Characterization of HIV-1 molecular epidemiology and Transmitted drug-resistance in newly diagnosed HIV-infected patients in Sichuan, China

Chang Zhou
Sichuan Center for Disease Control and Prevention

Shu Liang
Sichuan Center for Disease Control and Prevention

Yiping Li
Sichuan Center for Disease Control and Prevention

Yan Zhang
Sichuan Center for Disease Control and Prevention

Ling Li
Sichuan Center for Disease Control and Prevention

Li Ye
Sichuan Center for Disease Control and Prevention

Dan Yuan
Sichuan Center for Disease Control and Prevention

Ling Su (✉ sl7512@163.com)
Sichuan Center for Disease Control and Prevention

Research Article

Keywords: HIV-1, Genotype, Molecular epidemiology, Transmitted drug resistance

Posted Date: November 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1050990/v1

License: ☑️ ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Sichuan Province is one of the highest AIDS epidemic provinces in China, with a large number of floating population. The annual number of cases of HIV/AIDS reported in Sichuan has been the highest province in China for several successive years. There is a lack of widespread and representative data on the distribution of HIV subtypes in Sichuan. We aim to investigate the characteristics of HIV-1 molecular epidemiology and transmitted drug-resistance in newly diagnosed HIV-infected patients in Sichuan, China.

Method

Archived plasma samples (n = 1524) from HIV-1 newly-diagnosed individuals in April 2019 were selected by cross-sectional investigation from all 21 cities in Sichuan Province. Phylogenetic relationship, transmission cluster, and genotypic drug resistance analyses were performed using HIV-1 polymerase (pol) gene sequences. We also analysed the association of demographic and virological factors with transmitted drug-resistance (TDR).

Results

Partial pol gene sequences were obtained from 1297 cases. HIV-1 epidemic strains in Sichuan province: the majority of subtypes were circulating recombinant form (CRF) 07_BC (675, 52.04%), CRF01_AE (343, 26.45%), CRF08_BC (115, 8.87%), CRF85_BC (67, 5.17%), subtype B (33, 2.54%), the other subtypes only accounted for 4.93%, and circulating recombinant forms (URFs) (23, 1.77%) were observed in the study, and the difference of age, ethnicity, education, occupation, region and transmission pathway of different subtypes were statistically significant, CRF08_BC was significantly drug-resistant. A total of 205 (43.78%) pol sequences were involved in the genetic transmission network, with 76 clusters ranging in size from 2 to 24 pol sequences. In addition, the level of TDR has reached a medium level, with 72 of 1297 (5.55%) cases carrying drug-resistance mutation sites, TDR mutation frequency to nonnucleoside reverse transcriptase inhibitors (NNRTIs, 3.85%) was much higher than nucleoside reverse transcriptase inhibitors (NRTIs, 0.31%) and protease inhibitors (PIs, 1.70%). The most common HIV-1 mutation pattern for NNRTI was V106 (1.31%, 17/1297) and E138 (1.16%, 15/1297), and for PI was M46 (0.69%, 9/1297).

Conclusion

The distribution of HIV-1 genotypes in Sichuan is more diverse and complex, and the Men who have sex with men (MSM) is underrated, arguing for behavior scaling up intervention in this specific population besides the elderly people with heterosexual transmission risk groups. The risk of TDR mutation frequency increased in newly diagnosed patients highlights the significance of genotypic drug resistance monitoring and molecular surveillance of pretreatment HIV-1 drug resistance. The regimen composed of TDF, 3TC and EFV was still currently the preferred solution used free first-line therapy.

Introduction

The prevalence of human immunodeficiency virus type 1 (HIV-1) remains a major public health burden in China. Sichuan province is in the interior of Southwest China, adjacent to Yunnan and Guizhou in the South and Tibet in the West. The epidemic of HIV/AIDS has kept rising in Sichuan Province since reported the first case of imported AIDS in 1991, the number of newly reported cases per year has increased by about 20% since 2006, by 2019, Sichuan province reported more than 170 thousand cases of HIV/AIDS, with the number of surviving cases ranking first in the country[1].

With the genetic variation and cross recombination of genes between different genotypes, numerous new recombinants are emerging, and the global epidemic situations of HIV has changed significantly. HIV enormous genetic variability and rapid evolution have led to its epidemic and therapeutic challenges.

Worldwide, the proportion of subtype C was the highest, accounting for 48%, followed by subtype A (12%), subtype B (11%) and CRF02_AG (8%), CRF01_AE (5%), G subtype (5%) and D subtype (2%)[2]. HIV-1 genotypes were the most prevalent in Africa, and viral diversity was the most abundant. There were almost all kinds of HIV strains with different genotypes, while Africa was also the initial source of CRF01-AE[3]. Thailand first discovered the case of epidemic CRF01_AE, where has played a central role in spreading to China[4]. Additionally, B subtype mainly originated in Thailand, and this subtype also became the main HIV-1 subtype transmitted by blood in Central China in the 1990s[5].
Subtype C originated in India and gradually spread to most parts of China through intravenous drug users (IDUs) and drug transportation in Yunnan at the end of the last century[6]. CRF01_AE mainly transmitted by sexual route spread from the southeast coast and southwest border to the whole country, becoming one of the main epidemic recombination types in China[7]. With the wide prevalence of subtypes B and C among IDUs in Yunnan, it was provided sufficient conditions to the hybridization and recombination of HIV-1 strain of and resulting in the formation of recombinant subtypes CRF07_BC and CRF08_BC[8]. Subtype B was common in China, and most of them are subtype B ‘similar to Thai strains, and subtype B’ from Thailand also originated from intravenous drug users in Yunnan[9].

Since Chinese government officially launched the National Free Antiretroviral Treatment Program (NFATP) in 2003, the number of patients enrolled in this program has increased rapidly year by year, with the increasing coverage of antiviral therapy, the occurrence of drug resistance is also increasing. The emergence of HIV drug resistance (HIVDR) threatens the global scale-up of antiretroviral treatment (ART) for treating HIV infection, which could increase the risk of ART failure. It is important to conduct HIVDR surveys to estimate the TDR rate of ART-naive PLWH to provide baseline information for effective ART programs, delaying HIVDR occurrence and developing a rational public health strategy to control HIV prevalence. However, HIVDR testing for ART-naive PLWH is not routinely performed in China as a developing country with limited conditions.

In a previous study, we performed a comprehensive investigation of the HIV epidemic in Sichuan Province, 2014[10] and some cities in Sichuan[11, 12]. With the development of HIV-1 epidemics, the demographic features and the characteristics and distribution of HIV-1 genotypes have changed, and there was no detailed and comprehensive investigation result of TDR in Sichuan province. To track the changing trend of HIV-1 genotypes in Sichuan, we performed a cross-sectional HIV-1 molecular epidemiological study and transmitted drug-resistance among a newly diagnosed HIV-infected population in Sichuan in 2019.

Material And Methods

Study participants

A total of 1524 plasma samples were obtained from individuals newly diagnosed as HIV-1 infected patients in April 2019 were selected by cross-sectional investigation from all 21 cities in Sichuan Province. The epidemiological data of demographic characteristics (i.e., ethnic, sex, age, and marital status) were acquired from China Information System for Disease Control and Prevention. After eliminating duplicate samples, *pol* sequence (covering 1,060 base pairs, HXB2: 2,254–3,313) information was successfully exported from 1297 PLWH in this study.

