Traditional medicinal plants used in different districts of West Bengal by the tribal communities

Abhishek Konar, Koyel Mukherjee, Pranabesh Ghosh and Mohamed El-Shazly

DOI: https://doi.org/10.22271/phyto.2022.v11.i5b.14479

Abstract
Plants play one of the most important roles in providing nutrition and therapeutics to human beings and animals. Several research studies were published in different areas of the world focusing on the food content and medicinal value of plants. In rural areas, herbal products are the main source of medications for all types of diseases. The current study summarizes the uses of traditional medicinal plants by the tribal people of various parts of the state of West Bengal, India. The review highlights the use of 105 medicinally important plant species with their taxonomical features, ethno botanical uses, and pharmacological properties.

Keywords: Medicinal plants, West Bengal, tribal community, ethno botany, ethno pharmacology

Introduction
The indigenous population of India has been using medicinal plants since the prehistoric time [1]. All human civilizations used medicinal plants as a source of therapeutics because of their availability in the local environment, therapeutic activities, and fewer side effects. Plants provide various kinds of therapeutic agents that are used for the treatment of a wide range of diseases such as cancer, diabetes, malaria, inflammation, obesity, cardiovascular [2], and microbial infections [3]. Ayurveda is one of the oldest traditional healthcare systems and it is widely practiced in India and other major Asian countries. In the ancient period, Atharva Veda (Around 1200 BC) summarized traditional medical science based on medicinal plants focusing on 600 herbs. Currently, more than 80,000 plants are used for therapeutic purposes. Developing countries significantly depend on medicinal plants for providing effective therapeutics at reasonable prices. According to WHO, 80% of developing countries’ populations use plants as a source of therapeutic agents. In India, more than 6000 medicinal plant species were identified. These plants are used across all tribal communities in the country. In India, local communities use more than 50% of the plant species of any ecosystem for phytomedicine purposes and in general, over 7400 species are utilized in the primary healthcare system by various tribes. The plant biodiversity of India is one of the largest biodiversity systems in the world. Different plants are grown in different habitats with different therapeutic activities. Plants differ in their names according to the region. Plant’s local names are very important for any ethno botanical study of every specific tribal community. Plants are generally known by their local names, but the binomial nomenclature of plants is the only acceptable scientific system. A plant’s local name is given based on some characteristic features including size, shape, habitat, taste, color, importance, smell, and utility. These local names reflect the plant’s anatomy, pharmacognosy, uses, and ecology. The local name is vital for local the identification of plants. The floristic diversity of the state of West Bengal is very well known across the world. Many plant species are used not only as medicinal agents but as vegetables by the people of this state [4].

2. Discussion about medicinal plants used by tribal communities
In this study, 105 plant species of 60 families (Table 1) were found to be used for medicinal purposes by various tribes of West Bengal, India. We summarized their local names and medicinal and ethnomedical uses by tribal communities of West Bengal.

