Cancer checkpoint blockade opens an avenue of cancer immunotherapy with a potent clinical efficacy

Keishi Adachi and Koji Tamada

Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan

Key words
Anti-PD-1 Ab, cancer immunoediting, cancer immunosurveillance, immune checkpoint molecules, PD-1/PDL-1 pathway

Correspondence
Koji Tamada, Department of Immunology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
Tel: +81-836-22-2341; Fax: +81-836-22-2237;
E-mail: ktamada@yamaguchi-u.ac.jp

Funding Information
This study was supported by the Health Labour Sciences Research Grant and the translational research promotion fund from the Yamaguchi University Hospital.

Received March 18, 2015; Revised May 8, 2015; Accepted May 12, 2015

Cancer Sci 106 (2015) 945–950
doi: 10.1111/cas.12695

Conventionally, surgical therapy, chemotherapy and radiotherapy have been applied in the treatment of cancer and saved many lives. Meanwhile, immunotherapy has begun to be explored as a fourth therapy option for intractable or advanced cancer that cannot be treated by the conventional therapies. To date, several kinds of immune therapies, including cancer peptide vaccines, dendritic cell vaccines and adoptive transfer of cytotoxic T lymphocytes (CTL), have been clinically applied. A common theme in the previously explored immunotherapies has been to aim for therapeutic benefit by “evoking or reinforcing the host immune reactions against cancer.” Although certain immunotherapeutic approaches, including tumor-infiltrating lymphocytes (TIL) therapy and chimeric antigen receptor (CAR) T cells therapy, are reported to demonstrate therapeutic efficacies in some cancers, achievement of satisfactory clinical response rates and/or superior curative effects has been uncommon, even when induction of anti-tumor T cell responses is observed in peripheral blood. The immunosuppressive condition in the tumor microenvironment is among the most crucial factors that account for this issue, because tumoricidal effects of tumor-reactive T cells, which are evoked or reinforced in the host by immunotherapies, are attenuated when they make contact with tumors. Immune checkpoint molecules transduce co-inhibitory signals to immune cells, including T cells, and inherently work to maintain immunological homeostasis and tolerance by preventing overactivation of the host immune system. It has been revealed that some immune checkpoint molecules are highly expressed in tumor tissues and can be utilized to generate immunosuppressive conditions in the microenvironment around the tumor. Based on these findings, the research and development of novel immunotherapies, so-called “immune checkpoint blockade therapies,” has been intensive. In contrast to the previous approaches, the concept of an immune checkpoint blockade is to induce therapeutic benefit by “cancelling the immunosuppressive machineries generated in the tumor microenvironment.” The most representative immune checkpoint molecules underlying the mechanisms of tumor-associated immunosuppression are CTLA-4 (cytotoxic T-lymphocyte-associated protein-4, CD152) and PD-1 (programmed cell death-1, PD-1) which have been developed and approved as drugs in some countries, including the USA and Japan. Abs against PD-L1 (programmed cell death ligand-1) are also under development. It has been reported that, compared to the traditional therapies, those Abs display superior clinical efficacies, including prolongation of overall survival and increase of objective response rates in some types of can-
Mechanisms by which Cancer Cells Evade Host Immune System

How does cancer develop in an immunocompetent host? Interactions between tumor and immune system at the initial stage of carcinogenesis. The process from the emergence of neoplastic cells to the organization of tumor tissue is one of the most pivotal subjects that has been investigated actively in the field of cancer biology. Regarding tumor–immune system interaction at the initial stage of carcinogenesis (i.e. when the cancerous cells emerge), the following concept has been proposed and widely accepted: gene mutations are unremittingly induced with a constant probability by endogenous or environmental stimuli, so that mutant cells with a potential of carcinogenesis are thought to emerge routinely in vivo. Yet, the host immune system constantly monitors and detects these mutated neoplastic cells and eliminates them through the mechanism referred to as “cancer immunosurveillance.”\(^\text{22–24}\) However, through accumulated emergence of the mutated cells, some of them incidentally acquire the capacity to evade immunosurveillance (i.e. avoiding a clearance by the host immune system), and continue their expansion to establish the organization of tumor tissue. Those changes in the immunogenicity of tumor cells, which result from continuous pressure against the tumors by the host immune system and the consequent occurrence of the mutants resistant to the immunosurveillance, are referred to as “cancer immunoediting” (Fig. 1).\(^\text{23–25}\) In other words, cancers that we observe in clinical settings as a detectable mass have already evaded anti-tumor immunity by editing immunogenicity from the initial stage of carcinogenesis, while the frequency of the mutations (i.e. the number and/or the repertoire of neo-antigens) varies among the tumor types.\(^\text{26,27}\) Accordingly, immune resistance is inherent in the nature of established cancers.

