Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird

Sarah Leclaire1,2*, Wouter F. D. van Dongen3,4*, Steeve Voccia1,2, Thomas Merkling1,2, Christine Ducamp1,2, Scott A. Hatch5, Pierrick Blanchard1,2, Étienne Danchin1,2 & Richard H. Wagner3

1CNRS, UPS, ENFA; Laboratoire Évolution et Diversité Biologique (EDB), UMR5174, 118 route de Narbonne, 31062 Toulouse, France, 2Université de Toulouse, EDB, UMR5174, 31062 Toulouse, France, 3Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Savoyenstrasse 1a, 1160 Vienna, Austria, 4Applied Ecology Research Group and Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University – Footscray Park Campus, PO Box 14428, Melbourne MC, VIC, Australia 8001, 5U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508, USA.

Animals are known to select mates to maximize the genetic diversity of their offspring in order to achieve immunity against a broader range of pathogens. Although several bird species preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC), it remains unknown whether they can use olfactory cues to assess MHC similarity with potential partners. Here we combined gas chromatography data with genetic similarity indices based on MHC to test whether similarity in preen secretion chemicals correlated with MHC relatedness in the black-legged kittiwake (Rissa tridactyla), a species that preferentially mates with genetically dissimilar partners. We found that similarity in preen secretion chemicals was positively correlated with MHC relatedness in male-male and male-female dyads. This study provides the first evidence that preen secretion chemicals can encode information on MHC relatedness and suggests that odor-based mechanisms of MHC-related mate choice may occur in birds.

The major histocompatibility complex (MHC) is an extraordinarily diverse cluster of genes that play a major role in vertebrate adaptive immunity. MHC heterozygosity offers several fitness advantages, including increased disease resistance and survival1,2. Given that MHC-dissimilar parents are more likely to produce MHC heterozygous offspring, mate choice of MHC-disparate partners is a common strategy in taxa as diverse as mammals, fish, lizards and birds3–7.

In numerous species, MHC similarity is assessed through olfactory cues8. For example, rodents, humans and lizards prefer the odour of MHC-dissimilar individuals4,9,10. However, while several birds preferentially reproduce with MHC-dissimilar partners5,11,12, it remains unknown whether birds can assess MHC relatedness via odour cues. Few studies have shown that birds can discriminate between their relatives and non-relatives based on odour cues13–15. Although pedigree is a reliable estimator of genetic relatedness and is useful when investigating inbreeding avoidance16, MHC relatedness may be a more direct link between odor and genotype that has not yet been explored in birds.

In a previous study, we had shown that preen secretion chemicals can reflect genetic relatedness at microsatellite loci in the black-legged kittiwake (Rissa tridactyla)17, a species that preferentially mates with genetically dissimilar individuals4,9,10. In contrast to MHC, microsatellites, being neutral markers, are not under selection for high levels of polymorphism. Microsatellite diversity is therefore usually lower than MHC diversity across populations and correlation between microsatellites and MHC may be weak19–21. Showing that odour is linked to MHC is therefore an important step in the study of odour-based mate choice and immunology in birds. Here, we tested whether the chemical composition of kittiwake scent secretion was related to variation at the MHC, by combining gas chromatography data with indices of relatedness based on MHC.

Results

MHC characteristics. We isolated a maximum of four MHC alleles per individual (range: 2–4 alleles; mean = 3.2 ± 0.7 SD alleles), indicating that we amplified duplicated MHC Class II DRB loci. These two loci were highly polymorphic with 23 alleles being isolated from the 39 individuals (Table 1). The amino acid sequences contained
characteristic features of functional class II molecules including conserved residues and putative peptide binding regions (Fig. 1). We found no stop codons or frame shift mutations in any allele. The putative peptide binding regions contained 47 segregating sites and a nucleotide diversity (π) of 0.18. The putative non-peptide binding regions contained 24 segregating sites and a nucleotide diversity of 0.05. Codons that were located within putative peptide binding regions had an excess of non-synonymous substitutions (dN = 0.277 ± 0.054, dS = 0.074 ± 0.059; Z = 2.960, p = 0.002), indicating positive selection. This was not the case for codons outside the putative peptide binding regions (dN = 0.058 ± 0.018, dS = 0.041 ± 0.017; Z = 0.665, p = 0.254). Up to three cDNA sequences were isolated per individual confirming that both loci were transcribed in blood cells.

