Supporting Information

Cyclo-Dipnictadialanes

Samuel Nees*, Felipe Fantuzzi*, Tim Wellnitz, Malte Fischer, Jan-Erik Siewert, James T. Goettel, Alexander Hofmann, Marcel Harterich, Holger Braunschweig,* and Christian Hering-Junghans*

anie_202111121_sm_miscellaneous_information.pdf
anie_202111121_sm_cif.zip
This file includes:

1 Experimental .. 2
2 Structure elucidation .. 4
3 Syntheses of compounds .. 20
 3.1 [Cp³Al(µ-PMes)]₂ (1a) ... 20
 3.2 [Cp³Al-PDip]₂ (1b) .. 22
 3.3 [Cp³Al-PTip]₂ (1c) .. 24
 3.4 [Cp³Al(µ-PPh)]₂ (1d) .. 25
 3.5 [Cp³Al(PtBu)₃] (2) ... 27
 3.6 [Cp*Al(µ-PMes)]₂ (3a) .. 30
 3.7 [Cp*Al(µ-PDip)]₂ (3b) .. 32
 3.8 [Cp*Al(µ-PTip)]₂ (3c) .. 35
 3.9 [Cp*Al(µ-AsDip)]₂ (4a) ... 37
 3.10 [Cp*Al(µ-AsTip)]₂ (4b) .. 39
 3.11 [Cp³Al(lPr₂)(µ-PPh)]₂ (5) ... 41
4 Additional spectroscopic details .. 45
 4.1 UV-vis spectra and extinction coefficients of 1b and 1c ... 45
5 Computational details .. 47
 5.1 General remarks .. 47
 5.2 Summary of calculated data ... 48
 5.3 Bonding analysis of 1a ... 49
 5.4 Optimized structures (.xyz-files) ... 50
6 References ... 92
1 Experimental

General Information. If not stated otherwise, all manipulations were performed under oxygen- and moisture-free conditions under an inert atmosphere of argon using standard Schlenk techniques or an inert atmosphere glovebox (MBraun LABstar ECO). All glassware was heated three times in vacuo using a heat gun and cooled under argon atmosphere. Solvents were transferred using syringes, steel- or PE-canulas, which were purged with argon prior to use. Solvents and reactants were either obtained from commercial sources or synthesized as detailed in Table S1.

Table S1: Origin and purification of solvents and reactants.

Substance	Origin	Purification
Benzene	local trade	dried over Na/benzophenone freshly distilled prior to use, stored over molecular sieves.
n-hexane	Geyer, CHROMASOLV®, for HPLC, ≥97.0% (GC)	purified with the Grubbs-type column system "Pure Solv MD-5" dried over Na/benzophenone/tetraglyme freshly distilled prior to use
n-pentane	local trade	dried over Na/benzophenone/tetraglyme freshly distilled prior to use
Toluene	Fisher Chemical, for HPLC	purified with the Grubbs-type column system "Pure Solv MD-5"
THF	Sigma Aldrich, inhibitor-free, for HPLC, ≥99.9%	purified with the Grubbs-type column system "Pure Solv MD-5" dried over Na/benzophenone freshly distilled prior to use
C₆D₆	euriso-top	dried over Na/benzophenone freshly distilled prior to use
C₇D₈ (toluene-d₈)	euriso-top	dried over Na/benzophenone freshly distilled prior to use
AlCp₃[1]	synthesized	
(AlCp*)₄[2]	synthesized	
(PMes)₃[3]	synthesized	
(PDip)₃[4]	synthesized	
Table S1 continued.

Substance	Origin	Purification
(PTip)$_3$	synthesized	
(PtBu)$_3$	synthesized	
(PPh)$_3$	synthesized	
(AsDip)$_3$	synthesized	
(AsTip)$_3$	synthesized	
iPr$_2$	synthesized	

NMR spectra were recorded on Bruker spectrometers (AVANCE 300, AVANCE 400 or Fourier 300) and were referenced internally to the deuterated solvent (13C: C$_6$D$_6$ $\delta_{\text{ref}} = 128.06$ ppm; C$_7$D$_8$ $\delta_{\text{ref}} = 20.43$ ppm) or to protic impurities in the deuterated solvent (1H: C$_6$HD$_5$ $\delta_{\text{ref}} = 7.16$ ppm; C$_7$D$_8$ $\delta_{\text{ref}} = 2.08$ ppm). All measurements were carried out at ambient temperature unless denoted otherwise. NMR signals were assigned using experimental data (e.g. chemical shifts, coupling constants, integrals where applicable).

Elemental analyses were obtained using a Leco Tru Spec elemental analyser.

Mass spectra were recorded on a Thermo Electron MAT 95-XP sector field mass spectrometer and a Thermo Scientific Exactive Plus spectrometer in LIFDI mode using crystalline samples.

UV-Vis spectra were acquired on a METTLER TOLEDO UV-Vis-Excellence UV5 spectrometer using 6Q-quartz glass cuvettes.
2 Structure elucidation

X-ray Structure Determination: X-Ray quality crystals were immersed in a film of perfluoropolyether oil and selected at room temperature. The crystal data of 1a, 1c, 1d, 2, and 3a were collected on a **BRUKER D8 QUEST** diffractometer with a CMOS area detector and multi-layer mirror monochromated MoKα radiation. 1b were collected on a **BRUKER SMART-APEX** diffractometer with a CCD area detector and graphite monochromated MoKα radiation. X-ray quality crystals of 3c, 4a and 4b were selected in Fomblin® Y-1800 perfluoroether (Alfa Aesar) at room temperature. The samples were cooled to 150(2) K during measurement. The data were collected on a Bruker Kappa Apex II diffractometer using Mo Kα radiation (λ = 0.71073 Å) or Cu Kα radiation (λ = 1.54178 Å) or on a STOE-IPDS II diffractometer using Mo Kα radiation (λ = 0.71073 Å) at 150(2) K. The crystal data of 5 were collected on a **RIGAKU OD XTALAB SYNERGY-S** diffractometer with a HPAD area detector and multi-layer mirror monochromated CuKα radiation. The structures were solved using intrinsic phasing method in **SHELXT**, refined with the **SHELXL** program, and expanded using Fourier techniques. Semi-empirical absorption corrections were applied (SADABS) or (LANA). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions.

The Mesityl-group of 1a is disordered, that's why the atomic displacement parameters of atoms C1 > C9 of the residues 4 and 14 were restraint with RIGU keyword in ShelXL input ('enhanced rigid bond' restraint for all bonds in the connectivity list. Standard values of 0.004 for both parameters s1 and s2 were used). The displacement parameters of atoms C1 > C9 of the residues 4 and 14 were restrained to the same value with similarity restraint SIMU. The 1-2 and 1-3 distances in Residue 4 and 14 were restrained to the same values with SAME.
One of the Cp* groups in 3a was found to be disordered and was split in two parts. The occupancy of each part was allowed to refine freely and the geometry of the minor orientation was restrained to be equal with the major orientation. The atomic displacement parameters of atoms C1 > C10 of the residues 2 and 12 were restrained with RIGU keyword in ShelXL input ('enhanced rigid bond' restraint for all bonds in the connectivity list. Values of 0.05 for both parameters were used). The displacement parameters of atoms C1 > C10 of the residues 2 and 12 were restrained to the same value with similarity restraint SIMU.

The solvent in 5 was found to be disordered. The atomic displacement parameters of atoms C1 to C6 of residues 8 and 18 (BENZ) were restrained with RIGU keyword in ShelXL input ('enhanced rigid bond' restraint for all bonds in the connectivity list. Standard values of 0.004 for both parameters s1 and s2 were used). The displacement parameters of atoms C1 to C6 of residues 8 and 18 (BENZ) were restrained to the same value with similarity restraint SIMU.
Table S2: Crystallographic details of 1a, 1b, 1c and 1d.

Compound	1a	1b	1c	1d
Empirical formula	C_{52}H_{80}Al_{2}P_{2}	C_{63}H_{102}Al_{2}P_{2}	C_{64}H_{102}Al_{2}P_{2}	C_{57}H_{74}Al_{2}P_{2}
Formula weight (g·mol⁻¹)	821.06	975.34	989.37	815.01
Temperature (K)	133(2)	100(2)	145(2)	100(2)
Radiation, λ (Å)	MoKα 0.71073	MoKα 0.71073	MoKα 0.71073	MoKα 0.71073
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	P 1	P 1	P 1	P2₁/c
a (Å)	12.7191(7)	11.877(2)	12.2990(14)	12.5124(4)
b (Å)	13.7498(8)	12.793(3)	14.5074(19)	15.2016(6)
c (Å)	14.9235(7)	21.259(5)	19.780(2)	12.6358(5)
α [°]	95.548(2)	100.954(13)	83.201(7)	90
β [°]	105.477(2)	99.365(19)	74.638(9)	103.7210(10)
γ [°]	99.048(2)	104.194(16)	67.989(8)	90
Volume (Å³)	2457.5(2)	2999.2(11)	3154.4(7)	2334.85(15)
Z	2	2	2	2
Calculated density (Mg·m⁻³)	1.110	1.080	1.042	1.159
Absorption coefficient (mm⁻¹)	0.157	0.138	0.132	0.165
F(000)	896	1072	1088	884
Theta range for collection	2.340 to 26.372°	1.691 to 26.499°	2.338 to 31.569°	2.145 to 26.022°
Reflections collected	106714	54390	210511	21006
Independent reflections	10041	12313	21040	4603
Minimum/maximum transmission	0.7060/0.7454	0.6282/0.7454	0.7098/0.7462	0.6874/0.7456
Refinement method	Full-matrix least-squares on F²			
Data/parameters/restraints	10041 / 614 / 420	12313 / 632 / 0	21040 / 643 / 0	4603 / 262 / 0
Goodness-of-fit on F²	1.032	1.018	1.079	1.034
Final R indices [I>2 σ(I)]	R₁ = 0.0411, wR² = 0.0971	R₁ = 0.0539, wR² = 0.1422	R₁ = 0.0386, wR² = 0.0985	R₁ = 0.0312, wR² = 0.0743
R indices (all data)	R₁ = 0.0581, wR² = 0.1074	R₁ = 0.0650, wR² = 0.1514	R₁ = 0.0448, wR² = 0.1024	R₁ = 0.0371, wR² = 0.0790
Maximum/minimum residual electron density (e·Å⁻³)	0.565 / −0.322	1.291 / −0.695	0.429 / −0.349	0.315 / −0.203
CCDC #	2102648	2102649	2102650	2102651
Table S3: Crystallographic details of 2, 3a, 3b and 3c.

Compound	2	3a	3b	3c
Empirical formula	C_{29}H_{56}AlP_{3}	C_{38}H_{52}Al_{2}P_{2}	C_{44}H_{64}Al_{2}P_{2}	C_{50}H_{76}P_{2}Al_{2}
Formula weight (g·mol\(^{-1}\))	524.62	624.69	708.85	793.00
Temperature (K)	101(2)	100(2)	100(2)	150(2)
Radiation, \(\lambda\) (Å)	MoK\(\alpha\) 0.71073	MoK\(\alpha\) 0.71073	MoK\(\alpha\) 0.71073	MoK\(\alpha\) 0.71073
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	\(P2_1/n\)	\(P\ \overline{1}\)	\(P\ \overline{1}\)	\(P\ \overline{1}\)
\(a\) (Å)	9.555(6)	8.347(4)	10.558(4)	9.3798(7)
\(b\) (Å)	17.115(9)	10.907(6)	10.650(4)	10.7625(8)
\(c\) (Å)	20.101(12)	11.736(5)	11.317(4)	12.4334(10)
\(\alpha\) [°]	90	104.616(16)	105.620(13)	97.2100(10)
\(\beta\) [°]	100.762(17)	107.265(12)	108.859(18)	96.993(2)
\(\gamma\) [°]	90	111.205(15)	111.217(8)	106.7070(10)
Volume (Å\(^3\))	3229(3)	870.2(8)	1009.2(7)	1176.10(16)
\(Z\)	4	1	1	1
Calculated density (Mg·m\(^{-3}\))	1.079	1.192	1.166	1.120
Absorbtion coefficient (mm\(^{-1}\))	0.226	0.198	0.181	0.162
\(F(000)\)	1152	336	384	432
Theta range for collection	2.380 to 30.942°	2.286 to 26.367°	2.282 to 26.022°	1.674 to 30.000°
Reflections collected	44496	32916	25448	34307
Independent reflections	10165	3551	3960	6865
Minimum/maximum transmission	0.5824/0.7462	0.6338/0.7454	0.6969/0.7454	0.967/0.994
Refinement method	Full-matrix least-squares on \(F^2\)			
Data/parameters/restraints	10165 / 316 / 0	3551 / 294 / 270	3960 / 226 / 0	6865 / 255 / 0
Goodness-of-fit on \(F^2\)	1.054	1.127	1.064	1.019
Final R indices [I>2 \(\sigma(I)\)]	\(R_1 = 0.0477, \ wR^2 = 0.0983\)	\(R_1 = 0.0590, \ wR^2 = 0.1414\)	\(R_1 = 0.0347, \ wR^2 = 0.0853\)	\(R_1 = 0.0424, \ wR^2 = 0.1015\)
R indices (all data)	\(R_1 = 0.0910, \ wR^2 = 0.1214\)	\(R_1 = 0.0821, \ wR^2 = 0.1524\)	\(R_1 = 0.0423, \ wR^2 = 0.0912\)	\(R_1 = 0.0633, \ wR^2 = 0.1133\)
Maximum/minimum residual electron density (e·Å\(^{-3}\))	0.510 / −0.569	0.545 / −0.430	0.377 / −0.288	0.420 / −0.261
CCDC #	2102652	2102653	2102654	2102655
Table S4: Crystallographic details of 4a, 4b and 5.

