Moore-Penrose inverse of distance Laplacians of trees are \mathbb{Z} matrices

R. Balaji and Vinayak Gupta

(In memory of Professor Michael Neumann)

July 27, 2022

Abstract

We show that all off-diagonal entries in the Moore-Penrose inverse of the distance Laplacian matrix of a tree are non-positive.

Keywords: Trees, distance matrices, Laplacian matrices, Distance Laplacian matrices, Moore-Penrose inverse.

AMS CLASSIFICATION. 05C50

1 Introduction

Let T be a tree on n vertices $\{1, \ldots, n\}$. Suppose to each edge (p, q) of T, a positive number w_{pq} is assigned. We say that w_{pq} is the weight of (p, q). The distance between any two vertices i and j, denoted by d_{ij}, is the sum of all the weights in the path connecting i and j. The distance matrix of T is then the $n \times n$ matrix with $(i, j)^{th}$ entry equal to d_{ij} if $i \neq j$ and $d_{ii} = 0$ for all $i = 1, \ldots, n$.

Define

$$\eta_i = \sum_{j=1}^{n} d_{ij} \quad \text{and} \quad \Delta := \text{Diag}(\eta_1, \ldots, \eta_n).$$

The distance Laplacian of T is then the matrix $L_D := \Delta - D$. Distance Laplacian matrices are introduced and studied in [4]. Recall that the classical Laplacian matrix of T is $L := \nabla - A$, where A is the adjacency matrix of T and ∇ is the diagonal matrix with ∇_{ii} equal to degree of vertex i. We note some properties common to L_D and L.

(i) L_D and L are positive semidefinite.

(ii) Row sums of L_D and L are equal to zero.

(iii) $\text{rank}(L) = \text{rank}(L_D) = n - 1$.

(iv) All off-diagonal entries of L and L_D are non-positive.

1 Corresponding author: Vinayak Gupta, Email address: vinayakgupta1729v@gmail.com
In this paper, we deduce a property of distance Laplacian matrices of trees which the classical Laplacian matrices do not have. An \(n \times n \) real matrix \(A = [a_{ij}] \) is called a \(Z \) matrix if all the off diagonal entries of \(A \) are non-positive. The objective of this paper is to show that \(L_D^\dagger \) is always a \(Z \) matrix. In the following example, we see that \(L \) is the classical Laplacian of a path on four vertices, but \(L^\dagger \) is not a \(Z \) matrix.

\[
L = \begin{bmatrix}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{bmatrix}
\quad \text{and} \quad
L^\dagger = \begin{bmatrix}
\frac{7}{8} & \frac{1}{8} & \frac{3}{8} & \frac{5}{8} \\
\frac{3}{8} & \frac{1}{8} & \frac{3}{8} & \frac{5}{8} \\
\frac{3}{8} & \frac{1}{8} & \frac{3}{8} & \frac{5}{8} \\
\frac{3}{8} & \frac{1}{8} & \frac{3}{8} & \frac{5}{8}
\end{bmatrix}.
\]

Distance matrices are well studied and have many interesting properties and applications: see [1]. Numerical experiments reveal several new results on distance matrices. For example, a perturbation result says that if \(D \) is the distance matrix of a tree and \(L \) is the Laplacian of some connected graph (with same number of vertices), then all entries in \((D^{-1} - L)^{-1}\) are non-negative: See Theorem 4.6 in [2]. A far reaching generalisation of this result for matrix weighted trees is shown in Theorem 2.1 in [3]. Again this result was motivated by numerical experiments. Our result here is also motivated by numerical computations.

If \(A \) is a \(Z \) matrix, then we say it is an \(M \) matrix if all the eigenvalues of \(A \) have a non-negative real part. A question in [6] asks when the group inverse of a singular irreducible matrix \(M \) matrix is again an \(M \) matrix. Another question in resistive electrical networks [8] asks when is the Moore-Penrose inverse of a Laplacian of a connected graph is an \(M \) matrix. Kirkland and Neumann [7] characterized all weighted trees whose Laplacian have this property. The result in this paper says that distance Laplacians of trees are irreducible \(M \) matrices and their Moore-Penrose inverses are also \(M \) matrices. (We note that group inverse and Moore-Penrose inverse coincide for Laplacians and distance Laplacians.)

Our proof techniques in this paper works only for trees. To extend the result in a more general setting, for example, resistance Laplacian matrices of connected graphs, additional new techniques are certainly required.

2 Preliminaries

2.1 Notation

(i) If \(A = [a_{ij}] \) is an \(n \times n \) matrix with \((i, j)\)th entry equal to \(a_{ij} \), then the matrix \(A(i | j) \) will denote the submatrix of \(A \) obtained by deleting the \(i \)th row and the \(j \)th column of \(A \).

(ii) Let \(\Omega_1 := \{s_1, \ldots, s_k\} \) and \(\Omega_2 := \{t_1, \ldots, t_m\} \) be subsets of \(\{1, \ldots, n\} \). Then \(A[\Omega_1, \Omega_2] \) will be the \(k \times m \) matrix with \((i, j)\)th entry equal to \(a_{s_it_j} \). So, \(A = [a_{s_it_j}] \).
(iii) The vector of all ones in \(\mathbb{R}^n \) will be denoted by \(\mathbf{1} \). If \(m < n \), then \(\mathbf{1}_m \) will denote the vector of all ones in \(\mathbb{R}^m \). The notation \(J \) will stand for the symmetric matrix with all entries equal to 1.

(iv) The Moore-Penrose inverse of a matrix \(B \) is denoted by \(B^\dagger \) and its transpose by \(B' \).

(v) To denote the subgraph induced by a set of vertices \(W \), we use the notation \([W] \). If \(a \) and \(b \) are any two vertices, then \(P_{ab} \) will be the path connecting \(a \) and \(b \). The set of all vertices of a subgraph \(H \) is denoted by \(V(H) \).

2.2 Basic results and techniques

We shall use the following results. Let \(T \) be a tree on \(n \) vertices labelled \(\{1, \ldots, n\} \) where \(n \geq 3 \). Let \(D = [d_{ij}] \) be the distance matrix of \(T \).

