Most abundant Middle Miocene rotaliinas (suborder Rotaliina, Foraminifera) of Kozjansko (Eastern Slovenia)

Najpogostejše srednjemiocenske rotaliine (podred Rotaliina, Foraminifera) Kozjanskega (vzhodna Slovenija)

Katarina OBLAK

Naravoslovnotehniška fakulteta, Univerza v Ljubljani, Oddelek za geologijo, Privoz 11, SI - 1000 Ljubljana, Slovenija, katarina.oblak@ntf.uni-lj.si

Key words: Benthic foraminifera, Rotaliina, Middle Miocene, Kozjansko, Slovenia

Abstract

This research presents the most numerous Middle Miocene foraminifera of the suborder Rotaliina from the Planina syncline in Kozjansko. 85 species and 2 subspecies have been identified. The species that show abundance in samples are: Angulogerina angulosa, Trifarina bradyi, Sphaeroidina bulloides, Cibicidoides ungerianus, Nonion commune, Melonis pompilioides, Pullenia bulloides, Heterolepa dutemplei, Hansenisca soldanii and Hanzawaia boueana.

Introduction

The foraminiferal suborder Rotaliina was established in 1896 by Delage & Herouard as the suborder Rotalidae (renamed in Rotaliina in 1961 by Loeblich and Tappan) (Loeblich & Tappan, 1987). It represents the second largest foraminiferal suborder, comprising 628 genera according to Loeblich & Tappan (1987). The suborder includes benthic foraminifera with multilocular tests that have a perforated hyaline calcite wall of a lamellar structure. Other test characteristics show great variety; test is typically spiral or may be reduced to triserial, biserial and uniserial growth. Chambers can be simple or subdivided by septulae. The surface can be smooth, costate, striate, cancellate or papillate. The aperture can be simple or contain internal toothplate or other structures (Loeblich & Tappan, 1987). A simple to very complex internal canal system may be developed (Billman et al., 1980).

Rotaliinas show a wide tolerance to environment parameters: substrates, water depth, temperature, salinity and availability of food. They also show great variety in their mode of life, being either infaunal, semi-infaunal or epifaunal. In the case of an epifaunal mode they are either sessile attaching to hard substrates or completely mobile on the substrates surface. The strength of the wave action being important, in high-energy environments there is a preference...
for attachment to hard substrates. Their depth habitat has been shown to range from the shelf (< 180 m) to the abyssal plane (> 4000 m). They are found in water with temperatures ranging from cold to warm. They are euryhaline with specimens being found in brackish (< 32‰), marine (32-37‰) or hypersaline (> 37‰). They exhibit a range of trophic mechanisms: passive suspension feeding, herbivore, detritivore and rarely parasitic (Murray, 1991), in shallow nutrient poor waters symbiosis with diatoms has also been identified (Billman et al., 1980; Murray, 1991).

Foraminifera of the suborder Rotaliina have existed from the Triassic (Loeblich & Tappan, 1987). Due to the great diversity, fossil and recent species are recognized globally.

In this research, rotaliinas were studied from six sections; Imenska Gorca, Plohov breg, Javoršica, Sveta Ana, Trobni Dol and Drensko Rebro (Fig. 1). The investigated area is located mostly on the northern flank of the Planina syncline, only the Drensko Rebro section lies on its southern flank (Buser, 1977, 1979; Aničič & Jurišič, 1984, 1985; Aničič & Ogorčec, 1994/95, 1996; Aničič et al.; 2002, 2004). Results show that rotaliinas have great diversity and abundance in the Planina syncline. Previous researches have shown that rotaliinas are numerous also in other Slovenian Middle Miocene sedimentary sequences. Although they represent a significant proportion of foraminiferal assemblages, they have not been described and mostly not imaged in the Slovenian literature previously.

Methods

Six sections within the Planina syncline were selected for the micropalaeontological research: Imenska Gorca, Plohov breg, Javoršica, Sveta Ana, Trobni Dol and Drensko Rebro (Fig. 1). One hundred and fifty nine samples, consisting of marly calcarenite and marl, were taken. The samples range from the Early Lower Badenian to Early Sarmatian. According to Oblak (2006), the following foraminiferal biozones are involved in this stratigraphic range: the Lower Badenian Lower Lagenidae and Upper Lagenidae Zones, the Middle Badenian Pseudotriplasia robusta Zone and Uvigerina cf. pygmea Zone, the Upper Badenian Bolivina dilatata Zone and Virgulinella pertusa Zone and the Sarmatian Anomalinoides divdens Zone and Elphidium hauerinum Zone (Tab. 1). The younger Sarmatian Elphidium hauerinum Zone lacks rotaliinas. One hundred and sixteen benthic species were described and classified according to Loeblich & Tappan foraminiferal classification (1987). Electron images of spiral, umbilical and side views were taken using the Jeol T330A scanning electron microscope at the Ivan Rakovec Institute of Palaeontology, ZRC SAZU.
Results

Rotaliinas of the investigated area

From 159 Middle Miocene samples taken from all sections, eighty five species and two subspecies of the foraminiferal suborder Rotaliina have been determined:

- Bolivina antiqua D’ORBIGNY
- Bolivina crenulata CUSHMAN
- Bolivina dilatata dilatata REUSS
- Bolivina dilatata maxima CICHA & ZAPLETALOVÁ
- Bolivina hebes MACFADYEN
- Bolivina pokornyi CICHA & ZAPLETALOVÁ
- Bolivina viennensis MARKS

Tabla 1. Correlation time scale (modified after LOURENS et al., 2004 and PILLER et al., 2004). Foraminiferal biozones are not chronologically equal.

Tabela 1. Korelacijska časovna skala (prirejeno po LOURENS et al., 2004 in PILLER et al., 2004). Foraminiferne biocone niso v časovnem sorazmerju.
Lapugyina schmidi Popescu
Loxostomoides zsigmondyi (Hantken)
Cassidulina laevigata (d’Orbigny)
Globocassidulina oblonga (Reuss)
Globocassidulina subglobosa (Brady)
Ehrenbergina serrata Reuss
Hopkinsina bononiensis (Fornasini)
Bitubulogenicera reticulata Cushman
Buliminia buchiana (d’Orbigny)
Globobulimina pupoides (d’Orbigny)
Globobulimina pyrula (d’Orbigny)
Pappina neudorfensis (Toula)
Uvigerina aculeata (d’Orbigny)
Uvigerina acuminata Hosius
Uvigerina bellicostata Luczkowska
Uvigerina brunnensis Karrer
Uvigerina macrocarinata Papp & Turnovsky
Uvigerina cf. pygmea (d’Orbigny)
Uvigerina pygmoides Pape & Turnovsky
Uvigerina semiornata (d’Orbigny)
Uvigerina venusta Franzenau
Angulogerina angulosa (Williamson)
Trifarina bradyi Cushman
Reussella spinulosa (Reuss)
Coryphostoma digitalis (d’Orbigny)
Fursenkoina acuta (d’Orbigny)
Sigmavirgulina tortuosa (Brady)
Virgulinella pertusa (Reuss)
Caucasina elongata (d’Orbigny)
Caucasina gusulica (Livental)
Caucasina subulata (Cushman & Parker)
Nodosarella rotundata (d’Orbigny)
Pleurostomella alternans Schwager
Myllrostomella recta (Palmer & Bermúdez)
Neugeborina longiscata (d’Orbigny)
Orthomorphina dina (Venglinski)
Orthomorphina pupoides (Silvestri)
Siphonodosaria consobrina (d’Orbigny)
Siphonodosaria scripta (d’Orbigny)
Siphonodosaria verneuilli (d’Orbigny)
Stilostomella adolphina (d’Orbigny)
Baggina dentata Hagn
Cancris auriculus (Fichtel & Moll)
Valvalinera complanata (d’Orbigny)
Neoeponides schreibersii (d’Orbigny)
Rosalina obtusa (d’Orbigny)
Sphaeroidina bulloides (d’Orbigny)
Conorbella patelliformis (Brady)
Heronallenia sp.
Schackoinella imperatoria (d’Orbigny)
Siphonina reticulata (Czijzek)
Cibicidoides pseudoungerianus (Cushman)
Cibicidoides ungerianus (d’Orbigny)
Fontbotia wuellerstorfi (Schwager)
Lobatula lobatula (Walker & Jacob)
Planorbulina mediterranensis (d’Orbigny)
Nion commune (d’Orbigny)
Nonionella turgida (Williamson)
Astronomon stelligerum (d’Orbigny)
Melonis pompilioides (Fichtel & Moll)
Pullenia bulloides (d’Orbigny)
Pullenia quinqueloba (Reuss)
Alloomorphina trigona Reuss
Chilostomella oolina Schwager
Chilostomella oovoidea Reuss
Quadrimorphina petrolei (Andreae)
Oridorsalis umbonatus (Reuss)
Anomalinoidea badenensis (d’Orbigny)
Heterolepa dutemplei (d’Orbigny)
Hansenisca soldanii (d’Orbigny)
Hanzawaia boueana (d’Orbigny)
Riminopsis boueanaus (d’Orbigny)
Pararotalia aculeata (d’Orbigny)
Ammonia beccarii (Linnaeus)
Elphidiella sp.
Elphidium aculeatum (d’Orbigny)
Elphidium crispum (Linnaeus)
Elphidium fichtellianum (d’Orbigny)
Elphidium hauerinum (d’Orbigny)
Elphidium josephinum (d’Orbigny)
Elphidium reginum (d’Orbigny)
Porosononion granosum (d’Orbigny)

The following ten species were recognized to be particularly abundant through the sections: Angulogerina angulosa, Trifarina bradyi, Sphaeroidina bulloides, Cibicidoides ungerianus, Nonion commune, Melonis pompilioides, Pullenia bulloides, Heterolepa dutemplei, Hansenisca soldanii and Hanzawaia boueana. They occur in samples of the Lower Badenian Lower Lagenidae Zone to the Upper Badenian Upper Virgulinella pertusa Zone, a few range up to the Lower Sarmatian Anomalinoidea divided Zone (Oblak, 2006). Beside a great stratigraphic range, these species show high abundance inside particular samples (Tab. 2).

Taxonomy of most abundant rotaliinas of the investigated area

Ordo Foraminiferida Eichwald, 1830
Subordo Rotaliina Delage & Herouard, 1896
Superfamilia Buliminacea Jones, 1875
Familia Uvigerinidae Haackel, 1894
Subfamilia Angulogerininae Galloway, 1933
Genus Angulogerina Cushman, 1927

Angulogerina angulosa (Williamson, 1858) (Pl. 1, figs. 1a–b)
Most abundant Middle Miocene rotaliinas (suborder Rotaliina, Foraminifera) of Kozjansko ...

