Identification of biomarkers associated with the feed efficiency by metabolomics profiling: results from the broiler lines divergent for high or low abdominal fat content

Zhiyong Su1,2,3†, Xue Bai1,2,3†, Haoyu Wang1,2,3, Shouzhi Wang1,2,3, Chong Chen1,2,3, Fan Xiao4, Huaiyin Guo4, Haiche Gao4, Li Leng1,2,3 and Hui Li1,2,3*

Abstract

Background: Improving feed efficiency (FE) is one of the main objectives in broiler breeding. It is difficult to directly measure FE traits, and breeders hence have been trying to identify biomarkers for the indirect selection and improvement of FE traits. Metabolome is the “bridge” between genome and phenotype. The metabolites may potentially account for more of the phenotypic variation and can suitably serve as biomarkers for selecting FE traits. This study aimed to identify plasma metabolite markers for selecting high-FE broilers. A total of 441 birds from Northeast Agricultural University broiler lines divergently selected for abdominal fat content were used to analyze plasma metabolome and estimate the genetic parameters of differentially expressed metabolites.

Results: The results identified 124 differentially expressed plasma metabolites ($P < 0.05$) between the lean line (high-FE birds) and the fat line (low-FE birds). Among these differentially expressed plasma metabolites, 44 were found to have higher positive or negative genetic correlations with FE traits ($|r_g| \geq 0.30$). Of these 44 metabolites, 14 were found to display moderate to high heritability estimates ($h^2 \geq 0.20$). However, among the 14 metabolites, 4 metabolites whose physiological functions have not been reported were excluded. Ultimately, 10 metabolites were suggested to serve as the potential biomarkers for breeding the high-FE broilers. Based on the physiological functions of these metabolites, reducing inflammatory and improving immunity were proposed to improve FE and increase production efficiency.

Conclusions: According to the pipeline for the selection of the metabolite markers established in this study, it was suggested that 10 metabolites including 7-ketocholesterol, dimethyl sulfone, epsilon-(gamma-glutamyl)-lysine, gamma-glutamyltyrosine, 2-oxoadipic acid, L-homoarginine, testosterone, adenosine 5'-monophosphate, adrenic acid, and calcitriol could be used as the potential biomarkers for breeding the “food-saving broilers”.

Keywords: Biomarker, Broiler, Feed efficiency, Metabolomics
reduce food consumption, saving the expenditure on livestock production and contributing to the sustained development of the environment [2, 3]. Breeders have always focused on improving FE of broilers [4]. The direct selection of FE traits has been the most effective method for improving FE. However, direct selection is based on accurately measuring feed intake, and implementing this method in breeding farms is difficult [5]. Breeders are attempting to find easily measurable indicators for the rapid and affordable estimation of the individual FE traits.

The metabolome is often regarded as a bridge between the genome and the phenotype [6]. As downstream of the gene regulatory network and the protein interaction network, metabolites may provide detailed biological terminal information on the life process [7]. In recent years, metabolomics has evolved as an increasingly popular "omics" approach for revealing the relationship between genetics and phenotypes [7]. Researchers can discover novel biomarkers by analyzing the changes in metabolite expression profiling to further understand the vital metabolic pathways associated with the traits. Emerging evidence indicated the use of metabolites as metabolic markers for selecting FE traits in mammals. A study by Novais et al. evaluated the feasibility of predicting FE traits through serum metabolomics in young Nellore cattle [8]. This study found the retinal, progesterone, and stearic acid as suitable biomarkers for indirectly selecting FE traits, and the vitamin A metabolism pathway was identified as an important pathway related to FE traits [8]. A study by Carmelo et al. found choline and pyridoxamine as the hub-metabolites related to FE traits in Duroc pigs, at the same time, cholesterol sulfate, thiamine, L-methionine, and chenodeoxycholate were identified as the hub-metabolites related to FE traits in Landrace pigs, suggesting that these metabolites served as biomarkers for selecting FE traits [9]. Therefore, metabolomics can not only help investigate the relationship between metabolites and phenotypes but also can be used for identifying biomarkers for selecting high-FE animals. However, the metabolomics study of FE traits in broilers remains poorly understood.

The Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) were selected based on the abdominal fat percentage (AFP) and plasma concentration of very low-density lipoprotein (VLDL) since 1996 [10]. A previous study identified the feed conversion ratio (FCR) and residual feed intake (RFI) to be significantly higher in the fat line than in the lean line [11]. In the present study, firstly, the differences in plasma metabolome between the lean and fat lines were investigated. Subsequently, the genetic parameters of the concentrations of differentially expressed plasma metabolites were estimated. Finally, the metabolite biomarkers that could be potentially used to select high-FE broilers were identified.

Materials and methods

Experimental population

This study used 441 birds from the 23rd generation of the NEAUHLF lines, which were selected based on AFP and plasma concentration of VLDL [10]. All the birds were housed in the similar environmental conditions and had free access to feed and water up to 7 weeks from hatching. The commercial corn-soybean-based diets, meeting all the requirements of the National Research Council (NRC, 1994) [12], were used in the study. The birds received a starter feed (3000 kcal ME/kg and 210 g/kg CP) from hatching to 3 weeks. Then, the birds were fed a grower diet (3100 kcal ME/kg and 190 g/kg CP) from 4 weeks to slaughter. Each bird was placed in an individual cage at 27 days of age, and the individual feed intake (FI) was recorded at 29—49 days of age.

Trait measurement

The total FI of each bird was recorded from 4 weeks old to 7 weeks old. The body weights were measured at 4 weeks (BW4) and 7 weeks (BW7) of age. The gain in body weights (BWG) was calculated by subtracting the BW4 from BW7. The metabolic mid-test body weight (MMBW) was calculated by taking the 0.75th power of the middle body weight during the specific period [(BW4 + BW7)/2]. The FCR and RFI were calculated using the following equations:

\[FCR = \frac{FI}{BWG} \]

\[RFI = FI - (b_0 + b_1 MMBW + b_2 BWG) \]

where \(b_0 \) is the intercept and \(b_1, b_2 \) are partial regression coefficients of \(FI \) for \(MMBW \) and \(BWG \), respectively.

Metabolites extraction

The whole-blood samples were collected and immediately centrifuged at 3000 \(\times g \) for 10 min at 25 °C. The supernatants (100 μL plasma) were placed in the EP tubes and resuspended in prechilled 80% methanol by vortexing. Then, the samples were incubated on ice for 5 min and centrifuged at 15,000 \(\times g \) for 20 min at 4 °C. The supernatant was diluted to a final concentration of 53% methanol using LC–MS grade water. The samples were transferred to a fresh EP tube and centrifuged at 15,000 \(\times g \) for 20 min at 4 °C. Finally, the supernatant
was injected into the LC–MS/MS system for subsequent analysis.

