The Determinant of Pentadiagonal Centrosymmetric Matrix Based on Sparse Hessenberg’s Algorithm

N Khasanah 1, *

1 Mathematics Department, Faculty of Science and Technology, UIN Walisongo Semarang, Indonesia
*Corresponding author. Email: khasanah.nur@walisongo.ac.id

ABSTRACT
The algorithm of general pentadiagonal matrix has been evaluated before for computational purpose. The properties of this matrix on sparse structure are exploited to compute an efficient algorithm. This article propose a new construction of pentadiagonal matrix having centrosymmetric structure called pentadiagonal centrosymmetric matrix. Moreover, by applying the algorithm of determinant sparse Hessenberg matrix, an explicit formula of pentadiagonal centrosymmetric matrix’s determinant is developed.

Keywords: general pentadiagonal, centrosymmetric structure, sparse Hessenberg, algorithm, determinant.

1. INTRODUCTION
Pentadiagonal matrix is the one construction of sparse matrix widely applied in areas of science and engineering, such in numerical solution of ordinary and partial differential equations (ODE and PDE), interpolation problems and boundary value problems (BVP) [1]. The rule of this matrix is necessary at many areas, then the evaluation of this matrix is needed, particularly at determinant process. Based on the special structure of this matrix, some researchers focus on determinant problem based on computation stand point.

The main basic research about pentadiagonal matrix is started by [2] using two-term recurrence for evaluating determinant general matrix. Based on previous research [3] at computing the determinant of a tridiagonal matrix, generalization of the DETGTRI algorithm are obtained. This algorithm as the major concept for the next discussion on constructing determinant of pentadiagonal matrix [4-11].

On the other side, centrosymmetric matrix also has a special structure arise at some applications, for instance pattern recognition process [12]. By using analytical process this special entries of centrosymmetric matrix, the computation of determinant matrix is important to be evaluated. Studies about this topics are given at some papers [13-16] for a number of fast algorithm for computing determinant process by applying Hessenberg algorithm of determinant. This kind of matrix having rules on numerical analysis and arise at determinant centrosymmetric matrix [17-18].

The aim of this paper is to construct a new form of pentadiagonal matrix with centrosymmetric structure. Due to application both matrices and evaluation the structure, the algorithm of determinant of this matrix is proposed by using Hessenberg rule.

2. PRELIMINARIES
First of all, some definitions and properties are given for clear discussion at determinant process of pentadiagonal centrosymmetry matrix, as follows.

Definition 1 [11]. The matrix is called as $n \times n$ general pentadiagonal matrix which has definition such $D = \{d_{ij}\}_{i,j \in \mathbb{N}_0}$, where the entry $d_{ij} = 0$ for $|i - j| > 2$ or can be written as

$$D = \begin{pmatrix}
 d_{11} & d_{12} & d_{13} & \cdots & d_{1n} \\
 d_{21} & d_{22} & d_{23} & \cdots & d_{2n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 d_{n-1,n-3} & d_{n-1,n-2} & d_{n-1,n-1} & \cdots & d_{n,n} \\
 d_{n,n-2} & d_{n,n-1} & d_{n,n} & \cdots & d_{n,n-2}
\end{pmatrix} \quad (1)$$

Copyright © 2021 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license -http://creativecommons.org/licenses/by-nc/4.0/.
Definition 2 [13]. The entries of \(n\)-by-\(n\) lower Hessenberg matrix is the form as follows
\[
H = \begin{pmatrix}
 h_{1,1} & h_{1,2} & 0 & 0 & 0 \\
 h_{2,1} & h_{2,2} & h_{2,3} & 0 & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots \\
 h_{n-1,1} & h_{n-1,2} & \ldots & h_{n-1,n-1} & h_{n-1,n} \\
 h_{n,2} & h_{n,3} & \ldots & h_{n,n-1} & h_{n,n}
\end{pmatrix}
\]
(2)

Definition 3 [15]. The \(n\) order of sparse Hessenberg matrix is the matrix with the contraction as
\[
S = \begin{pmatrix}
 h_{1,1} & h_{1,2} & h_{1,3} & h_{1,4} & h_{1,5} & \ldots & h_{1,n-2} & h_{1,n-1} & h_{1,n} \\
 h_{2,1} & h_{2,2} & h_{2,3} & h_{2,4} & h_{2,5} & \ldots & h_{2,n-2} & h_{2,n-1} & h_{2,n} \\
 \vdots & \vdots & \ddots \\
 h_{n-1,1} & h_{n-1,2} & \ldots & h_{n-1,n-2} & h_{n-1,n-1} & h_{n-1,n} \\
 h_{n,1} & h_{n,2} & \ldots & h_{n,n-2} & h_{n,n-1} & h_{n,n}
\end{pmatrix}
\]
(3)

