Direct interactions between the secreted effector and the T2SS components GspL and GspM reveal a new effector-sensing step during type 2 secretion

Received for publication, November 25, 2017, and in revised form, October 4, 2018 Published, Papers in Press, October 18, 2018, DOI 10.1074/jbc.RA117.001127

Sandra Michel-Souzy†, Badreddine Douz†§, Frédéric Cadoret‡, Claire Raynaud†§, Loïc Quinton‡, Geneviève Ball‡§ and Romé Voulhoux‡§

From the †CNRS, Aix Marseille Université, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM)/UMR7255, 13009 Marseille, France, ‡CNRS, Aix Marseille Université, IMM, Laboratoire de Chimie Bactérienne (LCB)/UMR7283, 13009 Marseille, France, and §Laboratory of Mass Spectrometry-MolSys, Department of Chemistry, University of Liège, B4000 Liège, Belgium

Edited by Chris Whitfield

In many Gram-negative bacteria, the type 2 secretion system (T2SS) plays an important role in virulence because of its capacity to deliver a large amount of fully folded protein effectors to the extracellular milieu. Despite our knowledge of most T2SS components, the mechanisms underlying effector recruitment and secretion by the T2SS remain enigmatic. Using complementary biophysical and biochemical approaches, we identified here two direct interactions between the secreted effector CbpD and two components, XcpYL and XcpZM, of the T2SS assembly platform (AP) in the opportunist pathogen Pseudomonas aeruginosa. Competition experiments indicated that CbpD binding to XcpYL is XcpZM-dependent, suggesting sequential recruitment of the effector by the periplasmic domains of these AP components. Using a bacterial two-hybrid system, we then tested the influence of the effector on the AP protein–protein interaction network. Our findings revealed that the presence of the effector modifies the AP interactome and, in particular, induces XcpZM homodimerization and increases the affinity between XcpYL and XcpZM. The observed direct relationship between effector binding and T2SS dynamics suggests an additional synchronizing step during the type 2 secretion process, where the activation of the AP of the T2SS nanomachine is triggered by effector binding.

Type IV filament (Tff)3 nanomachines are membrane-embedded macromolecular complexes organized around a characteristic helical pilus-like structure emerging from an assembly platform at the cytoplasmic membrane (1). Tffs are widespread in prokaryotes where they fulfill diverse cellular functions, in particular the type 2 secretion system (T2SS) that is found in many pathogenic Gram-negative proteobacteria (2). It is dedicated to the secretion of large folded periplasmic exo-proteins via a piston-like apparatus called the secretin. Secretins are constituted by 12–15 different components organized into three subcomplexes: the outer-membrane pore belonging to the secretin family, the assembly platform (AP) or motor of the system, and the typical pseudopilus emerging from the AP up to the secretin pore (for the most recent reviews, see Refs. 3 and 4).

T2SS secretins are homomultimers assembled into a giant gated β-barrel pore in the outer membrane connected to the AP by an N-terminal periplasmic extension (5–7). The Tff-specific structure of the T2SS is called the pseudopilus. It is constituted by the helical assembly of the five pseudopilins of the system. Chronologically, the four minor pseudopilins, GspHIIJK, are first assembled by the AP and thus form the head of the structure. This step is followed by the addition, from the bottom of the filament, of the major pseudopilin GspG into a pseudopilus (8–11). Pseudopilus assembly is energized and promoted by the AP, which is constituted by the oligomeric assembly of four membrane proteins, including the three bitopic proteins GspC, GspL, and GspM and the integral membrane protein GspF. The energy for pseudopilus assembly is provided by the cytoplasmic ATPase, GspE. The four membrane components of the AP interact through a complex dynamic network involving both soluble and transmembrane (TM) domains (12–17). GspC possesses an N-terminal TM domain anchoring the protein into the inner membrane (IM). GspC’s TM domain is followed by a large C-terminal periplasmic domain composed of the HR and coiled-coil (or PDZ) subdomains. GspC self-dimerizes through its TM subdomain (13) and interacts with the N-domain of the secretin via its HR subdomain (14, 15), thus connecting the outer and inner membrane components of the secretin. The GspL and GspM AP components have a similar architecture with a TM domain followed by a globular C-terminal periplasmic domain with a ferredoxin-like fold (15, 16). These periplasmic domains self-interact but also interact with each other as...
Effector recognition in type 2 secretion

well as with the periplasmic domain of GspC (14, 17). In contrast to GspM and GspC, GspL harbors an additional N-terminal cytoplasmic domain presenting structural homology with actin-like ATPases (20). This domain is, together with the integral inner membrane protein GspF, involved in the recruitment of the ATPase GspE at the secretion site (21–26). Further activation of GspE requires interactions with phospholipids (27). It has been proposed that upon sensing of a signal, the AP interaction network is displaced to ensure proper functioning of the system possibly through intrinsically disordered domains (4). This includes signal transduction across the IM between the periplasmic and cytoplasmic sides of the secretor (4, 28). Such transmembrane dynamic signaling has also been reported in the archetypal Tff member, the type IV pilus (29).

Type 2 secretion is a two-step process during which effectors are first exported across the IM by the Sec or Tat systems (30, 31). Then, the folded periplasmic effectors are recognized and transported to the extracellular milieu by the secretor (32). The T2SS effectors are specifically recognized by the secretor in the periplasmic soup remains an open question. In contrast to other secretion systems and despite intense research, no common secretion signal has been identified in T2SS effectors. However, several direct interactions have been described between secreted effectors and the secretin GspD, the AP component GspC, and the pseudopilus tip (24, 33–36). It is accepted that effector recognition and recruitment are performed by GspC (17, 24, 34, 37) followed by its transfer into the secretin vestibule before being extruded out of the cell upon contact with the pseudopilus tip (32). A direct interaction between effectors and GspC HR and PDZ subdomains (24, 37) suggests that effector recruitment involves multiple contacts with GspC. In addition, it has been shown that the TMHR domain of GspC is indirectly involved in effector recognition specificity in *Pseudomonas aeruginosa* (17). Various GspD N-domains are also involved in effector binding, depending on the organism (5, 24, 33, 34, 36). Finally, a direct interaction has also been reported between the effector and the pseudopilus tip constituted by the periplasmic domains of GspHIJK (34).

