Supporting Information

Ruthenium Pincer Complex-Catalyzed Heterocyclic
Compatible Alkoxycarbonylation of Alkyl Iodides: Substrate
Keep the Catalyst Active

Han-Jun Ai,a Yang Yuan,a and Xiao-Feng Wu*a,b

a.Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany, E-mail: xiao-feng.Wu@catalysis.de
b.Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China. E-mail: xwu2020@dicp.ac.cn

Table of Contents

1. General Remarks .. 1
2. Additional Optimization Information ... 2
3. Preparation of Substrates .. 3
4. General Procedure of the Alkoxycarbonylation .. 5
5. Mechanism Studies .. 6
 5.1 Control experiments .. 6
 5.2 Radical capture, inhibition, and clock experiments ... 9
6. Characterization of the Products .. 14
7. The NMR Spectrum ... 34
1. General Remarks

Reagents and solvents: Unless otherwise noted, the chemicals were commercially available from *Sigma-Aldrich, Strem, TCI* or *Alfa Aesar* and were used without further purification. Solvents (anhydrous and under inert atmosphere) were collected from the solvent purification system by M BRAUN and used under standard Schlenk technique.

Purification: The products were isolated from the reaction mixture by column chromatography on silica gel 60, 0.063-0.2 mm, 70-230 mesh (Merck). Gradient flash chromatography was conducted eluting with PE/EA, PE refers to pentane and EA refers to ethyl acetate, they were listed as volume/volume ratios.

Data collection: GC-yields were calculated using hexadecane as internal standard. GC analysis was performed on an Agilent HP-7890A instrument with FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d., 0.25 μm film thickness) using argon as carrier gas. Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). The data are given as mass units per charge (m/z). NMR spectra were recorded on Bruker Avance 300 and Bruker ARX 400 spectrometers. Multiplets were assigned as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet) and br. s (broad singlet). Chemical shifts (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.00 ppm (¹³C NMR). All measurements were carried out at room temperature unless otherwise stated.

NOTE: Carbon monoxide should only be handled in a well-ventilated fume hood. The laboratory should be well-equipped with a CO detector and alarm system.
2. Additional Optimization Information

![Chemical Reaction](image.png)

Entry^a	[Ru]	Ligand	Yield [%]^b
1	[RuCl₂(cymene)]₂	-	5
2	[RuCl₂(cymene)]₂	Xantphos	16
3	[RuCl₂(cymene)]₂	DPEphos	19
4	[RuCl₂(cymene)]₂	PPh₃	11
5	[RuCl₂(cymene)]₂	DPPE	20
6	[RuCl₂(cymene)]₂	DPPD	17
7	[RuCl₂(cymene)]₂	DPPP	20

[a] Reaction conditions: 1 (0.2 mmol), 2 (0.6 mmol), [Ru] (2.5 mol%), ligand (5 mol%), Cs₂CO₃ (0.6 mmol), toluene (0.5 mL), CO (10 bar), 100 ℃, 12 h. [b] Determined by GC with hexadecane as internal standard.
3. Preparation of Substrates

General Procedure A:

A round-bottom flask containing a stirring bar was charged with PPh₃ (2.2 equiv) and DCM (0.2 M). Iodine (2.25 equiv) was slowly added under N₂. The mixture was stirred for 10 min at room temperature. Imidazole (3.5 equiv) was then added to the solution and the mixture was allowed to stir for another 10 min. Then, the alcohol (1 equiv) was added to the suspension dropwise and the reaction was stirred at room temperature. The reaction could be tracked by TLC. After the reaction was completed (about 1 hour), the reaction mixture was quenched with the saturated aqueous solution of Na₂SO₃ (0.2 M). The aqueous and organic layers were separated, and the aqueous layer was extracted with DCM three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuum. The resulting crude product was purified by flash column chromatography on silica gel to give the desired product.

General Procedure B:

A round-bottom flask containing a stirring bar was charged with the alcohol (1 equiv), 1,6-dibromopropane (8.0 equiv), and CH₃CN (0.3 M). Then K₂CO₃ (9.0 mmol, 3.0 equiv) was added. The reaction mixture was stirred and refluxed for 24 h. After the reaction was completed, the reaction mixture was filtered under reduced pressure and concentrated by rotary evaporator. The crude product was purified by flash column chromatography on silica gel to give the desired intermediate (the alkyl bromide).

The alkyl bromide (1 equiv) and NaI (4.0 equiv) were dissolved in acetone (0.25 M) and then refluxed overnight. After the reaction was completed, the reaction mixture was quenched with saturated aqueous solution of Na₂SO₃ (0.2 M). The aqueous and organic layers were separated, and the aqueous layer was extracted with DCM three times. The combined organic layers were washed with brine and dried over Na₂SO₄, filtered, and concentrated in vacuum.
The crude residue was purified by flash column chromatography on silica gel to give the desired product.

The following substrates could be simply synthesized and purified by *General Procedure A* and *B*.

from General Procedure A

from General Procedure B
4. *General Procedure of the Alkoxy carbonylation*

In a glovebox, an oven-dried vial (4 mL) containing a stirring bar was charged with **Ru-7** (0.005 mmol, 2.4 mg), Cs$_2$CO$_3$ (0.6 mmol, 195.5 mg), alkyl iodide (0.2 mmol, if it is solid), and alcohol (0.6 mmol, if it is solid). The vial was then sealed with a PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and removed from the glovebox. Then, alkyl iodide (0.2 mmol, if it is liquid), and alcohol (0.6 mmol, if it is liquid), and toluene (0.5 mL) were added by syringe. The vial was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments. After flushing the autoclave three times with CO, a pressure of 10 bar of CO was adjusted at ambient temperature. Then, the mixture was stirred for 12 h at 90 °C. After the reaction was complete, the autoclave was cooled down to room temperature and the pressure was released carefully. The product was purified by column chromatography on silica gel (pentane/EA), with KMnO$_4$ solution or ethanol solution of 12MoO$_7$H$_3$PO$_4$ as the color rendering agent for TLC, to deliver the desired product.
5. Mechanism Studies

5.1 Control experiments

In a glovebox, an oven-dried vial (4 mL) containing a stirring bar was charged with Ru-7 (0.005 mmol, 2.4 mg), Cs₂CO₃ (0.6 mmol, 195.5 mg), 1 (0.2 mmol, 49 mg). The vial was then sealed with a PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and removed from the glovebox. Then, toluene (0.5 mL) was added by syringe. The vial was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments. After flushing the autoclave three times with CO, a pressure of 10 bar of CO was adjusted at ambient temperature. Then, the mixture was stirred for 12 h at 90 °C. After the reaction was complete, the autoclave was cooled down to room temperature and the pressure was released carefully. A proper amount of solution was taken for GC and GC-MS analysis. The product was purified by column chromatography on silica gel (pentane/EtOH), with KMnO₄ solution or ethanol solution of 12MoO₃·H₃PO₄ as the color rendering agent for TLC, to deliver the desired product. The result is shown above. The characterization and NMR spectrum of byproduct 2 are given:

\[\begin{align*}
\text{byproduct 2} & \\
\end{align*}\]

^1H NMR (300 MHz, CDCl₃) δ 7.27 – 7.15 (m, 4H), 7.17 – 7.06 (m, 6H), 4.02 (t, J = 6.5 Hz, 2H), 2.60 (q, J = 7.5 Hz, 4H), 2.26 (t, J = 7.5 Hz, 2H), 1.97 – 1.79 (m, 4H).