Why is the effect of the conventional cancer immunotherapy often limited? Immunosuppressive mechanisms in the tumor microenvironment. It has been well-documented that tumor cells express tumor-specific and/or tumor-associated antigens (Ags; e.g. cancer-testis Ags and tumor-related mutated Ags), which can be recognized by T cells as immunogenic targets.\(^\text{28,29}\) Therefore, it seems a plausible approach to evoke or reinforce T cell responses against these tumor Ags through vaccination and/or promotion of immune-stimulatory mechanisms. However, even though tumor Ag-specific T cell responses are induced and detected in peripheral blood by such approaches, they do not necessarily lead to clinically appreciated therapeutic benefits, such as shrinkage of tumor mass or prolongation of survival. One of the major reasons accounting for this issue is the immunosuppressive tumor microenvironment, which is developed as a result of cancer immunoediting. In the tumor microenvironment, the cancer-specific milieus are formed by several kinds of cellular populations, including tumor cells, stromal cells and infiltrating immune cells. Those milieus have potent immunosuppressive potential, by which tumoricidal functions of tumor-specific T cells are massively prohibited. The pivotal mechanisms underlying the immunosuppressive functions in the tumor microenvironment can be summarized in three categories as described below. It is noteworthy that these mechanisms affect and coordinate one another and synergistically exert their potential.

1. Existence of immunosuppressive cellular populations: massive infiltration of regulatory T cells (Treg cells) and myeloid-derived suppressor cells are observed in certain types of tumors.\(^\text{30,31}\)
2. Production of immunosuppressive humoral factors: tumor cells and neighboring stromal cells produce suppressive cytokines, such as transforming growth factor-β and interleukin-10, as well as enzymes such as indoleamine 2,3-dioxygenase.\(^\text{30,32,33}\)
3. Expression of immune checkpoint molecules: CTLA-4 and PD-L1 are highly expressed on Treg cells and tumor cells, respectively. Expression of PD-L1 is also detected on tumor stromal cells and infiltrating immune cells.\(^\text{34}\)

In spite of these immunosuppressive mechanisms in the tumor microenvironment, adoptive transfer of TIL and CAR-T cells has demonstrated clinical efficacy in some cancers, including melanoma and hematological malignancies. Although precise reasons for the efficacy remain unclear, it might be associated with a hypothesis that adoptive T cell therapy does not require the induction phase in vivo where the immunosuppressive mechanisms mainly operate, or a hypothesis that in vitro activated T cells are resistant to immunosuppression in the effector phase in the tumor microenvironment. These points are important in exploring for the development of effective cancer immunotherapies.

Immune checkpoint molecules: A mechanism to restrain T cell responses in the tumor microenvironment. Although various innate and adaptive immune cells contribute to anti-tumor immunity, it is generally considered that T cells specific to cancers, including melanoma, non-small cell lung cancer, renal cell carcinoma and urothelial bladder cancer.\(^\text{40,50}\)

