Multi-layer neural network for solving problems of recognition of drained crop areas

K E Tokarev1, Yu M Tokareva2 and N A Aleksandrina1

1Volgograd State Agricultural University, 26, Universitetskiy ave., Volgograd, 400002, Russia
2Volgograd State Medical University, 28, Lenin, ave., Volgograd, 400005, Russia

E-mail: tke.vgsha@mail.ru

Abstract. The article deals with the design and software implementation of neural network modules for solving problems of image recognition. In particular, it describes the development of a module for network training and recognition of input pulses, which made it possible to recognize, process and analyse aerial photographs of agricultural crops as objects of identification based on the use of a multi-layer deep learning neural network. The practical use of the software tool is possible for the study and study of the peculiarities of cultivation in conditions of irrigation and differentiated placement.

1. Introduction
Work on artificial neural network (NS) models has a long history. The development of detailed mathematical models began more than 70 years ago with the work of F. Rosenblatt et al. The renewed interest is due to the development of new topologies and algorithms, the emergence of new methods for implementing analog ultra-large integrated circuits, some interesting presentations, as well as a growing interest in studying the functioning of the human brain. NS are widely used for pattern recognition, classification problems, optimization problems, forecasting, data analysis, decision-making and adaptive management.

2. Materials and methods
Within the framework of one scientific direction on improving reclamation technologies using artificial intelligence tools, a software implementation of a neural network in the Matlab neuromodule for solving recognition problems was developed and implemented in the form of two software prototypes.

The complete signal recognition algorithm can be represented as follows:
1. The signal is digitized with a certain sampling frequency.
2. The resulting set of samples is divided into windows of several ms.
3. Next, a wavelet transform of the signal is applied, which translates the signal from a time representation to a time-frequency representation.
4. The input of the neural network receives the received data, a set of windows into which the signal was divided. At the output of the neural network-the classification of each input window, weighted in the probabilities of groups of phonemes (phonemic probabilistic characteristics). The general scheme of the speech recognition system is shown in Figure 1.
Figure 1. Block diagram of the neural network training process for analyzing remote monitoring images

The integrated MATLAB system (Neural Network Toolbox-neuromodule) was chosen as the platform for implementation, which provides extensive capabilities for processing various data (pulses, signals, images, etc.) and performing time-consuming mathematical calculations. Also, a large set of various functions for working with neural networks is included in the Neural Network Toolbox package of the Matlab system, which allows you not only to set the network architecture, but also to choose a learning algorithm. It is assumed that the NS will be implemented in two stages: the first stage is the creation and training of the network, the second is the addition of the recognition module.

Training of a neural network occurs as follows:

1. From the audio signal, 20 windows with a length of 2000 samples are selected sequentially, to which the wavelet decomposition on 3 levels was then applied. Thus, vectors of wavelet coefficients of the 3rd level of detail are formed for use as input data of the neural network.

2. Next, a training sample of the network is constructed, consisting of 20 vectors of wavelet coefficients for sound samples and the same number for noise.

3. A unidirectional three-layer network is created, the input layer of which contains 63 neurons, the output layer contains 2.

4. The last stage is the training of the network [5-8]. Fragment of the NS training listing in the Matlab neuromodule:

```matlab
phonems='n'; ccp=0; ccn=0;
for ii=1:20
name=sprintf('piping%d.wav',ii);
masP(:,ii)= wavread(name);
Fram=3000;Nfr=2000;
forff=1:20
[c,l]=wavedec(masP(Nfr:Nfr+Fram,ii)',6,'db8');
DCELL=detcoef(c,l,'cells');
Pat(:,ff)=DCELL{3}';
Nfr=Nfr+Fram+1;
end
ccp=ccp+1;
ifccp>1
Pp=[Pp,Pat];
elsePp=Pat;
end
end
for ii=1:20
```
To implement the NS training procedures, the built-in functions of the Matlab neuromodule were used:

- `newff (pr, [S1 S2 S3], {'logsig' 'logsig' 'logsig'}, 'traingdx')` - creating a unidirectional network;
- `[net, tr] = train(NET, P, T)` - neural network training;
- `wavread (name)` – data reading function;
- `wavedec (x, N, 'wname')` – multi-level discrete data decomposition;
- `detcoef(c, l, 'cells')` is a vector of detail coefficients of a multi-level data decomposition.