UHPLC/MS analysis
The UHPLC/MS was analyzed using a Vanquish UHPLC system (ThermoFisher, Germany) coupled with an Orbitrap Q Exactive TMHF-X mass spectrometer (Thermo Fisher, Germany) in Novogene Co., Ltd. (Beijing, China). The samples were injected onto a Hypesil Gold column (100mm × 2.1 mm, 1.9 μm) using a 17-min linear gradient at a flow rate of 0.2 mL/min. The eluents for the positive polarity mode were eluent A (0.1% formic acid in water) and eluent B (methanol). The eluents for the negative polarity mode were eluent A (5 mmol/L ammonium acetate, pH 9.0) and eluent B (methanol). The solvent gradient was set as follows: 2% B, 1.5 min; 2%—100% B, 12.0 min; 100% B, 14.0 min; 100%—2% B, 14.0 min; and 2% B, 17.0 min. The Q Exactive™ HF-X mass spectrometer was operated in the positive/negative polarity mode using a spray voltage of 3.2 kV, capillary temperature of 320 °C, sheath gas flow rate of 40 arb, and aux gas flow rate of 10 arb.

The raw data files generated by UHPLC/MS were analyzed using the Compound Discoverer 3.1 (CD 3.1, ThermoFisher) for peak alignment, peak picking, and quantification for each metabolite. The main parameters were set as follows: retention time tolerance, 0.2 min; actual mass tolerance, 5 ppm; signal intensity tolerance, 30%; and signal/noise ratio, 3. Subsequently, the peak intensities were normalized to the total spectral intensity and the normalized data were used for predicting the molecular formula based on the additive ions, molecular ion peaks, and fragment ions. Then, the peaks were matched with the mzCloud, mzVault, MassList, and ChemSpider databases for obtaining accurate qualitative and relative quantitative results [13, 14]. These metabolites were annotated using the human metabolome database (HMDB) [9], ignoring the metabolites that did not correspond to the HMDB.

Statistical analysis
The differences among the groups were explored using the partial least square-discriminant analysis (PLS-DA). The quality of PLS-DA model was assessed using the partial least square-discriminant analysis (PLS-DA).

The genetic parameters, including the heritability of the metabolites as well as the genetic and phenotypic correlations between these metabolites and FE trait indices (FCR and RFI), were estimated using the ASReml (version 4.0) software, with line and sex treated as fixed effects. The animal model used for estimating the genetic parameters was as follows:

\[Y = Xb + Za + e \]

where \(Y \) represents the vector of the concentration of the plasma metabolites or the phenotypic value of the FE trait indices; \(b \) represents the vector of the fixed effect including the population mean, sex effects, and line effects; \(a \) represents the vector of the random effects including the genetic effects; \(e \) represents the vector of the random residual effects; and \(X \) and \(Z \) are the incidence matrices for \(b \) and \(a \). The random-effects \(a \) and \(e \) were assumed to follow the normal distributions with a mean of 0. The variances of \(a \) and \(e \) were assumed to be \(\text{Var}(a) = Ag \) and \(\text{Var}(e) = Ir \), respectively, in which \(A \) represents the numerator relationship matrix of all the animals in the pedigree file, \(g \) is the additive genetic variance, \(I \) is the identity matrix, and \(r \) is the residual variance [16]. According to the recommendation by Dong et al., the thresholds in this study for high genetic correlation and moderate to high heritability were set to be greater than 0.30 and 0.20, respectively [17].

Results

Metabolite profile differences between the lean and fat lines
In this study, a total of 941 and 882 \(m/z \) features in the positive and negative ion modes were found to match the search databases, respectively (Table 1). These features were annotated using the HMDB, and 284 and 272 metabolites were finally identified in the positive and negative ion modes, respectively, to be used for subsequent analysis. The metabolites, such as lipids and lipid-like molecules, lignans, neolignans and related compounds, nucleosides, nucleotides and analogs, alkaloids

Table 1 Summary of features identified by analyzing the non-targeted plasma metabolomics

Ion mode	The mass spectral database	Summary			
	MzCloud	MzVault	MassList	Chemsider	
Positive	158	112	142	878	941
Negative	133	85	153	842	882
and derivatives, organic compounds, phenylpropanoids, and polyketides, were identified, while the lipids and lipid-like molecules comprised the most abundant of all the metabolites (Fig. 1). The results of PLS-DA of all the plasma metabolites indicated that the fat and lean broilers were divided into two independent groups in both the positive and negative ion modes, indicating differences in the metabolic levels between the fat and lean chickens (Fig. 2). The parameters of PLS-DA model in the positive ion mode, including R^2_X, R^2_Y, and Q^2_Y, were established as 0.519, 0.965, and 0.952, respectively. The R^2_X, R^2_Y, and Q^2_Y in the negative ion mode were established as 0.167,
The concentrations of the differentially expressed plasma metabolites between the lean and fat birds were shown in Fig. 3. In the positive ion mode, the concentrations of 55 plasma metabolites were found to be significantly different between the lean and fat birds. Of these, 21 metabolites were found to have
significantly higher concentrations in the fat birds than in the lean birds, whereas 34 metabolites were found to have significantly lower concentrations in the fat birds than in the lean birds ($P < 0.05$). In the negative ion mode, the concentrations of 69 plasma metabolites were found to be significantly different between the lean and fat birds. Of these, the concentrations of 45 metabolites were significantly higher in the fat birds than in the lean birds, whereas 24 metabolites were found to have significantly lower concentrations in the fat birds than in the lean birds ($P < 0.05$).

Estimations of the genetic parameters of the differentially expressed plasma metabolites

A large number of differentially expressed plasma metabolites have been identified between the lean and fat lines. However, whether the expression levels of these metabolites can be related to FE traits is unknown, while heritability of differentially expressed plasma metabolites is also unknown. Thus, the genetic and phenotypic correlation coefficients were estimated between differentially expressed plasma metabolites and FE trait indices. Among these differentially

