Machine-learning assisted modelling of multiple elements for authenticating edible animal blood food

Fangkai Han a,∗, Joshua H. Aheto b, Marwan M.A. Rashed a, Xingtao Zhang a

a School of Biological and Food Engineering, Suzhou University, Bianhe Middle Road 49, Suzhou 234000, Anhui, PR China
b School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China

ARTICLE INFO

Abstract

Elemental fingerprint coupled with machine learning modelling was proposed for species authentication of the edible animal blood gel (EABG). A total of 25 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS) in 150 EABG samples prepared from five species of animals, namely duck, chicken, bovine, pig, and sheep. Extreme learning machine (ELM) models were constructed and optimized. Principal component analysis and Fisher linear discriminant analysis were comparatively utilized for dimension reduction of the crucial input elements selected via stepwise discriminant analysis and one-way ANOVA. The optimal ELM model was obtained with the crucial elements selected by one-way ANOVA from the relative content of the measured elements, which afforded accuracies of 98.0% and 96.0% for the training and test set, respectively. All findings suggest that elemental fingerprint accompanied by ELM have great potential in authenticating the edible animal blood food.

Introduction

Animal blood is rich in protein with high biological value, so it is accepted as value-added component of foods or dietary supplements in many societies (Bah, Bekhit, Carne, & McConnell, 2013; Toldrà, Aristoy, Mora, & Reig, 2012). The high economic animal blood food, known as “blood tofu” usually made via simple heating of the fresh edible animal blood is widely distributed in the supermarkets or restaurants of China. Generally, blood from duck, pig and chicken are used for preparing blood tofu. However, in view of its unique taste and texture, duck blood tofu is most popular in China. Therefore, the price of duck blood tofu is usually higher than that of other animal blood tofu, which contributes to food fraud, adulteration, and mislabeling.

Currently, the high economic value of duck blood tofu adulterated or replaced with other low-price animal blood is still a serious social problem implied by media reports and administrative punishment cases (Zhang, Wang, Ma, Li, & Li, 2020). Hence, a method for authentication of animal blood foods is needed. Specific biomarkers, such as DNA (Cheng, He, Huang, Huang, & Zhou, 2014; El-Sayed, Mohamed, Ashry, & Abd El-Rahman, 2010; Unajak et al., 2010) and peptide (Zhang et al., 2020), have shown great potential for the aforementioned purpose. However, although the specific biomarker-based analytical techniques are accurate, these techniques can be practically problematic due to sample contamination and intentional addition/removal of the biomarkers by the food counterfeiters. Therefore, it is urgent to develop a novel technology to authenticate animal blood foods.

Elemental fingerprint showed a unique advantage to the specific biomarkers-based analytical techniques as it involves all chemical constituents in foods making it difficult for the food counterfeiters to adjust such huge element species and content. Recently, the elemental fingerprint has been used to trace the origin of green coffee beans (Endaye et al., 2020), determine the geographic origin of salmonid (Han, Dong, Li, Wei, Zhou, & Gao, 2020), discriminate geographical origin and species of China’s cattle bones (Zhang et al., 2021), and authenticate the geographical origin of Australian Cabernet Sauvignon wines (Rana, Gilmore, Capone, Bastian, & Jeffery, 2021), to name but a few. Nevertheless, to the best of the authors’ knowledge, no studies investigating the authentication of animal blood foods based on elemental fingerprints have been reported. Therefore, the present work aims to develop a novel technique for species authentication of the edible animal blood gel (EABG) using elemental fingerprint coupled with machine learning modelling.

∗ Corresponding author.
E-mail address: hanfk11@163.com (F. Han).

https://doi.org/10.1016/j.fochx.2022.100280
Received 2 December 2021; Received in revised form 16 February 2022; Accepted 4 March 2022
Available online 7 March 2022
2590-1575/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Materials and methods

Samples preparation

Fresh animal blood samples were collected in Suzhou, China from July 20th to August 7th, 2021. Duck and chicken blood samples were purchased from the vendor for on-site slaughter at a local farmers’ market; a local slaughterhouse provided pig and bovine blood samples; the sheep blood samples were purchased from a local hotpot restaurant. All the fresh animal blood samples were transported to the laboratory in an ice-filled box and then sterilized under high temperature at 121 °C for 30 min after natural sedimentation. All blood samples were homogenized separately, and then frozen at –20 °C. Eventually, thirty blood samples for each species of the animals were collected, thus yielding a total of 150 EABG samples for multi-element measurements.

