Maternal One-Carbon Metabolism and Infant DNA Methylation between Contrasting Seasonal Environments: A Case Study from The Gambia

Philip T James, Paula Dominguez-Salas, Branwen J Hennig, Sophie E Moore, Andrew M Prentice, and Matt J Silver

1Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom; 2Department of Production and Population Health, Royal Veterinary College, London, United Kingdom; 3Population Health, Science Division, Wellcome Trust, London, United Kingdom; and 4Department of Women and Children’s Health, King’s College London, London, United Kingdom

ABSTRACT

Background: The periconceptional period is a time in which environmentally induced changes to the epigenome could have significant consequences for offspring health. Metastable epialleles (MEs) are genomic loci demonstrating interindividual variation in DNA methylation with intraindividual crosstissue correlation, suggesting that methylation states are established in the very early embryo before gastrulation. In our previous Gambian studies, we have shown that ME methylation states in the offspring are predicted by maternal concentrations of certain nutritional biomarkers around the time of conception.

Objective: We aimed to assess whether the profile of maternal biomarker predictors of offspring methylation differs between rainy and dry seasons in a population of rural Gambians, using a larger set of 50 recently identified MEs.

Methods: We measured 1-carbon biomarkers in maternal plasma back-extrapolated to conception, and cytosine-phosphate-guanine (CpG) methylation at 50 ME loci in their infants’ blood at a mean age of 3.3 mo (n = 120 mother-child pairs). We tested for interactions between seasonality and effects of biomarker concentrations on mean ME methylation z score. We used backward stepwise linear regression to select the profile of nutritional predictors of methylation in each season and repeated this analysis with biomarker principal components (PCs) to capture biomarker covariation.

Results: We found preliminary evidence of seasonal differences in biomarker-methylation associations for folate, choline, and homocysteine (interaction P values ≤0.03). Furthermore, in stratified analyses, biomarker predictors of methylation changed between seasons. In the dry season, vitamin B-2 and methionine were positive predictors. In the rainy season, however, choline and vitamin B-6 were positive predictors, and folate and vitamin B-12 were negative predictors. PC1 captured covariation in the folate metabolism cycle and predicted methylation in dry season conceptions. PC2 represented the betaine remethylation pathway and predicted rainy season methylation.

Conclusions: Underlying nutritional status may modify the association between nutritional biomarkers and methylation, and should be considered in future studies.

Introduction

The Developmental Origins of Health and Disease (DOHaD) hypothesis suggests that early-life environmental exposures affect lifelong health and disease risk (1–4). For example, exposure to the Dutch Hunger Winter famine in 1944–1945 across different stages of prepregnancy and pregnancy has been associated with lower birthweight (5), increased adult blood pressure...
and obesity (6–8), and increased risk of schizophrenia (9). One plausible mechanism for these associations is through epigenetic modifications to the genome (10–12). Epigenetic processes encompass mitotically heritable changes to the genome that can alter gene expression without changing the underlying DNA sequence (13), and include DNA methylation (predominantly at cytosine-phosphate-guanine (CpG) sites), histone modifications, and RNA-based mechanisms (14).

Times of increased cell turnover, such as during fetal development, may be particularly susceptible to epigenetic errors or to adaptive modifications designed to capture early environmental cues (15, 16). Early embryonic development is a period of complex epigenetic remodeling and cell differentiation (17–19), and thus represents a critical window in which changes to the epigenetic program could have significant consequences for offspring health (20).

Metastable epialleles (MEs) are genomic loci whose (nongenetically determined) methylation state varies between individuals, but in whom variation is correlated across tissues originating from all 3 germ layers in a single individual (16, 21). This suggests the establishment of stochastic methylation states in the first few days after conception before separation into germ layers around gastrulation. ME methylation therefore provides a useful measure for studying the potential influence of the periconceptional environment on selected regions of the offspring epigenome (22, 23). ME methylation status in humans has been associated with obesity, immune function, and certain cancers (24–26).

A variety of nutritional and other environmental factors can impact the infant epigenome in utero through maternal exposure (20, 27, 28), including 1-carbon metabolites in the periconceptional period and during embryonic development (29). One-carbon metabolism refers to the interlinking reactions of the folate, choline, methionine, homocysteine, transsulfuration and transmethylation metabolic pathways (30, 31). DNA methylation is one of the numerous transmethylation reactions made possible by the donation of a methyl group from S-adenosylmethionine (SAM), forming S-adenosyl homocysteine (SAH) in the process (32). The SAM:SAH ratio has therefore been used as a proxy indicator of methylation potential (33). The 1-carbon pathways that enable transmethylation to occur rely on nutritional inputs in the form of methyl donors (e.g., folate, choline, betaine) and essential cofactors (e.g., vitamins B-2, B-6, and B-12) (30, 34). Nutritional status of the mother can therefore influence DNA methylation, and this is most clearly exemplified in animal models. In Agouti mouse experiments, pregnant dams fed a diet rich in vitamin B-12, folic acid, choline, and betaine gave birth to pups exhibiting increased methylation at the locus influencing the expression of the Agouti gene compared with controls.

This resulted in changes to offspring fur color, appetite, adiposity, and glucose tolerance (27, 33). In humans, there is also evidence linking maternal nutrition to offspring DNA methylation, explored either as individual micronutrients or as proxy measures of nutrition such as famine and seasonality (36, 37). Although there is also much evidence linking DNA methylation to later phenotype (12, 38), studies fully exploring the continuum of maternal nutrient exposure, offspring DNA methylation, and later phenotype are relatively rare (39).

