Short title: TOR signaling in response to plant stress

Target of Rapamycin Signaling in Plant Stress Responses

Liwen Fu,a Pengcheng Wang,b,* Yan Xionga,*

a Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province 350002, P. R. China.

b Shanghai Centre for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, P. R. China.

* Address correspondence to pcwang@sibs.ac.cn and yanxiong@fafu.edu.cn

One-sentence summary: Recent significant advances allow a more complete understanding of TOR's many functions in plant responses to different nutrient deficiencies and abiotic stresses.

Author contributions:

L.F. analyzed the phosphoproteomic data. L.F., P.W. and Y.X. wrote the manuscript.

Acknowledgments: This Research was supported by the Recruitment Program of Global Experts (People’s Republic of China), the National Natural Science Foundation of China (Grant 31870269 to Y.X. and 31771358 to P.W.), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB27040106 to P.W.), and funding from the Basic Forestry and Proteomics
Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University.
Abstract

Target of Rapamycin (TOR) is an atypical serine/threonine protein kinase that is evolutionally conserved among yeasts, plants, and mammals. In plants, TOR signaling functions as a central hub to integrate different kinds of nutrient, energy, hormone, and environmental signals. TOR thereby orchestrates every stage of plant life, from embryogenesis, meristem activation, root and leaf growth to flowering, senescence, and life span determination. Besides its essential role in the control of plant growth and development, recent research has also shed light on its multifaceted roles in plant environmental stress responses. Here, we review recent findings on the involvement of TOR signaling in plant adaptation to nutrient deficiency and various abiotic stresses. We also discuss the mechanisms underlying how plants cope with such unfavorable conditions via TOR-ABA crosstalk and TOR-mediated autophagy, both of which play crucial roles in plant stress responses. Until now, little was known about the upstream regulators and downstream effectors of TOR in plant stress responses. We propose that the SnRKs-TOR axis plays a role in sensing various stress signals, and predict the key downstream effectors based on recent high-throughput proteomic analyses.
Introduction

Plants are challenged throughout their life cycles by various types of environmental stresses, such as nutrient deficiencies, extreme temperatures, drought, and high salinity. To deal with such unfavorable growth conditions, plants have evolved elaborate and efficient stress perception and signal transduction systems. Furthermore, plant stress responses are always accompanied by extensive transcriptional, translational, and metabolic changes to redirect energy and nutrient resources for stress adaptation. Increasing evidence has revealed an essential role of TOR (target of rapamycin), a master regulator of energy maintenance and metabolic homeostasis in all eukaryotic organisms, in plant stress responses and stress adaptation.

TOR was first identified in budding yeast through genetic mutant screens for resistance to rapamycin, a chemical molecule produced by the bacterium *Streptomyces hygroscopicus* (Heitman et al., 1991). Subsequent studies identified TOR genes in almost all eukaryotes, including animals and plants (Kunz et al., 1993; Menand et al., 2002; Sabatini et al., 1994). TOR is an atypical serine/threonine protein kinase, resembling phosphatidylinositol lipid kinases, that is both structurally and functionally conserved among all eukaryotes (Xiong and Sheen, 2014). TOR exerts its function in complex forms. In mammals and yeasts, TOR forms at least two structurally and functionally distinct protein complexes (TORCs) with both shared (LST8) and distinct (Raptor in TORC1, and Rictor, mSIN1 in TORC2) TOR interacting partners. In plants, the precise compositions of the TOR kinase complexes have not been characterized. *TOR, Raptor,* and *LST8* (but neither *Rictor* nor *mSIN1*)
gene orthologues could be identified in all available plant genomes, indicating that only classical TORC1 exists in plants. One copy of TOR, two copies of $Raptor$ ($RaptorA$, $RaptorB$), and two copies of $LST8$ ($LST8-1$, $LST8-2$) exist in the Arabidopsis ($Arabidopsis thaliana$) genome, although $LST8-2$ might be a pseudogene due to its undetectable transcript level (Anderson et al., 2005; Deprost et al., 2005; Moreau et al., 2012). Gain of- and loss of- function analyses have revealed that $Arabidopsis$ TOR, Raptor, and LST8 are all essential for regulating multiple aspects of plant growth, development and stress adaptation (Anderson et al., 2005; Deprost et al., 2005; Moreau et al., 2012; Ren et al., 2011; Xiong et al., 2013). It is worth noting that, based on these functional analyses, TOR appears to regulate a much broader spectrum of biological functions than Raptor or LST8. For example, the null tor mutant is embryo lethal, while the $raptora/b$ double mutant exhibits normal embryonic development but is arrested during seedling development, and the $lst8-1$ mutant only exhibits modest dwarf growth and early senescence phenotypes. Interestingly, although most eukaryotes have only one copy of the TOR gene, two TOR genes have been identified in three polyploids ($Glycine max$, $Populus trichocarpa$, and $Brassica rapa$) and 4 TOR genes have been identified in allotetraploid cotton ($Gossypium hirsutum$; Song et al., 2018). Sessile plants might possess unique TOR complexes with plant-specific components that serve as a functional equivalent of TORC2 or may even have plant-specialized functions for adaptation to constant environmental challenges.

In plants, TOR functions as a central hub that integrates signals, including
nutrient, hormone, light, energy, and other environmental cues to orchestrate growth and development. TOR modulates a myriad of cellular activities, including cell division, cell expansion, transcription, mRNA translation, ribosome biogenesis, metabolism, nutrient assimilation and transport, and signaling via multiple partners and effectors in complex signaling networks, which have been extensively discussed in several excellent recent reviews (Jamsheer K et al., 2019; Ryabova et al., 2019; Shi et al., 2018; Wu et al., 2019). Besides its essential role in the control of plant growth and development, recent research also suggests an indispensable role for TOR in plant environmental stress responses. Plants with TOR dysfunctions behave as if they are stressed, even in the absence of a stressor. Transcriptome and metabolomics analyses in lst8-1 and the conditionally inducible tor-es, amiR-tor mutant revealed a broad regulation of plant stress- and autophagy-related genes, and diverse plant metabolic pathways modulating myo-inositol, raffinose, and galactinol, which usually accumulate under stress conditions such as high light, nutrient starvation, cold, drought, and high salt (Caldana et al., 2013; Moreau et al., 2012; Xiong et al., 2013). Down-regulated TOR signaling by chemical inhibitor AZD-8055 also activates genes involved in stress hormone (e.g., ethylene, jasmonic acid (JA), and abscisic acid (ABA)) signaling pathways (Dong et al., 2015). Intriguingly, modulating TOR expression can cause either stress-sensitive or stress-tolerant phenotypes depending on the type of stress encountered, further supporting the multifaceted roles of TOR in plant responses to abiotic stress (Bakshi et al., 2017; Deprost et al., 2007; Dong et al., 2019; and, Wang et al., 2017). Here, we focus on recent advances that enable a more
thorough understanding of TOR’s many functions in plant responses to different nutrient deficiencies and various abiotic stresses, and discuss potential upstream regulators and downstream effectors of TOR.

TOR Signaling in Nutrient Sensing and Deficiency

Plants obtain different kinds of nutrients from above-ground photosynthesis and below-ground soil nutrient assimilation. The ability to sense, assimilate, transport, and utilize various nutrients between sink and source organs is vital for plant survival and growth. TOR is a core component in plant nutrient sensing and communication networks.

In plants, glucose derived from photosynthesis in leaf sources provides carbon-based energy and building blocks (Li and Sheen, 2016; Sheen, 2014). Depletion of glucose completely blocks the kinase activity of TOR, and increases the expression of sets of autophagy- and protein degradation-related genes, indicating that recycling processes are activated to overcome the nutrient-deficient conditions (Xiong et al., 2013; Xiong and Sheen, 2012). Glucose can quickly reactivate TOR activity via the glycolysis-mitochondria-electron transport chain (ETC) energy relay, as chemical inhibitors targeting the first step of glycolysis and different steps of ETC completely prevent TOR activation by glucose. Thus, sugar-mediated TOR can sense the cellular metabolic and bioenergetic status to manipulate energy signaling in plants. Glucose-activated TOR then phosphorylates and activates transcription factor E2Fa/E2Fb to promote root growth and true leaf formation by enhancing cell division.
activity in the root meristem and shoot apex, respectively (Li et al., 2017; Xiong et al., 2013; Xiong and Sheen, 2012). Interestingly, in the shoot apex, glucose alone is not enough to activate cell proliferation; the Rho-like small GTPase ROP2 was shown to bind to and activate TOR in a synergistic action along with glucose and auxin signaling (Li et al., 2017; Xiong et al., 2013; Xiong and Sheen, 2012). TOR also mediates crosstalk between sugar signaling and brassinosteroid (BR) signaling. Glucose-activated TOR can inhibit autophagy to stabilize BZR1, which is a positive regulator in BR signaling, to promote cell growth in hypocotyls (Zhang et al., 2016).

Sulfur is another important nutrient for plants. Sulfur assimilation begins with \(\text{SO}_4^{2-} \) that is absorbed by sulfate transporters in the roots and transformed into adenosine 5'-phosphosulfate (APS), \(\text{SO}_3^{2-} \), and \(\text{S}^{2-} \), which are catalyzed by ATP sulfurylase (ATPS), APS reductase (APR), and sulfite reductase (SIR), respectively (Jobe et al., 2019). \(\text{S}^{2-} \) then reacts with O-acetylserine (OAS) to produce cysteine, which serves as the donor for either protein synthesis or sulfur-containing compounds including glutathione (GSH) and various glucosinolates. Recently, the relationship between TOR and sulfur signaling has become evident. In the \textit{sir1-1} mutant, which could not produce \(\text{S}^{2-} \), TOR activity is abolished, and glucose content is significantly lower than that in wild-type Arabidopsis (Dong et al., 2017). Interestingly, exogenous supply of glucose or grafting the wild-type shoot onto the \textit{sir1-1} root rescues TOR activity, cell division in root apical meristem, and the growth arrest phenotype in the \textit{sir1-1} mutant (Dong et al., 2017), suggesting that sulfur availability does not affect TOR signaling independently, but acts through glucose energy signaling. Moreover,
reducing glutathione synthesis by inhibiting glutamate-cysteine ligase activity partially restores the dwarf phenotype and increases TOR activity in the sir1-1 mutant, suggesting that reallocation of sulfur flux from GSH biosynthesis to protein translation can promote plant growth via the regulation of TOR (Speiser et al., 2018). In addition, Malinovsky et al (2017) reported that a distinct plant defense-related glucosinolate, 3-hydroxypropylglucosinolate, can function like a TOR inhibitor to block glucose-TOR- promoted root meristem activation and root elongation. Thus, the direction of sulfur flux and its derived metabolites appear to serve key roles in balancing plant growth and stress responses via TOR regulation in response to environmental cues.

