EXACT RESULTS IN GAUGE THEORIES: PUTTING SUPERSYMMETRY TO WORK

The 1999 Sakurai Prize Lecture

M. SHIFMAN

Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455

Powerful methods based on supersymmetry allow one to find exact solutions to certain problems in strong coupling gauge theories. The inception of some of these methods (holomorphy in the gauge coupling and other chiral parameters, in conjunction with instanton calculations) dates back to the 1980’s. I describe the early exact results – the calculation of the β function and the gluino condensate – and their impact on the subsequent developments. A brief discussion of the recent breakthrough discoveries where these results play a role is given.

Preamble

When the question of this talk arose Arkady Vainshtein, Valya Zakharov and I had to decide how to split the contents into three parts. The division that seemed natural was that I got the part covering the analytic properties of supersymmetric gauge theories, the exact results following from these properties, and the implications for nonperturbative gauge dynamics. Before delving into the depths of this fascinating topic let me make a few historic remarks.

I vaguely remember the seminar given by Yuri Golfand in the end of 1970 or the beginning of 1971 entitled something like “Extensions of the Poincaré algebra by bispinor generators”. In those days I knew too little about high energy physics to understand the contents of the talk, let alone the novelty of the idea of supersymmetry (SUSY) and its potential. My experience was limited, as I started studying theoretical high energy physics only a year before, although this was my fifth year at the Moscow Institute for Physics and Technology. Before that I was specializing in the dynamics of gas flows. The choice of the subject was not mine, I was just assigned to a group of students whose major was gas dynamics and whose final destination was one of many classified laboratories doing research for the military. I made several attempts to switch to more fundamental disciplines, but this was not allowed. This was a common practice, our choices were always made for us by somebody else. I managed to get into another group of students, specializing in high energy physics.
physics, only around 1970, with the help of V.B. Berestetskii, who became, for a short time, my first physics adviser.

I remember very well, however, the paper of Volkov and Akulov “Is the neutrino a Goldstone particle?” It appeared in 1973, when I had just started working on my PhD. Now we would say that the work was devoted to the issue of the nonlinear realization of supersymmetry and the occurrence of a massless Goldstino. It produced an impression on me. I started pestering colleagues, who were a couple of years older, with whom I shared the attic of the old mansion occupied by the Theory Department of the Institute of Theoretical and Experimental Physics (ITEP), the dovecote as we called it, with questions of whether the work of Volkov and Akulov, and the idea in general, were worth studying. The unanimous conclusion of the “elders” was negative. In retrospect, this was evidently the wrong recommendation, and I feel sorry that I took it for granted. Well, in retrospect everything seems pretty obvious; it is much harder to recognize the future potential of ideas at their birth, especially if one is a beginner in the field. Sometimes I think that even the pioneers of supersymmetry – Scherk, Ramond, Golfand, Volkov, Wess, Zumino, and others – could not foresee in the early 1970’s that they had been opening to us the gates of the superworld, which would become one of the most important components of our understanding of Nature, a component that will stay with us forever.

It should be added that this was the time of the triumph of non-Abelian gauge theories, when quantum chromodynamics (QCD), the theory of hadrons, was born. This was a new unexplored area, closely related to experiment, which was rapidly developing. Valya Zakharov and Arkady Vainshtein got me involved in QCD. This was the type of physics I liked, and I submerged in it so deeply that what was happening outside was of no concern to me. Thus, the first decade of supersymmetric theories, when some of the most beautiful results were obtained (e.g. vanishing of the vacuum energy, nonrenormalization theorems, and so on) slipped by.

When I look back, I recollect these days with a nostalgic feeling. Theory and experiment went side by side. Experimental puzzles and unanswered questions that had been accumulating over the previous decade were unfolding one after another, the solutions being provided by the most fundamental theory of the day. The game was fascinating – we felt that all appropriate pieces of the riddle were finally there, for the first time in many years. Bits and pieces of knowledge started being melded in a big picture. Theoretical developments, in turn, were prompting what was to be done next in experiment. There was a live dialogue between theorists and experimentalists, at the end of the day theoretical calculations would produce a number which could be
tested immediately or, at least, in the near future. Will this time ever repeat itself?

It was not until 1981 when my attention was attracted in earnest to supersymmetric theories. The major role in this turn of events belongs to Witten’s paper *Dynamical Breaking of Supersymmetry*. It discusses, in general terms, why supersymmetry could be instrumental in the solution of the hierarchy problem, and why instantons could play a distinguished role in supersymmetric theories. By that time Zakharov, Vainshtein and I had been studying instanton effects in QCD for several years. Instantons, discovered in 1975, revealed one of the most profound features of non-Abelian gauge theories – the existence of a nontrivial topology in the space of fields. One of infinitely many coordinates describing the space of fields has the topology of the circle. To get an idea of the underlying physics, one can consider a simple analog problem from quantum mechanics. Consider a particle in the gravitational field confined to a circle oriented vertically (Fig. 1). The potential energy of the particle is

$$V = gh = gR (1 - \cos x) .$$

(1)

If the kinetic energy of the particle is small enough, classically it oscillates near the bottom (point A). The fact that the circle is closed at the top (point B) plays no role. Only at high energies does the classical particle feel that it lives on the circle, since its trajectory can wind around. Quantum-mechanically
Figure 2: If we unwind the circle of Fig. 1 onto a line we get a periodic potential.

the possibility of winding drastically affects even the ground (lowest-energy) state of the system. The particle can tunnel under the potential barrier near the top, and return to the very same point A “from the other side”. To solve the problem quantum-mechanically we must cut the circle and map it (many times) onto a line (Fig. 2). All wave functions have the Bloch form; in particular, the ground state wave function is

$$\Psi(x) = \sum_{n=-\infty}^{\infty} e^{in\vartheta} \psi_n(x),$$ \hspace{1cm} (2)

where $\psi_n(x)$ is the wave function of the n-th “prevacuum”, corresponding to oscillations near the point n in Fig. 2, and ϑ is the vacuum angle, an analog of the Bloch quasimomentum. In QCD the circle variable (analogous to the angle x in Figs. 1, 2) is a composite field built from the gluon four-potential,

$$\mathcal{K} = \frac{g^2}{32\pi^2} \int K_0(x) d^3x$$ \hspace{1cm} (3)

where

$$K_\mu = 2\varepsilon_{\mu\nu\alpha\beta} \left(A_\nu^a \partial_\alpha A_\beta^a + \frac{g}{3} f^{abc} A_\nu^a A_\alpha^b A_\beta^c \right)$$ \hspace{1cm} (4)

is the so-called Chern-Simons current. Winding around the circle n times corresponds to shifting \mathcal{K} by n units.
A remarkable phenomenon occurs when the gluon fields are coupled to massless fermions (quarks). Each tunneling in \mathcal{K} (i.e. $\mathcal{K} \to \mathcal{K} + 1$) is accompanied, by necessity, with the production of a pair of quarks of each flavor with chirality violation. This can never happen at any finite order of perturbation theory, where the chirality is conserved. The instanton-induced quark vertex was found by 't Hooft, it goes under the name of the 't Hooft interaction.

Although instantons in QCD were instrumental in establishing the non-trivial vacuum structure, the existence of the vacuum angle ϑ, and in the qualitative solution of the η' problem all attempts to exploit them for a quantitative solution of QCD seemed fruitless. Any sensible calculation would drag instantons into the domain of large radii, where the coupling constant becomes large and theoretical control is lost. We spent a lot of time and effort trying to identify uses of instantons in the theory of hadrons. The outcome was not very inspiring. Our results were limited to a few semiquantitative observations and one curious calculation which proved to be crucial in supersymmetric theories.

The research project which is the subject of this talk spanned many years, approximately from 1981 till 1991. When I say “we” implying the authors of the project, I should be more definite. From 1981 till 1985 our group included Novikov, Vainshtein, Zakharov, and myself (as friends joked, “the gang of four”). In one crucial link we joined our forces with Misha Voloshin. Beginning in 1986 I worked on this project with Arkady Vainshtein.

The puzzle of the 't Hooft interaction in supersymmetric gluodynamics

When we began thinking of supersymmetric gauge theories in 1981, the question of the instanton effects surfaced immediately. In supersymmetric gauge theories, massless fermions (gauginos, or gluinos – I will use these terms indiscriminately), are the superpartners of gauge bosons, which one cannot switch off. A gaugino interaction of the 't Hooft type is generated by instantons. There was no doubt in that. At the same time, there was no doubt that this interaction was forbidden by supersymmetry, which requires every fermion vertex to be accompanied by a bosonic partner. In the theory with massless fermions, there are no purely bosonic type instanton transitions. In other words, there is no boson counterpart to the 't Hooft interaction.

\footnote{It would be more exact to say that this was our feeling in the early 1980's. The instanton liquid models of the QCD vacuum suggested somewhat later were perfected in the last decade to the extent that they reportedly capture all basic regularities acting in the low-energy hadronic physics.}
Surprisingly, this problem was not considered in the literature at that time. The paradox was clear-cut, the effect was qualitative, and yet there was complete silence in the literature regarding this issue. We talked to experts, carried out a literature search, and found next-to-nothing. In general, most studies of supersymmetry were limited to perturbative aspects. There was little effort to marry nonperturbative gauge dynamics with supersymmetry, although non-Abelian supersymmetric theories were known since 1974. Witten’s paper, where his famous index was introduced, could be, perhaps, viewed as the first work where the topic of nonperturbative gauge dynamics was addressed in earnest. Then, there was a paper by Affleck, Harvey and Witten which dealt with the instanton-induced effective superpotentials in three-dimensional field theories. This work was very elegant, but – alas – it was of little help. It did not address the problem that preoccupied us. It should be added that we were deeply involved, for quite a time, with the instanton puzzle when these papers appeared.

In the beginning, the theory we mostly worked with was the simplest non-Abelian supersymmetric model in four dimensions, supersymmetric gluodynamics,

\[
\mathcal{L} = \frac{1}{4g^2} G^a_{\mu\nu} G^a_{\mu\nu} + \frac{\vartheta}{32\pi^2} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} + \frac{i}{g^2} \lambda^{a\alpha} D_{\alpha\beta} \tilde{\lambda}^{\alpha\beta}
\]

where the second line is given in the superfield notation, \(G^a_{\mu\nu} \) is the gluon field strength tensor, \(\vartheta \) is the vacuum angle, and \(\lambda^a \) is the gluino field in the Weyl representation. Note that the (inverse) coupling constant gets complexified in supersymmetric theories, see the second line in Eq. (5). This circumstance has far reaching consequences, as will be seen shortly.

