WEIGHT DISTRIBUTION OF TWO CLASSES OF CYCLIC CODES WITH RESPECT TO TWO DISTINCT ORDER ELEMENTS

CHENGJU LI AND QIN YUE

Abstract. Cyclic codes are an interesting type of linear codes and have wide applications in communication and storage systems due to their efficient encoding and decoding algorithms. Cyclic codes have been studied for many years, but their weight distribution are known only for a few cases. In this paper, let F_r be an extension of a finite field F_q and $r = q^m$, we determine the weight distribution of the cyclic codes $C = \{c(a, b) : a, b \in F_r\}$,

$$c(a, b) = (\text{Tr}_{r/q}(ag_1^0 + bg_2^0), \ldots, \text{Tr}_{r/q}(ag_1^{n-1} + bg_2^{n-1})),$$

$g_1, g_2 \in F_r,$

in the following two cases: (1) $\text{ord}(g_1) = n, n | r - 1$ and $g_2 = 1$; (2) $\text{ord}(g_1) = n, g_2 = g_1^m, \text{ord}(g_2) = \frac{r-1}{n}$, and $2(r - 1) | (q + 1)$.

1. Introduction

Let F_q be a finite field with q elements, where $q = p^s$, p is a prime, and s is a positive integer. An $[n, k, d]$ linear code C is a k-dimensional subspace of F_q^n with minimum distance d. It is called cyclic if $(c_0, c_1, \ldots, c_{n-1}) \in C$ implies $(c_{n-1}, c_0, c_1, \ldots, c_{n-2}) \in C$. By identifying the vector $(c_0, c_1, \ldots, c_{n-1}) \in F_q^n$ with

$$c_0 + c_1 x + c_2 x^2 + \cdots + c_{n-1}x^{n-1} \in F_q[x]/(x^n - 1),$$

any code C of length n over F_q corresponds to a subset of $F_q[x]/(x^n - 1)$. Then C is a cyclic code if and only if the corresponding subset is an ideal of $F_q[x]/(x^n - 1)$. Note that every ideal of $F_q[x]/(x^n - 1)$ is principal. Hence there is a monic polynomial $g(x)$ of the least degree such that $C = \langle g(x) \rangle$ and $g(x) | (x^n - 1)$. Then $g(x)$ is called the generator polynomial and $h(x) = (x^n - 1)/g(x)$ is called the parity-check polynomial of the cyclic code C. Suppose that $h(x)$ has t irreducible factors over F_q, we call C the dual of the cyclic code with t zeros.

Let A_i be the number of codewords with Hamming weight i in the code C of length n. The weight enumerator of C is defined by

$$1 + A_1 x + A_2 x^2 + \cdots + A_n x^n.$$

The sequence $(1, A_1, A_2, \ldots, A_n)$ is called the weight distribution of the code C. In coding theory it is often desirable to know the weight distributions of the codes because they can be used to estimate the error correcting capability and the error
probability of error detection and correction with respect to some algorithms. This is quite useful in practice. Unfortunately, it is a very hard problem in general and remains open for most cyclic codes.

Let \(r = q^m \) for a positive integer \(m \) and \(\alpha \) a generator of \(\mathbb{F}_r^* \). Let \(h(x) = h_1(x)h_2(x) \cdots h_t(x) \), where \(h_i(x) (1 \leq i \leq t) \) are distinct monic irreducible polynomials over \(\mathbb{F}_q \). Let \(g_i^{-1} = \alpha^{-s_i} \) be a root of \(h_i(x) \) and \(n_i \) the order of \(g_i \) for \(0 \leq s_i \leq r - 2 (1 \leq i \leq t) \). Denote \(\delta = \gcd(r - 1, s_1, s_2, \ldots, s_t) \) and \(n = \frac{r - 1}{\delta} \). The cyclic code \(C \) can be defined by

\[
C = \{ c(a_1, a_2, \ldots, a_t) : a_1, a_2, \ldots, a_t \in \mathbb{F}_r \},
\]

where

\[
c(a_1, a_2, \ldots, a_t) = (\Tr_{r/q}(\sum_{i=1}^{t} a_i g_i^0), \Tr_{r/q}(\sum_{i=1}^{t} a_i g_i^1), \ldots, \Tr_{r/q}(\sum_{i=1}^{t} a_i g_i^{n_i - 1}))
\]

and \(\Tr_{r/q} \) denotes the trace function from \(\mathbb{F}_r \) to \(\mathbb{F}_q \). It follows from Delsarte's Theorem \[7\] that the code \(C \) is an \([n, k]\) cyclic code over \(\mathbb{F}_q \) with the parity-check polynomial \(h(x) \), where \(k = \deg(h_1(x)) + \deg(h_2(x)) + \cdots + \deg(h_t(x)) \). The weight distributions of such cyclic codes have been studied for many years and are known in some cases. We describe the known results as follows.

1. For \(t = 1 \), \(C \) is called an irreducible cyclic code. The weight distributions of irreducible cyclic codes have been extensively studied and can be found in \([1, 2, 8, 9, 12, 23, 24]\).

2. For \(t = 2 \), i.e., \(h(x) = h_1(x)h_2(x) \). The duals of the cyclic codes with two zeros have been well investigated when \(\deg(h_1(x)) = \deg(h_2(x)) \). If \(g_1 \) and \(g_2 \) have the same order in \(\mathbb{F}_r^* \), we know \(\deg(h_1(x)) = \deg(h_2(x)) \). Then the weight distribution of such cyclic codes had been determined for some special cases \([11, 13, 15, 21, 23, 29, 30, 31, 32, 36]\). If \(\mathbb{F}_r^* = \langle g_1 \rangle = \langle g_2 \rangle \), then the weight distribution of the code \(C \) which is called the dual of primitive cyclic code with two zeros had been studied in \([3, 4, 5, 6, 14, 20, 22, 25, 27, 34]\).

3. For \(t = 3 \). The results on the weight distribution of cyclic codes \(C \) with three zeros can be found in \([19, 35, 37]\).

4. For arbitrary \(t \). Yang et al. \[33\] described a class of the duals of cyclic codes with \(t \) zeros and determined their weight distributions under special conditions. Li et al. \[17\] also studied such cyclic codes and developed a connection between the weight distribution and the spectra of Hermitian forms graphs.

In this paper, we shall determine the weight distributions of two classes of cyclic codes whose duals have two zeros. Let \(\alpha \) be a primitive element of \(\mathbb{F}_r \) and \(r - 1 = nN \) for two positive integers \(n > 1 \) and \(N > 1 \). We mainly consider the following two cases of the cyclic code \(C \).
(1) Assume that the order of \(g_1 \) is \(n \) and the order of \(g_2 \) is 1. Then we can set \(g = g_1 = \alpha^N, g_2 = 1 \), and
\[C_1 = \{ c(a, b) : a, b \in \mathbb{F}_r \}, \]
where
\[c(a, b) = (\text{Tr}_{r/q}(ag^0 + b), \text{Tr}_{r/q}(ag^1 + b), \ldots, \text{Tr}_{r/q}(ag^{n-1} + b)). \]
It is obvious that the order of \(g \) is not equal to 1 and thus the parity-check polynomial of \(C_1 \) is \((x - 1)h_{g-1}(x)\), where \(h_{g-1}(x) \) is the minimal polynomial of \(g^{-1} \) over \(\mathbb{F}_q \). The lower bound on the minimum weight of \(C_1 \) had been given by Ding [10]. We can also get a tight bound on the minimum weight of such cyclic code.

