Acceptance and Risk Perception of COVID-19 Vaccine in Uganda: A Cross Sectional Study in Western Uganda

Isaac Echoru (echoruisaac@gmail.com)
Kabale University https://orcid.org/0000-0002-8339-8303

Patricia Decanar Ajambo
Kampala International University - Western Campus

Edmund Mugabi Bukenya
Kabale University

Research article

Keywords: COVID-19, vaccine, acceptance, clinical trial, risk perception, western Uganda

DOI: https://doi.org/10.21203/rs.3.rs-78780/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Many countries have drawn their attention on developing Corona virus disease 2019 (COVID-19) vaccine however there is less emphasis on whether this vaccine could be accepted in most of these countries. This study aimed to investigate acceptance and risk perception of COVID-19 vaccine in Uganda.

Method: A simplified snowball sampling technique was used to select 1067 respondents of 18-70 years in western Uganda using an online questionnaire from July to September 2020. Vaccine acceptability and risk perception was assessed using odds ratio at 95% confidence interval using R software version 3.6.3.

Results: The acceptance rate for vaccination against COVID-19 was (53.6%; 572/1067) with participants in the reference age group 18-20 (OR: 1; 95%CI: NA); males (OR: 2.1; 95%CI: 1.56-2.71; P=0.000); tertiary level of education (OR: 2.8; 95%CI: 1.25-6.11; P=0.009); students (OR: 3.19; 95%CI: 1.98-5.15; P=0.000) and non-salary earners (OR: 2.29; 95%CI: 1.53-3.44; P=0.000) significantly more likely to accept the vaccine. Results also showed that (46.4%; 495/1067) of the respondents were un-likely to accept the vaccine. About (44.6%; 476/1067) of the respondents were likely to accept vaccine clinical trials with participants in the reference age group 18-20 (OR: 1; 95%CI: NA), students (OR: 2.37; 95%CI: 1.49-3.77; P=0.000), marrieds (OR: 1.3; 95%CI: 1.03-1.69; P=0.028), and non-salary (OR: 1.56; 95%CI: 1.05-2.30; P=0.029) significantly more likely to accept clinical trials. There were (46.7%; 500/1067) of the respondents who perceived the vaccine as being risky with males (OR: 3.13; 95%CI: 2.33-4.21; P=0.000); students (OR: 2.59; 95%CI: 1.63-4.13; P=0.000); Civil servants (OR: 1.49; 95%CI: 0.98-2.25; P=0.063); and non-salary earners (OR: 2.34; 95%CI: 1.57-3.47; P=0.000) who significantly perceived the vaccine as being more risky.

Conclusion: The level of vaccine acceptance (53.6%) and risk perception (46.7%) was relatively average in western Uganda. In order to ensure successful vaccination process, the government needs to prioritize vaccine acceptance strategies especially among the risky group in the community.

Background

Many countries have drawn their attention on developing Corona virus disease 2019 (COVID-19) vaccine however there is less emphasis on whether this vaccine could be accepted in most of these countries (1). In Africa, COVID-19 outbreak continues to evolve many new numbers of infections and deaths. As of 7 July, there have been 493131 cases of COVID-19 and 11643 deaths reported from the African continent with a 25% increase in cases (2). Apparently, there are several clinical trials that have started in some parts of the world (3) but according to the African Academy of Sciences, only 2% of global clinical trials, for all types of vaccines take place in Africa (4). This may be challenging because people of different ethnic backgrounds could react differently to the vaccine.

There is currently one clinical trial of a COVID-19 vaccine in sub-Saharan Africa taking place in South Africa, being run by the University of the Witwatersrand, in Johannesburg (4). Before the vaccine reaches to different parts of the African continent, it is paramount to establish vaccine acceptance in the region. This is because fear of vaccines has grown radically in the past years (5). In some communities, this fear has led to significantly increased rates of vaccine refusal which is associated with increases in illness and death from vaccine preventable diseases and imposing of large economic costs for health care to the society (5) (6). A widely accessible and acceptable vaccine is essential to mitigate the health and economic ravages of coronavirus disease 2019 (6). Scientist have previously argued out that the public must be helped to easily understand the huge influence that vaccines have on the health of the population and we must continue to improve our ability to keep terrible diseases in check through the use of this tool (7) (8). There is presently no COVID-19 vaccine in Uganda however the ministry of health Uganda is working hard to acquire the vaccine by the end of 2020. However, before COVID-19 vaccine is introduced, it is suitable that public health officials and policymakers prioritize effective COVID-19 vaccine-acceptance messages, especially those who are most vulnerable.

