Entanglement entropy of local operators in quantum Lifshitz theory

Tianci Zhou

Department of Physics, University of Illinois, 1110 W. Green St. Urbana, IL 61801 USA
E-mail: tzhui13@illinois.edu

Received 28 July 2016, revised 24 August 2016
Accepted for publication 28 August 2016
Published 29 September 2016

Online at stacks.iop.org/JSTAT/2016/093106
doi:10.1088/1742-5468/2016/9/093106

Abstract. We study the growth of entanglement entropy (EE) of local operator excitation in the quantum Lifshitz model with dynamic exponent $z = 2$. Specifically, we apply a local vertex operator to the groundstate at a distance l to the entanglement cut and calculate the EE as a function of time for the state’s subsequent time evolution. We find that the excess EE compared with the groundstate is a monotonically increasing function which is vanishingly small before the onset at $t \sim l^2$ and eventually saturates at a constant value proportional to the scaling dimension of the vertex operator. The quasi-particle picture can interpret the final saturation as the exhaustion of the quasi-particle pairs, while the diffusive nature of the time scale $t \sim l^2$ replaces the common causality constraint in CFT calculations. To further understand this property, we compute the excess EE of a small disk probe far from the excitation point and find chromatography patterns in EE generated by quasi-particles of different propagation speeds.

Keywords: Entanglement entropies, Correlation functions, Quantum dimer and quantum loop models, Quantum quenches
1. Introduction

In the past two decades, much effort has been devoted to the study of entanglement entropy (EE) in quantum many-body systems. In condensed matter systems in particular, EE serves as a valuable probe that can extract information such as topological data \[1, 2\] and universal quantities \[3–6\] at critical points. For a review, see \[7–11\] and references therein.
The dynamical behavior of the EE is one topic in this field. It provides a route to experimental measurement of EE in an extended system (see [12] for a proposal for measuring Rényi entropy in an extended condensed matter system), which remains very difficult (see [13] for a static measurement of second Rényi entropy in an optical lattice with four cold atoms). The quench dynamics is also theoretically interesting in its own right. In a quench process, one prepares an initial state, which is usually the groundstate of some Hamiltonian H, and then unitarily evolves the system with a different Hamiltonian H'. The EE is presumed to capture the spreading of excitation on the way to equilibrium.

There are generally two types of quench protocols:

1. Global quench. The global quench protocol evolves the ground state of H with a globally different Hamiltonian H'. Consequently, the initial state has an extensive amount of extra energy compared to the ground state of H' and EE will grow tremendously afterwards. Computation in translational invariant 1+1d critical systems shows a linear growth of EE immediately after applying the new Hamiltonian. The EE ultimately saturates to a value that is proportional to the size of the subsystem [14].

2. Local quench. In contrast, the local quench protocol only weakly perturbs the initial system. One example of this (usually called ‘local quench’ or ‘cut and join’ protocol in the literature) is to prepare two identical 1d ground states of H and then join them together and evolve the doubled system with the same Hamiltonian form. The only difference lies at the connecting points, where the dynamics that used to be set by boundary conditions is now determined by a bulk term in the Hamiltonian of the doubled system. Again in the critical system, a CFT calculation reveals a logarithmic growth of EE whose coefficient is 1/3 of the central charge of the CFT. This result is similar to the EE of a single interval on ground state of 1+1s CFT, in which case the length of the interval takes the place of the time difference here.

What we will study in this paper is a local quench weaker than ‘cut and join’, called a quench of local operator excitations. As the name suggests, we let a local operator act on the initial state and then evolve with the same Hamiltonian. Equivalently, one sets the new Hamiltonian H' as the sum of H and a delta function pulse of local operators at the moment just before the quench. One meaningful measure here is the excess EE compared to that of the ground state, which is expected to reflect the strength and spreading of excitation created by the local operators. In critical systems described by a rational CFT, local primary field excitations are studied in [15] and the excess EE increases for a long time to a limiting value equal to the logarithm of the quantum dimension [15]. The growth of excess EE after the local operator excitation is constrained by causality: the excess EE is zero until the signal traveling at light speed reaches the entanglement cut. The saturation value is further studied in higher dimensions [16], for descendant fields [17, 18], for thermal and boundary effects [19]—where in some cases it is still the logarithm of quantum dimension. However in strongly coupled large N CFT [20], the excess EE grows logarithmically with time, which breaks the saturation behavior.
The results of all these three protocols can be quantitatively explained by the physical picture of quasi-particles. The extra energy compared to the ground state of H' is assumed to be carried by coherent quasi-particle pairs. The subsequent time evolution separates the individual quasi-particles; EE is gained when a particle in one of the pairs crosses the entanglement cut. In short, the generation of excess EE is ascribed to the proliferation and propagation of those quasi-particle pairs. We give a review about this framework in section 2.

As far as we know, there is as yet no analytic result for the EE of local operator excitations in a non-relativistic system. Consequently, in this paper, we study the excess EE in such a system. The one we study is the quantum Lifshitz model whose dynamical exponent $z = 2$ (while CFT has $z = 1$) in the presence of the local vertex operator excitation. The model describes a critical line of the quantum eight-vertex model with one special point corresponding to the quantum dimer model on a bipartite lattice. The scale invariance of the ground state wavefunction is what makes analytic calculation possible.

We take two subsystems—one the upper half plane, the other a disk—and find that the excess EE will grow immediately after the local excitation and reach a limiting value of order the scaling dimension of the vertex operator. The typical time scale when the excess EE is considerable, i.e. of order of the maximal value, is the distance from excitation to the entanglement cut squared. This is when the quasi-particles diffuse to the entanglement cut, consistent with $z = 2$. We also find small plateau structures in the short time dynamics of excess EE and conjecture that it reveals quasi-particle density of states and possible dispersion of different species during the propagation. In summary, the quasi-particle picture can still qualitatively interpret the results with a slight modification that replaces causality constraint with a diffusive behavior.

The structure of this paper is as follows. In section 2, we review the quasi-particle picture of interpreting the dynamics of EE in the two quench protocols. Then in section 3, we introduce the quantum Lifshitz model and the vertex operator excitation we will be focusing on. We define the excess EE in section 4 and evaluate it for the upper half plane and disk in section 5. We finally summarize our results in section 6.

2. Review of the quasi-particle picture

The quasi-particle picture is a heuristic way of understanding the phenomenology of EE change in the quench problem. It is exact in the CFT calculation, and is also believed to be valid beyond CFT. Here we review the quasi-particle interpretation of the two quench protocols in order.

In the global quench protocol, the excess energy compared with the true ground state of the Hamiltonian H' is distributed across the system. For a translational invariant Hamiltonian, the same types of quasi-particle are radiated at each point of the system. The number of entangled pairs between region A and B is proportional to the area of the green region in figure 1, which grows linearly and saturates to the maximal value after $t > \frac{l_A}{2}$ (l_A is the length of subsystem A). This explains the linear growth and extensive saturation value [9, 21].
3. Introduction to quantum Lifshitz model and its dynamics

3.1. Quantum Hamiltonian

The quantum Lifshitz model is a compact boson theory that describes the critical behavior of the quantum eight-vertex model [22, 23]. The quantum Lifshitz model has Hamiltonian
Entanglement entropy of local operators in quantum Lifshitz theory

\[H = \int d^2x \frac{1}{2} \{ \Pi^2 + g^4(\nabla^2 \phi)^2 \}, \]

(1)

where \(\phi \) is a compact boson field \(\phi \sim \phi + 2\pi R_c \) and \(\Pi = \dot{\phi} \) is its conjugate momentum. Due to the absence of the regular stiffness term \((\nabla \phi)^2 \), this theory does not have Lorentz symmetry. The dynamic exponent \(z \) is 2.

By varying values of \(g \), the Hamiltonian in equation (1) can in general model a critical line of the quantum eight vertex model [22]. What we have in mind, however, is the Rokhsar–Kivelson (RK) critical point of the square lattice quantum dimer model [4, 22, 24, 25] which is at \(g = \frac{1}{8\pi} \). There, the compact boson field is naturally identified as the coarse grained height field on the square lattice [22, 24].

It is generally believed that the Hamiltonian (1) gives the correct time evolution of the quantum dimer model. We here present two heuristic ways to justify this point.

One of the them is a Ginzburg–Landau type argument that keeps the lowest order possible terms consistent with the required symmetry [23]. In the dimer problem, translational and rotational symmetries enforce the Hamiltonian to have the following form

\[H_0 = \int d^2x \frac{1}{2} \{ \Pi^2 + A(\nabla \phi)^2 + g^2(\nabla^2 \phi)^2 \}. \]

(2)

When \(A > 0 \), the system will flow to a phase that pins the \(\phi \) field to a fixed value, which is identified to be the columnar phase away from the RK point. On the other hand, \(A < 0 \) corresponds to an unstable Hamiltonian that is not semi-positive definite. At \(A = 0 \), \(H_0 \) reduces to the Hamiltonian (1) and can be diagonalized using

\[Q(\mathbf{x}) = \frac{\delta}{\delta \phi(\mathbf{x})} - g \nabla^2 \phi(\mathbf{x}) \quad Q^\dagger(\mathbf{x}) = -\frac{\delta}{\delta \phi(\mathbf{x})} - g \nabla^2 \phi(\mathbf{x}) \]

(3)

as a series of harmonic oscillators (normal ordered), such that

\[H = \int d^2x \, Q^\dagger(\mathbf{x}) Q(\mathbf{x}). \]

(4)

The ground state wavefunction is thus annihilated by \(Q(\mathbf{x}) \) and has a Gaussian form.
Entanglement entropy of local operators in quantum Lifshitz theory

\[|\text{gnd}\rangle = \frac{1}{\sqrt{Z}} \int [d\phi] \exp \left[-\frac{g}{2} \int d^2 x \nabla \phi \cdot \nabla \phi \right] |\phi\rangle, \]
(5)

where \(Z \) is partition function of the free compact Boson

\[Z = \int [d\phi] \exp \left[-g \int d^2 x \nabla \phi \cdot \nabla \phi \right] . \]
(6)

This reproduces the fact that at the Rokhsar–Kivelson critical point, the dimer density operator (derivative of the boson) \([26, 27]\) has a power law correlation function.

