PLASMA HEATING IN SOLAR FLARES AND THEIR SOFT AND HARD X-RAY EMISSIONS

R. Falewicz
Astronomical Institute, University of Wroclaw, 51-622 Wroclaw, ul. Kopernika 11, Poland; falewicz@astro.uni.wroc.pl

Received 2013 December 10; accepted 2014 May 21; published 2014 June 17

ABSTRACT

In this paper, the energy budgets of two single-loop-like flares observed in X-ray are analyzed under the assumption that nonthermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 February 20 and June 2, respectively. Using a one-dimensional (1D) hydrodynamic code for both flares, the energy deposited in the chromosphere was derived applying RHESSI observational data. The use of the Fokker–Planck formalism permits the calculation of distributions of the NTEs in flaring loops and thus spatial distributions of the X-ray nonthermal emissions and integral fluxes for the selected energy ranges that were compared with the observed ones. Additionally, a comparative analysis of the spatial distributions of the signals in the RHESSI images was conducted for the footpoints and for all the flare loops in selected energy ranges with these quantities’ fluxes obtained from the models. The best compatibility of the model and observations was obtained for the 2002 June 2 event in the 0.5–4 Å GOES range and total fluxes in the 6–12 keV, 12–25 keV, 20–25 keV, and 50–100 keV energy bands. Results of photometry of the individual flaring structures in a high energy range show that the best compliance occurred for the 2002 June 2 flare, where the synthesized emissions were at least 30% higher than the observed emissions. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. However, in the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission is about 12 times greater or even more than the observed emission. Some part of these differences may be caused by inevitable flaws of the applied methodology, like by an assumption that the model of the flare is symmetric and there are no differences in the emissions originating from the feet of the flares loop and by relative simplicity of the applied numerical 1D code and procedures. No doubt a significant refinement of the applied numerical models and more sophisticated implementation of the various physical mechanisms involved are required to achieve a better agreement. Despite these problems, a collation of modeled results with observations shows that soft and hard X-ray emissions observed for analyzed single-loop-like events may be fully explained by electron-beam-driven evaporation only.

Key words: Sun: chromosphere – Sun: corona – Sun: flares – Sun: X-rays, gamma rays

Online-only material: color figures

1. INTRODUCTION

Despite the significant progress already achieved both in observational and theoretical investigations and in numerical modeling of solar flares, the main physical processes involved in energy conversion, transfer, deposition, and losses in solar flares are only understood fragmentarily. However, broad insight is crucial for solving the most important questions, like a balance of energy in the solar flares, a prediction of solar flare magnitudes and their emission spectra, and emission of high-energy particles. It is commonly accepted that during the impulsive phase of solar flares, as well as, to some extent, before and after the impulsive phase, beams of nonthermal electrons (NTEs) accelerated somewhere in the solar corona stream along magnetic field lines toward the chromosphere, where they heat by collision the dense matter near the feet of the loops. The interactions of the NTEs with dense matter also cause a strong and variable time emission of hard X-rays (HXR) called electron–ion bremsstrahlung, which was described by Brown (1971) and Emslie (1978). The chromospheric matter, heated up to coronal temperatures, expands and fills the magnetic ropes (such a process is called chromospheric evaporation), and it mainly emits soft X-rays (SXR) and also some thermal HXR (Antonucci et al. 1984; Fisher et al. 1985b). Taking into account that the main physical processes occurring in solar flares are very complicated and interrelated and very difficult to describe analytically, a numerical modeling of the flares based on their observational properties allows us to extend our understanding of the physical aspects of the flares. The first numerical models explored the hydrodynamic response of the solar atmosphere to heating by electron beams (Nagai & Emslie 1984; MacNeice et al. 1984; Mariska & Poland 1985; Fisher et al. 1985a, 1985b, 1985c; Mariska et al. 1989; Serio et al. 1991). Reale et al. (1997) derived the method of estimation of the sizes of spatially unresolved solar and stellar coronal flaring structures based on the X-ray light curves and time-resolved temperature and emission measure values measured during flare decay, applying hydrodynamic (HD) modeling. More sophisticated multi-thread, time-dependent hydrodynamic simulations of solar flares were applied by Warren (2006) to observations of the Masuda flare of 1992 January 13. Combined modeling of acceleration, transport, and hydrodynamic response in solar flares was described in Liu et al. (2009). They tested three models of solar flare heating, repeating the same simulation with two kinds of injection downward-beamed electrons using different methods of particle transport and the new heating rates. As a main result of this comparison, the model calculated using analytical approximation of particle transport gives about 10% difference compared to the model calculated with the Fokker–Planck formalism but provides an acceptable approximation. In addition, using the model with the Fokker–Planck description of the particle transport,
and if the injected electron spectrum is based on stochastic acceleration, the authors found higher coronal temperatures and densities, larger upflow velocities, and faster increases of these quantities than in the model with electron injection of power law. Falewicz et al. (2009a) using hydrodynamic modeling examined the sensitivity of the GOES classification to the NTE beam properties using Yohkoh data, while a similar analysis was performed for the RHESSI data by Reep et al. (2013).

In this paper we used all achievements of our previous investigations of the energy transfer and deposition processes in simple, single-loop solar flares, in particular our investigations of interactions of the NTEs with matter (Falewicz et al. 2009a, 2009b, 2011; Siarkowski et al. 2009) and numerical modeling of the X-ray flare emission (Falewicz et al. 2009b, 2011). Additionally, in our work we took into account the results presented by Liu et al. (2009), which validated certain simplifications during the modeling of solar flares and were helpful in the interpretation of the results. We applied a hydrodynamic numerical code, essentially modified by us, of the Naval Research Laboratory (NRL); see Mariska et al. (1982, 1989) and Falewicz et al. (2009a), where a detailed description of the modified code is given. We modeled a heating process of the flaring plasma using Fisher’s approximation (Fisher 1989) on the basis of energy flux parameters evaluated using observed HXR spectra. In the present paper we apply the Fokker–Planck formalism of the electron precipitation process through the plasma in the loops following the method already evaluated by McTiernan & Petrosian (1990). We computed the distributions of the NTEs in a flaring loop, spatial distributions of the X-ray nonthermal emissions, and integral fluxes for the selected energy ranges that were compared with the observed fluxes in relevant energy ranges. Additionally, we also conducted a comparative analysis of the spatial distribution of the signal in the RHESSI images for the footpoints and entire flare loops in selected energy ranges and compared these quantities with the fluxes obtained from the models. A conformity of fluxes was applied as a measure of the quality of the calculated flare models and applicability of used procedures and simplifications.

In this paper we present the results of the numerical modeling of two solar single-loop-like flares. Section 2 describes the analyzed events. Section 3 shows the details of the HXR spectra fitting procedure, numerical modeling algorithm, and methods of calculation of thermal and nonthermal emissions. Section 4 presents the obtained results. The conclusions are discussed in Section 5.

2. OBSERVATIONAL DATA

For analysis we selected solar flares that look like single-loop structures in X-rays, best for the applied numerical model. The found flares were observed on 2002 February 20 and June 2. Both events were presented and analyzed in several papers. The emissions of the flares were registered by the RHESSI satellite (Lin et al. 2002). RHESSI was designed to image solar flares in photons having energies from soft X-rays (3 keV) to gamma rays (17 MeV) with a high temporal and energy resolution and also to provide high-resolution spectroscopy in the same energy range. RHESSI has nine coaxial germanium detectors with high signal sensitivity and allows a restoration of the images and spectra that are very useful for investigation of the nonthermal emission of solar flares. In case of excessively high photon fluxes, RHESSI automatically limits the readings using attenuators, unfortunately inserting also troublesome discontinuities of the recorded data (Lin et al. 2002; Hurford et al. 2002; Smith et al. 2002). However, both investigated flares were observed with the A1 attenuator permanently on. GOES X-ray data were also used. The GOES (Geostationary Operational Environmental Satellites) satellites since 1974 have continuously recorded integrated solar X-ray fluxes in two energy bands 1–8 Å and 0.5–4 Å with 3 s temporal resolution (Donnelly et al. 1977). To confirm the likely single-loop structure of the analyzed flares, additional observations from the EUV Imaging Telescope (EIT) were also used. EIT was installed on board the Solar and Heliospheric Observatory (SOHO; Delaboudiniére et al. 1995) and provides full-disk images taken in four bands: 171 Å, 195 Å, 284 Å, and 304 Å with 5” spatial resolution.

