Systematic Review / Meta-analysis

Dexamethasone and post-dural puncture headache in women who underwent cesarean delivery under spinal anesthesia: A systemic review and meta-analysis of randomized controlled trials

Efrem Fenta a, Simegnew Kibret a, Metages Hunie a, Diriba Teshome a,∗

a Department of Anesthesia, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia

ARTICLE INFO

Keywords:
Dexamethasone
Incidence
Post-dural puncture headache
Severity

ABSTRACT

Background: Post-dural puncture headache is a common complication after spinal anesthesia for women who undergo cesarean delivery. Intravenous (IV) dexamethasone has been used to reduce the incidence and severity of PDPH with controversial results. This Systemic review and meta-analysis aimed to assess the effects of IV dexamethasone on PDPH.

Methods: This study is reported as per Preferred Reporting Items for Systematic and Meta-analysis. The primary outcome was the incidence and severity of PDPH. The secondary outcome variables were the postoperative total analgesic requirement and incidence of nausea and/or vomiting. Twelve randomized controlled trials with a total of 1548 women were included.

Results: Intravenous (IV) dexamethasone had no effect on the incidence of PDPH (OR = 0.64; CI, 0.39 to 1.05; I² = 71%, P = 0.08). Intravenous dexamethasone did not show a significant difference in the incidence of PDPH at 24 h at 48 h, and within one week postoperatively with p-values of less than 0.05. In a random-effect model, a pooled analysis showed that IV dexamethasone had no effect on the severity of PDPH in VAS (MD = 0.78; CI, −2.27 to 0.71; I² = 98%, P = 0.30).

Conclusion: Intravenous dexamethasone failed to decrease the incidence and severity of PDPH in women who underwent cesarean delivery under spinal anesthesia.

1. Introduction

1.1. Description of the condition

Spinal anesthesia has been the anesthetic technique of choice for cesarean delivery unless it is contraindicated [1–4]. Post-dural puncture headache (PDPH) is among common spinal anesthesia-related side effects for mothers who underwent cesarean delivery. It might appear several hours to a week after dural puncture, and could be a cause of poor patient outcome [5–8]. (see Table 1)

Dural puncture and subsequent cerebrospinal fluid (CSF) leakage is the most accepted mechanism for the induction of headache [9–12]. CSF leakage through the dural hole and reduction in CSF pressure lessens the cushioning effect of the brain, allowing it to sag within the intracranial vault and stimulation of dural pain receptors especially in an upright position [13–15].

There were different techniques to prevent and treat PDPH like bed rest, hydration, non-opioid analgesics, caffeine, codeine, and steroids [16–19]. Different studies tried to show the effects of intravenous dexamethasone and found controversial results. Therefore, this study aims to find the pooled effects of intravenous dexamethasone on PDPH.

1.2. How the intervention might work

The exact mechanism of action of how dexamethasone helps in reducing the incidence and severity of PDPH and pain is not well established. Intravenous dexamethasone might reduce PDPH and pain by inhibiting the inflammatory process which is important in the pain cascading pathway [20–25].

Abbreviations: CI, Confidence Interval; IV, Intravenous; MA, Meta-analysis; MD, Mean Difference; OR, Odds Ratio; SD, Standard Deviation; SR, Systemic Review; VAS, Visual Analogue Score.

∗ Corresponding author.
E-mail address: diribat2@gmail.com (D. Teshome).

https://doi.org/10.1016/j.amsu.2021.01.024
Received 13 December 2020; Received in revised form 9 January 2021; Accepted 9 January 2021
Available online 18 January 2021
2049-0801/© 2021 Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY license
Table 1
Characteristics of included studies.

