Search for exotic decays of a Higgs boson into undetectable particles and one or more photons

CMS Collaboration*

Abstract

A search is presented for exotic decays of a Higgs boson into undetectable particles and one or two isolated photons in pp collisions at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of up to 19.4 fb$^{-1}$ collected with the CMS detector at the LHC. Higgs bosons produced in gluon–gluon fusion and in association with a Z boson are investigated, using models in which the Higgs boson decays into a gravitino and a neutralino or a pair of neutralinos, followed by the decay of the neutralino to a gravitino and a photon. The selected events are consistent with the background-only hypothesis, and limits are placed on the product of cross sections and branching fractions. Assuming a standard model Higgs boson production cross section, a 95% confidence level upper limit is set on the branching fraction of a 125 GeV Higgs boson decaying into undetectable particles and one or two isolated photons as a function of the neutralino mass. For this class of models and neutralino masses from 1 to 120 GeV an upper limit in the range of 7 to 13% is obtained. Further results are given as a function of the neutralino lifetime, and also for a range of Higgs boson masses.

© 2015 CERN for the benefit of the CMS Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The detailed studies of the properties of the observed Higgs boson [1–3] are key components of the LHC physics program. In the standard model (SM) and for a given mass of the Higgs boson, all properties of the Higgs boson are predicted. Physics beyond the SM (BSM) might lead to deviations from these predictions. Thus far, measurements of the Higgs bosons couplings to fermions and bosons and of the tensor structure of the Higgs boson interaction with electroweak gauge bosons show no significant deviations [4,5] with respect to SM expectations.

Measurements of Higgs boson couplings performed for visible decay modes provide constraints on partial decay widths of the Higgs boson to BSM particles. Assuming that the couplings of the Higgs boson to W and Z bosons are smaller than the SM values, this indirect method provides an upper limit on the branching fraction of the 125 GeV Higgs boson to BSM particles of 57% at a 95% confidence level (CL) [4,6]. An explicit search for BSM Higgs boson decays presents an alternative opportunity for the discovery of BSM physics. The observation of a sizable branching fraction of the Higgs boson to undetectable (e.g. invisible or largely invisible) final states would be a clear sign of BSM physics and could provide a window on dark matter [7–10].

Several BSM models predict Higgs boson decays to undetectable particles and photons. In certain low-scale supersymmetry (SUSY) models, the Higgs bosons are allowed to decay into a gravitino (\tilde{G}) and a neutralino ($\tilde{\chi}_1^0$) or a pair of neutralinos [11,12]. The neutralino then decays into a photon and a gravitino, the lightest supersymmetric particle and dark matter candidate. Fig. 1 shows Feynman diagrams for such decay chains of the Higgs boson (H) produced by gluon–gluon fusion (ggH) or in association with a Z boson decaying to charged leptons (ZH).

As the gravitino in these models has a negligible mass [11,12], the remaining parameter is the neutralino mass. If its mass is in the range $m_{\tilde{h}}/2 < m_{\tilde{\chi}_1^0} < m_H$, with $m_H = 125$ GeV the mass of the observed Higgs boson, the branching fraction $\mathcal{B}(H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) = \gamma \gamma$ can be large. For $m_{\tilde{\chi}_1^0} < m_{\tilde{h}}/2$, the decay $H \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow 2\gamma$ is expected to dominate. The same discussion can be applied to heavy neutral Higgs bosons with masses larger than 125 GeV. The lifetime of the neutralino can be finite in some classes of BSM scenarios, leading to the production of one or more photons displaced from the primary interaction.

In the SM, the signature equivalent to the signal arises when the Higgs boson decays as $H \rightarrow ZZ \rightarrow 4\nu$ with a branching frac-
tion of 3×10^{-4}. The decay $H \rightarrow Z\gamma$ has been studied in $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ final states. Upper limits on the product of the cross section and branching fraction of about a factor of ten larger than the SM expectation have been set at the 95% CL [13,14]. With the available data set the search presented is not sensitive to this decay, but it is sensitive to enhancements in the Higgs boson decay rates to undetectable particles and photons arising from BSM physics.

Various background processes lead to the signal signatures and are estimated from simulation or from control samples in data. The dominant background processes are from $\gamma + \text{jets}$ events and diboson events in the ggH and ZH search, respectively. Details of the background estimation techniques are discussed in Section 5. The strength of the ZH channel analysis is an almost background-free selection leading to a larger sensitivity in the model-dependent interpretation. While both the ggH and the ZH channels provide sensitivity to BSM Higgs boson signatures, the ggH channel allows a model-independent interpretation of the results.

This analysis presents a first search for decays of a scalar boson to undetectable particles and one or two isolated photons. The scalar boson is produced in ggH or in ZH. The data correspond to an integrated luminosity of up to 19.4 ± 0.5 fb$^{-1}$ at a center-of-mass energy of $\sqrt{s} = 8$ TeV in 2012 collected with the CMS detector at the CERN LHC.

The results of the search are presented in terms of the low-scale SUSY breaking model for $m_{\tilde{t}_1} = 125$ GeV and $m_{\chi^0_1}$ between 1 GeV and 120 GeV, and for $m_{\tilde{t}_1}$ between 125 GeV and 400 GeV for the example case where $m_{\chi^0_1} = m_{\tilde{t}_1} - 30$ GeV. The effect of a finite χ^0_1 lifetime ($\tau_{\chi^0_1}$) is studied for the example case where $m_{\tilde{t}_1} = 125$ GeV and $m_{\chi^0_1} = 95$ GeV.

2. The CMS experiment

The CMS detector, definitions of angular and spatial coordinates, and its performance can be found in Ref. [15]. The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a magnetic field of 3.8 T. The field volume contains a silicon pixel and strip tracker, a crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke of the magnet. The first level of the CMS trigger system, composed of specialized hardware processors, is designed to select the most interesting events within 3 μs, using information from the calorimeters and muon detectors. A high-level trigger processor farm is used to reduce the rate to a few hundred events per second before data storage.

A particle-flow algorithm [16,17] is used to reconstruct all observable particles in the event. The algorithm combines all subdetector information to reconstruct individual particles and identify them as charged hadrons, neutral hadrons, photons, and leptons. The missing transverse energy vector E_T^{miss} is defined as the negative vector sum of the transverse momenta of all reconstructed particles (charged or neutral) in the event, with $E_T^{\text{miss}} = |E_T^{\text{miss}}|$. Jets are reconstructed using the anti-k_T clustering algorithm [18] with a distance parameter of $R = 0.5$, as implemented in the FastJet package [19,20]. A multivariate selection is applied to separate jets from the primary interaction and those reconstructed due to energy deposits associated with pileup interactions [21]. The discrimination is based on the differences in the jet shapes, on the relative multiplicity of charged and neutral components, and on the different fraction of transverse momentum which is carried by the hardest components. Photon identification requirements and other procedures used in selecting events can be found in Section 4.

3. Data and simulation events

In the search for Higgs bosons produced in ggH, the trigger system requires the presence of one high transverse energy (E_T) photon candidate and significant E_T^{miss}. The presence of a photon candidate with $E_T > 30$ GeV is required within the ECAL barrel region ($|\eta| < 1.44)$. At the trigger level E_T^{miss} is calculated from calorimeter information, and is not corrected for muons. A selection requirement of $E_T^{\text{miss}} > 25$ GeV is applied. The efficiency of the trigger is monitored and measured with two control triggers for the photon and the E_T^{miss} trigger requirement. The data recorded with this trigger correspond to an integrated luminosity of 7.4 fb$^{-1}$ and were part of the CMS “data parking” program implemented for the last part of the data taking at $\sqrt{s} = 8$ TeV in 2012. In that program, CMS recorded additional data with relaxed trigger requirements, planning for a delayed offline reconstruction in 2013 after the completion of the LHC Run 1.