^13C NMR (75 MHz, CDCl₃) δ 173.5, 141.4, 141.2, 128.5, 128.4, 128.4, 126.0, 126.0, 63.7, 35.1, 33.6, 32.2, 30.2, 26.5.
1H NMR (300 MHz, CDCl$_3$)

13C NMR (75 MHz, CDCl$_3$)

byproduct 2
In a glovebox, an oven-dried vial (4 mL) containing a stirring bar was charged with **Ru-7** (0.005 mmol, 2.4 mg), Cs₂CO₃ (0.6 mmol, 195.5 mg), 1 (0.2 mmol, 49 mg). The vial was then sealed with a PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and removed from the glovebox. Then, toluene (0.5 mL) was added by syringe. The vial was placed in an alloy plate, which was transferred into a 300 mL autoclave of the 4560 series from Parr Instruments. After flushing the autoclave three times with CO, a pressure of 10 bar of CO was adjusted at ambient temperature. Then, the mixture was stirred for 12 h at 90 ℃. After the reaction was complete, the autoclave was cooled down to room temperature and the pressure was released carefully. Then 10 µL of hexadecane was added as internal standard and a proper amount of solution was taken after it was well mixed for GC analysis. The result is shown above.
5.2 Radical capture, inhibition, and clock experiments

A Radical capture experiments

\[
\begin{align*}
\text{Ph} & \quad \text{I} \\
& \quad \text{w/o Ru-7} \\
& \quad \text{w/ TEMPO (2 eq.)} \\
& \quad \text{Standard Conditions} \\
& \quad \text{with CO} \\
& \quad \text{PrOH} \\
& \quad \text{w/ TEMPO (2 eq.)} \\
& \quad \text{100% Conv.} \\
\text{Ph} & \quad \text{O} \\
& \quad \text{62, n.d.} \\
\text{Ph} & \quad \text{O} \\
& \quad \text{62, 91%} \\
\text{Ph} & \quad \text{O} \\
& \quad \text{Pr} \\
& \quad \text{62, 42%}
\end{align*}
\]

B Radical inhibition experiments

\[
\begin{align*}
\text{Ph} & \quad \text{I} \\
& \quad \text{w/ TEMPO (2 eq.)} \\
& \quad \text{w/o PrOH} \\
\text{Ph} & \quad \text{O} \\
& \quad \text{Pr} \\
& \quad \text{w/ BHT (1 eq.), 49%} \\
& \quad \text{w/ BHT (2 eq.), 37%} \\
& \quad \text{w/ BHT (3 eq.), 26%}
\end{align*}
\]

C Radical clock experiments

\[
\begin{align*}
\text{Ph} & \quad \text{O} \\
& \quad \text{CY} \\
& \quad \text{62, 55%} \\
\text{Ph} & \quad \text{O} \\
& \quad \text{CY} \\
& \quad \text{65, 80%} \\
\text{Ph} & \quad \text{O} \\
& \quad \text{CY} \\
& \quad \text{66, n.d.}
\end{align*}
\]

The above reactions were conducted according to the General Procedure of the Alkoxycarbonylation, the result was shown above. The characterization and NMR spectrum of 62, 64, 65 are given:

\[
\begin{align*}
\text{Ph} & \quad \text{O} \\
& \quad \text{N}
\end{align*}
\]

\[
\begin{align*}
^1\text{H NMR (300 MHz, CDCl}_3\text{)} & \quad \delta 7.35 – 7.24 (m, 2H), 7.27 – 7.13 (m, 3H), 3.80 (t, J = 6.5 Hz, 2H), 2.78 – 2.67 (m, 2H), 1.96 – 1.80 (m, 2H), 1.54 – 1.29 (m, 6H), 1.16 (s, 6H), 1.14 (s, 6H).
^1\text{C NMR (75 MHz, CDCl}_3\text{)} & \quad \delta 142.4, 128.3, 128.2, 125.6, 76.1, 59.6, 39.6, 33.0, 32.7, 30.5, 20.1, 17.1.
\end{align*}
\]
1H NMR (300 MHz, CDCl$_3$) δ 5.93 – 5.73 (m, 1H), 5.15 – 4.89 (m, 2H), 4.11 (t, J = 6.9 Hz, 2H), 2.46 – 2.32 (m, 4H), 1.75 – 1.62 (m, 5H), 1.51 (q, J = 6.8 Hz, 2H), 1.42 – 1.13 (m, 4H), 1.01 – 0.84 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.2, 136.8, 115.4, 62.7, 36.0, 34.5, 33.6, 33.1, 28.9, 26.5, 26.2.

HRMS (ESI-TOF): m/z calcd. for C$_{13}$H$_{22}$O$_2$H$^+$ ([M+H$^+$]) 211.1698, found 211.1697.

1H NMR (300 MHz, CDCl$_3$) δ 4.09 (t, J = 6.9 Hz, 2H), 2.33 – 2.13 (m, 3H), 1.86 – 1.44 (m, 13H), 1.40 – 1.08 (m, 6H), 1.00 – 0.81 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.5, 62.4, 40.5, 36.5, 36.0, 34.5, 33.1, 32.4, 26.5, 26.2, 25.0.
6. Characterization of the Products

Isopropyl 4-phenylbutanoate (3) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (33.8 mg, 82% yield).

1H NMR (400 MHz, CDCl$_3$) δ 7.33 - 7.25 (m, 2H), 7.24 - 7.15 (m, 3H), 5.02 (hept, $J = 6.3$ Hz, 1H), 2.69 - 2.61 (m, 2H), 2.30 (t, $J = 7.5$ Hz, 2H), 2.01 - 1.88 (m, 2H), 1.24 (s, 3H), 1.23 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 173.1, 141.5, 128.5, 128.4, 126.0, 67.5, 35.2, 34.1, 26.7, 21.9.

HRMS (ESI-TOF): m/z calcd. for C$_{13}$H$_{18}$O$_2$Na$^+$ ([M+Na$^+$]) 229.1204, found 229.1207.

Methyl 4-phenylbutanoate (4) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (29.9 mg, 84% yield).

1H NMR (400 MHz, CDCl$_3$) δ 7.29 (m, 2H), 7.24 - 7.15 (m, 3H), 3.67 (s, 3H), 2.66 (t, 2H), 1.97 (p, $J = 7.6$ Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 173.9, 141.3, 128.5, 128.4, 126.0, 51.5, 35.1, 33.4, 26.4.

HRMS (ESI-TOF): m/z calcd. for C$_{11}$H$_{14}$O$_2$Na$^+$ ([M+Na$^+$]) 201.0891, found 201.0896.

Ethyl 4-phenylbutanoate (5) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (31.1 mg, 81% yield).

1H NMR (400 MHz, CDCl$_3$) δ 7.29 (dd, $J = 8.0$, 6.6 Hz, 2H), 7.24 - 7.16 (m, 3H), 4.13 (q, $J = 7.2$ Hz, 2H), 2.66 (t, 2H), 2.33 (t, $J = 7.5$ Hz, 2H), 2.03 - 1.91 (m, 2H), 1.26 (t, $J = 7.1$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 173.5, 141.4, 128.5, 128.3, 125.9, 60.2, 35.1, 33.6, 26.5, 14.2.

HRMS (EI): m/z calcd. for C$_{12}$H$_{16}$O$_2$• ([M+•]) 192.11448, found 192.11380.

Octyl 4-phenylbutanoate (6) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (50 mg, 91% yield).
1H NMR (400 MHz, CDCl$_3$) δ 7.29 (dd, $J = 8.1$, 6.5 Hz, 2H), 7.24 - 7.16 (m, 3H), 4.07 (t, $J = 6.7$ Hz, 2H), 2.72 - 2.62 (m, 2H), 2.33 (t, $J = 7.5$ Hz, 2H), 1.97 (p, $J = 7.5$ Hz, 2H), 1.71 - 1.57 (m, 2H), 1.42 - 1.24 (m, 10H), 0.89 (t, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 173.6, 141.4, 128.4, 128.3, 125.9, 64.5, 35.1, 33.6, 31.7, 29.2, 29.1, 28.6, 26.5, 25.9, 22.6, 14.0.

HRMS (ESI-TOF): m/z calcd. for C$_{18}$H$_{28}$O$_2$Na$^+$ ([M+Na$^+$]) 299.1986, found 299.1993.

