Acoustic geometry for general relativistic barotropic irrotational fluid flow

Matt Visser1,3 and Carmen Molina-París2

1 School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, Wellington, New Zealand
2 Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
E-mail: matt.visser@msor.vuw.ac.nz

\textit{New Journal of Physics} 12 (2010) 095014 (18pp)
Received 8 April 2010
Published 30 September 2010
Online at http://www.njp.org/
doi:10.1088/1367-2630/12/9/095014

\textbf{Abstract.} ‘Acoustic spacetimes’, in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this paper, we provide a pedagogical and simple derivation of the general relativistic ‘acoustic spacetime’ in an arbitrary \((d + 1)\)-dimensional curved-space background.
1. Introduction

In this paper, we present a simple and pedagogical derivation of the general relativistic version of the ‘acoustic metric’ defined on an arbitrary curved $(d + 1)$-dimensional background spacetime. While there are related observations and more limited derivations extant in the literature, we feel that the current analysis has some definite advantages. For instance, the early 1980 analysis of Moncrief is restricted to perturbations of a spherically symmetric fluid flow on a Schwarzschild background [1], and in the more recent 1999 derivation of Bilic [2], it can be somewhat difficult to distinguish between what is truly fundamental input and what is derived output. Because scientific interest in this field is both significant and ongoing [3]–[5], we feel it useful to carefully lay out the minimal set of assumptions and logic flow behind the derivation.

Our strategy is as follows.

• We first motivate the result (up to a conformal factor) by considering the acoustic version of the Gordon metric, which was introduced for geometrical optics in 1923 [6].

• We carefully specify what we mean by barotropic flow, the assumption that energy density is a function of pressure only. (Specifically, barotropic flow is more general than either isothermal or isentropic flow.)

• We then carefully specify what is meant by ‘irrotational flow’ in a general relativistic context, introducing the appropriate notion of velocity potential.

• From the relativistic Euler equation, using only the irrotational condition and the barotropic condition, we derive the relativistic Bernoulli equation.

References

1. New Journal of Physics 12 (2010) 095014 (http://www.njp.org/)

New Journal of Physics 12 (2010) 095014 (http://www.njp.org/)
From the relativistic energy equation, using only the barotropic condition (that is, without using the irrotational condition), we derive a flux conservation law (continuity equation).

We delay the introduction of thermodynamic arguments as long as practicable. (We would argue that thermodynamics is in fact a side issue not central to the derivation.)

As usual, the acoustic metric follows from combining the linearized Bernoulli equation and linearized equation of state with the linearized continuity equation.

We carefully explain the subtleties involved in taking the non-relativistic limit.

We finish with some discussion and relegate several thermodynamic observations to the appendices.

The key result that we aim for is this: the (contravariant) acoustic metric governing acoustic perturbations of an irrotational barotropic fluid flow in \((d+1)\) dimensions is

\[
G^{ab} = \left(\frac{n_0^2 c_s^{-1}}{\rho_0 + p_0} \right)^{-2/(d-1)} \left\{ -\frac{c_s^2}{c_s^2} V_0^a V_0^b + h^{ab} \right\}.
\] (1)

In counterpoint, the (covariant) acoustic metric in \((d+1)\) dimensions is

\[
G_{ab} = \left(\frac{n_0^2 c_s^{-1}}{\rho_0 + p_0} \right)^{2/(d-1)} \left\{ -\frac{c_s^2}{c^2} [V_0]^a_b [V_0]^b_a + h_{ab} \right\}.
\] (2)

Here:

- \(c_s\) is the speed of sound, defined as usual via \(c_s^2 = c^2 \partial p/\partial \rho\);
- \(c\) is the speed of light, used for instance in defining \(x^0 = ct\);
- \(V_0\) is the dimensionless four-velocity of the background fluid flow;
- \(h_{ab} = g_{ab} + [V_0]^a_b\) is the dimensionless orthogonal projection of the physical spacetime metric \(g_{ab}\) onto the three-space perpendicular to the four-velocity of the fluid;
- the indices on the background fluid flow \([V_0]^a\) are lowered and raised using the physical spacetime metric \(g_{ab}\) and its inverse \(g^{ab}\);
- in contrast, \(G_{ab}\) and \(G^{ab}\) are defined to be matrix inverses of each other; these indices are not to be raised and lowered with the physical spacetime metric;
- \(n_0\) is the background number density of fluid particles;
- \(\rho_0\) is the background energy density of the fluid;
- \(p_0\) is the background pressure of the fluid.

If one appeals to relativistic thermodynamics by introducing the specific enthalpy \(w = (\rho + p)/n\), then, as discussed in the appendix, the acoustic metric can be somewhat simplified:

\[
G^{ab} = \left(\frac{n_0}{w_0 c_s} \right)^{-2/(d-1)} \left\{ -\frac{c_s^2}{c_s^2} V_0^a V_0^b + h^{ab} \right\},
\] (3)

\[
G_{ab} = \left(\frac{n_0}{w_0 c_s} \right)^{2/(d-1)} \left\{ -\frac{c_s^2}{c^2} [V_0]^a_b [V_0]^b_a + h_{ab} \right\}.
\] (4)

These key results are easy to motivate (but not derive) in the limit of ‘ray acoustics’, also known as ‘geometric acoustics’, where we can safely ignore the wave properties of sound. In this

New Journal of Physics 12 (2010) 095014 (http://www.njp.org/)
limit we are interested only in the ‘sound cones’. Let us pick a point in spacetime where the background fluid four-velocity is \(V^a_0 \). Now adopt Gaussian normal coordinates and go to the local rest frame of the fluid. Then, taking \(x^0 = ct \) we have
\[
[V_0]^a \to (1; 0, 0, 0),
\]
and
\[
g_{ab} \to \begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\quad h_{ab} = g_{ab} + [V_0]_a [V_0]_b \to \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
\]

