Nabothian cyst associated with high false-positive incidence of iodine-131 uptake in whole-body scans after treatment for differentiated thyroid cancer

Shuai Liu, Min Zhang, Yu Pan, Qian Qu, Haifei Wu, Jing Lv and Yifan Zhang

Introduction
Differentiated thyroid cancer (DTC), which includes papillary and follicular cancers, is the most common type of thyroid cancer, accounting for 85% of all thyroid cancers. Radioiodine therapy is often adopted after thyroid carcinoma resection [because of the characteristic of iodine-131 (131I) uptake in DTC] to decrease the recurrence rate and risk of metastasis [1].

131I whole-body scanning (131I-WBS) after 131I treatment in patients with DTC can provide information regarding metastasis and prognosis and help make decisions related to clinical treatment. With its high sensitivity and specificity, 131I single-photon emission computed tomography/computed tomography (SPECT/CT) can improve the accuracy of diagnoses and reduce the false-positive rate.

We have previously reported a case of increased iodine uptake in cervical nabothian cysts [2]. Since then, our attention has focused on 131I-WBS after 131I therapy in our department; this has indicated that the rate of increased focal iodine activity in the middle of the lower abdomen of patients with DTC is higher than that considered previously. In the current study, patients with papillary thyroid cancer, who had undergone thyroidectomy, radioablation, and WBS with 131I, were analyzed to explore the possible reason for this higher than expected rate of focal iodine activity.

Materials and methods
Clinical data
Between June 2012 and March 2013, 205 patients (72 men and 133 women, average age 47.9±11.7 years) who underwent 131I radioactive treatment after thyroid cancer surgery were analyzed retrospectively. Pathological findings confirmed papillary thyroid carcinoma. A whole-body scan was acquired 5 days after 100–120 mCi sodium iodide was administered orally to the patients. Single-photon emission computed tomography/computed tomography (SPECT/CT) can improve the specificity, 131I single-photon emission computed tomography/computed tomography (SPECT/CT) can improve the accuracy of diagnoses and reduce the false-positive rate.

Objective This study aimed to analyze the focal uptake of iodine-131 (131I) in the upper pelvis superior to the urinary bladder on whole-body images of patients who underwent this treatment after thyroidectomy for differentiated thyroid cancer.

Methods Between June 2012 and March 2013, 205 patients (72 men and 133 women, with an average age of 47.9±11.7 years) who underwent 131I radioactive treatment after thyroid cancer surgery were analyzed retrospectively. Pathological findings confirmed papillary thyroid carcinoma. A whole-body scan was acquired 5 days after 100–120 mCi sodium iodide was administered orally to the patients. Single-photon emission computed tomography/computed tomography (SPECT/CT) scanning was carried out to locate the lesion; this showed abnormal intense activity in the upper pelvis superior to the urinary bladder, which was further evaluated by ultrasonography.

Results Using 131I-SPECT scanning, five (3.76%) female patients were shown to have abnormal focal radioactivity in the lower abdomen. Subsequent SPECT/CT examination showed that the radioactivity was located in the cervix in four of the five patients and in the sigmoid colon in one patient. Transvaginal ultrasonography was performed in the former four patients, which revealed several echo-free regions in the cervix. These findings are consistent with the diagnosis of a nabothian cyst. Three of these patients were administered a second course of radioiodine therapy. Radioactive uptake was still visible at the same sites on whole-body imaging.

Conclusion Nabothian cyst should be considered in cases in which abnormal uptake in the upper pelvis superior to the urinary bladder is detected on 131I whole-body scans after differentiated thyroid cancer resection. Nucl Med Commun 34:1204–1207 © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

Keywords: 131I whole-body imaging, false-positive finding, nabothian cyst, papillary thyroid cancer, radioiodine therapy

Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Correspondence to Yifan Zhang, MD, PhD, Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin 2nd Rd, Shanghai 200025, China
Tel: +86 21 643 14813; fax: +86 21 64333548; e-mail: zhang_yifan@126.com

Received 24 May 2013 Revised 2 August 2013 Accepted 2 August 2013

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
This examination revealed that serum thyroid stimulating hormone levels in all patients were higher than 30 mIU/l (average 67.76 ± 17.15 mIU/l). The serum concentration of thyroglobulin ranged from 0 to 478 mg/l, with a mean value of 39.24 ± 10.66 mg/l. The second 131I therapy was usually performed 5–6 months after the first treatment.