![Fig. 1. Immunosurveillance and cancer immunoediting.](image-url)
tumor Ags play a crucial role in tumor elimination. To evoke T cell activation, two signals are indispensable (Fig. 2).(9) One is the signal through T cell receptor (TCR) induced by the complex of antigenic peptide and major histocompatibility complex (MHC or HLA in human), and the other is the signals through the surface molecules termed stimulatory co-receptors, such as CD28, 4-1BB and OX-40. CD28 engages CD80 (B7-1) and CD86 (B7-2) expressed on professional antigen-presenting cells and transduce the stimulatory co-signal into T cells. Meanwhile, as mentioned above, immune checkpoint molecules, which transduce inhibitory co-signals, also exist to counteract stimulatory co-signals and prevent overactivation of immune systems. CTLA-4 and PD-1 are the most representative immune checkpoint molecules. Whether T cells are activated or inactivated upon TCR ligation depends on the balance between stimulatory and inhibitory co-signals. Thus, in the tumor microenvironment where immune checkpoint molecules are highly expressed, the balance of co-signals is greatly biased toward the inhibition-dominant side, so that anti-tumor responses are strikingly restrained (Fig. 3a). The aim of cancer immunotherapies is to make the balance biased toward the stimulation-dominant side, especially in tumor tissues. In conventional immunotherapy, the aim is sought by “putting the weights on the stimulatory side” (Fig. 3b). The reasons why this approach is less effective in inducing clinical benefits include the difficulty to provide enough stimulatory co-signals to exceed heavily overweighted inhibitory conditions in the tumor microenvironment. In addition, even if extremely potent stimulations are given to re-balance toward the stimulation-dominant side, such methods are difficult to perform in patients in practice because of adverse events associated with overactivation of immune cells in non-tumor organs. In contrast, the aim of immune checkpoint blockade therapy is to “decrease or remove the weights from the inhibitory side,” so as to re-balance anti-tumor immunity toward the stimulation-dominant side in the tumor microenvironment (Fig. 3c). It has been reported that the objective response rates of immune checkpoint blockade therapies are approximately 30% in melanoma(35) and 20% in non-small cell lung cancer.(36) In addition, immune checkpoint blockade therapy is less effective in some types of cancers. Some patients and certain types of cancers, unfortunately, do not respond to these therapies as a result of insufficient numbers and/or repertoires of neoantigens to evoke host immunity. Although it has yet to be refined as a therapy, immune checkpoint blockade therapy provides a major breakthrough in oncology as it can save cancer patients who are not cured by conventional therapies. In the following section, we discuss immune checkpoint blockade therapy for cancer by focusing on anti-PD-L1 Abs, which are currently

Fig. 2. Regulation of T cell responses by stimulatory and inhibitory co-signals. While T cell receptor (TCR) transduces “the first signal” into T cells, co-signaling receptors deliver “the second signal.” When stimulatory co-signals are predominant over inhibitory co-signals, the T cells activate to proliferate, produce cytokines and/or exert cytotoxic activities. In contrast, when inhibitory co-signals are predominant, T cells are rendered inactivated and become unresponsive to Ags, a status referred to as immune tolerance or exhaustion. A fine regulation of T cell functions by balancing stimulatory and inhibitory co-receptors routinely takes place in hosts to maintain immunological homeostasis.

Fig. 3. Conceptual diagram of cancer immunotherapy with immune checkpoint blockade. (a) The aim of cancer immunotherapies is to make the balance of the host immunity biased toward the stimulation-dominant side while the balance is strikingly biased toward the inhibition-dominant side in the tumor microenvironment. (b) In conventional immunotherapy, the immunological balance is readjusted by “putting the weight on the stimulatory side.” Yet, in many cases, such approaches cannot overcome the potent immunosuppressive mechanisms in the tumor microenvironment. (c) In immune checkpoint blockade therapy, the balance is readjusted by “decreasing or removing the weight from the inhibitory side.”
under clinical trials and will possibly be the next drugs approved for use in this therapeutic approach.