Author/s, study year, cite	Number of patients (Total, IV Dexa, placebo) and study design	Type of surgery	Type of Anesthesia	Dexamethasone group/ time, dose/	Placebo group/ time, dose, type/	Outcomes
Doroudian et al., 2011 [34]	Total = 178, Randomized double-blind, Placebo-controlled, clinical trial	Lower extremity orthopedic surgery	Spinal anesthesia	Received 2 ml/8 mg intravenous (i.v) Dexamethasone After termination of surgery	2 ml of normal saline After termination of surgery	There was no statistically significant difference between groups regarding the incidence of PDPH. However, the intensity of headache differed between the two groups being less severe if IV dexamethasone had been given prophylactically.
Anbarlouei et al., 2020 [35]	ASA I II women Total = 216, Control = 72, IV Dexa = 72 Hydrocortisone = 72 Clinical trial	Cesarean section	Spinal anesthesia	8 mg dexamethasone IV 200 mg of hydrocortisone	2 ml of normal saline	The incidence of PDPH in the control group, 1 (3.33%), 6 (20%), 11 (36.67%), 12 (40%) of headaches developed immediately, 6, 24, and 48 h after cesarean section respectively. There were no statistically significant differences among the three groups regarding the incidence of the headache immediately, 6, 24, and 48 h following cesarean section. The prevalence of headache was 41.6% (30 of 72 patients) in the placebo group, 22.2% (16 of 72 patients) in the dexamethasone group, and 13.8% (10 of 72 patients) in the hydrocortisone group. Regarding the pain severity, the headaches were significantly more severe in the control group compared with the hydrocortisone and dexamethasone groups at 24 (P = 0.02), and 48 (P = 0.01) hours, and 1 week (P = 0.001) after cesarean section. The occurrence of the PDPH were: 10%, 7.5%, and 20% in Ondansetron, Dexamethasone, and Placebo with a p-value of 0.001 respectively.
Shokrpour et al., 2018 [36]	Total = 120 Control = 40, IV Dexa = 40 Ondansetron = 40 a double-blind clinical trial	mothers candidate for elective, second time cesarean	Spinal anesthesia	8 mg IV Dexamethasone, 8 mg of IV ondansetron.	2 ml of distilled water.	The mean period of hospitalization in days was: 2.1 ± 0.8, 2.01 ± 1.1, 2.2 ± 0.9 in Ondansetron, Dexamethasone, and Placebo with a p-value of 0.63 respectively. The occurrence of the PDPH were: 10%, 7.5%, and 20% in Ondansetron, Dexamethasone, and Placebo with a p-value of 0.001 respectively within 48 h VAS at 12 h 5.01 ± 1.1, 3.6 ± 0.9, and 5.5 ± 1.8 in Ondansetron, Dexamethasone, and Placebo with a p-value of 0.02 respectively VAS at 24 h 5.03 ± 1.4, 4.6 ± 1.7, and 5.8 ± 2.1 in Ondansetron, Dexamethasone and Placebo with a p-value of 0.03 respectively VAS at 48 h 2.01 ± 0.7, 1.01 ± 0.6, and 2.9 ± 1.1 in Ondansetron, Dexamethasone, and Placebo with a p-value of 0.03 respectively. The average analgesic used to treat headache within 48 h (mg) were: 112.5 ± 7.6, 100.8 ± 8.2, and 150.7 ± 9.1 in Ondansetron, Dexamethasone, and Placebo with a p-value of 0.01 respectively.
Yousefian et al., 2017 [37]	Total = 150, Control = 50, IV Dexa = 50, IV	Cesarean section	Regional anesthesia	8 mg dexamethasone IV, 4 mg of ondansetron.	2 ml of Normal saline	The prevalence of headache was 9 (18%), 0(0%), and 0(0%) in placebo, (continued on next page)
Table 1 (continued)

