Use of Particle Flow Algorithms in a Dual Readout Crystal Calorimeter

Steve Magill - ANL

Outline:

Motivation
Detector Parameters
Use of a PFA in Dual Readout Crystal Calorimetry
Summary
Motivation

- Development of clear, dense crystals (PbWO, BGO, PbF, . . .) with both scintillator and cerenkov response
 - Cerenkov response is prompt, short λ
 - Scintillator response has longer time, longer λ

7-9 g/cc densities -> 5-6 λ_i total absorption crystal calorimetry in, e.g., CDF barrel calorimeter volume

- Development of photodetectors (SiPM, APD, . . .)
 - for scintillator response, small area (1 mm2) SiPMs
 - for cerenkov response, development of (thin) large area (~1 inch2) detectors

On-crystal photodetectors -> highly segmented and granular calorimeter

Cerenkov/scintillator response ratio correction optimizes energy resolution of calorimeter objects

Resulting high-purity particle shower content per calorimeter cell

-> Use of PFA algorithms to categorize clusters
Dual Readout Calorimeter Detector Parameters

Dual Readout Calorimeter in SiD02 Shell (Barrel and EC)

DR ECAL	DR HCAL
3 cm x 3 cm x 3 cm BGO	5 cm x 5 cm x 6 cm BGO
8 layers – 21.4 X_0 (1.1 λ_I)	17 layers – 4.6 λ_I
127 cm IR – 151 cm OR	151 cm IR – 253 cm OR
Scin/Ceren analog hits	Scin/Ceren analog hits

Muon Chambers
- 11 layers

Total Absorption Crystal Calorimeter
- 25 total layers of BGO
- 5.6 λ_I in barrel
Threshold/Timing Cuts on Calorimeter hits

e^+e^- \rightarrow ZZ \rightarrow \nu\nuqq \ @ \ 500 \ GeV

Scintillator Hits

dE/dx \sim 30, 60 \ MeV \ per \ mip
Threshold \sim 1/50 \ mip
Timing \ t<100 \ ns

Cerenkov Hits

Similar (magnitude) threshold
Timing \ t<100 \ ns
Electron Calibration for Scintillator, Cerenkov

10 GeV electrons

$\sigma/E = 0.017$ Scintillator
$\sigma/E = 0.052$ Cerenkov

$S = 1.004 \times s_{\text{raw}}$
$C = 7692 \times c_{\text{raw}}$
Cerenkov/Scintillator Correction for Hadrons

S/E slices in em fraction (C/S) bins

5, 10, 20, 50, 100 GeV pions

Note: for a visible fraction S/E, fluctuations in shower em fraction > fluctuations in had fraction at any fixed em fraction

S (e calibrated scintillator response)
- em and had visible energy

C (e calibrated cerenkov response)
- em part of shower

C/S ~ em fraction of visible energy

S/E = total fraction of energy seen

S/E slices in em fraction (C/S) bins

Scint over E bin .15
- Entries: 304
- Mean: 0.57547
- Rms: 0.555732

Scint over E bin .25
- Entries: 475
- Mean: 0.605937
- Rms: 0.563289

Scint over E bin .35
- Entries: 608
- Mean: 0.623591
- Rms: 0.582522

Scint over E bin .45
- Entries: 1225
- Mean: 0.663942
- Rms: 0.596844

Scint over E bin .55
- Entries: 1782
- Mean: 0.706982
- Rms: 0.623386

Scint over E bin .65
- Entries: 2579
- Mean: 0.741667
- Rms: 0.691175

Scint over E bin .75
- Entries: 3256
- Mean: 0.76332
- Rms: 0.693478

Scint over E bin .85
- Entries: 2667
- Mean: 0.62118
- Rms: 0.672199

Scint over E bin .95
- Entries: 1111
- Mean: 0.95115
- Rms: 0.74116
Polynomial Correction Functions: \(E = \frac{S}{P_n} \)

- \(P_1 = 0.315 + 0.684(C/S) \)
- \(P_2 = 0.677 - 0.439(C/S) + 0.762(C/S)^2 \)
- \(P_3 = 0.506 + 0.608(C/S) - 1.050(C/S)^2 - 0.935(C/S)^3 \)
- \(P_4 = 0.577 - 0.149(C/S) + 1.464(C/S)^2 - 2.302(C/S)^3 + 1.410(C/S)^4 \)

- \(\text{em fraction} = 1 \)
- \(S/E, C/S = 1 \)
- \(\rightarrow \) calibration

- Missing part of had fraction

- Mean and \(\sigma/\text{mean} \) of fit in each C/S bin plotted
- \(\rightarrow \) resolution improves with em fraction
Corrected Pion Scintillator signal using P3 Polynomial

\(\sigma/E \sim 0.08\)

\(\sigma/E \sim 0.07\)

\(\sigma/E \sim 0.05\)

