The field around the microbiome and graft-versus-host disease (GVHD) is rapidly evolving and so is its literature. Therefore, we consider it important to provide an update on our recent review “Microbiome: An Emerging New Frontier in Graft-Versus-Host Disease”.

Patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT) are subjected to conditioning, a pre-transplant regimen which involves chemotherapy, radiation, or a combination of both. Often antibiotics are administered to “decontaminate the gut” with the idea to reduce the risk of translocation of intraluminal bacteria of the gut into the bloodstream [1] and to reduce pathogen-associated molecular pattern (PAMP) and danger-associated molecular pattern (DAMP)-mediated activation of antigen-presenting cells (APCs). Both the conditioning regimen and antibiotics disturb the homeostatic crosstalk between the microbiome and host immune system and cause microbial dysbiosis, which can affect a patient’s risk of developing GVHD [2–4].

Various studies have reported decreased bacterial diversity in GVHD patients [2, 3, 5]. Taur et al. observed association of decreased bacterial diversity with overall survival [6]. Peled et al. also showed that lower diversity of intestinal microbiota was associated with a higher risk of mortality in independent cohorts [7]. It has been shown that gut dysbiosis can be regulated through probiotics, specific diets, and even fecal microbiota transplants (FMT) which can help to treat or prevent intestinal dysbiosis and reduce GVHD severity. Manipulating microbiota remains challenging; however, fecal microbiota transplantation has been proven to be a method by which the microbiome can be manipulated, but this may associate with unknown complications [8, 9]. It is shown that the pre- and post-transplant microbiome can affect the susceptibility to acute GVHD (aGVHD) post-transplant and be of microbial species-specific nature [10].

Bacteremia is one of the complications of allo-HCT which comes about as a result of conditioning-induced disruption of mucosal barrier function [11]. Neutrophils are a critical element in the innate immune response to infection, yet they also contribute to the pathogenesis of aGVHD [12, 13], and depleting neutrophils may not be an appropriate option to reduce the risk of GVHD. Early during the transplant course, neutropenia places the patient at higher risk for infection, often requiring preventive or therapeutic antibiotic treatment. However, this can lead to dysbiosis, and it has been shown that the use of broad-spectrum antibiotics during the neutropenic period is associated with a higher incidence of intestinal GVHD due to loss of microbiome diversity and delayed recovery of myeloid-derived suppressor cells [14]. In critically ill patients, the lung microbiome might become enriched with gut-associated microbes due to increased breaches of mucosal layer, as recently demonstrated in patients with sepsis and acute respiratory distress syndrome (ARDS) [15, 16]. The gut microbiome may predict for pulmonary complications and the baseline dominance of Gammaproteobacteria in the gut predicts pulmonary complications post engraftment and overall mortality [17]. However, to this date, no studies have compared gut and lung microbiome following HCT, which may be helpful to understand the link between gut and lung microbiome.

Intestinal microbiota can predict the development of aGVHD in addition to directly inducing aGVHD through inflammatory factors and affecting the Treg/Th17 balance [18]. Hülsdünker et al. reported that active and passive immunization...
against the conserved microbial surface polysaccharide poly-
N-acetylglucosamine leads to killing of invading bacteria and reduces uncontrolled neutrophil activation, while main-
taining commensal intestinal microbial diversity, thereby
reducing GVHD. Antimicrobial therapies that can eliminate
invading bacteria and reduce neutrophil-mediated damage
without affecting the microbial diversity are promising and
highly desirable [19]. A recent report suggested that micro-
bioe profile may be useful as a prognostic tool that could
help identify patients at risk of poor immune reconstitution
and adverse outcomes, such as aGVHD, severe infection,
or death after allogeneic transplantation. In a longitudinal
analysis of immunological markers [20], immune reconsti-
tution and gut microbiota composition in children undergoing
HSCT in context of clinical outcomes, researchers identi-
fi ed three consistent clusters showing association of spe-
cific bacteria with inflammatory markers: (1) patients with
higher concentrations of the antimicrobial peptide human
beta-defensin 2 (hBD2) and monocytes prior to transplant-
ation and with high abundances of Lactobacillaceae, later
developed moderate or severe aGVHD and exhibited high
mortality, (2) patients showing rapid reconstitution of NK
and B cells with high abundances of obligate anaerobes,
such as Ruminococcaceae, developed no or mild aGVHD and
exhibited low mortality, (3) patients with high abundances of
facultative anaerobic bacteria, such as Enterobacteriaceae,
demonstrated high levels of inflammation with C-reactive
protein as a surrogate marker post HSCT. Therefore, micro-
bioe profiling may serve as a tool to reveal and utilize
biomarkers guiding precision medicine-driven prognosis
and personalized care [20]. Relapse of primary malignancy
remains the leading cause of death after allo-HCT [23].
Studies have reported that the bacterial microbiome plays
an important role in normal hematopoiesis [24–26] and fur-
thermore modulates the risk for relapse [21].

