I. INTRODUCTION

We study theoretically the resistive state in short superconducting microbridges (with length L less than the coherence length $\xi (T)$) at temperatures close to the critical one. This subject was widely discussed and studied in the 70-ies of last century (for review see [1]) and has regained renewed interest recently (see for example Refs. [2, 3]). Interesting phenomena occurring in such a system, and which are still not completely understood, are: i) the hysteresis of current-voltage (IV) characteristics at relatively low temperatures [1] and ii) the 'foot'-like feature in the IV characteristics observed experimentally mainly in tin microbridges at low voltages and at temperatures close to T_c [4] (see also [1]). The hysteresis is usually explained by Joule heating while for the 'foot'-like structure several theories were proposed [5-10] that are based on the idea that the quasiparticle distribution function is out of equilibrium (overcooled) as a consequence of the variation in time of the magnitude of the superconducting order parameter $\Delta = |\Delta| e^{i\phi}$ in the superconducting microbridge. The motivation for these theories comes from the fact that the energy of the quasiparticles depends on $|\Delta|$ and when the characteristic time scale for the variation of $|\Delta|$ is smaller than the inelastic relaxation time τ_{in} of the quasiparticle distribution function $f(\epsilon)$ the occupancy of the states with energy ϵ may differ from the equilibrium one (for a detailed discussion see the book of Tinkham [11]).

To simplify the analytical treatment of the problem the authors of Refs. [8, 9] assumed that in the dynamic (resistive) state $|\Delta|$ varies as fast as $\delta \phi$ and to find the coordinate and time dependence of $|\Delta|(x,t)$ they solved the stationary Ginzburg-Landau equation with a time dependent $\delta \phi(t)$. Furthermore they assumed that: 1) the relaxation term in the kinetic equations can be neglected when the period of oscillations of the order parameter is much smaller than τ_{in}, 2) the spectral functions depend only on the local magnitude of the order parameter $|\Delta|$ (so called local approach). We argue that for a realistic inelastic relaxation time τ_{in}, and even for a short microbridge $L \lesssim \xi (T)$ the nonequilibrium contributions to $f(\epsilon)$ strongly affects the dynamics of $|\Delta|$ and results in a larger time scale for $|\Delta|$ than for $\delta \phi$. Moreover the relaxation term in the kinetic equations plays a very important role at any voltage and therefore cannot be omitted. Taken together with the dependence of the spectral functions on both $|\Delta|$ and Q they provide an averaged 'heating' of the quasiparticles, instead of 'cooling' [8, 9]. Some kind of 'cooling' of quasiparticles at high voltages can be found only when one takes into account additional terms in the kinetic equations which couple the longitudinal f_L (odd in energy) and transverse f_T (even in energy) parts of $2f(\epsilon) = (1 - f_L(\epsilon) - f_T(\epsilon))$ due to the finite spectral supercurrent (in previous works [8, 9] these terms were omitted). This 'cooling' is not effective at low voltages and 'heating' together with the large time scale of the variation of $|\Delta|$ result in a hysteresis of the IV characteristics for relatively large τ_{in}. We should stress that the time averaged 'heating' of quasiparticles is driven by oscillations of $|\Delta|$ in the superconducting microbridge and not by Joule dissipation $\sim \mathbf{j} \cdot \mathbf{E}$ (\mathbf{j} is the current density and \mathbf{E} is the electric field).

The paper is organized as follows. In section II we discuss the theoretical model. In section III we present and discuss our results. In section IV we present our conclusions and discuss the possible origin of the experimentally found [3, 7] 'foot'-like structure in the IV characteristics.

II. MODEL

To simulate the resistive state in a short superconducting microbridge we use the kinetic equations derived in Refs. [12,13] for 'dirty' superconductors near T_c.

Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges

D.Y. Vodolazov1 and F.M. Peeters2,

1 Institute for Physics of Microstructures, Russian Academy of Sciences, 603950, Nizhny Novgorod, GSP-105, Russia
2 Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

(Dated: January 26, 2013)

We predict 'heating' of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter $|\Delta|$ and the dependence of the spectral functions both on $|\Delta|$ and the supervelocity Q are the origin of this effect. Our result is opposite to those of Aslamazov and Larkin (Zh. Eks. Teor. Fiz. 70, 1340 (1976)) and Schmid, Schön and Tinkham (Phys. Rev. B 21 5076 (1980)) where 'cooling' of quasiparticles was found.