There are no studies that have been conducted about acceptance and risk perception of COVID-19 vaccine in Uganda. This study aimed at determining acceptability and risk perception of hypothetical COVID-19 vaccine in western Uganda. Our prospective hypothesis was that there will be a high vaccine acceptance and high risk perception of COVID-19 vaccine in western Uganda. The results from this study could help the government in identifying the risk population and develop better strategies for mass vaccination against COVID-19.

Methods And Materials

Study design

The present study was a cross sectional study based on the survey data that was collected. The study population consisted of participants aged between 18 to 70 years of age. This study occurred between 3rd July and 5th September 2020 with in western Uganda. We used a simplified snowball sampling technique where respondents were requested to pass the invitations through emails or WhatsApp contacts. We designed a questionnaire that was administered online through Google forms on https://docs.google.com/forms/ due to limitations of person to person contact as a measure to minimize the virus spread. To ascertain quality, the questionnaire was pretested before the final draft was made (additional file 1). The final version contained demographic characteristics, and questions regarding to vaccine acceptance, willingness to participate in vaccine trials and risk perception of COVID-19 vaccine. Our inclusion criteria had adults above 18 years of age, those capable of using internet on a smart phone or computer; residents in western Uganda and only those who gave consent to participate in the study. Further details of sample collection procedure are described by Harapan et al (9) (10).

Study variables

This study was based on the assumption that the vaccine would freely be availed and provided by the government of Uganda to its people.

The independent variables were the demographic characteristics that included; age, gender, education status, religion, occupation, marital status, monthly income, employment status, occupation and residence of the respondents.
The dependent variables were; vaccine acceptance; vaccine trial acceptance and risk perception of the vaccine. The response required for dependent variables was either “YES” or “NO”

1. Vaccine acceptance: the question asked was developed in line with Harapan et al (9) (11) however, it was modified to suit our study design. The question was “If the government of Uganda is to provide free COVID-19 vaccine, would you accept to be vaccinated?”

2. Vaccine trial acceptance: the questions asked here were developed according to Harapan et al (9) and it was modified to suit our study design. The questions were “Have you ever participated in any vaccine trial before?” “When approached, would you accept to participate in COVID-19 vaccine trial?”

3. Risk perception of the vaccine: The source of this question was according to Malik et al (11) and we redesigned it as follows “Even before COVID-19 vaccine is available, what is your risk perception about this vaccine?”

In order to minimize bias, we tried to remove unnecessary questions, broad questions like what do you think of covid-19 vaccine? We asked them simple, direct and balanced questions. We also kept the questionnaire short to at most 5 minutes completion. Long questionnaires irritate participants; and they begin giving random answers so as to complete the survey.

Sample size calculation

With a population size of 8,874,860 in western Uganda (24) a margin of error of 3%, confidence interval of 95% and a response distribution of 50% was assumed. The minimum recommended sample size calculated was 1067 individuals.

Statistical analysis

Data was cleaned and analyzed in R studio software version 3.6.3. Descriptive statistics (frequencies, percentage) were calculated for the sample demographic characteristics. Contingency tables were drawn and all responses concerning acceptance of COVID-19 vaccine; acceptance to participate in vaccine trials were compared against demographic characteristics. Odds Ratio, were calculated at 95% confidence interval with statistical significance when \(P \leq 0.05 \) using Fisher exact two tailed.

Results

Demographic characteristics of the respondents

There were 1067 participants from western Uganda. Majority were 31–40 years of age (32.6%, 348/1067) while male participants dominated the study (73.2%, 781/1067). Most of our respondents were of tertiary level of education (86.9%, 927/1067) and civil servants (39.1%, 417/1067). Majority of the respondents were Christians (88.5%, 944/1067), marrieds (634/1067; 59.4%) and those with a salary income of more than 2,000,000 Ugandan shillings (35.6%, 380/1067). There were also more respondents who lived in urban centers than rural areas (65.1%, 695/1067) as shown in Table 1, 2&3.

