Cryptic Diversity of Isaria-like Species in Guizhou, China

Wanhao Chen 1, Jiandong Liang 1, Xiuxiu Ren 1,2, Jiehong Zhao 1, Yanfeng Han 3,* and Zongqi Liang 3

1 Center for Mycomedicine Research, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; chenwanhao052@gzy.edu.cn (W.C.); jliang317@gzy.edu.cn (J.L.); renxiuxiu207@gzy.edu.cn (X.R.); zhaojiehong0200@gzy.edu.cn (J.Z.)
2 College of Ecological Engineering, Guizhou University of Engineering Science, Bijie 551700, China
3 Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, China; zqliang4728126.com
* Correspondence: yihan@gzu.edu.cn

Abstract: Many Isaria-like species have recently been moved into more appropriate genera. However, more robust molecular phylogenetic analyses are still required for Isaria-like fungi to ensure accurate taxonomic identification. We analyzed these Isaria-like strains using multi-gene phylogenetics. Cryptic diversity was discovered in several Isaria farinosa strains, and two new species, Samsoniella pseudogunnii and S. pupicola, are proposed. Our results reveal that more attention needs to be paid to cryptic intraspecific diversity across different isolates and genotypes of the Isaria-like species, some of which will need to be transferred to Samsoniella. Interestingly, S. hepiali, with a very broad host distribution, has been widely used as a medicinal and edible cordycipitoid fungus.

Keywords: cryptic diversity; intraspecific; Isaria-like; multi-gene analysis

1. Introduction

The genus Isaria was originally establish based on the species Isaria terrestris Fr. [1]. Brown and Smith [2] transferred some species described in Isaria Pers. and Spicaria Harting into Paecilomyces, which possess a conidiogenous structure similar to that of Paecilomyces variotii Bainier. de Hoog [3] redescribed the genus Isaria and chose Isaria felina (DC.) Fr. as the lectotype. Typical characteristics include denticulate conidiogenous cells without elongation that arise in clusters from subtending cells or are solitarily from undifferentiated hyphae; mostly present synnemata; and globose, ellipsoidal, or subcylindrical conidia, mostly with a rounded base [3]. Samson [4] divided the genus Paecilomyces into two sections and all entomogenous species were placed in the section Isarioidea. Hodge et al. [5] reintroduced the genus Isaria with the type species Isaria farniosa (Holm.) Fr. and most entomopathogenic mesophilic Paecilomyces species were transferred to Isaria (Hypocreales, Clavicipitaceae) [6–8].

Kepler et al. [9] proposed the rejection of Isaria in favor of Cordyceps and transferred Isaria species into Cordyceps. Mongkolsamrit et al. [10] introduced some Isaria-like species and the new genus Samsoniella Mongkols., Noisrip., Thanakitp., Spatafora, and Luangsarad. Chen et al. [11,12] reported four Isaria-like species: Akanthomyces araneogenus Z.Q. Liang, W.H. Chen, and Y.F. Han; Samsoniella coleopterorum W.H. Chen, Y.F. Han, and Z.Q. Liang; Samsoniella hymenopterorum W.H. Chen, Y.F. Han, and Z.Q. Liang; and Samsoniella lepidopterorum W.H. Chen, Y.F. Han, and Z.Q. Liang. Currently, many species previously placed in the genus Isaria have been transferred to more appropriate genera. However, robust molecular phylogenetic analyses are still needed for Isaria-like fungi to ensure accurate taxonomic identification with comparable results across different isolates and genotypes [10].

We previously collected many Isaria-like morphs of invertebrate-pathogenic fungi from Guizhou Province, China. Some demonstrated close phylogenetic relationships with Isaria farinosa (Holm.) Fr. based on the analysis of associated ITS sequences. In the
present study, we applied multi-gene (ITS, LSU, RPB1, RPB2, TEF) phylogenetic analysis to reevaluate the taxonomic position of these strains, as well as the cryptic diversity among the different isolates of *I. farinosa*, and to describe new taxa to accommodate the cryptic diversity of *Isaria*-like fungi.

2. Materials and Methods

2.1. Fungal Materials and Identification

The strains used in this study were isolated from infected insect and spider specimens collected in different areas of Guizhou Province, China, including Dali Forest in Rongjiang County, Yaorensan National Forest Park in Sandu County, Mount Fanjing in Yinjiang County, Tongmuling in Guiyang City, and Doupengshan in Duyun City. Isolation of strains was conducted as described by Chen et al. [13]. Fungal colonies emerging from specimens were isolated and cultured at 25 °C for 14 days under 12 h light/12 h dark conditions following protocols described by Zou et al. [14]. Accordingly, the living isolates were obtained. The specimens and the isolated strains were deposited in the Institute of Fungus Resources, Guizhou University (formally Herbarium of Guizhou Agricultural College; code, GZAC), Guiyang City, Guizhou, China.

Macroscopic and microscopic morphological characteristics of the fungal isolates were examined, especially for the arrangement, shape, and measurement of phialides and conidia, and also the growth rates of cultures incubated at 25 °C for 14 days were determined in Potato Dextrose Agar (PDA) (Potato powder 6%, Agar 20%, Glucose 20%, Beijing Solarbio Technology Co., Ltd., China). Hyphae and conidiogenous structures were mounted in lactophenol cotton blue or 20% lactate solution and observed with an optical microscope (OM, DM4 B, Leica, Germany).

2.2. DNA Extraction, Polymerase Chain Reaction Amplification and Nucleotide Sequencing

DNA extraction was carried out with a fungal genomic DNA extraction kit (DP2033, BioTeke Corporation) in accordance with Liang et al. [15]. The extracted DNA was stored at −20 °C. The amplification of the internal transcribed spacer (ITS) region, the large subunit ribosomal RNA (LSU) gene, the RNA polymerase II largest subunit 1 (RPB1), the RNA polymerase II largest subunit 2 (RPB2), and the translation elongation factor 1 alpha (TEF) by PCR was described by White et al. [16], Rakotonirainy et al. [17], Castlebury et al. [18], and van den Brink et al. [19], respectively. PCR reactions for five loci of all strains were performed in a total volume of 25 µL containing 12.5 µL 2× PowerTaq PCR Master Mix (Tiangen Biotech (Beijing) Co., LTD, China), 1 µL of each primer (10 µM), 1 µL of genomic DNA (20–100 ng), and 9.5 µL of sterile water. Primer sequence information is shown in Table 1. PCR products were purified and sequenced at Sangon Biotech (Shanghai) Co. The resulting sequences were submitted to GenBank (the accession number is shown in Table 2).