PACS numbers: 74.25.Op, 74.20.De, 73.23.-b
where Φ is the order parameter which is described by the modified time-dependent Ginzburg-Landau equation

$$N_1 \frac{\partial f_L}{\partial t} = D \nabla ((N_1^2 - R_2^2) \nabla \delta f_L) + D \nabla (j_r f_T) - \frac{N_1}{\tau_{in}} \delta f_L - R_2 \frac{\partial f_R^0}{\partial \epsilon} \frac{\partial \Delta}{\partial t}, \quad (1a)$$

$$\frac{\partial}{\partial t} N_1 (f_T + e \varphi \frac{\partial f_R^0}{\partial \epsilon}) = D \nabla ((N_1^2 + N_2^2) \nabla f_T) + D \nabla (j_\perp \delta f_L) - \frac{N_1}{\tau_{in}} \left(f_T + e \varphi \frac{\partial f_R^0}{\partial \epsilon} \right) - N_2 \frac{\partial f_R^0}{\partial \epsilon} \frac{\partial \Delta}{\partial t}, \quad (1b)$$

here $Q = (\partial \phi/\partial x - 2eA/c)$ is a quantity which is proportional to the superfluid velocity ($v_s = hQ/m$), φ is an electrostatic potential, $\delta f_L = f_L - f_L^0$ and $f_R^0(\epsilon) = \text{tan}(\epsilon/2k_BT)$. N_1, N_2, R_2 are the spectral functions which should be found from the Usadel equation for the normal $\alpha(\epsilon) = \cos \Theta = N_1(\epsilon) + iR_1(\epsilon)$ and anomalous $\beta_1 = \beta e^{i\phi}$, $\beta_2 = \beta e^{-i\phi}$ ($\epsilon = \sin \Theta = N_2(\epsilon) + iR_2(\epsilon)$)

Green functions

$$hD \frac{d^2 \Theta}{dx^2} + (2ie - \frac{\hbar}{\tau_{in}}) - hDQ^2 \cos \Theta \sin \Theta + 2|\Delta| \cos \Theta = 0, \quad (2)$$

Eqs. 1(a,b) are coupled through the finite spectral supercurrent $j_\perp = \text{Re} [\beta_1 \nabla \beta_2 - \beta_2 \nabla \beta_1]/2 = 2N_2 R_2 Q$. Below we show that the coupling terms in Eqs. 1(a,b) strongly influence δf_L and the dynamics of the order parameter which is described by the modified time-dependent Ginzburg-Landau equation

$$\frac{\pi \hbar}{8k_BT_e} \frac{\partial \Delta}{\partial t} + (\Phi_1 + i\Phi_2) \Delta = \xi_{GL}^2 \frac{\partial^2 \Delta}{\partial x^2} + \left(1 - \frac{T}{T_e} \right) \frac{|\Delta|^2}{\Delta_{GL}^2} \frac{\partial \Delta}{\partial t}$$

where $\xi_{GL}^2 = \pi \hbar D/8k_BT_e$ and $\Delta_{GL}^2 = 8\pi^2 (k_BT_e)^2/7\zeta(3)$ are the zero temperature Ginzburg-Landau coherence length and the corresponding order parameter. Nonequilibrium parts of the quasiparticle distribution function enters Eq. (3) via the potentials $\Phi_1 = -\int_{0}^{\infty} R_2 \delta f_L d\epsilon/|\Delta|$ and $\Phi_2 = -\int_{0}^{\infty} N_2 f_T d\epsilon/|\Delta|$. When δf_L is negative the potential Φ_1 is positive and vice versa. In some respect, from the structure of Eq. (3) it follows, that one may introduce an 'effective' temperature for the quasiparticles $T_{\text{eff}}(x,t) = T + \Phi_1(x,t) T_c$ and thus the positive/negative sign of $\Phi_1(x,t)$ means local 'heating'/-'cooling' of quasiparticles. We should stress that we use the term 'effective' temperature only in order to give a simple physical interpretation of our numerical results and describe the integral effect of the nonequilibrium distribution $f(\epsilon)$ which enters the equation for the order parameter via the potentials $\Phi_1(x,t)$ and $\Phi_2(x,t)$. Please note that the resulting nonequilibrium $f(\epsilon)$ cannot be viewed as a Fermi-Dirac function with effective temperature $T_{\text{eff}}(x,t)$ and electrostatic potential $\varphi(x,t)$.

