Heat transfer on microstructured surfaces with pool boiling of various liquids

R A Aksianov¹, Yu S Kokhanova², E S Kuimov³, R A Ley⁴, I A Popov⁵ and A N Skrypnik⁶
10 Karl Marks street, KNRTU-KAI, Kazan, 420111, Russia

¹ raaksyanov@kai.ru
² yulkoh@yandex.ru
³ egor1997-08@mail.ru
⁴ regina.ulyanova.ley@gmail.com
⁵ popov-igor-alex@yandex.ru
⁶ skart555@gmail.com

Abstract. Recommendations for predicting heat transfer coefficients and critical heat fluxes are developed on the basis of available experimental data on heat transfer and critical heat fluxes for boiling of different liquids on microstructured surfaces realized by deformed cutting method. Microstructured surfaces allow intensifying heat transfer 1.1 to 6 times. Due to the variable wettability of microstructured surface elements, critical heat fluxes increase over 4 times. The proposed criteria equations allow predicting heat transfer coefficients with an error of 30%, and critical heat fluxes with an error of 30–35%. The equations are of interest for designing cooling systems for microelectronic devices, heat and mass transfer devices, boiling zones of heat pipes and thermosyphons, etc.

1. Introduction

Liquid cooling systems are currently used for cooling the heat loaded elements of power electrical equipment and microelectronics. In these systems, the liquid boils directly on the electronic components. For this purpose, they are placed directly in the liquid coolant. And to increase the reliability of cooling systems, critical heat fluxes have to be increased.

Methods of heat exchange enhancement during pool boiling are traditional [1]: influence on internal mechanisms of the process (increase of vaporization centers, wettability control, increase of liquid inflow into microlayer evaporation zone, etc.); and increase/development of the heat-exchange surface.

Nowadays the great majority of works are focused on searching and applying new technologies of surface structuring and boiling process control [1, 2]. The main results of these works only demonstrate the effect without any detailed description of the investigated process for different coolants and conditions of experiments. Modern surface structuring technologies have been developed. They allow controlling the heat exchange during boiling, thus reducing the temperature head of the beginning of boiling, increasing the values of critical thermal head, and intensifying the heat transfer coefficient.

One of the methods for obtaining effective microstructured boiling surfaces is the deformation cutting technology [3,4]. This method is based on the process of partial cut allowance and targeted...
plastic deformation of the undercut surface layer. The resulting chips are not completely separated from the workpiece, maintaining a bond with it on its narrow side. The set of undercut surface layers, keeping their connection with the workpiece, form on the treated surface of a part of the developed macro relief. The technology has high productivity and a wide range of standard sizes of the resulting macro-relief and can be implemented both on specialized and unified metal-cutting equipment.

The selection of geometrical parameters of microstructured surfaces allows controlling the wettability of the surface and the inflow of liquid into the evaporation zone. The wetting angle affects the formation of the steam bubble [1]. The increase of the edge angle (wetting property deterioration) reduces the temperature head corresponding to the boiling beginning and intensifies the heat output. Improvement of wettability promotes the liquid inflow into the zone of intensive evaporation and increases critical heat fluxes. The combination of these factors allows for simultaneous heat transfer intensification and increases critical heat fluxes.

2. General correlations for heat transfer coefficient

Only surfaces obtained by deforming cutting were used to generalize data on pool boiling heat transfer of liquids heated to saturation temperature. All surfaces were divided into two groups (Fig. 1): surfaces with 2-D relief (microribs); and surfaces with 3-D relief (micro-pin structures).

The generalization was performed using the polynomial regression method:

\[
\frac{\alpha}{\alpha_0} = f_1(K_q(\theta/90),(h/l_0),(\Delta/l_0),(\delta/l_0))
\]

where \(\alpha \) is the heat transfer coefficient on a microstructured surface, \(\alpha_0 \) is the heat transfer coefficient on a smooth surface, \(K_q \) is the dimensionless criterion - the scale of the average liquid velocity caused by the vaporization process \(K_q = q_0/(r\rho''v'') \), \(l_0 \) is the Laplace constant proportional to the tear-off diameter of the bubble. \(l_0 = \sqrt{\frac{\sigma}{g(\rho' - \rho''')}} \), \(\rho' \) and \(\rho'' \) are the liquid and vapour densities, \(v' \) is the fluid kinematic viscosity coefficient, \(r \) is the latent heat of vaporization, \(\sigma \) is the surface tension coefficient; and geometrical parameters \(\theta, h, \Delta, \delta \) are shown in Fig. 2.

