Unsupervised Opinion Summarization with Noising and Denoising

Reinald Kim Amplayo and Mirella Lapata
Institute for Language, Cognition and Computation
School of Informatics, University of Edinburgh
reinald.kim@ed.ac.uk, mlap@inf.ed.ac.uk

Abstract
The supervised training of high-capacity models on large datasets containing hundreds of thousands of document-summary pairs is critical to the recent success of deep learning techniques for abstractive summarization. Unfortunately, in most domains (other than news) such training data is not available and cannot be easily sourced. In this paper we enable the use of supervised learning for the setting where there are only documents available (e.g., product or business reviews) without ground truth summaries. We create a synthetic dataset from a corpus of user reviews by sampling a review, pretending it is a summary, and generating noisy versions thereof which we treat as pseudo-review input. We introduce several linguistically motivated noise generation functions and a summarization model which learns to denoise the input and generate the original review. At test time, the model accepts genuine reviews and generates a summary containing salient opinions, treating those that do not reach consensus as noise. Extensive automatic and human evaluation shows that our model brings substantial improvements over both abstractive and extractive baselines.

1 Introduction
The proliferation of massive numbers of online product, service, and merchant reviews has provided strong impetus to develop systems that perform opinion mining automatically (Pang and Lee, 2008). The vast majority of previous work (Hu and Liu, 2006) breaks down the problem of opinion aggregation and summarization into three interrelated tasks involving aspect extraction (Mukherjee and Liu, 2012), sentiment identification (Pang et al., 2002; Pang and Lee, 2004), and summary creation based on extractive (Radev et al., 2000; Lu et al., 2009) or abstractive methods (Ganesh et al., 2010; Carenini et al., 2013; Gerani et al., 2014; Di Fabbrizio et al., 2014). Although potentially more challenging, abstractive approaches seem more appropriate for generating informative and concise summaries, e.g., by performing various rewrite operations (e.g., deletion of words or phrases and insertion of new ones) which go beyond simply copying and rearranging passages from the original opinions.

Abstractive summarization has enjoyed renewed interest in recent years thanks to the availability of large-scale datasets (Sandhaus, 2008; Hermann et al., 2015; Grusky et al., 2018; Liu et al., 2018; Fabbri et al., 2019) which have driven the development of neural architectures for summarizing single and multiple documents. Several approaches (See et al., 2017; Celikyilmaz et al., 2018; Paulus et al., 2018; Gehrmann et al., 2018; Liu et al., 2018; Perez-Beltrachini et al., 2019; Liu and Lapata, 2019; Wang and Ling, 2016) have shown promising results with sequence-to-sequence models that encode one or several source documents and then decode the learned representations into an abstractive summary.

The supervised training of high-capacity models on large datasets containing hundreds of thousands of document-summary pairs is critical to the recent success of deep learning techniques for abstractive summarization. Unfortunately, in most domains (other than news) such training data is not available and cannot be easily sourced. For instance, manually writing opinion summaries is practically impossible since an annotator must read all available reviews for a given product or service which can be prohibitively many. Moreover, different types of products impose different restrictions on the summaries which might vary in terms of length, or the types of aspects being mentioned, rendering the application of transfer learning techniques (Pan and Yang, 2010) problematic.

Motivated by these issues, Chu and Liu (2019) consider an unsupervised learning setting where
there are only documents (product or business reviews) available without corresponding summaries. They propose an end-to-end neural model to perform abstractive summarization based on (a) an autoencoder that learns representations for each review and (b) a summarization module which takes the aggregate encoding of reviews as input and learns to generate a summary which is semantically similar to the source documents. Due to the absence of ground truth summaries, the model is not trained to reconstruct the aggregate encoding of reviews, but rather it only learns to reconstruct the encoding of individual reviews. As a result, it may not be able to generate meaningful text when the number of reviews is large. Furthermore, autoencoders are constrained to use simple decoders lacking attention (Bahdanau et al., 2014) and copy (Vinyals et al., 2015) mechanisms which have proven useful in the supervised setting leading to the generation of informative and detailed summaries. Problematically, a powerful decoder might be detrimental to the reconstruction objective, learning to express arbitrary distributions of the output sequence while ignoring the encoded input (Kingma and Welling, 2014; Bowman et al., 2016).

In this paper, we enable the use of supervised techniques for unsupervised summarization. Specifically, we automatically generate a synthetic training dataset from a corpus of product reviews, and use this dataset to train a more powerful neural model with supervised learning. The synthetic data is created by selecting a review from the corpus, pretending it is a summary, generating multiple noisy versions thereof and treating these as pseudo-reviews. The latter are obtained with two noise generation functions targeting textual units of different granularity: segment noising introduces noise at the word- and phrase-level, while document noising replaces a review with a semantically similar one. We use the synthetic data to train a neural model that learns to denoise the pseudo-reviews and generate the summary. This is motivated by how humans write opinion summaries, where denoising can be seen as removing diverging information. Our proposed model consists of a multi-source encoder and a decoder equipped with an attention mechanism. Additionally, we introduce three modules: (a) explicit denoising guides how the model removes noise from the input encodings, (b) partial copy enables to copy information from the source reviews only when necessary, and (c) a discriminator helps the decoder generate topically consistent text.

We perform experiments on two review datasets representing different domains (movies vs businesses) and summarization requirements (short vs longer summaries). Results based on automatic and human evaluation show that our method outperforms previous unsupervised summarization models, including the state-of-the-art abstractive system of Chu and Liu (2019) and is on the same par with a state-of-the-art supervised model (Wang and Ling, 2016) trained on a small sample of (genuine) review-summary pairs.

2 Related Work

Most previous work on unsupervised opinion summarization has focused on extractive approaches (Carenini et al., 2006; Ku et al., 2006; Paul et al., 2010; Angelidis and Lapata, 2018) where a clustering model groups opinions of the same aspect, and a sentence extraction model identifies text representative of each cluster. Ganesan et al. (2010) propose a graph-based abstractive framework for generating concise opinion summaries, while Di Fabbrizio et al. (2014) use an extractive system to first select salient sentences and then generate an abstractive summary based on hand-written templates (Carenini and Moore, 2006).

As mentioned earlier, we follow the setting of Chu and Liu (2019) in assuming that we have access to reviews but no gold-standard summaries. Their model learns to generate opinion summaries by reconstructing a canonical review of the average encoding of input reviews. Our proposed method is also abstractive and neural-based, but eschews the use of an autoencoder in favor of supervised sequence-to-sequence learning through the creation of a synthetic training dataset. Concurrently with our work, Bražinskas et al. (2019) use a hierarchical variational autoencoder to learn a latent code of the summary. While they also use randomly sampled reviews for supervised training, our dataset construction method is more principled making use of linguistically motivated noise functions.

