Binary-coupling sparse Sachdev-Ye-Kitaev model: An improved model of quantum chaos and holography

Masaki Tezuka, Onur Oktay, Enrico Rinaldi, Masanori Hanada, and Franco Nori

1Department of Physics, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
2Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
3Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
4Theoretical Quantum Physics Laboratory, Cluster of Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan
5Interdisciplinary Theoretical & Mathematical Science Program (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan
6Center for Quantum Computing (QRC), RIKEN, Wako, Saitama 351-0198, Japan

(Received 12 October 2022; revised 17 December 2022; accepted 21 December 2022; published 6 February 2023)

The sparse version of the Sachdev-Ye-Kitaev (SYK) model reproduces essential features of the original SYK model while reducing the number of disorder parameters. In this Research Letter, we propose a further simplification of the model which we call the binary-coupling sparse SYK model. We set the nonzero couplings to be ±1, rather than being sampled from a continuous distribution such as Gaussian. Remarkably, this simplification turns out to be an improvement: The binary-coupling model exhibits strong correlations in the spectrum, which is the important feature of the original SYK model that leads to the quick onset of the random-matrix universality, more efficiently in terms of the number of nonzero terms. This model is better suited for analog or digital quantum simulations of quantum chaotic behavior and holographic metals due to its simplicity and scaling properties.

DOI: 10.1103/PhysRevB.107.L081103

I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model [1–4] in which \(N \) fermions have all-to-all \(q \)-fermion random couplings has been studied intensively in the last six years. Though the Hamiltonian is very simple, this model exhibits rich physics and serves as an important toy model for quantum chaos and holography [5–11]. It is also a good target for quantum simulation in the near future, which can be the first step toward laboratory experiments for quantum gravitational systems via holographic duality [12–14]. Moreover, the SYK model and its variants have been used in condensed matter as a candidate overarcing theory to describe strange metals (non-Fermi liquids) and their behavior [15,16]. Given the importance of the SYK model for understanding strongly correlated and disordered systems, a natural question is, Can we simplify the model further while keeping the essential properties leading to its complex and rich physical behavior? There are at least a few motivations to ask such a question, including the following: (i) We want to know which feature of SYK is important for chaos, and (ii) simpler models may admit simpler experimental realizations or quantum simulation protocols.

Simplifications that retain all the main features of the full, and more cumbersome to study, SYK model may come from thinking about the role of the \(q \)-fermion interactions. Firstly, the all-to-all nature of the interaction may not be necessary; perhaps some of the couplings can be turned off. Such a sparse version of the SYK model was proposed and discussed in Refs. [17,18]. The spectral form factor of the model has been studied in Ref. [19]. Alternatively, one may relax the Gaussian condition on the random couplings. The effect of non-Gaussian random couplings has been studied in Ref. [20].

In this Research Letter, we propose a parsimonious version of the SYK model, the binary-coupling SYK model. We set many couplings to be zero as in the sparse SYK model and set nonzero couplings to be binary, just +1 or −1 [21]. We study the spectral statistics of the energy spectrum, including the gap ratio and the spectral form factor, which are crucial to determine the connection with random-matrix universality. Our main result is that this model generates correlations in the spectrum more efficiently, in terms of the number of nonzero terms. Specifically, we observe a stronger spectral rigidity, or equivalently, a quicker onset of the random-matrix universality in the spectral form factor.

We present our results for the Majorana-fermion version of the SYK model with four-fermion couplings. Other variants of the model have also been extensively studied in the literature, such as the complex-fermion [4,22–25] (also known as the two-body random ensemble since the 1970s [26]), bosonic [27,28], large-S (where \(S \) is spin) [29], multilavor-fermion [30], supersymmetric [31–34], and non-Hermitian versions [35], as well as the two-site [36,37] and lattice versions of the model [38,39] and SYK-like models with Yukawa coupling [40] and electron-phonon coupling [41,42]. Our approach may generalize to a large portion of such systems. Because of the simplicity and good scaling with \(N \), the use of the binary-coupling models should make simulations more tractable.

This Research Letter is organized as follows. In Sec. II, we define the model, discuss the choice of the sign of the coupling \(\pm 1 \), and explain that the number of possible realizations of the model is finite but very large. In Sec. III, we present our numerical results based on exact diagonalization. Then we provide a summary.