Table 1. Primers information for 5-locus DNA sequences.
Name

ITS
ITS4
LSU
LR5
RPB1
RPB1Cr
RPB2
TEF
983F
2218R
Table 2. List of strains and GenBank accession numbers of sequences used in this study.

Species	Strain No.	Host/Substratum	GenBank Accession No.		
Akanthomyces aculeatus	HUA 772	Lepidoptera; Sphingidae	-	KC519370 - - - KC519366	
A. attenuates	CBS 402.78	Leaf litter (Acer saccharum)	-	AF339565 EF468888 EF468935 EF468782	
A. coccidioperitheciatus	NHJ 6709	Araneae (Spider)	AY624180	EU369042 EU369067 - EU369025	
A. farinosa	CBS 541.81	Lepidoptera (Adult moth)	MF416553 MF416655 MF416449	JQ425686	
A. tuberculosis	BCC 16819	Araneae (Spider)	GQ249987 - - - GQ250037		
A. tuberculosis	OSC 111002	Plant	-	DQ518767 DQ522384 - DQ522338	
Ascopolyporus polychrous	P. C. 546	Plant	-	DQ118237 DQ127236 - DQ118245	
B. brongniartii	ARSEF 617	Lepidoptera; Arctiidae	-	HX880833 HX880905 HX880974	
B. brongniartii	ARSEF 1671	Coleoptera; Scarabaeidae	-	ABO27381 HX880854 HX880926 HX880991	
B. coccidioperitheciatus	BOE 16855	Lepidoptera; Araneidae	JN049867 JF415967 JN049885	JF415991 JF416009	
B. coccidioperitheciatus	BOE 16856	Soil	-	AF339520 HX880889 HX880961	EF469057
B. coccidioperitheciatus	BOE 16857	Plant	-	DQ862027 - DQ862013 DQ862029	
Blackwallomyces cardinalis	OSC 93609	Lepidoptera; Tineidae (Larva)	-	AY184963 EF469088 - EF469059	
B. cardinalis	ARSEF 2567	Soil	-	AF339501 HX880895 - HX880933	
B. coccidioperitheciatus	ARSEF 101409	Lepidoptera (Larva)	-	JN941393 JN992482 - JN992481	
B. pseudomilitaris	ARSEF 101410	Lepidoptera (Larva)	-	JN941394 JN992482 - JN992481	
Calcarisporium arbuscula	CBS 221.73	Hymenomycetes (Agarics sp.)	-	AY271809 - - -	
C. arbuscula	CBS 900.68	Lepidoptera; Coleotera; Aranea (Anomalia cuprea)	-	- - -	
C. cordycipitale	CGMCC 3.17904	Cordycipitaceae	-	JT945001 JT944260 - JT944260	
C. coccidioperitheciatus	CGMCC 3.17905	Cordycipitaceae	-	JT945001 JT944260 - JT944260	
C. xylariolica	HMAS 276836	Xylariales (Xylaria)	-	JT424603 JT424601 - JT424606	
Calonectria ilicicola	CBS 190.50	Uredinales (Hemileia vastatrix)	-	AYJ29404 AF339548 - EF468847	
Cephalosporium curtipes	CBS 154.61	Coleoptera (Adult)	-	- - -	
C. cateniobliqua	CBS 153.83	Lepidoptera	-	- - - JQ425688	
C. cf. farinosa	OSNO11004	Lepidoptera; Coleoptera (Pupa)	-	- - -	
C. coleopterorum	CBS 111.73	Coleoptera (Larva)	AY624177 JF415988 JN049903	JF416006 JF416028	
C. farinosa	CBS 111.111	Coleoptera (Larva)	-	- - -	
C. farinosa	CBS 107.10	Coleoptera (Pupa)	-	MF416556 MF416556 MF416556 MF416556	
C. fusicaprea	EFCC 5690	Lepidoptera (Pupa)	-	EF468806 EF468854 EF468909 EF468746	
C. cateniobliqua	CBS 152.83	Coleoptera (Adult)	-	- - -	
C. fusicaprea	EMSO11004	Lepidoptera; Coleoptera (Pupa)	-	- - -	
C. militaris	OSC 93623	Lepidoptera; Coleoptera (Pupa)	-	- - -	
Dactylonectria acalcerascens	CBS 125907	Plant (Vitis vinifera)	JF735333 KM231629 - JF735819		
Elaphocordycipae	NBRCC106332	-	-	- - -	
E. paradoxa	NBRC 106958	Larva	-	- - -	
Engyodontium araneum	CBS 309.85	Araneae (Spider)	-	- - -	
Epichloe tephina	ATCC 56429	Poaceae (Festuca rubra)	JN049832 U17396 - -		
Flammochaelia aceris	CPC 24422	Plant (Acer platanoides)	-	KR611883 KR611901 -	
Flavocillium bifurcatum	YFC 6101	Noctuidae (Larva)	-	MN576781 MN576841 MN576897 MN576951	
Fusarium circinatum	CBS 405.97	-	-	JF735819 KM231943	
Fusarium solani	CBS 189.34	Soil	-	U61677 - -	
Gelasinospora tetrasperma	ATTOF-ID-1125	-	-	DQ470980 - DQ471103	
Gibellula longispora	NHJ 12014	Araneae (Spider)	-	- - -	
G. pulchra	NHJ 10808	Araneae (Spider)	-	EU369035 EU369056 - EU369075	
G. racketatauda	ARSEF 1915	Araneae (Spider)	-	DQ518777 DQ522408 - DQ522360	
Haplocladium sinense	CBS 567.95	Nematode	AJ294217	AF339545 - -	
Haplocladium sinense	ARSEF 5472	-	-	NG_060621 - -	
H. arachniphile	NHJ 10469	Araneae (Spider)	-	EU369031 EU369047 - EU369008	
H. cinera	NHJ 3510	Araneae (Spider)	-	EU369048 EU369048 - EU369008	
H. nhembobide	BCC 41864	Araneae (Spider)	JN201871 - -		
H. novoguineensis	NHJ 11923	Araneae (Spider)	-	EU369032 EU369052 - EU369013	
Table 2. Cont.

