Single incision laparoscopic cholecystectomy for patients with Mirizzi syndrome

Won-Bae Chang, Ho-Seong Han, Yoo-Seok Yoon, Jai Young Cho, YoungRok Choi
Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea

INTRODUCTION

Since laparoscopic cholecystectomy was performed in 1985, this procedure has become a standard treatment for gallbladder (GB) disease over the last three decades. Laparoscopic cholecystectomy has traditionally been performed with multiple small port sites. The efforts to decrease the complication of multiple incisions and improve cosmesis have led to the development of a less invasive surgical technique. Single incision laparoscopic surgery has emerged as an alternative method to minimize complications associated with multiple incisions and to increase the satisfaction of the patients. Ever since Navarra et al. [1] published a report on a single skin incision laparoscopic cholecystectomy in 1997, this technique has been regarded as a safe and beneficial surgical method to replace multiport laparoscopic cholecystectomy (MLC) in selected patients [2].

Initially, single incision laparoscopic cholecystectomy (SILC) was not indicated for patients with inflammatory GB disease such as acute cholecystitis, and GB empyema due to its limited range of maneuverability and possible safety concerns. However, the indication is now expanding after multiple centers have reported that single incision methods have shown comparable results in terms of safety and the complication rate with the conventional multiport laparoscopic procedure in more complex GB diseases [3].

Mirizzi syndrome (MS) is one of the complicated uncommon gallstone diseases in patients undergoing cholecystectomy. Because the laparoscopic procedure has become a routine treatment for cholecystectomy, several studies have reported their experience with the laparoscopic technique for the treatment of MS with a comparable outcome in Csendes type I or II. Because the indication for SILC cholecystectomy is expanded to more complicated GB conditions, and the desire of patients for a less painful, better cosmetic surgical outcome has increased, our medical center used this single incision laparoscopic surgical technique for MS Csendes types I and II patients. Here, we report 2 successful cases of SILC for patients with MS types I and II without significant morbidity.

[Ann Surg Treat Res 2018;94(2):106-111]

Key Words: Laparoscopic cholecystectomy, Cholecystitis, Single incision, Mirizzi syndrome
5.7% in patients undergoing a cholecystectomy. It is defined as a benign common hepatic duct (CHD) obstruction due to gallstone impaction in the GB neck resulting in local inflammation and bile duct spasm. Bile duct wall necrosis and subsequent cholecystobiliary fistula caused by chronic inflammation are the sequence of the disease. MS was classified by McSherry et al. [4] in 1982 who described 2 types: type I includes partial or complete obstruction of the CHD due to external compression; type II refers to the formation of a communication between the GB neck or the cystic duct and the CHD. Csendes et al. [5] further distinguished the MS type II into 3 subtypes. In this classification, type II is a cholecystocholedochal fistula involving less than one-third of the diameter of the bile duct; type III, with the fistula involves two-thirds of the diameter; and type IV, with the fistula involves the complete bile duct. The treatment of MS is mainly surgical and consists of a partial or complete cholecystectomy with or without a common bile duct exploration. Shortly after the advent of laparoscopy in the treatment of GB disease, Rust et al. [6] suggested that MS may be a contraindication for laparoscopic cholecystectomy. In contrast, Paul et al. [7] reported the first successful laparoscopic treatment of type I MS in 1992 and several studies have reported the feasibility of the laparoscopic procedure for MS in Csendes types I and II [8,9].

Because the indication for a SILC cholecystectomy has expanded to include more complicated GB conditions, and the desire of patients for a less painful, better cosmetic surgical outcome has increased, our medical center used this single incision laparoscopic surgical technique in MS Csendes types I and II patients and we report here 2 successful cases of SILC for patients with MS Csendes types I and II without significant morbidity or mortality.

CASE REPORTS

Case 1

A 43-year-old male without any underlying disease visited a regional secondary hospital with back pain for 2–3 days. The initial laboratory results showed elevated liver enzymes and an increased total and direct bilirubin level. A CT scan was done and it was noticed that there was intra and extrahepatic duct dilatation. Under the diagnosis of a bile duct obstruction, an endoscopic retrograde cholangiopancreatography (ERCP) was performed. It showed that a GB stone 1.5 cm in size was impacted at the distal cystic duct compressing the CHD (Fig. 1A). Two endoscopic retrograde biliary drainage (ERBD) stents, a cholecystoduodenal and a hepatoduodenal, were placed to decompress the biliary tract before surgical treatment.

He was transferred to Seoul National University Bundang Hospital for further surgical management. MRCP was done one day after admission, and it showed that the impacted stone was compressing the CHD at the confluence of the CHD and the cystic duct (Fig. 1B). MS Csendes type II was diagnosed, and an operation was performed on the third day after the transfer.

A 3-cm transumbilical single incision was done. A single transparent Glove port (Nelis, Bucheon, Korea) with 4 trocar sites and a scope holder, called the Laparostat (CIVCO, Coralville, IA, USA) was placed. To achieve a better surgical view, the fundus of the GB was lifted and fixed to the anterior peritoneum by temporarily sewing it. Due to severe adhesion around the GB, and the cystic and common bile duct, the antegrade technique of dissection from the fundus to the infundibulum was used. After meticulous dissection of the cystic and common bile duct, the cystic duct was incised at the proximal site of the stone impaction (Fig. 2A). The cholecystoduodenal
stent and impacted stone were extracted, and the incision site was closed with an *in situ* suture using a V-Loc absorbable wound closure device (Covidien, New Haven, CT, USA) (Fig. 2B). The operating time was 142 minutes.

He developed fever up to 39.5°C on postoperative day 4. The laboratory test showed leukocytosis (WBC, 14.0×10³/µL). The patient underwent a CT scan, and it showed fluid collection at the cholecystectomy bed site. An image guided percutaneous drainage catheter was placed. Fever and leukocytosis were resolved by 2 days after the catheter placement. He was discharged on postoperative day 9 with a drainage catheter. The drainage catheter was removed during his second visit at the outpatient clinic after it was confirmed there was no residual fluid collection from the drainage tube. A hepatoduodenal stent was removed 1 month after his discharge.

Case 2

A 66-year-old male who had a history of common bile duct stones, with post ERCP and CBD stone removal visited the Emergency Department with right upper quadrant pain for 5 days. The initial laboratory results included mild leukocytosis (WBC, 14.0×10³/µL) and an elevated CRP level (10.6 mg/dL). A CT scan was performed, which showed acute cholecystitis and a cystic ductal stone compressing the CHD externally (Fig. 3). Under the diagnosis of acute cholecystitis with MS Csendes type I, he was admitted, and a percutaneous cholecystostomy was performed. After starting the decompression of the GB and antibiotics, the abdominal pain was resolved, and the laboratory results improved. He was discharged 7 days after his admission with a cholecystostomy drain and readmitted 2 weeks later followed by the operation on the next day.

A transumbilical single incision was done. A single port and scope holder were placed (Fig. 4). An antegrade dissection of the GB from the fundus to the infundibulum was performed. The cystic duct was dilated and adhered to the CHD. After careful dissection of the cystic duct from the CHD, the infundibulum was incised, and 8-mm stone was extracted (Fig. 5A). The cystic duct was ligated and resected with a 10-mm Hem-O-Lok clip (Teleflex Medical, Research Triangle Park, NC, USA) (Fig. 5B) and the specimen was extracted along with the cholecystostomy catheter together. The operating time was 84 minutes.

The patient was discharged on postoperative day 2 without any complications, and the follow-up laboratory results in the outpatient clinic showed all liver enzymes and the total biliru-
bin level within the normal range.

The informed consent was received by all patients for this manuscript.

DISCUSSION

Although Navarra et al. [1] first reported on SILC in 1997, it did not initially receive much attention. However, SILC has been rapidly adopted since 2009 with improvements to the platforms and devices specifically for SILC [10]. The excellent aesthetic outcome of SILC has been the driving force to not only use it in cholecystectomy procedures but also in other surgical procedures [11]. Especially, cholecystectomy is relatively easy to perform by the single incision laparoscopic technique because the surgical field is limited to the liver bed and the direction of the scopes and devices remains constant. The development of a scope holder could provide a more stable surgical view. By manipulating the scope in the direction an operator needs without having to struggle with instruments having a camera, this solo technique is starting to be regarded as the best combination with the single incision laparoscopic procedure [12].

One of the major concerns about SILC is a potential increase in the incidence of trocar site hernia postoperatively compared to the conventional multiport laparoscopic procedure. However, a recent study by Krajinovic et al. [13] showed there was no significant difference between SILC and conventional MLC in the incidence of trocar site hernia.

This anatomical benefit of applying a single incision laparoscopic technique to cholecystectomy and the development of devices specifically for SILC are contributing to its popularity by achieving comparable safety with that of conventional MLC [14]. The safety of SILC in more complicated GB disease such as acute cholecystitis has been reported by several studies [3].

Since SILC was introduced in our hospital in 2012, it has been performed only in selected patients during the initial period. From March 2014, we have used this technique for all available patients except for those with gall bladder cancer as we accumulated knowledge and standardized the technique. Currently, we are performing about 300 cases of SILC annually with a camera holder to achieve a stable surgical view and to overcome the insufficient single incised operating space under the lithotomy position of patients as our standardized protocol.

Our interim data of SILC for patients with acute cholecystitis showed no mortality and a postoperative complication rate...
of 5.2% which is comparable with the result of Ikumoto et al. (4.0%) [3]. The reason for the slightly higher rate of complication is probably because our institution is a specialized center for laparoscopic treatment. Many patients with complicated GB problems are referred to our hospital. According to our data on the characteristics of our patients using the updated Tokyo guidelines 2013 severity grading system for acute cholecystitis [15], the ratio of grade I/II was 0.64/0.36 and this high proportion of patients with grade II may explain this result. All of the complications were Clavien-Dindo classification IIIa or less, and all patients completely recovered from those complications.

MS is a rare disease that begins with a history of gallstones impacted in the neck of the GB or in the cystic duct. Due to the presence of a dense fibrotic process and/or communication between the GB and the CHD, surgical management is not easy [16]. The surgical treatment of MS avoids a truly standardized approach and must be individualized depending on the stage of the disease and the expertise of the surgical team. However, some guidelines could be drawn and have been used during the last few years [17].

In MS classified as Csendes types I and II, a total or subtotal cholecystectomy is regarded as a standard treatment. Most cases of Csendes type III can be treated by a subtotal cholecystectomy leaving a flap of the GB wall to repair the bile duct. However, some cases with severe inflammation of the GB wall will need another procedure such as a hepaticejunosmotomy. The treatment of MS type IV with extensive destruction of the bile duct wall consists of biloenteric anastomosis. A hepaticejunosmotomy Roux-en-Y is preferred. In contrast, in MS classified as Csendes types I and II, a total or subtotal cholecystectomy is regarded as a standard treatment.

Since the laparoscopic procedure has become a routine treatment of cholecystectomy, there have been several studies that described their experiences with the laparoscopic technique for the treatment of lesser severe types of MS. Based on this comparable result of the laparoscopic approach for the treatment of MS type I or II, we used the single incision laparoscopic technique in these selected 2 patients. The SILC had acceptable results with no mortality and one case of morbidity which was resolved without sequelae.

