It is noteworthy that gene ablation in mice has so far failed to identify obligatory initial molecular events.

Milestones of implantation

Implantation of the embryo into the uterine wall is a requirement for developmental progression beyond the blastocyst stage in vivo. Its obvious significance to species survival implies the need for a robust mechanism that can survive suboptimal conditions of e.g. nutrition or infection. Since problems in pregnancy frequently originate in the pre and peri-implantation period, understanding the mechanisms of implantation will facilitate the discovery of therapies applicable at a time when both embryo and endometrium are at their most accessible.

The human embryo implants about 7–11 days after the LH peak [1,2]. Many human conceptuses fail to implant because of genetic or metabolic abnormalities [3,4], but poor uterine receptivity has been widely proposed as another cause of implantation failure [5-8]. In rat and mouse, the implantation window lasts for only about 24 h at day 4–5 of pregnancy [9]. Unimplanted blastocysts recovered by flushing and transferred to receptive mothers give normal pregnancies, and blastocysts transferred to pre-receptive uteri implant according to the maternal schedule [10,11], indicating that receptivity is largely maternally controlled. However, the molecular basis of this phenomenon is not understood. In domestic livestock species with non-invasive (epitheliochorial or synepitheliochorial) implantation, a pre-attachment phase of 8–15 days is followed by a more prolonged period of apposition and attachment; as a result, these species offer clear advantages for the elucidation of cell adhesion and intercellular communication mechanisms.

Hormonal requirements for implantation have been defined by replacing embryos in ovariectomised mice or rats under various regimes of exogenous steroid. The required sequence is estrogen (E) followed by progesterone (P), and then E plus P. The E/P-primed uterus supports the survival of blastocysts within the lumen for a considerable time, as long as daily P is administered (delayed implantation), and a dose of E during P stimulation is an absolute necessity for implantation to occur. This corresponds to the nidatory E pulse in natural cycles. Experimentally, the size of the E dose affects the duration of the receptive phase [8]. The post-receptive uterus is
hostile to unimplanted embryos, which degenerate. While rats and mice are useful model systems, some key features are clearly not relevant to human where, for example, the influence of a post-implantation uterine cavity on unimplanted conceptuses is irrelevant since menstruation is imminent [12]. The human receptive phase probably ends when corpus luteum rescue is no longer feasible.

Pre-implantation endocrine patterns during human conception cycles resemble closely those seen in non-conception cycles, though circulating luteal phase E and P levels are rather higher in the former [13]. Endometrial preparation in artificial cycles does not depend on the precise replication of natural cycles [6], and it remains unclear whether luteal phase E production is required for implantation in women. The high level of E in ovarian hyperstimulation cycles has an adverse effect on mouse endometrial receptivity [8], but may also affect the embryo directly with inhibition of implantation, as observed in vitro [14]. If mouse embryos are transferred to one oviduct at the pronuclear stage, and simultaneously into the contralateral oviduct at the 8 cell stage, both implant, though in the former case implantation is delayed by at least one day. Developmental synchronisation has occurred by the neural plate stage [15]. This experiment suggests that an embryo-maternal dialogue influences the timing of the receptive phase.

Gland cell secretions and the early embryo-maternal dialogue

The early human maternal-fetal interface is characterised by the blockage (by trophoblast) of maternal spiral arteries and no blood flow through the intervillous space, so the system is very hypoxic. In contrast to the arteries, maternal glands open into the intervillous space, and glycosylation changes and no blood flow through the intervillous space, so the system is very hypoxic. Pre-implantation cycles have a high rate of glucose uptake [33]. Replacement of blastocysts with inhibition of implantation, as observed in vitro [14]. If mouse embryos are transferred to one oviduct at the pronuclear stage, and simultaneously into the contralateral oviduct at the 8 cell stage, both implant, though in the former case implantation is delayed by at least one day. Developmental synchronisation has occurred by the neural plate stage [15]. This experiment suggests that an embryo-maternal dialogue influences the timing of the receptive phase.

Calcitonin is an endometrial gland cell secretory product expressed in response to P [19] that is important for pregnancy outcome in rats, as indicated by a reduction in implantation rates if maternal expression is blocked using antisense oligonucleotide [20]. Calcitonin acts on the pre-implantation embryo by binding a G-protein-coupled receptor, triggering an increase in intracellular calcium, activation of adenyl cyclase and expression of the fibronectin receptor, integrin α5β1 [21], a part of the activation step (see below).

Mouse uterine glands secrete leukaemia inhibitory factor (LIF) which is essential for implantation [22]. It binds to receptors in the luminal epithelium (LE), triggering stat-3 activation only on the day of implantation [23]. Together with embryo-derived signals, LIF, acting via the LE initiates a signalling cascade that leads to stromal decidualisation [24]. However LIF inhibits decidualisation of stromal cells in vitro perhaps suggesting a restraining role away from the implantation site [25]. Various molecular abnormalities are associated with the absence of LIF during the receptive phase, such as lack of expression of Cox-2 and EGF family cytokines including heparin-binding epidermal growth factor (HB-EGF [26]) as well as the secreted protein cohc-5b2 [27]. The prostaglandins/prostacyclins, products of Cox enzyme activity, have been considered important instruments in initiating decidualisation. Indeed when wild type embryos were transferred to the uterus of Cox-2 null C57Bl/6/129 mice a decidualisation reaction was not observed and they were reported not to implant [28,29]. However in another study on these mice it was shown that implantation occurs normally but decidualisation is delayed [30]. Moreover it appears that, in Cox-2 null CD-1 mice, compensatory upregulation of Cox-1 occurs at the implantation site, maintaining prostacyclin levels and allowing at least some implantation reaction although this is delayed [29]. These observations make evident the importance of genetic background [31].

It is clear that the embryo signals its presence to the maternal system but few changes in decidualising stroma have been identified solely in response to the embryo, as distinct from being products of decidual differentiation. Although interfereron (an important embryonic signal to the mother in ruminants) is not produced by murine blastocysts, an interferon–stimulated gene (Isg15) has recently been shown to be expressed in murine decidua, as in other species, in an embryo-dependent manner [32].

Embryo growth, hatching and activation

Metabolic changes occur during pre-implantation development, from the relative quiescence of the cleavage stages to the metabolically more active blastocyst with its high rate of glucose uptake [33]. Replacement of blastocysts has been advocated in human assisted reproduction programs, since it allows preimplantation genetic investigation to be carried out after removal of one or two cells at the cleavage stages [34,3]. A two-stage culture protocol has been adopted with somewhat richer nutrient provision during the morula to blastocyst phase [35]. When culture is carried out continuously in nutrient-poor medium, some embryos develop to blastocysts, but implantation rates are reduced. Human blastocyst
morphology varies greatly, but karyotypically abnormal embryos can develop into apparently normal blastocysts. Just as with the karyotype, the metabolic characteristics of morphologically normal blastocysts vary greatly [36]. Thus the ability of an embryo to develop to this stage does not guarantee successful pregnancy. However, morphology of karyotypically normal blastocysts is likely to be a good indicator of pregnancy outcome [37]. Blastocyst, as opposed to early cleavage, transfer allows synchrony between embryo and tract environment, and allows selection of competent embryos to facilitate single embryo transfer.

