Stability analysis of host dynamics for hiv

V Geetha¹ and S Balamuralitharan²
Faculty of Engineering and Technology, Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur - 603 203, Tamil Nadu, INDIA.

geethavaradharajan849@gmail.com ,balamurali.maths@gmail.com

Abstract: The phenomenon of disease modeling can be easily accomplished through mathematical framework. In this paper the transmission of disease in human is represented mathematically as a nonlinear system. We think about the components of the Human Immunodeficiency Virus (HIV) among the beginning periods of illness. Throughout this paper we have determined those logical representation of a three-compartmental HIV demonstrate for their stability evaluation. We tend to likewise explore the stimulating behavior of the model and acquire those Steady states for the disease-free and the endemic agreement. The framework can be evaluated by reproduction number R₀. We additionally clarify the numerical recreation and their outcomes.

1. Introduction
The anatomy need been viewed as for various period, furthermore likewise the information assembled as such incorporates mind boggling sub-atomic level instruments that check those routes over which inside which a endemic Might infect cells and reproduce [1].this information might be obliged to create medicines for maladies beginning starting with liver infection of the human immunodeficiency infection (HIV) and obtained immunodeficiency syndrome (AIDS)[2]. An seeing of the development of parts of these relations crosswise over a timescale from claiming therapeutic connectedness permits the formation from claiming higher medicine routes. Throughout this paper we need aid setting off will ponder the three-component model for HIV. We are going to investigation the contamination around person mankind's group victimisation this system for differential equations, examine those following Progress of the model, and recreate those natures for results. In general HIV infection while not the composition of anti-retroviral medical aid (ART) is delineated by variety of different phases [3-4].Inside the promptly phases from claiming HIV infection, critical intense contamination provides for enormous requisition for virions partner degree individual’s blood alternately tissue. At the point when numerous weeks, seasonal influenza like manifestations vanish and furthermore the irresistible specialist thickness at that point decreases rapidly among numerous days. This compares on a move inside the sum about cytotoxic T lymphocytes and furthermore the ulterior look of hostile to HIV antibodies inside the blood. In this paper we have specified three-compartmental HIV model Furthermore inspected their dependability in infection spare of endemic harmony focuses. [5-6].
2. Mathematical modelling of hiv infection

In this way an essential model of HIV disease just incorporates uninfected target cells, P, infected cells Q and Virus particle F and the objective cells are thought to be made at steady rate s, to depart this life at rate η per cell, and γ_1 is the rate of CD4+ T cells become contaminated with infection. γ_2 is the rate of infected cells become active. This creates profitably contaminated cells Q, which are vanished at rate k, bigger than η, to reproduce thriving development in reduction the infected cell duration. Free infections are created by contaminated cells at steady rate m per cell, and Clearance rate ϕ [7-8].

The differential equations describing this framework are:

$$\frac{dP}{dt} = s - \eta P - \gamma_1 FP$$

$$\frac{dQ}{dt} = \gamma_2 FP - kQ$$

$$\frac{dF}{dt} = mQ - \gamma_1 FP - \phi F$$

(1)

3. Analysis of the model

3.1 Disease free equilibrium and the reproduction number

The model has a disease free equilibrium given by $E_0 = \left(\frac{S}{\eta}, 0, 0 \right)$

The fundamental proliferation number of framework (1) will be acquired by the next generation matrix method. The related non negative network F, for the new contamination terms and the non singular matrix V, for the rest of the exchange terms are given separately by

$$F(E_0) = \begin{pmatrix} \frac{\gamma_2 S}{\eta} & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad V(E_0) = \begin{pmatrix} 0 & k \\ \gamma_1 P + \phi & -m \end{pmatrix}$$

The basic reproduction number R_0 is calculated by the matrix FV^{-1}.

$$R_0 = \frac{\gamma_2 sm}{k(\gamma_1 s + \eta \phi)}$$

3.2 Local stability of the disease free equilibrium

Corollary 3.2.1: The disease free equilibrium E_0 is locally asymptotically stable for $R_0 < 1$ and Unstable otherwise.