Metabolite	Common name	Heritability	Genetic correlations	Phenotypic correlations
HMDB0001008	Biliverdin	0.70±0.13	0±0.21	-0.01±0.18
HMDB0029112	Tyrosyl-phenylalanine	0.57±0.13	0±0.22	-0.11±0.19
HMDB003154	Canthaxanthin	0.38±0.12	-0.48±0.22	-0.45±0.20
HMDB000501	7-Ketocholesterol	0.36±0.13	0.41±0.25	0.54±0.22
HMDB004983	Dimethyl sulfone	0.33±0.12	0.40±0.26	0.30±0.23
HMDB0038824	Hypoletin 8-gentiobioside	0.31±0.13	0.35±0.29	0.32±0.26
HMDB0000210	Panthenic acid	0.29±0.11	0.16±0.26	0.20±0.23
HMDB0011567	Monoolein	0.29±0.12	-0.38±0.26	-0.27±0.24
HMDB0000251	Taurine	0.28±0.12	-0.15±0.28	0.04±0.25
HMDB004992	Benzocaine	0.27±0.11	0.12±0.28	0.03±0.25
HMDB000714	Hippuric acid	0.25±0.11	0.05±0.28	-0.10±0.25
HMDB003869	Epsilon-(gamma-glutamyl)-lysine	0.25±0.11	0.19±0.27	0.42±0.21
HMDB000128	Guandineacetic acid	0.24±0.11	-0.20±0.29	0.06±0.26
HMDB0000357	beta-Hydroxybutyrate	0.23±0.10	0.25±0.27	0.21±0.25
HMDB0011741	gamma-Glutamyltrosine	0.22±0.10	-0.42±0.26	-0.39±0.25
HMDB0029081	Tryptophyl-glutamine	0.19±0.10	0.28±0.30	0.30±0.27
HMDB006709	Coenzyme Q2	0.16±0.10	0.11±0.33	0.17±0.30
HMDB0000175	IMP	0.16±0.10	-0.24±0.33	-0.14±0.30
HMDB0028691	L-Alanyl-L-leucine	0.15±0.11	-0.56±0.37	-0.03±0.31
HMDB0013651	2-(14,15-Epoxyeicosatrienoyl) glycerol	0.15±0.09	0.25±0.33	0.26±0.31
HMDB000378	2-Methylbutyrolactone	0.14±0.11	0.72±0.33	0.74±0.35
HMDB0015655	Virion	0.13±0.11	0.43±0.45	0.37±0.41
HMDB0011725	Sulfinic acid	0.13±0.09	0.38±0.36	0.22±0.32
HMDB0011717	gamma-Glu-Leu	0.11±0.09	0.08±0.38	0.17±0.35
HMDB0013272	N-Lauroylglycine	0.11±0.09	-0.02±0.39	0.08±0.36
HMDB0000016	Desoxycortone	0.11±0.09	0.29±0.40	0.35±0.36
HMDB0001072	Ubiquinone-10	0.08±0.09	-0.47±0.45	-0.59±0.42
HMDB0062656	Linoleamide	0.08±0.09	0.37±0.46	0.44±0.42
HMDB000201	Acetyl-L-carnitine	0.08±0.09	-0.01±0.42	0.13±0.38
HMDB0031048	Avocadone 1-acetate	0.08±0.09	0.28±0.46	0.40±0.43
HMDB0002100	Palmityl ethanolamide	0.08±0.09	0.26±0.47	0.40±0.45
HMDB0001586	Glucose 1-phosphate	0.07±0.08	0.22±0.46	-0.10±0.41
HMDB0002117	Oleamide	0.07±0.08	0.28±0.48	0.34±0.46
HMDB0041857	Citrin	0.06±0.08	0.51±0.56	0.67±0.53

Values are expressed as estimates ± SE. Metabolites with zero or near-zero heritability estimates were not listed
Table 3: Genetic parameters of the differentially expressed plasma metabolites in the negative ion mode

Metabolite	Common name	Heritability	Genetic correlations	Phenotypic correlations
HMDB0031469 3b,7b-Dihydroxy-5-androsten-17-one	0.05	-0.12 ± 0.22	-0.01 ± 0.19	-0.11 ± 0.05
HMDB0002025 2-Oxoadipic acid	0.05	0.44 ± 0.20	0.46 ± 0.17	0.12 ± 0.05
HMDB004089 2-(Formylamino)benzoic acid	0.05	-0.14 ± 0.23	-0.25 ± 0.20	-0.11 ± 0.05
HMDB000670 L-Homoarginine	0.06	0.34 ± 0.23	0.37 ± 0.20	-0.03 ± 0.06
HMDB0035906 (+)-Alantolactone	0.06	0.07 ± 0.23	0.06 ± 0.20	-0.04 ± 0.05
HMDB003338 Mollicellin F	0.05	0.38 ± 0.23	0.25 ± 0.21	0.18 ± 0.05
HMDB0002833 Testosterone	0.05	-0.58 ± 0.20	-0.58 ± 0.18	-0.22 ± 0.05
HMDB0000455 Adenosine 5'-monophosphate	0.06	0.51 ± 0.23	0.30 ± 0.20	0.18 ± 0.05
HMDB0029467 Eugenitin	0.05	-0.02 ± 0.26	-0.09 ± 0.22	0.03 ± 0.05
HMDB000017 4-Pyridoxic acid	0.05	0.28 ± 0.26	0.12 ± 0.23	0.01 ± 0.05
HMDB000531 3-Hydroxyvaleric acid	0.05	-0.23 ± 0.26	0.18 ± 0.23	0.07 ± 0.05
HMDB0005814 Testate	0.05	-0.22 ± 0.26	-0.09 ± 0.23	0.02 ± 0.05
HMDB002226 Adrenic acid	0.05	0.37 ± 0.12	-0.68 ± 0.23	-0.15 ± 0.05
HMDB0000575 DL-Homocystine	0.05	0.10 ± 0.27	0.10 ± 0.24	0.16 ± 0.05
HMDB0062219 (13Z,16Z)-Docosadienioic acid	0.05	0.33 ± 0.12	-0.67 ± 0.26	-0.08 ± 0.05
HMDB0060295 5-(3',4',5'-Trihydroxphenyl)-gamma-valerolactone-O-methyl-O-sulphate	0.05	0.19 ± 0.28	0.13 ± 0.25	0.17 ± 0.05
HMDB003012 Aniline	0.05	0.28 ± 0.11	-0.14 ± 0.28	-0.02 ± 0.05
HMDB000634 Mesaconic acid	0.05	-0.09 ± 0.29	0.22 ± 0.26	-0.03 ± 0.05
HMDB000054 Bilirubin	0.05	0.28 ± 0.10	0.03 ± 0.24	0.04 ± 05
HMDB000308 3b-Hydroxy-S-cholenioic acid	0.05	0.39 ± 0.31	0.66 ± 0.28	0.03 ± 0.05
HMDB002032 8-Oxoguanine	0.05	-0.11 ± 0.32	0.01 ± 0.27	0.04 ± 05
HMDB000292 Xanthine	0.05	0.21 ± 0.11	0.03 ± 0.33	-0.12 ± 0.28
HMDB001903 Calcitriol	0.05	-0.38 ± 0.32	-0.02 ± 0.29	-0.05 ± 0.05
HMDB003975 Gingerdione	0.05	0.19 ± 0.10	0.31 ± 0.32	0.01 ± 0.05
HMDB000807 3-Phosphoglyceric acid	0.05	0.19 ± 0.11	-0.39 ± 0.35	-0.21 ± 0.30
HMDB000044 L-Ascorbate	0.05	0.17 ± 0.10	-0.58 ± 0.31	-0.37 ± 0.28
HMDB000208 2-Oxoglutaric acid	0.05	0.17 ± 0.11	-0.07 ± 0.35	0.07 ± 0.31
HMDB000812 N-Acetylaspartic acid	0.05	0.15 ± 0.11	0.07 ± 0.38	0.33 ± 0.04
HMDB001991 7-Methylxanthine	0.05	0.14 ± 0.11	0.19 ± 0.40	0.51 ± 0.33
HMDB000786 Oxypurinol	0.05	0.12 ± 0.11	-0.06 ± 0.42	-0.28 ± 0.35
HMDB005998 20-Hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid	0.05	0.12 ± 0.09	-0.67 ± 0.37	-0.58 ± 0.33
HMDB0033704 Hexose	0.05	0.11 ± 0.10	0.12 ± 0.43	-0.04 ± 0.38
HMDB0041610 Phenylacetdehyde	0.05	0.10 ± 0.10	0.38 ± 0.42	-0.23 ± 0.38
HMDB002580 Taurothiolcholic acid sulfate	0.05	0.10 ± 0.09	0.07 ± 0.44	0.26 ± 0.38
HMDB001530 Aurorix	0.05	0.09 ± 0.09	-0.06 ± 0.44	0.31 ± 0.39
HMDB0000202 Methylmalonic acid	0.05	0.08 ± 0.09	0.13 ± 0.50	-0.45 ± 0.40
HMDB000389 2'-Deoxysepiapterin	0.05	0.07 ± 0.09	0.63 ± 0.57	0.21 ± 0.45
HMDB000511 Decanoic acid	0.05	0.06 ± 0.09	0.31 ± 0.54	0.73 ± 0.48
HMDB003564 6,8-Tricosanediol	0.05	0.06 ± 0.08	-0.49 ± 0.59	-0.14 ± 0.05
HMDB0011628 Enoxolone	0.05	0.05 ± 0.10	0.67 ± 1.02	-
HMDB004088 2,5-Dipropyl-4-methylthiazole	0.05	0.05 ± 0.10	0.38 ± 0.52	0.03 ± 0.53
HMDB004624 3b,7b-Dihydroxy-S-androsten-17-one	0.05	0.05 ± 0.08	-0.24 ± 0.57	-0.40 ± 0.49

