Povidone- Iodine versus Bleomycin Pleurodesis for Malignant Effusion in Bronchogenic Cancer Guided by Thoracic Echography

Hamdy D. Elayouty*, Tarek M Hassan and Zain A. Alhadad

Department of Cardiothoracic Surgery, Department of Radiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

Abstract

Objectives: This study was designed to compare effectiveness of intra-pleural instillation of Bleomycin with instillation of Povidone-iodine for control of malignant pleural effusion among patients with non-small cell lung cancer, guided by results of thoracic Echography.

Methods: Fifty one patients had the possibility of full lung expansion. Drainage of the effusion was followed by instillation of bleomycin or povidone-iodine through the thoracostomy tube. Four weeks after discharge, thoracic echography was performed and repeated 4 weeks later. Follow-up ranged between 4–32 months (mean: 21 ± 3.5 months).

Results: We received 79 patients with malignant pleural effusion as stage IV non-small cell lung cancer during the last four years. Seventeen patients had centrally-located tumors with persistent lung atelectasis. Intrapleural injection of streptokinase to breakdown intra-pleural fibrinous adhesions was carried out in 9 cases; and was successful in 6 cases 66% (6/9). Finally, 54 patients had an evidence of possible lung expansion but three died before pleurodesis. Thus, 51 patients received intra-pleural instillation of bleomycin or povidone-iodine in a randomized prospective comparative study. Among bleomycin group (n = 26), echography showed excellent pleurodesis (n = 21), effective pleurodesis (n=2) with one or two areas of free mobility and one area of fluid component, weak pleurodesis (n = 3) with three areas of free lung movement (lung sliding sign) and areas of fluid component. Among povidone-iodine group (n= 25) excellent pleurodesis (n= 20), effective (n= 2) and weak pleurodesis (n= 3). The six cases with weak pleurodesis in both groups were those who had streptokinase before pleurodesis. Complications and hospital stay were comparable for both groups. Chest X-ray proved recurrence of effusion in the six cases with weak pleurodesis after symptom-free intervals that varied between 4 and 6 weeks among these 6 patients.

Conclusions: Both bleomycin and povidone-iodine produced comparable excellent and effective pleurodesis among patients with malignant pleural effusion. The cost is much lower with povidone-iodine.

Keywords: Malignant pleural effusion; Povidone-iodine; Bleomycin; Pleurodesis; Echography; Streptokinase

Introduction

Malignancy is the major cause of both exudative pleural effusions and massive recurrent pleural effusions [1]. The most common causes of malignant pleural effusions are carcinoma of the lung in men and carcinoma of the breast in women. Our patients had stage IV bronchogenic carcinoma. Intrapleural instillation of chemotherapeutic agents was performed to destroy local tumor implants and induce pleurodesis. Instillation of bleomycin is a well-established technique but unfortunately it is expensive and associated with serious side effects [2]. We usually use 3 to 4 ampoules of bleomycin according to body weight, each one costs 75 dollars. Povidone iodine costs less than 20 dollars for each patient.

We proposed that we may be able to replace bleomycin by the easily-available, less expensive and the less-toxic povidone-iodine for pleurodesis among patients with malignant pleural effusion in the course of bronchogenic carcinoma. This prospective randomized study was designed to compare the effectiveness of 5% povidone-iodine in the management of malignant pleural effusion with that of bleomycin assessed with thoracic echography.

Methods

Fifty one patients were included in this study. After thoracocentesis and proved possibility of full lung expansion, small-sized chest tube was inserted to achieve two goals: 1st to achieve complete drainage of pleural effusion and subsequent full lung expansion, 2nd to inject streptokinase into the pleural cavity if lung expansion was locally impeded. Intrapleural injection of streptokinase was successfully performed and followed by full lung expansion in 6 cases out of nine 66% (6/9). **Streptokinase**, 250,000 U in 100 mL of 0.9% saline solution, was instilled daily into the chest tube, and the tube was clamped for 4 hours followed by suction. This treatment was continued daily for 3 to 9 days until resolution was demonstrated by chest radiograms or computed chest tomography. Patients with recent operation, recent biopsy, recent trauma or history of severe allergy were excluded. We did not use video-assisted thoracoscopic (VATS) to free the pleural cavity, as most of these patients could not tolerate general anesthesia.