Compound	4a	4b	5
Empirical formula	C₄₄H₆₄Al₂As₂	C₅₀H₆₄As₂Al₂	C₇₀H₁₀₆Al₂N₄P₂
Formula weight (g·mol⁻¹)	796.75	880.90	1119.48
Temperature (K)	150(2)	100(2)	100.01(10)
Radiation, λ (Å)	MoKα 0.71073	CuKα 1.54178	CuKα 1.54184
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P 1	P 1	P 1
a (Å)	10.5930(7)	9.2818(7)	12.8734(2)
b (Å)	10.8021(6)	10.9613(8)	13.83680(10)
c (Å)	11.2879(8)	12.4814(9)	20.2087(2)
α [°]	103.554(5)	97.8090(22)	72.3070(10)
β [°]	108.100(5)	96.8904(22)	83.6160(10)
γ [°]	113.866(5)	106.8249(22)	76.2490(10)
Volume (Å³)	1021.88(11)	1187.127(141)	3328.19(7)
Z	1	1	2
Calculated density (Mg·m⁻³)	1.295	1.232	1.117
Absorbtion coefficient (mm⁻¹)	1.707	2.322	1.157
F(000)	420	468	1220
Theta range for collection	2.085 to 29.282°	2.282 to 26.022°	3.433 to 77.475°
Reflections collected	18893	35266	46738
Independent reflections	5501	4188	13732
Minimum/maximum transmission	0.675/0.848	0.737/0.955	0.71288/1.00000
Refinement method	Full-matrix least-squares on F²	Full-matrix least-squares on F²	Full-matrix least-squares on F²
Data/parameters/restraints	5501 / 226 / 0	4188 / 255 / 0	13732 / 712 / 24
Goodness-of-fit on F²	0.942	1.061	1.031
Final R indices [I>2σ (I)]	R₁ = 0.0268, wR² = 0.0655	R₁ = 0.0224, wR² = 0.0612	R₁ = 0.0458, wR² = 0.1293
R indices (all data)	R₁ = 0.0338, wR² = 0.0673	R₁ = 0.0232, wR² = 0.0620	R₁ = 0.0500, wR² = 0.1335
Maximum/minimum residual electron density (e·Å⁻³)	0.531 / -0.407	0.3336 / -0.247	0.411 / -0.811
CCDC #	2102656	2102657	2102658
Figure S1: Molecular structure of 1a. ORTEPs drawn at 50% probability, all H-atoms omitted for clarity.
Selected bond lengths (Å) and angles (°) of 1a: P2−Al2 2.3176(7), P2−Al2' 2.3317(7); Al2−P2−Al2' 90.11(2), P2−Al2−P2' 89.89(2).
Figure S2: Molecular structure of 1b. ORTEPs drawn at 50% probability, all H-atoms omitted for clarity. Selected bond lengths (Å) and angles (°) of 1b: P1−P1 2.1677(9), Al1−P1 2.4057(9), Al2−P2 2.4090(9), Al1−Al2 2.6947(11); P2−P1−Al1 94.66(3), P1−P2−Al2 94.96(3), P1−Al1−Al2 82.58(3), P2−Al2−Al1 82.47(3).
Figure S3: Molecular structure of 1c. ORTEPs drawn at 50% probability, all H-atoms omitted for clarity. Selected bond lengths (Å) and angles (°) of 1c: P1–P1 2.1676(4), Al1–P1 2.4090(5), Al2–P2 2.3977(5), Al1–Al2 2.6933(5); P2–P1–Al1 93.617(13), P1–P2–Al2 96.732(13), P1–Al1–Al2 83.846(13), P2–Al2–Al1 81.798(13).
Figure S4: Molecular structure of 1d. ORTEPs drawn at 50% probability, all H-atoms omitted and for clarity. Selected bond lengths (Å) and angles (°) of 1d: C1–P1 1.8318(13), P1–Al1 2.3200(5), P1–Al1' 2.3389(5), Al1–Ct1 1.905; Al1–P1–Al1' 88.97(2), P1–Al1–P1' 91.03(2).
Figure S5: Molecular structure of 2. ORTEPs drawn at 50% probability, all H-atoms omitted and for clarity. Selected bond lengths (Å) and angles (°) of 2: P1–Al1 2.376(1), P1–P2 2.217(1), P2–P3 2.208(1), P3–Al1 2.383(1), Al1–Ct1 1.935; P1–Al1–P3 89.66(2), Al1–P3–P2 84.96(2), P1–P2–P3 98.60(2), P2–P1–Al1 84.92(2).
Figure S6: Molecular structure of 3a. ORTEPs drawn at 50% probability, all H-atoms omitted and for clarity. Selected bond lengths (Å) and angles (°) of 3a: C1–P1 1.839(4), P1–Al1 2.323(2), P1–Al1’ 2.322(2), Al1–Ct1 1.847; Al1–P1–Al1’ 86.06(4), P1–Al1–P1’ 93.94(4),
Figure S7: Molecular structure of 3b. ORTEPs drawn at 50% probability, all H-atoms omitted and for clarity. Selected bond lengths (Å) and angles (°) of 3b: C1−P1 1.857(2), P1−Al1 2.307(1), P1−Al1’ 2.345(1), Al1−Ct1 1.910; C1−P1−Al1’ 127.11(6), C1−P1−Al1 118.49(6), Al1−P1−Al1’ 88.99(2), P1−Al1−P1’ 91.01(2).
Figure S8: Molecular structure of 3c. ORTEPs drawn at 50% probability, all H-atoms omitted and for clarity. Selected bond lengths (Å) and angles (*) of 3c: C1–P1 1.8530(14), P1–Al1 2.3395(6), P1–Al1’ 2.3099(6), Al1–Ct1 1.9070(4); C1–P1–Al1’ 115.15(5), C1–P1–Al1 128.87(5), Al1–P1–Al1’ 88.796(19), P1–Al1–P1’ 91.205(18), P1–Al1–Ct1 133.893(21), P1’–Al1–Ct1 134.543(22); C2–C1–P1–Al1 -40.60(14).
Figure S9: Molecular structure of 4a. ORTEPs drawn at 50% probability, all H-atoms omitted and for clarity. Selected bond lengths (Å) and angles (°) of 4a: C1−As1 1.9842(14), As1−Al1 2.4160(5), As1−Al1’ 2.4445(5), Al1−Ct1 1.9044(4); C1−As1−Al1’ 125.99(4), C1−As1−Al1 111.51(4), Al1−As1−Al1’ 86.990(15), As1−Al1−As1’ 93.009(15), As1−Al1−Ct1 134.539(21), As1’−Al1−Ct1 132.144(19); C2−C1−As1−Al1 104.89(108).
Figure S10: Molecular structure of 4b. ORTEPs drawn at 50% probability, all H-atoms omitted and for clarity. Selected bond lengths (Å) and angles (°) of 4b: C1–As1 1.9863(15), As1–Al1 2.4106(8), As1–Al1’ 2.4462(16), Al1–Ct1 1.9012(4); C1–As1–Al1’ 124.93(5), C1–As1–Al1 116.31(5), Al1–As1–Al1’ 87.27(5), As1–Al1–As1’ 92.73(5), As1–Al1–Ct1 134.041(24), As1’–Al1–Ct1 133.227(22); C2–C1–As1–Al1 112.273(127).

Figure S11: Molecular structure of 5. ORTEPs drawn at 50% probability, all H-atoms omitted and for clarity. Selected bond lengths (Å) and angles (°) of 5: P2–Al1 2.3371(7), P2–Al3 2.3335(5), Al3–P4 2.4206(6), Al1–P4 2.4009(5), P2–C1 1.825(2), P4–C1 1.846(2), Al1–C1_4 2.084(1), Al3–C1_5 2.092(1), Al1–C1_6 2.100(2), Al3–C1_7 2.083(2); Al1–P2–Al3 91.49(2), P2–Al3–P4 87.98(2), Al3–P4–Al1 87.87(2), P4–Al1–P2 88.37(2), Al1–P2–C1 128.61(6), Al1–P4–C1 104.08(5).
3 Syntheses of compounds

3.1 [Cp³Al(μ-PMes)]₂ (1a)

A solution of Cp³Al (34.7 mg, 133 µmol) in C₆D₆ (0.6 mL) was added to P₃Mes₃ (20.0 mg, 44.4 µmol) in a J-Young-NMR tube resulting in an orange solution. After a few minutes the colour chanced to yellow. Afterwards the reaction mixture was transferred into a vial inside a glove box and was filtered. The solvent was evaporated and the residue was washed with n-pentane to give [Cp³Al(μ-PMes)]₂ (1a) (34.2 mg, 42.4 µmol, 64 %). Single crystals for X-ray diffraction were obtained by slow evaporation of a saturated C₇H₈ solution at −30°C.

^1H NMR (401 MHz, C₆D₆) δ [ppm] = 6.95 (s, 4H, aryl-CH), 6.29 (s, 4H, Cp-CH), 2.99 (s, 12H, CH₃), 2.17 (s, 6H, CH₃), 1.42 (s, 18H, Cp-C(CH₃)₃), 1.35 (s, 36H, Cp-C(CH₃)₃).

^27Al NMR (104 MHz, C₆D₆): No signal could be observed, probably due to its broadness.

^31P NMR (162 MHz, C₆D₆): δ [ppm] = −174.3 (s). HRMS (LIFDI): (m/z) Calculated for [C₅₂H₈₀Al₂P₂]⁺ 820.5361; Found 820.5344 [M]⁺
Figure S12: 1H NMR spectrum of [Cp31Al(μ-PMes)]$_2$ (1a) in C$_6$D$_6$ at room temperature.

Figure S13: 31P(1H) NMR spectrum of [Cp31Al(μ-PMes)]$_2$ (1a) in C$_6$D$_6$ at room temperature.
3.2 [Cp³Al−PDip]₂ (1b)

A solution of Cp³Al (27.1 mg, 104 µmol) in C₆D₆ (0.6 mL) was added to P₃Dip₃ (20.0 mg, 34.7 µmol) in a J-Young-NMR tube resulting in a yellow solution. The reaction shows a very slow conversion and colour change to intense red. At a certain point a red solid precipitates and the reaction shows complete conversion. The solvent was removed and the residue was washed with n-pentane to give [Cp³Al−PDip]₂ (1b) (21.8 mg, 24.5 µmol, 47 %) and suitable single crystals for x-ray-diffraction.

A solution of Cp³Al (20.0 mg, 76.8 µmol) in C₆D₆ (0.6 mL) was added to P₂Dip₂ (14.7 mg, 38.4 µmol) in a J-Young-NMR tube resulting immediately in a red solution. The reaction shows a fast conversion. After a few minutes red crystals suitable for X-ray-diffraction precipitate to give [Cp³Al−PDip]₂ (1b) (16.3 mg, 18.0 µmol, 46 %).

Single crystals for X-ray diffraction were obtained by slow evaporation of a saturated n-pentane solution at −30°C.

¹H NMR (401 MHz, C₆D₆) δ [ppm] = broad signals observed due to fluctuating system.

³¹P NMR (C₆D₆): δ [ppm] = −115.3, bis −117.8 ppm. HRMS (LIFDI): (m/z) Calculated for [C₆₄H₁₀₆Al₂P]⁺ 904.6293; Found 904.6300 [M]⁺.
Figure S14: 1H NMR spectrum of $[\text{Cp}^{35}\text{Al–PDip}]_2$ (1b) in C_6D_6 at room temperature.

![Figure S14: 1H NMR spectrum of $[\text{Cp}^{35}\text{Al–PDip}]_2$ (1b) in C_6D_6 at room temperature.](image)

Figure S15: $^{31}\text{P}[^1\text{H}]$ NMR spectrum of $[\text{Cp}^{35}\text{Al–PDip}]_2$ (1b) in C_6D_6 at room temperature.

![Figure S15: $^{31}\text{P}[^1\text{H}]$ NMR spectrum of $[\text{Cp}^{35}\text{Al–PDip}]_2$ (1b) in C_6D_6 at room temperature.](image)
3.3 [Cp3Al–PTip]$_2$ (1c)

A solution of Cp3Al (22.2 mg, 85.4 µmol) in C$_6$D$_6$ (0.6 mL) was added to P$_3$Tip$_3$ (20.0 mg, 28.5 µmol) in a J-Young-NMR tube resulting in an orange solution. The reaction showed a very slow conversion and a continuous colour change to red was observed. Afterwards the reaction mixture was transferred into a vial inside a glove box and was filtered. The solvent was evaporated, and the residue was washed with n-pentane to give [Cp3Al–PTip]$_2$ (1c) (19.1 mg, 19.6 µmol, 46%). Single crystals for X-ray diffraction were obtained by slow evaporation of a saturated C$_7$H$_8$ solution at −30°C.

1H NMR (401 MHz, C$_6$D$_6$) δ [ppm] = broad signals observed due to fluctuating system.

31P NMR (C$_6$D$_6$): δ –116.4 –118.0 ppm. HRMS (LIFDI): (m/z) Calculated for [C$_{58}$H$_{92}$Al$_2$P$_2$]$^+$ 988.7227; Found 988.7239 [M]$^+$

Figure S16: 1H NMR spectrum of [Cp3Al–PTip]$_2$ (1c) in C$_6$D$_6$ at room temperature.
Figure S17: 31P(1H) NMR spectrum of $[\text{Cp}^{3}\text{Al}−\text{PTip}]_2$ (1c) in C$_6$D$_6$ at room temperature.

3.4 $[\text{Cp}^{3}\text{Al}(\mu-\text{PPh})]_2$ (1d)

A solution of Cp^{3}Al (36.1 mg, 138 µmol) in C$_6$D$_6$ (0.6 mL) was added to P$_5$Ph$_5$ (15.0 mg, 27.8 µmol) in a J-Young-NMR tube resulting in a clear yellow solution. After 1 h yellow crystals precipitated. Afterwards the reaction mixture was transferred into a vial inside a glove box and was filtered. The solvent was evaporated, and the residue was washed with n-pentane to give $[\text{Cp}^{3}\text{Al}(\mu-\text{PPh})]_2$ (1d) (38.6 mg, 53.4 µmol, 77 %). Single crystals for X-ray diffraction were obtained by slow evaporated of a saturated C$_6$H$_6$ solution.
1H NMR (400 MHz, C$_6$D$_6$): δ [ppm] = 7.83 (m, 4H, aryl-CH), 7.23-7.19 (t, $J = 7.4$ Hz, 4H, aryl-CH), 7.09-7.05 (t, $J = 7.5$ Hz, 2H, aryl-CH), 6.35 (s, 4H, Cp-CH), 1.51 (s, 18H, Cp-C(CH$_3$)$_3$), 1.44 (s, 36H, Cp-C(CH$_3$)$_3$). 27Al NMR (104 MHz, C$_6$D$_6$): No signal could be observed, probably due to its broadness. 31P NMR (162 MHz, C$_6$D$_6$): δ [ppm] = −130.6 (s). HRMS (LIFDI): (m/z) Calculated for [C$_{46}$H$_{68}$Al$_2$P$_2$]$^+$ 736.4422; Found 736.4400 [M]$^+$.

Figure S18: 1H NMR spectrum of [Cp35Al(μ-PPh)$_2$]$_2$ (1d) in C$_6$D$_6$ at room temperature.
Figure S19: $^{31}P{^1}H$ NMR spectrum of $[\text{Cp}^3\text{Al}(\mu-\text{PPh})]_2$ (1d) in C_6D_6 at room temperature.

3.5 $[\text{Cp}^3\text{Al}(\text{PtBu})_3]$ (2)

A solution of Cp^3Al (30.0 mg, 115 µmol) in C_6D_6 (0.6 mL) was added to P_3Bu_3 (30.5 mg, 115 µmol) in a J-Young-NMR tube resulting in a clear yellow solution. After heating for 24 h at 60°C a yellow solid precipitated. The solvent was evaporated and the residue was washed with cold n-hexane to give $[\text{Cp}^3\text{Al}(\text{PtBu})_3]$ (2) (40.7 mg, 77.6 µmol, 67%). Single crystals for X-ray diffraction were obtained by slow evaporated of a saturated C_6H_6 solution.
1H NMR (400 MHz, C$_6$D$_6$): δ [ppm] = 6.32 (s, 2H, H$_{Cp}$), 1.63 (s, 18H, C(CH$_3$)$_3$), 1.51-1.46 (m, 27H, C(CH$_3$)$_3$), 1.29 (s, 9H, C(CH$_3$)$_3$). 13C(1H) NMR (101 MHz, C$_6$D$_6$): δ [ppm] = 132.6 (C$_{Cp}$), 127.4(C$_{Cp}$), 111.8 (C$_{Cp}$), 34.5-33.8 (m, C(CH$_3$)$_3$), 34.3 (s, C(CH$_3$)$_3$), 32.6 (s, C(CH$_3$)$_3$), 32.3 (s, 30.5-30.4 (m, C(CH$_3$)$_3$). 27Al NMR (104 MHz, C$_6$D$_6$): No signal could be observed, probably due to its broadness. 31P NMR (162 MHz, C$_6$D$_6$): δ [ppm] = 76.1 (d, $J = 210.6$ Hz), −60.6 (t, $J = 210.6$ Hz) HRMS (LIFDI): (m/z) Calculated for [C$_{29}$H$_{56}$AlP$_3$]$^+$ 524.3405; Found 524.3403 [M]$^+$

Figure S20: 1H NMR spectrum of [Cp31Al(PtBu)$_3$] (2) in C$_6$D$_6$ at room temperature.
Figure S21: $^{13}\text{C}(1\text{H})$ NMR spectrum of [Cp31Al(PtBu)$_3$] (2) in C$_6$D$_6$ at room temperature.

