Orbital Reconstruction in a Self-assembled Oxygen Vacancy Nanostructure

H. Jang¹, G. Kerr¹, J. S. Lim², C.-H. Yang³, C.-C. Kao³ & J.-S. Lee³

We demonstrate the microscopic role of oxygen vacancies spatially confined within nanometer inter-spacing (about 1 nm) in BiFeO₃ using resonant soft X-ray scattering techniques and soft X-ray spectroscopy measurements. Such vacancy confinements and total number of vacancy are controlled by substitution of Ca²⁺ for Bi³⁺ cation. We found that by increasing the substitution, the in-plane orbital bands of Fe³⁺ cations are reconstructed without any redox reaction. It leads to a reduction of the hopping between Fe atoms, forming a localized valence band, in particular Fe 3d-electronic structure, around the Fermi level. This band localization causes to decrease the conductivity of the doped BiFeO₃ system.

In an intrinsic manner, oxygen vacancies always reside in all oxide compounds modulating chemical and physical properties on the scheme of defect chemistry. Beyond regarding this as an intrinsic defect, nowadays the oxygen vacancy has been considered as a parameter for controlling functionalities of oxide compounds such as quantum materials with strong electron correlation and energy materials. In this context, it has been demonstrated that changes in electronic conductivity on the correlated perovskite ABO₃ and Li-based batteries are associated with total oxygen vacancies. Furthermore, the spatially inhomogeneous distribution of the oxygen vacancies is regarded as another important parameter, as demonstrated in multiferroic BiFeO₃. Ferroelectric polarization in BiFeO₃ can be tuned by an external electric field. Meanwhile, the external electric field additionally induces oxygen vacancy migration because oxygen vacancies are positively charged, leading to a switchable photovoltaic effect in BiFeO₃. In spite of the vacancy’s importance in those applications, however, a role of oxygen vacancies has been puzzling and discussed only conceptually. Thus, the lack of microscopic understanding limits the improvement of the functionalities of oxide compounds.

For this reason, we discuss the microscopic role of oxygen vacancies for a representative multiferroic photovoltaic system, BiFeO₃. In general, the photovoltaic effect is associated with a modification of the electrons present in both the valence and conduction band when a material absorbs energy via the light. However, the multiferroic BiFeO₃ case is more complicated because the oxygen vacancy’s migration is also affected by the built-in electric field. Here, we investigate an electronic structure with varying the oxygen vacancy in BiFeO₃ using resonant soft X-ray scattering and soft X-ray absorption spectroscopy measurement and corresponding atomic model calculations. Considering previous works, the number of the oxygen vacancies in BiFeO₃ can be readily controlled with Ca²⁺ substitution (x) for Bi³⁺ cations—BiₓCaₓFeO₃₋δ (hereafter, BCFO). Each planar defect an arrangement of Bi/Ca cations is adopted and promotes the formation of oxygen vacancy, showing a brownmillerite-like intra-plane, which leads to a superstructure (see Fig. 1a). Considering the previous TEM studies, furthermore, the oxygen vacancy in the superstructure is confined within a single unit cell in a self-assembled manner and the planar structures periodically appear at a few nanometers interval depending on the Ca substitution ratio (see Methods).

¹Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. ²Department of Physics, KAIST, Yuseong-gu, Daejeon 305-701, South Korea. ³SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA. Correspondence and requests for materials should be addressed to J.-S.L. (email: jslee@slac.stanford.edu)
In the doped BCFO case, anionic electron number is reduced by the formation of positively charged oxygen-vacancy15. In this manner, electron-hole pairs are modified by the oxygen vacancy. According to the reported photovoltaic properties of BCFO as a function of the vacancy concentration22, however, it does not show a monotonic increase even in a monotonic enhancement of the oxygen vacancy in BCFO. In particular, such effect decreases beyond $x \sim 15\%$22. This means that the reported diode effect10,11 of BiFeO$_3$ cannot be simply employed for explaining a change in BCFO via the oxygen vacancy. This implies that near cations (i.e., Fe in this case) chemically responds to the oxygen vacancies, leading to our attention for a role of oxygen vacancies via spectroscopic scheme such as electronic configuration.

