Antihelium-3 production in lead–lead collisions at 158 A GeV/c

R Arsenescu1, C Baglin2, H P Beck1, K Borer1, A Bussière2, K Elsener3, Ph Gorodetzky4, J P Guillaud2, S Kabana1, R Klingenberg1,6, G Lehmann1,7, T Lindén5, K D Lohmann3, R Mommsen1,8, U Moser1, K Pretzl1, J Schacher1, R Spiwoks1,7, J Tuominiemi5 and M Weber1

1 Laboratory for High Energy Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
2 CNRS-IN2P3, LAPP Annecy, F-74941 Annecy-le-Vieux, France
3 CERN, SL Division, CH-1211 Geneva 23, Switzerland
4 SPCC—College de France, 11 Place Marcellin Berthelod, 75005 Paris, France
5 Helsinki Institute of Physics, PO Box 9, FIN-00014 Helsinki, Finland
E-mail: klaus.pretzl@lhep.unibe.ch

New Journal of Physics 5 (2003) 1.1–1.12 (http://www.njp.org/)
Received 4 November 2002, in final form 13 December 2002
Published 14 January 2003

Abstract. The NA52 experiment measured particle and antiparticle yields at 0° production angle over a wide range in rapidity in lead–lead (Pb–Pb) collisions at 158 A GeV/c with a minimum bias trigger. Besides $O(10^6)$ antiprotons (\bar{p}) and $O(10^3)$ antideuterons (d) a total of five antihelium-3 ($\bar{3}$He) were found. The resulting invariant differential $\bar{3}$He production cross sections at $p_t \simeq 0$ GeV/c turn out to be $E \frac{d^4\sigma}{dp^4} = (2.5 \pm 1.8) \times 10^{-7}$ bc3 GeV$^{-2}$ at a rapidity of $y = 3.4$ in the laboratory system and $(5.9 \pm 3.4) \times 10^{-8}$ bc3 GeV$^{-2}$ at $y = 4.0$. The results are discussed in the framework of a simple coalescence model.
1. Introduction

The first observation of antihelium-3 \(^{3}\text{He}\) production in heavy ion collisions was reported by NA52 in [1]. In the meantime more data have been collected at two rapidities \(y = 3.4\) and \(4.0\) (see table 1). In this paper we present data on the \(^{3}\text{He}\) production at nearly zero transverse momentum \((p_t \sim 0)\) using the full statistics of \(O(10^{12})\) lead–lead (Pb–Pb) collisions in our experiment. The data were taken with a minimum bias trigger. No cuts on the centrality of the collisions were applied.

Year	Rigidity \(p/Z\) \((\text{GeV/c})\)	Incident \(\text{Pb ions}\) \((10^{10})\)	\(\text{Pb target thickness}\) \((\text{mm})\)	Identified \(^{3}\text{He}\)
1994	\(-20\)	9.0	4	1
1995	\(-20\)	25.5	4	0
1998	\(-20\)	129.0	40	1
1994	\(-40\)	9.6	4	0
1995	\(-40\)	27.4	4	0
1998	\(-40\)	145.0	40	3
1998	\(-40\)	46.5	40	0
1998	\(-40\)	4.9	16	0
1998	\(-40\)	10.4	8	0

The study of antinucleus production provides insight into the formation mechanism of antimatter in relativistic heavy ion collisions. There is evidence [2]–[4] that nuclei and antinuclei are predominantly produced via a coalescence mechanism. In this picture nucleons and antinucleons freeze out from a chemically and thermally equilibrated source at about 165 MeV [5, 6] (chemical freeze-out) and form nuclei and antinuclei via final state coalescence. Before nuclei and antinuclei freeze out, they are largely destroyed through collisions with surrounding particles due to their weak binding. Antinuclei are additionally affected by annihilation processes. Surviving antinuclei are mainly formed shortly before the expanding particle source reaches the temperature of about 120 MeV. If a quark gluon plasma is formed in the collision, enhanced antibaryon production is expected [7]–[9]. This should lead to an enhanced production of antinuclei. However, this effect may be diluted by the annihilation processes.
Annihilation has shown to be effective in decreasing \bar{d}/d and \bar{p}/p ratios with increasing baryon density in central Pb–Pb collisions [2, 4].