![Figure 1](image)

(a) Surfaces for pool boiling obtained by deforming cutting method:
 a – surfaces with 2-D relief (microribs), b – surfaces with 3-D relief (micro-pin structures).

There are several approaches to normalizing geometric parameters in boiling dependences. For example, it is proposed to choose the initial diameter of the steam bubble as the defining size. However, analysis has shown that the most profitable is to use \(l_0 \). This primarily depends on the boiling model - the calculation through the initial diameter of the steam bubble more describes the increase of the centers of vaporization and their exit from the microstructure elements, and \(l_0 \) describes the control of wettability and increase of liquid inflow into the micro-layer evaporation zone. It is recommended to accept the equation of Borishansky –
\[\alpha = 872P_{\text{crit}}^{1/3}(T_{\text{crit}}-36M^{1/3})(P/P_{\text{crit}})^{0.1}(1+4.64(P/P_{\text{crit}})^{1.16})^{2/3}, \]

\(p_{\text{crit}} \) and \(T_{\text{crit}} \) are the critical pressure and critical temperature of the coolant, and \(M \) is the molecular weight of the coolant.

Figure 2. Geometric parameters of the surface microstructure.

Generalization of experimental data presented in Table 1 and Fig. 1 was carried out for geometric parameters of surfaces with 2-D relief (micro-rib) and regime parameters of pool boiling. The material of the surfaces was stainless steel, copper, titanium. Thickness of surfaces No. 1-23 is 0.2-0.3 mm. During generalization of more than 730 experimental points, dependence was obtained to calculate heat transfer coefficient at pool boiling water, ethanol, 60% of glycerine water solution, freons R113 and R123, Novec 649 refrigerant in big volume on boiling surfaces with 2 heat transfer coefficient at

\[\alpha/\alpha_0 = 6 K_q^{-0.2}(\theta/90)^{0.554}(h/l_0)^{0.190}(\Delta/l_0)^{0.201}(\delta/l_0)^{-0.394} \]

(1)

Figure 3 Pool boiling heat transfer coefficients for surfaces with 2-D relief (micro ribs). Indication of points shown in table 1. \(\bar{\alpha} = \alpha/\alpha_0 \), \(A = 6 K_q^{-0.2}(\theta/90)^{0.554}(h/l_0)^{0.190}(\Delta/l_0)^{0.201}(\delta/l_0)^{-0.394} \)

Figure 4 Pool boiling heat transfer coefficients for surfaces with 3-D relief (micropins). Indication of points shown in table 2. \(\bar{\alpha} = \alpha/\alpha_0 \), \(A = 3.2 K_q^{-0.2}(\theta/90)^{1.64}(h/l_0)^{0.393}(\Delta/l_0)^{0.08}(\delta/l_0)^{0.18} \times (u/l_0)^{-0.47}(s/l_0)^{0.47} \)

Equation (1) describes experimental points with a 30% deviation at a confidence probability of 0.95. Equation (1) is valid in the range of \(q = 3800-2.17106 \text{ W/m}^2, K_q = 5-11500, \theta/90 = 0.72-1, h/l_0 = 0.09-1.45 \) (relative height of micro-ribs. Fig.2), \(\Delta/l_0 = 0.002-1.29 \) (relative distance between micro-rib element. Fig.2), \(\delta/l_0 = 0.01-1 \) (relative thickness of the micro-rib profile. Fig.2), \(Pr = 1.75-35.7 \), and \(F/F_0 = 1.66-9.75 \) (increase in heat exchange area).

Geometric parameters of surfaces with 3-D relief (micro-pin structures) and regime parameters of pool boiling, for which the generalization of experimental data was carried out, are shown in Table 2.
and Fig. 2. The material of surfaces is stainless steel, copper, titanium. Thickness of surfaces No. 1-23 is 0.2-0.3 mm.

Table 1. Geometric parameters of surface with 2-D relief (micro ribs)