1858 *Uvigerina angulosa* – Williamson, 67, pl. 5, fig. 140.
1960 *Angulogerina angulosa* (Williamson)
 – Barker, 154, pl. 74, figs. 15–16.
1979 *Trifarina angulosa* (Williamson) – Popescu, 36, pl. XXI, fig. 6.
1982 *Trifarina angulosa* (Williamson) – Dondi & Barbieri, tav. XXXVII, fig. 3.
1986 *Trifarina angulosa* (Williamson) – Belanger & Berggren, 336, pl. 3, fig. 4.
1987 *Angulogerina angulosa* (Williamson)
 – Loeblich & Tappan, pl. 574, figs. 5–9.
1987 *Trifarina angulosa* (Williamson) – Wenger, 282, Taf. 9, Fig. 21–22.
1991 *Angulogerina angulosa* (Williamson)
 – Cimerman & Langer, 63, pl. 66, figs. 3–4.
1993 *Angulogerina angulosa* (Williamson)
 – Hottinger et al., 100, pl. 126, figs. 1–7.
1993 *Angulogerina angulosa* (Williamson)
 – Sgarrella & Monchhart Zei, 215, pl. 16, fig. 8.
1996 *Trifarina angulosa* (Williamson) – Violanti, 46, pl. 9, figs. 11–12.
1998 *Angulogerina angulosa* (Williamson)
 – Cicha et al., 80, pl. 54, figs. 5–6.
1998 *Angulogerina angulosa* (Williamson)
 – Rogli, 137, Taf. 4, Fig. 8.
2003 *Trifarina angulosa* (Williamson) – Murray, 26, pl. 51, fig. 1–6.
2003 *Angulogerina angulosa* (Williamson)
 – Rogli & Spezzaferri, pl. 6, fig. 2.

Material: Numerous tests in samples from six sections (Tab. 2).

Description: Small elongated test is triseri- nal in its early part but later a tendency toward uniserial growth appears. Transverse section is circular in an initial tri- serial stage, and triangular in the main later stage. Test is thickest at the half of the length. It is about 2–2.5 times as long as thick. Chambers are slightly inflated and enlarge gradually as added. They are arranged in about five whorls. Sides of the test are convex due to chamber inflated- ness. The three angles of the test are carin- nate, more intensively toward the aperture. Sutures are curved and depressed. Wall is calcareous and optically radial. It is fin- nely perforated. The surface is ornamented by fine longitudinal costae that are usually not continuous over the sutures. Aperture is terminal; it is developed at the end of a short neck and it is bordered by a lip. It is provided with a toothplate.

Remark: In this study, specimens show a variety of ornamentation and flatness of angels. Specimens with more carinate angels are usually less ornamented; such tests are in literature cited also as Angulogerina carinata Cushman (Barker, 1960). Specimens of this study show intermediate forms therefore they are all determined as the species Angulogerina angulosa.

Size: Test length is 0.26 mm and thickness about 0.1 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to Early Upper Badenian (Bolivina dilatata Zone).

Occurrence: The species was first described on recent specimens from Great Britain. In Australia, it is known from the Upper Oligocene to Lower Miocene (Li & McGowran, 2000), in Italy from the Oligocene (Poignant, 1983) to Pleistocene (Dondi & Barbieri, 1982: Langhian to Pleistocene, Dieci, 1959: Miocene to Pleistocene, Giannini & Tavani, 1960: Miocene, Pliocene), in the North Atlantic from the Miocene and Pliocene (Belanger & Berggren, 1986), and in Germany and Scandinavian from Pleistocene (Wieg- kank, 1972).

The species is extant; it is known from the North and South Atlantic, Indian Ocean, North and South Pacific (Longinelli, 1956; Wiegank, 1972; Dieci, 1959: Pacific, Barker, 1960: South Pacific, Loeblich & Tappan, 1987; Debenay & Konate, 1987; Debenay et al., 1987; Murray, 2003: North Atlantic), it is common from the Antarctica and Sub Antarctica (Violan- ti, 1996). It is noted also from the Medi- terranean Sea (Parisii, 1981; Debenay et al., 1987; Sgarrella & Monchhart Zei, 1993) and the Adriatic Sea (Cimerman & Langer, 1991).

In the Central Paratethys, it exists from the Lower Kiscellian to the end of the Badenian (Cicha et al., 1998). In Bavaria, it is noted from the Kiscellian to Ottnangian (Reiser, 1987: Lower Rupel- lain – Lower Egerian, Wenger, 1987: Upper Egerian – Middle Ottnangian), in Austria from the Karpatian (Rogli, 1998) and Early Lower Badenian (Rogli & Spezzaferri, 2003), and in Romania from the Upper Badenian (Popescu, 1979).

In Slovenia, the fossil specimens of the species have not been determined yet. The species is described and imaged only
on recent specimens of the Adriatic Sea (Cimerman & Langer, 1991).

Ecology and palaeoecology: Miocene specimens from Romania are recorded from the pelitic facies (Popescu, 1979). The extant species prefers sandy sediments of the outer shelf and uppermost bathyal (continental slope), influenced by strong bottom currents (Violanti, 1996; after Mackensen et al., 1990). The species is reported from 18 to 3000 m (inner sublittoral to bathyal), of temperature range from 0 to 16°C (sub-arctic to temperate-cold) (Wiegank, 1972). It is a euhaline species (Wiegank, 1972: salinity above 34‰, Rogl, 1998). In the North Atlantic, the species is reported from the shore down to 2900 m, in the South Atlantic from 180 to 1800 m, in the India Ocean down to 2000 m, in the North Pacific down to 720 m and in the South Pacific from 15 to 2450 m (Dieci, 1959). In the Mediterranean, the species is extant in the circalittoral and particularly in the bathyal, in the Northern Adriatic Sea also in the infralittoral. The deepest occurrence is noted at 2860 m in the Tyrrhenian Sea (Sgarrella & Monch Charmont Zei, 1993). In the Adriatic Sea, it was noticed also in detritus from cliff face at 35 m (Cimerman & Langer, 1991).

Genus *Trifarina* Cushman, 1923

Trifarina bradyi Cushman, 1923

(Pl. 1, figs. 2a–b)

1923 *Trifarina bradyi* – Cushman, U. S. Nat. Mus., Bull., 104(4), 99, pl. 22, figs. 3a–9b (Ellis & Messina, 1940).

1959 *Trifarina bradyi* Cushman – Dieci, 75, tav. VI, fig. 16.

1960 *Trifarina bradyi* Cushman – Premoli Silva, 569, tav. LVI, fig. 2.

1975 *Trifarina bradyi* Cushman – Popescu, 79, pl. LXXX, figs. 1a, b.

1982 *Trifarina bradyi* Cushman – Dandi & Barbieri, tav. XXXVII, fig. 5.

1987 *Trifarina bradyi* Cushman – Loeblich & Tappan, 574, figs. 10–13.

1987 *Trifarina bradyi* Cushman – Wenger, 283, Taf. 9, Fig. 25–26.

1994 *Trifarina bradyi* Cushman – Bolli et al., 358, fig. 80.32.

1998 *Trifarina bradyi* Cushman – Cicha et al., 132, pl. 54, figs. 13–15.

Material: Numerous tests in samples from five sections (Tab. 2).

Description: Test is small, elongated and regularly triangular in transverse section. It is thickest in the upper third of the length. It is about twice times as long as thick. Sides of the test are flush or slightly concave. The early stage is triserial; later the test becomes uniserial and usually slightly twisted. Up to seven chambers that enlarge gradually are visible on each side. The three angles of the test are distinctly carinate in the whole length; from the initial part of the test up to the end of the neck. Sutures are thickened, curved and flush or depressed. Wall is calcareous, optically radial and finely perforated. The surface is smooth. Terminal aperture is developed at the end of a short neck. It is bordered by a lip and provided with a toothplate.

Size: Test length is 0.28 mm and thickness 0.12 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to Late Middle Badenian (*Uvigerina cf. pygmea* Zone).

Occurrence: The species was first described on recent specimens from the Caribbean Sea. It appears for the first time in the Oligocene (Giannini & Tavani, 1960). In Australia, it is known from the Upper Oligocene to the end of Miocene (Li & McGowan, 2000), in Italy from the Aquitanian to Pleistocene, it is numerous particularly in the Pliocene (Dondi & Barbieri, 1982, Premoli Silva, 1960: Langhian, Dieci, 1959: Tortonian to Pleistocene, Giannini & Tavani, 1960: Miocene, Pliocene), in South America from the Lower and Middle Miocene (Bolli et al. 1994), and in Algeria from the Messinian (Poignant & Moissette, 1992).

The species is extant. It is known from the North and South Atlantic, Pacific (Longinelli, 1956; Barker, 1960: Pacific) and according to Dieci (1959), also from the Mediterranean. In view of Sgarrella & Monch Charmont Zei (1993), the tests found on the Mediterranean bottom are most likely reworked from the Pliocene and Pleistocene sediments; the species is not extent any more in the Mediterranean.

In the Central Paratethys, it is known from the Upper Eocene to the end of the Badenian (Cicha et al., 1998); e.g. in Bavaria from the Kiscellian to Ottnangian.
Most abundant Middle Miocene rotaliinas (suborder Rotaliina, Foraminifera) of Kozjansko ... 299

(PREISER, 1987: Lower Rupelian – Lower Egerian, WENGER, 1987: Egenburgian – Middle Ottnangian), and in Romania from the Lower and Middle Miocene (POPESCU, 1975).

In Slovenia, the fossil species has not been determined yet.

Ecology and palaeoecology: The genus Trifarina is infaunal and characteristically found in temperate to cold marine environments of depths ranging from 0 to 400 m; from the shelf to upper bathyal (MURRAY, 1991). Karpatian specimens from the Central Paratethys are reported mostly from the euhaline assemblages (CICHA & ZAPLETALOVA, 1967). Extant specimens occur in the depth-range from 700 to 2450 m in the North Atlantic, from 630 to 1210 m in the South Atlantic (DIECI, 1959), and from 22 to 500 m in the South Pacific (LONGINELLI, 1956).

Superfamily Discorbacea EHRENBERG, 1838
Familia Sphaeroidinidae CUSHMAN, 1927
Genus Sphaeroidina \textit{d'Orbigny}, 1826

\textbf{Sphaeroidina bulloides \textit{d'Orbigny}, 1826}
(Pl. 2, figs. 1a–b)

1826 \textit{Sphaeroidina bulloides} – \textit{d'Orbigny}, 101.
1956 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – LONGINELLI, 175, tav. X, fig. 1.
1959 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – DIECI, 87, tav. VII, figg. 16–19.
1960 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – PREMOLI SILVA, 560, tav. LVI, figg. 1a–b.
1975 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – POPESCU, 72, pl. XLIX, figs. 10a–b.
1985 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – PAPP & SCHMID, 96, Taf. 90, Fig. 7–12.
1986 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – BELANGER & BERGGREN, 332, pl. 1, fig. 18.
1987 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – WENGER, 302, Taf. 14, Fig. 11–12.
1993 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – HOTTINGER et al., 113, pl. 147, figs. 4–11.
1995 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – YASSINI & JONES, 160, figs. 936–937.
1998 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – CICHA et al., 127, pl. 60, fig. 4.
1998 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – ROBERTSON, 196, pl. 74, figs. 4a–c.
2003 \textit{Sphaeroidina bulloides} \textit{d'Orbigny} – ROGL & SPEZZAFERRI, pl. 6, Fig. 24.

Material: Numerous tests in samples from all six sections (Tab. 2).

Description: Test is subglobular and involute. It is built of tightly embracing hemispherical chambers that enlarge rapidly in size. There are four chambers in the last whorl. Periphery is broadly rounded. Sutures are flush or slightly depressed and hardly visible. Wall is calcareous and optically radial. Surface is smooth and very finely perforate. Iromarginal narrow crescentic aperture is developed near the junction of last three chambers. It is bordered by a lip and it is provided with an apertural plate.