RNA extraction, amplification, and sequencing

About 5 ml of venous blood was extracted. The EDTA-K2 anticoagulated plasma samples were isolated from each participant and preserved in a -80°C freezer before sending the cold chain to the Sichuan CDC.

The viral nucleic acid was obtained from 200-ml plasma of PLWH by extraction machines (MagNA Pure LC system, Roche, Branchburg, NJ). Sequences were generated from the HIV-1 *pol*. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to amplify the full-length protease gene in the *pol* region and the first 300 codons of the reverse transcriptase gene. The PCR products were dealt with electrophoresis with 1% agarose gel, and the amplified positive products were purified and sequenced by Beijing Genomics Research Center Ltd. The detailed amplification and sequencing performed as previously described[13].

Sequence analysis and subtype determination

The obtained sequence was spliced by using the analysis software Sequencher 5.1. The BioEdit Sequence Alignment Editor was used to edit and correct the sequence. Mega version 7.0 software was used to determine the subtype. Using the ClustalW MegAlign to compared and corrected sorted sequences with the international reference strain sequences (from the HIV sequence database of Los Alamos National Laboratory in the United States)[14]. FastTree was used to estimate an approximately maximum likelihood phylogenetic tree for *pol* sequences using the GTR + G + I nucleotide substitution model[15], and the subtypes were preliminarily determined by clustering the sample sequences with international reference strains, then the online analysis tool HIV Databases BLAST(https://www.hiv.lanl.gov/content/index) was used to review the results. Presented phylogenetic tree by using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

Transmission cluster inference

The gene distance between the clusters was calculated using the software hyphy 2.2.4 in TN93 model, and the relationship between the two sequences was determined by the minimum gene distance method. An ambiguity fraction of 0.05 was adopted, that is only sequences with <5% ambiguities were retained. The visualization of communication network is realized using cytoscape 3.7.2 [16].
Drug resistance mutation analysis

Drug-resistance were analyzed based on genotypic interpretations defined by the Surveillance Drug Resistance Mutation list recommended by the World Health Organization. The Stanford University HIV DRUG RESISTANCE DATABASE (https://hivdb.stanford.edu/) was used to screen the pol sequences for surveillance drug resistance mutations (DRMs), it was evaluated relevant resistance for nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs)[17, 18].

Statistical analysis

Data were entered in a spreadsheet (Micorsoft Office Excel 2013) and analyzed using SPSS 25 software (IBM, Chicago, IL, USA). The demographic characteristics (sex, age, ethnicity, marital status, and transmission route) were expressed in percentage. Univariate logistic regression model was used to test the independent variables (i.e. sociodemographic) and transmission drug resistance individuals (1 = drug-resistance, 0 = non drug-resistance). Multivariate logistic regression model was used to further test the significance of all micro significant ($P < 0.1$), variables in univariate logistic regression model. P value < 0.05 was considered statistically significant.

Results

Demographic features and Distribution of HIV-1 genetic forms

1297 individuals with successfully obtained pol sequences from 1524 infected patients with HIV-1, multiple subtypes were identified (Fig. 1). In the phylogenetic tree, sequences belonging to different subtypes clustered separately. Furthermore, several clusters supported by high bootstrap values were also found among different subtypes, suggesting that various founder viruses were introduced into populations separately. HIV-1 epidemic strains in Sichuan province were: CRF07_BC (675, 52.04%), CRF01_AE (343, 26.45%), CRF08_BC (115, 8.87%), CRF85_BC (67, 5.17%), subtype B (33, 2.54%), the other subtypes only accounted for 4.93%, of which CRF55_01B (13, 1.00%), CRF105_0108 (11, 0.85%), CRF79_0107 (5, 0.39%), CRF59_01B (3, 0.23%), CRF86_BC (2, 0.15%), CRF57_BC(2, 0.15%), subtype C (2, 0.15%), CRF65_cpx (1, 0.08%), CRF88_BC (1, 0.08%), subtype D (1, 0.08%), and circulating recombinant forms (URFs) (23, 1.77%). URF including URF_BC (10, 0.77%), URF_01/BC (7, 0.54%), URF_B (4, 0.31%), URF_01/B (2, 0.15%).

It can be seen in Figure 2 that the subtypes in the central Sichuan Basin (Chengdu plain) are more abundant, the CRF_07BC subtypes in the Western Sichuan Basin account for a higher proportion, and the CRF_01AE in the Northeast Sichuan Basin account for more. CRF07_BC in Panzhihua-Xichang region accounts for 87.65% (71/81); most of the CRF85_BC was distributed in southern Sichuan (i.e., Yibin, 57/146, 39.04%); CRF08_BC is mainly distributed in Luzhou and Yibin (60%, 69/115); CRF07_BC (40/175, 22.29%), CRF08_BC (50/175, 28.57%), CRF01_AE (41/175, 23.43%) have similar composition ratios in Luzhou city, and CRF105_0108 subtypes of aggregation were found in there.

Demographic information is summarized in Table 1, among the six major subtypes, the difference of age, ethnicity, education, occupation, region and transmission pathway of different subtypes were statistically significant ($P < 0.05$). The majority groups of CRF85_BC (95.53%, 64/67) and CRF105_0108 (90.90%, 10/11) with age ≥50 years old were found in the heterosexual transmission; 89.39% of Yi infected with CRF07_BC; 49.75% of Han was infected with CRF07_BC, which was found their infection rate was higher than that of other age groups in the 25 year old (48/71, 67.60%) and 25-40 years old (129/183, 70.49%) age group. Among the transmission route of IDUs, mother to child transmission (MCT), and MSM, CRF07_BC was the dominant strain and the composition ratio of was 100%, 77.78% and 54.43%. Furthermore, 13/13 CRF55_01B, 5/5 CRF79_0107, 2/3 CRF59_01B was detected in men.
Table 1
General distribution characteristics of epidemic strains in Sichuan Province.

