Dimension reduction in recurrent networks by canonicalization

Lyudmila Grigoryeva¹, and Juan-Pablo Ortega²

Abstract

Many recurrent neural network machine learning paradigms can be formulated using state-space representations. The classical notion of canonical state-space realization is adapted in this paper to accommodate semi-infinite inputs so that it can be used as a dimension reduction tool in the recurrent networks setup. The so-called input forgetting property is identified as the key hypothesis that guarantees the existence and uniqueness (up to system isomorphisms) of canonical realizations for causal and time-invariant input/output systems with semi-infinite inputs. Additionally, the notion of optimal reduction coming from the theory of symmetric Hamiltonian systems is implemented in our setup to construct canonical realizations out of input forgetting but not necessarily canonical ones. These two procedures are studied in detail in the framework of linear fading memory input/output systems. Finally, the notion of implicit reduction using reproducing kernel Hilbert spaces (RKHS) is introduced which allows, for systems with linear readouts, to achieve dimension reduction without the need to actually compute the reduced spaces introduced in the first part of the paper.

Key Words: recurrent neural network, reservoir computing, dimension reduction, state-space system, canonicalization, echo state network, ESN, linear recurrent network, machine learning, echo state property.

1 Introduction

State-space models are of widespread use in the construction of input/output systems in many application contexts. The Markovian nature of the state equation makes them particularly convenient in the construction of efficient simulation algorithms without preventing the possibility of encoding long-memory type behaviors. These models were first introduced in the context of systems and control theory [Kalm 59b, Kalm 59a, Kalm 60a, Kalm 62, Baum 66, Kalm 10] and met spectacular success in all sorts of industrial, military, and scientific applications in relation to filtering, smoothing, and forecasting (see [Kalm 60b, Kalm 61, Hutc 84, Durb 12, Sark 13] and references therein for just a few examples).

More recently, these systems have reemerged in the context of the machine learning of dynamic processes as powerful recurrent network paradigms. The question of interest in this framework is the learning or the estimation of the parameters of a state-space system out of finite-length realizations of the input and output processes. This learning problem is, to some extent, just a reformulation of the non-linear identification problem that has been thoroughly studied in systems and control theory.

¹Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.
²Division of Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371. Juan-Pablo.Ortega@ntu.edu.sg
Dimension reduction in recurrent networks by canonicalization

[Sand 78, Sont 79, Dang 84, Nare 90, Matt 94, Lind 15] as well as in the theory of empirical processes [Duff 97].

Despite these similarities, there are new problems that need to be seriously addressed when using state-space systems in the machine learning context. For instance, much of the systems theory literature is dedicated to the characterization of the controllability question for invertible systems and formulated using a prescribed initial or final condition (see [Flie 81, Norm 83, Jaku 90] for an in-depth study of the discrete-time case). However, in most machine learning situations, it is more appropriate to work using semi-infinite temporal traces towards the past in which the dependence on initial conditions disappears. This feature arises in the presence of time-invariant input/output systems and stationary stochastic processes, and it is a crucial element in the formulation of the fading memory property that pervades many modeling situations. Additionally, most systems that are considered in applications are subsystems of a Markovian system that, generically, exhibit a functional dependence on the infinite past.

Another distinctive feature of state-space models in the learning framework is the use of randomization. Early in the application of these models as recurrent networks, important difficulties were identified at the time of their training using classical gradient descent (backpropagation-type) methods having to do with bifurcation phenomena [Doya 92] in these intrinsic dynamical models. Recent progress in the regularization and training of recurrent structures (see, for instance [Grav 13, Pasc 13, Zare 14], and references therein) solves to some extent some of these non-convergence problems. A different approach to circumvent this question, specially in data-intensive applications, is to use randomly generated state equations and to only train the time-independent observation equation that is selected out of a functionally simple (preferably linear) family. This revolutionary idea has its origin in static frameworks like, for instance, in the seminal works on random feature models [Rahi 07] and Extreme Learning Machines [Huan 06]. This philosophy was extended to the dynamical context that we are interested in this paper under the names of reservoir computing (RC) [Jaeg 10, Jaeg 02, Jaeg 04] and liquid state machines [Maas 02, Maas 11] and has proved to be very successful in a great variety of empirical classification and forecasting applications (see, for instance, [Jaeg 04, Wyff 08, Luko 09, Wyff 10, Bute 13, Grig 14, Lu 18, Path 18a, Path 18b]).

These empirical discoveries have motivated an intense activity in the theoretical front to understand, quantify, and optimize the information processing abilities of state-space systems. An important body of work has to do with the assessment of the memory and forecasting abilities of these constructions in terms of their architectures and dependence properties of the input signals [Jaeg 02, Whit 04, Gang 08, Herm 10, Damb 12, Bara 14, Grig 14, Grig 15, Coui 16, Grig 16b, Park 16, Goud 16, Grig 16a, Xue 17, Char 17, Marz 17, Verz 19, Gono 20b]. Additionally, memory capacities have been extensively compared with other related concepts like Fisher information-based criteria [Tino 13, Livi 16, Tino 18].

In a more learning theoretical note, much progress has been done in the last years in the understanding of the universal approximation and the generalization properties of this approach. By now, we can find in the literature many families of state-space systems that have been proved to be universal approximants in different contexts. For example, when inputs are deterministic and uniformly bounded, universality has been proved for linear systems with polynomial observation equations [Boyd 85, Grig 18b], state-affine systems (SAS) [Grig 18b], the echo state networks (ESNs) [Grig 18a, Gono 21] introduced in [Matt 92, Matt 94, Jaeg 04], the so-called signature state-affine systems (SigSAS) [Cuch 20] that encode in state-space form the truncation of Volterra series expansions, or the temporal convolutional networks [Hans 19]. These results have been extended to a stochastic setup in [Gono 20d] and also exist in the context of the approximation of dynamical systems with a compact phase space [Hart 20, Hart 21, Grig 21a, Grig 21b]. By now, risk [Gono 20c] and approximation [Gono 20a] bounds exist for some of these systems similar to those that can be formulated, for instance, in the context of shallow neural networks or other static machine learning paradigms.

In this paper we focus on another machine learning aspect of major importance in the practical
use of reservoir computing and state-space systems, namely, \textit{dimension reduction}. Given a machine learning paradigm, the dimension reduction problem consists of generically finding a system with reduced complexity that exhibits equivalent or almost equivalent approximation properties. For example, in the feedforward neural networks context, there exist standard pruning techniques [Hayk 09] that determine which neurons can be eliminated in a given network configuration when they are not relevant for a given approximation task. Other widespread strategies consist in using principal components analysis or random projections in the spirit of [John 84] (see [Cuch 20] for a first step in the use of these techniques in reservoir computing).

In the framework of mechanical and controlled systems, dimension reduction is a classical and well-studied subject that goes back to Jacobi’s elimination of the node in multi-body celestial mechanics in the nineteenth century. In that setup, dimension reduction is, most of the time, associated with the use of the conserved quantities associated to the symmetries of a given system and that are encoded in the level sets of a momentum map [Kost 66, Sour 66, Sour 69, Smal 70]. Dimension reduction is generically obtained by restricting the dynamics to invariant manifolds and by projecting it onto the orbit space with respect to the residual symmetry that leaves those invariant. In the context of autonomous systems, this procedure is referred to as \textit{Marsden-Weinstein reduction} [Mars 74]; see [Orte 04, Mars 07] for self-contained presentations of this beautiful theory. Part of these mostly differential geometric techniques for dimension reduction has been extended to controlled systems. See, for instance, [Scha 81, Nijm 82, Griz 85, Scha 87, Blan 04, Gay 11, Ohsa 13, Bloc 15] and references therein.

Many reservoir computing applications like, for instance, those in [Jaeg 04, Lu 18, Path 18a, Path 18b] require the use of systems with state-space dimensions in the thousands that, generically, present no symmetries that could be used for reduction. This motivates the investigation of another natural dimension reduction related notion, this time only applicable to state-space systems, namely that of \textit{canonicalization}. The idea behind it is based on the observation that since the state-space representation of input/output systems is not unique, one should choose the most “economical” one in which “unused” states are dropped from the representation and those that are “undistinguishable” from a dynamical point of view are identified by the passage to a quotient space. These “optimal” state-space representations are called \textit{canonical realizations}, and in the context of forward looking systems it can be proved that they exist and are unique up to system isomorphisms. This result is usually called the \textit{Canonical Realization Theorem} (see for instance [Matt 92, Chapter 2]).

The main goal of this paper is extending these canonicalization results to the context of time-invariant and causal input/output systems with semi-infinite inputs and, moreover, to obtain a Canonical Realization Theorem in this framework out of a reduction approach similar to the one introduced in [Orte 02a, Orte 02b]. More explicitly, the paper contains two main canonicalization results:

- A \textit{Canonical Realization Theorem} (Theorem 3.2) for input/output systems. This result shows that any \textit{causal and time-invariant} filter that has the so-called \textit{input forgetting property} admits a canonical state-space realization that is unique up to system isomorphisms. The input forgetting property (also referred to in the literature as the \textit{unique steady-state property}) is a modeling feature that appears profusely in applications and that can be obtained out of the so-called \textit{fading memory property} (see [Boyd 85, Grig 19] for a detailed discussion about these concepts). An important merit of Theorem 3.2 is identifying the input forgetting property as the key concept that leads to the availability of canonical realizations in the presence of semi-infinite inputs. Additionally, it constitutes a result of great generality as it provides a constructive procedure for the design of state-space realizations for a vast category of input/output systems; the price to pay for this generality is the potentially complicated nature of the representing state space or its infinite dimensional character (when such notion is well-defined).

- A \textit{Canonicalization by Reduction Theorem} (Theorem 3.4). This result uses a reduction approach similar to the one introduced in [Orte 02a, Orte 02b] in the context of symmetric Hamil-
tonian systems to construct a canonical realization for a state-space system that has the input
forgetting property system by using a “reduced” version of it in a sense that will be introduced in
detail later on.

These two results are illustrated and applied in detail in Section 4 in the context of linear fading
memory filters. In particular, Theorem 4.5 shows that any linear, causal, time-invariant filter with semi-
infinite inputs that has the fading memory property (that, as we shall see, implies the input forgetting
property) admits a canonical linear state-space realization (possibly infinite dimensional). Additionally,
this result also characterizes all the isomorphic canonical realizations of the given filter as a homogeneous
manifold constructed using the general linear group of the state space. Finally, the Canonicalization
by Reduction Theorem 3.4 in the linear setup yields Theorem 4.6, which fully characterizes how to
construct a canonical linear realization by shrinking the linear state-space appropriately, for a given
linear system that has the input forgetting property but that is not necessarily canonical.

The paper concludes with Section 5, where we introduce what we call implicit reduction using
reproducing kernel Hilbert spaces (RKHS). The main goal of that section consists in circumventing the
need of computing the reduced spaces introduced in the previous sections, which may be technically dif-
ficult, in order to achieve dimension reduction. As we show in those pages, the RKHS formulation of the
estimation problem for state-space systems with linear readouts achieves exactly that as a consequence
of the well-known Representer Theorem [Mohr 18, page 117]. Section 6 concludes the paper.

2 Canonical systems with semi-infinite inputs

We briefly introduce a few definitions that make explicit the setup where we shall be working. The
objects of interest in this paper are input/output systems determined by state-space systems. The
symbols Z and Y will denote the input and the output spaces, respectively, and X will be the state
space of the system that will create the link between them. These three spaces are typically subsets
of a Euclidean space or, more generally, finite or infinite dimensional manifolds; for the time being we
shall assume no particular structure on them. A discrete-time state-space system is determined by
the following two equations that put in relation sequences $z \in Z^Z, y \in Y^Z, x \in X^Z$ in the three spaces
that we just introduced:

\begin{align}
 x_t &= F(x_{t-1}, z_t), \\
 y_t &= h(x_t),
\end{align}

for any $t \in \mathbb{Z}$. The map $F : X \times Z \rightarrow X$ is called the state map and $h : X \rightarrow Y$ the readout
or observation map. We shall sometimes denote a system by using the triple (X, F, h). The term
recurrent neural network (RNN) is used sometimes in the literature to refer to state-space systems
where the state map F in (2.1) is neural network-like, that is, it is a concatenation of compositions of
a nonlinear activation function with an affine function of the states and the input. A particular case
of RNNs are the echo state networks introduced in [Matt 92, Jaeg 04] where one neural layer of this
type is used (with random connectivity between neurons in [Jaeg 04]).

We focus on state-space systems of the type (2.1)-(2.2) that determine an input/output system.
This happens in the presence of the so-called echo state property (ESP), that is, when for any $z \in Z^Z$
there exists a unique $y \in Y^Z$ such that (2.1)-(2.2) hold. In that case, we talk about the state-space
filter $U^F : Z^Z \rightarrow Y^Z$ associated to the state-space system (X, F, h) defined by:

\[U^F_h(z) := y, \]

where $z \in Z^Z$ and $y \in Y^Z$ are linked by (2.1)-(2.2) via the ESP. If the ESP holds at the level of the
state equation (2.1), we can define a state filter $U^F : Z^Z \rightarrow X^Z$ and, in that case, we have that

\[U^F_h := h \circ U^F. \]
It is easy to show that state and state-space filters are automatically causal and time-invariant (see [Grig 18a, Proposition 2.1]) and hence it suffices to work with their restriction \(U^F_h : \mathbb{Z}^- \rightarrow \mathcal{Y} \) to semi-infinite inputs and outputs. Moreover, \(U^F_h \) determines a state-space functional \(H^F_h : \mathbb{Z} \rightarrow \mathcal{Y} \) as \(H^F_h(z) := U^F_h(z)_0 \), for all \(z \in \mathbb{Z}^- \) (the same applies to \(U^F \) and \(H^F \) when the ESP holds at the level of the state equation). In the sequel we use the symbol \(\mathbb{Z}^- \) to denote the negative integers including zero and \(\mathbb{Z}^- \) without zero.

State-space morphisms. As we already mention in the introduction, a given input/output filter may have different state-space realizations. One way to construct them is by using the natural functors between state-space systems that we define below. Consider the state-space systems determined by the triplets \((X_i, F_i, h_i), i \in \{1, 2\}\), with \(F_i : X_i \times \mathbb{Z} \rightarrow X_i \) and \(h_i : X_i \rightarrow \mathcal{Y} \).

Definition 2.1 A map \(f : X_1 \rightarrow X_2 \) is a morphism between the systems \((X_1, F_1, h_1)\) and \((X_2, F_2, h_2)\) whenever it satisfies the following two properties:

(i) **System equivariance:** \(f(F_1(x_1, z)) = F_2(f(x_1), z) \), for all \(x_1 \in X_1 \) and \(z \in \mathbb{Z} \).

(ii) **Readout invariance:** \(h_1(x_1) = h_2(f(x_1)) \), for all \(x_1 \in X_1 \).

When the map \(f \) has an inverse \(f^{-1} \) and this inverse is also a morphism between the systems determined by \((X_2, F_2, h_2)\) and \((X_1, F_1, h_1)\) and we say that \(f \) is a system isomorphism and that the systems \((X_1, F_1, h_1)\) and \((X_2, F_2, h_2)\) are isomorphic. We note that given a system \(F_1 : X_1 \times \mathbb{Z} \rightarrow X_1, h_1 : X_1 \rightarrow \mathcal{Y} \) and a bijection \(f : X_1 \rightarrow X_2 \), the map \(f \) is a system isomorphism with respect to the system \(F_2 : X_2 \times \mathbb{Z} \rightarrow X_2, h_2 : x_2 \rightarrow \mathcal{Y} \) defined by

\[
F_2(x_2, z) := f(F_1(f^{-1}(x_2), z)), \quad \text{for all} \quad x_2 \in X_2, z \in \mathbb{Z},
\]

\[
h_2(x_2) := h_1(f^{-1}(x_2)), \quad \text{for all} \quad x_2 \in X_2.
\]

The proof of the following elementary result can be found in [Gono 20b].

