Sleeping Beauty genetic screen identifies miR-23b::BTBD7 gene interaction as crucial for colorectal cancer metastasis.

Eleonora Grisard1*, Michela Coan1,2*, Luigi Zandonà1, Laura Cesaratto1, Ilenia Rigo1, Alice Paulitti1, Eva Andreuzzi1, Gian Luca Rampioni Vinciguerra1,9, Evelina Poletto1, Fabio Del Ben3, Giulia Brisotto3,4, Eva Biscontin3, Matteo Turetta5, Erik Dassi6, Alex Mirnezami7, Vincenzo Canzonieri6,9, Andrea Vecchione10, Gustavo Baldassarre1, Maurizio Mongiat1, Riccardo Spizzo1,11 and Milena S. Nicoloso1.

Author information

1 Division of Molecular Oncology, Department of Translational Research, IRCCS CRO Centro di Riferimento Oncologico Aviano, Italy.
2 Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
3 Immunopathology and Cancer Biomarkers, Department of Translational Research, IRCCS CRO Centro di Riferimento Oncologico Aviano, Italy.
4 Veneto Institute of Oncology IOV-IRCCS, Comprehensive Cancer Centre, Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
5 Pathology Department, University Hospital of Udine, Italy
6 Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Italy
7 Cancer Sciences, University Surgical Unit, University of Southampton, UK.
8 Pathology Unit, IRCCS CRO Centro di Riferimento Oncologico Aviano, Italy.
9 Department of Medical, Surgical and Health Sciences, University of Trieste Medical School, Trieste, Italy
10 Faculty of Medicine and Psychology, Department of Clinical and Molecular Medicine, University of Rome “Sapienza”, Santo Andrea Hospital, 00189 Rome, Italy

Supplementary Tables and Figures
Suppl. Table 1: list of SB insertions in TN4_20 as retrieved by linker-mediated PCR.

Position (hg19)	Closest Transcripts and Biotype (Genecode V19)	Description
Chr13 :94,910,954-910,955	GPC6 (protein-coding)	Intronic
Chr1 :212,405,256-212,405,257	RP11 15I11 (lincRNA)	Intronic
Chr19 :3,501,100-3,501,101	DOHH (protein-coding)	Promoter
Chr1 :235,641,751-235,641,752	B3GALNT2 (protein-coding)	Intronic
Chr1 :45,885,179-45,885,180	TESK2 (protein-coding)	Intronic
Chr5 :12,473,909-12,473,910	Upstream: CNND2 (protein-coding); Downstream: CT49 (lincRNA)	Intergenic (with LINE L1PRE2)
Chr14 :93,705,840-93,705,841	BTBD7 (protein-coding)	3’UTR
Suppl. Table 2: list of clinical information of patients belonging to The Tumour Genome Atlas Colon Rectal Project that have been used for microRNA gene expression analysis.

Metastasis	race	microsatellite	gender	age	pT	pN	M
M0			FEMALE	71	T3	N0	M0
			MALE	78	T4b	N0	M0
			FEMALE	46	T3	N1	M0
			FEMALE	50	T3	N1	M0
			FEMALE	80	T3	N2	M0
			MALE	50	T3	N2	M0
			FEMALE	69	T3	N2	M0
			FEMALE	72	T3	N2	M0
			MALE	50	T3	N2	M1
			FEMALE	49	T3	N1	M1
			FEMALE	54	T3	N1	M1
			MALE	47	T4a	N1b	M1a
			FEMALE	57	T4	N0	M1
			FEMALE	82	T3	N2	M1
			MALE	38	T4	N2	M1
			FEMALE	72	T4a	N1	M1
Suppl. Table 3: list of clinical information of patients belonging to CRO Aviano Biobank

	Normal	Tum-M0	Tum-M1	Met
Number	10	10	11	9
pT2 N0	-	6	0	2
pT2 N+	-	0	0	1
pT3 N0	-	3	1	2
pT3 N+	-	1	8	4
pT4 N+	-	0	2	0
Site				
Colon NAS	-	9	4	7
Sigma-Rectum	-	1	7	2
Age (median)	61	66	71	71
Suppl. Table 4: List of primers used