Growth factors secreted in response to E and P from both oviductal and endometrial epithelium contribute to the milieu of the developing embryo. Numerous factors, including insulin, LIF, leptin, heparin-binding epidermal growth factor (HB-EGF) granulocyte-macrophage colony stimulating factor (GM-CSF) and insulin like growth factor 1 (IGF-1) have been shown to increase either the rate of embryo development to blastocyst stage or blastocyst cell number in culture (Figure; reviewed in: [38,39]. Studies in genetically modified mice have also demonstrated a clear role for pre-implantation signalling between mother and embryo. GM-CSF is produced by the uterine epithelium and stimulated by E [40] while the embryo expresses a GM-CSF receptor [41]. Mice genetically altered to lack GM-CSF produce blastocysts with fewer cells in the ICM, and these give rise to small pups. The defect can be rescued by culturing null preimplantation embryos in medium supplemented with GM-CSF before replacement [41]. In cow, GM-CSF localises to the apical LE surface both before and after embryo attachment, and is upregulated by interferon-τ produced by the embryo [42]. Human embryos express GM-CSF receptors [43,44] and so can respond to this ligand.

Before an embryo can attach to the uterine surface, it must hatch from the zona pellucida. Two serine proteases, ISP1 and ISP2 (implantation serine proteases 1 and 2), have been implicated in hatching. ISP1 is produced by the embryo, while ISP2 is produced by uterine glands. These enzymes may also be required for local proteolysis of maternal tissue as part of the process of invasion [45].

In addition to metabolic activation and hatching, the blastocyst must be activated to attach to maternal luminal epithelium (LE), at least in the mouse model of delayed implantation. In the presence of P, dormant blastocysts are closely apposed to the uterine epithelium but do not attach. E treatment produces a receptive state in the uterus mediated by interaction of estradiol-17β with its nuclear receptor. In contrast, the embryo is activated (as evidenced by induced EGF binding) by a catecholestrogen, 4-hydroxyestradiol-17β, produced locally in the endometrium as a metabolite of estradiol [46-48]. Activation of blastocysts is unaffected by blocking nuclear ER signalling, but prevented by inhibition of prostaglandin (PG) synthesis, adenyl cyclase or protein kinase A (PKA). This suggests a pathway in which PG stimulates cAMP synthesis to mediate activation through PKA. One important manifestation of activation is the early translocation of integrins α5β1 and α4β1 to the apical surface of abembryonic TE in mice [49,21,50]. Integrin α5β1-fibronectin engagement induces calmodulin-mediated calcium transients in the blastocyst, suggesting outside-in signalling [51]. Moreover, fibronectin induces trafficking of α1β3 and appears to be involved in the strengthening of interaction between trophoblast and uterine fibronectin as trophoblast invasion commences [52].

After attachment to the epithelial surface, embryos of interstitially implanting species invade the underlying stroma. Embryonic genes are emerging which have essential functions in the early post-epithelial phases of implantation; their ablation gives a phenotype that resembles implantation failure. Mouse embryos genetically modified to lack integrin β1 fail to complete implantation, probably because of an inability to bind the maternal subepithelial extracellular matrix [53]. Embryos lacking the Ron/STK receptor tyrosine kinase, a member of the c-met family which is expressed in trophoblast, fail at similarly early stages. Its ligand HGFL is contemporaneously expressed in the uterus. However, HGFL-null animals implant normally, suggesting the existence of another ligand [54]. Others have reviewed genes required for early development of the embryo/placenta [55,56].

Hormonal influences on the endometrium at implantation

The classical model of E acting on endometrial cells to stimulate P receptor expression, with P then inducing differentiation and preparation for implantation, is an oversimplification, because receptor expression varies in a complex fashion in different cell types and tissue compartments in the uterus [57]. The basal endometrium, from which post-menstrual regeneration occurs in human, differs from the superficial or functional layer [58]. These differences arise at least in part because of site-specific paracrine interactions between the epithelium and stroma in regulating endometrial function, as established elegantly in studies of mice lacking E receptors [59]. Epithelial proliferation in response to E does not occur in receptor (ERα)-negative stroma recombined with wild type epithelium, but occurs normally if the receptor is present in the stroma and not the epithelium. However, the control of expression of epithelial secretory proteins such as mouse lactoferrin relies on the presence of receptor in both stromal and epithelial compartments. The same principles apply to human endometrium; for
example, in secretory phase, P stimulates PR-bearing stromal cells to produce transforming growth factor β (TGFβ), and this in turn suppresses production of matrix metalloproteinase 7 (MMP7) by the epithelium in a P-independent step. At the end of the cycle, P levels fall and MMP7 contributes to extracellular matrix (ECM) remodelling during menstruation [60-62].

Although ERα is thought to be the main receptor mediating E effects in the uterus, both mouse and human endometrium express lower levels of ERβ. Ablation of ERβ in mice compromises reproductive function [63] and current evidence suggests it may act to modulate ERα. Similarly, P receptor splice variants A and B function as distinct transcription factors [64]. The localisation of ERβ (but not PR) to uterine NK cells [65] which colonise the endometrium in late secretory phase, serves to emphasise that careful delineation of the cell types in which receptors are expressed is just as important as monitoring their cycle dependency.

Endocrine mediators other than E and P also play a role. Endometrial cells express the androgen receptor AR [66], the luteinising hormone receptor LHR[67], the gonadotrophin-releasing hormone receptor [68], the prolactin receptor [69], the leptin receptor Ob-R [70] and the relaxin receptors LGR 7 and 8 [71]. AR can be expressed in stromal as well as epithelial cells but its functions in endometrial physiology have not been defined. Human chorionic gonadotrophin (hCG) is a ligand for LHR, raising the possibility of a paracrine interaction with the embryo. Mice genetically altered to lack LHR develop a very small uterus [72]. After steroid replacement, the uterus returns to a normal size and histological features are fairly normal, though fewer glands are present. Embryos transferred into these mice however produce no pregnancies, and at present the explanation for this infertility is not clear. There is evidence that hCG may advance endometrial differentiation [73] and act as an autocrine regulator of trophoblast [74]. Parathyroid-related hormone produced by endometrium induces primary and secondary mouse trophoblast differentiation to giant cells in vitro [75] El-Hashash and Kimber unpublished. Prolactin, produced by human stromal cells undergoing decidualisation, activates receptors on uterine large granulated lymphocytes [69] potentially influencing their role in post-implantation uterine function.

The endometrial transcriptome

Recently, the search for elusive markers of endometrial receptivity has included differential display, subtractive hybridisation and differential microarray screening to compare the endometrial transcriptome in receptive and non-receptive states. It is conceptually useful in these studies to distinguish genes (such as tyrosine kinase family receptors or transcription factors) that may directly or indirectly influence the downstream expression of a set of target genes from those (such as integrins) directly involved in cell interactions. Since implantation seems to occur in a range of endometrial ‘settings’ (i.e. variations in gene expression), it will be necessary to ask whether expression of ‘master genes’ with the ability to change these settings is altered in infertile women.