Proposition 2.2 Let \((X_i, F_i, h_i), i \in \{1, 2\}\), be two systems with \(F_i : X_i \times \mathbb{Z} \rightarrow X_i \) and \(h_i : X_i \rightarrow \mathcal{Y} \). Let \(f : X_1 \rightarrow X_2 \) be a map. Then:

(i) If \(f \) is system equivariant and \(x^1 \in X_1^{\mathbb{Z}^-} \) is a solution for the state system associated to \(F_1 \) and the input \(z \in \mathbb{Z}^- \), then so is \(f(x^1) \) for the system associated to \(F_2 \) and the same input.

(ii) Suppose that the system determined by \((X_2, F_2, h_2)\) has the echo state property and assume that the state system determined by \(F_1 \) has at least one solution for each element \(z \in \mathbb{Z}^- \). If \(f \) is a morphism between \((X_1, F_1, h_1)\) and \((X_2, F_2, h_2)\), then \((X_1, F_1, h_1)\) has the echo state property and, moreover,

\[
U^F_{h_1} = U^F_{h_2}.
\]

(iii) If \(f \) is a system isomorphism, then the implications in the previous two points are reversible, that is, the indices 1 and 2 can be exchanged.

Reachability and observability. We just showed in the previous paragraph that system morphisms produce different state-space system realizations for a given input/output system. We now introduce dynamical properties that ensure that the reverse implication holds, that is, if we have two different state-space system realizations for a given input/output system we can ensure that there exists a system morphism between them. The following definitions are natural adaptations of the concepts with the same name in the context of forward-in-time systems [Sont 98, Lewi 02, Bull 05].

The definition uses the following notation: if \(z \in \mathbb{Z}^{\mathbb{Z}^-} \) and \(\bar{z} \in \mathbb{Z}^T \) for some \(T \in \mathbb{N} \), then the symbol \(z\bar{z} \) denotes the semi-infinite sequence obtained by concatenation of \(z \) and \(\bar{z} \).
Definition 2.3 Let $({\mathcal X}, F, h)$ be a state-space system with $F : {\mathcal X} \times Z \rightarrow {\mathcal X}$ and $h : {\mathcal X} \rightarrow {\mathcal Y}$. Assume that $({\mathcal X}, F, h)$ has the echo state property. Then, we say that $({\mathcal X}, F, h)$ is:

(i) **Reachable** (respectively, **strongly reachable**), when for any $y \in {\mathcal Y}$ (respectively, $x \in {\mathcal X}$) there exists $z \in Z^{z-}$ such that $H^F_h(z) = y$ (respectively, $H^F(z) = x$).

(ii) **Observable**, when it does not have indistinguishable states. Two distinct states $x_1, x_2 \in {\mathcal X}$ are called **indistinguishable** when there exist $z_1, z_2 \in Z^{z-}$ such that $x_1 = H^F(z_1)$, $x_2 = H^F(z_2)$ and, additionally, we have that $H^F_h(z_1) = H^F_h(z_2)$, for any $\tilde{z} \in Z^T$ and any $T \in \mathbb{N}$.

(iii) **Canonical**, when $({\mathcal X}, F, h)$ is strongly reachable and observable.

Note that if the observation map h is surjective, then strong reachability implies reachability.

Proposition 2.4 Let $({\mathcal X}, F, h)$ and $({\tilde{\mathcal X}}, \tilde{F}, \tilde{h})$ be two systems that have the echo state property and yield the same time-invariant input/output system, that is, $H^F_h = H^\tilde{F}_\tilde{h}$. If $({\mathcal X}, F, h)$ is strongly reachable and $({\tilde{\mathcal X}}, \tilde{F}, \tilde{h})$ is observable then there exists a unique system morphism $f : {\mathcal X} \rightarrow {\tilde{\mathcal X}}$.

Before we proceed with the proof of this proposition, we list in the following lemma three elementary properties of time-invariant state-space filters. In the proof we use the **time delay** operators $T_\tau : Z^{z-} \rightarrow Z^{z-}$ that, for any $\tau \in \mathbb{N}$, are defined as

$$T_\tau(z)_t := z_{t-\tau}, \quad t \in Z^-.$$ \hspace{1cm} (2.6)

We recall that filters are called time-invariant when they commute with the time delay operators. Additionally, we will be using the notion of invertible state map. We recall that the map $F : {\mathcal X} \times Z \rightarrow {\mathcal X}$ is **invertible** when for any $x \in Z$, the maps $F(\cdot, z) : {\mathcal X} \rightarrow {\mathcal X}$ are injective and hence there exists a map $F^{-1} : {\mathcal X} \times Z \rightarrow {\mathcal X}$ such that

$$F^{-1}(F(x, z), z) = x, \quad \text{for all } x \in {\mathcal X} \text{ and } z \in Z.$$ \hspace{1cm} (2.7)

Lemma 2.5 Let $({\mathcal X}, F, h)$ be a system that has the echo state property with input and output spaces Z and Y, respectively, and $\tilde{z} \in Z$. Then

$$U^F(\tilde{z}) = H^F(z) \quad \text{and} \quad H^F(\tilde{z}z) = F(H^F(z), \tilde{z}), \quad \text{for } z \in Z^{z-}.$$ \hspace{1cm} (2.8)

Additionally, if $z_1, z_2 \in Z^{z-}$ are such that $H^F(z_1) = H^F(z_2)$ then

$$H^F(z_1 \tilde{z}) = H^F(z_2 \tilde{z}), \quad \text{for any } \tilde{z} \in Z^T \quad \text{and any } T \in \mathbb{N}.$$ \hspace{1cm} (2.9)

The converse holds when F is an invertible state map.

Proof of the Lemma. The identities in (2.8) are a consequence of the time-invariance of U^F. Indeed,

$$U^F(\tilde{z}z) = (T_1 \circ U^F(\tilde{z}z))_0 = (U^F(T_1(\tilde{z}z)))_0 = U^F(z)_0 = H^F(z).$$

As to the second equality in (2.8), by definition and the identity that we just proved:

$$H^F(z \tilde{z}) = U^F(z \tilde{z})_0 = F(U^F(z \tilde{z})_{-1}, \tilde{z}) = F(H^F(z), \tilde{z}).$$

Concerning (2.9), let $\tilde{z} = (z_1, \ldots, z_T) \in Z^T$. Then, by the hypothesis $H^F(z_1) = H^F(z_2)$ and the identity that we just proved:

$$H^F(z_1 \tilde{z}_1) = F(H^F(z_1), \tilde{z}_1) = F(H^F(z_2), \tilde{z}_1) = H^F(z_2 \tilde{z}_1).$$
Analogously,
\[H^F(z_1\tilde{z}_1,\tilde{z}_2) = F(H^F(z_1\tilde{z}_1),\tilde{z}_2) = F(H^F(z_2\tilde{z}_2),\tilde{z}_2) = H^F(z_2\tilde{z}_1,\tilde{z}_2). \]
Repeating this procedure \(T \) times yields (2.9). Suppose now that \(F \) is invertible and that (2.9) holds. In particular, we have that \(H^F(z_1\tilde{z}) = H^F(z_2\tilde{z}) \), for any \(\tilde{z} \in Z \) which, by (2.8), implies that \(F(H^F(z_1),\tilde{z}) = F(H^F(z_2),\tilde{z}) \). If we now apply \(F^{-1} \) to both sides of this equality we have by (2.7) that \(H^F(z_1) = H^F(z_2) \), as required. ▼

These facts can be used to prove that any system that has the echo state property at the level of the state equation can be restricted to a smaller state space where it becomes strongly reachable. Additionally, they also imply that invertible state maps and injective readouts determine observable state-space systems.

Corollary 2.6 Let \((X,F,h)\) be a system with input space \(Z \) that has the echo state property at the level of the state equation. Then there exists a subset \(X' \subset X \) such that \(F \) restricts to a map (denoted with the same symbol) \(F : X' \times Z \rightarrow X' \) and, moreover, \((X',F,h)\) is strongly reachable.

Additionally, if the map \(F : X \times Z \rightarrow X \) is invertible, then the system \((X,F,h)\) is necessarily observable for any readout map \(h : X \rightarrow Y \) that is injective when restricted to \(X' := H^F(Z^\perp) \).

Proof of the Corollary. First, the ESP at the level of the state equation implies the existence of a state functional \(H^F : Z^\perp \rightarrow X \). Define \(X' := H^F(Z^\perp) \). The relation (2.8) implies that \(F \) restricts to a map \(F : X' \times Z \rightarrow X' \) because for any \(x' = H^F(z') \in X' \), with \(z' \in Z^\perp \) and any \(\tilde{z} \in Z \),
\[F(x',\tilde{z}) = H^F(z'\tilde{z}) \in X'. \]
The restricted state map obviously also has the ESP at the state level and has as associated functional the map with restricted codomain \(H^F : Z^\perp \rightarrow X' \), which proves that \((X',F,h)\) is strongly reachable.

Consider now a system \((X,F,h)\) such that \(F \) is invertible and \(h \) is injective when restricted to \(X' := H^F(Z^\perp) \). Let \(z_1,z_2 \in Z^\perp \) be such that \(H^F(z_1\tilde{z}) = H^F(z_2\tilde{z}) \) for any \(\tilde{z} \in Z^T \) and any \(T \in \mathbb{N} \). The injectivity of \(h \) implies that \(H^F(z_1) = H^F(z_2) \). Since the converse of (2.9) holds by the invertibility of \(F \), we have then that \(H^F(z_1) = H^F(z_2) \) and we can hence conclude that the system does not have indistinguishable states and it is hence observable. ▼

Proof of Proposition 2.4. Using the hypothesis on the strong reachability of \((X,F,h)\), we know that for any \(x \in X \) there exists \(z \in Z^\perp \) such that \(H^F(z) = x \). Define:
\[f : X \rightarrow \overline{X}, \quad x = H^F(z) \mapsto f(x) := H^\perp(z). \]
We now show that this map is well-defined and that it is the unique system morphism in the statement of the proposition.

(i) **\(f \) is well-defined:** given \(x \in X \), let \(z_1,z_2 \in Z^\perp \) be such that \(x = H^F(z_1) = H^F(z_2) \). We now show that \(H^\perp(z_1) = H^\perp(z_2) \), necessarily. By contradiction, suppose that \(x_1 := H^\perp(z_1), x_2 := H^\perp(z_2) \), and that \(x_1 \neq x_2 \). As by hypothesis \((\overline{X},F,H)\) is observable, there exists \(\tilde{z} \in Z^T \), for some \(T \in \mathbb{N} \), such that
\[H^\perp(z_1\tilde{z}) \neq H^\perp(z_2\tilde{z}). \] (2.10)
However, the equality \(H^F(z_1) = H^F(z_2) \) and (2.9) in Lemma 2.5 imply that \(H^F(z_1\tilde{z}) = H^F(z_2\tilde{z}) \) and hence \(H^\perp(z_1\tilde{z}) = H^\perp(z_2\tilde{z}) \). The hypothesis \(H^F = H^\perp \) implies that \(H^\perp(z_1\tilde{z}) = H^\perp(z_2\tilde{z}) \) which contradicts (2.10).
(ii) \(f \) is system equivariant: Let \(x \in X, z \in \mathbb{Z}^{2-} \), and \(\tilde{z} \in Z \), be such that \(x = H^F(z) \). Then, by (2.8) in Lemma 2.5 we have that
\[
f(F(x, \tilde{z})) = f(F(H^F(z), \tilde{z})) = f(H^F(z \tilde{z})) = H^F(z \tilde{z}) = T(H^F(z), \tilde{z}) = T(f(x), \tilde{z}),
\]
as required.

(iii) \(f \) is readout invariant: using the same elements as in the previous point:
\[
h(x) = h(H^F(z)) = H^F(z) = H^F(z) = \overline{h}(H^F(z)) = \overline{h}(f(x)),
\]
as required.

(iv) \(f \) is unique: Let \(\overline{f} : X \rightarrow \overline{X} \) be another system morphism. Let \(x = H^F(z) \in X \) arbitrary. We first show that the sequence \((T(H^F(T_{-t}(z))), z_t)_{t \in \mathbb{Z}^-} \) is a solution of the system associated to \(\overline{F} \). Indeed, for any \(t \in \mathbb{Z}^- \), and by (2.8) and the system equivariance of \(\overline{f} \):
\[
\overline{F}(T(H^F(T_{-t}(z)), z_t)) = \overline{F}(T(U^F(T_{-t-1}(z)), z_t)) = \overline{F}(T(U^F(T_{-(t-1)}(z)), z_t)) = \overline{T}(F(T_{-t}(z)), z_t),
\]
as required. Now, since \((H^F(T_{-t}(z)), z_t)_{t \in \mathbb{Z}^-} \) is also a solution for the system associated to \(\overline{F} \) that, by hypothesis, has the echo state property, we necessarily have that:
\[
\overline{T}(x) = \overline{T}(H^F(z)) = H^F(z) = f(x),
\]
which proves the uniqueness of the morphism \(f \).

Corollary 2.7 If the two systems \((X, F, h)\) and \((\overline{X}, \overline{F}, \overline{h})\) in the statement of Proposition 2.4 are canonical then they are necessarily system isomorphic.

Proof. By Proposition 2.4, the maps \(f : X \rightarrow \overline{X} \) and \(\overline{f} : \overline{X} \rightarrow X \) defined by \(f(x) := H^F(z) \), with \(x = H^F(z) \), and \(\overline{f}(\overline{x}) := H^F(\overline{z}) \), with \(\overline{x} = H^F(\overline{z}) \), for \(z, \overline{z} \in \mathbb{Z}^{2-} \), are well-defined system morphisms. Then, for any \(x = H^F(z) \in X \) and \(\overline{x} = H^F(\overline{z}) \in \overline{X} \) we can verify that
\[
\overline{f} \circ f(x) = \overline{f}(H^F(z)) = H^F(z) = x, \quad \text{and} \quad f \circ \overline{f}(\overline{x}) = f(H^F(z)) = H^F(z) = \overline{x},
\]
which shows that \(\overline{f} = f^{-1} \) and \(f = \overline{f}^{-1} \), as required.

3 Canonical Realization Theorems

In this section we propose two results in connection with the state-space system realization of input/output systems. The first result shows that any causal and time-invariant input/output system with discrete semi-infinite inputs admits a canonical state-space realization that is unique up to system isomorphisms. As we shall see later on in the examples in Section 4, there is no guarantee that this realization takes place in a finite dimensional space. In a second result, we show that given any state-space system that satisfies the echo state property, we can always associate to it a canonical state-space realization (also unique up to system isomorphisms) that generates the same input/output system. This new canonical system is obtained from the original one by a procedure that we will generically call **reduction** and is defined on a new state space whose dimension (whenever that term is well-defined) is equal or smaller.

Apart from the causality and time-invariance, there is another dynamical feature that is needed to ensure the existence of these canonical realizations, namely, the **input forgetting property** (see [Jaeg 10]).
Definition 3.1 Let \mathcal{Z} be a set, (\mathcal{Y}, d) a metric space, and let $U : \mathbb{Z}^{\mathbb{Z}^{-}} \to \mathcal{Y}^{\mathbb{Z}^{-}}$ be a causal and time-invariant filter. We say that U has the input forgetting property whenever for any $u, v \in \mathbb{Z}^{\mathbb{Z}^{-}}$ and any $z \in \mathbb{Z}^{\mathbb{N}^{+}}$:

$$
\lim_{t \to \infty} d(H_{U}(\bar{z}_{t}), H_{U}(v_{t})) = 0,
$$

where $\bar{z}_{t} := (z_{1}, \ldots, z_{t}) \in \mathcal{Z}^{t}$, $t \in \mathbb{N}^{+}$ and $H_{U} : \mathbb{Z}^{\mathbb{Z}^{-}} \to \mathcal{Y}$ is the functional associated to U and defined by $H_{U}(z) = U(z)_{0}$.

This property is also referred to in the literature as the unique steady-state property (see [Boyd 85]) and is usually obtained as a consequence of various continuity properties like the fading memory property (see, for instance, [Grig 19, Theorem 24]) and the definition later on in Section 4.