(2) Assume that the order of \(g_1 \) is \(n (n \text{ is even}) \) and the order of \(g_2 \) is \(\frac{n}{2} \). Then we can set \(g = g_1 = \alpha^N \) and \(g_2 = \mu g^2 \) for \(\mu \in \mathbb{F}_r^* \), where the order of \(\mu \) is a divisor of \(\frac{n}{2} \). Denote
\[C_2 = \{ c(a, b) : a, b \in \mathbb{F}_r \}, \]
where
\[c(a, b) = (\text{Tr}_{r/q}(ag^0 + b(\mu g^2)^0), \text{Tr}_{r/q}(ag^1 + b(\mu g^2)^1), \ldots, \text{Tr}_{r/q}(ag^{n-1} + b(\mu g^2)^{n-1})). \]
It is easily known that \(g \) and \(\mu g^2 \) are not conjugates of each other due to their distinct orders and then \(h_{g-1}(x) \) and \(h_{(\mu g^2)-1}(x) \) are distinct, where \(h_{g-1}(x) \) and \(h_{(\mu g^2)-1}(x) \) are the minimal polynomial of \(g^{-1} \) and \((\mu g^2)^{-1} \) over \(\mathbb{F}_q \), respectively. We know that the parity-check polynomial of \(C_2 \) is \(h_{g-1}(x)h_{(\mu g^2)-1}(x) \). For convenience, we shall present a method to determine the weight distribution of the cyclic code \(C_2 \) when \(\mu = 1 \). The general case can be also dealt with by our method and the method in [11] or [21]. In addition, we present a tight bound on the minimum weight of cyclic code \(C_2 \).

This paper is organized as follows. In Section 2, we introduce some results about Gauss periods. In Section 3 and 4, we shall determine the weight distributions of the cyclic codes \(C_1 \) and \(C_2 \), respectively.

2. Gauss periods

Let \(\mathbb{F}_r \) be the finite field with \(r \) elements, where \(r \) is a power of prime \(p \). For any \(a \in \mathbb{F}_r \), we can define an additive character of the finite field \(\mathbb{F}_r \) as follows:
\[\psi_a : \mathbb{F}_r \to \mathbb{C}^*, \psi_a(x) = \zeta_p^\text{Tr}_{r/p}(ax), \]
where \(\zeta_p = e^{2\pi i / p} \) is a \(p \)-th primitive root of unity and \(\text{Tr}_{r/p} \) denotes the trace from \(\mathbb{F}_r \) to \(\mathbb{F}_p \). If \(a = 1 \), then \(\psi_1 \) is called the canonical additive character of \(\mathbb{F}_r \). The
orthogonal property of additive characters which can be found in [18] is given by

\[\sum_{x \in \mathbb{F}_r} \psi_1(ax) = \begin{cases} r, & \text{if } a = 0; \\ 0, & \text{if } a \in \mathbb{F}_r^*. \end{cases} \]

Let \(r - 1 = nN \) and \(\alpha \) a fixed primitive element of \(\mathbb{F}_r \), where \(r = q^m = p^en \). We define \(C_i^{(N,r)} = \alpha^i \langle \alpha^N \rangle \) for \(i = 0, 1, \ldots, N - 1 \), where \(\langle \alpha^N \rangle \) denotes the subgroup of \(\mathbb{F}_r^* \) generated by \(\alpha^N \). The Gauss periods of order \(N \) are given by

\[\eta_i^{(N,r)} = \sum_{x \in C_i^{(N,r)}} \psi(x), \]

where \(\psi \) is the canonical additive character of \(\mathbb{F}_r \) and \(\eta_i^{(N,r)} = \eta_i^{(N,r)}(\mod N) \) if \(i \geq N \). In general, the explicit evaluation of Gauss periods is a very difficult problem. However, they can be computed in a few cases.

Lemma 2.1. [26] When \(N = 2 \), the Gauss periods are given by

\[\eta_0^{(2,r)} = \begin{cases} -1 + (1 - 1)^{\frac{1}{2}} \sqrt[3]{2}, & \text{if } p \equiv 1 \pmod{4}, \\ -1 - (1 - 1)^{\frac{1}{2}} \sqrt[3]{2}, & \text{if } p \equiv 3 \pmod{4}, \end{cases} \]

and \(\eta_1^{(2,r)} = -1 - \eta_0^{(2,r)} \).

Lemma 2.2. [26] Let \(N = 3 \). If \(p \equiv 1 \pmod{3} \) and \(sm \equiv 0 \pmod{3} \), then

\[\eta_0^{(3,r)} = \frac{-1 + c_1 r^\frac{1}{3}}{3} \]

and

\[\{ \eta_1^{(3,r)}, \eta_2^{(3,r)} \} = \{ \frac{-1 - \frac{1}{2}(c_1 + 9d_1)r^\frac{1}{3}}{3}, \frac{-1 - \frac{1}{2}(c_1 - 9d_1)r^\frac{1}{3}}{3} \}, \]

where \(c_1 \) and \(d_1 \) are given by \(4p^{sm} = c_1^2 + 27d_1^2 \), \(c_1 \equiv 1 \pmod{3} \), and \(\gcd(c_1, p) = 1 \).

Lemma 2.3. [26] Let \(N = 4 \). If \(p \equiv 1 \pmod{4} \) and \(sm \equiv 0 \pmod{4} \), then

\[\eta_0^{(4,r)} = \frac{-1 - r^\frac{1}{2} - 2s_1 r^\frac{1}{4}}{4}, \eta_2^{(4,r)} = \frac{-1 - r^\frac{1}{2} + 2s_1 r^\frac{1}{4}}{4} \]

and

\[\{ \eta_1^{(4,r)}, \eta_3^{(4,r)} \} = \{ \frac{-1 + r^\frac{1}{2} + 4t_1 r^\frac{1}{4}}{4}, \frac{-1 + r^\frac{1}{2} - 4t_1 r^\frac{1}{4}}{4} \}, \]

where \(s_1 \) and \(t_1 \) are given by \(p^{sm} = s_1^2 + 4t_1^2 \), \(s_1 \equiv 1 \pmod{4} \), and \(\gcd(s_1, p) = 1 \).

The Gauss periods in the semi-primitive case are known and are described in the following lemma.

Lemma 2.4. [26] Assume that there exists a least positive integer \(e \) such that \(p^e \equiv -1 \pmod{N} \). Let \(r = p^{2ef} \) for some positive integer \(f \).

