Quaternionic reformulation of Maxwell’s equations for inhomogeneous media and new solutions

Vladislav V. Kravchenko
Departamento de Telecomunicaciones,
Escuela Superior de Ingeniería Mecánica y Eléctrica,
Instituto Politécnico Nacional, C.P. 07738, D.F., MEXICO
e-mail: vkravche@maya.esimez.ipn.mx

October 31, 2018

Abstract

We propose a simple quaternionic reformulation of Maxwell’s equations for inhomogeneous media and use it in order to obtain new solutions in a static case.

Keywords: inhomogeneous media, quaternionic analysis, Maxwell’s equations

AMS subject classification: 30 G 35, 78 A 25, 78 A 30

1 Introduction

The algebra of quaternions was applied to the study of Maxwell’s equations starting from the work of J. C. Maxwell himself. The standard reference for the quaternionic reformulation of Maxwell’s equations is the work [1], where the Maxwell equations for vacuum were written in a simple and compact form. In this relation we should mention
also the earlier article [13]. Some new integral representations for electromagnetic quantities based on the idea of quaternionic diagonalization of Maxwell’s equations for homogeneous media were obtained in [8] (see also [12, Chapter 2]). A review of different applications of quaternionic analysis to the Maxwell equations can be found in [3]. In the recent work [9] with the aid of quaternionic analysis techniques the Maxwell equations for inhomogeneous but slowly changing media were diagonalized and new solutions obtained. Nevertheless even the question: how to write the Maxwell equations for arbitrary inhomogeneous media in a compact quaternionic form remained open. In the present work we propose such a reformulation and use it for obtaining new results in the static case.

2 Preliminaries

We denote by $\mathbb{H}(\mathbb{C})$ the algebra of complex quaternions (=biquaternions). The elements of $\mathbb{H}(\mathbb{C})$ are represented in the form $q = \sum_{k=0}^{3} q_k i_k$, where $q_k \in \mathbb{C}$, i_0 is the unit and i_k, $k = 1, 2, 3$ are standard quaternionic imaginary units. We will use also the vector representation of complex quaternions: $q = q_0 + \vec{q}$, where $\vec{q} = \sum_{k=1}^{3} q_k i_k$. The vector parts of complex quaternions we identify with vectors from \mathbb{C}^3. The product of two biquaternions can be written in the following form

\[
p \cdot q = p_0 q_0 - \langle \vec{p}, \vec{q} \rangle + [\vec{p} \times \vec{q}] + p_0 \vec{q} + q_0 \vec{p},
\]

where $\langle \vec{p}, \vec{q} \rangle$ and $[\vec{p} \times \vec{q}]$ denote the usual scalar and vector products respectively.

We will use the following notations for the operators of multiplication from the left-hand side and from the right-hand side

\[p M q = p \cdot q \quad \text{and} \quad M p q = q \cdot p.\]
Remark 1 The scalar product of the vectors \mathbf{p} and \mathbf{q} can be represented as follows

$$< \mathbf{p}, \mathbf{q} > = -\frac{1}{2}(\mathbf{p} M + M \mathbf{p}) \mathbf{q}.$$

On the set of differentiable $\mathbb{H}(\mathbb{C})$-valued functions the Moisil-Theodoresco operator is defined by the expression $Df = \sum_{k=1}^{3} i_k \partial_k f$. In a vector form this expression can be written as follows

$$Df = -\text{div} \mathbf{f} + \text{grad} f_0 + \text{rot} \mathbf{f},$$

where the first term is the scalar part of the biquaternion Df and the last two terms represent its vector part.