If the gauge group is \(SU(2) \), there are four gluino zero modes in the instanton background field; consequently, the ’t Hooft vertex generated by the instanton represents a four-fermion interaction of the type \(\lambda^4 \). The anti-instanton gives rise to \(\tilde{\lambda}^4 \) (Fig. 3).

At the classical level, the Lagrangian is invariant under chiral \(U(1) \) rotations, \(\lambda \rightarrow \lambda \exp(-i\alpha) \). This is a valid symmetry in perturbation theory. In the full theory it is absent, however. The instantons reveal the anomalous nature of the chiral \(U(1) \) through the ’t Hooft interaction which violates \(U(1) \) charge conservation, see Fig. 3. Nonetheless, a discrete subgroup \(Z_4 \) survives (in the case of \(SU(N) \) the discrete chiral invariance is \(Z_{2N} \)).

Given an instanton of size \(\rho \), it was not difficult to calculate the coefficient of the four-fermion interaction in order to check that it did not vanish for
accidental reasons. Sure enough, it did not. Paradoxically, the failure of our early attempt to supersymmetrize the ’t Hooft interaction was because our focus on supersymmetry was too narrow. Certainly, we understood that the family of the instanton solutions possessed a wider symmetry, superconformal. The superconformal group includes, in particular, the scale transformations which change the instanton size. Since our task was checking supersymmetric Ward identities we believed, however, that the instanton size ρ could be kept fixed.

For over a year this problem was a constant nightmare. At a certain point we became so desperate that we started to suspect that SUSY was incompatible with nonperturbative effects, an absolutely crazy idea. The first relief from this agony came when we considered the Higgsed version of the model (5). In the SU(2) model we added a Higgs sector, with relatively heavy (physical) Higgs fields. The Higgs sector generated a mass for the gluons and gluinos. The four gluino zero modes I mentioned above have a very transparent geometrical meaning. Two are related to the supersymmetry of the model, and two correspond to the (classical) superconformal symmetry of the Lagrangian (5). The Higgs mass eliminated the superconformal invariance, and gone with it were the superconformal zero modes. The two-fermion ’t Hooft vertex generated by the remaining zero modes turned out to be a total derivative, $\partial^2 (\lambda \lambda)$. The corresponding contribution in the action vanishes, and there is no contradiction with supersymmetry.

This was a hint – the paradox we got stuck in, was due to our (incorrect) presumption that one could fix the instanton size without affecting supersym-
metry. In fact, once one shifts in the “fermion direction” in the instanton mod-
uli space, the scale transformations and the supersymmetry transformations
get entangled. One cannot expect to obtain supersymmetric results unless
the ρ integration is done. In retrospect, the misconception seems obvious.

The gluino condensate

After we realized that, the story began to unfold very rapidly. It was quickly
understood that the ’t Hooft vertex was not a good object to have chosen.
We should have focused instead on calculating observable amplitudes. The
correlation function

\[\langle T \{ \lambda^a(x) \lambda^{\alpha}(x) , \lambda^b(0) \lambda^{b\beta}(0) \} \rangle \]

was the most natural candidate in the SU(2) theory, given the zero mode
structure of the instanton (see Fig. 3). This understanding – the shift towards
the observable correlators and integration over ρ – melted the ice. One evening
we just sat down and did the calculation, essentially, on the back of an envelope.
We found that: (i) the result was nonvanishing, with no visible boson part-
n this was expected), and (ii) the correlation function (6) turned out to be an
x-independent constant,

\[\langle T \{ \text{Tr} \lambda^2(x) , \text{Tr} \lambda^2(0) \} \rangle_{\text{inst}} = \frac{2^{10} \pi^4}{5} M_{PV}^6 \frac{1}{g^4} \exp \left\{ -\frac{8 \pi^2}{g^2} \right\}, \]

where \(M_{PV} \) is the Pauli-Villars cutoff parameter. This was unexpected. But
this was the most favorable outcome one could hope for: the way out.
Indeed, supersymmetry does not forbid the correlation function (6), pro-
vided that this two-point function is spatially constant, i.e. x independent. The
proof is quite straightforward and is based on three elements: (i) the super-
charge \(\bar{Q}^{\beta} \) acting on the vacuum state annihilates it; (ii) \(\bar{Q}^{\beta} \) anticommutes with
\(\lambda \lambda \); (iii) the derivative \(\partial_{\alpha\beta}(\lambda \lambda) \) is representable as the anticommutator of \(\bar{Q}^{\beta} \)
and \(\lambda^{\beta} G_{\beta\alpha} \). One differentiates Eq. (6), substitutes \(\partial_{\alpha\beta}(\lambda \lambda) \) by \(\{ \bar{Q}^{\beta} , \lambda^{\beta} G_{\beta\alpha} \} \),
and obtains zero. Thus, supersymmetry requires the x derivative of (6) to
vanish. It does not require the vanishing of the correlation function per se. A
constant is okay.

The instanton calculation is reliable at short distances \(|x| \ll \Lambda^{-1}\) where
\(\Lambda \) is the scale parameter of the theory. Once we get a nonvanishing constant
at short distances, and once SUSY requires it to be one and the same at

\(^c\)By analogy with the terminology accepted in topological field theory the operator \(\lambda \lambda \) can
be called \(Q \)-closed, while the operator \(\partial_{\alpha\beta}(\lambda \lambda) \) is \(Q \)-exact.
any distance, we can use Eq. (7) at \(|x| \to \infty \) to apply cluster decomposition. The latter then implies that the gluino condensate develops in supersymmetric gluodynamics, and that it is double-valued in the SU(2) theory,

\[
\langle \text{Tr}\lambda \lambda \rangle = \pm \frac{25\pi^2}{\sqrt{3}} \frac{M_{\text{Pl}}^3}{g^2} \exp \left\{ -\frac{4\pi^2}{g^2} \right\}.
\]

(8)

This result was remarkable for several reasons. First of all, we were able to prove that Eq. (7) was exact, in the mathematical sense. Perturbation theory per se gives no contribution in the correlation function (7) to any order. This correlator is saturated by a single (anti)instanton – for two or more instantons the number of the zero modes does not match. Moreover, the (anti)instanton background field is chiral, it preserves one half of supersymmetry. The residual supersymmetry is sufficient to nullify all loop corrections to the instanton configuration. There is no \(g^2 \) series in this problem. The two-point function (7) is not renormalized, and neither is the gluino condensate.

At one loop, the cancellation of quantum corrections in the instanton field was known previously. We generalized this assertion to all orders, putting it on par with the vanishing of the vacuum energy or the nonrenormalization theorem for the superpotentials. In this way, a number of generalized nonrenormalization theorems was established.

The reason why such theorems are valid in all backgrounds which preserve a part of supersymmetry (usually one half), is the fermion-boson degeneracy, which persists in such backgrounds. The possible exception is the zero modes, which are to be treated separately. This is the same phenomenon that makes the energy of the “empty” vacuum vanish.

The instanton is just a particular example of a magic background preserving a part of SUSY. Another example is provided, for instance, by saturated domain walls – they were discovered in various important supersymmetric models recently. The very fact of the absence of quantum corrections in magic backgrounds is universal. Details of the proof may vary. In the instanton problem it is so simple that I cannot resist the temptation to present it here.

In supersymmetric gluodynamics the instanton center is characterized by two collective coordinates, \(x_0 \) and its superpartner \(\theta_0 \), see Fig. 3. It is important that, because of the selfdual (chiral) nature of the field, there is no \(\bar{\theta}_0 \). Now, consider, say, a two-loop graph in the instanton background (Fig. 4). This graph has two vertices; its contribution can be written as an integral over \(d^4x d^2\theta d^2\bar{\theta} \) and \(d^4x' d^2\theta' d^2\bar{\theta}' \). After one integrates over the supercoordinates of the second vertex and over \(d^4x d^2\theta \) (but not \(\bar{\theta} \)), one is left with the integral \(\int d^2\theta F(\theta) \). The function \(F \) must be invariant under the simultaneous SUSY transformations of \(\theta \) and the instanton collective coordinates. Since there is no
θ, the only allowed solution is $F = \text{Const}$. If so, the integral $\int d^2 \bar{\theta} F(\bar{\theta}) = 0$, *quod erat demonstrandum*.

Certainly, this is only the skeleton of the proof. Subtleties must be taken care of (e.g. the absence of infrared divergences). You may believe me that the statement of no corrections in Eq. (7) is clean.

The exactness of the one-instanton result for the correlation functions of appropriate chiral superfields (the operators involved must be the lowest components of the superfields of one and the same chirality, and must saturate all instanton zero modes) is a rigorous mathematical statement. Whether the calculation of the gluino condensate outlined above is physically complete is a different story, on which I will dwell later. Now let me only note that it opens three distinct directions: (i) to topological field theories; (ii) to exact β functions; (iii) to condensates in the strong coupling regime. I will consider these issues in turn.

The road to topological field theories

The line of reasoning that led us to the gluino condensate (see the discussion after Eq. (7)) was a hint that the quantity we calculated was nondynamical. Indeed, the gluino condensate was determined through arbitrarily small instantons. The subsequent observation that in weak coupling the gluino condensate was saturated by zero-size instantons was an even stronger message.

We were discussing the issue over and over. Around 1986, Arkady and I did an instructive exercise. We considered SUSY gluodynamics in gravitational backgrounds rather than in Minkowski space. Certainly, for an arbitrary background, supersymmetry is lost. However, some backgrounds still preserve (a part of) supersymmetry. An example of this type is the theory on a four-dimensional Euclidean sphere of radius R. An even simpler example is provided by the theory on a four-torus with arbitrary periods L_i. In the limit $R, L_i \to \infty$ one returns back to flat space. It seemed instructive, for reasons which I will mention later, to keep these dimensional parameters finite.

In the case of the sphere, the exercise is more complex technically than the
Minkowski-space calculation, while for the torus it is only marginally different from that in Minkowski space. (Moreover, on the torus one can find \(\langle \text{Tr}\lambda\rangle \) directly, using torons.) We found the analog of the correlation function in both cases and observed that (i) the result depends neither on \(R \) nor on \(L_i \), and (ii) the numerical coefficient in front of \(M_{PV}^2 g^{-4} \exp \left\{ -8\pi^2/g^2 \right\} \) does depend on whether we are on the sphere or the torus. This was a clear indication of the topological nature of the sector of the theory under consideration.