Author/s, study year, cite	Number of patients (Total, IV Dexa, placebo) and study design	Type of surgery	Type of Anesthesia	Dexamethasone group/ time, dose/	Placebo group/ time, dose, type/	Outcomes
ondasetron = 50	A double-blind clinical trial					
Hamzei et al., 2012 [38]	Total = 160 Control = 80, IV Dexa = 80, A single-blind randomized, control trial	Cesarean section	Spinal anesthesia	8 mg IV dexamethasone control		
Yousefshahi et al., 2012 [39]	Total = 360 IV dea = 182 placebo = 178 aged 18-44 years, A prospective Double blind randomized placebo-controlled study	Cesarean section	Spinal anesthesia	2 ml/8 mg IV dexamethasone (2 ml of normal saline) intravenously		Incidence of intraoperative nausea and vomiting were: 17 (44.7%), and 21 (48.8%) in placebo and dexamethasone respectively. Over the Incidence of PDPH were: 11(6.2%), and 28 (15.4%) in placebo, and dexamethasone groups respectively. Incidence of PDPH within first 24 h were: 8, and 24 in placebo, and dexamethasone groups respectively. Incidence of PDPH within the second 24 h was: 6, and 7 in placebo, and dexamethasone groups respectively with a p-value of 0.046. The severity of PDPH in the first 24 h in VAS were: 2.5 ± 2.1, and 2.6 ± 2.55 in dexamethasone and control groups respectively. The severity of headache in the first week in VAS were: 4.66 ± 2.82, and 4.7 ± 2.75 in dexamethasone and control groups respectively.
Shakhsemampour et al., 2018 [40]	Total = 104, Control = 52, IV Dexa = 52, aged 15-45, ASA I-II randomized double-blind clinical study	Elective cesarean section	Spinal anesthesia	2 ml/8 mg of dexamethasone IV	2 ml of normal saline.	Incidence of PDPH in recovery was 5, and 3 in placebo, and dexamethasone groups respectively with a p-value of 0.715. Incidence of PDPH within 48 h was 10, and 8 in placebo, and dexamethasone groups respectively with a p-value of 0.604. The severity of headache in VAS (M±SD) at recovery were 0.75 ± 1.19, and 0.73 ± 1.64 in dexamethasone, and placebo groups respectively with a p-value of 0.943. The severity of headache in VAS (M±SD) within 48 h was 1.05 ± 2.32, and 1.01 ± 2.31 in dexamethasone, and placebo groups respectively with a p-value of 0.93
Okpala et al., 2020 [41]	Total = 192, Control = 96, IV Dexa = 96, A double blind placebo controlled randomized trial	Cesarean section	Spinal anesthesia	2 ml/8 mg of dexamethasone.	2 ml normal saline IV.	The incidence of PDPH was 8 (8.3%) vs 24 (25.0%); in dexamethasone, and control groups with first 4 days respectively with a p-value of 0.002, and The incidence of PDPH was 7 (7.29%) vs 16 (16.67%); in dexamethasone, and control groups (continued on next page)
1.3. Why it is important to do this SR and MA

There were controversial results regarding the effect of intravenous dexamethasone on reducing the occurrence and severity of PDPH, which necessitates this SR and MA. Some studies showed that dexamethasone increased significantly the frequency and severity of PDPH after cesarean delivery [26,27], other studies dexamethasone fail to reduce the incidence and severity of PDPH in different dosage [28,29], while other studies show that steroids decrease its incidence and severity [1, 30,31]. There were SR and MA regarding the effects of IV dexamethasone on the incidence and severity of PDPH for women undergoing cesarean delivery under regional anesthesia.
This SR and MA address the effectiveness of IV dexamethasone on PDPH occurrence and severity, and it might be supportive evidence for the scientific world. This Systemic review and meta-analysis aimed to assess the effects of IV dexamethasone administration on PDPH occurrence and severity.