Respondents likely to accept COVID-19 Vaccine

Results show that the acceptance rate for vaccination against COVID-19 was (53.6%; 572/1067) as shown in Table 1. Participants in the reference age group 18-20 were more likely to accept the vaccine (OR: 1; 95%CI: NA). Male subjects were twice as likely to accept the vaccine (OR: 2.1; 95%CI: 1.56-2.71; \(P=0.000 \)). Those who ended at tertiary level of education and students were more likely to accept the vaccine (OR: 2.8; 95%CI: 1.25-6.11; \(P=0.009 \)) and (OR: 3.19; 95%CI: 1.98-5.15; \(P=0.000 \)) respectively. Muslims and non-salary earners were more likely to accept the vaccine (OR: 1.05; 95%CI: 0.69-1.59; \(P=0.834 \)); (OR: 2.29; 95%CI: 1.53-3.44; \(P=0.000 \)) respectively.

Respondents who were un-likely to accept COVID-19 vaccine

Results show that (46.4%; 495/1067) were un-likely to accept the vaccine as shown in Table 1. Those aged 61-70 years were unlikely to accept the vaccine (OR: 0.17; 95%CI: 0.08-0.36; \(P=0.000 \)). Participants who were unemployed and the pagans were unlikely to accept the vaccine (OR: 0.21; 95%CI: 0.06-0.75; \(P=0.012 \)) and (OR: 0.24; 95%CI: 0.09-0.68; \(P=0.004 \)) respectively. The unmarried and urban dwellers were also unlikely to accept the vaccine (OR: 0.73; 95%CI: 0.57-0.93; \(P=0.012 \), and (OR: 0.78; 95%CI: 0.61-1.01; \(P=0.062 \)) respectively.
Table 1
Analysis of responses regarding acceptance of COVID-19 vaccine among different variables

