Natronoflexus pectinivorans gen. nov. sp. nov., an obligately anaerobic and alkaliphilic fermentative member of Bacteroidetes from soda lakes

Sorokin, D.Y.; Panteleeva, A.N.; Tourova, T.P.; Kaparullina, E.N.; Muijzer, G.

Published in:
Extremophiles

DOI:
10.1007/s00792-011-0399-7

Citation for published version (APA):
Sorokin, D. Y., Panteleeva, A. N., Tourova, T. P., Kaparullina, E. N., & Muijzer, G. (2011). Natronoflexus pectinivorans gen. nov. sp. nov., an obligately anaerobic and alkaliphilic fermentative member of Bacteroidetes from soda lakes. Extremophiles, 15(6), 691-696. DOI: 10.1007/s00792-011-0399-7
Natronoflexus pectinivorans gen. nov. sp. nov., an obligately anaerobic and alkaliphilic fermentative member of Bacteroidetes from soda lakes

D. Y. Sorokin · A. N. Panteleeva · T. P. Tourova · E. N. Kaparullina · G. Muyzer

Abstract Anaerobic enrichment with pectin at pH 10 and moderate salinity inoculated with sediments from soda lakes of the Kulunda Steppe (Altai, Russia) resulted in the isolation of a novel member of the *Bacteroidetes*, strain AP1T. The cells are long, flexible, Gram-negative rods forming pink carotenoids. The isolate is an obligate anaerobe, fermenting various carbohydrates to acetate and succinate. It can hydrolyze and utilize pectin, xylan, starch, laminarin and pullulan as growth substrates. Growth is possible in a pH range from 8 to 10.5, with an optimum at pH 9.5, and at a salinity range from 0.1 to 2 M Na⁺. Phylogenetic analysis based on 16S rRNA sequences placed the isolate into the phylum *Bacteroidetes* as a separate lineage within the family *Marinilabilaceae*. On the basis of distinct phenotype and phylogeny, the soda lake isolate AP1T is proposed to be assigned in a new genus and species *Natronoflexus pectinivorans* (=DSM24179T = UNIQEM U807T).

Keywords *Natronoflexus pectinivorans* · Pectin · Haloalkaliphilic · Soda lakes

Introduction

Pectin, a natural polymer of partially methylated galacturonic acid, is an important component of plant biomass acting as a glue for the cellulose fibrils. It is degraded by pectinolytic microorganisms to monomers, which are then utilized as a growth substrate. The pectinolytic organisms produce an extracellular enzymatic complex with a general term pectinases, the principal component of which is represented by pectate lyases (Jayani et al. 2005). The pectin hydrolysis is an important process, both for natural habitats and for industrial processing of food and textile (Kashyap et al. 2001; Sarethy et al. 2011). Most of the known pectinolytic microorganisms grow optimally at acidic and neutral pH, while evidences for pectinolysis at high pH and/or high salt are scarce and were never specifically investigated with respect to carbon cycling in soda lakes. However, due to a potential for application in the food and textile industry, pectinases with high alkaline tolerance were specifically looked for in nonsalt-tolerant aerobes, such as various bacilli (Hoondal et al. 2002). There is only single evidence in the literature of a soda lake anaerobic fermentative bacterium, which is reported to grow with...
peptin—Alkaliflexus imshenetskii. This alkaliphile belongs to the phylum Bacteroidetes and was enriched from a low-salt soda lake with cellulose as substrate. It is a member of an anaerobic consortium degrading cellulose (Zhilina et al. 2004).

In this study, we focused on the microbial degradation of peptin and related polymers in anoxic sediments of highly alkaline and saline soda lakes. One of the organisms dominating the anaerobic enrichments with peptin at moderate salinity is described here as a novel haloalkaliphilic member of the phylum Bacteroidetes.

Methods

Samples

Samples of the top 5-cm sediments from the soda lakes Tanatar-5 (51.35N/79.40E; pH 10.15; salinity = 180 g l⁻¹; total alkalinity = 1.60 M) and Cock Soda Lake (52.06N/79.09E; pH = 10.3; salinity = 120 g l⁻¹; total alkalinity = 0.83 M), both in Kulunda Steppe (Altai, Russia), were taken during a field campaign in July 2009 and used to enrich haloalkaliphilic pectinolytics. The two sediments were mixed in equal proportions and used as inoculum.