Variables	Total	CRF07_BC	CRF01_AE	CRF08_BC	CRF85_BC	B	Others	χ²	P	
Gender										
Male	936(72.17)	485(37.39)	246(18.97)	81(6.25)	48(3.70)	20(1.54)	56(4.32)	3.866	0.569	
Female	361(27.83)	187(14.42)	95(7.32)	33(2.54)	18(1.39)	13(1.00)	15(1.16)			
Age(years)										
Ⅰ<25	71(5.47)	48(3.70)	17(1.31)	0(0.00)	0(0.00)	0(0.00)	6(0.46)	83.627	0.000	
25~	183(14.11)	128(9.87)	29(2.44)	7(0.54)	0(0.00)	6(0.46)	13(1.00)			
40~	197(15.19)	110(8.48)	45(3.47)	27(2.08)	3(0.23)	4(0.31)	8(0.62)			
≥50	846(65.23)	386(29.76)	250(19.28)	80(6.17)	63(4.86)	23(1.77)	4(0.31)			
Ethnicity										
Han	1212(93.45)	603(46.49)	331(25.52)	111(8.56)	66(5.09)	32(2.47)	69(5.32)	45.287	0.000	
Yi	66(5.09)	59(4.55)	4(0.31)	1(0.08)	0(0.00)	1(0.08)	1(0.08)			
Zang	9(0.69)	6(0.46)	3(0.23)	0(0.00)	0(0.00)	0(0.00)	0(0.00)			
Others	10(0.77)	4(0.31)	3(0.23)	2(0.15)	0(0.00)	0(0.00)	1(0.08)			
Education level										
Junior college or above	83(6.40)	49(3.78)	26(2.00)	1(0.08)	0(0.00)	1(0.08)	6(0.46)	42.786	0.000	
High school or technical	99(7.63)	60(4.63)	23(1.77)	3(0.23)	1(0.08)	1(0.08)	11(0.85)			
secondary school										
Middle school	336(25.91)	193(14.88)	73(5.63)	32(2.47)	15(1.16)	7(0.54)	16(1.23)			
Primary school or illiterate	779(60.06)	370(28.53)	219(16.89)	78(6.01)	50(3.86)	24(1.85)	38(2.93)			
Marital status										
Unmarried	228(17.58)	140(10.79)	54(4.16)	12(0.93)	4(0.31)	3(0.23)	15(1.16)	22.134	0.104	
Married	727(56.05)	366(28.22)	196(15.11)	67(5.17)	41(3.16)	19(1.46)	38(2.93)			
Divorced/widowed	337(25.98)	163(12.57)	90(6.94)	35(2.70)	21(1.62)	11(0.85)	17(1.31)			
Unknown	5(0.39)	3(0.23)	1(0.08)	0(0.00)	0(0.00)	0(0.00)	1(0.08)			
Occupation										
Farmers	843(65.00)	422(32.54)	240(18.50)	83(6.40)	38(2.93)	19(1.46)	41(3.16)	36.603	0.001	
Unemployed	184(14.19)	89(6.86)	45(3.47)	15(1.16)	18(1.39)	7(0.54)	10(0.77)			
Retired	49(3.78)	30(2.31)	6(0.46)	3(0.23)	6(0.46)	1(0.08)	3(0.23)			
Others/unknown	221(17.04)	131(10.10)	50(3.86)	13(1.00)	4(0.31)	6(0.46)	17(1.31)			
Route of transmission										
HET-nonmarital and noncommercial	462(35.62)	259(19.97)	120(9.25)	33(2.54)	19(1.46)	11(0.85)	20(1.54)	67.382	0.001	
HET-commercial	556(42.87)	257(19.81)	149(11.49)	62(4.78)	44(3.39)	12(0.93)	32(2.47)			
HET-nonmarriage	43(3.32)	21(1.62)	13(1.00)	5(0.39)	1(0.08)	3(0.23)	0(0.00)			
HET-Spouses	129(9.95)	72(5.55)	32(2.47)	12(0.93)	2(0.15)	5(0.39)	6(0.46)			
Variables

Variables	Total	CRF07_BC	CRF01_AE	CRF08_BC	CRF85_BC	B	Others	χ²	P
MSM	79(6.09)	43(3.32)	23(1.77)	1(0.08)	0(0.00)	1(0.08)	11(0.85)		
IDUs	8(0.62)	8(0.62)	0(0.00)	0(0.00)	0(0.00)	0(0.00)	0(0.00)		
mother to child transmission	9(0.69)	7(0.54)	1(0.08)	0(0.00)	0(0.00)	0(0.00)	1(0.08)		
Others/unknown	11(0.85)	5(0.39)	3(0.23)	1(0.08)	0(0.00)	1(0.08)	1(0.08)		

Region

Region	Total	CRF07_BC	CRF01_AE	CRF08_BC	CRF85_BC	B	Others	χ²	P
Chengdu Plain	729(56.21)	451(61.87)	203(27.85)	29(3.98)	5(0.69)	9(1.24)	32(4.39)	5188.000	0.000
South Sichuan	371(28.60)	96(25.88)	93(25.07)	76(20.49)	62(16.71)	17(4.58)	27(7.28)		
Northeast Sichuan	104(8.02)	49(47.12)	37(35.58)	8(7.69)	0(0.00)	7(6.73)	3(2.88)		
Panzhihua-Xichang region	81(6.24)	71(87.65)	6(7.41)	2(2.47)	0(0.00)	0(0.00)	2(2.47)		
Northwest Sichuan	12(0.93)	8(66.67)	4(33.33)	0(0.00)	0(0.00)	0(0.00)	0(0.00)		
Total	1297	675(52.04)	343(26.45)	115(8.87)	67(5.17)	33(2.54)	64(4.93)		

Analysis Of Risk Factors Of Transmitted Drug Resistance

Taking drug resistance as an independent variable, 8 variables including gender, age at the time of HIV diagnosis, nationality, education level, marital status, occupation, route of infection and subtype as dependent variables, logistic stepwise regression model were used to analyze the risk factors of TDR (Table 2). The results showed that the HIV-1 genotype was a potential influencing factor associated with TDR. CRF07_BC is one of the three main epidemic strains in Sichuan Province. The resistance rate of subtype was 3.41% (23/675). The drug resistance rate of CRF01_AE was 4.08% (14/343). 87% (24/115), CRF08_BC strains had a higher risk of TDR (odds ratio, 8.67; 95% CI, 4.43~16.96; p>0.05), while other variables had no significant effect on drug resistance (P > 0.05).
Table 2
Demographic characteristics and factors associated with drug resistance.

Variables	DR(%)	Non-DR(%)	OR(95%CI)	P	AOR(95%CI)	P
Age(years)						
≤25	6(1.1)	65(8.6)	1			
25~	13(1.7)	170(8.7)	1.42(0.38~5.33)	0.608		
40~	13(1.5)	184(82.2)	0.99(0.21~4.57)	0.987		
≥ 50	40(6.3)	806(9.1)	0.80(0.17~3.71)	0.776		
Gender						
Male	51(76.9)	885(64.8)	1			
Female	21(23.1)	340(35.2)	1.05(0.59~1.88)	0.863		
Ethnicity						
Han	66(0.3)	1146(0.5)	1			
Yi	5(99.7)	61(99.5)	0.78(0.17~3.52)	0.750		
Others	1(3.5)	18(5.0)	0.96(0.09~6.49)	0.803		
Marital status						
Unmarried	16(4.7)	212(4.7)	1			
Married or living with spouss	36(90.3)	691(90.3)	0.86(0.38~1.95)	0.720		
Divorced/widowed	20(4.7)	317(4.7)	1.08(0.45~2.60)	0.856		
Others	0(0.0)	5(5.0)		0.999		
Education level						
Primary school and below	43(95.8)	736(95.7)	1			
Middle school	19(3.5)	317(3.6)	0.93(0.48~1.79)	0.823		
High school or technical secondary school	5(0.7)	94(0.7)	0.61(0.19~1.97)	0.410		
Junior college or above	5(0.7)	78(0.8)	0.73(0.19~2.86)	0.656		
Occupation						
Farmers	39(83.5)	804(91.0)	1			
Unemployed	15(83.6)	164	1.87(0.91~3.82)	0.087		
Retired	1(83.7)	48	0.51(0.06~4.12)	0.532		
Others	17(16.5)	209(9.0)	1.58(0.72~3.45)	0.250		
Route of transmission						
HET	60(24.5)	1130(36.6)	1			
MSM	6(0.7)	73	1.34(0.42~4.23)	0.622	1.91(0.77~4.77)	0.163
IDUs	1(71.8)	7(59.0)	4.63(0.46~46.69)	0.193	4.86(0.57~41.44)	0.148
Others	5(5.0)	15	7.55(1.81~31.43)	0.005	8.13(2.70~24.53)	0.001
Subtype						
CRF07_BC	23(0.3)	649	1			
Variables	DR(%)	Non-DR(%)	OR(95% CI)	P	AOR(95% CI)	P
-----------------	-------	-----------	------------	------	-------------	----
CRF01_AE	14(0.4)	327	1.39(0.68~2.83)	0.362	1.29(0.65~2.57)	0.465
CRF08_BC	24(0.5)	91	8.67(4.43~16.96)	<0.001	8.32(4.38~15.80)	<0.001
CRF85_BC	3(0.6)	63	1.70(0.47~6.15)	0.420	1.62(0.47~5.61)	0.447
B	1(0.7)	32	0.72(0.08~6.10)	0.759	0.88(0.11~6.88)	0.901
Others	7(3.6)	63(4.4)	3.73(1.53~9.07)	0.004	3.43(1.44~8.20)	0.005