In a series of studies in rural Gambia, we have been able to exploit a seasonal “natural experiment,” whereby a cycling pattern of rainy and dry seasons imposes strikingly different environmental, especially nutritional, exposures on the population. We have shown that plasma collected in nonpregnant women of child-bearing age contains higher concentrations of methyl donors and has a higher methylation potential in the peak rainy season (July to September) than in the peak dry season (February to April) (40). Furthermore, we found that seasonal differences in maternal periconceptional nutritional status are associated with offspring methylation at multiple MEs. Increased concentrations of vitamin B-2 and decreased concentrations of vitamin B-6, homocysteine, and cysteine predicted increased offspring mean methylation across 6 MEs (23), whereas offspring conceived in the rainy season had consistently higher level of ME methylation in peripheral blood monocytes than those conceived in the dry season (22–26). However, our previous analyses did not explicitly test for an interaction with season for the associations between biomarker predictors and methylation.

Here, by exploring nutrient-season interactions, we extended our previous analyses to investigate whether the profile of maternal nutritional predictors of ME methylation varies between rainy and dry seasons. In doing so, we used a recently identified larger set of MEs associated with Gambian season of conception (SoC)-associated MEs (26) and explored in greater detail how covariation in the nutritional biomarkers can be captured in a principal components (PCs) model.

Methods

This paper utilizes data from 2 parallel studies: the Methyl Donors and Epigenetics (MDEG) study (23) and the Early Nutrition & Immune Development (ENID) Trial (41), both conducted in the rural West Kiang region of The Gambia.

Study population: The MDEG study

The MDEG study investigated the effects of periconceptional maternal biomarkers on infant DNA methylation at 6 candidate MEs (23). Women of reproductive age (18–45 y) were invited to participate and were followed monthly until pregnancy confirmation. Consenting women who conceived in the peak of the rainy season (July to September 2009) and the peak of the dry season (February to April 2010) were enrolled. Women provided a 10-mL fasting venous blood sample at the point they reported their first missed menses [mean (SD) 8.6 ± 4 weeks of gestation]. The following maternal 1-carbon biomarkers were analyzed: plasma folate, vitamin B-12, active vitamin B-12, choline, betaine, dimethylglycine (DMG), methionine, SAM, SAH, homocysteine (Hcy), cysteine, 4-pyridoxic acid (PA), pyridoxal (PL), pyridoxal-5′-phosphate (PLP), and erythrocyte riboflavin (vitamin B-2), as described previously (23). All biomarkers were back-extrapolated to the time of conception using seasonal trends from a cohort of 30 nonpregnant women from the same district, who provided fasted venous blood samples every month for a year, as previously detailed (40). Infant DNA was obtained from a 3-mL venepuncture taken 2–8 mo after delivery. In this analysis, we use a subset of 120 infants for whom we had analyzed genome-wide DNA methylation data (Gene Expression Omnibus accession GSE59592), obtained using the Illumina Infinium HumanMethylation450 array (“450k array”) (25, 42).
Selection of season of conception-associated ME loci from the ENID study

ME loci were identified using data from the ENID trial. Participants in ENID partially overlap with those in the MDEG study, although in the analysis described here, individuals from MDEG and ENID form distinct, nonoverlapping groups. \(n = 50 \) SoC-associated ME loci were identified as the intersection between loci identified in a recent screen for MEs on the 450k array and 2171 CpGs showing SoC-associated differential methylation using 450k data from 128 ENID blood samples from infants aged 24 mo (26). Selection of loci demonstrating both metastability and sensitivity to the periconceptional environment, each in independent samples, strengthens evidence that they are established in the early embryo (16, 25, 26). We provide details on the locations and genomic context of the 50 CpG loci used in this analysis in Supplementary Table 1. Our use of ENID samples to identify SoC-associated MEs in this analysis carries a number of advantages. First, it offers an opportunity to validate observations of increased rainy SoC ME methylation across independent ENID and MDEG 450k methylation datasets. Second, annual patterns of Gambian seasonality mean that potential confounding due to the relation between SoC and season of sample collection is different between ENID (median age of collection 24 mo) and MDEG (median age 3 mo) cohorts, enabling more robust inference (43). Third, SoC effects identified using ENID infant 24 mo DNA are by definition more persistent than those identified in younger MDEG samples, making them potentially more robust candidates for use as biomarkers or mediators of later health outcomes.

Statistical analyses

Outcome: infant DNA methylation at 50 CpGs. The 50 SoC-associated ME loci on the 450k array identified using ENID methylation data (see above) were carried forward for use as candidates in the current analysis with 450k methylation data from 120 infants in the MDEG dataset, for which we had matching maternal plasma biomarker concentration data. DNA methylation \(\beta \) values were adjusted for batch effects (25). CpG methylation across the 50 ME loci was highly correlated (Cronbach’s \(\alpha \) test reliability coefficient of 0.908). We therefore derived a univariate measure of ME methylation by converting methylation at each CpG into a \(z \) score [(individual observation – CpG mean)/CpG SD] and taking the mean of the methylation \(z \) scores across all 50 CpGs as our primary outcome measure.

Exposure variables: nutritional biomarkers. After removing variables demonstrating colinearity, the final list of nutritional exposure variables was: folate, active vitamin B-12, vitamin B-2, choline, betaine, DMG, SAM:SAH, Hcy, methionine, PLP, and cysteine. All nutritional biomarkers were treated as continuous variables. All biomarkers were log-transformed to improve normality, apart from SAM:SAH, which was left untransformed, and standardized before analyses.

In order to capture covariation of the 1-carbon biomarkers, we also conducted a PCA analysis. Four PCs had an eigenvalue >1 and underwent orthogonal varimax rotation. We generated individual PC scores based on these loadings and used the resulting 4 PC variables in subsequent regression analyses.

Baseline characteristics. Because this study uses a subsample of 120 mother-child pairs from the original sample (\(n = 160 \)) (23), we report the baseline characteristics again by SoC. Means (for continuous, normal data) were compared using Student’s \(t \) test; medians (of non-normal data) were compared using the Wilcoxon rank-sum test; and proportions were compared using a chi-squared test or Fisher exact test (for categories with sparse data).