Several studies [76-79] have compared human mid secretory phase endometrium with non-receptive stages (either early secretory or proliferative). In one study, patient-to-patient variation was eliminated by sampling tissue from the same individual at two different times of the same cycle [79]. Consistent patterns of ‘receptive state’ gene expression have not yet emerged. Some known genes – osteopontin is a notable example [80] – exhibit alterations consistent with previous data (see below). New genes will require functional study, for example IGFBP-rP1/mac 25 [81]. Certain genes are conspicuous by their absence (indicating lack of detected up or down regulation): notably the transcription factor HoxA10 and the growth factor LIF, both essential for implantation in mouse as revealed by gene ablation, and integrin β3, a subunit of the epithelial and vascular receptor αvβ3 which is regulated by Hoxa10 [82] and a candidate for mediating embryo attachment to the uterine epithelium (see below).

Animal models can offer better-controlled approaches. Reese and colleagues [83] identified mouse genes expression of which is altered in both implantation vs inter-implantation site and delayed implantation uterus (P only) vs tissue that had been E-treated to terminate the delay. Distinct sets of genes are upregulated or repressed in inter-site tissue vs the implantation site, with numerous functional categories represented. Nearly half the genes repressed by E or at implantation sites have immune-related functions. Connexins 26 and 43 and amphiregulin are notably elevated in implantation-receptive RNA isolates, as is nexitin-1, a serine protease inhibitor expressed in uterine stromal cells [84]. Decysin, a member of the ADAM family that is present in the uterine stroma, is down-regulated at the implantation site and shows altered expression in the prolactin receptor-null mouse, which exhibits implantation failure that is partially overcome by exogenous P treatment [85]. In a study comparing luminal epithelial genes from implantation site and interimplantation site there was notable upregulation of genes involved with the extracellular matrix and its remodeling or associated with calcium for function at the implantation site [86].

Differential display of cDNA species present in implantation and inter-implantation sites on day 4.5 of pregnancy in the mouse has identified differential expression of
several proteins. This includes an increase in transcripts encoding the calcium binding protein calbindin-d9k (CABP-d9k) in the luminal epithelium at the interimplantation site [87,88]. Downregulation of CABP-d9k at the implantation site [89] or after blastocyst transfer [90] suggests precise spatial and temporal regulation of calcium-mediated signalling, or calcium availability, may be critical during implantation as also indicated by the importance of calcitonin (see above). Subtractive hybridisation of endometrial libraries has identified other interesting leads in rhesus monkey [91] and rabbit [92].

Mouse maternal implantation genes regulated by P have been identified by transcriptomic analysis comparing receptive phase uterus with or without an implantation-blocking dose of the anti-progestin RU486. P-dependence was subsequently confirmed by re-assay in the P receptor knock-out (PRKO) mouse [93]. Alterations are observed in several genes of known importance including Hoxa11 [94,95], amphiregulin [83,96], laminin α2 [97] and spermidine synthase [83], validating the approach. In vivo uterine administration of antisense oligonucleotide to Irg1, a gene identified in the implantation phase LE, blocked implantation [93]. Other novel genes are now candidates for functional analysis.

The cellular and molecular events of embryo attachment
In all species there is an initial interaction, no matter how short-lived, between the outer TE cell surface and the apical LE. It is likely that a cascade of adhesion events is initiated [98-100] (see Fig). In turn this leads to signalling events, targets for which are located in both epithelial and subjacent stromal cells. Other than the most immediate responses at implantation, the stromal changes lie outside the scope of this review.

A change in epithelial cell organisation at the time of implantation seems to occur generally across the range of mammals, irrespective of differences in control mechanisms and subsequent trophoblast behaviour [101]. In mice, attachment to the maternal epithelial surface is followed by apoptosis of the epithelial cells, allowing trophoblast direct access to the underlying basement membrane and stroma [102,103]. In human, it is thought that intrusive penetration of the epithelium is followed by its displacement, but there is also evidence that epithelial apoptosis may occur [104].

Epithelial junctions
Early postovulatory and receptive LE have very different phenotypes. Gap junction distribution and complexity changes in the LE lateral membrane in several species at receptivity. Connexins 26 and 43 are regulated in LE and stroma during the human menstrual cycle [105]. Connexin 26 is expressed in the rodent implantation chamber epithelium, and CX26 and 43 in stroma, and these are tightly regulated by ovarian steroids including progesterone-one-mediated suppression [106,107]. Alterations in LE cell-cell interactions are also indicated by changes in the apico-lateral distribution of cell surface molecules, for instance integrin α6 distribution changes from basal to both lateral and basal during the secretory phase [108]. In mouse, E-induced E-cadherin degradation leads to reduced LE adhesion on d4.5 of pregnancy [109]. Lateral cadherins have also been reported to relocate to the apical LE surface at the time of implantation in rat [110]. In women, changes in E-cadherin mRNA probably reflect E-dependent down regulation [111]. Desmosomal proteins are downregulated and redistributed along the lateral cell surfaces in murine LE [112] and the density of desmosomes similarly decreases in human at the expected time of implantation [113]. LE cell polarity becomes less marked with appearance of latero-basal markers in the apical membrane [114]. The cells are flatter and microvilli are replaced by bulbous protrusions (uterodomes) in many species [115,116]. In women, uterodomes appear in LE cells about 5–6 days after ovulation [117-119] correlating with the expected receptive phase. Studies using repeated biopsy demonstrated that uterodomes have a lifetime of less than 48 h. Three human blastocysts co-cultured with endometrial epithelial cells were reported to attach where clusters of cells bearing uterodomes were present in the cell layer [118].

Epithelial glycobiology and attachment
In common with other epithelial surfaces, the uterine LE contains an apical glycolcalyx which allows the diffusion of small molecules but inhibits cell adhesion [99], and protects the upper tract from infectious agents. The cell surface mucin MUC1 is a component [120-123]). In mice and rats, Muc1 is downregulated precisely at the time of implantation under the control of maternal steroids [124]. Consistent with this, it emerges as a highly upregulated (6-fold) gene at day 4 in pregnant mice that have been treated at day 3 with a single dose of RU486 [93]. There is evidence that another surface mucin, Muc4, is also downregulated in rats [125]. Loss of Muc1 also occurs in pig and sheep [126,127], while in contrast, humans express high levels throughout the receptive phase, though the pattern of its glycosylation changes [120,123]. Indeed, mucin-associated oligosaccharides are useful markers of endometrial differentiation [123] and pathology [128,129].

Experimental studies of human implantation in which embryos hatch and attach to endometrial epithelial cells in monolayer culture have shown that Muc1 disappears from a small area of cells that surround the attached embryo [130,131]. The mechanism of removal is not
established, though it has been shown that a proteolytic cleavage event catalysed by ADAM17/TACE can mediate release from the surface of cultured cells, and that ADAM17 is expressed in the LE [132].

