Clinical relevance of topical antibiotic use in co-selecting for multidrug-resistant

Staphylococcus aureus: Insights from in vitro and ex vivo models

Yi Nong,1 George Taiaroa,1 Shivani Pasricha,1

Romain Guérillot,1 Ian R Monk,1 Sarah L Baines,1,2 Glen P Carter,1,3

Benjamin P Howden,1,2,3 Deborah A Williamson1,2,4

1. Department of Microbiology and Immunology at the Peter Doherty Institute for
Infection and Immunity, The University of Melbourne, Melbourne, Australia

2. Microbiological Diagnostic Unit Public Health Laboratory, Department of
Microbiology & Immunology, The University of Melbourne at The Doherty Institute
for Infection and Immunity, Melbourne, Australia

3. Doherty Applied Microbial Genomics, Doherty Institute, The University of
Melbourne, Australia

4. Department of Microbiology, Royal Melbourne Hospital, Melbourne, Australia

* Corresponding author: Deborah Williamson, deborah.williamson@unimelb.edu.au
ABSTRACT

Topical antibiotic preparations, such as fusidic acid (FA) or mupirocin, are used in the prevention and treatment of superficial skin infections caused by staphylococci. Previous genomic epidemiology work has suggested an association between the widespread use of topical antibiotics and the emergence of methicillin resistant Staphylococcus aureus in some settings. In this study, we provide experimental proof of co-selection for multidrug resistance in S. aureus following exposure to FA or mupirocin. Through targeted mutagenesis and phenotypic analyses, we confirmed that fusC carriage confers resistance to FA, and mupA carriage confers high-level resistance to mupirocin in multiple S. aureus genetic backgrounds. In vitro experiments demonstrated that carriage of fusC and mupA confer a competitive advantage in the presence of sub-inhibitory concentrations of FA and mupirocin, respectively. Further, we used a porcine skin colonisation model to show that clinically relevant concentrations of topical antibiotics can co-select for presence of unrelated antimicrobial resistance determinants, such as mecA, blaZ, and qacA, in fusC or mupA harbouring S. aureus. These findings provide valuable insights on the role of acquired FA or mupirocin resistance in co-selecting for broader antibiotic resistance in S. aureus, prompting greater need for judicious use of topical antibiotics.
INTRODUCTION

Skin and soft tissue infections (SSTIs) caused by Staphylococcus aureus are among the most common bacterial infections worldwide (1). Topical antibiotics, such as fusidic acid (FA) and mupirocin, are widely used in some settings for both prevention and treatment of such infections (2). The former has been used as a first-line topical treatment option for superficial SSTIs (e.g. impetigo) in many countries outside the United States (3, 4). Mupirocin, as monotherapy or in combination with skin antiseptics such as chlorhexidine, is used in the prevention of surgical site infections and in preoperative clearance of methicillin-resistant S. aureus (MRSA) (5, 6). However, following recent increases in resistance to these antibiotics, there is concern for the potential for “collateral damage” associated with use and misuse of these agents and co-selection of multidrug-resistant (MDR) S. aureus. For example, high population-level use of FA and mupirocin in New Zealand led to elevated levels of S. aureus resistance, not only to these two agents, but also selected for the emergence of MRSA lineages (7). Comparative genomic analyses of these isolates showed that FA resistance was mediated by the fusC gene, carried on mobile staphylococcal cassette chromosome (SCC) elements either with or without the methicillin resistance determinant mecA (8, 9). The co-localisation of fusC and mecA on SCC elements suggested the genetic potential for co-selection of MRSA driven by FA exposure. Further, resistance to mupirocin was mediated by the mupA gene, located on a non-conjugative plasmid (pNZAK1), which also harboured genes associated with increased tolerance to chlorhexidine (qacA) and penicillin resistance (blaZ), highlighting the potential for co-selection of other resistance mechanisms (9).

