1955. Novel Compound Reverses Vancomycin Resistance in Vancomycin-resistant Enterococcus (VRE)

Kenneth Onyedibe, MBBS, MSc, FWACP, FMCPath1; Neetu Dayal, PhD2 and Herman Sintim, PhD2; Purdue Institute for Immunology, Inflammation and Infectious Diseases, Purdue University, West Lafayette, Indiana;2Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana

Session: 227 Novel Antimicrobials and Approaches Against MDR Organisms Saturday, October 5, 2019: 11:30 AM

Background. Enterococcus causes 14% of all hospital-associated infections (HAIs) according to Centers for Disease Control and Prevention (CDC) data. 35.5% of these HAIs are caused by Vancomycin-resistant Enterococcus (VRE) including highly fatal bacteremia, surgical site infections, and urinary tract infections. We present a novel synthetic compound, HSD 03-21 that could make VRE completely susceptible to vancomycin in-vitro.

Methods. HSD 03-21 was synthesized de novo from a hydroxybenzylidene – indolinone backbone in our laboratory. The minimum inhibitory concentration (MIC) of HSD 03-21 and vancomycin against VRE were determined according to clinical laboratory standards institute (CLSI) guidelines. The standard checkerboard assay was used to determine vancomycin-HSD 03-21 interactions against VRE. Briefly, HSD 03-21 and vancomycin at 10 mg/mL were prepared and diluted serially along the ordinate and abscissa of 96-well microtiter plates, respectively. Bacteria was standardized using the 0.5 McFarland standard, diluted (1:100), aliquoted into respective wells and incubated at 37°C for 18–20 hours. All assays were run in triplicates. The fractional inhibitory concentration (FIC) index was calculated for each combination. The FIC of either agent was calculated as: FIC (vancomycin) = MIC of vancomycin in combination/ MIC of vancomycin alone and FIC (HSD 03-21) = MIC of HSD 03-21 alone in combination. The cumulative FIC index ∑FICI was then calculated as: ∑FICI = FIC(vancomycin) + FIC(HSD 03-21). The calculated ∑FICI indices were interpreted as synergistic if ∑FIC: ≤ 0.5.

Results. The MIC of vancomycin for VRE faecalis was 256 μg/mL1 while that of HSD 03-21 was 128 μg mL−1. When vancomycin was combined with HSD 03-21 at 8 μg mL−1 (1/16 MIC), there was a reduction in MIC of vancomycin to 0.5 μg mL−1. The combination showed excellent synergy with FIC of 0.06.

Conclusion. HSD 03-21 reduced the MIC of vancomycin from 256 to 0.5 μg mL−1. This has an immense potential of changing the way we use vancomycin and the treatment of VRE infections. Translation of this novel compound could save thousands of lives from VRE and the failures and inherent toxicities of current doses of vancomycin.

Figure 1. 500 fold reduction in vancomycin MIC

1956. Reduction in Endotracheal Aspirate Cultures after Implementation of a Diagnostic Stewardship Intervention in a Pediatric Intensive Care Unit

Anna Sick-Samuels, MD, MPH1; Jules Bergmann, MD2; Matthew Linn, BS3; James Fackler, MD4; Sean Berenholz, MD5; Joe Dwyer, MAEd, EdD(c), RRT2; Katherine Hoops, MD, MPH4; Elizabeth Colantonii, PhD5 and Aaron Milstone, MD, MHS6;1Johns Hopkins University School of Medicine, Baltimore, Maryland; Johns Hopkins Hospital, Baltimore, Maryland; Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Disclosures. All Authors: No reported Disclosures.

Figure 1. Monthly rate of endotracheal aspirate cultures per 100 ventilator-days in the pediatric intensive care unit. This control chart shows the monthly rate, upper and lower limits, and the overall rate before and after introduction of the intervention in April 2018.

1957. Impact of β-Lactam Antibiotic Allergy on Antimicrobial Use, Clinical Outcomes, and Costs for Hospitalized Children

Trabern Wallace Jones, MD1; Nora Fino, MS2; Jared Olson, PharmD2; Lauri Hicks, DO3; Katherine E. Fleming-Dutra, MD4 and Adam Hersch, MD, PhD5;1University of Utah School of Medicine, Salt Lake City, Utah;2Centers for Disease Control and Prevention, Atlanta, Georgia;3University of Utah, Salt Lake City, Utah

Session: 228 Pediatric Stewardship Saturday, October 5, 2019: 10:45 AM

Background. Most β-lactam antibiotic allergies (BLA) are incorrectly diagnosed and could be de-labeled. Adult patients with BLA are more likely to receive broader-spectrum antimicrobials and experience worse health outcomes than nonallergic patients. Similar studies on the impact of BLA on antimicrobial use and clinical outcomes are limited in pediatrics. Our objective was to compare antimicrobial use, and clinical and economic outcomes between hospitalized children with and without BLA.

Methods. This was a retrospective cohort of pediatric patients hospitalized at an Intermountain Healthcare (IH) hospital from 2007 to 2017. IH has 22 hospitals including one children's hospital. Patients aged 30 days–17 years who received ≥1 dose of an antimicrobial during hospitalization were included. The exposure variable was the presence of BLA (penicillins or cephalosporins) in the allergy field of the medical record. Patients with BLA were matched to nonallergic controls on age, sex, race, clinical service line, admission date, children's hospital or other hospital, and co-morbid conditions. We used multivariable log-transformed-linear and logistic regression models to compare patients with BLA to controls in terms of antibiotic selection and total antimicrobial days, antimicrobial cost, length-of-stay (LOS) and 30-day readmission. For antibiotic selection we examined the odds of receiving the following broader-spectrum agents individually and in composite: vancomycin, fluoroquinolones, clindamycin, carbapenems, and macrolides.

Disclosures. All Authors: No reported Disclosures.