Demographics	NO	%	YES	%	TOTAL	%	OR	CI	P-VALUE
Age									
18–20	17	18.9	73	81.1	90	8.4	1		
21–30	182	62.8	108	37.2	290	27.2	0.14	0.08–0.24	0.000
31–40	163	46.8	185	53.2	348	32.6	0.27	0.15–0.47	0.000
41–50	72	43.1	95	56.9	167	15.7	0.31	0.17–0.57	0.000
51–60	32	26.2	90	73.8	122	11.4	0.65	0.34–1.27	0.249
61–70	29	58.0	21	42.0	50	4.7	0.17	0.08–0.36	0.000
TOTAL	495	46.4	572	53.6	1067	100			
Gender									
Female	170	59.4	116	40.6	286	26.8	1		
Male	325	41.6	456	58.4	781	73.2	2.1	1.56–2.71	0.000
TOTAL	495	46.4	572	53.6	1067	100			
Education									
Primary	21	70.0	9	30.0	30	2.8	1		
Secondary	50	45.5	60	54.5	110	10.3	2.8	1.18–6.66	0.022
Tertiary	424	45.7	503	54.3	927	86.9	2.8	1.25–6.11	0.009
TOTAL	495	46.4	572	53.6	1067	100			
Occupation									
Business	66	54.1	56	45.9	122	11.4	1		
Civil servant	187	44.8	230	55.2	417	39.1	1.45	0.97–2.17	0.079
Private sector	163	54.0	139	46.0	302	28.3	1.00	0.66–1.53	1.000
Retired	10	76.9	3	23.1	13	1.2	0.35	0.09–1.34	0.146
Student	52	26.9	141	73.1	193	18.1	3.19	1.98–5.15	0.000
Unemployed	17	85.0	3	15.0	20	1.9	0.21	0.06–0.75	0.012
TOTAL	495	46.4	572	53.6	1067	100			
Religion									
Christian	433	45.9	511	54.1	944	88.5	1		
Muslim	45	44.6	56	55.4	101	9.5	1.05	0.69–1.59	0.834
Pagans	17	77.3	5	22.7	22	2.1	0.24	0.09–0.68	0.004
TOTAL	495	46.4	572	53.6	1067	100			
Marital status									
Married	274	43.2	360	56.8	634	59.42	1		
Not married	221	51.0	212	49.0	433	40.58	0.73	0.57–0.93	0.012
TOTAL	495	46.4	572	53.6	1067	100			
Monthly income									
<1,000,000	111	41.9	154	58.1	265	24.84	1.56	1.10–2.22	0.013
>2,000,000	195	51.3	185	48.7	380	35.61	1.07	0.77–1.47	0.684
No salary	57	32.9	116	67.1	173	16.21	2.29	1.53–3.44	0.000
TOTAL	495	46.4	572	53.6	1067	100			
Residence									
Rural	158	42.5	214	57.5	372	34.86	1		
Urban	337	48.5	358	51.5	695	65.14	0.78	0.61–1.01	0.062
TOTAL	495	46.4	572	53.6	1067	100			
There were (46.7%; 500/1067) of the respondents who perceived the vaccine as being risky as shown in Table 2. Participants in the age group 51-60 years perceived that the vaccine would be risky (OR: 1.26, 95%CI: 0.72-2.23; \(P=0.471 \)). The male respondents were three times more likely to perceive the vaccine (OR: 3.13; 95%CI: 2.33-4.21; \(P=0.000 \)). Those ended at tertiary level of education and the students considered the vaccine being more risky (OR: 1.46; 95%CI: 0.69-3.08; \(P=0.356 \)) and (OR: 2.59; 95%CI: 1.63-4.13; \(P=0.000 \)) respectively. Civil servants and Muslims perceived the vaccine as being risky (OR: 1.49; 95%CI: 0.98-2.25; \(P=0.063 \); (OR: 1.08; 95%CI: 0.72-1.64; \(P=0.753 \)) respectively. It was also shown that those who were non-salary earners regarded the vaccine as being more risky (OR: 2.34; 95%CI: 1.57-3.47; \(P=0.000 \)).
Table 2
Analysis of responses regarding risk perception of COVID-19 vaccine among different variables

Demographics	NO	%	YES	%	TOTAL	%	OR	CI	P-VALUE
Age 18–20	36	40.0	54	60.0	90	8.4	1		
21–30	186	64.1	104	35.9	290	27.2	0.37	0.23–0.61	0.000
31–40	184	52.9	164	47.1	348	32.6	0.59	0.37–0.95	0.033
41–50	82	49.1	85	50.9	167	15.7	0.69	0.41–1.16	0.189
51–60	42	34.4	80	65.6	122	11.4	1.26	0.72–2.23	0.471
61–70	37	74.0	13	26.0	50	4.7	0.23	0.11–0.50	0.000
Gender TOTAL	567	53.1	500	46.9	1067	100			
Female	208	72.7	78	27.3	286	26.8	1		
Male	359	46.0	422	54.0	781	73.2	3.13	2.33–4.21	0.000
Education TOTAL	567	53.1	500	46.9	1067	100			
Primary	18	60.0	12	40.0	30	2.8	1		
Secondary	80	72.7	30	27.3	110	10.3	0.56	0.24–1.31	0.185
Tertiary	469	50.6	458	49.4	927	86.9	1.46	0.69–3.08	0.356
Occupation TOTAL	567	53.1	500	46.9	1067	100			
Business	74	60.7	48	39.3	122	11.4	1		
Civil servant	212	50.8	205	49.2	417	39.1	1.49	0.98–2.25	0.063
Private sector	183	60.6	119	39.4	302	28.3	1.00	0.65–1.54	1.000
Retired	10	76.9	3	23.1	13	1.2	0.46	0.12–1.77	0.369
Student	72	37.3	121	62.7	193	18.1	2.59	1.63–4.13	0.000
Unemployed	16	80.0	4	20.0	20	1.9	0.39	0.12–1.22	0.133
Religion TOTAL	567	53.1	500	46.9	1067	100			
Christian	496	52.5	448	47.5	944	88.5	1		
Muslim	51	50.5	50	49.5	101	9.5	1.08	0.72–1.64	0.753
Pagans	20	90.9	2	9.1	22	2.1	0.11	0.03–0.48	0.000
TOTAL	567	53.1	500	46.9	1067	100			
Marital status TOTAL	567	53.1	500	46.9	1067	100			
Married	326	51.4	308	48.6	634	59.42	1		
Not married	241	55.7	192	44.3	433	40.58	0.84	0.66–1.08	0.189
Monthly income TOTAL	567	53.1	500	46.9	1067	100			
<1,000,000	161	64.7	88	35.3	249	23.34	1		
>1,000,000	122	46.0	143	54.0	265	24.84	2.14	1.50–3.06	0.000
>2,000,000	208	54.7	172	45.3	380	35.61	1.51	1.09–2.10	0.016
No salary	76	43.9	97	56.1	173	16.21	2.34	1.57–3.47	0.000
Residence TOTAL	567	53.1	500	46.9	1067	100			
Rural	186	50.0	186	50.0	372	34.86	1		
Urban	381	54.8	314	45.2	695	65.14	0.82	0.64–1.06	0.132
TOTAL	567	53.1	500	46.9	1067	100			

