Deformations of Varieties of General Type
János Kollár

Abstract. We prove that small deformations of a projective variety of general type are also projective varieties of general type, with the same plurigenera.

1. Introduction

Our aim is to prove the following.

Theorem 1. Let $g : X \to S$ be a flat, proper morphism of complex analytic spaces. Fix a point $0 \in S$ and assume that the fiber X_0 is projective, of general type, and with canonical singularities. Then there is an open neighborhood $0 \in U \subset S$ such that

(1.1) the plurigenera of X_s are independent of $s \in U$ for every r, and
(1.2) the fibers X_s are projective for every $s \in U$.

Here the rth plurigenus of X_s is $h^0(Y_s, \omega_{Y_s}^r)$, where $Y_s \to X_s$ is any resolution of X_s. By [18, VI.5.2] (see also (10.2)) X_s has canonical singularities, so this is the same as $h^0(X_s, \omega_{X_s}^{[r]})$, where $\omega_{X_s}^{[r]}$ denotes the double dual of the rth tensor power ω_{X_s}.

Comments 1.3. Many cases of this have been proved, but I believe that the general result is new, even for X_0 smooth and S a disc.

For smooth surfaces proofs are given in [6,15], and for 3-folds with terminal singularities in [8, 12.5.1]. If g is assumed projective, then of course all fibers are projective, and deformation invariance of plurigenera was proved by [20] for X_0 smooth, and by [18, Chap.VI] when X_0 has canonical singularities. However, frequently g is not projective; see Example 4 for some smooth, 2-dimensional examples. Many projective varieties have deformations that are not projective, not even algebraic in any sense; K3 and elliptic surfaces furnish the best known examples.

In Example 3 we construct a deformation of a projective surface with a quotient singularity and ample canonical class, whose general fibers are non-algebraic, smooth surfaces of Kodaira dimension 0. Thus canonical is likely the largest class of singularities where Theorem 1 holds. See also Example 5 for surfaces with simple elliptic singularities.
The projectivity of X_0 is essential in our proof, but (1.1) should hold whenever X_0 is a proper algebraic space of general type with canonical singularities. Such results are proved in [19], provided one assumes that either X_0 is smooth and all fibers are Moishezon, or almost all fibers are of general type.

Our main technical result says that the Minimal Model Program works for $g : X \to S$. For $\dim X_0 = 2$ and X_0 smooth, this goes back to [15]. For $\dim X_0 = 3$ and terminal singularities, this was proved in [8, 12.4.4]. The next result extends these to all dimensions.

Theorem 2. Let $g : X \to S$ be a flat, proper morphism of reduced, complex analytic spaces. Fix a point $0 \in S$ and assume that X_0 is projective and has canonical singularities. Then every sequence of MMP-steps $X_0 = X_0^0 \to X_0^1 \to X_0^2 \to \cdots$ (see Definition 7) extends to a sequence of MMP-steps $X = X^0 \to X^1 \to X^2 \to \cdots$.

over some open neighborhood $0 \in U \subset S$.

The proof is given in Paragraph 8 when S is a disc \mathbb{D}, and in Paragraph 12 in general. The assumption that X_0 has canonical singularities is necessary, as shown by semistable 3-fold flips [8]. Extending MMP steps from divisors with canonical singularities is also studied in [1].

If X_0 is of general type, then a suitable MMP for X_0 terminates with a minimal model X_0^m by [3], which then extends to $g^m : X_0^m \to U$ by Theorem 2. For minimal models of varieties of general type, deformation invariance of plurigenera is easy, leading to a proof of (1.1) in Paragraph 13. This also implies that all fibers are bimeromorphic to a projective variety.

If X_0 is smooth, then it is Kähler, and the X_s are also Kähler by [15]. A Kähler variety that is bimeromorphic to an algebraic variety is projective by [16].

However, there are families of surfaces with simple elliptic singularities $g : X \to S$ such that K_{X_0} is ample, all fibers are bimeromorphic to an algebraic surface, yet the projective fibers correspond to a countable, dense set on the base; see Example 5.

We use Theorem 14—taken from [14, Thm.2]—to obtain the projectivity of the fibers and complete the proof of Theorem 1 in Paragraph 13.

2. Examples and Consequences

The first example shows that Theorem 1 fails very badly for surfaces with non-canonical quotient singularities.

