Nine Solved and Nine Open Problems in Elementary Geometry

Florentin Smarandache
Math & Science Department
University of New Mexico, Gallup, USA

In this paper we review nine previous proposed and solved problems of elementary 2D geometry [4] and [6], and we extend them either from triangles to polygons or polyhedrons, or from circles to spheres (from 2D-space to 3D-space), and make some comments, conjectures and open questions about them.

Problem 1.
We draw the projections M_i of a point M on the sides A_iA_{i+1} of the polygon $A_i...A_n$.
Prove that:
\[\|M_iA_i\|^2 + ... + \|M_nA_n\|^2 = \|M_1A_1\|^2 + ... + \|M_{n-1}A_n\|^2 + \|M_nA_1\|^2 \]

Solution 1.
For all i we have:
\[\|MM_i\|^2 = \|MA_i\|^2 - \|A_iM_i\|^2 = \|MA_{i+1}\|^2 - \|A_{i+1}M_i\|^2 \]
It results that:
\[\|M_iA_i\|^2 - \|M_{i+1}A_{i+1}\|^2 = \|MA_i\|^2 - \|MA_{i+1}\|^2 \]
From where:
\[\sum_i \left(\|M_iA_i\|^2 - \|M_{i+1}A_{i+1}\|^2 \right) = \sum_i \left(\|MA_i\|^2 - \|MA_{i+1}\|^2 \right) = 0 \]

Open Problem 1.
1.1. If we consider in a 3D-space the projections M_i of a point M on the edges A_iA_{i+1} of a polyhedron $A_i...A_n$, then what kind of relationship (similarly to the above) can we find?
1.2. But if we consider in a 3D-space the projections M_i of a point M on the faces F_i of a polyhedron $A_i...A_n$ with $k \geq 4$ faces, then what kind of relationship (similarly to the above) can we find?

Problem 2.
Let’s consider a polygon (which has at least 4 sides) circumscribed to a circle, and \(D \) the set of its diagonals and the lines joining the points of contact of two non-adjacent sides. Then \(D \) contains at least 3 concurrent lines.

Solution 2.
Let \(n \) be the number of sides. If \(n = 4 \), then the two diagonals and the two lines joining the points of contact of two adjacent sides are concurrent (according to Newton's Theorem).

The case \(n > 4 \) is reduced to the previous case: we consider any polygon \(A_1...A_n \) (see the figure)

circumscribed to the circle and we choose two vertices \(A_i, A_j \) \((i \neq j)\) such that

\[
A_i \cap A_j = P
\]

and

\[
A_{j-1} \cap A_{j+1} = R.
\]

Let \(B_h, h \in \{1, 2, 3, 4\} \) the contact points of the quadrilateral \(PA_jRA_i \) with the circle of center \(O \). Because of the Newton’s theorem, the lines \(A_i, A_j, B_iB_3 \) and \(B_2B_4 \) are concurrent.

Open Problem 2.
2.1. In what conditions there are more than three concurrent lines?
2.2. What is the maximum number of concurrent lines that can exist (and in what conditions)?
2.3. What about an alternative of this problem: to consider instead of a circle an ellipse, and then a polygon ellipsoid-scribed (let’s invent this word, ellipso-scribed, meaning a polygon whose all sides are tangent to an ellipse which inside of it): how many concurrent lines we can find among its diagonals and the lines connecting the point of contact of two non-adjacent sides?
2.4. What about generalizing this problem in a 3D-space: a sphere and a polyhedron circumscribed to it?
2.5. Or instead of a sphere to consider an ellipsoid and a polyhedron ellipsoido-scribed to it?

Of course, we can go by construction reversely: take a point inside a circle (similarly for an ellipse, a sphere, or ellipsoid), then draw secants passing through this point that intersect the
circle (ellipse, sphere, ellipsoid) into two points, and then draw tangents to the circle (or ellipse), or tangent planes to the sphere or ellipsoid) and try to construct a polygon (or polyhedron) from the intersections of the tangent lines (or of tangent planes) if possible.

For example, a regular polygon (or polyhedron) has a higher chance to have more concurrent such lines.

In the 3D space, we may consider, as alternative to this problem, the intersection of planes (instead of lines).

Problem 3.

