HURWA Robotic-Assisted TKA System is Suitable for a Variety of Prosthesis Types

Xingye Li
Beijing Jishuitan Hospital
Zheng Li
Chinese Academy of Medical Sciences and Peking Union Medical College
Xiaofeng Zhang
BEIJING HURWA-ROBOT Medical Technology Co.Ltd
Lele Ding
BEIJING HURWA-ROBOT Medical Technology Co.Ltd
Jun Yan
BEIJING HURWA-ROBOT Medical Technology Co.Ltd
Shugang Li (lishugangpumc@163.com)
Chinese Academy of Medical Sciences and Peking Union Medical College

Research Article

Keywords: Total knee arthroplasty, prosthesis, robotic-assisted TKA, HURWA

Posted Date: November 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1086121/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Total knee arthroplasty (TKA) is an effective and also mature surgical interventions that improves life quality and provides pain relief. Accurate bone cuts are important to prevent TKA malalignment and it requires cautious preoperative plan and precise bone resection. Recently, robotic-assisted TKA techniques have been used to improve the accuracy of bone resection and implantation. However, the system described above suits for only one prosthesis type.

Methods

Five types (MicroPort_CS, Smith& Nephew_GII, Johnson&Johnson_PFC_PS, kingnow _VLQX_PS and Akmedical_A3GT_PS) implants were included in our study and three Sawbones models were used for each implant. Procedures were performed by experienced joint replacement surgeons using HURWA robotic-assisted TKA system.

Results

our study indicated that the bone resection error of HURWA robotic-assisted system was below 0.5 mm (with SDs below 0.3 mm), and all of the bone resection angles were below 0.5° (with SDs below 0.3°). The bone resection angles and levels deviation of different brand prosthesis types were below 0.5 mm (with SDs below 0.3 mm) and below 0.5° (with SDs below 0.3°) respectively.

Conclusion

It suggested that our system may be suitable for different prosthesis types.

Introduction

Knee osteoarthritis, a complicated joint disorder, is the most common joint disorder and its prevalence is growing around the world1,2. Total knee arthroplasty (TKA) is an effective and also mature surgical interventions that improves life quality and provides pain relief3. TKA is used for treating severe osteoarthritis when nonsurgical treatment fails4. However, the satisfaction rate among TKA patient ranges from about 75–89% by using different clinical outcome calculations5–7. About 4.4% of cases who underwent primary TKA needs revision surgeries within ten years8. Accurate bone cuts are important to prevent TKA malalignment and it requires cautious preoperative plan and precise bone resection.

TKAs are traditionally carried out by using mechanical instruments and tools such as intramedullary canal rods, mechanical blocks, hand-held power tools and extramedullary jigs9,10. However, its inaccuracy increases polyethylene wear and revision rates11,12. Recently, robotic-assisted TKA techniques have been used to improve the accuracy of bone resection and implantation13–15. For example, Blum et al. demonstrated that
OMNIBotics TKA system can improve KOOS scores compared to a large contemporary database16. Mitchell and their colleagues reported that robotic-assisted TKA decreased the length of stay, morphine consumption, 30-day readmission rates and physical therapy visits17. However, the system described above suits for only one prosthesis type.

Our previous studies showed that the safety and accuracy of HURWA TKA system in a sheep model is reliable and it may be suitable for TKA in human18. Furthermore, we demonstrated that errors of bone resection angles and levels were all below 0.6 mm using our system19. The aim of our study is to demonstrate that whether our system is compatible to different prosthesis types.

Materials And Methods

Study design

Five types (MicroPort_CS, Smith& Nephew_GII, Johnson&Johnson_PFC_PS, kingnow _VLQX_PS and Akmedical_A3GT_PS) implants were included in our study and three Sawbones models were used for each implant. Procedures were performed by experienced joint replacement surgeons using HURWA robotic-assisted TKA system.

Preoperative planning and Robotic-assisted TKA procedure

Preoperative plans were set up by surgeons according to the anatomy references of knee Sawbones CT data. Robotic-assisted TKAs were performed following the plan. In brief, surgeons resect the bone assisted by the robotic arm guided by registered femoral and tibial landmarks.

