The time-energy uncertainty relation is a fundamental result in quantum physics relating characteristic times to the inverse of energy fluctuations [1, 2]. This seminal result goes back to Mandelstam and Tamm who established it rigorously in 1945 [3]. Its modern formulation relies on quantum speed limits (QSLs) that bound the minimum time for a physical process to unfold in terms of energy fluctuations. QSLs render quantum dynamics with a geometric interpretation in which the quantum state of a system evolves in time by sweeping a distance in Hilbert space [4]. Thus, QSLs involve the notions of speed and distance in Hilbert space. Quantifying the distance between the initial and the time-evolving quantum states requires estimating state overlaps, which is challenging, if not unfeasible, for many-particle systems with continuous variables. Different norms of the generator of evolution provide upper bounds to the speed at which this distance is traversed. Apart from the standard deviation of the energy [2, 3, 5–9], the mean energy above the ground state has been widely used after the QSL introduced by Margolus and Levitin [10, 11]. In addition, other moments of the Hamiltonian can also be used as an upper bound to the speed of evolution [12, 13], and in certain settings other notions of speed based on work fluctuations have been shown to be dominant [14].

By now, QSLs are established in open quantum systems [15–18] and stochastic evolutions under continuous quantum measurements [19, 20]. Indeed, it is at present understood that speed limits are not restricted to the quantum domain, and can be formulated universally using the tools of information geometry [21]. The derivation of speed limits in classical dynamics and stochastic thermodynamics constitute a compelling advance to this end [22–24].

The notion of distinguishability in classical and quantum systems is however fundamentally different. In the quantum domain, the default notion relies on the Bures angle [8, 25]. Alternatively, other measures such as the Wigner-Yanase information [26] and the generalized Bloch angle [27] have been explored.

In this work we propose the experimental study of QSL with many-body systems of trapped ultracold atoms by measuring the mean atomic cloud size as a function of the evolution time. We show that for scale-invariant many-body systems, the Mandelstam-Tamm QSL can be probed, given that the Bures angle as well as the nonadiabatic energy fluctuations can be determined from the mean atomic cloud size, which is an experimentally measurable quantity.

Geometry of quantum dynamics and QSLs. — The degree to which two pure quantum states resemble each other is captured by the absolute square value of their overlap, i.e., their fidelity. Consider an initial quantum state \(|\Psi(0)\rangle \), and its time-evolution after a time \(t \) denoted by \(|\Psi(t)\rangle = U(t, 0)|\Psi(0)\rangle \), where \(U(t, 0) \) is the unitary time-evolution operator generated by the system Hamiltonian dynamics assuming that the system is isolated from the external environment. The fidelity \(F(t) = |\langle \Psi(t) | \Psi(0) \rangle|^2 \) gives the survival probability of the initial state after a time \(t \) of evolution. A notion of distance between quantum states is provided by the Bures angle [8, 25]. In particular, the Bures angle between the initial and the time-dependent states is parameterized by the time of evolution and reads

\[
\mathcal{L}(t) = \mathcal{L}(|\Psi(0)\rangle, U|\Psi(0)\rangle) = \arccos \sqrt{F(t)}. \tag{1}
\]

The Bures angle swept during the evolution is upper bounded in terms of the quantum Fisher information \(I_Q \),

\[
\mathcal{L}(\tau) \leq \int_0^\tau ds \sqrt{I_Q(s)}/4. \tag{2}
\]

Under unitary evolution, the quantum Fisher information is proportional to the energy variance, i.e.,

\[
I_Q(s) = \frac{4}{\hbar^2} [\langle \Psi(s) | H(s)^2 | \Psi(s) \rangle - \langle \Psi(s) | H(s) | \Psi(s) \rangle^2].
\]

This results in the Mandelstam-Tamm QSL [2, 3, 8, 9]

\[
\tau \geq \tau_{\text{QSL}} = \frac{\hbar \mathcal{L}(\tau)}{\Delta H}, \tag{3}
\]
where the mean energy dispersion reads
\[
\Delta H = \frac{1}{\tau} \int_0^\tau ds \sqrt{\text{var} \langle \varphi(s) | H(s) \rangle}.
\] (4)

This QSL can be used to characterize a given evolution. To this end, we introduce the difference between the integrated nonadiabatic standard deviation of the energy and the Bures angle
\[
\delta \mathcal{L}(\tau) = \frac{1}{\hbar} \int_0^\tau ds \sqrt{\text{var} \langle \varphi(s) | H(s) \rangle} - \mathcal{L}(\tau) \geq 0.
\] (5)

The first term in the rhs, \(\gamma(\tau) = \tau \Delta H\), represents the length of the path followed during the evolution in projective Hilbert space from \(\Psi(0)\) to \(\Psi(\tau)\) [7, 28],
\[
\gamma(\tau) = \int_0^\tau ds \sqrt{\text{var} \langle \varphi(s) | (1 - P(s)) | \varphi(s) \rangle},
\] (6)

with \(P(s) = |\Psi(s)\rangle \langle \Psi(s)|\). This length cannot be smaller than the actual geodesic \(\mathcal{L}(\tau)\) between the two states, i.e., the distance defined by Eq. (1). Thus, the quantity \(\delta \mathcal{L}(\tau)\) quantifies the extent to which a given evolution saturates the QSL. Said differently, when \(\delta \mathcal{L}(\tau)\) vanishes, the evolution takes place at the maximum speed allowed by the Mandelstam-Tamm bound at all times during the considered time interval \([0, \tau]\).

