Comparison of freshly cultured versus cryopreserved mesenchymal stem cells in animal models of inflammation: A pre-clinical systematic review

Chintan Dave¹, Shirley HJ Mei², Andrea McRae², Christine Hum³,⁴, Katrina J Sullivan³, Josee Champagne³,⁵, Tim Ramsay⁵, Lauralyn McIntyre³,⁶*

¹Division of Critical Care Medicine, Department of Medicine, Western University, London, Canada; ²Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; ³Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada; ⁴University of Ottawa, Ottawa, Canada; ⁵Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada; ⁶Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, Canada

Abstract

Background: Mesenchymal stem cells (MSCs) are multipotent cells that demonstrate therapeutic potential for the treatment of acute and chronic inflammatory-mediated conditions. Although controversial, some studies suggest that MSCs may lose their functionality with cryopreservation which could render them non-efficacious. Hence, we conducted a systematic review of comparative pre-clinical models of inflammation to determine if there are differences in in vivo measures of pre-clinical efficacy (primary outcomes) and in vitro potency (secondary outcomes) between freshly cultured and cryopreserved MSCs.

Methods: A systematic search on OvidMEDLINE, EMBASE, BIOSIS, and Web of Science (until January 13, 2022) was conducted. The primary outcome included measures of in vivo pre-clinical efficacy; secondary outcomes included measures of in vitro MSC potency. Risk of bias was assessed by the SYRCLE ‘Risk of Bias’ assessment tool for pre-clinical studies.

Results: Eighteen studies were included. A total of 257 in vivo pre-clinical efficacy experiments represented 101 distinct outcome measures. Of these outcomes, 2.3% (6/257) were significantly different at the 0.05 level or less; 2 favoured freshly cultured and 4 favoured cryopreserved MSCs. A total of 68 in vitro experiments represented 32 different potency measures; 13% (9/68) of the experiments were significantly different at the 0.05 level or less, with seven experiments favouring freshly cultured MSC and two favouring cryopreserved MSCs.

Conclusions: The majority of preclinical primary in vivo efficacy and secondary in vitro potency outcomes were not significantly different (p<0.05) between freshly cultured and cryopreserved MSCs. Our systematic summary of the current evidence base may provide MSC basic and clinical research scientists additional rationale for considering a cryopreserved MSC product in their preclinical studies and clinical trials as well as help identify research gaps and guide future related research.

Funding: Ontario Institute for Regenerative Medicine
Editor’s evaluation
The pre-clinical systematic review by Dave C et al. covers an important and highly debated topic, which is the advantages and disadvantages of the use of freshly cultured vs cryopreserved mesenchymal stromal cells (MSCs). The authors conduct an appropriate survey and bias analysis and focus their review on reported studies on animal models of inflammation. They conclude that there are no significant differences between freshly-isolated or cryopreserved MSCs in terms of their pre-clinical efficacy.

Introduction
Mesenchymal stromal cells (mesenchymal stem cells; MSCs) are multipotent stem cells that can be isolated from many adult tissues (e.g. bone marrow, adipose tissue) (Pittenger et al., 2019). MSCs have been studied in clinical trials for almost two decades (Koç et al., 2000), and have since been implicated in use for diverse conditions (Gomez-Salazar et al., 2020). MSCs release growth factors and cytokines along with extracellular vesicles to activate cell proliferation, prevent apoptosis, and ultimately improve regenerative response (Pittenger et al., 2019). MSCs may also modulate the immune response by decreasing inflammation, reducing scar formation, increasing pathogen clearance, altering endothelial permeability, and improving mitochondrial dysfunction as demonstrated in different pre-clinical models of inflammation (Fish and Hajjar, 2015; Hoogduijn et al., 2010; Gupta et al., 2012; Islam et al., 2012; Li et al., 2018; Tsubokawa et al., 2010). The mechanism for how MSCs modulate inflammation and promote healing is not yet completely understood; however, the observed effect may be mediated by both the direct contact with immune cells and release of soluble factors (Caplan, 2009; Shi et al., 2012; Souza-Moreira et al., 2022). Given their potent immunomodulatory effects, MSCs are particularly attractive for use in infectious as well as acute and chronic inflammatory conditions. There are a growing number of studies that demonstrate the efficacy of MSC therapy in a variety of pre-clinical models, such as acute lung injury (Chang et al., 2014; Mei et al., 2007; Matthay et al., 2010; Weiss et al., 2013; Wilson et al., 2015), sepsis (McIntyre et al., 2018; Mei et al., 2010), acute myocardial infarction (Boyle et al., 2010), multiple sclerosis (Connick et al.,

![Figure 1. Literature search and study inclusion.](image-url)
(2011), graft-versus-host disease (Baron et al., 2010; Introna et al., 2014; Pérez-Simon et al., 2011), osteoarthritis (Emadedin et al., 2015; Jo et al., 2014; Orozco et al., 2014; Vega et al., 2015; Vives et al., 2015), and inflammatory bowel disease (IBD) (Forbes et al., 2014; Molendijk et al., 2015). Moreover, as of March 10, 2022, 1,097 active trials involving MSCs were registered (https://www.clinicaltrials.gov). Although MSCs have potential to treat many clinical conditions, a major limitation with nearly all studies is the constrained real-world applicability, where it is vital to have an intervention that is readily available and administered in a time-sensitive manner. For this to occur, the MSCs must overcome the logistical challenges of in vitro isolation and culture, effective cryopreservation methodology, and a route for rapid accessibility to the bedside. Future real-world therapeutic applications of MSCs will need to be ready for immediate use as off-the-shelf products in urgent medical situations (Mendicino et al., 2014; Woods et al., 2016).

To date, a majority of preclinical MSC research employ freshly cultured MSCs. In a recent systematic review of the safety of MSCs in 55 randomized clinical trials, only 15 (27%) used cryopreserved cells (Thompson et al., 2020), potentially due to the concern that cryopreserved MSCs may lose some of their functionality (Galipeau et al., 2016). Some in vitro studies demonstrate a negative impact of cryopreservation on MSC function (François et al., 2012; Chinnadurai et al., 2016); however, others suggest that cryopreservation may not negatively impact their functionality (Cruz et al., 2015; Devaney et al., 2015; Gramlich et al., 2016; Luetzkendorf et al., 2015).

To evaluate evidence currently available in the literature, our team conducted a systematic synthesis of all pre-clinical comparative studies that examined freshly cultured versus cryopreserved MSCs on surrogate measures of in vivo efficacy (primary outcomes) and in vitro potency (secondary outcomes) in animal models of inflammation. The protocol for our systematic review is published in Systematic Reviews (https://doi.org/10.1186/s13643-020-01437-z) and registered in PROSPERO (CRD42020145833).

Materials and methods

Search strategy

We conducted electronic search strategies without language restriction of Ovid platform, Ovid MEDLINE, OvidMEDLINE In-Process & Other Non-Indexed Citations, Embase Classic plus Embase, and BIOSIS and Web of Science using Web of Knowledge until January 13, 2022. Given the non-standard terminology associated with MSCs, several pre-defined terms were used, and the electronic and manual search strategies were developed and tested through an iterative process by an experienced medical information specialist in consultation with the research team (Supplementary file 1). Six target articles provided by an expert in the field of preclinical research (SM) that were known prior to the search were included in the search criteria to help capture all potential studies. No additional filters were employed to ensure the largest number of relevant studies are captured. We followed the PRISMA guidelines (Supplementary file 2) for reporting our systematic review.

Assessment of risk of bias

Risk of bias was assessed independently by two reviewers (CD and AM), and disagreements were resolved via consensus, or by a third reviewer when necessary. All studies were assessed as high, low, or unclear for the 10 domains of bias adapted from the SYRCLE ’Risk of Bias’ assessment tool for pre-clinical in vivo studies (Hooijmans et al., 2014). This tool has been adapted from the Cochrane Collaboration Risk of Bias tool employed in clinical studies, with an aim to incorporate key elements that are relevant for in vivo animal studies. The prompting questions employed to assess risk of bias (AGREE tool) can be found in Supplementary file 3. The 10 risk-of-bias domains and signalling questions are provided in Table 7.

Study eligibility

Pre-clinical studies of in vivo models of inflammation that directly compared freshly cultured to cryopreserved MSC products (randomized, quasi-randomized, and non-randomized designs) were included. To be defined as cryopreserved, MSCs could have been cryopreserved for any duration of time and/or be placed in culture for less than 24 hr post-thaw prior to use in the given experiment. MSCs were considered freshly cultured when the cells were either in continuous culture or cryopreserved but then thawed and placed in culture for at least 24 hr prior to use in experiments. We used this 24-hr culture
First Author (Year)	Animal Inflammatory Model	Country	Language of Publication	Species	Strain	Gender	Sample size	Age (range)	Weight (grams)
Bárcia et al., 2017	1) Chronic adjuvant-induced arthritis (AIA) model 2) Hindlimb ischemia model	Portugal	English	1) Rat 2) Mouse	1) Wistar 2) C57BL/6	1) Male 2) Female	1) 18 2) 36	1) NR 2) 12 weeks	1) 365–480 g
Cruz et al., 2015	Allergic Airways Inflammation induced by Aspergillus hyphal extract (AHE) exposure in immunocompetent mice	USA	English	Mouse	C57BL/6	Male	72	8–12 weeks	NR
Curley et al., 2017	Acute respiratory distress syndrome by intratracheal instillation of E. coli	Canada	English	Rat	Sprague-Dawley (specific pathogen-free)	Male	NR	NR	350–450 g
Devaney et al., 2015	Acute lung injury induced by E. coli pneumonia	Ireland	English	Rat	Sprague-Dawley (specific pathogen-free)	Male	40	NR	350–450 g
Grantlich et al., 2016	Retinal Ischemia/Reperfusion Injury Model	USA	English	Mouse	C57BL6/J	Male and Female	37	2 months	NR
Lohne et al., 2018	Corneal Transplantation	Ireland	English	Rat	Lewis	Male	NR	8–14 weeks	NR
Salmenkari et al., 2019	Colitis (3% DSS)	Finland	English	Mouse	Balb/c	Male	NR	8 weeks	NR
Samal et al., 2017	Wound healing	India	English	Rat	Wistar	Male	27	NR	NR
Bharti et al., 2020	Wound healing	India	English	Guinea pigs	Dunkin Hartley	Male	25	NR	NR
Horie et al., 2020a	Ventilator-induced Lung Injury	Ireland	English	Rat	NR	NR	NR	NR	NR
Horie et al., 2020a	E. coli-induced lung injury	Ireland	English	Rat	Pathogen-free sprague Dawley	Male	NR	300–450 g	
Khan et al., 2019	Spinal Cord Injury induced through a balloon compression method	Korea	English	Dog	Beagle	NR	12	1.2±0.2 years	12±3 kg
Rogulska et al., 2019	Wound healing	Ukraine	English	Mouse	Balb/C	Male	27	5–6 months	25–30 g
Tan et al., 2019	Polymicrobial sepsis induced by caecal-ligation-and-puncture (C.L.P)	Canada	English	Mouse	C57BL/J	Female	NR	8 weeks	17–21 g
Perlee et al., 2019	K.K. pneumoniae induced pneumonia	Netherlands	English	Mouse	Pathogen free C57BL/6	Female	NR	8–10 weeks	NR
Yea et al., 2020	Wound healing	Korea	English	Rat	Sprague-Dawley	Male	120	12 weeks	340–360 g
Horuchi et al., 2021	Osteoarthritis	Japan	English	Rat	Wildtype Lewis	Female	40	10 weeks	180–200 g
Horie et al., 2021	Ventilator-induced Lung Injury	Ireland	English	Rat	Sprague-Dawley	Male	28	NR	350–450 g

NR = Not Reported
time as a cut-off as previous experiments suggest that cryopreserved MSCs may require 24 hr of culture to recover their functionality (Galipeau, 2013). The study must have included an animal model of inflammation where the intervention and comparison groups examined the administration of cryopreserved and freshly cultured MSCs, respectively, delivered by any route, and derived from the same MSC origin (ex. bone marrow, adipose tissue, umbilical cord, or other) and source (xenogeneic, syngeneic, autologous, or allogeneic). MSCs that were pre-treated, pre-conditioned, genetically altered, or co-administered with other experimental interventions were included if the same alteration was applied to both the freshly cultured and cryopreserved MSCs.

Studies that administered MSCs before or during the induction of the experimental pre-clinical model (i.e. prevention studies) were excluded. We also excluded studies of immunocompromised animals (SCID) or treatments to immunosuppress the animals were excluded because our primary aim was to examine the efficacy of cryopreserved versus freshly cultured MSCs on measures of inflammation in animal models with an intact immune system. Moreover, an intact immune system may be required for MSC immunomodulation via the host cytotoxic cell activity (Galleu et al., 2017). Studies that examined the effects of MSCs on implantation and tissue regeneration (e.g. bone regeneration), or compared differentiated MSCs (e.g. differentiated into a myocyte), Mesenchymal Progenitor Cells (MPCs), Mononuclear Cell (MNC) fraction, or stem cells that were not described as MSCs, and studies that only reported in vitro experiments comparing freshly cultured to cryopreserved MSC products were also excluded.

Outcomes

The primary outcomes were surrogate measures of in vivo pre-clinical efficacy that were relevant to specific acute and chronic inflammatory animal models and defined by two outcome domains: 1) The Function and Composition of Tissues (e.g. organ dysfunction, histopathological damage); and 2) Protein Expression and Secretion (e.g. cytokine levels, immunohistochemistry analysis).

