Review of Charge Pump Topologies for Micro Energy Harvesting Systems

1,3Michelle Lim Sern Mi, 1Md. Shabiul Islam, 1Jahariah Sampe and 2Sawal Hamid Md. Ali

1Department of Electrical, Electronics and System Engineering, UKM, 43600 Bangi, Selangor, Malaysia
2Department of Physical Sciences, TARUC, Setapak, 53300 Kuala Lumpur, Malaysia
3Institute of Microengineering and Nanoelectronics (IMEN), UKM, 43600 Bangi, Selangor, Malaysia

Article history
Received: 29-04-2016
Revised: 19-5-2016
Accepted: 25-05-2016

Corresponding Author:
Michelle Lim Sern Mi
Institute of Microengineering and Nanoelectronics (IMEN), UKM, 43600 Bangi, Selangor, Malaysia
Email: mlsm_2002@yahoo.com

Abstract: This paper reviews CMOS based charge pump topologies used within autonomous embedded micro-systems. These charge pump structures have evolved from its simplistic diode-tied, single-branches with major threshold drops to exponential type, dual-branches with sophisticated gate and substrate control for lower voltage operation. Published charge pumps are grouped based on architecture, operation principles and pump optimization techniques with their pros and cons compared and results contrasted. The various charge pump topologies and schemes used are considered based on pumping efficiency, power efficiency, charge transferability, circuit complexity, pumping capacitors, form factor and minimum supply voltages with an optimum load. This article concludes with an overview of suitable techniques and recommendations that will aid a designer in selecting the most suitable charge pump topology especially for low ambient micro energy harvesting applications.

Keywords: Charge Pump (CP), Low Voltage (LV), Energy Harvesting

Introduction

Next generation self-powered micro devices such as medical implants dictate the need for small, safe and renewable alternatives for battery replacement. Therefore, energy can be autonomously harvested from a patient without the need of future replacement such as the cochlear implant reported in (Bandypadhyay, 2013). When scavenging these ambient energies, there is an inevitable discontinuity, typically mitigated by use of hybrid harvesters (Shi et al., 2011; Bandypadhyay and Chandrakasan, 2012; Lim et al., 2013; Tan, 2013; Lim et al., 2014; Yeo et al., 2016). There is also a need to resolve the cold start issue for an inherently small (low voltage) harvester input. While off-the-shelf harvesters such as Photovoltaic (PV) cells (SANYO, 2008) and Piezoelectric (PZT) harvesters (MIDE, 2013) have voltages above the CMOS voltage threshold, \(V_{TH} \), Thermoelectric Generator (TEG) harvesters (CUI, 2012) generally fall in the mV range as low as 26 mV (Lim et al., 2014) at \(\Delta T = 1K \) when CUI Peltier device is modelled upon. Therefore, efforts to kick-start CMOS based power management circuits for low voltage harvesters ranges from providing an external bias (Carlson et al., 2010; Kim and Kim, 2013; Ahmed and Mukhopadhyay, 2014), mechanical MEMs switch (Ramadass and Chandrakasan, 2010), charge pump based (Chen et al., 2011; Shih and Otis, 2011; Chen et al., 2012a; Liu et al., 2012; Bender et al., 2014; Peng et al., 2014), transformer based (Im et al., 2012; Teh and Mok, 2014; Zhang et al., 2014), oscillator based (Sun and Wu, 2010; Ahmed and Mukhopadhyay, 2014; Bender et al., 2014), one time wireless charging scheme (Bandypadhyay, 2013) to a fully electrical multi-stage start-up mechanism (Chen et al., 2012b; Weng et al., 2013; Bender et al., 2014). Although these start-up scheme can push input voltage boundaries down to as low as 20 mV, they are either based on large inductors (Weng et al., 2013) and transformers (Ahmed and Mukhopadhyay, 2014; Bender et al., 2014; Teh and Mok, 2014; Zhang et al., 2014) or off-chip components (Carlson et al., 2010; Ramadass and Chandrakasan, 2010; Kim and Kim, 2013) which limits how small the system can be. To overcome the aforementioned issues, only the Charge Pump (CP) topologies will be studied in this review due to its many benefits. These benefits include the possibility of full integration, lower form factor and its simplistic pumping mechanism.

Previously published review article on CP circuits (Palumbo and Pappalardo, 2009) had a strong focus on design strategies and basic CP topologies. There were no mention of Low Voltage (LV) strategies and schemes for
the recent lower supply voltage trend of micro energy harvesting systems. Therefore, this paper aims to provide a chronological summary of various CP topologies from the very first CP design up to the more recent structures with gate and substrate control techniques that tend towards LV operations. These CPs are contrasted based on standard CP design metrics including charge transferability, circuit complexity, pumping capacitors, form factor, minimum voltage supply, pumping and power efficiency.

This paper is arranged according to increasing functionality and complexity of CP structures and their control schemes. Hence, the second section provides a comprehensive overview of various CP architectures, techniques employed, tradeoffs and feasibility of LV operations with Table 2 summarizing critical performance metrics of contemporary CP structures. The third section concludes this paper with CP research trends, challenges and recommendations of CP structures suitable for specific design criteria especially in micro energy harvesting applications.

Past Charge Pump Topologies: Overview

Charge pumps are voltage multipliers which ideally operate in two non-overlapping clock phases. A charge pump usually requires an inverted switching signal to control both clock phases. Therefore, an oscillator is usually used to provide two out-of-phase signals in CP start-up circuits. Here, we will be focusing on the comparative study of over twenty different CP topologies and its feasibility of providing LV start-up for applications suffering from low ambient input signals below the CMOS threshold. Each of the following CPs generally addresses several improvements from their predecessor as given in the following sub-sections.

Classical Charge Pumps

The classical Cockcroft-Walton CP was originally meant for high voltage application. It has an output voltage, $V_{OUT} = N\cdot V_{IN}$ for N number of stages given as $V_{OUT} = 2N\cdot V_{DROP}$ where V_{DROP} is the output voltage drop and V_{IN} the peak input voltage (Pan and Samaddar, 2010). Although Cockcroft-Walton CPs are still in use for particle acceleration and X-ray tubes, the architecture is below the CMOS threshold. Each of the following CPs generally addresses several improvements from their predecessor as given in the following sub-sections.

Series-Parallel Charge Pump

The Series-Parallel CP (Fig. 2a) employs the concept of series charge (P1, P2, P4, P5 “ON”) and parallel discharge (P3 and P6 “ON”) when gate voltages from anti-phase clock toggles the MOS switches “ON/OFF”. This CP has an N^{TH} stage output given by (Pan and Samaddar, 2010) as $V_{OUT} = (N+1)\cdot V_{IN} \cdot \left[C_{PUMP}(C_{PAR} + C_{OUT}) \right] \cdot \left(\frac{1}{V_{TH}} \right)$. It was implemented as a non-linear CP and employed as auxiliary step-up switch capacitor for voltage multiplications (Luo, 2009; Luo and Ye, 2009; Hart, 2011; Kang et al., 2014) but in (Luo and Ye, 2010), the Series-Parallel CPs were considered unpopular due to their discrete implementation (Lee et al., 2014). Recently, some literatures ventured into this structure (Geng and Ma, 2013; Perez-Nicoli et al., 2015; Vaisband et al., 2015), where efficient control of gate voltages (Perez-Nicoli et al., 2015) reduces V_{TH} drops present in MOS diodes. The major drawback of this CP includes the C_{PAR} associated with the three extra switches/stage which affects performance and the V_{OUT} which strongly decreases with stage number (Luo and Ye, 2010).
Bootstrap Charge Pump

