Twisted Yangians and symmetric pairs

N. J. MacKay

Department of Mathematics,
University of York,
York YO10 5DD, U.K.

Talk presented at RAQIS’03, Annecy-le-Vieux, March 2003

ABSTRACT
We describe recent work on the twisted Yangians $Y(g, h)$ which arise as boundary remnants of Yangians $Y(g)$ in 1+1D integrable field theories, bringing out the special role played by the requirement that (g, h) be a symmetric pair.

1. Introduction

In a series of recent papers we examined the boundary principal chiral model. The work began with the discovery that both the classically integrable boundary conditions and the vector-representation boundary S-matrices for the bulk G-model were classified and parametrized by the symmetric spaces G/H. These two points of view were linked by the discovery [2] that the boundary remnant of the bulk Yangian symmetry $Y(g)$ is the twisted Yangian $Y(g, h)$ [4, 5]. We went on to exploit our presentation of $Y(g, h)$ to give the spectral decompositions of a variety of reflection or ‘K’-matrices (the intertwiners of $Y(g, h)$-representations). In this talk we summarize how $Y(g)$ and $Y(g, h)$ fit together, emphasizing the special role of the requirement that (g, h) be a symmetric pair. The focus is therefore on the algebra rather than the physics – an introduction to the latter may be found in [3].

1email: nm15@york.ac.uk

2In the PCM the symmetry is $Y_L(g) \times Y_R(g)$, but in this talk we shall just look at one copy of $Y(g)$. Our conclusions should apply to any integrable field theory with bulk $Y(g)$ symmetry.
We begin with a brief recapitulation of the structure of $Y(g)$, largely drawn from [5].

Suppose our 1+1D integrable quantum field theory to have a compact global symmetry group G, whose algebra g is generated by conserved charges Q^a_0 with structure constants f^a_{bc} and (trivial) coproduct Δ,

$$(2.1) \quad [Q^a_0, Q^b_0] = if^a_{bc}Q^c_0 \quad \text{and} \quad \Delta(Q^a_0) = Q^a_0 \otimes 1 + 1 \otimes Q^a_0.$$

The Yangian $Y(g)$ is the larger symmetry algebra generated by these and further non-local conserved charges Q^a_1, where

$$(2.2) \quad [Q^a_0, Q^b_1] = if^a_{bc}Q^c_1 \quad \text{and} \quad \Delta(Q^a_1) = Q^a_1 \otimes 1 + 1 \otimes Q^a_1 + \frac{1}{2}f^a_{bc}Q^b_0 \otimes Q^c_0.$$

The requirement that Δ be a homomorphism fixes

$$(2.3) \quad f^{d[ab}[Q^c_1], Q^d_1] = \frac{i}{12}f^{api}f^{bqj}f^{crk}f^{ijk}Q^p_0Q^q_0Q^r_0,$$

where $(\)$ denotes symmetrization and $[\]$ anti-symmetrization on the enclosed indices, which have been raised and lowered freely with the invariant metric γ.

The Yangian is a deformation of the polynomial algebra $g[z]$; with $Q^a_1 = zQ^a_0$, the undeformed algebra would satisfy (2.3) with the right-hand side zero – that is, z^2 times the Jacobi identity. In $Y(g)$, (2.3) acts as a rigidity condition on the construction of higher Q^a_n from the Q^a_1.

There is an (‘evaluation’) automorphism

$$(2.4) \quad L_\theta : \quad Q^a_0 \mapsto Q^a_0, \quad Q^a_1 \mapsto Q^a_1 + \theta \frac{c_A}{4i\pi}Q^a_0,$$

where $c_A = C^g_2(g)$ is the value of the quadratic Casimir $C^g_2 \equiv \gamma_{ab}Q^a_0Q^b_0$ in the adjoint representation. (This normalization is chosen so that θ is the particle rapidity, as we shall see later.) Thus any representation v of $Y(g)$ may carry a parameter θ: the action of $Y(g)$ on v^θ is that of $L_\theta(Y(g))$ on v^0. The ith fundamental representation v^θ_i of $Y(g)$ is in general reducible as a g-representation, with one of its irreducible components (that with the greatest highest weight, where these are partially ordered using the simple roots) being the ith fundamental representation V_i of g. In the simplest cases (which include all i for $g = a_n$ and c_n), $v^\theta_i = V_i$ as a g-representation, and $Q^a_i = \theta \frac{c_A}{4i\pi}Q^a_0$ upon it.

