Role of MAPK in apolipoprotein CIII-induced apoptosis in INS-1E cells
E-ri M Sol*, Tea Sundsten and Peter Bergsten

Address: Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
Email: E-ri M Sol* - E-ri.Sol@mcb.uu.se; Tea Sundsten - Tea.Sundsten@lj.se; Peter Bergsten - Peter.Bergsten@mcb.uu.se
* Corresponding author

Abstract

Background: Individuals with type 2 diabetes mellitus (T2DM) have elevated levels of circulating apolipoprotein CIII (apoCIII). ApoCIII plays an important role for plasma triglyceride levels and elevated levels of the apolipoprotein have been connected with dyslipidemia in T2DM subjects. In addition, apoCIII has been linked to enhanced β-cell apoptosis. The present study was undertaken to investigate apoptotic mechanisms induced by the apolipoprotein.

Results: ApoCIII (10 μg/ml) enhanced apoptosis 2-fold in insulin-producing INS-1E cells after 24 hours exposure to the apolipoprotein. At this time point phosphorylation of mitogen activated protein kinase (MAPK) p38 had doubled but ERK1/2 and JNK were not activated. Instead, ERK1/2 showed rapid and transient phosphorylation (2-fold after 0.5 hour). No JNK phosphorylation was observed. In support of a role of activation of not only p38 but also ERK1/2 in apoCIII-induced apoptosis, inclusion of p38 inhibitor SB203580 (10 μM) or ERK1/2 inhibitor PD98059 (100 μM) normalized apoptosis. Whereas influx of Ca²⁺ was linked to apoCIII-induced ERK1/2 activation, pro-apoptotic protein CHOP/GADD of the unfolded protein response (UPR) was not affected by apoCIII.

Conclusion: It is suggested that elevated circulating apoCIII levels may contribute to β-cell apoptosis via activation of p38 and ERK1/2 in individuals with T2DM. Therapies aiming at normalizing levels of apoCIII could be beneficial not only for the function of the β-cell but also for cardiovascular protection.
[11,12]. To this aim serum samples from subjects with newly diagnosed diabetes with family history of diabetes (FHD) and impaired β-cell function, and from healthy individuals with no FHD and well functioning β-cells were protein profiled. Several circulating proteins were differentially displayed in the newly diagnosed T2DM individuals [9]. In the present study we have investigated mechanisms by which one of the identified proteins, apolipoprotein CIII (apoCIII), affects the insulin-producing cell. The choice of protein was based on the observed up-regulation of apoCIII in the circulation in individuals with T2DM [9,13,14] and enhanced apoptosis in an insulin-secreting cell line exposed to the apolipoprotein [15]. In the present study we hypothesized that apoCIII-induced β-cell apoptosis was connected to activation of mitogen-activated protein kinases (MAPKs) and/or induction of the pro-apoptotic protein CCAAT/enhancer-binding protein homologous protein/growth arrest and DNA-damage 153 (CHOP/GADD153) of the unfolded protein response (UPR), mechanisms which have been demonstrated to be activated in β-cell apoptosis [7,16-19]. The results indicate that MAPKs p38 and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), but not c-Jun NH2-terminal kinase (JNK) or CHOP/GADD153 play a role in apoCIII-induced β-cell apoptosis.

Methods

Chemicals and reagents

Reagents of analytical grade and MilliQ water were used. ApoCIII was purchased from Meridian Life Science (Saco, MA). PD98059, SB203580, verapamil, tolbutamide, thapsigargin and protease inhibitory cocktail (Sigma P-8340) were obtained from Sigma (St. Louis, MO). RPMI 1640 culture medium, fetal calf serum (FCS), sodium pyruvate, glutamine, penicillin and streptomycin were purchased from Invitrogen (Carlsbad, CA). Culture flasks and plates were obtained from Cell Signaling (Beverly, MA). The CHOP/GADD153 and β-actin antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The immuno-reactive bands were visualized by chemiluminescence (‘ECL Plus’ or ‘ECL Advance’, GE Healthcare, Uppsala, Sweden) according to the manufacturer’s protocol, imaged with Fluor-S Multimager MAX (Bio-Rad, Hercules, CA). After imaging, the PVDF membranes were quantified with Quantity One software (BioRad). The expression level of each protein was normalized to unphosphorylated MAPK and/or β-actin.

Apoptosis measurements

DNA fragmentation of INS-1E cells was evaluated by determining oligonucleosome formation using the Cell Death Detection ELISAPLUS kit (Roche Diagnostics, Manheim, Germany). Measurements were related to DNA content and expressed as fold of optical density obtained for control cells cultured in the absence of apoCIII.

