Weak Insertion of a Perfectly Continuous Function

MAJID MIRMIRAN*

Department of Mathematics, University of Isfahan, Iran.

*Corresponding Author: MAJID MIRMIRAN, Department of Mathematics, University of Isfahan, Iran.

Abstract: A sufficient condition in terms of lower cut sets are given for the insertion of a perfectly continuous function between two comparable real-valued functions on such topological spaces that \(A\)-sets are open.

1. INTRODUCTION

A generalized class of closed sets was considered by Maki in 1986 [10]. He investigated the sets that can be represented as union of closed sets and called them \(V\)-sets. Complements of \(V\)-sets, i.e., sets that are intersection of open sets are called \(\Lambda\)-sets [10].

Recall that a real-valued function \(f\) defined on a topological space \(X\) is called \(A\)-continuous [15] if the preimage of every open subset of \(\mathbb{R}\) belongs to \(A\), where \(A\) is a collection of subset of \(X\). Most of the definitions of function used throughout this paper are consequences of the definition of \(A\)-continuity. However, for unknown concepts the reader may refer to [2, 5].

Hence, a real-valued function \(f\) defined on a topological space \(X\) is called perfectly continuous [14] (resp. contra-continuous [3]) if the preimage of every open subset of \(\mathbb{R}\) is a clopen (i.e., open and closed) (resp. closed) subset of \(X\).

We have a function is perfectly continuous if and only if it is continuous and contra-continuous.

Results of Katetov [6, 7] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [1], are used in order to give a necessary and sufficient conditions for the insertion of a perfectly continuous function between two comparable realvalued functions on the topological spaces that \(A\)-sets are open [10].

If \(g\) and \(f\) are real-valued functions defined on a space \(X\), we write \(g \leq f\) in case \(g(x) \leq f(x)\) for all \(x\) in \(X\).

The following definitions are modifications of conditions considered in [8].

A property \(P\) defined relative to a real-valued function on a topological space is a \(pc\)-property provided that any constant function has property \(P\) and provided that the sum of a function with property \(P\) and any perfectly continuous function also has property \(P\). If \(P_1\) and \(P_2\) are \(pc\)-property, the following terminology is used: A space \(X\) has the weak \(pc\)-insertion property for \((P_1,P_2)\) if and only if for any functions \(g\) and \(f\) on \(X\) such that \(g \leq f\), \(g\) has property \(P_1\) and \(f\) has property \(P_2\), then there exists a perfectly continuous function \(h\) such that \(g \leq h \leq f\).

In this paper, is given a sufficient condition for the weak \(pc\)-insertion property. Also, several insertion theorems are obtained as corollaries of these results. In addition, the insertion and strong insertion of a contracontinuous function between two comparable contra-precontinuous (contrasemi-continuous) functions have also recently considered by the author in [11, 12].

2. THE MAIN RESULT

Before giving a sufficient condition for insertability of a perfectly continuous function, the necessary definitions and terminology are stated.

Let \((X,\tau)\) be a topological space, the family of all open, closed and clopen will be denoted by \(O(X,\tau)\), \(C(X,\tau)\) and \(Clo(X,\tau)\), respectively.

Definition 2.1. Let \(A\) be a subset of a topological space \((X,\tau)\). We define the subsets \(A^A\) and \(A^V\) as follows:
Weak Insertion of a Perfectly Continuous Function

\[A^\Lambda = \cap \{ O : O \supseteq A, O \subseteq O(X,\tau) \} \] and \[A^V = \cup \{ F : F \subseteq A, F \in C(X,\tau) \} \].

In [4, 9, 13], \(A^\Lambda \) is called the *kernel* of \(A \).

Definition 2.2. Let \(A \) be a subset of a topological space \((X,\tau)\). Respectively, we define the *closure*, *interior*, *clo-closure* and *clo-interior* of a set \(A \), denoted by \(Cl(A), Int(A), clo(Cl(A)) \) and \(clo(Int(A)) \) as follows:

\[
Cl(A) = \cap \{ F : F \supseteq A, F \in C(X,\tau) \}, \quad Int(A) = \cup \{ O : O \subseteq A, O \in O(X,\tau) \}, \quad clo(Cl(A)) = \cap \{ F : F \supseteq A, F \in Clo(X,\tau) \} \text{ and } clo(Int(A)) = \cup \{ O : O \subseteq A, O \in Clo(X,\tau) \}.
\]

If \((X,\tau)\) be a topological space whose \(\Lambda \)-sets are open, then respectively, we have \(A^V, clo(Cl(A)) \) are closed, clopen and \(A^\Lambda, clo(Int(A)) \) are open, clopen.

