MIXED AX-SCHANUEL FOR THE UNIVERSAL ABELIAN VARIETIES AND SOME APPLICATIONS

ZIYANG GAO

Abstract. In this paper we prove the mixed Ax-Schanuel theorem for the universal abelian varieties (more generally any mixed Shimura variety of Kuga type), and give some simple applications. In particular we present an application to studying the generic rank of the Betti map.

CONTENTS

1. Introduction 1
2. Universal abelian variety 5
3. Statement of Ax-Schanuel 12
4. Basic Setup 14
5. Bigness of the \(\mathbb{Q} \)-stabilizer 16
6. Normality of the \(\mathbb{Q} \)-stabilizer 20
7. End of proof 26
8. Application to a finiteness result \(\text{\`a la Bogomolov} \) 27
9. A simple application to the Betti map 31
References 33

1. INTRODUCTION

The goal of this paper is to prove a transcendence result and give some simple applications. More applications to Diophantine problems will be given in forthcoming papers.

The transcendence result is the following mixed Ax-Schanuel theorem for the universal abelian variety. We call it “mixed” since the ambient space is a mixed Shimura variety but not a pure Shimura variety. It parametrizes 1-motives of certain kind. The result is an extension of a recent result of Mok-Pila-Tsimerman [MPT17] on the Ax-Schanuel theorem for pure Shimura varieties. Let us describe the setting.

Let \(\mathbb{A}_g(N) \) be the moduli space of principally polarized abelian varieties of dimension \(g \) of level-\(N \)-structure. Assume \(N \geq 3 \). Then \(\mathbb{A}_g(N) \) admits a universal family \(\pi: \mathbb{A}_g(N) \to \mathbb{A}_g(N) \). For simplicity we drop the “\((N)\)”.

The uniformizing space \(\mathcal{X}_{2g, a}^+ \) of \(\mathbb{A}_g \) (in the category of complex spaces) admits a reasonable algebraic structure. This will be explain in \(\S \). Denote by \(u: \mathcal{X}_{2g, a}^+ \to \mathbb{A}_g \) the uniformization. We say that an irreducible subvariety \(Y \) of \(\mathbb{A}_g \) is bi-algebraic if one (and hence any) complex

\[2010 \ Mathematics \ Subject\ Classification. \ 11G10, \ 11G18, \ 14G35.\]

1
analytic irreducible component of \(u^{-1}(Y) \) is algebraic in \(X_{2g,a}^+ \). There is a good geometric interpretation of bi-algebraic subvarieties of \(\mathfrak{A}_g \); see \(\S 3.3 \).

The main result of the paper is the following theorem (which we prove as Theorem 3.4). Denote by \(\text{pr}_{X_{2g,a}^+} : X_{2g,a}^+ \times \mathfrak{A}_g \to X_{2g,a}^+ \) and \(\text{pr}_{\mathfrak{A}_g} : X_{2g,a}^+ \times \mathfrak{A}_g \to \mathfrak{A}_g \) the natural projections.

Theorem 1.1 (mixed Ax-Schanuel for the universal abelian variety). Let \(Z \) be a complex analytic irreducible subvariety of \(\text{graph}(u) \subseteq X_{2g,a}^+ \times \mathfrak{A}_g \). Denote by \(Z = \text{pr}_{\mathfrak{A}_g}(Z) \) (\(Z \) may be a disastrous subset of \(\mathfrak{A}_g \)). Then

\[
\dim Z_{\text{Zar}} - \dim Z \geq \dim Z_{\text{biZar}},
\]

where \(Z_{\text{Zar}} \) is the Zariski closure of \(Z \) in \(X_{2g,a}^+ \times \mathfrak{A}_g \) and \(Z_{\text{biZar}} \) is the smallest bi-algebraic subvariety of \(\mathfrak{A}_g \) which contains \(Z \).

Moreover if we denote by \(\tilde{Z} = \text{pr}_{X_{2g,a}^+}(Z) \), the equality holds if \(\tilde{Z} \) is a complex analytic irreducible component of \(\tilde{Z}_{\text{Zar}} \cap u^{-1}(Z_{\text{Zar}}) \).

The theorem is motivated by Schanuel’s Conjecture on transcendental number theory. Its analogue over function field, currently known as *Ax-Schanuel for complex algebraic tori*, was proven by Ax [Ax71]. Later on Ax generalized his result to complex semi-abelian varieties (and to some extent any complex algebraic group) [Ax72]. The result of Ax [Ax71] was reformulated and re-proven by Tsimerman [Ts15] by the o-minimal theory. In the Shimura setting, the theorem was proven by Pila-Tsimerman for \(Y(1)^N \) [PT14], and recently proven for any pure Shimura variety by Mok-Pila-Tsimerman [MPT17]. A variant for the variation of any pure Hodge structure is also proven by Bakker-Tsimerman [BT17]. We omit the development of Ax-Lindemann, a special case of Ax-Schanuel, and refer to the survey [KUY18].

Our proof of Theorem 1.1 is based on the work of Mok-Pila-Tsimerman (extends part of their proof). As a statement itself, Theorem 1.1 contains pure Ax-Schanuel for the moduli space \(\mathfrak{A}_g \).

Application to the Betti map. Let \(A \to S \) be an abelian scheme of relative dimension \(g \) over a smooth complex algebraic variety. Up to replacing replacing \(S \) by a finite covering and replacing \(A/S \) by an isogenous abelian scheme, we have a cartesian diagram

\[
\begin{array}{ccc}
A & \phi \rightarrow & \mathfrak{A}_g \\
\downarrow & & \downarrow \\
S & \phi_S \rightarrow & \mathfrak{h}_g
\end{array}
\]

Let \(\tilde{S} \) be the universal covering of \(S(\mathbb{C}) \) in the category of complex spaces, and let \(\tilde{A}_S \) be the pullback of \(A/S \) under the uniformizing map \(\tilde{S} \to S \). Then we can define the Betti map (which is real analytic)

\[
b : \tilde{A}_S \rightarrow \mathbb{T}^{2g}
\]

where \(\mathbb{T}^{2g} \) is the real torus of (real) dimension \(2g \); see \(\S 9 \) for more details.

Let \(\xi : S \to A \) be a multi-section. Then it induces a multi-section \(\xi : \tilde{S} \to \tilde{A}_S \) of \(\tilde{A}_S/\tilde{S} \). The following conjecture is made by André-Corvaja-Zannier [ACZ18 Conjecture 2.1.2].
Conjecture 1.2. Assume \mathbb{Z}_ξ is Zariski dense in A and that A/S has no fixed part (over any finite étale covering of S). If $\dim \varphi(\xi(S)) \geq g$, then

$$\max_{\bar{s} \in \tilde{S}} \left(\rank(db|_{\xi(\bar{s})}) \right) = 2g.$$

André-Corvaja-Zannier systematically studied Conjecture 1.2. One important idea is to relate the derivative of the Betti map to the Kodaira-Spencer map. After some careful computation, they got a sufficient condition for it in terms of the derivations on the base [ACZ18, Corollary 2.2.2] (which we call Condition ACZ). This condition does not depend on ξ, so itself is of independent interest. Then they proved Condition ACZ, thus Conjecture 1.2, in loc.cit. when φ_S is quasi-finite and $g \leq 3$. The real hyperelliptic case, which goes beyond Conjecture 1.2, is also discussed in Appendix I of loc.cit.

Inspired by several discussions with André-Corvaja-Zannier, the author applied the pure Ax-Schanuel theorem [MPT17] to prove in Appendix II of loc.cit. that Condition ACZ holds if φ_S is quasi-finite, $\dim \varphi_S(S) \geq g$, and $\varphi_S(S)$ is Hodge generic in A_g. In particular, a result of André-Corvaja-Zannier [ACZ18, Theorem 8.1.1] then gives an affirmative answer to Conjecture 1.2 when φ_S is quasi-finite, $\dim \varphi_S(S) \geq g$, and $\text{End}(A/S) = \mathbb{Z}$; see [ACZ18, Theorem 2.3.2]. However there are examples with φ_S quasi-finite, $\dim \varphi_S(S) \geq g$ but Condition ACZ violated (most of them arise from Shimura varieties of PEL type), and hence it is hardly possible to prove the full Conjecture 1.2 using only pure Ax-Schanuel.

In this paper, we will present a simple application of Theorem 1.1 to Conjecture 1.2. We restrict ourselves to an easy case and prove the following result (Theorem 9.1).

Theorem 1.3. Conjecture 1.2 holds if A/S is geometrically simple, φ_S is quasi-finite, and $\dim \varphi_S(S) \geq g$.

Note that this theorem and the result of the ACZ paper do not imply each other. We also point out that no new contribution to Condition ACZ is made by this method.

A finiteness result à la Bogomolov. Bogomolov [Bog81, Theorem 1] proved the following finiteness result. Let A be an abelian variety over \mathbb{C} and let $Y \subseteq A$ be an irreducible subvariety, then there are finitely many abelian subvarieties B of A with $\dim B \geq 0$ satisfying: $x + B \subseteq Y$ for some $x \in A(\mathbb{C})$, maximal for this property.

This finiteness property was extended by Ullmo to pure Shimura varieties [Ull14, Théorème 4.1], using the o-minimal theory, as an application of the pure Ax-Lindemann theorem. Later on it was extended by the author to mixed Shimura varieties [Gao17b, Theorem 12.2] with a similar proof. The corresponding objects of $x + B$ in the Shimura case are the so-called weakly special subvarieties defined by Pink [Pin05, Definition 4.1.(b)], which are precisely the bi-algebraic subvarieties (see [UY11], [Gao17b, Corollary 8.3]). This finiteness result is useful for the proof of the André-Oort conjecture.

On the other hand, in order to study the Zilber-Pink conjecture, which is a generalization of the André-Oort conjecture, Habegger-Pila [HP16] introduced the notion of weakly optimal subvarieties of a given subvariety of a mixed Shimura variety; see Definition 8.1. They also proved in loc.cit. the natural generalization of the finiteness result for weakly optimal subvarieties in the cases of complex abelian varieties and $Y(1)^N$ (product of modular curves). This result is later on generalized by Daw-Ren to any pure Shimura variety [DR17, Proposition 3.3]. A key point to pass from Ullmo’s result to Daw-Ren’s result is to apply Ax-Schanuel in lieu of Ax-Lindemann.
In this paper, we prove the corresponding finiteness result for weakly optimal subvarieties for \mathfrak{A}_g (Theorem 8.2). The proof follows the guideline of Daw-Ren by plugging in the author’s previous work on extending Ullmo’s finiteness result to the mixed case. Denote by $(P_{2g,a},X_{2g,a}^+)$ the connected mixed Shimura datum of Kuga type associated with \mathfrak{A}_g; see §2 for the notation.

Theorem 1.4. There exists a finite set Σ consisting of elements of the form $((Q,Y^+),N)$, where (Q,Y^+) is a connected mixed Shimura datum of $(P_{2g,a},X_{2g,a}^+)$ and N is a normal subgroup of Q^der such that the following property holds. If a closed irreducible subvariety Z of Y is weakly optimal, then there exists $((Q,Y^+),N) \in \Sigma$ such that $Z^{\text{bivar}} = u(N(\mathbb{R})^+\tilde{y})$ for some $\tilde{y} \in Y^+$.

Outline of the paper. We will introduce, in an example based way, the basic knowledge of \mathfrak{A}_g as a connected mixed Shimura variety in §2. In the end of the section we give the definition and some basic properties (including the realization of the uniformizing space) of connected mixed Shimura varieties of Kuga type.

In §3 we set up the framework for mixed Ax-Schanuel. We will consider not only \mathfrak{A}_g, but also all connected mixed Shimura varieties of Kuga type. In particular we will review the bi-algebraic system associated with \mathfrak{A}_g and the geometric/group-theoretic interpretation of bi-algebraic subvarieties of \mathfrak{A}_g.

The proof of mixed Ax-Schanuel is done in §4-§7. In §4 we fix the basic setup and summarize some results for the pure part which will be used later on. In particular we will cite the volume bounds for pure Shimura varieties. In §5 we do the necessary dévissage and reduce mixed Ax-Schanuel to the case where we have a big \mathbb{Q}-stabilizer. Apart from the proof of Theorem 5.2 this section is standard argument. Then in §6 we prove that the \mathbb{Q}-stabilizer can be assumed to be normal in P. Here §6.1-6.2 are simply the argument of [MPT17] adapted to the mixed case, although unlike the pure case we need to be careful with the monodromy group and the Mumford-Tate group. The argument of §6.3 is new. Then in §7 we finish the proof.

The finiteness result à la Bogomolov will be proven in §8. The application to the rank of the Betti map is presented in §9.

At this stage it is worth making some extra comments. The extension of the pure Ax-Schanuel to the mixed one in this paper does NOT follow the same guideline as the author’s previous work on the extension of Ax-Lindemann [Gao17b]. In both cases one studies some complex analytic irreducible subset \tilde{Z} in the uniformizing space. For Ax-Lindemann \tilde{Z} is assumed to be algebraic. So its pure part, being also algebraic, must hit the boundary of the bounded symmetric domain. Thus its pure part is open in a compact set. As we have the freedom to choose \tilde{Z} to have relative dimension 0 over its pure part in the proof of Ax-Lindemann, this implies that the “vertical” direction is uniformly bounded. Thus in [Gao17b] §9-10, no extra estimate beyond the pure part is needed, and it can be shown that the reductive part of the \mathbb{Q}-stabilizer is a priori as big as possible. However for Ax-Schanuel, the pure part of \tilde{Z} does not necessarily hit the boundary, so in order to get any meaningful estimate we need to compare the growth of \tilde{Z} in the “vertical” direction with its growth in the “horizontal” direction, and by no means are we able to prove the bigness of the reductive part of the \mathbb{Q}-stabilizer directly. To solve this last problem, we argue as §6.3 This subsection is not needed for pure Ax-Schanuel because for a pure Shimura datum

1In fact this even makes the last step of the proof (§7) easier.
any normal subgroup \(N\) of \(G\) induces a decomposition of \((G, X_G^-)\).

We also point out that through the whole paper, \(\text{§6.3}\) is the only argument which does not directly generalizes to mixed Shimura varieties beyond those of Kuga type.

As for the comparison of the growth of \(\tilde{Z}\) in the two directions, we should consider two cases: the “vertical” direction of \(\tilde{Z}\) grows at most polynomially in terms of its growth in the “horizontal” direction, and otherwise. The former case can be settled by estimates on the pure part without much effort. To solve the latter case, we use a variant of Tsimerman’s idea “polynomial for free in unipotent groups” in \([\text{Tsi15}, \text{pp. 3}]\). See the proof of Theorem 5.2 for more details.

Acknowledgements. The author would like to thank Ngaiming Mok, Jonathan Pila and Jacob Tsimerman for the numerous valuable discussions on the subject and for sending me their preprint on pure Ax-Schanuel, especially Jacob Tsimerman for pointing out the variant of the polynomial-for-free argument in Theorem 5.2. Part of the work is done when the author was a long-term visitor at the Fields Institute under the Thematic Program on Unlikely Intersections, Height, and Efficient Congruencing. The author would like to thank the organizing committee for the invitation and the program for the financial support. The author would also like to particularly thank Ngaiming Mok for his great help on complex geometry and his invitation to the University of Hong Kong. The author benefited a lot from the stimulating atmosphere. The author would like to thank Daniel Bertrand, Jacob Tsimerman and Umberto Zannier for their comments, and especially Ngaiming Mok for pointing out a serious mistake in a previous version of the paper.

2. Universal abelian variety

We recall in this section some basic knowledge of mixed Shimura varieties of Kuga type. In particular we will explain how the universal abelian variety fits in this language. In the end we fix some notation for the paper.

2.1. Moduli space of abelian varieties

Let \(g \geq 1\) be an integer. Let \(N \geq 1\) be an integer. Let \(\mathbb{A}_g(N)\) be the moduli space of principally polarized abelian varieties of dimension \(g\) with level-\(N\)-structure.

It is well-known that \(\mathbb{A}_g\) is a connected pure Shimura variety, associated with the connected pure Shimura datum \((\text{GSp}_{2g}, \tilde{Y}_g^+)\). We hereby give a quick summary of this fact.

Let \(V_{2g}\) be a \(\mathbb{Q}\)-vector space of dimension \(2g\), and let

\[
\Psi: V_{2g} \times V_{2g} \to \mathbb{G}_{a, \mathbb{Q}}, \quad (v_1, v_2) \mapsto v_1^\top \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix} v_2
\]

be a non-degenerate alternating form. Then the \(\mathbb{Q}\)-group \(\text{GSp}_{2g}\) is defined by

\[
\text{GSp}_{2g} = \{ h \in \text{GL}(V_{2g}) : \Psi(hv, hv') = \nu(h)\Psi(v, v') \text{ for some } \nu(h) \in \mathbb{G}_m \}.
\]

Then \(\text{GSp}_{2g}\) can be identified with the \(\mathbb{Q}\)-group

\[
\left\{ h \in \text{GL}_{2g} : h \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix} h^\top = \nu(h) \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix}, \ \nu(h) \in \mathbb{G}_m \right\}.
\]

This is far from being true for mixed non-pure Shimura data. A more essential way to say this is that the underlying group for a pure Shimura datum is reductive (hence the property of being a normal group is transitive).
Let \mathcal{H}_g^+ be the Siegel upper half space

$$\{Z = X + \sqrt{-1}Y \in M_{g \times g}(\mathbb{C}) : Z = Z^T, Y > 0\}.$$

Then $\text{GSp}_{2g}(\mathbb{R})^+$ acts on \mathcal{H}_g^+ by the formula

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} Z = (AZ + B)(CZ + D)^{-1}, \quad \forall \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \text{GSp}_{2g}(\mathbb{R})^+ \text{ and } Z \in \mathcal{H}_g^+.$$

It is known that the action of $\text{GSp}_{2g}(\mathbb{R})^+$ on \mathcal{H}_g^+ thus defined is transitive.

The natural inclusion $\mathcal{H}_g^+ \subseteq \{Z = X + \sqrt{-1}Y \in M_{g \times g}(\mathbb{C}) : Z = Z^T\} \simeq \mathbb{C}^g(\mathbb{R}^{g+1})/\mathbb{Z}$ realizes \mathcal{H}_g^+ as an open (in the usual topology) semi-algebraic subset of $\mathbb{C}^g(\mathbb{R}^{g+1})/\mathbb{Z}$. Hence this inclusion endows \mathcal{H}_g^+ with a complex structure.

Let $\Gamma_{\text{GSp}_{2g}}(N) = \{h \in \text{Sp}_{2g}(\mathbb{Z}) : h \equiv 1_{2g} \text{ (mod } N)\}$. Then $\mathfrak{A}_g(N) \simeq \Gamma_{\text{GSp}_{2g}}(N)\backslash \mathcal{H}_g^+$ as complex varieties. Thus we obtain a uniformization in the category of complex varieties

$$\mathfrak{A}_g \rightarrow \mathfrak{A}_g(N).$$

2.2. **Universal abelian variety.** Use the notation of the previous subsection. If furthermore $N \geq 3$, then $\mathfrak{A}_g(N)$ is a fine moduli space and hence admits a universal family, which we call $\mathfrak{A}_g(N)$. We use $\pi : \mathfrak{A}_g(N) \rightarrow \mathfrak{A}_g(N)$ to denote the natural projection.

The variety $\mathfrak{A}_g(N)$ is an example of connected mixed Shimura varieties (of Kuga type). Let us explain this. We will give a construction of the connected mixed Shimura datum of Kuga type $(P_{2g,a}, \chi_{2g,a})$ associated with $\mathfrak{A}_g(N)$.

