Abstract

Electric power generation from renewable energy sources such as solar energy, wind energy and geothermal energy is an alternative option to energy generation from fossil fuels. Renewable energy sources are more advantageous when we consider the environmental damage caused by fossil fuels during energy generation. Our country is rich in terms of renewable energy resources with its location. When we consider the daily sunshine duration and the wind force in the flat plains, the number of power plants that generate electrical energy without harming the environment with solar panels and wind turbines is increasing day by day. In this study, as a result of field observations of a power plant that converts solar energy into electrical energy with solar panels in Çorum by instructors who have class B OHS certificate and field experience, the risk score was calculated by determining the hazards and risks by 5x5 L-type Matrix Risk analysis which is a qualitative risk assessment. According to the calculated risk score, twenty-four risks which include four high level risks, fifteen medium-level risks, and five low-level risks were identified and recommendations were made. We think that this study will make a positive contribution to the power plants to be established and to the actively ongoing plants in terms of occupational health and safety.

Keywords: Solar energy, Occupational health and safety, Risk analysis, Matrix Method

Güneş Enerjisi Santralinde Matris Risk Analiz Yöntemiyile Tehlike ve Risklerin Belirlenmesi

Öz

Güneş enerjisi, rüzgâr enerjisi ve jeotermal enerji gibi yenilenebilir enerji kaynaklarından elektrik enerjisi üretimi fosil yakıtlardan enerji üretimine alternatif seçeneğ olmaktadır. Fosil yakıtların enerji üretimi sırasında çevreye verdiği zararları dikkate alındığında yenilenebilir enerji kaynakları daha avantajlidir. Ülkeümüz sahip olduğu konum ile yenilenebilir enerji kaynakları bakımından zengindir. Güneş eylemlerine göre ve düzlük ovalardaki rüzgâr şiddetini dikkate alındığında güneş panelleri ve rüzgâr gülleri ile çevreye zarar vermeden elektrik enerjisi üreten santrallerin her geçen gün sayısı artmaktadır. Bu çalışmada, B sınıfı ISG belgesine sahip, saha tecrübesi olan öğretim elemanlarıyla birlikte Çorum ilinde güneş santrallerinde güneş enerjisi elektrik enerjisine çevrilen bir santralin saha gözlemlemeleri sonucu, tehlike ve riskler kalıplı bir risk değerlendirme modeli 5x5 L tipi Matris Risk analizi ile belirlenerek risk skoru hesaplanmıştır. Hesaplanan risk skoruna göre dört tane yüksek düzeyde risk, beş tane orta düzeyde risk ve beş tane düşük düzeyde risk olmak üzere ikiye ayrıldı. Dört tane risk tespit edildikten sonra öneriler bulunmamıştır. Bu çalışma ile bundan sonraki kurulacak santrallere ve aktif olarak devam eden santrallere iş sağlığı ve güvenliği yönünden olumlu katkı sağlayacağını düşündükuz.
1. Introduction

Solar energy is one of the world's renewable energy sources, alternative to fossil fuels and not harming nature in terms of waste. The occurrence of formations in nature, the flow of matter and energy are due to solar energy [1, 2]. Due to the location of our country, solar energy potential is high. Therefore, energy generation plants consisting of solar panels have been established in many of our provinces to generate electrical energy from solar energy [3].

It is very important to examine the hazards and risks caused by dangerous movement and situations in terms of occupational health and safety by using the heat and light effect of the Sun instead of manpower in solar energy plants where there are very little human factors. It may be possible to prevent work accidents and occupational diseases as a result of identifying the existing hazards and risks with proactive approaches. Hazard is defined as the potential for harm of anything. This potential could be a situation or a behavior. Risk, on the other hand, refers to the probability of events such as death, injury, and loss of limb that may occur as a result of an event [4, 5].

The aim of occupational health and safety services is to adopt proactive approaches against work accidents and occupational diseases by providing a healthy and safe work environment for employees. Preventing work accidents and occupational diseases is possible with regulatory preventive measures by identifying hazards and risks as a result of risk assessment in workplaces [6].

According to the Occupational Health and Safety Law No.6331, employer / employer representatives are obliged to make a risk assessment or have them done in order to ensure the health and safety of their employees and the continuity of production in the workplace. With risk assessment, it will be possible to prevent work accidents and occupational diseases, and if they cannot be prevented, to reduce their rate [5, 7].

![Fig. Risk Assessment Process Stages](image_url)

During the identification of hazards and risks of a business, risk assessment is divided into two in terms of quality and quantity [8]. In the risk assessment application, a change is observed from qualitative approaches to semi-quantitative and traditional quantitative approaches [9]. According to Altenbach (1995), there are differences in the way of implementing risk assessment due to various reasons such as manpower, time, management perception, opinion of the OHS expert, applicability and understandability [10].

In the literature, risk analysis methods are divided into three groups as numerical (quantitative), verbal (qualitative) and mixed. Mathematical theorems are used when calculating the risk score with quantitative risk analysis, while performing qualitative risk analysis, the probability of occurrence of the threat and its potential effect in case of existence are calculated and the results obtained are processed with mathematical and logical methods and the risk score and degree are obtained [11]. Some of the risk analysis methods in the literature are classified as follows by dividing them into two groups as qualitatively and quantitatively [12].