Theorem 3.2 (Canonical realization of input/output systems) Let \mathcal{Z} be a set, (\mathcal{Y}, d) a metric space, and let $U : \mathbb{Z}^{\mathbb{Z}^{-}} \to \mathcal{Y}^{\mathbb{Z}^{-}}$ be a causal and time-invariant input/output system that has the input forgetting property. Then, there exists a canonical state-space system (\mathcal{X}, F, h) such that $U = U_{h}^{F}$. This canonical realization of U is unique up to system isomorphisms.

Proof. We start by defining the so-called Nerode equivalence relation in $\mathcal{Z}^{\mathbb{Z}^{-}}$ with respect to the functional $H_{U} : \mathcal{Z}^{\mathbb{Z}^{-}} \to \mathcal{Y}$ determined by U via the assignment $H_{U}(z) = U(z)_{0}$. We say that two elements $z_{1}, z_{2} \in \mathbb{Z}^{\mathbb{Z}^{-}}$ are Nerode equivalent and write $z_{1} \sim_{I} z_{2}$, whenever $H_{U}(z_{1}, \bar{z}) = H_{U}(z_{2}, \bar{z})$, for all $\bar{z} \in \mathcal{Z}^{T}$ and all $T \in \mathbb{N}$. Define $\mathcal{X} := \mathcal{Z}^{\mathbb{Z}^{-}} / \sim_{I}$, where the right-hand side of this equality stands for the set of equivalence classes in $\mathcal{Z}^{\mathbb{Z}^{-}}$ determined by the equivalence relation \sim_{I}, and denote by $[z] \in \mathcal{X}$ the class that contains the element $z \in \mathcal{Z}^{\mathbb{Z}^{-}}$.

Define now the system (\mathcal{X}, F, h), with $F : \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$ and $h : \mathcal{X} \to \mathcal{Y}$ given by

$$
F([z], \bar{z}) := [\bar{z}] \quad \text{and} \quad h([z]) := H_{U}(z).
$$

We now show that this system is well-defined, it has the echo state property, and that it is a canonical realization of U. If that is the case, the uniqueness up to system isomorphisms follows from Corollary 2.7. We proceed point by point:

(i) (\mathcal{X}, F, h) is well-defined: First of all, $F : \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$ is well-defined because if $z_{1}, z_{2} \in \mathcal{Z}^{\mathbb{Z}^{-}}$ are such that $z_{1} \sim_{I} z_{2}$ then, by definition,

$$
H_{U}(z_{1}, \bar{z}) = H_{U}(z_{2}, \bar{z}), \quad \text{for all } \bar{z} \in \mathcal{Z}^{T} \text{ and all } T \in \mathbb{N}.
$$

In particular, for any $\bar{z} \in \mathcal{Z}$, we have that $F([z_{1}], \bar{z}) = F([z_{2}], \bar{z})$ because $[z_{1}, \bar{z}] = [z_{2}, \bar{z}]$, as (3.3) also implies that $H_{U}(z_{1}, \bar{z}) = H_{U}(z_{2}, \bar{z})$ for all $\bar{z} \in \mathcal{Z}^{T}$ and all $T \in \mathbb{N}$. The map $h : \mathcal{X} \to \mathcal{Y}$ is also well-defined because if we consider $z_{1}, z_{2} \in \mathcal{Z}^{\mathbb{Z}^{-}}$ that, as above, $z_{1} \sim_{I} z_{2}$, the equality (3.3) implies, in particular, that $H_{U}(z_{1}) = H_{U}(z_{2})$ and hence $h([z_{1}]) = H_{U}(z_{1}) = H_{U}(z_{2}) = h([z_{2}])$.

(ii) The system (\mathcal{X}, F, h) has the echo state property: Given $z \in \mathcal{Z}^{\mathbb{Z}^{-}}$, we first show that the sequence $([T_{-t}(z)], z_{t})_{t \in \mathbb{Z}_{-}} \in (\mathcal{X} \times \mathcal{Z})^{\mathbb{Z}^{-}}$ is a solution of the state system (\mathcal{X}, F). This is so because, for any $t \in \mathbb{Z}_{-}$, we have

$$
F([T_{-(t-1)}(z)], z_{t}) = [T_{-(t-1)}(z)z_{t}] = [T_{-t}(z)].
$$

We now show that this solution is unique. Suppose that $(x_{t}, z_{t})_{t \in \mathbb{Z}_{-}} \in (\mathcal{X} \times \mathcal{Z})^{\mathbb{Z}^{-}}$ is also a solution for (\mathcal{X}, F) with respect to the same input sequence. Since the quotient map $\mathcal{Z}^{\mathbb{Z}^{-}} \to \mathcal{Z}^{\mathbb{Z}^{-}} / \sim_{I}$ is surjective, for any $t \in \mathbb{Z}_{-}$ there exists an element $\bar{z}_{t} \in \mathcal{Z}^{\mathbb{Z}^{-}}$ such that $x_{t} = [\bar{z}_{t}]$. The solution condition on $(x_{t}, z_{t})_{t \in \mathbb{Z}_{-}}$ implies that, also for any $t \in \mathbb{Z}_{-}$, $[\bar{z}_{t}] = F([\bar{z}_{t-1}], z_{t}) = [\bar{z}_{t-1}z_{t}]$ and hence
Dimension reduction in recurrent networks by canonicalization

\[H_U(\tilde{z},\tilde{z}) = H_U(\tilde{z}_{t-1}z_t\tilde{z}), \]
for all \(\tilde{z} \in \mathcal{Z}^T \) and all \(T \in \mathbb{N} \). If we use recursively this identity, we can show that

\[H_U(\tilde{z},\tilde{z}) = H_U(\tilde{z}_{t-1}z_t\tilde{z}) = H_U(\tilde{z}_{t-2}z_{t-1}z_t\tilde{z}) = \cdots = H_U(\tilde{z}_{t-\tau}z_{t-(\tau-1)}\cdots z_{t-1}z_t\tilde{z}), \]

for all \(\tilde{z} \in \mathcal{Z}^T \) and all \(\tau, T \in \mathbb{N} \). These equalities imply that for any \(t \in \mathbb{Z}_- \) and \(\tau \in \mathbb{N} \):

\[d(H_U(\tilde{z},\tilde{z}), H_U(T_{-t}(\tilde{z})\tilde{z})) = d(H_U(\tilde{z}_{t-\tau}z_{t-(\tau-1)}\cdots z_{t-1}z_t\tilde{z}), H_U(T_{-t}(\tilde{z})\tilde{z})). \]

Now, since by hypothesis \(U \) satisfies the input forgetting property, we can take a limit on \(\tau \) on the right-hand side of this equality and conclude that

\[d(H_U(\tilde{z},\tilde{z}), H_U(T_{-t}(\tilde{z})\tilde{z})) = \lim_{\tau \to \infty} d(H_U(\tilde{z}_{t-\tau}z_{t-(\tau-1)}\cdots z_{t-1}z_t\tilde{z}), H_U(T_{-t}(\tilde{z})\tilde{z})) = 0, \]

which implies that \(H_U(\tilde{z},\tilde{z}) = H_U(T_{-t}(\tilde{z})\tilde{z}) \) and hence that \(x_t = [\tilde{z}_t] = [T_{-t}(\tilde{z})] \), as required.

(iii) \((\mathcal{X}, F, h)\) is a state-space realization of \(U \): Since in the previous point we proved that \((\mathcal{X}, F, h)\) has the echo state property, we can associate to it a system filter \(U^F_h : \mathcal{Z}^{-\tau} \to \mathcal{Y}^{-\tau} \). We also showed that for any input \(z \in \mathcal{Z}^{-\tau} \) the sequence \([T_{-t}(\tilde{z})], \tilde{z}_t \in \mathbb{Z}^{-\tau}\) is the unique solution of the state system \((\mathcal{X}, F)\) which proves that the state filter \(U^F : \mathcal{Z}^{-\tau} \to \mathcal{X}^{-\tau} \) is given by

\[U^F(z)_t = [T_{-t}(\tilde{z})]. \quad (3.4) \]

Consequently, for any \(t \in \mathbb{Z}_- \), we have that

\[U^F_h(z)_t = h([T_{-t}(\tilde{z})]) = H_U(T_{-t}(\tilde{z})) = U(z)_t, \quad (3.5) \]

which implies that \(U^F_h = U \).

(iv) \((\mathcal{X}, F, h)\) is canonical: Since for any \(z \in \mathcal{Z}^{-\tau} \) the equality (3.4) guarantees that \(H^F(z) = [z] \), we can immediately conclude that \((\mathcal{X}, F, h)\) is strongly reachable. Let now \(x_1 = H^F(z_1) = [z_1] \) and \(x_2 = H^F(z_2) = [z_2] \) be two indistinguishable states, that is, for any \(z \in \mathcal{Z}^T \) and any \(T \in \mathbb{N} \), we have that \(H^F_h(z_1) = H^F_h(z_2) \). The equality (3.5) evaluated at \(t = 0 \) implies that in that case \(H_U(z, z) = H_U(z, z) \), necessarily, and hence we can conclude that \([z_1] = [z_2]\), which is equivalent to \(x_1 = x_2 \), as required.

Remark 3.3 It is easy to see that Theorem 3.2 remains valid when the spaces \(\mathcal{Z}^{-\tau} \) and \(\mathcal{Y}^{-\tau} \) are replaced by time-invariant subsets \(V_\mathcal{Z} \subset \mathcal{Z}^{-\tau} \) and \(V_\mathcal{Y} \subset \mathcal{Y}^{-\tau} \), respectively, that additionally are also invariant with respect to the concatenation with finite sequences that was used in the definition of the Nerode equivalence relation. The time invariance is defined by the property \(T_{\tau}(V_\mathcal{Z}) \subset V_\mathcal{Z} \) and \(T_{\tau}(V_\mathcal{Y}) \subset V_\mathcal{Y} \), for any \(\tau \in \mathbb{N} \).

The canonicalization theorem that we just proved provides a canonical state-space realization for any input-forgetting, causal, and time-invariant filter by using as state-space the set of equivalence classes in the space of semi-infinite input sequences with respect to the Nerode equivalence. If that filter happens to be already given in a state-space form, we shall show in the next theorem that a canonical realization can be constructed for it by reducing the given state-space.

The reduction procedure that we propose next is reminiscent of the optimal reduction method introduced in [Orte 02a, Orte 02b] in the context of symmetric Hamiltonian systems and consists in two steps. First, given a (generically non-canonical) state-space system \((\mathcal{X}, F, h)\) with \(\mathcal{Z} \) and \(\mathcal{Y} \) as input and output spaces, respectively, and that satisfies the echo state property, we restrict the state equation to the subset \(\mathcal{X}_R \subset \mathcal{X} \) of reachable states defined by

\[\mathcal{X}_R := \{ x \in \mathcal{X} \mid x = H^F(z) \text{ for some } z \in \mathcal{Z}^{-\tau} \}. \]
Note that \mathcal{X}_R is the state subspace already introduced in Corollary 2.6.

In a second step, we can define in \mathcal{X}_R the Nerode equivalence relation \sim_S that in the previous theorem was formulated in the space of semi-infinite input sequences. More explicitly, given $x_1 = H^F(z_1), x_2 = H^F(z_2) \in \mathcal{X}_R$, for some $z_1, z_2 \in \mathbb{Z}^{x-}$, we say that these two states are Nerode equivalent and, as before, we denote

$$x_1 \sim_S x_2 \text{ whenever } H^F_h(z_1 \bar{z}) = H^F_h(z_2 \bar{z}), \text{ for all } \bar{z} \in \mathbb{Z}^T \text{ and all } T \in \mathbb{N}. \quad (3.7)$$

Notice that this definition of Nerode equivalent states is equivalent to the so-called indistinguishable states which is introduced in part (ii) of Definition 2.3.

The symbol $[x] \in \mathcal{X}_R/\sim_S$ denotes the equivalence class that contains the element $x \in \mathcal{X}_R$. We emphasize that this relation is well-defined since it does not depend on the elements $z_1, z_2 \in \mathbb{Z}^{x-}$ used to define x_1 and x_2 because of (2.9) in Lemma 2.5.

In the next theorem will show that (\mathcal{X}, F, h) naturally projects to a system on the quotient \mathcal{X}_R/\sim_S that has the echo state property if (\mathcal{X}, F, h) is input-forgetting and, more importantly, is canonical.

Theorem 3.4 (Canonicalization by reduction) Let \mathcal{Z} be a set, (\mathcal{Y}, d) a metric space, and let (\mathcal{X}, F, h) be a state-space system that has \mathcal{Z} and \mathcal{Y} as input and output spaces, respectively. Suppose that (\mathcal{X}, F) has the echo state property and that the state-space filter $F^U_h : \mathbb{Z}^{x-} \to \mathbb{Y}^{x-}$ has the input forgetting property. Let $\mathcal{X}_R \subset \mathcal{X}$ be the set of reachable states defined in (3.6) and $\mathcal{X} := \mathcal{X}_R/\sim_S$ the quotient state with respect to the Nerode equivalence relation \sim_S defined in (3.7).

The state-space system (\mathcal{X}, F, h) drops to another system $(\mathcal{X}, \bar{F}, \bar{h})$ with the same input and output spaces, with states in the quotient space \mathcal{X}, and maps $ar{F} : \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$ and $\bar{h} : \mathcal{X} \to \mathcal{Y}$ defined by:

$$
\begin{align*}
\bar{F}([x], z) &:= [F(x, z)], \\
\bar{h}(x) &:= h(x).
\end{align*}
$$

The state-space system $(\mathcal{X}, \bar{F}, \bar{h})$ has the echo state property and it is a canonical realization of U^F_h. We refer to $(\mathcal{X}, \bar{F}, \bar{h})$ as the canonical reduced realization of (\mathcal{X}, F, h).

Proof. We first show that the reduced state and readout maps \bar{F} and \bar{h} in (3.8) are well-defined. Concerning \bar{F}, we show first that the restriction of F to $\mathcal{X}_R \times \mathcal{Z}$ maps into \mathcal{X}_R. Indeed, let $x \in \mathcal{X}_R$ arbitrary and let $z \in \mathbb{Z}^{x-}$ be such that $x = H^F(z)$. Then, for any $\bar{z} \in \mathcal{Z}$, by (2.8) in Lemma 2.5, we have that

$$F(x, \bar{z}) = F(H^F(z), \bar{z}) = H^F(\bar{z} \bar{z}) \in \mathcal{X}_R.$$

This guarantees that $F : \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$ restricts to a map $F_R : \mathcal{X}_R \times \mathcal{Z} \to \mathcal{X}_R$ that we now show drops to $\bar{F} : \mathcal{X} \times \mathcal{Z} \to \mathcal{X}$ by proving that if $x_1, x_2 \in \mathcal{X}_R$ are such that $x_1 \sim_S x_2$, then $F_R(x_1, z) \sim_S F_R(x_2, z)$, for all $z \in \mathcal{Z}$. Indeed, if $x_1 \sim_S x_2$, by definition (3.7), $H^F_h(z_1 \bar{z}) = H^F_h(z_2 \bar{z})$, for all $\bar{z} \in \mathcal{Z}^T$ and all $T \in \mathbb{N}$, where $x_1 = H^F(z_1), x_2 = H^F(z_2) \in \mathcal{X}_R$, for some $z_1, z_2 \in \mathbb{Z}^{x-}$. Now, by (2.8) and for all $z \in \mathcal{Z}$, $F_R(x_1, z) = H^F(z_1 \bar{z}), F_R(x_2, z) = H^F(z_2 \bar{z})$ and since by (3.7) $H^F(z_1 \bar{z}) = H^F(z_2 \bar{z})$, for all $\bar{z} \in \mathcal{Z}^T$ and all $T \in \mathbb{N}$, we can conclude that $F_R(x_1, z) \sim_S F_R(x_2, z)$, as required. In order to show that \bar{h} is well-defined, consider first the restriction $h_R := h |_{\mathcal{X}_R} : \mathcal{X}_R \to \mathcal{Y}$ as well as two elements $x_1, x_2 \in \mathcal{X}_R$ as above such that $x_1 \sim_S x_2$. Taking now for \bar{z} the empty sequence in the definition of the equivalence relation \sim_S, we have that:

$$h_R(x_1) = h(H^F(z_1)) = H^F_h(z_1) = H^F_h(z_2) = h(H^F(z_2)) = h_R(x_2),$$

which proves that h_R drops to the map \bar{h} in the statement and it is hence well-defined.