Organic nitrogen-containing molecules (amino acids) are key upstream signals for mTOR activation. A very recent study showed that the accumulation of branched-chain amino acids could also up-regulate TOR activity in Arabidopsis, causing reorganization of the actin cytoskeleton and actin-associated endomembranes (Cao et al., 2019). Although amino acid sensors for leucine, arginine, and glutamine have been discovered in mammalian systems in the past decades (Saxton and Sabatini, 2017), no orthologues have been identified in plant genomes. Plants obtain organic nitrogen through nitrogen assimilation. Plants take in nitrate/ammonium from the soil and convert these compounds to glutamine, and then into other amino acids via the glutamine synthetase (GS)/glutamine-2-oxoglutarate aminotransferase (GOGAT) cycle (Krapp, 2015). It has been reported that Arabidopsis seedlings overexpressing TOR are hypersensitive to high nitrate inhibition of root growth (Deprost et al., 2007).
Recent studies showed that TOR is inhibited in nitrogen-deprived seedlings, and that re-supply of either nitrate, ammonium, or amino acids quickly reactivates TOR (Liu et al., 2018). However, nitrogen starvation is often associated with higher level of sugars. It remains to be examined whether inhibition of TOR by nitrogen starvation, like sulfur deprivation, is related to metabolic and energy generation processes, or whether plants have evolved unique nitrogen-sensing systems for TOR activation.

A direct link between other essential inorganic nutrients and TOR is also being established. Couso et al. (2019) reported that in *Chlamydomonas reinhardtii*, phosphorus deprivation negatively affected LST8 protein stability, resulting in a down-regulation of TORC1 activity. Interestingly, in addition to the direct influence of carbon, nitrogen, sulfur, and phosphorus availability on TOR kinase activity, genome-wide transcriptional profiling has revealed that glucose-TOR signaling activates transcription of genes involved in sulfur assimilation and transport including *APS1/3, APK1/2, APR1/2/3, SIR, SULTR1.2/2.2/3.5/4.2*, as well as genes involved in nitrogen assimilation and transport, including *NIA1/2, NIR1, NRT1.1/1.2/1.5/2.2/3.1* (Xiong et al., 2013). Therefore, there is a reciprocal positive feedback regulation loop between glucose, sulfur, and nitrogen signaling, and TOR may function as a central hub that orchestrates nutrient acquisition, shuttling, and communication between above-ground and below-ground tissues (Figure 1).

TOR Signaling in Abiotic Stresses

Advancing research has shown that TOR plays multifaceted roles in the plant
response to various kinds of abiotic stress, and may function as either a positive or a negative regulator depending on the type and duration of stress encountered.

Temperature is a major factor in plant metabolism and growth. Wang and coworkers showed that Arabidopsis TOR activity is quickly abolished by cold treatment at time points as early as 10 min, but recovers after 2 hours of treatment (Wang et al., 2017). Furthermore, cold treatment compromises enhanced anthocyanin accumulation in the inducible tor-es mutant under normal temperature, indicating that TOR is likely to be a negative regulator in cold acclimation. Because inhibition of translation is essential for cold tolerance, inactive TOR might decrease translation in plants to prepare them for unfavorable cold conditions (Wang et al., 2017). However, another independent study suggested that TOR seems to positively regulate the plant cold response (Dong et al., 2019). Depletion of AtTHADA (which codes for AtTHADA, the plant protein orthologue of the cold response regulator HsTHADA in human) lowers energy status, decreases TOR activity, and causes growth arrest in Arabidopsis (Dong et al., 2019). Meanwhile, the Atthada mutant and TOR-RNAi (35-7) lines are hypersensitive to cold conditions (Dong et al., 2019). The differences between these studies might be caused by different silencing efficiencies in different TOR-RNAi lines or by different growth conditions, further indicating the complexity and dynamic nature of the TOR-regulated cold response.

In addition to cold stress, TOR is involved in high temperature tolerance. Exogenous application of glucose, overexpression of TOR, and overexpression of \textit{E2Fa} all result in higher heat shock gene expression and seedling survival rates after
recovery from heat stress treatment. Down-regulation of TOR, down-regulation of E2Fa, and treatment with the TOR inhibitor AZD-8055 or Torin1 lead to decreased seedling survival (Sharma et al., 2019). HIKESHI-LIKE PROTEIN1 (AtHLP1) is an orthologue of HsHikeshi, which imports HSP70 into the nucleus to promote thermo-tolerance in human (Koizumi et al., 2014; Kose et al., 2012; Sharma et al., 2019). Glucose-TOR-activated E2Fa directly binds to the promoter of AtHLP1 to activate AtHLP1. AtHLP1 binds directly to the promoters of many heat shock genes, which in turn leads to histone acetylation and H3K4me3 accumulation to activate and maintain thermo-memory, eventually enhancing thermo-tolerance (Sharma et al., 2019). Interestingly, proHLP1::GUS exhibits strong GUS induction in the proliferation zone of the shoot apex after 24 hours of heat stress recovery in the presence of glucose. These results suggest that cell proliferation in the shoot apex must be coordinated with internal and external cues to maintain growth and survival, and is mediated by glucose-TOR energy signaling.

TOR positively regulates the plant response to drought and osmotic stresses. In Arabidopsis, TOR overexpression lines have a longer primary root than control lines exposed to a high concentration of potassium chloride (Deprost et al., 2007). Ectopic expression of Arabidopsis TOR gene in Oryza indica rice enhances water-use efficiency (WUE), growth, and yield under water-limiting conditions (Bakshi et al., 2017). These transgenic rice lines also show seed germination insensitivity to ABA treatment (Bakshi et al., 2017, 2018). These observations suggest that constitutive TOR expression might alleviate the effect of drought or osmotic stress on plant
In contrast, TOR negatively regulates the plant response to oxidative stress and DNA/RNA damage. Maf1 is a conserved repressor of RNA polymerase III (Pol III), which is responsible for synthesizing small RNAs, 5S rRNA, and tRNAs. Maf1’s activity is mediated by phosphorylation/dephosphorylation, and dephosphorylation of Maf1 promotes its repressor activity. Both oxidative stress or DNA/RNA damage and TOR silencing stimulate Maf1 dephosphorylation (Ahn et al., 2018). It is very likely that these stresses inhibit TOR activity to enhance the dephosphorylation of Maf1 and activate its repressor function. In this way, plants may slow down protein synthesis and cell growth or division to overcome these environmental stresses.

Crosstalk between TOR Signaling and ABA Signaling

The phytohormone ABA plays a key role in integrating a wide range of stress signals and controlling downstream stress responses. Upon stress, ABA accumulates rapidly and binds to its intracellular PYR/PYL/RCAR receptors. The ABA-receptor complex binds to and inhibits the clade A PP2C protein phosphatases. PP2C inhibition releases the activity of Snf1-related protein kinase 2s (SnRK2s), which phosphorylate downstream targets to mediate protective responses such as stomatal closure and the expression of ABA-responsive genes (Chen et al., 2019).

TOR signaling has been found to regulate ABA biosynthesis and distribution. ABA content is decreased in raptorb seedlings, lst8-1 seedlings, and seedlings treated with the TOR inhibitor AZD-8055 (Kravchenko et al., 2015). Some genes that encode
critical enzymes in ABA biosynthesis, such as \textit{NEDC3} and \textit{AOO3}, show decreased expression in the \textit{raptorb} mutant (Kravchenko et al., 2015). However, the ABA content of \textit{raptorb} mutant seeds is elevated (Salem et al., 2017), suggesting that TOR may also be involved in the distribution of ABA.

TOR signaling and ABA signaling converge on two Protein Phosphatase 2A (PP2A)-associated proteins, TAP46 and TIP41 (Ahn et al., 2011; Hu et al., 2014; Punzo et al., 2018a; Punzo et al., 2018b). TAP46 is directly phosphorylated by TOR kinase, and functions as a positive effector in TOR signaling (Ahn et al., 2011). Meanwhile, TAP46 negatively regulates the phosphatase activity of PP2A, prevents it from dephosphorylating ABI5 (thereby stabilizes ABI5), and finally enhances ABA sensitivity in plants (Hu et al., 2014). TIP41 interacts with the catalytic subunit of PP2A and negatively regulates ABA sensitivity (Punzo et al., 2018a; Punzo et al., 2018b). TIP41 is also involved in TOR signaling. \textit{tip41} mutants display growth retardation, similar to the phenotype caused by \textit{TOR} silencing, and are hypersensitive to the TOR inhibitor AZD-8055 (Punzo et al., 2018a; Punzo et al., 2018b). Recent large-scale genetic screens for insensitivity to the TOR inhibitor AZD-8055 identified two important mediators of ABA signaling, \textit{YAK1} and \textit{ABI4}, as the key downstream regulators of TOR signaling to control root growth, meristem activation, and seed germination (Barrada et al., 2019; Kim et al., 2016; Li et al., 2015).