2. Methods

2.1. Criteria for considering studies for this review

This study is reported as per Preferred Reporting Items for Systematic and Meta-analysis [32] and it is a high-quality systemic review based on AMSTAR 2 checklist self-evaluation [33]. Twelve randomized controlled trials with a total of 1548 patients were included. This SR and MA is registered in research registry with registration number reviewregistry1063 available at https://www.researchregistry.com/browse-the-registry#registryofsystematicreviewsmeta-analyses/registryofsystematicreviewsmeta-analysesdetails/5ff9a85073f73d001b5b2283/

2.2. Types of studies

Relevant articles were identified by four authors through their titles and abstracts from databases (Medline, Cochrane library, and Google scholar) and hand search. The clinical trials, free full texts, and human species were included.

2.3. Types of participants

The participants included in this SR and MA were women who underwent cesarean delivery under Spinal anesthesia.

2.4. Types of interventions

Intravenous dexamethasone is the intervention group in this SR and MA while normal saline is considered as a placebo group.

2.5. Types of outcome measures

The primary outcome in this SR and MA were the incidence of PDPH and severity of PDPH in VAS while the secondary outcomes were a total postoperative analgesic requirement and the incidence of postoperative nausea and/or vomiting.

2.6. Search methods for identification of studies

2.6.1. Electronic searches

We searched the following databases for the literature of the English language by using the following terms: (Headache, Post-Dural Puncture OR Headaches, Post-Dural Puncture OR Post Dural Puncture Headache OR Post-Dural Puncture Headaches OR Postdural Puncture Headache OR Headache, Postdural Puncture OR Headaches, Postdural Puncture OR Postdural Puncture Headaches OR Post-Lumbar Puncture Headache) AND (Dexamethasone OR Glucocorticoids OR Steroids). The included articles were limited to ‘Clinical trials’ and human studies.

2.7. Searching other sources

The hand search was applied to studies to identify additional literature by using key terms and via cross-references, links, and citations in google scholar and PubMed.
2.8. Data collection and analysis

2.8.1. Exclusion criteria
Studies that compared IV dexamethasone with other interventions of PDPH without a control group, IV dexamethasone without spinal anesthesia, IV dexamethasone with other additives.

2.9. Data extraction and management
Authors’ names with a year of publication, study characteristics, type of surgery, type of anesthesia, a dose of dexamethasone, normal saline dose, and outcomes were extracted. The titles and abstracts of all references identified in the searches were reviewed by four authors. Studies that are not met inclusion criteria were excluded. Full paper copies of included studies will be reviewed by four authors independently, and decisions made regarding selection/rejection. The disagreements arising were resolved by the discussion of all the reviewers.

2.10. Assessment of risk of bias in included studies

The risk of bias was assessed by using the Cochrane risk of bias tool and noted as being low, unclear, or high risk by the four researchers independently. Trials were rated according to random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), and other bias. The disagreements arising were considered and resolved by discussion. Concerning incomplete outcome data, studies were classified as low risk of bias if the follow-up rate was ≥80%. For selective outcome reporting bias, studies were classified as low risk of bias if trials were preregistered and their protocols were available for full review [32].

2.11. Statistical analysis

Analyses were done with Review Manager version 5.4.1; Cochrane Library, Oxford, UK. Dichotomous variables (incidence of PDPH and incidence of PONV), and continuous variables (severity of PDPH in VAS and analgesic requirement in mg) were reported as odds ratio and mean differences with 95% CIs respectively. The I^2 test was used to assess the Heterogeneity of the outcomes. A fixed-effect model and a random-effect model were used when $I^2<50\%$ and $I^2>50\%$ respectively. The funnel-plot analysis was used to assess potential publication biases [46].

3. Results

3.1. Description of studies

The primary literature search initially identified 3247 articles. After duplicates were removed 2567 were left for further screening by abstract and title which gave us 52 full text available clinical trials of human studies for inclusion. Then 12 studies were used for qualitative (SR) while 10 studies were used for quantitative (MA) (Fig. 1).

The risks of bias for included studies were evaluated by four authors and discussed as low risk, high risk, and unclear risk. Hamzei et al. [38] high risk of bias in blinding of participants and personnel, and blinding of outcome assessment. Motaghi et al. [43] low risk of bias in random sequence generation, and reporting bias, while the unclear risk of bias in allocation concealment, blinding of participants and personnel, and blinding of outcome assessment and in other biases (Fig. 2).