Statistical analysis

Results are presented as means ± SEM (apoptosis) or representative blots (MAPKs and CHOP/GADD153) for four independent experiments. Western blots were densitometrically analyzed. Differences between groups are assessed by ANOVA followed by Tukey’s post hoc test for apoptosis measurements and Student’s t-test for immunoblots. A probability level of p < 0.05 was considered to be statistically significant.

Results

ApoCIII-induced apoptosis and MAPKs

ApoCIII was increased by 2-fold when INS-1E cells were exposed to apoCIII for 24 hours (Fig 1). To investigate underlying mechanisms of the apoCIII-induced rise in apoptosis, activation of MAPKs p38, ERK1/2 and JNK in INS-1E cells were measured at 0, 0.5, 1, 2, 4, 8, 12 and 24 hours after introduction of the apolipoprotein. Levels of p-p38 were low in the cells at onset of the apoCIII-exposure and were then progressively increasing for the dura-
tion of the experiment manifested as 2-fold rise (p < 0.05) after 24 hours (Fig 2A). To determine if activation of the MAPK was causally related to apoCIII-induced apoptosis, cells were exposed to the inhibitor of p38 phosphorylation SB203580 (SB) or 100 μM of the ERK1/2 inhibitor PD98059 (PD) during 0.5 hours prior to apoCIII treatment as indicated. After culture, apoptosis was measured as DNA fragmentation and normalized to DNA content. *P < 0.05 denotes effect of apoCIII.

Involvement of ERK1/2 in apoCIII-induced apoptosis in INS-1E cells was also investigated. Levels of p-ERK1/2 were elevated 2-fold (p < 0.05) already after 0.5 hour and declined thereafter (Fig 2B). After 24 hours, when the apoCIII-induced rise in apoptosis was determined, ERK1/2 levels had returned to control levels. To investigate whether the early rise in p-ERK1/2 was contributing to apoCIII-induced apoptosis, cells were exposed to the inhibitor of ERK1/2 phosphorylation PD98059 prior to introducing apoCIII. Pre-exposing the cells to the inhibitor prevented the apoCIII-induced rise in p-ERK1/2 (not shown) and reversed apoptosis in the presence of the apolipoprotein (Fig 1). The inhibitor alone had no effect on apoptosis.

Thirdly, phosphorylation of JNK was measured in INS-1E cells exposed to apoCIII. No activation of the MAPK by the apolipoprotein was observed during the 24-hour exposure time (Fig 2C).

ApoCIII-induced ERK1/2 activation and calcium
The role of Ca²⁺ influx for ERK1/2 activation was next investigated. INS-1E cells treated with apoCIII were exposed to L-type Ca²⁺ channel blocker verapamil prior to apoCIII-treatment. ApoCIII-induced ERK1/2 activation observed after 0.5 hour was reversed by treatment with the channel antagonist (Fig 3). Further support of a role of Ca²⁺ influx as activator of ERK1/2 was provided when INS-1E cells were exposed to tolbutamide. After treatment with the K⁰₆₆ channel blocker, elevated levels (p < 0.05) of p-ERK1/2 were observed (Fig 3).

ApoCIII-induced apoptosis and CHOP
Lastly, we investigated if apoCIII-induced elevated apoptosis in INS-1E cells (Fig 1) involved enhanced expression of pro-apoptotic protein CHOP/GADD153. In the apoCIII-exposed cells CHOP/GADD153 protein levels
ApoCIII-induced ERK1/2 activation. Levels of phospho-
ylated ERK1/2 in INS-1E cells treated or not with apoCIII
were measured after 0.5 hours by immunoblotting. Cells
were exposed to L-type Ca²⁺ channel blocker verapamil
(Verap) or K₅ᵦᵢ channel blocker tolbutamide (Tolb) as indi-
cated.

Discussion

The present study indicates that elevated levels of the
apolipoprotein apoCIII could promote apoptosis in insu-
lin-producing β-cells via activation of MAPK p38 and
ERK1/2. The study is a continuation of our previous study
in which apoCIII was identified as an up-regulated pro-
tein by proteomic methodology when serum obtained
from individuals with newly diagnosed T2DM and docu-
mented impaired β-cell function was compared to serum
from control individuals with normal β-cell function [9].

