Malcev Yang-Baxter equation, weighted Θ-operators on Malcev algebras and post-Malcev algebras

F. Harrathi1, S. Mabrouk2, O. Ncib2, S. Silvestrov3

1University of Sfax, Faculty of Sciences Sfax, BP 1171, 3038 Sfax, Tunisia
2University of Gafsa, Faculty of Sciences Gafsa, 2112 Gafsa, Tunisia
3Mälardalen University, Division of Mathematics and Physics, School of Education, Culture and Communication, Box 883, 72123 Västerås, Sweden

Abstract

The purpose of this paper is to study the Θ-operators on Malcev algebras and discuss the solutions of Malcev Yang-Baxter equation by Θ-operators. Furthermore we introduce the notion of weighted Θ-operators on Malcev algebras, which can be characterized by graphs of the semi-direct product Malcev algebra. Then we introduce a new algebraic structure called post-Malcev algebras. Therefore, post-Malcev algebras can be viewed as the underlying algebraic structures of weighted Θ-operators on Malcev algebras. A post-Malcev algebra also gives rise to a new Malcev algebra. Post-Malcev algebras are analogues for Malcev algebras of post-Lie algebras and fit into a bigger framework with a close relationship with post-alternative algebras.

Mathematics Subject Classification (2020). 17D10, 17A01, 17A30, 17B10, 17B38

Keywords. alternative algebra, Malcev algebra, weighted Θ-operator, Rota-Baxter operator, representation, Malcev Yang-Baxter equation

1. Introduction

Malcev algebras play an important role in the geometry of smooth loops. Just as the tangent algebra of a Lie group is a Lie algebra, the tangent algebra of a locally analytic Moufang loop is a Malcev algebra [18, 21, 27, 28]. A Malcev algebra is a non-associative algebra A with an anti-symmetric multiplication $[\cdot, \cdot]$ that satisfies the Sagle’s identity

$$[[x, z], [y, t]] = [[[x, y], z], t] + [[[y, z], t], x] + [[[z, t], x], y] + [[[t, x], y], z], \forall x, y, z, t \in A.$$

Pre-Malcev algebras have been studied extensively since [26] which are the generalization of pre-Lie algebras, in the sense that any pre-Lie algebra is a pre-Malcev algebra but the converse is not true. Studying pre-Malcev algebras independently is significant not only to its own further development, but also to develop the areas closely connected with such
algebras. A pre-Malcev algebra is a vector space A endowed with a bilinear product \triangleright satisfying the following identity for $x, y, z, t \in A$,

$$[y, z] \triangleright (x \triangleright t) + [[x, y], z] \triangleright t + y \triangleright ((x, z] \triangleright t) - x \triangleright (y \triangleright (z \triangleright t)) + z \triangleright (x \triangleright (y \triangleright t)) = 0, \quad (1.1)$$

where $[x, y] = x \triangleright y - y \triangleright x$. The existence of subadjacent Malcev algebras and compatible pre-Malcev algebras was given in [26, Proposition 5]. For a given pre-Malcev algebra (A, \triangleright), there is a Malcev algebra A^C defined by the commutator $[x, y] = x \triangleright y - y \triangleright x$, and the left multiplication operator in A induces a representation of Malcev algebra A^C.

Rota-Baxter operators were introduced by G. Baxter [7] in 1960 in the study of fluctuation theory in Probability. These operators were then further investigated, by G.-C. Rota [30], Atkinson [1], Cartier [9] and others. In the 1980s, the notion of Rota-Baxter operator of weight 0 was introduced in terms of the classical Yang-Baxter equation for Lie algebras (see [4, 5, 13–15, 17, 23] for more details). Later on, B. A. Kupershmidt [19] introduced the notion of \mathcal{O}-operator as generalized Rota-Baxter operators to understand classical Yang-Baxter equations and related integrable systems. In fact, a skew-symmetric solution of the analogue of CYBE on Malcev algebras motivated by the point of Kupershmidt and Bai.

The notion of post-algebras goes back to Rosenbloom in [29] (1942). An equivalent formulation of the class of post-algebras was given by Rousseau in [31] (1969, 1970) which became a starting point for deep research. Post-Lie algebras have been introduced by Vallette in 2007 [33] in connection with the homology of partition posets and the study of Koszul operads. However, J. L. Loday studied pre-Lie algebras and post-Lie algebras within the context of algebraic operad triples, see for more details [24, 25]. In the last decade, many works [8, 10, 34] intrested in post-Lie algebra structures, motivated by the importance of pre-Lie algebras in geometry and in connection with generalized Lie algebra derivations.

Recently, Post-Lie algebras which are non-associative algebras played an important role in different areas of pure and applied mathematics. They consist of a vector space A equipped with a Lie bracket $[\cdot, \cdot]$ and a binary operation \triangleright satisfying the following axioms

$$x \triangleright [y, z] = [x \triangleright y, z] + [y, x \triangleright z], \quad (1.2)$$

$$[x, y] \triangleright z = as_{\triangleright}(x, y, z) - as_{\triangleright}(y, x, z). \quad (1.3)$$

If the bracket $[\cdot, \cdot]$ is zero, we have exactly a pre-Lie structure. It is worth to note that, in spite the post-Lie product does not yield a Lie bracket by antisymmetrization, the bilinear product $\{\cdot, \cdot\} : A \otimes A \to A$, defined for all $x, y \in A$ by

$$\{x, y\} = x \triangleright y - y \triangleright x + [x, y]. \quad (1.4)$$

defines on A another Lie algebra structure. The varieties of pre- and post-Lie algebras play a crucial role in the definition of any pre and post-algebra through black Manin operads product, see details in [3, 12]. Whereas pre-Lie algebras are intimately associated with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan’s method of moving frames. Ebrahimi-Fard, Lundervold and Munthe-Kaas [10] studied universal enveloping algebras of post-Lie algebras and the free post-Lie algebra.

In this paper we use weighted \mathcal{O}-operators to split operations, although a generalization exists in the alternative setting in terms of bimodules. Diagram (1.5) summarizes the
By (1.5) we investigate the notion of a weighted \mathcal{O}-operators structure associated to any post-alternative algebra. The multiplication is given by

$$x \star y = x < y + y > x + x \cdot y.$$

In addition, in Section 4 we investigate the notion of a weighted \mathcal{O}-operator to construct a post-alternative algebra structure on the A-bimodule \mathbb{K}-algebra of an alternative algebra (A, \cdot). Section 4 is devoted to introduce the notion of post-Malcev algebra and we show that weighted \mathcal{O}-operators can be used to construct post-Malcev algebras. We also reveal a relation between post-Malcev algebras and post-alternative algebras by the commutative diagram (1.5).

Throughout this paper, all algebras are finite-dimensional and over a field \mathbb{K} of characteristic 0.

2. \mathcal{O}-operators and Malcev Yang-Baxter equation

In this section, we recall the classical result that a skew-symmetric solution of CYBE in a Malcev algebra gives an \mathcal{O}-operator through a duality between tensor product and linear maps. Not every \mathcal{O}-operator on a Malcev algebra comes from a solution of CYBE in this way. However, any \mathcal{O}-operator can be recovered from a solution of CYBE in a larger Malcev algebra.

We first recall the concept of a representation (see [20]) and construct the dual representation.

Definition 2.1 ([20]). A representation (or a module) of a Malcev algebra $(A, [\cdot, \cdot])$ on a vector space V is a linear map $\rho : A \rightarrow \text{End}(V)$ such that, for all $x, y, z \in A$,

$$\rho([x, y], z) = \rho(x)\rho(y)\rho(z) - \rho(z)\rho(x)\rho(y) + \rho(y)\rho([x, z]) - \rho([y, z])\rho(x). \quad (2.1)$$

We denote this representation by (V, ρ).

For all $x, y \in A$, define the map $ad : A \rightarrow \text{End}(A)$ by $ad_x(y) = [x, y]$. Then ad is a representation of the Malcev algebra $(A, [\cdot, \cdot])$ on A, which is called the adjoint representation.

Let $(A, [\cdot, \cdot])$ be a Malcev algebra and (V, ρ) is a representation on A. Consider the dual space V^* of V and $\text{End}(V^*)$. Define the linear map $\rho^* : A \rightarrow \text{End}(V^*)$ by

$$\langle \rho^*(x)a^*, b \rangle = -\langle a^*, \rho(x)b \rangle, \quad \forall x \in A, b \in V, a^* \in V^*, \quad (2.2)$$

where $\langle \cdot, \cdot \rangle$ is the canonical pairing between V^* and V.

Proposition 2.1. With the above notations, (V^*, ρ^*) is a representation of A which is called the dual representation of (V, ρ).

Proof. By (2.1), we have, for $x, y, z \in A$,

$$\rho([[y, x], z]) = -\rho([[x, y], z]) = \rho(z)\rho(y)\rho(x) - \rho(y)\rho(x)\rho(z) - \rho(x)\rho([z, y]) + \rho([x, z])\rho(y).$$
So, for any \(x, y, z \in A \), \(a^* \in V^* \), \(b \in V \), we have

\[
\langle \rho^*([[[x, y], z])a^*, b \rangle = -\langle a^*, \rho([[x, y], z])b \rangle = -\langle a^*, -\rho([[x, y], z])b \rangle
\]

\[
= -\langle a^*, (\rho(y)\rho(x)\rho(z) - \rho(z)\rho(y)\rho(x) + \rho(x)\rho(y)\rho(z)) - \rho([x, z])\rho(y))b \rangle
\]

\[
= -\langle (- \rho^*(z))\rho^*(x)\rho^*(y) + \rho^*(x)\rho^*(y)\rho^*(z) + \rho^*([[z, y]])\rho^*(x) - \rho^*(y)\rho^*(([x, z]))a^*, b \rangle.
\]

Hence, since \(\langle \cdot, \cdot \rangle \) is nondegenerate, we obtain

\[
\rho^*([[x, y], z]) = \rho^*(x)\rho^*(y)\rho^*(z) - \rho^*(z)\rho^*(x)\rho^*(y) + \rho^*(y)\rho^*([z, x]) - \rho^*([[y, z]])\rho^*(x).
\]

Definition 2.2. Let \((A, [, ,]) \) be a Malcev algebra and \(r = \sum_i x_i \otimes y_i \in A \otimes A \). \(r \) is called a solution of Malcev Yang-Baxter equation in \(A \) if \(r \) satisfies

\[
[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] = 0,
\]

where

\[
r_{12} = \sum_i x_i \otimes y_i \otimes 1, \quad r_{13} = \sum_i x_i \otimes 1 \otimes y_i, \quad r_{23} = \sum_i 1 \otimes x_i \otimes y_i,
\]

and

\[
[r_{12}, r_{13}] = \sum_{i,j} [x_i, x_j] \otimes y_i \otimes y_j, \quad [r_{13}, r_{23}] = \sum_{i,j} x_i \otimes x_j \otimes [y_i, y_j],
\]

\[
[r_{12}, r_{23}] = \sum_{i,j} x_i \otimes [y_i, x_j] \otimes y_j.
\]

Let \(V \) be a vector space. The **twisting operator** \(\sigma : V^{\otimes 2} \rightarrow V^{\otimes 2} \) is defined for all \(a, b \in V \) by

\[
\sigma(a \otimes b) = b \otimes a.
\]

We call \(r = \sum_i a_i \otimes b_i \in V^{\otimes 2} \) **skew-symmetric** (resp. **symmetric**) if \(r = -\sigma(r) \) (resp. \(r = \sigma(r) \)). Furthermore, \(r \) can be regarded as a linear map from \(V^* \) to \(V \) in the following way

\[
\langle a^*, \sigma(b^*) \rangle = \langle a^* \otimes b^*, r \rangle, \quad \forall a^*, b^* \in V^*.
\]

Equation (2.3) gives the tensor form of Malcev Yang-Baxter equation. What we will do next is to replace the tensor form by a linear operator satisfying some conditions.

