Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes

Stephanie Boisson-Dupuis¹,²,³, Xiao-Fei Kong¹, Satoshi Okada¹, Sophie Cypowyj¹, Anne Puel²,³, Laurent Abel¹,²,³ and Jean-Laurent Casanova¹,²,³,⁴

The genetic dissection of various human infectious diseases has led to the definition of inborn errors of human STAT1 immunity of four types, including (i) autosomal recessive (AR) complete STAT1 deficiency, (ii) AR partial STAT1 deficiency, (iii) autosomal dominant (AD) STAT1 deficiency, and (iv) AD gain of STAT1 activity. The two types of AR STAT1 defect give rise to a broad infectious phenotype with susceptibility to intramacrophagic bacteria (mostly mycobacteria) and viruses (herpes viruses at least), due principally to the impairment of IFN-γ-mediated and IFN-α/β-mediated immunity, respectively. Clinical outcome depends on the extent to which the STAT1 defect decreases responsiveness to these cytokines. AD STAT1 deficiency selectively predisposes individuals to mycobacterial disease, owing to the impairment of IFN-γ-mediated immunity, as IFN-α/β-mediated immunity is maintained. Finally, AD gain of STAT1 activity is associated with autoimmunity, probably owing to an enhancement of IFN-α/β-mediated immunity. More surprisingly, it is also associated with chronic mucocutaneous candidiasis, through as yet undetermined mechanisms involving an inhibition of the development of IL-17-producing T cells. Thus, germline mutations in human STAT1 define four distinct clinical disorders. Various combinations of viral, mycobacterial and fungal infections are therefore allelic at the human STAT1 locus. These experiments of Nature neatly highlight the clinical and immunological impact of the human genetic dissection of infectious phenotypes.

Addresses
¹ St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
² Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Medical School, INSERM U980, Paris, France
³ Necker Medical School, Paris Descartes University, Sorbonne Paris Cité, Paris, France
⁴ Pediatric Hematology–Immunology Unit, Department of Pediatrics, Necker Hospital, Paris, France

Corresponding author: Boisson-Dupuis, Stephanie (stbo603@rockefeller.edu)

Introduction: structure and function of STAT1

STAT1 was the first STAT to be identified, in 1989, and is a key transcription factor mediating IFN-α/β signaling [1–5]. In mice and humans, the STAT1 gene encodes two STAT1 isoforms, generated by alternative splicing. STAT1-α is transcriptionally active and encodes a protein of 750 amino acids (91 kDa), whereas STAT1-β (84 kDa) acts as its dominant-negative inhibitor as it lacks part of the transactivation domain and the Ser phosphorylation site (Ser 727) [6]. STAT1-α (hereafter referred to as STAT1) is involved in various signaling pathways, including the IFN-α/β, IFN-γ, IFN-λ, IL-2, IL-3, IL-6, IL-9, IL-10, IL-11, IL-12, IL-15, IL-21, IL-22, IL-26, IL-27, EGF, VEGF, FGF, HGF, GH, angiotensin and OSM pathways [7]. STAT1 activation conforms to the same general pattern as for other STATs (Figure 1) [8–10]. Briefly, the binding of the soluble extracellular agonist to its specific cell surface receptor leads to the activation of specific JAKs constitutively associated with the receptor chains. The JAKs phosphorylate the intracellular domains of the receptors, thereby creating a docking site for latent cytoplasmic STAT1, which is recruited, undergoes Tyr 701 phosphorylation and is then released from the receptor complex. Phosphorylated STAT1 can form homodimers and heterodimers and multimers, which are then translocated to the nucleus, where they bind to conserved genetic boxes to activate or modulate the transcription of specific target genes [10]. STAT1 is subsequently dephosphorylated in the nucleus [11–13] and exported back to the cytoplasm, where it remains as a monomer or antiparallel unphosphorylated dimer [14,15]. A role for unphosphorylated STAT1 (U-STAT1) in the mediation of some transcriptional activity has been reported [16]. Other posttranslational modifications of STAT1, in addition to the phosphorylation of Tyr and Ser residues, have been reported to contribute the activity of this protein. These modifications include acetylation, methylation and sumoylation [17–20]. However, the specific roles of posttranslational modifications other than Tyr 701 and Ser 727 phosphorylation remain to be clarified.

The N-terminal domain (NTD) of STAT1 is known to be involved in the interaction of the protein with its surface receptor [21], and in phosphorylation [21], nuclear translocation [22] and transcriptional activity, through the facilitation of tetramerization [23,24] and dephosphorylation (Figures 1 and 2) [22,25,26]. The coiled-coil domain
Inborn errors of human STAT1 immunity Boisson-Dupuis et al. 365

Figure 1

The STAT1 cycle: signaling pathway and recycling. Schematic diagram of STAT1 activation and de-activation following IFN-γ stimulation. Following the binding of the cytokine to its receptor, a series of tyrosine phosphorylation events (red circles) occur: first the JAKs autophosphorylate and transphosphorylate each other; they then phosphorylate the intracellular part of the receptor, creating a docking site for STAT1. Recruited STAT1 are also phosphorylated by the JAKs, leading to their removal from the receptor, dimerization and translocation to the nucleus to modulate target gene expression. STAT1 dephosphorylation occurs in the nucleus and STATs are then exported back to the cytoplasm.

Figure 2

Representation of the human STAT1 gene and of the domains of the corresponding protein, with key residues and morbid mutations indicated. The human STAT1α isoform is shown, with its known pathogenic mutations. Coding exons are numbered with roman numerals and delimited by a vertical bar. Regions corresponding to the coiled-coil domain (CC), DNA-binding domain (DNA-B), linker domain (L), SH2 domain (SH2), tail segment domain (TS), and transactivator domain (TA) are indicated, together with their amino-acid boundaries, and are delimited by bold lines. Tyr701 (pY) and Ser727 (pS) are indicated. Mutations in green are dominant and associated with partial STAT1 deficiency and MSMD. Mutations in brown are recessive and associated with complete STAT1 deficiency and intracellular and/or viral disease. Mutations in red are dominant and associated with gain-of-activity of STAT1 and CMCD.
(CC) has considerable potential for involvement in protein-protein interactions and plays a key role in the dimerization of unphosphorylated STAT1 and nuclear STAT1 dephosphorylation [10,14,26–30]. The DNA-binding domain (DNA-B) includes residues such as Asn 460 and Lys 336, which come into contact with the DNA major groove, and Glu 421, which comes into contact with the minor groove [28]. In addition, some residues contribute to the nuclear import of phosphorylated STAT1 dimers by binding to importin-α5 [31–34], whereas others are involved in the nuclear export of the protein [12,35,36]. The linker domain (L) is involved in IFN-γ-driven transcription [37] and in the stability of DNA binding [38]. The SH2 domain (SH2) plays an essential role in binding to the phosphorylated surface receptor and to the phosphorylated tail of other STATs [28]. The tail segment (TS) includes the crucial Tyr 701 residue, which is phosphorylated by JAKs upon activation, thereby facilitating dimerization through interaction with the SH2 domain of another STAT [28]. The transactivation domain (TA) enables the protein to induce or modulate the transcription of target genes. It also contains the Ser 727 residue, the phosphorylation of which increases the transcriptional activity of STAT1 [10,39]. The structure-function relationship of various domains and residues of STAT1 has been characterized in detail.