(P1) (Theorem 3.4, [5]) If \(L \) is the Laplacian matrix of a weighted tree and \(L^\dagger = [\alpha_{ij}] \), then

\[
d_{ij} = \alpha_{ii} + \alpha_{jj} - 2\alpha_{ij}.
\]

Because \(\text{rank}(L) = n - 1 \) and \(L \) is positive semidefinite, it follows that for any \(0 \neq x = (x_1, \ldots, x_n)' \in \mathbb{R}^n \) such that \(\sum_{i=1}^{n} x_i = 0 \),

\[
\sum_{i,j} x_i x_j d_{ij} = -2 \sum_{i,j} x_i x_j \alpha_{ij} < 0.
\]

(P2) Triangle inequality: If \(i, j, k \in \{1, \ldots, n\} \), then

\[
d_{ik} \leq d_{ij} + d_{jk}.
\]

(P3) Let \(\nu \) be a positive integer and the sets \(L_1, \ldots, L_N \) partition \(\{1, \ldots, \nu\} \). Let \(A = [a_{uv}] \) be a \(\nu \times \nu \) matrix such that \(A[L_i, L_j] = O \) for all \(i < j \). Then there exists a permutation matrix \(P \) such that

\[
P'AP = \begin{bmatrix}
A[L_1, L_1] & O & \cdots & O \\
A[L_2, L_1] & A[L_2, L_2] & \cdots & O \\
\vdots & \vdots & \ddots & \vdots \\
A[L_N, L_1] & A[L_N, L_2] & \cdots & A[L_N, L_N]
\end{bmatrix}.
\]

As a consequence,

(a) If \(a_{xy} = 0 \) for all \(x \in L_i, y \in L_j \) and \(i < j \), then \(A \) is similar to a block lower triangular matrix with \(i^{th} \) diagonal block equal to \(A[L_i, L_i] \).
(b) If \(a_{xy} = 0 \) for all \(x \in L_i, y \in L_j \) and \(i > j \), then \(A \) is similar to a block upper triangular matrix with \(i^{th} \) diagonal block equal to \(A[L_i, L_i] \).

(c) If \(a_{xy} = 0 \) for all \(x \in L_i, y \in L_j \) and \(i \neq j \), then \(A \) is similar to a block diagonal matrix with \(i^{th} \) diagonal block equal to \(A[L_i, L_i] \).

(P4) (Matrix determinant lemma) Let \(A \) be a \(m \times m \) matrix and \(x, y \) be \(m \times 1 \) vectors. Then

\[
\text{det}(A + xy') = \text{det}(A) + y' \text{adj}(A)x.
\]

3 Main result

Consider a tree \(T \) with vertices labelled \(\{1, \ldots, n\} \). If \(n = 2 \), then the result is easy to verify. We assume \(n > 2 \). Let \(D := [d_{ij}] \) denote the distance matrix of \(T \) and \(\eta_i \) be the \(i^{th} \) row sum of \(D \). Define \(\Delta := \text{Diag}(\eta_1, \ldots, \eta_n) \). Let

\[
S := \Delta - D.
\]

Each row sum of \(S \) is zero. So, all the cofactors of \(S \) are equal. Let this common cofactor be \(\gamma \). Henceforth, we fix the notation \(T, D, \Delta \) and \(S \). Our aim is to show that all the off-diagonal entries of \(S^\dagger = [s^\dagger_{ij}] \) are non-positive. We shall show that \(s^\dagger_{12} \leq 0 \). A similar argument can be repeated to any other off-diagonal entry of \(S^\dagger \). In the first step, we show that \(s^\dagger_{12} \leq 0 \) if and only if the determinant of a certain matrix constructed from \(D \) is non-negative.

3.1 Reformulation of the problem

We shall find a matrix \(R \) such that that \(s^\dagger_{12} \leq 0 \) if and only if \(\text{det}(R) \geq 0 \). The following lemma will be useful.

Lemma 1. Let \(S_* := S + J \). The following items hold.

(i) \(S \) is positive semidefinite and \(\text{rank}(S) = n - 1 \).

(ii) \(S_*^{-1} = S^\dagger + \frac{4}{n^2} \).

(iii) \(\text{det}(S_*) = n^2 \gamma \).

(iv) Let \(C = S(1|2) \). Then,

\[
s^\dagger_{12} = \frac{1'_{n-1}C^{-1}1_{n-1}}{n^2}.
\]

Proof. It follows from the definition of \(S \) that, \(S1 = 0 \). Let \(0 \neq x \in 1^\perp \). By (P1), \(x'Dx > 0 \). So,

\[
x'Sx = x'\Delta x - x'Dx > 0.
\]
If $x \in \text{span}\{1\}$, then $Sx = 0$. Hence S is positive semidefinite and S has $n - 1$ positive eigenvalues. So, $\text{rank}(S) = n - 1$. This proves (i).

Since $S\mathbf{1} = 0$ and $\text{rank}(S) = n - 1$,

$$SS^\dagger = I - \frac{J}{n}.$$

From a direct verification,

$$S^{-1}_* = S^\dagger + \frac{J}{n^2}.$$

This proves (ii).

Writing $S_* = S + \mathbf{1}\mathbf{1}'$, by (P4),

$$\det(S_*) = \det(S) + 1'\text{adj}(S)\mathbf{1}.$$

As $S\mathbf{1} = 0$, $\det(S) = 0$. Since all the cofactors of S are equal to γ,

$$\text{adj}(S) = \gamma J.$$

Therefore, $\det(S_*) = n^2\gamma$. Item (iii) is proved.

Each cofactor of S is γ and $C = S(1|2)$. So,

$$\det(C) = \det(S(1|2)) = -\gamma.$$

In view of item (ii),

$$s^\dagger_{12} = (S^{-1}_*)_{12} - \frac{1}{n^2}$$

$$= \frac{1}{\det(S_*)}(\text{adj}S_*)_{12} - \frac{1}{n^2}$$

$$= -\frac{1}{n^2\gamma}(\det(S_*(1|2)) - \frac{1}{n^2}$$

$$= -\frac{1}{n^2\gamma}(\det(S(1|2)) + J(1|2)) - \frac{1}{n^2}.$$

By the matrix determinant lemma (P4),

$$s^\dagger_{12} = -\frac{1}{n^2\gamma}(\det(C) + \det(C)1'_{n-1}C^{-1}1_{n-1}) - \frac{1}{n^2}$$

$$= -\frac{1}{n^2\gamma}(-\gamma - \gamma 1'_{n-1}C^{-1}1_{n-1}) - \frac{1}{n^2}$$

$$= \frac{1'_{n-1}C^{-1}1_{n-1}}{n^2}.$$

Item (iv) is proved and the proof is complete.
By numerical computations, we note that the sign of s_{12}^\dagger depends on the sign of the determinant of a certain matrix defined from D. We introduce this matrix now.