Sl. No.	Scientific Name	Family	Habit	Local Name (Bengali)	Ethno botanical uses in the locality	Pharmacological activities
1.	Aegle marmelos	Rutaceae	Tree	Bel	Fruit used in stomach diseases Anti-inflammatory, Anti-cancer, Antimicrobial [9]	
2.	Reynoutria japonica	Polygonaceae	Herb	Gangadha	Leaf juices are used for stomach diseases Anti-inflammatory, Antioxidant [6]	
3.	Andrographis paniculata	Acanthaceae	Herb	Kalmegh, Chirata	The leaf is used for skin diseases and diabetes Anti-diabetic, Antioxidant, Anti-hepatotoxic, Anti-malarial [7]	
4.	Catharanthus roseus	Apocynaceae	Herb	Nayantara	Leaf extract is used to treat diabetes Antidiabetic, Antimicrobial, Anti-ulcer [9]	
5.	Tagetes patula	Asteraceae	Herb	Gandha	Leaf extract is applied on cuts to stop bleeding Antifibrinolytic, Anti-platelet aggregation, Antibacterial [9]	
6.	Thanberga grandiflora	Acanthaceae	Tree	Nil lata	Anti-inflammatory, Antioxidant [10] Anti-inflammatory, Antioxidant [10]	
7.	Datura innoxia	Solanaceae	Shrub	Kalo Dhutra	It is used in treating asthma, cough, breast pain Anti-rabies, Anti-asthmatics, Anti-inflammatory, Anti-viral [14]	
8.	Curcuma longa	Zingiberaceae	Herb	Halad	The rhizome paste is applied to treat skin diseases and inflammation Antioxidant, Anti-inflammatory, Antibacterial [12]	
9.	Ocimum basilicum	Lamiaceae	Herb	Bana Tuls or Dural Tuls	Seed paste is applied against stings of bees and insects Antifibrinolytic, Anti-diabetic, Antioxidant, Antipyretic [13]	
10.	Boerhaavia diffusa	Nyctaginaceae	Herb	Kumkum sak	The root is used in jaundice Anti-inflammatory, Anti-stress [14]	
11.	Ranvolfia tetraphylla	Apocynaceae	Shrub	Sarpagandha	Roots are used to treat skin diseases Antioxidant, Anti-inflammatory, Anti-venom [15]	
12.	Hibiscus rosa-sinensis	Malvaceae	Shrub	Jaba	Leaves juice is used to treat burning sensation, fatigue, and skin diseases Anti-inflammatory, Antimicrobial, Anti-diabetic Hypolipidemic, Astringent, Antimicrobial [16]	
13.	Mentha piperita	Lamiaceae	Herb	Padina	Leaf extract is used to treat motion sickness and headache Analgesic, Anti-vomiting, Anti-inflammatory [17]	
14.	Coriandrum sativum	Apiaceae	Herb	Dhoney	Fruits are used as a digestive stimulant Anthemic, Anti-diabetic, Antioxidant [18]	
15.	Nymphaea alba	Nymphaeaceae	Herb	Sadasaluk	Seeds are used to treat diabetes Anti-cancer, Anti-tumor [19]	
16.	Leucas cephalotes	Lamiaceae	Herb	Halaksha, Gouthu	The plant is used as diaphoretic and antiseptic Anti-inflammatory, Antimicrobial, Cytotoxic [20]	
17.	Marsilea quadrifolia	Marsileaceae	Herb	Susnisak	Leaf juice is used to treat skin diseases Anti-inflammatory, Anti-inflammatory [21]	
18.	Spondias pinnata	Anacardiaceae	Tree	Amra	Fruit is used to cure the digestive problems Anti-cancer, Antioxidant, Anti-diarrheal [22]	
19.	Anisomeles indica	Lamiaceae	Herb	Gopali	Whooping cough is treated with the leaf juice Anti-inflammatory, Anti-malarial, Analgesic [23]	
20.	Justicia adhatoda	Acanthaceae	Herb	Basak	Leaf juice I used as an expectorant to treat cough Anti-microbial, Antioxidant [24]	
21.	Terminalia chebula	Combretaceae	Herb	Haritaki	Fruit is used against stomach disorders Antibacterial, Anti-diabetic, Antifungal [25]	
22.	Heliotropium indicum	Boraginaceae	Shrub	Hatisur	Root juice is used in eye and skin diseases Anti-inflammatory, Antioxidant, Antifungal [26]	
23.	Cajanus cajan	Fabaceae	Herb	Arhar	Leaf decoction is beneficial for jaundice Anti-inflammatory, Antioxidant [26]	
24.	Ricinus communis	Euphorbiaceae	Herb	Rerhi	Seed oil is used as a painkiller Anti-bacterial, Antioxidant [27]	
25.	Glinus oppositifolius	Molluginaceae	Herb	Gima	The plant is used to treat colds, coughs, and cancer Anti-microbial, Anti-inflammatory, Anti-cancer [28]	
26.	Eshhydra fluctuans	Asteraceae	Herb	Hingcha	The leaf is used in viral infections and diabetes Anti-viral, Anti-cancer, Anti-inflammatory [29]	
27.	Portulaca oleracea	Portulacaceae	Herb	Nunasak	The plant is used in asthma and stomach diseases Anti-asthmatics, Anti-diabetic, Antioxidant, Anti-inflammatory [30]	
28.	Centella asiatica	Apiaceae	Herb	Thankuni	Plants are used as blood purifiers Anti-inflammatory, Antioxidant, Antioxidant [31]	
29.	Oxalis corniculata	Oxalidaceae	Herb	Amrul	The leaf is used in indigestion, scurvy treatment, and dysentery Anti-helminthic, Anti-pyretic, Anti-diarrheal, Anti-cancer [32]	
30.	Commelina benghalensis	Commelinaceae	Herb	Karos sak	Plant juice is used in treating insect bites and blisters in the eye Anti-inflammatory, Analgesic, Anti-cancer, Anti-viral [33]	
31.	Azadirachta indica	Meliaceae	Tree	Neem	Leaf juice is used in diabetes and joint pain Anti-diabetic, Anti-inflammatory, Anti-viral [34]	
32.	Ficus hispida	Moraceae	Tree	Dunur	Root juice of the plant is used in curing fevers and in stomach disease Anti-pyretic, Anti-diarrheal, Antimicrobial, Antioxidant [35]	
33.	Colocasia esculenta	Araceae	Herb	Kachu	The leaf is used in scorpion bites and piles Anti-fibrinolytic, Antimicrobial, Antioxidant [34]	
34.	Corchorus aestuans	Malvaceae	Herb	Bonkhetay	The leaf is used to treat scorpion bites and piles Antifungal, Antioxidant [17]	
35.	Clematis gouriana	Ranunculaceae	Herb	Mruurva	The leaf is used in insect bites Anti-inflammatory, Anti melanogentic [37]	
36.	Ipomoea obscura	Convolulaceae	Herb	DangaKalmi	Leaf juice is used as an antidote for insect bites Anti-tumor, Antibacterial [38]	
37.	Trigonella corniculata	Fabaceae	Herb	Piringsak	Leaves are used as antihelminetic Antioxidant, Anti-microbial [36]	

