The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

Journal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

COMMUNICATION

DIVERSITY AND TEMPORAL VARIATION OF THE BIRD COMMUNITY IN PADDY FIELDS OF KADHIRAMANGALAM, TAMIL NADU, INDIA

Chaithra Shree Jayasimhan & Padmanabhan Pramod

26 August 2019 | Vol. 11 | No. 10 | Pages: 14279–14291
DOI: 10.11609/jott.4241.11.10.14279-14291

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2
For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Publisher & Host

Threatened Taxa
Diversity and Temporal Variation of the Bird Community in Paddy Fields of Kadhiramangalam, Tamil Nadu, India

Chaithra Shree Jayasimhan 1 & Padmanabhan Pramod 2

1,2 Sálim Ali Centre for Ornithology and Natural History, Anaikatty (Post), Coimbatore, Tamil Nadu 641108, India.
1 chaithrashree89@gmail.com (corresponding author), 2 neosacon@gmail.com

Abstract: Paddy, a major food crop of India, provides a variety of habitats in a short period of time and supports diverse organisms. Paddy fields also harbour many birds with varying species composition across the different cultivation phases of paddy. This study, conducted in the paddy fields of Kadhiramangalam, Tamil Nadu, India, recorded the bird community composition there during the various cultivation phases of paddy. The bird community data was analysed and a total of 87 bird species were recorded from the study area belonging to 41 families and 13 orders. The growth phase (PS 3) is the most diverse phase. The bird composition showed a significant variation across the paddy cultivation phases with overall average dissimilarity of 71.41%. The patterns shown by graphs of bird species composition across the paddy cultivation phases is based on guild, habitat usage and order overlap and elucidates that the change in bird community composition temporally can be attributed to the niche variability across the paddy cultivation phases. The major species contributing to these changes observed are Black-headed Munia, Baya Weaver, Common Sandpiper, Barn Swallow, Common Myna, and Black Drongo in this region.

Keywords: Agro-ecosystems, aves, habitat usage, paddy cultivation phases, rice fields.
INTRODUCTION

Birds are known to play a dual role as pests and as bio-controllers of pests in various agro-ecosystems (Borad et al. 2000). But, for decades the focus on birds in agro-ecosystems has been to study their foraging effects on crop yield and their control (Beri et al. 1968; Jotwani et al. 1969; Chahal et al. 1973; Jain & Prakash 1974; Bhatnagar 1976; Dhindsa & Toor 1980; Dhindsa et al. 1984; Parashaya et al. 1986; Subramanya 1987; Saini & Toor 1991). A few studies exist on the beneficial role of birds in agro-ecosystems (Chakravarthy 1988; Parashaya et al. 1994; Asokan & Ali 2010). The attitude on wildlife conservation became inclusive of large man-managed ecosystems (Bambaradeniya et al. 2004; Edirisinghe & Bambaradeniya 2006). Since then, the biodiversity associated with paddy fields is being considered in the light of conservation (Bambaradeniya et al. 1998; Edirisinghe & Bambaradeniya 2008; Elphick et al. 2010). Many studies on the bird use of paddy fields with focus on wetland species have been undertaken in the last two decades worldwide (Elphick et al. 2010; Sicemore & Maine 2012; Nam et al. 2015; Marco-Mendez et al. 2015).

India, being an agrarian economy, produces 21.2% of the world’s paddy in an area of 3.85 million hectares (Agristat 2016), making it the second largest producer of rice in the world. This large area under paddy cultivation throughout India is known to support 351 bird species (Gopisundar & Subramanya 2010). The bird species using the paddy fields are seen to vary regionally. Paddy fields are dynamic habitats and go through different habitats in a single crop cycle. This temporal variation in biodiversity during a paddy crop cycle is successive (Bambaradeniya et al. 2004). The habitat variations also lead to changes in resource availability for birds. This will have an impact on the bird community composition. As such, the bimodality in the activity pattern of birds in paddy fields during a day is known (Sridhara et al. 1983). In studying the ecological importance of birds in paddy field ecosystems, the understanding of this temporal variability in bird community would be useful. This paper aims to discern the patterns of temporal variation of bird community composition in paddy fields and explores the probable causes for the patterns observed.

STUDY AREA

This study was conducted in Kadhiramangalam Village, Thiruvidaimarudur Taluk, Thanjavur District, Tamil Nadu (11.4°42.63′–11.4°58.24′ N & 79.31°18.72′–79.31°59.24′ E). Tamil Nadu is one of the top five rice producing states in India with 2.04 million hectares (4.7% of India’s paddy cultivar land) under paddy cultivation, producing 7.65% of India’s rice (Agristat 2016). In Kadhiramangalam, the whole of the low lying plains are intensive agricultural areas with the major crop being paddy interspersed with very small patches of sugarcane and timber wood. The main source of water for these paddy fields is from bore wells although it is a part of the fertile Cauvery delta. Farmers used to harvest three crops in the past. In recent years, they harvest only a single crop due to unavailability of water. The fields are flooded before land preparation and later irrigated as required. Chemical fertilizers and urea are used in 80% of the fields. Pesticides are used at the farmer’s discretion.

METHODS

Field Methodology

To understand the bird species composition, strip-transect method (Sutherland 2000) was used. Two study sites (A and B) (Images 1–4), that were more than 2-km apart, were selected in the study area. A transect of 1-km was marked in each study site. Bird data was collected for two cropping seasons of paddy cultivated from August 2016 to January 2017 and September 2017 to March 2018 from both sites. Data collected included the bird species, numbers encountered and the field variables such as field conditions (wetland, wet and dry land) and also the paddy cultivation phases.