*tezuka@scphys.kyoto-u.ac.jp
II. MODEL

The Hamiltonian of the Majorana-type SYK model with q-fermion interactions is written as
\[H_{\text{SYK}} = i^{\frac{3}{2}} \sum_{1 \leq a_1 < \cdots < a_N \leq N} J_{a_1 \cdots a_N} \chi_{a_1} \chi_{a_2} \cdots \chi_{a_N}, \]
(1)
in which a set of N Majorana fermions $\chi_{1,2, \ldots, N}$ have the anticommutation relation
\[\{ \chi_a, \chi_b \} \equiv \chi_a \chi_b + \chi_b \chi_a = 2 \delta_{ab}, \]
(2)
and the $N_{\text{total}} \equiv N^q$ couplings $\{J_{a_1 \cdots a_N}\}$ obey the Gaussian distribution [1–3]. We assume that q is even and $J_{a_1 \cdots a_N}$ is real.

The sparse SYK model [17,18] is defined by setting $J_{a_1 \cdots a_N}$ to be zero at a probability $(1 - p)$. Then the number of couplings left nonzero is
\[K_{\text{cpl}} \equiv p N_{\text{total}}. \]
(3)
Let us call this model the Gaussian sparse SYK model, to distinguish it from the model we propose below. Typically, the number of nonzero couplings is chosen to be $K_{\text{cpl}} = \mathcal{O}(N)$. Let us also call the original model that corresponds to $p = 1$ the Gaussian dense SYK model.

In the following, we present our proposal for the $q = 4$ case for brevity. Generalization to $q \geq 6$ is straightforward. Here we study the Hamiltonian
\[H = C_{N,p} \sum_{(a,b,c,d)} J_{abcd} \chi_a \chi_b \chi_c \chi_d, \]
(4)
in which the summation is understood to be over choices of (a, b, c, d) such that $1 \leq a < b < c < d \leq N$, and J_{abcd} is $+1$ with probability $p/2$, -1 with probability $p/2$, and 0 with probability $(1 - p)$. The normalization constant $C_{N,p}$ will be explained shortly. We call this model the binary-coupling sparse SYK model because nonzero couplings take only two values. We can simplify the model further and define the unary-coupling sparse SYK model by taking J_{abcd} as $+1$ with probability p and as 0 with probability $(1 - p)$. We will discuss the unary-coupling model in Sec. S1 of the Supplemental Material [43].

In this Research Letter, we will focus on the binary-coupling model. We assume that K_{cpl} is even. Rather than generating the value of each J_{abcd} independently of others for an ensemble of models having varying numbers of $+1$ and -1, we randomly choose $K_{\text{cpl}}/2$ couplings to be set to $+1$ and randomly choose $K_{\text{cpl}}/2$ couplings from the remainder to -1.

A. Normalization constant $C_{N,p}$

The overall scaling constant $C_{N,p}$ does not affect the spectral statistics. In the following, $C_{N,p}$ is chosen so that the variance of the energy eigenvalues equals unity. The sum of the square of the energy eigenvalues $\{\epsilon_j\}$ of the $2^{N/2}$-dimensional Hamiltonian H is obtained as
\[\sum_j \epsilon_j^2 = \text{Tr} H^2 = C_{N,p}^2 2^{N/2} \sum_{(a,b,c,d)} J_{abcd}^2. \]
(5)
Thus, when $J_{abcd} = \pm 1$ for $p N_{\text{total}}$ choices of (a, b, c, d), the variance of the $\{\epsilon_j\}$ equals unity for $C_{N,p} = 1/\sqrt{K_{\text{cpl}}}$. Note that in many other publications for dense SYK, including Ref. [44], the variance of J_{abcd} scales as N^{-3}, and the normalization of the Majorana fermions is often half of (2), so that the variance of $\{\epsilon_j\}$ takes a different form, $(N - 1)(N - 2)(N - 3)/(64 N^2) \sim N$.

B. The finiteness of the possible realizations

There are infinitely many realizations of the Gaussian dense and sparse SYK models because there are infinitely many choices of disorder parameters. On the other hand, there are only a finite number of realizations of the binary-coupling model at each fixed N. Still, the rapid growth of $N_{\text{total}} \sim N^4/4!$ as a function of N allows us to generate a very large number of distinct models even for $N \sim 10$. Practically, the finite size of the realization ensemble is not an issue.

