A note on a standard family of twist maps

Salvador Addas-Zanata

Instituto de Matemática e Estatística
Universidade de São Paulo
Rua do Matão 1010, Cidade Universitária,
05508-090 São Paulo, SP, Brazil

Abstract

We investigate the break up of the last invariant curve for analytic families of standard maps

\[S_\lambda : \begin{cases}
 y' = \lambda g(x) + y \\
 x' = x + y' \mod 1
\end{cases} \]

where \(g : S^1 \rightarrow \mathbb{R} \) is an analytic function such that \(\int_{S^1} g(x) dx = 0 \). Our main result is another evidence of how hard this problem is. We give an example of a particular function \(g \) as above such that the mapping \(S_\lambda \) associated to it has a "pathological" behavior.

Key words: twist maps, rotational invariant curves, topological methods, vertical rotation number, piecewise linear standard maps

E-mail: sazanata@ime.usp.br - supported by FAPESP, grant number: 01/12498-5
1 Introduction and statement of the main result

In this paper, we investigate the following problem:

Let $\tilde{g} : \mathbb{R} \to \mathbb{R}$ be an analytic, non-zero, periodic function, $\tilde{g}(x + 1) = \tilde{g}(x)$, such that $\int_0^1 \tilde{g}(x) \, dx = 0$. We define the following one parameter family (λ) of analytic diffeomorphisms of the annulus:

$$ S_\lambda : \begin{cases} y' = \lambda g(x) + y \\ x' = x + y' \mod 1 \end{cases} ,$$

where $g : S^1 \to \mathbb{R}$ is the map induced by \tilde{g}.

For all $\lambda \in \mathbb{R}$, S_λ is an area-preserving twist mapping, because $\partial_y x' = 1$, for any $(x, y) \in S^1 \times \mathbb{R} = (\mathbb{R}/\mathbb{Z}) \times \mathbb{R}$ and $\det[DS_\lambda] = 1$. Also, the fact that $\int_0^1 \tilde{g}(x) \, dx = 0$ implies that S_λ is an exact mapping, which means that given any homotopically non-trivial simple closed curve $C \subset S^1 \times \mathbb{R}$, the area above C and below $S_\lambda(C)$ is equal the area below C and above $S_\lambda(C)$. Another obvious fact about this family is that S_0 is an integrable mapping, that is, the cylinder is foliated by invariant curves $y = y_0$.

So, KAM theory applies to S_λ and we can prove that there is a parameter $\lambda_0 > 0$, such that for any $\lambda \in [0, \lambda_0]$ S_λ has at least one rotational invariant curve. On the other hand, if we choose $x_0 \in S^1$ such that $g(x) \leq g(x_0)$ for all $x \in S^1$, we get that S_λ does not have rotational invariant curves for all $\lambda \geq \lambda^* = \frac{1}{g(x_0)} > 0$. The proof of this classical fact is very simple, so we present it here:

Given $\lambda \geq \lambda^*$, choose $x_\lambda \in S^1$ such that $\lambda = \frac{1}{g(x_\lambda)}$. A computation shows that $S^n_\lambda(x_\lambda, 0) = (x_\lambda, n)$, for all $n \in \mathbb{Z}$. So there can be no rotational invariant curves.

A result due to Birkhoff implies that the set

$$ A_g = \{ \lambda \geq 0 : \text{S}_\lambda \text{ has at least one rotational invariant curve} \} \quad (2)$$

is closed. So a very "natural" conjecture would be the following (see [5]):

Conjecture 1 : $A_g = [0, \lambda_{cr}]$, for some $\lambda_{cr} > 0$.

Another interesting one parameter family is the following:

$$ T_\lambda : \begin{cases} y' = g(x) + y + \lambda \\ x' = x + y' \mod 1 \end{cases} \quad (3)$$

Of course T_λ is also an area-preserving twist mapping, the difference is that it is exact if and only if $\lambda = 0$, so when $\lambda \neq 0$ there is no rotational invariant curve.