Upon sensing environmental stresses, plants usually transiently sacrifice growth and activate protective stress responses. Recently, a reciprocal negative crosstalk between TOR and ABA signaling has been shown to regulate such a trade-off between
plant growth and stress adaptation (Figure 2) (Wang et al., 2018). In unstressed Arabidopsis, TOR phosphorylates ABA receptors at a highly conserved serine, corresponding to Ser119 in PYL1, to compromise ABA signaling by abolishing PYL binding activity to ABA, thereby inhibiting PP2C phosphatase. Expression of phosphor-mimicking PYL1^{S119D} in multiple ABA receptor mutants does not complement the ABA-insensitive phenotype (Wang et al., 2018). raptorB and lst8-1 mutants display hypersensitivity to exogenous ABA application (Wang et al., 2018; Salem et al., 2017). On the other hand, ABA also antagonizes TOR signaling. ABA-activated SnRK2s directly interact and phosphorylate RaptorB. This phosphorylation triggers the disassociation of RaptorB from the TOR complex, and thereby inhibits TOR’s kinase activity (Wang et al., 2018). Therefore, under nutrient-rich conditions, active TOR inhibits ABA signaling to direct resources to growth, whereas under stress conditions, ABA signaling is activated, and ABA-activated SnRK2 inhibits TOR activity to sacrifice growth for survival during stress. Importantly, the serine residue corresponding to Ser119 in PYL1 is highly conserved across all 121 PYLs from 12 different plant species, suggesting that this phosphor-regulatory feedback loop is a conserved mechanism that land plants utilize to optimize the balance of growth and stress responses. Strikingly, several PYLs (PYL5 to PYL12) in Arabidopsis can bind to and inhibit PP2Cs even in the absence of ABA (Fujii and Zhu, 2012; Hao et al., 2011), while phosphor-mimicking mutation of TOR phosphorylation site within PYL10 abolishes this ABA-independent interaction with PP2Cs (Wang et al., 2018). Therefore, TOR might also inhibit the
activation of the ABA-independent PYLs under non-stress conditions to promote
growth and development.

TOR Negatively Regulates Autophagy

Autophagy is a process in which harmful or unwanted cellular components are
delivered into lytic vacuoles to be recycled (Signorelli et al., 2019; Zhuang et al.,
2018). Autophagy promotes plant resistance to nutrient deficiency, salt stress, drought
stress, oxidative stress, and endoplasmic reticulum (ER) stress (Pu et al., 2017a). TOR
is one of the key negative regulators of autophagy. Down-regulation of TOR
expression or kinase activity leads to constitutive activation of autophagy (Liu and
Bassham, 2010). However, TOR antagonizes some, but not all, of the abiotic
stress-triggered autophagy process (Liu and Bassham, 2010; Pu et al., 2017a; Pu et al.,
2017b; Soto-burgos and Bassham, 2017). Nutrient deficiency, salt stress, and drought
stress all induce autophagy through TOR kinase, as overexpression of TOR under
these condition significantly reduces the autophagy caused by these stresses (Pu et al.,
2017a; Pu et al., 2017b; Soto-burgos and Bassham, 2017). However, oxidative stress
and ER stress trigger autophagy in a TOR-independent manner (Pu et al., 2017a; Pu et
al., 2017b; Soto-burgos and Bassham, 2017).

The autophagy related 1 (ATG1)/ATG13/ATG17 kinase complex plays an
essential role in the onset of autophagy, and is the direct TORC1 substrate in
mammals and yeast. In Arabidopsis, there are three ATG1 and two ATG13
homologues; their roles in the regulation of autophagy in response to nutrient
starvation have been uncovered (Suttangkakul et al., 2011). Son et al. (2018) found that ATG13 contains a motif that could be phosphorylated by TOR kinase, and that deletion of this TOR-recognized motif in ATG13 enhances autophagy in Arabidopsis protoplasts. Recent high-throughput phosphoproteomics analysis using Arabidopsis suspension cell culture also revealed that ATG1s and ATG13s are direct TOR substrates. These studies reinforce that TOR-regulated phosphorylation of the ATG1/ATG13/ATG17 complex is essential for inhibiting autophagy in plants.

The upstream signals of TOR signaling also regulate autophagy. As a growth hormone, auxin stimulates TOR activity through a physical interaction between TOR and auxin-activated ROP2 to promote the activation of shoot apex cell proliferation (Li et al., 2017; Schepetilnikov et al., 2013). Interestingly, auxin also acts upstream of TOR in the regulation of autophagy. As mentioned above, nutrient deficiency, salt stress, and drought stress induce autophagy via TOR signaling, but the addition of auxin prevents the autophagy phenomenon induced by these stress conditions (Pu et al., 2017a). Meanwhile, auxin has no effect on oxidative or ER stress-induced autophagy, indicating that auxin specifically affects TOR-dependent autophagy (Pu et al., 2017a).

Upstream Regulators of Plant TOR-Stress Signaling

In contrast with the significant progress made in discovering the various molecular functions of TOR signaling in plant stress responses, the upstream regulators of TOR remain poorly understood. Plants possess a family of unique Rho-like small GTPases
with 11 members that function as central hubs in signaling networks (Nagawa et al., 2010). As mentioned above, ROP2/3/6 has been shown to bind to and activate TOR stimulated by auxin signaling (Li et al., 2017; Schepetilnikov et al., 2013). Whether other ROPs are involved in stress sensing and regulation in TOR signaling remains a worthwhile question to be studied.

SnRKs are a group of kinases that play vital roles in a wide range of plant stress responses. Plants contain three SnRK families: SnRK1s, SnRK2s, and SnRK3s (Halford and Hey, 2009). Increasing evidence suggests that part of the SnRK-regulated stress response is achieved by the SnRKs-TOR module.

SnRK1 complex functions as a conserved energy sensor, which is activated under low energy conditions and is repressed under energy-rich conditions. In yeast and animal cells, nutrient starvations stimulate SNF1/AMPK, which repress TOR activity by phosphorylating Raptor proteins to suppresses cell growth and biosynthetic processes (Gwinn et al. 2008). In Arabidopsis, KIN10/11 protein kinases provide catalytic activities in the SnRK1 complex, and act antagonistically to TOR in the regulation of convergent primary sugar responsive genes (Baena-gonzalez et al., 2007; Li et al., 2016; Xiong et al., 2013), indicating that KIN10/11 functions upstream of TOR to regulate energy starvation processes. Furthermore, it was reported that KIN10 interacts with and phosphorylates Raptor in the TOR complex, providing a biochemical basis for the SnRK1-TOR regulation module (Nukarinen et al., 2016). Notably, KIN10 also functions upstream of TOR to activate autophagy (Pu et al., 2017b; Soto-burgos and Bassham, 2017).
The SnRK2s are a group of plant-specific serine/threonine kinases with 10 members. SnRK2.2, 2.3, and 2.6 are key regulator in ABA signaling, where all the 10 members are essential for osmotic stress responses (Zhu, 2016). As discussed above, ABA-dependent SnRK2.6 phosphorylates RaptorB and dissociates it from the TOR complex (Figure 2). In this way, SnRK2s shut down TOR-promoted growth and enhance stress adaptation responses (Wang et al., 2018). Osmotic stresses also repress TOR activity (Wang et al., 2018), and PYR1/PYLs/RCARs could interact with SnRK2s to inhibit activation of SnRK2s upon osmotic stress condition (Zhao et al., 2018). Whether TOR phosphorylation of PYLs regulates osmotic stress-induced SnRK2 activation or vice versa is not known yet.

SnRK3 is also known as CIPK [CBL (Calcineurin B-like protein)-interacting protein kinase] (Manik et al., 2015). Arabidopsis has 26 CIPKs in total (Kolukisaoglu et al., 2004). The majority of stresses trigger rapid, transient Ca2+ signatures; and consequently, as a Ca2+ sensor, the CBL-CIPK module participates broadly in various kinds of stress responses, especially in ion homeostasis (Liu et al., 2000; Sardar et al., 2017; Zhu, 2016). Interestingly, the expression of SnRK3.24 (CIPK5) is down-regulated after long-term TOR inhibition (Dong et al., 2015), and the cipk5 mutant exhibits decreased TOR activity (Meteignier et al., 2017), suggesting that SnRK3s might, like KIN10 and SnRK2s, phosphorylate Raptor to regulate TOR activity and signaling.

Downstream Effectors of Plant TOR-Stress Signaling
TOR is a core merging point in the plant stress signaling network. However, until now, only a very limited number of TOR substrates or TOR-regulated proteins have been identified. Very recently, Van Leene et al. (2019) performed quantitative phosphoproteomics and interactome analysis using Arabidopsis cell cultures with or without AZD8055 treatment. A total of 83 TOR-regulated phosphoproteins and 215 proteins interacting with the TOR complex (TOR, LST8-1, RaptorA, or RaptorB) were identified (Van Leene et al., 2019). Some of these proteins may be direct TOR substrates. We performed a literature search to examine the biological functions of these proteins, and found that 19% of TOR-regulated phosphoproteins and 20% of TOR complex interacting proteins participate in various stress responses (Table 1). These TOR signaling-related targets include VIP1 (VirE2-Interacting Protein1) involved in osmotic and sulphate deprivation response, GCN5 (General Control Nonderepressible5) affecting histone acetylation under cold and salt stress, ATG1/13 for autophagy induction, and LARPI (La-related protein1) involved in the heat stress-triggered mRNA degradation process (Andrea et al., 2009; Merret et al., 2013; Qi et al. 2017; Son et al., 2018; Zheng et al., 2018). These putative TOR substrates provide valuable directions for future studies of TOR-regulated stress responses.

Conclusion

In the last decade, our knowledge of plant TOR signaling has increased significantly. It is now clear that TOR acts as a master regulator to sense and transduce nutrient, energetic, hormonal, metabolic, and environmental stress inputs into physiological,
molecular, and developmental responses for growth and stress adaptation. Despite the
great wealth of information that has become available, several questions still remain
to be answered, and many others are emerging (see Outstanding Questions). In
addition to its well known roles in regulation of protein translation, it will be fruitful to
dissect how TOR signaling represses a vast spectrum of primary target gene pathways
in stress and immune responses. As a protein kinase, the phosphorylation of Thr449 in
the TOR-substrate protein ribosomal S6 kinase 1 (S6K1) is used as a conserved
indicator of endogenous TOR activity. Developing tissue-specific and
fluorescence-visualized TOR kinase activity markers will help to quantitatively
measure TOR activity and specific signaling output in different organs, e.g. sink and
source tissues, thereby facilitating a more accurate interpretation of the different or
even opposite phenotypes when TOR signaling is perturbed under various
environmental conditions.

Figure legends

Figure 1. TOR signaling networks mediate nutrient inter-organ dialogues to
drive plant growth. Plant obtain carbon, nitrogen, sulfur, phosphate, and other
micronutrients from above-ground photosynthesis and below-ground soil nutrient
assimilation. There is a reciprocal positive feedback regulation loop between glucose,
sulfur, and nitrogen signaling, and TOR functions as a central hub that orchestrates
nutrient acquisition, shuttling, and communication between inter-organ coordination.
APS: adenosine 5'-phosphosulfate; APR: APS reductase; SIR: sulfite reductase; NIA: nitrate reductase; NIR: nitrite reductase; NRT: nitrate transporter; TPS: trehalose-6-phosphate synthase; SWEET: sucrose transporter.