ApoCIII is an 8.8 kDa polypeptide synthesized by the liver
and playing an important role in controlling catabolism
of triglyceride-rich lipoproteins by inhibiting the activity
of lipoprotein lipase thereby inducing hypertriglyceri-
demia [21,22]. The apolipoprotein is mainly associated
with HDL but also with LDL and VLDL [23,24]. In indi-
viduals with T2DM the levels of the apolipoprotein are ele-
vated [9,13,14]. To what extent the elevated apoCIII levels
in T2DM are accounted for by rise in a particular lipopro-
tein particle class is less clear, however. Although the lev-
els of VLDL in T2DM individuals are increased
substantially compared to non-diabetic subjects, apoCIII
was not increasing in concert with the increased VLDL
concentration and core lipids in these individuals [14].
Instead increased apoCIII content was observed in small
dense LDL (sdLDL) in T2DM patients compared to the
corresponding fraction from healthy individuals [25]. The
potential role of the sdLDL, which is a lipoprotein sub-
class, was further emphasized by the strong association
with coronary disease progression. Based on these results
sdLDL and apoCIII have been suggested as markers of the
atherogenic dyslipidemia of insulin resistance and type 2
diabetes [25-27]. In addition, connection between genetic
alterations in apoCIII and T2DM was recently evidenced
by the finding of strong association between changes in
ApoC3 with lipid derangements in individuals with the
disease [28]. When over-expressing apoCIII in transgenic
mice, hypertriglyceridemia follows [29]. Conversely, dis-
ruption of ApoC3 in mice reduced triglyceride levels [30].
Despite the strong correlation relationship between
apoCIII and triglyceride levels [13], very little is known
about direct effects of the apolipoprotein on the insulin-
producing cell.

Elevated apoCIII levels have in one previous study been
associated with enhanced apoptosis in insulin-secreting β-
cells possibly explained by elevated cytoplasmic Ca²⁺ lev-
els [15]. Since disturbed Ca²⁺ homeostasis of the endo-
plasmic reticulum (ER) would be manifested as elevated
cytoplasmic Ca²⁺ levels, we examined if apoCIII-induced
apoptosis was connected to up-regulation of the pro-
apoptotic protein CHOP/GADD153. The protein is a
down-stream target of the protein kinase R-like ER kinase
(PERK) signaling pathway of the ER-stress response [31].
The pathway is part of an adaptive response, the unfolded
protein response (UPR), aiming at restoring ER function
when mis- or unfolded proteins accumulate in the
organelle as a consequence of disturbances in ER Ca²⁺.
When the UPR fails, persisting ER-stress follows and
apoptosis is elevated, where up-regulation of CHOP/
GADD153 is a component part [7,19]. The enhanced
apoptosis induced by apoCIII in INS-1E cells in the
present study was not associated with enhanced CHOP/
GADD153 levels, however.

We also investigated to what extent apoCIII activated
MAPKs p38, JNK and ERK1/2. Treating INS-1E cells with
apoCIII almost doubled the amounts of p-p38 after 24
hours exposure to the apolipoprotein. A role of this activa-
tion in apoCIII-induced apoptosis was supported by the
abrogation of apoptosis when inhibitor of the kinase was
administered. In addition, activation of the MAPK has
been observed in β-cells exposed to elevated levels of fatty
acids, oxygen radical formation and cytokine, all condi-
tions connected with enhanced β-cell apoptosis [16,17].
ERK1/2 activation was also induced by apoCIII but with a
more rapid and transient phosphorylation pattern. Our
observations that administration of the L-type Ca²⁺ chan-
nel antagonist verapamil abrogated rise in p-ERK1/2
duced by apoCIII and that K₅ᵦᵢ channel blocker tolbuta-
mide-induced ERK1/2 activation are supporting a role of
Ca²⁺ influx, induced by apoCIII, as a component of the
ERK1/2 activation [15,32]. ERK1/2 activation does not
seem to be essential for the short-term performance of the
β-cell since glucose-stimulated insulin secretion (GSIS)
was not affected by presence of an inhibitor of the kinases [32]. In contrast, when the inhibitor was administered to islets exposed to prolonged elevated glucose levels, which in the absence of the inhibitor caused similar rapid and transient ERK1/2 activation and was associated with impaired glucose-stimulated insulin secretion and apoptosis, improved GSIS and reduced apoptosis was observed [18]. The same beneficial effects were obtained by L-type Ca2+ channel antagonist nimodipine. Thus, apoCIII elevates cytoplasmic Ca2+ levels by promoting Ca2+ influx. Although such influx promotes insulin secretion in the short perspective, prolonged elevated Ca2+ levels are associated with enhanced β-cell apoptosis [15,33]. Among the pro-apoptotic signaling pathways ERK1/2 and p38 activation seem to play fundamental roles since their inhibition, without Ca2+ antagonism, independently normalized apoCIII-induced apoptosis. In contrast, JNK was not activated by apoCIII.