Definition 4 [14]. The centrosymmetric matrix is the matrix where \(A = (a_{ij})_{n \times n} \in \mathbb{R}^{n \times n}\) and has the entries as
\[
a_{ij} = a_{n+i-n-j} \quad \text{for} \quad 1 \leq i \leq n, 1 \leq j \leq n
\]
(4)

3. RESULTS AND DISCUSSION

This section discuss about the main result of this paper on constructing a new form of pentadiagonal centrosymmetric matrix. Then, the algorithm to compute determinant of this matrix is proposed also. Based on the rule of sparse Hesssenberg matrix, the steps of this algorithm is explained for deeper understanding

The construction of general pentadiagonal matrix and its algorithm for computing determinant has been found by [4]. As the different point of view from general structure of pentadigonal matrix, this article shows a new construction pentadiagonal matrix having centrosymmetric structure. The formation of this matrix we called as pentadiagonal centrosymmetric matrix. After constructing new form of the matrix, next we derive numerical algorithm for computing this new matrix. Based on the algorithm of sparse Hesssenberg, the explanations of this algorithm are written as follows.

First, let consider transforming the general pentadigonal matrix (1) into the formation of pentadigonal centrosymmetric matrix. In this discussion, we focus on general pentadigonal matrix, where is even number as its matrix ordo only. Based on the definition before about general pentadigonal (1) and centrosymmetric matrix (4), the formation pentadigonal centrosymmetric matrix is formed by the step:

3.1. Construct Sparse Hessenberg Matrix

Based on definition of pentadigonal and centrosymmetric matrix, then the pentadigonal centrosymmetric matrix is written as (1) where the entries have centrosymmetric structure \(d_{ij} = d_{n+i-j} \) for \(1 \leq i \leq n, 1 \leq j \leq n\). For a deeper understanding, let we show an example the form of \(8 \times 8\) pentadigonal matrix to be the specific matrix called pentadigonal centrosymmetric matrix such:

\[
D = \begin{pmatrix}
 d_{11} & d_{12} & d_{13} & \ldots & d_{1n} \\
 d_{21} & d_{22} & d_{23} & \ldots & d_{2n} \\
 \vdots & \vdots & \ddots & \ddots & \vdots \\
 d_{n1} & d_{n2} & \ldots & d_{nn}
\end{pmatrix}
\]
is pentadigonal form matrix. Then it constructed to be pentadigonal having centrosymmetric structure such

\[
\tilde{D} = \begin{pmatrix}
 d_{11} & d_{12} & \ldots & d_{1n} \\
 d_{21} & d_{22} & \ldots & d_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 d_{n1} & d_{n2} & \ldots & d_{nn}
\end{pmatrix}
\]
(5)

After getting this form matrix, the next work is transforming pentadigonal into sparse Hessenberg matrix. This step is useful for applying Hesssenberg algorithm at determinant computation. Based on the definition of pentadigonal form (1), then constructing with centrosymmetric entries, it continues by constructing sparse Hessenberg matrix \(H = (d_{ij})_{8 \times 8}\) written as [4]

\[
H = \begin{pmatrix}
 d_{11} & d_{12} & d_{13} & d_{14} & \ldots & d_{1n} \\
 d_{21} & d_{22} & d_{23} & d_{24} & \ldots & d_{2n} \\
 \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
 d_{n1} & d_{n2} & \ldots & d_{nn}
\end{pmatrix}
\]
(6)
From the above matrix, we choose \(\lambda_{1,1} \) from the matrix of

\[
\lambda_{1,1} = \begin{pmatrix}
1 & 0 \\
\lambda_{2,1} & 1 \\
& I_{n-1}
\end{pmatrix}
\] (7)

As the illustration, for 8\times8 pentadiagonal centrosymmetric matrix (5) then by choosing

\[
\lambda_{n,2} = -\frac{d_{n-1}}{d_{n-3}}
\]

to transform matrix where :

\[
\lambda_{1,2} = \begin{pmatrix}
1 & 0 \\
-\frac{d_{3,1}}{d_{3,3}} & 1 \\
& I_{n-1}
\end{pmatrix}
\]

\[
\lambda_{i,2} = \begin{pmatrix}
\cdots & \cdots \\
1 & 0 \\
& \cdots \\
& 1
\end{pmatrix}
\]