Let us note some simple properties of the operator D which will be used in this work. Let φ be a scalar function and f be an $\mathbb{H}(\mathbb{C})$-valued function. Then

$$D(\varphi \cdot f) = D\varphi \cdot f + \varphi \cdot Df,$$

and

$$(D - \frac{\text{grad} \varphi}{\varphi})f = \varphi D(\varphi^{-1} f). \quad (1)$$

3 Quaternionic reformulation of Maxwell’s equations

The Maxwell equations for complex amplitudes of the time-harmonic electromagnetic field have the form

$$\text{div}(\varepsilon \mathbf{E}) = \rho, \quad \text{div}(\mu \mathbf{H}) = 0, \quad (2)$$

$$\text{rot} \mathbf{H} = i \omega \varepsilon \mathbf{E} + \mathbf{j}, \quad \text{rot} \mathbf{E} = -i \omega \mu \mathbf{H}, \quad (3)$$
where \vec{E} and \vec{H} are \mathbb{C}^3-valued functions; ω is the frequency; ε is the permittivity and μ is the permeability of the medium. We suppose ε and μ to be two times differentiable complex valued functions with respect to each coordinate x_k, $k = 1, 2, 3$. Note that they are always different from zero.

The equations (3) can be rewritten as follows

$$\text{div} \, \vec{E} + \left\langle \frac{\text{grad} \, \varepsilon}{\varepsilon}, \vec{E} \right\rangle = \frac{\rho}{\varepsilon}$$

and

$$\text{div} \, \vec{H} + \left\langle \frac{\text{grad} \, \mu}{\mu}, \vec{H} \right\rangle = 0.$$

Combining these equations with (3) we have the Maxwell equations in the form

$$D \vec{E} = \left\langle \frac{\text{grad} \, \varepsilon}{\varepsilon}, \vec{E} \right\rangle - i\omega\mu \vec{H} - \frac{\rho}{\varepsilon}$$

and

$$D \vec{H} = \left\langle \frac{\text{grad} \, \mu}{\mu}, \vec{H} \right\rangle + i\omega \varepsilon \vec{E} + \vec{j}.$$

Taking into account Remark 1 we rewrite them as follows

$$(D + \frac{1}{2} \frac{\text{grad} \, \varepsilon}{\varepsilon}) \vec{E} = -\frac{1}{2} M \frac{\text{grad} \, \varepsilon}{\varepsilon} \vec{E} - i\omega\mu \vec{H} - \frac{\rho}{\varepsilon}$$

and

$$(D + \frac{1}{2} \frac{\text{grad} \, \mu}{\mu}) \vec{H} = -\frac{1}{2} M \frac{\text{grad} \, \mu}{\mu} \vec{H} + i\omega \varepsilon \vec{E} + \vec{j}.$$

Due to (I) we obtain

$$\frac{1}{\sqrt{\varepsilon}} D(\sqrt{\varepsilon} \cdot \vec{E}) + \vec{E} \cdot \vec{e} = -i\omega \mu \vec{H} - \frac{\rho}{\varepsilon}$$

and

$$\frac{1}{\sqrt{\mu}} D(\sqrt{\mu} \cdot \vec{H}) + \vec{H} \cdot \vec{f} = i\omega \varepsilon \vec{E} + \vec{j}.$$
where
\[\vec{\varepsilon}^\prime = \text{grad} \left(\sqrt{\varepsilon} \right) \] and \[\vec{\mu}^\prime = \text{grad} \left(\sqrt{\mu} \right). \]

Introducing the notations
\[\vec{E} = \sqrt{\varepsilon} \vec{E}, \quad \vec{H} = \sqrt{\mu} \vec{H} \quad \text{and} \quad k = \omega \sqrt{\varepsilon \mu}, \]
we finally arrive at the following system
\[(D + M \vec{\varepsilon}^\prime) \vec{E} = -ik \vec{H} - \frac{\rho}{\sqrt{\varepsilon}}, \quad (4) \]
and
\[(D + M \vec{\mu}^\prime) \vec{H} = ik \vec{E} + \sqrt{\mu} \vec{j}, \quad (5) \]
which is equivalent to (2), (3). This pair of equations is the quaternionic reformulation of the Maxwell equations for inhomogeneous media.