Immunological and infectious phenotypes of STAT1-deficient mice

STAT1 knockout mice were generated in 1996 by two different groups [40,41]. Despite the demonstration of STAT1 activation by diverse cytokines and hormones in vitro [3,5,7], the knockout mice were born in Mendelian proportions, displayed no overt developmental abnormalities and their leukocyte counts were not low for the populations of cells tested (T cells, B cells, monocytes, macrophages and granulocytes), with the exception of CD4+/CD25+ regulatory T cells [42]. However, these mice responded very poorly to IFN-α/β and IFN-γ, as demonstrated by the absence of detectable gamma activating factor (GAF; STAT1 homodimer) and interferon-stimulated gene factor 3 (ISGF3; STAT1/STAT2/IRF9 heterotrimer). The transcription of most of the genes usually induced by IFN-α/β and IFN-γ was abolished, highlighting a non-redundant role of STAT1 in the two corresponding pathways. Interestingly, residual STAT1-independent responses were subsequently reported [43,44]. It was not until 2004 and 2010 that STAT1 was also shown to be non-redundant for cellular responses to IFN-λ and IL-27, respectively [45–49]. Overall, correct cellular responses to at least four cytokines in the mouse model seem to be highly dependent on STAT1. Mouse STAT1 appears to be redundant for the responses to at least 11 other cytokines (IL-2, IL-3, IL-6, IL-9, IL-10,

Pathogens	Classification	Additional information	S or N	Reference
Sindbis (SINV)	Virus	Togaviridae ss RNA (+)	S	[43]
Chikungunya virus (CHIKV)	Virus	Togaviridae ss RNA (+)	S	[50,51]
Mouse hepatitis virus (MHV)	Virus	Coronavirus ss RNA (+)	S	[40]
Severe acute respiratory syndrome coronavirus (SARS-CoV)	Virus	Coronavirus ss RNA (+)	S	[39]
Murine norovirus 1 (MN01)	Virus	Caliciviridae ss RNA (+)	S	[53,54]
Dengue virus (DENV)	Virus	Flaviviridae ss RNA (+)	N	[63,64]
Vesicular stomatitis virus (VSV)	Virus	Rhabdoviridae ss RNA (–)	S	[40,41]
Influenza A virus	Virus	Orthomyxoviridae ss RNA (–)	S	[48]
Filoviruses (Ebola, Marburg, Reston Ebola)	Virus	Filoviridae ss RNA (–)	S	[56,57]
Machupo Virus (MACV)	Virus	Arenaviridae ss RNA (–)	S	[58]
Crimean-Congo hemorrhagic fever virus (CCHFV)	Virus	Bunyaviridae ss RNA (–)	S	[59]
Sendai virus (SeV)	Virus	Paramyxoviridae ss RNA (–)	S	[60]
Measles virus	Virus	Paramyxoviridae ss RNA (–)	N	[65,66]
Herpes simplex virus (HSV)	Virus	Herpesviridae ds DNA	S	[61,62]
Mouse cytomegalovirus (MCNV)	Virus	Herpesviridae ds DNA	S	[43]
Listeria monocytogenes	Bacteria	Gram +	S	[40]
Mycobacterium tuberculosis	Bacteria	Acid fast Gram +	S	[67]
Francisella novicida	Bacteria	Gram –	S	[68]
Chlamydia pneumoniae	Bacteria	Gram –	S	[69]
Borrelia burgdorferi	Bacteria	Gram –	N	[70]
Toxoplasma gondii	Parasite		S	[71,72]
Cryptosporidium parvum	Parasite		S	[73]
Leishmania major	Parasite		S	[74]
Leishmania donovani	Parasite		N	[75]
Candida albicans	Fungus		N	[76]

S: susceptible. N: normal.
IL-11, IL-12, IL-15, IL-21, IL-22, IL-26), and seven hormones (EGF, VEGF, FGF, HGF, GH, angiotensin, OSM), at least in the experimental conditions tested.

STAT1 knockout mice have been challenged with at least 27 pathogens, including 17 viruses, five bacteria, four parasites and one fungus (Table 1). Unsurprisingly, STAT1-deficient mice are highly susceptible to most viruses, including (+) single-strand RNA viruses, such as Sindbis [43], chikungunya virus (CHIKV) [50,51], mouse hepatitis virus (MHV) [40], severe acute respiratory syndrome coronavirus (SARS-CoV) [52] and murine norovirus 1 [53,54], (−) single-strand RNA viruses, such as vesicular stomatitis virus (VSV) [40,41], influenza virus A [48,55], filoviruses (Ebola, Marburg, Reston Ebola) [56,57], Machupo virus (MACV) [58], Crimean-Congo hemorrhagic fever virus (CCHFV) [59], and Sendai virus (SeV) [60], double-strand DNA viruses, such as herpes simplex virus (HSV) [61,62] and mouse cytomegalovirus (MCMV) [43]. However, they seem to be normally resistant to the (+) single-strand RNA dengue virus [63,64] and to the (−) single-strand RNA measles viruses [65,66]. STAT1 knockout mice are less susceptible to some infections (CMCV and Sindbis viruses) than mice with a double knockout for IFN-γR and IFN-α/βR, presumably owing to STAT1-independent responses [43]. STAT1 knockout mice are also susceptible to infection with intracellular Gram-positive bacteria, such as Listeria monocytogenes [40] and Mycobacterium tuberculosis [67], and intracellular Gram-negative bacteria, such as Francisella novicida [68] and Chlamydia pneumoniae [69], but not in the largely extracellular Borrelia burgdorferi [70]. STAT1-deficient mice are highly susceptible to the parasites Toxoplasma gondii [71,72], Cryptosporidium parvum [73] and Leishmania major [74], but are normally resistant to infection with Leishmania donovani [75]. Most of these bacteria and parasites infect macrophages, and the susceptibility of STAT1-deficient mice probably closely resembles that of IFN-γR-deficient mice. STAT1-deficient mice have also been challenged with the fungus Candida albicans; their response to this challenge was similar to that of wild-type mice [76]. To our knowledge, mice heterozygous for a null STAT1 allele have not been tested. Transgenic mice overexpressing wild-type STAT1 and mice carrying hypomorphic or hypermorphic STAT1 alleles do not appear to have been described either.

Human AR complete STAT1 deficiency: life-threatening intramacrophagic bacterial and viral diseases

A new syndrome characterized by the association of infectious diseases caused by intracellular bacteria (typically mycobacteria) and viruses (typically herpes viruses) was clinically described and genetically elucidated in 2003 (Table 2, Figures 1–5) [77]. Some infections resemble those seen in patients with T-cell combined immunodeficiencies, except that the patients have normal T-lymphocyte counts and function [78]. The known patients carry biallelic loss-of-expression and loss-of-function (LOF) STAT1 alleles, leading to a complete absence of the wild-type protein [77]. They have missense mutations (L600P and Q123H, leading to the frame splicing out of coding exon 3), small frameshift deletions (1758_1759delAG), and small frameshift insertions (1928insA). Only six patients from four unrelated families have been identified to date (Table 2) (Figure 2) [77,79,80] (unpublished data). This is a purely recessive disorder and no haplo-insufficiency at the STAT1 locus has been reported for any of the known cellular or clinical phenotypes. The patients are susceptible to weakly virulent mycobacteria, such as BCG vaccines and Mycobacterium kansasii, and to herpes viruses, such as HSV-1 and CMV. The control of attenuated poliovirus type III vaccine, rhinovirus and parainfluenza virus type II in

Table 2
Four types of inborn errors of human STAT1 immunity
Number of patients described
AR complete STAT1 deficiency
AR partial STAT1 deficiency
AD LOF STAT1 deficiency
AD GOF STAT1 disorder

AR: autosomal recessive. AD: autosomal dominant. LOF: loss-of-function. GOF: gain-of-function. NTD: N-terminal domain. SH2: SH2 domain. CC: coiled-coil domain. DNA-B: DNA-binding domain. TS: tail segment domain. To date, incomplete clinical penetrance is only observed for AD LOF STAT1 deficiency. The unpublished identification of defects in AD LOF STAT1 deficiency (mutation Y701F in one kindred) and AD GOF STAT1 disorder (24 and 18 CMCD kindreds with mutations in the STAT1 DNA-B and CCD, respectively) are not taking into account in the table.
one patient suggests that STAT-1-independent innate antiviral mechanisms may be sufficient in humans [79,81]. Nevertheless, five patients died: two at 3 months of age from mycobacterial disease, two at 12 and 16 months of age from viral disease (including one from HSV-1 encephalitis, HSE) [82*] and another at 11 months of age from severe hepatitis in the course of hematopoietic stem cell transplantation (HSCT) [79]. The sixth patient is still alive one year after HSCT [80*]. Some key infectious phenotypes of STAT1-deficient patients have been seen in patients with other inborn errors of cytokine immunity. The TLR3-dependent induction of IFN-α/β and IFN-λ was shown to be impaired in other children with HSE [82*]. Moreover, mycobacterial disease in some other children has been shown to result from impaired IFN-γ-mediated immunity [83]. Both TLR3 and IFN-γR deficiencies are also life-threatening disorders.