The finding was exciting, and we discussed the situation with Arkady many times. I described what I knew in a lecture at the Zakopane school in May 1988. From there it was only one step to isolating this sector, by discarding the rest of the theory. Our mathematical culture was not high enough, however, to make this step possible. After I returned from Zakopane, a colleague of mine told me that he had heard of Witten’s work on topological field theory. We went to the library to look at the preprint (it was published in February 1988). It was stolen. This was not unusual. Since we had essentially no access to photocopying machines, interesting papers, especially Witten’s, would frequently disappear upon arrival. I do not want to say that I or any of my colleagues were stealing from the library, but some preprints were just disappearing into thin air. So, we had to wait till the journal publication came. It was remarkable to see how far Witten advanced the strategy I described in the passage after Eq. (7). He peeled off the dynamical contents of the supersymmetric gauge theories; what remains was formulated in a form preserving a residual supersymmetry in any gravitational background. Topological field theories are metric-independent. All correlation functions in topological field theories are treatable in the same manner as we treated the \(\lambda^2 \) two-point function, see Eq. (6). It is most remarkable that topological field theory became a powerful tool for solving some long-standing mathematical problems which were apparently of paramount importance for mathematicians.

Gluino condensate and spontaneous breaking of supersymmetry

The assertion that the correlation functions of the lowest components of the superfields of one and the same chirality (all chiral or all antichiral) are coordinate-independent is valid not only for the gluino operators \(\text{Tr}\lambda^2 \). This theorem is general and is applicable to any operator. We did not take advantage of this circumstance. It was Rossi and Veneziano who initiated a systematic search for correlation functions of the type (6) which are saturated by one instanton, in various theories with matter. In practice, the search is quite an easy task.

\(^d\text{Later I learned that a special topological field theory was suggested by Albert Schwarz as early as in 1978.}\)
since the analysis essentially reduces to a dimensional counting (the dimension of the appropriate correlation function must match the first coefficient of the β function) and keeping the balance of the zero modes. This line of research culminated in the very beginning of 1984 when the SU(5) model with M quintets V and M antidecuplets X was considered. For instance, for $M = 1$ the appropriate correlation function is

$$
\Pi(x, y) = \langle T[\text{Tr}\lambda^2(x), \text{Tr}\lambda^2(y), S(0)]\rangle, \quad S = XXVX\lambda^2.
$$

The color indices are contracted in S in a self-evident way, namely, $S = \epsilon^{\alpha\beta\gamma\delta\rho}X_{\alpha\beta}X_{\gamma\delta} (V\kappa X_{\chi\lambda} \lambda^\chi_\lambda \psi_\lambda \rho)$ (the Lorentz indices of the gluino fields are suppressed). All operators in the correlation function $\Pi(x, y)$ are the lowest components of chiral superfields. The one-instanton contribution does not vanish and does produce a constant times Λ^{13}. (The number 13 looks odd; in fact, this is the first coefficient of the β function in the model at hand; Λ^{13} matches the dimension of $\Pi(x, y)$.) If $x, y \ll \Lambda^{-1}$ one expects that the one-instanton contribution saturates $\Pi(x, y)$, so that the constant obtained in this way is reliable. If so, one can pass to the limit $x, y \to \infty$ and use the property of clustersatization at large x, y to prove that the gluino condensate develops, $\langle \text{Tr}\lambda\lambda \rangle \neq 0$. The solution with $\langle \text{Tr}\lambda\lambda \rangle = 0$ and $\langle S \rangle \to \infty$ is ruled out due to the absence of flat directions. Since the superpotential is absent in this model, the gluino condensate is the order parameter for SUSY breaking. One concludes that supersymmetry is spontaneously broken. In fact, this was the first direct demonstration that nonperturbative effects in the gauge theories in four dimensions can lift the classical supersymmetric vacua resulting in the dynamical breaking of supersymmetry. Later on this technique was overshadowed by the effective Lagrangian approach elaborated by Affleck, Dine and Seiberg (ADS). In many instances the latter is indeed more “user-friendly,” since it allows one to easily trace the response of the theory to the continuous deformations of parameters, starting from the weak coupling Higgs regime. The condensate-based analysis remains useful in the strong-coupling regime. There is one unsolved mystery associated with this analysis, which I will return to at the end of the talk. The relation between the two approaches seems pretty obvious now – in the weak coupling they are totally equivalent. Apparently, this was not so evident then. I remember that shortly after the ADS papers, I spent a month at CERN in Geneva. This was my first serious exposure to the Western world, I was sort of depressed by the contrast between what I saw around and my every-day experiences in Moscow, so I decided that the best thing to do was not to venture outside CERN at all. I spent the entire month confined in the offices of Daniele Amati and Gabriele Veneziano. We had endless discussions of how the transition from the weak coupling Higgs regime to
the strong coupling regime could occur. In the end, I left with our understandings still far apart. One of the conjectures was especially close to the hearts of Daniele and Gabriele; I did not like it then, and appreciated it only a decade later. The equivalence between the condensate-based program and the ADS approach in the weak coupling regime was elucidated in a dedicated paper.

Strong vs. weak coupling regime: the power of holomorphy

The one-instanton contribution to the correlation functions (6), (9) does not vanish and is compatible with supersymmetry (i.e., one gets a coordinate-independent constant). When all coordinates are close to each other, at short distances, this is not so surprising: the result is saturated by small-size instantons. In asymptotically free theories, where the short-distance behavior is controllable, the calculation seems to be safe. However, the one-instanton contribution continues to be the very same constant at large distances. Technically this is due to the fact that at \(x, y, \ldots \to \infty \) the integration over the instanton size \(\rho \) is saturated at \(\rho \to \infty \). Moreover, there are no quantum corrections in the instanton background field whose explosion could signal the failure of this regime. Coherent field fluctuations of that large size do not make sense in conventional confining theories. We did not feel satisfied with our degree of understanding of the strong coupling calculations. Arkady and I kept trying to get a clearer picture or, at least, formulate a clean roundabout procedure that would allow us to obtain the gluino condensate in the strong coupling regime starting from the weak coupling Higgs regime, where we were confident in all stages of the analysis. The guiding principle was the smooth transition between the weak and strong coupling domains in the theories with fundamental matter, a conjecture known in the literature for quite a time. We debated the issue for a couple years, off and on, until a strategy crystallized as to how one could pin down the gluino condensate in the fully controllable environment (this happened after a very illuminating conversation with Gabriele Veneziano, who was visiting ITEP in late spring 1987).

The basic idea was as follows. Consider, for instance, SU(2) SQCD with one flavor. The vacuum structure in this theory was found in weak coupling, by Affleck, Dine and Seiberg by integrating out heavy degrees of freedom and analyzing the effective low-energy Lagrangian for the light degrees of freedom (moduli). The Lagrangian of the model is obtained by adding to Eq. (5) the matter term

\[
L_{\text{matter}} = \frac{1}{4} \int q^2 \bar{\theta} d^2 \bar{\bar{\theta}} \bar{Q}^f e^V Q_f + \left\{ \frac{m}{4} \int d^2 \theta Q^f_\alpha Q_f^\alpha + \text{H.c.} \right\},
\]

(10)
where Q_α^f is a chiral superfield, α and f are the color and subflavor indices, respectively, $\alpha, f = 1, 2$. The weak coupling regime is achieved when the matter mass parameter m is small, $m \ll \Lambda$. In this case the expectation value of the modulus $Q_\alpha^f Q_\alpha^f$ is large,

$$\langle Q_\alpha^f Q_\alpha^f \rangle = \pm 2m^{-1/2} M_{PV}^{5/2} \frac{1}{g^2} \exp \left\{ -\frac{4\pi^2}{g^2} \right\}.$$ \hspace{1cm} (11)

The gluons and gluinos are heavy and are integrated out in the ADS Lagrangian. Nevertheless, the vacuum value of the modulus quoted above unambiguously determines the gluino condensate, by virtue of the Konishi relation, namely

$$\langle \text{Tr} \lambda \lambda \rangle = 8\pi^2 m \langle Q_\alpha^f Q_\alpha^f \rangle = \pm m^{1/2} \left(2^4\pi^2\right)^{1/2} M_{PV}^{5/2} \frac{1}{g^2} \exp \left\{ -\frac{4\pi^2}{g^2} \right\}.$$ \hspace{1cm} (12)

The key observation of Ref. 32 is that the square root dependence of the gluino condensate on the bare mass parameter m is exact. It is the consequence of supersymmetry and a generalized R symmetry of the model at hand. It is possible to establish the exact relation because $\text{Tr} \lambda \lambda$ is a chiral operator while m is a chiral parameter; in the modern language one says that m can be promoted to an auxiliary chiral superfield. Then, $\text{Tr} \lambda \lambda$ can depend only on m but not on \bar{m}. The gluino condensate is an analytic function of m. Thus, in supersymmetric theories the notion of smoothness can be replaced for chiral quantities by an exact analytic dependence. If so, by calculating the gluino condensate at small m, when the theory is weakly coupled, one can analytically continue to large m, i.e. $m \rightarrow M_{PV}$, where the matter fields become heavy, and can be integrated out, thus returning us to strongly coupled SUSY gluodynamics. And yet, we know the gluino condensate exactly. In this way, $\langle \text{Tr} \lambda \lambda \rangle$ was found in the strong coupling regime for all gauge groups.

This idea – extrapolating from weak to strong coupling on the basis of holomorphy – became a dominant theme for Arkady and I beginning in 1987. It was later elevated to new heights by Seiberg. He considered superpotentials in theories with arbitrary gauge and Yukawa couplings and established, using a similar line of reasoning, various nonrenormalization theorems and a wealth of elegant exact results. Note that since the arguments are essentially based only on holomorphy, they are valid not only perturbatively but also nonperturbatively. The strategy of picking up chiral quantities with known holomorphic behavior, calculating them (e.g. through instantons) at weak coupling, with the subsequent analytic continuation to strong coupling, is a standard practice now, after the works of Seiberg that shook the world. It was quite an exotic endeavor back in 1987.
The exact β functions

Now, let me return to the topic of exact β functions in supersymmetric theories. In the beginning of the talk I mentioned a curious calculation we did in 1981 in (non-supersymmetric) QCD. It was observed that the running of the gauge coupling α_s, as it emerges in the instanton measure, has a remarkable interpretation. As is well-known, the first coefficient b of the Gell-Mann–Low function can be represented as (for the SU(N) gauge group)

$$b = \frac{11}{3}N = \left(4 - \frac{1}{3}\right)N.$$

Here $4N$ represents an antiscreening contribution, which in perturbation theory (in the physical Coulomb gauge) is associated with the Coulomb gluon exchange and has no imaginary part, while $-N/3$ is the “normal” screening contribution, the imaginary part of which is determined by unitarity. Within instanton calculus, the term $4N$ is entirely due to the zero modes. It has a geometrical meaning, and its calculation is trivial. The part which is relatively hard to obtain, $-N/3$, comes from the nonzero modes. When we learned, from D’Adda and Di Vecchia’s work, that the nonzero modes in supersymmetric theories cancel in the instanton measure at one loop, we immediately realized that the cancellation would persist to all orders, and the β function would be exactly calculable, in a technically trivial way.

