SERCA Overexpression Improves Mitochondrial Quality Control and Attenuates Cardiac Microvascular Ischemia-Reperfusion Injury

Ying Tan,1 David Mui,2 Sam Toan,3 Pingjun Zhu,4 Ruibing Li,4 and Hao Zhou4,5

1Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; 2Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 3Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA; 4Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China; 5Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China

Despite significant advances in the treatment of myocardial ischemia-reperfusion (I/R) injury, coronary circulation is a so far neglected target of cardioprotection. In this study, we investigated the molecular mechanisms underlying I/R injury to cardiac microcirculation. Using gene delivery, we analyzed microvascular protective effects of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) on the reperfused heart and examined the role of SERCA in regulating mitochondrial quality control in cardiac microvascular endothelial cells (CMECs). Our data showed that SERCA overexpression attenuates lumen stenosis, inhibits microthrombus formation, reduces inflammation response, and improves endothelium-dependent vascular relaxation. In vitro experiments demonstrated that SERCA overexpression improves endothelial viability, barrier integrity, and cytoskeleton assembly in CMECs. Mitochondrial quality control, including mitochondrial fusion, mitophagy, bioenergetics, and biogenesis, were disrupted by I/R injury but were restored by SERCA overexpression. SERCA overexpression also restored mitochondrial quality control by inhibiting calcium overload, inactivating xanthine oxidase (XO), and reducing intracellular/mitochondrial reactive oxygen species (ROS). Administration of exogenous XO or a calcium channel agonist abolished the protective effects of SERCA overexpression on mitochondrial quality control and offset the beneficial effects of SERCA overexpression after cardiac microvascular I/R injury. These findings indicate that SERCA overexpression may be an effective approach to targeting cardiac microvascular I/R injury by regulating calcium/XO/ROS signaling and preserving mitochondrial quality control.

INTRODUCTION
Cardiac microcirculation is not only a culprit of acute myocardial infarction due to the occlusion of coronary arteries by atherothrombotic debris after plaque erosion or rupture, but also is a victim of the ensuing myocardial ischemia with eventual reperfusion.1 Endothelial cells that line the interior surface of blood vessels play an important role in the regulation of vascular health and cardiomyocyte metabolism. The clinical importance of cardiomyocyte ischemia-reperfusion (I/R) injury has been widely acknowledged, because infarction size is a major determinant of patients’ long-term prognosis.2 However, the I/R injury to coronary circulation and cardiac microvascular function still remain a major challenge in standard medical treatments of myocardial infarction, i.e., primary percutaneous coronary intervention or open heart surgery.3

Our previous studies have reported pathological alterations of I/R-induced coronary damage, including cellular swelling, endothelial barrier dysfunction, apoptosis activation, and endothelial nitric oxide synthase (eNOS) reduction, resulting in lumen stenosis, loss of vascular wall integrity, microthrombus formation, and perfusion defect;4–9 these findings are in line with other studies.10,11 Multiple mechanisms are involved in the pathophysiological alterations of cardiac microvascular endothelial cells (CMECs) dysfunction in cardiac I/R injury, including oxidative stress, calcium overload, mitochondrial dysfunction, endoplasmic reticulum (ER) damage, and NO regulatory system impairment.12–14 Among these pathological factors, mitochondrial dysfunction and calcium overload have been proposed as the critical mechanisms responsible for the I/R-induced endothelial damage.15–17 First, although endothelial cells rely mainly on mitochondria-independent glycolysis for their energy demands, regardless of the high oxygen abundance in the vascular compartment, mitochondrial quality-control damage (including mitochondrial morphological alterations and mitochondrial function reduction) is closely associated with endothelial cell oxidative stress and apoptosis activation.17,18 Second, endothelial-dependent vascular relaxation is regulated by the concentration of intracellular calcium ([Ca2+]i); increased [Ca2+]i content is associated with endothelial cell stiffness, resulting in reduced vasodilatation regardless of the functionality of the NO regulatory system.19 In addition, well-functioning mitochondria can buffer [Ca2+]i by active absorption, whereas damaged mitochondria release calcium into the cytoplasm, causing [Ca2+]i overload.20 Although mitochondrial damage and [Ca2+]i have been shown to...
Sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) is an ATP-dependent calcium channel recycling \([\text{Ca}^{2+}]\) back into the ER.\(^{22}\) Because of its important role in reducing \([\text{Ca}^{2+}]\), SERCA has been suggested as a potential target to treat ventricular relaxation failure.\(^{23}\) Several studies have illustrated the protective role of SERCA in cardiomyocyte I/R injury through suppression of ER stress and improvement of cardiomyocyte viability.\(^{24,25}\) In addition, augmentation of SERCA activity had an anti-oxidative effect on the reperfused heart,\(^{26}\) suggesting a possible link between SERCA and mitochondrial dysfunction. Thus, we asked whether SERCA might regulate the mitochondrial quality control and calcium overload in reperfused cardiac coronary microcirculation.