Multi-element analysis of the EABG

According to Chinese standard GB 5009.268–2016 (National Health and Family Planning Commission of the People’s Republic of China, 2016a), trace elements such as lithium (Li), beryllium (Be), boron (B), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), rubidium (Rb), strontium (Sr), cadmium (Cd), barium (Ba), thallium (Tl), and lead (Pb) were determined by using inductively coupled plasma mass spectrometry (ICP-MS). The atomic absorption spectroscopy (AAS) was utilized for the macroelement measurements, potassium (K) and sodium (Na) were tested according to GB 5009.91–2017 (National Health and Family Planning Commission of the People’s Republic of China, 2017a), calcium (Ca) and magnesium (Mg) were analyzed according to GB 5009.92–2016 (National Health and Family Planning Commission of the People’s Republic of China, 2016b) and GB 5009.241–2017 (National Health and Family Planning Commission of the People’s Republic of China, 2017b), respectively. All elemental analyses were carried out according to Chinese national standards, which is convenient for potential users to follow.

Chemometrics and software

Herein, the absolute and relative contents of the measured elements were used as the original dataset for machine learning modelling. Because of the big differences in contents of the microelements and macro-elements, Z-score normalization was performed firstly on the original datasets to eliminate the data orders. Then, the stepwise discriminant analysis (SWDA) was compared with one-way analysis of variance (ANOVA) for selecting crucial elements; principal component analysis (PCA) and Fisher linear discriminant analysis (Fisher LDA) were implemented comparatively to reduce dimension; eventually, extreme learning machine (ELM) was selected for modeling due to its simple network structure, good generalization ability and less time consuming (Han, Zhang, Aheto, Feng, & Duan, 2020; Huang, Zhu, & Siew, 2006).

During ELM modelling, the number of hidden neurons and the activation function of the hidden layers were optimized. As the strategy of cut-and-try was used, the optimal number of hidden neurons was set at a range of [1, 100]. Also, the frequently used activation functions for the hidden layers are depicted in the following formulas:

\[S_{\text{Sig}} : S(x) = \frac{1}{1 + e^{-x}} \] \hspace{1cm} (1)

\[S_{\text{Sin}} : S(x) = \sin(x) \] \hspace{1cm} (2)

\[S_{\text{Hardlim}} : S(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases} \] \hspace{1cm} (3)

where: x means the inputs of these formulas.

Performance of the constructed ELM model was evaluated by using the recognition accuracy, which is calculated by dividing the number of correctly predicted samples by the total number of samples in the training or test set. All algorithms in this work were implemented with Windows 10 in Matlab version 7.14 (Mathworks, Natick, USA).

Results and discussions

Elements content in different species of EABG

Results of the elemental analysis for the EABG samples are shown in Table 1. According to the results, there was no significant difference in the contents of Li, Be, Ti, Co, As, Cd, Tl, and Pb in EABG from different species of animals. Elements were different between only two species of EABG, but no significant differences with other remaining three species of EABG were B, Al, Mn, and Na, and more details are shown as follows: B content in bovine blood gel was significantly higher than that in sheep.
blood gel, but similar with that in blood gels made from duck, chicken, and pig; Al content in pig blood gel was significantly higher than that in bovine blood gel, but similar with that in duck, chicken, and sheep blood gels; Mn content in chicken blood gel was found significantly higher than that in bovine blood gel, but similar with that in duck, chicken, and sheep blood gels.

As demonstrated in Table 1, elements content in two species of blood gels showed significant differences with other remaining three species animal blood gels were Sr, Ba, Mg, and Ca and more details are shown as follows: Sr content in bovine and sheep blood gels were significantly higher than that in duck, chicken, and pig blood gels; Ba content in bovine and sheep blood gels were also significantly higher than that in duck, chicken, and pig blood gels; Mg content in duck and pig blood gels was significantly higher than that in chicken, bovine, and beef blood gels; Ca content in pig and sheep blood gels was significantly higher than that in duck, chicken, and bovine blood gels.