1. If \(f, p, \) and \(\frac{p^{e} + 1}{N} \) are all odd, then

\[\eta_i^{(N,r)} = \frac{(N - 1)\sqrt{r} - 1}{N}, \eta_i^{(N,r)} = -\frac{\sqrt{r} + 1}{N} \] for \(i \neq N/2 \).
(2) In all other cases,
\[\eta_0^{(N,r)}(x) = \frac{(-1)^{N+1}(N-1)\sqrt{r} - 1}{N}, \eta_i^{(N,r)} = \frac{(-1)^i\sqrt{r} - 1}{N} \text{ for } i \neq 0. \]

The Gauss periods in the index 2 case can be described in the following lemma.

Lemma 2.5. [12, 26] Let \(N > 3 \) be a prime with \(N \equiv 3 \pmod{4} \), \(p \) a prime such that \(|Z_N^* : \langle p \rangle| = 2 \), and \(r = p^{N-1}/k \) for some positive integer \(k \). Let \(h \) be the class number of \(\mathbb{Q}(\sqrt{-N}) \) and \(a, b \) the integers satisfying
\[
\begin{aligned}
4p^b &= a^2 + Nb^2 \\
-2p^{\frac{N-1+2b}{2}}& \equiv a \pmod{N} \\
b &> 0, p \nmid b.
\end{aligned}
\]

Then the Gauss periods of order \(N \) are given by
\[
\begin{align*}
\eta_i^{(N,r)} &= \frac{1}{N}(P^{(k)}A^{(k)}(N-1) - 1), \\
\eta_0^{(N,r)} &= \frac{1}{N}(P^{(k)}A^{(k)} + P^{(k)}B^{(k)}N + 1), \text{ if } \left(\frac{a}{N}\right) = 1, \\
\eta_0^{(N,r)} &= \frac{1}{N}(P^{(k)}A^{(k)} - P^{(k)}B^{(k)}N + 1), \text{ if } \left(\frac{a}{N}\right) = -1,
\end{align*}
\]
where
\[
\begin{align*}
P^{(k)} &= (-1)^{k-1}p^{\frac{k}{2}(N-1-2b)} \\
A^{(k)} &= Re\left(\frac{a+b\sqrt{-N}}{2}\right)^k \\
B^{(k)} &= Im\left(\frac{a+b\sqrt{-N}}{2}\right)^k / \sqrt{N}.
\end{align*}
\]

In the following lemma, we introduce a bound on the values of Gauss periods which can be found in [12].

Lemma 2.6. [12] For all \(i \) with \(0 \leq i \leq N-1 \), we have
\[|\eta_i^{(N,r)} + \frac{1}{N}| \leq \frac{(N-1)\sqrt{r}}{N}. \]

3. The weight distribution of \(C_1 \)

Let \(\alpha \) be a primitive element of \(\mathbb{F}_r \), where \(r = q^m \). Let \(r-1 = nN \) for two positive integers \(n > 1 \) and \(N > 1 \). For \(g = \alpha^N \) we define a cyclic code over \(\mathbb{F}_q \) by
\[C_1 = \{c(a,b) : a, b \in \mathbb{F}_r\}, \]
where
\[c(a,b) = (\text{Tr}_{r/q}(ag^0 + b), \text{Tr}_{r/q}(ag^1 + b), \ldots, \text{Tr}_{r/q}(ag^{n-1} + b)). \]

Then \(C_1 \) is an \([n,k+1] \) cyclic code with parity-check polynomial \((x-1)h_{g^{-1}}(x) \), where \(k \) is the order of \(g \) modulo \(n \) and \(h_{g^{-1}}(x) \) is the minimal polynomial of \(g^{-1} \) over \(\mathbb{F}_q \).

The lower bound on the minimum weight of \(C_1 \) had been given by Ding [10]. For any \(a, b \in \mathbb{F}_r \), the Hamming weight of \(c(a,b) \) is equal to
\[W_H(c(a,b)) = n - Z(r,a,b), \]
where
\[Z(r,a,b) = |\{x \in C_0^{(N,r)} : \text{Tr}_{r/q}(ax + b) = 0\}|. \]
Let ϕ be the canonical additive character of \mathbb{F}_q. Then $\psi = \phi \circ \text{Tr}_{r/q}$ is the canonical additive character of \mathbb{F}_r. By the orthogonal property of additive characters we have

$$Z(r, a, b) = \sum_{x \in C^{(N,r)}_0} \frac{1}{q} \sum_{y \in \mathbb{F}_q} \phi(y \text{Tr}_{r/q}(ax + b))$$

$$= \sum_{x \in C^{(N,r)}_0} \frac{1}{q} \sum_{y \in \mathbb{F}_q} \phi(\text{Tr}_{r/q}(yax + yb))$$

$$= \frac{1}{q} \cdot \frac{r - 1}{N} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C^{(N,r)}_0} \psi(yax + yb)$$

$$= \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \psi(yb) \sum_{x \in C^{(N,r)}_0} \psi(yax).$$

To compute the values of $Z(r, a, b)$, we introduce the following lemma which can be found in [16].

Lemma 3.1. Let H and K be two subgroups of a finite Abelian group G. Then we have

$$h_1K = h_2K \text{ if and only if } h_1(H \cap K) = h_2(H \cap K)$$

for $h_1, h_2 \in H$. Moreover,

$$HK/K \cong H/(H \cap K) \text{ and } [HK : K] = [H : (H \cap K)],$$

where $HK = \{hk : h \in H, k \in K\}$.

Theorem 3.2. Let $d = \gcd(N, \frac{r-1}{q-1})$. Note that $c(a, b_1) = c(a, b_2)$ if $\text{Tr}_{r/q}(b_1) = \text{Tr}_{r/q}(b_2)$. Then the weight distribution of C_1 is given by Table 1. In especial, if $N \mid \frac{r-1}{q-1}$, then the weight distribution of C_1 is given by Table 2.

Table 1. Weight distribution of C_1.

Weight	Frequency ($0 \leq j \leq N - 1$)
0	1
$\frac{(q-1)(r-1)}{qN} - \frac{1}{q} \sum_{l=0}^{N-1} \eta_d \left(\frac{(N^2)_l}{q^{l+j}} \right) \left(\frac{N^2}{q} \right)^k$	$\frac{(q-1)(r-1)}{qN}$
$\frac{(q-1)(r-1)}{qN}$	$\frac{d(q-1)(r-1)}{N^2}$
Proof. Since α is a primitive element of \mathbb{F}_r, we have $\mathbb{F}_q^* = \langle \alpha^{\frac{r-1}{q-1}} \rangle$. Denote $H = \mathbb{F}_q^*$ and $K = C_0^{(N,r)} = \langle \alpha^N \rangle$. Then

$$HK = C_0^{(d,r)} = \langle \alpha^d \rangle, H \cap K = \langle \alpha^{\frac{r-1}{q-1}} \frac{N}{q} \rangle,$$

where $d = \gcd(N, \frac{r-1}{q-1})$. By Lemma 3.1 we have $[HK : K] = \frac{N^d}{d} | (q-1)$ and

$$\mathbb{F}_q^* = \bigcup_{i=0}^{\frac{N}{d}-1} C_i^{\left(\frac{N}{q} \cdot d\right)};$$

where

$$C_i^{\left(\frac{N}{q} \cdot d\right)} = \alpha^{\frac{r-1}{q-1}} \langle \alpha^{\frac{r-1}{q-1}} \frac{N}{q} \rangle = \alpha^{\frac{r-1}{q-1}} (H \cap K) \text{ for } 0 \leq i \leq \frac{N}{d} - 1.$$