RESULTS

SERCA Overexpression Reduces I/R-Mediated Microvascular Damage

First, we induced cardiac microvascular I/R injury as previously described\(^{27}\) and histologically analyzed microcirculation by electron microscopy. As shown in Figure 1A, I/R-treated mice had a narrowed vascular lumen compared with control sham mice and exhibited an increased thickening of the vascular wall, indicative of endothelial cell swelling after I/R injury. Because the luminal stenosis could be caused by an imbalance between endothelium relaxing factors and vasoconstrictors, we analyzed expression of the eNOS and the endothelium-derived vasoconstrictor endothelin-1 (ET-1). Western blot analysis demonstrated that the expression of phosphorylated eNOS was downregulated, whereas the levels of ET-1 were upregulated in mice after I/R injury (Figures 1B–1D). Interestingly, administration of SERCA-AAV9 into mouse heart (SERCAAAV mice) before I/R injury significantly sustained the microvascular structure (Figure 1A) and normalized the ratio of eNOS/ET-1 (Figures 1B–1D) compared with I/R-treated mice, indicating that SERCA has a protective effect on reperfused microcirculation.

Using adeno-associated virus-9 (AAV9), SERCA was overexpressed in reperfused heart to analyze the molecular mechanisms of how SERCA regulates the mitochondrial quality control, \([\text{Ca}^{2+}]\) levels, and endothelial protection.

Figure 1. SERCA Overexpression Reduces I/R-Mediated Microvascular Damage

Cardiac I/R injury was established by 45 min of coronary occlusion and 4 h of reperfusion. The sham group received similar thoracotomy without coronary occlusion and post-ischemic reperfusion. SERCA-AAV9 and control AAV9 vectors were injected into mice. (A) TEM of microvascular structures after cardiac I/R injury; the yellow arrows indicate the damaged vascular wall. Scale bar: 2 μm. (B–D) Western analysis of eNOS and ET-1. (E) Hematoxylin and eosin (H&E) staining of erythrocytes. Scale bars: 75 μm. (F and G) RT-PCR of ICAM1 and VCAM1. (H) Immunofluorescence staining of Gr1-positive neutrophils. (I) Representative images of Gr1 staining. Scale bar: 70 μm. (J and K) RT-PCR of MCP1 and tumor necrosis factor alpha (TNF-α). *p < 0.05 versus control group.

RESULTS

SERCA Overexpression Reduces I/R-Mediated Microvascular Damage

First, we induced cardiac microvascular I/R injury as previously described\(^{27}\) and histologically analyzed microcirculation by electron microscopy. As shown in Figure 1A, I/R-treated mice had a narrowed vascular lumen compared with control sham mice and exhibited an increased thickening of the vascular wall, indicative of endothelial cell swelling after I/R injury. Because the luminal stenosis could be caused by an imbalance between endothelium relaxing factors and vasoconstrictors, we analyzed expression of the eNOS and the endothelium-derived vasoconstrictor endothelin-1 (ET-1). Western blot analysis demonstrated that the expression of phosphorylated eNOS was downregulated, whereas the levels of ET-1 were upregulated in mice after I/R injury (Figures 1B–1D). Interestingly, administration of SERCA-AAV9 into mouse heart (SERCAAAV mice) before I/R injury significantly sustained the microvascular structure (Figure 1A) and normalized the ratio of eNOS/ET-1 (Figures 1B–1D) compared with I/R-treated mice, indicating that SERCA has a protective effect on reperfused microcirculation.

Damaged microcirculation increases the risk for thrombogenesis.\(^{28}\) As illustrated in Figure 1E, streamlined and dispersed erythrocytes were observed in the microcirculation of sham mice, whereas spherical and aggregated erythrocytes were found in the microcirculation of I/R-treated mice. Western blot analysis demonstrated that the levels of endothelium-expressed adhesive factors ICAM1 (intercellular

promote cardiac microvascular I/R injury,\(^{21}\) the underlying molecular mechanisms are not known.
adhesion molecule-1) and VCAM1 (vascular cell adhesion molecule-1) were significantly upregulated by I/R injury (Figures 1F and 1G). However, these alterations, including erythrocytes deformation (Figure 1E), and ICAM1 and VCAM1 upregulation (Figures 1F and 1G) were attenuated by SERCA-AAV9 delivery, suggesting that SERCA overexpression improved the microvascular function after I/R injury.

Damaged microcirculation is associated with endothelial cell hyperpermeability12 and inflammatory cell infiltration into the myocardium.29 Using double immunofluorescence, we observed that the numbers of Gr1-positive neutrophils were increased in I/R-treated mice hearts relative to sham mice (Figures 1H and 1I). In addition, expression of proinflammation cytokines was increased in reperfused myocardium compared with the sham group (Figures 1J and 1K). Notably, SERCA^{AAV} mice had a decreased neutrophil recruitment (Figures 1H and 1I) and reduced pro-inflammatory cytokine expression (Figures 1J and 1K) compared with I/R-treated mice, indicating an anti-inflammatory effect of SERCA overexpression. Overall, these data indicate that SERCA overexpression preserves the cardiac microcirculation during I/R injury.

Figure 2. SERCA Overexpression Sustains Endothelial Viability and Function after sI/R

(A) Cell viability analyzed by MTT assay. (B) Cell death in CMECs evaluated by lactate dehydrogenase (LDH) release assay. (C) TUNEL staining evaluating the apoptotic index of CMECs after sI/R injury with and without SERCA-AAV9. (D) Representative images of TUNEL staining. Scale bars: 95 μm. (E) RT-PCR of VEGF. (F and G) Endothelial barrier function measured by (F) FITC and (G) TER assays. (H) Immunofluorescence staining of F-actin; the relative expression of F-actin was determined to reflect the cytoskeleton degradation in CMECs. (I) Representative images of F-actin staining. Scale bars: 30 μm. *p < 0.05 versus control group.

