Transitory O-rich chemistry in heavily obscured C-rich post-AGB stars

D. A. García-Hernández, P. García-Lario, J. Cernicharo, D. Engels, and J. V. Perea-Calderón

1 Instituto de Astrofísica de Canarias, C/ Via Láctea s/n, E-38205 La Laguna, Spain
2 Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Spain
3 Herschel Science Centre, European Space Astronomy Centre, Research and Scientific Support Department of ESA. Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid, Spain
4 Group of Molecular Astrophysics, ICMM, CSIC, C/Sor Juana Inés de La Cruz N3, E-28049 Madrid, Spain
5 Hamburger Sternwarte, Gojenbergsweg 112, D−21029 Hamburg, Germany
6 European Space Astronomy Centre, INSA S.A. P.O. Box 78, E−28080 Madrid, Spain

E-mail: agarcia@iac.es

Abstract. Spitzer/IRS spectra of eleven heavily obscured C-rich sources rapidly evolving from asymptotic giant branch (AGB) stars to Planetary Nebulae are presented. IRAM 30m observations for three of these post-AGBs are also reported. A few (3) of these sources are known to exhibit strongly variable maser emission of O-bearing molecules such as OH and H$_2$O, suggesting a transitory O-rich chemistry because of the quickly changing physical and chemical conditions in this short evolutionary phase. Interestingly, the Spitzer/IRS spectra show a rich circumstellar carbon chemistry, as revealed by the detection of small hydrocarbon molecules such as C$_2$H$_2$, C$_4$H$_2$, C$_6$H$_2$, C$_6$H$_6$, and HCN. Benzene is detected towards two sources, bringing up to three the total number of Galactic post-AGBs where this molecule has been detected. In addition, we report evidence for the possible detection of other hydrocarbon molecules like HC$_3$N, CH$_3$C$_2$H, and CH$_3$ in several of these sources. The available IRAM 30m data confirm that the central stars are C-rich - in despite of the presence of O-rich masers - and the presence of high velocity molecular outflows together with extreme AGB mass-loss rates ($\sim 10^{-4}$ M$_\odot$/yr). Our observations confirm the polymerization model of Cernicharo [1] that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central H ii region, leading to the formation of small C-rich molecules and a transitory O-rich chemistry.

1. Introduction
Proto-planetary nebulae (PPNe) or post-AGB stars - especially those with the most massive progenitors - are usually heavily obscured by their thick circumstellar envelopes (CSE) as a consequence of the strong mass loss that they experience at the end of the asymptotic giant branch (AGB) phase (see e.g., [2]). Indeed, the departure from the AGB usually occurs when the star is completely invisible in the optical domain, being only detectable at IR wavelengths. Later, in the post-AGB phase, the central star reappears again in the optical and the UV photons ionize the CSE, forming a planetary nebula (PN). The UV radiation field is predicted to produce a rich photochemistry on very short timescales (from ~0.2 to a few yrs) leading to the formation of hydrocarbon molecules such as C$_n$H$_2$, HC$_{2n+1}$N, and C$_n$ [1]. Present observations show that
carbon-chain polynic radicals (CₙH) are the most abundant species in IRC +10216 [3]; a C-rich AGB star with no polycyclic aromatic hydrocarbon (PAH) emission bands in its mid-IR spectrum. However, polynynes (CₙH₂), cyanopolynynes, benzene (C₆H₆), and methyl-polynynes - the building blocks of PAHs - rather than carbon chain radicals, dominate the IR spectrum of more evolved objects such as CRL 618 [4,5].

CRL 618 - the prototype C-rich PPN CSE - is a unique object in the sense that it is a genuine factory of small aromatic molecules. Cernicharo et al. [5] reported the first detection, outside the Solar System, of the basic aromatic molecule benzene (C₆H₆) towards this source. The presence of a central compact H II region with a strong UV radiation field as well as the high-velocity (~200 km s⁻¹) outflows of molecular gas [6] indicate that the central star is rapidly evolving towards the PN stage; indeed the B0 central star has already reappeared in the optical range. O-bearing molecules such as OH and H₂O are also present in this C-rich PPN. The presence of these O-bearing species in C-rich PPNe is naturally explained by the chemical models of Cernicharo [1] without invoking a change in the chemical composition (C/O) of the CSE. In addition, if the mass-loss rate is at least 10 times larger than that of CRL 618, then these models predict that C-rich PPNe could have masers from O-bearing species such as OH and H₂O. Here we report the detection of small hydrocarbon molecules such as polynynes (C₉H₁²), benzene, etc. in a small sample (11) of Galactic C-rich post-AGB stars. The variable OH and H₂O maser emission seen in some of these strong mass-losing C-rich sources indicates a transitory O-rich chemistry, which confirms the chemical model predictions by Cernicharo [1].

2. The sample and the Spitzer and IRAM 30m observations

The sources in our sample were originally included in our Spitzer/IRS survey of hidden Galactic post-AGB candidates (GO program #30258; P.I.: P. García-Lario). This survey is intended to characterize the infrared properties of a large (88) and flux-limited sample of heavily obscured (no optical counterpart) post-AGB candidates selected from the ‘GLMP catalog of IRAS sources with infrared colors similar to those of known PNe’ [8]. Approximately half of this sample are non-variable OH/IR stars and the other half is composed by non-variable sources of unknown chemistry - sometimes with negative OH maser detections. The Spitzer/IRS spectra show that the CSE of most of these hidden post-AGB stars are O-rich - the evolutionary outcome of massive hot bottom burning (HBB) AGB stars [2,9] - although a few heavily obscured C-rich post-AGB stars are also found (see e.g., [10]). We concentrate here on the eleven hidden post-AGB stars, which turned out to be C-rich stars, as evidenced by our Spitzer/IRS spectra (see below). Eight sources in this sample do not show any optical counterpart, being even obscured at wavelengths shorter than 3 µm (e.g., not detected by 2MASS). Interestingly, three sources (IRAS 17552, IRAS 18529, and IRAS 19566) in our sample of heavily obscured C-rich stars are known to exhibit variable maser emission of O-bearing molecules such as OH and/or H₂O [11].

Figure 1 shows the reduced Spitzer/IRS spectra for all C-rich sources in our sample. The CSE of these post-AGBs are clearly C-rich as indicated by the detection of strong acetylene (C₂H₂) absorption at 13.7 µm. Several sources show also strong absorption features attributed to polynynes (e.g., C₉H₁², C₆H₁², and C₆H₁²; see [11]) and HCN. The dust spectral energy distributions indicate high mass-loss rates and show similar features than in CRL 618 [4]. Benzene (C₆H₆) is detected for the first time in IRAS 17552 and IRAS 19566 [11], bringing up to three the total number of benzene detections in Galactic post-AGB stars. Acetylene (C₂H₂) is usually detected in less evolved AGB stars such as IRAS 09024–5019 (the only AGB variable in our sample as indicated by the IRAS variability index) and its detection in all sources in our sample indicate that they are quickly evolving to the PN phase. In addition, the unidentified IR bands (e.g., those at 6.2, 7.7, 8.6 and 11.3 µm, generally attributed to PAHs) are only present in IRAS 15038 (Figure 1); likely the most evolved source in our sample. Remarkably, some post-AGB stars like IRAS 19566 display strong absorption features at ~15.75 and 16.43 µm that could be attributed
to HC$_3$N and CH$_3$, respectively. A few sources display also an unidentified absorption molecular feature at 17.92 µm, while one source (IRAS 17552) shows a strong absorption feature at ≈7.5 µm that may be identified with CH$_4$ (see e.g., [12]).

We carried out complementary IRAM 30m observations of the few sources with variable maser emission. These observations confirm the C-rich nature of the central stars; as indicated by the detection of C-rich molecules such as CO and HCN together with the non detection of SiO. The IRAM 30m data reveal also the presence of high velocity (\geq100 km/s) molecular outflows with extreme mass loss rates (\sim10$^{-4}$ M$_\odot$/yr) in the previous AGB phase (see [11] for more details).