For the search for Higgs bosons produced in ZH, collision events were collected using single-electron and single-muon triggers which require the presence of an isolated lepton with p_T in excess of 27 GeV and 24 GeV, respectively. Also a dilepton trigger was used, requiring two leptons with p_T thresholds of 17 GeV and 8 GeV. The luminosity integrated with these triggers at $\sqrt{s} = 8$ TeV is 19.4 fb$^{-1}$.

Several Monte Carlo (MC) event generators are used to simulate signal and background processes. The simulated samples are used to optimize the event selection, evaluate selection efficiencies and systematic uncertainties, and compute expected event yields. In all cases the MC samples are reweighted to match the trigger efficiency measured in data.

The VV, WZ, ZZ, WV (where V represents W or Z bosons), Drell–Yan (DY) production of $q\bar{q} \rightarrow Z/\gamma^{*}$, and $q\bar{q} \rightarrow W^{+}W^{-}$ processes are generated with the MadGraph 5.1 event generator [22].
at leading-order (LO), the $gg \rightarrow W^+W^-$ process is generated with the LO event generator gg2ww [31], and the tt and tW processes are generated with Powheg 1.0 at next-to-leading-order (NLO). The signal samples are also produced with MadGraph. The cross sections at NLO or higher orders if available are used for a given process to renormalize the MC event generators. All processes are interfaced to the Pythia 6.4 generator [24] for parton shower and hadronization.

The CTEQ6L set of parton distribution functions (PDF) [25] is used for LO generators, while the CT10 [26] PDF set is used for NLO generators. For all processes, the detector response is simulated with a detailed description of the CMS detector, based on the GEANT4 package [27]. Additional pp interactions overlapping the event of interest in data, denoted as pileup events, are accounted for by simulating pp interactions with the Pythia generator and adding them to each MC sample. The MC samples are tuned to reproduce the distribution in the number of pileup events in data. The average number of pileup events is about 26 for the collected data used in the ggH channel, and is about 21 for the collected data used in the ZH channel.

4. Event selection

Two strategies are followed to isolate the Higgs boson events produced by ggH and by ZH from the background processes. The signal cross sections are several orders of magnitude smaller than the major reducible background processes, whose contributions are greatly reduced using the event selections described in the following sub-sections.

4.1. Event selection in the ggH channel

In the ggH channel, each selected event is required to have at least one photon candidate with $E_T^{\gamma} > 45$ GeV and $|\eta^\gamma| < 1.44$ using a cut-based selection [28,29]. To reduce the SM backgrounds arising from the leptonic decays of W and Z bosons, a lepton veto is applied. Events are rejected if they have one or more electrons fulfilling a loose identification requirement [30] and $p_T^{e} > 10$ GeV and $|\eta^e| < 2.5$, excluding the transition region of $1.44 < |\eta^e| < 1.57$ since the reconstruction of an electron object in this region is not optimal. Similarly, events containing muon candidates with $p_T^{\mu} > 10$ GeV and $|\eta^{\mu}| < 2.1$, and well separated from the photon candidate requiring $\Delta R(\gamma, \mu) = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} > 0.3$ (where the ϕ is azimuthal angle in radians), are rejected. In addition to the selection requirements described above, the E_T^{miss} is required to be greater than 40 GeV. This level of selection is referred to as the preselection. Additional selection criteria are applied to search for new physics in either a quasi model-independent way or optimized for a SUSY benchmark model. In this channel jets can arise from initial-state radiation. For both search strategies jets are required to have $p_T^{j} > 30$ GeV and $|\eta^{j}| < 2.4$. These jets must not overlap with the photon candidate below $\Delta R(\gamma, j) < 0.5$.

In the model-independent analysis, events with two or more jets are rejected. For events with one jet the azimuthal angle between the photon and the jet ($\Delta \phi(\gamma, j)$) is required to be smaller than 2.5. This selection requirement rejects the dominant $\gamma + j$ jet background, where the photon and the jet tend to be back-to-back in the transverse plane.

In the model-dependent analysis developed for SUSY scenarios, no requirement is applied on jet multiplicity. In order to minimize the contribution from processes such as $\gamma + j$ and multijet events, two methods are used for identifying events with mismeasured E_T^{miss}. The E_T^{miss} significance method [31] takes account of reconstructed objects for each event and their known resolutions to compute an event-by-event estimate of the likelihood that the observed E_T^{miss} is consistent with zero. In addition, a minimization method [29] constructs a χ^2 function of the form

$$\chi^2 = \sum_{i=\text{objects}} \left(\frac{(p_T^{\text{reco}})_{i} - (\hat{p}_T)_{i}}{\sigma_{p_T}^{i}} \right)^2 + \left(\frac{E_{T}^{miss}}{\sigma_{E_T^{miss}}} \right)^2 + \left(\frac{E_{T}^{miss}}{\sigma_{E_T^{miss}}} \right)^2,$$

(1)

where $(p_T^{\text{reco}})_{i}$ are the scalar transverse momenta of the reconstructed objects, such as jets and photons that pass the above-mentioned identification criteria, the $(\sigma_{p_T})_{i}$ are the expected resolutions in each object, the $(\sigma_{E_T^{miss}})_{i}$ are the resolutions of the E_T^{miss} projection along the x-axis and the y-axis, and the $(\hat{p}_T)_{i}$ are the free parameters allowed to vary in the minimization of the χ^2 function. The $E_{T,x,y}^{miss}$ terms are functions of the free parameters $\hat{p}_{x,y}$.

In events with no genuine E_T^{miss}, the mismeasured quantities are re-distributed back into the particle momenta to minimize the χ^2 value. Events are rejected if the minimized E_T^{miss} (E_T^{miss}) is less than 45 GeV and the chi-square probability is larger than 10^{-3}.

To further suppress multijet backgrounds, events are not considered if the scalar sum of the transverse momenta of the identified jets in the event (H_{T}) is greater than 100 GeV. An additional requirement is applied on the angle (α) between the beam direction and the major axis of the supercluster [28] in order to reject non-prompt photons that have showers elongated along the beam line.

Finally, the transverse mass,

$$m_{T}^{\gamma E_T^{miss}} \equiv \sqrt{2 E_T^{\gamma} E_T^{miss} [1 - \cos \Delta \phi(\gamma, E_T^{miss})]},$$

formed by the photon candidate, E_T^{miss}, and their opening angle, is required to be greater than 100 GeV. Photons from the continuum Zγ background have a harder spectrum than the photons resulting from the Higgs decay in the SUSY benchmark models considered. To further reduce the continuum Zγ background and for models with $m_{h}\sim 125$ GeV a cut of $E_T^{\gamma} < 60$ GeV is applied. For higher masses the cut is optimized depending on each mass hypothesis going from 60 GeV up to 200 GeV for $m_{h} = 400$ GeV.

The list of selection criteria used in the model-independent and the SUSY benchmark model analyses are given in Table 1, together with the cumulative efficiencies relative to the preselection for signal and background processes.