Corollary 3.2.2: The endemic equilibrium E_1 of the system (1) is locally asymptotically stable in for $R_0 > 1$.

2
The Jacobian matrix corresponding to system (1) about E_0 is obtained as follows.

$$J(E_0) = \begin{bmatrix}
-\eta & 0 & -\frac{\gamma_1 s}{\eta} \\
0 & -k & \frac{\gamma_2 s}{\eta} \\
0 & m & -\left(\frac{\gamma_1 s}{\eta} + \phi\right)
\end{bmatrix}$$

The characteristic equation is given by

$$\lambda^3 + c_1 \lambda^2 + c_2 \lambda + c_3 = 0 \quad (2)$$

Where

$$c_1 = \eta + k + \frac{\gamma_1 s}{\eta} + \phi$$

$$c_2 = \frac{k\gamma_1 s}{\eta} + k\phi + \gamma_1 s + \eta\phi + \eta k - \frac{m\gamma_2 s}{\eta}$$

$$c_3 = k\gamma_1 s + k\eta\phi - m\gamma_2 s$$

By Routh Hurwitz criteria, we see that all roots of (2) have negative real parts therefore the disease free equilibrium E_0 is locally asymptotically stable when $R_0 < 1$ and is unstable if $R_0 > 1$.

3.3 Stability of Endemic Equilibrium

Theorem 3.3.1

The Endemic equilibrium is locally asymptotically stable iff the following conditions are satisfied.

$$d_1 > 0, d_2 > 0, d_3 > 0, d_1 d_2 - d_3 > 0$$

Endemic Equilibrium $E_1 = (P^*, Q^*, F^*)$ the Jacobian matrix is

$$J(E_1) = \begin{bmatrix}
-(\eta + \gamma_1 F^*) & 0 & -\gamma_1 P^* \\
\gamma_2 F^* & -k & \gamma_2 P^* \\
-\gamma_1 F^* & m & -(\phi + \gamma_1 P^*)
\end{bmatrix}$$

The characteristic equation is given by

$$\lambda^3 + d_1 \lambda^2 + d_2 \lambda + d_3 = 0$$

$$d_1 = \eta + \gamma_1 F^* + k + \phi + \gamma_1 P^*$$

$$d_2 = k(\phi + \gamma_1 P^* + \eta + \gamma_1 F^*) + (\eta + \gamma_1 F^*)(\phi + \gamma_1 P^*) - \gamma_1 F^* P^* - m\gamma_2 P^*$$

$$d_3 = (\eta + \gamma_1 F^*)(k\phi + k\gamma_1 P^* - m\gamma_2 P^*) + \gamma_1 \gamma_2 P^* mF^* - k\gamma_1^2 P^* F^*$$
By using the above theorem I, we have the result that the endemic equilibrium E_1 is locally asymptotically stable. This implies that when $R_0 > 1$.

4. Numerical results & discussion

The framework (1) is recreated for different arrangement of parameters and initial values satisfying the state of neighborhood asymptotic steadiness of equilibria E_0 and E_1 [9-11]. Figure 1 shows the stability of the disease free harmony E_0 for the parameter esteems $s = 10$, $k=0.1$, $\gamma_1 = 0.0024$, $\gamma_2 = 0.003$, $\varphi = 2.6$, $\eta = 0.02$, $m = 0.24$ and $P(0) = 300, Q(0) = 10, F(0) = 10$ for this arrangement of parameter esteems reproduction number is evaluated as $R_0 = 0.9474$. Figure 2 shows the stability of the endemic harmony side of the point E_1 for the parameter values $s = 10, k=0.1, \gamma_1 = 0.0024$, $\gamma_2 = 0.008$, $\varphi = 2.6$, $\eta = 0.02$, $m = 0.24$ and $P(0) = 300, Q(0) = 10, F(0) = 10$ for this arrangement of parameter esteems reproduction number is evaluated as $R_0 = 2.5263$. Figure 3 the stability of the endemic harmony side of the point E_1 for the parameter values $s = 10, k=0.1, \gamma_1 = 0.0024$, $\gamma_2 = 0.014$, $\varphi = 2.6$, $\eta = 0.02$, $m = 0.24$ and $P(0) = 300, Q(0) = 10, F(0) = 10$ for this arrangement of parameter esteems reproduction number is evaluated as $R_0 = 4.4211$.

Fig.1. The stability of the disease free harmony E_0 for the parameter esteems $s = 10, k=0.1, \gamma_1 = 0.0024$, $\gamma_2 = 0.003$, $\varphi = 2.6$, $\eta = 0.02$, $m = 0.24$ and $P(0) = 300, Q(0) = 10, F(0) = 10$.

![Graph of disease stability](image-url)
Fig. 2. The stability of the endemic harmony side of the point E_1 for the parameter values $s = 10, k = 0.1, \gamma_1 = 0.0024, \gamma_2 = 0.008, \varphi = 2.6, \eta = 0.02, m = 0.24$ and $P(0) = 300, Q(0) = 10, F(0) = 10$.

Fig. 3. The stability of the endemic harmony side of the point E_1 for the parameter values $s = 10, k = 0.1, \gamma_1 = 0.0024, \gamma_2 = 0.014, \varphi = 2.6, \eta = 0.02, m = 0.24$ and $P(0) = 300, Q(0) = 10, F(0) = 10$.

5. Conclusion
The essential of Mathematical analysis of infectious agent dynamics has managed to variety of vital insights concerning the dynamics and pathological process of HIV infection. During this paper, a non-
linear mathematical model is constructed. Stabilities of the two equilibrium square measure investigated by determining the corresponding characteristic equations. The disease free and endemic harmony focuses were acquired and evaluated their dependable qualities. The disease free equilibrium purpose E_0 is shown locally asymptotically stable when $R_0 < 1$ and is unstable for $R_0 > 1$. Finally we revealed that the model includes a distinctive endemic equilibrium purpose E_1 that is locally asymptotically stable when $R_0 > 1$.

References

[1] Denis E Kirschner and Webb G F 1998 A Mathematical model of combined drug therapy of Hiv Infection Journal of Theoretical Medicine 1 pp 25–34
[2] Callaway D S and Perelson A S 2002 HIV-1 infection and low steady state viral loads. Bulletin of Mathematical Biology 64 pp 29–64
[3] Rong L, Feng Z, and A Perelson 2007 Emergence of HIV-1 drug resistance During antiretroviral treatment Bulletin of Mathematical Biology 69 pp 2027–60
[4] Wang Y, Zhou Y and Heffernan J 2009 Oscillatory viral dynamics in a delayed HIV Pathogenesis model Mathematical Biosciences 219 pp 104–112
[5] Wang L and Li M Y 2006 Mathematical analysis of the global dynamics of a model for HIV Infection of CD4+ T cells Mathematical Biosciences 200 pp 44-57
[6] Rui Xu 2013 Global dynamics of a delayed epidemic model with latency and Relapse Nonlinear Analysis: Modelling and Control 18 pp 250-263
[7] Youssef Tabit, Khalid Hattaf and Noura Yousfi 2014 Dynamics of an HIV Pathogenesis model With CTL immune response and two saturated rates World Journal Of Modeling and Simulation 10 pp 215-223
[8] Srivastava P K, Banerjee M and Peeyush Chandra 2009 Modeling the drug therapy for hiv Infection Journal of Biological Systems 17 pp 213–223
[9] Hai -Feng Huo and Li-Xiang Feng 2013 Global stability for an HIV/AIDS epidemic model with Different latent stages and treatment Applied Mathematical Modelling 37 pp 1480-89
[10] Elaiw A M and Alshamrani N H 2016 Global stability of a general virus dynamics Model With multistaged infected progression and humoral immunity Journal of Biological Systems 24 pp 535–560
[11] Balamuralitharan S and Geetha V 2017 Analytical approach to solve the model for hiv Infection of CD4+ T cells using LADM International journal pure and applied Mathematics 113 pp 243-251