Establishing surgical indications for hamstring lengthening and femoral derotational osteotomy in ambulatory children with cerebral palsy

James McCarthy, M. Wade Shrader, Kerr Graham, Matthew Veerkamp, Laura Brower, Hank Chambers, Jon R. Davids, Robert M. Kay, Unni Narayanan, Tom F. Novacheck, Kristan Pierz, Jason Rhodes, Erich Rutz, Jeffery Shilt, Benjamin J. Shore, Tim Theologis, Anja Van Campenhout

Abstract

Purpose Surgical procedures, such as medial hamstring lengthening (MHL) and femoral derotational osteotomy (FDO), can improve the gait of children with cerebral palsy (CP); however, substantial variation exists in the factors that influence the decision to perform surgery. The purpose of this study was to use expert surgeon opinion through a Delphi technique to establish consensus for indications in ambulatory children with CP.

Methods A 15-member panel, all established experts with at least nine years' experience in the surgical management of children with CP, was created (mean of 20.81 years' experience). All panel members also had expertise of the use of movement analysis for the assessment of gait disorders in children with CP. The group initially focused on two of the most commonly performed procedures, MHL and FDO, in an attempt to gain consensus (> 80%). This was obtained through a standardized, iterative Delphi process.

Results For MHL, a total of 59 questions were surveyed: 41 indication questions and 18 outcome questions, for which there was consensus on ten indication questions and seven outcomes. For FDO, a total of 55 questions were surveyed: 43 indication questions and 12 outcome questions, for which there was consensus on 29 indication questions and eight outcomes.

Conclusion This study is the first to use an expert panel to identify best-practice indications for common surgical procedures of children with CP. The results from this study will allow for more informed evaluation of practice and form the basis for future improvement efforts to standardize surgical recommendations internationally.

Level of Evidence Level IV

Cite this article: McCarthy J, Shrader MW, Graham K, Veerkamp M, Brower L, Chambers H, Davids JR, Kay RM, Narayanan U, Novacheck TF, Pierz K, Rhodes J, Rutz E, Shilt J, Shore BJ, Theologis T, Van Campenhout A. Establishing surgical indications for hamstring lengthening and femoral derotational osteotomy in ambulatory children with cerebral palsy. J Child Orthop 2020;14:50-57. DOI: 10.1302/1863-2548.14.190173

Keywords: cerebral palsy; surgical indications; consensus
Introduction

Cerebral palsy (CP) is the most common cause of physical disability in children and improving the physical function of ambulatory children with CP positively impacts both their quality of life and that of their caregivers. Surgical procedures, such as medial hamstring lengthening (MHL) and femoral derotational osteotomy (FDO), can improve the gait and physical functioning of children with CP, however, substantial variation exists in the clinical and patient-level factors that influence the decision to perform surgery. This variation likely leads to both under- and overuse of these procedures in this population, who are already at higher risk of surgical complications than the general population. More traditional research approaches to the study of clinical decision making, such as case control studies and randomized controlled studies, have been performed but are limited due to the clinical heterogeneity of the patient population, the large menu of 30 to 40 commonly performed procedures and the variety of combinations of procedures and surgical techniques.

Consensus methodology, including indications for surgery and interpretation of gait analysis, has been successfully used to develop guidelines for the management of orthopaedic conditions. Our hypothesis is that it is feasible to use a combination of best available evidence and expert orthopaedic surgeon opinion through a Delphi technique to establish consensus for surgical indications for MHL and FDO in ambulatory children with CP. If successful, this process will serve as a model for developing indications for additional procedures and provide evidence for clinical equipoise for more traditional research techniques in specific areas with poor consensus.

Our methodology is broken down into four aims. First, convene an international group of experts with clinical experience in the treatment of children with CP and the use of 3D movement analysis. Second, create a defined list of commonly performed orthopaedic procedures from which to work to establish surgical indications. Third, establish and agree upon a construct for categorizing indications. Fourth, using the above structure, develop consensus around indications for MHL and FDO in ambulatory children with CP using the Delphi method.

