Effect of α-Tocopheryloxy Acetic Acid on the Infection of Mice with *Plasmodium berghei* ANKA In Vivo and Humans with *P. falciparum* In Vitro

Nanang R. Ariefta · Aiko Kume · Yoshifumi Nishikawa · Tomoyo Taniguchi · Rika Umemiya-Shirafuji · Shunji Kasai · Hiroshi Suzuki

Received: 24 March 2022 / Accepted: 21 July 2022 / Published online: 11 August 2022

© The Author(s) under exclusive licence to Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2022

Abstract

Purpose Malarial parasites are susceptible to oxidative stress. The effects of α-tocopheryloxy acetic acid (α-TEA), a vitamin E analog, on infection by *Plasmodium berghei* ANKA and *P. falciparum* in mice and human red blood cells (RBCs), respectively, were examined in this study.

Methods For *in vivo* studies in mice, RBCs infected with *P. berghei* ANKA were inoculated via intraperitoneal injection and α-TEA was administered to C57BL/6 J male mice after infection. The blood–brain barrier (BBB) permeability was examined by Evans blue staining in experimental cerebral malaria at 7 days after infection. The *in vitro* inhibitory effect of α-TEA on *P. falciparum* 3D7 (chloroquine-sensitive strain) and K1 (multidrug-resistant strain) was tested using a SYBR Green I-based assay.

Results When 1.5% α-TEA was administered for 14 days after infection, 88% of *P. berghei* ANKA-infected mice survived during the experimental period. Nevertheless, all the control mice died within 12 days of infection. Furthermore, the Evans blue intensity in α-TEA-treated mice brains was less than that in untreated mice, indicating that α-TEA might inhibit the destruction of the BBB and progression of cerebral malaria. The *in vitro* experiment revealed that α-TEA inhibited the proliferation of both the 3D7 and K1 strains.

Conclusion This study showed that α-TEA is effective against murine and human malaria *in vivo* and *in vitro*, respectively. Although α-TEA alone has a sufficient antimalarial effect, future research could focus on the structure–activity relationship to achieve better pharmacokinetics and decrease the cytotoxicity and/or the combined effect of α-TEA with existing drugs. In addition, the prophylactic antimalarial activity of premedication with α-TEA may also be an interesting perspective in the future.

Keywords α-Tocopheryloxy acetic acid · Mice · Red blood cell · *Plasmodium falciparum* · *Plasmodium berghei* · Reactive oxygen species

Background

It is well known that malaria parasites are sensitive to oxidative stress, since reactive oxygen species (ROS) lead to the hemolysis of host erythrocytes and parasite death [1, 2]. ROS also induces programmed cell death in Plasmodium parasites [3]. One vitamin E derivative, α-tocopheryl succinate (α-TOS), which is synthesized by esterification of α-tocopherol, leads to the production of ROS and exhibits anticancer activity in mice [4–7]. Previous studies have demonstrated that α-TOS inhibits mitochondrial complex II, resulting in the generation of ROS, which triggers selective apoptosis in malignant cells, while it appears to be nontoxic.
to normal cells [8–16]. In addition, cells lacking mitochondrial respiratory chain activity are not sensitive to α-TOS toxicity [11–14]. In murine malaria infection, administration of α-TOS after infection with *Plasmodium yoelii* 17XL or *P. berghei* ANKA resulted in a significant increase in host survival [17]. However, because α-TOS is decomposed by an esterase, its low stability and clinical application are challenging. Recently, significant antimalarial effects of α-tocopheryloxy acetic acid (α-TEA), a stable vitamin E derivative [18], on *P. yoelii* 17XL infection have been reported in mice [19]. The α-TEA compound has an ether bond and is not degraded by esterase, making it suitable for oral administration [20, 21]. Alpha-TEA stimulates mitochondria to generate ROS and induces apoptosis in tumor cells [22–25]. Since α-TEA has a more profound inhibitory effect on breast cancer than α-TOS and is more stable in plasma [18], it was predicted that the stimulatory effect of α-TEA on mitochondria [26] and the associated responses, such as ROS generation, apoptosis induction, and autophagy stimulation [23], could have some effect on malaria infection [19].