The data has been compartmentalised into seven phases of paddy cultivation to quantify the variations in bird composition over time (Bambaradeniya et al. 1998; Paliwal & Bhandarkar 2014). The seven paddy cultivation phases identified are

1. Land preparation and sapling phase (paddy stage - PS 1*) – Tilling and levelling are done and seed dispersed for saplings. Inundated wetlands. Around 15 days.
2. Transplantation phase (PS 2) – This stage includes transplantation and crop growth up to one foot in height. Inundated wetlands. Around 20 days.
3. Growth phase (PS 3) – From one ft grown crop till complete growth before flowering. Inundated wetlands. Around 30 days.
4. Flowering phase (PS 4) – Panicle formation and flowering. Wet fields. Pockets of wetlands. Around 10

* Following cultivation phases of paddy will be denoted as PS 1, 2, 3, 4, 5, 6 and 7 respectively.
5. Milking phase (PS 5) – During the milking period. Wet/dry fields. Around 15 days.
6. Maturing phase (PS 6) – The panicles get mature. Wet/dry fields. Around 15 days.
7. Drying and harvesting phase (PS 7) – The crop starts drying. Later harvested. Dry/wet fields. Pockets of wetlands.

Analytical Methodology

Data compiled, tabulated and subjected to basic descriptive statistics for studying the community characteristics. Pair-wise ANOSIM (Analysis of similarity) (Clarke & Green 1988) with Bray-Curtis index was used to test the significance and understand the extent of variation in the bird species composition between the paddy cultivation phases. To explore the species-wise contribution to dissimilarity, SIMPER (Similarity percentage) was used. Richness and diversity indices (Magurran 1988; Morris et al. 2014) were used to understand the temporal variation in the diversity. All these analyses were performed with PAST 3.1 (Hammer et al. 2001). The patterns in temporal variations in bird species composition, feeding guild composition and habitat usage were analysed by constructing relative abundance graphs using MS Excel 2007.

RESULTS

a) Bird Community Composition and Diversity

Eighty-seven bird species belonging to 13 orders and 41 families were recorded from the study area (Figs. 1a & b). Overall data shows that the passerines were the most abundant birds both in terms of species and population abundance. All species are in the Least Concern category of the IUCN Red List except Black-headed Ibis *Threskiornis melanocephalus* and Red-necked Falcon *Falco chicquera* that are in the Near Threatened category. The basic descriptive statistics of the data compiled are summarized in Tables 1 & 2. The maximum variance and standard deviation is observed in PS 5.

The change in relative abundance of the birds as per their taxonomic order (Fig. 2a), broad feeding guild (Fig. 3a) and habitat dependency (Fig. 4a) shows significant patterns.

As the growth of paddy proceeds, a steady decline in the number of birds of Charadriiformes, Pelecaniformes and Coraciiformes was observed. Similarly an increase and steep decline of the birds of Accipitriformes and Falconiformes was also observed with time. A steep
Figure 1. a, c & e—bird community composition in paddy fields based on order, guild and habitat dependency respectively | b, d & f—bird species composition in paddy fields based on order, guild and habitat dependency, respectively. Guild: AC—Aquatic Carnivore | C—Carnivore | F—Frugivore | G—Granivore | I—Insectivore | N—Nectarivore | O—Omnivore. Habitat Dependency: WB—Waterbird | WD—Wetland Dependent | T—Terrestrial.

Table 1. Bird community in paddy fields summary. Descriptive statistics based on species richness.

Paddy growth phases	Species richness	No. of transects	Total encounters	Mean	Standard deviation	Co-efficient of variance in %age	Minimum species/transect	Maximum species/transect
PS 1	53	14	2106	19.71	±3.47	17.61	12	27
PS 2	55	16	2536	21.13	±2.7	12.8	15	27
PS 3	60	15	2097	21.86	±4.03	18.44	16	31
PS 4	65	15	3591	25.33	±3.59	14.21	19	32
PS 5	58	10	4296	24.8	±4.75	19.18	18	33
PS 6	62	14	3871	25	±3.78	15.14	20	32
PS 7	54	10	1125	21	±6.43	30.61	9	31
increase in Passeriformes and Psittaciformes after PS 4 was seen. Strigiformes increased after PS 3. Galliformes and Gruiformes remained steady across the stages (Fig. 2a).

Diversity and Species Richness indices (Table 3) show that PS 3 (growth phase) is the most diverse with 60 species although PS 4 (flowering phase) has highest species richness and PS 2 (transplanted paddy phase) seems to be the most even. These indices also show that PS 5 (milking phase) is the least diverse with low evenness and high dominance.

The R value of ANOSIM (at 95% confidence) shows that there is a significant difference in the bird species composition between the seven phases of paddy cultivation cycle (Table 4). The average dissimilarity among the seven phases was 71.41% (SIMPER). The R values between two consecutive stages were significant except PS 5 and PS 6 ranging from 0.16 to 0.21. Between two non-consecutive stages the values ranged from 0.21 to 0.71.

Ninety percent of this change is accounted for by 29 species of the total 87 bird species recorded (Appendix 1). The major contributors to this change are, *Lonchura malacca* (19.67%) followed by *Ploceus philippinus* (11.16%), *Actitis hypoleucos* (8.06%), *Hirundo rustica* (6.554%), *Acridotheres tristis* (3.86%), and *Dicrurus macrocercus* (3.499%) (Figs. 5 a & b) contributing to over 50% of the variations seen.

b) Feeding guilds and the temporal variation

The birds were categorised into eight broad feeding guilds based on their feeding preferences in Ali & Ripley (1978) (Figs. 1c & d), viz. insectivores, granivores, carnivores, nectarivores, omnivores, aquatic carnivores (species that feed on aquatic vertebrates and invertebrates), frugivores + insectivores, and aquatic carnivores + insectivores. Considering species richness as the factor, insectivorous guild dominates (32%) as in any terrestrial habitat. Dominance of the gregarious granivorous birds is evident in the abundance pattern showing 41% of total encounters of the granivores.