Figure 2. A Tai-Chi model of the phospho-reciprocal regulation of the TOR kinase and ABA signaling to balance plant growth and stress response. Under growth-promoting conditions, active TOR phosphorylates ABA receptors PYR/PYLs to inhibit ABA signaling, and directs resources toward growth; under stress conditions, ABA-activated SnRK2s phosphorylate Raptor to decrease TOR activity, and sacrifice growth for survival during stress.

Table 1. TOR-regulated stress-related proteins

Protein	AGI No.	Related plant stress responses	Methods
VIP1	At1g43700	Wound, cold, heavy metal, salt, osmotic, oxidative and mechanical stress, sulfur deficiency (Andrea et al., 2009; Tsugama et al., 2012; Tsugama et al., 2018; Wu et al., 2010)	Phosphoproteomics
OZF1	At2g19810	Sugar and nitrogen deficiency, oxidative, drought, salt and osmotic stress (Contento et al., 2004; Ding et al., 2013; Lee et al., 2012; Ping et al., 2011; Peng et al., 2007)	Phosphoproteomics
ATG1c	At2g37840	Autophagy-related (Qi et al., 2017)	Phosphoproteomics
BAM1	At3g23920	Drought, osmotic, salt and heat stress (Liu et al., 2019; Monroe et al., 2014; Prasch et al., 2015; Simpson et al., 2003)	Phosphoproteomics
At3g26730	At3g26730	ABA-related (Bang et al., 2008)	Phosphoproteomics
ATG13	At3g49590	Autophagy-related (Son et al., 2018)	Phosphoproteomics
Gene	Accession	Description	Method
--------	-----------	--	--------------
ATG1b	At3g53930	Autophagy-related (Qi et al., 2017)	Phosphoproteomics
GCN5	At3g54610	Cold, salt stress (Pavangadkar et al., 2010; Zheng et al., 2018)	Phosphoproteomics
EIF4G	At3g60240	Heat stress (Wu et al., 2013)	Phosphoproteomics
ATG1a	At3g61960	Autophagy-related (Qi et al., 2017)	Phosphoproteomics
ATHD1	At4g38130	Salt, drought, heat stress (Ueda et al., 2018)	Phosphoproteomics
LARP1a	At5g21160	Heat stress (Merret et al., 2013)	Phosphoproteomics
SGS3	At5g23570	Heat stress (Liu et al., 2019);	Phosphoproteomics
YAK1	At5g35980	ABA-related, drought stress (Kim et al., 2016)	Phosphoproteomics
PLDRP1	At5g39570	Drought stress, salt stress (Ufer et al., 2017)	Phosphoproteomics
PAH2	At5g42870	Phosphorus depletion (Nakamura et al., 2009)	Phosphoproteomics
AKS2	At1g05805	ABA-related (Takahashi et al., 2013)	Interactome
PFD4	At1g08780	ABA-related, cold stress (Perearesa et al., 2017; Kurup et al., 2000)	Interactome
KINβγ	At1g09020	Sugar deficiency (Emanuelle et al., 2015)	Interactome
FHY2	At1g09570	UV stress, cold stress (Rusaczonek et al., 2015)	Interactome
HOP1	At1g12270	Heat stress (Fernandez-bautista et al., 2018)	Interactome
HSP70B	At1g16030	Heat stress (Sung et al., 2001)	Interactome
CAT1	At1g20630	Drought (Hsieh et al., 2002; Xing et al., 2008)	Interactome
CPK11	At1g35670	ABA-related (Zhu et al., 2007)	Interactome
TUA2	At1g50010	Wounding, osmotic stress, cold stress (Testerink et al., 2004)	Interactome
FYPP1	At1g50370	ABA-related (Dai et al., 2013)	Interactome
MKK4	At1g51660	Wounding, osmotic stress (Li et al., 2018)	Interactome
CPN60B	At1g55490	Cold stress (Goulas et al., 2006)	Interactome
PP2A-1	At1g59830	ABA-related (Punzo et al., 2018b)	Interactome
HOP2	At1g62740	Heat stress (Fernandez-bautista et al., 2018)	Interactome
PP2A	At1g69960	ABA-related, salt stress (Hu et al., 2017)	Interactome
PP5	At2g42810	Heat stress (Park et al., 2011)	Interactome
KIN10	At3g01090	Autophagy-related, ABA-related, low energy, carbon and phosphorus deficiency (Hamasaki et al., 2019)	Interactome
Gene/Protein	Accession Number	Stress/Condition	Reference(s)
-------------	------------------	------------------	--------------
S6K1	At3g08730	Cold, salt and osmotic stress (Mahfouz et al., 2006)	Interactome
HSP70	At3g09440	Cold, heat stress (Sharma et al., 2006)	Interactome
2CPA	At3g11630	Cold, oxidative stress (Goulas et al., 2006; Juszczak et al., 2016; Pulido et al., 2010)	Interactome
HSC70-4	At3g12580	Heat, salt, osmotic and oxidative stress (Monterobarrientos et al., 2010)	Interactome
KIN11	At3g29160	Sugar deficiency (Baena-gonzalez et al., 2007; Sheen, 2014)	Interactome
ATJ3	At3g44110	Salt, osmotic stress (Salasmunoz et al., 2016)	Interactome
ATG13	At3g49590	Autophagy-related (Son et al., 2018)	Interactome
ATG1b	At3g53930	Autophagy-related (Qi et al., 2017)	Interactome
FER3	At3g56090	Oxidative stress (Ravet et al., 2009)	Interactome
MPK4	At4g01370	Salt, heat stress (Andrasi et al., 2019)	Interactome
GRXS17	At4g04950	Cold, heat, drought stress (Wu et al., 2017)	Interactome
TUA6	At4g14960	Salt stress (Dinneny et al., 2008)	Interactome
ATPDX1	At5g01410	Chilling, drought, salt, osmotic and ozone stresses (Denslow et al., 2007)	Interactome
HSP70-1	At5g02500	Cold, heat, salt, osmotic, heavy metal stress (Lee and Schoffl, 1996; Leng et al., 2017; Zhang et al., 2003)	Interactome
UBP12	At5g06600	UV stress (Khatheb et al., 2019)	Interactome
TSN1	At5g07350	Heat, salt stress (Gutierrezbeltran et al., 2015);	Interactome
GDH2	At5g07440	Salt stress (Jiang et al., 2007)	Interactome
ASN3	At5g10240	Nitrogen deficiency (Bi et al., 2007)	Interactome
GDH1	At5g18170	Low oxygen stress (Sarry et al., 2006)	Interactome
ATJ2	At5g22060	Heat, cold stress (Li et al., 2005)	Interactome
PFD5	At5g23290	Salt stress (Rodriguez-milla and Salinas, 2009)	Interactome
YAK1	At5g35980	ABA-related, drought stress (Kim et al., 2016)	Interactome
PFD3	At5g49510	Salt stress (Rodriguez-milla and Interactome	
Salinas, 2009)

Gene 1	Gene 2	Function	Source
TAP46_2A	At5g53000	Cold stress (Harris et al., 1999)	Interactome
ATG101	At5g66930	Autophagy-related (Li et al., 2014)	Interactome

Literature Cited

Ahn CS, Han JA, Lee HS, Lee S, Pai H (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. The Plant Cell 23: 185-209

Ahn CS, Lee D-H, Pai H-S (2019) Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway. Planta 249:527-541

Anderson GH, Veit B, Hanson MR (2005) The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol 3: 12-12

Andrasi N, Rigo G, Zsigmond L, Perez-Salamo I, Papdi C, Klement E, Pettko-Szandtner A, Baba AI, Ayaydin F, Dasari R, Cseplo A, Szabados L (2019) The MPK4-phosphorylated Heat Shock Factor A4A regulates responses to combined salt and heat stresses. J Exp Bot 70

Andrea P, Armin D, Markus T, Heribert H (2009) VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proceedings of the National Academy of Sciences of the United States of America 106: 18414-18419

Baena-gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448: 938-942

Bakshi A, Moin M, Kumar MU, Reddy ABM, Ren M, Datla R, Siddiq EA, Kirti PB (2017) Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice. Scientific Reports 7: 42835

Bakshi A, Moin M, Madhav MS, Kirti PB (2018) Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biology 21: 190-205

Bang WY, Kim SW, Jeong IS, Koiwa H, Bahk JD (2008) The C-terminal region
(640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors. Biochemical and Biophysical Research Communications 372: 907-912

Barrada A, Djendli M, Desnos T, Mercier R, Robaglia C, Montane M, Menand B (2019) A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis. Development 146

Bi Y, Wang R, Zhu T, Rothstein SJ (2007) Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 8: 281-281

Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P (2013) Systemic Analysis of Inducible Target of Rapamycin Mutants Reveal a General Metabolic Switch Controlling Growth in Arabidopsis thaliana. Plant Journal 73: 897-909

Cao P, Kim S-J, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F (2019) Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. eLife 8: e50747

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2019) Abscisic acid dynamics, signaling and functions in plants. J Integr Plant Biol doi:10.1111/jipb.12899. PMID:31850654

Contento AL, Sang-Jin K, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiology 135: 2330-2347

Couso I, Perez-Perez ME, Ford MM, Martinez Force E, Hicks LM, Umen JG, Crespo JL (2019) Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas. The Plant Cell: tpc.00179.02019

Dai M, Xue Q, Mccray T, Margavage K, Chen F, Lee J, Nezames CD, Guo L, Terzaghi W, Wan J (2013) The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in Arabidopsis. The Plant Cell 25: 517-534

Denslow SA, Rueschhoff EE, Daub ME (2007) Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress. Plant Physiology and Biochemistry 45: 152-161

Deprost D, Truong H, Robaglia C, Meyer C (2005) An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochemical and Biophysical Research Communications 326: 844-850

Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports 8: 864-870

Ding Y, Liu N, Virlouvet L, Riethoven JM, Fromm ME, Avramova ZV (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biology 13: 229-229

Dinneny JR, Long TA, Wang JYJ, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress. Science 320: 942-945
Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, Ren M (2015) Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Frontiers in Plant Science 6: 677-677