We now show that the reduced system $(\mathcal{X}, \bar{F}, \bar{h})$ has the echo state property by following a scheme similar to part (ii) in the proof of Theorem 3.2. First of all, it is easy to see that if $(x_t, z_t)_{t \in \mathbb{Z}_-}$ is the
unique solution of the system \((X, F)\) (that by hypothesis satisfies the echo state property) associated to \(z := (z_t)_{t \in \mathbb{Z}_-}\), then \((|x_t|, z_t)_{t \in \mathbb{Z}_-}\) is a solution of the system \((\overline{X}, \overline{F})\) associated to \(z\). We now show that that solution is unique. Suppose that \(((\overline{x}_t), z_t)_{t \in \mathbb{Z}_-}\) is another solution of \((\overline{X}, \overline{F})\) for the same input \(z\).

For any \(t \in \mathbb{Z}_-\), let \(z_t \in \mathbb{Z}_-^{\mathbb{Z}_-}\) be such that \(\overline{x}_t = \overline{F}(\overline{z}_t)\). The solution condition on \(((\overline{x}_t), z_t)_{t \in \mathbb{Z}_-}\) implies that, also for any \(t \in \mathbb{Z}_-\),

\[
[H_{\overline{F}}(\overline{z}_t)] = [x_t] = \overline{F}(\overline{x}_{t-1}, z_t) = [F(x_{t-1}, z_t)] = [H_{\overline{F}}(\overline{z}_{t-1}z_t)],
\]

which by \((3.7)\), implies that for all \(\overline{z} \in \mathbb{Z}_T\) and all \(T \in \mathbb{N}\) one has \(H_{\overline{F}}(\overline{z}_t) = H_{\overline{F}}(\overline{z}_{t-1}z_t),\) necessarily. If we use recursively this identity, we can show that

\[
H_{\overline{F}}(\overline{z}_t) = H_{\overline{F}}(\overline{z}_{t-1}z_t) = H_{\overline{F}}(\overline{z}_{t-2}z_{t-1}z_t) = \cdots = H_{\overline{F}}(\overline{z}_{t-\tau}z_{t-\tau-1}z_{t-1}z_t),
\]

for all \(\overline{z} \in \mathbb{Z}_T\) and all \(T, \tau \in \mathbb{N}\): \(d(\overline{H}_{\overline{F}}(\overline{z}_t), H_{\overline{F}}(\overline{z}_t)) = d(\overline{H}_{\overline{F}}(\overline{z}_{t-\tau}z_{t-\tau-1}z_{t-1}z_t), H_{\overline{F}}(\overline{T}_{t-\tau}(\overline{z}_t))).\)

Now, since by hypothesis \(H_{\overline{F}}\) has the input forgetting property, we can take a limit on \(\tau\) on the right-hand side of this equality and conclude that

\[
d(\overline{H}_{\overline{F}}(\overline{z}_t), H_{\overline{F}}(\overline{T}_{t-\tau}(\overline{z}_t))) = \lim_{\tau \to \infty} d(\overline{H}_{\overline{F}}(\overline{z}_{t-\tau}z_{t-\tau-1}z_{t-1}z_t), H_{\overline{F}}(\overline{T}_{t-\tau}(\overline{z}_t))) = 0,
\]

which implies that \(H_{\overline{F}}(\overline{z}_t) = H_{\overline{F}}(\overline{T}_{t-\tau}(\overline{z}_t))\) and hence that \([x_t] = [H_{\overline{F}}(\overline{z}_t)] = [H_{\overline{F}}(\overline{T}_{t-\tau}(\overline{z}_t))] = [x_t]\), as required.

Finally, the fact that \(((x_t, z_t))_{t \in \mathbb{Z}_-}\) is the unique solution of \((\overline{X}, \overline{F})\) associated to \(z\) when \((x_t, z_t))_{t \in \mathbb{Z}_-}\) is the unique solution of \((X, F)\) amounts to the equality \(H_{\overline{F}} = H_{F}\). Consequently, \((\overline{X}, \overline{F}, \overline{h})\) is a realization for the filter associated to \((X, F, h)\) and it is trivially canonical.

Since Theorems 3.2 and 3.4 produce two different canonical realizations of a given system and we know by Corollary 2.7 that those realizations are unique up to system isomorphisms, we can conclude the non-trivial statement that the two sets of classes \(\mathbb{Z}_-^\mathbb{Z}_- \sim_1\) and \(X_{R/} \sim_S\) in the space of semi-infinite input sequences and on the space of reachable states, respectively, are isomorphic quotient spaces. We frame that result in the next corollary.

Corollary 3.5 Let \(\mathcal{Z}\) be a set, \((\mathcal{Y}, d)\) a metric space, and let \((X, F, h)\) be a state-space system that has \(\mathcal{Z}\) and \(\mathcal{Y}\) as input and output spaces, respectively. Suppose that \((X, F)\) has the echo state property and that the state-space system filter \(U_{\overline{h}} : \mathbb{Z}_-^\mathcal{Z}_- \to \mathcal{Y}_z^\mathcal{Z}_-\) has the input forgetting property. Let \(X_{R/} \sim_S\) be the reduced state-space defined in \((3.7)\) and let \(\mathbb{Z}_-^\mathcal{Z}_- / \sim_1\) be the quotient space defined in the proof of Theorem 3.2. These two quotient spaces are isomorphic. The isomorphism is implemented by the map:

\[
f: \mathbb{Z}_-^\mathcal{Z}_- / \sim_1 \to X_{R/} \sim_S \quad [z] \mapsto [H_{\overline{F}}(z)].
\]

4 Realization and canonicalization of linear filters

In this section we study the realization and canonicalization problem for linear, time-invariant, and causal filters that satisfy the so-called fading memory property. In order to explicitly define the input spaces and this property we first consider the **supremum norm** \(\|\cdot\|_\infty\) in the space of semi-infinite sequences \(\mathbb{R}_-^\mathbb{Z}_-\) in \(\mathbb{R}\) defined by

\[
\|z\|_\infty := \sup_{t \in \mathbb{Z}_-} \{|z_t|\}, \quad \text{for any} \quad z \in \mathbb{R}_-^\mathbb{Z}_-.
\]
Let \((\ell^\infty(\mathbb{R}), \|\cdot\|_\infty)\) be the Banach space formed by the elements in \(\mathbb{R}^\mathbb{Z}^-\) that have a finite supremum norm. We define now a \textit{weighting sequence} \(w : \mathbb{N} \rightarrow (0,1]\) as a \(\mathbb{Z}\) strictly decreasing sequence with zero limit such that \(w_0 = 1\). Given an element \(z \in \ell^\infty(\mathbb{R})\), we define its \(\textit{\(w\)-weighted norm} \|\cdot\|_w\) by

\[
\|z\|_w := \sup_{t \in \mathbb{Z}_-} \{|z_t|w_t\}.
\]

Consider now a linear, time-invariant, and causal filter \(U : \ell^\infty(\mathbb{R}) \rightarrow \ell^\infty(\mathbb{R})\). We say that the functional \(H_U : \ell^\infty(\mathbb{R}) \rightarrow \mathbb{R}\) associated to \(U\) has the so-called \textit{fading memory property (FMP)} with respect to the weighting sequence \(w\) whenever for any \(\epsilon > 0\), there exists \(\delta(\epsilon) > 0\) such that if \(z \in \ell^\infty(\mathbb{R})\) is such that \(\|z\|_w < \delta(\epsilon)\) then \(|H_U(z)| < \epsilon\), necessarily.

The Convolution Theorem (see [Boyd 85, Theorem 5]) shows that \(H_U\) has the FMP if and only if the filter \(U\) has a convolution representation, that is, there exists an element \(\Psi \in \ell^1(\mathbb{R})\) such that

\[
U(z)_t = \sum_{j \in \mathbb{Z}_-} \Psi_j z_{t+j} =: (\Psi * z)_t, \quad \text{for any } z \in \ell^\infty(\mathbb{R}), \; t \in \mathbb{Z}_-.
\]

In such case, it is easy to see that \(U : \ell^\infty(\mathbb{R}) \rightarrow \ell^\infty(\mathbb{R})\) is a bounded linear operator and that its operator norm \(\|U\|_\infty\) satisfies that \(\|U\|_\infty \leq \|\Psi\|_1 := \sum_{j \in \mathbb{Z}_-} |\Psi_j| < \infty\).

Additionally, as we already mentioned after Definition 3.1, the FMP implies the input forgetting property that we used in the main results in Section 3. Since this fact is proved in the literature (see [Boyd 85, Theorem 6] and [Grig 19, Theorem 6]) exclusively for uniformly bounded inputs, we prove it separately in our situation in the following result that collects all the facts that we just mentioned. Before we proceed with the statement, we extend the definition of the time delay operator \(T_\tau : \mathbb{Z}^\mathbb{Z}^- \rightarrow \mathbb{Z}^\mathbb{Z}^-\) defined in (2.6) for any \(\tau \in \mathbb{N}\), to accommodate any \(\tau \in \mathbb{Z}\) by setting, for any \(\tau < 0\):

\[
T_\tau(z) := (z, 0, \ldots, 0), \; z \in \mathbb{Z}^\mathbb{Z}^-.
\]

\[
(4.2)
\]

Proposition 4.1 Let \(U : \ell^\infty(\mathbb{R}) \rightarrow \ell^\infty(\mathbb{R})\) be a linear, time-invariant, and causal filter such that \(H_U : \ell^\infty(\mathbb{R}) \rightarrow \mathbb{R}\) has the fading memory property with respect to a weighting sequence \(w\). Then, there exists a unique element \(\Psi \in \ell^1(\mathbb{R})\) such that \(U(z) = \Psi * z\) for any \(z \in \ell^\infty(\mathbb{R})\). Moreover, \(U\) is a bounded linear automorphism of \(\ell^\infty(\mathbb{R})\) such that \(\|U\|_\infty \leq \|\Psi\|_1 < \infty\) and it has the input forgetting property.

Proof. In view of the references quoted above, it just remains to be shown that the element \(\Psi \in \ell^1(\mathbb{R})\) that provides the convolution representation is unique and that \(U\) has the input forgetting property.

The uniqueness of the sequence \(\Psi \in \ell^1(\mathbb{R})\) is due to the fact that its components are uniquely determined by the impulse response of \(U\), that is, for any \(t \in \mathbb{Z}_-\)

\[
\Psi_t = H_U(e_t) = (\Psi * e_t)_0, \quad \text{where } e_t := (\ldots, 0, \underbrace{1}_{t \text{ entry}}, 0, \ldots, 0) \in \ell^\infty(\mathbb{R}).
\]

We now show that \(U\) has the input forgetting property. Let \(u, v \in \ell^\infty(\mathbb{R}), \; z \in \mathbb{R}^\mathbb{N}_+\), and denote \(\tilde{z}_t := (z_1, \ldots, z_t) \in \mathbb{R}^t\), for any \(t \in \mathbb{N}_+\). It is easy to see using (4.2) that

\[
u \tilde{z}_t = T_{-t}(v) + (\ldots, 0, z_1, z_2, \ldots, z_t) \quad \text{and} \quad u \tilde{z}_t = T_{-t}(u) + (\ldots, 0, z_1, z_2, \ldots, z_t).
\]

We now use these equalities with the convolution representation of \(U\) and the linearity of \(T_{-t}\) and show
that:

\[|H_U(u\tilde{z}_t) - H_U(v\tilde{z}_t)| = |U(u\tilde{z}_t) - U(v\tilde{z}_t)| = |\Psi \ast T_{-t}(u - v)| = \left| \sum_{j=-\infty}^{-t} \Psi_j (u - v)_{j+t} \right| \]

\[\leq \sum_{j=-\infty}^{-t} |\Psi_j| \|u - v\|_{\infty} = \left(\|\Psi\|_1 - \sum_{j=-t+1}^{0} |\Psi_j| \right) \|u - v\|_{\infty} \xrightarrow{t \to \infty} 0. \quad (4.3) \]

The proposition that we just proved shows, in particular, that FMP linear, causal, and time invariant filters satisfy the hypotheses of the Canonical Realization Theorem 3.2 and hence they always have a canonical state-space realization that, as we show later in Theorem 4.5, is linear even though the state space may be an infinite dimensional vector space. We emphasize that the fading memory property plays a crucial role in the result that we just proved since, in general, the Convolution Theorem does not hold in its absence (see the counterexample in Section A3 of [Boyd 85]).

Before we proceed with that theorem, we first state a result that lists important properties of finite-dimensional linear state-space realizations that are needed in the sequel.

Proposition 4.2 (Linear state-space realizations with semi-infinite inputs) Let \(N \in \mathbb{N} \), let \(A \in \mathbb{M}_N \) be a diagonalizable matrix, \(C \in \mathbb{R}^N \), \(W \in \mathbb{M}_{1,N} \), and consider the linear state-space system \((\mathcal{V}, F, h)\) defined by \(\mathcal{V} = \mathbb{R}^N \) and

\[
\begin{aligned}
F(x, z) &= Ax + Cz, \\
h(x) &= Wx.
\end{aligned}
\]

(i) The state equation associated to (4.4) has a unique solution in \(\ell^\infty(\mathbb{R}^N) \) for each input in \(\ell^\infty(\mathbb{R}) \) (we call this property the \((\ell^\infty(\mathbb{R}^N), \ell^\infty(\mathbb{R}))\)-ESP) if and only if \(\rho(A) < 1 \), where \(\rho(A) \) stands for the spectral radius of \(A \).

(ii) In the remainder of this proposition suppose that \(\rho(A) < 1 \). Then, there exists a state filter \(U_F : \ell^\infty(\mathbb{R}) \to \ell^\infty(\mathbb{R}^N) \) and a corresponding state-space filter \(U_h^F : \ell^\infty(\mathbb{R}) \to \ell^\infty(\mathbb{R}) \) given by

\[
U^F(z)_t := \sum_{j=0}^{\infty} A^j C z_{t-j} \quad \text{and} \quad U^h(z)_t := W \sum_{j=0}^{\infty} A^j C z_{t-j}, \quad \text{respectively.} \quad (4.6)
\]

The state-space filter \(U^h_F \) has the input forgetting property.

(iii) The set \(\mathcal{V}_R \subset \mathcal{V} \) of reachable states defined in (3.6) of \((\mathcal{V}, F, h)\) is given by

\[
\mathcal{V}_R = \text{span} \{ C, AC, A^2C, \ldots, A^{N-1}C \}. \quad (4.7)
\]

(iv) Given \(x \in \mathcal{V}_R \), the set of indistinguishable states of \(x \) in \(\mathcal{V}_R \) is given by the coset

\[
I^{x}_{F,h} := x + I_{F,h} \quad \text{with} \quad I_{F,h} := \bigcap_{i=0}^{N-1} \ker WA^i. \quad (4.8)
\]

The state-space system \((\mathcal{V}, F, h)\) is hence observable if and only if \(I_{F,h} = \{0\} \). This condition is equivalent to the to the maximality of the rank of the observability matrix \(O(A, W) \) defined by

\[
O(A, W) = \begin{pmatrix}
W \\
WA \\
:\ \\
WA^{N-1}
\end{pmatrix}, \quad \text{that is, rank} \ O(A, W) = N \ \text{if and only if} \ I_{F,h} = \{0\}. \quad (4.9)
\]
Remark 4.3 The dimension of V_R in (4.7) coincides with the rank of the controllability or reachability matrix $R(A, C)$ defined by

$$R(A, C) := \langle C | AC | \cdots | A^{N-1}C \rangle.$$

When this rank is maximal, the linear system (V, F, h) is strongly reachable in the sense of the Definition 2.3 and also in the control theoretical sense (see [Kalm 10, Sont 98]). It has been shown in [Gono 20b] that if A is diagonalizable then $R(A, C)$ has maximal rank if and only if all the eigenvalues in the spectrum $\sigma(A)$ of A are distinct and in the linear decomposition $C = \sum_{i=1}^N c_i v_i$, with $\{v_1, \ldots, v_N\}$ a basis of eigenvectors of A, all the coefficients c_i, with $i \in \{1, \ldots, N\}$, are non-zero.