In the rest frame of the fluid the sound cones are (locally) given by
\[
-c_s^2 \, dt^2 + \|d\vec{x}\|^2 = 0,
\]
which we can rewrite as
\[
-c_s^2 \, (c \, dt)^2 + \|d\vec{x}\|^2 = \left(\frac{c_s^2}{c^2} \right)^2 \left(dx^0 \right)^2 + \|d\vec{x}\|^2 = 0,
\]
implying in these special coordinates the existence of an acoustic metric
\[
G_{ab} \propto \begin{bmatrix}
-c_s^2/c^2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
\]
That is, transforming back to arbitrary coordinates:
\[
G_{ab} \propto -\frac{c_s^2}{c^2} [V_0]_a [V_0]_b + h_{ab}.
\]

We now rewrite this as
\[
G_{ab} \propto -\frac{c_s^2}{c^2} [V_0]_a [V_0]_b + (g_{ab} + [V_0]_a [V_0]_b) \propto g_{ab} + \left(1 - \frac{c_s^2}{c^2} \right) [V_0]_a [V_0]_b.
\]
Note that this is essentially a generalization of the derivation (dating back to 1923) of the so-called ‘Gordon metric’ [6] used in ray optics to describe the ‘optical metric’ appropriate to a (possibly) relativistic fluid with a position-dependent refractive index \(n(t, \vec{x}) \). In Gaussian normal coordinates, comoving with the fluid the Gordon metric is given by
\[
G_{ab} \propto \begin{bmatrix}
-1/n^2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}.
\]
That is, transforming back to arbitrary coordinates:
\[
G_{ab} \propto -\frac{1}{n^2} [V_0]_a [V_0]_b + (g_{ab} + [V_0]_a [V_0]_b) \propto g_{ab} + \left(1 - \frac{1}{n^2} \right) [V_0]_a [V_0]_b.
\]
Note that in either the ray acoustics or ray optics limits, because one only has the sound cones or light cones to work with, one cannot derive, nor is it even meaningful to specify, the overall conformal factor [3, 8, 9]. (See also [10] for an equivalent Gordon-like metric based on relativistic fluid dynamics, but without calculation of the overall conformal factor.)
calculation presented below is designed to go beyond the ray acoustics limit, and to obtain a relativistic wave equation suitable for describing physical acoustics—all the ‘fuss’ is simply over how to determine the overall conformal factor, and to verify that one truly does obtain a d’Alembertian equation using the conformally fixed acoustic metric.

2. Basic general relativistic fluid mechanics

In this section, we consider fully relativistic barotropic inviscid irrotational flow on an arbitrary general relativistic background and derive the relevant wave equation for linearized fluctuations. We already know exactly what happens in the non-relativistic case [3], [7]–[9]. We go straight to curved spacetime relativistic fluid mechanics, where the geometry is described by a metric tensor $g_{ab}(x)$ of signature $-++$ (or more generally $-(+)^d$), and the fluid is described by the energy density ϱ, pressure p and four-velocity V^a, where

$$g_{ab}V^aV^b = -1.$$ \hspace{1cm} (14)

The two relevant fluid dynamical equations are extremely well-known (see, for instance, [11]).

Relativistic energy equation:

$$\nabla_a (\varrho V^a) + p \nabla_a V^a = 0.$$ \hspace{1cm} (15)

Relativistic Euler equation:

$$(\varrho + p)V^b\nabla_b V^a = -(g^{ab} + V^aV^b)\nabla_b p.$$ \hspace{1cm} (16)

These equations can be combined into the single statement that the stress-energy tensor is covariantly conserved (see, for instance, [11])

$$\nabla_a \left[(\varrho + p)V^aV^b + pg^{ab}\right] = 0.$$ \hspace{1cm} (17)

Note the subtle (perhaps not so subtle) differences from the non-relativistic case: ϱ is now energy density, not mass density ρ, and the continuity equation looks different—at least at this stage of the calculation it has been replaced by an ‘energy conservation’ equation, and the Euler equation now contains the combination $(\varrho + p)$. The four-acceleration of the fluid is

$$A^a = V^b\nabla_b V^a \quad \text{such that} \quad A^aV_a = 0.$$ \hspace{1cm} (18)

2.1. Defining relativistic barotropic flow

The fluid is barotropic if the energy density is a function only of the pressure—that is, there is some function, such that $\varrho = \varrho(p)$. Appealing to the inverse function theorem we will have $p = p(\varrho)$, at least piecewise on suitable open sets in energy density. This barotropic condition is a much more general situation than assuming isothermal or isentropic flow. Specifically, for a one-component fluid:

* any zero-temperature fluid is automatically barotropic,
* any nonzero temperature but isothermal fluid is automatically barotropic,
* any zero-entropy fluid (superfluid) is automatically barotropic and
* any isentropic fluid is automatically barotropic.

However, merely assuming the barotropic condition does not imply any of the isentropic, zero-entropy, isothermal or zero-temperature conditions.
2.2. Defining relativistic irrotational flow

What do we mean by irrotational flow in a relativistic setting? Construct the one-form
\[v = V_a \, dx^a, \tag{19} \]
and consider the two-form \(\omega_2 \) and three-form \(t_3 \):
\[\omega_2 = dv, \quad t_3 = v \wedge \omega_2. \tag{20} \]
In a relativistic context, setting the two-form \(\omega_2 = 0 \) is too strong a condition, setting the three-form \(t_3 = 0 \) is just right. (See, for instance, Hawking and Ellis [11].) Indeed, adopting Gaussian normal coordinates and going to the local rest frame of the fluid, where \(V^a \to (1; 0, 0, 0) \), setting \(t_3 = 0 \) implies \(\partial_i v_j = 0 \), so the spatial components of the flow velocity are locally irrotational (in the sense of being curl-free). But \(t_3 = 0 \) implies (via the Frobenius theorem) that locally there exist functions \(\alpha \) and \(\Theta_1 \), such that
\[\begin{align*}
 v &= \alpha \, d\Theta, \\
 V^a &= \alpha \, g^{ab} \, \nabla_b \Theta.
\end{align*} \tag{21} \]
But then, from the normalization condition for the four-velocity
\[V^a = \frac{g^{ab} \, \nabla_b \Theta}{\sqrt{-g^{ab} \, \nabla_a \Theta \, \nabla_b \Theta}}. \tag{22} \]
We shall find it extremely useful to define
\[\| \nabla \Theta \|^2 = -g^{ab} \, \nabla_a \Theta \, \nabla_b \Theta \] (23)
so that
\[V^a = \frac{g^{ab} \, \nabla_b \Theta}{\| \nabla \Theta \|}. \tag{24} \]
This is the relativistic condition for irrotational flow. The function \(\Theta \) can now be interpreted as the general relativistic version of the velocity potential. Note that for any smooth function \(F(\cdot) \) we can replace \(\Theta \leftrightarrow F(\Theta) \) without affecting the four-velocity \(V^a \)—both numerator and denominator above pick up factors of \(F'(\Theta) \), which then cancel. This freedom in choosing the scalar potential, \(\Theta \), will be very useful when analysing the Euler equation and will allow us to obtain a relativistic Bernoulli equation.