Local remodelling of the glycocalyx implies an earlier interaction (apposition) that positions the hatched blastocyst at an area of LE where implantation will subsequently take place. Carbohydrate-lectin binding has been suggested to mediate initial weak attachment in a parallel with the leukocyte-endothelial interaction that occurs at inflammatory sites [115,133,134]. The epithelial H-type-1 antigen Fucα1-2Galβ1-3GlcNAcβ1-4 is expressed in LE in several species [133,134]. Its involvement in implantation has been suggested in the mouse, where attachment to endometrial epithelial cells is inhibited by free oligosaccharide in vitro (reviewed in [116]. However, other evidence suggests that H-type-1 interaction is not essential to implantation or can be compensated in its absence: implantation is normal in mice carrying a deletion of Fut2, the fucosyltransferase required for H-type1 biosynthesis [135]. Furthermore uterine injection of antibody to H-type-1 fails to block implantation [136]. From antibody inhibition in vivo, the possible involvement of the Le-y carbohydrate antigen (Fucα1-2Galβ1-4[Fucα1-3]GlcNAcβ1-) was suggested [136,137]. This is present on the blastocyst surface in mouse and on LE in mouse and human [138,139]. Since Le-y glycolipid has been demonstrated to bind H-type-1 and-2 chain glycolipids, Le-y on the blastocyst could interact with H-type-1 on apical LE [140]. However, the Fut2 enzyme is again required to produce ligand.

The selectin ligand sialyl Le-x is present on human LE where it is carried by MUC-1 [98]. It increases in the mouse LE during the receptive period [141]. There is uncertainty as to the expression of selectins on human and mouse preimplantation embryos [142-144]. In sheep, the mucin GlyCAM-1, a ligand for L-selectin in lymph node endothelium, is expressed both by LE and trophectoderm during the initial interaction period [145]. In homozygotic mutant mice null for each of the three selectins, and in mice lacking two or all three selectins, embryonic development, implantation and pregnancy appear normal [146-148].

Heparan sulphate has been implicated in several implantation models. The blastocyst expresses syndecan-1, a transmembrane heparan sulphate proteoglycan (HSPG), but little can be detected at the outer surface of TE [148] and its absence after gene deletion does not appear to influence fertility [150]. Perlecan, the major basement membrane HSPG, surrounds the blastocyst after hatching and expression of the mRNA and protein correlates with acquisition of attachment competence [151,152]. Again, perlecan-null embryos show no implantation phenotype, being indistinguishable from wild type embryos until d9.5 [153]. A truncated form of heparin-binding EGF-like growth factor (HB-EGF) is induced in the LE by the embryo and could also interact with HSPG [154]. HB-EGF appears in epithelial cells immediately adjacent to the implanting embryo just 6–7 hours before the embryo attaches. In delayed implantation, HB-EGF appears only after the nadir of E stimulus is given. HB-EGF has been suggested to play two different roles: in addition to accelerating embryo development, it has a membrane-bound variant that can mediate intercellular attachment by binding to erb-B4 as well as to heparan sulphate proteoglycan on the mouse blastocyst [155,156]. HB-EGF-null and erb-B4-null mice develop heart problems [157,158]. Erb B4 nulls die early in gestation while the majority of HB-EGF nulls die before weaning. However, surviving HB-EGF/- adult females are fertile, and fertile erb-B4 nulls can be produced after cardiomyocyte-specific rescue of the heart defect.

Epithelial adhesion molecules

Trophinin is a membrane glycoprotein that forms complexes with the proteins bystin and tastin, and was identified as a candidate mediator of embryonic attachment by the demonstration of its involvement in adhesion of human trophoblastic and endometrial cell lines [159,160]. Early secretory phase human endometrial epithelium expresses trophinin and tastin at the apical surface, and at the macaque implantation site, trophinin expression is observed at the apical apical surfaces of TE and LE. However, murine implanting blastocysts do not show detectable levels of trophinin protein, and although there is a partial embryonic lethality associated with ablation of the gene, this appears to be a post-implantation phenomenon [161].

Basigin (EMMPRIN, CD147) is an immunoglobulin superfamily member with putative roles in cell interaction, MMP activation and orientation of ion transporters in the plasma membrane. It is expressed in the LE [162] and also in decidual cells [163]. Igakura et al [164] showed that transfer of wild type blastocysts into basigin-null females resulted in a very low rate of implantation. Menstrual cycle-dependent molecular variants have been observed in human endometrium [165].

Integrin αβ3 has been suggested to be important in embryo attachment in human, mouse, rabbit and farm animals [5,18]. The β3 subunit exhibits regulated expression with the heterodimer αβ3 present in human epithelium only from about day 19. αβ3 is also present on the external surface of the expanded blastocyst [142,166]. Its ligands include fibronectin, vitronectin, tenasin, osteopontin, thrombospondin and possibly laminin (see
Diagrammatic representation of the series of interactions between the trophectoderm/trophoblast (TE) and luminal epithelium (LE) and subjacent stroma. Potential roles of cell adhesion molecules at each stage are indicated. 1) Pre-receptive polarised endometrial epithelium with desmosomes distributed along lateral LE cell surfaces and non-adhesive apical cell surface; 2) Receptive endometrium and initial embryo attachment: reorganisation of lateral LE adhesion complexes accompanies apical carbohydrate ligand engagement to tether blastocyst; integrins and cell-bound HB-EGF now become available for TE-binding; 3) Stabilisation of initial attachment by αv or other integrin-mediated adhesion involving bridging ligands shown; other components are also probably functional; 4) Potential signalling through cell adhesion ligand-receptor interaction including calmodulin and calcium.
Neutralising antibodies to either αv or β3 integrin injected into mouse uterus, although producing some apparent effect, failed to induce a statistically significant reduction in implantation sites. However echistatin, which inactivates αβ3 integrin as well as αvββ3 and α5β1 [167], and an RGD-containing peptide, did produce a significant reduction in implantation sites [168]. This may suggest that other integrins which bind to the RGD sites in ligands play a redundant or overlapping role in implantation.

Osteopontin is a secretory product of endometrial glands, is associated with the apical surface of luminal epithelial cells, and is directly regulated by P, with maximal abundance in secretory phase [80,169]. Osteopontin can bind CD44 (which is present on LE [170] as well as several integrins (αvβ5, αvβ1, α4β1, α5β1 and α8β1). Mice with ablated CD44, which is also a receptor for hyaluronan, do not show obviously impaired fertility [171]. Osteopontin is strongly detected at the apical surface of human endometrial secretory phase glands [169]. It could act as a bridging ligand for TE-LE interactions, but osteopontin-null and osteopontin/vitronectin double knockout mice are fertile [172].

The largest subfamily of integrins shares the β1 subunit. This has been localised, along with α1, α2, α3, α4, α5, α6 and α9 to the lateral and basal surfaces, but not the apical surface, of endometrial epithelial cells (reviewed in [99,134]). Pregnancy fails in mice lacking integrin β1 at a stage that closely follows epithelial attachment, perhaps reflecting a defect in interaction with the stromal ECM [53]. Expression of integrin α4β1 is highest in human GE between mid proliferative and mid secretory phases. In mouse, in addition to its presence on the surface of activated blastocysts, α4β1 is expressed on the basal LE surface and stromal cells in response to E. Intrauterine injection of monoclonal antibody to α4 reduced implantation rates substantially though it is not clear what interaction was targeted [50].