Results

Figure 2a shows O K-edge X-ray absorption spectroscopy (XAS) spectra on Ca2+ 25% doped BCFO sample (BCFO25), aiming to address the spectroscopy scheme of the oxygen vacancy. The spectra were acquired by recording the total electron yield (TEY) – details of the experimental geometry are shown in Fig. 2b (see Methods). The spectral features represent hybridization effects between O 2p-Fe 3d bands23. There are two pronounced features around $E = 527.4$ eV and 528.8 eV, corresponding to the Fe t_2g and e_g orbitals coupled with oxygen bands, respectively. Interestingly, these features are nearly identical to undoped BiFeO$_3$ (green lines in Fig. 2a), although the number of vacancies in the two samples is completely different. Moreover, the polarization dependence ($E//a$ and $E//c$), which is sensitive to orbital anisotropy24 and crystal symmetry25, is similar to BiFeO$_3$. This means that even with substantial oxygen vacancies, a change in the electronic structure of oxygen is hard to observe by this XAS measurement.

For the next step, we employed the site-selective spectroscopic technique—resonant soft X-ray scattering (RSXS). Since the oxygen vacancies in Ca2+ doped BiFeO$_3$ are confined periodically15, this allows the exploration of electronic configurations around an oxygen vacancy. Figure 2c shows a $\theta–2\theta$ scan of BCFO25 at $E = 525$ eV—details of the experimental geometry are shown in Fig. 2b. It clearly shows the superstructure reflection, $q = (001)$, indicating periodically confined vacancies, which is consistent with the structural formation as shown in Fig. 1a. To investigate the site-selective (i.e., confined vacancies) spectroscopic features, energy scans at fixed q were performed with two (σ and π) incident polarizations (Fig. 2d). Note that electronic anisotropy can be resolved by controlling σ or π polarization in this RSXS measurement26,27. The measured RSXS profiles are quite unlike XAS spectra, showing the polarization dependence around the anisotropic Fe t_{2g} and e_g orbital bands hybridized with oxygen. In this context, the difference in the RSXS intensity profile between σ and π represents the anisotropic Fe 3d orbital state as modified by the oxygen vacancies.

Since Fe cations in BCFO are chemically correlated with the oxygen vacancies, we need to scrutinize the Fe electronic structures. Figure 3a shows the XAS spectrum for the Fe $L_{2,3}$-edges. The spectral features are almost identical to the known Fe3+ cation feature23,28. This means that the Fe valence is retained as a single 3$+$ state. This is in agreement with atomic multiplet calculations29 on the single valence state under D_{4h} symmetry (see Methods). Moreover, this calculation can generate linear dichroism (LD = $E//a - E//c$). The calculated LD is comparable to experimental results (Fig. 3b) except for a
small deviation around the in-plane orbital characters (xy and $x^2 - y^2$). This deviation, in particular the $x^2 - y^2$ character, is more pronounced in more heavily doped system (30% doped BCFO30). These findings might be associated with the implication (i.e., Fe 3d orbital state modified by oxygen vacancy) of O K-edge RSXS measurements. In other words, the in-plane orbital characters as modified by the oxygen vacancies undergo an additional anisotropic effect beyond the tetragonal crystal symmetry.
We now consider RSXS measurements at the Fe $L_{2,3}$-edges, for exploring Fe orbital anisotropy around the oxygen vacancies. Like the observed superstructure at the O K-edge, we clearly see a superstructure reflection at $q = (001)$, in addition to the second order (002) reflection (Fig. 4a inset). In the Fe L-edge RSXS study, we focused on the $q = (002)$ peak of BCFO25. Figure 4a shows the Fe L-edge RSXS profile for σ incident polarization. Note that the Fe profiles have been subtracted by a diffuse scattering part, e.g. fluorescence background (see Supplementary Information). In comparison with the Fe XAS spectrum, the RSXS profile is quite complicated. This complexity arises from modification of the Fe local structure by the oxygen vacancies. The elongated octahedral Fe (D_{4v}) coordination in doped BiFeO$_3$ can be transformed to tetrahedral (T_d) and square pyramidal (C_{4v}) symmetry via oxygen vacancies19,30. The resonant scattering is produced by the scattering form factor which is basically determined from the crystal symmetry. Therefore, the Fe RSXS profile in Fig. 4a is constructed by all symmetries in the BCFO. Accordingly, the current RSXS profile corresponding to both the complicated structural effects and regarding their Fe spectroscopic information causes a difficulty in exploring the Fe $3d$ orbital state modified by the oxygen vacancy.