Remark: In this study, tests are mostly subglobular, although rare more lobed forms may be present. Similar lobed tests are classified in the species \textit{Sphaeroidina bulloides} also in the literature (WENGER, 1987).

Size: Test height is 0.35 mm and thickness 0.3 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to Late Upper Badenian (Virgulinella pertusa Zone). Rare reworked tests were found also in the Lower Sarmatian samples (Anomalinoides dividens Zone).

Occurrence: Recent specimens from the Adriatic Sea (Italy) and fossil specimens from Sienna (Italy) are noted by the first description of the species \textit{d'Orbigny}, 1826). According to PAPP and SCHMID (1985), the species first appeared in the Eocene; while BARTOLINI (1966) gives an earlier first occurrence, placing it in the Cretaceous. In Middle America, the species is noted from the Lower Oligocene to Lower Pliocene (ROBERTSON, 1998), in Italy from the Lower Oligocene to Pleistocene (DONDI & BARRBERI, 1982; BARBERI & D'ONOFRIO, 1984: Middle Miocene, GIANNINI & TAVANI, 1960: Miocene, Pliocene), in Australia from the Upper Oligocene to the end of Miocene (LI & MCGOWRAN, 2000), in the North Atlantic from the Middle Miocene to Pliocene (BELANGER & BERGGREN, 1986), in Algeria from the Messinian (POIGNANT & MOISSETTE, 1992), in South America from the Miocene (HASSON & FISCHER, 1986), in Spain and California from the Pliocene (LONGINELLI, 1956), in the Indian Ocean from the Pliocene and
Pleistocene (Basov & Krasheninnikov, 1995), and in the Arabian Sea from the Quaternary (Den Dulk et al., 1998).

The species is extant and is cosmopolitan (Papp & Schmid, 1985; Robertson, 1998; Barker, 1960: North Atlantic and Pacific; Hottinger et al. 1993: Red Sea). It is noted also from the Mediterranean Sea (Sgarrella & Monchamont Zei, 1993).

In the Central Paratethys, it appears from the Lower Kiscellian to the end of the Badenian (Cicha et al., 1998) and it is numerous in the Badenian (Cicha & Zapletalova, 1967). In Romania, it is known from the Oligocene to Middle Miocene (Popescu, 1975), in Croatia (Škic, 1985) and Hungary (Sztrákos, 1997) from the Upper Kiscellian, in Bavaria from the Kiscellian to Ottnangian (Reiser, 1987: Lower Rupelian – Lower Egerian, Wenger, 1987: Upper Egerian – Middle Ottnangian), in Austria from the Karpatian (Rogl, 1998) and Early Lower Badenian (Rogl & Spezzaferri, 2003), and in Poland from the Badenian (Szczechura, 2000).

In Slovenia, the species has not been described and imaged yet. It is only noted from Lower Egerian to Upper Badenian sediments. It is mentioned from Lower Egerian of the Laško syncline (Petrica et al., 1995; Dozet et al., 1999; Rijavec, 1976a, 1984) and Planina syncline (Rijavec, 1977), from the Upper Egerian of the Laško syncline (Rijavec, 1984; Dozet & Rijavec, 1994; Dozet et al., 1996; 1999) and Planina syncline (Rijavec, 1977; Rijavec & Dozet, 1996), from the Eggenburgian of the Laško syncline (Rijavec, 1984), from the Lower Badenian of the Celje syncline (Rijavec, 1978a), Laško syncline (Rijavec, 1976a, 1984), Planina syncline by Planina pri Sevnici (Rijavec, 1977), and of the Bizeljsko syncline (Dozet et al., 1998). From the Upper Badenian, it appears in Slovenske gorice (Rijavec, 1974), Laško syncline (Rijavec, 1976a, 1984) and Senovo syncline (Dozet et al., 1998).

Ecology and palaeoecology: Fossil specimens from the Central Paratethys are characteristically found in sediments from the outer shelf (deepest neritic) to bathyal (Cicha & Zapletalova, 1967). Extant specimens prefer cool bottom waters (Rogl & Spezzaferri, 2003) and is a suboxic indicator (Den Dulk et al., 1998). They occur deeper than 100 m (Wenger, 1987: after Phleger 1960). In the North Atlantic, it occurs in the depth-range from 160 to 3100 m, in the South Atlantic from 760 to 4200, in the North Pacific from 180 to 3700 m, and in the South Pacific from 70 to 2500 (DIECI, 1959). On the Australian coast, it is reported from the outer shelf and bathyal (continental slope) (Yassini & Jones, 1995). In the Mediterranean, it is characteristic for muds of the circalittoral and bathyal; it appears down to 1300 m (Sgarrella & Monchamont Zei, 1993).

Superfamily Discorbinellacea Sigal, 1952
Familia Parrelloididae Hofker, 1956
Genus Cibicidoides ThalmANN, 1939

Cibicidoides ungerianus (d’Orbigny, 1846)

(Pl. 2, figs. 2a–c)

1846 **Rotalina ungeriana** – d’Orbigny, 157, Tab. VIII, fig. 16–18.
1959 **Cibicides ungerianus** (d’Orbigny) – Dieci, 102, tav. VIII, fig. 17.
1960 **Cibicides ungerianus** (d’Orbigny) – Giannini & Tavani, 56, tav. IX, fig. 2–4.
1967 **Cibicides ungerianus** (d’Orbigny) – Cicha & Zapletalova, 142, Taf. 13A, Fig. 1a–c.
1975 **Cibicoides ungerianus** (d’Orbigny) – Popescu, 104, pl. LXXXV, figs. 1a–c.
1979 **Cibicoides ungerianus** (d’Orbigny) – Sztrákos, pl. 30, figs. 4a–b.
1985 **Cibicides ungerianus** (d’Orbigny) – Papp & Schmid, 60, Taf. 51, Fig. 7–11.
1998 **Cibicoides ungerianus ungerianus** (d’Orbigny) – Cicha et al., 91, pl. 61, figs. 15–17.
2003 **Cibicoides ungerianus** (d’Orbigny) – Rogl & Spezzaferri, pl. 6, figs. 26–29.

Material: Numerous tests in samples from all six sections (Tab. 2).

Description: Biconvex biumbonate test is very low trochospirial. Spiral side is evolute and umbilical side involute. Test is nearly circular in equatorial section. There are two and a half to three whorls
that enlarge rapidly in size. Last whorl consists of 10–13 chambers. Chambers are low, crescentic in shape and enlarge gradually. Sutures of both sides are curved backward; more distinctly on the spiral side. Whorl suture is flush but hardly visible due to granular ornamentation. Periphery is angular and very slightly lobate in outline. Wall is calcareous and optically radial. It is coarsely perforated on the spiral side and finely perforated on the umbilical side. Surface is smooth apart for typical granular ornamentation, which is developed around the umbo of the spiral side. Narrow arched aperture is interiomarginal and equatorial; it is bordered by a thin lip.

Remark: Reiser (1987) and Cicha et al. (1998) divide the species Cibicidoides ungerianus into subspecies C. ungerianus ungerianus (d’Orbigny) with weaker ornamentation and C. ungerianus filicosta (Hagn) with stronger ornamentation. Specimens from this study correspond to the subspecies C. ungerianus ungerianus (d’Orbigny).

Size: Test diameter is 0.58 – 0.6 mm and thickness 0.2 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to Early Upper Badenian (Bolivina dilatata Zone). Rare reworked tests were found also in the Lower Sarmatian samples (Anomalinoides dividens Zone).

Occurrence: The species was first described from the Late Lower Badenian. There is no data about the type locality by the first description (d’Orbigny, 1846). The species appeared in the Oligocene according to Giannini & Tavani (1960), or in the Upper Eocene according to Ascoli (1956) and Gohrbandt (1961). In Italy, it is known from the Upper Eocene (Ascoli, 1956) to Pleistocene (Dondi & Barbieri, 1982: Serravallian to Pleistocene, Dieci, 1959: Miocene, Pliocene), but becomes the most abundant in the Tortonian (Dondi & Barbieri, 1982: Po Valley). In Middle America, it is noted from the Middle Oligocene (Bollì et al., 1994), in the Mediterranean from the Oligocene, and in the Arabian Sea from the Quaternary (Den Dulk et al., 1998).

The species is extant (Giannini & Tavani, 1960). It is noted from the Arabian Sea (Den Dulk et al., 1998).

In the Central Paratethys, it is known from the Upper Eocene to the Lower Sarmatian (Cicha et al., 1998). In Austria, it is noted from the Upper Eocene (Gohrbandt, 1961) and Early Lower Badenian (Rogl & Spezzaferrri, 2003); in the Vienna Basin, it is especially abundant in the whole Lower Badenian (Papp & Schmid, 1985). In Hungary, it is known from the Upper Kiscellian (Sztrakos, 1979), in Bavaria from the Kiscellian and Lower Egerian (Reiser, 1987: Lower Rupelian – Lower Egerian), in Croatia from the Kiscellian (Šikić, 1985) and Upper Badenian (Bajraktarević, 1979, Pikić et al., 1984), in Romania from the Lower and Middle Miocene (Popescu, 1975), and in Poland from the Badenian (Szczechura, 2000).

In Slovenia, the species has not been described yet. It was only imaged from the Upper Eocene (Priabonian) of Socka-Dobrna area (northern of Celje; Cimerman et al., 2006). It is also noted from the Kiscellian to Middle Badenian sediments. It is mentioned from the Kiscellian of Zasavje (Kolar, 1978), from the Lower Egerian of the Laško syncline (Rijavec, 1984; Dozet & Rijavec, 1994; Petrica et al., 1995; Dozet et al., 1999), Planina syncline (Rijavec, 1977; Rijavec & Dozet, 1996) and Senovo syncline (Dozet et al., 1998), from the Upper Egerian of the Celje syncline (Rijavec, 1984), Laško syncline (Rijavec, 1977, 1984; Dozet & Rijavec, 1994; Dozet et al., 1996, 1999) and Planina syncline (Rijavec & Dozet, 1996), from the Lower Badenian of Slovenske gorice (Rijavec, 1976b), Dravinjske gorice (Rijavec, 1975), Celje syncline (Rijavec, 1978a), Laško syncline (Rijavec, 1976a, 1977, 1984; Dozet & Rijavec, 1994; Dozet et al., 1999), Planina syncline between Trobni Dol and Rudnica mountain (Rijavec & Dozet, 1996), by Virštanj and Plohoš breg (Rijavec, 1977), and of the Bzeljsko syncline (Dozet et al., 1998). It is noted also from the Middle Badenian of Dravinjske gorice (Rijavec, 1975), Celje syncline (Rijavec, 1978a), Laško syncline (Rijavec, 1976a, 1984; Dozet & Rijavec, 1994), Planina syncline by Trobni Dol (Petrica et al., 1995), between Trobni Dol and Rudnica mountain (Rijavec & Dozet, 1996) and by Planina pri Sevnici (Rijavec, 1977), and of the Bzeljsko syncline (Dozet et al., 1998).