Our work relates to denoising autoencoders (DAEs; Vincent et al., 2008), which have been effectively used as unsupervised methods for various NLP tasks. Earlier approaches have shown that DAEs can be used to learn high-level text representations for domain adaptation (Glorot et al., 2011) and multimodal representations of textual and visual input (Silberer and Lapata, 2014). Recent
work has applied DAEs to text generation tasks, specifically to data-to-text generation (Freitag and Roy, 2018) and extractive sentence compression (Fevry and Phang, 2018). Our model differs from these approaches in two respects. Firstly, while previous work has adopted trivial noising methods such as randomly adding or removing words (Fevry and Phang, 2018) and randomly corrupting encodings (Silberer and Lapata, 2014), our noise generators are more linguistically informed and suitable for the opinion summarization task. Secondly, while in Freitag and Roy (2018) the decoder is limited to vanilla RNNs, our noising method enables the use of more complex architectures, enhanced with attention and copy mechanisms, which are known to improve the performance of summarization systems (Rush et al., 2015; See et al., 2017).

3 Modeling Approach

Let $X = \{x_1, \ldots, x_N\}$ denote a set of reviews about a product (e.g., a movie or business). Our aim is to generate a summary $y$ of the opinions expressed in $X$. We further assume access to a corpus $C = \{X_1, \ldots, X_M\}$ containing multiple reviews about $M$ products without corresponding opinion summaries.

Our method consists of two parts. We first create a synthetic dataset $D = \{(X, y)\}$ consisting of summary-review pairs. Specifically, we sample review $x_i$ from $C$, pretend it is a summary, and generate multiple noisy versions thereof (i.e., pseudo-reviews). At training time, a denoising model learns to remove the noise from the reviews and generate the summary. At test time, the same denoising model is used to summarize actual reviews. We use denoising as an auxiliary task for opinion summarization to simulate the fact that summaries tend to omit opinions that do not represent consensus (i.e., noise in the pseudo-review), but include salient opinions found in most reviews (i.e., non-noisy parts of the pseudo-review).

3.1 Synthetic Dataset Creation via Noising

We sample a review as a candidate summary and generate noisy versions thereof, using two functions: (a) segment noising adds noise at the token and chunk level, and (b) document noising replaces the text with a semantically similar review. Reviews are subjective, and often include first-person singular pronouns such as I and my and several unnecessary characters or symbols. They may also vary in length and detail. We discard reviews from corpus $C$ which display an excess of these characteristics based on a list of domain-specific constraints (detailed in Section 4). We sample a review $y$ from the filtered corpus, which we use as the candidate summary.

Segment Noising Given candidate summary $y = \{w_1, \ldots, w_L\}$, we create a set of segment-level noisy versions $X^{(c)} = \{x_1^{(c)}, \ldots, x_N^{(c)}\}$. Previous work has adopted noising techniques based on random $n$-gram alterations (Fevry and Phang, 2018), however, we instead rely on two simple, linguistically informed noise functions. Firstly, we train a bidirectional language model (BiLM; Peters et al., 2018) on the review corpus $C$. For each word in $y$, the BiLM predicts a softmax word distribution which can be used to replace words. Secondly, we utilize FLAIR\(^1\) (Akbik et al., 2019), an off-the-shelf state-of-the-art syntactic chunker that leverages contextual embeddings, to shallow parse each review $r$ in corpus $C$. This results in a list of chunks $C_r = \{c_1, \ldots, c_K\}$ with corresponding syntactic labels $G_r = \{g_1, \ldots, g_K\}$ for each review $r$, which we use for replacing and rearranging chunks.

Segment-level noise involves token- and chunk-

\(^1\)https://github.com/zalandoresearch/flair
level alterations. Token-level alterations are performed by replacing tokens in $y$ with probability $p^R$. Specifically, we replace token $w_j$ in $y$, by sampling token $w'_j$ from the BiLM predicted word distribution (see in Figure 1). We use nucleus sampling (Holtzman et al., 2019), which samples from a rescaled distribution of words with probability higher than a threshold $p^N$, instead of the original distribution. This has been shown to yield better samples in comparison to top-k sampling, mitigating the problem of text degeneration (Holtzman et al., 2019).

Chunk-level alterations are performed by removing and inserting chunks in $y$, and rearranging them based on a sampled syntactic template. Specifically, we first shallow parse $y$ using FLAIR, obtaining a list of chunks $C_y$, each of which is removed with probability $p^R$. We then randomly sample a review $r$ from our corpus and use its sequence of chunk labels $G_r$ as a syntactic template, which we fill in with chunks in $C_y$ (sampled without replacement), if available, or with chunks in corpus $C$, otherwise. This results in a noisy version $x^{(c)}$ (see Figure 1 for an example). Repeating the process $N$ times produces the noisy set $X^{(c)}$. We describe this process step-by-step in the Appendix.

**Document Noising** Given candidate summary $y = \{w_1, \ldots, w_L\}$, we also create another set of document-level noisy versions $X^{(d)} = \{x^{(d)}_1, \ldots, x^{(d)}_N\}$. Instead of manipulating parts of the summary, we altogether replace it with a similar review from the corpus and treat it as a noisy version. Specifically, we select $N$ reviews that are most similar to $y$ and discuss the same product. To measure similarity, we use IDF-weighted ROUGE-1 F1 (Lin, 2004), where we calculate the lexical overlap between the review and the candidate summary, weighted by token importance:

$$overlap = \sum_{w_j \in x} (\text{IDF}(w_j) \times 1(w_j \in y))$$

$$P = \frac{overlap}{|x|} \quad R = \frac{overlap}{|y|} \quad F_1 = \frac{2 \times P \times R}{P + R}$$

where $x$ is a review in the corpus, $1(\cdot)$ is an indicator function, and $P$, $R$, and $F_1$ are the ROUGE-1 precision, recall, and $F_1$, respectively. The reviews with the highest $F_1$ are selected as noisy versions of $y$, resulting in the noisy set $X^{(d)}$ (see Figure 1).

We create a total of $2 \times N$ noisy versions of $y$, i.e., $X = X^{(c)} \cup X^{(d)}$ and obtain our synthetic training data $D = \{(X, y)\}$ by generating $|D|$ pseudo-review-summary pairs. Both noising methods are necessary to achieve aspect diversity amongst input reviews. Segment noising creates reviews which may mention aspects not found in the summary, while document noising creates reviews with content similar to the summary. Relying on either noise function alone decreases performance (see the ablation studies in Section 5). We show examples of these noisy versions in the Appendix.

### 3.2 Summarization via Denoising

We summarize (aka denoise) the input $X$ with our model which we call $\text{DENOISESUM}$, illustrated in Figure 2. A multi-source encoder produces an encoding for each pseudo-review. The encodings are further corrected via an explicit denoising module, and then fused into an aggregate encoding for each type of noise. Finally, the fused encodings are passed to a decoder with a partial copy mechanism to generate the summary $y$.

**Multi-Source Encoder** For each pseudo-review $x_j \in X$ where $x_j = \{w_1, \ldots, w_L\}$ and $w_k$ is the $k$th token in $x_j$, we obtain contextualized token encodings $\{h_k\}$ and an overall review encoding $d_j$ with a BiLSTM encoder (Hochreiter and Schmidhuber, 1997):

$$\tilde{h}_k = \text{LSTM}_f(w_k, \tilde{h}_{k-1})$$

$$\hat{h}_k = \text{LSTM}_b(w_k, \hat{h}_{k+1})$$

$$h_k = [\tilde{h}_k; \hat{h}_k]$$

$$d_j = [\tilde{h}_L; \hat{h}_1]$$

where $\tilde{h}_k$ and $\hat{h}_k$ are forward and backward hidden states of the BiLSTM at timestep $k$, ; denotes concatenation (see module (a) in Figure 2).