In a triangle ABC let’s consider the Cevians AA', BB' and CC' that intersect in P. Calculate the minimum value of the expressions:

$$E(P) = \frac{PA}{PA'} + \frac{PB}{PB'} + \frac{PC}{PC'}$$

and

$$F(P) = \frac{PA}{PA'} \cdot \frac{PB}{PB'} \cdot \frac{PC}{PC'}$$

where $A' \in [BC]$, $B' \in [CA]$, $C' \in [AB]$.

Solution 3.

We’ll apply the theorem of Van Aubel three times for the triangle ABC, and it results:

$$PA \parallel AC + AB''$$

$$PA' \parallel C'B + B'C'$$

$$PB \parallel BA + BC''$$

$$PB' \parallel A'C + C'A'$$

$$PC \parallel CA + CB''$$

$$PC' \parallel A'B + B'A'$$

If we add these three relations and we use the notation

$$\frac{AC'}{C'B} = x > 0, \quad \frac{AB'}{B'C} = y > 0, \quad \frac{BA'}{A'C} = z > 0$$

then we obtain:

$$E(P) = (x + \frac{1}{y}) + (x + \frac{1}{y}) + (z + \frac{1}{z}) \geq 2 + 2 + 2 = 6$$

The minimum value will be obtained when $x = y = z = 1$, therefore when P will be the gravitation center of the triangle.

When we multiply the three relations we obtain
Open Problem 3.

3.1. Instead of a triangle we may consider a polygon $A_1A_2...A_n$ and the lines A_1A_1', A_2A_2', ...
, A_nA_n' that intersect in a point P.
Calculate the minimum value of the expressions:

$$E(P) = \frac{\|PA_1\|}{\|PA_1'\|} + \frac{\|PA_2\|}{\|PA_2'\|} + ... + \frac{\|PA_n\|}{\|PA_n'\|}$$

$$F(P) = \frac{\|PA_1\| \cdot \|PA_2\| \cdot ... \cdot \|PA_n\|}{\|PA_1'\| \cdot \|PA_2'\| \cdot ... \cdot \|PA_n'\|}$$

3.2. Then let's generalize the problem in the 3D space, and consider the polyhedron $A_1A_2...A_n$ and the lines A_1A_1', A_2A_2', ..., A_nA_n' that intersect in a point P. Similarly, calculate the minimum of the expressions $E(P)$ and $F(P)$.

Problem 4.

If the points A_1, B_1, C_1 divide the sides BC, CA respectively AB of a triangle in the same ratio $k > 0$, determine the minimum of the following expression:

$$\|AA_1\|^2 + \|BB_1\|^2 + \|CC_1\|^2.$$

Solution 4.

Suppose $k > 0$ because we work with distances.

$$\|BA_1\| = k \|BC\|, \quad \|CB_1\| = k \|CA\|, \quad \|AC_1\| = k \|AB\|$$

We’ll apply three times Stewart’s theorem in the triangle ABC, with the segments AA_1, BB_1, respectively CC_1:

$$\|AB\|^2 \cdot BC (1-k) + \|AC\|^2 \cdot BC k - \|AA_1\|^2 \cdot BC = \|BC\|^3 (1-k) k$$

where

$$\|AA_1\|^2 = (1-k) \|AB\|^2 + k \|AC\|^2 - (1-k) k \|BC\|^2$$

similarly,

$$\|BB_1\|^2 = (1-k) \|BC\|^2 + k \|BA\|^2 - (1-k) k \|AC\|^2$$

$$\|CC_1\|^2 = (1-k) \|CA\|^2 + k \|CB\|^2 - (1-k) k \|AB\|^2$$

By adding these three equalities we obtain:

$$\|AA_1\|^2 + \|BB_1\|^2 + \|CC_1\|^2 = (k^2 - k + 1) \left(\|AB\|^2 + \|BC\|^2 + \|CA\|^2 \right),$$
which takes the minimum value when \(k = \frac{1}{2} \), which is the case when the three lines from the
enouncement are the medians of the triangle.

The minimum is \(\frac{3}{4} \left(\| AB \|^2 + \| BC \|^2 + \| CA \|^2 \right) \).

Open Problem 4.