Trapped ultracold gases with self-similar dynamics.—We next show how to determine the QSL in ultracold atomic gases. Consider the family of time-dependent Hamiltonians
\[
H(t) = \sum_{i=1}^N \left[\frac{\hat{p}_i^2}{2m} + \frac{1}{2} m \omega(t)^2 \hat{r}_i^2 \right] + \sum_{i<j} V(\hat{r}_i - \hat{r}_j) \tag{7}
\]
describing \(N\) particles in a harmonic trap. Particles interact with each other through a homogeneous pairwise potential fulfilling \(V(\lambda \hat{r}) = \lambda^2 V(\hat{r})\). Thanks to this scaling property, the dynamics is self-similar, i.e., scale invariant [29–31], a familiar feature in Bose-Einstein condensates [32, 33]. An energy eigenstate \(\Psi(0)\) of the Hamiltonian at \(t = 0\) with eigenvalue \(E(0)\) evolves into
\[
\Psi(t) = \frac{1}{2^{\Delta^2}} \exp \left[i \frac{\hbar}{2m} \sum_{i=1}^N \hat{r}_i^2 - i \int_0^t \frac{E(0)}{\hbar b(t')^2} dt' \right] \times \Psi \left(\frac{\hat{r}_1}{b}, \ldots, \frac{\hat{r}_N}{b}, t = 0 \right),
\] (8)

where \(D\) denotes the spatial dimension and \(b(t)\) is the scaling factor that determines the atomic cloud size. The specific time-dependence of the latter following an arbitrary modulation of the trapping frequency \(\omega(t)\) can be found by solving the Ermakov equation, \(\ddot{\theta} + \omega(t)^2 \theta = \frac{\omega_0^2}{b^2}\), with the boundary conditions \(\theta(0) = 1\) and \(\dot{\theta}(0) = 0\), as \(\Psi(0)\) is assumed to be stationary for \(t < 0\).

While the scale invariant dynamics facilitates the description of the time evolution, the study of QSL remains hindered by the requirement to compute the Bures angle. Direct measurement of the overlap between quantum states is generally difficult in many-body systems, in particular, in the case of continuous variables. However, we shall show that for a low-energy state in a variety of systems, the Bures angle can be expressed solely in terms of the scaling factor, which is an experimentally measurable quantity.

To relate the Bures angle to the ultracold-gas cloud size, we first consider the system Hamiltonian in the absence of a trap
\[
H_{\text{free}} = \sum_{i=1}^N \frac{\hat{p}_i^2}{2m} + \sum_{i<j} V(\hat{r}_i - \hat{r}_j),
\]

and let \(\psi_\nu\) be an energy eigenstate satisfying \(H_{\text{free}} \psi_\nu = \varepsilon_\nu \psi_\nu\) that is further a homogeneous function
\[
\psi_\nu(\lambda \hat{r}_1, \ldots, \lambda \hat{r}_N) = \lambda^\nu \psi_\nu(\hat{r}_1, \ldots, \hat{r}_N),
\]

i.e., it is an eigenstate of the dilatation operator \(\sum_{i=1}^N \hat{r}_i\). Let \(\psi_\nu(\hat{r}_1, \ldots, \hat{r}_N)\) be the ground-state wavefunction of the Hamiltonian \(H(0) = H_{\text{free}} + \frac{1}{2} m \omega_0^2 \hat{r}_1^2\) in equation (9) reads
\[
\Psi_0(\hat{r}_1, \ldots, \hat{r}_N) = c_0 e^{-\frac{m \omega_0^2}{2 \hbar} \sum_{i=1}^N \hat{r}_i^2} \psi_\nu(\hat{r}_1, \ldots, \hat{r}_N),
\]

where \(c_0\) is a normalization constant and the energy eigenvalue is \(E(0) = \varepsilon_\nu + \hbar \omega_0 (\nu + \frac{DN}{2})\). This relation between eigenstates in the presence and absence of a trap is realized in a variety of systems [34]. It holds (trivially) for the ground-state of the single-particle harmonic oscillator. It also applies to the ground state of one-dimensional many-body systems such as the free Bose gas, a polarized free Fermi gas, the Tonks-Girardeau gas and the Calogero-Sutherland gas [35]. In three spatial dimensions it describes a family of states of the unitary Fermi gas [36, 37].