3For $g \neq sl(2)$. For the general condition see Drinfeld [6].
3. Twisted Yangians $Y(\mathfrak{g}, \mathfrak{h})$

A symmetric pair $(\mathfrak{g}, \mathfrak{h})$ is a (here compact and simple) \mathfrak{g} together with a (maximal) subalgebra $\mathfrak{h} \subset \mathfrak{g}$ invariant under an involutive automorphism σ. We shall write $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{k}$, so that \mathfrak{h} and \mathfrak{k} are the subspaces of \mathfrak{g} with σ-eigenvalues $+1$ and -1 respectively, and

$$[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}, \quad [\mathfrak{h}, \mathfrak{k}] \subset \mathfrak{k}, \quad [\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}.$$

We shall use a, b, c, \ldots for general \mathfrak{g}-indices, i, j, k, \ldots for \mathfrak{h}-indices and p, q, r, \ldots for \mathfrak{k}-indices.

We define the twisted Yangian $Y(\mathfrak{g}, \mathfrak{h})$ to be the subalgebra of $Y(\mathfrak{g})$ generated by

$$Q^i_0$$

and

$$\tilde{Q}^p_1 \equiv Q^p_1 + \frac{1}{4}[C, Q^p_0],$$

where $C \equiv \gamma_{ij}Q^i_0Q^j_0$ is the quadratic Casimir operator of \mathfrak{g}, restricted to \mathfrak{h}.

$Y(\mathfrak{g}, \mathfrak{h})$ is also a deformation, this time of the subalgebra of (‘twisted’) polynomials in $\mathfrak{g}[z]$ invariant under the combined action of σ and $z \mapsto -z$. Its defining feature is that $Y(\mathfrak{g}, \mathfrak{h})$ is a left co-ideal subalgebra\footnote{The analogous right co-ideal subalgebra may be obtained by reversing the sign of the second term in (3.2).} $\Delta(Y(\mathfrak{g}, \mathfrak{h})) \subset Y(\mathfrak{g}) \otimes Y(\mathfrak{g}, \mathfrak{h})$. This is the crucial feature which allows the boundary states to form representations of $Y(\mathfrak{g}, \mathfrak{h})$ while the bulk states form representations of $Y(\mathfrak{g})$, and depends on the symmetric-pair property:

$$\Delta(\tilde{Q}^p_1) = \Delta\left(Q^p_1 + \frac{1}{4}[C, Q^p_0]\right)$$

$$= Q^p_1 \otimes 1 + 1 \otimes Q^p_1 + \frac{1}{4}[C, Q^p_0] \otimes 1 + 1 \otimes \frac{1}{4}[C, Q^p_0]$$

$$+ \frac{1}{2}f^p_{iq}Q^i_0 \otimes Q^q_0 + \frac{1}{2}f^p_{qi}Q^q_0 \otimes Q^i_0 + \frac{1}{2}[\gamma_{ij}Q^i_0 \otimes Q^j_0, Q^p_0 \otimes 1 + 1 \otimes Q^p_0]$$

$$= \tilde{Q}^p_1 \otimes 1 + 1 \otimes \tilde{Q}^p_1 + [\gamma_{ij}Q^i_0 \otimes Q^j_0, Q^p_0 \otimes 1]$$

$$= \tilde{Q}^p_1 \otimes 1 + 1 \otimes \tilde{Q}^p_1 + \frac{1}{2}[\Delta(C) - C \otimes 1 - 1 \otimes C, Q^p_0 \otimes 1].$$

holds essentially because for a symmetric pair the only non-zero structure constants are f^{ijk} and f^{ipq}, and fails for a general subalgebra $\mathfrak{h} \subset \mathfrak{g}$.

Various particular cases of $(\mathfrak{g}, \mathfrak{h})$ have been studied before\footnote{The analogous right co-ideal subalgebra may be obtained by reversing the sign of the second term in (3.2).}: for example, section 3.5 of the first paper of\cite{4} describes $Y(gl(n), so(n))$.

\cite{5}
4. Bulk and boundary scattering

In both the bulk and the boundary case the (twisted) Yangian symmetry allows one to determine the S-matrix up to an overall scalar factor. In the boundary case, this will lead us to another crucial implication of the symmetric-pair property.

In the bulk case, we first note that, in the scattering of two particle multiplets u^ϕ and v^θ, the asymptotic state $u^\phi \otimes v^\theta$ is decomposable into a sum of g-representations on each of which the S-matrix acts as the identity (because of the g symmetry). This state is in general irreducible as a $Y(g)$ representation, but it may become reducible at certain special values of $\phi - \theta$ (at which the S-matrix typically has a pole). In particular, the edge of the physical strip lies at $\phi - \theta = i\pi$. The crossing symmetry of the S-matrix requires that it project onto the scalar representation of g at this value, while the Q_a^1 map the scalar into the adjoint representation for general $\phi - \theta$. The tensor product graph construction \cite{7,8} (which we shall not recap here; see \cite{5} for a brief introduction) makes it clear how the difference in the values of C_g^2 between these two representations fixes the pole value, and ensures through the factor $\frac{a}{4i\pi}$ in (2.4) that this pole is at $i\pi$.