Secondary outcomes included measures of in vitro MSC potency (that were described as additional experiments in the included in vivo studies). Ideally, potency should represent the MSCs’ mechanism of action; however, MSCs have complex and multiple mechanisms of action, all of which are not yet fully characterized or reported (Galipeau et al., 2016). In accordance with the International Society for Cellular Therapy perspective paper on this topic (Galipeau et al., 2016), MSC potency was based on an assay matrix (collection of assays) that included a combination of in vitro analytical and/or biological assays (e.g. the cellular secretome by ELISA [enzyme-linked immunosorbent assay], or functional cell-based assays [in vitro assay culturing MSCs with responder immune cells] respectively). Hence, the two main secondary in vitro potency outcome domains were: 1) Co-culture assays; and 2) Protein Expression and Secretion (ex: cytokine levels).

Study selection and data collection

The titles and abstracts were screened independently by two members (CD, ED). The full-text of all potentially eligible studies were retrieved and reviewed for eligibility, independently, by two members of the team using the a priori eligibility criteria described above. Disagreements between reviewers were resolved by consensus or by a third member of the systematic review team (LM, SM). Data were extracted independently by two members of the research team into standardized, pilot-tested excel sheet forms (Supplementary file 4). Authors were contacted for data clarification or for additional data when required.

Data analysis

Meta-analyses were planned as per protocol, if sufficient data were available and if appropriate: two or more studies with similar disease models for an in vivo pre-clinical efficacy outcome, with the same outcome definition. Data reported in non-standard format (e.g. mean ± standard error, median and range) was converted to mean ± standard deviation. Given the complexity and variety of results, the results were summarized in tabular format and presented as number of experiments that reached statistical significance at the 0.05 level.

Results

Search results and study characteristics

The search strategy yielded 2744 potential studies; and after applying the eligibility criteria and full text review, 18 studies were deemed eligible for inclusion (Figure 1; Cruz et al., 2015; Devaney
Eight studies used mice for their experiments (Cruz et al., 2015; Gramlich et al., 2016; Salmenkari et al., 2019; Somal et al., 2017; Tan et al., 2019; Curley et al., 2017; Horie et al., 2020; Rogulska et al., 2019), seven studies used rats (Devaney et al., 2015; Curley et al., 2017; Horie et al., 2021; Ye et al., 2020; Lohan et al., 2018; Horie et al., 2020b), one study used both mice and rats (Bárcia et al., 2017), one study used beagle dogs (Khan et al., 2019), and one study used guinea pigs (Bharti et al., 2020). Twelve studies included a ‘vehicle only’ as an additional control arm (Devaney et al., 2015; Gramlich et al., 2016; Salmenkari et al., 2019; Somal et al., 2017; Horie et al., 2021; Ye et al., 2020; Bharti et al., 2020; Lohan et al., 2018; Perlee et al., 2019; Rogulska et al., 2019; Horie et al., 2020b), while four studies employed a sham animal model, where disease negative animals received MSCs or vehicle (Tan et al., 2019; Curley et al., 2017; Bárcia et al., 2017; Horie et al., 2020a). One study directly compared cryopreserved and freshly cultured MSCs without an additional control arm (Khan et al., 2019) and one study employed a sham model, vehicle, and cryopreserved and freshly cultured fibroblasts as controls (Cruz et al., 2015).

Of the 18 included studies, seven studied models of preclinical lung injury and sepsis (Devaney et al., 2015; Tan et al., 2019; Curley et al., 2017; Horie et al., 2021; Horie et al., 2020a; Perlee et al., 2019; Horie et al., 2020b), four a wound healing model (Somal et al., 2017; Ye et al., 2020; Bharti et al., 2020; Rogulska et al., 2019), three of neurological or ocular disease, specifically one of corneal transplantation (Lohan et al., 2018), retinal ischemia/reperfusion (Gramlich et al., 2016), and spinal cord injury model (Khan et al., 2019), and one each of allergic airway inflammatory disease (Cruz et al., 2015), wound healing and chronic inflammatory arthritis (Bárcia et al., 2017), acute and chronic inflammatory colitis (Salmenkari et al., 2019), and chronic osteoarthritis (Horie et al., 2021). Complete reporting of inflammatory models, MSC origins and characteristics can be found in Tables 1 and 2.

Description of cryopreservation and thaw process for cryopreserved MSCs

The duration of cryopreservation for cryopreserved MSCs prior to use in experiments was not reported in nine studies (Devaney et al., 2015; Salmenkari et al., 2019; Tan et al., 2019; Curley et al., 2017; Bárcia et al., 2017; Horie et al., 2020a; Lohan et al., 2018; Perlee et al., 2019; Horie et al., 2020b), four studies cryopreserved the MSCs for at least 1 month (Somal et al., 2017; Horie et al., 2021; Bharti et al., 2020; Rogulska et al., 2019), and two for up to 2 months (Horie et al., 2021; Ye et al., 2020). One study cryopreserved MSCs for 2–3 weeks (Khan et al., 2019), another between 1 and 4 weeks (Gramlich et al., 2016), and one study cryopreserved their MSCs for 9 days (Cruz et al., 2015).

Ten studies used 10% DMSO (dimethyl sulfoxide) as part of their cryopreservation solution (Cruz et al., 2015; Devaney et al., 2015; Salmenkari et al., 2019; Somal et al., 2017; Ye et al., 2020; Bárcia et al., 2017; Bharti et al., 2020; Khan et al., 2019; Lohan et al., 2018; Rogulska et al., 2019), three studies used CryoStor Cell Preservation Media (Sigma-Aldrich) (Gramlich et al., 2016; Horie et al., 2021; Horie et al., 2020a), one study used MSC Freezing media (Biological Industries) (Tan et al., 2019), one study used 5% DMSO (Horie et al., 2021), and three studies did not report the solution used for cryopreservation (Curley et al., 2017; Perlee et al., 2019; Horie et al., 2020b). Five studies did not report on their method of cryopreservation (Devaney et al., 2015; Salmenkari et al., 2019; Horie et al., 2021; Horie et al., 2020a; Horie et al., 2020b), three studies employed a controlled-rate freezer to achieve cryopreservation (Tan et al., 2019; Curley et al., 2017; Bárcia et al., 2017), while eight studies used liquid nitrogen at −80°C to −196°C (Cruz et al., 2015; Gramlich et al., 2016; Somal et al., 2017; Ye et al., 2020; Bharti et al., 2020; Lohan et al., 2018; Perlee et al., 2019; Rogulska et al., 2019) for storage, and two studies gradually cryopreserved the MSCs with decremental temperature over 24 hr, followed by storage at −150 °C (Horie et al., 2021; Khan et al., 2019).

Eight studies did not report their thawing protocol (Cruz et al., 2015; Devaney et al., 2015; Somal et al., 2017; Horie et al., 2021; Bárcia et al., 2017; Bharti et al., 2020; Horie et al., 2020a;
First author (Year)	Species and tissue source	Compatibility with animal	ISCT criteria met	Route of administration	Vehicle	Timing of MSCs post-disease induction	Fresh MSCs Cryopreserved at any point?	Duration of culture Method	Cryopreserved MSCs	Duration	Time from Thaw to Experiment
Bárcia et al., 2017	Human Umbilical Cord	Xenogenic	Yes	1) Intra-articular	PBS	1) 7 days	No	>5 days	Controlled Rate Freezer	NR	Immediately
Cruz et al., 2018	Human and Murine Bone Marrow	Syngenic and Xenogenic	Yes	2) Intra-muscular	PBS	2) 5 hr	Yes	NR	Controlled Rate Freezer	NR	15 min
Curley et al., 2017	Human Umbilical Cord and Bone Marrow	Xenogenic	Yes	Intra-ocular	PBS	14 days	Yes	NR	Controlled Rate Freezer	NR	Day of administration
Devaney et al., 2015	Human Bone Marrow	Xenogenic	Yes	Intravenous	PBS	0.5 hr	Yes	NR	Controlled Rate Freezer	NR	30 min
Grandich et al., 2018	Human	Xenogenic	Yes	Intra-ocular	PBS	2 hr	Yes	>7 days	Controlled Rate Freezer	NR	<1 hr
Lohan et al., 2018	Rat Bone Marrow	Allogenic	NR	Intravenous	PBS	1 and 7 days prior	Yes	NR	Controlled Rate Freezer	NR	Immediately
Salsenkari et al., 2019	Human Bone Marrow	Xenogenic	NR	Subcutaneously	PBS	7, 14, 21, 28 days	Yes	NR	Controlled Rate Freezer	NR	At least 1 month
Bharti et al., 2020	Dog Bone Marrow	Xenogenic	NR	Surgical placed over wound	Polypropylene mesh	NR	Yes	NR	–80°C overnight then liquid nitrogen	1 month	NR
Horie et al., 2020a	Human Bone Marrow	Xenogenic	NR	Intravenous	PBS	6 hr	Yes	NR	–80°C overnight then liquid nitrogen	1 month	NR
Horie et al., 2020a	Human Bone Marrow and Umbilical Cord	Xenogenic	NR	Intra-tracheal	PBS	30 min	Yes	NR	–80°C the liquid nitrogen	1 month	NR
Khan et al., 2019	Dog Adipose Tissue	Allogenic	NR	Implantation into wound	3D gel	Immediately	Yes	NR	–80°C the liquid nitrogen	1 month	NR
Rogulska et al., 2019	Human Adipose Tissue	Xenogenic	NR	Intra-articular	PBS	6 hr	No	>24 hr	Controlled Rate Freezer	NR	Immediately
Tan et al., 2019	Human Bone Marrow	Xenogenic	Yes	Intra-articular	PBS	6 hr	No	>24 hr	Controlled Rate Freezer	NR	Immediately
Perlee et al., 2019	Human Adipose Tissue	Xenogenic	Yes	Intra-articular	PBS	6 hr	No	24 hr	Liquid nitrogen	Until required	Day of administration
Yea et al., 2020	Human Umbilical Cord	Xenogenic	NR	Intra-articular	PBS	Every week from 2 to 8 weeks	Yes	7 days	–80°C, then –196°C Liquid Nitrogen	Up to 1 month	Immediately
Horie et al., 2021	Rat Synovial Fluid	Allogenic	NR	Intra-articular	PBS	15 min	No	NR	–80°C, then –196°C Liquid Nitrogen	Up to 2 months	Immediately
Perlee et al., 2019), one study employed a cell-thawing device called the ThawStar (AsteroBio, USA) (Horiuchi et al., 2021) and the remaining nine studies used a 37 °C hot water bath to thaw the cryopreserved MSCs (Gramlich et al., 2016; Salmenkari et al., 2019; Tan et al., 2019; Curley et al., 2017; Yea et al., 2020; Khan et al., 2019; Lohan et al., 2018; Rogulska et al., 2019; Horie et al., 2020b). Two studies thawed MSCs on the day of administration for their experiments (Curley et al., 2017; Perlee et al., 2019), while nine studies reported thawing MSCs either immediately or within 1 hr of use in experimentation (Cruz et al., 2015; Devaney et al., 2015; Gramlich et al., 2016; Tan et al., 2019; Yea et al., 2020; Bárcia et al., 2017; Khan et al., 2019; Lohan et al., 2018; Horie et al., 2020b). Seven studies did not report time from thaw to use in experimentation (Salmenkari et al., 2019; Somal et al., 2017; Horie et al., 2021; Horie et al., 2021; Bharti et al., 2020; Horie et al., 2020a; Rogulska et al., 2019). Nine studies suspended thawed MSCs in phosphate buffered saline (PBS, vehicle for experiments) (Cruz et al., 2015; Devaney et al., 2015; Tan et al., 2019; Curley et al., 2017; Horie et al., 2021; Bárcia et al., 2017; Khan et al., 2019; Lohan et al., 2018; Horie et al., 2020b), while one study re-suspended them in ringer’s lactate supplemented with 3% Dimethyl sulfoxide (DMSO) (Perlee et al., 2019), one used MSCs suspended in 0.9% NaCl +3.6% HSA (Human Serum Albumin) (Salmenkari et al., 2019; Tan et al., 2019; Somal et al., 2017; Horie et al., 2021; Bharti et al., 2020; Horie et al., 2020a; Rogulska et al., 2019), one used PBS with 5% HSA (Tan et al., 2019), and six studies did not report their resuspension solution (Horie et al., 2021; Yea et al., 2020; Bharti et al., 2020; Horie et al., 2020a; Lohan et al., 2018; Rogulska et al., 2019).

Description of cryopreservation and culture process for freshly cultured MSCs

Freshly cultured MSCs were not cryopreserved at any point after harvest from source in 13 studies (range of total culture time: 4–28 days) (Cruz et al., 2015; Devaney et al., 2015; Gramlich et al., 2016; Salmenkari et al., 2019; Somal et al., 2017; Horie et al., 2021; Yea et al., 2020; Bharti et al., 2020; Khan et al., 2019; Horie et al., 2020a; Lohan et al., 2018; Rogulska et al., 2019). In five studies, the MSCs were cryopreserved and then culture-expanded for more than 24 hr prior to use in experimentation (Tan et al., 2019; Curley et al., 2017; Horiuchi et al., 2021; Bárcia et al., 2017; Perlee et al., 2019).

Further details related to MSC culture, including medium, passage, concentration, and route of administration can be found in Table 2.

Risk of bias

Of the 18 included studies, none of them met low-risk of bias criteria for all 10 domains and all studies demonstrated unclear risk of bias due to lack or reporting in atleast two domains. Ten studies did not have any features that would confer a high-risk of bias in the one of the 10 domains (Cruz et al., 2015; Devaney et al., 2015; Tan et al., 2019; Curley et al., 2017; Horiuchi et al., 2021; Horie et al., 2021; Yea et al., 2020; Bharti et al., 2020; Khan et al., 2019; Horie et al., 2020a). Five studies demonstrated high-risk of bias in one domain (Devaney et al., 2015; Salmenkari et al., 2019; Somal et al., 2017; Perlee et al., 2019; Rogulska et al., 2019), and the remaining three studies demonstrated high-risk of bias in two or more domains (Gramlich et al., 2016; Bárcia et al., 2017; Lohan et al., 2018). The complete reporting of the risk of bias domains is presented in Table 3.