Ecology and palaeoecology: The genus Cibicidoides is epifaunal and is believed to attach itself to hard substrates. It is
characteristic for cold marine environments of the shelf and bathyal (Murray, 1991). It is an oxic indicator (Rogl & Spezzaferri, 2003). Fossil Badenian specimens of the species \textit{C. ungerianus} from the Central Paratethys are reported from sediments of the shelf (sublittoral to shallow neritic) (Cicha & Zapletalová, 1967).

Superfamilia Nonionacea Schultze, 1854
Familia Nonionidae Schultze, 1854
Subfamilia Nonioninae Schultze, 1854
Genus \textit{Nonion} de Montfort, 1808

\textbf{Nonion commune} (d'Orbigny, 1846)

(Pl. 3, figs. 1a–b)

1846 \textit{Nonionina communis} – d'Orbigny, 106, Tab. V, fig. 7–8.

1959 \textit{Nonion commune} (d'Orbigny) – Dieci, 53, tav. IV, fig. 25a–b.

1967 \textit{Florilus communis} (d'Orbigny) – Cicha & Zapletalová, 136.

1979 \textit{Florilus communis} (d'Orbigny) – Popescu, 46, pl. XXVII, figs. 8a–b.

1985 \textit{Nonion commune} (d'Orbigny) – Papp & Schmid, 45, Taf. 34, Fig. 1–5.

1987 \textit{Florilus communis} (d'Orbigny) – Wenger, 298, Taf. 13, Fig. 15, 19.

1997 \textit{Nonion commune} (d'Orbigny) – Filipescu & Gibracea, pl. VI, fig. 4.

1998 \textit{Nonion commune} (d'Orbigny) – Cicha et al., 113, pl. 66, figs. 1–2.

2003 \textit{Nonion commune} (d'Orbigny) – Rogl & Spezzaferri, pl. 6, fig. 35.

2007 \textit{Nonion commune} (d'Orbigny) – Schütz et al., 457, Taf. 5, Fig. 3a–b.

Material: Numerous tests in samples from all six sections (Tab. 2).

Description: Planispirally enrolled test is involute. It is ovate in outline. Whorls enlarge rapidly in size. There are 9–12 low triangular low chambers in the last whorl. Sutures of both sides are curved backward. Umbilicus is narrow. Periphery is slightly compressed and smooth in outline. Calcareous optically granular wall is very finely perforated. The surface is smooth; except for the umbilical, sutureal and apertural regions where numerous distinct pustules are developed. Sutures are curved and depressed. Narrow slitlike aperture is interiomarginal and equatorial. Triangular apertural face is typically well developed.

Size: Test length is 0.4–0.6 mm, width 0.3–0.4 mm and thickness 0.25–0.3 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to Early Upper Badenian (Bolivina dilatata Zone).

Occurrence: The species was first described from the shelf of the Vienna basin. In Algeria, it is known from the Messinian (Poignant & Moissette, 1992).

The species is extant; it is known from the Atlantic (Dieci, 1959; Derenay & Knate, 1987), also from the Adriatic Sea (Dieci, 1959).

In the Central Paratethys, it appears from the Upper Eocene to the end of the Tertiary (Cicha et al., 1998); e.g. in Hungary, it is known from the Upper Kiscellian (Sztrakos, 1979), in Bavaria from the Kiscellian to Ottnangian (Reiser, 1987: Lower Rupelian – Lower Egerian, Wenger, 1987: Upper Egerian – Middle Ottnangian), in Austria from the Karpatian, Badenian (Papp & Schmid, 1985; Rogl & Spezzaferri, 2003: Early Lower Badenian) and Lower Sarmatian (Schütz et al., 2007), in Romania from the Lower Eocene to the end of the Kiscellian (Zapletalová, 1967). The species was first described from the shelf of the Vienna basin. In Algeria, it is known from the Messinian (Poignant & Moissette, 1992).

In Slovenia, the species hasn't been described yet; it was only imaged from the Badenian of the Celje syncline (Rija Vec, 1978a). It is also noted from Kiscellian to Middle Badenian sediments. It is mentioned as \textit{Nonion communis} from the Kiscellian of Zasavje (Kolar, 1978). As \textit{Florilus communis}, it is noted from the Upper Egerian of the Celje syncline (Rija Vec, 1984), from the Eggenburgian of the Laško syncline (Petrika et al., 1995; Rija Vec & Dozet, 1996), from the Lower Badenian of Dravinske gorice (Rija Vec, 1975), of the Celje syncline (Rija Vec, 1978a), Laško syncline (Rija Vec, 1976a, 1977, 1984; Dozet & Rija Vec, 1994; Dozet et al., 1999), Planina syncline between Trobni Dol and Rudnica mountain (Rija Vec & Dozet, 1996), by Viršanj and Plohop breg (Rija Vec, 1977), and of the Bizeljsko syncline (Dozet et al., 1998). It appears in the Middle Badenian of the Celje syncline (Rija Vec, 1978a), Laško syncline (Rija Vec, 1976a, 1977, 1984; Dozet et al., 1996), Planina syncline by Planina pri Sevnici and Plohop breg (Rija Vec, 1977), and of the Bizeljsko syncline (Dozet et al., 1998).
Ecology and palaeoecology: The genus *Nonion* is infaunal and characteristic for muddy and silty sediments. It occurs in cold to warm waters of the shelf zone from 10 to 180 m (Murray, 1991). Fossil specimens of the species *N. commune* from the Central Paratethys are recorded from sediments of the shelf (deep sublittoral) to bathyal; they are most frequent in sediments of the neritic (Cicha & Zapletalová, 1967). The extant species is characteristic for the shelf of a depth-range from 0 to 180 m (Rogl & Spezzaferri, 2003). It may occur also in brackish waters (Wenger 1987).

Subfamilia Pulleniinae Schwager, 1877

Genus *Melonis* de Montfort, 1808

Melonis pompilioides (Fichtel & Moll, 1798)

(Pl. 3, figs. 2a–b)

Age	Size	Description
From the Early Lower Badenian (Lower Lagenidae Zone) to Early Upper Badenian (Bolivina dilatata Zone).	Test diameter is 0.4 mm and thickness 0.25 mm.	Planispiral test is involute and biumbilicate. It is circular in outline. Last whorl consists of 9–10, rarely of 11 chambers that enlarge gradually as added. Chambers are low and triangular in a side view. Sutures are radial, flush and straight to slightly curved backward; they are hardly visible. In the earlier part of the last whorl they may be thickened. Umbilici of both sides are wide and deep. Periphery is broadly rounded and smooth in outline. Toward the earliest part of the last whorl it can become slightly compressed. Wall is calcareous and optically granular. It is coarsely perforate. Surface is smooth. Apertural face is broad and smooth. Interiomarginal equatorial aperture extends laterally toward the umbilici. It is boarded by a lip.

Material: Numerous tests in samples from all six sections (Tab. 2).
In Slovenia, the species has not been described and imaged yet. It is only noted from the Karpotian of Slovenske gorice (JELEN & RIFELI, 2003), and from the Lower Badenian of the Celje syncline (RJAVEC, 1984) and Bizeiljsko syncline (DOZET et al., 1998).

Ecology and palaeoecology: The genus Melonis is infaunal and occurs on the muddy and silty bottom of the shelf and bathyal zones. It is characteristic for cold marine waters (temperature below 10°C) (MURRAY, 1991). Fossil specimens of the species Melonis pomiloides from Upper Egerian to Ottnangian of Bavaria are most frequent recorded above the shelf/bathyal boundary (neritic/bathyal, WENGER, 1987). In the Middle Badenian (Lo–Mi) the range from 1000 to 3000 m (ROBERTSON, 1987). In the Tertiary, it occurs from the Middle Eocene to Pleistocene, in the Pleistocene–Holocene (ROBERTSON, 2003), and is typical in the Adriatic Sea in detrital sands at 55 m (LANGER & NICKERSON, 1991). Fossil specimens of the species Melonis pomiloides from Upper Egerian to Ottnangian of Bavaria are most frequent recorded above the shelf/bathyal boundary (neritic/bathyal, WENGER, 1987). According to older literature, the maximum depth of occurrence has moved downward; in the Atlantic down to 4900 m (LONGINELLI, 1956), in the North Pacific down to 5000 m and in the South Pacific down to 4400 m (DIECI, 1959). In the Tyrrhenian Sea, the tests were found in soft sediments at 130 m, and in the Adriatic Sea in detrital sands at 55 m (CIMERMAN & LANGER, 1991).

Genus Pullenia PARKER & JONES, 1862

Pullenia bulloides (d’ORBIGNY, 1846) (Pl. 4, figs. 1a–b)

1846 Nonionina bulloides – d’ORBIGNY, 107, Tab. V, fig. 9–10.
1954 Pullenia sphaeroides d’ORBIGNY – LONGINELLI, 174, tav. X, figg. 2–3.
1959 Pullenia bulloides (d’ORBIGNY) – DIECI, 87, tav. VII, figg. 16a–b.
1967 Pullenia bulloides (d’ORBIGNY) – CICHA & ZAPLETALOVÁ, 137, Taf. 6A, Fig. 8a–b.
1971 Pullenia bulloides (d’ORBIGNY) – CICHA et al., 281–282, Taf. 11, Fig. 2–3.
1975 Pullenia bulloides (d’ORBIGNY) – POPESCU, 101, pl. LXXXIII, figs. 1a–b.
1982 Pullenia bulloides (d’ORBIGNY) – DONDI & BARBIERI, tav. XLIV, fig. 8.
1985 Pullenia bulloides (d’ORBIGNY) – PAPP & SCHMID, 45, Taf. 34, Fig. 6–9.
1986 Pullenia bulloides (d’ORBIGNY) – BE-LANGER & BERGGREN, 342, pl. 5, figs. 1a–b.
1987 Pullenia bulloides (d’ORBIGNY) – MIL-LER & KATZ, 136, pl. 4, figs. 4a–b.
1987 Pullenia bulloides (d’ORBIGNY) – WEN-GER, 299, Taf. 13, Fig. 17–18.
1993 Pullenia bulloides (d’ORBIGNY) – SARRELLA & MONCHARMONT ZEI, 240, pl. 24, figs. 12–13.
1995 Pullenia bulloides (d’ORBIGNY) – YASSI-NI & JONES, 181, figs. 966–967.
1998 Pullenia bulloides (d’ORBIGNY) – CICHA et al., 121, pl. 66, figs. 12–13.
1998 Pullenia bulloides (d’ORBIGNY) – ROB-ERTSON, 230, pl. 92, figs. 1a–b.
2003 Pullenia bulloides (d’ORBIGNY) – ROGL & SPEZZAFFERI, pl. 7, figs. 11–12.
2005 Pullenia bulloides (d’ORBIGNY) – VÉ-NEC-PÉYRÉ, 214–215, Pl. 35, Fig. 2.
2007 Pullenia bulloides (d’ORBIGNY) – SCHÜTZ et al., 457, Taf. 5, Fig. 6a–b.

Material: Numerous tests in samples from all six sections (Tab. 2).

Description: Globular test is planispiral by growth. It is involute. Whorls enlarge slowly in size. Last whorl consists of four, rarely of four and a half chambers that are triangular in a side view. They are as long as high and they enlarge slowly as added. Radial sutures are straight and flush. Periphery is rounded and smooth in outline. Umbilicus is very narrow and flush. Wall is calcareous and optically granular; it is very finely perforated. Surface is smooth. Apertural face is very low and broad. Slitlike aperture is interiomarginal and equatorial, extending laterally to the umbilici.