To overcome this difficulty, we employed polarized X-rays and the principle of Brewster’s angle31 in this measurement. Moreover, this is why we focused on the (002) peak of BCFO25 (see Supplementary Information). Note that we do not control a polarization of the out-going photon, indicating the scattered X-ray always shows both σ_i and π_i polarizations. Considering the principle, in here $\theta_i + \theta_f \sim 90^\circ$ Brewster geometry, structural contribution (via $\pi_i - \pi_f$ channel) is drastically suppressed in incident π-polarization, while the structural contribution (via $\sigma_i - \sigma_f$ channel) is still large in incident σ-polarization32. As a consequence, we clearly observed the Fe spectroscopic behavior via the $\pi_i - \pi_f$ channel of incident π-polarization at $q = (002)$ (shown in Fig. 4b). Remarkably, there are only two pronounced features around $E = 706$ eV and 708 eV, agreeing with the implication of the Fe L-edge XAS measurements, which respectively corresponds to xy in t_{2g} orbital bands and x^2-y^2 in e_g orbital ones. This indicates that the Fe e_g band, in particular in-plane orbital bands, becomes anisotropic around the Fermi level, revealing the role of oxygen vacancy in BCFO system.

Discussion

Considering the Fe octahedral structure in the BCFO, the in-plane orbital characters in the crystal symmetry of the BCFO is not energetically preferred because of the c-axis elongation, showing...
the self-assembled structure as shown in Fig. 1a. Nevertheless, local in-plane Fe orbital bands on the self-assembled layers formed by the oxygen vacancy are clearly reconstructed by the hybridization with the vacancy. This reconstruction behavior is clearly observed when the structural effect is suppressed through Brewster geometry in RSXS measurement, leading to the additional anisotropic effect in the doped BCFO. Eventually, electrons hopping behavior around the Fermi level is disturbed by the additional anisotropic effect that attributes to the localized orbital bands, reinforcing insulating behavior on the BCFO.

In summary, we have experimentally demonstrated the role of oxygen vacancy which is confined into the two-dimensional self-assembled layers occurring periodically at a few nanometers interval in the Ca-doped BiFeO₃ films by using XAS and RSXS techniques. The central finding here is that the orbital state of Fe³⁺ cation is modified via the hybridization with the oxygen vacancy, which is competing with the electronic configuration of the Fe valence band in BCFO. This gives a key idea why with increasing doping ratio the diode effect of BiFeO₃ becomes weak even in higher contents of the oxygen vacancy in the previous report²³. These microscopic aspects of oxygen vacancies open a window into a new regime of energy materials, and oxides in general.

Methods

Sample preparation. Using pulsed laser deposition (KrF excimer laser, λ = 248 nm), BCFO films were grown on SrTiO₃ (001) substrates at 600–700°C in 50–100 mTorr oxygen pressure. The films were cooled down at a rate of 5°C/min with an oxygen pressure of ~1 atm. With increasing the x ratio, practically the oxygen vacancy in BCFO film is increasing²⁵,²⁶. As varying Ca substitution ratio (x = 0.075–0.30), we monitored BCFO films’ superstructural form, including crystalline quality, using by X-ray diffraction of energy materials, and oxides in general.

Synchrotron experiments. The XAS spectra show white line resonances at the Fe L₂,₃-edges. The spectra result from Fe 2p → 3d dipole transitions, are divided roughly into the L₁ (2p½) and L₂ (2p½) regions. For the LD measurements via XAS, the polarization direction of the linearly polarized X-rays (98% polarized) was tuned by elliptically polarized undulator, with horizontal (σ) and vertical (π) polarizations corresponding to complete in-plane (E//a) and majority out-of-plane (E//c) polarized components, respectively (see Fig. 2b). Theses spectroscopic experiments, XAS and RSXS, were carried out at beamlines 8-2 and 13-3 of the Stanford Synchrotron Radiation Lightsource (SSRL). Note that all measurements were done by zero-electric field polarization.

