A NEW CLASS OF MINIMAL ASYMPTOTIC BASES

MELVYN B. NATHANSON

Abstract. A set A of nonnegative integers is an asymptotic basis of order h if every sufficiently large integer can be represented as the sum of h not necessarily distinct elements of A. An asymptotic basis A is minimal if removing any element of A destroys every representation of infinitely many integers. In this paper, a new class of minimal asymptotic bases is constructed.

1. G-adic asymptotic bases

Let $N_0 = \{0, 1, 2, 3, \ldots \}$ be the set of nonnegative integers and let h be a positive integer. Let A_0, A_1, \ldots, A_h be subsets of N_0. We define the sumset

$$A_1 + \cdots + A_h = \{ a_1 + \cdots + a_h : a_i \in A_i \text{ for all } i = 1, 2, \ldots, h \}$$

and the h-fold sumset

$$hA = A + \cdots + A = \{ a_1 + \cdots + a_h : a_i \in A \text{ for all } i = 1, 2, \ldots, h \}.$$

The set A is a basis of order h if every nonnegative integer can be represented as the sum of h not necessarily distinct elements of A, that is, if $hA = N_0$. The set A is an asymptotic basis of order h if hA contains all sufficiently large integers. An asymptotic basis of order h is minimal if no proper subset of A is an asymptotic basis of order h. Thus, if A is a minimal asymptotic basis of order h, then, for all $a \in A$, there are infinitely many integers n such that removing a from A destroys every representation of n as a sum of h elements of A.

Minimal asymptotic bases are extremal objects in additive number theory, and are related to the conjecture of Erdős and Turán [4] that the representation function of an asymptotic basis of order h must be unbounded.

At this time there are few explicit constructions of minimal asymptotic bases. Nathanson [11, 12] used a 2-adic construction to produce the first examples of minimal asymptotic bases. This method was extended to g-adically defined sets by Chen [2], Chen and Chen [1], Chen and Tang [3], Jia [5], Jia and Nathanson [6], Lee [7], Li and Li [8], Ling and Tang [9, 10], Sun [15, 16], and Sun and Tao [17]. This paper constructs a new class of minimal asymptotic bases.

An interval of integers of length t is a set of t consecutive integers. For $u, v \in N_0$ with $u \leq v$, the set

$$[u, v] = \{ x \in N_0 : u \leq x \leq v \}$$

is an interval of integers of length $v - u + 1$. Thus, $[1, h] = \{1, 2, \ldots, h\}$.

Date: May 6, 2022.

2010 Mathematics Subject Classification. 11B13, 11B05, 11B34, 11B75.

Key words and phrases. Additive number theory, additive basis, asymptotic basis, minimal asymptotic basis, Erdős-Turán conjecture.

Supported in part by a grant from the PSC-CUNY Research Awards Program.
A G-adic sequence is a strictly increasing sequence of positive integers $G = (g_i)_{i=0}^\infty$ such that $g_0 = 1$ and g_{i-1} divides g_i for all $i \geq 1$. Let $(d_i)_{i=1}^\infty$ be the sequence of positive integers defined by

$$d_i = \frac{g_i}{g_{i-1}}.$$

For all $i \geq 1$, we have

(1) \hspace{1cm} d_i \geq 2 \\

and

(2) \hspace{1cm} g_i = d_1 d_2 \cdots d_i.

For all i and j with $0 \leq i < j$, we have

(3) \hspace{1cm} \frac{g_{i+j}}{g_i} = d_{i+1} d_{i+2} \cdots d_{i+j}.

Every positive integer n has a unique G-adic representation

$$n = \sum_{j=0}^\infty x_j g_j$$

where

$$x_j \in [0, d_{j+1} - 1]$$

for all $j \in \mathbb{N}_0$ and $x_j = 0$ for all sufficiently large j (Nathanson [13, 14]). Equivalently, for every positive integer n, there is a unique nonempty finite set $F \subseteq \mathbb{N}_0$ and a unique set $\{x_j : j \in F\}$ such that

(4) \hspace{1cm} n = \sum_{j \in F} x_j g_j

where $x_j \in [1, d_{j+1} - 1]$ for all $j \in F$.