Associations between nutritional exposures and infant DNA methylation: crude analyses. To validate the findings from the original MDEG study using this larger set of MEs, we ran linear regression models to assess the crude association between maternal nutritional exposures and SoC with infant mean methylation \(z \) score. To assess the hypothesis that the profile of nutritional predictors might change between seasons, we then included season as an interaction term in the association between the nutritional exposures and methylation, assessing the interaction using the likelihood ratio test.

Primary objective: Predictors of methylation by SoC. Given that the interaction tests justified stratifying the data by SoC, we then explored the predictors of methylation in each season separately using multivariable linear regression. We used an automatic backward stepwise approach for variable selection, using a \(P \) value of >0.2 as the criterion for removal from the model. Each regression model was run twice; first, using the individual 1-carbon biomarkers as exposures (“biomarker model”) and second using the 4 PCs model.

All regression model residuals were checked for normality and met the assumptions of linear regression models. All models included 11 a priori confounders: maternal age, BMI, and gestational age at time of sample collection; infant sex and infant age at time of sample collection; and 5 methylation-derived white blood cell counts (25). All of these have previously been associated with methylation (44–47). We report likelihood ratio test results comparing the full model against the baseline model including all confounders only. Stata 14.0 (Stata Corporation) was used for all statistical analyses.

Ethical considerations

Ethical approvals for the ENID trial and MDEG study were given by the Gambia Government/MRC Joint Ethics Committee (SCC1126v2 and SCC11151, respectively). Consent was gained by signature or thumb print from mothers for their own participation and that of their child. All data were anonymized before analyses.

Results

Four PCs with an eigenvalue \(>1 \) explained 65.0% of the total variation seen in the 11 biomarkers (Supplementary Table 2). After rotation, PC1 was associated positively with folate and SAM:SAH, and inversely with Hcy. PC2 was strongly correlated positively with choline and betaine, and inversely with active vitamin B-12. PC3 was positively correlated with the amino acids methionine and cysteine, and PC4 was strongly correlated with PLP and active vitamin B-12. These 4 PCs explained more than half the variability of all biomarkers apart from active vitamins B-12 and B-2, which still had 54.3% and 60.0% unexplained respectively. Figure 1 shows the correlation between the 1-carbon biomarkers and the PC loadings as a heat map.

Baseline maternal and infant characteristics are summarized in Table 1, detailed for the overall sample and by SoC. There was no difference in maternal age, gestational age, maternal BMI, or infant sex
Maternal and infant characteristics, overall and stratified by season of conception

TABLE 1

Variable	Total n	Statistic	Dry season n	Statistic	Rainy season n	Statistic	p²
Folate, nmol/L	117	15.4 (14.3–16.6)	59	12.6 (11.6–13.7)	58	18.9 (17.0–20.9)	<0.001
Active B12, pmol/L	118	73.7 (68.1–79.8)	59	79.2 (71.4–87.8)	59	68.6 (60.7–77.6)	0.077
B2, 1/EGRAC	113	0.45 (0.43–0.48)	57	0.41 (0.38–0.44)	56	0.51 (0.47–0.55)	<0.001
Choline, µmol/L	117	6.6 (6.2–6.70)	59	6.9 (6.3–7.5)	58	6.3 (5.9–6.8)	0.109
Betaine, µmol/L	118	18.8 (17.6–20.1)	59	17.5 (15.7–19.4)	59	20.2 (18.6–21.9)	0.033
Dimethylglycine, µmol/L	118	2.2 (1.9–2.4)	59	2.9 (2.5–3.3)	59	1.6 (1.4–1.8)	<0.001
SAM:SAH ratio	118	7.7 (7.2–8.2)	59	6.5 (6.0–7.1)	59	9.1 (8.4–9.7)	<0.001
Homocysteine, µmol/L	118	6.7 (6.3–7.2)	59	7.4 (6.8–8.1)	59	6.1 (5.7–6.6)	<0.001
Methionine, µmol/L	118	24.4 (23.5–25.3)	59	22.9 (21.8–24.1)	59	26.0 (24.7–27.3)	<0.001
Pyridoxal phosphate, nmol/L	118	21.9 (20.2–23.7)	59	23.7 (20.9–27.0)	59	20.1 (18.4–22.1)	0.041
Cysteine, µmol/L	118	197.3 (192.9–201.9)	59	192.6 (186.8–198.5)	59	202.2 (195.6–209.0)	0.032
PC1	111	0.00 ± 1.58	57	−0.89 ± 1.24	54	0.94 ± 1.36	<0.001
PC2	111	0.00 ± 1.34	57	−0.03 ± 1.46	54	0.04 ± 1.21	0.788
PC3	111	0.00 ± 1.26	57	−0.52 ± 1.14	54	0.55 ± 1.15	<0.001
PC4	111	0.00 ± 1.13	57	0.35 ± 1.18	54	−0.37 ± 0.95	<0.001
Maternal age, y	117	29.2 ± 6.7	58	28.2 ± 6.1	59	30.3 ± 7.2	0.089
Gestational age, d	120	60.7 ± 28.5	60	63.8 ± 27.8	60	57.6 ± 28.9	0.237
BMI, kg/m²	120	16.7 ± 20	60	15.0 ± 9	60	18.3 ± 11	<0.001
Underweight							
Normal							
Overweight							
Infant sex, % (n)	120			60		60	0.534
Female	48.3 (58)			51.7 (31)		45.0 (27)	
Male	51.7 (62)			48.3 (29)		55.0 (33)	
Infant age, mo	112	3.3 [3.11–3.77]	55	3.2 [3.07–3.21]	57	3.7 [3.31–4.0]	<0.001

1Values are geometric means (95% CIs) for maternal biomarkers; medians (IQRs) for infant age; means ± SDs for PCs, maternal age, gestational age, and BMI; and % (n) for infant sex. B2, vitamin B-12; B2, vitamin B-2; EGRAC, erythrocyte glutathione reductase activity coefficient; PC, principal component; SAM, S-adenosyl homocysteine; SAH, S-adenosyl homocysteine.