Example 3. We give an example of a flat, proper morphism of complex analytic spaces $g : X \to \mathbb{D}$, such that

(3.1) X_0 is a projective surface with a quotient singularity and ample canonical class, yet

(3.2) X_s is smooth, non-algebraic, and of Kodaira dimension 0 for very general $s \in \mathbb{D}$.

Let us start with a K3 surface $Y_0 \subset \mathbb{P}^3$ with a hyperplane section $C_0 \subset Y_0$ that is a rational curve with 3 nodes. We blow up the nodes $Y_0' \to Y_0$ and contract the birational transform of C_0 to get a surface $\tau_0 : Y_0' \to X_0$. Let $E_1, E_2, E_3 \subset X_0$ be the images of the 3 exceptional curves of the blow-up.

By explicit computation, we get a quotient singularity of type $\mathbb{C}^2/\mathbb{Z}_3(1,1)$, $(E_i^3) = -\frac{1}{2}$ and $(E_i \cdot E_j) = \frac{1}{2}$ for $i \neq j$. Furthermore, $E := E_1 + E_2 + E_3 \sim K_{X_0}$ and it is ample by the Nakai-Moishezon criterion. (Note that $(E \cdot E_i) = \frac{1}{2}$ and $X_0 \setminus E \cong Y_0 \setminus C_0$ is affine.)

Take now a deformation $Y \to \mathbb{D}$ of Y_0 whose very general fibers are non-algebraic K3 surfaces that contain no proper curves. Take 3 sections $B_i \subset Y$ that pass through the 3 nodes of C_0. Blow them up and then contract the birational transform of C_0; cf. [17]. In general [17] says that the normalization of the resulting central fiber is X_0, but in our case the central fiber is isomorphic to X_0 since $R^1(\tau_0)_*\mathcal{O}_{Y_0} = 0$. The contraction is an isomorphism on very general fibers since there are no curves to contract. We get $g : X \to \mathbb{D}$ whose central fiber is X_0 and all other fibers are K3 surfaces blown up at 3 points.

In general, it is very unclear which complex varieties occur as deformations of projective varieties; see [7] for some of their properties.

Example 4. [2] Let $S_0 := (g = 0) \subset \mathbb{P}^3_x$ and $S_1 := (f = 0) \subset \mathbb{P}^3_x$ be surfaces of the same degree. Assume that S_0 has only ordinary nodes, S_1 is smooth, $\text{Pic}(S_1)$ is generated by the restriction of $\mathcal{O}_{\mathbb{P}^3}(1)$ and S_1 does not contain any of the singular points of S_0. Fix $m \geq 2$ and consider

$$X_m := (g - t^mf = 0) \subset \mathbb{P}^1_x \times \mathbb{A}^1_t.$$

The singularities are locally analytically of the form $xy + z^2 - t^m = 0$. Thus X_m is locally analytically factorial if m is odd. If m is even then X_m is factorial since the general fiber has Picard number 1, but it is not locally analytically factorial; blowing up $(x = z - t^{m/2} = 0)$ gives a small resolution. Thus we get that

(4.1) X_m is bimeromorphic to a proper, smooth family of projective surfaces iff m is even, but

(4.2) X_m is not bimeromorphic to a smooth, projective family of surfaces.

Example 5. Let $E \subset \mathbb{P}^2$ be a smooth cubic and take r general lines $L_i \subset \mathbb{P}^2$. To get S_0, blow up all singular points of $E + \sum L_i$ and then contract the birational transform of $E + \sum L_i$. A somewhat tedious computation shows that K_{S_0} is ample for $r \geq 6$. It has 1 simple elliptic singularity (coming from E) and r quotient singularities (coming from the L_i).

Deform this example by moving the $3r$ points $E \cap \sum L_i$ into general position $p_i^1, \ldots, p_i^{3r} \in E$ and the points $L_i \cap L_j$ into general position on \mathbb{P}^2. Blow up these points and then contract the birational transform of E to get the surfaces S_t. It has only 1 simple elliptic singularity (coming from E).

We get a flat family of surfaces with central fiber S_0 and general fibers S_t. Let L denote the restriction of the line class on \mathbb{P}^2 to E.

