Access to novel fluorovinylidene ligands via exploitation of outer-sphere electrophilic fluorination: new insights into C–F bond formation and activation†

Lucy M. Milner, Lewis M. Hall, Natalie E. Pridmore, Matthew K. Skeats, Adrian C. Whitwood, Jason M. Lynam* and John M. Slattery*

Metal vinylidene complexes are widely encountered, or postulated, as intermediates in a range of important metal-mediated transformations of alkynes. However, fluorovinylidene complexes have rarely been described and their reactivity is largely unexplored. By making use of the novel outer-sphere electrophilic fluorination (OSEF) strategy we have developed a rapid, robust and convenient method for the preparation of fluorovinylidene and trifluoromethylvinylidene ruthenium complexes from non-fluorinated alkynes. Spectroscopic investigations (NMR and UV/Vis), coupled with TD-DFT studies, show that fluorine incorporation results in significant changes to the electronic structure of the vinylidene ligand. The reactivity of fluorovinylidene complexes shows many similarities to non-fluorinated analogues, but also some interesting differences, including a propensity to undergo unexpected C–F bond cleavage reactions. Heating fluorovinylidene complex \([\text{Ru} \left(\eta^5 - \text{C}_5 \text{H}_5 \right) \{ \text{PPPh}_3 \} \{ \text{C} = \text{C} \left(\text{CH}_2 \right) \left(\text{CF} \right) \} \} \} \] led to C-H activation of a PPh\(_3\) ligand to form an orthometallated fluorovinylphosphonium ligand. Reaction with pyridine led to nucleophilic attack at the metal-bound carbon atom of the vinylidene to form a vinyl pyridinium species, which undergoes both C-H and C-F activation to give a novel pyridylidene complex. Addition of water, in the presence of chloride, leads to anti-Markovnikov hydration of a fluorovinylidene complex to form an \(\alpha\)-fluoroaldehyde, which slowly rearranges to its acyl fluoride isomer. Therefore, fluorovinylidenes ligands may be viewed as synthetic equivalents of 1-fluoroalkynes providing access to reactivity not possible by other routes.

Introduction

The unique properties of the carbon–fluorine bond can enhance many fundamental properties of biologically relevant molecules including bioavailability, metabolic stability and lipophilicity, with approximately 30% of agrochemicals and 20% of all pharmaceuticals now containing fluorine.\(^1\)–\(^9\) The use of \(^18\)F-labelled imaging agents in positron emission tomography (PET) is also a highly active area of medical research.\(^10\),\(^11\) As such, new facile and selective synthetic methods for the introduction of fluorine into organic frameworks are highly desirable. Of particular interest are examples which offer high selectivity, controlled regiochemistry that is complementary to other methodologies and/or the ability to synthesise C–F bonds in less common environments.

The development of novel catalytic procedures for C–F bond formation is highly desirable and can offer significant advantages over traditional stoichiometric processes. Recent years have seen many advances using enzymatic-\(^12\) organo- or photo-catalytic\(^13\) methods for the synthesis of fluoro-organic compounds. Alongside these, transition-metal-promoted reactions have played an increasingly prominent role,\(^14\) particularly in the formation of aryl fluorides.\(^15\) Complementary studies on C–F bond cleavage\(^16\)–\(^20\) and hydrodefluorination by metal complexes provide insight into the functionalization of readily available fluorne-rich substrates.\(^13\),\(^21\),\(^23\)

Metal-mediated C–F bond forming methodologies using both nucleophilic and electrophilic sources of fluorine have been developed.\(^5\),\(^6\),\(^15\),\(^24\) Our interest has focused on reactions involving electrophilic fluorinating reagents, a number of which are commercially available.\(^25\),\(^26\) They have been utilized in metal-catalyzed C–F bond formation reactions, which are believed to proceed either by oxidative fluorination of palladium\(^27\)–\(^29\) or silver\(^30\) to form a high-oxidation-state metal-
with a range of substitution patterns is restricted, this approach does not represent a general method for the synthesis and exploitation of fluoroalkyne complexes, and hence their reactivity is largely unexplored. However, the potential importance of these ligands as intermediates in catalytic processes is highlighted by the large number of catalytic reactions that proceed via non-fluorinated vinylidene intermediates.49–52

We now demonstrate the successful preparation of fluoroalkyne complexes by OSEF from readily available, non-fluorinated alkynes. Studies of their reactivity clearly demonstrate that these complexes may indeed provide important routes to fluorinated compounds. The fluoroalkyne ligands may act as fluoroalkyne equivalents therefore offering access to reactivity patterns of compounds which are otherwise difficult to prepare and handle.

Results and discussion

Synthesis and characterization of fluoro- and trifluoromethyl-containing vinylidene complexes

By analogy with related electrophilic additions (H+, 53 Cl2, Br2, I2, 54 Au(PPh3)+ (ref. 55)), the electrophilic fluorination of the alkynyl ligand in [Ru(η5-C5H5)(C≡CR)(PPh3)2] to give fluorinated vinylidene was targeted. Complexes based on the [Ru(η5-C5H5)(C≡CPh)(PPh3)2] were selected as metal-based precursors as they are readily available from the reaction between [Ru(η5-C5H5)Cl(PPh3)2] and a wide range of terminal alkynes.56 Treatment of a CH2Cl2 solution of [Ru(η5-C5H5)(C≡CPh)(PPh3)2], [1a], with [FTMP]BF4, [2a]BF4, resulted in an instantaneous colour change from a yellow to a dark green solution from which the fluorinated vinylidene complex [Ru(η5-C5H5)(C≡CtBu)(PPh3)2]BF4, [3a]BF4, could be isolated in excellent yield (Scheme 2a). No intermediates were observed by NMR spectroscopy between 195 K and 295 K, supporting the hypothesis that [3a]BF4 is being formed by direct fluorination of the alkynyl ligand. Complex [3a]BF4 could also be prepared in a one-pot procedure by treatment of the vinylidene complex [Ru(η5-C5H5)(=C≡CtBu)(PPh3)2]BF4, [4a]BF4, with base to generate [1a] in situ followed by reaction with [2a]BF4. This reaction also proceeds in the absence of added base, but the reaction is slightly slower, requiring ca. 30 min to reach completion.