Here, we report that in addition to interacting with GspC, the secretin, and the pseudopilus tip, the T2SS secreted effector also interacts specifically with the periplasmic domains of GspM and GspL inner membrane components of the AP. We further show that these periplasmic interactions trigger conformational changes in the AP that may lead to ATPase activation and pseudopilus assembly. We thus propose that these newly discovered interactions constitute an additional step of the T2SS secretion process, synchronizing effector loading and pseudopilus assembly.

Results

Direct and specific interaction between the Xcp effector CbpD and XcpYi, periplasmic domain (XcpYi,p)

Our T2SS working model is the Xcp system of *P. aeruginosa* where 11 different components are named P–Z with the species-specific prefix Xcp. Because protein letters are specific to the *Pseudomonas* genus, we will systematically refer to the general Gsp nomenclature using a subscript; i.e. the GspL homolog in *P. aeruginosa* is named XcpYi.

We previously showed by surface plasmon resonance that the purified periplasmic domains of the secretins XcpQD, the AP component XcpPC, and the pseudopilus tip quaternary complex (XcpUHVIWJXK) directly bind secreted effectors, thus allowing us to propose an integrated model of effector recognition and transport by the T2SS (34). To have a better view of the Xcp/effector interactome in the periplasm, we tested the interaction between the secreted effector CbpD and the periplasmic domains of the bitopic AP component XcpYi,A (XcpYi,1,p). We used biolayer interferometry (BLI), an in vitro protein–protein interaction technique similar to surface plasmon resonance. XcpYi,1,p and CbpD proteins were produced and purified by consecutive affinity and size-exclusion chromatography steps (Fig. 1A), following the procedure used previously (34). CbpD was then biotinylated and immobilized on the sensor tip to be used as bait, and interaction experiments were performed in triplicate with purified XcpYi,1,p used as prey, following the protocol described under “Experiment procedures.” The graph, presented in Fig. 1A and reporting the response (nm) as a function of the XcpYi,1,p concentration (μm), was used to measure the dissociation constants (Kd). BLI data reveal that XcpYi,1,p directly interacts with the secreted effector CbpD with a relatively low Kd of 5.0 μm.

To validate this in vitro interaction between CbpD and XcpYi in a more biological context, we set up and performed an in vivo copurification experiment. To reconstitute the natural periplasmic context of the interaction in the absence of the other Xcp T2SS components and secreted effectors, the two partners were produced in the periplasm of the heterologous host *Escherichia coli*. When produced in *E. coli*, CbpD naturally accumulates in the periplasm because of its Sec signal peptide (Sp). The second partner, XcpYi,1,p, was artificially targeted to the periplasm by the addition of LasB Sp to its N terminus (Sp-XcpYi,1,p). We first tested protein production under inducing conditions and verified the proper periplasmic localization of CbpD and XcpYi,1,p (Fig. S1). The soluble cell fraction of the *E. coli/pCbpDh/pSp-XcpYi,1,p* strain grown under inducing conditions was extracted and analyzed by immobilized metal affinity chromatography (IMAC). The copurification experiments shown in Fig. 1B indicate that XcpYi,1,p is coeluted with the histidine-tagged CbpDh, used here as bait, thus supporting the direct interaction found by BLI between the two proteins. The observation (Fig. 1B, bottom) that XcpYi,1,p is not recovered in the elution fractions in the absence of CbpDh excludes a nonspecific affinity of XcpYi,1,p for the IMAC resin.

We then took advantage of the presence of two independent T2SSs in *P. aeruginosa*, the Xcp and Hxc systems, each secreting their own effectors (38), to test the effector specificity of this newly characterized interaction. We performed in vivo cross-copurification experiments using *E. coli* strains coproducing the Hxc effector LapA41 together with XcpYi,1,p (*E. coli/pLapA41/pSp-XcpYi,1,p*). Soluble protein lysates obtained under inducible conditions were analyzed by IMAC (Fig. 1C), and we noticed that XcpYi,1,p did not copurify with the heterologous Hxc effector. These data confirms that, as is also the case for XcpQD,
XcpPc/, and the pseudopilus tip (34), the interaction of XcpYl with its cognate effector is system-specific.

Direct interaction between the Xcp effector CbpD and the periplasmic domain of XcpZM

To further characterize the Xcp/effector periplasmic interactome, we next tested whether CbpD interacts with the periplasmic domain of the inner membrane component XcpZM (XcpZMp). XcpZM corresponds to the only periplasmic globular domain of the secreton not yet tested for interaction with the secreted effector. As above for XcpYL, we combined complementary in vitro and in vivo protein–protein interaction experiments to investigate the interaction between XcpZMp and secreted effectors. The BLI experiment using purified CbpD as bait and XcpZMp as prey was done in triplicate and showed a direct interaction between the two proteins, with a K_D of 3.4 M (Fig. 2A). This in vitro interaction was confirmed by a cross-linking experiment using the short cross-linking agent bis(sulfosuccinimidyl)glutarate (BS2G). Analysis of the cross-linking products by SDS-PAGE followed by Coomassie Blue staining showed a protein complex specifically recovered in the presence of the two partners and the cross-linker (Fig. S2) with a molecular weight corresponding to a heterodimer composed of XcpZMp and CbpD. This was confirmed by immunoblotting, which showed that XcpZMp and CbpD are both present in the corresponding complex.

Furthermore, the interaction between XcpZMp and CbpD was tested and validated by in vivo copurification experiments. To do this, we constructed an *E. coli* strain producing in its periplasm CbpDH and XcpZMp (*E. coli*/pCbpDH/pSp-XcpZMp) and proceeded with IMAC copurification experiments following the procedure used for XcpYLp.

The analysis of the eluted fractions by SDS-PAGE followed by immunoblotting with anti-CbpD and anti-XcpZMp antibodies shows the specific coelution of XcpYlp by CbpDH (Fig. 2B). As for XcpYLp, the XcpZMp/effector interaction is Xcp T2SS-specific because the Hxc effector LapAH does not copurify the Xcp GspM component XcpZMp (Fig. 2C). Altogether, the presently discovered direct interactions between the secreted effector and the globular periplasmic domains of XcpZM and XcpYL reveal for the first time a direct and specific interaction between secreted effector and components of the T2SS assembly platform.

