Dynamics of the looping pendulum: theory, simulation, and experiment

Collin Dannheim, Luke Ignell, Brendan O’Donnell, Robert McNees and Constantin Rasinariu

Department of Physics, Loyola University Chicago, Chicago, IL 60626, United States of America
E-mail: cdannheim@luc.edu, lignell@luc.edu, bodonnell3@luc.edu, rmcnees@luc.edu and crasinariu@luc.edu

Received 30 June 2021, revised 25 August 2021
Accepted for publication 7 September 2021
Published 29 September 2021

Abstract
The looping pendulum is a simple physical system consisting of two masses connected by a string that passes over a rod. We derive equations of motion for the looping pendulum using Newtonian mechanics, and show that these equations can be solved numerically to give a good description of the system’s dynamics. The numerical solution captures complex aspects of the looping pendulum’s behavior, and is in good agreement with the experimental results.

Keywords: looping pendulum, capstan equation, theoretical and experimental verification

(Some figures may appear in colour only in the online journal)

1. Introduction

The looping pendulum consists of two different masses, one heavy and one light, connected with a string that passes over a horizontal rod. One lifts up the heavy mass by pulling down on the light one at a given angle with the vertical axis. Releasing the light mass, it sweeps around the rod, keeping the heavy mass from falling to the ground. This mesmerizing physics demo, which we first became aware of through a video on YouTube [1], appeared as one of the problems in the 2019 International Young Physicists Tournament [2]. The looping pendulum’s simple implementation and intriguing dynamics make it a captivating problem for physics students and professors alike.

The looping pendulum is related to a number of systems studied in the classical mechanics literature, most notably the ‘swinging Atwood machine’ [3, 4]. But unlike the swinging Atwood machine, where the masses are connected by a string passing over two ideal pulleys, the looping pendulum’s string slides across and ultimately winds around a rod of non-zero radius. Friction
between the string and the rod affects the tension in the string and hence the dynamics of the masses. The looping pendulum itself was initially studied by Marlow in [5], where the author sought to explain the mechanics of a demonstration presented in a 1926 issue of a magician’s journal [6]. Marlow’s treatment ignored friction and focused on the surprising halting behavior of the system. Subsequent publications refined Marlow’s model and emphasized the role played by friction between the string and the rod [7, 8]. The system is sufficiently well-known that a simplified version appears in undergraduate classical mechanics textbooks [9].

A series of recent papers [10–12] use Newtonian mechanics to study the trajectories followed by the looping pendulum in various regions of the system’s parameter space. Those papers tend to break the motion up into distinct phases, such as the string sliding across the rod, or else wrapping without sliding. The simulations then proceed by stitching together numerical solutions as the system passes from one of these phases to another. The dynamics may be relatively simple, involving just a few phases, or lead to complicated motions that experience each phase multiple times throughout the evolution. While these simulations effectively capture the shapes and general features of the trajectories followed by each mass, they do not give a satisfactory picture of the time-dependence of the motion.

In this paper we study the full dynamics of the looping pendulum using Newtonian mechanics, simulate its motion numerically via a single simulation without independent phases, and compare the theoretical predictions with the experimental results. The experiments closely confirm the numeric simulations and reveal rich dynamics with surprising features. An important ingredient in our simulation is air resistance, which is essential for reproducing the time-dependence of the motion in a classroom setting where the looping pendulum is usually encountered. The simulation is robust in the sense that our model accurately describes the motion of the system constructed from the sort of everyday materials one might use for a simple demonstration. Additionally, we are able to show that, in some regions of parameter space, the system exhibits a sensitivity to small changes in initial conditions characteristic of chaotic systems.

The manuscript is organized as following: in section 2 we derive the equations of motion, and obtain a pair of coupled, second-order, non-linear differential equations. In section 3 we present the experimental setup, and in section 4 we compare the experimental results with numerical solutions of the model obtained using Mathematica [13]. Finally, in section 5 we review our results, outline plans to improve the apparatus, and consider the possibility that, for a given range of the parameters of the model, the looping pendulum may exhibit chaotic behavior.

2. Equations of motion for the looping pendulum

The dynamics of the looping pendulum can be described using physics that is typically covered in the introductory undergraduate courses. Our setup is shown in figure 1. A heavy mass M_2 is suspended vertically by a string that passes over a rigid rod of radius R. The distance from M_2 to the point where the string makes contact with the rod is h. The string winds around the rod for an angle θ, then extends a distance ℓ from the rod to a lighter mass M_1 which is held at rest. The lighter mass is released, and the system is allowed to move freely. During this motion the quantities h, θ, and ℓ will change, but the total length of the string remains fixed at $L = \ell + R\theta + h$ (figure 1).

The motion of mass M_2 is best described using a fixed coordinate system \mathbf{x} and \mathbf{y} with the origin taken at the center of the rod’s circular cross section. Mass M_2 is assumed to move straight up and down with no horizontal component to its motion. Its position is $\mathbf{r}_2 = R\mathbf{x} - h\mathbf{y}$ and its velocity is $\mathbf{v}_2 = \dot{h}\mathbf{y}$, where a dot indicates the derivative with respect to time. Since
This cross-section view of the looping pendulum shows masses M_1 and M_2 connected by a string that passes over a rod with radius R. The radius of the rod is much smaller than the initial values of ℓ or h in our experiments, and is exaggerated here for clarity.

