Development of miRNA-Based Approaches to Explore the Interruption of Mosquito-Borne Disease Transmission

Tie-Long Xu1,2,3, Ya-Wen Sun2,3, Xin-Yu Feng2,3,4, Xiao-Nong Zhou2,3,4* and Bin Zheng2,3,4*

1 Evidence-Based Medicine Research Center, Jiangxi University of Chinese Medicine, Nanchang, China, 2 National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and WHO Collaborating Center for Tropical Diseases, Shanghai, China, 3 Key Laboratory of Parasite and Vector Biology, Ministry of Public Health, Shanghai, China, 4 School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China

MicroRNA (miRNA or miR)-based approaches to interrupt the transmission of mosquito-borne diseases have been explored since 2005. A review of these studies and areas in which to proceed is needed. In this review, significant progress is reviewed at the level of individual miRNAs, and miRNA diversification and relevant confounders are described in detail. Current miRNA studies in mosquitoes include four steps, namely, identifying miRNAs, validating miRNA-pathogen interactions, exploring action mechanisms, and performing preapplication investigations. Notably, regarding the Plasmodium parasite, mosquito miRNAs generally bind to mosquito immunity- or development-related mRNAs, indirectly regulating Plasmodium infection; However, regarding arboviruses, mosquito miRNAs can bind to the viral genome, directly modifying viral replication. Thus, during explorations of miRNA-based approaches, researchers need select an ideal miRNA for investigation based on the mosquito species, tissue, and mosquito-borne pathogen of interest. Additionally, strategies for miRNA-based approaches differ for arboviruses and protozoan parasites.

Keywords: miRNAs, mosquito, Plasmodium, interruption, miRNA-based approach, mosquito-borne diseases

BACKGROUND

Insecticide-based interventions [e.g., long-lasting insecticide-treated bed nets (LLINs) and indoor residual spraying (IRS)] are important components of integrated mosquito management programs designed to block the transmission of mosquito-borne diseases. The insecticides used in these interventions exert strong selection pressure on resistance and lead to the evolution and spread of mosquito resistance, representing a major concern in mosquito-borne disease control programs (Xu et al., 2014). The World Health Organization (WHO) claims that innovative vector control tools are urgently needed (World Health Organization, 2012). MicroRNAs (miRNAs) are single-stranded, conserved, and small endogenous noncoding RNAs that have important regulatory functions at the posttranscriptional level in diverse organisms (Bartel, 2004; Bartel, 2009). The regulation of
miRNAs is indispensable for various processes, including apoptosis, development, differentiation, viral infection, and so on (Bartel, 2004; Bartel, 2009). More importantly, the functions of miRNAs can be explored and utilized. For instance, miR-15, miR-16, miR-34, and Let-7 have been patented and approved for cancer diagnosis or treatment (Mishra et al., 2016). Given their characteristics and functions, miRNAs represent one possibility for establishing a new tool, namely, miRNA-based approaches. Thus, numerous studies on mosquito miRNAs have been performed since 2005 (Wang et al., 2005) with the ultimate goal of utilizing miRNA-based approaches for disease control (Liu et al., 2017; Feng et al., 2018a). The development of a mosquito miRNA-based approach is presumed to always follow the research roadmap of identifying mosquito miRNAs, observing miRNA-pathogen interaction, exploring action mechanisms, performing preapplication investigations and conducting clinical or field trials. Advances at each step of the roadmap need to be outlined to provide important insight into potential applications.

THE MOSQUITO MIRNA DATABASES ANALYZED

Publications focused on investigating mosquito global miRNA profiles were selected for extraction of information, including the authors, publication year, study materials, methods, miRNA names, canonical sequences, and so on. Then, this information was supplemented during the review of the other included papers. Approximately 1635 mature or predicted miRNAs were collected. Of the 1635 miRNAs, 853 (52.17%) were limited to identification and lacked any additional study information. The remaining 782 (47.83%) were further investigated; thus, they were tracked by their annotated names for study development.

Overall, the miRNAs of 24 mosquito species, including 2 species of *Aedes* (Li et al., 2009; Akbari et al., 2013; Gu et al., 2013; Campbell et al., 2014; Hu et al., 2015; Maharaj et al., 2015; Liu et al., 2015; Liu Y. X et al., 2016; Batz et al., 2017; Su et al., 2017; Zhang et al., 2017), 2 species of *Culex* (Skalsky et al., 2010; Hong et al., 2014), and 20 species of *Anopheles* mosquitoes (Wang et al., 2005; Chatterjee and Chaudhuri, 2006; Mead and Tu, 2008; Skalsky et al., 2010; Gu et al., 2013; Jain et al., 2014; Castellano et al., 2015; Etebari et al., 2015; Hu et al., 2015; Allam et al., 2016; Su et al., 2017; Carissimo et al., 2018; Feng et al., 2018a; Bruno et al., 2019), were studied. The study materials involved almost every possible type, including mosquito genome sequences obtained from websites; whole mosquitoes at all developmental stages; mosquitoes at different blood feeding states, ages, pathogen infection statuses, diapause statuses or insecticide resistance states; mosquito tissues except for legs; and even mosquito cell nuclei and cytoplasm (Tables 1–6).

ADVANCES AT EACH STEP OF THE RESEARCH ROADMAP

Identification of miRNA Profiles in Mosquitoes

The first step in the research roadmap is to understand mosquito miRNA profiles. Currently, studies of mosquito miRNA profiles focus mainly on mosquito miRNA identification (Mead and Tu, 2008; Skalsky et al., 2010; Gu et al., 2013; Jain et al., 2014; Castellano et al., 2015; Etebari et al., 2015), the production of miRNAs with varying lengths and sequences (i.e., isomiRs) (Skalsky et al., 2010; Biryukova et al., 2014; Etebari et al., 2015), the production of miRNAs with functional arms between the 5’ and 3’ ends (Skalsky et al., 2010; Biryukova et al., 2014; Etebari et al., 2015), the detection of spatial and temporal expression patterns (Jain et al., 2014; Yen et al., 2018), the functional arm of the miRNA clusters (Biryukova et al., 2014; Castellano et al., 2015; Nouzova et al., 2018), and miRNA clusters (Biryukova et al., 2014). At this step in the roadmap, variations in the spatial and temporal expression of miRNAs have been observed by analyzing several factors. (i) Mosquito species: For example, miR-282-5p was found to be conserved in *Ae. aegypti* and *An. gambiae* but not in *Cx. quinquefasciatus* (Gu et al., 2013) (Table 2). Additionally, miR-1175-3p expression has been found to display opposite trends (upregulated or downregulated by blood feeding) in *Aedes albopictus* and *Anopheles gambiae*, and the corresponding molecular mechanisms may also be different in each species (Winter et al., 2007; Su et al., 2017) (Table 4). (ii) Sexes: For example, miR-989-5p was found to be restricted in female *Anopheles coluzzii* (Bruno et al., 2019) (Table 3). (iii) Developmental stages: Notably, miR-1-3p was found to be enriched in the pupa of female *Anopheles stephensi* (Jain et al., 2015) compared to the larvae and adult (Table 4). (iv) Blood feeding and insecticide resistance statuses: The expression of miR-
TABLE 1 | The generally most highly expressed miRNAs in mosquitoes.

miRNA names	References and study materials
miR-1-3p	Aedes aegypti (Yen et al., 2018), adult carcasses of Aedes aegypti (Akbari et al., 2013)
miR-10-5p	An. gambiae (Skarygova et al., 2014), An. sinensis (Feng et al., 2018a)
miR-124-3p	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)
miR-125-5p	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)
miR-133-3p	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)
miR-14-3p	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011), An. sinensis (Feng et al., 2018a)
miR-143	Aedes aegypti saliva (Maharaj et al., 2015)
miR-184-3p	Ae. albopictus, Cx. quinquefasciatus, Ae. albopictus cell, An. gambiae, Aedes aegypti, nucleus and the cytoplasm of Aedes aegypti cells, An. stephensi, An. sinensis (Biryukova et al., 2014; Mayoral et al., 2014; Shirin et al., 2014; Hu et al., 2015; Su et al., 2017; Feng et al., 2018a, Nuzova et al., 2018)
miR-1889-5p	nucleus of Wolbachia infected Aedes aegypti cells, nucleus and cytoplasm of Aedes aegypti cell (Mayoral et al., 2014)
miR-1891-5p	An. sinensis (Feng et al., 2018a)
miR-210-3p	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)
miR-263a-5p/-3p	Aedes aegypti and An. stephensi (Hu et al., 2015), An. gambiae (Biryukova et al., 2014)
miR-263b-5p/-3p	Aedes aegypti and An. stephensi (Hu et al., 2015)
miR-275-3p/-5p	nucleus and cytoplasm of Aedes aegypti cells infected or uninfected with Wolbachia (Mayoral et al., 2014), Aedes albopictus midgut (Su et al., 2017), An. sinensis (Feng et al., 2018a)
miR-276-3p	An. sinensis (Feng et al., 2018a), nucleus and the cytoplasm of Aedes aegypti cells (Mayoral et al., 2014), An. gambiae (Bryant et al., 2019)
miR-277-3p	An. sinensis (Feng et al., 2018a), An. culzuzi saliva (Bruno et al., 2019)
miR-278-3p/5p	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)
miR-281-3p/5p	An. sinensis (Feng et al., 2018a), An. gambiae (Biryukova et al., 2014)
miR-287	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Biryukova et al., 2014)
miR-2940-5p	Ae. albopictus (Skalsky et al., 2010)
miR-2941-3p	Ae. aegypti embryos (Hu et al., 2015)
miR-2943-5p	Ae. aegypti and An. stephensi embryos (Hu et al., 2015)
miR-2945-3p	Ae. aegypti and An. stephensi embryos (Hu et al., 2015)
miR-2946-3p	Ae. aegypti embryos (Hu et al., 2015)
miR-305-5p	Aedes aegypti, Cx. quinquefasciatus, and An. gambiae (Behura et al., 2011)
miR-306-5p	Aedes aegypti, Cx. quinquefasciatus, and An. gambiae (Behura et al., 2011)
miR-307-3p	Aedes aegypti, Cx. quinquefasciatus, and An. gambiae (Behura et al., 2011)
miR-316-5p	An. sinensis (Feng et al., 2018a)
miR-317-3p	Cx. quinquefasciatus, Ae. albopictus C7/10 cells (Skalsky et al., 2010), nucleus and cytoplasm of Aedes aegypti cells infected or uninfected with Wolbachia (Mayoral et al., 2014), Ae. albopictus midgut (Su et al., 2017)
miR-34-5p	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)
miR-5	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)
miR-5076	Aedes albopictus (Su et al., 2017)
miR-6	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)

(Continued)

TABLE 1 | Continued

miRNA names	References and study materials
miR-8-3p	Aedes aegypti, Cx. quinquefasciatus An. gambiae (Skalsky et al., 2010; Behura et al., 2011; Biryukova et al., 2014), C7/10 cells (Skalsky et al., 2010), Aedes albopictus (Su et al., 2017), An. sinensis (Feng et al., 2018a)
miR-9c	An. sinensis (Feng et al., 2018a)
miR-bantam-3p/-5p	An. gambiae (Biryukova et al., 2014; Bryant et al., 2019)
miR-let-7p	An. gambiae (Winter et al., 2007), Cx. pipiens (Meuti et al., 2018)
miR-19-4-5p	Aedes aegypti, Cx. quinquefasciatus and An. gambiae (Behura et al., 2011)

Here, the term “most highly expressed miRNAs” refers to the miRNAs with the greatest abundance among many miRNAs detected in the same sequencing library. During the exploration of miRNA-based approaches, more attention should be devoted to highly expressed mosquito miRNAs.

