SCIKIT-MOBILITY: A PYTHON LIBRARY FOR THE ANALYSIS, GENERATION AND RISK ASSESSMENT OF MOBILITY DATA

Luca Pappalardo
ISTI-CNR, Italy
luca.pappalardo@isti.cnr.it

Filippo Simini
University of Bristol, UK
Argonne National Lab, US
f.Simini@bristol.ac.uk

Gianni Barlacchi *
FBK, Italy
Amazon Alexa, Germany
barlacchi@fbk.eu

Roberto Pellungrini
University of Pisa, Italy
roberto.pellungrini@gmail.com

ABSTRACT

The last decade has witnessed the emergence of massive mobility data sets, such as tracks generated by GPS devices, call detail records, and geo-tagged posts from social media platforms. These data sets have fostered a vast scientific production on various applications of mobility analysis, ranging from computational epidemiology to urban planning and transportation engineering. A strand of literature addresses data cleaning issues related to raw spatiotemporal trajectories, while the second line of research focuses on discovering the statistical “laws” that govern human movements. A significant effort has also been put on designing algorithms to generate synthetic trajectories able to reproduce, realistically, the laws of human mobility. Last but not least, a line of research addresses the crucial problem of privacy, proposing techniques to perform the re-identification of individuals in a database. A view on state of the art cannot avoid noticing that there is no statistical software that can support scientists and practitioners with all the aspects mentioned above of mobility data analysis. In this paper, we propose scikit-mobility, a Python library that has the ambition of providing an environment to reproduce existing research, analyze mobility data, and simulate human mobility habits. scikit-mobility is efficient and easy to use as it extends pandas, a popular Python library for data analysis. Moreover, scikit-mobility provides the user with many functionalities, from visualizing trajectories to generating synthetic data, from analyzing statistical patterns to assessing the privacy risk related to the analysis of mobility data sets.

Keywords data science · human mobility · mobility analysis · spatio-temporal analysis · big data · network science · data mining · python · mathematical modelling · migration models · privacy

* Work done prior joining Amazon
1 Introduction

The last decade has witnessed the emergence of massive datasets of digital traces that portray human movements at an unprecedented scale and detail. Examples include tracks generated by GPS devices embedded in personal smartphones [Zheng et al., 2008], private vehicles [Pappalardo et al., 2013] or boats [Fernandez Arguedas et al., 2018]; call detail records produced as a by-product of the communication between cellular phones and the mobile phone network [González et al., 2008, Barlacchi et al., 2015]; geotagged posts from the most disparate social media platforms [Noulas et al., 2012]; even traces describing the sports activity of amateurs or professional athletes [Rossi et al., 2018]. The availability of digital mobility data has attracted enormous interests from scientists of diverse disciplines, fueling advances in several applications, from computational health [Tizzoni et al., 2012, Barlacchi et al., 2017] to the estimation of air pollution [Nyhan et al., 2018, Bohm et al., 2021], from the design of recommender systems [Wang et al., 2011] to the optimization of mobile and wireless networks [Karamshuk et al., 2011, Tomasini et al., 2017], from transportation engineering and urban planning [Zhao et al., 2016] to the estimation of migratory flows [Simini et al., 2012, Ahmed et al., 2016] and people’s place of residence [Pappalardo et al., 2021, Vanhoof et al., 2020], from the well-being status of municipalities, regions and countries [Pappalardo et al., 2016b, Voukelatou et al., 2020] to the prediction of traffic and future displacements [Zhang et al., 2017, Rossi et al., 2019].

It is hence not surprising that the last decade has also witnessed a vast scientific production on various aspects of human mobility [Luca et al., 2020, Wang et al., 2019, Blondel et al., 2015, Barbosa et al., 2018]. The first strand of literature addresses data preprocessing issues related to mobility data, such as how to extract meaningful locations from raw spatiotemporal trajectories, how to filter, reconstruct, compress and segment them, or how to cluster and classify them [Zheng, 2015]. As a result, in the literature, there is a vast repertoire of techniques that allow scientists and professionals to improve the quality of their mobility data.

The second line of research focuses on discovering the statistical laws that govern human mobility. These studies document that, far from being random, human mobility is characterized by predictable patterns, such as a stunning heterogeneity of human travel patterns [González et al., 2008]; a strong tendency to routine and a high degree of predictability of individuals’ future whereabouts [Song et al., 2010a]; the presence of the returners and explorers dichotomy [Pappalardo et al., 2015]; a conservative quantity in the number of locations actively visited by individuals [Alessandretti et al., 2018], and more [Barbosa et al., 2018, Luca et al., 2020]. These quantifiable patterns are universal across different territories and data sources and are usually referred to as the “laws” of human mobility.

The third strand of literature focuses on designing generative algorithms, i.e., models that can generate synthetic trajectories able to reproduce, realistically, the laws of human mobility. A class of algorithms aims to reproduce spatial properties of mobility [Song et al., 2010a, Pappalardo et al., 2016a], another one focuses on the accurate representation of the time-varying behavior of individuals [Barbosa et al., 2015, Alessandretti et al., 2018]. More recently, some approaches rely on machine learning to propose generative algorithms that are realistic with respect to both spatial and temporal properties of human mobility [Pappalardo and Simini, 2018, Jiang et al., 2016, Luca et al., 2020]. Although the generation of realistic trajectories is a complex and still open problem, the existing algorithms act as baselines for the evaluation of new approaches.

Finally, a line of research addresses the crucial problem of privacy: people’s movements might reveal confidential personal information or allow the re-identification of individuals in a database, creating serious privacy risks [de Montjoye et al., 2013, Fiore et al., 2020]. Since 2018, the EU General Data Protection Regulation (GDPR) explicitly imposes on data controllers an assessment of the impact of data protection for the riskiest data analyses. Driven by these sensitive issues, in recent years researchers have developed algorithms, methodologies, and frameworks to estimate and mitigate the individual privacy risks associated with the analysis of digital data in general [Monreale et al., 2014] and mobility records in particular [Pellungrini et al., 2017, Pellungrini et al., 2020, de Montjoye et al., 2013, de Montjoye et al., 2018].

Despite the increasing importance of mobility analysis for many scientific and industrial domains, there is no statistical software that can support scientists and practitioners with all the aspects of mobility analysis mentioned above (Section 10). To fill this gap, we propose scikit-mobility, a python library that has the ambition of providing scientists and practitioners with an environment to reproduce existing research and perform analysis of mobility data. In particular, the library allows the user to:

1. load and represent mobility data, both at the individual and the collective level, through easy-to-use data structures (TrajDataFrame and FlowDataFrame) based on the standard python libraries numpy [Oliphant, 2006], pandas [McKinney, 2010] and geopandas [Jordahl et al., 2019] (Section 2), as well as to visualize trajectories and flows on interactive maps based on the python libraries folium [Fernandes, 2019] and matplotlib [Hunter, 2007] (Section 4).

2. clean and preprocess mobility data using state-of-the-art techniques, such as trajectory clustering, compression, segmentation, and filtering. The library also provides the user with a way to track all the operations performed on the original data (Section 3).
3. analyze mobility data by using the main measures characterizing mobility patterns both at the individual and at the collective level (Section 5), such as the computation of travel and characteristic distances, object and location entropies, location frequencies, waiting times, origin-destination matrices, and more;
4. run the most popular mechanistic generative models to simulate individual mobility, such as the Exploration and Preferential Return model (EPR) and its variants (Section 6), and commuting and migratory flows, such as the Gravity Model and the Radiation Model (Section 7);
5. estimate the privacy risk associated with the analysis of a given mobility dataset through the simulation of the re-identification risk associated with a vast repertoire of privacy attacks (Section 8).

Next-location prediction, i.e., predicting the next location(s) an individual will visit given their mobility history [Luca et al., 2020, Wu et al., 2018], is a relevant mobility-related task not covered in the current version of scikit-mobility. We plan to include location prediction algorithms in future versions of the library.

Note that, while scikit-mobility has been conceived for human movement analysis and the privacy module makes sense for human mobility data only, most features can be applied to other types of mobility (e.g., boats, animal movements, boat trips). scikit-mobility is designed to deal with spatiotemporal trajectories and mobility flows and functions to deal with other types of mobility-related data, such as accelerometer data from wearable devices, are not currently covered in this library.