*Values are expressed as estimates ± SE. The """""""""""""" in the table refers to the values that were not converging in solving the animal model and were not calculated. Metabolites with zero or near-zero heritability estimates were not listed.
expressed metabolites, the genetic and phenotypic correlation coefficients between 21 positive metabolites or 27 negative metabolites and FE trait indices could not be calculated due to no converge. The genetic parameters of the remaining 34 metabolites in the positive ion mode were shown in Table 2, while the remaining 42 metabolites in the negative ion mode were shown in Table 3.

In the positive ion mode (Table 2), 14 differentially expressed plasma metabolites were found to have higher positive genetic correlations with the FE trait indices \((r_g \geq 0.3)\), whereas 5 differentially expressed plasma metabolites were found to have higher negative genetic correlations with the FE trait indices \((r_g \leq -0.3)\). The differentially expressed plasma metabolites and the FE trait indices showed relatively lower phenotypic correlation coefficients \((-0.19 \leq r_p \leq 0.20)\). Among the differentially expressed plasma metabolites, the heritability estimates of biliverdin and tyrosyl-phenylalanine were high \((0.57 \leq h^2 \leq 0.70)\). The heritability estimates of canthaxanthin, 7-ketocholesterol, dimethyl sulfone, hypoletin 8-gentiobioside, pantothentic acid, monoolein, taurine, benzocaine, hippuric acid, epsilon-(gamma-glutamyl)-lysine, guanidine acetic acid, beta-hydroxybutyrate, and gamma-glutamyltyrosine were found to be moderate \((0.22 \leq h^2 \leq 0.38)\).

In the negative ion mode (Table 3), 11 differentially expressed plasma metabolites had higher positive genetic correlations with the FE trait indices \((r_g \geq 0.3)\), whereas 14 differentially expressed plasma metabolites demonstrated higher negative genetic correlations with the FE trait indices \((r_g \leq -0.3)\). Relatively lower phenotypic correlation coefficients were observed between the differentially expressed plasma metabolites and the FE trait indices \((-0.23 \leq r_p \leq 0.19)\). Among the differentially expressed plasma metabolites, the heritability estimates of asarone, 2-oxoadipic acid, 2-(formal amino) benzocine acid, L-homoarginine, (+)-alantolactone, mollicellin F, testosterone, adenosine 5′-monophosphate, eugenitin, 4-pyridoxic acid, and 3-hydroxyvaleric acid were found to be high \((0.41 \leq h^2 \leq 0.59)\). The heritability estimates of testate, adrenic acid, DL-homocystine, (13Z,16Z)-docosadienoic acid, 5-3′,4′,5′-trihydroxyphenyl)-gamma-valerolactone-O-methyl-O-sulphate, aniline, mesaconic acid, bilirubin, 3b-hydroxy-5-cholenoic acid, 8-oxoguanine, xanthine, and calcitriol were found to be moderate \((0.21 \leq h^2 \leq 0.38)\).

Discussion

The NEAUHLF lines were successfully bred, and the AFP of broilers in the fat line was found to be 11.02 times higher than in the lean line after selecting the 23rd generation [11]. A previous study showed that FE traits changed significantly with the selection of AFP. The FCR and RFI in the lean line were 2.41 ± 0.01 and −160.08 ± 7.96 g, respectively, while those in the fat line were 2.81 ± 0.01 and 296.3 ± 11.05 g, respectively [11]. Besides, the FE trait indices showed high positive genetic correlations with the abdominal fat weight (AFW) and AFP in the NEAUHLF lines (from 0.49 to 0.58) [11]. These results indicated that the NEAUHLF lines could be used as high-FE and low-FE animal models. Based on our previous study, the present study further explored the differences in the plasma metabolic levels between the NEAUHLF lines using the same experimental chickens, and identified the potentially useful metabolite biomarkers for selecting the "food-saving broilers".

Firstly, the PLS-DA method was used for identifying the differentially expressed plasma metabolites between the lean and fat birds. PLS-DA, as a supervised and multivariate analysis approach for dimensionality reduction, was widely used for metabolomics researchs and has been established as a standard high-dimensional data analysis method [18, 19]. The value of Q^2 could explain the predictive ability of the supervised PLS-DA model and was found to be better if it was close to 1 theoretically [20]. In the present study, the Q^2 was 0.952 in the positive ion mode, and 0.947 in the negative ion mode (Fig. 2), indicating that PLS-DA model was successfully established. The results of the PLS-DA showed that the lean and fat birds were separated into two independent groups (Fig. 2), identifying 124 significantly and differentially expressed metabolites between the lean and fat birds.

The genetic and phenotypic correlations between the metabolites and the FE trait indices were estimated to identify the differentially expressed metabolites associated with the FE traits. In the positive ion mode, 19 metabolites were found to have high genetic correlations with the FE traits indices \((|r_g| \geq 0.30)\) (Table 2). In negative ion mode, 25 metabolites were found to have high genetic correlations with the FE traits indices \((|r_g| \geq 0.30)\) (Table 3). In addition, among the differentially expressed plasma metabolites, 15 metabolites in the positive ion mode (Table 2) and 23 metabolites in the negative ion mode (Table 3) were found to display moderate to high heritability estimates. To date, reports on estimating the genetic parameters of plasma metabolites in birds are few.

The objective of this study was to identify the metabolites that could be used as biomarkers for selecting broilers with high FE. Accordingly, a pipeline containing four criteria was established for determining whether a given metabolite could be used as a marker (Fig. 4). First, the metabolite concentration between the lean and fat birds must be significantly different. Second, the genetic...
First, the metabolite must be significantly differentially expressed between the NEAUHLF lines (VIP ≥ 1, P value ≤ 0.05).

Second, the metabolite must have a relatively high genetic correlation coefficient with FE traits ($r_g \leq -0.30$ or $r_g \geq 0.30$).

Third, to select high-FE birds, the concentration of the metabolite must be lower in high-FE birds if its genetic correlation coefficient with FE indices are positive, and vice versa.