999-3p was found to be downregulated in deltamethrin-resistant Culex pipiens (Hong et al., 2014) (Table 4). (v) Tissues: For example, miR-998-5p was found to be specifically expressed in the ovary of An. gambiae (Lampe and Levashina, 2018) (Table 5), and miR-8-3p was found to be particularly enriched in the salivary glands in An. coluzzii (Bruno et al., 2019) but in the fat body in Aedes aegypti (Bryant et al., 2010) (Table 5). Moreover, in addition to these specificities, miRNAs may even exhibit cellular cytoplasm- or nucleus-specificity (Mayoral et al., 2014) (Table 5).

More examples based on individual miRNAs are noted in Tables 2–5. Overall, the expression levels of miRNAs are regulated by complicated factors, including mosquito species, sexes, developmental stages, tissues or organs, aging, blood feeding, and so on (Tables 2–5). In addition to differences in expression levels, the preferred or functional arm also varies among these factors in terms of the change in 5p/3p ratio or even dominant arm shifts (Skalsky et al., 2010; Biryukova et al., 2014; Castellano et al., 2015). For example, the 5p/3p ratios of miR-956-3p and miR-219-5p are significantly reduced by blood feeding (Biryukova et al., 2014). Moreover, isomiR production based on acylation, uridylation, adenine and uracil extension/addition can be induced by blood feeding and insecticide resistance (Skalsky et al., 2010; Biryukova et al., 2014).

miRNA-Pathogen Interactions in the Mosquitoes

The second step in the research roadmap always begins with an observation of statistical correlations between miRNA regulation and pathogen infection in mosquitoes. The pathogens primarily include Plasmodium, DENV, CHIKV, Wolbachia, Zika virus, WNV, JEV, PCV and ONNV (Table 6). The miRNA abundance may vary upon pathogen infection in mosquitoes according to differences in the studied material, e.g., miR-10-5p is upregulated in CHIKV-infected Aedes aegypti (Dubey et al., 2017); conversely, it is downregulated in DENV-infected Aedes aegypti (Liu et al., 2015; Etebari et al., 2015) (Table 6). More importantly, a few miRNAs were found to exhibit similar regulation patterns in different independent studies, and the repeatability of these results makes them more reliable (Table 6), as described in the following
TABLE 2 | Continued

miRNA names	Study material and references
miR-315-3p	mosquito (Lucas et al., 2015a; Lucas et al., 2015b)
miR-34-3p	mosquito (Lucas et al., 2015a; Lucas et al., 2015b)
miR-989-3p	mosquito, e.g., An. gambiae (Winter et al., 2007)

Conserved miRNAs in different subspecies

miR-1889-3p	Cx. quinquefasciatus (Skalsky et al., 2010)
miR-2952	mosquito, e.g., An. funestus (Allam et al., 2016), Ae. aegypti and An. gambiae (but not Cx. quinquefasciatus) (Gu et al., 2013)
miR-927-5p	An. stephensi (Jain et al., 2014; Hu et al., 2015) [not in Ae. albopictus]

The term “specific” here indicates that the miRNA is restricted to the corresponding mosquito subject. During the exploration of miRNA-based approaches, special attention should be devoted to mosquito-specific miRNAs. Species-specific miRNA may be chosen to establish miRNA-based approaches, and for different mosquito species, the candidate miRNAs for study may differ.

Examples below. The miR-10-5p, -125-5p, -143, -275-3p, -277-3p, -308-5p, and -927-5p have been consistently shown to be upregulated upon CHIKV infection (Table 6). Downregulation of miR-133-3p, -14-3p, -252-5p, -275-3p, miR-306-3p, -71-3p, -957-3p, -970-3p, -980-3p, or let-7-5p has been observed upon Plasmodium infection (Table 6). Uprogulation of miR-1767, -34-5p, or -622 and downregulation of miR-1-3p, -275-3p, -317-3p, -4448, -8-3p, or bantam-5p have been detected upon DENV infection. Upregulation of miR-125-5p, -252-5p, -277-3p, -308-5p, -9240-5p, -9240-3p, -989-3p, and -999-3p have been observed upon Wolbachia infection. Notably, miR-2940-5p, -375-3p, -87-3p, -2940-3p, -2941-3p, -308-5p, or let-7-5p has been observed upon Plasmodium infection (Table 6). Uprogulation of miR-1767, -34-5p, or -622 and downregulation of miR-1-3p, -275-3p, -317-3p, -4448, -8-3p, or bantam-5p have been detected upon DENV infection. Upregulation of miR-125-5p, -252-5p, -277-3p, -308-5p, -9240-5p, -9240-3p, -989-3p, and -999-3p have been observed upon Wolbachia infection. Notably, miR-2940-5p, -375-3p, -87-3p, -988-5p, and -999-3p are consistently regulated by CHIKV and DENV, which may provide insight into coregulation by these two pathogens and the subsequent codevelopment of miRNA-based approaches for transmission control. More specifically, miR-2940-5p is inversely regulated by DENV and Wolbachia, consistent with the results that Wolbachia uses miRNA-2940-5p to inhibit DENV infection in Ae. aegypti (Hussain et al., 2011; Zhang et al., 2013) (Table 6).

As in the first study step in the roadmap, in addition to differences in expression levels, changes in 5p/3p ratio, dominant arm shifts, and isomiR production can be modified by pathogen infection (Etebari et al., 2015).

JEV, PCV and ONNV pathogens do not appear in the summary presented in Table 6. Except for a study showing that miR-124 inhibits JEV replication in PK15 porcine kidney epithelial cells (Yang et al., 2016), no report that has indicated that miRNAs are statistically correlated with JEV infection in mosquito or mosquito cells. PCV and ONNV infection exert...
TABLE 3 | Sex-specific miRNAs in adult mosquitoes.

Female-specific or enriched miRNAs	Study material and reference	Male-specific or enriched miRNAs	Study material and reference
miR-100-5p	An. stephensi (Jain et al., 2015)	miR-1-5p	An. stephensi (Jain et al., 2015)
miR-10387-5p	An. coluzzii (Bruno et al., 2019)	miR-100-5p	An. anthropophagus (Lu et al., 2014)
miR-10398-5p	An. coluzzii (Bruno et al., 2019)	miR-1000-5p	An. anthropophagus (Lu et al., 2014)
miR-10399-5p	An. coluzzii (Bruno et al., 2019)	miR-10381	An. coluzzii (Bruno et al., 2019)
miR-10360-5p	An. coluzzii (Bruno et al., 2019)	miR-124-3p	An. anthropophagus (Lu et al., 2014)
miR-10362-5p	An. coluzzii (Bruno et al., 2019)	miR-125-5p	An. anthropophagus (Lu et al., 2014)
miR-10371-5p	An. coluzzii (Bruno et al., 2019)	miR-125-3p	An. anthropophagus (Lu et al., 2014)
miR-11-3p	An. stephensi (Jain et al., 2015)	miR-137-3p	An. anthropophagus (Lu et al., 2014)
miR-1174-3p	An. coluzzii (Bruno et al., 2019)	miR-184-5p	An. anthropophagus (Lu et al., 2014)
miR-1174-5p	An. coluzzii (Bruno et al., 2019)	miR-1891-5p	Ae. aegypti, An. stephensi (Hu et al., 2015)
miR-1175-5p	An. stephensi (Jain et al., 2015)	miR-193-3p	An. anthropophagus (Lu et al., 2014)
miR-283-5p	An. anthropophagus (Jiu et al., 2014), An. coluzzii (Bruno et al., 2019)	miR-2765-5p	An. stephensi (Jain et al., 2015; Allam et al., 2019)
miR-307-3p	An. anthropophagus (Jiu et al., 2014)	miR-277-3p	An. anthropophagus (Lu et al., 2014)
miR-305-5p	An. funestus (Allam et al., 2016)	miR-282-5p	An. anthropophagus (Lu et al., 2014)
miR-315-5p	An. anthropophagus (Jiu et al., 2014)	miR-7-5p	An. anthropophagus (Lu et al., 2014), An. stephensi (Jain et al., 2015)
miR-79-5p	An. Anthropophagus (Jiu et al., 2014)	miR-981-3p	An. anthropophagus (Lu et al., 2014), An. coluzzii (Bruno et al., 2019)
miR-929-5p	An. anthropophagus (Jiu et al., 2014)	–	–
miR-980-3p	An. coluzzii (Bruno et al., 2019)	–	–
miR-988-3p	An. anthropophagus (Jiu et al., 2014), An. coluzzii (Bruno et al., 2019)	–	–
miR-989-3p	An. anthropophagus (Jiu et al., 2014), An. stephensi (Jain et al., 2015; Allam et al., 2016), Ae. aegypti (Allam et al., 2016), An. coluzzii (Bruno et al., 2019)	–	–
miR-989-5p	An. coluzzii (Bruno et al., 2019)	–	–

The term “specific” here indicates that miRNA is restricted to one sex or is more abundant in one sex than in the other sex. The symbol “—” indicates that no related evidence is available regarding the corresponding sex of the mosquito.

It is easy to find that the upregulating and downregulating miRNAs in response to pathogen infection co-exist in the mosquito (Table 7). No miRNA has been reported to induce multi-antipathogen effects on the two kinds of flaviviruses and Plasmodium protozoans. A more detailed description of the progress achieved by studies examining miRNA-pathogen interactions in mosquitoes is presented in Table S1.