SERCA Overexpression Sustains Endothelial Viability and Function after sI/R

The molecular mechanisms of SERCA-mediated endothelial protection were investigated in a functionally relevant in vitro model of stimulated I/R (sI/R) injury using isolated CMECs. sI/R injury reduced viability of endothelial cells (Figure 2A) and promoted cell death (Figure 2B) in normal CMECs, but not in SERCA-overexpressed CMECs. The apoptotic index was further quantitatively analyzed using TUNEL staining. More than 40% of CMECs appeared apoptotic following sI/R injury, whereas this ratio was reduced to ~15% in SERCA-overexpressed CMECs (Figures 2C and 2D).

In addition to apoptosis, endothelial cell paracrine function, assessed by qPCR (Figure 2E), was impaired by sI/R injury. However, SERCA overexpression maintained the endothelial paracrine function (Figure 2E), as evidenced by increased expression of VEGF. In addition, endothelial barrier function and integrity were examined through fluorescein isothiocyanate (FITC)-dextran clearance and trans-endothelial electrical resistance (TER) assay. As shown in Figures 2F and 2G, the levels of FITC-dextran were increased and the TER values were decreased in sI/R-treated CMECs compared with SERCA-overexpressed CMECs. Furthermore, cytoskeleton dysregulation and disassembly have been associated with impaired angiogenesis and mobilization potential of endothelium.30 Immunofluorescence showed a disorganized and irregularly arranged fiber cytoskeleton in CMECs after sI/R injury, and this was attenuated by SERCA overexpression (Figures 2H and 2I). These data suggest that SERCA might be a protective factor in I/R-mediated cardiac microvascular endothelial disorders.

SERCA Promotes Mitochondrial Fusion and Mitophagy during Cardiac Microvascular I/R Injury

Previous studies have shown that mitochondria play an important role in sustaining microvascular structure and function.12,31 To understand the role of SERCA in mitochondrial homeostasis, we...
analyzed mitochondrial fusion and mitophagy. Compared with the control group, sI/R substantially suppressed the mRNA expression of Mfn2 and Opa1 (Figures 3A and 3B), suggesting that mitochondrial fusion was inhibited by sI/R injury. Consistent with these findings, immunofluorescence assay also showed that the mitochondrial network was disrupted in CMECs treated with sI/R, as illustrated by decreased mitochondrial length and increased ratio of fragmented mitochondria (Figures 3C–3E). Upon SERCA overexpression, the mRNA levels of Mfn2 and Opa1 increased in CMECs (Figures 3A and 3B), and this was followed by an increase in the number of rod-shaped mitochondria (Figures 3C–3E). SERCA overexpression also decreased the percentage of fragmented mitochondria, suggesting a promotive effect of SERCA on mitochondrial fusion (Figures 3C–3E).

In addition to mitochondrial fusion, mitophagy is another protective mechanism to remove damaged mitochondria and thus restore mitochondrial homeostasis. Normal CMECs contained abundant acidic mitochondria-lysosome complexes, which were stained by mt-Kemia probe, whereas in sI/R-treated
CMECs, the number of acidic mitochondria-lysosome complexes was significantly reduced (Figures 3F and 3G), suggesting that sI/R inhibited mitophagy in CMECs. Interestingly, in CMECs transfected with SERCA-AAV9, sI/R failed to suppress mitophagy (Figures 3F and 3G), indicating that SERCA sustains mitophagy under sI/R conditions. These findings were further extended through analyzing expression of the mitophagy adaptors Parkin, Beclin1, and Atg5. Consistent with previous studies,34 sI/R treatment reduced the expression of Parkin, Beclin1, and Atg5 (Figures 3H–3K). Interestingly, SERCA overexpression upregulated their expressions (Figures 3H–3K), suggesting that mitochondrial biogenesis and bioenergetics in CMECs under sI/R injury.

SERCA Normalizes Mitochondrial Biogenesis and Bioenergetics in CMECs

In addition to mitochondrial morphological regulation, the mitochondrial quality-control system includes mitochondrial biogenesis and bioenergetics, which are vital for mitochondrial function preservation. After exposure to sI/R injury, mitochondrial biogenesis was impaired, as evidenced by decreased expression of Tfam and Pgc1α (Figures 4A and 4B). Importantly, SERCA increased the mRNA levels of Tfam and Pgc1α (Figures 4A and 4B), suggesting that mitochondrial biogenesis was enhanced by SERCA.

Although endothelial cells use glycolysis to generate ATP, mitochondria-related energy metabolism has been identified as a signal regulator affecting endothelial functions, such as angiogenesis and proliferation.31,35 As a primary parameter of mitochondrial bioenergetics, mitochondrial membrane potential was dissipated in CMECs that underwent sI/R injury, but not in CMECs transfected with SERCA-AAV9 (Figures 4C and 4D). Enzyme-linked immunosorbent assay (ELISA) analysis of mitochondrial electron transport chain (ETC) complex demonstrated that the activities of ETC complexes I, II, and V were repressed by sI/R and returned to normal levels after transfection of SERCA (Figures 4E–4G). Interestingly, the glucose levels remaining in the medium after sI/R of CMECs were increased relative to control group (Figure 4H), suggesting that sI/R injury slowed down glucose metabolism. However, SERCA overexpression promoted the glucose uptake, and thus reduced the levels of remaining glucose compared with the sI/R group (Figure 4H). These data suggest that SERCA can normalize mitochondrial biogenesis and bioenergetics in CMECs.

SERCA Modulates Mitochondrial Quality Control through Suppression of [Ca2+]i Overload, Xanthine Oxidase Activity, and Mitochondrial Oxidative Stress

SERCA transports calcium ions from the cytoplasm back into the ER.25 Therefore, we asked whether SERCA-modulated [Ca2+]i/mitochondrial calcium ([Ca2+]m) homeostasis was involved in the mitochondrial quality-control regulation. Double-immunofluorescence analysis of [Ca2+]i and [Ca2+]m showed that sI/R triggered a rise in [Ca2+]i/[Ca2+]m, which was attenuated by SERCA overexpression in CMECs (Figures 5A–5C). In addition, as a result of [Ca2+]i overload, the activity of xanthine oxidase (XO) was increased after sI/R treatment but returned to baseline after overexpression of SERCA (Figure 5D). XO plays an important role in generation of reactive oxygen species (ROS), especially during hypoxic stress.36,37 In line with the increased XO activity after sI/R treatment, the intracellular ROS ([ROS]i) and mitochondrial ROS ([ROS]m) were robustly increased upon sI/R injury (Figures 5E–5G). However, SERCA overexpression inhibited mitochondrial oxidative stress, as well as the [ROS]i overload (Figures 5E–5G), suggesting that SERCA regulates the Ca2+/XO/ROS signaling pathway.
SERCA-Mediated Mitochondrial Homeostasis Is Disrupted by Exogenous XO or Calcium Channel Agonist

To investigate whether the Ca^{2+}/XO/ROS axis is required for the SERCA-mediated mitochondrial quality control, we examined mitochondrial quality control in CMECs pretreated with the calcium channel agonist adenophostin A (AdA) and transfected with SERCA-AAV9. The genes related to mitochondrial fusion Mfn2 and Opa1 were significantly downregulated after sI/R injury, but returned to baseline after transfection of SERCA-AAV9 (Figures 6A and 6B). Interestingly, either treatment with exogenous XO or AdA abolished the promotive effect exerted by SERCA on mitochondrial fusion. In addition, the sI/R-suppressed mitophagy activity could be reversed by SERCA overexpression, whereas this protective effect was abolished in CMECs treated with either exogenous XO or AdA (Figures 6C and 6D). SERCA overexpression also increased the expression of Tfam and Pgc1a in sI/R-treated CMECs, but not in CMECs treated with either exogenous XO or AdA (Figures 6E and 6F). Lastly, mitochondrial membrane potential, which was reduced by sI/R injury, was increased by SERCA-AAV9; however, this effect was not observed in CMECs treated with exogenous XO or AdA (Figure 6G). These data indicate that the mechanism whereby SERCA contributes to mitochondrial quality control is attributable to the Ca^{2+}/XO/ROS axis.

SERCA Protects Cardiac Microcirculation by Regulating Calcium/XO/ROS Signaling

To translate our in vitro findings into in vivo data, we used a mouse cardiac I/R model treated with exogenous XO or AdA before SERCA-AAV9 transfection. Transmission electron microscopy (TEM) analysis demonstrated that injuries to the microvascular wall and endothelial cells caused by I/R injury could be relieved by SERCA overexpression, although this improvement was not seen in mice treated with exogenous XO or AdA (Figure 7A). In addition, although the I/R-induced erythrocytes deformation could be reversed by SERCA overexpression (Figure 7B), administration of exogenous XO or AdA interrupted this phenotypic alteration. Western analysis demonstrated that the expression of adhesion proteins ICAM1 and VCAM1 was maintained at relatively low levels in mice transfected with SERCA-AAV9; however, application of exogenous XO or AdA upregulated the ICAM1 and VCAM1 levels in reperfused heart (Figures 7C and 7D). Altogether, these data demonstrate that SERCA overexpression protects cardiac microcirculation by regulating the calcium/XO/ROS signaling pathway.

DISCUSSION

Myocardial infarction is caused by an acute blockage of coronary arteries. Although reperfusion has been reported to save the dying myocardium, I/R injury induces additional damage to ischemic cardiomyocytes. In addition, I/R injury can affect endothelial cells, and microvascular I/R injury further aggravates the myocardial injury. However, compared with myocardial I/R injury, microvascular I/R injury has been a relatively neglected topic; it represents a major challenge in standard medical treatments of myocardial infarction.

Four potential mechanisms underlying the microvascular I/R injury have been suggested, including oxidative stress, calcium overload, high-energy phosphate compound depletion, and inflammation response. An early feature of myocardial microcirculatory damage is edema of endothelial cells, mainly caused by high-energy phosphate compound depletion during hypoxia. As a result of energy metabolism disorder, [Ca^{2+}] cannot be rapidly and timely recirculated into the ER, resulting in calcium-dependent vasospasm
and disturbing fresh blood flow and oxygen transport. Besides, incomplete catabolism of glucose, secondary to ischemia or hypoxia, generates massive amounts of ROS, thus producing an oxidative stress microenvironment in the cytoplasm. Excessive calcium overload and ROS outburst may work together to promote endothelial cell apoptosis or necrosis, resulting in neutrophil recruitment and accumulation and neutrophil-mediated inflammation. The above four mechanisms seem to activate each other and promote the progression of microvascular I/R injury. Our results indicate that SERCA-modulated mitochondrial quality-control disorder is the molecular mechanism underpinning the I/R-mediated microvascular injury. We have shown that SERCA acts as a calcium regulator, and mitochondrial quality control is associated with oxidative stress and energy metabolism (Figure 7E).