Figure S22: $^{31}\text{P}(1\text{H})$ NMR spectrum of [Cp31Al(PtBu)$_3$](1d) in C$_6$D$_6$ at room temperature.
3.6 [Cp*Al(μ-PMes)]₂ (3a)

[AlCp*]₄ (20.0 mg, 30.8 µmol) and P₃Mes₃ (18.5 mg, 41.1 µmol) were combined in a J-Young-NMR tube and C₆D₆ (0.6 mL) was added. The mixture was heated to 80°C over a period of 16 h, resulting in an intense yellow solution. The reaction mixture was transferred into a vial inside a glove box and was filtered. Evaporation of the solvent afforded [Cp*Al(μ-PMes)]₂ (3a) as analytically pure light yellow solid (18.1 mg, 51.1 µmol, 82%). Single crystals for X-ray diffraction were obtained from a saturated n-pentane solution at −30°C.

¹H NMR (400 MHz, C₆D₆): δ [ppm] = 6.91 (s, 4H, aryl-CH), 2.88 (s, 12H, CH₃), 2.17 (s, 6H, CH₃), 1.72 (s, 30H, Cp-CH₃). ¹³C(¹H) NMR (101 MHz, C₆D₆): δ [ppm] = 143.2 (t, o-C(CH₃)), 135.2 (C₆r, p-C(CH₃)), 128.7 (C₆q), 115.95 (C₅(CH₃)₃), 27.2 (p-(CH₃)), 21.2 (o-(CH₃)), 10.1(Cp-CH₃). ²⁷Al NMR (104 MHz, C₆D₆): No signal was detected, probably due to its broadness. ³¹P NMR (162 MHz, C₆D₆): δ [ppm] = −208.2 (s). HRMS (LIFDI): (m/z) Calculated for [C₃₈H₅₂Al₂P₂]⁺ 624.3170; Found 624.3168 [M]⁺.
Figure S23: 1H NMR spectrum of [Cp*Al(μ-PMes)]$_2$ (3a) in C$_6$D$_6$ at room temperature.

Figure S24: 13C(1H) NMR spectrum of [Cp*Al(μ-PMes)]$_2$ (3a) in C$_6$D$_6$ at room temperature.
Figure S25: $^{31}\text{P}^{[1\text{H}]}$ NMR spectrum of $[\text{Cp}^*\text{Al}(\mu-\text{PMes})]_2$ (3a) in C_6D_6 at room temperature.

3.7 $[\text{Cp}^*\text{Al}(\mu-\text{PDip})]_2$ (3b)

$[\text{AlCp}^*]_4$ (20.0 mg, 30.8 µmol) and P_3Dip_3 (23.7 mg, 41.1 µmol) were combined in a J-Young-NMR tube and C_6D_6 (0.6 mL) was added. The mixture was heated to 80°C over a period of 16 h, resulting in an intense yellow solution. The reaction mixture was transferred into a vial inside a glove box and was filtered. Evaporation of the solvent afforded $[\text{DipP-AlCp}^*]_2$ (3b) as analytically pure off-white powder (37.8 mg, 61.7 µmol, 86%). Single crystals for X-ray diffraction were obtained from a saturated n-pentane solution at −30°C.
1H NMR (400 MHz, C$_6$D$_6$): δ [ppm] = 7.20-7.11 (m, 6H, aryl-CH), 4.82 (m, 4H, CH(CH$_3$)$_2$), 1.72 (s, 30H, Cp-CH$_3$), 1.56-1.54 (d, J = 6.8 Hz, 24H, CH(CH$_3$)$_2$). 13C(1H) NMR (101 MHz, C$_6$D$_6$): δ [ppm] = 153.8 (t, C$_{quat}$), 137.5 (t, C$_{Ar}$), 127.2 (t, C$_{Ar}$), 122.9 (t, C$_{Ar}$), 115.9 (C$_{Cp}$), 34.2 (t, CH(CH$_3$)$_2$)), 25.2 (CH(CH$_3$)$_2$)), 10.6 (Cp-CH$_3$). 27Al NMR (104 MHz, C$_6$D$_6$): No signal could be observed, probably due to its broadness. 31P NMR (162 MHz, C$_6$D$_6$): δ [ppm] = –230.6 (s). HRMS (LIFDI): (m/z) Calculated for [C$_{44}$H$_{64}$Al$_2$P$_2$]$^+$ 708.4109; Found 708.4105 [M]$^+$

Figure S26: 1H NMR spectrum of [Cp*Al(μ-PDip)$_2$]$_2$ (3b) in C$_6$D$_6$ at room temperature.
Figure S27: 13C{H} NMR spectrum of $[\text{Cp}^*\text{Al}(\mu-\text{PDip})]_2$ (3b) in C$_6$D$_6$ at room temperature.

Figure S28: 31P{H} NMR spectrum of $[\text{Cp}^*\text{Al}(\mu-\text{PDip})]_2$ (3b) in C$_6$D$_6$ at room temperature.
3.8 [Cp*Al(μ-PTip)]$_2$ (3c)

[AlCp*]$_4$ (0.018 g, 0.027 mmol) and P$_3$Tip$_3$ (0.025 g, 0.035 mmol) were combined in an NMR tube fitted with a J-Young valve and C$_6$D$_6$ (0.6 mL) was added. The mixture was heated to 80°C over a period of 16 h, resulting in a clear yellow solution. Afterwards the reaction mixture was transferred into a vial inside a glove box and was filtered. Evaporation of the solvent afforded [Cp*Al(μ-PTip)]$_2$ (3c) as an analytically pure off-white powder. X-ray quality crystals were grown from a saturated n-hexane solution at −30°C for 24 h. NMR spectra were obtained from the same sample that was used for single crystal XRD, thus a minimal amount of the hydrolysis product TipPH$_2$ is detected.

Yield: 0.035 g, 0.044 mmol (92 %)

CHN calc. (found) for C$_{50}$H$_{76}$Al$_2$P$_2$ in %: C 75.72 (75.32), H 9.66 (9.82).

1H NMR (300.13 MHz, C$_6$D$_6$): δ [ppm] = 7.12 (s, 4H, aryl-CH), 4.89–4.75 (m, 4H, o-$CH(\text{CH}_3)_2$), 2.84 (sept, 3J$_{H,H} = 6.8$ Hz, 2H, p-$CH(\text{CH}_3)_2$), 1.73 (s, 30H, Cp-CH_3), 1.61 (d, 3J$_{H,H} = 6.8$ Hz, 24H, o-$CH(\text{CH}_3)_2$), 1.26 (d, 3J$_{H,H} = 6.8$ Hz, 12H, p-$CH(\text{CH}_3)_2$).

13C NMR (75.48 MHz, C$_6$D$_6$): δ [ppm] = 153.78 (C$_{\text{quat}}$), 147.23 (C$_{\text{quat}}$), 134.68 (C$_{\text{quat}}$), 120.96 (Aryl-CH), 115.95 (C$_5(\text{CH}_3)_5$), 34.73 (C, p-$CH(\text{CH}_3)_2$), 34.31 (t, 2C, o-$CH(\text{CH}_3)_2$), 25.46 (4C, o-$CH(\text{CH}_3)_2$), 24.44 (2C, p-$CH(\text{CH}_3)_2$), 10.67 (5C, Cp-CH_3).

31P NMR (122 MHz, C$_6$D$_6$) δ [ppm] = −231.60.
Figure S29: 1H NMR spectrum of $[\text{Cp}^*\text{Al(μ-PTip)}]_2$ (3c) in C_6D_6 at room temperature.

Figure S30: 13C(1H) NMR spectrum of $[\text{Cp}^*\text{Al(μ-PTip)}]_2$ (3c) in C_6D_6 at room temperature.
Figure S31: 31P-1H NMR spectrum of [Cp*Al(μ-PTip)]$_2$ (3c) in C$_6$D$_6$ at room temperature.

3.9 [Cp*Al(μ-AsDip)]$_2$ (4a)

[Cp*$_4$Al$_4$] (0.020 g, 0.031 mmol) and Dip$_3$As$_3$ (0.029 g, 0.041 mmol) were suspended in 0.6 mL of C$_6$D$_6$. The suspension was heated to 80 °C for 16 h to give a yellow suspension. The suspension was filtered through a microfiber filter and the remaining solid was washed with 0.6 mL of n-pentane. All volatile components were removed from the combined solutions under reduced pressure to give [Cp*Al(μ-AsDip)]$_2$ (4a) as a yellow solid.

Crystals suitable for single crystal X-ray diffraction were obtained from a saturated solution of 4a in n-pentane at −30 °C.
Yield: 0.039 g (0.049 mmol; 79%).

1H NMR (300 MHz, C$_6$D$_6$, 298 K): $d = 1.51$ (d, 3J$_{H,H}$ = 6.8 Hz, 24H, CH(CH$_3$)$_2$), 1.71 (s, 30H, C$_5$(CH$_3$)$_5$), 4.64 (hept, 3J$_{H,H}$ = 6.8 Hz, 4H, CH(CH$_3$)$_2$), 7.11-7.13 (m, 1H, CH$_{Aryl}$), 7.11-7.16 (m, 5H, CH$_{Aryl}$)* ppm (* = overlap with C$_6$D$_5$H signal). 13C(1H) NMR (75 MHz, C$_6$D$_6$, 298 K): $d = 10.6$ (C$_5$(CH$_3$)$_5$), 25.2 (CH(CH$_3$)$_2$), 36.0 (CH(CH$_3$)$_2$), 116.3 (C$_5$(CH$_3$)$_5$), 123.0 (CH$_{Aryl}$), 127.4 (CH$_{Aryl}$), 142.6 (C$_{q,Aryl}$), 152.9 (C$_{q,Aryl}$) ppm.

To obtain a sufficient CHN analysis different strategies were tried, but the C content was invariably too low, even though isolated single crystals were used.

Figure S32: 1H NMR spectrum of [Cp*Al(μ-AsDip)]$_2$ (4a) in C$_6$D$_6$ at room temperature.
Figure S33: 13C(1H) NMR spectrum of [Cp*Al(μ-AsDip)]$_2$ (4a) in C$_6$D$_6$ at room temperature.

3.10 [Cp*Al(μ-AsTip)]$_2$ (4b)

[Cp*$_4$Al$_4$] (0.015 g, 0.023 mmol) and Tip$_3$As$_3$ (0.026 g, 0.031 mmol) were suspended in 0.6 mL of C$_6$D$_6$. The suspension was heated to 80 °C for 16 h to give a yellow suspension. The suspension was filtered through a microfiber filter and the remaining solid was washed with 0.6 mL of n-pentane. All volatile components were removed from the combined solutions under reduced pressure to give [Cp*Al(μ-AsTip)]$_2$ (4b) as a yellow solid.

Crystals suitable for single crystal X-ray diffraction were obtained from a saturated solution of 4b in n-pentane at −30 °C.
Yield: 0.027 g (0.031 mmol; 66%).

1H NMR (300 MHz, C$_6$D$_6$, 298 K): $d = 1.27$ (d, 3$J_{H,H} = 6.9$ Hz, 12H, CH(CH$_3$)$_2$), 1.58 (d, 3$J_{H,H} = 6.8$ Hz, 24H, CH(CH$_3$)$_2$), 1.72 (s, 30H, C$_5$(CH$_3$)$_5$), 2.83 (hept, 3$J_{H,H} = 6.6$ Hz, 2H, CH(CH$_3$)$_2$), 4.66 (hept, 3$J_{H,H} = 6.8$ Hz, 4H, CH(CH$_3$)$_2$), 7.14-7.15 (m, 4H, CH$_Aryl$) ppm.

13C(1H) NMR (75 MHz, C$_6$D$_6$, 298 K): $d = 10.6$ (C$_5$(CH$_3$)$_5$), 24.4 (CH(CH$_3$)$_2$), 25.3 (CH(CH$_3$)$_2$), 34.6 (CH(CH$_3$)$_2$), 36.0 (CH(CH$_3$)$_2$), 116.2 (C$_5$(CH$_3$)$_5$), 121.0 (CH$_Aryl$), 139.6 (C$_q$Aryl), 147.1 (C$_q$Aryl), 152.9 (C$_q$Aryl) ppm.

To obtain a sufficient CHN analysis different strategies were tried, but the C content was invariably too low, even though isolated single crystals were used.

Figure S34: 1H NMR spectrum of [Cp*Al(μ-AsTip)]$_2$ (4b) in C$_6$D$_6$ at room temperature.
Figure S35: 13C(1H) NMR spectrum of [Cp*Al(μ-AsTip)]$_2$ (4b) in C$_6$D$_6$ at room temperature.

3.11 [Cp3tAl(liPr$_2$)(µ-PPh)]$_2$ (5)

A solution of liPr$_2$ (8.37 mg, 54.3 µmol) in C$_6$D$_6$ (0.6 mL) was added to [Cp3tAl(µ-PPh)]$_2$ (1d) (20.0 mg, 27.2 µmol) in a J-Young-NMR tube resulting in a clear yellow solution. After 1 h yellow crystals precipitated. The solvent was evaporated, and the residue was washed with n-pentane to give [Cp3tAl(liPr$_2$)(µ-PPh)]$_2$ (38.6 mg, 53.4 µmol, 77 %). Single crystals for X-ray diffraction were obtained by slow evaporated of a saturated C$_6$H$_6$ solution.