Competition between XcpYlp and XcpZMp for binding to CbpD

Protein–protein interaction data revealed that the AP components XcpYL and XcpZM interact directly with the effector through their periplasmic domains, which raises to five the number of Xcp periplasmic domains or complexes that directly and specifically interact with secreted effectors. In all cases, interaction affinities between T2SS components and the secreted effector are in the 10–100 μM range, in agreement with their transiency during the secretion process. We attempted to better understand the CbpD/XcpYLp/XcpZMp interactome by evaluating possible competition effects thanks to the multiple coexpression capacity of our in vivo periplasmic reconstitution effector/Xcp interactome assay. We therefore quantitatively compared the copurification levels of XcpYLp and XcpZMp with CbpDH in the presence or absence of the other CbpD interactant. Hence, the soluble cell lysates of the *E. coli* strains coproducing CbpDH with XcpYLp, XcpZMp, or XcpYLp together with XcpZMp were generated in quadruplicates and analyzed by IMAC for XcpZMp and XcpYLp copurification (Fig. 3). Although the proportion of XcpZMp copurified with CbpD...
Effector recognition in type 2 secretion

is unchanged with or without coproduction of XcpY_L (Fig. 3, gray bars and corresponding immunoblots), a statistically significant reduction of XcpY_L binding to CbpD was observed in the presence of XcpZ_M (Fig. 3, black bars and corresponding immunoblots). This competition experiment suggests that, during the secretion process, the secreted effector interacts sequentially with XcpY_L and XcpZ_M.

CbpD effector triggers XcpZ_M dimerization and increases XcpZ_M/Y_L interaction

The above data indicate that both XcpY_L and XcpZ_M interact with the secreted effector through their periplasmic domains. To understand the possible consequences of such interactions on the global AP interactome within the secreton, we used the bacterial adenylate cyclase two-hybrid (BACTH) method developed by Karimova et al (39). In this technique, proteins of interest are coexpressed in an E. coli cya mutant (BTH101) as fusions with one of the two fragments (T18 and T25) from the catalytic domain of Bordetella pertussis adenylate cyclase. Interaction of two-hybrid proteins results in a functional complementation between T18 and T25, leading to cAMP synthesis and transcriptional activation of the lactose operon that can be easily detected by β-gal activity measurement. We chose this technique because it is particularly well adapted to quantify interactions between membrane proteins (40). Full-length XcpY_L, XcpZ_M, and XcpS_F proteins were therefore fused to the T18 and/or T25 domains via their N termini (see “Experimental procedures”).

We first evaluated the heterodimerization capacities of different AP components by measuring β-gal activity of the three combinations, T18-Y_L/T25-S_F, T18-Y_L/T25-Z_M, and T18-Z_M/T25-S_F, and comparing it with positive and negative controls (Fig. 4, light gray bars). Results indicate that full-length XcpY_L directly interacts with XcpZ_M. A similar observation, using the same approach, has already been reported in different T2SSs (10, 11, 14). Interestingly, we also found that XcpS_F, the polytopic IM component of the AP, directly interacts with XcpY_L and XcpZ_M, thus confirming the physical interconnection between components of the AP. In addition and as previously observed by Lallemand et al. (14), full-length XcpZ_M does not self-dimerize (or self-dimerization is very weak) when produced alone in the E. coli membrane (Fig. 4). This negative result is not due to nonfunctional fusion proteins because both T18/25 XcpZ_M fusions give positive signals when combined with XcpY_L and XcpS_F partners (Fig. 4). This result contrasts with the homodimerization property of the periplasmic domain of XcpZ_M revealed by size-exclusion chromatography (Fig. S3) and suggests that XcpZ_M periplasmic homodimerization might be prevented by its transmembrane domain.

We then decided to challenge this AP interactome in the presence of the T2SS effector CbpD (Fig. 4, dark gray bars). CbpD was therefore coproduced in the periplasm of the BTH101 strains producing the various Xcp T18/T25 pairs. No difference was seen for the pairs involving XcpS_F, indicating that CbpD binding to XcpY_L has no significant effect on the XcpY_L/S_F interaction. In contrast, a statistically significant increase in β-gal activity was measured in the presence of CbpD for the T18-Z_M/T25-Z_M pair, showing that the presence of CbpD triggers XcpZ_M homodimerization, possibly through...

Figure 2. Specific XcpZ_M/T2SS effector direct interaction. A, characterization of XcpZ_M/CbpD binding using BLI. Samples of previously purified CbpD_H used in the experiment presented Fig. 1 and newly purified XcpZ_M were analyzed by 15% SDS-PAGE followed by Coomassie Blue staining and used in BLI experiments. The graph reporting the BLI response (nm) as a function of XcpZ_M concentration (6.25–100 μM) from three independent experiments was used to calculate the indicated apparent K_D. Each data point (mean ± S.D.) is the result from triplicate experiments. Error bars indicate S.D. B and C, copurification and immunoblotting experiments of coproduced XcpZ_M with His-tagged CbpD (CbpD_H) or His-tagged LapA (LapA_H) (C). L, loading material; FT, flow-through; E1–E5, elution fractions. Antibodies used for XcpZ_M, CbpD, and LapA detection are indicated in italic below each immunoblot.
Effector recognition in type 2 secretion

Figure 3. XcpZMp/XcpYLp binding competition on CbpD. Shown is quantification of CbpD-bounded XcpYLp or XcpZMp in the eluted fractions (E) compared with their amount in the loaded material (L) in the presence or absence of the second partner, XcpYLp or XcpZMp. The immunodetected bands of XcpYLp and XcpZMp for each loaded (L) and eluted (E) fraction of each replicate of the three copurification experiments are also presented. Molecular mass markers of 10 (■) and 17 kDa (○) are indicated on the right. ns, for non-significant; *, p value <0.05. Error bars indicate S.D.

Discussion

Effector recognition by the T2SS remains enigmatic because no common secretion signal has been identified in the numerous effectors reported so far. All attempts to identify the secretion signal of the T2SS have converged to the existence of a still unknown conformational signal, in agreement with the folded state of the effectors prior to recognition by the secreton (41). Here, we focused on the Xcp T2SS of P. aeruginosa, which secretes at least 19 different exoproteins, to study effector recognition and transport. Based on the identification of a set of direct periplasmic interactions between secreted effectors and components of the three subcomplexes of the secreton, we previously proposed a model of effector recognition and transport by the T2SS (34). In this model, the substrate is recognized by their periplasmic domains (Fig. S3). Similarly, CbpD coproduction was also performed with the T18-YL/T25-ZM pair. In this case, the presence of the effector significantly increased the β-gal levels, revealing a significant strengthening of the interaction between XcpYL and XcpZM in the presence of the secreted effector. Those findings indicate that the presence of the effector triggers structural rearrangements of the AP, thus suggesting a possible synchronization between effector arrival and activation of the system.