3.2. Assessment of publication bias

A funnel plot was created for the primary outcome and visually inspected to assess publication bias. A symmetrical inverted funnel plot shows no publication bias.

3.3. Incidence of post-dural puncture headache

The incidence of PDPH was reported by nine RCTs [35–39,41,42,45]. In a random-effect model, a pooled analysis of nine clinical trials, showed that intravenous dexamethasone has no statistically significant effect on the frequency of PDPH (OR = 0.64; CI, 0.39 to 1.05; $I^2 = 71\%$, $P = 0.08$). Intravenous dexamethasone did not show a significant difference in incidence of PDPH at 24 h [35,38,39,41,42] (OR = 0.73; CI, 0.24 to 2.17; $I^2 = 79\%$, $P = 0.57$), at 48 h [35–37,39,40,45] (OR = 0.57; CI, 0.22 to 1.45; $I^2 = 75\%$, $P = 0.24$), and within one week post-operatively [38,42] (OR = 0.76; CI, 0.09 to 6.35; $I^2 = 90\%$, $P = 0.80$) (Fig. 3).

The severity of Post-dural puncture headache.

The severity of PDPH was reported by 6 RCTs [36,38–41,45]. In a random-effect model, a pooled analysis of six clinical trials showed...
intravenously dexamethasone had no a statistically significantly difference between groups on severity of PDPH in VAS (MD = 0.78; CI, –2.27 to 0.71; I² = 98%, P = 0.30). Intravenous dexamethasone did not show a statistical significant difference in severity of PDPH in VAS at 24 h [36, 38, 39, 41] (MD = 0.63; CI, –1.71 to 0.45; I² = 73%, P = 0.25), and at 48 h [36, 39, 40, 45] (MD = 0.35; CI, –2.98 to 3.68; I² = 99%, P = 0.84) (Fig. 4).

3.4. Analgesic requirement

Two studies [36, 45] reported the analgesic consumption. Intravenous dexamethasone failed to show a statistical significant difference in total postoperative analgesic consumption within 48 h (MD = 24.16; CI, –74.53 to 26.21; I² = 100%, P = 0.35) (Fig. 5).

3.5. Incidence of nausea and/or vomiting

The incidence of PDPH was reported by three RCTs [37, 39, 41]. In a random-effect model, a pooled analysis showed that intravenous dexamethasone has no statistically significant effect on the prevalence of nausea and/or vomiting (OR = 0.39; CI, 0.09 to 1.69; I² = 82%, P = 0.21) (Fig. 6).

4. Discussion

Intravenous dexamethasone might reduce the incidence and severity of PDPH and pain through glucocorticoid steroid receptors that cause vasoconstriction and reduce the absorption of administered local anesthetic, inhibiting the production of inflammatory mediators [21, 25]. There were controversial results regarding the effect of intravenous dexamethasone on reducing the occurrence and severity of PDPH, which necessitates this SR and MA. The results of our systemic review and meta-analysis revealed that intravenous dexamethasone failed to decrease the occurrence and the severity of PDPH in women who underwent cesarean delivery under spinal anesthesia. Contrary to this SR and MA researches done by Ona

Fig. 3. Effects of intravenous dexamethasone on the incidence of PDPH.
et al., Yousefshahi et al., showed that IV dexamethasone increases the occurrence of PDPH [26,27]. In agreement with this SR and MA studies done by Yang et al., and Mahmoud et al. found that the use of IV dexamethasone has no statistically significant benefit to the occurrence and severity of PDPH [28,29], while some studies showed that steroids decrease its incidence and severity [1,30,31]. There were SR and MA regarding the effects of IV dexamethasone on the incidence and severity of PDPH for women undergoing cesarean delivery under regional anesthesia.