Another independent derivation is proposed by Nienhuis \([28]\) and Henley \([25]\), who map the quantum Hamiltonian of ‘flipping’ dynamics to a Monte Carlo process. The classical Monte Carlo process gives exactly the same probability distribution as the ground state wavefunction on the dimer basis. And the relaxation to the equilibrium is the imaginary time quantum evolution. To obtain a continuous description, the stochastic process is heuristically written as a Langevin equation with Gaussian noise. The Hamiltonian \((4)\) which governs the corresponding master equation is then identified as the effective Hamiltonian.

The vertex operator \(e^{i\alpha \phi} (\alpha \pi R_c \in \mathbb{Z}) \) is a sensible set of local operators in the compact boson theory which create a Boson coherent state. It is also the electric operator in the quantum dimer model context \([23]\). We consider the excess EE generated by this local excitation. Specifically, we apply the vertex operator \(e^{i\alpha \phi} \) to the ground state and evolve for time \(t \) to reach a state

\[|\mathbf{x}, t\rangle = e^{-iHt} e^{i\alpha \phi(\mathbf{x})} |\text{gnd}\rangle. \]
(7)

The excess EE is defined to be the difference of EE between \(|\mathbf{x}, t\rangle\) and \(|\mathbf{x}, 0\rangle\). As a function of time, it should reflect the spreading of the local excitation.

3.2. Time evolution of the vertex operator

In this section, we solve the time evolution equation and express the \(|\mathbf{x}, t\rangle\) in terms of the ground state boson operators. For clarity, in this section we temporarily turn to the hatted notation \(\hat{\phi} \) to denote the boson operator and reserve the unhatted \(\phi \) for the eigenvalue of the \(|\phi\rangle\) basis.

Since the ground state is annihilated by \(H \), we rewrite the state \(|\mathbf{x}, t\rangle\) as

\[|\mathbf{x}, t\rangle = e^{-i\hat{H}t} e^{i\alpha \hat{\phi}(\mathbf{x})} e^{i\hat{H}t} |\text{gnd}\rangle = e^{i\alpha \hat{\phi}(\mathbf{x}, -t)} |\text{gnd}\rangle, \]
(8)

where the time dependent boson operator \(\hat{\phi}(\mathbf{x}, -t) \) is the solution of Heisenberg equation

\[i \frac{\partial \hat{\phi}(\mathbf{x}, -t)}{\partial t} = [\hat{H}, \hat{\phi}(\mathbf{x}, -t)] = e^{-i\hat{H}t} [\hat{H}, \hat{\phi}(\mathbf{x})] e^{i\hat{H}t} = [Q^\dagger(\mathbf{x}, -t) - Q(\mathbf{x}, -t)]. \]
(9)

The – sign in \(t \) indicates another equivalent convention, used in \([15]\), that interprets \(- t\) as the time of local excitation and 0 as the time of measurement.

The \(Q^\dagger \) and \(Q \) are the non-standard creation/annihilation operators; they have the commutation relation
Entanglement entropy of local operators in quantum Lifshitz theory

\[[Q(x), Q^+(\vec{y})] = -2g\nabla_x^2 \delta(x - \vec{y}). \]

We can then solve their Heisenberg equations

\[\partial_t Q^t = i[H, Q^t] = -i2g\nabla^2 Q^t \]
\[\Rightarrow Q^t(x, t) = e^{-i2g\nabla^2 t} Q^t(x), \]

which gives the time evolution of the boson operator

\[\hat{\phi}(x, -t) = -i \int^t_0 [e^{2ig\nabla^2} Q^t(x) - e^{-2ig\nabla^2} Q(x)] ds. \]

Now consider applying the operator \(Q \) to the ground state. We have

\[Q(x)|\text{gnd}\rangle = 0 \quad Q^t(x)|\text{gnd}\rangle = -2g\nabla^2 \hat{\phi}(x)|\text{gnd}\rangle, \]

and hence

\[\hat{\phi}(x, -t)|\text{gnd}\rangle = \int^t_0 ds e^{2ig\nabla^2} (2ig\nabla^2) \hat{\phi}(x)|\text{gnd}\rangle = e^{2ig\nabla^2} \hat{\phi}(x)|\text{gnd}\rangle. \]

One should interpret \(e^{2ig\nabla^2} \) as a Schrödinger time evolution. We add a small real positive constant \(\epsilon \) to the imaginary time

\[\tau = \epsilon + 2igt \]

to control the ultraviolet divergence; this is the damping term that screens out the high energy mode [21]. The operator \(e^{\nabla^2} \hat{\phi}(x) \) obeys

\[\partial_t [e^{\nabla^2} \hat{\phi}(x)] = \nabla^2 [e^{\nabla^2} \hat{\phi}(x)], \]

whose solution in free space is given by

\[e^{\nabla^2} \hat{\phi}(x) = \hat{\phi}(x, \tau) = \int d^2x H(x, \tau; x') \hat{\phi}(x'), \]

where \(H \) is the standard heat kernel in 2d

\[H(x, \tau; x') = \frac{1}{4\tau} \exp \left\{ -\frac{(x - x')^2}{4\tau} \right\}. \]

The time evolved vertex operator is thus

\[e^{i\tau \hat{\phi}(x, -t)} = \exp \{ i\tau e^{\nabla^2} \hat{\phi}(x) \} \]

on the ground state.

4. Excess entanglement entropy

In this section, we define and derive the replica formula for the excess EE.

The time dependent EE after the local excitation at \(t = 0 \) is the Von Neumann entropy
Entanglement entropy of local operators in quantum Lifshitz theory

\begin{equation}
S(t) = -\text{tr}[\rho_A(t) \ln \rho_A(t)]
\end{equation}
w.r.t the time dependent density matrix

\begin{equation}
\rho_A(t) = \text{tr}_{\mathcal{D}}[\rho] = \text{tr}_{\mathcal{D}}[|\mathbf{x}, t\rangle \langle \mathbf{x}, t|]
\end{equation}

associated with the state $|\mathbf{x}, t\rangle$.

The excess EE is defined to be

\begin{equation}
\Delta S(t) = S(t) - S(0),
\end{equation}

where the Δ symbol in this paper always denotes the difference between time t and time 0.

The way to compute EE is to take the analytic continuation of the Rényi EE

\begin{equation}
S_n = -\frac{1}{n-1} \ln \text{tr} \rho^n_A
\end{equation}
at $n = 1$. In field theory setting, the quantity $\text{tr} \rho^n_A$ has n replicated fields properly glued together [8], thus the name ‘replica trick’.

We evaluate this time dependent EE by using the replica trick at each time slice. In fact, the static ground state EE has been evaluated and refined by many groups [4, 6], [29–31]. Here we extend the trick used in [4, 31] to an excited state.

The extension is different from the replica trick commonly used in CFT calculation [8], so we give a brief review of its derivation. We use discrete notation to derive $\text{tr}(\rho^n_A)$. Defining $|a\rangle$ and $|b\rangle$ as complete orthonormal basis sets on subsystems A and B, for the ground state density matrix $\rho = |\text{gnd}\rangle \langle \text{gnd}|$, we have

\begin{equation}
\text{tr}(\rho^n_A) = \sum_{b_i} \text{tr}(\langle b_1| \rho |b_2\rangle \delta_{b_1b_2} \cdots \langle b_{2n-1}| \rho |b_{2n}\rangle \delta_{b_{2n-1}b_{2n}})
= \sum_{a_i, b_i} \langle a_1| \langle b_1| \rho |b_2\rangle |a_2\rangle \cdots \langle a_{2n-1}| \langle b_{2n-1}| \rho |b_{2n}\rangle |a_{2n}\rangle
\times \prod_{i=1}^{n-1} \delta_{a_{2i+1}a_{2i}} \prod_{i=1}^{n} \delta_{b_{2i+1}b_{2i}}
\propto \sum_{a_i, b_i} \exp \left\{ -\sum_{i=1}^{2n} \frac{1}{2} S[\phi_i] \right\} \delta_{a_1a_{2n}} \prod_{i=1}^{n-1} \delta_{a_{2i+1}a_{2i}} \prod_{i=1}^{n} \delta_{b_{2i+1}b_{2i}}.
\end{equation}

This expression has $2n$ copies of fields, while the delta functions enforce the constraint that the fields of odd index are created by concatenating parts from adjacent fields of even index. It is then equivalent to remove those odd fields; meanwhile duplicating the even fields and requiring them to have the same value on the cut. The latter condition on the cut ensures the possibility of stitching two parts from two even fields to create the odd field between them. This procedure is depicted in figure 3.

The derivation for the excited state is almost the same except for the insertion of operators $O(\phi, t) = \exp(i \alpha e^{\tau V^{ij}} \phi(\mathbf{x}))$ and $O^\dagger(\phi, t) = \exp(-i \alpha e^{-\tau V^{ij}} \phi^\dagger(\mathbf{x}))$ in front of the partition function,

\begin{equation}
\text{tr}(\rho^n_A) \propto \sum_{a_i, b_i} \prod_{i=1}^{n} O(\phi_{2i-1}, t) O^\dagger(\phi_{2i}, t) \exp \left\{ -\sum_{i=1}^{2n} \frac{1}{2} S[\phi_i] \right\} \delta_{a_1a_{2n}} \prod_{i=1}^{n-1} \delta_{a_{2i+1}a_{2i}} \prod_{i=1}^{n} \delta_{b_{2i+1}b_{2i}}.
\end{equation}

doi:10.1088/1742-5468/2016/09/093106
Entanglement entropy of local operators in quantum Lifshitz theory

So, relabeling the surviving even field from 1 to n, we have

$$\langle \prod_{i=1}^{n} O(\phi_{i}, t) O(\phi_{i}, t) \rangle_{\text{glue}} = \frac{\langle \prod_{i=1}^{n} O(\phi_{i}, t) O(\phi_{i}, t) \rangle_{\text{Free}}}{\langle O(\phi, t) O(\phi, t) \rangle_{\text{Free}}}$$

(26)

where the $2n$ point function in the numerator is evaluated on the manifold in figure 3. This formula has similar structure to the CFT calculation in [15], where the $2n$ point function in the numerator is evaluated on the n-sheeted Riemann surface.

