Paroxysmal nocturnal hemoglobinuria in the differential diagnosis of thrombocytopenia

Fusun Gediz,1,2 Bahriye Kadriye Payzin,1 Ozlem Zekiye Cakmak,3 Yusuf Uzum,3 Damla Ernur,4 Fahri Sahin1,4
1Department of Hematology, Izmir Katip Celebi University, Ataturk Training and Research Hospital, Izmir; 2PNH Education and Study Group; 3Department of Internal Medicine Izmir Katip Celebi University, Ataturk Training and Research Hospital, Izmir; 4Department of Hematology, Ege University, Izmir, Turkey

Abstract

Paroxysmal nocturnal hemoglobinuria (PNH) is a disease which diagnosis may be delayed due to variable clinical findings. We describe herein a case of PNH in a 21 year old woman who admitted with complaints of chronic weakness, intermittent spontaneous ecchymoses, and an intermittent abdominal pain. On laboratory tests thrombocytopenia and iron deficiency anemia without any clinical findings were found. Flow cytometric evaluations showed a PNH clone of 15% for erythrocytes, 64% for monocytes, and 60% for granulocytes. The patient was diagnosed with PNH and an eculizumab therapy was initiated. Following initiation of eculizumab therapy, the frequency of abdominal pain attacks decreased, hemoglobin level normalized, and platelet values increased slightly. In patients submitting with a triad of symptoms such as thrombocytopenia, iron deficiency anemia, and abdominal pain attacks of unknown etiology we suggest considering PNH. We also encourage physicians to share their similar observations in order to raise the knowledge on infrequent presentations of PNH.

Introduction

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, life-threatening, hematological disorder characterized by hemolysis of the red blood cells due to activation of the complement system.1 The prevalence of the disease is estimated as 1 to 5 cases per million worldwide. Clinical triad of hemolytic anemia, bone marrow failure and thrombophilia is typical for PNH.2 The complex pathogenic mechanism of the disease is mostly discovered while some biological aspects are still under investigations. Clonal expansion of hematopoietic stem cells (HSCs) with a somatic mutation in X-linked phosphatidylinositol glycan class A (PIG-A) gene are considered to be the main cause of the disease.3 Due to this mutational PNH is considered to be a genetic hematological disorder. However this genetic abnormality is insufficient to explain the pathogenesis of bone marrow failure and thromboembolism, therefore investigations and discussions are ongoing.4 The absence of complement regulators on erythrocytes is the main reason of chronic hemolysis patients with PNH. Anemia, hemoglobinuria, fatigue, painful abdominal crises, dysphagia and erectile dysfunction are other symptoms related to intravascular hemolysis.5 The thromboembolism is consider to be also linked to hemolysis however the true pathophysiology is not clear yet. Thrombosis and renal failure are leading causes of death in PNH patients.6 Thrombocytopenia is a rare and unusual manifestation of PNH. In the literature there are insufficient data about the thrombocytopenia as initial presentation of PNH. Herein we report a 21 year-old woman with PNH presenting with thrombocytopenia misdiagnosed as immune thromocytopenic purpura.

Case Report

Twenty-one year-old woman was referred to our department at November 2014 from a medical center where she was followed for 2 years with diagnosis of immune thrombocytopenia and iron deficiency anemia. During that follow-up period she did not experience any bleeding and had moderate thrombocytopenia required not any treatment with antithrombotic drugs. However an oral iron supplementation on an occasional basis was given for anemia. Therefore she was referred to our clinic for further diagnosis and treatment. Her medical history showed that, she had been recovering while she was receiving oral iron supplementation; however her hemoglobin (Hb) levels were decreasing soon after cessation of treatment. Her thrombocytopenia (ranged from 45,000 to 55,000/mm3) persisted and there were no clinical findings consistent with blood loss that can explain a possible iron deficiency anemia. Also according to her anamnesis she reported complaints of chronic weakness, intermittent spontaneous ecchymoses, and an intermittent abdominal pain of unknown etiology. All necessary evaluations including abdominal ultrasound, and also assessments regarding thrombosis and FMF were performed however no clinical evidence was found for her abdominal pain.

Her thrombocytopenia (ranged from 45,000 to 55,000/mm3) persisted and there were no clinical findings consistent with blood loss that can explain a possible iron deficiency anemia. Also according to her anamnesis she reported complaints of chronic weakness, intermittent spontaneous ecchymoses, and an intermittent abdominal pain of unknown etiology. All necessary evaluations including abdominal ultrasound, and also assessments regarding thrombosis and FMF were performed however no clinical evidence was found for her abdominal pain.