2. Experimental method

The NA52 experiment measured particle and antiparticle yields at 0° production angle over a wide range in rapidity in Pb–Pb collisions at 158 A GeV/c [10]–[12]. It used the H6 beamline in the north area of the CERN-SPS as a single-particle, double-bend focusing spectrometer. This beamline, with a total length of 524 m from the target, can be operated to transport secondary particles in the rigidity range 5 GeV/$c \leq p/|Z| \leq 200$ GeV/c, with p the particle momentum and Z the particle charge. The momentum analysis is performed in the vertical plane, and a momentum bite of up to 2.8% can be transported. The selection of production angles takes place in the horizontal plane by means of bending magnets. For this experiment a production angle around 0° was chosen.

A schematic layout of the experimental set-up is shown in figure 1. The focusing spectrometer was instrumented with five segmented time of flight (TOF) hodoscopes (TOF1–TOF5) and five unsegmented scintillation counters (BT, B0 and B0–B2). The individual time resolution of the TOF counters varied between $\sigma_t = 74$ and 105 ps. The incident lead beam was measured by a fourfold segmented quartz Čerenkov counter (TOF0). Beam intensities of up to 2×10^8 ions/spill (with a duration of 5 s) were recorded. A differential (CEDAR) and three threshold (Č0, Č1 and Č2) Čerenkov counters provided additional particle identification capabilities. Multiwire proportional chambers (W1T–W5T, W2S, W3S, W0B and WSB) were used for particle tracking. A segmented scintillator/uranium calorimeter at the downstream end of the spectrometer added further particle identification capabilities and redundancy for the charge measurements. Details of the detector can be found in [13].

The particles are identified by their mass m and charge Z with the help of the TOF and energy loss (dE/dx) measurements in the five segmented scintillation hodoscopes (TOF1–TOF5) and the five unsegmented scintillation counters (BT, BS and B0–B2). The TOF measurement is made...
with respect to fast particles (mass m_0 and momentum p_0) with velocities of $\beta_0 \sim 1$. Pions were used as fast particles as they are copiously produced and are identified by the Čerenkov counters. With the help of a linear fit to the time delay information Δt from the scintillation counters at the various detector distances L/c from the target we determine the slope $\langle \Delta t / L/c \rangle$.

$$\langle \Delta t / L/c \rangle = 1/\beta - 1/\beta_0.$$

(1)

A graphical display of the Δt versus L/c of one event is shown in figure 2. From the slope $\langle \Delta t / L/c \rangle$ and the spectrometer rigidity p/Z we extract the mass to charge ratio

$$\left(\frac{m}{Z} \right)^2 = \left(\frac{p}{Z} \right)^2 \left[\left(\langle \Delta t / L/c \rangle + \frac{1}{c^2} \right)^2 - \frac{1}{c^2} \right].$$

(2)

The charge squared is obtained from the mean of the pulse heights of the TOF and B counters. Although the Landau distribution has a significant tail towards higher dE/dx for a single counter, combining the measurement of several detectors allows us to separate the charges of the observed particles. Figure 3 shows the mean dE/dx of positively charged nuclei up to $Z = +6$, corresponding to the maximum of the dynamic range of the charge measurement. This demonstrates the ability to detect positively and negatively charged objects up to a maximum charge of $|Z| = 6$.