Upon varying \(\omega(t)\), the self-similar evolution (8) yields
\[
\Psi(0) = c_0 e^{i t \alpha} e^{-\frac{m \omega_0^2}{2 \hbar} \sum_{i=1}^N \hat{r}_i^2} \psi_\nu(0),
\]

with \(\alpha = -\int_0^t \frac{E_m(0)}{m \omega(t')^2} dt'\) being a dynamical phase. We find that the overlap between \(\Psi(0)\) and its time evolution at time \(t\) equals
\[
\langle \Psi(0) | U(t, 0) | \Psi(0) \rangle = e^{i \alpha t} \left[\frac{b}{2} \left(1 + \frac{1}{b^2} - i \frac{\hat{b}}{\omega_0 b} \right) \right]^{-\frac{\sigma^2}{2}},
\]

where for a given in \(D\)-spatial dimensions
\[
\sigma^2 = \nu + \frac{DN}{2},
\]

Its absolute value is the square root of the fidelity used to define the Bures angle
\[
\sqrt{F(t)} = \left[\frac{b^2}{4} \left(1 + \frac{1}{b^2} \right)^2 + \left(\frac{b}{\omega_0 b} \right)^2 \right]^{-\frac{\sigma^2}{2}}.
\] (15)
We further note that
\[\sigma^2 = \frac{E(0)}{\hbar \omega_0} = \frac{1}{\varpi_0^2} \sum_{i=1}^{N} \overline{r_i^2} |\Psi_0\rangle, \]
which is but the initial size of the cloud formed by the ultracold gas in units of \(x_0 = \sqrt{\hbar/(m\omega_0)} \), and is thus an experimentally measurable quantity. As a result, the Bures angle swept during a time of evolution \(t \) can be determined from the time-dependent scaling factor \(b(t) \).

Remarkably, the expression for the fidelity (15) holds for a variety of harmonically trapped quantum systems when \(|\Psi_0\rangle\) is chosen to be the ground state with energy \(E(0) \). See [34] for the derivation of the values of \(\sigma^2 \) summarized here: For a 1D-dimensional quantum oscillator \((N = 1, \sigma^2 = D_0)\), \(\sigma^2 = \frac{N^2D}{\Delta} \), while for a spin-polarized Fermi gas, \(\sigma^2 = \frac{N^2D}{\Delta} \).

For bosonic systems in one spatial dimension \(D = 1 \), whenever \(V \) describes hard-core interactions one recovers the Tomkés-Girardeau gas [38, 39], experimentally realized in [40–42]. In this case, \(\sigma^2 = \frac{N^2D}{\Delta} \), which matches the result of a one-dimensional spin-polarized Fermi gas as a result of the Bose-Fermi mapping [43]. For the rational Calogero-Sutherland model in which \(V \) represents inverse-square pairwise interactions of strength \(\lambda \) [44–46], \(\sigma^2 = N|1 + \lambda(N - 1)|/2 \). In addition, for a unitary Fermi gas in three spatial dimensions [29, 37], one can make use of the general expression \(\sigma^2 = E(0)/(\hbar \omega_0) \) [47].

The vanishing of the fidelity (15) for \(t > 0 \) in many-body systems can be considered a manifestation of the orthogonality catastrophe [48], encoded in the dependence of \(\sigma^2 \) on the particle number \(N \). In particular, the scaling \(\sigma^2 \propto N^2 \) is not only shared by spin-polarized fermions and hard-core bosons [49, 50], but as well by the Calogero-Sutherland gas [51, 52].

Apart from the Bures angle, the study of QSL requires knowledge of the speed of evolution. Under scale-invariant dynamics generated by the time-dependent Hamiltonian (9), the energy variance in a state (8) is
\[
\text{var}_{\rho(s)}[H(s)] = \hbar^2 \omega(t)^2 \sigma^2 \left[(Q^*)^2 - 1 \right].
\]
Here, the nonadiabatic factor \(Q^*(t) \) is given by
\[
Q^*(t) = \frac{\omega_0}{\omega(t)} \left[\frac{1}{2b(t)^2} + \frac{\omega(t)^2b(t)^2}{2\omega_0^2} + \frac{b(t)^2}{2\omega_0^2} \right],
\]
and accounts for the amount of energy excitations over the adiabatic dynamics. Indeed, \(Q^*(t) = (H(t)/\langle H(t) \rangle_{\text{ad}} \) is the ratio between the nonadiabatic mean energy \(\langle H(t) \rangle \) and the mean energy under adiabatic driving \(\langle H(t) \rangle_{\text{ad}} = \langle H(0) \rangle \omega(t)/\omega_0 \) [47, 53]. Thus, the integrated mean energy dispersion is given by
\[
\gamma(\tau) = \int_0^\tau ds \sqrt{\omega(s)^2 \left[(Q(s))^2 - 1 \right]}
\]
and, together with Eq. (15) it determines the QSL in Eq. (2).

Generic expansion versus a shortcut.—We next analyze the nonadiabatic expansion resulting from varying the trap frequency from an initial value \(\omega_0 \) to a final one \(\omega_F < \omega_0 \) in an expansion time \(\tau \). We first consider a linear ramp \(\omega(t) = \omega_0 + (\omega_0 - \omega_F)/\tau, \) for which the scaling factor \(b(t) \) is determined by solving numerically the Ermakov equation. We compare it with a shortcut to adiabaticity (STA) designed by reverse engineering the scale-invariant dynamics [31, 54]. The latter is based on fixing first a trajectory of the scaling factor \(b(t) \) interpolating between the boundary conditions \(b(0) = 1 \) and \(b(\tau) = \sqrt{\omega_0/\omega_F} \), the later being the target adiabatic value obtained by setting \(b \approx 0 \) in the Ermakov equation. For the initial and final states to be nonstationary, Eq. (8) imposes that \(b(0) = b(\tau) = 0 \). The polynomial ansatz \(b(t) = 1 + 10(t/\tau)^3(b(\tau) - 1) - 15(t/\tau)^4(b(\tau) - 1) + 6(t/\tau)^5(b(\tau) - 1) \) is thus chosen, satisfying as well \(b(0) = b(\tau) = 0 \), and the trap frequency \(\omega(t) \) is determined from the Ermakov equation as \(\omega(t)^2 = \omega_0/\sqrt{b^4 - b/b} \).