Qualitative Risk Assessment Analysis;

- Preliminary Hazard Analysis – PHA
- Job Safety Analysis – JSA
- What if?
- Risk Assessment Decision Matrix
- Failure Mode and Effects Analysis - FMEA
- Hazard and Operability Studies - HAZOP
- Fault Tree Analysis - FTA
- Event Tree Analysis - ETA
- Hazard Analysis and Critical Control Points
- Preliminary Risk Analysis - PRA
- Preliminary Risk Analysis Using Checklists - PRA
- Safety Audit

Quantitative Risk Assessment Analysis;

- Monte Carlo Simulation
- Markov Analysis,
- Bayesian Networks,
- Decision Tree,

Occupational health and safety experts in our country use qualitative 5x5 Matrix and Finney-Kinney Risk analysis in identifying hazards and risks, calculating the risk score and categorizing the results, creating regulatory and preventive action plans [14].

1.1.1. Matris Risk Analysis

Although the matrix risk analysis X-Matrix is shown in 5x5 Matrix and L-Matrix shapes, it is the same in logic. It occurs only when the difference is calculated with 5x5 and the results are shown different in shape [13-14]. Matrix risk analysis is a method used to explain the relationship between two or more variables. It is an easier method in terms of being understandable and evaluating the results by the risk assessment team [15].

1.1.2. L-Type Matris Risk Analysis

It is a simple understandable method used in interpreting cause and effect relationship [16]. L matrix is implemented as 3 * 3, 4 * 4, 5 * 5. It is a method based on evaluating the data obtained as a result of multiplying probability and severity each other which are the concrete components of risk analysis, within a logical framework. In this method, probability and severity factors are taken into account while the risk score is calculated.
It is calculated as Risk Value (R) = Probability = (P) X Severity (degree of damage).

Probability, the state that a danger occurs in a timeframe; violence, on the other hand, is defined as the degree of damage to the workplace if danger occurs [15-18].

Table 1. L-Type Matrix Analysis Probability Table

Value	Categorization	Frequency
1	Very low	Once a year
2	Low	Every three months
3	Medium	Once a month
4	High	Once a week
5	Very high	Everyday

Table 2. L-Type Matrix Analysis Loss Level Table

Value	Result	Rating
1	Insignificant	No loss of working hour requiring first-aid
2	Minor	No loss of working day, requiring first-aid
3	Moderate	Mild injury requires treatment
4	Major	Death, Serious injury, occupational disease
5	Catastrophic	Multiple deaths, permanent incapacity

1.1.3. X Type Matrix Risk Analysis

It is a risk analysis that requires a disciplined work done as a team with the establishment of a risk team. L type matrix and X type matrix risk analysis are similar. There is only a difference in shape. The most preferred in practice is 5x5 Risk Matrix Analysis. The risk score is the same in both methods, but the order and shape are different from each other.

Tablo 4. A Sample Risk Assessment Analysis

Risk no	Sample photos	Activity / Risk area / department	Work done / hazard / risk	Impact / Result	Before the measure is taken	Measure to be taken	Contact person	Deadline	Result	Signature	After the measure is taken
1	FIRE EXTINGUISHERS	Lack of fire extinguisher	Aggravation of the situation	4 5	20	COMPANY	IMMEDIATELY	1 5 5	5	5	
1.2. Fine Kinney Risk Analysis

It is one of the risk analysis methods used in occupational health and safety. Although it is a bit more complicated than the matrix risk analysis, it is a more ordered risk analysis in terms of separating the business lines from each other by frequency factor. It was first put forward by Fine in 1971, and then, in 1976, Fine's proposal was developed by Kinney and Wiruth and became a risk analysis method [19]. It was first used to protect against explosives in the military field, and then became the most preferred risk analysis method in dangerous and very dangerous enterprises such as construction and mining when it began to be used in the OHS profession,[19-20].

Although Fine Kinney Risk Analysis is more complex than Matrix risk analysis, it has higher accuracy and frequency factor. In this analysis method, the risk score is obtained by multiplying three variables, namely probability (P), severity (S) and frequency (F).

\[\text{RISK} = \text{P} \times \text{S} \times \text{F} \]

Table 5. Risk Score Calculation Table

R: Size of the Risk	P: Possibility of Hazard Occurrence	S: Potential Violent Damage of the Hazard	F: Frequency of repetition of work
RISK = P \times S \times F	P	S	F

Table 6. Probability Value Chart

Probability	Definition	%	Probability
10	Expected / Certain	50	50
6	High / Quite Possible	10	10
3	Possible	1	1
1	Rarely but Possible	10-3	10-3
0.5	Unexpected but Possible	10-4	10-4
0.2	Practically Not Possible	10-5	10-5
0.1	Only Theoretically Possible	10-6	10-6