Respondents likely to accept COVID-19 Vaccine clinical trials
Our results showed that the acceptance level for COVID-19 vaccination trial was (44.6%; 476/1067) as shown in Table 3. Participants in the reference age group 18-20 were more likely to accept clinical trials (OR: 1; 95%CI: NA). Male subjects were 1.1 times likely to accept clinical trials as compared to females (OR: 1.1; 95%CI: 0.84-1.46; P=0.445). Students and civil servants were more likely to accept clinical trials as compared to the business group (OR: 2.37; 95%CI: 1.49-3.77; P=0.000) and (OR: 1.19; 95%CI: 0.79-1.80; P=0.407) respectively. Participants who were not married and those had no salary were more likely to accept clinical trials (OR: 1.3; 95%CI: 1.03-1.69; P=0.028) and (OR: 1.56; 95%CI: 1.05-2.30; P=0.029) respectively.

Respondents NOT likely to accept COVID-19 vaccine clinical trials

Results show that (55.4%; 591/1067) of the respondents were not likely to acceptance COVID-19 vaccine clinical trial as shown in Table 3. Participants in the reference age group 21-30 and 61-70 were less likely to accept clinical trials (OR: 0.47; 95%CI: 0.29-0.75; P=0.002) and (OR: 0.18; 95%CI: 0.08-0.41; P=0.000) respectively. Those in the retirement group and the unemployed were unlikely to participate in the clinical trials (OR: 0.46; 95%CI: 0.12-1.77; P=0.369) and (OR: 0.83; 95%CI: 0.31-2.23; P=0.808) respectively. Muslims and pagans were also more unlikely to participate in the clinical trials (OR: 0.59; 95%CI: 0.39-0.92; P=0.020) and (OR: 0.82; 95%CI: 0.34-1.92; P=0.672) respectively. Participants who lived in urban places were unlikely to participate in clinical trials (OR: 0.69; 95%CI: 0.53-0.89; P=0.004).
Table 3
Analysis of responses regarding clinical trial COVID-19 vaccine acceptance