Analogous reactions of ruthenium alkynyl complexes containing both electron-releasing and electron-withdrawing substituents ([1b]–[1d], Scheme 2a) and with a range of electrophilic fluorinating reagents (NFSI, [2b]BF4, and Selectfluor, [2c]BF4), proceeded with no notable difference in reaction outcome, demonstrating the generality of the approach. However, reaction of [1a] or [1b] with 1-fluoropyridinium tetrafluoroborate, [2d]BF4, resulted in the formation of the disubstituted vinylidene complexes [5a]BF4 and [5b]BF4 respectively (Scheme 2b), the structure of the latter was confirmed by X-ray crystallography (ESI†). Complex [5a]BF4 appears to have been
formed by formal nucleophilic aromatic substitution of [2d]BF$_4$ by the alkynyl ligand in [1a] with concomitant loss of HF.

In a similar manner to electrophilic fluorination, the electrophilic incorporation of –CF$_3$ groups into the framework of organic compounds is also desirable.10,39,57,58 There are only limited examples of CF$_3$-substituted vinylidene complexes, all of which are dimeric species formed from the activation of H$_2$C=CHCF$_3$.46 The reaction between [1a] and Umemoto’s reagent, [6]BF$_4$, (a latent source of “CF$_3$+”) resulted in the selective formation of [Ru(η5-C$_5$H$_5$)‧CH(CF$_3$)Ph)(PPh$_3$)$_2$]BF$_4$, [7a]BF$_4$ (Scheme 2c). The structure of [7a]BF$_4$ was confirmed by a single crystal X-ray diffraction study (ESI†). To the best of our knowledge complexes [3]BF$_4$ are the first examples of fluorovinylidene ligands in mononuclear metal species, and access to these complexes has allowed an evaluation of the effects of fluorine incorporation into vinylidene ligands. For example, the 19F NMR spectrum of [3a]$^+$ displayed a singlet resonance at δ -208.7 for the fluorine atom of the vinylidene ligand and the 13C(1H) NMR spectrum exhibits a doublet of triplets at δ 389.0 ($\gamma_{CF} = 39.3$ Hz, $\gamma'_{CF} = 16.2$ Hz) for the metal-bound carbon atom and a doublet at δ 196.7 ($\gamma_{CF} = 222.1$ Hz) for the fluorine-bearing carbon atom. These resonances are shifted ca. 30 ppm and 70 ppm downfield, respectively, when compared to the hydrogen-substituted analogue [4a]PF$_6$. Indeed the metal-bound carbon is observed at one of the lowest reported chemical shifts for a vinylidene α-carbon.59,60 In CD$_2$Cl$_2$ solution the 1H, 1H, 1P and 19F NMR spectra of [3a]BF$_4$ showed no change on cooling to 195 K, indicating that the vinylidene was undergoing rapid rotation on the NMR timescale.

The deep green colour of the fluorovinylidene complexes is due to an absorption band at ca. 690 nm, which showed no significant solvatochromism (ESI†). With the aid of TD-DFT studies this transition was shown to be dominated by HOMO \rightarrow LUMO character. In the HOMO (Fig. 1) a fluorine lone pair has an anti-bonding interaction with the π-system of the vinylidene ligand (which is itself anti-bonding with respect to a metal-centred orbital). The LUMO has a contribution from a σ-orbital on the fluorine and an orbital based on the metal-bound carbon.

Additional spectroscopic data of the other halogen-substituted vinylidene complexes [Ru(η5-C$_5$H$_5$)‧C=E(C$_4$H$_4$-4-R)(PPh$_3$)$_2$]X$^+$ (E = Cl,‡ Br and I) and the CF$_3$-containing complex, [7a]BF$_4$, support an interplay between σ- and π-effects on the

\ddagger[8a14]BF$_4$ was prepared by a new method from [1a] and N-chlorosuccinamide, [8a19]BF$_4$ was synthesised from one equivalent of Br$_2$ and NaBF$_4$, see ESI.

Scheme 2 (i) CH$_2$Cl$_2$ solution, -2,4,6-trimethylpyridine. *NFSI was used as the fluorinating agent. (ii) CH$_2$Cl$_2$ solution, -“HF” (iii) CH$_2$Cl$_2$ solution, 4 h, r.t., -dibenzothiophene.

Fig. 1 LUMO (top) and HOMO (bottom) of [3a]$^+$.

\dagger[8a14]BF$_4$ was prepared by a new method from [1a] and N-chlorosuccinamide, [8a19]BF$_4$ was synthesised from one equivalent of Br$_2$ and NaBF$_4$, see ESI.
energy of the HOMO-LUMO transition (Table 1). Good \(\pi \)-donors (e.g., F, Cl) raise the energy of the HOMO, thereby lowering the energy of the HOMO-LUMO transition. In contrast, the strongly \((-1)\) electron-withdrawing groups, such as CF\(_3\) in [7a]BF\(_4\), display a higher energy transition, presumably due to an opposite effect. This effect is supported by the bathochromic shift observed in methoxy-substituted [3c]BF\(_4\) and the hypsochromic shift in [3b]BF\(_4\). The interplay between \(\sigma \)- and \(\pi \)-effects appears to also be manifested in the chemical shift of the metal bound carbon atom, as the CF\(_3\)-substituted vinylidene ligand has a chemical shift similar to [4a]PF\(_6\), but the halogen-substituted variants have a chemical shift range of 66 ppm.

Table 1 Summary of \(^{13}C \) NMR data and lowest energy bands in the absorption spectra of vinylidene complexes. Experimental data were recorded at a concentration of ca. 1 mmol dm\(^{-3}\) in CH\(_2\)Cl\(_2\) solution

Complex	\(^{13}C \) \(\delta \text{M} = \varepsilon / \text{ppm} \)	\(\lambda_{\text{max}} / \text{nm} \)	\(\lambda_{\text{max}} / \text{nm} \) (calc.)
[3a]BF\(_4\)	389.0	691	730
[3b]BF\(_4\)	383.5	684	720
[3c]BF\(_4\)	389.9	698	764
[3d]N[S\(_2\)O\(_2\)Ph]\(_2\)	392.4	644	655
[4a]PF\(_6\)	335.5	524	537
[7a]BF\(_4\)	340.0	488	452
[8a\(^{\text{II}}\)]BF\(_4\)	353.5	615	702
[8a\(^{\text{III}}\)]BF\(_4\)	340.3	627	647
[8b\(^{\text{III}}\)]Br\(_3\)	339.3	626	—
[8a\(^{\text{II}}\)]I\(_3\)	323.6	619	668

Complex [3a]PF\(_6\) crystallises as two different polymorphs, which have significantly different photophysical properties in the solid state (Fig. 2). One is orange (\(\lambda_{\text{max}} = 742 \) nm) and one green (\(\lambda_{\text{max}} = 692 \) nm) and they differ primarily in the orientation of the fluorine atom and phenyl group of the vinylidene ligand and the geometry around the \(\beta \)-carbon (ESI†). Dissolution of both crystals in CH\(_2\)Cl\(_2\) gave essentially identical UV- and NMR spectra showing that the two crystalline forms interconvert,65 but the alkyne-vinylidene interconversion.65 However, heating a sample of [3a]PF\(_6\) in which a coordinated alkene ligand has been formed from a combination of vinylidene and phosphine ligands, the latter having undergone an orthometallation process (Scheme 3). The 31P NMR spectrum of [10a]BF\(_4\) exhibits two resonances at \(\delta = 46.6 \) (dd, \(J = 48.6 \) Hz; \(J_{\text{PF}} = 4.4 \) Hz) and \(\delta = 42.3 \) (dd, \(J = 46.2 \) Hz; \(J_{\text{PF}} = 4.4 \) Hz)

Reactions of fluorine-containing vinylidene complexes

Attempted displacement of FC\(=\text{CPh}\). The facile syntheses of complexes [3]BF\(_4\) has allowed an exploration of the reactivity of these species to evaluate the effects of fluorine incorporation into vinylidene ligands. In the case of half-sandwich ruthenium complexes with either mono-62,63 or di-substituted vinylidene ligands64 reaction with NCMe has been shown to reverse the alkyne-vinylidene tautomerisation and generate [Ru(\(\eta^3\)-L)(NCMe)(PPh\(_3\))]\(^{+}\) (L = C\(_2\)H\(_5\)\(_2\); [9]) liberating the corresponding alkynes HC\(=\text{CRR'}\) and PhC\(=\text{CRR'}\) respectively. These studies have permitted detailed kinetic insight into the nature of the alkyne-vinylidene interconversion.65 However, heating a sample of [3a]PF\(_6\) in NCMe-d\(_3\) did not result in an analogous reaction to form [9] and FC\(=\text{CPh}\). Instead, the major product from the reaction was [10a]BF\(_4\), in which a coordinated alkene ligand has been formed from a combination of vinylidene and phosphine ligands, the latter having undergone an orthometallation process (Scheme 3).
confirming the presence of two different phosphorus environments. Resonances at \(\delta = -143.4 \) (app. dt, \(J_{PF} = 48.6 \text{ Hz} \); \(J_{HF} = 16.9 \text{ Hz} \); \(J_{PPh} = 16.2 \text{ Hz} \)) in the \(^{19}F \) NMR spectrum, \(\delta = 4.69 \) (dd, \(J_{HF} = 16.9 \text{ Hz} \); \(J_{PH} = 5.0 \text{ Hz} \); \(J_{PH} = 1.7 \text{ Hz} \)) in the \(^{1}H \) NMR spectrum and \(113.7 \) (dt, \(J_{CP} = 243.0 \text{ Hz} \); \(J_{CP} = 5.6 \text{ Hz} \)) and 25.9 (dd, \(J_{CF} = 75.1 \text{ Hz} \); \(J_{CF} = 7.8 \text{ Hz} \); \(J_{CP} = 2.7 \text{ Hz} \)) in the \(^{13}C(\text{H}) \) spectrum demonstrated that the fluorinated alkene ligand was present.