EBV-transformed B cells (EBV-B cells) and SV40-transformed fibroblasts (SV40-fibroblasts) from these patients were unresponsive to IFN-γ and IFN-α in terms of both GAF and ISGF3 activity [77,79,80*]. They were also unresponsive to IL-27 and IFN-λ stimulation, in terms of GAF-DNA binding activity and the induction of target genes, such as IFIT1, respectively [84]. EBV-B cells and SV-40 fibroblasts from patients with complete STAT1 deficiency cannot control the replication of viruses, such as VSV, EMCV, or HSV-1, even after treatment with IFN-α [77,79]. In addition, induction of MxA after Influenza A infection was shown to require IFN-α/β-dependent or IFN-λ STAT-1-dependent signaling [85]. Moreover, leukocytes from these patients have an impaired response to IFN-γ in terms of the induction of IL-12 and other target genes. The STAT1-independent induction of IFN-γ has been documented in IFN-α-stimulated NK cells from a patient [80*]. In addition, STAT1 has been shown to be dispensable for T follicular helper (Tfh) cell differentiation [86*], memory B-cell formation and IL-21-induced Ig secretion in patients’ cells in vitro [87*]. The overall susceptibility of patients to mycobacteria and other intracellular bacteria may be largely explained by the impairment of IFN-γ-GAF
immunity. Indeed, IFN-γ has already been shown to be essential for human antymycobacterial immunity (Figures 3–5) (see below [83]). A role for impaired IL-27 immunity, although unlikely [88], is possible, at least if we consider IL-27 as an IFN-γ-inducing cytokine (through a decrease in STAT1-independent IFN-γ responses). By contrast, the observed susceptibility to viruses is largely owing to the impairment of IFN-α/β responses, as inferred from the susceptibility of IFN-α/βR-deficient mice (Figure 3). A contribution of impaired IFN-λ immunity is plausible, at least for some viral infections, as inferred from both the mouse model [89,90] and the role of human IFN-λ in the clearance of hepatitis C virus [91**,92**,93**,94**]. Patients lacking IL-10R2 (one of the two chains of the receptor for IFN-λ) have not been reported to be particularly susceptible to viral diseases [95]. However, these rare patients died or underwent HSC transplantation early in life, possibly preventing the expression of a viral phenotype. In any case, the cellular and clinical penetrance of complete STAT1 deficiency appears to be complete, as all homozygous patients have an equally severe cellular and clinical phenotype. HSC transplantation appears to be the only curative treatment for these patients. The identification and investigation of a larger number of patients is required to improve delineation of the redundant and non-redundant roles of human STAT1 in cell signaling, host defense and beyond.

AR partial STAT1 deficiency: milder intramacrophagic bacterial and viral diseases

From 2009 onwards, five patients from three unrelated kindreds were identified with a partial, as opposed to complete form of AR STAT1 deficiency (Table 2) (Figure 2) [96,97*,98]. The patients harbor biallelic STAT1 mutations (homozygous in two kindreds and compound heterozygous in the third), which are hypomorphic (as opposed to amorphic). The four mutations are missense and all reduce but do not abolish STAT1 production. One mutation affects the NTD (A46T), two affect the CCD (K201N and K211R) and one affects the TSD (P696S). No precise functional data are available for the A46T mutation, but the other three mutations are unusual in being not only missense mutations, but also, primarily, splice mutations. Indeed, the two mutations in the CCD region cause the splicing-out of exon 8 [97*,98], whereas in the TSD region splices out exon 23 [96]. The P696S and K201N mutations have no effect on the function of the residual full-length STAT1 produced, accounting for the partial nature of the defect [96,97*]. The K211R mutation has not been characterized in this respect [98]. By comparison with complete STAT1 deficiency, this disorder is thus associated with milder intramacrophagic bacterial (Salmonella, M. avium, BCG) and viral (CMV, VZV, HSV-1, RSV) diseases, most of which are cured by antibacterial or antiviral drugs [96,97*,98]. Four of the five patients are alive and were aged 12, 14, 14 and 16 years at last follow-up. The fifth patient died of sepsis at the age three years, after an episode of disseminated mycobacterial disease. Two patients are seropositive for EBV and CMV and another is seropositive for EBV, CMV and VZV, so these patients were able to mount an effective immune response against at least these viruses, leading to their control [81,97*,98]. As they are now in their teens, they probably have been exposed to and controlled other viruses as well.

Unlike EBV-B cells and SV40-fibroblasts from patients with complete STAT1 deficiency, cells from patients with a partial deficiency produce residual non-null amounts of functional STAT1, corresponding to between 10% and 25% normal levels (depending on the mutation). Consequently, their cells have an impaired, but not abolished STAT1-dependent response to IFN-γ and IFN-α treatment, in terms of both GAF and ISGF3 activity [96,97*]. They also display an impaired response to stimulation with IL-27 and IFN-λ. The ability of the patients’ cells to control viral infection (HSV and VSV) in vitro after treatment with IFN-α seems to depend on the mutation and, possibly, on the level of residual STAT1 activation after IFN-α stimulation. In any case, the impaired, but not abolished IFN-α/β and/or IFN-λ responses probably account for the viral infection phenotype being less severe than that in patients with complete STAT1 deficiency (Figures 3–5). Only a small number of patients with partial STAT1 deficiency have been identified, but it may be significant that none has had HSE [96,97*,98]. Similarly, the residual response to IFN-γ (and perhaps IL-27) may well account for their mycobacterial infections being curable. A thorough investigation of the cellular phenotype conferred by one of these STAT1 mutations (K201N/K201N) suggested that the expression of genes induced by IFN-γ during the early response phase was particularly impaired, at least in SV-40 fibroblasts, identifying this group of genes as important for antymycobacterial immunity [97*]. Overall, the defect being partial, these patients display less severe clinical diseases than patients with a complete defect. However, the degree of severity of the disease has been shown to vary between patients, even within a given family. The amount of functional residual STAT1 produced may differ between siblings with the same mutation (a splicing mutation) [96]. Nevertheless, the clinical penetrance of partial STAT1 deficiency also appears to be complete. Overall, levels of STAT1 production and activity are correlated with the severity of bacterial and viral infections in patients with AR STAT1 deficiency. There are clearly two different forms of AR STAT1 deficiency, studies of the natural history of which provide different and complementary information about the role of STAT1 in host defense.