It is easy to see that such a surface S_t is non-projective if the p_i^t and L are linearly independent in $\text{Pic}(E)$. Thus S_t is not projective for very general t and has Kodaira dimension 0.
The next result is the scheme-theoretic version of Theorem 1. Ideally it should be proved by the same argument. However, some of the references we use, especially [18], are worked out for analytic spaces, not for general schemes. So for now we proceed in a somewhat roundabout way.

Corollary 6. Let S be a noetherian, excellent scheme over a field of characteristic 0. Let $g : X \to S$ be a flat, proper algebraic space. Fix a point $0 \in S$ and assume that X_0 is projective, of general type and with canonical singularities. Then there is an open neighborhood $0 \in S^0 \subset S$ such that, for every $s \in S^0$,

\begin{equation}
(6.1) \text{the plurigenera } h^0(X_s, \omega^{[r]}_{X_s}) \text{ are independent of } s \text{ for every } r, \text{ and }
\end{equation}

\begin{equation}
(6.2) \text{the fiber } X_s \text{ is projective.}
\end{equation}

Proof. A proper algebraic space Y over a field k is projective iff Y_K is projective over K for some field extension $K \supset k$. Noetherian induction then shows that it is enough to prove the claims for the generic points of the completions (at the point $0 \in S$) of irreducible subvarieties $0 \in T \subset S$. Since the defining equations of \hat{T} and of $X \times_S \hat{T}$ involve only countably many coefficients, we may assume that the residue field is C.

Consider now the local universal deformation space $\text{Def}(X_0)$ of X_0 in the complex analytic category; see [4]. It is the germ of a complex analytic space and there is a complex analytic universal family $G : X \to \text{Def}(X_0)$. Since a deformation over an Artin scheme is automatically complex analytic, we see that the formal completion $\hat{G} : \hat{X} \to \hat{\text{Def}}(X_0)$ is the universal formal deformation of X_0. In particular, $X \times_S \hat{T}$ is the pull-back of $\hat{G} : \hat{X} \to \hat{\text{Def}}(X_0)$ by a morphism $\hat{T} \to \hat{\text{Def}}(X_0)$. Thus Theorem 1 implies both claims. \qed

3. Relative MMP

See [9] for a general introduction to the minimal model program.

Definition 7. (*MMP-steps and their extensions*) Let $X \to S$ be a proper morphism of complex analytic spaces with irreducible fibers. Assume that $K_{X/S}$ is \mathbb{Q}-Cartier. By an **MMP-step** for X over S we mean a diagram

\begin{equation}
\begin{array}{ccc}
X & \xrightarrow{\pi} & X^+ \\
\phi \downarrow & & \phi^+ \\
Z & \nearrow &
\end{array}
\end{equation}

where all morphisms are bimeromorphic and proper over S, $-K_{X/S}$ is ample over Z, $K_{X^+/S}$ is ample over Z and ϕ^+ is small (that is, without exceptional divisors).

If X is \mathbb{Q}-factorial and the relative Picard number of X/Z is 1, then there are 2 possible MMP steps:

- **Divisorial:** ϕ contracts a single divisor and ϕ^+ is the identity.
- **Flipping:** both ϕ and ϕ^+ are small.

However, in general there is a more complicated possibility:

- **Mixed:** ϕ contracts (possibly several) divisors and ϕ^+ is small.
For our applications we only need to know that, by \cite[3.52]{9}, \(X^+\) exists iff \(\ominus_{r \geq 0} \omega_{Z/S}^{[r]}\) (which is equal to \(\ominus_{r \geq 0} \phi_* \omega_X^{[r]}\)) is a finitely generated sheaf of \(\mathcal{O}_Z\)-algebras, and then

\[
X^+ = \text{Proj}_Z \ominus_{r \geq 0} \omega_{Z/S}^{[r]}.
\]

(7.2)

We index a sequence of MMP-steps by setting \(X^0 := X\) and \(X^{i+1} := (X^i)^+\).

Fix a point \(s \in S\) and let \(X_s\) denote the fiber over \(S\). We say that a sequence of MMP-steps (over \(S\)) \(X^0 \to X^1 \to X^2 \to \cdots\) extends a sequence of MMP-steps (over \(s\)) \(X^0_s \to X^1_s \to X^2_s \to \cdots\) if, for every \(i\),

\[
\begin{align*}
X^i_s \xrightarrow{\pi_s^i} X^{i+1}_s \\
\phi^i_s \backsimeq (\phi^i_s)^+ \\
Z^i_s
\end{align*}
\]

is the fiber over \(s\) of

\[
\begin{align*}
X^i \xrightarrow{\pi^i} X^{i+1} \\
\phi^i \backsimeq (\phi^i)^+ \\
Z^i
\end{align*}
\]

(7.3)

8 (Proof of Theorem 2 for \(S = \mathbb{D}\), the disc). Since MMP-steps preserve canonical singularities, by induction it is enough to prove the claim for one MMP step. So we drop the upper index \(i\) and identify \(K_X/\mathbb{D}\) with \(K_X\).