3. Formation of O-bearing molecules in C-rich PPNe

Our observations show that O-rich molecules may form in C-rich environments. As in the case of CRL 618, the prototypical C-rich PPN where O-bearing molecules are also detected, this can be explained by the chemical evolution models for the neutral layers of proto-PNe by Cernicharo [1], without the need to invoke a change in the chemistry (from O-rich to C-rich) of the central star. Our observations thus confirm the polymerization model of Cernicharo [1] that predicts a rich photochemistry in the neutral regions of these objects on timescales shorter than the dynamical evolution of the central HII region, leading to the formation of small C-rich molecules (small hydrocarbons and carbon clusters) and a transitory O-rich chemistry (formation of OH, H$_2$CO, ...

Figure 1. Spitzer/IRS spectra (\sim5–38 µm) of all heavily obscured C-rich post-AGB stars in our sample. The wavelength position of the acetylene (C$_2$H$_2$) absorption feature at 13.7 µm is marked with a dotted vertical line.
and H$_2$O). This happens in zone II (see Figure 1 in [1]), where the CO is being photodissociated.

4. Conclusions

The analysis of heavily obscured transition sources with Spitzer/IRS confirms that most of these sources are non-variable OH/IR stars (O-rich), the result of the evolution of massive HBB AGB stars, but also a significant number of C-rich sources are found. We have detected small hydrocarbons, the building blocks of PAHs, in a small sample (11) of Galactic C-rich post-AGB stars [11]. In addition, benzene (C$_6$H$_6$) is clearly detected in two stars, bringing up to three the total number of Galactic post-AGB stars where this molecule has been detected [11]. The simultaneous detection of variable OH and H$_2$O maser emission seen in strong mass-losing C-rich sources confirms the chemical model predictions by Cernicharo [1]. As observed [11], these models predict the formation of small C-rich molecules and clusters, and a transitory O-rich chemistry as a result of time dependent chemistry and CO photodissociation.

Acknowledgments

D.A.G.H. was funded by the Ramón y Cajal fellowship number RYC–2013–14182 and he acknowledges support provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant AYA–2014–58082-P. This work is based on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology under a contract with NASA. D.A.G.H. also acknowledges support for this work provided by NASA through an award (#30258) issued by JPL/Caltech. J.C. thanks funding support from the European Research Council (ERC) under ERC–2013–SyG, G. A. 610256 NANOCOSMOS.

References

[1] Cernicharo J 2004 Astrophys. J. Lett. 608 L41-L44
[2] García-Hernández D A, Perea-Calderón J V, Bobrowsky M and García-Lario P 2007 Astrophys. J. Lett. 666 L33-L36
[3] Cernicharo J, Guélin M and Kahane C 2000 Astron. Astrophys. Suppl. Series 142 181-215
[4] Cernicharo J, Heras A M, Tielens A G G M, Pardo J R, Herpin F, Guélin M and Waters L B F M 2001 Astrophys. J. Lett. 546 L123-L126
[5] Cernicharo J, Heras A M, Pardo J R, Tielens A G G M, Guélin M, Dartois E, Neri R and Waters L B F M 2001 Astrophys. J. Lett. 546 L127-L130
[6] Cernicharo J, Guélin M, Penalver J, Martin-Pintado J and Mauersberger R 1989 Astron. Astrophys. 222 L1-L4
[7] Herpin F and Cernicharo J 2000 Astrophys. J. Lett. 530 L129-L132
[8] García-Lario P, Manchado A, Pych W and Pottasch S R 1997 Astron. Astrophys. Suppl. Series 126 479-502
[9] García-Hernández D A, García-Lario P, Flez B, Manchado A, D’Antona F, Lub J and Habing H 2007 Astron. Astrophys. 462 711-730
[10] García-Hernández D A, Perea-Calderón J V, Engels D and García-Lario P 2007 Asymmetric Planetary Nebular IV eds Corradi R L M et al p. 325
[11] García-Hernández D A, García-Lario P, Cernicharo J et al 2016 Astrophys. J. to be submitted
[12] Malek S E, Camí J and Bernard-Salas J 2012 Astrophys. J. 744 16