AD STAT1 deficiency: Mendelian susceptibility to mycobacterial disease

Mendelian susceptibility to mycobacterial disease (MSMD) is a rare syndrome characterized by infections
Schematic diagrams of the role of STAT1 in antimycobacterial, antiviral and antifungal immunity. In the three panels, proteins for which mutations in the corresponding genes have been identified and associated with MSMD, HSE and CMC, respectively, are shown in blue. STAT1 is shown in red. Top panel:
Clinical consequences of low or high levels of STAT1 activity. A narrow range of STAT1 activity should be maintained to ensure health. Biallelic and even monoallelic loss-of-function (LOF) alleles, including not only null but also hypomorphic alleles, confer a predisposition to mycobacterial disease, owing to impaired IFN-γ immunity. The concomitant impairment of IFN-α/β and IFN-λ signaling further predisposes patients to viral illnesses. The severity of the clinical phenotype depends on the severity of the cellular phenotype. The impact of IL-27 hyporesponsiveness is unclear. By contrast, heterozygosity for gain-of-function (GOF) alleles owing to a gain of phosphorylation through a loss of nuclear dephosphorylation, predisposes patients to chronic mucocutaneous candidiasis (CMC) and autoimmunity (typically thyroiditis and, more rarely, other conditions, such as systemic lupus erythematosus). The mechanism underlying CMC involves an impairment of the development of IL-17 T cells, owing to enhanced STAT1-dependent responses to the IL-17 inhibitors IFN-γ, IFN-α/β, IFN-λ and IL-27, or weak STAT3-dependent responses, owing to enhanced STAT1-dependent responses to the IL-17 inducers IL-6, IL-21, and IL-23. The mechanism underlying autoimmunity probably involves enhanced IFN-α/β responses.

with weakly pathogenic mycobacteria (such as the BCG vaccine and environmental mycobacteria) in otherwise healthy individuals [83,99]. The patients are also susceptible to the more virulent Mycobacterium tuberculosis and half of them also suffer from non-typhoidal salmonellosis [100,101]. Since the discovery in 1996 of its first genetic etiology, eight morbid genes (IFNGR1, IFNGR2, STAT1, IRF8, IL12B, IL12RB1, NEMO and CYBB) have been found (Figure 4) [99,102**,103**]. They collectively define up to 15 genetic disorders affecting IL-12-dependent, IFNγ-mediated immunity. In this context, the first human patients with any form of inherited STAT1 deficiency were discovered in 2001, with the identification of two patients from unrelated kindreds, both heterozygous for the L706S LOF dominant-negative STAT1 allele [104]. These two patients suffered only from relatively mild MSD (disseminated BCG disease and M. avium, both curable without recurrence). Two

(Figure 4 Legend Continued) The phagocytosis of mycobacteria leads to cytokine production and cooperation between phagocytes/dendritic cells and NK/T cells. The IL-12/23/IFN-γ loop, the CD40/CD40L pathway and the oxidative burst (mediated by CYBB, a component of NADPH oxidase) are crucial for protective immunity to mycobacteria in humans. STAT1 deficiency is associated with an impaired IFN-γ response. Middle panel: The recognition of dsRNA by TLR3 induces activation of the IRF-3 and NF-kB pathways via TRIF, leading to IFN-α/β and/or IFN-λ production. TLR3, UNC-93B, TRIF, TRAF3, TBK1 and NEMO deficiencies are associated with impaired IFN-α/β and/or IFN-λ production, particularly during herpes virus infection. The binding of IFN-α/β or IFN-λ to its receptor induces the phosphorylation of JAK1 and TYK2, activating the signal transduction proteins STAT1, STAT2 and IRF9. This complex is translocated as a heterotrimer to the nucleus, where it acts as a transcriptional activator, binding to specific DNA response elements in the promoter region of IFN-inducible genes. STAT1 deficiency is associated with impaired IFN-α, IFN-β and IFN-λ responses. Bottom panel: Following the recognition of C. albicans, the CARD9 adaptor molecule mediates the induction of pro-inflammatory cytokine production by myeloid and epithelial cells. These pro-inflammatory cytokines, including IL-6 and IL-23, activate T lymphocytes via STAT3, inducing the differentiation of these cells into IL-17-producing T cells; these cells constitute a major component of immune defenses against C. albicans. Gain-of-function mutations in STAT1 inhibit this differentiation in response to IFN-α/β, IFN-γ, IFN-λ and IL-27 or the impairment of normal IL-6, IL-21 and/or IL-23 signaling, through an as yet undetermined mechanism.
children of the first patient were also heterozygous and, in the absence of BCG vaccination, have remained healthy [84, 104]. None of the four patients identified had ever displayed any unusually severe viral illness at least until their most recent check-up visits at the ages of 10, 14, 21 and 44 years (unpublished data). Since 2001, up to six other kindreds have been found to carry dominant-negative STAT1 mutations associated with MSMD (Figure 2). All the mutations are missense, two mutations affect the DNA-B (E320Q and Q463H) [84], three others the SH2D (K637E, M654K and K673R) [105, 106] and a fifth mutation affects Tyr 701 itself (Y701C) (Hirata et al., in preparation). Most patients from the eight kindreds suffered from MSMD (BCG-osis or M. avium disease). One patient suffered only from bona fide tuberculosis, caused by M. tuberculosis [84]. For several mutations, clinical penetrance is incomplete, as up to five genetically affected relatives of index cases, two of whom are known not to have been vaccinated with BCG, have remained clinically healthy.

The transfection of fibrosarcoma cells lacking STAT1 owing to a somatic event with MSMD-causing STAT1 alleles has shown some of these alleles to be LOF (in a broad sense, including amorphic and hypomorphic alleles) owing to loss-of-phosphorylation (L706S, M654K and K673R) for both the IFN-γ-GAF and IFN-α-ISRE signaling pathways [104–106]. Others (E320Q and Q463H) were found to be deleterious owing to impaired DNA-binding [84]. One mutation (K637E) affects both Tyr 701 phosphorylation and DNA-binding activity [105]. However, in the cells of heterozygous patients, the mutant alleles were shown to be dominant for IFN-γ-GAF activity but recessive for IFN-α-ISRE activity. In other words, the response to IFN-γ was impaired in heterozygous cells, whereas the response to IFN-α/β was unaffected. This provided the first example of a human allele intrinsically null for two cellular phenotypes but recessive for one and dominant for the other in heterozygous cells [104]. We also know that this dichotomy applies at the level of the whole organism, as patients with AD STAT1 deficiency have MSMD, whereas those with AR STAT1 deficiency are susceptible to both mycobacterial and viral diseases. The mechanisms of dominance and recessiveness, for GAF and ISGF3 activation, respectively, have been deciphered [84]. There is no haploinsufficiency for STAT1, as assessed by GAF and ISGF3 DNA-binding activity, in cells heterozygous for a loss-of-expression STAT1 allele [84]. The mutant proteins are also intrinsically able to associate with phosphorylated IFN-γ-R1 and to form dimers with mutant or WT STAT1. The lack of phosphorylation of the mutant proteins or their inability to bind DNA therefore destroys the activity of dimers containing them. As a result, only dimers combining two phosphorylated wild-type STAT1 molecules are functional, accounting for the detection of about 25% the normal level of GAF activity (for null alleles) in response to IFN-γ in the patients’ cells. Conversely, some mutated STAT1 molecules (like L706S) do not bind to phosphorylated STAT2 recruited to and activated at the IFN-α/β receptor complex. Only WT STAT1 molecules are therefore recruited in heterozygous cells. Other mutated STAT1 molecules (in the DNA-B) bind phosphorylated STAT2 but do not impair the binding of ISGF3 with its DNA target. This results, in a normal response to IFN-α and the formation of ISGF3, albeit in sufficient quantities because there is no haploinsufficiency for the STAT1 locus. The ability of the patients’ cells to respond correctly to IFN-α/β and to control viral infections in vitro accounts for the lack of a clinical phenotype in vivo. The patients’ cells also respond well to IFN-λ in terms of IFIT1 mRNA induction [105]. As discussed above, the poor cellular response to IFN-γ accounts for the patients’ susceptibility to mycobacteria (Figures 3–5). In STAT1-deficient recipient cells, the transfected mutant STAT1 alleles are null for GAF activation in response to IL-27 [105]. Moreover, the patients’ cells also respond poorly to IL-27, potentially contributing to their clinical phenotype, given that IL-27 has been implicated in IFN-γ-dependent antibacterial immunity in the mouse [88]. The identification of patients carrying mutations in the genes encoding IL-27 or its receptor would facilitate assessments of the contribution of this molecule to antimycobacterial immunity. In any event, the dominant-negative STAT1 alleles identified do not confer a predisposition to viral disease, but they may underlie AD MSMD in rare patients, because although null or severely hypomorphic for both signaling pathways, these alleles impair IFN-γ responses, but not IFNα/β responses in heterozygous cells.