Table 7. Severity value definition table

S Value	Severity – Scoring The Damage / Element (V) (Estimated damage to human and / or environment)
	Definition
	Loss of work
100	Multiple fatal accidents environmental disaster
40	Fatal accident / Serious environmental damage
15	Permanent damage / injury, loss of work
7	Creating environmental barriers, significant damage / injury from the immediate environment, getting external first aid
3	Minor damage, injury, internal first aid, limited environmental damage on land
1	Escape with little or no harm / no environmental damage
	Material loss
	> 10.000.000
	1.000.000 – 10.000.000
	100.000 – 1.000.000
	10.000 – 100.000
	1.000 – 10.000
	100 – 1.000

Table 8. Frequency value definition table

F Value	Definition
10	Almost continuously (several times in an hour)
6	Frequently (once or several times a day)
3	Occasionally (once or several times a week)
2	Not often (once or several times a month)
1	Rarely (several times a year)
0.5	Hardly ever (once a year or less)

Table 9. Risk Score Definition Table
2. Material And Method

This study was made as a result of the field observations of OHS experts who have Class B occupational safety certificates in the profession of occupational health and safety of a power plant consisting of solar panels where manpower is not used. It is a study that consists of calculating the risk scores of the hazards and risks identified as a result of the observations using the 5x5 Matrix qualitative risk analysis method and recommending regulatory preventive actions. Calculation method for 5x5 Matrix Risk score analysis is as follows.

Risk Rating	R Value	Risk Class	What to Do
1	R \leq 20	Minor risk	Precaution is not a priority
2	20 < R \leq 70	Acceptable risk	Should be applied under observation
3	70 < R \leq 200	Moderate risk	Should be improved in the long term
4	200 < R \leq 400	Significant risk	Should be improved in the short term (within a few months)
5	R > 400	Unacceptable risk	Necessary precautions should be taken immediately or the facility, building, production or its surroundings should be closed.

Tablo 10. Risk Score Calculation Table
Risk Factor Calculation System: The one with a higher risk parameter will be taken.

Probability (Exposure-Incident frequency)	Severity (Possible Losses)				
Parameter	Probability	Occurrence Frequency	Parameter	Severity	Rating (For Human)
-----------	-------------	----------------------	-----------	----------	-------------------
1	Very low	Once a year	1	Negligible	Absent
2	Low	Once every three months	2	Minor	First-aid required
3	Medium	Once a months	3	Moderate	Loss of labour force <3 Days
4	High	Once a week	4	Severe	Death, Loss of limb
5	Very high	Every day	5	Critical	Multiple deaths
Risk Score = Probability X Severity

In the light of the above data, the hazards and risks identified in the solar power plant, the regulatory and preventive actions to be taken and the risk score that can be reduced as a result of the actions are as follows. There are no part-time or full-time employees in this solar power plant. Only technical personnel coming from outside can enter the power plant. The system is remotely controlled.
No	Department	Action	Hazard	Risk	Who may be affected by the risk	Probability	Severity	Risk score	Risk definition	Measures to be taken	
1	WORKING AREA (GENERAL)	Emergencies	Fire extinguishers are not in suitable places, have obstacles in front of them, fire extinguishers are not indicated with signs, expiration dates of fire extinguisher loss of functionality	HIGH-LEVEL RISK	ALL EMPLOYEES, MATERIAL LOSSES IN THE BUSINESS	3	5	15	HIGH-LEVEL RISK	Fire extinguishers will be placed in visible and accessible places in the workplace and there will be no obstacles in front of them. It is required to have a suitable type of 6 kg fire extinguisher by adding one in number for each independent section and one in number for 200 m² floor space. The locations where the fire extinguishers are located will be marked in accordance with the Safety and Health Signs Regulations. It should be ensured that fire-fighting signs are rectangular or square; while pictogram-red parts on red background cover at least 50% of the area of the sign. The functionality and expiration dates of fire-fighting equipment should be constantly checked. Periodic control and maintenance of fire extinguishers should be continuously implemented.	
										Contact person	
									Deadline		
2	WORKING AREA (GENERAL)	Maintenance - Repair	Maintenance and repair done by unauthorized and uninformed persons	HIGH-LEVEL RISK	ALL EMPLOYEES	2	5	10	MEDIUM LEVEL RISK	Maintenance and repair done by unauthorized and uninformed persons. Attention should be increased with warning signs and unauthorized persons should be prevented from entering the maintenance section. Panels and transformers should be kept locked and surrounded to prevent unauthorized people from approaching.	
									Contact person		
									Deadline		
3	WORKING AREA (GENERAL)	Maintenance - Repair	Electric shocks, fire, injury, death	HIGH-LEVEL RISK	ALL EMPLOYEES	3	5	15	HIGH-LEVEL RISK	In case of emergencies, as a result of delay fire fighting injury, death, damage to machinery-equipment-materials	
									Contact person		
									Deadline		
4	WORKING AREA (GENERAL)	Maintenance - Repair	Maintenance and repair done by unauthorized and uninformed persons	MEDIUM LEVEL RISK	ALL EMPLOYEES	4	5	20	MEDIUM LEVEL RISK	Maintenance and repair done by unauthorized and uninformed persons. Attention should be increased with warning signs and unauthorized persons should be prevented from entering the maintenance section. Panels and transformers should be kept locked and surrounded to prevent unauthorized people from approaching.	
									Contact person		
									Deadline		
No.	Department	Action	Hazard	Risk	Probability	Severity	Risk definition	Measures to be taken	Contact person	Deadline	Explanation / situation
-----	------------	--------	--------	------	-------------	----------	----------------	---------------------	----------------	----------	-------------------------
3	WORKING AREA (GENERAL)	Electric transmission cables and connection points	Wearing off cables and loosening of their connections	Lift of personnel/vehicles in the facility	2	5	MEDIUM-LEVEL RISK	The strength of the connection points of the electrical cables should be checked continuously. Deformed cables and fasteners should never be used and should be replaced as soon as possible. Electrical installation checks should be carried out periodically.	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	In a month at the latest	
4	WORKING AREA (GENERAL)	Underground Cables	Injury, loss of limb, death	ALL EMPLOYEES, MATERIAL LOSSES IN THE BUSINESS	3	3	MEDIUM-LEVEL RISK	The locations of the AC cables going underground should be located and prevented harm in uncontrolled excavations. The AC cables from the inverters to the transformer center go under the inverter house vehicle road. However, the place where the line crosses is not marked. In addition, it is recommended to use remarkable materials such as sand around the cables.	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	In a month at the latest	
5	WORKING AREA (GENERAL)	Entering the facility	Lack of personal protectors	ALL EMPLOYEES	2	5	MEDIUM-LEVEL RISK	In order to ensure the safety of visitors during the visit of the work environments, visitors should be given personal protective equipment and these protectors should not be removed during the visit. People who have not taken security measures by the security unit should be warned and taken out. Visitors should be ensured to reach the interview area safely within the framework of precautions. Visitors are not given personal protective equipment. Visitors should be given the necessary personal protective equipment to be used during the field visit.	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	In a month at the latest	