III. SPECTRAL STATISTICS

The Bohigas-Giannoni-Schmit conjecture [45] and later studies stated that, for quantum mechanical Hamiltonians corresponding to classical systems with chaotic behavior, the spectral statistics of the energy eigenvalues obey that of a random-matrix theory (RMT) having the same symmetry of the Hamiltonian. For Hamiltonians without any symmetry, the random matrix ensemble is the Gaussian unitary ensemble (GUE), whereas when the antiunitary time-reversal operator T commutes with the Hamiltonian, the ensemble is the Gaussian orthogonal (symplectic) ensemble, GOE (GSE), if $T^2 = 1$ (-1). This has been extended to quantum systems without direct correspondence to classical systems. The Gaussian dense and sparse SYK models exhibit excellent agreement with the RMT [18,19,44,46], namely, GOE for $N \equiv 0 \mod 8$, GUE for $N \equiv 2, 6 \mod 8$, and GSE for $N \equiv 4 \mod 8$.

A. Extra degeneracy for smaller numbers of couplings

In the Gaussian dense SYK model with $q = 4$, the eigenvalues are (i) not degenerate in general for $N \equiv 0 \mod 8$, (ii) doubly degenerate due to the bijective map between the two parity sectors for $N \equiv 2, 6 \mod 8$, and (iii) doubly degenerate within each parity sector, but not degenerate in general between the parity sectors for $N \equiv 4 \mod 8$.

With only a very small number of couplings, there may be extra degeneracy due to some accidental symmetries, which have been discussed for the Gaussian sparse SYK model [18]. Such accidental symmetries increase the degeneracy of some of the energy eigenvalues. Therefore, for small values of K_{cpl}, high orders of degeneracy are observed. In some samples, all eigenvalues have the same higher degeneracy, such as 4. In other samples, the eigenvalues have varying orders of degeneracy within one sample. For $K_{\text{cpl}} \gtrsim N$, the degeneracy is uniform within each sample, and the order is a power of 2. Still, extra degeneracy is observed for some samples. At sufficiently large K_{cpl}, samples with extra degeneracy become rarer. The probability of observing samples without extra degeneracy is plotted in Fig. 1. While how the probability approaches unity depends on $N \mod 8$, we observe that for $N = 14, 16, \ldots, 30$, more than half of the samples are without extra degeneracy if the number of couplings K_{cpl} exceeds N.
samples do not have extra degeneracy. For such cases, the value of \(r \) rapidly approaches that of RMT.

By using the partition function analytically continued as a function of the inverse temperature \(\beta \) to \(\beta + it \) with \(t \in \mathbb{R} \),

\[
Z(t, \beta) = Z(\beta + it) = \sum_j \exp \left(- (\beta + it) e_j \right),
\]

we define the spectral form factor \(g(t, \beta) \) as

\[
g(t, \beta) = |Z(t, \beta)|^2 |Z(0, \beta)|^2.
\]

The late-time features of the spectral form factor, specifically the ramp and plateau, are useful criteria to see the universality described by RMT.

In Fig. 3, we plotted the spectral form factor for \(N = 24, 26, 28, 30 \). Late-time behaviors agree with those of GOE (\(N = 24 \)), GUE (\(N = 26, 30 \)), and GSE (\(N = 28 \)) random matrices: We observe a long ramp proportional to \(t^1 \) as \(K_{\text{cpl}} \) is increased.

C. Comparison with Gaussian sparse SYK

So far, we have seen that the binary-coupling sparse SYK model exhibits quantum chaos. Now we show that the binary model generates correlation in the spectrum more efficiently in terms of the number of nonzero terms. Specifically, we observe the stronger spectral rigidity for the same values of \(N \) and \(p \). This means that the binary model is more chaotic than the Gaussian model, in the sense that the energy spectrum is closer to RMT.

Let us consider the unfolded energy spectrum. (Regarding the unfolding, see Ref. [48].) Let \(\hat{\Delta} \) be the average nearest-neighbor level spacing. For \(K > 0 \), we denote the number of energy eigenvalues between \(E \) and \(E + K \hat{\Delta} \) by \(n(E, K) \). The number variance \(\Sigma^2(K) \) is defined by \(\Sigma^2(K) = \langle n^2(E, K) \rangle - \langle n(E, K) \rangle^2 \), where \(\langle \cdot \rangle \) denote the average over \(E \). We can compare the number variance with RMT. If the agreement is observed up to a larger value of \(K \), then the system is more strongly chaotic in the sense that the random-matrix universality sets in at earlier time scales. RMT shows rather small \(\Sigma^2(K) \), which means that the spectrum is rigid due to the level repulsion. This property is called the spectral rigidity.