The current and the electrostatic potential in the sample can be found using the following equations

$$j = \frac{\sigma_n}{e} \left(|\Delta|^2 Q + \int_{0}^{\infty} ((N_1^2 + N_2^2) \nabla f_T + j_\perp \delta f_L) d\epsilon \right), \quad (4)$$

$$e\varphi = -\int_{0}^{\infty} N_1 f_T d\epsilon / \int_{0}^{\infty} N_1 \frac{\partial f_R^0}{\partial \epsilon} d\epsilon, \quad (5)$$

where σ_n is the normal state conductivity. In metals we have for the charge density $\rho \approx 0$ and the condition $d\epsilon = 0$ is satisfied due to Eqs. (1b, 3, 5).

In the derivation of Eqs. 1(a,b) it was assumed that deviations from equilibrium are small $\delta f_L, f_T \ll f_R^0$. It allowed one to linearize the collision integral due to electron-phonon collisions and to write it in the relaxation time approximation. Furthermore, it was assumed that the inelastic relaxation time due to electron-electron interactions is much larger than due to electron-phonon effects and hence one can neglect the corresponding collision integral.

![FIG. 1: Schematic illustration of the model system with the geometric parameters.](image_url)

To model the superconducting microbridge connected to superconducting bulk leads in the current carrying regime we consider the system shown in Fig. 1. It consists of normal bulk reservoirs where the external...
voltage V_{ext} is applied and the constriction is modelled as a film with variable cross-section $S_2 \gg S_1$ (here $S_{1(2)} = W_{1(2)}d_{1(2)}$ is the cross-section, $W_{1(2)}$ is the width and $d_{1(2)}$ is the thickness of the film (in this way we model variable thickness microbridge). The narrowest part of the film is called the microbridge and the wide parts are assigned as being the leads. The wide part of the film of length $2L_2$ is in the normal state and the rest of the film is in the superconducting state (for relatively small V_{ext}).

In our calculations we chose $L_2/L_1 \gg 1$ and the length L_1 was taken large enough to neglect nonequilibrium effects from the NS boundaries located at $x = \pm (L_1 + L/2)$ on the transport properties of the microbridge. The large normal part of the film is needed because in the boundary conditions for f_L and f_T enters the voltage V (see for example Ref. [10]) and almost all the voltage drop occurs in the normal part of the film, effectively leading to a state with applied constant current even when the microbridge transits to the resistive state. Due to the large ratio $S_2/S_1 \gg 1$ the transport current does not destroy superconductivity in the wide part of the film and we mainly study the resistive state in the microbridge.

In our calculations we assume that the lateral size of the film is much smaller than the London penetration depth λ (or effective penetration depth $\lambda_\perp = \lambda^2/d_{1(2)}$) and therefore we may neglect screening effects. Furthermore, we suppose that the current density is distributed uniformly over the width of the film. This assumption is strictly speaking not valid in the region where the current transits from the wide part to the narrow one (and vice versa). But because the current density is much smaller in the wide part than in the narrow part we may neglect such type of effects (at least for variable thickness microbridges) and consider variables which are averaged over the width and thickness of the film. Because the length of the microbridge is much larger than its width we may assume an uniform current distribution over the width of the microbridge. Thus our system is quasi 1D and we only should take into account the continuity of $\Delta, \Theta, f_T, \delta f_L$ and conservation of the superconducting (Eq. 6(a) below), normal (Eq. 6(d)), energy (Eq. 6(c)) and spectral (Eq. 6(b)) currents at the points $x = \pm L/2$ through the boundary conditions

\[
S_2 \partial \Delta / \partial x|_{\pm L/2} = S_1 \partial \Delta / \partial x|_{\pm L/2} \tag{6a}
\]
\[
S_2 \partial \Theta / \partial x|_{\pm L/2} = S_1 \partial \Theta / \partial x|_{\pm L/2} \tag{6b}
\]
\[
S_2 D((N_1^2 - R_2^2) \partial \delta f_L / \partial x + j_+ f_T)|_{\pm L/2} = S_1 D((N_1^2 - R_2^2) \partial \delta f_L / \partial x + j_+ f_T)|_{\pm L/2} \tag{6c}
\]
\[
S_2 D((N_1^2 + N_2^2) \partial f_T / \partial x + j_+ \delta f_L)|_{\pm L/2} = S_1 D((N_1^2 + N_2^2) \partial f_T / \partial x + j_+ \delta f_L)|_{\pm L/2} \tag{6d}
\]