Other products form on heating at higher temperature (80 °C), but after ca. two weeks at 50 °C, the reaction was reasonably selective (70% conversion based on \(^{31}P \) NMR spectroscopy). A complex related to \([10a]BF_4 \) has been reported previously from the nucleophilic attack of PPh, at a coordinated (proti)vinylidene.\(^{66} \) It is proposed that \([10a]BF_4 \) is formed by initial loss of PPh, followed by attack of the free phosphate at the metal-bound carbon of the fluorovinylidene. C–H activation and hydride migration subsequently leads to \([10a]BF_4 \). This is supported by the fact that the dppe-containing fluorovinylidene complex \([Ru(\eta^5-C_5H_5)(=C=C(F)Ph)(dppe)]N(SO_2Ph)_2\), \([3e]N(SO_2Ph)_2\) (prepared from \([Ru(\eta^5-C_5H_5)(=C=CPh)(dppe)])\] and \(2b \) is unchanged on heating at 100 °C for 14 days in NCMe-d3. These data indicate that the conversion of the fluorovinylidene to its alkyne form does not proceed under any of these conditions.

Reaction of fluorovinylidene complex with pyridine: C–H and C–F bond activation. Many of the catalytic applications of ruthenium vinylidene complexes exploit the electrophilicity of the metal-bound carbon atom.\(^{49,50,52,67} \) For example, we have recently demonstrated that nucleophilic attack by pyridine at a coordinated vinylidene was a key step in ruthenium-mediated C–H functionalization reactions,\(^{68} \) a process whereby the formation of pyridylidene-containing intermediates plays an important role. Dissolution of \([3a]BF_4 \) in pyridine results in the immediate formation of the vinyl complex \([Ru(\eta^5-C_5H_5)(=C=C(F)Ph)(PPh_3)_2]BF_4 , (py = pyridine)\] [11]BF_4 \] (Scheme 4), demonstrating that the incorporation of the fluorine substituent does not inhibit nucleophilic attack at the metal-bound carbon. In CD_2Cl_2 solution the \(1^9F \) NMR spectrum of [11]BF_4 exhibited a doublet resonance at \(\delta = -71.1 \) \((J_{PF} = 20.1 \text{ Hz} \) and the \(^{31}P(\text{H}) \) a corresponding resonance at \(\delta = 44.0 \) (d, \(J_{PF} = 20.3 \text{ Hz} \): the ESI-MS demonstrated that a single pyridine had added to the ruthenium complex. The structure of [11]BF_4 was confirmed by X-ray crystallography (Fig. 3), which showed that the alkynyl ligand had adopted a Z-configuration. We have previously proposed that this type of alkynyl complex was a key intermediate in the direct C–H functionalization of the pyridine,\(^{68} \) and the previous inability to observe such a species was principally owing to its low intrinsic concentration due to competitive deprotonation of the vinylidene ligand. Evidently, the presence of the fluorine atom allows for the observation and characterization of this species.

On standing in pyridine solution, [11]BF_4 underwent a further reaction to give [12]BF_4 and free PPh. Monitoring this reaction by NMR spectroscopy indicated that this process proceeds through a number of phosphorus- and fluoride-containing intermediates. The molecular structure of [12]BF_4 (Fig. 4 as its pyridine solvate) showed that this species was a novel pyridylidene complex had been formed by activation of a C–H bond of the pyridine group in [11]BF_4, incorporation of a second pyridine molecule and formal loss of HF, the fate of which could not be determined.

A potential mechanism for the conversion of [3a]BF_4 to [12]BF_4 was investigated by a DFT study. Given the changes in molecularity during the proposed mechanism there are significant differences in the relative zero-point-energy-corrected electronic energies \(E_{SCEZPE} \) and Gibbs energies of different states. The following discussion refers solely to the Gibbs energies at 298 K, although both are presented in Fig. 5. In the first step, nucleophilic attack of pyridine occurs at the metal-bound carbon atom of the vinylidene in [3a] (taken as the reference point for the calculations) to give [11-Z] through transition
state $\text{TS}_{\text{B}[11-Z]}$. The fact that $[11]^+$ is predicted to be lower in energy than $[3a]^+$ and $\text{TS}_{[3a][11-Z]}$ is reasonably accessible ($\Delta G^\ddagger_{298} + 100 \text{ kJ mol}^{-1}$) is consistent with the experimental observation of fast formation of $[11]\text{BF}_4^-$. The next stages in the reaction pathway are directly related to previous studies on pyridine C–H activation.\[^{68,69}\] Loss of PPh$_3$ from $[11]^+$ leads to intermediate $[A]^+$. Formation of agostic complex $[B]^+$ followed by C–H activation via $\text{TS}_{[B][C]}$ leads to hydride complex $[C]^+$ which may then undergo a subsequent migration to afford $[D]^+$. A subsequent isomerisation to the lower energy isomer $[E]^+$ then occurs. Formal elimination of HF must then occur to give $[12]^+$ although attempts to model elimination of HF from $[E]^+$ via a pyridine-induced E_i-process were unsuccessful. However, deprotonation of $[E]^+$ (or hydride complex $[C]^+$) may occur in pyridine solution to afford $[F]^+$ and $[\text{HNC}_5\text{H}_5]^+$. Defluorination may now occur through $\text{TS}_{[F][G]}^\ddagger$ in which the $[\text{HNC}_5\text{H}_5]^+$ aids the loss of the fluorine to give (after coordination of the triple bond in $[G]^+$ to the metal) alkyne complex $[H]^+$. Nucleophilic attack by pyridine through $\text{TS}_{[H][Z]}^\ddagger$ then gives the observed product $[12]^+$, which is also the lowest point on the potential energy surface (-45 kJ mol^{-1}).