While the number variance provides us with a simple way to detect the spectral rigidity, it may depend on the details of the unfolding procedures [46]. The spectral form factor gives another way to see the spectral rigidity which is not sensitive to the details of the unfolding; if the spectral rigidity is stronger, the ramp is longer. In Fig. 4, we show the spectral form factors for the binary and Gaussian, sparse and dense SYK models with \(N = 28 \) and \(N = 30 \). The ramp starts significantly earlier for the binary model with \(N \) and \(2N \) couplings compared with the Gaussian model with the same number of couplings. The ramp for the binary model with \(2N \) couplings is as long as that of the Gaussian model with \(4N \) couplings. Finally, in the dense-SYK limit, binary and Gaussian models are indistinguishable.

Strictly speaking, the onset of the ramp can be hidden if the decay of the spectral form factor at early time is not sufficiently fast. Note that the early-time decay (also known as slope) does not reflect the microscopic properties of the energy spectrum. To see the onset of the ramp more accurately,
FIG. 3. $g(t, \beta = 0) = |Z(t, \beta)|^2 / Z(0, \beta)^2$ for $Z(t, \beta) = Z(\beta + it) = \sum_j \exp\left(-\beta \epsilon_j\right)$ vs time t for the binary sparse SYK model. The value of N and the number of nonzero couplings, K_{cpl}, are indicated in the legend for each plot. The shift of the height of the plateau for $K_{cpl} \lesssim N$ is due to the extra degeneracy of the energy eigenvalues.

IV. CONCLUSION AND DISCUSSION

In this Research Letter, we proposed the binary-coupling sparse SYK model. We demonstrated that the spectral statistics obey the RMT predictions for $O(N)$ number of couplings as in the Gaussian sparse SYK models [17–19]. With the same number of couplings, the binary-coupling model shows better agreement with RMT. Therefore this model is an improvement, rather than just a simplification, of the Gaussian sparse SYK model. The better agreement to dense models in the binary case compared with the Gaussian case may be attributed to the high probability of having relatively small coupling amplitudes in the latter. If we approximate small couplings by zero, effectively the value of p goes down in the Gaussian case.

We envisage the generalization of the present approach to other variants of the SYK model in a similar manner. For example, we may choose the coupling constants from the unit circle on the complex plane, or further limit the values of the
The binary nature of the couplings may simplify the physical realization of the model via digital or analog quantum simulations [50–53]. It would be nice if experiments on SYK models with sufficiently large N are achieved and “quantum gravity in the laboratory” [12–14,54,55] becomes a reality. Simulations on optical kagome lattices [56] may also be simplified in the binary-coupling sparse SYK and could lead to tractable studies of high-temperature cuprate superconductors [15].

The simulation data are publicly available [57].

ACKNOWLEDGMENTS

The authors thank Brian Swingle for helpful comments. M.T. thanks Antonio M. García-García, Chisa Hotta, and Norihiro Iizuka for discussions and Yoshifumi Nakata and Satyam Shekhar Jha for collaborations on related projects. M.T. was partially supported by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI), Grants No. JP17K17822, No. JP20K03787, No. JP20H05270, and No. JP21H05185. O.O. was supported by TUBITAK Grant No. 2219. M.H. was supported by STFC Ernest Rutherford Grant No. ST/R003599/1. E.R. was supported by Nippon Telegraph and Telephone Corporation (NTT) Research. F.N. is supported in part by NTT Research, the Japan Science and Technology Agency (JST) [via the Quantum Leap Flagship Program (Q-LEAP), Moonshot R&D Grant No. JPMJMS2061], JSPS [via KAKENHI Grant No. JP20H00134], the Army Research Office (ARO; Grant No. W911NF-18-1-0358), the Asian Office of Aerospace Research and Development (AOARD) (via Grant No. FA2386-20-1-4069), and the Foundational Questions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06. The authors thank the Royal Society International Exchanges for Award No. IEC/R3/21033. Part of the numerical computations were performed using the facilities of the Supercomputer Center, the Institute for Solid State Physics, The University of Tokyo.