Mitochondrial quality control includes mitochondrial fission, fusion, mitophagy, bioenergetics, and biogenesis. The influence of SERCA on mitochondrial fission has been carefully evaluated in cardiac I/R injury. In the present study, we found that mitochondrial fusion, mitophagy, bioenergetics, and biogenesis were protected and normalized by SERCA overexpression. Further, we found that SERCA regulated mitochondrial quality control through the inhibition of calcium-mediated [ROS]m overload. Although calcium does not have a direct impact on ROS generation and degradation, calcium is the unique catalyst of XO, a critical source of ROS. It should be noted that there are three sources of ROS generation: mitochondria, NADPH, and XO. In cardiomyocytes, the number of mitochondria is high, whereas the XO expression is relatively low. In contrast, XO is abundant in endothelium, whereas mitochondria levels are low. XO functions as a master of mitochondrion through affecting intracellular redox biology. Excessive ROS levels in endothelium are a consequence, not the cause, of mitochondrial damage; this concept seems to be opposite in cardiomyocytes whereby ROS overloading is a result of mitochondrial dysfunction rather than a cause of mitochondrial injury. These findings highlight the different responses of cardiomyocytes and endothelial cells to I/R injury. Altogether, our results show that the cardiac microvascular I/R injury is characterized by decreased SERCA expression and impaired mitochondrial quality control. Overexpression of SERCA attenuates [Ca²⁺]i overload, reduces [ROS]m stress, and protects cardiac microcirculation against I/R injury by sustaining the mitochondrial quality control. Further studies are warranted to better understand the mechanisms and therapeutic implications of SERCA in microvascular protection during revascularization in patients suffering from myocardial infarction.
mechanisms regulating SERCA expression as a therapeutic target in cardiovascular disorders.

MATERIALS AND METHODS

Cardiac Ischemia/Reperfusion Model
Adult male mice 12–14 weeks of age were subjected to cardiac I/R surgery as described previously. In brief, animals were anesthetized with a cocktail of ketamine and xylazine, and placed on a warming pad to maintain body temperature within a range of 34°C to 37°C. After intubating with a 19G stump needle, animals were ventilated with 95% oxygen/5% CO2 using a MiniVent mouse ventilator (stroke volume: 250 μL; respiratory rate: 210 breaths per minute). Next, an oblique incision was made from the left sternal border to visualize the fourth intercostal space. With the left anterior descending coronary artery exposed, a ligature was placed 1 mm below the tip of the left atrial appendage using a 6-0 silk suture. After 45 min of coronary occlusion, the wound was re-opened and the ligation was released to allow for tissue reperfusion for 4 h. The animals were then sacrificed for 2,3,5-triphenyltetrazolium chloride (TTC) staining or tissue harvesting. To harvest tissues, we divided the left ventricle into three regions based on previous TTC staining patterns: ischemic, border, and remote. Tissues were frozen separately in liquid nitrogen and stored at −80°C until use.

sI/R and Cell Death Assay
For sI/R in vitro, CMECs were isolated as previously described. Cells were washed twice with 1× PBS to remove culture medium and incubated with fresh ischemia Esumi buffer (4 mM HEPES, 117 mM NaCl, 12 mM KCl, 0.9 mM CaCl2, 0.49 mM MgCl2, 20 mM sodium lactate, 5.6 mM deoxyglucose [pH 6.2]). Cells were then placed into a hypoxia chamber (Billups-Rothenberg) and maintained at 37°C. After flushing with 95% N2/5% CO2 for 30 min, the chamber was sealed and maintained for an additional 3 h. Cells were reperfused by restoration of standard culture medium, and cell death was assessed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay according to the manufacturer’s recommendations (Promega).
AAV9-Mediated SERCA Overexpression

AAV9 genome particles were obtained from Vector Gene Technology. Mouse SERCA was cloned into AAV9 vectors, which were injected subcutaneously at the nape of the neck into neonatal mice at a titer of 0.5×10^1 vector genomes per gram of body weight (vg/g). Control AAV9 vectors were injected at the same dosage and time points. After 8 weeks, heart tissues were collected, and the overexpression efficiency was analyzed by western blotting. SERCA-AAV9 was transfected into CMECs as previously described.31

Immunofluorescence Staining

Cells were grown directly on 12-mm coverslips, washed three times with PBS, fixed with 4% paraformaldehyde for 10 min at 4°C, washed again with PBS, and incubated with 0.1% Triton for 10 min. After blocking with 1% BSA in PBS for 1 h, cells were incubated with primary antibodies for F-actin (1:1,000, #ab205; Abcam) and Tom20 (1:1,000, #ab186735; Abcam) at 4°C overnight. Alexa Fluor 488 secondary antibody was used at 1:500 dilution. 4,6-Diamino-2-phenylindole-dihydrochloride (DAPI) was used to stain DNA. Images were generated with a laser-scanning confocal microscope (LEICA).32

TEM

Heart tissue was removed from a mouse and immediately rinsed in PBS. The tissue was placed in a Petri dish with 0.5% glutaraldehyde and 0.2% tannic acid in PBS, diced into 2-mm cubes, and transferred to modified Karnovsky’s fixative (4% formaldehyde and 2.5% glutaraldehyde containing 8 mM CaCl2 in 0.1 M sodium cacodylate buffer [pH 7.4]).34 Samples were washed with PBS and post-fixed in 1% osmium tetroxide in 0.1 M sodium cacodylate buffer (pH 7.4) for 1 h to produce osmium black. Samples were then dehydrated through a graded series of ethanol and embedded in Epon/SPURR resin (Thermo Fisher Scientific) that was polymerized overnight. Sections of heart tissues and cardiomyocytes were prepared with a diamond knife on a Reichert-Jung Ultracut-E ultra-microtome and stained with UrAc (20 min), followed by 0.2% lead citrate (2.5 min). Images were photographed under an electron microscope.