The virome of the gastrointestinal tract, also considered
as a part of the microbiome composition, consists of vast
numbers of viruses, bacteriophages, and endogenous retrovi-
ruses, serves as an important site for virus–microbiome–host
interactions. Although viruses are typically considered as
pathogens, recent studies have indicated a relationship
between the host and viruses in the gut which may involve
both beneficial and detrimental outcomes for the host. Simi-
lar to bacteria, these viruses can lead to immune modula-
tion, which may take place both locally and extra-intesti-
nally [22]. The components of the gut virome can modulate
host responses during healthy and disease state and may be
involved in immune system maturation. This is supported by
the ability of pattern recognition receptors (PRRs) expressed
both by immune cells and non-immune cells to recognize
nucleic acid derived from enteric viruses. Like bacteria,
viral components recognizing PRRs may also contribute
to immune system maturation [23]. Legoff et al. showed
longitudinal characterization of the gut virome in 44 recipi-
ents of HSCT using metagenomics and a viral ‘bloom’ was
identified. Their observation indicated a progressive expan-
sion of vertebrate viral infections over time after HSCT and
indicated an involvement of picobirnaviruses with early
post-transplant GVHD. Overall increased proportion was
represented by both the rates of detection and number of
sequences of persistent DNA viruses (anelloviruses, her-
pesviruses, papillomaviruses and polyomaviruses). Patients
with enteric GVHD showed an overall increased propor-
tion over time, relative to those without enteric GVHD. This
overall increase was accompanied by reduced phage rich-
ness. Picobirnaviruses were detected in 40.9% individuals,
more frequently before or within a week after transplant than
at later time points, and were predictive of occurrence of
severe enteric GVHD in a time-dependent Cox propor-
hazards model, [hazard ratio, 2.66; 95% confidence interval
(CI) = 1.46–4.86; P = 0.001], and correlated with higher
fetal levels of two GVHD severity markers, calprotectin and
α1-antitrypsin [24].

A study by Zhang et al. reported FMTs conducted by
duodenojugal infusion from two different donors into a
14-year-old boy with severe life-threatening grade-4 gut
aGVHD, refractory to corticosteroids and biologic thera-
pies [9]. Authors observed that FMT altered gut bacterial,
fungal and viral communities simultaneously in this GVHD
patient, who then clinically recovered. However, bacterial,
fungal and virus communities responded differently to FMT:
Bacterial diversity was gradually restored after each FMT,
engraftment of donor-derived fungi occurred instantly after
a single FMT and continued up to 4 months, while viral
diversity was improved after multiple FMTs but the compo-
sition varied substantially over time. In addition, the ecologi-
cal network of bacteria–fungi interactions in the recipient
was enhanced by serial FMTs, with a significant increase
in inter-kingdom correlations after each FMT. Authors sug-
gested that future FMT practice should account for the sig-
nificance of reconstituting gut fungi and viruses, in addition
to bacteria [9]. This observation points out the importance
of microbes other than bacteria and the interaction among
them, suggesting a potential requirement of serial FMTs
for maintenance and establishment of gut microbiome specifi-
cally for bacteria and viruses. The metabolites derived from
microbial fermentation of dietary fibers have shown to be
impactful on physiological processes like gut and immune
homeostasis, energy metabolism, vascular function, and neu-
rological behavior. These effects are mediated by modula-
tion of G protein-coupled receptor (GPCR) signaling [9, 25,
26]. These reports warrant further studies to investigate the
mechanism of immune modulation by microbes.