4.1. If the points \(A_1', A_2', \ldots, A_n' \) divide the sides \(A_1A_2, A_2A_3, \ldots, A_nA_1 \) of a polygon in
the same ratio \(k>0 \), determine the minimum of the expression:

\[
\| A_1A_1' \|^2 + \| A_2A_2' \|^2 + \cdots + \| A_nA_n' \|^2.
\]

4.2. Similarly question if the points \(A_1', A_2', \ldots, A_n' \) divide the sides \(A_1A_2, A_2A_3, \ldots, A_nA_1 \) in the positive ratios \(k_1, k_2, \ldots, k_n \) respectively.

4.3. Generalize this problem for polyhedrons.

Problem 5.

In the triangle \(ABC \) we draw the lines \(AA_1, BB_1, CC_1 \) such that

\[
\| A_1B \|^2 + \| B_1C \|^2 + \| C_1A \|^2 = \| AB \|^2 + \| BC \|^2 + \| CA \|^2.
\]

In what conditions these three Cevians are concurrent?

Partial Solution 5.

They are concurrent for example when \(A_1, B_1, C_1 \) are the legs of the medians of the triangle
BCA. Or, as Prof. Ion Pătrașcu remarked, when they are the legs of the heights in an acute angle
triangle BCA.

More general.

The relation from the problem can be written also as:

\[
a \left(\| A_1B \| - \| A_1C \| \right) + b \left(\| B_1C \| - \| C_1A \| \right) + c \left(\| C_1A \| - \| C_1B \| \right) = 0,
\]

where \(a, b, c \) are the sides of the triangle.

We’ll denote the three above terms as \(\alpha, \beta \), and respective \(\gamma \), such that \(\alpha + \beta + \gamma = 0 \).

\[
\alpha = a \left(\| A_1B \| - \| A_1C \| \right) \iff \frac{\alpha}{a} = \| A_1B \| - \| A_1C \| - 2 \| A_1C \|
\]

where

\[
\frac{\alpha}{a^2} = \frac{a - 2 \| A_1C \|}{a} \iff \frac{\alpha^2}{a^2 - \alpha} = \frac{a}{2 \| A_1C \|} \iff \frac{\alpha}{a} = \frac{2a^2}{2a^2 - \alpha} \iff \frac{2\alpha^2 - a^2 + \alpha}{a^2 - \alpha} = \frac{a - \| A_1C \|}{\| A_1C \|}
\]

Then
\[
\frac{\|A_B\|}{\|A_C\|} = \frac{a^2 + \alpha}{a^2 - \alpha}.
\]

Similarly:
\[
\frac{\|B_C\|}{\|B_A\|} = \frac{b^2 + \beta}{b^2 - \beta} \quad \text{and} \quad \frac{\|C_A\|}{\|C_B\|} = \frac{c^2 + \gamma}{c^2 - \gamma}.
\]

In conformity with Ceva’s theorem, the three lines from the problem are concurrent if and only if:
\[
\frac{\|A_B\|}{\|A_C\|} \cdot \frac{\|B_C\|}{\|B_A\|} \cdot \frac{\|C_A\|}{\|C_B\|} = 1 \Leftrightarrow (a^2 + \alpha)(b^2 + \beta)(c^2 + \gamma) = (a^2 - \alpha)(b^2 - \beta)(c^2 - \gamma).
\]

Unsolved Problem 5.

Generalize this problem for a polygon.

Problem 6.

In a triangle we draw the Cevians \(A_A\), \(B_B\), \(C_C\) that intersect in \(P\). Prove that
\[
\frac{PA \cdot PB \cdot PC}{PA_A \cdot PB_B \cdot PC_C} = \frac{AB \cdot BC \cdot CA}{A_B \cdot B_C \cdot C_A}.
\]

Solution 6.