The forces acting on M_1 and M_2 include gravity, tension in the string, and air resistance.

The length L of the string is fixed, $\dot{L} = \dot{\ell} + R \dot{\theta} + \dot{h} = 0$ and the velocity and acceleration of M_2 can be written as:

$$\vec{v}_2 = (\ell + R \theta) \hat{\mathbf{y}}, \quad \vec{a}_2 = (\ddot{\ell} + R \ddot{\theta}) \hat{\mathbf{y}}. \quad (1)$$

The lighter mass M_1 follows a more complicated path. Its position is given by

$$\vec{r}_1 = (R \cos \theta - \ell \sin \theta) \hat{\mathbf{x}} + (R \sin \theta + \ell \cos \theta) \hat{\mathbf{y}}. \quad (2)$$

However, it is convenient to describe its motion using a co-moving system of coordinates that point parallel and perpendicular to the string connecting M_1 to the rod. We define the orthonormal unit vectors $\hat{\mathbf{e}}_1$ and $\hat{\mathbf{t}}_1$ (shown in figure 1) as

$$\hat{\mathbf{e}}_1 = \sin \theta \hat{\mathbf{x}} - \cos \theta \hat{\mathbf{y}}, \quad (3)$$

$$\hat{\mathbf{t}}_1 = - \cos \theta \hat{\mathbf{x}} - \sin \theta \hat{\mathbf{y}}. \quad (4)$$
Then the position of M_1 can be written as
\[\ddot{\mathbf{r}}_1 = -\ell \dot{\mathbf{e}}_1 - R \dot{\mathbf{i}}_1. \tag{5} \]
Because these new unit vectors depend on θ, they will change as the string loops around the rod. Their first and second derivatives with respect to time are
\[\dot{\mathbf{e}}_1 = -\dot{\theta} \mathbf{i}_1, \quad \hat{\mathbf{r}}_1 = \dot{\theta} \mathbf{e}_1, \tag{6} \]
\[\ddot{\mathbf{e}}_1 = -\ddot{\theta} \mathbf{i}_1 - \dot{\theta}^2 \hat{\mathbf{r}}_1, \quad \ddot{\hat{\mathbf{r}}}_1 = \ddot{\theta} \mathbf{e}_1 - \dot{\theta}^2 \mathbf{i}_1. \tag{7} \]
Using these results, we obtain for the velocity and acceleration of M_1
\[\ddot{\mathbf{v}}_1 = -\left(\ddot{\ell} + R \dot{\theta} \right) \dot{\mathbf{e}}_1 + \ell \ddot{\theta} \mathbf{i}_1, \tag{8} \]
\[\dddot{a}_1 = \left(\ell \dddot{\theta}^2 - \ddot{\ell} - R \dot{\theta}^3 \right) \dot{\mathbf{e}}_1 + \left(2 \dot{\dot{\theta}} \theta - \ell \dot{\theta} + R \dot{\theta}^2 \right) \mathbf{i}_1. \tag{9} \]
As a check, notice that the $\dot{\mathbf{e}}_1$ component of $\dddot{\mathbf{v}}_1$—the rate at which the string is moving onto or off of the rod—is minus the rate at which M_2 is moving downwards or upwards in equation (1).

Now that we have expressions for the accelerations of each mass, we need to identify the forces acting on them (see figure 2). For mass M_2 there is an upward force due to a tension $\mathbf{F}_{T,2}$, a downward force due to gravity, and a small but non-negligible amount of air resistance $\mathbf{F}_{\text{air},2}$ in the direction opposite to $\ddot{\mathbf{v}}_2$. These forces are
\[\mathbf{F}_{T,2} = T_2 \hat{\mathbf{y}}, \quad \mathbf{F}_{g,2} = -M_2 g \mathbf{\hat{y}}, \quad \mathbf{F}_{\text{air},2} = -\gamma_2 |\ddot{\mathbf{v}}_2| \ddot{\mathbf{v}}_2, \tag{10} \]
where the coefficient γ_2 (discussed in more detail in section 4) encodes the dependence of $\mathbf{F}_{\text{air},2}$ on the drag coefficient of M_2 and the area it presents in a plane perpendicular to $\ddot{\mathbf{v}}_2$. Using equation (1), the net force on mass M_2 is
\[\mathbf{F}_{\text{net},2} = \left(T_2 - M_2 g - \gamma_2 |\ddot{\mathbf{v}}_2| \ddot{\mathbf{v}}_2 + R \dot{\theta} \right) \hat{\mathbf{y}}. \tag{11} \]
Notice that the force due to air resistance changes sign based on the direction of $\ddot{\mathbf{v}}_2$.