For every integer $g \geq 2$, the usual g-adic representation uses the G-adic sequence $G = (g^i)_{i=0}^\infty$ with quotients $d_i = g$ for all $i \geq 1$.

Lemma 1. Let $G = (g_i)_{i=0}^\infty$ be a G-adic system. If $n = \sum_{j \in F} x_j g_j$ is a positive integer with $x_j \in [1, d_{j+1} - 1]$ for all $j \in F$, then

$$g_M \leq n < g_{M+1}$$

if and only if

$$\text{max}(F) = M.$$

Proof. If $\text{max}(F) = M$, then $F \subseteq [0, M]$ and

$$g_M \leq x_M g_M \leq n = \sum_{j \in F} (d_{j+1} - 1) g_j$$

$$\leq \sum_{j=0}^M (d_{j+1} - 1) g_j = \sum_{j=0}^M (g_{j+1} - g_j)$$

$$= g_{M+1} - 1 < g_{M+1}.$$

Conversely, if $g_M \leq n < g_{M+1}$ and $\text{max}(F) = M'$, then the inequality

$$g_{M'} \leq x_{M'} g_{M'} \leq n < g_{M+1}$$

is satisfied.
implies $M' \leq M$. If $M' \leq M - 1$, then

$$n \leq \sum_{j=0}^{M'} (d_{j+1} - 1) g_j < g_{M'+1} \leq g_M$$

which is absurd. Therefore, $g_M \leq n < g_{M+1}$ implies $\max(F) = M$. This completes the proof. \hfill \Box

Let W be a nonempty set of nonnegative integers, and let $F^*(W)$ be the set of all nonempty finite subsets of W. Let $G = (g_i)_{i=0}^\infty$ be a G-adic sequence. We define the set of positive integers

$$A_G(W) = \left\{ \sum_{j \in F} x_j g_j : F \in F^*(W) \text{ and } x_j \in [d_{j+1} - 1] \right\}.$$

Note that $0 \notin A_G(W)$ because $\emptyset \notin F^*(W)$.

Let $h \geq 2$. A partition of \mathbb{N}_0 is a sequence $W = (W_i)_{i=0}^{h-1}$ of nonempty pairwise disjoint sets such that $\mathbb{N}_0 = W_0 \cup W_1 \cup \ldots \cup W_{h-1}$.

Theorem 1. Let $h \geq 2$ and let $W = (W_i)_{i=0}^{h-1}$ be a partition of \mathbb{N}_0. Let $G = (g_i)_{i=0}^\infty$ be a G-adic sequence. The set

$$hA_G(W) = \bigcup_{i=0}^{h-1} A_G(W_i)$$

is an asymptotic basis of order h with h-fold sumset $hA_G(W) = \{ n \in \mathbb{N}_0 : n \geq h \}$.

Proof. The smallest integer in the set $A_G(W)$ is $1 = 1 \cdot g_0$. It follows that $h \in hA_G(W)$ but $[0, h-1] \cap hA_G(W) = \emptyset$.

Every positive integer n has a unique G-adic representation $n = \sum_{j \in F} x_j g_j$, where F is a nonempty finite set of nonnegative integers and $x_j \in [0, d_{j+1} - 1]$. For $i \in [0, h-1]$, let

$$F_i = F \cap W_i$$

and

$$n_i = \sum_{j \in F_i} x_j g_j.$$

If $F_i = \emptyset$, then $n_i = 0 \notin A_G(W)$. If $F_i \neq \emptyset$, then

$$n_i = \sum_{j \in F_i} x_j g_j \in A_G(W_i) \subseteq A_G(W).$$

Let $L = \{ i \in [0, h-1] : F_i \neq \emptyset \} = \{ i \in [0, h-1] : n_i \geq 1 \}$ and $|L| = \ell_0$.

We have $\ell_0 \in [1, h]$ and

$$n = \sum_{i \in L} n_i \in \ell_0 A_G(W).$$

Let ℓ be the largest integer such that $\ell \leq h$ and $n \in \ell A_G(W)$. We must prove that $\ell = h$.

It follows that $n = n_1 + \cdots + n_{k-1} + n_k + n_{k+1} + \cdots + n_\ell$.