2-Cyclohexylethyl 4-phenylbutanoate (7) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (45 mg, 82% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.33 - 7.22 (m, 2H), 7.24 - 7.13 (m, 3H), 4.09 (t, $J = 6.9$ Hz, 2H), 2.70 - 2.59 (t, 2H), 2.31 (t, $J = 7.4$ Hz, 2H), 2.06 - 1.86 (m, 2H), 1.75 - 1.60 (m, 5H), 1.51 (q, $J = 6.9$ Hz, 2H), 1.41 - 1.08 (m, 4H), 1.01 - 0.82 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.6, 141.4, 128.5, 128.3, 125.9, 62.6, 36.0, 35.1, 34.5, 33.7, 33.1, 26.5, 26.5, 26.2.

HRMS (ESI-TOF): m/z calcd. for C$_{18}$H$_{26}$O$_2$Na$^+$ ([M+Na$^+$]) 297.1830, found 297.1835.

3-Methoxypropyl 4-phenylbutanoate (8) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (38.5 mg, 82% yield).

1H NMR (400 MHz, CDCl$_3$) δ 7.33 - 7.24 (m, 2H), 7.23 - 7.15 (m, 3H), 4.16 (t, $J = 6.5$ Hz, 2H), 3.44 (t, $J = 6.3$ Hz, 2H), 3.33 (s, 3H), 2.66 (t, 2H), 2.33 (t, $J = 7.5$ Hz, 2H), 2.02 - 1.86 (m, 4H).

13C NMR (101 MHz, CDCl$_3$) δ 173.4, 141.4, 128.4, 128.3, 125.9, 69.1, 61.5, 58.6, 35.1, 33.6, 28.9, 26.5.

HRMS (ESI-TOF): m/z calcd. for C$_{14}$H$_{26}$O$_3$Na$^+$ ([M+Na$^+$]) 259.1310, found 259.1312.
(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl 4-phenylbutanoate (9) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 20:1) to afford the title compound as a colorless oil (46 mg, 83% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.37 - 7.25 (m, 2H), 7.31 - 7.14 (m, 3H), 4.40 - 4.26 (m, 1H), 4.26 - 4.04 (m, 3H), 3.75 (dd, J = 8.5, 6.1 Hz, 1H), 2.68 (t, 2H), 2.40 (t, J = 7.6 Hz, 2H), 2.07 - 1.91 (m, 2H), 1.45 (s, 3H), 1.39 (s, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 173.2, 141.2, 128.4, 128.3, 126.0, 109.8, 73.6, 66.3, 64.6, 35.0, 33.3, 26.6, 26.4, 25.3.

HRMS (ESI-TOF): m/z calcld. for C$_{16}$H$_{22}$O$_4$Na$^+$ ([M+Na$^+$]) 301.1415, found 301.1416.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl 4-phenylbutanoate (10) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (47 mg, 78% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.47 - 7.38 (m, 2H), 7.38 - 7.27 (m, 4H), 7.29 - 7.17 (m, 4H), 4.27 (t, J = 6.9 Hz, 2H), 3.17 (t, J = 6.9 Hz, 2H), 2.68 (t, 2H), 2.33 (t, J = 7.5 Hz, 2H), 2.08 - 1.89 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.2, 141.3, 135.1, 129.8, 129.0, 128.5, 128.3, 126.5, 126.0, 62.9, 62.8, 35.0, 33.4, 32.4, 26.3.

HRMS (ESI-TOF): m/z calcld. for C$_{18}$H$_{20}$O$_2$SNa$^+$ ([M+Na$^+$]) 323.1081, found 323.1086.

But-3-en-1-yl 4-phenylbutanoate (11) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (21.8 mg, 50% yield).

1H NMR (400 MHz, CDCl$_3$) δ 7.33 - 7.25 (m, 2H), 7.24 - 7.15 (m, 3H), 5.79 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.18 - 5.03 (m, 1H), 4.13 (t, J = 6.7 Hz, 2H), 2.70 - 2.61 (m, 2H), 2.39 (qt, J = 6.8, 1.4 Hz, 2H), 2.33 (t, J = 7.4 Hz, 2H), 1.96 (p, J = 7.5 Hz, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 173.5, 141.4, 134.1, 128.5, 128.4, 126.0, 117.2, 63.4, 35.1, 33.6, 33.1, 26.5.

HRMS (ESI-TOF): m/z calcld. for C$_{14}$H$_{10}$O$_2$H$^+$ ([M+H$^+$]) 219.1385, found 219.1389.
5-Chloropentyl 4-phenylbutanoate (12) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (48 mg, 90% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.27 - 7.15 (m, 2H), 7.17 - 7.06 (m, 2H), 4.00 (t, J = 6.5 Hz, 2H), 3.46 (t, J = 6.6 Hz, 2H), 2.58 (t, 2H), 2.25 (t, J = 7.5 Hz, 2H), 1.97 - 1.81 (m, 2H), 1.81 - 1.66 (m, 2H), 1.66 - 1.51 (m, 2H), 1.51 - 1.32 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.5, 141.4, 128.5, 128.4, 126.0, 64.0, 44.7, 35.1, 33.6, 32.1, 27.9, 26.5, 23.3.

HRMS (ESI-TOF): m/z calcd. for C$_{15}$H$_{21}$O$_2$ClNa$^+$ ([M+Na$^+$]) 291.1127, found 291.1135.

2-(Trimethylsilyl)ethyl 4-phenylbutanoate (13) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (43 mg, 81% yield).

1H NMR (400 MHz, CDCl$_3$) δ 7.33 - 7.25 (m, 2H), 7.24 - 7.15 (m, 3H), 4.21 - 4.10 (m, 2H), 2.70 - 2.62 (m, 2H), 2.32 (t, J = 7.5 Hz, 2H), 2.03 - 1.90 (m, 2H), 1.06 - 0.94 (m, 2H), 0.05 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 173.6, 141.4, 128.5, 128.3, 125.9, 62.4, 35.1, 33.8, 26.5, 17.3, -1.5.

HRMS (ESI-TOF): m/z calcd. for C$_{15}$H$_{31}$SiO$_2$Na$^+$ ([M+Na$^+$]) 287.1443, found 287.1437.

Benzyl 4-phenylbutanoate (14) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (44 mg, 87% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.31 - 7.25 (m, 4H), 7.23 - 7.15 (m, 2H), 7.16 - 7.04 (m, 4H), 5.04 (s, 2H), 2.63 - 2.52 (m, 2H), 2.31 (t, J = 7.5 Hz, 2H), 1.92 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.3, 141.3, 136.0, 128.5, 128.5, 128.4, 128.2, 126.0, 66.1, 35.1, 33.6, 26.5.

HRMS (ESI-TOF): m/z calcd. for C$_{17}$H$_{18}$O$_2$Na$^+$ ([M+Na$^+$]) 277.1204, found 277.1207.
2-((3-Methoxyphenyl)dimethylsilyl)benzyl 4-phenylbutanoate (15) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a colorless oil (66.9 mg, 80% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.63 (d, J = 6.5 Hz, 1H), 7.52 - 7.39 (m, 3H), 7.36 - 7.28 (m, 3H), 7.27 - 7.16 (m, 3H), 7.12 - 7.04 (m, 2H), 7.01 - 6.88 (m, 1H), 5.07 (s, 2H), 3.82 (s, 3H), 2.65 (t, 2H), 2.27 (t, 2H), 1.95 (t, 2H), 0.66 (d, J = 0.6 Hz, 6H).

13C NMR (75 MHz, CDCl$_3$) δ 173.0, 159.0, 141.4, 141.3, 140.1, 137.0, 129.8, 129.4, 129.1, 128.4, 128.3, 127.6, 126.2, 125.9, 119.6, 114.2, 66.4, 55.0, 35.1, 33.4, 26.3, -1.1.

HRMS (ESI-TOF): m/z calcd. for C$_{26}$H$_{30}$O$_3$SiNa$^+$ ([M+Na$^+$]) 441.1861, found 441.1866.