In this study, to determine whether α-TEA is an appropriate antimalarial drug candidate, C57BL/6 J male mice were infected with *P. berghei* ANKA, a lethal strain of murine malaria and experimental cerebral malaria, and treated with α-TEA. In addition, to analyze whether the antiprotozoal effects were the result of modification of the physiology of the host or a direct effect on the protozoan, the effect of α-TEA on the growth of *P. falciparum* in *vitro* and the cytotoxic effect of α-TEA on fibroblast and red blood cells were also examined.

Materials and Methods

Experimental infection with *P. berghei* ANKA was carried out using C57BL/6 J male mice (Japan CLEA, Tokyo, Japan) at biosafety level 2 in a specific pathogen-free facility. The room temperature (24 ± 1 °C) and humidity (50 ± 10%) were adjusted, and the lighting was controlled (lights on from 7 AM to 7 PM). The mice were allowed free access to water and a diet (CA-1; CLEA Japan, Tokyo, Japan). The animals used in this study were handled and cared for in accordance with the “Guiding Principles for the Care and Use of Research Animals” established by Obihiro University of Agriculture and Veterinary Medicine, Japan. All animal experimental procedures were approved by the Obihiro University of Agriculture and Veterinary Medicine Institutional Animal Ethics Committee (ethical approval number #29–86, April 14, 2017; #18–112, May 16, 2018; #19–130, May 23, 2019).

Alpha-TEA (molecular weight 488.75 g/mol) distributed by Eisai (Eisai Co., Ltd., Tokyo, Japan) was mixed with the diet [0.75% and 1.5% (w/w) of α-TEA] and fed to 8 week-old C57BL/6 J male mice (23–25 g body weight) for 14 days after infection. Drug concentrations were determined based on the results of preliminary experiments. The day of infection was defined as Day 0. The mixed diet was outsourced to Oriental Yeast Co. Ltd. (Tokyo, Japan).

For parasite infection, 4 × 10⁴ *P. berghei* ANKA-infected red blood cells (iRBCs) were intraperitoneally injected into mice and their survival rates and parasitemia were monitored. On day 4 post-infection, 2 μL of blood was collected from the tip of the tail, smeared on a glass slide, and stained with Giemsa (Sigma–Aldrich, Tokyo, Japan). The percentage of infected erythrocytes to total erythrocytes (parasitemia) was determined using a phase contrast microscope (DIAPHOTO-TMD300, Nikon, Tokyo, Japan). More than 1,000 red blood cells (RBCs) were counted in each mouse to assess parasitemia. On day 7 after infection, the permeability of the blood–brain barrier (BBB) was evaluated by Evans blue staining as follows: 0.1 mL of 2% (w/v) Evans blue (056–04061; FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) dissolved in PBS was injected into infected mice with or without treatment with α-TEA through the tail vein. Two hours after injection the mice were sacrificed, and brain samples were collected.

Survival rates were analyzed using log-rank (Mantel-Cox) and Gehan-Breslow-Wilcoxon tests implemented in GraphPad Prism 5. Parasitemia was analyzed using a one-way analysis of variance and Tukey’s test. A value of *P* < 0.05 was considered statistically significant.

Experimental *in vitro* infections with *P. falciparum* 3D7 and K1 were performed using human O + RBCs (Japanese Red Cross Society, Hokkaido, Japan). Both parasites were maintained in complete Roswell Park Memorial Institute-1640 medium (RPMI-1640, Sigma–Aldrich, MO, USA), containing, per liter, 6 g HEPES (Sigma–Aldrich, MO, USA), 25 mg hypoxanthine (Wako, Osaka, Japan), 2 g NaHCO₃ (Wako, Osaka, Japan), 250 μL of 50 mg/ml gentamicin solution (Gibco, CA, USA), and 5 g AlbuMax™ II Lipid-Rich BSA (Gibco, CA, USA). The medium was changed daily and parasitemia was monitored using Giemsa-stained thin blood smears (Merck, Darmstadt, Germany). Malarial parasite culture in human blood was approved by the ethical committee of Obihiro University of Agriculture and Veterinary Medicine (#2013-04-3).

