Utilisation of 2,2DCP by Staphylococcus aureus ZT and In Silico Analysis of Putative Dehalogenase

Zatty Zawani Zaidi*, Fahrul Huyop

Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Malaysia
*Corresponding Author: zattyza@yahoo.com

Submitted: 2020-09-23. Revised: 2020-11-15. Accepted: 2021-02-21

Abstract. Halogenated compound such as 2,2-dichloropropionic acid is known for its toxicity and polluted many areas especially with agricultural activities. This study focused on the isolation and characterization of the bacterium that can utilise 2,2-dichloropropionic acid from palm oil plantation in Lenga, Johor and in silico analysis of putative dehalogenase obtained from NCBI database of the same genus and species. The bacterium was isolated using an enrichment culture media supplemented with 20 mM 2,2-dichloropropionic acid as a carbon source. The cells were grown at 30°C with cells doubling time of 2.00±0.005 hours with the maximum growth at A680nm of 1.047 overnight. The partial biochemical tests and morphological examination concluded that the bacterium belongs to the genus Staphylococcus sp.. This is the first reported studies of Staphylococcus sp. with the ability to grow on 2,2-dichloropropionic acid. The genomic DNA from NCBI database of the same species was analysed assuming the same genus and has identical genomic sequence. The full genome of Staphylococcus sp. was screened for dehalogenase gene and haloacid dehalogenase gene was detected in the mobile genetic element of the species revealed that the dehalogenase sequence has little identities to the previously reported dehalogenases. The main outcome of the studies suggesting an in situ bioremediation can be regarded as a natural process to detoxify the contaminated sites provided that the microorganisms contained a specialised gene sequence within its genome that served the nature for many long years. Whether microorganisms will be successful in destroying man-made contaminants entirely rely on what types of organisms play a role in in situ bioremediation and which contaminants are most susceptible to bioremediation.

Key words: 2,2-dichloropropionic acid; palm oil; soil bacteria; Staphylococcus sp.; NCBI

How to Cite: Zaidi, Z. Z., & Huyop, F. (2021). Utilisation of 2,2DCP by Staphylococcus aureus ZT and In Silico Analysis of Putative Dehalogenase. Biosaintifika: Journal of Biology & Biology Education, 13(1), 1-8.

DOI: http://dx.doi.org/10.15294/biosaintifika.v13i1.26322

INTRODUCTION

Xenobiotics are foreign to the environment and the diverse application of xenobiotic compound makes it very challenging to degrade by many microorganisms. The biological treatment provides a natural system to treat these toxic chemicals (Daugulis, 2001). A few solutions have been expressed using chemical techniques to treat waste, however the problem remains unsolved either expensive or ineffective in the long term and therefore the preferred way to achieve effective bioremediation is to stimulate microorganisms with nutrients and other chemicals that will enable them to destroy the contaminants at the same time. A common bioremediation system is to rely on microorganisms native to the contaminated sites.

Encouraging them to utilise these toxic chemicals at optimum levels, essential for their metabolism (Atashghahi et al., 2018). The halogenated compound is one example of synthetically made to be used in various applications. For instance these halogenated compound can be used as pesticides to maximize the crop yield and to protect the plants from diseases and pests. Herbicides are known to eliminate targeted weeds that disturbs the growth of the crop that leads to the reduction of crop yield (Au, 2003). One of the herbicides manufactured was Dalapon, 2,2-dichloropropionic acid (2,2-DCP) that has been used to fight against weeds such as quack grass and cattails. The 2,2-dichloropropionic acid (2,2-DCP) consists of three-carbon chain with 2 chloride ions attached to the α-carbon (Figure 1).

Figure 1. The common structure of 2,2-dichloropropionic acid showing α-carbon and β-carbon that allows halides to attach (Abel et al., 2012).