Bootstrap CP eliminates V_{TH} drops in MOS by increasing NMOS’s V_{GS} to $> V_{DD} + V_{TH}$ via a bootstrap capacitor, C_{bt}. This facilitates higher charge transfer for subsequent stages. This concept of augmenting internal node voltages > V_{DD} has been demonstrated in Flash memories (Umezawa et al., 1992; Atsumi et al., 1994). The Bootstrap CP (Fig. 2b) has an additional MOS device and C_{bt} per stage compared to the Dickson CP. This V_{TH} cancelation scheme requires four clock phases annotated as F1, FB1, F2, FB2 in Fig. 2b with corresponding clock control signals shown in Fig. 3. The resultant V_{OUT} of an N-stage Bootstrap CP is given by:

$$V_{OUT} = V_{IN} + N \left(\frac{C_{PUMP}}{C_{PUMP} + C_{PAR}} \right) V_{th} - \frac{I_{OUT}}{(C_{PUMP} + C_{PAR})f_{CLK}}$$

(2)

where, V_{IN} and V_{CLK} are the input and pump clock voltages respectively. From Equation 2, several advantages of bootstrapping can be surmised, firstly, the V_{TH} term is eliminated thereby reducing V_{DROP} as much as NV_{TH} achieves better gain and enhance conversion efficiency, seemingly having better output efficiency compared to latch-based CPs (Allasasmeh and Gregori, 2011), a higher clock frequency can also be achieved with this four phase CP due to a smaller RC delay as shown by the Bootstrap CP equivalent resistance of $R_s = N/(C_{PUMP} + C_{PAR})f_{CLK}$. Hence, lower RC delay enhances charge transfers compared to two-phase CPs. However, the Bootstrap topology suffers extra routing/area penalty and larger C_{PAR} due to C_{bt}. Also, complex clocking control strategies and gate-biasing (Yeo et al., 2015) circuitries are necessary due to its four-phase clock and $>V_{DD} + V_{TH}$ clock amplitude requirement.

Fig. 1. Two stage Dickson charge pump

Fig. 2. Single branch charge pumps (a) series-parallel (Perez-Nicoli et al., 2014) (b) bootstrap (Pan and Samaddar, 2010)

Fig. 3. Bootstrap charge pump clock control signals (Luo and Ye, 2010)
Charge Transfer Switches Charge Pump

Static Charge Transfer Switches (CTS) charge pumps were firstly introduced by Wu and Chang (1998). The Static CTS uses dynamic feedback to improve charge transfers, gain and performance by steering charge flow from later stages of higher potentials to current stages for dynamic V_{TH} cancelation. This suits LV operation. Wu and Chang (1998) Static CTS have the top half structure identical to a Dickson CP and the extra bottom structure for V_{TH} cancelation (Fig. 4a). This Static CTS suffers from reverse charge sharing which reduces pumping gain due to partially off switches. This phenomenon can be eliminated by the Dynamic CTS topology also proposed in (Wu and Chang, 1998) with two extra MOS diodes per stage (Fig. 4b). The extra PMOS and NMOS controls gate voltages and better shut down Static CTS switches. However, the final diode-connected stage still suffers from V_{TH} losses due to body effect (Pan and Samaddar, 2010). The Dynamic CTS has a V_{OUT} expressed as:

\[
V_{OUT} = V_{IN} + N \left(\frac{C_{PUMP}}{C_{PUMP} + C_{PAR}} \right) - V_{TH}
\]

where Equation 3 eliminates the $(N-1)V_{TH}$ term in Equation 1. However, the C_{PAR} is much greater in this Dynamic CTS compared to Bootstrap CP which adds only an extra MOS and C_{bt} for V_{TH} cancelation. Hence, considering the area drawback, Dynamic CTS might not have an edge over Bootstrap CPs. Peng *et al.* (2014) describe a few losses in Dynamic CTS contributed by redistribution, conduction, reverse charge sharing losses on top of the final stage V_{TH} drop. Later, Su *et al.* (2005) reported a Linear CP design which improved on the Dynamic CTS structure by introducing methodical gate controls to further increase pumping efficiency. As shown in Fig. 4c, PMOS were replaced by PMOS to reduce charge sharing due to the latter’s lower charge mobility and its less impact on the absolute V_{TH}.

![Fig. 4. Various CTS charge pumps (a) Static CTS (Wu and Chang, 1998) (b) Dynamic CTS (Wu and Chang, 1998) (c) Linear CTS (Su *et al.*, 2005)](image_url)
Therefore, widening PMOS reduces conduction loss (Maksimovic and Dhar, 1999) by lowering R_{EQ}. There is also an efficient turn-on of last stage by disregarding the use of MOS diodes as in (Wu and Chang, 1998). However, if $V_{DD} < V_{TH}$, the Linear CP yet again cannot turn on/off the switches effectively.

Dual-Branch Charge Pump

The generic Dual-Branch CP is shown in Fig. 5a while the bootstrap version for V_{TH} cancelation is shown in Fig. 5b. These dual-branch structures were introduced to lower ripples in the CTS design (Kleveland, 2002; New et al., 2012) and later evolved into latch-based designs (Nakagome et al., 1991; Gariboldi and Pulvirenti, 1994; 1996; Favrat et al., 1998; Pelliconi et al., 2003; Ker et al., 2006; Che et al., 2009; Chen et al., 2010; Ulaganathan et al., 2012; Peng et al., 2014; Kim et al., 2015) which are currently gaining popularity. These structures have V_{OUT} similar to Equation 1 but with reduced charge transfer intervals of $T/2$ (Palumbo and Pappalardo, 2010), circuit minimization with smaller C_{PUMP} values and half the ripple, V_{R} compared to single branch CPs where V_{R} is expressed as $V_{R} = I_{OUT}T/(2(C_{OUT}+C_{PUMP}))$ (Pan and Samaddar, 2010) assuming $C_{OUT} \gg C_{PUMP}$. The aforementioned advantages translate to V_{DROP} reduction, higher switching frequencies and the possibility of LV start-up. Although, ripples associated to noise that affects loads such as memory can be reduced by increasing C_{LOAD} and f_{CLK}, these strategies adversely lengthen ramp-up time and reduces pump efficiency respectively. Since Dual-Branch CPs are still not suited for LV operation and cold-start circuits, they were later evolved into cross-coupled structures with body biasing (Peng et al., 2014; Kim et al., 2015) and dynamic gate controls (Su et al., 2005) to complement LV operations.

Cross-Coupled Charge Pump

The Cross-Coupled CPs were originally proposed in (Gariboldi and Pulvirenti, 1994; 1996) and later implemented as a four stage cascaded version in Ker et al. (2006) CP design. The Cross-Coupled topologies are realized with cross-coupled switches driven by anti-phase clocks for boosted voltages. They are essentially latch-configured inverters with V_{OUT} similar to the Dual-Branch CPs. These dual compensated structures introduce many benefits akin to the dual-branch structures. Not only does it improve pumping efficiency and reduces ripples as reported in (New et al., 2012), these CPs enhances charge transferability and requires smaller devices, i.e., half the original C_{PUMP} size, which in turn reduces effect of device sizes on V_{TH} (Peng et al., 2014). Moreover, redistribution loss is also reduced as the branches complements charge transfer to the output node, ensuring load voltage stability. Since this Cross-Coupled CP normally fails to work below V_{TH}, several schemes were introduced to mitigate this. The following
elaborates some evolved structures since the classical latched CP design in (Gariboldi and Pulvirenti, 1994) beginning with Ker et al. (2006) structure to the most recent of developments. Ker et al. (2006) CP (Fig. 6a) has intertwining anti-phase clock signals on two branches with source-connected NMOS bulks to eliminate body effects while Che et al. (2009) design uses only PMOS for this purpose. These structures with two latch-based branches eliminate V_{TH} drops, inherent to classic CPs (Dickson, 1976; Wu and Chang, 1998) for an almost full charge transfer between stages. With reduced reverse charge sharing compared to the Dynamic CTS, they are still not suited for LV applications especially when V_{IN} is a few hundred mV below V_{TH}, inapt at effectively turning on MOS switches.