In vitro growth inhibition of *P. falciparum* 3D7 and K1 was performed using the SYBR Green I-based fluorescence assay (SYBR® Green I Nucleic Acid Stain 10,000×, ME, USA) as previously described [27, 28]. Briefly, test compounds were prepared in complete media at eight final concentrations (two-fold serial dilution) ranging from 100 to 0.78 μM. Chloroquine diphosphate (molecular weight 515.86 g/mol; Sigma–Aldrich, MO, USA) was used as the reference drug. Before use, the parasites’ life
cycle was synchronized by treatment with 5% D-sorbitol to obtain ≥ 90% ring-stage parasites. Synchronous parasites (50 μL) at 0.5% parasitemia and 2% hematocrit were seeded in a 96-well plate containing 50 μL of the test compounds. The 96-well plates were incubated for 72 h at 37 °C in 5% CO₂, 5% O₂, and 90% N₂. Next, 100 μL of lysis buffer containing 1 × SYBR Green I was added to each well, mixed by pipetting, and then incubated in the dark at room temperature for 2 h. Fluorescence intensities were measured using a Fluoroskan Ascent instrument (Thermo Scientific, MA, USA) at excitation and emission wavelengths of 485 and 518 nm, respectively. Cells treated with 1% (v/v) DMSO were used as a negative control, and wells containing only test compounds and erythrocytes were used to correct the background signals. The inhibition assays were performed in quadruplicate for each concentration and repeated three independent times. The half-maximal inhibitory concentration (IC₅₀) values were analyzed using nonlinear regression analysis implemented in GraphPad Prism 8.

Human foreskin fibroblast cells (HFFs) were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Sigma–Aldrich, MO, USA) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin solution (× 100, Wako, Osaka, Japan) at 37 °C and 5% CO₂ in air. A cell viability assay was used to evaluate the cytotoxic effects of the tested compounds, as previously described [27]. Briefly, the cell suspension was seeded in a 96-well plate at a density of 1 × 10⁴ cells/well in DMEM with 10% FBS and incubated for 48 h at 37 °C and 5% CO₂ in air. Then, two-fold dilutions (total eight concentrations) of the test compounds in DMEM were added in quadruplicate to each well and incubated for an additional 72 h. Cell Counting Kit-8 (CCK-8) was added and incubated for an additional 3 h at 37 °C and 5% CO₂ in air, and the absorbance was measured at 450 nm. The tests were independently repeated three times. The half-maximal cytotoxic concentration (CC₅₀) values were analyzed using nonlinear regression analysis implemented in GraphPad Prism 8.

The human RBC hemolysis assay was performed as previously described [29]. Briefly, each test compound was prepared in 1 × phosphate-buffered saline (PBS) at a desired concentration in a 96-well plate, and 3% RBCs suspension in PBS was added. The plate was incubated for 3 h at 37 °C in 5% CO₂, 5% O₂, and 90% N₂ and then centrifuged at 1300 × g for 5 min. Finally, 100 μL of the supernatant of each mixture was transferred to a new 96-well plate, and the absorbance was recorded at 540 nm. PBS (with 1% DMSO and RBC lysis buffer (0.83% NH₄Cl; 0.01 M Tris–HCl, pH 7.2) were used as negative and positive controls, respectively. The hemolysis rate of RBCs was calculated using the following formula:

\[
\text{Hemolysis rate} = \left(\frac{A_{\text{sample}} - A_{\text{negative control}}}{A_{\text{positive control}} - A_{\text{negative control}}} \right) \times 100,
\]

where A stands for absorbance. The experiments were performed in technical quadruplicates and independently repeated three times.