Primary and secondary outcomes

Across the 18 included studies, a total of 325 experiments and 133 distinct outcome measures were reported on our primary and secondary outcomes and are summarized below. Data extraction of outcomes from included studies yielded significant amounts of data given the extensive and varied inflammatory disease models and their specific outcomes. A description of all primary in vivo pre-clinical efficacy and secondary in vitro potency outcomes are reported in Table 4 and 6, respectively. The studies included in our systematic review varied with respect to disease type, MSC source, MSC processing, route of administration, dose, outcome measures, and timing of outcome measurement. Due to this high degree of heterogeneity, meta-analyses were not feasible for the primary and secondary outcome measures. However, similar pre-clinical animal inflammatory models that reported similar outcomes are reported in Table 5 for reference.
Table 3. Risk of Bias assessments for the included in vivo studies using SYRCLE Tool.

Author (year)	Adequate randomization	Baseline characteristics given	Evidence of adequate concealment of groups	Evidence of random housing of animals	Evidence of caregivers blinded to intervention	Evidence of random selection for assessment	Evidence of assessor blinded	Explanation of missing animal data	Free of selective reporting based on methods/results	Free of other high bias risk
Bárcia et al., 2017	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	No (High Risk)	Unclear	No (High Risk)	Yes (Low Risk)	Yes (Low Risk)	No (High Risk)
Bharti et al., 2020	Unclear	Unclear	Unclear	Yes (Low Risk)	Unclear	Unclear	Unclear	Unclear	Yes (Low Risk)	Yes (Low Risk)
Cruz et al., 2015	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Yes (Low Risk)
Curley et al., 2017	Unclear	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Yes (Low Risk)
Devaney et al., 2015	Unclear	Yes (Low Risk)	Unclear	Unclear	Unclear	Unclear	No (High Risk)	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)
Gramlich et al., 2016	No (High Risk)	Yes (Low Risk)	Unclear	Unclear	Unclear	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	No (High Risk)
Horie et al., 2020a	Unclear	Unclear	Unclear	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)
Horie et al., 2020a	Unclear	Unclear	Unclear	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)
Khan et al., 2019	Unclear	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)
Lohan et al., 2018	No (High Risk)	Unclear	Unclear	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)
Perlee et al., 2019	No (High Risk)	Unclear	Unclear	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)
Rogulska et al., 2019	Unclear	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	No (High Risk)
Salmenkari et al., 2019	No (High Risk)	Yes (Low Risk)	Unclear	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)
Samal et al., 2017	No (High Risk)	Unclear	Unclear	Yes (Low Risk)	Unclear	Unclear	Unclear	Unclear	Yes (Low Risk)	Yes (Low Risk)
Tan et al., 2019	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)
Yeo et al., 2020	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Unclear	Unclear	Unclear	Unclear	Yes (Low Risk)	Yes (Low Risk)
Horiuchi et al., 2021	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Unclear	Unclear	Unclear	Unclear	Yes (Low Risk)	Yes (Low Risk)
Horie et al., 2021	Unclear	Yes (Low Risk)	Yes (Low Risk)	Yes (Low Risk)	Unclear	Unclear	Yes (Low Risk)	Unclear	Yes (Low Risk)	Yes (Low Risk)
Table 4. All in vivo outcomes where freshly cultured vs. cryopreserved MSCs have been compared directly are reported.

Study	Animal Model	Outcome	Number (n)	Type and Source of MSCs	Duration of Culture Post-Thaw (hr)	Concentration of MSCs	Pre-Treatment of MSCs	Negative Control (NC)	Positive Control (PC)	p-value for Fresh MSCs vs. control	p-value for Frozen MSCs vs. control	Fresh or Frozen MSC more effective?	p-value for Fresh vs. Frozen comparison
Acute Lung Injury and Sepsis													
Devaney et al., 2015	Acute lung injury induced by E. coli pneumonia in rats	Arterial oxygenation	10	Human Bone Marrow	0	1×10^7 hMSCs/kg	N/A	N/A	PBS	<0.05	<0.05	↔	NS
		Lung compliance	10	Human Bone Marrow	0	1×10^7 hMSCs/kg	N/A	N/A	PBS	<0.05	<0.05	↔	NS
		BAL protein	10	Human Bone Marrow	0	1×10^7 hMSCs/kg	N/A	N/A	PBS	<0.05	<0.05	↔	NS
		BAL neutrophils	10	Human Bone Marrow	0	1×10^7 hMSCs/kg	N/A	N/A	PBS	<0.05	<0.05	↔	NS
		BAL E. coli bacterial load	10	Human Bone Marrow	0	1×10^7 hMSCs/kg	N/A	N/A	PBS	<0.05	<0.05	↔	NS
		BAL IL-6	10	Human Bone Marrow	0	1×10^7 hMSCs/kg	N/A	N/A	PBS	<0.05	<0.05	↔	NS
		BAL IL-10	10	Human Bone Marrow	0	1×10^7 hMSCs/kg	N/A	N/A	PBS	<0.05	<0.05	↔	NS
		Overall Tissue Resistance	10 (Fresh) and 7 (Frozen)	Human Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		Large Airway Resistance	6	Murine Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		Overall Tissue Resistance	6	Murine Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		Lung Elastance	10 (Fresh) and 7 (Frozen)	Human Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		Lung Elastance	6	Murine Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		Inflammation Score	10 (Fresh) and 7 (Frozen)	Human Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		Inflammation Score	6	Murine Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		BALF Total Cell Number	10 (Fresh) and 7 (Frozen)	Human Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		BALF Total Cell Number	6	Murine Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS
		BAL Neutrophils	10 (Fresh) and 7 (Frozen)	Human Bone Marrow	0	1×10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naïve (PBS model)	AHE +PBS, Human Lung Fibroblasts	<0.05	<0.05	↔	NS

Table 4 continued on next page
Table 4 continued
BAL Neutrophils
BAL Eosinophils
BAL Macrophages
BAL Lymphocytes
BAL IL-1a
BAL IL-3
BAL IL-4
BAL IL-5
BAL IL-6
BAL IL-10
BAL IL-12-p40
Table 4 continued

Condition	Data	Source	Treatment	N	MSC Source	MSC Concentration	MSC Condition	PBS	Fibroblasts	p-Value 1	p-Value 2	Statistically Significant
BAL IL-12	p40 6	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL IL-12	p40 6	Human Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL IL-13	10 (Fresh) and 7 (Frozen)	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL IL-13	6	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL IL-13	10 (Fresh) and 7 (Frozen)	Human Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	Fresh better	< 0.05	
BAL IL-13	6	Human Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	Frozen better	< 0.05	
BAL IL-17	10 (Fresh) and 7 (Frozen)	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL IL-17	6	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL KC	10 (Fresh) and 7 (Frozen)	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL KC	6	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	Frozen better	< 0.05	
BAL IL-17	10 (Fresh) and 7 (Frozen)	Human Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL IL-17	6	Human Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL RANTES	10 (Fresh) and 7 (Frozen)	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
BAL RANTES	6	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
IFN-γ	10 (Fresh) and 7 (Frozen)	Human Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	
IFN-γ	6	Murine Bone Marrow	0	1 x 10^6 viable MSC cells	Frozen MSCs washed 3 times prior to use	Naive (PBS model)	AHE + PBS, Human Lung Fibroblasts	< 0.05	< 0.05	++	NS	

Table 4 continued
Study and Model	Treatment	Time Point	Response	p Value	Significance	
Bárcia et al., 2017	Human Umbilical Cord MSCs	0	1.7 × 10^6 MSCs	Fresh MSCs were cryopreserved and then cultured for up to 5 days	Sham model + PBS	NS
					N/A	NS
					<0.0001	**
					<0.0001	**
					↔	NS
Table 4 continued						

Tissue ACE levels	Human Bone Marrow	NR	0.5 x 10^6 MSCs	N/A	Sham model with PBS	Colitis +Vehicle
Ace1a mRNA expression	Human Bone Marrow	NR	0.5 x 10^6 MSCs	N/A	Sham model with PBS	Colitis +Vehicle
ACE shedding	Human Bone Marrow	NR	0.5 x 10^6 MSCs	N/A	Sham model with PBS	Colitis +Vehicle

Samal et al., 2017

Wound Healing of surgical dorsal limb wound in rats

Wound Area	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D7	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Wound Area D14	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D21	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS

Wound Area D28	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D7	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	P<0.05	NS	↔	NS
% Wound Contraction D14	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D21	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D28	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS

Epithelization	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Neovascularization	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Collagen Thickness	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Collagen Density	Caprine Amniotic Fluid	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS

Wound Area D0	Caprine Amniotic Sac	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D7	Caprine Amniotic Sac	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D14	Caprine Amniotic Sac	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D21	Caprine Amniotic Sac	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D28	Caprine Amniotic Sac	NR	1 x 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS

Table 4 continued on next page
	Caprine Amniotic Sac	Caprine Wharton’s Jelly	1 × 10⁶ MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D7	3	Caprine Amniotic Sac	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D14	3	Caprine Amniotic Sac	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D21	3	Caprine Amniotic Sac	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D28	3	Caprine Amniotic Sac	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D7	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D14	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D21	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D28	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
Epithelization	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Neovascularization	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Collagen Thickness	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Collagen Density	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Wound Area D0	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D7	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	NS	↔	NS
Wound Area D14	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D21	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D28	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D7	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	NS	↔	NS
% Wound Contraction D14	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D21	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D28	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	NS	NS	↔	NS
Epithelization	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Neovascularization	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Collagen Thickness	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Collagen Density	3	Caprine Wharton’s Jelly	NR	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS

Table 4 continued on next page
Table 4 continued

Wound Area D0	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D7	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	P<0.05	NS	↔	NS
Wound Area D14	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D21	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Wound Area D28	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D7	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	P<0.05	NS	↔	NS
% Wound Contraction D14	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D21	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
% Wound Contraction D28	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Epithelization	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Neovascularization	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	P<0.05	P<0.05	↔	NS
Collagen Thickness	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	NS	NS	↔	NS
Collagen Density	Caprine Cord Blood	NR	1 × 10^6 MSC cells	N/A	N/A	PBS	P<0.05	NS	Frozen better	P<0.05

Lohan et al., 2018
Corneal Transplantation in rats

| Opacity Score, measured from day 5 post-implantation to day 30 | Fresh = 13, Frozen = 10 | Rat Bone Marrow | 0 | 1 × 10^6 MSC | Frozen MSCs pre-treated with allogenic splenocytes, and co-intervention with MMF | No MMF for Fresh MSCs | N/A | Transplantation +No treatment | NS | NS | ↔ | NR |
| Neovascularization Score, measured from day 5 post-implantation to day 30 | Fresh = 13, Frozen = 10 | Rat Bone Marrow | 0 | 1 × 10^6 MSC | Frozen MSCs pre-treated with allogenic splenocytes, and co-intervention with MMF | No MMF for Fresh MSCs | N/A | Transplantation +No treatment | P<0.001 | NS | ↔ | NR |

Gramlich et al., 2016
Retinal ischemia/reperfusion model in mice

Retinal ganglion cells/mm²	Fresh = 10, Frozen = 8	Human MSCs <1 hr	3 × 10^4 MSC	N/A	Sham model	PBS	P=0.019	P=0.024	↔	NS
Lung Bacterial Load at 16 hours	Human Adipose Tissue	0	1 × 10^6 ASCs	MSCs infused at 1 or 6 hours after infection.	N/A	PBS	NS	P<0.001	↔	NS
Lung Bacterial Load at 48 hours	Human Adipose Tissue	0	1 × 10^6 ASCs	MSCs infused at 1 or 6 hours after infection.	N/A	PBS	NS	P<0.001	↔	NS
Blood Bacterial Load at 16 hours	Human Adipose Tissue	0	1 × 10^6 ASCs	MSCs infused at 1 or 6 hours after infection.	N/A	PBS	NS	NS	↔	NS
Blood Bacterial Load at 48 hours	Human Adipose Tissue	0	1 × 10^6 ASCs	MSCs infused at 1 or 6 hours after infection.	N/A	PBS	P=0.001	P=0.001	↔	NS

Table 4 continued on next page
Parameter	Tissue	Treatment	Bacteria Load at 16 hours	Bacteria Load at 48 hours	Bacteria Load at 16 hours P Value	Bacteria Load at 48 hours P Value	Bacteria Load at 16 hours NS	Bacteria Load at 48 hours NS
Liver	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS NS NS ↔ NS	P=0.001 P=0.01 ↔ NS NS		
Spleen	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS NS NS ↔ NS	P=0.001 P=0.05 ↔ NS NS		
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.05 P=0.01 ↔ NS NS			
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.001 P=0.05 ↔ NS NS			
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.01 NS ↔ NS NS			
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.05 P=0.01 ↔ NS NS			
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.001 P=0.05 ↔ NS NS			
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.01 NS ↔ NS NS			
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.05 P=0.01 ↔ NS NS			
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.001 P=0.05 ↔ NS NS			
Lung	Human Adipose	0	1×10^6 ASCs	MSCs infused at 1 or 6 hours after infection	N/A PBS P=0.01 NS ↔ NS NS			
BAL E. coli/Counts	Human Umbilical Cord	0	1×10^7 MSCs/kg	Isolated CD362+MSCs for use	N/A PBS P=0.05 P=0.05 ↔ NS NS			
BAL WBC levels	Human Umbilical Cord	0	1×10^7 MSCs/kg	Isolated CD362+MSCs for use	N/A PBS P=0.05 P=0.05 ↔ NS NS			
BAL Neutrophils	Human Umbilical Cord	0	1×10^7 MSCs/kg	Isolated CD362+MSCs for use	N/A PBS P=0.05 P=0.05 ↔ NS NS			
BAL IL-1b	Human Umbilical Cord	0	1×10^7 MSCs/kg	Isolated CD362+MSCs for use	N/A PBS P=0.05 P=0.05 ↔ NS NS			
BAL CINC-1	Human Umbilical Cord	0	1×10^7 MSCs/kg	Isolated CD362+MSCs for use	N/A PBS NS NS ↔ NS NS			
Table 4 continued