Fourth, the metabolite should have a moderate to high heritability ($h^2 \geq 0.20$).

Table 4 Summary of 14 metabolite biomarkers for selecting the high-FE birds

Ion mode	Common name	Expression	Genetic correlations	Heritability		
		Fat line	Lean line	FCR	RFI	
Positive	7-Ketocholesterol	2180.27	782.69	0.41 ± 0.25	0.54 ± 0.22	0.36 ± 0.13
	Dimethyl sulfone	1935.83	770.09	0.40 ± 0.26	0.30 ± 0.23	0.33 ± 0.12
	Hypoletin 8-gentiobioside	1783.14	625.76	0.35 ± 0.29	0.32 ± 0.26	0.31 ± 0.13
	Epsilon-(gamma-glutamyl)-lysine	1531.94	851.93	0.19 ± 0.27	0.42 ± 0.21	0.25 ± 0.11
	gamma-Glutamyltyrosine	720.39	1309.21	-0.42 ± 0.26	-0.39 ± 0.25	0.22 ± 0.10
	2-Oxodipic acid	1580.83	855.62	0.44 ± 0.20	0.46 ± 0.17	0.58 ± 0.13
	L-Homoarginine	1762.28	670.93	0.34 ± 0.23	0.37 ± 0.20	0.53 ± 0.13
	Mollicellin F	1418.72	806.64	0.38 ± 0.23	0.25 ± 0.21	0.43 ± 0.13
	Testosterone	660.15	1114.50	-0.58 ± 0.20	-0.58 ± 0.18	0.43 ± 0.12
	Adenosine 5’-monophosphate	1399.03	856.74	0.51 ± 0.23	0.30 ± 0.20	0.42 ± 0.12
	Adrenergic acid	766.70	1155.87	-0.68 ± 0.23	-0.38 ± 0.21	0.37 ± 0.12
	(13Z,16Z)-Docosadienoic acid	790.03	1248.22	-0.67 ± 0.26	-0.42 ± 0.23	0.33 ± 0.12
	3b-Hydroxy-5-cholenoic acid	1045.31	257.59	0.39 ± 0.31	0.66 ± 0.28	0.24 ± 0.12
	Calcitriol	869.84	5096.83	-0.38 ± 0.32	-0.02 ± 0.29	0.21 ± 0.11

Positive ion mode Total 284 metabolites

- 55 metabolites met the first criterion
- 19 metabolites met the second criterion
- 9 metabolites met the third criterion
- 5 metabolites met the fourth criterion

Negative ion mode Total 272 metabolites

- 69 metabolites met the first criterion
- 25 metabolites met the second criterion
- 16 metabolites met the third criterion
- 9 metabolites met the fourth criterion

The correlation coefficient between the FE trait indices and the metabolite concentration should be relatively high (genetic correlation threshold: $|r_g| \geq 0.30$). Third, the concentration of the metabolite must be lower in the high-FE birds (lean line), if the genetic correlation coefficients with the FE trait indices were positive, and vice versa.
versa. Fourth, the heritability of the metabolite concentration should be moderate to high (heritability threshold: $h^2 \geq 0.20$). In the positive and negative ion modes between the lean and fat birds, 124 metabolites were found to have significantly different concentrations, meeting the first criterion. Among these 124 metabolites, 44 were found to have relatively high genetic correlations with the FE trait indices, meeting the second criterion. Of these 44 metabolites, 25 met the third criterion. Finally, of these 25 metabolites, 14 met the fourth criterion, which was shown in Table 4 and Fig. 4. In the positive ion mode, five metabolites including 7-ketocholesterol, dimethyl sulfone, hypoletin 8-gentiobioside, epsilon-(gamma-glutamyl)-lysine, and gamma-glutamyltyrosine were found to meet all the four criteria. In the negative ion mode, nine metabolites including 2-oxoadipic acid, L-homoarginine, mollicellin F, testosterone, adenosine 5′-monophosphate, adrenic acid, (13Z,16Z)-docosadienonic acid, 3b-hydroxy-5-choleenoic acid, and calcitriol were found to meet all four criteria. Therefore, these 14 metabolites were presumed to have the potential to be used as the biomarkers for selecting "food-saving broilers".

The published literature was searched, and the biological functions of 14 metabolites were summarized to rationally explain the physiological basis of the FE traits. However, among the 14 metabolites, no reports were available on the physiological functions of 4 metabolites, including hypoletin 8-gentiobioside, mollicellin F, (13Z,16Z)-docosadienonic acid, and 3b-hydroxy-5-choleenoic acid. Therefore, the effects of these 4 metabolites on FE traits of broilers could not be speculated. The remaining 10 metabolites were suggested to be biomarkers after analyzing the relationship between these metabolites and FE traits.

7-Ketocholesterol is a pro-inflammatory oxysterol that possibly activates several kinase signaling pathways via multiple transcription factors for inducing the cytokines and intracellular effectors causing cell death [21]. 7-Ketocholesterol damages the vascular endothelial cells by inducing inflammatory responses and apoptosis, elevating the risk of cardiovascular diseases [22]. Recent studies have shown the inflammatory responses to reduce FE in animals. In pigs, the inflammatory reaction could reduce FE [23]; a similar phenomenon was observed in cattle [24]. The fat line in this study had a higher concentration of 7-ketocholesterol than that in the lean line. A previous study showed that the FE in the fat line was significantly lower than that in the lean line [11]. Based on the reports from other studies and the results of this study, the fat line was suggested to have a stronger inflammatory response than the lean line and, therefore, a lower FE.

Dimethyl sulfone, also known as methylsulfonylmethane, is an organic sulfur-containing compound naturally occurring in various grains and animal tissues [25]. Dimethyl sulfone is an oxidative stress marker [26], and oxidative stress reportedly causes inflammatory responses [27, 28]. In beef cattle, positive correlations existed between the plasma dimethyl sulfone and the FE trait indices [29], which was consistent with the results of the present study (Table 4). In the present study, the fat line was found to have a higher concentration of dimethyl sulfone than the lean line. The reports of other studies and the findings of this study suggested that the fat line had stronger oxidative stress and inflammatory response compared with the lean line and, therefore, a lower FE. As a result, selecting birds with low plasma dimethyl sulfone was suggested for improving the FE.

Epsilon-(gamma-glutamyl)-lysine, belonging to the class of organic compounds known as glutamine and derivatives, was a potential biomarker in the inflammatory reaction [30, 31]. Yang et al. and Xu et al. proposed that high-FE animals have lower inflammatory responses [32, 33]. This study reported that the fat line had a higher concentration of epsilon-(gamma-glutamyl)-lysine than the lean line, demonstrating that the fat line might have a stronger inflammatory reaction than the lean line and, therefore, a lower FE. Therefore, plasma epsilon-(gamma-glutamyl)-lysine was suggested to serve as a potential biomarker for selecting FE traits.