This SR and MA address the effectiveness of IV dexamethasone on PDPH occurrence and severity, and it might be supportive evidence for the scientific world. This Systemic review and meta-analysis aimed to
assess the effects of IV dexamethasone administration on PDPH occurrence and severity.

5. Conclusions

Intravenous dexamethasone failed to decrease the incidence and severity of PDPH in women who underwent cesarean delivery under spinal anesthesia.

Limits and challenges

During this study, we have encountered the difficulty of found freely available studies and we tried to search them by using different databases.

Availability of data and materials

All data generated or analyzed during this study are available in this manuscript.

Provence and peer-reviewed

Not commissioned, externally peer-reviewed.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Alemnew EF, Wubetu SK, Belay MH, and Lemma DT performed the literature search, assessment of articles, data extraction, statistical analysis, manuscript preparation.

Ethics approval and consent to participate

Not applicable.

Funding

No.

Fig. 6. Effects of intravenous dexamethasone on the incidence of postoperative nausea and/or vomiting.

Acknowledgments

Debre Tabor University for providing internet service.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.amsu.2021.01.024.

References

[1] S. Ashfaq, L. Ali, M.A. Zia, R.A. Khan, M. Butt, Effect of hydrocortisone on reducing severity of post dural puncture headache after spinal anesthesia for elective cesarean section, Annals of King Edward Medical University 23 (4) (2017) 440–444.
[2] M.H. Bakri, E.A. Ismail, G. Ghanem, M. Shokry, Spinal versus general anesthesia for Cesarean section in patients with sickle cell anemia, Korean journal of anesthesiology 68 (5) (2015) 469.
[3] W.H. Kim, M. Hur, S.-K. Park, S. Yoo, T. Lim, H. Yoon, et al., Comparison between general, spinal, epidural, and combined spinal-epidural anesthesia for cesarean delivery: a network meta-analysis, Int. J. Obstet. Anesth. 37 (2019) 5–15.
[4] A. Jafarzadeh, M. Hadavi, G. Hasanshahi, M. Rezaeian, R. Vazirinejad, F. Aminzadeh, et al., Effect of anesthesia techniques on pain severity, hemodynamic changes, and patients’ satisfaction in elective cesarean section, Acta Med. Iran. 57 (7) (2019), https://doi.org/10.18502/acta.v57i7.2328.
[5] D. Bezov, R.B. Lipton, S. Ashina, Post-dural puncture headache: part I diagnosis, epidemiology, etiology, and pathophysiology, Headache J. Head Face Pain 50 (7) (2010) 1144–1152.
[6] L. Permpolprasert, P. Vichitvejpaisal, S. Chumpathong, P. Wongripiemt, A retrospective study of postdural puncture headache after spinal anesthesia for cesarean section treated by epidural blood patch: incidence and associated factors, J. Med. Assoc. Thail. 101 (9) (2018) 75.
[7] A.A. Kassa, T.K. Beyen, Z.A. Denu, Post Dural Puncture Headache (PDPH) and Associated Factors after Spinal Anesthesia Among Patients in University of Gondar Referral and Teaching Hospital, North West Ethiopia, Gondar, 2015.
[8] P. Namboze, K. Samuel, J.B. Kiggundu, A. Kintu, M.T. Nabukunya, Incidence of Post Dural Puncture Headache and Associated Factors Following Spinal Anaesthesia for Cesarean Delivery in Mulago National Referral Hospital, 2019.
[9] S. Waise, D. Gannon, Reducing the incidence of post-dural puncture headache, Clin. Med. 13 (1) (2013) 32.
[10] J.A. Amorim, M.V. Gomes de Barros, M.M. Valença, Post-dural (post-lumbar) puncture headache: risk factors and clinical features, Cephalalgia 32 (12) (2012) 916–923.
[11] I. Arevalo-Rodriguez, A. Clapponi, M.R. i Figuls, L. Muñoz, X.B. Cosp, Posture and fluids for preventing post-dural puncture headache, Cochrane Database Syst. Rev. (3) (2016).
[12] A. Jabbari, E. Alijanpour, M. Mir, Post spinal puncture headache, an old problem and new concepts: review of articles about predisposing factors, Caspian Journal of internal medicine 4 (1) (2013) 595.
[13] K.E. McGoldrick, Post-dural puncture headache: pathogenesis, prevention and treatment, Surv. Anesthesiol. 48 (4) (2004) 197–198.
[14] R. Miller, N. Cohen, L. Eriksson, L. Fleisher, J. Wiener-Kronish, N. Cohen, Miller's Anesthesia, seventh ed., Churchill, NewYork, 2009, p. 2767.