We use target space rotation to deal with the gluing condition. First we separate the field into classical and quantum parts

$$\phi = \varphi + \phi_{\text{cl}}$$

(27)

such that $\phi_{\text{cl}}(x)\big|_{\text{cut}} = \phi(x)\big|_{\text{cut}}$ and $\nabla^2 \phi_{\text{cl}} = 0$, then the quantum fluctuation has Dirichlet boundary condition $\varphi(x)\big|_{\text{cut}} = 0$ and the action separates

$$S[\phi] = S[\varphi] + S[\phi_{\text{cl}}].$$

(28)

Notice that the classical part does not evolve with time

$$O(\phi, t) = \exp(i\alpha e^{\nabla^2 \phi}(x)) = \exp(i\alpha e^{\nabla^2 \varphi}(x)) \exp(i\alpha \phi_{\text{cl}}) = O(\varphi, t) \exp(i\alpha \phi_{\text{cl}}),$$

(29)

so in the average on the glued manifold $\langle \cdots \rangle_{\text{glue}}$, the real valued classical field on the vertex operator cancels,

$$\langle \cdots \rangle_{\text{glue}} = \langle \cdots \rangle_{\varphi} \sum_{\phi_{\text{cl}}^i} \exp \left[i\alpha \sum_{j=1}^{n} (\phi_{\text{cl}}^j - \phi_{\text{cl}}^i) - \sum_{i=1}^{n} S[\phi_{\text{cl}}^i] \right]$$

$$= \langle \cdots \rangle_{\varphi} \sum_{\phi_{\text{cl}}^i} \exp \left[- \sum_{i=1}^{n} S[\phi_{\text{cl}}^i] \right].$$

(30)
where the summation is subject to the boundary condition
\[\phi^{1}_{\text{cl}}(x) = \phi^{2}_{\text{cl}}(x) = \cdots = \phi^{n}_{\text{cl}}(x) = \phi_{\text{cut}}(x) \mod 2\pi R_c \text{ on cut.} \] (31)

Since the \(\varphi \) field satisfies the Dirichlet boundary condition on the entanglement cut, we have
\[\langle \cdots \rangle_{\varphi} = \langle O(\varphi, t) O^\dagger(\varphi, t) \rangle_{\text{Dirichlet}}^{n} \] (32)
as a result
\[\langle \cdots \rangle_{\text{glue}} = \langle O(\varphi, t) O^\dagger(\varphi, t) \rangle_{\text{Dirichlet}}^{n} \sum_{\phi_{cl}} \exp \left[- \sum_{i=1}^{n} S[\phi^{i}_{cl}] \right]. \] (33)

The summation of the classical modes is the same as the ground state, so that the rotational trick used there works in the same way. We rotate these classical fields by the following unitary matrix
\[
\begin{pmatrix}
\phi^{1}_{\text{cl}} \\
\phi^{2}_{\text{cl}} \\
\phi^{3}_{\text{cl}} \\
\vdots \\
\phi^{n-1}_{\text{cl}} \\
\phi^{n}_{\text{cl}}
\end{pmatrix} =
\begin{pmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & -1 \\
1 & 1 & \sqrt{2} \\
\sqrt{6} & \sqrt{6} & \sqrt{6} \\
\sqrt{12} & \sqrt{12} & 1 \\
\sqrt{n^2-n} & \sqrt{n^2-n} & 1 \\
\sqrt{n} & \sqrt{n} & \sqrt{n}
\end{pmatrix}
\begin{pmatrix}
\phi^{1}_{\text{cl}} \\
\phi^{2}_{\text{cl}} \\
\phi^{3}_{\text{cl}} \\
\vdots \\
\phi^{n-1}_{\text{cl}} \\
\phi^{n}_{\text{cl}}
\end{pmatrix}, \] (34)
such that after the rotation
\[\tilde{\phi}^{j}_{\text{cl}}(x) = 2\pi w_{j} R_{c} \text{ on cut for } j < n, \ w_{j} \in \mathbb{Z}. \] (35)

It is noted that the \(n \)th field is the center of mass mode, and is the only one dependent on the value on the cut
\[\tilde{\phi}^{n}_{\text{cl}}(x)|_{\text{cut}} = \sqrt{n} \phi_{\text{cut}}(x), \] (36)
while the rest of the fields decouple
\[\sum_{\phi_{cl}} \exp \left[- \sum_{i=1}^{n} S[\phi^{i}_{cl}] \right] = \left\{ \sum_{w \in \mathbb{Z}^{n-1}} \exp \left[- S[\tilde{\phi}^{n}_{\text{cl}}] \right] \right\} \left\{ \sum_{\phi_{cut}} \exp \left[- \sum_{i=1}^{n-1} S[\phi^{i}_{cl}] \right] \right\}. \] (37)

The degrees of freedom on the entanglement cut determine \(\tilde{\phi}^{n}_{\text{cl}} \), while the rest determines the Dirichlet two point function, hence if we combine the two, we should collect all the degrees of freedom in this region and end up with a free two point function
In fact, we can do this with the identification of the field ϕ_n.

$$\phi_n = \varphi_n + \bar{\phi}_n. \quad (39)$$

This free two point function will cancel one of the two point functions in the denominator. We therefore have

$$\text{tr}(\rho^A_n) = \left\{ \frac{\langle O(\varphi, t) O(\varphi, t) \rangle_{\text{Dirichlet}}}{\langle O(\varphi, t) O(\varphi, t) \rangle_{\text{Free}}} \right\}^{n-1} \left\{ \sum_{\varphi \in \mathbb{Z}^{n-1}} \exp \left[- \sum_{i=1}^{n-1} S[\varphi_{\text{cl}}^i] \right] \right\}. \quad (40)$$

Note that the sum over ϕ_{cl} is time independent and as a result will be canceled in the excess EE. The excess Rényi entropy is therefore

$$\Delta S_n = \Delta \{ \ln \langle O(\phi, t) O(\phi, t) \rangle_{\text{Free}} - \ln \langle O(\phi, t) O(\phi, t) \rangle_{\text{Dirichlet}} \}, \quad (41)$$

where ϕ now denotes the non-compact free boson and Δ denotes the difference between time t and 0.

4.1. Green function

The two point function of the vertex operators will ultimately be reduced to the Green function of the boson field. In this section, we define and calculate the free space Green function in space and time directions.

The equal time Green function on the ground state

$$G(x_1, x_2) = \langle \phi(x_1) \phi(x_2) \rangle \quad (42)$$

satisfies the Laplace equation

$$-2g \nabla^2 G(x_1, x_2) = \delta(x_1 - x_2). \quad (43)$$

In free space (\mathbb{R}^2 plane), the solution is well known

$$G(x_1, x_2) = -\frac{1}{4\pi g} \ln |x_1 - x_2|. \quad (44)$$

We define the equal space Green function, which is useful later, to be the Green function evaluated at the same position but different imaginary time

$$G(\tau_1, \tau_2) = \langle e^{\tau_1 \nabla^2} \phi(x) e^{\tau_2 \nabla^2} \phi^*(x) \rangle = \int d^2 x_1 d^2 x_2 H(x, \tau_1; x_1) G(x_1, x_2) H(x, \tau_2; x_2). \quad (45)$$

By taking the τ_1 derivative and using the property of the heat kernel,
Entanglement entropy of local operators in quantum Lifshitz theory

\[-2g \partial_{\eta} G(\tau_1, \tau_2) = \int d^2 x_1 d^2 x_2 \ H(x_1, \tau_1; x_2)(-2g \nabla^2)G(x_1, x_2) H(x, \tau_2; x_2) \]

\[= \int d^2 x_1 d^2 x_2 \ H(x, \tau_1; x_2) \delta(x_1, x_2) H(x, \tau_2; x_2) \]

\[= \frac{1}{4\pi(\tau_1 + \tau_2)}. \] \hspace{1cm} (46)

Convergence of the integral requires \(\text{Re}(\tau_1 + \tau_2) > 0 \), which is satisfied by adding a damping parameter \(\epsilon \) to both imaginary time \(\tau_1 \) and \(\tau_2 \). Up to a constant

\[G(\tau_1, \tau_2) = -\frac{1}{8\pi g} \ln|\tau_1 + \tau_2|. \] \hspace{1cm} (47)

The \(\frac{1}{8\pi g} \) rather than \(\frac{1}{4\pi g} \) factor is a manifestation of \(z = 2 \). These two limits of the Green function agree with the general Green function expression in [23].

The Green function in this case is associated with the operator \(-2g \nabla^2\). In the following we will instead calculate in terms of the Green function \(G_\Delta(x_1, x_2) \) of the standard Laplacian operator \(-\nabla^2\), and relate it to the two point function via

\[G_\Delta(x_1, x_2) = 2gG(x_1, x_2) \quad G_\Delta(\tau_1, \tau_2) = 2gG(\tau_1, \tau_2). \] \hspace{1cm} (48)

4.2. Excess entanglement entropy in terms of green function

In equation (41), we need the two point function of the diffused vertex operator

\[\langle \exp\{i\alpha \phi(x, \tau_1)\} \exp\{i\alpha \phi^\dagger(x, \tau_2)\} \rangle = \langle \exp\{i\alpha[\phi(x, \tau_1) - \phi^\dagger(x, \tau_2)]\} \rangle, \] \hspace{1cm} (49)

where

\[\tau_1 = \epsilon + i2gt \quad \tau_2 = \epsilon - i2gt. \] \hspace{1cm} (50)

The exponent is a source term in the Gaussian path integral

\[i\alpha[\phi(x, \tau_1) - \phi^\dagger(x, \tau_2)] = i\alpha(e^{i2gt\nabla^2} - e^{-i2gt\nabla^2})\phi(x) \]

\[= i\alpha \int d^2 x[H(x, \tau_1; x') - H(x, \tau_2; x')]\phi(x') \]

\[= \int d^2 x' J(x')\phi(x'). \] \hspace{1cm} (51)

Here \(J(x') \) is a real operator because

\[J \sim i\alpha(e^{i2gt\nabla^2} - e^{-i2gt\nabla^2}) = 2\alpha \sin(-2gt\nabla^2); \] \hspace{1cm} (52)

we thus have the standard results for Gaussian integral

\[\langle \exp\left[\int d^2 x' J(x')\phi(x') \right] \rangle = \exp\left\{\frac{1}{2} \int d^2 x_1 d^2 x_2 J(x_1) G(x_1 - x_2) J(x_2) \right\}, \] \hspace{1cm} (53)

and therefore

\[\Delta S_n = \Delta \frac{1}{2} \int d^2 x_1 d^2 x_2 J(x_1) G(x_1 - x_2) J(x_2) \bigg|_{\text{Dirichlet}} \] \hspace{1cm} (54)

doi:10.1088/1742-5468/2016/09/093106

13
We expand the current function by using equation (51), and find that the integral consists of four convolutions of heat kernel with the equal time Green function

$$\int d^2x_1 d^2x_2 J(x_1) G(x_1 - x_2) J(x_2) = -\alpha^2 \int d^2x_1 d^2x_2 \left[H(x, \tau_1; x_1) - H(x, \tau_2; x_1) \right] \left[H(x_1 - x_2, \tau_1; x_2) - H(x_1 - x_2, \tau_2; x_2) \right],$$