Assay	Cells Source	CD34+ MSC Density	Treatment	Group 1	Group 2	p Value	**p Value**	Notes		
BAL IL-6	Human Umbilical Cord	0	1 × 10^7 MSCs/kg	N/A	PBS	P < 0.05	P < 0.05	**--**		
Horie et al., 2020b	Ventilator-induced Lung Injury	Arterial Oxygenation	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	Sham model	PBS	NS	**NS**	
Lung Compliance	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	N/S	N/S	**NS**
Lung Wet Dry Ratio	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	P < 0.05	P < 0.05	**--**
BAL Protein	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	NS	NS	**NS**
Percentage of Alveolar Airspace	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	P < 0.001	P < 0.001	**--**
BAL Neutrophils	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	P < 0.05	P < 0.01	**--**
BAL TNF-α	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	NS	NS	**NS**
BAL IL-10	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	NS	NS	**NS**
BAL CCL5	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	NS	NS	**NS**
BAL LIX	Fresh, n=7–8; Cryopreserved, n=5–6	Human Bone Marrow	N/A	1 × 10^7 MSCs/kg	Pre-activated MSCs (fresh and frozen were also used)	Sham model	PBS	NS	NS	**NS**

Note: NS = Not Significant
Table 4 continued

Wound healing model with 2×2 cm² full-thickness excision skin wound in guinea pigs	Percent wound contraction D7	5	Dog Bone Marrow	NR	1×10⁶ MSC cells	MSCs attached to polypropylene mesh of 2×2 cm² size	N/A	Antibiotic only, Mesh only, and MSCs only as control groups	NS	NS	↔	NS
Wound healing model with 2×2 cm² full-thickness excision skin wound in guinea pigs	Percent wound contraction D14	5	Dog Bone Marrow	NR	1×10⁶ MSC cells	MSCs attached to polypropylene mesh of 2×2 cm² size	N/A	Antibiotic only, Mesh only, and MSCs only as control groups	P<0.05	P<0.05	↔	NS
Wound healing model with 2×2 cm² full-thickness excision skin wound in guinea pigs	Percent wound contraction D21	5	Dog Bone Marrow	NR	1×10⁶ MSC cells	MSCs attached to polypropylene mesh of 2×2 cm² size	N/A	Antibiotic only, Mesh only, and MSCs only as control groups	P<0.05	P<0.05	↔	NS
Wound healing model with 2×2 cm² full-thickness excision skin wound in guinea pigs	Percent wound contraction D28	5	Dog Bone Marrow	NR	1×10⁶ MSC cells	MSCs attached to polypropylene mesh of 2×2 cm² size	N/A	Antibiotic only, Mesh only, and MSCs only as control groups	P<0.05	P<0.05	↔	NS
Wound Healing of Full-thickness excisional skin wounds in mice	Percent Wound Closure D3	14	Human Adipose Tissue	24 hours	0.250·3·10⁶-10⁶ cells in 50 μl	MSCs placed on 2D gel containing PPP, 0.2 M sucrose, 1% DMSO	N/A	Spontaneous healing, and 2D gel containing PPP, 0.2 M sucrose, 1% DMSO alone	P<0.05	P<0.05	↔	NS
Wound Healing of Full-thickness excisional skin wounds in mice	Percent Wound Closure D7	14	Human Adipose Tissue	24 hours	0.250·3·10⁶-10⁶ cells in 50 μl	MSCs placed on 2D gel containing PPP, 0.2 M sucrose, 1% DMSO	N/A	Spontaneous healing, and 2D gel containing PPP, 0.2 M sucrose, 1% DMSO alone	P<0.05	P<0.05	↔	NS
Wound Healing of Full-thickness excisional skin wounds in mice	Percent Wound Closure D14	14	Human Adipose Tissue	24 hours	0.250·3·10⁶-10⁶ cells in 50 μl	MSCs placed on 2D gel containing PPP, 0.2 M sucrose, 1% DMSO	N/A	Spontaneous healing, and 2D gel containing PPP, 0.2 M sucrose, 1% DMSO alone	P<0.05	P<0.05	↔	NS
Wound Healing of Full-thickness excisional skin wounds in mice	Percent Wound Closure D28	14	Human Adipose Tissue	24 hours	0.250·3·10⁶-10⁶ cells in 50 μl	MSCs placed on 2D gel containing PPP, 0.2 M sucrose, 1% DMSO	N/A	Spontaneous healing, and 2D gel containing PPP, 0.2 M sucrose, 1% DMSO alone	P<0.05	P<0.05	↔	NS

Table 4 continued on next page
Table 4 continued

Parameter	Specimen	Cells	Treatment	Control	P-value	Significance
Stage of gross lesion area	Dog Adipose Tissue	0	Lentiviral Mediated HO-1 Gene Insertion into Ad-MSCs	N/A		
Fibrotic areas relative to normal	Dog Adipose Tissue	0	Lentiviral Mediated HO-1 Gene Insertion into Ad-MSCs	Normal (no SCI)		
Myelinated areas relative to normal	Dog Adipose Tissue	0	Lentiviral Mediated HO-1 Gene Insertion into Ad-MSCs	Normal (no SCI)		
Yee et al., 2020 Wound healing in rats	Total macroscopic score at 2 weeks	4	Human Umbilical Cord	NR	P<0.001	
Total macroscopic score at 4 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Total degeneration score at 2 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.001	
Total degeneration score at 4 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Fibre structure at 2 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Fibre structure at 4 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Fibre arrangement at 2 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Fibre arrangement at 4 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Rounding of nuclei at 2 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Rounding of nuclei at 4 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Variations in cellularity at 2 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Variations in cellularity at 4 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Decreased stainability at 2 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Decreased stainability at 4 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Hyalinization at 2 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Hyalinization at 4 weeks	Human Umbilical Cord	4	Cryoprotectant and PBS	Fresh MSCs	P<0.05	
Inflammation at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | NS | NS | ↔ | NS

Inflammation at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Fibroblast density at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | NS | NS | ↔ | NS

Fibroblast density at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Nuclear aspect ratio at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | NS | NS | ↔ | NS

Nuclear aspect ratio at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Nuclear orientation at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Nuclear orientation at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Collagen organization at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Collagen organization at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Collagen fibre coherence at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | NS | NS | ↔ | NS

Collagen fibre coherence at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

GAG-rich area at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

GAG-rich area at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Ultimate failure load at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Ultimate failure load at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Tendon stiffness at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Tendon stiffness at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | NS | NS | ↔ | NS

Ultimate stress at 2 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Ultimate stress at 4 weeks

| Human Umbilical Cord | NR | 1×10^6 MSC cells | N/A | Cryoprotectant and PBS | Fresh-MSCs | P<0.05 | P<0.05 | ↔ | NS

Table 4 continued on next page
Horiuchi et al., 2021	Osteoarthritis model in rats	Cross-sectional area at 2 weeks	Human Umbilical Cord	NR	1 × 10^6 MSC cells	N/A	Cryoprotectant and PBS	Fresh-MSCs	P < 0.05	P < 0.05	↔	NS
		Cross-sectional area at 4 weeks	Human Umbilical Cord	NR	1 × 10^6 MSC cells	N/A	Cryoprotectant and PBS	Fresh-MSCs	P < 0.05	P < 0.05	↔	NS
Bioluminescence	9	Rat synovial MSCs	NR	1 × 10^6 MSC cells	N/A	PBS	Fresh-MSCs	NR	NR	↔	NS	
Tibia gross finding score	9	Rat synovial MSCs	NR	1 × 10^6 MSC cells	N/A	PBS	Fresh-MSCs	P < 0.05	P < 0.05	↔	NS	
Femur gross finding score	9	Rat synovial MSCs	NR	1 × 10^6 MSC cells	N/A	PBS	Fresh-MSCs	P < 0.05	P < 0.05	↔	NS	
Tibia OARSI score	6	Rat synovial MSCs	NR	1 × 10^6 MSC cells	N/A	PBS	Fresh-MSCs	NS	NS	↔	NS	
Femur OARSI score	6	Rat synovial MSCs	NR	1 × 10^6 MSC cells	N/A	PBS	Fresh-MSCs	NS	NS	↔	NS	
Hori et al., 2021	Ventilator-Induced Lung Injury (VILI) model in rats	Arterial oxygenation	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh MSCs	P < 0.001	P < 0.001	↔	NS
Static Lung Compliance	7	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh-MSCs	P < 0.01	P < 0.01	↔	NS	
Wet: Dry Ratio	7	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh-MSCs	P < 0.05	P < 0.05	↔	NS	
BAL Protein	7	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh-MSCs	P < 0.01	P < 0.01	↔	NS	
BAL Cell count	7	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh-MSCs	P < 0.01	P < 0.01	↔	NS	
BAL Neutrophil count	7	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh-MSCs	P < 0.05	P < 0.05	↔	NS	
BAL IL-6 level	7	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh-MSCs	NS	P < 0.05	Frozen better	P < 0.05	
BAL IL-1 level	7	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh-MSCs	P < 0.05	P < 0.05	↔	NS	
% Amelogenesis	4	Human Umbilical Cord MSCs	NR	1 × 10^7 MSCs/kg	N/A	PBS	Fresh-MSCs	P < 0.001	P < 0.001	↔	NS	

↔ indicates no statistically significant difference of Freshly cultured vs. Cryopreserved MSCs. NS indicates Not Significant—statistical analysis from individual studies did not yield a significant difference between Freshly cultured vs. Cryopreserved MSCs. NR = Not reported.

Table 4 continued
Primary outcomes

In vivo pre-clinical efficacy outcomes

The 18 studies reported a total of 257 experiments and 101 distinct outcome measures related to our in vivo pre-clinical efficacy primary outcomes. Seventeen studies assessed composition of tissues (Cruz et al., 2015; Devaney et al., 2015; Gramlich et al., 2016; Somal et al., 2017; Tan et al., 2019; Curley et al., 2017; Horiuchi et al., 2021; Horie et al., 2021; Yea et al., 2020; Bárcia et al., 2017; Bharti et al., 2020; Khan et al., 2019; Horie et al., 2020a; Lohan et al., 2018; Perlee et al., 2019; Rogulska et al., 2019), and 12 assessed organ dysfunction (Cruz et al., 2015; Devaney et al., 2015; Gramlich et al., 2016; Somal et al., 2019; Curley et al., 2017; Horiuchi et al., 2021; Horie et al., 2021; Yea et al., 2020; Bárcia et al., 2017; Khan et al., 2019; Horie et al., 2020a; Horie et al., 2020b). Eleven of the 18 studies assessed protein expression and secretion (Cruz et al., 2015; Devaney et al., 2015; Salmenkari et al., 2019; Tan et al., 2019; Curley et al., 2017; Horiuchi et al., 2021; Khan et al., 2019; Horie et al., 2020a; Lohan et al., 2018; Perlee et al., 2019; Horie et al., 2020b) (Table 2).

Of the 257 experiments, six outcomes were significantly different at the 0.05 level or less, with two that favoured freshly cultured and four that favoured cryopreserved MSCs (Table 4).

In vivo pre-clinical efficacy: function and composition of tissue

Seventeen studies reported organ dysfunction and/or composition of tissue outcomes and a total of 166 experiments were reported across the studies. Of the 116 experiments, only one reported a significant difference at the 0.05 level or less between the freshly cultured and cryopreserved MSC groups which favoured the cryopreserved group (Figure 2).

In vivo pre-clinical efficacy: protein (cytokine) expression and secretion

Eleven studies reported protein expression and secretion outcomes, with a total of 91 experiments reported across the studies. Five of the 91 experiments reported a statistically significant difference between freshly cultured and cryopreserved MSCs that were derived from one study (Cruz et al., 2015). Of the five experiments that demonstrated a significant difference at the 0.05 level or less, two favoured freshly cultured and three favoured cryopreserved MSCs (Figure 3).

Secondary outcomes

In vitro potency outcomes

Fifteen studies reported in vitro potency outcomes, including viability (Cruz et al., 2015; Devaney et al., 2015; Gramlich et al., 2016; Somal et al., 2017; Tan et al., 2019; Curley et al., 2017; Horiuchi et al., 2021; Bárcia et al., 2017; Bharti et al., 2020; Khan et al., 2019; Horie et al., 2020a; Lohan et al., 2018; Perlee et al., 2019; Rogulska et al., 2019; Horie et al., 2020b) with 68 experiments and 32 different outcome measures. All reported in vitro outcomes can be found in Table 6. Of the 68 experiments, 9 were significantly different at the 0.05 level or less, with 7 that favoured freshly cultured and 2 that favoured cryopreserved MSCs (Figure 4).

In vitro potency: protein (cytokine) expression and secretion

A total of four studies (Gramlich et al., 2016; Horiuchi et al., 2021; Bharti et al., 2020; Khan et al., 2019) reported in vitro protein (cytokine) expression and secretion outcomes. Of the 33 experiments, five demonstrated a significant difference at the 0.05 level or less, with two favouring cryopreserved and three favouring freshly cultured MSCs (Table 5).