Demographics	NO %	YES %	TOTAL %	OR	CI	P-VALUE	
Age							
18–20	38	52	90	8.4	1	0.002	
21–30	177	113	290	27.2	0.47	0.29–0.75	0.002
31–40	181	167	348	32.6	0.67	0.42–1.08	0.123
41–50	84	83	167	15.7	0.72	0.43–1.21	0.239
51–60	71	51	122	11.4	0.52	0.30–0.91	0.026
61–70	40	10	50	4.7	0.18	0.08–0.41	0.000
TOTAL	591	476	1067	100	1	1	
Gender							
Female	164	122	286	26.8	1	0.445	
Male	427	354	781	73.2	1.1	0.84–1.46	0.445
TOTAL	591	476	1067	100	1	1	
Education							
Primary	15	15	30	2.8	1	0.80	
Secondary	61	49	110	10.3	0.80	0.36–1.80	0.681
Tertiary	515	412	927	86.9	0.80	0.39–1.65	0.552
TOTAL	591	476	1067	100	1	1	
Occupation							
Business	74	48	122	11.4	1	0.85	
Civil servant	235	182	417	39.1	1.19	0.79–1.80	0.407
Private sector	183	119	302	28.3	1.00	0.65–1.54	1.000
Retired	10	3	13	1.2	0.46	0.12–1.77	0.369
Student	76	117	193	18.1	2.37	1.49–3.77	0.000
Unemployed	13	7	20	1.9	0.83	0.31–2.23	0.808
TOTAL	591	476	1067	100	1	1	
Religion							
Christian	511	433	944	88.5	1	0.59	
Muslim	67	34	101	9.5	0.59	0.39–0.92	0.020
Pagans	13	9	22	2.1	0.82	0.34–1.92	0.672
TOTAL	591	476	1067	100	1	1	
Marital status							
Married	369	265	634	59.4	1	1.56	
Not married	222	211	433	40.6	1.3	1.03–1.69	0.028
TOTAL	591	476	1067	100	1	1	
Monthly income							
1,000,000–2,000,000	134	115	249	23.3	1	0.85	
< 1,000,000	153	112	265	24.8	0.85	0.60–1.21	0.376
> 2,000,000	230	150	380	35.6	0.75	0.55–1.04	0.099
No salary	74	99	173	16.2	1.56	1.05–2.30	0.029
TOTAL	591	476	1067	100	1	1	
Residence							
Rural	184	188	372	34.9	1	0.69	
Urban	407	288	695	65.1	0.69	0.53–0.89	0.004
TOTAL	591	476	1067	100	1	1	

Discussion

With the assumption that COVID-19 vaccine would freely be provided by the government, the level of vaccine acceptance (53.6%); risk perception (46%) and acceptance of clinical trials (44.6%) is relatively average. According to the East African Consortium for Clinical Research (25), the Uganda Virus Research...
Institute (UVRI) is partnering with Imperial College London to start the first Covid-19 vaccine trial in the country by December, 2020. However, the success or failures of vaccine trials are community driven (12). In order to avoid anti-vaccination campaigns like in the early 1996 and 1997, where the oral poliovirus vaccine was criticized by the public that the oral poliovirus vaccine was contaminated with HIV and ineffective, the government needs proper mobilization and community engagement (13) (26). In 2019, the Congo’s Ebola vaccine hesitancy was geared by community mistrust due to social and cultural factors that arose during the West Africa Ebola outbreak, even though these communities seriously needed the Ebola vaccine (14). Studies have shown that vaccine refusal is associated with increases in illness and death from vaccine preventable diseases which is also secondary to large economic costs for health care (6). Our study shows that 46.4% (Table 1.2) are not willing to take the vaccine however despite the very high benefit-to-risk ratio of vaccines, the fear of negative side effects can discourage many people from getting vaccinated from killer diseases (15).

In general comparison of vaccine acceptance levels in our findings (Table 1), there were higher acceptance levels of hypothetical COVID-19 vaccine in countries such as Chine (91.3% (16); Indonesia (93.3%) (9) and USA (69%) (17). We attribute these differences to low levels of global vaccine clinical trials in African (4), inadequate research facilities and limited funding needed in development of vaccines (18). Financial and knowledge constrains in most African countries, have cause highest mortality rates by infectious diseases (19). However, low vaccine acceptance in Uganda could be attributed to fear or potential risks that can be encountered especially where a vaccine has not been well evaluated. A similar study in sub-Saharan Africa showed an overall positive acceptance towards the new malaria vaccine however there were challenges of inadequate community engagement due to lack of information about the vaccine and fear of the vaccine side effects (20).

Africa has a high population and a growing economy (21), which would be an advantage for increasing potential market for vaccines however there is a lot of political prejudice and policy setting influence which may be a factor hindering good health service delivery to the people (18). It is popular that in most African countries political leaders often misuse government resources meant for health service procurements (22).