AD gain of STAT1 activity: CMCD and autoimmunity

Heterozygous gain-of-function STAT1 alleles were discovered in 2011, in patients with chronic mucocutaneous candidiasis (CMC) [107**, 108**]. Candida albicans is a fungus that causes invasive or chronic mucocutaneous disease in immunocompromised patients [109]. CMC is common in patients with other clinical signs carrying various inborn errors of immunity, including mutations in STAT3 [110–114], IL12B [111], IL12RB1 [111] and AIRE [115*, 116*]. All these defects are associated with impaired IL-17 immunity, whether owing to the impaired development of IL-17-producing T cells (mutations in STAT3 and, to a lesser extent, IL12RB1 and IL12B) or to higher titers of neutralizing auto-Abs against IL-17 cytokines (AIRE) [115*]. This suggests that IL-17A, IL-17F and/or IL-22 play an important role in mucocutaneous immunity to C. albicans (Figure 4) [117]. Consistent with this hypothesis, genetic predisposition to CMC disease (CMCD) in rare patients without the clinical features associated with the aforementioned defects was attributed to a specific hypomorphic heterozygous mutation of...
IL17 in a kindred with AD CMCD, and to biallelic amorphic mutations of **IL17A** in a kindred with AR CMCD [117,118]. Surprisingly, heterozygous mutations of **STAT1** were discovered in this context by whole-exome sequencing [107] or genome-wide linkage analysis [108] in patients with CMCD, including some patients with autoimmune signs (Figures 2 and 5) [107*108]. A first report described 12 mutations in 47 patients from 20 kindreds [107]. Another report identified two mutations in 14 patients from five families [108]. A third report subsequently identified two other families and seven patients with CMCD carrying a known mutation [119]. Altogether, 68 patients with CMCD from 27 kindreds have been reported to be heterozygous for **STAT1** mutant alleles (Table 2). Remarkably, all these mutations affect the CCD of **STAT1**. Moreover, all are missense mutations, including six found in several unrelated kindreds (R274Q, M202V, R274W, T288A, M202I, and A267V), and they appear to be due to mutational hotspots [107] rather than a founder effect [108]. The mutations segregate with clinical phenotype, and clinical penetrance appears to be complete, although clinical severity varies between and even within families [107,108]. In addition, we recently identified 24 and 18 new CMCD patients from 13 and 13 families heterozygous for mutations affecting the DNA-B and CCD of **STAT1**, respectively (Okada S. et al., in preparation). Heterozygous **STAT1** mutations account for approximately half the patients enrolled in our CMC cohort.

These CMCD-causing mutant **STAT1** alleles were shown to be gain-of-function (GOF) [107]. At the cellular level, this gain of function results from a gain of phosphor- ylation [107]. Following the transfection of **STAT1**-deficient fibrosarcoma cells with these alleles, the response to IFN-γ, IFN-α, IL-27, IL-6 and IL-21 was reproducibly two to three times stronger than that in control cells, in terms of **STAT1** phosphorylation, GAS-binding activity, reporter gene induction, and the induction of some endogenous target genes. The mechanism underlying the GOF has been analyzed with inhibitors of kinases and phosphatases, and has been shown to be largely, if not exclusively, associated with an impairment of nuclear **STAT1** dephosphorylation [107] (Okada S. et al., in preparation). Several residues close to those affected by CMCD-causing mutations in the CCD and DNA-B have been shown, by site-directed mutagenesis, to be essential for **STAT1** dephosphorylation [10,12,14,26–30,35,36]. Heterozygous cells from patients also display a stronger response to IFN-γ, IFN-α and IL-27, demonstrating that the GOF alleles are dominant at the cellular level. These cells also displayed defective nuclear **STAT1** dephosphorylation. Heterozygosity for GOF **STAT1** alleles therefore accounts for AD CMCD with autoimmunity. The autoimmune seen in these patients probably reflects an enhancement of the cellular response to IFN-α/β [120]. What is the immunological mechanism underlying CMCD? The analysis of IL-17-producing T cells *ex vivo* and *in vitro* highlighted a profound defect in the development of these cells in the patients [107]. This observation provided a cellular basis for CMCD in patients heterozygous for GOF **STAT1** alleles, but also raised questions about the underlying mechanism. It is possible that an excessive response to one or several of the cytokines known to inhibit IL-17 T-cell development, such as IFN-γ, IFN-α and IL-27 (Figures 4 and 5) [121–123] (whether leading to a decrease or an increase in the transcription of key target genes with respect to controls) impairs the development of these cells in the patients, rendering them susceptible to CM. Alternatively, enhanced **STAT1** activation may divert the response to IL-6, IL-21 and IL-23 from the normal preferential use of **STAT3** for signaling, which favors the development of IL-17 T cells [124–128] (Figures 4 and 5). These two hypotheses are not mutually exclusive. Other mechanisms may also operate. Further work is required to investigate the mechanisms by which the heterozygous **STAT1** GOF alleles impair IL-17 T-cell development, at both the molecular and cellular levels. However, recent studies have clearly established that CMC develops in patients heterozygous for GOF **STAT1** alleles because of the impaired development of IL-17 T cells.

Conclusion and perspectives

STAT1 is, to our knowledge, the first human gene identified for which LOF and GOF heterozygous alleles are apparently associated with a relatively narrow set of distinct infectious diseases. Heterozygotes for LOF dominant-negative alleles display MSMD, whereas heterozygotes for GOF dominant alleles display CMCD. The mutations may even affect the same domain of **STAT1**. **STAT1** is not the first host defense gene to harbor LOF or GOF mutations in different patients, as this situation has already been demonstrated for the X-linked WASp gene, for which LOF mutations underlie XR Wiskott–Aldrich syndrome whereas GOF mutations underlie XR severe congenital neutropenia [129,130]. The range of infections seen in these two X-linked traits is, however, broader and there is some overlap. Moreover, there are not two, but four distinct disorders of **STAT1**, each of which is apparently associated with a specific set of infectious diseases. Heterozygous morbid alleles of **STAT1** are associated with AD MSMD or AD CMCD, whereas biallelic LOF mutations (whether amorphic or hypomorphic) are associated with AR predisposition to both mycobacterial and viral diseases. Intriguingly however, two patients heterozygous for GOF **STAT1** alleles were recently shown to display recurrent herpes virus infections [131], which is reminiscent of **STAT3**-deficient patients and might involve the same mechanism of impaired T cell memory [132]. Finally, the severity of the infectious phenotype is more pronounced in patients with AR complete **STAT1** deficiency than in patients.
with a partial form of STAT1 deficiency. The set of bacterial and viral diseases may be broader in patients with complete STAT1 deficiency, although the better prognosis of patients with a partial defect may reveal infections not seen in those with complete deficiency, who die in early childhood unless treated by HSCT.

The discovery and characterization of the various human STAT1 morbid alleles has built on elegant studies on human and mouse cell lines in vitro and the mouse model in vivo. Human studies have helped to elucidate the function of STAT1 in host defense in nature, in the context of a natural ecosystem governed by natural selection [133,134]. The range and nature of viral infections controlled by IFNα/β-dependent and IFN-λ-dependent STAT1 immunity are gradually being deciphered. Clearly, human STAT1-dependent IFN-γ immunity is crucial for protection against mycobacteria and a relatively limited set of intramacrophagic microbes. More surprisingly, a gain of STAT1 activity impairs the development of IL-17-producing T cells and impairs mucocutaneous immunity to C. albicans. Too little STAT1 immunity, whether owing to monoallelic dominant-negative or biallelic LOF mutations, is associated with a predisposition to viral and/or mycobacterial diseases. Conversely, too much STAT1 immunity, owing to monoallelic GOF mutations, is associated with CMC and autoimmunity (Figure 5). There is therefore probably a strong evolutionary pressure in favor of the maintenance of optimal STAT1 activity [135*], as even heterozygous mutations increasing or decreasing the activity of this protein outside a particular range would be subject to strong counterselection during the evolution of the population. Evolutionary genetic studies in human populations would probably reveal a strong purifying selection operating at the STAT1 locus, as recently shown for the human genes encoding several IFNs, including IFN-α/β and IFN-γ [136**].