FIG. 1. QSL for an expansion induced by a linear frequency ramp and a shortcut to adiabaticity. (a) Scaling factor and (b) logarithmic fidelity as a function of time for a four-fold expansion with \(\tau = 10/\omega_0 \) for a linear ramp (blue) and a STA (red). Orthogonality catastrophe is encoded in the normalization \(\sigma^2 \) which captures the dependence on the system size. (c) Path length \(\gamma(\tau) \) (solid) in Hilbert space lower bounded by the geodesic \(L(\tau) \) (dashed) with \(N = 1 \). (d) While the excess Bures angle \(\delta L \) increases for a linear ramp as the adiabatic limit approached, the converse is true for the STA.
length $\gamma(\tau)$ of the path travel in Hilbert state, and which is lower bounded by the geodesic L. This demonstrates that the QSL is fulfilled during the dynamics, in any process. Moreover, the difference between $\gamma(\tau)$ and $L(\tau)$ shows the extent to which the evolution saturates the QSL. For an arbitrary expansion time τ, a linear ramp follows more closely the QSL than the STA, but yields lower values of $\gamma(\tau)$ and $L(\tau)$. Indeed, for fast expansions both quantities vanish with a linear ramp, while a STA involves large deviations from QSL and has a $L(\tau)$ independent of τ. For slow expansions with $\omega_0\tau \gg 1$, both protocols behave alike. In the adiabatic limit, δL is still finite as we next show.

Example 2. Adiabatic and Transitionless Quantum driving.— Counterdiabatic or transitionless quantum driving (TQD) is a technique that enforces the evolution of the state along a prescribed adiabatic trajectory [55–57]. To this end, an auxiliary control field is introduced to assist the dynamics and enforce parallel transport. Takahashi has shown that TQD solves the quantum brachistochrone [58], this is, the variational problem of minimizing the evolution time between and initial and a final state under fixed energy variance [59]. We analyze to what extent the resulting evolution minimizes $\delta L(\tau)$.

For the time-dependent Hamiltonian (9), the adiabatic evolution can be obtained from (8) by considering the adiabatic scaling factor $b(t) = \sqrt{\omega_0/\omega(t)}$. Using this expression in (8) while setting $\tilde{b} \approx 0$, yields

$$\Psi(t) = \frac{e^{i\omega t}}{b^{3N/2}} \Psi\left(\frac{\tilde{r}_1}{\tilde{b}}, \ldots, \frac{\tilde{r}_N}{\tilde{b}}, t = 0\right), \quad (20)$$

The auxiliary control field that assists the dynamics along this adiabatic trajectory is given by [60, 61]

$$H_\alpha(t) = \frac{\tilde{b}}{b} C = \frac{\tilde{b}}{b} \sum_{i=1}^{N} \{\tilde{r}_i, \tilde{p}_i\}, \quad (21)$$

where C is the squeezing operator. Thus, the evolution (20) is the exact solution of the many-body time-dependent Schrödinger equation with the Hamiltonian $H_T = H(t) + H_\alpha(t)$. In this case, the energy variance reduces to the second-moment of the auxiliary term $\Delta H_T^2 = \langle C^2(t) \rangle$ [62]. The nonadiabatic energy variance can then be written as [34]

$$\Delta H_T^2 = \left(\frac{\tilde{b}}{b}\right)^2 \langle C^2(t) \rangle = \left(\frac{\tilde{b}}{b}\right)^2 \hbar^2 \sigma^2. \quad (22)$$

The Mandelstam-Tamm upper bound to the speed of evolution is thus governed by the second moment of the squeezing operator, which is time-independent. Explicit integration yields the path length travelled $\gamma(\tau)$

$$\frac{1}{\hbar} \int_0^\tau ds \Delta H_T(s) = \sigma \alpha \log b(\tau) = \log \left(\frac{\omega(\tau)}{\omega_0}\right)^{-\sigma^2}. \quad (23)$$

FIG. 2. Excess Bures angle under adiabatic evolution and TQD. $\delta L(\tau)$ is shown for different values of $\sigma^2 = 25, 50, 100, 200, 400, 10^3$, increasing from bottom to top. The Mandelstam-Tamm QSL is only saturated when the ratio $x = \omega(\tau)/\omega_0$ approaches unity, as $\delta L(\tau)$ vanishes. Many particle effects increase $\delta L(\tau)$ hindering driving at the QSL assuming $b(t)$, and thus $\omega(\tau)$, to be monotonic. In this case, $\alpha = \text{sgn}(\hat{b})$ reduces to $+1$ in an expansion and to -1 in a compression. Under TQD, the Bures angle is set by the overlap between the initial eigenstate of $H(0)$ and its adiabatic continuation (20) at time t,

$$F(\tau) = \left[\frac{\omega_0}{4\omega(\tau)} \left(1 + \frac{\omega(\tau)}{\omega_0}\right)^2\right]^{\frac{-\sigma^2}{2}}. \quad (24)$$