For mass M_1 there are four forces: a tension $\mathbf{F}_{T,1}$ pulling along the direction $\hat{\mathbf{r}}_1$ of the string, gravity pulling downwards, air resistance in the direction opposite to $\dddot{\mathbf{v}}_1$, and an effective force associated with air resistance experienced by the string. The first three forces have the form
\[\mathbf{F}_{T,1} = T_1 \hat{\mathbf{e}}_1, \quad \mathbf{F}_{g,1} = -M_1 g \hat{\mathbf{y}}, \quad \mathbf{F}_{\text{air},1} = -\gamma_1 |\dddot{\mathbf{v}}_1| \dddot{\mathbf{v}}_1. \tag{12} \]
The final force acting on M_1 comes from drag on the string connecting it to the rod. Because drag forces are proportional to area, and the diameter of the string’s cross section is much smaller than its length, we approximate this force as being due entirely to the area of the string in a plane perpendicular to \mathbf{i}_1 and ignore its motion in the $\hat{\mathbf{r}}_1$ direction. This is a phenomenological approximation that accurately models the effect of the string’s air resistance on the motion of the system, but the actual behavior of the string is more complex. Rather than extending along a straight line between the point of attachment to mass M_1 and the point of contact with the rod (as portrayed in figure 1), the string curves slightly due to the drag force distributed along its length. Its direction at the point of attachment deviates from the radial direction $\hat{\mathbf{r}}_1$, giving rise to a small transverse component of the tension in the negative \mathbf{i}_1 direction. Therefore,
\[\mathbf{F}_{\text{air,str}} \simeq -\gamma_{\text{air}} |\dddot{\mathbf{v}}_1| \mathbf{i}_1 \cdot |\dddot{\mathbf{v}}_1| \mathbf{i}_1 \mathbf{i}_1. \tag{13} \]
The factor γ_{str} is proportional to the string’s area and hence its length ℓ, which changes as the masses move. We account for this by explicitly writing $\gamma_{\text{str}} = \ell \alpha_{\text{str}}$, where α_{str} is a constant, in subsequent expressions. Using equations (3), (4) and (8), the net force on M_1 is

$$\vec{F}_{\text{net},1} = \left(T_1 + M_1 g \cos \theta + \gamma_1 |\vec{v}_1| (\ell + R \hat{\theta}) \right) \hat{e}_1 + \left(M_1 g \sin \theta - \gamma_1 |\vec{v}_1| \ell \hat{\theta} - \alpha_{\text{str}} |\ell \hat{\theta}| \ell^2 \hat{\theta} \right) \hat{i}_1. \tag{14}$$

The coefficients γ_1 and α_{str} characterizing the air-resistance forces will be discussed in more detail in section 4.

The tensions T_1 and T_2 will differ because of friction between the string and the rod. Figure 3 shows an infinitesimal segment of string covering an angle $d\theta$ along the rod. We assume here that the string is sliding across the surface of the rod in the clockwise direction. This produces a small amount of friction $dF_f = \mu dN$ in the counterclockwise direction, where μ is the coefficient of friction between the string and the rod and dN is the normal force acting on the string segment. Since $d\theta \ll 1$, we use $\cos \frac{\theta}{2} \simeq 1$ and $\sin \frac{\theta}{2} \simeq \frac{\theta}{2}$ to write the net force on the segment of string as

$$\vec{F}_{\text{net}} = (dT - \mu dN) \hat{x} + (dN - T d\theta) \hat{y}. \tag{15}$$

Requiring the net force to vanish gives

$$dT = T \mu d\theta. \tag{16}$$

Integrating dT over the interval between the two points where the string makes contact with the rod, as illustrated in figure 1, gives the relationship between T_1 and T_2:

$$T_2 = T_1 e^{-\text{sign}(v_2) \mu \theta}, \tag{17}$$

which is also known as the capstan equation. The factor of $-\text{sign}(v_2)$ in the exponent accounts for the fact that the string may slide along the rod in either direction, depending on whether M_2 is moving downwards or upwards.\(^1\) The clockwise sliding shown in figure 3 corresponds to M_2 moving downwards, in which case $\text{sign}(v_2) < 0$ and $T_2 > T_1$.

We are now in position to write the equations of motion for the looping pendulum. For mass M_1, the \hat{e}_1 and \hat{i}_1 components of Newton’s second law give

$$M_1 \left(\ddot{\ell} - \ddot{R} \right) = T_1 + M_1 g \cos \theta + \gamma_1 \sqrt{\left(\dot{\ell} + R \dot{\theta} \right)^2 + \left(\dot{\ell} \right)^2} \left(\dot{\ell} + R \ddot{\theta} \right), \tag{18}$$

$$M_1 \left(2 \dot{\ell} \dot{\theta} + \ell \ddot{\theta} + R \dot{\theta}^2 \right) = M_1 g \sin \theta - \gamma_1 \sqrt{\left(\dot{\ell} + R \dot{\theta} \right)^2 + \left(\dot{\ell} \right)^2} \dot{\theta} - \alpha_{\text{str}} |\dot{\theta}| \ell^2 \ddot{\theta}. \tag{19}$$

\(^1\)In principle there should be some additional terms to describe the transition from kinetic friction to static friction when $v_2 = 0$. However, in our experiments the coefficient of static friction appeared to be no different than that of kinetic friction. And while the relationship (17) implies an instantaneous ‘jolt’ when the sign of v_2 changes, this does not appear to affect the results of our simulations. The change in tension propagates sufficiently rapidly through the string in our experiments that there is no need to include a smooth transition between $\text{sign}(v_2) < 0$ and $\text{sign}(v_2) > 0$ behaviors in the model.
Figure 3. Friction between the string and the rod determines the difference between the tensions T_1 and T_2.