Then by Lemma 3.1 again we have

$$HK = \mathbb{F}_q^* \cdot C_0^{(N,r)} = \bigcup_{i=0}^{\frac{N}{d}-1} \alpha^{\frac{r-1}{q-1} i} C_0^{(N,r)} = \bigcup_{i=0}^{\frac{N}{d}-1} C_i^{\left(\frac{N}{q} \cdot d\right)}.$$
Using the orthogonal property of additive characters again, we have
\[
\sum_{y \in \mathbb{F}_q^*} \psi(yb) = \sum_{y \in \mathbb{F}_q^*} \phi(\text{Tr}_{r/q}(yb))
\]
\[
= \sum_{y \in \mathbb{F}_q^*} \phi(y\text{Tr}_{r/q}(b))
\]
\[
= \begin{cases}
q - 1, & \text{if } \text{Tr}_{r/q}(b) = 0, \\
-1, & \text{if } \text{Tr}_{r/q}(b) \neq 0.
\end{cases}
\]

It is known that \(\text{Tr}_{r/q} \) maps \(\mathbb{F}_r \) onto \(\mathbb{F}_q \) and
\[|\{b \in \mathbb{F}_r : \text{Tr}_{r/q}(b) = c\}| = \frac{r}{q}\]
for each \(c \in \mathbb{F}_q \). Note that \(c(a, b_1) = c(a, b_2) \) if \(\text{Tr}_{r/q}(b_1) = \text{Tr}_{r/q}(b_2) \). Then we can determine the values of \(Z(r, a, b) \) and their frequencies as follows.

(1) If \(a = 0, \text{Tr}_{r/q}(b) = 0 \). We have
\[
Z(r, a, b) = \frac{1}{q} \cdot \frac{r-1}{N} + \frac{1}{q} \cdot (q-1) \cdot \frac{r-1}{N} = \frac{r-1}{N}.
\]
This value occurs once.

(2) If \(a = 0, \text{Tr}_{r/q}(b) \neq 0 \). We have
\[
Z(r, a, b) = \frac{1}{q} \cdot \frac{r-1}{N} + \frac{1}{q} \cdot (-1) \cdot \frac{r-1}{N} = 0.
\]
This value occurs \(q-1 \) times.

(3) If \(a \in C_{l}^{(d,r)}, \text{Tr}_{r/q}(b) = 0 \). Note that \(HK = C_{0}^{(d,r)} = \bigcup_{i=0}^{\frac{d-1}{q}} C_{i}^{(N,r)} \). We have
\[
Z(r, a, b) = \frac{1}{q} \cdot \frac{r-1}{N} + \frac{1}{q} \sum_{i=0}^{\frac{d-1}{q}} \frac{(q-1)d}{N} \sum_{x \in C_{i}^{(N,r)}} \psi(ax)
\]
\[
= \frac{r-1}{qN} + \frac{(q-1)d}{qN} \sum_{x \in C_{i}^{(d,r)}} \psi(ax)
\]
\[
= \frac{r-1}{qN} + \frac{(q-1)d}{qN} \eta_{i}^{(d,r)}.
\]
This value occurs \(\frac{r-1}{N} \cdot \frac{q-1}{q} \) times.

(4) If \(a \in C_{j}^{(N,r)}, \text{Tr}_{r/q}(b) \in C_{k}^{(\frac{N}{q}-q)} \). We have
\[
Z(r, a, b) = \frac{1}{q} \cdot \frac{r-1}{N} + \frac{1}{q} \sum_{i=0}^{\frac{N}{q}-1} \eta_{i}^{(N,r)} \eta_{i+j}^{(\frac{N}{q}-q)}
\]
\[
= \frac{r-1}{N} \cdot \frac{q-1}{q} = \frac{d(q-1)(r-1)}{N^2} \] times.

Note that \(W_{H}(c(a, b)) = n - Z(r, a, b) \). Then Table 1 can be obtained and Table 2 follows from Table 1. This completes the proof. □
We have determined the weight distribution of the cyclic code C_1 when Gauss periods of order N are known. Then we give the following examples.

Example 3.3. The case $N = 2$.

1. Let $q = 3$ and $r = 27$. Then $d = \gcd(N, \frac{r-1}{q-1}) = 1$. By Lemma 2.1 we have
 \[\eta_0^{(2,27)} = \frac{-1 - 3\sqrt{-3}}{2}, \quad \eta_1^{(2,27)} = \frac{-1 + 3\sqrt{-3}}{2} \]
 and
 \[\eta_0^{(2,3)} = \frac{-1 + \sqrt{-3}}{2}, \quad \eta_1^{(2,3)} = \frac{-1 - \sqrt{-3}}{2}. \]

 Then by Table 1 we know that the code C_1 is a $[13, 4, 7]$ cyclic code over F_3 with the weight enumerator
 \[1 + 26x^7 + 26x^9 + 26x^{10} + 2x^{13}. \]

2. Let $q = 5$ and $r = 25$. Then $N \mid \frac{r-1}{q-1}$. By Lemma 2.1 we have
 \[\eta_0^{(2,25)} = -3, \quad \eta_1^{(2,25)} = 2. \]

 Then by Table 2 we know that the code C_1 is a $[12, 3, 8]$ cyclic code over F_5 with the weight enumerator
 \[1 + 12x^8 + 48x^9 + 48x^{10} + 16x^{12}. \]

Example 3.4. For the case $N = 3$, we have $N \mid \frac{r-1}{q-1}$ under the conditions of Lemma 2.2. Let $q = 7$ and $r = 7^3$. By Lemma 2.2 we have
 \[\eta_0^{(3,7^3)} = 2, \quad \eta_1^{(3,7^3)} = -12, \quad \eta_2^{(3,7^3)} = 9. \]

 Then by Table 2 we know that the code C_1 is a $[114, 4, 90]$ cyclic code over F_7 with the weight enumerator
 \[1 + 114x^{90} + 798x^{96} + 684x^{98} + 684x^{99} + 114x^{108} + 6x^{114}. \]

Example 3.5. For the case $N = 4$, we have $N \mid \frac{r-1}{q-1}$ under the conditions of Lemma 2.3. Let $q = 5$ and $r = 5^4$. By Lemma 2.3 we have
 \[\eta_0^{(4,5^4)} = 1, \quad \eta_2^{(4,5^4)} = -14, \quad \text{and} \quad \{\eta_1^{(4,5^4)}, \eta_3^{(4,5^4)}\} = \{1, 11\}. \]