For each $i \in [1, \ell]$ there is an integer $s_i \in [0, h-1]$ and a set $F_{s_i} \in \mathcal{F}^*(W_{s_i})$ such that n_i has the G-adic representation

$$n_i = \sum_{j \in F_{s_i}} x_j g_j \in A_G(W_{s_i}).$$

Suppose that $\ell < h$. If $|F_{s_i}| \geq 2$ for some $k \in [1, \ell]$, then there are nonempty sets F'_{s_i} and F''_{s_i} such that

$$F_{s_k} = F'_{s_k} \cup F''_{s_k} \quad \text{and} \quad F'_{s_k} \cap F''_{s_k} = \emptyset.$$

The integers

$$n'_k = \sum_{j \in F'_{s_k}} x_j g_j \in A_G(W_{s_k}) \quad \text{and} \quad n''_k = \sum_{j \in F''_{s_k}} x_j g_j \in A_G(W_{s_k})$$

satisfy

$$n_k = n'_k + n''_k$$

and so

$$n = n_1 + \cdots + n_{k-1} + n'_k + n''_k + n_{k+1} + \cdots + n_\ell \in (\ell+1)A_G(W).$$

This contradicts the maximality of ℓ, and so $|F_{s_i}| = 1$ for all $i \in [1, \ell]$ and

$$n_i = x_j g_j.$$

for some $g_j \in W_{s_i}$ and $x_j \in [0, d_j+1 - 1]$.

If $x_j \geq 2$ for some $k \in [1, \ell]$, then

$$g_{jk} \in A_G(W_{s_k}) \quad \text{and} \quad (x_j - 1)g_{jk} \in A_G(W_{s_k})$$

and

$$n_k = g_{jk} + (x_j - 1)g_{jk}.$$

It follows that

$$n = n_1 + \cdots + n_{k-1} + g_{jk} + (x_j - 1)g_{jk} + n_{k+1} + \cdots + n_\ell \in (\ell+1)A_G(W),$$

which again contradicts the maximality of ℓ. Therefore, $x_j = 1$ for all $i \in [1, \ell]$, and

$$n = g_1 + \cdots + g_{jk} + \cdots + g_{j_\ell}.$$

If $j_k \geq 1$ for some $k \in [1, \ell]$, then

$$g_{jk} = g_{jk-1} + (d_{jk} - 1)g_{jk-1}$$

and

$$n = g_1 + \cdots + g_{jk-1} + (d_{jk} - 1)g_{jk-1} + \cdots + g_{j_\ell} \in (\ell+1)A_G(W),$$

which also contradicts the maximality of ℓ. Therefore, $j_k = 0$ and $g_{jk} = g_0 = 1$ for all $k \in [1, \ell]$, and so

$$n = \underbrace{g_0 + \cdots + g_0}_{\ell \text{\ summands}} = \underbrace{1 + \cdots + 1 + \cdots + 1}_{\ell \text{\ summands}} = 1 \leq h - 1,$$

which is absurd. This completes the proof. \Box
Theorem 2. Let \(h \geq 2 \) and let \(W = (W_i)_{i=0}^{h-1} \) be a partition of \(\mathbb{N}_0 \). The set
\[
A = \{0\} \cup A_G(W)
\]
is a basis of order \(h \) but not a minimal asymptotic basis of order \(h \).

Proof. Because \(0 \in A \) and \(1 \in A_G(W) \subseteq A \), we have
\[
\ell = (h - \ell) \cdot 0 + \ell \cdot 1 \in hA
\]
for all \(\ell \in [0, h - 1] \). By Theorem \([4]\)
\[
\{n \in \mathbb{N}_0 : n \geq h\} = hA_G(W) \subseteq hA
\]
and so \(A \) is a basis of order \(h \).

The set \(A \) is not a minimal asymptotic basis of order \(h \) because \(0 \in A \) and the removal of \(0 \) from \(A \) gives the set \(A \setminus \{0\} = A_G(W) \), which is still an asymptotic basis of order \(h \). This completes the proof. \(\square \)

2. Minimal asymptotic bases

The following lemma generalizes a result of Jia \([5]\).