**Explicit Denoising** The model should be able to remove noise from the encodings before decoding the text. While previous methods (Vincent et al., 2008; Freitag and Roy, 2018) implicitly assign the denoising task to the encoder, we propose an explicit denoising component (see module (b) in Figure 2). Specifically, we create a correction vector $c_j^{(c)}$ for each pseudo-review $d_j^{(c)}$ which resulted from the application of segment noise. $c_j^{(c)}$ represents the adjustment needed to denoise each dimension of $d_j^{(c)}$ and is used to create $\tilde{d}_j^{(c)}$, a denoised...
encoding of $d_j^{(c)}$:

$$q = \sum_{j=1}^{N} d_j^{(c)}/N$$

$$c_j^{(c)} = \tanh(W_d^{(c)}d_j^{(c)} + b_d^{(c)})$$

$$\hat{d}_j^{(c)} = d_j^{(c)} + c_j^{(c)}$$

where $q$ represents a mean review encoding and functions as a query vector, $W$ and $b$ are learned parameters, and superscript $(c)$ signifies segment noising. We can interpret the correction vector as removing or adding information to each dimension when its value is negative or positive, respectively. Analogously, we obtain $\hat{d}_j^{(d)}$ for pseudo-reviews $\hat{d}_j^{(d)}$ which have been created with document noising.

**Noise-Specific Fusion**  For each type of noise (segment and document), we create a noise-specific aggregate encoding by fusing the denoised encodings into one (see module (c) in Figure 2). Given $\{\hat{d}_j^{(c)}\}$, the set of denoised encodings corresponding to segment noisy inputs, we create aggregate encoding $s_0^{(c)}$:

$$\alpha_j^{(c)} = \text{softmax}(W_f^{(c)}\hat{d}_j^{(c)} + b_f^{(c)})$$

$$s_0^{(c)} = \sum_j \hat{d}_j^{(c)} * \alpha_j^{(c)}$$

where $\alpha_j$ is a gate vector with the same dimensionality as the denoised encodings. Analogously, we obtain $s_0^{(d)}$ from the denoised encodings $\{\hat{d}_j^{(d)}\}$ corresponding to document noisy inputs.

**Decoder with Partial Copy**  Our decoder generates a summary given encodings $s_0^{(c)}$ and $s_0^{(d)}$ as input. An advantage of our method is its ability to incorporate techniques used in supervised models, such as attention (Bahdanau et al., 2014) and copy (Vinyals et al., 2015). Pseudo-reviews created using segment noising include various chunk permutations, which could result in ungrammatical and incoherent text. Using a copy mechanism on these texts may hurt the fluency of the output. We therefore allow copy on document noisy inputs only (see module (d) in Figure 2).

We use two LSTM decoders for the aggregate encodings, one equipped with attention and copy mechanisms, and one without copy mechanism. We then combine the results of these decoders using a learned gate. Specifically, token $w_t$ at timestep $t$ is predicted as:

$$s_t^{(c)}, p^{(c)}(w_t) = \text{LSTM}_{\text{att}}(w_{t-1}, s_{t-1}^{(c)})$$

$$s_t^{(d)}, p^{(d)}(w_t) = \text{LSTM}_{\text{att-copy}}(w_{t-1}, s_{t-1}^{(d)})$$

$$\lambda_t = \sigma(W_p[w_{t-1}; s_t^{(c)}; s_t^{(d)}] + b_p)$$

$$p(w_t) = \lambda_t * p^{(c)}(w_t) + (1 - \lambda_t) * p^{(d)}(w_t)$$

where $s_t$ and $p(w_t)$ are the hidden state and predicted token distribution at timestep $t$, and $\sigma(\cdot)$ is the sigmoid function.

---

*Figure 2: Architecture of DENOISESUM: it consists of a multi-source encoder with explicit denoising, noise-specific fusion, a decoder with partial copy, and a review category classifier.*
3.3 Training and Inference

We use a maximum likelihood loss to optimize the generation probability distribution based on summary \( y = \{ w_1, ..., w_L \} \) from our synthetic dataset:

\[
L_{gen} = - \sum_{w_i \in y} \log p(w_i)
\]

The decoder depends on \( L_{gen} \) to generate meaningful, denoised outputs. As this is a rather indirect way to optimize our denoising module, we additionally use a discriminative loss providing direct supervision. The discriminator operates at the output of the fusion module and predicts the category distribution \( p(z) \) of the output summary \( y \) (see module (e) in Figure 2). The type of categories varies across domains. For movies, categories can be information about their genre (e.g., drama, comedy), while for businesses their specific type (e.g., restaurant, beauty parlor). This information is often included in reviews but we assume otherwise and use an LDA topic model (Blei et al., 2003) to infer \( p(z) \) (we present experiments with human labeled and automatically induced categories in Section 5). An MLP classifier takes as input aggregate encodings \( s^{(c)} \) and \( s^{(d)} \) and infers \( q(z) \). The discriminator is trained by calculating the KL divergence between predicted and actual category distributions \( q(z) \) and \( p(z) \):

\[
q(z) = MLP_d(s^{(c)}, s^{(d)})
\]

\[
L_{disc} = D_{KL}(p(z) \parallel q(z))
\]

The final objective is the sum of both loss functions:

\[
L = L_{gen} + L_{disc}
\]

At test time, we are given genuine reviews \( X \) as input instead of the synthetic ones. We generate a summary by treating \( X \) as \( X^{(c)} \) and \( X^{(d)} \), i.e., the outcome of segment and document noising.

4 Experimental Setup

Dataset We performed experiments on two datasets which represent different domains and summary types. The Rotten Tomatoes dataset\(^2\) (Wang and Ling, 2016) contains a large set of reviews for various movies written by critics. Each set of reviews has a gold-standard consensus summary written by an editor. We follow the partition of Wang and Ling (2016) but do not use ground truth summaries during training to simulate our unsupervised setting. The Yelp dataset\(^3\) in Chu and Liu (2019) includes a large training corpus of reviews without gold-standard summaries. The latter are provided for the development and test set and were generated by an Amazon Mechanical Turk. We follow the splits introduced in their work. A comparison between the two datasets is provided in Table 1. As can be seen, Rotten Tomatoes summaries are generally short, while Yelp reviews are three times longer. Interestingly, there are a lot more reviews to summarize in Rotten Tomatoes (approximately 100 reviews) while input reviews in Yelp are considerably less (i.e., 8 reviews).

| Implementation | To create the synthetic dataset, we sample candidate summaries using the following constraints: (1) the number of non-alphanumeric symbols must be less than 3, (2) there must be no first-person singular pronouns (not used for Yelp), and (3) the number of tokens must be between 20 to 30 (50 to 90 for Yelp). We set \( p^R \) to 0.8 and 0.4 for token and chunk noise, and \( p^N \) to 0.9. For each review-summary pair, the number of reviews \( N \) is sampled from the Gaussian distribution \( N(\mu, \sigma^2) \) where \( \mu \) and \( \sigma \) are the mean and standard deviation of the number of reviews in the development set. We created 25k (Rotten Tomatoes) and 100k (Yelp) pseudo-reviews for our synthetic datasets (see Table 1).

