AN ANSWER TO A QUESTION OF ZEILBERGER AND ZEILBERGER ABOUT
FRACTIONAL COUNTING OF PARTITIONS

CHRISTOPHER RYBA

ABSTRACT. We answer a question of Zeilberger and Zeilberger about certain partition statistics.

1. INTRODUCTION

For a partition \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l) \), define \(w_\lambda = \lambda_1 \lambda_2 \cdots \lambda_l \) (this is the product of the parts of \(\lambda \)). Zeilberger and Zeilberger \cite{ZZ18} define two quantities:

\[
b(n) = \sum_{\lambda \vdash n} \frac{1}{w_\lambda}.
\]

and

\[
b(n, k) = \sum_{\lambda \vdash n, \lambda_1 = k} \frac{1}{w_\lambda}.
\]

The latter sum is over partitions of \(n \) whose largest part is equal to \(k \), so \(b(n) = \sum_{i=1}^{\lfloor xn \rfloor} b(n, k) \). They ask to determine

\[
f(x) = \lim_{n \to \infty} b(n, \lfloor xn \rfloor)
\]

as a function on \([0,1]\). To answer this question, we use two tools. Firstly, a recurrence for \(b(n, k) \) given by Zeilberger and Zeilberger \cite{ZZ18}:

\[
b(n, k) = \frac{1}{k} \sum_{i=1}^{k} b(n-k, i).
\]

Secondly, we use the asymptotic behaviour of \(b(n) \), first considered by Lehmer \cite{Leh72}.

Theorem 1.1 (Lehmer). We have \(b(n) = e^{-\gamma} n (1 + o(1)) \) as \(n \to \infty \), where \(\gamma \) is Euler’s gamma.

1.1. Acknowledgements. The author would like to thank Andrew Ahn and Pavel Etingof for useful conversations.

2. UNDERSTANDING \(b(n, k) \)

In this section \(x \) will be a number in \([0,1]\).

Definition 2.1. Let

\[
c(n, k) = e^\gamma b(n, k)
\]

and

\[
c(n) = e^\gamma b(n).
\]

Using this new function will make the following calculations cleaner. For example, \(\lim_{n \to \infty} c(n)/n = 1 \) according to our new convention. Note that \(c(n, k) \) satisfies the same recurrence identities as \(b(n, k) \).
Example 2.2. Suppose that \(x \in (1/2, 1] \). Then for \(n \) sufficiently large, we have

\[
c(n, \lfloor xn \rfloor) = \frac{1}{\lfloor xn \rfloor} \sum_{i=1}^{\lfloor xn \rfloor} c(n - \lfloor xn \rfloor, i) = \frac{c(n - \lfloor xn \rfloor)}{\lfloor xn \rfloor},
\]

because \(\lfloor xn \rfloor \geq n - \lfloor xn \rfloor \) for \(n \) sufficiently large. By Theorem 1.1, we may take the limit as \(n \to \infty \), and obtain \(\frac{1-x}{x} \).

Proposition 2.3. For \(r \in \mathbb{Z}_{>0} \), there exists a smooth function \(F_r(t) \) such that for \(x \in (\frac{1}{r+1}, \frac{1}{r}] \),

\[
c(n, \lfloor xn \rfloor) = F_r(x) + o(1)
\]
as \(n \to \infty \). Moreover, these \(F_r(x) \) are related via

\[
F_r(x) = \frac{1-x}{x} - \frac{1-x}{x} \left(\int_{\frac{1}{r+1}}^{1} F_{r-1}(t) dt + \sum_{s=1}^{r-2} \int_{\frac{s}{r+1}}^{\frac{s+1}{r+1}} F_s(t) dt \right).
\]

Proof. Example 2.2 demonstrated this for \(x \in (1/2, 1] \), where we obtained \(F_1(x) = \frac{1-x}{x} \); this forms the base case of an induction on \(r \). We now assume \(x \in (\frac{1}{r+1}, \frac{1}{r}] \);

\[
c(n, \lfloor xn \rfloor) = \frac{1}{\lfloor xn \rfloor} \sum_{i=1}^{\lfloor xn \rfloor} c(n - \lfloor xn \rfloor, i) = \frac{1}{\lfloor xn \rfloor} \left(c(n - \lfloor xn \rfloor) - \sum_{i=\lfloor xn \rfloor+1}^{n-\lfloor xn \rfloor} c(n - \lfloor xn \rfloor, i) \right).
\]