Theorem 2.1. Let \((A, [, ,]) \) be a Malcev algebra and \(r \in A \otimes A \). Then \(r \) is a skew-symmetric solution of Malcev Yang-Baxter equation in \(A \) if and only if \(r \) satisfies for all \(x, y \in A^* \),

\[
[r(x^*), r(y^*)] = (ad^*r(x^*))(y^*) - (ad^*r(y^*))(x^*).
\]

Proof. Let \(\{e_1, ..., e_n\} \) be a basis of \(A \) and \(\{e_1^*, ..., e_n^*\} \) be its dual basis. Suppose that

\[
[e_i, e_j] = \sum_p c_{ij}^p e_p \quad \text{and} \quad r = \sum_{i,j} a_{ij} e_i \otimes e_j.
\]

Hence \(a_{ij} = -a_{ji} \). Now, we have

\[
[r_{12}, r_{13}] = \sum_{i,j} a_{ij} e_i \otimes e_j \otimes 1 \sum_{k,l} a_{kl} e_k \otimes 1 \otimes e_l = \sum_{i,j,k,l,p} a_{ij} a_{kl} c_{ik}^p e_p \otimes e_j \otimes e_l,
\]

\[
[r_{13}, r_{23}] = \sum_{i,j} a_{ij} e_i \otimes 1 \otimes e_j \sum_{k,l} a_{kl} e_k \otimes e_l \otimes e_l = \sum_{i,j,k,l,p} a_{ij} a_{kl} c_{ji}^p e_i \otimes e_k \otimes e_p,
\]

\[
[r_{12}, r_{23}] = \sum_{i,j} a_{ij} e_i \otimes e_j \otimes 1 \sum_{k,l} a_{kl} e_k \otimes e_l \otimes e_l = \sum_{i,j,k,l,p} a_{ij} a_{kl} c_{jk}^p e_i \otimes e_p \otimes e_l.
\]

Then \(r \) is a solution of the Malcev Yang-Baxter equation in \((A, [, ,]) \) if and only if (for any \(j, p, l \))

\[
\sum_{i,k} \left(a_{ij} a_{kl} c_{ik}^p + a_{kp} a_{ij} c_{ik}^j + a_{pa} a_{kl} c_{jk}^i \right) e_p \otimes e_j \otimes e_l = 0.
\]
On the other hand, by (2.5), we get \(r(e_j^*) = \sum_i a_{ij} e_i \). Then, if we set \(x^* = e_j^* \) and \(y^* = e_i^* \), by (2.6),
\[
\sum_{i,k} \left(a_{ij} a_{kl} c_{ik}^j + a_{kp} a_{ij} c_{ki}^j + a_{pi} a_{kl} c_{ik}^j \right) e_p = 0.
\]
Therefore, it is easy to see that \(r \) is a solution of the Malcev Yang-Baxter equation in \(A \) if and only if \(r \) satisfies (2.6).
\[\square\]

Definition 2.3. Let \((A, [\cdot, \cdot])\) be a Malcev algebra. A symmetric bilinear form \(B \) on \(A \) is called *invariant* if, for all \(x, y, z \in A \),
\[
B([x, y], z) = B(x, [y, z]).
\]

Definition 2.4. Let \((A, [\cdot, \cdot])\) be a Malcev algebra. A Rota-Baxter operator of weight 0 on \(A \) is a linear map \(\mathcal{R} : A \to A \) satisfying for all \(x, y, z \in A \),
\[
[\mathcal{R}(x), \mathcal{R}(y)] = \mathcal{R}([\mathcal{R}(x), y] + [x, \mathcal{R}(y)]).
\]

Corollary 2.1. Let \((A, [\cdot, \cdot])\) be a Malcev algebra and \(r \in A \otimes A \). Assume \(r \) is skew-symmetric and there exists a nondegenerate symmetric invariant bilinear form \(B \) on \(A \). Define a linear map \(\varphi : A \to A^* \) by \(\langle \varphi(x), y \rangle = B(x, y) \) for any \(x, y \in A \). Then \(r \) is a solution of the Malcev Yang-Baxter equation in \(A \) if and only if \(\mathcal{R} = r \varphi : A \to A \) is a Rota-Baxter operator.

Proof. For any \(x, y, z \in A \), we have
\[
\langle \varphi(ad(x)y), z \rangle = B([x, y], z) = B(z, [x, y]) = -B(y, [x, z]) = \langle ad^*(x)\varphi(y), z \rangle.
\]
Hence \(\varphi(ad(x)y) = ad^*(x)\varphi(y) \) for any \(x, y \in A \). Let \(x^* = \varphi(x), y^* = \varphi(y) \), then by Theorem 2.1, \(r \) is a solution of the Malcev Yang-Baxter equation in \(A \) if and only if
\[
[r\varphi(x), r\varphi(y)] = [r(x^*), r(y^*)] = r(ad^*r(x^*)(y^*) - ad^*r(y^*)(x^*)) = r\varphi([r\varphi(x), y] + [x, r\varphi(y)]).
\]
Therefore the conclusion holds. \[\square\]

Now, we introduce the notion of \(\mathcal{O} \)-operator of a Malcev algebra.

Definition 2.5. Let \((A, [\cdot, \cdot])\) be a Malcev algebra and let \((V, \rho)\) be a representation of \(A \). A linear map \(T : V \to A \) is called an \(\mathcal{O} \)-operator associated to \(\rho \) if for all \(a, b \in V \),
\[
[T(a), T(b)] = T(\rho(T(a))b - \rho(T(b))a).
\]

Example 2.1. Let \((A, [\cdot, \cdot])\) be a Malcev algebra. Then a Rota-Baxter operator (of weight zero) is an \(\mathcal{O} \)-operator of \(A \) associated to the adjoint representation \((A, ad)\) and a skew-symmetric solution of Malcev Yang-Baxter equation in \(A \) is an \(\mathcal{O} \)-operator of \(A \) associated to the representation \((A^*, ad^*)\).

Let \((A, [\cdot, \cdot])\) be a Malcev algebra. Let \(\rho^* : A \to gl(V^*) \) be the dual representation of the representation \(\rho : A \to gl(V) \) of the Malcev algebra \(A \). A linear map \(T : V \to A \) can be identified as an element in \(A \otimes V^* \subset (A \otimes \rho^*, V^*) \otimes (A \otimes \rho^*, V) \) as follows. Let \(\{e_1, \cdots, e_n\} \) be a basis of \(L \). Let \(\{v_1, \cdots, v_m\} \) be the dual basis, that is \(v_i^*(v_j) = \delta_{ij} \). Set \(T(v_i) = \sum_{j=1}^n a_{ij} e_j, i = 1, \cdots, m \). Since as vector spaces, \(\text{Hom}(V, A) \cong A \otimes V^* \), we have
\[
T = \sum_{i=1}^m T(v_i) \otimes v_i^* = \sum_{i=1}^m \sum_{j=1}^n a_{ij} e_j \otimes v_i^*
\in A \otimes V^* \subset (A \otimes \rho^*, V^*) \otimes (A \otimes \rho^*, V^*).
\]

Theorem 2.2. Let \((A, [\cdot, \cdot])\) be a Malcev algebra. Then \(T \) is an \(\mathcal{O} \)-operator of \(A \) associated to \((V, \rho)\) if and only if \(r = T - \sigma(T) \) is a skew-symmetric solution of the Malcev Yang-Baxter equation in \(A \otimes \rho^*, V^* \).
Proof. From (2.9), we have \(r = T - \sigma(T) = \sum_i T(v_i) \otimes v_i^* - v_i^* \otimes T(v_i) \). Thus,

\[
[r_{12}, r_{13}] = \sum_{i,k=1}^m \left([T(v_i), T(v_k)] \otimes v_i^* \otimes v_k^* - \rho^*(T(v_i))v_k^* \otimes v_i^* \otimes T(v_k) \right. \\
&\quad + \rho^*(T(v_k))v_i^* \otimes T(v_i) \otimes v_k^* \right), \\
[r_{12}, r_{23}] = \sum_{i,k=1}^m \left(-v_i^* \otimes [T(v_i), T(v_k)] \otimes v_k^* - T(v_i) \otimes \rho^*(T(v_k)) v_i^* \otimes v_k^* \right. \\
&\quad \left. + v_i^* \otimes \rho^*(T(v_i))v_k^* \otimes T(v_k) \right), \\
[r_{13}, r_{23}] = \sum_{i,k=1}^m \left(v_i^* \otimes v_k^* \otimes [T(v_i), T(v_k)] + T(v_i) \otimes v_k^* \otimes \rho^*(T(v_k)) v_i^* \right. \\
&\quad \left. - v_i^* \otimes T(v_k) \otimes \rho^*(T(v_i)) v_i^* \right).
\]

By the definition of dual representation, we know \(\rho^*(T(v_k))v_i^* = -\sum_{j=1}^m v_i^*(\rho(T(v_k))v_j) \). Thus,

\[
- \sum_{i,k=1}^m T(v_i) \otimes \rho^*(T(v_k))v_i^* \otimes v_k^* = - \sum_{i,k=1}^m T(v_i) \otimes \left[\sum_{j=1}^m -v_i^*(\rho(T(v_k))v_j) \right] \otimes v_k^* \\
= \sum_{i,k=1}^m \sum_{j=1}^m v_j^*(\rho(T(v_k))v_i)T(v_j) \otimes v_i^* \otimes v_k^* = \sum_{i,k=1}^m T(\sum_{j=1}^m v_j^*(\rho(T(v_k))v_i)v_j) \otimes v_i^* \otimes v_k^* \\
= \sum_{i,k=1}^m T(\rho(T(v_k))v_i) \otimes v_i^* \otimes v_k^*.
\]

Therefore,

\[
[r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] \\
= \sum_{i,k=1}^m \left([T(v_i), T(v_k)] + T(\rho(T(v_k))v_i) - T(\rho(T(v_i))v_k) \right) \otimes v_i^* \otimes v_k^* \\
= -v_i^* \otimes [T(v_i), T(v_k)] + T(\rho(T(v_k))v_i) - T(\rho(T(v_i))v_k) \otimes v_k^* \\
+ v_i^* \otimes v_k^* \otimes [T(v_i), T(v_k)] + T(\rho(T(v_k))v_i) - T(\rho(T(v_i))v_k) \right).
\]

So \(r \) is a classical \(r \)-matrix in \(\mathcal{A} \ltimes_{\rho^*} V^* \) if and only if \(T \) is an \(\mathcal{O} \)-operator. \(\square \)

In fact, Theorem 2.2 gives a relation between \(\mathcal{O} \)-operator and Malcev Yang-Baxter equation. Then, we get a direct conclusion from Theorems 2.1 and 2.2.