1,2,3,4-Tetrahydronaphthalen-1-yl-4-phenylbutanoate (16) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (41.2 mg, 70% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.29 - 7.03 (m, 9H), 5.98 (t, J = 4.3 Hz, 1H), 2.90 - 2.67 (m, 2H), 2.65 - 2.54 (m, 2H), 2.31 (t, J = 7.5 Hz, 2H), 2.00 - 1.70 (m, 6H).

13C NMR (75 MHz, CDCl$_3$) δ 173.1, 160.7, 141.4, 137.9, 134.6, 129.4, 129.1, 128.5, 128.3, 128.0, 126.0, 125.9, 69.8, 35.1, 34.1, 29.1, 28.9, 26.7, 18.8.

HRMS (ESI-TOF): m/z calcd. for C$_{20}$H$_{22}$O$_2$Na$^+$ ([M+Na$^+$]) 317.1517, found 317.1525.

Cyclopropyl(phenyl)methyl 4-phenylbutanoate (17) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (51.2 mg, 87% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.33 - 7.16 (m, 7H), 7.14 - 7.04 (m, 3H), 5.17 (d, J = 8.7 Hz, 2H), 2.61 - 2.50 (m, 2H), 2.30 (td, J = 7.4, 2.5 Hz, 2H), 1.96 - 1.80 (m, 2H), 1.34 - 1.15 (m, 1H), 0.61 - 0.39 (m, 3H), 0.38 - 0.25 (m, 1H).
13C NMR (75 MHz, CDCl3) δ 172.8, 141.5, 140.5, 128.5, 128.4, 127.9, 126.6, 126.0, 79.6, 35.1, 34.0, 26.7, 16.6, 4.1, 3.1.

HRMS (ESI-TOF): m/z calcd. for C20H22O2Na+ ([M+Na+]) 317.1517, found 317.1513.

1-(4-(tert-Butyl)phenyl)cyclobutyl 4-phenylbutanoate (18) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (22 mg, 31% yield).

1H NMR (300 MHz, CDCl3) δ 7.37 - 7.23 (m, 4H), 7.24 - 7.14 (m, 2H), 7.15 - 7.00 (m, 3H), 2.68 - 2.42 (m, 6H), 2.18 (t, 2H), 1.94 - 1.58 (m, 4H), 1.23 (s, 9H).

13C NMR (75 MHz, CDCl3) δ 172.0, 150.0, 141.5, 139.5, 128.5, 128.4, 125.9, 125.4, 125.1, 82.1, 35.0, 34.9, 34.5, 34.2, 31.4, 26.5, 14.3.

HRMS (ESI-TOF): m/z calcd. for C24H30O2Na+ ([M+Na+]) 373.2143, found 373.2142.

Phenyl 4-phenylbutanoate (20) and (3-phenoxypropyl)benzene (20’) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compounds as colorless oil (43 mg, 29% and 68% yield respectively).

1H NMR (300 MHz, CDCl3) mixture of 20 and 20’, see the NMR Spectrum.

13C NMR (75 MHz, CDCl3) mixture of 20 and 20’, see the NMR Spectrum.

4-Acetamidobenzyl cyclopentanecarboxylate (21) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 3:1) to afford the title compound as a colorless oil (25 mg, 48% yield).

1H NMR (300 MHz, CDCl3) δ 7.49 (d, J = 8.5 Hz, 2H), 7.38 (s, 1H), 7.30 (d, J = 8.4 Hz, 2H), 5.06 (s, 2H), 2.85 - 2.68 (m, 1H), 2.17 (s, 3H), 2.00 - 1.47 (m, 8H).

13C NMR (75 MHz, CDCl3) δ 176.6, 168.4, 137.7, 132.2, 128.9, 119.8, 65.6, 43.8, 30.0, 25.8, 24.6.

HRMS (ESI-TOF): m/z calcd. for C15H19NO3Na+ ([M+Na+]) 284.1262, found 284.1257.
Ethane-1,2-diyl dicyclopentanecarboxylate (22) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (21 mg, 83\% yield).

\(^1H \) NMR (300 MHz, CDCl\(_3\)) \(\delta \) 4.27 (s, 4H), 2.82 - 2.66 (m, 2H), 1.97 - 1.51 (m, 16H).

\(^13C \) NMR (75 MHz, CDCl\(_3\)) \(\delta \) 176.5, 62.0, 43.7, 29.9, 25.8.

HRMS (ESI-TOF): \(m/z \) calcd. for C\(_{14}\)H\(_{22}\)O\(_4\)Na\(^+\) ([M+Na\(^+\)]\(^+)\) 277.1415, found 277.1414.

(2,3-Dihydrothieno[3,4-b][1,4]dioxin-5-yl)methyl 4-phenylbutanoate (23) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a light-yellow oil (28 mg, 44\% yield).

\(^1H \) NMR (300 MHz, CDCl\(_3\)) \(\delta \) 7.33 - 7.22 (m, 2H), 7.23 - 7.12 (m, 3H), 6.34 (s, 1H), 5.12 (s, 2H), 4.27 - 4.14 (m, 4H), 2.64 (t, 2H), 2.35 (t, \(J = 7.4 \) Hz, 2H), 2.04 - 1.88 (m, 2H).

\(^13C \) NMR (75 MHz, CDCl\(_3\)) \(\delta \) 173.4, 141.4, 141.2, 140.6, 128.5, 128.4, 126.0, 110.9, 100.1, 64.8, 64.5, 56.7, 35.1, 33.6, 26.5.

HRMS (ESI-TOF): \(m/z \) calcd. for C\(_{17}\)H\(_{18}\)O\(_4\)SNa\(^+\) ([M+Na\(^+\)]\(^+)\) 341.0823, found 341.0831.

2-Morpholino-5-(trifluoromethyl)benzyl 4-phenylbutanoate (24) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a light-yellow oil (67 mg, 82\% yield).

\(\delta \) 7.68 (s, 1H), 7.60 (dd, \(J = 8.5, 1.6 \) Hz, 1H), 7.37 - 7.25 (m, 2H), 7.26 - 7.17 (m, 4H), 5.27 (s, 2H), 3.94 - 3.81 (m, 4H), 3.03 - 2.93 (m, 4H), 2.70 (t, 2H), 2.45 (t, \(J = 7.4 \) Hz, 2H), 2.05 (q, \(J = 7.7 \) Hz, 2H).

\(^13C \) NMR (75 MHz, CDCl\(_3\)) \(\delta \) 173.2, 154.2, 141.1, 131.4, 128.4, 128.4, 126.0 (q, \(J = 3.8 \) Hz), 126.1, 125.7, 124.1 (q, \(J = 269.3 \) Hz), 120.1, 119.8, 77.4, 77.0, 76.6, 67.1, 61.5, 52.9, 35.0, 33.5, 26.4.

\(^19F \) NMR (282 MHz, CDCl\(_3\)) \(\delta \) -62.0.

HRMS (ESI-TOF): \(m/z \) calcd. for C\(_{22}\)H\(_{24}\)F\(_3\)NO\(_2\)H\(^+\) ([M+H\(^+\)]\(^+)\) 408.1786, found 408.1780.
2-(1H-Indol-3-yl)ethyl 14-phenylbutanoate (25) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 5:1) to afford the title compound as a light-yellow oil (25.2 mg, 41% yield).

1H NMR (300 MHz, CDCl₃) δ 7.92 (s, 1H), 7.60 - 7.51 (m, 1H), 7.32 - 7.22 (m, 1H), 7.25 - 7.10 (m, 2H), 7.15 - 6.99 (m, 5H), 6.94 (d, J = 2.4 Hz, 1H), 4.28 (t, J = 7.2 Hz, 2H), 3.02 (td, J = 7.2, 0.9 Hz, 2H), 2.67 - 2.44 (m, 2H), 2.25 (t, J = 7.5 Hz, 2H), 1.95 - 1.76 (m, 2H).

13C NMR (75 MHz, CDCl₃) δ 173.5, 141.4, 136.2, 128.5, 128.3, 127.4, 125.9, 122.1, 122.0, 119.4, 118.8, 112.1, 111.1, 64.4, 35.1, 33.7, 26.5, 24.8.