Let \(\phi : X_0 \to Z_0\) be an extremal contraction. By \cite{17}, it extends to a contraction \(\phi : X \to Z\), where \(Z\) is flat over \(\mathbb{D}\) with central fiber \(Z_0\) since \(R^1(\phi_* \mathcal{O}_{X_0}) = 0\). Note that \(K_X\) is \(\mathbb{Q}\)-Cartier by (10.1), and \(\phi\) is projective since \(-K_X\) is \(\phi\)-ample.

If \(\phi_0\) is a divisorial contraction, then \(K_{Z_0}\) is \(\mathbb{Q}\)-Cartier, and so is \(K_Z\) by (10.1). Thus \(X^+ = Z\).

If \(\phi_0\) is a flipping or mixed contraction, then \(K_Z\) is not \(\mathbb{Q}\)-Cartier. By (7.2),

\[
X^+ = \text{Proj}_Z \ominus_{r \geq 0} \omega_{Z}^{[r]},
\]

(8.1)

provided \(\ominus_{r \geq 0} \omega_{Z}^{[r]}\) is a finitely generated sheaf of \(\mathcal{O}_Z\)-algebras. (We have identified \(\omega_Z\) with \(\omega_{Z/\mathbb{D}}\).)

Functoriality works better if we twist by the line bundle \(\mathcal{O}_Z(Z_0)\) and write it as

\[
X^+ = \text{Proj}_Z \ominus_{r \geq 0} \omega_{Z}^{[r]}(r_{Z_0}).
\]

Let \(\tau : Y \to X\) be a projective resolution of \(X\) (that is, \(\tau\) is projective) such that \(Y_0\), the bimeromorphic transform of \(X_0\), is also smooth. Set \(g := \phi \circ \tau\).

The hardest part of the proof is Nakayama’s theorem (9) which gives a surjection

\[
\ominus_{r \geq 0} g_* \omega_Y^{[r]}(r_{Y_0}) \twoheadrightarrow \ominus_{r \geq 0} (g_0)_* \omega_{Y_0}^{[r]}.
\]

(8.2)

Since \(X_0\) has canonical singularities \(\tau_* \omega_{Y_0}^{[r]} = \omega_{X_0}^{[r]}\), and hence \(g_* \omega_Y^{[r]} = \omega_{Z_0}^{[r]}\). We also have a natural inclusion \(g_* \omega_Y^{[r]}(r_{Y_0}) \hookrightarrow \omega_{Z}^{[r]}(r_{Z_0})\). Thus pushing forward (8.2) we get a surjection

\[
\ominus_{r \geq 0} g_* \omega_Y^{[r]}(r_{Y_0}) \twoheadrightarrow \ominus_{r \geq 0} \omega_{Z}^{[r]}(r_{Z_0}) \twoheadrightarrow \ominus_{r \geq 0} \omega_{Z_0}^{[r]}.
\]

(8.3)

Note that \(\ominus_{r \geq 0} \omega_{Z_0}^{[r]}\) is a finitely generated sheaf of \(\mathcal{O}_{Z_0}\)-algebras, defining the MMP-step of \(X_0 \to Z_0\).
Now (11) says that $\oplus_{r \geq 0} \omega^r_Z(rZ_0)$ is also a finitely generated sheaf of \mathcal{O}_Z-algebras, at least in some neighborhood of the compact Z_0. \hfill \square

Next we discuss various results used in the proof.

Theorem 9. [18, VI.3.8] Let $\pi : Y \to S$ be a projective, bimeromorphic morphism of analytic spaces, Y smooth and S normal. Let $D \subseteq Y$ be a smooth, non-exceptional divisor. Then the restriction map

$$\pi_*\omega^n_Y(mD) \to \pi_*\omega^n_D$$

is surjective for $m \geq 1$. \hfill \square

This is a special case of [18, VI.3.8] applied with $\Delta = 0$ and $L = K_Y + D$.