Size: Test diameter is 0.28–0.35 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to Early Upper Badenian (Bolvina dilatata Zone). Reworked tests were found also in the Lower Sarmatian samples (Anomalinoides dividsens Zone).

Occurrence: The species was first described from the Late Upper Badenian of the Vienna basin. In the Middle America, it is known from the Upper Eocene to Pleistocene (ROBERTSON, 1998), in South America from the Upper Eocene to Pliocene (ROBERTSON, 1998; EMILIANI, 1954: Miocene; Pliocene; HASSON & FISCHER, 1986: Miocene, Pliocene), in Italy from the Middle Eocene to Pleistocene, it is numerous in the Pliocene (DONDI & BARBIERI, 1982: Po Valley, EMILIANI, 1954: Oligocene; GIANNINI & TAVANI, 1960: Mi-
Most abundant Middle Miocene rotaliinas (suborder Rotaliina, Foraminifera) of Kozjansko ...

... the Lower Badenian of the Lačko syncline (RIJAVEC, 1977, 1984; DOZET & RIJAVEC, 1994; DOZET et al., 1999), Planina syncline between Trobni Dol and Rudnica mountain (RIJAVEC & DOZET, 1996), and of Bizeljsko syncline (DOZET et al., 1998). It is known also from the Middle Badenian of Slovenske gorice (RIJAVEC, 1974), Dražinjske gorice (RIJAVEC, 1975), Celje syncline (RIJAVEC, 1978a), Laško syncline (RIJAVEC, 1976a, 1984), Planina syncline by Planina pri Sevnici (RIJAVEC, 1977), and Bizeljsko syncline (DOZET et al., 1998). It appears in the Upper Badenian of the Laško syncline (RIJAVEC, 1984).

Ecology and palaeoecology: The genus Pullenia is infaunal and typical for cold marine waters of the outer shelf and bathyal (Murray, 1991). Fossil specimens from the Central Paratethys are reported from sediments of the shelf to bathyal (shallow neritic to bathyal) (Cicha & Zapletalová, 1967). The extant species occurs down to 5000 m and is more frequent deeper than 550 m (Dieci, 1959). At the Australian coast, it is recorded from the outer shelf and bathyal (outer shelf and continental slope) (Yassini & Jones, 1995). In the Mediterranean, it appears in muddy bottom from the shelf to bathyal (circalittoral to bathyal) (Sgarrella & Moncharmont Zei, 1993).

Superfamilia Chilostomellacea Brady, 1881
Familia Heterolepidae Gonzáles-Donoso, 1969
Genus Heterolepa Franzenau, 1884

Heterolepa dutemplei (d’Orbigny, 1846) (Pl. 4, figs. 2a–c)

1846 Rotalina dutemplei – d’Orbigny, 157, Tab. VIII, fig. 19–21.
1967 Heterolepa dutemplei (d’Orbigny) – Cicha & Zapletalová, 144, Taf. 21A, Fig. 1.
1969 Heterolepa dutemplei (d’Orb.) – Rögl, 103, Taf. 5, Fig. 13a–c.
1971 Heterolepa dutemplei (d’Orbigny) – Cicha et al., 285, Taf. 25, Fig. 1–3.
1975 Heterolepa dutemplei (d’Orbigny) – Popescu, 104, pl. LXXXVI, figs. 1a–2c, pl. LXXXVIII, figs. 2a–c, pl. LXXXIX, figs. 1a–3c.
1985 Heterolepa dutemplei (d’Orbigny) – Papp & Schmid, 59, 61, Taf. 50, Fig. 1–3, Taf. 52, Fig. 1–6.
1987 *Heterolepa dutemplei* (d’Orbigny)
- Loeblich & Tappan, pl. 709, figs. 1–8.

1987 *Heterolepa dutemplei* (d’Orbigny)
- Wenger, 327, Taf. 22, Fig. 6–8.

1998 *Heterolepa dutemplei* (d’Orbigny)
- Cicha et al., 107, pl. 71, figs. 1–3.

2003 *Heterolepa dutemplei* (d’Orbigny) – Rogl & Spezzaferri, pl. 7, figs. 23–25.

Material: Numerous tests in samples from all six sections (Tab. 2).

Description: Biconvex test is trochospirally enrolled and circular in outline. Spiral side is evolute and weakly convex, rarely high convex; with three to four visible whorls. Umbilical side is involute and highly convex. The last whorl is built of rarely 6 and more frequently of 7–9 chambers that increase slowly in size. They are parallelogram to trapezoidal in shape on the spiral side and triangular on the umbilical side. Sutures are oblique and flush on the spiral side, and straight to curved backward and slightly depressed on the umbilical side. Whorl suture is flush to slightly depressed toward the end of the last whorl. Periphery is subangular and smooth to very slightly lobate in outline toward the latest part of the test. Wall is calcareous, optically granular and coarsely perforate. Surface is smooth. Slitlike interiomarginal aperture is developed on the upper half of the apertural face and extends in a short distance on the spiral side. It is bordered by a lip.

Remark: Specimens of this study show a great variety in convexity of the spiral side. Tests with different degree of convexity were originally described as separate species; *Rotalina kalembergensis* d’Orbigny, *Heterolepa dutemplei* d’Orbigny (low convexity) and *Rotalina haidingerii* d’Orbigny (high convexity). Papp & Schmid (1985) placed all these forms into a single species, *Heterolepa dutemplei* (d’Orbigny).

Size: Test diameter is 0.53–0.6 mm and thickness 0.4 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to ? Early Upper Badenian (*Bolivina dilatata* Zone). Tests (reworked?) were found also in the Lower Sarmatian samples (*Anomalinoides dividen* Zone) of two sections.

Occurrence: The species was first described from the Late Lower Badenian of the Vienna basin. According to Popescu (1975) its first occurrence is in the Oligocene. In Tunisia, it is known from the Serravallian (Salaj, 1992), in Sardinia (Italy) from the Middle Miocene (Barbieri & d’Onofrio, 1984) and in Algeria from the Messinian (Pignant & Moissette, 1992).

In the Central Paratethys, it is known from the Upper Kiscellian to the end of the Badenian (Cicha et al., 1998); it is most common in Late Early Badenian (Papp & Schmid, 1985). In Bavaria, it is noted from the Kiscellian to Middle Ottnangian (Reiser, 1987: Lower Rupelian – Lower Egerian; Wenger, 1987: Upper Egerian – Middle Ottnangian), in Romania from the Oligocene to Middle Miocene (Popescu, 1975), in Hungary from the Egerian (Sztrakos, 1979), and in Austria from the Karpatian (Rogl, 1969, 1998) and Early Lower Badenian (Rogl & Spezzaferri, 2003).

In Slovenia, the species has not been described and imaged yet. It is only noted from Kiscellian to Upper Badenian sediments. It is mentioned from the Kiscellian of Zasavje (Kolar, 1978), from the Upper Egerian of the Laško syncline (Dozet et al., 1999), from the Eggenburgian of the Celje syncline (Rijavec, 1984), from the Karpatian of Slovenske gorice (Jelen & Rifeli, 2003), from the Lower Badenian of the Celje syncline (Rijavec, 1978a), Laško syncline (Rijavec, 1984), Planina syncline by Plohog breg (Rijavec, 1977), and of Bizeljsko syncline (Dozet et al., 1998). It is noted also from the Middle Badenian of Celje syncline (Rijavec, 1978a), Laško syncline (Rijavec, 1984), Planina syncline by Planina pri Sevnici (Rijavec, 1977), and of Bizeljsko syncline (Dozet et al., 1998). From the Upper Badenian, it is known of the Laško syncline (Rijavec, 1984) and Planina syncline by Dobje (Rijavec, 1977).

Ecology: The genus *Heterolepa* is epi-faunal and is probably attached to hard substrates. It occurs in temperate to cold marine waters from the shelf to bathyal (Murray, 1991). It is an oxic indicator (Rogl & Spezzaferri, 2003). The fossil species *Heterolepa dutemplei* from the Central Paratethys shows wide depth-range, with an optimum in the sublittoral. It is euryhaline but within euhaline limits (Cicha & Zapletalova, 1967).
Familia Gavelinellidae Hofker, 1956
Subfamilia Gavelinellinae Hofker, 1956
Genus *Hansenisca* Loeblich & Tappan, 1987

Hansenisca soldanii (d’Orbigny, 1826)

(Pl. 5, figs. 1a–c)

1826 *Gyroidina soldanii* – d’Orbigny, 112.
1956 *Gyroidina soldanii* d’Orbigny – Longinelli, 71, tav. XIV, figg. 16a–b.
1960 *Gyroidina soldanii* d’Orbigny – Gianinni & Tavani, 42, tav. VII, figg. 15–16.
1975 *Gyroidinoidea soldanii* (d’Orbigny) – Popescu, 103, pl. LXXXIV, figs. 2a–c.
1979 *Gyroidinoidea soldanii* (d’Orbigny) – Popescu, 47, pl. XXVIII, figs. 6a–c.
1982 *Gyroidina soldanii* d’Orbigny – Dondi & Barbieri, tav. XL, fig. 1.
1985 *Gyroidina soldanii* d’Orbigny – Papp & Schmid, 60, Taf. 50, Fig. 4–9.
1986 *Gyroidinoidea soldanii* (d’Orbigny) – Belanger & Berggren, 344, pl. 6, figs. 3a–c.
1987 *Hansenisca soldanii* (d’Orbigny) – Loeblich & Tappan, pl. 719, figs. 5–9.
1987 *Gyroidina soldanii* d’Orbigny – Reiser, 101, Taf. 12, Fig. 7, 10–11.
1991 *Gyroidinoidea soldanii* (d’Orbigny) – Cimerman & Langer, 75, pl. 85, figs. 5–6.
1998 *Hansenisca soldanii* (d’Orbigny) – Cicha et al., 105, pl. 72, figs. 6–8.
2003 *Gyroidinoidea soldanii* (d’Orbigny) – Rogl & Spezzaferri, pl. 8, fig. 4.

Material: Numerous tests in samples from all six sections (Tab. 2).

Description: Test is trochospirally enrolled, composed of three to four whorls. Whorls enlarge gradually in size. Spiral side is evolute and slightly convex, umbilical side is involute and highly convex. On the spiral side, the last whorl stands above the level of earlier stage. Equatorial section of the test is circular while the transverse section is conical. Last whorl is built of 9–10 chambers that appear trapezoidal on the spiral side, and triangular on the umbilical side. They enlarge slowly as added. Sutures are straight, oblique and depressed on the spiral side. On the umbilical side, they are straight, radial and flush; toward the umbilicus they may get incised. Whorl suture is depressed. Umbilicus is wide and deep. Periphery is angular; it is smooth in outline in the early part of the last whorl and slightly lobate in the late part. Wall is calcareous and optically granular. It is finely perforate. Surface is smooth. Short slitlike aperture is interiomarginal and equatorial. It is bordered by a weak lip.

Remark: *Hansenisca soldanii* has been established as the type species of the genus *Hansenisca* Loeblich & Tappan, 1987. The main characteristic of the genus is having an open umbilicus which is surrounded by small umbilical chamber folia. Tests observed in this study show open umbilicus therefore they are classified in the genus *Hansenisca*.