Exploration of the Mechanism of Action

Research on the mechanism of action mostly focuses on the prediction and verification of miRNA targets or functions through genetic disruption methods. Bioinformatic analysis tools, such as TargetScan, PITA and RNAhybrid, are always used for target prediction. The verification methods usually include the transfection of miRNA-specific antagomirs into mosquito cells, miRNA mimic/inhibitor microinjection in mosquitoes, real-time quantitative polymerase chain reaction (qRT-PCR), or luciferase assays (Liu et al., 2016; Ma et al., 2017; Nouzova et al., 2018; Yen et al., 2019; Avila-Bonilla et al., 2020; Fu et al., 2020). The most recent method applied to elucidate the targets and biological functions of mosquito miRNAs is high-throughput sequencing of covalent ligation of endogenous Argonaute-bound RNAs isolated by crosslinking and immunoprecipitation (CLEAR-CLIP). In this assay, the
miRNA names	Egg	Larva	Pupa	Adult	Blood feeding	Other stages
miR-1-3p				An. stephensi	Ae. aegypti fat body 24 h PBM (Zhang et al., 2017), Ae. aegypti (Russin et al., 2013), An. stephensi (Jain et al., 2014), An. anthropophagus midgut (Liu et al., 2017)	Ae. albopictus nondiapause pharate larva (Batz et al., 2017), Cx. pipiens DR-strain (Hong et al., 2014)
miR-1-5p				An. stephensi	Ae. aegypti at 12 h PBM (Bryant et al., 2010), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Ae. aegypti fat body at 72 h PBM (Zhang et al., 2017)
miR-10-3p				An. stephensi	Ae. aegypti at 12 h PBM (Bryant et al., 2010), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-10-5p				An. stephensi	An. gambiae (Fu et al., 2017)	Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)
miR-100-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Ae. aegypti fat body at 72 h PBM (Zhang et al., 2017)
miR-1005p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-11-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-11-5p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Ae. aegypti fat body at 72 h PBM (Zhang et al., 2017)
miR-1174-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-1175-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-1175-5p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-1177-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-124-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-124-5p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-125-5p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-124-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-125-5p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-127				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-13-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-13-5p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-13-3p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-13-5p				An. stephensi	An. gambiae (Biryukova et al., 2014), An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)

(Continued)
miRNA names	Study materials and expression levels in certain stages or statuses*
	Egg⁺ Larva⁺ Pupa⁺ Adult⁺ Blood feeding⁺ Other stages⁺
miR-133-5p	An. stephensi (Jain et al., 2015)
miR-137-3p	An. funestus (Allam et al., 2016)
miR-137-5p	An. funestus (Allam et al., 2016)
miR-14-5p	An. funestus (Allam et al., 2016)
miR-14-3p	An. funestus (Allam et al., 2016)
miR-1767	An. funestus (Allam et al., 2016)
miR-184-3p	An. funestus (Allam et al., 2016)
miR-1889-5p	An. funestus (Allam et al., 2016)
miR-1890-3p	An. funestus (Allam et al., 2016)
miR-1891-5p	An. sinensis (Feng et al., 2018b)
miR-190-5p	An. stephensi (Jain et al., 2015)
miR-190-3p	An. stephensi (Jain et al., 2015)
miR-193-5p	An. stephensi (Jain et al., 2015)
miR-193-3p	An. stephensi (Jain et al., 2015)
miR-1951	An. stephensi (Jain et al., 2015)

Continued in next page.
miRNA names	Study materials and expression levels in certain stages or statuses*					
	Egg*	Larva*	Pupa*	Adult*	Blood feeding*	Other stages*
miR-210-3p	An. stephensi (Mead and Tu, 2006)	An. stephensi (Jain et al., 2015)	—	—	—	—
miR-210-3p	An. stephensi (Mead and Tu, 2006)	An. stephensi (Jain et al., 2015)	—	—	—	—
miR-2491-3p	An. sinensis (Feng et al., 2018b)	—	—	—	—	—
miR-252-5p	—	—	—	—	—	—
miR-252-5p	—	—	—	—	—	—
miR-252-5p	—	—	—	—	—	—
miR-281-3p	—	—	—	—	—	—
miR-281-3p	—	—	—	—	—	—
miR-281-3p	—	—	—	—	—	—
miR-281-3p	—	—	—	—	—	—
miR-281-3p	—	—	—	—	—	—
miR-281-3p	—	—	—	—	—	—

(Continued)
miRNA names	Study materials and expression levels in certain stages or statuses*	Other stages$
miR-282-5p	—	Ae. albopictus diapause pharate larva (Batz et al., 2017)
miR-283-5p	Ae. albopictus (Batz et al., 2017)	Cx. pipiens DR strain (Hong et al., 2014)
miR-284-3p	—	Ae. aegypti fat body at 36 h PBM (Zhang et al., 2017)
miR-285-3p	—	Ae. aegypti (Hussain et al., 2013)
miR-286-3p	An. stephensi (Jain et al., 2015)	Cx. pipiens DR strain (Hong et al., 2014)
miR-2941-3p	—	Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)
miR-2943-5p	An. anthropophagus (Ji et al., 2014), An. sinensis (Feng et al., 2018b)	Cx. pipiens DR strain (Hong et al., 2014)
miR-2944a-5p	—	An. gambiae (Fu et al., 2017)
miR-2945-3p	—	Ae. aegypti fat body at 36 h PBM (Zhang et al., 2017)
miR-2946-3p	—	Ae. aegypti fat body at 48 h PBM (Zhang et al., 2017)
miR-2951-5p	—	midgut of Ae. albopictus (Su et al., 2017)
miR-2952	—	Cx. pipiens DR strain (Hong et al., 2014)
miR-2981	—	Cx. pipiens DR strain (Hong et al., 2014)
miR-2c-3p	—	Cx. pipiens DR strain (Hong et al., 2014)
miR-309a-3p	An. funestus (Hu et al., 2015; Alam et al., 2016)	—

(Continued)
miRNA names	Study materials and expression levels in certain stages or statuses*					
	Egg*	Larva*	Pupa*	Adult*	Blood feeding*	Other stages*
Ae. aegypti, An. stephensi [Li et al., 2015]						
miR-305-5p	—	An. funestus (Allam et al., 2016)	An. funestus (Allam et al., 2016)	An. funestus (Hu et al., 2015)	An. funestus (Allam et al., 2016)	An. funestus (Allam et al., 2016)
	An. funestus (Allam et al., 2016)					
miR-305-3p	—	An. funestus (Allam et al., 2016)				
miR-306-5p	—	An. funestus (Allam et al., 2016)				
miR-306-3p	—	An. funestus (Allam et al., 2016)				
miR-307-3p	—	An. funestus (Allam et al., 2016)				
miR-308-3p	—	An. funestus (Allam et al., 2016)				
miR-308-5p	—	An. funestus (Allam et al., 2016)				
miR-315-3p	—	An. funestus (Allam et al., 2016)				
miR-316-5p	—	An. funestus (Allam et al., 2016)				
miR-317-3p	—	An. funestus (Allam et al., 2016)				
miR-33-5p	—	An. funestus (Allam et al., 2016)				
miR-34-3p	—	An. funestus (Allam et al., 2016)				
miR-34-5p	—	An. funestus (Allam et al., 2016)				
miR-375-3p	—	An. funestus (Allam et al., 2016)				

(Continued)
miRNA names	Study materials and expression levels in certain stages or statuses*	Other stages*				
	Egg*	Larva*	Pupa*	Adult*	Blood feeding*	Cx. pipiens DR strain
mir-375-5p						(Hong et al., 2014)
mir-3809-3p						old Cx. pipiens (Meuti et al., 2018)
mir-3809-5p						
mir-424-3p						
mir-4448						
mir-4728-5p						
mir-493-3p						
mir-4968-3p						
mir-622						
mir-7-3p						
mir-71-3p						
mir-79-3p						
mir-79-5p						
mir-8-3p						
mir-87-3p						
mir-92a-3p						
mir-927-5p						
mir-927-3p						
mir-929-3p						
mir-929-5p						
mir-956-3p						

(Continued)
miRNA names	Study materials and expression levels in certain stages or statuses*					
	Egg*	Larva*	Pupa*	Adult*	Blood feeding*	Other stages*
miR-957-3p	—	—	—	—	—	—
	—	—	—	—	An. anthropophagus midguts (Liu et al., 2017), Ae. aegypti fat body at 48h PBM (Zhang et al., 2017)	Ae. albopictus diapause oocyte (Lutz et al., 2017), Cx. pipiens DR strain (Hong et al., 2014)
miR-965-3p	—	—	—	—	—	—
miR-970-3p	An. funestus (Alam et al., 2016)	An. funestus (Alam et al., 2016)	—	An. stephensi (Jain et al., 2015)	Ae. aegypti fat body at 36h PBM (Zhang et al., 2017), An. anthropophagus midgut (Liu et al., 2017)	Ae. albopictus and Ae. aegypti (Su et al., 2017)
miR-976-5p	—	—	—	—	—	—
miR-980-3p	—	—	—	—	An. stephensi (Jain et al., 2015)	—
miR-981-3p	—	—	—	—	An. anthropophagus gut (Liu et al., 2017), Ae. aegypti fat body at 48h PBM (Zhang et al., 2017)	Ae. aegypti fat body at 72 h PBM (Zhang et al., 2017)
miR-988-3p	—	—	—	—	An. gambi (Fu et al., 2017)	—
miR-989-3p	—	—	—	—	An. stephensi (Jain et al., 2015)	Ae. aegypti fat body at 36h PBM (Zhang et al., 2017)
miR-993-5p	—	—	—	—	An. stephensi (Jain et al., 2015)	—
miR-993-3p	An. funestus (Alam et al., 2016)	An. funestus (Alam et al., 2016)	—	An. stephensi (Jain et al., 2015)	Ae. aegypti fat body at 72 h PBM (Zhang et al., 2017), An. anthropophagus midgut (Liu et al., 2017)	Ae. albopictus (Su et al., 2017), An. gambi ovaries (Lampe and Levashina, 2018)
miR-996-3p	An. funestus (Alam et al., 2016)	An. stephensi (Jain et al., 2015)	—	An. stephensi (Jain et al., 2015)	Ae. aegypti fat body at 72 h PBM (Zhang et al., 2017), An. anthropophagus midgut (Liu et al., 2017)	—
miR-996-5p	—	—	—	—	—	—
miR-996-3p	An. funestus (Alam et al., 2016)	—	An. stephensi (Jain et al., 2015)	—	—	
miR-998-3p	An. funestus (Alam et al., 2016)	—	An. stephensi (Jain et al., 2015)	—	—	
miR-998-5p	—	—	—	—	—	—
miR-999-3p	—	—	—	—	—	—
miR-999-5p	—	—	—	—	—	—
miR-9a-5p	—	—	—	—	—	—
miR-iab-4-3p	—	—	—	—	—	—
miR-iab-4-5p	—	—	—	—	—	—
bantam-3p	—	—	—	—	—	—

(Continued)
miRNA and its target mRNA are joined in the purified RNA-induced silencing complex (RISC) complex to form one chimeric molecule. Analysis of the chimeric miRNA-target molecule among the RNA molecules associated with Argonaute (AGOs) proteins facilitates the systematic identification of miRNA-target interactions (Dong et al., 2020).