~ 105 ~
38.	Polygonum plebeium	Polygonaceae	Herb	Kezmi	Leaf juice is used as a liver tonic and infection	Antimicrobial, Anti-inflammatory, Antioxidant [57]
39.	Amaranthus viridis	Amaranthaceae	Herb	Ban note, Lal notey	The leaf is used in chest pain, asthma, and diabetes	Antioxidant, Anti-psyretic, Hepato-protective [38]
40.	Hygrophila auriculata	Acanthaceae	Herb	Kulekhara	It is used in anemia and diabetes	Anti-diuretic, Hematopoietic, Anti-diabetic [37]
41.	Tamarindus indica	Fabaceae	Tree	Tantul, Ambli	The bark is used to cure wounds, ringworms and smallpox	Antioxidant, Hypolipidemic, Anti-cancer, Anti-obesity [39]
42.	Xanthium strumarium	Asteraceae	Herb	Okra phal	The plant is used in malaria and ulcers	Anti-arthritic, Anti-parasitic, Antioxidant, Anti-fungal [40]
43.	Mimosa pudica	Fabaceae	Herb	Lajjibati	It is used to treat burning sensation	Antioxidant, Anti-cancer, Anti-venom [10]
44.	Basella alba	Basellaceae	Herb	Painsak	The root is used to treat tuberculosis and anemia	Antioxidant, Antimicrobial, Anti-depressant [41]
45.	Flacourtia indica	Salicaceae	Shrub	Bauch	The leaf is used in dysentery and fever	Anti-asthmatic, Antibacterial [42]
46.	Bacopa monnieri	Plantaginaceae	Herb	BramhiSak	The leaf is used in memory improvement	Antioxidant, Antimicrobial, Anti-epileptic [43]
47.	Cocos nucifera	Areceae	Tree	Narkel	Used to treat liver, skin problems, and kidney stones	Antitumor, Anti-cancer, Antibacterial, Antifungal [43]
48.	Blumea lacera	Asteraceae	Shrub	Kukshima, Kukursonga	Used to treat muscular pain and headache	Anti-diarrheal, Antimicrobial, Anxiolytic [44]
49.	Barleria lupulina	Acanthaceae	Herb	Bishalayakarani	Apply leaves paste to fresh wounds and cuts to stop bleeding	Anti-microbial, Anti-venom [49]
50.	Chenopodium album	Amaranthaceae	Herb	Bethosak	It is used in a dyspepsia	Anthelmintic, Antioxidant [46]
51.	Paederia scandens	Rubiaceae	Herb	Gadal	A fresh root decoction is used to treat rheumatism and dysentery	Anti-rheumatism, Antimicrobial, Anti-diabetic [47]
52.	Cynodon dactylon	Poaceae	Shrub	Durga	The plant is used in bleeding and skin diseases	Anti-inflammatory, Antioxidant [46]
53.	Oldenlandia corymbosa	Rubiaceae	Shrub	Khet Papra	Leaf juice is used against snakebites and skin diseases	Antibacterial, Hepato-protective, Anti-rheumatic, Anti-malarial, Anti-diabetic [49]
54.	Solanum xanthocarpum	Solanaceae	Shrub	Kantakari	Fruit juice is applied twice a day to control eye problems	Anti-vomiting Cancer Anti-asthmatic [50]
55.	Polygonum dichotomum	Polygonaceae	Herb	Biskathali	Leaves are crushed and used against dental problems	Anti-vomiting, Antioxidant, Anti-microbial [51]
56.	Moringa concanensis	Moringaceae	Tree	Sojne	The leaf is used in reducing high blood pressure and for rheumatism treatment	Anti-cancer, Antibacterial, Antifungal, Anti-diabetic [52]
57.	Acacia nilotica	Fabaceae	Tree	Babla	The bark is used to cure toothache	Anti-bacterial, Antioxidant, Antispasmodic, Anti-psyretic [46]
58.	Lawsonia inermis	Lythraceae	Tree	Mehendi	Leaf juice is applied to reduce dandruff and hair fall	Antibacterial, Anti-diabetic, Anti-fertility, Analgesic [53]