2.1. 2002 February 20 Solar Flare

This event was discussed already by Aschwanden et al. (2002) studying the height at which the HXR emission originates, by Sui et al. (2002) modeling the HXR emission, and by Krucker & Lin (2002) investigating the relationship between the brightnesses of the footpoints. Veronig et al. (2005) studied physics of the Neupert effect, and Guo et al. (2011) presented a new method to study in detail the temporal evolution of thermal and nonthermal photon fluxes applied to this flare.

The C7.5 GOES class flare occurred in active region (AR) NOAA 9825 on 2002 February 20, which was located near the western limb of the solar disk. In this region on that day, before the start of the analyzed flare, four events occurred, M4.2 (02:44), M5.1 (05:52), C2.5 (07:41), and M4.3 (09:46), and afterward two C-class events, C4.5 (11:29) and C2.9 (15:59). Seven flares were observed in the AR on that day. The SXR (1–8 Å) emission of the analyzed flare recorded by GOES started at 11:02 UT, reached its maximum at 11:07 UT, and was observed up to 11:29 UT. A harder emission recorded by GOES (0.5–4 Å) started to increase and peaked thereafter at the same time as the softer flux (1–8 Å). GOES light curves of the analyzed flare are presented in the upper panel of Figure 1. RHESSI X-ray light curves of the flare taken in five energy bands are shown in the lower panel of Figure 1. The impulsive phase of the flare registered by RHESSI in X-rays above 25 keV started at 11:04:28 UT, had its maximum at 11:06:08 UT, and was observed even in the energy range of 100–300 keV. The SXR emission registered by RHESSI below 12 keV started to rise simultaneously with GOES 0.5–4 Å emission, and the time course of the fluxes looks very similar.

Images of the flare were reconstructed using RHESSI data gathered with sub-collimators 3F, 4F, 5F, 6F, 8F, and 9F integrated over 8 s periods using the PIXON imaging algorithm with a 1″ pixel size (Metcalf et al. 1996; Hurford et al. 2002). The images restored for the low-energy band 6–12 keV (see Figure 2, left panel) show a single source located between two footpoints visible in higher energy (35–45 keV). The image recorded by SOHO/EIT 195 Å at 11:06:15 UT (see Figure 2, right panel), about 4 minutes later, indicates a structure very similar to the single source recorded by RHESSI in 6–9 keV. Hard X-ray images were used to determine the main geometrical parameters of the flaring loop using a method proposed by Aschwanden et al. (1999). The cross section of the loop \(S = (7.16 \pm 6.83) \times 10^{16} \text{ cm}^2 \) was estimated as an average area of both footpoints delimited with isophotes of 30% of the maximum flux in the 35–45 keV energy range. The cross section of flaring loops of both analyzed events was assumed to be constant. Half-length of the loop \(L_0 = (1.63 \pm 0.11) \times 10^9 \text{ cm} \) was estimated from a distance between the centers of gravity of the footpoints, assuming a semicircular shape of the loop.
The second analyzed event was already described and analyzed by Krucker & Lin (2002), who investigated the relationship between the brightnesses of the footpoints. Veronig et al. (2005) analyzed this flare in their study of physics of the Neupert effect. Sui et al. (2006, 2008) discussed the morphology and evolution of the flare, particularly in the EUV and Hα energy range. They showed evidence for multiple-loop interactions as the cause of the flare. Also, Meshalkina et al. (2009) examined various scenarios of the flare and proposed a three-dimensional scheme in which the filament eruption and flare were caused by interaction of the magnetic ropes.

The investigated flare occurred in AR NOAA 9973 (S17E23) on 2002 June 2. It was classified as a C9.4 GOES class flare. A magnetic class of the AR was beta-gamma, and it produced three C-class flares on that day, including the analyzed event. The GOES 1–8 Å flux started to increase slowly at 11:41 UT, reached a maximum at 11:47 UT, and was observed up to 11:55 UT. The time course of its SXR emission is not typical, having a flat maximum particularly visible in the harder energy band recorded by GOES (0.5–4 Å). GOES X-ray light curves of the flare are shown in the upper panel of Figure 4. RHESSI X-ray light curves of the flare taken in five energy bands are shown in the lower panel of Figure 4. The impulsive phase started in X-rays above 25 keV at 11:44:14 UT, had double maximum at 11:44:34 and 11:44:54 UT, and was observed up to 11:46:02 UT. The HXR emission of the impulsive phase was observed up to 300 keV. The X-ray emission below 25 keV started to rise simultaneously with the GOES emission. Small increases of emissions causing flattening of the SXR maxima occurred at the same time in the GOES emission and RHESSI channels 4–12 keV and 12–25 keV at 11:47:42 UT.

The start of the impulsive phase occurred simultaneously with an increase of the SXR emissions, and no preheating prior to the impulsive phase was observed.

The images of the flare were obtained using RHESSI data collected with sub-collimators 3F, 4F, 5F, 6F, 8F, and 9F.
The Astrophysical Journal, 789:71 (15pp), 2014 July 1

Figure 3. RHESSI spectra taken before (left panel), during (middle panel), and after the impulsive phase (right panel) of the 2002 February 20 flare. The spectra were fitted with the single-temperature thermal model (blue color) and thick-target model (green). The summed fits of the spectra are shown in red. The obtained values of the power-law index of the electron energy distribution δ and low-energy cutoff of the electron distribution E_c were determined on the basis of the thick-target model and used as characteristics of the injected electrons in the model. (A color version of this figure is available in the online journal.)

Figure 4. GOES X-ray 0.5–4 Å and 1–8 Å light curves (upper panel) and RHESSI light curves of five energy bands between 4 and 300 keV (lower panel) taken during the C9.4 GOES class solar flare on 2002 June 2. (A color version of this figure is available in the online journal.)

integrated over 48 s periods and the PIXON imaging algorithm with 1″ pixel size. The image restored in the 30–80 keV energy range revealed two distinct footpoints, where the western footpoint is brighter than the eastern (Figure 5, left panel). In the 6–12 keV energy range the entire flare loop was seen. The image recorded by SOHO/EIT 195 Å at 11:50:54 UT, after the impulsive phase of the flare and overplotted with the RHESSI 30–80 keV PIXON image (contour) registered at 11:44:20 UT, is shown in the right panel of Figure 5. The main flare loop visible in the EUV range spatially coincides well with footpoints visible in the RHESSI 30–80 keV range. The method of determination of the geometrical parameters was the same as for the first flare. The cross section of the loop $S = (6.04 \pm 5.60) \times 10^{16} \text{cm}^2$ was estimated as an average area of the feet delimited with isophotes of 30% of the maximum flux in the 30–80 keV energy range. Half-length of the loop was estimated as $L_0 = (8.37 \pm 1.13) \times 10^8 \text{cm}$. Samples of RHESSI spectra taken before, during, and after the impulsive phase are shown in Figure 6.