Background and significance

CP is a heterogeneous group of motor disorders caused by nonprogressive injury to the brain during early development and is the most common cause of physical disability in children, with an estimated global prevalence of approximately 17 million people. The symptoms of CP include abnormalities in muscle tone, strength and motor control, along with other secondary symptoms, that can affect physical function and the ability to ambulate. Improving the physical function of ambulatory children with CP can positively impact both their quality of life and that of their caregivers. A primary goal in the orthopaedic surgical treatment of ambulatory children with CP is improvement in gait, often accomplished with single-event multilevel surgery (SEMLS), where multiple procedures such as musculotendinous lengthening and corrective osteotomies, are included in one surgery.

Although SEMLS avoids repeat episodes of anaesthesia, hospitalization and recovery, the combination of procedures makes evaluation of surgical indications and outcomes of specific procedures challenging. A 2012 systematic review of SEMLS found a low level of evidence in support of SEMLS due to low quality of study design, short period of follow-up for outcome assessment and limited description of participants. Given the variability in outcomes, along with the potential risks that accompany surgery in children with CP, it is critical to identify which patients should undergo SEMLS and the optimal indications for each specific procedure. Two common procedures often performed as part of SEMLS are MHL and FDO. MHL is often considered for children with flexed-knee gait, which can lead to joint pain, arthritis and progressive gait deterioration, whereas FDO can be considered in patients with excessive femoral anteversion and increased internal hip rotation. Currently, no standardized recommendations exist to assist orthopaedic surgeons in deciding which patients would be good candidates for specific procedures. As a result, surgeons use a combination of history, physical examination awake or while under anaesthesia, radiographic findings, 3D gait analyses and past experience; however, some evidence suggests that a more standardized approach may lead to improved outcomes.

Consensus methodology has been successfully used to develop guidelines for the management of orthopaedic conditions, including indications for surgery and interpretation of gait analysis. This process can lead to the development of specific indications for MHL and FDO for ambulatory children with CP, which when applied consistently, will allow for improved assessment of long-term outcomes. The results from this study will allow for more informed evaluation of practice and form the basis for future improvement efforts to standardize surgical recommendations worldwide, and they can be easily extended to assess indications for other surgical procedures.

Materials and methods

This study used established consensus (Delphi) methodology to identify indications for MHL and FDO in ambulatory children with CP.
The Delphi methodology is a well-established method to develop appropriateness criteria. Institutional review board approval for the study and from each participating member was obtained. No participants dropped out from the study.

Expert panel formation

We formed a 15-member panel; all are established experts in the surgical management of children with CP (Table 1). Members were chosen from experts around the world. All experts were trained orthopaedic surgeons with at least nine years of focused clinical expertise in the orthopaedic surgical care of children with CP and access to and experience with a clinical movement analysis laboratory. On average, the experts had a mean of over 20 years of experience (mean 20.81 years, range 6 to 30) with the orthopaedic treatment of children with CP, for a combined total of over 300 years of experience. All panel members also had expertise with the use of movement analysis for the assessment of gait disorders in children with CP, on average 18.81 years (6 to 30).

Our expert panel created a list of 23 commonly performed orthopaedic procedures (Table 2). From this list, we agreed to initially focus on two of the most commonly performed procedures, MHL and FDO as our initial attempt to gain consensus.

Our expert panel then created and agreed to a structured format for categorizing the indications as shown in Table 3. This format consisted of five categories including the clinical problem/history and symptoms, physical exam including observational gait analysis, imaging findings, 3D movement analysis data, intraoperative exam under anaesthesia and important outcome measures.

Round 1: based on the literature review and submitted indications, we then used this structure to create open-ended questions regarding the surgical indications for MHL and FDO. These questions were then collated by category, and a well-structured questionnaire was created.