Recall that V_{2g} is a \mathbb{Q}-vector space of dimension $2g$. By abuse of notation we also use it to denote the \mathbb{Q}-vector group of dimension $2g$. Then the natural action of GSp_{2g} on V_{2g} defines a \mathbb{Q}-group

$$P_{2g,a} = V_{2g} \rtimes \text{GSp}_{2g}.$$

It is not hard to see that the unipotent radical $\mathcal{R}_u(P_{2g,a})$ of $P_{2g,a}$ is V_{2g}, and the reductive part $P_{2g,a}/\mathcal{R}_u(P_{2g,a})$ of $P_{2g,a}$ is GSp_{2g}.

The space $\mathcal{X}_{2g,a}^+$ is constructed as follows.

(i) As a set, $\mathcal{X}_{2g,a}^+ = V_{2g}(\mathbb{R}) \times \mathcal{H}_g^+.$

(ii) The action of $P_{2g,a}(\mathbb{R})^+$ on $\mathcal{X}_{2g,a}^+$ is defined as follows: for any $(v, h) \in P_{2g,a}(\mathbb{R})^+ = V_{2g}(\mathbb{R}) \times \text{GSp}_{2g}(\mathbb{R})^+$ and any $(v', x) \in \mathcal{X}_{2g,a}^+$, we have

$$\begin{pmatrix} v, h \end{pmatrix} \cdot \begin{pmatrix} v', x \end{pmatrix} = \begin{pmatrix} v + hv', hx \end{pmatrix}.$$

This action is transitive.

(iii) Fix a Lagrangian decomposition of $V_{2g}(\mathbb{R}) = \mathbb{R}^{2g} \simeq \mathbb{R}^g \times \mathbb{R}^g$. The complex structure of $\mathcal{X}_{2g,a}^+$ is the one given by the pullback of the following map

$$\mathcal{X}_{2g,a}^+ = \mathbb{R}^g \times \mathbb{R}^g \times \mathcal{H}_g^+ \xrightarrow{\sim} \mathbb{C}^g \times \mathcal{H}_g^+, \quad \begin{pmatrix} a, b, Z \end{pmatrix} \mapsto \begin{pmatrix} a + zb, Z \end{pmatrix}.$$

The pair $(P_{2g,a}, \mathcal{X}_{2g,a}^+)$ is a connected mixed Shimura datum as defined by Pink; see [Pin05, Construction 2.9, Example 2.12] and [Pin09, 2.25]. There is a natural morphism

$$\bar{\pi} : (P_{2g,a}, \mathcal{X}_{2g,a}^+) \rightarrow (\text{GSp}_{2g}, \mathcal{H}_g^+).$$
induced by the projection $P_{2g,a} = V_{2g} \times \text{GSp}_{2g} \to \text{GSp}_{2g}$. This is a Shimura morphism as defined by Pink [Pin05, Definition 2.5] or [Pin89, 2.3].

Let $\Gamma_{P_{2g,a}}(N) = NV(Z) \rtimes \text{GSp}_{2g}(N)$. Then as complex varieties we have $\mathfrak{A}_g(N) \simeq \Gamma_{P_{2g,a}}(N) \backslash \mathcal{V}_{2g,a}^+$. This makes $\mathfrak{A}_g(N)$ a connected mixed Shimura variety. See [Pin05, Example 2.12] or [Pin89, 10.5, 10.9, 10.10]. We thus obtain a uniformization in the category of complex varieties

$$(2.4) \quad \mathcal{X}_{2g,a}^+ \to \mathfrak{A}_g(N).$$

Now we have the following commutative diagram

$$(2.5) \quad \xymatrix{ (P_{2g,a}, \mathcal{X}_{2g,a}^+) \ar[r]^\pi \ar[d]_{\pi} & (\text{GSp}_{2g}, \mathcal{Y}_g^+) \ar[d]^{\pi'} \cr \mathfrak{A}_g(N) \ar[r]^\pi & \mathfrak{A}_g(N) }$$

where for simplicity of notation the vertical maps are the uniformizations we discussed above.

2.3. A Hodge-theoretic point of view on $\mathcal{X}_{2g,a}^+$. Let us take a closer look at $\mathcal{X}_{2g,a}^+$. We work with the category of analytic objects in this section. For future purpose, we make the situation slightly more general. Let Δ be a simply-connected complex space, and let $\pi_\Delta: A_\Delta \to \Delta$ be a polarized family of abelian varieties of dimension $g \geq 1$. Use ψ to denote this polarization.

Let \mathbb{Z}_Δ (resp. \mathbb{C}_Δ) be the local system of \mathbb{Z} (resp. of \mathbb{C}) on Δ. Let \mathbb{Z}_{A_Δ} (resp. \mathbb{C}_{A_Δ}) be the local system of \mathbb{Z} (resp. of \mathbb{C}) on A_Δ.

Then $R_1(\pi_\Delta)_* \mathbb{Z}_{A_\Delta}$ is a local system on Δ such that $(R_1(\pi_\Delta)_* \mathbb{Z}_{A_\Delta})_s = H_1(A_s, \mathbb{Z})$ for any $s \in \Delta$. It defines a variation of \mathbb{Z}-Hodge structures over Δ of type $\{(0, -1), (-1, 0)\}$ in the following way: the \mathcal{O}_Δ-sheaf $\mathcal{V}_\Delta = R_1(\pi_\Delta)_* \mathbb{Z}_{A_\Delta} \otimes_{\mathbb{Z}_\Delta} \mathcal{O}_\Delta \simeq H_1^{\dR}(A_\Delta/\Delta)^\vee$ is locally free, and has a locally free \mathcal{O}_Δ-subsheaf $\mathcal{F}^0\mathcal{V}_\Delta$ defined by $(\mathcal{F}^0\mathcal{V}_\Delta)_s = H^{0,1}(A_s)^\vee$ for any $s \in \Delta$. From this we see that $\mathcal{V}_\Delta/\mathcal{F}^0\mathcal{V}_\Delta \simeq (\Omega^1_{A_\Delta/\Delta})^\vee$. Note that $R_1(\pi_\Delta)_* \mathbb{Z}_{A_\Delta}$ and $\mathcal{F}^0\mathcal{V}_\Delta$ are subsheaves of \mathcal{V}_Δ, and

$$(2.6) \quad R_1(\pi_\Delta)_* \mathbb{Z}_{A_\Delta} \cap \mathcal{F}^0\mathcal{V}_\Delta \text{ is trivial, namely is the constant sheaf } \mathbb{Q}_\Delta.$$

We let \mathbf{V}_Δ and $\mathbf{F}^0\mathbf{V}_\Delta$ be the vector bundles associated with the locally free sheaves \mathcal{V}_Δ and $\mathcal{F}^0\mathcal{V}_\Delta$. Then the discussion in the previous paragraph yields an exact sequence of holomorphic vector bundles on Δ

$$(2.7) \quad 0 \to \mathbf{F}^0\mathbf{V}_\Delta \to \mathbf{V}_\Delta \to \text{Lie}(A_\Delta/\Delta) \to 0.$$

Next we explain that there exists a real analytic diffeomorphism $\text{Lie}(A_\Delta/\Delta) \simeq \mathbb{R}^{2g} \times \Delta$.

Note that $R_1(\pi_\Delta)_* \mathbb{C}_{A_\Delta} = R_1(\pi_\Delta)_* \mathbb{Z}_{A_\Delta} \otimes_{\mathbb{Z}_\Delta} \mathbb{C}_\Delta$ is the local system on Δ of the \mathbb{C}-vector space \mathbb{C}^{2g}. There is a unique vector bundle with flat connection associated with it. Since Δ is simply connected, this vector bundle with flat connection is trivial. In other words we have $\mathbf{V}_\Delta \simeq \mathbb{C}^{2g} \times \Delta$ and $R_1(\pi_\Delta)_* \mathbb{C}_{A_\Delta}$ is the subsheaf of \mathcal{V}_Δ consisting of constant sections (recall that \mathcal{V}_Δ is the sheaf of sections of the vector bundle \mathbf{V}_Δ over Δ). So the constant sheaf $R_1(\pi_\Delta)_* \mathbb{Z}_{A_\Delta}$ is the subsheaf of \mathcal{V}_Δ consisting of the sections of \mathbf{V}_Δ over Δ with image in $\mathbb{Z}^{2g} \times \mathbb{C}^{2g}$. (These sections are constant since \mathbb{Z}^{2g} is discrete). So the inclusion of sheaves $R_1(\pi_\Delta)_* \mathbb{Z}_{A_\Delta} \subseteq \mathcal{V}_\Delta$ corresponds to the natural inclusion $\mathbb{Z}^{2g} \times \Delta \subseteq \mathbb{C}^{2g} \times \Delta \simeq \mathbf{V}_\Delta$. The intersection of $\mathbb{Z}^{2g} \times \Delta$ and $\mathbf{F}^0\mathbf{V}_\Delta$ in \mathbf{V}_Δ is the zero section of $\mathbf{V}_\Delta \to \Delta$ by (2.6).
Thus we obtain an injective map \(\mathbb{Z}^{2g} \times \Delta \to \text{Lie}(A_\Delta/\Delta) \) as the composite

\[
\mathbb{Z}^{2g} \times \Delta \subseteq \mathbb{C}^{2g} \times \Delta \cong V_\Delta \to V_\Delta/F^0V_\Delta \cong \text{Lie}(A_\Delta/\Delta).
\]

See (2.7) for the last equality. This injective map extends to

\[
(2.8) \quad \mathbb{R}^{2g} \times \Delta \subseteq \mathbb{C}^{2g} \times \Delta \cong V_\Delta \to V_\Delta/F^0V_\Delta \cong \text{Lie}(A_\Delta/\Delta),
\]

where the first inclusion is obtained by identifying \(\mathbb{R}^{2g} \) as the real part of \(\mathbb{C}^{2g} \). Note that apart from the first inclusion, every morphism in this composition is holomorphic.

Denote by

\[
(2.9) \quad i_\Delta : \mathbb{R}^{2g} \times \Delta \to \text{Lie}(A_\Delta/\Delta)
\]

the composite of the maps in (2.8). Then the following properties are clear.

(i) The map \(i_\Delta \) is a real analytic diffeomorphism. It is semi-algebraic if \(\Delta \) has a semi-algebraic structure;

(ii) For any \(a \in \mathbb{R}^{2g} \), the image \(i_\Delta(\{a\} \times \Delta) \) is complex analytic;

(iii) Over each \(s \in \Delta \), the induced map \((i_\Delta)_s : \mathbb{R}^{2g} \to \text{Lie}(A_\Delta/\Delta)_s \) is a group homomorphism.

We end this subsection by relating to the previous subsection. Now take \(\Delta = H^+g \) and \(A_\Delta \) to be the pullback of \(\tilde{\pi} : A_g(N) \to A_g(N) \) under the uniformization \(H^+g \to A_g(N) \) in (2.1).

Denote by \(X^+_g, a := \text{Lie}(A_\Delta/\Delta) \) for this choice. Let us explain that the complex space \(X^+_g, a \) thus obtained coincides with the one defined in \(\S 2.2 \). To see this, let us fix a Lagrangian decomposition \(V_{2g}(\mathbb{R}) = \mathbb{R}^{2g} \cong \mathbb{R}^g \times \mathbb{R}^g \), and write

\[
(2.10) \quad X^+_g, a \xrightarrow{i_{\tilde{\pi}}^g} V_{2g}(\mathbb{R}) \times H^+_g = \mathbb{R}^g \times \mathbb{R}^g \times H^+_g \xrightarrow{\sim} \mathbb{C}^9 \times H^+_g,
\]

\[
(a, b, Z) \mapsto (a + Zb, Z).
\]

From this we obtain \(\rho_g : X^+_g, a \to \mathbb{C}^9 \times H^+_g \). Then it is not hard to see that \(\rho_g \) is an isomorphism of complex spaces. Since \(i_{\tilde{\pi}}^g \) is semi-algebraic, we can conclude that the \(X^+_g, a \) defined above is the same complex space as the one defined in \(\S 2.2 \) in view of (2.3).

2.4. Mixed Shimura variety of Kuga type. We recall the definition and some basic properties of mixed Shimura varieties of Kuga type in this subsection. Let \(S = \text{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m, \mathbb{C} \) be the Deligne torus.

Definition 2.1 ([Pin05, Definition 2.1]). A connected mixed Shimura datum of Kuga type is a pair \((P, X^+)\) where

- \(P \) is a connected linear algebraic group over \(\mathbb{Q} \) whose unipotent radical \(V \) is a vector group;
- \(X^+ \subseteq \text{Hom}(S, P_\mathbb{R}) \) is a left homogeneous space under \(P(\mathbb{R})^+ \),

such that for one (and hence for all) \(x \in X^+ \), we have

(i) the adjoint representation induces on \(\text{Lie} P \) a rational mixed Hodge structure of type

\[
\{(-1, 1), (0, 0), (1, -1)\} \cup \{(-1, 0), (0, -1)\},
\]
(ii) the weight filtration on $\text{Lie } P$ is given by

$$W_n(\text{Lie } P) = \begin{cases} 0 & \text{if } n < -1 \\ \text{Lie } V & \text{if } n = -1 \\ \text{Lie } P & \text{if } n \geq 0 \end{cases},$$

(iii) the conjugation by $x(\sqrt{1})$ induces a Cartan involution on G^ad_R where $G = P/V$, and G^ad posses no \mathbb{Q}-factor H such that $H(\mathbb{R})$ is compact,

(iv) the group P/P^der is an almost direct product of a \mathbb{Q}-split torus with a torus of compact type defined over \mathbb{Q}.

(v) P possesses no proper normal subgroup P' such that x factors through $P'_R \subseteq P_R$.

If in addition P is reductive, then (P, \mathcal{X}^+) is called a connected pure Shimura datum.

Remark 2.2.

1. By our convention, every connected pure Shimura datum is a connected mixed Shimura datum of Kuga type. The pair $(P_{2g,a}, \mathcal{X}_{2g,a}^+)$ in (2.3) is an example of connected mixed Shimura datum of Kuga type, which is not pure.

2. Conditions (i) and (ii) imply that $\dim V$ is even.

3. Definition (2.1) is a particular case of [Pin05, Definition 2.1]. The difference is that the subgroup U in $R_u(P)$ in loc.cit. is trivial in our case (connected mixed Shimura datum of Kuga type), hence property (i) of Definition 2.1 of loc.cit. is not needed here.

4. Condition (iv) of Definition (2.1) implies that every sufficiently small congruence subgroup Γ of $P(\mathbb{Q})$ is contained in $P^\text{der}(\mathbb{Q})$; see [Pin89, proof of 3.3(a)]. Fix a Levi decomposition $P = V \rtimes G$, then $P^\text{der} = V \rtimes G^\text{der}$, and hence any congruence subgroup $\Gamma < P^\text{der}(\mathbb{Q})$ is Zariski dense in P^der by condition (iii); see [PR94, Theorem 4.10].

5. Condition (v) is what Pink calls “irreducible” in [Pin89, 2.13]. It means precisely that P is the Mumford-Tate group of a generic choice of $x \in \mathcal{X}^+$. For the purpose of studying transcendence results or unlikely intersections, it is harmless to consider only this kind of connected mixed Shimura data. Hence we put this condition in the definition as Pink does in [Pin05].

6. The space \mathcal{X}^+ has a unique structure of complex manifold such that for every representation $\rho: P \to \text{GL}(W)$, where W is a complex vector space, the Hodge filtration determined by $\rho \circ x$ varies holomorphically with $x \in \mathcal{X}^+$. In particular this complex structure is invariant under $P(\mathbb{R})^\text{+}$. See [Pin05, Fact 2.3(b)] or [Pin89, 1.18]. We will also give more details on this in (2.5).

Let (P, \mathcal{X}^+) be a connected mixed Shimura datum of Kuga type. The following results are proven by Pink; see [Pin05, Fact 2.3(c)-(e)] or [Pin89, 3.3, 9.24]. For any congruence subgroup $\Gamma \subseteq P(\mathbb{Q}) \cap P(\mathbb{R})_+$, where $P(\mathbb{R})_+$ is the stabilizer of $\mathcal{X}^+ \subseteq \text{Hom}(\mathbb{S}, P_R)$, the quotient $\Gamma \backslash \mathcal{X}^+$ is a complex analytic space with at most finite quotient singularities, and has a natural structure of quasi-projective algebraic variety over \mathbb{C}. Moreover it is smooth if Γ is sufficiently small.

Definition 2.3. A connected mixed Shimura variety of Kuga type M associated with (P, \mathcal{X}^+) is the quotient $\Gamma \backslash \mathcal{X}^+$ from above. Then we have a uniformization in the category of complex analytic spaces $u: \mathcal{X}^+ \to M$.
Definition 2.4. (i) A (Shimura) morphism of connected mixed Shimura data of Kuga type $\tilde{\psi}: (Q, Y^+) \to (P, X^+)$ is a homomorphism $\tilde{\psi}: Q \to P$ of algebraic groups over \mathbb{Q} which induces a map $Y^+ \to X^+$, $y \mapsto \tilde{\psi} \circ y$.

(ii) In particular, if $\tilde{\psi}$ is an inclusion (on the group and the underlying space), then we say that (Q, Y^+) is a connected mixed Shimura subdatum of (P, X^+).

(iii) A Shimura morphism of connected mixed Shimura varieties of Kuga type is a morphism of algebraic varieties induced by a Shimura morphism of connected mixed Shimura data of Kuga type.

(iv) In particular given M a connected mixed Shimura variety of Kuga type associated with (P, X^+), the subvarieties of M coming from connected mixed Shimura subdata of (P, X^+) are called connected mixed Shimura subvarieties.

Pink proved that every Shimura morphism of connected mixed Shimura varieties of Kuga type is algebraic. See [Pin05, Facts 2.6] or [Pin89, 3.4, 9.24]. The morphism $\tilde{\pi}$ in (2.5) is an example of Shimura morphism of connected mixed Shimura data of Kuga type. It induces a Shimura morphism π of connected mixed Shimura varieties of Kuga type.

Before going on, let us make the following remark. The notion “connected mixed Shimura subdatum” exists a priori for any connected mixed Shimura datum (P, X^+), not necessarily of Kuga type. However if (P, X^+) is of Kuga type, then all its connected mixed Shimura subdata a priori defined are again of Kuga type by reason of weight; see [Gao17b, Proposition 2.9]. Hence our Definition 2.4(ii) is compatible with the usual convention.

The following fact is proven by Pink [Pin89, 2.9].

Fact 1. Let (P, X^+) be a connected mixed Shimura datum of Kuga type. Let P_0 be a normal subgroup of P. Then there exists a quotient connected mixed Shimura datum of Kuga type $(P, X^+)/P_0$ and a Shimura morphism $(P, X^+) \to (P, X^+)/P_0$, unique up to isomorphism, such that every Shimura morphism $(P, X^+) \to (P', X'^+)$, where the homomorphism $P \to P'$ factors through P/P_0, factors in a unique way through $(P, X^+)/P_0$.

In fact Pink proved that such a quotient exists for an arbitrary connected mixed Shimura datum (not necessarily of Kuga type), and then it is not hard to see that the resulting $(P, X^+)/P_0$ is of Kuga type if (P, X^+) is of Kuga type.

Notation 2.5. We use the following notation. Let $M = \Gamma \backslash X^+$ be a connected mixed Shimura variety of Kuga type with (P, X^+), and let $u: X^+ \to M$ be the uniformization.

