Application of artificial neural network (ANN) for water quality index (WQI) prediction for the river Warta, Poland

M Kulisz1 and J Kujawska2

1 Lublin University of Technology, Faculty of Management, Nadbystrzycka 38, Lublin, Poland
2 Lublin University of Technology, Faculty of Environmental Engineering, Nadbystrzycka 40B, Lublin, Poland

m.kulisz@pollub.pl

Abstract. The aim of this paper is to present the potential of using neural network modelling for the prediction of the surface water quality index (WQI). An artificial neural network modelling has been performed using the physicochemical parameters (TDS, chloride, TH, nitrate, and manganese) as an input layer to the model, and the WQI as an output layer. The physicochemical parameters have been taken from five measuring stations of the river Warta in the years 2014-2018 via the Chief Inspectorate of Environmental Protection (GIOŚ). The best results of modelling were obtained for networks with 5 neurons in the hidden layer. A high correlation coefficient (general and within subsets) 0.9792, low level of MSE in each subset (training, test, validation), as well as RMSE at a level of 0.624507639 serve as a confirmation. Additionally, the maximum percentage of an error for WQI value did not exceed 4%, which confirms a high level of conformity of real data in comparison to those obtained during prediction. The aforementioned results clearly present that the ANN models are effective for the prediction of the value of the Surface water quality index and may be regarded as adequate for application in simulation by units monitoring condition of the environment.

1. Introduction
Modelling and optimisation have become crucial for contemporary environmental management. Rising concerns for balanced development triggered various institutions supervising the quality of the environment to implementation of innovative solutions for the reduction of working costs and energy. Statistical and numerical methods are more commonly applied for environmental research i. a. for the comparison of empirical data [1, 2] modelling of cavitation erosion process [3, 4, 5] modelling processes in sewage treatment plants [6], monitoring chemical processes inside reactors [7], or for models of pollution forecasting, such as, quality indoor air [8], the number of produced waste [9].

Especially, models are widely used for solving problems related to water quality management [10]. Decisions concerning water resource management increasingly becoming dependent on model researches [11], whereas tools for modelling are more and more advanced [12].

A mathematical model often used for the assessment of water quality is the water quality index (WQI). Implementation of this kind of model facilitates the standardisation of the surface water quality assessment system. This index is successfully used for water quality assessment in the US and the UK [10].
Moreover, simulation modelling is also gaining acknowledgment [9 - 13]. The method of water quality simulation presents numerous advantages, naming: low or non-costs of simulation, required short time, decreased demand on measuring or laboratory equipment and staff, the possibility of producing a great amount of synthetic data for analysis, regeneration of lacks in data, measuring and controlling-calibrating devices [14].

Models are able to simulate quality parameters crucial for the user based on suitably chosen, measured input parameters. That may be essential for the assessment and prediction of more complex parameters which are more difficult to measure. The parameters that are easy to measure in water are temperature, pH, and electrical conductivity (EC), while more difficult are, for example, nitrates or chemical oxygen demand. Due to this fact, when creating a simulation model the parameters easy to measure may be used as input data, and difficult to determine parameters shall be simulated [10].

In the hereby presented research, the application of an artificial neural network to predict the water quality index (WQI) for the river Warta waters (Poland) has been proposed.

Artificial Neural Networks (ANN) are computer systems composed of a collection of computational nodes, called neurons, and their connections. The way of operation of such a model mimics the operation of the human brain. The neural network has to be adjusted to solve a given problem via a learning process using typical stimulation and response with the desired reaction; thus, this differs from the traditional modelling method, where it is necessary to define an algorithm and create a program [15].

The neural network has become a base for several pieces of research as neural network assisting in water quality modelling [16], application of ANN for water quality management [17], forecasting dissolved oxygen concentration in the Klamatach river [18] salinity, nitrate concentration in groundwater [19], concentration ammonia nitrate, COD and mineral oil using neural network [20]; river flow modelling using artificial neural network [21].

The aim of this research is to assess the quality of water in the river Warta through the calculation of WQI, and WQI prediction using ANN.