The boundary S-matrix is determined as follows, in the simplest cases for which v^θ is an irreducible g-representation (hereafter ‘irrep’) V. Writing it (again up to an overall factor, when it is usually known as the ‘reflection’ or K-matrix)\footnote{In certain cases, in which non-self-conjugate g-representations branch to self-conjugate h-representations, v^θ may be conjugated by K \cite{4}.} as $K_v(\theta) : v^\theta \rightarrow v^{-\theta}$ and intertwining the Q_0^i (that is, from the physics point-of-view, requiring their conservation in boundary scattering processes) requires that

$$K_v(\theta)Q_0^i = Q_0^i K_v(\theta)$$

(in which by Q_0^i we mean here its representation on V) and thus that $K_v(\theta)$ act trivially on h-irreducible components of V. So we have

$$K_v(\theta) = \sum_{W \subset V} \tau_W(\theta) P_W,$$

where the sum is over h-irreps W into which V branches, and P_W is the projector onto W.

To deduce relations among the τ_W we intertwine the \tilde{Q}_1^p. Recall that, on a g-irreducible v^θ, the action of Q_1^p is given by $Q_1^p = \theta \frac{a}{4i\pi} Q_0^p$, so that

$$\langle W || K_v(\theta) \left(\theta \frac{a}{4i\pi} Q_0^p + \frac{1}{4} [C, Q_0^p] \right) || W' \rangle = \langle W || \left(-\theta \frac{a}{4i\pi} Q_0^p + \frac{1}{4} [C, Q_0^p] \right) K_v(\theta) || W' \rangle,$$
for $W, W' \subset V$. Thus when the reduced matrix element $\langle W||Q^\rho||W'\rangle \neq 0$ we have

\begin{equation}
\frac{\tau_{W'}(\theta)}{\tau_W(\theta)} = [\Delta], \quad \text{where} \quad [A] \equiv \frac{i \pi A}{c_A} + \frac{\theta}{c_A} - \frac{\theta}{c_A} \quad \text{and} \quad \Delta = C(W) - C(W').
\end{equation}

To find the W, W' for which $\langle W||Q^\rho||W'\rangle \neq 0$ we recall that k forms an irrep K of h. A necessary condition for (4.1) to apply is then that $W \subset K \otimes W'$. Although not automatically sufficient, this is sufficiently constraining in simple cases to enable us to deduce $K_v(\theta)$ [2, 5].

We can describe $K_v(\theta)$ by using a graph, in which the nodes are the h-irreps W, linked by edges, directed from W_i to W_j, and labelled by Δ_{ij}, whenever $W_i \subset K \otimes W_j$. To calculate the labels, we first write $C = \sum_i c_i C_{h_i}^2$, where $h = \bigoplus h_i$, h_i is a sum of simple factors h_i (and $C_{h_i}^2$ is the quadratic Casimir of h_i). The point here is that C was written in terms of generators of g: there will be non-trivial scaling factors c_i, which may be computed by taking the trace of the adjoint action of C on g (where we fix γ to be the identity both on g and on each h_i), yielding

$$c_i = \frac{c_A}{C_{h_i}^2(K) + C_{h_i}^2(K)}.$$

This has a highly non-trivial implication for the boundary S-matrix. The analogue of the crossing relation for bulk S-matrices is the ‘crossing-unitarity’ relation [9]. One requirement of this is that, at the edge $\theta = i\pi/2$ of the physical strip for the boundary S-matrix, K project onto the scalar representation of h. In the graph described above, $\langle W||Q^\rho||1\rangle \neq 0$ only for $W = K$, and so we must have $C(K) = \frac{1}{2} c_A$, or

$$\frac{C(K)}{c_A} = \frac{1}{c_A} \sum_i c_i C_{h_i}^2(K) = \sum_i \left(\frac{C_{h_i}^2(K)}{C_{h_i}^2(K)} + \frac{\dim h_i}{\dim h_i} \right) = \frac{1}{2}.$$

That this holds, and does so only for symmetric pairs, is a result of [10] (also known as the ‘symmetric space theorem’ [11]) and we see once again the centrality of this property.
5. Concluding remarks

One reason why it is appropriate to emphasize the centrality of the symmetric-pair property is that in a closely-related and well-developed field, that of D-branes in group manifolds (a.k.a. the boundary WZW model), it appears not to be necessary; \(\sigma \) may be any automorphism \[12\]. (Whether the triality of \(d_4 \) enjoys some special status is unclear.)