Acknowledgements

We thank Yelena Nemirovskaya and Eric Anderson for secretarial assistance, Shen-Ying Zhang for the HSE figure, Emmanuelle Jouanguy and Amandine Cazenove for critical reading and all the Laboratory of Human Genetics of Infectious Diseases for helpful discussions. The Laboratory of Human Genetics of Infectious Diseases is supported partly by grants from the St. Giles Foundation, the Jeffrey Modell Foundation, The Rockefeller University Center for Clinical and Translational Science grant number SUL1RR024143, the National Institute of Allergy and Infectious Diseases grant numbers R01AI089970-02 and 1R37AI095983-01, The Rockefeller University, the Agence Nationale de la Recherche (ANR), and the European Research Council (ERC). X.F.K. was supported by a Choh-Hao Li Memorial Fund Scholar Award and the Shanghai Educational Development Foundation, and S.C. is supported by the AXA Research Fund.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as: ** of special interest

Reference	Details
1. Dale TC, Imam AM, Kerr IM, Stark GR: Rapid activation by interferon alpha of a latent DNA-binding protein present in the cytoplasm of untreated cells. Proc Natl Acad Sci USA 1989, 86:1205-1207.	
2. Levy DE, Kessler DS, Pine R, Darnell JE Jr: Cytoplasmic activation of ISGF3, the positive regulator of interferon-alpha-stimulated transcription, reconstituted in vitro. Genes Dev 1989, 3:1362-1371.	
3. Casanova JL, Holland SM, Notarangelo LD: Inborn errors of human JAKs & STATs. Immunity 2012, 36:515-528.	
4. Schindler C, Fu XY, Improtta T, Aebersold R, Darnell JE Jr: Proteins of transcription factor ISGF-3: one gene encodes the 91- and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci USA 1992, 89:7836-7839.	
5. Darnell JE Jr, Kerr IM, Stark GR: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264:1415-1421.	
6. Zakharaova N, Lymar ES, Yang E, Malik S, Zhang JJ, Roeder RG, Darnell JE Jr: Distinct transcriptional activation functions of STAT1alpha and STAT1beta on DNA and chromatin templates. J Biol Chem 2003, 278:43067-43073.	
7. Najjar I, Fagard R: STAT1 and pathogens, not a friendly relationship. Biochimie 2010, 92:425-444.	
8. Leonard WJ, O'Shea JJ: JakS and STATs: biological implications. Annu Rev Immunol 1998, 16:293-322.	
9. Bach E, Aguet M, Schreiber RD: The interferon gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 1997, 15:563-591.	
10. Levy DE, Darnell JE Jr: Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002, 3:651-662.	
11. Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U: DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1. Genes Dev 2003, 17:1992-2005.	
12. Haspel RL, Darnell JE Jr: A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc Natl Acad Sci USA 1999, 96:10188-10193.	
13. ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 2002, 22:5662-5668.	
14. Zhong M, Henriksen MA, Takeuchi K, Schafer O, Liu B, ten Hoeve J, Ren Z, Mao X, Chen X, Shuai K et al.: Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc Natl Acad Sci USA 2005, 102:3966-3971.	
15. Wenta N, Strauss H, Meyer S, Vinkemeier U: Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations. Proc Natl Acad Sci USA 2008, 105:9238-9243.	
16. Cheon H, Yang J, Stark GR: The functions of signal transducers and activators of transcriptions 1 and 3 as cytokine-inducible proteins. J Interferon Cytokine Res 2011, 31:33-40.	
17. Mowen KA, Tang J, Zhu W, Schurter BT, Shuai K, Herschman HR, David M: Arginine methylation of STAT1 modulates IFNAlphabeta-induced transcription. Cell 2001, 104:731-741.	
18. Meissner T, Krause E, Lodige I, Vinkemeier U: Arginine methylation of STAT1 balances cell survival. Cell 2004, 119:587-589 discussion 589-590.	
19. Kramer OH, Krauer SK, Greiner G, Jandt E, Reichardt S, Guhrs KH, Stauber RH, Bohmer FD, Heinzel T: A phosphorhilation-acetylation switch regulates STAT1 signaling. Genes Dev 2009, 23:223-235.	
20. Begitt A, Dreescher M, Knobeloch KP, Vinkemeier U: SUMO conjugation of STAT1 protects cells from hyperresponsiveness to IFN gamma. Blood 2011, 118:1002-1007.	
21. Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Anagali H, Atkarian M, Murphy TL: Signaling and transcription in T helper development. Annu Rev Immunol 2000, 18:451-494.	
22. Strehlow I, Schindler C: Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. J Biol Chem 1998, 273:20804-20806.

23. Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell JE Jr: DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J 1996, 15:5616-5626.

24. Xu X, Sun YL, Hoey T: Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 1996, 273:794-797.

25. Shuai K, Liao J, Song MM: Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1. Mol Cell Biol 1996, 16:4932-4941.

26. Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X, Darnell JE Jr: Dephosphorylation of phosphorytrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 2006, 20:3372-3381.

27. Braunstein J, Brutsaert S, Olson R, Schindler C: STATs dimerize in the absence of phosphorylation. J Biol Chem 2003, 278:34133-34140.

28. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J: Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 1998, 93:827-839.

29. Hoshino A, Saint Fleur S, Fuji H: Regulation of Stat1 protein expression by phenylalanine 172 in the coiled-coil domain. Biochem Biophys Res Commun 2006, 346:1062-1066.

30. Mao X, Ren Z, Parker GN, Sondermann H, Pastorella MA, Wang W, McMurray JS, Demeler B, Darnell JE Jr, Chen X: Structural bases of unphosphorylated STAT1 association and receptor binding. Mol Cell 2005, 17:761-771.

31. McBride KM, Banning G, McDonald C, Reich NC: Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J 2002, 21:1754-1763.

32. Fagerlund R, Melen K, Kinnunen L, Julkunen I: Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5. J Biol Chem 2002, 277:30072-30078.

33. Meyer T, Begitt A, Lodige I, van Rossum M, Vinkemeier U: Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways. EMBO J 2002, 21:344-354.

34. Melen K, Kinnunen L, Julkunen I: Arginine/lysine-rich structural element is involved in interferon-induced nuclear import of STATs. J Biol Chem 2001, 276:16447-16455.

35. McBride KM, McDonald C, Reich NC: Nuclear export signal located within theDNA-binding domain of the STAT1 transactivation factor. EMBO J 2000, 19:6196-6206.

36. Begitt A, Meyer T, van Rossum M, Vinkemeier U: Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proc Natl Acad Sci USA 2000, 97:10418-10423.

37. Yang E, Wen Z, Haspel RL, Zhang JH, Darnell JE Jr: The linker domain of Stat1 is required for gamma interferon-driven transcription. Mol Cell Biol 1999, 19:5106-5112.

38. Yang E, Henrikse MA, Schaefer O, Zakharchova N, Darnell JE Jr: Dissociation time from DNA determines transcriptional function in a STAT1 linker mutant. J Biol Chem 2002, 277:13455-13462.

39. Decker T, Kovarik P: Serine phosphorylation of STATs. Oncogene 2000, 19:2629-2637.

40. Durbin JE, Hackenmiller R, Simon MC, Levy DE: Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 1996, 84:443-450.

41. Meraz MA, White JN, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D et al.: Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996, 84:431-442.

42. Nishihori T, Tanabe Y, Su L, David M: Impaired development of CD4+ CD25+ regulatory T cells in the absence of STAT1: increased susceptibility to autoimmune disease. J Exp Med 2004, 199:25-34.

43. Gil MP, Bohn E, O’Guin AK, Ramana CV, Levine B, Stark GR, Virgin HW, Schreiber RD: Biologic consequences of Stat1-independent IFN signaling. Proc Natl Acad Sci USA 2001, 98:6689-6685.