The relative abundance of these guilds (based on encounter rate) across the paddy growth phases showed a four times increase in granivores from PS 3 to PS 4 (Fig. 3a). More than 50% of the omnivores declined from PS 3 to PS 4. Carnivores also declined from PS 2 onwards. The frugivores are negligible in paddy field ecosystem. The insectivores and aquatic carnivores+insectivores were observed to increase in PS 3, decrease in PS 4 and PS 5 (40% decrease) and again increase in PS 6, probably an artefact of this miscellaneous classification.

c) Wetland birds in paddy fields

Bird community of paddy fields were analysed as per their known habitat association. The 87 bird
Species recorded from the study area were classified into three categories, viz., Waterbirds (wetland birds), wetland-dependent birds, and terrestrial birds; and their response to the changes in paddy stages was analysed. Of these, 28 bird species (relative abundance - 20%) are wetland associated, belonging to seven orders and 13 families. Twenty of these 28 bird species are true waterbirds belonging to three orders, viz., Charadriiformes – 6 species (5 families), Gruiformes – 2 species (1 family), Pelecaniformes – 12 species (4 families). Eight species are wetland dependent belonging to 6 orders, viz., Charadriiformes – 1 species (1 family), Pelecaniformes – 1 species (1 family), Coraciiformes – 3 species (1 family), Accipitriformes – 1 species (1 family), Gruiformes- 1 species (1 family). The rest are terrestrial (Figs. 1 e & f). The relative abundance of these birds across paddy stages shows more than 80% decrease in water-birds and wetland dependent species from PS 2 to PS 6 with a 50% drop between PS 3 and PS 4 (Fig. 4).

Twenty-two species are migrants (25.2%) of which 12 species (54.5%) are wetland dependent. Nineteen species are partial migrants (21.8%) of which 10 species (52.6%) are wetland dependent.

DISCUSSION

According to Subramanya (1987), the bird community in paddy fields are bimodal across paddy cultivation phases with peaks during the tilling/levelling phase and growth phase of paddy. This pattern was observed by considering only the species richness in each of the stages. Along with the species richness the number of birds in each of the species (population abundance) is also a significant factor to explore and understand the bird life of paddy fields. Since availability of prey...
Table 3. Richness and diversity indices of birds across paddy growth stages. The highest values of the indices are in bold and the least underlined. * is the most diverse.

	PS 1	PS 2	PS 3	PS 4	PS 5	PS 6	PS 7	Total
Taxa_S	53	55	60*	65	58	62	54	87
Individuals	2106	2536	2097	3591	4296	3871	1125	19622
Dominance_D	0.0915	0.0720	0.0606*	0.1294	0.2419	0.1943	0.0601	0.0884
Simpson_1-D	0.9085	0.9279	0.9393	0.8706	0.7581	0.8057	0.9399	0.9116
Shannon_H	2.885	3.039	3.181	2.7	2.065	2.514	3.234	3.073
Evenness_e^4/H5	0.3379	0.3796	0.4011*	0.2289	0.136	0.1992	0.4702	0.2483
Menhinick	1.155	1.092	1.31	1.085	0.8849	0.9965	1.61	0.6211
Equitability_J	0.7267	0.7583	0.7768	0.6468	0.5086	0.609	0.8108	0.688
Berger-Parker	0.2023	0.1447	0.1283	0.2927	0.3638	0.4141	0.1653	0.2283
is known to affect bird abundance in paddy fields (Bambaradeniya et al. 1998), it is the feeding guilds and the opportunity provided by the changing ecosystem as a substratum for feeding in the paddy fields that determine the life of birds in this ecosystem. Hence, for the better understanding of temporal variation and its significance, the abundance of each species is important along with the species richness in the paddy fields.

The number of passerines increased across the cultivation phases from PS 1 till PS 5 and reduced in PS 6 and PS 7. Simultaneously, birds belonging to Charadriiformes, Pelecaniformes and Coraciiformes decreased from PS 1 through PS 5 and recovered slightly from PS 6 to PS 7. Columbiformes showed a fourfold increase from PS 5 to PS 6 and Psittaciformes also showed a threefold increase from PS 5 to PS 7 (Fig. 2a). These results coincide with the trends observed in the guild composition variations where aquatic carnivores and insectivores + aquatic carnivores decreased through PS 2 to PS 5 with peak in PS 2. The same trends can be visualised in the wetland and wetland dependent species from PS 1 through PS 7 (Fig. 4a). The granivores showed a drastic increase from PS 3 with a peak in PS 5 and decreased in PS 6 and 7. The insectivores maintained a minimal of 15% across all the stages although the number increases which denotes their rise in abundance also across PS 1 and PS 7 (Fig. 3a).

Thus, the current study shows that there is a linear (table 3) significant change in bird community composition temporally in paddy fields along with the changes in paddy phases. This change is gradual. The richness (Table 2) did not show significant variation between the seven paddy cultivation phases considered here. So, during a cropping cycle of paddy a variety of niches are available that are also dynamic in nature. Hence, the temporal variation in bird community is due to niche variability across the different paddy cultivation phases.