Clearly, the methods currently implemented have been chosen by the authors based mostly on their expertise and are by no means meant to be exhaustive. In future releases of the library, we plan to expand the range of methods and models.

scikit-mobility is publicly available on GitHub at the following link: https://scikit-mobility.github.io/scikit-mobility/ Tutorials on how to use the library for mobility analysis is available at the following link: https://github.com/scikit-mobility/tutorials The documentation describing all the classes and functions of scikit-mobility is available at https://scikit-mobility.github.io/scikit-mobility/

2 Data Structures

scikit-mobility provides two data structures to deal with raw trajectories and flows between places. Both the data structures are an extension of the DataFrame implemented in the data analysis library pandas [McKinney, 2010]. Thus, both TrajDataFrame and FlowDataFrame inherit all the functionalities provided by the DataFrame as well as all the efficient optimizations for reading and writing tabular data (e.g., mobility datasets). This choice allows broad compatibility of scikit-mobility with other python libraries and machine learning tools, such as scikit-learn.

Note that the current version of the library is designed to work with the latitude and longitude system (epsg:4326), the most used one in practical scenarios of mobility analysis. Therefore, the Haversine formula is used by default when the library’s functions compute distances. We plan to extend the library to deal with other reference systems, even user-defined ones. This extension would imply associating a custom distance function to a reference system.

2.1 Trajectory

Mobility data describe the movements of a set of objects during a period of observation. The objects may represent individuals [González et al., 2008], animals [Ramos-Fernandez et al., 2004], private vehicles [Pappalardo et al., 2015], boats [Fernandez Arguedas et al., 2018] and even players on a sports field [Rossi et al., 2018]. Mobility data are generally collected in an automatic way as a by-product of human activity on electronic devices (e.g., mobile phones, GPS devices, social networking platforms, video cameras) and stored as trajectories, a temporally ordered sequence of spatio-temporal points where an object stopped in or went through. In the literature of mobility analytics, a trajectory is often formally defined as follows [Zheng et al., 2014, Zheng, 2013]:

Definition 2.1 (Trajectory). The trajectory of an object u is a temporally ordered sequence of tuples $T_u = \langle (l_1, t_1), (l_2, t_2), \ldots , (l_n, t_n) \rangle$, where $l_i = (x_i, y_i)$ is a location, x_i and y_i are the coordinates of the location, and t_i is the corresponding timestamp, with $t_i < t_j$ if $i < j$.

In scikit-mobility, a set of trajectories is described by a TrajDataFrame (Figure 1), an extension of the pandas DataFrame that has specific columns names and data types. A row in the TrajDataFrame represents a point of the trajectory, described by three mandatory fields (aka columns): latitude (type: float), longitude (type: float) and datetime (type: datetime). Additionally, two optional columns can be specified. The first one is uid: it identifies the object associated with the point of the trajectory and can be of any type (string, int or float). If uid is not present, scikit-mobility assumes that the TrajDataFrame contains trajectories associated with a single moving object. The second one is tid (any type) and specifies the identifier of the
Figure 1: Representation of a TrajDataFrame. Each row represents a point of an object’s trajectory, described by three mandatory columns (lat, lng, datetime) and eventually by the column uid and tid, indicating the object associated with the point and the trajectory id, respectively.

scikit-mobility provides functions to create a TrajDataFrame from mobility data stored in different formats (e.g., dictionaries, lists, pandas DataFrames). To load a TrajDataFrame from a file, we first import the library.

Python> import skmob

Then, we use the method from_file of the TrajDataFrame class to load the mobility data from the file path.

Python> tdf = skmob.TrajDataFrame.from_file('geolife_sample.txt.gz')

Note that the values corresponding to the lat, lng, and datetime columns must be necessarily float, float and datetime, respectively, otherwise the library raises an exception.

The crs attribute of the loaded TrajDataFrame provides the coordinate reference system, while the parameters attribute provides a dictionary with meta-information about the data. When we load the data from a file, scikit-mobility adds to the parameters attribute the key "from_file", which indicates the path of the file.

Python> print(tdf.crs)

{'init': 'epsg:4326'}
Once loaded, we can visualize a portion of the TrajDataFrame using the print function and the head function, which visualize the first five rows of the TrajDataFrame. Note that, since the uid column is present in the file, the TrajDataFrame created contains the corresponding column.

```python
Python> print(tdf.head())
```

lat	lng	datetime	uid
39.984094	116.319236	2008-10-23 05:53:05	1
39.984198	116.319322	2008-10-23 05:53:06	1
39.984224	116.319402	2008-10-23 05:53:11	1
39.984211	116.319389	2008-10-23 05:53:16	1
39.984217	116.319422	2008-10-23 05:53:21	1

2.2 Flows

Origin-destination matrices, aka flows, are another common representation of mobility data. While trajectories refer to movements of single objects, flows refer to aggregated movements of objects between a set of locations. An example of flows is the daily commuting flows between the neighbourhoods of a city. Formally, we define an origin-destination matrix as:

Definition 2.2 (Origin-Destination matrix or Flows). An Origin-Destination matrix T is an $n \times m$ matrix where n is the number of distinct “origin” locations, m is the number of distinct “destination” locations, T_{ij} is the number of objects traveling from location i to location j.

In scikit-mobility, an origin-destination matrix is described by the FlowDataFrame structure. A FlowDataFrame is an extension of the pandas DataFrame that has specific column names and data types. A row in a FlowDataFrame represents a flow of objects between two locations, described by three mandatory columns: origin (any type), destination (any type) and flow (type: integer). Again, the user can add to a FlowDataFrame as many columns as they want.

In mobility tasks, the territory is often discretized by mapping the coordinates to a spatial tessellation, i.e., a covering of the bi-dimensional space using a countable number of geometric shapes (e.g., squares, hexagons), called tiles, with no overlaps and no gaps. For instance, for the analysis or prediction of mobility flows, a spatial tessellation is used to aggregate flows of people moving among locations (the tiles of the tessellation). For this reason, each FlowDataFrame is associated with a spatial tessellation, a geopandas GeoDataFrame that contains two mandatory columns: tile_ID (any type) indicates the identifier of a location; geometry indicates the geometric shape that describes the location on a territory (e.g., a square, an hexagon, the shape of a neighborhood). It is important to note that each location identifier in the origin and destination columns of a FlowDataFrame must be present in the associated spatial tessellation. Otherwise, the library raises an exception. Similarly, scikit-mobility raises an exception if the type of the origin and destination columns in the FlowDataFrame and the type of the tile_ID column in the associated tessellation are different.

The code below loads a spatial tessellation and a FlowDataFrame from the corresponding files. First, we import the scikit-mobility and the geopandas libraries.

```python
Python> import skmob
Python> import geopandas as gpd

Then, we load the Tessellation and the FlowDataFrame using the from_file method of the classes GeoDataFrame and TrajDataFrame, respectively. Note that the from_file for loading a FlowDataFrame requires to specify the associated Tessellation through the “tessellation” argument.