The Table 1 also shows that Fe content in the EABG samples increased in the following order: chicken, pig; and duck; no significant difference was found in Fe content in EABG samples of duck, cow and sheep. Cu content increased in the following order: bovine, pig and duck; it was found that the Cu content was similar between pig and sheep blood gels, and between duck and chicken blood gels. K content found in the EABG samples increased in the following order: pig, duck and bovine; it was found that the K content was similar between duck and chicken blood gels, and between bovine and sheep blood gels. Zn content in bovine blood gel was significantly higher than in other animal blood gels used. V content in bovine blood gel was significantly higher than that in sheep blood gel, but there were no significant differences with other remaining animal blood gels. Cr content in bovine blood gel was significantly higher than that in duck and sheep blood gels, but there was no significant difference with chicken and pig blood gels. Se content found in the EABG samples increased in the following order: pig, sheep and chicken; it was found that the Se content was similar between duck and pig blood gels as well as between sheep and bovine blood gels.

In order to further explore the difference of EABG multi-element distribution, the relative content of the measured elements obtained via single element content divided by the total element content of the sample was also analyzed, and the results are shown in Table 2.

Selection of key elements and dimension reduction for modelling

The SWDA and one-way ANOVA were separately used to select key elements for machine learning modelling. Results of the SWDA showed that regarding the absolute content of the elements used, B, Fe, Ni, Cu, Sr, Na, Mg, K, and Ca were selected as the key variables; In contrast, as the relative content of related measuring elements, eight elements were selected as the key elements, namely Fe, Ni, Cu, Zn, Sr, Na, Mg, and K. Results of the one-way ANOVA showed that all the tested elements except Li, Be, Ti, Co, As, Cd, Ti, and Pb were selected considering the absolute content; and in terms of the relative content, the measured elements other than Be, B, Ti, Co, Ti, and Pb were selected as the key variables for modeling.

Afterwards, PCA and Fisher LDA were utilized comparatively for dimension reduction of the key elements selected. The accumulative contribution rates of the top several principal components (PCs) and discriminate functions (DFs) used were shown in Fig. 1. It could be observed from Fig. 1 that the top 8 PCs and 5 PCs could be used to represent the key elements selected by using ANOVA and SWDA respectively on the absolute content dataset of the measured elements; as well as, the top 9 PCs and 5 PCs could represent the key elements selected via ANOVA and SWDA respectively on the relative content dataset of the measured elements. Fig. 1 also shows that the top 3 DFs could be used for representing these corresponding datasets respectively while SWDA was used.

Table 2

Results of the relative content of elements in blood gels (duck, chicken, bovine, pig, and sheep) obtained via single element content divided by the total element content of the sample.