In supersymmetric gluodynamics the β function turns out to be a geometrical progression. This is seen from the instanton measure or, which is essentially the same, from the gluino condensate. Being an observable quantity, it is certainly renormalization-group invariant. Since Eq. (8) is exact, an exact relation between the ultraviolet parameter M_{PV} and the bare coupling constant emerges: the explicit M_{PV} dependence of the right-hand side of Eq. (8) must be canceled by an implicit dependence coming from $1/g^2$.

In this way one gets the β function,

$$\beta(\alpha) = \frac{-6\alpha^2}{2\pi} \left(1 - \frac{\alpha}{\pi}\right)^{-1}, \quad \alpha = \frac{g^2}{4\pi}.$$

This is for SU(2); for an arbitrary gauge group

$$\beta(\alpha) = \frac{-3T_G \alpha^2}{2\pi} \left(1 - \frac{T_G \alpha}{2\pi}\right)^{-1},$$

where T_G is the dual Coxeter number (it is also called the Dynkin index). As will be explained shortly, Eqs. (14) and (15) are exact not only perturbatively,
but nonperturbatively as well. Our approach makes explicit that all coefficients of the \(\beta \) function have a geometric interpretation\(^5\) — they count the number of the instanton zero modes which, in turn, is related to the number of nontrivially realized symmetries. Indeed,

\[
\beta(\alpha) = -\left(n_b - \frac{n_f}{2}\right) \frac{\alpha^2}{2\pi} \left[1 - \frac{(n_b - n_f) \alpha}{4\pi}\right]^{-1},
\]

where \(n_b \) and \(n_f \) count the gluon and gluino zero modes, respectively. In this form the result is valid in theories with extended supersymmetry, too. For \(\mathcal{N} = 2 \), one gets \(n_b = n_f = 4T_G \), implying that the \(\beta \) function is one-loop. For \(\mathcal{N} = 4 \) the \(\beta \) function vanishes since \(n_f = 2n_b \).

In theories with matter, apart from the gluon and gluino zero modes, one has to deal with the zero modes of the matter fermions. While the gluon/gluino \(Z \) factors are related to the gauge coupling constant \(g^2 \) itself, this is not the case for the \(Z \) factors of the matter fermions. The occurrence of the additional \(Z \) factors brings new ingredients into the analysis, the anomalous dimensions of the matter fields \(\gamma_i \). Therefore, in theories with matter the exact instanton measure implies an exact relation between the \(\beta \) function and the anomalous dimensions \(\gamma_i \),

\[
\beta(\alpha) = -\alpha^2 \frac{2\pi}{3T_G} \left[3T_G - \sum_i T(R_i)(1 - \gamma_i)\right] \left(1 - \frac{T_G \alpha}{2\pi}\right)^{-1}, \tag{17}
\]

where \(T(R_i) \) is the Dynkin index in the representation \(R_i \),

\[
\text{Tr} (T^a T^b) = T(R_i) \delta^{ab},
\]

and \(T^a \) stands for the generator of the gauge group \(G \); the latter can be arbitrary.

Equation (17), which is sometimes referred to as the Novikov-Shifman-Vainshtein-Zakharov (NSVZ) \(\beta \) function, is valid for arbitrary Yukawa interactions of the matter fields. The Yukawa interactions show up only through the anomalous dimensions \(\gamma_i \).

\(^5\) Even more pronounced is the geometric nature of the coefficients in the two-dimensional Kähler sigma models, for obvious reasons: these models are geometrical. The supersymmetric Kähler sigma models have extended supersymmetry, \(\mathcal{N} = 2 \). Therefore, the \(\beta \) function is purely one-loop. We performed\(^6\) the instanton calculation of the first coefficient for all nonexceptional compact homogeneous symmetric Kähler manifolds. It might seem that in theories with matter, see Eq. (17) below, the geometrical interpretation of the second and higher coefficients of the \(\beta \) function is lost because of the occurrence of the anomalous dimensions \(\gamma_i \). In fact, it has been recently shown\(^6\) that the running gauge coupling one obtains within \(D \)-brane engineering is compatible with Eq. (17). Thus, a geometric interpretation is recovered.
The NSVZ β function has the unique property that if one evolves the gauge coupling “all the way down,” till its evolution is complete and the coupling is frozen, the value of the frozen coupling is as if the β function were one-loop, although, in fact, the evolution is certainly governed by the multiloop β function. I will explain this point later.

In the beginning our attention was almost entirely focused on perturbative calculations of the β functions. The reason is quite obvious – the generalized nonrenormalization theorem in the instanton background we had established is valid order by order in perturbation theory. Later we realized that one can apply, additionally, R symmetries to prove that in typical models, Eq. (17) is also valid nonperturbatively. This aspect is discussed, in particular, in Ref. 40. The fate of the assertion of “nonperturbative exactness” is rather surprising: it is being rediscovered again and again, see e.g. fresh publications 41, 42. I hasten to add that exceptional models, in which the NSVZ β function is corrected at the nonperturbative level, are not rare. The most notable one is the $\mathcal{N}=2$ theory that played the key role in Seiberg and Witten’s breakthrough 43 in 1994. In the $\mathcal{N}=2$ theory the NSVZ β function is one-loop. However, instantons generate an infinite series of nonperturbative terms, for reasons that are well understood 44. The full β function is rather nontrivial, it can be explicitly found 45 from the Seiberg-Witten solution.

The master formula (17) kept us busy for several years. We derived it more than once: first from the analysis of perturbation theory 46 and then from the consistency of the anomalies in supersymmetric theories 47. The latter topic, the consistency of the anomalies, has far-reaching consequences by itself. I will discuss it shortly. As for implications of the NSVZ β function, let me mention a few examples. An immediate consequence is the one-loop nature of the β function in $\mathcal{N}=2$ extended supersymmetries and the vanishing in $\mathcal{N}=4$. Of course, these facts were established long ago from other considerations.

More productive are the applications where the NSVZ β function leads to novel results. For instance, it allows one to generate finite theories even in the class of $\mathcal{N}=1$. The simplest example was suggested in Ref. 48, further developments are presented in Ref. 49. The general idea is to arrange the matter sector in such a way that the conditions $3T_G - \sum_i T(R_i) = 0$ and $\gamma_i = 0$ are met simultaneously. For instance, consider the SU(3) gauge model with nine triplets Q^i and nine antitriplets \tilde{Q}^i and the superpotential 48

$$W = h \left(Q^1 Q^2 Q^3 + Q^4 Q^5 Q^6 + Q^7 Q^8 Q^9 + Q_1 \tilde{Q}_2 \tilde{Q}_3 + Q_4 \tilde{Q}_5 \tilde{Q}_6 + Q_7 \tilde{Q}_8 \tilde{Q}_9 \right),$$

(18)

where contraction of the color indices by virtue of ϵ_{ijk} is implied. The flavor symmetry of the model ensures that there is only one Z factor for all matter
fields. Since the condition $3T_G - \sum_i T(R_i) = 0$ is satisfied, finiteness is guaranteed provided that the anomalous dimension γ vanishes. At small g and h the anomalous dimension $\gamma(g, h)$ is determined by a simple one-loop calculation,

$$\gamma(g, h) = -\frac{g^2}{3\pi^2} + \frac{|h|^2}{4\pi^2}.$$ \hspace{1cm} (19)

This shows that the condition $\gamma(g, h) = 0$ has a solution, at least for small couplings. If the initial conditions g_0 and h_0 are chosen in such a way that $\gamma(g_0, h_0) = 0$, the coupling constants do not run – they stay at g_0, h_0 forever. The Yukawa coupling h is frozen due to the fact that the β function for h is proportional to $\gamma(g, h)$.

Straightforward extensions of the methods developed in connection with the NSVZ β function yield a spectrum of exact results going well beyond the original range of applications. For instance, renormalization of the soft supersymmetry breaking parameters has been recently treated along these lines to all orders in the gauge coupling constant. Among other uses, I would like to mention the determination of the boundaries of Seiberg’s conformal window. A related issue is the determination of the conserved R current for the theories lying in the conformal window. We obtained (see the second paper in Ref. 40) a unified expression which interpolates between Seiberg’s current in the ultraviolet and the geometric current in the infrared conformal limit. Furthermore, the NSVZ β function allows one to exactly calculate the conformal central charges. These are good problems; unfortunately, their discussion will lead us far astray.

As a curious fact, let me note that the β function in supersymmetric gluodynamics first appeared in the form of a geometric progression in the paper of Jones, one of many early works devoted to the superanomaly problem, a topic on which I will dwell shortly. Both, the starting assumption of this work and the basic steps of derivation are irrelevant, as we understand it now, and yet, paradoxically, Eq. (15) shows up. Closer to the modern understanding of the superanomaly problem is a construction suggested by Clark, Piguet and Sibold. It is very hard to read these papers, but those who managed to work through them would be rewarded by extracting a simplified version of Eq. (17),

$$\beta(\alpha) = \frac{\alpha^2}{\pi} \left[1 - \gamma(\alpha) \right],$$ \hspace{1cm} (20)

applicable in SUSY QED.
Three geometric anomalies and supersymmetry

This problem has many facets. It lies at a junction of several deep phenomena in supersymmetric theories. To put things in the proper perspective, I should start from 1974 when Ferrara and Zumino noted54 that the axial current a_μ, the supercurrent $S_\mu\alpha$ and the energy-momentum tensor $\theta_{\mu\nu}$ enter in one and the same supermultiplet, dubbed the supercurrent supermultiplet $J_{\alpha\dot{\alpha}}$. It is curious that supersymmetric gluodynamics was treated in an Appendix to Ref. 54, while the main body of the paper dealt with the Wess-Zumino model. It was proved that in classically conformal theories

$$\bar{D}^{\dot{\alpha}} J_{\alpha\dot{\alpha}} = 0,$$

while in the generic supersymmetric theories $\bar{D}^{\dot{\alpha}} J_{\alpha\dot{\alpha}} = D_\alpha \Phi$ where Φ is a chiral superfield, elementary or composite. Equation (21) combines the conservation laws for the chiral current, supercurrent and the energy-momentum tensor.

As is well-known, all three objects above have quantum anomalies. It was noted, in the most explicit form by Grisaru,55 that if a_μ, $S_\mu\alpha$ and $\theta_{\mu\nu}$ form a supermultiplet, the same must be valid for the corresponding anomalies. It was checked55 that this is, indeed, the case at the one-loop level.