```python
Python> tessellation = gpd.GeoDataFrame.from_file("NY_counties_2011.geojson")
Python> fdf = skmob.FlowDataFrame.from_file("NY_commuting_flows_2011.csv",
 tessellation=tessellation, tile_id='tile_id')
```

The Tessellation and FlowDataFrame have the structure shown below.

---

2Since a tessellation is a geopandas GeoDataFrame, it supports any type of geometry (e.g., Polygon, Point). However, the Point geometry should be avoided because it does not correctly represent a tile of a tessellation. In general, Polygon and Multipolygon shapes should be preferred to describe the tiles.
3 Trajectory preprocessing

As any analytical process, mobility data analysis requires data cleaning and preprocessing steps [Zheng, 2015]. The preprocessing module allows the user to perform three main preprocessing steps: noise filtering, stop detection, and trajectory compression. Note that, if a TrajDataFrame contains multiple trajectories from multiple users, the preprocessing methods automatically apply to the single trajectory and, when necessary, to the single object.

3.1 Noise filtering

Trajectory data are in general noisy, usually because of recording errors like poor signal reception. When the error associated with the coordinates of points is large, the best solution is to filter out these points. In scikit-mobility, the method filter filters out a point if the speed from the previous point is higher than the parameter max_speed, which is by default set to 500km/h. To use the filter function, we first import the preprocessing module:

```
Python> import skmob
Python> from skmob import preprocessing
```

Then, we apply the filtering, setting max speed as 10 km/h, on a TrajDataFrame containing GPS trajectories:

```
Python> tdf = skmob.TrajDataFrame.from_file('geolife_sample.txt.gz')
Python> print('Number of points in tdf: %d
' %len(tdf))
Python> print(tdf.head())
Number of points: 217653
lat lng datetime uid
0 39.984094 116.319236 2008-10-23 05:53:05 1
1 39.984198 116.319322 2008-10-23 05:53:06 1
2 39.984224 116.319402 2008-10-23 05:53:11 1
3 39.984211 116.319389 2008-10-23 05:53:16 1
4 39.984217 116.319422 2008-10-23 05:53:21 1
```

```
Python> ftdf = preprocessing.filtering.filter(tdf, max_speed_kmh=10.)
Python> print("Number of points in ftdf: %d\n" %len(ftdf))
Python> print(ftdf.head())
Number of points in ftdf: 108779
```

```
lat lng datetime uid
0 39.984094 116.319236 2008-10-23 05:53:05 1
1 39.984198 116.319322 2008-10-23 05:53:06 1
2 39.984224 116.319402 2008-10-23 05:53:11 1
3 39.984211 116.319389 2008-10-23 05:53:16 1
4 39.984217 116.319422 2008-10-23 05:53:21 1
```

Number of points in ftdf: 108779
Number of filtered points: 108874
3.2 Stop detection

Some points in a trajectory can represent Point-Of-Interests (POIs) such as schools, restaurants, and bars, or they can represent user-specific places such as home and work locations. These points are usually called Stay Points or Stops, and they can be detected in different ways. A common approach is to apply spatial clustering algorithms to cluster trajectory points by looking at their spatial proximity [Hariharan and Toyama, 2004]. In scikit-mobility, the stops function, contained in the detection module, finds the stay points visited by an object. For instance, to identify the stops where the object spent at least minutes_for_a_stop minutes within a distance spatial_radius_km \times stop_radius_factor, from a given point, we can use the following code:

```python
from preprocessing import detection
dstdf = detection.stops(ctdf, stop_radius_factor=0.5, minutes_for_a_stop=20.0, spatial_radius_km=0.2)
```

As shown in the code snippet, a new column leaving_datetime is added to the TrajDataFrame in order to indicate the time when the user left the stop location.

3.3 Trajectory compression

The goal of trajectory compression is to reduce the number of trajectory points while preserving the structure of the trajectory. This step is generally applied right after the stop detection step, and it results in a significant reduction of the number of trajectory points. In scikit-mobility, we can use one of the methods in the compression module under the preprocessing module. For instance, to merge all the points that are closer than 0.2km from each other, we can use the following code:

```python
from preprocessing import compression
print(ftdf.head())
ctdf = compression.compress(ftdf, spatial_radius_km=0.2)
```
SCIKIT-MOBILITY: A PYTHON LIBRARY FOR THE ANALYSIS, GENERATION AND RISK ASSESSMENT OF MOBILITY DATA

method	description
clustering.cluster	Cluster the stops of each individual in a TrajDataFrame. Uses DBSCAN [Hariharan and Toyama, 2004]
compression.compress	Reduce the number of points of each individual in a TrajDataFrame with median coordinates within a radius [Zheng, 2015]
detection.stops	Detect the stops for each individual in a TrajDataFrame with a time threshold [Hariharan and Toyama, 2004, Zheng, 2015]
filtering.filter	For each trajectory, filters out the noise or outlier points [Zheng, 2015]

Table 1: Trajectory preprocessing methods implemented in scikit-mobility.

Once compressed, the trajectory will present a smaller number of points, allowing then an easy plotting of them by using the data visualization functionalities of scikit-mobility described in Section 4. Table 1 lists the available methods for trajectory preprocessing.

4 Plotting

One of the use cases for scikit-mobility is the exploratory data analysis of mobility data sets, which includes the visualization of trajectories and flows. To this end, both TrajDataFrame and FlowDataFrame have methods that allow the user to produce interactive visualizations generated using the library folium [Fernandes, 2019]. The choice of folium is motivated by the fact that, given the complexity of mobility data, the user may need to zoom in/out and interact with the components of trajectories, flows, and tessellations. This type of interaction would not be possible with static plotting libraries, such as matplotlib. The user can save an interactive plot in a .html file or they can take a screenshot to save it on a .png file.

4.1 Visualizing trajectories

A TrajDataFrame has three main plotting methods: plot_trajectory plots a line connecting the trajectory points on a map; plot_stops plots the location of stops on a map; and plot_diary plots the sequence of visited locations over time.

4.1.1 Plot trajectories

The TrajDataFrame’s method plot_trajectory plots the time-ordered trajectory points connected by straight lines on a map. If the column uid is present and contains more than one object, the trajectory points are first grouped by uid and then sorted by datetime. Large TrajDataFrames with many points can be computationally intensive to visualize. Two arguments can be used to reduce the amount of data to plot: max_users (type: int, default: 10) limits the number of objects whose trajectories should be plotted, while max_points (type: int, default: 1000) limits the number of trajectory points per object to plot, i.e., if necessary, an object’s trajectory will be down-sampled and at most max_points points will be plotted. The plot style can be customized via arguments to specify the color, weight, and opacity of the trajectory lines, as well as the type of map tiles to use. The user can also plot markers denoting the start points and the end points of the trajectory.

The plot_trajectory method, as well as all the other plotting methods, return a folium.Map object, which can be used by other folium and scikit-mobility functions in order to visualize additional data on the same map. A folium.Map object can be passed to a plotting method via the argument map_f (default: None, which means that the mobility data are plotted on a new map).

An example of plot generated by the plot_trajectory method is shown below:

```python
Python> import skmob
Python> tdf = skmob.TrajDataFrame.from_file('geolife_sample.txt.gz')
Python> map_f = tdf.plot_trajectory(max_users=1, hex_color='#000000')
Python> map_f
```
Note that if trajectories represent abstract mobility, such as movements extracted from social media posts or mobile phone calls, straight lines may appear that do not take into account walls, buildings and similar structures on the road network.

By default, a TrajDataFrame represents the full mobility of a set of individuals, i.e., covering the entire period of observation (e.g., one month). The user can split the trajectory of an individual using preprocessing functions, such as the detection.stops function (Section 3), and then split the whole trajectory into sub trajectories, adding a proper column to identify them (i.e., the tid column). At this point, the user may visualize the portion of the TrajDataFrame selecting for values of the created column.

### 4.1.2 Plot stops

The TrajDataFrame’s method plot_stops plots the locations of the stops as markers on a map. This method requires a TrajDataFrame with the column constants.LEAVING_DATETIME, which is created by the scikit-mobility functions to detect stops (see [3]). The argument max_users (type: int, default: 10) limits the number of objects whose stops should be plotted. The plot style can be customized via arguments to specify the color, radius, and opacity of the markers, as well as the type of the map tiles to use. The argument popup (default: False) allows enhancing the plot’s interactivity displaying popup windows that appear when the user clicks on a marker. A stop’s popup window includes information like coordinates, object’s uid, arrival, and leaving times.

The method returns a folium.Map object, which can be used by other folium and scikit-mobility functions in order to visualize additional data on the same map. A folium.Map object can be passed to plot_stops via the argument map_f (default: None, which means that the stops are plotted on a new map).

We show below an example of a plot generated by the plot_stops method. Note that if the cluster column is present in the TrajDataFrame, as it happens for instance when the cluster method is applied (Section 3), the stops are automatically colored according to the value of that column (so as to identify different clusters of stops).