Gamma-glutamyltyrosine is the precursor of tyrosine (Tyr) [34]. Previous studies showed that injecting gamma-glutamyltyrosine tended to increase the plasma Tyr levels in rats [35, 36]. This study reported that the gamma-glutamyltyrosine concentration in the fat line was significantly lower than that in the lean line, suggesting that the fat birds possibly had a weaker capacity for supplying Tyr than the lean birds. Tyr possessed the anti-stress biological function [37]. Therefore, the lean birds might have strong anti-stress ability and, hence, high FE. In addition, Tyr is essential for synthesizing proteins [36], suggesting that the gamma-glutamyltyrosine content can reflect the direction of the protein metabolism in animals. Our previous study found that the breast meat percentage of the fat line was significantly lower than that of the lean line (data not shown). These findings suggested the fat birds possibly had a weaker capacity for supplying Tyr and protein synthesis ability than the lean birds and, therefore, a lower FE.

2-Oxoadipic acid is a key metabolite of tryptophan and lysine [38, 39], identified as a biomarker for acute myocardial infarction and relevant pathological changes in inflammation [40]. In this study, the fat line was
found to have a higher concentration of 2-oxoadipic acid than the lean line, suggesting that the fat line might have a stronger inflammatory reaction than the lean line. Therefore, the plasma 2-oxoadipic acid was suggested to serve as the potential biomarker for selecting FE traits.

L-homoarginine is a nonessential cationic amino acid synthesized from arginine and lysine in vivo of bird [41]. The genome-wide association studies identified an association between the L-homoarginine plasma concentration and SNPs related to the AGAT gene [42]. Further metabolic analysis revealed that humans and mice with AGAT deficiency were inefficient in synthesizing L-homoarginine from L-arginine and L-lysine [42, 43]. The AGAT-deficient mice were found to exhibit decreased fat deposition, attenuated gluconeogenesis, reduced cholesterol levels, and enhanced glucose tolerance [44]. Based on these advances about L-homoarginine, fat deposition was found to show a positive correlation with the concentration of L-homoarginine. A study by Ramayo-Caldas et al. reported that lipid metabolism was associated with FE in pigs [23]. In this study, the fat line was found to have a higher concentration of L-homoarginine than the lean line, which was consistent with previous findings. Therefore, plasma L-homoarginine was suggested to serve as the potential biomarker for selecting FE traits.

Testosterone is an anabolic steroid from the androstane class of steroids [45]. It is the most important androgen, stimulating muscle growth and inhibiting lipid synthesis [46, 47]. In humans, testosterone replacement therapy reduces the body fat mass, particularly in truncal adiposity, cholesterol, and triglycerides [48]. In pigs, testosterone reduces the serum cholesterol levels [49], while in broilers, testosterone promotes the proliferation of the embryonic myoblasts and development of the skeletal muscle and inhibits the deposition of the abdominal fat [50]. Zhou et al. found that high muscle yield improved FE [51]. Ramayo-Caldas et al. found that more abdominal fat deposition reduced FE [23]. The concentration of plasma testosterone was found to be significantly lower in the fat line than in the lean line in the present study. A previous study from our lab found that the breast meat percentage was significantly lower in the fat line than in the lean line (data not shown), and the fat line was found to have a higher AFP and lower FE than the lean line [11]. Based on the reports from other studies and the results of the present study, plasma testosterone was suggested to improve FE.

Adenosine 5′-triphosphate decomposition produces adenosine 5′-diphosphate, and adenosine 5′-diphosphate decomposition produces adenosine 5′-monophosphate [52]. Under normal physiological conditions, the extracellular concentrations of adenosine 5′-triphosphate and its products were found to be considerably lower than the intracellular concentrations [53]. However, the extracellular concentrations of adenosine 5′-triphosphate and its products were found to increase markedly under inflammation [54, 55]. The fat line in this study was found to have a higher plasma concentration of adenosine 5′-monophosphate than the lean line. Based on the reports from previous studies and the results of the present study, the fat line was suggested to have a stronger inflammatory reaction and, therefore, a lower FE.

Adrenic acid, an endogenously synthesized polyunsaturated free fatty acid, can induce oxidative stress accompanied by cell death [56]. Many researchers highlighted the negative effects of adrenic acid on organisms. The adrenic acid level increased in patients with nonalcoholic fatty liver disease (NAFLD) and model mice [56]. Higher hepatic and plasma levels of free adrenic acid were found in the mouse model with hepatic steatosis, inflammation, mild fibrosis, obesity, and hypercholesterolemia [57]. However, in the present study, the concentration of plasma adrenic acid was found to be lower in the fat line than in the lean line. This result was inconsistent with the results of previous studies. Considering that the fat birds had higher FE trait indices, adrenic acid was hypothesized to possibly increase the FE. Further research is needed to investigate the mechanism by which adrenic acid negatively correlates with the indices of the FE traits.

Calcitriol, produced by vitamin D metabolism, is an active molecule of vitamin D that exerts its biological activity and functions in a variety of tissues in the body [58, 59]. Calcitriol is central to calcium and phosphate homeostasis and essentially ensures the proper development and maintenance of bone [60]. Besides, calcitriol is involved in maintaining immune homeostasis [61]. Calcitriol is used in humans for the therapeutic applications in immune dysfunction [62]. Studies on humans identified lean individuals to have significantly higher serum calcitriol levels than obese ones [63]. In Angus cattle, the genetic variation in RFI was found to be associated with the immune competence traits, suggesting that high-FE animals possibly had stronger immune competence [64]. This study found that the serum calcitriol concentration was significantly lower in the fat birds than in the lean birds. Combining the results of this study with the reports of calcitriol in both humans and animals, high-FE birds were suggested to have better immune competence.

Among 10 markers, 6 plasma metabolite markers (7-ketocholesterol, dimethyl sulfone, epsilon-(gamma-glutamyl)-lysine, 2-oxoadipic acid, adenosine 5′-monophosphate, and calcitriol) were found to be involved in inflammatory reaction and immune response. The genome-wide association study of FE in the chickens reported that the inflammatory reaction
and immune response might affect FE [32]. The transcriptome analysis of the chicken breast muscle [33], duodenum [65], jejunum [66], and liver [32] revealed that both inflammatory reactions and immune response might affect FE. Based on the biological functions of metabolites, the present study found that high-FE chickens had lower inflammation and higher immunity. The immune response and inflammatory studies showed that the energy requirements of animals increased dramatically during inflammation, leading to less energy available for protein deposition and, hence, a lower FE [67]. The present findings combined with the results from previous reports indicated that reducing inflammation and improving immunity could improve the broiler FE.

Conclusions
In summary, this study aimed to identify potential metabolite biomarkers for breeding “food-saving broilers” using the NEAUHLF lines, as an ideal animal model of FE traits for analyzing the relationship between FE traits and metabolites using the metabolomics strategy. According to the pipeline for the selection of the metabolite biomarkers established in this study, it was suggested that 10 metabolites, including 7-ketocholesterol, dimethyl sulfone, epsilon-(gamma-glutamyl)-lysine, gamma-glutamyltyrosine, 2-oxoacidic acid, L-homoarginine, testosterone, adenosine 5’-monophosphate, acidic acid, and calcitriol could be used as the potential biomarkers for breeding the “food-saving broilers”.

