Supporting Information
© Wiley-VCH 2014
69451 Weinheim, Germany

Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications**
Oliver Welz, Arkke J. Eskola, Leonid Sheps, Brandon Rotavera, John D. Savee, Adam M. Scheer, David L. Osborn, Douglas Lowe, A. Murray Booth, Ping Xiao, M. Anwar H. Khan, Carl J. Percival,* Dudley E. Shallcross,* and Craig A. Taatjes*

anie_201400964_sm_miscellaneous_information.pdf
Supplementary information

Experimental and Modeling Details

Experiment. Pulsed-laser photolysis of a diiodoalkane precursor (CH₂I₂ or CH₂CHI₂) at 351 nm or 266 nm forms α-iodoalkyl radicals, which subsequently react with O₂ and form CIs. The HCOOH or CH₃COOH reactants are introduced from dilute premixes, whose concentration is calculated accounting for dimerization.¹ MPIMS experiments (298 K and 4 Torr) used the Sandia multiplexed chemical kinetics reactor, as in previous kinetics studies of CH₂OO² and CH₃CHOO³ reactions. The reacting mixture is analyzed using time-resolved photoionization mass spectrometry with vacuum ultraviolet (VUV) photoionization. The VUV source was either a H₂ discharge (principally Lyman-a (10.2 eV)) or beamline 9.0.2 of the Advanced Light Source providing tunable synchrotron radiation. Conformer-dependent kinetics of CH₃CHOO was probed at 9.35 eV and 10.5 eV: at 9.35 eV, only the anti-conformer is ionized, whereas at 10.5 eV signal is dominated by syn-CH₃CHOO.³

Direct UV absorption probing of CH₂OO reactions with HCOOH and CH₃COOH (298 K and 5 Torr) took place in a time-resolved broadband cavity-enhanced absorption spectrometer.⁴ The apparatus consists of an uncoated slow-flow quartz reactor, integrated into a broadband optical resonator cavity, operated over the 300 – 450 nm wavelength range. Here 266-nm photolysis was chosen to reduce scattered-laser interference in the probe spectral region. A Xe arc lamp provides continuous probe radiation, and the average effective path length of the pump-probe overlap region is ~50 m over the probe wavelength range. A custom-built spectrometer (2 nm resolution (FWHM)) acquires the complete temporal evolution (120 μs resolution) of the full absorption spectrum for each laser shot, averaged for 120 - 540 shots. Transient absorption is obtained from the difference between photolysis ON and photolysis OFF spectra.

Initial number densities (in cm⁻³) for the data in Figure 1 were [O₂] = 1.0 × 10¹⁶ and [CH₂I₂] = 1.7 × 10¹³, [CH₂OO] ~ 4 × 10¹¹ or [CH₃CHI₂] = 4.0 × 10¹³, [CH₃CHOO] ~ 1 × 10¹². Initial number densities (in cm⁻³) for the data in Figure 2 were: [CH₂I₂] = 3.2 × 10¹³, [CH₂OO] ~ 5 × 10¹¹, and [O₂] = 8.2 × 10¹⁵.

Model. The STOCHEM-CRI global atmospheric model has been described in detail elsewhere.⁵ In the integrations presented here, reactions between the CIs CH₂OO, CH₃CHOO and larger CIs (≥ C3) with organic acids have been included, although for simplicity only the HCOOH fields are presented. Results are calculated for a base case⁶ that treats CI reactions with acids as negligible (case 1) and two scenarios using the present rate coefficients and two assumptions for reactions of larger CIs: Case 2, \(k(\text{other CI} + \text{HCOOH}) = 1.1 \times 10^{-10} \text{ cm}^3 \text{s}^{-1} \); Case 3, \(k(\text{other CI} + \text{HCOOH}) = 2.5 \times 10^{-10} \text{ cm}^3 \text{s}^{-1} \) (see Table S1).
Table S1: Rate coefficients for CI reactions in the model scenarios

	Base scenario (case 1)	Case 2	Case 3
CI + H₂O	1×10^{-16} cm³ s⁻¹	1×10^{-16} cm³ s⁻¹	1×10^{-16} cm³ s⁻¹
CI unimolecular loss	150 s⁻¹	150 s⁻¹	150 s⁻¹
CH₂OO + acids	–	1.1×10^{-10} cm³ s⁻¹	1.1×10^{-10} cm³ s⁻¹
CH₃COO + acids	–	2.5×10^{-10} cm³ s⁻¹	2.5×10^{-10} cm³ s⁻¹
Other CI + acids	–	1.1×10^{-10} cm³ s⁻¹	2.5×10^{-10} cm³ s⁻¹
Table S2: Percentage loss rates for Criegee intermediates via reactions (7-9) using $k_8 = 100$ s$^{-1}$ and a variety of other assumed rate coefficients, at two temperatures and two [H$_2$O].