Explanation / situation

The strength of the connection points of the electrical cables should be checked continuously. Deformed cables and fasteners should never be used and should be replaced as soon as possible. Electrical installation checks should be carried out periodically.
No	Department	Action	Hazard	Who may be affected by the risk	Probability	Severity	Risk score	Risk definition	Measures to be taken	Contact person	Deadline	Explanation, situation
1	WORKING AREA (GENERAL)	Electricity	Non-control of grounding	ALL EMPLOYEES	HIGH LEVEL RISK	Electric shock, fire, injury, death	Risk assessment after measures	There should be an insulating mat in front of the panels and transformers.	Fire sensing detectors (heat and smoke sensitive detectors) and the siren system must be placed in the entire work area at certain intervals.	EMPLOYER / REPRESENTATIVE	In a month at the latest	Foreign materials should not be put in the panel cabinets and pollutions such as spider web should be cleaned.
2	WORKING AREA (GENERAL)	Electricity	Lack of fire detection and	ALL EMPLOYEES, MATERIAL LOSSES IN THE BUSINESS	MEDIUM-LEVEL RISK	Electric shock, fire, injury, death	Risk assessment after measures	There is no insulating mat in front of the business panels. By providing mats with suitable properties, panels and transformers should be accessed by stepping on the mat.	There should be an insulating mat in front of the panels and transformers.	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	In a month at the latest	There are groundings in panel, transformers and lightning rods throughout the enterprise. Conformity checks are done with annual periods.
3	WORKING AREA (GENERAL)	Electricity	Being late in the intervention	ALL EMPLOYEES	MEDIUM-LEVEL RISK	Electric shock, fire, injury, death	Risk assessment after measures	There is no insulating mat in front of the business panels. By providing mats with suitable properties, panels and transformers should be accessed by stepping on the mat.	There should be an insulating mat in front of the panels and transformers.	EMPLOYER / REPRESENTATIVE	In a month at the latest	It is thought that it would be beneficial to establish a system that sends a warning to the fire sensing detector and remote control system in order to notice and interfere in the fire early.

Note:
- **No:** Sequential number.
- **Department:** Work area.
- **Action:** Safety requirement.
- **Hazard:** Potential safety risk.
- **Who may be affected by the risk:** Employees and materials.
- **Probability:** Level of probability.
- **Severity:** Degree of severity.
- **Risk score:** Calculated risk score.
- **Risk definition:** Risk level classification.
- **Measures to be taken:** Actions to mitigate the risk.
- **Contact person:** Responsible person.
- **Deadline:** Timeframe for action.
- **Explanation, situation:** Further details or context related to the risk.
| No. | Department | Action | Hazard | Risk | Unauthorized persons entering and leaving the transformer station\nInjury, loss of limb, death | ALL EMPLOYEES, THIRD PARTIES, CONTRACTOR COMPANIES |
|-----|------------|--------|--------|------|---|
| 1 | WORKING AREA (GENERAL) | Panel Cleaning | Not using pure water | Electric shock, fire | Exposure to accidents of third parties and employees, injury, loss of limb, death | ALL EMPLOYEES, MATERIAL LOSSES IN THE BUSINESS |
| 2 | WORKING AREA (GENERAL) | Entering the facility | Not determining the operating area, Invasion of third parties | Injuries, loss of limb, death | High-level risk | ALL EMPLOYEES, MATERIAL LOSSES IN THE BUSINESS |
| 3 | TRANSFORMER SECTION | Battery Room | Fire, explosion, deflagration | Injuries, loss of limb, death | High-level risk | ALL EMPLOYEES, THIRD PARTIES, CONTRACTOR COMPANIES |
| 4 | TRANSFORMER SECTION | Transformer section | Unauthorized persons entering and leaving the transformer station | Injury, loss of limb, death | High-level risk | ALL EMPLOYEES, THIRD PARTIES, CONTRACTOR COMPANIES |