Recently, Peng et al. (2014) (Fig. 6b) improved on Ker et al. (2006) design where body biasing and backward control was reported in (Peng et al., 2014). This scheme enables complete turn on/off of the MOS transistors. Therefore, switching losses and reverse charge sharing were reduced. Body-biasing and the sub-threshold regime were included to enable LV operation. Although Peng et al. (2014) two branch CP (2014) solved most of Ker et al. (2006) design with a good efficiency of 89%, swift 0.1ms pumping speed, high capacitive drivability and charge transferability, its reported minimum start-up voltage is still high at 320 mV with a rather complex scheme requiring interleaved inverters and extra stages at the end. Moreover, such body-biasing will cause leakages if not well controlled. An alternative was Nakagome et al. (1991) circuit (Fig. 7a) which utilizes cross-coupled NMOS cells to obtain lifted voltage levels where differential outputs of the cells are coupled to form a single output using dual series-connected PMOS load switches (Nakagome et al., 1991). This would avoid large V_{DROP}. However, Nakagome et al. (1991) Cross-Load CP suffers from low conduction due to gate drive capabilities of PMOS load switches and no gains from series switches when $V_{IN}<V_{TH}$ or when V_{OUT} is minute due to heavy loads (Kim et al., 2015). Recently, literatures in (Favrat et al., 1998; Chen et al., 2010; Ulaganathan et al., 2012; Kim et al., 2015) provide improved versions of this Cross-Load CP (Nakagome et al., 1991) to enhance these constraints associated to LV start-up operations.

Fig. 6. Cross-coupled charge pumps (a) classic latched based (Ker et al., 2006) (b) Peng et al. (2014) variation
To resolve lower conduction levels of the Cross-Load CP (Nakagome et al., 1991; Favrat et al., 1998) proposed a Bulk-Switching CP (Fig. 7b) with better switch conductance due to a level shifter gate signal control but this Bulk-Switching fails at low voltages due to backward current via series switches (Kim et al., 2015). Conventionally, both Cross-Load (Nakagome et al., 1991) and Bulk-Switching (Favrat et al., 1998) CPs have their PMOS's/NMOS's bulk biased to the highest/lowest potential. This ensures parasitic diodes inherent to MOS devices are reverse-biased to avoid leakages in off-state NMOS as well as degradation of PMOS voltage swing at the output node. Although the Cross-Load and Bulk-Switching CPs have low leakages, they suffer low on-
current, I_{ON}. The low cross in Cross-Load CP is also unresolved in the Bulk-Switching CP due to weakly off switches. Hence, increasing (decreasing) NMOS’s (PMOS) body bias reduces V_{TH} to facilitate lower turn-on voltages such as the Forward-Body-Bias (FBB) CP proposed by (Chen et al., 2010; Peng et al., 2014).

The FBB CP uses higher inter-stage voltages borrowed from future stages to reduce V_{TH} of NMOS while PMOS is biased to the lowest ground potential (Fig. 7c). Thus, all MOS devices are forward biased at all times during both “ON” and “OFF” states. This leads to both high current transfer and high body leakages when MOS devices are not conducting. This increases Voltage Conversion Efficiency (VCE) but reduces Power Conversion Efficiency (PCE). To resolve this issue, the Dynamic-Body-Biasing (DBB) CP was proposed by Kim et al. (2015) recently (Fig. 7d) with consideration of dead-time limitations, conduction loss and Meindl limit (Meindl and Davis, 2000). The DBB CP maintains a high on current during “ON” states and at the same time reduce leakages during “OFF” states by dynamically switching MOS devices into low V_{TH} (forward-biased) and high V_{TH} (reverse-biased) devices on demand, widely known as the Variable Threshold CMOS technique (VTCMOS) (Kang et al., 2014). The low V_{TH} enables LV operation and faster speed whereas higher V_{TH} reduces sub-threshold leakages and enhances efficiency. While the DDB CP in (Kim et al., 2015) have benefits such as low processing cost, low start-up voltages at 150 mV, high efficiency of 72.5% at V_{IN} = 450 mV and reduced leakages while maintaining high on current which promotes LV applications, the structure suffers from additional DDB control circuitry, usages of 6×10 nF off-chip capacitors and still a lower 34% pumping efficiency at low voltages (180 mV). On the other hand, Bandyopadhyay et al. (2014) proposed an ultra low power CP similar to Fig. 7b with a gate driver that reduces leakages based on Favrat et al. (1998) voltage doublers model.

Adiabatic Charge Pump

Adiabatic CP uses adiabatic switching to lower power consumption. It employs energy recycling by rerouting charge transfer paths back to the source/load rather than discharging to ground potential. Literatures in (Lauterbach et al., 2000; Keung et al., 2007; Ulaganathan et al., 2012) used adiabatic switching to reduce power usage. Lauterbach et al. (2000) uses dual-step adiabatic switching, charge sharing and a simple clocking technique that two-folds power efficiency. Keung et al. (2007) uses this concept on highly parallel datapaths in DSPs by recycling charge with an Adiabatic CP, moving slower adiabatic components away from critical paths. This successfully reduced energy consumption by 18% with a 1-2% area penalty.

Recently, switching losses linking to CTS gate control is reduced in (Ulaganathan et al., 2012) by using adiabatic switching scheme on the CTS structure (Fig. 8a). The Adiabatic CP has its V_{OUT} similar to Equation 2 albeit with a lower energy dissipation where $E_{CP} = QV_{DD}$ and $E_{a} = 3/4QV_{DD}$ represents energy dissipation of conventional one-step and multi-step adiabatic charging respectively (Lauterbach et al., 2000). Adiabatic schemes focus on lowering power consumption by an almost zero energy exchange with the environment in the expense of slower charging time, additional circuitry such as transmission gates as well as the need of a pulsed voltage source (Kang et al., 2014) for stepwise charging.

Mixed Structure Charge Pump

Mixed Structure CP such as those reported in (Hsieh et al., 2009; Huang et al., 2010) employs more than one type of CP structure per stage (Fig. 8b). These literatures combines CTS and Cross-Coupled CP to address both reverse charge sharing (Huang et al., 2010) and the final stage V_{TH} drop with better pumping gain compared to traditional CTS structures (Wu and Chang, 1998). The Mixed Structure CP in (Huang et al., 2010), however, improves the original mixed structure in (Hsieh et al., 2009) by using multi-phase technique to enhance pumping and power efficiency. The penalties of such hybrid structures are generally the larger form factor and more complicated control schemes. These structures produce a V_{OUT} similar to the CTS as expressed in Equation 3 indicated by (Hsieh et al., 2009).