The operator \(D + M^\alpha \), with \(\alpha \) being a constant complex quaternion was studied in detail in [12]. Note that \(\vec{\varepsilon}^\prime \) and \(\vec{\mu}^\prime \) are constants if \(\varepsilon \) and \(\mu \) are functions of the form \(\exp(ax_1 + bx_2 + cx_3 + d) \) with constant \(a, b \) and \(c \). For the case when \(\alpha \) is not a constant there were proposed some classes of exact solutions in [8], [10] and [11]. In the same articles the reader can see that the classical Dirac operator with different potentials is closely related to the operator \(D + M^\alpha \). A simple matrix transform proposed in [7] turns the classical Dirac operator into the operator \(D + M^\alpha \), where \(\alpha \) contains the mass and the energy of the particle as well as the terms corresponding to potentials.

In a static case (\(\omega = 0 \)) we arrive at the equations
\[(D + M \vec{\varepsilon}^\prime) \vec{E} = -\frac{\rho}{\sqrt{\varepsilon}}, \]
and
\[(D + M \vec{\mu}^\prime) \vec{H} = \sqrt{\mu} \vec{j}. \]
Thus we are interested in the solutions for the operator $D + M^\bar{\alpha}$, where the complex quaternion $\bar{\alpha}$ has the form $\bar{\alpha} = (\text{grad } \varphi)/\varphi$ and the function φ is different from zero. Note that due to (1) the operator $D + M^\bar{\alpha} M$ permits a complete study which can be found in [14], because it practically reduces to the operator D. In the case of the operator $D + M^\bar{\alpha}$ the situation as we will see later on is quite different.

Consider the equation

$$(D + M^\bar{\alpha}) \bar{f} = 0. \quad (6)$$

Denote

$$v = \frac{\Delta \varphi}{\varphi}.$$

In other words φ is a solution of the Schrödinger equation

$$-\Delta \varphi + v \varphi = 0. \quad (7)$$

Proposition 2 Let ψ be another solution of (7). Then the function

$$\bar{f} = (D - \bar{\alpha}) \psi \quad (8)$$

is a solution of (6).

Proof. The proof consists of a simple calculation. Consider

$$D \bar{f} = -\Delta \psi - D\psi \cdot \frac{D \varphi}{\varphi} - \psi \cdot D\left(\frac{D \varphi}{\varphi}\right)$$

$$= -v \psi - D\psi \cdot \frac{D \varphi}{\varphi} + \psi \cdot \left(\frac{D \varphi}{\varphi}\right)^2 + \psi \frac{\Delta \varphi}{\varphi}$$

$$= -(D \psi - \frac{D \varphi}{\varphi} \cdot \psi) \frac{D \varphi}{\varphi} = -\bar{\alpha} \cdot \bar{f}.$$

This proposition gives us the possibility to reduce the solution of (6) to the Schrödinger equation (7). Moreover, if ψ is a fundamental solution of the Schrödinger operator:

$$(-\Delta + v) \psi = \delta,$$
then the function \widetilde{f} defined by (8) is a fundamental solution of the operator $D + M^{\alpha}$ that can be seen following the proof of Proposition 2.

Remark 3 The proposition 2 is closely related to the factorization of the Schrödinger operator proposed in [1], [2]. Namely, for a scalar function u we have the equality $(D + M^\alpha)(D - M^\alpha)u = (-\Delta + v)u,$

if the complex quaternionic function α satisfies the equation

$$D\alpha + \alpha^2 = -v. \tag{9}$$

It is easy to check that for $\alpha = (\text{grad}\varphi)/\varphi$ the equation (9) is equivalent to (4).

Equation (9) can be considered as a natural generalization of the ordinary differential Riccati equation. In [5] and [10] the corresponding generalizations of the well known Euler theorems for the Riccati equation were obtained.

Let us consider the following simple example of application of the Proposition 2.