E (GeV)
DiJet Mass: $e^+e^- \rightarrow ZZ \rightarrow qq\nu\nu$ @ 500 GeV

C/S correction per jet
No PFA

$\Delta M/M = 0.076$

$\Delta E/E = 0.036$
No leakage correction yet
Cluster and C/S corrections

~7 clusters per pion, many small fragments

Fit gives mean of ~20 GeV
$\sigma/E \sim 24\%/\sqrt{E}$
PFA Possibility? - MC Particle Contribution to DR Cal Cells

Scintillator Hit Collections

All Hits

Multiple Particles

Cerenkov Hit Collections

All Hits

Multiple Particles
Mip Cluster/Interaction SpacePoint Algorithm

Interaction spacepoint defines the start of showering and the end point of the track \(\rightarrow \) used for \(\Delta M \) correction on jets.
$e^+e^- \rightarrow ZZ \rightarrow \nu\nu qq$ @ 500 GeV

Contains perfect reconstructed particles (from MC gen and sim) and C/S-corrected Clusters with 4-hit minimum
PFA Performance – Track/CAL Cluster Match

\[e^+e^- \rightarrow ZZ \]
\[\rightarrow \nu\bar{\nu}qq \text{ @ } 500 \text{ GeV} \]

tracks = # mip clus
(but sometimes start of shower is layer 0, so mip cluster has 0 hits)

Track Core clusters lie on extrapolated track

Clusters pointing to the end of the mip cluster (ILSP Clusters) are rare after cores are removed

4.3 Tracks per event (19%) are matched to clusters by PFA
PFA Cluster Purities

$e^+e^- \rightarrow ZZ$
$
\rightarrow \nu\nuqq @ 500 \text{ GeV}$

Purity of mip clusters is $> 98\%$

Purity of core clusters $\sim 90\%$

Purity of ILSP clusters is $> 96\%$

Final E/p range for matched clusters determined by CAL resolution for charged pions
e^{+}e^{-} \rightarrow ZZ \rightarrow \nu\nuqq @ 500 \text{ GeV}

Mip clusters, core clusters, pointing clusters, and shower clusters

Final Track/Cal Cluster matches
-> Track 4-vectors are used in PFA, clusters are removed
Difference -> DiJet Mass – qq Mass

C/S-corrected Clusters

\[\sigma/M = 0.068 \]

PFA-enhanced Clusters

\[\sigma/M = 0.059 \]

13% improvement
PFA Template developed for SiD and variants:

- Fully modular construction
- Common IO for all modules:
 - Mip-finding/Track Endpoint, Cluster Algorithms, Cluster pointing, Core cluster matching, Track-Shower association, Cut-based photon ID, H-Matrix photon ID, Neutral hadron finding

All modules run on both Dual Readout collections with zero -> minimal modifications

First use of PFA: Mip-finder Track endpoint determination -> \(\Delta M \) correction from charged particles in event (see Adam Para’s talk later) or per jet

Same parameters as for SiD, only modification was to change collection names
Effect of ΔM Correction on Jet Masses

All-Track ΔM for C/S-corrected cluster jets

Unmatched Track ΔM for C/S-corrected + PFA jets

Use of PFA results in smaller mass per jet
DiJet Mass + ΔM Correction

$e^+e^- \rightarrow ZZ\rightarrow \nu\nu q\bar{q} @ 500$ GeV

C/S-corrected Clusters

$\sigma/M = 0.075$

19% improvement

PFA-enhanced Clusters

$\sigma/M = 0.061$
Difference -> DiJet Mass – qq Mass + ΔM Correction

C/S-corrected Clusters
$\sigma/M = 0.062$

PFA-enhanced Clusters
$\sigma/M = 0.059$

5% improvement
e^+e^- \rightarrow ZZ \rightarrow \nu\nuqq @ 500$ GeV

C/S-corrected Cluster RPs

C/S-corrected Clus
PFA Tracks + C/S-corrected Cluster RPs

4 Track/Cluster matches found

e^+e^- \rightarrow ZZ \rightarrow \nu\nuq\bar{q} @ 500 \text{ GeV}
Summary

- A total absorption calorimeter using dense crystals and employing dual readout of both scintillator and cerenkov light has been simulated and used to study high energy e+e- interactions.

- Because of the high segmentation and granularity of the crystal calorimeter configuration, high purity of particle contribution per calorimeter cell was obtained -> PFA approach to event reconstruction.

- Dual Readout corrections were applied to pion shower fragments from a NN cluster algorithm, resulting in an energy resolution stochastic term of $\sim 24%/\sqrt{E}$ for single pions.

- Modular PFAs developed for a pixelized sandwich calorimeter have been used without modification in the crystal calorimeter including:

 - Determination of the starting layer of hadron showers
 - Matching of core clusters to tracks
 - Cluster pointing algorithms
 - Iterative track shower association with E/p evaluation

- Using the PFA-enhanced approach along with the DR corrections to clusters and mass corrections to jets, improvement of the dijet mass resolution in the range of 5-19% has been obtained when compared to the non-PFA reconstruction.