Ref.	№	Liquid	h, D, δ, u, s, 0, °	Regime parameters
[4-7]	1	Distilled water	95 15 15 - - 87	P=10⁸ Pa T=373 K
	2		310 63 97 - - 87	
	3		200 46 74 - - 87	
	4		230 35 55 - - 87	
	5		220 22 38 - - 87	
	6		150 50 110 - - 90	
	7		90 50 110 - - 90	
	8		200 50 110 - - 90	
	9		200 50 110 - - 90	
[2]	10	Distilled water	300 44 26 - - 83	P=10⁸ Pa T=373 K
	11		300 110 140 - - 90	
	12		360 85 115 - - 90	
	13		500 200 200 - - 80	
	14		360 85 115 - - 65	
	15		200 35 65 - - 83	
	16		500 200 200 - - 80	
[8]	17	Freon R113	310 33 182 - - 80	P=10⁸ Pa T=320 K
[9,10]	18	Ethanol	90 50 110 - - 90	P=10⁸ Pa T=351.5 K
	19		200 50 110 - - 90	P=10⁸ Pa T=381 K
	20	60% glycerin	200 50 110 - - 90	P=10⁸ Pa T=381 K
	21	water solution	90 50 110 - - 90	P=10⁸ Pa T=381 K
authors	22	Distilled water	300 5 95 - - 90	P=10⁸ Pa T=373 K
	23		300 5 75 - - 90	P=10⁸ Pa T=373 K
[11]	24	Distilled water	400 300 300 - - 90	P=10⁸ Pa T=373 K
	25		300 300 300 - - 90	P=10⁸ Pa T=373 K
	26		200 300 300 - - 90	P=10⁸ Pa T=322 K
	27	Novec 649	400, 300 300 - - 90	P=10⁸ Pa T=322 K
	28		200 300 300 - - 90	P=10⁸ Pa T=322 K
[12]	29	Freon R123	1038 450 1050 - - 90	P=10⁸ Pa T=300 K
authors	30	60% glycerin	150 50 110 - - 90	P=10⁸ Pa T=381 K
water solution				

The generalization was performed using the polynomial regression method:

\[
\alpha/\alpha_0 = f_2 (K_\infty, (\theta/90), (h/l_0), (\Delta/l_0), (\delta/l_0), (u/l_0), (s/l_0))
\]

At generalization of more than 500 experimental points we received the dependence for calculation of coefficient of pool boiling heat transfer: water, ethanol, 60 % of a water solution of glycerine, freons R11, R113, R123, R134a on surfaces with a 3-D relief (micropin structures) (Fig.4):

\[
\alpha/\alpha_0 = 3.2 K_\infty^{0.2} (\theta/90)^{-1.64} (h/l_0)^{0.35} (\Delta/l_0)^{0.08} (\delta/l_0)^{0.18} (u/l_0)^{0.47} (s/l_0)^{0.47}
\]

Equation (2) describes experimental data with a 30% deviation at a confidence probability of 0.85. Equation (2) is fair in the range of \(q = 2400-3.5106 \) W/m², \(K_\infty = 8.7-22030 \), \(0.90 = 0.77-1 \), \(h/l_0 = 0.09-0.71 \) (relative height of micropins. Fig.2), \(\Delta/l_0 = 0.002-0.3 \) (relative cross distance between micropin
elements. Fig.2), δl₀=0.042-0.42 (relative cross thickness of the micro-rib profile. Fig.2), u/l₀=0.009-0.28 (relative longitudinal distance between micropin elements. Fig.2), s/l₀=0.02-0.79 (relative longitudinal thickness of the micro-rib profile. Fig.2), and Pr=1.75-7.35, F/F₀=2.23-4.8 (increase in heat exchange area).

Table 2. Geometric parameters of a surface with 3-D relief (micropins)

Ref.	Nº	liquid	Geometric parameters of the surface with 3-D relief (micropins)	Geometric parameters of the surface with 3-D relief (micropins)	Regime parameters				
			h, µm	Δ, µm	δ, µm	u, µm	s, µm	θ₀,₀	
[4-7]	1	Distilled water	420	180	170	140	178	90	P=10³ Pa
	2	Distilled water	340	70	170	140	178	75	T=373 K
[2]	3	Distilled water	420	205	145	120	200	70	P=10³ Pa
	4	Distilled water	570	210	140	180	140	80	T=373 K
	5	Distilled water	480	135	105	120	200	70	
	6	Distilled water	480	200	200	300	300	80	
	7	Distilled water	400	200	200	300	300	83	
authors	8	Distilled water	450	120	200	250	70	85	P=10³ Pa
	9	Distilled water	350	5	320	225	75	90	T=373 K
	10	Distilled water	320	5	320	225	75	90	
	11	Distilled water	300	80	120	175	125	90	
	12	Distilled water	220	80	220	250	50	85	
	13	Distilled water	375	5	300	250	50	90	
	14	Distilled water	500	350	150	275	50	85	
[9,10]	15	Ethanol	420	180	170	140	178	90	P=10³ Pa
	16	Ethanol	340	70	170	140	178	75	T=351,5 K
	17	60% glycerin	340	70	170	140	178	75	P=10³ Pa
	18	water solution	420	180	170	140	178	90	T=381 K
[13]	19	Freon R11	540	250	365	250	460	90	P=10³ Pa
	20	Freon R123	540	250	365	250	460	90	T=297 K
	21	Freon R134a	540	250	365	250	460	90	P=3.10⁵ Pa
[12]	22	Freon R123	750	320	280	10	830	90	T=300 K