[15] Ma NA, Sadeqi A, Azarbakht Z, Salehi S, Hamediersehi E. HYDROCORTISONE IN POST-DURAL PUNCTURE HEADACHE. In: Anesthesiology and Critical Care 4 (1) (2018) 426–429.

[16] M. Alam, M. Raheen, K. Iqbal, M. Chowdhury, Headache following spinal anesthesia: a review on recent update. J. Bangladesh Coll. Phys. Surg. 29 (1) (2011) 32–40.

[17] S. Pasban-Noghabi, A. Ekrani-Noghabi, H. Kamran, Can dexamethasone reduce postdural puncture headache? AANA journal 82 (1) (2014) 7.

[18] M. Vyvey, Steroids as pain relief adjuvants, Can. Fam. Physician 56 (12) (2010) 1295–1297.

[19] C. Pehora, A.M. Pearson, A. Kaushal, M.W. Crawford, B. Johnston, Dexamethasone as an adjuvant to peripheral nerve block, Cochrane Database Syst. Rev. (11) (2017).

[20] D. Teshome, E. Fenta, E. Nwachukwu, et al., A double-blind placebo controlled trial on effectiveness of intravenous dexamethasone and hydrocortisone in reducing postdural puncture headache, Journal of Anaesthesiol. Clin. Pharmacol. 28 (2) (2012) 190.

[21] E.F. Alemnew, D.T. Lemma, S.M. Abate, B.A. Regassa, Effectiveness of intravenous hydrocortisone in reducing postdural puncture headache, J. Anaesthesiol. Clin. Pharmacol. 28 (2) (2012) 190.

[22] B.J. Shea, B.C. Reeves, G. Wells, M. Thuku, C. Hamel, J. Moran, et al., AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomized studies of healthcare interventions, or both, Br. Med. J. Int. Ed. 358 (2017) 4007.

[23] M.R. Doroudian, M. Norouzi, M. Esmailie, R. Tanhaeivash, Dexamethasone in preventing post-dural puncture headache: a randomized, double-blind, placebo-controlled trial, Acta Anaesthesiol. Belg. 62 (3) (2011) 143–146.

[24] M. Najafi, S. Emami, M. Khajavi, F. Imani, M. Lajevardi, et al., Is dexamethasone effective in preventing post-dural puncture headache? AANA journal 82 (1) (2014) 7.

[25] E. Fenta et al. 2011.

[26] M. Vyvey, Steroids as pain relief adjuvants, Can. Fam. Physician 56 (12) (2010) 1295–1297.

[27] M. Yue, Dexamethasone preventing post-dural puncture headache for shoulder surgery, Anaesthesia 71 (4) (2016) 386–388.

[28] F. Yousefshahi, Dexamethasone increases the frequency of post-dural puncture headache (PDPH): an evidence based reality, Anesthesiol. Pain Med. 7 (1) (2017).

[29] X. Basurto Ona, S.M. Uriona Tuma, L. Martinez Garcia, I. Sola, X. Bonfill Cosp, Drug therapy for preventing post-dural puncture headache, Cochrane Database Syst. Rev. (2) (2013), Cd001792.