Risk Assessment

No.	Department	Action	Hazard	Risk	Who may be affected by the risk	Probability	Severity	Risk score	Risk definition
1	WORKING AREA (GENERAL)	Panel Cleaning	Not using pure water	Electric shock, fire	ALL EMPLOYEES, MATERIAL LOSSES IN THE BUSINESS	Medium-level risk	Medium-level risk	Low risk	Measures to be taken: It is recommended to use pure water for cleaning the panels.
2	WORKING AREA (GENERAL)	Entering the facility	Not determining the operating area, Invasion of third parties	Injuries, loss of limb, death	High-level risk	High-level risk	High-level risk	Measures to be taken: The Visitor Security instruction must be applied. The purpose of this instruction should be to determine the Occupational Health and Safety issues to be applied in the parts where dangerous works are performed in the workplace and to ensure that the works are done according to these provisions. In order to prevent intrusions into the business, the business is surrounded by a wire fence and its door is kept locked. It is also monitored by business security cameras.	
3	TRANSFORMER SECTION	Battery Room	Fire, explosion, deflagration	Injuries, loss of limb, death	High-level risk	High-level risk	High-level risk	Measures to be taken: Use of ex-proof (flame-proof) installation material. Having outward-opening doors and windows, switches, sockets and fuses are outside. Providing suitable ventilation. Not using a discharge panel in the battery room. Fixing the battery groups against earthquakes and shakes. Ensuring the use of appropriate PPE.	
4	TRANSFORMER SECTION	Transformer section	Unauthorized persons entering and leaving the transformer station	Injury, loss of limb, death	High-level risk	High-level risk	High-level risk	Measures to be taken: People who do not have the qualifications specified in Article 60 of the EKAT regulation will not be allowed into the transformer section. Visitors can enter after getting permission from the authorities and signing the relevant forms and in accordance with the regulations.	

Explanation / Situation

- Panels get dirty over time and their efficiency decreases. Therefore, they must be cleaned at regular intervals. In the case of using conductive mains water during cleaning, being cracks in the panels or cables, a chassis may cause fire and / or electric shock. It is recommended to use insulating pure water during cleaning.

- At the entrance of the business, there is a sign that "no one can enter but the authority". The business is surrounded by a wire fence. It is monitored by security cameras. Safety instructions should be created for visitors.

- It is made in accordance with the standards. Doors open to outside. There is a ventilation. There is also a ventilation fan that works when the temperature rises above 23 degrees.

Contact person

- Employer / Representative of the Employer

Deadline

- It must be kept under control continuously.
WORKING AREA (GENERAL)

Panel and Transformers

Intra-business divisions are not specified, and no authorization is given for entrances to departments.

Work accident

ALL EMPLOYEES

No	Department	Action	Hazard	Risk	Value may be affected by the risk	Probability	Severity	Risk score	Risk definition	Measures to be taken	Risk assessment after measures
12	Electric transmission cables and connection points	Loose connections and sockets	Shock, fire	Medium	Low	2	4	8	Low Risk	MUST BE KEPT UNDER CONTROL CONTINUOUSLY	LOW RISK
13	Electric transmission cables and connection points	Loose connections and sockets	Shock, fire	Medium	Low	2	4	8	Low Risk	MUST BE KEPT UNDER CONTROL CONTINUOUSLY	LOW RISK
14	Electric transmission cables and connection points	Loose connections and sockets	Shock, fire	Medium	Low	2	4	8	Low Risk	MUST BE KEPT UNDER CONTROL CONTINUOUSLY	LOW RISK
15	Electric transmission cables and connection points	Loose connections and sockets	Shock, fire	Medium	Low	2	4	8	Low Risk	MUST BE KEPT UNDER CONTROL CONTINUOUSLY	LOW RISK

Routine Work

Personnel getting higher in the work area

No	Department	Action	Hazard	Risk	Value may be affected by the risk	Probability	Severity	Risk score	Risk definition	Measures to be taken	Risk assessment after measures
16	Routine Work	Falling, injury	All employees	Medium	Low	2	4	8	Low Risk	MUST BE KEPT UNDER CONTROL CONTINUOUSLY	LOW RISK

Low Risk

No Department

- **Risk assessment after measures**
 - **Explanation / situation**
 - **Probability**
 - **Severity**
 - **Risk score**
 - **Risk definition**