The calculations indicate that the nucleophilic attack by pyridine of $[3a]^-$ to give the E-isomer ([11-E]$^+$) of the complex is both kinetically ($\text{TS}_{[3a][11-E]}^\ddagger + 155 \text{ kJ mol}^{-1}$) and thermodynamically unfavorable ($+65 \text{ kJ mol}^{-1}$) when compared to the formation of the Z-isomer. This appears to be due to an unfavourable interaction between the PPh$_3$ ligands and the Ph-group of the alkenyl ligand in the E-isomer. In contrast, however, defluorination from $[F]^+$ is far more accessible from the E-isomer of the alkene complex ([F-E]$^+$) than from the Z-isomer ($\text{TS}_{[F-E][G]}^\ddagger + 140 \text{ kJ mol}^{-1}$; $\text{TS}_{[F-Z][G]}^\ddagger + 173 \text{ kJ mol}^{-1}$, see ESI† for full E- and Z-pathways). There are a number of possible points on the PES where interconversion of the E- and Z-isomers may occur. For example, previous calculations indicate that the vinylidene complexes, $[I-Z]^+$ and $[I-E]^+$ (Fig. 6a) would be readily accessible from complexes such as $[A]^+$.\[^{39}\] Rotation of vinylidene ligands, which will interchange the E- and Z-isomers, is a low energy process.\[^{70,71}\] We tentatively propose that at some point following state $[11-Z]^+$ the system isomerises and follows the E-isomer pathway.

The formation of $[11]^+$ is rapid and a second, slower, reaction subsequently gives $[12]^+$. In addition to supporting our previous observation that the $[\text{Ru}(\eta^5\text{C}_5\text{H}_5)(\text{PPh}_3)]^+$ fragment may selectively activate pyridine in the 2-position,\[^{68,72}\] the DFT study also provides an explanation as to why no alkenylated pyridine is observed in the fluorine-containing system. The key transition state in this process involves C–N bond cleavage in [F-E] via $\text{TS}_{[F-E][J-E]}^\ddagger$ which at $+150 \text{ kJ mol}^{-1}$ lies higher in energy than $\text{TS}_{[F-E][G]}^\ddagger$ (Fig. 6b) implying that defluorination is preferred to C–N bond cleavage.

It appears that C–F bond cleavage in this system occurs by a pyridinium-assisted fluoride abstraction. This process is related...
to Hughes’ studies on half-sandwich iridium complexes in which α-fluoride abstraction leads to a cationic carbene complex.73,74

In this case, a cationic alkyne complex is the product of the fluoride loss from the β-position of complex [F], which then undergoes nucleophilic attack by pyridine.

Hydrolysis of fluorovinylidene complexes: formation of an α-fluoroaldehyde and acyl-fluoride. The observation that fluoro- vinylidenes ligands are susceptible to nucleophilic attack, in a similar way to their non-fluorinated analogues, prompted us to explore this type of reaction with a view to generating fluorinated organic molecules. Vinylidene complexes are well known to undergo hydrolysis and hydration via nucleophilic attack of water at the α-carbon of the vinylidene.75,76 The products of hydration depend on the ligands present at the metal. Careful design has allowed the development of Ru-catalysts for the anti-Markovnikov hydration of terminal alkynes via vinylidene intermediates.77,78 We were therefore interested in understanding the reactivity of [3a]BF₄ with water. However, [3a]BF₄ proved to be relatively stable in the presence of water, in the absence of other additives. Addition of either stoichiometric or excess water to a CH₂Cl₂ solution of [3a]BF₄ at room temperature did not result in an immediate reaction. Addition of one equivalent of a base, 1,4-diazabicyclo[2.2.2]octane (DABCO), and water (either stoichiometric water or ten equivalents) resulted in the formation of a number of new compounds. The major new species were identified, by ³¹P[¹H] NMR spectroscopy, as [Ru(η⁵-C₅H₅)Cl(PPh₃)₂] [13], and, remarkably, [Ru(η⁵-C₅H₅)(C≡CPh)(PPh₃)₂] [1a] the latter corresponding to the formal loss of “F” from the fluoro- vinylidene.83 Monitoring the reactions over an extended period (ca. two weeks) at room temperature showed almost total conversion to [13]. Heating the reactions at 50 °C increased the rate of conversion but not the final product distribution. This should be contrasted with the reaction of [4a] with water which results in the formation of [Ru(η⁵-C₅H₅)(CO)(PPh₃)₂] and toluene.76

In contrast, hydrolysis of [3a]BF₄ in the presence of chloride as an additive (introduced as Na[Bu₄Cl·H₂O]) results in the selective, if slow, formation of [Ru(η⁵-C₅H₅)Cl(PPh₃)₂] [13] and the acyl-fluoride 14 (Scheme 5a), which has resulted from formal hydration of the vinylidene ligand and isomerisation of the resulting α-fluoroaldehyde (vide infra). Compound 14 was identified on the basis of characteristic resonances in the ¹⁹F (δ 43.7, t, ¹JHF = 1.5 Hz), ¹H (δ 3.84, d, ¹JHF = 1.5 Hz), and ¹³C(¹H) NMR spectra (δ 39.2, d, ²JCF = 54 Hz, CH₃; 162.1, d, ²JCF = 362.3 Hz, COF) matching those previously reported.84 Monitoring the reaction by NMR spectroscopy demonstrated that [13] and 14 were formed at approximately the same rate. Compound 14 was isolated by sublimation and proved to be highly moisture sensitive.