 Then by Table 2 we know that the code C_1 is a $[156, 5, 116]$ cyclic code over F_5 with the weight enumerator
 \[1 + 156x^{116} + 624x^{112} + 312x^{124} + 1248x^{125} + 624x^{127} + 156x^{136} + 4x^{156}. \]

Example 3.6. For the semi-primitive case. Let $q = 5$ and $N = 3$. Then there exists the least positive integer $e = 1$ such that $5 \equiv -1 \pmod{3}$. Let $r = 5^2$. By Lemma 2.4 we have
 \[\eta_0^{(3,5^2)} = 3, \quad \eta_1^{(3,5^2)} = \eta_2^{(3,5^2)} = -2. \]
Then by Table 2 we know that the code C_1 is an $[8, 3, 4]$ cyclic code over \mathbb{F}_5 with the weight enumerator
\[1 + 8x^4 + 64x^6 + 32x^7 + 20x^8.\]

Example 3.7. For the index 2 case. Let $q = 2$, $N = 7$, and $r = 2^6$. By Lemma 2.5 we have
\[\eta_0(7, 2^6) = 5, \eta_1(7, 2^6) = \eta_2(7, 2^6) = \eta_4(7, 2^6) = -3,\]
and
\[\eta_3(7, 2^6) = \eta_5(7, 2^6) = \eta_6(7, 2^6) = 1.\]
Then by Table 2 we know that the code C_1 is a $[9, 7, 2]$ cyclic code over \mathbb{F}_2 with the weight enumerator
\[1 + 9x^2 + 27x^3 + 27x^4 + 27x^5 + 27x^6 + 9x^7 + x^9.\]

We know that the explicit values of the Gauss periods are very hard to determine. Then we have the following tight bound on the minimum weight of C_1 which is denoted by $W_H(C_1)$.

Theorem 3.8. If $N | \frac{r - 1}{q - 1}$, $q \geq 3$, and $N < \sqrt{r}$, then we have
\[W_H(C_1) \geq \frac{(q - 1)(r - (N - 1)(q - 1))}{q^N}.\]

Proof. It is immediate from Lemma 2.6 and Theorem 3.2. \qed

4. The weight distribution of C_2

Let α be a primitive element of \mathbb{F}_r and $r - 1 = nN$ for two positive integers $n > 1$ and $N > 1$. For $g = \alpha^N$ we define a cyclic code over \mathbb{F}_q by
\[C_2 = \{c(a, b) : a, b \in \mathbb{F}_r\},\]
where
\[c(a, b) = (\text{Tr}_{r/q}(ag^0 + b(g^2)^0), \text{Tr}_{r/q}(ag^1 + b(g^2)^1), \ldots, \text{Tr}_{r/q}(ag^{n-1} + b(g^2)^{n-1})).\]

It is known that the parity-check polynomial of C_2 is $h_{g^{-1}}(x)h_{g^{-2}}(x)$, where $h_{g^{-1}}(x)$ and $h_{g^{-2}}(x)$ are the minimal polynomial of g^{-1} and g^{-2} over \mathbb{F}_q, respectively.

For any $a, b \in \mathbb{F}_r$, the Hamming weight of $c(a, b)$ is equal to
\[W_H(c(a, b)) = n - Z(r, a, b),\]
where
\[Z(r, a, b) = |\{x \in C_0^{(N,r)} : \text{Tr}_{r/q}(ax + bx^2) = 0\}|.\]
Let ϕ be the canonical additive character of \mathbb{F}_q. Then $\psi = \phi \circ \text{Tr}_{r/q}$ is the canonical additive character of \mathbb{F}_r. By the orthogonal property of additive characters we have

$$Z(r, a, b) = \frac{1}{q} \sum_{x \in C_0^{(N,r)}} \sum_{y \in \mathbb{F}_q} \phi(y \text{Tr}_{r/q}(ax + bx^2))$$

$$= \frac{1}{q} \sum_{x \in C_0^{(N,r)}} \sum_{y \in \mathbb{F}_q} \phi(\text{Tr}_{r/q}(yax + ybx^2))$$

$$= \frac{1}{q} \cdot \frac{r-1}{N}$$

$$+ \frac{1}{q} \sum_{x \in C_0^{(N,r)}} \sum_{y \in \mathbb{F}_q} \psi(yax + ybx^2).$$

Theorem 4.1. Let $r = q^2$ and $2N \mid (q + 1)$. Then the weight distribution of the cyclic code C_2 is given by Table 3 if $\frac{q+1}{2N}$ is even and is given by Table 4 if $\frac{q+1}{2N}$ is odd.

Table 3. Weight distribution of C_2 when $\frac{q+1}{2N}$ is even

Weight	Frequency
$q-1$	$\frac{r-1}{N}$ (0 $\leq i \leq N-1$)
q	$\frac{r-1}{N}$ (0 $\leq j \leq 2N-1$)
q^2	$\frac{(N-1)(r-1)^2}{2N^2}$ (0 $\leq j \leq 2N-1$)
q^3	$\frac{r-1}{N}(r-1)$
q^4	$\frac{r-1}{N}(r-1)^2 - q + 1$

Frequency
$\frac{r-1}{N}(r-1)^2 - q + 1$

Table 4. Weight distribution of C_2 when $\frac{q+1}{2N}$ is odd

Weight	Frequency
$q-1$	$\frac{r-1}{N}$ (0 $\leq i \leq N-1$)
q	$\frac{r-1}{N}$ (0 $\leq j \leq 2N-1$)
q^2	$\frac{(N-1)(r-1)^2}{2N^2}$ (0 $\leq j \leq 2N-1$)
q^3	$\frac{r-1}{N}(r-1)$
q^4	$\frac{r-1}{N}(r-1)^2 - q + 1$

$\frac{(r-1)^2}{2N^2}$ (0 $\leq j \leq 2N-1$, $j \neq N$)

Proof. Let α be a primitive element of \mathbb{F}_r and $\beta = \alpha^{\frac{q+1}{r-1}} = \alpha^{q+1}$. Then $\mathbb{F}_q^* = \langle \beta \rangle$ and $\mathbb{F}_q^* = C_0^{(N,r)} \cup \beta C_0^{(N,r)}$, where $C_0^{(N,r)} = \langle \beta^2 \rangle$. Since $q \equiv -1 \pmod{2N}$, we have $\mathbb{F}_q^* \subset C_0^{(2N,r)} \subset C_0^{(N,r)}$ and $yC_0^{(N,r)} = C_0^{(N,r)}$ for each $y \in \mathbb{F}_q^*$.

If $a = 0$ and $b = 0$, then we have

$$Z(r, a, b) = \frac{r-1}{N}.$$

This value occurs once.
If \(a \in C_i^{(N,r)} \) for some \(i(0 \leq i \leq N - 1) \) and \(b = 0 \), then we have

\[
Z(r, a, b) = \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(yax)
= \frac{r - 1}{qN} + \frac{q - 1}{q} \sum_{x \in C_0^{(N,r)}} \psi(ax) = \frac{r - 1}{qN} + \frac{q - 1}{q} \eta_i^{(N,r)}.
\]

This value occurs \(\frac{r - 1}{N} \) times.