It is easy to find the solution to Eqs. (1-5) in the normal region and therefore we only need to solve them in the superconducting region (in the interval $-L_1 - L/2 < x < L_1 + L/2$) with the following boundary conditions: $\Delta|_{\pm (L_1 + L/2)} = 0$, $\Theta|_{\pm (L_1 + L/2)} = 0$, $\delta f_L|_{\pm (L_1 + L/2)} = 0$, $f_T|_{\pm (L_1 + L/2)} = -e\varphi_0 \cdot \partial f_T / \partial E$, where $\varphi_0 = \mp V_{ext} \pm j_\pm L_2/\sigma_n$ and the current density j_\pm in the points $x = \pm (L_1 + L/2)$ could be found from Eq. (4).

In our numerical calculations we use dimensionless units. The order parameter is scaled by Δ_0 ($\Delta_0 = 1.76 k_BT_c \simeq 0.57 \Delta_{GL}$ is the zero temperature order parameter value in the weak coupling limit), distance is in units of the zero temperature coherence length $\xi_0 = \sqrt{\hbar D/\Delta_0} \simeq 1.2 \xi_{GL}$, time in units of $\tau_0 = \hbar/\Delta_0$ and temperature in units of the critical temperature T_c. The current is scaled in units of $j_0 = \Delta_0 \sigma_n / (\xi_0 e)$, the superfluid velocity in units of $Q_0 = \hbar c/2\xi_0$ and the electrostatic potential is in units of $\varphi_0 = \Delta_0 / e$. It is useful to introduce the dimensionless inelastic relaxation time $\tau_{in} = \tau_{in}/\tau_0$ which is the main control parameter in the model described by Eqs. (1(a,b)).

We used the implicit method for the numerical solution of Eqs. (1-3). The coordinate step of the grid was equal to ξ_0 (which is much smaller than $\xi(T)$ for the considered temperature interval $0.92 < T/T_c < 0.99$) and the time step varied from $0.5 \tau_0$ up to $2 \tau_0$ depending on the temperature. In our numerical procedure we use an even number of grid points and consequently the center of the microbridge where the order parameter goes to zero (the phase slip center) is situated between grid points. Therefore any quantity in the phase slip center (PSC) is in fact calculated at a distance $\delta x = \xi_0/2 \ll \xi(T)$ from the PSC.

For the geometrical parameters of the film we used the following values: $S_2/S_1 = 10$, $L_2 = 500 \xi_0$ and L_1 was varied from $15 \xi_0$ (at $T = 0.92 T_c$) up to $45 \xi_0$ (at $T = 0.99 T_c$). In our calculations we used $\tau_{in} = 4 - 1000$ which covers typical values for many low temperature superconductors (for example [13] in Nb $\tau_{in} \simeq 10^2$ and in Al $\tau_{in} \simeq 10^3$). In the wide part of the film we used $\tau_{in} = 5$ which allows us to decrease L_{in} and the length L_1 in order to optimize the calculation time.

To find the current-voltage characteristics of the superconducting microbridge we applied a large voltage $\pm V_{ext}$ to the normal reservoirs which induces a large current ($I > I_c$) resulting in a resistive state in the microbridge. Than we decrease V_{ext} in a step-wise manner and we find the time averaged difference of the electrostatic potentials between the ends of the microbridge.
\(V = \varphi(-L/2) - \varphi(L/2) \) as function of \(V_{\text{ext}} \). In a similar way it is easy to find the critical voltage \(V^c_{\text{ext}} \) (or critical current \(I_c \)) of the superconducting microbridge when the superconducting state becomes unstable (by increasing \(V_{\text{ext}} \) from small values). As a result we find the dependence \(V(V_{\text{ext}}/V^c_{\text{ext}}) \) which practically coincides with the dependence \(V(I/I_c) \). In Fig. 2 we plot the time-dependence of the current in the microbridge which illustrates that indeed \(I \) varies weakly in time and the constant \(V_{\text{ext}} \) induces an almost constant \(I \) in our model system even when the microbridge is in the resistive state.