Conclusion
In conclusion, the study indicates that elevated levels of the apolipoprotein apoCIII may affect β-cell function via activation of MAPKs p38 and ERK1/2. In addition, negative effects of apoCIII on β-cell function may also be mediated by the rise in circulating triglycerides associated with elevated levels of the apolipoprotein [13,22,34]. In this perspective, therapies aiming at normalizing levels of apoCIII including benzafibrate could prove to be important not only for cardiovascular protection [26] but also to preserve β-cell function.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EMS was responsible for design, planning, carrying out western blotting of the different MAPK and its linkage to apoCIII-induced apoptosis, calcium dependent ERK1/2 activation, statistical analysis and contributed to write the manuscript. TS carried out the initial experiments of apoptosis-measurements and western blotting of CHOP/ GADD153. PB conceived the study, participated in its design and was responsible for writing the manuscript. All authors read and approved the final manuscript.

Acknowledgements
Grants from the Swedish Medical Research Council (72X-14019), European Foundation for the Study of Diabetes, Swedish Diabetes Association, Family Ernfors Foundation, Marcus and Amalia Wallenberg Foundation, Goran Gustafsson Foundation and Swedish Foundation for Strategic Research supported the study.

References
1. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, et al.: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science (New York, NY) 2007, 316(5829):1336-1341.
2. Schulze MB, Manson JE, Ludwig DS, Colditz GA, Stampfer MJ, Willett WC, Hu FB: Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. Jama 2004, 292(8):927-934.
3. Dimitriadis G, Bounti E, Lambadari V, Mitrou P, Maratou E, Brunel P, Raptis SA: Restoration of early insulin secretion after a meal in type 2 diabetes: effects on lipid and glucose metabolism. European journal of clinical investigation 2004, 34(7):490-497.
4. El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M: Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. Endocrinology 2003, 144(9):4154-4163.
5. Diakonogianni E, Dhyal S, Childs CE, Calder PC, Welters HJ, Morgan NG: Mechanisms involved in the cytotoxic and cytoprotective actions of saturated versus monounsaturated long-chain fatty acids in pancreatic beta-cells. The Journal of endocrinology 2007, 194(2):283-291.
6. Nyblom HK, Nord LI, Andersson R, Kennes L, Bergsten P: Glucose-induced de novo synthesis of fatty acyls causes proportional increases in INS-1E cellular lipids. NMR in biomedicine 2008, 21(4):357-365.
7. Sargent E, Ortsater H, Thorn K, Bergsten P: Diazoxide-induced beta-cell rest reduces endoplasmic reticulum stress in lipotoxic beta-cells. The Journal of endocrinology 2008, 199(1):41-50.
8. Zhang R, Barker L, Pinchev D, Marshall J, Rasamoelisolo M, Smith C, Kupchak P, Kireeva I, Ingratta L, Jackowski G: Mining biomarkers in human sera using proteomic tools. Proteomics 2004, 4(1):244-256.
9. Sundsten T, Ostenson CG, Bergsten P: Serum protein patterns in newly diagnosed type 2 diabetes mellitus – influence of diabetic environment and family history of diabetes. Diabetes & metabolic research and reviews 2008, 24(2):148-154.
10. Sundsten T, Zethelius B, Berne C, Bergsten P: Plasma proteome changes in subjects with Type 2 diabetes mellitus with a low or high early insulin response. Clin Sci (Lond) 2008, 114(7):499-507.
11. Sandler S, Bendsten K, Ezirlik DL, Welsh M: Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology 1990, 126(2):1288-1294.
12. Holst JJ, Orskov C: The incretin approach for diabetes treatment: modulation of islet hormone release by GLP-1 agonism. Diabetes 2004, 53(Suppl 3):S197-204.
13. Briones ER, Mao SJ, Palumbo PJ, O’Fallon WM, Chenoweth W, Kottke BA: Analysis of plasma lipids and apolipoproteins in insulin-dependent and noninsulin-dependent diabetics. Metabolism: clinical and experimental 1984, 33(1):42-49.
14. Hiukka A, Fruchart-Najib J, Leinonen E, Hilden H, Fruchart JC, Taskinen MR: Alterations of lipids and apolipoprotein CIII in very low density lipoprotein subspecies in type 2 diabetes. Diabetologia 2005, 48(6):1207-1215.
15. Juntti-Berggren L, Refai E, Appelberg I, Andersson M, Imreh G, Dekki N, Uhlén S, Yu L, Griffiths WF, Zaitsev S, et al.: Apolipoprotein CIII promotes K⁺-dependent beta cell death in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(27):10090-10094.