Transmission Clusters

Transmission cluster analysis identified 76 clusters containing 205 sequences (205/1297, 15.8%), the cluster sizes ranged between 2 and 24, there were 72 (94.7%) clusters with size < 5, and 4 (5.3%) clusters with size ≥5. The largest cluster was composed of individuals infected with subtype B (n = 24), and Luzhou accounted for the majority of cases (15/24, 62.5%) in the largest molecular cluster, but, most clusters were composed of CRF07_BC and CRF01_AE cases. The other three relatively large clusters were two CRF01_AE and one CRF85_BC, which were composed of cases from Deyang, Leshan and Yibin, respectively. We analyzed the infection routes and found that 98.5% of the transmission cases occurred in heterosexual individuals, among them 101 (49.3%) cases were commercial sexual. In addition, male, age > 50 years old accounted for the majority. We also observed that only 4 drug-resistance cases were included in the transmission cluster, and which were concentrated in two clusters that contained only two individuals (Table 3). It was worth noting that the clustering rate of Leshan, Zigong and Bazhong were much higher than that of other cities, besides (Table 4),
Cluster No.	Sequences	Gender	Route of Transmission	Type	Age	Ethnicity	Region
1	LZ2019-145	Female	HET-Spouses	B	35-49	Han	Luzhou
	LZ2019-135	Female	HET-nonmarital and noncommercial	B	>50	Han	Luzhou
	LZ2019-126	Male	HET-Commercial	B	>50	Han	Luzhou
	LZ2019-120	Male	HET-Commercial	B	>50	Han	Luzhou
	LZ2019-112	Female	HET-Spouses	B	>50	Han	Luzhou
	LZ2019-80	Female	HET-nonmarital and noncommercial	B	>50	Han	Luzhou
	LZ2019-77	Male	HET-Commercial	B	35-49	Han	Luzhou
	LZ2019-72	Male	HET-Commercial	B	>50	Han	Luzhou
	LZ2019-157	Male	HET-nonmarital and noncommercial	B	>50	Han	Luzhou
	LZ2019-71	Female	HET-Spouses	B	>50	Han	Luzhou
	MS2019-46	Male	HET-Commercial	B	>50	Han	Meishan
	LZ2019-70	Female	HET-Spouses	B	35-49	Han	Luzhou
	LZ2019-69	Male	HET-Commercial	B	>50	Han	Luzhou
	GA2019-09	Male	HET-Commercial	B	>50	Han	Guangan
	GA2019-08	Male	HET-nonmarital and noncommercial	B	>50	Han	Guangan
	CD2019-260	Male	HET-Spouses	B	35-49	Han	Chengdu
	CD2019-252	Male	HET-nonmarital and noncommercial	B	>50	Han	Guangan
	CD2019-172	Male	HET-nonSpousal	B	>50	Han	Chengdu
	CD2019-99	Female	HET-nonmarital and noncommercial	B	35-49	Han	Suining
	CD2019-60	Female	HET-Commercial	B	18-34	Yi	Liangshan
	CD2019-52	Male	others	B	35-49	Han	Chengdu
	LZ2019-122	Female	HET-nonmarital and noncommercial	B	>50	Han	Luzhou
	LZ2019-141	Female	HET-Spouses	B	>50	Han	Luzhou
	LZ2019-76	Female	HET-nonmarital and noncommercial	B	>50	Han	Luzhou
2	ES2019_013	Male	HET-nonmarital and noncommercial	CRF01_AE	>50	Han	Leshan
	ES2019_018	Male	HET-Commercial	CRF01_AE	>50	Han	Leshan
	MS2019-53	Male	HET-nonmarital and noncommercial	CRF01_AE	>50	Han	Meishan
	ES2019_012	Male	HET-Commercial	CRF01_AE	>50	Han	Leshan
	ES2019_022	Male	HET-Commercial	CRF01_AE	>50	Han	Leshan
	ES2019_028	Female	HET-nonmarital and noncommercial	CRF01_AE	>50	Han	Leshan
	ES2019_001	Male	HET-Commercial	CRF01_AE	>50	Han	Leshan
3	DY2019_011	Male	HET-Commercial	CRF01_AE	>50	Han	Deyang
	DY2019_012	Male	HET-Commercial	CRF01_AE	>50	Han	Deyang
	DY2019_015	Female	HET-nonmarital and noncommercial	CRF01_AE	>50	Han	Deyang
	DY2019_010	Male	HET-Commercial	CRF01_AE	>50	Han	Deyang
	DY2019_037	Female	HET-Commercial	CRF01_AE	>50	Han	Deyang
4	YB2019_088	Male	HET-nonmarital and noncommercial	CRF85_BC	>50	Han	Yibin
Cluster No.	Sequences	Gender	Route of Transmission	Type	Age	Ethnicity	Region
------------	-----------	--------	-----------------------	------	-----	----------	--------
YB2019_075	Male	HET-Commercial	CRF85_BC	>50	Han	Yibin	
YB2019_089	Male	HET-nonmarital and noncommercial	CRF85_BC	>50	Han	Yibin	
YB2019_095	Male	HET-Commercial	CRF85_BC	>50	Han	Yibin	
YB2019_080	Male	HET-Commercial	CRF85_BC	>50	Han	Yibin	

Table 4
TDR and clustering rate of different cities in Sichuan

Region	City	Number of DR	TDR %	Clusters	Clustering rate %
Chengdu Plain	Chengdu	22	6.90%	40	12.54%
	Deyang	3	8.11%	7	18.92%
	Leshan	2	1.67%	29	24.17%
	Suining	1	4.76%	2	9.52%
	Ziyang	2	6.90%	3	10.34%
	Mianyang	3	4.29%	13	18.57%
	Yaan	0	0.00%	0	0.00%
	Meishan	3	2.42%	22	17.74%
South Sichuan	Yibin	9	6.16%	29	19.86%
	Zigong	0	0.00%	12	27.91%
	Neijiang	0	0.00%	0	0.00%
	Luzhou	14	8.00%	31	17.71%
Northeast Sichuan	Bazhong	0	0.00%	2	28.57%
	Nanchong	2	8.70%	3	13.04%
	Dazhou	1	5.00%	2	10.00%
	Guangyuan	1	5.26%	2	10.53%
	Guang'an	3	8.57%	4	11.43%
Panzhihua-Xichang region	Panzhihua	1	3.33%	0	0.00%
	Liangshan	5	9.80%	4	7.84%
Northwest Sichuan	Aba	0	0.00%	0	0.00%
	Ganzi	0	0.00%	0	0.00%
total	total	72	5.55%	205	15.81%