In the latter sum, the ratio \(\frac{i}{n - \lfloor xn \rfloor} \) is minimised when \(i = \lfloor xn \rfloor + 1 \), and the resulting quantity is a weakly decreasing function of \(x \). Because \(x > \frac{1}{r+1} \), we conclude

\[
\frac{i}{n - \lfloor xn \rfloor} \geq \frac{n}{n - \lfloor \frac{n}{r+1} \rfloor} \geq 1/r.
\]

We may therefore apply the induction hypothesis to the terms in the sum.

\[
c(n, \lfloor xn \rfloor) = \frac{1}{\lfloor xn \rfloor} \left(c(n - \lfloor xn \rfloor) - \left(\sum_{i=\lfloor xn \rfloor+1}^{n-\lfloor xn \rfloor} F_{r-1} \left(\frac{i}{n - \lfloor xn \rfloor} \right) + o(1) \right) \right)
\]

Each term is a Riemann sum converging to an integral of the corresponding \(F_s \). We note that although each \(o(1) \) error term is summed \(O(n) \) times, this is accounted for by the leading factor of \(1/\lfloor xn \rfloor \), so these still vanish in the limit \(n \to \infty \). Note that we have

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=\lfloor \frac{n}{r+1} \rfloor + 1}^{\lfloor \frac{n}{r+1} \rfloor} F_s \left(\frac{i}{n - \lfloor xn \rfloor} \right) = \int_{\frac{1}{r+1}}^{1} F_s \left(\frac{t}{1-x} \right) dt = (1-x) \int_{\frac{1}{x+1}}^{\frac{1}{x}} F_s(t) dt.
\]

We conclude that

\[
\lim_{n \to \infty} c(n, \lfloor xn \rfloor) = \frac{1-x}{x} - \frac{1-x}{x} \left(\int_{\frac{1}{r+1}}^{1} F_{r-1}(t) dt + \sum_{s=1}^{r-2} \int_{\frac{s}{r+1}}^{\frac{s+1}{r+1}} F_s(t) dt \right).
\]

For \(x \in (\frac{1}{r+1}, \frac{1}{r}] \), it is this quantity which we define to be \(F_r(x) \), and the above limit is exactly the statement of the proposition. We conclude that \(\lim_{n \to \infty} c(n, [nx]) \) is smooth for \(x \not\in \{1/n \mid n \in \mathbb{Z}_{>0}\} \).

□

Example 2.4. We may compute

\[
F_2(x) = \frac{1-x}{x} - \frac{1-x}{x} \left(\int_{\frac{1}{x+1}}^{1} \frac{1-t}{t} dt \right) = \frac{2-3x}{x} \frac{1-x}{x} \log \left(\frac{1-x}{x} \right).
\]
Remark 2.5. We may differentiate the expression for $F_r(x)$ to obtain a differential equation satisfied by $F_r(x)$:

$$\frac{d}{dx} \left(\frac{x}{1-x} F_r(x) \right) = \frac{1}{(1-x)^2} F_{r-1} \left(\frac{x}{1-x} \right)$$

Finally, we obtain our result.

Corollary 2.6. Because $c(n, k)$ and $b(n, k)$ differed only by rescaling, and the above relations are linear in the F_r, we have

$$\lim_{n \to \infty} b(n, \lfloor xn \rfloor) = e^{-\gamma} F_r(x)$$

whenever $x \in (\frac{1}{r+1}, \frac{1}{r}]$.

Remark 2.7. Suppose we assemble all the functions $F_r(x)$ into a single function $F(x)$ on $(0, 1]$ (and say $F(x) = 0$ for $x > 1$). Let $G(x) = F(1/x)$. Then, the differential equation becomes

$$G(x) - (x - 1)G'(x) = G(x - 1).$$

The upshot of this is that the current equation is well adapted for a Laplace transform. Writing $\hat{G}(t)$ for the Laplace transform of $G(x)$, we obtain:

$$\hat{G}(t) + (t\hat{G}(t) - G(0)) + \frac{d}{dt}(t\hat{G}(t) - G(0)) = e^{-t}\hat{G}(t),$$

using the boundary condition $G(0) = 0$, this becomes

$$\frac{d}{dt}\hat{G}(t) = \frac{e^{-t} - t - 2}{t}\hat{G}(t).$$

We may solve this explicitly:

$$\hat{G}(t) = Kt^{-2} \exp(Ei(-t) - t),$$

where Ei is the exponential integral, and K is a constant.

References

[Leh72] D Lehmer. On reciprocally weighted partitions. Acta Arithmetica, 21:379–388, 1972.

[ZZ18] Doron Zeilberger and Noam Zeilberger. Two questions about the fractional counting of partitions. arXiv preprint arXiv:1810.12701, 2018.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail address: ryba@mit.edu