Conclusions
Since implantation is unique to mammals we cannot extrapolate from other common model organisms in the search for possible targets and mechanisms. Nonetheless our understanding of the process of implantation has grown slowly in the last decade. Some of the interactions that have been recognised as important are shown schematically in the Figure. Current in vitro models reproduce only small stages in the implantation process. Knockout strategies have revealed the essential role of certain soluble mediators (e.g. LIF) and the contribution to reproductive efficiency made by others (e.g. GM-CSF), but it is notable that the crucial structural or attachment molecules have not been identified. The importance of implantation to the survival of mammals means that there may exist multiple parallel mechanisms. Thus either compensatory effects may be invoked or impairment of reproductive efficiency (rather than system failure) following gene ablation. Microarray technology has begun to be used in the search for key implantation mechanisms, but differential screening approaches will identify only transcriptionally-regulated products, with post-transcriptionally- and post-translationally-controlled components likely to remain undiscovered through current research strategies. Proteomics may offer a useful complement to existing approaches.

References
1. Bergh PA, Navot D: The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril 1992, 58:537-42.
2. Aplin JD: Implantation. In: Encyclopedia of Hormones Edited by: Simpson E. San Diego, Academic Press; 2003:289-297.
3. Pellicer A, Rubio C, Vidal F, Minguéz Y, Giménez C, Egozcue J, Remohi J, Simon C: In vitro fertilization plus preimplantation genetic diagnosis in patients with recurrent miscarriage: an analysis of chromosome abnormalities in human preimplantation embryos. Fertil Steril 1999, 71:1033-1039.
4. Quenby S, Vince G, Farquharson R, Aplin J: Recurrent miscarriage: a defect in nature’s quality control? Hum Reprod 2002, 17:1959-1963.
5. Lessey BA: Uterine factors in implantation. In: The Endometrium Edited by: Glasser SR, Aplin JD, Giudice L, Tabibzadeh S. London, Taylor and Francis; 2002:208-228.
6. Chang PL, Sauer MV: The oocyte donation model: lessons on endometrial receptivity. In: The Endometrium Edited by: Glasser SR, Aplin JD, Giudice L, Tabibzadeh S. London, Taylor and Francis; 2002:495-509.
7. Sharkey AM, Smith SK: The endometrium as a cause of implantation failure. Best Pract Res Clin Obstet Gynaecol 2003, 17:289-307.
8. Ma WG, Song H, Das SK, Paria BC, Day SK: Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci USA 2003, 100:2963-2968.
9. Psychoyos A: Uterine receptivity for nidation. Ann NY Acad Sci 1986, 476:36-39.
10. McLaren A, Michie A: Studies on the transfer of fertilised mouse eggs to uterine foster mothers I. Factors affecting the implantation and survival of native and transferred eggs. J Exp Biol 1955, 33:394-416.
11. Dickmann Z, Noyes RW: The fate of ova transferred into the uterus of the rat. J Reprod Fert 1960, 1:187-212.
12. Wilcox AJ, Baird DD, Weinberg CR: Time of implantation of the conceptus and loss of pregnancy. N Engl J Med 1999, 340:1794-1799.
13. Baird DD, Wilcox AJ, Weinberg CR, Kamel F, McConnaughey DR, Musey PL, Collins DC: Preimplantation hormonal differences between the conception and non-conception menstrual cycles of 32 normal women. Hum Reprod 1997, 12:2607-2613.
14. Valbuena D, Martin J, de Pablo JL, Remohi J, Pellicer A, Simón C: Increasing levels of estradiol are deleterious to embryonic implantation because they directly affect the embryo. Fertil Steril 2001, 76:962-968.
15. Ueda O, Keigo Yorozu K, Kamada N, Jishage K-I, Kawase Y, Suzuki H: Possible expansion of “window of implantation” in pseudopregnant mice: Time of Implantation of embryos at different stages of development transferred into the same recipient. Biol Reprod 2003, 69:1085-1090.
16. Burton GJ, Watson AL, Hemstock J, Skepper JN, Jauniaux E: Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 2002, 87:2954-2959.
17. Gray CA, Burghardt RC, Johnson GA, Bazer FW, Spencer TE: Evidence that absence of endometrial gland secretions in uter-
ine gland knockout ewes compromises conceptus survival and elongation. Reproduction 2002, 124:289-300.
18. Burghardt RC, Johnson GA, Jaeger LA, Kauffman C, Garlow JE, Spencer TE, Bazer FW: Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals. Cells Tissues Organs 2002, 172:202-217.
19. Kumar S, Zhu LJ, Pollihonis M, Cameron ST, Baird DT, Schatz F, Dua A, Jeng YK, Bagchi MK, Bagchi IC: Progesterone induces calcitonin gene expression in human endometrium within the putative window of implantation. J Clin Endocrinol Metab 1998, 83:4443-4450.
20. Zhu LJ, Bagchi MK, Bagchi IC: Attenuation of calcitonin gene expression in pregnant rat uterus leads to a block in embryo-onych implantation. Endocrinology 1998, 139:330-339.
21. Wang J, Rout UK, Bagchi IC, Armant DR: Expression of calcitonin receptors in mouse preimplantation embryos and their function in the regulation of blastocyst differentiation by LIF. Reproduction 1998, 125:429-302.
22. Stewart CL, Kaspar P, Brunet L, Bhatt H, Gadi I, Kontgen F, Abbon- danzo SJ: Blastocyst implantation depends on maternal expression of leukemia inhibitory factor. Nature 1992, 359:76-79.
23. Cheng JG, Chen JR, Hernandez L, Alvord WG, Stewart CL: Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc Natl Acad Sci U S A 2001, 98:8860-8865.
24. Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL: Leukemia inhibitory factor can substitute for nidatory E and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 2000, 141:4365-4372.
25. Fouladi Nashta AA, Andreu CV, Nijjar N, Heath JK, Kimber SJ: Role of Leukemia Inhibitory factor (LIF) in decidualisation of murine uterine stromal cells in vitro. J Endocrinol 2004, 181:477-492.
26. Song H, Lim H, Das SJ, Paria BC, Dey SK: Dysregulation of EGF family of growth factors and Cox-2 in the uterus during the pretattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF deficient mice. Mol Endocrinol 2000, 14:1147-1161.
27. Rodrıguez CI, Cheng G Jr, Liu L, Stewart CL: Cochlın, a secreted VWA domain containing factor, is regulated by LIF in the uterus at the time of implantation. Endocrinology 2004, 145:1410-1418.
28. Lim H, Paria BC, Das SK, Dinhuch JE, Langenbach R, Trzaskos JM, Dey SK: Multiple female reproductive failures in cyclooxygenase 2-deficient mice are impaired in implantation. Cell 1997, 91:109-113.
29. Wang H, Ma WG, Tejada L, Zhang H, Morrow JD, Das SK, Dey SK: Rescue of female infertility from the loss of cyclooxygenase-2 by compensatory upregulation of cyclooxygenase-1 is a function of genetic background. J Biol Chem 2004, 279:10649-10656.
30. Cheng JG, Stewart CL: Loss of cyclooxygenase-2 retards decidual growth but does not inhibit embryo implantation or development to term. Biol Reprod 2003, 68:401-404.
31. Threadgill DW, Dlugosz AA, Hansen LA, Tenenbaum T, Lichu O, Yee D, LaMania C, Mouton T, Hercup K, Harris RC, Barnard JA, Yupsa SH, Coffey RJ, Magnuson T: Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 1995, 269:230-234.
32. Austin KJ, Sany E, Belden L, Rempel LA, Cross JC, Hansen TR: Integrin-mediated gene-15 (Igα2) expression is up-regulated in the mouse uterus in response to the implanting conceptus. Endocrinology 2003, 144:3107-3113.
33. Leese HJ: Quiet please, do not disturb: a hypothesis of embryo metabolism and the implantation concept. Biology 2002, 2:404-409.
34. Handside AH, Lasko JG, Tairin J, Winston RM, Hughes MR: Birth of a normal girl after in vitro fertilisation and preimplantation diagnostic testing for cystic fibrosis. N Engl J Med 1992, 327:905-909.
35. Gardner DK, Lane ML, Schoolcraft WB: Physiology and culture of human blastocyst. J Reprod Immunol 2002, 55:85-100.
36. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ, Leese HJ: Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 2002, 17:1999-1005.
37. Gardner DK, Sakkas D: Assessment of embryo viability: the ability to select embryo for transfer- a review. Placenta 2003, 24:445-451.
58. Mote PA, Balleine RL, McGowan EM, Clarke CL: Heterogeneity of progesterone receptors A and B expression in human endometrial glands and stroma. Hum Reprod 2001, 15(Suppl 3):8-36.