For mass M_2 the equation of motion is

$$M_2 \left(\ddot{\ell} + R \ddot{\theta} \right) = T_2 - M_2 g - \gamma_2 |\dot{\ell} + R \dot{\theta}| \left(\dot{\ell} + R \dot{\theta} \right). \quad (20)$$

Solving equation (18) for T_1 and using equation (17) leads to the following pair of coupled, second-order, non-linear differential equations for $\ell(t)$ and $\theta(t)$:

$$0 = 2 \dot{\ell} \dot{\theta} + \ddot{\ell} \dot{\theta}^2 - g \sin \theta + \frac{\gamma_1}{M_1} \sqrt{\left(\dot{\ell} + R \dot{\theta} \right)^2 + \left(\ddot{\ell} + \alpha_{\text{fr}} |\dot{\ell}| \dot{\theta} \right)^2}, \quad (21)$$

$$0 = \ddot{\ell} + R \ddot{\theta} + g + \frac{\gamma_2}{M_2} \left| \dot{\ell} + R \dot{\theta} \right| \left(\dot{\ell} + R \dot{\theta} \right) - e^{-\text{sign}(\gamma)\mu_{\text{fr}}} \left(\frac{M_1}{M_2} (\dot{\ell} \dot{\theta}^2 - \ddot{\ell} - R \ddot{\theta} - g \cos \theta) \right)$$

$$- \frac{\gamma_1}{M_2} \sqrt{\left(\dot{\ell} + R \dot{\theta} \right)^2 + \left(\ddot{\ell} + \alpha_{\text{fr}} |\dot{\ell}| \dot{\theta} \right)^2}. \quad (22)$$

These equations cannot be solved in closed form, so in this paper we use Mathematica to solve them numerically. The numerical solution is compared with our experimental results in section 4.

The phenomenon that first drew our attention to the looping pendulum is the tendency of mass M_2 to fall some distance from its initial position and then stop moving. In some cases its motion will stop temporarily before falling again, or it may even briefly move upwards. But once M_2 stops completely—a behavior we refer to as halting—the subsequent motion of M_1 simplifies. First, the shape of its trajectory (assuming it is moving fast enough to maintain tension in the string) is entirely determined by the action of the string wrapping around the rod. Second, if air resistance is ignored, then the time dependence of ℓ and θ are well-approximated by a simple function. These observations, which are not essential in what follows, are discussed in more detail in appendix B.

3. Experimental setup

To test the model derived in section 2 we constructed several looping pendulums and recorded the motion of masses M_1 and M_2 for a range of initial conditions. The x and y positions of
each mass were then extracted from a slow-motion video using the Tracker Video Analysis and Modeling Tool [14].

A schematic of our apparatus is shown in figure 4. The frame consisted of three aluminum rods. Two vertical rods were mounted on lab stands, with clamps connected to each rod supporting a third, horizontal rod. The third rod, which was aligned using a level, appears in cross section in figure 1. The two masses were connected by a string which was placed over this rod. The lighter mass was then released from rest at different initial angles. The subsequent motion of the masses was recorded in a 240 fps video using an iPhone placed in front of the apparatus. A large white panel with a grid drawn on it was mounted behind the apparatus to improve alignment of the camera and visibility of the masses.

Multiple pendulums were built following the setup described above, with some variation in materials. A number of different aluminum rods were used for the horizontal rod. While all the rods had a length of approximately 1 m and a diameter between 1.2–1.3 cm, rough spots and variations in surface finish gave different values for the coefficient of friction μ. The string connecting the masses was taken from a spool of generic kite string and was not selected for any particular properties other than its negligible mass and inextensibility. The masses initially comprised bundles of washers with individual masses in the range of 7.5–7.7 g. These were soon replaced with a set of cylindrical masses, which made it easier to model the effects of air resistance.

There were several dimensionless parameters that could be varied when running the experiment: the ratio M_2/M_1 of the masses; various ratios of the lengths L, ℓ, and R; and the initial angle θ_i for the point of contact between the string and the rod. We observed the behavior of
the masses for several values of M_2/M_1, multiple values of the initial angle θ_i for each value of the mass ratio, and fixed\(^2\) values of L, ℓ, and R.

A run of the experiment began by selecting two masses that gave a specific value of M_2/M_1. The masses were connected by a string, a spot was marked on the string where it would make contact with the rod, and the total length of the string L and the length ℓ from the point of contact to M_1 were measured. The mass M_1 was then positioned at different initial angles, held at rest but with tension in the string, and released. The participant recording the run would scrutinize the video for signs that the masses had made contact with each other or with the string. If there was any indication of contact the run would be repeated. This happened frequently, so getting a ‘clean’ run with no collisions typically required several attempts. This process was then repeated for a new initial angle, with multiple initial angles tested for each mass ratio.