(55)

each of which is an equal space Green function defined in (45). Hence

$$\int d^2x_1 d^2x_2 J(x_1) G(x_1 - x_2) J(x_2) = -\alpha^2 \left[G(\tau_1, \tau_1) - G(\tau_1, \tau_2) - G(\tau_2, \tau_1) + G(\tau_2, \tau_2) \right].$$

(56)

Defining the cross Green function

$$G_\Delta(\tau_1, \tau_2, \times) = \left[G_\Delta(\tau_1, \tau_1) - G_\Delta(\tau_1, \tau_2) - G_\Delta(\tau_2, \tau_1) + G_\Delta(\tau_2, \tau_2) \right],$$

(57)

the excess Rényi entropy is

$$\Delta S_n = -\Delta \left[\frac{\alpha^2}{4 g} G_\Delta(\tau_1, \tau_2, \times) \right]_{\text{Dirichlet}}.$$

(58)

5. Results and discussion

We have obtained the free space Green function in section 4.1, where the equal space Green function is evolved from the equal time Green function. By imposing the Dirichlet boundary condition on the cut, we can solve Dirichlet problems in A (and similarly in B)

$$-\nabla^2 G_\Delta^{A}(x_1, x_2) = \delta(x_1 - x_2), \quad G_\Delta^{A}(x_1, x_2) \big|_{\partial A} = 0,$$

(59)

and then construct the Green function on the whole plane as

$$G_\Delta^{\text{Dirichlet}}(x_1, x_2) = G_\Delta^{A}(x_1, x_2)[\theta(x_1 \in A) \theta(x_2 \in A)] + G_\Delta^{B}(x_1, x_2)[\theta(x_1 \in B) \theta(x_2 \in B)].$$

(60)

The step function θ in equation (60) implements the fact that the Dirichlet boundary condition destroys the correlation between two regions while modifying it within each region through ‘boundary charge’.

Then the equal space Green function is constructed from the equal time Green function through

$$G_\Delta^{\text{Dirichlet}}(\tau_1, \tau_2) = \int_{A \cup B \times A \cup B} d^2x_1 d^2x_2 H(x, \tau_1; x_1) G_\Delta^{\text{Dirichlet}}(x_1, x_2) H(x_1, \tau_2; x_2)$$

$$= \int_{A \times B} d^2x_1 d^2x_2 H(x, \tau_1; x_1) G_\Delta^{A}(x_1, x_2) H(x, \tau_2; x_2) + \int_{B \times B} d^2x_1 d^2x_2 H(x, \tau_1; x_1) G_\Delta^{B}(x_1, x_2) H(x, \tau_2; x_2).$$

(61)
In electrostatic language, the free space $G_\Delta(\tau_1, \tau_2)$ is the potential energy between two Gaussian charge distributions (albeit imaginary), while $G_{\Delta, \text{Dirichlet}}(\tau_1, \tau_2)$ is the same thing in the presence of induced boundary charge on the entanglement cut. Hence the difference, about which the EE is concerned, only depends on the boundary charge.

In appendix B, we showed that (the double derivative of) the Dirichlet Green function is solely determined by a boundary integral,

$$\frac{\partial_{\vec{n}}}{\partial_{\vec{n}}} G_{\Delta}^A(\tau_1, \tau_2) \bigg|_{\text{Dirichlet}} = - \int_{\partial A \times \partial A} H(\mathbf{x}, \tau_1; \mathbf{x}_1) \partial_{\vec{n}_1} \partial_{\vec{n}_2} G_{\Delta}^A(\mathbf{x}_1, \mathbf{x}_2) H(\mathbf{x}, \tau_2; \mathbf{x}_2) \, d\mathbf{l}_1 \, d\mathbf{l}_2. \quad (62)$$

We can integrate the heat kernel once to define

$$f(\mathbf{x}) = \int_0^{\tau_1} H(0, \tau; \mathbf{x}_1) \, d\tau,$$

and recognize that

$$f(\mathbf{x}) = \int_0^{\tau_2} H(0, \tau; \mathbf{x}_1) \, d\tau. \quad (63)$$

Using this, the cross Green function becomes

$$G_{\Delta}(\tau_1, \tau_2, x_1, x_2) \bigg|_{\text{Dirichlet}} = 4 \int_{\partial A \times \partial A} \text{Im} \, f(\mathbf{x}_1) K(\mathbf{x}_1, \mathbf{x}_2) \text{Im} \, f(\mathbf{x}_2) \, d\mathbf{l}_1 \, d\mathbf{l}_2, \quad (65)$$

where $K(\mathbf{x}_1, \mathbf{x}_2)$ is the kernel on the boundary

$$K(\mathbf{x}_1, \mathbf{x}_2) = \partial_{\vec{n}_1} \partial_{\vec{n}_2} G_{\Delta}^A(\mathbf{x}_1, \mathbf{x}_2), \quad (66)$$

which is singular when \mathbf{x}_1 approaches \mathbf{x}_2. In general we can regularize it as

$$G_{\Delta}(\tau_1, \tau_2, \times) \bigg|_{\text{Dirichlet}} = -2 \int_{\partial A \times \partial A} [\text{Im} f(\mathbf{x}_1) - \text{Im} f(\mathbf{x}_2)]^2 K(\mathbf{x}_1, \mathbf{x}_2) \, d\mathbf{l}_1 \, d\mathbf{l}_2. \quad (67)$$

The excess Rényi EE is therefore

$$\Delta S_n = \frac{\alpha^2}{2g} \int_{\partial A \times \partial A} [\text{Im} f(\mathbf{x}_1) - \text{Im} f(\mathbf{x}_2)]^2 K(\mathbf{x}_1, \mathbf{x}_2) \, d\mathbf{l}_1 \, d\mathbf{l}_2. \quad (68)$$

In the following, we analyze two cases where the Green function can easily be figured out by means of images.

5.1. Infinite plane

5.1.1. Excess EE

We consider the geometry of the infinite plane with entanglement cut on the x-axis (figure 4). In complex coordinates, the equal time Green function in region A can be easily written down:

$$G_{\Delta}^A(\mathbf{x}_1, \mathbf{x}_2) = -\frac{1}{2\pi} \ln |z_1 - z_2| + \frac{1}{2\pi} \ln |\bar{z}_1 - \bar{z}_2| \quad \mathbf{x}_1, \mathbf{x}_2 \in A. \quad (69)$$

The kernel

$$\text{Im} f(\mathbf{x}_1) - \text{Im} f(\mathbf{x}_2) = -\frac{1}{2\pi} \ln |z_1 - z_2| - \frac{1}{2\pi} \ln |\bar{z}_1 - \bar{z}_2|.$$
\[K(x_1, x_2)_{|A} = \lim_{y_1 \to 0} \frac{\partial y_2}{\partial y_1} G_D(x_1, x_2) = \frac{1}{\pi} \lim_{y_1 \to 0} \frac{y_2}{(x_1 - x_2)^2 + y_2^2} \]

(70)

is indeed singular at \(x_1 = x_2 \). In appendix \(E \) we provide a way to interpret the distributional integral. The resulting recipe is the same as the general formula (67).

The integral of the heat kernel

\[\text{Im } f(x) = -\frac{1}{4\pi} \text{Si}[\infty] + \frac{1}{4\pi} \text{Si}\left(\frac{(x - x_0)^2}{4t}\right) \]

(71)

is given by \(\text{sin integral function} \)

\[\text{Si}(x) = \int_0^x \sin t^2 dt. \]

(72)

By equation (68), the excess EE is

\[\Delta S_n = -\frac{\alpha^2}{4g} G_A^n(n, \tau_2, \times) = \frac{\alpha^2}{32\pi^2 g} \int_{\partial A \times \partial A} \left\{ \frac{\text{Si}\left[\frac{x_1^2 + y_1^2}{4t}\right] - \text{Si}\left[\frac{x_2^2 + y_2^2}{4t}\right]}{\pi(x_1 - x_2)^2} \right\} dx_1 dx_2 \]

(73)

We can also write the integral in Fourier space through the standard Hilbert transform,

\[\Delta S_n = \frac{\alpha^2}{16\pi^2 g} \int_{-\infty}^{\infty} \frac{\partial}{\partial i} \left\{ \frac{\text{Si}\left[\frac{x^2 + y^2}{4t}\right]}{\pi(x - x_2)^2} \right\} \frac{dk}{2\pi} |k| \left| \mathcal{F}\left[\text{Si}\left[\frac{x^2 + y^2}{4t}\right] \right] (k) \right|^2. \]

(74)

Appendix \(C \) gives an alternative route for the calculation and reaches a simpler expression

\[\Delta S_n = \frac{\alpha^2}{8\pi g} \left\{ 4 \int_{\frac{y^2}{4t \sigma^2}}^{\infty} d\lambda \, \frac{1}{\lambda} (C(\lambda) - S(\lambda))^2 \right\}, \]

(75)

where \(C \) and \(S \) are the Fresnel cos/sin integrals

\[C[z] = \int_0^z \cos\left(\frac{\pi}{2} x^2\right) dx \quad S[z] = \int_0^z \sin\left(\frac{\pi}{2} x^2\right) dx. \]

(76)

5.1.2. Quasi-particle interpretation We plot the expression of infinite plane excess EE in equation (75) as figures 5 and 6

Despite some minor modifications, the quasi-particle picture is still able to interpret the growth of EE in this non-relativistic model.
First of all, the excess EE is a monotonically increasing function of time and eventually saturates to a constant value. The maximal value is proportional to the scaling dimension of the vertex operator, which can be regarded as a dimensionless measure of the strength of the operator. The saturation indicates the exhaustion of quasi-particles—in other words, almost all the downward travelling quasi-particles are in the lower half plane. It is comforting to confirm the fact that the local vertex operator excitation only injects small energies into the system.

The causality constraint in CFT is superficially violated. The excess EE grows almost immediately after $t = 0$. In fact, the horizon effect is only visible in the regime where $t < \frac{y}{c}$, where c is the speed of light (or the equivalent threshold speed in the condensed matter system)—while in this non-relativistic theory, the quasi-particle speed is far less than the speed of light, so that we can essentially take the $c \rightarrow \infty$ limit, squeezing the zoom $0 < t < \frac{y}{c}$ to empty. Instead, the typical $z = 2$ diffusive behavior takes the place of the causality constraint. The excess EE grows to $O(1)$ at the time scale $t \sim y^2$, when the majority of quasi-particles diffuse to the entanglement cut.