Dong Y, Silbermann M, Speiser A, Forieri I, Linster E, Poschet G, Samami AA, Wanatabe M, Sticht C, Teleman AA (2017) Sulfur availability regulates plant growth via glucose-TOR signaling. Nature Communications 8: 1174

Dong Y, Teleman AA, Jedmowski C, Wirtz M, Hell R (2019) The Arabidopsis THADA homologue modulates TOR activity and cold acclimation. Plant Biology 21: 77-83

Emanuelle S, Hossain MI, Moller I, Pedersen HL, De Meene AMLV, Doblin MS, Koay A, Oakhill JS, Scott JW, Willats WGT (2015) SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant Journal 82: 183-192

Fernandez-bautista N, Fernandez-calvino L, Munoz AM, Toribio R, Mock HP, Castellano MM (2018) HOP family plays a major role in long-term acquired thermotolerance in Arabidopsis. Plant Cell and Environment 41: 1852-1869

Fujii H, Zhu J (2012) Osmotic stress signaling via protein kinases. Cellular and Molecular Life Sciences 69: 3165-3173

Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardestrom P, Schroder WP, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant Journal 47: 720-734

Gutierrezbeltran E, Moschou PN, Smertenko A, Bozhkov PV (2015) Tudor Staphylococcal Nuclease Links Formation of Stress Granules and Processing Bodies with mRNA Catabolism in Arabidopsis. The Plant Cell 27: 926-943

Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419: 247-259

Hamasaki H, Kurihara Y, Kuromori T, Kusano H, Nagata N, Yamamoto YY, Shimada H, Matsui M (2019) SnRK1 Kinase and the NAC Transcription Factor SOG1 Are Components of a Novel Signaling Pathway Mediating the Low Energy Response Triggered by ATP Depletion. Frontiers in Plant Science 10

Hao Q, Yin P, Li W, Wang L, Yan C, Lin Z, Wu JZ, Wang J, Yan SF, Yan N (2011) The Molecular Basis of ABA-Independent Inhibition of PP2Cs by a Subclass of PYL Proteins. Molecular Cell 42: 662-672

Harris DM, Myrick TL, Rundle SJ (1999) The Arabidopsis Homolog of Yeast TAP42 and Mammalian α4 Binds to the Catalytic Subunit of Protein Phosphatase 2A and Is Induced by Chilling. Plant Physiology 121: 609-618

Heitman J, Movva NR, Hiestand PC, Hall MN (1991) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 88: 1948-1952

Hsieh T, Lee J, Charng Y, Chan M (2002) Tomato Plants Ectopically Expressing
Arabidopsis CBF1 Show Enhanced Resistance to Water Deficit Stress. Plant Physiology 130: 618-626

Hu R, Zhu Y, Shen G, Zhang H (2014) TAP46 Plays a Positive Role in the ABSCISIC ACID INSENSITIVE5-Regulated Gene Expression in Arabidopsis. Plant Physiology 164: 721-734

Hu R, Zhu Y, Wei J, Chen J, Shi H, Shen G, Zhang HC (2017) Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions. Plant Cell and Environment 40: 150-164

Jamsheer K M, Jindal S, Laxmi A (2019) Evolution of TOR–SnRK dynamics in green plants and its integration with phytohormone signaling networks. Journal of Experimental Botany 70: 2239-2259

Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany 58: 3591-3607

Jobe TO, Zenzen I, Karvansara PR, Kopriva S (2019) Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. Journal of Experimental Botany

Juszczak I, Cvetkovic J, Zuther E, Hincha DK, Baier M (2016) Natural Variation of Cold Deacclimation Correlates with Variation of Cold-Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions. Frontiers in Plant Science 7: 305-305

Khateeb WA, Sher AA, Marcus JM, Schroeder DF (2019) UVSSA, UBP12, and RDO2/TFIIS Contribute to Arabidopsis UV Tolerance. Frontiers in Plant Science 10

Kim D, Ntui VO, Xiong L (2016) Arabidopsis YAK1 regulates abscisic acid response and drought resistance. FEBS Letters 590: 2201-2209

Koizumi S, Ohama N, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2014) Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis. Biochemical & Biophysical Research Communications 450: 396-400

Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium Sensors and Their Interacting Protein Kinases: Genomics of the Arabidopsis and Rice CBL-CIPK Signaling Networks. Plant Physiology 134: 43-58

Kose S, Furuta M, Imamoto N (2012) Hikeshi, a nuclear import carrier for HSP70s, protects cells from heat shock-induced nuclear damage. Cell 149: 578-589

Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion in Plant Biology 25: 115-122

Kravchenko A, Citerne S, Jehanno I, Bersimbaev RI, Veit B, Meyer C, Leprince A (2015) Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis. Biochemical and Biophysical Research Communications 467: 992-997

Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G (2011) SnRK2
protein kinases--key regulators of plant response to abiotic stresses. Omics 15: 859-872

Kunz J, Henriquez R, Schneider U, Deuterreinhard M, Movva NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585-596

Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant Journal 21: 143-155

Lee JH, Schoffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Molecular Genetics and Genomics 252: 11-19

Lee SJ, Jung HJ, Kang H, Kim SY (2012) Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant & Cell Physiology 53: 673-686

Leng L, Liang Q, Jiang J, Zhang C, Hao Y, Wang X, Su W (2017) A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. Journal of Plant Research 130: 349-363

Li F, Chung T, Vierstra RD (2014) AUTOPHAGY-RELATED11 Plays a Critical Role in General Autophagy- and Senescence-Induced Mitophagy in Arabidopsis. The Plant Cell 26: 788-807

Li GL, Li B, Liu HT, Zhou RG (2005) The responses of AtJ2 and AtJ3 gene expression to environmental stresses in Arabidopsis. Journal of plant physiology and molecular biology 31: 47

Li L, Sheen J (2016) Dynamic and diverse sugar signaling. Current Opinion in Plant Biology 33: 116-125

Li L, Song Y, Wang K, Dong P, Zhang X, Li F, Li Z, Ren M (2015) TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis. Frontiers in Plant Science 6: 861-861

Li S, Han X, Yang L, Deng X, Wu H, Zhang M, Liu Y, Zhang S, Xu J (2018) Mitogen-activated protein kinases and calcium-dependent protein kinases are involved in wounding-induced ethylene biosynthesis in Arabidopsis thaliana. Plant Cell and Environment 41: 134-147

Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, Xu L, Liu H, Xu T, Xiong Y (2017) Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proceedings of the National Academy of Sciences of the United States of America 114: 2765-2770

Liu J, Feng L, Gu X, Deng X, Qiu Q, Li Q, Zhang Y, Wang M, Deng Y, Wang E (2019) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research 29: 379-390

Liu J, Ishitani M, Halfter U, Kim C, Zhu J (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 97:
Liu K, Zou W, Gao X, Wang X, Yu Q, Ge L (2019) Young seedlings adapt to stress by retaining starch and retarding growth through ABA-Dependent and -independent pathways in Arabidopsis. Biochemical and Biophysical Research Communications 515: 699-705

Liu Y, Bassham DC (2010) TOR Is a Negative Regulator of Autophagy in Arabidopsis thaliana. PLOS ONE 5

Liu Y, Wang Y, Yan X (2018) Nitrogen–TOR signaling in shoot apex activation. EMBO Workshop. Target of rapamycin (TOR) signaling in photo-synthetic organisms

Mahfouz MM, Kim S, Delauney AJ, Verma DPS (2006) Arabidopsis TARGET OF RAPAMYCIN Interacts with RAPTOR, Which Regulates the Activity of S6 Kinase in Response to Osmotic Stress Signals. The Plant Cell 18: 477-490

Malinovksy FG, Thomsen M, Nintemann SJ, Jagd LM, Bourgine B, Burow M, Kliebenstein DJ (2017) An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. eLife 6: 1-24

Manik SM, Shi S, Mao J, Dong L, Su Y, Wang Q, Liu H (2015) The Calcium Sensor CBL-CIPK Is Involved in Plant's Response to Abiotic Stresses. Int J Genomics 2015: 493191

Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proceedings of the National Academy of Sciences of the United States of America 99: 6422-6427

Merret R, Descombin J, Juan Y, Favory J, Carpentier M, Chaparro C, Charng Y, Deragon J, Bousquetantonielli C (2013) XRN4 and LARP1 Are Required for a Heat-Triggered mRNA Decay Pathway Involved in Plant Acclimation and Survival during Thermal Stress. Cell Reports 5: 1279-1293

Meteignier L-V, El Oirdi M, Cohen M, Barff T, Matteau D, Lucier J-F, Rodrigue S, Jacques P-E, Yoshioka K, Moffett P (2017) Translatome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis. Journal of Experimental Botany 68: 2333

Monroe JD, Storm AR, Badley EM, Lehman MD, Platt SM, Saunders LK, Schmitz JM, Torres CE (2014) β-Amylase1 and β-Amylase3 Are Plastidic Starch Hydrolases in Arabidopsis That Seem to Be Adapted for Different Thermal, pH, and Stress Conditions. Plant Physiology 166: 1748-1763

Monterobarrientos M, Hermosa R, Cardoza RE, Gutierrez S, Nicolas C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology 167: 659-665

Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, Martinmagniette M, Taconnat L, Renou J, Robaglia C (2012) Mutations in the Arabidopsis Homolog of LST8/GβL, a Partner of the Target of Rapamycin Kinase, Impair Plant Growth, Flowering, and Metabolic Adaptation to Long
Nagawa S, Xu T, Yang Z (2010) RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 1: 78-88

Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk MR, Ito T, Ohta H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proceedings of the National Academy of Sciences of the United States of America 106: 20978-20983

Nukarinen E, Nagele T, Pedrotti L, Wurzinger B, Mair A, Landgraf R, Bornke F, Hanson J, Teige M, Baenagonzalez E (2016) Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Scientific Reports 6: 31697

Park JH, Lee SY, Kim WY, Jung YJ, Chae HB, Jung HS, Kang CH, Shin MR, Kim SY, Udi MS (2011) Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana. New Phytologist 191: 692-705

Pavangadkar KA, Thomashow MF, Triezenberg SJ (2010) Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Molecular Biology 74: 183-200

Peng M, Bi Y, Zhu T, Rothstein SJ (2007) Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Molecular Biology 65: 775-797

Pereareas C, Rodriquezmilla MA, Iniesto E, Rubio V, Salinas J (2017) Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Molecular Plant 10: 791-804