In other parts of the world, widespread use of topical antibiotics has also been linked to an increased prevalence of acquired resistance to both topical and systemic antimicrobials in S. aureus. As examples, fusC was the most prominent FA resistance mechanism in Australia (10), Taiwan (11), and several European countries (12-14). This coincided with the emergence of community-associated MRSA harbouring novel transferable SCCmec-fusC gene cassettes (11, 13, 14). Similarly, increasing rates of high-level mupirocin resistant S. aureus, often conferred by plasmid-borne mupA, have been reported in settings where
Mupirocin use was common (15-17). Of particular concern are reports of nasal colonisation of patients with \textit{mupA}-harbouring MRSA in intensive care units, highlighting potential for subsequent failure of decolonisation (17). As with \textit{fusC}, co-occurrence of \textit{mupA} with resistance determinants to macrolides, gentamicin, tetracycline on the same plasmids may have important clinical implications (18). Accordingly, the aim of this study was to determine the role of (i) \textit{fusC}-mediated FA resistance and (ii) \textit{mupA}-mediated mupirocin resistance in the co-selection of other drug resistance in \textit{S. aureus}, with a focus on methicillin resistance. In addition, we developed an \textit{ex vivo} porcine skin colonisation model to evaluate the potential selection pressure that topical agents exert on \textit{S. aureus} at clinically used concentrations on the skin. Collectively, these data provide valuable insights into understanding the potential clinical impact of topical antibiotic resistance on co-selection for drug-resistant \textit{S. aureus}.

RESULTS

\textit{fusC} or \textit{mupA} deletions result in loss of resistance to topical antibiotics

Unmarked deletions of: (i) \textit{fusC} in strains NZ14487 (sequence type 1 methicillin-susceptible \textit{S. aureus} (ST1 MSSA)), NZ14132 (ST1 MRSA), and NZAK3 (ST5 MRSA), or (ii) \textit{mupA} in NZ14487 and NZ14132 were performed by targeted mutagenesis using plasmid pIMAY-Z (19). Subsequently, a similar approach was used to complement the isogenic \textit{fusC} and \textit{mupA} mutants (see Methods). Each genetic modification made, including unmarked deletions and complementations, was confirmed by PCR and whole genome sequencing (WGS), with these data showing the \textit{S. aureus} isolates were otherwise isogenic to the original wild-type strains, lacking secondary mutations which can be acquired during the process of targeted mutagenesis (Supplementary Table 1).

To confirm the role of \textit{fusC} and \textit{mupA} in mediating FA and mupirocin resistance, respectively, broth micro-dilution (BMD) minimum inhibitory concentration (MIC) assays were performed in accordance with the Clinical Laboratory Standards Institute (CLSI) guidelines (20). Results were interpreted according to the CLSI breakpoints for mupirocin (20) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints for FA (21), as
there are no CLSI defined breakpoints for FA. Comparison between wild-type and corresponding isogenic *fusC* mutants revealed a 6 log\(_2\) reduction in FA MICs (from 4 to 0.0625 mg/L) (Supplementary Table 2). Similarly, deletion of *mupA* led to a 12 log\(_2\) reduction in mupirocin MIC (from >1024 to 0.25 mg/L) (Supplementary Table 2). Complementation of *fusC* and *mupA* in these mutants returned the observed FA and mupirocin MICs to wild-type levels (4 and >1024 mg/L, respectively), confirming that the changes in phenotype were a direct result of the gene deletions.

Exposure to sub-MIC levels of FA or mupirocin co-selects for MDR S. aureus

The representative *S. aureus* isolates used in this study were defined as MDR, i.e. resistance to FA, penicillin, and mupirocin in NZ14487; resistance to FA, penicillin, mupirocin and oxacillin in NZ14132; resistance to penicillin, oxacillin and FA in NZAK3. To determine whether selective pressure exerted by FA or mupirocin exposure co-selected for MDR *S. aureus*, competition assays were performed using wild-type or complemented strains mixed with isogenic mutants in a 1:1 ratio. These assays were conducted in the presence and absence of sub-MIC levels of FA (0.03125 mg/L) or mupirocin (0.125 mg/L) in vitro, which ensured the viability of mutant strains during antibiotic exposure. Exposure to FA or mupirocin in competition assays rapidly enriched for the wild-type or complemented strains over deletion mutants, with 100% of the isolates being wild-type or complemented strains on Day 1 and Day 7 post-exposure (Figure 1). No significant difference in the ratio of wild-type or complemented strains compared to mutant strains was observed on Day 1 or 7 under non-selective conditions (Figure 1). Further, growth assays showed no significant difference in doubling time was observed when comparing the complemented and isogenic mutant strains to their respective wild-type strains (Supplementary Figure 1), indicating that the selection in presence of antibiotics was not due to difference in growth rate. These data suggest that *fusC* and *mupA* play a role in selecting for MDR *S. aureus* following exposure to sub-MIC levels of FA and mupirocin, respectively.