In vitro potency: co-culture assays

Three studies reported in vitro co-culture assay outcomes (7 separate experiments) to assess the impact of MSCs on responder cell proliferation (Gramlich et al., 2016; Tan et al., 2019; Bárcia et al., 2017). All three studies used PBMCs (peripheral blood mononuclear cell) activated with CD3 and CD28 as the responder cells. The studies employed variable MSC:Responder cell ratios and duration of culture. All three studies found no significant difference in potency for cryopreserved as compared to freshly-cultured MSCs at varying concentrations of MSCs to responder cells (Table 7).
Seventeen studies (Cruz et al., 2015; Devaney et al., 2015; Gramlich et al., 2016; Somal et al., 2017; Tan et al., 2019; Curley et al., 2017; Horiuchi et al., 2021; Horie et al., 2021; Yea et al., 2020; Bácia et al., 2017; Bharti et al., 2020; Khan et al., 2019; Horie et al., 2020a; Lohan et al., 2018; Perlee et al., 2019; Rogulska et al., 2019; Horie et al., 2020b) reported post-thaw viability of cryopreserved MSCs, the range was from 60% to 98% across various time points since thawing. The viability of freshly cultured MSCs ranged from 91% to 99%, also assessed at various time points. Only seven studies reported on 25 viability experiments which compared viability directly between freshly cultured and cryopreserved MSCs (Gramlich et al., 2016; Somal et al., 2017; Tan et al., 2019; Horiuchi et al., 2021; Horie et al., 2021; Bácia et al., 2017). Of the 25 experiments, 9 (36%) favoured freshly cultured MSCs (Figure 5).

Discussion

Our study is the first comprehensive pre-clinical systematic review to examine the effect of cryopreservation on the in vivo efficacy and in vitro potency of MSCs in animal models of inflammation. Across the 18 included studies, our review found that 251 out of 257 (97.6%) of the in vivo pre-clinical efficacy outcomes demonstrated no statistically significant differences between cryopreserved and freshly cultured MSCs at a p value of <0.05. When evaluating the results of a large, heterogeneous group of studies with different outcome measures comparing freshly cultured versus cryopreserved MSCs for efficacy and potency, it is useful to compare the results to what one would expect to see
if (a) there were truly no difference or if (b) there truly were a difference. In the former case, where all differences would be due exclusively to Type I error, we would expect to see roughly 5% of the p-values as statistically significant. Furthermore, when a difference was statistically significant, we would expect it to be equally likely to favor freshly cultured versus cryopreserved or vice versa. In the latter case, where there truly is a difference, we would expect to see more than 5% of the p-values of all experiments as statistically significant and a strong concordance in the sense that most would favor the same group. We argue that our results for in vivo preclinical efficacy are consistent with pure Type 1 error (2.6% were statistically significant with roughly half favoring freshly cultured and half favoring cryopreserved MSCs). For in vitro potency, the results are somewhat less clear cut. We found 13% (95% Confidence Interval: 5–21%) were significantly different; 7 favored freshly cultured and 2 favored cryopreserved MSCs. Given that the confidence interval for the rate of statistical significance does not exclude 5% and that 2 of the 9 significant results favored cryopreserved MSCs, it does not represent strong evidence of a significant difference in in vitro potency. In terms of viability, the evidence

Figure 2. Primary in vivo outcomes. All the outcomes related to function and composition of tissues are presented below. Number of experiments represent the number of separate comparisons between freshly cultured and cryopreserved MSCs on surrogate measures of in vivo efficacy.

Figure 3. Primary in-vivo outcomes. All the outcomes related to protein (cytokine) expression and secretion are presented below. Number of experiments represent the number of separate comparisons between freshly cultured and cryopreserved MSCs on surrogate measures of in vivo efficacy.
supports reduced viability in cryopreserved versus freshly cultured MSCs, which is in keeping with previously published studies (Eaker et al., 2013; Robb et al., 2019).

Cryopreservation under safe and quality-controlled conditions remains critical for future real-world applications of MSC therapies (Abazari et al., 2017) by easing the logistical burden of supplying freshly cultured MSCs, enabling quality control and standardization of the cell preparation, and to facilitate the logistical transport of cellular products to hospitals. Some studies have shown that cryopreservation does not negatively impact MSCs; even if stored in cryopreservation for up to 23–24 years (Shen et al., 2012; Badowski et al., 2014; Marquez-Curtis et al., 2015). However, other studies have demonstrated mixed effects with both short-term and long-term cryopreservation (Dariolli et al., 2013; Kotobuki et al., 2005). Notably, most of these studies lack a clear assessment of MSC in vivo function. A recent systematic review of 41 in vitro studies that examined bone-marrow-derived MSCs (BM-MSCs) demonstrated that MSC cell morphology, marker expression, proliferation potential and tri-lineage differentiation capability were unaffected by stresses imposed by freezing and thawing, whereas viability, attachment to plasticware and migration, genomic stability and paracrine function of MSCs demonstrated conflicting results (Bahsoun et al., 2019). Out of their included 41 studies, only eight studied MSCs’ immune function (88% conducted co-culture assays) post-thaw with four studies concluding a negative effect and four concluding no effect of cryopreservation on MSC in vitro immune function. Interestingly, this review found that the immediate post-thaw viability varied from about 50% to 100% among the included studies; 16 studies reported no change in viability immediately after thawing and 10 studies reported significantly lower viability (Bahsoun et al., 2019).

Cryopreserved MSCs have a higher percentage of apoptotic cells than MSCs from fresh cultures (Haack-Sørensen and Kastrup, 2011). Many factors could contribute to the diminished viability and functionality of cryopreserved MSCs, including the source of MSCs, rate of cooling, storage temperature and period, method of recovery from cryopreservation, and the cryoprotectants used (Marquez-Curtis et al., 2015). Cryopreserved MSCs are commonly frozen in 5–10% DMSO and or fetal bovine serum (FBS) (Liu et al., 2010; Rowley et al., 1999), but there are disadvantages of using these agents. DMSO is used extensively as a cryopreservation agent in the autologous hematopoietic stem cell transplant population and may be toxic at higher concentrations (Alessandrino et al., 1999). Adverse events have been associated with DMSO (most common are nausea, vomiting, weakness) (Mitrus et al., 2018) but a recent systematic review that examined safety of MSCs in randomized controlled trials (RCTs) found no serious adverse event safety signals for freshly cultured versus cryopreserved MSCs (Thompson et al., 2020). Furthermore, the use of animal proteins from FBS may theoretically increase the risk of transferring infectious agents or stimulating unwanted immunological responses.

Despite the continued search for the most optimal cryoprotectant, no consensus has been developed on the safest type and concentration of cryoprotectant to use (Galipeau and Sensébé, 2018). Optimizing the rate of cooling is as important as the thawing process, both of which can further contribute to cell injury. Apoptotic and necrotic pathways are activated in these cells 6–48 h post-thaw in response to low temperature exposure (Chinnadurai et al., 2016; Baust et al., 2009). Remarkably, many studies demonstrate that MSCs, isolated from diverse sources, cryopreserved using various cooling rates, in the presence of different cryoprotectants, stored for various lengths of time, and at various sub-zero temperatures still retain their biological properties post-thaw except for viability (Marquez-Curtis et al., 2015). Viability of MSCs is considered an important indicator of cryopreservation success where at least 90% viability for fresh MSC product and 70% viability for cryopreserved MSC product are considered the benchmark for pre-clinical application (Robb et al., 2019). One provocative study found that recipient cytotoxic cell activity causing apoptosis of infused MSCs or infusion of ex-vivo apoptotic MSCs and suggested it is one of the proposed mechanisms of immunomodulation for MSCs and the lower viability (or increased number of apoptotic cells) may in fact play a positive role in reducing the host inflammatory state (Galleu et al., 2017). In a safety systematic review of MSC randomized trials, only 52% and 14.5% reported on viability and potency respectively (Thompson et al., 2020). Our systematic review also found that 13 of 18 included studies received an “unclear” risk of bias in 5 out of 10 domains of the SYRCLE risk of bias tool due to insufficient and unclear reporting of important variables (eg. cryopreservation process, storage conditions, blinding, etc.). Due to the importance of reporting risk of bias elements as well as the cryopreservation and thaw process that could impact MSC quantity, quality, and efficacy, interpretation of MSC research studies remains limited. We strongly encourage the standardized reporting of these parameters by...
Table 6. In vitro outcomes where freshly cultured vs. cryopreserved MSCs were compared directly.

Study	Outcome	Assay Used	Number (n)	Type and Source of MSCs	Time of cell preparation without MSC (hr)	Time of outcome measurement from MSC intervention (hr)	Concentration of MSCs	Pre-Treatment of MSCs	Negative Control (NC)	Positive Control (PC)	p-value for Frozen MSCs vs. control	p-value for Fresh MSCs vs. control	Fresh or Frozen MSC more effective?	p-value for Fresh vs. Frozen comparison
Bárcia et al., 2017	Viability	Trypan Blue	Fresh/Cultured (12); cryo <1 yr (12); cryo >3 yrs (5)	Human Umbilical Cord MSCs	N/A	0	NR	Fresh/Cultured MSCs were cryopreserved and then cultured for up to 5 days	N/A	N/A	N/A	N/A	↔	NS
	Apoptosis	Annexin V (and flow cytometry)	N/A	Human Umbilical Cord MSCs	N/A	2	NR	Fresh/Cultured MSCs were cryopreserved and then cultured for up to 5 days	N/A	Cultured cells incubated with H₂O₂ (2 mmol/L) for 2 hr	NR	NR	↔	NS
	Angiogenesis: Number of master junctions (branching points)	Matrigel/Human umbilical vein endothelial cell (HUVEC) tube formation assay	2	Human Umbilical Cord MSCs	1	16	1 × 10⁶ cells	Fresh/Cultured MSCs were cryopreserved and then cultured for up to 5 days; fresh and cryo co-cultured in basal media	N/A	HUVEC in Basal Media and HUVECs in Basal media with VEGF (100 ng/mL)	NR	NR	↔	NS
	Angiogenesis: segment/tube length	Matrigel/Human umbilical vein endothelial cell (HUVEC) tube formation assay	2	Human Umbilical Cord MSCs	1	16	1 × 10⁶ cells	Fresh/Cultured MSCs were cryopreserved and then cultured for up to 5 days; fresh and cryo co-cultured in basal media	N/A	HUVEC in Basal Media and HUVECs in Basal media with VEGF (100 ng/mL)	NR	NR	↔	NS
Gramlich et al., 2016	Viability	TUNEL staining via Apo-Direct Apoptosis Detection Kit	5	Human MSCs	N/A	24	30,000 MSCs	Both fresh and frozen cells were washed twice, resuspended in PBS and analyzed immediately or after 1 hr storage on wet ice	N/A	N/A	N/A	N/A	Fresh better	P<0.001
	Viability	TUNEL staining via Apo-Direct Apoptosis Detection Kit	5	Human MSCs	N/A	48	30,000 MSCs	Both fresh and frozen cells were washed twice, resuspended in PBS and analyzed immediately or after 1 hr storage on wet ice	N/A	N/A	N/A	N/A	Fresh better	P<0.001
	Viability	TUNEL staining via Apo-Direct Apoptosis Detection Kit	5	Human MSCs	N/A	72	30,000 MSCs	Both fresh and frozen cells were washed twice, resuspended in PBS and analyzed immediately or after 1 hr storage on wet ice	N/A	N/A	N/A	N/A	Fresh better	P<0.002
Metabolic Activity (measured by XTT)	XTT Assay	6	Human MSCs	N/A	24	15,000 MSCs	N/A	N/A	N/A	N/A	N/A	↔	NS	

Table 6 continued on next page
Metabolic Activity (measured by XTT)	XTT Assay	Human MSCs	N/A	48	15,000 MSCs	N/A	N/A	N/A	N/A	⬠	NS	P = 0.312	
Metabolic Activity (measured by XTT)	XTT Assay	Human MSCs	N/A	72	15,000 MSCs	N/A	N/A	N/A	N/A	⬠	NS	P = 0.971	
IDO activity: unstimulated MSC	Concentration of kynurenine in conditioned media	Human MSC	N/A	48	NR	N/A	N/A	N/A	N/A	⬠	NS	P = 0.998	
IDO activity: MSC exposed to IFN-γ	Concentration of kynurenine in conditioned media	Human MSC	N/A	48	NR	N/A	N/A	N/A	N/A	⬠	NS	P = 0.099	
IDO activity: MSC exposed to IFN-γ + TNF-α	Concentration of kynurenine in conditioned media	Human MSC	N/A	48	NR	N/A	N/A	N/A	N/A	⬠	NS	P = 0.951	
GDF-15: unstimulated	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.01	
GDF-15: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.99	
IGFBP-2: unstimulated	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.32	
IGFBP-2: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.68	
IGFBP-3: unstimulated	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.47	
IGFBP-3: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.75	
IGFBP-4: unstimulated	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.39	
IGFBP-4: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.69	
IGFBP-6: unstimulated	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	Fresh	⬠	NS	P = 0.03
IGFBP-6: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.71	
Insulin: unstimulated with IFN-γ/TNF-α	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.39	
OPG: unstimulated	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.65	
OPG: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	⬠	NS	P = 0.43	
PDGF-AA: unstimulated	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	Frozen	⬠	NS	P = 0.04
PDGF-AA: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q14	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	N/A	Media Control	Frozen	⬠	NS	P = 0.83

Table 6 continued on next page
SCF R: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q1	4	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	Media Control	N/A	N/A	N/A	↔	NS	P=0.06
TGFβ1: unstimulated	Human Growth Factor Array Q1	4	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	Media Control	N/A	N/A	N/A	↔	NS	P=0.30
TGFβ1: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q1	4	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	Media Control	N/A	N/A	N/A	↔	NS	P=0.016
VEGF: unstimulated	Human Growth Factor Array Q1	4	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	Media Control	N/A	N/A	N/A	↔	NS	P=0.05
VEGF: stimulated with IFN-γ/TNF-α	Human Growth Factor Array Q1	4	Human MSC	N/A	48	200,000 MSCs	N/A	N/A	Media Control	N/A	N/A	N/A	↔	NS	P=0.05