It is interesting to zoom out the small time regime shown in figure 6. A linear fit in the log–log plot shows the slope to be 1 and hence there is a linear increase of excess EE $\Delta S \sim \text{const} \times \frac{1}{t}$ in the short time regime. There are several staircase-like plateaux of increasing sizes appearing in the growing region, with the last one stacked on top saturating to a limiting value. It is tempting to assume that the quasi-particles disperse:
5.2. Disk

5.2.1. Excitation in the center

If the vertex operator is placed in the center, then the boundary integral kernel function $K(x_i, x_j)$ will only be a function of the angle θ. On the other hand, $\text{Im}f(x)$, which is the integral of the Gaussian, is only a function of the radius. Thus the regularized boundary integral (67) is identically zero.

The vanishing of excess EE in this geometry indicates that the quasi-particles are distributed and travelling with spherical symmetry. Points of excitation away from the center thus offer a possible way to probe and decompose the quasi-particle distribution.

Figure 6. This log-log plot exaggerates the plateau in the short time regime. A linear fit in the regime where plateaux are invisible gives the slope to be 1, hence there is a linear increase of excess EE in the short time regime.

Figure 7. Excess EE of disk of radius 1 with different distances to the point of excitation. We can see clearly that the quasi-particle densities are not the same and disperse as time goes on.
5.2.2. Using small disk as a probe
Now we place a disk of radius \(R \) centered at the origin, and the excitation at distance \(r \) away from the center. The equal time Green function becomes

\[
G^A_{\Delta}(x_1, x_2) = -\frac{1}{2\pi} \ln |z_1 - z_2| + \frac{1}{2\pi} \ln \left| z_1 - \frac{R^2}{z_2} \right| \\
= -\frac{1}{4\pi} \ln \left[r_1^2 + r_2^2 - 2r_1r_2 \cos(\theta_1 - \theta_2) \right] \\
+ \frac{1}{4\pi} \ln \left[\frac{r_1^2 + \frac{R^4}{r_2^2} - 2r_1 \frac{R^2}{r_2} \cos(\theta_1 - \theta_2)}{r_2} \right].
\]

(77)

The kernel on the circle is

\[
\partial_r \partial_{\theta_2} G^A_{\Delta}(x_1, x_2) = \frac{1}{4\pi R^2 \sin^2 \frac{\theta_1 - \theta_2}{2}}.
\]

Hence

\[
G^A_{\Delta}(\eta, \tau_2, x)_{\text{nocut}} = 4 \int_{-\pi}^{\pi} d\theta_1 \int_{-\pi}^{\pi} d\theta_2 \frac{\text{Im} f(x_1) \text{Im} f(x_2)}{4\pi \sin^2 \frac{\theta_1 - \theta_2}{2}}
\]

\[
= -4 \int_{-\pi}^{\pi} f(x) \partial_{\theta f}(x) \mathcal{H} d\theta
\]

\[
= -4 \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} |n| f_n f_{-n},
\]

(79)

where \(\mathcal{H} \) is the Hilbert transform on the circle, and

\[
\text{Im} f(x) = \frac{1}{4\pi} \text{Si} \left[\frac{r^2 + R^2 - 2rR \cos \theta}{4t} \right] |x| = r.
\]

(80)

Rescaling \(R = 1 \), we have

\[
\Delta S_n = \frac{\alpha^2}{4g} \frac{1}{2\pi (4\pi)^2} \sum_{n=-\infty}^{\infty} |n| \text{Si}_n \text{Si}_{-n} = \frac{\alpha^2}{8\pi g} \frac{1}{4\pi^2} \sum_{n=-\infty}^{\infty} |n| \text{Si}_n \text{Si}_{-n},
\]

(81)

where \(\text{Si}_n \) is the Fourier transform

\[
\text{Si}_n = \int_{-\pi}^{\pi} \text{Si} \left[\frac{r^2 + 1 - 2r \cos \theta}{4t} \right] e^{i\alpha \theta} d\theta.
\]

(82)

5.2.3. Discussion of the probed excess EE
We plot the results in equation (81) at different length scales of distance \(r \) to the unit disk probe \((R = 1) \).

In all cases, the excess EE drops down to zero in the asymptotic region, when almost all the quasi-particles have passed away. The larger \(r \) figure shows larger separations of peaks. There is a largest peak, both in height and width, that represents the majority of quasi-particles, which should also be responsible for the largest plateau in the upper half plane configuration. Smaller peaks travel faster and arrive earlier at the
entanglement cut. This verifies our assumption that the quasi-particle ‘wave’ disperses in this diffusion. The pattern is similar to chromatography in chemical species separation, which also takes advantage of their different diffusive ‘speeds’.

6. Summary

In this paper we investigate the excess EE created by the vertex operator in the quantum Lifshitz model ground state (figure 7). We develop the replica trick to derive a formula that relates excess EE to the differences of the vertex two point function with Dirichlet boundary and free space. It turns out that excess EE can be completely written in terms of boundary integrals on the entanglement cut, and in some sense reflects the fact that the change of EE only happens in the vicinity of the entanglement cut. This is compliant with the local interaction nature of the original quantum dimer model.

We pay attention to the upper half plane and disk geometries. We show that the quasi-particle picture can still can interpret the growth of excess EE in this non-relativistic model. In particular, strict causality is replaced by diffusive behavior in the sense that the excess EE will reach a $O(1)$ scale only when the majority of quasi-particles arrive at the entanglement cut. Zooming out the small time regime in the upper half plane geometry show plateaux at different scales. We ascribe this to the different density of states for quasi-particles of different speeds. By placing a disk probe away from the excitation point, we are able to see the chromatography pattern in the excess EE, which demonstrates possible dispersion and different density of states for particle species.

Further work can be done to understand the new features discovered in this paper. In the cases we have considered, more evidence is needed to account for the plateau structure we find in the short time dynamics of the infinite plane case. We only calculate the single vertex operator excitation and show that the excess EE is independent of the winding sector, which otherwise plays an important role in the ground state EE. The excess EE of similar operators like $e^{i\phi} + e^{-i\phi}$ will depend on the compactification radius, from which we would expect to obtain universal information. There are general questions, like how to obtain Rieb–Robinson bound for the initial development of excess EE for $z = 2$. A holographic picture [11, 32–35] in the dual Lifshitz gravity (with Hořava–Lifshitz gravity [36] being one of the candidates) would also be helpful in understanding the quench behavior here.

Acknowledgments

The author would like to acknowledge several researchers who provided valuable help. This project was stimulated by a joint discussion with Masahiro Nozaki and Xueda Wen. They kindly shared their knowledge of the quench problems in CFT. Eduardo Fradkin, Xiao Chen and Thomas Faulkner provided critical comments on the quantum Lifshitz model and quench in general. Michael Stone clarified the subtle distributional interpretation in the boundary integral calculation. The author would like to thank them(XW,XC,MS) for reading the manuscript prior to its publication. This work is supported by the National Science Foundation under grant number NSF-DMR-13-06011.

doi:10.1088/1742-5468/2016/09/093106
Appendix A. Boundary reproducing Kernel

In this appendix, we show that the normal derivative behaves like a boundary reproducing kernel for harmonic functions.

Let A be a simply connected region and $G^A_{\Delta}(x_1, x_2)$ the associated Green function with Dirichlet boundary condition,

$$
-\nabla^2_A G^A_{\Delta}(x_1, x_2) = \delta^2(x_1 - x_2) \quad G^A_{\Delta}(x_1, x_2) \bigg|_{x_1 \in \partial A, x_2 \in A} = 0.
$$

Let $f(x)$ be a function defined on ∂A, then

$$
f(x_2) = \lim_{x_1 \to \partial A} \int_{\partial A} [-\partial_n G^A_{\Delta}(x_1, x_2)] f(x_1) \, dl_1,
$$

in other words, $-\partial_n G^A_{\Delta}(x_1, x_2)$ looks like a delta function on the boundary.

To prove this, we construct a harmonic function $\phi(x)$ whose boundary value is $f(x)$,

$$
-\nabla^2 \phi(x) = 0 \quad \phi(x)|_{\partial A} \equiv f(x),
$$

then we express the harmonic function in terms of its boundary value,

$$
\begin{align*}
\phi(x_2) &= \int_A \delta^2(x_1 - x_2) \phi(x_1) d^2x_1 = \int_A (-\nabla^2_A G^A_{\Delta}(x_1, x_2)) \phi(x_1) d^2x_1 \\
&= -\int_{\partial A} \partial_n G^A_{\Delta}(x_1, x_2) f(x_1) \, dl_1 + \int_A \nabla_{x_1} G^A_{\Delta}(x_1, x_2) \nabla_{x_1} \phi(x_1) d^2x_1 \\
&= -\int_{\partial A} \partial_n G^A_{\Delta}(x_1, x_2) f(x_1) \, dl_1,
\end{align*}
$$

where we use integration by parts twice.

Taking x_2 approaching the boundary, we obtain the desired identity

$$
f(x_2) = -\lim_{x_1 \to \partial A} \int_{\partial A} \partial_n G^A_{\Delta}(x_1, x_2) f(x_1) \, dl.
$$

We demonstrate this result with the explicit example of the upper half plane, whose Green function is

$$
G^A_{\Delta}(x_1, x_2) = -\frac{1}{2\pi} \ln|x_1 - x_2| + \frac{1}{2\pi} \ln|x_1 - \bar{x}_2|.
$$

The normal derivative of the green function on the boundary—the x-axis—is

$$
\left. -\partial_{y_1} G^A_{\Delta}(x_1, x_2) \right|_{y_1=0} = \frac{1}{\pi} \frac{y_2}{(x_1 - x_2)^2 + y_2^2}.
$$

The fact that

$$
\int_{-\infty}^{\infty} dx_2 \frac{1}{\pi} \frac{y_2}{(x_1 - x_2)^2 + y_2^2} = 1
$$

and
\[
\lim_{y_2 \to 0} \frac{y_2}{\pi (x_1 - x_2)^2 + y_2^2} = 0 \quad \text{if } x_1 \neq x_2
\] (A.9)
suggests that when \(x_2\) approach the \(x\)-axis,
\[
\lim_{y_2 \to 0} \frac{y_2}{\pi (x_1 - x_2)^2 + y_2^2} = \delta(x_1 - x_2).
\] (A.10)

Appendix B. Equal space green function for a simply connected region

In this appendix, we calculate the derivative of the equal space Green function for a simply connected region \(A\).