We further evaluated the possible consequences of these new interactions on the T2SS by addressing their impact on AP dynamics. Using BACTH as a quantitative protein–protein interaction technique, we first established the interactome network among the three AP components, XcpYL, XcpZM, and XcpSF. We then found that XcpZM oligomerization and XcpYL/XcpZM heterodimerization are, respectively, triggered and strengthened upon effector binding. Those important observations constitute the first experimental evidence of effector-mediated conformational changes of the T2SS AP components, suggesting a possible synchronization between effector arrival and activation of the system. One possible type of activation mediated by substrate binding was described in a recent report by Lallemand et al. (14). In this work, using an elegant combination of in vivo protein–protein interaction and cross-linking experiments, the authors showed the molecular details of the dynamic interplay between full-length GspL and GspM. In their model, upon sensing an unknown signal, the interactions between GspL and GspM periplasmic domains shift from homo- to heterodimeric, mediating coordinated shifts or rotations of their cognate TM domains. We propose that the dynamic interplay leading to signal transduction from the periplasm to the cytoplasm is triggered by effector binding on the GspM and/or GspL periplasmic domain. It would be interesting to localize the effector-binding domains in XcpYL and XcpZM and their possible overlap with the ferredoxin-like domains of GspL and GspM directly involved in the dynamic interplay.

The next obvious question brought by our observations is what is the target of the signal transduced from the periplasm to the cytoplasm? A possible scenario, elaborated from the numerous interactions reported between the cytoplasmic domain of GspL and its partner, the ATPase GspE, was recently proposed by Gu et al. (4). Taking into account that activation of the ATPase necessitates an interaction between membrane lipids and the GspL’s segment adjacent to the TM domain (27), the authors propose that activation of the ATPase could be medi-
ated by a displacement of GspL in the inner membrane, itself
induced by the transmembrane signal generated by effector
binding in the periplasm. Therefore, considering that activation
of the ATPase mediates pseudopilus assembly (42, 43), we pro-
pose that effector binding on the periplasmic domains of GspL
and GspM triggers pseudopilus assembly, thus synchronizing
this late step with effector arrival in the machinery. Therefore,
an additional effector-sensing step, coupled with pseudopilus
assembly, can be added to our model of effector recognition and
transport by the T2SS (Fig. 5). Whether this effector sensing-
step mediated by GspL and GspM is linked with their direct
involvement in pseudopilus assembly (10, 43) remains to be
determined.

Further investigations are now required to understand, at the
molecular level, the chronology of the effector/XcpYL and
effector/XcpZM interactions and the effectors’ subsequent
transition into the secretin vestibule as well as the structural
basis of the transmembrane signal transduction. In this respect,
interestingly, the XcpY1 periplasmic domain presents struc-
tural homology with proteins harboring the Per-Arnt-Sim
(PAS) domain. These PAS domains are present in all three
domains of life and are involved in signaling and transmem-
brane signal transduction, such as in the bacterial two-compo-
nent systems (44). This structural homology supports the sens-
ing properties of GspL, which may play an important role in
T2SS function.

Experimental procedures

Bacterial strains and plasmids

Bacterial strains and plasmids used in this study are listed in
Table 1.

DNA manipulation

Plasmid preparation, DNA purification, gel extraction, and
PCR product purification were performed using appropriate
Macherey Nagel kits. Restriction enzymes, DNA polymerase,
and other molecular biology reagents were purchased from
New England Biolabs or Promega. The high-fidelity polymerase
Q5 (Biolabs) was used for PCR amplification. The list of oligo-
nucleotides (synthesized by Integrated DNA Technologies,
Inc.) used for cloning is provided in Table 2. To construct the
BACTH plasmids, the xcp genes were PCR-amplified using cor-
responding primers and cloned into pKT25 and pUT18C vec-
tors using the SLIC method between BamHI and EcoRI sites.
To construct the expression plasmids for heterologous recon-
stitution, the xcpYL and xcpZM genes were PCR-amplified using
 correspond ing primers and cloned into the pCDFDuet vector
using the SLIC method or digestion ligation methods between
NcoI and SalI (MCS1) sites for XcpZMp or NdeI and EcoRV
(MCS2) sites for XcpYLp. The CbpDH gene was subcloned from
pT7.5 vector to pETDuet vector using the EcoRI site. All plas-
mids were sequenced by GATC Co.

Protein production and purification

The DNA sequences encoding the periplasmic domains of
XcpY1 (XcpY1p; from residue 255 to residue 381) and XcpZM
(XcpZMp; from residue 53 to residue 173) were cloned into
pLIC07 vector using the SLIC method between BsaI sites.
These constructs allow the production of XcpY1p and XcpZMp
proteins fused to thioredoxin (Trx) at their N terminus. The
Trx is cleaved off after purification, and the resulting proteins
are soluble, stable, and produced in sufficient amount for bio-
chemical and biophysical characterization. Competent cells of

Figure 4. Effect of CbpD on the AP interactome measured by BACTH. Different combinations of T18/T25 reporter domains fused to the N-domains of full-length Xcp AP components were evaluated by BACTH in the presence or absence of the Xcp secreted effector CbpD. As a positive control (T+), we used the couple T18-Tol/T25-Pal (46). The value of the negative control (T−) corresponds to the mean of all T18/T25 combinations containing Xcp constructs against T18-Tol/T25-Pal. Results are expressed in Miller units of β-gal activity and are the mean ± S.D. of at least three independent experiments. Error bars indicate S.D. The red line indicates the background β-gal activity measured in the negative control. ns, nonsignificant; *, p value <0.05; **, p value <0.01.
strain BL21 (DE3) were transformed with pLIC-XcpZM or pLIC-XcpY1.D. The bacteria were grown until reaching an 600 nm of 0.5 at 37 °C on TB medium with kanamycin at 50 mM NaCl, 150 mM NaCl. Induction was performed with 0.1 mM IPTG for 12 h at 60 °C. Bacteria were collected by centrifugation and broken by sonication (25 °C). Bacteria were collected by centrifugation and broken by sonication (25 °C). Bacteria were collected by centrifugation and broken by sonication (25 °C). Bacteria were collected by centrifugation and broken by sonication (25 °C).