Adaptive Charge Pump

Adaptive CP ranges from CPs that changes its voltage conversion ratios (Zhang and Lee, 2010; Beck and Singer, 2011; Vaisband et al., 2015) or stage number (Tanzawa et al., 2002) on demand to reconfigurable CPs that modifies itself to maximize current in linear mode or switches to Fibonacci mode for LV operations such as the Adaptive CP structure proposed in (Gupta et al., 2013), sleep-active mode CP transitions in (Alioto et al., 2013) as well as topological modifications from Heap, Exponential to Fibonacci in (Allasasmeh and Gregori, 2011). Figure 8c shows an Adaptive CP (Palumbo and Pappalardo, 2010) that enables one to three stage number modifications by dividing total capacitance, C_{TOT} with a suitable number of C_{PUMP} assigned by MOS switches and driven by appropriate phase inputs. These phases, F1 through F6 with its corresponding complementary signals (F_X and F_N) are shown in Fig. 9 (Palumbo and Pappalardo, 2010). The merits of Adaptive CP is its flexibility and that it dynamically lowers power consumption when usage level or purpose changes. However, the Adaptive CPs constitute a larger area and are more complex in their configurations and switching schemes compared to their non-adaptive counter parts.
Fig. 8. Special purpose charge pumps (a) Adiabatic (Ulaganathan et al., 2012) (b) Mixed Structure (Hsieh et al., 2009) (c) Adaptive (Palumbo and Pappalardo, 2010)

Fig. 9. Input/complimentary signals of adaptive CP (Palumbo and Pappalardo, 2010)
Single Clock Charge Pump

Single Clock CP were introduced in (Ansari et al., 2011) and enhanced in (Mondal and Paily, 2013). While previously discussed CPs uses more than one clock, the Single Clock CP needs no extra circuitry to ensure non-overlap of a second clock. As (Ansari et al., 2011) feeds low supply voltages to each stage (Fig. 10a), (Mondal and Paily, 2013) enhances V_{OUT} by feeding only the first stage with supply voltages and subsequent stages with internally boosted voltages from later stages (Fig. 10b). Thus, the V_{OUT}, transferable charge, Q_N and I_{OUT} for both N-stage conventional and enhanced-voltage Single Clock CP is summarized in (Mondal and Paily, 2013). While Mondal and Paily (2013) enhances V_{OUT} up to 9 and 18% as compared to the Dickson and Conventional Single Clock structure (Ansari et al., 2011), it suffers from poor charge sharing time compared to both structures.

Miscellaneous Charge Pumps

Miscellaneous CPs are shown in Fig. 11 and 12 representing Ladder CP (Bender, 1994; Seeman and Sanders, 2008; Bazzini et al., 2012), Fibonacci CP (Ueno et al., 1991; Makowski and Maksimovic, 1995; Seeman and Sanders, 2008; Allasasmeh and Gregori, 2011; Gupta et al., 2013), Exponential CP (Cernea et al., 2009; Allasasmeh and Gregori, 2011) and a recently patented Tree Topology CP (Lu et al., 2010; Roy et al., 2014) respectively. As stated in (Seeman and Sanders, 2008), Series Parallel CP performs better in a capacitor limited process with impedance inversely proportional to frequency while the Dickson and Ladder CP (Fig. 11a) works best in a switch limited process (Seeman and Sanders, 2008) with frequency-independent constant current flow. Hence, the CPs either uses switches or capacitors efficiently, but not simultaneously superior in both asymptotes (Seeman and Sanders, 2008). Recently, Bazzini et al. (2012) proposes an all PMOS Double Ladder CP which lowers output resistance, $R_{OUT,OPT} = (N(N+1))^{1/2}/(N\times C_{TOT})$ Compared to Pelliconi et al. (2003) design with the i-stage pumping capacitor, $C_{PUMP} = (N+1-i)/(N(N+1)C_{TOT}$ (Bazzini et al., 2012) chosen to minimize R_{OUT} (Makowski and Maksimovic, 1995). While this enhanced structure has a high VCE at 93%, it still suffers a low PCE at 52%.

A two-stage Fibonacci CP (Fig. 11b) has reasonable switch and capacitor efficiency as reported in (Seeman and Sanders, 2008). The Fibonacci structure also has good current drivability in LV ranges (Gupta et al., 2013), low ripples and a good pump-up ratio (Ueno et al., 1991) due to its non-linearity and exponential nature. Fibonacci CP’s operation as explained in (Allasasmeh and Gregori, 2009) has the same gain with Dickson CP albeit having fewer capacitances. Also, it has a Fibonacci sequence as its per-stage voltage ratio giving $V_{OUT,FCP} = G\times C_{OUT} R_{OUT}$ where G is the Fibonacci CP’s ideal voltage gain, $G = F_{N+1}/F_N$ is the N-th Fibonacci number and C_i is the i-th C_{PUMP} value. From Table 1, R_{OUT} has more significant stage growth in Dickson CP compared to Fibonacci CP. Hence, the Fibonacci structure has lower conduction losses given by $P_R = I_{OUT}^2 R_{OUT}$ leading to better energy efficiency than the Dickson structure (Allasasmeh and Gregori, 2009) for $G > 3$. There are however no difference in R_{OUT} between them for $G \leq 3$ or $N \leq 2$. Unlike Dickson CPs, C_{PUMP} in Fibonacci CPs are not equally sized in all stages. For optimal performance, the N-th stage Fibonacci CP requires the largest capacitor nearest to V_{IN} and the smallest capacitor to be closest to the load.

Fig. 10. Single clock charge pumps (a) conventional (Ansari et al., 2011) (b) enhanced output voltage (Mondal and Paily, 2013)
Exponential CPs have voltage gain exponentially associated to their pumping stages (Chang and Hu, 2004; 2006; Gobbi et al., 2007; Seeman and Sanders, 2008). Fibonacci CPs (Ueno et al., 1991; Allasasmeh and Gregori, 2011; Gupta et al., 2013) and voltage doublers (Seeman and Sanders, 2008) are categorized as exponential or non-linear CPs. Figure 12a shows an Exponential CP applied to a Flash memory (Cernea et al., 2009) with reduced area and 50% lower internal impedances for the same pumping capabilities of past topologies. Chang and Hu (2006) proposed their Exponential CPs (Fig. 12b) to reduce CP stages with the same achievable gain considering per-stage V_{TH} drop in MOS switches. The exponential structure in (Chang and Hu, 2004; 2006) also suppresses V_{TH} problems by having a larger clock voltage growth rate as compared to V_{TH} drop rate (Chang and Hu, 2004). This solves the voltage saturation issue due to augmented V_{TH} and lower V_{OUT} in linear structures (Chang and Hu, 2006). Suitable W/L ratios are selected for better gain and voltage transferability by having a proportional decrease in transistor sizes from input to the load stage (Chang and Hu, 2004). Later, (Shao et al., 2006) improved V_{OUT} boosting by area as summarized by Gobbi et al. (2007) in Table 1 where even though Exponential CPs have the best gain at the same area, it suffers from a dramatic increase in R_{OUT}. Gobbi et al. (2007) compared Chang and Hu (2006) Exponential CP to the Fibonacci and Dickson CP in terms of gain, R_{OUT} and pump-up speed. Moreover, a larger voltage loss can be seen with Exponential CP’s V_{OUT} expression given by $V_{OUT \text{ (ECP)}} = GY_{IN} - \Delta V_{OUT} = 2^N V_{IN} - I_{OUT} R_{OUT}$.

Finally, the patented TTCP (Fig. 12c) resolves the charge transfer capability of linear CPs which is subjected to degradation when used with LV energy transducers by coupling more than one stage of the CP to the energy harvesting source (Lu et al., 2010; Roy et al., 2014). On the other hand, a Negative Charge Pump (NCP) can provide negative output voltages with similar configurations to a basic Dickson CP only to be replaced by a ground voltage at the input terminal (Pan and Samaddar, 2010). Table 2 summarizes the results for CMOS based CPs extracted from research papers in the past eight years. These CPs are compared based on their CMOS feature size, topology, clock frequency, minimum supply ranges, load current/load capacitor sizes, pumping capacitor sizes, VCE and PCE respectively. Generally, VCE is given as the actual output voltage over the ideal pumped-up voltage (V_{OUT}/V_{IDEAL}) given by $\eta_V = (V_{OUT}/(N+1)) V_{DD}$ for linear CPs (Palumbo and Pappalardo, 2010) while PCE is a measure of power extraction efficiency from source to the load given by $\eta_P = (I_{OUT} V_{OUT}/I_{CON} V_{DD})$. From Table 2, it can be noted that throughout the years from 2008 to 2016, researchers have successfully pushed start-up voltage levels from 1.5 V (Su and Ma, 2008) all the way down to 40 mV in Ashraf and Masuomi (2016) simplistic FBB based Dickson structure with a demerit of slow ~8s start-up time. These recent CP topologies have advanced towards body-biasing (Zhang and Lee, 2013; Peng et al., 2014; Kim et al., 2015; Ashraf and Masuomi, 2016) and gate controls (Shih and Otis, 2011; Zhang and Lee, 2013) for VCE enhancements of ~86% (180 mV) in Kim et al. (2015) structure and ~93% (350 mV) in Shih and Otis (2011) Bootstrap CP design.
Fig. 12. Miscellaneous charge pump topologies: (a) Exponential (Cernea et al., 2009) (b) exponential-gain structure (Chang and Hu, 2006) (c) Tree-topology (Lu et al., 2010; Roy et al., 2014)