III. RESULTS

In Fig. 3 we show the current-voltage characteristics of a short microbridge with length \(L = 7\xi_0 \) at \(T = 0.96T_c \) calculated for different values of the inelastic relaxation time \(\tau_{\text{in}} \) in the regime of decreasing applied current (the length and temperature were chosen close to the parameters of the experiment of Ref. \[7\] and for thin \(\tau_{\text{in}} \sim 200 \)). Firstly, we should note the strong influence of the coupling terms in Eqs. 1(a,b) on the IV characteristics: voltage increases (decreases) with increasing \(\tau_{\text{in}} \) at \(I \gtrsim I_c \) in case of the absence (presence) of coupling terms. Secondly, in both cases the IV curves are hyperbolic-like with no 'foot'-like feature and with hysteresis for relatively large \(\tau_{\text{in}} \) (the transition to the superconducting state occurs at the re trapping current \(I_r \) which could be smaller than the critical current \(I_c \) for the transition from the superconducting to the resistive state).

We plot in Fig. 4 the energy dependence of \(\delta f_L \) averaged over one oscillation period \(T_{\Delta} \) taken in the phase slip center. The effect of the coupling terms are clearly visible by comparing Fig. 4(a) and 4(b). The \(\overline{\delta f_L^{\text{PSC}}} \) is on the average negative in case the coupling terms are absent and positive when they are included.

Let us now discuss the origin of the sign of \(\delta f_L^{I_{\text{sc}}} \) for the transition from the superconducting to the resistive state. If we average Eq. (7) over \(T_{\Delta} \) then we obtain

\[
\delta f_L = -\tau_{\text{in}} \frac{\partial f_0}{\partial \epsilon} \int_0^{T_{\Delta}} \frac{R_2 \partial |\Delta|}{N_1} \frac{\partial |\Delta|}{\partial t} dt.
\]

If \(R_2 \) and \(N_1 \) are solely a function of \(|\Delta| \) then \(\overline{\delta f_L^{I_{\text{sc}}}} = 0 \). But in general the spectral functions \(R_2 \) and \(N_1 \) are a function of two variables \(|\Delta|, \ |Q| \) (at fixed \(x \) and \(\epsilon \) - see Eq. (2)). To get insight how the ratio \(R_2/N_1 \) changes with varying \(|Q| \) at fixed \(|\Delta| \) one may solve Eq. (2) with
much smaller than Δ phase slip event in Fig. 5) the order parameter is still in the increasing region of this effect is the large characteristic time scale for the cillations of Φ_p pervelocity (see dashed lines in Fig. 5). Therefore the ratio R_2/N_1 in the absence of the coupling terms in Eqs. 1(a,b). In the inset of Fig. 4(b) we show the distribution of the time averaged Φ_1 and $|\Delta|$ along the microbridge and the leads (schematically shown).

Consider now the effect of the coupling terms in Eqs. 1(a,b). The term $D^\nu(j_{PSC}) = 2D^\nu(N_2R_2Q_{PSC})$ in Eq. 1(a) may be considered as an additional source of nonequilibrium which is nonzero in the energy interval $\delta \epsilon \approx \Delta^2$ near local $|\Delta|(x)$ (in the spatially uniform case with $Q = 0$ and $\tau_{\mu} = \infty$ one has $N_2R_2 \sim |\Delta|(x)\delta(\epsilon - |\Delta|(x))$ - see for example Ref. [9]). From Eq. 1(b) we may roughly estimate $f_{PSC} \sim -e\phi\partial f_{PSC}^J/\partial \epsilon$ and the sign of the coupling term $D^\nu(j_{PSC})$ is defined mainly by the product $Q \cdot E$ (for discussion of the effect of the coupling terms see also Ref. [11]).

Our calculations show (see Fig. 6) that near the superconducting leads the product $Q \cdot E$ is mainly (in time) positive and in the phase slip center it can be both positive and negative (due to the sign change of Q - see Fig. 5). It results in positive δf_{PSC} at $\epsilon \approx \Delta_{lead}$ - see Fig. 4(b) (at these energies the ends of the microbridge are situated in the center of the microbridge where both $Q \cdot E$ and $\partial |\Delta|/\partial t$ changes sign during the oscillations.