3. CALCULATIONS

The procedure of the numerical modeling used in this paper is very similar to the one described in previous publications (Siarkowski et al. 2009; Falewicz et al. 2011). The main assumption of the method is that interactions of the NTEs with plasma are the only source of plasma heating during all phases of the analyzed events. The same hydrodynamic model of the analyzed flares was used, where the NTE beams derived from RHESSI spectra are the carriers of heating energy deposited, via Coulomb collisions. The energy deposition rates were calculated using an approximation given by Fisher (1989). As in the previous paper (Falewicz et al. 2011), the low-energy cutoff of the electron distribution E_c was automatically optimized by comparison at each time step of the observed SXR GOES flux in the 1–8 Å range and the calculated one. In this paper in addition, for each time step the steady-state electron spatial and spectral distributions in the loop were calculated using a Fokker–Planck code (McTiernan & Petrosian 1990). Known distributions of the NTEs and physical parameters of the plasma along the flaring loop allowed for the calculation of spatial distributions of the X-ray thermal and nonthermal emissions, to derive integral fluxes in the selected energy ranges and to compare them with the fluxes observed in the same energy ranges (see a detailed description below). Furthermore, a comparative analysis of the spatial distributions of the signals in the RHESSI images and models of both flares was made. We compared signals emitted from selected structures and within selected energy ranges. The conformity level was applied as a measure of the model quality and validity of the applied procedures and simplifications.
3.1. Modeling of the Flares

The RHESSI data were analyzed using the RHESSI OSPEX package of the SolarSoftWare (SSW). The X-ray spectra of both flares were measured with a 4 s time resolution in 158 energy bands ranging from 6 to 300 keV. The analyzed spectra were corrected for pulse pileup, decimation, and albedo effect (Compton back-scattering on the photosphere; Bai & Ramaty 1978) using the RHESSI standard analysis tools.

The accuracy of background subtraction is a key point in spectra analysis. In the case of the RHESSI spectra, the background is usually modeled as a linear (or higher-order polynomial) interpolation between averaged fluxes before and after the flare. However, for many flares and periods between them gradual rises and falls of this background were observed. Such a slow increase and then decrease of the flux were recorded for the 2002 February 20 flare before 11:04 UT. Similar background variations were observed in all energies, as well as in the highest energy channel, where no flare emission was observed. Averaged time profiles of the high-energy backgrounds were used for the modeling of the background variation in the low-energy channel during this flare. This method allows for a subtraction of the backgrounds with sufficient accuracy in different energy channels. For the 2002 June 2 event, the background varied marginally with time during this flare and was subtracted from data using a linear fit of the background fluxes recorded before and after the flare.

The RHESSI A1 attenuator was permanently used during both analyzed events. Thus, counts registered in the 3–6 keV energy range are almost exclusively generated by higher energy photons above 11 keV, which is caused by the K-escape effect (Smith et al. 2002). Therefore, only counts above 6 keV were analyzed. For the 2002 February 20 event above 90 keV and for the 2002 June 2 above 100 keV, the X-ray background flux dominates.
over flare emission, so fluxes above these energy levels were also not included for spectral fitting.

Particularly at the beginning and end of the flare, when recorded fluxes are low, the count rates in some energy bins can be negative as a result of background subtraction and low signal-to-noise ratios (S/N_S). In order to keep the count rates positive (particularly in the $6–20$ keV energy range), an increased accumulation time was applied, causing worse time resolutions for the beginnings and ends of both analyzed events than maxima phases. The spectra were fitted assuming single-temperature thermal plus thick-target models. The thermal model was defined by a single temperature and an emission measure of the optically thin thermal plasma, based on the X-ray continuum and line emissions calculated using the CHIANTI atomic code (Dere et al. 1997; Landi et al. 2006). The thick-target model was defined by the total integrated NTE flux F_{nth}, the power-law index of the electron energy distribution δ, and the low-energy cutoff of the electron distribution E_c. These parameters were then used as characteristics of the injected electrons in the model. Figures 3 and 6 show examples of spectra and fits of the thermal and nonthermal components for analyzed events and determined on the basis of parameters of the thick-target model. The RHESSI spectra were fitted using a forward and backward automatic fitting procedure, starting from a time when the nonthermal component was strong enough and clearly visible. The obtained values of the fitted parameters were controlled and corrected if necessary. Generally, all fitted parameters evolved in a quasi-continuous manner.

Geometrical and physical models of the pre-flare loops were built using geometrical parameters: semi-length L_0 and cross section S; in addition, thermodynamic parameters such as initial pressure at the base of the transition region P_0, temperature, emission measure, mean electron density, and $GOES$ flux in the energy range $1–8$ Å were estimated from RHESSI and GOES data. In order to obtain for initial pre-flare models the best conformity between theoretical and observed $GOES$ light curves, the semi-lengths and cross sections of the loops were refined in a range of ± 1 pixel. Table 1 presents the values of S, P_0, and L_0 used in the models of the analyzed flares.

For each time step the momentary heating rate of plasma along the loop was estimated using Fisher’s heating function. In this function thick-target parameters F_{nth}, δ, and E_c of the NTE beams obtained from fitting consecutive RHESSI spectra were used. The time step of the NTE beam was defined as the accumulation time needed to obtain the spectrum from RHESSI data with a sufficient S/N. For this reason, during each NTE beam’s time step a heating of the loop was calculated with fixed NTE beam parameters, while the thermodynamic parameters of the flaring plasma varied, being calculated with a much shorter time step of the HD model. The best beam time resolution was obtained when the flux was the highest around the maximum of event (being equal to 4 s), and the worst for the beginning and the end (a dozen or several dozen seconds). At the end of each NTE’s beam time step $GOES$ fluxes were calculated and compared with the observed $GOES$ fluxes. If a conformity of the fluxes was achieved, the procedure was applied for the next time step. Otherwise, the E_c value was carefully adjusted in order to achieve conformity of the observed and modeled $GOES$ fluxes in the $1–8$ Å energy band. A variation in the E_c value of just a few keV can add or remove a substantial amount of energy to or from the flare loop because of the power-law nature of the energy distribution. Thus, E_c must be selected with high precision. Usually the value of E_c obtained from fitting RHESSI spectra is fraught with a large error. However, the applied method limits the range of E_c using an independent energetic condition, like the observed $1–8$ Å $GOES$ flux.

3.2. Calculation of Thermal Emission

The thermal emission fluxes were calculated using the CHIANTI atomic code (Dere et al. 1997; Landi et al. 2006) for the temperature range $1–50$ MK, ionization equilibrium by Mazzotta et al. (1998), and solar coronal extended abundances. Thermal emission was calculated for both the lines and continuum. The procedure for calculating the thermal emission fluxes consisted of several stages. In the first, thermal emission was calculated for each cell of the model and in four energy ranges, $6–12$ keV, $12–25$ keV, $25–50$ keV, and $50–100$ keV, at the end of each NTE’s beam time step. Next, the total flux was calculated for the entire loop in the same energy ranges. As a result, the light curves in different energy ranges and spatial distribution of the thermal emission were obtained.

3.3. Calculation of Nonthermal Electron Distribution

In this work, the Focker–Planck formalism was applied using a code originally developed by Leach & Petrosian (1981), based on a program developed by Walt, MacDonald, and Francis (described in Carovillano & McClay 1968), extended to ultrarelativistic energies by McTiernan & Petrosian (1990) and prepared for public distribution by Holman (http://hesperia.gsfc.nasa.gov/hessi/flarecode/effluxprog.zip). This code computes the steady-state electron distribution function in the flare’s magnetic loop as a function of a position along a magnetic field line, electron pitch angle, and electron energy. Input data consist of injected flux, distribution of NTEs at the top of the loop, a model of a distribution of plasma in the flare’s loop, and a model of the magnetic field. The solution includes effects due to Coulomb collisions with the ambient plasma, effects due to synchrotron emission by the electrons, and effects of bremsstrahlung emission. It should be noted that most of the NTEs lose their energy in Coulomb collisions, while a small fraction ($\sim 10^{-5}$) of the electrons’ energy is converted into HXR