MHC and preen secretions. When chemical distances were mainly influenced by the most abundant compounds, they increased significantly with MHC amino acid distances in male-male dyads (Mantel test: r = 0.22, P = 0.009, n = 210 dyads; Fig. 2a) and male-female dyads (Spearman’s correlation permutation test: r = 0.13, P = 0.007, n = 378 dyads; Fig. 2b), while being unrelated to MHC distances in female-female dyads (Mantel test: r = 0.05, P = 0.31, n = 153 dyads; Fig. 2c) and showing a trend when all kittiwake dyads were pooled (Mantel test: r = 0.13, P = 0.051, n = 741 dyads). When chemical distances were calculated when considering all chemical compounds equally, they were not related to MHC distances in any of the dyad groups (all P > 0.38). These results suggest that the relationship between preen secretion and MHC similarities is mainly linked to the most abundant chemical compounds. This is supported by the finding that when analyses were conducted with only the 22 most abundant chemical compounds (i.e., compounds with an average abundance > 1%), the correlations between MHC distances and chemical distances were significant in male-male, male-female and all dyads (r = 0.20, P = 0.015, r = 0.12, P = 0.024, and r = 0.20, P = 0.012 respectively), but not in female-female dyads: r = 0.08, P = 0.25. In contrast, none of the correlations were significant when excluding these 22 compounds (all P > 0.35).

Discussion

Our study provides the first evidence that preen secretion chemicals can encode information on MHC relatedness in birds. The findings suggest that odour cues present in preen secretion may be recognized by birds and allow them to pair MHC-disassortatively. The relationship between preen secretion and MHC dissimilarities in cross-sex dyads and male-male dyads suggests that kittiwakes may recognize related individuals by self-referent or known-kin matching, with individuals avoiding breeding with partners that have scent signatures similar to their own or their known-kin.

A positive correlation between preen secretion and MHC dissimilarities was detected in male-male dyads, but not in female-female dyads. This finding confirms our previous results using a different dataset, which showed that preen secretion and microsatellite similarity correlated in male-male dyads only\(^7\). Similar sex-differences in the correlation between chemical and genetic similarities were detected in giant pandas (*Ailuropoda melanoleuca*)\(^23\), but not in ring-tailed lemurs (*Lemur catta*)\(^24,25\) and mandrills (*Mandrillus sphinx*)\(^25\). In kittiwakes, philopatry and intense competition for securing a nesting site is common in males\(^24\). Kin recognition may therefore be favoured in males because it may reduce competition between related males thereby increasing inclusive fitness. In contrast, females being the dispersing sex are much less likely to be surrounded by kin and social interactions amongst females are rare. Kin selection amongst females may thus be under lower selection than amongst males.

How odours are influenced by MHC genes remains largely unknown\(^\,7\). Recent studies suggest that in humans and zebrafish (*Danio rerio*), MHC peptides may function as chemical signals for kin recognition\(^27,28\). Although in several species, non-peptide compounds, including carboxylic acids, were found to correlate with MHC profiles\(^29,30\), it is not known whether a non-peptide mechanism can drive MHC-mediated behavior\(^31\). At the molecular level, the link between MHC and non-peptide odours may stem from excreted odorants becoming conjugated with amino acids and therefore being

Table 1 | MHC Class II DRB alleles isolated in this study and their corresponding Genbank accession numbers. Alleles have more than one accession number in cases where they are identical to multiple previously published sequences within the 258 bp fragment used in this study. In these cases, the previously published sequences only differ from each other outside the exon 2 fragment characterised here.