Definition 1. For any $i, j \in \{3, \ldots, n\}$, define

$$R_{ij} := \begin{cases} -d_{21} + d_{i1} + d_{2j} - d_{ij} & i \neq j \\ -d_{21} + d_{i1} + d_{2i} + \sum_{k=1}^{n} d_{ik} & i = j. \end{cases}$$

Set $R := [R_{ij}]$.

The order of R is $n - 2$. By triangle inequality,

$$-d_{21} + d_{i1} + d_{2i} \geq 0 \quad i = 3, \ldots, n.$$

Hence,

$$R_{ii} > 0 \quad i = 3, \ldots, n.$$

Lemma 2. $s_{12}^\dagger \leq 0$ if and only if $\det(R) \geq 0$.

Proof. Let $C = S(1|2)$ and Q be the $(n - 1) \times (n - 1)$ matrix $\begin{bmatrix} 1 & 1_{n-2} \\ 0 & I_{n-2} \end{bmatrix}$. Then,

$$Q^{-1} = \begin{bmatrix} 1 & -1_{n-2} \\ 0 & I_{n-2} \end{bmatrix}.$$

By a direct computation,

$$Q'^{-1}CQ^{-1} = \begin{bmatrix} s_{21} & -s_{21} + s_{23} & \cdots & -s_{21} + s_{2n} \\ -s_{21} + s_{31} & s_{21} - s_{31} - s_{23} + s_{33} & \cdots & s_{21} - s_{31} - s_{2n} + s_{3n} \\ \cdots & \cdots & \cdots & \cdots \\ -s_{21} + s_{n1} & s_{21} - s_{n1} - s_{23} + s_{n3} & \cdots & s_{21} - s_{n1} - s_{2n} + s_{nn} \end{bmatrix}. $$

The entries of S are

$$s_{ij} = \begin{cases} -d_{ij} & i \neq j \\ \sum_{k=1}^{n} d_{ik} & i = j. \end{cases}$$

Hence,

$$Q'^{-1}CQ^{-1}(1|1) = R. \quad (1)$$

We note that

$$\det(C) = -\gamma < 0 \quad \text{and} \quad \det(Q) = 1.$$

So,

$$\det(Q'^{-1}CQ^{-1}) = -\gamma < 0.$$

By a simple computation,

$$(QC^{-1}Q')_{11} = 1'_{n-1}C^{-1}1_{n-1}. \quad (2)$$
Using (1),

\[
(QC^{-1}Q')_{11} = \frac{1}{\text{det}(Q'^{-1}CQ^{-1}) \text{det}(Q'^{-1}CQ^{-1}(1|1))} = -\frac{1}{\gamma} \text{det}(R).
\]

(3)

By (2) and (3),

\[
1'_{n-1}C^{-1}1_{n-1} = -\frac{1}{\gamma} \text{det}(R).
\]

By item (iv) in Lemma 1, it now follows that \(s_{12}^t \leq 0\) if and only if \(\text{det}(R) \geq 0\).

\[\square\]

3.2 A property of \(R\)

We now proceed to show that \(\text{det}(R) \geq 0\). The following lemma will be useful in the sequel.

Lemma 3. Let \(\alpha \in V(P_{12})\). Suppose there exists a connected component \(\tilde{X}\) of \(T \setminus (\alpha)\) not containing 1 and 2. Let \(u \in V(\tilde{X})\) be the vertex adjacent to \(\alpha\). Consider a connected subgraph \(X\) of \(\tilde{X}\) containing \(u\). Put \(E := V(X)\). Then, \(R[E, E]\) is a positive semidefinite matrix.

Proof. If \(E = \{u\}\), then \(R[E, E] = [R_{uu}]\). As \(R_{uu} > 0\), the lemma is true in this case. Let \(|E| \geq 2\).

Claim 1: \(R[E, E]\) is symmetric.

Let \(r, s \in E\). Recall that

\[
R_{rs} = -d_{21} + d_{r1} + d_{2s} - d_{rs}.
\]

(4)

By our assumption,

\[
d_{r1} = d_{r\alpha} + d_{\alpha 1} \quad \text{and} \quad d_{s2} = d_{s\alpha} + d_{\alpha 2}.
\]

(5)

By (4) and (5),

\[
R_{rs} = -d_{21} + d_{r\alpha} + d_{\alpha 1} + d_{s\alpha} + d_{\alpha 2} - d_{rs}.
\]

(6)

Again by our assumption,

\[
d_{r2} = d_{r\alpha} + d_{\alpha 2} \quad \text{and} \quad d_{s1} = d_{s\alpha} + d_{\alpha 1}.
\]

(7)

By (6) and (7),

\[
R_{rs} = -d_{21} + d_{s1} + d_{r2} - d_{rs}.
\]

The right hand side of the above equation is \(R_{sr}\). The claim is proved.

We know that \(u \in E\) and is adjacent to \(\alpha\). Let \(\Omega\) be the set of all non-pendant vertices in \(T\). Since \(X\) is connected, and has at least two vertices, \(u\) is adjacent to a vertex in \(E\). Hence, \(u \in E \cap \Omega\). So, \(E \cap \Omega\) is a non-empty set.
Let $\delta \in E$ be such that
\[d_{\delta \alpha} = \max \{d_{x\alpha} : x \in E \cap \Omega\}. \]
Since X is a tree, there exists a pendant vertex adjacent to δ. Without loss of generality, let $E = \{x_1, \ldots, x_{t-1}, x_t\}$ where $x_1 = u$, $x_{t-1} = \delta$ and x_t is pendant vertex adjacent to x_{t-1}.