Table 1

Cross Sections, Semi-lengths, and Base Pressure of the Analyzed Flares

Event Date	Time of Event	GOES Active Region	S (1016 cm2)	L_0 (108 cm)	P_0 (dyn cm$^{-2}$)	
20 Feb 2	11:02–11:07	C7.5	9825	7.16	17.2	63.0
2 Jun 2	11:41–11:47	C9.4	9973	5.81	8.37	72.0

Notes. S and L_0: cross section and semi-length of the flaring loop, respectively; P_0: pressure at base of transition region.
by the bremsstrahlung process. In addition, a synchrotron effect is insignificant in solar flares. An assumption of a steady state imposes that the injected flux of NTEs is constant in time for all timescales smaller than the transport timescales. In other words, the time of flight of the NTEs from top of the loop to bottom (feet) must be shorter than the interval, when parameters of the injected NTE beam at the top of the loop varied. The code has been modified to work with the hydrodynamic code in order to retrieve physical parameters of each cell along a computational loop. As a result, the procedure calculates the electron flux distribution \(F(E, s, \mu) \) as a function of energy \(E \), at all points in the loop (distance from the top of loop \(s \)), and for all angles (pitch angles \(\mu = \text{cosine} \theta \) in electrons/cm\(^2\)/sr/s/keV. For both analyzed flares, constant cross section of loops was assumed (for what seems to be a good approximation, see Peter & Bingert 2012), which implies no magnetic mirroring because magnetic field strength was constant and equal to 200 G. The value has been selected on the basis of estimates of the coronal magnetic field presented in Schmelz et al. (1994) and Aschwanden (2005).

3.4. Calculation of Nonthermal Emission

Known distribution of NTEs along the loop allows for the calculation of the thin-target nonthermal bremsstrahlung radiation intensity \(I(\varepsilon, s) \) at the end of each time step. The intensity is a function of photon energy \(\varepsilon \) and distance from the top of loop \(s \), and by using the formula of Tandberg-Hanssen & Elmslie (1988), one has

\[
I(\varepsilon, s) = S \int_{\varepsilon}^{\infty} n_p(s)\sigma_B F(E, s) dE,
\]

where \(S \) is a cross-section area of a loop and \(n_p \) is the ambient proton density as a function of the distance along the injected electron’s path for full ionization. \(\sigma_B \) is the angle-averaged differential bremsstrahlung cross section given by Koch & Motz (1959). Electron flux distribution \(F(E, s, \mu) = \int_{1}^{\infty} F(E, s, \mu) d\mu \) was integrated over the pitch angle from 1 to \(-1\). The \(I(\varepsilon, s) \) is calculated in photons/cm\(^2\)/s/keV. As a result, the light curves and spatial distribution in different energy ranges of the nonthermal HXR emission are obtained.

3.5. Observed and Synthesized Light Curves

Observed HXR light curves in photons/cm\(^2\)/s/keV were restored on several assumptions: the RHESSI attenuator state during the analyzed flares was permanently A1, and the resulting fluxes were obtained by dividing the instrument response matrix with diagonal coefficients only; thus, other factors were not taken into account, e.g., there are no corrections for effects such as K-escape and Compton scattering (described by the off-diagonal elements of the detector response matrix). Both analyzed flares were in the upper range of GOES class C (C7.5 and C9.4), which does not emit high HXR fluxes. The correction of decimation and pileup was also included. Observed light curves were prepared in four energy bands: 6–12 keV, 12–25 keV, 25–50 keV, and 50–100 keV. To make a comparison of modeled and observed fluxes possible, it was necessary to add to each of them the HXR thermal and nonthermal synthesized component and then add a background set of observational light curves. In this way it was possible to compare the synthesized and observed fluxes in the same energy range selected. Figure 7 shows a schematic flow diagram used for the modeling of solar flares and their analysis. All of the components in the diagram are described in this section.

4. RESULTS

The main results of modeling the analyzed flares are presented in Figures 8 and 9 for 2002 June 2 and Figures 10 and 11 for 2002 February 20. The synthesized GOES 1–8 Å light curves of the flaring loops follow closely those observed for the analyzed flares, which is a direct result from our assumptions. The real test for the accuracy of the model is to compare the observed and calculated fluxes in the 0.5–4 Å band. The quality of the fit between an observed and synthesized light curve in the 0.5–4 Å band would be a good measure of quality of the calculated flare model. In other words, with smaller differences between light curves in the 0.5–4 Å band, one gets a better model/simulation, larger differences, and a worse model/simulation. For the event of 2002 June 2, one can trace this effect in Figure 8 (upper left panel). The calculated light curves for the analyzed event did not differ too much from the observed ones. It seems that our model simulates the main physical processes in the right way despite the large simplifications that are used. At the beginning of the flare the synthesized light curve (red color) is under-observed (blue dashed line); after 11:44:20 UT it has a similar pattern to the maximum at 11:45:40 UT. After this time, during the flat maximum, the synthesized curve is located again under the observed one to 11:48:20 UT. Again, after this time the curves are in a similar course to the end of the simulation. Additionally, one can see that during the decay phase (after 11:48:20 UT) some heating is necessary. The green dotted curve in Figure 8 (upper left panel) represents the evolution of the plasma in the flaring loop without any heating and has a different course to the observed one. The observation corresponds well to the evolution of plasma flares in the loop that is heated in this time. A difference in the course between synthesized and observed light curves also reflects the calculated temperature and emission measure values. We can follow the behavior of temperature with time in Figure 8 (upper right panel). Obviously, where there are the greatest differences in the flux 0.5–4 Å energy band, there will also be the largest differences between the temperatures determined from observations and synthesized curves. From almost the beginning of the flare, the temperature is
The Astrophysical Journal, 789:71 (15pp), 2014 July 1

Falewicz

Figure 8. Results of the modeling of the 2002 June 2 solar flare. The upper left panel presents the observed and calculated GOES fluxes in 0.5–4 Å (lower curve) and 1–8 Å (upper curve) energy bands. The upper right panel shows temperature, the lower left panel shows emission measure, and the lower right panel presents the diagnostic diagram – \(\log(T) \) vs. 0.5 log(EM). Color code as used in the described panels: blue dashed lines relate to the value observed or calculated from GOES fluxes, red lines show the value calculated from the solar flare model, green (dotted) lines describe the value calculated from the solar flare model without any heating after 11:48:08 UT.

(A color version of this figure is available in the online journal.)

lower than that determined at the same time from observations, but both values agree within the range of errors. The situation changes after 11:44:20 UT, when the temperature calculated from the model is higher than that calculated from observations and is outside the range of errors. At about 11:45 UT there is a short episode when the temperatures determined from the model and observations are almost identical. After 11:45:20 UT, the highest difference between the temperatures calculated from observations and from the model is observed. At about 11:46:20 UT, the difference is at its greatest and is about 3 MK. After this time, the difference gradually decreases to reach a similar value at 11:51:20 UT (again within the range of errors). The behavior of the emission measure over time can be seen in Figure 8 (lower left panel). Generally, it can be said that apart from the beginning, an emissions measure calculated from synthesized light curves reproduces the course of emission measure calculated from observations very well, and generally their ranges of errors overlap apart from a few discrepancies.