1H NMR (400 MHz, C$_6$D$_6$): δ [ppm] = 7.85 (d, J=7.1, 4H), 7.17 (t, J=7.5, 4H), 7.00 (t, J=7.1, 2H), 6.52 (s, 4H), 6.20 (s, 4H), 5.71 (m, 4H), 1.56 (s, 36H), 1.23 (d, J=6.7, 12H), 1.12 (s,
18H), 1.01 (d, J=6.1, 12H). $^{13}\text{C} (\text{^1H}) \text{ NMR}$ (101 MHz, C_6D_6): δ [ppm] = 149.8 (C$_{\text{quat}}$), 139.4 (CH$_\text{Cp}$), 136.0 (CH-aryl), 128.5 (C$_{\text{quat}}$), 126.7 (CH-aryl), 122.6 (C$_{\text{quat}}$), 116.9 (CH$_{\text{iPr}}$), 51.7 (CH(CH$_3$), 37.3 (C$_{\text{quat}}$), 34.1 (C$_{\text{quat}}$), 33.7 (C(CH$_3$)$_3$), 30.2 (C(CH$_3$)$_3$), 24.3 (CH(CH$_3$)$_2$), 23.6 (CH(CH$_3$)$_2$). $^{27}\text{Al NMR}$ (104 MHz, C_6D_6): No signal could be observed, probably due to its broadness. $^{31}\text{P NMR}$ (162 MHz, C_6D_6, r.t.): δ [ppm] = −123.3. (162 MHz, C_7D_8, −80 °C): −122.4-122.8 (d, J = 67.1 Hz) 129.5-129.9 (d, J = 67.1 Hz) HRMS (LIFDI): (m/z) Calculated for $\text{C}_{64}\text{H}_{100}\text{Al}_2\text{N}_4\text{P}_2$ 1041.4181; Found 1041.4113 [M]$^+$.

Figure S36: $^1\text{H NMR}$ spectrum of [Cp$^{3}\text{Al}(\text{iPr}_2)(\mu-\text{PPh})]_2$ (5) in C_6D_6 at room temperature.
Figure S37: 13C(1H) NMR spectrum of [Cp35Al(iPr$_2$)(μ-PPh)$_2$ (5) in C$_6$D$_6$ at room temperature.

Figure S38: 31P(1H) NMR spectrum of [Cp35Al(iPr$_2$)(μ-PPh)$_2$ (5) in C$_6$D$_6$ at room temperature.
Figure S39: 31P{1H} NMR spectrum of [Cp30Al(iPr$_2$)(μ-PPh)]$_2$ (5) in toluene-d_8 at −80 °C.
4 Additional spectroscopic details

4.1 UV-vis spectra and extinction coefficients of 1b and 1c.

UV-vis spectra of substances 1b and 1c were recorded in benzene. The UV-vis cuvettes were filled in the Glovebox and sealed with Teflon tape and Teflon grease.

Figure S40: UV-vis spectra of 1b (c = 0.08 mg/mL, top) and 1c (c = 0.08 mg/mL, blue, bottom) in benzene at room temperature (absorption maxima see Table S5).
Table S5. Absorption maxima λ_{max} and experimental extinction coefficients ε for 1b and 1c.

Comp	λ_{max} [nm]	ε [l·mol$^{-1}$·cm$^{-1}$]
1b	339	4347
1c	340	3954
5 Computational details

5.1 General remarks

Computations were carried out using Gaussian16, revision C.01[11] and the standalone versions of NBO 7.0,[12] IBOView,[13] and Multiwfn 3.8.[14]

Structure optimizations employed the hybrid DFT functional PBE0[15] in conjunction with Grimme’s dispersion correction D3(BJ)[16] and the def2-SVP basis set[17] (notation PBE0-D3(BJ)/def2-SVP). All structures were fully optimized and confirmed as minima by frequency analyses. Partial charges were determined by the atomic dipole moment corrected Hirshfeld (ADCH)[18] population method. The bonding situation of selected systems was analysed using the Mayer bond order,[19] natural bond orbital (NBO),[12] and intrinsic bond orbital (IBO)[13] methods. Chemical shifts and coupling constants were derived by the GIAO method.[20] The calculated absolute shifts ($\sigma_{\text{calc},X}$) were referenced to the experimental absolute shift of 85% H$_3$PO$_4$ in the gas phase ($\sigma_{\text{ref},1} = 328.35$ ppm),[21] using PH$_3$ ($\sigma_{\text{ref},2} = 594.45$ ppm) as a secondary standard:[22]

$$\delta_{\text{calc},X} = (\sigma_{\text{ref},1} - \sigma_{\text{ref},2}) - (\sigma_{\text{calc},X} - \sigma_{\text{calc},PH_3})$$

$$= \sigma_{\text{calc},PH_3} - \sigma_{\text{calc},X} - 266.1 \text{ ppm}$$

At the PBE0-D3/def2-SVP level of theory, $\sigma_{\text{calc},PH_3}$ amounts to +629.17 ppm.

Free energy calculations were computed by single-point calculations at the PBE0-D3(BJ)/def2-TZVP level.[16,17] Solvation effects were taken into account using the SMD[23] model (solvent=benzene, $\varepsilon=2.2706$). A concentration correction of $\Delta G_{0\rightarrow*} = RT \ln(24.46) = 1.89 \text{ kcal mol}^{-1}$ ($T = 298.15 \text{ K}$) was added to the free energies of all calculated species to change the 1.00 atm gas phase values to the condensed phase standard state concentration of 1.00 mol/L, which leads to a proper description of associative/dissociative steps.[24]
5.2 Summary of calculated data

Table S3. Summary of calculated data, including electronic energies and thermal corrections.

Compd.	E_{tot}	G_{tot}	ADCH charge	$\sigma_{\text{calc},X}$ (ppm)	$\delta_{\text{calc},X}$ (ppm)
Cp3Al	-907.085508	-906.707931	-	-	-
(Cp*Al)$_4$	-2528.644576	-2527.839057	-	-	-
(PMes)$_3$	-2071.713331	-2071.250071	-	-	-
(PtBu)$_3$	-1496.911913	-1496.586521	-	-	-
(PDip)$_3$	-2425.229849	-2424.515115	-	-	-
(PTip)$_3$	-2778.774572	-2777.826381	-	-	-
(PPh)$_5$	-2863.624691	-2863.218533	-	-	-

Alternating Al$_2$P$_2$ Heterocycles

[Cp3Al(μ-PMes)$_2$]$_2$ (1a)	-3195.413338	-3194.311661	P: -0.186	Al: +0.162	559.91	-196.84
[Cp3Al]$_2$(PPh)$_3$ (1d)	-2959.715682	-2958.767090	P: -0.184	Al: +0.156	511.66	-148.59
[Cp3Al(μ-PDip)$_2$]$_2$	-3431.024735	-3429.744721	-	-	-	-
[Cp3Al(μ-PtBu)$_2$]$_2$	-2812.195224	-2811.185656	-	-	-	-

Head-to-head Al$_2$P$_2$ Heterocycles

[(Cp3Al)$_2$(PDip)$_3$] (1b)	-3431.063993	-3429.788879	P: -0.065	Al: +0.061	510.06	-146.99
[(Cp3Al)$_2$(PTip)$_3$] (1c)	-3666.763177	-3665.333337	P: -0.069	Al: +0.060	509.90	-146.83
[(Cp3Al)$_2$(PPh)$_3$]	-3195.384040	-3194.281993	-	-	-	-

AlP$_3$ Heterocycles

| [Cp3Al(PtBu)$_3$] (2) | -2404.060592 | -2403.334154 | P(1): -0.098 | P(2): -0.017 | P(3): -0.107 | Al: +0.194 | 313.17 | 444.64 | 49.90 | -81.57 |
| [Cp3Al(PMes)$_3$] | -2978.855877 | -2977.995979 | - | - | - | - |

Systems with AlCp*

| [Cp*Al(μ-PMes)$_2$] (3a) | -2645.522001 | -2644.812999 | P: -0.257 | Al: +0.157 | 560.18 | -197.11 |
| [Cp*Al(μ-PDip)$_2$] (3b) | -2881.195254 | -2880.309422 | P: -0.211 | - | 604.64 | -241.57 |
Compd.	E_{tot}[a]	G_{tot}[b]	ADCH charge	$\sigma_{\text{calc,x}}$ (ppm)	$\delta_{\text{calc,x}}$ (ppm)
			Al: +0.157		
[Cp*Al(\(\mu\)-PTip)]_2 (3c)	-3116.893938	-3115.852709	P: -0.211	604.96	-241.89
			Al: +0.157		
[(Cp*Al)_2(PDip)_2]	-2881.170828	-2880.288611	-	-	-

Lewis Base Stabilised Al\(_2\)P\(_2\) Heterocycles

Compd.	E_{tot}[a]	G_{tot}[b]	ADCH charge	$\sigma_{\text{calc,x}}$ (ppm)	$\delta_{\text{calc,x}}$ (ppm)
			Al(1): +0.162	513.86	-150.79
			P(2): -0.237		
			Al(3): +0.158		
			P(4): -0.142		

[a] Total SCF energy in a.u. at the SMD(solvent=benzene)/PBE0-D3(BJ)/def2-TZVP level from optimized structures at PBE0-D3(BJ)/def2-SVP. [b] Total Gibbs free energy in a.u. (298.15 K, including concentration correction) at the SMD(solvent=benzene)/PBE0-D3(BJ)/def2-TZVP level.

5.3 Bonding analysis of 1a

Figure S41: The P–Al bonding in 1a as depicted by the NBO (left) and IBO (right) approaches.
5.4 Optimized structures (.xyz-files)

5.4.1 Cp³Al

Atom	Coordinates		
Al	0.413939000	-0.002509000	-1.885596000
C	1.596750000	-0.005747000	0.121042000
C	3.111761000	-0.011092000	0.231702000
C	0.744519000	-1.132020000	0.116356000
H	1.085259000	-2.162951000	0.117579000
C	0.750566000	1.121011000	0.100606000
H	1.092508000	2.151806000	0.082527000
C	3.702754000	-1.236682000	-0.469686000
H	3.342655000	-2.175377000	-0.022516000
H	4.800569000	-1.232214000	-0.385118000
C	3.441756000	-1.247164000	-1.539666000
C	-0.624236000	-0.723920000	0.105568000
C	-0.621716000	0.719419000	0.078477000
H	3.704270000	1.255337000	-0.390353000
H	3.434494000	1.339831000	-1.454926000
C	4.802634000	1.238540000	-0.316456000
H	3.354633000	2.163459000	0.123361000
C	-1.721781000	1.786822000	0.151771000
C	-2.972589000	1.469723000	-0.671353000
C	-2.717134000	1.307158000	-1.730304000
H	-3.670007000	2.320083000	-0.620731000
H	-3.513840000	0.588556000	-0.310077000
C	-2.098032000	1.997651000	1.627883000
H	-2.511255000	1.088111000	2.083179000
H	-2.848659000	2.799085000	1.722224000
H	-1.211865000	2.288654000	2.212002000
C	-1.191969000	3.127619000	-0.382711000
H	-0.387585000	3.541052000	0.241751000
H	-2.006764000	3.867167000	-0.386974000
H	-0.816276000	3.031045000	-1.413500000
C	3.470713000	-0.058638000	1.724960000
H	3.059462000	0.813696000	2.255304000
H	4.564085000	-0.062356000	1.863390000
H	3.061919000	-0.963522000	2.199009000
C	-1.748881000	-1.774444000	0.147076000
C	-2.506671000	-1.875845000	-1.185315000
C	-2.960725000	-0.927300000	-1.490827000
C	-3.399222000	-2.627362000	-1.108830000
C	-1.825784000	-2.191047000	-1.991211000
C	-1.156503000	-3.166471000	0.414490900
H	-0.489872000	-3.493913000	-0.396800000
H	-1.972684000	-3.901531000	0.481621000
H	-0.596290000	-3.197918000	1.360987000
C	-2.719799000	-1.493172000	1.301210000
H	-2.178099000	-1.416940000	2.256357000
H	-3.446477000	-2.316146000	1.388670000
H	-3.298352000	-0.567907000	1.162304000
5.4.2 (Cp*Al)$_4$

(Cp*Al)$_4$ @ PBE0-D3(BJ)/def2-SVP

Al 0.868087000 0.958241000 1.035285000
C 1.260677000 3.041696000 1.948119000
C 2.476909200 2.634610000 1.325145000
C 2.944571000 1.476292000 2.003686000
C 2.024241000 1.170613000 3.049687000
C 0.985071000 2.145135000 3.022916000
C 0.498131000 4.279749000 1.613085000
C 3.119453000 4.279749000 0.174573000
C 4.215264000 0.729056000 1.772657000
C 2.217662000 -0.051377000 4.018435000
C 0.98513000 2.245996000 3.944439000
H 0.392135000 4.413501000 0.527601000
H 1.012415000 5.174404000 2.005178000
H 4.154088000 3.000422000 0.023834000
H 3.147877000 4.425855000 0.340291000
H 2.577132000 3.166662000 -0.771950000
H 4.819724000 1.190444000 0.981859000
H 4.033478000 -0.317482000 1.485560000
H 4.826794000 -0.837352000 3.121857000
H 1.464008000 0.065746000 4.815647000
H 3.288720000 0.118610000 4.497508000
H 2.161562000 -0.934082000 3.527488000
H -1.135210000 1.997156000 -0.887991000
H -0.289201000 3.264355000 4.350264000
H -0.085075000 1.563046000 4.798780000
Al -1.062938000 0.941109000 -0.887991000
C -3.262682000 1.670818000 -1.240225000
C -2.455976000 2.816233000 -0.972967000
C -1.491499000 2.930582000 -2.014345000
C -1.696335000 1.843366000 -2.914854000
C -2.797202000 1.070583000 -2.442811000
C -4.444277000 1.278656000 -0.417914000
C -2.683736000 3.735427000 0.181054000
C -4.493240000 3.989856000 -2.174577000
C -0.984896000 1.630269000 -4.208499000
C -3.341454000 -0.144351000 -3.121857000
H -4.165136000 1.036258000 0.618688000
H -4.958996000 0.496519000 -0.837352000
H -5.174842000 2.103381000 -0.372300000
H -3.727536000 4.089117000 0.197372000
H -2.035654000 4.619432000 0.133480000
H -2.494300000 3.238403000 1.147684000
H -0.632400000 4.837259000 -1.499786000
H -0.439358000 4.385624000 -3.201693000
H 0.564951000 3.610796000 -1.959112000
H -0.859273000 0.561324000 -4.431508000
H 0.012518000 2.087936000 -4.284527000
H -1.550272000 2.075210000 -5.045826000
H -2.623884000 -0.982701000 -3.187160000
H -3.575581000 0.061288000 -4.178242000
H -4.266582000 -0.493822000 -2.643163000
Al 1.046259000 -0.781323000 -1.041855000
C 2.273258000 -0.810532000 -3.020840000
C 3.213167000 -0.890671000 -1.952282000
5.4.3 (PMes)$_3$
5.4.4 \((\text{PtBu})_3\)