Table 1. Comparison of voltage gain, output resistance and silicon area between N-stage charge pump topologies (Gobbi et al., 2007)

	ECP	FCP	DCP
Voltage Gain, G	\(2^N\)	\(F_{N+1}\)	\(N+1\)
Output Resistance, R\text{OUT}	\(2^N \sum_{i=1}^{N} (2^{-i})^2 / fC\)	\((FxF_{N+1}) / fC\)	\(N/fC\)
Silicon Area	2N(C/2)/C	NC/C_0	NC/C_0

In a nutshell, current CP design trends tend towards the lower power spectrum with prominence given to \(V_{TH}\) cancellation schemes, RC delay reduction and raising of on/off current ratio (DBB schemes) when considering CP design metrics trade-offs in LV operations.
Table 2. Contemporary charge pump topologies: A performance comparison

Authors (Year)	CP Topology	Minimum supply, \(V_{IN}\)	Clock Frequency, \(f_{CLK}\)	Pumping Capacitors, \(C_{PUMP}\)	Load/Load Capacitor, \(I_{LOAD}/C_{LOAD}\)	VCE (PCE)	Process technology (CMOS)	Advantages	Disadvantages
Ashraf and Masoumi (2016)	Dickson with FBB (5×20-stages/1)	40 mV	1 kHz	N/A	\(C_{LOAD} = 5 \text{ pF}\) (CP output)	53.88%@40 mV (N/A)	180-nm	Lowest \(V_{OUT}\), Simplest FBB	Slow pre-startup at ~8s, Large no. of MOSFETs approach
Kim et al. (2015)	Cross-coupled with DBH (3-stages)	150 mV	250 kHz (off-chip)	10 nF @ \(V_{IN} = 0.18\text{V}\)	\(I_{LOAD} = 2.1 \text{uA}\) (for \(V_{OUT} = 0.5\text{V}\))	85.97%@0.18 V (34%@0.18V) (72.5%@0.45V)	130-nm	Low \(V_{IN}\), Highest \(I_{LOAD}\), High Efficiency Balances good PCE and VCE	Off-chip capacitors, Extra complexity for clocking & dynamic bulk-biasing
Peng et al. (2014)	Cross-coupled body-biased & backward control (6-stages)	320 mV	450 kHz	24pF @12 (on-chip)	\(C_{LOAD} = 50.7 \text{ pF}\)	89% @ 0.32V (N/A)	180-nm	Swift pumping rate at 0.1 ms, Good VCE, Reduce leakages with body-biasing for PMOS only	Rather complex scheme requiring interleaved inverters and extra stages at the end
Zhang and Lee (2013)	Dickson based gain-enhanced dynamic gate & substrate control (4-stages/1)	900 mV	7 MHz	20 pF @4 (on-chip)	\(C_{LOAD} = 40 \text{ pF}\) (on-chip) @ \(V_{OUT} = 1.4\text{V}\) (for \(V_{IN} = 5\text{V}\)	84.62%@1.4V (43%@1.4V)	350-nm	No \(V_{OUT}\) drop, No body-effect, No floating substrate terminals/ lower \(R_{ON}\)	High \(V_{OUT}\)
Chen et al. (2012a)	Dickson based dual mode [startup/operation mode] (10-stages/1)	120 mV	1 MHz (startup) 20 MHz (operation)	28.6 pF @20 (on-chip)	\(I_{LOAD} = 75\text{uA}\) @ \(V_{IN} = 0.18\text{V}\) (extrapolation) (for \(V_{OUT} = 0.5\text{V}\)	58.33% @0.12V (38.8%@0.12V)	65-nm	High PCE, Low \(V_{OUT}\), No external excitation	Low \(I_{LOAD}\), High process cost
Shih and Ortis (2011)	Bootstrap (3-stages/1)	270 mV	800 kHz	25 pF @6 (on-chip)	\(C_{LOAD} = 500 \text{pF}\) @ \(V_{IN} = 0.45\text{V}\) (for \(V_{OUT} = 0.5\text{V}\)	92.86% @ 0.35V (56%@0.45V)	130-nm	Fully integrated, Low process cost	Requires 4 clock phases Low \(I_{LOAD}\)
Chen et al. (2010)	Cross-couple (3-stages/2)	180 mV	10MHz	12.3 pF @6 (on-chip) 0.4 pF @2 (off-chip)	\(C_{LOAD} = 12.3 \text{ pF}\)	83.33% @0.18V (N/A)	65-nm	Low \(V_{OUT}\), Low efficiency	Low \(I_{LOAD}\)
Hsieh et al. (2009)	Static Mixed Structure [CTS + Latched] (4-stage/1)	1.5 V	1 MHz	0.1 pF @5 (off-chip)	\(I_{LOAD} = 500 \text{uA}\) @ \(V_{IN} = 1.5\text{V}\) (for \(V_{OUT} = 7.5\text{V}\))	99.31% @ 1.5V (100%@1.5V)	350-nm	High VCE, Very high \(V_{OUT}\), Off-chip \(C_{LOAD}\)	Requires 4 clock phases
Su and Ma (2008)	4-Phase Cross-coupled (2-stages/2)	N/A	4 MHz	0.5 mF @8 (on-chip)	\(R_{LOAD} = 1.8 \text{k}\Omega\)	N/A (92.01%)	180-nm	Good PCE, Low \(V_{IN}\) and low \(P_{D}\), \(1/4\) sized CMOS and \(C_{LOAD}\), (Reduced reversion and conduction losses)	Requires 4 clock phases

Discussions and Concluding Remarks

This review article presents a variety of CP topologies within the field of LV energy harvesting. These CP topologies are evolving away from discrete, diode-connected, linear-gain, external start-up structures to the more advanced sub-threshold, cross-coupled, exponential-type and self-start-up structures. Table 2 summarizes these contemporary CP design trends in the past eight years where gate and substrate control schemes gains substantial attention in low voltage CP design strategies.

In LV energy harvesting applications, the interaction between harvesters and CPs must be regarded. Low ambient harvesters such as TEGs require CP topologies to compensate for sub-100 mV range start-up and high pumping efficiency (also VCE). In such situations with sub-threshold voltage and self-start requirements, FBB or DBB of the MOSFET’s body-terminal is typically used to reduce threshold voltages for LV applications. These schemes come in expense of higher leakage current on the low \(V_{TH}\) conduction path for FBB and circuit complexity or area overhead for DDB. If a more efficient MOSFET turn-on (and better VCE) at low ambient voltages is required, CPs with \(V_{TH}\) cancelation or gate voltage augmentation schemes such as bootstrapping CPs and dynamic gate control from augmented voltages of later stages are desired. Otherwise, non-linear type CPs (Exponential CP, Fibonacci CP) may be used for enhanced voltage boosting with reduced stage number.

