Exploiting unlabeled data to enhance ensemble diversity

Min-Ling Zhang · Zhi-Hua Zhou

Abstract Ensemble learning learns from the training data by generating an ensemble of multiple base learners. It is well-known that to construct a good ensemble with strong generalization ability, the base learners are deemed to be accurate as well as diverse. In this paper, unlabeled data is exploited to facilitate ensemble learning by helping augment the diversity among the base learners. Specifically, a semi-supervised ensemble method named UDEED, i.e. Unlabeled Data to Enhance Ensemble Diversity, is proposed. In contrast to existing semi-supervised ensemble methods which utilize unlabeled data by estimating error-prone pseudo-labels on them to enlarge the labeled data to improve base learners’ accuracies, UDEED works by maximizing accuracies of base learners on labeled data while maximizing diversity among them on unlabeled data. Extensive experiments on 20 regular-scale and five large-scale data sets are conducted under the setting of either few or abundant labeled data. Experimental results show that UDEED can effectively utilize unlabeled data for ensemble learning via diversity augmentation, and is highly competitive to well-established semi-supervised ensemble methods.

Keywords Machine learning · Ensemble learning · Unlabeled data · Diversity
1 Introduction

In ensemble learning, a number of base learners are trained and then combined for prediction to achieve strong generalization ability (Dietterich 2000; Zhou 2009a). During the past two decades, a number of popular ensemble learning methods have been proposed, such as Boosting (Freund and Schapire 1995), Bagging (Breiman 1996), Stacking (Wolpert 1992), etc. Most of these methods work under the supervised setting where the labels of training examples are assumed to be known. In many real-world tasks, however, unlabeled training examples are readily available while obtaining their labels would be fairly expensive due to the involved time, human and economic costs. Semi-supervised learning is one of the major paradigms to exploit unlabeled data together with labeled data to improve learning performance automatically, without human interventions (Chapelle et al. 2006; Zhou and Li 2010; Zhu 2006).

This paper deals with semi-supervised ensembles, i.e. ensemble learning with labeled and unlabeled data. In contrast to the huge volume of literatures on ensemble learning and on semi-supervised learning, only a few works have been devoted to the study of semi-supervised ensembles. As recently indicated by Zhou (2009b), this was caused by the different philosophies of the ensemble learning community and the semi-supervised learning community. The ensemble learning community believes that it is able to boost the performance of weak learners to strong learners by using multiple learners, and so there is no need to use unlabeled data; while the semi-supervised learning community believes that it is able to boost the performance of weak learners to strong learners by exploiting unlabeled data, and so there is no need to use multiple learners. However, as Zhou (2009b) indicated, there are several important reasons why ensemble learning and semi-supervised learning are actually mutually beneficial, among which an important one is that by considering unlabeled data it is possible to help augment the diversity among the base learners, as explained in the following paragraph.

It is well-known that the generalization error of an ensemble is related to the average generalization error of the base learners and the diversity among the base learners. Generally, the lower the average generalization error (or, the higher the average accuracy) of the base learners and the higher the diversity among the base learners, the better the ensemble (Krogh and Vedelsby 1995). Previous ensemble methods work under supervised setting, trying to achieve a high average accuracy and a high diversity by using the labeled training set. It is noteworthy, however, pursuing a high accuracy and a high diversity may suffer from a dilemma. For example, for two classifiers which have perfect performance on the labeled training set, they would not have diversity since there is no difference between their predictions on the training examples. Thus, to increase the diversity needs to sacrifice the accuracy of one classifier. However, when we have unlabeled data, we might find that these two classifiers actually make different predictions on unlabeled data. This would be important for ensemble design. For example, given two pairs of classifiers, \((A, B)\) and \((C, D)\), if we know that all of them are with 100% accuracy on labeled training data, then there will be no difference taking either the ensemble consisting of \((A, B)\) or the ensemble consisting of \((C, D)\); however, if we find that \(A\) and \(B\) make the same predictions on unlabeled data, while
C and D make different predictions on some unlabeled data, then we will know that the ensemble consisting of (C, D) should be better. So, in contrast to previous ensemble methods which focus on achieving both high accuracy and high diversity using only the labeled data, the use of unlabeled data would open a promising direction for designing new ensemble methods.

In this paper, we propose the UDEED \textit{(Unlabeled Data to Enhance Ensemble Diversity)} approach which extends our previous research on ensemble learning with labeled and unlabeled data (Zhang and Zhou 2010). Specifically, UDEED aims to maximize accuracies of base learners on labeled data while maximize diversity among them on unlabeled data. Extensive experiments over 25 data sets are conducted with either few or abundant labeled training data. Experimental results show that: (a) By using unlabeled data for diversity augmentation, UDEED achieves much better performance than its counterpart which does not consider the usefulness of unlabeled data; and (b) UDEED also achieves highly comparable performance to other state-of-the-art semi-supervised ensemble methods.

The rest of this paper is organized as follows. Section 2 briefly reviews related work on semi-supervised ensembles. Section 3 presents UDEED. Section 4 reports our experimental results. Section 5 discusses several related issues. Finally, Section 6 concludes.

2 Related work

In ensemble learning area, there have been many works on building strong ensembles by trying to maximize ensemble diversity, such as imposing negative correlation constraints among base learners (Liu and Yao 1999a,b), utilizing artificial examples to encourage diversity (Melville and Mooney 2003; Melville 2005), etc. However, most of them are supervised ensembles which learn from labeled examples without considering unlabeled data. In this section, we will focus on reviewing related works on semi-supervised ensembles. As mentioned before, in contrast to the huge volume of literatures on ensemble learning and on semi-supervised learning, only a few work has been devoted to the study of semi-supervised ensembles.

Zhou and Li (2005) proposed the TRi-TRAINING approach which uses three classifiers and in each round if two classifiers agree on an unlabeled instance while the third classifier disagrees, then the two classifiers, under a certain condition, will label this unlabeled instance for the third classifier; the three classifiers are voted to make prediction. This is a \textit{disagreement-based} semi-supervised learning approach (Zhou and Li 2010), which can be viewed as a variant of the famous \textit{co-training} method (Blum and Mitchell 1998). Later, Li and Zhou (2007) extended TRi-TRAINING to CO-FOREST, by including more base classifiers and in each round the \textit{majority teach minority} strategy is still adopted.

In addition to TRi-TRAINING and CO-FOREST, there are several \textit{semi-supervised boosting} methods (Bennett et al. 2002; d’Alché Buc et al. 2002; Chen and Wang 2008; Mallapragada et al. 2009; Valizadegan et al. 2008). d’Alché Buc et al. (2002) proposed SSMBOOST to handle unlabeled data within the margin cost functional optimization framework for boosting (Mason et al. 2000), where the margin of an ensemble
Exploiting unlabeled data to enhance ensemble diversity

1. Introduction

H on unlabeled data \(x \) is defined as either \(H(x)^2 \) or \(|H(x)| \) with \(H(x) \in [-1, 1] \) being the ensemble output. Furthermore, SSMBOOST enforces that the base learners in the ensemble should be semi-supervised in their nature. Later, Bennett et al. (2002) developed ASSEMBLE, which labels unlabeled data \(x \) by the current ensemble as \(y = \text{sign}(H(x)) \), and then iteratively puts the newly labeled examples into the original labeled set to train a new base learner which is then added to \(H \). Following the same margin cost functional optimization framework, Chen and Wang (2008) regularized ASSEMBLE with local smoothness constraints to help induce new base learners with more reliable self-labeling processes.

Other than the margin cost functional formalization, MCSSB (Valizadegan et al. 2008) and SEMIBOOST (Mallapragada et al. 2009) estimate the labels of unlabeled instances by optimizing an objective function containing two terms. The first term encodes the manifold assumption that unlabeled instances with high similarities in input space should share similar labels, while the other term encodes the clustering assumption that unlabeled instances with high similarities to a labeled example should share its given label. Here, MCSSB implemented the objective terms based on Bregman divergence (Valizadegan et al. 2008), while SEMIBOOST implemented them with traditional exponential loss (Mallapragada et al. 2009). Recently, regularization techniques have been introduced to semi-supervised boosting by exploiting information-theoretic principles (Saffari et al. 2008, 2009) or multiple semi-supervised assumptions (Chen and Wang 2011).

A commonness of the above semi-supervised ensemble methods is that they construct the ensembles iteratively, and in particular, unlabeled data are exploited through assigning pseudo-labels for them to enlarge labeled training set. Specifically, pseudo-labels of unlabeled instances are estimated based on the ensemble trained so far (Bennett et al. 2002; d’Alché Buc et al. 2002; Li and Zhou 2007; Zhou and Li 2005), or with specific form of smoothness or manifold regularization (Chen and Wang 2008; Mallapragada et al. 2009; Valizadegan et al. 2008). After that, by regarding the estimated labels as their ground-truth labels, unlabeled instances are used in conjunction with labeled ones to update the current ensemble iteratively.

Although various strategies have been employed to make the pseudo-labeling process more reliable, such as by incorporating data editing (Li and Zhou 2005; Zhang and Zhou), the estimated pseudo-labels may still be prone to error, especially in initial training iterations where the ensemble is less accurate. In the next section we will present the UDEED approach. Rather than assigning pseudo-labels on unlabeled data to enlarge labeled training set, UDEED utilizes unlabeled data in a different way, i.e., help augment the diversity among base learners.

3. The UDEED approach

3.1 General formulation

Let \(\mathcal{X} = \mathbb{R}^d \) be the \(d \)-dimensional real-valued input space and \(\mathcal{Y} = \{-1, +1\} \) be the binary output space. Let \(\mathcal{L} = \{(x_i, y_i) | 1 \leq i \leq L\} \) be the labeled training set which contains \(L \) labeled training examples with \(x_i \in \mathcal{X} \) and \(y_i \in \mathcal{Y} \), and
$\mathcal{U} = \{x_i | L + 1 \leq i \leq L + U\}$ be the unlabeled training set which contains U unlabeled training examples with $x_i \in \mathcal{X}$.

