Optimum mix design of high-performance concrete containing micro POFA using historical data design

Wan Nur Firdaus Wan Hassan¹*, Mohamed A Ismail¹, Mohammad Ismail¹, Mohd Warid Hussin¹, Muhammad Ekhlasur Rahman¹, Khairul H Padil¹ and Nadirah Darus¹

¹ School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
*Corresponding author: wannurfirdaus@utm.my

Abstract. This paper presents the optimized mix design based on the response surface methodology (RSM) in producing high performance concrete (HPC) by utilizing palm oil fuel ash (POFA) as cement replacement material. The historical data design was used based on the existing testing data determined from the laboratory experiments. The variable in this study includes POFA percentage (10%, 20%, and 30%). The concrete mixes were tested both for fresh and hardened properties of high performance concrete. The optimized level for POFA in the HPC mix proportion was determined by the maximization of workability, early, 28 days’, and later compressive strength. The response of each mix that contains POFA showed a significant increase in the workability and compressive strength with respect to the plain HPC. The results presented the optimum solution for mix design of high performance concrete with POFA that achieve the targeted goal performance criteria (fresh and hardened properties).

1. Introduction
Global demand of cement in construction industry is expected to increase to 400% by year 2050 [1]. Based on the human activity category, 5-8% of current global CO₂ was contributed from cement production [2]. Due to that, the urgency of finding the alternative way to reduce the impact on the earth resources was raised by the International Energy Agency (IEA). One of the alternative options that considered realistic is using the ‘blended cement’ which replacing cement with other waste material that contains cementitious properties. These materials are called supplementary cementitious materials (SCM). SCM such as rice husk ash, fly ash, ground granulated blast slag and metakaolin have been utilised to lower the impact on the environment [3-6]. Furthermore, the incorporation of the SCM in concrete has been reported to improve the mechanical properties of concrete [7-10].

Malaysia as one of the biggest players in palm oil industry in the world is now facing the difficulties in handling the waste product from the palm oil mills. This is due to the fact that the material is dumped near the mill and thus creating negative effect on the natural environment [11]. The palm oil biomass amount is expected to increase of up to 100 million dry tons in the year of 2020 [12]. Generally, 5% of the palm oil fuel ash (POFA) is produced after the burning process in the boiler [13]. POFA is generated from the burning process of palm fruit residues for generation of electricity. The process of burning in the furnace will convey the palm fruit fibres to the chimney in the form of fly fuel-ash. [14]. Research on POFA has been started in 1990 and found to be a good pozzolanic material and has the potential to improves the engineering properties of concrete and durability performance as well [15-16].
Knowing the fact that POFA can enhance the mechanical properties and its environmental impact, it is deemed necessary to develop the high-performance concrete mix containing POFA as the SCM. A statistical experimental design procedure called response surface methodology (RSM) was used for modeling and analyzing of problems in which response or output variables are related to the number of input variables [17]. This study aimed to apply the RSM to relate POFA dosage to the fresh and hardened properties of high-performance concrete in order to obtain the optimum mix design. For the fresh properties, the slump value as the indicator of the workability of the concrete and the compressive strength as the main property of high-performance concrete in optimization process.

2. Materials and method

The cement used is Type I Portland Cement from the company Cahya Mata Sarawak. The specific gravity of cement is 3.15. POFA used in this study was collected from Bekenu, Sarawak. The total content of silica, aluminium and ferum oxide is 69.7%. From this information, it shows that POFA having higher percentage of silica content that can contribute to the strength of concrete. Based on ASTM C618-15[18], micro POFA (45µm) used in this study can be classified as Class C due to the total content of silica, aluminium and iron oxide below 70%. Crushed granite from a local source with size ranges from 9.5 mm to 20 mm was used. The grading of the aggregates was according to ASTM C 33-16[19] with the aggregate crushing value (ACV) of 22.5%. The fineness modulus, specific gravity and water absorption of the coarse aggregates used are 2.2, 2.69 and 0.5% respectively. The fineness modulus was 0.99. Therefore, in this study, the combination of river sand and quarry dust with weight ratio of 1:1 was used as fine aggregates. The superplasticizer that was used is Real Set231SD which was formulated from a selected highly purified lignosulphonate and it does not contain calcium chloride.

2.1. Mix proportion

The mix design for high performance concrete was designed based on ACI 211-4R[20] guidelines. From the guidelines, the mix proportion of high performance concrete is presented in Table 1.