For a general formula, the number of \(\lambda_{n,k} \) is defined as \(\lambda_{n,k} = -\frac{d_{n,k+1}}{d_{n-k}} \) where \(d_{n-k} = d_{n-k} \). By the concept of \(V = \lambda_1 \lambda_2 \cdots \lambda_n \) , it has the form of \(VD = H \) [14]. Therefore,

\[
\det(D) = \det(V) \cdot \det(D) = \det(VD) = \det(H),
\]

with the \(\det(V) = 1 \)

Based on the element of \(D \) which integer numbers or \(d_i \in \mathbb{Z} \), then it can use the following matrix

\[
\lambda_{i,1} = \begin{pmatrix}
1 & 0 \\
-d_{i+1,i} & 1 \\
& I_{n-1}
\end{pmatrix}
\] (10)

Moreover, the computation of determinant of Hessenberg matrix is equal for computing the determinant of pentadiagonal centrosymmetric matrix. It means that the next step is how to compute Hessenberg matrix.

3.2. Construct the Algorithm of Determinant Pentadiagonal Centrosymmetric Matrix

Based on the study before about algorithm of determinant matrix, this determinant is constructed by using the two-term recurrence takes the following explanation.

First, take \(n \times n \) matrix \(Z_n = \begin{pmatrix} p_{n-1} \\ r_{n-1} \\ q_{n-1} \\ s_{n-1} \end{pmatrix} \), where \(Z_{n-1} \) has \((n-1) \times (n-1) \). \(q_{n-1}, s_{n-1} \) are the scalar and \(r_{n-1} \) has \(1 \times (n-1) \) as size of this block matrix. Next, the determinant of \(Z_n \) recursively is written as [14] :

\[
f_n = \begin{cases}
1 & \\
\alpha_i f_{i-1} & \text{if } i = 1, 2, \ldots, n.
\end{cases}
\]

Generally, the determinant of \(Z_i \) matrix is written by

\[
\det(Z_i) = f_i, \quad \text{where } i = 1, 2, \ldots, n.
\]
Futhermore, by applying previous algorithm at sparse Hessenberg matrix having the following recursive.

\[
\begin{align*}
\alpha_n &= d_{nn} - h_{nn} e^T_{n-1} H^{-1} e_{n-1} (d_{n-2,n} e_{n-2} + d_{n-1,n} e_{n-1}) \\
\alpha_n &= d_{nn} - d_{nn-1} (d_{n-2,n} e^T_{n-1} H^{-1} e_{n-1} + d_{n-1,n} e^T_{n-1} H^{-1} e_{n-1})
\end{align*}
\]

where \(e \) is vector unit.

By substitute the equations

\[
\begin{align*}
\alpha_n &= -\frac{f_{n-2}}{f_{n-1}} d_{n-1,n-2} \\
\alpha_n &= -\frac{f_{n-2}}{f_{n-1}} d_{n-1,n-2} + \frac{f_{n-3}}{f_{n-1}} d_{n-1,n-2} - \frac{f_{n-2}}{f_{n-1}} d_{n-1,n}
\end{align*}
\]

Moreover, by multiply the equation with \(f_{n-1} \), we have

\[
\begin{align*}
f_n = f_n f_{n+1} = f_{n+1} d_{n,n} + d_{n-1,n} \left(f_{n,n} d_{n-1,n-2} d_{n-2,n} - f_{n-2} d_{n-1,n} \right)
\end{align*}
\]

For a final step, construction of the algorithm of determinant pentadiagonal centrosymmetric matrix written as

\[
\begin{align*}
f_1 &= d_{11} \\
f_2 &= f_1 d_{22} - d_{21} d_{12} \\
f_3 &= f_2 d_{33} + d_{23} (d_{33} d_{13} - f_1 d_{23}) \\
& \quad \text{for } i = 4, 5, \ldots, n \\
f_i &= f_{i-1} d_{i,i} + d_{i-1,i} \left(f_{i-1} d_{i-1,i-2} d_{i-2,i} - f_{i-2} d_{i-1,i} \right) \\
\end{align*}
\]

This algorithm shows the rule of determinant of Hessenberg matrix can be contructed for general determinant of pentadiagonal centrosymmetric matrix.

To sum up of our work, the following construction of the algorithm of determinant of pentadiagonal centrosymmetric matrix is proposed as :

\[
\text{Input : Pentadiagonal Matrix } \mathbf{D} \quad (1) \\
\text{Output : } \det(\mathbf{D})
\]

Step 1 Transform Sparse Hessenberg Matrix
- Propose Pentadiagonal Centrosymmetric Matrix (5)
- Form Sparse Hessenberg Matrix (8)

Step 2 Construct the Algorithm of Determinant Pentadiagonal Centrosymmetric Matrix
- Applying Determinant of Sparse Hessenberg Matrix

Compute \(\det(\mathbf{D}) = f_n \)

4. CONCLUSION

The algorithm of sparse Hessenberg matrix is applied on constructing the algorithm of determinant general pentadiagonal centrosymmetric matrix. This algorithm is used caused by same structure of main matrix is sparse Hessenberg matrix, therefore it will be applicable.