Seekatz et al. analyzed the patients with recurrent C.
difficile infection (CDI) which were treated with FMT
and explored recovery of the microbiota community and
metabolic environment over time and observed sustained increase in short-chain fatty acids (SCFAs) butyrate, acetate and propionate levels, post-FMT, with variable recovery over time for secondary bile acids deoxycholate and lithocholate. Authors further compared the correlation of these metabolite concentrations changes with specific microbial taxa at an individual level. Metabolites increased post-FMT showed association with bacteria belonging to the *Lachnospiraceae*, *Ruminococcaceae*, and unclassified Clostridiales families. Most of the members within these families were positively correlated with microbial metabolites and inversely with primary bile acids [27]. Bile salt signaling has been shown to play an important role in the mechanism involved in survival and death of *C. difficile* in the dysbiotic intestinal environment. Conjugated primary bile salts, promote *C. difficile* germination, in contrast, secondary bile acids (products of microbial metabolism), inhibit germination, growth, and toxin activity of *C. difficile* [27, 28].

While, therefore, FMT is a compelling intervention to restore healthy diversity to the intestinal microenvironment after allo-HCT, it currently has no role as standard of care for transplant recipients [29]. Although the FMTs seemed safe and well tolerated, Bluestone et al. suggested the necessity of larger studies to determine FMT safety and efficacy in immunocompromised HSCT recipients [30]. These reports suggest that FMT assists in restoration of the lost bacterial diversity, thereby outlining its potential to treat CDI and to lead to recovery from GVHD. Therefore, there is no doubt about the benefit of FMT in GVHD. However, to bring it into regular clinical practice, its use needs careful consideration due to the complexity of GVHD pathophysiology.

The research on microbiome composition and its association with diseases is advancing rapidly; however, data related to the functional analysis of metagenome to identify functional signatures of the gut microbiome are scarce. Kyoto Encyclopedia of Genes and Genome (KEGG) Orthology Groups (KOs) are molecular functions represented in terms of functional orthologs which is manually defined in the context of KEGG molecular networks. Microbial dysbiosis in gut and other unknown factors may result in changes in composition of microbial functions which have significant contribution in disease. Therefore, integration of the metagenome for functional characters may help to identify disease etiology.

Armour et al. integrated distinct metagenomic datasets to identify functions encoded in the gut microbiome that associate with multiple diseases. Analysis of gut metagenome protein family richness demonstrated that patients diagnosed with Crohn’s disease, obesity, type 2 diabetes, or ulcerative colitis, colorectal cancer show differential number of KOs compared to their respective control populations. However, KOs remained similar for liver cirrhosis or rheumatoid arthritis compared to their respective controls.

It is suggested that the functional composition of the microbiome can classify disease status [31] and requires extensive analysis to find out functional differences of microbiota during disease conditions. The total composition of microbial genes and the presence of genes involved in specific metabolic pathways (the metagenome) are relatively stable between healthy individuals [32] and may change during dysbiosis. Identifying the functional capacity of the microbiome varies in association with disease and across diseases in general, in addition to microbial composition analysis, may reveal the disease-related causes as shown earlier [33, 34].

Studies in GVHD research require understanding the complex relationship between genotype and phenotype on a global (genome-wide) scale to identify functional signatures of the gut microbiome associated with disease etiology. Reports have suggested alteration of butyrate-producing bacteria and pathogenic bacteria in patients and loss of diversity after allogeneic transplant that associates with transplant outcome and inflammatory biomarkers. We think that initiation of a broader transcriptomic approach in GVHD research may help in understanding the pathophysiology and responsible microbial phenotypes.

Over the last decade, there have been multiple reports exploring the microbiome alteration in transplant patients, and these are increasing rapidly. However, the research exploring the translation of these finding to treatment are scarce. There is a big gap between the discovery of microbiome alteration after allogeneic transplant and its relevance to clinical practice.

As discussed above, transcriptomic approaches in GVHD research have yet to be rigorously studied or understood.