ELISA

A total of 400,000 or 200,000 CMECs were plated in 12- or 6-well plates, respectively. After 24 h, cells were transfected with SERCA-AAV9 before siRNA injury. Then supernatants were collected and stored at −80°C until further usage. Sandwich ELISA experiment was performed according to the manufacturer’s protocol.35 In brief, 100 µL undiluted supernatant was used to measure absorbance at 450 nM by synergy spectrophotometer (BioTek Instruments).36

ATP Measurements, Cell Death Detection, and ROS Staining

ATP content in cells was determined using a luciferin/luciferase-based assay (CellTiter-Glo Kit; Promega). Cell death was measured by analyzing the number of TUNEL-positive cells using the In Situ Cell Death TUNEL Detection Kit (Sigma-Aldrich).37 In vitro cultured CMECs were stained with CellROX Green (5 µM; C10444; Thermo Scientific) at 37°C for 0.5 h and then washed three times with PBS.37 [ROS]m was measured using Mitosox (M36008; Thermo Scientific). In brief, CMECs were stained with 5 µM Mitosox and 1 µg/mL Hoechst (62249; Thermo Scientific) for 30 min. Cells were imaged using an Olympus FV1000 confocal microscope.38

Mitochondrial Membrane Potential, Mitophagy, and Calcium Staining

Mitochondrial membrane potential was observed using mitochondrial membrane potential assay kit with JC-1 (Cat. No.: C2006; Beyotime, China). Mitophagy was detected using the Mt-Keima probe (pMT-mKeima-Red, #AM-V-251; MBL Medical & Biological Laboratories, Woburn, MA, USA).39,40 Cells cultured under osteogenic conditions for 3 weeks were washed in cold PBS and stained using Fura-2 AM to determine calcium concentration in CMECs in vitro.41

Endothelial Barrier Function Assay

Endothelial barrier function and integrity were observed through FITC-dextran clearance assay and TER assay. In the FITC-dextran clearance assay, CMECs were incubated 2 h with FITC-dextran (final concentration 1 mg/mL), washed with PBS, and analyzed using a fluorescent plate reader (Bio-Rad, USA). The TER assay was performed using the Vascular Permeability Assay Kit (ECM640; Millipore, USA).42

Real-Time PCR

Total RNA was extracted from cells or mouse heart tissues using TRIzol reagent (15596018; Invitrogen) according to the manufacturer’s instructions.43 In short, 500 ng total RNA was used to make cDNA by using PrimeScript RT reagent Kit (RR037A; Takara, Japan) according to the manufacturer’s instructions.44 The resulting cDNA was subjected to real-time PCR using SYBR Premix Ex TaqII (RR820A; Takara, Japan) according to the manufacturer’s instructions.45 The resulting cDNA was subjected to real-time PCR using SYBR Premix Ex TaqII (Tli RNaseH Plus) kit (RR820A; Takara) on an Applied Biosystems 7500 Fast Real-Time PCR System (ABI, Torrance, CA, USA). PCR was performed using the following conditions: denaturation temperature 95°C for 0.5 min, annealing temperature for 0.5 min, and extension temperature 72°C for 1 min; the PCR cycle was determined according to a kinetic profile. β-Actin was used as an internal control to normalize all PCR products. The primers were as follows: Tnfa (forward, 5'-AGATGGAGGCAAACCTAAGGTC-3'; reverse, 5'-GCAGACCTCGCTGTCTTCTAGC-3'), Mcp1 (forward, 5'-GGATGGA TTGCACAGCCATT-3'; reverse, 5'-GCCGCGACTCAGAGGTTGT-3'), Pgc1a (forward 5'-TCACCTCCTGGCCTGACAAATCTT-3', reverse 5'-TTTATGGGCTACCCACAGTGC-3'), Tjtn (forward 5'-AAGGGATGGAAGGGATTAGA-3', reverse 5'-AACAGGACAT GAAAGCAGAT-3').