Results

As shown in Fig. 1A, the effect of the administration of α-TEA on the survival of *P. berghei* ANKA-infected mice was remarkable. Although the parasitemia of 0.75% α-TEA-treated mice was found to be significantly lower than that of the untreated group on day 10 after infection (P < 0.05; Fig. 1B), both control and 0.75% α-TEA-treated mice died within 12 days after infection (P < 0.05; Fig. 1A). Remarkably, when 1.5% α-TEA was mixed with the diet for the 14 days following infection, 88% of *P. berghei* ANKA-infected mice survived the experimental period. In fact, the proportion of parasitemia in this group of mice was

![Fig. 1](image-url)

Fig. 1 Effect of α-TEA mixed with diet on mice survival (A) and parasitemia (B) following *P. berghei* ANKA infection. A concentration of 0.75% and 1.5% (w/w) α-TEA was mixed with diet and fed to C57BL/6 J mice for 14 days after infection with 4 × 10⁴ *P. berghei* ANKA-infected red blood cells (RBCs.) Error bars indicate standard error. * indicates P < 0.05 on 1.5% (w/w) α-TEA vs untreated group; # indicates P < 0.05 on 1.5% (w/w) vs 0.75% (v/v) α-TEA group.
Acta Parasitologica (2022) 67:1514–1520

1517

significantly lower than that of the control group on days 4, 8, and 10 following infection (P < 0.05). Seven days after infection, Evans blue staining was observed to be maximal in the mice from the untreated group, while staining intensity was dramatically attenuated by 0.75 and 1.5% α-TEA treatment (Fig. 2).

The in vitro effects of α-TEA are summarized in Tables 1 and 2 and are shown in Fig. 3. The proliferation of *P. falciparum* was inhibited by α-TEA in both 3D7 (IC$_{50}$ 13.89 ± 1.16 µM) and K1 (IC$_{50}$ 15.51 ± 0.56 µM) strains. The cytotoxicity of α-TEA against human foreskin fibroblast (HFF) cells showed the cytotoxic concentration CC$_{50}$ value of 80.41 ± 17.24 µM, resulting in the selectivity indexes (SI) of 5.79 and 5.18 for *P. falciparum* 3D7 and K1, respectively. Furthermore, at a concentration of 100 µM, α-TEA exhibited an RBC hemolysis rate of 14.70 ± 1.12%.

Discussion

This study reports a significant effect for α-tocopheryloxy acetic acid (α-TEA) on the treatment of infection by *P. berghei* ANKA in mice. To date, α-TEA has been studied mainly for its antitumor effect [22–25, 30], but the results of this study showed an antiprotozoal effect for this compound on *P. yoelii* 17XL infection in mice [19]. When α-TEA was mixed with the diet and orally administered to *P. yoelii* 17XL-infected mice, their survival was almost completely maintained and the parasites were eradicated from their blood cells [19]. In *P. berghei* ANKA-infected mice, a lower dosage of α-TEA (0.75%) showed similar kinetics to control mice in both survival rate and parasitemia (Fig. 1). However, when the infected mice were treated with a higher dose of α-TEA (1.5%) for 14 days after infection, their survival was significantly higher and parasitemia was significantly lower than those in the control and 0.75% α-TEA-treated groups (Fig. 1). These data suggest that it may be possible to maintain low levels of parasitemia by increasing the α-TEA concentration in the blood stream immediately before the elevation of parasitemia after the moment of infection. It is not easy to explain what causes such a high survival rate accompanied by high parasitemia, but it is a common phenomenon in treated mice that have overcome lethality in the early or middle stages of murine malaria infection [31–33]. It has been reported that treatment with 50 mM α-TOS after *P. berghei* ANKA infection significantly increased

![Image](https://example.com/image1)

Fig. 2 Permeability of blood–brain barrier (BBB) in mice infected with *P. berghei* ANKA assessed by Evans blue staining. Evans blue solution was injected to infected mice through tail vein on day 7 following infection. After 2 h following injection, mice were sacrificed and dissected. Brains were taken from untreated mice infected with *P. berghei* ANKA (control; upper panel) and from 0.75 and 1.5% (w/w) α-TEA-treated mice infected with *P. berghei* ANKA (middle and lower panels, respectively). Each brain is representative of the mean coloration of its treatment group.

