Diversity and Distribution of Resistance Markers in *Pseudomonas aeruginosa* International High-Risk Clones

Béla Kocsis, DánIEL Gulyás and Dóra Szabó

Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary; gulyas.daniel@med.semmelweis-univ.hu (D.G.); szabo.dora@med.semmelweis-univ.hu (D.S.)

* Correspondence: kocsis.bela@med.semmelweis-univ.hu

Abstract: *Pseudomonas aeruginosa* high-risk clones are disseminated worldwide and they are common causative agents of hospital-acquired infections. In this review, we will summarize available data of high-risk *P. aeruginosa* clones from confirmed outbreaks and based on whole-genome sequence data. Common feature of high-risk clones is the production of beta-lactamases and among metallo-beta-lactamases NDM, VIM and IMP types are widely disseminated in different sequence types (STs), by contrast FIM type has been reported in ST235 in Italy, whereas GIM type in ST111 in Germany. In the case of ST277, it is most frequently detected in Brazil and it carries a resistance linked to *bla*EM. Colistin resistance develops among *P. aeruginosa* clones in a lesser extent compared to other resistance mechanisms, as ST235 strains remain mainly susceptible to colistin however, some reports described *mcr* positive *P. aeruginosa* ST235. Transferable quinolone resistance determinants are detected in *P. aeruginosa* high-risk clones and *aac(6’)-Ib-cr* variant is the most frequently reported as this determinant is incorporated in integrons. Additionally, *qnrVC1* was recently detected in ST773 in Hungary and in ST175 in Spain. Continuous monitoring and surveillance programs are mandatory to track high-risk clones and to analyze emergence of novel clones as well as novel resistance determinants.

Keywords: *Pseudomonas aeruginosa*; multiresistance; nosocomial pathogen

1. Introduction

Pseudomonas aeruginosa is a Gram-negative ubiquitous rod-shaped bacterium and one of the most common opportunistic human pathogens with the ability of causing a wide range of severe infections, including ventilator-associated pneumonia, otitis externa, burn wound infection, contact lens-related keratitis, and bloodstream infection [1–4]. Various antibiotic resistance mechanisms can occur in *P. aeruginosa* that enable it to develop multiresistance, therefore, it can cause difficult to treat infections. *P. aeruginosa* is a member of the “ESKAPE” group, and this group of pathogens comprises 6 multidrug resistant bacteria that are common nosocomial pathogens [5]. Moreover, infections caused by ESKAPE pathogens are usually associated with significantly high morbidity and mortality rates as limited number of effective antimicrobial agents are available against these pathogens [6–9].

Recently, the World Health Organization released a priority list for development of novel antibiotics against certain pathogens and carbapenem resistant *P. aeruginosa* is listed among ‘critical’ category pathogens, as research and development of antibacterial agents are urgently needed [10]. The need for novel antibiotics against *P. aeruginosa* is seen worldwide, as both intrinsic and acquired resistance mechanisms are detected in this pathogen [7,11,12].

P. aeruginosa exhibits intrinsic resistance to a variety of antibacterial agents due to its unusually decreased outer-membrane permeability as well as by upregulation of efflux pumps [13–15]. Furthermore, acquired resistance to beta-lactams and aminoglycosides can develop through acquisition of resistance genes [7,15,16]. The most common resistance to beta-lactams occurs through production of different beta-lactamases, namely AmpC...
beta-lactamases, extended-spectrum beta-lactamases (ESBLs), and carbapenemases [17–20]. The most frequently reported beta-lactamases in *P. aeruginosa* are ESBLs (e.g., PER, GES, VEB enzymes), OXA-type beta-lactamases, and metallo-beta-lactamases (MBLs) namely, IMP, VIM, NDM types [21,22]. Uncommon carbapenem resistance phenotype in *P. aeruginosa* has been also reported namely, carbapenem resistance with maintained ceftazidim susceptibility [23,24]. Aminoglycoside-modifying enzymes are also commonly detected in *P. aeruginosa* namely, *aacA4, aadA7, aph(3’)-IIB* [25–27]. Colistin resistance develops in *P. aeruginosa* either by alterations in two-component regulatory systems (PhoPQ and PmrAB) [28–30] or through acquisition of mobile genetic elements (*mcr*) [31]. Fluoroquinolone resistance develops by accumulation of mutations in gyrase and topoisomerase genes namely, in *gyrA, gyrB, parC, and parE* [32]. However, transfer of mobile genetic elements, such as integrons, integrative conjugative elements (ICEs), transposons, and plasmids play a role in dissemination of *creP, aac(6’)-Ib-cr*, or *qnrVC1* fluoroquinolone resistance markers [20,33,34].

Emergence and worldwide dissemination of multidrug-resistant (MDR) *P. aeruginosa* made it necessary to apply typing methods for analysis of spread of MDR strains. Multilocus sequence typing (MLST) of MDR *P. aeruginosa* strains is the most common method to identify clones based on sequence type (ST) [35]. According to STs, high-risk clones are identified and their disseminations can be tracked. Additionally, core genome MLST has a higher resolution capacity that can be also applied in surveillance programs [36]. MDR clones are present worldwide and they evolve usually in hospital environments, as these clones are generally selected out in hospitals, due to antibiotic selection pressure and they can survive long-lasting in favorable conditions in hospital environments. Furthermore, genome of *P. aeruginosa* has a complexity and high variability, therefore *P. aeruginosa* can acquire and exchange resistance determinants that enables it for survival and dissemination. Thus, persistence of MDR *P. aeruginosa* empowers these strains for hospital outbreaks worldwide. These MDR *P. aeruginosa* are referred as international high-risk clones, such as the most frequently reported ST 111, 175, 233, 235, 277, 357, 654, and 773 [12,20,37,38]. In this comparative review, we analyze international high-risk clones based on their linkage and distribution of resistance determinants.

2. ST235

According to all available data, this international high-risk clone is the predominant among sequence types in clinical isolates [37–39]. ST235 strains show a wide geographic distribution, as they were isolated in various countries, namely Belgium [40], Portugal [41], Hungary, Serbia [33], Greece, Italy, Croatia, Romania [12,42], Spain [43,44], France [45], Germany [46], Norway (this patient was hospitalized earlier in Cyprus) [47], and also from Korea [48,49], Japan [50], Nigeria [51], Brazil, Philippines, US, Mexico, India [12], Vietnam [52], Malaysia, Thailand [53], Russia, Belarus, and Kazakhstan [54] (Figure 1).

The strains identified in ST235 clone carried various ESBLs, such as *bla_{PER-1}* in Serbia, and in Hungary [33], *bla_{VIM-1}* in Greece [12], *bla_{IMP-1}* in Belgium [40], chromosomally located class I integron (In1076) associated *bla_{GES-6}* in Spain [43]. Various *bla_{OXA}* variants were found in strains of ST235, the most common one was *bla_{OXA-2}*; however, in Mexico *bla_{GES-1}, bla_{GES-5,7}* was also detected [12,51]. In the US, *bla_{IMP-9}* was detected however, in Mexico *bla_{GES-1}, bla_{GES-19}, bla_{GES-9-like}* whereas in Brazil, *bla_{CTXM-2}* was reported [12]. Additionally, *bla_{KPC-2}* was confirmed in samples from Colombia and Nigeria [12,55–57].

Vast majority of MBLs in strains of ST235 are IMP variants, namely *bla_{IMP-1}, bla_{IMP-2}, bla_{IMP-4}, bla_{IMP-6}, bla_{IMP-7}, bla_{IMP-10}, bla_{IMP-15}, bla_{IMP-26}, bla_{IMP-31}, bla_{IMP-51}* from Malaysia, Korea, Philippines, Japan, Vietnam, and Nigeria [12,46,48,50–53]. Interestingly, *bla_{IMP-6} and bla_{IMP-10}* genes were reported as incorporated into genomic island (PAGI-16) in South Korea [49]. Among VIM types *bla_{VIM-1}, bla_{VIM-2}, bla_{VIM-4}, bla_{VIM-11}, bla_{VIM-13}, bla_{VIM-47}* were reported [12,47,52–54,58,59]. Furthermore, *bla_{NDM-1} carrier P. aeruginosa* strains were...
isolated from a patient with acute pyelonephritis in France in 2012, and from a stem cell transplant recipient in Italy in 2013. Both patients were hospitalized previously in Serbia [11,60]. Subsequently, an another bla_{NDM-1} positive strain was reported in Vietnam in 2016 [52]. Later, in 2019, a bla_{NDM-1} positive P. aeruginosa was isolated in Italy from a patient who developed sepsis as a consequence of urinary tract infection caused by P. aeruginosa ST235. This strain carried different virulence determinants, including ExoU phospholipase that is an effector of type III secretion system and it is responsible for cytotoxic activity [61].