Table 1

Strain and plasmids	Genotype/characteristics	Origin/Ref.
E. coli		
BL21 (DE3)	fhuA2 [lon] ompT gal (DE3) /dcm] DE3 sxBamHo ΔEcoRI-B int::(lacI::PlacUV5::T7 gene1)	Lab collection
TG1	supe, hisd2R, thiA (lac-proAB), F' (traD36, proAB+), lacQ, lacZΔM15)	Lab collection
BTH101	F'/cyA-99, araD139, gatE15, galK16, rpsL1 (Str'), hisdR2, mcrA1, mcrB1	Lab collection
P. aeruginosa		
PA01	Clinical isolate, reference wildtype strain	Lab collection
PA01 D40ZQ	PA01 reference with xcp operon deletion	Lab collection
Plasmids		
pCDBDuet-1	Sm®, 2 MCS, P_t7, Ori CDF	Novagen
pETDuet-1	Ap®, 2 MCS, P_t7, Ori fI	Novagen
pET22b	Ap®, P_t7, Ori fI, pET cloning sequence	Novagen
pSp-XcpYp	pCDBDuet carrying sp-xcpYp gene in MCS2	This study
pSp-XcpZM	pCDBDuet carrying sp-xcpZp gene in MCS2	This study
pSp-XcpYp-sp-XcpZM	pCDBDuet carrying sp-xcpYp gene in MCS2 and sp-xcpZM gene in MCS1	This study
pCὃDPd1	pETDuet carrying cbpDpD gene	This study
pLapA1	pETDuet carrying lapA1 gene	Lab collection
pLIC07	pET-28a + derivative vector for Trx translational fusions Km®	Bio-Xtal
pLIC-XcpYp	pLIC07 carrying xcpYp	This study
pLIC-XcpZM	pLIC07 carrying xcpZM	This study
pT7.5-CbpDpD	pT7.5 carrying cbpDpD gene	47
pN105	Gm®, P_LacI, Ori PBR	48
pN105-CbpD	pN105 carrying cbpD	This study
pT25	Km®, P_LacI, Ori 15a, MCS in the 3’ end of T25	40
pKT25	Km®, P_LacI, Ori 15a, MCS in the 5’ end of T25	40
pUT18C	Ap®, P_LacI, Ori ColE1, MCS in the 3’ end of T18	40
pUT18	Ap®, P_LacI, Ori ColE1, MCS in the 5’ end of T18	40
pUT18C-XcpYp	pUT18C carrying 18-xcpYp	This study
pUT18C-XcpZM	pUT18C carrying 18-xcpZM	This study
pKT25-XcpZM	pKT25 carrying 25-xcpZp	This study
pKT25-XcpYp	pKT25 carrying 25-xcpYp	E. Bouveret
pKT25-Tol	pKT25 carrying 25-tolB gene	This study
pUT18C-Pal	pUT18C carrying 18-pal gene	E. Bouveret

Figure 5. Schematic representation of the effector-sensing step mediated by XcpYL/ZM during secretion process by T2SS.
➊, effector (blue sphere) binding to the periplasmic domains of GspL (L) and GspMZ (M) induces their homo- and/or hetero-oligomerization (purple arrows). ➋, the effector-mediated gathering of GspM and GspL generates a transmembrane signal (red flash) triggering GspE (E) activation (ATP to ADP) and pseudopilus (GspGTHUIVJWKX (GHUK)) assembly and elongation (dashed red arrows). ➌, the growing pseudopilus interacts with the effector, which first translates it inside the vestibule of the secretin and then leads it to its translocation in the extracellular milieu. Also represented on this cartoon are the secretin connector GspCP, (C) and the polytopic AP component GspF (F), which is involved in pseudopilus assembly upon cycles of GspE-mediated rotation (circular red arrows).
Effector recognition in type 2 secretion

Table 2
Oligonucleotides used in this study

Oligo	Sequence (5′ → 3′)	Characteristics
OSM-86	AGGAGATATACCTGATTACTAGCTGGCCATGCGA	sp-lasB for MCS1 up
OSM-87	CCGGGGCCGCGCATTACCGCGCGGTCGCC	sp-lasB for MCS1 down
OSM-88	AGATGGGCGGCATACCGCGCGGTCGCC	xcpZmp for MCS1 up
OSM-91	CCACTTGGCCGAGCTCGTGGCCCCGGAGGCA	xcpZm_p for MCS1 down
OSM-62	AAGGAGATATACCTGATTACTAGCTGGCCATGCGA	sp-lasB for MCS2 up
OSM-63	CGGCGGCGCGCGCATTACCGCGCGGTCGCC	sp-lasB for MCS2 down
OSM-64	GCGGCGGCGCGCGCATTACCGCGCGGTCGCC	xcp1_p for MCS2 up
OSM-47	GCTGCTGCGGAGTTACCTCACTGCTGCGACCAGGAG	xcp1_p for MCS2 down
OSM-116	CCAATCAATAGAGGGCCAGGCTGACCTGGAG	xcp1_p for pLIC07
OSM-117	GATTTCCCATCTTACTGAGGAGTACCTCTGACTGCC	xcp1_p for pLIC07
OSM-118	CCAATCAATAGAGGGCCAGGCTGACCTGGAG	xcp1_p for pLIC07
OSM-119	GATTTCCCATCTTACTGAGGAGTACCTCTGACTGCC	xcp1_p for pLIC07
XcpYlp-pUT18C-F	CGCGCCGCGGGCACTCTGCTGCGACCAGGAGCA	xcp1_p for pUT18C
XcpYlp-pUT18C-R	CGCGCCGCGGGCACTCTGCTGCGACCAGGAGCA	xcp1_p for pUT18C
XcpZmp-pUT18C-F	CGCGCCGCGGGCACTCTGCTGCGACCAGGAGCA	xcp1_p for pUT18C
XcpZmp-pUT18C-R	CGCGCCGCGGGCACTCTGCTGCGACCAGGAGCA	xcp1_p for pUT18C
XcpSp-pKT25-F	CGCGCCGCGGGCACTCTGCTGCGACCAGGAGCA	xcp1_p for pKT25C
XcpSp-pKT25-R	CGCGCCGCGGGCACTCTGCTGCGACCAGGAGCA	xcp1_p for pKT25C

SDS-PAGE and immunodetection

Proteins from bacterial extracts were separated by electrophoresis on 15 or 18% polyacrylamide gels and transferred onto nitrocellulose membranes using a semidry blotting apparatus. Membranes were blocked with 5% milk in TBST (10 mM Tris, 150 mM NaCl, 0.05% Tween 20) or in PBS. Membranes were incubated with rabbit polyclonal antibodies directed against CbpD, XcpYL, XcpZM, and LapA (respectively diluted at 1:5000, 1:1500, 1:500, and 1:5000 in TBST, 5% milk). The incubation was followed by two 10-min washes and incubation in peroxidase-coupled anti-rabbit antibody (1:5000: Sigma). Membranes were developed by homemade enhanced chemiluminescence and scanned using ImageQuant TL analysis software (GE Healthcare).