In designs where low power consumption is desirable, energy recycling with adiabatic type CP is a solution in expense of slower pumped-up voltages. Alternatively, an adaptive CP with active/idle mode transition or reconfigurable stages can be considered if extra chip area is available. Good PCE is achievable
when current drivability of CP is incremented with lower RC delay and larger MOS devices. The latter has a drawback of higher V_{TH} values, deterring LV start-up. Recent CP designs have typically much higher V_{CE} compared to their PCE. Therefore, balancing between both voltage and power efficiency requires more exploration as it is vital to optimize power transfer between harvester and the CP circuit while balancing a good pumping efficiency as well. This will be reflected in the proposed hybrid energy harvesting circuit (Lim et al., 2013) where maximum power should be extracted from all three harvesters with impedance matching schemes whereas maximum efficiency should be achieved between the power circuits (e.g., CP or step-up voltage converters) and the load.

For monolithic integration of CP topologies, C_{PUMP} sizes are kept to \sim20-500 pF ranges. Dual branch and latched type CPs with half the pumping capacitor size requirements for the same efficiency of single branches may be a solution.

Some noteworthy achievements at the lower power spectrum (μW) have been reported for CPs with PCE up to \sim72.5% at 450 mV supply voltage; recent CP operates with a mere 40 mV ($V_{CE} = \sim 54\%$) input voltage as well as some CPs reaching pumping efficiency up to \sim86% at 180mV supply voltages.

Challenges to be addressed by future research include developing CP topologies with sub-100 mV start-up voltages and further improving and balancing pumping and power efficiencies at these low ambient voltages. Developing area and power efficient control techniques that optimize harvester usage and CP’s charge transferability. Challenges associated to losses and leakages in sub-threshold operation of modern CP topologies are non-trivial and require more attention in their CP design strategies and leakage management for LV energy harvesting applications.

Conclusion

This paper recommends the consideration and tradeoffs between the three factors: Voltage, power and form factor when selecting the optimum CP topology to suit a particular low power system especially in micro energy harvesting systems. Hence, future CP designs should consider the three above factors for the possibility of a fully monolithic integration.

Acknowledgement

The authors acknowledge Micro/Nano-Electronics Systems (MINES) Laboratory, Institute of Microengineering and Nanoelectronics (IMEN), UKM, Malaysia and the Ministry of Higher Education (MOHE), Malaysia for their financial support in this research work.

Author’s Contributions

Michelle Lim Sern Mi: Conducted overview of charge pump topologies, analysis and write-up of the manuscript.

Md. Shabiuil Islam: Constructed the research plan, organized and led the research, participated in analysis and contributed to the reviewing of the article critically.

Sawal Hamid Md. Ali and Jahariah Sampe: Involved in the development process of conceptual framework, discussion and development of drafting and review of the article.

Ethics

The authors have no conflicts of interest in the development and publication of current research.

References

Ahmed, K.Z. and S. Mukhopadhyay, 2014. A wide conversion ratio, extended input 3.5-μA boost regulator with 82% efficiency for low-voltage energy harvesting. IEEE Trans. Power Electron., 29: 4776-4786. DOI: 10.1109/TPEL.2013.2287194

Alioto, M., E. Consoli and J.M. Rabaey, 2013. “ECHO” reconfigurable power management unit for energy reduction in sleep-active transitions. IEEE J. Solid-State Circuits, 48: 1921-1932. DOI: 10.1109/JSSC.2013.2258816

Allasasmeh, Y. and S. Gregori, 2009. A performance comparison of Dickson and Fibonacci charge pumps. Proceedings of the European Conference on Circuit Theory and Design, Aug. 23-27, IEEE Xplore Press, Antalya, pp: 599-602. DOI: 10.1109/ECCCTD.2009.5275049

Allasasmeh, Y. and S. Gregori, 2011. Switch bootstrapping technique for voltage doublers and double charge pumps. Proceedings of the IEEE International Symposium of Circuits and Systems, May 15-18, IEEE Xplore Press, Rio de Janeiro, pp: 494-497. DOI: 10.1109/ISCAS.2011.5937610

Ansari, M.A., W. Ahmad and S.R. Signell, 2011. Single clock charge pump designed in 0.35μm technology. Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems, Jun. 16-18, IEEE Xplore Press, Glivice, pp: 552-556.

Ashraf, M. and N. Masoumi, 2016. A thermal energy harvesting power supply with an internal startup circuit for pacemakers. IEEE Trans. Very Large Scale Integr., 24: 26-37. DOI: 10.1109/TVLSI.2015.2391442

Atsumi, S., M. Kuriyama, A. Umezawa, H. Banba and K. Naruke et al., 1994. A 16-Mb flash EEPROM with a new self-data-refresh scheme for a sector erase operation. IEEE J. Solid-State Circuits, 77: 791-799. DOI: 10.1109/4.280696
Bandyopadhyay, S. and A.P. Chandrakasan, 2012. Platform architecture for solar, thermal and vibration energy combining with MPPT and single inductor. IEEE J. Solid State Circuits, 47: 2199-2215. DOI: 10.1109/JSSC.2012.2197239

Bandyopadhyay, S., 2013. Energy efficient control for power management circuits operating from nanowatts to watts. PhD. Thesis, Massachusetts Institute of Technology.

Bandyopadhyay, S., P.P. Mercier, A.C. Lysaght, K.M. Stankovic and A.P. Chandrakasan, 2014. A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants. IEEE J. Solid-State Circuits, 49: 2821-2824. DOI: 10.1109/JSSC.2014.2350260

Bazzini, A., J. Liu and S. Gregori, 2012. A pMOS-based double-ladder integrated charge pump for standard process. Proceedings of the IEEE International Symposium on Circuits and Systems, May 20-23, IEEE Xplore Press, pp: 958-961. DOI: 10.1109/ISCAS.2012.6272204

Beck, Y. and S. Singer, 2011. Capacitive transposed series-parallel topology with fine tuning capabilities. IEEE Trans. Circuits Syst. I: Regular Papers, 58: 51-61. DOI: 10.1109/TCISI.2010.2055277

Bender, M.M., M. Cherem Schneider and C. Galup-Montoro, 2014. On the minimum supply voltage for MOSFET oscillators. IEEE Trans. Circuits Syst. I: Regular Papers, 61: 347-357. DOI: 10.1109/TCISI.2013.2278344

Bender, C., 1994. Capacitive ladder networks. IEEE Trans. Circuits Syst. I: Fundamental Theory Appl., 41: 557-558. DOI: 10.1109/81.311548

Carlson, E.J., K. Strunz and B.P. Otis, 2010. A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid-State Circuits, 45: 741-750. DOI: 10.1109/JSSC.2010.2042251

Cernea, R.A., L. Pham, F. Moogat, S. Chan and B. Le et al., 2009. A 34 MB/s MLC write throughput 16 Gb NAND with all bit line architecture on 56 nm technology. IEEE J. Solid-State Circuits, 44: 186-194. DOI: 10.1109/JSSC.2008.2007152

Chang, L.K. and C.H. Hu, 2004. An exponential-folds charge pump based on exponential-gain structure with pumping gain increase circuits. IEEE Trans. Power Electr., 21: 826-831. DOI: 10.1109/TPEL.2006.874795

Che, J., C. Zhang, Z. Liu, Z. Wang and Z. Wang, 2009. Ultra-low-voltage low-power charge pump for solar energy harvesting systems. Proceedings of the International Conference on Communications, Circuits and Systems, Jul. 23-25, IEEE Xplore Press, Milpitas, CA, pp: 674-677. DOI: 10.1109/ICCCAS.2009.5250409

Chen, P.H., K. Ishida, K. Ikeuchi, X. Zhang and K. Honda et al., 2011. A 95mV-startup step-up converter with VTH-tuned oscillator by fixed-charge programming and capacitor pass-on scheme. Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 20-24, IEEE Xplore Press, San Francisco, CA, pp: 216-218. DOI: 10.1109/JSSC.2011.5746290