In P. aeruginosa ST235, a bla_{FIM-1} MBL gene was described in 2012 in Florence, Italy. FIM-1 beta-lactamase showed approximately 40% identity of amino acid sequence of NDM-type beta-lactamases. The bla_{FIM-1} was located on chromosome of P. aeruginosa ST235 and flanked by ISCR19, that explains its insertion into the chromosome. However, mobilization and dissemination of this determinant is unknown. It seems that bla_{FIM} is endemic in Florence, as no distribution in other geographical regions has been recorded, yet [42].

In most cases, aac(6′)-Ib aminoglycoside acetyltransferase was reported in ST235 and it is responsible for resistance to kanamycin, tobramycin, and amikacin [12,51]. Strains of ST235 in Europe usually contained aacA7 that encodes aminoglycoside 6′-N-acetyltransferase and some of them carried aph(6)-Id aminoglycoside O-phosphotransferase or aadA1 adenyllyltransferase. In case of plasmid-mediated quinolone resistance determinants, aac(6′)-Ib-cr was first described in P. aeruginosa ST235 in isolates from Serbia and Hungary [33].

Chloramphenicol resistance genes, cmlA7 and catB7 were also described in Hungary, Serbia, and Nigeria [33,52]. In a Nigerian sample, other resistance determinants were also confirmed, fosA for fosfomycin, tetA, tetG for tetracycline, and qnrVC1 for fluoroquinolone resistance [52]. Compared to each other, strains of ST235 were characterized by quite

Figure 1. Geographic dissemination of the most frequently reported international high risk clones of P. aeruginosa. Figure illustrates reported cases until 2020. (source of map template: http://www.intrafor.com/locations-worldwide-presence.html, accessed on 23 January 2021).
similar resistance patterns however, they showed diversity based on the produced enzyme types and in the linkage to their geographic distribution.

A comprehensive study conducted in Madrid, revealed that MDR P. aeruginosa ST235 causes high mortality rate in patients in invasive infections, especially in patients with chronic respiratory tract infections [62].

3. ST111

This international successful clone is also responsible for numerous MDR P. aeruginosa cases around the world [63]. Reports from various European countries described ST111 in Portugal, Spain, Greece, France, Croatia, [12,64] Czech Republic [65], Sweden, and Norway [47]. (Figure 1) MDR ST111 isolates from Bulgarian hospitals showed a combination of ESBL production (VEB-1 and OXAs) with the lack of OprD carbapenem porin and overexpression of MexXY-OprM efflux pump resulting carbapenem resistance without harboring any encoded MBLs [66]. In The Netherlands, a nationwide emergence of this sequence type was also detected in 2012 [67]. The first full genome sequence of ST111 P. aeruginosa was described in the United Kingdom in 2014 and was deposited in the European Nucleotide Archive with accession number PRJE4573 [63] (Table 1).

Table 1. Whole genome sequences of high-risk P. aeruginosa clones from published reports.

Reference	Clone	Accession Number
Loconsole et al., 2020 [61]	ST235	JAABOY000000000
Tada et al., 2016 [62]	ST235, ST277	(SRA): DRA003741
Witney et al., 2014 [63]	ST111	PRJE4573
Kos et al., 2015 [63]	ST111	JLAZ00000000
Turton et al., 2015 [68]	ST111	ERS716506 to ERS716591
Arca-Suárez et al., 2019 [69]	ST175	SXR5389644
Cabot et al., 2016 [70]	ST175	ERS1280254 to ERS1280271 and ERS1280273 to ERS1280276 (European Nucleotide Archive)
Dösselmann et al., 2017 [71]	ST233	CP017293 and CP017294
Taiaroa et al., 2018 [72]	ST233	CP029707 CP029708
Silveira et al., 2014 [73]	ST277	JPSS00000000
Galetti et al., 2019 [27]	ST277	MVBO00000000
Kos et al., 2015 [15]	ST654	JTYC00000000
Kocsis et al., 2019 [20]	ST773	RHDU00000000
Khan et al., 2020 [74]	ST773	BioSample: SAMN12307670

ST111 strains were reported from Colombia [75], India, Venezuela, Canada, and United States [12]. In Columbia, a report detailed detection of co-carriage of blaVIM-2 and blaKPC-3 in a single P. aeruginosa strain that belonged to ST111. This strain was resistant to amikacin, ciprofloxacin, polymyxin, and to all beta-lactams, including carbapenems and aztreonam [75]. In 2015, almost 90 isolates of P. aeruginosa ST111 were analyzed in the United Kingdom. Most tested strains carried blaVIM-2, a few had blaIMP-1 or blaIMP-13, and one presented coexistence of blaVIM-2 and blaIMP-18, whereas another strain presented blaNDM-1 [68].

GIM type metallo-beta-lactamase was reported as an integron-encoded gene [76]. This MBL type shares 40% amino acid sequence similarity to IMP type MBLs. So far, blaGIM was detected only in P. aeruginosa ST111, and seems endemic in Germany [77].

Apart from blaVEB-1, other ESBLs, such as blaPSE-1 and blaGES-2 were present in ST111 and numerous types of oxacillinases, such as blaOXA-2, blaOXA-9, blaOXA-10, blaOXA-17, blaOXA-46,
Microorganisms 2021, 9, 359

were successfully selected through developing mutations in active genes contributing in sul1 was reported in Germany. The detected resistance genes XDR K34-7 phenotype was encoded by resistance genes found in three class I integrons in (Table 1). In this study, the ST233 strains was exposed to colistin and colistin resistant strains TetK tetracycline efflux pump was encoded on plasmid. This complete genome is available of bla genes showed a wide variety, including aac(6)-Ib bla genes reported. Of the collected 33 strains, the majority carried bla dissemination. Gene accession numbers are available: ST175 genome sequence on a plasmid in a class I integron thus, it enables this resistance determinant for further P. aeruginosa for therapy of MDR tazobactam and ceftazidime-avibactam are the most effective and recommended options to ceftolozane-tazobactam and ceftazidime-avibactam. Thereby it may cause serious 681 is able to hydrolyze cephalosporins, including ceftolozane and induces cross-resistance OXA-50 TEM-1A OXA-74 bla genes were also described. Other resistance mechanisms, like aac(6)-Ib and aacA29a were the most common determinants of aminoglycoside resistance and amino acid substitutions in gyrA, parC, and parE were also confirmed in cases of fluoroquinolone resistant ST111 P. aeruginosa [12,64,66].

4. ST175

This epidemic high-risk clone was first identified in 2005 in the United Kingdom and Canada. Since then, it was reported in Hungary, the Czech Republic, Poland, the United States, China, Spain, and France [69,78]. (Figure 1) In case of ST175, P. aeruginosa infections the predominantly detected resistance mechanisms are associated to specific mutations in chromosomally encoded versatile resistome including oprD for inhibition of carbapenems, ampR for AmpC overexpression, mexZ efflux pumps, gyrA and parC as fluoroquinolone resistance markers [7,70,79]. Furthermore, presence of blaCARB-12, catB7, blaIMP-1, aac4′-3 in Japan [50], just as blavIM-2, blaIMP-22, aac(6)-Ib in Spain were also confirmed associated to class I integron [78]. In a study conducted in Spain, a VIM-47 producing P. aeruginosa ST175 strain was reported [59].

In 2019, an MDR P. aeruginosa ST175 was identified in Spain. It carried blavIM-20 and blaOXA-681 in class I integron on a plasmid. OXA-681 is a variant of OXA-2, and specific amino acid differences at position 159 and 160 distinguish the two beta-lactamases. OXA-681 is able to hydrolyze cephalosporins, including ceftolozane and induces cross-resistance to ceftolozane-tazobactam and ceftazidime-avibactam. Thereby it may cause serious clinical problems, because new combinations with antipseudomonal effect like ceftolozane-tazobactam and ceftazidime-avibactam are the most effective and recommended options for therapy of MDR P. aeruginosa infections. On the other hand, blaOXA-681 is located on a plasmid in a class I integron thus, it enables this resistance determinant for further dissemination. Gene accession numbers are available: ST175 genome sequence SRX5389644, blaOXA-681 MH986647.1 [69] (Table 1).

Recently, an interregional dissemination of ST175 MDR P. aeruginosa in Spain has been reported. Of the collected 33 strains, the majority carried blavIM-2 however, blavIM-1, blaIMP-8, blavIM-20, blaoXA-2, blaoXA-101, blaoXA-211 were also detected. The coexisting resistance genes showed a wide variety, including aac(6)-Ib, aac(6)-Ib-cr, together with aadA13, aadA1, blatemA1, blaker1, sul, qnrVC1, and catB7 [80].

5. ST233

Initially, ST233 was reported as a high-risk clone in Mexico, in the United States, in Japan, and in South Africa [81–83] (Figure 1). Earlier, this clone was described as colistin susceptible but in case of an extensively drug-resistant (XDR) strain resistance to colistin in 2013 was reported [81]. The first whole genome sequence of this clone was reported in Germany. The detected resistance genes sul1, tet(G), blavIM-2, blaoXA-4, blaoXA-50, blapano, aac(3)-ld, aadA2, aph(3′)-Iib, dfrB5, fosA, catB7 were all located on bacterial chromosome. Assigned accession numbers CP017293 and CP017294 are added to GenBank (Table 1). In this study, the ST233 strains was exposed to colistin and colistin resistant strains were successfully selected through developing mutations in active genes contributing in lipopolysaccharide synthesis [71].

Whole genome sequencing was also performed on an XDR strain of ST233, called K34-7 in Norway. Its genome was built up by a chromosome and a small plasmid. The XDR K34-7 phenotype was encoded by resistance genes found in three class I integrons in chromosome, including aac(3), aac(3)-I, aac(6′)-II, aadA2 and aph(3′)-Iib, blaoXA-4, blaoXA-486, blapano, aac(3)-ld, aadA2, aph(3′)-Iib, blaoXA-4, blaoXA-486, blapano, aac(3)-ld, aadA2, aph(3′)-Iib, blaoXA-4, and blavIM-2, catB, cmrA6, and floR, dfrB5, fosA, tetG and as an accessory feature, TetK tetracycline efflux pump was encoded on plasmid. This complete genome is available at GenBank under the accession numbers CP029707 and CP029707 [72].

Further studies demonstrated the presence of blaimp-1 in Singapore [84], the copresence of blavIM-2, blaoXA-4 with chromosomal mutations in gyrA and parC in Germany, France,
Romania, US, and India [12]. Along with ST235 and ST111, \textit{bla}_{NDM-1} was also detected in ST233 in tertiary care hospitals in Egypt in 2015 [85]. An interesting aspect of this clone is the confirmed case of reverse zoonotic effect in Brazil, called as zoo anthroponotic transmission. A dog was suffering from severe ear infection and by laboratory tests carbapenem-resistant ST233 \textit{P. aeruginosa} was identified from this infected ear, oral, and rectal swab and later from the pet owner’s feces and also on the household settings. Interestingly, the pet owner, a 50-year-old man had 1-month long hospital stay in the ICU and after the successful recovery he was released from the hospital a month before the onset of the dog’s symptoms. This strain of ST233 carried chromosomally encoded beta-lactamases, namely \textit{bla}_{VIM-2}, \textit{bla}_{PAO}, \textit{bla}_{OXA-4}, \textit{bla}_{OXA-50}, and other different resistance determinants such as \textit{aad}A2, \textit{aac}(3)-\textit{Id}, \textit{aph}(3)-\textit{IIb}, \textit{sul}-1, \textit{tet}(G), \textit{fos}A, \textit{cat}B7, and \textit{cmr}A1. These findings made attention for the colonization possibility in the household environments and further transmission to pets of hospital-acquired human pathogens, such as MDR \textit{P. aeruginosa} [86].

6. ST277

Strains of ST277 are detected predominantly in Brazil from various clinical specimens. These strains have a quite characteristic resistance pattern that is remarkably restricted to the Brazilian area. These resistance markers comprise \textit{blas}_{SPM-1}, \textit{bla}_{OXA-56}, \textit{bla}_{PAO}, \textit{rmt}D, \textit{aac}A4, \textit{aac}(6)-\textit{Ib}, \textit{aac}(6)-\textit{lb-cr}, \textit{aph}(3’)-\textit{Iib}, and \textit{aad}A7. In certain cases, OXA-variants, like \textit{bla}_{OXA-39} and \textit{bla}_{OXA-50}, as well as \textit{fos}A, \textit{sul}-1, \textit{cat}B7 with chromosomal \textit{gyr}A and \textit{par}C mutations were also reported in strains of ST277. The related whole genome sequences are available under MVOB00000000 and JPSS00000000 accession numbers at GenBank [12,27,87] (Table 1).

Interestingly, scarce reports detail ST277 out of Brazil however, in the UK and Japan, ST277 has been already described. In Japan, this clone was identified with quite different genomic properties, it carried \textit{bla}_{IMP-1}, \textit{bla}_{IMP-10}, \textit{aac}A1 genes in urine samples [50]. In 2016, a SPM-1 producing \textit{P. aeruginosa} ST277 that was only susceptible to colistin was reported in the UK from a patient who was hospitalized earlier in Brazil [88].

According to a study, which performed a phylogenetic analysis of almost fifty ST277 strains, the Brazilian isolates have a big number of single nucleotide polymorphisms and distinctively bear genomic islands (In163 and PAGI-25) compared to other ST277 genomes described in Asia, Europe, or North America. The presence of these special elements could explain the widespread dissemination of this endemic clone in Brazil [89].

Additionally, \textit{P. aeruginosa} ST277 carried a 763,863 bp chromosomally coded unique region comprising two new genomic islands (PAGI-13 and PAGI-14), a mobile element, an integrative and conjugative element (ICE) associated to \textit{blas}_{SPM-1}. Furthermore, \textit{rmt}D and In163 are inserted in PAGI-13 while PAGI-14 has genes encoding proteins related to type III restriction system and phages [87].

Strains of ST277 were isolated from microbiota of migratory birds in Brazil, suggesting that these birds might have played an important role in the widespread dissemination in this territory [38,90]. In this geographical region, the most commonly detected carbapenem resistance mechanism is \textit{blas}_{SPM-1} (São Paulo metallo-\textit{b}-lactamase) in clinical samples of MDR \textit{P. aeruginosa}. Migratory bird-associated ST277 strains carried also \textit{blas}_{SPM-1}, and these strains were susceptible only to colistin and contained \textit{aac}(6’)-\textit{lb-cr}, \textit{rmt}D1, \textit{aac}A4 [90]. Furthermore, \textit{P. aeruginosa} ST277 strains were also recovered from environmental water samples in Brazil [91].

7. ST357, ST654 and ST773

ST357 is also listed among high-riks clones and it is characterized by different \textit{blas}_{IMP-1} determinants namely, \textit{bla}_{IMP-1}, \textit{bla}_{IMP-6}, \textit{bla}_{IMP-57}, \textit{bla}_{IMP-10}, \textit{bla}_{IMP-11} [12,50,92,93]. Other beta-lactamases were described in ST357 as \textit{bla}_{OXA-2}, \textit{bla}_{OXA-4}, and \textit{bla}_{OXA-10} [12,94], \textit{bla}_{VEB-1-like} [12], \textit{bla}_{PER-1} [52], \textit{bla}_{GES-5}, and \textit{bla}_{VIM-2} [92]. Fosfomycin resistance encoding \textit{fos}1, \textit{fos}E, and a
ST654 was also reported as a bla_{IMP} carrier, and bla_{IMP-1} and bla_{IMP-26} were reported from Singapore [84]. In Sweden, bla_{VIM-2} positive ST654 was reported in a patient who was hospitalized earlier in Tunisia [47]. Recently, VIM-producing *P. aeruginosa* ST654 strains were reported from a tertiary and quaternary hospital in Saudi Arabia [95]. ST654 was reported as bla_{KPC-2} positive in Argentina [96]. Furthermore, bla_{NDM-1} carriage was also reported in the UK [19].

In the case of ST773, bla_{VIM-2} and bla_{OXA-10} in India [53], the carriage of bla_{VIM} in ST773 was also confirmed in ST773. This strain developed resistance to tobramycin, ciprofloxacin, and levofloxacin, and showed susceptibility to colistin. This strain of ST773 carried qnrVC1 fluoroquinolone resistance marker localized on class I integron that was originated from *Vibrio cholerae*. Besides this resistance marker, that ST773 strain carried several other genes, such as bla_{OXA-58-like}, bla_{PAO}, rmtB, aph(3’)-Iib, tetG, fosA, catB7, and sul1. Whole genome sequence of this strain was deposited in GenBank under the accession number RHUD000000000 [20]. A bla_{NDM-1} positive ST773 strain was also reported in USA from a patient who received medical care earlier in India due to her intraabdominal surgery. Whole genome sequence data are deposited at BioSample: SAMN12307670 [74] (Table 1).

8. Discussion

Emergence and dissemination of *P. aeruginosa* international high-risk clones are great challenge worldwide [54,81,98]. MDR and XDR strains of high-risk *P. aeruginosa* are frequently identified in nosocomial infections and these cause difficult to treat infections as limited treatment options are available [60]. Furthermore, genome of *P. aeruginosa* has its complexity and high variability, therefore various resistance genes can be acquired from non-fermentative bacteria or even from different strains of Enterobacterales [74].

Development of MDR strain depends on given geographic area’s features, namely trends of antibiotic consumptions, patterns of transmissible resistant determinants among nosocomial pathogens, travelling habits, previous hospitalization events [11,47,60,87]. In addition, in several countries, such as Portugal, Spain, Romania, Italy, Croatia, Sweden, Norway, UK, US, India, Korea, and Japan, many clones (e.g., ST235) circulate with quite similar resistance pattern [12].

The most commonly detected *P. aeruginosa* clone is ST235 with a wide variety of beta-lactamases, including the most frequent bla_{VIM-2}, bla_{OXA-2}, bla_{KPC-2}, bla_{PAO}, and bla_{NDM-1}. Moreover, bla_{FIM-1} was also reported in ST235 in Italy, however, this is the only detection of bla_{FIM} so far [42]. A few years ago, bla_{NDM-1} was the dominant MBL described in ST235, [11,52,60,61] but it has disseminated with an increasing tendency, since it was also detected in ST111 [68], ST233 [85], ST654 [19], and ST773 [20,74] (Table 2). Beside the most frequently isolated ST235, other sequence types have also important features. In ST175, OXA-681 was reported, which hydrolyzes ceftolozane and induces cross-resistance to ceftolozane-tazobactam and ceftazidime-avibactam. Possible transfer of bla_{OXA-681} contributes to diverse resistance pattern of *P. aeruginosa* and adds to the disquieting challenges related to antibiotic resistance [69].

ST235 and ST111 strains show mainly positivity for different ESBL production (bla_{PES-1}, bla_{REL-1}, bla_{CES}, bla_{PER}), these genes are associated to bla_{OXA} variants and in certain cases to distinctive types of bla_{VIM} or bla_{IMP}. Further resistance mechanisms against aminoglycosides, fluoroquinolones (mainly mutations in gyrA and parC), fosfomycin, tetracycline, and sulfonamides were also detected [12]. Recently, a study conducted in Greece reported predominance of VIM producing ST111 and ST235. Interestingly, bla_{VIM} genes were incorporated into three integron types, namely, In59, In595, and In1760 [99].
Table 2. Overview of the most common resistance genes of high-risk *P. aeruginosa*.

Clone	Beta-Lactamases	Aminoglycoside Modifying Enzymes	Resistance to Fluoroquinolones	Resistance to Colistin	Other
ST235	*bla*_{PSE-1}, *bla*_{BEL-1}, *bla*_{PER-1}, *bla*_{GES}-variants, *bla*_{CTX-M}-variants, *bla*_{OXA-2}, *bla*_{KPC-2}, *bla*_{PAO}, *bla*_{IMP}-variants, *bla*_{VIM}-2 and variants, *bla*_{FIM}-1, *bla*_{NDM-1}	*aacA7*, *aph(6)-Id*, *aadA1*, *aac(6’)-Ib-cr*	*qnrVC1*, mutations in *gyrA* and *parC*	Strains susceptible to colistin. Sporadic reports of *mcr* carriage	*fosA*, *cmrA7*, *sul-1*, *tetA*, *tetGcatB7*,
ST111	*bla*_{PSE-1}, *bla*_{GES-7}, *bla*_{KPC-2}, *bla*_{VIM}-2, *bla*_{IMP}-1 and variants, *bla*_{VEB}-1, *bla*_{OXA-2} and variants, *bla*_{NDM-1}	*aac(6)-lb*, *aacA29a*	mutations in *gyrA*, *parC*, or *parE*	Colistin-resistant strain is confirmed	*mexZ* efflux pump, *oprD*, *sul-1*, *catB7*
ST175	*bla*_{CARB-12}, *bla*_{IMP}-1, *bla*_{VIM}-2, *bla*_{TEM-1A}, *bla*_{AER1}, *bla*_{OXA-2} variants, like *bla*_{OXA-681}	*aac(6)-lb*, *aacA4’-3*	*qnrVC-1*, mutations in *gyrA* and *parC*	No data available	*oprD*, *ampR*, *mexZ* efflux pumps, *catB7*
Clone	Beta-Lactamases	Aminoglycoside Modifying Enzymes	Resistance to Fluoroquinolones	Resistance to Colistin	Other
--------	-----------------	---------------------------------	--------------------------------	------------------------	-----------------------------
ST233	blavIM-2⁺, blalMP-1⁺, blaoX-4⁺, blaoX-50⁺, blauPDC-3⁺, blapAO⁺, blandM-1	aac(3)-Id, aadA2, aph(3')-Iib	mutations in gyrA and parC	Colistin-resistant strain is confirmed	dfB5, fosA, sul1, tetG, catB7, cmlA1
ST277	blasPM-1⁺, blalMP-1⁺, blaoX-56⁺, blapAO⁺	aacA1, aacA4, aac(6)-Ib, aac(6)-Ib-cr, aph(3')-Iib, aadA7	mutations in gyrA and parC	No data available	fosA, sul1, catB7
ST357	blaper-1⁺, blaces-5⁺, blallCR-1⁺, blalMP-1 variants, blavIM-2⁺, blaoX-2 variants, blavEB1-like	aadA11, aadA2, aadB, aacA3, aacA4, aph(3)-V1a, aph(3')-Iib, aph(3)-Id	mutations in gyrA and parC	No data available	fos1, fosE, sul1
ST654	blakPC-2⁺, blalMP-1⁺, blavIM-2⁺, blandM-1	aacA4, aacA5, aadB	mutations in gyrA and parC	No data available	sul1
ST773	blaoX-50-like variants, blavEB1⁺, blalMP-1⁺, blapAO⁺, blavIM-2⁺, blandM-1	rmTB, aph(3')-Iib, aac(3)-la, aadA1, aadB	qnrVC1, mutations in gyrA and parC	Strains susceptible only to colistin are detected	fosA, sul1, tetG, catB7
The analyzed high-risk clones are worldwide disseminated, but as an exception, the ST277 is detected mostly in Brazil and shows a relevant spreading tendency in that geographical area [27,87]. Strains of ST277 carry distinct resistomes that are linked to \(\text{bla}_{\text{SPM-1}} \) and interestingly these strains are particularly colistin-sensitive. According to a study, Brazilian ST277 strains have several single nucleotid polymorphisms, and carry distinct genomic islands, phages, and CRISPR-Cas system compared to other ST277 genomes described in other countries, and these features could be the explanation for epidemic spread of ST277 in Brazil [27,87,89,100]. In strains of ST277, specific PAGIs were reported, that belong to ICEs. It must be underlined that ICEs play an important role in mobilization of carbapenemase genes [101]. It also turned out that migratory birds might have played an important role in transmission of ST277 in Brazil, furthermore, in environmental water sources, ST277 could be also isolated [90,91]. Additionally, other studies supported the zoonotic impact of MDR \textit{P. aeruginosa} ST233, that these high-risk clones are able to be transmitted from human individuals to pets and the bacteria can circulate between them [86].

These features all underline the importance of possible exchange of resistance determinants and clones between animals, humans, environmental, and hospital source. Therefore, the “One health” approach seems the most accurate one to cope with antibiotic resistance.

As a summary: new antimicrobial agents and protocols for therapy are urgently needed to combat infections caused by MDR \textit{P. aeruginosa}. Early detection and analysis by whole genome sequencing can help to follow evolutionary changes in MDR \textit{P. aeruginosa}, to track dissemination of novel resistance determinants and emergence of international high-risk clones.

Author Contributions: B.K. writing—original draft preparation; D.G. writing—review and editing, D.S.—supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding. The APC was covered by B.K.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage \textit{Pseudomonas aeruginosa} infections. *Drugs Context* 2018, 7, 212527. [CrossRef] [PubMed]
2. Burrows, L.L. The therapeutic pipeline for \textit{Pseudomonas aeruginosa} infections. *ACS Infect. Dis.* 2018, 4, 1041–1047. [CrossRef]
3. Römling, U.; Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. *J. Intern Med.* 2012, 272, 541–561. [CrossRef]
4. Rodríguez-Rojas, A.; Oliver, A.; Blazquez, J. Intrinsic and environmental mutagenesis drive diversification and persistence of \textit{Pseudomonas aeruginosa} in chronic lung infections. *J. Infect. Dis.* 2012, 205, 121–127. [CrossRef]
5. Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. *Clin. Infect. Dis.* 2009, 48, 1–12. [CrossRef] [PubMed]
6. Livermore, D.M. Has the era of untreatable infections arrived? *J. Antimicrob. Chemother.* 2009, 64 (Suppl. 1), i29–i36. [CrossRef] [PubMed]
7. Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in \textit{Pseudomonas aeruginosa}—Mechanisms, epidemiology and evolution. *Drug Resist Updat.* 2019, 44, 26–47. [CrossRef]
8. Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of \textit{Pseudomonas aeruginosa} high-risk clones. *Drug Resist Updat.* 2015, 21–22, 41–59. [CrossRef] [PubMed]
9. Juhasz, E.; Iván, M.; Pongrácz, J.; Kristóf, K. Uncommon non-fermenting Gram-negative rods as pathogens of lower respiratory tract infection. *Orv. Hetil.* 2018, 159, 23–30. [CrossRef] [PubMed]
10. Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. *Lancet Infect. Dis.* 2018, 18, 318–327. [CrossRef]
11. Carattoli, A.; Fortini, D.; Galetti, R.; Garcia-Fernandez, A.; Nardi, G.; Orazi, D.; Capone, A.; Majolino, I.; Proia, A.; Mariani, B.; et al. Isolation of NDM-1-producing *Pseudomonas aeruginosa* sequence type ST235 from a stem cell transplant patient in Italy. *May 2013. Euro. Surveill.* **2013**, *18*, 20633. [PubMed]

12. Kos, V.N.; Deraspe, M.; McLaughlin, R.E.; Whiteaker, J.D.; Roy, P.H.; Alm, R.A.; Corbel, I.; Gardner, H. The resistome of *Pseudomonas aeruginosa* in relationship to phenotypic susceptibility. *Antimicrob. Agents Chemother.* **2015**, *59*, 427–436. [CrossRef]

13. Breidenstein, E.B.M.; de la Fuente-Núñez, C.; Hancock, R.E.W. *Pseudomonas aeruginosa*: All roads lead to resistance. *Trends Microbiol.* **2011**, *19*, 419–426. [CrossRef]

14. Chevalier, S.; Bouffartigues, E.; Bodilis, J.; Maillot, O.; Lesouhaitier, O.; Feuilloley, M.G.; Orange, N.; Dufour, A.; Cornelis, P. Structure, function and regulation of *Pseudomonas aeruginosa* porins. *FEBS Mol. Rev.* **2017**, *41*, 698–722. [CrossRef]

15. Hancock, R.E.; Speert, D.P. Antibiotic resistance in *Pseudomonas aeruginosa*: Mechanisms and impact on treatment. *Drug Resist. Updat.* **2000**, *3*, 247–255. [CrossRef] [PubMed]

16. Livermore, D.M. Multiple mechanisms of antimicrobial resistance in *Pseudomonas aeruginosa*: Our worst nightmare? *Clin. Infect. Dis.* **2002**, *34*, 634–640. [CrossRef]

17. Laudy, A.E.; Róg, P.; Smolińska-Król, K.; Ćmiel, M.; Słoczyńska, A.; Patzer, J.; Dzierżanowska, D.; Wolinowska, R.; Starościa, B.; Tysi, S. Prevalence of ESBL-producing *Pseudomonas aeruginosa* isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. *PLoS ONE* **2017**, *12*, e0180121. [CrossRef] [PubMed]

18. Queenan, A.M.; Bush, K. Carbapenemases: The versatile beta-lactamases. *Clin. Microbiol. Rev.* **2000**, *13*, 85–133. [CrossRef] [PubMed]

19. Wright, L.L.; Turton, J.F.; Livermore, D.M.; Hopkins, K.L.; Woodford, N. Dominance of international ‘high-risk clones’ among metallo-beta-lactamase-producing *Pseudomonas aeruginosa* in the UK. *J. Antimicrob. Chemother.* **2015**, *70*, 103–110. [CrossRef]

20. Kocsis, B.; Toth, A.; Gulyas, D.; Ligeti, B.; Katona, K.; Rokusz, L.; Szabo, D. Acquired *aprVCl* and *blaNDM-1* resistance markers in an international high-risk *Pseudomonas aeruginosa* ST773 clone. *J. Med. Microbiol.* **2019**, *68*, 336–338. [CrossRef]

21. Gaballah, A.; Elbaradei, A.; Elsheredy, A.; Kader, O. Emergence of *blaVEB* and *blaGES* among VIM-producing *Pseudomonas aeruginosa* clinical isolates in Alexandria, Egypt. *Acta Microbiol. Immunol. Hung.* **2019**, *66*, 131–142. [CrossRef]

22. Del Barrio-Toño, E.; López-Causapé, C.; Oliver, A. *Pseudomonas aeruginosa* epidemic high-risk clones and their association with horizontally-acquired beta-lactamases: 2020 update. Int. J. Antimicrob. Agents **2020**, *56*, 106196. [CrossRef]

23. Khalili, Y.; Yekani, M.; Goli, H.R.; Memar, M.Y. Characterization of carbapenem-resistant but cephalosporin-susceptible *Pseudomonas aeruginosa* clinical isolates in Alexandria, Egypt. *Acta Microbiol. Immunol. Hung.* **2019**, *66*, 529–540. [CrossRef] [PubMed]

24. Gajdacs, M. Carbapenem-Resistant but Cephalosporin-Susceptible *Pseudomonas aeruginosa* in Urinary Tract Infections: Opportunity for Colistin Sparing. *Antibiotics* **2020**, *9*, 53. [CrossRef]

25. Poole, K. Aminoglycoside resistance in *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* **2005**, *49*, 479–487. [CrossRef] [PubMed]

26. Wachino, J.; Arakawa, Y. Exogenously acquired 16S rRNA methyltransferases found in aminoglycoside-resistant pathogenic Gram negative bacteria: An update. *Drug Resist. Updat.* **2012**, *15*, 133–148. [CrossRef] [PubMed]

27. Galetti, R.; Andrade, L.N.; Varani, A.M.; Darinia, A.L.C. SPM-1-producing *Pseudomonas aeruginosa* porins. *FEBS Mol. Rev.* **2017**, *41*, 183–186. [CrossRef]

28. Lee, J.Y.; Park, Y.K.; Chung, E.S.; Na, I.Y.; Ko, K.S. Evolved resistance to colistin and its loss due to genetic reversion in *Pseudomonas aeruginosa*. *Sci. Rep.* **2016**, *6*, 25543. [CrossRef] [PubMed]

29. Romano, K.P.; Warrier, T.; Poulsen, B.E.; Nguyen, P.H.; Loftis, A.R.; Saebi, A.; Pentelute, B.L.; Hung, D.T. Mutations in pmrB Confer Cross-Resistance between the LptD Inhibitor POL7080 and Colistin in *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* **2019**, *63*, e00511-19. [CrossRef]

30. Wi, Y.M.; Choi, J.Y.; Kang, C.I.; Chung, D.R.; Peck, K.R.; Song, J.H.; Ko, K.S. Emergence of colistin resistance in *Pseudomonas aeruginosa* ST235 clone in South Korea. *Int. J. Antimicrob. Agents* **2017**, *49*, 767–769. [CrossRef] [PubMed]

31. Tahmasebi, H.; Dehbashl, S.; Arabestani, M.R. Co-harboring of *mcf-1* and β-lactamase genes in *Pseudomonas aeruginosa* by high-resolution melting curve analysis (HRMA): Molecular typing of superbug strains in bloodstream infections (BSI). *Infect. Genet. Ecol.* **2020**, *85*, 105418. [CrossRef] [PubMed]

32. Chen, F.J.; Lo, H.J. Molecular mechanisms of fluoroquinolone resistance. *J. Microbiol. Immunol. Infect.* **2003**, *36*, 1–9.

33. Libisch, B.; Poirol, I.; Lepsanovic, Z.; Mirovic, V.; Balogh, B.; Pászti, J.; Hunyadi, Z.; Dobák, A.; Füzi, M.; Nordmann, P. Identification of PER-1 extended-spectrum beta-lactamase producing *Pseudomonas aeruginosa* clinical isolates of the international clonal complex CC11 from Hungary and Serbia. *FEMS Microbiol. Med.* **2008**, *54*, 330–338. [CrossRef] [PubMed]

34. Botelho, J.; Grosso, F.; Peixe, L. ICEs are main reservoirs of ciprofloxacin modifying *cfr* gene in *Pseudomonas aeruginosa*. *Genes* **2020**, *11*, 889. [CrossRef]

35. Curran, B.; Jonas, D.; Grundmann, H.; Pitt, T.; Dowson, C.G. Development of a multilocus sequence typing scheme for the opportunistic pathogen *Pseudomonas aeruginosa*. *J. Clin. Microbiol.* **2004**, *42*, 5644–5649. [CrossRef] [PubMed]

36. De Sales, R.O.; Migliorini, L.B.; Puga, R.; Kocsis, B.; Severino, P. A Core Genome Multilocus Sequence Typing Scheme for *Pseudomonas aeruginosa*. *Front. Microbiol.* **2020**, *11*, 1049. [CrossRef] [PubMed]

37. Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. *FEMS Microbiol. Rev.* **2011**, *35*, 736–755. [CrossRef] [PubMed]
38. Silva, F.M.; Carmo, M.S.; Silbert, S.; Gales, A.C. SPM-1-producing *Pseudomonas aeruginosa*: Analysis of the ancestor relationship using multilocus sequence typing, pulsed-field gel electrophoresis, and automated ribotyping. *Microb. Drug Resist.* 2011, 17, 215–220. [CrossRef]

39. Miyoshi-Akiyama, T.; Tada, T.; Ohmagari, N.; Viet Hung, N.; Tharavichitkul, P.; Pokhrel, B.M.; Gniadkowski, M.; Shimojima, M.; Kirikae, T. Emergence and Spread of Epidemic Multidrug-Resistant *Pseudomonas aeruginosa*. *Genome Biol. Evol.* 2017, 9, 3238–3245. [CrossRef]