MEDIUM LEVEL RISK

No Department

- **Risk assessment after measures**
 - **Explanation / situation**
 - **Probability**
 - **Severity**
 - **Risk score**
 - **Risk definition**

LOW RISK

No Department

- **Risk assessment after measures**
 - **Explanation / situation**
 - **Probability**
 - **Severity**
 - **Risk score**
 - **Risk definition**
WORKING AREA (GENERAL)

Department	Action	Hazard	Risk	Risk definition	Measures to be taken	Contact person	Deadline	Explanation/ situation	
ELECTRICAL PANELS	ELECTRICAL PANELS	ELECTRICITY	ELECTRIC SHOCK, WORK ACCIDENT, INJURY	ALL EMPLOYEES	2 5 10	MEDIUM-LEVEL RISK	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	It must be kept under control continuously	To prevent fires that may be caused by switch burns that frequently occur in the facility, studies have been started to monitor the system with a thermal camera.
ELECTRICAL PANELS	ELECTRICAL PANELS	ELECTRICITY	ELECTRIC SHOCK, WORK ACCIDENT, INJURY	ALL EMPLOYEES	2 5 10	MEDIUM-LEVEL RISK	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	It must be kept under control continuously	The suitable warning signs are posted in the necessary places in the business. People who do not have the necessary personal protective equipment are prevented from interfering with the electricity generation equipment of the enterprise.
ELECTRICAL PANELS	ELECTRICAL PANELS	ELECTRICITY	ELECTRIC SHOCK, WORK ACCIDENT, INJURY	ALL EMPLOYEES	2 5 10	MEDIUM-LEVEL RISK	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	It must be kept under control continuously	As some points in the business, modern machines and equipment used, which have risk on them, are used. Those machines and equipment present risk in their own service.
ELECTRICAL PANELS	ELECTRICAL PANELS	ELECTRICITY	ELECTRIC SHOCK, WORK ACCIDENT, INJURY	ALL EMPLOYEES	2 5 10	MEDIUM-LEVEL RISK	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	It must be kept under control continuously	The suitable warning signs are posted in the necessary places in the business. People who do not have the necessary personal protective equipment are prevented from interfering with the electricity generation equipment of the enterprise.
ELECTRICAL PANELS	ELECTRICAL PANELS	ELECTRICITY	ELECTRIC SHOCK, WORK ACCIDENT, INJURY	ALL EMPLOYEES	2 5 10	MEDIUM-LEVEL RISK	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	It must be kept under control continuously	To prevent fires that may be caused by switch burns that frequently occur in the facility, studies have been started to monitor the system with a thermal camera.
ELECTRICAL PANELS	ELECTRICAL PANELS	ELECTRICITY	ELECTRIC SHOCK, WORK ACCIDENT, INJURY	ALL EMPLOYEES	2 5 10	MEDIUM-LEVEL RISK	EMPLOYER / REPRESENTATIVE OF THE EMPLOYER	It must be kept under control continuously	The suitable warning signs are posted in the necessary places in the business. People who do not have the necessary personal protective equipment are prevented from interfering with the electricity generation equipment of the enterprise.
Working Area (General)

Pest Control

- **Hazard:** Contagious disease, biological risk, damage by gnawing on electrical cables due to lack of hygiene
- **All Employees**

Low Risk

- All kinds of measures will be taken to prevent pests, insects and gnawing animals in the workplace.
- All kinds of measures will be taken to destroy, insecticides and rodenticides required for their destruction will be used, the conditions that facilitate reproduction will be destroyed.
- Since it is in the business area, it should be also disinfected against the Crimean Congo hemorrhagic fever disease caused by ticks. Ticks should be prevented from gnawing on the cables.

No precaution has been taken for ticks and rodents in the business. Nests of rodents were seen in the business. It is recommended to struggle with rodents against the risk of these rodents entering transformers, panels and cutting cables. It is recommended to pass the cables through the laryngeal tube.

General Work

- **Hazard:** Lack of road allocated for safe walking in the work area
- **All Employees**

Low Risk

- A road should be allocated for safe walking in the work area.
- EMPLOYER/REPRESENTATIVE OF EMPLOYER

The roads used to access the boards and panels within the enterprise are covered with soil and grass. Suitable walking paths are recommended for access to these points.

Weather Conditions

- **Hazard:** Climatic and weather conditions
- **All Employees, Material losses in the business**

Low Risk

- The place where the business is established should be evaluated in terms of the frequency of weather conditions such as storms, wind and hail.
- EMPLOYER/REPRESENTATIVE OF EMPLOYER

The area where the business is located has been evaluated and selected in terms of exposure to the storm. In addition, the fixings made throughout the enterprise should be constantly checked to prevent damage in case of a storm. In case of hail in the area where the business is located, the panels should be checked and they should be replaced in case of damaged.

No precaution has been taken for ticks and rodents in the business. Nests of rodents were seen in the business. It is recommended to struggle with rodents against the risk of these rodents entering transformers, panels and cutting cables. It is recommended to pass the cables through the laryngeal tube.