Primer	Sequence
hEcad-5	TGCCCAGAAAAATGAAAAAGG
hEcad-3	GGTATGTGGCAATGCGTTC
hVim-5	GAGAACTTTGCCGTTGAAGC
hVim-3	GCTTCTGTAGGTGGCAATC
HAS2-5	GCCTCATCTGTGGAGATGGT
HAS2-3	ATGCACTGAACACACCCAAA
hSlug-5	GGGGAGAAGCCTTTTTCTTG
hSlug-3	TCCTCATTTTGTGCAGGAG
hTwist-5	GGAGTCCGCAGTCTTACGAG
hTwist-3	TCTGGAGGACCTGGTAGAGG
ZEB1-5	CAGGCAATGTAAGCAGGATG
ZEB1-3	GACCACTGCTCTGCGTG
hOct4-5	AGCGATCAAGCAGCACCATAT
hOct4-3	AGAGTGCGACCGAGACAGG
hNanog-5	CCCAGCCTTTACTCTTCTTA
hNanog-3	CCAGGTGAATTGTTCCAGGTC
AS-Bfa-Linker-AS	[PHOS]TAGTCCCTTAAGCGGAG[AMC3]
Nla-Linker-S	GTAATACGACTCTATAGGGCTCCGTTAAAGGAGCATG
Nla-Linker-AS	[PHOS]GTCCCTTAAAGCGGAGCC[AMC3]
IRDR-R-primary	GCTTGAGCGCTGACTCAGAAATGTTTGACCC
IRDR-L-primary	CTGGGATTTCAGCTTGTTAAAAAGGCACGTCAAC
Linker-primary	GTAATACGACTCTATAGGGC
IRDR-R-nested	CCACCTGAAATGTTAGAAGAAATAAAGC
IRDR-L-nested	GACTTGTGTCATGCAACAAAGTAGATGTCC
Linker-nested	AGGGCTCCTAAGGGAC
BTBD7A_5(CDS)	AGTCAATGCTGGTACGG
BTBD7A_3(CDS)	TGCTGGACATGGAGACATT
BTBD7upA_5(3’UTR)	GCTTCCATTGCCCTTCTGC
BTBD7upA_3(3’UTR)	GGCCTTGAGCCTTTCTAGT
BTBD7_luc_F	GCTCTAGAGCCCAATGCTGCTGCTGAAT
BTBD7_luc_R	GCTCTAGAGCGGTAGGTTCAAGGACTACAGC
BTBD7_luc_mut-F	CTTTTTTATAGCTGACTAGTAGTGCTAGTAAGGTTCTCTCAGA
BTBD7_luc_mut-R	TCTGAGGAACCTTACTCAGACTTCATCTTAGAAGCATTAAAAAG
Supplementary Figure S1. Forcing cells to a single cell suspension (fSCS) reduces cell survival compared to anoikis. (a) Representative images of fixed and stained colonies formed after in vitro anoikis or fSCS of human CRC cell lines (HT29, SW480, SW620) or normal Rat Intestinal Epithelial cells (RIE). (b) Representative images of fixed and stained colonies formed by HCT116 cells following 24h growth on ultralow attachment plates with serum free medium in the presence of increasing concentrations of EDTA (0.1 mM; 0.2 mM; 0.5 mM; 1 mM). (c) Representative images of growth in suspension (left) or of fixed and stained colonies (right) formed by HCT116 cells following anoikis (top panels), following 24h growth on ultralow attachment plates with serum free medium in the presence of hyaluronidase (1,3 mg/mL) (middle panels) or following 24h inclusion into water-in-oil micro droplets as single cells.
Supplementary Figure S2. Mesenchymal traits foster resistance to fSCS. (a) Representative images at 10x magnification of surviving MCF7 and MDAMB231 cells after 24h in anoikis (upper panels) or in fSCS (lower panel). Bars in right graph present mean +/- sem, expressed as percentage of surviving cells compared to plating control, counted at 10x magnification field from two independent experiments (*p<0.05, using paired t test with unequal variances). (b) Cell death by FACS analysis of
propidium iodide (PI) stained SW480 and COLO205 cells following fSCS assay (SW480 cells are
derived from Dukes' stage B primary CRC, whereas COLO205 are derived from Dukes' stage D