Chen, P.H., K. Ishida, X. Zhang, Y. Okuma and Y. Ryu et al., 2010. 0.18-V input charge pump with forward body biasing in startup circuit using 65 nm CMOS. Proceedings of the Custom Integrated Circuits Conference, Sept. 19-22, IEEE Xplore Press, San Jose, CA, pp: 1-4. DOI: 10.1109/CICC.2010.5617444

Chen, P.H., X. Zhang, K. Ishida, Y. Okuma and Y. Ryu et al., 2012a. An 80 mV startup dual-mode boost converter by charge-pumped pulse generator and threshold voltage tuned oscillator with hot carrier injection. IEEE J. Solid-State Circuits, 47: 2554-2562. DOI: 10.1109/JSSC.2012.2210953

Chen, P.H., K. Ishida, X. Zhang, Y. Okuma and Y. Ryu et al., 2012b. A 120-mV input, fully integrated dual-mode charge pump in 65-nm CMOS for thermoelectric energy harvester. Proceedings of the 17th Asia and South Pacific Design Automation Conference, Jan. 30-Feb. 2, IEEE Xplore Press, Sydney, NSW, pp: 469-470. DOI: 10.1109/ASPDAC.2012.6164994

CUI, 2012. CP60 series Peltier Module. CUI Inc.

Dickson, J.F., 1976. On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circuits, 11: 374-378. DOI: 10.1109/JSSC.1976.1050739

Favrat, P., P. Deval and M.J. Declercq, 1998. A high-efficiency CMOS voltage doubler. IEEE J. Solid-State Circuits, 33: 410-416. DOI: 10.1109/4.661206

Gariboldi, R. and F. Pulvirenti, 1994. A monolithic quad line driver for industrial applications. IEEE J. Solid-State Circuits, 29: 957-962. DOI: 10.1109/4.297702

Gariboldi, R. and F. Pulvirenti, 1996. A 70 mΩ intelligent high side switch with full diagnostics. IEEE J. Solid-State Circuits, 31: 915-923. DOI: 10.1109/4.508203

Geng, Y. and D. Ma, 2013. Design of reliable 2×VDD and 3×VDD series-parallel charge pumps in nanoscale CMOS. Proceedings of the IEEE International Symposium on Circuits and Systems, May 19-23, IEEE Xplore Press, Beijing, pp: 705-708. DOI: 10.1109/ISCAS.2013.6571944
Lauterbach, C., W. Weber and D. Römer, 2000. Charge sharing concept and new clocking scheme for power efficiency and electromagnetic emission improvement of boosted charge pumps. IEEE J. Solid-State Circuits, 35: 719-723. DOI: 10.1109/4.841499

Lee, K.H., Y.J. Woo, H.S. Han, K.C. Lee and C.S. Chae et al., 2008. Power-efficient series-charge parallel-discharge charge pump circuit for LED drive. Proceedings of the Power Electronics Specialists Conference, Jun. 15-19, IEEE Xplore Press, Rhodes, pp: 2645-2649. DOI: 10.1109/PESC.2008.4592341

Lim, M.S.M., S.H.M. Ali and M.S. Islam, 2013. A novel architecture of maximum power point tracking for ultra-low-power based hybrid energy harvester in ubiquitous devices: A review. Am. J. App. Sci., 10: 1240-1251. DOI: 10.3844/ajassp.2013.1240.1251

Lim, M.S.M., S.H.M. Ali, S. Jahariah and M.S. Islam, 2014. Modelling of hybrid energy harvester with DC-DC boost converter using arbitrary input sources for ultra-low-power micro-devices. Proceedings of the IEEE International Conference on Semiconductor Electronics, Aug. 27-29, IEEE Xplore Press, Kuala Lumpur, pp: 28-31. DOI: 10.1109/SMELEC.2014.6920787

Liu, Q., X. Wu, M. Zhao, L. Wang and X. Shen, 2012. 30-300 mV input, ultra-low power, self-startup DC-DC boost converter for energy harvesting system. Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, Dec. 2-5, IEEE Xplore Press, Kaohsiung, pp: 432-435. DOI: 10.1109/APCCAS.2012.6419064

Lu, C., S.P. Park, V. Raghunathan and K. Roy, 2010. Efficient power conversion for ultra low voltage micro scale energy transducers. Proceedings of the Conference on Design, Automation and Test in Europe, Mar. 8-12, IEEE Xplore Press, Dresden, pp: 1602-1607. DOI: 10.1109/DATE.2010.5457066

Luo, F.L. and H. Ye, 2010. Power Electronics: Advanced Conversion Technologies. 1st Edn., CRC Press, ISBN-10: 1439882614, pp: 744.

Luo, F.L. and H. Ye, 2009. Investigation of switched-capacitorized DC/DC converters. Proceedings of the IEEE 6th International Power Electronics and Motion Control Conference, May 17-20, IEEE Xplore Press, Wuhan, pp: 1270-1276. DOI: 10.1109/PEMC.2009.5157581

Luo, F.L., 2009. Switched-capacitorized DC/DC converters. Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, May 25-27, IEEE Xplore Press, Xi’an, pp: 1074-1079. DOI: 10.1109/ICIEA.2009.5138366

Makowski, M.S. and D. Maksimovic, 1995. Performance limits of switched-capacitor DC-DC converters. Proceedings of the 26th Annual IEEE Power Electronics Specialists Conference, Jun. 18-22, IEEE Xplore Press, Atlanta, GA, pp: 1215-1221. DOI: 10.1109/PESC.1995.474969
Maksimovic, D. and S. Dhar, 1999. Switched-capacitor DC-DC converters for low-power on-chip applications. Proceedings of the 30th Annual IEEE Power Electronics Specialists Conference, Jul. 1-1, IEEE Xplore Press, Charleston, SC, pp: 54-59.
DOI: 10.1109/PESC.1999.788980

Meindl, J.D. and J.A. Davis, 2000. The fundamental limit on binary switching energy for Terascale Integration (TSI). IEEE J. Solid-State Circuits, 35: 1515-1516.
DOI: 10.1109/4.871332

MIDE, 2013. Piezoelectric energy harvesters. MIDE.

Mondal, S. and R.P. Paily, 2013. A strategy to enhance the output voltage of a charge pump circuit suitable for energy harvesting. Proceedings of the International Conference on Microelectronics, Communications and Renewable Energy, Jun. 4-6, IEEE Xplore Press, Kanjirapally, pp: 1-5.
DOI: 10.1109/AICERA-ICMiCR.2013.6575933

Palumbo, G. and D. Pappalardo, 2010. Charge pump circuits: An overview on design strategies and topologies. IEEE Circuits Syst. Magazine, 10: 31-45.
DOI: 10.1109/MCAS.2009.935695

Pan, F. and T. Samaddar, 2010. Charge Pump Circuit Design. 1st Edn., McGraw Hill Professional, New York, ISBN-10: 0071491422, pp: 247.