The miRNAs noted in bold in Table S1 have been confirmed to contribute to blood digestion (Bryant et al., 2010; Jain et al., 2014), egg development (Bryant et al., 2010; Puthiyakunnnon et al., 2013; Jain et al., 2014; Lucas et al., 2015a; Zhang et al., 2017; Lucas et al., 2015b), ovary development (Ling et al., 2017), larval eclosion (Yan et al., 2013; Jain et al., 2015; Feng et al., 2018b), reproduction (Zhang et al., 2016; Fu et al., 2017), the stability and nuclear translocation of AGO1 (Hussain et al., 2013), lipid accumulation (Batz et al., 2017), metabolism (Ling et al., 2017), host-pathogen interactions (Yan et al., 2014; Lucas et al., 2015b; Dubey et al., 2019; Yen et al., 2019), and insecticide resistance (Hong et al., 2014) (Table S1).

In the canonical mechanism of action of miRNAs, mature miRNAs guide the RISC to the 3' untranslated regions (UTRs) of target miRNAs via complementary base pair interactions, thus regulating the expression of target genes (Hammond et al., 2000; Lee et al., 2002; Lee et al., 2003). Most miRNA-target (mRNA) interactions are consistent with the canonical action mechanism; however, exceptions have been identified for miRNA-virus interactions (e.g., DENV and CHIKV) in terms of the target type or regulatory outcome. First, during arbovirus infection, mosquito miRNAs can directly bind to the 3'-UTR of the viral genome (not necessary an mRNA), regulating virus replication (Yan et al., 2014; Lucas et al., 2015b; Dubey et al., 2019; Yen et al., 2019), which differs from the canonical mechanism of action. However, the mechanisms underlying mosquito miRNA-Plasmodium interactions are always consistent with the canonical mechanism of action, namely, miRNAs generally bind to mosquito immunity- or development-related miRNAs, indirectly regulating pathogen infection (Jain et al., 2014; Dennison et al., 2015; Dong et al., 2020) (Table S1). However, the exact mechanism of translational or viral repression remains unclear (Winter et al., 2007). Second, miRNAs always negatively regulate their targets by inducing mRNA cleavage (Yekta et al., 2004) or degradation (Eichhorn et al., 2014), or by repressing translation (Fabian and Sonenberg, 2012); however, positive regulation by miRNAs is repeatedly observed in mosquitoes (Hussain et al., 2013; Zhou et al., 2014; Maharaj et al., 2015; Su et al., 2019). In addition to repressing gene expression, miRNAs can also induce the expression of genes with complementary promoter sequences, switching these genes from repressed to activated (Hussain et al., 2013; Zhou et al., 2014; Maharaj et al., 2015; Su et al., 2019).

More interestingly, the miRNA-target interaction may involve a complex network. A network was observed among clusters of miR-2-3p, miR-13-3p, miR-71-5p, CYP9J35 (a target of miR-2-3p and -13-3p), and CYP325BG3 (a target of miR-71-5p) in insecticide resistant Cx. pipiens (Hong et al., 2014). Moreover, infection with one pathogen affects coinfection with another pathogen in mosquitoes, especially for Wolbachia or engineered mosquito dengueviruses (MDVs), which can modify host miRNA profiles or use a specific host miRNA to manipulate pathogen invasion in mosquitoes (Osei-Amo et al., 2012; Maharaj et al., 2015; Liu P. et al., 2016).

Preapplication Investigation

Of the 1635 putative or mature miRNAs reported in mosquitoes, only a few have advanced to the step of preapplication investigations, and the names of these miRNAs are italicized in Table S1. The first attempt to establish an application is to exploit the vector specificity and stability of MDVs, which are restricted to mosquitoes. Anti-miRNA sponges targeting endogenous let-7-5p and miR-210-3p were introduced into MDVs in Ae. aegypti (noted as AaeDV-based vectors in Figure 1), and both sponges downregulated the expression levels of these miRNAs. According to the study, this recombinant vector is useful to purposefully inhibit or promote...
TABLE 5 | Tissue-, organ- or cell compartment- specific miRNAs.

miRNA names	Study materials and enriched tissues, organs, or cell compartments							
	Ovary^a	Salivary glands^a	Midgut^a	Brain^a	Fat body^a	Thorax^a	Cell cytoplasm^a	Cell nucleus^a
miR-1-3p	—	—	—	—	—	—	infected cells (Mayoral et al., 2014)	Ae. aegypti cells (Mayoral et al., 2014)
miR-10-3p	An. gambiae (Nouzova et al., 2018)	—	—	—	—	—	—	—
miR-10-5p	An. gambiae (Lampe and Levashina, 2018)	—	—	—	—	—	—	—
miR-100-5p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-10355-3p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-10355-5p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-10365-5p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-10367-5p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-10368-3p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-10368-5p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-10369-3p	An. coluzzii (Bruno et al., 2019)	—	—	—	—	—	—	—
miR-10376-3p	An. coluzzii (Bruno et al., 2019)	—	—	—	—	—	—	—
miR-11-3p	An. coluzzii (Bruno et al., 2019)	—	—	—	—	—	—	—
miR-1174-3p	—	—	—	An. gambiae (Bryant et al., 2020)	—	—	—	—
miR-1174-5p	—	—	—	—	—	—	—	—
miR-1175-5p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-1175-3p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-12-5p	An. gambiae (Bryant et al., 2019)	An. coluzzii (Bruno et al., 2019)	An. gambiae (Winter et al., 2007; Bryant et al., 2019)	—	—	—	—	—

(Continued)
miRNA names	Study materials and enriched tissues, organs, or cell compartments							
	Ovary^a	Salivary glands^a	Midgut^a	Brain^a	Fat body^a	Thorax^a	Cell cytoplasm^b	Cell nucleus^b
miR-12-3p	An. gambiae (Bryant et al., 2019)	An. gambiae	—	—	—	—	—	—
miR-124-3p	—	—	—	An. gambiae (Lampe and Levashina, 2018)	—	—	—	—
miR-12414-3p	—	—	—	—	—	—	Ae. aegypti cells (Mayoral et al., 2014)	—
miR-125-5p	An. coluzzii (Bruno et al., 2019)	—	—	—	—	—	—	—
miR-133-3p	—	—	—	—	—	—	—	—
miR-137-3p	—	—	—	—	—	—	—	—
miR-14-3p	—	—	—	—	—	—	Ae. aegypti cells (Bryant et al., 2010)	—
miR-1889-3p	—	—	—	—	—	—	infected cells (Mayoral et al., 2014)	—
miR-1889-5p	—	—	—	—	—	—	—	—
miR-1891-3p	—	—	—	—	—	—	—	—
miR-1891-5p	—	—	—	—	—	—	—	—
miR-210-3p	—	—	—	—	—	—	—	—
miR-252-5p	—	—	—	—	—	—	—	—
miR-252-3p	—	—	—	—	—	—	—	—
miR-275-3p	An. coluzzii (Bruno et al., 2019)	—	—	—	—	—	—	—
miR-275-5p	—	—	—	—	—	—	—	—
miR-276-5p	—	—	—	—	—	—	—	—

(Continued)
miRNA names	Study materials and enriched tissues, organs, or cell compartments							
	Ovary^a	Salivary glands^a	Midgut^a	Brain^a	Fat body^a	Thorax^a	Cell cytoplasm^a	Cell nucleus^a
miR-2765-5p	An. gambiae (Bryant et al., 2019)	—	—	—	—	—	—	—
miR-277-3p	—	—	—	—	—	—	—	—
miR-279-3p	An. gambiae (Lampe and Levashina, 2018)	—	—	—	—	—	—	—
miR-281-3p	An. gambiae (Lampe and Levashina, 2018)	—	—	—	—	—	—	—
miR-281-5p	An. coluzzii (Bruno et al., 2019)	An. gambiae (Nouzova et al., 2018; Bryant et al., 2019)	—	—	—	—	—	—
miR-282-5p	—	—	—	—	—	—	—	—
miR-283-5p	—	—	—	—	—	—	—	—
miR-285-3p	—	—	—	—	—	—	—	—
miR-286-3p	Ae. aegypti (Akbari et al., 2013)	—	—	—	—	—	—	—
miR-2945-3p	—	—	—	—	—	—	—	—
miR-2c-3p	—	—	—	—	—	—	—	—
miR-305-5p	An. gambiae (Lampe and Levashina, 2018)	—	—	—	—	—	—	—
miR-306-5p	An. gambiae (Nouzova et al., 2018)	—	—	—	—	—	—	—
miR-308-3p	—	—	—	—	—	—	—	—
miR-308-3p	—	—	—	—	—	—	—	—

(Continued)
miRNA names	Study materials and enriched tissues, organs, or cell compartments								
	Ovary\(^a\)	Salivary glands\(^a\)	Midgut\(^a\)	Brain\(^b\)	Fat body\(^b\)	Thorax\(^b\)	Cell cytoplasm\(^a\)	Cell nucleus\(^a\)	
miR-309a-3p	An. gambiae (Bryant et al., 2019)								
miR-375-5p									
miR-375-3p									
miR-7-5p				An. gambiae (Lampe and Levashina, 2018)					
miR-71-3p									
miR-79-5p									
miR-8-3p	An. coluzzii (Bruno et al., 2019)			Ae. aegypti (Bryant et al., 2010)				Ae.aegypti cells (Mayoral et al., 2014)	
miR-927-5p									
miR-927-3p									
miR-932-5p								Ae.aegypti cells (Mayoral et al., 2014)	
miR-956-3p		An. gambiae (Bryant et al., 2020)							
miR-957-5p				An. gambiae (Bryant et al., 2019)					
miR-965-3p	An. coluzzii (Bruno et al., 2019)								
miR-970-3p								infected cells (Mayoral et al., 2014)	
miR-980-3p	An. coluzzii (Bruno et al., 2019)							infected cells (Mayoral et al., 2014)	
miR-981-3p	An. coluzzii (Bruno et al., 2019)								

(Continued)
TABLE 5 | Continued

miRNA names	Study materials and enriched tissues, organs, or cell compartments							
	Ovary*	Salivary glands*	Midgut*	Brain*	Fat body*	Thorax*	Cell cytoplasm*	Cell nucleus*
miR-989-3p	An. stephensi, Ae. aegypti (Meand Tu, 2008), An. gambiae (Lampe and Levashina, 2019; Bryant et al., 2019)	—	—	—	—	—	—	
miR-993-3p	—	—	—	—	—	—	—	
miR-998-3p	An. gambiae (Lampe and Levashina, 2018)	—	—	—	—	—	—	
miR-998-5p	An. gambiae (Lampe and Levashina, 2018)	—	—	—	—	—	—	

*The term “specific” here indicates that the miRNA is enriched in the corresponding tissue compared with the other tissues from one mosquito species. The term “specific” here indicates that the miRNA is enriched in either the cytoplasm or nucleus in comparison between the two cell compartments; and for reference (Mayoral et al., 2014), the pathogen used for infection was Wolbachia. “—,” no evidence shows that the miRNA is more abundant in these comparisons.

TABLE 6 | Alterations in miRNA abundance in response to infection with different pathogens in various mosquito samples.

miRNA names	Study materials* and changes in expression levels upon pathogen infection						
	CHIKV infection	Plasmodium infection	DENV infection	Wolbachia infection	ZIKA infection	WNV infection	BTV infection
miR-1-3p	Ae. albopictus cells (Shrinet et al., 2014)	An. anthropophagus midgut (Liu et al., 2017), An. stephensi (Jain et al., 2014)	Ae. albopictus midgut (Su et al., 2017), Ae. albopictus (Liu et al., 2015)	Ae. aegypti cell cytoplasm (Mayoral et al., 2014), Ae. aegypti cell nucleus (Mayoral et al., 2014)	—	—	—
miR-1-5p	—	—	—	—	—	—	—
miR-10-5p	Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015), Ae. aegypti (Dubey et al., 2017)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	Ae. aegypti (Liu et al., 2015; Etebari et al., 2015), C6/36 cells (Avila-Bonilla et al., 2017)	Ae. aegypti cell nucleus (Mayoral et al., 2014)	—	—	—
miR-100-5p	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015), Ae. aegypti (Saldana et al., 2017)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	Ae. albopictus (Yan et al., 2014)	Ae. aegypti cell cytoplasm and nucleus (Mayoral et al., 2014)	—	—	—
miR-1000-5p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. albopictus cells (Shrinet et al., 2014)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	Ae. albopictus midgut (Su et al., 2017), Ae. aegypti (Campbell et al., 2014)	Ae. aegypti cell cytoplasm and nucleus (Mayoral et al., 2014)	—	—	—
miR-109	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—
miR-11-3p	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva (Maharaj et al., 2015)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	—	Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—
miR-11-5p	Ae. albopictus cells (Shrinet et al., 2014)	—	—	—	—	—	—
miR-115	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—
miR-117	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—

(Continued)
miRNA names	miR-1174-3p	miR-1175-5p	miR-1175-3p	miR-11900	miR-12-5p	miR-12-3p	miR-124-3p	miR-1247	miR-125-5p	miR-125-3p	miR-127	miR-13-3p	miR-13-5p	miR-133-3p	miR-133-5p	miR-137-3p
CHIKV infection	Ae. aegypti saliva (Maharaj et al., 2015)	—	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—	—	—	—	—	—	—	
Plasmodium infection	An. stephensi (Jain et al., 2014), An. gambiæ (Winter et al., 2007), An. stephensi (Jain et al., 2014)	Ae. aegypti cell midgut (Su et al., 2017)	Ae. aegypti cell midgut (Su et al., 2017)	Ae. aegypti cells (Miesen et al., 2016; Zhang et al., 2017)	—	—	—	—	—	—	—	—	—	—		
DENV infection	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Wolbachia infection	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
ZIKA infection	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
WNV infection	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
BTV infection	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
(Continued)																
miRNA names	Study materials* and changes in expression levels upon pathogen infection															
-------------	---															
miR-14-3p	**CHIKV infection**															
	An. stephensi (Jain et al., 2014), *An. anthropophagus* midguts (Liu et al., 2017)	**Plasmodium infection**														
	An. stephensi (Jain et al., 2014), *An. anthropophagus* midguts (Liu et al., 2017)	**DENV infection**														
		Wolbachia infection														
		Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	**ZIKV infection**													
			WNV infection													
			BTV infection													
miR-143	*Ae. aegypti* saliva, *Ae. albopictus* saliva (Maharaj et al., 2015)															
miR-15-3p																
miR-157	*Ae. albopictus* saliva (Maharaj et al., 2015)															
miR-1571	*Ae. aegypti* saliva (Maharaj et al., 2015)															
miR-1767	*Ae. albopictus* saliva (Maharaj et al., 2015), C6/36 cells (Dubey et al., 2017), *Ae. aegypti* saliva (Maharaj et al., 2015)															
miR-184-3p	*Ae. aegypti* saliva (Maharaj et al., 2015)															
miR-1889-3p	*Ae. aegypti* saliva (Maharaj et al., 2015)															
miR-1889-5p	*Ae. aegypti* saliva (Maharaj et al., 2015)															
miR-190-3p	*Ae. albopictus* cells (Shrinet et al., 2014)															
miR-190-5p	*Ae. aegypti* saliva (Maharaj et al., 2015), *Ae. albopictus* cells (Shrinet et al., 2014)															
miR-191-5p	*Ae. aegypti* saliva, *Ae. albopictus* saliva (Maharaj et al., 2015), *Ae. albopictus* cells (Shrinet et al., 2014)															
miR-1951	*Ae. aegypti* saliva (Maharaj et al., 2015), *Ae. albopictus* saliva (Maharaj et al., 2015)															
miR-210-3p	*Ae. aegypti* saliva (Maharaj et al., 2015), *Ae. albopictus* saliva (Maharaj et al., 2015)															
miR-210-5p	*Ae. aegypti* saliva (Maharaj et al., 2015), *Ae. albopictus* saliva (Maharaj et al., 2015)															
miR-214	*Ae. aegypti* saliva (Maharaj et al., 2015), *Ae. albopictus* saliva (Maharaj et al., 2015)															

(Continued)
miRNA names	Study materials* and changes in expression levels upon pathogen infection						
	CHIKV infection	Plasmodium infection	DENV infection	Wolbachia infection	ZIKA infection	WNV infection	BTV infection
miR-219-5p	Ae. albopictus cells (Shrinet et al., 2014)	—	—	Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—
miR-229	—	—	—	—	—	—	—
miR-23	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—
miR-2308	—	—	—	—	—	—	—
miR-242	—	—	—	—	—	—	—
miR-249	—	—	—	—	—	—	—
miR-252-5p	Ae. aegypti saliva, Ae. aegypti saliva (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014), An. anthropophagus midgut (Liu et al., 2017)	C6/36 cells (Yan et al., 2014), C6/36 cells (Avila-Bonilla et al., 2017)	Ae. aegypti (Hussain et al., 2011), Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—
miR-252-3p	—	—	—	—	—	—	—
miR-263a-3p	—	—	—	—	—	—	—
miR-263a-5p	—	—	—	—	—	—	—
miR-275-5p	Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	Ae. albopictus (Liu et al., 2015), Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—	—
miR-275-3p	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015)	—	Ae. albopictus cells (Shrinet et al., 2014)	C6/36 cells (Avila-Bonilla et al., 2017)	—	—	—
miR-276-5p	—	—	—	—	—	—	—
miR-276-3p	Ae. aegypti saliva, Ae. aegypti saliva (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014)	Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—	—
miR-278-5p	—	—	—	—	—	—	—
miR-278-3p	Ae. albopictus cells (Shrinet et al., 2014)	—	Ae. aegypti cell nucleus (Mayoral et al., 2014)	—	—	—	—
miR-276-5p	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	Ae. aegypti (Hussain et al., 2011), Ae. aegypti cell nucleus (Mayoral et al., 2014)	—	—	—	—
miR-278-3p	Ae. albopictus cells (Shrinet et al., 2014)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—	—

(Continued)
miRNA names	Study materials* and changes in expression levels upon pathogen infection					
CHIKV infection	Plasmodium infection	DENV infection	Wolbachia infection	ZIKV infection	WNV infection	BTV infection
miR-279-3p	Ae.aegypti saliva (Maharaj et al., 2015), Ae. albopictus cells (Shrinet et al., 2014), Ae. albopictus saliva (Maharaj et al., 2015)	An. anthropophagus midgut (Liu et al., 2017), An. stephensi (Jain et al., 2014)	—	—	—	—
miR-2796-5p	Ae. albopictus cells (Shrinet et al., 2014)	An. stephensi (Jain et al., 2014)	Ae. albopictus (Liu et al., 2015)	—	—	—
miR-2799	Ae. aegypti (Dubey et al., 2017)	—	—	—	—	—
miR-281-3p	Ae. aegypti saliva (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014)	Ae. albopictus (Zhou et al., 2014)	—	—	—
miR-281-5p	Ae. albopictus saliva (Maharaj et al., 2015)	—	—	—	—	—
miR-282-5p	—	—	—	—	—	—
miR-283-5p	Ae. albopictus midgut (Maharaj et al., 2015), Ae. aegypti saliva (Maharaj et al., 2015), Ae. aegypti (Dubey et al., 2017)	An. anthropophagus midguts (Liu et al., 2017)	—	—	—	—
miR-285-3p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. albopictus saliva (Maharaj et al., 2015), Ae. aegypti (Dubey et al., 2017)	An. stephensi (Jain et al., 2014)	—	—	—	—
miR-286b-5p	—	—	—	—	—	—
miR-286a-3p	—	—	—	—	—	—
miR-2940-3p	—	—	—	—	—	—
miR-2940-5p	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva (Maharaj et al., 2015)	An. gambiae (Bryukova et al., 2014)	Ae. albopictus (Liu et al., 2015)	—	—	C6/36 cells (Avila-Bonilla et al., 2017)
miR-2941-5p	Ae. albopictus cells (Shrinet et al., 2014)	—	—	—	—	—
miR-2943-5p	—	—	—	—	—	—
miR-2944a-5p	Ae. albopictus cells (Shrinet et al., 2014)	Ae. aegypti and Aedes aegypti cells (Hussain et al., 2011; Zhang et al., 2013; Mayoral et al., 2014; Asad et al., 2018)	—	—	C6/36 cells (Slonchak et al., 2014)	—