2. Methods

2.1. Study area

The river Warta is Poland’s third-longest and its total length is 808.2 kilometres. The catchment area of the Warta covers 54.519 square kilometres (Figure 1). The Warta basin is located within two hydrogeological regions. The body of those areas is within the Kraków-Częstochowa Upland, and only the minor part on the East is within the area of the Nida region (XI). The use of the Warta catchment area within the voivodeship is dominated by land developed for agricultural purposes, which account for 60.7% (1910.0 km²) of the drained area. Two times smaller area (968.5 km²) is covered by forests and wooded land. Their participation in the described area is 30.8%. Urbanised areas in total cover an area of 254.1 km², which accounts for only 8.0% of the catchment area [22].

![Figure 1. Site location [23].](image-url)
2.2. WQI Calculation

The Water Quality Index model [25] used in this study is based on the weighted arithmetic mean method. The limits of the parameter \(S_i \) are selected as limits in class 2 of the rating scale. The weighting factor of each parameter is calculated and shown in Table 1 [25] on the basis of data given in Table 2. Water quality for drinking purposes is usually classified into five categories (Table 3).

WQI was calculated using three steps:

1) In the first step, the unit weight was calculated for each chemical parameter using the below equation:

\[
W_i = w_i / \sum_{i=1}^{n} w_i
\]

where \(W_i \) is the relative weight, \(w_i \) is the weight of each parameter, \(n \) is the number of parameters.

The summary of the assigned weight \((w_i) \) and relative weight \((W_i) \) of each physicochemical parameter is illustrated in Table 2.

2) In the second step, \(q_i \) was computed using the below equation:

\[
q_i = \frac{C_i}{S_i} \cdot 100
\]

where \(q_i \) is the quality rating, \(C_i \) is the concentration of each chemical parameter in each water sample in milligrams per litre, \(S_i \) is the WHO drinking water standard for each chemical parameter in milligrams per litre.

3) In the third step, WQI is calculated by using the below equation:

\[
WQI = \sum q_i \cdot W_i
\]

Parameters	Weight \((w_i)\)	Relative weight \((W_i)\)
TDS	4	0.1053
Phosphate	1	0.0263
Chloride	3	0.0789
Ca	2	0.0526
Mg	2	0.0526
TH	2	0.0526
pH	4	0.1053
Nitrate	5	0.1316
Fluoride	4	0.1053
Sulphate	4	0.1053
Manganese	4	0.1053

2.3. Sampling

The results of the physicochemical parameters of the Warta gathered in Table 2 are from the Chief Inspectorate of Environmental Protection [24]. For the purpose of the research annual content of the following parameters was used: dissolved substances, phosphates \((PO_4^{3-})\), chloride \((Cl^-)\), calcium, magnesiuim, hardness \((TH)\), pH, nitrate \((V)\) \((NO_3^-)\), fluoride \((F^-)\), sulphate \((VI)\) \((SO_4^{2-}\)), manganese \((Mn)\); data obtained from five measuring stations for the Warta river between years 2014-2018. Chosen stations were Warta-Rogusko, Warta-Wiórek, Warta-Mściszewo, Warta-Kiszewo, Warta-Pierwoszewo.
Table 2. Physicochemical parameter of waters.