We assume that the classifier ensemble is composed of m base classifiers $\{f_k | 1 \leq k \leq m\}$, where each of them maps from the instance space to $[-1, +1]$, i.e. $f_k : \mathcal{X} \rightarrow [-1, +1]$. Here, the value of $f_k(x)$ corresponds to the confidence of x being positive. Accordingly, $(f_k(x) + 1)/2$ can be regarded as the posteriori probability of $P(y = +1|x)$.

The basic strategy of UDEED is to maximize the fit of the classifiers on the labeled data, while maximize the diversity of the classifiers on the unlabeled data. Therefore, UDEED chooses to generate the classifier ensemble $f = (f_1, f_2, \ldots, f_m)$ by minimizing the global loss function:

$$V(f, \mathcal{L}, \mathcal{D}) = V_{\text{emp}}(f, \mathcal{L}) + \gamma \cdot V_{\text{div}}(f, \mathcal{D})$$

Here, the first term $V_{\text{emp}}(f, \mathcal{L})$ corresponds to the empirical loss of the ensemble on the labeled data set \mathcal{L}; the second term $V_{\text{div}}(f, \mathcal{D})$ corresponds to the diversity loss of the ensemble on a specified data set \mathcal{D}, such as $\mathcal{D} = \mathcal{U}$. Furthermore, γ is the cost parameter balancing the importance of the two loss terms.

The first loss term $V_{\text{emp}}(f, \mathcal{L})$ in Eq. 1 is calculated as:

$$V_{\text{emp}}(f, \mathcal{L}) = \frac{1}{m} \cdot \sum_{k=1}^{m} l(f_k, \mathcal{L})$$

Here, $l(f_k, \mathcal{L})$ measures the empirical loss of the k-th base classifier f_k on the labeled data set \mathcal{L}.

As shown in Eq. 1, the second loss term $V_{\text{div}}(f, \mathcal{D})$ is used to characterize the diversity among the based learners based on data set \mathcal{D}. However, it is well-known that diversity measurement is not a straightforward task since there is no generally accepted formal definition (Kuncheva and Whitaker 2003). Moreover, most of the existing diversity measures need to refer to the ground-truth labels of the data for diversity calculation, which are then not directly applicable here if \mathcal{D} contains unlabeled data.

In this paper, UDEED chooses to calculate $V_{\text{div}}(f, \mathcal{D})$ in a novel way as:

$$V_{\text{div}}(f, \mathcal{D}) = \frac{2}{m(m-1)} \cdot \sum_{p=1}^{m-1} \sum_{q=p+1}^{m} d(f_p, f_q, \mathcal{D}), \text{ where}$$

$$d(f_p, f_q, \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} f_p(x) f_q(x)$$

γ Similar objective functions with the combination of an accuracy term and a diversity term have been investigated in ensemble learning, though under the supervised setting without considering unlabeled data (Opitz 1999; Opitz and Shavlik 1996).
Here, \(|\mathcal{D}|\) returns the cardinality of data set \(\mathcal{D}\). Intuitively, \(d(f_p, f_q, \mathcal{D})\) represents the prediction difference between any pair of base classifiers on a specified data set \(\mathcal{D}\), without referring to the ground-truth labels of the data. Furthermore, note that the prediction difference is calculated based on the concrete output \(f(x)\) instead of the signed output \(\text{sign}[f(x)]\). In this way, the prediction confidence of each classifier other than the simple binary prediction is fully utilized, and at the same time enables UDEED’s objective (Eq. 1) being a continuous function easier to be optimized.

Based on the above formulation, UDEED aims to find the target model \(f^*\) which minimizes the loss function in Eq. 1:

\[
f^* = \arg\min_f V(f, \mathcal{L}, \mathcal{D})
\] (4)

3.2 Logistic regression implementation

In this paper, to instantiate the general formulation of UDEED given in the above section, logistic regression is employed to implement the base classifiers due to its effectiveness and simplicity. Concretely, each base classifier \(f_k (1 \leq k \leq m)\) is modeled as:

\[
f_k(x) = 2 \cdot g_k(x) - 1 = 2 \cdot \frac{1}{1 + e^{-(w_k^T x + b_k)}} - 1
\] (5)

Here, “T” represents the vector transpose. Furthermore, function \(g_k : \mathcal{X} \rightarrow [0, 1]\) takes the canonical form of logistic regression \(\frac{1}{1 + e^{-(w_k^T x + b_k)}}\) with \(d\)-dimensional weight vector \(w_k\) and bias value \(b_k\). Without loss of generality, in the rest of this paper, \(b_k\) is absorbed into \(w_k\) by appending the input space \(\mathcal{X}\) with an extra dimension fixed at value 1.

Correspondingly, the first loss term \(V_{\text{emp}}(f, \mathcal{L})\) in Eq. 1 is set to be the negative binomial likelihood function on the labeled data set \(\mathcal{L}\), which is commonly used to measure the empirical loss of logistic regression:

\[
V_{\text{emp}}(f, \mathcal{L}) = \frac{1}{m} \cdot \sum_{k=1}^{m} l(f_k, \mathcal{L}) = \frac{1}{mL} \cdot \sum_{k=1}^{m} \sum_{i=1}^{L} -\text{BLH}(f_k(x_i), y_i)
\] (6)

Here, the term \(\text{BLH}(f_k(x_i), y_i)\) returns the binomial likelihood of \(x_i\) having label \(y_i\), when \(f_k\) serves as the classification model. Considering that the posteriori

\[2\] As reviewed in (Kuncheva and Whitaker 2003), most existing diversity measures are calculated based on the oracle (correct/incorrect) outputs of base learners, i.e. the ground-truth labels of the data set are assumed to be known. However, considering that examples contained in the specified data set \(\mathcal{D}\) may be unlabeled, it is then infeasible to calculate \(d(f_p, f_q, \mathcal{D})\) by directly utilizing existing diversity measures.
probabilities of \(P(y = +1|x) \) and \(P(y = -1|x) \) can be calculated as \(\frac{1+f_k(x)}{2} \) and \(\frac{1-f_k(x)}{2} \) respectively with respect to the model \(f_k \). \(BLH(f_k(x_i), y_i) \) will then take the following form based on Eq. 5:

\[
BLH(f_k(x_i), y_i) = \ln \left(\left(\frac{1+f_k(x_i)}{2} \right)^{1+y_i} \left(\frac{1-f_k(x_i)}{2} \right)^{1-y_i} \right)
\]

\[
= -\frac{1+y_i}{2} \ln \left(1 + e^{-w^T_k \cdot x_i} \right) - \frac{1-y_i}{2} \ln \left(1 + e^{w^T_k \cdot x_i} \right)
\]

Note that the first term \(V_{\text{emp}}(f, \mathcal{L}) \) may also be evaluated in other ways, such as \(l_2 \) loss:

\[
V_{\text{emp}}(f, \mathcal{L}) = \frac{1}{mL} \sum_{k=1}^{m} \sum_{i=1}^{L} (f_k(x_i) - y_i)^2
\]

or hinge loss:

\[
V_{\text{emp}}(f, \mathcal{L}) = \frac{1}{mL} \sum_{k=1}^{m} \sum_{i=1}^{L} 1 - y_i f_k(x_i)
\]

and other possible forms. Based on Eqs. 5 and 6, the global loss function \(V(f, \mathcal{L}, \mathcal{D}) \) is instantiated as:

\[
V(f, \mathcal{L}, \mathcal{D})
\]

\[
= \frac{1}{mL} \sum_{k=1}^{m} \sum_{i=1}^{L} -BLH(f_k(x_i), y_i) + \gamma \cdot \frac{2}{m(m-1)} \sum_{p=1}^{m-1} \sum_{q=p+1}^{m} d(f_p, f_q, \mathcal{D})
\]

\[
= \frac{1}{mL} \sum_{k=1}^{m} \sum_{i=1}^{L} \frac{1+y_i}{2} \ln \left(1 + e^{-w^T_k \cdot x_i} \right) + \frac{1-y_i}{2} \ln \left(1 + e^{w^T_k \cdot x_i} \right)
\]

\[
+ \frac{2\gamma}{m(m-1)} \sum_{p=1}^{m-1} \sum_{q=p+1}^{m} \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \left(\frac{2}{1 + e^{-w^T_p \cdot x}} - 1 \right) \left(\frac{2}{1 + e^{-w^T_q \cdot x}} - 1 \right)
\]

The target model \(f^* \) is found by employing gradient descent-based techniques. Note that under logistic regression implementation, the loss function \(V(f, \mathcal{L}, \mathcal{D}) \) is generally non-convex, and the target model \(f^* \) returned by the gradient descent process would correspond to a local optimal solution.
The gradients of $V(f, L, D)$ with respect to the model parameters $\Theta = \{w_k|1 \leq k \leq m\}$ are determined as follows:

$$\frac{\partial V}{\partial \Theta} = \left[\frac{\partial V}{\partial w_1}, \ldots, \frac{\partial V}{\partial w_k}, \ldots, \frac{\partial V}{\partial w_m} \right],$$

where

$$\frac{\partial V}{\partial w_k} = -\frac{1}{mL} \sum_{i=1}^{L} \frac{\partial BLH(f_k(x_i), y_i)}{\partial w_k} + \frac{2\gamma}{m(m-1)} \sum_{k' = 1, k' \neq k}^{m} \frac{\partial d(f_k, f_{k'}, D)}{\partial w_k},$$

and

$$\frac{\partial BLH(f_k(x_i), y_i)}{\partial w_k} = \left(\frac{(1 + y_i)(1 - f_k(x_i))}{4} \ln \left(\frac{1 + e^{-w_k^T x_i}}{2} \right) - \frac{(1 - y_i)(1 + f_k(x_i))}{4} \ln \left(\frac{1 + e^{w_k^T x_i}}{2} \right) \right) \cdot x_i,$$

and

$$\frac{\partial d(f_k, f_{k'}, D)}{\partial w_k} = \frac{1}{2|D|} \sum_{x \in D} f_{k'}(x) \cdot (1 - f_k(x)^2) \cdot x \quad (7)$$

To initialize the ensemble, each classifier f_k is learned from a bootstrapped sample (Efron and Tibshirani 1993) of L, i.e. by sampling with replacement from L to form the training set $L_k = \{(x_i^k, y_i^k) | 1 \leq i \leq L\}$. Conventional maximum likelihood procedure is used to initialize the model parameter w_k by minimizing the following objective function:

$$\frac{1}{2} ||w_k||^2 + \lambda \cdot \sum_{i=1}^{L} -BLH(f_k(x_i^k), y_i^k)$$

Here, λ balances the model complexity (first term) and the binomial likelihood of f_k on L_k (second term). In this paper, λ is set to the default value of 1.