Claim 2:
\[R_{ix_{t-1}} = R_{ix_t} \text{ for all } i \in \{x_1, x_2, \ldots, x_{t-2}\}. \] (8)

By the definition of R,
\[R_{ix_{t-1}} - R_{ix_t} = -d_{21} + d_{i1} + d_{ix_{t-1}} - d_{ix_t} - (-d_{21} + d_{i1} + d_{2x_t} - d_{ix_t}) \]
\[= (d_{2x_{t-1}} - d_{2x_t}) - (d_{ix_{t-1}} - d_{ix_t}). \] (9)

Since x_t is a pendant vertex and is adjacent to x_{t-1}, we have
\[d_{2x_{t-1}} - d_{2x_t} = -d_{x_t x_{t-1}}, \]
and since $i \in \{x_1, \ldots, x_{t-2}\}$, we have
\[d_{ix_{t-1}} - d_{ix_t} = -d_{x_t x_{t-1}}. \]

By (9), we now get
\[R_{ix_{t-1}} = R_{ix_t}. \]
The claim is true.

Claim 3: $R_{ix_{t-1}} = 2d_{\delta \alpha} = 2d_{x_{t-1} \alpha}$.

By definition,
\[R_{ix_{t-1}} = -d_{21} + d_{x_{t-1}1} + d_{2x_t} - d_{x_{t-1}x_t}, \] (10)

Vertices 2 and x_t belong to different components of $T \setminus (\alpha)$. Also, x_t and x_{t-1} are adjacent and x_t is pendant in X. Hence,
\[d_{2x_t} = d_{2\alpha} + d_{\alpha x_t} = d_{2\alpha} + d_{\alpha x_{t-1}} + d_{x_{t-1}x_t}, \] (11)

By (10) and (11),
\[R_{ix_{t-1}} = -d_{21} + d_{x_{t-1}1} + d_{2\alpha} + d_{\alpha x_{t-1}}. \]

As $\alpha \in V(P_{12})$, $d_{21} = d_{2\alpha} + d_{\alpha 1}$. Hence
\[R_{ix_{t-1}} = -d_{\alpha 1} + d_{x_{t-1}1} + d_{\alpha x_{t-1}}. \] (12)

As $1 \not\in V(\bar{X})$, $d_{x_{t-1}} = d_{x_{t-1}1} + d_{\alpha 1}$. Hence by (12),
\[R_{ix_{t-1}x_{t}} = 2d_{\alpha x_{t-1}}. \] (13)

This proves the claim.
Claim 4: Diagonal entries of $R[E, E]$ are greater than or equal to $2d_{\delta\alpha}$.

Let $r \in E$. By definition,

$$R_{rr} = -d_{21} + d_{r1} + d_{2r} + \sum_{k=1}^{n} d_{rk}. \quad (14)$$

Since $r \in E$, $1 \notin E$ and $2 \notin E$,

$$d_{r1} = d_{r\alpha} + d_{1\alpha} \text{ and } d_{r2} = d_{r\alpha} + d_{2\alpha}. \quad (15)$$

By (14) and (15),

$$R_{rr} = -d_{21} + d_{r\alpha} + d_{1\alpha} + d_{r\alpha} + d_{2\alpha} + \sum_{k=1}^{n} d_{rk}. \quad (16)$$

As $d_{21} = d_{2\alpha} + d_{\alpha1}$, (16) simplifies to

$$R_{rr} = 2d_{r\alpha} + \sum_{k=1}^{n} d_{rk}. \quad (17)$$

Case 1: Suppose $r \notin \{\delta, x_t\}$.

Then

$$R_{rr} = 2d_{r\alpha} + \sum_{k=1}^{n} d_{rk} \geq 2d_{r\alpha} + d_{r\delta} + d_{rx_t}. \quad (18)$$

By triangle inequality,

$$d_{r\alpha} + d_{r\delta} \geq d_{\delta\alpha} \text{ and } d_{r\alpha} + d_{rx_t} \geq d_{x_t\alpha}.$$

In view of (18),

$$R_{rr} \geq d_{x_t\alpha} + d_{\delta\alpha}.$$

As x_t is adjacent only to δ,

$$R_{rr} \geq d_{x_t\alpha} + d_{\delta\alpha} = d_{\delta\alpha} + d_{\delta x_t} + d_{\delta\alpha} \geq 2d_{\delta\alpha}.$$

Case 2: If $r = \delta$, then it is immediate from (17).

Case 3: Suppose $r = x_t$.

By (17),

$$R_{x_tx_t} \geq 2d_{x_t\alpha}.$$

Since x_t is pendant and adjacent to δ,

$$d_{x_t\alpha} = d_{\delta\alpha} + d_{x_t\delta} = d_{\delta\alpha} + d_{\delta x_t} \geq d_{\delta\alpha}.$$

By the two previous inequalities,

$$R_{x_tx_t} \geq 2d_{\delta\alpha}.$$
The claim is proved.
Define a $t \times t$ matrix

$$P := \begin{bmatrix}
2d_{\delta} & R_{x_1x_2} & \cdots & R_{x_1x_t} \\
R_{x_2x_1} & 2d_{\delta} & \cdots & R_{x_2x_t} \\
\vdots & \vdots & \ddots & \vdots \\
R_{x_{t-1}x_1} & R_{x_{t-1}x_2} & \cdots & 2d_{\delta}
\end{bmatrix}.$$

Because $R[E, E]$ is a symmetric matrix, P is symmetric.

Claim 5: P is positive semidefinite.

We will prove this by using induction on $|E|$. Suppose $|E|$ has only two vertices. Write $E = \{x_1, x_2\}$, where $u = x_1$. By a simple verification,

$$P = \begin{bmatrix}
2d_{\alpha} & 2d_{\alpha} & 2d_{\alpha} \\
2d_{\alpha} & 2d_{\alpha} & 2d_{\alpha}
\end{bmatrix}.$$

So, the claim is true in this case. Suppose the result is true if $|E| < t$. Define a $t \times t$ matrix by

$$Q_1 := \begin{bmatrix}
I_{t-2} & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{bmatrix}.$$

We show that $Q_1^tPQ_1$ is positive semidefinite. Claim 2 and Claim 3 imply that the last two columns of P are equal. Hence, by direct computation,

$$Q_1^tPQ_1 = \begin{bmatrix}
P(x_t|x_t) & 0 \\
0' & 0
\end{bmatrix}.$$

(19)