We will use V to denote $R_0(P)$, and (G, X^+_G) to denote $(P, X^+)/V$. The quotient Shimura morphism is denoted by $\tilde{\pi}: (P, X^+) \to (G, X^+_G)$.

We will use M_G to denote the connected pure Shimura variety $\tilde{\pi}(\Gamma) \backslash X^+_G$, and use $u_G: X^+_G \to M_G$ to denote the uniformization. Then $\tilde{\pi}$ induces a Shimura morphism $\pi: M \to M_G$. We thus have the following commutative diagram:

\[
\begin{array}{ccc}
(P, X^+) & \xrightarrow{\tilde{\pi}} & (G, X^+_G) \\
\downarrow{u} & & \downarrow{u_G} \\
M & \xrightarrow{\pi} & M_G
\end{array}
\]
We gave an example of connected mixed Shimura varieties of Kuga type, namely the universal abelian variety; see \(22\). In particular \(2.5\) is a particular case for \(2.1\). But in fact, all connected mixed Shimura varieties of Kuga type arise from this case. More precisely, Pink proved the following result, which he called reduction lemma\(^8\).

Theorem 2.6 (**Pin89** 2.26)). Let \((P, \mathcal{X}^+)\) be a connected mixed Shimura datum of Kuga type such that \(\dim V = 2g > 0\), where \(V = R_u(P)\). Then there exists a connected pure Shimura datum \((G_0, \mathcal{D}^+)\) and a Shimura morphism

\[
\bar{\lambda}: (P, \mathcal{X}^+) \hookrightarrow (G_0, \mathcal{D}^+) \times (P_{2g,a}, \mathcal{X}_{2g,a}^+).
\]

Theorem 2.6 has the following immediate corollary.

Corollary 2.7. Let \(M = \Gamma \backslash \mathcal{X}^+\) be a connected mixed Shimura variety of Kuga type associated with \((P, \mathcal{X}^+)\). Assume \(\dim V = 2g\). Then up to replacing \(\Gamma\) by a subgroup of finite index, we have that \(\pi: M \to M_G\) is an abelian scheme of relative dimension \(g\).

Proof. If \(V = 0\), then the conclusion certainly holds. Assume \(\dim V = 2g > 0\). Then apply Theorem 2.6 to \((P, \mathcal{X}^+)\). We have the following cartesian diagram

\[
\begin{array}{ccc}
(P, \mathcal{X}^+) & \xrightarrow{\bar{\lambda}} & (G_0, \mathcal{D}^+) \times (P_{2g,a}, \mathcal{X}_{2g,a}^+) \\
\pi \downarrow & & \downarrow \\
(G, \mathcal{X}_G^+) & \xrightarrow{\bar{\lambda}_G} & (G_0, \mathcal{D}^+) \times (GSp_{2g}, \mathcal{O}_g^+)
\end{array}
\]

It is cartesian by comparing the dimension of the vertical fibers.

Now up to replacing \(\Gamma\) by a subgroup of finite index, we may assume that \(\bar{\lambda}(\Gamma) = \Gamma_0 \times \Gamma_{P_{2g,a}}(N)\) for some \(N \geq 3\), where \(\Gamma_{P_{2g,a}}(N)\) is defined as in \(22\). Hence \(\bar{\lambda}\) induces a closed immersion \(M \to M_{G_0} \times \mathbb{A}_g(N)\). Thus we obtain a cartesian diagram

\[
\begin{array}{ccc}
M & \xrightarrow{\pi} & M_{G_0} \times \mathbb{A}_g(N) \\
\downarrow & & \downarrow \\
M_G & \xrightarrow{\pi} & M_{G_0} \times \mathbb{A}_g(N)
\end{array}
\]

where the horizontal morphisms are closed immersions. Hence \(\pi: M \to M_G\) is an abelian scheme of relative dimension \(g\). \(\square\)

2.5. **Realization of \(\mathcal{X}^+\).** Let \((P, \mathcal{X}^+)\) be a connected mixed Shimura datum of Kuga type. We recall the realization of \(\mathcal{X}^+\) as in **Gao17b** §4.

We start with the dual \(\mathcal{X}^\vee\) of \(\mathcal{X}^+\); see **Pin89** 1.7(a) or **Möl88** Chapter VI, Proposition 1.3.

Let \(W\) be a faithful representation of \(P\) and take any point \(x_0 \in \mathcal{X}^+\). The weight filtration on \(W\) is constant, so the Hodge filtration \(x \mapsto \text{Fil}_x^i(W)\) gives an injective map \(\mathcal{X}^+ \hookrightarrow \text{Grass}(W)(\mathbb{C})\) to a certain flag variety. In fact, the injective map factors through

\[
\mathcal{X}^+ = P(\mathbb{R})^+/\text{Stab}_{P(\mathbb{R})^+}(x_0) \hookrightarrow P(\mathbb{C})/\text{Fil}_{x_0}^0 P(\mathbb{C}) \hookrightarrow \text{Grass}(W)(\mathbb{C}),
\]

\(^3\)We only need the result for Kuga type, so the statement is simpler.
where the first injection is an open immersion; see [Pin89, 1.7(a)] or [Mil88, Chapter VI, (1.2.1)].

We define the dual X^\vee of X^+ to be

$$X^\vee = P(\mathbb{C})/\text{Fil}_{x_0}^0 P(\mathbb{C}).$$

Then X^\vee is clearly a connected smooth complex algebraic variety.

Proposition 2.8 ([Gao17b, Proposition 4.1 and Remark 4.4]). Under the open (in the usual topology) immersion $X^+ \hookrightarrow X^\vee$, the space X^+ is realized as a semi-algebraic subset which is also a complex manifold. In particular, the complex structure of any $X^G_{x_0}$ ($x_0 \in X^G$) is the same as the one obtained from $X^G_{x_0} \cong V(\mathbb{C})/\text{Fil}_{x_0}^0 V(\mathbb{C})$.

Example 2.9. Let us look at the example $(P_{2g,a}, X^+_{2g,a})$. In this case, we can take W to be a \mathbb{Q}-vector space of dimension $2g + 1$ and identify $P_{2g,a}$ with the following subgroup of GL_{2g+1}:

$$
\begin{pmatrix}
\text{GSp}_{2g} & V_{2g} \\
0 & 1
\end{pmatrix}.
$$

It is then not hard to proceed the computation and prove that the complex structure of $X^+_{2g,a}$ given by Proposition 2.8 coincides with the one given by (2.3).

The identification (2.3) can be generalized to arbitrary (P, X^+) of Kuga type in the following way. Use Notation 2.3. By [Wil97, pp. 6], there exists a Shimura morphism $\tilde{i}: (G, X^+_G) \to (P, X^+)$ such that $\tilde{\pi} \circ \tilde{i} = \text{id}$. Then \tilde{i} defines a Levi decomposition of $P = V \rtimes G$. Recall $X^+ \subseteq \text{Hom}(\mathbb{S}, P_\mathbb{R})$. Define the bijective map

$$
\rho: V(\mathbb{R}) \times X^+_G \xrightarrow{\sim} X^+, \quad (v, x) \mapsto \text{int}(v) \circ \tilde{i}(x).
$$

Under this identification, the action of $P(\mathbb{R})^+ = V(\mathbb{R}) \rtimes G(\mathbb{R})^+$ on X^+ is given by the formula

$$(v', h) \cdot (v, x) = (v' + hv, hx), \quad \forall (v', h) \in P(\mathbb{R})^+ \text{ and } (v, x) \in X^+.$$

It is proven that for the realization of X^+ as an open (in the usual topology) semi-algebraic subset of X^\vee, the identification ρ above is semi-algebraic; see [Gao17b, Proposition 4.3].

3. Statement of Ax-Schanuel

3.1. Review on the bi-algebraic system. Let $M = \Gamma \backslash X^+$ be a connected mixed Shimura variety of Kuga type associated with (P, X^+). Let $\mathfrak{u}: X^+ \to M$ be the uniformization.

Recall the realization of X^+ in (2.5). By Proposition 2.8, X^+ can be realized as an open (in the usual topology) semi-algebraic subset of a complex algebraic variety X^\vee.

Definition 3.1.

(i) A subset \tilde{Y} of X^+ is said to be *irreducible algebraic* if it is a complex analytic irreducible component of $X^+ \cap W$, where W is an algebraic subvariety of X^\vee.

(ii) A subset \tilde{Y} of X^+ is said to be *irreducible bi-algebraic* if it is an irreducible algebraic subset of X^+ and $\mathfrak{u}(\tilde{Y})$ is an algebraic subvariety of M.

4The realization of δ^+_G by Proposition 2.3 is the Harish-Chandra realization, whereas the one given by (2.3) is the Siegel upper half space realization. It is known that for δ^+_G, the complex structures given by these two realizations are the same. Moreover, the various realizations of X^G_+ give the same semi-algebraic structure by [Wil14, Lemma 2.1].
A closed irreducible subvariety \(Y \) of \(M \) is said to be \textbf{bi-algebraic} if one (and hence any) complex analytic irreducible subvariety of \(u^{-1}(Y) \) is irreducible algebraic in \(\mathcal{X}^+ \). A closed subvariety \(Y \) of \(M \) is said to be bi-algebraic if all its irreducible components are bi-algebraic.

The following result is not hard to prove.

\textbf{Lemma 3.2.} If \(F_1 \) and \(F_2 \) are closed irreducible bi-algebraic subvarieties of \(M \), then every irreducible component of \(F_1 \cap F_2 \) is also bi-algebraic.

In view of this, we can introduce the following notation.

\textbf{Notation 3.3.}
(i) Let \(\tilde{Z} \) be any complex analytic irreducible subset of \(\mathcal{X}^+ \). Use \(\tilde{Z}^{\text{Zar}} \) to denote the smallest irreducible algebraic subset of \(\mathcal{X}^+ \) which contains \(\tilde{Z} \), and use \(\tilde{Z}^{\text{biZar}} \) to denote the smallest bi-algebraic subset of \(\mathcal{X}^+ \) which contains \(\tilde{Z} \).

(ii) Let \(Z \) be any subset of \(M \) (not necessarily a subvariety). Use \(Z^{\text{biZar}} \) to denote the smallest bi-algebraic subvariety of \(M \) which contains \(Z \) (hence must contain \(Z^{\text{Zar}} \)).

\section{3.2. Statement of Ax-Schanuel.} Let \(M = \Gamma \backslash \mathcal{X}^+ \) be a connected mixed Shimura variety of Kuga type associated with \((P, \mathcal{X}^+)\). Let \(u: \mathcal{X}^+ \to M \) be the uniformization. The typical case is when \(M = \mathbb{A}_g \) is the universal abelian variety.

\textbf{Theorem 3.4} (Ax-Schanuel for mixed Shimura variety of Kuga type). Let \(Z \) be a complex analytic irreducible subvariety of \(\text{graph}(u) \subseteq \mathcal{X}^+ \times M \), and denote by \(\tilde{Z} \) the image of \(Z \) under the natural projection \(\mathcal{X}^+ \times M \to \mathcal{X}^+ \). Then

\[\dim Z^{\text{Zar}} - \dim \tilde{Z} \geq \dim \tilde{Z}^{\text{biZar}}, \]

where \(Z^{\text{Zar}} \) means the Zariski closure of \(Z \) in \(M \times \mathcal{X}^+ \). Moreover the equality holds if and only if \(\tilde{Z} \) is a complex analytic irreducible component of \(\tilde{Z}^{\text{Zar}} \cap u^{-1}(u(\tilde{Z})^{\text{Zar}}) \).

We also state weak Ax-Schanuel for the universal abelian variety to make the statement more clear. It follows directly from Theorem 3.4.

\textbf{Theorem 3.5} (weak Ax-Schanuel for mixed Shimura variety of Kuga type). Let \(\tilde{Z} \) be a complex analytic irreducible subset of \(\mathcal{X}^+ \). Then

\[\dim(u(\tilde{Z}))^{\text{Zar}} + \dim \tilde{Z}^{\text{Zar}} \geq \dim \tilde{Z} + \dim \tilde{Z}^{\text{biZar}}. \]

Moreover the equality holds if and only if \(\tilde{Z} \) is a complex analytic irreducible component of \(\tilde{Z}^{\text{Zar}} \cap u^{-1}(u(\tilde{Z})^{\text{Zar}}) \).

Before moving on, we point out that the “Moreover” part of Theorem 3.5 immediately follows from the main part and the Intersection Dimension Inequality.

\textbf{Remark 3.6.} Our proof of Theorem 3.4 is based on the work of Mok-Pila-Tsimerman [MPT17] on the Ax-Schanuel theorem for pure Shimura varieties (extends their proof). As a statement itself, Theorem 3.4 contains the pure Ax-Schanuel.
3.3. Geometric description of bi-algebraic subvarieties. By [Gao17b, Theorem 8.1], bi-algebraic subvarieties of \mathbb{A}_g are precisely the weakly special subvarieties defined by Pink [Pin05, Definition 4.1.(b)]. We will discuss in details on this in §5.1. Here we present the geometric description of these weakly special subvarieties. Recall that they are equivalent; see [Gao17b, §].

We have the following result.

Proposition 3.7 ([Gao17a Proposition 1.1]). A closed irreducible subvariety Y of \mathbb{A}_g is bi-algebraic (or equivalently weakly special) if and only if the following conditions hold:

(i) Its projection $\pi(Y)$ is a weakly special subvariety of \mathbb{A}_g;

(ii) Up to taking a finite cover of $\pi(Y)$, we have that Y is the translate of an abelian subscheme of $\pi^{-1}(\pi(Y)) \to \pi(Y)$ by a torsion section and then by a constant section.

When applied to Diophantine problems for abelian schemes, condition (ii) is the statement which we care more. Let us explain it in more details. We have that $\pi(Y)$ is a closed irreducible subvariety of \mathbb{A}_g (hence $\pi^{-1}(\pi(Y)) = \mathbb{A}_g|_{\pi(Y)}$ is an abelian scheme over $\pi(Y)$). Condition (ii) means: there exists a finite cover $B' \to \pi(Y)$ such that under the base change $\mathbb{A}' := B' \times_{\pi(Y)} \pi^{-1}(\pi(Y))$ and the natural projection $p': \mathbb{A}' \to \pi^{-1}(\pi(Y))$, we have $Y = p'((\mathcal{B} + \sigma + \sigma_0)$, where \mathcal{B} is an abelian subscheme of $\mathbb{A}' \to B'$, σ is a torsion section of $\mathbb{A}' \to B'$, and σ_0 is a constant section of (the largest trivial abelian subscheme of) $\mathbb{A}' \to B'$.

Proposition 3.7 is proven as a consequence of the following result.

Proposition 3.8 ([Gao17a Proposition 3.3]). Let B be an irreducible subvariety of \mathbb{A}_g. Then $\{\text{Up to taking a finite cover of } B, \text{ the translates of an abelian subscheme of } \pi^{-1}(B) \to B \text{ by a torsion section and then by a constant section}\} = \{\pi^{-1}(B) \cap F : F \text{ weakly special in } \mathbb{A}_g \text{ with } B \subseteq \pi(F)\}$.

3.4. Review on weakly special subvarieties. The following definition is made by Pink.

Definition 3.9. (i) A subset \overline{Y} of X^+ is said to be weakly special if there exist a connected mixed Shimura subdatum of Kuga type (Q, Y^+) of (P, X^+), a normal subgroup N of Q^{der}, and a point $\tilde{y} \in Y^+$ such that $\overline{Y} = N(\mathbb{R})^+\tilde{y}$.

(ii) A subvariety Y of \mathbb{A}_g is said to be weakly special if $Y = u(\overline{Y})$ for some weakly special subset \overline{Y} of X^+.

Our formulation is slightly different from [Pin05, Definition 4.1.(b)], but it is not hard to show that they are equivalent; see [Gao17b, §5.1].

4. Basic Setup

In this section, we fix some basic setup to prove Theorem 3.4. Let M be a connected mixed Shimura variety of Kuga type associated with (P, X^+). Let $u: X^+ \to M$ be the uniformization. Use $\Delta \subseteq X^+ \times M$ to denote $\text{graph}(u)$.

Let $Z = \text{graph}(\tilde{Z} \to u(\tilde{Z}))$ be a complex analytic irreducible subset of $\text{graph}(u)$. Let Z^{Zar} be the Zariski closure of Z taken in $X^+ \times M$. We wish to prove

$$\dim Z^{\text{Zar}} - \dim Z \geq \dim \tilde{Z}^{\text{biZar}}.$$

It is clear that we may replace Z by a complex analytic irreducible component of $Z^{\text{Zar}} \cap \Delta$. Hence Theorem 3.4 is equivalent to the following statement.
Theorem 4.1. Let \mathcal{B} be an irreducible algebraic subvariety of $X^+ \times M$, and let \mathcal{Z} be a complex analytic irreducible component of $\mathcal{B} \cap \Delta$. Assume $\mathcal{B} = \mathcal{Z}^{\text{Zar}}$. Then
\[
\dim \mathcal{B} - \dim \mathcal{Z} \geq \dim \mathcal{Z}^{\text{biZar}}.
\]
We shall prove Ax-Schanuel in the form of Theorem [14]. Since any connected mixed Shimura subvariety of M is bi-algebraic, we may replace (P, X^+) by the smallest connected mixed Shimura datum such that $\mathcal{Z} \subseteq X^+$ and replace M accordingly. Then we still have $\mathcal{B} \subseteq X^+ \times M$. Use
\[
\text{pr}_{X^+} : X^+ \times M \to X^+, \quad \text{pr}_M : X^+ \times M \to M
\]
to denote the natural projection. They are clearly algebraic. We have $\mathcal{Z} = \text{pr}_{X^+}(\mathcal{Z})$.

We will consider the action of Γ on $X^+ \times M$ via its action on the first factor. Then Δ is Γ-invariant.

4.1. **Fundamental Set.** Fix a Shimura embedding $(P, X^+) \hookrightarrow (G_0, D^+) \times (P_{2g,a}, X^+_{2g,a})$. Such an embedding exists by Theorem [2.6].

Let $\mathfrak{H}_{2g,a}$ be the Siegel fundamental set for the action of $\text{Sp}_{2g}(\mathbb{Z})$ on $X^+_{2g,a}$. Let $\mathfrak{H}_{2g,a} \subseteq X^+_{2g,a}$ be defined as $i_{\mathfrak{H}^g}((-1,1)^{2g} \times \mathfrak{H}_{2g,a})$, where
\[
i_{\mathfrak{H}^g} : V_{2g}(\mathbb{R}) \times \mathfrak{H}^g \approx X^+_{2g,a}
\]
is the real-algebraic map defined in [2.10]. Then $\mathfrak{H}_{2g,a}$ is a fundamental set for the action of $\mathbb{Z}^{2g} \times \text{Sp}_{2g}(\mathbb{Z})$ on $X^+_{2g,a}$.

Let \mathfrak{H}_{D^+} be a fundamental set for the action of Γ_0 on D^+ as in [KUY16, Theorem 1.9]. Then there exist $\gamma_1, \ldots, \gamma_n \in \Gamma_0 \times (\mathbb{Z}^{2g} \times \text{Sp}_{2g}(\mathbb{Z}))$ such that
\[
\mathfrak{H} = \bigcup_{i=1}^n \gamma_i(\mathfrak{H}_{D^+} \times \mathfrak{H}_{2g,a})
\]
is a fundamental set for $u : D^+ \times X^+_{2g,a} \to S_0 \times \mathcal{A}_g$. Then $u|_{\mathfrak{H}}$ is definable in $\mathbb{R}_{\text{an,exp}}$ by [PS13].