Iodine-131 single-photon emission computed tomography/computed tomography imaging

A whole-body scan was acquired 5 days after 100–120 mCi sodium iodide was administered orally. Patients whose scans showed strip funicular or multidotted concentration in the lower mid-abdomen were subsequently excluded. Patients showing intense radioactivity in the upper pelvis underwent CT scanning to define the sites of radioactivity.

Whole-body 131I-SPECT scanning was performed using a high-energy collimator (energy peak, 360 keV; window width, 25%; matrix, 128 x 128; scan speed, 6 cm/min); CT scanning parameters were as follows: electric current, 130 mA; axial slice thickness, 4 mm. Transvaginal ultrasonography was performed to determine the nature of increased uptake in the cervix.

Results

False-positive 131I uptake in DTC patients could either be because of physiological or pathological traces. In our study, physiological uptake could be seen in the parotid gland, nasopharynx, residual thyroid, stomach, liver, bowel, and urinary bladder on the images of the 205 patients. In addition to a few visible neck metastatic lymph nodes in lymph node invasion patients, increased radioactivity could be seen in the middle of the lower abdomen in five female patients. Subsequent SPECT/CT images of these five patients indicated that the abnormal activity was located in the cervix of the uterus in four of the patients (Fig. 1) and in the sigmoid colon in one patient. Transvaginal ultrasonography was performed in these four patients to aid diagnosis. This revealed several echo-free regions in the cervix, with diameters between 4.7 and 12 mm (Fig. 2). These findings are consistent with the diagnosis of a nabothian cyst. It is worth mentioning that three of these patients underwent a second course of 131I treatment; the second set of whole-body images of these patients still showed high radioactivity in the upper pelvis superior to the urinary bladder.

Discussion

131I-WBS is currently considered to be the best method for visualization of residual thyroid tissue or associated DTC metastases [3]. It is deemed to be more sensitive than other diagnostic examinations [4] and has a high specificity of greater than 90% [5]. Normal physiological radiiodine uptake is observed in the salivary glands, oropharynx, gastrointestinal and genitourinary tracts, and breast tissue. An abnormal uptake that occurs outside of these physiological accumulation sites is usually considered to be a result of thyroid cancer metastasis; however, several cases of false-positive radioiodine activity have been reported. Some benign lesions too, such as cysts, infections, and inflammations, can cause nonspecific concentration of radioiodine [6–9], which can easily be confused with thyroid cancer metastases, leading to difficulties in diagnosis.

Uterine cervical nabothian cyst is a common gynecological disease in women of reproductive age. It is caused by chronic inflammation of cervix, with interstitial or epithelial squamous metaplasia, which clogs the glandular tuber, leading to cystic dilation of the endocervical glands and enlargement of the cervix. The cyst can develop anywhere in the cervix. Nabothian cysts are generally small and asymptomatic [10], and are often an incidental finding on clinical and pathological examinations of the uterine cervix [11]. Ultrasound examination is of value for the detection and diagnosis of nabothian cysts [12].

The current study reported abnormal radioactivity in the cervix in four of the five patients showing abnormal radioactivity; cervical nabothian cysts were detected on transvaginal ultrasound examination. As the false-positive incidence of cervical nabothian cysts is so high, patients with an abnormal uptake in the middle of the lower abdomen should be counseled about the possibility of the occurrence of a cervical nabothian cyst.