Site	pH	PO₄³⁻	Chloride	Ca	Mg	TH	TDS	NO₃⁻	F	SO₄²⁻	Mn
		mg/l									
Warta-Rogusko	7.7	0.028	34.9	73	16.2	319	347	3	0.14	26.9	0.003
Warta-Wiórek	7.9	0.035	32.3	56.5	7.5	314	359	2.3	0.16	28.3	0.007
Warta-Mściślewo	8	0.042	53.5	54.2	6	322	367	3.8	0.2	35.1	0.006
Warta-Kiszewo	8.1	0.055	33.7	52.9	8.6	329	313	2.7	0.1	44.6	0.005
Warta-Pierwoszewo	7.78	0.031	42.8	67.3	7.1	331	310	2.9	0.13	47.1	0.004
Warta-Rogusko	8.7	0.058	39.4	62.2	18.2	259.6	304	2.6	0.19	71.2	0.007
Warta-Wiórek	8.6	0.061	42.1	67.9	13.4	358.2	311	2.5	0.17	44.7	0.006
Warta-Mściślewo	8.6	0.062	39.98	49.5	8.3	244.5	317.4	3.33	0.15	56.17	0.003
Warta-Kiszewo	8.6	0.055	37.2	50.1	7.5	273.8	318.8	1.76	0.18	52.18	0.004
Warta-Pierwoszewo	8.4	0.063	32.73	48.7	4.1	262	297	2.81	0.18	69.3	0.005
Warta-Rogusko	8	0.042	32.1	52.9	5.8	262	311	2.7	0.09	68.4	0.004
Warta-Wiórek	8.5	0.046	53.5	54.2	6	320	307	4.4	0.1	70.1	0.006
Warta-Mściślewo	8.2	0.029	50.6	56.5	7.5	369	352	3.6	0.14	71.2	0.005
Warta-Kiszewo	8.1	0.035	37.8	50.9	5.5	322	372	4.5	0.16	70.3	0.003
Warta-Pierwoszewo	8.2	0.037	40.1	52.6	6.6	387	310	3.7	0.2	70.2	0.004
Warta-Rogusko	8.3	0.043	41.6	83.5	10.5	282	335	4.2	0.1	68.8	0.005
Warta-Wiórek	8.3	0.037	41.2	84.9	10.9	295	307	4.2	0.11	69.9	0.007
Warta-Mściślewo	8.3	0.042	46	80.47	11.07	323	352	4.5	0.11	73.7	0.006
Warta-Kiszewo	8.2	0.076	47.3	80.72	11.65	253	462	2.71	0.2	72.5	0.004
Warta-Pierwoszewo	8.2	0.065	45.2	79.2	11.33	280	467	4.31	0.16	71.6	0.003
Warta-Rogusko	8	0.039	30.5	73	10.47	204	227	2.71	0.1	49.4	0.002
Warta-Wiórek	8.01	0.042	41.2	76.57	10.7	206	251	2.88	0.11	62.2	0.004
Warta-Mściślewo	8.1	0.043	42	77.7	10.8	228	307	2.95	0.2	67	0.005
Warta-Kiszewo	7.7	0.045	42.4	79.17	10.9	232	335	3.02	0.15	69.9	0.005
Warta-Pierwoszewo	7.9	0.045	43.5	80.47	11.07	242	352	3.41	0.11	71.7	0.004
Table 3. The range and type of water for WQI [26].

WQI level	Water type
<50	Excellent
50-100	Good water
100.1-200	Poor water
200-300.1	Very poor water
>300.1	Water unsuitable for drinking purposes

2.4. Artificial Neural Networks

In order to determine input parameters to ANN modelling, the correlation analysis using the Statistica13 programme was applied. The WQI prediction was conducted using the Neural Network library in the MatLab and Simulink computing environments. Input parameters to the model were the physicochemical parameters (input neurons), whereas the output neuron was the WQI. The Neural Network Fitting app has been used for the process of modelling. Networks were created with one hidden layer. The selection of the network was made on the basis of the Mean Square Error (MSE) and the regression (R) value by changing the number of neurons in the hidden layer in the range from 2 to 10, as well as the learning algorithm (Levenberg-Marquardt, Bayesian Regularisation, and Scaled Conjugate Gradient). The higher the regression value and the lower the MSE were, the better quality of the generated network. The data set has been divided into training (70%), testing (15%), and validation (15%) subsets.

3. Result and discussion

3.1. The Water Quality Index

The calculated WQI index is presented in Table 4. All chosen measuring spots of the Warta are characterised by the WQI<50 which indicates the excellent type of water. None of the described measuring stations indicated poor quality water. Even though the descriptive report by the Regional Inspectorate of Environmental Protection in Katowice proves poor water quality for the given catchment areas taken as unified parts of the surface waters. It has been emphasised that the particular groups of assessed parameters in the given catchment areas are changing in a quite wide spectre. Since there are catchment areas where assessed parameters are of the highest quality – I class, but there are also those of the lowest quality classified as IV. Such quality status of the Warta’s waters is a result of diverse anthropogenic impacts on the environment [24].