4.2. Event selection in the ZH channel

The leptonic decays of the Z boson, consisting of two oppositely charged same-flavor high-p_T isolated leptons ($e^-e^+, \mu^-\mu^+$), are used to tag the Higgs boson candidate events. Large missing transverse energy from the undetectable particles, at least one isolated high-E_T photon, and little or moderate jet activity are required to select the signal events.

The details of the lepton candidate selection and missing transverse energy reconstruction are given in Ref. [32]. In addition, photon requirements based on a multivariate selection discussed in Refs. [28,33] have been used. The kinematic selection requires two leptons with $p_T > 20$ GeV and one photon with $E_T > 20$ GeV. Furthermore, the dilepton mass must be compatible with that of a Z boson within 15 GeV of the pole mass.

To reduce the background from WZ events, events are removed if an additional loosely identified lepton is reconstructed with $p_T > 10$ GeV. To reject most of the top-quark background, an event
is rejected if it passes the b-tagging selection (anti b-tagging) or if there is a selected jet with $p_T > 30$ GeV (jet veto). The b-tagging selection is based on the presence of a muon in the event from the semileptonic decay of a bottom-quark, and on the impact parameters of the constituent tracks in jets containing decays of bottom-quarks [34]. The set of b-tagging veto criteria retain about 85% of the light-jet jets, while rejecting about 70% of the b-jets.

The signal-topology is characterized by a $Z(\ell \ell)$ system with large transverse momentum balanced in the transverse plane by an $E_T^{miss} + E_T^{miss}$ system from the Higgs boson decay. To reject background from $Z\gamma$ and $Z +$ jets events with misconstructed E_T^{miss} the azimuthal angle $\Delta \phi(\ell \ell, E_T^{miss}, E_T^{miss})$ is required to be greater than 2.7 radians, the variable $|p_T^{\ell\ell}/E_T^{miss} + E_T^{miss}|$ is required to be smaller than 0.5, and the azimuthal angle between the two leptons $\Delta \phi(\ell \ell)$ is required to be smaller than 2.25 radians. Finally, $p_T^{\ell\ell}$ is required to be larger than 60 GeV, and E_T^{miss} is required to be larger than 60 GeV. A summary of the selection is shown in Table 2.

The signal-to-background fraction depends on the $|\eta^\gamma|$, the pseudorapidity of the photon, with greater discrimination at lower values. To exploit this effect and improve sensitivity, the selected events are subdivided according to whether the photon is reconstructed in the barrel or endcap regions, as explained in Section 7.2.

5. Background estimation

The background estimation techniques and the composition of all backgrounds in the search with the ggH and ZH signatures are discussed below. The yield for the irreducible background from $H \rightarrow Z\gamma \rightarrow \nu \bar{\nu} \gamma$ is negligible and is therefore ignored in the analysis.

Table 2

Variable	Selection	
Leptons	2 leptons, $p_T > 20$ GeV	
Photons	1 photon, $E_T^{miss} > 20$ GeV	
$	m_{\ell\ell} - m_Z	< 15$ GeV
Anti b-tagging applied		
Jet veto	0 jets with $p_T > 30$ GeV	
$	p_T^{\ell\ell}/	E_T^{miss} + E_T^{miss}
$	\Delta \phi(\ell \ell, E_T^{miss}, E_T^{miss})	> 2.7$ radians
$	p_T^{\ell\ell}/	E_T^{miss} + E_T^{miss}
$	\Delta \phi(\ell \ell)	< 2.25$ radians
$p_T^{\ell\ell} > 60$ GeV		
$E_T^{miss} > 60$ GeV		

5.1. Background estimation in the ggH channel

The dominant background for the $\gamma + E_T^{miss}$ signal in the ggH channel is the process $\gamma +$ jet. Other SM backgrounds include $Z\gamma \rightarrow \nu \bar{\nu} \gamma$, $W\gamma \rightarrow e\nu$, $W \rightarrow \mu\nu$, $W \rightarrow \tau\nu$, multijet, and diphoton events. Background events that do not arise from pp collisions are also considered in the analysis. These backgrounds can be categorized broadly into three categories, as described below.

5.1.1. Background estimates from simulation

The $\gamma +$ jet process surviving the various E_T^{miss} selection requirements is one of the most significant backgrounds in this analysis due to the presence of an isolated photon and its large production cross section. The MC normalization of this background is corrected using control samples in data for two event classes, events without jets and those with one or more jets. The control samples in data are obtained using events collected with a prescaled single-photon trigger and with the E_T^{miss} requirement reversed to ensure orthogonality to the signal phase space, where the contamination from other processes is minimal. Multiplicative correction factors (C) are obtained after normalizing the event yield in the simulation to match the data in the control region, separately for events with no jets ($C = 1.7$) and one or more jets ($C = 1.1$). These correction factors are used to normalize the simulated $\gamma +$ jet event yield in the signal region. An uncertainty of 16% is obtained for these correction factors based on the difference between the corrected and uncorrected simulation and the relative fraction of no jet events (about 10% of the events in the control region) and one or more jet events. The background processes $Z\gamma \rightarrow \ell \ell \gamma$ and $W \rightarrow \ell \nu$ contribute only a small fraction of the total background prediction, due to the lepton veto applied at the preselection stage, and are modeled using simulated samples.

To take into account differences between data and simulation due to imperfect MC modeling, various scale factors (SF) are applied to correct the estimates from simulation. These SFs are defined by the ratio of the efficiency in data to the efficiency in simulation for a given selection. The SF for photon reconstruction and identification is estimated from $Z \rightarrow e^+e^-$ decays [35] and is consistent with unity.

5.1.2. Background estimates from data

The contamination from jets misidentified as photons (jet \rightarrow γ) is estimated in a data control sample enriched with multijet events defined by $E_T^{miss} < 40$ GeV. This sample is used to measure the ratio of the number of candidates that pass the photon identification criteria to those failing the isolation requirements. The numerator of this ratio is further corrected for the photon contamination due to direct photon production using an isolation side band. The
corrected ratio is applied to data events which pass the denominator selection and all other event requirements in the signal region.

The systematic uncertainty of this method is dominated by the choice of the isolation sideband, and is estimated to be 35% by changing the isolation criteria in the sideband region definition. The other sources of systematic uncertainty are determined by changing the E^{miss} selection for the control region, and the loose identification requirements on the photons, all of which are found to be comparatively small.

Events with single electrons misidentified as photons (electron $\rightarrow \gamma$) are another major source of background. This background is estimated with a tag-and-probe method using $Z \rightarrow e^+e^-$ events [36]. The efficiency to identify electrons ($\epsilon_{e\gamma}$) is estimated in the Z boson peak mass window of 60–120 GeV. The efficiency $(1-\epsilon_{e\gamma})$ is found to be 2.31±0.03%. The ratio $(1-\epsilon_{e\gamma})/\epsilon_{e\gamma}$, which represents the electron misidentification rate, is applied to a sample where candidates are required to have hits in the pixel detector, and is used to estimate the contamination in the signal region. The misidentification rate is found to be dependent on the number of vertices reconstructed in the event and the number of tracks associated with the selected primary vertex. The difference in the final yields taking this dependence into account or neglecting it, using the inclusive measurement of $\epsilon_{e\gamma}$, is less than 5%.