Let \mathfrak{H} be as in (1.1). Then $\mathfrak{H} \cap X^+$ is a fundamental set for $u : X^+ \to M$ for some $\gamma_1, \ldots, \gamma_n$ as in [14]. Replace \mathfrak{H} by $\mathfrak{H} \cap X^+$, then $u|_{\mathfrak{H}}$ is definable in $\mathbb{R}_{\text{an,exp}}$. We may enlarge \mathfrak{H} slightly such that \mathfrak{H}, resp. $\mathfrak{H}_G : = \pi(\mathfrak{H})$, is open in X^+, resp. in X^+_G, in the usual topology.

4.2. **Some results on the pure part.** Let \tilde{Z} be as in Theorem [14]. In this subsection we summarize some results on the pure part. They shall be used in the proof of Theorem [5.2]. Assume $\dim \tilde{\pi}(\tilde{Z}) > 0$.

Fix $\tilde{z}_{0,G} \in \tilde{\pi}(\tilde{Z})$. All constants below will depend only on $X^+_G, \mathfrak{H}_G, \tilde{\pi}(\tilde{Z})$, and $\tilde{z}_{0,G}$ but independent of T.

For any $T > 0$, define
\[
B_{\text{horz}}(\tilde{z}_{0,G}, T) = \{ z_G \in X^+_G : d_{\text{horz}}(z_G, \tilde{z}_{0,G}) < \log T \},
\]
where $d_{\text{horz}}(\cdot, \cdot)$ is the $G^\text{def}(\mathbb{R})^+$-invariant hyperbolic metric on X^+_G.

For each $z_G \in B_{\text{horz}}(z_{0,G}, T) \subseteq X^+_G$, there exists $g \in G(\mathbb{R})^+$ such that $g \cdot z_{0,G} = z_G$. Then by [KUY16, Lemma 5.4], we have
\[
\log \| g \|_{\infty} \leq d_{\text{horz}}(z_G, \tilde{z}_{0,G}) < \log T.
\]
Hence there exists a constant $c_0 > 0$ such that

$$||\tilde{z}_G||_\infty \leq c_0 T^5$$ \hspace{1cm} (4.3)

Now let us consider

$$\{\gamma_G \in \Gamma_G : \gamma_G \bar{\mathfrak{g}}_G \cap B^{\text{horz}}(\tilde{z}_{0,G}, T) \neq \emptyset\}.$$ \hspace{1cm} (4.4)

Then for any γ_G in (4.4), we have $\gamma_G^{-1} \tilde{z}_G \in \bar{\mathfrak{g}}_G$ for some $\tilde{z}_G \in B^{\text{horz}}(T)$. Thus by (4.3) and [KUY16, Lemma 5.3], there exist two constants $c_1, c_2 > 0$ such that

$$H(\gamma_G) \leq c_1 T^{c_2} \quad \text{for any } \gamma_G \text{ in (4.4)}. \hspace{1cm} (4.5)$$

Next by [HT02, Corollary 3], there exist two constants $c_3 > 0$ and $c_4 > 0$

$$\text{vol}(\tilde{\pi}(\tilde{Z}) \cap B^{\text{horz}}(\tilde{z}_{0,G}, T)) \geq c_3 T^{c_4 \dim \tilde{\pi}(\tilde{Z})}, \quad \forall T \gg 0. \hspace{1cm} (4.6)$$

On the other hand there exists a constant $c_5 > 0$ such that

$$\text{vol}(\tilde{\pi}(\tilde{Z}) \cap \gamma_G \bar{\mathfrak{g}}_G) \leq c_5$$ \hspace{1cm} (4.7)

for all $\gamma_G \in \Gamma_G$. This follows from [BT17, Proposition 3.2] (our $\tilde{\pi}(\tilde{Z}) \cap \gamma_G \bar{\mathfrak{g}}_G$ is the image of the $Z \cap \gamma \Phi$ in loc.cit. under the projection $X^+_G \to M_G \to X^+_G$). As our notation is somewhat different from loc.cit., we briefly recall the proof. Denote by $\tilde{X} = \tilde{Z}^{\text{Zar}}$ and $Y = u(\tilde{Z})^{\text{Zar}}$. The assumption of Theorem 4.1 implies that \tilde{Z} is a complex analytic irreducible component of $\tilde{X} \cap u^{-1}(Y)$. Hence $\tilde{\pi}(\tilde{Z})$ is a complex analytic irreducible component of $\tilde{\pi}(\tilde{X}) \cap u_G^{-1}(\pi(Y))$, where $u_G : \lambda_G \to M_G$ is the uniforming map. It is possible to cover $\bar{\mathfrak{g}}_G$ with finitely many semi-algebraic subsets $\{\Sigma_i\}$ such that each Σ_i can be written in terms of (Siegel) coordinates; see [KUY16, Lemma 5.3] or [BT17, Proposition 3.2]. For each dominant projection p from $\gamma_G^{-1} \tilde{\pi}(\tilde{Z}) \cap \Sigma_i$ to $\dim \tilde{\pi}(\tilde{Z})$ coordinates, it can be computed that $p(\gamma_G^{-1} \tilde{\pi}(\tilde{Z}) \cap \bar{\mathfrak{g}}_G \cap \Sigma_i)$ has finite volume. As the Kähler form with respect to which we compute the volume is $G^{\text{der}}(\mathbb{R})$-invariant, it suffices to bound the degree of the projections uniformly for $\gamma_G \in \Gamma_G$. But the function $G(\mathbb{R}) \to \mathbb{R}$, $g^{-1} \tilde{\pi}(\tilde{X}) \cap (u_G^{-1}(\pi(Y)) \cap \bar{\mathfrak{g}}_G) \cap \Sigma_i \mapsto \deg(p)$ is a definable function with value in \mathbb{Z}. Hence the image must be a finite set, meaning that the degree is uniformly bounded for $g \in G(\mathbb{R})$, and in particular for $\gamma_G \in \Gamma_G$. Hence we are done.

5. Bigness of the \mathbb{Q}-stabilizer

Define H to be the \mathbb{Q}-stabilizer of \mathcal{B}, namely

$$H = \left(\Gamma \cap \text{Stab}_{P(\mathbb{R})}(\mathcal{B})^{\text{Zar}} \right)^{\circ}. \hspace{1cm} (5.1)$$

The goal of this section is to do the following dévissage.

Proposition 5.1. Either Theorem 4.1 is true, or $\dim H > 0$.

Let us prove this. Define

$$\Theta = \{p \in P(\mathbb{R}) : \dim(p^{-1} \mathcal{B} \cap (\bar{\mathfrak{g}} \times M) \cap \Delta) = \dim \mathcal{Z} \}. \hspace{1cm} (5.2)$$

Then Θ is a definable set.

5 Fix a faithful representation $\rho : G \to \text{GL}_n$. Define $||\tilde{z}_G||_\infty$ to be the largest singular value of the matrix $\rho(h)$ (as [KUY16 pp. 15]).
We have
\begin{equation}
\{\gamma \in \Gamma : \gamma(\mathfrak{F} \times M) \cap \mathcal{Z} \neq \emptyset\} \subseteq \Theta \cap \Gamma
\end{equation}
since $\Gamma \Delta = \Delta$. On the other hand, we have
\[
\gamma(\mathfrak{F} \times M) \cap \mathcal{Z} = (\gamma \cdot \text{pr}^{-1}_{\mathcal{X}^+}(\mathfrak{F})) \cap \mathcal{Z}
\]
\[
= \text{pr}^{-1}_{\mathcal{X}^+}(\gamma \mathfrak{F}) \cap \mathcal{Z} \quad \text{since $\text{pr}_{\mathcal{X}^+}$ is $P(\mathbb{R})^+$-equivariant}
\]
\[
= \text{pr}^{-1}_{\mathcal{X}^+}(\gamma \mathfrak{F} \cap \text{pr}_{\mathcal{X}^+}(\mathcal{Z}))
\]
\[
= \text{pr}^{-1}_{\mathcal{X}^+}(\gamma \mathfrak{F} \cap \tilde{Z}).
\]
Hence (5.3) becomes
\begin{equation}
\{\gamma \in \Gamma : \gamma \mathfrak{F} \cap \tilde{Z} \neq \emptyset\} \subseteq \Theta \cap \Gamma.
\end{equation}

Theorem 5.2. Assume $\dim \tilde{Z} > 0$. Then there exist a constant $\varepsilon > 0$ and a sequence $\{T_i\}$ with $T_i \to \infty$ such that the following property holds: for each T_i there exists a connected semi-algebraic block $B \subseteq \Theta$ which contains $\geq T_i^\varepsilon$ points in Γ with height at most T_i^6.

Proof. Use the notation of (5.11). A typical case to keep in mind is $(P, \mathcal{X}^+) = (P_{2g,a}, \mathcal{X}_{2g,a}^+)$ and $(G, \mathcal{X}_G^+) = (\text{GSp}_{2g}, \mathfrak{d}^+_g)$. The map $\pi : (P, \mathcal{X}^+) \to (G, \mathcal{X}_G^+)$ is the natural projection. Denote by $\tilde{X} = \tilde{Z}^{\text{Zar}}$ and $Y = \mathbf{u}(\tilde{Z})^{\text{Zar}}$. Then the assumption on \mathcal{Z} implies that \tilde{Z} is a complex analytic irreducible component of $\tilde{X} \cap \mathbf{u}^{-1}(Y)$.

If $\dim \tilde{Z} = 0$, then \tilde{Z} is contained in a fiber of $\mathcal{X}^+ \to \mathcal{X}_G^+$. Consider $\{\gamma \in \Gamma : \gamma \mathfrak{F} \cap \tilde{Z} \neq \emptyset\}$. We claim that it is infinite. Assume it is not, then $\mathbf{u}(\tilde{Z}) = \bigcup_{\gamma \in \Gamma} \mathbf{u}(\tilde{Z} \cap \gamma \mathfrak{F}) = \bigcup_{\gamma \in \Gamma} \mathbf{u}(\tilde{X} \cap \mathbf{u}^{-1}(Y) \cap \gamma \mathfrak{F})$ is a finite union, with each member in the union being closed, complex analytic and definable (in $\mathbb{R}_{\text{an,exp}}$) in M. Hence $\mathbf{u}(\tilde{Z})$ is closed complex analytic and definable in M. Hence $\mathbf{u}(\tilde{Z})$ is algebraic by Peterzil-Starchenko’s o-minimal GAGA (definable Chow) \cite[Theorem 4.5]{PS09}; see also \cite[Theorem 2.2]{MPT17}, and so $\mathbf{u}(\tilde{Z}) = Y$. But the monodromy group of Y, being infinite since $\dim Y > 0$, is contained in $\{\gamma \in \Gamma : \gamma \mathfrak{F} \cap \tilde{Z} \neq \emptyset\}$. This settles the claim.

Now that $\{\gamma \in \Gamma : \gamma \mathfrak{F} \cap \tilde{Z} \neq \emptyset\}$ is infinite, we get for free that it contains $\geq T$ elements of height at most T (for all $T > 0$) because each fundamental set in the fiber of $\mathcal{X}^+ \to \mathcal{X}_G^+$ is contained in an Euclidean ball of a fixed radius and that \tilde{Z} is connected.

Hence we can conclude the theorem by Pila-Wilkie \cite[Theorem 3.6]{Pil11}.

For the rest of the proof, assume $\dim \tilde{Z} > 0$.

Fix $\tilde{z}_0 \in \tilde{Z} \cap \mathfrak{F} \subseteq \mathcal{X}^+$, and denote by $\tilde{z}_0_G = \pi(\tilde{z}_0)$. Consider the geodesic balls $B_{\text{horz}}(\tilde{z}_0_G, T)$ in $\mathcal{X}_G^{\text{horz}}$ defined by (5.2), which for simplicity we denote by $B_{\text{horz}}(T)$.

For each $T > 0$, let $\tilde{Z}(T)$ denote the complex analytic irreducible component of $\tilde{Z} \cap \pi^{-1}(B_{\text{horz}}(T))$ which contains \tilde{z}_0. Define the following sets:
\[
\Xi(T) = \{p \in P(\mathbb{R}) : p \mathfrak{F} \cap \tilde{Z}(T) \neq \emptyset\},
\]
\[
\Xi_G(T) = \{g \in G(\mathbb{R}) : g \mathfrak{F} \cap \pi(\tilde{Z}(T)) \neq \emptyset\}.
\]

\footnote{We refer to \cite[Definition 3.4 and the paragraph below]{Pil11} for definition and basic properties of semi-algebraic blocks.}

\footnote{The crucial point is that the group V is unipotent. See \cite[pp. 3]{Ts15}.}
It is clear that
\[\tilde{\pi}(\tilde{Z}(T)) \subseteq \bigcup_{\gamma_G \in \Xi(G(T) \cap \Gamma_G)} (\gamma_G \tilde{\mathfrak{f}}_G \cap \tilde{\pi}(\tilde{Z}(T))).\]
Thus by taking volumes on both sides, we get by (4.6) and (5.5) that
\[\#(\Xi(G(T) \cap \Gamma_G) \geq cT^\varepsilon, \ \forall T \gg 0\]
for some constants \(c > 0\) and \(\varepsilon > 0\) independent of \(T\).

On the other hand for each \(\gamma_G \in \Xi(G(T) \cap \Gamma_G)\), we know that \(\gamma_G\) is an element of the set defined in (1.4). Thus (5.5) implies \(H(\gamma_G) \leq c_1T^{c_2}\) for some constants \(c_1, c_2 > 0\) independent of \(T\).

Consider the projection to the \(V\)-direction
\[p_V : \mathcal{X}^+ \simeq V(\mathbb{R}) \times \mathcal{X}^+_G \rightarrow V(\mathbb{R}).\]
By abuse of notation we shall identify \(\mathcal{X}^+\) and \(V(\mathbb{R}) \times \mathcal{X}^+_G\).

Fix a number \(\delta > c_2\). We are in one of the following two cases.

(i) For a sequence \(\{T_i \in \mathbb{R}\}_{i \in \mathbb{N}}\) such that \(T_i \rightarrow \infty\), we have \(\|p_V(\tilde{Z}(T_i))\|_{\infty} \leq T_i^\delta\).

(ii) We have \(\|p_V(\tilde{Z}(T))\|_{\infty} > T_i^\delta\) for all \(T \gg 0\).

Assume we are in case (i). We claim that for each \(\gamma_G \in \Xi(G(T_i) \cap \Gamma_G)\), there exists \(\gamma_V \in \Gamma_V\) with \(H(\gamma_V) \leq T_i^\delta\) such that \((\gamma_V, \gamma_G) \in \Xi(T_i) \cap \Gamma\). Now let \(\gamma_G \in \Xi(G(T_i) \cap \Gamma_G)\) and choose a point \(\tilde{z}_G \in \gamma_G \tilde{\mathfrak{f}}_G \cap \tilde{\pi}(\tilde{Z}(T))\). Take \(\tilde{z} \in \tilde{Z}(T)\) such that \(\tilde{\pi}(\tilde{z}) = \tilde{z}_G\). Write \(\tilde{z} = (\tilde{z}_V, \tilde{z}_G) \in V(\mathbb{R}) \times \mathcal{X}^+_G \simeq \mathcal{X}^+\), then by assumption on case (i) we have \(\|\tilde{z}_V\| \leq T_i^\delta\). Hence \(\tilde{z}_V \in \gamma_V + (-1, 1)^{2g}\) with some \(\gamma_V \in \Gamma_V\) such that \(H(\gamma_V) \leq ||\tilde{z}_V|| \leq T_i^\delta\). Recall that by choice of \(\mathfrak{f}\) we have \((-1, 1)^{2g} \times \tilde{\mathfrak{f}}_G \subseteq \mathfrak{f}\). This \(\gamma_V\) is what we desire.

Now that \(\#(\Xi(G(T_i) \cap \Gamma_G) \geq cT_i^\delta\) by (5.5) and \(H(\gamma_G) \leq c_1T_i^{c_2}\) for each \(\gamma_G \in \Xi(G(T_i) \cap \Gamma_G)\) (see below (5.5)), the paragraph above yields
\[\#\{\gamma \in \Xi(T_i) \cap \Gamma : H(\gamma) \leq T_i\} \geq cT_i^\delta\]
where \(c\) and \(\varepsilon\) are modified appropriately (but still independent of \(T_i\)). By definition we have \(\Xi(T_i) \cap \Gamma \subseteq \{\gamma \in \Gamma : \gamma \mathfrak{f} \cap \tilde{Z} \neq \emptyset\}\), and hence by (5.5) we have
\[\#\{\gamma \in \Theta \cap \Gamma : H(\gamma) \leq T_i\} \geq cT_i^\delta\]
Now Pila-Wilkie [Pil11, Theorem 3.6] yields the desired result for case (i).

Assume we are in case (ii). Recall that by choice by \(\mathfrak{f}\) we have \(\mathfrak{f} \subseteq (-k, k)^{2g} \times \tilde{\mathfrak{f}}_G\) for some fixed integer \(k\). For each \(\gamma = (\gamma_V, \gamma_G) \in \Gamma\) such that \(\gamma_G\tilde{\mathfrak{f}}_G \cap \text{B}^{\text{horz}}(T) \neq \emptyset\), we have \(H(\gamma_G) \leq c_1T^{c_2}\) by (1.5). Now for each \(\tilde{x} = (\tilde{x}_V, \tilde{x}_G) \in \mathfrak{f}\), we have
\[\tilde{x}_V \in \gamma_G \cdot (-k, k)^{2g} + \gamma_V \subseteq (-kc_1T^{c_2}, kc_1T^{c_2})^{2g} + \gamma_V.\]
In other words \(p_V(\gamma \mathfrak{f} \cap \tilde{\pi}^{-1}(\text{B}^{\text{horz}}(T))) \subseteq V_{2g}(\mathbb{R})\), in particular \(p_V(\gamma \mathfrak{f} \cap \tilde{Z}(T))\), is contained in an Euclidean ball of radius \(kc_1T^{c_2}\).

Consider the Euclidean balls in \(V_{2g}(\mathbb{R})\) centered at \(p_V(\tilde{z})\) of radius \(T^\delta\) for all \(T \gg 0\). The assumption of case (ii) says that \(p_V(\tilde{Z}(T))\) reaches the boundary of this ball. Since \(\tilde{Z}(T)\) is

\[\text{When } T \rightarrow \infty, \text{ we have that } \tilde{\pi}(\tilde{Z}(T)) \text{ approximates } \tilde{\pi}(\tilde{Z}) \cap \text{B}^{\text{horz}}(T) \text{ since } \tilde{Z} \text{ is irreducible. Thus they have the same kind of volume lower bounds when } T \gg 0.\]
connected, the paragraph above then implies
\[(5.6) \quad \#\{\gamma_T \in \Gamma : H(\gamma_T) \leq T^\delta, (\gamma_T, c_T) \in \Xi(T) \text{ for some } c_T \in \Xi_G(T) \cap \Gamma \} \geq \frac{1}{kc_1}T^{\delta - c_2}\]
for $T \gg 0$. On the other hand each $\gamma_G \in \Xi_G(T) \cap \Gamma$ satisfies $H(\gamma_G) \leq c_1 T^{c_2}$. Hence \[(5.6)\]
yields
\[\#\{(\gamma_T, c_T) \in \Xi(T) \cap \Gamma : H(\gamma_T) \leq T^\delta, H(c_T) \leq c_1 T^{c_2}\} \geq \frac{1}{kc_1}T^{\delta - c_2}.\]
Recall that the only assumption on δ is that $\delta > c_2$, so δ is independent of T. Hence we have
\[\#\{\gamma \in \Xi(T) \cap \Gamma : H(\gamma) \leq T\} \geq c' T^\varepsilon\]
for some $c', \varepsilon > 0$ independent of T. Hence by Pila-Wilkie [Pil11, Theorem 3.6] we are done. \square

Now we are ready to prove the bigness of the \mathbb{Q}-stabilizer of \mathcal{B}.