It can be proved (see section 2) that there is a closed interval $\rho_V = [\rho_V^{\min}, \rho_V^{\max}]$ associated to S_λ (and to T_λ) with the following property: Given $\omega \in \rho_V$, there is a point $X \in S_1 \times \mathbb{R}$ such that

$$ \lim_{n \to +\infty} \frac{p_2 \circ S^n_\lambda(X) - p_2(X)}{n} = \omega,$$
where \(p_1(x, y) = x \) and \(p_2(x, y) = y \). From the exactness of \(S_\lambda \) we get that \(0 \in \rho(V(S_\lambda)) \) for all \(\lambda \in \mathbb{R} \), something that may not hold for \(T_\lambda \).

In section 3 we prove a result that implies that \(\rho_{\text{max}}^V(\rho_{\text{min}}^V) \) is a continuous functions of the parameter \(\lambda \). A first difference between \(S_\lambda \) and \(T_\lambda \) is that \(\rho_{\text{max}}^V(S_\lambda) = 0 \) for any \(\lambda \in [0, \lambda_0] \) while \(\rho_{\text{max}}^V(T_\lambda) \neq 0 \) for all \(\lambda \neq 0 \). In fact, in a certain sense, the behavior of the function \(\lambda \rightarrow \rho_{\text{max}}^V(T_\lambda) \) is similar to the one of the rotation number of certain families of homeomorphisms of the circle.

Given a circle homeomorphism \(f : S^1 \rightarrow S^1 \), a well studied family (see for instance [6]) is the one given by translations of \(f \):

\[
x' = f_\lambda(x) = f(x) + \lambda
\]

In this case it is easy to prove that the rotation number of \(f_\lambda \) is a non-decreasing function of the parameter. We have a similar result for \(T_\lambda \):

Lemma 1 : \(\rho_{\text{max}}^V(T_\lambda) \) is a non-decreasing function of \(\lambda \).

As the proof will show, this fact is an easy consequence of proposition 3, page 466 of [6].

If we had a similar result for \(S_\lambda \), then conjecture 1 would trivially be true, because \(A_g = (\rho_{\text{max}}^V)^{-1}(0) \) and this set is an interval if \(\rho_{\text{max}}^V(S_\lambda) \) is a non-decreasing function.

The main result of this note goes in the opposite direction; we present an example in the analytic topology such that we do not know whether or not \(A_g \) is a closed interval (although we believe it is not), but for this example \(\rho_{\text{max}}^V(S_\lambda) \) is not a non-decreasing function of \(\lambda \). More precisely, we have:

Theorem 1 : There exists an analytic function \(g^* \) as above such that \(\rho_{\text{max}}^V(S_\lambda) \) is not a non-decreasing function of \(\lambda \).

The proof of the theorem implies that we can choose \(g^*(x) = \sum_{n=1}^{N} a_n \cdot \cos(2\pi n x) \).

Although this choice of \(g^* \) is a finite sum of cosines obtained as the truncation of a certain Fourier series of a continuous function, it is still possible that for \(g_\lambda(x) = \cos(2\pi x) \), \(\rho_{\text{max}}^V(S_\lambda) \) is in fact a non-decreasing function, as numerical experiments suggest. Nevertheless, this shows how subtle the problem is.

The proof of this theorem is based on a result previously obtained by the author, on a paper due to S.Bullett [4] on piecewise linear standard maps and on some consequences of results from [9].

2 Basic tools

First we present a theorem which is a consequence of some results from [9]. Before we need to introduce some definitions:

1) \(D_0(T^2) \) is the set of torus homeomorphisms \(T : T^2 \rightarrow T^2 \) of the following form:

\[
T : \begin{cases}
y' = g(x) + y \mod 1 \\
x' = x + y' \mod 1
\end{cases}
\]
where \(g : S^1 \to \mathbb{R} \) is a Lipschitz function such that \(\int_{S^1} g(x)dx = 0. \)

2) \(D_0(S^1 \times \mathbb{R}) \) is the set of lifts to the cylinder of elements from \(D_0(T^2) \), the same for \(D_0(\mathbb{R}^2) \). Given \(T \in D_0(T^2) \) as in (4), its lifts \(\hat{T} \in D_0(S^1 \times \mathbb{R}) \) and \(\tilde{T} \in D_0(\mathbb{R}^2) \) write as (\(\hat{g} \) is a lift of \(g \))

\[
\hat{T} : \begin{cases} y' = g(x) + y \\ x' = x + y \mod 1 \end{cases} \quad \text{and} \quad \tilde{T} : \begin{cases} y' = \hat{g}(x) + y \\ x' = x + y \end{cases}
\]