In this case, the excess Bures angle reads

$$\delta L(\tau) = -\sigma \frac{\alpha}{2} \log x - \arccos \left[\left(1 + x\right)^{-\sigma^2} \right]. \quad (25)$$

where $x = \omega(\tau)/\omega_0$ and is shown in Fig. 2. For small expansions and compressions,

$$\delta L(\tau) = \alpha \sigma (1 - x) + \frac{\alpha \sigma}{2} (1 - x)^2 + \mathcal{O}((x - 1)^3). \quad (26)$$

As a result, the excess Bures angle $\delta L(\tau)$ remains finite for any ratio between the final and the initial frequency $x = \omega(\tau)/\omega_0 \neq 1$. The characteristic range of the frequency ratio in which $\delta L(\tau)$ is negligible is set by the inverse of σ. It is thus reduced for many particle systems as the particle number N and the spatial dimension D are increased. The results (23)-(26) not only describe TQD but also apply in the adiabatic limit [34]. Indeed, Eq. (25) for $x = 1/16$ yields $\delta L(\tau) \approx 0.305$, the asymptotic value in Fig. 1.

Summary and conclusions.— We have demonstrated that quantum speed limits can be probed in ultracold atom experiments characterized by self-similar dynamics. Our proposal relies on measuring the size of the atomic cloud in a given process, such an expansion or compression driven by a modulation of the trap frequency. The scaling factor can be determined from imaging cloud size via time-of flight or non-destructive Faraday imaging [63], among other approaches. From it, one can determine the distance travelled in Hilbert space (Bures
angle) during the evolution. This approach circumvents the need for quantum state tomography of the many-body state of a continuous variable system. In addition, the scaling factor also determines the Mandelstam-Tamm quantum speed of evolution, that equals the time-average of the energy dispersion. Their knowledge allows one to quantify the extent to which a given evolution saturates the speed limit, paving the way to the identifying time-optimal protocols [64, 65], as we have discussed in the context of fast control by shortcuts to adiabaticity.

These results pave the way to the experimental refinement [67]. In an isotropic setting, it can further be implemented at strong coupling using a unitary Fermi gas [68]. These results pave the way to the experimental study of the time-energy uncertainty relation and quantum speed limits in many-body quantum systems, and their relation to the orthogonality catastrophe.

Acknowledgements.— It is a pleasure to acknowledge discussions with Léonce Dupays, Íñigo L. Egusquiza, Fernando J. Gómez-Ruiz, Kazutaka Takahashi and Zhenyu Xu. This work was supported by PID2019-109007GA-I00.