```python
Python> from skmob.preprocessing import detection, clustering
Python> tdf = skmob.TrajDataFrame.from_file('geolife_sample.txt.gz')
Python> stdf = detection.stops(tdf)
Python> cstdf = clustering.cluster(stdf)
Python> cstdf.plot_stops(max_users=1, map_f=mapf)
```
4.1.3 Plot diary

The TrajDataFrame's method `plot_diary` plots the time series of the locations visited by an object. If the column `uid` is present, one object ID must be specified via the argument `user`. This method requires a `TrajDataFrame` with the column `constants.CLUSTER`, which is created by the `scikit-mobility` functions to cluster stops (see 3).

The plot displays time on the x axis and shows a series of rectangles of different colors that represent the object's visits to the various stops. The length of a rectangle denotes the duration of the visit: the left edge marks the arrival time, the right edge marks the leaving time. The color of a rectangle denotes the stop's cluster: visits to stops that belong to the same cluster have the same color (the color code is consistent with the one used by the method `plot_stops`). A white rectangle indicates that the object is moving.

We show below an example of a plot generated by the `plot_diary` method:

```python
Python> cstdf.plot_diary(user='001')
```

The user can compare multiple moving objects plotting their diaries next to each other:

```python
Python> ax = cstdf.plot_diary(1)
Python> ax = cstdf.plot_diary(5, legend=True)
```
4.2 Visualizing flows

A FlowDataFrame has two main plotting methods: plot_tessellation plots the tessellation’s tiles on a geographic map and plot_flows plots, on a geographic map, the lines connecting the centroids of the tessellation’s tiles between which flows are present.

4.2.1 Plot tessellation

The FlowDataFrame’s method plot_tessellation plots the GeoDataFrame associated with a FlowDataFrame on a geographic map. Large tessellations with many tiles can be computationally intensive to visualize. The argument maxitems can be used to limit the number of tiles to plot (default: -1, which means that all tiles are displayed).

The plot style can be customized via arguments to specify the color and opacity of the tiles, as well as the type of map tiles to use. The argument popup_features (type: list, default: [constants.TILE_ID]) allows to enhance the plot’s interactivity displaying popup windows that appear when the user clicks on a tile and includes information contained in the columns of the tessellation’s GeoDataFrame specified in the argument’s list.

The method returns a folium.Map object, which can be used by other folium and scikit-mobility functions in order to visualize additional data on the same map. A folium.Map object can be passed to plot_flows via the argument map_osm (default: None, which means that the tessellation is plotted on a new map).

We show below an example of a plot generated by the plot_tessellation method:

```python
Python> import geopandas as gpd
Python> from skmob import FlowDataFrame
Python> tessellation = gpd.GeoDataFrame.from_file('./NY_counties_2011.geojson')
Python> fdf = FlowDataFrame.from_file('./NY_commuting_flows_2011.csv',
 tessellation=tessellation)
Python> fdf.plot_tessellation(popup_features=['tile_ID', 'population'])
```
### 4.2.2 Plot flows

The `FlowDataFrame`'s method `plot_flows` plots the flows on a geographic map as lines between the centroids of the tiles in the `FlowDataFrame`'s tessellation. Large `FlowDataFrame`s with many origin-destination pairs can be computationally intensive to visualize. The argument `min_flow` (type: integer, default: 0) can be used to specify that only flows larger than `min_flow` should be displayed. The thickness of each line is a function of the flow and can be specified via the arguments `flow_weight`, `flow_exp` and `style_function`. The plot style can be further customized via arguments to specify the color and opacity of the flow lines, as well as the type of map tiles to use. The arguments `flow_popup` and `tile_popup` allow to enhance the plot’s interactivity displaying popup windows that appear when the user clicks on a flow line or a circle in an origin location, respectively, and include information on the flow or the flows from a location. The method returns a `folium.Map` object, which can be used by other `folium` and `scikit-mobility` functions in order to visualize additional data on the same map. A `folium.Map` object can be passed to `plot_flows` via the argument `map_f` (default: `None`, which means that the flows are plotted on a new map).

We show below an example of a plot generated by the `plot_flows` method:

```python
Python> fdf.plot_flows(min_flow=50)
```
Table 2: Plotting methods implemented in scikit-mobility.

method	description
plot_diary	plot a mobility diary of an individual [Hariharan and Toyama, 2004]
plot_stops	plot the stops in the TrajDataFrame on a folium map
plot_trajectory	plot the trajectories on a folium map
plot_flows	plot the flows of a FlowDataFrame on a folium map
plot_tessellation	plot the spatial tessellation on a folium map

Table 2 lists the plotting functions available in the library.

The user can also visualize the tessellation and the flows in the same plot:

```python
Python> map_f = fdf.plot_tessellation(popup_features=['tile_id','population'],
 style_func_args={'color': 'red'})
Python> fdf.plot_flows(map_f=map_f, min_flow=50)
```
5 Mobility measures

In the last decade, several measures have been proposed to capture the patterns of human mobility, both at the individual and collective levels. Individual measures summarize the mobility patterns of a single moving object, while collective measures summarize mobility patterns of a population as a whole. For instance, the so-called radius of gyration [González et al., 2008] and its variants [Pappalardo et al., 2015] quantify the characteristic distance traveled by an individual, while several measures inspired by the Shannon entropy have been proposed to quantify the predictability of an individual’s movements [Song et al., 2010b].

SciKit-Mobility provides a wide set of mobility measures, each implemented as a function that takes in input a TrajDataFrame and outputs a pandas DataFrame. Individual and collective measures are implemented the in skmob.measure.individual and the skmob.measures.collective modules, respectively.

The code below computes two measures: the distances traveled by the objects and their radius of gyration. First, we import the two functions from the library.

```python
import skmob
from skmob.measures.individual import jump_lengths, radius_of_gyration

jl_df = jump_lengths(tdf)
rg_df = radius_of_gyration(tdf)

print(jl_df.head())
```

```
uid jump_lengths
0 0 [19.640467328877936, 0.0, 0.0, 1.7434311010381...]
1 1 [6.505330424378251, 46.75436600375988, 53.9284...]
2 2 [0.0, 0.0, 0.0, 0.0, 3.6410097195943507, 0.0, ...]
3 3 [3861.2706300798827, 4.061631313492122, 5.9163...]
4 4 [15511.92758595804, 0.0, 15511.92758595804, 1....
```

Similarly, in the DataFrame `rg_df` the column `radius_of_gyration` contains the radius of gyration for that object.

```python
print(rg_df.head())
```

```
uid radius_of_gyration
0 0 1564.436792
1 1 2467.773523
2 2 1439.649774
3 3 1752.604191
4 4 5380.503250
```

Note that, if the optional column `uid` is not present in the input TrajDataFrame, a simple Python structure is outputted instead of the pandas DataFrame (e.g., a list for function `jump_lengths` and a float for function `radius_of_gyration`).

Collective measures are used in a similar way. The code below computes a collective measure - the number of visits per location (by any object). First, we import the function.

```python
import skmob
from skmob.measures.collective import visits_per_location

vpl_df = visits_per_location(tdf)
```

```
uid radius_of_gyration
0 0 1564.436792
1 1 2467.773523
2 2 1439.649774
3 3 1752.604191
4 4 5380.503250
```

Collective measures are used in a similar way. The code below computes a collective measure - the number of visits per location (by any object). First, we import the function.

```python
import skmob
from skmob.measures.collective import visits_per_location

vpl_df = visits_per_location(tdf)
```

```
uid radius_of_gyration
0 0 1564.436792
1 1 2467.773523
2 2 1439.649774
3 3 1752.604191
4 4 5380.503250
```
As for the individual measures, the output of the functions is a pandas DataFrame. The format of this DataFrame depends on the measures. For example, in the DataFrame vpl_df there are three columns: lat and lng indicate the coordinates of a location, and n_visits indicate the number of visits to that location in the TrajDataFrame.

Python> print(vpl_df.head())

lat	lng	n_visits
39.739154	-104.984703	3392
37.580304	-122.343679	2248
39.099275	-76.848306	1715
39.762146	-104.982480	1442
40.014986	-105.270546	1310

Table 3 and Table 4 list the available individual and collective measures, respectively.
6 Individual Generative Algorithms

The goal of generative algorithms of human mobility is to create a population of agents whose mobility patterns are statistically indistinguishable from those of real individuals [Pappalardo and Simini, 2018]. A generative algorithm typically generates a synthetic trajectory corresponding to a single moving object, assuming that an object is independent of the others. scikit-mobility implements the most common individual generative algorithms, such as the Exploration and Preferential Return model [Song et al., 2010a] and its variants [Pappalardo et al., 2016a] [Barbosa et al., 2015] [Alessandretti et al., 2018], and DITRAS [Pappalardo and Simini, 2018]. Each generative algorithm is a python class. First, we instantiate the algorithm. Then we invoke the `generate` method to start the generation of synthetic trajectories.

The code below shows the code to generate a TrajDataFrame describing the synthetic trajectory of 1000 agents that move between the locations of a Tessellation and for a period specified in the input. First, we import the class of the generative algorithm (DensityEPR) from the library.