The anomaly saga in supersymmetric gluodynamics starts from two loops. On the one hand, according to the Adler-Bardeen theorem,56 the chiral anomaly is exhausted by one loop. On the other hand, the anomaly in the trace of the energy-momentum tensor θ_μ^μ was believed to be proportional to the β function. It was apparently multiloop. This discrepancy defied supersymmetry. The contradiction was irritating, it was a dark spot on the otherwise beautiful face of supersymmetry. Quite a significant effort was invested in this problem. A couple of dozen works appeared in the late 1970’s and early 1980’s suggesting various “solutions,” to no avail (for a representative list of references see e.g. Ref. 47). The mystery of superanomalies resisted all attempts at a “reasonable” solution. To give you a feeling of how desperate people were, in 1984 we published a paper entitled “Anomalies are not supersymmetric. Is SUSY anomalous?”57 In this paper a no-go theorem was established ruling out the possibility of two chiral currents (one of them belonging to the supercurrent supermultiplet and another obeying the Adler-Bardeen theorem) that would differ by a subtraction constant. This was the most popular construction on the theoretical market of the day. Of course, now this theorem has no value other than historical.

To tell you the truth, we became obsessed with this puzzle. The superanomaly problem was always at the back of my mind even when I was doing something else. This went on for several years. I do not remember why, but
in the late spring of 1985 Arkady and I decided to do an elementary exercise – find the effective action at two loops in massless scalar electrodynamics. We did it in an unconventional way, by applying the background field technique and the Fock-Schwinger gauge for the background photon. I remember I was wrestling with this “elementary exercise” well into summer, on vacations in Pärnu on the Baltic sea. We kept obtaining a nonsensical expression until we discovered a remarkable feature: the second loop was actually infrared. It was saturated by virtual momenta of order of the momentum of the external photon. This seemingly insignificant observation opened our eyes.

In addition, approximately at the same time, we received two works, which produced a very strong impression on us, in the technical sense. In fact, they pointed in the same direction. Following these hints, we found a solution which turned out to be quite unexpected.

In the works, the supergraph background field technique was applied to a direct calculation of the effective action in supersymmetric gluodynamics at two loops. The authors used the supersymmetric regularization via dimensional reduction (DR). The result for the effective action exhibited a very clear distinction between the first and all higher loops. The operator

\[\int d^2\theta \text{Tr} W^2 + \text{H.c.}, \]

which is gauge invariant with respect to the background field, appears only at one loop. The second loop gives rise to a distinct structure, reducible to

\[\hat{\Gamma}^2, \]

gauge invariant with respect to the background field. Here \(\hat{\Gamma} \) is the gauge connection, and the caret means its projection onto the extra \(\varepsilon \) dimensions. The two-loop supergraphs in a direct calculation yield a nonchiral term

\[\frac{1}{\varepsilon^2} \int d^2\theta d^2\bar{\theta} \hat{\Gamma}\hat{\Gamma}, \]

which reduces to\(^2\) by virtue of the relation \(\hat{\nabla}^2 \hat{\Gamma}\hat{\Gamma} = -\varepsilon W^2 \). The structure \(\hat{\Gamma}^2 \) does not exist in four dimensions. The operator \(\hat{\Gamma}^2 \) had been interpreted in\(^2\) as a local counterterm leading to the distinction between the two alleged axial currents. The results of Ref. 59 taken at their face value – not the interpretation suggested by the authors – pointed in the opposite direction: the second and higher loops in the effective action are in fact an infrared

\(^2\)In the original publication the authors use two carets, one on top of the other. Being typeset in Latex such a tower looks too ugly.
In four dimensions Eq. (23) should have been converted into

$$\int d^2 \theta d^2 \bar{\theta} W \frac{D^2}{\partial^2} W,$$

(24)

which, certainly, reduces to Eq. (22) but at the price of an explicit infrared singularity.

The Wilsonian action, deprived of the infrared contributions by construction, would not contain the term (23) or (24). We concluded that, if the theory is regularized in the infrared domain, the gauge term in the effective action is renormalized only at one loop. The Wilsonian coupling gets no corrections beyond one loop.

It is worth stressing that in the given context the “infrared contribution” has nothing to do with the distances $\sim \Lambda^{-1}$. We mean rather the contribution associated with the virtual momenta p of order of the external momentum carried by the background field, as opposed to the ultraviolet contribution associated with $p \sim M_{UV}$. The external momentum can be as large as we want, it plays the role of the running parameter in the renormalization-group evolution.

The nonrenormalization theorem above is akin to the one we had proven for the instanton measure, where a natural infrared regularization is provided by the instanton size ρ. In fact, the proof is quite similar; it follows from the analysis of the supergraphs of Fig. 4 in the chiral background field. This time, unlike the instanton analysis, one assumes the background field to be weak (and chiral). One expands in W, keeping only the quadratic terms in W.

As a result, the gauge term in the Wilsonian action is renormalized only at one loop,

$$\frac{1}{g^2} = \frac{1}{g_0^2} - \frac{3T_G}{8\pi^2} \ln \frac{M_{UV}}{\mu},$$

(25)

Correspondingly, the superanomaly written in operator form is also one-loop,

$$\bar{D}^{\dot{\alpha}} J_{\alpha \dot{\alpha}} = -\frac{T_G}{8\pi^2} D_\alpha \text{Tr} W^2.$$

(26)

Thus, it was not the anomaly in the Adler-Bardeen current that had to be reinterpreted, but, rather, the anomaly in the trace of the energy-momentum tensor.

The idea that the anomaly in the trace of the energy-momentum tensor is proportional to the β function was so deeply rooted that the simple step

9 Equations (25) and (26) refer to supersymmetric gluodynamics. Their extensions valid in the general theory with arbitrary matter are presented below.
reflected in Eq. (26) was painfully difficult to make. As I mentioned, it took us years of long debates. In view of the importance of the issue it is worth rephrasing the result somewhat differently. The operator anomaly in the trace of the energy-momentum tensor is

$\theta_{\mu} = -\frac{3T_G}{8\pi^2} G_a^{\mu\nu} G^{a\mu\nu}$. \hspace{1cm} (27)

This expression is exact. The higher order terms in g^2 on the right-hand side can appear only at the stage of taking the matrix element of the operator G^2 in the given background field. In the general case of the gauge theory with matter $\{\Phi_i\}$ and arbitrary superpotential W the superanomaly relation takes the form

$\bar{D}^\alpha J_{a\dot{\alpha}} = \frac{2}{3} D_\alpha \left\{ 3W - \sum_i \Phi_i \frac{\partial W}{\partial \Phi_i} \right\} - \left[\frac{3T_G - \sum_i T(R_i)}{16\pi^2} \text{Tr} W^2 + \frac{1}{8} \sum_i \gamma_i \bar{D}^2 (\Phi_i e^V \Phi_i) \right]$. \hspace{1cm} (28)

The first line comes from a classical calculation, the second line presents the anomaly. This result was obtained almost 15 years ago; I will comment on its derivation momentarily. The general superanomaly relation was confirmed recently from an unexpected side. It turns out that the expression in the braces determines the central charge in the central extension of the $\mathcal{N} = 1$ superalgebra. The anomalous term in the central charge is obtained by combining Eq. (28) with the Konishi anomaly

$\bar{D}^2 (\Phi_i e^V \Phi_i) = 4 \Phi_i \frac{\partial W}{\partial \Phi_i} + \frac{T(R_i)}{2\pi^2} \text{Tr} W^2$. \hspace{1cm} (29)

Then, the coefficient in front of $\text{Tr} W^2$ in the central charge comes out proportional to $T_G - \sum_i T(R_i)$. In supersymmetric QCD it vanishes provided that the number of colors N is equal to the number of flavors N_f. The vanishing of the anomalous term in the central charge is an indispensable feature of Seiberg's

\footnote{Let me note in passing that the anomaly in θ_μ is not proportional to the full β function in (nonsupersymmetric) QCD either. The question arises at two loops. To get the anomaly in operator form one must carefully single out (and discard) the infrared contribution. Surprisingly, this has never been done, in spite of the mature age of QCD. Why? At two loops virtually all calculations with gluons are done in dimensional regularization, which does not allow one to easily separate the infrared part. Therefore, the answer is unknown till the present day.}
solution of the \(N_f = N \) theory. Unfortunately, I do not have time to dwell on details of this intriguing theme, a comprehensive explanation can be found in the review paper [3] which just appeared.

If the coefficient of \(\text{Tr} \; W^2 \) in the superanomaly (28) is purely one-loop, where does the multiloop \(\beta \) function come from? This is a legitimate question. To answer it, let us have a closer look at the right-hand side of the superanomaly relation. Assume that the superpotential \(W \) vanishes (this assumption is not crucial, it just facilitates the task).

In the second line of Eq. (28) we deal with a quantum operator. The full \(\beta \) function emerges in passing to the matrix element of this operator in the given (\(c \)-number) background field. It is convenient to carry out the transition in two stages. First, eliminate \(\bar{D}^2 (\bar{\Phi} e^V \Phi) \) in favor of \(\text{Tr} \; W^2 \) by virtue of the Konishi formula. This is still an operator relation. It is seen that at this stage the numerator of the NSVZ \(\beta \) function is recovered. At the second stage we convert the quantum operator \(\text{Tr} \; W^2 \) into \(\text{Tr} \; W^2_{\text{bkgr}} \) where the subscript \(\text{bkgr} \) means background. This conversion gives rise to the denominator of the NSVZ \(\beta \) function.

The Wilson action

The solution of the superanomaly problem is intertwined with another subtle question which was put forward in 1986 – the distinction between the Wilsonian and canonic actions. Surprisingly, before our work people did not realize that this distinction existed and was instrumental in understanding the analytic properties of supersymmetric theories in the gauge coupling constant. So far my definition of the Wilsonian action and its canonic counterpart was operational and rather vague. The distinction is best illustrated in the theories with matter, where its origin is absolutely transparent. Assume we have a supersymmetric gauge theory with arbitrary matter \(\{ \Phi_i \} \). Assume that at the ultraviolet cut off the Lagrangian is

\[
\mathcal{L} = \left\{ \frac{1}{4g^2} \int d^2 \theta \; \text{Tr} \; W^2 + \text{H.c.} \right\} + \frac{1}{4} \sum_i \int d^2 \theta d^2 \bar{\theta} \; \bar{\Phi}_i e^V \Phi_i \\
+ \left\{ \frac{1}{2} \int d^2 \theta \; \mathcal{W}(\Phi_i) + \text{H.c.} \right\},
\]

where \(\mathcal{W} \) is the superpotential. After evolving down to \(\mu \), the effective Lagrangian becomes

\[
\mathcal{L}_W = \left\{ \frac{1}{4} \left[\frac{1}{g^2} - \frac{3T_G - \sum T(R_i)}{8\pi^2} \ln \frac{M_{\text{UV}}}{\mu} \right] \int d^2 \theta \; \text{Tr} \; W^2 + \text{H.c.} \right\}
\]
\[
+ \frac{1}{4} \sum_i Z_i \left(\frac{M_{UV}}{\mu} \right) \int d^2\theta d^2\bar{\theta} e^V \Phi_i \\
+ \left\{ \frac{1}{2} \int d^2\theta \mathcal{W}(\Phi_i) + \text{H.c.} \right\},
\]

where \(Z_i\) stands for the \(Z\) factor of the matter field \(\Phi_i\). Equation (31) presents the Wilsonean effective action. It immediately entails, in turn, Eq. (28). A remarkable feature of supersymmetric theories is the complexification of the gauge coupling, see the second line in Eq. (5),

\[
\frac{1}{g^2} \rightarrow \frac{1}{g^2} - i \frac{\vartheta}{8\pi^2}.
\]

The real part of \(g^{-2}\) is the conventional coupling constant with which one deals, say, in perturbation theory. The imaginary part is related to the vacuum angle. The Wilsonean action preserves the complex structure in \(g^{-2}\), due to the fact that the renormalization of \(\text{Tr} W^2\) is exhausted by one loop. It goes without saying that the complex structure, wherever it appears, is a very precious theoretical asset. As we will see shortly, in the canonic action the property of analyticity is lost.