No	Department	Action	Hazard	Risk	Who may be affected by the risk	Probability	Severity	Risk definition	Risk value	Measures to be taken	Risk assessment after measures
22	Working Area (General)	Pest Control	Pest, insect, gnawing animals, tick	Risk	All Employees	2	3	6	LOW RISK		
23	Working Area (General)	General Work	Lack of road allocated for safe walking in the work area	Risk	All Employees	2	3	6	LOW RISK		
24	Working Area (General)	Weather Conditions	Climatic and weather conditions	Risk	All Employees, Material losses in the business	2	3	6	LOW RISK		
3. Results And Discussion

Due to its location, Turkey has high potential in terms of solar energy. Our country has an average of 7.5 hours of sunshine per day [21]. In the works done during the conversion of solar energy into electrical energy through energy panels, fixed electrical circuits and panels are used rather than manpower. There are no insured and full time employees. However, during the control of the system, the occupational safety of the technical staff who come to the power plant during outsourcing should be ensured in order to install new technological circuits and solve various problems caused by the environment.

Various hazards and risks are at stake during the installation of panels based on energy generation in the solar power plant, doing periodic controls and the installation of new panels by technical staff. These hazards and risks can be evaluated with a 5x5 L type Matrix risk analysis and work accidents and occupational diseases can be prevented by taking the necessary measures. The aim of occupational health and safety practices is to provide employees with a healthy and safe working environment by showing the necessary proactive approaches to work accidents and occupational diseases.

As a result of the 5x5 L type Matrix risk analysis, high-level risks were shown as yellow, medium-level risks as yellow, and low-level risks as green. The probability score was calculated for the identified risks and the regulatory and preventive action was specified. Hazards such as the lack of location, number and control of fire tubes, unauthorized and uniformed persons coming to the power plant for technical support, not taking measures against the possibility of fire and explosion in the battery room, and lack of grounding installation that should be done once a year at the latest or not being checked constitute high-level risks. Regulatory measures should be taken in a short time.

Risks arising from dangerous movements and situations such as not showing the passage route of the cables in the ground inside the facility, the entrance of people from outside the power plant to the power plant, loosening, abrasion and breakage of the electrical transmission cables and connections, the transformer cabinets are not in compliance with hygiene rules, the lack of insulating mats in front of the panels, the lack of fire detection and siren system in emergency situations or not working, not using pure water during cleaning of solar panels, not taking the necessary measures when working at height in the power plant, the lack of emergency stop buttons and lightning rod are included in the medium-level risk group. Regulatory and preventive actions should be taken in the medium term to control these risks and prevent their harm.

Failure to store waste in the work area, to pest control and spraying, lack of a suitable walking corridor for employees and visitors in the work area, sunstroke in summer due to weather conditions, and lack of suitable place in case of cold and freezing in winter, damage caused by metal burrs in and around panel poles are defined as a low-level risk. Necessary measures should be taken in the long term.

Although the degree of risks identified may vary according to the prediction and interpretation of the observing occupational health and safety expert, the risk level remains the same. The necessary measures should be taken for identified risks and should be followed regularly. The risks identified in solar power plants are also close to each other in other solar and wind power plants. They are plants with low human factors. The risk analysis performed is a qualitative risk analysis. The response of the data obtained is expressed verbally as low, medium and high levels. In our country, occupational health and safety experts working actively in the field have difficulties in applying and interpreting Fine Kinney, which is not a quantitative analysis but a qualitative analysis. Therefore, 5x5 Matrix risk analysis is used to identify hazards and risks in the profession of occupational health and safety.

A study was done by Dündar and Ethem (2016) on the issues related to the measures to be taken in terms of occupational health and safety during the installation and field phase of solar power plants [22,24]. Çelik and Utku (2013) contributed to the literature on OHS in energy studies by working on the examination of possible situations to be experienced during the installation phase of the wind power plant in terms of occupational health and safety [23].

4. Acknowledge

I would like to thank Ahmet AKTAŞ, the owner of the solar power plant, and Asist.Prof.Dr. Berna GÜR and lecturer Ahmet Doğan ÇAKIR, who supported the preparation of the article.
References

Külekı, Ö. C. (2009). Yenilenebilir enerji kaynakları arasında jeotermal enerjinin yeri ve Türkiye açısından önemi. Ankara Üniversitesi Çevre Bilimleri Dergisi, 1(2), 83-91.

Varınca, K. B., ve Gönülü, M. T. (2006). Türkiye’de güneş enerjisi potansiyeli ve bu potansiyelin kullanım derecesi, yöntemi ve yaygınlığı üzerine bir araştırma. I. Ulusal Güneş ve HidrojenEnerjisi Kongresi, 270-275.

Varınca, K. B., ve Varank, G. (2005). Güneş kaynaklı farklı enerji üretime ve yaygınlaştırılması ve çözüm önerileri. Güneş Enerjisi Sistemleri Sempozyumu ve Sergisi, İçel, 24-25.

Samantra, C., Datta, S., Mahapatra, S.S., (2017). Analysis of occupational health hazards and associated risks in fuzzy environment: a case research in an Indian underground coal mine. Int. J. Inj. Contr. Saf. Promot. 24 (3), 311-327.