(Continued)
miRNA names	CHIKV infection	Plasmodium infection	DENV infection	Wolbachia infection	ZIKA infection	WNV infection	BTV infection		
miR-2945-3p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. albopictus cells (Shrinet et al., 2014)	An. stephensi (Jan et al., 2014)	C6/36 cells (Yan et al., 2014), Ae. albopictus (Liu et al., 2015), Ae. aegypti (Campbell et al., 2014)	Ae. aegypti (Hussain et al., 2011), Ae. aegypti cells (Mayoral et al., 2014)	Ae. aegypti cells (Mayoral et al., 2014)	—	—	—	
miR-2946-3p	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	An. gambiae midguts (Dennison et al., 2015), An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jan et al., 2014)	Ae. aegypti cells (Mayoral et al., 2014)	—	Ae. aegypti (Saldana et al., 2017)	—	—
miR-2951-5p	Ae. aegypti saliva (Dubey et al., 2017)	—	—	—	—	—	—	—	
miR-2a-3p	—	—	—	—	—	—	—	—	
miR-3	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—	—	
miR-305-3p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. albopictus cell (Shrinet et al., 2014), Ae. albopictus saliva (Maharaj et al., 2015)	An. stephensi (Jan et al., 2014), An. anthropophagus midguts (Liu et al., 2017)	—	Ae. aegypti cell cytoplasm (Mayoral et al., 2014), Ae. aegypti cell nucleus (Mayoral et al., 2014)	—	—	—	—	
miR-305-3p	—	—	—	—	—	—	—	—	
miR-306-3p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. albopictus cells (Shrinet et al., 2014)	—	—	—	—	—	—	—	
miR-3069	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—	—	
miR-307-3p	—	—	—	—	—	—	—	—	
miR-308-3p	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jan et al., 2014)	—	—	—	—	—	—	—	
miR-308-5p	C6/36 cells (Shrinet et al., 2014), Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—	—	
miR-309a-3p	Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015)	—	—	—	—	—	—	—	
miR-31-5p	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—	—	
miR-315-5p	Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015)	—	—	—	—	—	—	—	
miR-315-3p	—	—	—	—	—	—	—	—	
miR-317-3p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. aegypti (Dubey et al., 2017), Ae. albopictus saliva (Maharaj et al., 2015)	—	—	—	—	—	—	—	

(Continued)
miRNA names	Study materials and changes in expression levels upon pathogen infection						
	CHIKV infection	Plasmodium infection	DENV infection	Wolbachia infection	ZIKV infection	WNV infection	BTV infection
miR-317-5p	Ae. albopictus cells (Shrinet et al., 2014)	--	--	--	--	--	--
miR-320	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-33-5p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. albopictus cell (Shrinet et al., 2014)	--	Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	--	--	--	--
miR-3368-5p	Ae. aegypti cells (Shrinet et al., 2014)	--	--	--	--	--	--
miR-34-3p	Ae. aegypti saliva (Shrinet et al., 2014), Ae. aegypti cell nucleus (Mayoral et al., 2014)	--	Ae. aegypti cell cytoplasm (Mayoral et al., 2014), Ae. aegypti cell nucleus (Mayoral et al., 2014)	--	--	--	--
miR-34-5p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. aegypti (Dubey et al., 2017), Ae. aegypti cells (Shrinet et al., 2014), Ae. albopictus saliva (Maharaj et al., 2015)	An. anthropophagus midguts (Liu et al., 2017), An. gambiae (Winter et al., 2007), An. stephensi (Jain et al., 2014)	Ae. aegypti (Campbell et al., 2014), Ae. aegypti (Campbell et al., 2014), Ae. albopictus midgut (Su et al., 2017), Ae. albopictus (Su et al., 2019)	--	--	--	--
miR-341	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-3722-5p	Ae. aegypti saliva (Maharaj et al., 2015)	Ae. aegypti (Campbell et al., 2014)	--	--	--	--	--
miR-375-3p	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva (Maharaj et al., 2015)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	Ae. albopictus midgut (Su et al., 2017)	--	--	--	--
miR-359	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-360	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-40	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-402	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-408	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-4110-5p	--	--	--	--	--	--	--
miR-424-3p	--	--	--	--	--	--	--
miR-4275-5p	--	--	--	--	--	--	--
miR-4448	--	--	--	--	--	--	--
miR-446	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-4682	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--
miR-47	Ae. aegypti saliva (Maharaj et al., 2015)	--	--	--	--	--	--

(Continued)
TABLE 6 | Continued

miRNA names	Study materials* and changes in expression levels upon pathogen infection							
	CHIKV infection	Plasmodium infection	DENV infection	Wolbachia infection	ZIKA infection	WNV infection	BTV infection	
miR-4728-5p	—	—	—	—	—	—	—	
miR-5	Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015)	—	—	—	—	—	—	
miR-5108-5p	—	—	—	—	—	—	—	
miR-5119-5p	—	—	—	—	—	—	—	
miR-5706	—	—	—	—	—	—	—	
miR-576	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—	
miR-6	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—	
miR-62	Ae. albopictus saliva (Maharaj et al., 2015)	—	—	—	—	—	—	
miR-620	—	—	—	—	—	—	—	
miR-622	—	—	—	—	—	—	—	
miR-69	Ae. aegypti saliva (Maharaj et al., 2015)	—	—	—	—	Ae. aegypti cells (King et al., 2016)	—	
miR-7-5p	C6/36 cells (Shrinet et al., 2014)	—	Ae. stephensi (Jain et al., 2014)	—	—	—		
miR-71-5p	Ae. aegypti (Dubey et al., 2017)	—	Ae. stephensi (Jain et al.; 2014)	—	—	—		
miR-71-3p	Ae. aegypti saliva (Maharaj et al., 2015), C6/36 cells (Shrinet et al., 2014), Ae. albopictus saliva (Maharaj et al., 2015)	—	Ae. stephensi (Jain et al., 2014), An. anthropophagus midguts (Liu et al., 2017)	Ae. albopictus midgut (Su et al., 2017)	Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—
miR-778	Ae. aegypti and Ae. albopictus midgut (Maharaj et al., 2015)	—	—	—	—	—	—	
miR-79-5p	—	—	—	—	—	—	—	
miR-8-3p	Ae. albopictus saliva (Maharaj et al., 2015), Ae. albopictus cells (Shrinet et al., 2014)	—	Ae. stephensi (Jain et al., 2015; Guo et al., 2017)	Ae. albopictus (Li et al., 2015), C7/10 cells, Ae. albopictus midgut (Su et al., 2017)	Ae. aegypti cells (Hussain et al., 2011), Ae. albopictus cell cytoplasm (Mayoral et al., 2014)	—	—	—
miR-8-5p	Ae. albopictus cells (Shrinet et al., 2014)	—	Ae. stephensi (Jain et al., 2014)	Ae. albopictus (Li et al., 2015)	Ae. albopictus cell cytoplasm (Mayoral et al., 2014)	—	—	—
miR-80	Ae.aegypti saliva (Maharaj et al., 2015)	—	—	—	—	—	—	
miR-87-3p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. albopictus cells (Shrinet et al., 2014)	—	An. anthropophagus midgut (Liu et al., 2017)	Ae. albopictus midgut (Su et al., 2017), C6/36 cells (Avila-Bonilla et al., 2017)	Ae. albopictus midgut (Su et al., 2019)	—	—	—
miR-87-5p	—	—	—	—	—	—	—	

(Continued)
TABLE 6 | Continued

miRNA names	CHIKV infection	Plasmodium infection	DENV infection	Wolbachia infection	ZIKAV infection	WNV infection	BTV infection
miR-927-5p	Ae. albopictus cell (Shrinet et al., 2014), Ae. aegypti midgut, Ae. albopictus midgut (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014)	Ae. albopictus (Liu et al., 2015), C6/36 cells (Avila-Bonilla et al., 2017; Avila-Bonilla et al., 2020)	—	—	—	—
miR-927-3p	—	An. stephensi (Jain et al., 2014)	Ae. albopictus midgut (Su et al., 2017)	—	—	—	Ae. albopictus cells (King et al., 2016)
miR-929-5p	—	An. stephensi (Jain et al., 2014)	—	—	—	—	—
miR-929-3p	—	C6/36 cells (Avila-Bonilla et al., 2017)	—	—	—	—	—
miR-92a-3p	—	An. gambiae (Dennisson et al., 2015)	—	—	—	Cx. Quinquefasciatus (Skalsky et al., 2010)	—
miR-932-3p	—	—	mosquito cell nucleus (Mayoral et al., 2014)	Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—
miR-932-5p	Ae. aegypti saliva (Maharaj et al., 2015), C6/36 cells (Shrinet et al., 2014), Ae. albopictus saliva (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014)	Ae. aegypti (Campbell et al., 2014)	—	—	—	—
miR-956-3p	—	—	Ae. albopictus midgut (Su et al., 2017)	—	—	—	—
miR-957-3p	Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014), An. anthropophagus midgut (Liu et al., 2017)	Ae. albopictus (Liu et al., 2015)	—	—	—	Cx. Quinquefasciatus (Skalsky et al., 2010)
miR-965-3p	—	—	Ae. aegypti cell nucleus and cytoplasm (Mayoral et al., 2014)	—	—	—	—
miR-970-3p	Ae. aegypti saliva (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014), An. anthropophagus midguts (Liu et al., 2017)	C6/36 cells (Avila-Bonilla et al., 2017)	—	—	—	—
miR-976-5p	Ae. aegypti saliva (Maharaj et al., 2015), Ae. albopictus cells (Shrinet et al., 2014)	An. stephensi (Jain et al., 2014), An. anthropophagus midguts (Liu et al., 2017)	Ae. albopictus midgut (Su et al., 2019)	—	—	—	—
miR-976-3p	—	—	Ae. aegypti (Saldana et al., 2017)	—	—	—	—
miR-980-3p	—	—	Ae. aegypti cell nucleus and cytoplasm (Mayoral et al., 2014)	—	—	—	—
miR-980-5p	Ae. aegypti cell nucleus and cytoplasm (Mayoral et al., 2014)	—	—	—	—	—	—
miR-981-3p	—	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	—	—	—	—	—
miR-988-5p	Ae. albopictus cells (Shrinet et al., 2014)	An. stephensi (Jain et al., 2014)	Ae. albopictus midgut (Su et al., 2017)	—	—	—	—
miR-988-3p	Ae. albopictus cells (Shrinet et al., 2014)	Ae. aegypti (Hussain et al., 2011)	—	—	—	—	—
miR-989-3p	Ae. aegypti (Dube et al., 2017)	An. gambiae midgut (Winter et al., 2007; Dennisson et al., 2015), An. gambiae leftover (Winter et al., 2007)	Ae. albopictus midgut (Liu et al., 2018), Ae. Albopictus (Su et al., 2017)	—	—	—	—
miR-989-3p	—	Ae. aegypti (Saldana et al., 2017)	—	—	—	—	—

(Continued)
the expression of endogenous miRNAs and subsequently regulate pathogen infection in mosquitoes (Liu P. et al., 2016). This study is similar to a study research that used a plasmid construction technique to express artificial miRNAs that inhibit JEV (Wu et al., 2011) and DENV (Xie et al., 2013) in vitro or impede mosquito reproduction and embryonic development (Biedler et al., 2014).