For the discussion below define the projection operator
\[h^{ab} = g^{ab} + V^a \, V^b. \tag{25} \]
Using this projection operator, and the four-orthogonality of four-velocity with four-acceleration, it is easy (for relativistic irrotational flow) to calculate
\[\nabla_b V_a = (\delta_a^c + V_a V^c) \frac{\nabla_c \nabla_b \Theta}{\| \nabla \Theta \|}. \tag{26} \]
Therefore, for relativistic irrotational flow, the four-acceleration reduces to
\[A_a = V^b \nabla_b V_a = -\frac{1}{2} (\delta_a^c + V_a V^c) \frac{\nabla_c (-g_{de} \nabla_d \Theta \nabla_e \Theta)}{-g^{ab} \, \nabla_a \Theta \, \nabla_b \Theta}, \tag{27} \]
so that
\[A^a = -\left(g^{ab} + V^a V^b \right) \nabla_b (\log \| \nabla \Theta \|). \tag{28} \]
Note that automatically \(A^a V_a = 0 \), as required. Furthermore, note that the four-acceleration is the projection of the gradient of a scalar and that \(\Theta \) can be chosen to have the dimensions of a distance so that \(\nabla \Theta \) is dimensionless.

New Journal of Physics 12 (2010) 095014 (http://www.njp.org/)

IOP Institute of Physics DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
2.3. From Euler equation to Bernoulli equation

The Euler equation for relativistic irrotational flow now reads as

\[
(g^{ab} + V^a V^b) \nabla_b (\log \|\nabla \Theta\|) = (g^{ab} + V^a V^b) \frac{\nabla_b p}{\varrho + p}.
\]

We now make use of the barotropic condition \(\varrho = \varrho(p) \) to obtain

\[
\frac{\nabla_b p}{\varrho + p} = \nabla_b \int_0^p \frac{dp}{\varrho(p) + p},
\]

so the Euler equation becomes

\[
(g^{ab} + V^a V^b) \nabla_b \left(-\log \|\nabla \Theta\| + \int_0^p \frac{dp}{\varrho(p) + p} \right) = 0.
\]

Note that for any arbitrary function \(f(\Theta) \) we have

\[
(g^{ab} + V^a V^b) \nabla_b f(\Theta) = 0
\]

(since the projection operator kills the gradient). Therefore, using both the irrotational and barotropic conditions, we can integrate the Euler equation to yield

\[
-\log \|\nabla \Theta\| + \int_0^p \frac{dp}{\varrho(p) + p} + f(\Theta) = \text{constant},
\]

where \(f(\Theta) \) is (at this stage) an arbitrary ‘function of integration’. This is our preliminary version of the general relativistic Bernoulli equation. To see how we might further simplify this result, recall (see, for example, \([3, 8, 9]\)) that for non relativistic irrotational inviscid barotropic flow the non relativistic Bernoulli equation is

\[
\dot{\Theta} + \frac{1}{2} (\nabla \Theta)^2 + \int_0^p \frac{dp}{\rho(p)} + f(t) = \text{constant}.
\]

(In the non-relativistic case \(\rho \) is the mass density.) Now, in the non-relativistic case we can always redefine

\[
\Theta \rightarrow \Theta + \int f(t) \, dt,
\]

and use this transformation to eliminate \(f(t) \)—so we can, without loss of generality, write

\[
\dot{\Theta} + \frac{1}{2} (\nabla \Theta)^2 + \int_0^p \frac{dp}{\rho(p)} = \text{constant}.
\]

In the relativistic case, we now note

\[
-\log \|\nabla \Theta\| + f(\Theta) = -\log(e^{-f(\Theta)} \|\nabla \Theta\|) = -\log \|\nabla F(\Theta)\|.
\]

That is, in the relativistic case, by making the transformation

\[
\Theta \rightarrow F(\Theta) = \int_0^{\Theta} e^{-f(\Theta)} \, d\Theta,
\]
we can (without changing V^a) absorb the arbitrary function $f(\cdot)$ into a redefinition of Θ, and so write

$$-\log \| \nabla \Theta \| + \int_0^p \frac{dp}{\varrho(p) + p} = \text{constant.} \quad (39)$$

Finally, without loss of generality, we can rescale Θ to set the constant appearing above to zero and so obtain

$$\log \| \nabla \Theta \| = \int_0^p \frac{dp}{\varrho(p) + p}. \quad (40)$$

This is our final form for the general relativistic Bernoulli equation. Note that there is no longer any freedom left in choosing Θ; we have now used it all. It is relatively common to exponentiate the above and rewrite the general relativistic Bernoulli equation as

$$\| \nabla \Theta \| = \exp \left(\int_0^p \frac{dp}{\varrho(p) + p} \right). \quad (41)$$

For the sake of pedagogical development of the argument we have not yet rewritten the integral on the RHS in terms of other thermodynamic variables; we prefer to delay this for now.