[30] X. Basurto Ona, S. Osorio, X. Bonfill Cosp, Drug therapy for treating post-dural puncture headache, Cochrane Database Syst. Rev. 2015 (7) (2015), Cd007887.

[31] M. Yousefian, M. Ghafari, Comparison Review of the effects of dexamethasone and hydrocortisone on the incidence of headache after spinal anesthesia in patients after cesarean section, Arch. Pharm. Pract. 1 (2020) 143.

[32] M. Yue et al. 2011.

[33] B.J. Shea, B.C. Reeves, G. Wells, M. Thuku, C. Hamel, J. Moran, et al., AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomized studies of healthcare interventions, or both, Br. Med. J. Int. Ed. 358 (2017) 4007.

[34] M.R. Alam, M.A. Rahman, R. Ershad, Role of very short-term intravenous dexamethasone in reducing postdural puncture headache, J. Anesthesiol. Clin. Pharmacol. 28 (2) (2012) 190.

[35] X. Basurto Ona, D. Osoio, X. Bonfill Cosp, Drug therapy for preventing post-dural puncture headache, Cochrane Database Syst. Rev. 2015 (7) (2015), Cd007887.

[36] M. Shokrpour, S. Homayuni, A. Kamali, S. Pazuki, Comparing the prophylactic effect of ondansetron and dexamethasone in controlling headaches caused by spinal anesthesia among women candidates for caesarean A randomized controlled trial, Electronic Journal of General Medicine 15 (4) (2018) 6.

[37] M. Yousefshahi, M. Ghafari, Comparison Review of the effects of dexamethasone and ondansetron intravenous on preventing headache after spinal sedation of patients under a cesarean section in the alavi Hospital 2016-2017, Int. J. Sci. Stud. 5 (3) (2017) 371–374.

[38] A. Hamzei, M. Basiri-Moghadam, S. Pasban-Noghabi, Effect of dexamethasone on incidence of headache after spinal anesthesia in cesarean section. A single blind randomized controlled trial, Saud Med. J. 33 (9) (2012) 948–953.

[39] F. Yousefshahi, A.R. Dahnaradeh, M. Khajavi, A. Najafi, P. Khanhavay, K. Barkhordari, Effect of dexamethasone on the frequency of postdural puncture headache after spinal anesthesia for cesarean section: a double-blind randomized clinical trial, Acta Neurol. Belg. 112 (4) (2012) 345–350.

[40] F. Shakhnoonampour, E. Allahyari, A. Rajabpour-sanati, A. Sabertanba, Evaluation the effect of dexamethasone on post-dural puncture headache in cesarean surgery, Journal of Surgery and Trauma 6 (1) (2018) 6–10.

[41] B.C. Okpala, G.U. Eleje, J.I. Ikechekwu, C.J. Ojofeje, T.B. Eijikeme, C. Ewuchukwu, et al., A double-blind placebo controlled trial on effectiveness of prophylactic dexamethasone for preventing post-dural puncture headache after spinal anesthesia for cesarean section, J. Matern. Fetal Neonatal Med. 2010 (6–11) 146.

[42] M.R. Alam, M.A. Rahman, R. Ershad, Role of very short-term intravenous dexamethasone in reducing postdural puncture headache, J. Anesthesiol. Clin. Pharmacol. 28 (2) (2012) 190.

[43] X. Basurto Ona, D. Osoio, X. Bonfill Cosp, Drug therapy for treating post-dural puncture headache, Cochrane Database Syst. Rev. 2015 (7) (2015), Cd007887.

[44] D. Moher, L. Shamseer, M. Clarke, D. Ghersi, A. Liberati, P. Petticrew, et al., Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement, Syst. Rev. 4 (1) (2015) 1.

[45] B.J. Shea, B.C. Reeves, G. Wells, M. Thuku, C. Hamel, J. Moran, et al., AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomized studies of healthcare interventions, or both, Br. Med. J. Int. Ed. 358 (2017) 4008.