ACKNOWLEDGMENTS

The author gratefully acknowledge Miss Annisa Nur Latifah for her help in editing the paper and the technical assistance.

REFERENCES

[1] Xi-Le Zhao, On the inverse of a general pentadiagonal matrix, Applied Mathematics and Computation, 2008, pp. 639–646. DOI : https://doi.org/10.1016/j.amc.2008.03.004
[2] Tomohiro Sogabe, On a two-term recurrence for the determinant of a general matrix Appl. Math. Comput., 2007, pp. 785-788. DOI : https://doi.org/10.1016/j.amc.2006.08.156
[3] M. El-Mikkawy, A fast algorithm for evaluating nth order tridiagonal deter- minants J. Comput. Appl. Math., 2004, pp. pp. 581–584. DOI : https://doi.org/10.1016/j.cam.2003.08.044
[4] Tomohiro Sogabe, A fast numerical algorithm for the determinant of a pentadiagonal matrix Appl. Math. Comput., 2008, pp. 835-841. DOI : https://doi.org/10.1016/j.cam.2007.07.015
[5] Abderraman Marrero and V Tomeo, Some results on determinants and inverses of nonsingular pentadiagonal matrices J. Comput. Appl. Math., 2015, pp. 447-455. DOI : https://doi.org/10.1016/j.cam.2014.03.016
[6] Xiao-Guang Lv, Ting-Zhu Huang and Jiang Le, A note on computing the inverse and the determinant of a pentadiagonal Toeplitz matrix, Applied Mathematics and Computation, 2008, pp. 327–331 Contents. DOI : https://doi.org/10.1016/j.amc.2008.09.006
[7] Jiteng Jia, Boting Yang and Sumei Li, On a homogenous recurrence relation for the determinants of general pentadiagonal Toeplitz matrices Comp. Math Appl., 2016, pp. 1036-1044. DOI : https://doi.org/10.1016/j.camwa.2016.01.027
[8] Jiteng Jia and Sumei Li, On determinants of cyclic pentadiagonal matrices with Toeplitz structure
[9] Jolanta Borowska, Lena Lacinska and Jowita Rychlewksa, On determinant of certain pentadiagonal matrix J. Appl. Math. Comput. Mech., 2013, pp. 21-26. DOI : 10.17512/jamcm.2013.3.03

[10] D.J. Evans, A recursive algorithm for determining the eigenvalues of a quindiagonal matrix Comput. J., 1973, pp. 70–73. DOI : https://doi.org/10.1093/comjnl/18.1.70

[11] R.A. Sweet, A recursive relation for the determinant of a pentadiagonal matrix Comm. ACM, 1969, pp. 330–332. DOI : https://dl.acm.org/doi/10.1145/363011.363152

[12] Datta and Morgera, On the reducibility of centro symmetric matrices Appl. Math. Comput., 2015, pp. 721-726. DOI : https://doi.org/10.1016/j.amc.2014.09.114

[13] N Khasanah, Farikhin and B Surarso, The algorithm of determinant of centrosymmetric matrix based on lower Hessenberg form IOP Conf. Series : Journal of Physics : Conf. Series, 2017, 824. DOI : doi:10.1088/1742-6596/824/1/012028

[14] Di Zhao and Hongyi Li, On the computation of inverse and determinant of a kind of special matrices Appl. Math. Comput., 2015, pp. 721-726. DOI : https://doi.org/10.1016/j.amc.2014.09.114

[15] Y.-H. Chen, C.-Y. Yu, A new algorithm for computing the inverse and the determinant of a Hessenberg matrix Appl. Math. Comput., 2011, pp. 4433–4436. DOI : https://doi.org/10.1016/j.amc.2011.10.022

[16] Nur Khasanah, Bayu Surarso, and Farikhin, Necessary and sufficient on the computation of determinant of a kind of special matrix AIP Conference Proceedings, 202 2234 040014. DOI : https://doi.org/10.1063/5.0008498

[17] Zhong-Yun Liu, Some properties of centrosymmetric matrices Appl. Math. Comput., 2003, pp. 297-306. DOI : https://doi.org/10.1016/S0096-3003(02)00254-0

[18] Gene H. Golub and Charles F. Van Loan, 1996, Matrix Computations, third ed., Johns Hopkins University Press : Baltimore and London