2.4. From energy equation to flux conservation

The energy conservation equation is

$$\nabla_a (\varrho V^a) + p(\nabla_a V^a) = 0, \quad (42)$$

which becomes

$$V^a \nabla_a \varrho + (\varrho + p)(\nabla_a V^a) = 0 \quad (43)$$

or

$$V^a \frac{\nabla_a \varrho}{\varrho + p} + (\nabla_a V^a) = 0. \quad (44)$$

Using the barotropic condition $\varrho = \varrho(p)$ (but note, now without using the irrotational condition), this can be written as

$$V^a \nabla_a \left[\int_{\varrho(p=0)}^{\varrho} \frac{d\varrho}{\varrho + p(\varrho)} \right] + (\nabla_a V^a) = 0, \quad (45)$$

which implies

$$V^a \nabla_a \left\{ \exp \left[\int_{\varrho(p=0)}^{\varrho} \frac{d\varrho}{\varrho + p(\varrho)} \right] \right\} + \exp \left[\int_{\varrho(p=0)}^{\varrho} \frac{d\varrho}{\varrho + p(\varrho)} \right] (\nabla_a V^a) = 0. \quad (46)$$

This can now be rewritten as a continuity equation (flux conservation equation):

$$\nabla_a \left\{ \exp \left[\int_{\varrho(p=0)}^{\varrho} \frac{d\varrho}{\varrho + p(\varrho)} \right] V^a \right\} = 0. \quad (47)$$

This is now a ‘standard form’ zero-divergence continuity equation—note that the ability to derive this transformed form of the energy equation depends only on the barotropic assumption. Also note that we have not yet needed to even introduce, let alone discuss in any detail, the particle number density n, nor introduce any thermodynamic arguments.

New Journal of Physics 12 (2010) 095014 (http://www.njp.org/)
2.5. Introducing the number density

Subject only to the barotropic condition, we have just derived the flux conservation equation given immediately above. We now suppose the barotropic fluid contains some type of conserved ‘tracker’ particles. For example, one might be interested in counting baryons, Fe56 nuclei or leptons. We now explicitly assume translation invariant and time invariant \textit{composition} of the fluid. (That is, we assert that the equation of state is the same throughout the fluid; in other words, there is no explicit time or position dependence in the equation of state.) Therefore, the \textit{ratios} of these tracker particle densities must be translation and time invariant constants. Furthermore, since these ‘tracker particles’ are all assumed to be conserved

\[\nabla_a \{ n_i V^a \} = 0, \]

while, since the fluid is assumed to be barotropic, there must be functions of pressure \(p \) and energy density \(\varrho \), such that

\[n_i = n_i(p) = n_i(\varrho). \]

But the only way to satisfy all these constraints is if

\[n_i(p) = n_i(p=0) \exp \left[\int_{\varrho(p)}^{\varrho(p=0)} \frac{d\varrho}{\varrho + p(\varrho)} \right]. \]

In particular, for the total particle density, we have

\[n(p) = n(p=0) \exp \left[\int_{\varrho(p)}^{\varrho(p=0)} \frac{d\varrho}{\varrho + p(\varrho)} \right]. \]

This observation is extremely convenient in that it allows us to physically interpret the quantity

\[\exp \left[\int_{\varrho(p)}^{\varrho(p=0)} \frac{d\varrho}{\varrho + p(\varrho)} \right] = \frac{n(p)}{n(p=0)} = \frac{n_i(p)}{n_i(p=0)} \]

as being proportional to the number density of constituents making up the fluid. (If one wishes to take an extreme point of view and eschew all thermodynamic arguments completely, one could simply take this equation as the definition of a ‘shorthand symbol’ \(n(p) \), and ignore the physical interpretation of \(n(p) \) as particle number density.) In terms of the number density, the conservation equation now simply reads

\[\nabla_a \{ n V^a \} = 0. \]

Furthermore, note that using these results we can rewrite the relativistic Bernoulli equation (41) as

\[\log \| \nabla \Theta \| = \int_0^\varrho \frac{dp}{\varrho(p) + p} - \int_0^\varrho \frac{d\varrho(p) + p}{\varrho(p) + p} - \int_{\varrho(p=0)}^\varrho \frac{d\varrho}{\varrho + p(\varrho)} \]

\[= \log \left[\frac{\varrho(p) + p}{\varrho(p=0)} \right] - \log \left[\frac{n(p)}{n(p=0)} \right] = \log \left[\frac{\varrho(p) + p}{\varrho(p=0)} \cdot \frac{n(p)}{n(p=0)} \right]. \]

That is,

\[\| \nabla \Theta \| = \frac{\varrho(p) + p}{n(p)} \frac{n(p)}{\varrho(p=0)}. \]
3. Linearization

Let us now write

$$\Theta = \Theta_0 + \epsilon \Theta_1 + \cdots,$$ \hspace{1cm} (57)

which in particular implies that

$$V = V_0 + \epsilon V_1 + \cdots,$$ \hspace{1cm} (58)

and further assert

$$\varrho = \varrho_0 + \epsilon \varrho_1 + \cdots,$$ \hspace{1cm} (59)

$$p = p_0 + \epsilon p_1 + \cdots.$$ \hspace{1cm} (60)

Using these relations, we now linearize the fluid equations around some assumed background flow. (Note that both the background fluid flow (V_0, ϱ_0, p_0), and the linearized fluctuations, satisfy the Bernoulli and energy conservation equations.) In a wider context, extending far beyond fluid dynamics, we mention that it is quite common for linearized fluctuations around an appropriately defined background to exhibit an ‘effective spacetime’ behaviour [3, 12, 13].