59. Cooke PS, Buchanan DL, Kurita T, Lubahn DB, Cunha GR: Role of stromal-epithelial interactions in hormonal responses of the uterus. In: The Endometrium Edited by: Glasser SR, Aplin JD, Giudice L, Tabibzadeh S, London, Taylor and Francis; 2002:151-166.

60. Osteen KG, Rodgers WH, Gaire M, Hargrove JT, Matrisian LM: Stromal-epithelial interaction mediates steroid regulation of metalloproteinase expression in human endometrium. Proc Natl Acad Sci USA 1994, 91:10129-10133.

61. Bukovsky A, Indrapichate K, Fujikawa H, Cekanova M, Ayala ME, Ayalasomayajula SC, Taylor RN, Lessey BA, Giudice LC: Effect of single and compound knockouts of E receptors α (ER-α) and β (ER-β) on mouse reproductive phenotypes. Development 2000, 127:4277-4291.

62. DuPont S, Krutz A, Gansmuller A, Dierich A, Chambon P, Mark M: Effect of single and compound knockouts of E receptors α (ER-α) and β (ER-β) on mouse reproductive phenotypes. Development 2000, 127:4277-4291.

63. Connelly OM, Mulac-Jericevic B, DeMayo F, Lydon JP, O’Malley BW: Functional roles of progesterone receptors. Recent Prog Horm Res 2002, 57:339-55.

64. Henderson KL, Koong WH, Gold LH, Kragh JTE, Matrisian LM, Osteen KG: Transforming growth factor beta mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma in the human endometrium. Proc Natl Acad Sci USA 1995, 92:7362-7366.

65. Aplin JD: The endometrial extracellular matrix. In: The Endometrium Edited by: Glasser SR, Aplin JD, Giudice L, Tabibzadeh S, London, Taylor and Francis; 2002:294-307.

66. Dupont S, Kurst A, Gansmuller A, Dierich A, Chambon P, Mark M: Effect of single and compound knockouts of E receptors α (ER-α) and β (ER-β) on mouse reproductive phenotypes. Development 2000, 127:4277-4291.

67. Bukovsky A, Indrapichate K, Fujikawa H, Cekanova M, Ayala ME, Ayalasomayajula SC, Taylor RN, Lessey BA, Giudice LC: Effect of single and compound knockouts of E receptors α (ER-α) and β (ER-β) on mouse reproductive phenotypes. Development 2000, 127:4277-4291.

68. Sladen OD, Nayak NR, Burton KA, Chwalisz K, Cameron ST, Critchley HO, Baird DT, Brenner RM: Progesterone antagonists increase androgen receptor expression in the rhesus macaque and human endometrium. J Clin Endocrinol Metab 2001, 86:2668-2679.

69. Bovinsky A, Indrapichate K, Fujikawa H, Cekanova M, Ayala ME, Ayalasomayajula SC, Taylor RN, Lessey BA, Giudice LC: Effect of single and compound knockouts of E receptors α (ER-α) and β (ER-β) on mouse reproductive phenotypes. Development 2000, 127:4277-4291.

70. Gubray O, Critchley HO, Bowen JM, Leslie PC, Leavis SE: Progesterone receptormediated invasion of human endometrial stromal cells by epithelial cells. In: The Endometrium Edited by: Glasser SR, Aplin JD, Giudice L, Tabibzadeh S, London, Taylor and Francis; 2002:151-166.

71. Huang H-Y, Raga F, Wen Y, Kruesel JS, Soong Y-K, Polan ML: IL-11 regulation of GmRNH RNA in cultured endometrial stromal cells. Front Steril 2001, 31:93-135.

72. Gubray O, Critchley HO, Bowen JM, King A, Jabbour HN: Transforming growth factor beta mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma in the human endometrium. Proc Natl Acad Sci USA 1995, 92:7362-7366.

73. Aplin JD: The endometrial extracellular matrix. In: The Endometrium Edited by: Glasser SR, Aplin JD, Giudice L, Tabibzadeh S, London, Taylor and Francis; 2002:294-307.

74. Connelly OM, Mulac-Jericevic B, DeMayo F, Lydon JP, O’Malley BW: Functional roles of progesterone receptors. Recent Prog Horm Res 2002, 57:339-55.

75. Henderson KL, Koong WH, Gold LH, Kragh JTE, Matrisian LM, Osteen KG: Transforming growth factor beta mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma in the human endometrium. Proc Natl Acad Sci USA 1995, 92:7362-7366.

76. Sladen OD, Nayak NR, Burton KA, Chwalisz K, Cameron ST, Critchley HO, Baird DT, Brenner RM: Progesterone antagonists increase androgen receptor expression in the rhesus macaque and human endometrium. J Clin Endocrinol Metab 2001, 86:2668-2679.

77. Bukovsky A, Indrapichate K, Fujikawa H, Cekanova M, Ayala ME, Ayalasomayajula SC, Taylor RN, Lessey BA, Giudice LC: Effect of single and compound knockouts of E receptors α (ER-α) and β (ER-β) on mouse reproductive phenotypes. Development 2000, 127:4277-4291.

78. Gubray O, Critchley HO, Bowen JM, King A, Jabbour HN: Transforming growth factor beta mediates the progesterone suppression of an epithelial metalloproteinase by adjacent stroma in the human endometrium. Proc Natl Acad Sci USA 1995, 92:7362-7366.

79. Aplin JD: The endometrial extracellular matrix. In: The Endometrium Edited by: Glasser SR, Aplin JD, Giudice L, Tabibzadeh S, London, Taylor and Francis; 2002:294-307.
98. Hey NA, Aplin JD: Sialyl Lewis x and Sialyl Lewis a are expressed by human endometrial MUC1. Glycoconjugate J 1996, 13:769-779.

99. Aplin JD: Adhesion molecules in implantation. Reviews of Reproduction 1997, 2:84-93.

100. Kimber SJ, Spanswick C: The adhesion cascade. In: The Endometrium Edited by: Glasser SR, Aplin JD, Giudice L, Tabibzadeh S. London: Taylor and Francis; 2002:229-246.