3) We say that \(T \in D_0(T^2) \) has a \(\frac{p}{q} \)-vertical periodic orbit (set) if there is a point \(A \in S^1 \times \mathbb{R} \) such that \(\hat{T}^q(A) = A + (0, p) \). It is clear that \(T^q(\pi_2(A)) = \pi_2(A) \), where \(\pi_2 : S^1 \times \mathbb{R} \to T^2 \) is given by \(\pi_2(x, y) = (x, y \mod 1) \). The periodic orbit that contains \(\pi_2(A) \) is said to have vertical rotation number \(\rho_V = \frac{p}{q} \).

4) Given an irrational number \(\omega \), we say that \(T \in D_0(T^2) \) has an \(\omega \)-vertical quasi-periodic set if there is a compact \(T \)-invariant set \(X_\omega \subset T^2 \), such that for any \(X \in X_\omega \) and any \(Z \in \pi_2^{-1}(X) \),

\[\rho_V(X_\omega) = \lim_{n \to \infty} \frac{p_2 \circ \hat{T}^n(Z) - p_2(Z)}{n} = \omega \]

5) We say that \(T \in D_0(T^2) \) has a rotational invariant curve if there is a homotopically non-trivial simple closed curve \(\gamma \subset S^1 \times \mathbb{R} \), such that \(\tilde{T}(\gamma) = \gamma \).

Now we have the following:

Theorem 2: Given \(T \in D_0(T^2) \), there exists a closed interval \(0 \in [\rho_V^{\min}, \rho_V^{\max}] \) such that for any \(\omega \in [\rho_V^{\min}, \rho_V^{\max}] \), there is a periodic orbit or quasi-periodic set \(X_\omega \) with \(\rho_V(X_\omega) = \omega \), depending on whether \(\omega \) is rational or not. Moreover, \(\rho_V^{\min} < 0 < \rho_V^{\max} \) if and only if, \(T \) does not have any rotational invariant curve.

When \(\omega \in [\rho_V^{\min}, \rho_V^{\max}] \) a standard argument in ergodic theory (see the discussion below) proves that there is an orbit with that rotation number. In fact, much more can be said, see my forthcoming paper [3].

Following Misiurewicz and Ziemann [11], we can define another set that is equal to the limit of all the convergent sequences

\[
\left\{ \frac{p_2 \circ \hat{T}^n(Z)}{n} : Z \in S^1 \times \mathbb{R}, \ n \to \infty \right\},
\]

which we call \(\rho_V(T)^* \). In the following we present a sketch of the proof that \(\rho_V(T) = \rho_V(T)^* \).

First note that the definition of \(\rho_V(T)^* \) implies \(\rho_V(T) \subseteq \rho_V(T)^* \). Now if we define \(\omega^- = \inf \rho_V(T)^* \) and \(\omega^+ = \sup \rho_V(T)^* \), theorem 2.4 of [11] gives two ergodic \(T \)-invariant measures \(\mu_- \) and \(\mu_+ \) with vertical rotation numbers \(\omega^- \) and \(\omega^+ \), respectively. This means that

\[
\int_{T^2} [p_2 \circ T(X) - p_2(X)] d\mu_{-(+)} = \omega^{-(+)}.
\]
Therefore from the Birkhoff ergodic theorem, there are points \(Z^+ \) and \(Z^- \) with \(\rho_V(Z^+) = \omega^+ \) and \(\rho_V(Z^-) = \omega^- \). Finally, applying theorem 6 of the appendix of [3], we get that \([\omega^-, \omega^+] \subseteq \rho_V(T)\), so \(\rho_V(T) = \rho_V(T)^* \).