Coproduction of XcpYlp, XcpZmp, LapAhp, and CbpDhp in E. coli and affinity chromatography

Competent cells of strain BL21 (DE3) were cotransformed with pCDFDuet, pETDuet, and derivatives. The bacteria were grown until reaching an A600nm of 0.5 at 37 °C on LB or TB medium with appropriate antibiotics (30 μg/ml streptomycin, 50 μg/ml ampicillin). Induction was performed with 0.1 mM IPTG for 12 h at 17 or 25 °C. Bacteria were collected by centrifugation and broken using a French press (10,000 p.s.i.) in cold buffer (50 mM Tris-HCl, pH 8, 150 mM NaCl, 1 mM EDTA, 20 mM MgCl2, 1 mM phenylmethylsulfonyl fluoride, 0.5 mg/ml lysozyme, 20 μg/ml DNase). The lysate was cleared by ultracentrifugation to remove unbroken debris and membranes. The cleared lysate was loaded onto a 1-ml nickel column (HisTrap FF) using an AKTA Prime apparatus. The immobilized proteins were eluted in buffer B (50 mM Tris-HCl, pH 8, 150 mM NaCl, 500 mM imidazole). The loaded, flow-through, and elution fractions were analyzed by SDS-PAGE and immunodetection. For competition experiments, the complete CbpD copurification IMAC procedure for XcpYlp, XcpZmp, and XcpYlp together with XcpZmp was performed in quadruplicate. The total amount of XcpYlp or XcpZmp proteins in the eluate fractions (in percent, compared with the total amount in the loaded fraction) was measured and quantified from immunoblots of each replicate using ImageJ software. Microsoft Excel software was used for data processing and presentation. Statistics were determined using the Student’s t test function of Excel using a bilateral model and assuming equal variance.

Biolayer interferometry

CbpD was biotinylated using the EZ-Link NHS-PEG4-Biotin kit (Perbio Science, France) with a 1:1 molar ratio (CbpD:biotin). The reaction was stopped by removing excess biotin using a Zeba Spin desalting column (Perbio Science). BLI studies were performed in triplicate in black 96-well plates (Greiner) at 25 °C using an OctetRed96 (ForteBio). Streptavidin biosensors tips (ForteBio) were first hydrated with 0.2 ml of interaction buffer (IB) (1 × Kinetics Buffer (ForteBio) diluted in PBS) for 20 min and then loaded with biotinylated protein (CbpD at 5 μg/ml in IB).

To study the binding of CbpD to XcpYlp or XcpZmp, increasing concentrations of XcpYlp (5–160 μM) and XcpZmp (6.25–100 μM) were used, and the association and dissociation phases were monitored for 1000 and 3000 s, respectively. Xcp proteins were dialyzed against IB before titration experiments. To avoid nonspecific binding of XcpYlp or XcpZmp to the streptavidin biosensors, the biosensors were incubated with 10 μg/ml biocytin (Sigma) for 200 s. In all experiments, the response of the nonbiotinylated proteins on the free sensors was subtracted during experiment processing.

The KD values were calculated using GraphPad Prism 5.0 software on the basis of the steady-state levels of the responses in nanometers, directly related to the concentration of the Xcp protein. The KD was calculated from a triplicate experiment by plotting on the x axis the different concentrations of the Xcp protein and the different responses of the Xcp protein at saturation (990 s after the start of the association step) on the y axis. Nonlinear regression fitting for xy analysis and a one-site binding (specific binding) model, corresponding to the equation $y = P_{max} \times x/(K_D + x)$, were used to calculate K_D values.
Bacterial two-hybrid system and statistical analysis

To investigate the interaction between XcpZ\textsubscript{M} and XcpY\textsubscript{L} periplasmic domains, competent cells of strain BTH101 were cotransformed with pUT18C and pKT25 derivatives, and bacteria were grown for 48 h at 30°C on LB plates containing Ap100, Kan50, and Sm100. Colonies were picked at random, inoculated into 600-μl cultures in LB containing Amp100, Kan50, Sm100, and 0.5 mM IPTG; and grown overnight at 30°C. β-Gal activity was measured as described (45). At least two independent experiments were performed with three randomly picked transformants. Mean values are presented as bar graphs, and error bars indicate S.D. Microsoft Excel software was used for data processing and presentation. Statistics were determined using the Student’s t test function of Excel using a bilateral model and assuming equal variance.

To study the interaction network among the full-length proteins, competent cells of strain BTH101 containing pNJ105 or pNJ105-CbpD vectors were cotransformed with pUT18C and pKT25 derivatives. Bacteria were grown for 48 h at 30°C on LB plates containing Ap100, Kan50, Sm100, and Gm15. Colonies were picked at random and inoculated into 600-μl cultures in LB containing Ap100, Kan50, Sm100, Gm15, 0.5 mM IPTG, and 0.5% arabinose to allow CbpD production. Cells were grown overnight at 30°C, and β-gal activity was measured as described (45).

Acknowledgments—We thank V. Pelicic for careful reading of the manuscript; D. Byrne from the protein production platform of our institute (IMM) for BLI facility; N. O. Gomez and S. Bulot for help with statistical analysis; E. Bouveret for BACTH plasmids; and S. Rinaldi, O. Uderos, M. Ba, I. Bringer, and A. Brun for media and material preparation.

Author contributions—S. M.-S., B. D., F. C., and R. V. conceptualization; S. M.-S., B. D., F. C., C. R., L. Q., G. B., and R. V. investigation; S. M.-S., B. D., F. C., L. Q., G. B., and R. V. methodology; S. M.-S., B. D., and R. V. writing-original draft; B. D. and R. V. writing-review and editing; R. V. resources; B. D. and R. V. data curation; R. V. supervision; R. V. funding acquisition; R. V. validation; R. V. project administration.