Enrichment and cultivation of strain AP1

Enrichment and cultivation of haloalkaliphilic strain AP1 was performed at 28°C on a mineral medium containing sodium carbonate buffer (0.5 M Na⁺) with pH 10, 0.1 M NaCl, and 0.5 g l⁻¹ of K₂HPO₄. The medium was supplemented with 10 mg l⁻¹ of yeast extract, 4 mM NH₄Cl, 1 mM MgSO₄, and 1 ml l⁻¹ each of acidic trace metal solution and vitamin mix (Pfennig and Lippert 1966) after sterilization. Carbohydrates were added at concentrations 1 g l⁻¹ from 10% (w/v) sterile stock solutions (sugars were filter-sterilized, and polymers were autoclaved at 110°C for 30 min). Aerobic cultures were maintained in 50-ml serum bottles with a rubber stopper containing 10 ml of medium. Anaerobic cultivation was performed either in 15-ml Hungate tubes with 10-ml medium, or in 50-ml serum bottles with 40-ml medium with argon in the gas phase. The tubes and bottles were closed with butyl rubber stoppers and made anoxic by 5 cycles of evacuation-argon flushing with a final addition of 1 mM HS⁻ as a reductant. The solid medium was prepared by 1:1 mixing of the complete liquid medium with peptin and 4% (w/v) washed agar at 50°C. The plates were incubated in closed jars under argon with an oxygen-consuming catalyst (Oxoid). The pH dependence was examined at a Na⁺ content of 0.6 M, using the following filter-sterilized mineral medium: for pH 6–8, 0.1 M HEPES and NaCl/NaHCO₃; for pH 8.5–11, a mixture of sodium bicarbonate/sodium carbonate containing 0.1 M NaCl. To study the influence of salt concentration on growth, sodium carbonate media at pH 10, containing 0.1 and 2.0 M of total Na⁺, were mixed in different proportions.

Analyses

Growth was measured by the increase in OD₆₅₀. In case of cultures grown on pectic substrates, the solids were removed before the measurements by a brief low-speed centrifugation. Fermentation products were analyzed by HPLC anionic chromatography (BioRad, HPX-87-H column at 60°C, eluent 5 mM H₂SO₄ solution at 0.6 ml min⁻¹, UV and RI detectors) after neutralization of the supernatant. Phase contrast microphotographs were obtained with a Zeiss Axiosplan Imaging 2 microscope (Göttingen, Germany). For electron microscopy, the cells were negatively contrasted with 1% (w/v) neutralized phosphotungstate. Polar lipids for fatty acid composition were extracted from 1 g of wet cell pellet with acidic methanol and the fatty acid methyl esters were analyzed by GC–MS according to Zhilina et al. (1997). For the total polar lipid analysis, the cells were extracted with chloroform–methanol (1:2, v/v) on ice bath twice. After centrifugation, three phases were obtained. The polar lipid fraction was resolved by two-dimensional TLC (Kieselgel 60, 10 × 10 cm, Merck) using chloroform–methanol–water (60:25:4) in the first direction, followed by chloroform–acetic acid–methanol–water (85:15:12:4) in the second direction. The plates were sprayed with various specific reagents for detection of different phospholipids (Kates 1972). The standards of phospholipids (Sigma, USA) were used for diagram disposition of phospholipids during comparative analysis. Carotenoids were extracted from wet cell pellet by a mixture of MeOH–acetone (7:3) and the spectrum was recorded in the visible region using diode-array spectrophotometer HP8453 (Hewlett Packard, Amsterdam, The Netherlands). Catalase activity was measured iodometrically according to Sumner and Dounce (1963).

The isolation of the DNA and determination of the G+C content of DNA was performed according to Marmur (1961) and Marmur and Doty (1962), respectively. For molecular analysis, the DNA was extracted from the cells using alkaline SDS lysis at 60°C and purified with the Wizard Preps Kit (Promega, USA). The nearly complete 16S rRNA gene was obtained using the general bacterial PCR primers 11f and 1492r (Lane1991). The sequences were aligned with sequences from GenBank using CLUSTAL W and a phylogenetic tree was reconstructed using neighbor-joining algorithm in the TREЕCONW program package (van de Peer and de Wachter 1994).
Results and discussion

Enrichment and isolation of a pure culture of a pectinolytic alkaliphile

When apple pectin was used as a single substrate in enrichments from two soda lake sediments at pH 10, surprisingly, active growth was obtained only under anaerobic conditions. Most probably, the sediments were too reduced to support active aerobic communities. The enrichment was dominated by a morphotype represented by long thin flexible rods that was eventually isolated in pure culture by several rounds of serial dilutions. The purity of the isolate was verified by obtaining single colony morphotypes, homogenous morphology, and by 16S rRNA sequence analysis. The isolate was designated strain AP1T.