[1] P. Pfeifer and J. Fröhlich, Rev. Mod. Phys. 67, 759 (1995).
[2] P. Busch, “The time–energy uncertainty relation,” in Time in Quantum Mechanics, edited by J. Muga, R. S. Mayato, and I. Egusquiza (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008) pp. 73–105.
[3] L. Mandelstam and I. Tamm, J. Phys. USSR 9, 249 (1945).
[4] S. Deffner and S. Campbell, Journal of Physics A: Mathematical and Theoretical 50, 453001 (2017).
[5] A. Messiah, Quantum Mechanics, Vol. 1 (North-Holland, 1961).
[6] K. Bhattacharyya, Journal of Physics A: Mathematical and General 16, 2993 (1983).
[7] J. Anandan and Y. Aharonov, Phys. Rev. Lett. 65, 1697 (1990).
[8] A. Uhlmann, Physics Letters A 161, 329 (1992).
[9] P. Pfeifer, Phys. Rev. Lett. 70, 3365 (1993).
[10] N. Margolus and L. B. Levitin, Physica D: Nonlinear Phenomena 120, 188 (1998).
[11] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photonics 5, 222 (2011).
[12] B. Zielinski and M. Zych, Phys. Rev. A 74, 034301 (2006).
[13] N. Margolus, arXiv e-prints, arXiv:1109.4994 (2011), arXiv:1109.4994 [quant-ph].
[14] K. Funo, J.-N. Zhang, C. Chatou, K. Kim, M. Ueda, and A. del Campo, Phys. Rev. Lett. 118, 100602 (2017).
[15] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, Phys. Rev. Lett. 110, 050402 (2013).
[16] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, Phys. Rev. Lett. 110, 050403 (2013).
[17] S. Deffner and E. Lutz, Phys. Rev. Lett. 111, 010402 (2013).
[18] F. Campaïoli, F. A. Pollock, and K. Modi, Quantum 3, 168 (2019).
[19] L. P. García-Pintos and A. del Campo, New Journal of Physics 21, 033012 (2019).
[20] L. P. García-Pintos and A. del Campo, “Limits to perception in the quantum world,” (2019), arXiv:1907.12574 [quant-ph].
[21] S.-I. Amari, Information geometry and its applications, Vol. AMS 194 (Springer, 2016).
[22] B. Shanahan, A. Chenu, N. Margolus, and A. del Campo, Phys. Rev. Lett. 120, 070401 (2018).
[23] M. Okuyama and M. Ohzeki, Phys. Rev. Lett. 120, 070402 (2018).
[24] N. Shiraishi, K. Funo, and K. Saito, Phys. Rev. Lett. 121, 070601 (2018).
[25] W. K. Wootters, Phys. Rev. D 23, 357 (1981).
[26] D. Pires, M. Cianciaruso, L. C. Čeléri, G. Adesso, and D. O. Soares-Pinto, Phys. Rev. X 6, 021031 (2016).
[27] F. Campaïoli, F. A. Pollock, F. C. Binder, and K. Modi, Phys. Rev. Lett. 120, 060409 (2018).
[28] O. Andersson and H. Heydari, Journal of Physics A: Mathematical and Theoretical 47, 215301 (2014).
[29] Y. Castin, Comptes Rendus Physique 5, 407 (2004).
[30] V. Gritsev, P. Barnettler, and E. Demler, New Journal of Physics 12, 113005 (2010).
[31] A. del Campo, Phys. Rev. A 84, 031606 (2011).
[32] Y. Kagan, E. I. Sukrov, and G. V. Shlyapnikov, Phys. Rev. A 54, R1753 (1996).
[33] Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996).
[34] See the Supplemental Material.
[35] A. del Campo, arXiv e-prints, arXiv:2005.03904 (2020), arXiv:2005.03904 [quant-ph].
[36] S. Tan, “Short range scaling laws of quantum gases with contact interactions,” (2004), arXiv:cond-mat/0412764 [cond-mat.stat-mech].
[37] Y. Castin and F. Werner, “The unitary gas and its symmetry properties,” in The BCS-BEC Crossover and the Unitary Fermi Gas, edited by W. Zwerger (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012) pp. 127–191.
[38] M. D. Girardeau, E. M. Wright, and J. M. Triscari, Phys. Rev. A 63, 033601 (2001).
[39] A. Minguzzi and D. M. Gangardt, Phys. Rev. Lett. 94, 240404 (2005).
[40] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004).
[41] B. Paredes, A. Widera, V. Murg, O. Mand el, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature (London) 429, 277 (2004).
[42] T. Jacqmin, J. Armijo, T. Berrada, K. V. Kheruntsyan, and I. Bouchoule, Phys. Rev. Lett. 106, 230405 (2011).
[43] M. Girardeau, Journal of Mathematical Physics 1, 516 (1960).
[44] F. Calogero, Journal of Mathematical Physics 12, 419 (1971).
[45] B. Sutherland, Journal of Mathematical Physics 12, 246 (1971).
[46] B. Sutherland, Phys. Rev. Lett. 80, 3678 (1998).
[47] M. Beaum and A. del Campo, Entropy 22 (2020), 10.3390/e22050515.
[48] P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).
[49] A. del Campo, Phys. Rev. A 84, 012113 (2011).
[50] T. Fogarty, S. Deffner, T. Busch, and S. Campbell, Phys. Rev. Lett. 124, 110601 (2020).
[51] A. del Campo, New Journal of Physics 18, 015014 (2016).
[52] F. Ares, K. S. Gupta, and A. R. de Queiroz, Phys. Rev. E 97, 022133 (2018).
[53] J. Jaramillo, M. Beau, and A. del Campo, New Journal of Physics 18, 075019 (2016).
[54] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. Lett. 104, 063002 (2010).
[55] M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003).
[56] M. Demirplak and S. A. Rice, J. Phys. Chem. B 109, 6838 (2005).
[57] M. V. Berry, J. Phys. A: Math. Theor. 42, 365303 (2009).
[58] K. Takahashi, Journal of Physics A: Mathematical and Theoretical 46, 315304 (2013).
[59] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, Phys. Rev. Lett. 96, 060503 (2006).
[60] C. Jarzynski, Phys. Rev. A 88, 040101 (2013).
[61] A. del Campo, Phys. Rev. Lett. 111, 100502 (2013).
[62] A. del Campo, M. M. Rams, and W. H. Zurek, Phys. Rev. Lett. 109, 115703 (2012).
[63] M. Gajdacz, P. L. Pedersen, T. Mørch, A. J. Hilliard, J. Arlt, and J. F. Sherson, Review of Scientific Instruments 84, 083105 (2013).
[64] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, Phys. Rev. Lett. 103, 240501 (2009).
[65] J. J. W. H. Sørensen, M. K. Pedersen, M. Munch, P. Haïkka, J. H. Jensen, T. Planke, M. G. Andersen, M. Gajdacz, K. Mølmer, A. Lieberoth, and J. F. Sherson, Nature 532, 210 (2016).
[66] J.-F. Schaff, X.-L. Song, P. Vignolo, and G. Labeyrie, Phys. Rev. A 82, 033430 (2010).
[67] A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, Science 342, 457 (2013).
[68] S. Deng, Z.-Y. Shi, P. Diao, Q. Yu, H. Zhai, R. Qi, and H. Wu, Science 353, 371 (2016).
[69] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[70] F. Werner and Y. Castin, Phys. Rev. A 74, 053604 (2006).
[71] M. Beau, J. Jaramillo, and A. del Campo, Entropy 18, 168 (2016).
[72] O. Abah and E. Lutz, Phys. Rev. E 98, 032121 (2018).
Quantum Many-body States of Trapped Systems: values of ν and σ^2