If \(a = 0 \) and \(b \neq 0 \), then we can let \(b \in C_j^{(2N,r)} \) for some \(j, 0 \leq j \leq 2N - 1 \), by \(2N \mid (r - 1) \). We have

\[
Z(r, a, b) = \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(ybx^2) = \frac{r - 1}{qN} + \frac{q - 1}{q} \sum_{x \in C_0^{(N,r)}} \psi(bx^2)
= \frac{r - 1}{qN} + \frac{2(q - 1)}{q} \sum_{x \in C_0^{(2N,r)}} \psi(bx) = \frac{r - 1}{qN} + \frac{2(q - 1)}{q} \eta_j^{(2N,r)}.
\]

This value occurs \(\frac{r - 1}{2N} \) times.

Now we suppose that \(a \neq 0 \) and \(b \neq 0 \). Then we have

\[
Z(r, a, b) = \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(yax + ybx^2)
= \frac{r - 1}{qN} + \frac{1}{q} \left(\sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(yax + ybx^2) \right) + \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(yax + ybx^2)
= \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(y^2ax + y^2bx^2) + \frac{1}{2} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(\beta yax + \beta ybx^2)
= \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(yaxy + b(xy)^2) + \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(\beta yaxy + \beta b(xy)^2)
= \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(yaz + b^2z^2) + \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(\beta yaz + \beta b^2z^2)
= \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{x \in C_0^{(N,r)}} \psi(yaz + b^2z^2) + \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(\beta yaz) + \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(\beta b^2z^2)
= \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(baz + \beta baz^2) + \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(y Tr_{r/q}(az))
= \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(baz) + \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(\beta baz^2) + \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(y Tr_{r/q}(az))
= \frac{r - 1}{qN} + \frac{1}{q} \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(baz) + \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(\beta baz^2) + \sum_{y \in \mathbb{F}_q^*} \sum_{z \in C_0^{(N,r)}} \psi(y Tr_{r/q}(az))
\]

Note that \(\beta = \alpha^{q+1} \in \mathbb{F}_q^* \). Suppose that \(0 \neq a \in C_0^{(N,r)} \) and \(Tr_{r/q}(az) = 0 \). Then we have \(az + (az)^q = 0 \) and

\[
z = a^{-1} \alpha^{2q+1} v \text{ for all } v \in \mathbb{F}_q^*.
\]
This means that there exist exactly \(q - 1 \) solutions \(z \in C_0^{(N,r)} \) such that \(\text{Tr}_{r/q}(az) = 0 \) if \(a \in C_0^{(N,r)} \) and there exists no solution \(z \in C_0^{(N,r)} \) such that \(\text{Tr}_{r/q}(az) = 0 \) if \(a \not\in C_0^{(N,r)} \).

If \(a \in C_i^{(N,r)} \) for all \(i = 1, 2, \ldots, N-1 \) and \(b \in C_j^{(2N,r)} \) for some \(j \) \((0 \leq j \leq 2N-1)\), then we have \(\text{Tr}_{r/q}(az) \neq 0 \) and

\[
Z(r, a, b) = \frac{r - 1}{qN} + \frac{1}{2q} \left(\sum_{z \in C_0^{(N,r)}} \psi(bz^2) + \sum_{z \in C_0^{(N,r)}} \psi(\beta bz^2) \right) \cdot (-1)
\]

\[
= \frac{r - 1}{qN} - \frac{2}{q} \sum_{z \in C_0^{(2N,r)}} \psi(bz) = \frac{r - 1}{qN} - \frac{2}{q} \eta_j^{(2N,r)}.
\]

This value occurs \(\frac{r-1}{N} \cdot (N - 1) \cdot \frac{r-1}{2N} = \frac{(N-1)(r-1)^2}{2N^2} \) times.

In the following, we consider the case \(a \in C_0^{(N,r)} \). We have

\[
\Delta = \left(\sum_{z \in C_0^{(N,r)}} \psi(bz^2) + \sum_{z \in C_0^{(N,r)}} \psi(\beta bz^2) \right) \sum_{y \in F_q^*} \psi(y \text{Tr}_{r/q}(az))
\]

\[
= \left(\sum_{z \in C_0^{(N,r)}} \psi(bz^2) + \sum_{z \in C_0^{(N,r)}} \psi(\beta bz^2) \right) \cdot (q - 1)
\]

\[
+ \left(\sum_{z \in C_0^{(N,r)}} \psi(bz^2) + \sum_{z \in C_0^{(N,r)}} \psi(\beta bz^2) \right) \cdot (-1)
\]

\[
= \left(\sum_{z \in C_0^{(N,r)}} \psi(bz^2) + \sum_{z \in C_0^{(N,r)}} \psi(\beta bz^2) \right) \cdot q
\]

\[
+ \left(\sum_{z \in C_0^{(N,r)}} \psi(bz^2) + \sum_{z \in C_0^{(N,r)}} \psi(\beta bz^2) \right) \cdot (q - 1)
\]

\[
= q \sum_{v \in F_q^* \backslash \{0\}} \psi(b(a^{-1} \alpha^{q+1} v)^2) + q \sum_{v \in F_q^* \backslash \{0\}} \psi(\beta b(a^{-1} \alpha^{q+1} v)^2) - 2 \sum_{z \in C_0^{(N,r)}} \psi(bz^2)
\]

\[
= q \sum_{v \in F_q^* \backslash \{0\}} \psi(ba^{-2} \alpha v^2) + q \sum_{v \in F_q^* \backslash \{0\}} \psi(\beta ba^{-2} \alpha v^2) - 4 \sum_{z \in C_0^{(2N,r)}} \psi(bz)
\]

\[
= 2q \sum_{v \in C_0^{(2N,r)}} \psi(ba^{-2} v) + 2q \sum_{v \in C_0^{(2N,r)}} \psi(ba^{-2} \beta v) - 4 \sum_{z \in C_0^{(2N,r)}} \psi(bz)
\]

\[
= 2q \sum_{v \in F_q^* \backslash \{0\}} \psi(ba^{-2} v) - 4 \sum_{z \in C_0^{(2N,r)}} \psi(bz)
\]

\[
= 2q \sum_{v \in F_q^* \backslash \{0\}} \psi(\text{Tr}_{r/q}(ba^{-2})) - 4 \sum_{z \in C_0^{(2N,r)}} \psi(bz).
\]
Suppose that $\text{Tr}_{r/q}(ba^{-2}) = 0$. Then we have $ba^{-2} + b^q a^{-2q} = 0$ and
\[b = a^2 \alpha^{\frac{q+1}{2}} \] for all $v \in \mathbb{F}_q^*.$
This means that there exist exactly $q-1$ solutions $b \in C(2N,r)$ such that
\[\text{Tr}_{r/q}(ba^{-2}) = 0 \] for each $a \in C(0,N,r)$, where $C(2N,r) = C(2N,r) \equiv \frac{q+1}{2} \pmod{2N}$.