Round 2: an anonymous electronic survey was created in REDcap (Vanderbilt University, Nashville, Tennessee, USA) to formally rate the level of evidence supporting each indication using a Likert 5 level scale. This survey was sent to all experts in the group. Response options were sent to all experts in the group. Response options

Table 1. Surgeons included in the study

Name and institution	Name and institution
1. Hank Chambers, MD, Rady Children’s Hospital, San Diego California	7. Important outcome measures
2. Jon Davids, MD, Shriners Hospitals for Children- Northern California	8. Observed gait deviation
3. Kerr Graham, MD, FRCS, FRACS, The Royal Children’s Hospital, Melbourne Australia	9. Physical examination finding(s) that support the decision
4. Robert M. Kay, MD, Children’s Hospital Los Angeles, Los Angeles California	10. Physical examination finding(s) that support the decision
5. James McCarthy, MD, MHCM, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio	11. Rectus femoris transfer/lengthening
6. Unni Narayanan, MBBS, MSc, FRCS, The Hospital for Sick Children, Toronto, Canada	12. Anterior distal femur osteotomy
7. Tom F. Novacheck, MD, Gillette Children’s Specialty Healthcare, Saint Paul, Minnesota	13. Guided growth of the anterior distal femur
8. Kristan Pierz, MD, Connecticut Children’s Hospital, Hartford Connecticut	14. Guided growth of the proximal femur
9. Jason Rhodes, MD, Children’s Hospital Colorado, Aurora, Colorado	15. Hip adductor lengthening
10. Erich Rutz, MD, PhD, University Children’s Hospital Basle, Basle Switzerland	16. Psoas lengthening
11. Wade Shrader, MD, Nemours A.I. DuPont Hospital for Children, Wilmington Delaware	17. Hamstring lengthening
12. Jeffery Shill, MD, Texas Children’s Hospital, Houston Texas	18. Rectus femoris transfer/lengthening
13. Benjamin Shuey, MD, MHCM, Children’s Hospital of Boston, Boston Massachusetts	19. Gastrocnemius recession
14. Tim Theologis, MD, MSc, PhD, FRCS, Oxford University Hospitals, England	20. Gastrosoleus lengthening/heel cord lengthening
15. Anja Van Campenhout, MD, UZ Leuven, Belgium	21. Posterior tibialis lengthening
16. Matthew Veerkamp, BA, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio	22. Split posterior tibialis transfer
17. Laura Brower, MD, Cincinnati Children’s Hospital Medical Center, Cincinnati Ohio	23. Split anterior tibialis transfer

Table 2. A list of 23 commonly performed orthopaedic procedures

Procedures

Procedures
1. Acetabular/pelvic osteotomy
2. Varus derotational osteotomy
3. Proximal femoral derotational osteotomy
4. Distal femoral derotational osteotomy
5. Tibial derotational osteotomy
6. Distal femoral extension osteotomy
7. Patellar tendon/tibial tubercle advancement (shortening)
8. Hindfoot arthrodesis
9. Calcaneal sliding osteotomy (medial/lateral)
10. Mid/forefoot arthrodesis
11. Calcaneal opening wedge osteotomy
12. Midfoot osteotomy
13. Guided growth of the anterior distal femur
14. Guided growth of the proximal femur

Bony

1. Acetabular/pelvic osteotomy
2. Varus derotational osteotomy
3. Proximal femoral derotational osteotomy
4. Distal femoral derotational osteotomy
5. Tibial derotational osteotomy
6. Distal femoral extension osteotomy
7. Patellar tendon/tibial tubercle advancement (shortening)
8. Hindfoot arthrodesis
9. Calcaneal sliding osteotomy (medial/lateral)
10. Mid/forefoot arthrodesis
11. Calcaneal opening wedge osteotomy
12. Midfoot osteotomy
13. Guided growth of the anterior distal femur
14. Guided growth of the proximal femur

Soft tissue

15. Hip adductor lengthening
16. Psoas lengthening
17. Hamstring lengthening
18. Rectus femoris transfer/lengthening
19. Gastrocnemius recession
20. Gastrosoleus lengthening/heel cord lengthening
21. Posterior tibialis lengthening
22. Split posterior tibialis transfer
23. Split anterior tibialis transfer

Table 3. Framework for support (if applicable to the patients)