Tonks-Girardeau gas.— Ultracold bosons confined in a tight-waveguide are well-described by the one-dimensional Lieb-Liniger gas with contact interactions $V(x_i - x_j) = g \delta(x_i - x_j)$ with interaction strength g [69]. The limit in which $g \to \infty$ describes hard-core bosons and is known as the Tonks-Girardeau gas [43]. As hard-core interactions mimic Pauli exclusion, it is possible to relate the wavefunction of Tonks-Girardeau gas Ψ_{TG} to that of an ideal (spin-polarized) Fermi gas in one spatial dimension Ψ_F. Specifically, the Bose-Fermi mapping reads [43]

$$
\Psi_{TG} = \prod_{i<j} \text{sgn}(x_i - x_j) \Psi_F,
$$

(S1)

where sgn is the sign function. Specifically, for the ground-state in a harmonic trap Ψ_F is a Slater determinant constructed with the single-particle eigenfunctions of a harmonic oscillator and the ground-state wavefunction of the Tonks-Girardeau gas Ψ_0 in a harmonic trap takes the well-known form [38]

$$
\Psi_0 = c_0 \exp \left(-\frac{m\omega_0}{2\hbar} \sum_{i=1}^{N} x_i^2 \right) \prod_{i<j} |x_i - x_j|,
$$

(S2)

where we note that $\psi_\nu = \prod_{i<j} |x_i - x_j|$ is a homogeneous function of degree $\nu = N(N-1)/2$, which yields $\sigma^2 = N^2/2$. Local correlation functions are identical in a state of a spin-polarized fermions Ψ_F and the corresponding state of the Tonks-Girardeau gas Ψ_{TG} in Eq. (S1), so the value of $\sigma^2 = N^2/2$ applies to both systems.

Calogero-Sutherland model.— The rational Calogero-Sutherland gas is described by the Hamiltonian

$$
H = \sum_{i=1}^{N} \left[\frac{p_i^2}{2m} + \frac{1}{2} m\omega_0^2 x_i^2 \right] + \sum_{i<j} \frac{\lambda (\lambda - 1)}{|x_i - x_j|^2}.
$$

(S3)

The ground state many-body wavefunction of the rational Calogero-Sutherland model takes the Bijl-Jastrow form [38]

$$
\Psi_0 = c_0 \exp \left(-\frac{m\omega_0}{2\hbar} \sum_{i=1}^{N} x_i^2 \right) \prod_{i<j} |x_i - x_j|^\lambda,
$$

(S4)

which generalizes (S2) for arbitrary λ. For $\lambda = 0$, one recovers the one-dimensional ideal Bose gas, while for $\lambda = 1$ the Calogero-Sutherland model describes a Tonks-Girardeau gas. We note that the function $\psi_\nu = \prod_{i<j} |x_i - x_j|^\lambda$ is a zero-energy eigenstate of the Hamiltonian in free space, Eq. (S3) with $\omega_0 = 0$,

$$
H_{\text{free}} = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i<j} \frac{\lambda (\lambda - 1)}{|x_i - x_j|^2}.
$$

(S5)

Indeed,

$$
H_{\text{free}} \prod_{i<j} |x_i - x_j|^\lambda = 0.
$$

(S6)

Further, ψ_ν is a homogeneous function of degree $\nu = \lambda N(N-1)/2$ and thus $\sigma^2 = \nu + N/2 = N[1 + \lambda(N-1)]/2$. This is consistent with the identity $\sigma^2 = E(0)/(\hbar \omega_0)$ as the ground-state energy of the trapped Ψ_0 is precisely $E(0) = \hbar \omega_0 N[1 + \lambda(N-1)]/2$.

Three-dimensional Unitary Fermi Gas.— In a spin 1/2 Fermi gas, the unitary regime can be reached via a Feshbach resonance tuning the contact interactions between spin-up and spin-down fermions making the interaction strength effectively divergent [70]. In this regime, under harmonic confinement, the dynamics is scale invariant [29]. Introducing hyperspherical coordinates $\hat{X} = (\hat{r}_1, \ldots, \hat{r}_N)$ with norm $X = \sqrt{\sum_j \hat{r}_j^2}$ and the unit vector $\hat{n} = \hat{X}/X$, a low-energy state of a unitary Fermi gas in a harmonic trap has the structure [70]

$$
\Psi_0(\hat{X}) = c_0 e^{-\frac{m\omega X^2}{2\hbar}} X^{-\frac{N}{2}} f(\hat{n}),
$$

(S7)

where c_0 is a normalization constant. Therefore $\nu = \frac{E}{\hbar \omega} - \frac{3N}{2}$ and $\sigma^2 = \frac{E}{\hbar \omega}$.