HRMS (ESI-TOF): m/z calcd. for C₂₀H₂₁N₂O₂Na⁺ ([M+Na⁺]) 330.1469, found 330.1467.

2-(1H-Indol-3-yl)ethyl cyclopentanecarboxylate (26) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 5:1) to afford the title compound as a yellow oil (24 mg, 47% yield).

1H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.66 (dd, J = 7.9, 0.7 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.25 - 7.17 (m, 1H), 7.19 - 7.10 (m, 1H), 7.04 (d, J = 2.4 Hz, 1H), 4.37 (t, J = 7.2 Hz, 2H), 3.11 (t, J = 7.2 Hz, 2H), 2.83 - 2.69 (m, 1H), 1.96 - 1.67 (m, 6H), 1.64 - 1.54 (m, 2H).

13C NMR (101 MHz, CDCl₃) δ 176.9, 136.1, 127.4, 122.0, 119.3, 118.8, 112.1, 111.1, 64.4, 43.9, 30.0, 25.8, 24.8.

HRMS (ESI-TOF): m/z calcd. for C₁₆H₁₉N₂O₂Na⁺ ([M+Na⁺]) 280.1319, found 280.1319.

(3-(1H-Pyrrol-1-yl)thiophen-2-yl)methyl cyclopentanecarboxylate (27) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 20:1) to afford the title compound as a light-yellow oil (49 mg, 89% yield).

1H NMR (300 MHz, CDCl₃) δ 7.34 (d, J = 5.3 Hz, 1H), 7.03 (d, J = 5.3 Hz, 1H), 6.93 (t, J = 2.0 Hz, 2H), 6.33 (t, J = 2.0 Hz, 2H), 5.18 (s, 2H), 2.87 - 2.71 (m, 1H), 2.02 - 1.49 (m, 8H).

13C NMR (75 MHz, CDCl₃) δ 176.3, 139.1, 126.3, 125.8, 124.4, 121.8, 109.6, 57.6, 43.6, 29.9, 25.8.

HRMS (ESI-TOF): m/z calcd. for C₁₅H₁₇NO₂SNa⁺ ([M+Na⁺]) 298.0877, found 298.0873.
Pyridin-3-ylmethyl cyclopentanecarboxylate (28) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 3:1) to afford the title compound as a light-yellow oil (37 mg, 90% yield).

^1H NMR (300 MHz, CDCl₃) δ 8.60 - 8.43 (m, 2H), 7.62 (dt, J = 7.8, 1.9 Hz, 1H), 7.31 - 7.15 (m, 1H), 5.06 (s, 2H), 2.71 (m, 1H), 1.93 - 1.39 (m, 8H).

^13C NMR (75 MHz, CDCl₃) δ 176.3, 149.3, 135.8, 131.9, 123.4, 63.4, 43.6, 29.9, 25.7.

HRMS (ESI-TOF): m/z calcd. for C_{12}H_{15}NO_2 (M+H^+) 206.1181, found 206.1183.

3-(Pyrimidin-5-yl)benzyl cyclopentanecarboxylate (29) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a light-yellow oil (46 mg, 82% yield).

^1H NMR (300 MHz, CDCl₃) δ 9.20 (s, 1H), 8.94 (s, 2H), 7.58 - 7.39 (m, 4H), 5.19 (s, 2H), 2.80 (p, J = 7.9 Hz, 1H), 2.00 - 1.48 (m, 8H).

^13C NMR (75 MHz, CDCl₃) δ 176.4, 157.5, 154.9, 137.8, 134.6, 134.0, 129.6, 128.4, 126.6, 126.4, 65.5, 43.7, 30.0, 25.7.

HRMS (ESI-TOF): m/z calcd. for C_{17}H_{18}N₂O₂ (M+H^+) 283.1447, found 283.1443.

Furan-3-ylmethyl cyclopentanecarboxylate (30) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a colorless oil (31 mg, 80% yield).

^1H NMR (300 MHz, CDCl₃) δ 7.49 - 7.42 (m, 1H), 7.42 - 7.35 (m, 1H), 6.41 (dd, J = 1.8, 0.9 Hz, 1H), 4.98 (s, 2H), 2.82 - 2.63 (m, 1H), 1.95 - 1.51 (m, 8H).

^13C NMR (75 MHz, CDCl₃) δ 176.6, 143.3, 141.3, 120.7, 110.4, 57.5, 43.7, 29.9, 25.8.

HRMS (EI): m/z calcd. for C_{11}H_{10}O• ([M+•]) 194.09375, found 194.09389.
4-(2-Methylthiazol-4-yl)benzyl cyclopentanecarboxylate (31) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 10:1) to afford the title compound as a colorless oil (42 mg, 70% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.91 - 7.81 (m, 2H), 7.44 - 7.34 (m, 2H), 7.31 (s, 1H), 5.13 (s, 2H), 2.87 - 2.70 (m, 4H), 1.99 - 1.48 (m, 8H).

13C NMR (75 MHz, CDCl$_3$) δ 176.5, 165.9, 154.6, 136.0, 134.3, 128.4, 126.4, 112.5, 77.4, 77.0, 76.6, 65.7, 43.8, 30.0, 25.8, 19.3.

HRMS (ESI-TOF): m/z calcd. for C$_{17}$H$_{19}$N$_2$O$_2$S$^+$ ([M+H$^+$]) 302.1215, found 302.1205.

(1-Methyl-5-(phenoxy)methyl)-3-(trifluoromethyl)-1H-pyrazol-4-yl)methyl cyclopentanecarboxylate (32) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 20:1) to afford the title compound as a colorless oil (70 mg, 92% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.39 - 7.27 (m, 2H), 7.19 - 7.08 (m, 1H), 6.98 - 6.87 (m, 2H), 4.82 (s, 2H), 3.70 (s, 3H), 2.65 - 2.49 (m, 1H), 1.85 - 1.41 (m, 8H).

13C NMR (75 MHz, CDCl$_3$) δ 176.1, 156.4, 148.4, 139.67 (q, J = 38.25 Hz), 130.1, 124.2, 120.95 (q, J = 268.5), 115.4, 102.2, 102.2, 53.9, 43.5, 35.2, 29.7, 25.7.

19F NMR (282 MHz, CDCl$_3$) δ -62.1.

Benzo[c][1,2,5]thiadiazol-5-ylmethyl cyclopentanecarboxylate (33) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 20:1) to afford the title compound as a light-yellow oil (37 mg, 71% yield).

1H NMR (300 MHz, CDCl$_3$) δ 8.04 - 7.94 (m, 2H), 7.55 (dd, J = 9.0, 1.7 Hz, 1H), 5.28 (s, 2H), 2.93 - 2.76 (m, 1H), 2.02 - 1.53 (m, 8H).

13C NMR (75 MHz, CDCl$_3$) δ 176.4, 154.8, 154.4, 138.2, 129.3, 121.6, 119.7, 65.2, 43.8, 30.0, 25.8.

HRMS (ESI-TOF): m/z calcd. for C$_{13}$H$_{14}$N$_2$O$_2$S$^+$ ([M+H$^+$]) 263.0854, found 263.0850.
4-((1H-1,2,4-triazol-1-yl)methyl)benzyl cyclopentanecarboxylate (34) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (DCM/MeOH = 10:1) to afford the title compound as a light-yellow oil (50.2 mg, 88% yield).

1H NMR (300 MHz, CDCl$_3$) δ 8.12 (s, 1H), 7.99 (s, 1H), 7.37 (d, $J = 8.2$ Hz, 2H), 7.27 (d, $J = 8.4$ Hz, 2H), 5.36 (s, 2H), 5.11 (s, 2H), 2.87 - 2.70 (m, 1H), 2.00 - 1.48 (m, 8H).

13C NMR (75 MHz, CDCl$_3$) δ 176.4, 152.0, 143.0, 137.0, 134.3, 128.5, 128.2, 65.3, 53.2, 43.7, 29.9, 25.7.