Abbreviations
AFP: Abdominal fat percentage; AFW: Abdominal fat weight; BW4: Body weights at 4 weeks; BW7: Body weights at 7 weeks; BWG: Gain in body weights; FCR: Feed conversion ratio; FE: Feed efficiency; FI: Feed intake; HMBD: Human metabolome database; MMBW: Metabolic mid-test body weight; NAFLD: Nonalcoholic fatty liver disease; NEAUHLF: Northeast Agricultural University broiler lines; NRC: National research council; PLS-DA: Partial least square-discriminant analysis; RFI: Residual feed intake; VIP: Variable importance in projection; VLDL: Very low-density lipoprotein.

Acknowledgements
The authors gratefully acknowledge the members of the Poultry Breeding group at Northeast Agricultural University for help in managing birds and collecting data.

Authors’ contributions
Conceptualization: HL; methodology: HL, XB, LL, and ZS; software: ZS, XB, and HW; formal analysis: ZS, XB, HL, and SW; resources: HL, LL, GC, and ZS; investigation: FX, HG, and HG; funding acquisition: HL, LL, and XB; writing-original draft preparation: ZS, XB, and HL. All authors have read and approved the final manuscript. ZS and XB equally contributed to this work.

Funding
This research was supported by the earmarked fund for CARS-41, National Natural Science Foundation (32102537), White Feather Broiler Breeding Joint Project of the Ministry of Agriculture and Rural Affairs in China (19105026), and “Academic Backbone” Project of Northeast Agricultural University (20XG30).

Availability of data and materials
The datasets from the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
All the animal work was conducted according to the guidelines for the Care and Use of Experimental Animals established by the Ministry of Science and Technology of the People’s Republic of China [Approval No. 2006–398] and approved by the Laboratory Animal Management Committee of Northeast Agricultural University.

Consent for publication
All authors have read and agreed to the published version of the manuscript.

Competing interests
The authors declare no competing financial interest.

Author details
1 Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China. 2 Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, China. 3 College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China. *Fujian Sunnzer Biotechnology Development Co., Ltd, Guanze 354100, China.

Received: 4 May 2022 Accepted: 5 September 2022
Published online: 10 November 2022

References
1. Hayes BJ, Lewin HA, Goddard ME. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 2013;29:206–14. https://doi.org/10.1016/j.tig.2012.11.009.
2. Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, et al. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci. 2006;84:145–53. https://doi.org/10.2527/2006. 84114sx.
3. Williams OW, Miller SP, Wood BJ. Aspects of selection for feed efficiency in meat producing poultry. Worlds Poult Sci J. 2013;69:77–88. https://doi. org/10.1017/S004393931300007X.
4. Beauclercq S, Nadal-Desbarats L, Hennuqué-Antier C, Gabriel I, Tesseraud C, Calenge F, et al. Relationships between digestive efficiency and metabolomic profiles of serum and intestinal contents in chickens. Sci Rep. 2018;8:6678. https://doi.org/10.1038/s41598-018-24979-9.
5. Yan W, Sun C, Wen J, C Ji, Zhang D, Yang N. Relationships between feeding behaviors and performance traits in slow-growing yellow broilers. Poult Sci. 2019;98:548–55. https://doi.org/10.3382/ps/pey424.
6. Hayton S, Maker GL, Mullaney I, Trenovge RD. Experimental design and reporting standards for metabolomics studies of mammalian cell lines. Cell Mol Life Sci. 2017;74:4421–41. https://doi.org/10.1007/ s00018-017-2582-1.
7. Goldansaz SA, Guo AC, Sajed T, Steele MA, Plastow GS, Wishart DS. Livestock metabolomics and the livestock metabolome: a systematic review. PLoS One. 2017;12:e17765. https://doi.org/10.1371/journal.pone.017765.
8. Novais FJ, Pires P, Alexandre PA, Dromms RA, Iglesias AH, Ferraz J, et al. Identification of a metabolomic signature associated with feed efficiency in beef cattle. BMC Genomics. 2019;20:8. https://doi.org/10.1186/ s12864-018-5406-2.
9. Carmelo V, Banerjee P, Da SDW, Kadarmideen HN. Metabolomic networks and pathways associated with feed efficiency and related traits in Duroc and Landrace pigs. Sci Rep. 2020;10:255. https://doi.org/10.1038/s41598-019-57182-4.
10. Guo L, Sun B, Shang Z, Leng L, Wang Y, Wang N, et al. Comparison of adipose tissue cellularity in chicken lines divergently selected for fatness. Poult Sci. 2011;90:2024–34. https://doi.org/10.3382/ps.2010-00863.
11. Chen C, Su Z, Li Y, Luan P, Wang S, Zhang H, et al. Estimation of the genetic parameters of traits relevant to feed efficiency: result from broiler lines divergent for high or low abdominal fat content. Poult Sci. 2021;100:461–6. https://doi.org/10.1016/j.psj.2020.10.028.
12. National Research Council (NRC). Nutrient requirements of poultry. 9th ed. Washington, DC: National Academy Press, 1994.
13. Brink LR, Mercer KE, Piccolo BD, Chintapalli SV, Bollay A, Bowlin AK, et al. Neonatal diarrhea affects fecal microbiota and metabolite profiles at different ages in infants fed breast milk or formula. Am J Clin Nutr. 2020;111:190–202. https://doi.org/10.1093/ajcn/nqaa076.
14. Reis JA, Zheng D, ALESSANDRO A, Nemkov T. Untargeted and semi-targeted lipid analysis of biological samples using mass spectrometry-based metabolomics. Methods Mol Biol. 2019;1978:121–35. https://doi.org/10.1007/10978-1-4939-9236-2_8.
15. Consolo N, Buiuque V, Higuera-Padilla A, Barbosa L, Zavadzki A, et al. Selection for growth and progeny alters muscle metabolism in nello calf. Metabolites. 2020;10:58. https://doi.org/10.3390/metabo10020058.
16. Buchanan AW, Reece JM, Garrick DJ, Qui JT, Beitz DC, Mateescu RG. Genetic parameters and genetic correlations among tracyglycerol and phospholipid fractions in Angus calf. J Anim Sci. 2015;93:522–8. https://doi.org/10.2527/jas.2014-9441.
17. Dong J, Zhang H, Jiang XF, Wang SZ, Du ZQ, Wang ZP, et al. Comparison of serum biochemical parameters between two broiler chicken lines divergently selected for abdominal fat content. J Anim Sci. 2015;93:3278–85. https://doi.org/10.2527/jas.2015-8871.
18. Jashi P, Wang D, Cheng SL, Fei Q, Cui JY, Liu, et al. Breast cancer detection using targeted plasma metabolomics. J Chromatogr B Analyt Technol Biomed Sci. 2019;1105:26–37. https://doi.org/10.1016/j.jchromb.2018.11.029.
19. Yan Q, Liew Z, Upall K, Cui X, Ling C, Heck JE, et al. Maternal serum metabolome and traffic-related air pollution exposure in pregnancy. Environ Int. 2019;130:104872. https://doi.org/10.1016/j.envint.2019.05.066.
20. Xu B, Chen Y, Chen X, Gan L, Zhang Y, Feng J, et al. Metabolomics profiling discriminates prostate cancer from benign prostatic hyperplasia within the prostate-specific antigen gray zone. Front Oncol. 2019;11:703638. https://doi.org/10.3389/fonc.2021.710368.
21. Pariente A, Pelaez R, Perez-Sala A, Larrayoz IM. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration. Exp Eye Res. 2019;187:010746. https://doi.org/10.1016/j.exer.2019.07.046.
22. Chang MC, Chen YJ, Liu EJ, Tseng WY, Chan CP, Lin HH, et al. 7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, P38/akt signalings, cytotoxicity and IL-8 production in endothelial cells. Oncotarget. 2016;7:74473–83. https://doi.org/10.18632/oncotarget.12578.
23. Ramayo-Caldas Y, Ballester M, Sanchez JP, Gonzalez-Rodriguez O, Revilla M, Reyer H, et al. Integrative approach using liver and duodenum RNA-seq data identifies candidate genes and pathways associated with feed efficiency in pigs. Sci Rep. 2018;8:558. https://doi.org/10.1038/s41598-017-19072-5.
24. Alexandre PA, Kogelman LJ, Santana MH, Passarelli D, Pulz LH, Revilla M, et al. Integrative approach using liver and duodenum RNA-seq data identifies candidate genes and pathways associated with feed efficiency in pigs. Sci Rep. 2018;8:558. https://doi.org/10.1038/s41598-017-19072-5.
25. Yang L, He T, Xiong F, Chen X, Fan X, Jin S, et al. Identification of key genes and pathways associated with feed efficiency of native chickens based on transcriptome data via bioinformatics analysis. BMC Genomics. 2020;21:292. https://doi.org/10.1186/s12864-020-06173-y.
26. Price ND, Magri AT, Earls JC, Guzman G, Levy R, Lausted C, et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat Biotechnol. 2017;35:747–56. https://doi.org/10.1038/nbt.3870.
27. Setterberg RC, Byers JT, Henderson BM, Skidmore J, Viola F, et al. Effect of testosterone on feed intake in quality chickens. BMC Genomics. 2016;17:594. https://doi.org/10.1186/s12864-016-2861-5.
28. Wang JM, Tarah AH. Increase in transglutaminase and its extracellular products in response to an inflammatory stimulus by lipopoly saccharide. Mol Cell Biochem. 1997;169:57–63. https://doi.org/10.1023/a:100864400478.
29. Skill NJ, Griffin M, El NA, Sanai T, Haylor JL, Fisher M, et al. Increases in renal epsilon-(gamma-glutamyl)-lysine crosslinks result from compartment-specific changes in tissue transglutaminase in early experimental diabetic nephropathy: pathologic implications. Lab Invest. 2001;81:705–16. https://doi.org/10.3829/labinvest.3780279.
30. Cai Z, Yu H, Pan Y, Jiang X, Chen L, et al. Effect of phytosterol on cholesterol metabolism in pigs fed a high-fat and high-cholesterol diet. Lipids Health Dis. 2015;14:18. https://doi.org/10.1186/s12944-015-0014-5.
50. Cui X, Cui H, Liu L, Zhao G, Liu R, Li Q, et al. Decreased testosterone levels after caponization leads to abdominal fat deposition in chickens. BMC Genomics. 2018;19:344. https://doi.org/10.1186/s12864-018-4737-3.