Define

$$X' := X \setminus \{x_t\}.$$

Because x_t is pendant, X' is a connected subgraph of X and $u \in V(X')$. Set

$$E' := V(X') = \{x_1, \ldots, x_{t-1}\}, \text{ where } x_1 = u.$$

Define

$$d_{\mu_1} := \max\{d_{\alpha x} : x \in \Omega \cap E'\}.$$

By induction hypothesis,

$$P_1 := \begin{bmatrix}
2d_{\mu} & R_{x_1x_2} & \cdots & R_{x_1x_{t-1}} \\
R_{x_2x_1} & 2d_{\mu} & \cdots & R_{x_2x_{t-1}} \\
\vdots & \vdots & \ddots & \vdots \\
R_{x_{t-1}x_1} & R_{x_{t-1}x_2} & \cdots & 2d_{\mu}
\end{bmatrix}.$$

10
is positive semidefinite. Put

\[
P_2 := \begin{bmatrix}
2d_{\delta \alpha} - 2d_{\mu \alpha} & 0 & \ldots & 0 \\
0 & 2d_{\delta \alpha} - 2d_{\mu \alpha} & \ldots & 0 \\
\ldots & \ldots & \ddots & \ldots \\
0 & 0 & \ldots & 2d_{\delta \alpha} - 2d_{\mu \alpha}
\end{bmatrix}.
\]

Then,

\[P(x_t|x_t) = P_1 + P_2.\]

Since \(d_{\delta \alpha} - d_{\mu \alpha} \geq 0\), \(P(x_t|x_t)\) is positive semidefinite and so is \(P\). This proves the claim.

Define

\[\Lambda := \text{Diag}(R_{x_1x_1} - 2d_{\delta \alpha}, \ldots, R_{x_tx_t} - 2d_{\delta \alpha}).\]

Then,

\[R[E,E] = P + \Lambda.\]

By Claim 4, \(\Lambda\) is positive semidefinite and by the previous claim, \(P\) is positive semidefinite. So, \(R[E,E]\) is positive semidefinite. The proof is complete.

\[\square\]

3.3 Partitioning \(\{3, \ldots, n\}\)

Let the degree of vertex 1 be \(m\). We denote the vertex sets of \(m\) components of \(T \setminus (1)\) by

\[V_1', V_2', \ldots, V_m'.\]

Assume \(2 \in V_1'\). Define

\[V_1 := V_1' \setminus \{2\}.\]

Illustration

Consider Figure 1: \(T_{16} \setminus (1)\) has three components. Vertex set of these components

![Figure 1: Tree \(T_{16}\) on 16 vertices](image-url)
are

\[V'_1 = \{3, 13, 11, 12, 4, 14, 2, 5, 6, 15, 16\}, \quad V_2 = \{10\}, \quad V_3 = \{7, 9, 8\}. \]

Now,

\[V_1 = V'_1 \setminus \{2\} = \{3, 13, 11, 12, 4, 14, 5, 6, 15, 16\}. \]

3.4 A canonical form of \(R \)

We now show that \(R \) is similar to a block lower triangular matrix.

Lemma 4. \(R \) is similar to a block lower triangular matrix with diagonal blocks equal to \(R[V_1, V_1], R[V_2, V_2], \ldots, R[V_m, V_m] \).

Proof. We know that

\[V_1 \cup \cdots \cup V_m = \{3, \ldots, n\} \text{ and } V_i \cap V_j = \emptyset. \]

Since

\[R = [R_{\alpha\beta}] \quad 3 \leq \alpha, \beta \leq n, \]

by item (a) in (P3), it suffices to show that if \(i < j \), \(x \in V_i \) and \(y \in V_j \), then

\[R_{xy} = 0. \]

By definition,

\[R_{xy} = -d_{21} + d_{x1} + d_{2y} - d_{xy}. \quad (20) \]

Since \(x \) and \(y \) belong to different components of \(T \setminus (1) \),

\[d_{xy} = d_{x1} + d_{y1}. \quad (21) \]

Using (21) in (20),

\[R_{xy} = -d_{21} + d_{x1} + d_{2y} - d_{x1} - d_{y1} \]

\[= -d_{21} + d_{2y} - d_{y1}. \quad (22) \]

We recall that \(2 \in V'_1 \) and \(y \in V_j \). Since \(i < j \), we see that \(1 < j \). Hence, 2 and \(y \) belong to different components of \(T \setminus (1) \). Thus, \(d_{2y} = d_{21} + d_{y1} \). By (22), \(R_{xy} = 0 \).

The proof is complete.

The following is immediate.

Corollary 1.

\[\det(R) = \prod_{i=1}^{m} \det(R[V_i, V_i]). \]

Lemma 5.

\[\det(R[V_j, V_j]) \geq 0 \quad j = 2, \ldots, m. \]

Proof. Let \(j \in \{2, \ldots, m\} \). Put \(\tilde{X} = X = [V_j], \quad E = V_j \) and \(\alpha = 1 \) in Lemma 3. The result now follows. \(\square \)
3.5 A canonical form of $R[V_1, V_1]$

We partition V_1. Define

$$V_A := \{y \in V_1 : 2 \notin V(P_1y)\}.$$

$$V_B := \{y \in V_1 : 2 \in V(P_1y)\}.$$

Then,

$$V_1 = V_A \cup V_B \quad \text{and} \quad V_A \cap V_B = \emptyset.$$

For example, in Figure 1,

$$V_A = \{3, 4, 14, 11, 13, 12\} \quad \text{and} \quad V_B = \{5, 6, 15, 16\}.$$

Lemma 6. Let $x \in V_B$ and $y \in V_A$. Then $2 \in V(P_{xy})$.

Proof. Suppose

$$2 \notin V(P_{xy}). \tag{23}$$

Since $y \in V_A$,

$$2 \notin V(P_1y). \tag{24}$$

Equations (23) and (24) imply $2 \notin V(P_{1x})$. This contradicts $x \in V_B$. The proof is complete. \hfill \Box

Lemma 7. $R[V_1, V_1]$ similar to a block upper triangular matrix with diagonal blocks equal to $R[V_A, V_A]$ and $R[V_B, V_B]$.

Proof. Let $x \in V_B$ and $y \in V_A$. In view of item (b) in (P3), it suffices to show that $R_{xy} = 0$.

By the previous Lemma

$$d_{2y} + d_{2x} = d_{xy}. \tag{25}$$

By Definition 1,

$$R_{xy} = -d_{21} + d_{x1} + d_{2y} - d_{xy}. \tag{26}$$

As $x \in V_B$,

$$d_{1x} - d_{21} = d_{2x}. \tag{27}$$

By (26) and (27),

$$R_{xy} = d_{2x} + d_{2y} - d_{xy}.$$

Equation (25) now gives

$$R_{xy} = 0.$$

The proof is complete. \hfill \Box

The following is now immediate.