Proof of Proposition [5.4] Denote by $F = u(\tilde{Z})^{\text{biZar}}$ and $\tilde{F} = \tilde{Z}^{\text{biZar}}$. Then F is weakly special by [Gao17b, Theorem 8.1], and hence $\tilde{F} = N(\mathbb{R})^+ x$ for some $N < P$ and some $x \in X^+$. See [8.4]. Denote by $\Gamma_N = N(\mathbb{Q}) \cap \Gamma$. Without loss of generality we may assume $\dim \tilde{Z} > 0$ (otherwise Theorem [4.1] is clearly true).

We do the lexicographic induction on $(\dim \mathcal{B} - \dim \mathcal{Z}, \dim \mathcal{Z})$ (upwards for the first factor and downwards for the second).

The starting point of the induction on the first factor is when $\dim \mathcal{B} - \dim \mathcal{Z} = 0$. Then $\mathcal{B} = \mathcal{Z}$ and hence both \tilde{Z} and $u(\tilde{Z})$ are algebraic. Therefore $\tilde{Z} = \tilde{F}$ and $u(\tilde{Z}) = F$. Thus $\mathcal{Z} \isom \Gamma_N$-invariant, namely $\Gamma_N \cdot \mathcal{Z} = \mathcal{Z}$. But the action of $P(\mathbb{R})^+$ on $X^+ \times M$ is algebraic. So taking Zariski closures on both sides, we get $N(\mathbb{R})^+ \mathcal{B} = \mathcal{B}$. But then $\mathcal{B} = \tilde{F} \times F$, and hence $\dim \mathcal{B} - \dim \mathcal{Z} = \dim F$. So we must have $\dim F = 0$. Hence this case is proven.

Let us prove the starting point of the induction on the second factor. For a given $\dim \mathcal{B} - \dim \mathcal{Z}$, if $\dim \mathcal{Z}$ is maximal, then $\mathcal{Z} = \graph(\tilde{F} \to F)$. Hence \mathcal{Z} is Γ_N-invariant, namely $\Gamma_N \cdot \mathcal{Z} = \mathcal{Z}$. But the action of $P(\mathbb{R})^+$ on $X^+ \times M$ is algebraic. So taking Zariski closures on both sides, we get $N(\mathbb{R})^+ \mathcal{B} = \mathcal{B}$. But then $\mathcal{B} = \tilde{F} \times F$, and hence $\dim \mathcal{B} - \dim \mathcal{Z} = \dim F$. Hence we are done for this case.

Now we do the induction. Let C be a connected semi-algebraic curve in Θ. For each c in an open neighborhood of C, let \mathcal{Z}_c be a complex analytic irreducible component of $c \mathcal{B} \cap \Delta$ such that $\dim \mathcal{Z}_c = \dim \mathcal{Z}$. Let $c_0 \in C \cap \Gamma$ be such that $pr_{\mathcal{X}^+}(\mathcal{Z}_{c_0})^{\text{biZar}} = \tilde{F}^{\mathcal{B}}$ then there are 3 possibilities:

(i) \mathcal{B} is independent of $c \in C$;
(ii) \mathcal{B} is not independent of $c \in C$ but $\mathcal{Z}_{c_0} \subseteq c \mathcal{B}$ for all $c \in C$;
(iii) \mathcal{B} is not independent of $c \in C$ and $\mathcal{Z}_{c_0} \not\subseteq c' \mathcal{B}$ for some $c' \in C$.

If we are in case (ii), then let $\mathcal{B}_1 := \mathcal{B} \cap c \mathcal{B}$ for a generic $c \in C$. Then $\dim \mathcal{B}_1 < \dim \mathcal{B}$. But $\dim \mathcal{Z}_{c_0} = \dim \mathcal{Z}$. Apply the inductive hypothesis on $\dim \mathcal{B} - \dim \mathcal{Z}$ to $(\mathcal{B}_1, \mathcal{Z}_{c_0})$, we have $\dim \mathcal{B}_1 - \dim \mathcal{Z}_{c_0} \geq \dim F$. Hence the Theorem [4.1] is true. If we are in case (iii), then let $\mathcal{B}_2 := (C \mathcal{B})^{\text{Zar}}$ and let \mathcal{Z}_2 be a complex analytic irreducible component of $\mathcal{B}_2 \cap \Delta$. Then $\dim \mathcal{B}_2 = \dim \mathcal{B} + 1$ and $\dim \mathcal{Z}_2 = \dim \mathcal{Z} + 1$ since \mathcal{Z}_2 contains $\cup_{c \in C} \mathcal{Z}_c$. Hence $\dim \mathcal{B}_2 - \dim \mathcal{Z}_2 = \dim \mathcal{B} - \dim \mathcal{Z}$, and

This holds for all but countably many points in $C \cap \Gamma$.
we can apply the inductive hypothesis on \(\dim \mathcal{F} \) to \((\mathcal{B}_2, \mathcal{Z}_2)\) and get \(\dim \mathcal{B}_2 - \dim \mathcal{Z}_2 \geq \dim \mathcal{F} \). Hence Theorem 4.1 is true.

So we may assume that we are in case (i). In particular we may take \(C \) to be semi-algebraic curves contained in the semi-algebraic block \(\mathcal{B} \) as in Theorem 5.2. It is known that \(\mathcal{B} \) is the union of all such \(C \)'s; see [Pil11, below Definition 3.4]. The assumption on case (i) implies that each \(C \) is contained in some left coset of \(\text{Stab}_{\mathcal{P}(\mathbb{R})}(\mathcal{B}) \). Since \(\mathcal{B} \) is path-connected, it is possible to connect any two points of \(\mathcal{B} \) by a semi-algebraic curve. So all these \(C \)'s are contained in the same left coset of \(\text{Stab}_{\mathcal{P}(\mathbb{R})}(\mathcal{B}) \). Hence Theorem 4.1 is true.

\[\square \]

Remark 5.3. As a byproduct, the proof above yields the following claim: In order to prove Ax-Schanuel (Theorem 4.1), we may assume that every connected semi-algebraic block \(\mathcal{B} \) of positive dimension in \(\Theta \) is contained in a left coset of \(\text{Stab}_{\mathcal{P}(\mathbb{R})}(\mathcal{B}) \).

6. Normality of the \(\mathbb{Q} \)-stabilizer

The goal of this section is to prove the following proposition. Use the notation of §5.

Proposition 6.1. Without loss of generality we may assume \(H \trianglelefteq P \).

6.1. Algebraic family associated with \(\mathcal{B} \). Mok's idea to prove the Ax type transcendence theorems is to use algebraic foliation. In our situation, we wish to construct a family \(\mathcal{F}' \) of varieties in \(\mathcal{X}^+ \) associated with \(\mathcal{Z} \), such that \(\mathcal{F}' \) is \(\Gamma_0 \)-invariant for a suitable subgroup \(\Gamma_0 \) of \(\Gamma \). This construction can be realized, for example, by using Hilbert schemes. Then \(u(\mathcal{F}') \) is a foliation on \(M \). Next we wish to improve the algebraicity of \(u(\mathcal{F}') \) to make it into an algebraic subvariety. Let us present this process for our situation in this subsection, for the sake of completeness of this paper. We point out that it is simply [MPT17, §3] adapted to the universal abelian variety.

Let \(\mathcal{X}^\vee \) be as in Proposition 2.8, then \(\mathcal{X}^+ \) is open (in the usual topology) semi-algebraic in \(\mathcal{X}^\vee \). Let \(\mathcal{H} \) be the Hilbert scheme of all subvarieties of \(\mathcal{X}^\vee \times M \) with the same Hilbert polynomial as \(\mathcal{B} \), and let \(\mathcal{B} \to \mathcal{H} \) be the (modified) universal family, namely

\[\mathcal{B} = \{ (\tilde{x}, m, [W]) \in \mathcal{X}^+ \times M \times \mathcal{H} : (\tilde{x}, m) \in W \} \hookrightarrow (\mathcal{X}^+ \times M) \times \mathcal{H} \]

where \([W]\) means the point of \(\mathcal{H} \) representing \(W \). It is known that \(\mathcal{H} \) is proper. Denote by

\[\psi : \mathcal{B} \to \mathcal{X}^+ \times M \]

the natural projection. Then \(\psi \) is proper since \(\mathcal{H} \) is proper.

The action of \(\Gamma \) on \(\mathcal{X}^+ \times M \) induces an action of \(\Gamma \) on \(\mathcal{B} \) by

\[(\gamma, (\tilde{x}, m, [W])) = (\gamma \tilde{x}, m, [\gamma W]) \]

It is clear that \(\psi \) is \(\Gamma \)-equivariant.

Recall that \(\Delta = \text{graph}(\mathcal{X}^+ \to M) \subseteq \mathcal{X}^+ \times M \). Let \(\mathcal{B}_\Delta \) be

\[\mathcal{B}_\Delta = \mathcal{B} \cap (\Delta \times \mathcal{H}) = \{ (\tilde{\delta}, [W]) \in \Delta \times \mathcal{H} : \tilde{\delta} \in W \cap \Delta \}. \]

Then \(\mathcal{B}_\Delta \) is a closed complex analytic subset of \(\mathcal{B} \). Hence \(\psi(\mathcal{B}_\Delta) \) is closed complex analytic in \(\mathcal{X}^+ \times M \) since \(\psi \) is proper. Note that \(\mathcal{B}_\Delta \) is a family of complex analytic varieties.
Note that Δ is Γ-invariant. So \mathcal{B}_Δ is Γ-invariant for the action (6.1). Hence we can define $\mathcal{B}_M := \Gamma \backslash \mathcal{B}_\Delta$, which is naturally a complex analytic variety. Moreover $\psi(\mathcal{B}_\Delta)$ is also Γ-invariant since ψ is Γ-equivariant. We thus obtain the following commutative diagram:

\[
\begin{array}{ccc}
\mathcal{B}_\Delta & \xrightarrow{\psi} & \psi(\mathcal{B}_\Delta) \\
\downarrow \scriptstyle{\mathcal{B}_M} & & \downarrow \scriptstyle{\mathcal{B}_M} \\
\mathcal{B}_M = \Gamma \backslash \mathcal{B}_\Delta & \xrightarrow{\overline{\psi}} & \Gamma \backslash \psi(\mathcal{B}_\Delta) \\
\downarrow \scriptstyle{(u, id)} & & \downarrow \scriptstyle{(u, id)} \\
M & & M
\end{array}
\]

Then $\overline{\psi}$ is proper since ψ is proper, and $\overline{7}$ is a closed immersion (for complex analytic spaces) since u induces $M \simeq \Gamma \backslash \mathcal{A}^+$.

Next for each non-negative integer r, we define

\[
\mathcal{B}_\Delta(r) = \{(\delta, [W]) \in \mathcal{B}_\Delta : \dim_\delta(\Delta \cap W) \geq r\}.
\]

Then $\mathcal{B}_\Delta(r)$ is a closed complex analytic subset of \mathcal{B}, and hence $\psi(\mathcal{B}_\Delta(r))$ is closed complex analytic in $\mathcal{A}^+ \times M$ since ψ is proper. Note that $\mathcal{B}_\Delta(r)$ is also Γ-invariant. Hence $\Gamma \backslash \mathcal{B}_\Delta(r)$ is a closed complex analytic subset of \mathcal{B}_M.

Moreover $\psi(\mathcal{B}_\Delta(r))$ is also Γ-invariant since ψ is Γ-equivariant.

We are now ready to prove the following result.

Proposition 6.2. The subset $T := (u, id)(\psi(\mathcal{B}_\Delta)) = \overline{\psi}(\mathcal{B}_M)$, as well as $T(r) := (u, id)(\psi(\mathcal{B}_\Delta(r))) = \overline{\psi}(\mathcal{B}_M(r))$ for each $r \geq 0$, is a closed algebraic subvariety of $M \times M$.

Proof. We claim that $\psi(\mathcal{B}_\Delta) \cap (\mathcal{A} \times M)$ is definable in $\mathbb{R}_{\text{an,exp}}$. Since

$$\psi(\mathcal{B}_\Delta) \cap (\mathcal{A} \times M) = \psi(\mathcal{B}_\Delta \cap (\mathcal{A} \times M \times \mathcal{H})), $$

it suffices to prove that $\mathcal{B}_\Delta \cap (\mathcal{A} \times M \times \mathcal{H})$ is definable. But

$$\mathcal{B}_\Delta \cap (\mathcal{A} \times M \times \mathcal{H}) = \{(x, m, [W]) \in \mathcal{A} \times M \times \mathcal{H} : (x, m) \in W \cap \Delta\} = \{(x, m, [W]) \in \mathcal{A} \times M \times \mathcal{H} : (x, m) \in W, \ x \in (u|_\mathcal{A})^{-1}(m)\}.$$

Hence $\mathcal{B}_\Delta \cap (\mathcal{A} \times M \times \mathcal{H})$ is definable since $u|_\mathcal{A}$ is definable.

Similarly $\psi(\mathcal{B}_\Delta(r)) \cap (\mathcal{A} \times M)$ is definable in $\mathbb{R}_{\text{an,exp}}$ since

$$\mathcal{B}_\Delta(r) \cap (\mathcal{A} \times M \times \mathcal{H}) = \{(x, m, [W]) \in \mathcal{A} \times M \times \mathcal{H} : (x, m) \in W, \ x \in (u|_\mathcal{A})^{-1}(m), \dim_\delta(\Delta \cap W) \geq r\}.$$

Now since $\psi(\mathcal{B}_\Delta)$ is Γ-invariant, we have that

$$T = (u, id)(\psi(\mathcal{B}_\Delta)) = (u, id)(\psi(\mathcal{B}_\Delta) \cap (\mathcal{A} \times M))$$

is closed complex analytic and definable in $M \times M$. Hence T is closed algebraic by Peterzil-Starchenko’s o-minimal GAGA (definable Chow) [PS09, Theorem 4.5]; see also [MPT17, Theorem 2.2]. Similarly $T(r)$ is closed algebraic in $M \times M$. \square

6.2. The \mathbb{Q}-stabilizer and first steps towards the normality.

In this subsection we relate $T(r)$ to the \mathbb{Q}-stabilizer of \mathcal{B} via monodromy. We point out that it is [MPT17, §3] adapted to the universal abelian variety. However we need to carefully distinguish the Mumford-Tate group and the monodromy group in the mixed case, since the underlying group is no longer reductive (so that we do not have a decomposition $\mathcal{A}^+ = \mathcal{A}^+_1 \times \mathcal{A}^+_2$ as in the pure case, thus not able to replace \mathcal{A}^+ by an $N(\mathbb{R})^+$-orbit).
Let $r = \dim \mathcal{Z}$. Take the complex analytic irreducible component $\mathcal{B}_{\Delta,0}$ of $\mathcal{B}_{\Delta}(r)$ which contains $\mathcal{Z} \times \{[\mathcal{B}]\}$. Let $T_0 = (\mathbf{u}, \text{id})(\psi(\mathcal{B}_{\Delta,0})) = \psi(\mathbf{u}_\mathcal{B}(\mathcal{B}_{\Delta,0}))$. Then T_0 is a complex analytic irreducible component of $T(r)$. Then T_0 is a closed irreducible algebraic subvariety of $M \times M$ by Proposition 6.2.

Consider the map

\[\pi_1(\mathbf{u}_\mathcal{B}(\mathcal{B}_{\Delta,0})) \xrightarrow{\psi} \pi_1(T_0) \rightarrow \Gamma, \]

where the second map is induced by the middle vertical map of (6.2). Denote by Γ_0 the image of this map, and by N the identity component of the Q-Zariski closure (in P) of Γ_0. Then it is clear that $\Gamma_0 \mathcal{B}_{\Delta,0} \subseteq \mathcal{B}_{\Delta,0}$ for the action Γ on \mathcal{B} defined by (6.1).

Lemma 6.3. We have $N < P$. Moreover $\bar{\mathcal{Z}}^{\text{b Zar}} \subseteq N(\mathbb{R})^{+}\bar{z}$ for any $\bar{z} \in \bar{Z}$.

Proof. Let $\text{pr}_1 : M \times M \rightarrow M$ be the projection to the first factor.

By assumption we have $\mathcal{Z} \subseteq \psi(\mathcal{B}_{\Delta,0})$. Hence $(\mathbf{u}, \text{id})(\mathcal{Z}) \subseteq T_0$, and so

\[\mathbf{u}(\bar{Z}) = \mathbf{u}(\text{pr}_X(\mathcal{Z})) \subseteq \text{pr}_1(T_0). \]

Recall our assumption (P, X^+) is the smallest connected mixed Shimura subdatum of Kuga type such that $\mathcal{Z} \subseteq X^+$. Therefore M is the smallest connected mixed Shimura subvariety of Kuga type which contains $\text{pr}_1(T_0)$.

Since ψ is proper, the image of ψ_* has finite index in $\pi_1(T_0)$.

By the right box of (6.2), the map $\pi_1(T_0) \rightarrow \Gamma$ in (6.4) factors through

\[\pi_1(T_0) \xrightarrow{(\text{pr}_1)_*} \pi_1(\text{pr}_1(T_0)) \rightarrow \pi_1(M) = \Gamma. \]

The image of $(\text{pr}_1)_*$ has finite index in $\pi_1(\text{pr}_1(T_0))$.

Hence N equals the connected algebraic monodromy group of $\text{pr}_1(T_0)$, which is normal in P by André [And92 §5, Theorem 1]; see [Gao17b §3.3].

Next (6.5) implies $\bar{Z} \subseteq \text{pr}_1(T_0)$ for some complex analytic irreducible component $\text{pr}_1(\tilde{T}_0)$ of $\mathbf{u}^{-1}(\text{pr}_1(T_0))$. By [Gao17b], Theorem 8.1, $\text{pr}_1(T_0) = N(\mathbb{R})^{+}\bar{z}$ (for any $\bar{z} \in \bar{Z}$) is weakly special (and hence bi-algebraic). Hence we get the “Moreover” part of the lemma. \(\square \)

Denote by $\theta : \mathcal{B} \rightarrow \mathbf{H}$ the natural projection. Let $\mathcal{F} = \theta^{-1}(\theta(\mathcal{B}_{\Delta,0})) = \{([x, m], [W]) : [W] \in \theta(\mathcal{B}_{\Delta,0}), (x, m) \in W\}$, then $\mathcal{F} \subseteq \mathcal{B}$ is the family of algebraic varieties parametrized by $\theta(\mathcal{B}_{\Delta,0}) \subseteq \mathbf{H}$, with the fiber over each $[W] \in \theta(\mathcal{B}_{\Delta,0})$ being W. Then we have

\[\Gamma_0 \mathcal{F} \subseteq \mathcal{F} \]

for the action Γ on \mathcal{B} defined by (6.1); see below (6.4).

Denote by

\[\Gamma_\mathcal{F} = \{\gamma \in \Gamma : \gamma W \subseteq W, \forall [W] \in \theta(\mathcal{B}_{\Delta,0})\}. \]

Then for a very general $[W] \in \theta(\mathcal{B}_{\Delta,0})$, we have

\[\text{Stab}_\mathcal{F}(W) = \Gamma_\mathcal{F}. \]

By choice of $\mathcal{B}_{\Delta,0}$, we know that \mathcal{B} is a fiber of \mathcal{F}. Without loss of generality we may assume that \mathcal{B} is a very general fiber. Thus $(\Gamma_\mathcal{F})^\circ$ is the Q-stabilizer of \mathcal{B}, which is the H defined in (5.1). The “Moreover” part of Lemma 6.3 implies that $\mathcal{B} \subseteq N(\mathbb{R})^{+}\bar{z} \times \mathbf{u}(N(\mathbb{R})^{+}\bar{z})$, and hence H is a subgroup of N.
Lemma 6.4. We have $H \triangleleft N$.