The differences in bird community observed between two consecutive phases among PS 1–PS 2 and PS 3–PS 4 with R values at 0.178–0.21 (Table 3) indicate the changes of available niches in the same area during that time frame. This may be because of the sudden change in habitat; (a) in case of PS 1 and PS 2, the presence

| Table 4. R values of one-way ANOSIM (Bray-Curtis) between pairs of paddy growth stages. Permutation N = 9999, R= 0.3357, p= 0.0001. p value is less than 0.05 between all pairs in bold. |
|---|---|---|---|---|---|
| PS1 | PS2 | PS3 | PS4 | PS5 | PS 6 |
| PS2 | 0.1787 | | | | |
| PS3 | 0.2151 | 0.1635 | | | |
| PS4 | 0.2768 | 0.3761 | 0.2106 | | |
| PS5 | 0.5038 | 0.6299 | 0.5546 | 0.1823 | |
| PS6 | 0.4555 | 0.6366 | 0.445 | 0.0877 | 0.1128 |
| PS 7 | 0.3778 | 0.7102 | 0.5028 | 0.2252 | 0.3781 | 0.1641 |

Figure 5. Variation of top contributors to change across paddy cultivation phases. A: COSA—Common Sandpiper | COSW—Barn Swallow | COMY—Common Myna | BLDR—Black Drongo | INPH—Indian Pond Heron. b: BAWE—Baya Weaver | BHMU—Black-headed Munia.
of transplanted paddy in an open wetland kind of ecosystem, (b) in the case of PS 3 and PS 4, the changes in crop density and start of panicles and drying of lands, opens avenues for new available niches. Simultaneously the process displaces a few niches already present. Increase in granivores till PS 5 and decrease only 50% till PS 7 seems to coincide with the increase in Columbidae and Psittacidae that are seen to flock to feed on fallen grains after harvest.

The best examples of the dependency on the availability and accessibility of niches can be seen in PS 5 (milking phase) and PS 3 (growth phase). The high dominance Index value in the milking phase of paddy can be attributed to the increase in relative abundance of Passeriformes especially granivores and decrease of aquatic carnivores + insectivores (Figs. 2a & 3a). The low evenness may also be because of drastic increase in two species—Lonchura malacca and Ploceus philippinus. The steep decline in omnivores may be due to loss of open wetland conditions (Nam et al. 2015) and the evenness may also be because of drastic increase in two species—Lonchura malacca and Ploceus philippinus. The low evenness may also be because of drastic increase in two species—Lonchura malacca and Ploceus philippinus.

A preliminary study on fauna and flora of a rice field in Kandy, Sri Lanka. Ceylon Journal of Science [Biological Sciences] 25: 1–22.

Beri, Y.P., M.B. Jotwani, S.S. Misra & D. Chander (1968). Studies on relative bird damage to different experimental hybrids of bajra. Indian Journal of Entomology 31: 68–71.

Bhatnagar, R.K. (1976). Bird pests of agriculture and their control. Proceedings of National Academy of Science India B 46: 249–261.

Borad, C.K., A. Mukherjee & B.M. Parashaya (2000). Conservation of the avian biodiversity in paddy (Oryza sativa) crop agroecosystem. Indian Journal of Agricultural Sciences 70(6): 378–381.

Chahal, B.S., G.S. Simwat & H.S. Brar (1973). Bird pests of crops and their control. Pesticides 7(5): 18–20.

Chakravarthy, A.K. (1988). Bird predators of pod borers of field bean. Tropical Pest Management 34: 395–398.

Clarke, K.R. & R.H. Green (1988). Statistical design and analysis of biological effects study. Marine Ecology Progress Series 46: 213–226.

Dhindia, M.S. & H.K. Saini (1994). Agricultural ornithology: An Indian perspective. Journal of Biological Sciences 19(4): 391–402.

Dhindia, M.S. & H.S. Toor (1980). Extent of bird damage to rice nurseries and its control in Punjab. Indian Journal of Agricultural Sciences 50: 715–719.

Dhindia, M.S., H.S. Toor & P.S. Sandhu (1994). Community structure of birds damaging pearl millets and sorghum and estimation of grain loss. Indian Journal of Ecology 11: 154–159.

Edirisinghe, J.P. & C.N.B. Bambaradeniya (2006). Rice fields: An ecosystem rich in biodiversity. Journal of National Science Foundation, Sri Lanka 34(2): 57–59.

Edirisinghe, J.P. & C.N.B. Bambaradeniya (2008). Composition, structure and dynamics of arthropod communities in a rice agroecosystem. Ceylon Journal of Science [Biological Sciences] 37(1): 23–48.

Elphick, C.S., K.C. Parsons, M. Fasola & L. Mugica (eds.) (2010). Ecology and Conservation of Birds in Rice Fields: A global Review - Waterbirds 33(special publication 1): 246pp.

Gopisundar, K.S. & S. Subramanya (2010). Bird use of rice fields in Gopisundar, K.S. & S. Subramanya (2010). Bird use of rice fields in Annals of Arid Zone 13: 139–144.

Hammer, Ø., D.A.T. Harper & P.D. Ryan (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontologia Electronica 4: 9.

Jain, M.B. & I. Prakash (1974). Bird damage in relation to varietal differences in bajra crop. Annals of Arid Zone 13: 139–144.

Jotwani, M.B., Y.P. Beri & K.K. Verma (1969). A note on bird damage to millets. Allahabad farmer 43: 43–44.

Magurran, A.E. (1988). Ecological Diversity and Its Measurement. Princeton University Press, New Jersey, i–x+179pp.