The presence of 2,2-DCP in the environment can lead to the soil and water pollution and the long term exposure to the chemical can cause an acute side effects (Aparecida et al., 2013). The polluted area by 2,2-DCP transpired when the particle of the 2,2-DCP does not get adsorb within the soil particle that leads to leaching (Holstun and Loomis, 1956). When the herbicide enters the water system, the pollution occurs.
A bacteria has been used to treat 2,2-DCP in soil and this bacteria has been used as the detoxifying agent (Janssen et al., 2005). The bacteria that can degrade halogenated compound possess an enzyme called dehalogenases. The halogenated compound is degraded by a process called dehalogenation. Dehalogenation can happen enzymatically, with the usage of an enzyme to cleave the carbon-halogen bond or by a spontaneous chemical dehalogenation of unstable intermediates (Fetzner & Lingens, 1994). The dehalogenases can be classified into a few categories according to the dehalogenation mechanisms and substrate stereospecificity (Hamid et al., 2011).

The grouping of dehalogenase include Group 1 (stereospecific) and Group 2 (non-stereospecific). Group 1 dehalogenase incudes class 1D and class 2L, whereas Group 2 dehalogenase consist of class 2R only (Harısna et al., 2017). The degradation of 2,2-DCP is carried out through hydrolytic dehalogenation, where the halogen-carbon bond is cleaved by dehalogenase and the chloride ion is replaced by nucleophilic substitution with hydroxyl group derived from water (Ismail et al., 2017). Mechanisms for hydrolytic dehalogenation of 2-haloalkanoic acids was proposed earlier by (Kurihara and Esaki, 2008).

The aims of the present study were to isolate a bacterium that can degrade 2,2-DCP from soil and further characterize its dehalogenase. The analysed dehalogenase gene sequence must be from the same genus and species that was previously isolated. The benefit of the genomic screening of dehalogenases in the database may shed a light that the dehalogenase gene sequence must be from the same organism are common to a certain genus and species that was previously isolated. The analysed dehalogenase gene sequence was derived from the plasmid of Staphylococcus sp. was acquired from the National Center of Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/). The sequence was derived from the plasmid of Staphylococcus aureus strain ST398 with Genbank accession number CE092199.1. The sequence contained 133 amino acids in total. The sequence of the amino acid is presented in Figure 2.

Sample preparation

Soil sample (5 g) from palm oil plantation from Lenga, Johor was mixed in minimal medium containing 10 mM of 2,2-DCP and incubated in the rotary shaker at 30°C. Bacterial growth was monitored every two hours. For the isolation of pure colonies, 0.1 mL of aliquot was spread onto solid minimal media contained 20 mM 2,2-DCP. For cells purification, colonies were selected and subcultured onto fresh plates containing 10 mM of 2,2-DCP as carbon source. Plates were incubated at 30°C until colonies were formed.

Biochemical tests

A variety of biochemical tests that were carried out including starch hydrolysis tests, oxidase test, catalase test, lactose utilization test, Simmons citrate test, indole test, and urease test to characterize bacteria’s biochemical properties. All test media were incubated at a temperature ranging from 30 to 35°C separately to observe their optimum bacterial activity.

RESULTS AND DISCUSSION

Isolation of 2,2-DCP degrading bacterium

The growth of mix culture was seen on minimal media agar plate with 10 mM 2,2-DCP as a carbon source. The incubation period was monitored over 10
days at 30˚C (Figure 3A). To accelerate the growth of all colonies, 0.05% yeast extract was added as a supplement in the minimal media. Then, a single colony was isolated by repeatedly streaking onto a fresh plate on the same media preparation. Finally, a single colony was selected for further studies (Figure 3B). A single isolate was named as strain ZT.

Figure 2. The full amino acid sequence of haloacid dehalogenase from the plasmid of *Staphylococcus aureus* strain ST398 (accession number of CEO92199.1)

![Figure 2](image)

Figure 3. (A) A mix culture from soil were grown on 10 mM 2,2-DCP minimal medium over 10 days period. From this step, a single colony was selected and streaked onto a fresh plate containing the same media component. (B) A selected colony was grown on the same media component with 10 mM of 2,2-DCP and 0.05% yeast after 48 hours of incubation period at 30˚C.