Proof. Since $\Gamma_0 F \subseteq F$, every $\gamma \in \Gamma_0$ sends a very general fiber W of F to a very general fiber W' of F. By taking the stabilizers of the two fibers and (6.6), we have $\Gamma_0 F = \gamma \Gamma_0 F \gamma^{-1}$ for all $\gamma \in \Gamma_0$. Hence the conclusion follows by taking Zariski closures. □

6.3. Normality of the \mathbb{Q}-stabilizer. The argument in this subsection is new compared to the proof of the pure Ax-Schanuel theorem.

Proof of Proposition 6.1. Recall the definable set Θ defined in (5.2)

$$\Theta = \{p \in P(\mathbb{R}) : \dim(p^{-1} B \cap (\tilde{G} \times M) \cap \Delta) = \dim \mathbb{Z}\},$$

where \tilde{G} is the fundamental set for $X^+ \to M$ defined in (4.1). By Remark 6.3 we may and do assume that every positive dimensional semi-algebraic block in Θ is contained in a left coset of $\text{Stab}_P(\mathbb{R})(\tilde{B})$.

By (6.6), we have $H(\mathbb{R})^+ B \subseteq B$ since B is algebraic in $X^+ \times M$ and the action of Γ on $X^+ \times M$ is semi-algebraic.

Let $V_H = V \cap H$ and $V_N = V \cap N$. Let $G_H = H/V_H$, $G_N = N/V_N$ and $G = P/V$. Then $G_H \triangleleft G_N \triangleleft G$ by Lemma 6.3 and Lemma 6.4 and they are reductive groups. Hence $G_H \triangleleft G$ since any reductive group over \mathbb{Q} is an almost direct product of its center and simple normal subgroups.

Now we are left to prove the following two facts.

(i) V_H is a G-submodule of V.

(ii) G acts trivially on V/V_H.

We start with (ii). By Lemma 6.3 we have $H \triangleleft N$. Hence G_H acts trivially on V_N/V_H. Hence it suffices to prove that G_H acts trivially on V/V_N. But Lemma 6.3 asserts that $N \triangleleft P$, and hence G_N acts trivially on V/V_N. In particular G_H acts trivially on V/V_N. Thus we have established (ii).

Now we prove (i). The “Moreover” part of Lemma 6.3 implies that $B \subseteq \tilde{F} \times F$, where $\tilde{F} = N(\mathbb{R})^+ \tilde{Z}$ and $F = u(\tilde{F})$. Consider $X = \text{pr}_{X^+}(\tilde{B})$, then $X \subseteq \tilde{F}$. Applying the natural projection $\pi: (P, X^+) \to (G, X^+_G)$, we get $\tilde{X}_G \subseteq G_N(\mathbb{R})^+ \tilde{Z}_G$. Here we denote by $\tilde{X}_G = \pi(X)$ and $\tilde{Z}_G = \pi(\tilde{Z})$.

Any $\tilde{x}_G \in X^+_G$ gives a morphism $\mathbb{C}^\times = S(\mathbb{R}) \to G(\mathbb{R})$. If we endow $V(\mathbb{R})$ with the complex structure determined by $V(\mathbb{R}) \simeq \tilde{\pi}^{-1}(\tilde{x}_G)$, then a real subspace V' of $V(\mathbb{R})$ is complex if and only if the following condition holds: $\tilde{X}_G(\sqrt{-1}) \cdot V' \subseteq V'$. Denote for simplicity by $J_{\tilde{x}_G} = \tilde{X}_G(\sqrt{-1})$. Thus under the same complex structure of $V(\mathbb{R})$, we have

- the smallest complex subspace of $V(\mathbb{R})$ containing $V_H(\mathbb{R})$ is $V_H(\mathbb{R}) + J_{\tilde{x}_G} V_H(\mathbb{R})$.
- the largest complex subspace of $V(\mathbb{R})$ contained in $V_H(\mathbb{R})$ is $V_H(\mathbb{R}) \cap J_{\tilde{x}_G} V_H(\mathbb{R})$.

Now each point in \tilde{X}_G is of the form $g\tilde{x}_G$ for some $g \in G_N(\mathbb{R})^+$. We claim that $J_{\tilde{x}_G} V_H(\mathbb{R})$ is independent of \tilde{x}_G when \tilde{x}_G varies in $G_N(\mathbb{R})^+ \tilde{Z}_G$. For any $g \in G_N(\mathbb{R})^+$, we have $J^{-1}_{\tilde{x}_G} g J_{\tilde{x}_G} \in G_N(\mathbb{R})^+$ since $G_N \triangleleft G$. Hence $g J_{\tilde{x}_G} = J_{\tilde{x}_G} g'$ for some $g' \in G_N(\mathbb{R})^+$. Note that $J_{g\tilde{x}_G} = g J_{\tilde{x}_G} g^{-1}$. Thus

$$J_{g\tilde{x}_G} V_H(\mathbb{R}) = g J_{\tilde{x}_G} g^{-1} \cdot V_H(\mathbb{R}) \subseteq g J_{\tilde{x}_G} \cdot V_H(\mathbb{R}) = J_{\tilde{x}_G} g' \cdot V_H(\mathbb{R}) \subseteq J_{\tilde{x}_G} \cdot V_H(\mathbb{R}).$$

Note that $\text{Stab}_G(\gamma W) = \gamma \text{Stab}_G(W) \gamma^{-1}$ for any $[W] \in \Theta(\mathbb{B}_{\Delta, 0})$.

\[\text{dim}(\tilde{G} \times M) \cap \Delta = \text{dim} \mathbb{Z} \]
Here we used the fact that V_H is stable under G_N (since $H \vartriangleleft N$). This proves the claim.

In particular, $J_{\bar{G}}V_H(\mathbb{R})$ is independent of \bar{G} for $\bar{G} \in \bar{X}_G$.

Next for any $\gamma_G \in \bar{\pi}(\Theta) \cap H \Gamma \ni \{\gamma_G \in \Sigma_G : \gamma_G\tilde{\mathcal{Z}}_G \cap \tilde{Z}_G \neq \emptyset\}$ let \tilde{Z}^+_G be a complex analytic irreducible component of $\tilde{Z}_G|_{\gamma_G\tilde{\mathcal{Z}}_G}$, and define the following definable set

$$ \Theta = \{ v \in V(\mathbb{R}) : \dim ((-v, \gamma_G^{-1})b \cap (\mathfrak{f} \times M) \cap \Delta) = \dim \mathfrak{g} \} \subseteq V(\mathbb{R}). $$

Then $\Theta \cap \Gamma \ni \{ \gamma_V \in \Sigma_G : (\gamma_V, \gamma_G)\mathfrak{f} \cap \tilde{Z}^+_G \neq \emptyset\}$, and $(\Theta', \gamma_G^{-1}) \subseteq \Theta$. Denote by $\Gamma_{V_H} = V_H(Q) \cap \Gamma$.

Suppose $\{ \gamma_V \in \Sigma_G : (\gamma_V, \gamma_G)\mathfrak{f} \cap \tilde{Z}^+_G \neq \emptyset\}$ is not contained in a finite union of Γ_{V_H}-cosets. Identify $\mathcal{X}^+ \simeq V(\mathbb{R}) \times \mathcal{X}^+_G$, then $\mathfrak{f} = (-1,1)^{2g} \times \mathfrak{z}_G$, where $g = \dim \mathcal{X}$. Hence

$$ \{ \gamma_V \in \Gamma_V : (\gamma_V, \gamma_G)\mathfrak{f} \cap \tilde{Z}^+_G \neq \emptyset\} = \{ \gamma_V \in \Sigma_G : ((\gamma_V + \gamma_G(-1,1)^{2g}) \times \gamma_G\mathfrak{f}) \cap \tilde{Z}^+_G \neq \emptyset\}. $$

Let $p_V : \mathcal{X}^+ \simeq V(\mathbb{R}) \times \mathcal{X}^+_G \rightarrow V(\mathbb{R})$, then $p_V((\gamma_V + \gamma_G(-1,1)^{2g}) \times \gamma_G\mathfrak{f})$ is contained in an Euclidean ball of radius at most $H(\gamma_G)$. Note that \tilde{Z}^+_G is connected by choice. Thus if the set above is not contained in a finite union of Γ_{V_H}-cosets, then we get for free that it contains $\geq T$ elements in Γ_V outside Γ_{V_H} of height at most $H(\gamma_G)T$ (for all $T \gg 0$).

Hence by Pila-Wilkie [Pil11, Theorem 3.6], there exist two constants $c, \varepsilon > 0$ with the following property: for each $T \gg 0$, Θ' contains a semi-algebraic block B' which is not in any coset of $V_H(\mathbb{R})$ and which contains $\geq c\varepsilon T$ elements in Γ_V outside Γ_{V_H} of height at most T. Recall our assumption that every positive dimensional semi-algebraic block in Θ is contained in a left coset of $\text{Stab}_{P(\mathbb{R})}(\mathfrak{B})$. In particular $(B', \gamma_G^{-1}) \subseteq (\gamma_V, \gamma_G^{-1}) \cdot \text{Stab}_{P(\mathbb{R})}(\mathfrak{B})$ for some $\gamma_V \in B' \cap \Gamma_V$. Hence $(-\gamma_V' + \gamma_GB' , 1) \subseteq \text{Stab}_{P(\mathbb{R})}(\mathfrak{B})$. But then

$$ ((-\gamma_V' + \gamma_GB') \cap \Gamma_V, 1) \subseteq \text{Stab}_{P(\mathbb{R})}(\mathfrak{B}) \cap \Gamma \subseteq H(Q). $$

By letting $T \rightarrow \infty$ and varying B' accordingly, we see that this inclusion cannot hold since each $B' \subseteq V(\mathbb{R})$ thus obtained is not contained in any coset of $V_H(\mathbb{R})$.

Thus $\{ \gamma_V \in \Gamma_V : (\gamma_V, \gamma_G)\mathfrak{f} \cap \tilde{Z}^+_G \neq \emptyset\}$ is contained in a finite union of Γ_{V_H}-cosets. Hence for the map $\mathfrak{g} : \mathcal{X}^+ \rightarrow \Gamma_V \backslash \mathcal{X}^+$ we have that $\mathfrak{g}(\tilde{Z}^+_G)$ is closed in the usual topology.

Now let us construct $\tilde{Z} \subseteq \tilde{Z}$ as follows. Start with $1 \in \Gamma_G$, and get \tilde{Z}^+_G a complex analytic irreducible component of $\tilde{Z}_G|_{\mathfrak{z}_G}$ of maximal dimension. Then for each γ_G such that $\gamma_G\mathfrak{z}_G \cap \tilde{Z}_G \neq \emptyset$, take a complex analytic irreducible component $\tilde{Z}^+_G|_{\mathfrak{z}_G\tilde{\mathcal{Z}}_G}$ of $\tilde{Z}_G|_{\mathfrak{z}_G\tilde{\mathcal{Z}}_G}$. We may choose the $\tilde{Z}^+|_{\mathfrak{z}_G\tilde{\mathcal{Z}}_G}'$'s such that their union \tilde{Z}' is connected. Recall our choice of \mathfrak{f} that \mathfrak{z}_G is open in \mathcal{X}^+_G in the usual topology. Hence $\{ (\Gamma_V \backslash \mathcal{X}^+)|_{\gamma_G\mathfrak{z}_G}\} |_{\gamma_G \in \Gamma_V}$ is an open covering of $\Gamma_V \backslash \mathcal{X}^+$. Thus $\mathfrak{g}^{-1}(\tilde{Z}')$ is closed in $\Gamma_V \backslash \mathcal{X}^+$ in the usual topology since being closed is a local property. Consider $\mathfrak{g}^{-1}(\mathfrak{g}(\tilde{Z}'))$. Some component is contained in \tilde{Z} and has the same dimension. By analytic continuation, we get that this component is precisely \tilde{Z} because \tilde{Z} is complex analytic irreducible. Hence we get that $\mathfrak{g}(\tilde{Z})$ is closed in $\Gamma_V \backslash \mathcal{X}^+$ in the usual topology.

\[1^1\] It is not hard to show this inclusion by using $\Theta \cap \Gamma \ni \{ \gamma \in \Gamma : \gamma \mathfrak{z} \cap Z \neq \emptyset \}$. See [Gao17b] proof of Lemma 10.2.

\[1^2\] The crucial point is that the group V is unipotent. See [Pil11] pp. 3.

\[1^3\] The complex space $\Gamma_V \backslash \mathcal{X}^+$ is a family of abelian varieties. In fact it is the pullback of the abelian scheme $M \rightarrow M_G$ under the uniformization $X^+_G \rightarrow M_G$.
Now let $$\Gamma' = \text{Im} \left(\pi_1(\mathbf{u}(\bar{Z})) \to \pi_1(\Gamma_V \setminus \mathcal{X}^+) = \Gamma_V \right) \subseteq \Gamma_V.$$ Then $$\Gamma'$$ stabilizes $$\bar{Z}$$ for the action of $$\Gamma_V$$ on $$\mathcal{X}^+$$. Recall that $$P(\mathbb{R})^+$$ acts on $$\mathcal{X}^+ \times M$$ via its action on the first factor. So $$\Gamma'$$ stabilizes $$\bar{Z} = \text{graph}(\bar{Z} \to \mathbf{u}(\bar{Z}))$$. Hence $$\left(\Gamma'\right)^\text{Zar}(\mathbb{R}) \subseteq V(\mathbb{R})$$ stabilizes $$\mathcal{B} = \mathcal{B}^{\text{Zar}}$$. On the other hand, $$H$$ is defined to be the $$\mathbb{Q}$$-stabilizer of $$\mathcal{B}$$. So $$\left(\Gamma'\right)^\text{Zar} \subseteq H \cap V = V_H$$.

Let us take a closer look at this. The identification $$\pi_1(\Gamma_V \setminus \mathcal{X}^+) = \Gamma_V$$ is realized via

$$i^{-1}_{\mathcal{X}_G^+} : \mathcal{X}^+ \simeq V(\mathbb{R}) \times \mathcal{X}_G^+$$

(see (2.9)) and hence $$\Gamma_V \setminus \mathcal{X}^+ \simeq (\Gamma_V \setminus V(\mathbb{R})) \times \mathcal{X}_G^+$$. We have $$\bar{Z} \subseteq \bar{X} = \bar{Z}^{\text{Zar}} \subseteq \bar{F} = N(\mathbb{R})^+ \bar{z}$$. Since $$V_H \lhd N$$, we can take the quotient of $$\bar{F} = N(\mathbb{R})^+ \bar{z}$$ by $$V_H(\mathbb{R})$$ and get a real manifold. Call this quotient $$q$$. Denote by $$\Gamma_{V_N} = \Gamma_V \cap N(\mathbb{Q})$$ and $$\Gamma_{V_H} = \Gamma_V \cap H(\mathbb{Q})$$. Then we obtain a commutative diagram

$$\begin{array}{ccc}
V_N(\mathbb{R}) \times \bar{F}_G & \overset{q}{\longrightarrow} & (V_N/V_H)(\mathbb{R}) \times \bar{F}_G \\
\downarrow \mathbf{u} & & \downarrow \mathbf{u} \\
(\Gamma_{V_N \setminus V_N(\mathbb{R}))} \times \bar{F}_G & \overset{|q|}{\longrightarrow} & ((\Gamma_{V_N}/\Gamma_{V_H}) \setminus (V_N/V_H)(\mathbb{R})) \times \bar{F}_G
\end{array}$$

Here all the isomorphisms in the diagram are compatible with the $$i^{-1}_{\mathcal{X}_G^+}$$ above. For now on, by abuse of notation we no longer write $$i^{-1}_{\mathcal{X}_G^+}$$.

Since $$\Gamma' \subseteq V_H(\mathbb{Q})$$, we have that $$[q](\mathbf{u}(\bar{Z}))$$ is contained in $$\{t\} \times \bar{F}_G$$ for some $$t \in (\Gamma_{V_N}/\Gamma_{V_H}) \setminus (V_N/V_H)(\mathbb{R})$$.

But then $$\bar{q} \subseteq \{v'\} \times \bar{F}_G$$ for some $$v' \in (V_N/V_H)(\mathbb{R})$$. Thus there exists $$v \in V(\mathbb{R})$$ such that

$$\bar{Z} - \{v\} \times \bar{Z}_G \subseteq V_H(\mathbb{R}) \times \bar{F}_G.$$

But $$i_{\mathcal{X}_G^+}(\{v\} \times \bar{Z}_G)$$ is complex analytic in $$\mathcal{X}^+$$ since $$\bar{Z}_G$$ is complex and by property (ii) of $$i_{\mathcal{X}_G^+}$$ below (2.9). So the left hand side of (6.7) is complex analytic.

We have proven above that over each $$\bar{x}_G \in \bar{F}_G$$, the largest complex subspace of $$V(\mathbb{R})$$ contained in $$V_H(\mathbb{R})$$ is $$V_H(\mathbb{R}) \cap J_{\bar{x}_G}V_H(\mathbb{R})$$ and $$J_{\bar{x}_G}V_H(\mathbb{R})$$ is independent of the choice of $$\bar{x}_G$$. Hence (6.7) implies

$$\bar{Z} - \{v\} \times \bar{Z}_G \subseteq (V_H(\mathbb{R}) \cap J_{\bar{x}_G}V_H(\mathbb{R})) \times \bar{F}_G$$

since the left hand side is complex analytic. Taking the Zariski closures, we get

$$\bar{X} - \{v\} \times \bar{X}_G \subseteq (V_H(\mathbb{R}) \cap J_{\bar{x}_G}V_H(\mathbb{R})) \times \bar{F}_G.$$

But $$V_H(\mathbb{R})$$ stabilizes $$\bar{X}$$, so $$V_H(\mathbb{R}) = V_H(\mathbb{R}) \cap J_{\bar{x}_G}V_H(\mathbb{R})$$. But then $$V_H(\mathbb{R})$$ is complex for the complex structure of $$V(\mathbb{R}) \simeq \mathcal{X}^+$$ for any $$\bar{x}_G \in \bar{F}_G$$. Since $$\bar{Z}$$ is assumed to be Hodge generic in $$(P, \mathcal{X}^+)$$, we may take $$\bar{x}_G$$ such that $$\text{MT}(\bar{x}_G) = G$$. Then we see that $$V_H$$ is a $$G$$-module. \hspace{1cm} \Box
7. End of proof

Use the notation of §5. We finish the proof of Theorem 4.1 here. Let \mathcal{B} and $\mathcal{Z} = \text{graph}(\tilde{Z} \to \text{u}(\tilde{Z}))$ be as in the theorem. Denote by $\tilde{F} = \tilde{Z}^{\text{bir}}$, then \tilde{F} is weakly special by [Gao17b, Theorem 8.1], and hence $\tilde{F} = N(\mathbb{R})^+\bar{x}$ for some $N \lhd P$ and some $\bar{x} \in X^+$. See §3.4.

By Proposition 5.1, we only need to consider the case where $\dim H > 0$. By Proposition 6.1, we may and do assume $H \lhd P$. Note that H is a subgroup of N by Lemma 6.3 and Lemma 6.4.