Lemma 2. Let \(G = (g_i)_{i=0}^{\infty} \) be a \(G \)-adic sequence. Let \((u_i)_{i=1}^{p} \) be a strictly increasing finite sequence of nonnegative integers, and let \((v_j)_{j=1}^{q} \) be a finite sequence of not necessarily distinct nonnegative integers. Let
\[
x_i \in [1, d_{u_i+1} - 1]
\]
for all \(i \in [1, p] \) and
\[
y_j \in [1, d_{v_j+1} - 1]
\]
for all \(j \in [1, q] \). If
\[
n = \sum_{i=1}^{p} x_i g_{u_i} = \sum_{j=1}^{q} y_j g_{v_j}
\]
then
\[
\sum_{u_i \leq u_k} x_i g_{u_i} \leq \sum_{v_j \leq u_k} y_j g_{v_j}
\]
for all \(k \in [1, p] \).

Proof. Because the sequence \((u_i)_{i=1}^{p} \) is strictly increasing, Lemma \([4]\) implies
\[
\sum_{u_i \leq u_k} x_i g_{u_i} = \sum_{i=1}^{k} x_i g_{u_i} < g_{u_{k+1}}
\]
for all \(k \in [1, p] \). Choosing \(k = p \) gives
\[
n = \sum_{i=1}^{p} x_i g_{u_i} < g_{u_{p+1}}.
\]
Relation \([6]\) implies
\[
g_{v_j} \leq n < g_{u_{p+1}}
\]
an so \(v_j \leq u_p \) for all \(j \in [1, q] \). This implies \([6]\) for \(k = p \).
In the sequence $G = (g_i)_{i=0}^{\infty}$, the integer g_i divides g_j for all $i \leq j$. Let $k \in [1, p-1]$. Because the sequence $(u_i)_{i=1}^p$ is strictly increasing, for all $i \in [k+1, p]$ we have

$$u_k < u_k + 1 \leq u_{k+1} \leq u_i$$

and $g_{u_{k+1}}$ divides g_{u_i}, that is,

$$g_{u_i} \equiv 0 \pmod{g_{u_{k+1}}}. $$

If $v_j \geq u_k + 1$, then

$$g_{v_j} \equiv 0 \pmod{g_{u_{k+1}}}. $$

Rearranging (6), we obtain

$$\sum_{u_i \leq u_k} x_i g_{u_i} - \sum_{v_j \leq u_k} y_j g_{v_j} = \sum_{v_j \geq u_k + 1} y_j g_{v_j} - \sum_{u_i > u_k} x_i g_{u_i} \equiv 0 \pmod{g_{u_{k+1}}}. $$

If

$$\sum_{u_i \leq u_k} x_i g_{u_i} > \sum_{v_j \leq u_k} y_j g_{v_j}$$

then Lemma 3 gives

$$0 < \sum_{i=1}^k x_i g_{u_i} - \sum_{v_j \leq u_k} y_j g_{v_j} \leq \sum_{i=1}^k x_i g_{u_i} < g_{u_{k+1}}. $$

This inequality contradicts congruence (7). This completes the proof.

Theorem 3. Let $h \geq 2$ and let t be an integer such that

$$t \geq 1 + \frac{\log h}{\log 2}. $$

Let $W = (W_i)_{i=0}^{h-1}$ be a partition of \mathbb{N}_0 such that, for all $i \in [0, h-1]$, there is an infinite set M_i of positive integers such that

$$[M_i - t + 1, M_i] \subseteq W_i$$

for all $M_i \in M_i$. Let $G = (g_i)_{i=0}^{\infty}$ be a G-adic sequence. The set

$$A_G(W) = \bigcup_{i=0}^{h-1} A_G(W_i)$$

is a minimal asymptotic basis of order h.

Proof. By Theorem 1 the set $A_G(W)$ is an asymptotic basis of order h.