5.1.3. Non-collision background estimates from data

The search is susceptible to contamination from non-collision backgrounds, which arise from cosmic ray interactions, spurious signals in the ECAL, and accelerator-induced secondary particles. The distribution of arrival-times of photons from these backgrounds is different from that of prompt photons produced in hard scattering. To quantify the contamination from these backgrounds a fit is performed to the candidate-time distribution using background distributions from data [29]. The contamination due to out-of-time background contributions is found to be less than one percent of the total background and is therefore not included in the final event yield.

5.2. Background estimation in ZH channel

Processes that contribute significantly to the SM expectation in the ZH channel are listed below.

5.2.1. Non-resonant dilepton backgrounds

The contributions from W^+W^-, top-quark, $W + j$ets, and $Z/\gamma\rightarrow \tau^+\tau^-$ processes are estimated by exploiting the lepton flavor symmetry in the final states of these processes [37]. The branching fraction to the $e^+\mu^-$ final state is twice that of the e^+e^- or $\mu^+\mu^-$ final states. Therefore, the $e^+\mu^-$ control region is used to extrapolate these backgrounds to the e^+e^- and $\mu^+\mu^-$ channels. The method considers differences between the electron and muon identification efficiencies. The data driven estimates agree well with the number of background events expected when applying the same method to simulation. The small difference between the prediction and the obtained value using simulated events is taken as a systematic uncertainty.

The limited number of simulated events is also considered as part of the systematic uncertainty. In summary, the total systematic uncertainty is about 75%. Only two events were selected in the data control region.

5.2.2. Resonant background with three leptons in the final state

The $WZ \rightarrow ℓν ℓν ℓν$ process dominates the resonant backgrounds with three leptons in the final state. The electron $\rightarrow \gamma$ misidentification rate is measured in $Z \rightarrow e^+e^-$ events by comparing the ratios of electron–electron versus electron–photon pairs in data and in simulation, as described in Section 5.1.2. The average misidentification rate is 1–2% with the larger values at higher $|\eta|\gamma$.

5.2.3. Resonant background with two leptons in the final state

The $WZ \rightarrow ℓν ℓν$ process with failure to identify the lepton from W boson decays and the $ZZ \rightarrow 2\ell2\nu$ process dominate these types of events. The jet $\rightarrow \gamma$ misidentification rate is measured in a sample containing a muon and a photon. This sample is expected to be dominated by jets misidentified as photons, with some contamination from W/γ events, which are subtracted in the study using the simulated prediction. The misidentification rate is similar to the obtained values in the ggH channel.

5.2.4. Resonant background with no genuine missing transverse energy

The background from $Z\gamma$ or $Z + j$ets events is predicted by the simulation to be about 15% of the total background. Several data regions are studied to verify that the background is estimated correctly. A good agreement between data and simulation is found in all cases. A 50% uncertainty, the statistical uncertainty of the control region, is taken for these backgrounds estimated from simulation.

6. Summary of systematic uncertainties

Systematic uncertainties in the background estimates from control samples in data are described in Section 5. A summary of the systematic uncertainties considered in each channel are listed in Tables 3 and 4.

A common source of systematic uncertainty is associated with the measurement of the integrated luminosity, determined to 2.6% [38]. The uncertainties in the normalization of signal and
simulation-based backgrounds are obtained by varying the renormalization and factorization scales, and the parton distribution functions [26,39–43].

Because the model-independent and model-specific selections differ significantly in the ggH channel, the systematic uncertainties are evaluated separately for each selection. The photon energy scale uncertainty [28] of about 1% affects the signal and background predictions by 4% for the model-specific selection and by 0.5% for the model-independent selection. Similarly, the jet energy scale uncertainty affects the signal and background predictions by 2–5% depending on the process and selection. After changing the photon or jet energy scales, the E_T^{miss} is also recomputed. In addition, the systematic uncertainty associated with the jet energy resolution and uncluttered energy scale are propagated to the E_T^{miss} computation, and affect the signal and background predictions by 2–4%. As described in the previous section, a 16% uncertainty is applied to the $\gamma + jet$ normalization due to the difference in the jet multiplicity distribution between the data and background predictions in the $\gamma + jet$ control region. The uncertainty due to the pileup modeling is found to be 1%, and is estimated by shifting the central value of the total inelastic cross section within its uncertainty.

In the ZH channel, lepton-reconstruction and identification scale factors are measured using a control sample of $Z/\gamma^* \rightarrow e^+e^-$ events in the Z peak region [36]. The associated uncertainty is about 2% per lepton. The photon identification uncertainty is taken to be 3% [33]. The effect of uncertainties in jet energy scale and E_T^{miss} on the analysis is also considered. The uncertainty in the b-tagging efficiency is estimated to be about 0.7% comparing inclusive $Z/\gamma^* \rightarrow e^+e^-$ samples in data and simulation. The total uncertainty in the background estimates in the signal region is 36%, which is dominated by the statistical uncertainties in the data control samples from which they are derived.

The impact of the systematic uncertainties in the ggH channel is relatively important: the sensitivity is increased by about 50% if all the systematic uncertainties are removed, where the normalization uncertainties on the $\gamma + jet$ and jet $\rightarrow \gamma$ background processes dominate. The ZH channel is limited by the statistical uncertainty, and the effect of the systematic uncertainties reduce the sensitivity by less than 10%.

Correlations between systematic uncertainties in the two channels are taken into account. In particular, the main sources of correlated systematic uncertainties are those in the experimental measurements such as the integrated luminosity, photon identification, the jet energy scale, and missing transverse energy resolution. All other systematic uncertainties are uncorrelated between them given the different signal and background processes.

Table 4
Summary of relative systematic uncertainties in percent for the signal and background estimates in the ZH analysis.

Source	ZH	Zγ or Z + jets	WZ	ZZ	WW + top-quark
Integrated luminosity	2.6	–	2.6	2.6	–
Lepton efficiency	3.6	–	3.6	3.6	–
Photon efficiency	3.0	–	–	–	–
Momentum resolution	0.5	–	0.6	0.1	–
E_T^{miss} energy scale	0.5	–	4	4	–
Jet energy scale	2	–	4	4	–
b-tagging	0.7	–	0.7	0.7	–
Underlying event	3	–	–	–	–
PDF	7.1	–	6.3	7.7	–
Reman. and factor. scales	7.0	–	10.7	6.5	–
$Z/\gamma^* \rightarrow e^+e^-$ normalization	–	50	–	–	–
Non-resonant dilepton bkg. norm.	–	–	–	–	70
Jet $\rightarrow \gamma$	–	–	30	30	–
Electron $\rightarrow \gamma$	–	–	10	10	–
Amount of simulated events	3.5	60	10	10	40

Table 5
Observed yields and background estimates at 8 TeV in the ggH channel after the model-independent selection. Statistical and systematic uncertainties are shown.

Process	Event yields
$\gamma + jets$	$(313 \pm 50) \times 10^3$
jet $\rightarrow \gamma$	$(910 \pm 120) \times 10^2$
e $\rightarrow \gamma$	10350 ± 620
W($\rightarrow \ell\nu) + \gamma$	2239 ± 111
Z($\rightarrow \ell\ell) + \gamma$	2650 ± 102
Other	1809 ± 91
Total background	$(420 \pm 82) \times 10^3$
Data	442×10^3

7. Results

The results from the two searches and their combination are reported in this section. In the absence of deviations from the standard model predictions, the modified frequentist method, CLs [44–46], is used to define the exclusion limits.