In the following we recall some topological results for twist maps essentially due to Le Calvez (see [7] and [8] for proofs), that are used in some proofs contained in this paper. Let \(\hat{T} \in D_0(S^1 \times \mathbb{R}) \) and \(\tilde{T} \in D_0(\mathbb{R}^2) \) be its lifting. For every pair \((s, q), s \in \mathbb{Z}\) and \(q \in \mathbb{N}^* \) we define the following sets:

\[
\tilde{K}(s, q) = \{ (x, y) \in \mathbb{R}^2 : p_1 \circ \tilde{T}(x, y) = x + s \} \\
and \quad K(s, q) = \pi_1 \circ \tilde{K}(s, q),
\]

where \(\pi_1 : \mathbb{R}^2 \to S^1 \times \mathbb{R} \) is given by \(\pi_1(x, y) = (x \mod 1, y) \).

Then we have the following:

Lemma 2: For every \(s \in \mathbb{Z} \) and \(q \in \mathbb{N}^* \), \(K(s, q) \supseteq C(s, q) \), a connected compact set that separates the cylinder.

Now let us define the following functions on \(S^1 \):

\[
\mu^-(x) = \min \{ p_2(Q) : Q \in K(s, q) \text{ and } p_1(Q) = x \} \\
\mu^+(x) = \max \{ p_2(Q) : Q \in K(s, q) \text{ and } p_1(Q) = x \}
\]

We also have have similar functions for \(\hat{T}^q(K(s, q)) \):

\[
\nu^-(x) = \min \{ p_2(Q) : Q \in \hat{T}^q \circ K(s, q) \text{ and } p_1(Q) = x \} \\
\nu^+(x) = \max \{ p_2(Q) : Q \in \hat{T}^q \circ K(s, q) \text{ and } p_1(Q) = x \}
\]

The following are important results:

Lemma 3: Defining \(\text{Graph} \{ \mu^\pm \} = \{(x, \mu^\pm(x)) : x \in S^1 \} \) we have:

\(\text{Graph} \{ \mu^- \} \cup \text{Graph} \{ \mu^+ \} \subseteq C(s, q) \)

So for all \(x \in S^1 \) we have \((x, \mu^\pm(x)) \in C(s, q) \).

Lemma 4: \(\hat{T}^q(x, \mu^-(x)) = (x, \nu^+(x)) \) and \(\hat{T}^q(x, \mu^+(x)) = (x, \nu^-(x)) \).

Now we remember some ideas and results from [3].

Given a triplet \((s, p, q), s \in \mathbb{Z}^2 \times \mathbb{N}^* \), if there is no point \((x, y) \in \mathbb{R}^2 \) such that \(\hat{T}^q(x, y) = (x + s, y + p) \), it can be proved that the sets \(\hat{T}^q \circ K(s, q) \) and \(K(s, q) + (0, p) \) can be separated by the graph of a continuous function from \(S^1 \) to \(\mathbb{R} \), essentially because from all the previous results, either one of the following inequalities must hold:

\[
\nu^-(x) - \mu^+(x) > p
\]
for all $x \in S^1$, where $\nu^+, \nu^-, \mu^+, \mu^-$ are associated to $K(s, q)$.

Following Le Calvez [9], we say that the triplet (s, p, q) is positive (resp. negative) for \bar{T} if $\bar{T} \circ K(s, q)$ is above (resp. below) the graph. Given $\bar{T} \in D_0(\mathbb{R}^2)$, we have:

$$\bar{T}(x, y) = (x', y') \leftrightarrow y = m(x, x') \text{ and } y' = m'(x, x'),$$

where m and m' are continuous maps from \mathbb{R}^2 to \mathbb{R} with some especial properties.

If $\bar{T}, \bar{T}^* \in D_0(\mathbb{R}^2)$, we say that $\bar{T} \leq \bar{T}^*$ if $m^* \leq m$ and $m^* \leq m'^*$, where (m, m') is associated to \bar{T} and (m^*, m'^*) to \bar{T}^*.

Proposition 1: If (s, p, q) is a positive (resp. negative) triplet of \bar{T} and if $\bar{T} \leq \bar{T}^*$ (resp. $\bar{T} \geq \bar{T}^*$), then (s, p, q) is a positive (resp. negative) triplet of \bar{T}^*.