Suppose the equal Green function of Laplacian in region \(A\) is denoted as \(G_{\Delta}^A(x_1, x_2)\), which satisfies
\[
\nabla_2^2 G_{\Delta}^A(x_1, x_2) = 0 \quad G_{\Delta}^A(x_1, x_2) \bigg|_{\partial A} = 0.
\] (B.1)
The equal space Green function we are seeking for is then
\[
G_{\Delta}^A(\tau_1, \tau_2) = \int_{A \times A} H(x, \tau_1; x_1) G_{\Delta}^A(x_1, x_2) H(x, \tau_2; x_2) \, d^2x_1 \, d^2x_2.
\] (B.2)

In the following, we will make use of the heat kernel property
\[
\partial_\tau H(x, \tau; x') = \nabla_2^2 H(x, \tau; x')
\] (B.3)
when taking derivatives to the Green function.

To simplify the notation, we define
\[
\phi(x_1) = \int_A G_{\Delta}^A(x_1, x_2) H(x, \tau_2; x_2) \, d^2x_2
\] (B.4)
to be the solution of the Poisson equation in region \(A\) with heat kernel as its source,
\[
\nabla_2^2 \phi(x_1) = H(x, \tau_2; x_1) \quad \phi(x_1) \bigg|_{\partial A} = 0;
\] (B.5)
then
\[
G_{\Delta}^A(\tau_1, \tau_2) = \int_A H(x, \tau_1; x_1) \phi(x_1) \, d^2x_1.
\] (B.6)

Now taking the \(\tau_1\) derivative and integrating by parts twice, we have
\[
-\partial_\tau G_{\Delta}^A(\tau_1, \tau_2) = -\int_A \nabla_2^2 H(x, \tau_1; x_1) \phi(x_1) d^2x_1 = \int_A \nabla_{x_1} H(x, \tau_1; x_1) \nabla_{x_1} \phi(x_1) d^2x_1
\]
\[
= \int_A H(x, \tau_1; x_1) (-\nabla_{x_1}^2) \phi(x_1) d^2x_1 + \int_{\partial A} H(x, \tau_1; x_1) \n_1 \cdot \nabla_{x_1} \phi(x_1) d\ell
\]
\[
= \int_A H(x_1, \tau_1) H(x_2, \tau_2) d^2x_1 + \int_{\partial A} H(x_1, \tau_1) \partial_{x_1} \phi(x_1) d\ell.
\] (B.7)

We then take symmetrically a \(\tau_2\) derivative.
\[\partial_{\tau_2} \partial_{\eta} G^A_{\Delta}(\eta, \tau_2) = -\int_A H(x, \eta; x_1) \partial_{\tau_2} H(x, \tau_2; x_1) d^2x_1 - \int_{\partial A} H(x, \eta; x_1) \partial_{n} \partial_{\tau_2} \phi(x_1) dl \]

(B.8)

and analyze the resulting two terms.

Upon integration by parts, the first term becomes

\[\int_A H(x, \eta; x_1)(-\nabla^2_{\tau_2})H(x, \tau_2; x_1) d^2x_1 = \int_A \nabla_{\tau_1} H(x, \eta; x_1) \nabla_{\tau_2} H(x, \tau_2; x_1) d^2x_1 \]

\[-\int_A H(x, \eta; x_1) \partial_{n} H(x, \tau_2; x_1) dl. \]

(B.9)

Then we turn to the \(\tau_2 \) derivative in the second term

\[\partial_{\eta} \partial_{\tau_2} \phi(x_1) = \int_A \partial_{\eta} G^A_{\Delta}(x_1, x_2)(\nabla^2_{\tau_2})H(x, \tau_2; x_2) d^2x_2 \]

\[= \lim_{x_2 \to \partial A} \int_A \partial_{\eta} G^A_{\Delta}(x_1, x_2) \partial_{n} H(x, \tau_2; x_2) d^2x_2 \]

\[-\int_A \nabla_{\tau_2} \partial_{n} G^A_{\Delta}(x_1, x_2) \nabla_{\tau_2} H(x, \tau_2; x_2) d^2x_2 \]

\[= -\partial_{\eta} H(x, \tau_2; x_1) \bigg|_{x_2 \in A} - \int_{\partial A} \partial_{n} \partial_{\eta} G^A_{\Delta}(x_1, x_2) H(x, \tau_2; x_2) dl \]

\[+ \lim_{x_2 \to \partial A} \int_A \partial_{\eta} (\nabla^2_{\tau_2}) G^A_{\Delta}(x_1, x_2) H(x, \tau_2; x_2) d^2x_2 \]

\[= -\partial_{\eta} H(x, \tau_2; x_1) \bigg|_{x_2 \in A} - \int_{\partial A} \partial_{n} \partial_{\eta} G^A_{\Delta}(x_1, x_2) H(x, \tau_2; x_2) dl, \]

(B.10)

where we have used the theorem in appendix A in going from the second equality to the third.

Collecting all these results, we have

\[\partial_{\tau_2} \partial_{\eta} G^A_{\Delta}(\eta, \tau_2) = \int_A \nabla_{\tau_1} H(x, \eta; x_1) \nabla_{\tau_2} H(x, \tau_2; x_1) d^2x_1 \]

\[+ \int_{\partial A \times \partial A} H(x, \eta; x_1) \partial_{n} \partial_{\eta} \partial_{\tau_2} G^A_{\Delta}(x_1, x_2) H(x, \tau_2; x_2) dl_1 dl_2. \]

(B.11)

The result is symmetric about \(\eta \) and \(\tau_2 \). It consists of a contribution purely from the bulk and boundary of region A, where the former is what would be there if the Dirichlet boundary condition were not imposed on the entanglement cut.

Therefore, compared with the free Green function, we have

\[\partial_{\tau_2} \partial_{\eta} G^A_{\Delta}(\eta, \tau_2) \bigg|_{\text{Dirichlet}} = -\int_{\partial A \times \partial A} H(x, \eta; x_1) \partial_{n} \partial_{\eta} \partial_{\tau_2} G^A_{\Delta}(x_1, x_2) H(x, \tau_2; x_2) dl_1 dl_2. \]

(B.12)
Appendix C. Alternative calculation for the equal space Green’s function on the half plane

In this section, we consider an alternative calculation of ΔS_n for the upper half plane case.

According to equation (61), the general equal space Green’s function with Dirichlet boundary condition on the entanglement cut for partitions A and B is

$$G_{\Delta}(\eta_1, \eta_2) \big|_{\text{Dirichlet}} = \int_{A \times A} d^2x_1 d^2x_2 \frac{H(x, \eta_1; x_1) G^A_{\Delta}(x_1, x_2) H(x, \eta_2; x_2)}{x_1 - x_2 \sqrt{x_1 - x_2}} + \int_{B \times B} d^2x_1 d^2x_2 \frac{H(x, \eta_1; x_1) G^B_{\Delta}(x_1, x_2) H(x, \eta_2; x_2)}{x_1 - x_2 \sqrt{x_1 - x_2}}.$$ \hspace{1cm} (C.1)

The difference of the presence and absence of the cut will only come from the boundaries of A and B, which is the x-axis. By applying the general formula (B.12) for both regions A and B, we have

$$\partial_{x_1} \partial_{x_2} G_{\Delta}(\eta_1, \eta_2) \big|_{\text{Dirichlet}}^{A\cup B} = -2 \int_{-\infty}^{\infty} dx_2 \int_{-\infty}^{\infty} dx_1 H(x, \eta_1; x_1) \partial_{y_1} \partial_{y_2} G_{\Delta}(x_1, x_2) H(x, \eta_2; x_2) \big|_{y_1 = 0, y_2 \rightarrow 0}.$$ \hspace{1cm} (C.2)

We interpret (or regulate) this boundary integral as in appendix E

$$\partial_{x_1} \partial_{x_2} G_{\Delta}(\eta_1, \eta_2) \big|_{\text{Dirichlet}}^{A\cup B} = \frac{1}{2\pi} \int dx_1 dx_2 \frac{[H(x, \eta_1; x_1) - H(x, \eta_1; x_1)] [H(x, \eta_2; x_2) - H(x, \eta_2; x_2)]}{(x_1 - x_2)^2}.$$ \hspace{1cm} (C.3)

The calculation is a little involved, so for clarity we provide the details in appendix D, and the result is

$$\partial_{x_1} \partial_{x_2} G_{\Delta}(\eta_1, \eta_2) \big|_{\text{Dirichlet}}^{A\cup B} = \frac{1}{4\pi^2} \frac{1}{\eta_1 + \eta_2} \frac{1}{\sqrt{\eta_1}} \exp\left(-\frac{y_1^2}{4\eta_1}\right) \frac{1}{\sqrt{\eta_2}} \exp\left(-\frac{y_2^2}{4\eta_2}\right).$$ \hspace{1cm} (C.4)

The Green’s function can be obtained by integrating η_1 and η_2,

$$G_{\Delta}(\eta_1, \eta_2) \big|_{\text{Dirichlet}}^{A\cup B} = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} d\eta_1 d\eta_2 \frac{1}{\eta_1 + \eta_2} \frac{1}{\sqrt{\eta_1}} \exp\left(-\frac{y_1^2}{4\eta_1}\right) \frac{1}{\sqrt{\eta_2}} \exp\left(-\frac{y_2^2}{4\eta_2}\right)$$

$$= \frac{1}{\pi^2} \int_{0}^{\infty} du \int_{0}^{\infty} dv \exp\left(-\frac{u^2}{4\eta_1^2}\right) \frac{1}{\eta_1 + \eta_2} \frac{1}{\sqrt{\eta_1}} \exp\left(-\frac{y_1^2}{4\eta_1}\right) \frac{1}{\sqrt{\eta_2}} \exp\left(-\frac{y_2^2}{4\eta_2}\right)$$

$$= \frac{1}{\pi^2} \int_{0}^{\infty} du \int_{0}^{\infty} dv \exp\left(-\frac{y_1^2}{4u^2}\right) \frac{1}{u^2 + v^2} \exp\left(-\frac{y_1^2}{4\eta_1}\right) \frac{1}{\sqrt{\eta_1}} \exp\left(-\frac{y_2^2}{4\eta_2}\right)$$

$$= \frac{1}{\pi^2} \int_{v=0}^{\infty} dv \int_{u=0}^{\infty} \exp\left(-\frac{u^2 y_1^2}{4v^2}\right) \frac{1}{u^2 + v^2} \exp\left(-\frac{y_1^2}{4\eta_1}\right) \frac{1}{\sqrt{\eta_1}} \exp\left(-\frac{y_2^2}{4\eta_2}\right)$$

$$= \frac{1}{\pi^2} \int_{v=0}^{\infty} dv \int_{u=0}^{\infty} \exp\left(-u^2 y_1^2\right) \frac{1}{u^2 + v^2} \exp\left(-\frac{y_2^2}{4\eta_2}\right).$$ \hspace{1cm} (C.5)