The dimension of V_R also coincides with the so-called memory capacity [Jaeg 02] of the recurrent network associated to (4.4)-(4.5). This fact has been recently proved in [Gono 20b].

Proof of the Proposition. (i) and (ii) We first show that if $\rho(A) \geq 1$ then (V, F) cannot have the $(\ell^\infty(\mathbb{R}^N), \ell^\infty(\mathbb{R}))$-ESP. Let $\lambda \geq 1$ be one of the elements in the spectrum $\sigma(A)$ and let $v \in \mathbb{R}^N$ be an associated norm-one eigenvector. Let $x^\lambda \in \ell^\infty(\mathbb{R}^N)$ be defined by $x_i^\lambda := \lambda^j v$, $t \in \mathbb{Z}_-$. It is clear that as $\lambda \geq 1$ then $\|x^\lambda\|_\infty = \|v\| = 1$. Moreover, x^λ is a solution of the system associated to F with zero input because for any $t \in \mathbb{Z}_-$ we have

$$F(x^\lambda_{t-1}, 0) = A x^\lambda_{t-1} = \lambda^{t-1} A v = \lambda^{t-1} v = x^\lambda_t.$$

Since $0 \in \ell^\infty(\mathbb{R}^N)$ is also a solution for the same input, then (V, F) does not have the ESP. What we just proved is equivalent to stating that if (V, F) has the $(\ell^\infty(\mathbb{R}^N), \ell^\infty(\mathbb{R}))$-ESP then $\rho < 1$ necessarily.

Conversely, suppose that $\rho(A) < 1$. We now show that, for any $z \in \ell^\infty(\mathbb{R})$ the sequence $x \in \ell^\infty(\mathbb{R}^N)$ whose terms x_t are defined by

$$x_t := \sum_{j=0}^\infty A^j C z_{t-j}$$

(4.10)

is a solution of (V, F) for the input z and second, that this solution is unique. In order to show that (4.10) is a solution, we first recall that by Gelfand’s formula (see [Lax 02]) $\lim_{k \to \infty} \|A^k\|^{1/k} = \rho(A) < 1$, which implies the existence of a number $k_0 \in \mathbb{N}$ such that $\|A^k\| < 1$, for all $k \geq k_0$. Consequently, the infinite sum

$$\sum_{j=0}^\infty A^j = I_N + A + \cdots + A^{k_0-1} + \sum_{j=1}^{\infty} \sum_{i=0}^{k_0-1} A^j A^i = \sum_{j=0}^{\infty} \sum_{i=0}^{k_0-1} A^{j+i}$$

(4.11)

converges in operator norm because as $\|A^{j+i}\| \leq \|A^k\| \|A^i\|$ for all $j \in \mathbb{N}$, $i \in \{0, \ldots, k_0 - 1\}$ then (4.11) implies that

$$\left\| \sum_{j=0}^\infty A^j \right\| \leq \sum_{i=0}^{k_0-1} \frac{\|A^i\|}{1 - \|A^{k_0}\|} < \infty.$$

(4.12)

This inequality, (4.11), and (4.10) imply that

$$\|x_t\| \leq \left\| \sum_{j=0}^{\infty} \sum_{i=0}^{k_0-1} A^{j+i} C z_{t-(j+k_0+i)} \right\| \leq \left(\sum_{j=0}^{\infty} \sum_{i=0}^{k_0-1} \|A^k\| \|A^i\| \right) \|C\| \|z\|_\infty = \sum_{i=0}^{k_0-1} \frac{\|A^i\|}{1 - \|A^{k_0}\|} \|C\| \|z\|_\infty,$$

which shows that the series in (4.10) are convergent and also that

$$\|x\|_\infty \leq \sum_{i=0}^{k_0-1} \frac{\|A^i\|}{1 - \|A^{k_0}\|} \|C\| \|z\|_\infty < \infty.$$
The fact that $x \in \ell^\infty(\mathbb{R}^N)$ is a solution of (\mathcal{V}, F) for the input $z \in \ell^\infty(\mathbb{R})$ is a straightforward verification. Suppose now that $x \in \ell^\infty(\mathbb{R}^N)$ is another solution of (\mathcal{V}, F) for the same input, that is, $x_t = A_x x_{t-1} + C_z t$, for all $t \in \mathbb{Z}_-$. This implies that $x - x \in \ell^\infty(\mathbb{R}^N)$ is a solution of (\mathcal{V}, F) for the zero input and hence

$$x_t - x_{t-1} = A (x_{t-1} - x_{t-1}), \quad \text{for all } t \in \mathbb{Z}_-.$$

(4.13)

Using the same decomposition as in (4.11), we have that for any $l \in \mathbb{N}$ there exists $j \in \mathbb{N}$ and $i \in \{1, \ldots, k_0 - 1\}$ such that $A^i = A^i k_0 A^i$. Hence, by iterating (4.13) we have that $x_t - x_{t-1} = A^i (x_{i-1} - x_{i-1})$ and therefore

$$\|x_t - x_{t-1}\| \leq \|A^k_0 A^i\| \|x_{i-1} - x_{i-1}\| \leq \|A^k_0\|^i \|A^i\| \|x - x\|_{\infty}.$$

Taking the limit $j \to \infty$ in this inequality, we obtain that $\|x_t - x_{i-1}\| = 0$, for all $t \in \mathbb{Z}_-$. This guarantees that $x = x$, as required.

Finally, we show that when $\rho(A) < 1$ then the filter U^F_h in (4.6) has the input forgetting property. Notice first that (4.6) amounts to a convolution representation for U^F_h, that is, $U^F_h(z) = \Psi * z$, for any $z \in \ell^\infty(\mathbb{R})$, where $\Psi = W^A C$, $j \in \mathbb{N}$. If we show that $\Psi \in \ell^1(\mathbb{R})$, then an argument similar to (4.3) proves that U^F_h has the input forgetting property. This is the case because by (4.12)

$$\|\Psi\|_1 = \left\| \sum_{j=0}^{\infty} W^A C \right\| \leq \|W\| \sum_{j=0}^{\infty} A^{j} \|C\| \leq \|W\| \|C\| \sum_{i=0}^{k_0-1} \frac{A^{i}}{1 - \|A^{k_0}\|} < \infty.$$

(iii) First of all, since by (4.6) the state functional $H^F : \ell^\infty(\mathbb{R}) \to \mathbb{R}^N$ is linear and given by $H^F(z) := \sum_{j=0}^{N} A^j z_{-j}$, we can immediately conclude that the reachable set $\mathcal{V}_R = H^F(\ell^\infty(\mathbb{R})) \subseteq \mathbb{R}^N$ is a vector subspace of \mathbb{R}^N. We now establish (4.7) by double inclusion. The inclusion $\mathcal{V}_R \supseteq \text{span}\{C, AC, A^2 C, \ldots, A^{N-1} C\}$ is proved by applying H^F to inputs of the form

$$z = (\cdots, 0, 1, 0, \ldots, 0) \in \ell^\infty(\mathbb{R}), \quad \text{with } j \in \{0, \ldots, N-1\}.$$

Conversely, let \mathcal{V}_R be the reachable set associated to the truncated functional $H^F_l(z) := \sum_{j=0}^{l} A^j C z_{-j}$, $l \in \mathbb{N}$. It is obvious that $\mathcal{V}_R^{N-l} \subseteq \text{span}\{C, AC, A^2 C, \ldots, A^{N-1} C\}$. We now prove by induction that $\mathcal{V}_R^{N+i} \subseteq \text{span}\{C, AC, A^2 C, \ldots, A^{N-1} C\}$, for all $i \in \mathbb{N}$. First, by the Cayley-Hamilton Theorem [Horn 13, Theorem 2.4.3.2] there exist constants $\{\alpha_0, \ldots, \alpha_{N-1}\}$ not all zero such that

$$A^N = \alpha_0 I_N + \alpha_1 A + \cdots + \alpha_{N-1} A^{N-1}.$$

(4.14)

and hence $H^F_N(z) := \sum_{j=0}^{N-1} A^j C z_{-j} + \sum_{j=0}^{N-1} A^j C z_{-j}$, which shows that $\mathcal{V}_R^{N} \subseteq \text{span}\{C, AC, A^2 C, \ldots, A^{N-1} C\}$. In order to prove the induction step, suppose that the inequality $\mathcal{V}_R^{N+(i-1)} \subseteq \text{span}\{C, AC, A^2 C, \ldots, A^{N-1} C\}$ holds for a certain $i \in \mathbb{N}$. Again, using (4.14), we have that

$$H^F_{N+i}(z) = A^N A^i C z_{-(N+i)} + \sum_{j=0}^{N+(i-1)} A^j C z_{-j} = A^N A^i C z_{-(N+i)} + \sum_{j=0}^{N+(i-1)} A^j C z_{-j} = \sum_{j=0}^{i-1} A^j C z_{-j} + \sum_{j=i}^{N+i-1} A^j C (z_{-j} + \alpha_{i-j} z_{-(N+i)}) = H^F_{N+(i-1)}(z),$$

with

$$z = (\cdots, z_{-(N+i)}, z_{-(N+i+1)} + \alpha_{N-1} z_{-(N+i)}, \ldots, z_{i-1} + \alpha_i z_{-(N+i)}, z_{i-1} + \alpha_{i} z_{-(N+i)}, z_{-(i-1)}, \ldots, z_{-1}, \infty).$$
which shows that \(\mathcal{V}_{i}^{N+i} \subseteq \mathcal{V}_{i}^{N+(i-1)} \subseteq \text{span} \{ C, AC, A^2C, \ldots, A^{N-1}C \} \) and hence proves the induction step. This inclusion also implies that

\[
\mathcal{V}_{i}^l = \bigcup_{l=0}^{\infty} \mathcal{V}_{i}^l \subseteq \text{span} \{ C, AC, A^2C, \ldots, A^{N-1}C \},
\]
as required.

(iv) Let \(x^1, x^2 \in \mathcal{V}_{i} \) be two indistinguishable states of \((\mathcal{V}, F, h) \). By definition, this implies that there exist \(z^1, z^2 \in \ell_\infty^\mathcal{V} \) such that \(x^1 = H_F(z^1) \), \(x^2 = H_F(z^2) \), and that for any \(\bar{z} \in \mathbb{R}^T \) and any \(T \in \mathbb{N} \) we have that \(H^T_h(z^1 \bar{z}) = H^T_h(z^2 \bar{z}) \). By (4.6), this is equivalent to

\[
W \left(\sum_{j=0}^{\infty} A^{j+T} C z_{1-j}^1 + \sum_{j=0}^{T-1} A^j C \bar{z}_{T-j} \right) = W \left(\sum_{j=0}^{\infty} A^{j+T} C z_{1-j}^2 + \sum_{j=0}^{T-1} A^j C \bar{z}_{T-j} \right),
\]

which amounts to

\[
WA^T \sum_{j=0}^{\infty} A^j C z_{1-j}^1 = WA^T \sum_{j=0}^{\infty} A^j C z_{1-j}^2,
\]

and is in turn equivalent to the relation \(WA^T(x^1 - x^2) = 0 \), for all \(T \in \mathbb{N} \) or, analogously, to \(x^1 - x^2 \in \bigcap_{j=0}^{\infty} \ker WA^j \). In order to conclude the proof, it hence suffices to show that

\[
\bigcap_{j=0}^{\infty} \ker WA^j = \bigcap_{j=0}^{N-1} \ker WA^j.
\]

The inclusion \(\bigcap_{j=0}^{\infty} \ker WA^j \subseteq \bigcap_{j=0}^{N-1} \ker WA^j \) is obvious. Conversely, we show by induction that

\[
\bigcap_{j=0}^{N-1} \ker WA^j \subseteq \bigcap_{j=0}^{N-1+i} \ker WA^j \quad \text{for all } i \in \mathbb{N}.
\]

(4.15)

The initialization step is proved using the Cayley-Hamilton Theorem as formulated in (4.14). Indeed:

\[
\bigcap_{j=0}^{N} \ker WA^j = \left(\bigcap_{j=0}^{N-1} \alpha_j WA^j \right) \bigcap \left(\bigcap_{j=0}^{N-1} \ker WA^j \right),
\]

which obviously implies that \(\bigcap_{j=0}^{N-1} \ker WA^j \subseteq \bigcap_{j=0}^{N} \ker WA^j \). In order to prove the induction step, suppose that (4.15) holds for a given \(i \in \mathbb{N} \). Given that

\[
\bigcap_{j=0}^{N+i} \ker WA^j = \left(\bigcap_{j=0}^{N+i} \alpha_j WA^j \right) \bigcap \ker WA^{N+i},
\]

by the induction hypothesis we just need to show that \(\bigcap_{j=0}^{N-1} \ker WA^j \subseteq \ker WA^{N+i} \). This inclusion is easily established by using again the Cayley-Hamilton Theorem, which implies that \(\ker WA^{N+i} = \ker \sum_{j=0}^{N-1} \alpha_i WA^{i+j} \). The inclusion then follows from the induction hypothesis.

Finally, the statement (4.9) follows in a straightforward manner from observing that:

\[
\ker O(A, W) = I_{F,h}.
\]
Before we use Theorem 3.2 in order to show that fading memory linear filters admit a linear canonical state-space realization, we motivate that result with an elementary example that hints how such construction may be obtained.

Example 4.4 Canonical realization of finite-memory linear filters. Consider the finite-memory linear filter

\[U(z)_t = \sum_{j=0}^{N+1} \Psi_j z_{t+j}, \quad \text{with} \quad \Psi \in \mathbb{R}^N, z \in \ell_\infty^\mathbb{R}(\mathbb{R}), t \in \mathbb{Z}_-, \]

and some \(N \in \mathbb{N} \). Using the definition of the Nerode equivalence \(\sim_I \) on the input space introduced in the proof of Theorem 3.2, it is easy to see that \(z^1, z^2 \in \ell_\infty^\mathbb{R}(\mathbb{R}) \) are such that \(z^1 \sim_I z^2 \) if and only if \((z^1_{-N+1}, \ldots, z^1_0) = (z^2_{-N+1}, \ldots, z^2_0) \) and hence \(\ell_\infty^\mathbb{R}(\mathbb{R}) / \sim_I \) can be identified in this case with \(\mathbb{R}^N \) via the map

\[\phi : \ell_\infty^\mathbb{R}(\mathbb{R}) / \sim_I \rightarrow \mathbb{R}^N, \quad [z] \mapsto (z_{-N+1}, \ldots, z_0). \]

With this identification, \(\ell_\infty^\mathbb{R}(\mathbb{R}) / \sim_I \) inherits the vector space structure of \(\ell_\infty^\mathbb{R}(\mathbb{R}) \) and, moreover, the canonical state-space realization (3.2) introduced in Theorem 3.2 is given by

\[
\begin{cases}
F((z_{-N+1}, \ldots, z_0), \bar{z}) &= (z_{-N+2}, \ldots, z_0, \bar{z}), \\
h((z_{-N+1}, \ldots, z_0)) &= \sum_{j=0}^{N+1} \Psi_j z_j,
\end{cases}
\]

or, in matrix form:

\[
\begin{align*}
\begin{bmatrix}
F((z_{-N+1}, \ldots, z_0), \bar{z}) \\
h((z_{-N+1}, \ldots, z_0))
\end{bmatrix} &= \begin{bmatrix} 0 & 1 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ \vdots & \ddots & 0 & 1
\end{bmatrix} \begin{bmatrix} z_{-N+1} \\ z_{-N+2} \\ \vdots \\ z_0
\end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1
\end{bmatrix} \bar{z}, \quad (4.16)
\end{align*}
\]

By Theorem 3.2, this realization of \(U \) is canonical. An observation that will be key in the next result is that the nilpotent matrix \(A \) in (4.16) is the projection onto the quotient space \(\ell_\infty^\mathbb{R}(\mathbb{R}) / \sim_I \) of the time delay operator \(T_{-1} : \ell_\infty^\mathbb{R}(\mathbb{R}) \rightarrow \ell_\infty^\mathbb{R}(\mathbb{R}) \) and that the input vector \(C \) is a matrix expression for the projected version of the inclusion

\[
i_0 : \mathbb{R} \hookrightarrow \ell_\infty^\mathbb{R}(\mathbb{R}), \quad z \mapsto (\ldots, 0, z). \quad (4.17)
\]

Theorem 4.5 (Canonical realization of linear fading memory filters) Let \(U : \ell_\infty^\mathbb{R}(\mathbb{R}) \rightarrow \ell_\infty^\mathbb{R}(\mathbb{R}) \) be a linear, causal, and time-invariant filter such that the associated functional \(H_U : \ell_\infty^\mathbb{R}(\mathbb{R}) \rightarrow \mathbb{R} \) has the fading memory property. Then:
(i) The quotient space $V := \ell^\infty(\mathbb{R})/\sim_I$ has a natural vector space structure inherited from $\ell^\infty(\mathbb{R})$. The time delay operator T_{-1} and the inclusion in (4.17) can be naturally projected to two linear maps $A := [T_{-1}] \in L(V, V)$, $C := [i_0] \in L(\mathbb{R}, V)$, as well as the functional H_U that we use to define $W := [H_U] \in L(V, \mathbb{R})$.