101. Thie M, Denker HW: In vitro studies on endometrial adhesive- ness for trophoblast: cellular dynamics in uterine epithelial cells. Cells Tissues Organs 2002, 172:237-252.

102. Parr EL, Parr MB: Epithelial cell death during rodent embryo implantation. In: Blastocyst Implantation Edited by: Yoshinaga K. Boston USA.:Serenos Symposia USA Adams Publ Group; 1989:105-115.

103. Kamijo T, Rajabi MR, Mizunuma H, Ibuki Y: Biochemical evidence for autocrine/paracrine regulation of apoptosis in cultured uterine epithelial cells during mouse embryo implantation in vitro. Hum Reprod 1997, 12:889-996.

104. Galan A, O’Connor E, Valbuena , Herrer R, Remohi J, Pampfer S, Pellicer A, Simon C: The human blastocyst regulates endometrial adhesive properties in embryonic adhesion. Biol Reprod 2000, 63:430-439.

105. Classen-Linke JE, Kusche M, Beier HM, Traub O, Grunmmer R, Winterthager E: Estradiol induces E-cadherin degradation in mouse uterine epithelium during the estrous cycle and early pregnancy. J Cell Physiol 1996, 169:1-14.

106. Albers A, Thie M, Hohn HP, Denker HW: Differential expression and localization of integrins and CD44 in the membrane domains of human uterine epithelial cell during the menstrual cycle. Acta Anot 1995, 153:12-21.

107. Potter SW, Gasa G, Morris JE: Xestrol induces E-cadherin degradation in mouse uterine epithelium during the estrous cycle and early pregnancy. J Cell Physiol 1996, 169:1-14.

108. Hylane RA, Shaw RA, Murphy CT: Pan-cadherin concentrates apically in uterine epithelial cells during uterine closure in the rat. Acta Histochem 1998, 100:75-81.

109. Fujimoto J, Ichigo S, Hori M, Tamaya T: Alteration of E-cadherin alpha- and beta-catenin mRNA expression in human uterine endometrium during the menstrual cycle. Gynecol Endocrinol 1996, 10:187-191.

110. Illingworth IM, Kiska I, Bagley S, Ireland GW, Garrod DW, Kimber SJ: Desmosomes are reduced in the mouse uterine luminal epithelium during the peri-implantation period of pregnancy: A mechanism for facilitating implantation. Biol Reprod 2000, 63:1744-1773.

111. Sarani SA, Ghaffari-Novin M, Warren MA, Dockery P, Cooke ID: Morphological evidence for the ‘implantation window’ in human luminal endometrium. Hum Reprod 1999, 14:3101-3106.

112. Thie M, Fuchs P, Burz S, Sieckmann F, Horschtritzky H, Kemler R, Denker HW: Adhesiveness of the apical surface of uterine epithelial cells: the role of junctional complex integrity. Eur J Cell Biol 1996, 70:221-232.

113. Psychoyos A: Endocrine control of egg implantation. In: Handbook of Physiology. Edited by: Greep RO. Astwood EG, Geiger SR. Washington DC: American Physiological Soc; 1973:187-215.

114. Kimber SJ, White S, Cook A, Illingworth I: The initiation of implantation. Parallels between attachment of the embryo and neutrophil-endothelial interaction! In Gametes and Embryo Quality Edited by: Mastoracianno L J, Cerfnot: Parthenon publ 1994:171-198.

115. Navot D, Bergh PA, Williams M, Garrisi GJ, Guzman I, Sandler BH, Schreiner-Engel P, Hofmann GE, Grunfeld L: An insight into early reproductive processes through the in vivo model of ovum donation. J Clin Endocrinol Metab 1991, 72:408-414.

116. Bentin-Ley U, Sjogren A, Nilssson L, Hamberger L, Larsen JF, Horn T: Presence of uterine pinopodes at the embryo-endothelial interface during human implantation in vitro. Hum Reprod 1999, 14:515-520.

117. Usadi RS, Murray MJ, Bagnell CR, Fritz MA, Kowalk AL, Meyer WR, Lessey BA: Temporal and morphologic characteristics of pinopod expression across the secretory phase of the endometrial cycle in normally cycling women with proven fertility. Fertil Steril 2003, 79:970-974.

118. Hey NA, Graham RA, Seif MW, Aplin JD: The polymorphic epithelial mucin MUC1 in human endometrium is regulated with maximal expression in the implantation phase. J Clin Endocrinol Metab 1994, 78:337-342.

119. Hey NA, Li TC, Devine P, Graham RA, Aplin JD: MUC1 in secretory phase endometrium: expression in precisely dated biopsies and flushings from normal and recurrent miscarriage patients. Hum Reprod 1995, 10:2555-2662.

120. Aplin JD, Hey NA: MUC1, endometrium and embryo implantation. Biochem Soc Trans 1995, 23:826-831.

121. Aplin JD, Hey NA, Graham RA: Human endometrial MUC1 carries keratan sulphate: characteristic glycoforms in the luminal epithelium at receptivity. Glycobiology 1998, 8:269-276.

122. DeSouza MM, Surveyor GA, Price RE, Julian J, Kardon R, Zhou H, Gendler S, Hilkens J, Caspar DD: MUC1/episialin: a critical barrier in the female reproductive tract. J Reprod Immunol 1999, 45:127-158.

123. McNeer RR, Carraway KA, Fregien NL, Carraway KL: Characterization of the expression and steroid hormone control of sialomucin complex in the rat uterus: implications for uterine receptivity. J Cell Physiol 1998, 176:10-119.

124. Bowen JA, Bazer FW, Burghardt RC: Spatial and temporal analysis of integrin and Muc-1 expression in porcine uterine epithelium and trophocytoderma in vivo. Biol Reprod 1996, 55:1098-1106.

125. Johnson GA, Bazer FW, Jaeger LA, Ka H, Garlow JE, Pfarrer C, Spencer TE, Burghardt RC: Spatial and Temporal expression of connexin26 and connexin43 in the human luminal endometrium. Hum Reprod 1996, 11:2131-2138.

126. Bowen JA, Bazer FW, Aplin JD, Li TC, Cooke ID, Rogers AW, Dockerty P: An endometrial factor in unexplained infertility. BMJ 1990, 300(6737):1426-1431.

127. Sarle E, Aplin JD, Li TC, Warren MA, Graham RA, Seif MW, Cooke ID: Endometrial differentiation in the peri-implantation phase of women with recurrent miscarriage: a morphological and immunohistochemical study. Fertil Steril 1994, 61:868-876.

128. Graham RA, Seif MW, Aplin JD, Li TC, Cooke ID, Rogers AW, Dockerty P: An endometrial factor in unexplained infertility. BMJ 1990, 300(6737):1426-1431.

129. Zhu ZM, Kojima N, Stroud MR, Hakomori S, Fenderson BA: MUC1, glycans and the cell-surface barrier to embryo implantation. Biochem Soc Trans 2001, 29(2):153-156.

130. Meseguer M, Aplin JD, Caballero-Campo P, O’Connor JE, Martin JC, Remohi J, Pellicer A, Simon C: Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol Reprod 2001, 64:590-601.