Clinically relevant concentrations of topical antibiotics co-select for MDR S. aureus in an
Porcine skin has been used as an experimental model of human skin, given similarities in anatomy, physiology and morphology (22). Here, we hypothesised that topical application of FA as Fucidin ointment (2% w/w sodium fusidate) would select for fusC-harbouring MDR S. aureus wild-type or complemented strains of NZ14487, NZ14132, and NZAK3 grown in competition with isogenic fusC mutants on porcine skin. Similarly, we hypothesised that topical application of mupirocin as Bactroban ointment (2% w/w mupirocin) would select for mupA-carrying wild-type or complemented strains of NZ14487 and NZ14132 grown in competition with isogenic mupA mutants.

Similar to our in vitro results, exposure to Fucidin ointment selected for wild-type and complemented strains over isogenic fusC mutants. Specifically, after 24 h of Fucidin treatment, NZ14487, NZ14132, and NZAK3 wild-type strains accounted for 86.8%, 87.6%, and 82.8%, respectively, and their fusC complemented strains accounted for 78%, 83.6%, and 85.6% of isolates collected. These percentages were significantly higher than their percentages under non-selective conditions (Figure 2A & B). In addition, significant enrichment of mupA carrying isolates was observed for the mupirocin ex vivo experiments, with 99.2% and 98.8% of the isolates harvested being NZ14487 and NZ14132 wild-type, respectively, and 99.6% and 98.0% of isolates being the NZ14487 and NZ14132 mupA complemented strains, respectively, following 24 h of exposure to Bactroban (Figure 2C & D). Conversely, these levels of enrichment for fusC or mupA harbouring isolates was not observed under non-selective conditions. For each pairing, five post-exposure resistant isolates were randomly selected for WGS, which confirmed the identity of input wild-type or complemented strains and also showed that horizontal mobilisation of fusC or mupA had not occurred (Supplementary Table 1).

DISCUSSION

In this study, we provide experimental evidence of co-selection following topical use of fusidic acid or mupirocin in S. aureus. This included targeted mutagenesis and phenotypic analyses in
multiple S. aureus genetic backgrounds, confirming that fusC carriage confers resistance to fusidic acid, and that mupA carriage confers resistance to mupirocin. Further, we used in vitro and skin colonisation models to determine that clinically relevant concentrations of topical antibiotics are sufficient to enrich for fusC or mupA harbouring S. aureus. These findings are in line with previous genomic studies which highlighted the potential role of co-selection following topical antibiotic exposure in the emergence of MDR S. aureus (8, 9). Our findings have several clinical implications when considering the widespread use of topical agents in the prevention and treatment of SSTIs caused by S. aureus.

First, although the co-localisation of resistance determinants to topical antibiotics and other antimicrobials has been frequently described in the literature (23-25), experimental assessments of the role of co-localisation in facilitating co-selection are far less common. With the widespread use of topical antibiotics, an understanding of the co-selective potential of their use becomes critical for antibiotic stewardship and for controlling the further spread of MDR S. aureus, including MRSA. Our in vitro and on-skin competition assays demonstrate that rapid enrichment of MDR S. aureus can be driven by a single exposure to topical antibiotics, if resistance determinants are co-located with fusC or mupA. Although the growth of susceptible S. aureus mutant strains was partially impaired following exposure to sub-MIC levels of topical antibiotics, this exposure placed a strong selection on carriage of topical antibiotic resistance genes. Clinically, residual topical antibiotics can be found at very low levels on skin following treatment (26), potentially providing a sub-MIC niche for selection of antimicrobial resistance.