44. Ramana CV, Gil MP, Han Y, Ransohoff RM, Schreiber RD, Stark GR: Stat1-independent regulation of gene expression in response to IFN-gamma. Proc Natl Acad Sci USA 2001, 98:6674-6679.

45. Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, Langer JÁ, Sheikh F, Dickensheets H, Donnelly RP: IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003, 4:69-77.

46. Takeda A, Hamano S, Yamanaka A, Hanada T, Ishibashi T, Mak TW, Yoshimura A, Yoshida H: Cutting edge: role of IL-27/ WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 2003, 170:4886-4890.

47. Kamiya S, Owaki T, Morishima N, Fukai F, Mizuguchi J, Yoshimoto T: An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J Immunol 2004, 173:3871-3877.

48. Jewell NA, Cline T, Mertz SE, Smirnov SV, Flano E, Schindler C, Gieves JL, Durbin RK, Kotenko SV, Durbin JE: Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol 2010, 84:11515-11522.

49. Batten M, Li J, Yi S, Kijjav NM, Danilenko DM, Lucas S, Lee J, de Sauvage FJ, Ghilardi N: Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 2006, 7:929-936.

50. Schitte C, Couderc T, Chenet T, Sourisseau M, Gangneux N, Guivel-Benhassine F, Kraxner A, Tschopp J, Higgs S, Michaël A et al.: Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med 2010, 207:429-442.

51. Gardner CL, Burke CW, Higgs ST, Klimstra WB, Ryman KD: Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 191/25 vaccine candidate. Virology 2012, 425:103-112.

52. Frieman MB, Chen J, Morrison TE, Whitmore A, Funkhouser W, Ward JM, Laminarde EW, Roberts A, Heise M, Subbarao K et al.: SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog 2010, 6:e1000849.

53. Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW: STAT1-dependent innate immunity to a Norwalk-like virus. Science 2003, 299:1575-1578.

54. Strong DW, Thackray LB, Smith TJ, Virgin HW: Protruding domain of capsid protein is necessary and sufficient to determine murine norovirus replication and pathogenesis in vivo. J Virol 2012, 86:2950-2958.

55. Garcia-Sastre A, Durbin RK, Zheng H, Palese P, Gertner R, Levy DE, Durbin JE: The role of interferon in influenza virus tissue tropism. J Virol 1998, 72:8550-8558.

56. Raymond J, Bradfute S, Bray M: Filovirus infection of STAT-1 knockout mice. J Infect Dis 2011, 204(Suppl 3):S986-S990. See ref. [59].

57. de Wit E, Munster VJ, Metwally SA, Feldmann H: Assessment of rodents as animal models for Reston ebolavirus. J Infect Dis 2011, 204(Suppl 3):S986-S972. See ref. [59].
58. Bradfute SB, Stuthman KS, Shurtleff AC, Bavari S: A STAT-1
knockout mouse model for Machupo virus pathogenesis. Virol J 2011, 8:300.
See ref. [59].

59. Bente DA, Alimonti JB, Shieh WJ, Camus G, Stroher U, Zaki S, Jones SM: Pathogenesis and immune response of Crimean-
Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol 2010, 84:11089-11100.
These papers (refs. [56],[57,58],[59]) establish clearly the non-redundant role of mouse STAT1 during infections by different viruses.

60. Shomick LP, Wells AG, Zhang Y, Patel AC, Huang G, Takami K, Sosa M, Shukla NA, Agapov E, Holtzman MJ: Airway epithelial
versus immune cell STAT1 function for innate defense against respiratory viral infection. J Immunol 2008, 180:3319-3328.

61. Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin WH: Interferons regulate the phenotype of wild-type and
mutant herpes simplex viruses in vivo. J Exp Med 1999, 189:663-672.

62. Pasieka TJ, Cillonzon C, Carter VS, Rosato P, Katze MG, Leib DA: Functional genomics reveals an essential and specific role for
Stat1 in protection of the central nervous system following herpes simplex virus corneal infection. J Virol 2011, 85:12972-
12981.
This paper describes the use of microarrays on brain stem cells derived from wild-type or STAT1-deficient mice infected with HSV-1 and the identification of a signature.

63. Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E: Critical roles for both Stat1-dependent and Stat1-
independent pathways in the control of primary dengue virus infection in mice. J Immunol 2005, 175:3946-3954.

64. Perry ST, Buck MD, Lada SM, Schindler C, Shresta S: Stat2 mediates innate immunity to Dengue virus in the absence of
Stat1 via the type I interferon receptor. PLoS Pathog 2011, 7:e1001297.
This paper establishes for the first time a specific and crucial role of mouse Stat2, independently of Stat1 and mediated by IFNAR, in antiviral immunity.

65. O’Donnell LA, Conway S, Rose RW, Nicolas E, Silfker M, Balachandran S, Rall GF: Stat1-dependent control of a
neurotropic measles virus challenge in primary neurons and infected mice. J Immunol 2012, 188:1915-1923.

66. Hahn B, Trifilo MJ, Zuniga EI, Oldstone MB: Viruses evade the immune system through type I interferon-mediated Stat2-
dependent, but Stat1-independent, signaling. Immunity 2005, 22:247-257.

67. Sugawara I, Yamada H, Mizuno S: Stat1 knockout mice are highly susceptible to pulmonary mycobacterial infection.
Tohoku J Exp Med 2004, 202:41-50.

68. Roth KM, Gunn JS, Lafuse W, Satskov AR: Francisella inhibits Stat1-mediated signaling in macrophages and prevents
activation of antigen-specific T cells. Int Immunol 2009, 21:19-28.

69. Rothfuchs AG, Trumstedt C, Mattei F, Schiavoni G, Hidmark A, Wigzell H, Rottenberg ME: Stat1 regulates IFN-alpha beta-
and IFN-gamma-dependent control of infection with Chlamydia pneumoniae by nonhemopoietic cells. J Immunol 2006, 176:6982-6990.

70. Brown CR, Blaho VA, Fritsche KL, Loiacono CM: Stat1 deficiency exacerbates carditis but not arthritis during experimental lyme
borelliosis. J Interferon Cytokine Res 2006, 26:380-399.

71. Gavriliscu LC, Butcher BA, Del Rio L, Taylor GA, Denkers EY: Stat1 is essential for antimicrobial effector function but
otherwise dispensable for gamma interferon production during toxoplasma gondii infection. Infect Immun 2004, 72:1257-1264.

72. Lieberman LA, Banica M, Reiner SL, Hunter CA: Stat1 plays a critical role in the regulation of antimicrobial effector
mechanisms, but not in the development of Th1-type responses during toxoplasmosis. J Immunol 2004, 172:457-463.

73. Ehligato HN, McNair N, Mead JR: Cryptosporidium parvum: the contribution of Th1-inducing pathways to the resolution of
infection in mice. Exp Parasitol 2007, 115:107-113.

74. Rosas LE, Kaiser T, Pyles R, Durbin J, Satskov AR: Development of protective immunity against cutaneous leishmaniasis is
dependent on Stat1-mediated IFN signaling pathway. Eur J Immunol 2003, 33:1799-1805.

75. Rosas LE, Snider HM, Barbi J, Satskov AA, Lugo-Villarino G, Kaiser T, Papenfuss T, Durbin JE, Radzioch D, Gimlicher LH et al.: Cutting edge: Stat1 and T-bet play distinct roles in
determining outcome of visceral leishmaniasis caused by Leishmania donovani. J Immunol 2006, 177:22-25.

76. Guarda G, Braun M, Staeheli F, Tardivel A, Mattmann C, Forster I, Farlik M, Deckter T, Du Pasquier RA, Romero P et al.: Type I
interferon inhibits interleukin-1 production and inflammasome activation. Immunol 2011, 34:213-223.

77. Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chappier A, Eideneschken C, Eid P et al.: Impaired response to interferon-alpha/beta and lethal viral
disease in human Stat1 deficiency. Nat Genet 2003, 33:388-391.