1. If $\frac{q+1}{2N}$ is even, then $\frac{q+1}{2} \equiv 0 \pmod{2N}$.
 If $a \in C(0,N,r)$ and $b \in C(0,2N,r)$ satisfy $\text{Tr}_{r/q}(ba^{-2}) = 0$, then we have
 \[Z(r,a,b) = \frac{r-1}{qN} + q - 1 - \frac{2}{q} \eta_0(N,r). \]
 This value occurs $\frac{(q-1)(r-1)}{N}$ times.
 If $a \in C(0,N,r)$, $b \in C(0,2N,r)$, and $\text{Tr}_{r/q}(ba^{-2}) \neq 0$, then we have
 \[Z(r,a,b) = \frac{r-1}{qN} - 1 - \frac{2}{q} \eta_0(N,r). \]
 This value occurs $\frac{r-1}{N} \cdot \frac{(r-1)}{2N}$ times.

2. If $\frac{q+1}{2N}$ is odd, then $\frac{q+1}{2} \equiv N \pmod{2N}$.
 If $a \in C(0,N,r)$ and $b \in C(2N,r)$ satisfy $\text{Tr}_{r/q}(ba^{-2}) = 0$, then we have
 \[Z(r,a,b) = \frac{r-1}{qN} + q - 1 - \frac{2}{q} \eta_0(N,r). \]
 This value occurs $\frac{(q-1)(r-1)}{N}$ times.
 If $a \in C(0,N,r)$, $b \in C(2N,r)$, and $\text{Tr}_{r/q}(ba^{-2}) \neq 0$, then we have
 \[Z(r,a,b) = \frac{r-1}{qN} - 1 - \frac{2}{q} \eta_0(N,r). \]
 This value occurs $\frac{r-1}{N} \cdot \frac{(r-1)}{2N}$ times.

Note that $W_H(c(a,b)) = n - Z(r,a,b)$. Then we can obtain Table 3 and Table 4. This completes the proof.

We have determined the weight distribution of the cyclic code C_2 when Gauss periods of order $2N$ are known. Then we have the following theorem.
Theorem 4.2. Assume that there exists the least positive integer e such that $p^e \equiv -1 \pmod{2N}$, we know that p is odd. Let $q = p^f$ for some positive integer f and $r = q^2 = p^{2ef}$.

(1) If f and $\frac{p^e+1}{2N}$ are both odd, then the weight distribution of C_2 can be given by Table 5.

(2) In all other cases, the weight distribution of C_2 can be given by Table 6.

Table 5. The case (1) of Theorem 4.2.

Weight	Frequency
0	1
$\frac{r-1}{N} - q + 1$	$\frac{r-1}{N}$
$\frac{r-1}{N}$	$\frac{r-1}{N}$
$\frac{r-1}{N} - 2q + 2$	$\frac{r-1}{N}$
$\frac{(q+1)(q-2)}{N} + 2$	$\frac{r-1}{N}$
$\frac{(q+1)(q-2)}{N}$	$\frac{r-1}{N}$
$\frac{(q+1)(q-2)}{N} - q + 3$	$\frac{r-1}{N}$
$\frac{(q+1)(q-2)}{N} + 3$	$\frac{r-1}{N}$
$\frac{(q+1)(q-2)}{N}$	$\frac{r-1}{N}$

Table 6. The case (2) of Theorem 4.2.

Weight	Frequency
0	1
$\frac{(q-1)(q+(-1)^f(N-1))}{N}$	$\frac{r-1}{N}$
$\frac{(q-1)(q-(-1)^f)}{N}$	$\frac{r-1}{N}$
$\frac{(q-1)(q+(-1)^f)(2N-1)}{N}$	$\frac{r-1}{N}$
$\frac{q^2-q-1+(-1)^f}{N} - 2 \cdot (-1)^f$	$\frac{r-1}{N}$
$\frac{q^2-q-1+(-1)^f}{N} - 2 \cdot (-1)^f - q + 1$	$\frac{r-1}{N}$
$\frac{q^2-q-1+(-1)^f}{N} - 2 \cdot (-1)^f + 1$	$\frac{r-1}{N}$
$\frac{q^2-q-1+(-1)^f}{N} + 1$	$\frac{r-1}{N}$

Proof. (1) If f, p, and $\frac{p^e+1}{2N}$ are all odd, then by Lemma 2.4 we have

$$\eta_{N}^{(2N,r)} = \frac{(2N-1)q - 1}{2N}, \eta_{j}^{(2N,r)} = -\frac{q + 1}{2N}$$

for $0 \leq j \leq 2N - 1, j \neq N$.

Thus

$$\eta_{0}^{(N,r)} = \eta_{0}^{(2N,r)} + \eta_{N}^{(2N,r)} = \frac{(N-1)q - 1}{N},$$

$$\eta_{i}^{(N,r)} = \eta_{i}^{(2N,r)} + \eta_{i+N}^{(2N,r)} = -\frac{q + 1}{N}$$

for $1 \leq i \leq N - 1$.

Note that

$$\frac{q + 1}{2N} = p^f + 1 = \frac{p^f + 1}{2N} \cdot (p^e(1) + (-1)^{f-2}p^e(2) + \cdots + (-1)p^e + 1)$$
is odd since \(f, p, \) and \(\frac{p^e + 1}{2N} \) are all odd. Then Table 5 can be obtained by Table 4 of Theorem 4.1.

(2) In all other cases, by Lemma 2.4 we have

\[
\eta_0^{(2N,r)} = \frac{(-1)^{f+1}(2N - 1)q - 1}{2N}, \quad \eta_j^{(2N,r)} = \frac{(-1)^f q - 1}{2N} \text{ for } 1 \leq j \leq 2N - 1.
\]

Thus

\[
\eta_0^{(N,r)} = \eta_0^{(2N,r)} + \eta_N^{(2N,r)} = \frac{(-1)^f(N - 1)q - 1}{N},
\]

\[
\eta_i^{(N,r)} = \eta_i^{(2N,r)} + \eta_{i+N}^{(2N,r)} = \frac{(-1)^f q - 1}{N} \text{ for } 1 \leq i \leq N - 1.
\]

Note that there is at least one of \(f \) and \(\frac{p^e + 1}{2N} \) is even and \(p \) is odd. Then

\[
\eta_0^{(N,r)} = \eta_0^{(2N,r)} + \eta_N^{(2N,r)} = \frac{(-1)^f(N - 1)q - 1}{N}
\]

\[
\eta_i^{(N,r)} = \eta_i^{(2N,r)} + \eta_{i+N}^{(2N,r)} = \frac{(-1)^f q - 1}{N} \text{ for } 1 \leq i \leq N - 1.
\]

We also have a tight bound on the minimum weight of \(C_2 \) which is denoted \(W_H(C_2) \).