Component	Weight
Cement	620 kg/m³
Coarse Aggregates	1105 kg/m³
Fine Aggregates	556 kg/m³
Water with superplasticizer	180 kg/m³

2.2. Design of experiment using RSM

Response surface methodology (RSM) using Design Expert Software (DES) was applied in this study to obtain the optimum mix design of high performance concrete containing POFA. Under the RSM, the Historical Data Design (HDD) was used to evaluate the previous obtained experimental data. Table 2 shows the actual and coded values with the variables. The POFA dosage was chosen as the input variable and four predicted responses (slump, early strength, 28-day strength and later strength) were targeted. The relationship can be approximated by the second order polynomial.

Variables	Code	Unit	Coded parameter value
POFA	X₁	%	-1 0 1

Table 1. Mix proportion of high-performance concrete.

Table 2. Variable and the actual and coded values.
2.3. Slump test
ASTM C143-15 [21] was followed to perform the slump test of concrete. Three layers of equal volume were filled and each layer was tamped with rod 600 mm long and 16 mm diameter.

2.4. Compressive strength test
ASTM C109-16[22] was followed to determine the compressive strength of concrete at the early age of 7, 28, 56 days. 45 cubes specimens of 100 x 100 x 100 mm in dimensions were prepared with different percentage POFA as shown in Table 2.

3. Results and discussion
Table 3 shows the run of experiments with the variable and the actual/measured response.

Table 3. Experimental variable and responses.

Exp. run	Variable in coded levels	R1 (mm)	R2 (MPa)	R3 (MPa)	R4 (MPa)
1	0	85	56.5	58.5	58.5
2	1	75	56.5	58.5	56.5
3	0	80	59.5	58.5	56.5
4	-1	90	65	65	65
5	-1	95	65	65	65
6	-1	92	66	55	66
7	1	78	55	57.5	55
8	1	75	57.5	56	57.5
9	1	75	56	56.5	56
10	-1	90	65	66	65
11	0	85	58.5	65	59.5
12	0	80	58	59.5	58

Based on the statistical analysis using Design Expert Software, each of response can be predicted by the following regression equation:

\[
Y_{R1} = 83.33 - 8X
\]

\[
Y_{R2} = 58.13 - 4.5X + 2.62X^2
\]

\[
Y_{R3} = 58.88 - 4.31X + 2.06X^2
\]

\[
Y_{R4} = 58.13 - 4.5X + 2.62X^2
\]

where \(Y\) is the predicted response, the suffix R1, R2, R3 and R4 represents the slump, early compressive strength, 28-day compressive strength and later compressive strength, respectively. The equations above can be used to determine the predicted slump, early compressive strength, 28-day compressive strength and later strength of high performance concrete containing POFA. In this analysis, several models were compared and the aliased model was ignored. The best model indicates the low standard deviation (Std. dev) and high R squared (\(R^2\)) statistics due to the models fitted well with the experimental data [23]. Amongst the models, only slump was suggested a linear model while the early, 28-day and later compressive strength were found to be significant. Table 4 shows the full analyses of the regression
models. The value of the R squared provides a correlation between the measured and predicted response. The adjusted R squared (adj. R2) also provides the same correlation but without the insignificant term considered [24]. It can be observed from this table that the adj. R2 for all the responses are in good agreement with the predicted R squared (pre. R2).

Response	Std. dev	R2	Adj. R2	Pre. R2
R1	2.29	0.9067	0.8974	0.8711
R2	0.98	0.954	0.9438	0.9183
R3	0.54	0.98	0.9803	0.9713
R4	0.98	0.954	0.9438	0.9183

Result of analysis of variance show that the variable in the high performance concrete mix has significant effects on the four target responses. The accuracy of the model selection was validated by the lack-of-fit test. The significant lack-of-fit provides a values of “Prob. > F” less than 0.05 which indicates the test at the 95% confidence level. Analysis of variance (ANOVA) for each of the response and all the sources are showed significant result due to the Prob. > F values are less than 0.05.

A numerical optimization was done to determine the optimum mix design of high-performance concrete containing POFA. The desired goal for each of the responses were set in the software in order to achieve desirable mix design. Table 5 shows the optimization criteria used in this study.

Response	Limits	Importance	Goal	
	Upper	Lower		
Slump	90	95	In range	
Early compressive strength	50	55	3	Maximize
28-day compressive strength	60	65	3	Maximize
Later compressive strength	60	65	3	Maximize

The optimization result based on numerical was used to satisfy the criteria for each of the response. The optimum solution obtained from the analysis is presented in Table 6. The desirability of the optimum solution is 0.915. The maximum micro POFA percentage replacement is 10% with all targeted responses were achieved. Similar finding also reported that 10% of micro POFA yielded the highest compressive strength of high performance concrete. However, current finding also showed that higher compressive strength of concrete can be achieved by enhancement of nano POFA in the mix design [25].