Immune Checkpoint Blockade Therapy by Anti-PD-L1 Ab

Functions of PD-1/PD-L1 inhibitory co-signaling pathway. PD-1 is expressed on the cell surface of activated T cells, B cells and natural killer cells, and transduces an inhibitory signal upon the ligation with PD-L1/PD-L2. (15–17) Because PD-1-deficient mice suffer from spontaneous autoimmune diseases, PD-1 is considered to function as an immune checkpoint molecule that is indispensable for immunological homeostasis. (16,17) Although CTLA-4 is also a critical immune checkpoint molecule, as mentioned above, phenotypes of the gene-knockout mice are quite different. Deficiency of CTLA-4, but not PD-1, leads to lethal autoimmune diseases in mice, and the symptoms observed in PD-1-deficient mice are much milder than those in CTLA-4-deficient mice. (37–39) The mechanisms how CTLA-4 and PD-1 molecules display their immune checkpoint functions would explain the phenotypic differences between the mice deficient of these molecules. The expression of CTLA-4 is induced at the early stage of T cell activation, whereas PD-1 is expressed at the later stage, particularly after the differentiation into effector cells. Thus, in anti-tumor immunity, CTLA-4 plays an important role as an immune regulator during the priming of T cells in the draining lymph nodes of tumors, while PD-1 is the pivotal immune checkpoint molecule in the tumor microenvironment where tumor-specific T cells exert their tumoricidal functions (Fig. 4).

PD-L1, a ligand of PD-1, is expressed on certain immune cell types, including macrophages and activated T cells. (40,41) Unlike PD-1-deficient mice, PD-L1-deficient mice do not exhibit spontaneous autoimmune diseases. (42) However, the reactivities of PD-L1-deficient CD4+ and CD8+ T cells were strikingly augmented in vitro and in vivo as compared with those of wild-type T cells, confirming a crucial role of PD-L1 in the suppression of T cell activation. (43) Importantly, strong expression of PD-L1 has been detected in various types of tumor samples. (11,44) It has been reported that the expression levels of PD-L1 correlate with advanced stage of cancer and with poor prognosis of patients. (45) In the tumor microenvironment, the expression of PD-L1 is induced on tumor cells and stromal cells in response to inflammatory cytokines, such as interferon-γ (IFN-γ), produced by T cells infiltrating into tumor tissue. Thus, the expression of PD-L1 in tumor lesions is an essential mechanism of cancer immunoe-diting.

Antibody against PD-L1 as a therapeutic agent for cancer. As mentioned above, PD-1/PD-L1 pathway is an important immune checkpoint mechanism for limiting the overactivation of immune responses. Based on the differences between PD-1/PD-L1 and CTLA-4 in the expression patterns and in the phenotypes of the gene-knockout mice, anti-PD-L1 Ab is considered as a therapeutic agent for cancer which likely possesses the potential to inhibit the immunosuppressive effects in the tumor microenvironment with less adverse effects than anti-CTLA-4 Ab. The therapeutic efficacy of anti-PD-L1 Ab for cancer was initially demonstrated with experiments using mouse models. (11,36,47) Subsequently, Bristol-Myers Squibb developed BMS-936559, a fully human anti-PD-L1 monoclonal IgG4 Ab, and started clinical trials for patients with advanced cancers, including melanoma, non-small cell lung cancer and renal cell carcinoma. (48) As a result, the objective response rates were observed in 17% of patients with melanoma, 12% with renal cell carcinoma and 10% with non-small cell lung cancer. The rates of stable disease longer than 24 weeks were 27% in patients with melanoma, 41% in renal cell carcinoma and 12% in non-small cell lung cancer. Drug-related adverse events of grade 3 or 4 were detected in 9% of subjects, showing gastrointestinal symptoms, hyperglycemia and general fatigue.

Meanwhile, Genentech developed MPDL3280A, a fully human Fc-engineered anti-PD-L1 monoclonal IgG1 Ab, and initiated clinical trials in various solid tumors, including metastatic urothelial bladder cancer (UBC). (49) In recent studies administering MPDL3280A in UBC patients, the resected tumor tissues were subjected to immunohistochemistry for PD-L1 expression levels of PD-L1 correlate with advanced stage of cancer and with poor prognosis of patients. (45) In the tumor microenvironment, the expression of PD-L1 is induced on tumor cells and stromal cells in response to inflammatory cytokines, such as interferon-γ (IFN-γ), produced by T cells infiltrating into tumor tissue. Thus, the expression of PD-L1 in tumor lesions is an essential mechanism of cancer immunoe-diting.