Corollary 2.2. Let \((A, [\cdot, \cdot])\) be a Malcev algebra. Let \(\rho : A \to gl(V) \) be a representation of \(A \). Set \(\mathcal{A} = A \ltimes_{\rho^*} V^* \). Let \(T : V \to A \) be a linear map. Then the following three conditions are equivalent:

(i) \(T \) is an \(\mathcal{O} \)-operator of \(A \) associated to \(\rho \);
(ii) \(T - \sigma(T) \) is a skew-symmetric solution of the Malcev Yang-Baxter equation in \(\mathcal{A} \);
(iii) \(T - \sigma(T) \) is an \(\mathcal{O} \)-operator of the Malcev algebra \(\mathcal{A} \) associated to \(ad^* \).

3. Alternative and post-alternative algebras

In this section, we recall some basic definitions about alternative and pre-alternative algebras studied in [6, 22].
3.1. Some basic results on alternative algebras

Definition 3.1. An alternative algebra (A, \cdot) is a vector space A equipped with a bilinear operation $(x, y) \mapsto x \cdot y$ satisfying, for all $x, y, z \in A$,

$$as_A(x, x, y) = as_A(y, x, x) = 0,$$

where $as_A(x, y, z) = (x \cdot y) \cdot z - x \cdot (y \cdot z)$ is the **associator**.

Remark 3.1. If the characteristic of the field is not 2, then an alternative algebra (A, \cdot) also satisfies the stronger axioms, for all $x, y, z \in A$,

$$as_A(x, y, z) + as_A(y, x, z) = 0, \quad (3.2)$$

$$as_A(z, x, y) + as_A(y, z, x) = 0. \quad (3.3)$$

Now, recall that an algebra (A, \cdot) is called admissible Malcev algebra if $(A, [\cdot, \cdot])$ is a Malcev algebra, where $[x, y] = x \cdot y - y \cdot x$.

Example 3.1. Any alternative algebra is Malcev admissible. That is if (A, \cdot) be an alternative algebra, then $(A, [\cdot, \cdot])$ is a Malcev algebra, where $[x, y] = x \cdot y - y \cdot x$, for all $x, y \in A$.

Definition 3.2. Let (A, \cdot) be an alternative algebra and V be a vector space. Let $l, r : A \to \text{End}(V)$ be two linear maps. Then, (V, l, r) is called a representation or a bimodule of A if, for any $x, y \in A$,

$$\tau(x)\tau(y) + \tau(y)\tau(x) - \tau(x \cdot y) - \tau(y \cdot x) = 0, \quad (3.4)$$

$$l(x \cdot y) + l(y \cdot x) - l(x)l(y) - l(y)l(x) = 0, \quad (3.5)$$

$$l(x \cdot y) + \tau(y)l(x) - l(x)l(y) - l(x)\tau(y) = 0, \quad (3.6)$$

$$\tau(y)l(x) + \tau(y)\tau(x) - l(x)\tau(y) - \tau(x \cdot y) = 0. \quad (3.7)$$

Definition 3.3. A pre-alternative algebra is a triple (A, \prec, \succ), where A is a vector space, $\prec, \succ : A \otimes A \to A$ are bilinear maps satisfying for all $x, y, z \in A$ and $x \cdot y = x \prec y + x \succ y$,

$$x \succ y \prec z \prec x \succ (y \prec z) + (y \prec x) \succ z - y \prec (x \cdot z) = 0, \quad (3.8)$$

$$x \succ y \prec z \prec x \succ (y \prec z) + (z \cdot x) \succ y - y \succ (x \succ y) = 0, \quad (3.9)$$

$$x \cdot y \succ z \prec x \succ (y \succ z) + (y \cdot x) \succ z - y \succ (x \succ z) = 0, \quad (3.10)$$

$$z \prec x \succ y - z \prec (x \cdot y) + (z \prec y) \prec x - z \prec (y \cdot x) = 0. \quad (3.11)$$

Proposition 3.1. Let (A, \prec, \succ) be a pre-alternative algebra. Then the product $x \cdot y = x \prec y + x \succ y$ defines an alternative algebra A. Furthermore, $(A, L_{\succ}, R_{\prec})$, where $L_{\succ}(x)y = x \succ y$ and $R_{\prec}(x)y = y \prec x$, gives a representation of the associated alternative algebra (A, \cdot) on A.

Proposition 3.2. Let (A, \prec, \succ) be a pre-alternative algebra. Then the product $x \succ y = x \succ y - y \prec x$ defines a pre-Malcev structure in A.

3.2. A-bimodule alternative algebras, weighted O-operators and post-alternative algebras

Definition 3.4. Let (A, \cdot) be an alternative algebra. Let (V, \cdot_V) be an alternative algebra and $l, r : A \to \text{End}(V)$ be two linear maps. We say that (V, \cdot_V, l, r) is an **A-bimodule alternative algebra** if (V, l, r) is a representation of (A, \cdot) such that the following compatibility conditions hold (for all $x \in A$, $a, b \in V$)

$$\tau(x)(a \cdot_V b) - a \cdot_V (\tau(x)b) + \tau(x)(b \cdot_V a) - b \cdot_V (\tau(x)a) = 0, \quad (3.12)$$

$$(l(x)a) \cdot_V b - l(x)(a \cdot_V b) + (l(x)b) \cdot_V a - l(x)(b \cdot_V a) = 0. \quad (3.13)$$
(l(x)a) \cdot_V b - a \cdot_V (l(x)b) + (\tau(x)a) \cdot_V b - l(x)(a \cdot_V b) = 0, \quad (3.14)
(r(x)a) \cdot_V b - a \cdot_V (r(x)b) + r(x)(a \cdot_V b) - a \cdot_V (r(x)b) = 0. \quad (3.15)

Proposition 3.3. Let \((A, \cdot)\) and \((V, \cdot_V)\) be two alternative algebras and \(l, \tau : A \to End(V)\) be two linear maps. Then \((V, \cdot_V, l, \tau)\) is an \(A\)-bimodule alternative algebra if and only if the direct sum \(A \oplus V\) of vector spaces is an alternative algebra (the semi-direct sum) with the product on \(A \oplus V\) defined for all \(x, y \in A, a, b \in V\) by

\[(x + a) \ast (y + b) = x \cdot y + l(x)b + \tau(y)a + a \cdot_V b. \quad (3.16)\]

We denote this algebra by \(A \ltimes_L V\) or simply \(A \ltimes V\). Further, if \((A, \cdot)\) is an alternative algebra, then it is easy to see that \((A, \cdot_L, R)\) is an \(A\)-bimodule alternative algebra, where \(L\) and \(R\) are the left and right multiplication operators corresponding to the multiplication \(\cdot\).

Proof. For any \(x, y, z \in A, a, b, c \in V\)

\[
as_{A \otimes V}(x + a, y + b, z + c) + as_{A \otimes V}(y + b, x + a, z + c)
= ((x + a) \ast (y + b)) \ast (z + c) - (x + a) \ast ((y + b) \ast (z + c)) + ((y + b) \ast (x + a)) \ast (z + c)
- (y + b) \ast ((x + a) \ast (z + c))
= (x \cdot y + l(x)b + \tau(y)a + a \cdot_V b) \ast (z + c) - (x + a) \ast (y \cdot z + l(y)c) + \tau(z)b + b \cdot_V c +
+ (y \cdot x + l(y)a + \tau(x)b) + b \cdot_V a) \ast (z + c) - (y + b) \ast (x \cdot z + l(x)c + \tau(z)a + a \cdot_V c)
= (x \cdot y \cdot z + l(x \cdot y)c + \tau(z)(l(x)b + \tau(y)a + a \cdot_V b) + (l(x)b + \tau(y)a + a \cdot_V b) \cdot_V c - x \cdot (y \cdot z) - l(x)(l(y)c + \tau(z)b + b \cdot_V c) - \tau(y \cdot z)a - a \cdot_V (l(y)c + \tau(z)b + b \cdot_V c) +
+ (y \cdot x) \cdot z + l(y \cdot x)c + \tau(z)(l(y)a + \tau(x)b + b \cdot_V a) + (l(y)a + \tau(x)b + b \cdot_V a) \cdot_V c - y \cdot (x \cdot z) - l(y)(l(x)c + \tau(z)a + a \cdot_V c) - \tau(x \cdot z) - b \cdot_V (l(x)c + \tau(z)a + a \cdot_V c).
\]

Hence, \(as_{A \otimes V}(x + a, y + b, z + c) + as_{A \otimes V}(y + b, x + a, z + c) = 0\) if and only if \((3.2), (3.12)\) and \((3.14)\) hold.

Analogously, \(as_{A \otimes V}(z + c, x + a, y + b) + as_{A \otimes V}(z + c, y + b, x + a) = 0\) if and only if \((3.3), (3.13)\) and \((3.15)\) hold. \(\square\)

Definition 3.5 ([3]). A post-alternative algebra \((A, \prec, \succ, \cdot)\) is a vector space \(A\) equipped with bilinear operations \(\prec, \succ, \cdot : A \otimes A \to A\) obeying the following equations for \(* = \prec + \succ + \cdot\) and all \(x, y, z \in A\),

\[
(x \cdot y) \cdot z - x \cdot (y \cdot z) + (y \cdot x) \cdot z - y \cdot (x \cdot z) = 0, \quad (3.17)
(z \cdot x) \cdot y - z \cdot (x \cdot y) + (z \cdot y) \cdot x - z \cdot (y \cdot x) = 0, \quad (3.18)
(x \cdot y) \prec z - x \cdot (y \prec z) + (y \cdot x) \prec z - y \cdot (x \prec z) = 0, \quad (3.19)
(x \succ y) \cdot z - x \succ (y \cdot z) + (x \cdot y) \succ z - x \succ (y \succ z) = 0, \quad (3.20)
(y \succ x) \cdot z - x \succ (y \succ z) + (x \prec y) \cdot z - x \prec (y \succ z) = 0, \quad (3.21)
(z \prec x) \cdot y - z \cdot (x \prec y) + (z \cdot y) \prec x - z \cdot (y \prec x) = 0, \quad (3.22)
(x \succ y) \prec z - x \succ (y \prec z) + (y \prec x) \prec z - y \prec (x \succ z) = 0, \quad (3.23)
(x \prec y) \prec z - x \prec (y \prec z) + (z \cdot x) \prec y - z \prec (x \prec y) = 0, \quad (3.24)
(x \succ y) \succ z - x \succ (y \succ z) + (y \cdot x) \succ z - y \succ (x \succ z) = 0, \quad (3.25)
(z \prec x) \prec y - z \prec (x \succ y) + (z \cdot y) \prec x - z \prec (y \cdot x) = 0. \quad (3.26)
\]

Remark 3.2. Let \((A, \prec, \succ, \cdot)\) be a post-alternative algebra. If the operation \(\cdot\) is trivial, then it is a pre-alternative algebra.