Variable and response
Cement
POFA
Slump
Early compressive strength
28-day compressive strength
Later compressive strength
Desirability
4. Conclusions
From this study, the measured data were obtained from the experimental program and were analysed using response surface methodology (RSM) to obtain the valid regression model for each response. The compressive strength response showed the quadratic function except the slump behaved more as a linear function. The value of R^2 for each response showed a high value which correspond to the well fitted of models with the measured data. Furthermore, the adjusted and predicted R^2 values were also in a good agreement. Along with that, the analysis of variance showed that all the models have significant effect on the targeted responses. With the results of the good model, a numerical optimization was carried out and one optimal solution was obtained for the mix design of high performance concrete containing POFA. The optimum mix satisfies and improves the slump and compressive strength of the concrete with the utilizing 10% POFA as supplementary cementitious material.

5. References
[1] Damtoft J S, Lukasik J, Herfort D, Sorrentino D and Gartner E M 2008 Sustainable development and climate change initiatives Cem. Concr. Res. 38 115–27
[2] International Energy Agency 2009 Tracking Industrial Efficiency and CO2 Emissions IEA Publications
[3] Rajabipour F, Maraghechi H, Fischer G 2010 Investigating the alkali silica reaction of recycled glass aggregates in concrete materials J. Mater. Civil Eng. 22 1201–1208
[4] Mirzahosseini M R and Riding K A 2014 Influence of curing temperature and glass type on the pozzolanic reactivity of glass powder Cem. Concr. Res. 58 103–111
[5] Lawania K, Sarker P and BiswasW 2015 Global warming implications of the use of by-products and recycled materials in western Australia’s housing sector Materials 8 6909–6925
[6] Ludwig H M and Zhang W S 2015 Research review of cement clinker chemistry Cem. Concr. Res. 78 24–3
[7] Cordeiro G C, Filho R D T, Tavares L M, Fairbairn E M R and Hempel S 2011 Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash Cem. Concr. Compos. 33 529–534
[8] Siddique R and Bennacer R 2012 Use of iron and steel industry by-product (GGBS) in cement paste and morta Resour. Conserv. Recy. 69 29–34
[9] Mermerdas K, Gesoglu M, Güneyisi E and Özturan T 2012 Strength development of concretes incorporated with metakaolin and different types of calcined kaolins Constr. Build. Mater. 37 766–774
[10] Achary P K and Patro S K 2015 Effect of lime and ferrochrome ash (FA) as partial replacement of cement on strength, ultrasonic pulse velocity and permeability of concrete Constr. Build. Mater. 94 448–457
[11] Sata V, Jaturapitakkul C and Kiattikomol K 2004 Utilization of palm oil fuel ash in high-strength concrete J. Mater. Civil Eng. 16 623–628
[12] National Innovation Agency of Malaysia 2013 National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Palm Oil Industry Kuala Lumpur
[13] Sata V, Jaturapitakkul C and Kiattikomol K 2007 Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete Constr. Build. Mater. 21 1589–1598
[14] Altwair N M, Azmi M, Johari M, Fuad S and Hashim S 2011 Strength activity index and microstructural characteristics of treated palm oil fuel ash Int. J. Civil Environ. Eng. 11 85–92
[15] Kroeong W, Sinsiri T, Jaturapitakkul C and Chindaprasirt P 2011 Effect of palm oil fuel ash fineness on the microstructure of blended cement paste Constr. Build. Mater. 25 4095–4104
[16] Tanghirapat W, Khamklai S and Jaturapitakkul C 2012 Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates Mater. Des. 41 150–157
[17] Montgomery D C 2001 Design and Analysis of Experiments: Response Surface Method and Designs John Wiley and Sons pp 210–56
[18] ASTM C618-15 2015 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan For Use in Concrete American Society for Testing and Materials
[19] ASTM C33-16 2016 Standard Specification for Concrete Aggregates (West Conshohocken, PA: ASTM International)
[20] ACI 211.4R-08 2008 Guide for Selecting Proportions for High-Strength Concrete with Portland Cement and Fly Ash American Concrete Institute.
[21] ASTM C143 / C143M-15 2015 Standard Test Method for Slump of Hydraulic-Cement Concrete (West Conshohocken, PA: ASTM International)
[22] ASTM C109 / C109M-16 2016 Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) (West Conshohocken, PA: ASTM International)
[23] Ghafari E, Costa H and Júlio E 2015 Statistical mixture design approach for eco-efficient UHPC Cem. Concr. Compos. 55 17–25
[24] Muthukumar M and Mohan D 2004 Studies on polymer concretes based on optimized aggregate mix proportion Eur. Polym. J. 40 2167–2177
[25] Wan Hassana W N F, Mohamed A I, Lee H S, Meddah M S, Jitendra K S, Hussin M W and Ismail M 2020 Mixture optimization of high-strength blended concrete using central composite design Constr. Build. Mater. 243 118251