Consider the quotient connected mixed Shimura datum of Kuga type $(P, X^+) / H$, which we denote by (\tilde{P}', \tilde{X}'). Use M' to denote the corresponding connected mixed Shimura variety of Kuga type. We have the following commutative diagram:

$$(P, X^+) \xrightarrow{\tilde{\rho}} (P', X'^+) \xrightarrow{\rho} (M, M').$$

Let $\mathcal{B}' = (\tilde{\rho}, \rho)(\mathcal{B})$, $\mathcal{Z}' = (\tilde{\rho}, \rho)(\mathcal{Z})$ and $\tilde{Z}' = \tilde{\rho}(\tilde{Z})$. Then $\tilde{\rho}(\tilde{F}) = (\tilde{Z}')^{\text{bir}}$. Apply Proposition 5.1 to \mathcal{B}' and \mathcal{Z}', we have that either

$$(\text{dim } \mathcal{B}' - \text{dim } \mathcal{Z}') \geq \text{dim } \tilde{\rho}(\tilde{F}),$$

or the \mathbb{Q}-stabilizer of \mathcal{B}', which we call H', has positive dimension. But in the second case, $\tilde{\rho}^{-1}(H')(\mathbb{R})^+\bar{x}$ stabilizes \mathcal{B} and is larger than H, contradicting the maximality of H. So we are in the first case, namely (7.1) holds.

For the quotient

$$(\tilde{\rho}, \rho): X^+ \times M \to X'^+ \times M',$$

any fiber of $\mathcal{B} \to \mathcal{B}'$ is of the form

$$(\tilde{\rho}^{-1}(H')^+\bar{x} \times Y)$$

for some $\bar{x} \in \text{pr}_{X^+}(\mathcal{B})$ and some algebraic subvariety Y of M (with $\rho(Y)$ being a point). Hence any fiber of $\mathcal{Z}' \to \mathcal{Z}$ is of the form

$$(\text{graph}(\bar{Y} \to Y))$$

where \bar{Y} is a complex analytic irreducible component of $\text{u}^{-1}(Y)$. By generic flatness we may choose a point $z' \in \mathcal{Z}'$ such that

$$\text{dim } \mathcal{Z} - \text{dim } \mathcal{Z}' = \text{dim } \mathcal{Z}_{z'}, \quad \text{and} \quad \text{dim } \mathcal{B} - \text{dim } \mathcal{B}' = \text{dim } \mathcal{B}_{z'}.$$

Thus

$$\text{dim } \mathcal{B} - \text{dim } \mathcal{Z} = (\text{dim } \mathcal{B}' + \text{dim } \mathcal{B}_{z'}) - (\text{dim } \mathcal{Z}' + \text{dim } \mathcal{Z}_{z'})$$

$$= (\text{dim } \mathcal{B}' - \text{dim } \mathcal{Z}') + (\text{dim } (H(\mathbb{R})^+\bar{x} \times Y) - \text{dim } Y) \quad \text{by (7.2) and (7.3)}$$

$$\geq \text{dim } \tilde{\rho}(\tilde{F}) + \text{dim } H(\mathbb{R})^+\bar{x} \quad \text{by (7.1)}$$

$$= \text{dim } N/H(\mathbb{R})^+\tilde{\rho}(\bar{x}) + \text{dim } H(\mathbb{R})^+\bar{x}$$

$$= \text{dim } N(\mathbb{R})^+\bar{x} = \text{dim } \tilde{F}.$$

Hence we are done.
8. Application to a finiteness result à la Bogomolov

The goal of this section is to prove a finiteness result à la Bogomolov. Fix a connected mixed Shimura variety of Kuga type M associated with (P, \mathcal{X}^+), and use $u: \mathcal{X}^+ \to M$ to denote the uniformization. Fix an irreducible subvariety Y of M.

The following definition was introduced by Habegger-Pila [HP16] to study the Zilber-Pink conjecture.

Definition 8.1. (i) For any irreducible subvariety Z of M, define $\delta_{\text{ws}}(Z) = \dim Z_{\text{biZar}} - \dim Z$.

(ii) A closed irreducible subvariety Z of Y is said to be weakly optimal if the following condition holds: $Z \subseteq Z' \subseteq Y \Rightarrow \delta_{\text{ws}}(Z') > \delta_{\text{ws}}(Z)$, where Z' is assumed to be irreducible.

Recall that weakly special subvarieties of M are precisely the bi-algebraic subvarieties; see Definition 8.3. Hence our notation makes sense.

Theorem 8.2. There exists a finite set Σ consisting of elements of the form $((Q, \mathcal{Y}^+), N)$, where (Q, \mathcal{Y}^+) is a connected mixed Shimura subdatum of (P, \mathcal{X}^+) and N is a normal subgroup of Q_{der} such that the following property holds. If a closed irreducible subvariety Z of Y is weakly optimal, then there exists $((Q, \mathcal{Y}^+), N) \in \Sigma$ such that $Z_{\text{biZar}} = u(N(\mathbb{R})^+ y)$ for some $y \in \mathcal{Y}^+$.

Our proof of Theorem 8.2 follows the guideline of Daw-Ren [DR17, Proposition 3.3] for the corresponding result for pure Shimura varieties, and plugs in the author’s previous work on extending a finiteness result for pure Shimura varieties by Ullmo [Ull14, Théorème 4.1] to the mixed case [Gao17b, Theorem 12.2].

8.1. Preliminary. We give an equivalent statement of weak Ax-Schanuel formulated by Habegger-Pila [HP16]. We start by the following definition.

Definition 8.3. (i) For any complex analytic irreducible subset \tilde{Z} of \mathcal{X}^+, define $\delta_{\text{Zar}}(\tilde{Z}) = \dim \tilde{Z}_{\text{Zar}} - \dim \tilde{Z}$.

(ii) A closed complex analytic irreducible subset \tilde{Z} of $u^{-1}(Y)$ is said to be Zariski optimal if the following condition holds: $\tilde{Z} \subseteq \tilde{Z}' \subseteq u^{-1}(Y) \Rightarrow \delta_{\text{Zar}}(\tilde{Z}') > \delta_{\text{Zar}}(\tilde{Z})$, where \tilde{Z}' is assumed to be complex analytic irreducible.

It is clear that if \tilde{Z} is Zariski optimal in $u^{-1}(Y)$, then \tilde{Z} is a complex analytic irreducible component of $\tilde{Z}_{\text{Zar}} \cap u^{-1}(Y)$.

Theorem 8.4. Let \tilde{Z} be a complex analytic irreducible subset of $u^{-1}(Y)$ which is Zariski optimal. Then \tilde{Z}_{Zar} is weakly special.

Proof. This is an equivalent form of weak Ax-Schanuel (Theorem 8.5). See [HP16 §5].

By Theorem 8.6 there exists a Shimura embedding $(P, \mathcal{X}^+) \hookrightarrow (G_0, \mathcal{D}^+) \times (P_{2g,a}, \mathcal{X}^+_{2g,a})$ for some connected pure Shimura datum (G_0, \mathcal{D}^+). Let V be the unipotent radical of P and let G be P/V. Denote by $\tilde{\pi}: (P, \mathcal{X}^+) \to (G, \mathcal{X}^+_{G})$. Fix a Levi decomposition $P = V \rtimes G$. It induces $\mathcal{X}^+ \simeq V(\mathbb{R}) \times \mathcal{X}^+_{G}$. All semi-products taken below are assumed to be compatible with this one.

Let \mathcal{T} be the set of the pairs (V', G') consisting of a \mathbb{R}-symplectic subspace of $V_{\mathbb{R}}$ and a connected \mathbb{R}-subgroup of $G_{\mathbb{R}}$ which is semi-simple and has no compact factors. Let $G := \text{Sp}_{2g}(\mathbb{R}) \times G(\mathbb{R})$.
Then \mathcal{G} acts on \mathcal{T} by $(gV,g) \cdot (V',G') = (gV' g^{-1} g^{-1})$. Up to the action of \mathcal{G} to \mathcal{T}, there exist only finitely many such pairs; see [Gao17b, Lemma 12.3]. Fix Ω a finite set of representatives.

The action of an element $\xi = (V',G') \in \mathcal{T}$ on $\mathcal{X}^+ \simeq V(\mathbb{R}) \times \mathcal{X}_G^+$ is defined by

$$(V',G')((\bar{x},G)) = \{(V'(\mathbb{R}) + g' \bar{x},g' G) : g' \in G'(\mathbb{R})\}.$$

8.2. An auxiliary finiteness result. Fix \mathfrak{F} a fundamental set for $u : \mathcal{X}^+ \to M$ such that $u|_{\mathfrak{F}}$ is definable in $\mathbb{R}_{an,exp}$.

Consider the following definable set

$$\mathcal{Y} = \{(\bar{y},g,t,v) \in (u^{-1}(Y) \cap \mathfrak{F}) \times \mathcal{G} \times \Omega \times V(\mathbb{R}) : gG^1 \subset gG', gV' \subset gV', \bar{y}(\mathfrak{S}) \subset (v,1) \cdot N_P(gV' \times gG' g^{-1}) \cdot (1,v,1)\},$$

where \mathfrak{S} is the Deligne torus as in Definition 2.1. $g = (gV,g), t = (V',G')$, and $N_P(gV' \times gG' g^{-1})$ is the normalizer of $gV' \times gG' g^{-1}$ in $P_{\mathbb{R}}$.

Lemma 8.5.

(i) For any $(\bar{y},g,t,v) \in \mathcal{Y}$, we have that $(g \cdot t)\bar{y}$ is complex analytic (and hence complex algebraic since it is also semi-algebraic).

(ii) Any weakly special subset having non-empty intersection with $u^{-1}(Y) \cap \mathfrak{F}$ is of the form $(g \cdot t)\bar{y}$ for some $(\bar{y},g,t,v) \in \mathcal{Y}$.

Proof.

(i) The set $(g \cdot t)\bar{y}$ is

$$(g \cdot t)(u^{-1}(Y) \cap \mathfrak{F}) \times \mathcal{G} \times \Omega \times V(\mathbb{R}) : (g \cdot t)\bar{y} \subset (g \cdot t)G, (g \cdot t) \bar{y} \subset (g \cdot t)G', (g \cdot t) \bar{y} \subset (g \cdot t)G' g^{-1}) \subset \mathcal{Y},$$

where $\bar{y} = (\bar{y},g,t,v) \subset \mathcal{Y}$ and \mathcal{Y} is analytic. Then $(g \cdot t)\bar{y}$ is the translate of the group orbit $(g \cdot t)\bar{y} \subset \mathcal{Y}$, and the constant section $\{v \times \mathcal{X}_G^+ \to \mathcal{X}_G^+\}$. The group orbit is complex analytic because $\bar{y}(\mathfrak{S}) \subset N_P(gV' \times gG' g^{-1})$. The constant section is complex analytic by the discussion in [2.13] (between (2.8) and (2.10)). Hence $(g \cdot t)\bar{y}$ is complex analytic.

(ii) Let \bar{X} be such a weakly special subset. Then there exist a connected mixed Shimura subdatum of Kuga type (Q,\mathcal{X}^+) of \mathcal{T}, a normal subgroup N of Q, and a point $\bar{y} \in \mathcal{Y}$ such that $\bar{X} = N(\mathbb{R}) \bar{y}$. We can take $\bar{y} \in u^{-1}(Y) \cap \mathfrak{F}$. Then it suffices to take $g \cdot t$ to be $(V_{N,R},G_N^\mathfrak{nc}(\mathbb{R}))$, where $V_N = V \cap N, G_N = V_N / N$ and $G_N^\mathfrak{nc}(\mathbb{R})$ is the product of the non-compact simple factors of $G_N^\mathfrak{nc}(\mathbb{R})$. The element $v \in V(\mathbb{R})$ appears because the two Levi decompositions $V_N \times G_N$ (the one compatible to the fixed Levi decomposition $P = V \times G$) and N may differ from the conjugation of an element $v \in V(\mathbb{Q})$.

From now on, all the dimensions we consider will be the real dimension. Define the following functions on $(u^{-1}(Y) \cap \mathfrak{F}) \times \mathcal{G} \times \Omega \times V(\mathbb{R})$:

$$d_{\bar{y}}(\bar{y},g,t,v) = \dim_{\bar{y}}((g \cdot t)\bar{y}),$$

$$d_Y(\bar{y},g,t,v) = \dim_{\bar{y}}(u^{-1}(Y) \cap \mathfrak{F} \cap (g \cdot t)\bar{y}).$$

\[\text{Reference:} [Gao17b, Lemma 12.3].\]
Define
\[\Xi_0 = \{ (\tilde{y}, g, t) \in \mathcal{Y} : (\tilde{y}, g_1^1, t_1, v_1) \in \mathcal{Y}, (g \cdot t) \tilde{y} \subseteq (g_1^1 \cdot t_1) \tilde{y} \Rightarrow d(\tilde{y}, g, t, v) - d(\tilde{y}, g_1^1, t_1, v_1) < d(\tilde{y}, g_1^1, t_1, v_1) - d(\tilde{y}, g, t, v) \}. \]

Finally define
\[\Xi = \{ (\tilde{y}, g, t) \in \Xi_0 : (\tilde{y}, g_1^1, t_1, v_1) \in \mathcal{Y}, (g \cdot t) \tilde{y} \supseteq (g_1^1 \cdot t_1) \tilde{y} \Rightarrow d(\tilde{y}, g, t, v) > d(\tilde{y}, g_1^1, t_1, v_1) \}. \]

Then both \(\Xi_0 \) and \(\Xi \) are definable.

Lemma 8.6. The set of pairs \(\{ (g \cdot t, v) : (\tilde{y}, g, t) \in \Xi \} \) is finite.

Proof. We start by proving that \((g \cdot t)\tilde{y}\) is weakly special for any \((\tilde{y}, g, t, v) \in \Xi\). Let \(\tilde{Z} \) be the complex analytic irreducible component of \((g \cdot t)\tilde{y} \cap u^{-1}(Y)\) passing through \(\tilde{y}\) such that
\[\dim \tilde{Z} = d_Y(\tilde{y}, g, t, v). \]

Let \(\tilde{Z}' \supseteq \tilde{Z} \) be such that \(\tilde{Z}' \subseteq u^{-1}(Y) \) is complex analytic irreducible and \(\delta_{\text{Zar}}(\tilde{Z}') \leq \delta_{\text{Zar}}(\tilde{Z}) \).

We may and do assume that \(\tilde{Z}' \) is Zariski optimal. Then \(\tilde{Z}' \) is a complex analytic irreducible component of \((\tilde{Z}')_{\text{Zar}} \cap u^{-1}(Y)\), and \((\tilde{Z}')_{\text{Zar}} = (g_1^1 \cdot t_1)\tilde{y} \) for some \((\tilde{y}, g_1^1, t_1, v_1) \in \mathcal{Y}\) by Theorem 8.4 and Lemma 8.5 (ii). Here the \(\tilde{y} \) can be taken as above.

Now we have \(\tilde{Z} \subseteq (g \cdot t)\tilde{y} \cap (g_1^1 \cdot t_1)\tilde{y} \), and hence \(\tilde{Z} \subseteq (g_2 \cdot t_2)\tilde{y} \) for some \((\tilde{y}, g_2, t_2, v_2) \in \mathcal{Y}\) with \((g_2 \cdot t_2)\tilde{y} \subseteq (g \cdot t)\tilde{y}\). By definition of \(\Xi \), we then have \((g_2 \cdot t_2)\tilde{y} = (g \cdot t)\tilde{y}\). Hence
\[(g \cdot t)\tilde{y} \subseteq (g_1^1 \cdot t_1)\tilde{y}. \]

On the other hand we have
\[
d(\tilde{y}, g_1^1, t_1, v_1) - d_Y(\tilde{y}, g, t, v) = \dim((\tilde{Z}')_{\text{Zar}} - \dim((\tilde{Z}')_{\text{Zar}} \cap u^{-1}(Y) \cap \tilde{y})) \\
\leq \delta_{\text{Zar}}(\tilde{Z}') \leq \delta_{\text{Zar}}(\tilde{Z}) \\
\leq d(\tilde{y}, g_1^1, t_1, v_1) - d_Y(\tilde{y}, g, t, v).
\]

Hence by definition of \(\Xi_0 \), we have \((g \cdot t)\tilde{y} = (g_1^1 \cdot t_1)\tilde{y} \) is weakly special.

Thus by definition of weakly special subvarieties, we have \(g \cdot t = (V_{N,R}, G^\text{pc}_{N,R}) \) for some \(Q \)-subgroup \(N \) of \(P \), where \(V_N \) is the unipotent radical of \(N \), and \(G^\text{pc}_{N,R} \) is the almost product of the non-compact factors of \(G^+_N \). Also we have some \(v \in V(Q) \); see the proof of Lemma 8.5 (ii).

Therefore the set \(\{ (g \cdot t, v) : (\tilde{y}, g, t, v) \in \Xi \} \) is countable.

On the other hand write \(\Omega = \{ t_1, \ldots, t_n \} \). Then we have \(\Xi = \bigcup_{i=1}^n \Xi_i \), where \(\Xi_i = \{ (\tilde{y}, g, t, v) \in \Xi : t = t_i \} \). For each \(i \in \{ 1, \ldots, n \} \), consider the map
\[\Xi_i \rightarrow \frac{\text{Sp}_{2g}(\mathbb{R}) / \text{Stab}_{\text{Sp}_{2g}(\mathbb{R})}(V'_i)}{(G(\mathbb{R}) / N_{G(\mathbb{R})}(G'_i)) \times V(\mathbb{R})}, \quad (\tilde{y}, g, t, v_i) \mapsto (g v'_i, g G'_i g^{-1}, v) \]

16 The point \(\tilde{y} \) can be taken as before since \(\tilde{y} \in \tilde{Z} \). Then \((g_2 \cdot t_2, v_2)\) comes from the intersection of the two subgroups \((v, 1)(g v' \times g G'_i g^{-1})(-v, 1)\) and \((v_1, 1)(g_{V'_i} \times g_{G'_i} g^{-1})(-v_1, 1)\) of \(P \).
where we write \(t_i = (V'_i, G'_i) \) and \(g = (g_\cdot, \cdot) \). This map is definable, and hence the image is definable. But its image is \(\{(g \cdot t,v) : (\tilde{g}, g \cdot t,v) \in \Xi_z\} \). Thus

\[
\{(g \cdot t,v) : (\tilde{g}, g \cdot t,v) \in \Xi\} = \bigcup_{i=1}^n \{(g \cdot t,v) : (\tilde{g}, g \cdot t,v) \in \Xi_z\}
\]

is definable. Hence it is finite because it is countable and definable.

Lemma 8.7. Let \(\tilde{Z} \subseteq u^{-1}(Y) \) be Zariski optimal such that \(\tilde{Z} \cap \mathfrak{g} \neq \emptyset \). Then we have

\[
\tilde{Z}^{\text{Zar}} = (g \cdot t)\tilde{y}
\]

for some \((\tilde{y}, g \cdot t, v) \in \Xi\).

Proof. Assume \(\dim \tilde{Z} = \dim_\mathfrak{g}(\tilde{Z}^{\text{Zar}} \cap u^{-1}(Y) \cap \mathfrak{g}) \) for some \(\tilde{y} \in \tilde{Z} \). By Theorem 8.4, we have that \(\tilde{Z}^{\text{Zar}} \) is weakly special. Hence part (ii) of Lemma 8.5 implies

\[
\tilde{Z}^{\text{Zar}} = (g \cdot t)\tilde{y}
\]

for some \((\tilde{y}, g \cdot t, v) \in \mathfrak{Y} \) (where \(\tilde{y} \) is as above). We wish to prove that \((\tilde{y}, g \cdot t, v) \in \Xi_0 \).