Immune Checkpoint Blockade Therapy by Anti-PD-L1 Ab

Functions of PD-1/PD-L1 inhibitory co-signaling pathway. PD-1 is expressed on the cell surface of activated T cells, B cells and natural killer cells, and transduces an inhibitory signal upon the ligation with PD-L1/PD-L2. (15–17) Because PD-1-deficient mice suffer from spontaneous autoimmune diseases, PD-1 is considered to function as an immune checkpoint molecule that is indispensable for immunological homeostasis. (16,17) Although CTLA-4 is also a critical immune checkpoint molecule, as mentioned above, phenotypes of the gene-knockout mice are quite different. Deficiency of CTLA-4, but not PD-1, leads to lethal autoimmune diseases in mice, and the symptoms observed in PD-1-deficient mice are much milder than those in CTLA-4-deficient mice. (37–39) The mechanisms how CTLA-4 and PD-1 molecules display their immune checkpoint functions would explain the phenotypic differences between the mice deficient of these molecules. The expression of CTLA-4 is induced at the early stage of T cell activation, whereas PD-1 is expressed at the later stage, particularly after the differentiation into effector cells. Thus, in anti-tumor immunity, CTLA-4 plays an important role as an immune regulator during the priming of T cells in the draining lymph nodes of tumors, while PD-1 is the pivotal immune checkpoint molecule in the tumor microenvironment where tumor-specific T cells exert their tumoricidal functions (Fig. 4).

PD-L1, a ligand of PD-1, is expressed on certain immune cell types, including macrophages and activated T cells. (40,41) Unlike PD-1-deficient mice, PD-L1-deficient mice do not exhibit spontaneous autoimmune diseases. (42) However, the reactivities of PD-L1-deficient CD4+ and CD8+ T cells were strikingly augmented in vitro and in vivo as compared with those of wild-type T cells, confirming a crucial role of PD-L1 in the suppression of T cell activation. (43) Importantly, strong expression of PD-L1 has been detected in various types of tumor samples. (11,44) It has been reported that the expression levels of PD-L1 correlate with advanced stage of cancer and with poor prognosis of patients. (45) In the tumor microenvironment, the expression of PD-L1 is induced on tumor cells and stromal cells in response to inflammatory cytokines, such as interferon-γ (IFN-γ), produced by T cells infiltrating into tumor tissue. Thus, the expression of PD-L1 in tumor lesions is an essential mechanism of cancer immunoe-diting.

Antibody against PD-L1 as a therapeutic agent for cancer. As mentioned above, PD-1/PD-L1 pathway is an important immune checkpoint mechanism for limiting the overactivation of immune responses. Based on the differences between PD-1/PD-L1 and CTLA-4 in the expression patterns and in the phenotypes of the gene-knockout mice, anti-PD-L1 Ab is considered as a therapeutic agent for cancer which likely possesses the potential to inhibit the immunosuppressive effects in the tumor microenvironment with less adverse effects than anti-CTLA-4 Ab. The therapeutic efficacy of anti-PD-L1 Ab for cancer was initially demonstrated with experiments using mouse models. (11,36,47) Subsequently, Bristol-Myers Squibb developed BMS-936559, a fully human anti-PD-L1 monoclonal IgG4 Ab, and started clinical trials for patients with advanced cancers, including melanoma, non-small cell lung cancer and renal cell carcinoma. (48) As a result, the objective response rates were observed in 17% of patients with melanoma, 12% with renal cell carcinoma and 10% with non-small cell lung cancer. The rates of stable disease longer than 24 weeks were 27% in patients with melanoma, 41% in renal cell carcinoma and 12% in non-small cell lung cancer. Drug-related adverse events of grade 3 or 4 were detected in 9% of subjects, showing gastrointestinal symptoms, hyperglycemia and general fatigue.

Meanwhile, Genentech developed MPDL3280A, a fully human Fc-engineered anti-PD-L1 monoclonal IgG1 Ab, and initiated clinical trials in various solid tumors, including metastatic urothelial bladder cancer (UBC). (49) In recent studies administering MPDL3280A in UBC patients, the resected tumor tissues were subjected to immunohistochemistry for PD-L1 expression levels of PD-L1 correlate with advanced stage of cancer and with poor prognosis of patients. (45) In the tumor microenvironment, the expression of PD-L1 is induced on tumor cells and stromal cells in response to inflammatory cytokines, such as interferon-γ (IFN-γ), produced by T cells infiltrating into tumor tissue. Thus, the expression of PD-L1 in tumor lesions is an essential mechanism of cancer immunoe-diting.