Second, to date, there are no experimental data assessing whether clinically used concentrations of topical antibiotics can select for MDR S. aureus. Importantly, the concentration of active ingredients in topical preparations of fusidic acid and mupirocin are several orders of magnitude higher than inhibitory MIC levels, with 2% w/w equivalent to approximately 20,000 mg/L. Previous colonisation models, both ex vivo and in vivo, have shown that complete or near complete eradication of S. aureus can be achieved when these topical ointments are applied shortly after bacterial inoculation on skin (27-29). As such, to appropriately
evaluate the selective pressures imposed by clinically relevant concentrations of topical antibiotic, we developed an *ex vivo* porcine skin model of colonisation. Although we observed a 4-5 log reduction in colony forming units (CFUs) (unpublished observation), wild-type, complemented, and mutant strains were recovered following exposure to clinically relevant concentrations of topical antibiotics in our model. This may suggest that antimicrobial activity of topical antibiotic preparations is dependent on several factors, such as bacterial load, growth phase and biofilm formation on skin. Of particular concern is the apparent ability of topical antibiotics to co-select for MRSA isolates in the absence of exposure to a β-lactam class antibiotic and highlight the importance of exploring alternative topical agents, such as the use of hydrogen peroxide, for which acquired tolerance has not been reported (2).

A limitation of this study is that we did not examine the effect of repeated topical antibiotic exposures; it is possible that regular doses of topical antibiotic may further reduce bacterial load or decolonise *S. aureus* on skin (30, 31). Moreover, the translation of our *in vitro* and *ex vivo* findings to inform clinical practice may be better informed in future by assessments on the effect of host immunity on clearance and the influence of undefined skin microbiota. As such, future work should address these clinical questions using relevant *in vivo* models and clinical studies of *S. aureus* colonisation and infection.

Taken together, our findings provide insights on the molecular basis of topical antibiotic resistance, and the potential for this to enable co-selection of broader antibiotic resistance in *S. aureus*. These highlight the need for judicious use of topical antibiotics and improved surveillance of topical antibiotic resistance to control the spread of antimicrobial resistance.
MATERIALS & METHODS

Bacterial strains and antimicrobial agents

S. aureus strains NZ14487, NZ14132 and NZAK3 were obtained from previously published studies (8, 9). Unless otherwise stated, all *S. aureus* isolates were maintained on brain heart infusion (BHI) agar and grown in BHI broth at 37 °C with shaking at 200 revolutions per minute. FA and mupirocin used for *in vitro* assays were purchased from Sigma-Aldrich, Australia. For *ex vivo* experiments, Fucidin ointment containing 2% w/w sodium fusidate was purchased from LEO Pharma Pty Ltd, Australia. APO™-Mupirocin (Bactroban) ointment containing 2% w/w mupirocin was obtained from Apotex Pty Ltd, Australia. Antimicrobial susceptibility testing was performed by broth micro-dilution assays in accordance with the CLSI guideline (20), and results were interpreted based on the CLSI breakpoints for mupirocin (20) and EUCAST breakpoints for FA (21).