Recall that in Eq. 1, the first term $V_{\text{emp}}(f, L)$ regarding empirical loss is defined on the labeled training set L, while the second term $V_{\text{div}}(f, D)$ regarding diversity loss is defined on a specified data set D. Given the labeled training set L and the unlabeled training set U, we consider three possibilities of designating D:

- $D = \emptyset$: No data is employed to measure the diversity among base learners, i.e. $V_{\text{div}}(f, D) = 0$. The resulting implementation is called LC;
- $D = \hat{L}$: Here, $\hat{L} = \{x_i | 1 \leq i \leq L\}$ denotes the unlabeled data set derived from L. In this case, labeled training examples are employed to measure the diversity among base learners, and the ensemble is optimized by exploiting only L. The resulting implementation is called LCD;
\[D = \mathcal{U}: \] Unlabeled training examples are employed to measure the diversity among base learners, and the ensemble is optimized by exploiting both \(\mathcal{L} \) and \(\mathcal{U} \). The resulting implementation is called \(\text{LCUD} \).³

For either \(\text{LC} \) or \(\text{LCD} \), after the ensemble is initialized, a series of \textit{gradient descent} steps are performed to optimize the model by minimizing the global loss function \(V(f, \mathcal{L}, \mathcal{D}) \) with respective configuration of \(\mathcal{D} \). For \(\text{LCUD} \) however, instead of minimizing \(V(f, \mathcal{L}, \mathcal{D}) \) in the straightforward way of directly setting \(\mathcal{D} = \mathcal{U} \), the loss function is firstly minimized by a series of gradient descent steps by setting \(\mathcal{D} = \tilde{\mathcal{L}} \). After that, by using the obtained intermediate model as the \textit{starting point}, a series of gradient descent steps are further conducted to finely search the model space by setting \(\mathcal{D} = \mathcal{U} \). The purpose of this two-stage process is to distinguish the \textit{priorities} of the contribution from labeled data and unlabeled data. In other words, the labeled training examples are exploited with top priority to firstly induce the intermediate model for subsequent optimization. Note that similar strategies have been adopted by some successful semi-supervised ensemble methods, where objective terms involving labeled data are given much higher weight than those involving unlabeled data (Mallapragada et al. 2009; Valizadegan et al. 2008). More justifications on this specific optimization choice of \(\text{LCUD} \) are given in Sect. 5.1.

For any \textit{gradient descent}-based optimization process, it is terminated if either the loss function \(V(f, \mathcal{L}, \mathcal{D}) \) or the diversity term \(V_{\text{div}}(f, \mathcal{D}) \) does not decrease anymore. For each implementation, the label of an unseen example \(z \) is predicted by the learned ensemble \(f^* = (f_1^*, f_2^*, \ldots, f_m^*) \) via \textit{weighted voting}: \(f^*(z) = \text{sign} \left[\sum_{k=1}^{m} \tilde{f}_k^*(z) \right] \). Note that compared to \textit{unweighted voting} where \(f^*(z) = \text{sign} \left[\sum_{k=1}^{m} \text{sign}[f_k^*(z)] \right] \), the prediction confidence of each base learner could be fully utilized by \textit{weighted voting}.

Intuitively, if the ensemble does benefit from the diversity augmented by the unlabeled training examples, \(\text{LCUD} \) should achieve superior performance than the other two implementations \(\text{LC} \) and \(\text{LCD} \). In this paper, the third implementation (i.e. \(\text{LCUD} \)) is referred to as \(\text{UDEED} \), and the other two implementations (i.e. \(\text{LC} \) and \(\text{LCD} \)) can be viewed as degenerated versions of \(\text{UDEED} \).

4 Experiments

4.1 Experimental setup

Twenty-five publicly-available binary data sets are used for experiments, whose characteristics are summarized in Table 1. Fifteen of them are from UCI Machine Learning Repository (Frank and Asuncion 2010), five from UCI KDD Archive (Hettich and Bay 1998), four from Chapelle et al. (2006) and one from Lu and Jain (2004). Twenty \textit{regular-scale} data sets (first part) as well as five \textit{large-scale} data sets (second part) are included. Specifically, the data set size varies from 57 to 581,012, the dimensionality

³ The other possibility of designating \(\mathcal{D} \) with \(\mathcal{D} = \tilde{\mathcal{L}} \cup \mathcal{U} \) has also been considered, and the resulting implementation is called \(\text{LCUDU} \). Preliminary experiments show that \(\text{LCUDU} \) performs rather similar as \(\text{LCUD} \), and therefore only \(\text{LCUD} \) is studied in this paper for the simplicity of presentation.
Table 1 Characteristics of the data sets

Data set	Dimensionality	# Examples		
		Positive	Negative	Total
# Regular-scale: 20				
diabetes	8	268	500	768
heart	9	120	150	270
wdbc	14	357	212	569
austria	15	307	383	690
house	16	108	124	232
vote	16	168	267	435
vehicle	16	218	217	435
hepatitis	19	123	32	155
labor	26	37	20	57
ethn	30	1,310	1,320	2,630
ionosphere	34	255	126	381
kr_vs_kp	40	1,527	1,669	3,196
isolet	51	300	300	600
sonar	60	111	97	208
colic	60	136	232	368
credit_g	61	300	700	1,000
BCI	117	200	200	400
Digit1	241	734	766	1,500
COIL2	241	750	750	1,500
g241n	241	748	752	1,500
# Large-scale: 5				
adult	123	7,841	24,720	32,561
web	300	1,479	48,270	49,749
ijcm1	22	13,565	128,126	141,691
cod-rma	8	110,384	220,768	331,152
forest	54	283,301	297,711	581,012

varies from 8 to 300, and the ratio of positive examples to negative examples varies from 0.031 to 3.844.

For each data set, 50% of them are randomly selected to form the test set T, and the rest is used to form the training set, i.e. $L \cup U$. Let $r = |L|/(|L| + |U|)$ denote the percentage of labeled data in training set. For each data set, 50 random $L/U/T$ splits are performed. Hereafter, the reported performance of each method corresponds to the averaged result out of 50 runs on different splits. In this paper, r takes two different values: (a) 0.05 representing the case that only few labeled data is available; (b) 0.25 representing the case where there are abundant labeled data.\(^4\) As shown in Eq. 1, the

\(^4\) Generally, when there are only very few labeled data (say 2–4 examples), it becomes infeasible to launch ensemble learning. While with the help of unlabeled data, it is possible to build ensembles under such situation (Zhou et al. 2007), which is another advantage for using unlabeled data with ensembles (Zhou 2009b). However, this is beyond the scope of the paper since the goal of this paper is to show that unlabeled
cost parameter γ balances the empirical loss and diversity loss of the learning system. In this paper, it is set to the default value of 1. More discussions on the choice of γ are given in Sect. 5.1.

In the rest of this paper, a series of experiments are conducted to validate the effectiveness of our proposed approach:

- Firstly, comparative studies between UDEED (i.e. LcUd) and other well-established semi-supervised ensemble methods are reported;
- Secondly, experiments on the three different implementations Lc, Lcd and LcUd are further conducted to show whether unlabeled data do benefit ensemble learning;
- Thirdly, analysis based on several popular diversity measures is performed to verify whether the diversity among base learners can be enhanced by UDEED through utilizing unlabeled data in ensemble generation.

4.2 Comparative studies

In this section, to evaluate the effectiveness of UDEED (LcUd) in ensemble learning, it is compared with two popular supervised ensemble methods BAGGING (Breiman 1996) and ADABOOST (Freund and Schapire 1995), as well as two successful semi-supervised ensemble methods ASSEMBLE (Bennett et al. 2002) and SEMIBOOST (Mallapragada et al. 2009). For fair comparison, logistic regression is employed as the base learner of each compared method. For UDEED, the maximum number of gradient descent steps is set to 25 and the learning rate is set to 0.25. For the other compared methods, default parameters suggested in respective literatures are adopted.

Figure 1 illustrates the performance curves of UDEED and its counterparts Lc and Lcd on six data sets with $r = 0.05$ (a–f) and $r = 0.25$ (g–l) respectively. Here, the ensemble size increases from 10 to 100 with an interval of 10. Accordingly, Fig. 2 illustrates the performance curves of BAGGING, ADABOOST, ASSEMBLE and SEMIBOOST on the same data sets. These preliminary experiments indicate that, in most cases, the performance of all the algorithms does not significantly change within successive ensemble sizes and gradually levels out as the ensemble size grows to 60.

Therefore, for the sake of simplicity, three different ensemble sizes (i.e. m) are considered in this paper: (a) $m = 20$ representing the case of small-scale ensemble; (b) $m = 50$ representing the case of medium-scale ensemble; and (c) $m = 100$ representing the case of large-scale ensemble.

Tables 2 to 4 report the detailed experimental results under small-scale, medium-scale and large-scale ensemble sizes respectively, when few ($r = 0.05$) or abundant ($r = 0.25$) labeled data is available. On each data set, the mean predictive accuracy out of 50 runs of each comparing algorithm is recorded, and the best performance is shown in boldface. In addition, SEMIBOOST fails to work on the five large-scale data

Footnote 4 continued

Data can help ensemble learning by enhancing diversity, instead of justifying the usefulness of unlabeled data for ensembles with sparse labeled data.
Exploiting unlabeled data to enhance ensemble diversity

109

sets, due to its demanding storage complexity, i.e. $O\left((|L| + |U|)^2\right)$, to maintain the similarity matrix for labeled and unlabeled training examples.

For small-scale ensemble size (Table 2), when few labeled data is available ($r = 0.05$), UDEED ranks in 1st place among the five comparing algorithms at 48% cases, in 2nd place at 40% cases, in 3rd place at 4% cases, and in 4th or 5th places at only 8% cases; When abundant labeled data is available ($r = 0.25$), UDEED ranks in 1st
place at 32% cases, in 2nd place at 40% cases, in 3rd place at 20% cases, and in 4th or 5th places at only 8% cases.

For medium-scale ensemble size (Table 3), when few labeled data is available \((r = 0.05)\), UDEED ranks in 1st place among the five comparing algorithms at 44% cases, in 2nd place at 36% cases, in 3rd place at 12% cases, and in 4th or 5th places at only 8% cases; When abundant labeled data is available \((r = 0.25)\), UDEED ranks in 1st place at 32% cases, in 2nd place at 44% cases, in 3rd place at 16% cases, and in 4th or 5th places at only 8% cases.

\[\text{Fig. 2} \text{ Performance of BAGGING, ADABOOST, ASSEMBLE and SEMIBOOST under varying ensemble sizes} \]

\[\text{[(a)–(f): } r = 0.05; \text{ (g)–(l): } r = 0.25\]\n
\[\text{place at 32\% cases, in 2nd place at 40\% cases, in 3rd place at 20\% cases, and in 4th or 5th places at only 8\% cases.}\n
\[\text{For medium-scale ensemble size (Table 3), when few labeled data is available} \ (r = 0.05), \text{ UDEED ranks in 1st place among the five comparing algorithms at 44\% cases, in 2nd place at 36\% cases, in 3rd place at 12\% cases, and in 4th or 5th places at only 8\% cases; When abundant labeled data is available} \ (r = 0.25), \text{ UDEED ranks in 1st place at 32\% cases, in 2nd place at 44\% cases, in 3rd place at 16\% cases, and in 4th or 5th places at only 8\% cases.}\n
\[\text{Springer} \]
Table 2 Predictive accuracy of each comparing algorithm under small-scale ensemble size \((m = 20)\)

Data set	Algorithm	\(r = 0.05\)		\(r = 0.25\)	
	UDEED	BAGG	ADAB	ASSEM	SEMI-B
diabetes	0.670	0.652	0.656	0.648	**0.679**
heart	**0.670**	0.626	0.561	0.550	0.641
wdbc	0.802	0.646	0.700	0.646	0.661
austra	0.714	0.629	0.653	0.614	0.682
house	0.889	0.886	0.597	0.868	**0.889**
vote	0.898	**0.899**	0.658	0.894	0.896
vehicle	0.805	0.767	0.685	0.612	0.677
hepatitis	0.770	0.786	0.588	0.781	**0.795**
labor	**0.660**	0.650	0.500	0.570	0.613
ethn	0.871	0.867	**0.879**	0.832	0.720
ionosphere	0.688	0.664	0.663	0.667	0.677
kr_vs_kp	0.859	0.851	**0.873**	0.839	0.835
isole	0.964	0.954	0.743	0.841	0.932
sonar	0.575	0.558	0.536	0.528	0.555
colic	0.714	**0.722**	0.654	0.663	0.691
credit_g	0.656	**0.695**	0.664	0.673	0.680
BCI	0.514	0.510	**0.515**	0.510	0.513
Digit1	**0.893**	0.886	0.854	0.852	0.892
COIL2	0.682	0.676	**0.735**	0.630	0.710
g241n	**0.665**	0.657	0.658	0.587	0.623
adult	0.831	**0.836**	0.818	0.831	N/A
web	**0.974**	0.973	0.971	**0.974**	N/A
icjnn1	0.904	0.904	**0.918**	0.904	N/A
cod-ma	0.902	0.792	**0.933**	0.683	N/A
forest	0.707	**0.703**	**0.735**	0.688	N/A

BAGGING, ADABOOST, ASSEM and SEMIBOOST are abbreviated as BAGG, ADAB, ASSEM and SEMI-B respectively.

Bold values indicate the algorithm with highest accuracy on each data set.

For large-scale ensemble size (Table 4), when few labeled data is available \((r = 0.05)\), UDEED ranks in \(1st\) place among the five comparing algorithms at 36\% cases, in \(2nd\) place at 52\% cases, in \(3rd\) place at 8\% cases, and in \(4th\) or \(5th\) places at only 4\% cases; When abundant labeled data is available \((r = 0.25)\), UDEED ranks in \(1st\) place at 28\% cases, in \(2nd\) place at 48\% cases, in \(3rd\) place at 20\% cases, and in \(4th\) or \(5th\) places at only 4\% cases.

To perform comparative analysis in a more well-founded way, we further examine the relative performance among the comparing algorithms based on statistical tests. Generally speaking, Friedman test may be the favorable choice (Demšar 2006) as several algorithms are compared over multiple data sets in this paper. Unfortunately, it is not directly applicable here as the ranks of SEMIBOOST on the five large-scale
Table 3 Predictive accuracy of each comparing algorithm under medium-scale ensemble size (m = 50)

Data set	Algorithm	$r = 0.05$				$r = 0.25$				
	UDEED	BAGG	ADAB	ASSEM	SEMI	UDEED	BAGG	ADAB	ASSEM	SEMI
diabetes	0.657	0.653	0.658	0.637	**0.684**	0.710	**0.731**	0.699	0.696	
heart	**0.649**	0.612	0.555	0.554	0.642	**0.794**	0.782	0.766	0.736	**0.794**
wdbc	**0.710**	0.640	0.704	0.664	0.707	0.885	0.806	**0.925**	0.916	0.816
austra	0.685	0.622	0.654	0.593	**0.701**	**0.828**	0.812	0.808	0.815	0.816
house	0.889	0.890	0.680	0.833	**0.891**	0.921	0.920	0.793	**0.925**	0.924
vote	**0.899**	**0.899**	0.624	0.888	0.896	0.931	0.929	0.868	0.927	**0.932**
vehicle	0.813	0.784	0.679	0.609	0.717	0.914	0.914	0.914	**0.919**	0.893
hepatitis	0.778	0.786	0.640	0.779	**0.794**	0.796	0.792	0.737	0.785	**0.797**
labor	**0.663**	0.650	0.500	0.569	0.614	**0.813**	0.799	0.681	0.749	0.804
ethn	0.872	0.866	**0.888**	0.829	0.763	**0.944**	0.942	0.937	0.939	0.931
ionosphere	**0.699**	0.662	0.666	0.669	0.683	0.797	0.722	**0.814**	0.783	0.748
kr_vs_kp	0.857	0.854	**0.880**	0.831	0.833	0.939	0.938	**0.943**	**0.943**	0.935
isole	**0.964**	0.959	0.724	0.870	0.931	0.989	0.988	0.672	0.986	**0.990**
sonar	**0.574**	0.569	0.537	0.546	0.552	0.687	0.690	**0.714**	0.679	0.696
colic	0.725	**0.732**	0.636	0.680	0.689	**0.783**	**0.783**	0.744	0.748	0.763
credit_g	0.677	**0.695**	0.652	0.682	0.680	0.703	**0.711**	0.674	0.689	0.703
BCI	**0.514**	0.511	0.510	0.502	0.512	0.582	0.577	**0.620**	0.583	0.572
Digit1	**0.894**	0.888	0.832	0.854	0.892	**0.941**	0.940	0.929	0.925	**0.941**
COIL2	0.675	0.673	**0.743**	0.648	0.716	0.808	0.812	**0.867**	0.821	0.820
g241n	**0.664**	0.663	0.660	0.597	0.623	**0.796**	0.794	0.762	0.750	0.791
adult	0.835	**0.837**	0.818	0.830	N/A	0.842	**0.844**	0.841	0.842	N/A
web	0.974	0.974	0.971	**0.975**	N/A	**0.981**	0.980	0.980	0.981	N/A
ijcnn1	0.904	0.904	**0.919**	0.904	N/A	0.907	0.906	0.906	**0.910**	N/A
cod-ma	0.855	0.793	**0.936**	0.683	N/A	0.891	0.851	**0.945**	0.851	N/A
forest	0.705	0.703	**0.735**	0.688	N/A	0.705	0.703	**0.737**	0.698	N/A

BAGGING, ADABOOST, ASSEMBLE and SEMIBOOST are abbreviated as BAGG, ADAB, ASSEM and SEMI respectively

Bold values indicate the algorithm with highest accuracy on each data set

data sets are not available due to the missing results on them. As an alternative, we employ the Wilcoxon signed-ranks test (Demšar 2006; Wilcoxon 1945) to see whether UDEED is significantly different from each of the other comparing algorithms. Table 5 summarizes the statistical test results at 95% significance level, where the p-values of respective Wilcoxon signed-ranks tests are also reported in the brackets.

Results in Table 5 indicate that: (a) UDEED outperforms BAGGING and ASSEMBLE under all the labeled ratios and ensemble sizes; (b) UDEED achieves statistically comparable performance to ADABOOST when abundant ($r = 0.25$) labeled data is available, while outperforms ADABOOST when few ($r = 0.05$) labeled data is available; (c) UDEED achieves statistically comparable performance to SEMIBOOST when few...
Table 4 Predictive accuracy of each comparing algorithm under large-scale ensemble size (m = 100)

Data set	Algorithm	r = 0.05			r = 0.25						
diabetes	UDEED	0.653	0.653	0.649	0.650	0.682	0.700	0.692	0.726	0.694	0.696
	BAGG	0.633	0.616	0.556	0.566	0.664	0.790	0.781	0.757	0.751	0.792
	ADAB	0.661	0.638	0.714	0.663	0.719	0.852	0.805	0.930	0.916	0.825
	ASSEM	0.655	0.619	0.644	0.585	0.701	0.824	0.812	0.806	0.808	0.817
	SEMIBoost	0.889	0.888	0.609	0.837	0.890	0.921	0.921	0.831	0.919	0.924
house											
vote											
vehicle											
hepatitis											
labor											
ethn											
ionosphere											
kr_vs_kp											
isolet											
sonar											
colic											
credit_g											
BCI											
Digit1											
COIL2											
g24n											
adult											
web											
ijcnn1											
cod-rna											
forest											

Bagging, AdaBoost, Assemble and SemiBoost are abbreviated as BAGG, ADA, ASSEM and SEMI respectively.

Bold values indicate the algorithm with highest accuracy on each data set.

Labeled data is available with medium-scale (m = 50) and large-scale (m = 100) ensemble sizes, while outperforms SemiBoost under other circumstances.

Therefore, out of all the 24 statistical comparisons (2 labeled ratios × 3 ensemble sizes × 4 comparing algorithms), it is rather impressive that UDEED achieves significantly superior performance in 79.2% cases and no algorithms have once outperformed UDEED. The above results clearly validate that UDEED is highly competitive to other well-established ensemble learning methods, whenever few or abundant labeled data is available.

As a reference, we also performed Friedman test (together with post-hoc Nemenyi test (Demšar 2006) at 95% significance level) at the expense of excluding SemiBoost.
Table 5 Wilcoxon signed-ranks test (at 95% significance level) for UDEED versus each of the other comparing algorithms

Labeled ratio	Ensemble size	UDEED	BAGGING	ADABOOST	ASSEMBLE	SEMIBOOST	
r = 0.05	m = 20	win	[6.3e−3]	win	[8.0e−3]	win	[1.3e−2]
	m = 50	win	[1.1e−2]	win	[1.0e−2]	tie	[5.9e−2]
	m = 100	win	[3.2e−3]	win	[3.8e−2]	tie	[3.0e−1]
r = 0.25	m = 20	win	[1.8e−2]	tie	[1.5e−1]	win	[2.6e−2]
	m = 50	win	[7.6e−3]	tie	[2.8e−1]	win	[2.0e−2]
	m = 100	win	[2.6e−2]	tie	[5.3e−1]	win	[4.0e−2]

The p-value out of the corresponding statistical test is shown in the brackets.

Table 6 Average ranks as well as critical difference (CD) for the post-hoc Nemenyi test (at 95% significance level) among UDEED, BAGGING, ADABOOST and ASSEMBLE

Labeled ratio	Ensemble size	Average rank	UDEED	BAGGING	ADABOOST	ASSEMBLE	CD
r = 0.05	m = 20	1.680	2.360	2.640*	3.320*	0.938	
	m = 50	1.720	2.240	2.840*	3.200*	0.938	
	m = 100	1.700	2.240	2.880*	3.340*	0.938	
r = 0.25	m = 20	1.920	2.500	2.600	2.980*	0.938	
	m = 50	1.900	2.680	2.740	2.680	0.938	
	m = 100	1.960	2.540	2.620	3.040*	0.938	

The lowest average rank is shown in boldface and a mark “*” is indicated if the average rank difference between UDEED and the comparing algorithm is larger than one CD.

for comparison. A total of 18 statistical comparisons are conducted (2 labeled ratios × 3 ensemble sizes × 3 comparing algorithms), where the average rank of UDEED and each comparing algorithm as well as the critical difference (CD) are reported in Table 6. The results reveal that: (a) UDEED achieves significantly superior performance in 44.4% cases, i.e. better than ADABOOST and ASSEMBLE with r = 0.05 under all ensemble sizes and better than ASSEMBLE with r = 0.25 under small-scale (m = 20) and large-scale (m = 100) ensemble sizes; (b) No algorithms have once outperformed UDEED.

4.3 The helpfulness of unlabeled data

As motivated in Sect. 1, UDEED aims to exploit unlabeled data to help ensemble learning in the particular way of augmenting diversity among base learners. Therefore, in addition to the above comparative experiments with other (semi-supervised) ensemble methods, it is rather important to show whether UDEED (LcUd) does achieve better performance than its counterparts (Lc and LCD) which do not consider using unlabeled data for diversity augmentation.
Table 7 Accuracy improvement for LcUd against LC and LCD under various labeled ratios and ensemble sizes

Data set	LcUd against LC	LCD										
	r = 0.05	r = 0.25	r = 0.05	r = 0.25								
	m=20	m=50	m=100	m=20	m=50	m=100	m=20	m=50	m=100			
diabetes	0.017	0.004	0.001	0.034	0.019	0.008	0.010	0.002	0.001	0.011	0.009	0.004
heart	0.049	0.029	0.023	0.023	0.009	0.006	0.023	0.013	0.010	0.009	0.003	0.004
wdbc	0.161	0.059	0.021	0.127	0.075	0.047	0.090	0.038	0.013	0.033	0.031	0.023
austra	0.089	0.067	0.036	0.022	0.015	0.010	0.026	0.032	0.018	0.004	0.006	0.005
house	-0.004	0.001	0.001	0.003	-0.001	0.001	-0.001	0.001	0.001	0.001	0.001	0.001
vote	0.001	0.001	-0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
vehicle	0.029	0.017	0.010	0.005	0.002	0.001	0.007	0.007	0.006	0.003	0.001	0.001
hepatitis	-0.018	-0.004	-0.005	0.010	0.005	0.008	-0.007	-0.002	-0.004	0.003	0.001	0.005
labor	0.010	0.013	0.010	0.003	0.004	0.004	-0.002	0.006	0.007	-0.007	0.007	0.004
ethn	0.011	0.005	0.003	0.002	0.001	0.001	0.006	0.004	0.003	0.001	0.001	0.001
ionosphere	0.028	0.038	0.031	0.073	0.076	0.057	-0.003	0.011	0.020	0.015	0.022	0.029
kr-vs-kp	0.005	0.004	0.002	0.002	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001
isolet	0.007	0.007	0.003	0.001	0.001	0.001	0.004	0.006	0.003	0.001	0.001	0.001
sonar	0.013	0.005	0.005	0.001	0.003	0.001	0.006	0.002	0.003	0.002	0.001	0.001
colic	-0.010	-0.004	-0.001	-0.006	-0.003	-0.001	-0.005	-0.002	-0.001	-0.003	-0.003	0.001
credit_g	-0.039	-0.018	-0.007	-0.019	-0.008	-0.005	-0.021	-0.010	-0.003	-0.009	-0.004	-0.002
BCI	0.008	-0.001	0.001	0.006	0.003	0.002	0.005	0.001	-0.001	0.005	0.002	0.002
Digit1	0.006	0.007	0.005	0.001	0.001	0.001	0.003	0.003	0.003	0.001	0.001	0.001
Table 7 continued

Data set	LcUd against											
	Lc	LCD										
	r = 0.05	r = 0.05	r = 0.25	r = 0.25								
	m = 20	m = 50	m = 100	m = 20	m = 50	m = 100	m = 20	m = 50	m = 100			
COIL2	0.012	0.002	0.002	-0.001	-0.004	-0.003	0.007	0.002	0.002	0.001	-0.001	-0.002
g241n	0.002	0.003	0.002	0.001	0.001	-0.001	0.001	0.003	0.002	-0.001	0.001	-0.001
adult	-0.005	-0.002	-0.001	-0.009	-0.002	-0.001	-0.003	-0.001	-0.001	-0.006	-0.002	-0.001
web	0.001	0.001	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.000
ijcnn1	-0.001	0.000	0.000	0.008	0.001	0.001	-0.001	0.000	0.000	0.006	0.001	0.001
cod-rna	0.109	0.062	0.033	0.069	0.041	0.023	0.036	0.029	0.016	0.022	0.018	0.011
forest	0.003	0.002	0.001	0.003	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Table 8 Wilcoxon signed-ranks test (at 95% significance level) for LcUd versus Lc and LCD

Labeled ratio	Ensemble size	LCuD versus	LC	LCD
r = 0.05	m = 20	win [1.0e−2]	win [4.2e−2]	
	m = 50	win [3.7e−3]	win [3.1e−3]	
	m = 100	win [2.7e−3]	win [4.4e−3]	
r = 0.25	m = 20	win [3.4e−3]	win [1.8e−2]	
	m = 50	win [8.7e−3]	win [1.1e−2]	
	m = 100	win [4.7e−3]	win [2.0e−3]	

The p-value out of the corresponding statistical test is shown in the brackets.

Table 7 reports the performance improvement (i.e. increase of predictive accuracy) of LCuD against LC and LCD under various settings. On each data set, the mean improved predictive accuracies out of 50 runs are recorded. Similar as Table 5, Wilcoxon signed-ranks test is employed to see whether LCuD is significantly different from its two counterparts. Table 8 summarizes the statistical test results at 95% significance level, where the p-values of respective Wilcoxon signed-ranks tests are reported in the brackets.

Results in Table 8 indicate that, out of all the 12 statistical comparisons (2 labeled ratios × 3 ensemble sizes × 2 comparing algorithms), it is rather impressive that LCuD achieves significantly superior performance in all 100% cases. The above results clearly validate that, by exploiting unlabeled data in the specific way of helping augment ensemble diversity, UDEED (LCuD) is capable of achieving better performance than its counterparts (LC and LCD) which do not consider employing unlabeled in ensemble generation, whenever few or abundant labeled data is available.

Furthermore, for more intuitionistic illustration, Fig. 3 gives the scatter plots between LCuD and its compared implementations LC and LCD on one regular-scale data set (wdbc) and one large-scale data set (cod-rna), with r = 0.05. Accordingly, Fig. 4 gives the scatter plots with r = 0.25. In each plot, when the ensemble size is fixed, the predictive accuracy of LCuD in each of the 50 runs is plotted against the compared implementation with a marker ‘+’ in the figure. Obviously, LCuD achieves better performance than LC and LCD as the majority of markers lie above the diagonal.

4.4 Diversity analysis

To clearly verify that UDEED (LCuD) does increase the diversity among base learners after generating the ensemble by utilizing unlabeled data, additional experiments are analyzed in this section based on several existing diversity measures. Specifically, four diversity measures summarized in (Kuncheva and Whitaker 2003) are considered, whose values are calculated based on the oracle outputs of base learners, i.e. correct or incorrect prediction for the class label.

Let m denote the number of base classifiers in the ensemble and N denote the number of examples in the test set T. In addition, let $O = [o_{ij}]_{m \times N}$ be the oracle
Fig. 3 Illustrative scatter plots between \(L_{cUd} \) and \(L_c \), \(L_{cd} \) in terms of predictive accuracy with \(r = 0.05 \).

Left column: \(L_{cUd} \) vs. \(L_c \), **Right column:** \(L_{cUd} \) vs. \(L_{cd} \)

output matrix. Here, \(o_{ij} = 1 \) if the \(i \)-th base learner correctly classifies the \(j \)-th test example (\(1 \leq i \leq m \), \(1 \leq j \leq N \)). Otherwise, \(o_{ij} = 0 \). The formal definitions of the four diversity measures are as follows:

- **Disagreement measure (DIS)** (Skalak 1996):

 \[
 \text{DIS} = \frac{2}{m(m - 1)} \sum_{i=1}^{m-1} \sum_{k=i+1}^{m} \text{dis}_{ik}, \quad \text{where} \\
 \text{dis}_{ik} = \frac{\sum_{j=1}^{N} o_{ij} \cdot (1 - o_{kj}) + \sum_{j=1}^{N} (1 - o_{ij}) \cdot o_{kj}}{N}
 \]

 Here, \(\text{dis}_{ik} \) represents the ratio between the number of examples on which a pair of base classifiers make opposite predictions to the total number of examples in \(\mathcal{T} \).

- **Double-fault measure (DF)** (Giacinto and Roli 2001):

 \[
 \text{DF} = \frac{2}{m(m - 1)} \sum_{i=1}^{m-1} \sum_{k=i+1}^{m} \text{df}_{ik}, \quad \text{where} \\
 \text{df}_{ik} = \frac{\sum_{j=1}^{N} o_{ij} \cdot o_{kj}}{N}
 \]
Exploiting unlabeled data to enhance ensemble diversity

Fig. 4 Illustrative scatter plots between LcUd and Lc, LCD in terms of predictive accuracy with $r = 0.25$.

- Left column: LcUd vs. Lc
- Right column: LcUd vs. LCD

$df_{ik} = \frac{\sum_{j=1}^{N} (1 - o_{ij}) \cdot (1 - o_{kj})}{N}$

Here, df_{ik} represents the proportion of examples in T which have been misclassified by both base classifiers.

- Entropy measure (ENT) (Cunningham and Carney 2000):

$$ENT = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{m - \lceil m/2 \rceil} \min \{L_j, m - L_j\}, \text{ where}$$

$$L_j = \sum_{i=1}^{m} o_{ij}$$

Here, L_j represents the number of base classifiers which make correct predictions for the j-th test example.
Table 9 Wilcoxon signed-ranks test (at 95% significance level) for UDEED’s FINAL ensemble versus its INITIAL ensemble in terms of four diversity measures

Labeled ratio	Ensemble size	FINAL ensemble versus INITIAL ensemble			
	DIS	DF	ENT	CFD	
r = 0.05	m = 20	win [4.3e−2]	tie [8.8e−1]	win [3.0e−2]	tie [1.8e−1]
	m = 50	win [3.2e−2]	tie [8.3e−2]	win [4.6e−2]	tie [7.2e−2]
	m = 100	win [4.0e−2]	win [8.6e−3]	win [4.0e−2]	win [3.2e−2]
r = 0.25	m = 20	win [2.6e−2]	tie [6.8e−2]	win [2.8e−2]	win [4.7e−3]
	m = 50	win [3.2e−2]	win [3.7e−2]	win [3.0e−2]	win [7.4e−3]
	m = 100	win [2.8e−2]	win [1.4e−2]	win [3.2e−2]	win [6.6e−3]

The p-value out of the corresponding statistical test is shown in the brackets.

- Coincident failure diversity (CFD) (Partridge and Krzanowski 1997):

\[
CFD = \begin{cases}
0, & p_0 = 1.0 \\
\frac{1}{1-p_0} \sum_{i=1}^{m} \frac{m-i}{m} p_i, & p_0 < 1.0
\end{cases}, \quad \text{where} \\
p_i = \frac{\sum_{j=1}^{N} \left[\left(i = \sum_{k=1}^{m} (1-o_{kj}) \right) \right]}{N}, \quad (0 \leq i \leq m)
\]

Here, \(1[\pi]\) is an indicator function which takes value of 1 if predicate \(\pi\) holds and 0 otherwise. Accordingly, \(p_i\) represents the probability that \(i\) out of \(m\) base classifiers give incorrect predictions on a randomly drawn example from \(T\).

Note that DIS and DF are pairwise measures which evaluate ensemble diversity by leveraging the relations between each pair of base classifiers, while ENT and CFD are non-pairwise measures which evaluate ensemble diversity from a more holistic viewpoint. In this paper, 1-DF is used instead of DF such that for all the measures, the greater the value the higher the diversity. In addition, all the four measures vary between 0 and 1.

Table 9 compares UDEED’s initial diversity after ensemble initialization with its final diversity after ensemble learning under various settings. Similar as Table 5, Wilcoxon signed-ranks test is employed to see whether the diversity of UDEED’s final ensemble is significantly different from its initial ensemble. Statistical test results at 95% significance level are summarized in Table 8, where the p-values of respective Wilcoxon signed-ranks tests are reported in the brackets.

Results in Table 9 indicate that: (a) UDEED significantly increases the initial ensemble diversity in terms of DIS and ENT under all the labeled ratios and ensemble sizes; (b) UDEED significantly increases the initial ensemble diversity in terms of DF when few \((r = 0.05)\) labeled data is available with large-scale \((m = 100)\) ensemble size, and when abundant \((r = 0.25)\) labeled data is available with medium-scale \((m = 50)\) and large-scale \((m = 100)\) ensemble sizes; (c) UDEED significantly increases the initial ensemble diversity in terms of CFD when few labeled data is available with large-scale ensemble size, and when abundant labeled data is available.
Table 10 Wilcoxon signed-ranks test (at 95% significance level) for UDEED versus BAGGING in terms of four diversity measures

Labeled ratio	Ensemble size	UDEED versus BAGGING			
		DIS	DF	ENT	CFD
$r = 0.05$	$m = 20$	win	tie	win	win
	$m = 50$	win	win	tie	win
	$m = 100$	win	win	tie	tie
$r = 0.25$	$m = 20$	win	tie	win	win
	$m = 50$	tie	win	tie	win
	$m = 100$	win	win	tie	tie

The p-value out of the corresponding statistical test is shown in the brackets.

Table 11 Wilcoxon signed-ranks test (at 95% significance level) for UDEED versus ADABOOST in terms of four diversity measures

Labeled ratio	Ensemble size	UDEED versus ADABOOST			
		DIS	DF	ENT	CFD
$r = 0.05$	$m = 20$	loss	tie	loss	tie
	$m = 50$	loss	tie	loss	win
	$m = 100$	loss	win	loss	win
$r = 0.25$	$m = 20$	loss	tie	loss	win
	$m = 50$	loss	tie	loss	win
	$m = 100$	loss	tie	loss	tie

The p-value out of the corresponding statistical test is shown in the brackets.

Therefore, out of all the 24 statistical comparisons (2 labeled ratios \times 3 ensemble sizes \times 4 diversity measures), it is rather impressive that UDEED significantly increases the initial ensemble diversity in 79.2% cases and never significantly decreases the initial ensemble diversity. The above results clearly validate that UDEED can effectively exploit unlabeled data to help augment ensemble diversity, whenever few or abundant labeled data is available.

Similar as Table 9, Tables 10 and 11 also compare the final ensemble diversity produced by UDEED to those of BAGGING and ADABOOST respectively, where the latter two algorithms both work under supervised setting without considering unlabeled data for diversity augmentation. Table 10 indicates that, out of all the 24 statistical comparisons, UDEED attains significantly higher ensemble diversity than BAGGING in 75% cases and never produces significantly lower ensemble diversity.

However, as indicated in Table 11, although ADABOOST attains significantly higher ensemble diversity than UDEED in 54.2% cases, this may be achieved at the expense of base learners’ accuracies. To verify this, Wilcoxon signed-ranks test is again employed to compare the mean accuracy of the base learners in the ensemble returned by UDEED and ADABOOST. Statistical test results (at 95% significance level) reveal that, when few
labeled data is available, UDEED achieves significantly superior mean base accuracy than ADABOOST with small-scale ensemble size ($p < 6.7 \times 10^{-4}$), medium-scale ensemble size ($p < 9.0 \times 10^{-4}$), and large-scale ensemble size ($p < 1.9 \times 10^{-4}$); When abundant labeled data is available, UDEED achieves significantly superior mean base accuracy than ADABOOST with small-scale ensemble size ($p < 1.6 \times 10^{-5}$), medium-scale ensemble size ($p < 1.8 \times 10^{-5}$), and large-scale ensemble size ($p < 3.5 \times 10^{-4}$). These results show that UDEED is capable of maintaining a healthy equilibrium between the ensemble diversity and accuracies.

5 Discussion

In this section, several issues related to the UDEED approach are further discussed. Firstly, the algorithmic behaviors of UDEED are analyzed regarding the optimization of its objective function. After that, the relationships between UDEED and two well-established techniques for ensemble diversity augmentation commonly used in supervised setting, i.e. negative correlation learning (Liu and Yao 1999a, b) and artificial examples construction (Melville and Mooney 2003; Melville 2005), are discussed.

5.1 Algorithmic behavior

In this paper, the cost parameter γ (Eq. 1) controlling the tradeoff between the empirical and diversity losses of UDEED is set to the default value of 1. Figure 5 (first row) illustrates the impact of γ on UDEED’s performance on one representative data set wdbc, where γ increases from 0.5 to 1.5 with an interval of 0.1. It is obvious that in most cases, increasing the value of γ wouldn’t jeopardize the performance of UDEED.

![Fig. 5 Performance of UDEED (first row) and UDEED-NCL (second row) on the wdbc data set changes as the cost parameter γ increases under various settings](image-url)
Table 12 Accuracy statistics out of 50 runs on the wdbc and cod-rna data sets under various settings, where values falling one standard deviation below the mean value are regarded as “bad” local solutions

	r = 0.05		r = 0.25			
	m = 20	m = 50	m = 100	m = 20	m = 50	m = 100
wdbc						
Min	0.714	0.643	0.633	0.883	0.848	0.802
Max	0.880	0.912	0.717	0.961	0.915	0.894
Mean±Std. Deviation	±0.039	±0.051	±0.020	±0.014	±0.017	±0.021
Prob. of “Bad” loc. sol. (%)	22	20	12	14	16	14
cod-rna						
Min	0.893	0.851	0.822	0.918	0.888	0.871
Max	0.909	0.860	0.829	0.922	0.893	0.875
Mean±Std. Deviation	±0.004	±0.003	±0.002	±0.001	±0.001	±0.001
Prob. of “Bad” loc. sol. (%)	16	18	16	16	16	14

To avoid over-emphasizing the diversity loss on the objective function, we choose to set $\gamma = 1$ in the experiments reported in Sect. 4. However, better performance could be expected if certain strategies such as cross-validation are utilized to finely tune the cost parameter.

As shown in Sect. 3.2, the target model of UDEED is found by optimizing Eq. 1 based on gradient descent-based techniques. Therefore, the returned model would correspond to a local optimal solution. To roughly illustrate the possibility of getting stuck in a “bad” local solution, Table 12 summarizes the statistics of accuracy out of 50 runs, where the minimal, maximal, and mean (together with standard deviation) values are reported for the wdbc and cod-rna data sets. Intuitively, values that fall one standard deviation below the mean value will be regarded as “bad” local solutions. Accordingly, the probability of obtaining a “bad” local solution can be calculated as shown in Table 12. It is revealed that UDEED will get stuck in a “bad” local solution with no more than 25% probability under either data set and various settings.

As shown in Eq. 1, UDEED’s objective function $V(f, \mathcal{L}, \mathcal{D})$ is composed of two different terms, i.e. the empirical loss term $V_{\text{emp}}(f, \mathcal{L})$ and the diversity loss term $V_{\text{div}}(f, \mathcal{D})$. To show whether these two terms are optimized with comparable scales, we calculated the relative differences between the two losses, i.e. $\Delta_{\text{loss}} = |V_{\text{emp}} - V_{\text{div}}| / V (\gamma = 1)$, on the five large-scale data sets. If the two loss terms are on quite different scales, the value of Δ_{loss} would be rather close to 1. Out of all the 1,500 calculations (2 labeled ratios \times 3 ensemble sizes \times 5 large-scale data sets \times 50 runs), Δ_{loss} is less than 0.3 in 28.9% cases, less than 0.5 in 71% cases, and less than 0.8 in 100% cases. These results indicate that in most cases, UDEED could maintain a reasonable balance between the empirical loss term and diversity loss term with γ fixed to 1.

In addition to the above algorithmic behaviors, another implementation issue regarding UDEED (i.e. LCUd) lies in its specific gradient descent strategy. As shown
in Sect. 3.2, the objective function of UDEED is minimized by using the intermediate model returned by LCD as the starting point for gradient descent optimization. To show the importance of the above choice, another version of UDEED named UDEED-DIRECT is implemented which directly invokes the minimization procedure without exploiting intermediate model.

Figure 6 gives the scatter plots between UDEED and UDEED-DIRECT on the \textit{wdbc} and \textit{cod-rna} data sets. In each plot, when the ensemble size is fixed, the predictive accuracy of UDEED in each of the 50 runs is plotted against UDEED-DIRECT with a marker ‘+’ in the figure. Obviously, UDEED achieves better performance than UDEED-DIRECT as the majority of markers lie above the diagonal. This clearly validates that employing the intermediate model returned by LCD as the starting point is quite crucial for the success of UDEED.

5.2 Diversity augmentation

UDEED aims to build strong ensembles by exploiting unlabeled data for diversity augmentation. On the other hand, the idea of enhancing ensemble diversity has been
widely investigated in ensemble learning under supervised setting. In this section, two existing strategies closely related to UDEED will be discussed in more details.

As shown in Eq. 3, UDEED measures ensemble diversity by considering the predictive difference between each pair of base classifiers on a specified data set \(D \). Here, the predictive difference could be viewed as a specific quantification of correlation between two classifiers, and maximizing diversity on \(D \) is effectively equivalent to punish correlations among base learners in the ensemble. Actually, the idea of decorrelation has been investigated in learning neural network ensembles (Rosen 1996), and later developed into the well-known techniques named negative correlation learning (NCL) (Brown and Wyatt 2003; Chen and Yao 2009; Liu and Yao 1999a,b; McKay and Abbass 2001). NCL aims to train an ensemble by introducing a correlation penalty term to the cost function of each individual learner.

NCL was proposed for ensemble learning under supervised setting. Here we generalize it to unlabeled data and implement the diversity loss term in Eq. 1 by enforcing negative correlation constraints (Liu and Yao 1999a,b) on the unlabeled data as follows:

\[
V_{\text{div}}(f, U) = \frac{1}{U} \sum_{i=L+1}^{L+U} (f_k(x_i) - f(x_i)) \sum_{k' \neq k} (f_{k'}(x_i) - f(x_i))
\]

Where \(D \) corresponds to the unlabeled data set \(U \), \(p_k \) represents the diversity loss of the \(k \)-th classifier \(f_k \) on \(D \), and \(f(x_i) = \frac{1}{m} \sum_{k=1}^{m} f_k(x_i) \) is the ensemble output on \(x_i \). The resulting variant of UDEED is named as UDEED-NCL. Here, logistic regression is again utilized as the base learner and the target model \(f^* \) is also found by employing gradient descent-based techniques.\(^5\)

It is known that using an ensemble to generate artificial data, and then using these data to train another learner is beneficial when the data sample does not capture the whole data distribution or contains noise (Zhou and Jiang 2004). Melville and Mooney (2003) and Melville (2005) argued that by using artificial example construction, the diversity can be augmented. They proposed the DECORATE approach which builds an ensemble in an iterative manner. In each iteration, the labeled training set is enlarged with a number of randomly constructed artificial examples, which are given labels that disagree with the decisions of current ensemble so as to encourage diversity.

\(^5\) Similar to UDEED, Fig. 5 (second row) also illustrates the impact of \(\gamma \) on UDEED-NCL’s performance on one representative data set \(\text{wdbc} \), where \(\gamma \) increases from 0.5 to 1.5 with an interval of 0.1. It is obvious that in most cases, increasing the value of \(\gamma \) wouldn’t jeopardize the performance of UDEED-NCL. Furthermore, UDEED-NCL tends to perform stably when \(\gamma \) increases to 1. Therefore, we choose to set \(\gamma = 1 \) for UDEED-NCL in the following experiments.
when building the new ensemble base classifier. In this paper, we re-implemented the DECORATE approach for comparative studies. For the sake of fair comparison, the number of artificial examples constructed by DECORATE in each iteration is the same as the number of unlabeled data used by UDEED, i.e. \(|\mathcal{U}|\).

Table 13 reports the difference in performance of UDEED against UDEED- NCL and DECORATE under various settings. On each data set, the mean predictive accuracy differences out of 50 runs are recorded. Wilcoxon signed-ranks test is employed to see whether UDEED is significantly different from UDEED- NCL and DECORATE. Table 14 summarizes the statistical test results at 95% significance level, where the \(p\)-values of respective Wilcoxon signed-ranks tests are reported in the brackets.
Table 14 Wilcoxon signed-ranks test (at 95% significance level) for UDEED versus UDEED- NCL and DECORATE

Labeled ratio	Ensemble size	UDEED versus	UDEED- NCL	DECORATE
\(r = 0.05 \)	\(m = 20 \)	win [2.3e-2]	win [1.9e-2]	
	\(m = 50 \)	win [2.3e-2]	win [2.3e-2]	
	\(m = 100 \)	win [8.0e-3]	tie [5.8e-2]	
\(r = 0.25 \)	\(m = 20 \)	win [2.8e-2]	win [4.0e-2]	
	\(m = 50 \)	win [2.1e-2]	win [3.0e-2]	
	\(m = 100 \)	win [2.8e-2]	win [2.2e-2]	

The p-value out of the corresponding statistical test is shown in the brackets.

As shown in Table 14, UDEED achieves significantly superior performance than UDEED- NCL under different labeled ratios and ensemble sizes. Note that for UDEED, the diversity is calculated based on the pairwise predictive difference between each pair of base classifiers where no ground-truth labels on the unlabeled data are assumed (Eq. 3). While for UDEED- NCL, the diversity is calculated based on the diversity loss of each individual base classifier where the outputs of ensemble implicitly serve as the ground-truth labels on the unlabeled data (Eq. 8).

In addition, Table 14 shows that UDEED achieves statistically comparable performance to DECORATE under one setting \((r = 0.05, m = 100) \), and achieves significantly superior performance under all the other settings. Note that the working mechanisms of using unlabeled data (UDEED) and using artificial data (DECORATE) are quite different. By using unlabeled data, the learning system can exploit the underlying distributional information concealed in unlabeled data. While by using artificial data, the randomly constructed artificial examples may not truly reflect the underlying distributions and therefore lead to possible overfitting of the learned system.

6 Conclusion

There have been many works trying to maximize diversity for ensemble construction, yet they are mainly based on using labeled data. On the other hand, there were some studies trying to use unlabeled data, yet they focus on using unlabeled data to improve accuracy. This paper proposes a new approach on ensemble learning with unlabeled data (Zhang and Zhou 2010), which works by maximizing accuracy on labeled data while maximizing diversity on unlabeled data. The major contribution of our work is to use unlabeled data to augment diversity, which suggests a new direction for ensemble design.

Extensive experiments on 25 data sets show that: (a) UDEED achieves highly comparable performance against other successful (semi-supervised) ensemble methods; (b) UDEED does benefit from unlabeled data by using them to augment the diversity among base learners. In the future, it is interesting to see whether UDEED works well with other base learners. It would be insightful to analyze why UDEED can achieve good performance theoretically. Furthermore, designing other ensemble methods by
exploiting unlabeled data to augment ensemble diversity gracefully and extending to categorical features and multi-class classification is a direction very worth studying.

Acknowledgements We want to thank the action editor and the anonymous reviewers for their helpful comments and suggestions. This research was supported by the National Science Foundation of China (61073097, 60805022, 61175049), the National Fundamental Research Program of China (2010CB327903), Ph.D. Programs Foundation of Ministry of Education of China for Young Faculties (200802941009), and the Cultivation Program for Young Faculties of Southeast University.

References

Bennett K, Demiriz A, Maclin R (2002) Exploiting unlabeled data in ensemble methods. In: Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining, Edmonton, Canada, pp 289–296
Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the 11th annual conference on computational learning theory, Madison, WI, pp 92–100
Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Brown G, Wyatt JL (2003) The use of the ambiguity decomposition in neural network ensemble learning methods. In: Proceedings of the 20th international conference on machine learning, Washington, DC, pp 67–74
Chapelle O, Schölkopf B, Zien A (2006) Semi-supervised learning. MIT Press, Cambridge, MA
Chen HH, Yao X (2009) Regularized negative correlation learning for neural network ensemble. IEEE Trans Neural Netw 20(12):1962–1979
Chen K, Wang S (2008) Regularized boost for semi-supervised learning. In: Platt JC, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. MIT Press, Cambridge, MA, pp 281–288
Chen K, Wang S (2011) Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions. IEEE Trans Pattern Anal Mach Intell 33(1):129–143
Cunningham P, Carney J (2000) Diversity versus quality in classification ensembles based on feature selection. Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College Dublin, Dublin, Ireland
d’Alché Buc F, Grandvalet Y, Ambroise C (2002) Semi-supervised marginboost. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems, vol 14. MIT Press, Cambridge, MA pp 553–560
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
Dietterich TG (2000) Ensemble methods in machine learning. In: Proceedings of the 1st international workshop on multiple classifier systems, Cagliari, Italy, pp 1–15
Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, New York
Frank A, Asuncion A (2010) UCI machine learning repository. Technical report, School of Information and Computer Science, University of California, Irvine, CA. http://archive.ics.uci.edu/ml
Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi PMB (ed) Lecture notes in computer science, vol 904. Springer, Berlin, pp 23–37
Giacinto G, Roli F (2001) Design of effective neural network ensembles for image classification processes. Image Vis Comput 19(9/10):699–707
Hettich S, Bay SD (1998) The UCI KDD archive. Technical report, Department of Information and Computer Science, University of California, Irvine, CA. http://kdd.ics.uci.edu
Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, MA pp 231–238
Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51(2):181–207
Li M, Zhou ZH (2005) SETRED: self-training with editing. In: Proceedings of the 9th Pacific-Asia conference on knowledge discovery and data mining, Hanoi, Vietnam, pp 611–621
Exploiting unlabeled data to enhance ensemble diversity

Li M, Zhou ZH (2007) Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans Syst Man Cybern A Syst Hum 37(6):1088–1098
Liu Y, Yao X (1999a) Ensemble learning via negative correlation. Neural Netw 12(10):1399–1404
Liu Y, Yao X (1999b) Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Trans Syst Man Cybern B Cybern 29(6):716–725
Lu X, Jain AK (2004) Ethnicity identification from face images. In: Proceedings of SPIE international symposium on defense and security, Kissimmee, FL, pp 114–123
Mallapragada PK, Jin R, Jain AK, Liu Y (2009) Semiboost: boosting for semi-supervised learning. IEEE Trans Pattern Anal Mach Intell 31(11):2000–2014
Mason L, Bartlett P, Baxter J, Frean M (2000) Functional gradient techniques for combining hypotheses. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, Cambridge pp 221–246
McKay R, Abbass H (2001) Analyzing anticorrelation in ensemble learning. In: Proceedings of 2001 conference on artificial neural networks and expert systems, Otago, New Zealand, pp 22–27
Melville P (2005) Creating diverse ensemble classifiers to reduce supervision. PhD thesis, Department of Computer Sciences, University of Texas at Austin, Austin, TX
Melville P, Mooney RJ (2003) Constructing diverse classifier ensembles using artificial training examples. In: Proceedings of the 18th international joint conference on artificial intelligence, Acapulco, Mexico, pp 505–510
Opitz DW (1999) Feature selection for ensembles. In: Proceedings of the 16th national conference on artificial intelligence, Orlando, FL, pp 379–384
Opitz DW, Shavlik JW (1996) Actively searching for an effective neural network ensemble. Connection Science 8(3–4):337–353
Partridge D, Krzanowski WJ (1997) Software diversity: practical statistics for its measurement and exploitation. Inf Softw Technol 39(10):707–717
Rosen BE (1996) Ensemble learning using decorrelated neural networks. Connect Sci 8(3):373–383
Saffari A, Grabner H, Bischof H (2008) SERboost: Semi-supervised boosting with expectation regularization. In: Proceedings of the 10th European conference on computer vision, Marseille, France, pp 588–601
Saffari A, Leistner C, Bischof H (2009) Regularized multi-class semi-supervised boosting. In: Proceedings of the 2009 IEEE computer society conference on computer vision and pattern recognition, Miami, FL, pp 967–974
Skalak D (1996) The sources of increased accuracy for two proposed boosting algorithms. In: Working notes of AAAI-96 workshop on integrating multiple learned models for improving & scaling machine learning algorithms, Portland, OR
Valizadegan H, Jin R, Jain AK (2008) Semi-supervised boosting for multi-class classification. In: Proceedings of the 19th European conference on machine learning, Antwerp, Belgium, pp 522–537
Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83
Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259
Zhang ML, Zhou ZH (2010) Exploiting unlabeled data to enhance ensemble diversity. In: Proceedings of the 10th IEEE international conference on data mining, Sydney, Australia, pp 619–628
Zhang ML, Zhou ZH (in press) CoTrade: confident co-training with data editing. IEEE Trans Syst Man Cybern B Cybern
Zhou ZH (2009a) Ensemble learning. In: Li SZ (ed) Encyclopedia of biometrics. Springer, Berlin
Zhou ZH (2009b) When semi-supervised learning meets ensemble learning. In: Proceedings of the 8th international workshop on multiple classifier systems, Reykjavik, Iceland, pp 529–538
Zhou ZH, Jiang Y (2004) NeC4.5: neural ensemble based C4.5. IEEE Trans Knowl Data Eng 16(6):770–773
Zhou ZH, Li M (2005) Tri-training: exploiting unlabeled data using three classifiers. IEEE Trans Knowl Data Eng 17(11):1529–1541
Zhou ZH, Li M (2010) Semi-supervised learning by disagreement. Knowl Inf Syst 24(3):415–439
Zhou ZH, Zhan DC, Yang Q (2007) Semi-supervised learning with very few labeled training examples. In: Proceedings of the 22nd AAAI conference on artificial intelligence, Vancouver, Canada, pp 675–680
Zhu X (2006) Semi-supervised learning literature survey. Technical report 1530, Department of Computer Science, University of Wisconsin at Madison, Madison, WI