	Duck (%)	Chicken (%)	Bovine (%)	Pig (%)	Sheep (%)
Li	1.02±10^-5	1.02±10^-5	1.16±10^-5	0.836±10^-5	1.17±10^-5
B	5.65±10^-5	5.49±10^-5	5.59±10^-5	5.21±10^-5	2.60±10^-5
Be	1.68±10^-5	4.47±10^-5	5.59±10^-5	2.17±10^-5	2.60±10^-5
Sr	5.99±10^-5	5.17±10^-5	10.4±10^-5	6.63±10^-5	5.54±10^-5
Mg	5.06±10^-5	3.66±10^-5	19.5±10^-5	7.11±10^-5	3.94±10^-5
Al	3.54±10^-4	5.07±10^-4	3.89±10^-4	6.06±10^-4	6.15±10^-4
V	2.18±10^-4	7.01±10^-4	2.91±10^-4	2.77±10^-4	9.26±10^-4
Ti	1.27±10^-5	1.39±10^-5	2.10±10^-5	1.33±10^-5	1.47±10^-5
Fe	0.17±10^-5	0.13±10^-5	0.19±10^-5	0.221±10^-5	0.198±10^-5
Co	2.29±10^-5	6.35±10^-5	3.21±10^-5	1.70±10^-5	2.06±10^-5
Ni	1.81±10^-5	3.63±10^-5	4.38±10^-5	2.22±10^-5	3.71±10^-5
Cu	1.26±10^-5	20.2±10^-5	68.9±10^-5	35.2±10^-5	39.4±10^-5
Zn	1.36±10^-3	1.94±10^-3	1.72±10^-3	2.42±10^-3	1.06±10^-3
As	1.69±10^-6	1.77±10^-6	2.55±10^-6	1.48±10^-6	1.64±10^-6
Se	7.00±10^-4	5.79±10^-4	8.82±10^-4	8.02±10^-4	7.84±10^-4
Rb	1.14±10^-5	0.93±10^-5	1.43±10^-5	1.49±10^-5	1.18±10^-5
Sr	3.13±10^-5	3.71±10^-5	6.73±10^-5	3.48±10^-5	6.34±10^-5
Cd	3.05±10^-6	8.19±10^-6	5.41±10^-6	1.55±10^-5	2.74±10^-6
Ba	2.19±10^-5	2.21±10^-5	3.84±10^-5	2.09±10^-5	3.90±10^-5
Ti	1.74±10^-4	7.16±10^-5	5.19±10^-5	2.29±10^-5	3.01±10^-5
Pb	6.83±10^-5	9.42±10^-5	7.30±10^-5	5.78±10^-5	7.54±10^-5
Na	0.401±10^-5	0.413±10^-5	0.575±10^-5	0.283±10^-5	0.486±10^-5
Mg	0.031±10^-5	0.020±10^-5	0.013±10^-5	0.028±10^-5	0.013±10^-5
Ca	0.019±10^-5	0.026±10^-5	0.026±10^-5	0.011±10^-5	0.016±10^-5
K	0.085±10^-5	0.062±10^-5	0.061±10^-5	0.059±10^-5	0.010±10^-5
Results are expressed as mean values ± standard deviation, n = 30. Values in the same line with different superscripts were significantly different (P < 0.05).					
Fig. 2 shows that the scatter plots of the EABG samples under the top 3 PCs and 3 DFs separately. The figure could be used for exploring the distribution trends of the EABG samples with different species. The distinguishing capability of Fisher LDA was better than PCA. DFs of Fisher LDA calculated to fulfill the intra class deviation formed by each intra class projection value is as small as possible, and the inter-class deviation formed by the projection value between different classes is as large as possible (Han, Huang, Aheto, Zhang, & Feng, 2020); PCs of PCA was achieved by calculating the eigenvectors and eigenvalues of the covariance matrix of the original data matrix (Yousefi, Sfarra, Ibarra Castanedo, & Maldague, 2017). Even though PCA has been widely used for processing the multidimensional and serious collinearity datasets in a multivariate problem, Fisher LDA performed better than PCA for the task of classification herein.

Results of ELM models

ELM models with different inputs obtained from section 3.2 were constructed and optimized for predicting the species of the EABG. During ELM modelling, one-third of the samples in each group were selected as the prediction set via the Kennard-Stone algorithm (Zhang et al., 2017). The rest samples were utilized as the training set.

According to the knowledge of ELM theory, the input weight and networks bias were generated randomly. Hence, each ELM model was performed 12 times for performance comparison. Table 3 shows the performances of the ELM models constructed for the testing samples. The table indicates that the optimal ELM models were obtained when the one-way ANOVA was used to select key elements and the Fisher LDA was used to reduce dimension. For consideration of the absolute content of the measured elements, while the Sig active function was used, the ELM model offered identification accuracy over 90%; as for the relative content considered, while the Sig and Sin functions were used, both ELM models offered high identification accuracies not lower than 93.0%.

Also, performances of the ELM models with original datasets from the absolute and relative content of the measured elements and the one-way ANOVA and SWDA were compared. Results showed that the performance of the ELM model using Fisher LDA for dimension reduction (88.3 ± 5.35%) was significantly superior to PCA (66.6 ± 8.31%) utilized; However, performance of the ELM model with original datasets from the absolute (76.1 ± 13.9%) and the relative content (78.8 ±
Conclusions

A method based on elemental fingerprint coupled with machine learning modelling was proposed for identifying the EABG species. Results suggest that: (1) both the absolute and relative content of the elements measured could be used for modelling; (2) Fisher LDA for dimension reduction was significantly better than PCA; (3) the optimal ELM models obtained with the relative content of the measured elements and Sin active function, the best ELM model containing more specific information of the elements than AWDA datasets for EABG samples’ identification.

Eventually, for the 288 tests of ELM modelling, under the condition of using relative content and Sin active function, the best ELM model was obtained with the best neural network structure was 3\(\times\)3\(\times\)3, where only two samples were misclassified of the unknown 50 samples. In training set, there were also only two samples misclassified offering a high prediction accuracy of 98.4%. It is suggest that elemental fingerprints accompanied by ELM have great potential in authenticating the edible animal blood foods.