Temp./K	k / cm3 molecule$^{-1}$ s$^{-1}$	RH	[H$_2$O] cm3	[Acid] ppb	% loss rxn. 7	% loss rxn. 8	% loss rxn. 9
283	$k_7 = 1 \times 10^{-16}$ $k_9 = 1 \times 10^{-10}$	50%	1.57×10^{-1}	1	13.3	84.6	2.1
	$k_7 = 1 \times 10^{-17}$ $k_9 = 1 \times 10^{-10}$	50%	1.57×10^{-1}	1	1.5	96.1	2.4
	$k_7 = 1 \times 10^{-16}$ $k_9 = 1 \times 10^{-10}$	100%	3.14×10^{-1}	1	23.5	74.7	1.8
	$k_7 = 1 \times 10^{-17}$ $k_9 = 1 \times 10^{-10}$	100%	3.14×10^{-1}	1	3.0	94.7	2.3
298	$k_7 = 1 \times 10^{-16}$ $k_9 = 1 \times 10^{-10}$	50%	3.85×10^{-1}	1	27.3	70.9	1.8
	$k_7 = 1 \times 10^{-17}$ $k_9 = 1 \times 10^{-10}$	50%	3.85×10^{-1}	1	3.6	94.0	2.4
	$k_7 = 1 \times 10^{-16}$ $k_9 = 1 \times 10^{-10}$	100%	7.7×10^{-1}	1	42.9	55.7	1.4
	$k_7 = 1 \times 10^{-17}$ $k_9 = 1 \times 10^{-10}$	100%	7.7×10^{-1}	1	7.0	90.7	2.3
	$k_7 = 1 \times 10^{-16}$ $k_9 = 1 \times 10^{-10}$	100%	7.7×10^{-1}	10	40.6	52.8	6.6
	$k_7 = 1 \times 10^{-17}$ $k_9 = 5 \times 10^{-10}$	100%	7.7×10^{-1}	10	6.4	83.2	10.4

Table S3. A summary of the calculated vapor pressures for assumed products of CI reactions with organic acids. Vapor pressures were calculated using the Nannoolal et al.[6] vapor pressure estimation method. Vapor pressures above 4.0 Pa will not partition to the aerosol phase.[7]

R group (carbon chain length)	Adduct product from RCOOH + CH$_2$O	Adduct product from RCOOH + CH$_3$CHO	Ring opening product from RCOOH + CH$_2$O	Ring opening product from RCOOH + CH$_3$CHO
0	7170.0	5281.6	214.3	132.1
1	3639.1	2691.5	126.2	76.5
2	1067.4	815.0	39.5	24.1
3	321.6	252.9	12.5	7.7
4	99.2	80.1	4.0	2.5
5	31.2	25.8	1.3	0.8
6	10.0	8.4	0.4	0.3
7	3.2	2.8	0.1	0.1
Products of the CH$_2$OO + HCOOH reaction

The synchrotron photoionization spectra show product species that produce ions at $m/z = 31$ (CH$_3$O, appearance energy (AE) ~ 10.8 eV) and $m/z = 64$ (CH$_4$O$_2$, AE ~ 10.3 eV). These product signals were observed only when HCOOH was present. No product signal appears at the parent mass of a CH$_2$OO-HCOOH adduct ($m/z = 92$) or FAN ($m/z = 74$). Because the photoionization spectra of HPMF and FAN are unknown, the experiments do not necessarily rule out their formation, particularly if low-lying dissociative ionization channels exist. CBS-QB3 calculations8 using Gaussian099 place the adiabatic ionization energy (AIE) of HPMF at 10.22 eV. As this energy is lower than the AEs of the $m/z = 31$ and $m/z = 64$ signals, it is possible that the $m/z = 31$ and $m/z = 64$ cations arise from dissociative ionization of HPMF. The chemical formula of FAN (C$_2$H$_2$O$_3$) rules out formation of the $m/z = 31$ (CH$_3$O) and $m/z = 64$ (CH$_4$O$_3$) signals via dissociative ionization of FAN; no evidence of FAN formation is observed under the present conditions.