Thus, the proposed algorithm for the functioning of the module for creating and training NS [9-11] can be represented in the form of the following flowchart, shown in Figure 2.

As a result of the program, the Neural Network Training window is called, which shows the process of training the neural network, and allows you to view statistics after the training is completed. The training window is shown in Figure 3.

![Figure 2. The "Neural Network Training Model" dialog box](image)

Thus, it is assumed that the NS will be further implemented in the neuromodule of the Matlab software environment, in the form of two modules, the first is used to create and train a neural network, and the second is used to recognize the incoming pulse at the "input".

4. Conclusion
The implemented program is designed for recognition, processing and analysis of aerial photographs of agricultural crops as objects of identification based on the use of a multi-layer deep learning neural network. The use of the software tool is possible for the study and study of the peculiarities of cultivation in conditions of irrigation and differentiated placement.

![Figure 3. The result of segmentation of aerial photographs of agricultural crops](image)

5. Acknowledgements
The reported study was funded by RFBR and Volgograd region according to the research project № 19-416-343006.

References
[1] Zeileis A, Hothorn T and Hornik K 2008 Model-based recursive partitioning Journal of Computational and Graphical Statistics 17 492-514
[2] Atkinson P M and Tatnall A R L 1997 Neural networks in remote sensing. International Journal of Remote Sensing 18(4) 699-709
[3] Jensen P and Petterson S 1978 Allosteric regulation of potassium uptake in plant roots Physiol Plant 42(2) 207-213
[4] Walker W R and Prajamwong S 1993 USD Watercourse Command Area Model WCAMOD 15th International Congress on Irrigation and Drainage pp 1-11
[5] Walker W R 1990 Integrating Strategies for Improving Irrigation Sistem Design and Management Water Management Synthesis Project WMS Repot 70
[6] Blackburn G A and Milton E 1997 An ecological survey of deciduous woodlands using airborne remote sensing and geographical information system (GIS). International Journal of Remote Sensing 18(9) 1919-1935
[7] Ceballos J C and Bottino M J 1997 Technical note: The discrimination of scenes by principal components analysis of multi-spectral imagery International Journal of Remote Sensing 18(11) 2437-2449
[8] Huete A, Justice C and Van Leeuwen W 1999 Modis vegetation index (MOD13): Algorithm theoretical basis document USGS Land Process Distributed Active Archive Center 129 p
[9] K E Tokarev 2021 IOP Conf. Ser.: Earth Environ. Sci. 786 012039
[10] Garge N R, Bobashev G and Eggleston B 2013 Random forest methodology for model-based recursive partitioning: the mobForest package for R BMC Bioinformatics 14 125
[11] Chang D-H and Islam S 2000 Estimation of soil physical properties using remote sensing and artificial neural network Remote Sensing of the Environment 74(3) 534-544
[12] Earl R, Wheeler P N, Blackmore B S and Godwin R J 1996 Precision farming – The management of variability Landwards 51(4) 18-23
[13] Mair C, Kadoda G, Lefley M, Phalp K, Schofield C, Shepperd M and Webster S 2000 An investigation of machine learning based prediction systems. Journal of Systems and Software 53(1) 23-29

[14] Osborne S L, Schepers J S, Francis D D and Schlemmer M R 2002 Use of spectral radiance to estimate in-season biomass and grain yield in nitrogen- and water-stressed corn Crop Science 42 165-171

[15] K E Tokarev 2021 J. Phys.: Conf. Ser. 1801 012030

[16] Plant R E, Munk D S, Roberts B R, Vargas R L, Rains D W, Travis R L and Hutmacher R B 2000 Relationship between remotely sensed reflectance data and cotton growth and yield Transaction of the ASAE 43(3) 535-546

[17] K E Tokarev 2021 J. Phys.: Conf. Ser. 1801 012031

[18] Rosenblatt F 1965 Principles of neurodynamics. Perceptron and the theory of brain mechanisms. Moscow: Mir 480 p.

[19] Wu Z Blockdrop 2018 Dynamic inference paths in residual networks Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 8817-8826