The kinetic terms in Eq. (31) are normalized noncanonically. We would like to pass to a \(c\)-number functional (sometimes called the generator of the one-particle irreducible vertices \(\Gamma\)). Note that our \(\Gamma\) is identical to what is called the “canonic effective action” in the current literature. Calculation of \(\Gamma\) is equivalent to the canonic normalization of the kinetic terms.

It is best to start from the matter fields. Again, we will assume that \(\mathcal{W} = 0\). Passing to the canonically normalized matter, naively we would say that the factors \(Z_i\) have no impact whatsoever and can be omitted. In fact, they do have an impact. The easiest way to detect the impact of the \(Z_i\) factors is to expand in \(Z_i - 1\), assuming that \(Z_i\)'s are close to unity. The linear term of expansion is unambiguously fixed by the Konishi anomaly (29). Once we realized that the linear term in \(Z_i - 1\) emerged in the canonic effective action, it was not difficult to figure out the full answer. Elimination of the \(Z_i\) factors of the matter fields in the canonic action requires that \(T(R_i) \ln M_{UV} \) in front of \(\text{Tr} W^2\) be replaced by \(T(R_i) \ln (M_{UV}/Z_i)\),

\[
T(R_i) \ln M_{UV} \rightarrow T(R_i) \ln \frac{M_{UV}}{Z_i}.
\]

To complete the transition to the canonic effective action one must analyze the same effect in the gauge sector. Denote by \(g_c\) the canonic gauge coupling.
It is the canonic gauge coupling that is routinely used in all perturbative calculations. Usually the subscript c is omitted. I will keep it for a while to emphasize the distinction between the Wilsonian and canonic couplings.

One observes that $\text{Re} \ g^{-2}_{c}$ is nothing but the Z factor of the gauge fields and gauginos. In the transition to the canonically normalized gauge kinetic term, the replacement to be done is

$$\ln M_{\text{UV}} \to \ln \frac{M_{\text{UV}}}{Z^{1/3}} = \ln \frac{M_{\text{UV}}}{[\text{Re} \ (g^{-2}_{c})]^{1/3}}. \quad (34)$$

The power of Z is different from that for the chiral superfields (one third versus unity, cf. Eq. (33)) because of the different spin weights, but the essence is the same. This is explained in detail in Ref. 47. Its main thrust was on the infrared manifestation of the anomaly.

Every anomaly has two faces – ultraviolet and infrared – and can be revealed in both ways. The fact of equivalence is elementary and was discussed in the literature many times (see e.g. the review 61). For instance, the chiral anomaly in supersymmetric theories can be obtained as a pole in the axial current, or, alternatively, as an ultraviolet anomaly in the measure. The same is true for the anomaly associated with the rescaling of the gluon/gluino fields displayed in Eq. (34). Recently it was rederived from the ultraviolet side, from the noninvariance of the measure. This is analogous to the Konishi–Shizuya derivation of the Konishi anomaly.

(Let me parenthetically note that the absence of the explicit separation of the ultraviolet and infrared contributions led the authors to a misinterpretation of the anomaly supermultiplet. In fact, they introduce a “second” energy-momentum tensor. As I have just discussed, in the case at hand DR works as the infrared rather than the ultraviolet regulator. In addition, I would like to warn that Refs. 42, 63 introduce some confusion in the nomenclature. The coupling constant g^{-2}_{h} which the authors call holomorphic is not, since it includes logarithms of the Z factors of the matter fields. I am aware of no quantity which would depend on g^{-2}_{h} holomorphically. In what follows I will reserve the term “holomorphic” for the Wilsonian coupling, the coefficient of $\text{Tr} W^{2}$ in the Wilsonian action.)

The following relation between the Wilsonian and canonic couplings ensues

$$\frac{1}{g^{2}} = \frac{1}{g^{2}_{c}} - \frac{T_{G}}{8\pi^{2}} \ln \text{Re} \frac{1}{g^{2}_{c}}. \quad (35)$$

Assembling all these elements together we readily find the β function for the canonic coupling. It is identical to the NSVZ β function quoted above in connection with the instanton derivation, see Eq. (17).
As was mentioned, in supersymmetric theories the gauge coupling is complexified, as indicated in Eq. (32). The complex structure of the coefficient in front of $\text{Tr} W^2$ is preserved if and only if the action is not renormalized beyond one loop. This property is inherent to the Wilsonean action. At the same time, the Z factors of the fields (including those of gluons and gluinos) depend on $1/g^2$ nonholomorphically (via $\text{Re} g^{-2}$). That is why upon the transition to the canonical coupling one looses the holomorphy. The occurrence of $\ln Z$, or $\ln \text{Re} g_{\lambda}^{-2}$ for the gauge fields, in the transition to the canonically normalized effective action was repeatedly emphasized and illustrated in many ways in our 1986 paper. Nonetheless, apparently, this point is difficult to understand.

Shortly after my arrival to the US in 1990 I discussed the issue of the Wilsonean versus canonical coupling with Dan Freedman. He told me that our presentation of this topic did not seem clear to him, to put it mildly. I was surprised to hear that, because I thought that everything was crystal clear. So, I ignored his comment. Well, life shows that he was right and I was wrong. This is seen from the fact that several extended commentaries were published recently. They add no new physical content in the problem, just reinterpret the 1986 results in different terms. Yet, these commentaries are perceived by many as “substantial clarification.” Is this a language barrier, or a cultural difference, or both? I do not know. This is not the first time I find myself in a similar situation. You have just heard, in Arkady’s talk, that our penguin paper, being absolutely correct, was thought to be totally wrong for several years. Four referees explained to us, one after another, that it contradicts the Glashow–Iliopoulos–Maiani cancellation. The penguin mechanism was accepted only after Mary K. Gaillard advocated it in one of her review talks.

Holomorphic anomaly

The coefficients of various F terms which may be present in the action (e.g. the matter mass terms, the inverse couplings g^{-2}, the Yukawa couplings) can be promoted to auxiliary chiral superfields. The original coupling constants are then treated as the expectation values of the auxiliary superfields. Now, in many instances the subject of analysis is itself a chiral operator, for example, the operator $\text{Tr} \lambda^2$. In these cases the outcome of the analysis must depend on the expectation values of the chiral superfields, the antichiral ones cannot enter. This means that the chiral quantities must depend on the chiral parameters holomorphically.

The holomorphic dependence is an exceptionally powerful tool in explorations of the gauge dynamics in the strong coupling regime. In essence, the
Seiberg-Witten revolution of 1993/94 was based on the power of holomorphy. I have discussed various uses of holomorphy which were elaborated in the 1980’s, in particular, the exact determination of the gluino condensate. In the SU(2) model, with one flavor, \(\langle \text{Tr} \lambda \lambda \rangle \propto \sqrt{m} \). The fact that the conjugate parameter \(\bar{m} \) does not appear in \(\langle \text{Tr} \lambda \lambda \rangle \), is instrumental in establishing the square root dependence on \(m \).

The inverse gauge coupling \(g^{-2} \) is also a chiral parameter. Hence, one can expect a holomorphic dependence of \(\langle \text{Tr} \lambda \lambda \rangle \) on \(g^{-2} \) too. Surprisingly, examination of Eq. (8) shows that this is not the case. Indeed, while \(g^{-2} \) in the exponent is the complexified coupling constant, in the pre-exponential factor we actually deal with \(\text{Re} g^{-2} \), rather than with the full complex \(g^{-2} \). Had \(g^{-2} \) appeared in the pre-exponential factor, the \(\vartheta \) dependence of the gluino condensate would come out wrong.

Does this mean that something went wrong with the general argument? Yes and no. There are two gauge couplings – canonical and the one that enters in the Wilsonian action. The proper question to ask is, to which coupling does the proof of holomorphy refer. This question was not asked until 1991. Only then did we realized in full that it is always the Wilsonian coupling that one deals with in the statement of holomorphy (that’s where the term holomorphic coupling comes from). If one expresses the gluino condensate \(\langle \text{Tr} \lambda \lambda \rangle \) in terms of the Wilsonian coupling by virtue of Eq. (35), one gets \(\langle \text{Tr} \lambda \lambda \rangle = \text{Const. exp}(\frac{-4\pi^2}{g^2}) \). This dependence is perfectly holomorphic.

At the same time, holomorphy is violated for the canonical coupling, due to infrared singularities. This is called the holomorphic anomaly. The loss of holomorphy is associated with the \(Z \) factors which are nonchiral and get entangled, with necessity, as soon as we pass to the canonical gauge coupling.

The most graphic illustration of the phenomenon which I can think of can be given in SUSY QED. Denote the bare mass term of the electron \(m_0 \) and the bare coupling constant \(g_0 \). At the ultraviolet cutoff \(M_{\text{UV}} \) the holomorphic and canonical couplings coincide. As one descends from \(M_{\text{UV}} \) down to lower values of the normalization point \(\mu \) they diverge. The \(\beta \) function for the canonical coupling is multiloop, see Eq. (20). The second and higher loops are entirely due to the anomalous dimension of the electron (selectron) field and are in one-to-one correspondence with the loss of holomorphy. The running \(g^{-2}(\mu) \) depends on \(g_0^{-2} \) nonholomorphically. However, once the evolution is completed (i.e. at \(\mu \ll m \)) and the gauge coupling freezes, the holomorphic dependence on \(g_0^{-2} \) and \(m_0 \) is restored. In fact, one obtains the low-energy (frozen) \(g^{-2} \) by using the one-loop (holomorphic) \(\beta \) function, with a fictitious value of the
Figure 5: Evolution of the gauge coupling in SUSY QED (schematic). The straight lines represent the one-loop evolution with the fake bare threshold \(m_0 \). The actual evolution is given by the smooth curve. The outcome at \(\mu \ll m \) is the same.

threshold, \(m_0 \),

\[
\frac{1}{g^2}_{|_{\mu \ll m}} = \frac{1}{g_0^2} + \frac{1}{4\pi^2} \ln \frac{M_{\text{UV}}}{m_0},
\]

rather than the physical threshold, which is given by the physical electron (selectron) mass. The latter, in turn, is a nonholomorphic function of \(g_0^2 \). The nonholomorphic dependence of \(m \) on \(g_0^2 \) combines with the nonholomorphic part in the \(\beta \) function to cancel each other. This is illustrated in Fig. 5 (for a more detailed discussion see Ref. 46).