The calculated AIE of hydroperoxymethanol (HPM, HOOCH$_2$OH), another plausible product at $m/z = 64$, is 9.90 eV, lower than the 10.3 eV observed AE. However, the HPM cation has an elongated C–OOH bond (1.61 Å vs 1.40 Å in the neutral), which could cause the apparent onset to be higher than the calculated AIE. Moreover, the thermodynamic appearance energy is 10.76 eV for the CH$_2$OH fragment ion from HPM (corresponding to HO$_2$ loss), similar to the ~ 10.8 eV onset observed for the $m/z = 31$ product signal. As a consequence, the observed product spectrum is consistent with HPM product as well as with a stabilized CH$_2$OO-HCOOH adduct, possibly HPMF. Further analysis of the products from the CH$_2$OO + HCOOH reaction would require the photoionization spectra for parent and fragment ions of potential products, which is outside the scope of the present study.
Figure S1: Kinetics results from the MPIMS experiments for C.I. reactions with acetic acid. Dependence of the decay constant of CH\textsubscript{2}OO (black; taken with a H\textsubscript{2} discharge), anti-CH\textsubscript{3}CHOO (blue; taken using 9.35 eV synchrotron radiation), and syn-CH\textsubscript{3}CHOO (red; taken using 10.5 eV synchrotron radiation) on [CH\textsubscript{3}COOH]. The solid lines are fits to the experimental data. The slopes are the second order rate coefficients for the C.I. + acetic acid reactions. Error bars shown are the 1\textsigma uncertainties from the fits of the experimental time profiles. Initial number densities (in cm-3) were [O\textsubscript{2}] = 1.0 \times 1016 and [CH\textsubscript{2}I\textsubscript{2}] = 1.6 \times 1013, [CH\textsubscript{2}OO] \sim 4 \times 1011 or [CH\textsubscript{3}CHI\textsubscript{2}] = 3.0 \times 1013, [CH\textsubscript{3}CHOO] \sim 7 \times 1011.
Figure S2: Kinetics results from the UV absorption experiments for the CH$_2$OO + HCOOH reaction at 295 K and 5.1 Torr: Dependence of the decay constant of CH$_2$OO on [HCOOH] (dots). The solid line is a fit to the experimental data with the slope as the second order rate coefficient for the CH$_2$OO + CH$_3$COOH reaction. Error bars shown are 15% of the nominal value as estimated from repeated experiments at identical conditions. Initial number densities (in cm$^{-3}$) were: [CH$_2$I$_2$] = 3.2 × 1013, [CH$_2$OO] = 5 × 1011, and [O$_2$] = 8.6 × 1015.

$$k_{\text{fit}} = (1.10 \pm 0.14) \times 10^{-10} \text{cm}^3 \text{mole}^{-1} \text{s}^{-1}$$
Figure S3. Absolute modeled mixing ratios for formic acid under the three scenarios (Table S1).
Supplementary References

[1] A. Winkler, P. Hess, *J. Am. Chem. Soc.* 1994, **116**, 9233-9240.

[2] a) C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, E. P. F. Lee, J. M. Dyke, D. W. K. Mok, D. E. Shallcross, C. J. Percival, *Phys. Chem. Chem. Phys.* **2012**; b) O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, C. A. Taatjes, *Science* **2012**, 335, 204-207.

[3] C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn, C. J. Percival, *Science* **2013**, 340, 171-180.

[4] a) L. Sheps, *J. Phys. Chem. Lett.* 2013, 4201-4205; b) L. Sheps, D. W. Chandler, Sandia National Laboratories, 2013, p. 26.

[5] a) A. T. Archibald, M. C. Cooke, S. R. Utembe, D. E. Shallcross, R. G. Derwent, M. E. Jenkin, *Atmos. Chem. Phys.* **2010**, **10**, 8097-8118; b) C. Percival, O. Welz, A. J. Eskola, J. D. Savee, D. L. Osborn, D. O. Topping, D. Lowe, S. Utembe, A. Bacak, G. McFiggans, M. Cooke, A. T. Archibald, M. Jenkin, R. G. Derwent, I. Riipinen, D. Mok, E. P. F. Lee, J. Dyke, C. A. Taatjes, D. E. Shallcross, *Faraday Discuss.* **2013**, **165**, 45-73; c) S. R. Utembe, M.C.Cooke, A. T. Archibald, M. E. Jenkin, R. G. Derwent, D. E. Shallcross, *Atmos. Environ.* **2010**, **44**, 1609-1622.

[6] a) Y. Nannoolal, J. Rarey, D. Ramjugernath, *Fluid Phase Equilib.* **2008**, **269**, 117-133; b) Y. Nannoolal, J. Rarey, D. Ramjugernath, W. Cordes, *Fluid Phase Equilib.* **2004**, 226, 45-63.

[7] a) M. H. Barley, G. McFiggans, *Atmos. Chem. Phys.* **2010**, **10**, 749-767; b) A. M. Booth, M. H. Barley, D. O. Topping, G. Mcfiggans, A. Garforth, C. J. Percival, *Atmos. Chem. Phys.* **2010**, **10**, 4879-4892.

[8] a) J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, *J. Chem. Phys.* **1999**, **110**, 2822-2827; b) J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson, *J. Chem. Phys.* **2000**, **112**, 6532-6542.

[9] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Revision A.1 ed., Gaussian, Inc, Wallingford CT, 2009.