Let $a \in A_G(W)$. Without loss of generality, we can assume that $a = a_0 \in A_G(W_0)$ and

$$a_0 = \sum_{j \in F_0} x_{0,j} g_j$$

where $F_0 = F^*(W_0)$ and $x_{0,j} \in [1, d_{j+1} - 1]$ for all $j \in F_0$. Let $M_0 = \max(F_0)$. By Lemma 3

$$g_{M_0} \leq a_0 < g_{M_0+1}. $$

For all $i \in [1, h-1]$, choose an integer M_i in the infinite set M_i such that

$$M_i \geq M_0 + t.$$
and let
\[(12) \quad a_i = \sum_{j \in W_i, j < M_0} (d_{j+1} - 1) g_j + g_{M_i} \in A_G(W_i).\]
This is the G-adic representation of a_i. Let
\[(13) \quad n = \sum_{i=0}^{h-1} a_i = a_0 + \sum_{i=1}^{h-1} \sum_{j \in W_i, j < M_0} (d_{j+1} - 1) g_j + \sum_{i=1}^{h-1} g_{M_i}.\]
This is the G-adic representation of n.

Let
\[(14) \quad b_{k_i} = \sum_{j \in E_{k_i}} y_{i,j} g_j \in A_G(W_{k_i})\]
be any representation of n as the sum of h elements of $A_G(W)$, where $k_i \in [0, h-1]$ for all $i \in [0, h-1]$ and $b_{k_i} \in A_G(W_{k_i})$. We must prove that $b_{k_i} = a_0$ for some $i \in [0, h-1]$.

Each integer b_{k_i} is of the form
\[b_{k_i} = \sum_{j \in E_{k_i}} y_{i,j} g_j \in A_G(W_{k_i})\]
where $E_{k_i} \in F^*(W_{k_i})$ and $y_{i,j} \in [1, g_{j+1} - 1]$ for all $j \in E_{k_i}$. The uniqueness of the G-adic representation implies that if \{\(k_0, k_1, \ldots, k_{h-1}\)\} $\neq [0, h-1]$, then, after rearrangement, $k_i = i$ and $a_i = b_i$ for all $i \in [0, h-1]$.

If \{\(k_0, k_1, \ldots, k_{h-1}\)\} $\neq [0, h-1]$, then there exists $s \in [0, h-1]$ such that $s \notin \{k_0, k_1, \ldots, k_{h-1}\}$. Suppose that $s \neq 0$. Recall that
\[M_s \geq M_0 + t\]
and
\[\left[M_s - t + 1, M_s\right] \subseteq W_s.\]
Because $k_i \neq s$ for all $i \in [0, h-1]$, we have
\[\left[M_s - t + 1, M_s\right] \cap E_{k_i} \subseteq W_s \cap W_{k_i} = \emptyset.\]
We construct the partition
\[E_{k_i} = E'_{k_i} \cup E''_{k_i}\]
with
\[E'_{k_i} = \{j \in E_{k_i} : j \leq M_s - t\}\]
and
\[E''_{k_i} = \{j \in E_{k_i} : j \geq M_s + 1\}.\]
The sets E'_{k_i} and E''_{k_i} are not necessarily nonempty. Let
\[b_{k_i} = b'_{k_i} + b''_{k_i}\]
where
\[b'_{k_i} = \sum_{j \in E'_{k_i}} y_{i,j} g_j \quad \text{and} \quad b''_{k_i} = \sum_{j \in E''_{k_i}} y_{i,j} g_j.\]
Note that $b'_{k_i} = 0$ if $E'_{k_i} = \emptyset$ and $b''_{k_i} = 0$ if $E''_{k_i} = \emptyset$.

By Lemma 1
\[(14) \quad b'_{k_i} < g_{M_s - t + 1} \]
and
\[b''_{k_i} = 0 \quad \text{or} \quad b''_{k_i} \geq g_{M_s+1}. \]

Let
\[n' = \sum_{i=0}^{h-1} b'_{k_i} \quad \text{and} \quad n'' = \sum_{i=0}^{h-1} b''_{k_i}. \]

Recall inequalities (1) and (8):
\[d_i \geq 2 \quad \text{and} \quad h \leq 2^{t-1}. \]

From (15), (14), and (3), we obtain
\[n' < h g_{M_s-t+1} \leq 2^{t-1} g_{M_s-t+1} \leq g_{M_s-t+1} \prod_{i=1}^{t-1} d_{M_s-t+i} = g_{M_s}. \]