3. General correlations for critical heat fluxes

To generalize the data for critical heat fluxes, the surface data presented in Tables 1 and 2 were used. Generalization was carried out using the method of polynomial regression by models for 2-D and 3D surface microstructure, respectively:

\[
\frac{q_{cr0}}{q_{crit0}} = f_{1}(\theta/90, (h/l₀),(\Delta/l₀),(\delta/l₀),Pr) \\
\frac{q_{cr0}}{q_{crit}} = f_{2}(\theta/90, (h/l₀),(\Delta/l₀),(\delta/l₀),(u/l₀),(s/l₀),Pr)
\]

where \(q_{cr0}\) is the critical heat flux when liquid is pool boiling on a microstructured surface, and \(q_{crit0}\) is the critical heat flux when liquid is boiling on a smooth surface. The values obtained experimentally are taken as the critical heat flux when liquid is boiling on a smooth surface \(q_{crit}\). They can be estimated using the dependence for Kutateladze critical heat flux: \(q_{crit0}=0.13\sqrt{\rho C_p g \sigma (\rho' - \rho^\circ)}\) with recommendations on amendments to the thickness of thin-walled boiling surfaces of Gogonin [14]. It should be noted that the amount of experimental data is very limited.

During generalization, dependence was obtained for calculating critical heat flux at pool boiling of water, ethanol, 60% of glycerine water solution, freons R113 and R123, Novec 649 on boiling surfaces with 2-D relief (microribes) (Fig.5):
The research was carried out with the financial support of the Ministry of Education and Science of the Russian Federation as part of the Agreement 075-03-2020-051-3.

Acknowledgments

The research was carried out with the financial support of the Ministry of Education and Science of the Russian Federation as part of the Agreement 075-03-2020-051-3.

Conclusion

Recommendations for predicting heat transfer coefficients and critical heat fluxes have been developed on the basis of available experimental data on heat transfer and critical heat fluxes for boiling of different liquids on microstructured surfaces, realized by deformed cutting method. Microstructured surfaces allow intensifying heat transfer 1.1 to 6 times. Due to the variable wettability of microstructured surface elements, critical heat fluxes increase over 4 times. The proposed criteria equations allow predicting heat transfer coefficients with an error of 30%, and critical heat fluxes with an error of 30-35%. The equations are of interest for designing cooling systems for microelectronic devices, heat and mass transfer devices, boiling zones of heat pipes and thermosyphons, etc.
References
[1] Dedov A V 2019 *Thermal Engineering* **12** 18–54
[2] Popov I A, Shchelchakov A V, Gortyshov Yu F, Zubkov N N 2017 *High Temperature* **55**(4) 524–34
[3] Patent US 8573022
[4] Patent DE 727269
[5] Popov I A, Shchelchakov A V, Zubkov N N, Kas’kov S I 2013 *Thermal Engineering* **60**(3) 157–65
[6] Popov I A, Shchelchakov A V, Zubkov N N, Kas’kov S I 2013 *Thermal Engineering* **60**(4) 285–94
[7] Shchelchakov A V, Popov I A, Zubkov N N 2016 *Journal of Engineering Physics and Thermophysics* **89**(5) 1152–60
[8] Passos J C, Reinaldo R F 2000 *Experimental Thermal and Fluid Science* **22** 35–44
[9] Popov I A, Shchelchakov A V, Zubkov N N, Lei R A, Gortyshov Y F 2014 *Russian Aeronautics* **57**(4) 395–401
[10] Popov I A, Shchelchakov A V 2014 *Journal of Engineering Physics and Thermophysics* **87**(6) 1420–32
[11] Kaniowski R, Pastuszko R, Nowakowski L 2017 *EPJ Web of Conferences* **143** 02049
[12] Kedzierski M A 1995 *NISTIR* 5732
[13] Kim Nae-H, Kim J-W, Kim T-H 2000 *J. of Thermal Science* **9**(3) 230–5
[14] Gogonin I I 2018 *Heat Transfer at bubble boiling* (Novosibirsk: Publishing House of the Russian Academy of Sciences) 225