Gül, M., Ak, M. F.,(2018). A comparative outline for quantifying risk ratings in occupational health and safety risk assessment. Journal of Cleaner Production 196, 653-664.

Yavuz, Ş., Gür, B., Yavuz, A. (2020). İşnalat işlerinde çalışanlarda iş sağlığı ve güvenliği alıg düzeyinin incelenmesi, Journal of Social and Cultural Sciences Research, 7(59), 2618-2627.

Samantra, C., Datta, S., Mahapatra, S.S., (2017). Analysis of occupational health hazards and associated risks in fuzzy environment: a case research in an Indian underground coal mine. Int. J. Inj. Contr. Saf. Promot. 24 (3), 311-327.

Ilbahar, E., Karas, an, A., Cebi, S., Kahraman, C., (2018). A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf. Sci. 103, 124-136.

Elmonstri, M.(2014). Review of the strengths and weaknesses of risk matrices, Journal of Risk Analysis and Crisis Response, Vol. 4, No. 1, 49-57.

Altenbach, T (1995). “A comparison of risk assessment Techniques from qualitative to quantitative”, proceedings of the joint ASME/JSME pressure vessels and piping conference, Honolulu HI.

Ekşioglu, M. (2014). Türkiye’de iş sağlığı ve güvenliğinin genel durumu, öneriler ve sistem yaklaşımları. Ge-li-yo-rum Diyen Facia – Boğaziçi Üniversitesi Soma Araştırmalar Grubu Raporu, 167-181.

International Organization for Standardization. (2009). ISO 31000:2009 Risk Management – Principles and Guidelines on Implementation.

Tixier J., Dusserre G., Salvo O., Gaston D., (2002). Review of 62 Risk Analysis Methodologies of Industrial Plants, Journal of Loss Prevention in the Process Industries, 15(4), 291-303.

Şenol, M. Yılmaz, N. (2017). İş Sağlığı Ve Güvenliği Risk Değerlendirmeye Süreci İçin Bul愍 Çok Kriterli Bir Model Ve Uygulaması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32 (1), 0-0 . DOI: 10.17341/gazimmfd.30059

Ölçüçü, H, Ersöz Kaya, İ. (2019). Tehlikeli Atık Bertaraf Tesislerinde Meslek Hastalığı ve Biyolojik Faktörler Açısından Risk Değerlendirmesi. Avrupa Bilim ve Teknoloji Dergisi , (17), 1375-1382. DOI: 10.31590/ejosat.668653

Erten, B, Utlu, Z. (2017). İlaç lojistik sektöründe risk analizi yapılarak 5x5 Matris, Fine Kinney ve FMEA yöntemleri ile risk değerlendirmelerinin karşılaştırılması: bir firma örneği. Anadolu Bil Meslek Yüksekokulu Dergisi, 12 (48), 1-14. Retrieved from https://dergipark.org.tr/tr/pub/abmyoder/issue/55975/7 67522

Ayetkin, O., Kaya, M. Ü., Kuşan, H. (2015) Yapı İşlerinde Proje Tipi Çalışma Verilerine Uygun ISG Risk Değerlendirmeye Yönteminin Seçimi İçin Öneriler. TMMOB İnşaat Mühendisleri Odasi Bildiriler Kitabı. 127-136

Usanmaz, D, Köse, E. (2019). Karşılaştırmalı Risk Analizi Metotlarının Bir Araştırması Mekzeşi Uygulanması ve Sonuçların Değerlendirilmesi, 2. International Mediterranean Symposium, 1, 140-158, Mersin, Türkiye.

Birgören, B. (2017) Fine Kinney Risk Analizi Yönteminde Risk Analizi Yönteminde Risk Faktörlerinin Hesaplama Zorlukları ve Çözüm Önerileri. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi. 9(1), 19-25.

Ayetkin, O., Kaya, M. Ü., Kuşan, H. (2015) Yapı İşlerinde Proje Tipi Çalışma Verilerine Uygun ISG Risk Değerlendirmeye Yönteminin Seçimi İçin Öneriler. TMMOB İnşaat Mühendisleri Odasi Bildiriler Kitabı. 127-136

Taktak, F, Ilı, M. (2018). Güneş Enerji Santrali (GES) Geliştirme: Uşak Örneği. Geomatik, 3 (1), 1-21. DOI: 10.29128/geomatik.329561

Dündar, U. Ertem, M. (2016) Güneş Enerjisi Santrallerinin Kurulumu İçin Risk Değerlendirmeye Rehberi. Ankara: TMMOB.

Çelik Ö., Utlu, Z. (2013). Rüzgâr Enerji Santrallerinde İş Sağlığı Ve Güvenliği Uygulamaları. İstanbul Aydın Üniversitesi Dergisi, Yıl: 5, Sayı: 19, ss. 57/64.

Acar, B. Sönmez, İ. (2020). Güneş Enerji Santralleri Kurulum Aşamasında Alınacak Olan İş Sağlığı Ve Güvenliği Önlemleri. Doğu Fen Bilimleri Dergisi, 3 (2), 95-108 .https://dergipark.org.tr/tr/pub/dbd/issue/56837/78281