Summary

Using advancements in technologies and tools, researchers have discovered and defined a crucial role of the microbiome in physiology and pathophysiology of various diseases. Studies have shown direct impact of dysbiosis in health, physiology, and behavior. However, we do not fully understand the complex networking within the microbial community. Research focusing on the functional genomics of the gut microbiome may advance the understanding of the intricacy of microbial interplay among bacteria, fungi, and viruses. These studies will guide understanding of manipulation of the microbiome composition for host benefits. FMTs and antimicrobial drugs have been successful in regulating and manipulating the microbiome and improving health conditions, but scaling up research efforts on these fronts will help us to gain a greater understanding of the complexity of microbial community networking.
Compliance with ethical standards

Conflict of interest There is no conflict of interest.

References

1. Nagpal R, Yadav H. Bacterial translocation from the gut to the distant organs: an overview. Ann Nutr Metab. 2017;71(suppl 1):11–6. https://doi.org/10.1159/000479918.

2. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012;209(5):903–11. https://doi.org/10.1084/jem.20112408.

3. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahnl KF, et al. Intestinal blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transpl. 2015;21(8):1373–83. https://doi.org/10.1016/j.bbmt.2015.04.016.

4. Tawara I, Liu C, Tamaki H, Toubai T, Sun Y, Evers R, et al. Influence of donor microbiota on the severity of experimental graft-versus-host-disease. Biol Blood Marrow Transpl. 2013;19(1):164–8. https://doi.org/10.1016/j.bbmt.2012.09.001.

5. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transpl. 2014;20(5):640–5. https://doi.org/10.1016/j.bbmt.2014.01.030.

6. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal trach bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82. https://doi.org/10.1182/blood -2014-02-554725.

7. Peled JU, Gomes ALC, Devlin SM, Littmann ER, Taur Y, Sung AD, et al. Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. N Engl J Med. 2020;382(9):822–34. https://doi.org/10.1056/NEJMoa1900623.

8. van Beurden YH, de Groot PF, van Nood E, Nieuwdorp M, Kerckhoffs AJ, et al. Intestinal blautia is associated with reduced death and disease following allogeneic hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2016;194(4):450–63. https://doi.org/10.1164/rccm.201507-1491OC.

9. Han L, Zhang H, Chen S, Zhou L, Li Y, Zhao K, et al. Intestinal microbiota can predict acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2019;25(10):1944–55. https://doi.org/10.1016/j.bbmt.2019.07.006.

10. Hulsdunker J, Thomas OS, Haring E, Unger S, Gonzalo Náñez N, Tugues S, et al. Immunization against poly-N-acetylglucosamine reduces neutrophil activation and GVHD while sparing microbial diversity. Proc Natl Acad Sci. 2019;116(41):20700–6. https://doi.org/10.1073/pnas.1908549116.

11. Ingham AC, Kielsen K, Cilieborg MS, Lund O, Holmes S, Aarestrup FM, et al. Specific gut microbiome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation. Microbiome. 2019;7(1):131. https://doi.org/10.1186/s40168-019-0745-z.

12. Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017;35(15):1650–9. https://doi.org/10.1200/jco.2016.70.3348.

13. Schwab L, Goroncy L, Palaniyandi S, Gautam S, Triantafyllopoulos A, Moscat A, et al. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nat Med. 2014;20(6):648–54. https://doi.org/10.1038/nm.3517.

14. Lee SE, Lim JY, Ryu DB, Kim TW, Park SS, Jeon YW, et al. Alteration of the intestinal microbiota by broad-spectrum antibiotic use correlates with the occurrence of intestinal graft-versus-host disease. Biol Blood Marrow Transpl. 2019;25(10):1933–43. https://doi.org/10.1016/j.bbmt.2019.06.001.

15. Mukherjee S, Hanidziar D. More of the gut in the lung: how two microbiomes meet in ARDS. Yale J Biol Med. 2018;91:143–9.

16. Kyo M, Nishioka K, Nakaya T, Kida Y, Tanabe Y, Ohshima S, et al. Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome. Respir Res. 2019;20(1):246. https://doi.org/10.1186/s12931-019-1203-y.