Atomic multiplet calculations. The calculations were carried out for the configuration interaction via combination between the initial 2p³3d⁶ state and its charge transfer 2p³3d⁶P₂ state under the D₅h crystal symmetry. The used Coulomb interactions are Uₐd = 5 eV and Uₚd = 6 eV. The charge transfer energy is Δ = 2.7 eV. The crystal field (10Ωq± = 1.6 eV) was used for this calculation. The Slater integrals are with ~80% of the atomic values.

References

1. Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoeengineered oxygen vacancy profiles in SrTiO₃. Nature 430, 657–661 (2004).
2. Alloul, H., Bobroff, J., Gabay, M. & Hirschfeld, P. J. Defects in correlated metals and superconductors. Rev. Mod. Phys. 81, 45–108 (2009).
3. Pavlenko, N., Kopp, T., Taymbal, E. Y., Sawatzky, G. A. & Mannhart, J. Magnetic and superconducting phases at the LaAlO₃/SrTiO₃ interface: The role of interfacial Ti 3d electrons Phys. Rev. B 85, 020407 (2012).
4. Lee, H. S., Choi, S. G., Park, H.-H. & Rozenberg, M. J. A new route to the Mott-Hubbard metal-insulator transition: Strong correlations effects in PrₓCa₃MnO₇. Sci. Rep. 3, 1704 (2013).
5. Bhattacharya, B. & May, S. J. Magnetic Oxide Heterostructures. Annu. Rev. Mater. Res. 44, 65–90 (2014).
6. Song, J. et al. Role of Oxygen Vacancies on the Performance of Li[Nbₓ±0.5,Mn₁₋ₓ]O₃ (x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries. Chem. Mater. 24, 3101–3109 (2012).
7. Muñoz-Garcia, A. B. et al. Unveiling Structure–Property Relationships in Sr₉Fe₃M₀₂O₈₋ₓ, an Electrode Material for Symmetric Solid Oxide Fuel Cells. J. Am. Chem. Soc. 134, 6826–6833 (2012).
8. Sushko, P. V., Rosso, K. M., Zhang, J.-G., Liu, J. & Sushko, M. L. Li-Ion Batteries: Oxygen Vacancies and Ordering of d-levels Control Voltage Suppression in Oxide Cathodes: The Case of Spinel LiNiₓMn₁₋ₓO₄. Adv. Funct. Mater. 23, 5454–5454 (2013).
9. Varley, J. B., Viswanathan, V., Norskov, J. K. & Lutz, A. C. Lithium and oxygen vacancies and their role in LiO₂ charge transport in Li-O₂ batteries. Energy Environ. Sci. 7, 720–727 (2014).
10. Choi, T., Lee, S., Choi, Y. J., Yikuykun, V. & Cheong, S.-W. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO₃. Science 324, 63–66 (2009).
11. Yi, H. T., Choi, T., Choi, S. G., Oh, Y. S. & Cheong, S.-W. Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO₃. Adv. Mater. 23, 3403–3407 (2011).
12. Moubah, R. et al. Photovoltaic Effects in Single Domain BiFeO₃ Crystals. Adv. Funct. Mater. 22, 4814–4818 (2012).
13. Guo, Y., Guo, B., Dong, W., Li, H. & Liu, H. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO₃ based thin films. Nanotechnology 24, 275201 (2013).
14. Gao, R. L. et al. Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/BiₓLaₓFeO₃/La₀.7Sr₀.3MnO₃ sandwiched capacitors Appl. Phys. Lett. 104, 031906 (2014).
15. Yang, C.-H. et al. Electric modulation of conduction in multiferroic Ca-doped BiFeO₃ films. Nat. Mater. 8, 485–493 (2009).
16. Bharathi, et al. Detection of electrically formed photosensitive area in Ca-doped BiFeO3 thin films. Appl. Phys. Lett. 102, 012908 (2013).
17. Würfel, P. Physics of solar cells: from basic principles to advanced concepts, 2nd, updated and expanded ed., Wiley-VCH: Weinheim (2009).
18. Yamamura, H. & Kiriyama, R. The Relations between Oxygen Vacancies and Structures in the Solid Solution Systems Sr1-xMxFeO3 (M = Y, La, Bi and In). Nippon Kagaku Kaishi 1972, 343–349 (1972).