Morphological analysis of strain ZT on solid agar medium

Strain ZT was subjected to basic morphological tests as summarised in Table 1. It was also grown on the minimal agar media with different concentrations of 2,2-DCP to determine the optimum growth condition. Some colonies started to form at 10 mM and 20 mM plates while no single growth seen at 30 mM and 40 mM of 2,2-DCP plates. This suggests at 30 and 40 mM 2,2-DCP was toxic to the cells. The basic morphological analyses of the colonies are summarised in Table 1.

Table 1. The basic morphological characteristics of strain ZT on the minimal media with 10 mM 2,2-DCP incubated for over 24 hours at 30˚C

Parameters	Results
Margin	Entire
Pigmentation	Yellowish
Texture	Mucoid
Shape	Round

Analysis of growth in liquid 2,2-DCP minimal medium

The growth profile was analyzed by inoculating strain ZT into minimal liquid media with different concentrations of 2,2 DCP (10 mM, 20 mM, 30 mM, and 40 mM). The growth profiles were measured at A680nm at every two hours interval for over 20 hours. The growth profiles are shown in Figure 4.

Figure 4. Growth analysis of strain ZT at 10 mM, 20 mM, 30 mM, and 40 mM of 2,2-DCP incubated at 30˚C. Reading were taken in triplicates ± standard deviation.

The growth rates and doubling times of each concentration was observed and calculated. At 20 mM 2,2-DCP showed the best growth condition. The maximum growth was achieved at A680nm of 1.047
with calculated cells doubling time of 2 hours. Meanwhile, growth at 40 mM of 2,2-DCP was the least favourable, as it grows to only 0.467 with unpremeditated doubling time as the cells were presumably dead after 10 hours incubation period. Table 2 summarised the maximum growth of strain ZT in each 2,2-DCP concentration.

Concentration	Maximum growth	Doubling time
10mM	0.849	1.824±0.002
20mM	1.047	2±0.005
30mM	0.595	1.355±0.009
40mM	0.467	NG

Strain ZT showed good growth condition at 10 mM, 20 mM and 30 mM of 2,2-DCP, whereas another study showed that Acinetobacter calcoaceticus strain BB9.2 and Pseudomonas plecoglossicida strain BC14.3 could grow well in the media containing up to 50 mM and 80 mM of 2,2-DCP (Mulyawati et al., 2018). Most of the previously reported cases showed that 2,2-DCP above 30 mM was toxic to the cells (Oyewusi et al., 2020, Ismail et al., 2017, Edbeib et al., 2017, Muslem et al., 2017, Heidarrezaei et al., 2020). This can be concluded that different bacteria have different mechanisms of uptake of 2,2-DCP and the km values or the affinity of the dehalogenase enzyme. However, E. coli could not grow on 2,2-DCP, and this can be attributed to the poor uptake system and/or no expression of the dehalogenase gene in the cells (Jing, et al., 2010).

The dehalogenation product of 2,2-DCP was pyruvate. Therefore, ZT strain was tested to grow in minimal medium containing 10 mM pyruvate as a carbon source. Figure 5 shows ZT strain grew well in pyruvate with cells doubling time of 2.89 hours with a maximum growth of 0.694, whereas the doubling time of strain ZT in 2,2-DCP was 2.85 hours with a maximum growth of 0.624. Likewise, Rhizobium sp. RC1 could grow well in 2,2-DCP but not in monochloroacetate (MCA). This attributed to the lacking of an uptake system of MCA into the cells and the product of MCA degradation like glycolate is not a substrate for growth (Huyop and Cooper, 2003).