Allele ID	Accession number	Study
Ritr_MHC01	EU326254	Mulard et al., unpublished
	HQ822398	Serbielle et al., unpublished
	HQ822408	Serbielle et al., unpublished
	HQ822414	Serbielle et al., unpublished
Ritr_MHC02	HQ822399	Serbielle et al., unpublished
Ritr_MHC03	KJ210580	This study
Ritr_MHC04	KJ210581	This study
Ritr_MHC05	HQ822402	Serbielle et al., unpublished
Ritr_MHC06	EU326259	Mulard et al., unpublished
	HQ822439	Serbielle et al., unpublished
Ritr_MHC07	KJ210582	This study
Ritr_MHC09	KJ210583	This study
Ritr_MHC10	HQ822419	Serbielle et al., unpublished
Ritr_MHC11	HQ822460	Serbielle et al., unpublished
	HQ822472	Serbielle et al., unpublished
Ritr_MHC18	HQ822413	Serbielle et al., unpublished
Ritr_MHC23	HQ822406	Serbielle et al., unpublished
	HQ822443	Serbielle et al., unpublished
Ritr_MHC24	HQ822442	Serbielle et al., unpublished
Ritr_MHC25	KJ210586	This study
Ritr_MHC27	HQ822446	Serbielle et al., unpublished
	HQ822459	Serbielle et al., unpublished
Ritr_MHC28	HQ822423	Serbielle et al., unpublished
Ritr_MHC30	KJ210587	This study
Ritr_MHC31	KJ210588	This study
Ritr_MHC32	KJ210589	This study
Ritr_MHC33	HQ822440	Serbielle et al., unpublished
	HQ822462	Serbielle et al., unpublished
Ritr_MHC34	KJ210590	This study
Ritr_MHC35	HQ822430	Serbielle et al., unpublished
Ritr_MHC36	KJ210591	This study
Figure 1 | Amino acid alignment of MHC Class II DRB alleles isolated from black-legged kittiwakes. Dots indicate matching amino acids relative to Ritr_MHC01 and shaded areas indicate conserved residues as outlined in 50. Plus signs above alignment correspond to putative antigen binding sites as inferred from 46. Additional species and their associated GenBank accession numbers included in the alignment are Pachyptila belcheri (FJ588549), Halobaena caerulea (JF276893), Gallus gallus (DQ008584) and Homo sapiens (AM493435).

Species	Accession Number
Pachyptila belcheri	FJ588549
Halobaena caerulea	JF276893
Gallus gallus	DQ008584
Homo sapiens	AM493435

Figure 2 | Relationship between MHC amino-acid distances and chemical distances (as described by Euclidean distances) in (a) male-male dyads, (b) cross-sex dyads, and (c) female-female dyads. Solid lines are linear model predicted values and SE.
bound by MHC proteins33, or from odors being secondary metabo-
lites of biochemical pathways moderated by MHC or MHC-linked
genes. Our study is correlative. Therefore, our results do not allow us
to determine the degree to which preen secretion chemicals are
influenced by MHC compared to other polymorphic genes whose
variations usually covary with those in the MHC, such as the major
urinary protein (MUP) genes in natural populations of mice48.
Experiments with MHC-congenic birds, for instance, are needed to
disentangle these two hypotheses.

In our study, we analyzed the composition of preen secretion wax
esters. Wax esters are long-chained compounds with low volatility at
normal temperatures and pressure. Birds lack a vomeronasal organ32,
and whether they can detect nonvolatile olfactory cues by the main
olfactory system, as shown in mice44, is unknown. Non-exclusively,
wax esters may be metabolized by odor-producing bacteria present
on feathers or in the preen gland, and lead to the release of volatiles
encoding MHC information49.

Although preen secretions are spread onto the plumage during
preening, they may represent only one component of the body odour
emitted by birds. However, we do know that in kittiwakes, chemical
profiles of preen oil are highly similar to the chemical profiles of
down feathers surrounding the preen gland50 and to the chemical
profiles of neck feathers (our unpublished data). Another sampling
protocol (e.g., as described in33) would be necessary to characterise
the entire body odour of kittiwakes and to determine to what extent
preen secretions contribute to the odour emitted by the birds. In
addition, variance in chemical distances was high for any particular
MHC distance. Some compounds are likely to be influenced by non-
MHC factors, which may have led to the small effect sizes detected
in this study. Although our approach has led to new insights into chem-
signalling in birds, an important next step is to determine which specific
chemical compounds are central in odour-based kin recogni-
tion (as suggested in33).