ascites). Reported percentages indicate the amount of PI positive/dead cells. (c) Western Blot analysis
of e-Cadherin and Twist in HCT116-Twist-ER cells in presence or absence of 4-hydroxytamoxifen
(4OHT). (d) Characterization of HCT116-Twist-ER inducible model. Left panel: qRT-analysis in
HCT116-Twist-ER cells in presence or absence of 4OHT. Bars indicate mean +/- std of three
independent biological replicates. Right panel: Transwell migration assay. Quantification of HCT116-
Twist-ER cells motility in transwell migration assay after 24 or 48 hours in presence or absence of
4OHT. Bars indicate mean +/- std of 2 independent biological replicates. (e) Representative images at
10x magnification showing the morphology of HT29-Twist-ER cells in presence or absence of 4OHT.
Lower panels: representative images of fixed and stained colonies formed by HT29-Twist-ER cells in
presence or absence of 4OHT. (f) Left panel: representative images at 10x magnification showing the
morphology of HCT116-Snail-ER cells in presence or absence of 4OHT. Lower panels: representative
images of fixed and stained colonies formed by HCT116-Snail-ER cells in presence or absence of
4OHT. Right panel: count of surviving colonies post-fSCS formed by HCT116-Snail-ER cells in the
presence or absence of 4OHT. Bars in graph represent mean +/- std of surviving colonies per field (10x)
of one representative experiment (*p<0.05, using unpaired t test with unequal variances).
Supplementary Figure S3. Multiple rounds of fSCS enrich for cells showing resistance to fSCS, mesenchymal traits, and increased in vivo extravasation potential. (a) Quantification of the number of colonies generated by HCT116 cells subjected to multiple rounds of fSCS (T1, T2, T3 and T4) or that never underwent to fSCS (T0). Bars in graph represent mean +/- std from two independent biological experiments (**p<0.0005, by Kruskal Wallis non-parametric test). (b) Measurement of the morphology of surviving colonies after multiple rounds of fSCS. Circularity index 1= circular; 0.5= intermediate; 0.0= scattered colony. Dot plot graph indicates mean and standard deviation from one biological experiment. (c) *In vivo* extravasation assay. Left panel: representative confocal images of lung sections (10x magnification) from nude mice at 72h after intravenous injection of Dil labeled T0 and T2 cells (n=4 and n=5 for T0 and T2, respectively). (Red = Dil stained infiltrated cells; Blue = lung mice nuclei counterstained with Topro; white dashed circle points to T0 red cells). Right panels: Dot plot indicating mean with 95% CI of extravasated Dil labeled T0 or T2, measured as normalized red/blue area per field (**p<0.0005, using unpaired t test with unequal variances).
Supplementary Figure S4.