Example 4 Consider equation (2) in some domain $\Omega \subset \mathbb{R}^3$ and let $\Delta\varphi/\varphi = -c^2$ in Ω, where c is a complex constant. In this case we are able to construct a fundamental solution for the operator $D + M^{\alpha}$. Denote

$$\psi(x) = \frac{e^{ic|x|}}{4\pi |x|}.$$

This is a fundamental solution of the operator $-\Delta - c^2$. Then the fundamental solution of $D + M^{\alpha}$ is constructed as follows

$$\widetilde{f}(x) = \left(D - \frac{\text{grad}\varphi(x)}{\varphi(x)}\right)e^{ic|x|}4\pi |x| = \left(-\frac{x}{|x|^2} + ic\frac{x}{|x|} - \frac{\text{grad}\varphi(x)}{\varphi(x)}\right)e^{ic|x|}4\pi |x|,$$

where $x = \sum_{k=1}^{3} x_ki_k$.

Note that it is not clear how to obtain this result for the Maxwell operators $D + M^{\alpha}$ and $D + M^{\beta}$ using other known methods.

Acknowledgement 5 The author wishes to express his gratitude to Prof. Vladimir Rabinovich for useful discussions.

This work was supported by CONACYT, project 32424-E.
References

[1] S. Bernstein, *Factorization of solutions of the Schrödinger equation*, In: Proceedings of the symposium *Analytical and numerical methods in quaternionic and Clifford analysis*, Seiffen, 1996.

[2] S. Bernstein, K. Görlebeck, *On a higher dimensional Miura transform*, Complex Variables, 1999, vol.38, 307-319.

[3] K. Görlebeck, W. Sprössig *Quaternionic and Clifford calculus for physicists and engineers*. Chichester: Wiley & Sons, 1997.

[4] K. Imaeda *A new formulation of classical electrodynamics*. Nuovo Cimento, 1976, v. 32 B, # 1, p. 138-162.

[5] V. G. Kravchenko, V. V. Kravchenko, B. D. Williams *A quaternionic generalisation of the Riccati differential equation*. Available from xxx.lanl.gov, arXiv:math-ph/0101010; submitted for publication.

[6] V. V. Kravchenko *On the relation between holomorphic biquaternionic functions and time-harmonic electromagnetic fields*. Deposited in UKRINTEI 29.12.1992 under Nr. 2073-Uk-92 (in Russian).

[7] V. V. Kravchenko *On a biquaternionic bag model*. Zeitschrift für Analysis und ihre Anwendungen, 1995, v. 14, # 1, 3–14.

[8] V. V. Kravchenko *A new method for obtaining solutions of the Dirac equation*. Zeitschrift für Analysis und ihre Anwendungen, 2000, v.19, #3, 655-676.

[9] V. V. Kravchenko *A new approach for describing electromagnetic wave propagation in inhomogeneous media*. Zeitschrift für Analysis und ihre Anwendungen, 2000, v.19, #4, 903-912.
[10] V. V. Kravchenko On a new approach for solving Dirac equations with some potentials and Maxwell’s system in inhomogeneous media. Birkhäuser Verlag, Operator Theory: Advances and Applications, vol. 121, 278-306, 2001.

[11] V. V. Kravchenko, M. Ramírez T. New exact solutions of the massive Dirac equation with electric or scalar potential. Mathematical Methods in the Applied Sciences, 2000, v. 23, 769-776.

[12] V.V.Kravchenko, M.V.Shapiro Integral representations for spatial models of mathematical physics. Pitman Research Notes in Mathematics Series, v. 351. Harlow: Addison Wesley Longman, 1996, 256 pp.

[13] M. S. Shneerson On Moisil monogenic functions. Mat. Sbornik, 1958, v. 44, # 1, p. 113-122 (in Russian).

[14] W. Sprößig On the treatment of non–linear boundary value problems of a disturbed Dirac equation by hypercomplex methods. Complex Variables, 1993, v. 23, 123–130.

[15] B. Williams Una generalización cuaterniónica de la ecuación de Riccati. Master thesis, National Polytechnic Institute, Mexico City, 16.03.2001.