Bone resection analysis

Sawboneses were measured by the structured light scanning device (EinScan Pro 2X Plus, Hangzhou, Zhejiang). The sagittal and coronal of both tibial and femoral postresection measurements were noted. The difference between the plan and postresection measurements were measured.

Statistical analysis

Results were indicated as the mean±SD (standard deviation). One-way analysis of variance was used to determine the difference between the groups. P Values <0.05 was considered. statistically significant. Statistical assay was performed by SPSS.

Results

Bone resection levels and angles

The difference between the postresection measurements and plans for bone resection were indicated in Table 1. The total levels accuracy of all groups of bone resection was below 0.5 mm (SD below 0.3 mm) and the total angles of bone resection were below 0.5° (with SDs below 0.3°). Moreover, the levels accuracy of Smith& Nephew_GII group were below 0.5° (with SDs below 0.2°) and the total angles of bone resection were below 0.6° (with SDs below 0.3°). the levels accuracy of MicroPort_CS, Johnson&Johnson_PFC_PS, kingnow
_VLQX_PS and Akmedical_A3GT_PS group were below 0.5° (with SDs below 0.2°), below 0.5° (with SDs below 0.3°), below 0.5° (with SDs below 0.3°) and below 0.4° (with SDs below 0.2°) respectively and the angle of bone resection were below 0.6° (with SDs below 0.4°), below 0.5° (with SDs below 0.2°), below 0.5° (with SDs below 0.2°), below 0.5° (with SDs below 0.2°) and below 0.6° (with SDs below 0.4°), below 0.5° (with SDs below 0.2°), below 0.5° (with SDs below 0.2°) and below 0.2° (with SDs below 0.2°). The bone resection accuracy of different brand prosthesis types was showed in Figure 1-5.

Discussion

In our study, we demonstrated that the bone resection error of HURWA robotic-assisted system was below 0.5 mm (with SDs below 0.3 mm), and all of the bone resection angles were below 0.5° (with SDs below 0.3°). The results were in line with our previous studies and it is more accurate than conventional techniques. Moreover, the accuracy of bone resection levels for Smith& Nephew_GII, MicroPort_CS, Johnson&Johnson_PFC_PS, kingnow _VLQX_PS and Akmedical_A3GT_PS group were below 0.5 mm (SD below 0.3 mm), below 0.5° (with SDs below 0.2°), below 0.5° (with SDs below 0.3°), below 0.5° (with SDs below 0.3°) and below 0.4° (with SDs below 0.2°) respectively and the angle of bone resection were below 0.5° (with SDs below 0.2°), below 0.6° (with SDs below 0.4°), below 0.5° (with SDs below 0.2°), below 0.5° (with SDs below 0.2°), below 0.5° (with SDs below 0.2°) and below 0.2° (with SDs below 0.2°). These data suggested that HURWA robotic-assisted TKA system is suitable for a variety of prosthesis types.

Recently, a growing number of robotic-assisted TKA systems have been applied to TKA clinical settings. For example, Khan et al. showed that Robotic TKA systems decreased blood transfusion rate and blood loss. Marchand et al. demonstrated that robotic-assisted TKA significantly improved postoperative outcomes such as pain, physical function and total score. Deckey et al. showed that robotic-assisted TKA significantly improved precision and accuracy in planning the final polyethylene inserts thickness and component positioning. However, another study found that there were no differences between postoperative pain score in conventional TKA group and robotic-assisted TKA group, but these patients of robotic-assisted TKA group showed other benefits such as earlier discharge and discharged home. Held et al. showed that robotic-assisted TKA can improve the balancing of intraoperative compartment in flexion but not in extension and mid-flexion compared to conventional group. Our previous study also demonstrated that HURWA robotic-assisted TKA system can improve bone resection angles and levels accuracy in the Sawbones model. These data suggested that robotic-assisted TKA improves reproducibility and precision of the bone resection and implantation.