In the triangle \(ABC\) we apply the Ceva’s theorem:
\[
AC_1 \cdot B_A \cdot CB_1 = -AB_1 \cdot CA_1 \cdot BC_1 \quad (1)
\]

In the triangle \(AA_B\), cut by the transversal \(CC_i\), we’ll apply the Menelaus’ theorem:
\[
AC_1 \cdot BC \cdot A_P = AP \cdot A_C \cdot B_C \quad (2)
\]

In the triangle \(BB_C\), cut by the transversal \(AA_i\), we apply again the Menelaus’ theorem:
\[
BA_i \cdot CA \cdot B_P = BP \cdot B_A \cdot CA_i \quad (3)
\]

We apply one more time the Menelaus’ theorem in the triangle \(CC_iA\) cut by the transversal \(BB_i\):
\[
AB \cdot C_i P \cdot CB_i = AB_i \cdot CP \cdot C_iB \quad (4)
\]

We divide each relation (2), (3), and (4) by relation (1), and we obtain:
Multiplying (5) by (6) and by (7), we have:
\[
\frac{PA}{PA_i} \cdot \frac{PB}{PB_i} \cdot \frac{PC}{PC_i} = \frac{AB \cdot BC \cdot CA}{A_B \cdot B_C \cdot C_A} \cdot \frac{AB \cdot BC \cdot C_A}{A_B \cdot B_C \cdot C_A} \cdot \frac{AB \cdot BC \cdot C_A}{A_B \cdot B_C \cdot C_A}
\]
but the last fraction is equal to 1 in conformity to Ceva’s theorem.

Unsolved Problem 6.

Generalize this problem for a polygon.

Problem 7.

Given a triangle \(ABC\) whose angles are all acute (acute triangle), we consider \(A'B'C'\), the triangle formed by the legs of its altitudes.

In which conditions the expression:
\[
\|A'B'\| \cdot \|B'C'\| + \|B'C'\| \cdot \|C'A'\| + \|C'A'\| \cdot \|A'B'\|
\]
is maximum?

![Diagram of triangle ABC with altitudes and coordinates]

Solution 7.

We have
\[
\Delta ABC \sim \Delta A'B'C' \sim \Delta AB'C \sim \Delta A'BC'
\]
We note
\[
\|BA'\| = x, \quad \|CB'\| = y, \quad \|AC'\| = z.
\]
It results that
\[\|A'C\| = a - x, \quad \|B'A\| = b - y, \quad \|C'B\| = c - z \]

\[BAC = B'A'C = B'A'C', \quad ABC = AB'C' = A'B'C, \quad BCA = BC'A' = B'C'A \]

From these equalities it results the relation (1)

\[\Delta A'B'C' \sim \Delta A'B'C \implies \frac{x}{a - x} = \frac{A'C'}{A'B'} \] (2)

\[\Delta A'B'C \sim \Delta AB'C' \implies \frac{c - z}{z} = \frac{A'C'}{B'C'} \] (3)

\[\Delta AB'C' \sim \Delta A'B'C \implies \frac{y}{b - y} = \frac{B'C'}{A'B'} \] (4)

From (2), (3) and (4) we observe that the sum of the products from the problem is equal to:

\[x(a - x) + y(b - y) + z(c - z) = \frac{1}{4}(a^2 + b^2 + c^2) - (x - \frac{a}{2})^2 - (y - \frac{b}{2})^2 - (z - \frac{c}{2})^2 \]

which will reach its maximum as long as \(x = \frac{a}{2}, y = \frac{b}{2}, z = \frac{c}{2} \), that is when the altitudes’ legs are in the middle of the sides, therefore when the \(\Delta ABC \) is equilateral. The maximum of the expression is \(\frac{1}{4}(a^2 + b^2 + c^2) \).

Conclusion: If we note the lengths of the sides of the triangle \(\Delta ABC \) by \(||AB|| = c, ||BC|| = a, ||CA|| = b, \) and the lengths of the sides of its orthic triangle \(\Delta A'B'C' \) by \(||A'B'|| = c', ||B'C'|| = a', ||C'A'|| = b', \) then we proved that:

\[4(a'b' + b'c' + c'a') \leq a^2 + b^2 + c^2. \]

Unsolved Problems 7.

7.1. Generalize this problem to polygons. Let \(A_1A_2...A_m \) be a polygon and \(P \) a point inside it. From \(P \), which is called a pedal point, we draw perpendiculars on each side \(A_iA_{i+1} \) of the polygon and we note by \(A'_i \) the intersection between the perpendicular and the side \(A_iA_{i+1} \). Let’s extend the definition of pedal triangle to a **pedal polygon** in a straight way: i.e. the polygon formed by the orthogonal projections of a pedal point on the sides of the polygon. The pedal polygon \(A'_1A'_2...A'_m \) is formed. What properties does this pedal polygon have?