```python
Python> import skmob
Python> import pandas as pd
Python> import geopandas as gpd
Python> from skmob.models.epr import DensityEPR
```

Then, we load the spatial tessellation on which the agents have to move from a file as a Tessellation object, and we specify the start and end times of the simulation as pandas datetime objects.

```python
Python> tessellation = gpd.GeoDataFrame.from_file("NY_counties_2011.geojson")
Python> start_time = pd.to_datetime('2019/01/01 08:00:00')
Python> end_time = pd.to_datetime('2019/01/14 08:00:00')
```

Finally, we instantiate the DensityEPR model and start the simulation through the `generate` method, which takes in input the start and end times, the Tessellation, the number of agents, and other model-specific parameters. The output of the simulation is a TrajDataFrame containing the trajectory of the 1000 agents.

```python
Python> depr = DensityEPR()
Python> tdf = depr.generate(start_time, end_time, tessellation, n_agents=1000,
relevance_column='population', random_state=42)
Python> print(tdf.head())
```

7 Collective Generative Algorithms

Collective generative algorithms estimate spatial flows between a set of discrete locations. Examples of spatial flows estimated with collective generative algorithms include commuting trips between neighborhoods, migration flows between municipalities, freight shipments between states, and phone calls between regions [Barbosa et al., 2018].

In scikit-mobility, a collective generative algorithm takes in input a Tessellation.

To be a valid input for a collective algorithm, the Tessellation should contain two columns, geometry and relevance, which are necessary to compute the two variables used by collective algorithms: the distance between tiles and the importance (aka “attractiveness”) of each tile. A collective algorithm produces a FlowDataFrame that contains the generated flows and the Tessellation of which is the one specified as the algorithm’s input.

scikit-mobility implements the most common collective generative algorithms: the Gravity model [Zipf, 1946] [Wilson, 1971] and the Radiation model [Simini et al., 2012]. We illustrate how to work with generative algorithms in scikit-mobility with an example based on the Gravity model.

The class Gravity, implementing the Gravity model, has two main methods: fit, which calibrates the model’s parameters using a training FlowDataFrame; and generate, which generates the flows on a given tessellation. The following code shows
how to use both methods to estimate the commuting flows between the counties in the state of New York. First, we load the tessellation from a file:

```python
Python> import skmob
Python> import geopandas as gpd
Python> tessellation = gpd.GeoDataFrame.from_file("NY_counties_2011.geojson")
Python> print(tessellation.head())
```

tile_id	population	geometry
0	36019	POLYGON ((-74.006668 44.886017, -74.027389 44....
1	36101	99145 POLYGON ((-77.099754 42.274215, -77.09965699999 (42.296676, -76.24....
2	36107	50872 POLYGON ((-76.250148999999999999 42.296676, -76.24....
3	36059	1346176 POLYGON ((-73.707662 40.727831, -73.700272 40....
4	36011	79693 POLYGON ((-76.279067 42.785866, -76.275347999999999999

The tessellation contains the column population, used as relevance variable for each tile (county). Next, we load the observed commuting flows between the counties from file:

```python
Python> import skmob
Python> fdf = skmob.FlowDataFrame.from_file("NY_commuting_flows_2011.csv",
 tessellation=tessellation)
Python> print(fdf.head())
```

flow origin destination	flow origin destination
0 36001 36001 121606	0 36001 36001 121606
1 5 36001 36005 5	1 5 36001 36005 5
2 29 36001 36007 29	2 29 36001 36007 29
3 11 36001 36017 11	3 11 36001 36017 11
4 30 36001 36019 30	4 30 36001 36019 30

Let us use the observed flows to fit the parameters of a singly-constrained gravity model with the power-law deterrence function (for more details on the gravity models see [Barbosa et al., 2018]. First, we instantiate the model:

```python
Python> from skmob.models.gravity import Gravity
Python> gravity = Gravity(gravity_type='singly constrained')
Python> print(gravity)
```

Gravity(name="Gravity model", deterrence_func_type="power_law",
        deterrence_func_args=[-2.0], origin_exp=1.0, destination_exp=1.0,
        gravity_type="singly constrained")

Then we call the method fit to fit the parameters from the previously loaded FlowDataFrame:

```python
Python> gravity.fit(fdf, relevance_column='population')
Python> print(gravity)
```

Gravity(name="Gravity model", deterrence_func_type="power_law",
        deterrence_func_args=[-1.99471520], origin_exp=1.0, destination_exp=0.64717595,
        gravity_type="singly constrained")

Finally, we use the fitted model to generate the flows on the same tessellation. Setting the argument out_format="probabilities" we specify that in the column flow of the returned FlowDataFrame we want the probability to observe a unit flow (trip) between two tiles.

```python
Python> fdf_fitted = gravity.generate(tessellation,
 relevance_column='population', out_format='probabilities')
Python> print(fdf_fitted.head())
```

origin destination flow	origin destination flow
0 36019 36101 0.004387	0 36019 36101 0.004387
**Table 5** lists the generative models available in the library.

### 8 Privacy Risk Assessment

Mobility data is sensitive since the movements of individuals can reveal confidential personal information or allow the re-identification of individuals in a database, creating serious privacy risks [de Montjoye et al., 2013, de Montjoye et al., 2018]. Indeed the General Data Protection Regulation (GDPR) explicitly imposes on data controllers an assessment of the impact of data protection for the riskiest data analyses. For this reason, *scikit-mobility* provides scientists in the field of mobility analysis with tools to estimate the privacy risk associated with the analysis of a given data set.

In the literature, privacy risk assessment relies on the concept of re-identification of a moving object in a database through an attack by a malicious adversary [Pellungrini et al., 2017]. A common framework for privacy risk assessment [Pratesi et al., 2018] assumes that during the attack a malicious adversary acquires, in some way, the access to an anonymized mobility data set, i.e., a mobility data set in which the moving object associated with a trajectory is not known. Moreover, it is assumed that the malicious adversary acquires, in some way, information about the trajectory (or a portion of it) of an individual represented in the acquired data set. Based on this information, the risk of re-identification of that individual is computed estimating how unique that individual’s mobility data are with respect to the mobility data of the other individuals represented in the acquired data set [Pellungrini et al., 2017].

*scikit-mobility* provides several attack models, each implemented as a python class. For example in a location attack model, implemented in the LocationAttack class, the malicious adversary knows a certain number of locations visited by an individual, but they do not know the temporal order of the visits [Pellungrini et al., 2017]. To instantiate a LocationAttack object we can run the following code:

```python
Python> import skmob
Python> from skmob.privacy import attacks
Python> at = attacks.LocationAttack(knowledge_length=2)
```

The argument `knowledge_length` specifies how many locations the malicious adversary knows of each object’s movement. The re-identification risk is computed based on the worst possible combination of `knowledge_length` locations out of all possible combinations of locations.

To assess the re-identification risk associated with a mobility data set, represented as a TrajDataFrame, we specify it as input to the `assess_risk` method, which returns a pandas DataFrame that contains the uid of each object in the TrajDataFrame and the associated re-identification risk as the column `risk` (type: float, range: [0, 1] where 0 indicates minimum risk and 1 maximum risk).