HRMS (ESI-TOF): m/z calcd. for C$_{16}$H$_{19}$N$_3$O$_2$H$^+$ ([M+H$^+$]) 286.1555, found 286.1558.

2-Cyclohexylethyl 2-oxoheptanoate (35) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (44 mg, 92% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.08 (t, $J = 6.9$ Hz, 2H), 2.27 (t, $J = 7.5$ Hz, 2H), 1.76 - 1.55 (m, 7H), 1.50 (q, $J = 6.8$ Hz, 2H), 1.40 - 1.12 (m, 10H), 1.02 - 0.81 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 174.0, 152.5, 143.0, 134.3, 128.5, 128.2, 65.3, 53.2, 43.7, 29.9, 22.5, 14.0.

HRMS (ESI-TOF): m/z calcd. for C$_{15}$H$_{28}$O$_2$Na$^+$ ([M+Na$^+$]) 263.1982, found 263.1988.

2-Cyclohexylethyl 3-cyclohexylpropanoate (36) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (48 mg, 90% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.08 (t, $J = 6.8$ Hz, 2H), 2.29 (t, 2H), 1.69 (m, 10H), 1.57 - 1.44 (m, 4H), 1.38 - 1.12 (m, 8H), 1.02 - 0.78 (m, 4H).

13C NMR (75 MHz, CDCl$_3$) δ 174.3, 62.5, 37.2, 36.0, 34.5, 33.1, 31.4, 28.8, 26.4, 26.2, 24.9, 22.5, 14.0.
3-Methoxypropyl nonadecanoate (37) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (56 mg, 76% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.14 (t, $J = 6.5$ Hz, 2H), 3.43 (t, $J = 6.3$ Hz, 2H), 3.32 (s, 3H), 2.28 (t, $J = 7.5$ Hz, 2H), 1.88 (p, $J = 6.4$ Hz, 2H), 1.59 (dt, $J = 14.5$, 7.2 Hz, 2H), 1.31 - 1.19 (m, 30H), 0.92 - 0.81 (t, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 173.8, 69.1, 61.3, 58.6, 34.3, 31.9, 29.7, 29.6, 29.4, 29.3, 29.2, 29.1, 29.0, 25.0, 22.7, 14.1.

HRMS (ESI-TOF): m/z calcd. for C$_{23}$H$_{46}$O$_3$Na$^+$ ([M+Na$^+$]) 393.3339, found 393.3339.

2-Cyclohexylethyl 4,4,5,5,5-pentafluoropentanoate (38) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (28 mg, 46% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.15 (t, $J = 6.9$ Hz, 2H), 2.61 (t, 2H), 2.52 - 2.30 (m, 2H), 1.78 - 1.57 (m, 5H), 1.53 (q, $J = 6.9$ Hz, 2H), 1.38 - 1.14 (m, 4H), 1.02 - 0.80 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 171.1, 77.4, 77.0, 76.6, 63.5, 35.8, 34.5, 33.1, 26.4, 26.2 (t, $J = 22.5$ Hz), 26.1, 25.6 (t, $J = 3.75$ Hz)

19F NMR (282 MHz, CDCl$_3$) δ -85.5, -118.8.

2-Cyclohexylethyl 7-phenoxyheptanoate (39) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (50 mg, 75% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.30 (dd, $J = 8.7$, 7.3 Hz, 2H), 7.01 - 6.87 (m, 3H), 4.13 (t, $J = 6.9$ Hz, 2H), 3.98 (t, $J = 6.5$ Hz, 2H), 2.34 (t, $J = 7.4$ Hz, 2H), 1.90 - 1.63 (m, 9H), 1.61 - 1.14 (m, 11H), 1.05 - 0.86 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.8, 159.0, 129.3, 120.4, 114.4, 67.6, 62.5, 36.0, 34.5, 34.3, 33.1, 29.1, 28.8, 26.4, 26.2, 25.7, 24.9.

HRMS (ESI-TOF): m/z calcd. for C$_{21}$H$_{32}$O$_3$Na$^+$ ([M+Na$^+$]) 355.2249, found 355.2245.
2-Cyclohexylethyl 7-(4-chlorophenoxy)heptanoate (40) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (52 mg, 71% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.26 - 7.15 (m, 2H), 6.85 - 6.74 (m, 2H), 4.09 (t, J = 6.9 Hz, 2H), 3.90 (t, J = 6.4 Hz, 2H), 2.30 (t, J = 7.4 Hz, 2H), 1.84 - 1.75 (m, 9H), 1.56 - 1.15 (m, 10H), 1.02 - 0.82 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.8, 157.6, 129.2, 125.3, 115.7, 68.0, 62.5, 35.9, 34.5, 34.2, 33.1, 28.9, 28.8, 26.4, 26.2, 25.6, 24.8.

HRMS (ESI-TOF): m/z calcd. for C$_{21}$H$_{31}$O$_3$ClNa$^+$ ([M+Na$^+$]) 389.1854, found 389.1859.

2-Cyclohexylethyl 7-(4-iodophenoxy)heptanoate (41) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (62.3 mg, 68% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.59 - 7.48 (m, 2H), 6.72 - 6.61 (m, 2H), 4.10 (t, J = 6.9 Hz, 2H), 3.90 (t, J = 6.5 Hz, 2H), 2.30 (t, J = 7.4 Hz, 2H), 1.84 - 1.13 (m, 19H), 1.01 - 0.82 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.8, 158.9, 138.1, 116.9, 82.4, 67.9, 62.6, 36.0, 34.6, 34.3, 33.1, 31.4, 30.2, 28.9, 28.8, 26.5, 26.2, 25.7, 24.9.

HRMS (ESI-TOF): m/z calcd. for C$_{21}$H$_{31}$O$_3$IH$^+$ ([M+H$^+$]) 459.1396, found 459.1405.

2-Cyclohexylethyl 7-(4-(methylthio)phenoxy)heptanoate (42) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (45 mg, 60% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.35 - 7.22 (m, 2H), 6.91 - 6.80 (m, 2H), 4.12 (t, J = 6.9 Hz, 2H), 3.94 (t, J = 6.5 Hz, 2H), 2.46 (s, 3H), 2.33 (t, J = 7.4 Hz, 2H), 1.87 - 1.60 (m, 9H), 1.63 - 1.10 (m, 10H), 1.04 - 0.82 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.8, 157.7, 130.2, 128.5, 115.2, 67.9, 62.5, 36.0, 34.5, 34.3, 33.1, 29.0, 28.8, 26.4, 26.2, 25.7, 24.9, 18.1.

HRMS (ESI-TOF): m/z calcd. for C$_{22}$H$_{34}$O$_3$SNa$^+$ ([M+Na$^+$]) 401.2121, found 401.2122.
2-Cyclohexylethyl 7-(benzo[d][1,3]dioxol-5-yloxy)heptanoate (43) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a light-yellow oil (69 mg, 92% yield).

1H NMR (300 MHz, CDCl$_3$) δ 6.68 (d, J = 8.4 Hz, 1H), 6.47 (d, J = 2.5 Hz, 1H), 6.30 (dd, J = 8.5, 2.5 Hz, 1H), 5.89 (s, 2H), 4.09 (t, J = 6.9 Hz, 2H), 3.86 (t, J = 6.4 Hz, 2H), 2.30 (t, J = 7.4 Hz, 2H), 1.81 - 1.57 (m, 9H), 1.55 - 1.12 (m, 10H), 1.01 - 0.80 (m, 2H).

13C NMR (75 MHz, CDCl$_3$) δ 173.8, 154.6, 148.1, 141.4, 107.8, 105.6, 101.0, 98.0, 68.7, 62.5, 35.9, 34.5, 34.2, 33.1, 29.1, 28.8, 26.4, 26.1, 25.7, 24.8.

HRMS (ESI-TOF): m/z calcld. for C$_{22}$H$_{34}$O$_5$Na$^+$ ([M+Na$^+$]) 399.2142, found 399.2144.