The formation of 14 is somewhat surprising as it appears that either fluoro- or phenyl-migration must have occurred. Given that the reaction of [3a]BF₄ with NCMe did not give rise to the alkyne FC≡CPh and [9]BF₄ (which would also require

§The ratio of Na[Bu₄Cl to H₂O was shown to be ca. 1:1 by elemental analysis.
F or Ph migration) it might be presumed that these are high-energy pathways in this system, although phenyl-migration in di-substituted vinylidene complexes is well established.\cite{44,45,46,47,48}

In order to gain further mechanistic insight into this process, the 13C-enriched vinylidene complex [3a-13C]BF$_4$ was prepared and subjected to an identical reaction with N3Bu$_3$Cl-H$_2$O (Scheme 5b). Analysis of the resulting 19F NMR spectra demonstrated that the resonance for 14 now appeared as a doublet ($J_{CF} = 361.4$ Hz) with no evidence of a species with the labelled atom in the alternative position. Repeating the reaction with [3a]$^+$ as the benzenesulfonyl fluoride salt [prepared from [1a] and NFSI] also gave 14, indicating that the source of the fluoride was the vinylidene ligand not the [BF$_4$]$^−$ counterion.

Hydrolysis of the dppe-containing complex [3e]N(SO$_2$Ph)$_2$ in the presence of chloride (as N3Bu$_3$Cl-H$_2$O) is much faster than the PPh$_3$-containing analogue. At room temperature rapid formation of [Ru(η2-C$_5$H$_5$)Cl(dppe)]$_2$[15] and the α-fluoroaldehyde 16 (identified by resonances in the 1H and 19F NMR spectra at δ = 9.72 (dd, J_{HF} = 7.6 Hz, J_{HH} = 0.7 Hz) and $\delta = -191.7$ (dd, J_{HF} = 47.0 Hz, J_{HH} = 7.6 Hz) respectively) was observed, Scheme 5c.\cite{49} Over the course of 6 days the resonances for 16 decreased in intensity to be replaced by those for 14. It is proposed that anti-Markovnikov hydration of the vinylidene \cite{50,51} occurs to 16 which then undergoes a slower isomerisation to 14. DFT calculations indicate that 16 is 97 kJ mol$^{-1}$ higher in energy (ΔG_{298}) than 14 so this conversion is thermodynamically favoured and aldehydes such as 16 have been reported to be unstable.\cite{52} The overall process is summarised in Scheme 5d.

The reaction of metal alkynyl complexes (derived from terminal alkynes) with “F⁺” followed by hydrolysis and liberation of α-fluoroaldehydes represents a stepwise functionalization of alkynes with the incorporation of both new functionality and the generation of a new stereocentre. This type of reactivity is highly desirable as the fluorinated vinylidene ligands are effectively acting as synthetic equivalents of 1-fluoroalkynes. Work is underway in our groups to exploit these stoichiometric observations for the development of catalytic protocols for combined alkyne functionalization and fluorination.

Conclusions

The reaction between alkynyl complexes [1] and electrophilic fluorinating and trifluoromethylation agents offers a highly selective and simple route for the direct formation of C-F and C=CF$_2$ bonds and the construction of novel fluorinated vinylidene ligands. Although the addition of other electrophiles to alkynyl complexes has been reported, it is remarkable that the highly oxidising sources of “F⁺” result in selective C-F bond formation rather than direct fluorination of the metal complexes. These data demonstrate that OSEF (or analogous trifluoromethylation) represents a complementary approach to current metal-mediated routes for electrophilic C-F bond formation and may be applicable to a range of organometallic systems.

As the new fluorinated ligands were retained within the coordination sphere of ruthenium it was possible to evaluate the effects of incorporation of the fluoride and explore subsequent reactivity. Reactions of fluoro vinylidene complexes with nucleophiles such as pyridine and water show many similarities to the reactivity of non-fluorinated vinylidenes. As these are important intermediates in a range of metal-catalysed reactions, this suggests that access to fluorinated analogues offers new opportunities for the formation of novel fluorinated organic compounds without re-writing the rule book in terms of their reactivity. Indeed, our observation of anti-Markovnikov hydration of fluoro vinylidene complexes, a key reaction of non-fluorinated analogues, to form both new functionality and a new stereocentre in the α-fluoroaldehyde products supports this argument. In addition to applications in synthesis, the introduction of fluoride into ligands of organometallic complexes may significantly alter metal–ligand bonding and, for example, may be used to blue-shift the emission from luminescent iridium complexes.\cite{53,54,55} In summary, it has been demonstrated how OSEF allows for the facile formation of C-F (and C=CF$_2$ bonds) in metal alkynyl complexes to be achieved and that C-F bond cleavage, assisted by a pyridinium salt, may occur from the β-position of an organic ligand.

Acknowledgements

We thank the EPSRC (DTA studentship to LMM and computational equipment EP/H011455/1 and EP/K031589/1) and the University of York (PhD Studentship to LMH and summer studentship to MKS) for funding. The insightful comments of Professors Duncan Bruce and Robin Perutz on this work are gratefully acknowledged.