Morphology and identification

The cells of AP1T are long thin rods, 0.25–0.3 × 3–10 μm, bending and gliding when solid surfaces (e.g., agar, pectin particles) are present. The cell wall is of the Gram-negative type and the cells are covered by a slime-like layer (Fig. 1). In young cultures, the cells were mostly single and suspended, while in the old cultures they started to aggregate and rapidly lysed. No cyst-like round bodies appeared during cell lysis in old cultures. Colonies were mucoid, convex, up to 2 mm, and pink. The concentrated cell biomass was red, due to the presence of carotenoids (Supplementary Fig. 1).

Phylogenetic analysis based on 16S rRNA sequences placed AP1 into the phylum Bacteroidetes as a novel, well separated lineage within the family Marinilabiliaceae (Ludwig et al. 2008) with 90–91% sequence similarity to the representatives of the genera Marinilabilia, Anaerophaga, Alkaliflexus, and “Geofilum” (Fig. 2). One of the non-described xylanolytic isolates from soda Soap Lake (State, Washington), annotated as “Alkalitalea” in GenBank (HQ191474), is a closest relative of strain AP1T (ca. 98% sequence similarity) and probably belongs to the same genus.

A comparison of the polar lipid fatty acids composition of strain AP1T with its relatives from the family “Marinilabiliacea” demonstrated a general trait of domination of 2–3 isomers of C15 (Table 1). However, there are two complications that prevent more detailed comparison between the members of this family: firstly, the AP1 profile could be directly compared only with Alkaliflexus, since both were grown at high pH; secondly, the new profiles for Alkaliflexus and Marinilabilia appeared in a recent description of a novel member of the family (Geofilum) (Miyazaki et al. 2011), which differed substantially from the original profiles. It is difficult to judge which of these data are more trustworthy. We can only comment that in the Geofilum paper, neither the growth conditions nor the source of the reference strains are indicated.

The polar lipid profile of strain AP1 contained phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine (PS), two unidentified aminophospholipids, an aminolipid, and 4 different unidentified phospholipids (Supplementary Fig. 2).

Metabolic characteristics

Strain AP1 is an obligately anaerobic bacterium that grows by fermentation of a wide range of carbohydrates. The
The fastest growth was observed with the pectin monomer galacturonic acid and with xylose (H\text{max} at pH 10 and 30°C = 0.30 and 0.28 h\(^{-1}\), respectively). The final products of galacturonic acid fermentations were acetate and succinate. Apart from the monomeric sugars, the bacterium was able to grow with polysaccharides, such as pectin, xylan, pullulan, laminarin, starch and glycogen, thus being a typical representative of the hydrolytic Bacteroidetes (Thomas et al. 2011). Of the variety of pectic substrates, it grew with polygalacturonate, polypectate and pectate. It did not grow in the presence of oxygen in the gas phase and growth was stimulated by the addition of a reductant. The maximal growth temperature with galacturonic acid as substrate was 41°C. Catalase activity was present, but at a much lower level than in the aerotolerant fermentative alkaliphile *Natronobacillus* (Sorokin et al. 2008).

Influence of pH and sodium on growth and activity

With galacturonic acid as substrate, AP1 was able to grow at a pH between 8 and 10.5 with an optimum at 9.5 (Fig. 3a). The growth was chloride independent. In sodium carbonate buffer at pH 10, growth was possible between 0.1 and 1.5 M total Na\(^+\) with an optimum at 0.4–0.6 M (Fig. 3b). According to these characteristics, the organism belongs to the moderately salt-tolerant obligate alkaliphiles.

Table 1: Comparison of the PLFA profiles of strain AP1 and its relatives

FA	AP1\(^T\)	Alkaliflexus imshenetskii	Marinilabilia salmonicolor	“Geofilum rubicundum”		
i13:0	1.4	0.5	19.3			
ai13:0	1.1	3.8				
i14:0	1.2	1.1	0.9	6.1	5.6	
14:0	0.8	1.3				
i15:0	0.9					
ai15:0	19.4	29.4	37.2	11.3	39.0	23.7
ai15:0	16.9	11.6	33.2	31.7	17.6	33.4
15:1	4.1					
15:0	16.2	39.0	1.3	19.5		
3OH-H15	1.7	1.3	6.8	4.8		
3OH-H15	0.5	0.6	1.8			
15cyc	5.6					
i16:0	2.8	1.0	0.9	2.1		
16:105	2.1					
16:107	0.7	4.0				
16:109	1.2					
16:0	0.6	1.0	6.6	12.2	2.8	
i16:1	2.1					
OH-H16	3.6	0.9	7.0			
OH-H16:0	1.1	1.0	2.9			
17:0	3.4					
17:1	1.9					
i17:0	0.6					
ai17:0	0.8	2.0				
ai17:1 o7	3.2	3.5				
cyc17:0	3.8	4.0				
3OH-H17:0	2.0					
3OH-H17:0	11.0	3.1	3.3	0.8	3.5	
3OH-H17:0	4.4	1.8	4.6			
18:0						
18:1	5.4	5.4				
18:2	4.6	1.2				
18:107	2.3					