This situation is general. When the chiral quantity measured is a “final product”, summarizing dynamics at all scales, it is expressible in terms of the Wilsonian coupling in a holomorphic way. At the same time, the snapshot \textit{en route}, at a given value of \(\mu \), captures the canonical coupling which carries the violation of holomorphy.

This solution could have been found much earlier, in 1986. We had all necessary elements handy, but missed the point then. The late 1980’s were an especially hard time for me personally, for various reasons. Life in the capital of the last world empire had always been like the theater of the absurd, except it was real. I could not stand it anymore, and I could not focus on physics.
The explorations of the holomorphy issue were resumed only in 1990 when both Arkady and I moved to Minneapolis. When our paper was essentially written, we received a preprint by Dixon, Kaplunovsky and Louis. These authors came across a similar holomorphic anomaly in a mass parameter, in the context of stringy calculations at one loop. They identified the reason lying behind the anomaly as an infrared singularity due to the propagation of massless matter fields in the loop. It was yet another manifestation of the general phenomenon we had worked on. It was staggering to see how the parallel lines of reasoning led to one and the same conclusion. Later, Vadim Kaplunovsky told me that the apparent loss of holomorphy in the string calculation they had done baffled them for quite some time, and he was startled by the treatment of the problem in our paper.

Unsolved mystery of 4/5

Now I have to return to the gluino condensate to fulfill several promises made in passing. We already know that it was obtained by various distinct methods: at first, from the correlation function at short distances, and, later, \(\langle \text{Tr} \lambda^2 \rangle \) was obtained in the Higgs regime. The key element of the first derivation was cluster decomposition. Instrumental in the second derivation was the holomorphic dependence of \(\langle \text{Tr} \lambda^2 \rangle \) on the bare mass parameter of the auxiliary matter. Although the functional dependence of \(\langle \text{Tr} \lambda^2 \rangle \) on the ultraviolet cut-off and the gauge coupling comes out the same in both methods, the numerical coefficients are different! (Cf. Eqs. (8) and (12) which exhibit a mismatch factor \(\sqrt{4/5} \).) Since the discrepancy is certainly not due to an algebraic error, something conceptual must have been overlooked. The calculation based on the Higgs regime and holomorphy seems ironclad. The only plausible explanation suggested so far was a chirally symmetric vacuum, whose existence in supersymmetric gluodynamics could have an impact on the strong coupling calculation. (I leave aside explanations associated with fantastic creatures like tensionless strings.) Let me explain this in more detail.

The model described by the Lagrangian \(\mathcal{L} \) is invariant with respect to the phase rotations of the gluino field (the chiral rotations). This symmetry, valid at the classical level, is broken by the triangle anomaly. A discrete chiral \(Z_{2N} \) symmetry survives, however, as an exact quantum symmetry. The gluino condensate is noninvariant with respect to the chiral \(Z_N \) rotations, it breaks (spontaneously) \(Z_{2N} \to Z_2 \). Consequently, if the gluino condensate develops, it can take \(N \) different values which mark the distinct chirally asymmetric vacua of the theory. For instance, in the SU(2) model the condensate is double-valued, see Eq. (8).
To elucidate the reason why the weak and strong coupling calculations of $\langle \text{Tr} \lambda^2 \rangle$ may differ, we may invoke the hypothesis due to Amati et al.\cite{67} (remember, the one which I was reluctant to accept in 1985, in heated debates with Amati and Veneziano, and appreciated only a decade later). According to this hypothesis, the strong coupling calculation of the correlation function $\langle \text{Tr} \lambda^2(x) \text{Tr} \lambda^2(0) \rangle$ yields, in fact, a result averaged over all vacuum states of the theory. Assume there exists a chirally symmetric vacuum\cite{66} with $\langle \text{Tr} \lambda^2 \rangle = 0$. Then, it would contaminate the correlation function\cite{3}, thus explaining a suppression factor that popped out\cite{22} in the strong coupling regime compared to the calculation at weak coupling. In the latter, a large vacuum expectation value of the squark field picks up the vacuum state unambiguously – in the SU(2) model it has to be one of two chirally asymmetric vacua.

There are arguments in favor of and against this unexpected chirally symmetric vacuum. An additional indication of its existence is provided by the Veneziano-Yankielowicz effective Lagrangian\cite{68},\cite{66} and its subsequently extended versions\cite{69}. I must admit that the available evidence is circumstantial, at best.

If the vacuum at $\langle \text{Tr} \lambda^2 \rangle = 0$ does exist its properties must be quite exotic. The chirally symmetric vacuum must give zero contribution to Witten’s index since the latter is fully saturated by the chirally asymmetric vacua. This implies that massless fermions are mandatory in the $\text{Tr} \langle \lambda^2 \rangle = 0$ phase of SUSY gluodynamics. If so, it is potentially unstable under various deformations. For instance, putting the system in a finite-size box lifts the vacuum energy density from zero\cite{70}. This vacuum disappears in finite volume. This instability – the tendency to escape under seemingly “harmless” deformations – may explain why the vacuum at $\langle \text{Tr} \lambda^2 \rangle = 0$ is not seen in Witten’s D-brane construction\cite{71}. Perhaps, this is not surprising at all. Indeed, there is a good deal of extrapolation in this construction, against which the chirally asymmetric vacua are stable (they have no choice since they have to saturate Witten’s index) while the $\langle \text{Tr} \lambda^2 \rangle = 0$ vacuum need not be stable and may not survive the space-time distortions associated with the D-brane engineering. Neither is it seen in the Seiberg-Witten solution\cite{43} of $\mathcal{N} = 2$ SUSY gluodynamics slightly perturbed by a small mass term for the matter field $m \text{Tr} \Phi^2$, ($m \ll \Lambda$). In this model the chirally symmetric state $\text{Tr} \langle \lambda^2 \rangle = \langle m \Phi^2 \rangle = 0$ resembles a sphaleron: it realizes a saddle point in the profile of energy. If the chirally symmetric vacuum develops it can happen only at large values of m, i.e. $m \gg \Lambda$.

30
Conclusions

The study of the analytic properties of supersymmetric theories, which began in the 1980’s, brought lavish fruits in the 1990’s. The arsenal of tools based on holomorphy expanded. The range of applications grew even more dramatically, especially after the fundamental works of Seiberg and Witten in 1994. At the same time, the end of the road is not even in sight. The list of profound unanswered questions in QCD, related to phenomena at large distances, is almost as large now as it was twenty years ago, in spite of extremely impressive progress in numerous applied problems. The potential of the holomorphy-based methods in the prototype supersymmetric gauge theories is far from being exhausted.

One last general remark

On the last pages of the book The Character of Physical Law, Feynman writes about two alternative scenarios of what can happen to physics “at the very end”. Either all fundamental laws will be found and we will be able to predict everything; the predictions will always be in full accord with experiment. Or it will turn out that new experiments will become too expensive or too complicated technically, so that we will understand about 99.9% of physical phenomena, leaving the remaining 0.1% of inaccessible phenomena without solid theory. One will have to wait for a long time until new extremely difficult and expensive experiments are done, so that the cognitive process becomes exceedingly slow and uninteresting. Feynman notes that he was very lucky to live in a time when great discoveries in high energy physics could be made. He compares his time with the discovery of America, which was discovered once and forever. This can never be repeated again. Some theorists of my generation believe that this may well be the case, the glorious days of high energy physics are over.

I do not think so. It is certainly true that the most fundamental theory of the day, string theory and its offsprings (M theory, D branes, etc.), operate with the Planck scale which lies so far away from the (present) human scale, that there is no hope of carrying out direct experimental studies. I do not know whether we will be able to advance without direct experimental guidance, led only by aesthetical principles. My prime interests lie in QCD and other gauge theories. No matter what happens at the Planck scale, new developments in M theory and D branes give new insights to QCD practitioners. They have already produced a strong impact on our understanding of qualitative features of QCD. Let me mention, for instance, Witten’s observation of an infinite set of vacua in QCD in the limit $N \to \infty$. This result was first obtained in
the stringy context and only later was demonstrated in field theory. The powerful tools of supersymmetry were instrumental in both cases. There are good reasons to believe that more advances are about to come.

Acknowledgments

It is a great honor to have been awarded the J.J. Sakurai Prize for Theoretical Particle Physics. For me this event has a special significance. I am deeply grateful to the American Physical Society. I was moved by warm congratulations from many friends and colleagues, to whom I want to say thank you. I am grateful to my coauthors Arkady Vainshtein, Valya Zakharov, Vitya Novikov, Misha Voloshin, Ian Kogan, Gia Dvali, Alex Kovner, and Boris Chibisov, with whom I shared fun and excitement of the journey in supersymmetric gauge theories that started in 1981 and continues till present.

I am grateful to A. Gorsky, A. Ritz, A. Vainshtein, and V. Zakharov for useful comments in the process of conversion of notes which I had prepared for the talk at the Centennial Meeting of the American Physical Society into this expanded written version. The work was supported in part by DOE under the grant number DE-FG02-94ER40823.