The antinuclei detected in NA52 are \bar{p}, \bar{d} and $\bar{^3\text{He}}$. One ^3He event at -40 GeV/c is presented here in detail as an example. The dE/dx for this event, measured in individual counters along the beamline, is shown in figure 4 as a function of L/c. All the counters show an enhanced pulse height consistent with $Z = -2$. In the calorimeter at the end of the beamline the ^3He deposited...
1.5

Figure 3. Charge distribution at a rigidity $p/Z = +200$ GeV/c. One can clearly identify the different projectile fragments. These measurements show that NA52 can separate charges up to $|Z| = 6$.

an energy of $E = (85.8 \pm 4.4)$ GeV, which is compatible with a doubly charged object at a rigidity of -40 GeV/c. This ^3He event is the one already shown in the graphical display of figure 2. The reconstructed mass of $m = (2.72 \pm 0.14)$ GeV/c2 is consistent with a ^3He. In the multiwire proportional chambers and in the TOF hodoscopes no multiple entries were recorded excluding the presence of more than one particle in the beamline.

3. Results and discussion

Table 1 shows a summary of the data taking for the ^3He search. In 1998 a significant increase of the statistics was achieved compared to data from 1994 and 1995 published in [10].

We found a total of two ^3He at a rigidity of -20 GeV/c and three at -40 GeV/c. No antitriton $\bar{\text{t}}$ has been observed. At a rigidity of -20 GeV/c this can be explained by the fact that the acceptance for a singly charged particle like a $\bar{\text{t}}$ is a factor of four smaller than that of a doubly charged particle like a ^3He. We assume the same production cross section near centre of mass rapidity ($y_{\text{cm}} = 2.9$) for ^3He ($y = 3.4$) and for $\bar{\text{t}}$ ($y = 2.7$) at -20 GeV/c. At the rigidity of -40 GeV/c the larger acceptance for ^3He is counterbalanced by the reduced ^3He production cross section (factor 4) at $y = 4.0$ as shown in table 2 and in figure 8. Since three ^3He have been
identified at a rigidity of -40 GeV/c, we would also have expected to find a similar number of \bar{t}. They should have shown up in the mass to charge spectrum of figure 5 obtained from the TOF information.

The invariant differential production cross section for particles with energy E and momentum p is evaluated from

$$\frac{Ed^3\sigma}{dp^3} = \frac{E}{p^3} \frac{N_S}{N_{Pb}} \frac{1}{n\alpha \epsilon},$$

with N_S the number of observed secondary particles, N_{Pb} the number of incident lead ions, $n = 0.033$ b$^{-1}$ cm$^{-1}$ the number of target nuclei per unit area and α the spectrometer acceptance. The factor ϵ accounts for the trigger and reconstruction efficiencies, which varied between $\epsilon = 0.75$ and 0.8.

The acceptance of the spectrometer α was deduced from the Monte Carlo simulation DECAY TURTLE [14], which takes multiple scattering into account. In this simulation a flat momentum and angular distribution of the produced particles was assumed. Figure 6 shows the iso-transmission lines at a rigidity of -40 GeV/c as a function of the polar angle and the momentum deviations for particles reaching counter TOF3. The integrated transmission corresponds to an acceptance of 5.45 μsr\%. In order to obtain agreement between the measured
Figure 5. Mass to charge spectrum obtained from the TOF information at a rigidity of $-40 \, \text{GeV}/c$. The particles tagged by the Čerenkov counters (\bar{p}, K^-, π^-) are shown light coloured. Antitritons would have appeared clearly separated from the antideuterons. Antihelium-3, which are not resolved here, are identified from the charge measurement as doubly charged objects.

Figure 6. Shown are the iso-transmission lines (1, 10, 50, 90 and 99%) obtained from the Monte Carlo simulation DECAY TURTLE [14] at a rigidity of $-40 \, \text{GeV}/c$ as a function of the polar angle and the momentum deviations for particles reaching counter TOF3. The integrated transmission corresponds to an acceptance of $5.45 \, \mu \text{sr}\%$.

and simulated beam profiles the acceptance was corrected by a factor of 0.67, which also turned out to be the same at a rigidity of $-20 \, \text{GeV}/c$. The acceptances finally used in the cross section calculations are $\alpha = 3.14 \, \mu \text{sr}\%$ at a rigidity of $-20 \, \text{GeV}/c$ and $\alpha = 3.60 \, \mu \text{sr}\%$ at a rigidity of $-40 \, \text{GeV}/c$.