Once a run was successfully completed, the 240 fps video was trimmed to begin at the frame where the masses were released and then loaded into the Tracker Video Analysis and Modeling Tool. The length scale was set by identifying the distance between two points in the first frame with one of the measured lengths (typically ℓ), and then verified by comparing the computed and measured values of the other lengths (L, R, and h). The initial angle that the string connected to M_1 made with the horizontal direction was measured and converted into the initial angle θ shown in figure 1. Then the positions of each mass were recorded frame-by-frame until mass M_1 reached the rod—typically resulting in between 200 and 400 data points. The positions were marked on screen at the points where the string attached to the masses. Once all the positions had been marked, the data was exported to CSV files containing the (t, x, y) data points for each mass. The data was then imported into Mathematica and compared with the numerical solution of our model.

There were aspects of the apparatus which could not be incorporated into the model of section 2. For example, the model assumes that the trajectory of the masses lies in a plane. However, when the masses experience coplanar motion they collide with each other or with the string. To avoid this, the trajectory of mass M_1 had to have a small component in the direction parallel to the rod, which is not included in our simulation. Another complication arose from the string occasionally looping over itself as it wound around the rod. This changed the value of the coefficient of friction in a way that we could not account for in the model. Fortunately, these effects could be minimized: a careful release of the mass reduced motion parallel to the rod, and a trial could be repeated if the video showed the string looping over itself and subsequently slipping. Other sources of error which can be addressed in future experiments with different materials or equipment are discussed in section 5.

4. Experimental results and comparison with simulation

To compare our experimental results to the model of section 2 we solve equations (21) and (22) numerically. The equations depend on several parameters which must be measured or estimated. The quantities R, L, ℓ, and θ_i were measured directly and/or extracted from video using the Tracker Video Analysis and Modeling Tool, while the coefficient of friction μ was determined using a procedure described below. The drag coefficients could not be measured and were instead estimated based on the shape and dimensions of the masses and string.

\(^2\)Fixed values within small variations associated with positioning the string, attaching the masses, and using different rods.
Figure 5. The masses are suspended vertically and released from rest. Mass M_2 moves downwards with a constant acceleration (ignoring air resistance) that depends on g, μ, and the ratio M_2/M_1.

The coefficient of friction μ between the string and rod was determined by tracking the motion of masses M_1 and M_2 after they were suspended vertically and released from rest. This arrangement is shown in figure 5. In that case the masses move up or down with constant acceleration. The motion of the masses was recorded, the position of M_2 as a function of time was extracted from the video using Tracker, and μ was determined by fitting this data to the time law of motion

$$y_2(t) = y_2(0) - \frac{1}{2} g \frac{M_2 - M_1 e^{\mu \pi / M_2 + M_1 e^{\mu \pi} t}}{r^2}.$$

(23)

An example of a best-fit for the case $M_2/M_1 = 10$, yielding the value $\mu = 0.34$, is shown in figure 6.

Air resistance of the masses and string was more difficult to quantify. In equations (21) and (22) the three coefficients γ_1, γ_2, and $\alpha_{str} = \gamma_{str}/\ell(t)$ determine the magnitude of the drag forces. These coefficients are generally expected to take the form [15]

$$\gamma = \frac{1}{2} C \rho_{air} A,$$

(24)

where C is a drag coefficient of order 1, $\rho_{air} \simeq 1.2$ kg m$^{-3}$ is the density of air, and A is the area that the object presents in a plane perpendicular to its direction of motion. In early runs of the experiment the masses comprised bundles of washers. The irregular shape of the bundles made estimates of A difficult, especially as M_1 changed orientation during its motion, so the washers were later replaced with a set of cylindrical masses. Assuming a drag coefficient C of order 1, and treating the area A as that of a rectangle with dimensions given by the height and diameter of the cylinder, the coefficients γ_1 and γ_2 were estimated to both be of order 10^{-3} kg m$^{-1}$. For the string connecting M_1 to the rod, the area in the plane perpendicular to ℓ_1 is equal to its length $\ell(t)$ times its diameter. The string used in the experiment has a diameter of approximately 2 mm, so the ratio $\alpha_{str} = \gamma_{str}/\ell(t)$ is estimated to be $\alpha_{str} \simeq 10^{-3}$ kg m$^{-2}$.

Data for a typical trial with mass ratio $M_2/M_1 = 10$ ($M_1 = 10$ g, $M_2 = 100$ g) is compared with the numerical solution of our model in figure 7. The first subfigure, figure 7(a), shows the path followed by M_1 as it loops around the rod. The simulation accurately tracks the...
measured position of M_1 from release until the point where M_2 halts (the solid black dot), and then precisely replicates the spiral produced by the string wrapping around the rod (see also appendix B). The primary source of error affecting these plots is uncertainty in accurately judging the position of M_1, caused by the blurring of the mass in the video.

Figure 7(b) compares the observed and simulated dynamics of M_2 as it falls vertically. The model predicts that the mass drops a distance $\Delta y_2,\text{num} = -0.37\,\text{m}$ before halting, and the observed value was $\Delta y_2,\text{exp} = -0.37\,\text{m}$. The numerical solution predicts that M_2 halts 0.38 s after M_1 is released, which is again in good agreement with the observed halt time of 0.40 s. However, in figure 7(b) the mass can be seen to pass directly through its final y_2 value closer to the predicted halt time. It briefly dips below its final y_2 value and then returns to the same point at a slightly later time. We attribute this behavior to a slight elasticity of the string, which was not accounted for in the model.