Table 1 In vitro examinations of α-TEA and chloroquine against *P. falciparum*, HFF cells, and RBC hemolysis rate*

Compound	IC$_{50}$ P. falciparum (µM)	CC$_{50}$ HFF Cells (µM)	SI	RBCs Hemolysis Rate (%) at 100 µM	
	3D7	K1			
α-TEA	13.89 ± 1.16	15.51 ± 0.56	80.41 ± 17.24	5.79	5.18
Chloroquine	0.027 ± 0.002	0.740 ± 0.055	26.69 ± 6.58	988.52	36.07

*Values are mean ± SD from three independent experiments

Table 2 The RBCs hemolysis rate of α-TEA at various concentrations*

Concentration (µM)	400	200	100	50	25	12.5	6.25	3.125
Hemolysis Rate (%)	55.23± 7.80	24.09± 0.70	14.70± 1.12	5.76± 1.41	2.15± 0.37	0.75± 0.18	0.19± 0.22	0.20± 0.78

*Values are mean ± SD from three independent experiments
host survival in mice [17]. The median survival time of the solvent- and 50 mM α-TOS-treated mice infected with *P. berghei* ANKA was 8.0 and 11.5 days after infection, respectively [17]. The effect of α-TEA on *P. berghei* ANKA infection was greater than that of α-TOS. In our study, approximately 90% of the infected mice treated with 1.5% α-TEA survived throughout the experimental period (Fig. 1A). As α-TEA is not hydrolyzed and has good stability [20, 21], it may be a candidate antimalarial drug.

To investigate if the antiprotozoal effect of α-TEA was the result of modifying the host physiology or a direct impact on the protozoan, the effect of α-TEA on *P. berghei* ANKA infection was greater than that of α-TOS. In our study, approximately 90% of the infected mice treated with 1.5% α-TEA survived throughout the experimental period (Fig. 1A). As α-TEA is not hydrolyzed and has good stability [20, 21], it may be a candidate antimalarial drug.

To investigate if the antiprotozoal effect of α-TEA was the result of modifying the host physiology or a direct impact on the protozoan, the effect of α-TEA on *P. falciparum* in vitro growth was examined. The resulting IC\textsubscript{50} values against 3D7 (13.89 ± 1.16 μM) and K1 (15.51 ± 0.56 μM) strains’ infection were close to those previously reported for plasma α-TEA concentration (10 μg/ml, which is equal to 20.46 μM) on the mice orally administered with 10 mg/day for 3 days [19], indicating that α-TEA was affecting the parasite proliferation in mice. Furthermore, the rupture of the erythrocytes, which releases hemoglobin, will cause harm to numerous vital organs, including the liver, kidney, and heart, and therefore, monitoring the hemolytic activity of the tested compound is a crucial factor in avoiding the increasing toxic effect when administered for treatment [34]. To date, no reported clear criteria about the safety threshold for hemolysis rate in any mammalian erythrocytes, including humans. Referring to the plasma concentration of α-TEA, as mentioned earlier, in vitro hemolysis test exhibited a relatively low hemolysis rate (2.15 ± 0.37% at 25 μM of α-TEA). The HFF cytotoxicity data (CC\textsubscript{50} 80.41 ± 17.24 μM, Table 2) were also considered at a safe range based on the plasma concentration and resulting SI values. For further preclinical trails, it is essential to ensure that the dose required to kill malaria parasite is not harmful in host. In previous study for safety assessment of α-TEA in mice, there was no mortality, and no clinical signs of toxicity in the α-TEA doses of 100,
300, or 1500 mg/kg/day by daily oral gavage for 28 days. Histopathological evaluation of major organs (heart, lung, kidney, liver, spleen, jejunum, ileum, and cecum) revealed no significant α-TEA treatment-related lesions. Blood counts revealed low-grade anemia, but no other significant differences between treatment and control groups [35].