Characteristics Of Transmitted Drug-resistant

Of the 1297 subjects, 72 had drug-resistant mutations, among which 12 had high drug resistance, 21 had moderate drug resistance and 55 had low drug resistance, potential drug resistance were 66 cases. 50 cases (3.85%, 50/1297) were found to have non-nucleoside reverse
transcriptase inhibitor (NNRTI) resistance mutation, the mutation probability of E138 (30.0%, 15/50), K103 (20.0%, 10/50) and V106 (34.0%, 17/50) was significantly higher than that of other sites. The mutation probability of drug resistance site in CRF07_BC, CRF08_BC, CRF01_AE was higher than that in other subtypes, which were resistant to all NNRTIs in varying degrees, and the high resistance was mostly caused by K103N mutation. Four cases (0.31%, 4/1297) had NRTI resistance mutation, the mutation rate was relatively low, but d4T, ddI and TDF caused by K65KR/R mutation were highly resistant. 22 subjects (1.70%, 22/1297) had protease inhibitor (PI) resistance mutation, M46 (36%, 9/22) and Q58 (28%, 7/22) had the highest mutation probability, most of them were low-grade resistance. Additionally, the most frequent mutation was V106, which was observed in 23.6% (17/72) of patients, HIV-1 strains with this mutation exhibited the degree of potential low-level resistance, except for V106VM resulted in NVP and EFV were highly resistant and dot was moderately resistant. Followed by E138 (20.8%, 15/72), V179 (15.3%, 11/72) and K103 (13.9%, 10/72), all of them were NNRTI related mutations. Moreover, the most resistant drugs were RPV (30.5%, 22/72), NVP (29.2%, 21/72), DOR (25.0%, 18/72). The distribution of drug resistance and mutation sites was shown in Figure 3.

The drug resistance level is shown in Figure 4. The level of HIV-transmitted drug resistance is 5.55% (72/1297) in Sichuan Province. The level of transmissible drug-resistance in city of Liangshan, Luzhou, Deyang and Guang’an the high proportion, were 9.80%, 8.00%, 8.11% and 8.57% (Table 4). The overall prevalence of HIV-1 TDR to NNRTI (3.85%, 50/1297) was higher than that to NRTI (0.31%, 4/1297) and PI (1.70%, 22/1297). The majority (95.8%, 69/72) of HIV-1 drug-resistance variants displayed a single drug class resistance mutation, 3 cases (0.23%) contained mutations associated with drug resistance to both PIs and NNRTIs. One case (0.08%) contained mutations conferred to NRTIs sand NNRTIs. No HIV-1 strain with TDR mutations to triple classes of drugs was found in this study.

Discussion

In this study, we conducted a cross-sectional HIV-1 molecular epidemiological study to track the characteristics and distribution of HIV-1 genotypes and TDR in newly diagnosed infections in Sichuan. For the first time, the TDR of HIV-1 infection in Sichuan, which was one of the highest AIDS epidemic provinces was analyzed.

This results were inconsistent with the national monitoring in 2016[19] and the survey results in some other areas[20, 21], while were similar to that of the study conducted in Sichuan 2014[10]. Compared with the 2014 survey, it is found that the PLWH in this study were older and less educated, shown that elderly people with low educational background in our province are the people who need to be paid attention to. Heterosexual transmission is the main route of infection, in which the proportion of commercial heterosexual is the highest, moreover, results of transmission cluster analysis showed similar results. It showed that this group of the PLWH has spread in a short time, indicating that commercial sexual activity is an important factor causing HIV transmission. 67.65% of HIV-infected men were over 50 year-old, who infection came mainly from commercial sexual activity, as such groups often exist with spouse separation and widowhood, their sexual needs are hard to be met, and their cognition of AIDS is insufficient. Note that although men younger than 25 years old account for a low proportion of infected people, most of their infection routes are male transmission, which increases with the decrease in age. There was little difference in transmission routes among women of different ages, mainly noncommercial heterosexual transmission, suggesting that further attention should be paid to the source of infection of such populations for more accurate intervention.

A total of 15 HIV-1 genotypes were detected, and 4 URFs were identified. It showed a much more gene diversity of HIV in Sichuan[10], which may reflect the active mobility of people across the province[22]. Similar to the survey in 2014[10], the main prevailing HIV-1 genotypes in Sichuan remain CRF07_BC and CRF01_AE, but the proportion decreased slightly, which was obviously different from other regions that CRF01_AE (i.e., Anhui, liaoning and Guangxi), B (i.e., Henan), CRF08_BC (i.e., Yunnan) was the dominant strain[21, 23–25]. CRF01_AE was identified in the 1990s as being imported from Thailand to Southwestern China (i.e., Yunnan and Guangxi) in commercial sex worker (CSW) [26, 27]. The recombinant subtypes of CRF07_BC and CRF08_BC have common origin which were first circulating in intravenous drug users (IDUs) in Yunnan[8, 28], which was introduced fromand from Liangshan to Sichuan[29]. The proportion of CRF08_BC and CRF85_BC among HIV-1 PLWH in Sichuan increased from 4.96% and 3.39–8.87% and 5.17% in 2019, and eight different subtypes were identified more than in 2014[10]. The proportion of URFs also increased significantly, which may be due to the complexity of HIV-1 gene pool caused by long-term epidemic. The genetic diversity of HIV-1 is abundant in Sichuan, in addition to the known circulating recombinant forms (CRFs), some URFs were also detected in Sichuan[30]. URFs contributed to the formation of novel CRFs, recently, new CRFs were identified in Sichuan[12, 13, 31].

In our study, most of the infected people entering the transmission network are heterosexual transmission, but, research in Guangxi showed that most HIV-1 infection clusters were MSM[32], and Liu suggested that factors such as sex, mode of transmission, education level and ethnicity were not significantly correlated with access to the genetic transmission network in Liangshan[33]. It showed that the situation of transmission networks in different regions was various, and targeted prevention and control measures need to be put forward for different regions, especially in cities with high clustering rate. In addition, it was observed a high clustering rate of subtype B (66.67%, 24/36), which
was much higher than other subtypes (10%-25%). This result found out a molecular cluster that rapidly propagates in a short time, it showed that timely molecular subtype monitoring is conducive to more accurate prevention and control of HIV transmission.

The results also showed that there were significant differences in the distribution of subtypes in different regions. The frequent reconstitution of the HIV genome will accelerate the evolution of the HIV, which may lead to the emergence of a highly adaptive virus [34, 35]. It was worth noting that the subtypes in Leshan, Chengdu and Luzhou are more complex. The existence of multiple subtypes increases the probability of mutual recombination to form new subtypes, therefore, it is necessary to further strengthen the monitoring of HIV subtypes in Sichuan Province, timely grasp the epidemic trends and reduce the generation of recombinant subtypes.