Table 4. WQI values for samples of waters.

Site	WQI				
	2014	2015	2016	2017	2018
Warta-Rogusko	43.7132	39.43021	38.5744	44.0899	36.1240
Warta-Wiórek	41.1775	43.5609	43.718	44.7937	37.8144
Warta-Mściszewo	43.1699	46.9739	46.9346	46.8439	40.9785
Warta-Kiszewo	41.9076	39.2940	43.7919	44.76308	41.3717
Warta-Pierwoszewo	43.0399	40.3997	47.2923	45.9692	42.1301
In this case, agricultural activity has the greatest importance carrying a major issue of fertilization of fields and using pesticides. Those substances together with rainwater permeate then the surface waters leading to their pollution. And for the Warta itself, a crucial fact is that the river flows through urban areas of Zawiercie, Myszków, and Częstochowa. What is more, a vital role for the transformation of physicochemical parameters of flowing waters plays a reservoir in Poraj. A complex catchment situation triggers significant differences in the quality of surface waters between individual watercourses [27].

This kind of diversity of parameters of the quality of surface waters may be challenging for research stations. The application of simulation models may facilitate the operation of such measuring entities.

3.2. Artificial Neural Networks
In the first step, the correlation matrix between variables has been examined (Table 5). On the basis of the correlation analysis (the correlation coefficient above 0.5), the selection of input parameters to the ANN modelling has been made. The following parameters have been chosen total dissolved solids (TDS), chloride, total hardness (TH), nitrate, and manganese. Schematic representation of the ANN in Figure 2.

	TDS	PO₄³⁻	Cl⁻	Ca	Mg	TH	pH	NO₃⁻	F⁻	SO₄²⁻	Mn
WQI	0.574	0.035	0.5633	0.233	0.216	0.726	0.159	0.588	0.229	0.248	0.539

Figure 2. Schematic representation of an artificial neural network.

The best network has been reached within 19 iterations and it is the network with five neurons in the hidden layer (Figure 3). Validation performance through MSE is presented in Figure 4 – the best validation has been reached within 7 iterations, and the value for it equals 0.77235. The pace of the error decrease (gradient) for a particular iteration of the validation set depending on the number of consecutive increases of the MSE for this set and momentum (Mu) are presented in Figure 5. With six consecutive increases of the MSE validation error, the learning process of the network is being stopped. Table 6 presents the results of the network’s learning process (MSE and regression – R-value) including the division into training, testing, and validation subsets.

Data Subset	Mean Square Error (MSE)	Regression (R) value
Training set (70%)	0.05632	0.9988
Validation set (15%)	0.77235	0.9554
Testing set (15%)	1.86498	0.9678
Regression statistics for particular subsets (training $R=0.9988$, validation $R=0.9554$, testing $R=0.9678$) are presented in Figure 6. General regression reached 0.9792, therefore for each case $R>0.95$ which proves an incredibly good matching of the network and a high level of correspondence of measuring points.

Post-modelling, the Simulink diagram has been generated (Figure 7), which facilitates the prediction of the WQI after providing data concerning TDS, chloride, TH, nitrate, and manganese.

As a result of the conducted ANN modelling, the prediction of the WQI has been done, which depends on the physicochemical parameters such as TDS, chloride, TH, nitrate, and manganese. Figure 8 presents a comparison between predicted and real data resulting from the ANN prediction.
Figure 6. Regression statistics of the ANN.

Figure 7. Simulink diagram.

Figure 8. Comparison between predicted and real data for WQI.
Taking into consideration slight discrepancies between real data and those obtained as a result of prediction (RMSE = 0.624507639) it has been stated that described ANN models present an acceptable level of error thereby may be applied as decisive predictors in the determination of the WQI [28, 29]. Accordingly, to the latest literature research, there is an increasing number of research pieces treating of application of neural network models in the process of prediction of the quality of both surface and groundwaters using different input variables (water physicochemical parameters). Two indexes – R and MSE, prove an optimal choice of the neural network. In this paper, the value of R equaled 0.9792.