A very useful tool to observe the thermal evolution of the flaring plasma is a diagnostic diagram. This type of flare thermal analysis was presented for the first time by Jakimiec et al. (1992). On the diagnostic diagram the emission measure (0.5 \(\log(EM) \)) is given on the horizontal axis while plasma temperature (\(\log(T) \)) is given on the vertical axis. Generally, the evolutionary paths in the diagrams are very sensitive to the efficiency of the plasma heating during the flare. This is particularly important and relevant to the cooling phase of the flare when the energy flux is reflected by the slope of its evolutionary path. During this phase, evolution of the flare can occur in two characteristic limiting branches. The first is the branch when heating of the flaring loop is abruptly switched off; in this case, the slope of the evolutionary branch is about 2. This is an instance of free or nearly free evolution of the flaring loop, when heating decreases so quickly that it does not affect the rate of flare cooling. Second is the quasi-stationary state (QSS) branch when the rate of flare cooling is still fully covered by the heating; the slope of the evolutionary path in this case is about 0.5. Figure 8 (lower right panel) shows the diagnostic diagram for the 2002 June 2 solar flare. The difference between the observed and modeled evolutionary paths is caused mainly by underestimation of the modeled temperatures of plasma. During the cooling phase of the flare of 2002 June 2 from 11:48:20 UT to 11:50:20 UT, the observed and modeled evolutionary paths have slopes that are very close to, but less than, 2; after the time 11:50:20 UT, the slope was about 0.5. This behavior indicates that some heating was present during the decay phase of the analyzed event. A green dotted curve shows the evolutionary path calculated in the case when heating of the flaring loop was abruptly switched off after 11:48:08 UT, and the path reaches a slope very close to 2 after 11:48:50 UT.
Temporal variations of the calculated cutoff energy E_c agree well with estimations of E_c range and temporal variations made in a previous paper (Falewicz et al. 2011) and already presented by various authors, e.g., Holman et al. (2003); Sui et al. (2007) and Warmuth et al. (2009a, 2009b).

Figure 10 presents the results of modeling of the 2002 February 20 solar flare. In the case of this event the quality of the restoration of the GOES 0.5–4 Å light curve (upper left panel) is much worse compared to the 2002 June 2 solar flare. For almost the entire duration of the analyzed flare the modeled light curve (0.5–4 Å) is located below the observed light curve, but an overall pattern of the variations is very similar to the observed ones. The courses of the light curves show that during the decay phase some heating occurred. The green dotted curves in Figure 10 (upper left panel) represent the evolution of the plasma in the flaring loop without any heating after 11:08:36 UT and have different courses than the observed ones. A difference in the courses between synthesized and observed light curves, as in the case of the first analyzed event, also reflects on the calculated temperature and emission measure values. For temperatures (upper right panel) the biggest difference is observed for the maximum of the flare, at 11:07:10 UT, when the difference between the temperatures determined from observations and synthesized light curves reached about 3 MK. After the maximum of the flare, the difference between temperatures gradually decreases to reach a value of about 1.5 MK at 11:19:40 UT. Temperatures determined from synthesized light curves only at the beginning and end of the event are within the range of errors of temperatures calculated from the observed light curves. Time variations of emission measure are presented in Figure 10 (lower left panel). Emission measure calculated from the synthesized light curves reproduces the course of emission measure calculated from observation, but observed emission measures are higher. For the whole event the course of emission measure calculated from a synthesized light curve is within the range of errors of emission measure calculated from the observed light curves. The main difference between observed and modeled evolutionary paths on the diagnostic diagram (Figure 10, lower right panel) is caused by underestimation of temperature and overestimation of emission measure. However, despite the shift, both evolutionary paths are similar. During the cooling phase of the flare from 11:16:20 UT to 11:19:30 UT, the observed and modeled evolutionary paths have a similar slope of about 0.5, and this proves that some heating was present during the decay phase. The time variation of the parameters of the electron beam in the thick-target approximation and RHESSI fluxes of the flare are presented in Figure 11. The energy flux of NTEs F_{nth} varied in time between 5.7×10^{24} and 4.7×10^{27} erg s$^{-1}$, reaching a maximum at 11:06:20 UT. Low-energy cutoff E_c varied during the analyzing flare between 13 keV and 31 keV and has a similar pattern of variations to the previously analyzed event.

Figure 9 presents time variations of the electron beam parameters determined assuming the thick-target model and RHESSI fluxes in two energy bands, 12–25 keV and 25–50 keV, respectively. As already mentioned earlier, NTE beams characterized by these parameters provide to the loop energy sufficient to obtain compliance of the observed and modeled GOES fluxes in a 1–8 Å energy band before and during the impulsive phase, and also during the decay phase of the flare. The time course of energy flux of NTEs F_{nth} varied between 4.0×10^{23} and 3.28×10^{27} erg s$^{-1}$, reaching the first maximum at 11:44:40 UT, and the second (strongly blurred) at 11:47:42 UT. These two maxima are reflected well in the course of the electron spectral index δ, as local minima, when the spectrum of NTEs was hardened. This behavior is known in the literature as soft-hard-soft observed during the typical behavior of variation soft-hard-soft observed during the flare between 13 keV and 31 keV and has a similar pattern of variations to the previously analyzed event. Electron spectral index δ varied between 4 and 12, exhibiting typical behavior of variation soft-hard-soft observed during the impulsive phase for most solar flares. The observed minimum for the electron spectral index is reflected in the maximum of the light curve recorded by RHESSI in the 25–50 keV energy range at 11:06:08 UT. Previously (Siarkowski et al. 2009; Falewicz et al. 2011), and in the present work, optimization of the low-energy cutoff of the electron distribution E_c by comparison of the observed and calculated 1–8 Å GOES fluxes is used during the modeling of flares. However, the conformity of the observed and synthesized light curves in the 0.5–4 Å band serves as a measure of quality of the calculated flare models. In this
approach, these conditions are treated as independent in energy, but it is worth noting that the two energy ranges for \textit{GOES} overlap. Therefore, it was decided to check in this work the accuracy of the model for other energy ranges. The method is based on a comparison of the synthesized and observed total fluxes in 6–12 keV, 12–25 keV, 25–50 keV, and 50–100 keV energy bands. Examples of such comparisons are shown in Figures 12 and 13, respectively, for the 2002 June 2 and February 20 solar flares. For the solar flare of 2002 June 2 (Figure 12) the conformity of the observed and synthesized light curves in higher energy bands (25–50 keV and 50–100 keV) is very good. In these bands of energy the largest contribution to the total flux comes from a nonthermal emission. In lower energy ranges, the contribution of this component decreases and the thermal component begins to play a dominant role. Observed X-ray light curves are of course the sum of the thermal and nonthermal emissions. Comparison of the observed light curves with calculated thermal and nonthermal fluxes can show what point in time what type of emission dominated during the various phases of the flare. In Figure 12 the nonthermal synthesized emission in the energy range 50–100 keV is represented by the dark blue (dotted) curve. For the lower range (25–50 keV) synthesized emission is represented by the red curves, which are sums of synthesized thermal and nonthermal emissions, but the contribution of thermal emissions in this energy range is still very small. It is only in the energy range of 12–25 keV that thermal and nonthermal emissions have comparable contributions. For example, for this range of energy temporary dominance of one of the components can be traced. After 11:44:00 UT, the nonthermal component dominates, which is associated with the main impulsive phase of the flare, and at 11:45:10 UT thermal emission begins to dominate up to 11:50:00 UT, where again the two components have similar contributions. The quality of the fit between an observed and synthesized light curve for the 12–25 keV energy band is worse than at higher energy ranges. In particular, the differences are apparent after 11:44:20 UT, where the maximum of the synthesized light curve is lower compared to the maximum of the observed light curve. The shape of the maximum of the synthesized light curve is restored correctly and can be seen in the double peaks as in observed light curves. After 11:45:10 UT, a local minimum appears in the synthesized light curve that does not occur for the observed light curve. A similar effect at the same time appeared for the observed light curve of the \textit{GOES} 0.5–4 Å band (see Figure 8, upper left panel). The nonthermal component does not indicate the described behavior; therefore, this effect corresponds to the thermal component. Again, after 11:48:30 UT the curves are in a similar course to the end of the simulation. In the lowest energy channel (6–12 keV) the thermal component dominates, although during the impulsive phase the nonthermal component gives a small contribution. The synthesized emission has a sim-
Figure 11. Time evolution of the thick-target model parameters calculated for the 2002 February 20 solar flare using RHESSI fluxes. From top to bottom: energy flux of NTEs F_{nth}, low cutoff energy E_c, δ index of energy spectrum, and HXR fluxes: 12–25 keV (black line) and 25–50 keV (blue line).