In conclusion, our results provide the first evidence that preen
secretion can encode information on MHC relatedness in birds.
How MHC-related odours influence kittiwake behaviour needs
now to be studied. Our findings open the door for further studies
that may comprehensively link mate choice and immunity in birds.

Methods

Study site. Samples were collected in the pre-laying period, between 15 April and
20 May 2011 (first laying in the population: 27 May 2011), in a population of black-
legged Kittiwakes nesting on an abandoned US Air Force radar tower on Middleton
Island (59°26'N,146°20'W), Gulf of Alaska. Preen secretion and blood samples were
collected from 18 females and 21 males. Experiments were approved by the US Fish
and Wildlife Service and State of Alaska.

Preen secretion collection and analyses. Preen secretion collection, extraction and
GC analyses were adapted from our protocol described earlier50. Preen secretion
samples were stored at −20°C until chemical analyses in March 2012. Samples were
immersed in 0.5 ml dichloromethane/ nonadecane (internal standard, 20
µl/ml) and agitated for 2 h at ambient temperature and then kept frozen until analysis. They
were analysed on a DANI GC-1000 gas chromatograph (DANI Instruments SpA),
equipped with a flame-ionization detector and a Restek Rtx-5MS (30 m × 0.25 mm,
0.25 µm film thickness) capillary column. Helium was used as a carrier gas. The
flame-ionization detector was operated at 300°C and the injector was used at 280°C.
Samples were injected in splitless mode. The oven was programmed as follows: 7°C
min from 50°C, then 3°C/min to 290°C and a 10 min hold at 290°C. Blanks were regularly interspersed throughout the sample analyses. We retained
peaks that comprised at least 0.1% per cent of the total area of the chromatogram (n =
120 peaks) and analysed all samples in a short period of time to minimize inter-assay
variability.

In kittiwakes, all individuals of both sexes have the same compounds making gas
cromatograph – mass spectrometer (GCMS) analysis not necessary for profile
alignment. Two samples were, however, run on a GCMS to further identify the
chemical compounds. The analyses were performed on a Finnigan Trace 2000
chromatograph (Thermo Scientific) directly coupled to a mass spectrometer quad-
rupole detector (electron impact at 70 eV). The temperature source was set at 200°C,
the interface between GC and MS modules at 250°C and the splitter injector at
280°C. Helium was the carrier gas and the flow rate was 1.2 ml/min. 1 µl of sample
was injected in an apolar capillary column (Restek Rtx-5MS: 30 m × 0.25 mm,
0.25 µm film thickness, 5% diphenyl and 95% dimethylpolysiloxane). The oven

temperature program was as set for the GC analyses. The mass spectra were scanned
from 60 to 500 m/z. All identified peaks were wax esters (i.e., esters of long aliphatic
carboxylic acids and fatty alcohols) as found in our earlier study50. Because we could not control for the amount of secretion collected, each chro-
matogram peak was quantified as the relative proportion of the peak size to the overall
area of the chromatogram. Chromatograms were analyzed with the Peak Simple
integration software (Version 3.77, Buck Scientific Inc.). To measure similarity in
functional composition between each dyad of individuals, we calculated the
Euclidean distance after chord-transaction (Chord distance)51. This distance is
mainly influenced by compounds with large absolute differences between indivi-
duals which are, as a rule, compounds with high abundance52. Pearson correlation
between mean and standard deviation of each compound: r = 0.99, P < 0.0001,
showing that larger differences are also found in more abundant compounds in our
dataset). Therefore, we also calculated pairwise Euclidean distances using prior
normalization of the relative abundances, so that all compounds were considered
equally. Prior normalization was realized using the “range” method in decostand()
function (VEGAN package in the R software)49.

