The data in this article are as a result of a quest to uncover alternative research routes of deepening researchers’ understanding of integers apart from the traditional number theory approach. Hence, the article contains the statistical properties of the digits sum of the first 3000 squared positive integers. The data describes the various statistical tools applied to reveal different statistical and random nature of the digits sum of the first 3000 squared positive integers. Digits sum here implies the sum of all the digits that make up the individual integer.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
How data was acquired
The raw data is available in mathematical literature

Data format
Analyzed

Experimental factors
Zero and negative integers were not considered

Experimental features
Exploratory data analysis, mathematical computation

Data source location
Covenant University Mathematics Laboratory, Ota, Nigeria

Data accessibility
All the data are in this data article

Value of the data

• The data provides the exploratory statistics of digits sum of squared positive integers and their subsets.
• This technique of analysis can be used in data reduction.
• The data analysis can be applied to other known numbers.
• The data when completely analyzed can help deepen the understanding of the random nature of integers.

1. Data

The data provides a description of the statistical properties of the digits sum of the first 3000 squared positive integers and the subsets. The subsets are the even and odd positive integers. The subsets are equivalence and their descriptive statistics are summarized in Figs. 1–3:

Summary Report for Digits sum of squared positive integers

![Histogram and Descriptive Statistics]

Remark: The gaps observed in the histogram are because the digits sum of squared positive integers cannot yield some numbers such as: 2, 3, 5, 6, 8, 11, 12, 14, 15 and so on.

Fig. 1. The summary statistics of the digits sum of squared positive integers. **Remark**: The gaps observed in the histogram are because the digits sum of squared positive integers cannot yield some numbers such as: 2, 3, 5, 6, 8, 11, 12, 14, 15 and so on.
Summary Report for Digits sum of squared even positive integers

Parameter	Value
A-Squared	2.86
P-Value	<0.005
Mean	14.002
StdDev	5.013
Variance	25.133
Skewness	0.006293
Kurtosis	-0.407651
N	1500
Minimum	1.000
1st Quartile	10.000
Median	14.000
3rd Quartile	18.000
Maximum	28.000
95% Confidence Interval for Mean	13.748 – 14.256
95% Confidence Interval for Median	14.000 – 14.000
95% Confidence Interval for StdDev	4.840 – 5.199

Fig. 2. The summary statistics of the digits sum of squared even positive integers.

Remark: It can be seen that the mean and median of the data set are almost the same.

2. Experimental design, materials and methods

The digits sum or digital sum of integers has been a subject of interest because of its application in cryptography, primality testing, random number generation and data reduction. Details on the origin, theories and applications of the digits sum of squared positive integers, integers and other important number sequences can be found in [1–28]. Recently digits sum and digital root have been applied in the analysis of lotto results [29].

2.1. Exploratory data analysis

The true nature of the percentiles are shown using the Harrell-Davis quantile which is a better estimator and a measure of variability because it makes use of the data in totality rather than the percentiles that are based on order statistics. The Harrell-Davis quantile of the digits sum of square of positive integers is shown in Fig. 4.

Bootstrap methods are useful in construction of highly accurate and reliable confidence intervals (C.Is) for unknown and complicated probability distributions. The data for was resampled many times and C.Is was generated for the mean and the standard deviation. Bootstrap results varied slightly with the observed mean and standard deviation and convergence occurs as the confidence level increases. These are shown in Tables 1 and 2:

The bootstrap estimate of the mean is closed to the observed one. However, the median remained unchanged. This is an evidence of the robustness and the resistant nature of the median against undue influence of outliers. This is also in agreement with the bootstrap confidence limits. The summary is shown in Table 3.
The M-Estimators are checked for the convergence to the mean or the median. The M-Estimators are robust and resistant to the undue effect of outliers. Technically, an M-Estimator can be assumed as the fixed point of the estimating function. The results of the M-estimator for the digits sum of the first 3000 squared positive integers is summarized in Table 4.

The boxplot is an exploratory data analysis tool used to display graphically, the quantiles of a given numerical data. Outliers or extreme values are easily precipitated from the data and displayed graphically. The boxplots of the digits sums of squared positive integers and their subsets are shown in Fig. 5:

Fig. 3. The summary statistics of the digits sum of squared odd positive integers. Remark: Here, the mean and median of the data set are the same.

Fig. 4. Harrell-Davis quantiles.
Table 1
The bootstrap confidence interval for the mean of the digits sum of square of positive integers.

Confidence level (%)	Lower limit	Upper limit
99	27.02	27.76
98	27.03	27.77
97	27.07	27.75
96	27.08	27.72
95	27.10	27.70
94	27.12	27.68
93	27.12	27.70
92	27.12	27.66
91	27.12	27.66
90	27.14	27.64

Table 2
The bootstrap confidence interval for the standard deviation of the digits sum of square of positive integers.