40. Bogaerts, P.; Bauraing, C.; Deplano, A.; Glupczynski, Y. Emergence and dissemination of BEL-1-producing *Pseudomonas aeruginosa* in Belgium. *Antimicrob. Agents Chemother.* 2007, 51, 1584–1585. [CrossRef]

41. Botelho, J.; Grosso, F.; Sousa, C.; Peixe, L. Characterization of a new genetic environment associated with GES-6 carbapenemase from a *Pseudomonas aeruginosa* isolate belonging to the high-risk clone ST235. *J. Antimicrob. Chemother.* 2015, 70, 615–617. [CrossRef] [PubMed]

42. Pollini, S.; Maradei, S.; Pecile, P.; Olivo, G.; Luzzaro, F.; Docquier, J.D.; Rossolini, G.M. FIM-1, a new acquired metallo-beta-lactamase from a *Pseudomonas aeruginosa* clinical isolate from Italy. *Antimicrob. Agents Chemother.* 2013, 57, 410–416. [CrossRef] [PubMed]

43. Viedma, E.; Juan, C.; Acosta, J.; Zamorano, L.; Otero, J.R.; Sanz, F.; Chaves, F.; Oliver, A. Nosocomial spread of colistin-only-producing *Streptococcus pneumoniae*: Analysis of the ancestor relationship and investigation of their susceptibility to lytic bacteriophages. *Antimicrob. Agents Chemother.* 2012, 56, 6175–6180. [CrossRef]

44. Pfennigwerth, N.; Geis, G.; Gutermann, S.G.; Kaase, M. Description of IMP-31, a novel metallo-beta-lactamase found in an ST235 *Pseudomonas aeruginosa* strain in Western Germany. *J. Antimicrob. Chemother.* 2013, 68, 2791–2796. [CrossRef]

45. Samuelsen, Ø.; Toleman, M.A.; Sundsfjord, A.; Rydberg, J.; Leegaard, T.M.; Walder, M.; Lia, A.; Ranheim, T.E.; Rajendra, Y.; Herman, N.O.; et al. Molecular Epidemiology of Metallo-beta-Lactamase-Producing *Pseudomonas aeruginosa* Isolates from Norway and Sweden Shows Import of International Clones and Local Clonal Expansion. *Antimicrob. Agents Chemother.* 2010, 54, 346–352. [CrossRef]

46. Seok, Y.; Bae, I.K.; Jeong, S.H.; Kim, S.H.; Lee, H.; Lee, K. Dissemination of IMP-6 metallo-beta-lactamase-producing *Pseudomonas aeruginosa* sequence type 235 in Korea. *J. Antimicrob. Chemother.* 2011, 67, 2791–2796. [CrossRef]

47. Hong, J.S.; Yoon, E.J.; Lee, H.; Jeong, S.H.; Lee, K. Clonal dissemination of *Pseudomonas aeruginosa* sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and PAGI-16 in South Korea. *Antimicrob. Agents Chemother.* 2010, 65, 474–478. [CrossRef] [PubMed]

48. Juan, C.; Zamorano, L.; Mena, A.; Albert, S.; Pérez, J.L.; Oliver, A. Metallo-beta-lactamase-producing *Pseudomonas putida* as a reservoir of multidrug resistance elements that can be transferred to successful *Pseudomonas aeruginosa* clones. *J. Antimicrob. Chemother.* 2010, 66, 7216–7223. [PubMed]

49. Larché, J.; Pouillot, F.; Essoh, C.; Libisch, B.; Straut, M.; Lee, J.C.; Soler, C.; Lamarca, R.; Gleize, E.; Gabard, J.; et al. Rapid identification of international multidrug-resistant *Pseudomonas aeruginosa* clones by multiple-locus variable number of tandem repeats analysis and investigation of their susceptibility to lytic bacteriophages. *Antimicrob. Agents Chemother.* 2012, 56, 6175–6180. [CrossRef]

50. Mano, Y.; Saga, T.; Ishii, Y.; Yoshizumi, A.; Bonomo, R.A.; Yamaguchi, K.; Tateda, K. Molecular analysis of the integrons of metallo-beta-lactamase-producing *Pseudomonas aeruginosa* isolates collected by nationwide surveillance programs across Japan. *BMC Microbiol.* 2015, 21, 41. [CrossRef]

51. Treepong, P.; Kos, V.N.; Guyeux, C.; Blanc, D.S.; Bertrand, X.; Valot, B.; Hocquet, D. Global emergence of the widespread *Pseudomonas aeruginosa* strain in Western Germany. *J. Antimicrob. Chemother.* 2013, 70, 1973–1980.

52. Samuelsen, Ø.; Toleman, M.A.; Sundsfjord, A.; Rydberg, J.; Leegaard, T.M.; Palder, M.; Lia, A.; Ranheim, T.E.; Rajendra, Y.; Herman, N.O.; et al. Molecular Epidemiology of Metallo-beta-Lactamase-Producing *Pseudomonas aeruginosa* Isolates from Norway and Sweden Shows Import of International Clones and Local Clonal Expansion. *Antimicrob. Agents Chemother.* 2010, 54, 346–352. [CrossRef]

53. Seok, Y.; Bae, I.K.; Jeong, S.H.; Kim, S.H.; Lee, H.; Lee, K. Dissemination of IMP-6 metallo-beta-lactamase-producing *Pseudomonas aeruginosa* sequence type 235 in Korea. *J. Antimicrob. Chemother.* 2011, 67, 2791–2796. [CrossRef]

54. Hong, J.S.; Yoon, E.J.; Lee, H.; Jeong, S.H.; Lee, K. Clonal dissemination of *Pseudomonas aeruginosa* sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and PAGI-16 in South Korea. *Antimicrob. Agents Chemother.* 2010, 65, 7216–7223. [PubMed]

55. Mano, Y.; Saga, T.; Ishii, Y.; Yoshizumi, A.; Bonomo, R.A.; Yamaguchi, K.; Tateda, K. Molecular analysis of the integrons of metallo-beta-lactamase-producing *Pseudomonas aeruginosa* isolates collected by nationwide surveillance programs across Japan. *BMC Microbiol.* 2015, 21, 41. [CrossRef]

56. Treepong, P.; Kos, V.N.; Guyeux, C.; Blanc, D.S.; Bertrand, X.; Valot, B.; Hocquet, D. Global emergence of the widespread *Pseudomonas aeruginosa* strain in Western Germany. *J. Antimicrob. Chemother.* 2013, 70, 1973–1980.

57. Edelstein, M.V.; Skleenova, E.N.; Shevchenko, O.V.; D’souza, J.W.; Tapalski, D.V.; Azizov, I.S.; Sukhorukova, M.V.; Pavlikov, R.A.; Kozlov, R.S.; Toleman, M.A.; et al. Spread of extensively resistant VIM-2-positive ST235 *Pseudomonas aeruginosa* in Belarus, Kazakhstan, and Russia: A longitudinal epidemiological and clinical study. *Lancet Infect. Dis.* 2013, 13, 867–876. [CrossRef]

58. Abril, D.; Marquez-Ortiz, R.A.; Castro-Cardozo, B.; Moncayo-Ortiz, J.I.; Olarte Escobar, N.M.; Corredor Rozo, Z.L.; Reyes, N.; Tovar, C.; Sánchez, H.F.; Castellanos, J.; et al. Genome plasticity favours double chromosomal Tn401-bla*KPC-2* transposon insertion in the *Pseudomonas aeruginosa* ST235 clone. *Microbiol. Biocat.* 2019, 19, 45. [CrossRef]

59. Vanegas, J.M.; Cienfuegos, A.V.; Ocampo, A.M.; López, L.; del Corral, H.; Roncancio, G.; Sierra, P.; Echeverri-Toro, L.; Osypina, S.; Maldonado, N.; et al. Similar frequencies of *Pseudomonas aeruginosa* isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellin, Colombia. *J. Clin. Microbiol.* 2014, 52, 3978–3986. [CrossRef]

60. De Paula-Petrolí, S.B.; Campana, E.H.; Bocchi, M.; Bordinhão, T.; Picão, R.C.; Yamada-Ogatta, S.F.; Carrara-Marroni, F.E. Early detection of a hypervirulent KPC-2-producing *Pseudomonas aeruginosa* ST235 in Brazil. *J. Glob. Antimicrob. Resist.* 2018, 12, 153–154. [CrossRef] [PubMed]
58. Juan, C.; Beceiro, A.; Gutíérrez, O.; Albertí, S.; Garau, M.; Pérez, J.L.; Bou, G.; Oliver, A. Characterization of the new metallo-beta-lactamase VIM-13 and its integron-borne gene from a *Pseudomonas aeruginosa* clinical isolate in Spain. *Antimicrob. Agents Chemother.* 2008, 52, 3598–3596. [CrossRef] [PubMed]