Collectively, our results indicate that the antimalarial effect of α-TEA was caused by its direct impact on parasites (Table 1 and Fig. 3). Parasites may consume α-TEA from plasma and erythrocyte membranes. Similarly, in preliminary experiments, the in vitro proliferation of trypanosomes after α-TEA treatment was significantly inhibited compared with that after control treatment (no α-TEA), suggesting that α-TEA has a direct effect on trypanosomes (Supplementary Figure). In addition, α-TEA induces the production of ROS, such as hydroxyl radicals and peroxynitrite, in protozoans [36]. Oxidative stress may inhibit parasite growth. We hypothesize that parasites exposed to α-TEA accumulate ROS by interference of this molecule with the mitochondrial redox chain and by stimulation of the intrinsic apoptotic pathway. Endothelial cells lacking mitochondrial DNA are resistant to α-TEA, both in the accumulation of ROS, induction of apoptosis, and maintenance of their angiogenic potential [37].

Conclusion

This study showed that α-TEA is effective against murine and human malaria in vivo and in vitro, respectively. Although α-TEA alone has a sufficient antimalarial effect, future research could focus on the structure–activity relationship to achieve better pharmacokinetics and decrease the cytotoxicity and/or the combined effect of α-TEA with existing drugs. In addition, the prophylactic antimalarial activity of premedication with α-TEA may also be an interesting perspective in the future.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s11686-022-00604-7.

Acknowledgements

The authors would like to thank Editage (www.editage.com) for English language editing.

Author Contributions

The research was designed by HS, AK, YN, and SK. Laboratory experiments were performed by NA and AK. The manuscript was written by HS, TT, YN, and RU-S. All the authors have read and agreed to the published version of the manuscript.

Funding

A part of this work was supported by grant from the Naito Foundation.

Availability of Data and Material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics Approval

The animals used in this study were treated and cared for based on the Guiding Principles for the Care and Use of Research Animals established by Obihiro University of Agriculture and Veterinary Medicine. All animal experimental protocols were approved by the Institutional Animal Ethics Committee, Obihiro University of Agriculture and Veterinary Medicine.

Consent for Publication

Not applicable.

References

1. Friedman MJ (1979) Oxidant damage mediates variant red cell resistance to malaria. Nature 280:245–247. https://doi.org/10.1038/280245a
2. Clark IA, Hunt NH (1983) Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect Immun 39:1–6. https://doi.org/10.1128/aii.39.1.1-6.1983
3. Gunjan S, Singh SK, Sharma T, Dwivedi H, Chauhan BS, Imran Siddiqui M, Tripathi R (2016) Meltoquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium. Apoptosis 21:955–964. https://doi.org/10.1007/s10495-016-1265-y
4. Kline K, Yu W, Sanders BG (2004) Vitamin E and breast cancer. J Nutr 134(Supplement):3458S–3462S. https://doi.org/10.1093/jn/134.12.3458S
5. Neuzil J, Dong LF, Ramanathapuram L, Hahn T, Chladova M, Wang XF et al (2007) Vitamin E analogues as a novel group of mitocans: anti-cancer agents that act by targeting mitochondria. Mol Aspects Med 28:607–645. https://doi.org/10.1016/j.mam.2007.02.003
6. Wang XF, Witting PK, Salvatore BA, Neuzil J (2005) Vitamin E analogs trigger apoptosis in HER2/erbB2-overexpressing breast cancer cells by signaling via the mitochondrial pathway. Biochem Biophys Res Commun 326:282–289. https://doi.org/10.1016/j.bbrc.2004.11.028
7. Wang XF, Birringer M, Dong LF, Veprek P, Low P, Swettenham E et al (2007) A peptide conjugate of vitamin E succinate targets breast cancer cells with high erbB2 Expression. Cancer Res 67:3337–3344. https://doi.org/10.1158/0008-5472.CAN-06-2480
8. Qian M, Sanders BG, Kline K (1996) RRR-alpha-tocopheryl succinate induces apoptosis in avian retrovirus-transformed lymphoid cells. Nutr Cancer 25:9–26. https://doi.org/10.1080/01635589609514424
9. Neuzil J, Weber T, Schröder A, Lu M, Ostermann G, Gellert N et al (2001) Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15:403–415. https://doi.org/10.1096/fj.00-2515com
10. Weber T, Lu M, Andera L, Lahm H, Gellert N, Fariss MW et al (2002) Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (apo2 ligand) in vivo. Clin Cancer Res 8:863–869
11. Weber T, Dalen H, Andera L, Nègre-Salvayre A, Augé N, Sticha M et al (2003) Mitochondria play a central role in apoptosis induced by alpha-tocopheryl succinate, an agent with antineoplastic activity: comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42:4277–4291. https://doi.org/10.1021/bi020527j
12. Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK et al (2008) Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27:4324–4335. https://doi.org/10.1038/onc.2008.69