19. Schiemer, J. et al. Detailed Phase Analysis and Crystal Structure Investigation of a Bi1−xMxFeO3−x/2 Perovskite-Related Solid Solution Phase and Selected Property Measurements Thereof. Chem. Mater. 21, 4223–4232 (2009).
20. Rossell, M., Ramasse, Q., Erni, R., Yang, C.-H. & Ramesh, R. Atomic Configuration of Planar Defects in Multiferroic Ca-doped BiFeO3 Films. Microsc. Microanal. 16, 96–97 (2010).
21. Withers, R. L., Schiemer, J., Bourgeois, L., Noréen, L. & Liu, Y. A careful phase analysis and TEM investigation of the incommensurately modulated, (Bi1−xMx)Fe3O1−x/2 (M = Ca and Sr), solid solution phases. J. Phys. Conf. Ser. 226, 012015 (2010).
22. Du, C. S. et al. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics. J. Appl. Phys. 114, 124105 (2013).
23. Abbate, M. et al. Controlled-valence properties of La1−xSrFeO3 and La1−xSrMnO3 studied by soft-x-ray absorption spectroscopy. Phys. Rev. B 46, 4511–4519 (1992).
24. Kim, J.-Y., Koo, T. Y. & Park, J.-H. Orbital and Bonding Anisotropy in a Half-Filled GaFeO3 Magnetoelectric Ferrimagnet. Phys. Rev. Lett. 96, 047205 (2006).
25. Yu, P. et al. Interface Ferromagnetism and Orbital Reconstruction in BiFeO3−La0.5Sr0.5MnO3 Heterostructures. Phys. Rev. Lett. 105, 027201 (2010).
26. Staub, U. Advanced resonant soft x-ray diffraction to study ordering phenomena in magnetic materials. J. Phys. Conf. Ser. 211, 012003 (2010).
27. Tanaka, A. et al. Symmetry of Orbital Order in FeO3 Studied by Fe L2,3 Resonant X-Ray Diffraction. Phys. Rev. Lett. 108, 227203 (2012).
28. De Groot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. 2p x-ray absorption of 3d transition-metal compounds: An atomic multiplet description including the crystal field. Phys. Rev. B 42, 5459–5468 (1990).
29. Ikeno, H., de Groot, F. M. F., Stavitski, E. & Tanaka, I. Multiplet calculations of Fe L2,3 x-ray absorption near-edge structures for 3d transition-metal compounds. J. Phys. Condens. Matter 21, 104208 (2009).
30. Cao, G. L. et al. Oxygen-vacancy ordering in multiferroic Bi1−xMxFeO3−x/2 (0.1 ≤ x ≤ 0.5). Europhys. Lett. 102, 27002 (2013).
31. Brewster, D. On the laws which regulate the polarisation of light by reflexion from transparent bodies. Philos. Trans. R. Soc. Lond. 105, 125–159 (1815).
32. Hill, J. P. & McMorrow, D. F. Resonant Exchange Scattering: Polarization Dependence and Correlation Function. Acta Crystallogr. A 52, 236–244 (1996).

Acknowledgements

We thank Dr. Kevin Hunter Stone for useful discussions. Synchrotron studies were carried out at the SSRL, a Directorate of SLAC and an Office of Science User Facility operated for the US DOE Office of Science by Stanford University. J.-S.L. acknowledges support by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515. This work at KAIST was supported by the National Research Foundation (NRF) Grant funded by the Korean Government (NRF-2013S1A2A2035418, 2014R1A2A2A01005979).

Author Contributions

H.J., C.Y, and J.-S.L. planned the experiments. H.J., G.K. and J.-S.L. carried out the Fe L-edge and O K-edge soft X-ray diffraction experiments at SSRL. H.J., C.Y, C.K. and J.L. contributed to the data interpretation and modeling discussions. J.L. and C.Y. grew the samples. H.J. and J.-S.L. wrote the manuscript with contributions from the other authors. J.-S.L. is responsible for overall project direction, planning, and management.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Jang, H. et al. Orbital Reconstruction in a Self-assembled Oxygen Vacancy Nanostructure. Sci. Rep. 5, 12402; doi: 10.1038/srep12402 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/