3.1. Linearized continuity equation

From the continuity equation we see

$$\nabla_a \left\{ \exp \left[\int_{\varrho(p=0)}^{\varrho_0+\epsilon \varrho_1+\cdots} \frac{d\varrho}{\varrho + p(\varrho)} \right] \left[V_0^a + \epsilon V_1^a + \cdots \right] \right\} = 0.$$ \hspace{1cm} (61)

Then, to first order in ϵ

$$\nabla_a \left\{ \exp \left[\int_{\varrho(p=0)}^{\varrho_0} \frac{d\varrho}{\varrho + p(\varrho)} \right] \left(\frac{\varrho_1}{\varrho_0 + p_0} V_0^a + V_1^a \right) \right\} = 0.$$ \hspace{1cm} (62)

Using the number density, we can rewrite this as

$$\nabla_a \left\{ n(p_0) \left(\frac{\varrho_1}{\varrho_0 + p_0} V_0^a + V_1^a \right) \right\} = 0.$$ \hspace{1cm} (63)

3.2. Linearized irrotational flow

Perturbing the four-velocity for relativistic irrotational flow yields

$$V_0 + \epsilon V_1 + \cdots = \frac{g^{ab} \nabla_b (\Theta_0 + \epsilon \Theta_1 + \cdots)}{\sqrt{-g^{ab} \nabla_a (\Theta_0 + \epsilon \Theta_1 + \cdots) \nabla_b (\Theta_0 + \epsilon \Theta_1 + \cdots)}}.$$ \hspace{1cm} (64)

Then, expanding to first order in ϵ we see

$$V_1^a = \frac{(g^{ab} + V_0^a V_0^b) \nabla_b \Theta_1}{\| \nabla \Theta_0 \|}.$$ \hspace{1cm} (65)

Now, we use the relativistic Bernoulli equation to write

$$V_1^a = (g^{ab} + V_0^a V_0^b) \nabla_b \Theta_1 \exp \left(- \int_{p_0}^p \frac{dp}{\varrho(p) + p} \right).$$ \hspace{1cm} (66)
Alternatively,
\[V_i^a = \frac{n_0 \Omega_{(p=0)}}{[\varrho_0 + p_0] n_{(p=0)}} (g^{ab} + V_0^a V_0^b) \nabla_b \Theta_1. \] (67)

Note that we automatically have
\[g_{ab} V_1^a V_0^b = 0, \] (68)
as required by the normalization condition, \(g_{ab} V^a V^b = -1 \), for \(V^a \).

3.3. Linearized equation of state

Linearizing the equation of state, we see
\[p_0 + \epsilon p_1 + \cdots = p(\varrho_0 + \epsilon \varrho_1 + \cdots), \] (69)
that is
\[p_1 = \frac{dp}{d\varrho} \bigg|_{\varrho_0} \varrho_1, \] (70)
which we use to define what we shall soon enough see is the speed of sound
\[p_1 = \frac{c^2}{c^2_s} \varrho_1. \] (71)

3.4. Linearized Euler (Bernoulli) equation

Linearizing the Bernoulli equation requires us to consider
\[
\frac{1}{2} \log \left[-g^{cd} \nabla_c (\Theta_0 + \epsilon \Theta_1 + \cdots) \nabla_d (\Theta_0 + \epsilon \Theta_1 + \cdots) \right] = \int_0^{(p_0+\epsilon p_1+\cdots)} \frac{dp}{\varrho(p) + p}.
\] (72)

Then, to first order in \(\epsilon \)
\[-g^{cd} \nabla_c \Theta_1 \nabla_d \Theta_0 = \frac{p_1}{\varrho_0 + p_0}. \] (73)

That is, using the linearized equation of state,
\[-\frac{V_0^a \nabla_a \Theta_1}{\|\nabla \Theta_0\|} = \frac{c^2_s}{c^2} \frac{\varrho_1}{\varrho_0 + p_0}, \] (74)
which we can rearrange to
\[\varrho_1 = -\left(\varrho_0 + p_0\right) \frac{c^2}{c^2_s} \frac{V_0^a \nabla_a \Theta_1}{\|\nabla \Theta_0\|}. \] (75)

That is, now using the general relativistic Bernoulli equation,
\[\varrho_1 = -\left(\varrho_0 + p_0\right) \frac{c^2}{c^2_s} \exp \left(-\int_0^{p_0} \frac{dp}{\varrho(p) + p} \right) V_0^a \nabla_a \Theta_1. \] (76)

Finally, using the number density we can rewrite this as
\[\varrho_1 = -\frac{n_0 c^2}{n_{(p=0)} c_s^2} \varrho_{(p=0)} V_0^a \nabla_a \Theta_1. \] (77)
3.5. Deriving the d’Alembertian equation

Now, combine these results: insert the linearized Euler (Bernoulli) equation (77) and the linearized irrotational condition (67) into the linearized continuity equation (63). We obtain

\[
\nabla_a \left\{ -\frac{n_0^2 c^2}{c_s^2} \varrho_{(p=0)} V_0^a V_0^b \nabla_b \Theta_1 + \frac{n_0^2}{(n_0 + p_0)} (g^{ab} + V_0^a V_0^b) \nabla_b \Theta_1 \right\} = 0. \tag{78}
\]

But of course \(\varrho_{(p=0)} \) and \(n_{(p=0)} \) are irrelevant position-independent constants, so we can just as easily write

\[
\nabla_a \left\{ -\frac{c^2 n_0^2}{c_s^2} \varrho_{(p=0)} V_0^a V_0^b \nabla_b \Theta_1 + \frac{n_0^2}{(n_0 + p_0)} (g^{ab} + V_0^a V_0^b) \nabla_b \Theta_1 \right\} = 0. \tag{79}
\]

Introducing the projection tensor \(h_{ab} = g^{ab} + V_0^a V_0^b \) and factorizing, this becomes

\[
\nabla_a \left\{ \frac{n_0^2}{(n_0 + p_0)} \left[-\frac{c^2}{c_s^2} V_0^a V_0^b + h_{ab} \right] \nabla_b \Theta_1 \right\} = 0. \tag{80}
\]

This is in fact exactly the result we want—a d’Alembertian equation for the perturbation in the velocity potential \(\Theta \).