Framework

1. The clinical problem we are addressing (or preventing), and the benefit that this will translate into for the patient (intended outcome)
2. Features of the clinical history/symptoms that will point to the clinical problem above, including Gross Motor Function Classification System and age
3. The physical examination finding(s) that support the decision a. Observed gait deviation b. Static (on table) exam
4. The imaging findings (where applicable) to support the decision
5. The video and/or 3D gait analysis findings (where applicable) that support (or suggest avoiding) the procedure
6. The intraoperative examination under anaesthesia that supports (or suggest avoiding) the procedure
7. Important outcome measures
were strong indication, indicated, neutral, not indicated and strongly not indicated. Consensus for an indicated criterion was awarded when at least 80% of experts agreed to the top two Likert scales (strong indication or indication) or to a non-indicated procedure if at least 80% of experts agreed to the bottom two Likert scales (not indicated or strongly not indicated). Opportunity for comments was provided for all questions. General agreement was awarded for questions with at least 60% but less than 80% of experts agreeing to the top two Likert scales, or general disagreement for questions with at least 60% but less than 80% of experts agreeing to the bottom two Likert scales.

Round 3: from this survey, results were compiled. Those questions in which consensus was not achieved were evaluated, comments were collated, and (if needed) the question was clarified. This summary report was sent to all participants and responses to all non-consensus questions were re-submitted.

Two in-person meetings occurred in conjunction with international academic meetings, making the scheduling of an in-person meeting feasible, but still difficult given our international group of experts. During this process, panel members discussed ratings from round one, explored reasons for disagreement and modified indications.

Results

MHL

A total of 59 questions were surveyed: 41 indication questions and 18 outcome questions, for which there was consensus on ten indication questions, general agreement on eight more and consensus on seven outcome measures with general agreement on eight more. Consensus and general agreement by category are listed in Table 4. Questions for which there was consensus (bolded) and general agreement (italics) are listed in Table 5.

Commonalities from the expert panel can be elucidated for MHL. Most experts lean heavily on instrumented 3D movement analysis, with a total of eight of their ten consensus points falling into this category. Indications are focused on data that directly support a shortened hamstring during gait as determined by computer modeling techniques or evaluation of excessive knee flexion at initial contact or terminal swing (when the hip is also flexed) and decreased (from normal) pelvic tilt. MHL is uncommonly performed as an isolated procedure by this group of experts, and the trend appears to be that fewer MHL are being performed and for more specific indications. MHL, if performed inappropriately, could contribute to worsening anterior pelvic tilt. The experts use the physical exam as a supplement to the movement analysis data, and caution against performing an MHL if the fixed knee flexion contracture is greater than 10°. In such cases, it was recommended that the knee flexion contracture be

Table 4 Consensus and general agreement by category for medial hamstring lengthening (MHL) and femoral derotational osteotomy (FDO)

Category	MHL Consensus	FDO General agreement	MHL Consensus	FDO General agreement
Clinical problem/history	2/10	3/10	6/9	11/15
Physical exam	0/12	3/12	0/9	8/12
Imaging	0/4	1/12	6/8	1/8
3D movement analysis	8/12	0/12	5/9	1/9
Exam under anaesthesia	0/3	1/3	6/8	1/8
Outcome measures	7/18	8/18	12/8	1/12
Total questions	29%	27%	67%	15%

Consensus in bold type and general agreement in italics.
Table 6 Questions for femoral derotational osteotomy (FDO) that reached consensus or general agreement by category

Clinical problems/history	
In toeing (knees) rotating inward while walking especially with associated tripping	
Hip displacement associated with gait deviations	
In ambulatory patients with worsening activities of daily living and particularly with lever arm dysfunction	
Anterior knee pain if other causes are ruled out and conservative measures not effective	
Cosmetic concerns/appearance as voiced by the patient or family	
Physical exam	
Femoral neck angle (anteversion) > 35° (note > 30 did not reach consensus but did reach general agreement); < 30 was non consensus	
Internal rotation > external rotation, or > 60° on exam, especially with limited (< 20°) external rotation	
Internal rotation of the knees on observational gait review	
Determining and differentiating other causes of internal rotation is important (i.e. foot and tibial)	
FDO are combined with external tibial osteotomies if indicated (this is the focus on another Delphi consensus)	
Imaging	
Hip radiographs to assess coverage of the femoral heads and hip dysplasia	
Formal 3D gait analysis kinematics	
3D instrumented movement analysis influenced the decision process	
Internal rotation of > 15° is an indication	
Internal foot progression is an indication only when it is a result of hip rotation	
External pelvic rotation for children with hemiplegic (unilateral) cerebral palsy	
Preoperative exam under anaesthesia	
Perform an intraoperative exam under anaesthesia but also consensus that it was not as important as the preoperative exam	
External pelvic rotation for children with hemiplegic (unilateral) cerebral palsy	
Use of intraoperative fluoroscopy during surgery to assess femoral anteversion	
Outcome measures/goals	
Goal femoral neck angle 5° to 10°, but not < 0°	
Improved rotation on physical exam (i.e. decreased internal rotation)	
Hip rotation normalized on 3D movement analysis	
Subjective improvement	
Improvement of FMS, FAQ	
Improvement in the GOAL domain score	