In conclusion, it is still a challenge to use the single incision laparoscopic procedure in patients with complicated GB diseases. With antegrade dissection of the GB, a low threshold to open conversion, and careful patient selection, we were able to perform SILC in patients with MS Csendes types I and II.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. Navarra G, Pozza E, Occhionorelli S, Carcoforo P, Domini I. One-wound laparoscopic cholecystectomy. Br J Surg 1997; 84:695.
2. Philipp SR, Miedema BW, Thaler K. Single-incision laparoscopic cholecystectomy using conventional instruments: early experience in comparison with the gold standard. J Am Coll Surg 2009;209:632-7.
3. Ikumoto T, Yamagishi H, Iwatate M, Sano Y, Kotaka M, Imai Y. Feasibility of single-incision laparoscopic cholecystectomy for acute cholecystitis. World J Gastrointest Endosc 2015;7:1327-33.
4. McSherry CK, Ferstenberg H, Virshup M. The Mirizzi syndrome: suggested classification and surgical therapy. Surg Gastrointestol 1982;1:219-25.
5. Csendes A, Diaz JC, Burdiles P, Maluenda F, Nava O. Mirizzi syndrome and cholecystobiliary fistula: a unifying classification. Br J Surg 1989;76:1139-43.
6. Rust KR, Clancy TV, Warren G, Mertesdorf J, Maxwell JG. Mirizzi’s syndrome: a contraindication to coelioscopic cholecystectomy. J Laparoendosc Surg 1991;1:133-7.
7. Paul MG, Burris DG, McGuire AM, Thorfinnson HD, Schonekas H. Laparoscopic surgery in the treatment of Mirizzi’s syndrome. J Laparoendosc Surg 1992;2:157-63.
8. Piccinni G, Sciusco A, De Luca GM, Gurrado A, Pasculli A, Testini M. Minimally invasive treatment of Mirizzi’s syndrome: is there a safe way? Report of a case series. Ann Hepatol 2014;13:558-64.
9. Lledo JB, Barber SM, Ibanez JC, Torregrosa AG, Lopez-Andujar R. Update on the diagnosis and treatment of mirizzi syndrome in laparoscopic era: our experience in 7 years. Surg Laparoendosc Percutan Tech 2014;24:495-501.
10. Ito M, Asano Y, Horiguchi A, Shimizu T, Yamamoto T, Uyama I, et al. Cholecystectomy using single-incision laparoscopic surgery with a new SILS port. J Hepatobiliary Pancreat Sci 2010;17:688-91.
11. Tam YH, Pang KK, Tsui SY, Wong YS, Wong HY, Mou JW, et al. Laparoendoscopic single-site nephrectomy and heminephroureterectomy in children using standard laparoscopic setup versus conventional laparoscopy. Urology 2013;82:430-5.
12. Kalteis M, Pistrich R, Schimetta W, Polz W. Laparoscopic cholecystectomy as solo surgery with the aid of a robotic camera holder: a case-control study. Surg Laparosc Endosc Percutan Tech 2007;17:277-82.
13. Krajinovic K, Koeberlein C, Germer CT, Reibetanz J. The incidence of trocar site hernia after single-port laparoscopic cholecystectomy-a single center analysis and literature review. J Laparoendosc Adv Surg Tech A 2016;26:536-9.
14. Arezzo A, Scozzari G, Famiglietti F, Passera R, Morino M. Is single-incision laparoscopic cholecystectomy safe? Results of a systematic review and meta-analysis. Surg Endosc 2013;27:2293-304.
15. Yamashita Y, Takada T, Strasberg SM, Pitt HA, Gouma DJ, Garden OJ, et al. TG13 surgical management of acute cholecystitis. J Hepatobiliary Pancreat Sci 2013;20:89-96.
16. Antoniou SA, Antoniou GA, Makridis C. Laparoscopic treatment of Mirizzi syndrome: a systematic review. Surg Endosc 2010;24:33-9.
17. Beltran MA. Mirizzi syndrome: history, current knowledge and proposal of a simplified classification. World J Gastroenterol 2012;18:4639-50.
18. Sare M, Gurer S, Taskin V, Aladag M, Hildioglu F, Gurel M. Mirizzi syndrome: choice of surgical procedure in the laparoscopic era. Surg Laparosc Endosc 1998;8:63-7.