Notes and references

1. X. Yang, T. Wu, R. J. Phipps and F. D. Toste, *Chem. Rev.*, 2015, 115, 826–870.
2. Z. Jin, G. B. Hammond and B. Xu, *Aldrichimica Acta*, 2012, 45, 67–83.
3. T. Besset, T. Poisson and X. Pannecoucke, *Chem. – Eur. J.*, 2014, 20, 16830–16845.
4. T. Furuya, A. S. Kamlet and T. Ritter, *Nature*, 2011, 473, 470–477.
5. T. Liang, C. N. Neumann and T. Ritter, *Angew. Chem., Int. Ed.*, 2013, 52, 8214–8264.
6. X. Yang, T. Wu, R. J. Phipps and F. D. Toste, *Chem. Rev.*, 2015, 115, 826–870.
7. T. Furuya, J. E. M. N. Klein and T. Ritter, *Synthesis*, 2010, 1804–1821.
8. C. N. Neumann and T. Ritter, *Angew. Chem., Int. Ed.*, 2015, 54, 3216–3221.
9 M. G. Campbell and T. Ritter, *Org. Process Res. Dev.*, 2014, **18**, 474–480.
10 S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, *Chem. Soc. Rev.*, 2008, **37**, 320–330.
11 E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker and T. Ritter, *Science*, 2011, **334**, 639–642.
12 D. O’Hagan and H. Deng, *Chem. Rev.*, 2015, **115**, 634–649.
13 S. M. Senaweera, A. Singh and J. D. Weaver, *J. Am. Chem. Soc.*, 2014, **136**, 3002–3005.
14 T. Ahrens, J. Kohlmann, M. Ahrens and T. Braun, *Chem. Rev.*, 2015, **115**, 931–972.
15 M. G. Campbell and T. Ritter, *Chem. Rev.*, 2015, **115**, 612–633.
16 R. Herrmann and B. Braun, *Dalton Trans.*, 2014, **43**, 157–162.
17 G. Meier and T. Braun, *Angew. Chem., Int. Ed.*, 2009, **48**, 1546–1548.
18 A. J. Cresswell, S. G. Davies, P. M. Roberts and J. E. Thomson, *Chem. Rev.*, 2015, **115**, 566–611.
19 M. G. Gilicinski, G. P. Pez, R. G. Syrnet and G. S. Lal, *J. Fluorine Chem.*, 1992, **59**, 157–162.
20 E. W. Oliver and D. H. Evans, *J. Electroanal. Chem.*, 1999, **474**, 1–8.
21 T. Furuya and T. Ritter, *J. Am. Chem. Soc.*, 2008, **130**, 10060–10061.
22 T. Furuya, D. Benitez, E. Tkatchouk, A. E. Strom, P. Tang, W. A. Goddard and T. Ritter, *J. Am. Chem. Soc.*, 2010, **132**, 3793–3807.
23 N. D. Ball and M. S. Sanford, *J. Am. Chem. Soc.*, 2009, **131**, 3796–3797.
24 P. Tang, T. Furuya and T. Ritter, *J. Am. Chem. Soc.*, 2010, **132**, 12150–12154.
25 C–F reductive elimination from a Au(III) fluoride, generated by oxidation of a Au(i) complex by XeF$_2$ has also been reported, N. P. Mankad and F. D. Toste, *Chem. Sci.*, 2012, **3**, 72–76.
26 C. R. Pitts, S. Bloom, R. Wolotornist, D. J. Auvenshine, L. R. Ryzhkov, M. A. Siegel and T. Lectka, *J. Am. Chem. Soc.*, 2014, **136**, 9780–9791.
27 K. M. Engel, T.-S. Mei, X. Wang and J.-Q. Yu, *Angew. Chem., Int. Ed.*, 2011, **50**, 1478–1491.
28 A. R. Mazzotti, M. G. Campbell, P. Tang, J. M. Murphy and T. Ritter, *J. Am. Chem. Soc.*, 2013, **135**, 14012–14015.
29 J. R. Brandt, E. Lee, G. B. Boursalian and T. Ritter, *Chem. Sci.*, 2014, **5**, 169–179.
30 L. Hintermann and A. Togni, *Angew. Chem., Int. Ed.*, 2000, **39**, 4359–4362.
31 S. Piana, I. Devillers, A. Togni and U. Rothlisberger, *Angew. Chem., Int. Ed.*, 2002, **41**, 979–982.
32 M. Althaus, C. Becker, A. Togni and A. Mezzetti, *Organometallics*, 2007, **26**, 5902–5911.
33 J. Charpentier, N. Früh and A. Togni, *Chem. Rev.*, 2015, **115**, 650–682.
34 L. M. Milner, N. E. Pridmore, A. C. Whitwood, J. M. Lynam and J. M. Slattery, *J. Am. Chem. Soc.*, 2015, **137**, 10753–10759.
35 L. M. Hall, J. M. Lynam, L. M. Milner and J. M. Slattery, *UK Pat*, GB1421598.2, 2014.
36 C. Testa, J. Roger, S. Scheib, P. Fleurat-Lessard and J.-C. Hierso, *Adv. Synth. Catal.*, 2015, **357**, 2913–2923.
37 R. M. Milner, M. K. Whittlesey and E. Peris, *Chem. Rev.*, 2014, **114**, 3343–3348.
38 M. E. Evans, C. L. Burke, S. Yaibuathes, E. Clot, O. Eisenstein and W. D. Jones, *Chem. Soc. Rev.*, 2009, **38**, 13464–13473.
39 E. Clot, C. Mégret, B. M. Kraft, O. Eisenstein and W. D. Jones, *Chem. Soc. Rev.*, 2004, **33**, 5647–5653.
40 M. F. Kuehnel, D. Lentz and T. Braun, *Angew. Chem., Int. Ed.*, 2013, **52**, 3328–3348.
41 M. K. Whittlesey and E. Peris, *ACS Catal.*, 2014, **4**, 3152–3159.
42 G. Meier and T. Braun, *Angew. Chem., Int. Ed.*, 2009, **48**, 1546–1548.
43 A. J. Cresswell, S. G. Davies, P. M. Roberts and J. E. Thomson, *Chem. Rev.*, 2015, **115**, 566–611.
44 A. G. Gilicinski, G. P. Pez, R. G. Syrnet and G. S. Lal, *J. Fluorine Chem.*, 1992, **59**, 157–162.
45 E. W. Oliver and D. H. Evans, *J. Electroanal. Chem.*, 1999, **474**, 1–8.
46 T. Furuya and T. Ritter, *J. Am. Chem. Soc.*, 2008, **130**, 10060–10061.
47 T. Furuya, D. Benitez, E. Tkatchouk, A. E. Strom, P. Tang, W. A. Goddard and T. Ritter, *J. Am. Chem. Soc.*, 2010, **132**, 3793–3807.
48 N. D. Ball and M. S. Sanford, *J. Am. Chem. Soc.*, 2009, **131**, 3796–3797.
49 P. Tang, T. Furuya and T. Ritter, *J. Am. Chem. Soc.*, 2010, **132**, 12150–12154.
50 C–F reductive elimination from a Au(III) fluoride, generated by oxidation of a Au(i) complex by XeF$_2$ has also been reported, N. P. Mankad and F. D. Toste, *Chem. Sci.*, 2012, **3**, 72–76.
51 C. R. Pitts, S. Bloom, R. Wolotornist, D. J. Auvenshine, L. R. Ryzhkov, M. A. Siegel and T. Lectka, *J. Am. Chem. Soc.*, 2014, **136**, 9780–9791.
74 R. P. Hughes, C. D. Incarvito and A. L. Rheingold, Angew. Chem., Int. Ed., 2001, 40, 3884–3887.