Example 4.3. Let \(q = p = 3, r = 9, \) and \(N = 2 \). By Table 5 we known that \(C_2 \) is a \([4, 3, 2]\) cyclic code over \(\mathbb{F}_3 \) and thus is optimal with respect to Singleton bound. The weight enumerator of such cyclic code is

\[
1 + 12x^2 + 8x^3 + 6x^4.
\]

Example 4.4. Let \(q = p = 7, r = 49, \) and \(N = 2 \). By Table 6 we known that \(C_2 \) is a \([24, 4, 12]\) cyclic code over \(\mathbb{F}_7 \) and the weight enumerator is

\[
1 + 12x^{12} + 144x^{16} + 24x^{18} + 864x^{20} + 864x^{21} + 288x^{22} + 144x^{23} + 60x^{24}.
\]

Example 4.5. Let \(q = p = 5, r = 25, \) and \(N = 3 \). By Table 5 we known that \(C_2 \) is an \([8, 3, 4]\) cyclic code over \(\mathbb{F}_5 \) and the weight enumerator is

\[
1 + 8x^4 + 64x^6 + 32x^7 + 20x^8.
\]

We also have a tight bound on the minimum weight of \(C_2 \) which is denote \(W_H(C_2) \).

Theorem 4.6. Let \(r = q^2, 2N | (q + 1), \) and \(5 \leq N < \frac{\sqrt{r}}{2} \). Then we have

\[
W_H(C_2) \geq \frac{(q - 1)(r - (2N - 1)\sqrt{r})}{qN}.
\]

Proof. By Lemma 2.6 and Theorem 4.1 we only need to compare some values of the weights. It is not difficult and then we omit the proof here.
REFERENCES

[1] L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Inf. Contr., vol. 20, no. 2, pp. 158-175, 1972.
[2] L. D. Baumert and J. Mykkeltveit, Weight distributions of some irreducible cyclic codes, DSN Progr. Rep., vol. 16, pp. 128-131, 1973.
[3] N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions, J. Symbolic Comput., vol. 45, no. 7, pp. 723-733, 2010.
[4] A. Canteaut, P. Charpin, and H. Dobbertin, Weight divisibility of cyclic codes, highly nonlinear functions on \mathbb{F}_{2^m} and crosscorrelation of maximum-length sequences, SIAM J. Discrete Math., vol. 13, no. 1, pp. 105-138, 2000.
[5] C. Carlet, P. Charpin, and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr. vol. 15, no. 2, pp. 125-156, 1998.
[6] P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A, vol. 108, pp. 247-259, 2004.
[7] P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inform. Theory, vol. 21, no. 5, pp. 575-576, 1975.
[8] P. Delsarte and J. M. Goethals, Irreducible binary cyclic codes of even dimension, in Proc. 2nd Chapel Hill Conf. Combinatorial Mathematics and Its Applications, Chapel Hill, NC, pp. 100-113, 1970.
[9] C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, vol. 55, no. 3, pp. 955-960, Mar. 2009.
[10] C. Ding, Cyclic codes from cyclotomic sequences of order four, Finite Fields Appl., vol. 23, pp. 8-34, 2013.
[11] C. Ding, Y. Liu, C. Ma, and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inform. Theory, vol. 57, no. 12, pp. 8000-8006, 2011.
[12] C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., vol. 313, no. 4, pp. 434-446, Feb. 2013.
[13] K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., vol. 14, pp. 390-409, 2008.
[14] T. Feng, On cyclic codes of length $2^r - 1$ with two zeros whose dual codes have three weights, Des. Codes Cryptogr., vol. 62, pp. 253-258, 2012.
[15] T. Feng and K. Momihara, Evaluation of the weight distribution of a class of cyclic codes based on index 2 Gauss sums, 2012, arXiv preprint.
[16] N. Jacobson, Basic Algebra I, W.H. Freeman and Co., San Francisco, Calif., 1974.
[17] S. Li, S. Hu, T. Feng, and G. Ge, The weight distribution of a class of cyclic codes related to Hermitian forms graphs, IEEE Trans. on Inform. Theory, vol. 59, no. 5, pp. 3064-3067, May 2013.
[18] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley Publishing Inc., 1983.
[19] J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inform. Theory, vol. 54, no. 12, pp. 5332-5344, Dec. 2008.
[20] J. Luo, Y. Tang, and H. Wang, Cyclic codes and sequences: the generalized Kasami case, IEEE Trans. Inform. Theory, vol. 56, no. 5, pp. 2130-2142, May 2010.
[21] C. Ma, L. Zeng, Y. Liu, D. Feng, and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inform. Theory, vol. 57, no. 1, pp. 397-402, Jan. 2011.
[22] G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., vol. 10, pp. 97-104, 2004.
[23] R. J. McEliece, A class of two-weight codes, Jet Propulsion Laboratory Space Program Summary 37-41, vol. IV, pp. 264-266, 1966.
[24] R. J. McEliece, Irreducible cyclic codes and Gauss sums. Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), Part 1: Theory of designs, finite geometry and coding theory, pp. 179-196. Math. Centre Tracts, No. 55, Math. Centrum, Amsterdam, 1974.
[25] M. Moisio, K. Ranto, Kloosterman sum identities and low-weight codewords in a cyclic code with two zeros, Finite Fields Appl. vol. 13, pp. 922-935, 2007.
[26] G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., vol. 39, pp. 251C264, 1981.
[27] R. Schoof, Families of curves and weight distribution of codes, Bull. Amer. Math. Soc., vol. 32, no. 2, pp. 171C183, 1995.
[28] G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inform. Theory, vol. 58, no. 7, pp. 4862-4869, July 2012.
[29] B. Wang, C. Tang, Y. Qi, Y. Yang, and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inform. Theory, vol. 58, no. 12, pp. 7253-7259, Dec. 2012.
[30] M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., vol. 18, pp. 933-945, 2012.
[31] M. Xiong, The weight distributions of a class of cyclic codes II, Des. Codes Cryptogr., Doi 10.1007/s10623-012-9785-0, 2012.
[32] M. Xiong, The weight distributions of a class of cyclic codes III, Finite Fields Appl., vol. 21, pp. 84-96, 2013.
[33] J. Yang, Ma. Xiong and C. Ding, Weight distribution of a class of cyclic codes with arbitrary number of zeros, arXiv: 1301.2479v1, 2013.
[34] J. Yuan, C. Carlet, and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 712-717, Feb. 2006.
[35] X. Zeng, L. Hu, W. Jiang, Q. Yue, and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., vol. 16, pp. 56-73, 2010.
[36] Z. Zhou and C. Ding, A class of three-weight cyclic codes, arXiv: 1302.0569v1, 2013.
[37] Z. Zhou, C. Ding, J. Luo, and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, arXiv: 1302.0952v1, 2013.

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, P.R. China
E-mail address: lichengju1987@163.com

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, P. R. China
E-mail address: yueqin@nuaa.edu.cn