Ping H, Moon-Soo C, Hyun-Woo J, Hyun-Seok N, Ju LD, Hyeon-Sook C, Cheol Soo K (2011) Physiological characterization of the Arabidopsis thaliana oxidation-related zinc finger 1, a plasma membrane protein involved in oxidative stress. Journal of Plant Research 124: 699-705

Prasch CM, Ott KV, Bauer H, Ache P, Hedrich R, Sonnewald U (2015) β-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells. Journal of Experimental Botany 66: 6059-6067

Pu Y, Luo X, Bassham DC (2017) TOR-Dependent and -Independent Pathways Regulate Autophagy in Arabidopsis thaliana. Frontiers in Plant Science 8

Pu Y, Sotoburgos J, Bassham DC (2017) Regulation of autophagy through SnRK1 and TOR signaling pathways. Plant Signaling & Behavior 12

Pulido P, Spinola MC, Kirchsteiger K, Guineau M, Pascual MB, Sahrawy M, Sandalio LM, Dietz K, Gonzalez M, Cejudo FJ (2010) Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany 61: 4043-4054

Punzo P, Ruggiero A, Grillo S, Batelli G (2018) TIP41 network analysis and mutant phenotypes predict interactions between the TOR and ABA pathways. Plant
Punzo P, Ruggiero A, Possenti M, Nurcato R, Costa A, Morelli G, Grillo S, Batelli G (2018) The PP2A-interactor TIP41 modulates ABA responses in Arabidopsis thaliana. Plant Journal 94: 991-1009

Qi H, Xia F, Xie L, Yu L, Chen Q, Zhuang X, Wang Q, Li F, Jiang L, Xie Q (2017) TRAF Family Proteins Regulate Autophagy Dynamics by Modulating AUTOPHAGY PROTEIN6 Stability in Arabidopsis. The Plant Cell 29: 890-911

Ravet K, Touraine B, Boucherez J, Briat J, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant Journal 57: 400-412

Ren M, Qiu S, Venglat P, Xiang D, Feng L, Selvaraj G, Dalta R (2011) Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol 155: 1367-1382

Rodriguez-milla MA, Salinas J (2009) Prefoldins 3 and 5 play an essential role in Arabidopsis tolerance to salt stress. Molecular Plant 2: 526-534

Rusaczonek A, Czarnocka W, Kačprzak S, Witon D, Ślesak I, Szechynskahebda M, Gawronski P, Karpinski S (2015) Role of phytochromes A and B in the regulation of cell death and acclimatory responses to UV stress in Arabidopsis thaliana. Journal of Experimental Botany 66: 6679-6695

Ryabova LA, Robaglia C, Meyer C (2019) Target of Rapamycin kinase: central regulatory hub for plant growth and metabolism. J Exp Bot 70: 2211-2216

Sabatini DM, Erdjumentbromage H, Lui M, Tempst P, Snyder SH (1994) RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35-43

Salasmunoz S, Rodriguezhernandez AA, Ortegaamaro MA, Salazarbadillo FB, Jimenezbremont JF (2016) Arabidopsis AtDjA3 null mutant shows increased sensitivity to abscisic acid, salt, and osmotic stress in germination and post-germination stages. Frontiers in Plant Science 7: 220-220

Salem MA, Li Y, Wiszniewski A, Giavalisco P (2017) Regulatory-Associated Protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds controlling seed morphology, viability and germination potential. Plant Journal 92

Sardar A, Nandi AK, Chattopadhyay D (2017) CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis. Journal of Experimental Botany 68: 3573-3584

Sarr J, Kuhn L, Lay PL, Garin J, Bourguignon J (2006) Dynamics of Arabidopsis thaliana soluble proteome in response to different nutrient culture conditions. Electrophoresis 27: 495-507

Schepetilnikov M, Dimitrova M, Manceramartinez E, Geldreich A, Keller M, Ryabova LA (2013) TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. The EMBO Journal 32: 1087-1102

Sharma M, Banday ZZ, Shukla BN, Laxmi A (2019) Glucose-regulated HLP1 acts
as a key molecule in governing thermomemory. Plant Physiology

Sharma N, Cram D, Huebert T, Zhou N, Parkin IAP (2006) Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress. Plant Molecular Biology 63: 171-184

Sheen J (2014) Master regulators in plant glucose signaling networks. Journal of Plant Biology 57: 67-79

Shi L, Wu Y, Sheen J (2018) TOR signaling in plants: conservation and innovation.

Signorelli S, Tarkowski LP, Den Ende WV, Bassham DC (2019) Linking Autophagy to Abiotic and Biotic Stress Responses. Trends in Plant Science 24: 413-430

Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchishinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant Journal 33: 259-270

Son O, Kim S, Kim D, Hur Y, Kim J, Cheon C (2018) Involvement of TOR signaling motif in the regulation of plant autophagy. Biochemical and Biophysical Research Communications 501: 643-647

Song Y, Li L, Yang Z, Zhao G, Zhang X, Wang L, Zheng L, Zhuo F, Yin H, Ge X, Zhang C, Yang Z, Ren M, Li F (2018) Target of Rapamycin (TOR) Regulates the Expression of IncRNAs in Response to Abiotic Stresses in Cotton. Front Genet 9: 690

Soto-burgos J, Bassham DC (2017) SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLOS ONE 12

Speiser A, Silbermann M, Dong Y, Haberland S, Uslu VV, Wang S, Bangash SAK, Reichelt M, Meyer AJ, Wirtz M (2018) Sulfur partitioning between glutathione and protein synthesis determines plant growth. Plant Physiology 177: 927-937

Sung D, Vierling E, Guy CL (2001) Comprehensive Expression Profile Analysis of the Arabidopsis Hsp70 Gene Family. Plant Physiology 126: 789-800

Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 Protein Kinase Complex Is Both a Regulator and a Target of Autophagic Recycling in Arabidopsis. The Plant Cell 23: 3761-3779

Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okuma E, Murata Y, Shimazaki K (2013) bHLH Transcription Factors That Facilitate K+ Uptake During Stomatal Opening Are Repressed by Abscisic Acid Through Phosphorylation. Science Signaling 6

Testerink C, Dekker HL, Lim Z, Johns MK, Holmes AB, De Koster CG, Ktistakis NT, Munnik T (2004) Isolation and identification of phosphatidic acid targets from plants. Plant Journal 39: 527-536

Tome F, Nagele T, Adamo M, Garg A, Marcollorca C, Nukarinen E, Pedrotti L, Peviani A, Simeunovic A, Tatkiewicz A (2014) The low energy signaling network. Frontiers in Plant Science 5: 353-353

Tsugama D, Liu S, Fujino K, Takano T (2018) Possible inhibition of Arabidopsis
VIP1-mediated mechanosensory signaling by streptomycin. Plant Signaling & Behavior 13

Tsugama D, Liu S, Takano T (2012) A bZIP Protein, VIP1, Is a Regulator of Osmosensory Signaling in Arabidopsis. Plant Physiology 159: 144-155

Ueda M, Matsui A, Nakamura T, Abe T, Sunaoshi Y, Shimada H, Seki M (2018) Versatility of HDA19-deficiency in increasing the tolerance of Arabidopsis to different environmental stresses. Plant Signaling & Behavior: 1-4

Ufer G, Gertzmann A, Gasulla F, Rohrig H, Bartels D (2017) Identification and characterization of the phosphatidic acid-binding A. thaliana phosphoprotein PLDrp1 that is regulated by PLDα1 in a stress-dependent manner. Plant Journal 92: 276-290

Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, De Slijke EV, De Cotte BV (2019) Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nature plants 5: 316-327

Wang L, Li H, Zhao C, Li S, Kong L, Wu W, Kong W, Liu Y, Wei Y, Zhu J (2017) The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. Plant Cell and Environment 40: 56-68

Wang P, Zhao Y, Li Z, Hsu C, Liu X, Fu L, Hou Y, Du Y, Xie S, Zhang C (2018) Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Molecular Cell 69

Wu Q, Hu Y, Sprague S, Kakeshpour T, Park J, Nakata PA, Cheng N, Hirschi KD, White FF, Park S (2017) Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance. Biochemical and Biophysical Research Communications 491: 1034-1039

Wu T, Juan Y, Hsu Y, Wu S, Liao H, Fung RWM, Charng Y (2013) Interplay between Heat Shock Proteins HSP101 and HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in Arabidopsis. Plant Physiology 161: 2075-2084

Wu Y, Shi L, Li L, Fu L, Liu Y, Xiong Y, Sheen J (2019) Integration of nutrient, energy, light, and hormone signalling via TOR in plants. J Exp Bot 70: 2227-2238

Wu Y, Zhao Q, Gao L, Yu XM, Fang P, Oliver DJ, Xiang CB (2010) Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis. Journal of Experimental Botany

Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant Journal 54: 440-451

Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 496: 181

Xiong Y, Sheen J (2012) Rapamycin and Glucose-Target of Rapamycin (TOR) Protein Signaling in Plants. Journal of Biological Chemistry 287: 2836-2842

Xiong Y, Sheen J (2014) The role of target of rapamycin signaling networks in plant
growth and metabolism. Plant Physiol 164: 499-512

Zhang L, Lohmann C, Prandl R, Schoffl F (2003) Heat Stress-Dependent DNA Binding of Arabidopsis Heat Shock Transcription Factor HSF1 to Heat Shock Gene Promoters in Arabidopsis Suspension Culture Cells in vivo. Biological Chemistry 384: 959-963

Zhang Z, Zhu J, Roh J, Marchive C, Kim S, Meyer C, Sun Y, Wang W, Wang Z (2016) TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis. Current Biology 26: 1854-1860

Zhao Y, Zhang Z, Gao J, Wang P, Hu T, Wang Z, Hou Y, Wan Y, Liu W, Xie S (2018) Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Reports 23

Zheng M, Liu X, Lin J, Liu X, Wang Z, Xin M, Yao H, Peng H, Zhou D, Ni Z (2018) Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant Journal 97: 587-602

Zhu J (2016) Abiotic stress signaling and responses in plants. Cell 167: 313-324

Zhu S, Yu X, Wang X, Zhao R, Li Y, Fan R, Shang Y, Du S, Wang X, Wu F (2007) Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis. The Plant Cell 19: 3019-3036