The uptake of 131I has been reported in many kinds of cysts, including hepatic cysts [13,14], renal cysts [15,16], lacteal cysts [17], thyroglossal duct cysts [18], nasolacimal sac cysts [19], pleuropitcardial cysts [20], benign epithelial cysts [5], ovarian endometrial cysts [21,22], and sebaceous cysts [23]. False-positive findings on 131I scans can be due to the following reasons [23]: (a) elimination of iodine in body fluids; (b) inflammation or infection; (c) transudates or cysts; and (d) nonthyroid neoplasms. However, the exact mechanism of 131I accumulation in a cyst remains unclear.

One possible explanation is the exchange of chemical materials through passive or active transport between the cyst and its surrounding tissue [23]. Chronic inflammation may be another possible explanation [9,23].

Concentration of radiiodine in the lower abdomen commonly manifests as physiological uptake in the intestines and bladder. It is easy to identify funicular or discrete dotted uptake in the intestine and nonincreased radioactivity in the empty bladder. False-positive 131I scans due to various bacterial [24] and fungal [25] infections or inflammatory lesions have been reported previously. In our study, the dotted uptake seen in the sigmoid colon of one of the patients might have been associated with infection or inflammation. We suggested enteroscopic examination, but the patient refused. Dotted uptake in the sigmoid colon was difficult to
distinguish from a cervical nabothian cyst, as both revealed increased radioactivity in the upper pelvis superior to the urinary bladder. There is another report of a uterine leiomyoma with 131I avidity [26], which also occurred in the lower abdomen. However, 131I-SPECT/CT is superior to 131I-WBS in terms of diagnosis.

Clinically, distant DTC metastases predominantly involve the lungs, followed by bone. Brain, breast, kidney, muscle, and skin involvement is rare [27]. However, to our knowledge, there are no published reports on cervical and intestinal DTC metastases. Therefore, we regard nabothian cysts as the primary reason for the false-positive, nonspecific accumulation of 131I in the middle of the lower abdomen.

Conclusion

131I whole-body imaging is useful in the detection of thyroid remnants and metastatic lesions in DTC patients who have undergone thyroidectomy. However, false-positive 131I accumulation is commonly reported. Because of high false-positive incidence, cervical nabothian cysts should be considered when focal uptake is caused by nonspecific radioiodine accumulation in the middle of the lower abdomen, as seen in 131I whole-body scans of female patients with DTC. 131I-SPECT/CT is a promising technique for further clarification of the lesion location.

Acknowledgements

Conflicts of interest

There are no conflicts of interest.

References

1. Lee SL. Radioactive iodine therapy. *Curr Opin Endocrinol Diabetes Obes* 2012; 19:420–428.
2. Liu S, Zhan M, Qu Y, Yu Pan, Zhang Y. Increased iodine uptake in the nabothian cyst. *Clin Nucl Med* 2013; 38:157–158.
3. Omur O, Ozbek SS, Akgun A, Yazici B, Multukoca N, Ozcan Z. False-positive 131I accumulation in a hepatic hydatid cyst. *Clin Nucl Med* 2007; 32:930–932.
4. Pacini F. Follow-up of differentiated thyroid cancer. *Eur J Nucl Med Mol Imaging* 2002; 29:492–496.
5. Bural GG, Peel RL, Mountz JM. Benign epithelial cyst mimicking thyroid cancer metastasis: a false-positive finding on post-therapy 131I scan. *Clin Nucl Med* 2012; 37:88–90.
6. Mitchell G, Pratt BE, Vini L, McCready VR, Harmer CL. False positive 131I whole-body scans in thyroid cancer. *Br J Radiol* 2000; 73:627–635.
7. McDougall IR. Whole body scintigraphy with radioiodine-131 a comprehensive list of false-positives with some examples. *Clin Nucl Med* 1995; 20:869–875.
8. Bakheet SM, Hmnami MM. False positive radioiodine whole body scan in thyroid cancer patients due to unrelated pathology. *Clin Nucl Med* 1994; 19:325–329.
9. Greenler DP, Klein HA. The scope of false-positive iodine-131 images for thyroid carcinoma. *Clin Nucl Med* 1989; 14:111–117.
10. Casey PM, Long ME, Marnach ML. Abnormal cervical appearance: What to do, when to worry? *Mayo Clin Proc* 2011; 86:147–151.
11. Clement PB, Young RH. Deep nabothian cysts of the uterine cervix. *Int J Gynecol Pathol* 1989; 8:340–348.
False-positive 131I uptake in nabothian cyst