Let \((A, \prec, \succ, \cdot)\) be a post-alternative algebra, it is obvious that \((A, \cdot)\) is an alternative algebra. On the other hand, it is straightforward to get the following conclusion:
Theorem 3.1. If \((A,\prec,\succ,\cdot)\) is a post-alternative algebra, then with a new bilinear operation \(\ast : A \times A \to A\) on \(A\) defined for all \(x,y \in A\) by
\[
x \ast y = x \prec y + x \succ y + x \cdot y,
\] (3.27)
\((A,\ast)\) becomes an alternative algebra. It is called the associated alternative algebra of \((A,\prec,\succ,\cdot)\).

Proof. In fact, for any \(x,y,z \in A\), we have
\[
\begin{align*}
as_A(x,y,z) + as_A(y,x,z) &= (x \ast y) \ast z - x \ast (y \ast z) + (y \ast x) \ast z - y \ast (x \ast z) \\
&= (x \prec y) \prec z + (x \prec y) \succ z + (x \succ y) \prec z - z \prec (x \ast y) + (y \prec x) \ast z - (y \ast x) \prec z \\
&+ (y \prec x) \ast z - (y \prec x \prec y) \succ z - (y \prec x) \succ z \succ z - (y \prec x \succ y) \prec z \\
&+ (y \prec x \prec z - x \prec (y \prec z) - x \succ (y \prec z) - (y \prec x) \prec z \prec (y \prec z) \\
&- (y \prec x \succ z - x \prec (y \prec z) - x \succ (y \prec z) - (y \prec x) \succ z \succ (y \prec z) \\
&+ (y \prec x \succ z - y \prec (x \ast z) - y \succ (x \ast z) - y \prec (x \ast z) - y \succ (x \ast z)
\end{align*}
\]
and then replacing \((x,y,z)\) in this computation by \((z,x,y)\) yields \(as_A(z,x,y) + as_A(z,y,x) = 0\), which completes the proof according to Definition 3.1 and Remark 3.1. □

The following terminology is motivated by the notion of \(\lambda\)-weighted \(O\)-operator as a generalization of (the operator form of) the classical Yang-Baxter equation in [2,19].

Definition 3.6. Let \((A,\cdot)\) be an alternative algebra and \((V,\cdot_V,l,r)\) be an \(A\)-bimodule alternative algebra. A linear map \(T : V \to A\) is called a \(\lambda\)-weighted \(O\)-operator associated to \((V,\cdot_V,l,r)\) if \(T\) satisfies, for all \(a,b \in V\),
\[
T(a) \cdot T(b) = T(l(T(a))b + r(T(b))a) + \lambda a \cdot_V b.
\] (3.28)

When \((V,\cdot_V,l,r) = (A,\cdot,L,R)\), the condition (3.28) becomes
\[
\mathcal{R}(x) \cdot \mathcal{R}(y) = \mathcal{R}(\mathcal{R}(x) \cdot y + x \cdot \mathcal{R}(y) + \lambda x \cdot y).
\] (3.29)
The property (3.29) implies that \(\mathcal{R} : A \to A\) is a \(\lambda\)-weighted Rota-Baxter operator on the alternative algebra \((A,\cdot)\).

Theorem 3.2. Let \((A,\cdot)\) be an alternative algebra and \((V,\cdot_V,l,r)\) be an \(A\)-bimodule alternative algebra. Let \(T : V \to A\) be a \(\lambda\)-weighted \(O\)-operator associated to \((V,\cdot_V,l,r)\). Define three new bilinear operations \(\prec,\succ,\circ : V \otimes V \to V\) on \(V\) as follows:
\[
a \succ b = l(T(a))b, \quad a \prec b = r(T(b))a, \quad a \circ b = \lambda a \cdot_V b.
\] (3.30)
Then \((V,\prec,\succ,\circ)\) becomes a post-alternative algebra and \(T\) is a homomorphism of alternative algebras.

Proof. Since \(A\) is an alternative algebra, (3.17) and (3.18) obviously hold. Furthermore, for any \(a,b,c \in V\), we have
\[
(a \circ b) \prec c - a \circ (b \prec c) + (b \circ a) \prec c - b \circ (a \prec c) = (\lambda a \cdot_V b) \prec c - a \circ (\tau(T(c))b) + (\lambda b \cdot_V a) \prec c - b \circ (\tau(T(c))a) \\
= \lambda (\tau(T(c))a \cdot_V b - a \cdot_V (\tau(T(c))b) + \tau(T(c))(b \cdot_V a) - b \cdot_V (\tau(T(c))a) = 0.
\]
So, (3.19) holds. Moreover, (3.20) holds. Indeed,
\[
\begin{align*}
(a \succ b) \circ c - a \circ (b \succ c) + (a \succ c) \circ b - a \succ (c \circ b) &= ((l(T(a))b) \circ c - a \circ (\lambda b \cdot_V c) + (l(T(a))c) \circ b - a \succ (\lambda c \cdot_V b) \\
&= \lambda ((l(T(a))b) \cdot_V c - l(T(a))(b \cdot_V c) + (l(T(a))c) \cdot_V b - l(T(a))(c \cdot_V b) = 0.
\end{align*}
\]
To prove identity (3.21), we compute as follows

\[
(b \succ a) \circ c - a \circ (b \succ c) + (a \prec b) \circ c - b \succ (a \circ c) = \lambda ((T(b))a) \circ c - a \circ ((T(b))c) + (\tau(T(b))a) \circ c - b \succ (\lambda a \cdot V c) = \lambda ((T(b))a) \cdot V c - a \cdot V ((T(b))c) + (\tau(T(b))a) \cdot V c - ((T(b))(a \cdot V c)) = 0.
\]

The other identities can be shown similarly. \(\square\)

Corollary 3.1. Let \((A, \cdot)\) be an alternative algebra and \(\mathcal{R} : A \rightarrow A\) be a \(\lambda\)-weighted Rota-Baxter operator for \(A\). Then \((A, \prec, \succ, \circ)\) is a post-alternative algebra with the operations

\[
x \prec y = x \cdot \mathcal{R}(y), \quad x \succ y = \mathcal{R}(x) \cdot y, \quad x \circ y = \lambda x \cdot y.
\]

4. Weighted \(\mathcal{O}\)-operators and post-Malcev algebras

We start this section by introducing the notion of post-Malcev algebra together with some of its basic properties. We will also briefly discuss the post-Malcev algebra structure underneath the \(\lambda\)-weighted \(\mathcal{O}\)-operators. We then show that there is a close relationship between post-Malcev algebras and post-alternative algebras in parallel to the relationship between pre-Malcev and pre-alternative algebras.

4.1. \(A\)-module Malcev algebras and weighted \(\mathcal{O}\)-operators

Now, we extend the concept of a module to that of an \(A\)-module algebra by replacing the \(\mathbb{K}\)-module \(V\) by a Malcev algebra. Next, we introduce \(\lambda\)-weighted \(\mathcal{O}\)-operators on Malcev algebras and study some basic properties.

Definition 4.1. Let \((A, [\cdot, \cdot])\) and \((V, [\cdot, \cdot]_V)\) be two Malcev algebras. Let \(\rho : A \rightarrow \text{End}(V)\) be a linear map such that \((V, \rho)\) is a representation of \((A, [\cdot, \cdot])\) and the following compatibility conditions hold for all \(x, y, z, a, b, c \in V:\)

\[
\rho([x, y])[a, b]_V = \rho(x)[\rho(y)a, b]_V - [\rho(y)\rho(x)a, b]_V - [\rho(x)\rho(y)b, a]_V + \rho(y)[\rho(x)b, a]_V, \\
\quad (4.1)
\]

\[
[\rho(x)a, \rho(y)b]_V = [\rho([x, y])a, b]_V - [\rho(x)\rho(y)a, b]_V + [\rho(y)\rho(x)a, b]_V + [\rho(y)\rho(x)b, a]_V, \\
\quad (4.2)
\]

\[
[\rho(x)a, [b, c]_V]_V = [[\rho(x)b, a]_V, c]_V - \rho(x)[[b, a]_V, c]_V - [\rho(x)[a, c]_V, b]_V - [[\rho(x)c, b]_V, a]_V. \\
\quad (4.3)
\]

Then \((V, [\cdot, \cdot]_V, \rho)\) is called an \(A\)-module Malcev algebra.

In the sequel, an \(A\)-module Malcev algebra is denoted by \((V, [\cdot, \cdot]_V, \rho)\). It is straightforward to get the following:

Proposition 4.1. Let \((A, [\cdot, \cdot])\) and \((V, [\cdot, \cdot]_V)\) be two Malcev algebras and \((V, [\cdot, \cdot]_V, \rho)\) be an \(A\)-module Malcev algebra. Then \((A \oplus V, [\cdot, \cdot]_\rho)\) carries a new Malcev algebra structure with bracket

\[
[x + a, y + b]_\rho = [x, y] + \rho(x)b - \rho(y)a + [a, b]_V, \quad \forall x, y, z \in A, \quad a, b, c \in V.
\]

This is called the semi-direct product, often denoted by \(A \ltimes \rho V\) or simply \(A \ltimes V\).

Proof. For \(x, y, z, t \in A\) and \(a, b, c, d \in V\),

\[
[[x + a, z + c]_\rho, [y + b, t + d]_\rho] = [[x, z], [y, t]] + \rho([x, z])\rho(y)d - \rho([x, z])\rho(t)b \\
+ \rho([x, z])[b, d]_V - \rho([y, t])\rho(x)c + \rho([y, t])\rho(z)a - \rho([y, t])[a, c]_V + [\rho(x)c, \rho(y)d]_V \\
- [\rho(x)c, \rho(t)b]_V + [\rho(x)c, [b, d]_V]_V - [\rho(z)a, \rho(y)d]_V + [\rho(z)a, \rho(t)b]_V - [\rho(z)a, [b, d]_V]_V \\
+ [[a, c]_V, \rho(y)d]_V - [[a, c]_V, \rho(t)b]_V + [[a, c]_V, [b, d]_V]_V, \\
[[[x + a, y + b]_\rho, z + c]_\rho, t + d]_\rho = [[[x, y], z], t] + \rho([[x, y], z])d - \rho(t)\rho([x, y])c.
\]
More generally, if we define a

\[T : V \to A, x, y \in V \to \rho(T(x)) + \rho(T(y)) = \rho(x) + \rho(y) \]

By Proposition 4.2. According to (4.1), we have

\[[x, y] = \rho(x)y - \rho(y)x + \lambda(x,y) \]

Obviously, a \(\lambda\)-weighted \(\mathcal{O}\)-operator associated to \((V, \rho)\) is a special \(\mathcal{O}\)-operator associated to \((A, [\cdot, \cdot])\), where \(\lambda(x,y)\) is a \(\lambda\)-weight.