The excess EE is proportional to the cross Green’s function, which is
We calculate the contour integral in the curly braces as in figure C1. The path is \(\frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}} \to 0 \to \frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}} \), whose two segments only change the length of the complex number.

\[
\int_0^{\pi} \frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}} \, du \exp(-u^2) = \int_0^{r_0} \frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}} \, du \exp((-1+\lambda)u^2) = \frac{1}{\pi} \int_0^{\pi} \frac{1}{1+\lambda} \left\{ \int_0^{\frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}}} \frac{1}{1+\lambda} \, du \exp(-u^2) \right\}^2.
\]

Figure C1. We choose the integration path where only the length of the complex number changes.

\[
G_\Delta(\tau_1, \tau_2, x) = \{ G_\Delta(\tau_1, \tau_1) - G_\Delta(\tau_1, \tau_2) - G_\Delta(\tau_2, \tau_1) + G_\Delta(\tau_2, \tau_2) \} \big|_{\text{Dirichlet}}
\]

\[
= \frac{1}{\pi^2} \int_0^{\infty} \frac{1}{2} \, du \int_0^{\infty} \frac{1}{2} \, dv \exp(-u^2) - \frac{1}{u^2 + v^2} \exp(-v^2)
\]

\[
= \frac{1}{\pi^2} \int_0^{\infty} \pi \lambda \left\{ \int_0^{\infty} \frac{1}{1+\lambda} \left\{ \int_0^{\frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}}} \frac{1}{1+\lambda} \, du \exp(-u^2) \right\}^2 \right\}.
\]

We calculate the contour integral in the curly braces as in figure C1. The path is \(\frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}} \to 0 \to \frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}} \), whose two segments only change the length of the complex number.

\[
\int_0^{\infty} \left\{ \int_0^{\frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}}} \frac{1}{1+\lambda} \, du \exp(-u^2) \right\}^2 = \int_0^{\infty} \frac{1}{1+\lambda} \left\{ \int_0^{\frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}}} \frac{1}{1+\lambda} \, du \exp(-u^2) \right\}^2.
\]

where \(C \) and \(S \) are the Fresnel cos/sin integrals

\[
C[z] = \int_0^{2} \cos\left(\frac{\pi x^2}{2}\right) \, dx \quad S[z] = \int_0^{2} \sin\left(\frac{\pi x^2}{2}\right) \, dx,
\]

\[
\text{and the constant } r_0 = \frac{\sqrt{1+\lambda y}}{2\sqrt{\pi}}.
\]

This gives the cross Green’s function

\[
doi:10.1088/1742-5468/2016/09/093106
\]

25
Entanglement entropy of local operators in quantum Lifshitz theory

\[
G_\Delta(\tau_1, \tau_2, \times) = -\frac{1}{\pi} \int_0^\infty d\lambda \frac{1}{1 + \lambda} \left[C\left(\sqrt{\frac{2}{\pi}} r_0\right) - S\left(\sqrt{\frac{2}{\pi}} r_0\right)\right]^2 \\
= -\frac{1}{\pi} \int_1^\infty d\lambda \frac{1}{\lambda} \left[C\left(\sqrt{\frac{\lambda}{4\pi g t}} y\right) - S\left(\sqrt{\frac{\lambda}{4\pi g t}} y\right)\right]^2 \\
= -\frac{1}{\pi} \int_{\frac{y}{4\pi g t}}^\infty d\lambda \frac{1}{\lambda} \left[C(\sqrt{\lambda}) - S(\sqrt{\lambda})\right]^2 \\
= -\frac{2}{\pi} \int_{\frac{y}{4\pi g t}}^\infty d\lambda \frac{1}{\lambda} \left[C(\lambda) - S(\lambda)\right]^2 ,
\]
and consequently the excess EE

\[
\Delta S_n = -\frac{\alpha^2}{4g} G_\Delta(\tau_1, \tau_2, \times) = \frac{\alpha^2}{8\pi g} \left[4 \int_{\frac{y}{4\pi g t}}^\infty d\lambda \frac{1}{\lambda} \left[C(\lambda) - S(\lambda)\right]^2 \right].
\]

Appendix D. Schwinger parameter calculation

This section is devoted to the analytic calculation of equation (C.3).

After doing the proper regularization, the integral in equation (C.3) is convergent, so it is safe to add a small positive constant \(\epsilon \) in

\[
\partial_\eta \partial_\eta G_\Delta(\tau_1, \tau_2) \bigg|_{\text{Dirichlet}} \bigg|_{\text{Dirichlet}} = \frac{1}{\pi} \lim_{\epsilon \to 0^+} \int dx_1 dx_2 \frac{[H(x, \tau_1; x_i) - H(x, \tau_2; x_i)][H(x, \tau_2; x_i) - H(x, \tau_1; x_i)]}{(x_1 - x_2)^2 + \epsilon}
\]

(D.1)
to compute each term. The divergent pieces in the limit \(\epsilon \to 0^+ \) will automatically cancel in the end.

The four integrals are independent of \(x \),

\[
\frac{1}{\pi} \int dx_1 dx_2 \frac{H(x, \tau_1; x_i)H(x, \tau_2; x_i)}{(x_1 - x_2)^2 + \epsilon} = \frac{1}{(4\pi)^2 \eta_2} \exp\left(-\frac{1}{4\pi^2} \left[\frac{1}{4\eta_1} + \frac{1}{4\eta_2}\right] y^2 \right) I_{ij},
\]

(D.2)
where

\[
I_{ij} = \frac{1}{\pi} \int dx_1 dx_2 \frac{\exp(-\frac{1}{4\eta_1} x_i^2 - \frac{1}{4\eta_2} x_j^2)}{(x_1 - x_2)^2 + \epsilon}
\]

(D.3)
such that

\[
\partial_\eta \partial_\eta G_\Delta(\tau_1, \tau_2) \bigg|_{\text{Dirichlet}} = \frac{1}{(4\pi)^2 \eta_2} \exp\left(-\frac{1}{4\pi^2} \left[\frac{1}{4\eta_1} + \frac{1}{4\eta_2}\right] y^2 \right) \lim_{\epsilon \to 0^+} I_{11} - I_{12} - I_{21} + I_{22}
\]

(D.4)

\[
= \frac{1}{(4\pi)^2 \eta_2} \exp\left(-\frac{\eta_1 + \eta_2}{4\pi^2 \eta_2}\right) y^2 \lim_{\epsilon \to 0^+} 2(I_{11} - I_{12}).
\]

\[\text{doi}:10.1088/1742-5468/2016/09/093106\]

J. Stat. Mech. (2016) 093106
The integral I_{11} can be done directly

$$I_{11} = \int dx_1 \exp \left(-\frac{\frac{1}{4\eta_1} + \frac{1}{4\tau_2}}{2} x_1^2 \right) \int dx_2 \frac{\sqrt{\epsilon}}{\pi} \frac{1}{\sqrt{\epsilon}} \frac{1}{(x_1 - x_2)^2 + \epsilon} = \sqrt{\frac{\pi}{\epsilon}} \sqrt{\frac{4\eta\tau}{\eta + \tau}}; \quad (D.5)$$

I_{12} can be done using the Schwinger parameter

$$I_{12} = \int_0^\infty d\lambda \frac{1}{\pi} \int dx_1 dx_2 \exp \left[-\frac{\frac{1}{4\eta_1} + \frac{1}{4\tau_2}}{2} x_1^2 - \frac{1}{4\eta_2} x_2^2 - \lambda(x_1 - x_2)^2 - \lambda \epsilon \right]$$

$$= \int_0^\infty d\lambda \frac{1}{\sqrt{\frac{1}{4\eta_1} + \lambda}} \frac{1}{\sqrt{\frac{1}{4\tau_2} + \lambda}} \sqrt{\frac{1}{4\eta_1} + \lambda} + \frac{1}{16\eta_2} \sqrt{\frac{1}{4\tau_2} + \lambda} e^{-\lambda \epsilon}$$

$$= \sqrt{\frac{4\eta\tau}{\eta + \tau}} \int_0^\infty d\lambda \frac{1}{\sqrt{\lambda + \frac{1}{4(\eta + \tau)}}} e^{-\lambda \epsilon}. \quad (D.6)$$

We are able to do the following indefinite integral

$$\int d\lambda \frac{1}{\sqrt{\lambda + \lambda_0}} e^{-\lambda \epsilon} = \sqrt{\frac{\pi}{\epsilon} e^{\lambda_0} \text{erfc}(\sqrt{\epsilon\lambda_0})}. \quad (D.7)$$

As $\lambda \to \infty$, erfc $\to 0$, so

$$I_{12} = \sqrt{\frac{4\eta\tau}{\eta + \tau}} \sqrt{\frac{\pi}{\epsilon} e^{\lambda_0} \text{erfc}(\sqrt{\epsilon\lambda_0})}, \quad (D.8)$$

where

$$\lambda_0 = \frac{1}{4(\eta + \tau)}. \quad (D.9)$$

When taking the $\epsilon \to 0^+$ limit, erfc(x) $\sim 1 - \frac{2x}{\sqrt{\pi}}$

$$I_{12} = \sqrt{\frac{4\eta\tau}{\eta + \tau}} \sqrt{\frac{\pi}{\epsilon}} \left(1 - \frac{2}{\sqrt{\pi}} \sqrt{\epsilon\lambda_0}\right), \quad (D.10)$$

therefore

$$\lim_{\epsilon \to 0^+} I_{11} - I_{12} = \sqrt{\frac{4\eta\tau}{\eta + \tau}} 2\sqrt{\lambda_0} = \sqrt{\frac{4\eta\tau}{\eta + \tau}} \frac{\sqrt{4\eta\tau}}{\eta + \tau} \quad (D.11)$$

and the Green’s function becomes

$$\partial_\eta \partial_\tau G_\Delta(\eta, \tau) \bigg|_{\text{Dirichlet}} \frac{\Delta_{\text{Dirichlet}}}{\epsilon} = \frac{1}{4\pi^2} \frac{1}{\sqrt{\eta}} \frac{1}{\sqrt{\tau}} \exp \left(-\frac{y^2}{4\eta}\right) \frac{1}{\sqrt{\tau}} \exp \left(-\frac{y^2}{4\tau}\right). \quad (D.12)$$
Appendix E. Distributional boundary integral