Construction of isogenic fusC or mupA mutants by allelic exchange

The pIMAY-Z shuttle vector (19) was used to make unmarked chromosomal deletions of fusC in NZ14487, NZ14132, and NZAK3 strains or mupA in NZ14487 and NZ14132 strains. Using the primers listed in Supplementary Table 3, spliced overlap extension (SOE) PCR was used to generate a deletion cassette containing jointed flanking regions (700 – 750 bp) upstream and downstream of the target gene. The amplified cassette was then cloned into pIMAY-Z by seamless ligation cloning extract (SLiCE) (32). To bypass the *S. aureus* restriction barrier, deletion plasmid was electroporated into *Escherichia coli* IM01B or IM08B to obtain methylation profiles similar to ST1 or ST5 *S. aureus*, respectively. The presence of the desired deletion plasmid was confirmed by colony PCR using the flanking primers. Purified plasmid was then introduced into *S. aureus* by electroporation. Successful transformants were selected on BHI agar supplemented with 10 mg/L of chloramphenicol (Cm) and 100 mg/L of X-Gal (5-bromo-4-chloro-3-indoly1-D-galactopyranoside; Melford) and grown at 30°C for 2 days. Allelic exchange mutagenesis was performed as previously described by Monk et al. (19). To confirm plasmid loss resulted from double-crossover recombination, white colonies were cross-patched onto selective BHI agar containing Cm and
X-Gal, and non-selective BHI agar. Colony PCR was performed using primers FUSC-OUT-Fp and FUSC-OUT-Rp (fusC), or MUPA-OUT-Fp and MUPA-OUT-Rp (mupA) to screen Cm sensitive colonies for chromosomal integration of deletion cassettes. Isogenic mutants were generated for each target gene in the representative strains. Finally, both wild-type and isogenic mutant isolates were subjected to WGS performed on the Illumina NextSeq platform using 2 x 150 bp paired end chemistry. Deletions of the target genes were visualised by mapping the Illumina reads of mutant strains to their respective wild-type genomes using Geneious v.11.1.5. Snippy v.4.6.0 (https://github.com/tseemann/snippy) was used to detect secondary mutations introduced during the allelic exchange experiments.

Complementation of fusC or mupA mutants

Complementary primers (Supplementary Table 3) were used to generate complementation cassettes by SOE PCR. The complemented fusC carried a substitution at nucleotide 237 (c.237G>C) resulting in a silent mutation at codon 79 (p.Val79Val). Similarly, the complemented mupA harboured a substitution at nucleotide 1509 (c.1509T>G) causing a silent mutation at codon 503 (p.Ser503Ser). Subsequently, the fusC or mupA mutant isolates were transformed with pIMAY-Z containing a corresponding complementation cassette as per described above. The resulting complemented isolates were subjected to whole genome sequencing to confirm integration of complementation cassettes into the chromosome or relevant plasmid and the presence of secondary mutations introduced complementation explored using Snippy (v.4.6.0) (https://github.com/tseemann/snippy).

Determination of bacterial growth rates

Growth assays and analyses were performed as previously described in Guérillot et al. (33). A total of six biological replicates were performed for each strain tested. For each replicate, an overnight BHI broth culture of S. aureus was diluted in fresh BHI broth to obtain a bacterial suspension with a starting optical density at 600 nm (OD$_{600}$) of 0.05. Then, 200 µl of the bacterial suspension was dispensed into the wells of a 96-well tray. The bacterial cultures were incubated at 37°C for 16 h with agitation, and the OD$_{600}$ was measured every 15 min
using a CLARIOstar microplate reader (BMG LABTECH). The bacterial growth rates
denoted as doubling times were determined using the R package cellGrowth (34). A series of
unpaired t tests were used to determine statistical significance.

In vitro pairwise competition assays

For each pairing of the wild-type and mutant strains, or the complemented and mutant strains,
an overnight broth culture of each individual strain was diluted in fresh BHI broth to obtain a
bacterial suspension at an adjusted OD$_{600}$ of 0.10. The two normalised bacterial cultures were
then mixed in a 1:1 ratio. The co-culture of competitor strains was diluted 1:100 in 10 ml
non-selective BHI broth or BHI broth containing 0.5 x MIC of FA or mupirocin (i.e. 0.03125
mg/L for FA or 0.125 mg/L for mupirocin) for mutants. The cultures were then incubated at
37 °C with shaking at 200 rpm for 7 days. Following 24 h of exposure to antibiotics, 10-fold
serial dilutions of a 300 µl sample removed from each broth culture was performed in
phosphate buffered saline (PBS). 100 µl of appropriate dilutions were spread onto BHI agar
plates, which were then incubated at 37 °C overnight. On the following day, 50 randomly
selected single colonies were cross-patched onto antibiotic (FA or mupirocin at 2 mg/L)
containing BHI agar and non-selective BHI agar. The agar plates were then incubated at
37 °C overnight before the ratio of the two competing bacterial strains on Day 1 was
quantified. The process was repeated on Day 7 post-exposure to determine changes in the
bacterial population over time under selective and non-selective conditions. A series of paired
t tests were used to determine statistical significance.