The dominant FA are in bold. Only the values above 0.5% are presented. Reference strains: *a* (Zhilina et al. 2004), *b* (Suzuki et al. 1999), *c* (Miyazaki et al. 2011)
In the overall characteristics, the pectinolytic strain AP1T isolated from the sediments of southeastern Siberian soda lakes resembles Alkaliflexis imshenetskii—a low salt-tolerant alkaliphilic saccharolytic bacterium isolated from a Transbaikal soda lake (Zhilina et al. 2004) (Table 2). However, the large phylogenetic distance and several phenotypic differences allow the novel isolate to be assigned to a separate genus and species for which the name Natronoflexus pectinivorans is suggested.

In the overall characteristics, the pectinolytic strain AP1T isolated from the sediments of southeastern Siberian soda lakes resembles Alkaliflexis imshenetskii—a low salt-tolerant alkaliphilic saccharolytic bacterium isolated from a Transbaikal soda lake (Zhilina et al. 2004) (Table 2). However, the large phylogenetic distance and several phenotypic differences allow the novel isolate to be assigned to a separate genus and species for which the name Natronoflexus pectinivorans is suggested.

Table 2 Phenotypic comparison of strain AP1 with the closest described relatives

Characteristic	AP1T	Alkaliflexis imshenetskii^a	“Geofilum rubicundum”^b	Marinilabilia salmonicolor^c	Anaerophaga thermohalophila^d
Cell size (μm)	0.25–0.3 × 3–10	0.25–0.4 × 4–10	0.2–0.4 × 4.0–22.0	0.3–0.5 × 2–6	0.3 × 4–8
Motility	Gliding	Gliding	Gliding	Gliding	Gliding
Pigmentation	Pink	Pink	Salmon pink	Yellow to orange	Orange-red
Fermentation products	Acetate, succinate	Acetate, succinate, propionate, formate	n.d.	Acetate, succinate, propionate, lactate, H₂	Acetate, succinate, propionate
Aerobic growth	–	–	+	+	–
Catalase activity	Weak	+	+	+	–
Substrates					
Galacturonic acid	+	+	n.d.	n.d.	n.d.
Xylene	+	+	+	+	+
Cellobiose	+	+	+	+	+
Fructose	+	–	+	+	+
Lactose	–	–	–	+	+
Glucosamine	+	+	n.d.	n.d.	n.d.
N-acetyl glucosamine	+	+	n.d.	n.d.	n.d.
Pectin, xylan, pullulan	+	+	xylan—	n.d.	n.d.
Maximal growth temperature	41	45	36	n.d.	55
pH range (optimum)	8.0–10.5 (9.5)	7.2–10.2 (8.5)	6.9–9.3 (7.8)	Neutrophile	Neutrophile
Salt range (M Na⁺)	0.2–2.0	0–0.88	0–1.0	0.17–0.5	0.33–2.0
G+C content (mol %)	40.6	44.3	42.9	37	41.8
Habitat	Soda lakes	Soda lake	Marine	Marine	Saline oil field

^a (Zhilina et al. 2004), ^b (Miyazaki et al. 2011), ^c (Suzuki et al. 1999), ^d (Denger et al. 2003)

Acknowledgments This work was supported by RFBR (10-04-00152). We are grateful to E. Detkova for the DNA analysis and G. Osipov for the cellular fatty acid analysis.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Appendix 1: Description of *Natronoflexus* gen. nov

(Na.tro.no.flex’us; N.L. n. natron (arbitrarily derived from the Arabic n. natrun or natron) soda, sodium carbonate; N.L. pref. natrono-, pertaining to soda; L. masc. n. flexus a bending, N.L. masc. n. *Natronoflexus* bending/flexible cells living in soda.)