(A color version of this figure is available in the online journal.)

ilar pattern of the variation, but runs over the observed light curve. Also in this energy band a local minimum of the synthesized light curve appears at 11:46:35 UT that does not occur in the observed light curve. The emission calculated from the model in the 6–12 keV channel begins to clearly start and grows later and faster than the observed one, but this behavior is not observed in the other described energy bands.

Figure 13 shows the comparison of the synthesized and observed total fluxes in the same four energy bands of the 2002 February 20 solar flare. For this event the quality of the restoration of synthesized curves is worse in relation to the 2002 June 2 solar flare, similarly as for the GOES 0.5–4 Å light curve. For almost the entire duration of the analyzed flare the modeled light curves are located below the observed light curves, but the variation patterns are very similar to the observed ones. Only in the 6–12 keV energy band does the synthesized curve have a similar course and values to the observed light curve, but at the beginning, the start of emission calculated from the model begins clearly later than in observation, just as in the case of the first analyzed flare. The biggest differences between synthesized and observed light curves are in the energy range of 12–25 keV, and they decrease with increasing energy.

Figure 14 presents an example of the simulation of the spatial distribution of integral nonthermal and thermal emission in the energy range 12–25 keV, calculated for the early stage of the impulsive phase of the 2002 June 2 flare. The emission comes mainly from the feet, where impulsive brightenings appeared to be caused by NTEs that heat chromospheric matter. A much weaker and more diffuse emission comes from the top of the loop, which also has a nonthermal origin. A more complex picture of the flare is shown in Figure 15. This is an example of the simulation of spatial distribution of total nonthermal and thermal components calculated also for the early stage of the impulsive phase of the 2002 February 20 flare. In this case, as can be seen in the feet, there is strong impulsive brightening and also much weaker and blurring emission, which is mainly thermal in origin, from the top of the loop.

Finally, spatial distributions of the signal in the RHESSI images were compared with emissions resulting from the model. Using the spatial distribution of the observed signals presented in Figures 2 and 5 (left panels), fluxes were measured for the selected structures and compared with the values obtained from the models for both analyzed flares. The results are presented in Table 2. For selected energy ranges 35–45 keV and 30–80 keV emissions have a nonthermal origin, which can be proven by looking at the total fluxes in Figures 12 and 13 for 2002 June 2 and February 20, respectively. On the RHESSI images emissions originate chiefly from the feet of the flaring loops. For this reason, in the images areas of the feet were selected using the two connected methods. The first one delimits the interest area using the box defined as coordinates of the corners (see Table 2); the second delimits the feet with an isophote of 30%
intensity of the brightest pixel in this box. In this way the areas of footpoints were estimated in the images of both analyzed events. However, the observed fluxes of the footpoints are not identical (see Table 2: FP₁ and FP₂). Therefore, taking into account the symmetry of the numerical model, the corresponding parameter was calculated as an average of the fluxes of both feet (FPave).

The nonthermal footpoint flux is calculated for the model using formula (1) and additionally from \(F_{FP} = \int_{\varepsilon_{\text{TR}}}^{\varepsilon_{\text{MAX}}} \int_{s_{\text{TR}}}^{s_{\text{MAX}}} I(\varepsilon, s) \, ds \, d\varepsilon \) as total intensity below the transition region (\(s_{\text{TR}} \)) and integrated in selected energy ranges (\(\varepsilon \)). For these calculated fluxes the added value of the background was derived from the RHESSI image (\(F_{\text{BKG}} \)) using the box defined as coordinates of the corners (see Table 2). For the lowest energy range (6–12 keV) the applied methodology is more complicated. In this energy range and at the time when the images were registered for the analyzed flares the thermal component dominates, although the nonthermal emission adds a small contribution (see Figures 12 and 13). Therefore, calculated emission of the model in this energy range should be the sum of the thermal (FLTH) and nonthermal (FLNTTH) emissions, and such a value (FLSUM) is compared with the observations. The modeled emission was integrated over the entire loop, and also in this case the value of the background is added and derived from the RHESSI image. The only observed structure of the RHESSI images in this energy range is the flare’s loop. As in the case of a high energy range, the same two methods of estimation of the areas of the loop’s emission were used.

For the analyzed event of 2002 June 2 in the 30–80 keV energy range, emission from the model is about two times bigger than observed flux within an isophote of 30% and is outside the range of errors. A similar situation occurs for the observed flux using a box method, where the obtained synthesized emission is 30% higher than the emission derived from the observation. A much larger inconsistency occurs for the 6–12 keV energy range. In this case the emission calculated from the model is about 20 times greater within an isophote of 30% and about 12 times greater using the box than the observed emissions, respectively. The obtained result generally agrees with the relations of the synthesized and observed total fluxes shown in Figure 12 for the selected time. Results of photometry of the 2002 June 2 solar flare show that the synthesized emission in the 35–45 keV energy range is about four times lower than the observed emission within an isophote of 30%. Within the defined box, this ratio is about 7. Good agreement was obtained for the 6–12 keV energy range, where emission from the model is about 11% lower for an isophote of 30%, and about 60% lower for the box than the

Figure 13. Results of the modeling of the 2002 February 20 solar flare. The figure shows the synthesized and observed total fluxes in 50–100 keV, 20–25 keV, 12–25 keV, and 6–12 keV energy bands. Color code same as in Figure 12. (A color version of this figure is available in the online journal.)

Figure 14. Example of the simulation of the spatial distribution of integral nonthermal and thermal emission in the energy range 12–25 keV calculated for a selected evolution stage of the 2002 June 2 flare. The dashed line represents a level of the transition region (TR). Impulsive brightenings in the feet of the loop are well seen, while the thermal emission at this time does not contribute (more details in the main text). (A color version of this figure is available in the online journal.)

Figure 15. Simulation of the spatial distribution of total nonthermal and thermal emission in the energy range 12–25 keV, calculated for a selected evolution stage of the 2002 February 20 flare. The dashed line represents the level of transition region (TR). Impulsive brightenings in the feet and a bright top of the loop are well seen (more details in the main text). (A color version of this figure is available in the online journal.)
observed emission. As for the first analyzed event, the received result agrees with the relations of the synthesized and observed total fluxes shown in Figure 13 for the selected time.

5. DISCUSSION AND CONCLUSIONS

The modeling of the two solar flares observed on 2002 February 20 and June 2 was conducted under the assumption that only NTE beams delivered energy to the flaring loop via the Coulomb collisions and the NTE heating function was calculated based on the parameters derived from observed HXR spectra. Comparison of modeling results with observations shows that SXR and HXR emissions of both single-loop-like events could be fully explained by electron-beam-driven evaporation only. There is no need for any additional heating mechanism to explain the observed SXR and HXR emissions and dynamics of the flaring plasma. The use of the Fokker–Planck formalism allowed for an improvement of the calculated models, if compared with previous works, by direct comparison of the observed and modeled distributions of the HXR emission. The best compatibility of the model and the observations was obtained for the 2002 June 2 event, both the 0.5–4 Å GOES light curve and for total fluxes in 50–100 keV, 25–50 keV, 12–25 keV, and 6–12 keV energy bands. Poorer concordance compared to the first event is obtained for the 2002 February 20 solar flare. In both cases, the largest differences between the observed and synthesized light curves appeared in the 12–25 keV energy range. This difference is mainly caused by a thermal emission component that gives too small a contribution in this range to the total flux. In higher ranges of energy, differences between the model and the observed fluxes decrease. In these ranges the nonthermal component dominates. This behavior appears to be justified because, even if the plasma distribution in the model does not correspond to the observation, the NTEs that have high energies can penetrate deeper into the chromosphere and do not interact with matter during their travel, in contrast to the low-energy NTEs that convey energy in the higher parts of the flare loop. The HXR nonthermal emission is directly related to the flux of the accelerated NTEs, whereas the SXR and HXR thermal emissions are related to the energy deposited by the same NTE flux. Another important factor influencing the differences between the modeled and observed fluxes appearing in the 12–25 keV energy range is the assumption that injected electrons have a power-law energy spectrum. As shown by Liu et al. (2009) using the Fokker–Planck model of particle transport and the injected electron spectrum based on stochastic acceleration, higher coronal temperatures and densities, larger upflow velocities, and faster increases of these quantities are obtained than in the model where electron injection spectrum was of power law. This is due to the fact that the injected electron spectrum smoothly spans from a quasi-thermal component to a nonthermal tail. The injected beam of electrons contains a lot of low-energy electrons that deposit their energy primarily in the corona and indirectly cause stronger evaporation, and thereby the thermal emission