Now we present an amazing example of a twist homeomorphism from $D_0(T^2)$. First, let $g'^* : S^1 \rightarrow \mathbb{R}$ be given by $g'(x) = \left| x - \frac{1}{2} \right| - \frac{1}{2}$ and so the lift $\bar{g}' : \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\bar{g}'(x+1) = \bar{g}'(x)$, $\int_0^1 \bar{g}'(x)dx = 0$, Lip($\bar{g}'$) = 1 and $\bar{g}'(x) = \bar{g}'(-x)$. Also, \bar{g}' is differentiable everywhere, except at points of the form $\frac{n}{2}, n \in \mathbb{Z}$. The one parameter family $S'_\lambda \in D_0(T^2)$ is given by:

$$S'_\lambda : \begin{cases} y' = \lambda g'(x) + y \mod 1 \\ x' = x + y' \mod 1 \end{cases} \quad (8)$$

In [4] this family is studied in detail and among other things, the following theorem is proved:

Theorem 3: There are no rotational invariant curves for S'_λ when

$\lambda \in]0, 0.918, 1[\cup]4/3, \infty[\quad \text{and for } \lambda = 4/3 \text{ there are "lots" of rotational invariant curves.}$

3 Proofs

3.1 Preliminary results

Proof of lemma [4]

This result is a trivial consequence of proposition [4]. Given $\lambda_1 < \lambda_2$, we get from expression [3] that $T_{\lambda_1} \leq T_{\lambda_2}$. So if $\rho^\max V(T_{\lambda_1}) < p/q < \rho^\max V(T_{\lambda_2})$ for a certain rational number p/q, then for any $s \in \mathbb{Z}$ the triplet (s, p, q) is negative for T_{λ_2}, which implies by proposition [4] that it is also negative for T_{λ_1}, which contradicts the fact that $\rho^\max V(T_{\lambda_1}) > p/q$.

Now we prove the following theorem that has its own interest. It is easy to see from the proof that it is valid in a more general context.

Theorem 4: The functions $\rho^\min V, \rho^\max V : D_0(T^2) \rightarrow \mathbb{R}$ are continuous.
Remark: The proofs are analogous, so we do it only for ρ_v^max.

Proof:
Suppose that there is a $T_0 \in D_0(T^2)$ such that ρ_v^max is not continuous at T_0. This means that there is an $\epsilon > 0$ and a sequence $D_0(T^2) \ni T_n \to T_0$ in the C^0 topology, such that either:

1) $\rho_v^\text{max}(T_n) > \rho_v^\text{max}(T_0) + \epsilon$, for all n, or
2) $\rho_v^\text{max}(T_n) < \rho_v^\text{max}(T_0) - \epsilon$, for all n.

The first possibility means that there exists a rational number p/q such that $\rho_v^\text{max}(T_n) > p/q > \rho_v^\text{max}(T_0)$. This implies that for any $s \in \mathbb{Z}$, the triplet (s, p, q) is non-negative for T_n (as the value of s is irrelevant in this setting, we fix $s = 0$). But as $\rho_v^\text{max}(T_n) < p/q < \rho_v^\text{max}(T_0)$, we get from the upper semi-continuity in the Hausdorff topology of the maps

$$T \to K(0, q) \text{ and } T \to \hat{T}^q(K(0, q))$$

that $(0, p, q)$ is a negative triplet for all mappings sufficiently close to T_0, which is a contradiction.

In the same way, the second possibility means that there exists a rational number p/q such that $\rho_v^\text{max}(T_n) < p/q < \rho_v^\text{max}(T_0)$. This implies that there exists $Q \in C(0, q)$ such that

$$p_2 \circ \hat{T}_0^q(Q) - p_2(Q) > p.$$ \hspace{1cm} (10)

Now we prove the following claim, which implies the theorem:

Claim: Any mapping $T \in D_0(T^2)$ sufficiently close to T_0 will satisfy an inequality similar to (10).