```python
Python> tdf = TrajDataFrame.from_file(filename="privacy_sample.csv")
Python> tdf_risk = at.assess_risk(tdf)
Python> print(tdf_risk.head())
```

uid	risk
1	0.003702
2	0.019679
3	0.006894
4	0.002292
Since risk assessment may be time-consuming for more massive datasets, *scikit-mobility* provides the option to focus only on a subset of the objects with the argument `targets`. For example, in the following code, we compute the re-identification risk for the object with `uid` 1 and 2 only:

```python
Python> tdf_risk = at.assess_risk(tdf, targets=[1,2])
Python> print(tdf_risk)
```

uid	risk
0	0.333333
1	0.500000

During the computation, not necessarily all combinations of locations are evaluated when assessing the re-identification risk of a moving object: when the combination with maximum re-identification risk (e.g., risk 1) is found for a moving object, all the other combinations are not computed, so as to make the computation faster. However, if the user wants that all combinations are computed anyway, they can set the argument `force_instances` (type: boolean, default: `False`) to `True`:

```python
Python> tdf_risk = at.assess_risk(tdf, targets=[2], force_instances=True)
Python> print(tdf_risk)
```

lat	lng	datetime	uid	instance	instance_elem
43.843014	10.507994	2011-02-03 08:34:04	2	1	1
43.708530	10.403600	2011-02-03 09:34:04	2	1	2
43.843014	10.507994	2011-02-03 08:34:04	2	2	1
43.843014	10.507994	2011-02-03 08:34:04	2	2	2
43.843014	10.507994	2011-02-03 08:34:04	2	3	1
43.544270	10.326150	2011-02-03 11:34:04	2	3	2
43.708530	10.403600	2011-02-03 09:34:04	2	4	1
43.843014	10.507994	2011-02-03 10:34:04	2	4	2
43.708530	10.403600	2011-02-03 09:34:04	2	5	1
43.544270	10.326150	2011-02-03 11:34:04	2	5	2
43.843014	10.507994	2011-02-03 10:34:04	2	6	1
43.544270	10.326150	2011-02-03 11:34:04	2	6	2

The result is a *pandas* DataFrame that contains a reference number of each combination under the attribute `instance` and, for each instance, the `risk` and each of the locations comprising that instance indicated by the attribute `instance_elem`. In Table 6, we list the privacy attacks available in the library.
### 9 Conclusion and Future Developments

In this paper, we presented scikit-mobility, a new python library for the analysis, generation, and privacy risk assessment of mobility data. scikit-mobility allows the user to manage two basic types of mobility data – trajectories and fluxes – and it provides several modules, each dedicated to a specific aspect of mobility data analysis.

scikit-mobility has the advantage of providing, in a single environment, functions to deal with different aspects of mobility analysis, such as data preprocessing and cleaning, computation of mobility metrics, generation of synthetic trajectories and flows, and the assessment of privacy risk. The current version of the library has some limitations too. For example, since pandas DataFrames must be fully loaded in memory, the size of the mobility data set that can be analyzed is limited by the capacity of the memory of the user’s machine. Moreover, the library is currently designed to work with the latitude and longitude reference system only; it could be easily adapted to work with any reference system.

We imagine two future directions for the development of scikit-mobility. On one side, we plan to add more modules to cover a more extensive range of aspects regarding mobility data analysis. For example, we plan to include algorithms for predicting the next location visited by an individual [Luca et al., 2020, Wu et al., 2018]. We will also consider including a module for performing map matching, i.e., assigning the points of a trajectory to the street network, and a module to compute the similarity between trajectories.

On the other hand, we plan to improve the library from a computational point of view. Although in its current version scikit-mobility is easy to use and it is rather efficient on mobility data sets in the order of gigabytes, it is not scalable to massive mobility data in the order of terabytes. Since new python libraries similar to pandas but more computationally efficient are being developed every year (e.g., dask, [Matthew Rocklin, 2015]), we plan to re-implement crucial functions in scikit-mobility so that they can exploit the computational efficiency of these libraries. This aspect, which is not crucial now, will become so when the library will be largely adopted by the scientific community.

### 10 Existing tools

In this section, we briefly describe some of the existing libraries and tools that provide functionalities for movement data management. Overall, to the best of our knowledge, none of the other packages is tailored explicitly for human mobility, and none of them includes functions for privacy risk assessment. In Table 7, we give a summary of the packages and functionalities.
A review of state of the art reveals that several libraries (more than 50) deal with trajectory data in R [Joo et al., 2020]. In the following, we give a brief overview of the packages that are the closest in the scope to scikit-mobility.

### Spacetime

The spacetime package [Pebesma, 2012] provides methods and functionalities from two other R packages, sp [Pebesma, 2005] and xts [Ryan and Ulrich, 2013]. Package sp deals with different spatial data such as polygons, shapes, lines, or points, while package xts handles time and dates. spacetime provides several functionalities for the handling of spatio-temporal data, such as interpolation and calculation of empirical orthogonal functions. For visualizing data, spacetime relies on other R packages, for example maps [Becker and Wilks, 2016] is used to draw geographical maps.

### Trajectories

The package trajectories [Pebesma et al., 2018] builds on the foundation of spacetime providing a wider set of tools for managing non-domain specific trajectory data. It allows for the handling of single tracks of movement for each agent, and plotting and simulation of trajectories of different nature. It also provides model fitting for studying the behavior of individual tracks.

### Adehabitat

The packages under the adehabitat family [Calenge, 2006] cover methods and functions to manage animal movement and habitat selection. Given the large number of available functions, the original package has been split into multiple smaller packages dealing with different aspects of animal movement: adehabitatHR deals with home-range analysis, adehabitatHM deals with habitat selection analysis, adehabitatLT deals with animal trajectory analysis, and adehabitatMA deals with maps. Many of the functions presented in these packages are specific for animal movement. adehabitatLT [Calenge, 2011] is the most similar library to scikit-mobility. However, adehabitatLT deals mainly with trajectories sampled at regular time intervals, and it does not implement the individual and collective measures in scikit-mobility, nor the individual and collective models of human mobility. scikit-mobility is specifically designed to handle human mobility data, and therefore many of the models and methods provided by the adehabitat packages cannot fully reproduce the same results.

### TrajDataMining

TrajDataMining [Monteiro, 2018] provides some methods for trajectory data preparation, such as filtering, compression and clustering. It also provides some pattern recognition tools to extract recurrent movement behaviors from the trajectories. However, it does not implement generative models, one of the key features of scikit-mobility, nor advanced plotting functionalities.

### Python

As for python, some libraries have been proposed to manage and manipulate mobility data. In this section, we revise the libraries that are the most similar in their purpose to what we propose in this paper, highlighting the differences between them and scikit-mobility.

### Bandicoot

bandicoot [de Montjoye et al., 2016] is a python library for the analysis of mobile phone metadata that provides the users with functions to compute features related to mobile phone usage. These features are grouped into three categories: (i) individual features describe an individual’s mobile phone usage and interactions with their contacts; (ii) spatial features describe an individual’s mobility patterns; (iii) social network features describe an individual’s social network.