We prove that \((\tilde{y}, g \cdot t, v) \in \Xi_0 \). Suppose not, then there exists \((\tilde{y}, \tilde{g}_1, t_1, v_1) \in \mathfrak{Y} \) such that \((g \cdot t)\tilde{y} \subseteq (g_1 \cdot t_1)\tilde{y} \) and

\[
(8.1) \quad d(\tilde{y}, \tilde{g}_1, t_1, v_1) - d_Y(\tilde{y}, \tilde{g}, t, v) \geq d(\tilde{y}, \tilde{g}_1, t_1, v_1) - d_Y(\tilde{y}, \tilde{g}_1, t_1, v_1).
\]

Let \(\tilde{Z}' \) be a complex analytic irreducible component of \((g_1 \cdot t_1)\tilde{y} \cap u^{-1}(Y) \) passing through \(\tilde{y} \) such that \(\dim \tilde{Z}' = d_Y(\tilde{y}, \tilde{g}_1, t_1, v_1) \). Then

\[
\dim_\mathfrak{g}(\tilde{Z}' \cap \tilde{Z}^{\text{Zar}}) \geq \dim \tilde{Z}' - d(\tilde{y}, \tilde{g}_1, t_1, v_1) \geq \dim \tilde{Z} \quad \text{by (8.1)}.
\]

Thus \(\tilde{Z}' \) contains a neighborhood of \(\tilde{y} \) in \(\tilde{Z} \), and hence \(\tilde{Z} \subseteq \tilde{Z}' \). But \(\tilde{Z} \) is Zariski optimal and \(\delta_{\text{Zar}}(\tilde{Z}') \leq \delta_{\text{Zar}}(\tilde{Z}) \) by (8.1), so \(\tilde{Z} = \tilde{Z}' \). But then we get the following contradiction to (8.1):

\[
d(\tilde{y}, \tilde{g}_1, t_1, v_1) - d_Y(\tilde{y}, \tilde{g}_1, t_1, v_1) \geq 2\delta_{\text{Zar}}(\tilde{Z'}) = 2\delta_{\text{Zar}}(\tilde{Z}) = d(\tilde{y}, \tilde{g}, t, v) - d_Y(\tilde{y}, \tilde{g}, t, v).
\]

Here the first inequality follows from part (i) of Lemma 8.5.

Hence \((\tilde{y}, \tilde{g}_1, t_1, v_1) \in \Xi_0 \). Suppose this triple does not belong to \(\Xi \), then there exists \((\tilde{y}, \tilde{g}_1, t_1, v_1) \in \mathfrak{Y} \) such that \((g \cdot t)\tilde{y} \supseteq (g_1 \cdot t_1)\tilde{y} \) and \(d_Y(\tilde{y}, \tilde{g}, t, v) = d_Y(\tilde{y}, \tilde{g}_1, t_1, v_1) \). But then

\[
\tilde{Z} \subseteq (g_1 \cdot t_1)\tilde{y} \subseteq (g \cdot t)\tilde{y} = \tilde{Z}^{\text{Zar}}.
\]

This is a contradiction by part (i) of Lemma 8.5.

Proposition 8.8. There exists a finite set \(\Sigma \) consisting of elements of the form \(((Q, \mathcal{Y}^+), N)\), where \((Q, \mathcal{Y}^+)\) is a connected mixed Shimura subdatum of \((P, \mathcal{X}^+)\) and \(N \) is a normal subgroup of \(Q^{\text{Zar}} \) such that the following property holds. If \(\tilde{Z} \) is a complex analytic irreducible subset in \(u^{-1}(Y) \) which is Zariski optimal and such that \(\tilde{Z} \cap \mathfrak{g} \neq \emptyset \), then there exists \(((Q, \mathcal{Y}^+), N) \in \Sigma \) such that \(\tilde{Z}^{\text{Zar}} = N(\mathbb{R})^+\tilde{y} \) for some \(\tilde{y} \in \mathcal{Y}^+ \).
Proof. By Theorem 8.4, we know that \tilde{Z} is weakly special. Thus there exist a connected mixed Shimura subdatum of Kuga type (Q, Y^+) of (P, X^+), a normal subgroup N of G^der, and a point $\tilde{y} \in Y^+$ such that $\tilde{Z} = N(\mathbb{R})^+\tilde{y}$.

We prove that the N arises from finitely many choices. It suffices to prove that (V_N, G_N, v) arises from finitely many choices, where $V_N = V \cap N$, $G_N = N/V_N$ and $v \in V(\mathbb{Q})$ such that $N = (v, 1)(V_N \times G_N)(-v, 1)$.

By Lemma 8.7 and Lemma 8.6, there are only finitely many choices for $(V_N, G_N, G^{nc}_{N, R}, v)$, where $G^{nc}_{N, R}$ is the almost direct product of the non-compact factors of $G^{+}_{N, R}$. But then we can take G_N to be the smallest connected \mathbb{Q}-subgroup of G which contains $G^{nc}_{N, R}$. Hence we proved the finiteness of N.

Next for each N, there are only finitely many (Q, Y^+) such that $N \triangleleft Q$ by [Gao17b, Lemma 12.1]. Hence we are done. \qed

8.3. Proof of Theorem 8.2. Let Z be a closed irreducible subvariety of Y which is weakly optimal. Let \tilde{Z} be a complex analytic irreducible component of $u^{-1}(Z)$ such that $\tilde{Z} \cap \mathfrak{F} \neq \emptyset$. In view of Proposition 8.8 it suffices to prove that \tilde{Z} is Zariski optimal in $u^{-1}(Y)$.

Let $\tilde{Z}' \supseteq \tilde{Z}$ be such that $\tilde{Z}' \subseteq u^{-1}(Y)$ is complex analytic irreducible and $\delta_{\text{Zar}}(\tilde{Z}') \leq \delta_{\text{Zar}}(\tilde{Z})$. We may and do assume that \tilde{Z}' is Zariski optimal. Then \tilde{Z}' is a complex analytic irreducible component of $(\tilde{Z}')_{\text{Zar}} \cap u^{-1}(Y)$, and $(\tilde{Z}')_{\text{Zar}}$ is weakly special by Theorem 8.4.

On the other hand $u^{-1}(\langle u(\tilde{Z}') \rangle_{\text{ws}}) \supseteq (\tilde{Z}')_{\text{Zar}}$ since $\langle u(\tilde{Z}') \rangle_{\text{ws}}$ is bi-algebraic. So

$$\langle u(\tilde{Z}') \rangle_{\text{ws}} = u((\tilde{Z}')_{\text{Zar}}).$$

Hence we have

$$\delta_{\text{ws}}(u(\tilde{Z}')_{\text{Zar}}) = \dim(\langle u(\tilde{Z}') \rangle_{\text{ws}}) - \dim(\langle u(\tilde{Z}') \rangle_{\text{Zar}}) = \dim(\tilde{Z}')_{\text{Zar}} - \dim(\tilde{Z}')_{\text{Zar}} \leq \dim(\tilde{Z})_{\text{Zar}} - \dim(\tilde{Z}') \leq \delta_{\text{Zar}}(\tilde{Z})$$

$$= \dim(\tilde{Z})_{\text{Zar}} - \dim(\tilde{Z}) \leq \dim(Z)_{\text{ws}} - \dim Z = \delta_{\text{ws}}(Z).$$

In fact the “\leq" on the last line is an equality by [Gao17b, Theorem 8.1], but we do not need this fact. Since $\tilde{Z}' \subseteq u^{-1}(Y)$, we have $u(\tilde{Z}')_{\text{Zar}} \subseteq Y$. Moreover recall our assumption that Z is weakly optimal. So $Z = u(\tilde{Z}')_{\text{Zar}}$. But then $\tilde{Z}' \subseteq \tilde{Z}$. So \tilde{Z} is Zariski optimal. Hence we are done.

9. A simple application to the Betti map

In this section, we present a simple application of the mixed Ax-Schanuel theorem for the universal abelian variety to the Betti map. Our goal is just to show the idea, so we restrict ourselves to an easy case.

\footnote{Here $V_N \times G_N$ is defined to be compatible with the fixed Levi decomposition $P = V \times G$. It differs from N by the conjugation of some $v \in V(\mathbb{Q})$.}
Our setting is as follows: let S be an irreducible quasi-projective variety over \mathbb{C} and let $\mathcal{A} \to S$ be an abelian scheme of relative dimension g. Up to taking a finite cover of S, it induces a cartesian diagram

$$
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\varphi} & \mathbb{A}_g \\
\downarrow & & \downarrow \pi \\
S & \xrightarrow{\varphi_S} & \mathbb{A}_g
\end{array}
$$

Since we only want to show the idea how Ax-Schanuel for the universal abelian varieties can be applied to study the Betti map, we make the following extra assumptions for simplicity:

- \mathcal{A}/S is geometrically simple.
- φ_S is quasi-finite (so is φ).

Because of the second bullet point, we will replace \mathcal{A}/S by $\varphi(S)/\varphi_S(S)$. Let $\mathcal{A}_{\mathbb{H}^+}$ be the pullback of $\mathbb{A}_g/\mathbb{H}_g$ under $u_G: \mathbb{H}^+_g \to \mathbb{A}_g$. Recall the real analytic diffeomorphism of \mathbb{H}^+_g.

$$
i_{\mathbb{H}^+_g}: \mathbb{R}^{2g} \times \mathbb{H}^+_g \xrightarrow{\sim} \mathbb{X}^+_{2g,a} = \text{Lie}(\mathcal{A}_{\mathbb{H}^+_g}/\mathbb{H}^+_g).
$$

It induces then a real analytic diffeomorphism

$$
i_{\mathbb{H}^+_g}: \mathbb{T}^{2g} \times \mathbb{H}^+_g \xrightarrow{\sim} \mathcal{A}_{\mathbb{H}^+_g}.
$$

Hence we get the following map, which is called the Betti map

$$b: \mathcal{A}_{\mathbb{H}^+_g} \xrightarrow{\sim} \mathbb{T}^{2g} \times \mathbb{H}^+_g \to \mathbb{T}^{2g},
$$

where the first map is $i_{\mathbb{H}^+_g}^{-1}$ and the last map is the projection.

Let \tilde{S} be a complex analytic irreducible component of $u_G^{-1}(S)$, and let $\mathcal{A}_{\tilde{S}}$ be the restriction of $\mathcal{A}_{\mathbb{H}^+_g}$ to \tilde{S}. By abuse of notation, we denote by

$$b: \mathcal{A}_{\tilde{S}} \to \mathbb{T}^{2g}
$$

the restriction of the Betti map.

Theorem 9.1. Let $\xi: S \to \mathcal{A}$ be a multi-section. It induces a multi-section $\tilde{\xi}$ of $\mathcal{A}_{\tilde{S}}/\tilde{S}$. Assume \mathbb{Z}_{ξ} is Zariski dense in \mathcal{A}. If $\dim S \geq g$, then there exists $\tilde{s} \in \tilde{S}$ such that

$$\text{rank}(db|_{\tilde{\xi}(\tilde{s})}) = 2g.
$$

Proof. Denote by $Y = \xi(S)$. It is an irreducible subvariety of \mathbb{A}_g. Consider the diagram

$$
\begin{array}{ccc}
\mathbb{X}^+_{2g,a} & \xrightarrow{i_{\mathbb{H}^+_g}} & \mathbb{R}^{2g} \times \mathbb{H}^+_g \\
\downarrow \quad & & \\
\mathbb{R}^{2g} \times \mathbb{H}^+_g & \xrightarrow{\sim} & \mathbb{R}^{2g} \times \mathbb{H}^+_g
\end{array}
$$

Take a complex analytic irreducible component \tilde{Y} of $u^{-1}(Y)$. By abuse of notation we shall identify $\mathbb{X}^+_{2g,a}$ and $\mathbb{R}^{2g} \times \mathbb{H}^+_g$ and no longer write $i_{\mathbb{H}^+_g}()$.

Let $G = MT(\tilde{S})$. Since $\mathbb{Z}\xi$ is Zariski dense in \mathcal{A}, it is possible to take $\tilde{s} \in \tilde{S}$ with Mumford-Tate group G and $a \in \mathbb{R}^{2g} = V_{2g}(\mathbb{R})$ with some non-rational coordinate such that $(a, \tilde{s}) \in \tilde{Y}$. We shall prove that $\text{rank}(db|_{(a, \tilde{s})}) = 2g$.

If $\text{rank}(db|_{(a, \tilde{s})}) < 2g$, then by property (ii) below (2.9) there exists a complex analytic variety $\tilde{C} \subseteq \tilde{S}$ of dimension $\geq \dim S - g + 1$ passing through \tilde{s} such that $(a) \times \tilde{C} \subseteq \tilde{Y}$. Apply weak Ax-Schanuel (Theorem 3.5) to $(a) \times \tilde{C}$, then we have

$$\dim \{a\} \times \tilde{C}^{\text{Zar}} + \dim u(\{a\} \times \tilde{C})^{G} \geq \dim \{a\} \times \tilde{C} + \dim u(\{a\} \times \tilde{C})^{G}.$$

But $(a) \times \tilde{C}^{\text{Zar}}$ is complex analytic (by property (ii) below (2.9)) and real algebraic, and so is algebraic. Thus $(\{a\} \times \tilde{C})^{G} = \{a\} \times \tilde{C}^{G}$. On the other hand, the characterization of bi-algebraic subvarieties of \mathbb{A}_{g} and the assumption on a imply that $u(\{a\} \times \tilde{C})^{G} = \mathbb{A}_{g}|_{G(\tilde{C})^{G}}$; see Proposition 3.7.18. So (9.1) becomes

$$\dim \tilde{C}^{\text{Zar}} + \dim u(\{a\} \times \tilde{C})^{G} \geq \dim S - g + 1 + \dim \mathbb{A}_{g}|_{G(\tilde{C})^{G}}.$$

On the other hand, applying the weak Ax-Schanuel for A_{g} to \tilde{C} (Theorem 3.5), we get

$$\dim \tilde{C}^{\text{Zar}} + \dim u_{G}(\tilde{C})^{G} = \dim Z + \dim u_{G}(\tilde{C})^{G},$$

where \tilde{Z} is a complex analytic irreducible component of $\tilde{C}^{\text{Zar}} \cap u^{-1}(u(\tilde{C})^{G})$. Note that $\dim u(\{a\} \times \tilde{C})^{G} = \dim u_{G}(\tilde{C})^{G}$ since $(a) \times \tilde{C} \subseteq \tilde{Y}$ and $Y = \xi(S)$ is a multi-section of \mathcal{A}/S. Now (9.2) - (9.3) yields

$$0 \geq \dim S - g + 1 - \dim \tilde{Z} + g.$$

Hence $\dim S + 1 \leq \dim \tilde{Z}$. But $u(\tilde{Z}) \subseteq u(\tilde{C})^{G} \subseteq S$. So we get a contradiction. \hfill \square

References

[ACZ18] Y. André, P. Corvaja, and U. Zannier. The Betti map associated to a section of an abelian scheme (with an appendix by Z. Gao). Preprint, available on arXiv, 2018.

[And92] Y. André. Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part. Compositio Mathematica, 82(1):1-24, 1992.

[Ax71] J. Ax. On Schanuel’s conjectures. Annals Math., 93:252–268, 1971.

[Ax72] J. Ax. Some topics in differential algebraic geometry I: Analytic subgroups of algebraic groups. American Journal of Mathematics, 94:1195–1204, 1972.

[Bog81] F. Bogomolov. Points of finite order on an abelian variety. Izv. Math., 17:55–72, 1981.

[BT17] B. Bakker and J. Tsimerman. The Ax-Schanuel conjecture for variations of Hodge structures. Preprint, available on arXiv, 2017.

[DR17] C. Daw and J. Ren. Applications of the hyperbolic Ax-Schanuel conjecture. Preprint, available on arXiv, 2017.

[Gao17a] Z. Gao. A special point problem of André-Pink-Zannier in the universal family of abelian varieties. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 17:231–266, 2017.

[Gao17b] Z. Gao. Towards the André-Oort conjecture for mixed Shimura varieties: the Ax-Lindemann-Weierstrass theorem and lower bounds for Galois orbits of special points. J. Reine Angew. Math (Crelle), 732:85–146, 2017.

[HP16] P. Habegger and J. Pila. O-minimality and certain atypical intersections. Annales scientifiques de l’Ecole Normale Supérieure, 4:813–858, 2016.

\hspace{1cm} ^{18}$Here we use the fact that \mathcal{A}/S is geometrically simple and non-isotrivial.
[HT02] J. Hwang and W. To. Volumes of complex analytic subvarieties of Hermitian symmetric spaces. American Journal of Mathematics, 124(6):1221–1246, 2002.

[KUY16] B. Klingler, E. Ullmo, and A. Yafaev. The hyperbolic Ax-Lindemann-Weierstrass conjecture. Publ. math. IHES, 123:333–360, 2016.

[KUY18] B. Klingler, E. Ullmo, and A. Yafaev. Bi-algebraic geometry and the André-Oort conjecture. In Algebraic Geometry: Salt Lake City 2015, Part 2 (Utah, 2015), Proc. Sympos. Pure Math., pages 319–360. Amer. Math. Soc., 2018.

[Mil88] J. Milne. Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In Automorphic forms, Shimura varieties, and L-functions. Vol. I. Proceedings of the conference held at the University of Michigan, Ann Arbor, Michigan, July 6-16 1988.

[MPT17] N. Mok, J. Pila, and J. Tsimerman. Ax-Schanuel for Shimura varieties. Preprint, available on arXiv, 2017.

[Pil11] J. Pila. O-minimality and the André-Oort conjecture for \mathbb{C}^n. Annals Math., 173:1779–1840, 2011.

[Pin89] R. Pink. Arithmetical compactification of mixed Shimura varieties. PhD thesis, Bonner Mathematische Schriften, 1989.

[Pin05] R. Pink. A combination of the conjectures of Mordell-Lang and André-Oort. In Geometric Methods in Algebra and Number Theory, volume 253 of Progress in Mathematics, pages 251–282. Birkhäuser, 2005.

[PR94] V. Platonov and A. Rapinchuk. Algebraic Groups and Number Theory. Academic Press, Inc., 1994.

[PS09] Y. Peterzil and S. Starchenko. Complex analytic geometry and analytic-geometric categories. J. Reine Angew. Math (Crelle), 626:39–74, 2009.

[PS13] Y. Peterzil and S. Starchenko. Definability of restricted theta functions and families of abelian varieties. Duke Journal of Mathematics, 162(4):731–765, 2013.

[PT14] J. Pila and J. Tsimerman. Ax-Schanuel for the j-function. Duke Journal of Mathematics, 165(13):2587–2605, 2014.

[Tsi15] J. Tsimerman. Ax-Schanuel and o-minimality. In O-minimality and Diophantine geometry, number 421 in London Math. Soc. Lecture Note Series. Camb. Univ. Press, 2015.

[Ull14] E. Ullmo. Applications du théorème de Ax-Lindemann hyperbolique. Compositio Mathematica, 150:175–190, 2014.

[UY11] E. Ullmo and A. Yafaev. A characterisation of special subvarieties. Mathematika, 57(2):263–273, 2011.

[Wil97] J. Wildeshaus. The canonical construction of mixed sheaves on mixed Shimura varieties. In Realizations of Polylogarithms, volume 1650 of LNM, pages 77–140. Springer, 1997.

CNRS, IMJ-PRG, 4 place de Jussieu, 75005 Paris, France; Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

E-mail address: ziyang.gao@imj-prg.fr