59.	Ottelia alismoides	Hydrocharitacea e	Herb	Parmikalla	Leaf extract is used to treat chicken pox	Anti-inflammatory, Antibacterial, Antifungal [46]
60.	Cassia occidentalis	Fabaceae	Herb	Kasinda	Root extract is used in snakebites	Anti-hepatotoxic, Anti-plasmodial, Antitoxin [46]
61.	Enhydra fluctuans	Asteraceae	Herb	Hingcha	Leaf extract is applied on cuts to stop bleeding	Anti-cancer, Antioxidant, Antimicrobial [54]
62.	Cassia alata	Fabaceae	Herb	Chakora	The leaf is used for skin diseases and painful sensation	Antioxidant, Anti-cancer [55]
63.	Clitoria ternatea	Fabaceae	Herb	Aparajita	Root juice with honey is used for mental health improvement in children	Anti-inflammatory, Anti-psyretic, Antioxidant [56]
64.	Butea monosperma	Fabaceae	Tree	Palas-baha	Bark and seed are used for insects' bites and skin diseases	Antioxidant, Anti-inflammatory, Anti-cancer, Anti-ulcer [57]
65.	Barleria cristata	Acanthaceae	Herb	Swetjhinti	Leaf juice is used as tooth paste and jaundice	Anti-diarrheal, Anti-fertility, Anti-microbial [54]
66.	Coccinia indica	Cucurbitaceae	Shrub	Kuchfol	Leaf juice is used for head cooling and reducing blood sugar	Anti-diabetic, Anti-hyperglycemic, Anti-inflammatory [59]
67.	Nyctanthes arbor-tristis	Oleaceae	Tree	Siuliful	Leaf juice is used for diabetic treatment	Anti-psyretic, Anti-fungal, Anti-arthritis, Anti-diabetic [48]
68.	Argemone mexicana	Papaveraceae	Herb	Shialkanta	Leaf juice is used for jaundice. Seeds are used in ulcer treatment	Nematocidal, Anti-fertility, Anti-ulcer, Anti-HIV, Anti-stress [40]
69.	Ziziphus mauritiana	Rhamnaceae	Tree	Kul	Root juice is used as a blood purifier	Anthelmintic, Antibacterial, Anti-fungal [46]
70.	Achyranthes aspera	Amaranthaceae	Herb	Apang	Leaf juice is used in asthma and snake bites	Antimicrobial, Antibacterial, Anti-plasmodia [91]
71.	Tribulus terrestris	Zygophyllaceae	Herb	Gokhur	Extract of young leaves is eaten with honey	Antibacterial, Antioxidant, Anti-diabetic, Anti-spasmodic, Anti-urothlic [52]
72.	Cleome gynandra	Cleomeaceae	Herb	Shulte	Leaf juice is used in jaundice	Anti-cancer, Anti-fungal, Anti-diabetic [55]
73.	Artocarpus lakoocha	Moraceae	Tree	Madar, Dahua	Leaf juice is used in worm diseases	Antimicrobial, Antioxidant, Anti-diabetic [49]
74.	Sida rhombifolia	Malvaceae	Herb	Jhurgachh	The plant is used in skin diseases and rheumatism	Anti-inflammatory, Anti-microbial [65]
75.	Melastoma malabathricum	Melastomataceae	Herb	Futki	Whole parts are used to treat stomachache	Antioxidant, Antimicrobial, Anti-psyretic [46]
76.	Tinospora	Menispermaceae	Herb	Gulancha	The bark is soaked in water for 6 to 8 hours	Anti-diabetes, Antiviral,
Conclusions
Almost in every corner of West Bengal, plants are used as medicine by local tribal communities. Herbal preparations made from traditional medicinal plants are used to treat common ailments prevalent in the area such as cuts, wounds, cough and cold, pain, stomachache, liver problems, diabetes, skin disorders, microbial infections, and tuberculosis [80-104]. This review provides a glimpse of traditional medicinal plants used by the tribal communities of West Bengal, India which are typically used by the tribal communities since ancient times.