Corollary 2.

$$\det(R[V_1, V_1]) = \det(R[V_A, V_A])\det(R[V_B, V_B]).$$
3.6 Partitioning V_A

We partition V_A. Let P_{12} be the path with vertices $\{1, u_1, \ldots, u_q, 2\}$ and edges

$$(1, u_1), (u_1, u_2), \ldots, (u_q, 2).$$

Define

$$U_i := \{y \in V_A : d_{u_i y} \leq d_{u_j y} \text{ for all } i \neq j\} \quad i = 1, \ldots, q.$$

(We can think of U_i as the collection of vertices in V_A which are nearer to u_i than u_j.) Clearly $u_i \in U_i$. To illustrate, consider Figure 1. Here,

$$u_1 = 3, \quad U_1 = \{3, 11, 12, 13\}, \quad u_2 = 4, \quad U_2 = \{4, 14\}.$$

Lemma 8. The following items hold.

(i) If $y \in U_i$, then $u_i \in V(P_{1y}) \cap V(P_{y1}).$

(ii) If $y \in U_i$, then $u_i \in V(P_{yu_j})$ for $j \neq i$.

(iii) U_1, \ldots, U_q partition V_A.

(iv) Let $y \in U_i$ and $z \in U_j$. If $i \neq j$, then

$$P_{yz} = P_{yu_i} \cup P_{u_iu_j} \cup P_{u_jz}.$$

(v) Each $[U_i]$ is a tree.

Proof. We prove (i) now. Assume that $u_i \notin V(P_{1y})$. Because u_1 is the only vertex in V_1 adjacent to 1, $i \neq 1$. So, $u_i \notin V(P_{u_1y})$. Then, $P_{u_1y} \cup P_{u_1u_i}$ contains P_{yu_i}. Now, $u_{i-1} \in V(P_{yu_i})$. This implies

$$d_{u_{i-1}y} < d_{u_i y}.$$

But this cannot happen as $y \in U_i$. So,

$$u_i \in V(P_{1y}).$$

Using a similar argument,

$$u_i \in V(P_{2y}).$$

This proves (i).

Let $j > i$. By (i) and from the definition of u_i and u_j,

$$u_i \in V(P_{2y}) \text{ and } u_j \in V(P_{2u_i}).$$

Thus,

$$P_{2y} = P_{2u_j} \cup P_{u_ju_i} \cup P_{u_iy}.$$
The above equation implies
\[u_i \in V(P_{yu_j}) \text{ for all } j > i. \]

A similar argument leads to
\[u_i \in V(P_{yu_j}) \text{ for all } j < i. \]

The proof of (ii) is complete.

Let \(y \in U_i \cap U_j \), where \(j \neq i \). By (ii), it now follows that
\[u_i \in V(P_{u_jy}) \text{ and } u_j \in V(P_{u_iy}). \]

As these two cannot happen simultaneously, \(y \notin U_i \cap U_j \). Thus,
\[U_i \cap U_j = \emptyset. \]

By definition of \(U_1, \ldots, U_q \),
\[U_1 \cup \cdots \cup U_q \subseteq V_A. \]

Let \(x \in V_A \) and \(k \in \{1, \ldots, q\} \) be such that
\[d_{xuk} := \min(d_{xu_1}, \ldots, d_{xu_q}). \]

Then, \(x \in U_k \). Hence
\[V_A \subseteq U_1 \cup \cdots \cup U_q. \]

So,
\[V_A = U_1 \cup \cdots \cup U_q. \]

The proof of (iii) is complete.

The proof of (iv) follows from (ii).

We now show that \([U_i]\) is a tree. Let \(y \in U_i \). Since \(y, u_i \in V'_{1} \) and \([V'_{1}]\) is a tree, we have
\[V(P_{yu_i}) \subseteq V'_1. \tag{28} \]

To show that \([U_i]\) is a tree, it now suffices to show that \(V(P_{yu_i}) \subseteq U_i \). Let \(x \in V(P_{yu_i}) \). Assuming \(x \notin U_i \), we shall get a contradiction. By (28), we now have only three cases:

(a) \(x \in U_j \) for some \(j \neq i \)
(b) \(x = 2 \)
(c) \(x \in V_B \).

Assume (a). In view of item (iv) above, we get \(u_i \in V(P_{xy}) \). But then \(x \notin V(P_{yu_i}) \). This is a contradiction. So, (a) is not true.

If (b) is true, then \(2 \in V(P_{yu_i}) \). However (i) implies \(u_i \in V(P_{y2}) \). This is a contradiction.

If we assume (c), then \(x \in V(P_{yu_i}) \). By Lemma 6, \(2 \in V(P_{yx}) \) and therefore \(2 \in V(P_{yu_i}) \) implying case (b) is true which is a contradiction.

Hence, \(V(P_{yu_i}) \subseteq U_i \). So, \([U_i]\) is a tree. This completes the proof. \(\square \)
3.7 A canonical form of $R[V_A, V_A]$

We now show that $R[V_A, V_A]$ is similar to a block upper triangular matrix.

Lemma 9. $R[V_A, V_A]$ is similar to a block upper triangular matrix with ith diagonal block equal to $R[U_i, U_i]$.

Proof. Let $i > j$. Pick any two elements $r \in U_i$ and $s \in U_j$. By item (c) in (P3), it suffices to show that

$$R_{rs} = 0.$$ \hfill (29)

We recall that

$$R_{rs} = -d_{21} + d_{r1} + d_{2s} - d_{rs}.$$ \hfill (29)

By item (i) and (iv) of Lemma 8

$$d_{r1} = d_{ru1} + d_{u1}, \quad d_{2s} = d_{2u_j} + d_{uj}s \quad \text{and} \quad d_{rs} = d_{ru1} + d_{ujui} + d_{su_j}.$$ \hfill (30)

Thus (29) and (30) give

$$R_{rs} = -d_{21} + d_{ru1} + d_{u1} + d_{2u_j} + d_{uj}s - (d_{ru1} + d_{ujui} + d_{su_j})$$

$$= -d_{21} + d_{u1} + d_{2u_j} - d_{ujui}.$$

Since $i > j$ and P_{12} has edges $(u_k, u_{k+1}),$

$$-d_{21} + d_{u1} = -d_{u2} \quad \text{and} \quad d_{2u_j} - d_{ujui} = d_{2u_i}.$$

Thus, $R_{rs} = 0$. This completes the proof. \hfill \Box

The following is immediate now.