Size: Test diameter is 0.32–0.35 mm and thickness 0.2 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to Late Upper Badenian (Virgulinella pertusa Zone). Reworked tests were found also in the Lower Sarmatian samples (Anomalinoidea divisidens Zone).

Occurrence: The species was first described on recent specimens from the Adriatic Sea (Italy). The species has existed from the Cretaceous (Ogniben, 1958). In Italy, it is known from the Upper Eocene (Ascoli, 1956) to Pleistocene (Dondi & Barbieri, 1982). The species was first described as the type species of the genus *Hansenisca*; it is known from the Upper Oligocene to Pleistocene (Ogniben, 1958); it is noted also from the Mediterranean (Cimerman & Langer, 1991; Loeblich & Tappan, 1987) and Adriatic Sea (Dieci, 1959).

The species is extant; it is known from the Atlantic, Pacific and Antarctica (Loquinelli, 1956; Dieci, 1959: Atlantic, Pacific). It is noted also from the Mediterranean (Cimerman & Langer, 1991; Loeblich & Tappan, 1987) and Adriatic Sea (Dieci, 1959).

In the Central Paratethys, it appears from the Egerian to the end of the Badenian (Cicha et al., 1998) although some authors report about its earlier appearance; from the Kiscellian in Croatia (Sikici, 1985) and Hungary (Sztakos, 1979: Upper Kiscellian), and from the whole Oligocene in Bavaria (Reiser, 1987: Lower Rupelian – Lower Egerian). The species becomes abundant in the Karpatian (Cicha et al., 1998). In Croatia, it is noted also from the Middle Badenian (Bajraktarevic, 1982), in Austria from the Karpatian (Rogl, 1998) and Early Lower Badenian (Rogl & Spezzaferri, 2003), and in Romania from the Upper Badenian (Popescu, 1979).
In Slovenia, the species has not been described and imaged yet. It is only noted from Lower Egerian to Upper Badenian sediments. It is mentioned from the Lower Egerian of the Celje syncline (RIJAVEC, 1984), Laško syncline (RIJAVEC, 1976a, 1984, DOZET & RIJAVEC, 1994) and Planina syncline (RIJAVEC, 1977; RIJAVEC & DOZET, 1996), from the Upper Egerian of the Celje syncline (RIJAVEC, 1984; DOZET & RIJAVEC, 1994), Laško syncline (RIJAVEC, 1977: subspecies G. soldanii girardana; DOZET et al., 1996, 1999) and Planina syncline (RIJAVEC & DOZET, 1996), from the Lower Badenian of the Celje syncline (RIJAVEC, 1978a), from the Karpatian of Slovenske gorice (JELEN & RIFELJ, 2003), from the Middle Badenian of Slovenske gorice (RIJAVEC, 1974), Dravinjske gore (RIJAVEC, 1975), Laško syncline (RIJAVEC, 1976a, 1984; DOZET & RIJAVEC, 1994), Planina syncline at Planina pri Sevnici (RIJAVEC, 1977) and Bizeljsko syncline (DOZET et al., 1998), and from the Upper Badenian of Slovenske gorice (RIJAVEC, 1974) and the Laško syncline (RIJAVEC, 1984).

Ecology: The species is characteristic for the deep bathyal and abyssal zones (WENGER, 1987). It occurs down to 1800 m and it is more common deeper than 550 m (DIECI, 1959). In the Tyrrhenian Sea, it is reported from the soft sediment at 210 m (CIMERMAN & LANGER, 1991).

Genus Hanzawaia Asano, 1944

Hanzawaia boueana (d’ORBIGNY, 1846) (Pl. 5, figs. 2a–c)

1846 Truncatulina boueana – d’ORBIGNY, 169, Tab. IX, fig. 24–26.
1967 Hanzawaia boueana (d’ORBIGNY) – CICHA & ZAPLETALOVA, 145, Taf. 10, Fig. 1a–c.
1975 Hanzawaia boueana (d’ORBIGNY) – CICHA et al., 242, Taf. 2, Fig. 4a–c.
1975 Hanzawaia boueana (d’ORBIGNY) – POPESCU, 79, pl. LXXXVII, figs. 3a–c, pl. LXXXVIII, figs. 1a–c.
1985 Cibicides boueanus (d’ORBIGNY) – PAPP & SCHMID, 64, Taf. 56, Fig. 6–9.
1998 Hanzawaia boueana (d’ORBIGNY) – CICHA et al., 106, pl. 72, figs. 9–11.
2007 Hanzawaia boueana (d’ORBIGNY) – SCHÜTZ et al., 457, Taf. 6, Fig. 1a–c.

Material: Numerous tests in samples from all six sections (Tab. 1).

Description: Flattened test is very low trochospiral. It is circular in outline. Spiral side is flat or slightly concave and convolute, while the umbilical side is convex and involute. Whorls enlarge rapidly in size. The last whorl comprises 8–10 chambers that are crescentic in shape. They gradually increase in size. Sutures are strongly curved backward and weakly depressed on both sides. Periphery is angulate. It is smooth in outline, or may be slightly lobate toward the end of the last whorl. Wall is calcareous, optically granular and moderately perforate. Surface is smooth. Aperture is interiomarginal and equatorial, and continues on the spiral side.

Size: Test diameter is 0.3–0.35 mm and thickness 0.1 mm.

Age: From the Early Lower Badenian (Lower Lagenidae Zone) to Late Upper Badenian (Virgulinella pertusa Zone). Reworked tests were found also in the Lower Sarmatian samples (Anomalinoiides divisens Zone).

Occurrence: The species was first described from Late Lower Badenian of the Vienna basin. Its first appearance was placed in the Eocene (OGNIKEN, 1958). In Australia, it is noted from the Lower Miocene (LI & MCGOWRAN, 2000), in Italy from the Tortonian to Pleistocene (DIECI, 1959; OGNIBEN, 1958: Langhian to Quaternary; GIANNINI & TAVANI, 1960: Miocene, Pliocene), and in Algeria from the Messinian (POIGNANT & MOISSETTE, 1992).

In the Central Paratethys, it is known from the Egerian to the end of the Badenian (CICHA et al., 1975, 1998); it is numerous particularly in the Upper Lagenidae Zone (PAPP & SCHMID, 1985: Vienna basin). In Romania, it is noted from the Lower Miocene (POPESCU, 1975), and in Croatia from the Upper Badenian (PIKUJA et al., 1984). SCHÜTZ et al. (2007) determined the species in Lower Sarmatian sediments where could be reworked from older sediments.

In Slovenia, the species has not been described and imaged yet. It is only noted as Hanzawaia boueana or Cibicides boueanus from Lower Egerian to Upper Badenian sediments. It is mentioned from the Lower Egerian of the Laško syncline (RIJAVEC, 1984; DOZET et al., 1999), from
the Upper Egerian of the Celje syncline (Rljavec, 1984), from the Lower Badenian of the Laško syncline (Rljavec, 1976a, 1984; Dozet et al., 1999), from the Middle Badenian of Dravinske gorice (Rljavec, 1975), the Celje syncline (Rljavec, 1975, 1978a), Laško syncline (Rljavec, 1976a, 1984, Dozet et al., 1996, 1999), Planina syncline by Trobni Dol (Petrica et al., 1995) and Planina pri Sevnici (Rljavec, 1977), and of the Krško-Brežice plain (Dozet et al., 1998). It is known also from the Upper Badenian of Slovenske gorice (Rljavec, 1974), the Laško syncline (Rljavec, 1976a, 1984, Dozet et al., 1996) and Planina syncline by Trobni Dol (Petrica et al., 1995) and Skarnice (Rljavec, 1977).

Ecology: Extant specimens of the genus Hanzawaia are epifaunal and attached to hard substrates. They are found in temperate to warm marine waters of the inner shelf (Murray, 1991).

Conclusions

In the Middle Miocene sediments of the Planina syncline, 85 species and 2 subspecies of the foraminiferal suborder Rotaliina have been determined. The following species show particular high abundance in all sections: Angulogerina angulosa, Trifarina bradyi, Sphaeroidina bulloides, Cibicidoides ungerianus, Nonion commune, Melonis pompilioides, Pullenia bulloides, Heterolepa dutemplei, Hansenisca soldanii and Hanzawaia boueana (Tab. 2). In the studied area, they are present already in the lowest Badenian biozone, the Lower Lagenidae Zone. The shortest stratigraphic range is seen for Trifarina bradyi, which ranges up to the Late Middle Badenian Uvigerina cf. pygmea Zone. Most of other abundant rotaliins, Angulogerina angulosa, Cibicidoides ungerianus, Nonion commune, Melonis pompilioides and Pullenia bulloides occur up to the Early Upper Badenian Bolivina dilatata Zone, and species Sphaeroidina bulloides, Hansenisca soldanii and Hanzawaia boueana up to the Late Upper Badenian Virgulinella pertusa Zone. The longest stratigraphic range is shown by the species Heterolepa dutemplei which is found in the Trobni Dol section also in the Lower Sarmatian Anomalinoidea dividens Zone. In Sarmatian samples of the Imenska Gorca section, some other species are found (Sphaeroidina bulloides, Cibicidoides ungerianus, Pullenia bulloides, Heterolepa dutemplei, Hansenisca soldanii and Hanzawaia boueana); but are considered to be reworked Badenian specimens.

All species, which are presented in this work, appear in the Central Paratethys from the beginning to the end of the Badenian. Few of them: Cibicidoides ungerianus, Nonion commune (Papp & Schmid, 1998), Pullenia bulloides and maybe also Hanzawaia boueana, if not reworked (Schutz, 2007) range further into the Sarmatian. In this view, the results of this study are comparable with findings of previous studies of the Central Paratethys. More interesting is the presence of Heterolepa dutemplei tests in the Lower Sarmatian sample of the Trobni Dol section. If they are not reworked this could be an evidence for an increased biostratigraphic range for the species within the region.

From Middle Miocene sediments of Slovenia, the species Angulogerina angulosa and Trifarina bradyi are identified for the first time. Longer stratigraphic ranges are seen for: Melonis pompilioides (extending into the Middle and Upper Badenian), Cibicidoides ungerianus and Nonion commune (extending into the Upper Badenian), and possibly for Heterolepa dutemplei (extending into the Sarmatian).

All foraminifera show high abundance from the Lower Badenian Lower Lagenidae Zone up to the Early Upper Badenian Bolivina dilatata Zone. Abundance reduces in the following Late Upper Badenian V. pertusa Zone. Most species are indicators for deeper environments, from the shelf to bathyal or even abyssal zone: A. angulosa, T. bradyi, S. bulloides, C. ungerianus, M. pompilioides, P. bulloides, H. dutemplei and H. soldanii. The species A. angulosa, T. bradyi, C. ungerianus, M. pompilioides, P. bulloides, H. dutemplei and H. boueana are known to be euhaline so indicate full marine conditions. The pattern of abundance of the investigated species can be interpreted as evidence of environmental change that occurred towards the end of the Middle Miocene; when shoaling within the sea occurred and brackish conditions developed (Kováč et al., 2004, Oblak, 2006). The frequent epifaunal high-oxygen indicators C. ungerianus and H. dutemplei show that the bottom waters were well oxygenated from the beginning of the Badenian at least up to the Early Upper Badenian (B. dilatata Zone).
Taba 2. Distribution of rotaliinas in the studied sections (after Oblak, 2006). Columns represent a percentage of positive samples (samples where the particular species is present).