Vasanthi and Kumar have forecasted the index of water quality for the river Palayar using the following quality indexes: DO, TDS, SAR, BOD₅, HCO₃ as input data. Data were obtained from five stations monitoring the quality of Parakai waters in the period from December 2016 to March 2018. The aforementioned network reached R = 0.9907 [30]. Moreover, Zali has predicted the value of the WQI for the river Kinta, Malaysia. As input data, the following parameters have been used DI, BOD, COD, pH, SS, NO₃-N. Their ANN model reached a determination coefficient of 0.981 and the RMSE lower than 2% [28]. Gazz et al. have estimated the WQI for the river Kinta (Malaysia, 2012) using 23 input data (DO, BD, NH₃-N, PH, COD, turbidity, Mg, Ca, K, Cl, temperature, E Coli bacteria, Zn, DS, Fe, TS, Na, SS, EC, NO₃-N, As, PO₄-P, total coliform bacteria) to model the network. Aforementioned network reached R² = 95.4%; RMSE = 1.663 [29].

The parameters characterising the network indicate the possibility of using the ANN to predict the water quality index. It is a particularly useful tool for predicting the water quality of rivers.

4. Conclusions

Neural network models can be an effective tool to predict the surface water quality index (WQI). The modelled neural network determines the relationships between the input data – physicochemical parameters of surface waters (TDS, chloride, TH, nitrate, and manganese), and the output data: the WQI. The best modelling results have been obtained for a network with 5 neurons in the hidden layer. A high correlation coefficient (general as well as in individual subsets) of 0.9792 and a low level of MSE in each of the subsets (training, test, and validation) as well as RMSE of 0.6245 have been reached. Additionally, the maximum error percentage for the WQI value did not exceed 4%, therefore they may be recognized as sound predictors concerning the tested data.

The flexibility of the neural network structure allows water quality to be predicted using a smaller number of physicochemical parameters than would be necessary in the case of analytical determination of this index. The number of necessary physicochemical parameters has been reduced from 11 to 5. The use of this type of tool is desirable due to the time-consuming and costly constraints of acquiring real data.

References

[1] Kirichenko-Babko M B, Danko Y M, Danyl'kiv J M and Majerek D 2021 Comparison of the use of species abundance and presence-absence data for diversity assessment J. Phys. Conf. Ser. 1736
[2] Pawłowska M, Pawłowski A, Pawłowski L, Cel W, Wójcik Oliveira K, Kwiatkowski C, Harasim E and Wang L 2019 Possibility of Carbon Dioxide Sequestration by Catch Crops Ecol. Chem. Eng. S 26 641–9
[3] Szala M, Łatka L, Awtoniuk M, Winnicki M and Michalak M 2020 Neural modelling of aps thermal spray process parameters for optimizing the hardness, porosity and cavitation erosion resistance of al2o3-13 wt% tio2 coatings Processes 8 1–15
[4] Szala M and Awtoniuk M 2019 Neural modelling of cavitation erosion process of 34CrNiMo6 steel IOP Conf. Ser. Mater. Sci. Eng. 710
[5] Cao Y and Cel W 2015 Sustainable mitigation of methane emission by natural processes Probl. Ekorozwoju 10 117–21
[6] Drewnowski J, Shourjeh M S, Kowal P and Cel W 2021 Modelling AOB-NOB competition in shortcut nitrification compared with conventional nitrification-denitrification process J. Phys. Conf. Ser. 1736

[7] Kłosowski G, Rymarczyk T, Cieplak T, Niderla K and Skowron Ł 2020 Quality assessment of the neural algorithms on the example of EIT-UST hybrid tomography Sensors (Switzerland) 20 1–19

[8] Staszowska A 2017 Photodegradation of lower polybrominated diphenyl ether congeners in indoor air - Model studies J. Ecol. Eng. 18 180–6