Immune Checkpoint Blockade Therapy by Anti-PD-L1 Ab

Functions of PD-1/PD-L1 inhibitory co-signaling pathway. PD-1 is expressed on the cell surface of activated T cells, B cells and natural killer cells, and transduces an inhibitory signal upon the ligation with PD-L1/PD-L2. (15–17) Because PD-1-deficient mice suffer from spontaneous autoimmune diseases, PD-1 is considered to function as an immune checkpoint molecule that is indispensable for immunological homeostasis. (16,17) Although CTLA-4 is also a critical immune checkpoint molecule, as mentioned above, phenotypes of the gene-knockout mice are quite different. Deficiency of CTLA-4, but not PD-1, leads to lethal autoimmune diseases in mice, and the symptoms observed in PD-1-deficient mice are much milder than those in CTLA-4-deficient mice. (37–39) The mechanisms how CTLA-4 and PD-1 molecules display their immune checkpoint functions would explain the phenotypic differences between the mice deficient of these molecules. The expression of CTLA-4 is induced at the early stage of T cell activation, whereas PD-1 is expressed at the later stage, particularly after the differentiation into effector cells. Thus, in anti-tumor immunity, CTLA-4 plays an important role as an immune regulator during the priming of T cells in the draining lymph nodes of tumors, while PD-1 is the pivotal immune checkpoint molecule in the tumor microenvironment where tumor-specific T cells exert their tumoricidal functions (Fig. 4).

PD-L1, a ligand of PD-1, is expressed on certain immune cell types, including macrophages and activated T cells. (40,41) Unlike PD-1-deficient mice, PD-L1-deficient mice do not exhibit spontaneous autoimmune diseases. (42) However, the reactivities of PD-L1-deficient CD4+ and CD8+ T cells were strikingly augmented in vitro and in vivo as compared with those of wild-type T cells, confirming a crucial role of PD-L1 in the suppression of T cell activation. (43) Importantly, strong expression of PD-L1 has been detected in various types of tumor samples. (11,44) It has been reported that the expression levels of PD-L1 correlate with advanced stage of cancer and with poor prognosis of patients. (45) In the tumor microenvironment, the expression of PD-L1 is induced on tumor cells and stromal cells in response to inflammatory cytokines, such as interferon-γ (IFN-γ), produced by T cells infiltrating into tumor tissue. Thus, the expression of PD-L1 in tumor lesions is an essential mechanism of cancer immunoe-diting.
L1, and the patients were stratified by the expression levels of PD-L1 in the tumor lesions. The objective responses were observed in 43% of patients with high expression of PD-L1, including 7% complete response, whereas only 11% of patients with low or no expression of PD-L1 showed objective responses. Interestingly, the therapeutic effects of MPDL3280A were associated with the PD-L1 expression on immune cells infiltrating into the tumor, but not with PD-L1 levels on tumor cells. It is noteworthy that the clinical responses were rapidly induced after the first treatment (median 42 days), and the reduction of tumor burden was observed in 55% of the patients. In other types of tumor, MPDL3280A achieved objective response rates at 23% in non-small cell lung cancer, 30% in melanoma and 14% in renal cell carcinoma.\(^{(50)}\) Treatment-related adverse events of Grade 3 or 4 were observed in 12.6% of patients receiving MPDL3280A, including gastrointestinal symptoms, respiratory symptoms and liver dysfunction. Based on the results of these recent clinical trials, MPDL3280A was designated as a breakthrough therapy by the US Food and Drug Administration for the treatment of UBC and non-small cell lung cancer.