Liu et al. 1207

12 Fogel SR, Slasky BS. Sonography of nabothian cysts. Am J Roentgenol 1982; 138:927–930.

13 Okuyama C, Ushijima Y, Kikkawa M, Yamagami T, Nakamura T, Kobayashi K, et al. False-positive 131I accumulation in a liver cyst in a patient with thyroid carcinoma. Clin Nucl Med 2001; 26:198–201.

14 Gunawardana DH, Pitman AG, Lichtenstein M. Benign hepatic cyst mimicking a functional thyroid carcinoma metastasis on whole body 131I imaging. Clin Nucl Med 2003; 28:527–528.

15 Wen C, Iuanow E, Oates E, Lee SL, Perrone R. Post-therapy iodine-131 localization in unsuspected large renal cyst: possible mechanisms. J Nucl Med 1998; 39:2158–2161.

16 Brachman MB, Rothman BJ, Ramanna L, Tanasescu DE, Adelberg H, Waxman AD. False-positive iodine-131 body scan caused by a large renal cyst. Clin Nucl Med 1988; 13:416–418.

17 Serafini A, Sfakianakis G, Georgiou M, Morris J. Breast cyst simulating metastases on iodine-131 imaging in thyroid carcinoma. J Nucl Med 1998; 39:1910–1912.

18 Li D, Meng Z, Zhang G, Yu T, Tan J, Dong F. Visualization of thyroglossal duct cyst in differentiated thyroid cancer patient. Clin Nucl Med 2010; 35: 499–504.

19 Mulazimoglu M, Koca S, Tamam MO, Uyanik E, Ozpacaci T. False-positive findings in post-treatment iodine-131 whole-body scintigraphy in a nasolacrimal sac cyst, confirmed with SPECT/CT and MRI. Clin Nucl Med 2011; 36:805–807.

20 Francese C, Schlumberger M, Travagli JP, Vera P, Caillou B, Parmentier C. Iodine 131 uptake in a pleuropericardial cyst: case report of a false-positive radioiodine total body scan result in a patient with a thyroid cancer. Eur J Nucl Med 1991; 18:779–780.

21 Srivatsa S, Halkar RK. 131I uptake in an endometriotic ovarian cyst in a patient with papillary thyroid carcinoma. The Endocrinologist 2010; 20:228–229.

22 Utamakul C, Sritara C, Kositwattanarerk A, Balachandra T, Chotipanich C, Chokesuwattanaskul P. 131I uptake in bilateral ovarian endometrial cysts. Clin Nucl Med 2006; 31:537–538.

23 Bucker-Davis F, Reynolds JC, Skarulis MC, Fraker DL, Alexander HR, Weintraub BD, Robbins J. False-positive iodine-131 whole body scans due to cholecystitis and sebaceous cyst. J Nucl Med 1996; 37:1690–1693.

24 Bakheet SM, Hammani MM, Powe J. Radioidine bronchogram in acute respiratory tract infection. Clin Nucl Med 1997; 22:308–309.

25 Echenique R, Kasi L, Haynie TP, Glenn HJ, Samaan NA, Hill CS. Critical evaluation of serum thyroglobulin levels and 131I scans in post-therapy patients with differentiated thyroid carcinoma: concise communication. J Nucl Med 1982; 23:235–240.

26 Hirata K, Shiga T, Kubota KC, Okamoto S, Kamibayashi T, Tamaki N. Radioidine therapy for thyroid cancer depicted uterine leiomyoma. Clin Nucl Med 2009; 34:180–181.

27 Song HJ, Xue YL, Xu YH, Qi ZL, Luo QY. Rare metastases of differentiated thyroid carcinoma: pictorial review. Endocr Relat Cancer 2011; 18:165–174.