Marco-Mendez, C., P. Prado, L.M. Ferrero- Vicente, C. Ibanez & J.L. Sanchez- Lizaso (2015). Rice fields used as feeding habitats for waterfowl throughout the growing season. Waterbirds 38(3): 238–
Appendix 1. Checklist of birds in Paddy fields of Kadhiramangalam (Praveen et al. 2016).

Scientific name	Common name	Move-	Feeding	Habitat	IUCN status	% age contribution to overall dissimilarity (SIMPER)	Relative abundance (%)
		ment	guild				
I Order Galliformes							
Family Phasianidae							
1 Francolinus pondicerianus	Grey Francolin	R	G	T	LC	0.1729	0.112
2 Pavo cristatus	Indian Peafowl	R	O	T	LC	0.04625	0.02
II Order Columbiformes							
Family Columbidae							
3 Columba livia	Rock Pigeon	R	G	T	LC (dec)	2.88	2.461
4 Streptopelia decaocto	Eurasian Collared Dove	R	G	T	LC (inc)	0.127	0.076
5 Streptopelia senegalensis	Laughing Dove	PM	G	T	LC	0.1919	0.097
6 Streptopelia chinensis	Spotted Dove	R	G	T	LC (inc)	0.9167	0.993
III Order Cuculiformes							
Family Cuculidae							
7 Eudynamys scolopaceus	Asian Koel	PM	O	T	LC	0.2126	0.178
8 Hierococcyx varius	Common Hawk Cuckoo	PM	I	T	LC	0.09703	0.046
9 Centropus sinensis	Greater Coucal	R	C	T	LC	0.0452	0.046
10 Clamator jacobinus	Pied Cuckoo	M	I	T	LC	0.1241	0.071
IV Order Gruiformes							
Family Rallida							
11 Gallinula chloropus	Common Moorhen	M	O	WB	LC	0.05449	0.035
12 Zapornia fusca	Ruddy-breasted Crake	PM	O	WD	LC (dec)	0.06516	0.046
13 Amaurornis phoenicurus	White-breasted Waterhen	R	O	WB	LC	0.2928	0.245
V Order Pelecaniformes							
Family Ciconiidae							
14 Anastomus oscitans	Asian Openbill	PM	AC	WB	LC	1.895	1.844
Family Ardeida							
15 Ixobrychus flavicollis	Black Bittern	PM	I+AC	WB	LC (dec)	0.05399	0.04
16 Bubulcus ibis	Cattle Egret	PM	I	WD	LC (inc)	0.5555	0.377
17 Ixobrychus cinnamomeus	Cinnamon Bittern	PM	I+AC	WB	LC	0.03129	0.015

Morris, E.K., T. Caruso, F. Buscot, M. Fischer, C. Hancock, T.S. Maier, T. Meiners, C. Muller, E. Obermaier, D. Prati, S.A. Socher, I. Sonnemann, N. Waschke, T. Wubet, S. Wurst & M.C. Rillig (2014). Choosing and using diversity indices: insights for ecological applications from the German biodiversity Exploratories. Ecology and Evolution 4(18): 3514–3524. https://doi.org/10.1002/ece3.1155

Nam, H., Y. Choi & J. Yoo (2015). Distribution of waterbirds in rice fields and their use of foraging habitats. Waterbirds 38(2): 173–183. https://doi.org/10.1675/063.038.0206

Parashaya, B.M., J.F. Dodia, D.N. Yadav & R.C. Patel (1986). Sarus Crane damage to paddy crop. Pavo 24: 87–90.

Parashya, B.M., J.F. Dodia, K.L. Mathew & D.N. Yadav (1994). Natural regulation of White-grub (Holotrichiaesp: Scarabidae) by birds in agroecosystem. Journal of Biological Sciences 19(4): 381–389.

Praveen J., R. Jayapal & A. Pittie (2016). A checklist of the birds of India. Indian Birds 11(5&6): 113–170.

Saini, H.K. & H.S. Toor (1991). Feeding ecology and damage potential of feral pigeons Columba livia in agricultural habitat: Gerfaut 81: 195–206.

Sicemore, G.C. & M.B. Maine (2012). Quality of flooded rice and fallow fields as foraging habitat for little blue herons and great egrets in the Everglades agricultural area, U.S.A. Waterbirds 35(3): 381–393.

Sridhara, S., M.V.V. Subramanyam & R.V. Krishnamoorthy (1983). Bird foraging and its economic effect in the paddy fields of Bangalore (India), Birds Control Seminars Proceedings 246: 151–159.

Subramanya, S. (1987). Studies on birds of rice fields with special reference to certain pest species. PhD Thesis. Department of Entomology, University of Agricultural Sciences, Bangalore, viii+173pp. http://krishikosh.egranth.ac.in/handle/1/2049702

Sutherland, W.J. (2000). The Conservation Handbook: Research, Management and Policy. Chapter 4: 36–49.

Morris, E.K., T. Caruso, F. Buscot, M. Fischer, C. Hancock, T.S. Maier, T. Meiners, C. Muller, E. Obermaier, D. Prati, S.A. Socher, I. Sonnemann, N. Waschke, T. Wubet, S. Wurst & M.C. Rillig (2014). Choosing and using diversity indices: insights for ecological applications from the German biodiversity Exploratories. Ecology and Evolution 4(18): 3514–3524. https://doi.org/10.1002/ece3.1155

Nam, H., Y. Choi & J. Yoo (2015). Distribution of waterbirds in rice fields and their use of foraging habitats. Waterbirds 38(2): 173–183. https://doi.org/10.1675/063.038.0206

Parashaya, B.M., J.F. Dodia, D.N. Yadav & R.C. Patel (1986). Sarus Crane damage to paddy crop. Pavo 24: 87–90.