References

1. Berry, J. L., and Pelicic, V. (2015) Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol. Rev. 39, 134–154 CrossRef Medline
2. Cianciootto, N. P., and White, R. C. (2017) Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect. Immun. 85, e00014–17 CrossRef Medline
3. Thomassin, J. L., Santos Moreno, J., Guilvout, I., Tran Van Nhieu, G., and Francetic, O. (2017) The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol. Microbiol. 105, 211–226 CrossRef Medline
4. Gu, S., Shevchik, V. E., Shaw, R., Pickersgill, R. W., and Garnett, J. A. (2017) The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. Biochim. Biophys. Acta 1865, 1255–1266 CrossRef Medline
5. Douzi, B., Triinh, N. T. T., Michel-Souzy, S., Desmyter, A., Ball, G., Barbir, P., Kosta, A., Durand, E., Forest, K. T., Cambillau, C., Rousset, A., and Voulhoux, R. (2017) Unraveling the self-assembly of the \textit{Pseudomonas aeruginosa} XcpQ secretin periplasmic domain provides new molecular insights into T2SS secretin architecture and dynamics. mBio 8, e01185–17 CrossRef Medline
6. Hay, I. D., Belousov, M. J., and Lithgow, T. (2017) Structural basis of type 2 secretion system engagement between the inner and outer bacterial membranes. mBio 8, e01344–17 CrossRef Medline
7. Yan, Z., Yin, M., Xu, D., Zhu, Y., and Li, X. (2017) Structural insights into the secretin translocation channel in the type II secretion system. Nat. Struct. Mol. Biol. 24, 177–183 CrossRef Medline
8. Douzi, B., Durand, E., Bernard, C., Alphonse, S., Cambillau, C., Filoux, A., Tegoni, M., and Voulhoux, R. (2009) The XcpV/GspI pseudosin has a central role in the assembly of a quaternary complex within the T2SS pseudosin. J. Biol. Chem. 284, 34580–34589 CrossRef Medline
9. Cisneros, D. A., Bond, P. J., Pugsley, A. P., Campos, M., and Francetic, O. (2012) Minor pseudosin self-assembly primes type II secretion pseudosin-elongation. EMBO J. 31, 1041–1053 CrossRef Medline
10. Nivaskumar, M., Santos-Moreno, J., Malosse, C., Nadeau, N., Chamot-Rooke, J., Tran Van Nhieu, G., and Francetic, O. (2016) Pseudosin residue E5 is essential for recruitment by the type 2 secretion system assembly platform. Mol. Microbiol. 101, 924–941 CrossRef Medline
11. Santos-Moreno, J., East, A., Guilvout, I., Nadeau, N., Bond, P. J., Tran Van Nhieu, G., and Francetic, O. (2017) Polar N-terminal residues conserved in type 2 secretion pseudosins determine subunit targeting and membrane extraction steps during fibre assembly. J. Mol. Biol. 429, 1746–1765 CrossRef Medline
12. Sandvikt, M., Hough, L. P., Bagdasarian, M. M., and Bagdasarian, M. (1999) Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in \textit{Vibrio cholerae}. J. Bacteriol. 181, 3129–3135 Medline
13. Login, F. H., and Shevchik, V. E. (2006) The single transmembrane segment drives self-assembly of OUtC and the functional of a type II secretion system in \textit{Erwinia chrysanthemi}. J. Biol. Chem. 281, 33152–33162 CrossRef Medline
14. Lallemand, M., Login, F. H., Guschinskaya, N., Pineau, C., Effantin, G., Robert, X., and Shevchik, V. E. (2013) Dynamic interplay between the periplasmic and transmembrane domains of GspL and GspM in the type II secretion system. PLoS One 8, e79562 CrossRef Medline
15. Abendroth, J., Rice, A. E., McLuskey, K., Bagdasarian, M., and Hol, W. G. (2004) The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from \textit{Vibrio cholerae} the simplest version of the ferredoxin fold. J. Mol. Biol. 338, 585–596 CrossRef Medline
16. Abendroth, J., Kreger, A. C., and Hol, W. G. (2009) The dimer formed by the periplasmic domain of EpsL from the second secretion system of \textit{Vibrio parahaemolyticus}. J. Struct. Biol. 168, 313–322 CrossRef Medline
17. Gérard-Vincent, M., Bagdasarian, M., Ball, G., Bleves, S., Michel, G. P., Lazdunski, A., and Filoux, A. (2002) Identification of XcpP domains that confer functionality and specificity to the \textit{Pseudomonas aeruginosa} type II secretion apparatus. Mol. Microbiol. 44, 1651–1665 CrossRef Medline
18. Korotkov, K. V., Johnson, T. L., Jobling, M. G., Pruneda, J., Pardon, E., Héroux, A., Turley, S., Steyaert, J., Holmes, R. K., Sandkvist, M., and Hol, W. G. (2011) Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. Biol. Struct. Funct. 3, 1002228 CrossRef Medline
19. Wang, X., Pineau, C., Gu, S., Guschinskaya, N., Pickersgill, R. W., and Shevchik, V. E. (2012) Cysteine scanning mutagenesis and disulfide mapping analysis of arrangement of GspC and GspD promoters within the type 2 secretion system. J. Biol. Chem. 287, 19082–19093 CrossRef Medline
20. Abendroth, J., Bagdasarian, M., Sandkvist, M., and Hol, W. G. (2004) The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of \textit{Vibrio cholerae}: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol. 344, 619–633 CrossRef Medline
21. Abendroth, J., Mitchell, D. D., Korotkov, K. V., Johnson, T. L., Kreger, A., Sandkvist, M., and Hol, W. G. (2009) The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of \textit{Vibrio cholerae}. J. Struct. Biol. 166, 303–315 CrossRef Medline
22. Ball, G., Chapon-Hervé, V., Bleves, S., Michel, G., and Bally, M. (1999) Assembly of XcpR in the cytoplasmic membrane is required for extracel-
Effector recognition in type 2 secretion

lular protein secretion in *Pseudomonas aeruginosa*. *J. Bacteriol.* 181, 382–388 [Medline]

23. Chen, Y. L., and Hu, N. T. (2013) Function-related positioning of the type II secretion ATPase of *Xanthomonas campestris pv. campestris*. *PLoS One* 8, e59123 [CrossRef Medline]