Table 3

The identification accuracies of ELM models constructed for the unknown samples with different inputs, namely two original datasets including the absolute and relative content of the elements measured, two techniques for key elements selection including stepwise discriminant analysis (SWDA) and one-way ANOVA, two methods for dimension reduction including principal component analysis (PCA) and Fisher linear discriminate analysis (Fisher LDA), and three activation functions including Hardlim, Sig, and Sin.

Original dataset	Key elements selection	Dimension reduction	Activation function	Identification accuracy (%)
Absolute content	ANOVA	PCA	Hardlim	57.5 ± 2.72\(^{a}\)
			Sig	58.5 ± 2.72\(^{a}\)
			Sin	53.2 ± 2.37\(^{a}\)
	Fisher LDA	PCA	Hardlim	89.7 ± 1.37\(^{bc}\)
			Sig	91.5 ± 0.83\(^{ab}\)
			Sin	90.8 ± 0.99\(^{b}\)
SWDA	PCA	Hardlim	70.7 ± 1.23\(^{a}\)	
			Sig	71.2 ± 2.37\(^{a}\)
			Sin	69.7 ± 2.92\(^{a}\)
	Fisher LDA	PCA	87.5 ± 1.19\(^{cd}\)	
			Sig	86.7 ± 1.25\(^{cd}\)
			Sin	86.3 ± 1.37\(^{cd}\)
Relative content	ANOVA	PCA	Hardlim	64.5 ± 1.44\(^{b}\)
			Sig	67.8 ± 3.10\(^{b}\)
			Sin	57.0 ± 1.91\(^{d}\)
	Fisher LDA	PCA	73.3 ± 5.19\(^{b}\)	
			Sig	93.0 ± 1.00\(^{a}\)
			Sin	93.3 ± 1.25\(^{a}\)
SWDA	PCA	Hardlim	74.8 ± 2.23\(^{d}\)	
			Sig	77.5 ± 1.66\(^{c}\)
			Sin	76.7 ± 2.62\(^{c}\)
	Fisher LDA	PCA	90.3 ± 1.37\(^{bc}\)	
			Sig	88.67 ± 0.94\(^{c}\)
			Sin	88.18 ± 1.28\(^{c}\)

Results are expressed as mean values ± standard deviation, \(n = 12\). Values in the same column with different superscripts were significantly different (\(P < 0.05\)).

11.7%) of the measured elements showed no significant difference. As a comparison of the one-way ANOVA and SWDA used for variables selection, the key elements selected using SWDA were included in datasets selected via one-way ANOVA (see part 3.2), resulting in ANOVA datasets containing more specific information of the elements than AWDA datasets for EABG samples’ identification.

Ethical Approval

The authors declare that this article does not contain any studies with human or animal subjects.

Acknowledgments

This work was sponsored by the Anhui Provincial Natural Science Foundation (1908085QC146), the Back-up of Academic and Technical Leaders of Suzhou University (2020XJHB04), and the Natural Science Research Project of Colleges and Universities in Anhui province (KJ2021ZD0139), and the Scientific Research Platform Project of Suzhou University (2021XJPT35). The authors would like to thank several students of Dr. Fangkai Han at Suzhou University for their contribution to this work. Li Ming, Mengxue Xue, Lei Bao, Linfang Hu, Qiantong Hu, Jinmeng Wang, Yan Yu, and Sisi Xu. Funding: Fangkai Han has received to this work: Li ming, Mengxue Xue, Lei Bao, Linfang Hu, Qiantong Hu, Jinmeng Wang, Yan Yu, and Sisi Xu. Funding: Fangkai Han has received a research grant from the Anhui Provincial Natural Science Foundation (1908085QC146), the Back-up of Academic and Technical Leaders of Suzhou University (2020XJHB04), the Natural Science Research Project of Colleges and Universities in Anhui province (KJ2021ZD0139), and the Scientific Research Platform Project of Suzhou University (2021XJPT35).

References

Bah, C. S. F., Bekhit, A.-E.-D.-A., Carne, A., & McConnell, M. A. (2013). Slaughterhouse blood: An emerging source of bioactive compounds. Comprehensive Reviews in Food Science and Food Safety, 12(3), 314–331.