We set the dimensions of the word embeddings to 300, the vocabulary size to 50k, the hidden di-

| Rotten Tomatoes | Train* | Dev | Test |
|-----------------|--------|-----|------|
| #movies | 25k | 536 | 737 |
| #reviews/movie | 40.0 | 98.0 | 100.3 |
| #tokens/review | 28.4 | 23.5 | 23.6 |
| #tokens/summary | 22.7 | 23.6 | 23.8 |
| corpus size | 245,848 |

| Yelp | Train* | Dev | Test |
|------|--------|-----|------|
| #businesses | 100k | 100 | 100 |
| #reviews/business | 8.0 | 8.0 | 8.0 |
| #tokens/review | 72.3 | 70.3 | 67.8 |
| #tokens/summary | 64.8 | 70.9 | 67.3 |
| corpus size | 2,320,800 |

Table 1: Dataset statistics; Train* column refers to the synthetic data we created through noising (Section 3.1).

---

\(^2\)http://www.ccs.neu.edu/home/luwang/data.html

\(^3\)https://github.com/sosuperic/MeanSum
dimensions to 256, the batch size to 8, and dropout (Srivastava et al., 2014) to 0.1. For our discriminator, we employed an LDA topic model trained on the review corpus, with 50 (Rotten Tomatoes) and 100 (Yelp) topics (tuned on the development set). The LSTM weights were pretrained with a language modeling objective, using the corpus as training data. For Yelp, we additionally trained a coverage mechanism (See et al., 2017) in a separate training phase to avoid repetition. We used the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.001 and $l_2$ constraint of 3. At test time, summaries were generated using length normalized beam search with a beam size of 5. We performed early stopping based on the performance of the model on the development set. Our model was trained on a single GeForce GTX 1080 Ti GPU and is implemented using PyTorch.

Comparison Systems We compared DenoiseSUM to several unsupervised extractive and abstractive methods. Extractive approaches include (a) LEXRANK (Erkan and Radev, 2004), an algorithm similar to PageRank that generates summaries by selecting the most salient sentences, (b) WORD2VEC (Rossiello et al., 2017), a centroid-based method which represents the input as IDF-weighted word embeddings and selects as summary the review closest to the centroid, and (c) SENTINEURON, which is similar to WORD2VEC but uses a language model called Sentiment Neuron (Radford et al., 2017) as input representation. As an upper bound, ORACLE selects as summary the review which maximizes the ROUGE-1/2/L F1 score against the gold summary.

4Our code can be downloaded from https://github.com/rktamplayo/DenoiseSum.

### 5 Results

#### Automatic Evaluation

Our results on Rotten Tomatoes are shown in Table 2. Following previous work (Wang and Ling, 2016; Amplayo and Lapata, 2019) we report five metrics: METEOR (Denkowski and Lavie, 2014), a recall-oriented metric that rewards matching stems, synonyms, and...
paraphrases; ROUGE-SU4 (Lin, 2004), the recall of unigrams and skip-bigrams of up to four words; and the F1-score of ROUGE-1/2/L, which respectively measures word-overlap, bigram-overlap, and the longest common subsequence between system and reference summaries. Results on Yelp are given in Table 3 where we compare systems using ROUGE-1/2/L F1, following Chu and Liu (2019).

As can be seen, DENOISESUM outperforms all competing models on both datasets. When compared to MEANSUM, the difference in performance is especially large on Rotten Tomatoes, where we see a 4.01 improvement in ROUGE-L. We believe this is because MEANSUM does not learn to re-construct encodings of aggregated inputs, and as a result it is unable to produce meaningful summaries when the number of input reviews is large, as is the case for Rotten Tomatoes. In fact, the best extractive model, SENTINEURON, slightly outperforms MEANSUM on this dataset across metrics with the exception of ROUGE-L. When compared to the best supervised system, DENOISESUM performs comparably on several metrics, specifically METEOR and ROUGE-1, however there is still a gap on ROUGE-2, showing the limitations of systems trained without gold-standard summaries.

Table 4 presents various ablation studies on Rotten Tomatoes (RT) and Yelp which assess the contribution of different model components. Our experiments confirm that increasing the size of the synthetic data improves performance, and that both segment and document noising are useful. We also show that explicit denoising, partial copy, and the discriminator help achieve best results. Finally, human-labeled categories (instead of LDA topics) decrease model performance, which suggests that more useful labels can be approximated by automatic means.

**Human Evaluation** We also conducted two judgment elicitation studies using the Amazon Mechanical Turk (AMT) crowdsourcing platform. The first study assessed the quality of the summaries using Best-Worst Scaling (BWS; Louviere et al., 2015), a less labor-intensive alternative to paired comparisons that has been shown to produce more reliable results than rating scales (Kiritchenko and Mohammad, 2017). Specifically, participants were shown the movie/business name, some basic background information, and a gold-standard summary. They were also presented with three system summaries, produced by SENTINEURON (best extractive model), MEANSUM (most related unsupervised model), and DENOISESUM.

Participants were asked to select the best and worst among system summaries taking into account how much they deviated from the ground truth summary in terms of: Informativeness (i.e., does the summary present opinions about specific aspects of the movie/business in a concise manner?), Coherence (i.e., is the summary easy to read and does it follow a natural ordering of facts?), and Grammatical (i.e., is the summary fluent and grammatical?). We randomly selected 50 instances from the test set. We collected five judgments for each comparison. The order of summaries was randomized per participant. A rating per system was computed as the percentage of times it was chosen as best minus the percentage of times it was selected as worst. Results are reported in Table 5, where Inf, Coh, and Gram are shorthands for Informativeness, Coherence, and Grammatical. DENOISESUM was ranked best in terms of informativeness and coherence, while the extractive system SENTINEURON was ranked best on grammaticality. This is not entirely surprising since extractive summaries written by humans are by definition grammatical.

Our second study examined the veridicality of the generated summaries, namely whether the facts mentioned in them are indeed discussed in the input reviews. Participants were shown reviews and the corresponding summary and were asked to verify for each summary sentence whether it was fully supported by the reviews, partially supported, or not at all supported. We performed this experiment

| Model          | RT Inf | Coh | Gram | Yelp Inf | Coh | Gram |
|----------------|-------|-----|------|---------|-----|------|
| SENTINEURON    | 11.8  | 8.3 |      | 25.4    | -24.8 | -0.8 |
| MEANSUM        | -32.1 | -34.4 | -46.8 | 6.3    | -7.5 | -10.8 |
| DENOISESUM     | 20.3  | 26.1 | 21.4 | 18.5    | 8.2  | 1.6  |

Table 5: Best-worst scaling (left) and summary veridicality (right) evaluation. Between systems differences are all significant, using a one-way ANOVA with posthoc Tukey HSD tests ($p < 0.01$).
on Yelp only since the number of reviews is small and participants could read them all in a timely fashion. We used the same 50 instances as in our first study and collected five judgments per instance. Participants assessed the summaries produced by MEANSUM and DENoiseSUM. We also included GOLD-standard summaries as an upper bound but no output from an extractive system as it by default contains facts mentioned in the reviews.