Remark 4.1. More generally, if we define a \(\lambda\)-semi-direct product denoted by \(A \ltimes_{\lambda} V\) as follow

\[[x + a, y + b]_{\rho} = [x, y] + \rho(x)b - \rho(y)a + \lambda(a, b)_V, \quad \forall x, y \in A, \quad a, b \in V \quad (4.5) \]

we obtain the same characterization given in the above Proposition.

Example 4.1. It is known that \((A, ad)\) is a representation of \(A\) called the adjoint representation. Then \((A, [\cdot, \cdot], ad)\) is an \(A\)-module Malcev algebra.

Proposition 4.2. Let \((A, \cdot)\) be an alternative algebra. Then the triplet \((V; [\cdot, \cdot], I - \tau)\) defines an \(A\)-module Malcev admissible algebra of \((A, [\cdot, \cdot])\).

Proof. By Proposition 3.3, \(A \ltimes_{\lambda} V\) is an alternative algebra. For its associated Malcev algebra \((A \oplus V, [\cdot, \cdot])\), we have

\[[x + a, y + b] = (x + a) \cdot (y + b) - (y + b) \cdot (x + a) \]

\[= x \cdot y + I(x)b + \tau(y)a + a \cdot V - y \cdot x - I(y)a - \tau(x)b - b \cdot V \]

\[= [x, y] + (I - \tau)(x)b - (I - \tau)(y)a + [a, b]_V. \]

According to (4.4), we deduce that \((V; [\cdot, \cdot], I - \tau)\) is an \(A\)-module Malcev admissible algebra of \((A, [\cdot, \cdot])\).

Definition 4.2. Let \((A, [\cdot, \cdot])\) be a Malcev algebra and \((V; [\cdot, \cdot], \rho)\) be an \(A\)-module Malcev algebra. A linear map \(T : V \to A\) is said to be a \(\lambda\)-**weighted \(\mathcal{O}\)-operator** associated to \((V; [\cdot, \cdot], \rho)\) if for all \(a, b \in V\),

\[T(a), T(b) = T(\rho(T(a))b - \rho(T(b))a + \lambda(a, b)_V). \quad (4.6) \]

Obviously, a \(\lambda\)-weighted \(\mathcal{O}\)-operator associated to \((A, [\cdot, \cdot], ad)\) is just a \(\lambda\)-weighted Rota-Baxter operator on \(A\). A \(\lambda\)-weighted \(\mathcal{O}\)-operator can be viewed as the relative version of a Rota-Baxter operator in the sense that the domain and range of an \(\mathcal{O}\)-operator might be different.
Example 4.2. \(\) (i) A Rota-Baxter operator on \(A\) is simply a \(0\)-weighted \(O\)-operator.
(ii) The identity map \(id : A \to A\) is a \((-1)\)-weighted \(O\)-operator.
(iii) If \(f : A \to A\) is a Malcev algebra homomorphism and \(f^2 = f\) (idempotent condition), then \(f\) is a \((-1)\)-weighted \(O\)-operator.
(iv) If \(T\) is a \(\lambda\)-weighted \(O\)-operator, then for any \(\nu \in \mathbb{K}\), the map \(\nu T\) is a \((\nu \lambda)\)-weighted \(O\)-operator.
(v) If \(T\) is a \(\lambda\)-weighted \(O\)-operator, then \(-\lambda id - T\) is a \(\lambda\)-weighted \(O\)-operator.

In the following, we characterize \(\lambda\)-weighted \(O\)-operators in terms of their graph.

Proposition 4.3. Let \((V; [\cdot, \cdot]_V, \rho)\) be an \(A\)-module Malcev algebra. Then a linear map \(T : V \to A\) is a \(\lambda\)-weighted \(O\)-operator associated to \((V; [\cdot, \cdot]_V, \rho)\) if and only if the graph \(Gr(T) = \{T(a) + a\mid a \in V\}\) of the map \(T\) is a subalgebra of the \(\lambda\)-semi-direct product \(A \ltimes^\lambda V\).

Proof. Let \(T : V \to A\) be a linear map. For all \(a, b \in V\), we have
\[
[T(a) + a, T(b) + b]_\lambda^A = [T(a), T(b)] + \rho(T(a))b - \rho(T(b))a + \lambda[a, b]_V,
\]
which implies that the graph \(Gr(T) = \{T(a) + a\mid a \in V\}\) is a subalgebra of the Malcev algebra \(A \ltimes^\lambda V\) if and only if \(T\) satisfies
\[
[T(a), T(b)] = T(\rho(T(a))b - \rho(T(b))a + \lambda[a, b]_V),
\]
which means that \(T\) is a \(\lambda\)-weighted \(O\)-operator.

As a consequence of the above proposition, we get the following.

Corollary 4.1. Let \(T : V \to A\) be a \(\lambda\)-weighted \(O\)-operator. Since \(Gr(T)\) is isomorphism to \(V\) as a vector space, we get that \(V\) inherits a new Malcev algebra structure with the bracket
\[
[a, b]_T := \rho(T(a))b - \rho(T(b))a + \lambda[a, b]_V, \quad \text{for } a, b \in V.
\]
In other words, \((V, [\cdot, \cdot]_T)\) is a Malcev algebra, denoted by \(V_T\) (called the induced Malcev algebra). Moreover, \(T : V_T \to A\) is a homomorphism of Malcev algebras.

Let \(T, T' : (A, [\cdot, \cdot]) \to (V, [\cdot, \cdot]_V)\) be two \(\lambda\)-weighted \(O\)-operators. A homomorphism from \(T\) to \(T'\) consists of Malcev algebra homomorphisms \(\phi : A \to A\) and \(\psi : V \to V\) such that
\[
\phi \circ T = T' \circ \psi, \quad \psi(\rho(x)a) = \rho(\phi(x))(\psi(a)), \quad \forall x \in A, a \in V.
\]
In particular, if both \(\phi\) and \(\psi\) are invertible, \((\phi, \psi)\) is called an isomorphism from \(T\) to \(T'\).

Proposition 4.4. Let \((\phi, \psi)\) be a homomorphism of \(\lambda\)-weighted \(O\)-operators from \(T\) to \(T'\). Then \(\psi : V \to V\) is a homomorphism of induced Malcev algebras from \((V, [\cdot, \cdot]_T)\) to \((V, [\cdot, \cdot]_{T'})\).

Proof. For any \(a, b \in V\), we have
\[
\psi([a, b]_T) = \psi(\rho(T(a))b - \rho(T(b))a + \lambda[a, b]_V)
\]
In the sequel, we characterize \(\lambda \)-weighted \(\mathcal{O} \)-operators associated to \((V;[\cdot,\cdot]_V,\rho)\) in terms of the Nijenhuis operators. Recall that a Nijenhuis operator on a Malcev algebra \((A, [\cdot, \cdot])\) is a linear map \(N : A \to A\) satisfying, for all \(x, y \in A\),

\[
[N(x), N(y)] = N([N(x), y] - [N(y), x] - N([x, y])).
\]

Proposition 4.5. Let \((V;[\cdot,\cdot]_V,\rho)\) be an \(A\)-module Malcev algebra. Then a linear map \(T : V \to A\) is a \(\lambda\)-weighted \(\mathcal{O}\)-operator associated to \((V;[\cdot,\cdot]_V,\rho)\) if and only if

\[
N_T = \begin{bmatrix}
\lambda id & -T \\
0 & 0
\end{bmatrix}
: A \oplus V \to A \oplus V
\]

is a Nijenhuis operator on the semi-direct product Malcev algebra \(A \ltimes V\).

Proof. For all \(x, y \in A, a, b \in V\), on the one hand, we have

\[
[N_T(x + a), N_T(y + b)] = [\lambda x - T(a), \lambda y - T(b)]_\rho
= \lambda^2[x, y] - \lambda[x, T(b)] - \lambda[T(a), y] + [T(a), T(b)].
\]

On the other hand, since \(N_T^2 = N_T\), we have

\[
N_T([N_T(x + a), y + b], x + a)_\rho = \lambda x - T(a) - \lambda y - T(b)]_\rho = \lambda^2[x, y] - \lambda[x, T(b)] - \lambda[T(a), y] + [T(a), T(b)].
\]

Therefore, \(N_T\) is a Nijenhuis operator on the semi-direct product Malcev algebra \(A \ltimes V\) if and only if \((4.6)\) is satisfied. \(\square\)

Corollary 4.2. A linear map \(T : V \to A\) is a \(\lambda\)-weighted \(\mathcal{O}\)-operator associated to \((V;[\cdot,\cdot]_V,\rho)\) if and only if the operator

\[
N_T = \begin{bmatrix}
id & -T \\
0 & 0
\end{bmatrix}
: A \oplus V \to A \oplus V
\]

is a Nijenhuis operator on the \(\lambda\)-semi-direct product Malcev algebra \((A \oplus V, [\cdot, \cdot]_\rho^A)\).

4.2. Definition and constructions of post-Malcev algebras

In this section, we introduce the notion of post-Malcev algebras. We show that post-Malcev algebras arise naturally from a \(\lambda\)-weighted \(\mathcal{O}\)-operators. Therefore, post-Malcev algebras can be viewed as the underlying algebraic structures of \(\lambda\)-weighted \(\mathcal{O}\)-operators on Malcev algebras. Finally, we study some properties of post-Malcev algebras.

Definition 4.3. A post-Malcev algebra \((A, [\cdot, \cdot], \rhd)\) is a Malcev algebra \((A, [\cdot, \cdot])\) together with a bilinear map \(\rhd : A \otimes A \to A\) such that for all \(x, y, z \in A\), and \(\{x, y\} = x \rhd y - y \rhd x + [x, y]\),

\[
\{x, z\} \rhd [y, t] = x \rhd [z \rhd (y \rhd t)] - [z \rhd (x \rhd y) \rhd t] - [x \rhd (z \rhd (y \rhd t))] + [x \rhd (z \rhd y) \rhd t],
\]

\[
[x \rhd z, y \rhd t] = [[x \rhd y, z] \rhd t] - x \rhd ([y \rhd z] \rhd t) + y \rhd (x \rhd [z, t]) + [y \rhd (x \rhd t), z],
\]

\[
[x \rhd z, [y, t]] = [[x \rhd y, z] \rhd t] - x \rhd ([y \rhd z, t]) - [x \rhd [z, t], y] - [[x \rhd t, y], z],
\]

\[
\{x, z\} \rhd t = x \rhd (y \rhd (z \rhd t)) + y \rhd (x \rhd (z \rhd t)) - x \rhd [y, z] \rhd t - [y, z] \rhd (x \rhd t) - [y, z] \rhd t - (x \rhd t).
\]

Example 4.3.