78. Al-Herz W, Bousifha A, Casanova JL, Chapel H, Conley ME, Cunningham-Rundles C, Etzioni A, Fischer A, Franco JL, Geha RS et al.: Primary immunodeficiency diseases: an update on the
classification from the international union of immunological societies expert committee for primary immunodeficiency.
Front Immunol 2011, 2:00054.

79. Chappier A, Wynn RF, Jouanguy E, Filipe-Santos O, Zhang S, Feinberg J, Hawkins K, Casanova JL, Arvind RD: Human
complete Stat1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low
virology viruses in vivo. J Immunol 2006, 176:5078-5083.

80. Vairo D, Tassone L, Tabellini G, Tamassia N, Gasperini S, Bazzoni F, Plebani A, Porta F, Notarangelo LD, Parolini S et al.: Severe impairment of IFN-gamma and IFN-alpha responses in cells of a patient with a novel Stat1 splicing mutation. Blood 2011, 118:1806-1817.

The authors describe a new patient with AR complete Stat1 deficiency who had suffered from severe mycobacterial and viral diseases. In contrast to the fatal outcome reported for the other patients described, this patient was successfully treated by HSCT. In addition, the authors highlight a Stat1-dependent response to IFN-α in NK cells.

81. Averbuch D, Chappier A, Boisson-Dupuis S, Casanova JL, Engelhard D: The clinical spectrum of patients with deficiency of
signal transducer and activator of transcription-1. Pediatr Infect Dis J 2011, 30:324-335.

82. Sancho-Shimizu V, de Diego RP, Jouanguy E, Zhang SY, Casanova JL: Inborn errors of anti-viral interferon immunity in humans.
Curr Opin Virol 2011, 1:487-496.
Clear and comprehensive review on inborn errors of immunity affecting IFNs production and function.

83. Casanova JL, Abel L: Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 2002, 20:581-620.

84. Chappier A, Boisson-Dupuis S, Jouanguy E, Vogt G, Feinberg J, Prochnicka-Chalouf P, Casrouge A, Yang K, Soudais C, Fieschi C et al.: Novel Stat1 alleles in otherwise healthy
patients with mycobacterial disease. PLoS Genet 2006, 2:e131.

85. Holzinger D, Jorns C, Stertz S, Boisson-Dupuis S, Thimme R, Weidmann M, Casanova JL, Heller O, Kochs G: Induction of MxA
gene expression by influenza A virus requires type I or type III interferon signaling. J Virol 2007, 81:7776-7785.

86. Ma CS, Avery DT, Chan A, Batten M, Bustamante J, Boisson-
Dupuis S, Arkwright PD, Kreins AY, Averbuch D, Engelhard D et al.: Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 2012, 119:3997-4008.
See ref. [87].

87. Avery DT, Deenick EK, Ma CS, Suryani S, Simpson N, Chew GY, Chan TD, Palendira U, Bustamante J, Boisson-Dupuis S et al.: B
cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishment of long-lived antibody responses in humans. J Exp Med 2010, 207:155-171.
Through the use of cells from patients with inborn errors of immunity, the authors of papers [86] and [87] identified the importance of STAT3 for the development of Tfh and the generation of effector B cells from naive precursors, respectively.
Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity

Boisson-Dupuis et al. 377

Inborn errors of human STAT1 immunity
defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med 2009, 206:1291-1301.

115. Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-
Morales G, Picard C, Cobat A, Ouachee-Chardin M, Toulon A, Bustamante J et al.: Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 2010, 207:291-297.

See ref. [116].

116. Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, Ensvae E, Perheentupa J, Erichsen MM, Bratanic N et al.: Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 2010, 207:299-308.

In these reports (refs. [115] and [116]), the authors identify the cellular cause of CMC in patients with autoimmune polyendocrine type I syndrome owing to AIRE mutations. The presence of autoantibodies against IL-17A, IL-17F and IL-22 in these patients highlights the specific role of these cytokines in protection against CMC in humans.

117. Puel A, Picard C, Cypowyj S, Lilic D, Abel L, Casanova JL: Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr Opin Immunol 2010, 22:467-474.

118. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israël L, Chrabieh M, Audy M et al.: Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 2011, 332:65-68.

In this paper, the authors identify two genetic etiologies of CMC: AR deficiency of the IL17 receptor (IL-17RA) and AD deficiency of the cytokine IL-17F, thereby demonstrating an essential role of IL-17A and/or IL-17F in mucocutaneous immunity to C. albicans in humans.

119. Smeekens SP, Plantinga TS, van de Veerdonk FL, Heinhuisc B, Hoischen A, Joosten LA, Arkwright PD, Genny A, Kulberg BJ, Veitman JA et al.: STAT1 hyperphosphorylation and defective IL12R/IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PLoS ONE 2011, 6:e29248.

120. Crow YJ: Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci 2011, 1236:91-98.

Clear and comprehensive review on type I interferonopathies.

121. Ramgolam VS, Sha Y, Jin J, Zhang X, Markovic-Plese S: IFN-beta inhibits human Th17 cell differentiation. J Immunol 2009, 183:5418-5427.

122. Liu H, Rohowsky-Kochan C: Interleukin-27-mediated suppression of human Th17 cells is associated with activation of STAT1 and suppressor of cytokine signaling protein 1. J Interferon Cytokine Res 2011, 31:458-469.

123. Feng G, Gao W, Strom TB, Oukka M, Francis RS, Wood KJ, Bushell A: Exogenous IFN-gamma ex vivo shapes the alloreactive T-cell repertoire by inhibition of Th17 responses and generation of functional Foxp3+ regulatory T cells. Eur J Immunol 2008, 38:2512-2527.

124. Hirahara K, Ghoreschi K, Laurence A, Yang XP, Kanno Y, O’Shea JJ: Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine Growth Factor Rev 2010, 21:425-434.

125. Hunter CA: New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 2005, 5:321-331.

126. Kishimoto T: Interleukin-6: from basic science to medicine – 40 years in immunology. Annu Rev Immunol 2005, 23:1-21.

127. Spolski R, Leonard WJ: Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 2008, 26:57-79.

128. Kastelein RA, Hunter CA, Cua DJ: Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007, 25:221-242.

129. Derry JM, Ochs HD, Francke U: Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 1994, 79 following 922.

130. Devriendt K, Kim AS, Mathijs G, Frants SG, Schwartz M, Van Den Oord JJ, Verhoef GE, Boogaerts MA, Fryns JP, You D et al.: Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 2001, 27:313-317.

131. Toth B, Mehes L, Tasko S, Szalai Z, Tulassay Z, Cypowyj S, Casanova JL, Puel A, Marodi L: Reactivation herpes virus disease in a kindred with STAT1 mutation. Lancet 2012, in press.

132. Siegel AM, Heimall J, Freeman AF, Hsu AP, Brittain E, Brenchley JM, Douek DC, Fahle GH, Cohen JI, Holland SM et al.: A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 2011, 35:806-818.

133. Casanova JL, Abel L: Primary immunodeficiencies: a field in its infancy. Science 2007, 317:617-619.

134. Quintana-Murci L, Alcais A, Abel L, Casanova JL: Immunology in nature: clinical, epidemiological and evolutionary genetics of infectious diseases. Nat Immunol 2007, 8:1165-1171.

135. Barreiro LB, Quintana-Murci L: From evolutionary genetics to human immunology: how selection shapes host defense genes. Nat Rev Genet 2010, 11:17-30.

Clear and comprehensive review on evolutionary genetics related to host defense genes.

136. Mann J, Laval G, Patin E, Fornarino S, Itan Y, Fumagalli M, Sironi M, Tichet M, Bouchier C, Casanova JL et al.: Evolutionary genetic dissection of human interferons. J Exp Med 2011, 208:2747-2759.

The authors demonstrate that all IFNs have evolved differently, highlighting some of them under strong purifying selection, suggesting a potent role in antiviral immunity.