Date	2002 February 20	2002 June 2
Accumulation Time	11:06:16 UT (8 s)	11:44:20 UT (48 s)

Units	Observations	Model	Observations	Model
Date	2002 February 20	2002 June 2		
Accumulation Time	11:06:16 UT (8 s)	11:44:20 UT (48 s)		
Energy range				
isophote 30%				
FP1	0.68–3.61	...	2.37–6.61	...
FP2	2.23–6.38	...	1.09–4.41	...
FP AVE	1.46–4.99	0.81	1.73–5.51	7.64
BOX				
FP1	1.72–5.52	...	3.93–9.02	...
arcsec	[0.8%4, 0.26%5]	...	[0.1%4, 0.26%5]	...
FP2	5.29–11.00	...	1.95–5.92	...
arcsec	[0.3%4, 0.26%5]	...	[0.1%4, 0.26%5]	...
FP AVE	3.50–8.26	0.81	2.94–7.47	7.64
FBKG	0.06	...	0.07	...
arcsec	[0.8%4, 0.26%5]	...	[0.1%4, 0.26%5]	...

Energy range	6–12 keV		6–12 keV	
isophote 30%				
FL NTH	66.9	...	289.5	...
FL TH	2710.0	...	11101.1	...
FL SUM	3043.8–3155.2	2788.3	553.1–503.2	11402.9
Box				
FL SUM	4577.9–4714.2	2788.3	866.2–926.0	11402.9
arcsec	[0.9%4, 0.26%5]	...	[0.1%4, 0.26%5]	...
FBKG	11.4	...	12.3	...
arcsec	[0.8%4, 0.26%5]	...	[0.1%4, 0.26%5]	...

Notes. FP1 and FP2—flux measured at footpoints; FP AVE—average flux from FP1 and FP2; FBKG—background flux; FL NTH and FL TH—flux of nonthermal and thermal emissions from entire flare’s loop; FL SUM—the total flux coming from the entire flare’s loop.
component could give a greater contribution to the total flux in the 12–25 keV energy range. An underestimation of the thermal component in the model also probably indicates inconsistencies between distributions of the mass in real flaring loops and in their models. This wrong distribution of mass in the model may arise from the relative simplicity of the applied numerical one-dimensional code, coarse estimation of the geometrical loop parameters, errors in RHESSI spectra restoration and beam parameters obtained from fitting NTEs, possible problems in a GOES’s calibration, and by using an analytical formula for the NTE heating function. Additionally, it is assumed that at the beginning, the flaring loop is in a quasi-stationary state with the mass distribution consistent with the observations and the applied heating of the plasma is coherent with the NTE heating function, which was calculated based on the parameters derived from observed HXR spectra. These parameters are determined by fitting RHESSI spectra and vitiated by errors. The parameter uncertainties reported by OSPEX can give some idea of the stability of the fit results. They do not account for interdependence between fit parameters (e.g., between the temperature and emission measure values of an isothermal emission component or the power-law index of the electron energy distribution, and low-energy cutoff of the electron distribution for the nonthermal component) and can often underestimate the true uncertainties when the chi-squared space is not well behaved (e.g., when it is degenerate along one or more dimensions). Additionally, the influence of the thermal component on the spectra can be a source of errors of the derived parameter of electrons’ distribution. A detailed analysis of these types of relations and their influences on the derived parameters of the fitted spectra was conducted by Saint-Hilaire & Benz (2005). In addition, the use of an analytical formula for the NTE heating function, which is only an approximation, may introduce additional errors into the model. However, taking into account the results published by Liu et al. (2009) that the model with analytical approximation of heating gives about 10% difference only, compared to the model with a Fokker–Planck regime, this is an acceptable approximation, especially when we consider the benefits of the speed of calculation and all the other errors arising from the simplifications used in the model. As a result of all these factors, the energy will be deposited in different layers of the flare model compared to the real event. This may lead to receiving other physical parameters of the plasma evolution in the loop model than calculated from observations, particularly the distribution of mass in the flaring loop. This causes the previously described differences between the observed and synthesized light curves. However, sometimes the initial quasi-stationary pre-flare loop has a mass distribution inconsistent with the observations. This is usually caused by poorly determined geometrical parameters applied in the model. In this case, even the use of the parameters derived from observed HXR spectra without errors and “ideal” NTE heating function will lead to the same effects as in the first case. In reality, however, the analytical heating function is used (with all its consequences), as well as its parameters with errors. Similarly, the results of photometry for a high energy range show that the best compliance was obtained for the 2002 June 2 flare, where the synthesized emission in the best case is only 30% higher than the emissions measured from the observation. For the 2002 February 20 flare, synthesized emission is about four times lower than the observed one. In the low energy range the best conformity was obtained for the 2002 February 20 flare, where emission from the model is only about 11% lower than the observed one. The larger inconsistency occurs for the 2002 June 2 solar flare, where synthesized emission in the best case is about 12 times more than emission from observation. The observed differences that are evident on conducted photometry are primarily caused by the assumption that the model of the flare is symmetric and there are no differences in the emissions originating from the feet of the flare’s loop. In fact, as has been demonstrated already, the observations indicate that this condition is not preserved (see Table 2). The obtained results are also affected by all the factors that were presented in an earlier discussion.

For instance, the obtained errors are similar to results from previous work (Falewicz et al. 2011) and for the nonthermal fits in the decay phase had small formal errors of fitting parameters (about 1% for δ and E_c), while the statistical errors were of the order of 15%–25% for δ and 11%–19% for E_c. The error ranges were determined for each of the analyzed events. The problem of errors may be particularly important for the very early and decay phases of a solar flare where the spectra registered by RHESSI could also be reasonably fitted using a thermal model only with an acceptably low value of the χ^2 estimator. In these cases, the temperature values obtained were higher than the temperature calculated from the GOES light curves at the same time. For the early phase this difference is so high that almost certainly a nonthermal component in the spectra occurred. This situation is not so clear for the decay phase. Differences of temperature between RHESSI and GOES are not so large, amounting only to about 2–3 MK. In this phase of the flare the thermal component dominates and covers the weak nonthermal component in the spectra. The argument for the occurrence of nonthermal emission at this stage of the flare can be extended only on the basis of the model where during the decay phase heating is necessary (see the green dotted curve in the upper left panel of Figures 8 and 10, representing the evolution of the plasma in the flaring loop without heating). Another argument might be an idea presented by Brosius & Holman (2009) assuming that during this phase nonthermal emission can be below RHESSI’s detection threshold.

Despite all these problems, flare modeling presented in this paper simulates the main physical processes in the right way. It is worth stressing that the HD-1D codes are sufficient in modeling of the flaring events occurring in simple, single-loop-like configurations of the magnetic field, even in such elaborated applications as a synthesis of the Bragg Crystal Spectrometer (BCS) spectra (Falewicz et al. 2009b). Comparison of the synthesized and observed spectra confirms that the distribution of matter and the velocities in the flaring loop agree roughly with the observed values.