Patients were randomly distributed between bleomycin group and povidone-iodine group. If the number allocated to the patient entering

*Corresponding author: Dr. Hamdy D. Elayouty, Department of Cardiothoracic Surgery, Suez Canal University Hospitals, Ismailia, Egypt, Tel: 002013-7271234/002-0132720846; Fax: 0967-5328622; E-mail: h.dosoky@yahoo.com

Received April 21, 2012; Accepted June 22, 2012; Published June 25, 2012

Citation: Elayouty HD, Hassan TM, Alhadad ZA (2012) Povidone-Iodine versus Bleomycin Pleurodesis for Malignant Effusion in Bronchogenic Cancer Guided by Thoracic Echography. J Cancer Sci Ther 4: 182-184. doi:10.4172/1948-5956.1000137

Copyright: © 2012 Elayouty HD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
the trial was odd, the patient was allocated to bleomycin group; if the number was even, the patient was allocated to povidone group.

This was followed by intra-pleural injection of bleomycin (60 U in 100 ml normal saline) or 5% povidone iodine through the thoracostomy tube. Lidocaines (xylocaine) 1% 20-30 ml were added to reduce pain. We usually use 3 to 4 ampoules of bleomycin according to body weight; each one costs 75 dollars in our countries. Povidone- iodine costs less than 20 dollars for each patient. Narcotic analgesics were prescribed to control post-operative pain. After instillation of bleomycin or povidone iodine, the tube was occluded for six hours. The tube was released for a short time after this period of occlusion. A little amount of fluid or air was usually drained before removal of the tube. Each patient was informed about the program of follow up before his discharge.

Four weeks after discharge, thoracic echography was performed and repeated after additional 4 weeks. During thoracic echography, the patient was sitting with arms elevated and the hands positioned behind the neck. The probe was positioned in the intercostal space at 9 different predefined points, 2 on the mid-clavicular line (II and IV intercostal spaces), 3 on the mid-axillary line (II, IV and VI intercostal spaces) and 4 posteriorly on the midline between the spine and the medial border of the scapula (II, V, VII and IX inter-costal spaces). We used. 3.5 MHz linear array transducer for all cases. Follow-up ranged between 4–32 months (mean: 21.5 months). Patients with recurrence refused repeating the procedure of chest tube and pleurodesis except one for whom a thoracostomy tube was inserted. The tube drained 200 to 300 ml of exudative effusion and the patient had persistent hypotension until he died on the 7th day after insertion of the tube. The remaining five patients had repeated thoracocentesis.

Statistical Analysis

We used the mean and the average the bivariate analysis was used to compare results among the two groups. The procedure of pleurodesis aim at improving patient’s symptoms rather than the survival rate. Survival curves were difficult to draw because of the small sample size.

Results

We received 74 patients with malignant pleural effusion as an advanced stage of non-small cell lung cancer during the period from March 2006 to April 2010 (Table 1). Seventeen patients were excluded due to persistent lung collapse (centrally- located masses occluding the bronchial tree). Fifty four patients had an evidence of possible lung expansion; six of them had successful intrapleural injection of streptokinase. Of the 9 patients who had this therapeutic trial 66% (6/9). Three patients: were lost before pleurodesis; two died because of metastases or myocardial infarction. Thus, fifty one had pleurodesis and completed the follow up. Four weeks after pleurodesis, they had echography that was repeated in a short time after this period of occlusion. A little amount of fluid or air was usually drained before removal of the tube. Each patient was informed about the program of follow up before his discharge.

Total number of patients with malignant effusion (stage IV bronchogenic carcinoma)	74
Patients with centrally-located masses with lung atelectasis	17
Patients who received streptokinase to achieve lung expansion	9
Patients who received streptokinase and achieved lung expansion	6
Patients who died due to metastases or myocardial infarction	3
Total number of patients with full lung expansion:	
Males/ females	51/ 17
Mean age	46 ± 3.6 years
Patients who had pleurodesis and completed the follow up:	
- Patients with bleomycin pleurodesis	51
- Patients with iodine pleurodesis	25

Table 1: Patient characteristics.

Results of pleurodesis	Bleomycin group	Povidone iodine- group	P value
Excellent	21 (76%)	20 (80%)	0.072
Effective	2 (7%)	2 (7%)	0.093
Weak and consequently recurred	3 (11%)	3 (11%)	0.324
Total	26	25	0.062

Table 2: Results of Thoracic Echography after pleurodesis.