Gram-negative long flexible rods. Obligately anaerobic with fermentative metabolism. Utilize various monomeric and polymeric carbohydrates. Obligately alkaliphilic and moderately salt-tolerant. Belong to the family ‘Marinilabilaceae’ in the phylum Bacteroidetes. Habitats—soda lakes. The type species is *Natronoflexus pectinivorans*.

Appendix 2: Description of *Natronoflexus pectinivorans* sp. nov

(N.L. n. *pectinum*, pectin; L. part. adj. *vorans*, devouring; N.L. part. adj. *pectinivorans*, pectin-devouring).

Cells are long flexible rods, 0.25–0.3 × 3–10 μm, single or in bundles, capable of gliding movement on solid surfaces. Gram-negative, contain carotenoids with absorption peaks in methanol-acetone at 468 (shoulder), 492 (main), and 523 nm. Strictly anaerobic fermentative saccharolytic bacterium, utilizing the following carbohydrates: D-galacturonic acid, D-glucuronic acid, dextrose, fructose, glucose, α,α-trehalose, α-CH₃-glycoside, 2-deoxyglucose, D-mannose, sucrose, D-maltose, D-cellulbiose, D-glucosamine, N-acetyl glucosamine, galactose, xylose, glycogen, starch, pectin, laminarin, pullulan. Substrates not utilized: lactose, melibiose, melitsitose, arabinose, arabinite, glycerol, l-sorbose, m-erithritol, m-inositol, D-raffinose, dextrin, D-rhamnose, D-ribose, alginate, CMC, cellulose, agar. The final products of galacturonic acid fermentation are acetate and succinate. Obligately alkaliphilic with a pH range for growth between 8.0 and 10.5, and an optimum at pH 9.5. Moderately salt tolerant with a range from 0.1 to 2.0 M Na⁺ (optimum at 0.4–0.6 M). Mesophilic, with a maximum temperature for growth at 41°C and an optimum at 30°C. The polar lipids consist of unidentified phospho-, amino- and aminophospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. The predominant fatty acids in the polar membrane lipids are isomers of C₁₅:₀. The G+C content of the genomic DNA is 40.6 mol% (Tₘ). The type strain is AP1ᵀ (DSM24179ᵀ = UNIQEM U807ᵀ), isolated from sediments of soda lakes in southwestern Siberia. The GenBank 16S rRNA gene sequence accession number is GQ922844.

References

Denger K, Warthmann R, Ludwig W, Schink B (2003) *Anaerophaga thermohalophila* gen. nov., sp. nov. a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52:173–178

Hoondal GS, Tiwari RP, Tewari R, Daihya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944

Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Biosource Technol 77:215–227

Kates M (1972) Techniques of lipidology. American Elsevier Publishing Co Inc, New York

Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics, Wiley, Chichester, pp 115–177

Ludwig W, Euzéby J, Whitman WB (2008) Draft taxonomic outline of the Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi, and Gemmatimonadetes. http://www.bergeys.org/outlines/Bergeys_Vol_4_Outline.pdf

Marmur J (1961) A procedure for isolation of DNA from microorganisms. J Mol Biol 3:208–214

Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from microorganisms. J Mol Biol 5:109–118

Miyazaki M, Koide O, Kobayashi T, Mori K, Shimamura S, Nunoura T, Imachii H, Inagaki, F, Nagahama T, Nogi Y, Deguchi S, Takai K (2011) *Geolithium rubicundum* gen. nov. sp. nov., isolated from a deep subseafloor sediment off the Shimokita Peninsula. IJSEM Papers (in Press). doi:10.1099/ijs.0.032326-0

Pfeiﬀnig N, Lippert KD (1966) Über das Vitamin B12-Bedarfns phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256

Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790

Sorokin ID, Kravchenko IK, Tourova TP, Boulygina ES, Sorokin DY (2008) *Natronobacillus azotifigens* gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium from soda-rich habitats. Extremophiles 12:819–827

Sumner JB, Dounce AL (1963) Liver Catalase. Meth Enzymol 2:780

Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (1999) Phylogenetic analysis of genus *Marinilabilia* and related bacteria based on the amino acid sequences of GyrB and emended description of *Marinilabilia salmonicolor* with *Marinilabilia agarovorans* as its subjective synonym. Int J Syst Bacteriol 49:1551–1557

Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2 (article 93)

van de Peer Y, de Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA (1997) *Desulfoferrovibrio hydrogenovorans* gen. nov. sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149

Zhilina TN, Appel R, Probian C, Brossa EL, Harder J, Widdel F, Zavarzin GA (2004) *Alkaliflexus imshenetskii* gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253