Biomarkers correlated with therapeutic efficacy of anti-PD-L1 Ab in cancer patients. Identifying predictive biomarkers for the safety, efficacy or lack of responses of drugs is one of the most important and pressing subjects in the field of clinical cancer research so as to accomplish personalized medicine. In 2014, Genentech demonstrated biomarkers correlated with the responses to MPDL3280A in patients of several cancers, including non-small cell lung cancer, melanoma, renal cell carcinoma, and head and neck squamous cell carcinoma.\(^{(49,50)}\) Resembling the aforementioned case of UBC, the clinically beneficial responses to MPDL3280A treatment were significantly correlated with the expression levels of PD-L1 on the immune cells infiltrating into tumor tissues. In contrast, PD-L1 expression levels on tumor cells showed little correlation with the clinical responses to MPDL3280A. This observation is inconsistent with those demonstrated in studies using anti-PD-1 Ab, where significant correlation between PD-L1 expression on tumor cells and the clinical response was appreciated.\(^{(19,51)}\) The reason why such discrepancy was observed between anti-PD-L1 and anti-PD-L1 Ab therapies remains unclear.

Analysis of the gene expression signature in tumor tissues prior to the MPDL3280A treatment indicated a significant correlation between CTLA-4 gene expression and the clinical responses.\(^{(50)}\) Moreover, in melanoma patients, gene expressions of IFN-γ and the IFN-γ-inducible genes (e.g. indoleamine 2,3-dioxygenase 1 [IDO1] and monokine induced by gamma interferon [MIG or CXCL9] in pre-treated tumor tissues) demonstrated a strong correlation with the regression of the tumors by MPDL3280A treatment.\(^{(50)}\) Such associations were found to be specific in melanoma, but much weaker or no association was observed in patients with NSCLC or renal cell carcinoma.\(^{(50)}\) These findings suggest important biological markers which predict clinical efficacy in anti-PD-L1 Ab therapy, and also indicate the concept that, for the best clinical benefit by anti-PD-L1 Ab, anti-tumor immunity is generated but simultaneously suppressed by the PD-L1/PD-1 immune checkpoint mechanism when the subjects receive the treatment. Administration of MPDL3280A in such patients cancels the suppression and releases the “ready-to-go” status of the anti-tumor immunity.

Future Perspective of Immune Checkpoint Blockade Therapy against Cancer

To date, the antibodies against CTLA-4 and PD-1 have been developed as highly effective drugs for advanced melanoma. In this review, we first explained molecular and cellular mechanisms underlying immune checkpoint blockade therapy, and then focused on anti-PD-L1 Ab, a drug recently developed to attenuate the PD-L1/PD-1 immune checkpoint, to describe its therapeutic efficacy, adverse events and the predictive biological markers associated with clinical responses. Immune checkpoint molecules other than CTLA-4 and PD-1/PD-L1, including lymphocyte-activation gene-3, T cell immunoglobulin mucin-3, and B and T lymphocyte attenuator (BTLA), are deemed to be potential clinical targets, and research and development of those molecules are actively carried out at present.\(^{(52-54)}\) For better clinical application of immune checkpoint blockade therapy, the following points need to be explored in future studies:

1. Immune checkpoint molecules which execute predominant immunosuppressive effects would vary among distinct cancers and individual cases. Therefore, diagnostic tools to identify the most appropriate target manipulated for the treatment should be developed.
2. Therapeutic drugs with the least adverse events should be designed by elucidating the molecular and cellular mechanisms underlying the immune inhibitory function of each immune checkpoint molecule.
3. Combined immunotherapies where Abs against distinct immune checkpoint molecules are combined, or immune checkpoint blockade is combined with non-immunotherapies, including chemotherapies, tyrosine kinase inhibitors and irradiation therapy, should be explored to further augment therapeutic efficacies.
4. Predictive biomarkers that accurately correlate with clinical responses or adverse events in immune checkpoint therapies should be identified.

It is highly anticipated that, by solving these issues, immune checkpoint blockade therapies can be applied on a broader range of cancers with more effective and safer protocols.

Disclosure Statement

All authors have no conflict of interest to declare.