Table 5 reports the percentage of fully (Full-Supp), partially (PartSupp), and un-supported (No-Supp) sentences. Gold summaries display the highest percentage of fully supported sentences (63.3%), followed by DENoiseSUM (55.1%), and MEANSUM (41.7%). These results are encouraging, indicating that our model hallucinates to a lesser extent compared to MEANSUM.

6 Conclusions

We consider an unsupervised learning setting for opinion summarization where there are only reviews available without corresponding summaries. Our key insight is to enable the use of supervised techniques by creating synthetic review-summary pairs using noise generation methods. Our summarization model, DENoiseSUM, introduces explicit denoising, partial copy, and discrimination modules which improve overall summary quality, outperforming competitive systems by a wide margin. In the future, we would like to model aspects and sentiment more explicitly as well as apply some of the techniques presented here to unsupervised single-document summarization.

Acknowledgments

We thank the anonymous reviewers for their feedback. We gratefully acknowledge the support of the European Research Council (Lapata, award number 681760). The first author is supported by a Google PhD Fellowship.

References

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and Roland Vollgraf. 2019. FLAIR: An easy-to-use framework for state-of-the-art NLP. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 54–59, Minneapolis, Minnesota. Association for Computational Linguistics.

Reinald Kim Amplayo and Mirella Lapata. 2019. Informative and controllable opinion summarization. CoRR, abs/1909.02322.

Stefanos Angelidis and Mirella Lapata. 2018. Summarizing opinions: Aspect extraction meets sentiment prediction and they are both weakly supervised. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3675–3686, Brussels, Belgium. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, California.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3:993–1022.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio. 2016. Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages 10–21, Berlin, Germany. Association for Computational Linguistics.

Arthur Bražinskas, Mirella Lapata, and Ivan Titov. 2019. Unsupervised multi-document opinion summarization as copycat-review generation. arXiv preprint arXiv:1911.02247.

Giuseppe Carenni, Jackie Chi Kit Cheung, and Adam Pauls. 2013. Multi-document summarization of evaluative text. Computational Intelligence, 29(4):545–576.

Giuseppe Carenni and Johanna D. Moore. 2006. Generating and evaluating evaluative arguments. Artif. Intell., 170(11):925–952.

Giuseppe Carenni, Raymond Ng, and Adam Pauls. 2006. Multi-document summarization of evaluative text. In 11th Conference of the European Chapter of the Association for Computational Linguistics, Trento, Italy. Association for Computational Linguistics.

Aslı Celikyilmaz, Antoine Bosselut, Xiaodong He, and Yejin Choi. 2018. Deep communicating agents for abstractive summarization. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1662–1675, New Orleans, Louisiana. Association for Computational Linguistics.

Eric Chu and Peter Liu. 2019. MeanSum: A neural model for unsupervised multi-document abstractive summarization. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pages 1223–1232, Long Beach, California.
Michael Denkowski and Alon Lavie. 2014. Meteor universal: Language specific translation evaluation for any target language. In Proceedings of the 9th Workshop on Statistical Machine Translation, pages 376–380, Baltimore, Maryland. Association for Computational Linguistics.

Giuseppe Di Fabbbrizio, Amanda Stent, and Robert Gaizauskas. 2014. A hybrid approach to multi-document summarization of opinions in reviews. In Proceedings of the 8th International Natural Language Generation Conference (INLG), pages 54–63, Philadelphia, Pennsylvania. Association for Computational Linguistics.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank: Graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, 22(1):457–479.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. 2019. Multi-news: A large-scale multi-document summarization dataset and abstractive hierarchical model. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1074–1084, Florence, Italy. Association for Computational Linguistics.

Thibault Fevry and Jason Phang. 2018. Unsupervised sentence compression using denoising auto-encoders. In Proceedings of the 22nd Conference on Computational Natural Language Learning, pages 413–422, Brussels, Belgium. Association for Computational Linguistics.

Markus Freitag and Scott Roy. 2018. Unsupervised natural language generation with denoising autoencoders. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3922–3929, Brussels, Belgium. Association for Computational Linguistics.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. 2010. Opinosis: A graph based approach to abstractive summarization of highly redundant opinions. In Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 340–348, Beijing, China. Coling 2010 Organizing Committee.

Sebastian Gehrmann, Yuntian Deng, and Alexander Rush. 2018. Bottom-up abstractive summarization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4098–4109, Brussels, Belgium. Association for Computational Linguistics.

Shima Gerani, Yashar Mehdad, Giuseppe Carennini, Raymond T. Ng, and Bita Nejaat. 2014. Abstractive summarization of product reviews using discourse structure. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1602–1613, Doha, Qatar. Association for Computational Linguistics.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Domain adaptation for large-scale sentiment classification: A deep learning approach. In Proceedings of the 28th International Conference on International Conference on Machine Learning, pages 513–520, Bellevue, Washington. Omnipress.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018. Newsroom: A dataset of 1.3 million summaries with diverse extractive strategies. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 708–719, New Orleans, Louisiana. Association for Computational Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. 2015. Teaching machines to read and comprehend. In Advances in Neural Information Processing Systems 28, pages 1693–1701. Curran Associates, Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. 2019. The curious case of neural text degeneration. CoRR, abs/1904.09751.

Minqing Hu and Bing Liu. 2006. Opinion extraction and summarization on the web. In Proceedings of the 21st National Conference on Artificial Intelligence - Volume 2, pages 1621–1624, Boston, Massachusetts. AAAI Press.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of the 4th International Conference on Learning Representations, San Diego, California.

Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational Bayes. In Proceedings of the 3rd International Conference on Learning Representations, Banff, Alberta.

Svetlana Kiritchenko and Saif Mohammad. 2017. Best-worst scaling more reliable than rating scales: A case study on sentiment intensity annotation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 465–470, Vancouver, Canada. Association for Computational Linguistics.

Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006. Opinion extraction, summarization and tracking in news and blog corpora. In AAAI Symposium on Computational Approaches to Analysing Weblogs (AAAI-CAAW), pages 100–107, Palo Alto, California.

Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.
Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam Shazeer. 2018. Generating Wikipedia by summarizing long sequences. In Proceedings of the 7th International Conference on Learning Representations, Vancouver, Canada.

Yang Liu and Mirella Lapata. 2019. Hierarchical transformers for multi-document summarization. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5070–5081. Florence, Italy. Association for Computational Linguistics.

Jordan J. Louviere, Terry N. Flynn, and A. A. J. Marley. 2015. Best-Worst Scaling: Theory, Methods and Applications. Cambridge University Press.

Yue Lu, ChengXiang Zhai, and Neel Sundaresan. 2009. Rated aspect summarization of short comments. In Proceedings of the 18th International Conference on World Wide Web, pages 131–140, Madrid, Spain. ACM.

Arjun Mukherjee and Bing Liu. 2012. Aspect extraction through semi-supervised modeling. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers - Volume 1, pages 339–348. Association for Computational Linguistics.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359.

Bo Pang and Lillian Lee. 2004. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In Proceedings of the 42Nd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics.

Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2):1–135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up?: Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - Volume 10, pages 79–86. Association for Computational Linguistics.

Michael Paul, ChengXiang Zhai, and Roxana Girju. 2010. Summarizing contrastive viewpoints in opinionated text. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 66–76. Cambridge, MA. Association for Computational Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher. 2018. A deep reinforced model for abstractive summarization. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, Canada.

Laura Perez-Beltrachini, Yang Liu, and Mirella Lapata. 2019. Generating summaries with topic templates and structured convolutional decoders. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5107–5116. Florence, Italy. Association for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237. New Orleans, Louisiana. Association for Computational Linguistics.

Dragomir R. Radev, Hongyan Jing, and Malgorzata Budzikowska. 2000. Centroid-based summarization of multiple documents: Sentence extraction, utility-based evaluation, and user studies. In Proceedings of the 2000 NAACL-ANLP Workshop on Automatic Summarization - Volume 4, pages 21–30. Association for Computational Linguistics.

Alec Radford, Rafał Józefowicz, and Ilya Sutskever. 2017. Learning to generate reviews and discovering sentiment. CoRR, abs/1704.01444.

Gaetano Rossiello, Pierpaolo Basile, and Giovanni Semeraro. 2017. Centroid-based text summarization through compositionality of word embeddings. In Proceedings of the MultiLing 2017 Workshop on Summarization and Summary Evaluation Across Source Types and Genres, pages 12–21. Valencia, Spain. Association for Computational Linguistics.

Alexander M. Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 379–389. Lisbon, Portugal. Association for Computational Linguistics.

Evan Sandhaus. 2008. The New York Times Annotated Corpus. Linguistic Data Consortium, Philadelphia, 6(12).

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–1083. Vancouver, Canada. Association for Computational Linguistics.

Carina Silberer and Mirella Lapata. 2014. Learning grounded meaning representations with autoencoders. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 721–732. Baltimore, Maryland. Association for Computational Linguistics.
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15(1):1929–1958.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. 2008. Extracting and composing robust features with denoising autoencoders. In *Proceedings of the 25th International Conference on Machine Learning*, pages 1096–1103, Helsinki, Finland.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In *Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2*, pages 2692–2700, Montréal, Canada.

Lu Wang and Wang Ling. 2016. Neural network-based abstract generation for opinions and arguments. In *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 47–57, San Diego, California. Association for Computational Linguistics.
A Appendix

A.1 Segment Noising

Algorithm 1 shows how segment noising (i.e., token- and chunk-level alterations) is applied step-by-step (see Section 3.1). Segment noising assumes we have access to a language model $LM$ that is able to output token-level predictions given neighboring tokens, and a syntactic chunker $SC$ that is able to return shallow parses (i.e., chunks with corresponding syntactic labels). Function $\text{TOKENALTER}$ takes candidate summary $y$ as input and generates token-level alterations. The noisy summary is then passed on to function $\text{CHUNKALTER}$ to create chunk-level alterations. Sequentially executing both functions produces noisy version $X^{(c)}$.

A.2 Ablation Studies

We performed ablation studies on $\text{DENOISESUM}$ by comparing it to versions (a) using less synthetic training data, (b) using one kind of noising function, and (c) with missing one module (explicit denoising, partial copy, or discriminator). We also compared our model with a version that uses human-labeled categories, instead of induced topic distribution, as the ground-truth category distribution $p(z)$. For Rotten Tomatoes, we used movie genres (e.g., comedy, drama) as categories, while for Yelp, we use business types (e.g., restaurant, beauty parlor) as categories. In total, there are 21 movie genres and 898 business types.

Table 6 shows the ROUGE-1/2/L F1-scores of our model and various versions thereof. The final model consistently performs better on all metrics when compared to versions with less synthetic data (second block), versions with only one type of noise (second block), and versions with a module removed (third block). When using human-labeled categories, we see a slight improvement in ROUGE-2 on Rotten Tomatoes, however the model performs substantially worse on other metrics. We believe there are several reasons for this. Firstly, human-labeled categories, at least the ones available, are not fine-grained enough to capture various aspects mentioned in the reviews and their sentiment (e.g., did the actors perform well? was the plot convoluted?). Secondly, the number of busi-

5The original versions of the datasets from Wang and Ling (2016) and Chu and Liu (2019) do not contain this information. We share our version of these datasets here: https://github.com/rktamplayo/DenoiseSum.

ness types available on Yelp is very large (i.e., 898 types), which makes the discriminator loss $L_{\text{disc}}$ hard to optimize. This explains the relatively larger decrease in performance on Yelp.

A.3 Example Noisy Versions

Figure 3 shows example noisy versions of a candidate summary using both segment and document noising methods. Although segment noising yields texts which may not be entirely comprehensible to humans, a few segments contain understandable content that could be perceived as diverging information and as such should not be included in the summary (e.g., “some can’t laugh hard” in S.1 of Rotten Tomatoes). Similarly, noisy versions generated by document noising include content that is somewhat related but not critical for generating the summary (e.g., “remains just as relevant now as it did in 1989” in D.3 of Rotten Tomatoes). These examples show that our noise functions are not entirely random, in contrast to previous trivial and uninformed approaches (Fevry and Phang, 2018; Silberer and Lapata, 2014).

A.4 Human Evaluation on Amazon Mechanical Turk

We conducted three different experiments using the Amazon Mechanical Turk platform: the best-worst scaling evaluations for Rotten Tomatoes and Yelp, and the summary veridicality experiment on the Yelp dataset. For all experiments, we made sure crowdworkers had an approval rate of 98% (or above) with at least 1000 tasks approved. Furthermore, turkers were (self reported) native English speakers from one of the following countries: Australia, Canada, Ireland, New Zealand, United Kingdom, and United States. We discuss further specifications for each experiment in the next paragraphs.

Best-Worst Scaling For the best-worst scaling experiments, we created different templates for each dataset. For Rotten Tomatoes, each Human Intelligence Task (HIT) included the title of the movie and basic background information: synopsis, release date, genre, director, and actors (see the examples in Figure 4). We also included the human-written gold-standard summary (highlighted in blue), emphasizing that the AMT workers must use it as a reference. System summaries were randomly shuffled and labeled A, B, or C. Turkers were then asked which to select the best or
worst summary, according to informativeness (i.e., does the summary present opinions about specific aspects of the movie in a concise manner?), coherence (i.e., is the summary easy to read and does it follow a natural ordering of facts?), and grammaticality (i.e., is the summary fluent and grammatical?). The criteria and their definitions were shown to crowdworkers. In total, 92 turkers participated in the study annotating a total of 200 HITs.

For Yelp, each HIT also showed the name of the business and basic information such as location and the type of service provided (see the Figure 5). Again, we showed the gold-standard summary highlighted in blue, and randomly shuffled system summaries (A, B, and C). Crowdworkers selected the best/worst summary according to informativeness, coherence, and grammaticality. In total, 94 turkers participated in the study annotating a total of 200 HITs.