Isopropyl 5-(1,3-dioxoisindolin-2-yl)pentanoate (44) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 5:1) to afford the title compound as a light-yellow oil (26 mg, 45% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.87 - 7.79 (m, 2H), 7.76 - 7.64 (m, 2H), 4.98 (hept, J = 6.3 Hz, 1H), 3.69 (t, J = 6.9 Hz, 2H), 2.38 - 2.26 (m, 2H), 1.80 - 1.57 (m, 4H), 1.22 (s, 3H), 1.20 (s, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 172.7, 168.3, 133.9, 132.1, 123.2, 67.6, 37.5, 34.0, 28.0, 22.2, 21.8.

HRMS (ESI-TOF): m/z calcld. for C$_{16}$H$_{19}$NO$_4$Na$^+$ ([M+Na$^+$]) 312.1211, found 312.1213.

2-Cyclohexylethyl 2-methylbutanoate (45) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (40 mg, 94% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.09 (td, J = 6.9, 1.0 Hz, 2H), 2.34 (h, J = 7.0 Hz, 1H), 1.79 - 1.58 (m, 6H), 1.57 - 1.17 (m, 7H), 1.12 (d, J = 7.0 Hz, 3H), 1.01 - 0.78 (m, 5H).

13C NMR (75 MHz, CDCl$_3$) δ 176.8, 62.4, 41.1, 36.0, 34.6, 33.1, 26.8, 26.5, 26.2, 16.6, 11.6.
2-Cyclohexylethyl cyclopentanecarboxylate (46) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (42.6 mg, 95% yield).

\[\text{1H NMR (300 MHz, CDCl}_3\text{)} \delta 4.09 (t, J = 6.9 Hz, 2H), 2.79 - 2.62 (m, 1H), 2.00 - 1.57 (m, 11H), 1.55 - 1.43 (m, 2H), 1.43 - 1.13 (m, 4H), 1.01 - 0.82 (m, 2H). \]

\[\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 176.9, 62.5, 43.9, 36.0, 34.6, 33.1, 30.0, 26.5, 26.2, 25.8. \]

HRMS (ESI-TOF): \(m/z \) calcd. for C_{14}H_{24}O_2Na\(^+\) ([M+Na\(^+\)]) 247.1673, found 247.1677.

2-Cyclohexylethyl cyclohexanecarboxylate (47) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (46 mg, 97% yield).

\[\text{1H NMR (300 MHz, CDCl}_3\text{)} \delta 4.07 (t, J = 6.8 Hz, 2H), 2.26 (tt, J = 11.2, 3.6 Hz, 1H), 1.94 - 1.82 (m, 2H), 1.79 - 1.58 (m, 8H), 1.54 - 1.12 (m, 11H), 1.02 - 0.80 (m, 2H). \]

\[\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 176.2, 62.3, 43.2, 36.0, 34.6, 33.1, 29.0, 26.4, 26.2, 25.7, 25.4. \]

HRMS (ESI-TOF): \(m/z \) calcd. for C_{15}H_{26}O_2Na\(^+\) ([M+Na\(^+\)]) 261.1830, found 261.1829.

2-Cyclohexylethyl pivalate (48) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (32 mg, 76% yield).

\[\text{1H NMR (300 MHz, CDCl}_3\text{)} \delta 4.08 (t, J = 6.8 Hz, 2H), 1.76 - 1.61 (m, 6H), 1.52 (q, J = 6.8 Hz, 2H), 1.43 - 1.21 (m, 3H), 1.19 (s, 9H), 1.00 - 0.83 (m, 2H). \]

\[\text{13C NMR (75 MHz, CDCl}_3\text{)} \delta 178.7, 62.7, 38.7, 35.9, 34.7, 33.2, 27.2, 26.5, 26.2. \]

HRMS (ESI-TOF): \(m/z \) calcd. for C_{13}H_{23}O_2Na\(^+\) ([M+Na\(^+\)]) 235.1673, found 235.1674.
3-Methoxypropyl (1-adamantane) carboxylate (49) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 20:1) to afford the title compound as a colorless oil (20 mg, 40% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.13 (t, $J = 6.4$ Hz, 2H), 3.44 (t, $J = 6.4$ Hz, 2H), 3.33 (s, 3H), 2.06 - 1.83 (m, 11H), 1.79 - 1.59 (m, 6H).

13C NMR (75 MHz, CDCl$_3$) δ 177.6, 69.2, 61.1, 58.7, 40.7, 38.8, 36.5, 29.0, 27.9.

HRMS (ESI-TOF): m/z calcd. for C$_{15}$H$_{24}$O$_3$H$^+$ ([M+H$^+$]) 253.1803, found 253.1804.

Pyridin-3-ylmethyl (1-adamantane) carboxylate (50) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 3:1) to afford the title compound as a light-yellow oil (25 mg, 46% yield).

1H NMR (300 MHz, CDCl$_3$) δ 8.64 - 8.52 (m, 2H), 7.72 - 7.62 (m, 1H), 7.35 - 7.25 (m, 1H), 5.11 (s, 2H), 2.05 - 1.96 (m, 3H), 1.90 (d, $J = 3.0$ Hz, 6H), 1.78 - 1.61 (m, 6H).

13C NMR (75 MHz, CDCl$_3$) δ 177.3, 149.2, 149.1, 135.7, 132.3, 123.5, 63.2, 40.8, 38.8, 36.4, 27.9.

HRMS (ESI-TOF): m/z calcd. for C$_{17}$H$_{21}$NO$_2$H$^+$ ([M+H$^+$]) 272.1650, found 272.1657.

(1R,5S)-5-(2-Hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-yl pentanoate (51) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 5:1) to afford the title compound as a colorless oil (20 mg, 40% yield).

1H NMR (300 MHz, CDCl$_3$) δ 5.72 (dt, $J = 5.6$, 1.7 Hz, 1H), 5.31 - 5.23 (m, 1H), 2.37 - 2.26 (t, 2H), 2.26 - 2.10 (m, 1H), 1.99 (dq, $J = 13.9$, 2.2 Hz, 1H), 1.92 - 1.52 (m, 7H), 1.53 - 1.26 (m, 4H), 1.18 (s, 3H), 1.17 (s, 3H), 0.91 (t, $J = 7.3$ Hz, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 173.7, 131.0, 127.8, 72.0, 70.5, 39.5, 34.5, 30.0, 27.3, 27.3, 26.8, 26.8, 22.2, 20.6, 13.7.

HRMS (ESI-TOF): m/z calcd. for C$_{15}$H$_{26}$O$_3$Na$^+$ ([M+Na$^+$]) 277.1779, found 277.1775.
(3S,5S,8S,10S,13S,14S)-10,13-Dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl cyclopentanecarboxylate (52) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 20:1) to afford the title compound as a white solid (72 mg, 93% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.75 - 4.58 (m, 1H), 2.74 - 2.58 (m, 1H), 2.42 (dd, $J = 19.0, 8.8$ Hz, 1H), 2.14 - 1.96 (m, 1H), 1.92 - 0.90 (m, 27H), 0.84 (s, 6H), 0.77 - 0.60 (m, 1H).

13C NMR (75 MHz, CDCl$_3$) δ 221.2, 176.3, 73.0, 54.2, 51.3, 47.7, 44.6, 44.0, 36.7, 35.8, 35.6, 35.0, 33.9, 31.5, 30.8, 30.0, 29.9, 28.2, 27.4, 25.8, 21.7, 20.4, 13.8, 12.2.

Isopropyl 7-(((8S,9R,13R,14R)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)heptanoate (53) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 20:1) to afford the title compound as a light-yellow solid (50 mg, 57% yield).

1H NMR (300 MHz, CDCl$_3$) δ 7.18 (d, $J = 8.1$ Hz, 1H), 6.70 (dd, $J = 8.6, 2.8$ Hz, 1H), 6.63 (d, $J = 2.7$ Hz, 1H), 5.00 (hept, $J = 6.3$ Hz, 1H), 3.92 (t, $J = 6.5$ Hz, 2H), 2.88 (dd, $J = 7.8, 3.2$ Hz, 2H), 2.60 - 2.34 (m, 2H), 2.33 - 1.90 (m, 7H), 1.84 - 1.35 (m, 14H), 1.24 (s, 3H), 1.22 (s, 3H), 0.90 (s, 3H).