However, most of robotic-assisted TKA systems is compatible for only one prosthesis type. For instance, MAKO robotic-assisted TKA system can only be used for Stryker prosthesis, ROSA robotic-assisted TKA system only can be performed for Zimmer prosthesis, and NAVIO semi-active handheld robotic-assisted TKA system can only be used for Smith & Nephew prosthesis. One exception is TSolution One TKA system, which is open for many prostheses. There are many knee prostheses manufacturers such as Zimmer, Stryker, Smith & Nephew, Depuy and Biomet, and there are even more brands of prostheses in China such as XX. The diversity of the market calls for robotic-assisted TKA systems that is suitable for different TKA prostheses. Our data suggested that HURWA robotic-assisted TKA system may be suitable for multiple brands of TKA prostheses.
In conclusion, our study indicated that the bone resection error of HURWA robotic-assisted system was below 0.5 mm (with SDs below 0.3 mm), and all of the bone resection angles were below 0.5° (with SDs below 0.3°). The bone resection angles and levels deviation of different brand prosthesis types were below 0.5 mm (with SDs below 0.3 mm) and below 0.5° (with SDs below 0.3°) respectively. It suggested that our system may be suitable for different prosthesis types.

Abbreviations

TKA Total knee arthroplasty
CT Computed Tomography

Declarations

Acknowledgements

Not Applicable.

Authors’ contributions

XY L, Z L, XF Z, LL D, J Y, SG L
conducted this study, and XY L and Z L wrote the manuscript. XY L and Z L, and SG L advised the interpretation of data and the constitution of the study. XY L and Z L analyzed the data. All authors have read and approved the final manuscript.

Funding

This study was supported by Beijing Municipal science & technology Commission (No. Z191100007619029 and Z2011100002521007) and National Natural Science Foundation of China (No: 81871829).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not Applicable.

Consent for publication

Not Applicable

Competing interests

All authors declare they have no conflict of interest and competing interests.
References

1. Wallace IJ, Worthington S, Felson DT, et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc Natl Acad Sci. 2017;114(35):9332 LP - 9336. doi:10.1073/pnas.1703856114

2. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine. 2020;29-30:100587. doi:10.1016/j.eclinm.2020.100587

3. Wang Y, Yin M, Zhu S, Chen X, Zhou H, Qian W. Patient-reported outcome measures used in patients undergoing total knee arthroplasty. Bone Joint Res. 2021;10(3):203–217. doi:10.1302/2046-3758.103.BJR-2020-0268.R1

4. Gademan MGJ, Hofstede SN, Vliet Vlieland TPM, Nelissen RGH, Marang-van de Mheen PJ. Indication criteria for total hip or knee arthroplasty in osteoarthritis: a state-of-the-science overview. BMC Musculoskelet Disord. 2016;17(1):463. doi:10.1186/s12891-016-1325-z

5. Robertsson O, Dunbar M, Pehrsson T, Knutson K, Lidgren L. Patient satisfaction after knee arthroplasty: A report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand. 2000;71(3):262–267. doi:10.1080/000164700317411852

6. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KDJ. Patient Satisfaction after Total Knee Arthroplasty: Who is Satisfied and Who is Not? Clin Orthop Relat Res. 2010;468(1). https://journals.lww.com/clinorthop/Fulltext/2010/01000/Patient_Satisfaction_after_Total_Knee.10.aspx.

7. Bellamy N. WOMAC: a 20-year experiential review of a patient-centered self-reported health status questionnaire. J Rheumatol. 2002;29(12):2473–2476.

8. Lützner J, Hübel U, Kirschner S, Günther K-P, Krummenauer F. [Long-term results in total knee arthroplasty. A meta-analysis of revision rates and functional outcome]. Chirurg. 2011;82(7):618–624. doi:10.1007/s00104-010-2001-8

9. Cherian JJ, Kapadia BH, Banerjee S, Jauregui JJ, Issa K, Mont MA. Mechanical, Anatomical, and Kinematic Axis in TKA: Concepts and Practical Applications. Curr Rev Musculoskelet Med. 2014;7(2):89–95. doi:10.1007/s12178-014-9218-y

10. Courtney PM, Lee G-C. Early Outcomes of Kinematic Alignment in Primary Total Knee Arthroplasty: A Meta-Analysis of the Literature. J Arthroplasty. 2017;32(6):2028–2032.e1. doi:10.1016/j.arth.2017.02.041

11. Lee D-H, Park J-H, Song D-I, Padhy D, Jeong W-K, Han S-B. Accuracy of soft tissue balancing in TKA: comparison between navigation-assisted gap balancing and conventional measured resection. Knee Surgery, Sport Traumatol Arthrosc. 2010;18(3):381–387. doi:10.1007/s00167-009-0983-x