Ex vivo pairwise competition assay

Sections of fresh porcine skin were disinfected with 80% ethanol for 30 mins, followed by
three rinses with PBS. Sections were dried and then co-infected using wild-type or
complemented strains paired with isogenic mutants of *S. aureus* (in equal numbers) at 10^6
CFU/ml, and incubated for 24 h at 37 °C to allow bacterial growth on the skin. Following this,
topical ointment (20–25 mg) or vehicle (deionised water) alone was applied and mixed with
bacteria grown on the infected sections (2 x 2 cm2), which were then incubated for an
additional 24 h at 37 °C. Following the incubation, bacterial growth on the skin was collected by suspending the skin sections in PBS for both untreated and treated replicates. The bacterial suspension was then diluted and plated onto non-selective BHI agar plates before the ratio of wild-type or complemented strains to isogenic mutants was determined under selective and non-selective conditions as described above. Five representative isolates were further analysed by WGS to confirm bacterial identification for each pairing.

BioProject accession number

Sequence data for all isolates used in this study have also been deposited under the BioProject accession number PRJNA412108 at the National Centre for Biotechnology Information database. Genome assemblies for NZ14487 and NZ14132 have also been deposited under same accession number, and NZAK3 complete genome can be accessed using GenBank accession number GCA_900017775.1.

ACKNOWLEDGMENTS

We thank the laboratory staff in the Microbiological Diagnostic Unit Public Health Laboratory, Victoria, Australia.

We have no conflict of interest to declare.
FIGURES

Figure 1 – *In vitro* competition assays of *S. aureus* reveal the selective advantage of topical antibiotic resistance gene carriage. *S. aureus* strains NZ1432 (orange), NZ14487 (aqua), and NZAK3 (green) wild-type or complemented strains were paired with their respective isogenic mutants under non-selective condition and exposure to a sub-MIC level of FA (0.03125 mg/L) or mupirocin (0.125 mg/L) for 7 days. Percentages of wild-type or complemented isolates in mixed cultures of (A) wild-type and *fusC* mutant; (B) *fusC* complemented and *fusC* mutant; (C) wild-type and *mupA* mutant; (D) *mupA* complemented and *mupA* mutant were determined on Day 1 and 7 post-exposure. The mean percentages of three biological replicates are displayed for each condition tested, with black error bars representing the standard error of the mean (SEM). Statistically significant differences are indicated by asterisks (** *P* < 0.001, paired t test).
Figure 2 – *Ex vivo* competition assays of *S. aureus* reveal the selective advantage of topical antibiotic resistance gene carriage in clinically relevant environments. *S. aureus* strains NZ14132 (orange), NZ14487 (aqua), and NZAK3 (green) wild-type or complemented strains paired with their respective isogenic mutants were grown on porcine skin under non-selective condition and exposure to a single dose of 20–25 mg Fucidin 2% or Bactroban 2% ointment for 24 h. Percentages of wild-type or complemented isolates within mixed cultures of (A) wild-type and *fusC* mutant; (B) *fusC* complemented and *fusC* mutant; (C) wild-type and *mupA* mutant; (D) *mupA* complemented and *mupA* mutant were determined at the conclusion of the assays. Five biological replicates were used to calculate the mean percentages and the SEM (black error bars) for each condition tested. Statistically significant differences are indicated by asterisks (** *P* < 0.01, *** *P* < 0.001, paired t test).
REFERENCES

1. Esposito S, Bassetti M, Concia E, De Simone G, De Rosa FG, Grossi P, Novella A, Menichetti F, Petrosillo N, Tinelli M, Tumarello M, Sanguinetti M, Viale P, Venditti M, Viscoli C. 2017. Diagnosis and management of skin and soft-tissue infections (SSTI). A literature review and consensus statement: an update. Journal of Chemotherapy 29:197-214.

2. Williamson DA, Carter GP, Howden BP. 2017. Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clinical Microbiology Reviews 30:827-860.

3. Hartman-Adams H, Banvard C, Juckett G. 2014. Impetigo: diagnosis and treatment. Am Fam Physician 90:229-235.

4. Ni Riain U. 2013. Recommended management of common bacterial skin infections. Prescriber 24:15-25.

5. Septimus EJ, Schweizer ML. 2016. Decolonization in Prevention of Health Care-Associated Infections. Clinical Microbiology Reviews 29:201-222.