13. Dong LF, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M et al (2009) Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15:1593–1600. https://doi.org/10.1158/1078-0432.CCR-08-2439

14. Bellezza I, Grottelli S, Gatticchi L, Mierla AL, Minelli A (2014) α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene 539:1–7. https://doi.org/10.1016/j.gene.2014.02.009

15. Yan B, Stantic M, Zobalova R, Bezwark-Geleta A, Stapelberg M, Stursa J et al (2015) Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer 15:401. https://doi.org/10.1186/s12885-015-1394-7

16. Neuzil J (2002) Alpha-tocopheryl succinate epitomizes a compound with a shift in biological activity due to pro-vitamin-to-vitamin conversion. Biochem Biophys Res Commun 293:1309–1313. https://doi.org/10.1016/S0006-291X(02)00358-3

17. Kume A, Kasai S, Furuya H, Suzuki H (2018) α-Tocopheryl succinate-suppressed development of cerebral malaria in mice. Parasitol Res 117:3177–3182. https://doi.org/10.1007/s00436-018-6016-2

18. Dong LF, Grant G, Massa H, Zobalova R, Akporiaye E, Neuzil J (2012) α-Tocopherylxyloxyacetic acid is superior to α-tocopheryl succinate in suppressing HER2-high breast carcinomas due to its higher stability. Int J Cancer 131:1052–1058. https://doi.org/10.1002/ijc.26489

19. Kawamura K, Kume A, Umemiya-Shirafuji R, Kasai S, Suzuki H (2011) Effect of α-tocopherylxyloxy acetic acid, a vitamin E derivative mitocan, on the experimental infection of mice with Plasmodium yoelii. Malar J 20:280. https://doi.org/10.1186/s12936-021-03817-9

20. Lawson KA, Anderson K, Menchaca M, Atkinson J, Sun L, Knight V et al (2003) Novel vitamin E analogue decreases syngeneic mouse mammary tumor burden and reduces lung metastasis. Mo Cancer Ther 2:437–444

21. Hahn T, Szabo L, Gold M, Ramanathapuram L, Hurley LH, Akporiaye ET (2006) Dietitian administration of the proapoptotic vitamin E analogue α-tocopherylxyloxyacetic acid inhibits metastatic murine breast cancer. Cancer Res 66:9374–9378. https://doi.org/10.1158/0008-5472.CAN-06-2403

22. Jia L, Yu W, Wang P, Sanders BG, Kline K (2008) In vivo and in vitro studies of anticancer actions of alpha-TEA for human prostate cancer cells. Prostate 68:849–860. https://doi.org/10.1002/prot.20750