Given the specificity of miRNA-virus interactions in which mosquito miRNAs can directly inhibit the virus via complementary base pair interactions, methods to introduce

miRNA names	CHIKV infection	Plasmodium infection	DENV infection	Wolbachia infection	ZIKA infection	WNV infection	BTV infection
miR-993-5p	—	An. stephensi (Jain et al., 2014)	—	—	—	—	—
miR-993-3p	—	An. stephensi (Jain et al., 2014)	—	—	—	—	—
miR-996-3p	Ae. albopictus saliva (Maharaj et al., 2015), C6/36 cells (Shrinet et al., 2014), Ae. aegypti saliva (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014)	—	—	—	—	—
miR-996-5p	—	An. anthropophagus midgut (Liu et al., 2017)	—	—	—	—	—
miR-988-5p	—	—	Ae. aegypti cell nucleus (Mayoral et al., 2014)	—	—	—	—
miR-988-3p	—	—	Ae. aegypti cell cytoplasm (Mayoral et al., 2014)	—	—	—	—
miR-998-3p	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva (Maharaj et al., 2015), Ae. aegypti (Dubey et al., 2017)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	—	—	—	—	—
miR-998-5p	Ae. albopictus cells (Shrinet et al., 2014), Ae. aegypti saliva, Ae. albopictus saliva (Maharaj et al., 2015)	—	—	—	—	—	—
miR-999-3p	—	—	Ae. aegypti (Campbel et al., 2014)	—	—	—	—
miR-9a-5p	—	—	—	—	—	—	—
miR-iab-4-5p	—	—	—	—	—	—	—
miR-iab-8-5p	—	—	—	—	—	—	—
bantam-3p	Ae. aegypti saliva (Maharaj et al., 2015), C6/36 cells (Shrinet et al., 2014), Ae. albopictus saliva (Maharaj et al., 2015)	An. anthropophagus midguts (Liu et al., 2017), An. stephensi (Jain et al., 2014)	—	—	—	—	—
bantam-5p	—	—	Ae. aegypti (Etebari et al., 2015), Ae. albopictus (Liu et al., 2015)	—	—	—	—
let-7-5p	Ae. albopictus cells (Shrinet et al., 2014), Ae. albopictus saliva (Maharaj et al., 2015)	An. stephensi (Jain et al., 2014), An. anthropophagus midguts (Liu et al., 2017)	Ae. albopictus, C6/36 cells (Yan et al., 2014), Ae. aegypti (Campbell et al., 2014), Ae. albopictus (Liu et al., 2015; Su et al., 2017)	—	—	—	—

*The “study materials” are written in two styles, namely bold and nonbold, which means that the miRNAs are upregulated or downregulated upon infection with the corresponding microbes or pathogens infection, respectively. “—”, no related data on upregulation or downregulation is available.
sequences complementary to mosquito miRNAs (noted as miRNA-targeting approaches in Figure 1) into arboviruses have been established (Heiss et al., 2011; Tsetsarkin et al., 2015; Tsetsarkin et al., 2016a; Tsetsarkin et al., 2016b). The introduction of a single copy of a miRNA target sequence into the DENV genome was shown to lead to the reduction of DENV 4 replication in vivo and in vitro (Heiss et al., 2011; Tsetsarkin et al., 2015), consistent with the results of a similar study with another pathogen, JEV (Yen et al., 2013). More interestingly, multiple insertions of heterologous target sequences of different miRNAs into the virus were shown to increase virus attenuation, whereas the insertion of two or three copies of homologous sequence (the same miRNAs) into the virus did not increase virus attenuation (Tsetsarkin et al., 2016a; Tsetsarkin et al., 2016b).

The two preapplication investigations indicate the possible application of miRNA-based approaches, e.g., 1) expressing a miRNA inhibitor in vector mosquitoes by establishing genetically modified mosquitoes, subsequently reducing the fitness between mosquitoes and pathogens and interrupting the transmission of mosquito-borne pathogens (Heiss et al., 2011; Tsetsarkin et al., 2015; Tsetsarkin et al., 2016a; Tsetsarkin et al., 2016b); and 2) inserting specific miRNA target sequences into the flavivirus genome, resulting in selective tissue-specific attenuation and nonhuman-range restriction of live attenuated vaccine viruses (Tsetsarkin et al., 2016a; Tsetsarkin et al., 2016b).

CONCLUDING REMARKS

Currently, miRNA-based approaches employ four steps that address 20 aspects as listed in Figure 1. These exploratory studies are limited because of the bottleneck at the preapplication investigation step (Figure 1) and require further advances towards field or clinical applications. Twenty-four

TABLE 7 | miRNAs with validated targets that exert promotive or inhibitory effects on pathogens.

miRNA names	Validated targets	Validated promotive or inhibitory effect on pathogens
miR-12-5p	MCM6 and MCT1 (Osei-Amo et al., 2012)	Facilitating the Wolbachia infection (Osei-Amo et al., 2012; Maharaj et al., 2015), enhancing ChIKV infection (Maharaj et al., 2015)
miR-125-5p	—	Enhancing ChIKV infection (Maharaj et al., 2015)
miR-2944a-5p	vps-13 and ChIKV (Dubey et al., 2019)	Repressing ChIKV replication (Dubey et al., 2019)
miR-184-3p	AAELO002512, AAELO005741 (Zhang et al., 2017)	Inhibiting ChIKV infection (Maharaj et al., 2015)
miR-375-3p	Cactus, kinesin, prohibitin, DEAD box ATP-dependent RNA helicase, REL1, hypothetical protein (Hussain et al., 2013)	Enhancing DENV-2 infection (Hussain et al., 2013), repressing ChIKV replication (Maharaj et al., 2015).
miR-1787	DENV E protein gene (Yan et al., 2014)	Enhancing DENV-2 replication (Su et al., 2019)
miR-252-5p	5'-UTR of DENV-2 (Zhou et al., 2014)	Inhibiting DENV replication (Yan et al., 2014)
miR-281-3p	—	Enhancing DENV-2 replication (Zhou et al., 2014)
miR-4448	—	Inhibiting DENV-2 infection (Su et al., 2019)
miR-4728-5p	FLN (Avila-Bonilla et al., 2020)	Enhancing DENV-2 replication (Su et al., 2019)
miR-927-5p	AaDnmt 2 (Zhang et al., 2013), metalloprotease m41 FtsH gene (Sionchak et al., 2014), AaArgM3 (Zhang et al., 2014)	Facilitating Wolbachia infection (Hussain et al., 2011; Zhang et al., 2014) and subsequent inhibition of DENV replication (Zhang et al., 2013), restricting WNV replication (Sionchak et al., 2014)
miR-2940-5p	Branch chain amino acid transferase (Lampe et al., 2019)	Enhancing DENV-2 infection (Su et al., 2019), prolonging AA catabolism, and then inhibiting development of sporozoites (Lampe et al., 2019)
miR-124-3p	3'UTR-binding sites of GCE mRNA (Qu et al., 2017)	Inhibiting P. falciparum and gut microbiota agonist (Dong et al., 2020)
miR-137-3p	—	P. falciparum and gut microbiota agonist (Dennison et al., 2015; Dong et al., 2020)
miR-14-3p	—	Role in vector competence (Winter et al., 2007), inhibits multiple flaviviruses (Smith et al., 2017)
miR-305-5p	—	Role in vector competence (Winter et al., 2007), inhibits multiple flaviviruses (Smith et al., 2017)
miR-124-3p	3'UTR-binding sites of GCE mRNA (Qu et al., 2017)	P. falciparum and gut microbiota agonist (Dennison et al., 2015; Dong et al., 2020)
miR-34-5p	Activation of type I interferon signaling (Smith et al., 2017)	Inhibiting JEV infection (Yang et al., 2016)

MCT1, monocarboxylate transporter; MCM6, DNA replication licensing; UTR, untranslated region; FLN, cytoskeleton; AaArgM3, protein arginine methyltransferase 3.
mosquito species have been analyzed for miRNA-related studies. The study materials have ranged widely, from entire mosquitoes to the cytoplasm or nucleus of mosquito cells, from eggs to adult mosquitoes, or from sugar-fed to pathogen-infected mosquitoes (Tables 1–6).

The expression of miRNAs is regulated by complex factors, including mosquito species, sex, developmental stage, tissue or organ, age, blood feeding status, pathogen infection status and pathogen type (Tables 2–7). Thus, miRNA expression levels detected in entire mosquitoes may lead to biased results, and for one arbovirus, some miRNAs may promote infection in mosquitoes, while for another arbovirus, miRNAs may inhibit infection (Table 7). Thus, during the exploration of miRNA-based approaches for the interruption of mosquito-borne disease transmission, an irrational approach is to commonly define a miRNA as solely inhibiting or promoting pathogen infection in mosquitoes, when the actual effects of a miRNA depend on those complex factors. Most importantly, the results presented here...
indicate that the selection of a candidate miRNA according to unique conditions or objectives during miRNA-based approach development is crucial. The current statuses of individual miRNAs presented in Tables 1–7 and S1 provide guidance for selection.

As described above, the main variations in miRNAs attributed to the mosquito species or infecting pathogen include changes in the expression level, isomiR production, or 5p/3p ratio or even a shift in the dominant arm. In our opinion, these variations in miRNAs might collectively or individually affect the formulation of miRNA-target RISC complexes, and subsequently influence the fitness between the mosquito and pathogen (Winter et al., 2007). And for mosquito miRNA-arbovirus interactions, the targets of miRNAs can be RNA genomes of arboviruses, which are always mRNA obeying the canonical action mechanism. These viewpoints are presented in Figure 2.

Moreover, although the canonical action mechanism of miRNAs always results in repression, the mosquito miRNA-target interaction can lead to two possible forms of regulation, namely, repression or enhancement of pathogen infection in mosquitoes. Both upregulation and downregulation of miRNAs in response to pathogen infection widely coexist in the mosquito, subsequently promoting and inhibiting pathogen infection, respectively. In our opinion, these findings suggest that inhibitory and inducing miRNA expressions are essential to balance the miRNA-pathogen interaction, maintain persistent infection and preventing considerable harm to the mosquito (Figure 3).