Tan et al., 2019

Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	0	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	2	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	4	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	6	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	0	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	2	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	4	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	6	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	0	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	2	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	4	NR	N/A	N/A	N/A	N/A	↔	NS
Viability (Viable Cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	6	NR	N/A	N/A	N/A	N/A	↔	NS

Table 6 continued on next page
Viability (Late apoptotic cells)	Annexin V+Propidium iodide (AV/PI)	NR	Human BM	N/A	6	NR	N/A	N/A	N/A	N/A	Fresh better	P<0.05				
Phagocytosis	PBMCs pre-treated with LPS the co-culture with MSC at ratio of 1:5 for 24 hr	Human BM MSC	Donor 1	N/A	24	NR	N/A	Naive PBMC	LPS treated PBMC	PC	P<0.0001	PC	P<0.0001	↔	NS	
Phagocytosis	PBMCs pre-treated with LPS the co-culture with MSC at ratio of 1:5 for 24 hr	Human BM MSC	Donor 2	N/A	24	NR	N/A	Naive PBMC	LPS treated PBMC	NS	NS	↔	NS			
Phagocytosis	PBMCs pre-treated with LPS the co-culture with MSC at ratio of 1:5 for 24 hr	Human BM MSC	Donor 3	N/A	24	NR	N/A	Naive PBMC	LPS treated PBMC	PC	P<0.001	PC	P<0.001	↔	NS	
Permeability	Endothelial cell (EC) treated with LPS for 6 hr then co-culture with MSC for 24 hr at ratio of 1.2 followed by adding FITC-dextran to the transwell insert	NR	Human BM MSC	Donor 1	N/A	24	NR	N/A	Non-treated EC	LPS treated EC	PC	P<0.01	PC	P<0.01	↔	NS
Permeability	Endothelial cell (EC) treated with LPS for 6 hr then co-culture with MSC for 24 hr at ratio of 1.2 followed by adding FITC-dextran to the transwell insert	NR	Human BM MSC	Donor 2	N/A	24	NR	N/A	Non-treated EC	LPS treated EC	PC	P<0.01	PC	P<0.01	↔	NS
Permeability	Endothelial cell (EC) treated with LPS for 6 hr then co-culture with MSC for 24 hr at ratio of 1.2 followed by adding FITC-dextran to the transwell insert	NR	Human BM MSC	Donor 3	N/A	24	NR	N/A	Non-treated EC	LPS treated EC	PC	P<0.01	PC	P<0.01	↔	NS
Bharti et al., Growth Curve 2020	Countess automated cell counter	NR	Canine BM	N/A	24	1×10^6 cells/ml	N/A	N/A	N/A	N/A	↔	NS				

Table 6 continued on next page
Growth Curve	Countess automated cell counter	NR	Canine BM	N/A	48	1×10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45–60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS
Growth Curve	Countess automated cell counter	NR	Canine BM	N/A	72	1×10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45–60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS
Growth Curve	Countess automated cell counter	NR	Canine BM	N/A	96	1×10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45–60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS
Growth Curve	Countess automated cell counter	NR	Canine BM	N/A	120	1×10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45–60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS
Growth Curve	Countess automated cell counter	NR	Canine BM	N/A	144	1×10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45–60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS
Growth Curve	Countess automated cell counter	NR	Canine BM	N/A	168	1×10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45–60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS

Table 6 continued on next page
Growth Curve Countess automated cell counter	NR	Canine BM	N/A	1 × 10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45-60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS	
Growth Curve Countess automated cell counter	NR	Canine BM	N/A	216	1 × 10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45-60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS
Growth Curve Countess automated cell counter	NR	Canine BM	N/A	240	1 × 10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45-60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS
Growth Curve Countess automated cell counter	NR	Canine BM	N/A	264	1 × 10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45-60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS
Growth Curve Countess automated cell counter	NR	Canine BM	N/A	288	1 × 10^4 cells/ml	Frozen cells were thawed in distilled water at 36 °C for 45-60 s then enzymatically detached from mesh and added in re-warmed media with 15% FBS and washed twice at 1200 rpm for 5 min	N/A	N/A	N/A	N/A	↔	NS

Table 6 continued on next page
Antibody assay	Population Doubling Time	Viability	Antioxidant Concentration (GFP-MSC and HO-1 MSC)	Viability	Population Doubling Time	Antibody assay	Population Doubling Time	Viability	Metabolic Activity/Proliferation rate	Antibody assay	Population Doubling Time	Viability																																																																																																																																																								
CD 105 expression	NR	Canine BM	N/A	Overnight	Primary antibodies (1:100 dilutions) were used for localizing different markers (CD73, CD90, CD105, CD34) with an overnight incubation period at 4 °C.	N/A	N/A	N/A	N/A	↔	NS	CD 90 expression	NR	Canine BM	N/A	Overnight	Primary antibodies (1:100 dilutions) were used for localizing different markers (CD73, CD90, CD105, CD34) with an overnight incubation period at 4 °C.	N/A	N/A	N/A	N/A	↔	NS	CD 73 expression	Antibody assay	NR	Canine BM	N/A	Overnight	Primary antibodies (1:100 dilutions) were used for localizing different markers (CD73, CD90, CD105, CD34) with an overnight incubation period at 4 °C.	N/A	N/A	N/A	N/A	↔	NS	Population Doubling Time	N/A	NR	Canine BM	N/A	N/A	1 × 10⁴ cells/ml	N/A	N/A	N/A	N/A	N/A	↔	NS	Metabolic Activity/Proliferation rate	Alamar Blue	3	Human Adipose	N/A	48	NR	MSCs culture in PS1D-based gel	N/A	N/A	N/A	N/A	Fresh better	P<0.05	Metabolic Activity/Proliferation rate	Alamar Blue	3	Human Adipose	N/A	96	NR	MSCs culture in PS1D-based gel	N/A	N/A	N/A	N/A	Fresh better	P<0.05	Metabolic Activity/Proliferation rate	Alamar Blue	3	Human Adipose	N/A	144	NR	MSCs culture in PS1D-based gel	N/A	N/A	N/A	N/A	↔	NS	Rogulska et al., 2019	Viability	Alamar Blue	3	Human Adipose	N/A	24	NR	N/A	N/A	N/A	N/A	Fresh better	P<0.05	Khan et al., 2019	Antioxidant Assay	6	Canine adipose	NR	NR	NR	Lentivirus-mediated GFP and HO-1 gene insertion into Ad-MSCs	N/A	N/A	N/A	N/A	Fresh better	P<0.05	Viability	Trypan Blue	6	Human Umbilical Cord	0	0, 2, 4, 24, 48 hr	1×10⁴ cells/well	None	N/A	N/A	N/A	N/A	↔	NS	Yea et al., 2020	Population Doubling Time	Cell counting	6	Human Umbilical Cord	0	4, 8, 12, 16, 20 days	3×10⁴ 3 cells/cm²	None	N/A	N/A	N/A	N/A	↔	NS	Horiuchi et al., 2021	Bioluminescence	IVIS Lumina XRMS series III instrument (SPI, Tokyo, Japan)	4	Ret Synovial MSCs	0	Same day	Varying concentrations	None	N/A	N/A	N/A	N/A	↔	NS

N/A = Not applicable (e.g., if the experiment setup did not include a particular variable). NR = Not reported (e.g., if a particular variable was part of the experiment setup but not explicitly reported on in results section or graph).
authors, reviewers, and journal editors as markers of reporting quality and to enhance transparency, reproducibility, and interpretation of MSC research studies.

From the perspective of clinical research and potential efficacy of cryopreserved MSCs, a phase III randomized clinical trial that examined whether a cryopreserved MSC product, PROCHYMAL (Remestemcel-L), or placebo compared to standard second line therapies alone in children with acute graft-versus-host disease (aGVHD) showed that high risk patients were more likely to have a partial response at 28 days with Remestemcel. Furthermore, a recently published systematic review that examined 55 randomized trials which used a MSC product versus control/usual care not only suggested evidence for safety of cryopreserved MSCs but also potential efficacy. Of the 15 trials that studied a cryopreserved product, 5 of them (33%) found significant differences favoring cryopreserved MSCs in either the primary or secondary endpoints (Kebriaei et al., 2020).

There are several strengths in this current systematic review. First, we have published our protocol which includes a transparent search strategy, pre-defined classifications for cryopreserved and freshly cultured MSCs and outcome measures, and minimal exclusion criteria. Ours is the first comprehensive systematic review assessing the in vivo efficacy of cryopreserved MSCs when directly compared to freshly cultured MSCs in animal models of inflammation. All variables and experimental details were collected and summarized systematically. Given the breadth and variety of in vivo and in vitro outcome measures, we report our data by considering each experiment where cryopreserved and freshly cultured MSCs are compared as an individual hypothesis test. Our review provides the totality of the existing pre-clinical evidence base, and we hope it will provide additional rationale for considering a cryopreserved MSC product for use in pre-clinical studies and clinical trials, and help identify research gaps for future related research (Galipeau and Sensébé, 2018).

Our study did have some limitations. Given our emphasis on including studies that examined MSC in vivo efficacy, we excluded all studies that only conducted in vitro studies. This led to a significant number of cryopreserved MSC studies being excluded and hence, our in vitro outcome reporting may be incomplete. However, when considering whether cryopreserved MSCs may be efficacious in clinical settings, pre-clinical in vivo efficacy outcomes might be more convincing than in vitro studies alone. Most of the preclinical studies did not provide sufficient information to adequately perform the SYRCLE risk of bias assessment, resulting in unclear reporting in at least three bias domains or more in all but one study, despite our attempts to contact authors to obtain further study details. Our ability to conduct meta-analyses on our primary outcome measures and according to subgroups was significantly limited by the heterogeneity of animal models included and breadth of outcomes measured. Finally, it is possible that other important in vivo pre-clinical efficacy or in vitro potency outcomes were not reported in our review. However, we designed and then conducted a systematic and transparent search using a pre-published protocol to enhance transparency and reproducibility, and to ensure we captured the totality of the evidence according to our study question. Questions remain related to MSC mechanisms of action in response to different immune stimuli, such as the effect of xenotransplantation. Further research to understand where there may be differences in effects of syngeneic MSCs as compared to xenogenic MSCs in models of inflammatory diseases related to HLA stimulation/expression, co-stimulatory molecules, paracrine factors, and species-specific cytokines and receptors may assist successful translation in human clinical trials (Prockop and Lee, 2017). Our review reported pre-dominantly on different biological outcome measures which does not provide a measure of overall animal health in a given inflammatory animal model. However, certain biological outcomes may be part of the mechanistic/causal pathway related to the disease (in the animal and humans) and may be considered as important surrogates for overall health. These biological outcomes in pre-clinical studies may also help to inform the exploration of them as predictive or prognostic variables in human clinical trials.

Conclusions
Our study provides a comprehensive systematic review of pre-clinical studies comparing cryopreserved versus freshly cultured MSCs in animal models of inflammation. Our findings suggest that for the majority of outcomes measured in this review, cryopreservation does not negatively impact in vivo efficacy or in vitro potency of MSCs. With our systematic summary of the current evidence base, we hope it may provide MSC basic and research scientists additional rationale for considering a cryopreserved MSC product for use in pre-clinical studies and clinical trials, and help identify research gaps
for future MSC-related research. We also strongly encourage the standardized reporting of important parameters related to risk of bias, MSC processing characteristics (e.g. cryopreservation and thawing protocols), storage conditions, viability, and potency as markers of study quality and to enhance transparency, reproducibility, and interpretation of MSC research studies.

Acknowledgements
We acknowledge Emily Doxtator for her help in the initial screening of studies, Risa Shorr for her help in conducting the scientific, comprehensive search strategy, and Diana Wolfe for her contribution to the development of the protocol for this systematic review. We acknowledge the Ontario Institute for Regenerative Medicine and the Stem Cell Network for funding this systematic review. We also acknowledge the following authors who responded to our request for further information: Taru Sharma, Shahd Horie, Daniel O’Toole, and James Ankrum.

Additional information

Funding

Funder	Grant reference number	Author
Ontario Institute for Regenerative Medicine	2016-0147	Chintan Dave
Stem Cell Network		Lauralyn McIntyre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions
Chintan Dave, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Visualization, Writing – original draft, Writing – review and editing; Shirley HJ Mei, Conceptualization, Data curation, Formal analysis, Writing – review and editing; Andrea McRae, Katrina J Sullivan, Data curation, Formal analysis, Writing – review and editing; Christine Hum, Data curation, Formal analysis, Investigation, Visualization, Writing – original draft, Writing – review and editing; Josee Champagne, Conceptualization, Data curation, Methodology, Visualization,
Table 7. Summary of all in vitro PBMC Proliferation assays from included studies.

Study	MSCs Used	Solution	Addition to solution	Responder Cells	Fresh vs. Frozen Comparison	Duration of Culture	Proliferation Measurement	Ratio (MSC:Responder Cells)	1:1	1:3	1:6	1:10	1:12	1:50
Bárcia et al., 2017	Cultured and Freshly-thawed MSCs were irradiated with 50 Gy prior to use	RPMI	5% HEPES, 5% Pen-Strep, 5% NaPyr and 5% human serum	PBMC stimulated with anti-CD3, anti-CD28, and IL-2	Yes	16 hr	Percentage of T cells proliferation/suppression	Yes	Yes	Yes	Yes			
Gramlich et al., 2016	Cultured and Freshly-thawed MSCs	RPMI	10% (v/v) FBS, 1% (v/v) Penicillin/Streptomycin, and 1% (v/v) L-glutamine	PBMC stimulated with 250,000 Human T-activator CD3+/D28+Dynabeads	Yes	144 hr	CFSE Cell Proliferation Kit	Yes	Yes	Yes				
Tan et al., 2019	Cultured and Freshly-thawed MSCs	NR	NR	PBMC stimulated with Dynabeads Human T-Activator CD3/CD28	Yes	120 hr		Yes						
Figure 5. Comparison of viability. Experiments where viability at varying time points of freshly-cultured and cryopreserved MSCs were compared directly are presented below.