1. Y. Golfand and E. Likhtman, Pis’ma ZhETF 13, 452 (1971) [JETP Lett. 13, 323 (1971)]; for a more detailed version of this paper see Y. Golfand and E. Likhtman, in Problems of Theoretical Physics, I.E. Tamm Memorial Volume (Nauka, Moscow, 1972), p. 37.
2. D.V. Volkov and V.P. Akulov, Phys. Lett. B46, 109 (1973) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 11].
3. J. Wess and B. Zumino, Phys. Lett. B49, 52 (1974) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 77]; J. Iliopoulos and B. Zumino, Nucl. Phys. B76, 310 (1974) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 222]; P. West, Nucl. Phys. B106, 219 (1976) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 264]; M. Grisaru, M. Roček, and W. Siegel, Nucl. Phys. B159, 429 (1979) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 275].
4. E. Witten, Nucl. Phys. B185, 513 (1981) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 443].
5. A.A. Belavin, A.M. Polyakov, A.S. Schwarz, and Yu.S. Tyupkin, Phys. Lett. B59, 85 (1975) [Reprinted in Instantons in Gauge Theories, Ed. M. Shifman (World Scientific, 1994) p. 22].
6. V.N. Gribov, 1975, unpublished; C. Callan, R. Dashen and D. Gross, Phys. Lett. B63, 334 (1976) [Reprinted in Instantons in Gauge Theories, Ed. M. Shifman (World Scientific, 1994) p. 29]; R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37, 172 (1976) [Reprinted in Instantons in Gauge Theories, Ed. M. Shifman (World Scientific, 1994) p. 25].
7. G. ’t Hooft, Phys. Rev. D14, 3432 (1976); Erratum Phys. Rev. D18, 2199 (1978) [Reprinted in Instantons in Gauge Theories, Ed. M. Shifman (World Scientific, 1994) p. 70].
8. G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976) [Reprinted in Instantons in Gauge Theories, Ed. M. Shifman (World Scientific, 1994) p. 226].
9. For a recent review and an extensive list of references see e.g. T. Schäfer and E. Shuryak, Rev. Mod. Phys. 70, 323 (1998).
10. V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B191, 301 (1981). The instanton results reported in this work served as an initial impetus in the development of the instanton liquid model.
11. A. Vainshtein, V. Zakharov, V. Novikov and M. Shifman, Usp. Fiz. Nauk, 136, 553 (1982) [Sov. Phys. Uspekhi, 25, 195 (1982)].
12. S. Ferrara and B. Zumino, Nucl. Phys. B79 (1974) 413 [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 93].
13. E. Witten, Nucl. Phys. B202, 253 (1982) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 490].
14. I. Affleck, J. Harvey, and E. Witten, Nucl. Phys. B206, 413 (1982).
15. V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B223, 445 (1983).
16. V. Novikov et al., Nucl. Phys. B229, 394 (1983) [Reprinted in Instantons in Gauge Theories, Ed. M. Shifman (World Scientific, 1994) p. 298].
17. V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B229, 381 (1983).
18. V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B229, 407 (1983) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 606].
19. A. D’Adda and P. Di Vecchia, Phys. Lett. B73, 162 (1978) [Reprinted in Instantons in Gauge Theories, Ed. M. Shifman (World Scientific, 1994) p. 293].
20. G. Dvali and M. Shifman, Phys. Lett. B396, 64 (1997), Erratum Phys. Lett. B407, 452 (1997).
21. B. Chibisov and M. Shifman, Phys. Rev. D56, 7990 (1997), Erratum Phys. Rev. D58, 109901 (1998).
22. V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov, Nucl. Phys. B260, 157 (1985) [Reprinted in Instantons in Gauge Theories, Ed. M. Shifman (World Scientific, 1994) p. 311].
23. E. Cohen and C. Gomez, Phys. Rev. Lett. 52, 237 (1984).
24. G. ’t Hooft, Commun. Math. Phys. 81, 267 (1981).
25. E. Witten, Commun. Math. Phys. 117, 353 (1988).
26. A. Schwarz, Lett. Math. Phys. 2, 247 (1987).
27. G.C. Rossi and G. Veneziano, Phys. Lett. B138, 195 (1984) [Reprinted in Supersymmetry, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 620].
28. Y. Meurice and G. Veneziano, Phys. Lett. B141, 69 (1984).
29. I. Affleck, M. Dine, and N. Seiberg, Nucl. Phys. B241, 493, (1984); B256, 557 (1985); I. Affleck, M. Dine, and N. Seiberg, Phys. Rev. Lett. 52, 1677 (1984).
30. A.I. Vainshtein, V.I. Zakharov, V.A. Novikov, and M.A. Shifman, Pis’ma ZhETF 39, 494 (1984) [JETP Lett. 39, 601 (1984)].
31. T. Banks and E. Rabinovici, Nucl. Phys. B160, 349 (1979); E. Fradkin and S. Shenker, Phys. Rev. D19, 3682 (1979).
32. M. Shifman and A. Vainshtein, Nucl. Phys. B296, 445 (1988).
33. K. Konishi, Phys. Lett. B135, 439 (1984).
34. A. Morozov, M. Olshanetsky and M. Shifman, Nucl. Phys. B304, 291 (1988).
35. N. Seiberg, Phys. Lett. B318, 469 (1993).
36. N. Seiberg, Phys. Rev. D49, 6857 (1994); Nucl. Phys. B435, 129 (1995).
37. I.B. Khriplovich, Yad. Fiz. 10, 409 (1969) [Sov. J. Nucl. Phys. 10, 235 (1970)]; T. Appelquist, M. Dine, and I.J. Muzinich, Phys. Lett. B69, 231 (1977).
38. V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov, Phys. Lett. B139, 389 (1984); A. Morozov, A. Perelomov and M. Shifman, Nucl. Phys. B248, 279 (1984).
39. K. Hori, Nucl. Phys. 540, 187 (1999).
40. I. Kogan and M. Shifman, Phys. Rev. Lett. 75, 2085, (1995), see the discussion after Eq. (4); I. Kogan, M. Shifman, and A. Vainshtein, Phys. Rev. D53, 4526, (1996).
41. M. Graesser and B. Moraru, Phys. Lett. B429, 313 (1998).
42. N. Arkani-Hamed and H. Murayama, hep-th/9707133.
43. N. Seiberg and E. Witten, Nucl. Phys. B426, 19 (1994); (E) B430, 485.
44. N. Seiberg, *Phys. Lett.* **B206**, 75 (1988).
45. J. Minahan and D. Nemeschansky, *Nucl. Phys.* **B468**, 72 (1996); G. Bonelli and M. Matone, *Phys. Rev. Lett.* **76**, 4107 (1996); A. Ritz, *Phys. Lett.* **B434**, 54 (1998). The first two papers present derivations of $\beta(\tau)$ from the Seiberg-Witten curve; the last paper does not directly use the Seiberg-Witten solution.
46. For a recent review and list of references see M. Shifman, *Int. J. Mod. Phys.* **A11**, 5761 (1996).
47. M. Shifman and A. Vainshtein, *Nucl. Phys.* **B277**, 456 (1986).
48. A. Parkes and P. West, *Phys. Lett.* **B138**, 99 (1984); D.R.T. Jones and L. Mezincescu, *Phys. Lett.* **B138**, 293 (1984); S. Hamidi, J. Patera and J. Schwarz, *Phys. Lett.* **B411**, 349 (1994).
49. R.G. Leigh and M.J. Strassler, *Nucl. Phys.* **B447**, 95 (1995); C. Lucchesi and G. Zoupanos, *Fortsch. Phys.* **45**, 129 (1997); A. Hanany, M.J. Strassler, and A.M. Uranga, *J. High Energy Phys.* **9806**, 011 (1998) [hep-th/9803086]; A. Hanany and Y.-H. He, *J. High Energy Phys.* **9902**, 013 (1998) [hep-th/9811185].
50. J. Hisano and M. Shifman, *Phys. Rev.* **D56**, 5475 (1997); I. Jack, D.R.T. Jones, and A. Pickering, *Phys. Lett.* **B426**, 73 (1998); T. Kobayashi, J. Kubo, and G. Zoupanos, *Phys. Lett.* **B427**, 291 (1998); N. Arkani-Hamed and R. Rattazzi, hep-th/9804068.
51. D. Anselmi, D.Z. Freedman, M.T. Grisaru, and A.A. Johansen, *Nucl. Phys.* **B526**, 543 (1998); D. Anselmi, J. Erlich, D.Z. Freedman, and A.A. Johansen, *Phys. Rev.* **D57**, 7570 (1998).
52. D.R.T. Jones, *Phys. Lett.* **B123**, 45 (1983).
53. T.E. Clark, O. Piguet, and K. Sibold, *Nucl. Phys.* **B143**, 445, (1978); *Nucl. Phys.* **B172**, 201 (1980); O. Piguet and K. Sibold, *Nucl. Phys.* **B196**, 428; 447 (1982).
54. S. Ferrara and B. Zumino, *Nucl. Phys.* **B87**, 207 (1975) [Reprinted in *Supersymmetry*, Ed. S. Ferrara (North Holland/World Scientific, 1987) Vol. 1, p. 117].
55. M. Grisaru, in *Recent Developments in Gravitation* (Cargèse Lectures, 1978), Eds. M. Levy and S. Deser (Plenum Press, New York, 1979), page 577, and references therein.
56. S. Adler and W. Bardeen, *Phys. Rev.* **182**, 1517 (1969).
57. V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov, preprint ITEP-85/1984. In the journal version, *JETP Lett.* **40**, 920 (1984), the title was softened, at the request of the referee.
58. A. Vainshtein and M. Shifman, *Yad. Fiz.* **44**, 498 (1986) [Sov. J. Nucl.
59. M. Grisaru, B. Milewski, and D. Zanon, *Phys. Lett.* B157, 174 (1985); M. Grisaru, B. Milewski, and D. Zanon, *Nucl. Phys.* B266, 174 (1986).
60. M. Shifman, and A. Vainshtein, [hep-th/9902018](https://arxiv.org/abs/hep-th/9902018).
61. M. Shifman, *Phys. Rep.* 209, 341 (1991).
62. K. Konishi and K. Shizuya, *Nuov. Cim.* A90, 111 (1985).
63. N. Arkani-Hamed and H. Murayama, *Phys. Rev.* D57, 6638 (1998).
64. M. Shifman, and A. Vainshtein, *Nucl. Phys.* B359, 571 (1991).
65. L. Dixon, V. Kaplunovsky, and J. Louis, *Nucl. Phys.* B355, 649 (1991).
66. A. Kovner and M. Shifman, *Phys. Rev.* D56, 2396 (1997).
67. D. Amati, K. Konishi, Y. Meurice, G. Rossi and G. Veneziano, *Phys. Rep.* 162, 557 (1988).
68. G. Veneziano and S. Yankielowicz, *Phys. Lett.* B113, 231 (1982).
69. G. Gabadadze, *Nucl. Phys.* B544, 650 (1999) [hep-th/9808005](https://arxiv.org/abs/hep-th/9808005).
70. I. Kogan, A. Kovner, and M. Shifman, *Phys. Rev.* D57, 5195 (1998).
71. E. Witten, *Nucl. Phys.* B507, 658 (1997).
72. R.P. Feynman, *The Character of Physical Law* (Cox and Wyman, London, 1965).
73. E. Witten, *Phys. Rev. Lett.* 81, 2862 (1998).
74. M. Shifman, *Phys. Rev.* D59, 021501 (1999).