Corollary 3.

$$\det(R[V_A, V_A]) = \prod_{i=1}^{q} \det(R[U_i, U_i]).$$

3.8 Computation of $\det(R[U_i, U_i])$

Fix $i \in \{1, \ldots, q\}$. We further partition U_i into disjoint sets. Let u_i have p_i adjacent vertices in $[U_i]$. Then, $[U_i] \setminus (u_i)$ have p_i components:

$$G_{i1}, \ldots, G_{ip_i}.$$

Define $Q_{ik} := V(G_{ik})$. For example in Figure 1 for $i = 1$, we have

$$u_1 = 3, \quad U_1 = \{12, 11, 3, 13\}.$$

There are two components in $[U_1] \setminus (3)$. The vertices of these components are

$$Q_{11} = \{12, 11\} \quad \text{and} \quad Q_{12} = \{13\}.$$

16
Lemma 10. The following items hold.

(i) $\det(R[U_i, U_i]) = R_{u_i u_i} \left(\prod_{k=1}^{p_i} \det(R[Q_{ik}, Q_{ik}]) \right)$.

(ii) G_{i1}, \ldots, G_{ip_i} are connected components of $T \setminus (u_i)$.

(iii) $\det(R[U_i, U_i]) \geq 0$.

Proof. Let $a \in Q_{ir}, b \in Q_{is}$ and $r \neq s$. By definition,

$$R_{ab} = -d_{a1} + d_{21} + d_{2b} - d_{ab}.$$

Since $u_i \in V(P_{12})$,

$$R_{ab} = -d_{a1} + d_{21} + d_{2b} - d_{ab}. \quad (31)$$

As $a \in U_i$, it follows from item (i) of Lemma 8 that

$$d_{au_i} = d_{a1} - d_{1a_i}. \quad (32)$$

Using (32) in (31),

$$R_{ab} = -d_{2a_i} + d_{a1} + d_{2b} - d_{ab}. \quad (33)$$

As $b \in U_i$, it follows from item (i) of Lemma 8 that

$$d_{bu_i} = d_{2b} - d_{2u_i}. \quad (34)$$

Using (34) in (33),

$$R_{ab} = d_{bu_i} + d_{a1} - d_{ab}. \quad (35)$$

Finally, since a and b belong to different components of $[U_i] \setminus (u_i)$,

$$d_{au_i} + d_{bu_i} = d_{ab}. \quad (36)$$

Using (36) in (35),

$$R_{ab} = 0.$$

We now show that $R_{ui_x} = 0$ for any $x \in Q_{is}$. By definition,

$$R_{ui_x} = -d_{u1} + d_{u1} + d_{x2} - d_{ux}. \quad (38)$$

Since u_i lies on P_{12},

$$R_{ui_x} = -d_{u2} + d_{2x} - d_{ux}. \quad (37)$$

As $x \in Q_{is} \subset U_i$, by part (i) of Lemma 8,

$$d_{ux} + d_{2u_i} = d_{2x}. \quad (38)$$

By (37) and (38),

$$R_{ui_x} = 0.$$
Similarly,
\[R_{xu_i} = 0. \]

By item (c) in (P3), we now conclude that \(R[U_i, U_i] \) is similar to a block diagonal matrix with diagonal blocks
\[R_{u_iu_i}, \quad R[Q_{ik}, Q_{ik}] \quad k = 1, \ldots, p_i. \]

Hence
\[\det(R[U_i, U_i]) = R_{u_iu_i} \left(\prod_{k=1}^{p_i} \det(R[Q_{ik}, Q_{ik}]) \right). \]

This completes the proof of (i).

By definition \(G_1, \ldots, G_{p_i} \) are connected components of \([U_i] \setminus (u_i) \). So, each \(G_{ik} \) is connected. Suppose \(G_{ik} \) is not a connected component of \(T \setminus (u_i) \). Then, there exists \(v \in V(T) \setminus \{u_i\} \) but not in \(Q_{ik} \) such that \(v \) is adjacent to a vertex \(g \in Q_{ik} \).

Suppose \(v \in Q_{ij} \) for some \(j \neq k \). But \(Q_{ik} \) and \(Q_{ij} \) are components of \([U_i] \setminus (u_i) \) and hence \(u_i \in V(P_{gv}) \). This is not possible.

Suppose \(v \in U_j \) where \(j \neq i \). Then, item (iv) in Lemma 8 implies \(u_i \in V(P_{gv}) \). This is not possible.

Suppose \(v \in V_B \). Then, Lemma 9 gives \(2 \in V(P_{vg}) \). Again, this is not possible.

Let \(v \in V_2 \cup \cdots \cup V_{m} \). Since \(g \in V_1, 1 \in P_{gv} \). This is a contradiction. Thus, \(G_{ik} \) is a connected component of \(T \setminus (u_i) \). The proof of (ii) is complete.

Fix \(k \in \{1, \ldots, p_i\} \). We use Lemma 6. Set \(X = X = G_{ik}, E = Q_{ik} \) and \(\alpha = u_i \).

By (ii), \(X \) is a connected component of \(T \setminus (u_i) \). Hence \(\det(R[Q_{ik}, Q_{ik}]) \) \geq 0. In view of item (i), \(\det(R[U_i, U_i]) \) \geq 0. The proof is complete.

From Corollary 3 and Lemma 10, we get the following.

Lemma 11.
\[\det(R[V_A, V_A]) \geq 0. \]

3.9 Computation of \(\det(R[V_B, V_B]) \)

Let \([V_B] \) have \(s \) components and let the vertex sets of these components be
\[W_1, \ldots, W_s. \]

For example in Figure 11 \([V_B] \) has two components
\[W_1 = \{5, 6\}, \quad W_2 = \{15, 16\}. \]

Lemma 12. Let \(z_i \in W_i \) and \(z_j \in W_j \) where \(i \neq j \). Then \(2 \in V(P_{z_iz_j}) \).
Proof. Since \(z_i \) and \(z_j \) belong to different components of \([V_B] \), there must exist a vertex \(x \) such that
\[
x \in V'_1, \quad x \notin V_B, \quad \text{and} \quad x \in V(P_{z_i z_j}).
\]
If \(x = 2 \), then we are done. Now, assume \(x \neq 2 \). Then, \(x \in V_A \). Since \(z_i \in V_B \), Lemma 6 implies that \(2 \in V(P_{z_i x}) \). This implies \(2 \in V(P_{z_i z_j}) \). The proof is complete. \(\square \)

Lemma 13. \([W_1], \ldots, [W_s]\) are connected components of \(T \setminus (2) \).