New Journal of Physics 5 (2003) 1.1–1.12 (http://www.njp.org/)
Table 2. Invariant differential production cross sections and yields for 3He measured by NA52. Only statistical errors are shown. The rapidity of the centre of mass in the laboratory system is $y_{cm} = 2.9$.

Rigidity (GeV/c)	Rapidity (lab)	p_t bite (MeV/c)	Number of events	Cross section (b c3 GeV$^{-2}$)	Yield (c3 GeV$^{-2}$)
-20	3.4	0–28	2	$(2.5 \pm 1.8) \times 10^{-7}$	$(3.0 \pm 2.2) \times 10^{-8}$
-40	4.0	0–56	3	$(5.9 \pm 3.4) \times 10^{-8}$	$(7.2 \pm 4.2) \times 10^{-9}$

Figure 7. Measured number of secondary \bar{p} and \bar{d} per incident lead ion as a function of the target thickness. From the linear dependence we conclude that absorption and rescattering counterbalance each other.

The absorption of 3He in the beamline and in the target as well as additional production due to rescattering of lead fragments in the target is taken into account in the evaluation of the production cross sections. The dependence on target thickness was studied with \bar{p} and \bar{d} yields using targets with different thicknesses (4, 8, 16, 40 mm). The number of secondaries per incident lead ion increased linearly with the target thickness as shown in figure 7. From this we conclude that absorption and rescattering counterbalance each other. We assume in our analysis a similar behaviour for 3He.

We derive invariant differential yields Y according to

$$Y = \frac{E d^3 \sigma}{d p^3} / \sigma_{PbPb}$$

assuming a total Pb–Pb cross section of $\sigma_{PbPb} = (8.2 \pm 2.0)$ b [15].

The resulting invariant differential 3He production cross sections and yields at a rigidity of -20 and -40 GeV/c are shown in table 2. Only statistical errors are shown. The systematic error is mainly due to the uncertainty of the spectrometer acceptance and is estimated to be 25% for the cross sections. The uncertainty of the total Pb–Pb cross section adds to the systematic error of the yields. The total systematic error of the yields then turns out to be 35%.
Figure 8. NA52 invariant differential \bar{p}, \bar{d} [10] and 3He production cross sections versus rapidity. The closed symbols are the measured points; open symbols are mirrored at $y_{cm} = 2.9$, which is the rapidity of the centre of mass in the laboratory system. Only statistical errors are shown. The curves are drawn to guide the eye.

In figure 8 the 3He cross sections are shown as a function of rapidity y. Previously published \bar{p} and \bar{d} cross sections [10] are also shown in the figure. The measured points are mirrored at the centre of mass rapidity. The lines are drawn to guide the eye.

The coalescence scaling factor B_3 [16] for 3He is calculated near the centre of mass rapidity from the 3He yields $Y_{^3\text{He}}$ in table 2 and the antiproton yield $Y_{\bar{p}} = (0.166 \pm 0.006) c^3 \text{GeV}^{-2}$ also measured by NA52 [4]:

$$B_{3^\text{He}} = \frac{Y_{^3\text{He}}}{(Y_{\bar{p}})^3} = (6.7 \pm 4.9) \times 10^{-6} \text{GeV}^4 c^{-6}.$$

The antiproton yield is corrected for feeding from antilambda decays using the model of [17]. The measured B_3 value for 3He is compatible with B_3 for t ($B_t^3 = (6.8 \pm 2.9) \times 10^{-6} \text{GeV}^4 c^{-6}$) and for 3He ($B_{3^\text{He}} = (2.3 \pm 1.0) \times 10^{-6} \text{GeV}^4 c^{-6}$) in accordance with the coalescence production mechanism. A compilation of coalescence scaling factors B_3 at different centre of mass energies \sqrt{s} is shown in figure 9 including other results from Bevalac [18, 19], AGS [20]–[23] and RHIC [24]. The coalescence scaling factor B_3 appears to decrease with increasing energy, indicating that the source volume [3, 25, 26] is increasing.