Parashya, B.M., J.F. Dodia, K.L. Mathew & D.N. Yadav (1994). Natural regulation of White-grub (Holotrichiaesp: Scarabidae) by birds in agroecosystem. Journal of Biological Sciences 19(4): 381–389.

Praveen J., R. Jayapal & A. Pittie (2016). A checklist of the birds of India. Indian Birds 11(5&6): 113–170.

Saini, H.K. & H.S. Toor (1991). Feeding ecology and damage potential of feral pigeons Columba livia in agricultural habitat: Gerfaut 81: 195–206.

Sicemore, G.C. & M.B. Maine (2012). Quality of flooded rice and fallow fields as foraging habitat for little blue herons and great egrets in the Everglades agricultural area, U.S.A. Waterbirds 35(3): 381–393.

Sridhara, S., M.V.V. Subramanyam & R.V. Krishnamoorthy (1983). Bird foraging and its economic effect in the paddy fields of Bangalore (India), Birds Control Seminars Proceedings 246: 151–159.

Subramanya, S. (1987). Studies on birds of rice fields with special reference to certain pest species. PhD Thesis. Department of Entomology, University of Agricultural Sciences, Bangalore, viii+173pp. http://krishikosh.egranth.ac.in/handle/1/2049702

Sutherland, W.J. (2000). The Conservation Handbook: Research, Management and Policy. Chapter 4: 36–49.
Scientific name	Common name	Movement	Feeding guild	Habitat	IUCN status	% age contribution to overall dissimilarity (SIMPER)	Relative abundance (%)
18 Ardea intermedia	Intermediate Egret	PM	I+AC	WB	LC (dec)	2.691	1.926
19 Ardeola grayii	Indian Pond Heron	R	I+AC	WB	LC	3.057	2.84
20 Ixobrychus minutus	Little Bittern	PM	I+AC	WB	LC (dec)	0.02426	0.02
21 Egretta garzetta	Little Egret	PM	I+AC	WB	LC (inc)	2.249	1.849
22 Ardea purpurea	Purple Heron	M	AC	WB	LC	0.07015	0.056

Family Threskiornithidae

23 Platalea leucorodia	Eurasian Spoonbill	M	AC	WB	LC	0.008825	0.005
24 Plegadis falcinellus	Glossy Ibis	M	AC	WB	LC (dec)	0.1489	0.122
25 Threskiornis melancephalus	Black-headed Ibis	PM	AC	WB	NT (dec)	1.437	1.019

Family Phalocrocaracidae

| 26 Microcarbo niger | Little Cormorant | PM | AC | WB | LC | 0.4764 | 0.28 |

VI Order Charadriiformes

Family Recurvirostridae

| 27 Himantopus himantopus | Black-winged Stilt | M | O | WB | LC (inc) | 1.522 | 0.958 |

Family Charadriidae

| 28 Charadrius dubius | Little Ringed Plover | M | I+AC | WB | LC | 0.3769 | 0.28 |
| 29 Vanellus indicus | Red-wattled Lapwing | R | I+AC | WD | LC | 1.591 | 1.554 |

Family Rostratulidae

| 30 Rostratula benghalensis | Greater Painted Snipe | M | AC | WB | LC (dec) | 0.01222 | 0.01 |

Family Scolopacidae

| 31 Actitis hypoleucos | Common Sandpiper | M | I+AC | WB | LC (dec) | 8.067 | 6.38 |
| 32 Gallinago gallinago | Common Snipe | M | AC | WB | LC (dec) | 0.6628 | 0.464 |

Family Laridae

| 33 Chlidonias hybrida | Whiskered Tern | M | I+AC | WB | LC | 0.02225 | 0.01 |

VII Order Accipitriformes

Family Accipitridae

34 Milvus migrans	Black Kite	R	O	T	LC	0.7647	0.724
35 Haliastur indus	Brahminy Kite	R	AC	WD	LC (dec)	0.6436	0.591
36 Elanus caeruleus	Black-winged Kite	R	I	T	LC	0.2424	0.204
37 Accipiter badius	Shikra	R	C	T	LC	0.0268	0.025
38 Butastur teesa	White-eyed Buzzard	R	C	T	LC	0.009357	0.005

VIII Order Strigiformes

Family Strigidae

| 39 Athenebrama | Spotted Owlet | R | C | T | LC | 0.251 | 0.224 |

IX Order Piciformes

Family Picidae

| 40 Dinopium benghalense | Lesser Golden-backed Woodpecker | R | I | T | LC | 0.09068 | 0.061 |

Family Ramphastidae

| 41 Psilopogon haemacephalus | Cappersmith Barbet | R | F/H | T | LC (inc) | 0.2115 | 0.102 |