Proof. Each \([W_j]\) is connected. Suppose \([W_j]\) is not a component in \(T \setminus (2) \). Then there exists a vertex \(g \in W_j \) adjacent to \(v \in V(T \setminus (2)) \setminus W_j \).

Let \(v \in W_k \), where \(k \neq j \). Then, by Lemma 12, \(2 \in V(P_{vg}) \). This is not possible.

Suppose \(v \notin V_1' \). Then, \(v \in V_2 \cup \cdots \cup V_m \); hence \(1 \in V(P_{vg}) \). This is a contradiction.

Thus, \([W_j]\) is a component in \(T \setminus (2) \). This completes the proof. \(\square \)

Lemma 14. The following items hold.

(i) \(\det(R[V_B, V_B]) = \prod_{\nu=1}^{s} \det(R[W_\nu, W_\nu]) \).

(ii) \(\det(R[W_i, W_i]) \geq 0 \quad i = 1, \ldots, s. \)

(iii) \(\det(R[V_B, V_B]) \geq 0. \)

Proof. The sets \(W_1, \ldots, W_s \) partition \(V_B \). Let \(a \in W_i \) and \(b \in W_j \). We claim that if \(i \neq j \), then \(R_{ab} = 0 \). By definition
\[
R_{ab} = -d_{21} + d_{a1} + d_{2b} - d_{ab}.
\] (39)

By Lemma 12, \(2 \in V(P_{ab}) \). Hence
\[
d_{ab} = d_{a2} + d_{2b}.
\] (40)

By (39) and (40),
\[
R_{ab} = -d_{21} + d_{a1} + d_{2b} - d_{a2} - d_{2b} = -d_{21} + d_{a1} - d_{a2}.
\] (41)

Since \(a \in V_B \), \(2 \in V(P_{a1}) \),
\[
d_{a1} = d_{a2} + d_{21}.
\] (42)

By (41) and (42),
\[
R_{ab} = 0.
\]

By (P3), \(R[V_B, V_B] \) is similar to a block diagonal matrix with diagonal blocks
\[
R[W_1, W_1], \ldots, R[W_s, W_s].
\]
Therefore,
\[
\det(R[V_B, V_B]) = \prod_{i=1}^{s} \det(R[W_i, W_i]).
\]

This completes the proof of (i).

The proof of (ii) follows by substituting \(\tilde{X} = X = [W_i], E = W_i \) and \(\alpha = 2 \) in Lemma 3.

Item (iii) is immediate from (i) and (ii). \(\square \)

Corollary 2, Lemma 11 and Lemma 14 give the following.

Lemma 15.
\[
\det(R[V_1, V_1]) \geq 0.
\]

3.10 Proof of main result

Theorem 1. The Moore-Penrose inverse of the distance Laplacian matrix of a tree is a \(\mathbb{Z} \) matrix.

Proof. The proof follows from Lemmas 2, 5 and 15. \(\square \)

4 An example

We can ask if the result true for any Euclidean distance matrix. Here is a counter example. Let
\[
D = \begin{bmatrix}
0 & 1 & 4 & 9 & 16 \\
1 & 0 & 1 & 4 & 9 \\
4 & 1 & 0 & 1 & 4 \\
9 & 4 & 1 & 0 & 1 \\
16 & 9 & 4 & 1 & 0
\end{bmatrix}.
\]

Using standard techniques, it can be verified that \(D \) is an Euclidean distance matrix. Let
\[
\Delta := \text{Diag}(\eta_1, \eta_2, \eta_3, \eta_4, \eta_5) \quad \text{and} \quad S := \Delta - D.
\]

Then,
\[
S^\dagger = \begin{bmatrix}
\frac{2}{81} & \frac{-1}{81} & \frac{-1}{90} & \frac{-1}{405} & \frac{1}{810} \\
\frac{-1}{81} & \frac{-1}{81} & \frac{1}{405} & \frac{-1}{405} & \frac{-1}{405} \\
\frac{90}{81} & \frac{45}{45} & \frac{-1}{16} & \frac{-1}{16} & \frac{90}{90} \\
\frac{-1}{405} & \frac{-1}{405} & \frac{-1}{16} & \frac{81}{81} & \frac{-1}{81} \\
\frac{1}{810} & \frac{1}{810} & \frac{-1}{81} & \frac{-1}{81} & \frac{81}{81}
\end{bmatrix}.
\]

We see that \(s^\dagger_{15} > 0 \).

Acknowledgement: We thank Prof. R. B. Bapat for introducing this problem. The result in this paper was observed by Prof. Michael Neumann.
References

[1] R.B. Bapat, Graphs and Matrices, Springer-Verlag, London, 2014.

[2] R. Bapat, S.J. Kirkland, M. Neumann, On distance matrices and Laplacians, Linear algebra and its applications, 401, 2005, 193-209.

[3] R. Balaji, R.B. Bapat, S. Goel, Distance Matrices Perturbed by Laplacians, Applications of Mathematics, 65, 2020, 599-607.

[4] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra and its Applications, 439, 2013, 21-33.

[5] R. Balaji, R.B. Bapat Block distance matrices, Electronic Journal of Linear Algebra, 17, 2007, 435-443.

[6] E. Deutsch, M. Neumann, Derivatives of the Perron root at an essentially non-negative matrix and the group inverse of an M-matrix, Journal of Mathematical Analysis and Applications, 102(1), 1984, 1-29.

[7] S.J. Kirkland, M. Neumann, The M-Matrix Group Generalized Inverse Problem for Weighted Trees, SIAM Journal on Matrix Analysis and Applications, 19(1), 1998, 226-234.

[8] G.P.H. Styan, G. E. Subak-Sharpe, Inequalities and equalities associated with the campbell-youla generalized inverse of the indefinite admittance matrix of resistive networks, Linear Algebra and its Applications, 250, 1997, 349-370.

R. Balaji and Vinayak Gupta
Department of Mathematics
Indian Institute of Technology -Madras
Chennai 600036
India.