Finally, figures 7(c) and (d) show the x and y positions of mass M_1 as a function of time. As with M_2, the numerical solution precisely captures the dynamics of M_1 as it loops around the rod. The numerical solution predicts that M_1 reaches the rod ($\ell = 0$) at $t_{\text{end}} = 1.1\,\text{s}$. This prediction cannot be directly compared to experiment, since the finite size of M_1 in our apparatus causes it to collide with the rod before the length ℓ reaches zero. However, we can compare the times at which M_1 passes through local extrema of x_1 and y_1 where $v_{1,x} = 0$ or $v_{1,y} = 0$. These times are shown in table 1 of appendix A and the predictions of the numerical solution are in excellent agreement with the observed values. We should emphasize that the effects of air resistance are essential for the accuracy of the model. Without air resistance, the model’s prediction for when M_1 reaches the rod is typically 5%–10% earlier than with air resistance included. Although this might amount to less than a tenth of a second, it is enough for the late time behavior of the simulation to move completely out of phase with the data. To faithfully track the dynamics of M_1, air resistance must be included in the model.

Our model predicts that the behavior of the looping pendulum for large values of M_2/M_1 usually involves a quick halt, followed by a regular spiral like the one in figure 7(a). The shape...
Figure 7. These plots show experimental data for M_1 (red circles) and M_2 (green circles), along with the numerical solution of our model (blue curve), for $M_2/M_1 = 10$. The vertical purple line in figures 7(b), (c) and (d) indicates the time when M_2 halts.

Table 1. Experiment and numerical solution values for the times when x_1 and y_1 experience local extrema in figures 7(c) and (d).

$v_{1,x} = 0$	$v_{1,y} = 0$			
t_{exp} (s)	t_{num} (s)	t_{exp} (s)	t_{num} (s)	
1	0.38	0.38	0.25	0.24
2	0.52	0.52	0.45	0.45
3	0.63	0.63	0.58	0.58
4	0.75	0.75	0.70	0.69
5	0.84	0.84	0.79	0.79
6	0.91	0.92	0.87	0.88
7	0.98	0.99	0.95	0.96

of this spiral can be understood in terms of the string wrapping around the rod, as discussed in appendix B. This is confirmed by experiment, and is in general agreement with the results of [10–12]. However, the looping pendulum exhibits more complicated behavior at smaller values of M_2/M_1, which is also well accounted for in our model.

An example is shown in figure 8 for the case $M_2/M_1 = 2$ ($M_1 = 50$ g, $M_2 = 100$ g). The mass M_1 follows a path with a qualitatively different shape than the trajectory shown in
Figure 8. The numerical solution captures nontrivial features of the trajectory and dynamics of the masses for the mass ratio $M_2/M_1 = 2$.

Figure 7(a). The notable feature in figure 8(a) is a sudden departure from the regular spiral for a few tenths of a second just before system halts. This is easily understood in terms of the behavior of M_2 shown in figure 8(b). Mass M_2 briefly stops, causing M_1 to enter a spiral associated with the string wrapping around the rod without slipping. But this is not a full halt; M_2 briefly drops a second time. During this second drop the string slides over the rod and rapidly pulls M_1 inward. Eventually M_2 experiences a full halt, at which point M_1 enters into a final, regular spiral.

The dynamics here, which could be decomposed into multiple phases as employed in references [10–12], is well described by a single simulation, the numerical solution of our model. Mass M_2 is observed to drop, briefly stop at time t_A, move upwards before stopping again at time t_B, and then resume falling at time t_C before finally halting. The model exhibits this same behavior. Table 2 in appendix A compares the observed and predicted values for the times and positions of these events. The dynamics match up well for the first few events, with small differences between the predicted and observed values for t_A and t_B. There is a larger disagreement between the observed and predicted values for the time t_C at which M_2 begins its final downward plunge. But the model’s halting time is once again in good agreement with the data, and it successfully reproduces the final distance that M_2 drops. (There appears to be another small ‘bounce’ in the data as M_2 abruptly stops, likely due to stretching of the string.) Despite slightly larger errors for some of the intermediate features in M_2’s trajectory, our model gives a compelling description of what was observed in the experiment. In fact, the motivation for the $M_2/M_1 = 2$ experiment was to confirm this interesting behavior for M_2, which had been predicted by the simulation.

5. Discussion

In this paper we developed a model of the looping pendulum using Newton’s laws. The result is a system of two coupled, nonlinear differential equations which we solved numerically. The numerical solution accurately describes not only the trajectory but also the dynamics of the masses, and reproduces complex behaviors observed for smaller values of the ratio M_2/M_1.

The model of section 2 is similar to models recently proposed in [10–12], with a few notable differences. First, instead of breaking up the motion into distinct phases described by special
cases of the equations of motion, our approach numerically solves the full system of equations from the time of release until the looping mass reaches the rod. There is no switching between phases; a single model is applied throughout the evolution of the system. More importantly, including the effects of air resistance allows us to correctly model the full time-dependence of the system, as shown in figures 7(b)–(d) and 8(b). To the best of our knowledge, this is the first accurate accounting of the full dynamics of the looping pendulum.