AGE	BADENIAN		SARMATIAN	
	LOWER	MIDDLE	UPPER	LOWER
BIOZONE				
FORAMINIFERA				
A. angulosa	![Graph](image1)	![Graph](image2)	![Graph](image3)	0 0 0 0
T. bradyi	![Graph](image4)	![Graph](image5)	![Graph](image6)	0 0 0 0
S. bulbides	![Graph](image7)	![Graph](image8)	![Graph](image9)	0 0 0 0
C. ungeranus	![Graph](image10)	![Graph](image11)	![Graph](image12)	0 0 0 0
N. commune	![Graph](image13)	![Graph](image14)	![Graph](image15)	0 0 0 0
Most abundant Middle Miocene rotaliinas (suborder Rotaliina, Foraminifera) of Kozjansko ...

Tabela 2. Pojavljanje rotaliin v obravnavanih profilih (po OBLAK, 2006). Stolpci predstavljajo odstotek pozitivnih vzorcev (vzorcev, kjer je posamezna foraminiferna vrsta prisotna).

BIOZONE	FORAMINIFERA	Lower Lagenidae Z.	Upper Lagen. Z.	P. robusta	U. cf. pygmea	B. dilatata	V. pertusa	A. dividens
M. poritioides	100 100 100 100	75 100 100 100	95 95 95 95	100 100 100 100	0 25 25 25	100 100 100 100	0 0 0 0	0 0 0 0
P. bullaides	100 100 100 100	95 95 95 95	100 100 100 100	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
H. dutemplei	100 100 100 100	95 95 95 95	100 100 100 100	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
H. soldatii	100 100 100 100	95 95 95 95	100 100 100 100	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
H. bueneana	100 100 100 100	95 95 95 95	100 100 100 100	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
In this paper, all species, except for the recent *Angulogerina angulosa* from the Adriatic Sea (Cimerman & Langer, 1991), are described for the first time in Slovenia.

Najpogostejše srednjenocienske rotaлиne (podred Rotaliina, Foraminifera) Kozjanskega (vzhodna Slovenija)

Povzetek

Podred Rotaliina je bil določen leta 1896 kot podred Rotalidae s strani avtorjev De-lage & Herouard (v Rotaliina sta ga pre-imenovala Loeblich in Tappan leta 1961) (Loeblich in Tappan, 1987). Z več kot 600 rodovali predstavlja drugi največji foraminiferi podred. Vključuje bentoške foraminifere večkamernih hišic s porozno steklasto lamelarno kalcitno steno. Glede na način rasti, predeljenost kamric, ornamentiranost površine, prisotnost kanalnega sistema in izoblikovanost ustja so rotaлиne zelo heterogene. Zaradi velike tolerance do okoliških parametrov, kot so substrat, globina, temperatura, slanost in hrana, se pojavljajo v zelo različnih okoljih (Billman et al., 1980, Murray, 1991). Najstarejše rotaлиne so našli v triasnih plasteh, podred *Trifarina bradyi* (*Angulogerina angulosa*), *Sphaeroidina bulloides*, *Cibicidoides ungerianus*, *Nonion commune*, *Melonis pompillioides*, *Pullenia bulloides*, *Heterolepa dutemplei*, *Hansenisca soldanii* in *Hanzawaia boueana*. Vse omenjene vrste se pojavljajo na preiskanem območju od najnižje badenij-ske spodnje lagenidne biocone dalje (tab. 2). Med njimi kaže najkrajši stratigrafski razpon vrsta *Trifarina bradyi*, ki je prisotna do mlajše srednjenocienske *Uvigerina* cf. *pygmea* biocone. Večina ostalih rotaлиin, *Angulogerina angulosa*, *Cibicidoides ungerianus*, *Nonion commune*, *Melonis pompillioides* in *Pullenia bulloides*, se pojavlja v starejši zgornjenocienski *Bolivina dilatata* biocone in vrste *Sphaeroidina bulloides*, *Hansenisca soldanii* in *Hanzawaia boueana* dalje do mlajše zgornjenocienske *Virgulinella pertusa* biocone. Najdaljši stratigrafski razpon je razviden pri vrsti *Heterolepa dutemplei*, ki je bila najdena v starejši sodni sarmatijski *Anomaloides dividens* bioconi. V sarmatijskih vzorcih profila Imenska Gorca so bile sicer najdene še nekatere druge rotaлиne: *Sphaeroidina bulloides*, *Cibicidoides ungerianus*, *Pullenia bulloides*, *Heterolepa dutemplei*, *Hansenisca soldanii* in *Hanzawaia boueana*, ki pa so bile glede na spremembočo mikrofavorsko po vsej verjetnosti prenesene iz starejših, badenij-skih plast. Vse vrste, ki so obravnavane v tej nalogi, se pojavljajo na območju Centralne Paratetide od začetka do konca badenija, vrsti *Cibicidoides ungerianus* in *Nonion commune* še naprej v sarmati (Papp & Schmid, 1998). V tem pogledu so rezultati te raziskave primervi z ugotovitvami predhodnih raziskav Centralne Paratetide. Zanimiveža pa je prisotnost hišic vrste *Heterolepa dutemplei* v

Table 1

| Plate 1 – Tabla 1 |

1. *Angulogerina angulosa* (Williamson); a. side view (Ig 4), b. enlarged aperture with a toothplate (Ig 4).
2. *Trifarina bradyi* Cushman; a. side view (Ig 4), b. enlarged aperture with a toothplate (Ig 4).

Scale bar = 100 µm.
Merilce = 100 µm.
Plate 1 – Tabla 1
spodnjesarmanijskih plasteh profilona Trobni Dol. Če hišice niso prenešene, bi bil s tem lahko dokazan daljši stratigrafski razpon vrste.

V srednjemiočenskih sedimentih Slovone sta vrstı *Angulogerina angulosa* in *Trifarina bradyi* določeni prvič. Daljši stratigrafski razpon je dokazan za vrste: *Melonis pompilioides* (razširjen v srednji in zgornji badenij), *Cibicidoides ungerianus* in *Nonion commune* (razširjen v zgornji badenij) in morda tudi vrste *Heterolepa duteoplei* (razširjen v sarmatij).

Predstavljene foraminiferne so zelo številčne od spodnjebadenjske spodnje lagenidne biocone vse do starejših zgornjebadenjskih biocone *Bolivina dilatata*, in skoraj izginejo v naslednji, mlajši zgornjebadenijski bioconi *V. pertusa*. Večina teh vrst je značilnih za globlja okolja, od šeľa do globine batiala ali celo abisala: *A. angulosa*, *T. bradyi*, *S. bulloides*, *C. ungerianus*, *M. pompilioides*, *P. bulloides*, *H. dutemplei* in *H. soldanii*. Vrste *A. angulosa*, *T. bradyi*, *C. ungerianus*, *M. pompilioides*, *P. bulloides*, *H. dutemplei* in *H. boueana* so evhaline in kažejo na morsko okolje. Vzorec njihovega pojavljanja je verjetno posledica spremembe okolja, do katere je prišlo proti koncu srednjega miocena; ko je začelo morje plitveti in se oslajevati (Kováč et al., 2004, Oblak, 2006). Pogosta epifavnistična indikatorja oksičnega okolja, *C. ungerianus* in *H. dutemplei*, kažeta, da je bila voda pri dnu dobro prezračena in se oslajevati (Kováč et al., 2004, Oblak, 2006).

V vse vrste, razen recentne *Angulogerina angulosa* iz Jadranskega morja (Cimerman & Langer, 1991), so v Sloveniji opisane prvič.

Acknowledgements

I am grateful to Ivan Rakovec Institute of Palaeontology, ZRC SAZU for allowing me to take SEM images. I wish to thank to M.Sc. Bogoljub Aničić for his help by the field work, to M.Sc. Franci Cimerman for checking my determination of benthic foraminifera, and to Dr. Katica Drobnec for her constructive review of the manuscript. Special thanks are due also to Dr. Kevin R. Brown for English corrections of the text.

References – Literatura

Aničić, B. & Juriša, M. 1984: Osnovna geološka karta SFRJ 1: 100 000, list Rogatec L 33–68, Zvezni geološki zavod, Beograd.

Aničić, B. & Juriša, M. 1985: Tolmač k Osnovni geološki karti SFRJ 1: 100 000, list Rogatec L 33–68, 76 str.; Zvezni geološki zavod, Beograd.

Aničić, B. & Ogorelec, B. 1996: Badenjski rodolit na Kozjanskem. – Geologija, 37(38), (1994/95), 225–249, Ljubljana.

Aničić, B., Ogorelec, B., Kralj, P. & Mišić, M. 2002: Litološke značilnosti tertiarnih plasti na Kozjanskem. Geologija, 45/1, 213–246.

Aničić, B., Ogorelec, B. & Dozet, S. 2004: Geološka karta Kozjanskega, 1 : 50 000, Geološki zavod Slovenije, Mladinska knjiga, Ljubljana.

Ascoli, P. 1956: Microfauna della serie eocene di Rio Represoso e della serie oligocenica superiore di Mombisaggio – Mongariolo (Tor-

tona – Alessandria). – Riv. Ital. Paleont. Strat., LXII(3), 153–196, Milano.

Bajraktarević, Z. 1978: Gornjetortonska starost sedimenata Zaprešić-brijega kod Samo-

bora. – Geol. Vjesnik, 30(1), 63–67, Zagreb.

Bajraktarević, Z. 1979: Mikropaleontološka in biostratigrafska istraživanja tortona (baden) nekih lokaliteta Samoborskog gorja, Plešivi-

tve in Marija – Goričkih brda. – Geol. Vjesnik, 31, 37–47, Zagreb.

Bajraktarević, Z. 1982: Mikrofosili in nanofosili sedimenata badena (»tortona«) područja Sokolovac u Požeškoj gori. – Geol. Vjesnik, 35, 43–46, Zagreb.

Barbieri, R. & d’Onofrio, S. 1984: Bent-

hic Foraminifera of the Fangario Formation (Ca-

Plate 2 – Tabla 2

1. *Sphaeroidina bulloides* d’Orbigny; a. umbilical side (J 28), b. side view (Pb 23).
2. *Sphaeroidina bulloides* d’Orbigny; a. umbilikalna stran (J 28), b. stranski pogled (Pb 23).
3. *Cibicidoides ungerianus* (d’Orbigny); a. spiral side (Pb 23), b. umbilical side (Pb 23), c. side view (Pb 23).
2. *Cibicidoides ungerianus* (d’Orbigny); a. spiralna stran (Pb 23), b. umbilikalna stran (Pb 23), c. stranski pogled (Pb 23).

Scale bar = 100 µm.
Merilce = 100 µm.
Plate 2 – Tabla 2

Most abundant Middle Miocene rotaliinas (suborder Rotaliina, Foraminifera) of Kozjansko...
Katarina Oblak

1. **Nonion commune** (D'ORBIGNY); a. side view (Ig 4), b. front view (Ig 4).
2. **Melonis pompilioides** (FICHTEL & MOLL); a. side view (Pb 23), b. front view (Pb 23).