16. Larsen L, Storling J, Darville M, Eizirik DL, Bonny C, Billestrup N, Mandrup-Poulsen T: Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor-kappaB-mediated gene expression in insulin-producing INS-1E cells. Diabetologia 2005, 48(12):2582-2590.

17. Cai Y, Martens GA, Hinke SA, Heimb erg H, Pipeleers D, Casteele M, Van de: Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation. Free radical biology & medicine 2007, 42(1):64-78.

18. Maedler K, Storling J, Sturis J, Zuelle g RA, Spinas GA, Arkhammar PO, Mandrup-Poulsen T, Donath MY: Glucose- and interleukin-1-induced beta-cell apoptosis requires Ca²⁺ influx and extracellular signal-regulated kinase (ERK) 1/2 activation and is prevented by a sulfonylurea receptor 1/ inwardly rectifying K⁺ channel 6.2 (SUR/Kir6.2) selective potassium channel opener in human islets. Diabetes 2004, 53(7):1706-1713.

19. Oyadomari S, Mori M: Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004, 11(4):381-389.

20. Mergen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P: Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 2004, 145(2):667-678.

21. Fredenrich A: Role of apolipoprotein CIII in triglyceride-rich lipoprotein metabolism. Diabetes & metabolism 1998, 24(6):490-493.

22. Krauss RM, Herbert PN, Levy RI, Fredrickson DS: Further observations on the activation and inhibition of lipoprotein lipase by apolipoproteins. Circulation research 1973, 33(4):403-411.

23. Bury J, Rosseneu M: Enzyme linked immunosorbent assay for human apolipoprotein C-III. Journal of clinical chemistry and clinical biochemistry 1985, 23(2):63-68.

24. Malmendier CL, Lontie JF, Grutman GA, Delcroix C: Metabolism of apolipoprotein C-III in normalipemic human subjects. Atherosclerosis 1988, 69(1):51-59.

25. Davidsson P, Hulthe J, Fagerberg B, Olsson BM, Hallberg C, Dahllof B, Canov C: A proteomic study of the apolipoproteins in LDL subclasses in patients with the metabolic syndrome and type 2 diabetes. Journal of lipid research 2005, 46(9):1999-2006.

26. Attia N, Durlach V, Roche D, Paul JL, Soni T, Zahouani A, Landron F, Camelio G: A proteomic study of the apolipoprotein C-III gene in LDL receptors of type 2 diabetic patients before and after bezafibrate treatment. European journal of clinical investigation 1997, 27(1):55-63.

27. Cheh la RR, Hearst AF, Depierreux LM, Landron F, Cabo D, van der Deen EF: The apolipoprotein C-III genotype in hypertriglyceridaemia: a study in non-insulin dependent diabetic patients and type 2 diabetes. Journal of clinical lipidology 1995, 1706-1713.

28. Atkin D, Mulher P, Leutenegger M, Girard-Globa A: Differences in the lipoprotein metabolism of triglyceride-rich lipoproteins in non-insulin-dependent diabetic patients before and after bezafibrate treatment. British journal of nutrition 1985, 41(4):381-389.

29. Bucher P, Benesch RE, Timpson NJ, Najjar SS, Stringham HM, et al.: Newly identified loci that influence lipoprotein concentrations and risk of coronary artery disease. Nature genetics 2008, 40(2):161-169.

30. Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL: Hypertriglyceridemia as a result of human apo CII gene expression in transgenic mice. Science (New York, NY) 1990, 249(4970):790-793.

31. Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J: Targeted disruption of the apolipoprotein C-III gene in mice results in hepatic triglyceridemia and protection from postprandial hypertriglyceridemia. The journal of biological chemistry 1994, 269(38):323610-323616.

32. Rutkowski DT, Kaufman RJ: A trip to the ER: coping with stress. Trends Cell Biol 2004, 14(1):20-28.

33. Kho S, Cobb MH: Activation of mitogen-activating protein kinase by glucose is not required for insulin secretion. Proceedings of the National Academy of Sciences of the United States of America 1997, 94(11):5599-5604.

34. Unger RH: Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 1995, 44(8):863-870.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime. Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp