Ethylene resistance in flowering ornamental plants – improvements and future perspectives

Andreas Olsen, Henrik Lütken, Josefine Nymark Hegelund and Renate Müller

Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques.

Horticulture Research (2015) 2, 15038; doi:10.1038/hortres.2015.38; published online: 26 August 2015

INTRODUCTION

The production of potted ornamental plants and cut flowers is a growing industry with annual turnover in the tens of billions of dollars, with the European Union being the single largest producer and consumer. Due to the competitive nature of the ornamental plant industry, research and development of new products and improvement of quality in existing products have become essential. The quality of flowering ornamentals, often judged by the longevity of their flowers, is an extremely important parameter in assessing quality. During the postharvest period, plants will likely experience stress as a result of poor lighting, temperature, and suboptimal humidity or watering. This stress often leads to visual symptoms such as wilting, color change, and abscission of various plant parts including flowers, petals, and buds. In climacteric plants, stress triggers the production of the phytohormone ethylene, which quickly deteriorates plants visually. Ethylene of exogenous origin can also affect the plants in closed spaces and plants that have been exposed to ethylene will often no longer be sellable.

In recent years, the biological significance of ethylene in ornamental production, its signaling pathway within the plant, and methods to alleviate its consequence to the aesthetic value of ornamental plants have been extensively reviewed. However, many reviews only consider a limited number of plant species, or focus on a particular perspective for solving the problem in only one or two of the levels of the ethylene pathway. In order to acquire an overview of the problems associated with ethylene-induced quality losses in ornamental plant production, recent research and advances in the field of ethylene biology and breeding techniques must be considered. The present review aims to compare results from past approaches in order to discuss future breeding strategies.

It will also point out avenues not yet explored in the area of ornamental plant breeding which may be essential for reducing ethylene responses that remains a decisive factor for high-quality production of many ornamental plants.

REGULATION OF THE ETHYLENE PATHWAY

The ethylene biosynthesis and signaling pathway can be presented in a linear model (Figure 1). Ethylene is essential for many processes in the plant and thus, there is a constant, low ethylene production (Figure 1a). Under certain conditions, however, ethylene biosynthesis and sensitivity increase in specific tissues and this triggers the ethylene signaling pathway (Figure 1b). This initially starts as an increase in expression of some of the enzymes responsible for ethylene biosynthesis which leads to higher ethylene production and then amplifies elongation of the plant and signal transduction (Figure 1). It is well established that ethylene biosynthesis is controlled by various enzymes, and that most of these enzymes are encoded by genes that have been conserved during evolution.

Recently, it was shown that different ACS homologs of Dianthus caryophyllus and Dianthus superbus were expressed in association with either the basal or the climacteric phase. In Petunia and Paeonia suffruticosa, the same was observed for certain ACS and ACO homologs. It therefore seems that these enzymes, central for ethylene biosynthesis (Figure 1), may hold the key for the ability of the plant to transition from basal to climacteric ethylene production (Figure 1). Furthermore in Arabidopsis, ACS activity was demonstrated to be affected by the formation of hetero- and homo-dimers, and phosphorylation by the mitogen-activated protein kinase (MAPK) MPK6, which itself is expressed in response to stress. Recently, a similar role for MPK6 was demonstrated in Rosa hybrida.
The function of ethylene receptors too, is subject to modification from various proteins such as REVERSIBLE ETHYLENE SENSITIVITY1 (RTE1),30–32 and their own histidine kinase activity.33 Receptors often act simultaneously, and in physical association with each other,34,35 but as with the ethylene biosynthesis enzymes, different receptor homologs are expressed depending on the developmental stage of the flower, as has been documented in D. caryophyllus36, R. hybrida,37 Oncidium,38 Delphinium,39 and Pelargonium hortorum.40

The function of EIN2 can be inhibited not only by CTR1 but also ETHYLENE RESISTANT/ETHYLENE RECEPTOR1 (ETR1)51 and EIN2 TARGETING PROTEIN1 (ETP1) and ETP2. ETP1 and ETP2 were down-regulated in the presence of ethylene,42,43 but activated CTR1 in the absence of ethylene.44 Unlike most of the other genes of the ethylene pathway, EIN2 has no homologs and no functional overlap with other genes.45–47 There is some indication that EIN2 expression is influenced by auxin and abscisic acid (ABA),48 which means that EIN2 could be a point of crosstalk for several different pathways. Interestingly, increase in EIN2 protein levels has been shown to be concomitant with expression of the transcription factor ORESARA1 (ORE1) in Arabidopsis, associated with age-induced programmed cell death. ORE1 is suppressed by miRNA164, which declines with cell age.49 In R. hybrida flowers exposed to ethylene, different miRNAs including miRNA164, exhibited a change in expression level in petals,50 indicating a possible new level for expression control of ethylene genes.