**Summary Veridicality** In this experiment we only used the Yelp dataset since the number of reviews is small and participants could read them in a timely manner. Each HIT presented the business name, location, and type of service together with eight reviews and a summary produced by one of the following systems: MeanSum, DenoiseSum, and Gold-standard summaries (see the example in Figure 5). Turkers were asked to verify whether the facts mentioned in the summary were true (summaries were at most ten sentences long). Specifically they had to decide for each summary sentence whether it was fully supported, partially supported, or not supported by the reviews. In total, 79 turkers participated in this study annotating a total of 600 HITs.

**A.5 Example Summaries**

We show example summaries produced by three systems: SentiNeuron, MeanSum, and our
model **DENOISESUM**, as well as the **GOLD-standard summary** in Figure 4 (for Rotten Tomatoes) and Figure 5 (for Yelp). The extractive model **SENTINEURON** tends to select reviews that are longer and more verbose. Summaries generated by **MEANSUM** on Rotten Tomatoes are mostly gibberish, which we argue is due to the model being unable to handle the large number of input reviews in this dataset. Overall, **DENOISESUM** produces the best summaries among the three systems.

| Model                          | Rotten Tomatoes | Yelp |
|--------------------------------|-----------------|------|
|                               | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-1 | ROUGE-2 | ROUGE-L |
| DENOISESUM                    | 21.26   | 4.61    | 16.27   | 30.14   | 4.99    | 17.65   |
| 10% synthetic dataset         | 20.16   | 3.14    | 15.39   | 28.54   | 3.63    | 16.22   |
| 50% synthetic dataset         | 20.76   | 3.91    | 15.76   | 29.16   | 4.40    | 17.54   |
| no segment noising            | 20.64   | 4.39    | 16.03   | 28.93   | 4.31    | 16.88   |
| no document noising           | 21.23   | 4.38    | 16.22   | 28.75   | 4.06    | 16.67   |
| no explicit denoising         | 21.17   | 4.18    | 16.06   | 28.60   | 4.10    | 17.06   |
| no partial copy               | 20.76   | 4.01    | 15.89   | 28.03   | 4.58    | 16.31   |
| no discriminator              | 20.77   | 4.48    | 15.84   | 29.09   | 4.22    | 16.64   |
| using human categories        | 20.67   | 4.69    | 15.87   | 28.54   | 4.02    | 15.86   |

Table 6: ROUGE-1/2/L F1 scores of our model and versions thereof with less synthetic data (second block), using only one noising method (third block), and without some modules (fourth block).
Candidate Summary

Quite possibly the greatest romantic comedy since some like it hot.

Segment Noise

S.1. Some can’t laugh hard of the best romantic comedy.
S.2. The best romantic comedy set funny and unexpectedly moving, organically revealed but the sets something since the sexes.
S.3. Movies created since its main pleasures’ mystique recklessly assembled and all hers... love showcases of his stars.

Document Noise

D.1. Meg Ryan-Billy Crystal romantic comedy is hard not to like.
D.2. MOV... is an adult romantic comedy in a time when we don’t get very many, and it has one thing going for it that gives it an enormous boost – it’s very funny.
D.3. ... A better-than-average romantic comedy that remains just as relevant now as it did in 1989

(a) Rotten Tomatoes

Candidate Summary

Jeffrey in sales and Griffin in finance were awesome! we spent 2 long days at the dealership and these 2 were so patient with us trying to make up our minds. we believe we got a fair deal and would definitely go there again for our next vehicle. Thanks!

Segment Noise

S.1. I got the guys for Jeffrey there. We at least took a great deal, thanks proper expectations at would definitely go a Prius, and were the next morning. May of the same service advisor magic trick.
S.2. We believe I but us with line! Check got Jeffrey awesome. our experience took for the bar, a real winner. Your trade would definitely go the autonation tempe website all employees having to block via.’ Ve to drop very happy would recommend triple chocolate cupcake and red velvet cupcake pocket below a little - compared and the old owners name, dreamed the cupcake to bell again 1st time check would complain, back fixed a normal oil change and issued sure il y a un grand choix. A new tire will never have start these 2 coming but our credit disrupted’s disposition tries to throw good. To take our way, a hundred times have not been the next day.
S.3. So patient for all with a great deal! our experience. The guys how to pick 2 hours time is auto nation Toyota out voicemail, but the door again had the pleasure. My truck will definitely go there awesome, completely honest. You autonation spent my dash board from t for trick.

Document Noise

D.1. Jason James was direct and honest. He gave a price that beat the competition, had the vehicle & paperwork ready, and follower - up to make sure things were going well. Nicky, in finance, also did a good job. I hate car dealerships, but these guys did a good job and made it relatively painless.
D.2. So me and my wife got a used van from the used car lot. The guy that helped us was pretty good but the used car manager is very rude and disrespectful. 3 weeks after we had the vehicle they told us they couldn’t finance us. 3 weeks! when I went in to return the van the used car manager was talking on his office phone and typing on his personal cell phone and put his finger in order to tell me to wait. Finally after 10 minutes, another person took me over to finance to get my down payment back. They don’t seem to know what they’re doing over there. Would not recommend for future customers.
D.3. Great service! I purchased a vehicle using an online listing as I was located out of town from this dealership. The dealer (Jon Mefford) calmed any hesitation I had about purchasing a car from out of town and when I drove in to town to sign everything, the process was quick and seamless. Jon explained all the features of the vehicle and was very knowledgeable about any questions I had. Sofia, the person handling the finance part of things was also very personable and pleasant to deal with. Overall, a great experience!

(b) Yelp dataset

Figure 3: Noisy versions generated using segment and document noising on Rotten Tomatoes and Yelp.
### Movie: “The Good Girl”

**Synopsis**
Justine is thirty years old and works as a discount store clerk in Texas. Deeply unhappy in her marriage to a man who is infertile because of a dope-smoking habit, Justine soon begins an affair with Holden, the store’s newly hired cashier and becomes pregnant. Holden, who has serious issues of his own, steals money from the store’s safe for the two of them to run away, but the plan is short-lived when it takes a tragic turn for the worse.

**Released Date**
Aug 7, 2002

**Genre**
Comedy, Drama

**Director**
Miguel Arteta

**Actors**
Jake Gyllenhaal as Holden, Tom Reilly as Phil, Tim Blake Nelson as Bubba, Jennifer Aniston as Justine, Zooey Deschanel as Cheryl

**GOLD**
A dark dramedy with exceptional performances from Jennifer Aniston and Jake Gyllenhaal, *The Good Girl* is a moving and astute look at the passions of two troubled souls in a small town.

**SENTINeUR**
Even during the most intense moments, it’s hard to shake the impression that the conspicuously buff-and-polished Justine is only visiting this drab world, her miserable life an interesting career move.

**MEANSum**
Most of the time, the movie is a little too rare.

**DENOISESum**
With good performances, direction and cast, *The Good Girl* is a provocative, intelligent and absorbing film.

### Movie: “Iron Man 2”

**Synopsis**
In “Iron Man 2,” the world is aware that billionaire inventor Tony Stark is the armored Super Hero Iron Man. Under pressure from the government, the press and the public to share his technology with the military, Tony is unwilling to divulge the secrets behind the Iron Man armor because he fears the information will slip into the wrong hands. With Pepper Potts and James “Rhodey” Rhodes at his side, Tony forges new alliances and confronts powerful new forces.