Complication	Bleomycin group	Iodine group	P value
Low grade fever	9 (34%)	8 (32%)	0.198
Transient leucopenia	4 (15%)	1 (4%)	0.273
Mild to moderately severe pain	14 (53%)	17 (68%)	0.052
Recurrent effusion	3 (11%)	3 (11%)	0.437

Table 3: Complications after pleurodesis.
Thoracic echography detects the sign of ‘pleural sliding’, produced by movement of the visceral pleura on the parietal pleura. This sign is absent when pleurodesis is present. According to Lichtenstein [7] guidelines, echographic finding can be defined as follows: pleurodesis (PD) when the pleural sliding was absent and the lung was seen after the pleural line (the ‘comet tails’ sign), pneumothorax (PX) when pleural sliding was absent and no lung was detected after the pleural line (the ‘stratosphere sign’), fluid (FL) when a liquid component was detected [8,9]. Pleurodesis was defined excellent when pleurodesis was confirmed in all the 9 considered points, effective when it was confirmed in more than 6 points, poor when it was confirmed in 6 points or less [10]. Lardenios et al. [11] advised not to prescribe non-steroidal anti-inflammatory drugs after induction of pleurodesis. Any pleural airspace or fluid collection in the early post-operative period can be dealt with aggressively by increasing suction pressure or repositioning the drain to allow full lung expansion, because pleural apposition is the key to effective pleurodesis. Similarly, avoiding air leak into the pleural space during chest drain removal is also important. Effectiveness of pleurodesis after instillation of streptokinase can be due to a variable amount of fibrinous adhesions or the use of streptokinase to dissolve these adhesions and subsequently interfere with the process of pleurodesis. This clinical observation may indicate further studies.

Streptokinase is a sterile purified preparation of a bacterial protein elaborated by group C (beta) -hemolytic streptococci. It is supplied as a lyophilized white powder containing 25 mg cross-linked gelatin polypeptides, 25 mg sodium L-glutamate, sodium hydroxide to adjust pH, and 100 mg Albumin (Human) per vial or infusion bottle as stabilizers. The preparation contains no preservatives and is intended for intravenous or intracorony administration.

Intrapleural fibrinolytic agents, streptokinase and urokinase, are safe, cost-effective means of facilitating complete chest tube drainage of exudative pleural effusions or empyema. Thus, bleomycin resulted in excellent and effective pleurodesis in 23/26 (89%) and weak pleurodesis in 3 cases and recurrence in 3/26 (11%). Povidone iodine lead to excellent and effective pleurodesis in 23/26 (89%) and weak pleurodesis among patients with malignant pleural effusions. This clinical observation may indicate further studies.

Conclusions

Both bleomycin and povidone iodine produced comparable excellent and effective pleurodesis among patients with malignant pleural effusion (stage IV bronchogenic carcinoma).

Acknowledgement

Thanks to Prof. Alaa Eldeen Sad who supplied us with the laboratory results of pleural fluid cytology.

References

1. Robinson LA, Fleming WH, Galbraith TA (1993) Intrapleural doxycycline control of malignant pleural effusions. Ann Thorac Surg 55: 1115-1122.
2. Siegel RD, Schiffman FJ (1990) Systemic toxicity following intracavitary administration of bleomycin. Chest 98: 507.
3. Shields TW (2009) Primary tumors of the pleura. General Thoracic Surgery, 7th (Edn), Philadelphia, Lea & Febiger 650-656.
4. Collins TR, Sahn SA (1987) Thoracocentesis. Clinical value, complications, technical problems, and patient experience. Chest 91: 817-822.
5. (1997) Pretreatment evaluation of non-small-cell lung cancer. The American Thoracic Society and The European Respiratory Society. Am J Respir Crit Care Med 156: 320-332.
6. Reshad K, Inui K, Takeuchi Y, Takahashi Y, Hilitomi S (1985) Treatment of malignant pleural effusion. Chest 88: 393-397.
7. Lichtenstein D (2003) Échographie pleuro-pulmonaire Lung ultrasound. Réanimation 12: 19-29.
8. Thurer R, Cimochowski G, Feun L, Ruchdeschel J (1989) Malignant pleural effusions. Contemp Surg 35: 79.
9. Beauchamp G, Ouellette D (2002) Spontaneous pneumothorax and pneumomediastinum. In: Pearson FG, Cooper JD, Deslauriers J, Ginsberg RJ, Hiebert CA, Patterson GA, Urschel HC (Eds), Thoracic Surgery. (2nd Edn), Philadelphia: Churchill Livingstone 1195-1213.
10. Smit HJ, Wienk MA, Schreurs AJ, Postmus PE (2000) Do bullae indicate a predisposition to recurrent pneumothorax? Br J Radiol 73: 356-359.
11. Lardenios D, Vogt P, Yang L, Hegyi I, Baslam M, et al. (2004) Non-steroidal anti-inflammatory drugs decrease the quality of pleurodesis after mechanical pleural abrasion. Eur J Cardiothorac Surg 25: 865-871.