Currently, the antiviral effects of mosquito miRNAs on pathogens in combination with genetic engineering and molecular biology techniques may allow the use of these miRNA-based approaches as new tools to interrupt the transmission of mosquito-borne diseases. In this review, the significant progress achieved at the level of individual miRNAs facilitates the selection of an abundant, specific and effective mosquito miRNA (see Tables 1–7 and S1) that can be referenced for further research with different and specific objectives to increase the pace of development of applications and overcome the bottleneck (Tsetsarkin et al., 2015). More importantly, mosquito miRNAs can directly bind to the arbovirus genome, modifying viral replication. However, regarding the Plasmodium parasite, mosquito miRNAs generally bind to mosquito immunity or development-related mRNAs, indirectly regulating Plasmodium infection. Hence, the strategies for miRNA-based approaches differ for arboviruses and protozoan parasites.

AUTHOR CONTRIBUTIONS

Conceptualization and formal analysis: T-LX. Data curation: T-LX, Y-WS, and X-YF.

Supervision: BZ and X-NZ. Writing-original draft: T-LX.

Writing-review & editing: BZ and X-NZ. All authors contributed to the article and approved the submitted version.

FUNDING

BZ received a grant from the National Science and Technology Major Program of China (No. 2018ZX10734-404). This project was financially supported by Ministry of Science and Technology of the People’s Republic of China. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

ACKNOWLEDGMENTS

The ideas presented here were developed during the completion of research projects funded by the Belt and Road Young Scientist Research Exchange Program (No. 17430741900).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcimb.2021.665444/full#supplementary-material
Jain, S., Rana, V., Shrinet, J., Sharma, A., Tridibes, A., Sunil, S., and Bhattacharjee, N. K. (2015). Dynamic Expression of microRNAs Across Immature and Adult Stages of the Malaria Mosquito Anopheles Stephensi. *Parasites Vectors* 8, 179. doi: 10.1186/s13071-015-0727-y

Jones-Rhoades, M. W., Bartel, D. P., and Bartel, B. (2006). MicroRNAs and Their Regulatory Roles in Plants. *Annu. Rev. Plant Biol.* 57, 19–53. doi: 10.1146/annurev.arplant.57.032905.105218

Lampe, L., Jentsch, M., Kierszniowska, S., and Levashina, E. A. (2019). Metabolic Balancing by miR-276 Shapes the Mosquito Reproductive Cycle and *Plasmodium* Falciparum Development. *Nat. Commun.* 10, 5634. doi: 10.1038/s41467-019-13627-y

Lampe, L., and Levashina, E. A. (2018). Microrna Tissue Atlas of the Malaria Mosquito Anopheles Gambiae. *G3* 8, 185–193. doi: 10.1534/g3.117.300170

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The Nuclear RNase III Drosha Initiates microRNA Processing. *Nature* 425, 415–419. doi: 10.1038/nature01957

Lee, M., Etebari, K., Hall-Mendelin, S., van den Hurk, A. F., Hobson-Peters, J., Vatipally, S., et al. (2017). Understanding the Role of microRNAs in the Interaction of *Aedes Aegypti* Mosquitoes With An Insect-Specific Flavivirus. *J. Gen. Virol.* 98, 1892–1903. doi: 10.1099/jgv.0.002882

Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002). MicroRNA Maturation: Stepwise Processing and Subcellular Localization. *EMBO J.* 21, 4663–4670. doi: 10.1093/emboj/cdf476

Li, S., Mead, E. A., Li, J., and Tu, Z. (2009). Direct Sequencing and Expression of mosQuito microRNA. *FEBS Lett.* 583, 3526–3534. doi: 10.1016/j.febslet.2009.08.046

Li, Y., Xu et al. Progress Tracking of Mosquito microRNA Expression Pro...
and Attenuates Neurovirulence of Flaviviruses. PLoS Pathog. 11, e1004852. doi: 10.1371/journal.ppat.1004852
Tsentsarkin, K. A., Liu, G., Kenney, H., Hermance, M., Thangamani, S., and Pletnev, A. G. (2016a). Concurrent microRNA-Mediated Silencing of Tick-Borne Flavivirus Replication in Tick Vector and in the Brain of Vertebrate Host. Sci. Rep. 6, 33088. doi: 10.1038/srep33088
Tsentsarkin, K. A., Liu, G., Shen, K., and Pletnev, A. G. (2016b). Kissing-Loop Interaction Between 5' and 3' Ends of Tick-Borne Langat Virus Genome 'Bridges the Gap' Between Mosquito- and Tick-Borne Flaviviruses in Mechanisms of Viral RNA Cyclization: Applications for Virus Attenuation and Vaccine Development. Nucleic Acids Res. 44, 3330–3350. doi: 10.1093/nar/gkw061
Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., et al. (2005). MicroRNA Identification Based on Sequence and Structure Alignment. Bioinformatics 21, 3610–3614. doi: 10.1093/bioinformatics/bti562
World Health Organization (2012). Global strategy for dengue prevention and control 2012-2020. WHO. Available at: https://apps.who.int/iris/handle/10665/75303.
Winter, F., Edaye, S., Huttonhofer, A., and Brunel, C. (2007). Anopheles Gambiae miRNAs as Actors of Defence Reaction Against Plasmodium Invasion. Nucleic Acids Res. 35, 6953–6962. doi: 10.1093/nar/gkm686
Wu, Z., Xue, Y., Wang, B., Du, J., and Jin, Q. (2011). Broad-Spectrum Antiviral Activity of RNA Interference Against Four Genotypes of Japanese Encephalitis Virus Based on Single microRNA Polycistrions. PloS One 6, e26304. doi: 10.1371/journal.pone.0026304
Xie, P. W., Xie, Y., Zhang, X. J., Huang, H., He, L. N., Wang, X. J., et al. (2013). Inhibition of Dengue Virus 2 Replication by Artificial Micrornas Targeting the Conserved Regions. Nucleic Acid Ther. 23, 244–252. doi: 10.1089/nat.2012.0405
Xing, S., Du, J., Gao, S., Tian, Z., Zheng, Y., Liu, G., et al. (2016). Analysis of the miRNA Expression Profile in an Aedes Albopictus Cell Line in Response to Bluetongue Virus Infection. Infection Genet. Evolution: J. Mol. Epidemiol. Evolutionary Genet. Infect. Dis. 39, 74–84. doi: 10.1016/j.meegid.2016.01.012
Xu, T., Zhong, D., Tang, L., Chang, X., Fu, F., Yan, G., et al. (2014). Anopheles Sinensis Mosquito Insecticide Resistance: Comparison of Three Mosquito Sample Collection and Preparation Methods and Mosquito Age in Resistance Measurements. Parasites Vectors 7, 54. doi: 10.1186/1756-3350-7-54
Yang, S., Pei, Y., Li, X., Zhao, S., Zhu, M., and Zhao, A. (2016). miR-124 Attenuates Japanese Encephalitis Virus Replication by Targeting DNMT2. Virol. J. 13, 105. doi: 10.1186/s12985-016-0562-y
Yan, H., Zhou, Y., Liu, Y., Deng, Y., and Chen, X. (2014). miR-252 of the Asian Tiger Mosquito Aedes Albopictus Regulates Dengue Virus Replication by Suppressing the Expression of the Dengue Virus Envelope Protein. J. Med. Virol. 86, 1428–1436. doi: 10.1002/jmv.23815
Yekta, S., Shih, I. H., and Bartel, D. P. (2004). MicroRNA-directed Cleavage of HOXB8 Mrna. Science 304, 594–596. doi: 10.1126/science.1097434
Yen, P. S., Chen, C. H., Sreenu, V., Kohl, A., and Failloux, A. B. (2019). Assessing the Potential Interactions Between Cellular miRNA and Arboviral Genomic RNA in the Yellow Fever Mosquito, Aedes Aegypti. Viruses 11, 6. doi: 10.3390/v11060540
Yen, P. S., James, A., Li, J. C., Chen, C. H., and Failloux, A. B. (2018). Synthetic miRNAs Induce Dual Arboviral-Resistance Phenotypes in the Vector Mosquito Aedes Aegypti. Commun. Biol. 1, 11. doi: 10.1038/s42003-017-0011-5
Yen, L. C., Lin, Y. L., Sung, H. H., Liao, J. T., Tsao, C. H., Su, C. M., et al. (2013). Neurovirulent Flavivirus Can be Attenuated in Mice by Incorporation of Neuron-Specific microRNA Recognition Elements Into Viral Genome. Vaccine 31, 5915–5922. doi: 10.1016/j.vaccine.2011.09.102
Zhang, X., Aksoy, E., Girk, T., Raikhel, A. S., and Karginov, F. V. (2017). Transcriptome-Wide microRNA and Target Dynamics in the Fat Body During the Gonadotropic Cycle of Aedes Aegypti. Proc. Natl. Acad. Sci. U. S. A. 114, E1895–E1903. doi: 10.1073/pnas.1701474114
Zhang, G., Hussain, M., and Asgari, S. (2014). Regulation of Arginine Methyltransferase 3 by a Wolbachia-Induced microRNA in Aedes Aegypti and Its Effect on Wolbachia and Dengue Virus Replication. Insect Biochem. Mol. Biol. 53, 81–88. doi: 10.1016/j.inchemb.2014.08.003
Zhang, G., Hussain, M., O’Neill, S. L., and Asgari, S. (2013). Wolbachia Uses a Host microRNA to Regulate Transcripts of a Methyltransferase, Contributing to Dengue Virus Inhibition in Aedes Aegypti. Proc. Natl. Acad. Sci. U. S. A. 110, 10276–10281. doi: 10.1073/pnas.1303603110
Zhang, Y., Zhao, B., Roy, S., Saha, T. T., Kokoz, V. A., Li, M., et al. (2016). microRNA-309 Targets the Homebox Gene SIX4 and Controls Ovarian Development in the Mosquito Aedes Aegypti. Proc. Natl. Acad. Sci. U. S. A. 113, E4828–E4836. doi: 10.1073/pnas.1609792113
Zhou, Y., Liu, Y., Yan, H., Li, Y., Zhang, H., Xu, J., et al. (2014). miR-281, an Abundant Midgut-Specific miRNA of the Vector Mosquito Aedes Albopictus Enhances Dengue Virus Replication. Parasites Vectors 7, 488. doi: 10.1186/s13071-014-0488-4

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Xu, Sun, Feng, Zhou and Zheng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.