Identification of ZT strain by biochemical tests

Gram staining was carried out and strain ZT was Gram-positive cocci in clusters (Figure 6). Full results of basic biochemical tests is shown in Table 3. Using the Bergey’s manual of systematic bacteriology, it was proposed that strain ZT belongs to the genus Staphylococcus sp..

Currently, this is the first reported species that can degrade 2,2-DCP. However, according to Camboim et al. (2012), Staphylococcus spp. strain ECPB04 can degrade sodium fluoroacetate, which another type of halogenated compound. Another study conducted...
revealed that *Staphylococcus xylosus* can degrade 1,2-dichlorobenzene in the presence of glucose (Ziagova and Liakopoulou-Kyriakides, 2007).

Computational analysis

Since *Staphylococcus* sp. ZT strain could grow on 2,2-DCP minimal medium, it was hypothesized that strain ZT possesses dehalogenase enzyme. Therefore, the genome from the gene bank of the same genus of the isolated bacteria was investigated for the presence of putative dehalogenase protein. The amino acid sequence was acquired from the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/). The sequence was haloacid dehalogenase from the plasmid of *Staphylococcus aureus* strain ST398 (Genbank accession number CEO92199.1; (Fessler et al., 2011). The putative dehalogenase amino acid sequence from strain ST398 was then compared to the common established dehalogenase amino acid sequence obtained from the database to determine the similarities of each haloacid dehalogenases.

The amino acid sequence comparison

The dehalogenase amino acid sequence from different species were selected to be compared with the sequence from the *Staphylococcus aureus* strain ST398 (Table 4). Dehalogenase from strain ST398 was designated as DehST398 (current study).

Table 4. The list of dehalogenases used in comparison with the haloacid dehalogenase from *Staphylococcus aureus* strain ST398 (Genbank accession number: CEO92199.1)

Bacteria	Dehalogenase type	Accession number	Sequence length	References
Klebsiella pneumoniae	Had	ODM40643.1	229	(Zhou et al.)
Rhizobium sp. RC1	DehL	CAA63794	279	(Cairns et al., 1996)
Pseudomonas putida strain AJ1	HadL	AAA25832	227	Barth et al., (1992)
Pseudomonas putida strain 109	DehH109	BAA04474	224	(Kawasaki et al., 1994)
Xanthobacter autotrophicus	DhlB	AAA27590	253	(Van Der Ploeg et al., 1991)
Pseudomonas sp CBS3	DehCI	AAA63640.1	227	(Schneider et al., 1991)

Pairwise sequence alignment

The pairwise comparison was carried out to determine the identities of each dehalogenase against DehST398. The results are presented in Table 5. The sequence identity were less than 10% and somewhat different to each other suggesting DehST398 might serve different functions as the reported amino acid sequences.

Multiple Sequence Alignment

The multiple sequence alignment was carried out for all six amino acid sequences using common MultiAlin version 5.4.1 software (Corpet, 1988). The multiple sequence alignment was carried out to determine the similarities of the location of the conservative region and the arrangement of the sequence. The alignment has a minimum sequence length of 133 and the maximum length of the sequence of 279 with an average sequence length of 224. Figure 7 showed a single conserved region at Arg207 (R207).

Table 5. The pairwise comparison between DehST398 of haloacid dehalogenase *Staphylococcus aureus* strain ST398 with six different haloacid dehalogenases from other species. The identity of each enzyme was less than 10%.