7.2. Generalize this problem to polyhedrons. Let \(A_1A_2...A_n \) be a polyhedron and \(P \) a point inside it. From \(P \) we draw perpendiculars on each edge \(A_iA_j \) of the polyhedron and we note by \(A_{ij}' \) the intersection between the perpendicular and the side \(A_iA_{ij} \). Let’s name the

1 This is called the **Smarandache's Orthic Theorem** (see [2], [3]).
new formed polyhedron an **edge pedal polyhedron**, $A_1'A_2'...A_n'$. What properties does this edge pedal polyhedron have?

7.3. Generalize this problem to polyhedrons in a different way. Let $A_1A_2...A_n$ be a polyhedron and P a point inside it. From P we draw perpendiculars on each polyhedron face F_i and we note by A_i' the intersection between the perpendicular and the side F_i. Let’s call the new formed polyhedron a **face pedal polyhedron**, which is $A_1'A_2'...A_p'$, where p is the number of polyhedron’s faces. What properties does this face pedal polyhedron have?

Problem 8.
Given the distinct points $A_1,...,A_n$ on the circumference of a circle with the center in O and of ray R.

Prove that there exist two points A_i, A_j such that $\|\overrightarrow{OA_i} + \overrightarrow{OA_j}\| \geq 2R \cos \frac{180°}{n}$

Solution 8.
Because
$$\angle A_1OA_2 + \angle A_2OA_3 + ... + \angle A_{n-1}OA_n + \angle A_nOA_1 = 360°$$
and $\forall i \in \{1,2,...,n\}, \angle A_iOA_{i+2} > 0°$, it result that it exist at least one angle $\angle A_iOA_j \leq \frac{360°}{n}$

(otherwise it follows that $S > \frac{360°}{n} \cdot n = 360°$).

\[\overrightarrow{OA_i} + \overrightarrow{OA_j} = \overrightarrow{OM} \Rightarrow \|\overrightarrow{OA_i} + \overrightarrow{OA_j}\| = \|\overrightarrow{OM}\|\]

The quadrilateral OA_iMA_j is a rhombus. When α is smaller, $\|\overrightarrow{OM}\|$ is greater. As $\alpha \leq \frac{360°}{n}$, it results that $\|\overrightarrow{OM}\| = 2R \cos \frac{\alpha}{2} \geq 2R \cos \frac{180°}{n}$.
Open Problem 8:

Is it possible to find a similar relationship in an ellipse? (Of course, instead of the circle’s radius \(R \) one should consider the ellipse’s axes \(a \) and \(b \).)

Problem 9:

Through one of the intersecting points of two circles we draw a line that intersects a second time the circles in the points \(M_1 \) and \(M_2 \) respectively. Then the geometric locus of the point \(M \) which divides the segment \(M_1M_2 \) in a ratio \(k \) (i.e. \(M_1M = k \cdot MM_2 \)) is the circle of center \(O \) (where \(O \) is the point that divides the segment of line that connects the two circle centers \(O_1 \) and respectively \(O_2 \) into the ratio \(k \), i.e. \(O_1O = k \cdot OO_2 \)) and radius \(OA \), without the points \(A \) and \(B \).

Proof

Let \(O_1E \perp M_1M_2 \) and \(O_2F \perp M_1M_2 \). Let \(O \in O_1O_2 \) such that \(O_1O = k \cdot OO_2 \) and \(M \in M_1M_2 \), where \(M_1M = k \cdot MM_2 \).

We construct \(OG \perp M_1M_2 \) and we make the notations: \(M_1E = EA = x \) and \(AF = FM_2 = y \).

Then, \(AG \equiv GM \), because

\[
AG = EG - EA = \frac{k}{k+1}(x + y) - x = \frac{-x + ky}{k+1}
\]

and

\[
GM = M_1M - M_1A - AG = \frac{k}{k+1}(2x + 2y) - 2x - \frac{-x + ky}{k+1} = \frac{-x + ky}{k+1}.
\]

Therefore we also have \(OM \equiv OA \).