NA52 has also measured 3He production in Pb + Pb collisions [10]. The ratio of 3He to 3He production cross sections in Pb–Pb collisions from NA52 can be compared to that in p–Be collisions, measured at zero degree production angle with a small acceptance focusing spectrometer [27]. Using the 3He cross section from this paper and our 3He cross sections...
from [10] we obtain a ratio of \(\frac{3\text{He}}{3\text{He}}_{\text{Pb--Pb}} = (1.4 \pm 1.1) \times 10^{-3} \) in minimum bias Pb--Pb collisions. In minimum bias p--Be collisions this ratio is \(\frac{3\text{He}}{3\text{He}}_{\text{p--Be}} = (11 \pm 7) \times 10^{-3} \) [27], scaled down from 220 to 158 GeV/c using the \(\sqrt{s} \) dependence of the \(\bar{p}/p \) ratio in p--p collisions [28] between 220 and 158 GeV/c. These ratios show no enhanced antibaryon production in Pb--Pb collisions as compared to p--Be collisions, which would be expected in the case where a quark gluon plasma was formed in Pb--Pb collisions. However, as mentioned before, a possible enhancement of antimatter production can be counterbalanced by antimatter annihilation in the baryon rich environment of Pb--Pb collisions. The observed suppression of the \(3\text{He} \) to \(3\text{He} \) ratio in Pb--Pb collisions relative to that in p--Be collisions may also be due to a possible contribution to the \(3\text{He} \) production cross section from the feeding of projectile fragments.

4. Conclusions

We have presented data on \(3\text{He} \) production at nearly zero transverse momentum using the full statistics of O(10^{12}) Pb--Pb collisions. We found a total of two \(3\text{He} \) at a rigidity of \(-20\) GeV/c and three at \(-40\) GeV/c. This allowed us for the first time to present differential \(3\text{He} \) production cross sections as a function of rapidity. The coalescence scaling factor \(B_3 \) calculated from the \(3\text{He} \) and \(\bar{p} \) yields is \(B^{3\text{He}}_3 = (6.7 \pm 4.9) \times 10^{-6} \text{ GeV}^4 \text{ c}^{-6} \). A compilation of coalescence scaling factors indicates that \(B_3 \) decreases with increasing centre of mass energy, indicating that the source volume is increasing.
Acknowledgments

The enthusiastic support by the SPS operation team, the SL experimental areas and beam instrumentation groups and the SPS coordinator at CERN are greatly acknowledged. The experiment was supported by the Swiss National Science Foundation and by the Academy of Finland.