The principal limit of bandicoot is that it is specifically designed for managing a specific data type, namely mobile phone data. This design choice makes bandicoot unsuitable for the analysis of movements that cannot be captured by mobile phone data, such as car travels, movements of animals, or boat trips. In contrast, scikit-mobility gives the user the possibility to deal with a diverse set of mobility data sources (e.g., GPS data, social media data, mobile phone data) and covers a much complete set of standard mobility measures. Moreover, scikit-mobility provides a module dedicated to the privacy risk assessment of any mobility data source, a module to create interactive geographic plots, and a module dedicated to generative models of individual and collective mobility, all features that are completely absent in bandicoot.
Moving Pandas

movingpandas [Graser, 2019] is an extension to the Python data analysis library pandas [McKinney, 2010] and its spatial extension geopandas [Jordahl et al., 2019] to add functionality for dealing with trajectory data. In movingpandas, a trajectory is a time-ordered series of geometries. These geometries and associated attributes are stored in a GeoDataFrame, a data structure provided by the geopandas library. The main advantage of movingpandas is that, being based on geopandas, it allows the user to perform several operations on trajectories, such as clipping them with polygons and computing intersections with polygons. However, since it is focused on the concept of trajectory, movingpandas does not implement any features that are specific of mobility analysis, such as statistical laws of mobility, generative models, standard pre-processing functions, and methods to assess privacy risk in mobility data.

Acknowledgments

Luca Pappalardo and Roberto Pellungrini have been supported by EU project SoBigData++ RI grant #871042, EU project Track&Know H2020 grant #780754 and by EPSRC First Grant EP/P012906/1. We thank Anita Graser for the useful discussions, and Massimiliano Luca, Giuliano Cornacchia, and Michele Ferretti for their contribution to the development of the library.

Author contributions

L.P. developed modules, performed experiments, developed code examples, made the documentation, and structured the paper. F.S. performed experiments, tested the code and developed modules. G.B. performed the code, the system design and developed modules. R.P. performed experiments and developed modules. All the authors contributed to writing of the manuscript.

References

[Ahmed et al., 2016] Ahmed, M. N., Barlacchi, G., Braghin, S., Calabrese, F., Ferretti, M., Lonij, V., Nair, R., Novack, R., Parasyczak, J., and Toor, A. S. (2016). A multi-scale approach to data-driven mass migration analysis. In SoGood@ECML-PKDD.

[Alessandretti et al., 2018] Alessandretti, L., Sapiezynski, P., Sekara, V., Lehmann, S., and Baronchelli, A. (2018). Evidence for a conserved quantity in human mobility. Nature human behaviour, 2(7):485.

[Bagrow and Lin, 2012] Bagrow, J. P. and Lin, Y.-R. (2012). Mesoscopic structure and social aspects of human mobility. PLOS ONE, 7(5):1–6.

[Barbosa et al., 2018] Barbosa, H., Barthelemy, M., Ghoshal, G., James, C. R., Lenormand, M., Louail, T., Menezes, R., Ramasco, J. J., Simini, F., and Tomasini, M. (2018). Human mobility: Models and applications. Physics Reports, 734:1 – 74.

[Barbosa et al., 2015] Barbosa, H., de Lima-Neto, F. B., Evsukoff, A., and Menezes, R. (2015). The effect of recency to human mobility. EPJ Data Science, 4(1):21.

[Barlacchi et al., 2015] Barlacchi, G., De Nadai, M., Larcher, R., Casella, A., Chitic, C., Torrisi, G., Antonelli, F., Vespignani, A., Pentland, A., and Lepri, B. (2015). A multi-source dataset of urban life in the city of milan and the province of trentino. Scientific data, 2:150055.

[Barlacchi et al., 2017] Barlacchi, G., Perentis, C., Mehrotra, A., Musolesi, M., and Lepri, B. (2017). Are you getting sick? predicting influenza-like symptoms using human mobility behaviors. EPJ Data Science, 6(1):27.

[Becker and Wilks, 2016] Becker, R. A. and Wilks, A. R. (2016). maps: Draw Geographical Maps. R package version 3.0.2.

[Blondel et al., 2015] Blondel, V. D., Decuyper, A., and Krings, G. (2015). A survey of results on mobile phone datasets analysis. EPJ Data Science, 4:1–55.

[Bohm et al., 2021] Bohm, M., Nanni, M., and Pappalardo, L. (2021). Quantifying the presence of air pollutants over a road network in high spatio-temporal resolution. In Climate Change AI, NeurIPS Workshop.

[Brockmann et al., 2006] Brockmann, D., Hufnagel, L., and Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075):462–465.

[Calabrese et al., 2011] Calabrese, F., Di Lorenzo, G., Liu, L., and Ratti, C. (2011). Estimating origin-destination flows using mobile phone location data. IEEE Pervasive Computing, 10(4):36–44.

[Calenge, 2006] Calenge, C. (2006). The package adehabitat for the r software: tool for the analysis of space and habitat use by animals. Ecological Modelling, 197:1035.
[Calenge, 2011] Calenge, C. (2011). Analysis of animal movements in r: the adehabitatlt package.

[Canzian and Musolesi, 2015] Canzian, L. and Musolesi, M. (2015). Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp ’15, pages 1293–1304, New York, NY, USA. ACM.

[Cho et al., 2011] Cho, E., Myers, S. A., and Leskovec, J. (2011). Friendship and mobility: User movement in location-based social networks. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pages 1082–1090, New York, NY, USA. ACM.

[de Montjoye et al., 2018] de Montjoye, Y.-A., Gambs, S., Blondel, V., Canright, G., de Cordes, N., Deletaille, S., Engø-Monsen, K., Garcia-Herranz, M., Kendall, J., Kenny, C., Krings, G., Letouzé, E., Luengo-Oroz, M., Oliver, N., Rocher, L., Rutherford, A., Smoreda, Z., Steele, J., Wetter, E., Pentland, A. S., and Bengtsson, L. (2018). On the privacy-conscientious use of mobile phone data. Scientific Data, 5(1):180286.

[de Montjoye et al., 2013] de Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M., and Blondel, V. D. (2013). Unique in the crowd: The privacy bounds of human mobility. Scientific reports, 3:1376.

[Fernandes et al., 2018] Fernandez Arguedas, V., Pallotta, G., and Vespe, M. (2018). Maritime traffic networks: From historical positioning data to unsupervised maritime traffic monitoring. IEEE Transactions on Intelligent Transportation Systems, 19(3):722–732.

[Fiore et al., 2020] Fiore, M., Katsikouli, P., Zavou, E., Cunche, M., Fessant, F., Hello, D. L., Aivodji, U. M., Olivier, B., Quertier, T., and Stanica, R. (2020). Privacy in trajectory micro-data publishing: a survey. Trans. Data Priv., 13:91–149.

[González et al., 2008] González, M. C., Hidalgo, C. A., and Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196):779–782.

[Graser, 2019] Graser, A. (2019). Movingpandas: Efficient structures for movement data in python. Journal of Geographic Information Science, 1:54–68.

[Harirhan and Toyama, 2004] Harirhan, R. and Toyama, K. (2004). Project lachesis: parsing and modeling location histories. In International Conference on Geographic Information Science, pages 106–124. Springer-Verlag.

[Hunter, 2007] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90–95.

[Jiang et al., 2016] Jiang, S., Yang, Y., Gupta, S., Veneziano, D., Athavale, S., and González, M. C. (2016). The timegeo modeling framework for urban mobility without travel surveys. Proceedings of the National Academy of Sciences, 113(37):E5370.

[Joo et al., 2020] Joo, R., Boone, M. E., Clay, T. A., Patrick, S. C., Clusella-Trullas, S., and Basille, M. (2020). Navigating through the r packages for movement. Journal of Animal Ecology, 89(1):248–267.

[Jordahl et al., 2019] Jordahl, K., den Bossche, J. V., Wasserman, J., McBride, J., Gerard, J., Tratner, J., Perry, M., Farmer, C., Gillies, S., Cochran, M., and et al. (2019). geopandas/geopandas: v0.5.1.

[Karamshuk et al., 2011] Karamshuk, D., Boldrini, C., Conti, M., and Passarella, A. (2011). Human mobility models for opportunistic networks. IEEE Communications Magazine, 49(12):157–165.

[Luca et al., 2020] Luca, M., Barlacchi, G., Lepri, B., and Pappalardo, L. (2020). Deep learning for human mobility: a survey on data and models.

[Matthew Rocklin, 2015] Matthew Rocklin (2015). Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In Kathryn Huff and James Bergstra, editors, Proceedings of the 14th Python in Science Conference, pages 126 – 132.