Acknowledgements: The authors of the article are grateful to the tribal communities of various districts of West Bengal, India for their valuable help in the documentation of indigenous ethno medicinal knowledge. The authors are also thankful to Seacom Skills University for all kinds of support to complete the review work.

Conflict of interest
The author declares no conflict of interest.

References
1. Singh U, Lahiri N. Ancient India: New Research, Oxford University Press, New Delhi. 2010, 37(1).
2. Khare CP. Indian Medicinal Plants: An Illustrated Dictionary. Berlin/Heidelberg: Springer Verlag, 2006.
3. Poddar S, et al. Indian traditional medicinal plants: A concise review. 2020;5(5):174-190.
4. Biswas P, et al. Ethnobotanical investigation of wild edible plants of Arambagh sub-division of Hooghly district, West Bengal, India. Journal of Life sciences Leaflets. 2012. ISSN 2277-4297.
5. Baliga MS, Thilakchand KR, Rai MP, et al. Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integr. Cancer Ther. 2013;12:187-196.

6. Alperth F, Melinz L, et al. UHPLC Analysis of Reynoutria japonica Houtt. Rhizome Preparations Regarding Stilbene and Anthranoid Composition and Their Antimycobacterial Activity Evaluation. 2021;10(9):1-14.

7. Battu GR, Marra M, et al. Phytochemical and Pharmacological Studies on Andrographis paniculata. 2018;6(6):2814-19.

8. Nisar A, Mamat AS, et al. An updated review on Catharanthus roseus: Phytochemical and pharmacological analysis. 2016;3(2):631-653.

9. Singh N, et al. A Review on Pharmacological aspects of Tagetes erecta. Linn. 2019;7(9):16-24.

10. Thau L, Lalawmpuu L. Commonly used medicinal plants in N. Mualcheng, Mizoram, India. 2020;20(4):156-161.

11. Sharma M, Dhaliwal I, et al. Phytochemistry, Pharmacology, and Toxicology of Datura Species-A Review. 2021;10(8):5-12.

12. Araujo CC, Leon LL. Biological activities of Curcuma longa L. 2001;96(5):723-728.

13. Mueen CH, Naz SB, et al. Biological and Pharmacological Properties of the Sweet Basil (Ocimumbasilicum). 2015;7(5):330-339.

14. Mahesh AR, Kumar H, et al. Detail Study on Boerhaavia diffusa Plant for its Medicinal Importance- A Review. 2021;1(11):28-36.

15. Mahalakshmi SN, Achala HG, et al. Rawolfinia tetraphylla L. (Apocynaceae) - A Comprehensive Review on its Ethnobotanical Uses, Phytochemistry and Pharmacological Activities. 2019;9(2):664-682.

16. Snafi AEA. Chemical constituents, pharmacological effects and therapeutic importance of Hibiscus rosasinensis- A review. 2018;8(7):101-119.

17. Ghosh P, Das P, Das C, Mahapatra S, Chatterjee S. Morphological characteristics and phyto-pharmacological detailing of Hatishur (Heliotropium indicum Linn.): A concise review. Journal of Pharmacognosy and Phytochemistry. 2018;7(5):1900-1907.

18. Momin AH, Acharya SS, et al. Coriandrum sativum-review of advances in phytopharmacology. 2012;3(5):1233-1239.

19. Cudalbeau M, Furdii B, Carac G, et al. Antifungal, Antimutoral and Antioxidant Potential of the Danube Delta Nymphaea Alba Extracts. 2019;9(1):1-25.

20. Priya R, Nirmala M et al. Phytochemical compounds of Leucasaspera L. 2018;2(1):19-35.

21. Gopalakrishnan K, Kumar RU. Phytochemical content of leaf and stem of Marsilea quadrifolia (L.). 2017;1:026-037.

22. Kusum SAI, Devkota HP, et al. Free Radical Scavenging Activity and Chemical Constituents of the Unripe Fruits of Spondias pinnata (L.f.) Kurz. from Nepal. 2020;3(1):54-60.

23. Parmar R, Chakraborty S, et al. Ascertainning Anti-Inflammatory and Analgesic Activity in Aqueous Leaf Extract of Anisomeles indica (L.) Kuntze. 2015;6(1):01-05.

24. Jayapriya G, Hoba FG. GC-MS analysis of bio-active compounds in methanolic leaf extracts of Justicia adhatoda (Linn.). 2015;4(1):113-117.

25. Chandragupta P. Biological and pharmacological properties of Terminalia chebula retz. (Haritaki)-An overview. 2012;4(3):62-68.

26. Hassan EM, Matloub AA, et al. Assessment of anti-inflammatory, antinociceptive, immunomodulatory, and antioxidant activities of Cajanus Cajan L. seeds cultivated in Egypt and its phytochemical composition. 2015;54(8):1380-1391.

27. Inayor BN, Ibraheem O. Assessing Ricinus communis L. (castor) whole plant parts for Phenolics and Saponins constituents for medicinal and pharmaceutical applications. 2014;3(4):815-826.

28. Sheu SY, Yao CH, et al. Recent progress in Glinus oppositifolius research. 2014;52(8):1079-1084.

29. Saha S, Paul S. A review on phytochemical constituents and pharmacological properties of Enhydra fluctuans Lour. 2019;8(2):887-893.

30. Srivastava R, Srivastava V, et al. Multipurpose Benefits of an Undereexplored Species Purslane (Portulaca oleracea L.): A Critical Review. 2021.

31. Minh, Phuoc N, et al. Investigation of Herbal Tea Production from Centella asiatica Leaf. 2019;11(3):755-758.

32. Sarkar T, Ghosh P, Poddar S, et al. Oxalis corniculata Linn. (Oxalidaceae): A Brief Review. Journal of Pharmacognosy and Phytochemistry. 2020;9(4):651-655.

33. Ghosh P, Dutta A, Biswas M, Biswas S, Hazra L, Nag SK, et al. Phytomorphological, chemical and pharmacological discussions about Commelina bengalensis Linn. (Commelinaeae): A Review. The Pharma Innovation Journal. 2019;8(6):12-18.

34. Fokunang EAT, Charles F, Kaba N, et al. The Potential Pharmacological and Medicinal Properties of Neem (Azadirachta indica A. Juss) in the Drug Development of Phyto medicine. 2019;7(1):1-18.

35. Agaye C, Boakye YD, et al. Antimicrobial and Anti-Inflammatory Properties of Anchomames difformis (Bl.) Engl. and Colocasia esculenta (L.) Schott. 2016;5(1):2-5.

36. Mungole AJ, Awati R, et al. Preliminary Phytochemical screening of Ipomoea obscura (L) -A hepatoprotective medicinal plant. 2010;2(4):2307-2312.

37. Modi B, Shah KK, Shrestha J, et al. Morphology, Biological Activity, Chemical Composition, and Medicinal Value of Tinospora cordifolia (willd.) Miers. 2021;3(1):36-53.

38. Bala GO, Mukherjee AM. Useful plants of wetlands in Nadia district, West Bengal. Geobios. 2007;34(4):253-6.

39. Ferdous RU, Shahjahan S, et al. Present Biological Status of Potential Medicinal Plant of Amaranthus viridis: A Comprehensive Review. 2015;3(5-1):12-17.

40. Menezes APP, Trevisan SCC, et al. Tamarindus indica L. A plant with multiple medicinal purposes. 2016;5(3):50-54.

41. Fan W, Fan L, Peng C, Zhang Q, Wang L, Li L, et al. Traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics and toxicology of Xanthium strumarium L. A review. Molecules. 2019 Jan 19;24(2):359.

42. Haridas H, Sadiyah F et al. Phytochemical and pharmacological review on Basella alba Linn. 2021;11(2):472-477.

43. Amritha MS, Chandrasenan S, et al. Phytochemical and Pharmacological profiling of Aghori (Flacourtia indica (Burm. f.) Merril –An exploration of the evidence of a potent folklore medicine. 2021;16(1):1-8.
44. Sundaram SS, Suresh K. Prevention of hair fall and whitening of hair by valuable medicinal plants in selected areas of Madurai district, Tamil Nadu, India. 2019;7(3):74-77.

45. Sarkar AK, Dey M, Mazumder M. Exploration of Murophytes of Some Historical Buildings of Malda District of West Bengal, India. 2018;6(2):1446-1459.

46. Patra A, Mondal AK, et al. Traditional phytotherapeutic uses in Purba Medinipur, West Bengal, India. 2017;8(9):3904-3910.

47. Miya MS, Timilsina S et al. Ethnomedicinal uses of plants by major ethnic groups of Hilly Districts in Nepal: A review. 2020;4:24-37.

48. Xiao M, Ying L, et al. Progress on research and development of Paederia scandens as a natural medicine. 2019;12(1):158-167.

49. Das S, Mondal N, et al. Botanical features, phytochemical and pharmacological overviews of Oldenlandia cordifolia Linn.: A brief review. 2019;8(2):464-468.

50. Parmar S, Gangwal A, et al. Solanum xanthocarpum (Yellow Berried Night Shade): A review. 2010;2(4):373-383.

51. Tiwari AP, Dubey PC, et al. Vascular plants of KshipraRiver bank and its tributaries, Madhya Pradesh, India. 2017;143(5):451-458.

52. Santhi K, Sengottuvel R. Qualitative and Quantitative Phytochemical analysis of Moringa concanensis Nimno. 2016;5(1):633-640.

53. Kamal M, Jaiward. Pharmacological activities of Lawsonia inermis linn.: a review. 2010;12(6):62-68.

54. Saudagar P, Bhalaria P. A mini review on traditional uses, phytochemistry and pharmacological activities of Homonoia riparia. 2021;3(11):490-494.

55. Kumar S, Singh R, et al. Morphological, anatomical characterization and profiling of laxative principles sennosides in fifteen species from genus Cassia, Chamaecrista and Senna. 2021;10(1):33-44.

56. Tuan Putra T, Zainol TNM, et al. Chemical characterization of ethanolic extract of Butterfly pea flower (Clitoriaternatea). 2021;5(4):127-134.

57. Kunjam S, Chauhan SS, et al. Addition of Butea monosperma var. Lutea (Fabaceae) in the flora of district Rajangdaon, Chhattisgarh, India. 2021;6(3):394-397.

58. Namdeo P. Phcog rev.: Plant review phyo-pharmacology of Barleriaprinitionis Linn. - A review. 2021;11(01):1544-1551.

59. Gautam S, Meshram A, Srivastava N. A brief study on phytochemical compounds presentin Coccinia cordifolia for their medicinal, pharmacological and industrial applications. 2014;3(2):1995-2016.

60. Brahmachari G, Gorai D, Roy R. Argeonne mexicana: Chemical and pharmacological aspects. 2013;23(3):559-575.

61. Srivastav S, et al. Achyranthes aspera-An important medicinal plant: A review. 2011;1(1):1-14.

62. Sivapalan R. Biological and pharmacological studies of Tribulus terrestris Linn-A review. 2016;3(1):257-265.

63. Mishra SS, Moharana SK, et al. Review on Cleome gynandra. 2011;1(3):681-689.

64. Hari A, et al. Artocarpus: a review of its phytochemistry and pharmacology. 2014;9(1):7-12.

65. Chaves OS, Teles YCF, et al. Alkaloids and Phenolic Compounds from Siderhombifolia L. (Malvaceae) and Vasorelaxant Activity of Two Indouquinoline Alkaloids. 2017;22(1):2-9.

66. Ringmichon CL, Gopalkrishnan B et al. Ethnomedicinal investigations on Melastoma malabathricum Linn. from Manipur. 2012;4(2):95-98

67. Chan EWC, Wong SK, Tangah J, et al. Chemistry and Pharmacology of Artocarpin: An Isoprenyl Flavone from Artocarpus Species. 2018;9(1):58-63.

68. Deka P, Kashyap A, et al. A Review on Musa Balbisian Colla. 2013;7(7):14-17.

69. Rastogi S, Kulshreshtha D, et al. Streblus asper Lour. (Shakhotaka): A Review of its Chemical, Pharmacological and Ethnomedicinal Properties. Subha Rastogi, Dinesh K Kulshreshtha, Ajay Kumar Singh Rawat. 2006;3(2):217-222.

70. Rahmatullah M, Sadeak SMi, et al. Brine Shrimp Toxicity Study of Different Bangladeshi Medicinal Plants. 2010;4(2):163-173.

71. Shah SK, Garg G, et al. Piper Betle: Phytochemical, Pharmacological and Nutritional Value in Health Management. 2016;38(2):181-189.

72. Shah SK, Garg G, Jhade D, et al. Antidiabetic and antioxidant activities of Toddalia asiatica (L.) Lam. leaves in Streptozotocin induced diabetic rats. 2012;143(2):515-523.

73. Mary NK, Achuthan CR, et al. In vitro antioxidant and antithrombotic activity of Hemidesmus indicus (L) R.Br. 2003;27(2):187-191.

74. Kadam PV, Yadav KN, et al. Mimusopselengi: A Review on Ethnobotany, Phytochemical and Pharmacological Profile. 2021;1(3):64-74.

75. Ghosh P, Biswas S, Biswas M, et al. Morphological, Ethno biological and Phyto-pharmacological Attributes of Tridax procumbens Linn. (Asteraceae): A Review. 2019;6(2):182-191.

76. Ghani AEa, Dora GA, et al. New saponins from Albizia lebbeck (l) benth flowers. 2017;7(9):3617-3632.

77. Pareek A, Kumar A. Pharmacognostic studies on Nymphaea spp. 2016, 6(5).

78. Fatokun OT, Liberty O, et al. Phytochemistry, Ethnomedicine and Pharmacology of Jatropha gossypifolia L: A Review. 2016;5(3):1-16.

79. Sarkar AK, Dey M, Mazumder M. Ecological status of medicinal plants of Chalsa forest range under Jalpaiguri division, West Bengal, India. 2017;5(5):196-215.

80. Bello OM, Ogbesajena A, et al. Lipoygenase (lox) inhibitory activity of leaves of Ceiba pentandra (l) gaertn: a neglected vegetable from Nigeria. 2018;2(2):79-87.

81. Vanl M, Rahaman SA, Rani AP. A review of the ethnopharmacology, phytochemistry and pharmacology of food medicine Talinum portulacifolium. 2019;10:742-745.

82. Rahim R, Amin G, Arakdani MRS. A Review on Citrullus colocynthis Schrad. From Traditional Iranian Medicine to Modern Phytotherapy. 2012;18(6):551-556.

83. Girijal S, Geeta HP, et al. A review on Pithecellobium dulce: A potential medicinal tree. 2018;6(2):540-544.

84. Gautam S, Meshram A, Srivastava N. A brief study on phytochemical compounds present in Coccinia cordifolia for their medicinal, pharmacological and industrial applications. 2016;3(2):1995-2016.

85. Mahabub Nawaz AH, Hossain M, et al. An ethnobotanical survey of Rajshahi district in Rajshahi division, Bangladesh. 2009;3(2):143-150.
86. Kumar KA. *Gloriosa superba* (L.): A Brief Review of its Phytochemical Properties and Pharmacology. 2015;7(6):1190-1193.
87. Ved A, Arsi T, et al. A review on phytochemistry and pharmacological activity of *Lantana camara* Linn. 2018;9(1):37-43.
88. Singh A, Mandal S, et al. Pharmacology and ethno-pharmacology of traditional Bengali cuisine ‘choddoshak’ 2017;5(10):3757-3761.
89. Ghosh P, Ghosh C, Das S, Das C, Mandal S, Chatterjee S. Botanical description, phytochemical constituents and pharmacological properties of *Euphorbia hirta* Linn. A review. International Journal of Health Sciences and Research. 2019;9(3):273-286.
90. Ghosh P, et al. Natural habitat, phytochemistry and pharmacological properties of a medicinal weed-Cleome *Rutidosperma* DC. (Cleomaceae): A comprehensive review. International Journal of Pharmaceutical Sciences and Research. 2019;10(4):1605-1612.
91. Ghosh P, Poddar S, Chatterjee S. Morphological Features, Phytochemical and Ethnopharmacological Attributes of *Tabernaemontana divaricata* Linn. A Comprehensive Review. Journal of Pharmacognosy and Phytochemistry. 2021;10(6):31-36.
92. Choudhury S, Ghosh P, Sarkar T, et al. Morphological features, phytochemical and pharmacological study of *Leucas aspera* (Lamiaceae): A short review. International Journal of Pharmacognosy and Phytochemical Research. 2020;12(3):132-137.
93. Poddar S, Ghosh P, Sarkar T, et al. Phytochemical, ethnobotanical and phyto-pharmacological discussions about *Trianthema portulacastrum* Linn. A brief review. Journal of Pharmaceutical Sciences and Research. 2020;12(7):899-903.
94. Sarkar A, Ghosh P, et al. Phytochemical, botanical and ethnopharmacological study of *Scoparia dulcis* Linn. (Scrophulariaceae): A mini review. The Pharma Innovation Journal. 2020;9(7):30-35.
95. Kundu P, Sharma P, Mahato R, Saha M, Das S, Chatterjee S, et al. A Brief Review on Novel Green Advent for the Development of Bio-nanoparticles using Some Ethnomedicinal Plants. Journal of Medicinal Plant Studies. 2020;8(6):26-33.
96. Ghosh C, Hazra L, Nag SK, Sil S, Dutta A, Biswas S, et al. *Allamanda cathartica* Linn. (Apocynaceae): A mini review. International Journal of Herbal Medicine. 2019;7(4):29-33.
97. Ghosh P, Das C, Biswas S, et al. Phytochemical composition analysis and evaluation of *In Vitro* medicinal properties and cytotoxicity of five wild weeds: A comparative study. F1000Research (Taylor & Francis). 2020;9:493.
98. Ghosh P, Biswas M, Biswas S, Dutta A, Hazra L, Nag SK, et al. Phytochemical screening, anti-oxidant and antimicrobial activity of leaves of *Cleome rutidosperma* DC. (Cleomaceae). Journal of Pharmaceutical Sciences and Research. 2019;11(5):1790-1795.
99. Biswas S, Ghosh P, Dutta A, et al. Analysis of nutritional constituents and evaluation of antioxidant and antimicrobial potentiality of some underutilized parts of vegetables. Current Research in Nutrition and Food Science Journal. 2021;9(1):62-74.
100. Ghosh P, Chatterjee S. Evaluation of organoleptic, proximate parameters and analysis of nutritional composition of five wild weeds: A search for low-cost nutraceuticals. International Journal of Pharmaceutical Sciences and Research. 2020;11(10):5170-5181.
101. Ghosh P, Chatterjee S, Choudhury S et al. Some Roadside Medicinal Weeds as Bio-indicator of Air Pollution in Kolkata. Journal of Applied Biology & Biotechnology. 2021;9(2):164-168.
102. Ghosh P, Das P, Mukherjee R, Banik S, Karmakar S, Chatterjee S. Extraction and quantification of pigments from Indian traditional medicinal plants: A comparative study between tree, shrub, and herb. International Journal of Pharmaceutical Sciences and Research. 2018;9(7):3052-3059.
103. Ghosh P, Saha M, Nandi S et al. Green synthesis and characterization of silver nano-conjugates using some common medicinal weeds leaf aqueous extracts. International Journal of Pharmaceutical Sciences and Nanotechnology. 2020;13(1):4752-4758.
104. Ghosh P, Biswas S, Dutta A, et al. Evaluation of phytochemical constituents and antioxidant property of leaf acetone extracts of five herbaceous medicinal weeds. Journal of Pharmaceutical Sciences and Research. 2019;11(8):2806-2813.