Dilatation Operator and Moments of the Squeezing Operator

The many-particle squeezing operator is defined as

\[C = \frac{1}{2} \sum_{i=1}^{N} (\vec{r}_i \cdot \vec{p}_i + \vec{p}_i \cdot \vec{r}_i) = -i\hbar \frac{ND}{2} - i\hbar \sum_{i=1}^{N} \vec{r}_i \cdot \nabla_i. \]

(S8)

It acts as the generator of dilatations described by the unitary

\[T_{\text{dil}} = \exp \left[-i \frac{\log b}{\hbar} C \right]. \]

(S9)

In the coordinate representation,

\[T_{\text{dil}} \Psi (\vec{r}_1, \ldots, \vec{r}_N) = b^{-\frac{ND}{2}} \Psi \left(\frac{\vec{r}}{b}, \ldots, \frac{\vec{r}_N}{b} \right). \]

(S10)

Consider a quantum state of the form

\[\Psi_0 (\vec{r}_1, \ldots, \vec{r}_N) = c_0 e^{-\frac{m\omega_0}{2} \sum_{i=1}^{N} \vec{r}_i^2} \psi_\nu (\vec{r}_1, \ldots, \vec{r}_N), \]

(S11)

where \(c_0 \) is a normalization constant and \(\psi_\nu (\vec{r}_1, \ldots, \vec{r}_N) \) satisfies

\[\left(\sum_{i=1}^{N} \vec{r}_i \cdot \nabla_i \right) \psi_\nu (\vec{r}_1, \ldots, \vec{r}_N) = \nu \psi_\nu (\vec{r}_1, \ldots, \vec{r}_N). \]

(S12)

One then finds

\[T_{\text{dil}} \Psi_0 (\vec{r}_1, \ldots, \vec{r}_N) = b^{-\frac{ND}{2}} c_0 e^{-\frac{m\omega_0}{2} \sum_{i=1}^{N} \vec{r}_i^2} \nu \psi_\nu (\vec{r}_1, \ldots, \vec{r}_N) \]

(S13)

To determine the expectation value of the \(k \)-th moment of \(C \), let us introduce the generating function [47]

\[A_C (b) = \langle \Psi_0 | T_{\text{dil}} \Psi_0 \rangle, \]

(S14)

in terms of which

\[\langle \Psi_0 | C^k | \Psi_0 \rangle = \left(-i \hbar b \frac{d}{db} A_C (b) \right)_{b=1}^k. \]

(S15)

Explicit evaluation of \(A_C (b) \) for a state of the form (S11) is possible using (S13) to rewrite the multidimensional integral in terms of the normalization constant \(c_0 \). Without requiring explicit knowledge of \(\psi_\nu (\vec{r}_1, \ldots, \vec{r}_N) \), one finds

\[A_C (b) = \left[b \left(\frac{1}{2} + \frac{1}{b^2} \right) \right]^{-\sigma^2}, \]

(S16)

whence it follows

\[\langle \Psi_0 | \hat{C}^2 | \Psi_0 \rangle = \hbar^2 \sigma^2, \]

(S17)

with \(\sigma^2 = \nu + \frac{DN}{2} \).

QSL in the Adiabatic Limit

The adiabatic limit of QSL requires some care as the instantaneous energy dispersion, being of order \(\mathcal{O}(1/\tau) \), is suppressed as \(\tau \to \infty \). However, the integrated energy fluctuations do not vanish. To analyze the adiabatic limit of

\[\gamma (\tau) = \sigma \int_0^\tau ds \sqrt{\omega(s)^2 \left([Q(s)^*]^2 - 1 \right)}, \]

we first substitute the adiabatic solution of the Ermakov equation

\[b(t) = \sqrt{\frac{\omega_0}{\omega(t)}} \]

(S19)
in the expression of Q^* and find

$$Q^*(t) = \frac{\omega_0}{\omega(t)} \left[\frac{1}{2b(t)^2} + \frac{\omega(t)^2 b(t)^2}{2\omega_0^2} + \frac{\dot{b}(t)^2}{2\omega_0^2} \right]$$

$$\approx 1 + \frac{b(t)^2}{2\omega_0\omega(t)}$$

$$= 1 + \frac{\dot{\omega}(t)^2}{8\omega(t)^4}.$$ \hfill (S20)

This adiabatic value of $Q^*(t)$ agrees with that under transitionless quantum driving [47, 71, 72]. Noting that

$$(Q(t)^*)^2 - 1 = \frac{\dot{\omega}(t)^2}{4\omega(t)^4} + \frac{\dot{\omega}(t)^4}{64\omega(t)^8},$$ \hfill (S21)

the length of the path travelled under slow driving reads

$$\gamma(\tau) \approx \sigma \int_0^\tau ds \sqrt{\frac{\dot{\omega}(s)^2}{4\omega(s)^2} + \frac{\dot{\omega}(s)^4}{64\omega(s)^6}}.$$ \hfill (S22)

To leading order, assuming $\omega(s)$ monotonic, one finds

$$\gamma(\tau) = \sigma \alpha \log \left(\frac{\omega(\tau)}{\omega_0} \right)^{\frac{1}{2}} + O(1/\tau),$$ \hfill (S23)

where $\alpha = \text{sgn}(\dot{b})$. This agrees with the result under transitionless quantum driving (23). The geodesic $L(\tau)$ depends only on the initial and final state and makes no reference to the actual dynamics. As a result, the behavior of $\delta L(\tau)$ under transitionless quantum driving is common to the adiabatic limit.