(ii) The state-space system (V, F, h) with $F(v, z) := A(v) + C(z)$ and $h(v) := W(v)$ is a canonical linear realization of U.

(iii) Consider the action of the group $GL(V)$ of all the linear automorphisms of V and its action Φ on the product $(L(V, V) \times L(\mathbb{R}, V) \times L(V, \mathbb{R}))(B, (A, C, W)) \mapsto (L(V, V) \times L(\mathbb{R}, V) \times L(V, \mathbb{R})) \mapsto (B A B^{-1}, B C, W B^{-1})$.

All the canonical representations of U are given by the orbit of the triple (A, C, W) introduced in part (i) and hence the space of canonical representations is isomorphic to the homogeneous manifold $GL(V)/GL(V)_{\phi}$, with $GL(V)_{\phi}$ the isotropy subgroup of the element (A, C, W).

(iv) If the canonical realization in (ii) is finite-dimensional, then there exists $N \in \mathbb{N}$ such that $V \cong \mathbb{R}^N$, where this isomorphism is implemented by a choice of basis in V. There are also matrices $A \in \mathbb{M}_N$, $C \in \mathbb{R}^N$, $W \in \mathbb{M}_{1, N}$ that express in that basis A, C, and W, respectively. Let (\mathbb{R}^N, F, h) be the system corresponding to (V, F, h) in that basis. Then:

(a) $\rho(A) < 1$.
(b) The set of reachable states of (\mathbb{R}^N, F, h) coincides with $\mathbb{R}^N = \text{span}\{C, AC, A^2 C, \ldots, A^{N-1} C\}$.
(c) $I_{F, h} := \bigcap_{i=1}^{N-1} \ker W A^i = \{0\}$.
(d) $U(z)_t = \sum_{j=0}^{\infty} W A^j C z_{t-j}$, with $z \in \ell^\infty(\mathbb{R})$, for all $t \in \mathbb{Z}_{-\infty}$.
(e) Let $\Psi \in \ell^1(\mathbb{R})$ be the unique element such that $U(z) = \Psi * z$ for any $z \in \ell^\infty(\mathbb{R})$. Then, $\Psi_{-j} = WA^j C$, for any $j \in \mathbb{N}$.

Proof. (i) and (ii) Since by Proposition 4.1 the fading memory property implies the input forgetting property, any linear filter that satisfies the hypotheses in the statement satisfies too those in Theorem 3.2 and consequently has a unique (up to system isomorphism) canonical state-space realization. We shall now study the realization introduced in the proof of that theorem and shall also see that it has the linear form stated in part (ii). First of all, recall that by Proposition 4.1 there exists a unique element $\Psi \in \ell^1(\mathbb{R})$ such that $U(z) = \Psi * z$, for any $z \in \ell^\infty(\mathbb{R})$. Using this convolution representation and the properties of infinite series it is obvious to prove that if $z^1 \sim_I z^2$ and $z^2 \sim_I z^3$, then for any $\lambda \in \mathbb{R}$ we have that $\lambda z^1 + z^2 \sim_I \lambda z^2 + z^2$. This implies that the sum and multiplication by scalars in $\ell^\infty(\mathbb{R})$ drop to the quotient space $V := \ell^\infty(\mathbb{R})/\sim_I$, making it into a vector space.

Also, using the convolution representation of U it is easy to prove that both the time delay operator T_{-1}, the inclusion in (4.17), and the functional H_U can be naturally projected to the linear maps $A := [T_{-1}] \in L(V, V)$, $C := [i_0] \in L(\mathbb{R}, V)$, and $W := [H_U] \in L(V, \mathbb{R})$, that are uniquely determined by the equalities:

$$A \circ \pi_{-j} = \pi_{-j} \circ T_{-1},$$
$$C = \pi_{-j} \circ i_0,$$
$$W \circ \pi_{-j} = H_U,$$

where $\pi_{-j} : \ell^\infty(\mathbb{R}) \longrightarrow V := \ell^\infty(\mathbb{R})/\sim_I$ is the canonical projection.
These maps can be used to rewrite the canonical realization proposed in (3.2) as
\[F([z], \tilde{z}) := [z \tilde{z}] = \pi_{\sim_1}(T_1(z) + i_0(\tilde{z})) = A([z]) + C(\tilde{z}) \quad \text{and} \quad h([z]) := H(z) = W([z]), \]
as required.

(iii) is a consequence of Corollary 2.7 and the equalities (2.3)-(2.4). Finally, (iv) is a corollary of the characterization in Proposition 4.2.

In the previous theorem we showed that as a Corollary of the Canonical Realization Theorem 3.2, any fading memory linear filter admits a canonical linear state-space realization. We now show that the Canonicalization by Reduction Theorem 3.4 implies that any linear state-space system that has the echo state property and the fading memory property can be reduced to a canonical system that is also linear and has the same linear filter associated. The proof is a straightforward consequence of Theorem 3.4 and of Proposition 4.2.

Theorem 4.6 (Canonicalization by reduction of linear state-space systems) Let \((\mathbb{R}^N, F, h)\) be the linear system determined by the maps \(F(x, z) := Ax + Cz \quad \text{and} \quad h(x) := Wx\), with \(A \in \mathbb{M}_N\) such that \(\rho(A) < 1\), \(C \in \mathbb{R}^N\), \(W \in \mathbb{M}_1(N)\), and with inputs \(z \in \ell^\infty(\mathbb{R})\). Denote by \(U_h^F : \ell^\infty(\mathbb{R}) \to \ell^\infty(\mathbb{R})\) the associated linear input forgetting filter given by (4.6). Let \(\mathcal{V}_R \subset \mathbb{R}^N\) and \(I_{F,h} \subset \mathbb{R}^N\) be the subspaces defined in (4.7) and (4.8), respectively. Then \(U_h^F\) has a canonical linear realization \((\mathcal{V}, \overline{T}, \overline{h})\) on the quotient vector space \(\mathcal{V} := \mathcal{V}_R/I_{F,h}\) given by the maps:

\[
\overline{T}(x, z) := [A][x] + [C]z, \quad (4.18)
\]
\[
\overline{h}([x]) := [W]([x]), \quad (4.19)
\]

where if \(\pi : \mathcal{V}_R \to \mathcal{V}_R/I_{F,h}\) and \(i : \mathcal{V}_R \to \mathbb{R}^N\) are the canonical projection and inclusion, respectively, the linear maps \([A] \in L(\mathcal{V}, \mathcal{V}), [W] \in L(\mathcal{V}, \mathbb{R}), \text{ and } [C] \in \mathcal{V}\) in (4.18)-(4.19) uniquely determined by the relations

\[[A] \circ \pi = \pi \circ A \circ i, \quad [C] = \pi(C), \quad \text{and} \quad [W] \circ \pi = \pi \circ W \circ i. \]

5 Implicit reduction using RKHS

An important drawback of the dimension reduction techniques proposed in the previous sections is the need to compute and characterize various reachable sets and quotient spaces, which may be complicated and hence may reduce the practical value of the results that we propose. A situation where these problems may be circumvented is the case is when the readout \(h : \mathcal{X} \to \mathcal{Y}\) in the observation equation (2.2) is linear. This situation is practically relevant since various state-space systems that satisfy this condition have been shown to exhibit universal approximation properties. It is the case, for instance, of state-affine systems \([\text{Grig} 18b]\) and the widely used echo state networks \([\text{Grig} 18a, \text{Gono} 21]\).

The way we proceed in that setup consists in associating to any state-space system \(F : \mathcal{X} \times \mathcal{Z} \to \mathcal{X}\) that satisfies the echo state property, a reproducing kernel Hilbert space (RKHS) \(\mathbb{H}\) (see, for instance, Chapter 6 in \([\text{Mohr} 18]\) or \([\text{Scho} 02]\) for a general presentation of kernel methods) using the state functional \(H^F : \mathcal{Z}^2 \to \mathcal{X}\) as a feature map. We shall then show that when the state space \(\mathcal{X}\) is a finite dimensional Hilbert space, then \(\mathbb{H}\) is isometrically isomorphic to the linear span \(\mathcal{X}_R\) given by

\[\mathcal{X}_R := \text{span} \{ \mathcal{X}_R \} = \text{span} \{ H^F(z) \mid z \in Z^2 \} \quad (5.1) \]
of the set of reachable states \(\mathcal{X}_R\).

The importance of this characterization is in the fact that it allows us to show, using the classical Representer Theorem \([\text{Mohr} 18, \text{page 117}]\), that the search for an optimal readout with respect to the regularized empirical risk minimization associated to any loss can be reduced to the search for a readout defined on the smaller space \(\mathcal{X}_R\) without having to actually compute it. We call this procedure **implicit reduction**.
The RKHS associated to a state system. Let $F : \mathcal{X} \times \mathcal{Z} \rightarrow \mathcal{X}$ be a state equation such that the pair $(\mathcal{X}, \langle \cdot, \cdot \rangle_\mathcal{X})$ is a finite dimensional Hilbert space and F has the echo state property. Let $H^F : \mathcal{Z}^\omega \rightarrow \mathcal{X}$ be the corresponding state functional. Define the kernel map

$$K : \mathcal{Z}^\omega \times \mathcal{Z}^\omega \rightarrow \mathbb{R}, \quad (z, z') \mapsto \langle H^F(z), H^F(z') \rangle_\mathcal{X}. \quad (5.2)$$

The map K is obviously symmetric and positive semidefinite in the sense that for any $a_i \in \mathbb{R}$, $z_i \in \mathcal{Z}^\omega$, $i \in \{1, \ldots, n\}$, we have that $\sum_{i,j=1}^n a_i a_j K(z_i, z_j) \geq 0$. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle_\mathcal{H})$ be the corresponding RKHS given by

$$\mathcal{H} := \text{span} \{K_z := K(z, \cdot) : \mathcal{Z}^\omega \rightarrow \mathbb{R} \mid z \in \mathcal{Z}^\omega\} \quad (5.3)$$

made out of finite linear combinations of elements of the type $K_z, z \in \mathcal{Z}^\omega$, together with all the limits of Cauchy sequences with respect to the metric induced by the inner product obtained as the linear extension of

$$\langle K_z, K_{z'} \rangle_\mathcal{H} = K(z, z') = \langle H^F(z), H^F(z') \rangle_\mathcal{X}, \quad z, z' \in \mathcal{Z}^\omega. \quad (5.4)$$

Note that in this setup, the reservoir functional H^F with respect to the kernel K and the elements in \mathcal{H} can be written as $K_z(\cdot) = \langle H^F(\cdot), H^F(\cdot) \rangle_\mathcal{X}$.

Proposition 5.1 Let $(\mathcal{X}, \langle \cdot, \cdot \rangle_\mathcal{X})$ be a finite dimensional Hilbert space and let $F : \mathcal{X} \times \mathcal{Z} \rightarrow \mathcal{X}$ be a state equation that satisfies the echo state property. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle_\mathcal{H})$ be the associated RKHS introduced in (5.3). Then

$$\mathcal{H} = \{(\mathbf{W}, H^F(\cdot))_\mathcal{X} \mid \mathbf{W} \in \overline{\mathcal{X}_R}\}. \quad (5.5)$$

Moreover, for any $\mathbf{W}_1, \mathbf{W}_2 \in \overline{\mathcal{X}_R}$, we have that

$$\langle (\mathbf{W}_1, H^F(\cdot))_\mathcal{X}, (\mathbf{W}_2, H^F(\cdot))_\mathcal{X} \rangle_\mathcal{H} = \langle \mathbf{W}_1, \mathbf{W}_2 \rangle_\mathcal{X}, \quad (5.6)$$

and the map

$$\Psi : (\overline{\mathcal{X}_R}, \langle \cdot, \cdot \rangle_\mathcal{X}) \rightarrow (\mathcal{H}, \langle \cdot, \cdot \rangle_\mathcal{H}) \quad \mathbf{W} \mapsto \langle \mathbf{W}, H^F(\cdot) \rangle_\mathcal{X} := H^F_W(\cdot) \quad (5.7)$$

is an isometric isomorphism.

Proof. We first establish the identity (5.5) by double inclusion. In order to show that $\mathcal{H} \subset \{(\mathbf{W}, H^F(\cdot))_\mathcal{X} \mid \mathbf{W} \in \overline{\mathcal{X}_R}\}$ consider the element

$$f = \sum_{i=1}^n a_i K_{z_i} \in \mathcal{H}, \quad \text{for some } a_1, \ldots, a_n \in \mathbb{R}. \quad (5.8)$$

Then $f(\cdot) = \sum_{i=1}^n (a_i H^F(z_i), H^F(\cdot))_\mathcal{X}$. Hence, it is clear that if we set $\mathbf{W} := \sum_{i=1}^n a_i H^F(z_i)$ we can then obviously write that $f(\cdot) = \langle \mathbf{W}, H^F(\cdot) \rangle_\mathcal{X}$, as required. More generally, what we just showed also proves that for any sequence $(f_n)_{n \in \mathbb{N}}$ of elements like (5.8) there are elements $\mathbf{W}_n \in \overline{\mathcal{X}_R}$ such that $f_n(\cdot) = \langle \mathbf{W}_n, H^F(\cdot) \rangle$. If we assume that $(f_n)_{n \in \mathbb{N}}$ is Cauchy then $\|f_n - f_m\|_\mathcal{H} \rightarrow 0$ as $n, m \rightarrow \infty$. This in turn implies that for any $z \in \mathcal{Z}^\omega$ we have that

$$|f_n(z) - f_m(z)| = |\langle K_z, f_n - f_m \rangle_\mathcal{H}| \leq \|f_n - f_m\|_\mathcal{H} \|K_z\|_\mathcal{H} \rightarrow 0 \quad \text{as } n, m \rightarrow \infty,$$

which guarantees that $|\langle \mathbf{W}_n - \mathbf{W}_m, H^F(\cdot) \rangle| \rightarrow 0$ and hence that $|\langle \mathbf{W}_n - \mathbf{W}_m, \mathbf{v} \rangle| \rightarrow 0$ as $n, m \rightarrow \infty$, for any $\mathbf{v} \in \overline{\mathcal{X}_R}$. Now, since any vector $\mathbf{x} \in \mathcal{X}$ can be uniquely decomposed as $\mathbf{x} = \mathbf{v} + \mathbf{v}^\perp$ with $\mathbf{v} \in \overline{\mathcal{X}_R}$ and $\mathbf{v}^\perp \in \overline{\mathcal{X}_R}^\perp$, we also have that

$$|\langle \mathbf{W}_n - \mathbf{W}_m, \mathbf{x} \rangle| = |\langle \mathbf{W}_n - \mathbf{W}_m, \mathbf{v} \rangle| \rightarrow 0 \quad \text{as } n, m \rightarrow \infty,$$
Given that \(\mathcal{X} \) is finite dimensional, we can conclude that weak and strong convergence coincide and hence that \(|W_n - W_m|_{\mathcal{X}} \to 0\) as \(n, m \to \infty\). Since \(\mathcal{X} \) is complete then so is \(\overline{\mathcal{X}}_R \) and hence there exists \(W \in \overline{\mathcal{X}}_R \) such that \(\lim_{n \to \infty} W_n = W \). It is easy to see that this implies that

\[
f(\cdot) := \lim_{n \to \infty} f_n(\cdot) = \langle W, H^F(\cdot) \rangle_{\mathcal{X}},
\]
as required. In order to prove the converse inclusion, note first that by definition, for any \(H \)

\[
\text{as required. In order to prove the converse inclusion, note first that by definition, for any } W \in \overline{\mathcal{X}}_R \text{ there exist } z_1, \ldots, z_n \in \mathbb{Z}^2-, \text{ and } a_1, \ldots, a_n \in \mathbb{R} \text{ such that } W = \sum_{i=1}^{n} a_i H^F(z_i).
\]

It is hence easy to see that

\[
\langle W, H^F(\cdot) \rangle_{\mathcal{X}} = \sum_{i=1}^{n} a_i (H^F(z_i), H^F(\cdot))_{\mathcal{X}} = \sum_{i=1}^{n} a_i K_z(\cdot),
\]

which is an element in \(\mathbb{H} \), as required.