12. Ezzet KA, Hermida JC, Steklov N, D’Lima DD. Wear of Polyethylene Against Oxidized Zirconium Femoral Components: Effect of Aggressive Kinematic Conditions and Malalignment in Total Knee Arthroplasty. J Arthroplasty. 2012;27(1):116–121. doi:https://doi.org/10.1016/j.arth.2011.06.002

13. Decking J, Theis C, Achenbach T, Roth E, Nafe B, Eckardt A. Robotic total knee arthroplastyThe accuracy of CT-based component placement. Acta Orthop Scand. 2004;75(5):573–579. doi:10.1080/00016470410001448

14. Oussedik S, Abdel MP, Victor J, Pagnano MW, Haddad FS. Alignment in total knee arthroplasty. Bone Joint J. 2020;102-B(3):276–279. doi:10.1302/0301-620X.102B3.BJJ-2019-1729
15. Kim Y-H, Yoon S-H, Park J-W. Does Robotic-assisted TKA Result in Better Outcome Scores or Long-Term Survivorship Than Conventional TKA? A Randomized, Controlled Trial. Clin Orthop Relat Res. 2020;478(2):266–275. doi:10.1097/CORR.0000000000000916

16. Blum CL, Lepkowsky E, Hussein A, Wakelin EA, Plaskos C, Koenig JA. Patient expectations and satisfaction in robotic-assisted total knee arthroplasty: a prospective two-year outcome study. Arch Orthop Trauma Surg. 2021. doi:10.1007/s00402-021-04067-9

17. Mitchell J, Wang J, Bukowski B, et al. Relative Clinical Outcomes Comparing Manual and Robotic-Assisted Total Knee Arthroplasty at Minimum 1-Year Follow-up. HSS Journal®. 2021;17(3):267–273. doi:10.1177/15563316211028568

18. Chen X, Li Z, Zhang X, et al. A new robotically assisted system for total knee arthroplasty: A sheep model study. Int J Med Robot Comput Assist Surg. 2021;17(4):e2264. doi:https://doi.org/10.1002/rcs.2264

19. Li Z, Chen X, Zhang X, et al. Better precision of a new robotically assisted system for total knee arthroplasty compared to conventional techniques: A sawbone model study. Int J Med Robot Comput Assist Surg. 2021;17(4):e2263. doi:https://doi.org/10.1002/rcs.2263

20. Khan H, Dhillon K, Mahapatra P, et al. Blood loss and transfusion risk in robotic-assisted knee arthroplasty: A retrospective analysis. Int J Med Robot Comput Assist Surg. n/a(n/a):e2308. doi:https://doi.org/10.1002/rcs.2308

21. Marchand RC, Sodhi N, Khlopas A, et al. Patient Satisfaction Outcomes after Robotic Arm-Assisted Total Knee Arthroplasty: A Short-Term Evaluation. J Knee Surg. 2017;30(9):849–853. doi:10.1055/s-0037-1607450

22. Deckey DG, Rosenow CS, Verhey JT, et al. Robotic-assisted total knee arthroplasty improves accuracy and precision compared to conventional techniques. Bone Joint J. 2021;103-B(6 Supple A):74-80. doi:10.1302/0301-620X.103B6.BJJ-2020-2003.R1

23. Hamilton DA, Ononuju U, Nowak C, Chen C, Darwiche H. Differences in Immediate Postoperative Outcomes Between Robotic-Assisted TKA and Conventional TKA. Arthroplast today. 2021;8:57–62. doi:10.1016/j.artd.2021.01.017

24. Held MB, Grosso MJ, Gazgalis A, et al. Improved Compartment Balancing Using Robot-Assisted Total Knee Arthroplasty. Arthroplast Today. 2021;7:130–134. doi:https://doi.org/10.1016/j.artd.2020.12.022

Figures
Figure 1

Typical picture of sawbones after bone resection of Smith& Nephew_GII.
Figure 2

Typical picture of sawbones after bone resection of Johnson&Johnson_PFC_PS.
Figure 3

Typical picture of sawbones after bone resection of MicroPort_CS.
Figure 4

Typical picture of sawbones after bone resection of kingnow _VLQX_PS.
Figure 5

Typical picture of sawbones after bone resection of Akmedical_A3GT_PS.