Species	Strain No.	Host/ Substratum	GenBank Accession No.	ITS	LSU	RPB1	RPB2	TEF
Hyperdermium pulvinatum	P.C. 602	Hemiptera (Scale insect)	-	DQ118738	DQ127237	-	DQ118746	
Hydropisphaera erubescens	ATCC 36093	-	-	AF193230	AY545731	DQ518174	-	
H. peziza	GJS 92-101	Plant (Bark)	DQ491488	AY469730	-	AY489625	DQ471043	
Hypocrea americana	ATTOLOID 52	On decorticated conifer wood	-	AY544649	-	-	DQ471043	
H. lutea	ATCC 208838	-	-	AY543791	-	DQ522446	AY543781	
H. rufa	DAOM JBT1003	-	DQ491488	-	-	JN938665	-	
H. discoidea	BCC 8237	-	-	DQ518397	-	DQ522446	DQ518477	
Hypomyces polyergusidis	ATCC 76479	-	-	AF193579	-	AY457843	-	
I. farinosa	CEP 004	Soil	JN998783	-	-	-	JN998764	
I. farinosa	CEP 005	Soil	JN998784	-	-	-	JN998764	
I. farinosa	CEP 029	Trialeurodes	JN998785	-	-	-	JN998764	
Lecanicillium antillanum	CBS 350.85	Hemiptera (Coccus viridis)	KM283800	KM283859	-	-	KM283823	
L. attenuatum	CBS 402.78	Leaf litter of Acer saccharum	-	AF39565	EF468888	AF468935	EF468782	
L. araneatum	CBS 726.73a	Arachnida (Spider)	-	AF39537	EF468877	AF468934	EF468781	
L. fassiporum	CBS 164.70	Hymenomyces (Coltricia perennis)	-	AF39549	EF468889	-	EF468783	
L. psalliotae	CBS 367.86	Puccinia graminis	-	KM283800	-	-	KM283823	
L. lecanii	CBS101247	Hemiptera (Coccus viridis)	JN09836	KM283859	-	-	KM283823	
Leptobacillium chinesense	LC 1345	submerged wood	-	JQ10122	-	-	-	
L. coelum	CDA 734	Plant (Coffea arabica)	-	MF966032	-	-	-	
L. fassiporum	YFC 3103	Fungi (Beauveria yunnanensis)	-	MN57678	MN576842	MN576898	MN576952	
L. psalliotae	YFC 3104	Fungi (Beauveria yunnanensis)	-	MN57678	MN576843	MN576899	MN576953	
Metapochonia goniodes	CBS 891.72	Fungi	AJ292409	AF39535	DQ522450	DQ522350	DQ522354	
Myrotheciomyces corymbae	CPC 33206	Plant (Corbymia variegata)	NR_160351	NG_06542	-	-	-	
Myrotheciomyces corymbae	CPC 33206	Plant (Corbymia variegata)	-	-	-	-	-	
Myrotheciomyces corymbae	CPC 33206	Plant (Corbymia variegata)	-	-	-	-	-	
M. moravica	IMI 156855	Hymenomyces (Russula nigricans)	-	AY489731	-	-	AY489626	
M. roridum	ATCC 16297	Soil	-	AY489708	-	-	AY489603	
M. verrucaria	ATCC 9095	Plant (Goosnium sp.)	-	AY489713	-	-	AY489686	
Nectria cinnabarina	CBS 125165	Plant (Arسicus sp.)	-	HM484548	HM484562	KM283420	HM484527	
N. nigrescens	CBS 125148	Plant (Dicytledonous tree)	-	HM484707	HM484720	KM283420	HM484672	
Nectriopsis violacea	CBS 424.64	Fungi (Fuligo sp.)	-	AY489719	-	-	-	
N. ramulariae	CBS 182.36	Fungi (Bertia moriformis)	-	-	-	-	-	
N. rufa	CBS 217.67	Plant (Malus sylvestris)	-	HM484548	HM484562	KM283420	HM484527	
N. neomacrispora	CBS 217.67	Plant (Malus sylvestris)	-	HM484548	HM484562	KM283420	HM484527	
Neurospora crassa	JCM (636)	Fungi (Bertia moriformis)	-	AY681193	AY681158	-	-	
Neurospora crassa	CBS 560.74	Fungi (Bertia moriformis)	-	AY489720	-	-	AY489614	
Ophiocordyceps heteropoda	EFCC 10125	Cicadidae (Tibicen slotatus)	JN049852	EF468812	EF468914	EF468752	-	
O. sinensis	EFCC 7287	Lepidoptera (Ghoshmoth)	JN049854	EF468827	EF468924	EF468767	-	
O. stylophorus	OSC 111000	Plant (Theobroma cacao)	JN049828	DQ518766	DQ522433	DQ522337	-	
Peltastambora spirostriata	CBS 110115	Plant (Theobroma cacao)	-	AY39724	EF462516	AY489619	-	
Purpureocillium lilacinum	CBS 284.36	Soil	-	AY624227	EF468989	EF468941	EF468792	
P. lilacinum	CBS 431.87	Nematode (Meloidogyne sp.)	HQ482812	EF468844	EF468987	EF468940	EF468791	
Rosapheria moravica	LMM	-	-	-	-	-	JF440897	
Roumeguerella rufula	GJS 91-64	-	JF440895	-	-	-	JF440897	
R. rufula	CBS 346.85	Lepidoptera (Pupa)	-	JF415979	JN049895	JF145999	JF146109	
Samsoniella albousamantium	CBS 240.32	Lepidoptera (Pupa)	-	JF415979	JN049895	JF145999	JF146109	
S. alpina	YFCC 5818	Hepialidae (Hepialus baiamensis)	-	MN576809	MN576869	MN576923	MN576979	
S. alpina	YFCC 5831	Hepialidae (Hepialus baiamensis)	-	MN576810	MN576870	MN576924	MN576980	
S. antleroides	YFCC 6016	Noctuidae (Larvae)	-	MN576803	MN576863	MN576919	MN576973	
Table 2. Cont.