Consensus in bold type and general agreement in italics; some similar questions were combined FMS, Functional Mobility Scale; FAQ, Functional Ability Questionnaire; GOAL, Gait Outcomes Assessment List

Fig. 1 Hip kinematic data example of indications for femoral derotational osteotomy and medial hamstring lengthening L (HS, left heel strike; RHS, right heel strike).
addressed at the time of surgery or beforehand. They also caution against vigorous testing of the popliteal angle while the patient is under anaesthesia (even gently) or after the MHL is performed, as it could lead to a stretch injury to the sciatic nerve.

FDO

A total of 55 questions were surveyed: 43 indication questions and 12 outcome questions, for which there was consensus on 29 indication questions, general agreement on seven more and consensus on eight outcome measures with general agreement on one more. Consensus and general agreement by category are listed in Table 4. Questions for which there was consensus (bolded) and general agreement (italics) are listed in Table 6.

Commonalities from the expert panel can be elucidated for FDO. In general, there was much greater consensus for this procedure (67%) than for MHL. Excessive internal rotation was felt to be an important contributor to gait deviations. Physical exam was important and consistent but problems with reliability were recognized. As with MHL, the decision for surgery must be taken in context with the entire patient assessment. Consensus for consideration of FDO was reliably reached when the internal rotation was greater than 15° on instrumented 3D movement analysis or a femoral neck angle (anteversion) of greater than 30° and internal rotation of greater than 60° degrees on physical examination, especially with limited external rotation. Although these measurements loosely correlate, the instrumented movement analysis consensus data were the strongest. Many experts commented on incorporating mild overcorrection (rotation), especially in younger patients.

A case example demonstrates physical exam and instrumented gait analysis results (Figs 1 and 2) as indications for MHL and FDO. Specifically, the movement analysis shows increased knee flexion at initial contact and at midstance as the consensus indication for bilateral MHL. Additionally, the physical exam and movement analysis show asymmetric femoral rotation (internal > external) as the consensus indication for FDO on the left, and knee flexion contractures (less than 10°) as the consensus indication for MHL.

Discussion

This study has multiple strengths. It is the first, to our knowledge, to use a panel of experts in the field of orthopaedic surgery in children with CP to combine best available evidence and expert opinion to identify best-practice indications MHL and FDO, common surgical procedures. The results from this study will allow for more informed
evaluation of practice and form the basis for future improvement efforts to standardize surgical recommendations internationally, and are well set up for future multicentre evaluation and improvement studies through the relationships established via the consensus process.

This consensus is especially important for children with CP, who present with a very heterogeneous and often unique combination of biomechanical, neurological and social characteristics. In addition, the treatment options are numerous and often implemented in different combinations. This nearly infinite combination of procedures, in such a diverse group of patients, makes traditional comparison studies very difficult. Gaining consensus from an international group of experts with over 300 years of combined clinical experience can provide insights and help identify areas of consensus, and also bolster clinical equipoise in support of more traditional clinical research study designs.

Our experts lean heavily on the dynamically derived data from 3D instrumented movement analysis for both decision making and outcomes assessment. This certainly is partly due to having access to movement analysis and also a great deal of experience with the evaluation and interpretation of this assessment. Because these treatments are administered in an effort to improve dynamic function and because numerous decisions are made to perform (or importantly not to perform) a particular surgery, it seems the only way to know whether one is making the right decisions. Not everyone will have access to these types of data but as the technology evolves, this barrier will likely be lowered.