1. A pre-Malcev algebra is a post-Malcev algebra with an abelian Malcev algebra \((A, [\cdot, \cdot] = 0, \rhd)\). (See [16, 26] for more details.)
2. Post-Malcev algebras generalize post-Lie algebras.
3. If \((A, [\cdot, \cdot])\) is a Malcev algebra, then \((A, [\cdot, \cdot], \rhd)\) is a post-Malcev algebra, where \(x \rhd y = [y, x]\) for all \(x, y \in A\).
Let \((A, [\cdot, \cdot], \triangleright)\) and \((A’, [\cdot, \cdot]’, \triangleright’)\) be two post-Malcev algebras. A homomorphism of post-Malcev algebras is a linear map \(f : A \rightarrow A’\) such that \(f([x,y]) = [f(x), f(y)]’\) and \(f(x \triangleright y) = f(x) \triangleright’ f(y)\).

Proposition 4.6. Let \((A, [\cdot, \cdot], \triangleright)\) be a post-Malcev algebra. Then the bracket
\[
\{x, y\} = x \triangleright y - y \triangleright x + [x, y]
\] (4.13)
defines a Malcev algebra structure on \(A\). We denote this algebra by \(A^C\) and call it the sub-adjacent Malcev algebra of \(A\).

Proof. The skew symmetry is obvious. For all \(x, y, z, t \in A\), we have
\[
\begin{align*}
\{\{x, z\}, \{y, t\}\} & = \{x, z\} \triangleright \{y, t\} - \{y, t\} \triangleright \{x, z\} + \{\{x, z\}, \{y, t\}\} \\
= \{x, z\} \triangleright (y \triangleright t) - \{x, z\} \triangleright \{y, t\} + \{x, z\} \triangleright \{y, t\} - \{y, t\} \triangleright \{x, z\} \\
& \quad + \{y, t\} \triangleright (z \triangleright x) - \{x, z\} \triangleright \{y, t\} + \{x, z\} \triangleright \{y, t\} - \{y, t\} \triangleright \{x, z\} \\
& \quad + \{x \triangleright z, \{y, t\}\} - \{z \triangleright x, y \triangleright t\} + \{z \triangleright x, y \triangleright t\} - \{z \triangleright x, y \triangleright t\} \\
& \quad + \{[x, z], y \triangleright t\} - \{z \triangleright x, y \triangleright t\} + \{[x, z], y \triangleright t\}.
\end{align*}
\]
\[
\begin{align*}
\{\{y, z\}, \{t, x\}\} & = \{y, z\} \triangleright x - x \triangleright \{y, z\} + \{\{y, z\}, \{t, x\}\} \\
& = \{y, z\} \triangleright (t \triangleright x) - \{t \triangleright x\} \triangleright \{y, z\} + \{t \triangleright x\} \triangleright \{y, z\} - \{y, z\} \triangleright \{t \triangleright x\} \\
& \quad + \{x \triangleright y, \{t, x\}\} - \{x \triangleright y, \{t, x\}\} + \{x \triangleright y, \{t, x\}\} - \{x \triangleright y, \{t, x\}\} \\
& \quad + \{\{y, z\}, t \triangleright x\} - \{t \triangleright y, \{t, x\}\} + \{t \triangleright y, \{t, x\}\} - \{t \triangleright y, \{t, x\}\} \\
& \quad + \{[y, z], t \triangleright x\} - \{[[y, z], t \triangleright x]\} + \{[[y, z], t \triangleright x]\} - \{[[y, z], t \triangleright x]\} \\
& = \{\{y, z\}, \{t, x\}\} = 0.
\end{align*}
\]
By the identity of Malcev algebra and (4.9)-(4.12), we have
\[
\{\{x, z\}, \{y, t\}\} - \{\{x, z\}, \{y, t\}\} = 0.
\]

Remark 4.2. Let \((A, [\cdot, \cdot], \triangleright)\) be a post-Malcev algebra. If \(\triangleright\) is commutative, \(x \triangleright y = y \triangleright x\), then the two Malcev brackets \([\cdot, \cdot]\) and \(\{\cdot, \cdot\}\) coincide.

Corollary 4.3. If \((A, [\cdot, \cdot], \triangleright)\) be a post-Malcev algebra, then \((A, \odot)\) is an admissible Malcev algebra, with the product \(\odot\) defined for all \(x, y \in A\) by
\[
x \odot y = x \triangleright y + \frac{1}{2} [x, y].
\] (4.14)
Proposition 4.7. Let \((A, [\cdot, \cdot], \triangleright)\) be a post-Malcev algebra. Define \(L_\triangleright : A \to A\) by
\(L_\triangleright(x)y = x \triangleright y\) for any \(x, y \in A\). Then \((A; [\cdot, \cdot], L_\triangleright)\) is an \(A\)-module Malcev algebra of \((A^C, \{\cdot, \cdot\})\).

Proof. By (4.12), \(L_\triangleright\) is a representation of \((A^C, \{\cdot, \cdot\})\). Indeed, for \(x, y, z, t \in A\),
\[
L_\triangleright(\{\{x, y\}, z\})t = \{\{x, y\}, z\} \triangleright t
\]
\[
= x \triangleright (y \triangleright (z \triangleright t)) - z \triangleright (x \triangleright (y \triangleright t)) - y \triangleright ((x, z) \triangleright t) - (y, z) \triangleright (x \triangleright t)
\]
\[
= L_\triangleright(x)L_\triangleright(y)L_\triangleright(z)t - L_\triangleright(z)L_\triangleright(x)L_\triangleright(y)t - L_\triangleright(y)L_\triangleright((x, z) \triangleright t)
\]
\[
- L_\triangleright(\{y, z\})L_\triangleright(x)t.
\]
To prove (4.1), according to (4.9) we compute
\[
L_\triangleright(\{x, z\})\{y, t\}
\]
\[
= \{x, z\} \triangleright [y, t] = x \triangleright [z \triangleright y, t] - [z \triangleright (x \triangleright y), t] - [x \triangleright (z \triangleright y), t] + z \triangleright [x \triangleright t, y]
\]
\[
= L_\triangleright(x)L_\triangleright(y)L_\triangleright(z)t - L_\triangleright(z)L_\triangleright(x)L_\triangleright(y)t - L_\triangleright(y)L_\triangleright((x, z) \triangleright t) + L_\triangleright(z)[L_\triangleright(x)t, y].
\]
Similarly, by (4.10) and (4.11), we have
\[
[L_\triangleright(x), L_\triangleright(y)]t
\]
\[
= [x \triangleright z, y \triangleright t] = [\{x, y\} \triangleright z, t] - x \triangleright [y \triangleright z, t] + y \triangleright (x \triangleright [z, t]) + [y \triangleright (x \triangleright t), z]
\]
\[
= L_\triangleright((x, y), z)\triangleright t - L_\triangleright(x)\{L_\triangleright(y), z\} \triangleright t + L_\triangleright(y)L_\triangleright((x, z) \triangleright t) + [L_\triangleright(y), L_\triangleright(x, t), z],
\]
\[
[L_\triangleright(x), [y, t]]
\]
\[
= [x \triangleright z, [y, t]] = x \triangleright [z \triangleright [y, t]] - [z \triangleright (x \triangleright [y, t]), t] - [x \triangleright [z, t], y] - [[x \triangleright t, y], z]
\]
\[
= [[L_\triangleright(x), y], z] \triangleright t - L_\triangleright(x)\{[y, z], t\} - [L_\triangleright(x), [z, t], y] - [[L_\triangleright(x), t], y, z].
\]
Therefore \((A; [\cdot, \cdot], L_\triangleright)\) is an \(A\)-module Malcev algebra of \((A^C, \{\cdot, \cdot\})\). \(\square\)

Proposition 4.8. If \((A; [\cdot, \cdot], \triangleright)\) is a post-Malcev algebra, then \((A, -[\cdot, \cdot], \triangleright)\) is also a post-Malcev algebra, where for all \(x, y \in A\),
\[
x \triangleright y = x \triangleright y + [x, y]. \quad (4.15)
\]
Moreover, \((A, [\cdot, \cdot], \triangleright)\) and \((A, -[\cdot, \cdot], \triangleright)\) have the same sub-adjacent Malcev algebra \(A^C\).

Proof. We check only that \((A, -[\cdot, \cdot], \triangleright)\) verifies the first post-Malcev identity. The other identities can be verified similarly. In fact, for all \(x, y, z, t \in A\),
\[
- \{x, z\} \triangleright [y, t] + x \triangleright [z \triangleright y, t] - [z \triangleright (x \triangleright y), t] - [x \triangleright (z \triangleright t), y] + z \triangleright [x \triangleright t, y]
\]
\[
= -\{x, z\} \triangleright [y, t] - \{\{x, z\}, [y, t]\} + x \triangleright [z \triangleright y, t] + x \triangleright [\{y, z\}, t] + x \triangleright [z, t \triangleleft y, t]
\]
\[
+ [x, [[y, z], t]] - [z \triangleright (x \triangleright y), t] - [z \triangleright [x, y], t] - [[z, x \triangleright y], t] - [[z, [x, y]], t]
\]
\[
- [x \triangleright (z \triangleright t), y] - [x \triangleright [z, t], y] - [[x, z \triangleright t], y] - [[x, [z, t]], y] + z \triangleright [x \triangleright t, y]
\]
\[
+ z \triangleright [[x, t], y] + [z, [x \triangleright t], y] + [[x, [x, t]], y] = 0.
\]
\(\square\)

Theorem 4.1. If \((A; [\cdot, \cdot], \triangleright)\) is a post-Malcev algebra, then
\((A \times A, [\cdot, \cdot])\) is a Malcev algebra, with the double bracket product \([\cdot, \cdot]\) on \(A \times A\) for all \(a, b, x, y \in A\) by
\[
[[a, x], (b, y)] = (a \triangleright b - b \triangleright a + [a, b], \quad a \triangleright y - b \triangleright x + [x, y]). \quad (4.16)
\]