EIN3/EIL homologs also change in the transition of the plant tissue to the climacteric phase. In D. caryophyllus, DcEIL3 increased51 and DcEIL1 decreased52 in expression as the flower development occurred. Tanase et al.53 on the other hand documented that DcEIL3 expression did not change with age in petals, but DcEIL4 was expressed less in older flowers. In P. suffruticosa, PsEIL1 accumulated from the flower opening stage to senescence, while PsEIL2 and PsEIL3 decreased after flower opening.54 PsEIL2 and PsEIL3 mRNA levels increased in response to exogenous ethylene, while PsEIL1 was unaffected by this treatment and plants treated with 1-methylcyclopropene (1-MCP) and exposed to ethylene, exhibited a decrease in PsEIL3 expression.54 In Oncidium gardneri, OgEIL1 and OgEIL2 were constitutively expressed in flower buds, but when the buds were exposed to ethylene, OgEIL1 clearly peaked in expression relative to OgEIL2.55 Collectively, these genes present numerous targets for modifying ethylene regulation molecularly.

REDDUCING ETHYLENE-PROMOTED SENESCEENCE

Approaches addressing the problem of ethylene-induced senescence can be broadly divided into two main groups: interventions directly addressing the ethylene pathway and those indirectly targeting it as described below. Because the ethylene pathway is fundamentally integrated into plant metabolism, changing a seemingly unrelated pathway of the plant can result in some effect on the ethylene pathway. Techniques to combat senescence such as changes in the gas composition of the atmosphere or temperature of storage places for plants have also been examined and gave mixed results.56–58 These techniques, although successful to a point, lead to unsustainable production of ornamental plants because they extend the time needed for production and cost in terms of consumption of electricity, water, personnel, and specialized equipment. Silver thiosulfate (STS) and 1-MCP have been proven to be powerful inhibitors of ethylene responses and STS is commonly used in ornamental plant production. However, silver is harmful to humans and the environment and thus its use should be
avoided. Plant breeding on the other hand strives to improve the intrinsic quality of ornamental plants and thereby produce sustainable products.59

TARGETING THE ETHYLENE PATHWAY DIRECTLY

Cross-pollination coupled with ethylene screening

The simple strategy of choosing individuals in a population that display superior flower ethylene tolerance and crossing these individuals with each other, will result in progeny with a lower ethylene sensitivity than the original population, if the trait is heritable.60 Success in such breeding has been reported in Begonia61 and D. caryophyllus.52 It has long been known that there are vast differences among cultivars of D. caryophyllus in their ethylene biosynthetic ability and affinities of receptors to ethylene.63 By using only simple pollination, Onozaki and coworkers62 achieved a significant improvement in the longevity of D. caryophyllus flowers from 1992 to 2004. Their original material had flower longevity of 5.7 days,64,65 but through repeated crossing, the sixth generation had increased its mean of flower life to 15.9 days.62 An investigation into the cause of this increase, revealed that the ethylene biosynthesis enzyme genes DcACS1, DcACS2, and DcACO1 were all expressed in extremely low levels in cultivars with a good longevity and ethylene production was as low.66,67

This approach involves screening for ethylene insensitivity and will only be applicable if a population exhibits significant differences in response between individuals. The number of ornamental flower cultures showing such diversity is, however, very large. Differences in longevity of flowers have been noted for Paeonia,68 Delospernum, Campanula, Sedum, Cephalaria, Lobelia, Armeria, Primula, Penstemon,69 Lisianthus, Trachelium, Zinnia,70 Potentilla, Lysimachia, Veronica, Chelone,71 and Rosa11,72,73 which also exhibited varying ethylene production levels.73–76 Similar observations have been made for Pelargonium,77 where heritability has also been documented.78 As it has been for Impatiens walleriana,79 Antirrhinum majus,80–82 Dianthus barbatus,83 and Petunia.84 In many ornamental plant genera, cultivar-specific variation in ethylene sensitivity has been demonstrated including Phalaenopsis85,86 and Kalanchoé.87

Hybridization

Many of the abovementioned genera are typically represented by hybrids in ornamental plant production. Hybridization is achieved by interspecific cross-pollination and it thus produces extremely heterogeneous progeny, which may be good for producing cultivars with higher ethylene tolerance. A well-documented example of this is found in Australian waxflower breeding where Chamaelaucium species were hybridized with Vérticordia plumosa, forming more ethylene-insensitive plants.88 Hybrids of Leptospermum species89 and Grevillea90 similarly have been reported to have longer longevity than the parental species, which may be correlated with higher ethylene insensitivity as both genera are climacteric. This aspect, however, has not yet been investigated.

The major disadvantage of both intra- and interspecific cross-pollination is that it cannot be used directly for improving existing cultivars. Considerable back-crossing to the original plant may be necessary.91 This problem can be solved to some extent by employing marker-assisted selection, if reliable markers are found92 and have been used successfully in ornamentals such as D. caryophyllus with regards to bacterial wilt resistance.93 Hybridization can be more demanding as manipulation of the style as well as embryo rescue or ovule and ovary culture may be necessary in order to yield any progeny, as exemplified in Kalanchoé species hybridization.94

Conventional mutagenesis

Techniques that increase genetic variability where no natural variation exists are found in conventional breeding with the use of mutagenic chemicals or radiation.95 Such breeding strives to change the cultivar in a certain qualitative aspect and leaves its agronomical traits unchanged, making it easier for producers to handle, and saves time that would otherwise be spent on back-crossing.71,96 However, as it is impossible to control where the mutation occurs in the genome, many plants will have to be screened before a plant exhibiting any change in the relevant trait is found.97 Targeting Induced Local Lesions In Genomes (TILLING) can be used to save time that would otherwise be needed for phenotyping the plants and has been used successfully in the field of ethylene-response improvement. Dahmani-Mardas et al.98 produced Cucumis melo with a knockout mutation in the CmACO1 gene which displayed a longer shelf life and better firmness than none-mutated plants. TILLING is readily applicable to ornamental plants as is exemplified in Petunia.99

Genetic transformation

Genetic transformation is the transfer of foreign or native genes and promoters to a target genome by Agrobacterium-mediated transformation, particle bombardment, or infiltration. Agrobacterium tumefaciens-mediated transformation with recombinant DNA has been used in various ways to modify ethylene biosynthesis and signaling. These approaches have improved understanding of ethylene biosynthesis and signaling; however, their use in commercial breeding is limited and this technique’s products are considered genetically modified.99,100

Antisense or sense transformations of ACS and ACO genes have been successfully attempted in various ornamental species including D. caryophyllus,101–113 Torenia,104 Petunia,114,115 and Begonia.66,106 All transformed plants exhibited longer shelf life, presumably due to lower production of ethylene. Klee et al.107 conducted an alternative modification of the biosynthesis pathway with the removal of ACC by the addition of the enzyme ACC deaminase, found in bacteria, to Solanum lycopersicum which significantly delayed ripening of the fruit. However, even though plants with lower ethylene production have a longer flower life, their quality can still be negatively affected by exogenous ethylene.

Transformations of Petunia with the Atert1-1 mutated gene from Arabidopsis using CaMV 35S constitutive promoter, resulted in plants with considerably higher ethylene tolerance but also with severely hampered growth.109 Succeeding studies used a flower-specific FB1 promoter in Kalanchoé,109 Campanula,110,111 and D. caryophyllus,112,113 which provided a better flower longevity without other developmental effects, since the promoter ensured expression solely in flowers. Transformations of mutated genes other than Atert1-1 have also been studied in Nemesia strumosa114 and Torenia fournieri. In both cases, ethylene insensitivity was increased, but not as much as with Atert1-1 (Table 1).8

Other promoters such as FB3,115 P_SAG1-10, FS19, and FS2610 that are solely associated with flower tissue, also have potential to be used in this context and other promoters are still being investigated.117 Chemically inducible promoter systems are also within the reach of today’s technology, and are exemplified by the DEX-inducible system, demonstrated in Petunia hybrid118 (Table 1), and more famously, the ethanol-inducible system119 which has been successfully used in different crops.120 Inducible systems seem not to affect the plant adversely,121 but the inducing chemical still needs to be applied to the plant in due time, which makes such a system commercially less appealing.

Great care needs to be exercised when choosing a promoter, as a study by Cobb et al.122 demonstrated that Petunia transformed with Atert1-1 did not have delay in senescence under the flower-specific APETALA3 (AP3) promoter, as this promoter only drives expression in buds and young flowers, but not in mature flowers (Table 1).

Overexpressing PhEIN2 in Petunia using the CaMV 35S promoter has also been attempted. This produced plants with significant
Ethylene resistance in ornamentals
A Olsen et al

Table 1. Transformation of ornamental plants modifying ethylene receptors

Promoter	Gene	Plant species	Agrobacterium tumefaciens strain	Plasmid	Reference
CaMV 35S	Ater1-1	P. hybrida	ABI	pMON11063	108
Petunia FBP1 CaMV 35S	Ater1-1	D. caryophyllus	AGLO	pBEO210	112
				pBEO220	
AP3	Ater1-1	P. hybrida	?	?	116
CaMV 35S	Brassica oleracea ers (boers)	P. hybrida	LBA4404	pBOERS4421	123
CaMV 35S	CmETR1/H69A	N. strumosa	GV2260	pBiCM-ETR1/ H69A	113
CaMV 35S	CmERS1/H70A	Lotus japonicus	Mesoehizobium loti, MAFF330399	pGD499	124
Petunia FBP1	Ater1-1	Kalanchoe blossfeldiana	AGLO	pBEO210	109
Petunia FBP1	Ater1-1	Oncidium, Odontoglossum	EHA105 and LBA4404	pBEO210	125
Petunia FBP1	Ater1-1	Campanula carpatica	AGLO	pBEO210	110
CaMV 35S	DcETR1nr	T. fournieri	?	pBiDC-ETR1nr	53
GVG DEX-inducible	Ater1-1	P. hybrida	LBA4404	pTA7001	118

Genome-editing technologies

During the last decades, several innovative biotechnologies have been developed which appear to have potential in breeding toward ethylene tolerance.106,128,130 These technologies are based on engineered nuclease that cleave DNA in a sequence-specific manner, thus enabling targeted genome-editing. Modifying or inactivating specific gene function is possible due to sequence-specific DNA binding domains or RNA sequences. The oldest of these techniques is zinc finger nucleases (ZNFs), which relies on an engineered endonucleases that are able to attach to a specific target sequence and induce a double-strand break. This is perceived by the cell, which repairs the break by mechanisms which may cause sequence alterations or introduce small templates.131,132 A newer alternative to ZNFs is transcription activator-like effector nucleases (TALENs), which functions in much the same manner as ZNFs. Recently, however, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (CRISPR/Cas9) system has been developed. The CRISPR/Cas9 system functions via a mechanism similar to RNA interference, which can recognize and cleave foreign DNA.130 Both TALEN and CRISPR/Cas9 have been demonstrated to be functional for targeted mutagenesis in S. lycopersicum,133,134 however, no modifications of the ethylene pathway have yet been conducted. It is important to mention that all these methods rely on a technology in order to deliver the construct to the genome of the plant, and are therefore still limited to plants where a genetic transformation, regeneration or virus-based delivery system is reliable. In order to bypass negative effects on growth of plants due to defective ethylene signaling, the genes that should be targeted are those which have homologs that are clearly associated with the climacteric phase. Using this approach, the pathway should function normally under growth and development. Therefore, certain homologs of ACS, ACO, ethylene receptors, and EIN3/EIL may present good targets for knockouts.

TARGETING THE ETHYLENE PATHWAY INDIRECTLY

Hormonal interaction

Application of cytokinins such as kinetin and zeatin to petals of D. caryophyllus delayed the conversion of ACC to ethylene.135 Cytokinin oxidase/dehydrogenase, responsible for cytokinin degragation, was up-regulated during senescence in D. caryophyllus136 and Petunia,137 and when it was inhibited in D. caryophyllus petals, the senescence phase was prevented.138 This knowledge has been applied by transformations with isopentenyl transferase, important for the synthesis of many cytokinins, under the control of senescence-associated promoter P aSG12. Transformed Petunia plants exhibited elevated levels of cytokinins in flowers and significant delay in senescence and ethylene production as well as higher tolerance for exogenous ethylene.139 Similarly in Rosa, ethylene sensitivity decreased in leaves, but flowers were not studied.140

Exogenous application of hormones and other substances have also been shown to decrease the expression of genes of the ethylene pathway including ABA, which inhibited ACS and ACO in Hibiscus,141 and D. caryophyllus.142 Moreover, nitric oxide down-regulated the activity of RhACO and lowered the production of ethylene resulting in longer shelf life of R. hybrida flowers.143 and glucose down-regulated PsACS1 in P. sulfurfrctica flowers.144 Other sugars have also been shown to increase flower longevity.136,145–148 These studies demonstrate that there is a vast potential in exploring new ways to achieve products of higher quality.

Senescence-related and non-ethylene pathway genes

Exploration of different genes which is seemingly not connected to the ethylene pathway has also been pursued. There are three main strategies in this area. The first is identification of genes that are highly expressed in young tissue but not during senescence, and constitutively overexpressing those. The second approach goes the other way and starts with the identification of genes highly expressed in senescing tissue, and silencing their expression. The third tactic is targeting protein synthesis.

The first strategy can be exemplified by the gene FOREVER YOUNG FLOWER (FYF) from Arabidopsis, which was highly expressed in young flowers but not in old flowers. Transformation using this gene under constitutive expression in S. lycopersicum resulted in delays in petal senescence in response to exogenous ethylene or pollination, as well as inhibited root development and a shorter life span.129 When this silencing transformation was combined with the Ater1-1 mutation, ethylene was inhibited even more,127 demonstrating the possibility of increasing insensitivity by stacking transformations of several components simultaneously.

Petunia plants transformed with a sense PhEIN3 exhibited delayed petal senescence, but no increase of flower longevity,8,127 which may possibly be due to the redundancy found among EIN3/EIL members. S. lycopersicum was transformed with a construct silencing EIN3 BINDING F-BOX1 (EBF1) and EBF2, which rapidly target EIN3/EILs for degradation that significantly increased the rate of senescence in S. lycopersicum.45 This presents an opportunity for future research, potentially by overexpression of EBFs.

ERFs are a sizeable and diverse group of genes, many of which are up-regulated in response to ethylene, but have largely been overlooked by researchers so far. Chang et al.128 observed that by silencing the ERF Petunia transcription factor homeodomain-leucine zipper protein (PhHDZip), PhACO and PhACO were decreased in expression in transformed flowers and led to an increase of flower longevity by 20%.

Horticulture Research (2015) © 2015 Nanjing Agricultural University
down-regulation of various ACS and ACO homologs. The same transformation in *Eustoma grandiflorum* caused a delay in senescence and down-regulation of *ERFs*. Furthermore, when combined with *etr1*, *ein2*, or *ctr1* mutations, it further enhanced flower longevity in *Arabidopsis*. Investigating a MADS-domain transcriptional regulator, AGAMOUS-LIKE-15 (AGL15), Fernandez et al. noted its accumulation in young tissue and developing organs. Constitutive overexpression of *AGL15* increased the longevity of petals significantly in *Arabidopsis* and caused a repression of *GmACO1* in *Glycine max*. It is now established that AGL15 has similar activity as AGL18, both serving as repressors of early flowering and in this way leading to better longevity if still expressed when flowering does occur. Another MADS-domain transcriptional regulator that has been recognized to be associated with young flowers of *Phalaenopsis equestris* is *PeMADS6*. *Arabidopsis* plants transformed with a construct overexpressing *PeMADS6* exhibited flower longevity up to four times longer than wild type plants. Examples from the second strategy of silencing senescence-related genes, include *ACTIN-RELATED PROTEIN 4* (ARP4), a chromatin modification gene, that has been silenced using RNAi in *Arabidopsis*, which resulted in longer flower life. The gene *MjXB3*, coding for a RING zinc finger ankyrin repeat protein, has been demonstrated to be highly expressed in senescing flowers of *Mirabilis jalapa*, *P. hybrida*, and *D. caryophyllus*. Using virus-induced gene silencing for *MjXB3* in *P. hybrida*, Xu et al. demonstrated that flower longevity was extended by two days, corresponding to a 20% increase compared to wild type flowers. The third strategy of targeting protein synthesis owes its inspiration to ethylene-insensitive flowers, where complete inhibition of protein synthesis in flowers increases flower longevity. The relevance of this to climacteric flowers has been attested by silencing *PBB2* (coding for the beta subunit of the 26S proteasome) using an inducible system in *Petunia*. Mature cut flowers that were induced lasted considerably longer than uninduced flowers. Reid and Jiang demonstrated the same concept by silencing one of the ribosomal subunit genes (RPL2), again using an inducible system. Once more, the longevity of cut *Petunia* flowers placed in water with the inducing agent was much better than those uninduced. This approach, however, still relies on the application of an inducer, and is not realistic for use in commercial potted-plant production. For the cut-flower industry, however, there may be great potential. Natural transformation Transformation with the naturally occurring soil bacterium *Agrobacterium rhizogenes* has been termed natural transformation due to the fact that no recombinant DNA is used and the infection is a natural process. Authorities in Denmark have confirmed that naturally transformed plants are not covered by the GMO legislation in Europe. Using a wild strain of *A. rhizogenes*, Lütken et al. transformed Kalanchoë plants and observed that plants which contained rol genes from *A. rhizogenes* exhibited significantly increased postharvest quality, an ability which was maintained through two generations along with the rol genes. The mechanism behind this response is yet unknown and many open reading frames of the plasmids in question still remain uninvestigated. Changes in longevity of flowers transformed with rol genes may be due to altered hormone homeostasis and/or sugar metabolism and transport. DISCUSSION Strategies targeting the ethylene pathway indirectly seem to be as effective as those which target it directly. Of the indirect strategies, ectopic overexpression of genes associated with juvenile tissue, such as *FYF* or *AGL15*, seems to be particularly promising, as is the prospect of overproduction of hormones that are antagonistic to ethylene, such as cytokinins and ABA. Strategies that focus on the ethylene pathway directly have been more numerous and have targeted nearly all known elements of the ethylene pathway. Research comprising flower-specific promoter sequences in genetic transformations seems to be especially propitious in providing the ability to express the transferred gene only in flowers or even more specifically, only in senescing flowers. Silencing several genes simultaneously in the flowers of plants as in *Petunia*, may be the ultimate answer, and is a feature that is well within the grasp of current technology and methodology. Various combinations of overexpression of certain genes associated with development and silencing genes associated with senescence may very well be a worthwhile strategy as well. It is remarkable that both conventional techniques such as simple cross-pollination and genetic transformation using recombinant DNA succeeded in breeding ornamental plants which have higher tolerance for ethylene and thus higher intrinsic quality. *Agrobacterium*-mediated transformation, where reliable, has the advantage that breeding can be much faster when transferring specific target genes. Breeding based on genetic transformation is more precise and can easily cross incompatibility boundaries in comparison with conventional crossing. This is a particularly important advantage in ornamental plants that have long development cycles such as orchids, however, in fast growing plants, this advantage is less substantial. Although conventional and genetic transformation are not mutually exclusive, the fact remains that ornamental plant products that are genetically modified are conspicuously missing on the market, especially in Europe, with only a handful of products sold worldwide. The basic reason for this is the status of such product as genetically modified organisms (GMOs). Europe, the biggest consumer, producer and breeder of ornamentals has some of the most comprehensive and strict legislation concerning GMOs. At the moment, the approval of GMO products is conducted on a case-by-case basis and is both expensive and time-consuming. Moreover, the technology and training required for producing GMOs are themselves expensive, which brings a substantial economic burden. Producers not operating in Europe also face difficulties as GMO legislation may be quite different from country to country. However, the emergence of new genome-editing techniques presents new challenges particularly for European legislation in the area of GMOs, which could lead the way to broader acceptance of new breeding techniques and their products. Techniques such as ZFN, TALENs, and CRISPR/Cas9 that can be used to achieve precise mutagenesis and silencing or overexpressing genes are now readily available, and can be used in such a way that does not introduce foreign elements to the genome of the final product. The question of whether the products of these techniques are considered GMOs or not has not yet been settled, and jurisdictions that consider the methods alone rather than the actual properties of the final product may end up with ineffective legislation that cannot be enforced, as pointed out in Seeds of Change. Certainly such techniques have the ability to greatly reduce the time, and thus the bulk of the cost which is associated with plant breeding. The first commercially available plant derived from a genome-editing technique, a herbicide-resistant oilseed rape, has already been announced. There are still technical difficulties associated with the actual transformation step for many ornamental plants, which can only be overcome by further research. For this reason, it is must be of the utmost importance for any plant breeding company to devote some of its resources to research in such new breeding techniques. CONCLUSIONS Strategies targeting the ethylene pathway directly seem to have as much potential as those targeting indirect components, and very
diverse species of ornamental plants suggest great potential in ethylene tolerance breeding. Although conventional breeding techniques are slower than newer breeding techniques, they remain the most used in ornamental plant breeding for higher ethylene tolerance. This is most probably due to the legal status of genetic modification approaches. However, as newer precise genome-editing techniques become available, it is very likely that the products of such techniques will be accepted worldwide. The reason for this is that such plants would be indistinguishable from plants derived by the use of conventional breeding techniques. It is therefore recommendable for ornamental plant breeders to begin the implementation of such new breeding technologies, as they have great to potential to lead to superior plant products needed by the ornamental plant industry.

COMPETING INTERESTS
The authors have no conflicts to declare.

REFERENCES
1 Chandler SF, Brugliera F. Genetic modification in floriculture. Biotechnol Lett 2011; 33: 207–214.
2 European Commission Agriculture and Rural Development. Statistics for live plants and products of floriculture, 2013. Available at: http://ec.europa.eu/agriculture/fruit-and-products/product-reports/flowers/index_en.htm (accessed 1 March 2014).
3 Palma M, Hall C, Collart A. Repeat buying behavior for ornamental plants: A consumer profile. JFRS 2011; 42: 67–77.
4 Wagstaff C, Bramke I, Breeze E, Thornber S, Harrison E et al. A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns. J Exp Bot 2010; 61: 2905–2921.
5 Müller R, Sisler EC, Serek M. Stress induced ethylene production, ethylene binding and the response to the ethylene action inhibitor (1-MCP) in miniature roses. Sci Hortic 1999; 83: 51–59.
6 Morgan PW. Another look at interpreting research to manage the effects of ethylene in ambient air. Crop Sci 2011; 51: 903–913.
7 Shibuya K. Molecular mechanisms of petal senescence in ornamental plants. Jpn Jn Soc Hortic Sci 2012; 81: 140–149.
8 Satoh S. Ethylene production and petal wilting during senescence of cut carnation (Dianthus caryophyllus) flowers and prolonging their vase life by genetic transformation. Jpn Jn Soc Hortic Sci 2011; 80: 127–135.
9 Fischer AM. The complex regulation of senescence. Crit Rev Plant Sci 2012; 31: 124–147.
10 Scholler GE. Ethylene and the regulation of plant development. BMC Biol 2012; 10: 9.
11 Fanourakis D, Pieruschka R, Savvides A, Macnishd AJ, Sarlikioti V et al. Sources of ethylene resistance in ornamentals. J Food Sci Technol 2011; 48: 82–90.
12 Merchante C, Alonso JM, Stepanova AN. Ethylene signaling: Simple ligand, receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J Exp Bot 2006; 57: 2763–2773.
13 Reid MS, Jiang C. Postharvest biology and technology of cut flowers and potted plants. In: Janek J (ed.) Postharvest biology and-vegetables/product-reports/flowers/index_en.htm (accessed 1 March 2014).
14 Huang LC, Lai UL, Yang SF, Chu MJ, Kuo CI et al. Delayed flower senescence of Petunia hybrid plants transformed with antisense brocoli ACC synthase and ACC oxidase genes. Postharvest Biol Technol 2007; 46: 47–53.
15 Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot 2013; 64: 1232–1239.
16 Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell 2002; 14: 131–151.
17 Liu Y, Zhang S. Phosphorylation of 1-aminocyclopentane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 2004; 16: 3386–3399.
18 Meng Y, Ma N, Zhang Q, You Q, Li N et al. Precise spatio-temporal modulation of ACC synthase by MPK6 cascade mediates the response of rose flowers to rehydration. Plant J 2014; 79: 941–950.
19 Hirayama T, Kieber JJ, Hirayama N, Kogon M, Guzman P et al. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease–related copper transporter, is required for ethylene signaling in Arabidopsis. The Cell 1999; 97: 383–393.
20 Binder BM, Rodríguez F, Bleeker AB. The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem 2010; 285: 37263–37270.
21 Qiu L, Xie F, Yu J, Wen CK. Arabidopsis RTE1 is Essential to Ethylene Receptor ETR1-Amino-terminal signaling independent of CTR1. Plant Physiol 2012; 159: 1263–1276.
22 Yang W, Huang H, Liu J, Fu Z, Wang J et al. Trancriptional regulation of two RT-like genes of carnation during flower senescence and upon ethylene exposure, wounding treatment and sucrose supply. Plant Biol 2011; 13: 719–724.
23 Ma Q, Du W, Brandizzi F, Giovanni JJ, Barry CS. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE-LIKE1 provides evidence for distinct ethylene signaling modules in tomato. Plant Physiol 2012; 160: 1968–1984.
24 Hall BP, Shaekel SN, Amir M, Li H, Qiu X et al. Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 2012; 159: 682–695.
25 Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K et al. Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 2008; 1: 308–320.
26 Gao Z, Wen CK, Binder BM, Chen YF, Chang J et al. Arabidopsis receptors mediate signaling in heteromeric interactions among ethylene. J Biol Chem 2008; 283: 23801–23810.
27 Shibuya K, Nagata M, Tanikawa N, Yoshikawa T, Hashiba T et al. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot 2002; 53: 399–406.
28 Müller R, Stummann BM, Serek M. Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Rep 2000; 19: 1232–1239.
29 Huang WF, Huang PL, Do YY. Ethylene receptor transcript accumulation patterns during flower senescence in Oncidium ‘Gower Ramsey’ as affected by exogenous ethylene and pollinia cap dislodgement. Postharvest Biol Technol 2007; 44: 97–94.
30 Tanase K, Ichimura K. Expression of ethylene receptors DI-ERS1-3 and DI-ERS2, and ethylene response during flower senescence in Delphinium. J Plant Physiol 2006; 163: 1159–1166.
31 Dervinis C, Clark DG, Barrett JE, Neil TE. Effect of pollination and exogenous ethylene on accumulation of ETR1 homologue transcripts during flower petal abscission in geranium (Pelargonium hortorum L. H. Bailey). Plant Mol Biol 2000; 42: 847–856.
32 Bisson MMA, Groth G. New insight in ethylene signaling: autokinaise activity of ETR1 modulates the interaction of receptors and EN2. Mol Plant 2010; 5: 882–889.
33 Qiao H, Chang KN, Yazaki JH, Ecker JR. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EN2 triggers ethylene responses in Arabidopsis. Genes Dev 2009; 23: 512–521.
34 Bisson MMA, Groth G. Cyanide is an adequate agonist of the plant hormone ethylene for studying signaling of sensor kinase ETR1 at the molecular level. Biochem J 2012; 444: 261–267.
35 Shahi W, Tahir I. Flower senescence: Some molecular aspects. Planta 2014; 239: 277–297.
Yang TF, Gonzalez-Carranza ZH, Mauders MJ, Roberts JEA. Ethylene and the regulation of senescence processes in transgenic Nicotiana sylvestris Plants. Ann Bot 2008; 101: 301–310.

Yang Y, Wu Y, Pirellu J, Regad F, Bouzayen M et al. Silencing SI-EBF1 and SI-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. J Exp Bot 2010; 61: 697–708.

Fu Z, Wang H, Liu J, Liu J, Wang J et al. Cloning and characterization of a DCEIN2 gene responsive to ethylene and sucrose in cut flower carnation. Plant Cell Tissue Organ Cult 2011; 105: 447–455.

Gao F, Hao J, Yao Y, Wang X, Hasi A. Cloning and characterization of ethylene-insensitive 2 (EIN2) Gene from Cucumis melo. Rus J Plant Physiol 2013; 60: 713–719.

Kim JH, Woo HR, Kim J, Lim PO, Lee IC et al. Trificurate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 2009; 323: 1053–1057.

Pei H, Ma N, Chen J, Zheng Y, Tian J et al. Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening. PLoS One 2013; 8: e64290.

Iordachescu M, Verlinden S. Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. J Exp Bot 2005; 56: 2011–2018.

Waki K, Shiba K, Yoshioka K, Hashiba T, Satoh S. Cloning of a cDNA encoding ETHYLENE INSENSITIVE3 orthologs from Oncidium Gower flower tissues. Plant Growth Regul 2001; 34: 447–455.

Tanase K, Aida R, Yamaguchi H, Tanikawa N, Nagata M et al. Isolation and expression analysis of the EIN3-like genes in tree peony (Paeonia suffruticosa). Plant Cell 2013; 112: 181–190.

Chen SY, Tsai HC, Raghu R, Do YY, Huang PL. cDNA cloning and functional characterization of ETHYLENE INSENSITIVE3 orthologs from Oncidium Gower Ramsey involved in flower cutting and pollina cap dislodgement. Plant Physiol Biochem 2011; 49: 1209–1219.

Serek M, Woltering EJ, Sisler EC, Nell TA. Genotypic variation in the postharvest performance of potted carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower opening. J Exp Bot 2003; 54: 1377–1383.

Kim HJ, Craig R, Brown KM. Genetic variation in ethylene responsiveness of Regal Pelargonium. J Am Soc Hortic Sci 2006; 131: 122–126.

Howard NP, Stirnaitis D, de Leon N, Havey MJ, Martin W. Diallel analysis of floral longevity in Impatiens walleriana. J Am Soc Hortic Sci 2012; 137: 47–50.

Martin WJ, Stirnaitis DP. Early generation evaluation in Antirrhinum majus for prediction of cut flower postharvest longevity. J Am Soc Hortic Sci 2003; 128: 876–880.

Weber JA, Martin WJ, Stirnaitis DP. Genetics of postharvest longevity and quality traits in late generation crosses of Antirrhinum majus L. J Am Soc Hortic Sci 2005; 130: 694–699.

Macnish AJ, Leonard RT, Borda AM, Nell TA. Heterologous expression of a mutated carnation ethylene receptor gene, Dc-ETR1, suppresses petal abscission and autocatalytic ethylene production in transgenic Torenia fournieri Lind. Jpn Soc Hortic Sci 2011; 80: 113–120.

Wang Y, Zhang C, Pei JY, Wang X, Wang W et al. Isolement et expression analysis of the EIN3-like genes in tree peony (Paeonia suffruticosa). Plant Cell 2013; 112: 181–190.

Lee JY, Kim YH, Kang YN, Park KS, Choe Y et al. Development of ornamentals: Current status and future directions. J Jpn Soc Hortic Sci 2001; 58: 187–197.

Shibata M. Importance of genetic transformation in ornamental plant breeding. Plant Biotech J 2008; 6: 59–66.

Izumikawa Y, Nakamura I, Mii M. Interspecific hybridization between Dianthus caryophyllus L. and Torenia fournieri Lind. Jpn J Hortic Sci 2003; 72: 297–302.

Riek JD, Debener T. Present use of molecular markers in ornamental breeding. J Plant Biotech 2001; 8: 109–116.

Brink LM, van Doorn WG. Categories of petal senescence and Abscission: A re-evaluation. Acta Hortic 2003; 60: 297–302.

van Doorn WG. Categories of petal senescence and Abscission: A re-evaluation. Ann Bot 2001; 87: 447–456.

van Doorn WG. Categories of petal senescence and Abscission: A re-evaluation. Ann Bot 2001; 87: 447–456.

van Doorn WG. Categories of petal senescence and Abscission: A re-evaluation. Ann Bot 2001; 87: 447–456.

van Doorn WG. Categories of petal senescence and Abscission: A re-evaluation. Ann Bot 2001; 87: 447–456.
Ethylene resistance in ornamentals
A Olsen et al.
150 Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleeker AB et al. The embryo MADS domain factor AGL15 Acts post embryonically: Inhibition of perianth senescence and abscission via constitutive expression. *Plant Cell* 2000; **12**: 183–197.

151 Fang SC, Fernandez DE. Effect of regulated overexpression of the MADS domain factor AGL15 on flower senescence and fruit maturation. *Plant Physiol* 2002; **130**: 78–89.

152 Zheng Q, Zheng Y, Perry SE. AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. *Plant Physiol* 2013; **161**: 2113–2127.

153 Fernandez DE, Wang CT, Zheng Y, Adamczyk BJ, Singhal R et al. The MADS-domain factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, are necessary to block floral gene expression during the vegetative phase. *Plant Physiol* 2014; **165**: 1591–1603.

154 Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ et al. PeMADS6, a GLOBOSA/PISTILLATA-like Gene in *Phalaenopsis equestris* Involved in petaloid formation, and correlated with flower longevity and ovary development. *Plant Cell Physiol* 2005; **46**: 1125–1139.

155 Kandasamy MK, Deal RB, McKinney EC, Meagher RB. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. *Plant J* 2005; **41**: 845–858.

156 Xu X, Jiang CZ, Donnelly L, Reid MS. Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence. *J Exp Bot* 2007; **58**: 3623–3630.

157 Jones RB, Serek M, Kuo CL, Reid MS. The effect of protein synthesis inhibition on petal senescence in cut bulb flowers. *J Am Soc Hortic Sci* 1994; **119**: 1243–1247.

158 Stier GN, Kumar P, Jiang CZ, Reid MS. Silencing of a proteasome component delays floral senescence. *Hortic Sci* 2010; **45**: S147.

159 Christensen B, Müller R. Improved postharvest life and ethylene tolerance in Kalanchoe blossfeldiana Transformed with rol-Genes of *Agrobacterium rhizogenes*. Proc. IXth Intl. Symp. on Postharvest Quality of Ornamental Plants Ed.: Ottosen, C.-O.. *Acta Hort* 2009; **847**: 87–93.

160 Lütken H, Jensen EB, Christensen B. Development and evaluation of a non-GMO breeding technique exemplified by Kalanchoe. In: Proc. 7th, IS on In Vitro Culture and Horticultural Breeding, Ed.: D. Geelen. *Acta Hort* 2012; **961**: 51–58.

161 Lütken H, Wallström SV, Jensen EB, R. Inheritance of rol-genes from *Agrobacterium rhizogenes* through two generations in Kalanchoe. *Euphytica* 2012; **188**: 397–407.

162 da Silva JAT, Chin DP, Van PT, Mili M. Transgenic orchids. *Sci Hortic* 2011; **130**: 673–680.

163 Brand MH. Ornamental plant transformation. *J Crop Imp* 2006; **17**: 27–50.

164 Chandler SF, Sanchez C. Genetic modification: the development of transgenic ornamental plant varieties. *Plant Biotech J* 2012; **10**: 891–903.

165 Lusser M, Davies HV. Comparative regulatory approaches for groups of new plant breeding techniques. *N Biotechnol* 2013; **30**: 437–446.

166 Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CL et al. Reverse breeding: A novel breeding approach based on engineered meiosis. *Plant Biotech J* 2009; **7**: 837–845.

167 Seeds of Change. *Nature* 2015; **520**: 131–132.

168 Cibus. Press Release, BASF and Cibus announce collaboration for herbicide tolerant crops. 2015. Available at http://www.cibus.com/press_release.php?date=071007 (accessed 20 April 2015).