Writing – review and editing; Tim Ramsay, Conceptualization, Methodology, Visualization, Writing – review and editing; Lauralyn McIntyre, Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Project administration, Supervision, Writing – original draft, Writing – review and editing

Author ORCIDs
Chintan Dave http://orcid.org/0000-0003-4371-7645
Tim Ramsay http://orcid.org/0000-0001-8478-8170
Lauralyn McIntyre http://orcid.org/0000-0001-7421-1407

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.75053.sa1
Author response https://doi.org/10.7554/eLife.75053.sa2

Additional files
Supplementary files
* Supplementary file 1. Search strategy.
* Supplementary file 2. PRISMA checklist.
* Supplementary file 3. AGREE-II tool prompting questions.
* Supplementary file 4. Data collection items.
* MDAR checklist

Data availability
All data generated or analyzed in our review are provided in the attached tables and figures.

References
Abazari A, Hawkins BJ, Clarke DM, Mathew AJ. 2017. Biopreservation Best Practices: A Cornerstone in the Supply Chain of Cell-based Therapies – MSC Model Case Study. Cell and Gene Therapy Insights 3:853–871. DOI: https://doi.org/10.18609/cgti.2017.082
Alessandrino P, Bernasconi P, Caldera D, Colombo A, Bonfichi M, Malcovati L, Klersy C, Martinielli G, Maiocchi M, Pagnucco G, Varettoni M, Perotti C, Bernasconi C. 1999. Adverse events occurring during bone marrow or peripheral blood progenitor cell infusion: analysis of 126 cases. Bone Marrow Transplantation 23:533–537. DOI: https://doi.org/10.1038/sj.bmt.1701609, PMID: 10217182

Badowski M, Muise A, Harris DT. 2014. Mixed effects of long-term frozen storage on cord tissue stem cells. Cytotherapy 16:1313–1321. DOI: https://doi.org/10.1016/j.cyt.2014.05.020, PMID: 25108655

Belsoum S, Coopman K, Akam EC. 2019. The impact of cryopreservation on bone marrow-derived mesenchymal stem cells: a systematic review. Journal of Translational Medicine 17:397. DOI: https://doi.org/10.1186/s12967-019-02136-7, PMID: 31810116

Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, Vanbellinghen J-F, Hafraoui K, Lejeune M, Ghothot A, Fillet G, Beguin Y. 2010. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biology of Blood and Marrow Transplantation 16:838–847. DOI: https://doi.org/10.1016/j.bbmt.2010.01.011, PMID: 2109568

Baust JG, Gao D, Baust JM. 2009. Cryopreservation: An emerging paradigm change. Organogenesis 5:90–96. DOI: https://doi.org/10.4161/org.5.3.10021, PMID: 2046670

Bharti MK, Bhat IA, Pandey S, Shabir U, Peer BA, Indu B, Bhat AP, Kumar GS, Chandra V, Sharma GT. 2020. Effect of cryopreservation on therapeutic potential of canine bone marrow derived mesenchymal stem cells; augmented mesh scaffold for wound healing and repair. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 121:109573. DOI: https://doi.org/10.1016/j.biopha.2019.109573, PMID: 31810116

Boyle AJ, McNiece IK, Hare JM. 2010. Mesenchymal stem cell therapy for cardiac repair. Methods in Molecular Biology 660:65–84. DOI: https://doi.org/10.1007/978-1-60761-705-1_5, PMID: 20680813

Caplan AI. 2009. Why are MSCs therapeutic? New data: new insight. The Journal of Pathology 217:318–324. DOI: https://doi.org/10.1002/path.2469, PMID: 19023885

Chang YS, Ahn SY, Yoo HS, Sung SI, Choi SJ, Oh WI, Park WS. 2014. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial. The Journal of Pediatrics 164:966–972. DOI: https://doi.org/10.1016/j.jpeds.2013.12.011, PMID: 24508444

Chinnadurai R, Copland IB, Garcia MA, Petersen CT, Lewis CN, Weller EK, Kirk AD, Galipeau J. 2016. Cryopreserved Mesenchymal Stromal Cells Are Susceptible to T-Cell Mediated Apoptosis Which Is Partly Rescued by IFNγ Licensing. Stem Cells (Dayton, Ohio) 34:2429–2442. DOI: https://doi.org/10.1002/stem.2415, PMID: 27299362

Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He X-L, Richardson K, Barber K, Webber DJ, Wheeler-Kingshott CAM, Tozer DJ, Samson RS, Thomas DL, Du M-Q, Luan SL, Michiel AW, Aitmman DR, Thompson AJ, Miller DH, Compston A, et al. 2011. The mesenchymal stem cells in multiple sclerosis (MSCMIS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials 12:62. DOI: https://doi.org/10.1186/1745-6215-12-62, PMID: 21366911

Cruz FF, Borg ZD, Goodwin M, Sokocевич D, Wagner D, McKenna DH, Rocco PRM, Weiss DJ. 2015. Freshly thawed and continuously cultured human bone marrow-derived mesenchymal stromal cells comparably ameliorate allergic airways inflammation in immunocompetent mice. Stem Cells Translational Medicine 4:615–624. DOI: https://doi.org/10.5966/sctm.2014-0268, PMID: 25925837

Curley GF, Jerkic M, Dixon S, Hogan G, Masterson C, O’Toole D, Devaney J, Laffey JG. 2017. Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome. Critical Care Medicine 45:e202–e212. DOI: https://doi.org/10.1097/CCM.0000000000002073, PMID: 27861182

Dariolli R, Bassaneve Z, Nakamuta JS, Omae SV, Campos LCG, Krieger JF, CovasDT. 2013. Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation. PLOS ONE 8:e67939. DOI: https://doi.org/10.1371/journal.pone.0067939, PMID: 23874472

Devaney J, Horie S, Masterson C, Eliiman S, Barry F, O’Brien T, Curley GF, O’Toole D, Laffey JG. 2015. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 70:625–635. DOI: https://doi.org/10.1136/thoraxjnl-2015-206813, PMID: 25966435

Eaker S, Armant M, Brandwein H, Burger S, Campbell A, Carpenito C, Clarke D, Fong T, Karnielli O, Niss K, Van’t Hof W, Wageny R. 2013. Concise review: guidance in developing commercializable autologous/patient-specific cell therapy manufacturing. Stem Cells Translational Medicine 2:871–883. DOI: https://doi.org/10.5966/sctm.2013-0050, PMID: 24101671

Emadedin M, Ghorbani Liastani M, Fazeli R, Mohseni F, Moghadassali R, Mardpour S, Hosseini SE, Niknejadi M, Moeininia F, Aghahossein Fanni A, Baghbani Esalaminejad R, Nosough Diazal A, Labibzadeh N, Mirazimi Bafghi A, Baharvand H, Aghdami N. 2015. Long-Term Follow-up of Intra-articular Injection of Autologous Mesenchymal Stem Cells in Patients with Knee, Ankle, or Hip Osteoarthritis. Archives of Iranian Medicine 18:336–344 PMID: 26058927.

Fish KM, Hajjar RJ. 2015. Mesenchymal Stem Cells & Endothelial Function. EBioMedicine 2:376–377. DOI: https://doi.org/10.1016/j.ebiom.2015.04.015, PMID: 26137582

Forbes GM, Sturm MJ, Leong RW, Sparrow MP, Segarajasingam D, Cummins AG, Phillips M, Herrmann RP. 2014. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy. Stem Cells and Regenerative Medicine

DOI: https://doi.org/10.7554/eLife.75053
therapy. Clinical Gastroenterology and Hepatology 12:64–71. DOI: https://doi.org/10.1016/j.ghl.2013.06.021, PMID: 23872668

François M, Copland IB, Yuan S, Romieu-Moure Z, Waller EK, Galipeau J. 2012. Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-γ licensing. Cytotherapy 14:147–152. DOI: https://doi.org/10.3109/14653249.2011.623691, PMID: 22029655

Galipeau J. 2013. The mesenchymal stromal cells dilemma--does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15:2–8. DOI: https://doi.org/10.1016/j.icyt.2012.10.002, PMID: 23260081

Galipeau J, Krampera M, Barrett J, Dazzi F, Deans RJ, DeBruijn J, Dominici M, Fibbe WE, See AP, Gimble JM, Hematti P, Koh MBC, LeBlanc K, Martin I, McNiece IK, Mendicino M, Oh S, Ortiz L, Phinney DG, Planat V, et al. 2016. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 18:151–159. DOI: https://doi.org/10.1016/j.jcyt.2015.11.008, PMID: 26724220

Galipeau J, Sensiblé B. 2018. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell 22:824–833. DOI: https://doi.org/10.1016/j.stem.2018.05.004, PMID: 29859173

Galleu A, Riffó-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, von Bonin M, Barbieri L, Halai K, Ward S, Weng L, Chakraverty R, Lombardi G, Watt FM, Orchard K, Marks DI, Aperley J, Bornhauser M, Walczak H, Bennett C, et al. 2017. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Science Translational Medicine 9:eaa7828. DOI: https://doi.org/10.1126/scitranslmed.aam7828, PMID: 29141887

Gomez-Salazar M, Gonzalez-Galofre ZN, Casamitjana J, Crisan M, James AW, Péault B. 2020. Five Decades Later, Are Mesenchymal Stem Cells Still Relevant? Frontiers in Bioengineering and Biotechnology 8:148. DOI: https://doi.org/10.3389/fbioe.2020.00148, PMID: 32185170

Gramlich OW, Burand AJ, Brown AJ, Deutsch RJ, Kuehn MH, Ankrum JA. 2016. Cryopreserved Mesenchymal Stromal Cells Maintain Potency in a Retinal Ischemia/Reperfusion Injury Model: Toward an off-the-shelf Therapy. Scientific Reports 6:26463. DOI: https://doi.org/10.1038/srep26463, PMID: 27212469

Gupta N, Krasnodembskaya A, Kapatanski M, Mouded M, Tan X, Serikov V, Matthay MA. 2012. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67:533–539. DOI: https://doi.org/10.1136/thoraxjnl-2011-201176, PMID: 22250097

Haack-Sørensen M, Kastrup J. 2011. Cryopreservation and revival of mesenchymal stromal cells. Methods in Molecular Biology (Clifton, N.J.) 698:161–174. DOI: https://doi.org/10.1007/978-1-60761-999-4_13, PMID: 21431518

Hoogduijn MJ, Popp F, Verbeek R, Masoodi M, Nicolaou A, Baan C, Dahlke M-H. 2010. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. International Immunopharmacology 10:1496–1500. DOI: https://doi.org/10.1016/j.intimp.2010.06.019, PMID: 20619384

Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. 2014. SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology 14:43. DOI: https://doi.org/10.1186/1471-2288-14-43, PMID: 24667063

Horie S, Gaynard S, Murphy M, Barry F, Scully M, O’Toole D, Laffey JG. 2020a. Cytokine pre-activation of cryopreserved xenogenic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Medicine Experimental 8:8. DOI: https://doi.org/10.1186/s40635-020-0295-5, PMID: 32025852

Horie S, Masterson C, Brady J, Loftus P, Horan E, O’Flynn L, Elluman S, Barry F, O’Brien T, Laffey JG, O’Toole D. 2020b. Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Research & Therapy 11:116. DOI: https://doi.org/10.1186/s13287-020-01624-8, PMID: 32169108

Horie S, Gonzalez H, Brady J, Devaney J, Scully M, O’Toole D, Laffey JG. 2021. Fresh and Cryopreserved Human Umbilical-Cord-Derived Mesenchymal Stromal Cells Attenuate Injury and Enhance Resolution and Repair following Ventilation-Induced Lung Injury. International Journal of Molecular Sciences 22:12842. DOI: https://doi.org/10.3390/ijms222312842, PMID: 34884645

Horiiuchii K, Ozeki N, Endo K, Mizuno M, Katano H, Akiyama M, Tsuji K, Koga H, Sekiya I. 2021. Thawed cryopreserved synovial mesenchymal stem cells show comparable effects to cultured cells in the inhibition of osteoarthritis progression in rats. Scientific Reports 11:9683. DOI: https://doi.org/10.1038/s41598-021-89239-8, PMID: 33958682

Introna M, Luccioni G, Dander A, Galimberti S, Rovelli A, Balduzzi A, Longoni D, Pavan F, Masciocchi F, Algarotti A, Micò C, Grassi A, Deola S, Cavattoni I, Gaipa G, Belotti D, Perseghin P, Parmigiani G, Golay J, et al. 2014. Treatment of graft versus host disease with mesenchymal stromal cells: A phase I study on 40 adult and pediatric patients. Blood of Blood and Marrow Transplantation 20:375–381. DOI: https://doi.org/10.1016/j.bbmt.2013.11.033, PMID: 24321746

Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J. 2012. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine 18:759–765. DOI: https://doi.org/10.1038/nm.2736, PMID: 22504485

Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS. 2014. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A proof-of-concept clinical trial. Stem Cells (Dayton, Ohio) 32:1254–1266. DOI: https://doi.org/10.1002/stem.1634, PMID: 24449146
Kebriaei P, Hayes J, Daly A, Uberti J, Marks DI, Soiffer R, Waller EK, Burke E, Skerrett D, Shpall E, Martin PJ. 2020. A Phase 3 Randomized Study of Remestemcel-L versus Placebo Added to Second-Line Therapy in Patients with Steroid-Refractory Acute Graft-versus-Host Disease. *Biology of Blood and Marrow Transplantation* 26:835–844. DOI: https://doi.org/10.1016/j.bbmt.2019.08.029, PMID: 31505228

Khan IU, Yoon Y, Choi KU, Jo KR, Kim N, Lee E, Kim WH, Kweon O-K. 2019. Therapeutic Effects of Intravenous Injection of Fresh and Frozen Thawed HO-1-Overexpressed Ad-MSCs in Dogs with Acute Spinal Cord Injury. *Stem Cells International* 2019:1–15. DOI: https://doi.org/10.1155/2019/8537541, PMID: 31481975

Kor ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI, Lazarus HM. 2000. Rapid hematopoietic recovery after confusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. *Journal of Clinical Oncology* 18:307–316. DOI: https://doi.org/10.1002/1053-353X(20000201)18:3<307::AID-JCO1>3.0.CO;2-0, PMID: 10637244

Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y, Ohgushi H. 2005. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. *Tissue Engineering* 11:663–673. DOI: https://doi.org/10.1089/ten.ten.2005.11.663, PMID: 15998208

Li X, Michaelouides C, Zhang Y, Wiegman CH, Adcock IM, Lian Q, Mak JOW, Bhavsar PK, Chung KF. 2018. Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. *The Journal of Allergy and Clinical Immunology* 141:1634–1645. DOI: https://doi.org/10.1016/j.jaci.2017.08.017,

Lohan P, Murphy N, Treacy O, Lynch K, Marcos M, Chen B, Ryan AE, Griffin MD, Ritter T. 2018. Third-Party Allogeneic Mesenchymal Stromal Cells Prevent Rejection in a Pre-sensitized High-Risk Model of Corneal Transplantation. *Frontiers in Immunology* 9:2666. DOI: https://doi.org/10.3389/fimmu.2018.02666, PMID: 30515159

Luetzkendorf J, Nerger K, Hering J, Moegel A, Hoffmann K, Hoefers C, Mueller-Tidow C, Mueller LP. 2015. Cryopreservation of human bone marrow-derived mesenchymal stem cells with reduced dimethylsulfoxide and well-defined freezing solutions. *Biotechnology Progress* 26:1635–1643. DOI: https://doi.org/10.1002/btp.2646, PMID: 2572296

Loohan P, Murphy N, Treacy O, Lynch K, Marcos M, Chen B, Ryan AE, Griffin MD, Ritter T. 2018. Third-Party Allogeneic Mesenchymal Stromal Cells Prevent Rejection in a Pre-sensitized High-Risk Model of Corneal Transplantation. *Journal of Immunology* 199:217–221. DOI: https://doi.org/10.1111/jimm.13508, PMID: 29530846

Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JAW. 2015. Mesenchymal stromal cells derived from various tissues: Biological and cryopreservation aspects. *Cryobiology* 71:181–197. DOI: https://doi.org/10.1016/j.cryobiol.2015.07.003, PMID: 26186998

Matthy MA, Goolaraets A, Howard JP, Lee JW. 2010. Mesenchymal stem cells for acute lung injury: preclinical evidence. *Critical Care Medicine* 38:5569–5573. DOI: https://doi.org/10.1097/CCM.0b013e3181f1ff1d, PMID: 21164399

McIntyre LA, Stewart DJ, Mei SHJ, Courtman D, Watpool I, Granton J, Marshall J, Dos Santos C, Walley KR, Winston BW, Schlosser K, Ferguson DA, Canadian Critical Care Trials Group, Canadian Critical Care Translational Biology Group. 2018. Cellular Immunotherapy for Septic Shock. A Phase I Clinical Trial. *American Journal of Respiratory and Critical Care Medicine* 197:337–347. DOI: https://doi.org/10.1164/rccm.201705-1006OC, PMID: 28960996

Mei SHJ, McConnell SD, Deng Y, Parker CH, Liles WC, Stewart DJ. 2007. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. *PLOS Medicine* 4:e269. DOI: https://doi.org/10.1371/journal.pmed.0040269, PMID: 17803352

Mei SHJ, Haitsma JJ, Dos Santos CC, Deng Y, Lai PFH, Slutsky AS, Liles WC, Stewart DJ. 2010. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. *American Journal of Respiratory and Critical Care Medicine* 182:1047–1057. DOI: https://doi.org/10.1164/rccm.201001-0010OC, PMID: 20558630

Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR. 2014. MSC-based product characterization for clinical trials: an FDA perspective. *Cell Stem Cell* 14:141–145. DOI: https://doi.org/10.1016/j.stem.2014.01.013, PMID: 24506881

Mitrus I, Smagur A, Fidyk W, Czech M, Prokop M, Chwieduk A, Glowala-Koisinska M, Czerw T, Sobczyk-Kruszelniczka M, Mendrek W, Michalaik K, Sadus-Wojciechowska M, Najda J, Holowiecki J, Giebel S. 2018. Reduction of DMSO concentration in cryopreservation mixture from 10% to 7.5% and 5% has no impact on engraftment after autologous peripheral blood stem cell transplantation: results of a prospective, randomized study. *Bone Marrow Transplantation* 53:274–280. DOI: https://doi.org/10.1038/s41409-017-0056-6, PMID: 29269805

Molendijk I, Bonsing BA, Roelofs H, Peeters KCJM, Wasser MNJM, Dijkstra G, van der Woude CJ, Duijvestein M, Veenendaal RA, Zwangina J-J, Verspagert HW, Fibbe WE, van de Meulen-de Jong AE, Hommes DW. 2015. Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells Promote Healing of Refractory Perianal Fistulas in Patients With Crohn’s Disease. *Gastroenterology* 149:918–927. DOI: https://doi.org/10.1053/j.gastro.2015.06.014, PMID: 26116801

Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sánchez A, García-Sancho J. 2014. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results. *Transplantation* 97:e66. DOI: https://doi.org/10.1097/TP.0000000000001017, PMID: 24887752

Pérez-Simon JA, López-Villar O, Andreu EJ, Ríflón J, Muntion S, Diez Campelo M, Sánchez-Guijo FM, Martinez C, Valcarcel D, Cañizo CD. 2011. Mesenchymal stem cells expanded in vitro with human serum for the treatment of...
acute and chronic graft-versus-host disease: results of a phase I/II clinical trial. Haematologica 96:1072–1076. DOI: https://doi.org/10.3324/haematol.2010.038356, PMID: 21393326

Perlee D, de Vos AF, Scicluna BP, Mancherio P, de la Rosa O, Dalemans W, Nürnberg P, Lombardo E, van der Poll T. 2019. Human Adipose-Derived Mesenchymal Stem Cells Modify Lung Immunity and Improve Antibacterial Defense in Pneumosepsis Caused by Klebsiella pneumoniae. Stem Cells Translational Medicine 8:785–796. DOI: https://doi.org/10.1002/sctm.18-0260, PMID: 31033196

Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. 2019. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regenerative Medicine 4:22. DOI: https://doi.org/10.1038/s41536-019-0083-6, PMID: 31815001

Prockop DJ, Lee RH. 2017. Data against a Common Assumption: Xenogeneic Mouse Models Can Be Used to Assay Suppression of Immunity by Human MSCs. Molecular Therapy 25:1748–1756. DOI: https://doi.org/10.1016/j.therap.2017.06.004, PMID: 28647464

Robb KP, Fitzgerald JC, Barry F, Viswanathan S. 2019. Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency. Cytotherapy 21:289–306. DOI: https://doi.org/10.1016/j.jcryt.2018.01.014, PMID: 30528726

Regulska O, Tykhyvnska O, Revenko O, Grischuk V, Mazur S, Volkova N, Vasyliev R, Petrenko A, Petrenko Y. 2019. Novel Cryopreservation Approach Providing Off-the-Shelf Availability of Human Multipotent Mesenchymal Stromal Cells for Clinical Applications. Stem Cells International 2019:1–11. DOI: https://doi.org/10.1155/2019/4150690, PMID: 31885604

Rowley SD, Feng Z, Yadock D, Holmberg L, Macleod B, Heimfeld S. 1999. Post-thaw removal of DMSO does not completely abrogate inflammatory toxicity or need for pre-infusion histamine blockade. Cytotherapy 1:439–446. DOI: https://doi.org/10.1080/1090869019000147303, PMID: 20426544

Salmenkari M, Hallman A, Forsgren RA, Holappa M, Lindén J, Pasanen M, Korhonen M, Korpela R, Nystedt J. 2019. The use of unlicensed bone marrow-derived platelet lysate-expanded mesenchymal stromal cells in colitis: a pre-clinical study. Cytotherapy 21:175–188. DOI: https://doi.org/10.1016/j.jcryt.2018.11.011, PMID: 30616717

Shen J, Huang Y, Xu S, Zheng P, Yin W, Cen J, Gong L. 2012. Effectiveness of human mesenchymal stem cells derived from bone marrow cryopreserved for 23-25 years. Cryobiology 64:167–175. DOI: https://doi.org/10.1016/j.c cryobiol.2012.01.004, PMID: 22280954

Shi Y, Su J, Roberts AJ, Shou P, Rabson AB, Ren G. 2012. How mesenchymal stem cells interact with tissue immune responses. Trends in Immunology 33:136–143. DOI: https://doi.org/10.1016/j.it.2011.11.004, PMID: 22227317

Somal A, Bhat IA, B I, Singh AP, Panda BSK, Desingu PA, Pandey S, Bharti MK, Pal A, Saikumar G, Chandra V, Sharma GT. 2017. Impact of Cryopreservation on Caprine Fetal Adrenal Derived Stem Cells and Its Evaluation for Growth Kinetics, Phenotypic Characterization, and Wound Healing Potential in Xenogenic Rat Model. Journal of Cellular Physiology 232:2186–2200. DOI: https://doi.org/10.1002/jcp.25731, PMID: 27966782

Souza-Moreira L, Tan Y, Wang Y, Wang JP, Salkhordeh M, Virgo J, Florian M, Murray ABP, Watpool I, McIntyre L, English S, Stewart DJ, Mei SHJ. 2022. Poly(L,C) enhances mesenchymal stem cell control of myeloid cells from COVID-19 patients. iScience 25:104188. DOI: https://doi.org/10.1016/j.isci.2022.104188, PMID: 35402859

Tan Y, Salkhordeh M, Wang J-P, McRae A, Souza-Moreira L, McIntyre L, Stewart DJ, Mei SHJ. 2019. Thawed Mesenchymal Stem Cell Product Shows Comparable Immunomodulatory Potency to Cultured Cells In Vitro and in Polymicrobial Septic Animals. Scientific Reports 9:18078. DOI: https://doi.org/10.1038/s41598-019-54462-x, PMID: 31792313

Thompson M, Mei SHJ, Wolfe D, Champagne J, Fergusson D, Stewart DJ, Sullivan KJ, Doxtator E, Lalu M, English SW, Granton J, Hutton B, Marshall J, Maybee J, Walley KR, Santos CD, Winston B, McIntyre L. 2020. Cell therapy with intravascular administration of mesenchymal stem cells continues to appear safe: An updated systematic review and meta-analysis. EClinicalMedicine 19:100249. DOI: https://doi.org/10.1016/j.eclinm.2019.100249, PMID: 31989101

Tsubokawa T, Yagi K, Nakanishi C, Zuka M, Nohara A, Ino H, Fujino N, Konno T, Kawashiri M, Ishibashi-Ueda H, Nagaya N, Yamagishi M. 2010. Impact of anti-apoptotic and anti-oxidative effects of bone marrow mesenchymal stem cells with transient overexpression of heme oxygenase-1 on myocardial ischemia. American Journal of Physiology. Heart and Circulatory Physiology 298:H1320–H1329. DOI: https://doi.org/10.1152/ajpheart.01330.2008, PMID: 20154257

Vega A, Martín-Ferrer MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, Sánchez A, Garcia-Sancho J. 2015. Treatment of Knee Osteoarthritis With Allogeneic Bone Marrow Mesenchymal Stem Cells: A Randomized Controlled Trial. Transplantation 99:1681–1690. DOI: https://doi.org/10.1097/TP.0000000000000678, PMID: 25822648

Vives J, Oliver-Vila I, Pla A. 2015. Quality compliance in the shift from cell transplantation to cell therapy in non-pharma environments. Cytotherapy 17:1009–1014. DOI: https://doi.org/10.1016/j.jcyt.2015.02.002, PMID: 25769789

Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. 2013. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 143:1590–1598. DOI: https://doi.org/10.1378/chest.12-2094, PMID: 23172227

Wilson JG, Liu KD, Zhou H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Callie CS, Lee J-W, Rogers AJ, Levitt J, Wiener-Kronish J, Bajwa EK, Leavatt A, McKenna D, Thompson BT, Matthey MA. 2015. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. The Lancet. Respiratory Medicine 3:24–32. DOI: https://doi.org/10.1016/S2213-2600(14)/70291-7, PMID: 25529339
Woods EJ, Thirumala S, Badhe-Buchanan SS, Clarke D, Mathew AJ. 2016. Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use. *Cytotherapy* **18**:697–711. DOI: https://doi.org/10.1016/j.jcyt.2016.03.295, PMID: 27173747

Yea JH, Park JK, Kim IJ, Sym G, Bae TS. 2020. Regeneration of a full-thickness defect of rotator cuff tendon with freshly thawed umbilical cord-derived mesenchymal stem cells in a rat model. *Stem Cell Research & Therapy* **11**:387. DOI: https://doi.org/10.1186/s13287-020-01906-1, PMID: 32894193