Species	Strain No.	Host/ Substratum	GenBank Accession No.
S. antleroides	YFCC 6113	Noctuidae (Larvae)	ITS - MN576804, LSU - MN576864, RPB1 - MN576918, RPB2 - MN576974
S. aurantia	TBRC 7271	Lepidoptera	MF140728, MF140791, MF140818, MF140846
S. aurantia	TBRC 7272	Lepidoptera	MF140727, MF140792, MF140817, MF140845
S. aurantia	DY10951	Lepidoptera (Pupa)	MZ827666, MZ827667, MZ855229
S. cardinalis	YFCC 5830	Limacodidae (Pupa)	MN576788, MN576848, MN576902, MN576958
S. cardinalis	YFCC 6144	Limacodidae (Pupa)	MN576786, MN576846, MN576900, MN576956
S. coleopterorum	A19501	Curculionidae (Snout beetle)	MT626376, MT642600, MT610585, MT610586
S. coleopterorum	A19502	Curculionidae (Snout beetle)	MT626265, MT642603, MT610587, MT610588
S. cristata	YFCC 6021	Satuniidae (Pupa)	MN576791, MN576851, MN576905, MN576961
S. cristata	YFCC 6023	Satuniidae (Pupa)	MN576792, MN576852, MN576906, MN576962
S. hepiali	ICMM 82-2	Fungi (Ophiocordyceps sinensis)	MN576789, MN576854, MN576908, MN576964
S..hepiali	ICMM Cs-4	Fungi (Ophiocordyceps sinensis)	- MN576799, MN576859, MN576913, MN576969
S. hymenopterorum	A19521	Vespidae (Bee)	MN128224, MT642601, MT610589, MT610590
S. hymenopterorum	A19522	Vespidae (Bee)	MN128081, MN101589, MN101590, MN101591
S. inthanonensis	TBRC 7915	Lepidoptera (Pupa)	MN576794, MN576854, MN576908, MN576961
S. inthanonensis	TBRC 7916	Lepidoptera (Pupa)	MN576795, MN576855, MN576909, MN576965
S. lanmaoa	YFCC 6148	Lepidoptera	- MN576791, MN576851, MN576905, MN576961
S. lanmaoa	YFCC 6193	Lepidoptera	- MN576792, MN576852, MN576906, MN576962
S. lepidopterorum	DL10071	Lepidoptera (Pupa)	MN128076, MN101592, MN101593, MN101594
S. lepidopterorum	DL10072	Lepidoptera (Pupa)	MN128074, MT642605, MT610585, MT610596
S. pseudoguini	CY407201	Lepidoptera (Larvae)	MZ827470, MZ827010, MZ855232, MZ855233
S. pseudoguini	CY407202	Lepidoptera (Larvae)	MZ831863, MZ831865, MZ855234, MZ855235
S. pseudoguini	CY101681	Lepidoptera (Pupa)	MZ827085, MZ827009, MZ855237, MZ855238
S. ramose	YFCC 6020	Limacodidae (Pupa)	MN576780, MN576852, MN576916, MN576972
S. tortricidae	YFCC 6013	Limacodidae (Pupa)	MN576780, MN576852, MN576921, MN576977
S. tortricidae	YFCC 6014	Limacodidae (Pupa)	MN576780, MN576852, MN576920, MN576976
S. yunnanensis	YFCC 1824	Limacodidae (Pupa)	MN576782, MN576872, MN576926, MN576982
S. yunnanensis	YFCC 1527	Limacodidae (Pupa)	MN576783, MN576873, MN576927, MN576983

Sarocladium bacillisporum

Species	Strain No.	Host/ Substratum	GenBank Accession No.
S. dejongiae	CBS 14929	Soil	NR_145039, MH870718, - - - -
S. implicatum	CBS 9572	Soil	HG965023, MH878470, - - - -
S. subulatum	CBS 217.35	Soil	MH855652, NG_070566, - - - -
S. terricola	CBS 243.59	Soil	MH857853, MH863989, - - - -

Shimizuomyces paradoxus

Species	Strain No.	Host/ Substratum	GenBank Accession No.
S. lanosoniceum	CBS 101267	Soil	- AJ292395, DQ522643, DQ522356
S. lanosoniceum	CBS 704.86	Soil	AJ292396, AF339553, DQ522643, DQ522358
Sordaria fimicola	AFTOL-ID 216	Soil	AQ018178, - - - - - - - - - -
Sphaerostilbella aureolens	GS74-87	Soil	HG44263, HM446683, FJ42763, -
S. berkeleyana	GS82-274	Soil	HG859197, - - - - - - - - - -
Stachybotrys	CBS 243.99	Soil	- MG00171, - - - - - - - - - -
S. euclyndrospora	ATCC 18851	Plant (Bark)	- JN942887, JN938870, - - - - -
Stephanonectria keithii	GJS89-123	Soil	- JN942887, JN938869, JN938869, JN938869, JN938870

Tilachlidium brachiatum

Species	Strain No.	Host/ Substratum	GenBank Accession No.
T. brachiatum	CBS 363.97	Soil	KM231838, KM231719, KM232414, KM231975
Tolypocladium inflatum	SCALT1007-002	Soil	KM231839, HQ232177, KM232415, KM231975
Trichoderma aggregans	CBS 100525	Soil	JN938987, JQ014130, JQ014130, JQ014130
Trichotheceum roseum	GJS 96-174	Soil	JX458661, JQ014130, JQ014130, JQ014130
Valetoniellopsis laxa	GJS 96-174	Soil	JX458660, JQ014130, JQ014130, JQ014130

Life 2021, 11, 1093
2.3. Sequence Alignment and Phylogenetic Analyses

Lasergene software (version 6.0, DNASTAR) was applied for the assembling and editing of DNA sequence in this study. The ITS, LSU, RPB1, RPB2, and TEF sequences were downloaded from GenBank, based on Kepler et al. [9], Mongkolsamrit et al. [10,19], Chen et al. [12], Wang et al. [20], and others selected on the basis of BLAST algorithm-based searches in GenBank (Table 2). A single gene data set was aligned and edited by MAFFT v7.037b [21] and MEGA6 [22]. Combined sequences of ITS, LSU, RPB1, RPB2, and TEF were performed by SequenceMatrix v.1.7.8 [23]. The combined datasets (ITS+LSU+RPB2+TEF) and (ITS+LSU+RPB1+RPB2+TEF) were used to determine the family placement of those strains in Hypocreales and the taxonomic position of strains and the cryptic diversity among the different isolates of I. farinosa in Cordycipitaceae.

The combined genes were both analyzed using the Bayesian inference (BI) and maximum likelihood (ML) methods. For BI, the model was selected for Bayesian analysis by ModelFinder [24] in the software PhyloSuite [25]. A Markov Chain Monte Carlo (MCMC) algorithm was used to generate phylogenetic trees with Bayesian probabilities using MrBayes v.3.2 [26] for the combined sequence datasets. The Bayesian analysis resulted in 20,001 trees after 10,000,000 generations. The first 4000 trees, representing the burn-in phase of the analyses, were discarded, while the remaining 16,001 trees were used for calculating posterior probabilities in the majority rule consensus tree. After the analysis was finished, each run was examined using the program Tracer v1.5 [27] to determine burn-in, confirming that both runs had converged. ML analyses were constructed with RAxMLGUI [28]. The GTR+GAMMA model was used for all partitions, in accordance with recommendations in the RAxML manual against the use of invariant sites.

3. Results
3.1. Phylogenetic Analyses

Gelasinospora tetrasperma Dowding, *Neurospora crassa* Shear and B.O. Dodge, and *Sordaria fimicola* (Roberge ex Desm.) Ces. and De Not. were used as the outgroup in analysis 1 (Figure 1) (to determine the family placement of those strains in Hypocreales). *Purpureocillium lilacinum* (Thom) Luangsaa-ard, Houbraken, Hywel-Jones, and Samson was used as the outgroup in analysis 2 (Figure 2) (to determine the taxonomic position of strains and the cryptic diversity among the different isolates of *I. farinosa* in Cordycipitaceae).