The apparatus described in section 3 was built with materials that were on hand. Replacing some of the components would reduce uncertainty in data collection, eliminate the effects of small forces we did not account for, and improve the model’s ability to estimate parameters that appear in the model. The single largest source of uncertainty when collecting position data was blurring of the fast-moving masses (especially M_1) in the video. Future versions of the experiment will rely on a dedicated high speed camera instead of an iPhone, which will reduce blurring and allow more accurate measurements of the positions of the masses.

While the refinements described above may lead to small quantitative improvements, the predictions of our model are nevertheless in excellent agreement with experiment. This robustness is a striking feature of the model: it accurately describes not only the shapes of the trajectories followed by the masses, but also their full dynamics, for a looping pendulum that has not been aggressively optimized. The model uses only first-year physics and is suitable for both a precise lab apparatus, and also the sort of device one might quickly assemble for a classroom demonstration.

In the future, we plan to explore a larger range of the looping pendulum’s parameter space. These first investigations sampled a relatively small number of initial angles for mass ratios $2 \leq M_2/M_1 \leq 10$, comparable to the range covered in the parameter space plot of reference [11]. We hope to extend this to higher and lower values of M_2/M_1, and to explore a much larger set of initial angles. For lower values of M_2/M_1 the system only seems to halt for isolated values of the initial angle, so it would be interesting to see if there is a nontrivial value of M_2/M_1 below which halting does not occur at all. Also, the presence of air resistance in the model means that the individual masses are important, as opposed to just their ratio. It would also be interesting to study the behavior of the system as M_1 and M_2 are increased (or decreased) with M_2/M_1 held fixed. The ratios γ_1/M_1 and γ_2/M_2 appear in the equations of motion, so the area scaling of γ and volume scaling of M should make air resistance less important for larger masses.

Finally, at smaller values of M_2/M_1 our model show sensitivity to small changes in initial conditions. This is reminiscent of simple systems that display chaotic behavior, like the double-pendulum. For larger values of M_2/M_1 the numerical solutions are robust in the sense that small changes in the initial angle (or other parameters of the model) lead to small changes in

Table 2. Observed and predicted values for the times and changes in position at different points along the trajectory of M_2 as illustrated in figure 8(b).

Quantity	Experiment	Numerical	Percent error
t_A	0.31 s	0.32 s	4.6
$\Delta y_2(t_A)$	-0.21 m	-0.23 m	8.5
t_B	0.46 s	0.48 s	3.0
$\Delta y_2(t_B)$	-0.20 m	-0.21 m	8.6
t_C	0.71 s	0.62 s	12.7
t_{halt}	1.0 s	0.95 s	4.6
$\Delta y_2(t_{halt})$	-0.44 m	-0.44 m	0.7
Figure 9. The simulated behavior of y_2 and ℓ for $M_2/M_1 = 2.5$ and initial angles 75°, 75.1°, 75.2°, and 75.3° suggests sensitive dependence on the initial conditions.

the trajectory and quantities like t_{halt}. But as we decrease M_2/M_1 these ‘nearby’ solutions often exhibit qualitatively different behaviors. Figure 9 shows an example of this for $M_2/M_1 = 2.5$ ($M_2 = 38$ g, $M_1 = 15.2$ g). Beginning at an initial angle of 75° and incrementing in steps of 0.1°, the solutions exhibit the same initial behavior before branching out into a wide range of halting times. We suspect that the looping pendulum exhibits chaotic behavior for small values of M_2/M_1, and we are currently investigating this possibility.

Acknowledgments

We wish to thank Loyola University Chicago for facilitating lab access during the COVID-19 pandemic shutdown, and the Department of Physics for providing the materials and work space used in the experiments.

Appendix A. Data

Table 1 shows the observed and predicted times for the local extrema of x_1 and y_1 in figures 7(c) and (d), respectively. Times in the t_{exp} columns were found by identifying points with the largest local values (positive or negative) of x_1 and y_1 in the data. The values in the t_{num} columns were obtained by evaluating the derivatives \dot{x}_1 and \dot{y}_1 for the numerical solution and finding their roots. As explained in the text, the numerical solution is in excellent agreement with the data. Table 2 records the times and positions for various events experienced by mass M_2 as shown in figure 8(b).

Appendix B. Motion of M_1 after halting

Once the heavier mass halts, the shape of the path followed by the lighter mass is completely determined by the string wrapping around the rod. The shape of this spiral can be described using the polar coordinates (ρ, ψ) shown in figure 10, where $\rho = \sqrt{R^2 + \ell^2}$ is the distance from the center of the rod to M_1 and $\psi = \theta + \arctan(\ell/R)$ is its angular position.
Let ℓ_{halt} and θ_{halt} be the values of ℓ and θ, respectively, when M_2 halts. Since h is now constant, $L - h = \ell + R\theta = \ell_{\text{halt}} + R\theta_{\text{halt}}$ and the shape of the curve is

$$\rho(\psi) = \sqrt{R^2 + (\ell_{\text{halt}} + R\theta_{\text{halt}} - R\theta(\psi))^2}, \quad (B1)$$

where $\theta(\psi)$ is defined implicitly by the transcendental equation

$$\psi = \theta(\psi) + \arctan\left(\frac{\ell_{\text{halt}}}{R} + \theta_{\text{halt}} - \theta(\psi)\right). \quad (B2)$$