7.1. Model-independent results in the ggH channel

Because of the variety of possible BSM signals that could contribute to this final state, the results are presented for a signal with the model-independent selection described in Section 4. The total number of observed events and the estimated SM backgrounds are summarized in Table 5, and found to be compatible within their uncertainties. Fig. 2 shows the m_T^{miss} and E_T^{miss} distributions for the model-independent selection.

Fig. 3 shows the observed and expected model-independent 95% CL upper limits for the ggH analysis on the product of cross section, acceptance, and efficiency for $m_T^{miss} > 100$ GeV, as a function of E_T^{miss} threshold.

7.2. Model-specific results in the ggH channel

Imposing the model-specific selection described in Section 4 for the ggH channel, 1296 events are selected in data with a total estimated background of 1232 \pm 188. The yields for this selection are shown in Table 6 and estimated for Higgs boson decays ($H \rightarrow GZ^0, \tilde{Z}^0 \rightarrow G\gamma$) assuming the ggH production rate for SM Higgs bosons and a 100% branching fraction for this decay. Fig. 4 shows the transverse energy distribution of photons for data, the background estimates, and signal after the model-dependent selection, except the upper selection on the photon, for the ggH channel.
7.3. Results in the ZH channel and combinations

A total of four events are selected with the search in ZH. The background yield is estimated to be 4.1 ± 1.8. The numbers of observed and expected events are shown in Table 7. The signal model assumes a SM ZH production rate and a 100% branching fraction to undetectable particles and one or two photons. The expected signal yield is larger for cases where \(m_{\gamma} \) is smaller than \(m_{H}/2 \) since there are two photons in the final state (\(H \to \bar{\chi}^{0}_{1}\chi^{0}_{1} \to \gamma\gamma G\bar{G} \)), and as a result the sensitivity improves for smaller masses. Good agreement between the data and the background prediction is observed. The transverse mass, \(m_T^{E_{T}^{miss}} \), is defined as

\[
m_T^{E_{T}^{miss}} = \sqrt{2p_T^{E_{T}^{miss}} + \eta_{E_{T}^{miss}}} \left[1 - \cos(\Delta\phi_{E_{T}^{miss}, p_{T}^{miss}}) \right],
\]

and \(\eta \) distributions are extracted. The expected \(m_T^{E_{T}^{miss}} \) is shown in Fig. 3 at the final step of the selection.

The 95% CL upper limits are extracted from counting experiments in three categories: the model-specific selection in the ggH channel, and photons identified in the barrel and the endcap calorimeters for the ZH channel. Results are combined using a binned-likelihood method. The 95% CL upper limits on \((\sigma \mathcal{B})/\sigma_{SM} \), where \(\sigma_{SM} \) is the cross section for the SM Higgs boson, are evaluated for different mass values of \(\mathcal{X}^{0}_{1} \) ranging from 1 GeV to 120 GeV for the individual searches and their combination are shown in Fig. 6. The upper limits for \(m_{\mathcal{X}^{0}_{1}} < m_{H}/2 \) are not shown for the ggH channel because the sensitivity is very low due to the combination kinematic properties and the corresponding selection; in particular the \(E_{T}^{miss} \) and photon \(p_T \) values tend to be outside the

Table 6

Process	Event yields
ggHmH1 = 125 GeV, \(m_{\mathcal{X}^{0}_{1}} = 65 \text{ GeV} \)	653 ± 77
ggHmH1 = 125 GeV, \(m_{\mathcal{X}^{0}_{1}} = 95 \text{ GeV} \)	1158 ± 137
ggHmH1 = 125 GeV, \(m_{\mathcal{X}^{0}_{1}} = 120 \text{ GeV} \)	2935 ± 349
ggHmH1 = 125 GeV, \(m_{\mathcal{X}^{0}_{1}} = 95 \text{ GeV} \) \(c_{T_{1}} = 100 \text{ mm} \)	983 ± 116
ggHmH1 = 125 GeV, \(m_{\mathcal{X}^{0}_{1}} = 95 \text{ GeV} \) \(c_{T_{1}} = 1000 \text{ mm} \)	463 ± 55
ggHmH1 = 125 GeV, \(m_{\mathcal{X}^{0}_{1}} = 95 \text{ GeV} \) \(c_{T_{1}} = 10000 \text{ mm} \)	83 ± 10
ggHmH1 = 150 GeV, \(m_{\mathcal{X}^{0}_{1}} = 120 \text{ GeV} \)	4160 ± 491
ggHmH1 = 200 GeV, \(m_{\mathcal{X}^{0}_{1}} = 170 \text{ GeV} \)	5963 ± 704
ggHmH1 = 300 GeV, \(m_{\mathcal{X}^{0}_{1}} = 270 \text{ GeV} \)	5152 ± 608
ggHmH1 = 400 GeV, \(m_{\mathcal{X}^{0}_{1}} = 370 \text{ GeV} \)	4057 ± 479
\(\gamma \) + jets	179 ± 28
jet → γ	269 ± 94
e → γ	355 ± 28
W(→ e\nu) + γ	154 ± 15
Z(→ \nu\bar{\nu}) + γ	300 ± 13
Other	91 ± 10
Total background	1232 ± 188
Data	1296

Fig. 2. The \(m_T^{E_{T}^{miss}} \) and \(E_{T}^{miss} \) distributions for data, background estimates, and signal after the model-independent selection for the ggH channel. The bottom panels in each plot show the ratio of (data – background)/background and the gray band includes both the statistical and systematic uncertainties in the background prediction. The signal is shown for \(m_{\mathcal{X}} = 125 \text{ GeV} \) and \(m_{\mathcal{X}^{0}_{1}} = 120 \text{ GeV} \) and a 100% branching fraction.

Fig. 3. The expected and observed 95% CL upper limit on the product of cross section, acceptance, and efficiency (\(\sigma(\mathcal{B})/\sigma_{SM} \)) for \(m_T^{E_{T}^{miss}} > 100 \text{ GeV} \), as function of the \(E_{T}^{miss} \) threshold for the ggH channel.
selected ranges. A 95% CL upper limit on the branching fraction of 10% is set for a neutralino mass of 95 GeV.

Expected and observed limits are also shown for the decay of possible heavier scalar Higgs bosons as a function of the Higgs boson mass in Fig. 7. The requirement on E_T^{γ} used in the ggH channel is removed. A lower threshold on E_T^{γ} is added, optimized to maximize the sensitivity for each mass hypothesis. A combination of the two channels is not performed because the assumption of a common SM Higgs boson cross section is not justified.

As discussed in the introduction, some BSM models predict $\tilde{\chi}_1^0$ neutralinos with sizable lifetimes. The performance of the searches has been evaluated for finite lifetimes without modifying the analysis strategy. The expected and observed limits are shown in Fig. 8 as function of $c_T \tilde{\chi}_1^0$. The results are shown for $m_{\tilde{t}_1} = 125$ GeV and $m_{\tilde{\chi}_1^0} = 95$ GeV. As seen in Tables 6 and 7, the selection efficiency is roughly constant for values of $c_T \tilde{\chi}_1^0$ less than 10 cm, and drops rapidly for larger values. The default timing criteria applied in the ECAL energy reconstruction are the cause for the decrease in the efficiency. In particular, there is a requirement of a maximum of 3 ns on the photon arrival time relative to the nominal time-of-flight for prompt photons. The delayed arrival time of the photon

$\text{ZH process event yields}$

Table 7

Process	Event yields
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 1$ GeV)	69.2 ± 8.4
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 10$ GeV)	68.6 ± 8.4
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 30$ GeV)	53.5 ± 6.5
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 60$ GeV)	47.7 ± 5.8
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 95$ GeV)	40.4 ± 4.9
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 120$ GeV)	39.0 ± 4.8
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 95$ GeV, $c_T \tilde{\chi}_1^0 = 100$ mm)	39.3 ± 4.8
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 95$ GeV, $c_T \tilde{\chi}_1^0 = 1000$ mm)	17.6 ± 2.2
ZH($m_{\tilde{T}} = 125$ GeV, $m_{\tilde{\chi}_1^0} = 95$ GeV, $c_T \tilde{\chi}_1^0 = 10000$ mm)	2.6 ± 0.3
ZH($m_{\tilde{T}} = 200$ GeV, $m_{\tilde{\chi}_1^0} = 170$ GeV)	13.1 ± 1.6
ZH($m_{\tilde{T}} = 300$ GeV, $m_{\tilde{\chi}_1^0} = 270$ GeV)	3.5 ± 0.4
ZH($m_{\tilde{T}} = 400$ GeV, $m_{\tilde{\chi}_1^0} = 370$ GeV)	1.2 ± 0.1
Zγ + Z + jets	0.6 ± 0.4
WZ	1.2 ± 0.3
ZZ	0.3 ± 0.1
WW + top-quark	2.0 ± 1.7
Total background	4.1 ± 1.8

Data
Fig. 6. Expected and observed 95% CL upper limits on $\sigma(B/\sigma_{B})$ for $m_1 = 125$ GeV as a function of $m_{\tilde{\chi}^0_1}$ assuming the SM Higgs boson cross sections, for the ZH and ggH channels and their combination, with $B = B(H \rightarrow Z\chi_1^{0}\chi_1^{0})$, $3\sigma(B(H \rightarrow Z\tilde{G}\tilde{G}) \rightarrow \tilde{G} \tilde{G})$ for $m_{\tilde{\chi}^0_1} < m_{H}/2$, and $B = B(H \rightarrow Z\tilde{G}\tilde{G})$ for $m_{\tilde{\chi}^0_1} \geq m_{H}/2$.

Fig. 8. Expected and observed 95% CL upper limits on $\sigma(B)$ as a function of $c\tau_{\chi_1^{0}}$ for $m_1 = 125$ GeV and $m_{\tilde{\chi}^0_1} = 95$ GeV, where $B = B(H \rightarrow Z\tilde{G}\tilde{G})$. The limits can be caused by a kink in the trajectory or by a lower velocity of the neutralino.

8. Summary

A search is presented for exotic decays of a Higgs boson into undetectable particles and one or two isolated photons in pp collisions at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of up to 19.4 fb$^{-1}$ collected with the CMS detector at the LHC. Higgs bosons produced in gluon–gluon fusion or in association with a Z boson are investigated. Models including Higgs boson decays into a gravitino and a neutralino or a pair of neutralinos, followed by the neutralino decay to a gravitino and a photon, are tested. The measurements for the selected events in data are consistent with the background-only hypothesis, and the results are interpreted as limits on the product of cross sections and branching fractions. Assuming a standard model Higgs production cross section, a 95% CL upper limit is set on the branching fraction of a 125 GeV Higgs boson decaying into undetectable particles and one or two isolated photons as a function of the neutralino mass. For neutralino masses from 1 to 120 GeV an upper limit in the range of 7 to 13% is obtained. Further results are given as a function of the neutralino lifetime, and also for a range of Higgs boson masses.

Acknowledgements

We gratefully acknowledge our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); E.R.S. - FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus);
[41] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189, http://dx.doi.org/10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.
[42] NNPDF Collaboration, R.D. Ball, et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296, http://dx.doi.org/10.1016/j.nuclphysb.2011.03.021, arXiv:1101.1300.
[43] J.M. Campbell, R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. B Proc. Suppl. 205–206 (2010) 10, http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.011.

[44] ATLAS Collaboration, CMS Collaboration, LHC Higgs Combination Group. Procedure for the LHC Higgs boson search combination in Summer 2011, Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, 2011. URL: http://cdsweb.cern.ch/record/1379837.
[45] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693, http://dx.doi.org/10.1088/0954-3899/28/10/313.
[46] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 434 (1999) 435, http://dx.doi.org/10.1016/S0168-9002(99)00498-2.

CMS Collaboration

V. Khachatryan, A.M. Sirunyan, A. Tumasyan
Yerevan Physics Institute, Yerevan, Armenia

W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth 1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler 1, V. Knünz, A. König, M. Krammer 1, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rabady 2, B. Rahbaran, H. Rohringer, J. Schieck 1, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz 1
Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez
National Centre for Particle and High Energy Physics, Minsk, Belarus

S. Alderweireldt, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck
Universiteit Antwerpen, Antwerpen, Belgium

S. Abu Zeid, F. Blekman, J. D’Hondt, N. Daci, I. DeBruyn, K. Deroover, N. Heracleous, J. Keaveney, S. Lowette, L. Moreels, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Van Parijs
Vrije Universiteit Brussel, Brussels, Belgium

P. Barria, C. Caillol, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, A.P.R. Gay, A. Grebenyuk, T. Lenzi, A. Léonard, T. Maerschalk, A. Marinov, L. Perniè, A. Randle-conde, T. Reis, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni, F. Zhang 3
Université Libre de Bruxelles, Bruxelles, Belgium

K. Beernaert, L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot, G. Garcia, M. Gul, J. Mccartin, A.A. Ocampo Ríos, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, N. Strobbe, M. Tytgat, W. Van Driessche, E. Yazgan, N. Zaganidis
Ghent University, Ghent, Belgium

S. Basegmez, C. Belufii 4, O. Bondu, S. Brochet, G. Bruno, R. Castello, A. Caudron, L. Ceadr, G.G. Da Silveira, C. Delaere, D. Favart, L. Forthomme, A. Giammanco 5, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, A. Mertens, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov 5, L. Quertenmont, M. Selvaggi, M. Vidal Marono
Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, G.H. Hammad
Université de Mons, Mons, Belgium

[41] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189, http://dx.doi.org/10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.
[42] NNPDF Collaboration, R.D. Ball, et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296, http://dx.doi.org/10.1016/j.nuclphysb.2011.03.021, arXiv:1101.1300.
[43] J.M. Campbell, R.K. Ellis, MCFM for the Tevatron and the LHC, Nucl. Phys. B Proc. Suppl. 205–206 (2010) 10, http://dx.doi.org/10.1016/j.nuclphysbps.2010.08.011.