[McKinney, 2010] McKinney, W. (2010). Data structures for statistical computing in python. In van der Walt, S. and Millman, J., editors, Proceedings of the 9th Python in Science Conference, pages 51 – 56.

[Monreale et al., 2014] Monreale, A., Rinzivillo, S., Pratesi, F., Giannotti, F., and Pedreschi, D. (2014). Privacy-by-design in big data analytics and social mining. EPJ Data Science, 3(1):10.

[Monteiro, 2018] Monteiro, D. (2018). Trajdatamining: Trajectories datamining.

[Noulas et al., 2012] Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., and Mascolo, C. (2012). A tale of many cities: Universal patterns in human urban mobility. PLOS ONE, 7(5):1–10.

[Nyhan et al., 2018] Nyhan, M. M., Kloog, I., Britter, R., Ratti, C., and Koutrakis, P. (2018). Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data. Journal of Exposure Science & Environmental Epidemiology, 29:238–247.

[Oliphant, 2006] Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol Publishing USA.
SCIKIT-MOBILITY: A PYTHON LIBRARY FOR THE ANALYSIS, GENERATION AND RISK ASSESSMENT OF MOBILITY DATA

[Pappalardo et al., 2021] Pappalardo, L., Ferres, L., Sacasa, M., Cattuto, C., and Bravo, L. (2021). Evaluation of home detection algorithms on mobile phone data using individual-level ground truth. *EPJ Data Science*, 10(1):29.

[Pappalardo et al., 2013] Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D., and Giannotti, F. (2013). Understanding the patterns of car travel. *The European Physical Journal Special Topics*, 215(1):61–73.

[Pappalardo et al., 2016a] Pappalardo, L., Rinzivillo, S., and Simini, F. (2016a). Human mobility modelling: Exploration and preferential return meet the gravity model. *Procedia Computer Science*, 83:934 – 939. The 7th International Conference on Ambient Systems, Networks and Technologies (ANT 2016) / The 6th International Conference on Sustainable Energy Information Technology (SEIT-2016) / Affiliated Workshops.

[Pappalardo and Simini, 2018] Pappalardo, L. and Simini, F. (2018). Data-driven generation of spatio-temporal routines in human mobility. *Data Mining and Knowledge Discovery*, 32(3):787–829.

[Pappalardo et al., 2015] Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., and Barabási, A.-L. (2015). Returners and explorers dichotomy in human mobility data. *Nature communications*, 6:8166.

[Pappalardo et al., 2016b] Pappalardo, L., Vanhoof, M., Gabrielli, L., Smoreda, Z., Pedreschi, D., and Giannotti, F. (2016b). An analytical framework to nowcast well-being using mobile phone data. *International Journal of Data Science and Analytics*, 2(1):75–92.

[Pebesma, 2012] Pebesma, E. (2012). Spacetime: Spatio-temporal data in r. *Journal of Statistical Software*, 51:1–30.

[Pebesma et al., 2018] Pebesma, E., Klus, B., and Moradi, M. (2018). *trajectories: Classes and Methods for Trajectory Data*. R package version 0.2-1.

[Pebesma, 2005] Pebesma, E., R. B. (2005). *Classes and methods for spatial data in R*. R package version 1.3-2.

[Pellungrini et al., 2017] Pellungrini, R., Pappalardo, L., Pratesi, F., and Monreale, A. (2017). A data mining approach to assess privacy risk in human mobility data. *ACM Trans. Intell. Syst. Technol.*, 9(3):31:1–31:27.

[Pellungrini et al., 2020] Pellungrini, R., Pappalardo, L., Simini, F., and Monreale, A. (2020). Modeling adversarial behavior against mobility data privacy. *IEEE Transactions on Intelligent Transportation Systems*, pages 1–14.

[Phithakkitnukoon et al., 2012] Phithakkitnukoon, S., Smoreda, Z., and Olivier, P. (2012). Socio-geography of human mobility: A study using longitudinal mobile phone data. *PLOS ONE*, 7(6):1–9.

[Pratesi et al., 2018] Pratesi, F., Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., and Yanagihara, T. (2018). Prudence: a system for assessing privacy risk vs utility in data sharing ecosystems. *Transactions on Data Privacy*, 11(2):139–167.

[Ramos-Fernández et al., 2004] Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Larralde, H., and Ayala-Orozco, B. (2004). Lévy walk patterns in the foraging movements of spider monkeys. *Behavioral ecology and Sociobiology*, 55(3):223–230.

[Rinzivillo et al., 2014] Rinzivillo, S., Gabrielli, L., Nanni, M., Pappalardo, L., Pedreschi, D., and Giannotti, F. (2014). The purpose of motion: Learning activities from individual mobility networks. In *2014 International Conference on Data Science and Advanced Analytics (DSAA)*, pages 312–318.

[Rossi et al., 2019] Rossi, A., Barlacchi, G., Bianchini, M., and Leprí, B. (2019). Modelling taxi drivers’ behaviour for the next destination prediction. *IEEE Transactions on Intelligent Transportation Systems*.

[Rossi et al., 2018] Rossi, A., Pappalardo, L., Cintia, P., Iaia, M., Fernández, J., and Medina, D. (2018). Effective injury prediction in professional soccer with gps data and machine learning. *PLOS ONE*, 13:1–15.

[Ryan and Ulrich, 2013] Ryan, J. A. and Ulrich, J. M. (2013). *xts: Extensible Time Series*. R package version 0.9-7.

[Simini et al., 2012] Simini, F., González, M. C., Maritan, A., and Barabási, A.-L. (2012). A universal model for mobility and migration patterns. *Nature*, 484:96–100.

[Song et al., 2010a] Song, C., Koren, T., Wang, P., and Barabási, A. (2010a). Modelling the scaling properties of human mobility. *Nature Physics*, 6(10):818–823.

[Song et al., 2010b] Song, C., Qu, Z., Blumm, N., and Barabási, A.-L. (2010b). Limits of predictability in human mobility. *Science*, 327(5968):1018–1021.

[Tizzoni et al., 2012] Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J. J., Balcan, D., Gonçalves, B., Perra, N., Colizza, V., and Vespignani, A. (2012). Real-time numerical forecast of global epidemic spreading: case study of 2009 a/h1n1pdm. *BMC Medicine*, 10(1).

[Tomasini et al., 2017] Tomasini, M., Mahmood, B., Zambonelli, F., Brayner, A., and Menezes, R. (2017). On the effect of human mobility to the design of metropolitan mobile opportunistic networks of sensors. *Pervasive and Mobile Computing*, 38:215 – 232.
Vanhoof, M., Lee, C., and Smoreda, Z. (2020). Performance and Sensitivities of Home Detection on Mobile Phone Data, chapter 8, pages 245–271. John Wiley & Sons, Ltd.

Voukelatou, V., Gabrielli, L., Miliou, I., Cresci, S., Sharma, R., Tesconi, M., and Pappalardo, L. (2020). Measuring objective and subjective well-being: dimensions and data sources. International Journal of Data Science and Analytics.

Wang, D., Pedreschi, D., Song, C., Giannotti, F., and Barabasi, A.-L. (2011). Human mobility, social ties, and link prediction. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '11, pages 1100–1108, New York, NY, USA. ACM.

Wang, J., Kong, X., Xia, F., and Sun, L. (2019). Urban human mobility: Data-driven modeling and prediction. ACM SIGKDD Explorations Newsletter, pages 1–19.

Williams, N. E., Thomas, T. A., Dunbar, M., Eagle, N., and Dobra, A. (2015). Measures of human mobility using mobile phone records enhanced with gis data. PLOS ONE, 10(7):1–16.

Wilson, A. G. (1971). A family of spatial interaction models, and associated developments. Environment and Planning A, 3(1):1–32.

Wu, R., Luo, G., Shao, J., Tian, L., and Peng, C. (2018). Location prediction on trajectory data: A review. Big Data Mining and Analytics, 1(2):108–127.

Zhang, J., Zheng, Y., and Qi, D. (2017). Deep spatio-temporal residual networks for citywide crowd flows prediction. In Thirty-First AAAI Conference on Artificial Intelligence.

Zhao, K., Tarkoma, S., Liu, S., and Vo, H. (2016). Urban human mobility data mining: An overview. In 2016 IEEE International Conference on Big Data (Big Data), pages 1911–1920.

Zheng, Y. (2015). Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and Technology (TIST), 6(3):29.

Zheng, Y., Capra, L., Wolfson, O., and Yang, H. (2014). Urban computing: Concepts, methodologies, and applications. ACM Transactions on Intelligent System Technologies, 5(3):38:1–38:55.

Zheng, Y., Wang, L., Zhang, R., Xie, X., and Ma, W.-Y. (2008). Geolife: Managing and understanding your past life over maps. In Proceedings of the The Ninth International Conference on Mobile Data Management, MDM ’08, pages 211–212, Washington, DC, USA. IEEE Computer Society.

Zipf, G. K. (1946). The p 1 p 2/d hypothesis: on the intercity movement of persons. American sociological review, 11(6):677–686.