Atoms	Cartesian Coordinates
P	0.192730000 1.132103000 0.841082000
P	-0.986216000 0.037940000 -0.661204000
P	0.098658000 -1.097754000 0.871500000
C	1.594217000 2.032007000 -0.096330000
C	-2.781179000 0.129887000 -0.661204000
C	1.345933000 -2.169813000 -0.092850000
C	0.549642000 -3.458914000 -0.329930000
H	0.136277000 -4.226916000 0.606823000
C	1.863892000 -1.649897000 -1.423628000
H	2.520779000 -0.780080000 0.129678000
H	1.040261000 -2.834209000 1.835286000
H	2.455837000 -3.197400000 1.739560000
H	1.671550000 -1.474947000 -0.998882000
C	-2.937199000 0.150328000 -1.991749000
C	1.435345000 -0.535408000 1.936345000
H	1.381715000 3.489616000 -0.371570000
C	2.938562000 1.543159000 0.438097000
C	1.021363000 2.359275000 1.739560000
C	3.353270000 1.499754000 -0.409350000
H	2.344079000 2.555126000 1.430970000
C	0.402848000 3.870913000 0.005891000
H	2.161637000 4.127571000 -0.112140000
C	3.352020900 1.421168000 -1.745923000
H	-2.842891000 2.300145000 -0.248511000
C	-3.468726000 -1.103231000 -0.626170000
C	-3.502090000 -1.143397000 -1.722812000
H	2.938562000 1.543159000 0.438097000
C	3.155200000 0.513941000 0.121323000
H	2.602918000 3.870913000 0.005891000
C	3.750789000 2.190356000 0.065022000
P	0.113591000 -1.180438000 -0.424711000
P	-1.340022000 0.091032000 0.651021000
C	-3.820187000 -0.034566000 -0.804407000
C	-2.860713000 -0.738441000 -0.033583000
C	-3.736641000 1.465907000 -1.003198000
H	-2.672215000 1.717807000 -1.128581000
C	1.764438000 -1.361865000 0.395512000

5.4.5 \((\text{PDip})_3\)

Atoms	Cartesian Coordinates		
P	-1.804380000 -0.424711000		
P	-0.910320000 0.651021000		
C	-0.034566000 -0.804407000		
C	-0.738441000 -0.033583000		
C	1.465907000 -1.003198000		
H	1.717807000 -1.128581000		
C	-1.361865000 0.395512000		
	X	Y	Z
---	------------	------------	------------
H	4.367614000	0.142841000	-0.738045000
C	-0.906275000	3.509133000	0.176588000
H	-1.529135000	2.697071000	0.176588000
C	2.717029000	0.906275000	-1.956959000
H	2.087912000	-0.010310000	-1.783526000
C	-1.379036000	4.798698000	-0.100292000
H	-0.819442000	5.675872000	0.260817000
H	-2.445167000	4.975691000	0.111459000
C	1.585159000	4.133315000	0.590688000
H	1.284672000	0.006530000	1.183780000
C	2.834957000	3.982677000	0.226854000
H	3.579942000	1.346452000	2.517540000
H	2.715154000	0.560294000	4.113518000
H	3.046403000	2.242675000	4.113518000

5.4.6 (PTip)_3

117
(PTip)_3 @ PBE0-D3(BJ)/def2-SVP

	X	Y	Z
P	-1.380679000	0.388955000	-0.410790000
P	-0.376511000	-1.423695000	-0.321902000
C	1.280314000	-1.726063000	0.453919000
C	1.995170000	-0.936536000	-1.389536000
C	-3.207060000	0.118295000	0.231044000
C	1.853000000	-2.950390000	0.003750000
C	-3.898049000	-0.593379000	-0.782729000
C	-3.958284000	0.717671000	1.279378000
C	3.104337000	-3.337819000	0.486757000
H	3.544698000	-4.273738000	0.137043000
C	3.828545000	-2.559329000	1.384620000
C	1.421494000	0.314905000	2.016530000
H	0.788714000	0.795674000	1.259988000
C	3.251653000	-1.368127000	1.819421000
H	3.799827000	-0.744141000	2.527706000
C	-5.348004000	0.569706000	1.303040000
H	-5.916935000	1.023252000	2.116570000
C	-3.329388000	1.494596000	2.427523000
H	-2.282062000	1.698017000	2.160171000
C	-6.037407000	-0.136245000	0.320763000
C	-3.239268000	-1.260391000	-1.975438000
H	-2.156952000	-1.098687000	-1.912954000
C	-5.287869000	-0.700179000	-0.710278000
H	-5.804814000	-1.253182000	-1.493570000
C	1.132901000	-3.883129000	-0.963890000
C	0.522827000	-3.257080000	-1.635906000
C	5.209465000	-2.974403000	1.841910000
C	5.399535000	-3.974914000	1.416602000
C	0.527933000	-0.059685000	3.198504000
H	-0.254641000	-0.772099000	2.898748000

S56
5.4.7 (PPh)$_5$

60

(PPh)$_5$ @ PBE0-D3(BJ)/def2-SVP
P
P
P
P
P
C
C
C
C
C
C
H
C
H
H
H
C
C
C
C
H
H
H
C
H
H
5.4.8 \([\text{Cp}^{3\text{Al}(\mu-\text{PMes})}_2]\) (1a)

\[
\begin{array}{ccc}
\text{H} & 5.063558000 & -3.246661000 & -1.806394000 \\
\text{C} & 1.624325000 & 2.499156000 & -0.115425000 \\
\text{C} & 2.281140000 & 2.829509000 & -1.310721000 \\
\text{C} & 2.019255000 & 3.141585000 & 1.068174000 \\
\text{C} & 3.323432000 & 3.753136000 & -1.313975000 \\
\text{H} & 1.979688000 & 2.353160000 & -2.248176000 \\
\text{C} & 3.064156000 & 4.062378000 & 1.060166000 \\
\text{C} & 2.281114000 & 2.829509000 & -1.310721000 \\
\text{C} & 2.019255000 & 3.141585000 & 1.068174000 \\
\text{C} & 3.323432000 & 3.753136000 & -1.313975000 \\
\text{H} & 1.979688000 & 2.353160000 & -2.248176000 \\
\end{array}
\]
	X	Y	Z
H	-1.61899000	-5.79851800	2.35289900
H	-0.08270300	-6.63807000	2.02679200
Al	-0.45787000	-1.06673100	1.15246200
P	0.49920000	-1.26959500	-0.95217500
C	-0.76684600	-1.44373900	3.36562700
C	0.04713900	-2.47069900	2.81643400
H	1.06484500	-2.68552600	3.13094400
C	-0.69349600	-3.25150700	1.87628500
C	-1.99344300	-2.62842800	1.76658300
C	-2.00338700	-1.53449300	2.69748200
H	-2.83216500	-0.84734400	2.83873000
C	-3.26878700	-2.99120800	0.96859800
C	-4.39960700	-2.02819700	1.33763000
H	-4.66356200	-2.09535700	2.48347800
H	-4.15383200	-0.98129800	1.18929000
H	-5.29597100	-2.28953000	0.75530000
C	-3.73878200	-4.39823200	1.35265100
H	-3.85589800	-4.48797600	2.44353500
H	-4.71599000	-4.60170900	0.88698300
C	-3.04882000	-5.18234900	1.02806000
C	-3.07430500	-2.89125500	-0.55121900
H	-2.26940100	-3.52708400	-0.92746000
H	-4.00786000	-3.17911600	-1.06057800
H	-2.83263700	-1.86341600	-0.85292600
C	-0.39334500	-0.54227700	4.52426600
C	-1.48420900	0.50307000	4.74596900
H	-1.19302700	1.19611400	5.54981700
H	-1.66784300	1.08943500	3.83626600
H	-2.43297800	0.02939300	5.04063800
C	0.95491100	0.14256600	4.27478500
H	1.75894000	-0.59699100	4.13417100
H	0.91253700	0.77655900	3.37571100
H	1.23053000	0.77113700	5.13618900
C	-0.28689400	-1.42540100	5.77753900
H	-0.52531800	-0.81039300	6.66129000
H	-1.23336200	-1.95433100	5.96795500
H	0.50657900	-2.18070100	5.66902900
C	2.08178500	-2.16696400	-1.23047300
C	3.23126600	-1.91817900	-0.43254300
C	4.42187200	-2.59863600	-0.70532400
H	5.29704100	-2.38298600	-0.88167800
C	4.52831200	-3.52788500	-1.73723100
C	3.38637900	-3.79041200	-2.48763600
H	3.43544700	-4.53542900	-3.28835700
C	2.16875800	-3.13768900	-2.25632000
C	0.99831200	-3.54372200	-3.10996900
H	0.12854800	-2.89533200	-2.93945700
H	1.25835000	-3.51127200	-4.17861900
H	0.69988800	-4.57931100	-2.88140100
C	5.83196100	-4.21346300	-2.02302300
H	5.69612200	-5.07920700	-2.68664300
H	6.54094200	-3.52632700	-2.51435500
H	6.31354900	-4.56416800	-1.09731300
C	3.18839600	-0.99633100	0.74687000
H	4.19584400	-0.80178800	1.14235900
H	2.70841700	-0.04160300	0.49790700
H	2.58042000	-1.42777400	1.56018700
5.4.9 \[
\text{[(Cp}^3\text{Al)}_2\text{(PPh)}_2\text{]}(1d)\]

Atom	X	Y	Z
P	0.142828	-1.338823	1.012746
Al	1.585132	0.251022	0.119218
C	3.574114	-0.086434	-0.869616
C	3.659409	-0.570095	0.498750
C	3.485466	0.556263	1.338148
H	3.378765	0.522425	2.423847
C	3.206800	1.729711	0.556756
C	3.333890	1.323580	-0.788326
H	3.165682	1.966962	-1.646478
C	3.679756	-0.791019	-2.231840
C	3.669926	0.248748	-3.361793
H	3.767855	-0.267951	-4.328204
H	4.508696	0.955609	-3.272393
H	2.730994	0.818236	-3.395040
C	4.993959	-1.568654	-2.367454
H	5.085723	-1.970478	-3.388560
H	5.065153	-2.415603	-1.675890
C	2.469793	-1.707999	-2.468370
C	2.556571	-2.214860	-3.443264
H	1.544702	-1.110355	-2.489734
H	2.356181	-2.473627	-1.693440
C	4.075184	-1.906862	1.123104
C	3.480894	-3.151806	0.454772
H	3.790968	-4.045944	1.017175
H	3.819885	-3.288749	-0.577937
H	2.380693	-3.110221	0.462256
C	5.612101	-1.973320	1.096691
C	5.960718	-2.897576	1.585206
C	6.042858	-1.117500	1.638533
C	6.012045	-1.956118	0.075156
C	3.641971	-1.966620	2.596041
H	3.914196	-2.947028	3.014331
C	2.555281	-1.846357	2.708954
C	4.144721	-1.206262	3.210902
C	2.966322	3.127746	1.094628
C	2.531577	4.069309	-0.028233
C	2.360418	5.080710	0.371100
H	1.593723	3.717821	-0.485738
H	3.300437	4.145952	-0.812184
C	4.279139	3.632694	1.709552
C	4.153687	4.651980	2.108859
H	5.081062	3.654985	0.955984
H	4.690443	2.981236	2.533169
C	1.872527	3.108487	2.169216
H	1.765896	4.110845	2.575084
H	2.147708	2.447565	3.011889
H	0.917821	2.744616	1.747726
C	-0.068414	-1.455711	2.825628
C	0.395353	-0.424034	3.784294
H	0.753686	0.485667	3.297888
C	0.098143	-0.538654	5.076431
H	0.394659	0.279998	5.737432
C	-0.495683	-1.684635	5.606176
H	-0.665872	-1.770467	6.681881
---	----	----	----
C	-0.864490000	-2.721401000	4.750032000
H	-1.322784000	-3.627972000	5.153675000
C	-0.643795000	-2.612760000	3.378039000
H	-0.921831000	-3.438002000	2.717557000
P	-0.142828000	1.338823000	-1.012746000
Al	-1.585132000	-0.251022000	-0.119218000
C	-3.574140000	0.886834000	0.869616400
C	-3.659409000	0.570095000	0.788326000
C	-3.405466000	-0.556263000	0.788326000
H	-3.378765000	-0.522425000	0.788326000
C	-3.574114000	-2.612760000	3.378039000
H	-3.659409000	-3.438002000	2.717557000
C	-0.864490000	2.721401000	-4.750032000
C	-0.305353000	0.424034000	-3.704294000
C	-0.753686000	-0.856670000	-3.297880000
C	-0.981433000	0.538654000	-5.076431000
C	-0.394650000	-0.279998000	-5.737432000
C	0.495683000	1.684635000	-5.601760000
C	0.665872000	1.770467000	-6.681881000
C	0.864490000	2.721401000	-4.750032000
5.4.10 \([\text{Cp}^{3}\text{Al}(\mu-\text{PDip})]_2\)

\[
\begin{array}{cccc}
\text{C} & 4.531317000 & 1.809358000 & -0.233623000 \\
\text{C} & 3.767470000 & 2.792263000 & -1.133244000 \\
\text{H} & 3.767470000 & 2.792263000 & -1.133244000 \\
\text{C} & 4.645529000 & 2.452655000 & 1.143528000 \\
\end{array}
\]
5.4.11 \([\text{Cp}^3\text{Al(μ-PtBu)}]_2\)

P	0.124265000	-1.734063000	-0.850470000
P	-0.012327000	0.488779000	1.651540000
Al	1.641470000	-0.308698000	0.144356000
C	3.552923000	-0.415904000	-0.937030000
H	3.624855000	-1.073120000	-1.797223000
C	3.197716000	0.969884000	-0.994189000
C	3.241020000	1.462288000	0.370113000
C	3.793779000	-0.817555000	0.405181000
C	4.374753000	-2.139701000	0.856580000
-----	---	---	---
C	3.605445000	0.360239000	1.185631000
H	3.694679000	0.399906000	2.266155000
C	2.928878000	1.651216000	-2.347454000
C	3.061622000	2.855790000	0.986854000
C	0.194057000	-2.866018000	-2.382853000
C	-0.002912000	-0.689482000	3.178492000
C	1.429332000	1.902372000	-2.550831000
H	1.812134000	2.547311000	-1.768515000
H	0.875824000	0.951376000	-2.524453000
C	1.241657000	2.383235000	-3.524343000
C	-1.308166000	-0.439591000	3.946544000
H	-2.178502000	-0.745557000	3.363513000
H	-1.412507000	0.625716000	4.200001000
H	-1.303051000	-1.016720000	4.888157000
C	3.398426000	0.740936000	-3.491408000
H	3.232371000	1.250399000	-4.452587000
H	2.843372000	-0.204808000	-3.524755000
H	4.471955000	0.512255000	-3.411156000
C	0.119545000	-2.167455000	2.834403000
H	1.060724000	-2.387878000	2.308733000
H	-0.684268000	-2.505656000	2.164636000
H	0.089410000	-2.779712000	3.753723000
C	3.675813000	-3.306186000	0.154937000
H	2.600492000	-3.325031000	0.390901000
H	4.118917000	-4.264365000	0.468038000
H	3.774363000	-3.238730000	-0.939221000
C	1.170073000	-0.273905000	4.066835000
H	1.180605000	-0.884923000	4.986677000
H	1.095351000	0.782656000	4.364664000
H	2.135128000	-0.416861000	3.561212000
H	0.459031000	-4.289140000	-1.885400000
H	0.499635000	-4.990436000	-2.738191000
H	-0.335522000	-4.627005000	-1.203113000
H	1.413912000	-4.355689000	-1.344329000
C	4.239028000	-2.311097000	2.369468000
H	4.764877000	-1.515751000	2.918575000
H	4.675085000	-3.272354000	2.681482000
H	3.184944000	-2.303855000	2.683150000
C	1.861467000	3.630995000	0.433216000
H	1.960502000	3.883825000	-0.628017000
H	1.751759000	4.579064000	0.981985000
H	0.935186000	3.054919000	0.575852000
C	3.715929000	2.956917000	-2.506966000
H	4.790699000	2.792832000	-2.336500000
H	3.380166000	3.747977000	-1.828552000
H	3.591491000	3.334229000	-3.533922000
C	-1.134212000	-2.834312000	-3.132414000
H	-1.345976000	-1.834348000	-3.532688000
C	-1.968735000	-3.132984000	-2.483598000
H	-1.182574000	-3.539766000	-3.981602000
C	2.827347000	2.743872000	2.500356000
H	2.674341000	3.751086000	2.916407000
H	3.687186000	2.305144000	3.027253000
H	1.928729000	2.147727000	2.713257000
C	4.365018000	3.650881000	0.798534000
H	4.621117000	3.806164000	-0.255514000
H	5.205654000	3.120002000	1.270938000
H	4.275978000	4.639662000	1.277011000
C	5.865751000	-2.137288000	0.485647000
H	6.002141000	-2.035709000	-0.601621000

S67
Element	X	Y	Z
H	6.34688	-3.07562	0.885664
H	6.38908	-1.29983	0.970576
C	1.31188	-2.43237	-3.324374
H	2.28996	-2.44704	-2.823228
H	1.13298	-1.41756	-3.708822
H	1.37016	-3.11758	-4.188696
C	-3.67194	0.09516	1.124220
Al	-1.51918	-0.41783	-1.007725
C	-3.51839	-0.58709	-1.007725
H	-3.84696	0.074803	2.194577
C	-3.40194	1.26463	0.379822
H	-1.13298	-1.41756	-3.708822
C	-3.15568	0.837513	-0.983682
C	-3.45034	2.647796	1.046247
C	-3.01263	1.585254	-2.317068
C	-4.14056	-2.44897	0.671493
C	-3.86204	-2.759469	2.145676
C	-3.48439	-3.52352	-0.191530
C	-5.65923	-2.462988	0.438541
H	-3.29389	-1.20621	-1.894270
C	-2.10522	3.387697	1.049132
C	-3.84886	2.497633	2.521946
C	-4.54010	3.507580	0.388258
H	-2.20668	2.881263	-2.253396
C	-3.30880	0.694292	-3.350320
C	-4.42727	1.883546	-2.842313
H	-1.70625	3.560090	0.045596
H	-1.35393	2.810970	1.697650
H	-2.22647	4.369776	1.534111
H	-3.90182	3.494145	2.985590
H	-3.10665	1.911120	3.082211
H	-4.83505	2.023360	2.638679
H	-2.78263	-2.777658	2.354229
H	-4.27201	-3.747021	2.407910
H	-4.32729	-2.029630	2.816680
H	-3.73700	-3.393508	-1.254493
H	-3.83732	-4.522345	0.107999
H	-2.38740	-3.498955	-0.094492
H	-2.68786	3.657596	-1.651484
H	-2.08638	3.286051	-3.270596
H	-1.19980	2.702409	-1.846630
H	-5.56833	2.983187	0.392460
H	-4.30518	3.770346	-0.650252
H	-4.66853	4.450304	0.945254
H	-2.14279	1.263835	-4.276953
H	-2.90647	-0.187442	-3.619340
H	-1.33178	0.348201	-2.979188
H	-4.98946	2.533061	-2.158633
H	-4.99932	0.951066	-2.962551
H	-4.37473	2.382348	-3.823745
H	-6.16023	-1.705583	1.060235
H	-6.08241	-3.449503	0.688123
H	-5.89476	-2.243942	-0.614010
5.4.12 \([(\text{Cp}^3\text{Al})_2(\text{PDip})_2]\) (1b)

\[
\begin{array}{cccc}
\text{P} & 1.058297000 & 1.226074000 & 0.262653000 \\
\text{P} & -1.056510000 & 1.228438000 & -0.263827000 \\
\text{Al} & 1.333673000 & -1.136817000 & -0.104418000 \\
\text{Al} & -1.336238000 & -1.133685000 & 0.105113000 \\
\text{C} & 2.353947000 & -3.206136000 & 0.329977000 \\
\text{H} & 1.801631000 & -4.029213000 & 0.769110000 \\
\text{C} & 2.447147000 & -2.949851000 & 2.328141000 \\
\text{C} & -1.777143000 & 2.368936000 & 0.905387000 \\
\end{array}
\]

\[
\begin{array}{cccc}
P & 1.056510000 & 1.228438000 & -0.263827000 \\
\text{P} & -1.056510000 & 1.228438000 & -0.263827000 \\
\text{Al} & 1.333673000 & -1.136817000 & -0.104418000 \\
\text{Al} & -1.336238000 & -1.133685000 & 0.105113000 \\
\text{C} & 2.353947000 & -3.206136000 & 0.329977000 \\
\text{H} & 1.801631000 & -4.029213000 & 0.769110000 \\
\text{C} & 2.447147000 & -2.949851000 & 2.328141000 \\
\text{C} & -1.777143000 & 2.368936000 & 0.905387000 \\
\end{array}
\]
5.4.13 [(Cp^3Al)_2(PTip)_2] (1c)

\[
\begin{array}{ccc}
\text{H} & -1.098023000 & 4.827300000 & -2.684815000 \\
\text{H} & -0.205133000 & 4.156491000 & -1.302090000 \\
\text{C} & -0.107198000 & 1.634150000 & -3.795665000 \\
\text{H} & -0.856771000 & 1.963544000 & -3.063274000 \\
\text{H} & -0.530932000 & 0.799390000 & -4.374217000 \\
\text{C} & 0.088339000 & 2.462592000 & -4.495020000 \\
\text{C} & -0.601878000 & -0.928485000 & -0.332832000 \\
\text{H} & -0.613597000 & -1.535970000 & -1.242376000 \\
\text{H} & -0.880448000 & -0.190250000 & -0.346476000 \\
\text{H} & -0.218851000 & -1.595085000 & 0.528898000 \\
\text{C} & -4.764704000 & 0.621991000 & 1.079489000 \\
\text{H} & -5.068245000 & 0.016846000 & 1.946028000 \\
\text{H} & -5.514552000 & 1.418220000 & 0.967269000 \\
\text{H} & -3.805879000 & 1.106704000 & 1.301739000 \\
\text{C} & -3.643525000 & 4.491887000 & -1.733807000 \\
\text{H} & -4.538309000 & 3.946054000 & -1.398706000 \\
\text{H} & -3.635140000 & 4.487816000 & -2.834840000 \\
\text{H} & -3.752501000 & 5.542353000 & -1.420010000 \\
\text{C} & -3.239622000 & -4.589384000 & 2.703673000 \\
\text{H} & -4.002432000 & -3.887511000 & 3.073264000 \\
\text{H} & -2.964192000 & -5.263080000 & 3.531196000 \\
\text{H} & -3.695508000 & -5.193085000 & 1.904404000 \\
\text{C} & -3.087205000 & -2.243193000 & -2.617157000 \\
\text{C} & 3.648870000 & 4.485032000 & 1.736187000 \\
\text{H} & 4.542690000 & 3.937861000 & 1.400716000 \\
\text{H} & 3.638752000 & 4.480870000 & 2.837218000 \\
\text{H} & 3.759779000 & 5.535490000 & 1.423236000 \\
\text{C} & -2.320355000 & -1.065650000 & -3.230533000 \\
\text{H} & -2.693602000 & -0.091764000 & -2.896354000 \\
\text{H} & -2.373988000 & -1.098952000 & -4.330529000 \\
\text{H} & -1.257896000 & -1.112959000 & -2.944306000 \\
\text{C} & -2.412762000 & -3.527511000 & -3.117816000 \\
\text{H} & -1.357729000 & -3.582840000 & -2.822802000 \\
\text{H} & -2.445078000 & -3.549328000 & -4.217518000 \\
\text{H} & -2.924876000 & -4.428916000 & -2.748862000 \\
\text{C} & -4.525449000 & -2.289972000 & -3.149116000 \\
\text{H} & -5.084151000 & -3.121481000 & -2.692917000 \\
\text{H} & -4.509649000 & -2.451429000 & -4.238304000 \\
\text{H} & -5.082572000 & -1.365085000 & -2.966287000 \\
\end{array}
\]

\[5.4.13 \quad [(\text{Cp}^3\text{Al})_2(\text{PTip})_2] (1c)\]
	C	1.071219000	1.119123000	3.638723000
	H	1.380373000	0.162972000	3.194878000
	H	0.221783000	0.930502000	4.312676000
	H	1.902635000	1.508606000	4.247733000
	C	1.071101000	-1.120030000	-3.638813000
	H	1.381041000	-0.164077000	-3.195066000
	H	0.222040000	-0.930730000	-4.313041000
	H	1.902288000	-1.510357000	-4.247733000
	C	0.112701000	-3.390572000	-3.155404000
	H	0.836369000	-3.873609000	-3.830342000
	H	0.221783000	-0.930502000	-4.312676000
	H	1.902288000	-1.510357000	-4.247733000
	C	0.112701000	-3.390572000	-3.155404000
	H	0.836369000	-3.873609000	-3.830342000
	H	0.221783000	-0.930502000	-4.312676000
	H	1.902288000	-1.510357000	-4.247733000
	C	0.112701000	-3.390572000	-3.155404000
	H	0.836369000	-3.873609000	-3.830342000
	H	0.221783000	-0.930502000	-4.312676000
	H	1.902288000	-1.510357000	-4.247733000
	C	0.112701000	-3.390572000	-3.155404000
	H	0.836369000	-3.873609000	-3.830342000
	H	0.221783000	-0.930502000	-4.312676000
	H	1.902288000	-1.510357000	-4.247733000
	C	0.112701000	-3.390572000	-3.155404000
	H	0.836369000	-3.873609000	-3.830342000
	H	0.221783000	-0.930502000	-4.312676000
	H	1.902288000	-1.510357000	-4.247733000
	C	0.112701000	-3.390572000	-3.155404000
	H	0.836369000	-3.873609000	-3.830342000
	H	0.221783000	-0.930502000	-4.312676000
	H	1.902288000	-1.510357000	-4.247733000
	C	0.112701000	-3.390572000	-3.155404000
	H	0.836369000	-3.873609000	-3.830342000
	H	0.221783000	-0.930502000	-4.312676000
	H	1.902288000	-1.510357000	-4.247733000
C	4.177728000	0.542760000	-1.903319000
H	5.171698000	0.720574000	-1.461070000
H	4.321662000	0.175816000	-2.932219000
H	3.690618000	-0.255950000	-1.327027000
C	5.235830000	-4.147776000	-2.127124000
H	5.993167000	-3.106850000	-1.340932000
C	-3.510742000	-2.394132000	-2.706831000
H	-2.984526000	-1.478146000	-2.639471000
H	-4.151337000	-2.315078000	-3.598846000
C	5.881547000	3.289013000	3.220789000
H	5.172072000	3.099349000	4.042283000
H	6.763079000	3.791825000	3.649422000
C	6.195960000	2.312303000	2.825385000
H	6.944766000	2.890683000	1.340932000
H	5.371250000	3.831916000	-2.748585000
H	6.224956000	2.544865000	-3.843340000
C	6.491267000	3.115560000	-2.537033000
C	6.166373000	-0.546337000	1.903817000
H	6.220544000	-0.724802000	1.461634000
H	6.390130000	0.252703000	1.327027000
C	4.823547000	5.513834000	2.659866000
H	4.320153000	0.179459000	2.932718000
H	3.690103000	0.252703000	1.327027000
C	4.819256000	5.517652000	2.659909000
H	4.376993000	6.132539000	1.864269000
H	5.689258000	6.053544000	3.075214000
C	4.075297000	5.420100000	3.463170000
C	-5.109836000	-3.928481000	-1.555944000
H	-4.409358000	-4.770455000	-1.663364000
H	-5.779345000	-3.925849000	-2.431318000
C	-5.718201000	-4.108276000	-0.656677000
C	-4.819256000	-5.517652000	-2.659909000
C	4.376993000	-6.136254000	-1.864605000
H	5.684618000	-6.057954000	-3.075283000
H	4.071256000	-5.423050000	-3.463312000
C	5.789352000	-3.293570000	-3.219852000
H	5.170291000	-3.103182000	-4.041527000
H	6.760632000	-3.796953000	-3.648332000
H	6.197025000	-2.317210000	-2.824087000

5.4.14 [(Cp^3Al)_2(PMes)_2]
5.4.15 $[\text{Cp}^{3\text{t}}\text{Al(PtBu)}_{3}]$ (2)

| $[\text{Cp}^{3\text{t}}\text{Al(PtBu)}_{3}]$ (2) @ PBE0-D3(BJ)/def2-SVP |
|---------------------------------|-----------------|-----------------|
| P | 1.426375000 | -1.573756000 |
| P | 2.744883000 | 0.185754000 |
| P | 1.175717000 | 1.673192000 |
| Al | -0.330814000 | 0.018479000 |
| C | -2.164265000 | -1.130580000 |
| H | -2.080672000 | -2.043256000 |
| C | -2.164440000 | -1.012683000 |
| C | -2.279698000 | 0.485515000 |
| C | -2.271350000 | 0.174229000 |
| C | -2.557347000 | 0.470821000 |
| C | -2.346215000 | 1.086682000 |
| H | -2.420705000 | 2.163611000 |
| C | -2.160911000 | -2.277217000 |
| C | -2.502859000 | 1.198870000 |
| C | 1.943483000 | -2.296648000 |
| C | 3.537794000 | -0.137460000 |
| C | 1.437604000 | 2.988767000 |
| C | -0.924519000 | -2.411190000 |
| H | -0.760698000 | -1.538662000 |
| H | -0.819985000 | -2.555671000 |
| H | -1.839955000 | -3.289996000 |
| C | 2.773666000 | 3.672585000 |
| H | 3.685517000 | 2.954251000 |
| H | 2.785388000 | 4.120164000 |
| H | 2.957871000 | 4.473868000 |
| C | -2.170764000 | -3.525330000 |
| H | -2.170104000 | -4.423470000 |
| H | -1.274139000 | -3.573548000 |
| H | -3.064116000 | -3.570215000 |
| C | 1.457853000 | 2.408078000 |
| H | 0.511305000 | 1.897425000 |
| H | 2.272142000 | 1.677975000 |
| H | 1.606179000 | 3.206300000 |
| C | -1.567904000 | -0.242604000 |
| H | -0.548282000 | 0.145114000 |
| H | -1.843548000 | -0.090354000 |
| H | -1.545135000 | -1.326783000 |
| C | 0.299318000 | 3.999331000 |
| H | 0.434329000 | 4.823422000 |
| H | 0.269198000 | 4.435371000 |
| H | -0.680399000 | 3.539653000 |
| C | 2.150870000 | -1.253331000 |
| H | 2.462844000 | -1.739171000 |
| H | 2.933196000 | -0.535639000 |
| H | 1.229889000 | -0.689323000 |
| C | -2.510187000 | 1.974481000 |
| H | -3.271258000 | 2.515406000 |
| H | -2.707236000 | 2.170065000 |
| H | -1.526557000 | 2.402789000 |
| C | -1.735351000 | 0.680220000 |
| H | -2.078823000 | -0.318480000 |
| H | -1.891740000 | 1.367120000 |
Atom	X	Y	Z
H	-0.653865000	-3.303820000	0.640447000
C	2.523455000	-2.855287000	-0.449417000
H	3.039642000	-3.815287000	-0.624890000
H	1.944770000	-2.610550000	-1.352931000
H	1.823911000	-2.995812000	0.389801000
C	-3.442482000	-2.400731000	-2.322586000
H	-4.336269000	-1.770877000	-2.193620000
H	-3.459900000	-3.178160000	-1.549169000
H	-3.519749000	-2.906550000	-3.297560000
C	3.252215000	1.663676000	-3.054150000
H	3.139862000	0.890948000	-3.829080000
H	4.054027000	1.345339000	-2.369713000
C	3.577955000	2.599594000	-3.541260000
H	2.070769000	-2.103001000	2.662259000
H	-2.215879000	-3.050757000	3.201951000
H	-2.666388000	-1.343410000	3.188279000
C	-1.006165000	-1.833525000	2.732297000
C	4.488932000	-1.578595000	-1.318407000
H	5.233269000	-0.790549000	-1.120932000
H	3.935159000	-1.392130000	-2.231723000
C	4.057410000	-2.517991000	-1.516636000
C	4.319333000	-2.113439000	1.127558000
H	4.854498000	-3.068488000	0.989280000
H	3.643289000	-2.225572000	1.990136000
C	5.063835000	-1.339179000	1.372426000
C	-4.012936000	-2.578137000	1.197973000
C	5.032789000	-2.517991000	-1.516636000
C	4.319333000	-2.113439000	1.127558000
H	4.854498000	-3.068488000	0.989280000
H	3.643289000	-2.225572000	1.990136000
C	5.063835000	-1.339179000	1.372426000
C	4.057410000	-2.517991000	-1.516636000
C	4.319333000	-2.113439000	1.127558000
H	4.854498000	-3.068488000	0.989280000
H	3.643289000	-2.225572000	1.990136000
C	5.063835000	-1.339179000	1.372426000
C	5.032789000	-2.517991000	-1.516636000
C	4.319333000	-2.113439000	1.127558000
H	4.854498000	-3.068488000	0.989280000
H	3.643289000	-2.225572000	1.990136000
C	5.063835000	-1.339179000	1.372426000