(a) Schematic diagram of the Sleeping Beauty transposon system.

(b) Flowchart of the experimental procedure:
- pT2-CMV-EGFP transposition in HCT116
- Cell sorting of EGFP+ cells (TN4_sorted)
- fSCS
- Collection of single cell clones that survived to fSCS
- Identification of clones that are resistant to fSCS
- Retrieval of transposon insertions from resistant clones

(c) Bar graph showing the percentage of GFP-expressing cells over days post-transfection. Two conditions are compared:
- pT2-CMV-EGFP + pSB100X (wt)
- pT2-CMV-EGFP + ppSBD3 (mut)

(d) Images of survival experiments post-Anoikis and post-fSCS.
Supplementary Figure S4. Strategy of Sleeping Beauty forward genetic screen. (a) Schematic view of pT2-CMV-EGFP transposon and pSB100 transposase enzyme coding plasmids. (b) Scheme of the experimental procedure adopted to combine pT2-CMV-EGFP-based screening and fSCS assay in HCT116 cells. (c) FACS analysis of the percent of GFP positive HCT116 cells 2, 5, 7, 12 or 17 days after transient co-transfection of pT2-CMV-EGFP with wild type (pSB100x) or mutated (pSBD3) transposase enzyme. (d) Identification of clones resistant to fSCS upon combination of fSCS assay with the pT2-CMV-EGFP TN-based forward genetic screen. Representative images of fixed and stained colonies formed in 24-well plates by pT2-CMV-EGFP-transposed HCT116 clones after 2 rounds of fSCS (lower plate) or of Anoikis (upper plate, control condition). TN4_20 clone is the one showing the best capability to resist to fSCS. Each clone was tested in triplicate.
Supplementary Figure S5. **TN4_20 clone shows increased invasive capabilities both in vitro and in vivo.** (a) Invasion assay: quantification of HCT116, TN4_Sorted and TN4_20 cells motility in transwell migration assay. Bars indicate mean +/- std of 2 independent biological replicates. (b) Representative images at 10x magnification of H/E stained lungs of mice intracaecally injected with TN4_Sorted and TN4_20 cells.
Supplementary Figure S6. Identification and confirmation of TN insertions in TN4_20 cell clone within the 3'UTR of BTBD7 gene close to miR-23b target site. (a) Left: Schematic depiction of Linker Mediated PCR. For more details, see experimental procedures. Green rectangle = pT2 CMV EGFP TN; Mirrored blue rectangles = TN inverted/direct repeats left (IR/DR-L) or right (IR/DR-R); Red
lines = Linkers ligated to genomic DNA for Linker Mediated PCR; Red arrows: primers complementary to Linkers. Right: agarose gel images of the multiple bands obtained by Linker Mediated PCR in correspondence of TN IR/DR-L (Left) or IR/DR-R (Right) as indicated by the scheme. For each IR/DR five bands with different molecular weight (indicated by red rectangles) were obtained and successively sequenced to retrieve TN positions (Suppl. Table S1). (b) Original screenshot from UCSC genome browser showing the region of BTBD7 3’UTR. The exact position of pT2-CMV-EGFP-TN insertion in the 3’UTR of BTBD7 gene as identified by Linker Mediated PCR is indicated. The position of 6 different primers used to confirm TN insertion in the 3’UTR of BTBD7 gene are indicated (UP5’, UP3’; IRDR-L, IRDR-R; DOWN5’, DOWN3’). (c) Confirmation by PCR of the pT2-CMV-EGF-TN insertion in the 3’UTR of BTBD7 gene using the primers described above, which is present only in the TN4_20 clone and not in parental cells.
Supplementary Figure S7. TN insertion in TN4_20 clone and miR-23b transfection do not affect BTBD7 mRNA gene expression levels. (a) qRT-analysis of BTBD7 3'UTR (left) or CDS (right) expression in TN4_Sorted or TN4_20 cells. Bars indicate mean +/- std of two independent biological replicates (ns, not significant, using paired t test with unequal variances). (b) Representative qRT-analysis of miR-23b expression in HCT116 and HT29 cells transiently transfected with miR-23b precursor compared to scramble. (c) qRT-analysis of BTBD7 3’UTR or CDS expression in HCT116 cells transiently transfected with miR-23b precursor compared to Scramble. Bars indicate mean +/- std of two independent biological replicates (ns, not significant, using paired t test with unequal variances).
Supplementary Figure S8. Effect of miR-23b transfection or BTBD7 silencing in several cell models. (a) Representative qRT-analysis of miR-23b expression in HCT116, TN4_Sorted and TN4_20 cells transiently transfected with miR-23b precursor compared to Scramble. (b) Representative images of fixed and stained post-fSCS colonies formed in 10 cm plates by SW480 and SW620 after transfection of miR-23b precursor or Scramble. (c) Western Blot analysis of Btbd7 expression in TN4_Sorted and TN4_20 cells after transduction of cells with three different Sh_RNAs targeting BTBD7 (Sh2_BTBD7; Sh4_BTBD7; Sh5_BTBD7). (d) Representative confocal images of HCT116 GFP-Btbd7 clones #1, #2, #3 or GFP-Empty clones #1, #2, #3.
Supplementary Figure S9. Gene expression of selected genes in a subset of TCGA CRC samples and from CRO-Biobank CRC samples. (a) RNA-seq analysis of primary CRC without (M0; n=8) or with metastasis (M1; n=8) from The Cancer Genome Atlas database. Data are expressed as RPM (Reads per Million). Dot plot indicate mean +/- std (*p<0.05; using unpaired t test with unequal variances). (b) qRT-analysis of ZEB1, CDH1 and VIMENTIN expression in HTST (Healthy Tissue
Surrounding Tumor (n=10), in primary CRC samples without (M0; n=10), or with metastasis at diagnosis (M1; n=11), and in liver metastatic samples (met; n=9). Bars indicate mean +/- std (*p<0.05, using unpaired t test assuming unequal variances).