Pelliconi, R., D. Iezzi, A. Baroni, M. Pasotti and P.L. Rolandi, 2003. Power efficient charge pump in deep submicron standard CMOS technology. IEEE J. Solid-State Circuits, 38: 1068-1071.
DOI: 10.1109/JSSC.2003.811991

Peng, H., N. Tang, Y. Yang and D. Heo, 2014. CMOS startup charge pump with body bias and backward control for energy harvesting step-up converters. IEEE Trans. Circuits Syst. I: Regular Papers, 61: 1618-1628.
DOI: 10.1109/TCSI.2013.2290823

Perez-Nicoli, P., P.C. Lisboa, F. Vetrano and F. Silveira, 2015. A series-parallel switched capacitor step-up DC-DC converter and its gate-control circuits for over the supply rail switches. Analog Integrated Circuits Signal Process., 85: 37-45. DOI: 10.1007/s10470-015-0213-4

Shi, C., B. Miller, K. Mayaram and T. Fiez, 2011. A multiple-input boost converter for low-power energy harvesting. IEEE Trans. Circuits Syst. II: Express Briefs, 58: 827-831.
DOI: 10.1109/TCSII.2011.2173974

Su, F., W.H. Ki and C.Y. Tsui, 2005. Gate control strategies for high efficiency charge pumps. Proceedings of the IEEE International Symposium on Circuits and Systems, May 23-26, IEEE Xplore Press, pp: 1907-1910.
DOI: 10.1109/ISCAS.2005.1464985

Su, L. and D. Ma, 2008. Design and optimization of integrated low-voltage low-power monolithic CMOS charge pumps. Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Jun. 11-13, IEEE Xplore Press, Ischia, pp: 43-48.
DOI: 10.1109/SPEEDHAM.2008.4581247

Sun, Y.M. and X.B. Wu, 2010. Subthreshold voltage startup module for stepup DC-DC converter. Electron. Lett., 46: 373-373. DOI: 10.1049/el.2010.3448

Tan, Y.K., 2013. Energy Harvesting Autonomous Sensor Systems: Design, Analysis and Practical Implementation. 1st Edn., CRC Press, ISBN-10: 1439892733, pp: 254.

Tanzawa, T., T. Tanaka, K. Takeuchi and H. Nakamura, 2002. Circuit techniques for a 1.8-V-only NAND flash memory. IEEE J. Solid-State Circuits, 37: 84-89.
DOI: 10.1109/TCSII.2011.2173967

Teh, Y.K. and P.K. Mok, 2014. Design of transformer-based boost converter for high internal resistance energy harvesting sources with 21 mV self-startup voltage and 74% power efficiency. IEEE J. Solid-State Circuits, 49: 2694-2704.
DOI: 10.1109/JSSC.2014.2354645

Roy, K., V. Raghunathan, C. Lu and S.P. Park, 2014. Efficient power conversion for ultra low voltage micro scale energy transducers. Purdue Research Foundation.

SANYO, 2008. Amorphous solar cell datasheet: Amorton AM-1417. SANYO.

Seeman, M.D. and S.R. Sanders, 2008. Analysis and optimization of switched-capacitor DC-DC converters. IEEE Trans. Power Electron., 23: 841-851.
DOI: 10.1109/TPEL.2007.915182

Shao, H., C.Y. Tsui and W.H. Ki, 2006. A charge based computation system and control strategy for energy harvesting applications. Proceedings of the IEEE International Symposium on Circuits and Systems, May 21-24, IEEE Xplore Press, Island of Kos, pp: 1-4.
DOI: 10.1109/ISCAS.2006.1693239

Shih, Y.C. and B.P. Otis, 2011. An inductorless DC–DC converter for energy harvesting with a 1.2-µW bandgap-referenced output controller. IEEE Trans. Circuits Syst. II: Express Briefs, 58: 832-836.
DOI: 10.1109/TCSII.2011.2173967

Shao, H., C.Y. Tsui and W.H. Ki, 2004. An Experimental 1.5-V 64-µW DRAM. IEEE J. Solid-State Circuits, 26: 465-472.
DOI: 10.1109/4.75040

New, L.F., Z.A.B.A. Aziz and M.F. Leong, 2012. A low ripple CMOS charge Pump for low-voltage application. Proceedings of the 4th International Conference on Intelligent and Advanced Systems, Jun. 12-14, IEEE Xplore Press, Kuala Lumpur, pp: 784-789.
DOI: 10.1109/ICIAS.2012.6306120

Perez-Nicoli, P., P.C. Lisboa, F. Vetrano and F. Silveira, 2015. A series-parallel switched capacitor step-up DC-DC converter and its gate-control circuits for over the supply rail switches. Analog Integrated Circuits Signal Process., 85: 37-45. DOI: 10.1007/s10470-015-0573-4

Ramadass, Y.K. and A.P. Chandrakasan, 2010. A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage. Proceedings of the IEEE International Solid-State Circuits Conference, Feb. 7-11, IEEE Xplore Press, San Francisco, CA, pp: 486-487.
DOI: 10.1109/JSSCC.2010.5433835
Ueno, F., T. Inoue, I. Oota and I. Harada, 1991. Emergency power supply for small computer systems. Proceedings of the IEEE International Symposium on Circuits and Systems, Jun. 11-14, IEEE Xplore Press, pp: 1065-1068. DOI: 10.1109/ISCAS.1991.176549

Ulaganathan, C., B.J. Blalock, J. Holleman and C.L. Britton Jr, 2012. An ultra-low voltage self-startup charge pump for energy harvesting applications. Proceedings of the IEEE 55th International Midwest Symposium on Circuits and Systems, Aug. 5-8, IEEE Xplore Press, Boise, ID, pp: 206-209. DOI: 10.1109/MWSCAS.2012.6291993

Umezawa, A., S. Atsumi, M. Kuriyama, H. Banba and K.I. Imamiya et al., 1992. A 5-V-only operation 0.6-μm flash EEPROM with row decoder scheme in triple-well structure. IEEE J. Solid-State Circuits, 27: 1540-1546. DOI: 10.1109/4.165334

Vaisband, I., M. Saadat and B. Murmann, 2015. A closed-loop reconfigurable switched-capacitor dc-dc converter for sub-mW energy harvesting applications. IEEE Trans. Circuits Syst. I: Regular Papers, 62: 385-394. DOI: 10.1109/TCI.2014.2562971

Weng, P.S., H.Y. Tang, P.C. Ku, and L.H. Lu, 2013. 50 mV-input batteryless boost converter for thermal energy harvesting. IEEE J. Solid-State Circuits, 48: 1031-1041. DOI: 10.1109/JSSC.2013.2237998

Wu, J.T. and K.L. Chang, 1998. MOS charge pumps for low-voltage operation. IEEE J. Solid-State Circuits, 33: 592-597. DOI: 10.1109/4.663564

Yeo, K.H., M.S. Islam, S. Menon, S.A. Wahab and S.H.M. Ali, 2015. Comparison of CMOS rectifiers for micropower energy harvesters. Proceedings of the IEEE International Conference on Energy Conversion, Oct. 19-20, IEEE Xplore Press, Johor Bahru, pp: 419-423. DOI: 10.1109/CENCON.2015.7409581

Yeo, K.H., M.S. Islam, S. Menon, S.A. Wahab and S.H.M. Ali, 2016. Architecture of an ultra-low-power fully autonomous universal power conditioner of energy harvester for wireless sensor networks: A review. Am. J. Applied Sci., 1: 326.334. DOI: 10.3844/ajassp.2016.326.334

Zhang, H., M. Zhao, S. Liu, Y. Fang and X. Wu, 2014. A 20-300mV transformer-based self-startup flyback converter with MPPT and ZCS control for thermoelectric energy harvesting. Proceedings of the IEEE 57th International Midwest Symposium on Circuits and Systems, Aug. 3-6, IEEE Xplore Press, College Station, TX, pp: 41-44. DOI: 10.1109/MWSCAS.2014.6908347

Zhang, X. and H. Lee, 2010. An Efficiency-Enhanced Auto-Reconfigurable 2×3× SC Charge Pump for Transcutaneous Power Transmission. IEEE J. Solid-State Circuits, 45: 1906-1922. DOI: 10.1109/JSSC.2010.2055370

Zhang, X. and H. Lee, 2013. Gain-enhanced monolithic charge pump with simultaneous dynamic gate and substrate control. IEEE Trans. Very Large Scale Integr. Syst., 21: 593-596. DOI: 10.1109/TVLSI.2012.2190149