References

1. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. *Nature* 2011; 480: 480–9.
2. Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. *J Clin Oncol* 2011; 29: 4828–36.
3. Yee C. The use of endogenous T cells for adoptive transfer. *Immunol Rev* 2014; 257: 250–63.
4. Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. *Blood* 2014; 123: 2625–35.
5. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. *Science* 2015; 348: 62–8.
6. Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. *J Clin Oncol* 2015. Doi: 10.1200/JCO.2014.59.4358.
7. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. *Nat Rev Cancer* 2012; 12: 252–64.
22 Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. *Nat Rev Immunol* 2013; 13: 227–42.

23 Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: a novel mechanism of the immunoglobulin gene superfamily, upon programmed cell death. *EMBO J* 1992; 11: 3887–95.

24 Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. *Immunity* 1999; 11: 141–51.

25 Nishimura H, Okazaki T, Tanaka Y et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. *Science* 2001; 291: 319–22.

26 Schneider H, Downey J, Smith A et al. Enhancement of antitumor immunity from immunosurveillance to tumor escape. *Cancer Immunol Immunother* 2005; 54: 897–905.

27 Alexandrov LB, Nik-Zainal S, Wedge DC et al. Signatures of mutational processes in human cancer. *Nature* 2013; 500: 415–21.

28 Lucas S, Coulibal PG. About human tumor antigens to be used in immuno-therapy. *Semin Immunol* 2008; 20: 301–7.

29 Coulibal PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. *Nat Rev Cancer* 2014; 14: 135–46.

30 Whiteside TL. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? *Cancer Immunol Immunother* 2014; 63: 67–72.

31 Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. *Immunology* 2013; 138: 105–15.

32 Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. *Trends Immunol* 2010; 31: 220–7.

33 Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. *Trends Immunol* 2013; 34: 137–43.

34 Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. *Nat Rev Immunol* 2008; 8: 467–77.

35 Ott PA, Hodi FS, Robert C. CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. *Clin Cancer Res* 2013; 19: 5300–9.

36 Anagnostou VK, Brahmer Jr. Cancer immunotherapy: a future paradigm shift in the treatment of non-small cell lung cancer. *Clin Cancer Res* 2015; 21: 976–84.

37 Bayry J. Autoimmunity: CTLA-4: a key protein in autoimmunity. *Nat Rev Rheumatol* 2009; 5: 244–5.

38 Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. *Immunity* 1995; 3: 541–7.

39 Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. *Science* 1995; 270: 985–8.

40 Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. *Nat Med* 1999; 5: 1365–9.

41 Tamura H, Dong H, Zhu G et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. *Blood* 2001; 97: 1809–16.

42 Dong H, Zhu G, Tamada K, Flies DB, van Deursen JM, Chen L. B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. *Immunology* 2004; 20: 327–36.

43 Latchman YE, Liang SC, Wu Y et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. *Proc Natl Acad Sci USA* 2004; 101: 10691–6.

44 Ostrand-Rosenberg S, Horn LA, Haile ST. The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. *J Immunol* 2014; 193: 3835–41.

45 Thompson RH, Hunts ME, Leibovich BC et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. *Cancer Res* 2006; 66: 3381–5.

46 Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. *Proc Natl Acad Sci USA* 2002; 99: 12293–7.

47 Hirano F, Kaneko K, Tamura H et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. *Cancer Res* 2005; 65: 1089–96.

48 Brahmer Jr, Tykodi SS, Chow LQ et al. Safety and efficacy of anti-PD-L1 antibody in patients with advanced cancer. *N Engl J Med* 2012; 366: 2455–65.

49 Powles T, Eder JP, Fine GD et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. *Nature* 2014; 515: 558–62.

50 Herbst RS, Soria JC, Kowanetz M et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. *Nature* 2014; 515: 515–17.

51 Taube JM, Klein A, Brahmer Jr et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. *Clin Cancer Res* 2014; 20: 5064–74.

52 Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. *J Immunother Cancer* 2014; 2: 14.

53 Kikushige Y, Miyamoto T. TIM-3 as a novel therapeutic target for eradicating acute myelogenous leukemia stem cells. *Int J Hematol* 2013; 98: 627–33.

54 Pasero C, Olive D. Interfering with co-inhibitory molecules: BTLA/HVEM as new targets to enhance anti-tumor immunity. *Immunol Lett* 2013; 151: 71–5.

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.