Proof. Let \(x, y, z, t, a, b, c, d \in A\). It is obvious that \([[a, x], (b, y)] = -[[b, y], (a, x)]\). On the other hand,
\[
[[[a, x], (b, y)], (d, t)] =
\]
\[
\{\{a, c\}, \{b, d\}\}, (a \triangleright c) \triangleright (b \triangleright t) - (a \triangleright c) \triangleright (d \triangleright y) - (c \triangleright a) \triangleright (b \triangleright t)
\]
\[
+ (c \triangleright a) \triangleright (d \triangleright y) + [a, c] \triangleright (b \triangleright t) - [a, c] \triangleright (d \triangleright y) + \{a, c\} \triangleright [y, t]
\]
\[
- (b \triangleright d) \triangleright (a \triangleright z) + (b \triangleright d) \triangleright (c \triangleright x) + (d \triangleright b) \triangleright (a \triangleright z) - (d \triangleright b) \triangleright (c \triangleright x)
\]
- \([b, d] \triangleright (a \triangleright z) + [b, d] \triangleright (c \triangleright x) - \{b, d\} \triangleright [x, z] + [a \triangleright z, b \triangleright t]
- \{a \triangleright z, d \triangleright y\} - [c \triangleright x, b \triangleright t] + \{a \triangleright x, d \triangleright y\} - \{a \triangleright z, [y, t]\} + \{c \triangleright x, [y, t]\}
+ [[x, z], b \triangleright t] - [[x, z], d \triangleright y] - [[x, z], [y, t]],

\[\{\{a, b\}, c\}, d\}, (c \triangleright (d \triangleright c)) \triangleright x - (d \triangleright (c \triangleright b)) \triangleright x + (d \triangleright (c \triangleright b)) \triangleright x + [b, c, d] \triangleright x + \{b, c, d\} \triangleright x - a \triangleright ((c \triangleright b) \triangleright t) + a \triangleright ((c \triangleright b) \triangleright t) - a \triangleright ((c \triangleright b) \triangleright t) + a \triangleright ((c \triangleright b) \triangleright t)
- a \triangleright (d \triangleright (c \triangleright y)) + a \triangleright (d \triangleright [y, z]) - a \triangleright [b \triangleright z, t] + a \triangleright [c \triangleright y, t] - a \triangleright [[y, z], t] + \{[a, b] \triangleright t, x\} - [d \triangleright (b \triangleright z), x] + \{d \triangleright (c \triangleright y), x\} - [d \triangleright [y, z], x] + [[b, d] \triangleright z, t] - [c \triangleright [y, t], t] + [c \triangleright [y, t], t] + \{[[y, z], t], t\},

\[\{\{b, c\}, (c, z)\}, (d, t\}, (a, x)\}, (b, y)\}, (c, z)\} =

\[\{\{d, a\}, b\}, (b \triangleright (d \triangleright z)) \triangleright x - (d \triangleright (b \triangleright d)) \triangleright x + (d \triangleright (b \triangleright d)) \triangleright x + [a \triangleright (d \triangleright z), x] + \{a \triangleright (d \triangleright z), x\} + \{[a \triangleright (d \triangleright z), x], x\},

\[\{\{d, t\}, (a, x)\}, (b, y)\}, (c, z)\} =

\[\{\{a, x\}, (c, z)\}, [[b, y], (d, t)]\} - \{\{a, x\}, (b, y)\}, (c, z)\}, (d, t)]\}
- \{\{b, y\}, (c, z)\}, (d, t\}, (a, x\} - \{\{c, z\}, (d, t\}, (a, x\), (b, y)\}]
- \{\{d, t\}, (a, x)\}, (b, y)\}, (c, z)\} = (0, 0).

The following results illustrate that a \(\lambda\)-weighted \(O\)-operator induces a post-Malcev algebra structure.

Theorem 4.2. Let \((A, [\cdot, \cdot], \lambda)\) be a Malcev algebra and \((V; [\cdot, \cdot], \rho)\) an \(A\)-module Malcev algebra. Let \(T : V \rightarrow A\) be a \(\lambda\)-weighted \(O\)-operator associated to \((V; [\cdot, \cdot], \rho)\).
Define two new bilinear operations $\cdot : V \times V \to V$ as follows, for all $a, b \in V$,
\[[a, b] = \lambda[a, b]_V, \quad a \triangleright b = \rho(T(a))b. \] (4.17)

Then $(V, [\cdot, \cdot], \triangleright)$ is a post-Malcev algebra.

(ii) T is a Malcev algebra homomorphism from the sub-adjacent Malcev algebra $(V, \{\cdot, \cdot\})$ given in Proposition 4.6 to $(A, [\cdot, \cdot], T)$.

Proof. (i) We use (4.1)-(4.3) of representation of Malcev algebras on \mathbb{K}-algebra.

\[
\{a, c\} \triangleright [b, d] - a \triangleright [c \triangleright b, d] + [c \triangleright (a \triangleright b), d] + [a \triangleright (c \triangleright d), b] - c \triangleright [a \triangleright d, b] = (\rho(T(a))c - \rho(T(c))a + \lambda[a, c]_V) \triangleright \lambda[b, d]_V - \rho(T(a))[\rho(T(c))b, d] + [\rho(T(c))\rho(T(a))b, d] + [\rho(T(a))\rho(T(c))d, b] - \rho(T(c))[\rho(T(a))d, b] = \lambda\left(\rho(T(\rho(T(a)))c - T(\rho(T(c))a) + T(\lambda[a, c]_V))\right)[b, d]_V - \rho(T(a))[\rho(T(c))b, d]_V + [\rho(T(c))\rho(T(a))b, d]_V + [\rho(T(a))\rho(T(c))d, b]_V - \rho(T(c))[\rho(T(a))d, b]_V = 0.
\]

Using the condition (2.1) of Definition 2.1, we check

\[
\lambda^2\left([\rho(T(a))c, [b, d]_V]_V - [\rho(T(a))b, [c, d]_V]_V + [\rho(T(a))b, [c, d]_V]_V + [\rho(T(a))c, [d, b]_V]_V + [\rho(T(a))d, [b, c]_V]_V\right) = 0.
\]

(ii) The Malcev bracket $\{\cdot, \cdot\}$ is defined for all $a, b \in V$ by

\[
\{a, b\} = a \triangleright b - b \triangleright a + [a, b] = \rho(T(a))b - \rho(T(b))a + \lambda[a, b]_V.
\]

Then the sub-adjacent Malcev algebra of the above post-Malcev algebra $(V, [\cdot, \cdot], \triangleright)$ is exactly the Malcev algebra $(V, [\cdot, \cdot], T)$ given in Corollary 4.1 Then the result follows. \(\square\)

Proposition 4.9. Let $T, T' : (V, [\cdot, \cdot]_V) \to (A, [\cdot, \cdot])$ be two \mathcal{O}-operators with respect to an A-module Malcev algebra $(V, [\cdot, \cdot]_V, \rho)$. Let $(V, \{\cdot, \cdot\}, \triangleright)$ and $(V, \{\cdot, \cdot\}', \triangleright')$ be the post-Malcev algebras given in Theorem 4.2 and (ϕ, ψ) be a homomorphism from T' to T. Then ψ is a homomorphism from the post-Malcev algebra $(V, \{\cdot, \cdot\}, \triangleright)$ to the post-Malcev algebra $(V, \{\cdot, \cdot\}', \triangleright')$.

For all e,e_0 let
\begin{align*}
\psi(a,b) &= \psi(a,b)_V = \lambda(\psi(a),\psi(b))_V = \{\psi(a),\psi(b)\}', \\
\psi(a \triangleright b) &= \psi(\rho(T(a))b) = \rho(\psi(T(a)))(\psi(b)) = \rho(T'(\psi(a)))(\psi(b)) = \psi(a) \triangleright' \psi(b),
\end{align*}
which implies that ψ is a homomorphism between the post-Malcev algebras in Theorem 4.2. \hfill \square

Given a Malcev algebra, the following result gives a necessary and sufficient condition to have a compatible post-Malcev algebra structure.

Proposition 4.10. Let $(A,[\cdot,\cdot])$ be a Malcev algebra. Then there exists a compatible post-Malcev algebra structure on A if and only if there exists an A-module Malcev algebra $(V;[\cdot,\cdot]_V,\rho)$ and an invertible O-operator $T : V \to A$.

Proof. Let $(A,[\cdot,\cdot],\triangleright)$ be a post-Malcev algebra and $(A,[\cdot,\cdot])$ be the associated Malcev algebra. Then the identity map $id : A \to A$ is an invertible 1-weighted O-operator on $(A,[\cdot,\cdot])$ associated to $(A,[\cdot,\cdot],ad)$.

Conversely, suppose that there exists an invertible 1-weighted O-operator of $(A,[\cdot,\cdot])$ associated to an A-module Malcev algebra $(V;[\cdot,\cdot]_V,\rho)$. Then, using Theorem 4.2, there is a post-Malcev algebra structure on $T(V) = A$ given by
\begin{align*}
\{x, y\} &= \lambda T([T^{-1}(x),T^{-1}(y)]_V), \quad x \triangleright y = T(\rho(x)T^{-1}(y)).
\end{align*}
This is compatible post-Malcev algebra structure on $(A,[\cdot,\cdot])$. Indeed,
\begin{align*}
x \triangleright y - y \triangleright x + \{x, y\} &= T(\rho(x)T^{-1}(y) - \rho(y)T^{-1}(x) + [T^{-1}(x),T^{-1}(y)]_V) \\
&= [TT^{-1}(x),TT^{-1}(y)] = [x,y]. \quad \square
\end{align*}

An obvious consequence of Theorem 4.2 is the following construction of a post-Malcev algebra in terms of λ-weighted Rota-Baxter operator on a Malcev algebra.

Corollary 4.4. Let $(A,[\cdot,\cdot])$ be a Malcev algebra and the linear map $\mathcal{R} : A \to A$ is a λ-weighted Rota-Baxter operator. Then, there exists a post-Malcev structure on A given, for all $x,y \in A$, by
\begin{align*}
\{x, y\} &= \lambda[x,y], \quad x \triangleright y = [\mathcal{R}(x),y].
\end{align*}
If in addition, \mathcal{R} is invertible, then there is a compatible post-Malcev algebra structure on A given, for all $x,y \in A$, by
\begin{align*}
\{x, y\} &= \mathcal{R}([\mathcal{R}^{-1}(x),\mathcal{R}^{-1}(y)]), \quad x \triangleright y = \mathcal{R}([x,\mathcal{R}^{-1}(y)]).
\end{align*}

Example 4.4. In this example, we calculate (-1)-weighted Rota-Baxter operators on the Malcev algebra A and we give the corresponding post-Malcev algebras. Let A be the simple Malcev algebra over the field of complex numbers \mathbb{C} [11, Example 3]. In this case A has a basis $\{e_1,e_2,e_3,e_4,e_5,e_6,e_7\}$ with the following table of multiplication:
\[
\begin{array}{cccccccc}
| & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 \\
\hline
 e_1 & 0 & 2e_2 & -2e_3 & 2e_4 & -2e_5 & 2e_6 & -2e_7 \\
 e_2 & -2e_2 & 0 & e_1 & 2e_7 & 0 & -2e_5 & 0 \\
 e_3 & 2e_3 & -e_1 & 0 & 0 & -2e_6 & 0 & 2e_4 \\
e_4 & -2e_4 & -2e_7 & 0 & 0 & e_1 & 2e_3 & 0 \\
e_5 & 2e_5 & 0 & 2e_6 & -e_1 & 0 & 0 & -2e_2 \\
e_6 & -2e_6 & 2e_5 & 0 & -2e_3 & 0 & 0 & e_1 \\
e_7 & 2e_7 & 0 & -2e_4 & 0 & 2e_2 & -e_1 & 0
\end{array}
\]
Now, define the linear map $\mathcal{R} : A \to A$ by
\[
\mathcal{R}(e_1) = \frac{1}{2}e_1 + 2\alpha e_2 + 2\beta e_5 + 2\gamma e_6, \quad \mathcal{R}(e_2) = 0, \quad \mathcal{R}(e_3) = e_3 - \alpha e_1 + \delta e_5 - 2\beta e_6,
\]
\[\mathcal{R}(e_4) = e_4 - \beta e_1 - \delta e_2 + \mu e_6, \quad \mathcal{R}(e_5) = \mathcal{R}(e_6) = 0, \quad \mathcal{R}(e_7) = e_7 - \gamma e_1 + 2\beta e_2 - \mu e_5. \]