Mitochondrial ETC Activity

Enzymatic activity of the mitochondrial ETC was assessed as described previously.46 In brief, samples were homogenized on ice in a homogenization buffer (120 mM KCl, 20 mM HEPES, 1 mM EGTA [pH 7.4]), centrifuged at 600 × g for 10 min, and the supernatants were used to perform the enzymatic measurements. The specific substrate of each ETC complex was added to the supernatant, and the activity was measured by colorimetric assays using a monochromator microplate reader (Tecan M200) at 30°C.
Finally, reduction of 5,5’ at 550 nm was measured in a mixture of 10 mM potassium phosphate (pH 7.5), 0.2 mM NADH, and 1.7 mM potassium ferricyanide (NADH:ferricyanide oxidoreductase). Complex II activity (succinate dehydrogenase) was assessed by determining the rate of reduction of the artificial electron acceptor 2,6-dichlorophenol-indophenol (DCIP) at 600 nm in a mixture of 25 mM potassium phosphate (pH 7.5), 20 mM succinate, 0.5 mM DCIP, 10 μM rotenone, 2 μg/mL antimycin A, and 2 mM potassium cyanide. Complex III activity (ubiquinol/cytochrome c [CC] oxidoreductase) was determined by assessing reduction of CC at 550 nm in a mixture of 25 mM potassium phosphate (pH 7.5), 100 mM DTNB, 50 mM reduced decylubiquinone, 15 mM CC, 10 mM rotenone, and 2 mM potassium cyanide. CC oxidase activity at 550 nm was measured in a mixture of 10 mM potassium phosphate (pH 7.5) and 0.1 mM reduced CC to determine complex IV activity. Finally, reduction of 5,5’ dithiobis (2-nitrobenzoic acid) (DTNB) at 412 nm, which is coupled to the reduction of acetyl-coenzyme A (CoA) by citrate synthase in the presence of oxaloacetate in a mixture of 10 mM potassium phosphate (pH 7.5), 100 mM DTNB, 50 mM acetyl-CoA, and 250 mM oxaloacetate, was used to determine the citrate synthase activity. Experiments were performed in four independent samples for each genotype.

Western Blot Analysis
Cardiac tissue samples for western blotting were obtained from the infarcted area. Proteins isolated from sI/R-treated CMECs were also analyzed through western blots. In brief, proteins were separated by SDS electrophoresis and transferred to membranes using standard protocols, after which they were probed with antibodies against p-eNOS (Ser1117) (1:1,000, #ab184154; Abcam), ET-1 (1:1,000, #ab2786; Abcam), ICAM1 (1:1,000, #ab119871; Abcam), VCAM1 (1:1,000, #ab134047; Abcam), Gr1 (1:1,000, #ab25377; Abcam), FUNDC1 (1:1,000, #ab224722; Abcam), ATG5 (1:1,000, #12994, Cell Signaling Technology), and Bclin1 (1:1,000, #3738; Cell Signaling Technology). The blots were visualized by chemiluminescence (ECL, Immunobilon Western Chemiluminescent HRP Substrate, Millipore Corporation, MA, USA), and the signals were quantified by densitometry. GAPDH (analyzed with an antibody from Santa Cruz Biotechnology) served as a loading control.

Statistical Analysis
Data were expressed as means ± SEM and analyzed by Program GraphPad Prism version 6.0. Multiple comparisons were performed by one-way ANOVA followed by Bonferroni correction. A p value < 0.05 was considered statistically significant.

CONFLICTS OF INTEREST
The authors declare no competing interests.

REFERENCES
1. Davidson, S.M., Ferdinandy, P., Andreadou, I., Betker, H.E., Heusch, G., Ibáñez, B., Ovize, M., Schulz, R., Yellon, D.M., Hausenloy, D.J., and Garcia-Dorado, D.; CARDIOPROTECTION COST Action (CA16225) (2019). Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 73, 89–99.
2. Favero, G., Paganeli, C., Bufoli, B., Rodella, L.F., and Renzani, R. (2014). Endothelium and its alterations in cardiovascular diseases: life style intervention. BioMed Res. Int. 2014, 801896.
3. Boengler, K., Bornbaum, J., Schläter, K.D., and Schulz, R. (2019). P66shc and its role in ischemic cardiovascular diseases. Basic Res. Cardiol. 114, 29.
4. Heusch, G. (2019). Coronary microvascular obstruction: the new frontier in cardio-protection. Basic Res. Cardiol. 114, 45.
5. Davidson, S.M., Arjun, S., Basalay, M.V., Bell, R.M., Bromage, D.I., Betker, H.E., Carr, R.D., Cunningham, J., Ghosh, A.K., Heusch, G., et al. (2018). The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology. Basic Res. Cardiol. 113, 43.
6. Zhou, H., Hu, S., Jin, Q., Shi, C., Zhang, Y., Zhu, P., Ma, Q., Tian, F., and Chen, Y. (2017). MfP-Dependent Mitochondrial Fission Contributes to the Pathogenesis of Cardiac Microvascular Ischaemia/Reperfusion Injury via Induction of mROS-Mediated Cardioprotin Oxidation and HK2/VDAC1 Disassociation-Involved mPTP Opening. J. Am. Heart Assoc. 6, e005328.
7. Zhou, H., Shi, C., Hu, S., Zhu, H., Ren, J., and Chen, Y. (2018). B11 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk-Nox2-Drp1-mitochondrial fission pathways. Angiogenesis 21, 599–615.
8. Zhou, H., Wang, J., Zhu, P., Zhu, H., Toan, S., Hu, S., Ren, J., and Chen, Y. (2018). Nrf4A aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting MIF-required mitochondrial fission by CRK2z. Basic Res. Cardiol. 113, 23.
9. Zhou, H., Zhang, Y., Hu, S., Shi, C., Zhu, P., Ma, Q., Jin, Q., Cao, F., Tian, F., and Chen, Y. (2017). Melatonin protects cardiac microvascular scarring against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP mitophagy axis. J. Pineal Res. 63, e12413.
10. Zhong, J., Ouyang, H., Sun, M., Lu, J., Zhong, Y., Tan, Y., and Hu, Y. (2019). Tanshinone IIA attenuates cardiac microvascular ischemia-reperfusion injury via regulating the SIRT1-PP1c14-mitochondrial apoptotic pathway. Cell Stress Chaperones 24, 991–1003.
11. Wei, L., Sun, D., Yin, Z., Yuan, Y., Hwang, A., Zhang, Y., Si, R., Zhang, R., Gao, W., Cao, F., and Wang, H. (2010). A PRK-beta inhibitor protects against cardiac microvascular ischemia/reperfusion injury in diabetic rats. Apoptosis 15, 488–498.
12. Wang, J., Toan, S., and Zhou, H. (2020). New insights into the role of mitochrondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 23, 299–314.
13. Zhou, H., Wang, S., Hu, S., Chen, Y., and Ren, I. (2018). ER-Mitochondria Microdomains in Cardiac Ischemia-Reperfusion Injury: A Fresh Perspective. Front. Physiol. 9, 755.
14. Zhou, H., Ma, Q., Zhu, P., Ren, J., Reiter, R.J., and Chen, Y. (2018). Protective role of melatonin in cardiac ischemia-reperfusion injury: From pathogenesis to targeted therapy. J. Pineal Res. 64, e12471.
15. Zhang, X., Mao, G., Zhang, Z., Zhang, Y., Gao, Z., Chen, J., and Ding, W. (2020). Activating a7nAChRs enhances endothelial progenitor cell function partially through the JAK2/STAT3 signaling pathway. Microvasc. Res. 129, 103975.
16. Zhu, H., Ding, Y., Xu, X., Li, M., Fang, Y., Gao, B., Mao, H., Tong, G., Zhou, L., and Huang, J. (2017). Prostaglandin E1 protects coronary microvascular function via the glyoxen synthase kinase 3β-mitochondrial permeability transition pore pathway in rat hearts subjected to sodium laurate-induced coronary microembolization. Am. J. Transl. Res. 9, 2520–2534.
induced posttranslational modification of aldehyde dehydrogenase 2: A molecular mechanism of protection against alcoholic liver disease. Redox Biol. 14, 626–636.

58. Na, H.J., Yeum, C.E., Kim, H.S., Lee, J., Kim, J.Y., and Cho, Y.S. (2019). TSPYL5-mediated inhibition of p53 promotes human endothelial cell function. Angiogenesis 22, 281–293.

59. Imber, M., Pietrzyk-Brzezinska, A.J., and Antelmann, H. (2019). Redox regulation by reversible protein S-thiolation in Gram-positive bacteria. Redox Biol. 20, 130–145.

60. Hasna, J., Hague, F., Rodat-Despoix, L., Geerts, D., Leroy, C., Tulasne, D., Ouaddid-Ahidouch, H., and Kischel, P. (2018). Orai3 calcium channel and resistance to chemotherapy in breast cancer cells: the p53 connection. Cell Death Differ. 25, 693–707.

61. Wang, J., Zhu, P., Li, R., Ren, J., and Zhou, H. (2020). Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 30, 101415.

62. Denton, D., Xu, T., Dayan, S., Nicolson, S., and Kumar, S. (2019). Dpp regulates autophagy-dependent midgut removal and signals to block ecdysone production. Cell Death Differ. 26, 763–778.

63. Guidarelli, A., Fiorani, M., Cerioni, L., and Cantoni, O. (2019). Calcium signals between the ryanodine receptor- and mitochondria critically regulate the effects of arsinite on mitochondrial superoxide formation and on the ensuing survival vs apoptotic signaling. Redox Biol. 20, 285–295.

64. Zhou, H., Wang, J., Hu, S., Zhu, H., Toanc, S., and Ren, J. (2019). BI1 alleviates cardiac microvascular ischemia-reperfusion injury via modifying mitochondrial fission and inhibiting XO/ROS/F-actin pathways. J. Cell. Physiol. 234, 5056–5069.

65. Lionnard, L., Duc, P., Brennan, M.S., Kueh, A.J., Pal, M., Guardia, F., Mojsa, B., Damiano, M.A., Mora, S., Lassot, I., et al. (2019). TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ. 26, 902–917.

66. Kim, Y.R., Baek, J.L., Kim, S.H., Kim, M.A., Lee, B., Ryu, N., Kim, K.H., Choi, D.G., Kim, H.M., Murphy, M.P., et al. (2019). Therapeutic potential of the mitochondria-targeted antioxidant MitoQ in mitochondrial-ROS induced sensorineural hearing loss caused by Idh2 deficiency. Redox Biol. 20, 544–555.

67. Wolint, P., Bopp, A., Woloszyk, A., Tian, Y., Evrova, O., Hilde, M., Giovannoli, P., Calcagni, M., Hoerstrup, S.P., Buschmann, J., and Emmert, M.Y. (2019). Cellular self-assembly into 3D microtissues enhances the angiogenic activity and functional neovascularization capacity of human cardiopoietic stem cells. Angiogenesis 22, 37–52.

68. Kohlhauer, M., Pell, V.R., Burger, N., Spiroski, A.M., Gruszczyn, A., Mulvey, J.F., Moltahehedin, A., Costa, A.S.H., Frezza, C., Ghaleh, B., et al. (2019). Protection against cardiac ischemia-reperfusion injury by hypothermia and by inhibition of succinate accumulation and oxidation is additive. Basic Res. Cardiol. 114, 18.