A unifying principle for the exceptional algebras is the ‘magic square’, or equivalently the Cvitanovic-Deligne exceptional series \[13\], in terms of which both the boundary \(K \)-matrices \[5\] and bulk \(R \)-matrices \[14\] have a unified structure. Once again symmetric pairs are crucial in the construction \[15\].

As promised, we have focused here on algebraic structures rather than on physics, and so have not given examples of boundary \(S \)-matrices or the spectra of boundary bound states which may be deduced from them. Such calculations are generally very tough – they involve complex fusion/bootstrap calculations – and the results are typically more opaque than in bulk cases \[16\]. However, it is interesting to note that for the classical Grassmannians

\[
\begin{align*}
SU(N) & \rightarrow S(U(M) \times U(N-M))' \\
SO(N) & \rightarrow SO(M) \times SO(N-M)' \\
Sp(N) & \rightarrow Sp(M) \times Sp(N-M)
\end{align*}
\]

\((N, M \text{ even}) \),

there seems to be a set of boundary states with masses

\[
m_a = m \sin \frac{a\pi}{h} \sin \frac{(p-a)\pi}{h},
\]

where \(m \) is a mass-scale and \((p, h) = (M+1, N), (M, N-2), (M+2, N+2) \) for the three cases respectively (taking, without loss of generality, \(M \leq N/2 \)). In the \(N \rightarrow \infty \) limit, these are proportional to the values of the quadratic Casimir operator in the \(a \)th fundamental representations of (and so to the energy levels of the 0+1D principal chiral model defined on) \(SU(M), SO(M) \) or \(Sp(M) \) respectively.
References

[1] N. MacKay and B. Short, Boundary scattering, symmetric spaces and the principal chiral model on the half-line, Comm. Math. Phys. 233 (2003) 313, hep-th/0104212

[2] G. Delius, N. MacKay and B. Short, Boundary remnant of Yangian symmetry and the structure of rational reflection matrices, Phys. Lett. B522 (2001) 335, hep-th/0109115

[3] N. MacKay and B. Short, Boundary scattering in the principal chiral model, hep-th/0107256 talk presented at QGIS Prague ’01, Czech.J.Phys.51 (2001) 1380; updated version presented at workshop on Integrable Theories, Solitons and Duality, Sao Paulo, July 2002, in J.High Energy Physics (Proc.Suppl.), PRHEP-unesp2002/024

[4] A. Molev, M. Nazarov and G. Ol’shanskii, Yangians and classical Lie algebras, Russ. Math. Surveys 51 (1996) 205; A. Molev, Finite-dimensional irreducible representations of twisted Yangians, J. Math. Phys. 39 (1998) 5559, q-alg/9711022; A. Molev and E. Ragoucy, Representations of reflection algebras, math.QA/0107213; E. Ragoucy, Quantum group symmetry of integrable systems with or without boundary, math.QA/0202095

[5] N. MacKay, Rational K-matrices and representations of twisted Yangians, J. Phys. A35 (2002), 7865, math.QA/0205155

[6] V. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254

[7] N. J. MacKay, Rational R-matrices in irreducible representations, J. Phys. A24 (1991) 4017

[8] M. Gould and Y-Z. Zhang, R-matrices and the tensor product graph method, hep-th/0205071 and references therein

[9] S. Ghoshal and A. Zamolodchikov, Boundary S-matrix and boundary state in 2D integrable quantum field theory, Int. J. Mod. Phys. A9 (1994), 3841, hep-th/9306002

[10] P. Goddard, W. Nahm and D. Olive, Symmetric spaces, Sugawara’s energy momentum tensor in two dimensions and free fermions, Phys. Lett. B160(1985)111

[11] C. Daboul, Algebraic proof of the symmetric space theorem, J. Math. Phys. 37(1996)3576, hep-th/9604108

[12] G. Felder, J. Fröhlich, J. Fuchs and C. Schweigert, The geometry of WZW branes, J. Geom. Phys. 34(2000)132, hep-th/9905030

[13] P. Deligne, La série exceptionelle de groupes de Lie, C.R.Acad.Sci.Paris 322 (1996) 321; P. Cvitanović, Negative dimensions and E7 symmetry, Nucl.Phys. B188 (1981) 373

[14] B. Westbury, R-matrices and the magic square, J. Phys. A36 (2003) 2857

[15] C. Barton and A. Sudbery, Magic squares and matrix models of Lie algebras, math.RA/0203010

[16] B. Short, PhD thesis, 2003, unpublished.