Then \(\mathcal{R} \) is a \((-1)\)-weighted Rota-Baxter operator on \(A \). Using Corollary 4.4, we can construct a post-Malcev algebra on \(A \) given by

\[
\{\cdot, \cdot\} \quad \begin{array}{cccccccc}
\cdot & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 \\
e_1 & 0 & 2\lambda e_2 & -2\lambda e_3 & 2\lambda e_4 & -2\lambda e_5 & 2\lambda e_6 & -2\lambda e_7 \\
e_2 & -2\lambda e_2 & 0 & \lambda e_1 & 2\lambda e_7 & 0 & -2\lambda e_5 & 0 \\
e_3 & 2\lambda e_3 & -\lambda e_1 & 0 & 0 & -2\lambda e_6 & 0 & 2\lambda e_4 \\
e_4 & -2\lambda e_4 & -2\lambda e_7 & 0 & 0 & \lambda e_1 & 0 & 2\lambda e_3 \\
e_5 & 2\lambda e_5 & 0 & 2\lambda e_6 & -\lambda e_1 & 0 & 0 & -2\lambda e_2 \\
e_6 & -2\lambda e_6 & 2\lambda e_5 & 0 & -2\lambda e_3 & 0 & 0 & \lambda e_1 \\
e_7 & 2\lambda e_7 & 0 & -2\lambda e_4 & 0 & 2\lambda e_2 & -\lambda e_1 & 0 \\
\end{array}
\]

The following result establishes a close relation between a post-alternative algebra and a post-Malcev algebra.

Theorem 4.3. Let \(T : V \to A \) be a \(\lambda \)-weighted \(\mathcal{O} \)-operator of alternative algebra \((A, \cdot) \) with respect to \((V, \cdot, V, I, \tau)\) and \((V, \circ, <, >)\) be the associated post-alternative algebra given in Theorem 3.2. Then \(T \) is a \(\lambda \)-weighted \(\mathcal{O} \)-operator on the Malcev admissible algebra \((A, [\cdot, \cdot])\) with respect to an \(A \)-module Malcev algebra \((V; [\cdot, \cdot], V, I, \tau)\).

Moreover, if \((V, \{\cdot, \cdot\}, \triangleright)\) be a post-Malcev algebra associated to the Malcev admissible algebra \((A, [\cdot, \cdot])\) on \((V; [\cdot, \cdot], V, I, \tau)\). Then, the products \((\{\cdot, \cdot\}, \triangleright)\) are related with \((\circ, <, >)\) as follow, for all \(a, b \in V \),

\[
\{a, b\} = a \circ b - b \circ a, \quad a \triangleright b = a > b < a. \tag{4.18}
\]

Proof. Using the condition of \(\lambda \)-weighted \(\mathcal{O} \)-operator in (3.28) and Proposition 4.2, for \(a, b \in A \),

\[
[T(a), T(b)] - T(\rho(T(a))b - \rho(T(b))a + \lambda[a, b]_V) = T(a) \cdot T(b) - T(b) \cdot T(a) - T((I - \tau)(T(a))b - (1 - \tau)(T(b))a + \lambda(a \cdot V b - b \cdot V a) = 0.
\]

Then \(T \) is a \(\lambda \)-weighted \(\mathcal{O} \)-operator on the Malcev admissible algebra \((A, [\cdot, \cdot])\) with respect to an \(A \)-module Malcev algebra \((V; [\cdot, \cdot], V, I, \tau)\).

On the other hand, from (3.30) of Theorem 3.2 and (4.17) of Theorem 4.2 that

\[
\{a, b\} = \lambda[a, b]_V = \lambda a \cdot V b - \lambda b \cdot V a = a \circ b - b \circ a, \\
\]
\[a \triangleright b = (I - \tau)(T(a))b = l(T(a))b - \tau(T(a))b = a > b < a. \]

\[\square\]
Corollary 4.5. Let \((A, \circ, \prec, \succ)\) be a post-alternative algebra given in Corollary 3.1, \((A, \{\cdot, \cdot\}, \triangleright)\) be a post-Malcev algebra associated to the Malcev algebras \((A, [\cdot, \cdot])\) and let \(R\) be a \(\lambda\)-weighted Rota-Baxter operator of \((A, \cdot)\). Then, the operations
\[
\{x, y\} = x \circ y - y \circ x, \quad x \triangleright y = x - y - y \prec x, \quad (4.19)
\]
define a post-Malcev structure in \(A\).

It is easy to see that (4.13) and (4.19) fit into the commutative diagram
\[
\text{Post-alternative alg.} \quad \xymatrix{ x \prec y \ar[r] & x \succ y \ar[r] & x \cdot y \ar[r] & \text{alternative alg.} } \]
\[
\{x, y\} = x \circ y - y \circ x \quad x \triangleright y = x - y - y \prec x \quad x \cdot y - y \cdot x \quad (4.20)
\]

When the operation \(\cdot\) of the post-alternative algebra and the bracket \([\cdot, \cdot]\) of the post-Malcev algebra are both trivial, we obtain the following commutative diagram.

Acknowledgment. The authors would like to thank the referee for valuable comments and suggestions on this article.

References

[1] F. V. Atkinson, Some aspects of Baxters functional equation, J. Math. Anal. Appl. 7, 1-30, 1963.
[2] C.M. Bai, A unified algebraic approach to classical Yang-Baxter equation, J. Phy. A: Math. Theor., 40, 11073-11082, 2007.
[3] C. Bai, O. Bellier, L. Guo and X. Ni, Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Notes 3, 485-524, 2013.
[4] C. Bai and D.P. Hou, J-dendriform algebras, Front. Math. China. 7 (1), 29-49, 2012.
[5] C. Bai, L.G. Liu and X. Ni, Some results on L-dendriform algebras, J. Geom. Phys. 60 (6-8), 940-950, 2010.
[6] C. Bai and X. Ni, Pre-alternative algebras and pre-alternative bialgebras, Pacific J. Math. 248, 355-390, 2010.
[7] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10, 731-742, 1960.
[8] D. Burde and K. Dekimpe, Post-Lie algebra structures on pairs of Lie algebras, J. Algebra, 464, 226-245, 2016.
[9] P. Cartier, On the structure of free Baxter algebras, Adv. Math. 9, 253-265, 1972.
[10] K. Ebrahimi-Fard, A. Lundervold and H. Munthe-Kaas, On the Lie enveloping algebra of a post-Lie algebra, J. Lie Theory 25 (4), 1139-1165, 2015.
[11] M.E. Goncharov, Structures of Malcev bialgebras on a simple non-Lie Malcev Algebra, Commun. Algebra 40 (8), 3071-3094, 2012.
[12] V. Yu. Gubarev and P.S. Kolesnikov, *Operads of decorated trees and their duals*, Comment. Math. Univ. Carolin. **55** (4), 421-445, 2014.
[13] L. Guo, *What is a Rota-Baxter algebra*, Notices. Amer. Math. Soc. **56**, 14361437, 2009.
[14] L. Guo and W. Keigher, *Baxter algebras and shuffle products*, Adv. Math. **150**, 117149, 2000.
[15] L. Guo and B. Zhang, *Renormalization of multiple zeta values*, J. Algebra **319**, 37703809, 2008.
[16] F. Harrathi, S. Mabrouk, O. Ncib and S. Silvestrov, *Kupershmidt operators on Hom-Malcev algebras and their deformation*, Int. J. Geom. Methods Mod. Phys. 2022. https://doi.org/10.1142/S0219887823500469
[17] D. Hou, X. Ni and C. Bai, *Pre-Jordan algebras*, Math. Scand. **112** (1), 19-48, 2013.
[18] F.S. Kerdman, *Analytic Moufang loops in the large*, Algebra Log. **18**, 325-347, 1980.
[19] B.A. Kupershmidt, *What a Classical r-Matrix Really Is*, J. Nonlin. Math. Phys. **6** (4), 448-488, 1999.
[20] E.N. Kuzmin, *Malcev algebras and their representations*, Algebra Log. **7** 233-244, 1968.
[21] E.N. Kuzmin, *The connection between Malcev algebras and analytic Moufang loops*, Algebra Log. **10**, 1-14, 1971.
[22] E.N. Kuzmin and I.P. Shestakov, *Non-associative structures*, Algebra VI, Encyclopaedia Math. Sci. **57**, Springer, Berlin, 197-280, 1995.
[23] L. Liu, X. Ni and C. Bai, *L-quadri-algebras*, Scientia Sinica Mathematica, **41** (2), 105-124, 2011.
[24] J.-L. Loday, *Dialgebras*, in: J.-L. Loday A. Frabetti F. Chapoton F. Goichot (eds.), Dialgebras and Related Operads, Lecture Notes in Mathematics, **1763**, 7-66, 2001.
[25] J.-L. Loday and M. Ronco, *Trialgebras and families of polytopes*. Contemp. Math. **346**, 369-398, 2004.
[26] S. Madariaga, *Splitting of operations for alternative and Malcev structures*, Commun. Algebra, **45** (1), 183-197, 2014.
[27] A.I. Malcev, *Analytic loops*, Mat. Sb. **36**, 569-576, 1955.
[28] P.T. Nagy, *Moufang loops and Malcev algebras*, Sem. Sophus Lie **3**, 65-68, 1993.
[29] P.C. Rosenbloom, *Post Algebras. I. Postulates and General Theory*, Amer. J. Math. **64** (1), 167-188, 1942.
[30] G.-C. Rota, *Baxter algebras and combinatorial identities I*, Bull. Amer. Math. Soc. **75**, 325-329, 1969.
[31] G. Rousseau, *Post algebras and pseudo-Post algebras*, Fundamenta Mathematicae, **67** 133-145, 1970.
[32] R. D. Schafer, *Representations of alternative algebras*, Trans. Amer. Math. Soc. **72**, 1-17, 1952.
[33] B. Vallette, *Homology of generalized partition posets*, J. Pure Appl. Algebra, **208** (2), 699-725, 2007.
[34] P. Yu, Q. Liu, C. Bai and L. Guo, *Post-Lie algebra structures on the Lie algebra sl(2,C)*, Electron. J. Linear Algebra **23**, 180-197, 2012.