Her thrombocytopenia (ranged from 45,000 to 55,000/mm3) persisted and there were no clinical findings consistent with blood loss that can explain a possible iron deficiency anemia. Also according to her anamnesis she reported complaints of chronic weakness, intermittent spontaneous ecchymoses, and an intermittent abdominal pain of unknown etiology. All necessary evaluations including abdominal ultrasound, and also assessments regarding thrombosis and FMF were performed however no clinical evidence was found for her abdominal pain.

Correspondence: Fahri Sahin, Department of Hematology, Ege University, Bornova, Izmir, Turkey. Tel.:+90.5323321269 - Fax:+90.2323904293. E-mail: drafhisahin@gmail.com

Key words: thrombocytopenia, abdominal pain, paroxysmal nocturnal hemoglobinuria.

Acknowledgements: the authors would like to thank to Doğuş Medical Consulting Company for medical writing and editing assistance provided in the preparation of this article

Contributions: all authors participated in diagnosis, observation, treatment and follow-up phases of this case; FG also participated in designing and drafting the manuscript.

Conflict of interest: the authors declare no potential conflict of interests.

Received for publication: 4 September 2016. Revision received: 13 November 2016. Accepted for publication: 17 November 2016.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

©Copyright F. Gediz et al., 2017 Licensee PAGEPress, Italy Hematology Reports 2017; 9:6862 doi:10.4081/hr.2017.6862

E-mail: drfahrisahin@gmail.com
Table 1. Laboratory results of the patient before and after Eculizumab treatment.

Parameter	Pre-treatment	2 months post-treatment
White blood cells (/mm³)	4800	6700
Hemoglobin (g/dL)	10.1	12.0
Platelets (/mm³)	58,000	78,000
Reticulocyte (%)	5.9	3.2
Lactate dehydrogenase (U/L)	547	227
Direct Coombs test	(-)	(-)
Mean corpuscular volume (fl)	88	92
Haptoglobin (mg/dL)	12	42
Serum ferritin levels (ng/mL)	12	124
Antinuclear antibodies	(-)	(-)
Anti-dsDNA antibodies	(-)	(-)
HBsAg, Hepatitis C virus and HIV serology	(-)	(-)
Lupus anticoagulant (lupus antibody)	(-)	(-)

Conclusions

In conclusion, we suggest considering PNH diagnosis in patients submitting with a triad of symptoms: thrombocytopenia, iron deficiency anemia, and abdominal pain attacks of unknown etiology. We also encourage physicians to share their similar observations in order to raise the knowledge on this unusual presentation of PNH.

References

1. Risitano AM, Rotoli B. Paroxysmal nocturnal hemoglobinuria: pathophysiology, natural history and treatment options in the era of biological agents. Biologics 2008;2:205-22.
2. Risitano AM, Perna F, Selleri C. Achievements and limitations of complement inhibition by eculizumab in paroxysmal nocturnal hemoglobinuria: the role of complement component 3. Mini Rev Med Chem 2011;11:528-35
3. Hillmen P, Lewis SM, Bessler M, et al. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 1995;333:1253-8.
4. Socié G, Mary JY, de Gramont A, et
al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. Lancet 1996;348:573-7.

5. Lee JW, Jang JH, Kim JS, et al. Clinical signs and symptoms associated with increased risk for thrombosis in patients with paroxysmal nocturnal hemoglobinuria from a Korean Registry. Int J Hematol 2013;97:749-57.

6. Sahin F, Ozkan MC, Mete NG, et al. Multidisciplinary clinical management of paroxysmal nocturnal hemoglobinuria. Am J Blood Res 2015;5:1-9.

7. DeZern AE, Brodsky RA. Paroxysmal nocturnal hemoglobinuria: a complement-mediated hemolytic anemia. Hematol Oncol Clin North Am 2015;29:479-94.

8. Parker C, Omine M, Richards S, et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood 2005;106:3699-709.

9. Brodsky RA. Complement in hemolytic anemia. Blood 2015;126:2459-65.

10. Sahin F, Yilmaz AF, Ozkan MC et al. PNH is a debilitating, fatal but treatable disease: same disease, different clinical presentations. Am J Blood Res 2015;5:30-3.

11. Borowitz MJ, Craig FE, Digiuseppe JA, et al. Guidelines for the diagnosis and monitoring of paroxysmal nocturnal hemoglobinuria and related disorders by flow cytometry. Cytometry B Clin Cytom 2010;78:211-30.

12. Parker C. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet 2009;373:759-67.

13. Socie G, Mary JY, de Gramont A, et al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. French Society of Haematology. Lancet 1996;348:573-7.

14. Brodsky RA. Advances in the diagnosis and therapy of paroxysmal nocturnal hemoglobinuria. Blood Rev 2008;22:65-74.

15. Sahin F, Akay OM, Ayer M, et al. Pesg PNH diagnosis, follow-up and treatment guidelines. Am J Blood Res 2016;6:19-27.