The value of θ when M_1 reaches the rod ($\ell = 0$) is $\theta_{\text{halt}} + \ell_{\text{halt}}/R$, so ψ takes values in the range

$$\theta_{\text{halt}} + \arctan\left(\frac{\ell_{\text{halt}}}{R}\right) \leq \psi \leq \theta_{\text{halt}} + \frac{\ell_{\text{halt}}}{R}. \quad (B3)$$

The values ℓ_{halt} and θ_{halt} depend on the dynamics of the system, and for some initial conditions halting may not occur at all. But once M_2 has completely stopped moving, the shape of the curve traced out by M_1 is geometrically determined by the string looping around the rod. As an example, figure 11 reproduces this path for M_1 in the $M_2/M_1 = 10$ trial shown in figure 7(a).

Once M_2 has completely halted we can also give an approximate solution for $\ell(t)$ and $\theta(t)$ in the case where air resistance is negligible. As above, $\ell + R\theta = \ell_{\text{halt}} + R\theta_{\text{halt}}$ is constant and therefore $\dot{\ell} + R\dot{\theta} = \dot{\ell} + R\dot{\theta} = 0$. Then the i_1 component of the equation of motion for M_1 becomes

$$\ddot{\theta} + \dot{\ell} = g \sin \theta, \quad (B4)$$

which can be rewritten as

$$\ddot{\ell} + \ell = -gR \sin \left(\theta_{\text{halt}} + \frac{\ell_{\text{halt}}}{R} - \frac{\ell}{R}\right). \quad (B5)$$
After mass M_2 halts in figure 7(a), mass M_1 follows the spiral described by equations (B1) and (B2) with $\ell_{\text{halt}} = 0.196$ m and $\theta_{\text{halt}} = 4.738$. If we ignore the right-hand side of the equation then the solution from the time t_{halt} when M_2 halts until the time t_{end} when M_1 reaches the rod is

$$\ell(t) = \ell_{\text{halt}} \sqrt{\frac{t_{\text{end}} - t}{t_{\text{end}} - t_{\text{halt}}}}$$ (B6)

$$\theta(t) = \theta_{\text{halt}} + \frac{\ell_{\text{halt}}}{R} - \frac{\ell_{\text{halt}}}{R} \sqrt{\frac{t_{\text{end}} - t}{t_{\text{end}} - t_{\text{halt}}}}.$$ (B7)

For the cases we have considered these expressions differ from the numerical solution of the system by no more than a few percent. This suggests that an analytic solution of the full equation equation (B5) can be obtained perturbatively. However, the effects of air resistance are important for capturing the dynamics of the looping pendulum apparatus we constructed, so we leave this for future work.

ORCID iDs

Constantin Rasinariu © https://orcid.org/0000-0002-3263-0504

References

[1] Yeany B 2015 Toy Physics - Looping Pendulum /// Homemade Science with Bruce Yeany See for example the YouTube channel homemade science with Bruce Yany which gathered over 1.4 M views since 2015 https://youtu.be/SXQ9VaYm3yQ
[2] International Young Physicists Tournament 2018 Problems for the 32nd IYPT 2019 https://iypt.org/problems/problems-for-the-32nd-iypt-2019
[3] Tufillaro N B, Abbott T A and Griffiths D J 1984 Swinging Atwood’s machine Am. J. Phys. 52 895–903
[4] Tufillaro N B 1994 Teardrop and heart orbits of a swinging Atwood’s machine Am. J. Phys. 62 231–3
[5] Marlow A R 1991 A surprising mechanics demonstration Am. J. Phys. 59 951–2
[6] Marlow refers to a description in the September 1926 issue of ‘The Linking Ring’. Back-issues of that publication are only available to members of the International Brotherhood of Magicians, so we are unable to check the reference. Unfortunately, a magician’s tendency to never reveal their secrets is sometimes at odds with standards of citation in the physics literature.
[7] Griffiths D J and Abbott T A 1992 Comment on ‘A surprising mechanics demonstration’, by A. R. Marlow Am. J. Phys. 60 951–3
[8] Sears R E J 1995 Comment on ‘A surprising mechanics demonstration’, by A. R. Marlow Am. J. Phys. 63 854–5
[9] Morin D 2008 An example is problem 6.27 Introduction to Classical Mechanics: With Problems and Solutions (Cambridge: Cambridge University Press)
[10] Zhou Y-b et al 2020 Research on the looping pendulum phenomenon Eur. J. Phys. 41 025003
[11] Wen Q, Huang X, Zhang Y and Ong E 2020 Looping pendulum: theoretical and experimental studies Eur. J. Phys. 42 014001
[12] Wang Y and Shi Y 2021 Theoretical and experimental study of the looping pendulum Eur. J. Phys. 42 045006
[13] Wolfram Research, Inc. 2020 Computer Program ‘Mathematica’ (Version 12.2) (Champaign, Illinois, USA) https://wolfram.com/mathematica
[14] Brown D 2020 Computer Program ‘Tracker Video Analysis and Modeling Tool’ (Version 5.1.4) https://physlets.org/tracker/
[15] Blandford R D and Thorne K S 2017 Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics (Princeton, NJ: Princeton University Press)