The following first two definitions are modifications of conditions considered in [6, 7].

Definition 2.3. If \(\rho \) is a binary relation in a set \(S \) then \(\rho^- \) is defined as follows: \(x \rho^- y \) if and only if \(y \rho \) implies \(x \rho \) and \(u \rho x \) implies \(u \rho y \) for any \(u \) and \(v \) in \(S \).

Definition 2.4. A binary relation \(\rho \) in the power set \(P(X) \) of a topological space \(X \) is called a *strong binary relation* in \(P(X) \) in case \(\rho \) satisfies each of the following conditions:

- If \(A, \rho B_i \) for any \(i \in \{1,...,m\} \) and for any \(j \in \{1,...,n\} \), then there exists a set \(C \in P(X) \) such that \(A, \rho C \) and \(C, \rho B_j \) for any \(i \in \{1,...,m\} \) and any \(j \in \{1,...,n\} \).
- If \(A \subseteq B \), then \(A \rho^- B \).
- If \(A \rho B \), then \(clo(Cl(A)) \subseteq B \) and \(A \subseteq clo(Int(B)) \).

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [1] as follows:

Definition 2.5. If \(f \) is a real-valued function defined on a space \(X \) and if \(\{ x \in X : f(x) < \ell \} \subseteq A(f,\ell) \subseteq \{ x \in X : f(x) \leq \ell \} \) for a real number \(\ell \), then \(A(f,\ell) \) is called a *lower indefinite cut set* in the domain of \(f \) at the level \(\ell \).

We now give the following main result:

Theorem 2.1. Let \(g \) and \(f \) be real-valued functions on a topological space \(X \), in which \(\Lambda \)-sets are open, with \(g \leq f \). If there exists a strong binary relation \(\rho \) on the power set of \(X \) and if there exist lower indefinite cut sets \(A(f,t) \) and \(A(g,t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \) then \(A(f,t_1) \rho A(g,t_2) \), then there exists a perfectly continuous function \(h \) defined on \(X \) such that \(g \leq h \leq f \). **Proof.** Let \(g \) and \(f \) be real-valued functions defined on \(X \) such that \(g \leq f \). By hypothesis there exists a strong binary relation \(\rho \) on the power set of \(X \) and there exist lower indefinite cut sets \(A(f,t) \) and \(A(g,t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \) then \(A(f,t_1) \rho A(g,t_2) \).

Define functions \(F \) and \(G \) mapping the rational numbers \(Q \) into the power set of \(X \) by \(F(t) = A(f,t) \) and \(G(t) = A(g,t) \). If \(t_1 \) and \(t_2 \) are any elements of \(Q \) with \(t_1 < t_2 \), then \(F(t_1) \rho^- F(t_2), G(t_1) \rho^- G(t_2), \) and \(F(t_1) \rho G(t_2) \). By Lemmas 1 and 2 of [7] it follows that there exists a function \(H \) mapping \(Q \) into the power set of \(X \) such that if \(t_1 \) and \(t_2 \) are any rational numbers with \(t_1 < t_2 \), then \(F(t_1) \rho H(t_2), H(t_1) \rho H(t_2) \) and \(H(t_1) \rho G(t_2) \).

For any \(x \in X \), let \(h(x) = \inf \{ t \in Q : x \in H(t) \} \).

We first verify that \(g \leq h \leq f \). If \(x \) is in \(H(t) \) then \(x \) is in \(G(t) \) for any \(t > t \); since \(x \) is in \(G(t) = A(g,t) \) implies that \(g(x) \leq t \), it follows that \(g(x) \leq t \). Hence \(g \leq h \). If \(x \) is not in \(H(t) \), then \(x \) is not in \(F(t) \) for any \(t > t \); since \(x \) is not in \(F(t) = A(f,t) \) implies that \(f(x) > t \), it follows that \(f(x) > t \). Hence \(h \leq f \).

Also, for any rational numbers \(t_1 \) and \(t_2 \) with \(t_1 < t_2 \), we have \(h^{-1}(t_1,t_2) = clo(Int(H(t_2))) \setminus clo(Cl(H(t_1))) \). Hence \(h^{-1}(t_1,t_2) \) is a clopen subset of \(X \), i. e., \(h \) is a perfectly continuous function on \(X \).

The above proof used the technique of proof of Theorem 1 of [6].

3. Applications

The abbreviations \(c, pc \) and \(cc \) are used for continuous, perfectly continuous and contra-continuous, respectively.
Before stating the consequences of theorems 2.1, we suppose that X is a topological space that Λ–sets are open.