[9] Kulisz M and Kujawska J 2020 Prediction of municipal waste generation in poland using neural network modeling Sustain. 12 1–16

[10] Salami E S, Salari M, Ehteshami M, Bidokhti N T and Ghadimi H 2016 Application of artificial neural networks and mathematical modeling for the prediction of water quality variables (case study: southwest of Iran) Desalin. Water Treat. 57 2703–84

[11] Scholten H, Kassahun A, Refsgaard J C, Kargas T, Gavardinas C and Beulenes A 2007 A methodology to support multidisciplinary model-based water management Environ. Model. Softw. 22 743–59

[12] McKnight S U, Funder S G, Rasmussen J J, Finkel M, Binning P J and Bjerg P L 2010 An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems Ecol. Eng. 36 1126–37

[13] Sałat R, Awtoniuk M and Korpysz K 2017 Black-box identification of a pilot-scale dryer model: A Support Vector Regression and an Imperialist Competitive Algorithm approach IFAC-PapersOnLine 50 1559–64

[14] Chen Y, Song L, Liu Y, Yang L and Li D 2020 A review of the artificial neural network models for water quality prediction Appl. Sci. 10

[15] Di Franco G and Santurro M 2021 Machine learning, artificial neural networks and social research Qual. Quant. 55 1007–25

[16] Kadam A K, Wagh V M, Muley A A, Umrikar B N and Sankhua R N 2019 Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India Model. Earth Syst. Environ. 5 951–62

[17] Zaheer I and Bai C-G 2003 Application of artificial neural network for water quality management Lowl. Technol. Int. 5 10–5

[18] Heddam S 2016 Simultaneous modelling and forecasting of hourly dissolved oxygen concentration (DO) using radial basis function neural network (RBFNN) based approach: a case study from the Klamath River, Oregon, USA Model. Earth Syst. Environ. 2 1–18

[19] Zare A H, Bayat V M and Daneshkare A P 2011 Forecasting nitrate concentration in groundwater using artificial neural network and linear regression models Int. Agrophysics 25 187–92

[20] Miao Q, Yuan H, Shao C and Liu Z 2009 Water quality prediction of moshui river in china based on BP neural network Proc. 2009 Int. Conf. Comput. Intell. Nat. Comput. CINC 2009 7–10

[21] Cuest Cordoba G A, Tuhovčák L and Tauš M 2014 Using artificial neural network models to assess water quality in water distribution networks Procedia Eng. 70 399–408

[22] Paczyński B 2018 Atlas hydrogeologiczny Polski

[23] https://en.wikipedia.org/wiki/Warta

[24] https://poznan.wios.gov.pl/monitoring-srodowiska/wyniki-badan-i-oceny/monitoring-wod-powierzchniowych/rzeki/ocena-stanu-jednolitych-czesci-wod-zak-2016/

[25] Shah K A and Joshi G S 2015 Development of Urbanization Index Model using Multi-dimensional Approach Asian J. Res. Soc. Sci. Humanit. 5 128

[26] Sahu P and Skida K 2008 Hydrochemical Framework of the Aquifer in and around East Kolkata Wetlands, West Bengal, India Environ. Geol. 55 825–35
[27] Wojewódzki Inspektorat Ochory Środowiska w Poznaniu 2018 Stan wód Warty na terenie województwa wielkopolskiego

[28] Zali, M.A., Retnam, A., Juahir, H., Zain S.M., Kasim M.F., Abdullah B. S S . 2011 Sensitivity analysis for water quality index (WQI) prediction for kinta river, Malaysia World Appl. Sci. J. 14 60–5

[29] Gazzaz N M, Yusoff M K, Aris A Z, Juahir H and Ramli M F 2012 Artificial neural network modeling of the water quality index for Kinta River(Malaysia) using water quality variables as predictors Mar. Pollut. Bull. 64 2409–20

[30] Sahaya Vasant S and Adish Kum S 2019 Application of artificial neural network techniques for predicting the water quality index in the Parakai Lake, Tamil Nadu, India Appl. Ecol. Environ. Res. 17 1947–58