Consider now the effect of the coupling terms in Eqs. 1(a,b). The term $D^\nu(j_{PSC}) = 2D^\nu(N_2R_2Q_{PSC})$ in Eq. 1(a) may be considered as an additional source of nonequilibrium which is nonzero in the energy interval $\delta \epsilon \approx \Delta^2$ near local $|\Delta|(x)$ (in the spatially uniform case with $Q = 0$ and $\tau_{\mu} = \infty$ one has $N_2R_2 \sim |\Delta|(x)\delta(\epsilon - |\Delta|(x))$ - see for example Ref. [9]). From Eq. 1(b) we may roughly estimate $f_{PSC} \sim -e\phi\partial f_{PSC}^J/\partial \epsilon$ and the sign of the coupling term $D^\nu(j_{PSC})$ is defined mainly by the product $Q \cdot E$ (for discussion of the effect of the coupling terms see also Ref. [11]).

Our calculations show (see Fig. 6) that near the superconducting leads the product $Q \cdot E$ is mainly (in time) positive and in the phase slip center it can be both positive and negative (due to the sign change of Q - see Fig. 5). It results in positive δf_{PSC} at $\epsilon \approx \Delta_{lead}$ - see Fig. 4(b) (at these energies the ends of the microbridge are situated in the center of the microbridge where both $Q \cdot E$ and $\partial |\Delta|/\partial t$ changes sign during the oscillations.

Consider now the effect of the coupling terms in Eqs. 1(a,b). The term $D^\nu(j_{PSC}) = 2D^\nu(N_2R_2Q_{PSC})$ in Eq. 1(a) may be considered as an additional source of nonequilibrium which is nonzero in the energy interval $\delta \epsilon \approx \Delta^2$ near local $|\Delta|(x)$ (in the spatially uniform case with $Q = 0$ and $\tau_{\mu} = \infty$ one has $N_2R_2 \sim |\Delta|(x)\delta(\epsilon - |\Delta|(x))$ - see for example Ref. [9]). From Eq. 1(b) we may roughly estimate $f_{PSC} \sim -e\phi\partial f_{PSC}^J/\partial \epsilon$ and the sign of the coupling term $D^\nu(j_{PSC})$ is defined mainly by the product $Q \cdot E$ (for discussion of the effect of the coupling terms see also Ref. [11]).

Our calculations show (see Fig. 6) that near the superconducting leads the product $Q \cdot E$ is mainly (in time) positive and in the phase slip center it can be both positive and negative (due to the sign change of Q - see Fig. 5). It results in positive δf_{PSC} at $\epsilon \approx \Delta_{lead}$ - see Fig. 4(b) (at these energies the ends of the microbridge are situated in the center of the microbridge where both $Q \cdot E$ and $\partial |\Delta|/\partial t$ changes sign during the oscillations.

Consider now the effect of the coupling terms in Eqs. 1(a,b). The term $D^\nu(j_{PSC}) = 2D^\nu(N_2R_2Q_{PSC})$ in Eq. 1(a) may be considered as an additional source of nonequilibrium which is nonzero in the energy interval $\delta \epsilon \approx \Delta^2$ near local $|\Delta|(x)$ (in the spatially uniform case with $Q = 0$ and $\tau_{\mu} = \infty$ one has $N_2R_2 \sim |\Delta|(x)\delta(\epsilon - |\Delta|(x))$ - see for example Ref. [9]). From Eq. 1(b) we may roughly estimate $f_{PSC} \sim -e\phi\partial f_{PSC}^J/\partial \epsilon$ and the sign of the coupling term $D^\nu(j_{PSC})$ is defined mainly by the product $Q \cdot E$ (for discussion of the effect of the coupling terms see also Ref. [11]).

Our calculations show (see Fig. 6) that near the superconducting leads the product $Q \cdot E$ is mainly (in time) positive and in the phase slip center it can be both positive and negative (due to the sign change of Q - see Fig. 5). It results in positive δf_{PSC} at $\epsilon \approx \Delta_{lead}$ - see Fig. 4(b) (at these energies the ends of the microbridge are situated in the center of the microbridge where both $Q \cdot E$ and $\partial |\Delta|/\partial t$ changes sign during the oscillations.

FIG. 4: (color online). Typical energy dependence of the time averaged δf_{PSC} in the center of the short microbridge (i.e. in the phase slip center) in the absence (a) and the presence (b) of the coupling terms in Eqs. 1(a,b). In the inset of Fig. 4(b) we show the distribution of the time averaged Φ_1 and $|\Delta|$ along the microbridge and the leads (schematically shown).