In summary, as shown in our previous papers (Siarkowski et al. 2009; Falewicz et al. 2011), efficient heating of the flaring plasma by NTE beams starts in the very early phase of the flare, significantly before the impulsive phase, and lasts a long time during its gradual phase. This heating is so efficient that no other heating mechanism is necessary to explain emitted SXR and HXR fluxes. In particular, during the gradual phase of the flare a much slower decay of the SXR flux is observed than could be expected from an analytical estimation of energy losses of the flaring plasma by radiation and by conduction (Cargill et al. 1995) or from HD numerical modeling of the flares (e.g., Reale et al. 1997). However, the SXR decay time of the solar flares is usually much extended if compared with the previously mentioned cooling times, proving that during this phase of the flares significant heating is also present. Similar conclusions have already been shown in McTiernan et al. (1993)
and Jiang et al. (2006). As demonstrated in the present work for the analyzed 2002 February 20 and June 2 flares, all of the energy necessary for heating the flaring loops during all phases of the events was supplied by the NTEs. However, please note that this does not preclude the existence of other, secondary sources of heating or mechanisms of energy transfer.

During modeling of the flares, the light curves for a number of SXR and HXR energy ranges were successfully reproduced. The use of the extended code with the Fokker–Planck formalism allowed for an improvement of the calculated models and made it possible to ascertain which components of the emission (thermal or nonthermal) play a dominant role in the chosen energy range. However, taking into account the results of photometry, no doubt a significant refinement of the applied numerical models and more sophisticated implementation of the various physical mechanisms involved are required to achieve a better agreement.

The author acknowledges the RHESSI and SOHO consortia for the excellent data and is grateful to an anonymous referee for constructive comments and suggestions, which have proved to be very helpful in improving the manuscript. The research leading to these results has received funding from the European Community’s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement No. [606862].

REFERENCES

Antonucci, E., Gabriel, A. H., & Dennis, B. R. 1984, ApJ, 287, 917
Aschwanden, M. J. 2005, Physics of the Solar Corona (Berlin: Springer Praxis Books)
Aschwanden, M. J., Brown, J. C., & Kontar, E. P. 2002, SoPh, 210, 383
Aschwanden, M. J., Fletcher, L., Sakao, T., Kosugi, T., & Hudson, H. 1999, ApJ, 517, 977
Bai, T., & Ramaty, R. 1978, ApJ, 219, 705
Brosius, J. W., & Holman, G. D. 2009, ApJ, 692, 492
Brown, J. C. 1971, SoPh, 18, 489
Cargill, P. J., Mariska, J. T., & Antioco, S. K. 1995, ApJ, 439, 1034
Carovillano, R., & McClary, J. F. 1968, Physics of the Magnetosphere (New York: Reinhold)
Delaboudinière, J. P., Artzner, G. E., Brunaud, J., et al. 1995, SoPh, 162, 291
Dere, K. P., Landi, E., Mason, H. E., Monsignori-Fossi, B. C., & Young, P. R. 1997, A&A, 125, 149
Donnelly, R. F., Grubb, R. N., & Cowley, F. C. 1977, NOAA Tech. Memo. ERL SEL-48
Emslie, A. G. 1978, ApJ, 224, 241
Falewicz, R., Rudawy, P., & Siarkowski, M. 2009a, A&A, 500, 901
Falewicz, R., Rudawy, P., & Siarkowski, M. 2009b, A&A, 508, 971
Falewicz, R., Siarkowski, M., & Rudawy, P. 2011, ApJ, 733, 37
Fisher, G. H. 1989, ApJ, 346, 1019
Fisher, G. H., Canfield, R. C., & McClary, J. F. 1985a, ApJ, 289, 414
Fisher, G. H., Canfield, R. C., & McClary, J. F. 1985b, ApJ, 289, 425
Fisher, G. H., Canfield, R. C., & McClary, J. F. 1985c, ApJ, 289, 434
Grigis, P. C., & Benz, A. O. 2004, A&A, 426, 1093
Guo, J., Liu, S., Fletcher, L., & Kontar, E. P. 2011, ApJ, 728, 4
Hollman, G. D., Sui, L., Schwartz, R. A., & Emslie, A. G. 2003, ApJL, 595, L97
Hurford, G. J., Schmahl, E. J., Schwarz, R. A., et al. 2002, SoPh, 210, 61
Jakimiec, J., Sylveester, B., Sylveester, J., et al. 1992, A&A, 253, 269
Jiang, Y. W., Liu, S., Liu, W., & Petrosian, V. 2006, ApJ, 638, 1140
Koch, H. W., & Motz, J. W. 1959, RvMP, 31, 920
Krucker, S., & Lin, R. P. 2002, SoPh, 210, 229
Landi, E., Del Zanna, G., Young, P. R., et al. 2006, ApJ, 652, 261
Leach, J., & Petrosian, V. 1981, ApJL, 251, 781
Lin, R. P., Dennis, B. R., Hurford, G. J., et al. 2002, SoPh, 210, 3
Liu, W., Petrosian, V., & Mariska, J. T. 2009, ApJ, 702, 1553
MacNeice, P., McWhirter, R. W., Spicer, D. S., & Burgess, A. 1984, SoPh, 90, 357
Mariska, J. T., Boris, J. P., Oran, E. S., Young, T. R., Jr., & Doschek, G. A. 1982, ApJ, 255, 738
Mariska, J. T., Emslie, A. G., & Li, P. 1989, ApJ, 341, 1067
Mariska, J. T., & Poland, A. I. 1985, SoPh, 96, 317
Mazzotta, P., Mazzitelli, G., Colafrancesco, S., & Vittorio, N. 1998, A&AS, 133, 403
McTiernan, J. M., Kane, S. R., Loram, J. M., et al. 1993, ApJL, 416, L91
McTiernan, J. M., & Petrosian, V. 1990, ApJ, 359, 524
Meshalkina, N. S., Uralov, A. M., Grechnev, V. V., Altyntsev, A. T., & Kashapova, L. K. 2009, PASJ, 61, 791
Metcalf, T. R., Hudson, H. S., Kosugi, T., Puettet, R. C., & Pina, R. K. 1996, ApJ, 466, 585
Nagai, F., & Emslie, A. G. 1984, ApJ, 279, 896
Peter, H., & Bingert, S. 2012, A&A, 548, A1
Reale, F., Betta, R., Peres, G., Serio, S., & McTiernan, J. 1997, A&A, 325, 782
Reep, J. W., Bradshaw, S. J., & McClary, R. T. J. 2013, ApJ, 778, 76
Saint-Hilaire, P., & Benz, A. O. 2005, A&A, 435, 743
Schmelz, J. T., Holman, G. D., Brosius, J. W., & Wilsson, R. F. 1994, ApJ, 434, 786
Serio, S., Reale, F., Jakimiec, J., Sylveester, B., & Sylveester, J. 1991, A&A, 241, 197
Siarkowski, M., Falewicz, R., & Rudawy, P. 2009, ApJL, 705, L143
Smith, D. M., Lin, R. P., Turin, P., et al. 2002, SoPh, 210, 33
Sui, L., Holman, G. D., & Dennis, B. R. 2006, ApJ, 646, 605
Sui, L., Holman, G. D., & Dennis, B. R. 2008, AdvSpR, 41, 976
Sui, L., Holman, G. D., & Dennis, B. R., et al. 2002, SoPh, 210, 245
Sui, L. H., Holman, G. D., & Dennis, B. R. 2007, ApJL, 670, 862
Tandberg-Hanssen, E., & Emslie, A. G. 1988, The Physics of Solar Flares (Cambridge: Cambridge Univ. Press)
Veronig, A. M., Brown, J. C., Dennis, B. R., et al. 2005, ApJ, 621, 482
Warmuth, A., Holman, G. D., Dennis, B. R., et al. 2009a, ApJ, 699, 917
Warmuth, A., Mann, G., & Aurass, H. 2009b, A&A, 494, 677
Warren, H. P. 2006, ApJL, 637, 522