Confidence level (%)	Lower limit	Upper limit
99	8.22	8.763
98	8.246	8.735
97	8.262	8.715
96	8.281	8.709
95	8.292	8.700
94	8.308	8.693
93	8.29	8.689
92	8.325	8.681
91	8.316	8.66
90	8.311	8.674

Table 3
Estimation results of bootstrap of the mean and median of digits sum of squared positive integers.

Statistic	P1	P5	Q1	Q2 (estimate)	Q3	P95	P99	S.D.	I.Q.R.
Mean	27.039	27.278	27.398	27.487	27.639	27.712	0.15221	0.20933	
Median	27	27	27	27	27	27	0	0	

P1 = first percentile, P5 = fifth percentile, Q1 = first quartile, Q2 = second quartile or the estimate, Q3 = third quartile, P95 = ninety-five percentile, P99 = ninety-nine percentile, S.D. = standard deviation, I.Q.R. = the inter-quartile range.

Table 4
The M-estimators for the first 3000 squared positive integers.

Sum of the digits of the squared positive integer	Huber’s M-estimatora	Tukey’s biweightb	Hampel’s M-estimatorc	Andrews’ waved
27.43	27.44	27.42	27.44	

Remark: The three M-estimators are the same but are closer to the mean than the median. This is an indication of the irregular behavior of the distribution.

a The weighting constant is 1.339.
b The weighting constant is 4.685.
c The weighting constants are 1.700, 3.400, and 8.500.
d The weighting constant is 1.340\pi.
Fig. 5. Boxplot summary of the digits sum of the first 3000 squared positive integers.

Individually Value Plot of Digits sum of squared positive integers

Fig. 6. Individual value plot of digits sum of the first 3000 squared positive integers. **Remark:** Some gaps in the plot are synonymous with the result of the histogram. Some extreme values are also noticed in the plot.

Individually Value Plot of Digits sum of squared even positive integers

Fig. 7. Individual value plot of digits sum of the squared even positive integers.
The data is slightly skewed to the left for the three cases with some outliers appearing in the case of the total. As the sample size increases, the frequency of the occurrence of the numbers below mean reduces and more outliers can also be obtained. On the other hand, more numbers are expected to appear as the sample size increases.

Particular patterns can be depicted through the use of individual value plots of observations. Some unique patterns were obtained for the even, odd and total squared positive integers. This is shown in Figs. 6–8:

Fig. 8. Individual value plot of digits sum of the squared odd positive integers. **Remark:** The plots for the even and odd are identical.

Fig. 9. (a) The mean plot, (b) The median plot.

The data is slightly skewed to the left for the three cases with some outliers appearing in the case of the total. As the sample size increases, the frequency of the occurrence of the numbers below mean reduces and more outliers can also be obtained. On the other hand, more numbers are expected to appear as the sample size increases.

Particular patterns can be depicted through the use of individual value plots of observations. Some unique patterns were obtained for the even, odd and total squared positive integers. This is shown in Figs. 6–8:
The mean plot and median plot are shown in Fig. 9a and b. The mean plot showed the behavior of the mean. This is almost the same result by the bootstrap and bootstrap confidence intervals. As excepted the median plot is an indication of the robustness of the median.

Winsorizing and trimming are two ways of achieving robustness. The robustness of the central tendency (mean) of the digits sum of the first 3,000 squared positive integers was considered. These are shown in Figs. 10 and 11.

The data is robust because the possibility of obtaining outliers or extreme values decreases as more values are expected to cluster around the mean. As the sample size increases, the extreme values become fewer. In the case of trimming, the same result is obtained since there are few extreme values to exclude from the analysis.

2.2. Curve estimation

There are few curve estimation models that are available in fitting a given data. The result of fitting the digits sum of the first 3000 squared positive integers using the models is shown in Table 5.
2.3. Probability distribution fit

Digits sum of the first 3000 squared positive integers is best fitted by Cauchy distribution and the details are shown in Table 6. This was done using EasyFit software.

2.4. Mathematical computational results

The raw data of sum of the digits square of the first 3000 integers can be used to generate another set of numbers by finding the absolute value of the difference of two consecutive numbers and the total data generated is the initial data minus 1. The process was repeated until the mode and the median was equal to one. This is because any further step(s) add little or no effect to the analysis and also to save computational time. Normality is reduced by the process as evidenced by the increase in kurtosis and skewness. This is shown in Table 7.
Acknowledgements

This research is sponsored by the following: Covenant University Centre for Research, Innovation and Discovery and Statistics Sub Cluster of the Software Engineering, Modeling and Intelligent System Research Cluster of Covenant University.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.09.055.