FIG. 5: (color online). Time dependence of the order parameter $|\Delta|$, the supervelocity Q and the potential Φ_1 in the center of the short microbridge (parameters are the same as in Fig. 4) at $I = 1.2I_c$ and $\tau_{\mu} = 250$ as found from a numerical solution of Eqs. (1-3) without coupling terms. The horizontal dashed line marks $|\Delta| = \Delta_{lead}/2$ to illustrate the corresponding different Q values at two moments in time.
and δf_L is negative except at low energies $\epsilon \ll |\Delta|^{PSC}$ (see Fig. 4(b)). The net effect is a negative time averaged \overline{V}_1 (see inset in Fig. 4(b)) and therefore an enhancement of the superconducting properties which explains the decrease of the voltage at fixed current $I \gtrsim I_c$ with increase of τ_{in} (see Fig. 3(b)). But at low voltages the effect of the coupling terms ($\sim Q\cdot E$) becomes smaller and the role of 'heating' increases. This subsequently leads to an increase of the voltage at fixed current $I \sim I_c$ with increasing τ_m, and to an hysteresis of the IV curves (but which is smaller than in the case without coupling terms - compare Figs. 5(a) and 5(b)).

IV. DISCUSSION

The origin of the here predicted time averaged 'heating' of quasiparticles is different from Joule dissipation. Indeed, the source of nonequilibrium $\sim \partial|\Delta|/\partial t$ changes sign during oscillations of the order parameter while the term $I \cdot V$ is always positive. Time averaged 'heating' appears only due to the dependence of the spectral functions both on $|\Delta|$ and Q and due to the difference in time variation of $|\Delta|$ and $\delta \phi$. Energy for 'heating' of the quasiparticles (and 'cooling' due to the term $\nabla (j \cdot f_T)$ in the kinetic equation) comes from the energy $I \cdot V$ delivered by the external source of the current (this energy goes also for example to the 'heating' of phonons due to presence of the relaxation term in the kinetic equations).

Our result is opposite to the one of Refs. [8,9] where a time averaged 'cooling' of quasiparticles and an enhancement of superconductivity was found at high voltages (when $T|\Delta| \ll \tau_{in}$) in the absence of the coupling terms in Eqs. 1(a,b). The differences with our calculations are that we take into account: i) the backaction of the nonequilibrium quasiparticle distribution function on the dynamics of $|\Delta|$; and ii) the dependence of the spectral functions N_1, N_2 and R_0 on both $|\Delta|$ and Q. There is also one more difference with Refs. [8,9] - we did not neglect the relaxation term in Eq. (7) at high voltages (see Eq. (3) in Ref. [8] and Eq. (16) in Ref. [9]). By omitting this term one may obtain 'cooling' with $\delta f_L > 0$ if one chooses the initial condition $\delta f_L = 0$ when $|\Delta| = |\Delta|_{lead}$ in the center of the microbridge (and when the spectral functions R_0 and N_1 depend only on $|\Delta|$ as was assumed in Refs. [8,9]). But this choice of the initial condition is not obvious. By choosing a different initial condition (large negative δf_L at $|\Delta| = |\Delta|_{lead}$) one may obtain 'heating' in this case too. Only the presence of the relaxation term in Eq. (7) resolves this problem, because it defines undoubtedly the time averaged value of δf_L (see Eq. (8)). Note that due to model assumptions for spectral functions of Refs. [8,9] δf_L has to be equal to zero at any voltage if one does not neglect the relaxation term. From a physical point of view the relaxation term in Eq. (7) tells us that the accumulation of the 'heat'/cold' (after sudden change of the current for example) occurs on a time scale which is proportional to $\tau_{in} \gg T|\Delta|$ and one should take it into account to find the true value of δf_L and $T|\Delta|$ corresponding to the given value of the current. It provides a strong dependence of the IV characteristics and δf_L in τ_{min} even at high voltages (see Figs. 3(a) and 4(a)) while in Refs. [8,9] no dependence on τ_{in} was found in this limit.