According to our results, it shows that 46.9% of the respondents had fear for the vaccine. Previous study on HIV vaccine trial in Uganda showed that before researchers start any trials of HIV vaccines, they need to gain support from politicians, the media, and the general public. Generally, all stakeholders must be involved in discussions about important scientific, social, legal, ethical, and other concerns before the study begins (23). We believe that this approach could help mitigate fears about COVID-19 vaccination and clinical trials in the community.

Among the most risky group were the males respondents, students, low income earners (< 1,000, 000) and those with no salary income who perceived the vaccine as being risky. When carrying out community sensitization, efforts have to be made by the government to ensure that this group of people in followed closely.

Therefore the government of Uganda through its Scientists, policymakers, and public health experts must start involving communities now as discussions and plans progress toward finding a vaccine not after the scientific breakthrough but before. There is need to sensitize the population against their fears early enough before the trials can progress. The government can establish messages and trainings for its people especially the risky group regarding vaccination against COVID-19. This can be done through radios, televisions, newspapers, seminars and phone messages.

Conclusion

The level of vaccine acceptance (53.6%) and risk perception (46.7%) was relatively average in western Uganda. Most risky groups unlikely to receive the vaccine included those aged 61–70, unemployed; pagans; unmarried and urban dwellers. Additionally, male participants; students; civil servants and non-salary earners; regarded the vaccine as being more risky. If this group is not attended to, it may lead to increased COVID-19 infections; deaths which can propagate to economic down fall of the country. In order to ensure successful vaccination process, the government needs to prioritize vaccine acceptance strategies especially among the risky group in the community.

Study Limitations

With this study being purely an online based survey, it was not possible to know if the responses were really genuine. The study being online based could also have omitted those without phones, computer and internet. We could have left out more vulnerable persons or persons who could have preferred vaccination hence the low level of acceptance obtained.

Abbreviations

- %: Percentage
- CI: Confidence interval
- COVID-19: Corona virus disease 2019
- HIV: Human Immune Virus
- OR: Odds ratio
- P-Value: Probability value
- UVRI: Uganda Virus Research Institute
WHO: World Health Organization

Declarations

Ethical approval and consent to participate

The study protocol was approved by the research and ethic committee of Kampala International University, western campus, Uganda. Written informed consent was obtained from all participants in an ethical statement in the questionnaire prior to answering preceding questions.

Consent to publish

Participants gave consent regarding to publication of this report.

Availability of data and materials

Data used is accessible on fig share through the link: https://figshare.com/s/46d3ef8e7c4553f3c4e6

Competing interests

All authors have no competing interests to declare.

Funding

Not applicable

Authors’ contribution

IE designed the first draft of the study. IE, PDA and EMB carried out data collection while IE and PDA analyzed the data and wrote the manuscript. IE, PDA and EMB critically reviewed the manuscript to its final stage.

Acknowledgements

The authors would like to thank all participants in this study. We also appreciate Dr. Kenneth Iceland Kasozi for technical advice given.