23. Li Y, Hahn T, Garrison K, Cui ZH, Thorburn A, Thorburn J et al (2012) The vitamin E analogue α-TEA stimulates tumor autophagy and enhances antigen cross-presentation. Cancer Res 72:3535–3545. https://doi.org/10.1158/0008-5472.CAN-11-3103

24. Yao J, Gao P, Xu Y, Li Z (2016) α-TEA inhibits the growth and motility of human colon cancer cells via targeting RhoA/ROCK signaling. Mol Med Rep 14:2534–2540. https://doi.org/10.3892/mmr.2016.5525

25. Yu W, Tiwary R, Li J, Park SK, Jia L, Xiong A et al (2010) α-TEA induces apoptosis of human breast cancer cells via activation of TRAIL/DR5 death receptor pathway. Mol Carcinog 49:964–973. https://doi.org/10.1002/mc.20681

26. Rodríguez-Enríquez S, Hernández-Esquível L, Marín-Hernández A, Dong LF, Akporiaye ET, Neuzil J et al (2012) Molecular mechanism for the selective impairment of cancer mitochondrial function by a mitochondrially targeted vitamin E analogue. Biochim Biophys Acta 1817:1597–1607. https://doi.org/10.1016/j.bbapap.2012.05.005

27. Leesommb A, Iijima M, Pagmadulab M, Orkhon B, Doi H, Issiki K et al (2021) Metacyctofillin has potent anti-malarial activity. Parasitol Int 81:102267. https://doi.org/10.1016/j pariint.2020.102267

28. Smilkstein M, Srivilaijaroen N, Kelly JX, Wilairat P, Riscom M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806. https://doi.org/10.1128/AAC.48.5.1803-1806.2004

29. Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H et al (2013) Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J Vis Exp 73:e50166. https://doi.org/10.3791/50166

30. Hahn T, Akporiaye ET (2013) α-TEA as a stimulator of tumor autophagy and enhancer of antigen cross-presentation. Autophagy 9:429–431. https://doi.org/10.4161/auto.22969

31. Herbas MS, Ueta YY, Ichikawa C, Chiba M, Ishibashi K, Shichiri M, Fukushima S, Yoyokama N, Takeya M, Xuan X, Arai H, Suzuki H (2010) Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice. Malar J 9:101. https://doi.org/10.1186/1475-2875-9-101.PMID:20403155; PMCID:PMC2862040

32. Herbas MS, Shichiri M, Ishida N, Kume A, Hagihara Y, Yoshida S, Suzuki H (2015) Probucol-induced α-tocopherol deficiency protects mice against malaria infection. PLoS ONE 10:e0136014. https://doi.org/10.1371/journal.pone.0136014.PMID:26296197; PMCID:PMC456625

33. Kume A, Anh DT, Shichiri M, Ishida N, Suzuki H (2016) Probucol dramatically enhances dihydroartemisinin effect in murine malaria. Malar J 15:472. https://doi.org/10.1186/s12936-016-1532-y

34. de Senna Pereira VS, Silva de Oliveira CB, Fumagalli F, da Silva EF, da Silva NB, de Andrade-Neto VF (2016) Cytotoxicity, hemolysis and in vivo acute toxicity of 2-hydroxy-3-antilino-1,4-naphthoquinone derivatives. Toxicol Reports 2016(3):756–762. https://doi.org/10.1016/j.toxrep.2016.09.007

35. Hahn T, Akporiaye ET (2012) Repeat dose study of the novel proapoptotic chemotherapeutic agent alpha-tocopheryloxoy acetic acid in mice. Anti Cancer Drugs 23:455–464. https://doi.org/10.1097/CAD.0b013e328346d271

36. Kawamura K, Suzuki H (2022) Unpublished work.

37. Dong LF, Swettenham E, Eliasson J, Wang XF, Gold M, Medunic R et al (2012) Repeat dose study of the novel proapoptotic chemotherapeutic agent alpha-tocopheryloxyacetic acid in mice. Anti Cancer Drugs 23:455–464. https://doi.org/10.1097/CAD.0b013e328346d271

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.