24. Pineau, C., Guschiniskaya, N., Robert, X., Gouet, P., Ballut, L., and Shevchik, V. E. (2014) Substrate recognition by the bacterial type II secretion system: more than a simple interaction. *Mol. Microbiol.* 94, 126–140 [CrossRef Medline]

25. Lu, C., Korotkov, K. V., and Hol, W. G. (2014) Crystal structure of the full-length ATPase GspE from the *Vibrio vulnificus* type II secretion system in complex with the cytoplasmic domain of GspL. *J. Struct. Biol.* 187, 223–235 [CrossRef Medline]

26. Shiue, S. J., Kao, K. M., Leu, W. M., Chen, L. Y., Chan, N. L., and Hu, N. T. (2006) XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL. *EMBO J.* 25, 1426–1435 [CrossRef Medline]

27. Camberg, J. L., Johnson, T. L., Patrick, M., Abendroth, J., Hol, W. G., and Sandkvist, M. (2007) Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. *EMBO J.* 26, 19–27 [CrossRef Medline]

28. Campos, M., Cisneros, D. A., Nivaskumar, M., and Francetic, O. (2013) The type II secretion system—a dynamic fiber assembly nanomachine. *Res. Microbiol.* 164, 545–555 [CrossRef Medline]

29. Leighton, T. L., Yong, D. H., Howell, P. L., and Burrows, L. L. (2016) Type IV pilus alignment subcomplex proteins PilN and PilO form homo- and heterodimers in vivo. *J. Biol. Chem.* 291, 19923–19938 [CrossRef Medline]

30. Puglsey, A. P., Kornacker, M. G., and Poquet, I. (1991) The general protein-export pathway is directly required for extracellular pullulanase secretion in *Escherichia coli* K12. *Mol. Microbiol.* 5, 343–352 [CrossRef Medline]

31. Voulhoux, R., Ball, G., Ize, B., Vasil, M. L., Lazdunski, A., Wu, L. F., and Filloux, A. (2001) Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. *EMBO J.* 20, 6735–6741 [CrossRef Medline]

32. Douzi, B., Filloux, A., and Voulhoux, R. (2012) On the path to uncover the bacterial type II secretion system. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 367, 1059–1072 [CrossRef Medline]

33. Shevchik, V. E., Robert-Baudouy, J., and Condemine, G. (1997) Specific interaction between OutD, an *Erwinia chrysanthemi* outer membrane protein of the general secretory pathway, and secreted proteins. *EMBO J.* 16, 3007–3016 [CrossRef Medline]

34. Douzi, B., Ball, G., Cambillau, C., Tegoni, M., and Voulhoux, R. (2011) Deciphering the Xcp *Pseudomonas aeruginosa* type II secretion machinery through multiple interactions with substrates. *J. Biol. Chem.* 286, 40792–40801 [CrossRef Medline]

35. Reichow, S. L., Korotkov, K. V., Gonen, M., Sun, J., Delarosa, J. R., Hol, W. G., and Gonen, T. (2011) The binding of cholora toxin to the periplasmic vestibule of the type II secretion channel. *Channels* 5, 215–218 [CrossRef Medline]

36. Reichow, S. L., Korotkov, K. V., Hol, W. G., and Gonen, T. (2010) Structure of the cholera toxin secretion channel in its closed state. *Nat. Struct. Mol. Biol.* 17, 1226–1232 [CrossRef Medline]

37. Bouley, J., Condemine, G., and Shevchik, V. E. (2001) The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II outer pathway of *Erwinia chrysanthemi*. *J. Mol. Biol.* 308, 205–219 [CrossRef Medline]

38. Ball, G., Durand, E., Lazdunski, A., and Filloux, A. (2002) A novel type II secretion system in *Pseudomonas aeruginosa*. *Mol. Microbiol.* 43, 475–485 [CrossRef Medline]

39. Karimova, G., Pidoux, J., Ullmann, A., and Ladant, D. (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. *Proc. Natl. Acad. Sci. U.S.A.* 95, 5752–5756 [CrossRef Medline]

40. Georgiadou, M., Castagnini, M., Karimova, G., Ladant, D., and Pelicic, V. (2012) Large-scale study of the interactions between proteins involved in type IV pilus biology in *Neisseria meningitidis*: characterization of a subcomplex involved in pilus assembly. *Mol. Microbiol.* 84, 857–873 [CrossRef Medline]

41. Sandkvist, M. (2001) Biology of type II secretion. *Mol. Microbiol.* 40, 271–283 [CrossRef Medline]

42. Nivaskumar, M., Bouvier, G., Campos, M., Nadeau, N., Yu, X., Egelman, E. H., Nilges, M., and Francetic, O. (2014) Distinct docking and stabilization steps of the pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. *Structure* 22, 685–696 [CrossRef Medline]

43. Gray, M. D., Bagdasarian, M., Hol, W. G., and Sandkvist, M. (2011) *In vivo* cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of *Vibrio cholerae*. *Mol. Microbiol.* 79, 786–798 [CrossRef Medline]

44. Henry, J. T., and Crosson, S. (2011) Ligand-binding PAS domains in a genomic, cellular, and structural context. *Annu. Rev. Microbiol.* 65, 261–286 [CrossRef Medline]

45. Miller, J. H. (1972) *Experiments in Molecular Genetics*, pp 156–158, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

46. Douzi, B., Brunet, Y. R., Spinelli, S., Lensi, V., Legrand, P., Blangy, S., Kumar, A., Journet, L., Cascales, E., and Cambillau, C. (2016) Structure and specificity of the Type VI secretion system ClpV-TssC interaction in enteroaggregative *Escherichia coli*. *Sci. Rep.* 6, 34405 [CrossRef Medline]

47. Cadoret, F., Ball, G., Douzi, B., and Voulhoux, R. (2014) Ttx, a new type II secretion system of *Pseudomonas aeruginosa* strain PA7, is regulated by the TssS/TssR two-component system and directs specific secretion of the CbpE chitin-binding protein. *J. Bacteriol.* 196, 2376–2386 [CrossRef Medline]

48. Newman, J. R., and Fuqua, C. (1999) Broad-host-range expression vectors that carry the L-arabinose inducible *Escherichia coli araBAD* promoter and the araC regulator. *Gene* 227, 197–203 [CrossRef Medline]