Warning. The assumptions of [18, VI.3.8] are a little hard to find. They are outlined 11 pages earlier in [18, VI.2.2]. It talks about varieties, which usually suggest algebraic varieties, but [18, p.231, line 13] explicitly states that the proofs work with analytic spaces; see also [18, p.14]. (The statements of [18] allow for a boundary Δ. However, $K_Y + D + \Delta$ should be \mathbb{Q}-linearly equivalent to a \mathbb{Z}-divisor and $[\Delta] = 0$ is assumed on [18, p.231]. There seem to be few cases when both of these can be satisfied.)

Lemma 10. [18, VI.5.2] Let $g : X \to S$ be a flat morphism of complex analytic spaces. Assume that X_0 has a canonical singularity at a point $x \in X_0$. Then there is an open neighborhood $x \in X^* \subset X$ such that

1. $K_{X^*/S}$ is \mathbb{Q}-Cartier, and
2. all fibers of $g|_{X^*} : X^* \to S$ have canonical singularities.

Proof. (1) is proved in [10, 3.2.2]; see also [11, 12.7] and [13, 2.8]. The harder part is (2), proved in [18, VI.5.2]. \hfill \square

Remark 10.3. If S is smooth then X^* has canonical singularities. By induction, it is enough to prove this when $S = \mathbb{D}$. Then the proof of [18, VI.5.2] shows that even the pair $(X^*, X_0 \cap X^*)$ has canonical singularities.

Lemma 11. Let $\pi : X \to S$ be a proper morphism of normal, complex spaces. Let L be a line bundle on X and $W \subseteq S$ a Zariski closed subset. Assume that $\mathcal{O}_W \otimes_S (\oplus_{r \geq 0} \pi_* L^r)$ is a finitely generated sheaf of \mathcal{O}_W-algebras.

Then every compact subset $W' \subseteq W$ has an open neighborhood $W' \subseteq U \subseteq S$ such that $\mathcal{O}_U \otimes_S (\oplus_{r \geq 0} \pi_* L^r)$ is a finitely generated sheaf of \mathcal{O}_U-algebras.

Proof. The question is local on S, so we may as well assume that W is a single point. We may also assume that $\mathcal{O}_W \otimes_S (\oplus_{r \geq 0} \pi_* L^r)$ is generated by $\pi_* L$. After suitable blow-ups we are reduced to the case when the base locus of L is a Cartier divisor D. By passing to a smaller neighborhood, we may assume that every irreducible component of D intersects $\pi^{-1}(W)$. By the Nakayama lemma, the base locus of L^r is a subscheme of rD that agrees with it along $rD \cap \pi^{-1}(W)$. Thus rD is the the base locus of L^r for every r. We may thus replace L by $L(-D)$ and assume that L is globally generated.

Thus L defines a morphism $X \to \text{Proj}_S \oplus_{r \geq 0} \pi_* L^r$, let $\pi' : X' \to S$ be its Stein factorization. Then L is the pull-back of a line bundle L' that is ample on $X' \to S$ and $\oplus_{r \geq 0} \pi'_* L^r = \oplus_{r \geq 0} \pi'_* L''$ is finitely generated. \hfill \square
12 (Proof of Theorem 2 for general S). As in Paragraph 8, it is enough to prove the claim for one MMP step, so let $\phi_0 : X_0 \to Z_0$ be an extremal contraction and $\phi : X \to Z$ its extension. As before, Z is flat over S with central fiber Z_0.

We claim that, for every r,

\begin{align}
\omega_{Z/S}^{[r]} & \text{ is flat over } S, \quad (12.1) \\
\omega_{Z/S}^{[r]}|_{Z_0} & \cong \omega_{Z_0}^{[r]}, \quad (12.2)
\end{align}

In the language of [12] or [13, Chap.9], this says that $\omega_{Z/S}^{[r]}$ is its own relative hull. There is an issue with precise references here, since [13, Chap.9] is written in the algebraic setting. However, [13, 9.72] considers hulls over the spectra of complete local rings. Thus we get that there is a unique largest subscheme $\hat{S}^u \subset \hat{S}$ (the formal completion of S at 0) such that (1–2) hold after base change to \hat{S}^u.