Therefore, the \(G \)-adic representation of \(n' \) is of the form
\[n' = \sum_{j=0}^{M_s-1} z_j g_j \]
with \(z_j \in [0, d_{j+1} - 1] \). Because
\[n'' = 0 \quad \text{or} \quad n'' \geq g_{M_s+1}, \]
the \(G \)-adic representation of \(n'' \) is of the form
\[n'' = \sum_{j=M_s+1}^{\infty} z_j g_j \]
with \(z_j \in [0, d_{j+1} - 1] \) and \(z_j \geq 1 \) for only finitely many \(j \). Therefore,
\[n = n' + n'' = \sum_{i=0}^{M_s-1} z_i g_i + \sum_{i=M_s+1}^{\infty} z_i g_i \]
is the \(G \)-adic representation of \(n \). In this representation, the coefficient of \(g_{M_s} \) is 0, which contradicts the construction of \(n \). It follows that
\[[1, h - 1] \subseteq \{k_0, k_1, \ldots, k_{h-1}\}. \]

Renumbering the integers \(b_i \), we can assume that \(k_i = i \) and \(b_i \in A_G(W_i) \) for all \(i \in [1, h - 1] \).

We must prove that \(k_0 = 0 \), or, equivalently, that \(b_0 \in A_G(W_0) \). If not, then \(b_0 \in A_G(W_r) \) for some \(r \in [1, h - 1] \). Because
\[M_0 = \max(F_0) \in F_0 \subseteq W_0 \]
we have
\[M_0 \notin \bigcup_{i=0}^{h-1} E_{k_i} \subseteq \bigcup_{i=1}^{h-1} W_i. \]

Identity (10) and Lemma 1 give
\[g_{M_0} \leq a_0 = \sum_{j \in F_0} x_{0,j} g_j < g_{M_0+1}. \]
From (12) we have
\[n = a_0 + \sum_{i=1}^{h-1} \sum_{j \in W_i, j < M_0} (d_{j+1} - 1)g_j + \sum_{i=1}^{h-1} g_{M_i} \]
\[= \sum_{i=0}^{h-1} \sum_{j \in E_i} y_{i,j} g_j. \]

Summing only over terms \(g_j \) with \(j \leq M_0 \) and applying Lemma 2, we obtain
\[a_0 + \sum_{i=1}^{h-1} \sum_{j \in W_i, j < M_0} (d_{j+1} - 1)g_j \leq \sum_{i=0}^{h-1} \sum_{j \in E_i} y_{i,j} g_j + \sum_{j \in E_0} y_{0,j} g_j + \sum_{i=1}^{h-1} \sum_{j \in E_i, j < M_0} y_{i,j} g_j \]
\[< g_{M_0} + \sum_{i=1}^{h-1} \sum_{j \in W_i, j < M_0} (d_{j+1} - 1)g_j \]
\[\leq a_0 + \sum_{i=1}^{h-1} \sum_{j \in W_i, j < M_0} (d_{j+1} - 1)g_j. \]

This is absurd, and so \(b_0 \in A_G(W_0) \). It follows that the integer \(n \) defined by (13) has a unique representation as the sum of \(h \) elements of \(A_G(W) \). Therefore,
\[n \notin h (A_G(W) \setminus \{a\}). \]

For all \(i \in [1, h-1] \), there are infinitely many integers \(M_i \in \mathcal{M}_i \) with \(M_i \geq M_0 + t \), and so infinitely many positive integers \(n \) satisfying (16). It follows that \(A_G(W) \setminus \{a\} \) is not an asymptotic basis of order \(h \) for all \(a \in A_G(W) \). Equivalently, \(A_G(W) \) is a minimal asymptotic basis of order \(h \). This completes the proof. \(\square \)

Corollary 1. Let \(W = W_0 \cup W_1 \) be a partition of \(\mathbb{N}_0 \) such that both \(W_0 \) and \(W_1 \) contain infinitely many pairs of consecutive integers. Let \(G = (g_i)_{i=0}^{\infty} \) be a \(G \)-adic sequence. The set
\[A_G(W) = A_G(W_1) \cup A_G(W_2) \]
is a minimal asymptotic basis of order 2.