No procedure can have a list of surgical indications that can be applied without full assessment of the patient as a whole. These consensus points are only meant as a guide. The process, though, can be applied quickly and provide the foundation for further study. Future plans will be to use this model for additional procedures in the care of the ambulatory patients with CP, including plantar flexor lengthening and tibial osteotomies, as examples.

In conclusion, this expert panel of paediatric orthopaedists with experience in CP and gait analysis were able to achieve consensus on the surgical indications for MHL and FDO in ambulatory children with CP. This project serves as a model for further surgical indication consensus projects in the area of CP, and will hopefully lead to additional research in improving quality and decreasing practice variability in the care of these children.

Received 12 November 2019; accepted 6 January 2020.

COMPLIANCE WITH ETHICAL STANDARDS

FUNDING STATEMENT
No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

OA LICENCE TEXT
This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0) licence (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed.

ETHICAL STATEMENT

Informed consent: All subjects were given informed consent and agreed to participate in the project.

ICMJE CONFLICT OF INTEREST STATEMENT
JM has received research support in royalties and as a consultant for Nuvasive, has received consulting fees from Synthes and has received royalties from Wolters-Kluwer-Health-Lippincott Williams & Wilkins, all outside the scope of the submitted work. He has also been an unpaid consultant for OrthoPedia and is a board member of the Pediatric Orthopaedic Society of North America, all outside the submitted work.

KG has received research support from NHMRC-CRE outside the scope of the submitted work and is on the Surgeon’s Advisory Board of OrthoPedia Corp, all outside the submitted work.

HC has received personal fees from OrthoPedia Corp. and Allergan Corp., outside the scope of the submitted work.

JRD is a consultant and board member of OrthoPedia Corp., outside the submitted work.

RMK owns stock in Zimmer/Biomet, Medtronic and Johnson and Johnson. He is also on the Editorial Board of the Journal of Pediatric Orthopaedics and his son works for Intrinsic Therapeutics.

JM has received research support in royalties and as a consultant for Nuvasive, has received consulting fees from Synthes and has received royalties from Wolters-Kluwer-Health-Lippincott Williams & Wilkins, all outside the scope of the submitted work.

All other authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
JM: Conception and design, Acquisition of the data, Analysis and interpretation of the data, Drafting of the article, Critical revision of the article for important intellectual content, Final approval of the article. HC: Conception and design, Drafting of the article, Critical revision of the article, Statistical expertise, Obtaining of funding. LB: Conception & design, Drafting of the article, Critical revision of the article for important intellectual content, Final approval of the article, Obtaining of funding. MV: Conception and design, Acquisition of the data, Analysis and interpretation of the data, Drafting of the article, Critical revision of the article for important intellectual content, Final approval of the article. KG: Conception and design, Drafting of the article, Critical revision of the article for important intellectual content, Final approval of the article. JM: Conception and design, Acquisition of the data, Analysis and interpretation of the data, Drafting of the article, Critical revision of the article for important intellectual content, Final approval of the article. KG: Conception and design, Drafting of the article, Critical revision of the article for important intellectual content, Final approval of the article.