13C NMR (75 MHz, CDCl$_3$) δ 173.2, 157.1, 137.6, 131.8, 126.2, 114.5, 112.1, 67.7, 67.3, 50.4, 48.0, 43.9, 38.4, 35.8, 34.6, 31.6, 29.6, 29.1, 28.8, 26.5, 25.9, 25.7, 24.9, 21.8, 21.5, 13.8.

HRMS (ESI-TOF): m/z calcd. for C$_{28}$H$_{40}$O$_4$H$^+$ ([M+H$^+$]) 441.3005, found 441.3004.

Isopropyl (8R,9R,10S,13S,14R,17S)-10,13-dimethyl-17-((S)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthrene-3-carboxylate (54) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 100:1) to afford the title compound as a light-yellow oil (70 mg, 77% yield).
Iopropyl 7-((R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl)oxy)heptanoate (55)
Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 50:1) to afford the title compound as a light-yellow oil (68 mg, 57% yield).

\[^1H\text{ NMR (300 MHz, CDCl}_3\] \(\delta\) 5.39 - 5.30 (m, 1H), 4.99 (p, \(J = 6.3\) Hz, 1H), 2.50 - 2.30 (m, 1H), 2.28 - 2.11 (m, 1H), 2.07 - 0.97 (m, 36H), 0.95 - 0.82 (m, 9H), 0.67 (s, 3H).

\[^13C\text{ NMR (75 MHz, CDCl}_3\] \(\delta\) 175.3, 141.1, 120.9, 67.2, 56.8, 56.2, 50.3, 44.9, 42.3, 39.8, 39.5, 38.8, 36.9, 36.2, 35.8, 34.9, 31.9, 31.8, 28.2, 28.0, 25.2, 24.3, 23.8, 22.8, 22.5, 21.8, 20.9, 19.3, 18.7, 11.8.

\[(E)-\text{But-2-en-1-yl} 4-\text{phenylbutanoate (56)\[^1H\text{ NMR (300 MHz, CDCl}_3\] \(\delta\) 7.26 - 7.15 (m, 2H), 7.17 - 7.06 (m, 3H), 5.83 - 5.57 (m, 1H), 5.62 - 5.40 (m, 1H), 4.47 - 4.38 (m, 2H), 2.63 - 2.52 (t, 2H), 2.26 (t, \(J = 7.5\) Hz, 1H), 1.98 - 1.78 (m, 2H), 1.72 - 1.58 (m, 3H).

\[^13C\text{ NMR (75 MHz, CDCl}_3\] \(\delta\) 173.3, 148.3, 147.6, 127.8, 125.7, 122.7, 117.4, 74.7, 72.9, 67.3, 40.1, 39.4, 37.4, 37.3, 34.7, 32.8, 32.7, 31.3, 31.3, 30.2, 29.1, 28.0, 25.9, 25.0, 24.8, 24.8, 24.4, 23.9, 22.7, 22.6, 21.8, 21.0, 20.6, 19.7, 19.7, 12.7, 11.8, 11.8.

\[\text{Benzo[d][1,3]dioxol-5-ylmethyl} 4-\text{phenylbutanoate (57) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 20:1) to afford the title compound as a light-yellow oil (40 mg, 67% yield).\[^1H\text{ NMR (300 MHz, CDCl}_3\] \(\delta\) 7.36 - 7.25 (m, 2H), 7.27 - 7.14 (m, 3H), 6.93 - 6.74 (m, 3H), 5.98 (s, 2H), 5.03 (s, 2H), 2.67 (t, 2H), 2.39 (t, \(J = 7.5\) Hz, 2H), 2.08 - 1.91 (m, 2H).}
1H NMR (300 MHz, CDCl$_3$) δ 5.78 - 5.70 (m, 1H), 4.72 (m, 2H), 4.46 (s, 2H), 2.83 - 2.66 (m, 1H), 2.26 - 1.19 (m, 18H).

1C NMR (75 MHz, CDCl$_3$) δ 176.7, 149.7, 132.9, 125.3, 108.8, 68.2, 43.9, 40.9, 30.5, 30.1, 27.3, 27.2, 26.3, 25.8, 20.8.

HRMS (ESI-TOF): m/z calcld. for C$_{16}$H$_{24}$O$_2$Na$^+$ ([M+Na$^+$]) 271.1673, found 271.1675.

59

((1S,2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl)methyl cyclopentanecarboxylate (59) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (35 mg, 66% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.93 - 4.82 (m, 1H), 2.77 - 2.61 (m, 1H), 2.02 - 0.94 (m, 1H), 0.90 (d, J = 1.3 Hz, 3H), 0.88 (d, J = 1.9 Hz, 3H), 0.75 (d, J = 7.0 Hz, 3H).

1C NMR (75 MHz, CDCl$_3$) δ 177.0, 79.3, 48.8, 47.8, 44.9, 44.2, 36.8, 30.1, 29.9, 28.0, 27.1, 25.8, 25.7, 19.7, 18.8, 13.5.

60

((1R,2R,5R)-2-Isopropyl-5-methylcyclohexyl)methyl cyclopentanecarboxylate (60) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (32 mg, 60% yield).

1H NMR (300 MHz, CDCl$_3$) δ 4.65 (td, J = 10.9, 4.4 Hz, 1H), 2.77 - 2.61 (m, 1H), 2.02 - 0.94 (m, 1H), 0.90 (d, J = 1.3 Hz, 3H), 0.88 (d, J = 1.9 Hz, 3H), 0.75 (d, J = 7.0 Hz, 3H).
1H NMR (300 MHz, CDCl$_3$) δ 5.42 - 5.28 (m, 1H), 5.08 (m, 1H), 4.58 (d, J = 7.1 Hz, 2H), 2.83 - 2.62 (m, 1H), 2.18 - 1.97 (m, 4H), 1.93 - 1.51 (m, 17H).

1C NMR (75 MHz, CDCl$_3$) δ 176.9, 141.9, 131.8, 123.8, 118.6, 61.2, 43.9, 39.5, 30.1, 26.3, 25.8, 25.7, 17.7, 16.5.

HRMS (ESI-TOF): m/z calcd. for C$_{16}$H$_{26}$O$_2$Na$^+$ ([M+Na$^+$]) 273.1825, found 273.1832.

(Z)-3,7-Dimethylocta-2,6-dien-1-yl cyclopentane carboxylate (61) Prepared according to the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 200:1) to afford the title compound as a colorless oil (44 mg, 88% yield).

1H NMR (300 MHz, CDCl$_3$) δ 5.42 - 5.28 (m, 1H), 5.08 (m, 1H), 4.58 (d, J = 7.1 Hz, 2H), 2.83 - 2.62 (m, 1H), 2.18 - 1.97 (m, 4H), 1.93 - 1.51 (m, 17H).

1C NMR (75 MHz, CDCl$_3$) δ 176.9, 141.9, 131.8, 123.8, 118.6, 61.2, 43.9, 39.5, 30.1, 26.3, 25.8, 25.7, 17.7, 16.5.

HRMS (ESI-TOF): m/z calcd. for C$_{16}$H$_{26}$O$_2$Na$^+$ ([M+Na$^+$]) 273.1825, found 273.1832.
7. NMR Spectrum

1H NMR (400 MHz, Chloroform-d)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (300 MHz, Chloroform-d)

13C NMR (75 MHz, CDCl₃)
3H NMR (292 MHz, CDCl$_3$)
1H NMR (300 MHz, Chloroform-d)

13C NMR (75 MHz, CDCl$_3$)
"H NMR (292 MHz, CDCl3)
1H NMR (300 MHz, Chloroform-d)

13C NMR (75 MHz, CDCl$_3$)