Proof. This is the case \(h = 2 \) of Theorem 3. \(\square \)

3. Open problems

1. Let \(h \geq 2 \). By Theorem 1 for every partition \(W = (W_i)_{i=0}^{h-1} \) of \(\mathbb{N}_0 \) and every \(G \)-adic sequence, the set
\[A = \{0\} \cup A_G(W) \]
is a basis of order \(h \) that is not a minimal asymptotic basis of order \(h \).
 (a) Determine the set of all integers \(a \in A \) such that \(A \setminus \{a\} \) is an asymptotic basis of order \(h \).
(b) Determine the set of all integers $a \in A$ such that $A \setminus \{a\}$ is a minimal asymptotic basis.

(2) Let $G = (g_i)_{i=0}^\infty$ be a G-adic sequence. Let $h \geq 2$.

(a) Construct partitions $W = (W_i)_{i=0}^{h-1}$ of \mathbb{N}_0 such that the set $A_G(W)$ is a minimal asymptotic basis of order h.

(b) Construct partitions $W = (W_i)_{i=0}^{h-1}$ of \mathbb{N}_0 such that the set $A_G(W)$ is not a minimal asymptotic basis of order h.

(3) Let $(d_i)_{i=1}^\infty$ be a sequence of 2s and 3s. Let $G = (g_i)_{i=0}^\infty$ be the G-adic sequence defined by $g_0 = 1$ and $g_i = \prod_{j=1}^{i} d_i$ for $i \geq 1$. Consider problem (2) with respect to this G-adic sequence. Of particular interest are the infinitely many G-adic sequences $G = (g_i)_{i=0}^\infty$ with quotients $\{d_{2i-1}, d_{2i}\} = \{2, 3\}$ for all $i = 1, 2, 3, \ldots$ In this case, $g_{2i} = 6^i$ for all i.

References

[1] F.-J. Chen and Y.-G. Chen, *On minimal asymptotic bases*, European J. Combin. 32 (2011), no. 8, 1329–1335.

[2] Y.-G. Chen, *On the Erdős-Turán conjecture*, C. R. Math. Acad. Sci. Paris 350 (2012), no. 21-22, 933–935.

[3] Y.-G. Chen and M. Tang, *On a problem of Nathanson*, Acta Arith. 185 (2018), no. 3, 275–280.

[4] P. Erdős and P. Turán, *On a problem of Sidon in additive number theory, and on some related problems*, J. London Math. Soc. 16 (1941), 212–215.

[5] X.-D. Jia, *Minimal bases and g-adic representations of integers*, Number Theory: New York Seminar 1991-1995 (New York), Springer-Verlag, 1996, pp. 201–209.

[6] X.-D. Jia and M. B. Nathanson, *A simple construction of minimal asymptotic bases*, Acta Arith. 52 (1989), no. 2, 95–101.

[7] J. B. Lee, *A construction of minimal asymptotic bases*, Periodica Math. Hungar. 26 (1993), 211–218.

[8] J. Li and J. Li, *On minimal asymptotic basis of order 4*, J. Math. Res. Appl. 36 (2016), no. 6, 651–658.

[9] D. Ling and M. Tang, *On minimal asymptotic g-adic bases*, Bull. Aust. Math. Soc. 92 (2015), no. 3, 374–379.

[10] , *On minimal asymptotic bases of order three*, Colloq. Math. 151 (2018), no. 1, 9–18.

[11] M. B. Nathanson, *Minimal bases and maximal nonbases in additive number theory*, J. Number Theory 6 (1974), 324–333.

[12] , *Minimal bases and powers of 2*, Acta Arith. 49 (1988), no. 5, 525–532.

[13] , *Additive systems and a theorem of de Bruijn*, Amer. Math. Monthly 121 (2014), no. 1, 5–17.

[14] , *Limits and decomposition of de Bruijn’s additive systems*, Combinatorial and additive number theory. II, Springer Proc. Math. Stat., vol. 220, Springer, Cham, 2017, pp. 255–267.

[15] C.-F. Sun, *On minimal asymptotic basis of order g, Indag. Math. (N.S.) 30 (2019), no. 1, 128–135.

[16] , *On a problem of Nathanson on minimal asymptotic bases*, Journal of Number Theory 218 (2021), 152–160.

[17] C.-F. Sun and T.-T. Tao, *On g-adic minimal asymptotic bases of order h, Int. J. Number Theory 15 (2019), no. 2, 389–406.

Lehman College (CUNY), Bronx, NY 10468

Email address: melvin.nathanson@lehman.cuny.edu