According to our numerical calculations the IV characteristics of short ’dirty’ superconducting microbridges are hyperbolic-like and hysteretic (at relatively large currents) in experiments (the width $W \approx 2L$) for such a geometry the current density distribution over the width of the microbridge (constriction) should be nonuniform with sharp peaks near the edges of the microbridge [20]. In Ref. [21] it was shown that a nonuniform current density distribution in the superconductor may lead to slow vortex motion at low currents and phase slip lines at high currents [21] and to an IV characteristic (see for example Fig. 4 in Ref. [21]) which resembles the experimental results of Refs. [5,7]. Moreover the sharp transition from low to high voltages occurs at V_c which is inversely proportional to τ_{in} [21] - the same result was found in the experiment on tin superconducting microbridges [2]. Therefore, we predict that the IV characteristics of short ($L \lesssim \xi(T)$) superconducting microbridges should change from hyperbolic-like (in case when $W \ll L$) to the one with a well-pronounced ’foot’-like structure at low voltages when $W \gtrsim L$. Good
candidates are Sn, In, Pb and Al with relatively large coherence length ($\xi(T) \gtrsim 500\text{nm}$ at $T \sim T_c$). We expect that our results will be tested in the near future because recently it has become possible to fabricate microbridges with length $L < 500\text{ nm}$ and width $W \gtrsim 50\text{ nm}$ (see for example Ref. [2, 3]) which satisfy the condition $W \ll L \lesssim \xi(T)$ at $0 < T/T_c < 1$.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme "Scientific and educational personnel of innovative Russia in 2009-2013", Fleming Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP).

[1] K. K. Likharev, Rev. Mod. Phys. 51, 101 (1979).
[2] J. Wang, X. Ma, S. Ji, Y. Qi, Y. Fu, A. Jin, L. Lu, C. Gu, X. C. Xie, M. Tian, J. Jia, and Q. Xue, Nano Res. 2 671 (2009).
[3] D. Hazra, L. M. A. Pascal, H. Courtois, and A. K. Gupta, Phys. Rev. B 82 184530 (2010).
[4] L. G. Aslamazov and A. F. Volkov, in Nonequilibrium Superconductivity, edited by D. N. Langenberg and A. I. Larkin (Elsevier, Amsterdam, 1986), Chap. 2.
[5] G. Guthmann, J. Maurer, M. Belin, J. Bok, and A. Libchaber, Phys. Rev. B 11, 1909 (1975).
[6] V. N. Gubankov, V. P. Koshelets, and G. A. Ovsyannikov, Zh. Eks. Teor. Fiz. 73, 1435 (1977).
[7] M. Octavio, W. J. Skocpol, and M. Tinkham, Phys. Rev. B 17, 159 (1977).
[8] L. G. Aslamazov and A. I. Larkin, Zh. Eks. Teor. Fiz. 70, 1340 (1976) [Sov. Phys. JETP 43, 698 (1976)].
[9] A. Schmid, G. Schön, and M. Tinkham, Phys. Rev. B 21 5076 (1980).
[10] A. A. Golub, Zh. Eks. Teor. Fiz. 71, 341 (1976) [Sov. Phys. JETP 44, 178 (1976)].
[11] M. Tinkham, Introduction to superconductivity, (McGraw-Hill, NY, 1996), p. 417.
[12] A. Schmid and G. Schön, J. Low Temp. Phys. 20, 207 (1975).
[13] A.I. Larkin and Yu. N. Ovchinnikov, Zh. Eks. Teor. Fiz. 73, 299 (1977) [Sov. Phys. JETP 43, 55 (1977)].
[14] L. Kramer and R.J. Watts-Tobin, Phys. Rev. Lett. 40, 1041 (1978).
[15] R.J. Watts-Tobin, Y. Krähenbühl, and L. Kramer, J. Low Temp. Phys. 42, 459 (1981).
[16] R. S. Keizer, M. G. Flokstra, J. Aarts, and T. M. Klapwijk, Phys. Rev. Lett. 96, 147002 (2006).
[17] J. A. Pals and J. Wolter, Phys. Lett. 70 A, 150 (1979) (see also Ref. [11], p. 414).
[18] M. Tinkham, in Non-Equilibrium Superconductivity, Phonons and Kapitza Boundaries, edited by K. E. Gray (Plenum, New York, 1981).
[19] D. Yu. Vodolazov and F. M. Peeters, Phys. Rev. B 81, 184521 (2010).
[20] L.G. Aslamazov and A. I. Larkin, Zh. Eks. Teor. Fiz. 68, 766 (1975) [Sov. Phys. JETP 41, 381 (1975)].
[21] D. Yu. Vodolazov and F. M. Peeters, Phys. Rev. B 76 014521 (2007).