Recently, the trend of virus strain diversification in Sichuan province was gradually obvious, CRF55_01B[36], CRF79_0107[37], CRF59_01B[38, 39] were found for the first time in China's MSM population. In this study, these three subtypes were detected in men, only one female was transmitted by spouse, but only 38.46% (5/13) CRF55_01B, 40% (2/5) CRF79_0107 PLWH were transmitted by MSM, and the rest were heterosexual sexual transmission. There may be a concealed sexual orientation because of the social homosexual cultural identity and discrimination[40]. Some MSM will have sex with women inside and outside the marriage, and increase the difficulty of AIDS prevention and treatment[41], and suggest that the proportion of homosexual transmission in this province may be underestimated. CRF105_0108 was the subtype found for the first time among heterosexual people in Liangshan Prefecture, Sichuan Province, which was found that there was an aggregated epidemic in Luzhou, and one case is also found in Meishan, suggesting that this subtype may have spread in Sichuan Province, and 54.54% (6/11) PLWH infection with this subtype were transmitted by commercial heterosexual, indicating that commercial sex workers (CSWs) need to be further found in Luzhou to reduce virus transmission.

Another serious consequence of the high variability of HIV-1 is drug resistance, which is a new threat to epidemic control and can lead to treatment failure and further transmission of resistant HIV. Our study in Sichuan showed the overall prevalence of TDR was 5.55% among the 1297 participants, belonging to the moderate drug resistance level (5% - 15%). The result was higher than the currently reported national total prevalence rate and transmissible drug resistance rate of 3% - 5%(16, 42–44). Su[45] found through meta-analysis that the rate of transmissible drug resistance in Beijing, Henan and Hubei has reached the level of moderate drug resistance. The studies of Zhejiang[46] and Shanghai [47, 48] showed that the rate of transmissible drug resistance has been greater than 10%, which may be due to the early start of antiretroviral treatment in some areas and large treatment coverage. The pretreatment drug resistance rate was 9.9% in Liangshan Prefecture from 2017 to 2018[49], the results were in keeping with our findings that the drug resistance rate of Liangshan was 9.8%. The high rate of TDR in some cities indicated that the monitoring of TDR rate should be carried out in these cities. It could be seen that the longer the antiviral time, the higher the proportion of drug resistance. With the increase in the number of people receiving antiviral treatment, the risk of HIV drug resistance also increases, which may lead to the increase the transmissible drug resistance rate, it directly affects the effect of antiviral therapy. The drug resistance survey results of infected people receiving antiviral treatment showed that the national acquired drug resistance rate was 8.6%(50), and the drug resistance rate of infected people who fail to inhibit the virus exceeds 50% [51, 52].

According to our study, TDR mutation frequency to NNRTIs was much higher than NRTIs and PIs, due to NNRTI had a low resistance barrier, and it was more prone to drug resistance[53]. Because of the limited availability of drugs in China, the regimen composed of TDF, 3TC and EFV was currently the most commonly used free first-line therapy. The above three kinds of drugs exhibited the degree of resistance was mainly at a potential low level, therefore, the first-line treatment drugs can still be used continuously in Sichuan Province. The most frequent NNRTI-associated DRMs were V106 and E138, which were mainly resulted in low-resistance to RPV and DOR, whereas were K103N in whole country[16, 21]and V179D/E in Shanghai[47]. There were 21 cases of DOR resistance, accounting for a high proportion, DOR is a new NNRTI, which has not provided through the NFATPI in China, suggesting that the use of DOR in the future needs to pay close attention to whether it will have a certain impact on the treatment effect. The proportion of K103N mutationin our study was also high, and it is highly resulted in resistant to EFV and NVP, these two drugs were free NNRTI drugs used in China, therefore, we need to be vigilant about the mutation of K103N. The NRTI-associated DRMs were K65KR/R, K70KR and M41L, among which K65KR/R mutation causes high resistance to d4T, DDI and TDF, but M184V[16], the most common mutation site of NRTI resistance, is not found in our study, which may be related to the current first-line treatment scheme and the low rate of NRTI resistance in Sichuan Province. The main DRMs of PI were M46 and Q58, which produced low or intermediate-resistance to NFV, and low-resistance to TPV/r. The most frequent DRMs M46 was consistent in previous report[16, 43, 47], and the main DRMs Q58 could be related to the high prevalence of CRF07_BC in Sichuan. Thus, it was considered that, the mutation of drug resistance discovered in the study could be induced by the mutation of exogenous population or non-drug selection pressure.

However, our study has limitations. First, a potential sampling bias, on the one hand, in our study only one cross-sectional study was conducted, and the results could not be used to observe the dynamics of the local HIV epidemic, on the other hand, we could analyze only the samples that had been diagnosed, but those that had been infected but not diagnosed could not be included in the analysis. Second, our
analysis of TDR concentrated only on NRTI, NNRTI and PI, not containing integrase inhibitors, which are increasingly infected people began using this drug.

Conclusions

In summary, our study provides a comprehensive molecular epidemiologic dataset to understand the diversity and distribution of HIV genotypes in newly diagnosed HIV-infected patients, and supplements in transmitted drug-resistance in Sichuan Province. The distribution of HIV-1 genotypes in Sichuan is more diverse and complex than 2014, with CRF07_BC and CRF01_AE still as the predominant genotypes. The MSM is underrated, arguing for behavior scaling up intervention in this specific population besides the elderly people with heterosexual transmission risk groups. The risk of TDR mutation frequency increased in newly diagnosed patients highlights the significance of genotypic drug resistance monitoring and molecular surveillance of pretreatment HIV-1 drug resistance, the regimen composed of TDF, 3TC and EFV was still currently the preferred solution used free first-line therapy.

Declarations

Funding

This study was supported by the Sichuan Science and Technology Project (2017JY0302) and Science and Technology Project of Sichuan Provincial Health Committee (20PJ121).

Ethics approval and consent to participate

This study was reviewed and approved by the ethics committees of Sichuan Center for Disease Prevention and Control. All participants signed written informed consents prior to sample donations.

Competing interests

The authors declare no competing financial interests exist.

Consent for publication

Not applicable.

Availability of data and materials

The reference sequences determined in this study are available in GenBank. Other datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Authors’ contributions

CZ and LS designed the study; YL, YZ, LL, LY and DW participated in the process of sequences editing and phylogenetic analyses; CZ and LS performed statistical analysis; SL, DY and LS collected sample and the demographic data; CZ and LS participated in the writing process. All authors read and approved the final manuscript.

Acknowledgements

We acknowledge the work of staffs involved in collecting patient blood sample the staff of 21 municipal CDCs. We appreciate all the volunteer patients enrolled in this study.

Authors’ information (optional)

1 Sichuan Provincial Center for Disease Control and Prevention, Center for AIDS/STD Control and Prevention, Chengdu 610041, Sichuan, China.

Statement

All methods in this study were operated according to relevant guidelines and regulations, and relevant references were cited in the methods section.