- After some trivial notational changes, this agrees (where the formalisms overlap) with both the observations of Moncrief [1], and with the presentation of Bilic [2], but the present exposition gives much more attention to the underlying details and makes only a bare minimum of technical assumptions.
- Note that everything so far is really dimension independent and that we can now read off the acoustic metric simply by setting

\[
\sqrt{-G} G^{ab} = \frac{n_0^2}{(n_0 + p_0)} \left[-\frac{c^2}{c_s^2} V_0^a V_0^b + h_{ab} \right]. \tag{81}
\]

The dimension dependence now comes from solving this equation for \(G^{ab} \).

4. The general relativistic acoustic metric

From the dimension-independent result above, we have, in \((d+1)\) dimensions,

\[
(-1)^{(d+1)/2} G^{(d+1)/2-1} = -\frac{c^2}{c_s^2} \left(\frac{n_0^2}{(n_0 + p_0)} \right)^{(d+1)}, \tag{82}
\]

whence

\[
(-G)^{(d+1)/2-1} = \frac{c^2}{c_s^2} \left(\frac{n_0^2}{(n_0 + p_0)} \right)^{(d+1)}. \tag{83}
\]

Dropping an irrelevant overall constant factor of \(c^{-2/(d-1)} \), we finally have the (contravariant) acoustic metric

\[
G^{ab} = \left(\frac{n_0^2 c_s^{-1}}{(n_0 + p_0)} \right)^{-2/(d-1)} \left[-\frac{c^2}{c_s^2} V_0^a V_0^b + h_{ab} \right]. \tag{84}
\]
and (covariant) acoustic metric

$$G_{ab} = \left(\frac{n_0^2 c_s^{-1}}{Q_0 + p_0} \right)^{2/(d-1)} \left\{ -\frac{c_s^2}{c_s^2} [V_0]_a [V_0]_b + h_{ab} \right\}. \quad (85)$$

If one wishes to go to the extra trouble of making the acoustic metric dimensionless, it is easy to reinsert appropriate position-independent constants in the conformal factor and obtain

$$G^{ab} = \left(\frac{n_0^2 (p=0) c}{n_0^2 (p=0) (Q_0 + p_0) c_s} \right)^{-2/(d-1)} \left\{ -\frac{c_s^2}{c_s^2} V_0^a V_0^b + h_{ab} \right\}, \quad (86)$$

and

$$G_{ab} = \left(\frac{n_0^2 (p=0) c}{n_0^2 (p=0) (Q_0 + p_0) c_s} \right)^{2/(d-1)} \left\{ -\frac{c_s^2}{c_s^2} [V_0]_a [V_0]_b + h_{ab} \right\}. \quad (87)$$

Of course, these extra position-independent constants in the conformal factor carry no useful information and are commonly suppressed.

5. The non-relativistic limit

Compare this general relativistic acoustic metric with the non-relativistic limit, where the coordinates are most conveniently taken to be $x^a = (t; x^i)$, and where the d’Alembertian equation reduces to [3, 8, 9]

$$\nabla_a \left\{ \rho_0 \left[-\frac{1}{c_s^2} V_0^a V_0^b + h_{ab} \right] \nabla_b \Theta_1 \right\} = 0, \quad (88)$$

with $\rho_0 \neq Q_0$ now being the non-relativistic mass density (not the relativistic energy density), and the meanings of V_0 and h are suitably adjusted. In the non-relativistic case

$$V_0^a = (1; v^i), \quad h^{ab} = \begin{bmatrix} 0 & 0 \\ 0 & \delta^{ij} \end{bmatrix}, \quad (89)$$

and independent of dimensionality we have

$$\sqrt{-G} \ G^{ab} = \rho_0 \left[-\frac{1}{c_s^2} V_0^a V_0^b + h_{ab} \right], \quad (90)$$

implying

$$G^{ab} = \left(\frac{\rho_0}{c_s} \right)^{-2/(d-1)} \left\{ -\frac{c_s^2}{c_s^2} V_0^a V_0^b + h_{ab} \right\}, \quad (91)$$

which can be inverted to yield

$$G_{ab} = \left(\frac{\rho_0}{c_s} \right)^{2/(d-1)} \begin{bmatrix} -\frac{c_s^2 - v^2}{c_s^2} & -v^j \\ -v^i & \delta^{ij} \end{bmatrix}. \quad (92)$$

To see how and under what situations the general relativistic acoustic metric reduces to this non-relativistic acoustic metric, first consider the conformal factor: in the non-relativistic limit $p_0 \ll Q_0$ and $Q_0 \approx \bar{m}n_0$, where \bar{m} is the average mass of the particles making up to fluid (which by the barotropic assumption is a time-independent and position-independent
constant). So, in the non-relativistic limit we recover the standard result for the conformal factor
\begin{equation}
\frac{n_0^2 c^{-1}}{\rho_0 + p_0} \to \frac{n_0}{m c_s} = \frac{1}{m^2} \frac{\rho_0}{c_s} \propto c_s .
\end{equation}
(93)

To probe the tensor structure of the non-relativistic limit, let us now recall that:
- \(c \) is the speed of light,
- \(c_s \) is the speed of sound and
- \(v \) is the three-velocity of the fluid.

Take conventions so that the physical spacetime metric and four-velocity are both dimensionless. In particular, the coordinates are chosen to be \(x^a = (c t; x^i) \). Now, adopting Gaussian normal coordinates at the point of interest,
\begin{equation}
\eta_{ab} = \begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} .
\end{equation}
(94)

For the four-velocity, in general we have
\begin{equation}
V_a^0 = \gamma \left(1; \frac{v^i}{c}\right) , \quad [V_0]^a = \gamma \left(-1; \frac{v^i}{c}\right) .
\end{equation}
(95)
Remember that \(dx^0 = c \, dt \) and note that the \(\gamma \) factor is defined using \(c \) the physical speed of light.