Corollary 3.1. If for each pair of disjoint closed (resp. open) sets F_1,F_2 of X, there exist clopen sets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the weak pc–insertion property for (c,c) (resp. (cc,cc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are c (resp. cc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $Cl(A) \subseteq Int(B)$ (resp. $A^\alpha \subseteq B^\beta$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of Q with $t_1 < t_2$, then
\[A(f,t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2) ; \]

since $\{x \in X : f(x) \leq t_1\}$ is a closed (resp. open) set and since $\{x \in X : g(x) < t_2\}$ is an open (resp. closed) set, it follows that $Cl(A(f,t_1)) \subseteq Int(A(g,t_2))$ (resp. $A(f,t_1)^\alpha \subseteq A(g,t_2)^\beta$). Hence $t_1 < t_2$ implies that $A(f,t_1) \rho A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint closed (resp. open) sets F_1,F_2, there exist clopen sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then every continuous (resp. contra-continuous) function is perfectly continuous.

Proof. Let f be a real-valued continuous (resp. contra-continuous) function defined on the X. By setting $g = f$, then by Corollary 3.1, there exists a perfectly continuous function h such that $g = h = f$.

Corollary 3.3. If for each pair of disjoint closed (resp. open) sets F_1,F_2 of X, there exist clopen sets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X has the pc–insertion property for (c,c) (resp. (cc,cc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are c (resp. cc), and $g < f$. Set $h = (f + g)/2$, thus $g < h < f$, and by Corollary 3.2, since g and f are perfectly continuous functions hence h is a perfectly continuous function.

Corollary 3.4. If for each pair of disjoint subsets F_1,F_2 of X, such that F_1 is closed and F_2 is open, there exist clopen subsets G_1 and G_2 of X such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ then X have the weak pc–insertion property for (c,cc) and (cc,c).

Proof. Let g and f be real-valued functions defined on the X, such that g is c (resp. cc) and f is cc (resp. c), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $A^\alpha \subseteq Int(B)$ (resp. $Cl(A) \subseteq B^\beta$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of Q with $t_1 < t_2$, then
\[A(f,t_1) \subseteq \{x \in X : f(x) \leq t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g,t_2) ; \]

since $\{x \in X : f(x) \leq t_1\}$ is an open (resp. closed) set and since $\{x \in X : g(x) < t_2\}$ is an open (resp. closed) set, it follows that $A(f,t_1)^\alpha \subseteq Int(A(g,t_2))$ (resp. $Cl(A(f,t_1)) \subseteq A(g,t_2)^\beta$). Hence $t_1 < t_2$ implies that
\[A(f,t_1) \rho A(g,t_2) . \] The proof follows from Theorem 2.1.

ACKNOWLEDGEMENT

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

REFERENCES

[1] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78 (1971), 1007-1010.

[2] J. Dontchev, The characterization of some peculiar topological space via α– and β–sets, Acta Math. Hungar., 69 (1-2)(1995), 67-71.

[3] J. Dontchev, Contra-continuous functions and strongly S-closed space, Infrmat. J. Math. Math. Sci., 19 (2)(1996), 303-310.

[4] J. Dontchev, and H. Maki, On sg-closed sets and semi–λ–closed sets, Questions Answers Gen. Topology, 15 (2)(1997), 259-266.

[5] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56 (3-4)(1990), 299-301.

[6] M. Katetov, On real-valued functions in topological spaces, Fund. Math., 38 (1951), 85-91.
Weak Insertion of a Perfectly Continuous Function

[7] M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math., 40 (1953), 203-205.

[8] E. Lane, Insertion of a continuous function, Pacific J. Math., 66 (1976), 181-190.

[9] S. N. Maheshwari and R. Prasad, On R_0-spaces, Portugal. Math., 34 (1975), 213-217.

[10] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA’s Retirement, (1986), 139-146.

[11] M. Mirmiran, Insertion of a contra-continuous function between two comparable contra-precontinuous (contra-semi-continuous) functions, International Journal of Scientific and Innovative Mathematical Research, 7(10)(2019), 34-40.

[12] M. Mirmiran, Strong insertion of a contra-continuous function between two comparable contra-precontinuous (contra-semi-continuous) functions, International Journal of Scientific and Innovative Mathematical Research, 7(11)(2019), 12-16.

[13] M. Mrsevic, On pairwise R and pairwise R_1 bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30 (1986), 141-145.

[14] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math., 15 (1984), 241-250.

[15] M. Przemski, A decomposition of continuity and α-continuity, Acta Math. Hungar., 61 (1-2)(1993), 93-98.