6. Poovelikunnel T, Gethin G, Humphreys H. 2015. Mupirocin resistance: clinical implications and potential alternatives for the eradication of MRSA. Journal of Antimicrobial Chemotherapy 70:2681-2692.

7. Williamson D, Ritchie SR, Best E, Upton A, Leversha A, Smith A, Thomas MG. 2015. A bug in the ointment: topical antimicrobial usage and resistance in New Zealand. N Z Med J 128:103-109.

8. L Baines S, P Howden B, Heffernan H, P Stinear T, P Carter G, Seemann T, Kwong J, Ritchie S, Williamson D. 2016. Rapid Emergence and Evolution of Staphylococcus aureus Clones Harboring fusC-Containing Staphylococcal Cassette Chromosome Elements, vol 60.

9. Carter GP, Schultz MB, Baines SL, Gonçalves da Silva A, Heffernan H, Tiong A, Pham PH, Monk IR, Stinear TP, Howden BP, Williamson DA. 2018. Topical Antibiotic Use Coselects for the Carriage of Mobile Genetic Elements Conferring Resistance to Unrelated Antimicrobials in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 62.

10. Castanheira M, Watters AA, Bell JM, Turnidge JD, Jones RN. 2010. Fusidic Acid Resistance Rates and Prevalence of Resistance Mechanisms among Staphylococcus sp sp. Isolated in North America and Australia, 2007-2008. Antimicrobial Agents and Chemotherapy 54:3614-3617.

11. Lin Y-T, Tsai J-C, Chen H-I, Hung W-C, Hsueh P-R, Teng L-J. 2014. A novel staphylococcal cassette chromosomal element, SCCfusC, carrying fusC and speG in fusidic acid-resistant methicillin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy 58:1224-1227.

12. Castanheira M, Watters AA, Mendes RE, Farrell DJ, Jones RN. 2010. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus sp sp from European countries (2008). Journal of Antimicrobial Chemotherapy 65:1353-1358.

13. Edslev SM, Clausen M-L, Agner T, Stegger M, Andersen PS. 2017. Genomic analysis reveals different mechanisms of fusidic acid resistance in Staphylococcus aureus from Danish atopic dermatitis patients. Journal of Antimicrobial Chemotherapy 73:856-861.

14. Ellington MJ, Reuter S, Harris SR, Holden MTG, Cartwright EJ, Greaves D, Gerver SM, Hope R, Brown NM, Török ME, Parkhill J, Köser CU, Peacock SJ. 2015. Emergent and evolving...
Antimicrobial resistance cassettes in community-associated fusidic acid and meticillin-resistant *Staphylococcus aureus*. International Journal of Antimicrobial Agents 45:477-484.

15. Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT. 2015. High Prevalence of Mupirocin Resistance in *Staphylococcus aureus* Isolates from a Pediatric Population. Antimicrobial Agents and Chemotherapy 59:3350-3356.

16. McDanel JS, Murphy CR, Diekema DJ, Quan V, Kim DS, Peterson EM, Evans KD, Tan GL, Hayden MK, Huang SS. 2013. Chlorhexidine and Mupirocin Susceptibilities of Methicillin-Resistant *Staphylococcus aureus* from Colonized Nursing Home Residents. Antimicrobial Agents and Chemotherapy 59:3350-3356.

17. Warren DK, Prager M, Munigala S, Wallace MA, Kennedy CR, Bommarito KM, Mazuski JE, Burnham C-AD. 2016. Prevalence of qacA/B Genes and Mupirocin Resistance Among Methicillin-Resistant *Staphylococcus aureus* (MRSA) Isolates in the Setting of Chlorhexidine Bathing Without Mupirocin. Infection control and hospital epidemiology 37:590-597.

18. McDougall LK, Fosheim GE, Nicholson A, Bulens SN, Limbago BM, Shearer JES, Summers AO, Patel JB. 2010. Emergence of Resistance among USA300 Methicillin-Resistant *Staphylococcus aureus* Isolates Causing Invasive Disease in the United States. Antimicrobial Agents and Chemotherapy 57:552.

19. Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ. 2015. Complete Bypass of Restriction Systems for Major *Staphylococcus aureus* Lineages. mBio 6.

20. CLSI. 2015. Performance Standards for Antimicrobial Susceptibility Testing, Wayne, PA: Clinical & Laboratory Standards Institute.

21. EUCAST. 2020. Breakpoint tables for interpretation of MICs and zone diameters, version 10.0, on The European Committee on Antimicrobial Susceptibility Testing. http://www.eucast.org. Accessed 23 August, 2020.

22. Maisch T, Shimizu T, Li Y-F, Heinlin J, Karrer S, Morfill G, Zimmermann JL. 2012. Decolonisation of MRSA, *S. aureus* and *E. coli* by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro. PLOS ONE 7:e34610.

23. Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S, Ahmed JM, Kumar K, Lees J, Stachel A, Fisher JC, Drlica K, Phillips M, Weiser JN, Planet PJ, Uhlemann A-C, Altman DR, Sebra R, van Bakel H, Lighter J, Torres VJ, Shopsin B. 2019. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant *Staphylococcus aureus*. Proceedings of the National Academy of Sciences of the United States of America 116:1745-1754.

24. Cadilla A, David MZ, Daum RS, Boyle-Vavra S. 2011. Association of High-Level Mupirocin Resistance and Multidrug-Resistant Methicillin-Resistant *Staphylococcus aureus* at an Academic Center in the Midwestern United States. Journal of Clinical Microbiology 49:95-100.

25. Alfouzan W, Udo EE, Modhaffer A, Alosaimi Aa. 2019. Molecular Characterization of Methicillin-Resistant *Staphylococcus aureus* in a Tertiary Care hospital in Kuwait. Scientific reports 9:18527-18527.

26. Gisby J, Bryant J. 2000. Efficacy of a New Cream Formulation of Mupirocin: Comparison with Oral and Topical Agents in Experimental Skin Infections. Antimicrobial Agents and Chemotherapy 44:255-260.
27. Dijksteel GS, Nibbering PH, Ulrich MMW, Middelkoop E, Boekema BKHL. 2019. SPS-neutralization in tissue samples for efficacy testing of antimicrobial peptides. BMC Infectious Diseases 19:1093.

28. Verstappen KM, Tulinski P, Duim B, Fluit AC, Carney J, van Nes A, Wagenaar JA. 2016. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs. PLOS ONE 11:e0160242.

29. Håkansson J, Ringstad L, Umerska A, Johansson J, Andersson T, Boge L, Rozenbaum RT, Sharma PK, Tollbäck P, Björn C, Saulnier P, Mahlapuu M. 2019. Characterization of the in vitro, ex vivo, and in vivo Efficacy of the Antimicrobial Peptide DPK-060 Used for Topical Treatment. Frontiers in Cellular and Infection Microbiology 9.

30. Carr W, Wall A, Georgala-Zervogiani S, Stratigos J, Gouriotou K. 1994. Fusidic acid tablets in patients with skin and soft-tissue infection: a dose-finding study. Eur J Clin Res 5:87-95.

31. Desbois AP, Sattar A, Graham S, Warn PA, Coote PJ. 2013. MRSA decolonization of cotton rat nares by a combination treatment comprising lysostaphin and the antimicrobial peptide ranalexin. J Antimicrob Chemother 68:2569-2575.

32. Zhang Y, Werling U, Edelmann W. 2014. Seamless Ligation Cloning Extract (SLiCE) cloning method. Methods in molecular biology (Clifton, NJ) 1116:235-244.

33. Guérillot R, Gonçalves da Silva A, Monk I, Giulieri S, Tomita T, Alison E, Porter J, Pidot S, Gao W, Peleg AY, Seemann T, Stinear TP, Howden BP. 2018. Convergent Evolution Driven by Rifampin Exacerbates the Global Burden of Drug-Resistant Staphylococcus aureus. mSphere 3:e00550-00517.

34. Gagneur J, Neudecker A. 2019. CellGrowth: fitting cell population growth models, v1.30.0. R Foundation for Statistical Computing, Vienna, Austria.