J Child Orthop 2020;14:50-57
SURGICAL INDICATIONS IN CEREBRAL PALSY

References

1. Colver A, Fairhurst C, Pharoah PO. Cerebral palsy. Lancet 2014;383:1240–1249.
2. Mann K, Tsao E, Bjornson KF. Physical activity and walking performance: influence on quality of life in ambulatory children with cerebral palsy (CP). J Pediatr Rehabil Med 2016;9:279–286.
3. Raina P, O’Donnell M, Rosenbaum P, et al. The health and well-being of caregivers of children with cerebral palsy. Pediatrics 2005;115:662–666.
4. Dreher T, Vegvari D, Wolf S, et al. Development of knee function after hamstring lengthening as a part of multilevel surgery in children with spastic diplegia: a long-term outcome study. J Bone Joint Surg [Am] 2012;94-A:121–130.
5. McMulkin ML, Gordon AB, Caskey PM, Tompkins BJ, Baird GO. Outcomes of orthopaedic surgery with and without an external femoral derotational osteotomy in children with cerebral palsy. J Pediatr Orthop 2016;36:382–386.
6. Narayanan UG. Management of children with ambulatory cerebral palsy: an evidence-based review. J Pediatr Orthop 2012;32(suppl 2):S172–S183.
7. Lofterød B, Terjesen T, Skaaret I, Huse AB, Jahnson R. Preoperative gait analysis has a substantial effect on orthopedic decision making in children with cerebral palsy: comparison between clinical evaluation and gait analysis in 60 patients. Acta Orthop 2007;78:74–80.
8. de Kleuver M, Lewis SJ, Germscheid NM, et al. Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J 2014;23:2603–2618.
9. Nieuwenhuys A, Ounpuu S, Van Campenhout A, et al. Identification of joint patterns during gait in children with cerebral palsy: a Delphi consensus study. Dev Med Child Neurol 2016;58:306–313.
10. Nene AV, Evans GA, Patrick JH. Simultaneous multiple operations for spastic diplegia. Outcome and functional assessment of walking in 18 patients. J Bone Joint Surg [Br] 1993;75:488–494.
11. Schwartz MH, Viegweger E, Stout J, Novacheck TF, Gage JR. Comprehensive treatment of ambulatory children with cerebral palsy: an outcome assessment. J Pediatr Orthop 2004;24:45–53.
12. McGinley JL, Dobson F, Ganeshalingam R, et al. Single-event multilevel surgery for children with cerebral palsy: a systematic review. Dev Med Child Neurol 2012;54:117–128.
13. Rose GE, Lightbody KA, Ferguson RG, Walsh JC, Robb JE. Natural history of flexible knee gait in diplegic cerebral palsy evaluated by gait analysis in children who have not had surgery. Gait Posture 2010;31:351–354.
14. Narayanan UG. The role of gait analysis in the orthopaedic management of ambulatory cerebral palsy. Curr Opin Pediatr 2007;19:38–43.
15. DeLuca PA, Davis RB III, Ounpuu S, Rose S, Sirkin R. Alterations in surgical decision making in patients with cerebral palsy based on three-dimensional gait analysis. J Pediatr Orthop 1997;17:608–614.
16. Cook RE, Schneider I, Hazlwood ME, Hillman SJ, Robb JE. Gait analysis alters decision-making in cerebral palsy. J Pediatr Orthop 2003;23:292–295.
17. Wren TA, Otsuka NY, Bowen RE, et al. Outcomes of lower extremity orthopedic surgery in ambulatory children with cerebral palsy with and without gait analysis: results of a randomized controlled trial. Gait Posture 2013;38:236–241.
18. MacWilliams BA, Stotts AK, Carroll KL, D’Aoust JL. Utilization and efficacy of computational gait analysis for hamstring lengthening surgery. J Pediatr Orthop 2016;49:394–397.
19. Brook RH. The RAND/UCLA appropriateness method. In McCormick KAMSSR. Clinical practice guidelines development: methodology perspectives. Rockville, MD: Agency for Health Care Policy and Research, 1994.
20. Clark E, Burkett K, Stanko-Lopp D. Let Evidence Guide Every New Decision (LEGAL): an evidence evaluation system for point-of-care clinicians and guideline development teams. J Eval Clin Pract 2009;15:1054–1060.
21. Hsu CC, Sandford BA. The Delphi technique: making sense of consensus. Pract Assess Res Eval 2017;22:1–8.
22. Diamond IR, Grant RC, Feldman BM, et al. Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol. 2014;67:401–419.
23. Davids JR, Ounpuu S, DeLuca PA, Davis RB 3rd. Optimization of walking ability of children with cerebral palsy. J Bone Joint Surg [Am] 2003;85-A:2224–2234.
24. Davids JR. Quantitative gait analysis in the treatment of children with cerebral palsy. J Pediatr Orthop 2006;26:553–559.
25. Bickley C, Linton J, Scarborough N, et al. Correlation of technical surgical goals to the GDI and investigation of post-operative GDI change in children with cerebral palsy. Gait Posture 2017;55:121–125.
26. Arnold AS, Liu MQ, Schwartz MH, et al. Do the hamstrings operate at increased muscle-tendon lengths and velocities after surgical lengthening? J Biomech 2006;39:1508–1510.
27. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–381.
28. Harris PA, Taylor R, Minor BL, et al. Building an international community of software partners. J Biomed Inform. 95. July 2019, 103–208.