[44] ATLAS Collaboration, CMS Collaboration, LHC Higgs Combination Group. Procedure for the LHC Higgs boson search combination in Summer 2011, Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, 2011. URL: http://cdsweb.cern.ch/record/1379837.
[45] A.L. Read, Presentation of search results: the CLs technique, J. Phys. G 28 (2002) 2693, http://dx.doi.org/10.1088/0954-3899/28/10/313.
[46] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 434 (1999) 435, http://dx.doi.org/10.1016/S0168-9002(99)00498-2.
M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padeken, P. Papacz, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, L. Sonnenschein, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, A. Künsken, J. Lingemann, A. Nowack, I.M. Nugent, C. Pistone, O. Pooth, A. Stahl

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, G. Dolinska, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo, J. Garay Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel, H. Jung, A. Kalogeropoulos, O. Karacheban, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, K.D. Trippkewitz, C. Wissing

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Akbiyik, C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, F. Colombo, W. De Boer, A. Descroix, A. Dierlamm, S. Fink, F. Freisch, M. Giffels, A. Gilbert, F. Hartmann, S.M. Heindl, U. Husemann, F. Kassel, I. Katkov, A. Kornmayer, P. Lobelle Pardo, B. Maier, H. Mildner, M.U. Mozer, T. Müller, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, S. Röcker, F. Roscher, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, M. Weber, T. Weiler, C. Wöhrmann, R. Wolf

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Psallidas, I. Topsis-Giotis

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Athens, Athens, Greece

I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthis, I. Papadopoulos, E. Paradas, J. Strologas

University of Ioánnina, Ioánnina, Greece

G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Wigner Research Centre for Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
M. Bartók, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari
University of Debrecen, Debrecen, Hungary

P. Mal, K. Mandal, N. Sahoo, S.K. Swain
National Institute of Science Education and Research, Bhubaneswar, India

S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, R. Gupta, U. Bhawandeep, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, A. Mehta, M. Mittal, J.B. Singh, G. Walia
Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma
University of Delhi, Delhi, India

S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dey, S. Dutta, Sa. Jain, N. Majumdar, A. Modak, K. Mondal, S. Mukherjee, S. Mukhopadhyay, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan
Saha Institute of Nuclear Physics, Kolkata, India

A. Abdul salam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar
Bhabha Atomic Research Centre, Mumbai, India

T. Aziz, S. Banerjee, S. Bhowmik, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu, G. Kole, S. Kumar, B. Mahakud, M. Maity, G. Majumder, K. Mazumdar, S. Mitra, G.B. Mohanty, B. Parida, T. Sarkar, K. Sudhakar, N. Sur, B. Sutar, N. Wickramage
Tata Institute of Fundamental Research, Mumbai, India

S. Chauhan, S. Dube, S. Sharma
Indian Institute of Science Education and Research (IISER), Pune, India

H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat, H. Ranjbariha, M. Safarzadeh, M. Zeinali
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald
University College Dublin, Dublin, Ireland

M. Abbrescia, C. Calabria, C. Caputo, S.S. Chhibra, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, L. Fiore, G. Iselli, G. Maggi, G. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pom pili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, L. Silvestris, R. Venditti, P. Ver willigen

G. Abbiendi, C. Battilana, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbrì, A. Fan fani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Sirol i, N. Tosi, R. Travaglini

a INFN Sezione di Bari, Bari, Italy
b Università di Bari, Bari, Italy
c Politecnico di Bari, Bari, Italy

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

S. Carpinteyro, I. Pedraza, H.A. Salazar Ibarguen

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda

Universidad Autónoma de San Luis Potosi, San Luis Potosi, Mexico

D. Krofcheck

University of Auckland, Auckland, New Zealand

P.H. Butler, S. Reucroft

University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górska, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

National Centre for Nuclear Research, Swierk, Poland

G. Brona, K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, N. Leonardo, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, O. Toldaiev, D. Vadruccio, J. Varela, P. Vischia

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Joint Institute for Nuclear Research, Dubna, Russia

V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

Institute for Theoretical and Experimental Physics, Moscow, Russia
A. Bylinkin
National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia

V. Andreev, M. Azarkin 35, I. Dremin 35, M. Kirakosyan, A. Leonidov 35, G. Mesyats, S.V. Rusakov, A. Vinogradov
P.N. Lebedev Physical Institute, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin 36, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin 36, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic 37, M. Ekmedzic, J. Milosevic, V. Rekovic
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

J. Alcaraz Maestre, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran
Universidad Autónoma de Madrid, Madrid, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, J.M. Vizan García
Universidad de Oviedo, Oviedo, Spain

I.J. Cabrillo, A. Calderon, J.R. Castiñeiras De Saa, P. De Castro Manzano, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte
Instituto de Física de Cantabria (IFCA), CSIC–Universidad de Cantabria, Santander, Spain

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, G.M. Berruti, P. Bloch, A. Bocci, A. Bonato, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi 38, M. D’Alfonso, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, T. du Pree, N. Dupont, A. Elliott-Peisert, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, H. Kirschenmann, M.J. Kortelainen, K. Kousouris, K. Krajczer, P. Lecoq, C. Lourenço, M.T. Lucchini, N. Magini, L. Malgeri, M. Mannelli, A. Martelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, M.V. Nemallapudi, H. Neugebauer, S. Orfanelli 39, L. Orsini, L. Pape, E. Perez, A. Petrilli, G. Petrurccioni, A. Pfeiffer, D. Piparo, A. Racz, G. Rolandi 40, M. Rovere, M. Ruan, H. Sakulin, C. Schäfer, C. Schwik, A. Sharma, P. Silva, M. Simon, P. Sphicas 41.
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, E. Clement, D. Cussans, H. Facher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, D. Smith, V.J. Smith

University of Bristol, Bristol, United Kingdom

K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, L. Thomas, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm

Rutherford Appleton Laboratory, Didcot, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, A. Bundock, D. Burton, S. Casasso, M. Citron, D. Colling, L. Corpe, N. Cripps, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, A. Richards, A. Rose, C. Seez, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Imperial College, London, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Brunel University, Uxbridge, United Kingdom

A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, N. Pastika

Baylor University, Waco, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

The University of Alabama, Tuscaloosa, USA

A. Avetisyan, T. Bose, C. Fantasia, D. Gastler, P. Lawson, D. Rankin, C. Richardson, J. Rohlf, J. St. John, L. Sulak, D. Zou

Boston University, Boston, USA

J. Alimena, E. Berry, S. Bhattacharya, D. Cutts, N. Djingra, A. Ferapontov, A. Garabedian, U. Heintz, E. Laird, G. Landsberg, Z. Mao, M. Narain, S. Sagir, T. Sinthuprasith

Brown University, Providence, USA

R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Davis, USA

R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, D. Saltzberg, E. Takasugi, V. Valuev, M. Weber

University of California, Los Angeles, USA

K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Paneva, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, H. Wei, S. Wimpenny

University of California, Riverside, Riverside, USA

J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D'Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, San Diego, La Jolla, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas, Z. Wu, M. Zakaria

University of Illinois at Chicago (UIC), Chicago, USA

B. Bilki, W. Clarida, K. Dilsiz, S. Durmut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, P. Tan, E. Tiras, J. Wetzel, K. Yi

The University of Iowa, Iowa City, USA

I. Anderson, B.A. Barnett, B. Blumenfeld, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, C. Martin, K. Nash, M. Osherson, M. Swartz, M. Xiao, Y. Xin

Johns Hopkins University, Baltimore, USA

P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, D. Noonan, S. Sanders, R. Stringer, Q. Wang, J.S. Wood

The University of Kansas, Lawrence, USA

I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, I. Svintradze, S. Toda

Kansas State University, Manhattan, USA

D. Lange, F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

C. Anelli, A. Baden, O. Baron, A. Belloni, B. Calvert, S.C. Eno, C. Ferraioli, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, J. Kunkle, Y. Lu, A.C. Mignerey, Y.H. Shin, A. Skuja, M.B. Tonjes, S.C. Tonwar