2Testing difference by season: Wilcoxon rank-sum test for nonnormal data, Student's t-test for normal data, chi-squared test for proportion.
TABLE 2 Maternal plasma biomarker status, overall and stratified by season of conception\(^{1}\)

Variables	Cutoff for low/abnormal status	Overall (both seasons)	Dry season	Rainy season				
		n below cutoff	%	n	%	n	%	P\(^2\)
Homocysteine	>15 µmol/L (48)	2/118	1.7	2/59	3.4	0/59	0.0	0.496
Folate	<10 nmol/L (49)	15/117	12.8	12/59	20.3	3/58	5.2	0.024
B\(_2\)	<0.77 (1/EGRAC) (50)	109/113	96.5	57/57	100.0	52/56	92.9	0.057
PLP	<20 nmol/L (51)\(^{3}\)	50/118	42.4	19/59	32.2	31/59	52.5	0.025
Active B\(_12\)	<37 pmol/L (52)	6/118	5.1	1/59	1.7	5/59	8.5	0.207
Choline	<5 µmol/L (48)\(^{3}\)	24/117	20.5	12/59	20.3	12/58	20.7	0.963
Betaine	<16 µmol/L (48)\(^{3}\)	35/118	29.7	22/59	37.3	13/59	22.0	0.070
Methionine	<20 µmol/L (53)\(^{4}\)	19/118	16.1	12/59	20.3	7/59	11.9	0.210
Cysteine	<36 µmol/L (53)\(^{4}\)	0/118	0.0	0/59	0.0	0/59	0.0	—

\(^{1}\)B\(_{12}\), vitamin B-12; B\(_2\), vitamin B-2; EGRAC, erythrocyte glutathione reductase activity coefficient; PLP, pyridoxal-5′-phosphate.

\(^{2}\)Test for seasonal difference in biomarker status. P values from chi-squared test, or Fisher’s exact test (if any numerator <5).

\(^{3}\)There are no clearly defined plasma cutoffs for deficiency. The suggested cutoffs indicate below the normal range and can be considered “low status.”

\(^{4}\)The amino acid cutoffs represent the 10th percentile of a healthy population age >16 y in Canada (53). Note that these cutoffs do not necessarily represent low status or deficiency.

In stratified analyses using backward stepwise regression, Hcy, vitamin B-2, methionine, and SAM:SAH were retained in the dry season multivariable biomarker model (Table 4). Of these selected variables, methionine was the strongest positive predictor of methylation, followed by SAM:SAH. Hcy was associated with decreasing methylation as in crude analyses, as was vitamin B-2. The full model explained 27.0% of total variance in methylation (adjusted \(R^2\), model \(P = 0.001\)). In the dry season, PC model PC1 was the only covariate retained, and the model explained 18.7% of methylation variance (model \(P = 0.009\)).

In the rainy season biomarker model, a different profile of predictors was retained. SAM:SAH, choline, and PLP were associated with increasing methylation, whereas folate and active vitamin B-12 were associated with decreasing methylation (Table 5). The rainy season model explained 9.4% of methylation variance (adjusted \(R^2\), model \(P = 0.004\)). In the rainy season PC model, PC2 was positively associated with methylation. PC1 and PC3 were also retained and showed weak inverse associations. The model, however, fitted poorly.

A graphical summary of the associations between predictors of methylation retained in the multivariable models by SoC is shown in Figure 2. This figure simplifies the above results by focusing on the PC associations, showing the switch of positive predictors of methylation from the folate pathway in the dry season to the choline/betaine pathway in the rainy season.

Discussion

This study extends our understanding of previously reported associations between 1-carbon biomarkers in mothers at the time of conception and DNA methylation at MEs in their infants. We have validated previous findings of increased methylation at MEs for rainy season conceptions, but found that maternal plasma biomarkers back-extrapolated to the time of conception generally demonstrate little individual effect on infant ME methylation, whether in crude analyses or in multivariable predictive models. There was some preliminary evidence to suggest an interaction between SoC and the association of maternal 1-carbon biomarkers with infant methylation.

PCs and metabolic pathways

The PC approach is useful for exploring covariation in biomarkers and their joint influence on methylation, although their biological interpretation can be difficult. However, our findings suggested the strongest loadings of each PC mapped onto different metabolic pathways. The major loadings for PC1 are involved in the folate metabolism cycle. The major form of folate in plasma is 5-methyltetrahydrofolate (54), which donates its methyl group to Hcy via methyltetrahydrofolate reductase using vitamin vitamin B-12 as a coenzyme (55). The remethylation of Hcy forms methionine, which is then used to form SAM, thus explaining why the SAM:SAH ratio loading is also positively correlated with this PC along with folate. The inverse correlation of Hcy is expected because it is held in equilibrium with SAH, a buildup of which can impede the SAM to SAH reaction via product inhibition of methyltransferases (56). In contrast, PC2 loadings are positively associated with the betaine remethylation pathway. Choline is the precursor to betaine, which is formed via a 2-step oxidation reaction (57). Betaine donates its methyl group to homocysteine, catalyzed by betaine-homocysteine methyl transferase (57). Methionine and cysteine provide the major loadings for PC3. This could represent the transsulfuration pathway, because methionine provides the sulfur atom for cysteine synthesis, via the irreversible degradation of Hcy (31). It could also reflect that methionine and cysteine are dietary components found in similar food sources. The PC4 primary loading comes from PLP, which is particularly involved in 1-carbon metabolism as a coenzyme in the transsulfuration pathway, as well as being required to reduce THF to methylene-THF (31).

Crude analyses between SoC, 1-carbon related exposures, and methylation

Using an expanded set of 50 ME CpGs associated with SoC in samples from older infants (26), we validated our previous finding (23) of increased ME methylation in rainy season conceptions in the younger cohort analyzed here. Biomarker concentrations differed by season in ways that have been previously described (23), forming a profile with higher methylation potential in the rainy season than in the dry season. In the original MDEG study, we found that periconceptional concentrations of vitamin B-2 were positively associated with offspring...
methyltransferase activity and Hcy, whereas vitamin B-6 and cysteine were inversely associated (23). In these current analyses, we found the same association with Hcy, but not with vitamin B-2, vitamin B-6, or cysteine. Instead, in crude analyses, we found that SAM:SAH was positively associated with methylation, in line with the expected effect of these intermediary metabolites on methylation potential (33). The differences between the current and previous analyses could reflect the reduced sample size in this updated analysis (due to the smaller number of samples with Illumina 450k array data), additional adjustment covariates used, or the larger panel of MEs used to derive a univariate methylation score, overall and stratified by season using linear regression.

Predictors of methylation by SoC from multivariable analyses

In the dry season, the predictors broadly indicate that increasing methylation potential (increasing SAM:SAH and decreasing Hcy, most likely through the folate pathway looking at the PC1 loadings) contributes to higher levels of DNA methylation. However, in the rainy season, when there is higher plasma folate and lower plasma Hcy than in the dry season, the folate pathway unexpectedly switches to an inverse association, and we can hypothesize that the betaine remethylation pathway takes prominence. Although these simple regression models

\[
\begin{align*}
\text{TABLE 3} & \quad \text{Crude association between exposures and total mean CpG methylation z score, overall and stratified by season using linear regression}^1
\end{align*}
\]

Variable	Overall (both seasons)	Stratified analysis by season					
	n	Coefficient (95% CI)	P*	Season	Coefficient (95% CI)	P*	P interaction P*
Season*	109	0.26 (0.07, 0.45)	0.008	Dry	0.10 (−0.06, 0.26)	0.237	0.019
Log folate	108	0.02 (−0.07, 0.11)	0.623	Rainy	−0.14 (−0.26, −0.01)	0.034	
Log active B12	109	−0.08 (−0.17, 0.02)	0.102	Dry	−0.04 (−0.18, 0.09)	0.549	0.758
Log B2	105	0.04 (−0.05, 0.14)	0.347	Rainy	−0.07 (−0.18, 0.05)	0.264	
Log choline	108	0.02 (−0.07, 0.11)	0.642	Dry	−0.01 (−0.16, 0.14)	0.916	0.986
Log betaine	109	0.05 (−0.04, 0.14)	0.236	Rainy	−0.01 (−0.14, 0.13)	0.924	
Log dimethylglycine	109	−0.03 (−0.12, 0.06)	0.496	Dry	0.09 (−0.13, 0.09)	0.705	0.030
SAM:SAH ratio	109	0.12 (0.03, 0.20)	0.010	Rainy	0.16 (0.02, 0.3)	0.023	
Log homocysteine	109	−0.09 (−0.18, 0.00)	0.054	Dry	−0.13 (−0.25, −0.01)	0.039	0.030
Log methionine	109	0.05 (−0.04, 0.15)	0.277	Rainy	0.06 (−0.08, 0.21)	0.389	
Log PLP	109	0.05 (−0.04, 0.15)	0.277	Dry	0.09 (−0.03, 0.22)	0.132	0.062
Log cysteine	109	−0.05 (−0.14, 0.04)	0.303	Rainy	−0.07 (−0.21, 0.07)	0.341	
PC1	103	0.06 (0.00, 0.12)	0.037	Dry	0.00 (−0.11, 0.11)	0.999	0.762
PC2	103	0.04 (−0.03, 0.11)	0.299	Rainy	−0.03 (−0.18, 0.13)	0.727	
PC3	103	0.00 (−0.09, 0.08)	0.909	Dry	−0.06 (−0.19, 0.07)	0.352	0.955
PC4	103	−0.06 (−0.14, 0.02)	0.126	Rainy	−0.06 (−0.18, 0.07)	0.371	

1B12, vitamin B-12; B2, vitamin B-2; CpG, cytosine-phosphate-guanine; PC, principal component; PLP, pyridoxal-5′-phosphate; SAH, S-adenosyl homocysteine; SAM, S-adenosyl methionine.
2All 1-carbon biomarkers log-transformed and standardized, apart from SAM:SAH (standardized only).
3Adjusted for maternal BMI at time of bleed, gestational age at time of bleed, maternal age, infant sex, infant age, white blood cell composition.
4Two-tailed t-test for coefficient slope.
5Likelihood ratio test comparing models with and without interaction term.

*Season is coded 0 = dry 1 = rainy.
TABLE 4 Multivariable linear regression: predictors of methylation (dry season)\(^1\)

Variable	Coefficient (95% CI)	\(P\)
Log homocysteine	−0.16 (−0.31, −0.01)	0.040
Log methionine	0.17 (0.04, 0.30)	0.011
Log B\(_2\)	−0.10 (−0.25, 0.06)	0.214
SAM:SAH ratio	0.13 (−0.05, 0.31)	0.164
\(n\)	—	52
Overall model \(^5\)	—	0.001
R-squared	—	0.471
Adjusted R-squared	—	0.270

Variable	PC model	
PC1	0.15 (0.03, 0.26)	0.012
PC2	0.09 (0.03, 0.26)	0.012
PC3	0.16 (0.03, 0.26)	0.012

1 B\(_2\), vitamin B-2; PC, principal component; SAH, S-adenosyl homocysteine; SAM, S-adenosyl methionine.
2 All 1-carbon biomarkers log-transformed and standardized, apart from SAM:SAH (standardized only).
3 Adjusted for maternal BMI at time of bleed, gestational age at time of bleed, maternal age, infant sex, infant age, white blood cell composition.
4 Two-tailed \(t\) test for coefficient slope.
5 Likelihood ratio test comparing the final model with the model only including a priori confounders.

TABLE 5 Multivariable linear regression: predictors of methylation (rainy season)\(^1\)

Variable	Coefficient (95% CI)	\(P\)
Log folate	−0.20 (−0.35, −0.06)	0.008
Log active B\(_{12}\)	−0.08 (−0.20, 0.04)	0.201
Log LP\(_P\)	0.11 (−0.08, 0.30)	0.236
Log choline	0.18 (0.03, 0.32)	0.018
SAM:SAH ratio	0.14 (−0.02, 0.30)	0.093
\(n\)	—	51
Overall model \(^5\)	—	0.004
R-squared	—	0.366
Adjusted R-squared	—	0.094

Variable	PC model	
PC1	−0.06 (−0.16, 0.03)	0.188
PC2	0.09 (−0.01, 0.20)	0.080
PC3	−0.08 (−0.20, 0.04)	0.169

1 B\(_{12}\), vitamin B-12; PC, principal component; LP, pyridoxal-5'-phosphate; SAH, S-adenosyl homocysteine; SAM, S-adenosyl methionine.
2 All 1-carbon biomarkers log-transformed and standardized, apart from SAM:SAH (standardized only).
3 Adjusted for maternal BMI at time of bleed, gestational age at time of bleed, maternal age, infant sex, infant age, white blood cell composition.
4 Two-tailed \(t\) test for coefficient slope.
5 Likelihood ratio test comparing the final model with the model only including a priori confounders. PC, principal component.
The use of PCs gives some further insight into the joint effect of correlated biomarkers, offering an analysis strategy that lies conceptually between the consideration of biomarkers in isolation, and more sophisticated approaches that attempt to model the full complexity of metabolic networks. PC regression models are, however, hard to interpret. There are other models that are designed to help generate an understanding of how 1-carbon pathways interact (often in nonlinear ways), for example by estimating fluxes of metabolites through the pathways under given scenarios, and within specific cellular compartments (50, 80–82). Although these models are mathematically sophisticated, many are based on kinetic data that can be difficult to obtain at the population level. Furthermore, there is a need to generate models that can integrate plasma concentration data, the most common and accessible type of experimental data used for human in vivo studies. A promising way forward is within the field of systems biology, an integrative discipline that analyses complex datasets to help generate hypotheses, which can be experimentally validated and used to improve computer modeling in an iterative fashion (83). However, despite the limitations of the linear regression models we used, they can still play a role in hypothesis generation.

Conclusions

Before this study, we had observed that methylation at 6 MEs is higher among infants conceived in the rainy season than in those conceived in the dry season, and this trend has been seen again in a larger set of 50 MEs in the current analysis. However, we had not previously investigated whether the same combination of methyl donors and cofactors were consistently associated with methylation, or whether there was an interaction with season. In this current analysis, we find preliminary evidence to suggest that the rainy and dry seasons in The Gambia have a different set of maternal nutritional predictors of infant methylation. However, larger samples sizes and more sophisticated ways of modeling the complex nonlinear interrelations of metabolites are needed to further our understanding of what might trigger a switch between different methylation pathways at the molecular level.

Although there is still much work to do to complete our understanding of underlying mechanisms, our findings highlight potential considerations for future study design. If underlying nutritional status (partially captured in this study by the observed seasonal variations in plasma biomarker concentrations) influences the predictors of DNA methylation, then this would be applicable to populations with...
heterogeneous patterns of dietary intake, whether seasonally driven or otherwise. This suggests that studies would benefit from collecting detailed information on nutritional status to assess if underlying nutritional status acts as an effect modifier. In observational studies, this information may help to explain contradicting associations between nutrition and other environmental exposures and DNA methylation or, in the case of trials, between nutritional interventions and DNA methylation. Such considerations might also inform the timing of future studies if there are seasonal dietary intake variations, or the targeting of subgroups in the context of populations with broad variation in nutritional status. In summary, the underlying nutritional status could be an essential piece of information to help disentangle the often complex and contradictory findings from nutritional epigenetics studies.

Acknowledgments
The authors’ responsibilities were as follows—MJS and PTJ: designed the research for this secondary analysis; PD-S, BJH, SEM, AMP, and MJS: conducted the original research; PTJ: performed the statistical analysis and drafted the article; PD-S, BJH, SEM, AMP, and MJS: reviewed the draft and provided critical feedback; PTJ: had primary responsibility for final content; and all authors: read and approved the final manuscript.

References
1. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989;298:564–7.
2. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993;341:938–41.
3. Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE, Speizer FE, Stampfer MJ. Birth weight and adult hypertension and obesity in women. Circulation 1996;94:1310–5.
4. Eriksson JG, Forsén T, Tuomilehto J, Winter PD, Osmond C, Barker DJP. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 1999;318:427–31.
5. Smith CA. The effect of wartime starvation in Holland upon pregnancy and its product. Am J Obstet Gynecol 1947;53:599–608.
6. Roseboom TJ, van der Meulen JH, de Vries-Snoek GA, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Maternal nutrition during gestation and blood pressure in later life. J Hypertens 2001;19:29–34.
7. Stein AD, Zybert PA, van der Pal-de Bruin K, Lumey LH. Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: Evidence from the Dutch Famine. Eur J Epidemiol 2006;21:759–65.
8. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 1976;295:349–53.
9. Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D, Gorman JM. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 1996;53:25–31.
10. Heijmans BT, Tohi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008;105:17046–9.
11. Tohi EW, Slieker BC, Stein AD, Suchiman HED, Slagboom PE, van Zwet EW, Heijmans BT, Lumey L. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 2015;44:1211–23.
12. Lillycrop KA, Burdge GC. Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab 2012;26:667–76.
13. Jaenisch R, Bird A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 Suppl:245–54.
14. Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 2005;15:490–5.
15. Langley-Evans SC. Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 2015;28:1–14.
16. Kessler NJ, Waterland RA, Prentice AM, Silver MJ. Establishment of environmentally sensitive DNA methylation states in the very early human embryo. Sci Adv 2018;4:eaaat2624.
17. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 2013;368:20110330.
18. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014;28:812–28.
19. Smallwood SA, Kelsoy G. De novo DNA methylation: a germ cell perspective. Trends Genet 2012;28:33–42.
20. Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011;31:363–73.
21. Rakytn V, Blewitt M, Druker R, Preis JI, Whitelew E. Metastable epialleles in mammals. Trends Genet 2002;18:348–51.
22. Waterland RA, Kellermayer R, Laritisky E, Rayco-Solon P, Harris RA, Travison M, Zhang W, Torskaya MS, Zhang J, Shen L, et al. Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 2010;6:e1001252.
23. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, Fulford AJ, Guan Y, Laritisky E, Silver MJ, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 2014;5:3746.
24. Kühnen P, Handke D, Waterland RA, Hennig BJ, Silver M, Fulford AJ, Dominguez-Salas P, Moore SE, Prentice AM, Spranger J, et al. Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab 2016;24:502–9.
25. Silver MJ, Kessler NJ, Hennig BJ, Dominguez-Salas P, Laritisky E, Baker MS, Coarfa C, Hernandez-Vargas H, Castelino JM, Routledge MN, et al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol 2015;16:118.
26. Van Baak TE, Coarfa C, Dugué P-A, Fiorito G, Laritisky E, Baker MS, Kessler NJ, Dong J, Duryea JD, Silver MJ, et al. Epigenetic supersimilarity of monzygotic twin pairs. Genome Biol 2018;19:2.
27. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 2007;27:363–88.
28. Tammen S, Friso S, Choi SW. Epigenetics: The link between nature and nurture. Mol Aspects Med 2013;34:753–64.
29. Steegers-Theunissen RPM, Twigt J, Petingor V, Sinclair KD. The periconceptional period, reproduction and long-term health of offspring: The importance of one-carbon metabolism. Hum Reprod Update 2013;19:640–55.
30. Fox JT, Stower PJ, Folate-mediated one-carbon metabolism. Vitam Horm 2008;79:1–44.
31. Setubal J. Homocysteine metabolism. Annu Rev Nutr 1999;19:217–46.
32. Fontecave M, Atta A, Mulliez E. S-adenosylmethionine: Nothing goes to waste. Trends Biochem Sci 2004;29:243–9.
33. Mason JB. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 2003;133:941S–947.
34. Bertolo RP, McBrearty LE. The nutritional burden of methylation reactions. Curr Opin Clin Nutr Metab Care 2013;16:102–8.
35. Waterland RA, Jirtle RL. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 2003;23:5293–300.
36. Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, Plosh T. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 2012;94:2242–63.
37. Lee H-S. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 2015;7;9492–507.
38. Godfrey KM, Costello PM, Lillycrop KA. The developmental environment, epigenetic biomarkers and long-term health. J Dev Orig Health Dis 2015;6:399–406.
39. James P, Saijadi S, Tomar AS, Safiari A, Fall CHD, Prentice AM, Shrestha S, Issarapu P, Yadav DK, Kaur L, et al. Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: A review of existing evidence in humans with specific focus on one-carbon metabolism. Int J Epidemiol 2018;47:1217–27.
40. Moore SE, Fulford AJ, Darboe MK, Jibateth ML, Jarjou LM, Prentice AM. A randomized trial to investigate the effects of pre-natal and infant nutritional supplementation on infant immune development in rural Gambia: The ENID trial. Early Nutrition and Immune Development. BMC Pregnancy Childbirth 2012;12:107.
41. Moore SE, Fulford AJ, Darboe MK, Jibateth ML, Jarjou LM, Prentice AM. A randomized trial to investigate the effects of pre-natal and infant nutritional supplementation on infant immune development in rural Gambia: The ENID trial: Early Nutrition and Immune Development. BMC Pregnancy Childbirth 2012;12:107.
42. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 2014;15:R31.
43. Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M, Munafò MR, Davey Smith G. Repeating experiments is not enough. Nature 2013;10:1166–76.
44. Midttun Ø, Kvalheim G, Ueland PM. High-throughput, low-volume, multianalyte quantification of plasma metabolites and cofactors in rural African women. Am J Clin Nutr 2013;97:1217–27.