Proof:
First of all, let us define $P_0 = (x_Q, \mu^-(x_Q))$, where $x_Q = p_1(Q)$. From lemma [3] and the definition of μ^- and ν^+, we get that $\nu^+(x_Q) = p_2 \circ \hat{T}_0^q(P_0) > p_2(P_0) + p = \mu^-(x_Q) + p$. So there exists $\delta > 0$ such that for any $Z \in \mathcal{B}_\delta(P_0)$ we have

$$p_2 \circ \hat{T}_0^q(Z) > p_2(Z) + p.$$

Therefore, there exists a neighborhood $T_0 \in U \subset D_0(T^2)$ in the C^0 topology such that for any $T \in U$, we get $p_2 \circ \hat{T}^q(Z) > p_2(Z) + p$, for all $Z \in \mathcal{B}_\delta(P_0)$. Now defining $\overline{AB} = \{x_Q \times \mathbb{R}\} \cap \mathcal{B}_\delta(P_0)$, lemma [3] implies that if we choose a sufficiently small neighborhood V of $C(0, q)$, then for all homotopically non-trivial simple closed curves $\gamma \subset V$, we get that $\gamma \cap \overline{AB} \neq \emptyset$. By the upper semi-continuity in the Hausdorff topology of the maps in [3], if we choose a sufficiently small sub-neighborhood $U' \subset U$ we get for any $T \in U'$ that the set $C(0, q)$ associated to T is also contained in V. Therefore it must cross \overline{AB}.

So given any mapping $T \in U' \subset U$, there is a point $Q' \in C(0, q) \cap \overline{AB}$ which therefore satisfies $p_2 \circ \hat{T}^q(Q') > p_2(Q') + p$.

Finally, the above claim implies that $\rho_v^\text{max}(T_n) \geq p/q$ for sufficiently large n, which is a contradiction.
3.2 Main theorem

In this section we prove theorem (1).

First of all we note that from theorem (3), the mapping \(S'_\lambda \in D_0(T^2) \) (see (8)) has no rotational invariant curve for \(\lambda = 0.95 \) and has "lots" of rotational invariant curves for \(\lambda = 4/3 \). Using theorem (2) one gets that \(\rho^{\text{max}}_V(S'_{0.95}) = \epsilon > 0 \) and \(\rho^{\text{max}}_V(S'_{4/3}) = 0 \). A classical result in Fourier analysis implies that the Fourier series \(\tilde{g}'_N(x) = \sum_{n=1}^{N} a_n \cos(2\pi nx) \) of \(\tilde{g}' \) converges uniformly to \(\tilde{g}' \). So if we choose \(N > 0 \) sufficiently large, we get from theorem (3) that \(\rho^{\text{max}}_V(S'_{N,0.95}) > \epsilon/2 \) and \(\rho^{\text{max}}_V(S'_{N,4/3}) < \epsilon/10 \), where \(S'_{N,\lambda} \) is the twist mapping associated to \(g'_N \).

References

[1] Addas-Zanata S. (2002): On the existence of a new type of periodic and quasi-periodic orbits for twist maps of the torus. To appear in Nonlinearity. 15 (5)

[2] Addas-Zanata S. and Grotta-Ragazzo C. (2002): On the stability of some periodic orbits of a new type for twist maps. To appear in Nonlinearity. 15 (5)

[3] Addas-Zanata S. (2002): On properties of the extremal points of the vertical rotation interval for twist maps of the torus. In preparation.

[4] Bullett S. (1986): Invariant Circles for the Piecewise Linear Standard Map. Comm. Math. Phys. 107, 241-262

[5] Hall G. (1988): Some problems on dynamics of annulus maps. Contemporary Mathematics 81, 135-151

[6] Herman M. (1979): Sur la conjugaison différentiable des difféomorphismes du cercle à une rotation. Publ. Math. I.H.E.S. 49, 5-234

[7] Le Calvez P. (1986): Existence d’orbites quasi-périodiques dans les attracteurs de Birkhoff. Comm. Math. Phys. 106, 383-394

[8] Le Calvez P. (1991): Propriétés Dynamiques des Difféomorphismes de l’Anneau et du Tore. Astérisque 204

[9] Le Calvez P. (1995): Construction d’orbites périodiques par perturbation d’un difféomorphisme de l’anneau déviant la verticale. C. R. Acad. Sci. Paris, t 321, p. 463-468

[10] Misiurewicz M. and Ziemian K. (1989): Rotation Sets for Maps of Tori. J. London Math. Soc. (2) 40, 490-506