The concatenated sequences of analysis 1 and 2 included 77 and 62 taxa, respectively, and consisted of 2396 (ITS, 620; LSU, 712; RPB2, 510; and TEF, 554) and 3309 (ITS, 554; LSU, 677; RPB1, 533; RPB2, 671; and TEF, 874) characters with gaps, respectively.

Analysis 1: The selected models for BI analysis were GTR+F+I+G4 parameters for partition ITS and LSU+RPB2, and GTR+F+G4 parameters for partition TEF. The final value of the highest scoring tree was –37,321.078127, which was obtained from an ML analysis of the dataset (ITS+LSU+RPB2+TEF). The parameters of the general time reversible (GTR) model used to analyze the dataset were estimated using the following frequencies: A = 0.230263, C = 0.272892, G = 0.280445, and T = 0.216401; substitution rates AC = 1.451341, AG = 2.441940, AT = 1.532513, CG = 1.182477, CT = 5.701598, and GT = 1.000000; as well as the gamma distribution shape parameter \(\alpha\) = 0.381402. In the phylogenetic tree (Figure 1), both analyses of ML and BI trees were largely congruent, and strongly supported in most branches. DY10951, DY10952, DY101681, DY101682, GY407201, GY407202, YJ06171, and YJ06172 strains had a close relationship with *Cordyceps* Fr., *Akanthomyces* Lebert, and *Simplicillium* W. Gams and Zare, and clustered into Cordycipitaceae.
Cordycipitaceae). The concatenated sequences of analysis 1 and 2 included 77 and 62 taxa, respectively, and consisted of 2396 (ITS, 620; LSU, 712; RPB2, 510; and TEF, 554) and 3309 (ITS, 554; LSU, 677; RPB1, 533; RPB2, 671; and TEF, 874) characters with gaps, respectively.

Figure 1. Phylogenetic placement of the new Isaria-like strains in the order of Hypocreales based on multigene dataset (ITS, LSU, RPB2m and TEF). Statistical support values (≥50%/0.5) are shown at the nodes for ML bootstrap support/BI posterior probabilities.
Figure 2. Phylogenetic placement of the new strains in Cordycipitaceae, based on multigene dataset (ITS, LSU, RPB1, RPB2, and TEF). Statistical support values (≥50%/0.5) are shown at the nodes for ML bootstrap support/BI posterior probabilities.

Analysis 2: The selected models for BI analysis were GTR+F+I+G4 parameters for partition ITS+LSU+RPB2+TEF and GTR+F+G4 parameters for partition RPB1. The final value of the highest scoring tree was –31,206.916701, which was obtained from an ML analysis of the dataset (ITS+LSU+RPB1+RPB2+TEF). The parameters of the general time reversible (GTR) model used to analyze the dataset were estimated using the following frequencies: A = 0.238319, C = 0.279080, G = 0.271674, and T = 0.210926; substitution rates AC = 1.120096, AG = 2.745044, AT = 0.784066, CG = 0.934312, CT = 6.322628, and GT = 1.000000; as well as the gamma distribution shape parameter α = 0.308970. In the phylogenetic tree (Figure 2),
both analyses of ML and BI trees were largely congruent, and strongly supported in most branches. The new strains were all clustered within the genus *Samsoniella*. GY407201 and GY407202 strains clustered with *Samsoniella coleopterorum* W.H. Chen, Y.F. Han, and Z.Q. Liang in a subclade. DY10951 and DY10952 strains clustered with *Samsoniella aurantia* Mongkols., Noirsrip., Thanakitp., Spathafora, and Luangsa-ard in a subclade. PY101681 and DY101682 strains had a close relationship with *Samsoniella aboaurentia* (G. Sm.) Mongkols., Noirsrip., Thanakitp., Spathafora, and Luangsa-ard; *Samsoniella alpina* H. Yu, Y.B. Wang, Y. Wang, and Zhu L. Yang; and *Samsoniella cardinalis* H. Yu, Y.B. Wang, Y. Wang, Q. Fan, and Zhu L. Yang. YJ06171 and YJ06172 strains clustered with *Isaria farinosa* (Holmsk.) Fr. in a subclade and had close relationship with *Samsoniella hepiali* (Q.T. Chen and R.Q. Dai ex R.Q. Dai, X.M. Li, A.J. Shao, Shu F. Lin, J.L. Lan, Wei H. Chen, and C.Y. Shen) H. Yu, R.Q. Dai, Y.B. Wang, Y. Wang, and Zhu L. Yang.

3.2. Taxonomy

3.2.1. *Samsoniella pseudogunnii* W.H. Chen, Y.F. Han, J.D. Liang, and Z.Q. Liang, sp. nov.

MycoBank No.: MB840999

Etymology: referring to similar morphology with *Keithomyces neogunnii*.

Holotype: CHINA, Guizhou, Qiannan Buyi and Miao Autonomous Prefecture, W.H. Chen, Y.F. Han, J.D. Liang, and Z.Q. Liang, sp. nov. (holotype), ex Wanhao Chen, GZAC DY10168 (holotype), ex Duyun City (26°21' 3" N, 107°22' 58.70"

Description: Colonies on PDA, 4.1–4.3 cm diam. after 14 d at 25°C, white, consisting of a basal felt and cottony, floccose hyphal overgrowth, reverse yellowish. Prostrate hyphae smooth, septate, hyaline, 1.0–1.3 µm diam. Erect conidiophores usually arises from aerial hyphae. Phialides are solitary or in whorls of two to nine. Phialides 6.8–11.0 × 2.2–2.4 µm, with a cylindrical basal portion, tapering into a short distinct neck. Conidia in chains, hyaline, fusiform, one-celled, 2.8–3.2 × 1.7–2.1 µm. Chlamydospores and sexual state were not observed. Sizes and shapes of phialides and conidia are similar in culture and on natural substratum.

Known distribution: Tongmuling, Guiyang, Guizhou Province, China.

Notes: *Samsoniella pseudogunnii* was identified as belonging to *Samsoniella* based on the phylogenetic analyses (Figure 2) and has a close relationship with *S. coleopterorum*. However, *Samsoniella pseudogunnii* (Figure 3) has longer phialide, larger conidia, and its larva host belongs to the order Lepidoptera.