Pairwise	Identity (%)	
Had	0.9	
DehL	2.6	
HadL	5.3	
DehH109	6.1	
DhlB	2.9	
DehCI	2.4	
	1	50
------	------------	------------
DehST398		
Deh1	MIRAIVDIE	GTTSDIR.FV
Deh2	.NSLKRK1	ARLEVASEM
Deh3	.MNKIQ	GIVDFLYGTG
Deh4	.MQPIE	GIVDFLYGTG
Deh6	.MDPFR	ACVDFAYGTG
Deh5	.MK	AIVDFAYGTG
Consensus	.I...FDGT.V	
	51	100
DehST398		
Deh1	NLRRETDAPA	A狭ADLITTL
Deh2	NCRRRSMQAM	LGREPPRH
Deh3	QKQLEYTWLR	SLMGRYTNEF
Deh4	QKQLEYTWLS	SLMGRYTNEF
Deh6	QKQLEYTWLR	SLMGRYTNEF
Deh5	QKQLEYTWLR	SLMGRYTNEF
Consensus	.E...GF...	
	101	150
DehST398		
Deh1	FTGYLFDTLV	GKLIVREYRN
Deh2	CWAPFRRVPG	GPAPFRAHT
Deh3	IHPFLYATDA	DAVRRLKAA
Deh4	IHPFLYATDA	DAVRRLKAA
Deh6	IHPFLYATDA	DAVRRLKAA
Deh5	IHPFLYATDA	DAVRRLKAA
Consensus	.S...V...	
	201	250
DehST398		
Deh1	RTIQLYKVGR	DRAVSHPQVQ
Deh2	GCQPFLFELL	WGAIGFQKMP
Deh3	IVCWIKNGQ	AFDELDAKTP
Deh4	IVCWIKNGQ	AFDELDAKTP
Deh6	IVCWIKNGQ	AFDELDAKTP
Deh5	IVCWIKNGQ	AFDELDAKTP
Consensus	.I...K...D	
	251	282
DehST398		
Deh1	IYKIFLTG	ELAENFKKKK
Deh2	NAISGVRG	AARPATFGRY
Deh3	IYKIFLTG	ELAENFKKKK
Deh4	IYKIFLTG	ELAENFKKKK
Deh6	IYKIFLTG	ELAENFKKKK
Deh5	IYKIFLTG	ELAENFKKKK
Consensus	.I...K...D	

Figure 7. The multiple sequence alignment of haloacid dehalogenase from *Staphylococcus aureus* (CEO92199.1) (Feßler et al., 2011), *Klebsiella pneumoniae* (ODM40643.1) (Zhou et al.), *Rhizobium* sp. RC1(CAA63794) (Cairns et al., 1996), *Pseudomonas putida* strain AJ1(AAA25832) (Cairns et al., 1996), *Pseudomonas putida* strain 109 (BAA04474) (Kawasaki et al., 1994), *Xanthobacter autotrophicus* strain JG10 (AAA27590) (Van Der Ploug et al., 1991), and *Pseudomonas* sp. CBS3 (AAA63640.1) (Schneider et al., 1991)
This is the first reported study on *Staphylococcus* sp. with the ability to grow on 2,2-dichloropropionic acid a model substrate for pollutant degradation. The genomic DNA from the NCBI database of similar bacterial species was analyzed, assuming that the same genus and species have identical genomic sequence. Screening the full genome of *Staphylococcus* sp. for the dehalogenase gene detected the gene in the species’ mobile genetic element. The dehalogenase sequence showed low identity to other previously reported dehalogenases.

CONCLUSION

The current study offers new perspectives on the research aside from bioprospecting for new microorganisms. It is also vital that the genomic analysis focuses on the same isolated species when screening potential enzymes and proteins. This study may shed light on the biochemical characteristics of dehalogenases isolated from the bacterial plasmid, with possible bioremediation use. This study isolated the bacterium from an oil palm plantation and identified as *Staphylococcus* sp., which has yet to be reported.

Hence, further investigation into the protein and its 3D structure is necessary to identify the bacteria’s conserved region. This study’s findings further add to the list of bacteria capable of degrading halogenated compounds, particularly the 2,2-dichloropropionic acid.

ACKNOWLEDGEMENT

We are grateful to the Fundamental Research Grant Scheme (FRGS) R.J130000.7854.5F189 (Ministry of Higher Education Malaysia) and RUG-UTM-HR-Q.J130000.2414.08G59 (University Teknologi Malaysia) for partial financial assistance for research materials.