5.4.16 [Cp3Al(PMes)\textsubscript{3}]

Atom	X	Y	Z
P	1.074749000	1.294643000	0.509328000
P	-0.880877000	1.666924000	-0.483247000
P	-1.659209000	-0.250260000	0.342273000
Al	0.593661000	-0.987637000	0.219014000
C	2.473577000	-1.981680000	0.960040000
H	3.280582000	-1.393405000	1.383907000
C	1.363822000	-2.502775000	1.703568000
C	0.510407000	-3.179548000	0.746695000
C	2.340046000	-2.272572000	-0.411320000
C	3.358562000	-2.041592000	-1.510740000
C	1.113990000	-2.983354000	-0.536847000
H	0.723265000	-3.391618000	-1.467181000
C	1.278841000	-2.306082000	3.226055000
C	-0.721147000	-4.084714000	0.878930000
C	-1.745867000	2.993277000	0.484711000
C	0.143825000	-3.346084000	3.688854000
---	---	---	---
H	-0.836375000	-1.672852000	3.245859000
H	0.332836000	-0.346876000	3.187423000
H	0.087365000	-1.241177000	4.703896000
C	2.577496000	-1.669669000	3.741375000
H	2.515637000	-1.556902000	4.833960000
H	2.735037000	-0.668788000	3.321166000
H	3.458636000	-2.289140000	3.516164000
C	4.435204000	-1.057652000	-1.059319000
H	4.986140000	-1.436820000	-0.186640000
C	2.681824000	-1.508201000	-2.774516000
H	1.903464000	-2.193340000	-3.144083000
H	3.421157000	-1.380073000	-3.579981000
H	2.219758000	-0.529246000	-2.586113000
C	-1.767640000	-3.688161000	1.888152000
H	-1.403055000	-3.613355000	2.921105000
H	-2.642211000	-4.274829000	1.847440000
C	1.137513000	-3.647547000	3.955260000
H	1.948732000	-4.335298000	3.670915000
H	0.183767000	-4.146874000	3.751969000
C	-1.444319000	-4.204020000	-0.472349000
H	-2.346299000	-4.820609000	-0.345835000
H	-0.826310000	-4.696686000	-1.236588000
H	-1.767959000	-3.225385000	-0.854693000
C	-0.222271000	-5.490737000	1.254335000
H	0.293452000	-5.504789000	2.222521000
H	0.480585000	-5.866521000	0.495212000
H	-1.071779000	-6.190256000	1.308792000
C	4.011026000	-3.399245000	-1.815654000
C	4.493411000	-3.813692000	-0.917367000
H	4.778837000	-3.283440000	-2.597843000
H	3.267723000	-4.130711000	-2.168042000
C	2.520187000	2.002240000	-0.383407000
C	-1.860857000	3.095632000	1.892781000
C	-2.569813000	4.167340000	2.443174000
C	-3.174333000	5.149178000	1.655979000
C	-3.061089000	5.829514000	0.272686000
C	-2.363417000	3.976350000	-0.326984000
C	-1.259841000	2.097819000	2.833816000
H	-2.652539000	4.231325000	3.530921000
C	-3.900905000	6.302160000	2.284100000
H	-3.534741000	5.778558000	-0.369147000
C	-2.312669000	3.936470000	-1.832632000
H	-1.597486000	1.077893000	2.590526000
H	-1.538853000	2.322365000	3.872613000
H	-0.161847000	2.091099000	2.754302000
H	-2.877635000	4.779883000	-2.255467000
H	-2.736601000	3.003174000	-2.233161000
H	-1.280061000	3.996406000	-2.210117000
H	-4.485988000	5.980870000	3.158969000
C	-4.585126000	6.785090000	1.571845000
C	-3.191509000	7.070910000	2.633834000
C	3.648533000	2.246734000	0.442989000
C	4.837715000	2.706234000	-0.126729000
C	4.959739000	2.954337000	-1.493397000
C	3.836999000	2.730429000	-2.288821000
C	2.624900000	2.265425000	-1.769868000
5.4.17 \([\text{Cp}^*\text{Al}(\mu-\text{PMes})_2] (3a)\)

Al	-0.050580000	-1.131240000	1.057133000
P	0.213350000	1.188090000	1.274647000
C	-1.191752000	2.078415000	2.064919000
C	-2.549217000	1.819033000	1.761532000
C	-3.552222000	2.561412000	2.395690000
H	-4.597278000	2.352230000	2.146792000
C	-3.265772000	3.555614000	3.330884000
C	-1.922397000	3.794338000	3.628388000
H	-1.667752000	4.565685000	4.362238000
C	-0.888261000	3.078706000	3.022389000
C	0.530962000	3.381699000	3.407538000
H	0.573791000	4.185618000	4.156345000
H	1.129842000	3.680571000	2.533769000
C	1.029839000	2.490861000	3.821497000
C	-2.962901000	0.762689000	0.782980000
H	-4.056359000	0.718304000	0.683043000
H	-2.613067000	-0.235890000	1.089560000
C	-2.538816000	0.931575000	-0.220222000
C	-4.356205000	4.332923000	4.888138000
Atom	X	Y	Z
------	-----------	-----------	-----------
H	-4.18056	5.41774	3.93620
H	-4.41247	4.08736	5.08146
H	-5.33944	4.11878	3.56572
C	0.80308	-1.91475	2.98911
C	1.02718	-2.88527	1.95341
C	-0.24377	-3.33316	1.49072
C	-1.25450	-2.61335	2.19896
C	-0.60110	-1.75014	3.14227
C	-1.25095	-0.81521	4.10812
H	-1.36215	-1.26083	5.11575
H	-2.27467	-0.55462	3.80643
H	-0.69229	0.12861	4.18802
C	1.83722	-1.16490	3.76230
H	1.75401	-1.37178	4.84100
H	1.72794	-0.07682	3.61628
C	2.85360	-1.43865	3.44822
C	2.34388	-3.43064	1.50082
H	2.54541	-4.40373	1.97855
H	3.17527	-2.76079	1.75963
H	2.36878	-3.58517	0.41204
C	-0.47292	-4.35169	0.42602
H	-0.45463	-5.37289	0.84293
H	0.30864	-4.29652	-0.35492
C	-1.44569	-4.20781	-0.06260
H	-2.72793	-2.81965	2.04618
H	-3.04037	-3.77063	2.50815
H	-3.02786	-2.85375	0.98778
H	-3.39126	-2.01766	2.53070
Al	0.05058	1.13124	-1.05713
P	-0.21335	-1.18809	-1.27464
C	1.19175	-2.07841	-2.06491
C	2.54921	-1.81903	-1.76153
C	3.55222	-2.56141	-2.39569
H	4.59727	-2.35230	-2.14679
C	3.26577	-3.55561	-3.33088
C	1.92239	-3.79433	-3.62838
H	1.66775	-4.56568	-4.36233
C	0.88826	-3.07870	-3.02239
C	-0.53096	-3.38169	-3.40758
H	-0.57391	-4.18561	-4.15634
H	-1.12984	-3.68057	-2.53376
H	-1.02983	-2.49086	-3.82149
C	2.96298	-0.76269	-0.78298
H	4.05635	-0.71830	-0.68343
H	2.61307	0.23589	-1.09056
H	2.53881	-0.93157	0.22022
C	4.35620	-4.33292	-4.00813
H	4.18805	-5.41777	-3.93620
H	4.41247	-4.08736	-5.08146
H	5.33944	-4.11878	-3.56572
C	-0.80308	1.91475	-2.98911
C	-1.02718	2.88527	-1.95341
C	0.24377	3.33316	-1.49072
C	1.25450	2.61335	-2.19896
C	0.60110	1.75014	-3.14227
C	1.25095	0.81521	-4.10812
H	1.30215	1.26083	-5.11575
H	2.27467	0.55462	-3.80643
H	0.69229	-0.12861	-4.18802
C	-1.83722	1.16490	-3.76230
5.4.18 [Cp²Al(μ-PDip)]₂ (3b)

[[Cp²Al(μ-PDip)]₂ (3b) @ PBE0-D3(BJ)/def2-SVP]

112	112	112				
Al	0.351239000	1.186336000	1.122833000			
C	-0.505646000	2.197277000	2.877710000			
C	-0.066521000	3.155278000	1.916082000			
C	1.347692000	2.995479000	1.749060000			
C	1.780466000	1.967858000	2.644082000			
C	0.644848000	1.471000000	3.338499000			
C	-1.925063000	2.018083000	3.309020000			
H	-2.565474000	1.724986000	2.469920000			
H	-2.332826000	2.952756000	3.727267000			
H	-2.017657000	1.240471000	4.078940000			
C	-0.961762000	4.103457000	1.190193000			
H	-1.620974000	3.580661000	0.476940000			
H	-0.387937000	4.846164000	0.619875000			
H	-1.608471000	4.648862000	1.894902000			
C	2.266188000	3.832631000	0.918559000			
H	2.895360000	3.223502000	0.250771000			
H	2.944878000	4.419421000	1.562646000			
H	1.711376000	4.543055000	0.294264000			
C	3.188703000	1.527272000	2.850648000			
H	3.234154000	0.477899000	3.172177000			
H	3.682892000	2.137339000	3.626207000			
H	3.783027000	1.620847000	1.930911000			
C	0.703828000	0.446685000	4.425372000			
H	1.215839000	-0.472606000	4.183200000			
H	-0.297257000	0.164536000	4.774020000			
H	1.255455000	0.845730000	5.292066000			
P	1.411310000	-0.816704000	0.389986000			
C	1.919448000	-1.977935000	1.739225000			
C	3.302346000	-2.029701000	2.068922000			
C	3.711204000	-2.740352000	3.200663000			
H	4.768929000	-2.766812000	3.468090000			
C	2.793965000	-3.420374000	3.991825000			
H	3.125260000	-3.958761000	4.882853000			
C	1.454757000	-3.438829000	3.622388000			
H	0.747017000	-4.009979000	4.226056000			
C	0.996180000	-2.745375000	2.496189000			
C	4.347317000	-1.387021000	1.725780000			
H	3.893262000	-0.467753000	0.767898000			
	C	H	H	C	H	H
---	-----------	-----------	-----------	-----------	-----------	-----------
C	5.645167000	-1.007995000	1.875714000			
H	6.225778000	-1.893320000	2.181175000			
H	5.466311000	-0.397016000	2.773178000			
H	6.285197000	-0.427335000	1.193713000			
C	4.628341000	-2.301861000	-0.021184000			
H	3.703881000	-2.508932000	-0.579381000			
H	5.048685000	-3.263916000	0.313316000			
H	5.345841000	-1.835360000	-0.715045000			
C	-0.473441000	-2.858916000	2.126428000			
H	-0.525433000	-2.679638000	1.039177000			
C	-1.848026000	-4.246851000	2.397249000			
H	-2.870038000	-4.319842000	1.997634000			
H	-1.115625000	-4.462133000	3.474877000			
H	-0.437259000	-5.038321000	1.936564000			
C	-1.337256000	-1.792996000	2.792997000			
H	-0.978614000	-0.782564000	2.553705000			
H	-1.329957000	-1.910058000	3.888073000			
H	-2.379563000	-1.859106000	2.443792000			
Al	-0.351239000	-1.106336000	-1.122833000			
C	0.505646000	-2.197277000	-2.877710000			
C	0.066521000	-3.155278000	-1.916082000			
C	-1.347692000	-2.995479000	-1.749060000			
C	-1.780466000	-1.967858000	-2.644802000			
C	-0.644848000	-1.471000000	-3.338499000			
C	1.925063000	-2.018083000	-3.309020000			
H	2.565474000	-1.724986000	-2.460992000			
H	2.332026000	-2.952756000	-3.727267000			
H	2.017657000	-1.240471000	-4.078940000			
C	0.961762000	-4.103457000	-1.190193000			
H	1.628974000	-3.580661000	-0.476949000			
H	0.387937000	-4.846164000	-0.619875000			
H	1.608471000	-4.648862000	-1.894902000			
C	-2.266188000	-3.832631000	-0.918559000			
H	-2.895369000	-3.223502000	-0.250771000			
H	-2.944878000	-4.414921000	-1.562646000			
H	-1.711376000	-4.543955000	-0.294264000			
C	-3.188703000	-1.527272000	-2.850648000			
H	-3.234154000	-0.477889000	-3.172177000			
H	-3.682982000	-2.137339000	-3.626207000			
H	-3.783027000	-1.628847000	-1.930911000			
C	-0.703828000	-0.446685000	-4.425372000			
H	-1.215893000	0.4726060000	-4.103280000			
H	0.297257000	-0.164536000	-4.774020000			
H	-1.255455000	-0.845730000	-5.292860000			
P	-1.411310000	0.816704000	-0.389986000			
C	-1.919448000	1.977935000	-1.739225000			
C	-3.302346000	2.029701000	-2.068922000			
C	-3.711284000	2.740352000	-3.200663000			
H	-4.768929000	2.766012000	-3.468590000			
C	-2.793065000	3.420374000	-3.991825000			
H	-3.125260000	3.958761000	-4.882853000			
C	-1.454757000	3.438829000	-3.622388000			
H	-0.747017000	4.009979000	-4.226056000			
C	-0.996180000	2.745375000	-2.496189000			
C	-4.347317000	1.387021000	-1.172578000			
H	-3.893026000	0.467753000	-0.767898000			
C	-5.645167000	1.087995000	-1.875714000			
H	-6.225778000	1.893820000	-2.181175000			
H	-5.466311000	0.397016000	-2.773178000			
H	-6.285197000	0.427335000	-1.193713000			
5.4.19 \([\text{Cp}^*\text{Al}(\mu-\text{PTip})]_2\) (3c)