Genetic analyses. Upon capture, blood was taken from the alar vein. DNA extraction
was performed as described in53. We amplified a 288 bp fragment of exon 2 of the
MHC Class II DRB locus using the primers KMHWCH2_ex2_F (5’-
GCGAGGACGGGTATTCCA-3’) and KMHWCH2_ex2_R (5’-
GTTGTTGCCACACCTACCACT-3’), which were designed based on previously
published black-legged kittiwake sequences containing exon 2 and its flanking
regions (K.D. McCoy, unpublished data: GenBank Accession numbers: HJ822398-
HJ822472). PCR was performed in 25 µl reaction volumes containing the forward
primer (0.2 mM), 1.25 units of GO Taq DNA Polymerase (Promega), 1× reaction buffer (Promega), 1.5 mM MgCl2, (Promega), 0.2 mM
dNTPs and approximately 50 ng of genomic DNA. The PCR conditions consisted of
an initial denaturation step (94°C, 3 min), followed by 34 cycles of 30 s at 94°C, 30 s
at 57°C, 45 s at 72°C, and a final extension step for 10 min at 72°C. The success of our
amplifications was confirmed on a 1.5% agarose gel stained with ethidium bromide.
Primers and excess dNTPs were removed from the amplified products by digesting
exonuclease-shrimp alkaline phosphatase (Fermentas Life Sciences).

As we were expecting multiple MHC alleles per individual, we cloned each PCR
product. Cloning was conducted using a TOPO TA Cloning kit (Invitrogen) as per
the manufacturer’s protocol. We then picked between 24 and 48 transformed
colones (depending on the success of the cloning) and amplified and
sequenced the inserted as described in54. Sequence editing and alignment was con-
ducted using CLC DNA Workbench 5.7 (CLC bio).

MHC alleles were classified as unique when they differed by 3 or more bp from all
other known alleles and were found more than once within or between samples44. All
potential alleles found only once in one individual were verified by reamplifying the
locus for that individual in a new PCR and cloning the product. When we could not
verify a particular allele, it was assumed to be a PCR artefact. However, MHC
screening was very repeatable across multiple PCRs. We conducted multiple PCRs for
34 individuals and in all cases we identified the same alleles from both PCRs (van
Dongen, unpublished data). Ideally, studies should survey a larger region of the MHC
than MHC-DRB, but this requires a level of knowledge of MHC structure that is
lacking for non-model organisms. However, the MHC region is characterized by
strong linkage disequilibrium55, meaning that relatively small segments of the MHC
provide valuable information about the larger complex.

To confirm that we were genotyping a putatively functional MHC locus and not a
pseudogene, we took a number of steps. First, we searched for the presence of frame
shift mutations or stop codons in the translated alleles and 21 characteristic features
of functional Class II molecules, such as conserved residues and putative peptide
binding regions (inferred from44). We tested for selection by comparing the ratio of
non-synonymous (dN) over synonymous (dS) substitutions using MEGA 5 both
within and outside of the peptide binding regions. We used the Z-test for selection
comparing the modified Nei-Gojobori method with Jukes-Cantor correction and
calculated standard errors with 1000 bootstraps. Last, to confirm that both loci are
transcribed in blood cells, we amplified MHC alleles from the cDNA of two indivi-
duals. A RiboPure - Blood kit (Ambion) was used to extract RNA from 250-500 µl
of blood that had been stored in RNAlater. The RNA was subsequently treated with
DNase that was present in the RNA extraction kit and reverse transcribed using a
QuantiTect Reverse Transcription Kit (Qiagen). The cDNA was subsequently used as
a PCR template and cloned, as described above, using the primers KMHWCH2_F (5’-
CCA ATG GTA CYG AGG AGG TGA 3’) and KMHWCH2_R (5’- ACG GGG CAA
ACC AGC CTG T 3’), which were located within exon 2 and exon 3, respectively.

Genetic MHC similarity was calculated based on the amino acid sequences of each
allele. The extent of pairwise distances in MHC codon positions was calculated,
we used UniFrac56, a phylogenetic comparison tool originally developed for measuring
phylogenetic distances between microbial communities. Using this approach,
we showed that individuals were classified as similar at the MHC if they shared the same alleles or
shared alleles that were phylogenetically clustered. A maximum-likelihood phylo-
genetic tree analysis was inferred using 3. The
maximum likelihood tree was based on a WAG model57, which was selected as the most
appropriate evolutionary model to explain the variability among protein
sequences. Evolutionary rate differences among sites were modelled using a discrete
Gamma distribution (number of categories = 5).
1. Penn, D. J., Damjanovich, K. & Potts, W. K. MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc. Natl. Acad. Sci. U. S. A. 99, 11260–11264 (2002).