59. Zamorano, L.; Mulet, X.; Garau, M.; Gallegos, C.; Juan, C.; Pérez, J.L.; Oliver, A. VIM-47, a New Variant of the Autochthonous Metallo-beta-Lactamase VIM-13 from the Balearic Islands in Spain. *Antimicrob. Agents Chemother.* 2016, 60, 3251–3252. [CrossRef] [PubMed]

60. Janvier, F.; Jeannot, K.; Tessé, S.; Robert-Nicoud, M.; Delacour, H.; Rapp, C.; Mérens, A. Molecular characterization of blaNDM-1 in a sequence type 235 *Pseudomonas aeruginosa* isolate from France. *Antimicrob. Agents Chemother.* 2013, 57, 3408–3411. [CrossRef] [PubMed]

61. Loconsole, D.; Accogli, M.; Monaco, M.; Del Grosso, M.; De Robertis, A.L.; Morea, A.; Capozzi, L.; Del Sambro, L.; Simone, A.; De Letteris, V.; et al. First detection of autochthonous extensively drug-resistant NDM-1 *Pseudomonas aeruginosa* ST235 from a patient with bloodstream infection in Italy, October 2019. *Antimicrob. Resist. Infect. Control.* 2020, 9, 73. [CrossRef] [PubMed]

62. Recio, R.; Villa, J.; Viedma, E.; Orellana, M.A.; Lora-Tamayo, J.; Chaves, F. Bacteraemia due to extensively drug-resistant *Pseudomonas aeruginosa* sequence type 235 high-risk clone: Facing the perfect storm. *Int. J. Antimicrob. Agents.* 2018, 52, 172–179. [CrossRef]

63. Witney, A.A.; Gould, K.A.; Pope, C.F.; Bolt, F.; Stoker, N.G.; Cubbon, M.D.; Bradley, C.R.; Fraise, A.; Breathnach, A.S.; Butcher, P.D.; et al. Genome sequencing and characterization of an extensively drug-resistant sequence type 111 serotype O12 hospital outbreak strain of *Pseudomonas aeruginosa*. *Clin. Microbiol. Infect.* 2014, 20, E609–E618. [CrossRef] [PubMed]

64. Guzvinec, M.; Izdebski, R.; Butic, I.; Jelic, M.; Abram, M.; Kosac, I.; Baronak, A.; Hryniewicz, W.; Gniadkowski, M.; Andrasevic, E.; et al. Characterising the *Pseudomonas aeruginosa* outbreak strain of CCBH4851, a nosocomial isolate belonging to clone SP (*P. aeruginosa* Sequence type 235 International High-Risk Clone through Whole-Genome Sequencing). *Antimicrob. Agents Chemother.* 2017, 61, e0043-17. [CrossRef] [PubMed]

65. Papagiannitsis, C.C.; Studentova, V.; Rizicke, F.; Tejkalova, R.; Hrabak, J. Molecular characterization of metallo-b-lactamase-producing *Pseudomonas aeruginosa* in a Czech hospital (2009–2011). *J. Med. Microbiol.* 2013, 62, 945–947. [CrossRef]

66. Vatcheva-Dobrevska, R.; Mulet, X.; Ivanov, I.; Zamorano, L.; Baraniak, A.; Hryniewicz, W.; Gniadkowski, M.; Andradevic, A.T. Sequence types 235, 111, and 132 predominate among multidrug-resistant *Pseudomonas aeruginosa* sequence type 235 high-risk clone: Facing the perfect storm. *Int. J. Antimicrob. Agents.* 2018, 52, 172–179. [CrossRef]

67. Van der Bij, A.K.; Van der Zwan, D.; Peirano, G.; Severin, J.A.; Pitout, J.D.; Van Westreenen, M.; Goessens, W.H. Metallo-beta-lactamase producing *Pseudomonas aeruginosa* Colonized with *Candida auris* Infection with Enterobacteriaceae and *Pseudomonas aeruginosa* Harboring Multiple Carbapenemases in a Returning Traveler Colonized with *Candida auris*. *Antimicrob. Agents Chemother.* 2020, 64, e0043-17. [CrossRef] [PubMed]

68. Arce-Suárez, J.; Fraile-Ribot, P.; Vázquez-Ucha, J.C.; Cabot, G.; Martinez-Guitián, M.; Lerse, E.; González-Bello, C.; Beceiro, A.; Rodríguez-Iglesias, M.; Gañán-Sánchez, F.; et al. Challenging Antimicrobial Susceptibility and Evolution of Resistance (OXA-681) during Treatment of a Long-Term Nosocomial Infection Caused by a *Pseudomonas aeruginosa* ST175 Clone. *Antimicrob. Agents Chemother.* 2019, 63, e01110-19. [CrossRef]

69. Cabot, G.; López-Causapé, C.; Ocampo-Sosa, A.A.; Sommer, L.M.; Domínguez, M.A.; Zamorano, L.; Juan, C.; Tubau, E.; Rodríguez, C.; Moyà, B.; et al. Deciphering the Risestome of the Widespread *Pseudomonas aeruginosa* Sequence Type 175 International High-Risk Clone through Whole-Genome Sequencing. *Antimicrob. Agents Chemother.* 2016, 60, 7415–7423. [CrossRef] [PubMed]

70. Döbelt, J.; Köster, A.; Stellrich, M.; Bunk, B.; Nübel, U.; Peter, S.; Neher, R.A. Rapid and Consistent Evolution of Colistin Resistance in Extensively Drug-Resistant *Pseudomonas aeruginosa* during Morbidostat Culture. *Antimicrob. Agents Chemother.* 2017, 61, e0043-17. [CrossRef] [PubMed]

71. Taira, G.; Samuelson, Ø.; Kristensen, T.; Økstad, O.A.L.; Heikal, A. Complete Genome Sequence of *Pseudomonas aeruginosa* K34-7, a Carbenapen-Resistant Isolate of the High-Risk Sequence Type 233. *Microbiol. Resour. Announc.* 2018, 7, e00886-18. [CrossRef]

72. Silveira, M.; Albano, R.; Asensi, M.; Assef, A.P. The draft genome sequence of multidrug-resistant *Pseudomonas aeruginosa* strain CCBH4851, a nosocomial isolate belonging to clone SP (ST277) that is prevalent in Brazil. *Mem. Inst. Oswaldo Cruz.* 2014, 109, 1086–1087. [CrossRef] [PubMed]

73. Khan, A.; Shropshire, W.C.; Hanson, B.; Dinh, A.Q.; Wanger, A.; Ostrosky-Zeicher, L.; Arias, C.A.; Miller, W.R. Simultaneous Infection with Enterobacteriaceae and *Pseudomonas aeruginosa* Harboring Multiple Carbapenemases in a Returning Traveler Colonized with *Candida auris*. *Antimicrob. Agents Chemother.* 2020, 64, e01466-19. [CrossRef] [PubMed]

74. Correa, A.; Montealegre, M.C.; Mojica, M.F.; Maya, J.J.; Rojas, L.J.; De La Cadena, E.P.; Ruiz, S.J.; Recalde, M.; Bosso, F.; Quinn, J.P.; et al. First report of a *Pseudomonas aeruginosa* isolate coharboring KPC and VIM carbapenemases. *Antimicrob. Agents Chemother.* 2012, 56, 5422–5423. [CrossRef] [PubMed]

75. Castanheira, M.; Toleman, M.A.; Jones, R.N.; Schmidt, F.J.; Walsh, T.R. Molecular characterization of a beta-lactamase gene, *blaGIM-1*, encoding a new subclass of metallo-beta-lactamase. *Antimicrob. Agents Chemother.* 2004, 48, 4654–4661. [CrossRef]
77. Wendel, A.F.; Kolbe-Busch, S.; Ressina, S.; Schulze-Röbbecke, R.; Kindgen-Milles, D.; Lorenz, C.; Pfeffer, K.; MacKenzie, C.R. Detection and termination of an extended low-frequency hospital outbreak of GIM-1-producing *Pseudomonas aeruginosa* ST111 in Germany. *Am. J. Infect. Control.* 2015, 43, 635–639. [CrossRef]

78. Viedma, E.; Juan, C.; Villa, J.; Barrado, L.; Orellana, M.A.; Sanz, F.; Otero, J.R.; Oliver, A.; Chaves, F. VIM-2-producing multidrug-resistant *Pseudomonas aeruginosa* ST175 clone, Spain. *Emerg. Infect. Dis.* 2012, 18, 1235–1241. [CrossRef]

79. López-Causapé, C.; Cabot, G.; Del Barrio-Toﬁño, E.; Oliver, A. The Versatile Mutational Resistome of *Pseudomonas aeruginosa*. *Front. Microbiol.* 2019, 9, 685. [CrossRef]