References
1. NCAIDS NCC: National AIDS venereal disease. In.; 2019.
2. Hemelaar J, Gouws E, Ghys PD, Osmanov S: Global trends in molecular epidemiology of HIV-1 during 2000-2007. AIDS (London, England) 2011, 25(5):679–689.
3. Gao F, Robertson DL, Morrison SG, Hui H, Craig S, Decker J, Fultz PN, Girard M, Shaw GM, Hahn BH et al: The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J VIROL 1996, 10(70):7013–7029.
4. Angelis K, Albert J, Mamais I, Magiorkinis G, Hatzakis A, Hamouda O, Struck D, Vercauteren J, Wensing AMJ, Alexiev I et al: Global Dispersal Pattern of HIV Type 1 Subtype CRF01_AE: A Genetic Trace of Human Mobility Related to Heterosexual Sexual Activities Centralized in Southeast Asia. J INFECT DIS 2015, 211(11):1735–1744.
5. Zhang L, Chen Z, Cao Y, Yu J, Li G, Yu W, Yin N, Mei S, Li L, Balfe P et al: Molecular Characterization of a Human Immunodeficiency Virus Type 1 and Hepatitis C Virus in Paid Blood Donors and Injection Drug Users in China. J VIROL 2004, 78(24):13591–13599.
6. Zhang Y, Lu L, Ba L, Liu L, Yang L, Jia M, Wang H, Fang Q, Shi Y, Yan W et al: Dominance of HIV-1 subtype CRF01_AE in sexually acquired cases leads to a new epidemic in Yunnan province of China. PLOS MED 2006, 3(11):e443.
7. Xing H, Liang H, Wan ZY, Chen X, Wei M, PengFei M, Guan Q, Quan Y, Hong KX, Shao YM: Distribution of recombinant human immunodeficiency virus type-1 CRF01_AE strains in China and its sequence variations in the env V3: C3 region. Chinese Journal of Preventive Medicine 2004, 5(38):300–304.
8. Su L, Graf M, Zhang Y, Briesen HV, Xing H, Kostler J, Melzl H, Wolf H, Shao Y, Wagner R: Characterization of a Virtually Full-Length Human Immunodeficiency Virus Type 1 Genome of a Prevalent Intersubtype (C/B) Recombinant Strain in China. J VIROL 2000, 74(23):11367–11376.
9. Ouyang Y, Shao Y, Ma L: HIV-1 CRF_BC Recombinants Infection in China: Molecular Epidemic and Characterizations. CURR HIV RES 2012, 10(2):--.
10. Liu L, Yang H, Hu Y, Ye L, Yuan D, Wei D, Zhou G, Yu J, Liu H, Qin G: Molecular epidemiological study on HIV-1 in Sichuan province in 2014. Chinese Journal of AIDS & STD 2016, 22(12):946–949.
11. Su L, Zhu J, Zeng Y, Hou X, Yan T, Li Y, Yang H, Ye L, Yuan D, Wei D et al: Epidemiological characteristics of HIV-1 strain in Guangyuan city. Chinese Journal of AIDS & STD 2020, 26(8):831–835.
12. Dong A, Liu L, Xiao L, Liang S, Li K, Hu J, Kang R, Xing J, Song C, Yin J et al: First Detection of a Circulating Recombinant Form of HIV-1 CRF01_AE/08_BC (CRF105_0108) with Drug-Resistant Mutations in Sichuan, China. AIDS RES HUM RETROV 2020, 36(7):625–630.
13. Su L, Wei D, Yang H, Zeng Y, Hu Y, Yuan D, Feng L, Ruan Y, Qin G, Liang S: Identification of a Novel HIV-1 Circulating Recombinant Form (CRF85_BC) in Sichuan, China. AIDS Res Hum Retroviruses 2016, 32(9):895–899.
14. Sudhir K, Glen S, Koichiro T: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology & Evolution 2016(7):1870.
15. Liu K, Randal LC, Tandy W, Wu R: RAxML and FastTree: Comparing Two Methods for Large-Scale Maximum Likelihood Phylogeny Estimation. PLOS ONE 2011, 6(11):e27731.
16. Zhao S, Feng Y, Hu J, Li Y, Zuo Z, Yan J, Zhang J, Cao P, Xu W, Li F et al: Prevalence of Transmitted HIV drug resistance in antiretroviral treatment naïve newly diagnosed individuals in China. SCI REP-UK 2018, 8(1):12273.
17. Shafer RW, Rhee SY, Pillay D, Miller V, Sandstrom P, Schapiro JM, Kuritzkes DR, Bennett D: HIV-1 protease and reverse transcriptase mutations for drug resistance surveillance. AIDS 2007, 21(2):215–223.
18. Liu TF, Shafer ARW: Web Resources for HIV Type 1 Genotypic-Resistance Test Interpretation. CLIN INFECT DIS 2006, 42(11):1608–1618.
19. Qiao Y, Xu Y, Jiang D, Wang X, Wang F, Yang J, Wei Y: Epidemiological analyses of regional and age differences of HIV/AIDS prevalence in China, 2004-2016. International Journal of Infectious Diseases Ijid Ocial Publication of the International Society for Infectious Diseases 2019.
20. Zhou P, Yu G, Kuang Y, Huang X, Li Y, Fu X, Lin P, Yan J, He X: Rapid and complicated HIV genotype expansion among high-risk groups in Guangdong Province, China. BMC INFECT DIS 2019, 19(1):185.
21. Li L, Sun G, Liang S, Li J, Li T, Wang Z, Liu W, Yang S, Liu Y, Wang X et al: Different distribution of HIV-1 subtype and drug resistance were found among treatment naïve individuals in Henan, Guangxi, and Yunnan province of China. PLOS ONE 2013, 8(10):e75777.
22. Li X, Fang XD, Mao R, Wang J, Cottrell L, Harris C, Stanton B: HIV/STD risk behaviors and perceptions among rural-to-urban migrants in China. AIDS Education & Prevention 2004, 16(6):538–556.
23. Zhang Z, Dai L, Jiang Y, Feng K, Liu L, Xia W, Yu F, Yao J, Xing W, Sun L et al: Transmission network characteristics based on env and gag sequences from MSM during acute HIV-1 infection in Beijing, China. ARCH VIROL 2017, 162(11):3329–3338.
24. Ma N, Chen X, Zhao Y, Kang X, Pan S, Yao W: HIV-1 molecular transmission network among sexually transmitted populations in Liaoning Province, China. MEDICINE 2021, 100(28):e26640.

25. Zhang D, Wu J, Zhang Y, Shen Y, Dai S, Wang X, Xing H, Lin J, Han J, Li J et al: Genetic characterization of HIV-1 epidemic in Anhui Province, China. VIROL J 2020, 17(1).

26. Feng Y, He X, Hsi JH, Li F, Li X, Wang Q, Ruan Y, Xing H, Lam TT, Pybus OG et al: The rapidly expanding CRF01_AE epidemic in China is driven by multiple lineages of HIV-1 viruses introduced in the 1990s. AIDS 2013, 27(11):1793–1802.

27. Cheng H, Zhang J, Capizzi J, Young NL, Mastro TD: HIV-1 subtype E in Yunnan, China: The Lancet. LANCET 1994, 344(8927):953–954.

28. Yang R, Kusagawa S, Zhang C, Xia X, Ben K, Takebe Y: Identification and characterization of a new class of human immunodeficiency virus type 1 recombinants comprised of two circulating recombinant forms, CRF07_BC and CRF08_BC, in China. J VIROL 2003, 77(1):685–695.