75 C. Bianchini, J. A. Casares, M. Peruzzini, A. Romerosa and F. Zanobini, J. Am. Chem. Soc., 1996, 118, 4585–4594.

76 M. I. Bruce and A. G. Swincer, Aust. J. Chem., 1980, 33, 1471–1483.

77 B. Breit, U. Gellrich, T. Li, J. M. Lynam, L. M. Milner, N. E. Pridmore, J. M. Slattery, A. C. Whitwood, B. Breit, U. Gellrich, T. Li, J. M. Lynam, L. M. Milner, N. E. Pridmore, J. M. Slattery and A. C. Whitwood, Dalton Trans., 2014, 43, 11277–11285.

78 D. B. Grotjahn, C. D. Incarvito and A. L. Rheingold, Angew. Chem., Int. Ed., 2001, 40, 3884–3887.

79 D. B. Grotjahn and D. A. Lev, J. Am. Chem. Soc., 2004, 126, 12232–12233.

80 T. Suzuki, M. Tokunaga and Y. Wakatsuki, Org. Lett., 2001, 3, 735–737.

81 M. Tokunaga, T. Suzuki, N. Koga, T. Fukushima, A. Horiiuchi and Y. Wakatsuki, J. Am. Chem. Soc., 2001, 123, 11917–11924.

82 F. Chevallier and B. Breit, Angew. Chem., Int. Ed., 2006, 45, 1599–1602.

83 A similar conceptual loss of “F” was observed in the case of the metallocyclic complex [III], although it does appear to be coupled to a hydrolysis reaction.

84 R. T. C. Brownlee and D. J. Craik, Org. Magn. Reson., 1981, 15, 248–256.

85 Y. Ikeda, T. Yamaguchi, K. Kanao, K. Kimura, S. Kamimura, Y. Mutoh, Y. Tanabe and Y. Ishii, J. Am. Chem. Soc., 2008, 130, 11970–11978.

86 Y. Mutoh, Y. Ikeda, Y. Kimura and Y. Ishii, Chem. Lett., 2009, 38, 534–535.

87 M. Otsuka, N. Tsuchida, Y. Ikeda, Y. Mutoh, Y. Ishii and K. Takano, J. Am. Chem. Soc., 2012, 134, 17746–17756.

88 K. Kanao, Y. Ikeda, K. Kimura, S. Kamimura, Y. Tanabe, Y. Mutoh, Y. Iwasaki and Y. Ishii, Organometallics, 2013, 32, 527–537.

89 S. T. Purrrington, N. V. Lazaridis and C. L. Bumgardner, Tetrahedron Lett., 1986, 27, 2715–2716.

90 D. D. Steiner, N. Mase and C. F. Barbas, Angew. Chem., Int. Ed., 2005, 44, 3706–3710.

91 A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, J. Am. Chem. Soc., 2003, 125, 7377–7387.

92 S. J. Lee, K.-M. Park, K. Yang and Y. Kang, Inorg. Chem., 2009, 48, 1030–1037.

93 C.-H. Yang, M. Mauro, F. Polo, S. Watanabe, I. Muenster, R. Fröhlich and L. De Cola, Chem. Mater., 2012, 24, 3684–3695.

94 F. Kessler, Y. Watanabe, H. Sasabe, H. Katagiri, M. K. Nazeeruddin, M. Gratzel and J. Kido, J. Mater. Chem., 2013, 1, 1070–1075.