![Figure 3. Samsoniella pseudogunnii (A) infected larva (Lepidoptera) (B,C) culture plate, showing the front (B) and the reverse (C) of the colony, cultured on PDA medium (D–I) phialides solitary, conidia adhering ellipsoidal slimy head and conidia (J) conidia. Scale bars: 10 mm (B,C), 10 µm (D–J).](image-url)
3.2.2. Samsoniella Pupicola W.H. Chen, Y.F. Han, J.D. Liang, and Z.Q. Liang, sp. nov.

MycoBank No.: MB841003

Etymology: referring to its pupa-inhabitor.

Holotype: CHINA, Guizhou, Qiannan Buyi and Miao Autonomous Prefecture, Duyun City (26°21'24.71" N, 107°22'48.22" E). On a pupa (Lepidoptera), 1 October 2019, Wanhao Chen, GZAC DY10168 (holotype), ex-type living cultures, DY101681, DY101682.

Description: Colonies on PDA, 2.3–2.4 cm diam. after 14 d at 25°C, white, consisting of a basal felt and cottony, floccose hyphal overgrowth, reverse yellowish. Prostrate hyphae smooth, septate, hyaline, 1.2–2.2 μm diam. Erect conidiophores usually arise from aerial hyphae. Phialides are solitary or in whorls of two to nine. Phialides 7.0–9.2 × 2.5–3.3 μm, with a cylindrical basal portion, tapering into a short distinct neck. Conidia in chains, hyaline, fusiform, one-celled, 2.5–3.3 × 2.2–2.6 μm. Chlamydospores and sexual state were not observed. Sizes and shapes of phialides and conidia are similar in culture and on natural substratum.

Known distribution: Duyun City, Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China.

Additional specimens examined: CHINA, Guizhou, Qiandongnan Miao and Dong Autonomous Prefecture, Rongjiang County (26°01'58.70" N, 108°24'48.06" E), on a lepidopteran pupa, 1 October 2018, W.H. Chen, GZAC DL1014.

Notes: Samsoniella pupicola was identified as belonging to Samsoniella, based on the phylogenetic analyses (Figure 2) and has a close relationship with S. alboaurantium, S. alpina, and S. cardinalis. However, S. pupicola (Figure 4) is distinguished from S. alboaurantium by having larger fusiform conidia, distinguished from S. alpina by having white colony and fusiform conidia, and distinguished from S. cardinalis by having shorter phialides.

Figure 4. Samsoniella pupicola (A) infected pupa (Lepidoptera) (B,C) culture plate, showing the front (B) and the reverse (C) of the colony, cultured on PDA medium (D–J) phialides solitary, conidia adhering ellipsoidal slimy head and conidia (K) conidia. Scale bars: 10 mm (B,C), 10 μm (D–K).

3.2.3. Samsoniella aurantia Mongkols., Noisrip., Thanakitp., Spatafora, and Luangsa-ard, Mycologia 110(1): 249

Description: Colonies on PDA, 3.7–4.2 cm diam. after 14 d at 25°C, white, consisting of a basal felt and cottony, floccose hyphal overgrowth, pale green and pale pink in the middle of the colony, reverse yellowish and pale brown in the middle. Prostrate hyphae smooth, septate, hyaline, 1.3–2.6 μm diam. Erect conidiophores usually arise from aerial hyphae. Phialides are solitary or in whorls of two to ten. Phialides 3.6–7.7 × 1.3–1.6 μm, with a cylindrical basal portion, tapering into a short distinct neck. Conidia in chains, hyaline,
fusiform, occasionally cylindrical, one-celled, 2.6–3.9 × 1.7–2.2 μm. Chlamydospores and sexual state were not observed. Sizes and shapes of phialides and conidia are similar in culture and on natural substratum.

Specimens examined: CHINA, Guizhou, Qiannan Buyi and Miao Autonomous Prefecture, Duyun City (26°21′24.71″ N, 107°22′48.22″ E). On a pupa (Lepidoptera), 1 October 2019, Wanhao Chen, GZAC YJ0617, DY1044, living cultures, DY10951, DY10952.

Note: DY10951 and DY10952 strains were identified as belonging to Samsoniella, based on the phylogenetic analyses (Figure 2), and clustered with Samsoniella aurantia in a clade. The characteristics of DY10951 and DY10952 (Figure 5) strains are similar to that of S. aurantia, which had fusiform conidia (2–4 × 1–2 μm) and larger phialide (5–13 × 2–3 μm). Besides, the pairwise dissimilarities of ITS sequences show no difference within 554 bp between DY10951 and S. aurantia. Thus, molecular phylogenetic results and morphologically based conclusions support the idea that DY10951 and DY10952 strains were S. aurantia.

![Figure 5. Samsoniella aurantia (A) infected pupa (Lepidoptera) (B,C) culture plate, showing the front (B) and the reverse (C) of the colony, cultured on PDA medium (D–J) phialides solitary, conidia adhering ellipsoidal slimy head and conidia (K) conidia. Scale bars: 10 mm (B,C), 10 μm (D–K).]

3.2.4. Samsoniella hepiali (Q.T. Chen, and R.Q. Dai ex R.Q. Dai, X.M. Li, A.J. Shao, Shu F. Lin, J.L. Lan, Wei H. Chen, and C.Y. Shen) H. Yu, R.Q. Dai, Y.B. Wang, Y. Wang, and Zhu L. Yang, Fungal Diversity 103: 31

Description: Colonies on PDA, 5.8–5.9 cm diam. after 14 d at 25°C, white, consisting of a basal felt and cottony, floccose hyphal overgrowth, reverse yellowish. Prostrate hyphae smooth, septate, hyaline, 1.1–1.8 μm diam. Erect conidiophores usually arise from aerial hyphae. Phialides are solitary or in whorls of two to eight. Phialides 6.0–7.8 × 1.5–1.8 μm, with a cylindrical basal portion, tapering into a short distinct neck. Conidia in chains, hyaline, fusiform, one-celled, 2.1–2.5 × 0.9–1.6 μm. Chlamydospores and sexual state were not observed. Sizes and shapes of phialides and conidia are similar in culture and on natural substratum.

Specimens examined: CHINA, Guizhou, Tongren City, Yinjiang (N 27°55′17.1″, E 108°41′25.2″), on an ant, 1 October 2019, Wanhao Chen, GZAC YJ0617, DY1044, living cultures, YJ06171, YJ06172.

Note: YJ06171 and YJ06172 strains were identified as belonging to Samsoniella, based on the phylogenetic analyses (Figure 2), and clustered with Samsoniella hepiali in a clade. The characteristics of YJ06171 and YJ06172 (Figure 6) strains were very closely linked with S. hepiali, which had fusiform or oval conidia (1.8–3.3 × 1.4–2.2 μm) and larger phialide (3.5–13.6 × 1.3–2.1 μm). Besides, the pairwise dissimilarities of LSU sequences show no
difference within 677 bp between YJ06171 and S. hepiali. Thus, molecular phylogenetic results and morphologically based conclusions supported the idea that YJ06171 and YJ06172 strains were S. hepiali.

Figure 6. *Samsoniella hepiali* (A) infected ant (Formicidae) (B,C) culture plate, showing the front (B) and the reverse (C) of the colony, cultured on PDA medium (D–J) phialides solitary, conidia adhering ellipsoidal slimy head and conidia (N) conidia. Scale bars: 10 mm (B,C), 10 μm (D–N).

4. Discussion

The taxonomic delimitation of *Isaria* was originally based on morphological characteristics. However, *Isaria* shares many morphological characters with other genera in Hypocreales, which has resulted in a turbulent taxonomic history [10,29]. D’Alessandro et al. [30] noted that the morphological characteristics used to classify the genus *Isaria* frequently do not resolve new isolates into clearly defined species and need additional molecular markers in phylogenetic analyses. In the present study, *Isaria*-like strains collected from Guizhou Province, China, and previously identified by morphological characteristics, were reanalyzed using multi-gene (ITS, LSU, RPB1, RPB2, TEF) phylogenetic methodology. We proposed two new species of *Samsoniella* in this study.

The species *Isaria farinosa* is a well-known entomopathogenic fungi with worldwide distribution and a wide host range [31]. Kepler et al. [9] transferred *Isaria farinosa* to the genus *Cordyceps* as *C. farinosa* (Holmsk.) Kepler, B. Shrestha, and Spatafora based on a phylogenetic analysis of the CBS 111113 strain. We analyzed several strains of *Isaria farinosa* in the present study. Some properly belonged in the genus *Samsoniella*. CEP 004, CEP 005, CEP 029, YJ06171, and YJ06172 strains were identified as *S. hepiali*. Strains DY10951 and DY10952 were identified as *S. aurantia*. OSC 111005 and OSC 111006 strains were identified as new species but are absent in delineating morphological characteristics. Our results reveal cryptic diversity present in *Isaria farinosa* (now treated as *Cordyceps farinosa*) and illustrated that more attention should be paid on cryptic intraspecific diversity across different fungi isolates and genotypes.

The genus *Samsoniella* was established for the typical species *S. inthanonensis* Mongkol-samrit, Noisripoom, Thanakitpipattana, Spatafora, and Luangs-ard, and two other species (*S. alboaurantia* (G. Sm.) Mongkols., Noisrip., Thanak., Spatafora, and Luangs-ard and *S. aurantia* Mongkols., Noisrip., Thanak., Spatafora, and Luangs-ard) [10]. *Samsoniella* species all have *Isaria*-like morphological characteristics, and cluster in an independent clade with close relationship to the genus *Akanthomyces*. The species *S. alboaurantia* was established based on two strains, CBS 240.32 and CBS 262.58, which previously belonged to *Isaria farinosa* (originally designated *Paecilomyces farinosus* (Holmsk.) A.H.S. Br. and G. Sm.) [10]. Lin et al. [32] revised the taxonomy of some *Isaria*-like strains originally identified as *Isaria farinosa* by morphological characteristics using multi-gene phylogenetic analysis. All the strains were identified as *Samsoniella hepiali* (Q.T. Chen and R.Q. Dai ex R.Q. Dai,
X.M. Li, A.J. Shao, Shu F. Lin, J.L. Lan, Wei H. Chen, and C.Y. Shen) H. Yu, R.Q. Dai, Y.B. Wang, Y. Wang, and Zhu L. Yang. In the present study, YJ06171 and YJ06172 strains were also identified as *Samsoniella hepiali*. Our results revealed that more isolates and genotypes, originally designated as *Isaria*, will need to be transferred to *Samsoniella*.

Samsoniella hepiali (otherwise known as *Paecilomyces hepiali*) is isolated from a field collection of natural *Ophiocordyceps sinensis* insect–fungi complex [33], and is widely used as a medicinal and edible cordycepitoid fungus, creating a great economic value [20]. Lin et al. [32] reported six isolates of *Samsoniella hepiali* from Anhui Province, China, which were isolated from leafhopper, larva, and cicada. CEP 004, CEP 005, CEP 029 strains from Buenos Aires, Argentina, were isolated from whitefly and soil [30]. YJ06171 and YJ06172 strains from Guizhou Province, China were isolated from ant. It is interesting that *Samsoniella hepiali* and its hosts are widely distributed in China and Argentina. This result will help us to assess the extent and distribution of genetic diversity of *Samsoniella hepiali* on a large scale, understand its biology and demographic history, and guide biodiversity conservation programs.

Author Contributions: Resources, W.C., J.L. and X.R.; data curation, W.C.; writing—original draft preparation, W.C., J.L., X.R.; writing—review and editing, J.L., Y.H.; review and editing, J.Z., Z.L.; funding acquisition, W.C., J.L., X.R., J.Z., Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (31860002, 32060011), High-level Innovative Talents Training Object in Guizhou Province (Qiankehepingtairencai [2020]6005), Science and Technology Foundation of Guizhou Province (Qiankehejichu [2020]1Y060), Program of Innovative Scientific and technological Talent Team of Guizhou Province (2020-5010), Guizhou Science and Technology Talent Support Project (Qiankehezhicheng [2019]2776), The Youth Science and Technology Talent Growth project from Guizhou Provincial Department of Education ([2018]389).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Steven M. Thompson for editing the English text of a draft of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fries, E.M. *Systema Mycologicum*; Ex Officina Berlingiana: Lund & Greifswald, Sweden, 1821; Volume 1, pp. 1–726.
2. Brown, A.H.; Smith, G. The genus *Paecilomyces* Bainier and its perfect stage *Byssosclamyis* Westling. *Trans. Br. Mycol. Soc.* 1957, 40, 17–89. [CrossRef]
3. De Hoog, G.S. *The genera Beauveria, Isaria, Tritirachium and Acrodontium Gen. Nov*; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 1972; pp. 1–41.
4. Samson, R.A. *Paecilomyces and some allied Hyphomycetes*; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 1974; Volume 6, pp. 1–119.
5. Hodge, K.T.; Gams, W.; Samson, R.A.; Korf, R.P.; Seifert, K.A. Lectotypification and status of *Isaria* Pers.: Fr. *Taxon* 2005, 54, 485–489. [CrossRef]
6. Luangsa-ard, J.J.; Hywel-Jones, N.L.; Samson, R.A. The order level polyphyletic nature of *Paecilomyces* sensu lato as revealed through 18S-generated rRNA phylogeny. *Mycologia* 2004, 96, 773–780. [CrossRef] [PubMed]
7. Luangsa-Ard, J.J.; Hywel-Jones, N.L.; Manoch, L.; Samson, R.A. On the relationships of *Paecilomyces* sect. *Isarioidaeae* species. *Mycol. Res.* 2005, 109, 581–589. [CrossRef]
8. Gams, W.; Hodge, K.T.; Samson, R.A.; Korf, R.P.; Seifert, K.A. (1684) Proposal to conserve the name *Isaria* (anamorphic fungi) with a conserved type. *Taxon* 2005, 54, 537. [CrossRef]
9. Kepler, R.M.; Luangsa-ard, J.J.; Hywel-Jones, N.L.; Quandt, A.; Sung, G.-H.; Rehner, S.A.; Aime, M.C.; Henkel, T.W.; Sanjuan, T.; Zare, R.; et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). *IMA Fungus* 2017, 8, 335–353. [CrossRef]
10. Mongkolsamrit, S.; Noisripoom, W.; Thanakitpipattana, D.; Wutikun, T.; Spatafora, J.W.; Luangsa-ard, J. Disentangling cryptic species with isaria-like morphs in Cordycipitaceae. *Mycologia* 2018, 110, 230–257. [CrossRef]
11. Chen, W.-H.; Liu, C.; Han, Y.-F.; Liang, J.-D.; Liang, Z.-Q. Akanthomyces araneogenorum, a new Isaria-like araneogenous species. *Phytotaxa* 2018, 379, 66–72. [CrossRef]

12. Chen, W.H.; Han, Y.F.; Liang, J.D.; Tian, W.Y.; Liang, Z.Q. Morphological and phylogenetic characterizations reveals three new species of *Samsoniella* (Cordycipitaceae, Hypocreales) from Guizhou, China. *MycoKeys* 2020, 74, 1–15. [CrossRef] [PubMed]

13. Chen, W.-H.; Liu, C.; Han, Y.-F.; Liang, J.-D.; Tian, W.-Y.; Liang, Z.-Q. Three novel insect-associated species of *Simplicillium* (Cordycipitaceae, Hypocreales) from Southwest China. *MycoKeys* 2019, 58, 83–102. [CrossRef] [PubMed]

14. Zou, X.; Liu, A.; Liang, Z.; Han, Y.; Yang, M. *Hirsutella liboensis*, a new entomopathogenic species affecting Cossidae (Lepidoptera) in China. *MycoKeys* 2010, 111, 39–44. [CrossRef]

15. Liang, J.D.; Han, Y.F.; Zhang, J.-D.; Du, W.; Liang, Z.Q.; Li, Z.Z. Optimal culture conditions for keratinase production by a novel thermophilic *Myceiophthora thermophila* strain GZUIFR-H49-1. *J. Appl. Microbiol.* 2011, 110, 871–880. [CrossRef]

16. White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In *PCR Protocols: A Guide to Methods and Applications*; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [CrossRef]

17. Rakotonirainy, M.; Cariou, M.; Brygoo, Y.; Riba, G. Phylogenetic relationships within the genus *Metarhizium* based on 28S rRNA sequences and isozyme comparison. *Mycol. Res.* 1994, 98, 225–230. [CrossRef]

18. Castlebury, L.A.; Rossman, A.Y.; Sung, G.-H.; Hyten, A.S.; Spatafora, J.W. Multigene phylogeny reveals new lineage for *Stachybotrys chartarum*, the indoor air fungus. *Mycol. Res.* 2004, 108, 864–872. [CrossRef] [PubMed]

19. van den Brink, J.; Samson, R.A.; Hagen, F.; Boekhout, T.; de Vries, R.P. Phylogeny of the industrial relevant, thermophilic genera *Myceiophthora* and *Corynascus*. *Fungal Divers.* 2012, 52, 197–207. [CrossRef]

20. Wang, Y.-B.; Wang, Y.; Fan, Q.; Duan, D.-E.; Zhang, G.-D.; Dai, R.-Q.; Dai, Y.-D.; Zeng, W.-B.; Chen, Z.-H.; Li, D.-D.; et al. Multigene phylogeny of the family Cordycipitaceae (Hypocreales): New taxa and the new systematic position of the Chinese cordycipitoid fungus *Paecilomyces hepiali*. *Fungal Divers.* 2020, 103, 1–46. [CrossRef]

21. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 2013, 30, 772–780. [CrossRef] [PubMed]

22. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 2013, 30, 2725–2729. [CrossRef] [PubMed]

23. Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. *Cladistics* 2011, 27, 171–180. [CrossRef]

24. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. *Nat. Methods* 2017, 14, 587–589. [CrossRef] [PubMed]

25. Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 2020, 20, 348–355. [CrossRef]

26. Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Hoehna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. *Syst. Biol.* 2012, 61, 539–542. [CrossRef] [PubMed]

27. Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. *BMC Evol. Biol.* 2007, 7, 214. [CrossRef]

28. Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAXML. *Org. Divers. Evol.* 2012, 12, 335–337. [CrossRef]

29. Sung, G.-H.; Hywel-Jones, N.L.; Sung, J.-M.; Luangsa-ard, J.J.; Shrestha, B.; Spatafora, J.W. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. *Stud. Mycol.* 2007, 57, 5–59. [CrossRef]

30. D’Alessandro, C.P.; Jones, L.R.; Humber, R.A.; López Lastra, C.C.; Sosa-Gomez, D.R. Characterization and phylogeny of *Isaria* spp. strains (Ascomycota: Hypocreales) using ITS 1-5.8 S-ITS 2 and elongation factor 1-alpha sequences. *Nat. Methods* 2012, 7, 5–59. [CrossRef]

31. Zimmermann, G. The entomopathogenic fungi *Isaria farinosa* (formerly *Paecilomyces farinosus*) and the *Isaria fumosorosea* species complex (formerly *Paecilomyces fumosoroseus*): Biology, ecology and use in biological control. *Biocontrol Sci. Technol.* 2008, 18, 865–901. [CrossRef]

32. Lin, Y.; Liu, Y.J.; Wang, T.; Chen, M.J. Revision of taxonomic status of several *Isaria*-like strains. *J. Microbiol. China* 2021. (In Chinese) [CrossRef]

33. Dai, R.-Q.; Shen, C.-Y.; Li, X.-M.; Lan, J.-L.; Lin, S.-F.; Shao, A.-J. Response to neotypification of *Paecilomyces hepiali* (Hypocreales) (Wang & al., 2015). *Taxon* 2018, 67, 784–786. [CrossRef]