University of Maryland, College Park, USA

A. Apyan, R. Barbieri, A. Baty, K. Bierwagen, S. Brandt, W. Busza, I.A. Cali, Z. Demiragli, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Mcginn, C. Mironov, X. Niu, C. Paus, D. Ralph, C. Roland, G. Roland, J. Salfeld-Nebgen, G.S.F. Stephans, K. Sumorok, M. Varma, D. Velicanu, J. Veverka, J. Wang, T.W. Wang, B. Wyslouch, M. Yang, V. Zhukova

Massachusetts Institute of Technology, Cambridge, USA

B. Dahmes, A. Finkel, A. Gude, P. Hansen, S. Kalafut, S.C. Kao, K. Klapoetke, Y. Kubota, Z. Lesko, J. Mans, S. Nourbakhsh, N. Ruckstuhl, R. Rusack, N. Tambe, J. Turkewitz

University of Minnesota, Minneapolis, USA

J.G. Acosta, S. Oliveros

University of Mississippi, Oxford, USA

E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, C. Fangmeier, R. Gonzalez Suarez, R. Kamalieddin, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, J. Monroy, F. Ratnikov, J.E. Siado, G.R. Snow

University of Nebraska-Lincoln, Lincoln, USA

M. Alyari, J. Dolen, J. George, A. Godshalk, I. Iashvili, J. Kaisen, A. Kharchilava, A. Kumar, S. Rappoccio

State University of New York at Buffalo, Buffalo, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, A. Hortiangtham, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, R. Teixeira De Lima, D. Trocino, R.-J. Wang, D. Wood, J. Zhang

Northeastern University, Boston, USA

K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Trovato, M. Velasco, S. Won

Northwestern University, Evanston, USA

A. Brinkerhoff, N. Dev, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, S. Lynch, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, T. Pearson, M. Planer, A. Reinsvold, R. Ruchti, G. Smith, S. Taroni, N. Valls, M. Wayne, M. Wolf, A. Woodard

University of Notre Dame, Notre Dame, USA

L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, B. Liu, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H.W. Wulsin

The Ohio State University, Columbus, USA

O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, C. Palmer, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

Princeton University, Princeton, USA

V.E. Barnes, D. Benedetti, D. Bortoletto, L. Gutay, M.K. Jha, M. Jones, K. Jung, M. Kress, D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, J. Sun, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zablocki

Purdue University, West Lafayette, USA

N. Parashar, J. Stupak

Purdue University Calumet, Hammond, USA

A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, Z. Tu, J. Zabel

Rice University, Houston, USA

B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, M. Verzetti

University of Rochester, Rochester, USA

L. Demortier

The Rockefeller University, New York, USA

S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, A. Lath, S. Panwalkar, M. Park, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

Rutgers, The State University of New Jersey, Piscataway, USA

M. Foerster, G. Riley, K. Rose, S. Spanier, A. York

University of Tennessee, Knoxville, USA
O. Bouhali, A. Castaneda Hernandez, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Krutelyov, R. Montalvo, R. Mueller, I. Osipenkov, Y. Pakhotin, R. Patel, A. Perloff, J. Roe, A. Rose, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas A&M University, College Station, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, S. Undleeb, I. Volobouev

Texas Tech University, Lubbock, USA

E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, Y. Mao, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska, Q. Xu

Vanderbilt University, Nashville, USA

M.W. Arenton, S. Bottle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, E. Wolfe, J. Wood, F. Xia

University of Virginia, Charlottesville, USA

C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

Wayne State University, Detroit, USA

D.A. Belknap, D. Carlsmith, M. Cepeda, A. Christian, S. Dasu, L. Dodd, S. Duric, E. Friis, B. Gomber, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Ruggles, T. Sarangi, A. Savin, A. Sharma, N. Smith, W.H. Smith, D. Taylor, N. Woods

University of Wisconsin, Madison, USA

1 Deceased.
2 Also at Austrian Centers for Research and Technology, Austrian Agency for International Cooperation in Research, Vienna, Austria.
3 Also at BEIC, European Organization for Nuclear Research, Geneva, Switzerland.
4 Also at INFN, National Institute of Nuclear Physics, Pavia, Italy.
5 Also at National Institute of Physics, Bucharest, Romania.
6 Also at National Institute of Physics, Prague, Czech Republic.
7 Also at National Research Centre “Kurchatov Institute” for Reactor Physics, Moscow, Russia.
8 Also at National Research Centre “Kurchatov Institute” for Reactor Physics, Moscow, Russia.
9 Also at Nuclear Research Centre, Daresbury, UK.
10 Also at Nuclear Research Centre, Daresbury, UK.
11 Also at Nuclear Research Centre, Daresbury, UK.
12 Also at Nuclear Research Centre, Daresbury, UK.
13 Also at Nuclear Research Centre, Daresbury, UK.
14 Also at Nuclear Research Centre, Daresbury, UK.
15 Also at Nuclear Research Centre, Daresbury, UK.
16 Also at Nuclear Research Centre, Daresbury, UK.
17 Also at Nuclear Research Centre, Daresbury, UK.
18 Also at Nuclear Research Centre, Daresbury, UK.
19 Also at Nuclear Research Centre, Daresbury, UK.
20 Also at Nuclear Research Centre, Daresbury, UK.
21 Also at Nuclear Research Centre, Daresbury, UK.
22 Also at Nuclear Research Centre, Daresbury, UK.
23 Also at Nuclear Research Centre, Daresbury, UK.
24 Also at Nuclear Research Centre, Daresbury, UK.
25 Also at Nuclear Research Centre, Daresbury, UK.
26 Also at Nuclear Research Centre, Daresbury, UK.
27 Also at Nuclear Research Centre, Daresbury, UK.
28 Also at Nuclear Research Centre, Daresbury, UK.
29 Also at Nuclear Research Centre, Daresbury, UK.
30 Also at Nuclear Research Centre, Daresbury, UK.
31 Also at Nuclear Research Centre, Daresbury, UK.
32 Also at Nuclear Research Centre, Daresbury, UK.
33 Also at Nuclear Research Centre, Daresbury, UK.
34 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
35 Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia.
36 Also at California Institute of Technology, Pasadena, USA.
37 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
38 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
39 Also at National Technical University of Athens, Athens, Greece.
40 Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy.
41 Also at University of Athens, Athens, Greece.
42 Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
43 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
44 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
45 Also at Adiyaman University, Adiyaman, Turkey.
46 Also at Mersin University, Mersin, Turkey.
47 Also at Cag University, Mersin, Turkey.
48 Also at Piri Reis University, Istanbul, Turkey.
49 Also at Gaziosmanpasa University, Tokat, Turkey.
50 Also at Ozyegin University, Istanbul, Turkey.
51 Also at Izmir Institute of Technology, Izmir, Turkey.
52 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
53 Also at Marmara University, Istanbul, Turkey.
54 Also at Kafkas University, Kars, Turkey.
55 Also at Yildiz Technical University, Istanbul, Turkey.
56 Also at Hacettepe University, Ankara, Turkey.
57 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
58 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
59 Also at Instituto de Astrofísica de Canarias, La Laguna, Spain.
60 Also at Utah Valley University, Orem, USA.
61 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
62 Also at Argonne National Laboratory, Argonne, USA.
63 Also at Erzincan University, Erzincan, Turkey.
64 Also at Texas A&M University at Qatar, Doha, Qatar.
65 Also at Kyungpook National University, Daegu, Republic of Korea.