In this section, we focus on the correct distributional interpretation of integral of the type (see exercise 6.8 of the book [37])

$$I = \lim_{y_2 \to 0} \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 f(x_1) \partial_{y_2} \partial_{y_1} G_\Delta(x_1, x_2) \bigg|_{y_1 = 0} g(x_2),$$

(E.1)

where the kernel of the integral is

$$\lim_{y_2 \to 0} \partial_{y_2} \partial_{y_1} G_\Delta(x_1, x_2) \bigg|_{y_1 = 0} = \frac{1}{\pi} \lim_{y_2 \to 0} \frac{y_2}{(x_1 - x_2)^2 + y_2^2}$$

$$= \frac{1}{\pi} \lim_{y_2 \to 0} \left\{ \frac{1}{(x_1 - x_2)^2 + y_2^2} - \frac{2y_2^2}{[(x_1 - x_2)^2 + y_2^2]^2} \right\}$$

(E.2)

It is well approximated by $\frac{1}{(x_1 - x_2)^2}$ when $|x_1 - x_2| \geq y_2$, but is singular in the other limit. The fact that

$$\int_{-\infty}^{\infty} dx_1 \frac{y_2}{\pi (x_1 - x_2)^2 + y_2^2} = 1$$

is independent of y_2 suggests

$$\int_{-\infty}^{\infty} \partial_{y_2} \frac{y_2}{\pi (x_1 - x_2)^2 + y_2^2} = 0.$$

(E.4)

Hence there is a highly localized distribution at $x_1 = x_2$ to compensate the (positive) divergent integral of $P \int_{-\infty}^{\infty} dx_1 \frac{1}{(x_1 - x_2)^2}$.

We notice that

$$\partial_{y_2} \partial_{y_1} G_\Delta(x_1, x_2) \bigg|_{y_1 = 0} = \frac{1}{\pi} \frac{(x_1 - x_2)^2 - y_2^2}{[(x_1 - x_2)^2 + y_2^2]^2} = \partial_{x_2} \frac{1}{\pi} \frac{x_1 - x_2}{(x_1 - x_2)^2 + y_2^2},$$

(E.5)

and hence

$$I = \frac{1}{\pi} \lim_{\epsilon \to 0} \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 f(x_1) g(x_2) \partial_{x_2} \frac{x_1 - x_2}{(x_1 - x_2)^2 + \epsilon}. $$

(E.6)

The rewriting does not remove the singularity; what we do is to integrate the kernel in region $|x_1 - x_2| > \Lambda$, where the it can be approximated by $\frac{1}{(x_1 - x_2)^2}$ and $|x_1 - x_2| < \Lambda$ where $g(x_2) \sim g(x_1)$:

$$\pi I(\epsilon) = \int_{|x_2 - x_1| > \Lambda} dx_1 dx_2 \frac{f(x_1) g(x_2)}{(x_1 - x_2)^2 + \epsilon} + \int_{|x_2 - x_1| \leq \Lambda} dx_1 f(x_1) g(x_1) \int_{|x_2 - x_1| > \Lambda} dx_2 \partial_{x_2} \frac{x_1 - x_2}{(x_1 - x_2)^2 + \epsilon}$$

$$= \int_{|x_2 - x_1| > \Lambda} dx_1 dx_2 \frac{f(x_1) g(x_2)}{(x_1 - x_2)^2 + \epsilon} - \int_{|x_2 - x_1| > \Lambda} dx_1 f(x_1) g(x_1) \int_{|x_2 - x_1| > \Lambda} dx_2 \partial_{x_2} \frac{x_1 - x_2}{(x_1 - x_2)^2 + \epsilon}$$

$$= \int_{|x_2 - x_1| > \Lambda} dx_1 dx_2 \frac{f(x_1) g(x_2)}{(x_1 - x_2)^2 + \epsilon} - \int_{|x_2 - x_1| > \Lambda} dx_1 dx_2 \frac{f(x_1) g(x_1)}{(x_1 - x_2)^2 + \epsilon}. $$

(E.7)
Take $\epsilon \to 0$ limit and symmetrize functions

$$I = -\frac{1}{2} \int dx_1 dx_2 \frac{[f(x_1) - f(x_2)][g(x_1) - g(x_2)]}{\pi(x_1 - x_2)^2};$$

notice that the singularity at $x_1 = x_2$ has been regulated away.

References

[1] Levin M and Wen X-G 2006 Detecting topological order in a ground state wave function Phys. Rev. Lett. 96 110405
[2] Kitaev A and Preskill J 2006 Topological entanglement entropy Phys. Rev. Lett. 96 110404
[3] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Entanglement in quantum critical phenomena Phys. Rev. Lett. 90 227902
[4] Fradkin E and Moore J E 2006 Entanglement entropy of 2d conformal quantum critical points: hearing the shape of a quantum drum Phys. Rev. Lett. 97 (arXiv: cond-mat/0605683)
[5] Hsu B, Mulligan M, Fradkin E and Kim E-A 2009 Universal entanglement entropy in two-dimensional conformal quantum critical points Phys. Rev. B 79 115421
[6] Stephan J-M, Furukawa S, Misguich G and Pasquier V 2009 Shannon and entanglement entropies of one- and two-dimensional critical functions Phys. Rev. B 80 (arXiv:0906.1153)
[7] Calabrese P and Cardy J 2004 Entanglement entropy and quantum field theory J. Stat. Mech. P06002
[8] Calabrese P and Cardy J 2009 Entanglement entropy and conformal field theory J. Phys. A: Math. Theor. 42 504005
[9] Calabrese P and Cardy J 2016 Quantum quenches in 1 + 1 dimensional conformal field theories (arXiv:1603.02889 [cond-mat, physics:hep-th])
[10] Fendley P, Fisher M P A and Nayak C 2007 Topological entanglement entropy from the holographic partition function J. Stat. Phys. 126 1111–44
[11] Nishioka T, Ryu S and Takayanagi T 2009 Holographic entanglement entropy: an overview J. Phys. A: Math. Theor. 42 504008
[12] Cardy J 2011 Measuring entanglement using quantum quenches Phys. Rev. Lett. 106 150404 (arXiv:1012.5116)
[13] Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M and Greiner M 2015 Measuring entanglement entropy in a quantum many-body system Nature 528 77–83
[14] Calabrese P and Cardy J 2007 Entanglement and correlation functions following a local quench: a conformal field theory approach J. Stat. Mech. P10004 (arXiv:0708.3750)
[15] He S, Numasawa T, Takayanagi T and Watanabe K 2014 Quantum dimension as entanglement entropy in 2d CFTs Phys. Rev. D 90 041701 (arXiv:1403.0702)
[16] Nozaki M, Numasawa T and Takayanagi T 2014 Quantum entanglement of local operators in conformal field theories Phys. Rev. Lett. 112 111602 (arXiv:1401.0539)
[17] Chen B, Guo W-Z, He S and Wu J-Q 2015 Entanglement entropy for descendent local operators in 2d CFTs (arXiv:1507.01157 [hep-th])
[18] Caputa P and Veliz-Osorio A 2015 Entanglement constant for conformal families Phys. Rev. D 92 065010 (arXiv:1507.00582)
[19] Guo W-Z and He S 2015 Rényi entropy of locally excited states with thermal and boundary effect in 2d CFTs J. High Energy Phys. JHEP04(2015)099 (arXiv:1501.00757)
[20] Caputa P, Nozaki M and Takayanagi T 2014 Entanglement of local operators in large N CFTs Prog. Theor. Exp. Phys. 2014 03B06–0
[21] Calabrese P and Cardy J 2009 Evolution of entanglement entropy in one-dimensional systems J. Stat. Mech. P04010
[22] Ardonne E, Fendley P and Fradkin E 2004 Topological order and conformal quantum critical points Ann. Phys. 310 493–551
[23] Fradkin E 2013 Field Theories of Condensed Matter Physics (Cambridge: Cambridge University Press)
[24] Moessner R and Ramakrishnan K S 2011 Quantum dimer models Introduction to Frustrated Magnetism (Berlin: Springer) pp 437–79 (arXiv:0809.3051)
[25] Henley C L 1997 Relaxation time for a dimer covering with height representation J. Stat. Phys. 89 483–507
[26] Kasteleyn P W 1961 The statistics of dimers on a lattice Physica 27 1209–25
[27] Fisher M E 1961 Statistical mechanics of dimers on a plane lattice Phys. Rev. 124 1664–72

doi:10.1088/1742-5468/2016/09/093106
Entanglement entropy of local operators in quantum Lifshitz theory

[28] Nienhuis B 1987 Two dimensional critical phenomena and the Coulomb gas Phys. Phase Trans. Crit. Phenom. 11

[29] Oshikawa M 2010 Boundary conformal field theory and entanglement entropy in two-dimensional quantum Lifshitz critical point (arXiv:1007.3739 [cond-mat, physics:hep-th])

[30] Zaletel M P, Bardarson J H and Moore J E 2011 Logarithmic terms in entanglement entropies of 2d quantum critical points and shannon entropies of spin chains Phys. Rev. Lett. 107 020402

[31] Zhou T, Chen X, Faulkner T and Fradkin E 2016 Entanglement entropy and mutual information of circular entangling surfaces in 2 + 1-dimensional quantum Lifshitz model (arXiv:1607.01771 [cond-mat])

[32] Nozaki M, Numasawa T and Takayanagi T 2013 Holographic local quenches and entanglement density J. High Energy Phys. JHEP05(2013)080

[33] Son D T 2008 Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry Phys. Rev. D 78 046003

[34] Balasubramanian K and McGreevy J 2008 Gravity duals for nonrelativistic conformal field theories Phys. Rev. Lett. 101 061601

[35] Kachru S, Liu X and Mulligan M 2008 Gravity duals of Lifshitz-like fixed points Phys. Rev. D 78 106005

[36] Hořava P 2009 Quantum gravity at a Lifshitz point Phys. Rev. D 79 084008

[37] Stone M and Goldbart P 2009 Mathematics for Physics: a Guided Tour for Graduate Students 1st edn (Cambridge: Cambridge University Press)