51. Zhou N, Lee WR, Abasht B. Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens’ feed efficiency. BMC Genomics. 2015;16:195. https://doi.org/10.1186/s12864-015-1364-0.

52. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006;112:358–404. https://doi.org/10.1016/j.pharmthera.2005.04.013.

53. Yoneyama Y, Suzuki S, Sawa R, Araki T. Plasma adenosine concentrations increase in women with hyperemesis gravidarum. Clin Chim Acta. 2004;342:99–103. https://doi.org/10.1016/j.cccn.2003.12.004.

54. Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem. 2001;79:463–84. https://doi.org/10.1046/j.1471-4159.2001.0607.x.

55. Lazarowski ER, Boucher RC, Harden TK. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol. 2003;64:785–95. https://doi.org/10.1124/mol.64.4.785.

56. Zhao J, Nishiumi S, Tagawa R, Yano Y, Inoue J, Hoshi N, et al. Adrenic acid induces oxidative stress in hepatocytes. Biochem Biophys Res Commun. 2020;532:620–5. https://doi.org/10.1016/j.bbrc.2020.08.102.

57. Horas HNS, Nishiumi S, Kawano Y, Kobayashi T, Yoshida M, Azuma T. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch Biochem Biophys. 2017;623–624:64–75. https://doi.org/10.1016/j.abb.2017.04.009.

58. Hansdottir S, Monick MM, Hinde SL, Lovan N, Look DC, Hunningshake GW. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol. 2008;181:7090–9. https://doi.org/10.4049/jimmunol.181.10.7090.

59. Rigby WF, Stacy T, Fanger MW. Inhibition of T lymphocyte mitogenesis by 1,25-dihydroxyvitamin D3 (calcitriol). J Clin Invest. 1984;74:1451–5. https://doi.org/10.1172/JCI111557.

60. Panichi V, Migliori M, Taccola D, Consani C, Giovannini L. Effects of calcitriol on the immune system: new possibilities in the treatment of glomerulonephritis. Clin Exp Pharmacol Physiol. 2003;30:807–11. https://doi.org/10.1046/j.1440-1681.2003.03919.x.

61. Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78:1193–231. https://doi.org/10.1152/physrev.1998.78.4.1193.

62. Bouillon R, Garmyn M, Verstuyf A, Segaert S, Casteels K, Mathieu C. Paracrine role for calcitriol in the immune system and skin creates new therapeutic possibilities for vitamin D analogs. Eur J Endocrinol. 1995;133:7–16. https://doi.org/10.1530/eje.0.1330007.

63. Lu L, Yu Z, Pan A, Hu FB, Franco OH, Li H, et al. Plasma 25-hydroxyvitamin D concentration and metabolic syndrome among middle-aged and elderly Chinese individuals. Diabetes Care. 2009;32:1278–83. https://doi.org/10.2337/dc09-0209.

64. Herd RM, Velazco JL, Smith H, Arthur PF, Hine B, Oddy H, et al. Genetic variation in residual feed intake is associated with body composition, behavior, rumen, heat production, hematology, and immune competence traits in Angus cattle. J Anim Sci. 2019;97:2202–19. https://doi.org/10.1093/jas/sky2077.

65. Liu R, Liu J, Zhao G, Li W, Zheng M, Wang J, et al. Relevance of the intestinal health-related pathways to broiler residual feed intake revealed by duodenal transcriptome profiling. Poult Sci. 2019;98:1102–10. https://doi.org/10.3382/ps/pey506.

66. Sinpru P, Rou C, Kubota S, Poompramun C, Molee W, Molee A. Jejunal transcriptomic profiling for differences in feed conversion ratio in slow-growing chickens. Animals (Basel). 2021;11:2608. https://doi.org/10.3390/ani11092606.

67. Fonseca LD, Eler JP, Pereira MA, Rosa AF, Alexandre PA, Moncau CT, et al. Liver proteomics unravel the metabolic pathways related to feed efficiency in beef cattle. Sci Rep. 2019;9:5364. https://doi.org/10.1038/s41598-019-41813-x.