45. Scheffer JW, Conneely KN, Cubells JC, Kilaru V, Newport DJ, Knight BT, Stowe ZN, Brennan PA, Krishkal J, Tylavsky FA, et al. Neonatal DNA methylation patterns associate with gestational age. Epigenetics 2011;6:1498–504.
46. Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M, Shihab HA, Lyttleton O, McArde W, Ring SM, et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: Findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 2015;44:1288–304.
47. Herbstman JB, Wang S, Perera FP, Lederman S, Vinesvetsky J, Rundle AG, Hoepner L, Qu L, Tang D. Predictors and consequences of global DNA methylation in cord blood and at three years. PLoS One 2013;8:e72824.
48. Yaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 2014;15:R31.
49. Midttun Ø, Kvalheim G, Ueland PM. High-throughput, low-volume, multianalyte quantification of plasma metabolites and cofactors in rural African women. Am J Clin Nutr 2013;97:1217–27.
50. Bailey L. Folate in health and disease. 2nd edition. Boca Raton, FL: CRC Press, Taylor & Francis Group. 2009.
51. Scott JM, Weir DG. Folic acid, homocysteine and one-carbon metabolism: a review of the essential biochemistry. J Cardiovasc Risk 1998;5:223–7.
52. Scotti M, Stella L, Shearer EJ, Stover PJ. Modeling cellular compartmentation in one-carbon metabolism. Wiley Interdiscip Rev Syst Biol Med 2013;5:343–65.
53. Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis 2011;34:3–15.
54. Zhou S, Zhang Z, Xu G. Notable epigenetic role of hyperhomocysteinemia in atherogenesis. Lipids Health Dis 2014;13:134.
55. van Mil NH, Bouwland-Both MI, Stolk L, Verbist MMPJ, Hofman A, Jaddoe VW V, Verhulst FC, Eilers PHC, Uitterlinden AG, Steegers EAP, et al. Determinants of maternal pregnancy one-carbon metabolism and newborn DNA methylation profiles. Reproduction 2014;148:581–92.
56. Godfrey KM, Costello PM, Lillycrop KA. The developmental environment, epigenetic biomarkers and long-term health. J Dev Orig Health Dis 2015;6:399–406.
57. Ueland PM. Choline and betaine in health and disease. J Inherit Metab Dis 2011;34:3–15.
58. Zhou S, Zhang Z, Xu G. Notable epigenetic role of hyperhomocysteinemia in atherogenesis. Lipids Health Dis 2014;13:134.
59. van Mil NH, Bouwland-Both MI, Stolk L, Verbist MMPJ, Hofman A, Jaddoe VW V, Verhulst FC, Eilers PHC, Uitterlinden AG, Steegers EAP, et al. Determinants of maternal pregnancy one-carbon metabolism and newborn DNA methylation profiles. Reproduction 2014;148:581–92.
60. Bay A, Yu H, Liu F, Geng X, Zhu C, Zhu Q, Zheng T, Ma S, Wang G, Li Z, et al. Relationship of folate, vitamin B-12 and methylation of insulin-like growth factor II in maternal and cord blood. Eur J Clin Nutr 2011;65:480–5.
61. Fryer AA, Emes RD, Imsal KMK, Haworth KE, Mein C, Carroll WD, Farrell WE. Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 2011;6:86–94.
62. Pauwels S, Ghosh M, Duca RC, Bekaert B, Frenson K, Huybrechts I, Langie SAS, Koppen G, Devlieger R, Godderis L. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics 2017;9:16.
63. Gonsset S, Roy R, Houseman EA, de Smith AJ, Zhou M, Lee S-T, Nusslé S, Singer AW, Wrensch MR, Metayer C, et al. Periconceptional folate consumption is associated with neonatal DNA methylation modifications in neural crest regulatory and cancer development genes. Epigenetics 2015;10:1166–76.
64. Reed MC, Gamble M V, Hall MN, Nijhout HF. Mathematical analysis of the regulation of competing methyltransferases. BMC Syst Biol 2015;9:69.
65. Nijhout HF, Best J, Reed MC. Escape from homeostasis. Math Biosci 2014;257:104–10.
66. Feng Y, Zhao L-Z, Hong L, Shan C, Shi W, Cai W. Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring's heart. J Nutr Biochem 2013;24:1373–80.
67. Pereira F, Barbáachano A, Singh PK, Campbell MJ, Muñoz A, Larriba MJ. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle 2012;11:1081–9.
68. Harvey NC, Sheppard A, Godfrey KM, McLean C, Garratt E, Ntani G, Davies L, Murray R, Inskip HM, Gluckman PD, et al. Childhood bone mineral content is associated with methylation status of the RXRA promoter at birth. J Bone Miner Res 2014;29:600–7.
69. Feng M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr 2007;137:223S–228.
70. Babenko O, Kovalchuk I, Metz GAS. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 2014;48:70–91.
71. Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 2006;147:S43–9.
72. Bouwland-Both MI, van Mil NH, Stolk L, Eilers PHC, Verbist MMPJ, Heijmans BT, Tiemeier H, Hofman A, Steegers EAP, Jaddoe VWV, et al. DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth: The generation R study. PLoS One 2013;8:e18731.
73. Einstein F, Thompson RP, Bhagat TD, Fazzari MJ, Verma A, Barzilai N, Greally JM. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One 2010;5:e8887.
74. Touré DM, Baccaglini L, Oppoku ST, Barnes-Josiah D, Cox R, Hartman T, Klinekiedel D. Epigenetic dysregulation of insulin-like growth factor (IGF)-related genes and adverse pregnancy outcomes: A systematic review. J Matern Fetal Neonatal Med 2016;6:181–11.
75. El Hajj N, Schneider E, Lehnin H, Haaf T. Epigenetics and life-long effects of maternal infection, and nutrition. J Nutr 2015;145:1109S–15S.
76. Zhou S, Zhang Z, Xu G. Notable epigenetic role of hyperhomocysteinemia in atherogenesis. Lipids Health Dis 2014;13:134.
77. Claycombe KJ, Brissette CA, Ghribi O. Epigenetics of inflammation, maternal infection, and nutrition. J Nutr 2015;145:1109S–15S.
78. Tibshirani R, Johnstone I, Hastie T, Efron B. Least angle regression. Ann Stat 2004;32:407–99.
79. Hesterberg T, Choi NH, Meier L, Fraley C. Least angle and ℓ 1 penalized regression: A review. Stat Surv 2008;2:61–93.
80. Nijhout HF, Reed MC, Lam S-L, Shane B, Gregory JF, Ulrich CM. In silico experimentation with a model of hepatic mitochondrial folate metabolism. Theor Biol Med Model 2006;3:40.
81. Ulrich CM, Reed MC, Nijhout HF. Modeling folate, one-carbon metabolism, and DNA methylation. Nutr Rev 2008;66 Suppl 1:S27–30.
82. Obeid R, Hartmuth K, Herrmann W, Gortner L, Rohrer TR, Geisel J, Reed MC, Nijhout HF. Blood biomarkers of methylation in Down syndrome and metabolic simulations using a mathematical model. Mol Nutr Food Res 2012;56:1582–9.
83. Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol 2013;31:419–25.