80. Perez-Vazquez, M.; Sola-Campoy, F.J.; Zurita, Á.M.; Avila, A.; Gomez-Bertomeu, F.; Solis, S.; Lopez-Urrutia, L.; Gómez-Berbará, E.M.; Cercenado, E.; Bautista, V.; et al. Carbapenemase-producing *Pseudomonas aeruginosa* in Spain: Interregional dissemination of the high-risk clones ST175 and ST244 carrying *bla*VIM-2, *bla*VIM-1, *bla*IMP-S, *bla*VIM-20 and *bla*KPC-2. *Int. J. Antimicrob. Agents* 2020, 56, 106026. [CrossRef]

81. Aguilar-Rodea, P.; Zúñiga, G.; Rodríguez-Espinola, B.A.; Olivares Cervantes, A.L.; Gamiño Arroyo, A.E.; Moreno-Espinosa, S.; de la Rosa Zamboni, D.; López Martínez, B.; Castellanos-Cruz, M.D.; Parra-Ortega, I.; et al. Identiﬁcation of extensive drug resistant *Pseudomonas aeruginosa* strains: New clone ST1725 and high-risk clone ST231. *PLoS ONE* 2017, 12, e0172882. [PubMed]

82. Perez, F.; Hujer, A.M.; Marshall, S.H.; Ray, A.J.; Rather, P.N.; Suwantarat, N.; Dumford, D., 3rd; O’Shea, P.; Domitrovic, T.N.J.; Salata, R.A.; et al. Extensively drug-resistant *Pseudomonas aeruginosa* isolates containing *bla*VIM-2 and elements of *Salmonella* genomic island 2: A new genetic resistance determinant in Northeast Ohio. *Antimicrob. Agents Chemother.* 2014, 58, 5929–5935. [CrossRef]

83. Mudau, M.; Jacobson, R.; Minenza, N.; Kuonza, L.; Morris, V.; Engelbrecht, H.; Nicol, M.P.; Bamford, C. Outbreak of multi-drug resistant *Pseudomonas aeruginosa* bloodstream infection in the haematology unit of a South African Academic Hospital. *PLoS ONE* 2013, 8, e55985. [CrossRef]

84. Koh, T.H.; Khoo, C.T.; Tan, T.T.; Arshad, M.A.; Ang, L.P.; Lau, L.J.; Hsu, L.Y.; Ooi, E.E. Multilocus sequence types of carbapenem-resistant *Pseudomonas aeruginosa* resistant in Central Europe. *J. Clin. Microbiol.* 2018, 56, 615–622. [CrossRef]

85. Zafer, M.M.; Al-Agamy, M.H.; Al-Mahallawy, H.A.; Amin, M.A.; Al Din Ashour, S. Dissemination of VIM-2 producing *Pseudomonas aeruginosa* ST233 at tertiary care hospitals in Egypt. *BMC Infect. Dis.* 2015, 15, 122. [CrossRef]

86. Fernandez, M.R.; Sellera, F.P.; Moura, Q.; Carvalho, M.; Rosato, P.N.; Cerdeira, L.; Lincopan, N. Zoonoanphitropic Transmission of Drug-Resistant *Pseudomonas aeruginosa*. *Brazil. Emerg. Infect. Dis.* 2018, 24, 1160–1162. [CrossRef] [PubMed]

87. Silvera, M.C.; Albano, R.M.; Asensi, M.D.; Carvalho-Assef, A.P. Description of genomic islands associated to the multidrug-resistant *Pseudomonas aeruginosa* ST357 producing IMP-7 metallo-beta-lactamase in Central Europe. *PLoS ONE* 2014, 9, 21. [CrossRef]

88. Hopkins, K.L.; Meunier, D.; Findlay, J.; Mustafa, N.; Parsons, H.; Pike, R.; Wright, L.; Woodford, N. NPM-1 metallo-beta-lactamase-producing *Pseudomonas aeruginosa* ST277 in the UK. *J. Med. Microbiol.* 2016, 65, 696–697. [CrossRef] [PubMed]

89. Silvera, M.C.; de Oliveira Santos, I.C.; Carvalho-Assef, A.P. Exploring the success of Brazilian endemic clone *Pseudomonas aeruginosa* ST277 and its association with the CRISPR-Cas system type I-C. *BMC Genomics* 2020, 21, 255. [CrossRef]

90. Martins, W.M.B.S.; Narciso, A.C.; Cayó, R.; Santos, S.V.; Fehlberg, L.C.C.; Ramos, P.L.; da Cruz, J.B.; Gales, A.C. SPM-1-producing *Pseudomonas aeruginosa* ST277 clone recovered from microbiota of migratory birds. *Diagn. Microbiol. Infect. Dis.* 2018, 90, 221–227. [CrossRef]

91. Turano, H.; Gomes, F.; Medeiros, M.; Oliveira, S.; Fontes, L.C.; Sato, M.I.; Lincopan, N. Presence of high-risk clones of OXA-23-producing *Acinetobacter baumannii* (ST79) and SPM-1-producing *Pseudomonas aeruginosa* (ST77) in environmental water samples in Brazil. *Diagn. Microbiol. Infect. Dis.* 2016, 86, 80–82. [CrossRef] [PubMed]

92. Papagiannitsis, C.C.; Medvecky, M.; Chudekova, K.; Skalova, A.; Rotova, V.; Spanelova, P.; Jakub, V.; Zemlickova, H.; Hrabak, J. Molecular Characterization of Carbapenemase-Producing *Pseudomonas aeruginosa* of Czech Origin and Evidence for Clonal Spread of Extensively Resistant Sequence Type 357 Expressing IMP-7 Metallo-β-Lactamase. *Antimicrob. Agents Chemother.* 2017, 61, e01181-1. [CrossRef] [PubMed]

93. Hrabák, J.; Cervená, D.; Izedbski, R.; Duljasz, W.; Gniaidkowski, M.; Fridrichová, M.; Urbásková, P.; Zemlicková, H. Regional spread of *Pseudomonas aeruginosa* ST357 producing IMP-7 metallo-β-lactamase in Central Europe. *J. Clin. Microbiol.* 2011, 49, 474–475. [CrossRef]

94. Kainuma, A.; Momiyama, K.; Kimura, T.; Akiyama, K.; Inoue, K.; Naito, Y.; Kinoshita, M.; Shimizu, M.; Kato, H.; Shime, N.; et al. An outbreak of fluoroquinolone-resistant *Salmonella* ST357 harboring the *cexO*U gene. *J. Infect. Chemother.* 2017, 23, 615–622. [CrossRef]

95. Al-Zahrani, I.A.; Al-Ahmadi, B.M. Dissemination of VIM-producing *Pseudomonas aeruginosa* associated with high-risk clone ST654 in a tertiary and quaternary hospital in Makkah, Saudi Arabia. *J. Chemother.* 2021, 33, 12–20. [CrossRef]

96. Pasteran, F.; Faccone, D.; Gomez, S.; De Bunder, S.; Spinelli, F.; Rapoport, M.; Petroni, A.; Galas, M.; Corso, A. Detection of an international multiresistant clone belonging to sequence type 654 involved in the dissemination of KPC-producing *Pseudomonas aeruginosa* in Argentina. *Antimicrob. Chemother.* 2012, 67, 1291–1293. [CrossRef]

97. Yousefi, S.; Nahaei, M.R.; Farajnia, S.; Aghazadeh, M.; Iversen, A.; Edquist, P.; Maatallah, M.; Giske, C.G. A multiresistant clone of *Pseudomonas aeruginosa* sequence type 777 spreading in a burn unit in Orumieh, Iran. *APMIS* 2013, 121, 146–152. [CrossRef]
98. Chmielarczyk, A.; Pobiega, M.; Ziolkowski, G.; Pomorska-Wesołowska, M.; Romaniszyn, D.; Krawczyk, L.; Wójkowska-Mach, J. Severe infections caused by multidrug-resistant non-fermentative bacilli in southern Poland. *Adv. Clin. Exp. Med.* **2018**, *27*, 401–407. [CrossRef] [PubMed]

99. Papagiannitsis, C.C.; Verra, A.; Galani, V.; Xitsas, S.; Bitar, I.; Hrabak, J.; Petinaki, E. Unravelling the Features of Success of VIM-Producing ST111 and ST235 *Pseudomonas aeruginosa* in a Greek Hospital. *Microorganisms* **2020**, *8*, 1884. [CrossRef]

100. Nascimento, A.P.; Ortiz, M.F.; Martins, W.M.; Morais, G.L.; Fehlberg, L.C.; Almeida, L.G.; Ciapina, L.P.; Gales, A.C.; Vasconcelos, A.T. Intraclonal Genome Stability of the Metallo-beta-lactamase SPM-1-producing *Pseudomonas aeruginosa* ST277, an Endemic Clone Disseminated in Brazilian Hospitals. *Front. Microbiol.* **2016**, *7*, 1946. [CrossRef]

101. Botelho, J.; Roberts, A.P.; Leon-Sampedro, R.; Grosso, F.; Peixe, L. Carbapenemases on the move: It’s good to be on ICEs. *Mob. DNA* **2018**, *9*, 37. [CrossRef] [PubMed]