We now show the identity (5.6). Let \(W_1, W_2 \in \overline{\mathcal{X}}_R \) and let \(W_1 = \sum_{i=1}^{n} a_i^1 H^F(z_i^1) \) and \(W_2 = \sum_{i=1}^{n} a_i^2 H^F(z_i^2) \) two representations of the two vectors according to the definition of \(\overline{\mathcal{X}}_R \). Then, it is easy to see that

\[
\langle \langle W_1, H^F(\cdot) \rangle_{\mathcal{X}}, \langle W_2, H^F(\cdot) \rangle_{\mathcal{X}} \rangle_{\mathbb{H}} = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} a_i^1 a_j^2 \langle \langle H^F(z_i^1), H^F(\cdot) \rangle_{\mathcal{X}}, \langle H^F(z_j^2), H^F(\cdot) \rangle_{\mathcal{X}} \rangle_{\mathbb{H}}
\]

\[
= \sum_{i=1}^{n_1} a_i^1 a_j^2 \langle K_{z_i^1}, K_{z_j^2} \rangle_{\mathbb{H}} = \sum_{i=1}^{n_1} a_i^1 a_j^2 \langle H^F(z_i^1), H^F(z_j^2) \rangle_{\mathcal{X}} = \langle W_1, W_2 \rangle_{\mathcal{X}}.
\]

Finally, we show that the map \(\Psi \) in (5.7) is an isometric isomorphism. First, it is clear that the map is linear, the equality (5.5) guarantees that \(\Psi \) is onto, and (5.6) that it is an isometry. In order to show injectivity, suppose that \(W \in \overline{\mathcal{X}}_R \) is such that \(\Psi(W)(\cdot) = \langle W, H^F(\cdot) \rangle_{\mathcal{X}} = 0 \). If we use a representation for \(W \) of the type \(W = \sum_{i=1}^{n} a_i H^F(z_i) \) we can write that

\[
\langle W, W \rangle_{\mathcal{X}} = \langle W, \sum_{i=1}^{n} a_i H^F(z_i) \rangle_{\mathcal{X}} = \sum_{i=1}^{n} a_i \Psi(W)(z_i) = 0,
\]

which guarantees that \(W = 0 \), as required.

Estimation of the empirical risk minimizing readout. A common estimation problem that appears when using in practice systems of the form (2.1)-(2.2) and where the readout is linear is finding the readout vector \(W \in \mathcal{X} \) that minimizes the empirical risk associated to a prescribed loss function \(L : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \) with respect to a finite sample of input/output observations. This is typically how one proceeds in reservoir computing (see the introduction section) where the state equation is fixed and only a linear observation equation is subjected to training. In that particular case and if a quadratic loss is used, the estimation problem reduces itself to a (eventually regularized) regression problem with as many covariates as the dimension of the state space \(\mathcal{X} \), which is in most cases very large. It is in this context that for quadratic or more general losses, the possibility of reducing the dimensionality of the estimation problem to the dimension of \(\overline{\mathcal{X}}_R \) using the RKHS technology that we just introduced may prove computationally advantageous.

To be more specific, in the next proposition we will show two main facts as a consequence of the RKHS formulation of the estimation problem. First, that even though the optimization problem that provides the optimal readout is originally formulated in the space \(\mathcal{X} \), it can be reduced to the dimensionally smaller \(\overline{\mathcal{X}}_R \). Second, the Representer Theorem [Mohr 18, page 117] shows that the optimal readout is in the
"span of the data"; this is the well-known “kernelization trick" that in our case is computational relevant in the presence of state spaces of dimension larger than the sample size. An important observation is that this second result yields automatically a solution in the span \mathcal{X}_R of the reachable set \mathcal{X}_R without actually having to compute it.

We now introduce the different elements that are necessary for the statement of the Proposition. First, we will assume that the output space \mathcal{Y} is one-dimensional, the state system $F : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{X}$ is fixed and satisfies the ESP, and we are provided with a finite sample $\{(Z_{-i}, Y_{-i})\}_{i \in \{0, \ldots, n-1\}}$ of size n of input/output observations. For each time step $i \in \{0, \ldots, n-1\}$ we define the truncated training sample for the input stochastic process Z as

$$Z^{-n+1}_{-i} : = (\ldots, 0, 0, Z_{-n+1}, \ldots, Z_{-i-1}, Z_{-i}),$$

that we use to define the training error or the empirical risk $\hat{R}_n(\mathcal{F}_K)$ associated to the loss $L : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ for the system $\mathcal{F}_K(\cdot) = (W, \mathcal{F}(\cdot))_X$ with readout vector $W \in \mathcal{X}$ as

$$\hat{R}_n(\mathcal{F}_K) = \frac{1}{n} \sum_{i=0}^{n-1} L(\langle W, \mathcal{F}(Z^{-n+1}_{-i}) \rangle_X, Y_{-i}).$$

Proposition 5.2 Let $F : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{X}$ be a state system that satisfies the ESP and let $L : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a loss function with respect to the one-dimensional output space \mathcal{Y}. Let $\{(Z_{-i}, Y_{-i})\}_{i \in \{0, \ldots, n-1\}}$ be a sample of size n of input/output observations. Let $\Omega : \mathbb{R}^+ \rightarrow \mathbb{R}$ be a strictly increasing function. Then:

$$\min_{W \in \mathcal{X}} \left\{ \hat{R}_n(\mathcal{F}_K) + \Omega \left(\|W\|_{\mathcal{X}}^2 \right) \right\} = \min_{W \in \mathcal{X}_R} \left\{ \hat{R}_n(\mathcal{F}_K) + \Omega \left(\|W\|_{\mathcal{X}}^2 \right) \right\} = \min_{H \in \mathcal{H}} \left\{ \hat{R}_n(\mathcal{F}_K) + \Omega \left(\|H\|^2_{\mathcal{H}} \right) \right\},$$

(5.9)

where \mathcal{H} is the RKHS introduced in (5.3). The minimum in (5.10) is realized by an element in \mathcal{H} of the form

$$\sum_{i=0}^{n-1} \alpha_i H^F(\sum_{i=0}^{n-1} \alpha_i H^F(Z^{-n+1}_{-i}), H^F(\cdot)) \in \mathcal{X}_R,$$

where $\sum_{i=0}^{n-1} \alpha_i H^F(\sum_{i=0}^{n-1} \alpha_i H^F(Z^{-n+1}_{-i}), H^F(\cdot)) \in \mathcal{X}_R$ is the minimizer of the terms in (5.9).

Proof. Given that any $W \in \mathcal{X}$ can be uniquely decomposed as $W = W_R + W_R^\perp$ with $W_R \in \mathcal{X}_R$ and $W_R^\perp \in \mathcal{X}_R^\perp$, we can write that

$$\hat{R}_n(\mathcal{F}_K) + \Omega \left(\|W\|_{\mathcal{X}}^2 \right) = \hat{R}_n(\mathcal{F}_K) + \Omega \left(\|W_R\|_{\mathcal{X}}^2 + \|W_R^\perp\|_{\mathcal{X}}^2 \right) \geq \hat{R}_n(\mathcal{F}_K) + \Omega \left(\|W_R\|_{\mathcal{X}}^2 \right),$$

where in the last inequality we used that, by hypothesis, Ω is strictly increasing. This inequality implies that

$$\hat{R}_n(\mathcal{F}_K) + \Omega \left(\|W\|_{\mathcal{X}}^2 \right) \geq \min_{W \in \mathcal{X}} \left\{ \hat{R}_n(\mathcal{F}_K) + \Omega \left(\|W\|_{\mathcal{X}}^2 \right) \right\}.$$

However, given that $\mathcal{X}_R \subseteq \mathcal{X}$ the converse inequality also obviously holds, which proves the equality (5.9). The relation (5.10) is a consequence of (5.5) and also of the fact that by (5.6)

$$\|H^F\|^2_{\mathcal{H}} = \langle (W, \mathcal{F}(\cdot))_X, (W, \mathcal{F}(\cdot))_X \rangle_{\mathcal{H}} = \|W\|^2_{\mathcal{X}}.$$

Finally, the statement (5.11) is a straightforward consequence of the Representer Theorem [Mohr 18, page 117]. □
6 Conclusions

In this paper we have extended the classical notion of canonical state-space realization to accommodate semi-infinite inputs so that it can be used as a dimension reduction tool in the framework of recurrent networks. We have formulated two main results that identify the so-called input forgetting property (introduced in Definition 3.1) as the key hypothesis that guarantees the existence and uniqueness (up to system isomorphisms) of canonical realizations for causal and time-invariant input/output systems with semi-infinite inputs.

The first result (Theorem 3.2) shows that any causal and time-invariant filter with semi-infinite inputs that has the input forgetting property admits a canonical state-space realization that is unique up to system isomorphisms. The second one (Theorem 3.4) uses a reduction approach similar to the one introduced in [Orte 02a, Orte 02b] in the context of symmetric Hamiltonian systems to construct a canonical realization for a state-space system that has the input forgetting property system by using an “optimally reduced” version of it, in the sense of those references. These two results have been illustrated and applied in detail in Section 4 in the context of linear fading memory filters.

The contributions in this paper should be considered just as a first step in the full understanding of this problem as, in comparison with the classical theory of forward-looking input-driven state-space systems, there are many deficiencies in the level of comprehension of several important mathematical issues. We now list a few of them that are part of our research agenda and that will be studied in forthcoming works:

- **The geometric nature of reachable sets by semi-infinite inputs** (see the definition in (3.6)). Reachable sets are central objects in the context of continuous-time forward looking systems in connection with the notion of controllability (see [Sont 98, Lewi 02, Bull 05, Bloc 15] and references therein). From the geometric viewpoint, this important application question has given rise to the notions of generalized foliation and distribution [Stef 74a, Stef 74b, Suss 73, Kola 13]. Some of these results have a discrete-time counterpart (see, for instance, [Flie 81, Jaku 90, Anto 91]) but the situation is mostly unknown when it comes to semi-infinite inputs. Some partial information [Manj 12] can be obtained by using the recent theory of nonautonomous dynamical systems [Kloe 10].

- **The geometric nature of the canonical state spaces obtained by reduction** (see the definition in Theorem 3.4). Again, in other contexts like the reduction of symmetric Hamiltonian systems or control systems, this is a very well studied question (see [Orte 04, Mars 07] for the autonomous case or [Scha 81, Nijm 82, Bloc 15] for the control case). The semi-infinite inputs framework presents new mathematical challenges that need to be addressed with innovative tools.

- **The geometric nature of the canonical realization state-spaces in Theorem 3.2.** In the linear case treated in Section 4 we were able to easily pinpoint the vector space structure of the quotient space $\mathcal{X} := \mathbb{Z}_{-} / \sim_{1}$ and to comfortably work with it. In more general nonlinear situations it is very difficult to answer even elementary questions (like the dimension) about the canonical state-space \mathcal{X} even when we impose strong regularity assumptions on the original input space \mathbb{Z}_{-}.

- Even in the linear case, there is, as far as we know, no readily usable characterization of the situations in which the canonical realizations introduced in Theorem 4.5 are finite dimensional. Such criterion is necessary for the practical implementation of this result.

Acknowledgments: JPO acknowledges partial financial support coming from the Research Commission of the Universität Sankt Gallen and the Swiss National Science Foundation (grant number
The authors thank the hospitality and the generosity of the FIM at ETH Zurich and the Division of Mathematical Sciences of the Nanyang Technological University, Singapore, where a significant portion of the results in this paper was obtained.

References

[Anto 91] A. C. Antoulas. “Mathematical System Theory. The Influence of R. E. Kalman.”. In: A. C. Antoulas, Ed., A Festschrift in Honor of Professor R. E. Kalman on the Occasion of his 60th Birthday, Springer-Verlag, 1991.

[Bara 14] P. Barancok and I. Farkas. “Memory capacity of input-driven echo state networks at the edge of chaos”. In: Proceedings of the International Conference on Artificial Neural Networks (ICANN), pp. 41–48, 2014.

[Baum 66] L. E. Baum and T. Petrie. “Statistical inference for probabilistic functions of finite state Markov chains”. The annals of mathematical statistics, Vol. 37, No. 6, pp. 1554–1563, 1966.

[Blan 04] G. Blankenstein and T. S. Ratiu. “Singular reduction of implicit Hamiltonian systems”. Reports on Mathematical Physics, Vol. 53, No. 2, pp. 211–260, 2004.

[Bloc 15] A. M. Bloch. Nonholonomic Mechanics and Control. Springer, second Ed., 2015.

[Boyd 85] S. Boyd and L. Chua. “Fading memory and the problem of approximating nonlinear operators with Volterra series”. IEEE Transactions on Circuits and Systems, Vol. 32, No. 11, pp. 1150–1161, 1985.

[Bull 05] F. Bullo and A. Lewis. Geometric Control of Mechanical Systems. Springer New York, 2005.

[Bute 13] P. Buteneers, D. Verstraeten, B. V. Nieuwenhuyse, D. Stroobandt, R. Raedt, K. Vonck, P. Boon, and B. Schrauwen. “Real-time detection of epileptic seizures in animal models using reservoir computing”. Epilepsy Research, Vol. 103, No. 2, pp. 124–134, 2013.

[Char 17] A. S. Charles, D. Yin, and C. J. Rozell. “Distributed sequence memory of multidimensional inputs in recurrent networks”. Tech. Rep., 2017.

[Coui 16] R. Couillet, G. Wainrib, H. Sevi, and H. T. Ali. “The asymptotic performance of linear echo state neural networks”. Journal of Machine Learning Research, Vol. 17, No. 178, pp. 1–35, 2016.

[Cuch 20] C. Cuchiero, L. Gonon, L. Grigoryeva, J.-P. Ortega, and J. Teichmann. “Discrete-time signatures and randomness in reservoir computing”. Preprint arXiv:2010.14615, 2020.

[Damb 12] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar. “Information processing capacity of dynamical systems”. Scientific reports, Vol. 2, No. 514, 2012.

[Dang 84] H. Dang Van Mien and D. Normand-Cyrot. “Nonlinear state affine identification methods: applications to electrical power plants”. Automatica, Vol. 20, No. 2, pp. 175–188, mar 1984.

[Doya 92] K. Doya. “Bifurcations in the learning of recurrent neural networks”. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 2777–2780, IEEE, 1992.

[Dufl 97] M. Duflo. Random Iterative Models. Springer-Verlag Berlin Heidelberg, 1997.
Dimension reduction in recurrent networks by canonicalization

[Durb 12] J. Durbin and S. J. Koopman. *Time Series Analysis by State Space Methods*. Oxford University Press, 2012.

[Fark 16] I. Farkas, R. Bosak, and P. Gergel. “Computational analysis of memory capacity in echo state networks”. *Neural Networks*, Vol. 83, pp. 109–120, 2016.