[1] S. Sachdev and J. Ye, Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet, Phys. Rev. Lett. 70, 3339 (1993).
[2] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at KITP, 2015, https://online.kitp.ucsb.edu/online/joint98/kitaev/.
[3] A. Kitaev, A simple model of quantum holography, talks at KITP, 2015, http://online.kitp.ucsb.edu/online/entangled15/kitaev/ and http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.
[4] S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev. X 5, 041025 (2015).
[5] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016).
[6] J. Maldacena and A. Milekhin, SYK wormhole formation in real time, J. High Energy Phys. 04 (2021) 258.
[7] D. A. Trunin, Pedagogical introduction to the Sachdev–Ye–Kitaev model and two-dimensional dilaton gravity, Phys.-Usp. 64, 219 (2021).
[13] M. Franz and M. Rozali, Mimicking black hole event horizons in atomic and solid-state systems, Nat. Rev. Mater. 3, 491 (2018).

[14] D. Jafferis, A. Zloka, J. D. Lykken, D. K. Kolchmeyer, S. I. Davis, N. Lauk, H. Neven, and M. Spiropulu, Traversable wormhole dynamics on a quantum processor, Nature (London) 612, 51 (2022).

[15] S. Sachdev, Holographic Metals and the Fractionalized Fermi Liquid, Phys. Rev. Lett. 105, 151602 (2010).

[16] X.-Y. Song, C.-M. Jian, and L. Balents, Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models, Phys. Rev. Lett. 119, 216601 (2017).

[17] S. Xu, L. Susskind, Y. Su, and B. Swingle, A sparse model of quantum holography, arXiv:2008.02303.

[18] A. M. García-García, Y. Jia, D. Rosa, and J. J. M. Verbaarschot, Sparse Sachdev-Ye-Kitaev model, quantum chaos and gravity duals, Phys. Rev. D 103, 106002 (2021).

[19] E. Cáceres, A. Misobuchi, and A. Raz, Spectral form factor in sparse SYK models, J. High Energy Phys. 08 (2022) 236.

[20] T. Krajevski, M. Laudonio, R. Pascalie, and A. Tanasa, Non-Gaussian disorder average in the Sachdev-Ye-Kitaev model, Phys. Rev. D 99, 126014 (2019).

[21] The idea to use binary couplings appeared as early as in Ref. [2], though a quantitative comparison between Gaussian and binary couplings has not been made to the best of the present authors’ knowledge.

[22] J. C. Louw and S. Kehrlein, Thermalization of many many-body interacting Sachdev-Ye-Kitaev models, Phys. Rev. B 105, 075117 (2022).

[23] C. Zanoci and B. Swingle, Near-equilibrium approach to transport in complex Sachdev-Ye-Kitaev models, Phys. Rev. B 105, 235131 (2022).

[24] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95, 155131 (2017).

[25] Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, Notes on the complex Sachdev-Ye-Kitaev model, J. High Energy Phys. 02 (2020) 157.

[26] B. French and S. S. M. Wong, Validity of random matrix theories for many-particle systems, Phys. Lett. B 33, 449 (1970); O. Bohigas and J. Flores, Two-body random Hamiltonian and level density, ibid. 34, 261 (1971).

[27] H. Wang, A. L. Chudnovsky, A. Gorsky, and A. Kamenev, Sachdev-Ye-Kitaev superconductivity: Quantum Kuramoto and generalized Richardson models, Phys. Rev. Res. 2, 033025 (2020).

[28] W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B 94, 035135 (2016).

[29] T. Scaffidi and B. Altman, Chaos in a classical limit of the Sachdev-Ye-Kitaev model, Phys. Rev. B 100, 155128 (2019).

[30] D. J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, J. High Energy Phys. 02 (2017) 093.

[31] W. Fu, D. Gaiotto, J. Maldacena, and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95, 026009 (2017); 95, 069904(E) (2017).

[32] T. Li, J. Liu, Y. Xin, and Y. Zhou, Supersymmetric SYK model and random matrix theory, J. High Energy Phys. 06 (2017) 111.

[33] F. Sun and J. Ye, Periodic Table of the Ordinary and Supersymmetric Sachdev-Ye-Kitaev Models, Phys. Rev. Lett. 124, 244101 (2020).

[34] S. J. Gates Jr, Y. Hu, and S.-N. H. Mak, On 1D, $N=4$ supersymmetric SYK-type models. Part I, J. High Energy Phys. 06 (2021) 158.

[35] A. M. García-García, L. Sá, and J. J. M. Verbaarschot, Symmetry Classification and Universality in Non-Hermitian Many-Body Quantum Chaos by the Sachdev-Ye-Kitaev Model, Phys. Rev. X 12, 021040 (2022).

[36] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491.

[37] Y. Jia, D. Rosa, and J. J. M. Verbaarschot, Replica symmetry breaking for the integrable two-site Sachdev-Ye-Kitaev model, J. Math. Phys. 63, 103302 (2022).

[38] M. Berkooz, P. Narayan, M. Rozali, and J. Simón, Higher dimensional generalizations of the SYK model, J. High Energy Phys. 01 (2017) 138.

[39] Y. Gu, X.-L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, J. High Energy Phys. 05 (2017) 125.

[40] W. Wang, A. Davis, G. Pan, Y. Wang, and Z. Y. Meng, Phase diagram of the spin-$\frac{1}{2}$ Yukawa–Sachdev-Ye-Kitaev model: Non-Fermi liquid, insulator, and superconductor, Phys. Rev. B 103, 195108 (2021).

[41] H. Guo, Y. Gu, and S. Sachdev, Transport and chaos in lattice Sachdev-Ye-Kitaev models, Phys. Rev. B 100, 045140 (2019).

[42] I. Esterlis and J. Schmalian, Cooper pairing of incoherent electrons: An electron-phonon version of the Sachdev-Ye-Kitaev model, Phys. Rev. B 100, 115132 (2019).

[43] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.107.L081103 for the basic results regarding the unary-coupling sparse SYK model and the plots of distributions for the unfolded nearest-neighbor level separation and neighboring gap ratio for single realizations of the binary-coupling sparse SYK model for $N = 32$ and 34.

[44] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, Black holes and random matrices, J. High Energy Phys. 05 (2017) 118; 09 (2018) 2(E).

[45] O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Phys. Rev. Lett. 52, 1 (1984).

[46] H. Gharibyan, M. Hanada, S. H. Shenker, and M. Tezuka, Onset of random matrix behavior in scrambling systems, J. High Energy Phys. 07 (2018) 124; 02 (2019) 197(E).

[47] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[48] O. Bohigas, Random matrices and chaotic dynamics, in Chaos et Physique Quantique: Les Houches Session LI (North-Holland, Amsterdam, 1989), p. IPNO/TH 90-84; T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Random-matrix theories in quantum physics: Common concepts, Phys. Rep. 299, 189 (1998); F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2001); J. M. G. Gómez, R. A. Molina, A. Relaño, and
J. Retamosa, Misleading signatures of quantum chaos, Phys. Rev. E 66, 036209 (2002).

[49] D. Stanford (private communication).

[50] I. Buluta and F. Nori, Quantum simulators, Science 326, 108 (2009).

[51] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014).

[52] Z. Luo, Y.-Z. You, J. Li, C.-M. Jian, D. Lu, C. Xu, B. Zeng, and R. Laflamme, Quantum simulation of the non-Fermi-liquid state of Sachdev-Ye-Kitaev model, npj Quantum Inf. 5, 53 (2019).

[53] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler, C. Chin, B. DeMarco, S. E. Economou, M. A. Eriksson, K.-M. C. Fu, M. Greiner, K. R. Hazzard, R. G. Hulet, A. J. Kollár, B. L. Lev, M. D. Lukin, R. Ma, X. Mi, S. Misra, C. Monroe et al., Quantum Simulators: Architectures and Opportunities, PRX Quantum 2, 017003 (2021).

[54] A. R. Brown, H. Gharibyan, S. Leichenauer, H. W. Lin, S. Nezami, G. Salton, L. Susskind, B. Swingle, and M. Walter, Quantum gravity in the lab: Teleportation by size and traversable wormholes, arXiv:1911.06314.

[55] I. Shapoval, V. P. Su, W. de Jong, M. Urbanek, and B. Swingle, Towards quantum gravity in the lab on quantum processors, arXiv:2205.14081.

[56] C. Wei and T. A. Sedrakyan, Optical lattice platform for the Sachdev-Ye-Kitaev model, Phys. Rev. A 103, 013323 (2021).

[57] M. Tezuka, O. Oktay, E. Rinaldi, M. Hanada, and F. Nori, Dataset for “Binary-coupling sparse Sachdev-Ye-Kitaev model: an improved model of quantum chaos and holography”, doi: 10.5281/zenodo.7514850 (2023).