References

[1] A. Grabowski, On square-free numbers, Formaliz. Math. 21 (2) (2013) 153–162.
[2] B.K. Oh, Z.W. Sun, Mixed sums of squares and triangular numbers III, J. Number Theory 129 (4) (2009) 964–969.
[3] D. Hickerson, M. Kleber, Reducing a set of subtracting squares, J. Integer Seq. 2 (2) (1999) (Article 99.1.4).
[4] E.W. Weisstein, Square number, MathWorld (2002).
[5] H.I. Okagbue, M.O. Adamu, S.A. Iyase, A.A. Opanuga, Sequence of Integers generated by Summing the digits of their Squares, Indian J. Sci. Technol. 8 (15) (2015) (art 69912).
[6] S.A. Bishop, H.I. Okagbue, M.O. Adamu, F.A. Olajide, Sequences of numbers obtained by digit and iterative digit sums of Sophie Germain primes and its variants, Glob. J. Pure Appl. Math. 12 (2) (2016) 1473–1480.
[7] S.A. Bishop, H.I. Okagbue, M.O. Adamu, A.A. Opanuga, Patterns obtained from digit and iterative digit sums of Palindromic, Repdigit and Repunit numbers, its variants and subsets, Glob. J. Pure Appl. Math. 12 (2) (2016) 1481–1490.
[8] H.I. Okagbue, M.O. Adamu, S.A. Bishop, A.A. Opanuga, Digit and iterative digit sum of fibonacci numbers, their identities and powers, Int. J. Appl. Eng. Res. 11 (6) (2016) 4623–4627.
[9] H.M. Farkas, Sums of squares and triangular numbers, Online J. Anal. Comb. 1 (1) (2006) 1–11.
[10] J. Browkin, J. Brzeziñski, On sequences of squares with constant second differences, Can. Math. Bull. 49 (4) (2006) 481–491.
[11] J. Cilleruelo, F. Luca, J. Ruè, A. Zumalacarregui, On the sum of digits of some Sequences of integers, Cent. Eur. J. Math. 11 (1) (2013) 188–195.
[12] J.H. Conway, R.K. Guy, The Books of Numbers, 1st edition., Springer-Verlag, NY, 1996 (ISBN: 0-387-97993-X).
[13] J. Liu, M.C. Liu, T. Zhan, Squares of primes and powers of 2, II, J. Number Theory 92 (1) (2002) 99–116.
[14] J. Morgenbesser, Gelfond’s problems on the sum of digits: Doctoral Thesis of the Vienna University of Technology, Doctoral thesis of the Vienna University of Technology, 1982.
[15] J. Morgenbesser, The sum of digits of squares in $\mathbb{Z}[i]$, J. Number Theory 130 (7) (2010) 1433–1469.
[16] J.P. Allouche, J.O. Shallit, Sums of digits, overlaps and palindromes, Discret. Math. Theor. Comput. Sci. 4 (1) (2000) 1–10.
[17] J.E. Cohn, Square Fibonacci etc. Fibonacci Q. 2 (2) (1964) 109–113.
[18] P. Ribenboim, My Numbers, My Friends, Springer-Verlag, NY, 2000.
[19] R. Kaskin, O. Karaath, Some new properties of balancing numbers and squared triangular numbers, J. Integer Seq. 15 (1) (2012) 1–13 (Article 12.1.4).
[20] H.I. Okagbue, M.O. Adamu, P.E. Oguntunde, A.A. Opanuga, E.A. Owoloko, S.A. Bishop, Datasets on the statistical and algebraic properties of primitive Pythagorean triples, Data Brief 14 (2017) 686–694.
[21] U. Alfred, n and n+1 consecutive integers with equal sum of squares, Math. Mag. 35 (3) (1962) 155–164.
[22] Y.A. Latushkin, N.V. Ushakov, On the representation of Fibonacci and Lucas numbers as the sum of three squares, Math. Notes 91 (5) (2012) 663–670.
[23] Z.W. Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2) (2007) 103–113.
[24] H.I. Okagbue, M.O. Adamu, S.A. Bishop, A.A. Opanuga, Properties of sequences generated by summing the digits of cubed positive integers,Indian J. Nat. Sci. 6 (32) (2015) 10190–10201.
[25] H.I. Okagbue, A.A. Opanuga, P.E. Oguntunde, G.A. Eze, Positive numbers divisible by their iterative digit sum revisited, Pac. J. Sci. Technol. 18 (1) (2017) 101–106.
[26] H.I. Okagbue, A.A. Opanuga, P.E. Oguntunde, G.A. Eze, On some notes on the engel expansion of ratios of sequences obtained from the sum of digits of squared positive integers, Pac. J. Sci. Technol. 18 (1) (2017) 97–100.
[27] V.N. Mishra, V. Khatri, L.N. Mishra, Statistical approximation by Kantorovich type Discrete $S\beta$ operators, Adv. Differ. Equ. 2013 (2013) 345. http://dx.doi.org/10.1186/10.1186/1687-1847-2013-345.
[28] S. Guo, H. Pan, Z.W. Sun, Mixed sums of squares and triangular numbers, Elect. J. Comb. Number Theory A56 (2007) 1–5.
[29] H.I. Okagbue, M.O. Adamu, P.E. Oguntunde, A.A. Opanuga, M.K. Rastogi, Exploration of UK Lotto results classified into two periods, Data Brief 14 (2017) 213–219.