\[
\begin{array}{ccc}
\text{C} & -4.628341000 & 2.301861000 & 0.021184000 \\
\text{H} & -3.703881000 & 2.508932000 & 0.579381000 \\
\text{H} & -5.345841000 & 1.835360000 & 0.715045000 \\
\text{C} & 0.473441000 & 2.858916000 & -2.126428000 \\
\text{H} & 0.525433000 & 2.679638000 & -1.839177000 \\
\text{C} & 1.048026000 & 4.246851000 & -2.397249000 \\
\text{H} & 1.115625000 & 4.462133000 & -3.474877000 \\
\text{H} & 1.337256000 & 1.792996000 & -2.792997000 \\
\text{H} & 0.978614000 & 0.782564000 & -2.553705000 \\
\text{H} & 1.329957000 & 1.910058000 & -3.888730000 \\
\text{H} & 2.379563000 & 1.859106000 & -2.443792000 \\
\end{array}
\]
Atom	X Position	Y Position	Z Position
C	0.28396500	1.24007700	3.47727000
C	-1.10843800	0.95983100	3.44742800
C	-1.75067700	1.95049400	2.64079000
C	-0.74733300	2.87104400	2.19531000
C	1.81966600	3.08988200	2.41610200
H	2.03623200	3.11765700	1.33559900
H	2.65141600	2.56799500	2.98790000
H	1.81417700	4.12907400	2.78277000
C	1.28110100	0.47533000	4.28689100
H	1.07942600	0.60905700	5.36220100
H	2.30625900	0.81792600	4.09989000
C	1.24767000	-0.60411800	4.07555100
C	-1.79278600	-1.14472000	4.17518000
H	-1.11441800	-0.99223000	4.34419300
H	-2.66449600	-0.51940700	3.62152100
C	-2.15252700	0.19766000	5.16212600
C	-3.22993200	2.05668100	2.45474500
H	-3.72660100	2.25126200	3.41920700
C	-3.66562600	1.31327500	2.04654000
C	-3.49388500	2.87547800	1.77484300
C	-0.94122200	4.06399000	1.31933900
H	-0.40691700	4.93758600	1.72343100
H	-2.00260300	4.33255400	1.23152000
H	-0.56088300	3.89014800	0.29352000
Al	-0.32710600	0.85044500	1.32996900
P	0.39597700	1.40739700	-0.82545600
C	0.48204100	-2.47824600	2.05130200
C	1.89353800	-2.51369200	2.19120100
C	2.45111900	-3.16953200	3.40882700
C	1.67445500	-3.83477000	4.24026000
C	0.29690500	-3.87493300	4.03444200
H	-0.31837700	-4.43317000	4.74534800
C	-0.31499200	-3.22889800	2.95677000
C	2.83350900	-1.86687400	1.18767100
H	2.27504000	-1.81776000	0.23768500
C	3.20028100	-0.43379400	1.55935100
H	3.75471400	-0.40439500	2.51062500
H	3.82666800	0.02592000	0.77892500
H	2.30318500	0.19165300	1.66535700
C	4.09553100	-2.69018500	0.94368800
H	3.85693300	-3.73277800	0.68344000
H	4.68321800	-2.25272600	0.12338300
H	4.75322900	-2.79020300	1.82651400
C	2.30379100	-4.49545700	5.44733600
H	1.48416600	-4.97142300	6.01294500
C	3.28951600	-5.59326400	5.04987500
H	4.14463200	-5.17934000	4.49197700
H	3.69034900	-6.10291700	5.94028400
H	2.80815000	-6.34753700	4.49626000
C	2.95901800	-3.46213200	6.36398600
H	2.23815200	-2.68934000	6.67017300
H	3.36094300	-3.93750100	7.27281500
H	3.79431300	-2.95483900	5.85503000
C	-1.80750800	-3.39648100	2.73319800
H	-2.17291800	-2.44118700	2.32175900
C	-2.04594700	-4.45853600	1.65775900
C	-1.66225400	-5.43633300	1.98392000
H	-3.12078500	-4.56477700	1.44012500
H	-1.53641700	-4.18665700	0.72203900
5.4.20 \([(\text{Cp}^*\text{Al})_2(\text{PDip})_2]\)

Element	X	Y	Z
P	0.96238500	-1.08247700	-0.50339900
P	-0.96232500	-1.08241100	0.50360500
Al	1.23241200	1.46762000	-0.45353400
Al	-1.23288600	1.46773800	0.45307800
C	3.43443300	1.89286300	-0.41776600
C	-2.21150900	-1.69805000	-0.68457600
C	-2.37232100	-1.30482000	-2.03443500
C	2.21213300	-1.69721900	0.68469400
C	-2.73564300	3.12497500	0.15841800
C	-3.43522500	1.89201900	0.41757000
C	-3.19972500	-2.65494500	-0.13234400
C	2.37297400	-1.29949800	2.03449500
C	3.11083400	-2.65358400	0.13239100
C	3.08889400	1.46251800	-1.72805400
C	1.95713100	3.43579900	-1.30279700
C	-2.89007200	3.95529000	-1.07527800
C	-3.08957600	1.46147400	1.72775100
C	-1.95840300	3.43519300	1.30299200
C	2.73446700	3.12554200	-0.15831900
C	-4.16015100	-3.14300100	-0.91437500
H	-4.85636500	-3.86807200	-0.48947400
C	3.62976200	0.25849200	-2.42132500

\[(\text{Cp}^*\text{Al})_2(\text{PDip})_2\]
5.4.21 [Cp^3t(IiPr_2)Al(μ-PPh)]_2 (5)

Atom	x-value	y-value	z-value
Al	1.880539000	0.411889000	0.870214000
P	0.402295000	-0.707275000	-0.542084000
Al	-1.362302000	0.638696000	0.179105000
P	0.267675000	2.189225000	1.069338000
C	0.342168000	-2.489757000	-0.882758000
C	1.534143000	-3.232774000	-0.976530000
H	2.486822000	-2.708334000	-0.857038000
C	1.513220000	-4.604196000	-1.214860000
C	2.455184000	-5.158026000	-1.262929000
C	0.302707000	-5.272445000	-1.405442000
C	0.285586000	-6.347352000	-1.599230000
C	-0.885215000	-4.543012000	-1.354312000
C	-1.841349000	-5.051245000	-1.504222000
C	-0.868676000	-3.174868000	-1.089656000
C	-1.811866000	-2.628217000	-1.002071000
C	0.721645000	3.366388000	-0.327966000
C	0.707728000	2.938859000	-1.683843000
H	0.437817000	1.912118000	-1.947780000
C	1.068849000	3.844305000	-2.680958000
H	1.048228000	3.530546000	-3.727837000
C	1.475820000	5.137165000	-2.348917000
H	1.768312000	5.842021000	-3.130884000
C	1.508381000	5.516831000	-1.006847000

172 [Cp^3t(IiPr_2)Al(μ-PPh)]_2 (5) @ PBE0-D3(BJ)/def2-SVP
C	1.827970000	6.525217000	-0.730469000
C	1.124630000	4.616670000	-0.014855000
H	1.138681000	4.923535000	1.034643000
C	3.826686000	0.671668000	0.179740000
C	3.583691000	0.918977000	-1.246371000
H	3.162995000	1.850175000	-1.621371000
C	3.926556000	-0.162753000	-2.028906000
C	4.484980800	-1.192676000	-1.111503000
H	4.376341000	-0.693146000	0.166845000
H	4.753842000	-1.184430000	1.062062000
C	4.707378000	1.726953000	0.914864000
C	3.638152000	-0.200558000	-3.523150000
H	5.325643000	-2.454549000	-1.378802000
H	5.092616000	1.231541000	2.309433000
C	4.215396000	0.880893000	2.869100000
H	5.574173000	2.036595000	2.887445000
C	5.803472000	0.394070000	2.254674000
C	3.989699000	3.070581000	1.016169000
H	3.058081000	3.000599000	1.598751000
C	3.799834000	3.449835000	0.023425000
H	4.637555000	3.823932000	1.493428000
H	6.002677000	1.934905000	0.115567000
H	6.700533000	2.584694000	0.668810000
H	5.795880000	2.402828000	-0.857618000
H	6.502439000	0.973162000	-0.075142000
C	3.010896000	1.124816000	-3.970476000
H	2.058867000	1.299497000	-3.453222000
H	2.811438000	1.091609000	-5.053208000
H	3.669027000	1.984501000	-3.774167000
C	4.911335000	-0.374381000	-4.362446000
H	5.439165000	-1.314134000	-4.165973000
H	5.614995000	0.448869000	-4.162532000
C	4.663201000	-0.355466000	-5.436285000
C	2.595866000	-1.285661000	-3.836808000
H	2.942761000	-2.296079000	-3.601151000
H	2.325361000	-1.261139000	-4.905186000
C	1.688871000	-1.104083000	-3.239390900
C	6.757894000	-1.982967000	-1.693865000
H	7.170533000	-1.420372000	-0.842962000
H	6.784974000	-1.321277000	-2.569982000
H	7.416953000	-2.844524000	-1.893289000
C	4.855619000	-3.383234000	-2.584416000
H	5.519363000	-4.260901000	-2.546875000
H	4.883214000	-2.912818000	-3.492211000
H	3.833612000	-3.747947000	-2.336841000
C	5.396187000	-3.328808000	-0.118479000
C	5.875341000	-2.811659000	0.724514000
H	5.991713000	-4.231395000	-0.325348000
H	4.394036000	-3.649672000	0.281013000
C	-2.985708000	-0.015563000	1.346174000
C	-3.098796000	-1.471480000	1.151344000
H	-2.386615000	-2.178554000	1.569124000
C	-4.243293000	-1.826301000	0.481780000
C	-4.944921000	-0.559131000	0.131387000
C	-4.198847000	0.459025000	0.665887000
H	-4.484341000	1.504442000	0.627783000
C	-4.663101000	-3.294734000	0.337204000
C	-6.293659000	-0.239011000	-0.538201000
C	-2.866537000	0.403414000	2.850688000
C	-6.054140000	-3.516020000	0.949671000
	X	Y	Z
H	-0.154439	2.322378	3.912527
H	0.761405	3.557493	4.792906
C	-2.241087	1.602919	-1.447820
N	-2.755567	2.856382	-1.523803
C	-3.280196	3.093628	-2.772672
H	-3.737288	4.038949	-3.047234
C	-3.082532	1.966051	-3.502970
H	-3.340482	1.735498	-4.531408
N	-2.440522	1.073171	-2.676455
C	-2.691615	3.893032	-0.482060
H	-2.831782	3.475059	0.294309
C	-2.822394	-0.267758	-3.100462
H	-1.406215	-0.639088	-2.269120
C	-4.061733	4.194379	0.185430
H	-4.511928	3.320862	0.589722
H	-4.756025	4.555833	-0.669352
H	-3.964226	4.984094	0.863859
C	-2.055947	5.158344	-1.040671
H	-1.804066	5.836207	-0.213751
H	-2.750565	5.693262	-1.708350
C	-1.133313	4.937992	-1.590059
C	-1.125573	-0.190740	-4.323283
H	-0.274195	0.480614	-4.142544
H	-1.667701	0.153623	-5.218508
H	-0.720703	-1.189589	-4.537902
C	-3.227727	-1.169920	-3.276248
H	-2.897530	-2.186012	-3.533957
H	-3.892778	-0.812634	-4.079354
H	-3.800341	-1.221840	-2.340318
6 References

[1] A. Hofmann, T. Tröster, T. Kupfer, H. Braunschweig, Chem. Sci. 2019, 10, 3421.

[2] C. Ganesamoorthy, S. Loerke, C. Gemel, P. Jerabek, M. Winter, G. Frenking, R. A. Fischer, Chem. Commun. 2013, 49, 2858.

[3] A. Schumann, F. Reiß, H. Jiao, J. Rabeah, J.-E. Siewert, I. Krummenacher, H. Braunschweig, C. Hering-Junghans, Chem. Sci. 2019, 10, 7859.

[4] M. Baudler, K. Glinka, A. H. Cowley, M. Pakulski, 1989. Organocyclophosphanes. In Inorganic Syntheses, H.R. Allcock (Ed.).

[5] L. Wu, S. S. Chitnis, H. Jiao, V. T. Anibale, I. Manners, J. Am. Chem. Soc. 2017, 139, 16780.

[6] A. Schumann, J. Bresien, M. Fischer, C. Hering-Junghans, Chem. Commun. 2021, 57, 1014.

[7] T. Schaub, U. Radius, Chem. – Eur. J. 2005, 11, 5024.

[8] SHELXT, G. Sheldrick, Acta Cryst., 2015, A71, 3–8

[9] G. Sheldrick, Acta Cryst., 2008, A64, 112–122

[10] a) G. M. Sheldrick, SADABS Version 2, University of Göttingen, Germany, 2004;
 b) Stoe & Cie (2016). X-AREA and LANA. Stoe & Cie, Darmstadt, Germany.

[11] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,
D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[12] a) E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, 2013; b) J. E. Carpenter, F. Weinhold, J. Mol. Struct.: THEOCHEM 1988, 169, 41–62; c) F. Weinhold, J. E. Carpenter, The Structure of Small Molecules and Ions, Plenum Press, 1988; d) F. Weinhold, C. R. Landis, Valency and Bonding. A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, 2005.

[13] G. Knizia, J. Chem. Theory Comput. 2013, 9 (11), 4834–4843.

[14] T. Lu, F. Chen, J. Comput. Chem. 2012, 33 (5), 580–592.

[15] a) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868; b) J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396–1396; c) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158–6170.*

[16] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.

[17] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–305.

[18] T. Lu, F. Chen, J. Theor. Comput. Chem. 2012, 11 (01), 163–183.
[19] a) I. Mayer, Chem. Phys. Lett. 1983, 97 (3), 270–274; b) I. Mayer, Int. J. Quantum Chem. 1984, 26 (1), 151–154

[20] F. London, J. Phys. Radium 1937, 8, 397–409; b) R. McWeeny, Phys. Rev. 1962, 126, 1028–1034; c) R. Ditchfield, Mol. Phys. 1974, 27, 789–807; d) K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251–8260; e) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497–5509.

[21] C. J. Jameson, A. De Dios, A. Keith Jameson, Chem. Phys. Lett. 1990, 167, 575–582.

[22] C. van Wüllen, Phys. Chem. Chem. Phys. 2000, 2, 2137–2144.

[23] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113 (18), 6378–6396.

[24] M. Sparta, C. Riplinger, F. Neese, J. Chem. Theory Comput. 2014, 10 (3), 1099–1108.