By Paragraph 8 we know that (1–2) hold after base change to any disc $D \to S$, which implies that $\hat{S}^u = \hat{S}$. That is, (1–2) hold for \hat{S}. Since both properties are invariant under formal completion, we are done.

Now we know that

$$X^+ := \text{Proj}_Z \bigoplus_{r \geq 0} \omega_{Z/S}^{[r]}, \quad (12.3)$$

is flat over S and its central fiber is X_0^+. Thus it gives the required extension of the flip of $X_0 \to Z_0$. \hfill \Box

4. Proof of Theorem 1

We give a proof using only the $S = D$ case of Theorem 2.

13. Fix $r \geq 2$ and assume first that $S = D$. Since X_0 is of general type, a suitable MMP for X_0 ends with a minimal model X_0^m, and, by Theorem 2, $X_0 \dashrightarrow X_0^m$ extends to a fiberwise bimeromorphic map $X \dashrightarrow X^m$. We have $g^m : X^m \to D$. (From now on, we replace D with a smaller disc whenever necessary.) Since $K_{X^m_0}$ is nef and big, the higher cohomology groups of $\omega_{X_0}^{[r]}$ vanish for $r \geq 2$. Thus $s \mapsto H^0(X^m_s, \omega^{[r]}_{X^m_s})$ is locally constant at the origin.

By (10.2) X_s and X^m_s both have canonical singularities, so they have the same plurigenera. Therefore $s \mapsto H^0(X_s, \omega^{[r]}_{X_s})$ is also locally constant at the origin. By Serre duality, the deformation invariance of $H^0(X_s, \omega_{X_s})$ is equivalent to the deformation invariance of $H^n(X_s, \mathcal{O}_{X_s})$. In fact, all the $H^i(X_s, \mathcal{O}_{X_s})$ are deformation invariant. For this the key idea is in [5], which treats deformations of varieties with normal crossing singularities. The method works for varieties with canonical (even log canonical) singularities; this is worked out in [13, Sec.2.5].

For arbitrary S, note that $s \mapsto H^0(X_s, \omega^{[r]}_{X_s})$ is a constructible function on S, thus locally constant at $0 \in S$ if it is locally constant on every disc $D \to S$. Once $s \mapsto H^0(X_s, \omega^{[r]}_{X_s})$ is locally constant at $0 \in S$, Grauert’s theorem guarantees that $g_* \omega^{[r]}_{X/S}$ is locally free at $0 \in S$ and commutes with base changes.

In principle it could happen that for each r we need a smaller and smaller neighborhood, but the same neighborhood works for all $r \geq 1$ by Lemma 11.
Thus the plurigenera are deformation invariant, all fibers are of general type, and g is fiberwise bimeromorphic to the relative canonical model

$$X^c := \text{Proj}_S \oplus_{r \geq 0} g^m_* \omega^{[r]}_{X^m/S},$$

which is projective over S. The projectivity of all fibers now follows from the more precise Theorem 14. □

The following is a special case of [14, Thm.2].

Theorem 14. Let $g : X \to S$ be a flat, proper morphism of complex analytic spaces whose fibers have rational singularities only. Assume that g is bimeromorphic to a projective morphism $g^p : X^p \to S$, and X_0 is projective for some $0 \in S$.

Then there is a Zariski open neighborhood $0 \in U \subset S$ and a locally closed, Zariski stratification $S = \bigcup_i S_i$ such that each

$$g|_{X_i} : X_i := g^{-1}(S_i) \to S_i \text{ is projective.}$$

□

5. Open Problems

For deformations of varieties of general type, the following should be true.

Conjecture 15. Let X_0 be a projective variety of general type with canonical singularities. Then its universal deformation space $\text{Def}(X_0)$ has a representative $X \to S$ where S is a scheme of finite type and X is an algebraic space.

For varieties of non-general type, the following is likely true [19, 1.10].

Conjecture 16. Let $g : X \to S$ be a flat, proper morphism of complex analytic spaces. Assume that X_0 is projective and with canonical singularities. Then the plurigenera $h^0(X_s, \omega^{[r]}_{X_s})$ are independent of $s \in S$ for every r, in some neighborhood of $0 \in S$.

Comments. One can try to follow the proof of Theorem 1. If X_0 is not of general type, we run into several difficulties in relative dimensions ≥ 4. MMP is not know to terminate and even if we get a minimal model, abundance is not known. If we have a good minimal model, then we run into the following.