References

1. Neumann-Böhme S, Varghese NE, Sabat I, Barros PP, Brouwer W, van Exel J, et al. Once we have it, will we use it? A European survey on willingness to be vaccinated against COVID-19. Eur J Heal Econ [Internet]. 2020 Sep 26;21(7):977–82. Available from: https://doi.org/10.1007/s10198-020-01208-6
2. Culp WC. Coronavirus Disease 2019. A A Pract [Internet]. 2020 Apr;14(6):e01218. Available from: http://journals.lww.com/10.1213/XAA.0000000000001218
3. Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity. 2020 Apr;52(4):583–9.
4. Makoni M. COVID-19 vaccine trials in Africa. Lancet Respir Med [Internet]. 2020 Sep;2600(20):19–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32896275
5. Ropeik D. How society should respond to the risk of vaccine rejection. Hum Vaccin Immunother. 2013 Aug;9(8):1815–8.
6. Snyder CM, Hoyt K, Gouglas D, Johnston T, Robinson J. Designing Pull Funding For A COVID-19 Vaccine. Health Aff. 2020 Jul;10.1377/hlthaff.
7. Greenwood B. The contribution of vaccination to global health: past, present and future. Philos Trans R Soc B Biol Sci [Internet]. 2014 Jun 19;369(1645):20130433. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0433
8. Andre F, Booy R, Bock H, Clemens J, Datta S, John T, et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull World Health Organ. 2008 Feb;86(2):140–6.
9. Harapan H, Wagner AL, Yufika A, Winardi W, Anwar S, Gan AK, et al. Acceptance of a COVID-19 Vaccine in Southeast Asia: A Cross-Sectional Study in Indonesia. Front Public Heal [Internet]. 2020 Jul 14;8. Available from: https://www.frontiersin.org/article/10.3389/fpubh.2020.00381/full
10. Padhi BK, Almohaithef MA. Determinants of COVID-19 vaccine acceptance in Saudi Arabia: a web-based national survey. medRxiv. 2020;2020.05.27.20114413.
11. Malik AA, McFadden SM, Elharake J, Omer SB. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine. 2020 Aug;100495.
12. Dada S, McKay G, Mateus A, Lees S. Lessons learned from engaging communities for Ebola vaccine trials in Sierra Leone: reciprocity, relatability, relationships and respect (the four R's). BMC Public Health. 2019 Dec;19(1):1665.
13. UNICEF. Combatting antivaccination rumours: Lessons learned from case studies in East Africa. East South Africa Reg Off Nairobi ... [Internet]. 1997;1–68. Available from: http://www.vaccineresources.org/files/Combatting_Antivac_Rumors_UNICEF.pdf%0Ahttp://www.path.org/vaccineresources/files/Combatting_Antivac_Rumors_UNICEF.pdf

14. Chowell G, Tariq A, Kiskowski M. Vaccination strategies to control Ebola epidemics in the context of variable household inaccessibility levels. PLoS Negl Trop Dis. 2019;13(11).

15. Sohail Ahmed S, Montomoli E, Pasini FL, Steinman L. The safety of adjuvanted vaccines revisited: Vaccine-induced narcolepsy. Isr Med Assoc J. 2016;

16. Wang J, Jing R, Lai X, Zhang H, Lyu Y, Knoll MD, et al. Acceptance of COVID-19 Vaccination during the COVID-19 Pandemic in China. :1–14.

17. Reiter PL, Pennell ML, Katz ML. Acceptability of a COVID-19 Vaccine among Adults in the United States: How Many People Would Get Vaccinated? Vaccine. 2020;

18. Songane M. Challenges for nationwide vaccine delivery in African countries. Int J Heal Econ Manag. 2018;18(2):197–219.

19. Makenga G, Bonoli S, Montomoli E, Carrier T, Auerbach J. Vaccine Production in Africa: A Feasible Business Model for Capacity Building and Sustainable New Vaccine Introduction. Front Public Heal. 2019 Mar;

20. Dimala CA, Kika BT, Kadia BM, Blencowe H. Current challenges and proposed solutions to the effective implementation of the RTS, S/ AS01 Malaria Vaccine Program in sub-Saharan Africa: A systematic review. PLoS One. 2018;13(12):1–11.

21. Dao M. Population and Economic Growth in Africa - Popolazione e crescita economica in Africa. Econ Internazionale / Int Econ. 2013;66(2):215–30.

22. Chisholm D, Garman E, Breuer E, Fekadu A, Hanlon C, Jordans M, et al. Health service costs and their association with functional impairment among adults receiving integrated mental health care in five low- and middle-income countries: the PRIME cohort study. Health Policy Plan. 2020;35(5):567–76.

23. Mugerwa RD. First trial of the HIV-1 vaccine in Africa: Ugandan experience. BMJ. 2002 Jan;324(7331):226–9.

24. Uganda Administrative Division. 2020. https://www.citypopulation.de/php/uganda-admin.php. Accessed: 10th/09/2020

25. The East African Consortium for Clinical Research. 2020. https://www.eaccr.org/uvri-and-imperial-college-london-start-first-covid-19-vaccine-trial-uganda-december. Accessed 15th/Sept/2020

26. Githinji Gitahi, Lolem Ngong, George Kimathi. July 2020l. Vaccine trials start and end with the community. Devex - International Development News. Accessed on 19/09/2020 on: https://www.devex.com/news/opinion-vaccine-trials-start-and-end-with-the-community-97741