Now, let us take the non-relativistic limit. Ignoring the conformal factor, which comes along for the ride, we have
\begin{equation}
G_{ab} \propto \left[g_{ab} + \left(1 - \frac{c_s^2}{c^2}\right) [V_0]^a [V_0]^b \right] .
\end{equation}
(96)

- Then, for the time–time component of the acoustic metric
\begin{equation}
G_{00} \propto \left[-1 + \left(1 - \frac{c_s^2}{c^2}\right) \gamma^2 \right] .
\end{equation}
(97)

This implies
\begin{equation}
G_{00} \propto \left[-\frac{c_s^2 - v^2}{c^2} + \mathcal{O}(v^4, c_s^2 v^2) \right] .
\end{equation}
(98)
So as long as both the speed of sound and the three-velocity of the fluid are small compared to the speed of light, we are justified in approximating
\begin{equation}
G_{00} \propto -\frac{c_s^2 - v^2}{c^2} + \cdots .
\end{equation}
(99)

- In contrast, for the time–space components of the acoustic metric
\begin{equation}
G_{0i} \propto \left[\left(1 - \frac{c^2}{c^2}\right) \gamma^2 (-1) \left(\frac{+v^i}{c}\right) \right] .
\end{equation}
(100)

This implies
\begin{equation}
G_{0i} \propto -\left(1 - \frac{\mathcal{O}(c_s^2, v^2)}{c^2}\right) \frac{v^i}{c} .
\end{equation}
(101)
So as long as both the speed of sound and the three-velocity of the fluid are small compared to the speed of light, we are justified in approximating

\[G_{0i} \propto -\frac{v_i}{c} + \cdots. \]

(102)

• Finally, for the space–space components we note

\[G_{ij} \propto \left[\delta_{ij} + \left(1 - \frac{c_s^2}{c^2} \right) \gamma^2 \frac{v_i v_j}{c^2} \right]. \]

(103)

This implies

\[G_{ij} \propto \left[\delta_{ij} + \mathcal{O}(v^2/c^2) \right]. \]

(104)

So, as long as the three-velocity of the fluid is small compared to the speed of light, we are justified in approximating

\[G_{ij} \propto \delta_{ij} + \cdots. \]

(105)

Collecting these results, we see that in the non-relativistic limit

\[G_{ab} \propto \left[-\frac{(c_s^2 - v^2)/c^2}{v^i/c} \delta_{ij} - \frac{v^i/c}{v^j/c} \right] + \cdots. \]

(106)

But now we realize that in the present context \(c \) is just some convenient fixed conversion constant from \(dx^0 = c \, dt \) to \(dt \), so if we work in terms of the coordinates \((t; x^i)\), which are perhaps more natural in the non relativistic limit, then

\[G_{ab} \propto \left[-\frac{(c_s^2 - v^2)}{v^i/c} \delta_{ij} - \frac{v^i/c}{v^j/c} \right] + \cdots \]

(107)

as required. Note that to do all this it is essential that both \(v \) and \(c_s \) are small compared to \(c \), although there is no constraint on the relative sizes of \(v \) and \(c_s \).

6. Discussion

Under what conditions are the fully general relativistic derivation of this article necessary? (The non-relativistic analysis of [3], [7]–[9] is, after all, the basis of bulk of the work in ‘analogue spacetimes’, and is perfectly adequate for many purposes.) The current analysis will be needed in four separate situations, as below.

• When working in an arbitrary curved relativistic background (for example in the problems considered by Moncrief [1] and Bilic [2]).

• Whenever the fluid is flowing at relativistic speeds (for example in the problems considered by Moncrief [1] and Bilic [2]).

• Less obviously, whenever the speed of sound is relativistic, even if background flows are non relativistic (for example a near-equilibrium photon gas where \(c_s^2 = \frac{1}{3} c^2 \) but flow velocities are all small \(v \ll c \)).

• Even less obviously, when the internal degrees of freedom of the fluid are relativistic, even if the overall fluid flow and speed of sound are non-relativistic. (That is, in situations where it is necessary to distinguish the energy density \(\varrho \) from the mass density \(\rho \); this typically happens in situations where the fluid is strongly self-coupled—for example in neutron star cores [14] or in relativistic BECs [4].)
In developing the current derivation, we have tried hard to be clear, explicit and minimalist—we have introduced only the absolute minimum of formalism required to do the job, and have eschewed unnecessary side issues. We hope that the formalism will be useful to practitioners in the field of ‘analogue spacetimes’, particularly with regard to ongoing and future developments [4, 5]. In particular, even in the non-relativistic case it is already known that adding vorticity greatly complicates the situation [15], and a deeper general relativistic analysis of this situation would be interesting. Looking further to the future, the ‘fluid-gravity correspondence’ hints at even deeper connections between curved spacetimes and fluid dynamics [16]–[18].

Acknowledgments

This research was supported by the Marsden Fund administered by the Royal Society of New Zealand. The authors would like to thank Silke Weinfurtner, Bill Unruh, Stefano Liberati, Serena Fagnocchi and Stefano Finazzi for their comments and suggestions.

Appendix. Specific enthalpy and thermodynamic considerations

We now consider some thermodynamics, which for pedagogical purposes we have delayed as much as possible. (Though delayed, we emphasize that thermodynamics does have important consequences—see for instance [19].) Suppose we take the specific enthalpy as primary

\[w = \frac{\varrho + p}{n}, \]

and use the fact that we have already deduced

\[n = n_{(p=0)} \exp \left[\int_{\varrho_{(p=0)}}^{\varrho} \frac{d\varrho}{\varrho + p(\varrho)} \right], \]

(A.2)

to then write

\[w = \exp[\log(\varrho + p)]n^{-1} = \exp \left\{ \int \frac{d(\varrho + p)}{\varrho + p} \right\} \exp \left[-\int_{\varrho_{(p=0)}}^{\varrho} \frac{d\varrho}{\varrho + p(\varrho)} \right]. \]

(A.3)

This implies

\[w = \frac{\varrho_{(p=0)}}{n_{(p=0)}} \exp \left[\int_0^p \frac{dp}{\varrho + p} \right] = w_{(p=0)} \exp \left[\int_0^p \frac{dp}{\varrho + p} \right]. \]

(A.4)

This so far is a purely (barotropic) thermodynamic result, independent of any irrotational condition.