131. Thepaboon P, Blodel CP, Carson DD: Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUC1 shedding. J Biol Chem 2003, 278(31):29166-29174.

132. Bowen JA, Burghardt RC: Cellular mechanisms of implantation in domestic farm animals. Seminars Cell Dev Biol 2000, 11:93-104.

133. Kimber SJ, Spanswick C: Blastocyst implantation: the adhesion cascade. Seminars Cell Dev Biol 2000, 11:77-92.

134. Domino SE, Zhang L, Gillespie PJ, Saunders TL, Lowe JB: Deficiency of reproductive tract α(1,2) fucosylated glycans and normal fertility in mice with targeted deletions of the FUT1 or FUT2 α(1,2) fucosyltransferase locus. Mol Cell Biol 2001, 21:8326-8345.

135. Zhu ZM, Kojima N, Stroud MR, Hakomori S, Fenderson BA: Monoclonal antibody directed to Le(y) oligosaccharide inhibits implantation in the mouse. Biol Reprod 1995, 52:903-912.

136. Wang XQ, Zhu ZM, Fenderson BA, Zeng GQ, Cao YJ, Jiang GT: Effect of monoclonal antibodies directed to Le Y on implantation in the mouse. Mol Reprod Dev 1998, 4:295-300.

137. Kimber SJ: Carbohydrates as low affinity agents involved in initial attachment of the mammalian embryo at implantation. In: Early fetal growth and development Edited by: Ward RHT, Smith SK, Donnai D. London: Royal College of Obstetricians and Gynaecologists; 1994:75-102.

138. Ravn V, Teglbjaerg CS, Mandel U, Dabelsteen E: The distribution of type-2 chain histo-blood group antigens in normal cycling human endometrium. Cell Tissue Res 1992, 270:425-433.
140. Pinkston J, Shemes RE, Siddhu SS: Glycosylation changes during differentiation of the murine uterine epithelium. Biochem Soc Trans 2001, 29:156-162.

142. Campbell SL, Stenlake BR: Cell adhesion molecules on the oocyte and pre-implantation human embryo. Mol Hum Reprod 1995, 1:1571-1578.

144. Bloore DJ, Metcalfe AD, Rutherford A, Brison DR, Kimmer SJ: Expression of cell adhesion molecules during pre-implantation human development. Mol Human Reproduction 2002, 8:237-245.

146. Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, Kiessling LL, Rosen SD, Fisher SJ: Tropohealin L-selectin-mediated adhesion at the maternal-fetal interface. Science 2003, 299:405-408.

148. Tucker RN, Jung U, Ramirez M, Bullard DC, Hicks MJ, Smith W, Ley K, Beaudet AL: Selectins reveal a predominant role for P-selectin in leukocyte recruitment. J Immunol 1996, 158:2373-2386.

150. Alexander CM, Reichsman F, Hinkes MT, Lincecum J, Becker KA, Cumberledge S, Bernfield M: Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nature Genetics 2000, 25:329-332.

152. Smith SE, French MM, Julian J, Paria BC, Dey SK, Carson DD: Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nature Genetics 2000, 25:329-332.

154. Raab G, Kover K, Paria BC, Dey SK, Ezzell RM, Klagsbrun M: Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nature Genetics 2000, 25:329-332.

156. Chobotova K, Muchmore ME, Carver J, Yoo HJ, Manek S, Gullick WJ: The mitogenic potential of heparin-binding epidermal growth factor in the human endometrium is mediated by the epidermal growth factor receptor and is modulated by tumor necrosis factor-alpha. J Clin Endocrinol Metab 2002, 87:5769-5777.

158. Iwamoto R, Yamazaki M, Asaka M, Takashima S, Hasuwa H, Miyado K, Adachi S, Kitakaze K, Raab G, Nanba D, Gasahiyama S, Mori H, Klagsbrun M, Mekada E: Heparin binding EGFR-like growth factor and erbB signalling is essential for heart function. Proc Natl Acad Sci USA 2003, 100:3221-3226.

159. Fukushima MN, Sato T, Nakayama J, Klier G, Mikami M, Aoki D, Nozawa S: Trophin and tasin, a novel cell adhesion molecule complex with potential involvement in embryo implantation. Gene Dev 1995, 9:1199-1210.

160. Suzuki N, Zara J, Sato T, Ong E, Bakhiet N, Watson KL, Fukushima MN: A cytoplasmic protein bystin, interacts with trophin, tasin and cytoferin. Proc Natl Acad Sci USA 1998, 95:5027-5032.

161. Kuno N, Kadomatsu K, Fan QW, Hishigata H, Menda T, Miyazaki S, Muramatsu T: Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett 1998, 425:191-194.

162. Xiao L, Chang H, Ding NZ, Ni H, Kadomatsu K, Yang ZM: Basigin expression and hormonal regulation in mouse uterus during the peri-implantation period. Mol Reprod Dev 2002, 63:47-54.

163. Kuno N, Kadomatsu K, Sawa J, Takahashi M, Senda T, Taguchi O, Yamamura K, Arimura K, Muramatsu T: A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol 1998, 194:152-165.

164. Noguchi T, Sato T, Hirata M, Hara T, Ohama K, Ito A: Identification and characterization of an extracellular matrix metalloproteinase inducer in human endometrium during the menstrual cycle in vivo and in vitro. J Clin Endocrinol Metab 2003, 88:6036-6072.

165. Aplin JA, Spanswick C, Behzad F, Kimber SJ, Vicovac Lj: Integrin j5,j6 and av are apically distributed in endometrial epithelium. Molecular Human Reproduction 1996, 2:527-534.

166. Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C, Calvete J, Marcinkiewicz MM, McLane MA: Structural Requirements of echistatin for the recognition of αvβ5 and αvβ3 integrins. J Biol Chem 1999, 274:37891-37894.

167. Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA: Blockade of the avβ3 integrin adversely affects implantation in the mouse. Biol Reprod 2000, 62:1285-1290.

168. Appel PB, Murray MJ, Fritz MA, Meyer WR, Chambers AF, Truong PR, Lessey BA: Osteopontin and its receptor avβ3 integrin are coexpressed in the human endometrium during the menstrual cycle but regulated differentially. J Clin Endocrinol Metab 2001, 86:4991-5000.

169. Behzad F, Self MW, Campbell S, Aplin JD: Expression of two isoforms of CD44 in human endometrium. Biol Reprod 1994, 51:739-747.

170. Schmitts R, Filmus J, Gerwin N, Senaldi G, Kiefer F, Kundig T, Wakeham A, Shahinian A, Caszenovos C, Rak J, Furlonger C, Zaitakan A, Simonovs J, Obashe PS, Paige CJ, Gutierrerez-Ramos FC, Mak TW: CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 1997, 90:2217-2233.

171. Liu W, Birk DE, Ballas CB, Whitsett JS, Davidson JM, Hogan B: Altered wound healing in mice lacking a functional osteopontin gene (opp1). J Clin Invest 1998, 101:1468-1478.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK

Your research papers will be:
• available free of charge to the entire biomedical community
• peer reviewed and published immediately upon acceptance
• cited in PubMed and archived on PubMed Central
• yours — you keep the copyright

http://www.biomedcentral.com/info/publishing_adv.asp