Conjecture 17. Let X be a complex space and $g : X \to S$ a flat, proper morphism. Assume that X_0 is projective, has canonical singularities and $\omega^{[r]}_{X_0}$ is globally generated for some $r > 0$. Then the plurigenera are locally constant at $0 \in S$.

Comments. More generally, the same may hold if X_0 is Moishezon (that is, bimeromorphic to a projective variety), Kähler or in Fujiki’s class C (that is, bimeromorphic to a compact Kähler manifold; see [21] for an introduction).

A positive answer is known in many cases. [8, 12.5.5] proves this if X_0 is projective and has terminal singularities. However, the proof works for the Moishezon and class C cases as well.

The projective case with canonical singularities is discussed in [18, VI.3.15–16]; I believe that the projectivity assumption is very much built into the proof given there; see [18, VI.3.11].
Acknowledgements

I thank D. Abramovich, F. Campana, J.-P. Demailly, O. Fujino, A. Landesman, S. Mori, T. Murayama, V. Tosatti, D. Villalobos-Paz, C. Voisin and C. Xu for helpful comments and corrections. Partial financial support was provided by the NSF under grant number DMS-1901855 (Directorate for Mathematical and Physical Sciences).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Ambro, F., Kollár, J.: Minimal Models of Semi-Log-Canonical Pairs, Moduli of K-Stable Varieties. Springer INdAM Ser., vol. 31, pp. 1–13. Springer, Cham (2019)
[2] Atiyah, M.F.: On analytic surfaces with double points. Proc. R. Soc. Lond. Ser. A 247, 237–244 (1958)
[3] Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)
[4] Bingener, J.: Lokale Modulräume in den analytischen Geometrie I-II, Aspects of Math, vol. 302. Viehweg, Braunschweig (1987)
[5] Dubois, P., Jarraud, P.: Une propriété de commutation au changement de base des images directes supérieures du faisceau structural, C. R. Acad. Sci. Paris Sér. A 279, 745–747 (1974)
[6] Iitaka, S.: Deformations of Compact Complex Surfaces I, Global Analysis (Papers in Honor of K. Kodaira), pp. 267–272. University of Tokyo Press, Tokyo (1969)
[7] Kerr, M., Laza, R., Saito, M.: Deformation of rational singularities and Hodge structure (2021)
[8] Kollár, J., Mori, S.: Classification of three-dimensional flips. J. Am. Math. Soc. 5(3), 533–703 (1992)
[9] Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998) (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original)
[10] Kollár, J.: Toward moduli of singular varieties, Ph.D. thesis (1983)
[11] Kollár, J.: Flatness criteria. J. Algebra 175(2), 715–727 (1995)
[12] Kollár, J.: Hulls and husks (2008). arXiv:0805.0576
[13] Kollár, J.: Moduli of varieties of general type, (book in preparation, https://web.math.princeton.edu/~kollar/FromMyHomePage/modbook.pdf) (2021)
[14] Kollár, J.: Seshadri’s criterion and openness of projectivity (2021). arXiv:2105.06242 [math.AG]
[15] Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures, I, II. Ann. Math. (2) 67, 328–466 (1958)
[16] Moishezon, B.: On n-dimensional compact varieties with n algebraically independent meromorphic functions, I. Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966)
[17] Markoe, A., Rossi, H.: Families of strongly pseudoconvex manifolds, Symposium on Several Complex Variables (Park City, Utah, 1970). Lecture Notes in Math., vol. 184, pp. 182–207. Springer, Berlin (1971)

[18] Nakayama, N.: Zariski-Decomposition and Abundance, MSJ Memoirs, vol. 14. Mathematical Society of Japan, Tokyo (2004)

[19] Rao, S., Tsai, I.-H.: Invariance of plurigenera and Chow-type lemma (2020). arXiv:2011.03306 [math.AG]

[20] Siu, Y.-T.: Invariance of plurigenera. Invent. Math. 134(3), 661–673 (1998)

[21] Ueno, K.: Introduction to the theory of compact complex spaces in the class C. Algebraic Var. Anal. Var. Adv. Stud. Pure Math. 1, 219–230 (1983)

János Kollár
Princeton University
Princeton
NJ 08544-1000
USA
e-mail: kollar@math.princeton.edu

Received: June 28, 2021.
Accepted: September 17, 2021.