A secondary result, now specifically tied to the Bernoulli equation (and hence to irrotational flow), is that

\[w = w_{(p=0)} \|\nabla \Theta\|. \]

(A.5)

Note that the way we have presented the derivation, we have been able to delay and avoid the need for thermodynamic arguments as far as possible. (In contrast, this equation is the starting point adopted by Bilic in his derivation of relativistic acoustic geometry [2], what for us is a
peripheral result has in that analysis moved to centre stage—and gives we feel far too central a role to thermodynamic issues.)

In a similar vein, the energy equation

\[\nabla_a (\rho V^a) + p (\nabla_a V^a) = 0 \]
(A.6)

can be combined with the conservation equation

\[\nabla_a (n V^a) = 0, \]
(A.7)

as follows:

\[\nabla_a V^a = - \frac{1}{\rho + p} V^a \nabla_a \rho = - \frac{1}{\rho + p} \frac{d \rho}{d \tau}, \]
(A.8)

\[\nabla_a V^a = - \frac{1}{n} V^a \nabla_a n = - \frac{1}{n} \frac{d n}{d \tau}, \]
(A.9)

where \(d/d\tau \) now refers to a material derivative along the flow. Eliminating the divergence, we have

\[\frac{1}{\rho + p} \frac{d \rho}{d \tau} = \frac{1}{n} \frac{d n}{d \tau}. \]
(A.10)

More formally, by invoking the barotropic condition we see that for any ‘fluid element’ (i.e. tiny lump of fluid), we have

\[\frac{d \rho}{\rho + p} = \frac{d n}{n}, \]
(A.11)

which can be rearranged as

\[d(\rho/n) = - p d(1/n). \]
(A.12)

In terms of \(\mathcal{V} \), the ‘specific volume’ of a fluid element, we have \(\mathcal{V} \propto 1/n \) and so

\[d(\rho \mathcal{V}) = - p d\mathcal{V}, \]
(A.13)

which connects back to basic thermodynamics and again clearly verifies that in a relativistic setting \(\rho \) is the energy density, whereas \(n \) is the number density.

Finally, in view of these comments we can now write

\[\sqrt{-G} \ G^{ab} = \frac{n_0}{w_0} \left[-\frac{c_s^2}{c_s^2} V_0^a V_0^b + h^{ab} \right], \]
(A.14)

and somewhat simplify the acoustic metric to read as

\[G^{ab} = \left(\frac{n_0}{w_0 c_s} \right)^{-2/(d-1)} \left\{ -\frac{c_s^2}{c_s^2} V_0^a V_0^b + h^{ab} \right\}, \]
(A.15)

\[G_{ab} = \left(\frac{n_0}{w_0 c_s} \right)^{-2/(d-1)} \left\{ -\frac{c_s^2}{c_s^2} [V_0]_a [V_0]_b + h_{ab} \right\}. \]
(A.16)
References

[1] Moncrief V 1980 Stability of stationary, spherical accretion onto a Schwarzschild black hole *Astrophys. J.* **235** 1038–46

[2] Bilic N 1999 Relativistic acoustic geometry *Class. Quantum Gravity* **16** 3953–64 [gr-qc/9908002]

[3] Barceló C, Liberati S and Visser M 2005 Analogue gravity *Living Rev. Rel.* **8** 12 [arXiv:gr-qc/0505065]

[4] Fagnocchi S, Finazzi S, Liberati S, Kormos M and Trombettoni A 2010 Relativistic Bose–Einstein condensates: a new system for analogue models of gravity arXiv:1001.1044 [gr-qc]

[5] Weinfurtner S, Unruh B and Penner J in preparation

[6] Gordon W 1923 Zur lichtfortpflanzung nach der relativitätstheorie *Ann. Phys. Lpz.* **72** 421–56

[7] Unruh W G 1981 Experimental black hole evaporation *Phys. Rev. Lett.* **46** 1351

[8] Visser M 1993 Acoustic propagation in fluids: an unexpected example of Lorentzian geometry arXiv:gr-qc/9311028

[9] Visser M 1998 Acoustic black holes: horizons, ergospheres and Hawking radiation *Class. Quantum Gravity* **15** 1767 [arXiv:gr-qc/9712010]

[10] Carter B and Langlois D 1995 The equation of state for cool relativistic two constituent superfluid dynamics *Phys. Rev. D* **51** 5855–64 [arXiv:hep-th/9507058] (See especially equation (4.11) on page 5857.)

[11] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Space–Time (Cambridge: Cambridge University Press)

[12] Barceló C, Liberati S and Visser M 2001 Analog gravity from field theory normal modes? *Class. Quantum Gravity* **18** 3595 [arXiv:gr-qc/0104001]

[13] Barceló C, Liberati S and Visser M 2002 Refringence, field theory and normal modes *Class. Quantum Gravity* **19** 2961 [arXiv:gr-qc/0111059]

[14] Shapiro S L and Teukolsky S A 1983 Black Holes, White Dwarfs and Neutron Stars: the Physics of Compact Objects (New York: Wiley)

[15] Perez Bergliaffa S E, Hibberd K, Stone M and Visser M 2004 Wave equation for sound in fluids with vorticity *Physica* **D** **191** 121–36 [arXiv:cond-mat/0106255]

[16] Bhattacharyya S et al 2008 Local fluid dynamical entropy from gravity *J. High Energy Phys.* JHEP06(2008)055 [arXiv:0803.2526 [hep-th]]

[17] Rangamani M 2009 Gravity & hydrodynamics: lectures on the fluid-gravity correspondence *Class. Quantum Gravity* **26** 224003 arXiv:0905.4352 [hep-th]

[18] Ambrosetti N, Charbonneau J and Weinfurtner S 2008 The fluid/gravity correspondence: lectures notes from the 2008 summer school on particles, fields and strings arXiv:0810.2631 [gr-qc]

[19] Volovik G E 2009 \hbar as parameter of Minkowski metric in effective theory *JETP Lett.* **90** 697–704 [arXiv:0904.1965 [gr-qc]]