REFERENCES

Abel, E., Ibrahim, N. & Huyop, F. (2012). Identification of Serratia marcescens SE1 and determination of its herbicide 2, 2-dichloropropionate (2, 2-DCP) degradation potential. *Malaysian Journal of Microbiology*, 8, 259-265.

Aggarwal, G., Tiwari, A., Dhiman, P., Arora, D., Pabbi, S. & Setya, D. (2012). Red blood cell exchange in sickle cell disease patient with multiple alloantibodies. *International Journal of Nutrition, Pharmacology, Neurological Diseases*, 2, 70-73.

Almaki, J. H., Nasiri, R., Soon, W. T. & Huyop, F. Z. (2016). Identification of novel bacterial species capable of degrading dalapon using 16s rRNA sequencing. *Jurnal Teknologi*, 78(6), 77-82.

Aparecida, M., Camargo, B. & Miyuki, M. (2013). Toxicity of Herbicides: Impact on Aquatic and Soil Biota and Human Health In: Herbicides - Current Research and Case Studies in Use. Ed. Andrew J. Price and Jessica A. Kelton IntechOpen.

Atashgahi, S., Shetty, S. A., Smidt, H. & De Vos, W. M. (2018). Flux, Impact, and Fate of Halogenated Xenobiotic Compounds in the Gut. *Frontiers in Physiology*, 9.

Au, A. M. (2003). Pesticides and Herbicides | Types, Uses, and Determination of Herbicides. In: CABALLERO, B. (ed.) *Encyclopedia of Food Sciences and Nutrition (Second Edition).* Oxford: Academic Press.

Cairns, S. S., Cornish, A. & Cooper, R. A. (1996). Cloning, sequencing and expression in Escherichia coli of two Rhizobium sp. genes encoding haloalkanone dehalogenases of opposite stereospecificity. *European journal of biochemistry*, 235, 744-749.

Camboim, E. K. A., Tadra-Sfeir, M. Z., De Souza, E. M., Pedrosa, F. D. O., Andrade, P. P., Mcsweeney, C. S., Riet-Correa, F. & Melo, M. A. (2012). Defluorination of sodium fluoroacetate by bacteria from soil and plants in Brazil. *TheScientificWorldJournal*, 2012, 149893-149893.

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. *Nucleic acids research*, 16, 10881-10890.

Daugulis, A. J. (2001). Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. *TRENDS in Biotechnology*, 19, 457-462.

Edbeib, M., Wahab, R. & Huyop, F. (2017). Isolation and characterization of a novel 2, 2-DCP-degrading Achromobacter sp. Mx2 isolated from contaminated seawater of Desaru Beach, Southern Malaysia. *Journal of Engineering and Applied Sciences*, 12, 4306-4309.

Fetzner, S. & Linges, F. (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. *Microbiology Review*, 58(4), 641-685.

Fessler, A. T., Kadlec, K. & Schwarz, S. (2011). Novel apramycin resistance gene apmA in bovine and porcine methicillin-resistant *Staphylococcus aureus* ST398 isolates. *Antimicrobial agents and chemotherapy*, 55, 373-375.

Hamid, T. H. T. A., Hamid, A. A. A & Huyop, F. (2011). A review on non-stereospecific
Analysis of novel haloalkanoic acid dehalogenases.

Kurihara, T. & Esaki, N. (2008). Bacterial degradation of chlorpyrifos using novel haloalkanoic acid dehalogenases.

Jasinsen, D. B., Dinkla, I. J. T., Poelarends, G. & Huyop, F. (2017). Microbial dehalogenation and degradation of selected haloacids.

Harisna, A. H., Edbeib, M. F., Adamu, A., Hamid, A. & Mustafa, I. (2018). Analysis of 2,2-Dichloropropionate (DCP) as sole source of carbon.