Scale bar = 100 μm.
Merilce = 100 μm.

Plate 3 – Tabla 3
water productivity and oxygenation in the northern Arabian Sea. – Mar. Micropal., 35, 43–66, Amsterdam.

Ellis, B. F. & Messina, A. R. 1940: Catalogue of Foraminifera. Am. Mus. Nat. Hist., Spec. Publ., New York.

Emilian, C. 1954: The Oligocene microfaunas of the Central part of the Northern Apennines. – Palaeontographia Italica, XLVIII (n. ser. vol. XVIII), 77–184, Pisa.

Filipescu, S. & Girbacea, R. 1997: Lower Badenian sea-level drop on the Western border of the Transylvanian basin: Foraminiferal paleo-bathymetry and stratigraphy. – Geol. Carpat., 48(5), 325–334, Bratislava.

GIANNINI, E. & TAVANI, G. 1960: Foraminiferi miocenici e plicenici di un sondaggio effettuato in Val di Trossa (Toscana). – Palaeontographia Italica, LV (n. ser. vol. XXV), 21–90, Pisa.

Goebbert, K. 1961: Die Kleinforaminiferenfauna des obereozänen Anteils der Reigruber Serie bei Bruderndorf (Bezirk Korneuburg, Niederösterreich). – Mitt. Geol. Ges., 54, 55–145, Wien.

LOURENS, L., HILGREN, F., SHACKLETON, N. J., LASKAR, J., WILSON, D. 2004: The Neogene period. – In: Gradstein, F. M., Ogg, J. G. & Smith, A. G. (Eds.), The Geologic Time Scale 2004, Part III, Geologic Periods, 409–489, Cambridge University Press, Cambridge.

HASSON, P. F. & FISCHER, A. G. 1986: Observations on the Neogene of northwestern Ecuador. – Micropaleontology, 32(1), 32–42, New York.

HIVOTTINGER, L., HALICZ, E. & REISS, Z. 1993: Recent Foraminiferida from the Gulf of Aqaba, Red Sea. – Dela IV. razreda SAZU, 33, 179 pp., Ljubljana.

Jelen, B. & RIFELJ, H. 2003: The Karpatian in Slovenia. – In: BRZOBOHATY, R., CICHA, I., KOVÁC, M. & ROGL, F. (Eds.), The Karpatian – a Lower Miocene Stage of the Central Paratethys, Masaryk University Brno, 133–139, Brno.

KOLAR, T. 1978: Oligocenska mikrofauna iz Hrasnica. – Rudarsko-metalurški zbornik, 4, 407–415, Ljubljana.

KOVÁC, M., BARÁTH, I., HARZHAUSER, M., HLAVATÝ, I. & HUDÁČKOVÁ, N. 2004: Miocene depositional systems and sequence stratigraphy of the Vienna Basin. – Courier Forschungsinstitut Senckenberg, 246, 187–212, Frankfurt am Main.

LÉVY, A., MATHIEU, R., POIGNANT, A. & ROSSET-MOULINIER, M. 1998: 44. Data Report: Distribution of Pleistocene Benthic Foraminifers from the Eastern Equatorial Atlantic Ocean. – In: MASCLE, J., LOHMANN, G.P. & MOULIADE, M. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 159, 605–610, Texas.

LI, Q. & MCGOWAN, B. 2000: Miocene foraminifer from lakes entrance oil shaft, gippsland, southeastern Australia. – Memoir of the Association of Australasian Palaeontologists, 22, 1–142, Canberra.

LOEBLICH, A. R. Jr. & TAPPAN, H. 1987: Foraminiferal Genera and their Classification. – Vol. 1–2, 970 pp., 847 pls., Van Nostrand Reinhold, New York.

LONGONELLI, A. 1956: Foraminiferi del Calabriano e Piacenziano di Rosignano Marittimo e della val di Cecina. – Palaeontographia Italica, XLIX (n. ser. vol. XIX), 99–214, Pisa.

MILLER, K. G. & KATZ, M. E. 1987: Oligocene to Miocene benthic foraminiferal and abyssal circulation changes in the North Atlantic. – Micropaleontology, 33(2), 97–149, New York.

MURRAY, J. W. 1991: Ecology and palaeoecology of benthic foraminifera. – Longman Scientific and Technical, John Wiley & Sons Inc., 397 pp., New York.

MURRAY, J. W. 2003: An illustrated guide to the benthic foraminifera of the Hebridean Shelf, west of Scotland, with notes on their mode of life. – Palaeontologia Electronica, 5(1), 31 pp, 1.4MB; http://palaeo-electronica.org/paleo/2002_2/guide/issue2_02.htm (read in May, 2006).

OBLAK, K. 2006: Foraminifera taksonomija, biostratigrafija in paleoekologija badenija v Plainski sinklinali (vzhodna Slovenija, Centralna Paratetida). Ph.D. Thesis. Ljubljana: University of Ljubljana, 310 pp, 60 pls.

OgNIèEN, L. 1958: Stratigrafia e microfaune del terziario della zona di Caiazzo (Caserta). – Riv. Ital. Paleont., LXI/3, 199–236, Milano.

D’ORBIGNY, A. 1826: Tableau Méthodique de la Classe des Céhalopodes. Ann. Sci. D’Hist. Nat., Ser. 7, 7–150, Paris.

D’ORBIGNY, A. 1846: Foraminifères fossiles du Bassin Tertiaire de Vienne (Autriche). – 312 pp., Gide et Comp, Paris.

PAPP, A. & SCHMID, M. E. 1985: Die Fossilien Foraminiferen des Tertiären Beckens von Wien. Revision der Monographie von Alcide d’Orbigny (1846). – Abh. Geol. Bundesanst., 37, 311 pp., Wien.

PAPRIS, E. 1981: Distribuzione dei foraminiferi bentonici nelle zone batiali del Tirreno e

Plate 4 – Tabla 4

1. *Pullenia bulloides* (d’Orbigny); a. side view (Pb 23), b. front view (Pb 23).

2. *Pullenia bulloides* (d’Orbigny); a. spiral side (Pb 23), b. umbilical side (Pb 23), c. side view (Pb 23).

2. *Heterolepa dutemplei* (d’Orbigny); a. spiral side (Pb 23), b. umbilical side (Pb 23), c. side view (Pb 23).

Scale bar = 100 µm.

Merlice = 100 µm.
Plate 4 – Tabla 4
del Canale di Sicilia. – Riv. Ital. Paleont., 87(2), 293–328, Milano.

Petrica, R., Rijavec, L. & Dozet, S. 1995: Stratigraphy of the Upper Oligocene and Miocene beds in the Trieb Dol area (Kozjansko). – Rudarsko-metalurški zbornik, 42(3–4), 127–141, Ljubljana.

Pikija, M., Šikić, K. & Šikić, L. 1984: Miocen na lokaliteta Bačuga i Jurjevčić (središnja Hrvatska). – Geol. Vjesnik, 37, 65–80, Zagreb.

Piller, W. E., Egger, H., Erhart, C. W., Gross, M., Harzhauser, M., Hubmann, B., van Houten, D., Krenmayr, H.-G., Kry-styn, L., Lein, R., Lukeneder, A., Mandl, G. W., Rögl, F., Roetzel, R., Rupp, C., Schnabel, W., Schönlaub, H. P., Summersberger, H., Wagreich, M. & Wessely, G. 2004: Foraminiferal paleoecology and biostratigraphy of the Upper Miocene beds from the Central Sava Folds (Slovenia). – Rudarsko-metalurski zbornik, 43(1–2), 11–22, Ljubljana.

Röggl, F. 1969: Die miozäne Foraminiferenauna von Laa an der Thaya in der Molassezone von Niederösterreich. – Mitt. Geol. Ges., 61, 63–123, Wien.

Röggl, F. 1998: Foraminiferenauna aus dem Karpat (Unter-Miozän) des Korneuburger Beckens. – Beitr. Palaont., 23, 123–173, Wien.

Röggl, F. & Spezzaferri, S. 2003: Foraminiferal paleoecology and biostratigraphy of the Mühlbach section (Gaidorf Formation, Lower Badenian), Lower Austria. – Ann. Naturhist. Mus. Wien, 104(A), 23–75, Wien.

Salaj, J. 1992: The Foredeep Miocene of Bou Sfera in Northern Tunisia. – Geol. Carpath., 43(5), 295–304, Bratislava.

Schütz, K., Harzhauser, M., Rögl, F., Čorić, S. & Galović, I. 2007: Foraminiferen und Phytoplankton aus dem unteren Sarmatium des südlichen Wiener Beckens (Petronell, Niederöstereich). – Jahrb. Geol. Bundesanst., 147(1+2), 449–488, Wien.

Sgarrella, F. & Moncharmont Zei, M. 1993: Benthic foraminifera of the Gulf of Naples (Italy): systematics and autoecology. – Boll. Soc. Paleont. Ital., 32(2), 145–204, Modena.

Szczechura, J. 2000: Age and evolution of depositional environments of the supra-evaporitic deposits in the northern, marginal part of the Carpathian Foredeep: micropalaeontological
Plate 5 – Tabla 5
evidence. – Geological Quarterly, 44(1), 81–100, Warszawa.

Sztrákos, K. 1979: La stratigraphie, paléoéco-
logie, paléogéographie et les Foraminifères de
l’Oligocène du nord-est de la Hongrie. – Cahiers
Micropaléontologie, 3, 95 pp., Paris.

Šikić, L. 1967: Torton i sarmat jugozapadnog
dijela Medvednice na osnovu favne foraminifer.
– Geol. vjesnik, 20, 127–135, Zagreb.

Šikić, L. 1985: The Rupelian in the area of
Ravna Gora (northwestern Croatia) based on fo-
raminiferous fauna. – Geol. vjesnik, 38, 73–80,
Zagreb.

Vénec-Peyré, M.-T. 2005: Les Planches
inédites de Foraminifères d’Alcide d’Orbig-
ny, Publ. Scient. Mus. Paris, MNHN, 302 pp.,
Paris.

Violanti, D. 1996: Taxonomy and distribu-
tion of recent benthic foraminifers from Terra
Nova Bay (Ross Sea, Antarctica), Oceanographic
Campaign 1987/1988. – Palaeontographia Italica,
83, 25–71, Pisa.

Wenger, W. F. 1987: Die Foraminiferen des
Miozäns der bayerischen Molasse und ihre stra-
tigraphische sowie paläogeographische Auswer-
tung. – Zitteliana, 16, 173–340, München.

Wiegank, F. 1972: Ökologische Analyse
quartärer Foraminiferen (Beitrag zur Quartär-
stratigraphie in der nördlichen Deutschen De-
mokratischen Republik). – Geologie, Zeitsch.
Gesam. Geol. Wiss., 77, 1–111, Berlin.

Williamson, W. C. 1858: On the Recent Fo-
raminifera of Great Britain. – Ray Society, I–XX,
107 pp., 6 pls., London.

Yassini I. & Jones, B. G. 1995: Recent Fo-
raminiferida and Ostracoda from estuarine and
shelf environments on the southeastern coast of
Australia. – 484 pp., The University of Wollon-
gong Press, Wollongong.