X Order Coraciiformes

Family Meropidae

| 42 Merops philippinus | Blue-tailed Bee-eater | PM | I | T | LC | 0.039 | 0.015 |
| 43 Merops orientalis | Green Bee-eater | PM | I | T | LC (inc) | 0.2097 | 0.158 |
Scientific name	Common name	Movement	Feeding guild	Habitat	IUCN status	% age contribution to overall dissimilarity (SIMPED)	Relative abundance (%)
Bird community in paddy fields of Kadhiramangalam							
Family Coraciidae							
44 Coracias benghalensis	Indian Roller	PM	I	T	LC (inc)	0.2962	0.183
Family Alcedinidae							
45 Ceryle rudis	Pied Kingfisher	R	AC	WD	LC	0.2425	0.183
46 Alcedo atthis	Common Kingfisher	PM	AC	WD	LC	0.1167	0.076
Family Harcynidae							
47 Halcyon smyrnensis	White-throated Kingfish	R	I+AC	WD	LC	2.207	5.172
XII Order Falconiformes							
48 Falco chiquera	Red-necked Falcon	R	C	T	NT (dec)	0.02114	0.01
Family Psittacidae							
49 Psittacula krameri	Rose-ringed Parakeet	R	G	T	LC (inc)	1.93	1.824
XIII Order Passeriformes							
50 Oriolus ariolorus	Eurasian Golden Oriole	M	F/I	T	LC (inc)	0.161	0.132
Family Artamidae							
51 Artamus fuscus	Ashy Woodswallow	R	I	T	LC	0.4899	0.326
Family Dicuridae							
52 Dicrurus macrocerus	Black Drongo	R	I	T	LC	3.499	5.407
Family Laniidae							
53 Lamius cristatus	Brown Shrike	M	I	T	LC (dec)	0.07865	0.051
Family Corvidae							
54 Corvus splendens	House Crow	R	O	T	LC	0.2367	0.158
55 Dendrocitta vagabunda	Rufous Treepie	R	O	T	LC	0.375	0.362
56 Corvus macrorhynchos	Large-billed Crow	R	O	T	LC	0.6461	0.189
Family Monarchidae							
57 Tersiphone paradisi	Asian Paradise Flycatcher	M	I	T	LC	0.01098	0.005
Family Nectariniidae							
58 Leptocoma zeylonica	Purple-rumped Sunbird	R	N	T	LC	0.01199	0.01
Family Ploceidae							
59 Ploceus philippinus	Baya Weaver	R	G	T	LC	11.16	12.491
Family Estrildidae							
60 Lonchura malacca	Black-headed Munia	R	G	T	LC	19.67	22.826
61 Eudice malabarica	Indian Silverbill	R	O	T	LC	0.09012	0.066
62 Amandava amandava	Red Munia	R	G	T	LC	0.1149	0.076
63 Lechia punctulata	Scaly-breasted Munia	R	G	T	LC	0.1346	0.107
64 Lonchura striata	White-rumped Munia	R	G	T	LC	0.2203	0.153
Family Passeridae							
65 Gymnoris xanthocollis	Yellow-throated Sparrow	PM	O	T	LC	0.2035	0.138
Family Motacillidae							
66 Motacilla cinerea	Grey Wagtail	M	I+AC	WD	LC	0.01241	0.01
67 Anthus rufulus	Paddyfield Pipit	R	I	T	LC	0.6765	0.464
68 Motacilla modrastpatensis	White-browed Wagtail	R	I	T	LC	0.2047	0.132
Scientific name	Common name	Movement	Feeding guild	Habitat	IUCN status	% age contribution to overall dissimilarity (SIMPER)	Relative abundance (%)
----------------	------------------------	----------	---------------	---------	-------------	--	------------------------
Family Alaudidae							
69 Mirafra affinis	Jerdon's Bushlark	R	O	T	LC	0.5862	0.418
Family Cisticolidae							
70 Prinia socialis	Ashy Prinia	R	I	T	LC	1.079	0.902
71 Orthotomus sutorius	Common Tailorbird	R	I	T	LC	0.01861	0.01
72 Prinia hodgsonii	Grey-breasted Prinia	R	I	T	LC	0.02298	0.01
73 Prinia inornata	Plain Prinia	R	I	T	LC	1.592	1.391
74 Cisticola juncialis	Zitting Cisticola	R	I	T	LC	2.917	2.899
Family Acrocephalidae							
75 Acrocephalus dumetorum	Blyth's reed Warbler	M	I	T	LC (inc)	0.6365	0.499
76 Iduna rama	Syke's Warbler	M	I	T	C	0.008166	0.01
77 Acrocephalus agricola	Paddyfield Warbler	M	I	T	LC (dec)	1.595	1.386
Family Hirundinidae							
78 Hirundo rustica	Barn Swallow	M	I	T	LC (dec)	6.554	5.422
79 Cecropis daurica	Red-rumped Swallow	M	I	T	LC	2.49	1.62
Family Pycnonotidae							
80 Pycnonotus cafer	Red-vented Bulbul	R	F/I	T	LC (inc)	0.8179	0.958
Family Leiothrichidae							
81 Turdoides affinis	Yellow-billed Babbler	R	O	T	LC	1.961	1.804
Family Sturnidae							
82 Sturnia pagodarum	Brahminy Starling	R	F/I	T	LC	0.3347	0.245
83 Acridotheres tristis	Common Myna	R	O	T	LC (inc)	3.858	4.907
Family Muscicapidae							
84 Luscinia svecica	Bluethroat	M	I	T	LC	0.01241	0.01
85 Saxicola maurus	Siberian Stonechat	M	I	T	LC	0.002521	0.005
86 Copyschus saularis	Oriental Magpie Robin	R	I	T	LC	0.0099394	0.005
87 Saxicola caprata	Pied Bushchat	PM	O	T	LC	0.01659	0.01

Movement: M— Migrant | PM— Partial Migrant | R— Resident. Habitat: WB— Waterbird | WD— Wetland dependent bird | T— Terrestrial bird. Guild: AC— Aquatic Carnivore | I— Insectivore | F— Frugivore | G— Granivore | C— Carnivore | N— Nectarivore | O— Omnivore. IUCN Status: LC— Least Concern | (dec)— decrease in population | (inc)— increase in population | NT— Near Threatened.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