Zhuang X, Chung KP, Luo M, Jiang L (2018) Autophagosome Biogenesis and the Endoplasmic Reticulum: A Plant Perspective. Trends in Plant Science 23: 677-692
• Glucose-TOR energy signaling regulates cell proliferation in the root and shoot apexes via global transcriptome reprogramming by phosphorylating transcription factors E2Fa,b.
• The direction of sulfur flux and its derived metabolites play a key role in balancing plant growth and stress responses via TOR regulation.
• TOR signaling pathway plays multifaceted roles in response to various abiotic stresses, e.g. temperature, drought, osmotic, oxidative stresses.
• The negative phosphorylation loop between ABA and TOR core signaling precisely balances stress and growth responses to adapt to changing environments.
• Phosphorylation of Raptor by stress-activated protein kinases is a conserved mechanism for the regulation of TOR.
• A systematic phosphoproteomics screen with a targeted protein complex analysis provides a rich dataset to discover TOR signaling components.
OUTSTANDING QUESTIONS

- Do plants possess functional TORC2, or even unique TORC involved in plant stress adaptation or plant specific biological processes, e.g. photosynthesis or nutrient assimilation?
- How are glucose, sulfur, and nitrogen signals sensed by plants to activate TOR? Is nitrogen regulation of TOR independent from energy-related pathways influenced by glucose or sulfur starvation?
- In addition to ABA, auxin, and BR, what other hormones, especially stress hormones (e.g. salicylic acid, jasmonic acid, and ethylene) regulate TOR signaling and how?
- How is TOR able to sense and distinguish diverse upstream signals?
- How is TOR able to specifically control special targets when facing different environments and requirements?
- How is TOR kinase regulated spatiotemporally in different cell or tissue types?
Ahn CS, Han JA, Lee HS, Lee S, Pai H (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. The Plant Cell 23: 185-209

Ahn CS, Lee D-H, Pai H-S (2019) Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway. Planta 249:527-541

Anderson GH, Veit B, Hanson MR (2005) The Arabidopsis ATraptor genes are essential for post-embryonic plant growth. BMC Biol 3: 12-12

Andrasi N, Rigo G, Zsigmond L, Perez-Salano I, Papdi C, Klement E, Pettko-Szandtner A, Baba AI, Ayaydin F, Dasari R, Cseplo A, Szabados L (2019) The MPK4-phosphorylated Heat Shock Factor A4A regulates responses to combined salt and heat stresses. J Exp Bot 70

Baena-gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448: 938-942

Bakshi A, Moin M, Kumar MU, Reddy ABM, Ren M, Datla R, Siddiq EA, Kirti PB (2017) Ectopic expression of Arabidopsis Target of Rapamycin (ATOR) improves water-use efficiency and yield potential in rice. Scientific Reports 7: 42835

Bakshi A, Moin M, Madhav MS, Kirti PB (2018) Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biology 21: 190-205

Bang WY, Kim SW, Jeong IS, Koiwa H, Bahk JD (2008) The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors. Biochemical and Biophysical Research Communications 372: 907-912

Barrada A, Djendli M, Desnos T, Mercier R, Robaglia C, Montane M, Menand B (2019) A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis. Development 146

Bi Y, Wang R, Zhu T, Rothstein SJ (2007) Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 8: 281-281

Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P (2013) Systemic Analysis of Inducible Target of Rapamycin Mutants Reveal a General Metabolic Switch Controlling Growth in Arabidopsis thaliana. Plant Journal 73: 897-909

Cao P, Kim S-J, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F (2019) Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. eLife 8: e50747

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2019) Abscisic acid dynamics, signaling and functions in plants. J Integr Plant Biol doi:10.1111/jipb.12899. PMID:31850654

Contesto AL, Sang-Jin K, Basshant DC (2004) Transcript profiling of the response of Arabidopsis suspension culture cells to Suc...
starvation. Plant Physiology 135: 2330-2347

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Couso I, Perez-Perez ME, Ford MM, Martinez Force E, Hicks LM, Urmen JG, Crespo JL (2019) Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas. The Plant Cell: tpc.00179.02019

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Dai M, Xue Q, McCray T, Margavage K, Chen F, Lee J, Nezames CD, Guo L, Terzaghi W, Wan J (2013) The PP6 Phosphatase Regulates ABI5 Phosphorylation and Abscisic Acid Signaling in Arabidopsis. The Plant Cell 25: 517-534

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Denslow SA, Ruesshoff EE, Daub ME (2007) Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress. Plant Physiology and Biochemistry 45: 152-161

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Deprost D, Truong H, Robaglia C, Meyer C (2005) An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochemical and Biophysical Research Communications 326: 844-850

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, Bedu M, Robaglia C, Meyer C (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports 8: 864-870

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Ding Y, Liu N, Virlouvet L, Riethoven JM, Fromm ME, Avramova ZV (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biology 13: 229-229

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Dinney JR, Long TA, Wang JYJ, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress. Science 320: 942-945

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, Ren M (2015) Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Frontiers in Plant Science 6: 677-677

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Dong Y, Silbernann M, Speiser A, Forieri I, Linster E, Poschet G, Samani AA, Wanatabe M, Sticht C, Telemen AA (2017) Sulfur availability regulates plant growth via glucose-TOR signaling. Nature Communications 8: 1174

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Dong Y, Telemen AA, Jedmowski C, Wirtz M, Hell R (2019) The Arabidopsis THADA homologue modulates TOR activity and cold acclimation. Plant Biology 21: 77-83

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Emmanuelle S, Hossain MI, Moller I, Pedersen HL, De Meene AMLV, Doblin MS, Koay A, Oakhill JS, Scott JW, Willats WGT (2015) SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant Journal 82: 183-192

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Fernandez-bautista N, Fernandez-calvino L, Munoz AM, Toribio R, Mock HP, Castellano MM (2018) HOP family plays a major role in long-term acquired thermotolerance in Arabidopsis. Plant Cell and Environment 41: 1852-1869

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Fujii H, Zhu J (2012) Osmotic stress signaling via protein kinases. Cellular and Molecular Life Sciences 69: 3165-3173

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Gulas E, Schubert M, Kieselbach T, Kleeckowski LA, Gardeström P, Schroder WP, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. Plant Journal 47: 720-734

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Gutierrezbeltran E, Moschou PN, Smartt J, Bozhkov PV (2019) Tudor Staphylococcal Nuclease Links Formation of Stress
Granules and Processing Bodies with mRNA Catabolism in Arabidopsis. The Plant Cell 27: 926-943

Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419: 247-259

Hamasaki H, Kurihara Y, Kuromori T, Kusano H, Nagata N, Yamamoto YY, Shimada H, Matsui M (2019) SnRK1 Kinase and the NAC Transcription Factor SOG1 Are Components of a Novel Signaling Pathway Mediating the Low Energy Response Triggered by ATP Depletion. Frontiers in Plant Science 10

Hao Q, Yin P, Li W, Wang L, Yan C, Lin Z, Wu JZ, Wang J, Yan SF, Yan N (2011) The Molecular Basis of ABA-Independent Inhibition of PP2Cs by a Subclass of PYL Proteins. Molecular Cell 42: 662-672

Hamasaki H, Kurihara Y, Kuromori T, Kusano H, Nagata N, Yamamoto YY, Shimada H, Matsui M (2019) SnRK1 Kinase and the NAC Transcription Factor SOG1 Are Components of a Novel Signaling Pathway Mediating the Low Energy Response Triggered by ATP Depletion. Frontiers in Plant Science 10

Harris DM, Myrick TL, Rundle SJ (1999) The Arabidopsis Homolog of Yeast TAP42 and Mammalian α4 Binds to the Catalytic Subunit of Protein Phosphatase 2A and Is Induced by Chilling. Plant Physiology 121: 609-618

Heitman J, Movva NR, Hiestand PC, Hall MN (1991) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America 88: 1948-1952

Hsieh T, Lee J, Chary Y, Chan M (2002) Tomato Plants Ectopically Expressing Arabidopsis CBF1 Show Enhanced Resistance to Water Deficit Stress. Plant Physiology 130: 618-626

Hu R, Zhu Y, Shen G, Zhang H (2014) TAP46 Plays a Positive Role in the ABSCISIC ACID INSENSITIVE5-Regulated Gene Expression in Arabidopsis. Plant Physiology 164: 721-734

Hu R, Zhu Y, Wei J, Chen J, Shi H, Shen G, Zhang HC (2017) Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions. Plant Cell and Environment 40: 150-164

Jamsheer KM, Jindal S, Laxmi A (2010) Evolution of TOR–SnRK dynamics in green plants and its integration with phytohormone signaling networks. Journal of Experimental Botany 70: 2239-2259

Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany 58: 3591-3607

Jovell TO, Zenzen I, Karvensara PR, Kopriva S (2019) Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis. Journal of Experimental Botany

Juszczak I, Cvetkovic J, Zuther E, Hincha DK, Baier M (2016) Natural Variation of Cold Deacclimation Correlates with Variation of Cold- Acclimation of the Plastid Antioxidant System in Arabidopsis thaliana Accessions. Frontiers in Plant Science 7: 305-305

Khateeb WA, Sher AA, Marcus JM, Schroeder DF (2019) UVSSA, UBP12, and RDO2/TFIIS Contribute to Arabidopsis UV Tolerance. Frontiers in Plant Science 10

Kim D, Ntui VO, Xiong L (2016) Arabidopsis YAK1 regulates abscisic acid response and drought resistance. FEBS Letters 590: 2201-2209
Koizumi S, Ohama N, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2014) Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis. Biochemical & Biophysical Research Communications 450: 396-400

Kolukisaoglu U, Weinf S, Blazevic D, Batistic O, Kudla J (2004) Calcium Sensors and Their Interacting Protein Kinases: Genomics of the Arabidopsis and Rice CBL-CIPK Signaling Networks. Plant Physiology 134: 43-58

Kose S, Furuta M, Imamoto N (2012) Hikeshi, a nuclear import carrier for HSP70s, protects cells from heat shock-induced nuclear damage. Cell 149: 578-589

Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion in Plant Biology 25: 115-122

Kravchenko A, Citerne S, Jehanno I, Bersimbaev RI, Veit B, Meyer C, Leprince A (2015) Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis. Biochemical and Biophysical Research Communications 467: 992-997

Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. Omics 15: 859-872

Kunz J, Henriquez R, Schneider U, Deuterreinhard M, Movva NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585-596

Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant Journal 21: 143-155

Lee JH, Schoffl F (1996) An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF, and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Molecular Genetics and Genomics 252: 11-19

Lee SJ, Jung HJ, Kang H, Kim SY (2012) Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses. Plant & Cell Physiology 53: 673-686

Leng L, Liang Q, Jiang C, Hao Y, Wang X, Su W (2017) A subclass of HSP70s regulate development and abiotic stress responses in Arabidopsis thaliana. Journal of Plant Research 130: 349-363

Li F, Chung T, Verstra RD (2014) AUTOPHAGY-RELATED11 Plays a Critical Role in General Autophagy- and Senescence-Induced Mitophagy in Arabidopsis. The Plant Cell 26: 788-807

Li GL, Li B, Liu HT, Zhou RG (2005) The responses of AtJ2 and AtJ3 gene expression to environmental stresses in Arabidopsis. Journal of plant physiology and molecular biology 31: 47

Li L, Sheen J (2016) Dynamic and diverse sugar signaling. Current Opinion in Plant Biology 33: 116-125

Li L, Song Y, Wang K, Dong P, Zhang X, Li F, Li Z, Ren M (2015) TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis. Frontiers in Plant Science 6: 861-861
Li S, Han X, Yang L, Deng X, Wu H, Zhang M, Liu Y, Zhang S, Xu J (2018) Mitogen-activated protein kinases and calcium-dependent protein kinases are involved in wounding-induced ethylene biosynthesis in Arabidopsis thaliana. Plant Cell and Environment 41: 134-147

Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, Xu L, Liu H, Xu T, Xiong Y (2017) Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proceedings of the National Academy of Sciences of the United States of America 114: 2765-2770

Liu J, Feng L, Gu X, Deng X, Qiu Q, Zhang Y, Wang M, Deng Y, Wang E (2019) An H3K27me3 demethylase-HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Research 29: 379-390

Liu J, Ishtani M, Halfter U, Kim C, Zhu J (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 97: 3730-3734

Liu J, Zou W, Gao X, Wang Y, Yu Q, Ge L (2019) Young seedlings adapt to stress by retaining starch and retarding growth through ABA-Dependent and -independent pathways in Arabidopsis. Biochemical and Biophysical Research Communications 515: 699-705

Liu Y, Bassham DC (2010) TOR Is a Negative Regulator of Autophagy in Arabidopsis thaliana. PLOS ONE 5

Liu Y, Wang Y, Yan X (2018) Nitrogen--TOR signaling in shoot apex activation. EMBO Workshop. Target of rapamycin (TOR) signaling in photo-synthetic organisms

Mahfouz MM, Kim S, Delauney AJ, Verma DPS (2006) Arabidopsis TARGET OF RA PAMY CIN Interacts with RA PTOR, Which Regulates the Activity of S6 Kinase in Response to Osmotic Stress Signals. The Plant Cell 18: 477-490

Malinovsky FG, Thomsen M, Ninternann SJ, Jagd LM, Bourgine B, Burow M, Kliewenstein DJ (2017) An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. eLife 6: 1-24

Manik SM, Shi S, Mao J, Dong L, Su Y, Wang Q, Liu H (2015) The Calcium Sensor CBL-CIPK Is Involved in Plant’s Response to Abiotic Stresses. Int J Genomics 2015: 493191

Menand B, Descombin J, Juan Y, Favory J, Carpentier M, Chaparro C, Charm Y, Deragon J, Bousquetantonelli C (2013) XRN4 and LARP1 Are Required for a Heat-Triggered mRNA Decay Pathway Involved in Plant Acclimation and Survival during Thermal Stress. Cell Reports 5: 1279-1293

Meteignier L-V, El Oirdi M, Cohen M, Barff T, Matteau D, Lucier J-F, Rodrigue S, Jacques P-E, Yoshioka K, Moffett P (2017) Translatome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis. Journal of Experimental Botany 68: 2333

Monroe JD, Storm AR, Badley EM, Lehman MD, Platt SM, Saunders LK, Schmitz JM, Torres CE (2014) β-Amylase1 and β-Amylase3 Are Plastidic Starch Hydrolases in Arabidopsis That Seem to Be Adapted for Different Thermal, pH, and Stress Conditions. Plant Physiology 166: 1748-1763
Monterobarrientos M, Hermos R, Cardoza RE, Gutierrez S, Nicolas C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. Journal of Plant Physiology 167: 659-665

Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, Martinmagniette M, Taconnat L, Renou J, Robaglia C (2012) Mutations in the Arabidopsis Homolog of LST8/GβL, a Partner of the Target of Rapamycin Kinase, Impair Plant Growth, Flowering, and Metabolic Adaptation to Long Days. The Plant Cell 24: 463-481

Nagawa S, Xu T, Yang Z (2010) RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 1: 78-88

Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk MR, Ito T, Ohta H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proceedings of the National Academy of Sciences of the United States of America 106: 20978-20983

Nukarinen E, Nagele T, Pedrotti L, Wurzinger B, Mair A, Landgraf R, Bornke F, Hanson J, Teige M, Baenagonzalez E (2016) Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Scientific Reports 6: 31697

Park JH, Lee SY, Jung YJ, Chae HB, Jung HS, Kang CH, Shin MR, Kim SY, Udi MS (2011) Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana. New Phytologist 191: 692-705

Pavangadkar KA, Thomashow MF, Triezenberg SJ (2010) Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Molecular Biology 74: 183-200

Peng M, Bi Y, Zhu T, Rothstein SJ (2007) Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Molecular Biology 65: 775-797

Perearesa C, Rodriguezmilla MA, Iniesto E, Rubio V, Salinas J (2017) Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Molecular Plant 10: 791-804

Ping H, Moon-Soo C, Hyun-Woo J, Hyun-Seok N, Ju LD, Hyeon-Sook C, Cheol Soo K (2011) Physiological characterization of the Arabidopsis thaliana oxidation-related zinc finger 1, a plasma membrane protein involved in oxidative stress. Journal of Plant Research 124: 699-705

Prasch CM, Ott KV, Bauer H, Ache P, Hedrich R, Sonnewald U (2015) β-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells. Journal of Experimental Botany 66: 6059-6067

Pu Y, Luo X, Bassham DC (2017) TOR-Dependent and -Independent Pathways Regulate Autophagy in Arabidopsis thaliana. Frontiers in Plant Science 8

Pu Y, Sotoburgos J, Bassham DC (2017) Regulation of autophagy through SnRK1 and TOR signaling pathways. Plant Signaling & Behavior 12

Pulido P, Spinola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz K, Gonzalez M, Cejudo FJ (2010) Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. Journal of Experimental Botany 61: 4043-4054
Sharma N, Cram D, Huebert T, Zhou N, Parkin IA P (2006) Exploiting the wild crucifer Thlaspi arvense to identify conserved and novel genes expressed during a plant's response to cold stress. Plant Molecular Biology 63: 171-184

Sheen J (2014) Master regulators in plant glucose signaling networks. Journal of Plant Biology 57: 67-79

Shi L, Wu Y, Sheen J (2018) TOR signaling in plants: conservation and innovation. 145

Signorelli S, Tarkowski LP, Den Ende WV, Bassham DC (2019) Linking Autophagy to Abiotic and Biotic Stress Responses. Trends in Plant Science 24: 413-430

Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchishinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant Journal 33: 259-270

Son O, Kim S, Kim D, Hur Y, Kim J, Cheon C (2018) Involvement of TOR signaling motif in the regulation of plant autophagy. Biochemical and Biophysical Research Communications 501: 643-647

Soto-burgos J, Bassham DC (2017) SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PLOS ONE 12

Speiser A, Silbermann M, Dong Y, Haberland S, Uslu VV, Wang S, Bangash SAK, Reichelt M, Meyer AJ, Wirtz M (2018) Sulfur partitioning between glutathione and protein synthesis determines plant growth. Plant Physiology 177: 927-937

Sung D, Vierling E, Guy CL (2001) Comprehensive Expression Profile Analysis of the Arabidopsis Hsp70 Gene Family. Plant Physiology 126: 789-800

Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 Protein Kinase Complex Is Both a Regulator and a Target of Autophagic Recycling in Arabidopsis. The Plant Cell 23: 3761-3779

Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okumä E, Murata Y, Shimazaki K (2013) bHLH Transcription Factors That Facilitate K+ Uptake During Stomatal Opening Are Repressed by Abscisic Acid Through Phosphorylation. Science Signaling 6

Testerink C, Dekker HL, Lim Z, Johns MK, Holmes AB, De Koster CG, Ktistakis NT, Munnik T (2004) Isolation and identification of phosphatidic acid targets from plants. Plant Journal 39: 527-536

Tome F, Nagele T, Adamo M, Garg A, Marcollorca C, Nukarinen E, Pedrotti L, Peviani A, Simeunovic A, Tatkiewicz A (2014) The low energy signaling network. Frontiers in Plant Science 5: 353-353

Tsugam a D, Liu S, Fujino K, Takano T (2018) Possible inhibition of Arabidopsis VIP1-mediated mechanosensory signaling by streptomycin. Plant Signaling & Behavior 13
Zhang Z, Zhu J, Roh J, Marchive C, Kim S, Meyer C, Sun Y, Wang W, Wang Z (2016) TOR Signaling Promotes Accumulation of BZR1 to Balance Growth with Carbon Availability in Arabidopsis. Current Biology 26: 1854-1860

Zhao Y, Zhang Z, Gao J, Wang P, Hu T, Wang Z, Hou Y, Wan Y, Liu W, Xie S (2018) Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Reports 23

Zheng M, Liu X, Lin J, Liu X, Wang Z, Xin M, Yao Y, Peng H, Zhou D, Ni Z (2018) Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant Journal 97: 587-602

Zhu J (2016) Abiotic stress signaling and responses in plants. Cell 167: 313-324

Zhu S, Yu X, Wang X, Zhao R, Li Y, Fan R, Shang Y, Du S, Wang X, Wu F (2007) Two Calcium-Dependent Protein Kinases, CPK4 and CPK11, Regulate Abscisic Acid Signal Transduction in Arabidopsis. The Plant Cell 19: 3019-3036

Zhuang X, Chung KP, Luo M, Jiang L (2018) Autophagosomal Biogenesis and the Endoplasmic Reticulum: A Plant Perspective. Trends in Plant Science 23: 677-692