Cheng, X., He, W., Huang, F., Huang, M., & Zhou, G. (2014). Multiplex real-time PCR for the identification and quantification of DNA from duck, pig and chicken in Chinese blood curds. Food Research International, 60, 30–37.

El-Sayed, Y. S., Mohamed, O. I., Ashry, K. M., & Abd El-Rahman, S. M. (2010). Using species-specific repeat and PCR-RFLP in typing of DNA derived from blood of human and animal species. Forensic Science, Medicine, and Pathology, 6(3), 158–164.

Endaye, M., Atlabachew, M., Mebari, B., Alemayehu, M., Mengistu, D. A., & Kesiwew, B. (2020). Combining multi-element analysis with statistical modeling for tracing the origin of green coffee beans from Amhara region, Ethiopia. Biological Trace Element Research. 195(2), 669–678.

Han, C., Dong, S., Li, L., Wei, F., Zhou, Y., & Gao, Q. (2020). The effect of the seasons on geographical traceability of salmonid based on multi-element analysis. Food Control, 109, Article 106093.

Han, F., Huang, X., Aheto, J. H., Zhang, D., & Feng, F. (2020). Detection of beef adulterated with pork using a low-cost electronic nose based on colorimetric sensors. Food, 9(2).

Han, F., Zhang, D., Aheto, J. H., Feng, F., & Duan, T. (2020). Integration of a low-cost electronic nose and a voltammetric electronic tongue for red wines identification. Food Science & Nutrition, 8(8), 4330–4339.

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3), 489–501.

CRediT authorship contribution statement

Fangkai Han: Funding acquisition, Conceptualization, Methodology, Data curation, Visualization, Writing – original draft. Joshua H. Aheto: Methodology, Writing – review & editing. Marwan M.A. Rashed: Investigation, Writing – review & editing. Xingtao Zhang: Investigation, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

National Health and Family Planning Commission of the People’s Republic of China. (2016a). GB 5009.268-2016. National standard for food safety: determination of multi-element in food. Beijing, China.

National Health and Family Planning Commission of the People’s Republic of China. (2016b). GB 5009.92-2016. National standard for food safety: determination of calcium in food. Beijing, China.

National Health and Family Planning Commission of the People’s Republic of China. (2017a). GB 5009.91-2017. National standard for food safety: determination of potassium and sodium in food. Beijing, China.

National Health and Family Planning Commission of the People’s Republic of China. (2017b). GB 5009.241-2017. National standard for food safety: determination of magnesium in food. Beijing, China.

Ranaweera, R. K. R., Gilmore, A. M., Capone, D. L., Bastian, S. E. P., & Jeffery, D. W. (2021). Authentication of the geographical origin of Australian Cabernet Sauvignon wines using spectrofluorometric and multi-element analyses with multivariate statistical modelling. Food Chemistry, 335, Article 127592.

Toldrá, F., Aristoy, M. C., Mora, L., & Reig, M. (2012). Innovations in value-addition of edible meat by-products. Meat Science, 92(3), 290–296.

Unajak, S., Meesawat, P., Anyanmaneerat, K., Duangtipanuwareepong, Srikulnath, K., & Choowongkomon, K. (2010). Identification of species (meat and blood samples) using nested-PCR analysis of mitochondrial DNA. African Journal of Biotechnology, 10.

Yousefi, B., Sfarra, S., Ibarra Castanedo, C., & Maldague, X. P. V. (2017). Comparative analysis on thermal non-destructive testing imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). Infrared Physics & Technology, 85, 163–169.

Zhang, L., Li, G., Sun, M., Li, H., Wang, Z., Li, Y., & Lin, L. (2017). Kennard-Stone combined with least square support vector machine method for noncontact discriminating human blood species. Infrared Physics & Technology, 86, 116–119.

Zhang, H., Liu, W., Shen, Q., Zhao, L., Zhang, C., & Richel, A. (2021). Discrimination of geographical origin and species of China’s cattle bones based on multi-element analyses by inductively coupled plasma mass spectrometry. Food Chemistry, 356, Article 129619.

Zhang, Y., Wang, S., Ma, Y., Li, H., & Li, Y. (2020). Identification and absolute quantification of animal blood products by peptide markers using an UPLC-MS/MS method. European Food Research and Technology, 246(3), 581–589.