The geometric locus is a circle of center \(O \) and radius \(OA \), without the points \(A \) and \(B \) (the red circle in Fig. 1- called Smarandache’s Circle).

Conversely.
If $M \in (GO, OA) \setminus \{A, B\}$, the line AM intersects the two circles in M_1 and M_2 respectively.

We consider the projections of the points O_1, O_2, O on the line M_1M_2 in E, F, G respectively. Because $OQ = k \cdot OO_2$ it results that $EG = k \cdot GF$.

Making the notations: $M_1E \equiv EA = x$ and $AF \equiv FM_2 = y$ we obtain that

$$M_1M = M_1A + AM = M_1A + 2AG = 2x + 2(EG - EA) =$$

$$= \left[2x + 2 \frac{k}{k + 1}(x + y) - x\right] = \frac{k}{k + 1}(2x + 2y) = \frac{k}{k + 1}M_1M.$$

For $k = 2$ we find the Problem IV from [5].

Open Problem 9.

9.1. The same problem if instead of two circles one considers two ellipses, or one ellipse and one circle.

9.2. The same problem in 3D, considering instead of two circles two spheres (their surfaces) whose intersection is a circle C. Drawing a line passing through the circumference of C, it will intersect the two spherical surfaces in other two points M_1 and respectively M_2.

Conjecture: The geometric locus of the point M which divides the segment M_1M_2 in a ratio k (i.e. $M_1M = k \cdot MM_2$) includes the spherical surface of center O (where O is the point that divides the segment of line that connects the two sphere centers O_1 and respectively O_2 into the ratio k, i.e. $OQ = k \cdot OO_2$) and radius OA, without the intersection circle C.

A partial proof is this: if the line M_1M_2 which intersect the two spheres is the same plane as the line O_1O_2 then the 3D problem is reduce to a 2D problem and the locus is a circle of radius OA and center O defined as in the original problem, where the point A belongs to the circumference of C (except two points). If we consider all such cases (infinitely many actually), we get a sphere of radius OA (from which we exclude the intersection circle C') and centered in O (A can be any point on the circumference of intersection circle C').

The locus has to be investigated for the case when M_1M_2 and O_1O_2 are in different planes.

9.3. What about if instead of two spheres we have two ellipsoids, or a sphere and an ellipsoid?

References:

[1] Cătălin Barbu, *Teorema lui Smarandache*, in his book “Teoreme fundamentale din geometria triunghiului”, Chapter II, Section II.57, p. 337, Editura Unique, Bacău, 2008.

[2] József Sándor, *Geometric Theorems, Diophantine Equations, and Arithmetic Functions*, AR Press, pp. 9-10, Rehoboth 2002.
[3] F. Smarandache, *Nine Solved and Nine Open Problems in Elementary Geometry*, in arXiv.org at http://arxiv.org/abs/1003.2153.

[4] F. Smarandache, *Problèmes avec et sans... problèmes!*, pp. 49 & 54-60, Somipress, Fés, Morocco, 1983.

[5] The Admission Test at the Polytechnic Institute, *Problem IV*, 1987, Romania.

[6] Florentin Smarandache, *Proposed Problems of Mathematics (Vol. II)*, University of Kishinev Press, Kishinev, Problem 58, pp. 38-39, 1997.

[7] Ion Pătraşcu, *On Smarandache’s Circle*, in viXra.org International Scientific Archives, http://vixra.org/abs/1004.0022 and http://vixra.org/pdf/1004.0022v1.pdf

[8] Cătălin Barbu, *Smarandache's Cevian Triangle Theorem in the Einstein Relativistic Velocity Model of Hyperbolic Geometry*, in viXra.org International Scientific Archives, http://vixra.org/abs/1003.0254 and http://vixra.org/pdf/1003.0254v1.pdf

[9] Cătălin Barbu, *Smarandache's Pedal Polygon Theorem in the Poincaré Disc Model of Hyperbolic Geometry*, in viXra.org International Scientific Archives, http://vixra.org/abs/1003.0245 and http://vixra.org/pdf/1003.0245v1.pdf

[10] Cătălin Barbu, *Smarandache’s Cevian Triangle Theorem in The Einstein Relativistic Velocity Model of Hyperbolic Geometry*, Progress in Physics, University of New Mexico, Vol. 3, 69-70, 2010.