29. Li L, Wei D, Hsu WL, Li T, Gui T, Wood C, Liu Y, Li H, Bao Z, Liu S et al: CRF07_BC Strain Dominates the HIV-1 Epidemic in Injection Drug Users in Liangshan Prefecture of Sichuan, China. AIDS RES HUM RETROV 2015, 5(31):479–487.

30. Wang Y, Ma L, Xu W, Li F, Feng Y, Liang S, Shao Y, Zhang F: Near Full-Length Genome Identification of a Novel HIV-1 Unique (B/C) Recombinant Isolate in Sichuan, China. AIDS Research & Human Retroviruses 2016:1229.

31. Yan W, Wei H, Xu W, Yin Q, Ma L: Identification of a Novel CRF01_AE/CRF07_BC recombinant form in Men Who Have Sex with Men in Sichuan, China. AIDS RES HUM RETROV 2016, 32(7):718.

32. Pang X, Tang K, He Q, Huang J, Fang N, Zhou X, Zhu Q, Wu X, Shen Z, Liang S: HIV drug resistance and HIV transmission risk factors among newly diagnosed individuals in Southwest China. BMC INFECT DIS 2011, 21(1).

33. Lau KA, Wong J: Current Trends of HIV Recombination Worldwide. Infectious disease reports 2013, 5(Suppl 1):e4.

34. Hemelaar J: The origin and diversity of the HIV-1 pandemic. TRENDS MOL MED 2012, 18(3):182–192.

35. Han X, An M, Zhang W, Cai W, Chen X, Takebe Y, Shang H: Genome Sequences of a Novel HIV-1 Circulating Recombinant Form, CRF55_01B, Identified in China. Genome Announc 2013, 1(1).

36. Li Y, Feng Y, Li F, Xue Z, Hu J, Xing H, Ruan Y, Shao Y: Genome Sequence of a Novel HIV-1 Circulating Recombinant Form (CRF79_0107) Identified from Shanxi, China. Aids Research & Human Retroviruses 2017, 33(10):1056–1060.

37. Li X, Ning C, Xiang H, Yao Y, Shao Y: Genome Sequences of a Novel HIV-1 Circulating Recombinant Form (CRF59_01B) Identified among MSM in China. Aids Research & Human Retroviruses 2013, 29(10):1395.

38. Han X, An M, Zhang W, Cai W, Chen X, Takebe Y, Shang H: Genome Sequences of a Novel HIV-1 Circulating Recombinant Form (CRF59_01B) Identified among Men Who Have Sex with Men in Northeastern China. Genome Announc 2013, 1(3):1395.

39. Liu H, Yang H, Li X, Wang N, Liu H, Wang B, Zhang L, Wang Q, Stanton B: Men Who Have Sex With Men and Human Immunodeficiency Virus/Sexually Transmitted Disease Control in China. SEX TRANSM DIS 2006, 33(2):68–76.

40. Zhang D, Bi P, Lv F, Zhang J, Hiller JE: Changes in HIV prevalence and sexual behavior among men who have sex with men in a northern Chinese city: 2002–2006. J INFECTION 2007, 55(5):456–463.

41. Li H, Chang S, Han Y, Zhuang D, Li L, Liu Y, Liu S, Bao Z, Zhang W, Song H: The prevalence of drug resistance among treatment-naïve HIV-1-infected individuals in China during pre- and post- 2004. BMC INFECT DIS 2016, 16(1).

42. Liao L, AB D, LJ L, Feng Y, Shao Y, Liang S, Ruan Y, Xing H: Survey of Pretreatment HIV Drug Resistance and Genetic Transmission Network Analysis Among HIV Patients in a High Drug-Use Area of Southwest China. CURR HIV RES 2019, 6(17):441–451.

43. Lu KA, Wong J: Current Trends of HIV Recombination Worldwide. Infectious disease reports 2013, 5(Suppl 1):e4.

44. Hemelaar J: The origin and diversity of the HIV-1 pandemic. TRENDS MOL MED 2012, 18(3):182–192.

45. Han X, An M, Zhang W, Cai W, Chen X, Takebe Y, Shang H: Genome Sequences of a Novel HIV-1 Circulating Recombinant Form, CRF55_01B, Identified in China. Genome Announc 2013, 1(1).

46. Li Y, Feng Y, Li F, Xue Z, Hu J, Xing H, Ruan Y, Shao Y: Genome Sequence of a Novel HIV-1 Circulating Recombinant Form (CRF79_0107) Identified from Shanxi, China. Aids Research & Human Retroviruses 2017, 33(10):1056–1060.

47. Li X, Ning C, Xiang H, Yao Y, Shao Y: Genome Sequences of a Novel HIV-1 Circulating Recombinant Form (CRF59_01B) Identified among MSM in China. Aids Research & Human Retroviruses 2013, 29(10):1395.
49. Dong AB, Xiao L, Liang S, Liu L, Xing H: HIV-1 drug resistance and influencing factors among people living with HIV/AIDS before antiretroviral therapy in Liangshan Yi Autonomous Prefecture. Chinese Journal of Epidemiology 2019, 40(6):648–653.

50. Liu P, Xing H, Liao L, Feng Y, Leng X, Wang J, Kan W, Yan J, Li Y, Zuo Z et al: HIV drug resistance in patients in China's national HIV treatment programme who have been on first-line ART for at least 9 months. AIDS RES THER 2020, 17(1).

51. Zuo Z, Liang S, Sun X, Bussell S, Yan J, Kan W, Leng X, Liao L, Ruan Y, Shao Y et al: Drug Resistance and Virological Failure among HIV-Infected Patients after a Decade of Antiretroviral Treatment Expansion in Eight Provinces of China. PLOS ONE 2016, 11(12):e016661.

52. WU J, NORRIS J, LIU HX, LI Z, SU YY, ZHU L, WANG N: The Prevalence of HIV Drug Resistance among Treatment-failure Individuals and Treatment-nave Individuals in China: A Meta-analysis. Biomedical & Environmental Sciences 2014, 27(011):858–871.

53. Silvia B, Lucas H, Jordan MR, Santiago AR, Collins I, Anne D, Eric D, Ann Em Arie W, Theresa A, Borhan A: Clinical Impact of Pretreatment Human Immunodeficiency Virus Drug Resistance in People Initiating Nonnucleoside Reverse Transcriptase Inhibitor containing Antiretroviral Therapy: A Systematic Review and Meta-analysis. The Journal of Infectious Diseases 2020(3):3.

Figures

Figure 1

The phylogenetic tree of HIV-1 pol sequences obtained from Sichuan. The maximum-likelihood tree obtained using 1062 bp corresponded to the protease region and part of the reverse transcriptase. A total of 675 HIV-1 sequences branched with CRF07_BC reference sequences (depicted in blue). 342 HIV-1 query sequences branched with CRF01_AE reference sequences (depicted in red). 115 HIV-1 CRF08_BC query
sequences were identified (depicted in light blue). 67 HIV-1 CRF85_BC query sequences were identified (depicted in brown). 36 query sequences clustered with HIV-1 subtype B reference sequences (depicted in yellow). Other subtypes and URFs were not depicted color.

Figure 2

Distribution of HIV-1 genotypes in different cities of Sichuan.
Figure 3

Transmitted drug resistance mutations sites in treatment-naive patients
Figure 4

The resistance of HIV-1 to antiretroviral drugs