**Released Date**
May 7, 2010

**Genre**
Action & Adventure, Science Fiction & Fantasy

**Director**
Jon Favreau

**Actors**
Robert Downey Jr. as Tony Stark, Gwyneth Paltrow as Virginia ’Pepper’ Potts, Don Cheadle as Colonel James ’Rhodey’ Rhodes, Mickey Rourke as Ivan Vanko/Whiplash, Sam Rockwell as Justin Hammer

**GOLD**
It isn’t quite the breath of fresh air that Iron Man was, but this sequel comes close with solid performances and an action-packed plot.

**SENTINeUR**
Flabby, disjointed, and eschewing conflict for extended scenes of improv clowning, it’s the superheroic equivalent of a rat pack film.

**MEANSum**
... the movie has too many twists in its own way, but it’s a bit too busy.

**DENOISESum**
*Iron Man 2* isn’t as good as the first movie, but it is a fun and fascinating film.

### Movie: “Sanctum”

**Synopsis**
The 3-D action-thriller Sanctum, from executive producer James Cameron, follows a team of underwater cave divers on a treacherous expedition to the largest, most beautiful and least accessible cave system on Earth. When a tropical storm forces them deep into the caverns, they must fight raging water, deadly terrain and creeping panic as they search for an unknown escape route to the sea. Master diver Frank McGuire (Richard Roxburgh) has explored the South Pacific’s Esa-ala Caves for months. But when his exit is cut off in a flash flood, Frank’s team—including 17-year-old son Josh (Rhys Wakefield) and financier Carl Hurley (Ioan Gruffudd)—are forced to radically alter plans. With dwindling supplies, the crew must navigate an underwater labyrinth to make it out. Soon, they are confronted with the unavoidable question: Can they survive, or will they be trapped forever? Shot on location off the Gold Coast in Queensland, Australia, Sanctum employs 3-D photography techniques Cameron developed to lens Avatar. Designed to operate in extreme environments, the technology used to shoot the action-thriller will bring audiences on a breathless journey across plunging cliffs and into the furthest reaches of our subterranean world. – (C) Universal

**Released Date**
Feb 4, 2011

**Genre**
Action & Adventure, Drama, Mystery & Suspense

**Director**
Alister Grierson

**Actors**
Richard Roxburgh as Frank McGuire, Ioan Gruffudd as Carl Hurley, Rhys Wakefield as Josh McGuire, Alice Parkinson as Victoria, Dan Wylie as Crazy George

**GOLD**
Sanctum is beautifully photographed, and it makes better use of 3-d technology than most, but that doesn’t make up for its ham-handed script and lifeless cast.

**SENTINeUR**
In between the scary parts, we are subjected to a veritable Bartlett’s of hackneyed dialogue.

**MEANSum**
You don’t have to know the best thing about this film, it’s the kind of movie that’s not always a bad thing.

**DENOISESum**
Sanctum isn’t a great film, and it doesn’t have a certain charm to overcome on top of its special effects.

---

**Figure 4:** Examples of opinion summaries generated by three systems on the Rotten Tomatoes dataset. We also show the human-generated consensus summary (GOLD), as well as basic background information about the movie.
Business: “Noodle Pot”

Location: Las Vegas
Categories: Noodles, Specialty Food, Restaurants, Food, Ethnic Food, Chinese, Taiwanese

Reviews
1. I thought this place okay. The Beef Roll was just average, not a big fan. The side dishes were okay ... cold cucumber, sliced tofu. I did however really like the wontons in red chili sauce.
2. Although I am not a big fan of beef noodles, I still wanted to come here and try their other dish. I ordered pig feet (I know, sounds scary) noodle soup. I was not very impressed with it. They were only 3 medium size pig feet in the soup, so it was not very filling. I think the beef noodle soup would’ve been more filling. But this place seems to be very popular as people kept coming in. The turn over rate is pretty fast, so even if there is a line, I wouldn’t think the wait would be too long. If you are sick of buffets on the strip and feel like some hot (both temperature and spice) beef noodle soup, come and try this place.
3. The restaurant is really tiny and more of a cafe. The beef stew noodle is so perfect. Not too salty. Just enough beef, bok choy, and handmade noodles to satisfy any appetite. The pork chop noodle was also very good. It is a milder soup but the saltiness of the pork chop helps to balance it. The house-made chili gives everything the perfect kick and the burn pleasantly creeps up on you. The wontons in red sauce are also spectacular. I believe the red sauce has a vinegar base with hints of sweet and spicy. The restaurant is the perfect place to go during the winter.
4. "Nom nom nom nom nom. My mouth is watering. I think I’m due for a review too after eating here like everyday in November after discovering. My mom visited in March and we THOUGHT about going here but were sketchy about the cash only policy. I have seriously missed out since then because I LOVE this place. The first time I came here my mom and I shared the beef noodle soup and the won ton soup. Both were so amazing with lots of fresh cilantro and green onion! It’s def not a fancy place but this place has super great and flexible hours. I think they are open until 2am on Friday/Saturday. This is the perfect place to go on a chilly Vegas night!”
5. The best beef noodle soup that we had so far in the US. We live in California but never thought that we had to come to Vegas to find the beef noodle soup that we’ve been looking for!
6. Love this place...the best soup...I love those cucumbers...and very friendly stuff ....
7. "beef noodle soup and the pork/veggie dumplings are just what the doctor ordered. this 1-2 punch of savory goodness is gonna make your face royal-flushed when the sweet sweet msg kicks in. almost missed my flight out of vegas cuz of this meal but it was still worf it. l’oreal. the wifi password to this place is 12345678. is this real life?"
8. Zero star ....... They have really bad service... Wrong order, bad attitude, even worse, no apology for their mistake..... And their food are horrible x 5...I will never ever come here again

GOLD
This is a decent place to go for Chinese food. I really like the beef noodle soup. It has the perfect amount of salt. I wish the place wasn’t so small and stuffy. I just didn’t feel comfortable at all. Next time I’ll just place a to go order.

SENTINEURON
The restaurant is really tiny and more of a cafe. The beef stew noodle is so perfect. Not too salty. Just enough beef, bok choy, and handmade noodles to satisfy any appetite. The pork chop noodle was also very good. It is a milder soup but the saltiness of the pork chop helps to balance it. The house-made chili gives everything the perfect kick and the burn pleasantly creeps up on you. The wontons in red sauce are also spectacular. I believe the red sauce has a vinegar base with hints of sweet and spicy. The restaurant is the perfect place to go during the winter.

MEANSUM
This place has the best beef noodle soup. I had the chicken with broccoli and it was good. Its not spicy at all but not bad either. I have been coming here for over 10 years and have been back many times. They have a wide variety of dishes, not too oily, and good. The staff is friendly, clean, never disappointed.

DENoiseSUM
I love this place. The restaurant is really clean and very friendly. The beef noodle soup is very good and the beef is so perfect. The food is very filling. I receive really good service here and recommend the place when you are in Vegas. The only complaint is that there’s always a line every time I go here. I am definitely going back here again .

Figure 5: Examples of opinion summaries generated by three systems on the Yelp dataset. We also show the human-generated summary (GOLD), as well as basic background information and the eight input reviews.