Koloor, S. S. & Petru, M. (2020). Isolation and characterization of a novel β-haloalkane dehalogenase from A. lili, E. coli, P. staphylococcus xylol and Staphylococcus sp. and comparison of the structural genes of two 2-haloalkane acid dehalogenases from Pseudomonas sp. strain CB135 and Pseudomonas sp. strain W22A.

Zakaria, I. & Huyop, F. (2017). The potential of a novel β-haloalkane dehalogenase from Bacillus cereus WH2 as a bioremediation agent for the removal of haloacids.

Malaysia Journal of Microbiology, 31(1), 1-10.

African Journal of Microbiology Research, 12(21), 7925-7933.

Zatyi Zawani Zaidi, Fahrul Huyop, N. A. A., Wahab, R. A. & Huyop, F. Z. & Cooper, R. A. (2003). A potential use of a novel haloalkanoic acid dehalogenase from Rhizobium sp. RC1 as a bioremediation agent for the degradation of 1,2-dichloropropionate (2, 2-DCCP) as sole source of carbon.

Canadian Journal of Microbiology, 53(2), 125-133.

Journal of Microbiology, 63(1), 1-10.

Zagorova, M. & Liaskopoulou, M. (2007). A bacterial producer of 2,2-dichloropropionate (2,2-DCCP) as sole source of carbon.

Canadian Journal of Microbiology, 53(2), 328-332.

Zhou, Y.-L., Zhang, S.-L., Yang, D.-H., Zhao, D.-D., L.-J. Zhou, X.-Y., Zhu, S.-L., Yan, S., Wang, W.-Y., Li, J. & Hayop, F. (2011). Characterization of a Labrys sp. strain WY able to utilize 2,2-DCCP as sole source of carbon.

African Journal of Microbiology Research, 5, 532-536.

Zatyi Zawani Zaidi, Fahrul Huyop, N. A. A., Wahab, R. A. & Huyop, F. Z. & Cooper, R. A. (2003). A potential use of a novel haloalkanoic acid dehalogenase from Rhizobium sp. RC1 as a bioremediation agent for the degradation of 1,2-dichloropropionate (2, 2-DCCP) as sole source of carbon.

Canadian Journal of Microbiology, 53(2), 125-133.

Zagorova, M. & Liaskopoulou, M. (2007). A bacterial producer of 2,2-dichloropropionate (2,2-DCCP) as sole source of carbon.

Canadian Journal of Microbiology, 53(2), 328-332.

Zhou, Y.-L., Zhang, S.-L., Yang, D.-H., Zhao, D.-D., L.-J. Zhou, X.-Y., Zhu, S.-L., Yan, S., Wang, W.-Y., Li, J. & Hayop, F. (2011). Characterization of a Labrys sp. strain WY able to utilize 2,2-DCCP as sole source of carbon.

African Journal of Microbiology Research, 5, 532-536.

Zatyi Zawani Zaidi, Fahrul Huyop, N. A. A., Wahab, R. A. & Huyop, F. Z. & Cooper, R. A. (2003). A potential use of a novel haloalkanoic acid dehalogenase from Rhizobium sp. RC1 as a bioremediation agent for the degradation of 1,2-dichloropropionate (2, 2-DCCP) as sole source of carbon.

Canadian Journal of Microbiology, 53(2), 125-133.

Zagorova, M. & Liaskopoulou, M. (2007). A bacterial producer of 2,2-dichloropropionate (2,2-DCCP) as sole source of carbon.

Canadian Journal of Microbiology, 53(2), 328-332.

Zhou, Y.-L., Zhang, S.-L., Yang, D.-H., Zhao, D.-D., L.-J. Zhou, X.-Y., Zhu, S.-L., Yan, S., Wang, W.-Y., Li, J. & Hayop, F. (2011). Characterization of a Labrys sp. strain WY able to utilize 2,2-DCCP as sole source of carbon.

African Journal of Microbiology Research, 5, 532-536.