17. Harris B, Morjaria SM, Littmann ER, Geyer AI, Stover DE, Barker JN, et al. Gut microbiota predict pulmonary infiltrates following allogeneic hematopoietic cell transplantation. Am J Respir Crit Care Med. 2016;194(4):450–63. https://doi.org/10.1164/rccm.201507-1491OC.

18. Han L, Zhang H, Chen S, Zhou L, Li Y, Zhao K, et al. Intestinal microbiota can predict acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2019;25(10):1944–55. https://doi.org/10.1016/j.bbmt.2019.07.006.

19. Hulsdunker J, Thomas OS, Haring E, Unger S, Gonzalo Náñez N, Tugues S, et al. Immunization against poly-N-acetylglucosamine reduces neutrophil activation and GVHD while sparing microbial diversity. Proc Natl Acad Sci. 2019;116(41):20700–6. https://doi.org/10.1073/pnas.1908549116.

20. Ingham AC, Kielsen K, Cilieborg MS, Lund O, Holmes S, Aarestrup FM, et al. Specific gut microbiome members are associated with distinct immune markers in pediatric allogeneic hematopoietic stem cell transplantation. Microbiome. 2019;7(1):131. https://doi.org/10.1186/s40168-019-0745-z.

21. Peled JU, Devlin SM, Staffas A, Lumish M, Khanin R, Littmann ER, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol. 2017;35(15):1650–9. https://doi.org/10.1200/jco.2016.70.3348.

22. Neil JA, Cadwell K. The intestinal virome and immunity. J Immunol. 2018;201(6):1615–24. https://doi.org/10.4049/jimmunol.1800631.

23. Metzger RN, Krug AB, Eisenacher K. Enteric virome sensing-its role in intestinal homeostasis and immunity. Viruses. 2018. https://doi.org/10.3390/v10040146.

24. Legoff J, Resche-Rigon M, Bouquet J, Robin M, Naccache SN, Mercier-Delarue S, et al. The eukaryotic gut virome in hematopoietic stem cell transplantation: new clues in enteric graft-versus-host disease. Biol Blood Marrow Transpl. 2019;25(10):1933–43. https://doi.org/10.1016/j.bbmt.2019.06.001.

25. Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol. 2013;19(22):3404–14. https://doi.org/10.3748/wjg.v19.i22.3404.

26. Kumari RN, Paul J. Potential contribution of microbiome in neurodegenerative diseases: Alzheimer’s disease. Inflamm Cell Signal. 2017. https://doi.org/10.14800/ics.1595.

27. Seekatz AM, Theriot CM, Rao K, Chang Y-M, Freeman AE, Kao JY, et al. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe. 2018;53:64–73. https://doi.org/10.1016/j.anaerobe.2018.04.001.

28. Dubois T, Tremblay YDN, Hamiot A, Martin-Verstraete I, Deschamps J, Monot M, et al. A microbiota-generated bile salt
induces biofilm formation in *Clostridium difficile*. npj Biofilms Microbiomes. 2019;5(1):14. https://doi.org/10.1038/s41522-019-0087-4.

29. DeFilipp Z, Hohmann E, Jenq RR, Chen Y-B. Fecal microbiota transplantation: restoring the injured microbiome after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019;25(1):e17–22. https://doi.org/10.1016/j.bbmt.2018.10.022.

30. Bluestone H, Kronman MP, Suskind DL. Fecal microbiota transplantation for recurrent *Clostridium difficile* infections in pediatric hematopoietic stem cell transplant recipients. J Pediatr Infect Dis Soc. 2017;7(1):e6–8. https://doi.org/10.1093/jpids/pix076.

31. Armour CR, Nayfach S, Pollard KS, Sharpton TJ. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. mSystems. 2019;4(4):e00332-e418. https://doi.org/10.1128/mSystems.00332-18.

32. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. https://doi.org/10.1038/nature11234.

33. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79. https://doi.org/10.1186/gb-2012-13-9-r79.

34. Choo JM, Kanno T, Zain NM, Leong LE, Abell GC, Keeble JE, et al. Divergent relationships between fecal microbiota and metabolome following distinct antibiotic-induced disruptions. mSphere. 2017. https://doi.org/10.1128/mSphere.00005-17.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.