References

[1] Appelquist G et al 1996 Antinuclei production in Pb + Pb collisions at 158 A GeV/c Phys. Lett. B 376 245–50
[2] Pretzl K et al 2000 Antimatter and matter production in heavy ion collisions at CERN: the newmass experiment NA52 Symp. on Fundamental Issues in Elementary Matter (Debreen, 2000) ed W Greiner pp 277–87
[3] Scheibl R and Heinz U 1999 Coalescence and flow in ultra-relativistic heavy ion collisions Phys. Rev. C 59 1585–602
[4] Ambrosini G et al 1999 Impact parameter dependence of K±, p, ď, Ď production in Pb + Pb collisions at 158 GeV per nucleon New J. Phys. 1 22.1–22.23
[5] Braun-Munzinger P, Hеппе I and Stachel J 1999 Chemical equilibration in Pb + Pb collisions at the SPS Phys. Lett. B 465 15–20
[6] Kabana S and Minkowski P 2001 Mapping out the qcd phase transition in multiparticle production New J. Phys. 3 4
[7] Ellis J R, Heinz U W and Kowalski H 1989 Anti-baryon production in heavy ion collisions Phys. Lett. B 233 223
[8] Gavin S et al 1990 Anti-proton production as a baryonometer in ultrarelativistic heavy ion collisions Phys. Lett. B 234 175
[9] Schaffner J, Mishustin I N, Satarov L M, Stocker H and Greiner W 1991 Anti-baryon (anti-p, anti-lambda) production in relativistic nuclear collisions Z. Phys. A 341 47–52
[10] Ambrosini G et al 1998 Baryon and antibaryon production in lead–lead collisions at 158 A GeV/c Phys. Lett. B 417 202–10
[11] Weber M et al 1999 Antinuclei production in heavy ion collisions at CERN SPS Nucl. Phys. A 661 177c–84c
[12] Weber M et al 2002 The NA52 strangelet and particle search in Pb + Pb collisions at 158 A GeV/c J. Phys. G: Nucl. Part. Phys. 28 1921–7
[13] Pretzl K et al 1995 Search for strange quark matter in relativistic heavy ion collisions at CERN (NA52) Int. Symp. on Strangeness and Quark Matter (Krete, 1994) ed G Vassiliadis, A D Panagiotou, S Kumar and J Madsen (Singapore: World Scientific) pp 230–44
[14] Brown K L and Iselin F C DECAY TURTLE (Trace Unlimited Rays Through Lumped Elements): a Computer Program for Simulating Charged Particle Beam Transport Systems, Including Decay Calculations CERN-74-2
[15] Andersen E et al 1989 A measurement of cross-sections for S-32 interactions with Al, Fe, Cu, Ag and Pb at 200 GeV/c per nucleon Phys. Lett. B 220 328
[16] Csernai L P and Kapusta J J 1986 Entropy and cluster production in nuclear collisions Phys. Rep. 131 223–318
[17] Werner K 1993 Strings, pomerons, and the Venus model of hadronic interactions at ultrarelativistic energies Phys. Rep. 232 87–299
[18] Nagamiya S et al 1981 Production of pions and light fragments at large angles in high-energy nuclear collisions Phys. Rev. C 24 971–1009
[19] Auble R L et al 1983 Light ion emission from reactions induced by 0.8–2.4 GeV O-16 projectiles Phys. Rev. C 28 1552–64
[20] Saito N et al 1994 Composite particle production in relativistic Au + Pt, Si + Pt, and p + Pt collisions Phys. Rev. C 49 3211–18
[21] Barrette J et al 1994 Production of light nuclei in relativistic heavy-ion collisions Phys. Rev. C 50 1077–84

New Journal of Physics 5 (2003) 1.1–1.12 (http://www.njp.org/)
[22] Bennett M J et al 1998 Light nuclei production in relativistic Au + nucleus collisions Phys. Rev. C 58 1155–64
[23] Armstrong T A et al 2000 Measurements of light nuclei production in 11.5 A GeV/c Au + Pb heavy-ion collisions Phys. Rev. C 61 064908
[24] Adler C et al 2001 Anti-deuteron and anti-He-3 production in S(NN)**(1/2) = 130 GeV Au + Au collisions Phys. Rev. Lett. 87 262201
[25] Sato H and Yazaki K 1981 Phys. Lett. B 98 153
[26] Mekjian A Z 1978 Statistical thermodynamics of relativistic heavy ion collisions Nucl. Phys. A 312 491
[27] Bussière A et al 1980 Particle production and search for longlived particles in 200–240 GeV/c proton–nucleon collisions Nucl. Phys. B 174 1–15
[28] Albini E et al 1975 Experimental study of the energy dependency in proton–proton inclusive reactions Nucl. Phys. B 84 269