[Flie 81] M. Fliess and D. Normand-Cyrot. “A group-theoretic approach to discrete-time non-linear controllability”. In: *1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes*, pp. 551–557, IEEE, 1981.

[Gang 08] S. Ganguli, D. Huh, and H. Sompolinsky. “Memory traces in dynamical systems.”. *Proceedings of the National Academy of Sciences of the United States of America*, Vol. 105, No. 48, pp. 18970–5, dec 2008.

[Gay 11] F. Gay-Balmaz and T. S. Ratiu. “Clebsch optimal control formulation in mechanics”. *J. Geom. Mech*, Vol. 3, No. 1, pp. 41–79, 2011.

[Gono 20a] L. Gonon, L. Grigoryeva, and J.-P. Ortega. “Approximation error estimates for random neural networks and reservoir systems”. *arXiv preprint 2002.05933*, 2020.

[Gono 20b] L. Gonon, L. Grigoryeva, and J.-P. Ortega. “Memory and forecasting capacities of nonlinear recurrent networks”. *Physica D*, Vol. 414, No. 132721, pp. 1–13., 2020.

[Gono 20c] L. Gonon, L. Grigoryeva, and J.-P. Ortega. “Risk bounds for reservoir computing”. *Journal of Machine Learning Research*, Vol. 21, No. 240, pp. 1–61, 2020.

[Gono 20d] L. Gonon and J.-P. Ortega. “Reservoir computing universality with stochastic inputs”. *IEEE Transactions on Neural Networks and Learning Systems*, Vol. 31, No. 1, pp. 100–112, 2020.

[Gono 21] L. Gonon and J.-P. Ortega. “Fading memory echo state networks are universal”. *Neural Networks*, Vol. 138, pp. 10–13, 2021.

[Goud 16] A. Goudarzi, S. Marzen, P. Banda, G. Feldman, M. R. Lakin, C. Teuscher, and D. Stefanovic. “Memory and information processing in recurrent neural networks”. Tech. Rep., 2016.

[Grav 13] A. Graves, A.-R. Mohamed, and G. Hinton. “Speech recognition with deep recurrent neural networks”. In: *2013 IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 6645–6649, IEEE, may 2013.

[Grig 14] L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega. “Stochastic time series forecasting using time-delay reservoir computers: performance and universality”. *Neural Networks*, Vol. 55, pp. 59–71, 2014.

[Grig 15] L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega. “Optimal nonlinear information processing capacity in delay-based reservoir computers”. *Scientific Reports*, Vol. 5, No. 12858, pp. 1–11, 2015.

[Grig 16a] L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega. “Nonlinear memory capacity of parallel time-delay reservoir computers in the processing of multidimensional signals”. *Neural Computation*, Vol. 28, pp. 1411–1451, 2016.
Dimension reduction in recurrent networks by canonicalization

[Grig 16b] L. Grigoryeva, J. Henriques, and J.-P. Ortega. “Reservoir computing: information processing of stationary signals”. In: Proceedings of the 19th IEEE International Conference on Computational Science and Engineering, pp. 496–503, 2016.

[Grig 18a] L. Grigoryeva and J.-P. Ortega. “Echo state networks are universal”. Neural Networks, Vol. 108, pp. 495–508, 2018.

[Grig 18b] L. Grigoryeva and J.-P. Ortega. “Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems”. Journal of Machine Learning Research, Vol. 19, No. 24, pp. 1–40, 2018.

[Grig 19] L. Grigoryeva and J.-P. Ortega. “Differentiable reservoir computing”. Journal of Machine Learning Research, Vol. 20, No. 179, pp. 1–62, 2019.

[Grig 21a] L. Grigoryeva, A. G. Hart, and J.-P. Ortega. “Chaos on compact manifolds: Differentiable synchronizations beyond the Takens theorem”. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 103, p. 062204, 2021.

[Grig 21b] L. Grigoryeva, A. G. Hart, and J.-P. Ortega. “Learning strange attractors with reservoir systems”. arXiv, 2021.

[Griz 85] J. Grizzle and S. Marcus. “The structure of nonlinear control systems possessing symmetries”. IEEE Transactions on Automatic Control, Vol. 30, No. 3, pp. 248–258, 1985.

[Hans 19] J. Hanson and M. Raginsky. “Universal approximation of input-output maps by temporal convolutional nets”. In: NeurIPS, 2019.

[Hart 20] A. G. Hart, J. L. Hook, and J. H. P. Dawes. “Embedding and approximation theorems for echo state networks”. Neural Networks, Vol. 128, pp. 234–247, 2020.

[Hart 21] A. G. Hart, J. L. Hook, and J. H. P. Dawes. “Echo State Networks trained by Tikhonov least squares are L2(µ) approximators of ergodic dynamical systems”. Physica D: Nonlinear Phenomena, p. 132882, 2021.

[Hayk 09] S. Haykin. Neural Networks and Learning Machines. Pearson, Addison Wesley, 2009.

[Herm 10] M. Hermans and B. Schrauwen. “Memory in linear recurrent neural networks in continuous time.”. Neural networks : the official journal of the International Neural Network Society, Vol. 23, No. 3, pp. 341–55, apr 2010.

[Horn 13] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, second Ed., 2013.

[Huan 06] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. “Extreme learning machine: Theory and applications”. Neurocomputing, Vol. 70, No. 1-3, pp. 489–501, dec 2006.

[Hutc 84] C. E. Hutchinson. “The Kalman filter applied to aerospace and electronic systems”. IEEE transactions on aerospace and electronic systems, No. 4, pp. 500–504, 1984.

[Jaeg 02] H. Jaeger. “Short term memory in echo state networks”. Fraunhofer Institute for Autonomous Intelligent Systems. Technical Report., Vol. 152, 2002.

[Jaeg 04] H. Jaeger and H. Haas. “Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication”. Science, Vol. 304, No. 5667, pp. 78–80, 2004.
Dimension reduction in recurrent networks by canonicalization

[Jaeg 10] H. Jaeger. “The ‘echo state’ approach to analysing and training recurrent neural networks with an erratum note”. Tech. Rep., German National Research Center for Information Technology, 2010.

[Jaku 90] B. Jakubczyk and E. D. Sontag. “Controllability of nonlinear discrete-time systems: A Lie-algebraic approach”. *SIAM Journal on Control and Optimization*, Vol. 28, No. 1, pp. 1–33, 1990.

[John 84] W. B. Johnson and J. Lindenstrauss. “Extensions of Lipschitz mappings into a Hilbert space”. *Contemporary Mathematics*, Vol. 26, pp. 189–206, 1984.

[Kalm 10] R. Kalman. “Lectures on Controllability and Observability”. In: *Controllability and Observability*, pp. 1–149, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[Kalm 59a] R. E. Kalman and J. E. Bertram. “A unified approach to the theory of sampling systems”. *Journal of the Franklin Institute*, Vol. 267, No. 5, pp. 405–436, 1959.

[Kalm 59b] R. E. Kalman and J. E. Bertram. “General synthesis procedure for computer control of single-loop and multiloop linear systems (An optimal sampling system)”. *Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry*, Vol. 77, No. 6, pp. 602–609, 1959.

[Kalm 60a] R. Kalman. “A new approach to linear filtering and prediction problems”. *Trans. ASME, J. Basic Engineering*, Vol. 82D, pp. 35–45, 1960.

[Kalm 60b] R. E. Kalman. “A new approach to linear filtering and prediction problems”. *Journal of Basic Engineering*, Vol. 82, No. 1, pp. 35–45, 1960.

[Kalm 61] R. E. Kalman and R. S. Bucy. “New results in linear filtering and prediction theory”. *Trans. ASME, D*, Vol. 83, pp. 95–108, 1961.

[Kalm 62] R. E. Kalman. “Canonical structure of linear dynamical systems”. *Proceedings of National Academy Of Sciences USA*, Vol. 48, No. 4, pp. 596–600, 1962.

[Kloe 10] P. E. Kloeden and M. Rasmussen. *Nonautonomous Dynamical Systems*. American Mathematical Society, 2010.

[Kola 13] I. Kolář, P. W. Michor, and J. Slovák. *Natural Operations in Differential Geometry*. Springer Science & Business Media, 2013.

[Kost 66] B. Kostant. “Orbits, symplectic structures and representation theory”. In: *Proc. US-Japan Seminar on Diff. Geom., Kyoto*. Nippon Hyronsha, Tokyo, 1966.

[Lax 02] P. Lax. *Functional Analysis*. Wiley-Interscience, 2002.

[Lewi 02] A. Lewis. “A brief on controllability of nonlinear systems”. 2002.

[Lind 15] A. Lindquist and G. Picci. *Linear Stochastic Systems*. Springer-Verlag, 2015.

[Livi 16] L. Livi, F. M. Bianchi, and C. Alippi. “Determination of the edge of criticality in echo state networks through Fisher information maximization”. 2016.

[Lu 18] Z. Lu, B. R. Hunt, and E. Ott. “Attractor reconstruction by machine learning”. *Chaos*, Vol. 28, No. 6, 2018.
[Luko 09] M. Lukoševičius and H. Jaeger. “Reservoir computing approaches to recurrent neural network training”. Computer Science Review, Vol. 3, No. 3, pp. 127–149, 2009.

[Maas 02] W. Maass, T. Natschläger, and H. Markram. “Real-time computing without stable states: a new framework for neural computation based on perturbations”. Neural Computation, Vol. 14, pp. 2531–2560, 2002.

[Maas 11] W. Maass. “Liquid state machines: motivation, theory, and applications”. In: S. S. Barry Cooper and A. Sorbi, Eds., Computability In Context: Computation and Logic in the Real World, Chap. 8, pp. 275–296, 2011.

[Manj 12] G. Manjunath, P. Tiño, and H. Jaeger. “Theory of input driven dynamical systems”. ESANN 2012 proceedings, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 1–12, 2012.

[Mars 07] J. E. Marsden, G. Misiolek, J.-P. Ortega, M. Perlmutter, and T. S. Ratiu. Hamiltonian reduction by stages. Springer-Verlag, Berlin, 2007.

[Mars 74] J. E. Marsden and A. Weinstein. “Reduction of symplectic manifolds with symmetry”. Reports on Mathematical Physics, Vol. 5, No. 1, pp. 121–130, 1974.

[Marz 17] S. Marzen. “Difference between memory and prediction in linear recurrent networks”. Physical Review E, Vol. 96, No. 3, pp. 1–7, 2017.

[Matt 92] M. B. Matthews. On the Uniform Approximation of Nonlinear Discrete-Time Fading-Memory Systems Using Neural Network Models. PhD thesis, ETH Zürich, 1992.

[Matt 94] M. Matthews and G. Moschytz. “The identification of nonlinear discrete-time fading-memory systems using neural network models”. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 41, No. 11, pp. 740–751, 1994.

[Mohr 18] M. Mohri, A. Rostamizadeh, and A. Tawalkar. Foundations of Machine Learning. The MIT Press, second Ed., 2018.

[Nare 90] K. Narendra and K. Parthasarathy. “Identification and control of dynamical systems using neural networks”. IEEE Transactions on Neural Networks, Vol. 1, No. 1, pp. 4–27, mar 1990.

[Nijm 82] H. Nijmeijer and A. der Schaft. “Controlled invariance for nonlinear systems”. IEEE Transactions on Automatic Control, Vol. 27, No. 4, pp. 904–914, 1982.

[Norm 83] D. Normand-Cyrot. Théorie et Pratique des Systèmes Non Linéaires en Temps Discret. PhD thesis, Université Paris-Sud, 1983.

[Ohsa 13] T. Ohsawa. “Symmetry reduction of optimal control systems and principal connections”. SIAM Journal on Control and Optimization, Vol. 51, No. 1, pp. 96–120, 2013.

[Orte 02a] J.-P. Ortega and T. S. Ratiu. “The optimal momentum map”. In: Geometry, Mechanics, and Dynamics, pp. 329–362, Springer-Verlag, New York, 2002.

[Orte 02b] J.-P. Ortega and T. S. Ratiu. “The symplectic reduced spaces of a Poisson action”. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, Vol. 334, pp. 999–1004, 2002.

[Orte 04] J.-P. Ortega and T. S. Ratiu. Momentum Maps and Hamiltonian Reduction. Birkhauser Verlag, 2004.
Dimension reduction in recurrent networks by canonicalization

[Rasc 13] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. “How to construct deep recurrent neural networks”. arXiv, dec 2013.

[Path 18a] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. “Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach”. Physical Review Letters, Vol. 120, No. 2, p. 24102, 2018.

[Path 18b] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, and E. Ott. “Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model”. Chaos, Vol. 28, No. 4, 2018.

[Rahi 07] A. Rahimi and B. Recht. “Random features for large-scale kernel machines”. Advances in neural information, 2007.

[Sand 78] N. R. Sandell and K. I. Yared. “Maximum likelihood identification of state space models for linear dynamic systems”. Electronic Systems Laboratory, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology., Vol. R-814, 1978.

[Sark 13] S. Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, 2013.

[Scha 81] A. van der Schaft. “Symmetries and conservation laws for Hamiltonian systems with inputs and outputs: A generalization of Noether’s theorem”. Systems & Control Letters, Vol. 1, No. 2, pp. 108–115, 1981.

[Scha 87] A. J. der Schaft. “Symmetries in optimal control”. SIAM journal on control and optimization, Vol. 25, No. 2, pp. 245–259, 1987.

[Schö 02] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

[Smal 70] S. Smale. “Topology and mechanics”. Invent. Math., Vol. 10,11, pp. 305–331, 45–64, 1970.

[Sont 79] E. Sontag. “Realization theory of discrete-time nonlinear systems: Part I-The bounded case”. IEEE Transactions on Circuits and Systems, Vol. 26, No. 5, pp. 342–356, may 1979.

[Sont 98] E. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer-Verlag, 1998.

[Sour 66] J.-M. Souriau. “Quantification géométrique”. Comm. Math. Phys., Vol. 1, pp. 374–398, 1966.

[Sour 69] J.-M. Souriau. Structure des Systèmes Dynamiques. Dunod, Paris, 1969.

[Stef 74a] P. Stefan. “Accessibility and foliations with singularities”. Bulletin of the American Mathematical Society, Vol. 80, No. 6, pp. 1142–1145, 1974.

[Stef 74b] P. Stefan. “Accessible sets, orbits, and foliations with singularities”. Proceedings of the London Mathematical Society, Vol. 3, No. 4, pp. 699–713, 1974.

[Suss 73] H. J. Sussmann. “Orbits of families of vector fields and integrability of distributions”. Transactions of the American Mathematical Society, Vol. 180, pp. 171–188, 1973.

[Tino 13] P. Tino and A. Rodan. “Short term memory in input-driven linear dynamical systems”. Neurocomputing, Vol. 112, pp. 58–63, 2013.

[Tino 18] P. Tino. “Asymptotic Fisher memory of randomized linear symmetric Echo State Networks”. Neurocomputing, Vol. 298, pp. 4–8, 2018.
[Verz 19] P. Verzelli, C. Alippi, and L. Livi. “Echo state networks with self-normalizing activations on the hyper-sphere”. Scientific Reports, Vol. 9, No. 1, p. 13887, dec 2019.

[Whit 04] O. White, D. Lee, and H. Sompolinsky. “Short-Term Memory in Orthogonal Neural Networks”. Physical Review Letters, Vol. 92, No. 14, p. 148102, apr 2004.

[Wyff 08] F. Wyffels, B. Schrauwen, and D. Stroobandt. “Using reservoir computing in a decomposition approach for time series prediction”. 2008.

[Wyff 10] F. Wyffels and B. Schrauwen. “A comparative study of Reservoir Computing strategies for monthly time series prediction”. Neurocomputing, Vol. 73, No. 10, pp. 1958–1964, 2010.

[Xue 17] F. Xue, Q. Li, and X. Li. “The combination of circle topology and leaky integrator neurons remarkably improves the performance of echo state network on time series prediction.”. PloS one, Vol. 12, No. 7, p. e0181816, 2017.

[Zare 14] W. Zaremba, I. Sutskever, and O. Vinyals. “Recurrent neural network regularization”. arXiv, sep 2014.