August 2019 | Vol. 11 | No. 10 | Pages: 14247–14390
Date of Publication: 26 August 2019 (Online & Print)
DOI: 10.11609/jott.2019.11.10.14247-14390

Wildlife’s Wonder Woman—Sally Raulston Walker (12 October 1944–22 August 2019)
– Sanjay Molur, Pp. 14247–14248

Communications

Species diversity and spatial distribution of amphibian fauna along the altitudinal gradients in Jigme Dorji National Park, western Bhutan
– Bal Krishna Koirala, Karma Cheda & Tshering Penjor, Pp. 14249–14258

The soft-release of captive-born Kaiser’s Mountain Newt Neurergus kaiseri (Amphibia: Caudata) into a highland stream, western Iran
– Tayebe Salehi, Vahid Akmaili & Mozafar Sharifi, Pp. 14259–14267

The status of waterbird populations of Chhaya Rann Wetland Complex in Porbandar, Gujarat, India
– Dhavalkumar Vargiya & Anita Chakraborty, Pp. 14268–14278

Diversity and temporal variation of the bird community in paddy fields of Kadhiramangalam, Tamil Nadu, India
– Chaithra Shree Jayasimhan & Padmanabhan Pramod, Pp. 14279–14291

First videos of endemic Zanzibar Servaline Genet Genetta servalina archeri, African Palm Civet Nandinia binotata (Mammalia: Carnivora: Viverridae) and other small carnivores on Unguja Island, Tanzania
– Helle V. Goldman & Martin T. Walsh, Pp. 14292–14300

The identification of pika and hare through tricho-taxonomy (Mammalia: Lagomorpha)
– Manokaran Kamalakannan, Kailash Chandra, Joy Krishna De & Chinnadurai Venkatraman, Pp. 14301–14308

Palynological analysis of faecal matter in African Forest Elephants Loxodonta cyclotis (Mammalia: Proboscidea: Elephantidae) at Omo Forest Reserve, Nigeria
– Okwong John Walter, Olusola Helen Adekanmbi & Omonu Clifford, Pp. 14309–14317

Avitourism opportunities as a contribution to conservation and rural livelihoods in the Hindu Kush Himalaya - a field perspective
– Nishikant Gupta, Mark Everard, Ishaan Kochhar & Vinod Kumar Belwal, Pp. 14318–14327

Pollination in an endemic and threatened monoeocious herb Begonia satrapis C.B. Clarke (Begoniaceae) in the eastern Himalaya, India
– Subhankar Gurung, Aditya Pradhan & Arun Chettri, Pp. 14328–14333

Multivariate analysis of elements from the microhabitats of selected plateaus in the Western Ghs, Maharashtra, India
– Prit Vinayak Aphale, Dhananjay C. Meshram, Dyanesh M. Mahajan, Prasad Anil Kulkarni & Shraddha Prasad Kulkarni, Pp. 14334–14348

Diversity of butterflies of the Shettihalli Wildlife Sanctuary, Shivamogga District, Karnataka, India
– M.N. Harisha, Harish Prakash, B.B. Hosetti & Vijaya Kumara, Pp. 14349–14357

First record of two rare brachyuran crabs: Draciella morum Alcock, 1896 and Quadrrella maculosa Alcock, 1898 along the Tamil Nadu coast, India
– Chinmthambi Viswanathan, Sampath Goutham, Vijay Kumar Deepak Samuel, Pandian Krishnan, Ramachandran Purvaja & Ramachandran Ramesh, Pp. 14358–14362

Records of the Marbled Cat Catopuma temminckii (Mammalia: Carnivora: Felidae) from the community forests surrounding the Dzükou Valley in Nagaland, India
– Bhavendu Joshi, Biang La Nam Syiem, Rokohebi Kuotsu, Arjun Menon, Jayanta Gogoi, Varun Rshav Goswami & Divya Vasudev, Pp. 14363–14367

Rediscovery of Calanthe daviddii (Orchidaceae) after 11 decades in the western Himalaya, India
– Ashutosh Sharma, Nidhan Singh & Pankaj Kumar, Pp. 14368–14372

Notes

Range extension of the Gooty Tarantula Poecilotheria metallica (Araneae: Theraphosidae) in the Eastern Ghs of Tamil Nadu, India
– Kothandapani Raman, Sivangnanaabopathiddoss Vimalraj, Bawa Mithilal Krishnakumar, Natesan Balachandran & Abhishek Tomar, Pp. 14373–14376

Some recent evidence of the presence of the Critically Endangered Gyps vultures in northern Shan State, Myanmar
– Sai Sein Lin Oo, Nang Lao Kham, Kyaw Myo Naing & Swen C. Remner, Pp. 14377–14380

Two new locations for the Vulnerable Black-necked Crane Grus nigricollis (Przevalsky, 1876) (Aves: Gruiformes: Gruidae) in Arunachal Pradesh, India
– Rohan Krish Menzies, Megha Rao & Abhinav Kumar, Pp. 14381–14384

Aquilaria malaccensis (Malvales: Thymelaeaceae): a new host plant record for Deudorix epijarbas cinnabars (Lepidoptera: Lycaenidae) in Malaysia
– Kah Hoo Lau & Su Ping Ong, Pp. 14385–14387

Rediscovery of Nilgiri Mallow Abutilon neelgerrense var. fischeri T.K. Paul & M.P. Nayar (Malvaceae) after a century from southern India
– Varsha Vilasrao Nimbalkar, Arun Prasanth Ravichandran & Milind Madhav Sardesai, Pp. 14388–14390

Publisher & Host

Wild Zooreach
Threatened Taxa