2. Woryl, K. et al. MHC heterozygosity and survival in red junglefowl. Mol. Ecol. 19, 3064–3075 (2010).

3. Landry, C., Garant, D., Duchesne, P. & Bernatchez, L. ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proc. R. Soc. B 268, 1279–1285 (2011).

4. Olsson, M. et al. Major histocompatibility complex and mate choice in sand lizards. Proc. R. Soc. Lon. B 270, S254–S256 (2003).

5. Chaix, R., Cao, C. & Donnelly, P. Is mate choice in humans MHC-dependent? PLoS Genetics 4, e1000184 (2008).

6. Seltch, J. M., Charpentier, M. J., E. Abbott, K. M., Wieland, W. J. & Knapp, L. A. Opposites attract: MHC-associated mate choice in a polygynous primate. J. Evol. Biol. 23, 136–148 (2010).

7. Strand, M. et al. Major histocompatibility complex class IIB compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proc. R. Soc. B 279, 4457–4463 (2012).

8. Penn, D. J. The scent of genetic compatibility: Sexual selection and the major histocompatibility complex. Ethology 108, 1–21 (2002).

9. Wedekind, C. & Penn, D. MHC genes, body odours, and odour preferences. Nephrol. Dial. Transplant. 15, 1269–1271 (2000).

10. Radwan, J., Tkacz, A. & Kloch, A. MHC and preferences for male odour in the Humboldt penguin (Spheniscus humboldti). PLoS ONE 6, e25002 (2011).

11. Bonadonna, F. & Sanz-Aguilera, A. Kin recognition and inbreeding avoidance in a primate. Proc. Natl. Acad. Sci. U. S. A. 94, 2210–2214 (1997).

12. Setchell, J. M. et al. Odour signals major histocompatibility complex genotype in an Old World monkey. Proc. R. Soc. B 278, 274–280 (2011).

13. Ruff, J. S., Nelson, A. C., Kubinak, J. L. & Potts, W. K. [MHC signaling during social communication] Self and nonself [López-Larrea, C. (ed.)] [290–313] (Springer, New-York, 2012).

14. Sherborne, A. L. et al. The genetic basis of inbreeding avoidance in house mouse. Curr. Biol. 17, 2061–2066 (2007).

15. senior contributions

16. Additional information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Leclaire, S. et al. Peer reviews encode information on MHC similarity in certain sex-odors in a monogamous seabird. Sci. Rep. 4, 6920; DOI:10.1038/srep06920 (2014).

Statistical analyses. Correlations between preen scent similarity and MHC relatedness were tested using Mantel tests (with VEGAN package) and 5000 data randomizations. The correlation between preen scent similarity and MHC relatedness may stem from one sex only. As Mantel tests cannot handle interactions, we performed Mantel tests in all dyads, in male-male dyads and in female-female dyads separately. The male – female matrix was not square and thus we could not use the Mantel test. Instead, we used a Spearman’s correlation permutation test to test for the correlation between chemical distances and MHC distances. All statistical tests were performed with the R statistical software (R Development Core Team 2014).

Acknowledgments

We are grateful to Léna Agdère, Elise Albert and Romain Duriex for their help in the field, and Hanja Brandl and Florian Sammer for considerable assistance in the genetics laboratory. This work was supported by the French Polar Institute (IPEV Program 1162), the University of Veterinary Medicine Vienna and Austrian Research Fund grant (FWF Project 20401 to RHW). The lab EDB is supported by the French Laboratory of Excellence project “TULIP” (ANR-10-LABX-41, ANR-11-IDEX-0002-02). S. Leclaire was funded by a Fyssen post-doctoral grant.

Author contributions

S.L., W.F.D.vD. and R.H.W. conceived and designed the study. T.M. collected the samples. S.L., S.V. and C.D. performed the chemical analyses. W.F.D. performed the genetic analyses. S.L., W.F.D.vD., S.A.H., P.B., E.D. and R.H.W. wrote the manuscript.
